ADVANCED DATA STRUCTURES

Labwork 4

1 Inexact matching

Labwork 1: Consider the strings and ARCHERY and MARCEL. Indicate a transcript of the first string into the second substring, with minimum number of edit operations.

Note; the transcript is a word made of characters M,D,R, and I.

Labwork 2: Consider the alphabet $\Sigma = \{a, t, c, g\}$ and the score function

s	a	t	С	g	-
a	1	-1	-2	-4	0
t	1	0	-3	-2	-1
С			3	0	0
g				2	-2
_					0

Compute the position(s) of the best approximations of $P=\mathtt{atac}$ in the text $T=\mathtt{gatataaac}.$

2 Disjoint set structures

Weighted graphs

A weighted graph is a finite set of nodes connected by edges which have positive real numbers as weights. For example, the following is a weighted graph with 5 nodes and 6 edges: We will assume that

Figure 1: A weighed graph which is connected

- the nodes of a graph with n nodes are labeled with numbers from 1 to n.
- there is a text file which stores the representation of a weighted graph in the following way:
 - The first line contains the value of n (an integer)
 - The following lines contain 3 numbers separated by whitespace:

```
i j w
```

to indicate that the graph has an edge from node i to node j with weight w.

We assume that the edges are enumerated in increasing order of weight. For example, the weighted graph from Fig. 1 can be stored and read from a text file with the following content:

Kruskal algorithm

Minimum weight spanning trees

A graph is **connected** if there is a path between every two nodes in the graph. Fo example the weighted graph from Fig. 1 is connected.

A spanning tree of a weighted and connected graph G is a set T of edges of G such that (1) every node of G is an endpoint of an edge in T, and (2) T has no loops. The weight w(T) of T is the sum of weights of edges in T.

For example, the following are spanning trees of the graph

A minimum weight spanning tree (or MWST) of G is a spanning tree of G whose weight has minimum possible value. For example, T_3 is a MWST of the graph from Fig. 1.

A MWST of a connected and weighted graph G with n nodes can be found with Kruskal algorithm:

```
Start with the initial partition S = \{\{1\}, \{2\}, \dots, \{n\}\}, T = \emptyset and W = 0 for each edge (i, j, w) of G, in increasing order of weights \operatorname{\mathbf{do}} if i, j are not in the same component of S add (i, j, w) to T Union(i, j) W = W + w end if end for return T, W
```

Labwork 3

This labwork is about using a data structure for disjoint sets to compute a minimum-weight spanning tree of a weighted graph.

Use a data structure for disjoint sets to write a program that reads from a text file graph.txt the representation of a connected weighted graph G and computes a MWST of G. The program will print the weight and the list of edges of the MWST.

For example, the output of the program for the graph depicted in Figure 1 can be

to indicate that

is a MWST.