Week 2

Machine Learning and Big Data - DATA622

CUNY School of Professional Studies

Review

Review concepts from last week

Types of Machine Learning* (Predictive AI)

ML does one of three things*

- 1. Predict a value
- 2. Predict a class
- 3. Cluster data

Supervised Machine Learning (Requires labeled data)

Unsupervised Machine Learning (Doesn't require labeled data)

Linear vs Logistics Regression

Types of Data

The topological view of Machine Learning

Let's think about what "learning" meaning by considering data geometry (data "shapes")

Topological vs Mathematical

Let's Solve:
$$\begin{cases} 3x + y = 5 \\ 2x - y = 0 \end{cases}$$

Algebra

$$\begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

$$C^{-1} = \frac{1}{3 \cdot -1 - 1 \cdot 2} \begin{bmatrix} -1 & -1 \\ -2 & 3 \end{bmatrix} = -\frac{1}{5} \begin{bmatrix} -1 & -1 \\ -2 & 3 \end{bmatrix}$$

$$-\frac{1}{5} \begin{bmatrix} -1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{5} \begin{bmatrix} -1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

...they both give you the same answer but...

Which is easier to understand conceptually?

An Example

Toy Example: Iris data set

An example using Structured Data

Toy Example: Iris data set

There are 4 features (inputs): x_1 , x_2 , x_3 & x_4

Graphing the Data

- Every feature is a dimension4 features = 4 dimensions
- An instance is a <u>single point</u> in that 4-dimensional space
- All of the data forms a <u>point-cloud</u> in that 4-dimensional space

Demo: Visualizing the data

projector.tensorflow.org

Visualizing data

But what does the output data look like?

Let's consider what the solution space of the predictions looks like.

One-hot encoding

- ML requires numbers: labels must be converted to numbers
- Each class (type of label must be its own dimension)
- The value in each dimension conveys the probability it is of that class
- Training Data Labels always have a probability of 1 (100%)
 i.e. they are the "Ground Truth"

Solution Manifold

- The number of dimensions = number of classes. In this case 3 dimensions.
- A Label (or prediction) is one datapoint in that 3-dimensional space
- Probabilities of all classes add up to 1 (100%) so points lie on a manifold
- Only labels have values of 1

Decision Boundary

- A decision boundary separates the classes.
- For 2 classes the decision boundary is typically 0.5 (when probability of either class is 50%)
- It may be linear or non-linear

So What is Machine Learning?

....From a topological perspective (for supervised training)

The **transformation** of data from a **high dimensional** space to a **low-dimensional** manifold.

Statistical Learning vs Machine Learning

Comparing statistical learning and broader machine learning

Bayes Theorem

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

P(A)= The probability of A occurring
P(A? B)=The probability of A given B
P(B? A)= The probability of B given A
P(A? B))= The probability of both A and B occurring

Machine Learning vs Statistical Learning

MACHINE LEARNING	STATISTICAL LEARNING
Subfield of Artificial Intelligence	Subfield of mathematics
Uses algorithms	Uses equations
Requires minimum human effort; is automated	Requires a lot of human effort
Can learn from large data sets	Deals with smaller data sets
Has strong predictive abilities	Gives a best estimate: you gain some insights into one thing, but it's of little or no help with predictions
Makes predictions	Makes inferences
Learns from data and discovers patterns	Learns from samples, populations, and hypotheses

Source: An introduction to Statistical Learning

The 5 tribes of machines learning

Different ways to train models

Five Tribes of Machine Learning

What are the five tribes?

Symbolists

Animals Mammals Birds

Bayesians

Likelihood	Prior
Posterior	Margin

Connectionists

Evolutionaries

Analogizers

Use symbols, rules, and logic to represent knowledge and draw logical inference

Assess the likelihood of occurrence for probabilistic inference

Recognize and generalize patterns matrices of probabilistic,

variations and then assess the dynamically with fitness of each for a given purpose weighted neurons

Favored algorithm Genetic

programs

Generate

Optimize a function in light of constraints ("going as high as you can while staying on the road")

Favored algorithm Support vectors

Favored algorithm Rules and decision trees

Favored algorithm **Naive Bayes** or Markov

Favored algorithm Neural networks

Source: Pedro Domingos, The Master Algorithm, 2015

Which Algorithm to choose for a Model?

Types of Machine Learning

