

CLAIMS

What is claimed is:

1 1. A method of forming a package, comprising:
2 placing a film against a flip-chip assembly, wherein the flip-chip assembly
3 includes a die, an electrical connection, and a mounting substrate;
4 underfilling the die with underfill material;
5 curing the underfill material; and
6 after beginning curing the underfill material, removing the film.

1 2. The method according to claim 1, wherein the film includes a tacky film.

1 3. The method according to claim 1, wherein the film includes a tacky film, and
2 wherein curing the underfill material is carried out under heat that causes the tacky film to
3 release from the flip-chip assembly.

1 4. The method according to claim 1, wherein after beginning curing the
2 underfill material and removing the film, curing includes:
3 curing the underfill material that is in contact with the film;
4 removing the film; and thereafter
5 curing the underfill material that is between the die and the mounting
6 substrate.

1 5. The method according to claim 1, wherein after beginning curing the
2 underfill material and removing the film, curing includes:
3 curing the underfill material that is in contact with the film by conductive
4 heat transfer from a mold press;
5 removing the film; and thereafter
6 curing the underfill material that is between the die and the mounting
7 substrate by placing the package into a curing oven.

1 6. The method according to claim 1, wherein after beginning curing the
2 underfill material and removing the film, curing includes:
3 heating the package in a curing oven under conditions to cause the tacky film
4 to release from the flip-chip assembly.

1 7. The method according to claim 1, wherein after beginning curing the
2 underfill material and removing the film, curing includes:
3 heating the package in a curing oven under conditions to cause the tacky film
4 to release from the flip-chip assembly, wherein heating includes a first temperature
5 ramp to a temperature range from about 100° C to about 180° C, a temperature hold
6 at a temperature in this range, a second temperature ramp to a temperature range
7 from about 140° C to about 260° C, and cooling.

1 8. The method according to claim 1, wherein after beginning curing the
2 underfill material and removing the film, curing includes:

3 heating the package in a curing oven under conditions to cause the tacky film
4 to release from the flip-chip assembly, wherein heating includes a single step
5 temperature ramp to a temperature in a range from about 140° C to about 240° C; and
6 cooling.

1 9. The method according to claim 1, wherein the underfill material has a
2 viscosity that causes it to draw between the die and the mounting substrate without the
3 assistance of a pressure differential.

1 10. The method according to claim 1, wherein the underfill material has a
2 viscosity that causes it to draw between the die and the mounting substrate, further
3 including:
4 flowing the underfill material from a first edge of the die to an opposite, second edge
5 of the die by a pressure differential.

1 11. A method of forming a package, comprising:

2 stretching a flexible film over die that is mounted on a mounting substrate to

3 seal the flexible film thereupon;

4 flowing underfill material between the die and the mounting substrate with a

5 source and a vent;

6 heating the underfill material to a first curing temperature; and

7 after reaching the first curing temperature, removing the flexible film.

1 12. The method according to claim 11, wherein the film is selected from a non-
2 tacky film and a tacky film.

1 13. The method according to claim 11, wherein the film includes a tacky film,
2 and wherein heating the underfill material to a first curing temperature is carried out to cause
3 the underfill material to cure, and wherein the first curing temperature is reached to a
4 temperature range from about 100° C to about 180° C; and
5 wherein the second curing temperature causes the tacky film to release from the die
6 and mounting substrate, and wherein the second curing temperature is reached to a
7 temperature range from 140° C to about 260° C.

1 14. The method according to claim 11, wherein the film is a non-tacky film and
2 wherein after heating the underfill material to a first curing temperature and removing the
3 film, curing includes:
4 gelling the underfill material that is in contact with the film;
5 removing the film; and the process further including:
6 curing the underfill material that is between the die and the mounting
7 substrate.

1 15. The method according to claim 11, wherein heating the underfill material to a
2 first curing temperature includes:
3 heating along a first temperature ramp to a first temperature range from about
4 100° C to about 180° C; and further including:

5 holding the first temperature;
6 heating along a second ramp to a temperature range from about 140° C to
7 about 260° C; and
8 cooling.

1 16. The method according to claim 11, wherein the underfill material has a
2 viscosity that causes it to draw between the die and the mounting substrate, further
3 including:
4 flowing the underfill material from a first edge of the die to an opposite, second edge
5 of the die by a pressure differential.

1 17. A chip package comprising:
2 a die;
3 a mounting substrate;
4 an electrical connection disposed between the mounting substrate and the die;
5 a cured underfill material including a fillet portion, and an interstitial portion
6 disposed between the die and the mounting substrate, wherein the fillet portion
7 includes a surface roughness and pattern that is characteristic of an interstitial film
8 surface roughness and pattern.

1 18. The chip package according to claim 17, wherein the interstitial film surface
2 roughness and pattern is derived from a film selected from a tacky film and a non-tacky
3 film.

1 19. The chip package according to claim 17, wherein the fillet portion exhibits a
2 single-stage solidification profile in cross section.

1 20. The chip package according to claim 17, wherein the fillet portion exhibits a
2 symmetrical rectilinear or other controllable footprint on the mounting substrate.

1 21. The chip package according to claim 17, wherein the fillet portion exhibits a
2 concave curvilinear cross-sectional profile.

1 22. The chip package according to claim 17, wherein the electrical connection
2 disposed between the mounting substrate and the die is selected from a ball grid array, a
3 collapsed ball grid array, and a pin grid array.

1 23. A chip-packaging process system comprising:
2 a die;
3 a mounting substrate;
4 an electrical connection disposed between the mounting substrate and the die;
5 a tacky film that is disposed over the die and stretched onto the mounting
6 substrate;
7 a mold press that gives a shape to the film;
8 an underfill material disposed between the die and the mounting substrate;
9 and
10 an underfill inlet and outlet system that communicates through the film.

1 24. The chip-packaging process system according to claim 23, wherein the
2 underfill inlet and outlet system includes an underfill conduit and a vent.

1 25. The chip-packaging process system according to claim 23, wherein the
2 underfill material includes a fillet shape disposed between the die and the mounting
3 substrate, and wherein the a mold press that gives shape to the film includes a heater element
4 disposed at the fillet.

1 26. The chip-packaging process system according to claim 23, further including:
2 a first heating source for ramping the temperature of the underfill material to
3 a first cure state; and
4 a second heating source for causing the tacky film to release from the die, the
5 fillet, and the mounting substrate.