Исследование МАИ методом статистического моделирования

Смирнова Дарья Алексеевна, гр. 522

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., пр. Сушков Ю.А. Рецензент: Тамазян Г.С.

Санкт-Петербург 2015г.

Метод анализа иерархий (МАИ)

Рис.: Пример трехуровневой иерархии.

Шкала

Качественные оценки превосходства и обозначающие их числа

эквивалентность	0
слабое превосходство	±2
сильное превосходство	±4
очень сильное превосходство	±6
абсолютное превосходство	±8
промежуточные оценки	$\pm 1, \pm 3, \pm 5, \pm 7$

Определение

Пусть $\Lambda = \{-8, \dots, 8\}$. Шкала — это функция $\varphi : \Lambda \to \mathbb{R}^+$.

Рассматриваемые шкалы

- \bullet Caatu: $\varphi_S(\lambda) = (1 + x_S|\lambda|)^{\operatorname{sign}\lambda}$.
- Лутсма: $\varphi_L(\lambda) = c^{\lambda}$.
- ullet Логистическая: $arphi_{log}(\lambda) = rac{2}{1 + \exp(-\mu\lambda)}.$

Способы получения вектора приоритетов по матрице попарных сравнений

Обозначения

- матрица попарных сравнений $A = (a_{ij})_{i,j=1}^n, \ a_{ij} \in \Lambda = \{-8,\dots,8\};$
- φ шкала: $\Lambda \to \mathbb{R}^+$;
- $\bullet \ \varphi(A) = (\varphi(a_{ij}))_{i,j=1}^n;$
- $A^+ = (a_{ij}^+)_{i,j=1}^n = \varphi(A)$.

Метод собственного вектора (Берж, 1962)

В качестве вектора приоритетов берется нормированный главный собственный вектор матрицы $A^+.$

Метод геометрических средних (Crawford & Williams, 1985)

Приоритеты получаются следующим образом:

$$w_i = \sqrt[n]{\prod_{j=1}^n a_{ij}^+}.$$

Согласованность упорядочения объектов x_1,\ldots,x_n

Обозначения:

в записи $\hat{\succ}$ знак \succ обозначает превосходтво, λ — степень превосходства.

Условие порядковой согласованности

 $\forall x_i, x_j, x_k$, из того, что $x_i \succ x_j, x_j \succ x_k$, следует $x_i \succ x_k$.

Моделирование порядково согласованной матрицы попарных сравнений

- i < j: $a_{ij} = \xi_k, k = n(n-1)/2, \; \xi_k \mathsf{p}$. p. p. $\Lambda^+ = \{\lambda | \lambda \ge 0, \lambda \in \Lambda\}$;
- $i > j : a_{ij} = -a_{ji}$;
- $a_{ii} = 0, i = 1, \dots, n$.

Условие численной согласованности

 $\forall x_i, x_j, x_k \colon x_i \overset{\widetilde{\lambda}}{\succ} x_j \overset{\widetilde{\widetilde{\lambda}}}{\succ} x_k$, где $\lambda, \widetilde{\lambda}, \overset{\widetilde{\widetilde{\lambda}}}{\widetilde{\lambda}} \in \Lambda$, выполняется $x_i \overset{\min(\widetilde{\lambda} + \overset{\widetilde{\widetilde{\lambda}}}{\widetilde{\lambda}}, 8)}{\succ} x_k$

Моделирование численно согласованной матрицы попарных сравнений

 $a_{ij}=\min(\lfloor rac{\xi_i-\xi_j}{0.1}
floor,8)$, где ξ_1,\ldots,ξ_n равномерно распределены на [0,2].

Устойчивость

Рис.: Трехуровневая иерархия с одним критерием.

- ullet A матрица попарных сравнений с элементами из Λ .
- ullet Зададим матрицу ошибок $\mathcal{E}=(arepsilon_{ij})_{i,j=1}^n$:

$$\varepsilon_{ij} = \begin{cases} 0, & \text{с вероятностью } \frac{1}{3}, \\ 1, & \text{с вероятностью } \frac{1}{3}, \\ -1, & \text{с вероятностью } \frac{1}{3}. \end{cases}$$

- ullet Матрица отклонений $A^1 := A + \mathcal{E}$.
- \bullet Вектора приоритетов v,v^1 получены по матрицам $\varphi(A),\varphi(A^1)$ соответственно.

Определение

Под устойчивостью шкалы φ будем понимать совпадение упорядочений компонент векторов приоритетов, полученных по матрицам $\varphi(A)$ и $\varphi(A^1)$.

Шкала Саати. Метод собственного вектора

Шкала Саати: $\varphi_S(\lambda) = (1+x_S|\lambda|)^{\operatorname{sign}\lambda}$, x_S — параметр.

Рис.: Оценки вероятностей совпадения упорядочений главных собственных векторов матриц $\varphi(A)$ и $\varphi(A+\mathcal{E})$.

Сравнение устойчивости шкал Саати и логистической при использовании метода собственного вектора

Рис.: Устойчивость шкал в зависимости от параметров.

Сравнение методов получения вектора приоритетов на примере логистической шкалы

Выводы по устойчивости в однокритериальном случае

Выбор шкалы при фиксированном методе

	Согласованность:	
	численная	порядковая
Метод собственного вектора	Логистическая	Саати
Метод геометрических средних	Лутсма	

Выбор метода при фиксированной шкале

	Согласованность:	
	численная	порядковая
Саати	Геометрических средних	Собственного вектора
Лутсма	Геометрических средних	
Логистическая	Собстсвенного вектора	Геометрических средних

Устойчивость уменьшается при:

- увеличении числа альтернатив;
- увеличении значения параметра шкалы.

Средние веса альтернатив

Пусть $N=10^5$ — число реализаций, arphi — функция шкалы, n — количество альтернатив. Итерация:

- ullet A^i матрица попарных сравнений, удовлетворяющая условию численной согласованности;
- ullet ω^i отнормированный главный собственный вектор матрицы $arphi(A^i)$;
- ullet упорядочиваем ω^i и перенумеровываем: $\omega^i_1 \geq \omega^i_2 \geq \cdots \geq \omega^i_n$.

Средний вес k-ой альтернативы: $\frac{1}{N}\sum_{i=1}^N \omega_k^i$.

Рис.: Шкалы: а) логистическая, б) Лутсма, в) Саати.

Генерация начальных упорядочений

В однокритериальном случае: $x_1 \succ x_2 \succ \cdots \succ x_n$.

Задание начальных упорядочений альтернативам при моделировании

Приоритеты альтернативы x_i по первому критерию: f(i). Приоритеты альтернативы x_i по k-ому критерию: $f(i)+\xi_i^k$, ξ_i^k p.p. на $[-0.7,0.7],\ i=1,\ldots,n$.

Рис.: Процесс задания начальных упорядочений.

Устойчивость

- ullet A_1,\ldots,A_k матрицы попарных сравнений для каждого критерия;
- ullet $\mathcal{E}_1,\ldots,\mathcal{E}_k$ матрицы ошибок;
- ullet A_1^1,\dots,A_k^1 матрицы отклонений: $A_i^1:=A_i+\mathcal{E}_i,\,i=1,\dots,k$;
- ullet φ функция шкалы;
- ullet $v_1,...,v_k$: v_i главный нормир. собственный вектор матрицы $arphi(A_i)$;
- ullet $v_1^1,...,v_k^1$: v_i^1 главный нормир. собственный вектор матрицы $arphi(A_i^1)$;
- $v = \frac{1}{k}(v_1 + \dots + v_k);$
- $v^1 = \frac{1}{k}(v_1^1 + \dots + v_k^1)$.

Рис.: Оценки вероятностей сохранения упорядочения для шкалы Саати.

Совпадение с медианой Кемени

Пусть $v_1, \dots v_k$ — вектора приоритетов по каждому критерию. Рассмотрим их как ранжирования.

Матрица упорядочений:

$$z_{ij} = \left\{ \begin{array}{ll} 0, & \text{если } i \text{ и } j \text{ равноценны,} \\ 1, & \text{если } i \text{ предпочтительнее } j, \\ -1, & \text{если } j \text{ предпочтительнее } i. \end{array} \right.$$

Расстояние Кемени (Кемени и Снелл, 1972)

$$d(Y,Z) = \frac{1}{2} \sum_{i,j} |y_{ij} - z_{ij}|.$$

Медиана Кемени (Кемени и Снелл, 1972)

Для множества ранжирований P_1, \ldots, P_k медиана Кемени

$$P = \operatorname{argmin} \sum_{i=1}^{k} d(P_i, P).$$

Рис.: Оценки вероятности совпадения с медианой Кемени для логистической шкалы.

Заключение

- Предложен способ моделирования матрицы попарных сравнений, элементы которой удовлетворяют описанному условию численной согласованности.
- В однокритериальном случае шкалы статистически исследованы на устойчивость как при использовании метода собвстенного вектора, так и при использовании метода геометрических средних.
- Предложен способ моделирования многокритериальной задачи принятия решения.
- В многокритериальном случае шкалы статистически исследованы на устойчивость при использовании метода собстенного вектора.
- Получены оценки вероятностей совпадения итогового вектора МАИ с медианой Кемени.