## Klasyfikacja ziaren fasoli

MAKSIMOWICZ MARTYNA
WYDZIAŁ INFORMATYKI, POLITECHNIKA BIAŁOSTOCKA

#### Charakterystyka danych – problem

Zbiór danych "Dry Bean Dataset" pochodzący z repozytorium UCI Machine Learning Repository. (Źródło: <a href="https://archive.ics.uci.edu/ml/datasets/Dry+Bean+Dataset">https://archive.ics.uci.edu/ml/datasets/Dry+Bean+Dataset</a>).

Fasola to jedno z najczęściej produkowanych roślin strączkowych w Turcji. Odgrywa zatem kluczową rolę w rolnictwie. Jednocześnie jest wrażliwa na wpływ zmian klimatycznych.

Odporność i/lub tolerancję roślin na czynniki zewnętrzne można zwiększyć poprzez hodowlę nowych odmian i określenie cech ich nasion.

Jakość nasion ma zdecydowanie wpływ na produkcję roślinną. Dlatego też klasyfikacja nasion ma zasadnicze znaczenie dla powodzenia uprawy (oraz marketingu).

#### Charakterystyka danych

W Turcji uprawiane nasiona fasoli dzieli się na odmiany, biorąc pod uwagę cechy formy czy kształtu.

Wykonano zdjęcia 13 611 ziaren 7 różnych odmian fasoli o podobnych cechach za pomocą kamery o wysokiej rozdzielczości. Obrazy poddano etapom segmentacji i ekstrakcji cech.

Automatyczna identyfikacja ziaren fasoli miała pomoc rolnikom w procesie technologicznym, ponieważ ręczna klasyfikacja i sortowanie nasion to proces trudny, bardzo czasochłonny i o niskiej efektywności, zwłaszcza przy dużych nakładach produkcyjnych.

#### Charakterystyka danych – klasy

#### Badane odmiany fasoli:

- Seker 2027 obiektów,
- Barbunya 1322 obiektów,
- Bombay 522 obiektów,
- Cali 1630 obiektów,
- Dermason 3546 obiektów,
- Horoz 1928 obiektów,
- Sira 2636 obiektów.



#### Charakterystyka danych – cechy

#### Cechy wyodrębnione ze zdjęć:

- ► Area A(Pole) obszar strefy fasoli i liczba pikseli w jej granicach
- Perimeter P (Obwód) obwód ziarna fasoli (długość granicy)
- Major Axis Length L (Długość osi głównej) odległość między końcami najdłuższej linii, którą można wyciągnąć z fasoli
- Minor Axis Length l (Długość osi mniejszej) najdłuższy odcinek, prostopadły do osi głównej
- Aspect Ratio K (Współczynnik proporcji) proporcja długości osi głównej do osi mniejszej  $K = \frac{L}{l}$
- ▶ Eccentricity Ec (Mimośród) mimośród elipsy (stosunek długości ogniskowej do długości półosi wielkiej)
- Convex Area C (Obszar wypukły) liczba pikseli w najmniejszym wielokącie wypukłym, w którym zawarte jest ziarno
- Equivalent Diameter Ed (Średnica ekwiwalentna) średnica koła o tej samej powierzchni, co obszar ziarna:  $d=\sqrt{\frac{4A}{\pi}}$
- Extent Ex (Zakres) stosunek pikseli w obwiedni (minimalny prostokąt ograniczający) do powierzchni ziarna

#### Charakterystyka danych – cechy

- Solidity S (Solidność) wypukłość, stosunek pikseli w wypukłej łupinie do pikseli znajdujących się w całym ziarnie:  $S = \frac{A}{C}$
- Roundness R (Zaokrąglenie) zaokrąglenie obiektu obliczane według następującego wzoru:  $R=\frac{4\cdot\pi\cdot A}{P^2}$
- Compactness CO (Kompaktowość) kompaktowość mierzy okrągłość obiektu według wzoru:  $CO = \frac{Ed}{L}$
- Shape Factors (Współczynniki kształtu) bezwymiarowe wielkości używane w analizie obrazu, które liczbowo opisują kształt obiektu, niezależnie od jego wymiarów. Współczynniki kształtu są obliczane na podstawie zmierzonych wymiarów, takich jak średnica, długość cięciwy, powierzchnia, obwód, środek ciężkości, momenty itp. Znormalizowane wielkości reprezentują stopień odchylenia od idealnego kształtu, takiego jak okrąg, kula lub wielościan równoboczny
  - ► Shape Factor 1:  $SF1 = \frac{L}{A}$
  - ▶ Shape Factor 2:  $SF2 = \frac{l}{A}$
  - Shape Factor 3:  $SF3 = \frac{A}{\left(\frac{L}{2}\right)^2 \cdot \pi}$
  - ► Shape Factor 4:  $SF4 = \frac{A}{\frac{L}{2} \cdot \frac{l}{2} \cdot \pi}$

#### Proces analizy zbioru danych

- Wstępna analiza danych
  - Przegląd próbki danych
  - Wstępna wizualizacja zmiennych z uwzględnieniem klas
- Podział danych na zbiory: treningowy i testowy w proporcji 75% i 25%
- Standaryzacja cech
- Wybór klasyfikatorów i ustalenie optymalnych parametrów
- Wytrenowanie modeli
- Predykcja wartości
- Zbadanie jakości klasyfikacji

### Wstępna analiza danych

### Próbka danych

| Area   | Perimeter | Major Axis<br>Length | Minor Axis<br>Length | Aspect<br>Ration | Eccentricity | Convex<br>Area | Equiv<br>Diameter | Extent   | Solidity | Roundness | Compactness | Shape<br>Factor 1 | Shape<br>Factor 2 | Shape<br>Factor 3 | Shape<br>Factor 4 | Class    |
|--------|-----------|----------------------|----------------------|------------------|--------------|----------------|-------------------|----------|----------|-----------|-------------|-------------------|-------------------|-------------------|-------------------|----------|
| 37564  | 736,706   | 236,4602             | 202,526              | 1,167555         | 0,516162     | 38184          | 218,6961          | 0,766299 | 0,983763 | 0,869748  | 0,924875    | 0,006295          | 0,002841          | 0,855393          | 0,998718          | SEKER    |
| 155524 | 1523,825  | 559,7563             | 360,263              | 1,553744         | 0,765356     | 159126         | 444,9936          | 0,817506 | 0,977364 | 0,841661  | 0,794977    | 0,003599          | 0,000887          | 0,631989          | 0,981949          | BOMBAY   |
| 56334  | 989,798   | 372,7248             | 193,539              | 1,925838         | 0,85462      | 57684          | 267,8184          | 0,674497 | 0,976597 | 0,722582  | 0,718542    | 0,006616          | 0,001088          | 0,516302          | 0,994315          | HOROZ    |
| 47605  | 877,296   | 373,1439             | 163,5929             | 2,28093          | 0,898771     | 48131          | 246,1962          | 0,630396 | 0,989071 | 0,777267  | 0,659789    | 0,007838          | 0,000916          | 0,435321          | 0,992938          | HOROZ    |
| 70563  | 1014,222  | 393,4801             | 229,3723             | 1,715465         | 0,812521     | 71437          | 299,7392          | 0,717352 | 0,987765 | 0,862027  | 0,761765    | 0,005576          | 0,001158          | 0,580285          | 0,995459          | CALI     |
| 40526  | 760,728   | 287,5861             | 180,4546             | 1,593676         | 0,778632     | 41067          | 227,1548          | 0,68433  | 0,986826 | 0,880004  | 0,789867    | 0,007096          | 0,001704          | 0,62389           | 0,994279          | SIRA     |
| 46815  | 822,48    | 322,0585             | 185,8291             | 1,73309          | 0,816741     | 47410          | 244,1449          | 0,698585 | 0,98745  | 0,869649  | 0,758076    | 0,006879          | 0,001401          | 0,57468           | 0,995971          | SIRA     |
| 77007  | 1069,231  | 411,5527             | 240,3708             | 1,712158         | 0,811712     | 78077          | 313,1267          | 0,660381 | 0,986296 | 0,846442  | 0,760842    | 0,005344          | 0,001105          | 0,578881          | 0,991136          | CALI     |
| 37832  | 720,476   | 263,0345             | 183,385              | 1,43433          | 0,716887     | 38289          | 219,4748          | 0,725168 | 0,988064 | 0,915862  | 0,834396    | 0,006953          | 0,002079          | 0,696216          | 0,998603          | DERMASON |
| 85890  | 1152,016  | 417,5364             | 262,7196             | 1,589285         | 0,777232     | 87188          | 330,694           | 0,714654 | 0,985113 | 0,813271  | 0,792012    | 0,004861          | 0,00118           | 0,627284          | 0,996933          | BARBUNYA |
| 51131  | 842,796   | 316,1856             | 207,029              | 1,527253         | 0,755828     | 51654          | 255,151           | 0,812506 | 0,989875 | 0,904585  | 0,806966    | 0,006184          | 0,001618          | 0,651194          | 0,994537          | SIRA     |
| 27884  | 630,303   | 239,4054             | 148,4848             | 1,612322         | 0,784425     | 28196          | 188,4224          | 0,758253 | 0,988935 | 0,881995  | 0,787043    | 0,008586          | 0,002032          | 0,619437          | 0,998732          | DERMASON |
| 70344  | 1037,985  | 378,6511             | 237,9098             | 1,591574         | 0,777964     | 71521          | 299,2737          | 0,821354 | 0,983543 | 0,820455  | 0,790368    | 0,005383          | 0,001296          | 0,624682          | 0,994227          | BARBUNYA |

#### Liczebności poszczególnych klas

| Odmiana  | Liczebność |
|----------|------------|
| BARBUNYA | 1322       |
| BOMBAY   | 522        |
| CALI     | 1630       |
| DERMASON | 3546       |
| HOROZ    | 1928       |
| SEKER    | 2027       |
| SIRA     | 2636       |

















#### Wybór klasyfikatorów

- Metoda K najbliższych sąsiadów
- Naiwny klasyfikator bayesowski
- Metoda wektorów nośnych (SVM, SVC)
- Regresja logistyczna
- Drzewo decyzyjne

#### Metoda K najbliższych sąsiadów



| liczba sąsiadów | Dokładność |
|-----------------|------------|
| 36              | 0,928005   |
| 13              | 0,927711   |
| 29              | 0,927123   |
| 37              | 0,926829   |
| 31              | 0,926829   |
| •••             | •••        |
| 96              | 0,919189   |
| 93              | 0,918895   |
| 95              | 0,918601   |
| 1               | 0,911842   |
| 2               | 0,908316   |

#### Naiwny klasyfikator bayesowski



| model        | Dokładność |
|--------------|------------|
| Gausowski    | 0,900382   |
| Bernoulliego | 0,723479   |

### Metoda wektorów nośnych (SVC)



| Funkcja jądra           | Dokładność |
|-------------------------|------------|
| radialna funkcja bazowa | 0,931825   |
| funkcja liniowa         | 0,926829   |
| funkcja wielomianowa    | 0,910961   |
| funkcja sigmoidalna     | 0,724655   |

### Klasyfikator regresji logistycznej



| Algorytm   | Dokładność |
|------------|------------|
| Newton-CG  | 0,926535   |
| L-BFGS     | 0,926535   |
| SAG        | 0,925654   |
| SAGA       | 0,92536    |
| LIB LINEAR | 0,91625    |

#### Drzewo decyzyjne



| głębokość | dokładność |
|-----------|------------|
| 9         | 0,914781   |
| 7         | 0,910961   |
| 11        | 0,909492   |
| 10        | 0,908316   |
| 8         | 0,907728   |
| 6         | 0,905378   |
| 12        | 0,902439   |
| 13        | 0,899794   |
| 14        | 0,898913   |
| 16        | 0,898913   |
| 15        | 0,898325   |
| 5         | 0,885101   |
| 4         | 0,827799   |
| 3         | 0,787834   |
| 2         | 0,663826   |
| 1         | 0,423156   |

#### Ostatecznie wybrane modele

| Model                              | Parametry               |
|------------------------------------|-------------------------|
| KNN                                | k=36 sąsiadów           |
| Naiwny klasyfikator bayesowski     | Gausowski               |
| Metoda wektorów nośnych (SVC)      | radialna funkcja bazowa |
| Klasyfikator regresji logistycznej | algorytm Newton-CG      |
| Drzewo decyzyjne                   | głębokość d=9           |

### Sprawdzian krzyżowy

| Model                | 2    | 3     | 4      | 5       | 6        | 7        | 8        | 9        | 10       |
|----------------------|------|-------|--------|---------|----------|----------|----------|----------|----------|
| KNN                  | 0,78 | 0,778 | 0,7778 | 0,77782 | 0,777825 | 0,777825 | 0,777825 | 0,777825 | 0,777825 |
| Gaussowski NB        | 0,7  | 0,7   | 0,7005 | 0,70046 | 0,700457 | 0,700457 | 0,700457 | 0,700457 | 0,700457 |
| SVC                  | 0,69 | 0,692 | 0,6921 | 0,69208 | 0,692085 | 0,692085 | 0,692085 | 0,692085 | 0,692085 |
| Regresja logistyczna | 0,7  | 0,696 | 0,6963 | 0,69627 | 0,696273 | 0,696273 | 0,696273 | 0,696273 | 0,696273 |
| Drzewo decyzyjne     | 0,34 | 0,337 | 0,3372 | 0,33723 | 0,337225 | 0,337226 | 0,337225 | 0,337225 | 0,337225 |

Wytrenowanie modeli.

Predykcja wartości.

#### Macierze błędów

```
KNN_n=36 - macierz błędów:
```

```
[[276  0  25  0  2  5  11]

[ 0 111  0  0  0  0  0]

[ 7  0 402  0  6  1  3]

[ 1  0  0 847  1  14  42]

[ 0  0  11  2 469  0  9]

[ 2  0  0  2  0 446  20]

[ 1  0  1  69  7  3 607]]
```

#### Gaussian\_NB - macierz błędów:

```
[[259  0  40  0  2  3  15]

[ 0 111  0  0  0  0  0]

[ 35  0 377  0  5  1  1]

[ 0  0  0 808  2  19  76]

[ 0  0  10  4 469  0  8]

[ 2  0  0  3  0 442  23]

[ 4  0  1  57  18  10 598]]
```

#### SVC\_rbf - macierz błędów:

```
[[287  0  20  0  1  3  8]

[ 0 111  0  0  0  0  0]

[ 9  0 401  0  5  1  3]

[ 0  0  0 849  1  11  44]

[ 1  0  9  3 469  0  9]

[ 1  0  0  5  0 448  16]

[ 1  0  1  69  6  5 606]]
```

#### Log\_Regression - macierz błędów:

```
[[282  0  21  0  1  4  11]

[ 0  111  0  0  0  0  0  0]

[ 10  0  396  0  7  1  5]

[ 1  0  0  841  3  10  50]

[ 1  0  6  3  472  0  9]

[ 2  0  0  2  0  448  18]

[ 0  0  3  62  15  5  603]]
```

#### Decision\_Tree - macierz błędów:

```
[[277  0  20  0  3  6  13]

[ 1 110  0  0  0  0  0]

[ 19  0 387  0  8  1  4]

[ 0  0  0 842  1  13  49]

[ 0  0  12  3  456  0  20]

[ 2  0  0  14  0  436  18]

[ 1  0  0  71  6  5  605]
```

#### Macierze błędów – podsumowanie

| Model                   | Liczba poprawnych<br>klasyfikacji | Liczba niepoprawnych<br>klasyfikacji | Udział poprawnych<br>klasyfikacji [%] |
|-------------------------|-----------------------------------|--------------------------------------|---------------------------------------|
| KNN                     | 3158                              | 245                                  | 92.80047017337644                     |
| Gausowski NB            | 3064                              | 339                                  | 90.03820158683514                     |
| SVC                     | 3171                              | 232                                  | 93.18248604172788                     |
| Regresja<br>Iogistyczna | 3153                              | 250                                  | 92.65354099324125                     |
| Drzewo<br>decyzyjne     | 3113                              | 290                                  | 91.47810755215986                     |

#### Raporty klasyfikacji

|          | KNN  | Gausowski NB | SVC      | Regresja logistyczna | Drzewo decyzyjne |
|----------|------|--------------|----------|----------------------|------------------|
|          |      |              | PRECYZJA |                      |                  |
| BARBUNYA | 0.96 | 0.86         | 0.96     | 0.95                 | 0.92             |
| BOMBAY   | 1.00 | 1.00         | 1.00     | 1.00                 | 1.00             |
| CALI     | 0.92 | 0.88         | 0.93     | 0.93                 | 0.92             |
| DERMASON | 0.92 | 0.93         | 0.92     | 0.93                 | 0.91             |
| HOROZ    | 0.97 | 0.95         | 0.97     | 0.95                 | 0.96             |
| SEKER    | 0.95 | 0.93         | 0.96     | 0.96                 | 0.95             |
| SIRA     | 0.88 | 0.83         | 0.88     | 0.87                 | 0.85             |
|          |      |              | CZUŁOŚĆ  |                      |                  |
| BARBUNYA | 0.87 | 0.81         | 0.90     | 0.88                 | 0.87             |
| BOMBAY   | 1.00 | 1.00         | 1.00     | 1.00                 | 0.99             |
| CALI     | 0.96 | 0.90         | 0.96     | 0.95                 | 0.92             |
| DERMASON | 0.94 | 0.89         | 0.94     | 0.93                 | 0.93             |
| HOROZ    | 0.96 | 0.96         | 0.96     | 0.96                 | 0.93             |
| SEKER    | 0.95 | 0.94         | 0.95     | 0.95                 | 0.93             |
| SIRA     | 0.88 | 0.87         | 0.88     | 0.88                 | 0.88             |

#### Dokładność modeli

| Model                | Dokładność |
|----------------------|------------|
| SVC                  | 0.931825   |
| KNN                  | 0.928005   |
| Regresja logistyczna | 0.926535   |
| Drzewo decyzyjne     | 0.914781   |
| Gausowski NB         | 0.900382   |

### Wybór najistotniejszych cech

Badanie dokładności modeli w zależności od liczby wykorzystanych cech

| Początkowy indeks | Cecha           | Istotność |  |  |  |  |
|-------------------|-----------------|-----------|--|--|--|--|
| 1                 | Perimeter       | 0.096522  |  |  |  |  |
| 14                | ShapeFactor3    | 0.094545  |  |  |  |  |
| 11                | Compactness     | 0.094201  |  |  |  |  |
| 12                | ShapeFactor1    | 0.090030  |  |  |  |  |
| 3                 | MinorAxisLength | 0.081913  |  |  |  |  |
| 2                 | MajorAxisLength | 0.077354  |  |  |  |  |
| 6                 | ConvexArea      | 0.071767  |  |  |  |  |
| 5                 | Eccentricity    | 0.061753  |  |  |  |  |
| 4                 | AspectRation    | 0.060185  |  |  |  |  |
| 7                 | EquivDiameter   | 0.057724  |  |  |  |  |
| 0                 | Area            | 0.055776  |  |  |  |  |
| 10                | roundness       | 0.055103  |  |  |  |  |
| 13                | ShapeFactor2    | 0.041672  |  |  |  |  |
| 15                | ShapeFactor4    | 0.031570  |  |  |  |  |
| 9                 | Solidity        | 0.018447  |  |  |  |  |
| 8                 | Extent          | 0.011438  |  |  |  |  |

# Dokładność modelu w zależności od liczby wykorzystanych cech

| Model                   | 1 cecha  | 2 cechy  | 3 cechy  | 4 cechy  | 5 cech   | 6 cech   | 7 cech   | 8 cech   | 9 cech   | 10 cech  | 11 cech  | 12 cech  | 13 cech  | 14 cech  | 15 cech  | 16 cech  |
|-------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| KNN                     | 0,640905 | 0,887452 | 0,887158 | 0,903321 | 0,906847 | 0,904496 | 0,903908 | 0,900382 | 0,900088 | 0,898913 | 0,897737 | 0,918014 | 0,918307 | 0,924185 | 0,924772 | 0,928005 |
| Gausowski NB            | 0,652659 | 0,885101 | 0,87129  | 0,886865 | 0,885983 | 0,885395 | 0,885395 | 0,883044 | 0,883632 | 0,883338 | 0,884808 | 0,894211 | 0,89186  | 0,897737 | 0,898325 | 0,900382 |
| SVC                     | 0,649721 | 0,892448 | 0,892154 | 0,914193 | 0,915369 | 0,915075 | 0,915075 | 0,915075 | 0,913606 | 0,9139   | 0,914193 | 0,919189 | 0,919189 | 0,927417 | 0,931531 | 0,931825 |
| Regresja<br>logistyczna | 0,652366 | 0,888334 | 0,887746 | 0,910373 | 0,911842 | 0,911255 | 0,910667 | 0,910961 | 0,91243  | 0,913018 | 0,911842 | 0,911842 | 0,913312 | 0,920364 | 0,922421 | 0,926535 |
| Drzewo<br>decyzyjne     | 0,631795 | 0,878049 | 0,878343 | 0,883338 | 0,886277 | 0,890391 | 0,88804  | 0,891272 | 0,892154 | 0,890391 | 0,892154 | 0,905965 | 0,904202 | 0,902733 | 0,910079 | 0,914781 |



#### Maksymalna dokładność modelu

| Model                | Maksymalna<br>dokładność | Liczba wykorzystanych<br>cech | Kroswalidacja dla 7<br>podzbiorów |
|----------------------|--------------------------|-------------------------------|-----------------------------------|
| SVC                  | 0,931825                 | 16                            | 0,692085                          |
| KNN                  | 0,928005                 | 16                            | 0,777825                          |
| Regresja logistyczna | 0,926535                 | 16                            | 0,696273                          |
| Drzewo decyzyjne     | 0,914781                 | 16                            | 0,337226                          |
| Gaussowski NB        | 0,900382                 | 16                            | 0,700457                          |

#### Wnioski – jakość klasyfikatorów

- Najlepszy okazał się model wektorów nośnych, który uzyskał dokładność klasyfikacji na poziomie 93,18%.
- Wszystkie modele uzyskały dokładność ponad 90%.
- Sprawdzian krzyżowy oszacował dokładność modeli znacznie gorzej niż faktycznie uzyskane wyniki. Kroswalidacja wskazała model K najbliższych sąsiadów jako najskuteczniejszy klasyfikator ze średnią dokładnością na poziomie 77,78%.
- Sprawdzian krzyżowy dla modelu drzewa decyzyjnego wskazał dokładność na poziomie zaledwie 33,72%.

Podsumowując, najlepsze modele to model SVC i model KNN. Zwracają poprawne wyniki z wysoką dokładnością. Jednakże żaden klasyfikator nie przekroczył 94% poprawności.

#### Wnioski – klasyfikacja odmian

- Odmiana Bombay została zaklasyfikowana poprawnie w 100% przez niemal wszystkie algorytmy (pojedynczy błąd dla modelu drzewa decyzyjnego)
- Wszystkie modele najczęściej popełniały błąd przy klasyfikacji odmiany Sira. Co ciekawe, każdy algorytm najwięcej niepoprawnych klasyfikacji tej odmiany dokonał poprzez uznanie ziarna jako odmiana Dermason. Druga najliczniejsza grupa błędnych klasyfikacji dotyczyła odmiany Horoz.
- Dodatkowo, odmiana Dermason najczęściej błędnie była klasyfikowana jako odmiana Sira. Widać zatem, że odmiany te są bardzo zbliżone, biorąc pod uwagę cechy formy czy kształtu.
- ▶ Z kolei odmiana Horoz najczęściej błędnie była klasyfikowana jako odmiana Cali lub Sira.

Ogólne wyniki są zadowalające. Tego typu klasyfikator mógłby być wykorzystany w przemyśle. Automatyczna klasyfikacja ziaren byłaby optymalizacją procesu "ręcznej" identyfikacji, która jest czaso- i pracochłonna.

# Dziękuję za uwagę!

MAKSIMOWICZ MARTYNA
WYDZIAŁ INFORMATYKI, POLITECHNIKA BIAŁOSTOCKA