

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (п) 1198128 A

(50) 4 С 22 В 1/242

1 - 7 ФЕВ 1986

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3694941/22-02
(22) 27.01.84
(46) 15.12.85.Бюл. № 46
(71) Херсонский индустриальный
институт
(72) С.В.Иванов, Е.А.Исаев и
Е.Н.Видущенко
(53) 622.781 (088.8)
(56) Акцептованная заявка Нидерлан-
дов № 6710530, кл. С 21 В, 1967.

Патент СССР № 662021,
кл. С 22 В 1/244, 1970.

(54)(57) 1. ШИХТА ДЛЯ ПОЛУЧЕНИЯ ОКАТЫ-
ШЕЙ, включающая железорудный матери-
ал, например концентрат, натриевую
соль карбоксиметилцеллюлозы с добав-
кой соли щелочно-земельного металла;
отличающаяся тем, что,
с целью повышения эффективности про-
цесса окомкования и увеличения проч-
ности сырых окатышей, в качестве

добавки используют водорастворимую
соль щелочно-земельного металла и
низкомолекулярной сильной кислоты
при следующем соотношении компонен-
тов, мас.%:

Натриевая соль	
карбоксиметил-	
целлюлозы	0,005-1,0
Соль щелочно-	
земельного	
металла и низко-	
молекулярной силь-	
ной кислоты	0,01-1,0
Железорудный	
материал	Остальное

2. Шихта по п.1, отлича-
ющаяся тем, что в качестве водо-
растворимой соли щелочно-земельного
металла и низкомолекулярной сильной
кислоты используют хлорид кальция.

(19) SU (п) 1198128 A

Изобретение относится к окомкованию сыпучих материалов и может быть использовано при подготовке сырьевых материалов в черной и цветной металлургии, в химической промышленности и при производстве удобрений.

Целью изобретения является повышение эффективности процесса окомкования и увеличение прочности сырых окатышей.

Натриевая соль карбоксиметилцеллюлозы представляет собой природный полимер следующего строения:

который обычно приготавливают из щелочной целлюлозы и натриевой солиmonoхлоруксусной кислоты. Применяется натрий-карбоксиметилцеллюлоза со степенью замещения, близкой к единице, и степенью полимеризации $n \approx 2000$.

Используемая совместно с натрий-карбоксиметилцеллюлозой добавка представляет собой водорастворимые соли щелочно-земельных металлов кальция, магния и др., например хлориды, нитраты или сульфаты указанных металлов. Соли могут использоваться по отдельности или совместно, но наиболее хорошие результаты получены с использованием хлоридов кальция или магния.

Оптимальное содержание натрий-карбоксиметилцеллюлозы и соли щелочно-земельного металла и низкомолекулярной сильной кислоты зависит от свойств исходного сыпучего материала и применяемой технологии окомкования и в каждом конкретном случае должно определяться экспериментально. При этом концентрация ионов щелочно-земельного металла в связующем должна быть не менее 50% от количества замещенных групп натрий-карбоксиметилцеллюлозы.

Шихта может дополнительно содержать другие известные добавки, например бентонит, в особенности его недорогие и не применяемые сами по себе сорта. Указанные добавки пригодны для любых сортов железорудного концентрата и могут также применяться при окомковании других влаж-

ных сыпучих материалов, в частности марганцевых концентратов, апатита, флотоконцентратов фосфоритов.

5 Введение добавки осуществляется известными способами и определяется в основном принятой на данном производстве технологией окомкования. Наиболее благоприятный результат получается при смешивании компонентов шихты в сухом виде и введение их в концентрат непосредственно перед подачей в окомкователь.

15 Эффективность предлагаемой шихты объясняется следующим образом. Молекулы Na - КМЦ, имеющие линейное строение, растворяются в прослойках воды между частицами сыпучего материала и частично адсорбируются на поверхности частиц. При этом вязкость жидкой фазы возрастает в несколько раз, что способствует окомкованию, в особенности ускоряет процесс образования зародышей

20 гранул и скорость их роста. В случае присутствия в жидкой фазе ионов щелочно-земельных (двухвалентных) металлов, например ионов кальция (Ca^{2+}), они взаимодействуют с замещенными карбоксиметильными группами с "сшивающими" линейные молекулы Na - КМЦ, образуя пространственную структуру. Вследствие этого еще более повышается вязкость жидкой фазы, а сила взаимодействия частиц между собой также заметно увеличивается, т.е. сырье окатыши имеют более высокие прочностные характеристики.

40 Пример: Выполнены лабораторные испытания предлагаемого состава шихты в барабанном окомкователе $\phi 350$ мм и длиной 750 мм при разовой загрузке материала 3 кг. Для

45 получения окатышей использовался железорудный концентрат крупностью 80% класса - 50 мкм и с содержанием железа 62,5%. Указанный концентрат смешивали с добавками в сухом состоя-

50нии, после чего увлажняли до нужной влажности. На первой стадии в барабан загружали исходный материал и гранулировали 5 мин при скорости вращения 50 об/мин. Затем полученную смесь исходного материала и окатышей выгружали из окомкователя и производили рассев на фракции. На второй стадии окатыши размером

+5,5 мм окатывались в течение 10 мин в том же барабане при скорости вращения 20–30 об/мин. Затем проводили отсев окатышей диаметром +10 мм и испытывали их на статическую и динамическую прочность по известной методике.

Для сравнения аналогичным образом проведено окомкование железорудного концентрата в смеси с бентонитом и содой и железорудного концентрата с добавкой Na – КМЦ и карбоната натрия.

Составы шихт для каждого опыта и результаты, усредненные по данным двух опытов, приведены в таблице.

На основании данных таблицы видно, что использование хлорида кальция или магния совместно с Na – КМЦ увеличило выход фракции +5,5 мм в среднем на 20–30%, а прочность сырья окатышей возросла в среднем на 15–20%.

Причем использование хлорида кальция предпочтительней, так как при этом получены более высокие результаты.

При содержании хлорида кальция менее 0,01 наблюдается ухудшение показателей процесса, а повышение его выше 1% не дает существенного улучшения и одновременно ведет к увеличению расхода добавки, что нежелательно. Поэтому оптимальным является содержание добавки в пределах 0,01–1%.

Опыт	№ пп	Состав шихты	Содержание, %	Гранулометрический состав шихты, %		Прочность окатышей	
				-5,5 мм	+5,5 мм	на раздавливание, кг/ок	на сбрасывание, раз
I	1	Бентонит	1,0				
		Сода	10	44,9	55,1	0,45	1,56
		Концентрат	Остальное				
II	2	Na – КМЦ	0,08				
		Карбонат натрия	0,03	31,8	68,2	0,58	2,30
		Концентрат	Остальное				
III	3	Na – КМЦ	0,08				
		Хлорид кальция	0,00	33,8	66,2	0,55	2,3
	4	– " –	0,01	26,0	74,0	0,63	2,42
	5	– " –	0,1	17,9	82,1	0,75	2,56
	6	– " –	1,0	18,8	81,2	0,82	2,60
	7	– " –	1,5	20,2	79,8	0,81	2,65
		Концентрат	Остальное				
IV	8	Na – КМЦ	0,00	45,6	54,4	0,49	1,55
	9	– " –	0,005	28,9	71,1	0,6	2,35
	10	– " –	0,1	17,6	82,4	0,75	2,60

Продолжение таблицы

Опыт	№ пп	Состав шихты	Содер- жание, %	Гранулометричес- кий состав шихты, %		Прочность окатышей	
				-5,5 мм	+5,5 мм	на разда- ливание, кг/ок	на сбра- сывание, раз
11	- " -		1,0	18,5	31,5	0,78	2,65
12	- " -		1,5	24,5	75,5	0,55	2,20
	Хлорид кальция	0,1					
	Концентрат	Остальное					
у	Na - КМЦ	0,08					
13	Хлорид магния	0,01	28,9	70,1	0,58	2,35	
14	Хлорид магния	0,1	23,2	76,8	0,65	2,4	
15	- " -	1,0	21,0	79,0	0,68	2,55	
	Концентрат	Остальное					

Редактор М.Бандура

Составитель Л.Шашенков
Техред М.Гергель

Корректор М.Самборская

Заказ 7689/28

Тираж 582

Подписьное

ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д.4/5

Филиал ИПП "Патент", г.Ужгород, ул.Проектная, 4