Impact of PM2.5 Exposure on Low Birth Weight in Ulaanbaatar (2016–2025)

Ahmedi, Barua, Bhuyan, Karayel

2025-04-29

${\bf Contents}$

3 Exploratory Analysis 7 4 Analysis 13 5 Results and Interpretation 14 6 Conclusion and Policy Implications 15	1	Rationale and Research Questions	4
4 Analysis 13 5 Results and Interpretation 14 6 Conclusion and Policy Implications 15 7 References 16	2	Dataset Information	5
5 Results and Interpretation 14 6 Conclusion and Policy Implications 15 7 References 16	3	Exploratory Analysis	7
6 Conclusion and Policy Implications 15 7 References 16	4	Analysis	13
7 References 16	5	Results and Interpretation	14
	6	Conclusion and Policy Implications	15
<pre>knitr::opts_knit\$set(root.dir = here::here())</pre>	7	References	16
	kn		

List of Tables

1	Summary of Birth Outcomes	11
2	Summary of Monthly PM2.5 Exposure	12

List of Figures

1	Daily PM2.5 Concentrations ($\mu g/m^3$)	7
2	Number of Months with Missing PM2.5 Data by Year	8
3	Distribution of Monthly PM2.5 Concentrations	9
4	Low Birth Weight Rate vs. Monthly PM2.5	10

1 Rationale and Research Questions

2 Dataset Information

```
# Read birth weight and live births data
birth weight low <- read.csv(here("Data/Raw/BIRTH WEIGTH LOWER THAN 2500 GRAMS.csv"), stringsAsFactors
live_births <- read.csv(here("./Data/Raw/LIVE BIRTHS.csv"), stringsAsFactors = TRUE)</pre>
# Clean live births
live births clean <- live births
for (col in names(live_births_clean)[-1]) {
  live_births_clean[[col]] <- as.numeric(gsub(",", "", live_births_clean[[col]]))</pre>
# Convert wide to long format
birth_weight_low_long <- birth_weight_low %>%
  pivot_longer(-Aimag, names_to = "Month", values_to = "Low_Birth_Weight")
live_births_long <- live_births_clean %>%
  pivot_longer(-Aimag, names_to = "Month", values_to = "Live_Births")
# Remove 'X' from month names
birth_weight_low_long <- birth_weight_low_long %>% mutate(Month = gsub("^X", "", Month))
                     <- live_births_long %>% mutate(Month = gsub("^X", "", Month))
live_births_long
# Merge datasets and create Date column
births merged <- left join(birth weight low long, live births long, by = c("Aimag", "Month")) %>%
  mutate(Date = ym(Month)) %>%
  select(Aimag, Date, Low_Birth_Weight, Live_Births)
# Load and clean PM2.5 data
years <- 2015:2025
pm25_files <- paste0(here("Data", "Raw"), "/Ulaanbaatar_PM2.5_", years, "_YTD.csv")
names(pm25_files) <- years</pre>
pm25_all <- map_dfr(pm25_files, read_csv, show_col_types = FALSE) %>%
  mutate(across(where(is.numeric), ~ na_if(., -999))) %>%
  clean names() %>%
  rename(DateTime = date_lt) %>%
  mutate(DateTime = parse date time(DateTime, orders = "ymd IMp"), Date = date(DateTime))
# Aggregate PM2.5 data
pm25_daily <- pm25_all %>%
  mutate(Date = date(DateTime)) %>%
  group_by(Date) %>%
  summarize(
    raw_conc_daily = mean(raw_conc, na.rm = TRUE),
    aqi_daily = mean(aqi, na.rm = TRUE),
   hours_reported = n(),
    hours_missing_raw = sum(is.na(raw_conc)),
   hours_missing_aqi = sum(is.na(aqi)),
    .groups = "drop"
  ) %>%
  mutate(DateTime = as datetime(Date))
```

```
pm25_monthly <- pm25_daily %>%
  mutate(Month = floor_date(Date, "month")) %>%
  group_by(Month) %>%
  summarize(
   raw_conc_monthly = mean(raw_conc_daily, na.rm = TRUE),
    aqi_monthly = mean(aqi_daily, na.rm = TRUE),
    days_reported = n(),
    days_missing_raw = sum(is.na(raw_conc_daily)),
   days_missing_aqi = sum(is.na(aqi_daily)),
    .groups = "drop"
  ) %>%
  mutate(DateTime = as_datetime(Month))
# Merge with birth data
full_data <- births_merged %>%
  left_join(pm25_monthly, by = c("Date" = "Month")) %>%
  arrange(Date)
```

3 Exploratory Analysis

0

2016

```
ggplot(pm25_daily, aes(x = Date, y = raw_conc_daily)) +
  geom_line() +
labs(
   title = "Daily PM2.5 Concentrations (µg/m³)",
   x = "Date",
   y = "Daily mean PM2.5"
) +
theme_minimal()
```

Daily PM2.5 Concentrations (µg/m³) 600 23: 400 200

Figure 1: Daily PM2.5 Concentrations ($\mu g/m^3$)

2020

Date

2024

2022

2018

```
pm25_yearly_missing <- pm25_monthly %>%
  mutate(Year = year(Month)) %>%
  group_by(Year) %>%
  summarize(
    total_months = n(),
    months_with_missing_days = sum(days_missing_raw > 0),
    total_missing_days = sum(days_missing_raw),
    .groups = "drop"
)
```

```
ggplot(pm25_yearly_missing, aes(x = Year, y = months_with_missing_days)) +
  geom_col(fill = "tomato") +
  labs(
    title = "Number of Months with Missing PM2.5 Data by Year",
    x = "Year",
    y = "Months with 1 Missing Day"
  ) +
  theme_minimal()
```

Number of Months with Missing PM2.5 Data by Year

Figure 2: Number of Months with Missing PM2.5 Data by Year

```
ggplot(pm25_monthly, aes(y = raw_conc_monthly)) +
  geom_boxplot(outlier.colour = "red", outlier.shape = 1) +
  labs(
    title = "Distribution of Monthly PM2.5",
    y = "Monthly mean PM2.5 (µg/m³)"
  ) +
  theme_minimal()
```

```
# Compute low birth weight rate (Percentage)
full_data <- full_data %>% mutate(LBW_rate = 100 * Low_Birth_Weight / Live_Births)
ggplot(full_data, aes(x = raw_conc_monthly, y = LBW_rate)) +
```


Figure 3: Distribution of Monthly PM2.5 Concentrations

```
geom_point() +
geom_smooth(method = "lm", se = TRUE, color = "blue") +
labs(
   title = "Low Birth Weight Rate vs. Monthly PM2.5",
   x = "PM2.5 (µg/m³)",
   y = "LBW Rate (Percentage)"
) +
theme_minimal()
```

```
## `geom_smooth()` using formula = 'y ~ x'
```

Low Birth Weight Rate vs. Monthly PM2.5

Figure 4: Low Birth Weight Rate vs. Monthly PM2.5

```
# Summary statistics for birth outcomes and PM2.5
births_summary <- full_data %>% summarise(
    Mean_LBW = mean(Low_Birth_Weight, na.rm = TRUE),
    Median_LBW = median(Low_Birth_Weight, na.rm = TRUE),
    Min_LBW = min(Low_Birth_Weight, na.rm = TRUE),
    Max_LBW = max(Low_Birth_Weight, na.rm = TRUE),
    SD_LBW = sd(Low_Birth_Weight, na.rm = TRUE),
    N_LBW = sum(!is.na(Low_Birth_Weight)),
    Mean_Live = mean(Live_Births, na.rm = TRUE),
    Median_Live = median(Live_Births, na.rm = TRUE),
    Min_Live = min(Live_Births, na.rm = TRUE),
```

```
Max_Live = max(Live_Births, na.rm = TRUE),
  SD_Live = sd(Live_Births, na.rm = TRUE),
 N_Live = sum(!is.na(Live_Births))
pm25_summary <- full_data %>% summarise(
 Mean_PM25 = mean(raw_conc_monthly, na.rm = TRUE),
 Median PM25 = median(raw conc monthly, na.rm = TRUE),
 Min_PM25 = min(raw_conc_monthly, na.rm = TRUE),
 Max_PM25 = max(raw_conc_monthly, na.rm = TRUE),
  SD_PM25 = sd(raw_conc_monthly, na.rm = TRUE),
  N_PM25 = sum(!is.na(raw_conc_monthly)),
  Mean_AQI = mean(aqi_monthly, na.rm = TRUE),
 Median_AQI = median(aqi_monthly, na.rm = TRUE),
 Min_AQI = min(aqi_monthly, na.rm = TRUE),
 Max_AQI = max(aqi_monthly, na.rm = TRUE),
 SD_AQI = sd(aqi_monthly, na.rm = TRUE),
 N_AQI = sum(!is.na(aqi_monthly))
# Summary tables
births_summary %>%
 t() %>% as.data.frame() %>%
 rownames_to_column("Statistic") %>%
 rename(Value = V1) %>%
 kable(caption = "Summary of Birth Outcomes", digits = 2) %>%
  kable_styling(full_width = FALSE)
```

Table 1: Summary of Birth Outcomes

Statistic	Value
${\rm Mean_LBW}$	155.97
$Median_LBW$	153.00
Min_LBW	88.00
Max_LBW	214.00
SD_LBW	21.87
N_LBW	111.00
$Mean_Live$	3110.86
Median_Live	3187.00
Min_Live	1934.00
Max_Live	3737.00
SD_Live	360.42
N_Live	111.00

```
pm25_summary %>%
  t() %>% as.data.frame() %>%
  rownames_to_column("Statistic") %>%
  rename(Value = V1) %>%
  kable(caption = "Summary of Monthly PM2.5 Exposure", digits = 2) %>%
  kable_styling(full_width = FALSE)
```

Table 2: Summary of Monthly PM2.5 Exposure

Statistic	Value
Mean_PM25	67.28
$Median_PM25$	35.22
Min_PM25	8.80
Max_PM25	351.76
SD_PM25	72.90
N_{PM25}	107.00
$Mean_AQI$	111.86
$Median_AQI$	92.67
Min_AQI	31.73
Max_AQI	274.00
SD_AQI	66.15
N_AQI	107.00

4 Analysis

5 Results and Interpretation

6 Conclusion and Policy Implications

7 References