Matematisk Finansiering 1

4 timers skriftlig eksamen mandag 20/10 2014. Sættet er på 4 sider (ekskl. forside) og indeholder 4 opgaver og ialt 15 nummererede delspørgsmål, der (vejledende, ikke bindende) indgår med lige vægt i bedømmelsen. Opgaverne kan løses uafhængigt af hinanden. Beregningesmæssige resultater ønskes fuldt dokumenteret i besvarelsen. Det skal således klart fremgå, hvilke formler, der bruges, og hvorfor de bruges.

Opgave 1

Betragt en 2-periode-model for kursen på en (dividende-fri) aktie, S. Den mulige udvikling er fastlagt ved nedenstående gitter med tidspunkter (som vi tænker på som år), aktiekurser og (betingede) sandsynligheder svarende til målet P. Renten konstant, -0,01 (-1%) per år.

Spg. 1a

 $\overline{\mathbf{Vis}} \ \mathbf{at}$ modellen er et specialtilfælde af standardbinomialmodellen, $S(t+\Delta t) = S(t) \exp(\alpha \Delta t \pm \sigma \sqrt{\Delta t})$. $\mathbf{Vis} \ \mathbf{at}$ modellen er arbitragefri og komplet. $\mathbf{Hvorfor}$ kunne man umiddelbart tro, at dette ikke var tilfældet?

Spg. 1b

Betragt en futureskontrakt med udløb på tid 2 og aktien som underliggende. **Angiv** futuresprisprocessen og kontraktens betalinger.

Spg. 1c

Bestem tid 0-prisen på en europæisk udløb-2, strike-92 call-option på aktien. **Beregn** tid 0-sammensætningen af en (bankbog, futureskontrakt fra spg. 1b)-portefølje, der replikerer call-optionen.

Spg. 1d

Prisfastsæt den amerikanske version af call-optionen fra spg. 1c og angiv i hvilke knuder, optionen indfris. Kommenter dine resultater.

Opgave 2

I denne opgave betragtes en 2-periode-model for prisprocessen og dividendeprocessen for en aktie; anført i knuderne nedenfor som (pris; dividende), eller i almindelig notation $(S; \delta)$. De betingede P-sandsynligheder spiller ingen rolle i denne opgave. Der findes desuden et risikofrit aktiv med en rente på 0.

Spg. 2a
Angiv filtrene for hhv. pris- og dividendeprocessen. Er nogle af disse afslørende?

Spg. 2b

Vis at modellen er arbitragefri, men ikke komplet.

Nu betragtes en såkaldt Shiller-kontrakt. Dette er et aktiv, der på tid 2 udbtaler den kumulerede dividende langs den indtrufne sti; $\delta(1) + \delta(2)$ i kompakt notation.

Spg. 2c

Se på tid-1-ned-knuden. **Bestem** i denne knude intervallet af arbitragefri priser for Shiller-kontrakten.

Spg. 2d

Antag at Shiller-kontrakten på tid 0 handles til prisen 2,89. **Vis at** modellen er arbitragefri og komplet.

Opgave 3

Betragt nedenstående model for mulige udviklinger i den korte rente (ρ) ; den indeholder som sædvanlig tidspunkter, niveauer og (betingede) sandsynligheder. Sandsynlighederne antages at være risiko-neutrale, altså at afspejle et martingalmål (Q).

Spg. 3a

Bestem $E^Q(\rho(t))$ for t = 0, 1, 2. Er ρ -processen en Q-martingal?

Spg. 3b

Vis at nulkuponobligationspriserne på tid 0 er

$$(P(0,1); P(0,2); P(0,3)) = (0,97087; 0,94295; 0,91611)$$

og **angiv** nulkuponrenterne på tid 0.

Spg. 3c

Beregn 1-periode-forwardrenterne og swap-renterne på tid 0.

Spg. 3d

Betragt et variabelt forrentet 3-periode stående lån med hovedstol 100. Herved forstås at rentebetalingen på tid t er $100 \times \rho(t-1)$ og at samtlige afdrag ligger på tid 3. **Vis at** at dette lån altid har kurs (eller pris) 100 ("det handler til par").

Spg. 3e

Det variabelt forrentede lån fra spg. 3d udstyres nu med et loft. Herved forstås at afdragsprofilen er den samme, men at rentebetalingen på tid t er $100 \times \min(\rho(t-1), \bar{\rho})$, hvor $\bar{\rho}$ er en konstant. **Beregn** tid-0 prisen lånet med loft $\bar{\rho} = 0, 03$.

Opgave 4

De to delspørgsmål i denne opgave er uafhængige.

Spg. 4a

Proposition 10 i Lando & Poulsens noter fortæller, at

$$q_i \propto p_i u'(c_i^*),$$

hvor c^* er det optimale forbrug for en forventet nytte-maksimerende agent med nyttefunktion u, og \propto betyder "proportional med". Det er blevet udlagt på følgende måde:

I et komplet marked giver resultatet en nem metode til at bestemme (op til en proportionalitetsfaktor) en vilkårlig agents optimale forbrug/portefølje.

Forklar og kommenter.

Spg. 4b

I mange større virksomheder bruger man (call-)optioner til at aflønne bestyrelsesmedlemmer og ledende medarbejdere. For nogle år siden kunne man i Berlingske Tidendes business-sektion læse følgende:

Modstandere af bestyrelsesoptioner mener, det gør virksomhedens styrende organ for risikovilligt, fordi optioner kun kan blive mere værd, men ikke mindre værd, som aktier kan.

Kommenter.