T5.GB.P02 Vida media de una sustancia radiactiva

Se midió la intensidad de la radiación de una sustancia radiactiva a intervalos de medio año. Los resultados fueron los siguientes:

t (años)	0,00	0,50	1,00	1,50	2,00	2,50
gamma	1	0.994	0.990	0.985	0.979	0.977
t (años)	3,00	3,50	4,00	4,50	5,00	5,50
gamma	0.972	0.969	0.967	0.960	0.956	0.952

donde γ es la intensidad relativa de la radiación. Sabiendo que la radiactividad decae exponencialmente con el tiempo: $\gamma = a \cdot e^{-bt}$, se desea estimar la vida media radiactiva de la sustancia.

La vida media es el tiempo que transcurre hasta que la intensidad de la radiación es 0.5

- a) (4p) Calcula los coeficientes *a* y *b* de la función de ajuste.
- b) (1p) Calcula el error del ajuste
- c) (3p) Representa en la misma gráfica los puntos dados con círculos rojos de ancho de línea 1.5 y la función de ajuste con una linea continua negra de ancho de línea 2
- d) (2p) Calcula la vida media de la sustancia radiactiva. Da el resultado con 2 decimales

Da los resultados con 4 cifras significativas

Debes emplear únicamente funciones creadas en la práctica

Respuesta

a) Linealizamos la ecuación $\gamma = a \cdot e^{-bt}$ tomando logaritmos a ambos lados: $\log(\gamma) = -b \cdot t + \log(a)$ y calculamos la recta de ajuste sobre t y $\log(\gamma)$ mediante la función RegresionLineal

```
clc, clear, clf
t = 0:0.5:5.5;
gamma = [1 0.994 0.990 0.985 0.979 0.977 0.972 0.969 0.967 0.960 0.956 0.952];
[a, Er] = RegresionLineal(t, log(gamma));
b = -a(1);
a = exp(a(2));
fprintf('Los coeficientes de la función de ajuste son a = %.4f y b = %.6f\n',a,b)
```

Los coeficientes de la función de ajuste son a = 0.9984 y b = 0.008640

b)

```
fprintf('El error del ajuste es: %.8f\n',Er)
```

El error del ajuste es: 0.00001624

c) Dibujamos los puntos y la función de ajuste:

```
plot(t,gamma,'or','LineWidth',1.5)
hold on
tp = linspace(0,5.5,100);
```

```
gp = a .* exp(-b.*tp);
plot(tp,gp,'-k','LineWidth',2)
xlabel('t (años)')
ylabel('gamma')
legend ('Puntos de datos','función de ajuste gamma = a * exp(-b*t)')
hold off
```


d) Tomando $\gamma = 0.5 = a \cdot e^{-\mathrm{bt}} \Longrightarrow \log(0.5) = \log(a) - b \cdot t \Longrightarrow t = \frac{\log(a) - \log(0.5)}{b}$

```
vm = (log(a) - log(0.5)) / b;
fprintf('La vida media es de %.2f años\n',vm)
```

La vida media es de 80.05 años