

 $\begin{array}{lll} gsw_SP_from_C & Practical Salinity from conductivity, C \ (incl. for SP < 2) \\ gsw_C_from_SP & conductivity, C, from Practical Salinity \ (incl. for SP < 2) \\ gsw_SP_from_R & Practical Salinity from conductivity ratio, R \ (incl. for SP < 2) \\ gsw_SP_salinometer & Practical Salinity from a laboratory salinometer \ (incl. for SP < 2) \\ \end{array}$

gsw_SP_from_SK Practical Salinity from Knudsen Salinity

Absolute Salinity (SA), Preformed Salinity (Sstar) and Conservative Temperature (CT)

gsw_SA_from_SP Absolute Salinity from Practical Salinity gsw_Sstar_from_SP Preformed Salinity from Practical Salinity

gsw_CT_from_t Conservative Temperature from in-situ temperature

Absolute Salinity – Conservative Temperature plotting function

gsw_SA_CT_plot function to plot Absolute Salinity – Conservative Temperature profiles on the SA-CT diagram, including the freezing line

and selected potential density contours

other conversions between temperatures, salinities, entropy, pressure and height

gsw_deltaSA_from_SP Absolute Salinity Anomaly from Practical Salinity
qsw_SA_Star_from_SP Absolute Salinity & Preformed Salinity from Practical Salinity

gsw_SR_from_SPReference Salinity from Practical Salinitygsw_SP_from_SRPractical Salinity from Reference Salinitygsw_SP_from_SAPractical Salinity from Absolute Salinitygsw_Sstar_from_SAPreformed Salinity from Absolute Salinity

gsw_SA_from_Sstar

Absolute Salinity from Preformed Salinity
gsw_SP_from_Sstar

Practical Salinity from Preformed Salinity

gsw_pt_from_CT potential temperature from Conservative Temperature
gsw_t_from_CT in-situ temperature from Conservative Temperature
gsw_CT_from_pt Conservative Temperature from potential temperature

gsw pot enthalpy from pt potential enthalpy from potential temperature

gsw pt from t potential temperature

gsw_pt0_from_t potential temperature with reference pressure of 0 dbar

gsw_t_from_pt0 in-situ temperature from potential temperature with p_ref of 0 dbar

gsw_t90_from_t48 ITS-90 temperature from IPTS-48 temperature gsw_t90_from_t68 ITS-90 temperature from IPTS-68 temperature

gsw_z_from_p
gsw_p_from_z
gsw_z_from_depth
gsw_depth_from_z
height from pressure
pressure from height
height from depth
depth from height

gsw_Abs_Pressure_from_p
gsw_p_from_Abs_Pressure
gsw_entropy_from_CT
gsw_entropy_from_pt
gsw_entropy_from_pt
gsw_pt_from_entropy
gsw_entropy
gsw_entropy
gsw_pt_from_entropy
gsw_entropy
gsw_pt_from_entropy
gsw_entropy
gsw_en

gsw_t_from_entropy
gsw_adiabatic_lapse_rate_from_CT
gsw adiabatic lapse rate from t
in-situ temperature from entropy
adiabatic lapse rate from Conservative Temperature
adiabatic lapse rate from in-situ temperature

gsw_molality_from_SA molality of seawater gsw_ionic_strength_from_SA ionic strength of seawater

density and enthalpy, based on the 48-term expression for density, $\hat{\rho}(S_{\Lambda},\Theta,p)$

gsw_rho in-situ density and potential density
gsw_alpha thermal expansion coefficient with respect to CT

gsw_beta saline contraction coefficient at constant CT
gsw_rho_alpha_beta in-situ density, thermal expansion and saline contraction coefficients

gsw_alpha_on_beta alpha divided by beta gsw_rho_first_derivatives first derivatives of density

gsw_specvol specific volume

gsw_specvol_anom specific volume anomaly

gsw_sigma0sigma0 with reference pressure of 0 dbargsw_sigma1sigma1 with reference pressure of 1000 dbargsw_sigma2sigma2 with reference pressure of 2000 dbargsw_sigma3sigma3 with reference pressure of 3000 dbargsw_sigma4sigma4 with reference pressure of 4000 dbar

gsw_sound_speed sound speed (approximate, with r.m.s. error of 0.067 m/s)

gsw_kappa isentropic compressibility
gsw_cabbeling cabbeling coefficient
gsw_thermobaric thermobaric coefficient
gsw SA from rho Absolute Salinity from density

gsw_CT_from_rho Conservative Temperature from density

gsw_CT_maxdensity Conservative Temperature of maximum density of seawater

gsw_internal_energy internal energy gsw_enthalpy enthalpy

gsw_CT_from_enthalpy Conservative Temperature from enthalpy difference of enthalpy between two pressures

gsw_dynamic_enthalpy dynamic enthalpy

gsw_enthalpy_first_derivatives first derivatives of enthalpy gsw_enthalpy_second_derivatives second derivatives of enthalpy

water column properties, based on the 48-term expression for density, $\hat{ ho}(S_A,\Theta,p)$

gsw_Nsquared gsw_Turner_Rsubrho gsw IPV vs fNsquared ratio buoyancy (Brunt-Väisäla) frequency squared (N2)

Turner angle & Rsubrho

ratio of the vertical gradient of potential density (with reference pressure, p_ref), to the vertical gradient of locally-referenced potential density

neutral properties, based on the 48-term expression for density, $\hat{\rho}(S_{\Delta},\Theta,p)$

gsw_isopycnal_slope_ratio gsw_isopycnal_vs_ntp_CT_ratio

gsw_ntp_pt_vs_CT_ratio

ratio of the slopes of isopycnals on the SA-CT diagram for p & p_ref ratio of the gradient of CT in a potential density surface to that in the neutral tangent plane

ratio of gradients of pt & CT in a neutral tangent plane

geostrophic streamfunctions, based on the 48-term expression for density, $\hat{ ho}(S_{\Lambda},\Theta,p)$

gsw_geo_strf_dyn_height gsw_geo_strf_dyn_height_pc gsw_geo_strf_isopycnal

gsw_geo_strf_isopycnal_pc

gsw_geo_strf_Cunningham gsw_geo_strf_Montgomery gsw_geo_strf_steric_height dynamic height anomaly

dynamic height anomaly for piecewise constant profiles approximate isopycnal geostrophic streamfunction

approximate isopycnal geostrophic streamfunction for piecewise

constant profiles

Cunningham geostrophic streamfunction Montgomery geostrophic streamfunction dynamic height anomaly divided by 9.7963 m s⁻²

geostrophic velocity

gsw_geostrophic_velocity

geostrophic velocity

derivatives of entropy, CT and pt

gsw_CT_first_derivatives gsw_CT_second_derivatives gsw_entropy_first_derivatives gsw_entropy_second_derivatives gsw_pt_first_derivatives qsw_pt_second_derivatives first derivatives of Conservative Temperature second derivatives of Conservative Temperature

first derivatives of entropy second derivatives of entropy

first derivatives of potential temperature second derivatives of potential temperature

seawater properties at freezing temperatures

gsw_CT_freezing gsw_CT_freezing_poly gsw_t_freezing_poly gsw_t_freezing_poly asw_brineSA_CT

gsw_brineSA_CT_poly

gsw_brineSA_t gsw_brineSA_t_poly

gsw_pressure_freezing_CT gsw_CT_freezing_first_derivatives

gsw_t_freezing_first_derivatives gsw latentheat melting

Conservative Temperature freezing temperature of seawater

Conservative Temperature freezing temperature of seawater (polynomial)

in-situ freezing temperature of seawater

in-situ freezing temperature of seawater (polynomial)

Absolute Salinity of seawater at the freezing temperature (for given CT)
Absolute Salinity of seawater at the freezing temperature (for given CT)

Absolute Salinity of seawater at the freezing temperature (for given t) Absolute Salinity of seawater at the freezing temperature (for given t)

pressure of seawater at the freezing temperature (for given CT) first derivatives of Conservative Temperature freezing temperature of seawater

first derivatives of in-situ freezing temperature of seawater

latent heat of melting of ice into seawater (isobaric melting enthalpy)

thermodynamic interaction between ice Ih and seawater

gsw_melting_ice_SA_CT_ratio gsw_melting_ice_equilibrium_SA_CT_ratio gsw_melting_ice_into_seawater gsw_ice_fraction_to_freeze_seawater gsw_frazil_ratios SA to CT ratio when ice melts in seawater SA to CT ratio when ice melts into seawater, near equilibrium SA and CT when ice melts in seawater ice mass fraction to freeze seawater ratios of SA, CT and P changes during frazil ice formation

thermodynamic interaction between sea ice and seawater

gsw_melting_seaice_SA_CT_ratio gsw_melting_seaice_equilibrium_SA_CT_ratio gsw_melting_seaice_into_seawater gsw_seaice_fraction_to_freeze_seawater

SA to CT ratio when sea ice melts in seawater SA to CT ratio when sea ice melts into seawater, near equilibrium SA and CT when sea ice melts in seawater sea ice mass fraction to freeze seawater

thermodynamic properties of ice Ih

gsw_rho_ice gsw_alpha_wrt_t_ice

gsw_specvol_ice gsw_pressure_coefficient_ice gsw_sound_speed_ice gsw_kappa_ice gsw_kappa_const_t_ice gsw_internal_energy_ice

gsw_enthalpy_ice gsw_entropy_ice gsw_cp_ice gsw_chem_potential_water_ice gsw_Helmholtz_energy_ice

gsw_adiabatic_lapse_rate_ice gsw_pt0_from_t_ice gsw_pt_from_t_ice gsw_t_from_pt0_ice

gsw_pot_enthalpy_from_pt_ice gsw_pt_from_pot_enthalpy_ice gsw_pot_enthalpy_from_pt_ice_poly gsw_pt_from_pot_enthalpy_ice_poly in-situ density of ice

thermal expansion coefficient of ice with respect to in-situ

temperature specific volume of ice

pressure coefficient of ice

sound speed of ice (compression waves)

isentropic compressibility of ice isothermal compressibility of ice

internal energy of ice enthalpy of ice entropy of ice

isobaric heat capacity of ice chemical potential of water in ice

Helmholtz energy of ice adiabatic lapse rate of ice

potential temperature of ice with reference pressure of 0 dbar

potential temperature of ice

in-situ temperature from potential temperature of ice with

p_ref of 0 dbar

potential enthalpy from potential temperature of ice potential temperature from potential enthalpy of ice

potential enthalpy from potential temperature of ice (polynomial) potential temperature from potential enthalpy of ice (polynomial)

gsw_latentheat_evap_CT

latent heat of evaporation of water from seawater (isobaric evaporation enthalpy) with CT as input temperature latent heat of evaporation of water from seawater (isobaric evaporation enthalpy) with in-situ temperature, t, as input

planet Earth properties

gsw_f gsw_grav gsw_distance

gravitational acceleration spherical earth distance between points in the ocean

TEOS-10 constants

gsw_T0 gsw_P0 gsw_SSO gsw_uPS gsw_cp0 gsw_C3515 gsw_SonCl

gsw_SonCl gsw_valence_factor gsw_atomic_weight Celsius zero point; 273.15 K

Coriolis parameter

one standard atmosphere; 101 325 Pa

Standard Ocean Reference Salinity; 35.165 04 g/kg unit conversion factor for salinities; (35.165 04/35) g/kg

the "specific heat" for use with CT; 3991.867 957 119 63 (J/kg)/K conductivity of SSW at SP=35, t_68=15, p=0; 42.9140 mS/cm

ratio of SP to Chlorinity; 1.80655 (g/kg)-1 valence factor of sea salt; 1.2452898

mole-weighted atomic weight of sea salt; 31.4038218... g/mol

dissolved gasses

gsw_Arsol gsw_Arsol_SP_pt gsw_Hesol_SP_pt gsw_Krsol gsw_Krsol_SP_pt gsw_N2Osol gsw_N2Osol_SP_pt gsw_N2sol_SP_pt gsw_Nesol_SP_pt gsw_Nesol gsw_Nesol_SP_pt gsw_Nesol_SP_pt

gsw_O2sol_SP_pt

argon solubility from SA and CT argon solubility from SP and pt helium solubility from SA and CT helium solubility from SA and CT helium solubility from SP and pt krypton solubility from SA and CT krypton solubility from SA and CT ritrous oxide solubility from SA and CT nitrous oxide solubility from SP and pt nitrogen solubility from SA and CT nitrogen solubility from SP and pt neon solubility from SA and CT neon solubility from SA and CT oxygen solubility from SA and CT oxygen solubility from SP and pt

density and enthalpy in terms of CT, based on the exact Gibbs function

asw rho CT exact gsw alpha CT exact gsw_beta_CT_exact gsw_rho_alpha_beta_CT_exact gsw_alpha_on_beta_CT_exact gsw_rho_first_derivatives_CT_exact gsw_specvol_CT_exact gsw_specvol_anom_CT_exact gsw_sigma0_CT_exact gsw_sigma1_CT_exact gsw_sigma2_CT_exact gsw sigma3 CT exact gsw_sigma4_CT_exact gsw_sound_speed_CT_exact gsw kappa CT exact gsw_cabbeling_CT_exact gsw thermobaric CT exact

gsw_sound_speed_CT_exact
gsw_kappa_CT_exact
gsw_cabbeling_CT_exact
gsw_thermobaric_CT_exact
gsw_SA_from_rho_CT_exact
gsw_CT_from_rho_exact
gsw_CT_maxdensity_exact
gsw_internal_energy_CT_exact
gsw_enthalpy_CT_exact
gsw_CT_from_enthalpy_exact
gsw_enthalpy_diff_CT_exact

gsw_dynamic_enthalpy_CT_exact gsw_enthalpy_first_derivatives_CT_exact gsw_enthalpy_second_derivatives_CT_exact in-situ density and potential density thermal expansion coefficient with respect to CT saline contraction coefficient at constant CT density, thermal expansion and saline contraction coefficients

alpha divided by beta first derivatives of density

specific volume

specific volume anomaly

sigma0 with reference pressure of 0 dbar sigma1 with reference pressure of 1000 dbar sigma2 with reference pressure of 2000 dbar sigma3 with reference pressure of 3000 dbar sigma4 with reference pressure of 4000 dbar

sound speed

isentropic compressibility cabbeling coefficient thermobaric coefficient Absolute Salinity from density

Conservative Temperature from density

Conservative Temperature of maximum density of seawater

internal energy enthalpy

Conservative Temperature from enthalpy difference of enthalpy between two pressures

dynamic enthalpy

first derivatives of enthalpy second derivatives of enthalpy

laboratory functions, for use with densimeter measurements

gsw_SA_from_rho_t_exact gsw_deltaSA_from_rho_t_exact

gsw_rho_t_exact

Absolute Salinity from density Absolute Salinity Anomaly from density in-situ density

basic thermodynamic properties in terms of in-situ t, based on the exact Gibbs function

gsw rho t exact gsw_pot_rho_t_exact asw siama0 pt0 exact gsw_alpha_wrt_CT_t_exact

gsw_alpha_wrt_pt_t_exact gsw_alpha_wrt_t_exact gsw_beta_const_CT_t_exact gsw_beta_const_pt_t_exact gsw_beta_const_t_exact gsw_specvol_t_exact gsw_specvol_anom_t_exact gsw_sound_speed_t_exact gsw_kappa_t_exact gsw kappa const t exact gsw_SA_from_rho_t_exact

gsw dynamic enthalpy t exact gsw_CT_first_derivatives_wrt_t_exact gsw_enthalpy_first_derivatives_wrt_t_exact

asw cp t exact

gsw_isochoric_heat_cap_t_exact gsw_chem_potential_relative_t_exact gsw_chem_potential_water_t_exact gsw chem potential salt t exact gsw_t_deriv_chem_potential_water_t_exact gsw_dilution_coefficient_t_exact gsw Helmholtz energy t exact

gsw_osmotic_coefficient_t_exact

gsw_osmotic_pressure_t_exact

gsw_t_from_rho_exact gsw t maxdensity exact gsw_internal_energy_t_exact gsw_enthalpy_t_exact

in-situ density potential density

sigma0 from pt0 with reference pressure of 0 dbar thermal expansion coefficient with respect to Conservative Temperature

thermal expansion coefficient with respect to potential temperature thermal expansion coefficient with respect to in-situ temperature saline contraction coefficient at constant Conservative Temperature saline contraction coefficient at constant potential temperature saline contraction coefficient at constant in-situ temperature specific volume

specific volume anomaly

sound speed

isentropic compressibility isothermal compressibility Absolute Salinity from density in-situ temperature from density

in-situ temperature of maximum density of seawater

internal energy enthalpy dynamic enthalpy

first derivatives of Conservative Temperature with respect to t

first derivatives of enthalpy with respect to t

isobaric heat capacity isochoric heat capacity relative chemical potential

chemical potential of water in seawater chemical potential of salt in seawater

temperature derivative of chemical potential of water

dilution coefficient of seawater

Helmholtz energy

osmotic coefficient of seawater osmotic pressure of seawater

Library functions of the GSW toolbox (internal functions: not intended to be called by users)

The GSW functions call the following library functions:

gsw_gibbs gsw gibbs ice gsw_SAAR asw Fdelta gsw deltaSA atlas gsw_SA_from_SP_Baltic gsw SP from SA Baltic asw infunnel gsw_entropy_part gsw_entropy_part_zerop asw interp ref cast gsw interp SA CT gsw gibbs pt0 pt0 gsw_gibbs_ice_part_t gsw gibbs ice pt0 asw specvol SSO 0 p gsw enthalpy SSO 0 p gsw_Hill_ratio_at_SP2

The GSW data set:

gsw_data_v3_0

documentation set

gsw front page gsw_check_functions gsw demo gsw ver gsw_licence

the TEOS-10 Gibbs function of seawater and its derivatives the TEOS-10 Gibbs function of ice and its derivatives Absolute Salinity Anomaly Ratio (excluding the Baltic Sea) ratio of Absolute to Preformed Salinity, minus 1 Absolute Salinity Anomaly atlas value (excluding the Baltic Sea) Calculates Absolute Salinity in the Baltic Sea Calculates Practical Salinity in the Baltic Sea "oceanographic funnel" check for the 48-term equation entropy minus the terms that are a function of only SA entropy part evaluated at 0 dbar linearly interpolates the reference cast linearly interpolates (SA,CT,p) to the desired p gibbs(0,2,0,SA,t,0) part of gibbs ice(1.0.t.p) part of gibbs ice(1,0,pt0,0) specvol(35,16504,0,p) enthalpy(35.16504.0.p) Hill ratio at a Practical Salinity of 2

This file contains:

- (1) the global data set of Absolute Salinity Anomaly Ratio,
- (2) the global data set of Absolute Salinity Anomaly Ref.,
- (3) a reference cast (for the isopycnal streamfunction),
- (4) two reference casts that are used by gsw demo
- (5) three vertical profiles of (SP, t, p) at known long & lat, plus the outputs of all the GSW functions for these 3 profiles, and the required accuracy of all these outputs.

front page to the GSW Oceanographic Toolbox checks that all the GSW functions work correctly demonstrates many GSW functions and features displays the GSW version number creative commons licence for the GSW Oceanographic Toolbox

