CS5020: Nonlinear Optimisation: Theory and Algorithms Coding Exercise - 2 (5 Marks)

- (1) Let f(x) = a|x b| + c.
 - (a) Apply gradient descent with diminishing step size to minimise f(x).
 - (b) Demonstrate the problem for 3 different cases by choosing different a,b,c settings, i.e., case $1:a_1>0,b_1>0,c_1>0$, case $2:a_2>0,b_2<0,c_2>0$, case $3:a_3>0,b_3>0,c_3<0$.
 - (c) Plot the error $e_t = |x_t x_*|$ versus iteration t. Plot $f(x_t)$ versus t.

Note: This question has total 3 demonstrations, and total of 6 plots (2 plots per demonstration).

- (2) Let $f(x) = ax^2 + bx + c$.
 - (a) Apply gradient descent with constant size to minimise f(x).
 - (b) Demonstrate the problem for 3 different cases by choosing different a, b, c settings, i.e., case $1: a_1 > 0, b_1 > 0, c_1 > 0$, case $2: a_2 > 0, b_2 < 0, c_2 > 0$, case $3: a_3 > 0, b_3 > 0, c_3 < 0$.
 - (c) In each of the 3 cases, choose step size α such that algorithm (i) converges from one side of the solution, (ii) oscillates on both sides of the solution, and (iii) diverges.
 - (d) Plot the error $e_t = |x_t x_*|$ versus iteration t. Plot $f(x_t)$ versus t.

Note: This question has total $3 \times 3 = 9$ demonstrations, and total of 18 plots (2 plots per demonstration).

- (3) Let $f(x) = x^4 + 0.5x^3 4x^2$.
 - (a) Apply gradient descent with constant size and heavy ball momentum to minimise f(x).
 - (b) For a fixed step size α , choose 3 different momentum coefficients β such that algorithm (i) converges to local minima (ii) escapes local minima and converges to global minima and (iii) diverges.
 - (c) Plot the error $e_t = |x_t x_*|$ versus iteration t. Plot $f(x_t)$ versus t.

Note: This question has total 3 demonstrations, and total of 6 plots (2 plots per demonstration).

- (4) Let $f(x) = x^4 + 0.5x^3 4x^2$.
 - (a) Apply Newton method to minimise f(x).
 - (b) Choose 2 different initial points such that algorithm (i) converges to local minima
 - (ii) converges to global minima.
 - (c) Plot the error $e_t = |x_t x_*|$ versus iteration t. Plot $f(x_t)$ versus t. Verify rate of convergence by plotting $\frac{e_t}{e_{t+1}^2}$ if it is quadratic rate (or $\frac{e_t}{e_{t+1}}$ if it is linear rate).

Note: This question has total 2 demonstrations, and total of 6 plots (3 plots per demonstration).