

Bâtiment IMAG, Université Grenoble Alpes 700, avenue centrale 38401 Saint Martin d'Hères, France http://www-verimag.imag.fr

Signal Temporal Logic Specifications

José-Ignacio Requeno Alexey Bakhirkin Nicolas Basset Oded Maler*

INTRODUCTION

Introduction

CYBER-PHYSICAL SYSTEMS

■ Cyber-Physical Systems:

► hardware/software interacting with the physical environment

computerized control systems

uncertain / changing environment (timing constraints)

► large scale, distributed / networked

Criticality:

- safety (absence of errors)
- security (resistance to attacks)
- certification

Validation & Verification:

► hybrid: discrete + real-time systems

void wg_wait(WaitGroup *wg) {
 pthread mutex lock (& (m));

while $(\overline{wg} - \overline{cpt} > 0)$

pthread_cond_wait (&(ADDegDONE), & (m));
}
pthread_cond_signal (&(ADDegDONE));

CYBER-PHYSICAL SYSTEMS

Cyber-Physical Systems:

► hardware/software interacting with the physical environment

computerized control systems

uncertain / changing environment (timing constraints)

► large scale, distributed / networked

Criticality:

- safety (absence of errors)
- security (resistance to attacks)
- certification

Validation & Verification:

hybrid: discrete + real-time systems

void wg_wait(WaitGroup *wg) {
 pthread mutex lock (& (m));

while (wg->cpt > 0) {

pthread_cond_wait (&(ADDegDONE), & (m));
}
pthread_cond_signal (&(ADDegDONE));

HYBRID SYSTEM

HYBRID SYSTEM

HYBRID SYSTEM

^{*}Rodriguez-Navas, G., & Proenza, J. (2013). Using timed automata for modeling distributed systems with clocks: Challenges and solutions. IEEE Transactions on Software Engineering, 39(6), 857-868.

MONITORING

- ► Models are generally hybrid systems producing hybrid traces
- ► Runtime verification (monitoring) analyses a **single** behavior at a time
 - ► Online: consumes the trace while the program still runs
 - ▶ Offline: consumes the trace after the execution is finished

MONITORING

- ► Online monitoring is useful for:
 - ► Infinite traces
 - ► Reacting against bad events
- ► Online monitoring requires **efficient** monitors in **time** and **space**
- ► Runtime verification must be impartial and not anticipate
 - ► No monitor gives a verdict based on **incomplete information**
 - ► The monitor gives a verdict as soon as possible

TEMPORAL LOGIC

Temporal Logic for Signals

MOTIVATION

MOTIVATION

After 2s, the signal is never above 3

Linear Temporal Logic (LTL)

A. Pnueli, 1977

Discrete-time semantics

State sequence starting with atomic property $\ arphi$

Syntax:

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \mathcal{U} \varphi_2$$

Syntactic sugar for Eventually and Globally:

$$\Diamond \varphi = \mathsf{T} \, \mathcal{U} \varphi \qquad \Box \varphi = \neg \Diamond \neg \varphi$$

Semantics:

$$\begin{aligned} (\xi,t) &\models p & \leftrightarrow p[t] = 1 \\ (\xi,t) &\models \neg \varphi & \leftrightarrow (\xi,t) \not\models \varphi \\ (\xi,t) &\models \varphi_1 \lor \varphi_2 \leftrightarrow (\xi,t) \models \varphi_1 \text{ or } (\xi,t) \models \varphi_2 \\ (\xi,t) &\models \bigcirc \varphi & \leftrightarrow (\xi,t+1) \models \varphi \\ (\xi,t) &\models \varphi_1 \mathcal{U} \varphi_2 & \leftrightarrow \exists t' \geq t \ (\xi,t') \models \varphi_2 \text{ and } \forall t'' \in [t,t'), (\xi,t'') \models \varphi_1 \end{aligned}$$

Linear Temporal Logic (LTL)

A. Pnueli, 1977

Metric Interval Temporal Logic (MITL)

R. Alur, T. Feder, T. A. Henzinger, 1996

Time Propositional Temporal Logic (TPTL)

R. Alur, T. A. Henzinger, 1994

They extend LTL with continuous-time semantics

Syntax:

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathcal{U}_{[a,b]} \varphi_2 \mid \varphi_1 \mathcal{U} \varphi_2 \quad b > a \ge 0$$

Syntactic sugar for Eventually and Globally:

$$\lozenge_{[a,b]}arphi=$$
 T $\mathcal{U}_{[a,b]}arphi$ $\square_{[a,b]}arphi=\lnot\lozenge_{[a,b]}\lnotarphi$

Semantics:

$$\begin{aligned} (\xi,t) &\models p & \leftrightarrow p[t] = \mathtt{T} \\ (\xi,t) &\models \neg \varphi & \leftrightarrow (\xi,t) \not\models \varphi \\ (\xi,t) &\models \varphi_1 \lor \varphi_2 & \leftrightarrow (\xi,t) \models \varphi_1 \text{ or } (\xi,t) \models \varphi_2 \\ (\xi,t) &\models \varphi_1 \mathcal{U}\varphi_2 & \leftrightarrow \exists t' \geq t \ (\xi,t') \models \varphi_2 \text{ and} \\ & \forall t'' \in [t,t'], (\xi,t'') \models \varphi_1 \\ (\xi,t) &\models \varphi_1 \mathcal{U}_{[a,b]}\varphi_2 \leftrightarrow \exists t' \in t \oplus [a,b] \ (\xi,t') \models \varphi_2 \text{ and} \\ & \forall t'' \in [t,t'], (\xi,t'') \models \varphi_1 \end{aligned}$$

Boolean Signals: $\xi: T \to \mathbb{B}^n$

Minkowski sum and difference:

$$\{t\} \oplus [a,b] = [t+a,t+b].$$

$$\{t\}\ominus [a,b]=[t-b,t-a]$$

$$[m,n) \oplus [a,b] = [m+a,n+b)$$

$$[m,n)\ominus [a,b]-[m-b,n-a)$$

Linear Temporal Logic (LTL)

A. Pnueli, 1977

Metric Interval Temporal Logic (MITL)

R. Alur, T. Feder, T. A. Henzinger, 1991

Time Propositional Temporal Logic (TPTL)

R. Alur, T. A. Henzinger, 1989

Signal Temporal Logic (STL)

O. Maler, D., Nickovic, 2004

They extend MITL with Real-Valued Signals

Satisfaction signal of :

$$ightharpoonup \varphi = x \ge 2$$

Satisfaction signal of :

$$ightharpoonup \varphi = \mathbf{F}(x \ge 2)$$

Satisfaction signal of :

•
$$\varphi = \mathbf{F}_{[0,0.5]}(x \ge 2)$$

STL SYNTAX

$$\varphi := \top \mid \mu \mid \neg \varphi \mid \varphi \wedge \psi \mid \varphi \mathbf{U}_{[a,b]} \psi$$

► Assume signals x1[t], x2[t], ..., xn[t], then atomic predicates are of the form

$$\mu = f(x_1[t], \dots, x_n[t]) > 0$$

STL SEMANTICS

The satisfaction of a formula arphi by a signal $\mathbf{x}=(x_1,\ldots,x_n)$ at time t is

$$(\mathbf{x}, t) \models \mu \qquad \Leftrightarrow f(x_1[t], \dots, x_n[t]) > 0$$

$$(\mathbf{x}, t) \models \varphi \land \psi \qquad \Leftrightarrow (x, t) \models \varphi \land (x, t) \models \psi$$

$$(\mathbf{x}, t) \models \neg \varphi \qquad \Leftrightarrow \neg((x, t) \models \varphi)$$

$$(\mathbf{x}, t) \models \varphi \ \mathcal{U}_{[a,b]} \ \psi \qquad \Leftrightarrow \exists t' \in [t + a, t + b] \text{ such that } (x, t') \models \psi \land \forall t'' \in [t, t'], \ (x, t'') \models \varphi \}$$

STL SEMANTICS

lacksquare Eventually is $\mathsf{F}_{[a,b]} \ arphi = op \ \mathcal{U}_{[a,b]} \ arphi$

$$(\mathbf{x},t) \models \mathsf{F}_{[a,b]} \ \psi \Leftrightarrow \exists t' \in [t+a,t+b] \ \mathsf{such that} \ (x,t') \models \psi$$

• Always is $G_{[a,b]}\varphi = \neg (F_{[a,b]} \neg \varphi)$

$$(\mathbf{x},t) \models \mathsf{G}_{[a,b]}\psi \Leftrightarrow \forall t' \in [t+a,t+b] \text{ such that } (x,t') \models \psi$$

LTL:

- ightharpoonup G(r => Fg)
- ► Boolean predicates, discrete-time

MTL:

- ightharpoonup G(r => F[0,.5s]g)
- ▶ Boolean predicates, real-time

■ STL:

- ► G(x[t] > 0 => F[0,.5s]y[t] > 0)
- ► Predicates over real values, real-time

STL EXAMPLE

After 2s, the signal is never above 3

$$\varphi:= \ \mathsf{F}_{[2,\infty]} \ (x[t]<3)$$

TEMPORAL LOGIC

Quantitative Semantics for STL

QUALITATIVE SEMANTICS

QUANTITATIVE SEMANTICS

QUANTITATIVE SEMANTICS

Verimag

QUANTITATIVE STL

A robust STL monitor is a *transducer* that transform x into $\rho^{\varphi}(x,.)$

In practice

ightharpoonup Trace: time words over alphabet \mathbb{R} , linear interpolation

Input:
$$x(\cdot) \triangleq (t_i, x(t_i))_{i \in \mathbb{N}}$$
 Output: $\rho^{\varphi}(x, \cdot) \triangleq (r_j, z(r_j))_{j \in \mathbb{N}}$

Continuity and piecewise affine property preserved

QUANTITATIVE STL

Given a formula φ , a signal x and a time t, recall that we have:

$$\rho^{\varphi}(x,t) > 0 \Rightarrow x, t \vDash \varphi$$
$$\rho^{\varphi}(x,t) < 0 \Rightarrow x, t \nvDash \varphi$$

As x is obtained by simulation using input parameters p_u , the falsification problem can be reduced to solving

$$\rho^* = \min_{p_u \in \mathcal{P}_u} \rho^{\varphi}(x, 0)$$

If $\rho^* < 0$, we found a counterexample.

BOOLEAN OPERATORS

Negation

- ▶ Input signal: $(t_i, x(t_i))_{i \leq n_x}$
- ▶ Output signal: $(t_i, -x(t_i))_{i \le n_x}$

Conjunction

- ▶ Input signals: $(t_i, x(t_i))_{i \leq n_x}$, $(t_i', x'(t_i'))_{i \leq n_{x'}}$
- ▶ Output signal: $(r_i, z(r_i))_{i \le n_z}$ Time sequence r contains t, t', and punctual intersections $x \cap x'$ Value $z(r_i) = \min\{x(r_i), x'(r_i)\}$

QUANTITATIVE OPERATORS

$$\rho^{\mu}(x,t) = f(x_1[t], \dots, x_n[t])$$

$$\rho^{\neg \varphi}(x,t) = -\rho^{\varphi}(x,t)$$

$$\rho^{\varphi_1 \wedge \varphi_2}(x,t) = \min(\rho^{\varphi_1}(x,t), \rho^{\varphi_2}(w,t))$$

$$\rho^{\varphi_1 \mathcal{U}_{[a,b]} \varphi_2}(x,t) = \sup_{\tau \in t + [a,b]} (\min(\rho^{\varphi_2}(x,\tau), \inf_{s \in [t,\tau]} \rho^{\varphi_1}(x,s))$$

UNTIL OPERATOR

Rewrite Property

Boolean Semantics

$$\varphi \mathbf{U}_{[a,b]} \psi \sim \mathbf{G}_{[0,a]} \varphi \wedge \mathbf{F}_{[a,b]} \psi \wedge \mathbf{F}_{\{a\}} (\varphi \mathbf{U} \psi)$$

Quantitative Semantics

$$\rho^{\varphi \mathbf{U}[a,b]\psi}(x,t) = \rho^{\mathbf{G}_{[0,a]}\varphi \wedge \mathbf{F}_{[a,b]}\psi \wedge \mathbf{F}_{\{a\}}(\varphi \mathbf{U}\psi)}(x,t)$$

Combines untimed until and timed eventually

UNTIMED UNTIL

Computed by backward induction:

For all s < t, we note $x_{[s,t)}$ the restriction of x to [s,t).

- ▶ Boolean Semantics $x, s \vDash \varphi \mathbf{U} \psi$ iff $x_{\upharpoonright [s,t)}, s \vDash \varphi \mathbf{U} \psi$ or $(x_{\upharpoonright [s,t)}, s \vDash \mathbf{G} \varphi \text{ and } x, t \vDash \varphi \mathbf{U} \psi)$
- Quantitative Semantics $\rho^{\varphi \mathbf{U}\psi}(x,s) = \max \left\{ \rho^{\varphi \mathbf{U}\psi}(x_{|s,t)}, s), \min \left\{ \rho(\mathbf{G}\varphi, x_{|s,t)}, s), \rho(\varphi \mathbf{U}\psi, x, t) \right\} \right\}$

TIMED EVENTUALLY

Definition:
$$\rho^{\mathbf{F}_{[a,b]}\varphi}(x,t) = \sup_{t' \in [t+a,t+b]} \rho^{\varphi}(x,t) = \sup_{[t+a,t+b]} x$$

Computation:

- ▶ the maximum is reached at t + a, t + b, or at sample point in $\{t_i \mid t_i \in (t + a, t + b]\}$
- ▶ $\max\{x(t_i) \mid t_i \in (t+a, t+b]\}$ computed by Lemire's algorithm:

we maintain an ordered set M such that $\max\{x(t_i)|i\in M\} = \max\{x(t_i)|t_i\in (t+a,t+b]\}$

SIGNAL STABILIZATION

Always |x| > 0.5 then after 1s, |x| settles under 0.5 for 1.5 s

$$\varphi := \mathsf{G}(x[t] > .5 \to \mathsf{F}_{[0,.6]} \ (\mathsf{G}_{[0,1.5]} \ x[t] < 0.5))$$

SIGNAL STABILIZATION

Always |x| > 0.5 then after 1s, |x| settles under 0.5 for 1.5 s

$$\varphi := \mathsf{G}(x[t] > .5 \to \mathsf{F}_{[0,.6]} \ (\mathsf{G}_{[0,1.5]} \ x[t] \neq 0.5)$$

EXTENDED STL

Amplitude $|x| \le 0.1$ for 200 s

^{*}Bakhirkin, A., & Basset, N.: Specification and Efficient Monitoring Beyond STL. In TACAS 2019. To appear.

EXTENDED STL SYNTAX

$$\varphi := c \mid x \mid f(\varphi_1 \cdots \varphi_n) \mid \operatorname{On}_{[a,b]} \psi \mid \psi \operatorname{U}_{[a,b]}^d \varphi \mid \varphi_1 \downarrow \operatorname{U}_{[a,b]}^d \varphi_2$$

EXTENDED STL SYNTAX

► STL + min/max operators

$$\varphi ::= c \mid x \mid f(\varphi_1 \cdots \varphi_n) \mid \boxed{\operatorname{On}_{[a,b]} \psi \left(\psi \right)} \downarrow_{[a,b]}^d \varphi \mid \varphi_1 \downarrow \operatorname{U}_{[a,b]}^d \varphi_2$$

$$\psi ::= \operatorname{Min} \varphi \mid \operatorname{Max} \varphi$$

EXTENDED STL SEMANTICS

- Efficient monitoring method for evaluating min/max operators over a signal
 - ► Linear cost with respect to the length of the signal

$$[\![On_{[a,b]} \psi]\!](t) = [\![\psi]\!]([t+a,t+b])$$
$$[\![Min \varphi]\!][a,b] = \min_{[a,b]} [\![\varphi]\!]$$
$$[\![Max \varphi]\!][a,b] = \max_{[a,b]} [\![\varphi]\!]$$

► New aggregation functions beyond min/max (e.g., derivative, integral)

SIGNAL STABILIZATION

Amplitude $|x| \le 0.1$ for 200 s

 $On_{[0,200]} Max x - On_{[0,200]} Min x \le 0.1$

TOOLS

Tools


```
1 bool trigger;
2 real var0;
4 real var4;
s const real vh = 5;
n const real v1 = 0.2;
 template bool stabilization (bool tg, real x, real vhigh, real vlow) (
    bool result = ((x <= vhigh) and (rise(tg) -> (eventually[0:600] always[0:300]
     x <= vlow)));
    return result;
10
11
12
  assertion one:
13
    always (stabilization (trigger, var0, vh, vl));
14
15
 assertion five:
    always (stabilization (trigger, var4, vh, vl));
17
```


Additional features:

- ► Error diagnosis and trace counterexample generator
- ► xSTL = STL + Timed Regular Expressions (TRE)
- Quantitative analysis via pattern matching

STLEval:

▶ Quantitative analysis: min/max operators, ε -count

THE END

