I. Deep Learning

01 Thinking Machines

01 Thinking Machines

Activation Functions

03 Logistic Regression Units

04 XOR Problem

Input	Patterns		Output Patterns		
	00	-	0		
	01	-	1		
	10	-	1		
	11	-	0		

05 Backpropagation

06 Convolutional Neural Networks

Convolutional Neural Networks

Big Problem

- Backpropagation just did not work well for normal neural nets with many layers
- Other rising machine learning algorithms: SVM, RandomForest, etc.

08 Breakthrough – Deep Learning

- Neural networks with many layers really could be trained well, if the weights are initialized in a clever way rather than randomly
- Deep machine learning methods are more efficient for difficult problems than shallow methods
- Rebranding to Deep Nets, Deep Learning

II. Neural Nets(NN) for XOR& Backpropagation

<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂	ŷ	XOR
0	0	0	1	0	0
0	1				1
1	0				1
1	1				0

<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂	ŷ	XOR
0	0	0	1	0	0
0	1	0	0	1	1
1	0				1
1	1				0

<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂	ŷ	XOR
0	0	0	1	0	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1				0

<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂	ŷ	XOR
0	0	0	1	0	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1	1	0	0	0

02 Backpropagation

02 Backpropagation

❷ 미분의 이해

$$A$$
의 B 에 대한변화율= $\frac{A$ 의변화량}{B의변화량}=\frac{dA}{dB}

02 Backpropagation: example

$$f = (a+b)(b+c)$$

$$f = (a+b)(b+c)$$
 with $a = -1$, $b = 3$, $c = 4$

$$x = a + b$$

$$y = b + c$$

$$f = x * y$$

$$\frac{\partial x}{\partial a} = 1$$

$$\frac{\partial y}{\partial b} = 1$$

$$\frac{\partial f}{\partial x} = y$$

$$\frac{\partial x}{\partial b} = 1$$

$$\frac{\partial y}{\partial a} = 1$$

$$\frac{\partial f}{\partial y} = x$$

02 Backpropagation: example

02 Backpropagation: example

02 Backpropagation

04 Deep & Wide NN

04 Deep & Wide NN

04 Deep & Wide NN

04 Vanishing Gradient Problem

04 Vanishing Gradient Problem

06 Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x,x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

 $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

07 Initialize Weights in a Smart Way

07 Initialize Weights in a Smart Way

- Deep Belief Network
 - > Weight initialized by RBM

07 Initialize Weights in a Smart Way

Pre-training and Fine tuning

08 Dropout

Overfitting

08 Dropout

(a) Standard Neural Net

(b) After applying dropout.

Forces the network to have a redundant representation.

Wide and Deep NN for MNIST