HMMA 307 : Modèles linéaires avancés

REstricted Maximum Likelihood (REML)

Ophélie Coiffier

https://github.com/opheliecoiffier/REML

Université de Montpellier

The variance problem

An example

The variance problem

Explanation

The solution: REML

An example

The main issue: biased variance

Figure: Difference between a Biased Normal distribution and an unbiased Normal distribution

Characterization of the biased variance

The expected value of the variance's biased estimator is not the variance estimator. That means :

Dimension: 1 the model

writes out:

$$y = X\beta + \varepsilon$$

where y $\sim \mathcal{N}(\mu, \sigma^2)$ and $\varepsilon \sim \mathcal{N}(0, 1)$

$$\mathbb{E}[\widehat{\sigma^2}] = \frac{N-1}{N} \sigma^2 \neq \sigma^2$$

Characterization of the biased variance

The expected value of the variance's biased estimator is not the variance estimator. That means :

Dimension: 1 the model writes out:

$$y = X\beta + \varepsilon$$

where y $\sim \mathcal{N}(\mu, \sigma^2)$ and $\varepsilon \sim \mathcal{N}(0, 1)$

$$\mathbb{E}[\widehat{\sigma^2}] = \frac{N-1}{N} \sigma^2 \neq \sigma^2$$

Dimension: k the model writes out:

$$y = X\beta + \varepsilon$$

where y $\sim \mathcal{N}(X\beta, \sigma^2 I_k)$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_k)$

$$\mathbb{E}[\widehat{\sigma^2}] = \frac{N-k}{N} \sigma^2 \neq \sigma^2$$

Characterization of the biased variance

The expected value of the variance's biased estimator is not the variance estimator. That means :

Dimension: 1 the model writes out:

$$y = X\beta + \varepsilon$$

where y $\sim \mathcal{N}(\mu, \sigma^2)$ and $\varepsilon \sim \mathcal{N}(0, 1)$

$$\mathbb{E}[\widehat{\sigma^2}] = \frac{N-1}{N} \sigma^2 \neq \sigma^2$$

Dimension: **k** the model writes out:

$$y = X\beta + \varepsilon$$

where $\mathbf{y} \sim \mathcal{N}(X\beta, \sigma^2 I_k)$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_k)$

$$\mathbb{E}[\widehat{\sigma^2}] = \frac{N-k}{N} \sigma^2 \neq \sigma^2$$

It is an underestimation of the true variance. We need to choose $\widehat{\sigma^2} = \frac{1}{N-k} (y-X\hat{\beta})^T (y-X\hat{\beta})$ to find an unbiased variance.

The idea of the REML method is:

1) Integrate the likelihood in relation to μ

- 1) Integrate the likelihood in relation to μ
- 2) Calculate the log of the previous result using Taylor's development to simplify calculations

- 1) Integrate the likelihood in relation to μ
- 2) Calculate the log of the previous result using Taylor's development to simplify calculations
- 3) Recognize the Maximum likelihood solution and the REML approach (the bias, the fee)

- 1) Integrate the likelihood in relation to μ
- 2) Calculate the log of the previous result using Taylor's development to simplify calculations
- 3) Recognize the Maximum likelihood solution and the REML approach (the bias, the fee)
- 4) Determine the variance estimator

The variance problem

An example
Data
Codes and Results

An example : Data

Ind	Resp	Treat
1	10	0
1	25	1
2	3	0
2	6	1

In $\it Treat$ column: 1 means that the individual gets the treatment and 0 means that it doesn't get the treatment.

An example : Codes

First, we use linear regression with Least Squared method (OLS)

```
linear_reg = sm.OLS(df.Resp,df.Treat)
linear_reg_fit = linear_reg.fit()
print(linear_reg_fit.summary())
```

Model : $Y_{Resp} = \mu + \beta X_{Treat} + \varepsilon$

An example : Codes

Then, we use mixed effects model with REML

```
\label{eq:mixed_random} \begin{aligned} \mathsf{mixed\_random} &= \mathsf{smf.mixedIm}(\mathsf{"Resp}{\sim}\mathsf{Treat"},\mathsf{df}, \\ & \mathsf{groups}{=}\mathsf{df}[\mathsf{'Ind'}]) \\ \mathsf{mixed\_fit} &= \mathsf{mixed\_random.fit}() \\ \mathsf{print}(\mathsf{mixed\_fit.summary}()) \end{aligned}
```

Model :
$$Y_{Resp} = \mu + \beta X_{Treat} + \alpha X_{Ind} + \varepsilon$$

An example: Results

Method	Log-likelihood	σ^2	σ_s^2
OLS linear regression	-14.23	-	-
REML (mixed effects regression)	-7.89	6.00	8.15
ML (mixed effects regression)	-13.0	4.24	5.77

Both methods and both regressions have the same value for the coefficients : $\beta_1=6.5$ and $\beta_2=15.5$

The variance problem

An example

Conclusion

The REML method allows to estimate the variance without bias.

The log-likelihood is different because we have a second term with the REML method : a fee. But we have the same coefficients β .

So, the REML method changes the log-likelihood and standard deviations in linear mixed model.

Bibliography

- Coiffier, Ophélie. REML to Python code. https://github.com/opheliecoiffier/REML. 2020.
- Oskolkov, Nikolay. Maximum Likelihood (ML) vs. REML. https://towardsdatascience.com/maximum-likelihood-ml-vs-reml-78cf79bef2cf.
- Salmon, Joseph. HMMA 307 Modèles linéaires avancées. 2019.