| Set Convex hull:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments  nallest convex set that contains $C$ .  e set as long as $C$ is also finite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| • conv $C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C, 0 \leq 0 \leq 1, 1^{T} 0 = 1 \right\}$ Affine hull: • aff $C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C \text{ for } i = 1, \dots, k, 1^{T} 0 = 1 \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                      | <ul> <li>conv C will be a finite set as long as C is also finite.</li> <li>A will be the smallest affine set that contains C.</li> <li>Different from the convex set, θ<sub>i</sub> is not restricted between 0 and 1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| • aff $C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C \text{ for } i = 1, \dots, k, 1^{T} \boldsymbol{\theta} = 1 \right\}$ Conic hull: • $A = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C, \theta_{i} > 0 \text{ for } i = 1, \dots, k \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      | <ul><li>aff C will always be a</li><li>A will be the smallest</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | an infinite set. If aff $C$ contains the origin, it is also a subspace.<br>It convex conic that contains $C$ .<br>Invex and affine sets, $\theta_i$ does not need to sum up 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| $A = \{ \sum_{i=1} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in \mathbb{C}, \theta_i > 0 \text{ for } i = 1, \dots, k \}$ Ray: $\mathbf{R} = \{ \mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0 \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | set that begins in $\mathbf{x}_0$ and extends infinitely in direction of $\mathbf{v}$ . In other ning, but it has no end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Hyperplane:  • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \}$ • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^T (\mathbf{x} - \mathbf{x}_0) = 0 \}$ • $\mathcal{H} = \mathbf{x}_0 + a^\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                      | • $a^{\perp} = \{ \mathbf{v} \mid \mathbf{a}^{T} \mathbf{v} = 0 \}$ is t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>It is an infinite set ℝ<sup>n-1</sup> ⊂ ℝ<sup>n</sup> that divides the space into two halfspaces.</li> <li>a<sup>⊥</sup> = {v   a<sup>T</sup>v = 0} is the set of vectors perpendicular to a. It passes through the origin.</li> <li>a<sup>⊥</sup> is offset from the origin by x<sub>0</sub>, which is any vector in ℋ.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| • $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$ Halfspaces: • $\mathcal{H} = \{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \le b\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      | • They are infinite sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of the parts divided by $\mathcal{H}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| • $\mathcal{H}_{+} = \{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \ge b\}$ Euclidean ball: • $B(\mathbf{x}_{c}, r) = \{\mathbf{x} \mid   \mathbf{x} - \mathbf{x}_{c}  _{2} \le r\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      | • $B(\mathbf{x}_c, r)$ is a finite set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| $\bullet B(\mathbf{x}_c, r) = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r \right\}$ $\bullet B(\mathbf{x}_c, r) = \left\{ \mathbf{x}_c + r \ \mathbf{u}\  \mid \ \mathbf{u}\  \le 1 \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      | <ul> <li><b>x</b><sub>c</sub> is the center of the</li> <li>r is its radius.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Dan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Ellipsoid:  • $\mathcal{E} = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$ • $\mathcal{E} = \{ \mathbf{x}_c + \mathbf{A} \mathbf{u} \mid   \mathbf{u}   \le 1 \}$ , where $\mathbf{A} = \mathbf{P}^{1/2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      | <ul> <li> ε is a finite set as long as P is a finite matrix.</li> <li> P is symmetric and positive definite, that is, P = P<sup>T</sup> &gt; 0.</li> <li> x<sub>c</sub> is the center of the ellipsoid.</li> <li> The lengths of the semi-axes are given by √λ<sub>i</sub>.</li> <li> A is invertible. When it is not, we say that ε is a degenerated ellipsoid (degenerated ellipsoids are also convex).</li> </ul>                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Norm cone:<br>• $C = \{[x_1, x_2, \cdots, x_n, t]^{T} \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n,   \mathbf{x}  _p \le t\} \subseteq \mathbb{R}^{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      | • Although it is named                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "Norm cone", it is a set, not a scalar. asses the dimension of <b>x</b> in 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Proper cone: $K \subset \mathbb{R}^n$ is a proper cone when it has the following properties  • $K$ is a convex cone, i.e., $\alpha K \equiv K, \alpha > 0$ .  • $K$ is closed.  • $K$ is solid.  • $K$ is pointed, i.e., $-K \cap K = \{0\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                      | <ul> <li>For p = 2, it is called the second-order cone, quadratic cone, Lorentz cone or ice-cream cone.</li> <li>The proper cone K is used to define the generalized inequality (or partial ordering) in some set S. For the generalized inequality, one must define both the proper cone K and the set S.</li> <li>x ≤ y ⇔ y − x ∈ K for x, y ∈ S (generalized inequality)</li> <li>x &lt; y ⇔ y − x ∈ int K for x, y ∈ S (strict generalized inequality).</li> <li>There are two cases where K and S are understood from context and the subscript K is dropped out:</li> <li>When S = R<sup>n</sup> and K = R<sup>n</sup>, (the nonnegative orthant). In this case, x ≤ y means that</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      | matrices, $S_{+}^{n}$ is the positive definite inequality $Y \geq X$ positive semidefinite denote $X > 0$ and respectively, where $X = 0$ Another common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and $K = \mathcal{S}^n_+$ or $K = \mathcal{S}^n_{++}$ , where $\mathcal{S}^n$ denotes the set of symmetric $n \times n$ the space of the positive semidefinite matrices, and $\mathcal{S}^n_{++}$ is the space of the matrices. $\mathcal{S}^n_+$ is a proper cone in $\mathcal{S}^n$ (??). In this case, the generalized $\mathbf{X}$ means that $\mathbf{Y} - \mathbf{X}$ is a positive semidefinite matrix belonging to the inite cone $\mathcal{S}^n_+$ in the subspace of symmetric matrices $\mathcal{S}^n$ . It is usual to d $\mathbf{X} \succeq 0$ to mean than $\mathbf{X}$ is a positive definite and semidefinite matrix, are $0 \in \mathbb{R}^{n \times n}$ is a zero matrix.  usage is when $S = \mathbb{R}^n$ and $K = 0 + c_n t^{n-1} \geq 0$ , for $0 \leq t \leq 1$ . In this case, $\mathbf{x} \leq_K \mathbf{y}$ means that |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      | • The generalized inequals $\mathbf{x}_1 + \mathbf{x}_2 t + \dots + \mathbf{x}_n t^{n-1}$ : • The generalized inequals $\mathbf{x} \leq \mathbf{x} \leq \mathbf{y}$ and $\mathbf{u} \leq \mathbf{x} \leq \mathbf{x} \leq \mathbf{y}$ . • If $\mathbf{x} \leq \mathbf{x} \leq \mathbf{y}$ , then $\mathbf{u} \leq \mathbf{x} \leq \mathbf{y}$ , then $\mathbf{u} \leq \mathbf{x} \leq \mathbf{y}$ .                                                                                                                                                                                                                                                                                                 | $\leq y_1 + y_2 t + \dots + y_n t^{n-1}$ .  That the following properties: $\leq_K \mathbf{v}$ , then $\mathbf{x} + \mathbf{u} \leq_k \mathbf{y} + \mathbf{v}$ (preserve under addition). $\leq_K \mathbf{z}$ , then $\mathbf{x} \leq_K \mathbf{z}$ (transitivity). $\alpha \mathbf{x} \leq_K \mathbf{y}$ for $\alpha \geq 0$ (preserve under nonnegative scaling).                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      | $\triangleright \text{ If } \mathbf{x}_i \leq_K \mathbf{y}_i, \text{ for } i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tty). $\leq_K \mathbf{x}$ , then $\mathbf{x} = \mathbf{y}$ (antisymmetric). $= 1, 2, \ldots$ , and $\mathbf{x}_i \to \mathbf{x}$ and $\mathbf{y}_i \to \mathbf{y}$ as $i \to \infty$ , then $\mathbf{x} \leq_K \mathbf{y}$ . dering because $\mathbf{x} \not\succeq_K \mathbf{y}$ and $\mathbf{y} \not\succeq_K \mathbf{x}$ for many $\mathbf{x}, \mathbf{y} \in S$ . When it happens,                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      | we say that $\mathbf{x}$ and $\mathbf{y}$ and $\mathbf{y}$ and $\mathbf{z}$ .  • $\mathbf{x} \in S$ is the minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | are not comparable (this case does not happen in ordinary inequality, $x \in S$ ). The set does not necessarily the minimum is unique if it does. The same is true for maximum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      | The mathematical no comparable to $\mathbf{x}$ and $\mathbf{x} \in S$ is the minimal $\epsilon$ . We can have many dithat is $(\mathbf{x} - K) \cap S = \epsilon$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otation for that is $S \subseteq \mathbf{x} + K$ , where $\mathbf{x} + K$ denotes all points that are greater than or equal to $\mathbf{x}$ (for the maximum, we have $S \subseteq \mathbf{x} - K$ ). element of $S$ if $\mathbf{y} \leq_K \mathbf{x}$ only when $\mathbf{y} = \mathbf{x}$ . The same is true for maximal. ifferent minimal (maximal) elements. The mathematical notation for $\{\mathbf{x}\}$ , where $\mathbf{x} - K$ denotes all points that are comparable to $\mathbf{x}$ and less or the maximal, we have $(\mathbf{x} + K) \cap S = \{\mathbf{x}\}$ ).                                                                                                                                                                                                                                                                    |  |
| Dual cone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      | • When $K = \mathbb{R}_+$ and $S$ the maximal is equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $=\mathbb{R}$ (ordinary inequality), the minimal is equal to the minimum and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $\bullet \ K^* = \left\{ \mathbf{y} \mid \mathbf{x}^T \mathbf{y} \ge 0, \ \forall \ \mathbf{x} \in K \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                      | • $K^*$ has the following I  • $K^*$ is closed and  • $K_1 \subseteq K_2$ implies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | properties: convex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Polyhedra:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      | <ul> <li>▶ If the closure of</li> <li>▶ K** is the closure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $K$ is pointed then $K^*$ has a nonempty interior.<br>The of the convex hull of $K$ . Hence, if $K$ is convex and closed, $K^{**} = K$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Folyhedra:  • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_{j}^{T} \mathbf{x} \leq b_{j}, j = 1, \dots, m, \mathbf{a}_{j}^{T} \mathbf{x} = d_{j}, j = 1, \dots, p \right\}$ • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{C} \mathbf{x} = \mathbf{d} \right\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \dots & \mathbf{a}_{m} \end{bmatrix}^{T} \text{ and } \mathbf{C} = \begin{bmatrix} \mathbf{c}_{1} & \mathbf{c}_{2} & \dots & \mathbf{c}_{m} \end{bmatrix}^{T}$ Simplex:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | <ul> <li>Polyhedron is the result.</li> <li>Subspaces, hyperplane.</li> <li>The nonnegative orth cial polyhedron.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or may not be an infinite set. ult of the intersection of $m$ halfspaces and $p$ hyperplanes. les, lines, rays line segments, and halfspaces are all polyhedra. leant, $\mathbb{R}^n_+ = \{\mathbf{x} \in \mathbb{R}^n \mid x_i \leq 0 \text{ for } i = 1, \dots n\} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{I}\mathbf{x} \geq 0\}$ , is a speamily of the polyhedra set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| • $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \le 0 \le 1, 1^T 0 = 1\}$ • $S = \{\mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V} 0\}$ , where $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}^{n \times k}$ • $S = \{\mathbf{x} \mid \mathbf{A}_1 \mathbf{x} \le \mathbf{A}_1 \mathbf{v}_0, 1^T \mathbf{A}_1 \mathbf{x} \le 1 + 1^T \mathbf{A}_1 \mathbf{v}_0, \dots, \mathbf{v}_k - \mathbf{v}_0 \}$ (Polyhedra form), where $\mathbf{A} = \mathbf{A}_k = \mathbf{A}$ |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | unctions (or operators) and the Converse Not in most of the cases.  Yes, if A and B are convex see                                                                   | ex?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Convexity Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Convex function: $f : \text{dom } f \to \mathbb{R}$ • $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$ , where $0 \le \theta \le 1$ .  • dom $f$ shall be a convex set to $f$ be considered a convex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes.                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Graphically, the line segment between (x, f(x)) and (y, f(y)) lies always above the graph f.</li> <li>In terms of sets, a function is convex iff a line segment within dom f, which is a convex set, gives an image set that is also con-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>vex.</li> <li>dom f is convex iff all points for any line segment within dom f belong to it.</li> <li>First-order condition: f is convex iff dom f is convex and f(y) ≥</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>f(x) + ∇f(x)<sup>T</sup>(y - x), ∀ x, y ∈ dom f, x ≠ y, being ∇f(x) the gradient vector. This inequation says that the first-order Taylor approximation is a underestimator for convex functions. The first-order condition requires that f is differentiable.</li> <li>If ∇f(x) = 0, then f(y) ≥ f(x), ∀ y ∈ dom f and x is a global</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Second-order condition: f is convex iff dom f is convex and H ≥ 0, that is, the Hessian matrix H is a positive semidefinite matrix. It means that the graphic of the curvature has a positive (upward) curvature at x. It is important to note that, if H &gt; 0, ∀ x ∈ dom f, then f is strictly convex. But is f is strictly convex, not necessarily</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Affine function $f: \mathbb{R}^n \to \mathbb{R}^m$ $\bullet \ f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}, \text{ where } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{x} \in \mathbb{R}^n$ $\mathbf{A}^m = \mathbf{A}\mathbf{x} + \mathbf{b}, \text{ where } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{x} \in \mathbb{R}^n$ $\mathbf{A}^m = \mathbf{A}\mathbf{x} + \mathbf{b}, \text{ where } \mathbf{A} \in \mathbb{R}^m \times n, \mathbf{b} \in \mathbb{R}^m, \mathbf{x} \in \mathbb{R}^n$ $\mathbf{A}^m = \mathbf{A}\mathbf{x} + \mathbf{b}, \text{ where } \mathbf{A} \in \mathbb{R}^m \times n, \mathbf{b} \in \mathbb{R}^m, \mathbf{x} \in \mathbb{R}^m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | that $\mathbf{H} > 0, \forall \mathbf{x} \in \text{dom } f$ . Therefore, strict convexity can only be partially characterized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>affine function as a linear transformation plus a shift from the origin of b.</li> <li>A special case of the linear function is when A = c<sup>T</sup>. In this case, we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B,</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | is a special case of affine function. In other words, $f(S) = \{\mathbf{x} \mid \mathbf{A}(\mathbf{x}) \leq \mathbf{B}\}$ is a convex set if $S$ is convex. Many optimization problems can be formulated as LMI problems and solved optimally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Exponential function $f : \mathbb{R} \to \mathbb{R}$<br>• $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes.  It depends on the matrix <b>P</b> :                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| • $f(\mathbf{x}) = a\mathbf{x}^{T}\mathbf{P}\mathbf{x} + \mathbf{p}^{T}\mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^{n}, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>f is convex iff P ≥ 0.</li> <li>f is strictly convex iff P &gt; 0.</li> <li>f is concave iff P ≤ 0.</li> <li>f is strictly concave iff P &lt; 0.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Power function $f: \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | It depends on a                                                                                                                                                      | It depends on $a$ • $f$ is convex iff $a \ge 1$ or $a \le 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • $f$ is concave iff $0 \le a \le 1$ .  Yes.                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes.                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, <i>p</i> -norm function, or $l_p$ norm function:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>When it is defined f(x) <sub>x=0</sub> = 0, dom f = ℝ.</li> <li>It can be proved by triangular inequality.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \ \mathbf{x}\ _p$ , where $p \in \mathbb{N}_{++}$ .  Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes.                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}.$ Maximum function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      | Yes, if $f_1, \ldots, f_n$ are convex function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \min\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not in most of the cases.                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log (e^{x_1} + \dots + e^{x_n})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes.                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • This function is interpreted as the approximation of the maximum element function, since $\max\{x_1,\ldots,x_n\} \leq f(\mathbf{x}) \leq \max\{x_1,\ldots,x_n\} + \log n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ $\bullet \ f(\mathbf{x}) = \left(\prod_{i=1}^n x_i\right)^{1/n}$ Log-determinant function $f: \mathcal{S}_{++}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • $\mathbf{X} \in \mathcal{S}^n_{++}$ , that is, $\mathbf{X}$ is positive semidefinite $(\mathbf{X} \succ 0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| • $f(\mathbf{X}) = \log  \mathbf{X} $ Compose function $f : \mathbb{R}^n \to \mathbb{R}^m$ • $f = g \circ h$ , i.e., $f(\mathbf{x}) = (g \circ h)(\mathbf{x}) = g(h(\mathbf{x}))$ , where $\mathbf{x} \in S \subseteq \mathbb{R}^p$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes, if $g$ and $h$ are convex furset.                                                                                                                               | unctions and $S$ is a convex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| $h: \mathbb{R}^p \to \mathbb{R}^k, \text{ and } g: \mathbb{R}^k \to \mathbb{R}^n.$ Perspective function $f: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ $\bullet f(\mathbf{x}, t) = \mathbf{x}/t, \text{ where } \mathbf{x} \in \mathbb{R}^n, t \in \mathbb{R}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\{f(\mathbf{x}) \mathbf{x}\in S\}\subseteq\mathbb{R}^n,$ is also convex.                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>The perspective function decreases the dimension of the function domain since dim(dom f) = n + 1.</li> <li>Its effect is similar to the camera zoom.</li> <li>The inverse image is also convex, that is, if C ⊆ ℝ<sup>n</sup> is convex, then f<sup>-1</sup>(C) = {(x,t) ∈ ℝ<sup>n+1</sup>   x/t ∈ C, t &gt; 0} is also convex.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Projective (or linear-fractional) function, $f: \mathbb{R}^n \to \mathbb{R}^m$ • $f = p \circ g$ , i.e., $f(\mathbf{x}) = (p \circ g)(\mathbf{x}) = p(g(\mathbf{x}))$ , where  • $g: \mathbb{R}^n \to \mathbb{R}^{m+1}$ is an affine function given by $g(\mathbf{x}) = \begin{bmatrix} \mathbf{A} \\ \mathbf{c}^{T} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{b} \\ d \end{bmatrix}$ , being $\mathbf{A} \in \mathbb{R}^{m \times n}$ , $\mathbf{b} \in \mathbb{R}^m$ , $\mathbf{c} \in \mathbb{R}^n$ , and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes, if $S \subseteq \text{dom } f$ is a convex $\{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}^n$ , is also con                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>A special case is when n = 1, which is called quadratic-over-linear function.</li> <li>The linear and affine functions are special cases of the linear-fractional function.</li> <li>dom f = {x ∈ R<sup>n</sup>   c<sup>T</sup>x + d &gt; 0}</li> <li>P(x) ⊂ R<sup>n+1</sup> is a ray set that begins at the origin and its last</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $d \in \mathbb{R}.$ $\Rightarrow p : \mathbb{R}^{m+1} \to \mathbb{R}^m \text{ is the perspective function.}$ $\bullet f(\mathbf{x}) = \mathcal{P}^{-1}(\mathbf{Q}\mathcal{P}(\mathbf{x}))$ $\Rightarrow \mathcal{P}(\mathbf{x}) = \{(t\mathbf{x}, t) \mid t \ge 0\} \subset \mathbb{R}^{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>component takes only positive values. For each x ∈ dom f, it is associated a ray set in R<sup>n+1</sup> in this form. This (projective) correspondence between all points in dom f and their respective sets P is a biunivocal mapping.</li> <li>The linear transformation Q acts on these rays, forming another set of rays.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $P(\mathbf{X}) = \{(t\mathbf{X}, t) \mid t \ge 0\} \subset \mathbb{R}$ $P(\mathbf{X}) = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{c}^{T} & d \end{bmatrix} \in \mathbb{R}^{(m+1) \times (n+1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | set of rays.  • Finally we take the inverse projective transformation to recover $f(\mathbf{x})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

