

Fundamentos Físicos y Tecnológicos

Curso 2018/2019

Relación de problemas 4

- 1. En el circuito de la figura, $V_i=15\mathrm{V},\,R=100\Omega$ y $I_s=100\cdot 10^{-6}\mathrm{A}.$ Calcular:
 - a) la corriente que circula por el diodo si la diferencia de potencial entre sus extremos es 0.1V. Usar la relación exponencial entre V_d y I_d .
 - b) la corriente que circula por diodo si la diferencia de potencial entre sus extremos es 0,5V. Usar la relación exponencial entre V_d y I_d .
 - c) la corriente que circula por el circuito así como la diferencia de potencial entre los extremos del diodo usando la relación exponencial entre V_d y I_d .
 - d) la corriente que circula por el circuito así como la diferencia de potencial entre los extremos del diodo usando el primer modelo de aproximación para el diodo.

- 2. Para el circuito del problema anterior, calcular la característica de transferencia si:
 - a) se toma la salida en la resistencia.
 - b) se toma la salida en el diodo.

Datos: $R = 1k\Omega$

- 3. En el circuito de la figura siguiente hay dos diodos. D_1 es de germanio con una tensión umbral $V_{T1}=0.2\mathrm{V}$ y una resistencia $r_{d1}=20\Omega$ (segundo modelo visto en clase). D_2 es de silicio con una $V_{T2}=0.6\mathrm{V}$ y $r_{d2}=15\Omega$. Calcular las intensidades que circulan por cada uno de dichos diodos si:
 - a) $V_i = 100 \text{V y } R = 10 k\Omega$
 - b) $V_i = 100 \text{V y } R = 1 k\Omega$

4. Para el circuito mostrado a continuación, calcular la característica de transferencia si se toma la salida en el diodo. Datos: $R=1k\Omega$

5. Para el circuito de la figura, calcular la característica de transferencia si se toma la salida en el punto indicado por V_0 . Datos: $R=1k\Omega$

6. Los fenómenos de avalancha o ruptura se producen en algunos diodos cuando la tensión que soportan en inversa es muy grande y supera cierto valor (llamado tensión inversa de ruptura). En esa situación, una gran corriente atraviesa el diodo de manera que sus efectos dejan de ser despreciables y hay que tenerlos en cuenta. En el circuito mostrado a continuación, la tensión inversa de ruptura de los diodos es $V_{Z1}=10\mathrm{V}$ y $V_{Z2}=8\mathrm{V}$. Calcular las corrientes que circulan a través de cada una de las resistencias teniendo en cuenta que $V_i=20\mathrm{V},\,R_1=600\Omega,\,R_2=400\Omega$ y $R_3=300\Omega$.

- 7. Dibuje la forma de v_d si el circuito correspondiente al problema 1 estuviera alimentado por una fuente de valor $v_i(t) = 1\cos(\omega t + \alpha)$ V. ¿Afectaría el que la fuente no fuera de contínua a la forma de la característica de transferencia calculada en problema 2? ¿Qué forma tendría la diferencia de potencial entre los extremos de la resistencia? ¿Qué ocurriría si $v_i(t) = 0.2\cos(\omega t + \alpha)$ V?
- 8. En el circuito de la figura siguiente calcular el valor de la tensión de salida (V_o) , sabiendo que el didodo D_1 cuando está en conducción se puede representar por:
 - a) Un cortocircuito (diodo ideal)
 - b) Una fuente de tensión de 0,7V.
 - c) Una fuente de tensión de 0,7V y una resistencia de 20 Ω .

Datos: $R_1 = 5k\Omega$, $R_2 = 5k\Omega$ y $R_3 = 5k\Omega$.

9. Determinar el valor de la corriente I en el circuito siguiente. Suponer que el diodo es un diodo rectificador común. Datos: $R_1=2.2k\Omega,\,R_2=5.6k\Omega,\,R_3=3.3k\Omega$ y $I_1=8{\rm mA}$.

- 10. En el circuito de la imagen siguiente, los diodos D_1 y D_2 se pueden representar, en conducción, como una fuente de tensión de 0.7V en serie con una resistencia de 20Ω . Determinar la tensión en el punto A si:
 - a) $V_{in} = 10V$
 - b) $V_{in} = -5V$

Datos: $R_1 = 5k\Omega$ y $R_2 = 2k\Omega$.

11. En el circuito mostrado a continuación, D_1 es ideal. Calcular el valor de $V_{\rm out}$ cuando la tensión de entrada $V_{\rm in}$ es la representada en la figura de la derecha. Datos: $R_1=100\Omega,\ R_2=150\Omega,\ R_3=10k\Omega$ y $I_1=8{\rm mA}$.

- 12. Hallar el punto de trabajo del MOSFET de canal n de la figura:
 - a) Si $V_{\rm GG} = -3.5 \mathrm{V}$
 - b) Si $V_{\rm GG} = -3V$
 - c) Si $V_{\rm GG} = -4V$

Datos: $V_{SS} = -6V$, $R_1 = 5.6k\Omega$, $V_T = 2V$, $k = 2 \cdot 10^{-3} \frac{A}{V^2}$.

13. Determinar el valor de $I_{\rm D}$, $V_{\rm DS}$ y $V_{\rm GS}$ en el circuito de la figura siguiente. Datos: $V_{\rm DD}=12{\rm V}$, $R_1=2k\Omega,\ R_2=1{\rm M}\Omega,\ V_{\rm T}=3{\rm V},\ k=0.48\cdot 10^{-3}{\rm A\over V^2}$.

- 14. En el circuito mostrado más abajo se pide:
 - a) Suponiendo $V_{\rm GG}=0{\rm V},$ ¿cuál es el estado del transistor?
 - b) Suponiendo que ahora $V_{\rm GG}$ aumenta desde 0, ¿para qué tensión empieza a conducir el MOSFET?
 - c) En el momento en que entra en conducción, ¿en qué zona de trabajo (óhmica o saturación) se encuentra?

 ${\rm Datos:}\ V_{\rm DD}=15{\rm V},\ V_{\rm SS}=5{\rm V},\ R_{\rm G1}=120\Omega,\ R_{\rm G2}=220\Omega,\ R_d=4,7k\Omega,\ V_{\rm T}=2{\rm V},\ k=2\cdot 10^{-3}\frac{\rm A}{{\rm V}^2}.$

- 15. En el circuito de la figura siguiente:
 - a) Hallar el punto de trabajo y la potencia disipada en cada uno de los transistores del MOS-FET de canal n de la figura, si $V_{\rm GG}=3{\rm V}$.
 - b) Calcular la tensión $V_{\rm GG}$ máxima para que M_1 se mantenga en la región lineal.

Datos: $V_{\text{DD}} = 9\text{V}$. Para M_1 : $V_{\text{T1}} = 1\text{V}$, $k_1 = 4 \cdot 10^{-3} \frac{\text{A}}{\text{V}^2}$. Para M_2 : $V_{\text{T2}} = 2\text{V}$, $k_2 = 2 \cdot 10^{-3} \frac{\text{A}}{\text{V}^2}$.

16. Hallar el punto de trabajo y la potencia disipada en cada uno de los transistores del MOSFET de canal n del problema anterior si $V_{\rm GG}=5V$.

Datos: $V_{\rm DD} = 9 \text{V}$. Para M_1 : $V_{\rm T1} = 1 \text{V}$, $k_1 = 4 \cdot 10^{-3} \frac{\text{A}}{\text{V}^2}$. Para M_2 : $V_{\rm T2} = 2 \text{V}$, $k_2 = 2 \cdot 10^{-3} \frac{\text{A}}{\text{V}^2}$.

17. Los transistores nMOSFET de la figura siguiente son iguales. Se quiere que la corriente de drenador sea igual en ambos transistores. Calcular $V_{\rm GS}$ para M_1 y M_2 y el valor de R_1 . Justifique la zona de trabajo para ambos transistores.

Datos: $V_{\rm DD} = 15 \text{V}, \ V_{\rm T} = 0.6 \text{V}, \ k = 4 \cdot 10^{-3} \frac{\text{A}}{\text{V}^2}, \ R_2 = 1 \text{M}\Omega, \ I_1 = I_2 = 2 \text{mA}, \ R_3 = 1.5 k\Omega.$

