auxi User Manual *Release 0.2.0*

Ex Mente Technologies (Pty) Ltd.

CONTENTS

1	Introduct	ion	1
2	2.2 Imp	i Installation	3
	2.3 Get	ting Help	4
3	Structure		5
	3.1 Mo	delling Frameworks	5
	3.2 Too	ls	40
4	auxi Refe		53
	4.1 aux	i package	53
5	Indices an	nd tables	105
Ру	thon Modu	ıle Index	107
In	dex		109

CHAPTER

ONE

INTRODUCTION

auxi is a toolkit to help metallurgical process engineers with their day-to-day tasks. Many of the calculations that we do require things like molar masses, conversion of one compound to another using stoichiometry, heat transfer calculations, mass balances, energy balances, etc. It is usually quite time consuming to get started with these calculations in a tool like Excel. auxi aims to save you time by making many of these calculations available from within python.

We hope that auxi will help you spend less time focusing on searching for formulas and data, and setting up calculations, and more on thinking about the problems that you need to solve with these calculations. Enjoy!

For video tutorials on using auxi visit auxi youtube.

CHAPTER

TWO

GETTING STARTED

2.1 auxi Installation

auxi runs on both Linux and Windows.

2.1.1 Installation

To install auxi:

```
* On Linux: sudo pip install auxi
* On Windows: pip install auxi
```

To uninstall auxi:

```
* On Linux: sudo pip uninstall auxi
* On Windows: pip uninstall auxi
```

2.2 Importing auxi Components

If you want to use auxi in one of your python modules, you need to import its components in the same way that you do for any other python package. For example, to use the stoichiometry tool, you will have to do the following:

```
from auxi.tools.chemistry import stoichiometry
```

The same method is used for all modules, functions and classes in auxi. Here are a few more import examples:

```
from auxi.tools.chemistry.stoichiometry import molar_mass
from auxi.tools.chemistry.stoichiometry import molar_mass as mm
from auxi.tools.chemistry.stoichiometry import convert_compound
from auxi.tools.chemistry.stoichiometry import convert_compound as cc
from auxi.tools.chemistry import thermochemistry
from auxi.tools.chemistry.thermochemistry import Compound
```

2.3 Getting Help

You can use Python's standard help function on any of auxi's components. For example:

```
import auxi
help(auxi)

from auxi.tools.chemistry import stoichiometry
help(stoichiometry)
help(stoichiometry.molar_mass)
help(stoichiometry.convert_compound)
```

All the help information that you are able to access in this way are also available through auxi's HTML documentation that is included in the auxi Python package distribution.

CHAPTER

THREE

STRUCTURE

auxi is a python package that packages modules containing functions and classes that the engineers will ultimately use to help with their day-to-day tasks. auxi consists of python packages that are divided into two packages, the modelling framework package and the tools package.

3.1 Modelling Frameworks

This package contains modules, functions and classes for developing different types of computational models.

3.1.1 Process Modelling

The auxi.modelling.process package contains modules, functions and classes for performing process modelling. Specifically, the package contains a module called "materials" for modelling materials.

Material Modelling

The auxi.modelling.process sub-package provides you with modules, classes and functions to model process. The process modelling package contains material models.

Material Modelling

The auxi.modelling.process.materials package contains modules, functions and classes that help perform material-related calculations and build process models. Specifically, the package contains a module called "chemistry" for a material and material package that can perform chemistry calculations, another called "psd" for a particulate material and material package that can do size distribution as well as a material and material package that can, in addition, perform slurry calculations, and another called "thermochemistry" that contains a material consisting of multiple chemical compounds, having the ability to do thermochemical calculations.

Material Models

The auxi.modelling.process.materials sub-package provides you with modules, classes and functions to do material modelling. The material models are divided into chemical, psd and thermochemistry.

Concepts

Motivation The material, material assay and material package concepts used in auxi.modelling.process.materials may initially seem somewhat foreign to new users. These concepts were developed to assist process engineers when doing metallurgical calculations, and while developing process models. It aims to reduce the complexity and time involved in performing these important but sometimes tedious tasks. Once these concepts have been mastered, they become incredibly powerful in the hands of a metallurgical process engineer.

Materials, Material Assays and Material Packages auxi.modelling.process.materials includes a number of different representations of materials, material assays and material packages, each of which is contained in a separate Python module. The different modules cater for different situations as follows:

- auxi.modelling.process.materials.psd describes materials using particle size distributions. It can be used for processes in which particle size is the most important material property, such as a comminution circuit.
- auxi.modelling.process.materials.slurry adds water to psd. It can describe the solid and liquid portion of a particulate process such as a comminution circuit.
- auxi.modelling.process.materials.chem can be used for doing mass balances in chemically reactive processes such as leaching, precipitation, direct reduction and smelting. Its material class describes a material using its chemical composition. This module cannot perform any energy balance calculations.
- auxi.modelling.process.materials.thermo adds thermochemistry to chem. It can be used to do mass and energy balances in chemically reactive system such as smelting furnaces, direct reduction kilns, etc.

The auxi.modelling.process.materials.thermo module will be used to illustrate the concepts here.

Material A Material class is used to represent a "type of material". Examples are ilmenite, iron ore, coal, ferrochrome alloy, etc. These terms are fairly abstract and generic, since they don't refer to something specific. The thermo module's Material class uses uses a list of specific phases of chemical compounds to describe a "type of material". Here are some examples:

Material		======= Material	
Name	Ilmenite	Name	Coal
Compound		Compound	
Al203[S1] Ca0[S] Cr203[S] Fe203[S1] Fe304[S1] Fe0[S] K20[S] Mg0[S] Mn0[S] Na20[S1] P4010[S]		C[S1] H2[G] O2[G] N2[G] S[S1] A1203[S1] Ca0[S] Fe203[S1] Mg0[S] Si02[S1]	
Si02[S1] Ti02[S1] V205[S]			

With the Ilmenite material we are specifying that, in our model or calculation, ilmenites will consist of the 14 compounds inluded in the first list. In the case of Coal, different coals will consist of the 10 compounds listed in the second list.

Material Assay When we need to develop a model or do some calculations, it is not sufficient to simply know that a "type of material", such as ilmenite or coal, can consist of a specified list of compound phases. We need to know what the composition of a "specific material" is. With this composition we will be able to get started on some calculations. This is where material assays come in. In the next example, assays were added to the two materials defined above:

Material			
Name	Ilmenite		
Composition Details Compound	(mass fractions) IlmeniteA	IlmeniteB	IlmeniteC
Al203[S1] Ca0[S] Cr203[S] Fe203[S1]	1.16000000e-02 2.20000000e-04 8.00000000e-05 2.02000000e-01	1.55000000e-02 1.00000000e-05 2.20000000e-04 4.73000000e-01	9.41000000e-03 1.70000000e-04 1.10000000e-04 4.96740000e-01
Fe304[S1] Fe0[S] K20[S] Mg0[S] Mn0[S]	0.00000000e+00 2.79000000e-01 4.00000000e-05 1.04000000e-02 5.40000000e-03	0.00000000e+00 1.91000000e-01 1.00000000e-05 5.80000000e-03 4.80000000e-03	0.00000000e+00 0.00000000e+00 5.00000000e-05 1.09000000e-02 5.25000000e-03

V2O5[S]	3.6000000e-03	8.00000000e-03	0.00000000e+00
TiO2[S1]	4.77000000e-01	2.94000000e-01	4.59490000e-01
SiO2[S1]	8.5000000e-03	4.9000000e-03	1.74400000e-02
P4010[S]	1.0000000e-05	3.2000000e-04	1.50000000e-04
Na20[S1]	7.0000000e-05	5.00000000e-05	3.10000000e-04

Material _____ Name Coal Composition Details (mass fractions) Compound ReductantA ReductantB 8.40973866e-01 1.00000000e+00 C[S1] 1.37955186e-02 0.00000000e+00 H2[G] 4.94339606e-02 0.0000000e+00 02 [G] N2[G] 6.09802120e-03 0.00000000e+00 2.04933390e-03 0.00000000e+00 S[S1] 1.20884160e-03 0.00000000e+00 A1203[S1] 2.94179980e-03 0.00000000e+00 CaO[S] 7.85955656e-02 0.00000000e+00 Fe203[S1] 1.41179360e-03 0.00000000e+00 Mg0[S] 3.49129950e-03 0.00000000e+00 SiO2[S1] _____

Our Ilmenite material now has three assays associated with it, and they are named IlmeniteA, IlmeniteB and IlmeniteC. Ilmenite therefore refers to a "type of material", and IlmeniteA, IlmeniteB and IlmeniteC refer to "specific materials".

Two assays were added to our Coal material. The first, ReductantA, refers to a coal with 84 % carbon and roughly 8.5 % ash. Reductant B is pure graphite.

Material Packages Using auxi.modelling.process we can now create a certain quantity of a "specific material" that is identified by a material and material assay. When we do this with the thermo Material class, we also have to specify pressure and temperature. The result of creating 1000 kg of IlmeniteB at 1 atm pressure and 500 °C temperature is the following:

MaterialPackage	
Material	Ilmenite
Mass	1.00000000e+03 kg
Amount	9.81797715e+00 kmol
Pressure	1.00000000e+00 atm
Temperature	5.0000000e+02 °C
Enthalpy	-1.87069549e+03 kWh

Compound Details:			
Formula	Mass	Mass Fraction	Mole Fraction
-1000501	4 55054005	4 55054005 00	1 55005000 00
A1203[S1]	1.55371337e+01	1.55371337e-02	1.55207829e-02
CaO[S]	1.00239573e-02	1.00239573e-05	1.82066196e-05
Cr203[S]	2.20527060e-01	2.20527060e-04	1.47782739e-04
Fe203[S1]	4.74133178e+02	4.74133178e-01	3.02416515e-01
Fe304[S1]	0.00000000e+00	0.00000000e+00	0.0000000e+00
FeO[S]	1.91457584e+02	1.91457584e-01	2.71429867e-01
K20[S]	1.00239573e-02	1.00239573e-05	1.08388880e-05
Mg0[S]	5.81389521e+00	5.81389521e-03	1.46923993e-02
MnO[S]	4.81149948e+00	4.81149948e-03	6.90848565e-03
Na20[S1]	5.01197863e-02	5.01197863e-05	8.23650657e-05
P4010[S]	3.20766632e-01	3.20766632e-04	1.15084949e-04
SiO2[S1]	4.91173906e+00	4.91173906e-03	8.32630400e-03
TiO2[S1]	2.94704343e+02	2.94704343e-01	3.75840583e-01
V2O5[S]	8.01916581e+00	8.01916581e-03	4.49078466e-03
	==========	==========	=========

In the above result some of the useful work that auxi.modelling.process.materials does behind the scenes is already evident. The amount in kmol and the enthalpy in kWh of the material package was calculated, as were the masses and mole fractions of the compounds. You will notice that the mass fractions in the material package is slightly different from those in the IlmeniteB material assay. This is because the assay was automatically normalised to add up to 1.0. You can switch of normalisation if that is more appropriate.

Summary The auxi.modelling.process.materials concepts described above can be summarised as follows:

- A material provides a list of properties that describes a "type of material".
- A material assay describes a "specific material" by providing values for the listed properties.
- A material package describes a "specific quantity of material" belonging to a certain "type of material".

You may be wondering what the use of all this is. Why go through all the effort of defining materials, material assays and material packages? The next section demonstrates the power of these concepts.

Material Package Calculations The use of materials and material packages are demonstrated here through the use of code snippets and the results produce by that code. We will be using ilmenite in the example. Firstly, let us import the :py:class: auxi.modelling.process.materials.thermo.Material class, create a material object and print it out:

from auxi.modelling.process.materials.thermo import Material

```
ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")
print (ilmenite)
```

The material looks as follows:				
Material	=============	==========	=========	
Name	Ilmenite			
Composition Details Compound	(mass fractions) IlmeniteA	IlmeniteB	IlmeniteC	
Al203[S1] Ca0[S] Cr203[S] Fe203[S1] Fe304[S1] Fe0[S] K20[S] Mg0[S] Mn0[S] Na20[S1] P4010[S] Si02[S1] Ti02[S1] V205[S]	1.16000000e-02 2.20000000e-04 8.00000000e-05 2.02000000e-01 0.00000000e+00 2.79000000e-01 4.00000000e-05 1.04000000e-03 7.00000000e-05 1.00000000e-05 8.50000000e-03 4.77000000e-03	1.55000000e-02 1.00000000e-05 2.20000000e-04 4.73000000e-01 0.00000000e-01 1.00000000e-05 5.80000000e-03 4.80000000e-03 5.00000000e-05 3.20000000e-04 4.90000000e-03 2.94000000e-03	9.41000000e-03 1.70000000e-04 1.10000000e-04 4.96740000e-01 0.00000000e+00 5.00000000e-05 1.09000000e-02 5.25000000e-03 3.10000000e-04 1.50000000e-04 1.74400000e-01 0.0000000e+00	

Creating, Adding and Extracting Next we can use the material object (called ilmenite) to create a material package using each of the ilmenite assays:

```
ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)
print(ilma_package)
ilmb_package = ilmenite.create_package("IlmeniteB", 500.0, 1.0, 750.0)
print(ilmb_package)
ilmc_package = ilmenite.create_package("IlmeniteC", 250.0, 1.0, 1200.0)
print(ilmc_package)
```

Different masses were created from each assay (300 kg of IlmeniteA, 500.0 kg of IlmeniteB and 250.0 kg of IlmeniteC). All three packages were assigned a pressure of 1 atm, which is of no consequence. The packages were assigned temperatures of 25, 750 and 1200 °C respectively. In three short lines of code, auxi.modelling.process.materials did the following for us:

- Normalise the specified assay so that the mass fractions add up to 1.0. (We can choose not to do this.)
- Calculate the mass of each compound by multiplying the component mass fraction by the total package mass.
- Calculate the mass fraction of each compound.

- Calculate the mole fraction of each compound.
- Calculate the total amount (in kmol) of components in the package.
- Calculate the total enthalpy of the package by calculating the enthalpy of each compound and adding it together.

The result is as follows:

===========			==========
MaterialPackage			
Material	Ilmenite		
Mass	3.00000000e+02	kα	
Amount	3.52817004e+00	-	
Pressure	1.00000000e+00	at.m	
Temperature	2.50000000e+01	°C	
Enthalpy	-6.87812118e+02	•	
Compound Details			
Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1]	3.48725349e+00	1.16241783e-02	9.69390473e-03
CaO[S]	6.61375661e-02	2.20458554e-04	3.34280337e-04
Cr203[S]	2.40500241e-02	8.01667468e-05	4.48486990e-05
Fe203[S1]	6.07263107e+01	2.02421036e-01	1.07784066e-01
Fe304[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
FeO[S]	8.38744589e+01	2.79581530e-01	3.30892788e-01
K20[S]	1.20250120e-02	4.00833734e-05	3.61829148e-05
MgO[S]	3.12650313e+00	1.04216771e-02	2.19865404e-02
MnO[S]	1.62337662e+00	5.41125541e-03	6.48625791e-03
Na20[S1]	2.10437710e-02	7.01459035e-05	9.62343053e-05
P4010[S]	3.00625301e-03	1.00208434e-05	3.00142421e-06
SiO2[S1]	2.55531506e+00	8.51771685e-03	1.20540764e-02
TiO2[S1]	1.43398268e+02	4.77994228e-01	5.08901291e-01
V2O5[S]	1.08225108e+00	3.60750361e-03	1.68652807e-03
MaterialPackage			
Material	Ilmenite	=========	=========
Mass	5.00000000e+02	ka	
Amount	4.90898858e+00		
Pressure	1.00000000e+00		
Temperature	7.500000000e+02		
Enthalpy	-9.05451326e+02		
Compound Details			
Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1]	7.76856687e+00	1.55371337e-02	1.55207829e-02
CaO[S]	5.01197863e-03	1.00239573e-05	1.82066196e-05

```
Cr203[S]
                1.10263530e-01 2.20527060e-04 1.47782739e-04
                2.37066589e+02 4.74133178e-01
                                         3.02416515e-01
Fe203[S1]
Fe304[S1]
                0.0000000e+00 0.0000000e+00 0.0000000e+00
                                         2.71429867e-01
FeO[S]
                9.57287918e+01 1.91457584e-01
                5.01197863e-03 1.00239573e-05 1.08388880e-05
K20[S]
                2.90694760e+00 5.81389521e-03 1.46923993e-02
MgO[S]
MnO[S]
                2.40574974e+00 4.81149948e-03
                                         6.90848565e-03
                2.50598931e-02 5.01197863e-05 8.23650657e-05
Na20[S1]
P4010[S]
                1.60383316e-01 3.20766632e-04
                                         1.15084949e-04
SiO2[S1]
                2.45586953e+00 4.91173906e-03 8.32630400e-03
                1.47352172e+02 2.94704343e-01 3.75840583e-01
TiO2[S1]
                4.00958290e+00 8.01916581e-03 4.49078466e-03
V205[S]
______
______
MaterialPackage
______
Material
                Ilmenite
Mass
                2.50000000e+02 kg
                2.40014670e+00 kmol
Amount
Pressure
                1.00000000e+00 atm
                1.20000000e+03 °C
Temperature
Enthalpy
               -5.25247309e+02 kWh
______
Compound Details
Formula
               Mass
                            Mass Fraction Mole Fraction
______
Al203[S1]
                2.35245295e+00 9.40981180e-03 9.61275553e-03
                4.24991500e-02 1.69996600e-04 3.15758164e-04
Ca0[S]
                2.74994500e-02 1.09997800e-04 7.53824179e-05
Cr203[S]
Fe203[S1]
                1.24182516e+02 4.96730065e-01 3.24003606e-01
                0.0000000e+00 0.0000000e+00 0.0000000e+00
Fe304[S1]
                0.0000000e+00 0.0000000e+00 0.0000000e+00
FeO[S]
                                         5.52880254e-05
               1.24997500e-02 4.99990000e-05
K20[S]
                2.72494550e+00 1.08997820e-02 2.81687499e-02
Mg0[S]
MnO[S]
                1.31247375e+00 5.24989500e-03
                                         7.70863128e-03
Na20[S1]
                7.74984500e-02 3.09993800e-04 5.20968045e-04
P4010[S]
                3.74992500e-02 1.49997000e-04 5.50346434e-05
SiO2[S1]
                4.35991280e+00 1.74396512e-02 3.02328445e-02
TiO2[S1]
                1.14870203e+02 4.59480810e-01
                                         5.99250982e-01
V205[S]
                0.00000000e+00 0.0000000e+00 0.0000000e+00
______
```

We can now add these three packages of ilmenite together:

```
total_package = ilma_package + ilmb_package + ilmc_package
print(total_package)
```

In one line of code we did the following:

• Calculate the total mass of each component by adding up the component masses from the three original packages.

- Calculate the mass fraction of each compound.
- Calculate the mole fraction of each compound.
- Calculate the total amount (in kmol) of compounds in the package.
- Calculate the total enthalpy of the package by adding up the enthalpies from the three original packages.
- Calculate the temperature of the new package.

This new package (total_package) looks like this:

```
MaterialPackage
Material
                Ilmenite
                 1.05000000e+03 kg
Mass
                1.08373053e+01 kmol
Amount
Pressure
                1.00000000e+00 atm
                6.61513374e+02 °C
Temperature
Enthalpy
                -2.11851075e+03 kWh
Compound Details
                Mass
Formula
                             Mass Fraction Mole Fraction
             _____
A1203[S1]
                1.36082733e+01 1.29602603e-02 1.23153413e-02
               1.13648695e-01 1.08236852e-04 1.87005885e-04
CaO[S]
               1.61813004e-01 1.54107623e-04 9.82371950e-05
Cr203[S]
Fe203[S1]
                4.21975416e+02 4.01881349e-01 2.43833300e-01
                0.0000000e+00 0.0000000e+00 0.0000000e+00
Fe304[S1]
                1.79603251e+02 1.71050715e-01 2.30674699e-01
FeO[S]
K20[S]
                2.95367407e-02 2.81302292e-05 2.89340215e-05
Mg0[S]
                8.75839623e+00 8.34132975e-03 2.00516825e-02
                5.34160012e+00 5.08723821e-03 6.94823498e-03
MnO[S]
                1.23602114e-01 1.17716299e-04 1.84018059e-04
Na20[S1]
P4010[S]
                2.00888819e-01 1.91322685e-04 6.52958859e-05
SiO2[S1]
                9.37109739e+00 8.92485465e-03 1.43915687e-02
TiO2[S1]
                4.05620643e+02 3.86305374e-01 4.68638424e-01
                 5.09183399e+00 4.84936570e-03 2.58325918e-03
V205[S]
______
```

We can easily extract a part of a material package into a new one. Let us remove 30 kg from the new package and store it in a new package:

```
dust_package = total_package.extract(30.0)
print(dust_package)
print(total_package)
```

By using one line of code we subtracted 30 kg of material from the original package and created a new one containing the subtracted 30 kg. All the other properties (e.g component masses, total amount and enthalpy) of the two packages were also recalculated. The extracted 30 kg package looks like this:

MaterialPackage		========	=========
Material Mass Amount Pressure Temperature Enthalpy	Ilmenite 3.00000000e+01 3.09637295e-01 1.00000000e+00 6.61513374e+02 -6.05288787e+01	kmol atm °C	
Compound Details Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1] Ca0[S] Cr203[S] Fe203[S1] Fe304[S1] Fe0[S] K20[S] Mg0[S] Mn0[S] Na20[S1] P4010[S] Si02[S1] Ti02[S1] V205[S] ====================================	3.88807809e-01 3.24710557e-03 4.62322868e-03 1.20564405e+01 0.00000000e+00 5.13152145e+00 8.43906876e-04 2.50239892e-01 1.52617146e-01 3.53148898e-03 5.73968055e-03 2.67745640e-01 1.15891612e+01 1.45480971e-01	1.29602603e-02 1.08236852e-04 1.54107623e-04 4.01881349e-01 0.00000000e+00 1.71050715e-01 2.81302292e-05 8.34132975e-03 5.08723821e-03 1.17716299e-04 1.91322685e-04 8.92485465e-03 3.86305374e-01 4.84936570e-03	1.23153413e-02 1.87005885e-04 9.82371950e-05 2.43833300e-01 0.00000000e+00 2.30674699e-01 2.89340215e-05 2.00516825e-02 6.94823498e-03 1.84018059e-04 6.52958859e-05 1.43915687e-02 4.68638424e-01 2.58325918e-03 ====================================
MaterialPackage	:========:		=========
-	Ilmenite 1.02000000e+03 1.05276680e+01 1.00000000e+00 6.61513374e+02 -2.05798187e+03	kmol atm °C	
Compound Details Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1] Ca0[S] Cr203[S] Fe203[S1] Fe304[S1] Fe0[S] K20[S] Mg0[S]		1.08236852e-04 1.54107623e-04 4.01881349e-01 0.00000000e+00 1.71050715e-01 2.81302292e-05	1.87005885e-04 9.82371950e-05 2.43833300e-01 0.00000000e+00 2.30674699e-01

MnO[S]	5.18898297e+00	5.08723821e-03	6.94823498e-03
Na20[S1]	1.20070625e-01	1.17716299e-04	1.84018059e-04
P4010[S]	1.95149139e-01	1.91322685e-04	6.52958859e-05
SiO2[S1]	9.10335175e+00	8.92485465e-03	1.43915687e-02
TiO2[S1]	3.94031481e+02	3.86305374e-01	4.68638424e-01
V2O5[S]	4.94635301e+00	4.84936570e-03	2.58325918e-03

Summary All the other capabilities of the auxi.modelling.process.materials.thermomater class are not demonstrated here, since the purpose of this section is simply to introduce you to the material, material assay and material package concepts in auxi.modelling.process.materials. For full details on how to use the different Material and MaterialPackage classes and objects, refer to the following section:

- section_chemistry_material_calculations
- section_psd_material_calculations
- section_psd_slurry_material_calculations
- thermochemistry material Calculations

The final point to make is that the classes in auxi.modelling.process.materials can assist you in perming large numbers of metallurgical calculations with very few lines of code. The purpose of this is to focus you on the process concepts rather than entagle you in the detail of tens or hundreds of stoichiometry and thermochemical calculations. This should keep your code clean and your mind clear, getting the job done well in a short space of time.

thermochemistry material Calculations The purpose of this section is to explain a number of concepts and demonstrate the use of the Material and MaterialPackage classes in the auxi.modelling.process.materials.thermo module.

Material Description Files You need to create one or more material description files (MDFs) before you can create a material object in Python. Material description data are stored in simple text files with ".txt" extensions. The most simple format of such a file is the "mix.txt" file shown here:

```
Compound
Al203[S1]
C[S1]
CaO[S]
Cr203[S]
Fe203[S1]
Fe304[S1]
Fe0[S]
H2[G]
K20[S]
Mg0[S]
Mn0[S]
```

Na20[S1] N2[G] O2[G] P4010[S] S[S1] Si02[S1] Ti02[S1] V205[S]

The file contains a header row, which in this case only contains the word "Compound". All subsequent rows contain chemical compound phases. For example, the second line contains the S1 phase of Al2O3. When you consult FactSage, you will see that S1 refers to the gamma phase. The third line contains the graphite phase of carbon, and so forth. The purpose of this file is to tell auxi that materials based on this MDF will contain these compound phases, and nothing else.

Material description files can also contain material assays. The content of the "ilmenite.txt" MDF is shown here:

Compound	IlmeniteA	IlmeniteB	IlmeniteC
Al203[S1]	0.01160	0.01550	0.00941
Ca0[S]	0.00022	0.00001	0.00017
Cr203[S]	0.00008	0.00022	0.00011
Fe203[S1]	0.20200	0.47300	0.49674
Fe304[S1]	0.0000	0.00000	0.00000
FeO[S]	0.27900	0.19100	0.00000
K20[S]	0.00004	0.00001	0.00005
Mg0[S]	0.01040	0.00580	0.01090
MnO[S]	0.00540	0.00480	0.00525
Na20[S1]	0.00007	0.00005	0.00031
P4010[S]	0.00001	0.00032	0.00015
SiO2[S1]	0.00850	0.00490	0.01744
TiO2[S1]	0.47700	0.29400	0.45949
V2O5[S]	0.00360	0.00800	0.00000

The first row still contains the word "Compound" as header for the list of compound phases. The subsequent words in the first row are assay names. **An assay name may not contain space or tab characters.** If it does, it will be interpreted as more than one name.

The first column of the file has the same meaning as the single column in the "mix.txt" file. It is a list of chemical compound phases that are allowed in materials based on this MDF. All subsequent columns contain assay information. Generally the numbers are mass fractions of the different component phases for the respective material assays. If you will be normalising your assays, the numbers can be masses, percentages or mass fractions, since they will be converted to mass fractions by normalisation.

There is more more twist in the MDF tale. You can add your own custom material properties to the file. The "ilmenite.txt" file was modified to include prices for the different ilmenites:

Compound	IlmeniteA	IlmeniteB	IlmeniteC
Al203[S1]	0.01160	0.01550	0.00941
CaO[S]	0.00022	0.00001	0.00017

Cr203[S]	0.00008	0.00022	0.00011
Fe203[S1]	0.20200	0.47300	0.49674
Fe304[S1]	0.00000	0.00000	0.00000
FeO[S]	0.27900	0.19100	0.00000
K20[S]	0.00004	0.00001	0.00005
Mg0[S]	0.01040	0.00580	0.01090
MnO[S]	0.00540	0.00480	0.00525
Na20[S1]	0.00007	0.00005	0.00031
P4010[S]	0.00001	0.00032	0.00015
SiO2[S1]	0.00850	0.00490	0.01744
TiO2[S1]	0.47700	0.29400	0.45949
V205[S]	0.00360	0.00800	0.00000
#			
Price[USD/ton]	47.5000	32.2300	45.1400

The name of the property in this case is "Price" and its units are "USD/ton". **There may be no spaces in the string containing the property name and units.** In this case the string is "Price[USD/ton]", which serves the purpose of describing the custom property clearly.

Be careful not to leave empty lines at the end of your material description file. It tends to cause problems.

Materials Now that we have created a few material description files, we can create material objects in Python.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")
print(ilmenite)

reductant = Material("Reductant", "./materials/reductant.txt")
print(reductant)

mix = Material("Mix", "./materials/mix.txt")
print(mix)
```

The Material class is imported on line 1. On line 3 a Material object is created, specifying the name of the object as the first parameter, and the location and name of the material description file as the second parameter. Two more Material objects are created on lines 6 and 9. The materials are preted out after creation, with the following result:

Material			
Name	Ilmenite		
Composition Details Compound	(mass fractions) IlmeniteA	IlmeniteB	IlmeniteC
Al203[S1] Ca0[S]	1.16000000e-02 2.20000000e-04	1.55000000e-02 1.00000000e-05	9.41000000e-03 1.7000000e-04

```
Cr203[S]
               8.0000000e-05 2.2000000e-04 1.1000000e-04
               2.02000000e-01 4.73000000e-01
                                        4.96740000e-01
Fe203[S1]
Fe304[S1]
               0.0000000e+00 0.0000000e+00 0.0000000e+00
               2.79000000e-01
                           1.91000000e-01 0.0000000e+00
FeO[S]
               4.00000000e-05 1.0000000e-05
                                        5.0000000e-05
K20[S]
               1.04000000e-02 5.80000000e-03
                                        1.09000000e-02
Mg0[S]
MnO[S]
               5.4000000e-03 4.8000000e-03
                                        5.25000000e-03
              7.0000000e-05 5.0000000e-05 3.10000000e-04
Na20[S1]
               1.00000000e-05
                           3.20000000e-04
P4010[S]
                                        1.50000000e-04
              8.50000000e-03 4.9000000e-03 1.74400000e-02
SiO2[S1]
              4.77000000e-01 2.94000000e-01 4.59490000e-01
TiO2[S1]
               3.60000000e-03 8.0000000e-03 0.00000000e+00
V205[S]
Custom Properties:
______
              4.75000000e+01 3.22300000e+01
Price[USD/ton]
                                        4.51400000e+01
______
Material
_____
              Reductant
Composition Details (mass fractions)
Compound ReductantA ReductantB
_____
C[S1]
               8.40973866e-01 1.00000000e+00
               1.37955186e-02 0.00000000e+00
H2[G]
               4.94339606e-02 0.0000000e+00
02 [G]
               6.09802120e-03 0.00000000e+00
N2[G]
S[S1]
               2.04933390e-03 0.00000000e+00
Al203[S1]
              1.20884160e-03 0.00000000e+00
               2.94179980e-03 0.00000000e+00
Ca0[S]
               7.85955656e-02 0.0000000e+00
Fe203[S1]
              1.41179360e-03 0.00000000e+00
Mg0[S]
SiO2[S1]
               3.49129950e-03 0.00000000e+00
______
Material
Compound
______
A1203[S1]
C[S1]
Ca0[S]
Cr203[S]
Fe203[S1]
Fe304[S1]
```

```
FeO[S]
H2[G]
K2O[S]
MgO[S]
MnO[S]
Na2O[S1]
N2[G]
O2[G]
P4O10[S]
S[S1]
SiO2[S1]
TiO2[S1]
V2O5[S]
```

The material objects are now ready to create material packages.

Material Packages

Creating Empty Packages The simplest way to create material packages is to create empty ones.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

empty_ilmenite_package = ilmenite.create_package()

print(empty_ilmenite_package)

empty_reductant_package = reductant.create_package()

print(empty_reductant_package)

empty_mix_package = mix.create_package()

print(empty_mix_package)
```

The empty packages are created by calling the "create_package" method of the Material objects without passing any parameters.

Compound Details Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1] Ca0[S] Cr203[S] Fe203[S1] Fe304[S1] Fe0[S] K20[S] Mg0[S] Mn0[S] Na20[S1] P4010[S] Si02[S1] Ti02[S1]	0.00000000e+00	0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00	0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
V2O5[S]	0.00000000e+00	0.00000000e+00 ========	0.00000000e+00
 MaterialPackage			
Material Mass Amount Pressure Temperature Enthalpy	Reductant 0.00000000e+00 0.00000000e+00 1.00000000e+01 0.00000000e+01	kmol atm °C	
Compound Details Formula	Mass	Mass Fraction	Mole Fraction
C[S1] H2[G] O2[G] N2[G] S[S1] A1203[S1] CaO[S] Fe203[S1] Mg0[S] SiO2[S1]	0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00	0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00	0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
======================================			
Material Mass Amount Pressure	Mix 0.00000000e+00 0.00000000e+00 1.00000000e+00	kmol	

Temperature Enthalpy	2.50000000e+01 0.00000000e+00	_	
Compound Details Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1]	0.00000000e+00	0.00000000e+00	0.0000000e+00
C[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
CaO[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
Cr203[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
Fe203[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
Fe304[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
FeO[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
H2[G]	0.00000000e+00	0.00000000e+00	0.00000000e+00
K20[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
Mg0[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
MnO[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
Na20[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
N2[G]	0.00000000e+00	0.00000000e+00	0.00000000e+00
O2[G]	0.00000000e+00	0.00000000e+00	0.00000000e+00
P4010[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
S[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
SiO2[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
TiO2[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
V2O5[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00

Creating Filled Packages It is just as easy to create packages that contain some mass. Let's do that with ilmenite.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

print(ilma_package)
```

The parameters to the "create_package" method are:

- 1. material assay name, "IlmeniteA"
- 2. mass, 300 kg
- 3. pressure, 1 atm
- 4. temperature, 25 °C

We therefore created 300 kg based on the composition specified by the IlmeniteA assay, at 1 atm pressure and 25 °C temperature. The resulting package is shown here.

MaterialPackage			
Material Mass Amount Pressure Temperature Enthalpy	Ilmenite 3.00000000e+02 3.52817004e+00 1.00000000e+00 2.50000000e+01 -6.87812118e+02	kmol atm °C	
Compound Details Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1] Ca0[S] Cr203[S] Fe203[S1] Fe304[S1] Fe0[S] K20[S] Mg0[S] Mn0[S] Na20[S1] P4010[S] Si02[S1] Ti02[S1]	3.48725349e+00 6.61375661e-02 2.40500241e-02 6.07263107e+01 0.00000000e+00 8.38744589e+01 1.20250120e-02 3.12650313e+00 1.62337662e+00 2.10437710e-02 3.00625301e-03 2.55531506e+00 1.43398268e+02	1.16241783e-02 2.20458554e-04 8.01667468e-05 2.02421036e-01 0.00000000e+00 2.79581530e-01 4.00833734e-05 1.04216771e-02 5.41125541e-03 7.01459035e-05 1.00208434e-05 8.51771685e-03 4.77994228e-01	9.69390473e-03 3.34280337e-04 4.48486990e-05 1.07784066e-01 0.00000000e+00 3.30892788e-01 3.61829148e-05 2.19865404e-02 6.48625791e-03 9.62343053e-05 3.00142421e-06 1.20540764e-02 5.08901291e-01
V205[S]	1.08225108e+00	3.60750361e-03	1.68652807e-03

Adding Material to a Package - Another Package Now we create another ilmenite package with a different composition, mass and temperature, and add it to the first:

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

ilmb_package = ilmenite.create_package("IlmeniteB", 500.0, 1.0, 750.0)

ilma_package += ilmb_package

print(ilma_package)

print(ilmb_package)
```

This changes the original "ilma_package", but the second "ilmb_package" remains the same. This is quite a powerful action, since one line of code does all of the following:

• Calculate the total mass of each component by adding up the component masses from the two packages.

- Calculate the mass fraction of each compound.
- Calculate the mole fraction of each compound.
- Calculate the total amount (in kmol) of compounds in the package.
- Calculate the total enthalpy by adding up the enthalpies of the two original packages.
- Calculate the temperature of the new package.

The resulting two packages are shown below:

=======================================	:=========	=========	==========
MaterialPackage			
Material Mass Amount Pressure Temperature Enthalpy	Ilmenite 8.00000000e+02 8.43715862e+00 1.00000000e+00 4.88474167e+02 -1.59326344e+03	kmol atm °C	
Compound Details Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1] Ca0[S] Cr203[S] Fe203[S1] Fe304[S1] Fe0[S] K20[S] Mg0[S] Mn0[S] Na20[S1] P4010[S] Si02[S1] Ti02[S1] V205[S]	1.12558204e+01 7.11495448e-02 1.34313554e-01 2.97792900e+02 0.000000000e+00 1.79603251e+02 1.70369907e-02 6.03345073e+00 4.02912637e+00 4.61036642e-02 1.63389569e-01 5.01118458e+00 2.90750440e+02 5.09183399e+00	1.40697755e-02 8.89369310e-05 1.67891942e-04 3.72241125e-01 0.00000000e+00 2.24504063e-01 2.12962383e-05 7.54181341e-03 5.03640796e-03 5.76295802e-05 2.04236961e-04 6.26398073e-03 3.63438050e-01 6.36479248e-03	1.30841549e-02 1.50379294e-04 1.04738770e-04 2.21026985e-01 0.00000000e+00 2.96295501e-01 2.14370100e-05 1.77425932e-02 6.73192250e-03 8.81647712e-05 6.82149359e-05 9.88514810e-03 4.31482633e-01 3.31812755e-03
======================================			
Material Mass Amount Pressure Temperature Enthalpy	Ilmenite 5.00000000e+02 4.90898858e+00 1.00000000e+00 7.50000000e+02 -9.05451326e+02	kmol atm °C	
Compound Details Formula	Mass	Mass Fraction	Mole Fraction

```
A1203[S1]
                  7.76856687e+00 1.55371337e-02 1.55207829e-02
                 5.01197863e-03 1.00239573e-05 1.82066196e-05
CaO[S]
Cr203[S]
                 1.10263530e-01 2.20527060e-04 1.47782739e-04
                 2.37066589e+02 4.74133178e-01 3.02416515e-01
Fe203[S1]
                 0.0000000e+00 0.0000000e+00 0.0000000e+00
Fe304[S1]
                 9.57287918e+01 1.91457584e-01 2.71429867e-01
FeO[S]
K20[S]
                 5.01197863e-03 1.00239573e-05 1.08388880e-05
                 2.90694760e+00 5.81389521e-03 1.46923993e-02
MqO[S]
                 2.40574974e+00 4.81149948e-03 6.90848565e-03
MnO[S]
                2.50598931e-02 5.01197863e-05 8.23650657e-05
Na20[S1]
                 1.60383316e-01 3.20766632e-04 1.15084949e-04
P4010[S]
                 2.45586953e+00 4.91173906e-03 8.32630400e-03
SiO2[S1]
TiO2[S1]
                 1.47352172e+02 2.94704343e-01 3.75840583e-01
                 4.00958290e+00 8.01916581e-03 4.49078466e-03
V205[S]
______
```

Adding Material to a Package - A Compound Mass Sometimes you need to add material to a package, one compound at a time.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

ilma_package += ("TiO2[S1]", 150.0)

print(ilma_package)
```

This adds 150 kg of TiO2[S1] to ilma_package. The temperature of the added material is assumed to be the same as that of the original package, which means that ilma_package's temperature does not change. Here is the result:

```
______
MaterialPackage
_____
Material
             Ilmenite
             4.50000000e+02 kg
Mass
             5.40632064e+00 kmol
Amount
Pressure
             1.00000000e+00 atm
Temperature
             2.50000000e+01 °C
             -1.18069622e+03 kWh
Enthalpy
Compound Details
Formula
                       Mass Fraction Mole Fraction
             Mass
______
             3.48725349e+00 7.74945219e-03 6.32625154e-03
A1203[S1]
            6.61375661e-02 1.46972369e-04 2.18151669e-04
CaO[S]
Cr203[S]
            2.40500241e-02 5.34444979e-05 2.92683040e-05
```

```
6.07263107e+01 1.34947357e-01
Fe203[S1]
                                             7.03399852e-02
Fe304[S1]
                 0.0000000e+00 0.0000000e+00 0.0000000e+00
FeO[S]
                8.38744589e+01 1.86387686e-01 2.15940951e-01
                 1.20250120e-02 2.67222489e-05 2.36130050e-05
K20[S]
Mg0[S]
                3.12650313e+00 6.94778473e-03 1.43484374e-02
MnO[S]
                1.62337662e+00 3.60750361e-03 4.23293814e-03
Na20[S1]
                2.10437710e-02 4.67639357e-05 6.28026001e-05
                3.00625301e-03 6.68056224e-06 1.95873232e-06
P4010[S]
                 2.55531506e+00 5.67847790e-03 7.86650184e-03
SiO2[S1]
                 2.93398268e+02 6.51996152e-01
                                             6.79508511e-01
TiO2[S1]
                 1.08225108e+00 2.40500241e-03 1.10062984e-03
V205[S]
______
```

Adding Material to a Package - A Compound Mass with Specified Temperature We can also add a certain mass of a specified compound at a temperature different from the original package.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

ilma_package += ("TiO2[S1]", 150.0, 1000.0)

print(ilma_package)
```

This action calculates a new total mass, component masses, mass fractions and mole fractions, as well as a new enthalpy and temperature.

```
MaterialPackage
______
Material
Mass
                 4.50000000e+02 kg
                 5.40632064e+00 kmol
Amount
Pressure
                 1.00000000e+00 atm
                 3.84927151e+02 °C
Temperature
                -1.14449836e+03 kWh
Enthalpy
Compound Details
Formula
                Mass
                             Mass Fraction Mole Fraction
                3.48725349e+00 7.74945219e-03 6.32625154e-03
A1203[S1]
                6.61375661e-02 1.46972369e-04 2.18151669e-04
CaO[S]
Cr203[S]
               2.40500241e-02 5.34444979e-05 2.92683040e-05
               6.07263107e+01 1.34947357e-01 7.03399852e-02
Fe203[S1]
Fe304[S1]
                0.0000000e+00 0.0000000e+00 0.0000000e+00
FeO[S]
                8.38744589e+01 1.86387686e-01 2.15940951e-01
```

```
K20[S]
                   1.20250120e-02 2.67222489e-05 2.36130050e-05
MgO[S]
                   3.12650313e+00 6.94778473e-03 1.43484374e-02
MnO[S]
                   1.62337662e+00 3.60750361e-03 4.23293814e-03
                   2.10437710e-02 4.67639357e-05 6.28026001e-05
Na20[S1]
P4010[S]
                   3.00625301e-03 6.68056224e-06 1.95873232e-06
                   2.55531506e+00 5.67847790e-03 7.86650184e-03
SiO2[S1]
TiO2[S1]
                   2.93398268e+02 6.51996152e-01 6.79508511e-01
V205[S]
                   1.08225108e+00 2.40500241e-03 1.10062984e-03
```

Adding Packages of Different Materials Together We very often need to add packages from different materials together. For example, ilmenite and reductant can be added together so that reduction reactions can be modelled.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

reda_package = reductant.create_package("ReductantA", 35.0, 1.0, 25.0)

new_package = ilma_package + reda_package

print(new_package)
```

This, however, does not work. See the last two lines of the error message below.

```
Traceback (most recent call last):
File "test.py", line 10, in <module>
    new_package = ilma_package + reda_package
File "thermochemistry.material.py", line 430, in __add__
    self.material.name + "'.")
Exception: Packages of 'Reductant' cannot be added to packages of 'Ilmenite'.
    The compound 'C[S1]' was not found in 'Ilmenite'.
```

Let's try it by swopping the two material packages around.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

reda_package = reductant.create_package("ReductantA", 35.0, 1.0, 25.0)

new_package = reda_package + ilma_package

print(new_package)
```

```
Traceback (most recent call last):
File "test.py", line 10, in <module>
    new_package = reda_package + ilma_package
File "thermochemistry.material.py", line 430, in __add__
    self.material.name + "'.")
Exception: Packages of 'Ilmenite' cannot be added to packages of 'Reductant'.
    The compound 'Cr203[S]' was not found in 'Reductant'.
```

Still no luck. These packages cannot be added together because their materials are not compatible. We need to use an intermediate material package from a compatible material that will allow us to add ilmenite and reductant together. This is the purpose of the "mix" material that we created early on.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

reda_package = reductant.create_package("ReductantA", 35.0, 1.0, 25.0)

new_package = mix.create_package()

new_package += ilma_package
new_package += reda_package
print(new_package)
```

Success at last! The mix material package is able to receive all the compound masses from both the ilmenite and reductant packages.

```
______
MaterialPackage
______
Material
Mass
                 3.35000000e+02 kg
                6.30500835e+00 kmol
Amount
Pressure
                1.00000000e+00 atm
                2.50000000e+01 °C
Temperature
Enthalpy
                -6.92925041e+02 kWh
Compound Details
Formula
               Mass
                            Mass Fraction Mole Fraction
Al203[S1]
                3.52956294e+00 1.05360088e-02 5.49034965e-03
C[S1]
                2.94340853e+01 8.78629412e-02 3.88683906e-01
CaO[S]
               1.69100559e-01 5.04777788e-04 4.78268203e-04
                2.40500241e-02 7.17911166e-05 2.50965308e-05
Cr203[S]
Fe203[S1]
               6.34771555e+01 1.89484046e-01 6.30462073e-02
               0.0000000e+00 0.0000000e+00 0.0000000e+00
Fe304[S1]
                8.38744589e+01 2.50371519e-01 1.85161693e-01
FeO[S]
H2[G]
                4.82843151e-01 1.44132284e-03 3.79888138e-02
```

```
K20[S]
                  1.20250120e-02 3.58955583e-05 2.02473128e-05
MgO[S]
                  3.17591590e+00
                               9.48034598e-03
                                              1.24977222e-02
MnO[S]
                 1.62337662e+00 4.84590037e-03 3.62959406e-03
                  2.10437710e-02 6.28172270e-05
                                              5.38509982e-05
Na20[S1]
N2[G]
                  2.13430742e-01 6.37106693e-04
                                              1.20838199e-03
                 1.73018862e+00 5.16474215e-03 8.57578913e-03
02 [G]
P4010[S]
                  3.00625301e-03 8.97388957e-06
                                              1.67954337e-06
S[S1]
                  7.17266865e-02 2.14109512e-04
                                              3.54772799e-04
SiO2[S1]
                  2.67751054e+00 7.99256877e-03
                                              7.06780432e-03
                  1.43398268e+02 4.28054533e-01
                                              2.84772072e-01
TiO2[S1]
V205[S]
                  1.08225108e+00
                                3.23060025e-03 9.43750984e-04
______
```

Adding Material Together - Package + Package In the above three sections we demonstrated how material can be added to an existing package. Here we will add material together to create a new package.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

ilmb_package = ilmenite.create_package("IlmeniteB", 500.0, 1.0, 750.0)

new_package = ilma_package + ilmb_package

print(new_package)
```

This action performs all the calculations to create a new package with properties based on the two original packages. Specifically note that the temperature was automatically calculated.

	==========		=========
MaterialPackage			
Material	Ilmenite		
Mass	8.00000000e+02	kg	
Amount	8.43715862e+00	kmol	
Pressure	1.00000000e+00	atm	
Temperature	4.88474167e+02	°C	
Enthalpy	-1.59326344e+03	kWh	
Compound Details	Mass	Mass Fraction	Mole Fraction
Al203[S1]	1.12558204e+01	1.40697755e-02	1.30841549e-02
CaO[S]	7.11495448e-02	8.89369310e-05	1.50379294e-04
Cr203[S]	1.34313554e-01	1.67891942e-04	1.04738770e-04
Fe203[S1]	2.97792900e+02	3.72241125e-01	2.21026985e-01
Fe304[S1]	0.0000000e+00	0.0000000e+00	0.00000000e+00

```
FeO[S]
                 1.79603251e+02 2.24504063e-01 2.96295501e-01
K20[S]
                 1.70369907e-02 2.12962383e-05 2.14370100e-05
Mg0[S]
                6.03345073e+00 7.54181341e-03 1.77425932e-02
                 4.02912637e+00 5.03640796e-03 6.73192250e-03
MnO[S]
Na20[S1]
                 4.61036642e-02 5.76295802e-05 8.81647712e-05
                1.63389569e-01 2.04236961e-04 6.82149359e-05
P4010[S]
SiO2[S1]
                 5.01118458e+00 6.26398073e-03 9.88514810e-03
                2.90750440e+02 3.63438050e-01 4.31482633e-01
TiO2[S1]
                 5.09183399e+00 6.36479248e-03 3.31812755e-03
V205[S]
______
```

Adding Material Together - Package + Compound Mass Now we add a package and specific mass of a compound together to produce a new package.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

new_package = ilma_package + ("TiO2[S1]", 150.0)

print(new_package)
```

The added compound mass is assumed to be at the same temperature as the original package. This results in the new package having the same temperature as the original package.

```
______
MaterialPackage
______
Material
              Ilmenite
               4.50000000e+02 kg
Mass
Amount
               5.40632064e+00 kmol
Pressure
               1.00000000e+00 atm
               2.50000000e+01 °C
Temperature
              -1.18069622e+03 kWh
Enthalpy
Compound Details
Formula
              Mass
                          Mass Fraction Mole Fraction
_____
              3.48725349e+00 7.74945219e-03 6.32625154e-03
Al203[S1]
CaO[S]
               6.61375661e-02 1.46972369e-04 2.18151669e-04
Cr203[S]
              2.40500241e-02 5.34444979e-05 2.92683040e-05
               6.07263107e+01 1.34947357e-01 7.03399852e-02
Fe203[S1]
              0.0000000e+00 0.0000000e+00 0.0000000e+00
Fe304[S1]
              8.38744589e+01 1.86387686e-01 2.15940951e-01
FeO[S]
              1.20250120e-02 2.67222489e-05 2.36130050e-05
K20[S]
              3.12650313e+00 6.94778473e-03 1.43484374e-02
Mg0[S]
               1.62337662e+00 3.60750361e-03 4.23293814e-03
MnO[S]
Na20[S1]
               2.10437710e-02 4.67639357e-05 6.28026001e-05
```

```
P4010[S] 3.00625301e-03 6.68056224e-06 1.95873232e-06 SiO2[S1] 2.55531506e+00 5.67847790e-03 7.86650184e-03 TiO2[S1] 2.93398268e+02 6.51996152e-01 6.79508511e-01 V2O5[S] 1.08225108e+00 2.40500241e-03 1.10062984e-03
```

Adding Material Together - Package + Compound Mass at Specified Temperature Now we add the same compound mass as in the previous section, but at a different temperature.

```
from auxi.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

new_package = ilma_package + ("TiO2[S1]", 150.0, 1000.0)

print(new_package)
```

The new package now has a different temperature, which is calculated based on the enthalpy of the original package and the enthalpy of the added compound mass.

```
______
MaterialPackage
______
Material
               Ilmenite
Mass
                 4.50000000e+02 kg
Amount
                5.40632064e+00 kmol
Pressure
                1.00000000e+00 atm
                3.84927151e+02 °C
Temperature
               -1.14449836e+03 kWh
Enthalpy
Compound Details
               Mass
Formula
                            Mass Fraction Mole Fraction
               3.48725349e+00 7.74945219e-03 6.32625154e-03
Al203[S1]
CaO[S]
               6.61375661e-02 1.46972369e-04 2.18151669e-04
               2.40500241e-02 5.34444979e-05 2.92683040e-05
Cr203[S]
               6.07263107e+01 1.34947357e-01 7.03399852e-02
Fe203[S1]
Fe304[S1]
               0.0000000e+00 0.0000000e+00 0.0000000e+00
               8.38744589e+01 1.86387686e-01 2.15940951e-01
FeO[S]
                1.20250120e-02 2.67222489e-05 2.36130050e-05
K20[S]
Mg0[S]
               3.12650313e+00 6.94778473e-03 1.43484374e-02
                1.62337662e+00 3.60750361e-03 4.23293814e-03
Mn0[S]
               2.10437710e-02 4.67639357e-05 6.28026001e-05
Na20[S1]
                3.00625301e-03 6.68056224e-06 1.95873232e-06
P4010[S]
                2.55531506e+00 5.67847790e-03 7.86650184e-03
SiO2[S1]
TiO2[S1]
               2.93398268e+02 6.51996152e-01 6.79508511e-01
V205[S]
                1.08225108e+00 2.40500241e-03 1.10062984e-03
```

Extract Material from a Package - Mass When we need to create a new package by extracting material from an existing material, we use the "extract" method. First of all we can simply specify the total mass to be extracted.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

new_package = ilma_package.extract(75.0)

print(ilma_package)

print(new_package)
```

This removes 75 kg from the original package, and produces a new package of 75 kg. The new package has the same composition, temperature and pressure as the original one.

===========		=========	========
MaterialPackage			
Material	 Ilmenite		
Mass	2.25000000e+02	kg	
Amount	2.64612753e+00	kmol	
Pressure	1.00000000e+00	atm	
Temperature	2.50000000e+01	°C	
Enthalpy	-5.15859089e+02	kWh	
Compound Details			
Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1]	2.61544012e+00	1.16241783e-02	9.69390473e-03
CaO[S]	4.96031746e-02	2.20458554e-04	3.34280337e-04
Cr203[S]	1.80375180e-02	8.01667468e-05	4.48486990e-05
Fe203[S1]	4.55447330e+01	2.02421036e-01	1.07784066e-01
Fe304[S1]	0.00000000e+00	0.00000000e+00	0.0000000e+00
FeO[S]	6.29058442e+01	2.79581530e-01	3.30892788e-01
K20[S]	9.01875902e-03	4.00833734e-05	3.61829148e-05
Mg0[S]	2.34487734e+00	1.04216771e-02	2.19865404e-02
MnO[S]	1.21753247e+00	5.41125541e-03	6.48625791e-03
Na20[S1]	1.57828283e-02	7.01459035e-05	9.62343053e-05
P4010[S]	2.25468975e-03	1.00208434e-05	3.00142421e-06
SiO2[S1]	1.91648629e+00	8.51771685e-03	1.20540764e-02
TiO2[S1]	1.07548701e+02	4.77994228e-01	5.08901291e-01
V205[S]	8.11688312e-01	3.60750361e-03	1.68652807e-03
=======================================	========	========	
MaterialPackage	==========	=========	=======================================
Material	Ilmenite	========	

Mass	7.50000000e+01	kg	
Amount	8.82042511e-01	kmol	
Pressure	1.00000000e+00	atm	
Temperature	2.50000000e+01	°C	
Enthalpy	-1.71953030e+02	kWh	
Compound Details			
Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1]	8.71813372e-01	1.16241783e-02	9.69390473e-03
CaO[S]	1.65343915e-02	2.20458554e-04	3.34280337e-04
Cr203[S]	6.01250601e-03	8.01667468e-05	4.48486990e-05
Fe203[S1]	1.51815777e+01	2.02421036e-01	1.07784066e-01
Fe304[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
FeO[S]	2.09686147e+01	2.79581530e-01	3.30892788e-01
K20[S]	3.00625301e-03	4.00833734e-05	3.61829148e-05
MgO[S]	7.81625782e-01	1.04216771e-02	2.19865404e-02
MnO[S]	4.05844156e-01	5.41125541e-03	6.48625791e-03
Na20[S1]	5.26094276e-03	7.01459035e-05	9.62343053e-05
P4010[S]	7.51563252e-04	1.00208434e-05	3.00142421e-06
SiO2[S1]	6.38828764e-01	8.51771685e-03	1.20540764e-02
TiO2[S1]	3.58495671e+01	4.77994228e-01	5.08901291e-01
V2O5[S]	2.70562771e-01	3.60750361e-03	1.68652807e-03

Extract Material from a Package - Compound We can also extract all the mass of a single compound from an existing package into a new one.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

new_package = ilma_package.extract("TiO2[S1]")

print(ilma_package)

print(new_package)
```

This modifies the original package's composition and enthalpy, and creates a new package of the same temperature consisting purely of the specified compound.

```
MaterialPackage

Material Ilmenite

Mass 1.56601732e+02 kg

Amount 1.73267975e+00 kmol

Pressure 1.00000000e+00 atm

Temperature 2.50000000e+01 °C
```

Enthalpy	-2.16620609e+02	kWh	
Compound Details			
Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1]	3.48725349e+00	2.22682946e-02	1.97392185e-02
CaO[S]	6.61375661e-02	4.22329724e-04	6.80678509e-04
Cr203[S]	2.40500241e-02	1.53574445e-04	9.13231864e-05
Fe203[S1]	6.07263107e+01	3.87775474e-01	2.19475361e-01
Fe304[S1]	0.00000000e+00	0.0000000e+00	0.00000000e+00
FeO[S]	8.38744589e+01	5.35590878e-01	6.73780610e-01
K20[S]	1.20250120e-02	7.67872226e-05	7.36774791e-05
Mg0[S]	3.12650313e+00	1.99646779e-02	4.47701043e-02
MnO[S]	1.62337662e+00	1.03662751e-02	1.32076460e-02
Na20[S1]	2.10437710e-02	1.34377640e-04	1.95957154e-04
P4010[S]	3.00625301e-03	1.91968057e-05	6.11165160e-06
SiO2[S1]	2.55531506e+00	1.63172848e-02	2.45451193e-02
TiO2[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
V2O5[S]	1.08225108e+00	6.91085003e-03	3.43419366e-03
=======================================		=========	=========
	:========		
MaterialPackage			
Material	Ilmenite		
Mass	1.43398268e+02	kg	
Amount	1.79549029e+00	kmol	
Pressure	1.00000000e+00	atm	
Temperature	2.50000000e+01	°C	
Enthalpy	-4.71191509e+02	kWh	
Compound Details			
Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
CaO[S]	0.00000000e+00	0.00000000e+00	0.0000000e+00
Cr203[S]	0.00000000e+00	0.00000000e+00	0.0000000e+00
Fe203[S1]	0.00000000e+00	0.00000000e+00	0.0000000e+00
Fe304[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
FeO[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
K20[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
MgO[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
MnO[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
Na20[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
P4010[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
SiO2[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
TiO2[S1]	1.43398268e+02	1.00000000e+00	1.00000000e+00
V205[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
=======================================	:=========:		==========

Extract Material from a Package - Compound Mass We may not want to extract all the mass of a specific compound. In this case we can specify the mass to extract.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

new_package = ilma_package.extract(("TiO2[S1]", 110.0))

print(ilma_package)

print(new_package)
```

The existing package is modified appropriately and a new package containing only the specified mass of the required compound is produced.

```
_____
MaterialPackage
______
Material
             Ilmenite
Mass
               1.90000000e+02 kg
              2.15085961e+00 kmol
Amount
Pressure
              1.00000000e+00 atm
Temperature
              2.50000000e+01 °C
              -3.26363778e+02 kWh
Enthalpy
Compound Details
             Mass
                         Mass Fraction Mole Fraction
Formula
_____
Al203[S1]
              3.48725349e+00 1.83539657e-02 1.59014304e-02
CaO[S]
              6.61375661e-02 3.48092453e-04 5.48337915e-04
Cr203[S]
             2.40500241e-02 1.26579074e-04 7.35677195e-05
             6.07263107e+01 3.19612162e-01 1.76803968e-01
Fe203[S1]
             0.0000000e+00 0.0000000e+00 0.0000000e+00
Fe304[S1]
             8.38744589e+01 4.41444520e-01 5.42781136e-01
FeO[S]
K20[S]
              1.20250120e-02 6.32895370e-05 5.93527704e-05
              3.12650313e+00 1.64552796e-02 3.60656982e-02
Mg0[S]
              1.62337662e+00 8.54408749e-03 1.06397557e-02
MnO[S]
Na20[S1]
             2.10437710e-02 1.10756690e-04 1.57858278e-04
P4010[S]
              3.00625301e-03 1.58223842e-05 4.92339666e-06
SiO2[S1]
              2.55531506e+00 1.34490266e-02 1.97729462e-02
TiO2[S1]
              3.33982684e+01 1.75780360e-01 1.94424522e-01
              1.08225108e+00 5.69605833e-03 2.76650220e-03
V205[S]
______
______
MaterialPackage
______
Material
              Ilmenite
Mass
               1.10000000e+02 kg
```

Amount Pressure	1.37731044e+00 1.00000000e+00	kmol atm	
Temperature	2.50000000e+01		
Enthalpy	-3.61448340e+02		
Compound Details			
Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
CaO[S]	0.00000000e+00	0.00000000e+00	0.0000000e+00
Cr203[S]	0.0000000e+00	0.00000000e+00	0.0000000e+00
Fe203[S1]	0.00000000e+00	0.00000000e+00	0.0000000e+00
Fe304[S1]	0.0000000e+00	0.00000000e+00	0.0000000e+00
FeO[S]	0.00000000e+00	0.00000000e+00	0.0000000e+00
K20[S]	0.00000000e+00	0.00000000e+00	0.0000000e+00
Mg0[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
MnO[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
Na20[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
P4010[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00
SiO2[S1]	0.00000000e+00	0.00000000e+00	0.00000000e+00
TiO2[S1]	1.10000000e+02	1.00000000e+00	1.00000000e+00
V2O5[S]	0.00000000e+00	0.00000000e+00	0.00000000e+00

Extract Material from a Package - Material We may need to extract all the compounds that appear in a specific material into a new package.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

new_package = ilma_package.extract(reductant)

print(ilma_package)

print(new_package)
```

The existing package loses all the masses of components that appear in the specified material. The new package contains these masses and have the same temperature and pressure as the original material.

```
MaterialPackage

Material Ilmenite

Mass 2.30038480e+02 kg

Amount 2.99240730e+00 kmol

Pressure 1.00000000e+00 atm
```

Temperature Enthalpy	2.50000000e+01 -5.62518853e+02		
Compound Details Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1] Ca0[S] Cr203[S] Fe203[S1] Fe304[S1] Fe0[S] K20[S] Mg0[S] Mn0[S] Na20[S1] P4010[S] Si02[S1] Ti02[S1] V205[S]	0.00000000e+00 0.0000000e+00 2.40500241e-02 0.00000000e+00 0.00000000e+00 8.38744589e+01 1.20250120e-02 0.00000000e+00 1.62337662e+00 2.10437710e-02 3.00625301e-03 0.00000000e+00 1.43398268e+02 1.08225108e+00	0.00000000e+00 0.00000000e+00 1.04547831e-04 0.000000000e+00 0.00000000e+00 3.64610559e-01 5.22739153e-05 0.00000000e+00 7.05697857e-03 9.14793518e-05 1.30684788e-05 0.00000000e+00 6.23366440e-01 4.70465238e-03	0.00000000e+00 0.0000000e+00 5.28784420e-05 0.00000000e+00 0.00000000e+00 3.90136068e-01 4.26611298e-05 0.00000000e+00 7.64756215e-03 1.13464164e-04 3.53880134e-06 0.00000000e+00 6.00015342e-01 1.98848527e-03
MaterialPackage			=========
Material Mass Amount Pressure Temperature Enthalpy	Reductant 6.99615200e+01 5.35762740e-01 1.00000000e+00 2.50000000e+01 -1.25293265e+02	kmol atm °C	
Mass Amount Pressure Temperature	6.99615200e+01 5.35762740e-01 1.00000000e+00 2.50000000e+01	kmol atm °C	Mole Fraction

Multiplying a Package by a Scalar It may sometimes be useful to multiply a package by a scalar.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")

reductant = Material("Reductant", "./materials/reductant.txt")

mix = Material("Mix", "./materials/mix.txt")

ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)

ilma_package *= 2.0

print(ilma_package)
```

This doubles the package mass and enthalpy. Temperature, pressure and composition remain the same, since these are intensive properties.

	:=========	==========	:=========
MaterialPackage			
Material	Ilmenite	=========	
Mass	6.00000000e+02	kg	
Amount	7.05634009e+00	-	
Pressure	1.00000000e+00	atm	
Temperature	2.50000000e+01	°C	
Enthalpy	-1.37562424e+03	kWh	
Compound Details			
Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1]	6.97450697e+00	1.16241783e-02	9.69390473e-03
CaO[S]	1.32275132e-01	2.20458554e-04	3.34280337e-04
Cr203[S]	4.81000481e-02	8.01667468e-05	4.48486990e-05
Fe203[S1]	1.21452621e+02	2.02421036e-01	1.07784066e-01
Fe304[S1]	0.00000000e+00	0.00000000e+00	0.0000000e+00
FeO[S]	1.67748918e+02	2.79581530e-01	3.30892788e-01
K20[S]	2.40500241e-02	4.00833734e-05	3.61829148e-05
Mg0[S]	6.25300625e+00	1.04216771e-02	2.19865404e-02
MnO[S]	3.24675325e+00	5.41125541e-03	6.48625791e-03
Na20[S1]	4.20875421e-02	7.01459035e-05	9.62343053e-05
P4010[S]	6.01250601e-03	1.00208434e-05	3.00142421e-06
SiO2[S1]	5.11063011e+00	8.51771685e-03	1.20540764e-02
TiO2[S1]	2.86796537e+02	4.77994228e-01	5.08901291e-01
V205[S]	2.16450216e+00	3.60750361e-03	1.68652807e-03

Setting Package Temperature Using the "T" property of a MaterialPackage object, it is easy to set the temperature of a package to a new value.

```
from auxi.modelling.process.materials.thermo import Material

ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")
reductant = Material("Reductant", "./materials/reductant.txt")
```

```
mix = Material("Mix", "./materials/mix.txt")
  ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)
9 ilma_package.T = 1000.0
print(ilma_package)
```

This results in the temperature to be updated, as well as the package's enthalpy.

MaterialPackage Material Ilmenite Mass 3.00000000e+02 kg 3.52817004e+00 kmol Amount 1.00000000e+00 atm Pressure Temperature 1.00000000e+03 °C Enthalpy -6.18986580e+02 kWh

Compound Details			
Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1] Ca0[S] Cr203[S] Fe203[S1] Fe304[S1] Fe0[S]	3.48725349e+00 6.61375661e-02 2.40500241e-02 6.07263107e+01 0.00000000e+00 8.38744589e+01	1.16241783e-02 2.20458554e-04 8.01667468e-05 2.02421036e-01 0.00000000e+00 2.79581530e-01	9.69390473e-03 3.34280337e-04 4.48486990e-05 1.07784066e-01 0.00000000e+00 3.30892788e-01
K20[S] Mg0[S] Mn0[S] Na20[S1] P4010[S] Si02[S1] Ti02[S1] V205[S]	1.20250120e-02 3.12650313e+00 1.62337662e+00 2.10437710e-02 3.00625301e-03 2.55531506e+00 1.43398268e+02 1.08225108e+00	4.00833734e-05 1.04216771e-02 5.41125541e-03 7.01459035e-05 1.00208434e-05 8.51771685e-03 4.77994228e-01 3.60750361e-03	3.61829148e-05 2.19865404e-02 6.48625791e-03 9.62343053e-05 3.00142421e-06 1.20540764e-02 5.08901291e-01 1.68652807e-03

Setting Package Enthalpy We can use the "H" property of a MaterialPackage object to add or subtract enthalpy, or to set it to a new value. This is very useful when building an energy balance.

```
from auxi.modelling.process.materials.thermo import Material
 ilmenite = Material("Ilmenite", "./materials/ilmenite.txt")
 reductant = Material("Reductant", "./materials/reductant.txt")
 mix = Material("Mix", "./materials/mix.txt")
 ilma_package = ilmenite.create_package("IlmeniteA", 300.0, 1.0, 25.0)
```

```
9 ilma_package.H = ilma_package.H + 1.0
0 print(ilma_package)
```

This updates the package's enthalpy and automatically re-calculates its temperature.

MaterialPackage			
Material Mass Amount Pressure		kmol atm	=======
Temperature Enthalpy	4.22166385e+01 -6.86812118e+02		
Compound Details Formula	Mass	Mass Fraction	Mole Fraction
Al203[S1] Ca0[S] Cr203[S] Fe203[S1] Fe304[S1] Fe0[S] K20[S] Mg0[S] Mn0[S] Na20[S1] P4010[S] Si02[S1] Ti02[S1] V205[S]	3.48725349e+00 6.61375661e-02 2.40500241e-02 6.07263107e+01 0.000000000e+00 8.38744589e+01 1.20250120e-02 3.12650313e+00 1.62337662e+00 2.10437710e-02 3.00625301e-03 2.55531506e+00 1.43398268e+02 1.08225108e+00	1.16241783e-02 2.20458554e-04 8.01667468e-05 2.02421036e-01 0.00000000e+00 2.79581530e-01 4.00833734e-05 1.04216771e-02 5.41125541e-03 7.01459035e-05 1.00208434e-05 8.51771685e-03 4.77994228e-01 3.60750361e-03	9.69390473e-03 3.34280337e-04 4.48486990e-05 1.07784066e-01 0.00000000e+00 3.30892788e-01 3.61829148e-05 2.19865404e-02 6.48625791e-03 9.62343053e-05 3.00142421e-06 1.20540764e-02 5.08901291e-01 1.68652807e-03

3.1.2 Business Modelling

The purpose of this section is to explain a number of concepts and demonstrate the use of the Entity, Component, Activity classes in the auxi.modelling.business module.

Basic Activity

A basic activity periodically create a transaction between two specified accounts.

To create an basic activity, import the 'BasicActivity' and the create a 'BasicActivity'

```
dt_account="Bank\Default",
cr_account="Sales\Default",
amount=5000,
start=datetime(2016, 2, 1),
end=datetime(2017, 2, 1),
interval=3)
```

3.2 Tools

This package contains modules, functions and classes used to provide tools to aid the engineer with calculations.

3.2.1 Chemistry Tools

The auxi.tools.chemistry package contains modules, functions and classes for doing chemical calculations. Specifically, the package contains a module called "stoichiometry" for doing stoichiometry calculations, and another called "thermochemistry" for doing thermochemical calculations.

3.2.2 Chemical Calculations

The auxi.tools.chemistry sub-package provides you with modules, classes and functions to do chemical calculations. The calculations are divided into the categories of stoichiometry and thermochemistry.

Stoichiometry Calculations

Warning

auxi.tools.chemistry.stoichiometry is not yet able to successfully parse compound formulae that contain parentheses. It is therefore suggested that a formula such as "Fe2(SO4)3" rather be expressed as "Fe2S3O12".

Calculating Molar Mass

Determining the molar mass of a substance is done countless times in mass and energy balance models and other process models. It usually requires you to create your own little database or list that you look up the values from. Once you have that, you can perform the required calculations. The auxi.tools.chemistry.stoichiometry module provides the molar_mass() function for this purpose.

Standard Approach The normal way of getting the molar mass of one or more compounds is as follows:

```
from auxi.tools.chemistry import stoichiometry

molarmass_FeO = stoichiometry.molar_mass("FeO")
molarmass_CO2 = stoichiometry.molar_mass("CO2")
molarmass_FeCr2O4 = stoichiometry.molar_mass("FeCr2O4")

print("Molar mass of FeO :", molarmass_FeO, "kg/kmol")
print("Molar mass of CO2 :", molarmass_CO2, "kg/kmol")
print("Molar mass of FeCr2O4:", molarmass_FeCr2O4, "kg/kmol")

The result of this should be:

Molar mass of FeO : 71.8444 kg/kmol
Molar mass of CO2 : 44.0095 kg/kmol
Molar mass of FeCr2O4: 223.8348 kg/kmol
```

Compact Approach One of Python's strengths is its ability to make code very compact. You may not always want to use a lengthy "stoichiometry.molar_mass" reference to the function. Rather than importing the stoichiometry module, we can import the molar_mass() function directly, and give it another name. Here is how you can make it short and sweet:

```
from auxi.tools.chemistry.stoichiometry import molar_mass as mm
molarmass_FeO = mm("FeO")

print("Molar mass of FeO : ", molarmass_FeO, "kg/kmol")
print("Molar mass of CO2 : ", mm("CO2"), "kg/kmol")
print("Molar mass of FeCr2O4:", mm("FeCr2O4"), "kg/kmol")

The result is still the same:

Molar mass of FeO : 71.8444 kg/kmol
Molar mass of CO2 : 44.0095 kg/kmol
Molar mass of FeCr2O4: 223.8348 kg/kmol
```

More Examples Here are some more examples of molar mass calculations:

```
from auxi.tools.chemistry.stoichiometry import molar_mass as mm

def print_molar_mass(compound):
    print("Molar mass of", compound, "is", mm(compound), "kg/kmol.")

print_molar_mass("Fe01.5")

print_molar_mass("Fe203")

print_molar_mass("Fe0Ti02")

print_molar_mass("FeTi03")

print_molar_mass("Fe2 (CO3)3")
```

3.2. Tools 41

```
print_molar_mass("Fe2C3O9")
print_molar_mass("H2O")
print_molar_mass("H")
print_molar_mass("He")
print_molar_mass("Au")
```

And the results are:

```
Molar mass of FeO1.5 is 79.8441 kg/kmol.

Molar mass of Fe2O3 is 159.6882 kg/kmol.

Molar mass of FeOTiO2 is 151.7102 kg/kmol.

Molar mass of FeTiO3 is 151.7102 kg/kmol.

Molar mass of Fe2(CO3)3 is 291.7167 kg/kmol.

Molar mass of Fe2C3O9 is 291.7167 kg/kmol.

Molar mass of H2O is 18.01528 kg/kmol.

Molar mass of H is 1.00794 kg/kmol.

Molar mass of He is 4.002602 kg/kmol.

Molar mass of Au is 196.96655 kg/kmol.
```

Calculating Compound Amount

Sometimes you need to convert the mass of a compound (kg) to the equivalent amount (kmol). The stoichiometry module provides the amount () function to do this.

The amount is calculated as follows:

$$n_{\rm compound} = \frac{m_{\rm compound}}{mm_{\rm compound}}$$

where

- n_{compound} is the compound amount in kmol.
- m_{compound} is the compound mass in kg.
- $mm_{compound}$ is the compound molar mass in kg/kmol.

Standard Approach The normal way of calculating the amount of a compound is as follows:

```
from auxi.tools.chemistry import stoichiometry

m_FeO = 10.0
n_FeO = stoichiometry.amount("FeO", m_FeO)
print("There is", n_FeO, "kmol of FeO in", m_FeO, "kg of the compound.")

m_CO2 = 12.3
n_CO2 = stoichiometry.amount("CO2", m_CO2)
print("There is", n_CO2, "kmol of CO2 in", m_CO2, "kg of the compound.")

m_FeCr2O4 = 453.0
n_FeCr2O4 = stoichiometry.amount("FeCr2O4", m_FeCr2O4)
```

The result of this should be:

```
There is 0.1391896932815919 kmol of FeO in 10.0 kg of the compound. There is 0.2794851111691794 kmol of CO2 in 12.3 kg of the compound. There is 2.0238139913900786 kmol of FeCr2O4 in 453.0 kg of the compound.
```

Compact Approach To make the code more compact, we can import the function instead of the module and get the same result like this:

```
from auxi.tools.chemistry.stoichiometry import amount
```

```
m_Fe0 = 10.0
n_Fe0 = amount("Fe0", m_Fe0)
print("There is", n_Fe0, "kmol of Fe0 in", m_Fe0 , "kg of the compound.")

m_C02 = 12.3
n_C02 = amount("C02", m_C02)
print("There is", n_C02, "kmol of C02 in", m_C02 , "kg of the compound.")

m_FeCr204 = 453.0
n_FeCr204 = amount("FeCr204", m_FeCr204)
print("There is", n_FeCr204, "kmol of FeCr204 in", m_FeCr204 , "kg of the compound.")
```

The result is still the same:

```
There is 0.1391896932815919 kmol of FeO in 10.0 kg of the compound. There is 0.2794851111691794 kmol of CO2 in 12.3 kg of the compound. There is 2.0238139913900786 kmol of FeCr2O4 in 453.0 kg of the compound.
```

Calculating Compound Mass

You often have the amount (kmol) of a compound and then need to calculate its mass. The stoichiometry module provides the mass () function for this. The mass is calculate with this formula:

```
m_{\text{compound}} = n_{\text{compound}} \cdot m m_{\text{compound}}
```

where

- m_{compound} is the compound mass in kg.
- n_{compound} is the compound amount in kmol.
- $mm_{compound}$ is the compound molar mass in kg/kmol.

From this point forward the standard and compact approaches are not both demonstrated. Only the standard method, which imports the module, is used below since it is more explicit:

3.2. Tools 43

```
from auxi.tools.chemistry import stoichiometry
n_FeO = 10.0
m_FeO = stoichiometry.mass("FeO", n_FeO)
print("There is", m_FeO, "kg of FeO in", n_FeO, "kmol of the compound.")
m_CO2 = 12.3
n CO2 = stoichiometry.mass("CO2", m CO2)
print("There is", m_CO2, "kg of CO2 in", n_CO2, "kmol of the compound.")
m_FeCr204 = 453.0
n_FeCr204 = stoichiometry.mass("FeCr204", m_FeCr204)
print("There is", m_FeCr204, "kg of FeCr204 in",
      n_FeCr204 , "kmol of the compound.")
The restuls are:
There is 718.444 kg of FeO in 10.0 kmol of the compound.
There is 12.3 kg of CO2 in 541.31685 kmol of the compound.
There is 453.0 kg of FeCr2O4 in 101397.1644 kmol of the compound.
```

Identifying Elements in Compounds

The list of elements present in one or more compounds can be used when calculating element balances. Determining this list is often done manually. stoichiometry has the elements () function to automate this task. This is how you use it:

```
from auxi.tools.chemistry import stoichiometry
elements_Fe203 = stoichiometry.elements(["Fe203"])
print("Fe203 contains these elements:", elements_Fe203)
elements_CO2 = stoichiometry.elements(["CO2"])
print("CO2 contains these elements:", elements_CO2)
elements_Fe2Cr2O4 = stoichiometry.elements(["Fe2Cr2O4"])
print("Fe2Cr2O4 contains these elements:", elements_Fe2Cr2O4)
elements_Al2S3012 = stoichiometry.elements(["Al2(S04)3"])
print("Al2(SO4)3 contains these elements:", elements_Al2S3O12)
elements_all = stoichiometry.elements(["Fe203", "C02", "Fe2Cr204", "Al2(S04)3"])
print("Fe2O3, CO2, Fe2Cr2O4 and Al2(SO4)3 contain these elements:",
      elements_all)
```

Here are the results:

```
Fe203 contains these elements: {'Fe', '0'}
CO2 contains these elements: {'O', 'C'}
Fe2Cr2O4 contains these elements: {'Fe', 'O', 'Cr'}
```

```
Al2(SO4)3 contains these elements: {'Al', 'O', 'S'}
Fe2O3, CO2, Fe2Cr2O4 and Al2(SO4)3 contain these elements:
{'Al', 'Fe', 'O', 'C', 'S', 'Cr'}
```

Calculating Stoichiometry Coefficients

The stoichiometry_coefficient() and stoichiometry_coefficients() functions in stoichiometry determine the stoichiometry coefficients of elements in chemical compounds automatically. If we are only interested in the coefficient for a single element, we use stoichiometry_coefficient() like this:

```
from auxi.tools.chemistry import stoichiometry
coeff_Fe203_Fe = stoichiometry.stoichiometry_coefficient("Fe203", "Fe")
print ("Stoichiometry coefficient of Fe in Fe203:", coeff_Fe203_Fe)
coeff_Fe203_0 = stoichiometry.stoichiometry_coefficient("Fe203", "0")
print("Stoichiometry coefficient of 0 in Fe203:", coeff_Fe203_0)
coeff_Fe203_C = stoichiometry.stoichiometry_coefficient("Fe203", "C")
print("Stoichiometry coefficient of C in Fe2O3:", coeff_Fe2O3_C)
The results are:
Stoichiometry coefficient of Fe in Fe203: 2.0
Stoichiometry coefficient of O in Fe2O3: 3.0
Stoichiometry coefficient of C in Fe203: 0.0
We
          determine
                    the
                        coefficients
                                            list
                                                     elements
     can
                                    for
                                         a
                                                 of
                                                              using
                                                                     the
stoichiometry_coefficients() function:
from auxi.tools.chemistry import stoichiometry
elements = ["Fe", "O", "C", "Ar"]
st_Fe203 = stoichiometry.stoichiometry_coefficients("Fe203", elements)
print("Stoichiometry coefficient of", elements, "in Fe203:",
      st_Fe203)
elements = ["Al", "Ca", "Fe", "Si", "O", "C", "H"]
st_Lawsonite = stoichiometry.stoichiometry_coefficients("CaAl2Si2O7O2H2H2O",
                                                   elements)
print("Stoichiometry coefficient of", elements,
      "in Lawsonite (CaAl2(Si2O7)(OH)2·H2O):", st_Lawsonite)
This produces these results:
Stoichiometry coefficient of ['Fe', 'O', 'C', 'Ar'] in Fe2O3:
    [2.0, 3.0, 0.0, 0.0]
Stoichiometry coefficient of ['Al', 'Ca', 'Fe', 'Si', 'O', 'C', 'H']
in Lawsonite (CaAl2(Si2O7)(OH)2·H2O):
```

3.2. Tools 45

[2.0, 1.0, 0.0, 2.0, 10.0, 0.0, 4.0]

Calculating Element Mass Fractions

Another two useful tools in the calculation of element balances element_mass_fraction() and element_mass_fractions() functions in stoichiometry. They are similar to the stoichiometry coefficient functions, but calculate the mass fraction of an element or list of elements in a chemical compound. The calculations are done with the following equation:

$$y_{\text{compound,element}} = \frac{n_{\text{compound,element}} \cdot m m_{\text{element}}}{m m_{\text{compound}}}$$

where

- $y_{\text{compound,element}}$ is the mass fraction of the specified element in the compound.
- $n_{\text{compound,element}}$ is the stoichiometry coefficient of the specified element in the compound.
- mm_{element} is the element's molar mass in kg/kmol.
- $mm_{compound}$ is the compound's molar mass in kg/kmol.

the mass fraction of For determining a single element can use element_mass_fraction() as follows:

```
from auxi.tools.chemistry import stoichiometry
y_Fe2O3_Fe = stoichiometry.element_mass_fraction("Fe2O3", "Fe")
print("Mass fraction of Fe in Fe203:", y_Fe203_Fe)
y_Fe203_0 = stoichiometry.element_mass_fraction("Fe203", "0")
print("Mass fraction of O in Fe203:", y_Fe203_0)
y_Fe203_C = stoichiometry.element_mass_fraction("Fe203", "C")
print("Mass fraction of C in Fe203:", y_Fe203_C)
```

This produces these results:

y_Lawsonite)

```
Mass fraction of Fe in Fe2O3: 0.699425505453753
Mass fraction of O in Fe2O3: 0.300574494546247
Mass fraction of C in Fe203: 0.0
```

Similarly, we can use element_mass_fractions() to perform the calculation for a list of elements:

```
from auxi.tools.chemistry import stoichiometry
elements = ["Fe", "O", "C", "Ar"]
y_Fe203 = stoichiometry.element_mass_fractions("Fe203", elements)
print("Mass fractions of", elements, "in Fe203:", y_Fe203)
elements = ["Al", "Ca", "Fe", "Si", "O", "C", "H"]
y_Lawsonite = stoichiometry.element_mass_fractions("CaAl2Si2O7O2H2H2O", elements
print("Mass fractions of", elements,
      "in Lawsonite (CaAl2(Si2O7)(OH)2·H2O):",
```

This results in:

Converting Compounds

Sometimes it is needed to convert the mass of one compound to an equivalent mass of another compound. For example, how much Fe will I get when I reduce a certain mass of Fe2O3? stoichiometry has the convert_compound() function to help out. The function calculates the result as follows:

$$m_{ ext{target}} = m_{ ext{source}} \cdot rac{y_{ ext{source,element}}}{y_{ ext{target,element}}}$$

where

- m_{target} is the target compound mass in kg.
- m_{source} is the source compound mass in kg.
- $y_{\text{target,element}}$ is the mass fraction of the specified base element in the target compound.
- $y_{\text{source,element}}$ is the mass fraction of the specified base element in the source compound.

Here are some simple examples of how to use convert_compound():

3.2. Tools 47

Thermochemical Calculations

Preparing Thermochemical Data

The auxi.tools.chemistry.thermochemistry module provides a number of useful functions for doing thermochemical calculations that would otherwise have been quite cumbersome to do. To make these calculations possible, some thermochemical data is needed. The auxi distribution package currently contains data for around 80 compounds. This may, however, not be sufficient for your process calculations. FactSage data can be converted into auxi thermochemical data using the convert_fact_file_to_auxi_thermo_file() function.

To prepare your own compound data files with FactSage, follow these steps:

- Open FactSage.
- Click on the "View Data" button.
- Select the "Compound" option, NOT "Solution".
- Select the database that you want to use. "FactPS" should be OK.
- Type the formula of the compound you need in the box at the bottom.
- · Click OK.
- Click on the "Cp(T)" tab.
- Select "File" from the menu and then "Save As ...".
- Select the folder where you want to store all your thermochemical data files.
- The filename must have a specific format. Taking "Ar" as an example, use "Compound_Ar.txt" for the file name.
- · Click "Save".

You will have to repeat this procedure for all the compounds that you need to include in your calculations.

To convert the factsage file to an auxi thermochemical file use the following code:

from auxi.tools.chemistry import thermochemistry as thermo

```
thermo.convert_fact_file_to_auxi_thermo_file("path/to/factsage_file", "path/to/n
```

Loading Thermochemical Data

48

If you are going to use the default set of data provided with auxi, you do not need to do anything. The entire data set will be available by default. You can obtain a list of all the compounds and their phases by using the following code:

```
from auxi.tools.chemistry import thermochemistry as thermo
thermo.list_compounds()
```

Here are the first few lines of the result:

```
Compounds currently loaded in the thermochemistry module:

Ag ['G', 'L', 'S']

Ag20 ['S']

Al ['G', 'L', 'S']

Al203 ['G', 'L', 'S1', 'S2', 'S3', 'S4']

Al4C3 ['S1']

C ['G', 'S1', 'S2']

C2H2 ['G']

C04 ['Aq', 'G']

C02 ['G']
```

The result lists all the compounds with the phases for which data are available. Taking the compound SiO2 as an example, data are available for eight solid phases (S1 to S8), for the liquid phase and for the gas phase.

If you have decided to create you own data folder, you can force auxi to use the data in that folder. Here is the code for this:

```
from auxi.tools.chemistry import thermochemistry as thermo
thermo.load_data('/home/someuser/thermodata')
thermo.list_compounds()
```

This example data folder only contains a small selection of files:

```
Compounds currently loaded in the thermo module:

Ag ['G', 'L', 'S']

CaO ['G', 'L', 'S']

Cr2O3 ['L', 'S']

Cu ['G', 'L', 'S']

CuO ['G', 'S']
```

Calculating Heat Capacity

The Cp() function in the auxi.tools.chemistry.thermochemistry module can be used to calculate the heat capacity at constant pressure for a compound. This can be done as follows:

```
from auxi.tools.chemistry import thermochemistry as thermo
Cp_H2O = thermo.Cp("H2O[L]", 70.0)
print("The Cp of 1 kg of water at 70 °C is", Cp_H2O, "kWh/K.")
```

3.2. Tools 49

```
Cp_H2O = thermo.Cp("H2O[G]", 70.0)
print("The Cp of 1 kg of water vapour at 70 °C is", Cp_H2O, "kWh/K.")

m_ZrO2 = 2.34
Cp_ZrO2 = thermo.Cp("ZrO2[S1]", 893.5, m_ZrO2)
print("The Cp of 2.34 kg of ZrO2[S1] at 893.5 °C is", Cp_ZrO2, "kWh/K.")
```

Here are the results:

```
The Cp of 1 kg of water at 70 °C is 0.0011634065724223574 kWh/K. The Cp of 1 kg of water vapour at 70 °C is 0.0005217114220395267 kWh/K. The Cp of 2.34 kg of ZrO2[S1] at 70 °C is 0.0004084615851157184 kWh/K.
```

The first parameter to the function must specify both the compound's formula and phase. If the phase is not specified it is impossible to calculate a result. The heat capacity of water is clearly significantly different from that of water vapour.

The last parameter of the Cp () is mass and it is optional. If no value is specified, it is taken to be 1 kg. This was the case for the first two calculations above. A mass of 2.34 kg was specified in the last Cp calculation.

Calculating Enthalpy

The H() function in thermochemistry is used to calculate the enthalpy of a compound. This can be done as follows:

```
from auxi.tools.chemistry import thermochemistry as thermo
H_H2O = thermo.H("H2O[L]", 70.0)
print("The enthalpy of 1 kg of water at 70 °C is", H_H2O, "kWh.")

H_H2O = thermo.H("H2O[G]", 70.0)
print("The enthalpy of 1 kg of water vapour at 70 °C is", H_H2O, "kWh.")

m_ZrO2 = 2.34
H_ZrO2 = thermo.H("ZrO2[S1]", 893.5, m_ZrO2)
print("The enthalpy of 2.34 kg of ZrO2[S1] at 893.5 °C is", H_ZrO2, "kWh.")
```

Here are the results:

```
The enthalpy of 1 kg of water at 70 °C is -4.35495670039936 kWh. The enthalpy of 1 kg of water vapour at 70 °C is -3.7054553712406264 kWh. The enthalpy of 2.34 kg of ZrO2[S1] at 893.5 °C is -5.463105585819936 kWh.
```

The parameters to the \mathbb{H} () function works the same as that of the \mathbb{Cp} () function. Both formula and phase are required in the first parameter, the second is temperature in ${}^{\circ}$ C and the third is mass, which is optional with a default value of 1 kg.

Calculating Entropy

The S() function in thermochemistry is used to calculate the entropy of a compound. This can be done as follows:

```
from auxi.tools.chemistry import thermochemistry as thermo

S_H2O = thermo.S("H2O[L]", 70.0)
print("The entropy of 1 kg of water at 70 °C is", S_H2O, "kWh/K.")

S_H2O = thermo.S("H2O[G]", 70.0)
print("The entropy of 1 kg of water vapour at 70 °C is", S_H2O, "kWh/K.")

m_ZrO2 = 2.34
S_ZrO2 = thermo.S("ZrO2[S1]", 893.5, m_ZrO2)
print("The entropy of 2.34 kg of ZrO2[S1] at 893.5 °C is", S_ZrO2, "kWh/K.")
```

Here are the results:

```
The entropy of 1 kg of water at 70 °C is 0.0012418035680941087 kWh/K. The entropy of 1 kg of water vapour at 70 °C is 0.0029829908763826032 kWh/K. The entropy of 2.34 kg of ZrO2[S1] at 893.5 °C is 0.000762164298048799 kWh/K.
```

The parameters to the S () function works the same as that of the Cp () function. Both formula and phase are required in the first parameter, the second is temperature in C and the third is mass, which is optional with a default value of 1 kg.

Calculating Gibbs Free Energy

The G() function in thermochemistry is used to calculate the Gibbs free energy of a compound. This can be done as follows:

Here are the results:

3.2. Tools 51

```
The Gibbs free energy of 1 kg of water at 70 °C is -4.781081594790853 kWh. The Gibbs free energy of 1 kg of water vapour at 70 °C is -4.729068690471317 kWh. The Gibbs free energy of 2.34 kg of ZrO2[S1] at 893.5 °C is -6.352284564138569 kWh.
```

The parameters to the G () function works the same as that of the Cp () function. Both formula and phase are required in the first parameter, the second is temperature in C and the third is mass, which is optional with a default value of 1 kg.

CHAPTER

FOUR

AUXI REFERENCE

4.1 auxi package

4.1.1 auxi.modelling package

auxi.modelling.process package

auxi.modelling.process.materials package

chemistry material module This module provides classes to work with materials and material packages that are described with chemical compositions.

A material consisting of multiple chemical compounds.

Parameters

- name The material's name.
- file path The path of the material definition file.
- **description** the material's description

The format of the text file is as follows:

- •The lines are space separated. The values in a line are separated by one or more spaces.
- •The first line is a heading line.
- •All subsequent lines contain a compound formula, followed by mass fractions.
- •The first column lists the compounds in the material.
- •All subsequent columns describe assays of the material.

The following is an example of a material text file:

Compound	IlmeniteA	IlmeniteB	IlmeniteC
A1203	0.01160	0.01550	0.00941
CaO	0.00022	0.00001	0.00017
Cr203	0.00008	0.00022	0.00011
Fe203	0.20200	0.47300	0.49674
Fe304	0.00000	0.00000	0.0000
FeO	0.27900	0.19100	0.0000
K20	0.00004	0.00001	0.00005
MgO	0.01040	0.00580	0.01090
MnO	0.00540	0.00480	0.00525
Na20	0.00007	0.00005	0.00031
P4010	0.00001	0.00032	0.00015
SiO2	0.00850	0.00490	0.01744
TiO2	0.47700	0.29400	0.45949
V205	0.00360	0.00800	0.00000

add_assay (name, assay)

Add an assay to the material.

Parameters

- name The name of the new assay.
- assay A list containing the compound mass fractions for the assay. The sequence of the assay's elements must correspond to the sequence of the material's compounds.

create_empty_assay()

Create an empty array to store an assay. The array's length will be equal to the number of compounds in the material.

Returns A floating point array.

```
create_package (assay=None, mass=0.0, normalise=True)
```

Create a MaterialPackage based on the specified parameters.

Parameters

- assay The name of the assay based on which the package must be created.
- mass [kg] The mass of the package.
- **normalise** Indicates whether the assay must be normalised before creating the package.

Returns The created MaterialPackage.

get_assay_total (name)

Calculate the total of the specified assay.

Parameters name – The name of the assay.

Returns The total mass fraction of the specified assay.

get_compound_index(compound)

Determine the index of the specified compound.

Parameters compound – The formula and phase of the specified compound, e.g. 'Fe2O3[S1]'.

Returns The index of the specified compound.

A package of a material consisting of multiple chemical compounds.

Parameters

- material A reference to the Material to which self belongs.
- **compound_masses** [kg] The masses of the compounds in the package.

add_to(other)

Add another chem material package to this material package.

Parameters other – The other material package.

clear()

Set all the compound masses in the package to zero.

clone()

Create a complete copy of self.

Returns A MaterialPackage that is identical to self.

extract (other)

Extract 'other' from self, modifying self and returning the extracted material as a new package.

Parameters other – Can be one of the following:

- float: A mass equal to other is extracted from self. Self is reduced by other and the extracted package is returned as a new package.
- tuple (compound, mass): The other tuple specifies the mass of a compound to be extracted. It is extracted from self and the extracted mass is returned as a new package.
- string: The 'other' string specifies the compound to be extracted. All of the mass of that compound will be removed from self and a new package created with it.

Returns A new material package containing the material that was extracted from self.

get_assay()

Determine the assay of self.

Returns [mass fractions] An array containing the assay of self.

get_compound_mass(compound)

Get the mass of the specified compound in the package.

Parameters compound – The formula of the compound, e.g. Fe2O3.

Returns [kg]

get_compound_mass_fraction(compound)

Get the mass fraction of the specified compound in self.

Parameters compound – The formula and phase of the compound, e.g. Fe2O3

Returns []

get_element_mass(element)

Determine the masses of elements in the package.

Returns [kg] An array of element masses. The sequence of the elements in the result corresponds with the sequence of elements in the element list of the material.

get_element_mass_dictionary()

Determine the masses of elements in the package and return as a dictionary.

Returns [kg] A dictionary of element symbols and masses.

get element masses()

Get the masses of elements in the package.

Returns [kg] An array of element masses. The sequence of the elements in the result corresponds with the sequence of elements in the element list of the material.

get mass()

Get the mass of the package.

Returns [kg]

psd material module This module provides psd material and material package classes that can do size distribution calculations.

```
class auxi.modelling.process.materials.psd.Material(name,
```

file_path,

descrip-

tion=None)

Represents a particulate material consisting of multiple particle size classes.

Parameters

- name The material's name.
- file_path The path of the material definition file.
- **description** the material's description

The format of the text file is as follows:

- •The lines are space separated. The values in a line are separated by one or more spaces.
- •The first line is a heading line.
- •All subsequent lines contain a particle size, followed by mass fractions.
- •Particle sizes are indicated in [meter].
- •The first column lists the particle sizes in the material. Each class must be interpreted as "mass fraction retained". In other words if the size class is indicated as 307.2E-3, it means that it is the class of material retained on a 307.2mm screen, and can also be though of as +307.2mm material. The first size class represents the largest particles. The final size class should be zero, as it represents all material that passed through the smallest aperture screen.
- •All subsequent columns describe assays of the material.

The following is an example of a material text file:

Compound	FeedA	MillCharge
307.2E-3	0.20	0.02
108.6E-3	0.18	0.06
38.4E-3	0.17	0.04
13.6E-3	0.07	0.03
4.8E-3	0.13	0.03
1.7E-3	0.07	0.04
600.0E-6	0.06	0.18
210.0E-6	0.02	0.50
75.0E-6	0.10	0.10
0.0E0	0.00	0.00

add_assay (name, assay)

Add an assay to the material.

Parameters

- name The name of the new assay.
- assay A numpy array containing the size class mass fractions for the assay. The sequence of the assay's elements must correspond to the sequence of the material's size classes.

create_empty_assay()

Create an empty array to store an assay. The array's length will be equal to the number of size classes in the material.

Returns A floating point array.

```
create_package (assay=None, mass=0.0, normalise=True)
```

Create a Material Package based on the specified parameters.

Parameters

• **assay** – The name of the assay based on which the package must be created.

- mass [kg] The mass of the package.
- **normalise** Indicates whether the assay must be normalised before creating the package.

Returns The created MaterialPackage.

get_assay_total(name)

Calculate the total of the specified assay.

Parameters name – The name of the assay.

Returns The total mass fraction of the specified assay.

get_size_class_index (size_class)

Determine the index of the specified size class.

Parameters size_class – The formula and phase of the specified size class, e.g. 'Fe2O3[S1]'.

Returns The index of the specified size class.

A package of a material consisting of multiple particle size classes.

Properties defined here:

Parameters

- material A reference to the Material to which self belongs.
- size_class_masses [kg] [kg] The masses of the size classes in the package.

add_to(other)

Add another psd material package to this material package.

Parameters other – The other material package.

clear()

Set all the size class masses in the package to zero.

clone()

Create a complete copy of self.

Returns A Material Package that is identical to self.

extract (other)

Extract 'other' from self, modifying self and returning the extracted material as a new package.

Parameters other – Can be one of the following:

• float: A mass equal to other is extracted from self. Self is reduced by other and the extracted package is returned as a new package.

- tuple (size class, mass): The other tuple specifies the mass of a size class to be extracted. It is extracted from self and the extracted mass is returned as a new package.
- string: The 'other' string specifies the size class to be extracted. All of the mass of that size class will be removed from self and a new package created with it.

Returns A new material package containing the material that was extracted from self.

get_assay()

Determine the assay of self.

Returns [mass fractions] An array containing the assay of self.

get_mass()

Determine the mass of self.

returns: [kg] The mass of self.

get_size_class_mass(size_class)

Determine the mass of the specified size class in self.

Parameters size_class – The formula and phase of the size class, e.g. 'Fe2O3[S1]'

Returns [kg] The mass of the size class in self.

```
get_size_class_mass_fraction(size_class)
```

Determine the mass fraction of the specified size class in self.

Parameters size_class – The formula and phase of the size class, e.g. 'Fe2O3[S1]'

Returns The mass fraction of the size class in self.

psd slurry material module This module provides material and material package classes that can do size distribution and slurry calculations.

Represents a particulate material consisting of multiple particle size classes.

Parameters

- name The material's name.
- file path The path of the material definition file.
- **description** the material's description

The format of the text file is as follows:

- •The lines are space separated. The values in a line are separated by one or more spaces.
- •The first line is a heading line.
- •The second line contains the density of the solid material.
- •The third line contains the water fraction of the slurry (wet basis).
- •All subsequent lines contain a particle size, followed by mass fractions (dry basis).
- •Particle sizes are indicated in [meter].
- •The first column lists the particle sizes in the material. Each class must be interpreted as "mass fraction retained". In other words if the size class is indicated as 307.2E-3, it means that it is the class of material retained on a 307.2mm screen, and can also be though of as +307.2mm material. The first size class represents the largest particles. The final size class should be zero, as it represents all material that passed through the smallest aperture screen.
- •All subsequent columns describe assays of the material.

The following is an example of a material text file:

SizeClass	DryFeedA	DryMillCharge	WetFeedA	WetMillCharge	Water
solid_density	3.00	3.00	3.00	3.00	1.0.
H2O	0.00	0.00	0.80	0.60	1.00
307.2E-3	0.20	0.02	0.20	0.02	0.00
108.6E-3	0.18	0.06	0.18	0.06	0.00
38.4E-3	0.17	0.04	0.17	0.04	0.00
13.6E-3	0.07	0.03	0.07	0.03	0.00
4.8E-3	0.13	0.03	0.13	0.03	0.00
1.7E-3	0.07	0.04	0.07	0.04	0.00
600.0E-6	0.06	0.18	0.06	0.18	0.00
210.0E-6	0.02	0.50	0.02	0.50	0.00
75.0E-6	0.10	0.09	0.10	0.09	0.00
0.0E0	0.00	0.00	0.00	0.00	0.00

add_assay (name, solid_density, H2O_fraction, assay)

Add an assay to the material.

Parameters

- name The name of the new assay.
- assay A numpy array containing the size class mass fractions for the assay. The sequence of the assay's elements must correspond to the sequence of the material's size classes.

create_empty_assay()

Create an empty array to store an assay. The array's length will be equal to the number of size classes in the material.

Returns A floating point array.

create_package (assay=None, mass=0.0, normalise=True)

Create a MaterialPackage based on the specified parameters.

Parameters

- **assay** The name of the assay based on which the package must be created.
- mass [kg] The mass of the package.
- **normalise** Indicates whether the assay must be normalised before creating the package.

Returns The created MaterialPackage.

get_assay_total (name)

Calculate the total of the specified assay.

Parameters name – The name of the assay.

Returns The total mass fraction of the specified assay.

get_size_class_index (size_class)

Determine the index of the specified size class.

Parameters size_class – The formula and phase of the specified size class, e.g. 'Fe2O3[S1]'.

Returns The index of the specified size class.

class auxi.modelling.process.materials.slurry.MaterialPackage (material,

solid_density, H2O_mass, size_class_masses)

A package of a slurry material consisting of multiple particle size classes.

Parameters

- material A reference to the Material to which self belongs.
- size_class_masses [kg] [kg] The masses of the size classes in the package.

clear()

Set all the size class masses and H20_mass in the package to zero and the solid density to 1.0

clone()

Create a complete copy of self.

Returns A Material Package that is identical to self.

extract (other)

Extract 'other' from self, modifying self and returning the extracted material as a new package.

Parameters other – Can be one of the following:

• float: A mass equal to other is extracted from self. Self is reduced by other and the extracted package is returned as a new package.

- tuple (size class, mass): The other tuple specifies the mass of a size class to be extracted. It is extracted from self and the extracted mass is returned as a new package.
- string: The 'other' string specifies the size class to be extracted. All of the mass of that size class will be removed from self and a new package created with it.

Returns A new material package containing the material that was extracted from self.

get_assay()

Determine the assay of self.

Returns [mass fractions] An array containing the assay of self.

get_density()

Determine the density of self.

get_mass()

Determine the mass of self.

Returns [kg] The mass of self.

get_mass_fraction_solids()

Determine the mass fraction of the solids of self.

```
get_size_class_mass(size_class)
```

Determine the mass of the specified size class in self.

Parameters size_class – The formula and phase of the size class, e.g. 'Fe2O3[S1]'

Returns [kg] The mass of the size class in self.

```
get_size_class_mass_fraction(size_class)
```

Determine the mass fraction of the specified size class in self.

Parameters size_class – The formula and phase of the size class, e.g. Fe2O3[S1]

Returns The mass fraction of the size class in self.

```
get_solid_mass()
```

Determine the solid mass of self.

Returns [kg] The solid mass of self.

```
get_volume()
```

Determine the volume of self.

```
get_volume_fraction_solids()
```

Determine the volume fraction of the solids of self.

thermochemistry material module This module provides a material class that can do thermochemical calculations.

Represents a material consisting of multiple chemical compounds, having the ability to do thermochemical calculations.

Parameters

- name A name for the material.
- file path The location of the file containing the material's data.
- **description** the material's description

The format of the text file is as follows:

- •The items in a line are separated by one or more spaces or tabs.
- •The first line is a heading line. It contains the word "Compound" followed by zero or more assay names.
- •Subsequent lines contain a compound formula and phase, followed by a mass fraction for each assay.
- •The list of compounds and mass fractions can be ended off with a "#" character. This indicates that custom material properties follow below in the lines below the hash.
- •If a custom material property is defined, a value must be provided for each assay name. A price custom property is used as an example below.

The following is an example of a material text file:

Compound	IlmeniteA	IlmeniteB	IlmeniteC
Al203[S1]	0.01160	0.01550	0.00941
Ca0[S]	0.00022	0.00001	0.00017
Cr203[S]	0.00008	0.00022	0.00011
Fe203[S1]	0.20200	0.47300	0.49674
Fe304[S1]	0.00000	0.00000	0.00000
FeO[S1]	0.27900	0.19100	0.00000
K20[S]	0.00004	0.00001	0.00005
Mg0[S]	0.01040	0.00580	0.01090
MnO[S]	0.00540	0.00480	0.00525
Na20[S1]	0.00007	0.00005	0.00031
P4010[S]	0.00001	0.00032	0.00015
SiO2[S1]	0.00850	0.00490	0.01744
TiO2[S1]	0.47700	0.29400	0.45949
V2O5[S]	0.00360	0.00800	0.00000
#			
Price[USD/	kg] 1.2	1.3	1.1

add_assay (name, assay)

Add an assay to the material.

Parameters

- name Assay name.
- assay Numpy array containing the compound mass fractions for the assay. The sequence of the assay's elements must correspond to the sequence of the material's compounds.

compound_count = None

The number of chemical compounds in the material.

compounds = None

The material's list of chemical compounds.

converted_assays = None

A dictionary containing converted assays for this material.

create_empty_assay()

Create an empty array to store an assay.

The array's length will be equal to the number of compounds in the material.

Returns Empty assay array.

create_package (assay=None, mass=0.0, P=1.0, T=25.0, normalise=True) Create a MaterialPackage based on the specified parameters.

Parameters

- assay Name of the assay to be used to create the package.
- mass Package mass. [kg]
- **P** Package pressure. [atm]
- **T** Package temperature. [°C]
- **normalise** Indicates whether the assay must be normalised before creating the package.

Returns MaterialPackage object.

description = None

The material's description.

get_assay_total (name)

Calculate the total/sum of the specified assay's mass fractions.

Parameters name – Assay name.

Returns Total mass fraction.

get_compound_index (compound)

Determine the specified compound's index.

Parameters compound – Formula and phase of a compound, e.g. "Fe2O3[S1]".

Returns Compound index.

name = None

The material's name.

raw_assays = None

A dictionary containing raw assays for this material.

class auxi.modelling.process.materials.thermo.MaterialPackage (material,

com-

pound_masses,

P=1.0,

T=25.0)

Represents a quantity of material consisting of multiple chemical compounds, having a specific mass, pressure, temperature and enthalpy.

Parameters

- material A reference to the Material to which self belongs.
- compound_masses Package compound masses. [kg]
- **P** Package pressure. [atm]
- **T** Package temperature. [°C]

Н

Get the enthalpy of the package.

Returns Enthalpy. [kWh]

P

Determine the pressure of the package.

Returns Pressure. [atm]

Т

Get the temperature of of the package.

Returns Temperature. [°C]

amount

Determine the sum of mole amounts of all the compounds.

Returns Amount. [kmol]

clear()

Set all the compound masses in the package to zero. Set the pressure to 1, the temperature to 25 and the enthalpy to zero.

clone()

Create a complete copy of the package.

Returns A new MaterialPackage object.

extract (other)

Extract 'other' from this package, modifying this package and returning the extracted material as a new package.

Parameters other – Can be one of the following:

- float: A mass equal to other is extracted from self. Self is reduced by other and the extracted package is returned as a new package.
- tuple (compound, mass): The other tuple specifies the mass of a compound to be extracted. It is extracted from self and the extracted mass is returned as a new package.
- string: The 'other' string specifies the compound to be extracted. All of the mass of that compound will be removed from self and a new package created with it.
- Material: The 'other' material specifies the list of compounds to extract.

Returns New MaterialPackage object.

get_assay()

Determine the assay of the package.

Returns Array of mass fractions.

get_compound_amount (compound)

Determine the mole amount of the specified compound.

Returns Amount. [kmol]

get_compound_amounts()

Determine the mole amounts of all the compounds.

Returns List of amounts. [kmol]

get_compound_mass(compound)

Determine the mass of the specified compound in the package.

Parameters compound – Formula and phase of a compound, e.g. "Fe2O3[S1]".

Returns Mass. [kg]

get_element_mass(element)

Determine the mass of the specified elements in the package.

Returns Masses. [kg]

get_element_mass_dictionary()

Determine the masses of elements in the package and return as a dictionary.

Returns Dictionary of element symbols and masses. [kg]

get_element_masses (elements=None)

Determine the masses of elements in the package.

Returns Array of element masses. [kg]

mass

Get the mass of the package.

Returns [kg]

auxi.modelling.financial package

auxi.modelling.financial.des module

This module provides classes representing the accounting double entry system.

```
auxi.modelling.financial.des.AT
    alias of AccountType
```

class auxi.modelling.financial.des.AccountType

Represents the type of general ledger account.

asset = <AccountType.asset: 1>

equity = <AccountType.equity: 2>

expense = <AccountType.expense: 3>

liability = <AccountType.liability: 4>

revenue = <AccountType.revenue: 5>

class auxi.modelling.financial.des.GeneralLedger(name, structure, description=None)

Represents the account structure of a general ledger.

Parameters

- **name** The name.
- **structure** The general ledger structure.
- **description** The description.

balance_sheet (end=datetime.datetime(9999, 12, 31, 23, 59, 59, 999999), format=<ReportFormat.printout: (1,)>, output_path=None) Generate a transaction list report.

Parameters

- end The end date to generate the report for.
- **format** The format of the report.
- **output_path** The path to the file the report is written to. If None, then the report is not written to a file.

Returns The generated report.

Parameters

• name – The transaction's name.

- **description** The transaction's description.
- tx date The date of the transaction.
- **cr_account** The transaction's credit account's name.
- **dt_account** The transaction's debit account's name.
- source The name of source the transaction originated from.
- **amount** The transaction amount.

Returns The created transaction.

Parameters

- **start** The start date to generate the report for.
- **end** The end date to generate the report for.
- **format** The format of the report.
- **component_path** The path of the component to filter the report's transactions by.
- **output_path** The path to the file the report is written to. If None, then the report is not written to a file.

Returns The generated report.

```
transaction_list (start=datetime.datetime(1, 1, 1, 0, 0)), end=datetime.datetime(9999, 12, 31, 23, 59, 59, 999999), format=<ReportFormat.printout: (1, )>, component\_path='', output\_path=None) Generate a transaction list report.
```

Parameters

- **start** The start date to generate the report for.
- end The end date to generate the report for.
- **format** The format of the report.
- **component_path** The path of the component to filter the report's transactions by.
- **output_path** The path to the file the report is written to. If None, then the report is not written to a file.

Returns The generated report.

Parameters

- name The name.
- **description** The description.
- **number** The number.
- account_type The type of account.

```
create_account (name, number=None, description=None)
```

Create a sub account in the account.

Parameters

- name The account name.
- **description** The account description.
- number The account number.

Returns The created account.

```
get_child_account (account_name)
```

Retrieves a child account. This could be a descendant nested at any level.

Parameters account_name – The name of the account to retrieve.

Returns The child account, if found, else None.

name

```
remove_account (name)
```

Remove an account from the account's sub accounts.

Parameters name – The name of the account to remove.

```
set_parent_path(value)
```

Set the parent path and the path from the new parent path.

Parameters value – The path to the object's parent

```
class auxi.modelling.financial.des.GeneralLedgerStructure(name,
```

description=None)

The account structure of a general ledger.

Parameters

- name The name.
- **description** The description.

get_account (account_name)

Retrieves an account from the general ledger structure given the account name.

Parameters account_name – The account name.

Returns The requested account, if found, else None.

get_account_decendants (account)

Retrieves an account's decendants from the general ledger structure given the account name.

Parameters account_name – The account name.

Returns The decendants of the account.

```
report (format=<ReportFormat.printout: (1, )>, output_path=None) Returns a report of this class.
```

Parameters

- **format** The format of the report.
- **output_path** The path to the file the report is written to. If None, then the report is not written to a file.

Returns The decendants of the account.

validate_account_names (names)

Validates wether the accounts in a list of account names exists.

Parameters names – The names of the accounts.

Returns The decendants of the account.

```
class auxi.modelling.financial.des.Transaction (name, descrip-
tion=None,
tx_date=datetime.date(1,
1, 1),
dt_account=None,
cr_account=None,
source=None,
amount=0.0,
is_closing_dt_account=False,
is_closing_cr_account=False)
```

Represents a financial transaction between two general ledger accounts.

- name The name.
- **description** The description.
- tx_date The transaction's date.

- **dt_account** The account to debit.
- **cr account** The account to credit.
- **source** The source that created the transaction.
- amount The transaction's amount.
- **is_closing_dt_account** Specifies wether this is a closing debit account.
- **is_closing_cr_account** Specifies wether this is a closing credit account.

class auxi.modelling.financial.des.TransactionTemplate(name,

dt_account,
cr_account,
description=None)

Represents a template for how a transaction is to be created.

Parameters

- name The name of the transaction.
- **description** The description of the transaction.
- **dt_account** The account to debit.
- **cr_account** The account to credit.

AccountType enum

```
class auxi.modelling.financial.des.AccountType
```

Represents the type of general ledger account.

```
asset = <AccountType.asset: 1>
equity = <AccountType.equity: 2>
expense = <AccountType.expense: 3>
liability = <AccountType.liability: 4>
revenue = <AccountType.revenue: 5>
```

GeneralLedgerAccount class

Represents an account of a general ledger.

Parameters

- name The name.
- **description** The description.
- **number** The number.
- account_type The type of account.

```
create_account (name, number=None, description=None)
```

Create a sub account in the account.

Parameters

- name The account name.
- **description** The account description.
- **number** The account number.

Returns The created account.

```
get_child_account (account_name)
```

Retrieves a child account. This could be a descendant nested at any level.

Parameters account_name – The name of the account to retrieve.

Returns The child account, if found, else None.

name

remove_account (name)

Remove an account from the account's sub accounts.

Parameters name – The name of the account to remove.

```
set_parent_path(value)
```

Set the parent path and the path from the new parent path.

Parameters value – The path to the object's parent

Transaction class

```
class auxi.modelling.financial.des.Transaction (name, descrip-
tion=None,
tx_date=datetime.date(1,
1, 1),
dt_account=None,
cr_account=None,
source=None,
amount=0.0,
is_closing_dt_account=False,
is_closing_cr_account=False)
```

Represents a financial transaction between two general ledger accounts.

- name The name.
- **description** The description.
- tx_date The transaction's date.
- **dt_account** The account to debit.
- **cr_account** The account to credit.
- **source** The source that created the transaction.
- amount The transaction's amount.
- **is_closing_dt_account** Specifies wether this is a closing debit account.
- **is_closing_cr_account** Specifies wether this is a closing credit account.

name

TransactionTemplate class

```
class auxi.modelling.financial.des.TransactionTemplate (name, dt_account, cr_account, cr_account, description=None)
```

Represents a template for how a transaction is to be created.

Parameters

- name The name of the transaction.
- **description** The description of the transaction.
- **dt_account** The account to debit.
- **cr_account** The account to credit.

name

GeneralLedgerStructure class

The account structure of a general ledger.

Parameters

- **name** The name.
- **description** The description.

```
get_account (account_name)
```

Retrieves an account from the general ledger structure given the account name.

Parameters account name – The account name.

Returns The requested account, if found, else None.

get_account_decendants (account)

Retrieves an account's decendants from the general ledger structure given the account name.

Parameters account_name – The account name.

Returns The decendants of the account.

name

report (format=<ReportFormat.printout: (1,)>, output_path=None) Returns a report of this class.

Parameters

- **format** The format of the report.
- **output_path** The path to the file the report is written to. If None, then the report is not written to a file.

Returns The decendants of the account.

validate account names (names)

Validates wether the accounts in a list of account names exists.

Parameters names – The names of the accounts.

Returns The decendants of the account.

GeneralLedger class

```
class auxi.modelling.financial.des.GeneralLedger(name, struc-
ture, descrip-
tion=None)
```

Represents the account structure of a general ledger.

Parameters

- name The name.
- **structure** The general ledger structure.
- **description** The description.

balance_sheet (end=datetime.datetime(9999, 12, 31, 23, 59, 59, 999999), for- $<math>mat=<ReportFormat.printout: (1,)>, output_path=None)$ Generate a transaction list report.

- end The end date to generate the report for.
- **format** The format of the report.
- **output_path** The path to the file the report is written to. If None, then the report is not written to a file.

Returns The generated report.

Create a transaction in the general ledger.

Parameters

- **name** The transaction's name.
- **description** The transaction's description.
- tx_date The date of the transaction.
- **cr_account** The transaction's credit account's name.
- **dt_account** The transaction's debit account's name.
- **source** The name of source the transaction originated from.
- **amount** The transaction amount.

Returns The created transaction.

```
\begin{array}{llll} \textbf{income\_statement} & (\textit{start} = \textit{datetime.datetime}(1, & 1, & 1, & 0, & 0), \\ & & \textit{end} = \textit{datetime.datetime}(9999, & 12, & 31, & 23, & 59, & 59, \\ & & & 999999), & \textit{format} = <\textit{ReportFormat.printout:} & (1, & )>, \\ & & & \textit{component\_path} = ``, \textit{output\_path} = \textit{None}) \\ & \text{Generate a transaction list report.} \end{array}
```

Parameters

- **start** The start date to generate the report for.
- end The end date to generate the report for.
- **format** The format of the report.
- **component_path** The path of the component to filter the report's transactions by.
- **output_path** The path to the file the report is written to. If None, then the report is not written to a file.

Returns The generated report.

name

```
transaction_list (start=datetime.datetime(1, 1, 1, 0, 0)), end=datetime.datetime(9999, 12, 31, 23, 59, 59, 999999), format=<ReportFormat.printout: (1, )>, component\_path='', output\_path=None) Generate a transaction list report.
```

- **start** The start date to generate the report for.
- end The end date to generate the report for.

- **format** The format of the report.
- **component_path** The path of the component to filter the report's transactions by.
- **output_path** The path to the file the report is written to. If None, then the report is not written to a file.

Returns The generated report.

auxi.modelling.financial.reporting module

This module provides classes to manage currencies.

Report a balance sheet of a general ledger.

Parameters

- data_source The object to report on.
- end The end date to generate the report for.
- output_path The path to write the report file to.

Report on a general ledger structure.

Parameters

- data_source The object to report on.
- **output_path** The path to write the report file to.

```
{\bf class} \; {\tt auxi.modelling.financial.reporting.IncomeStatement} \; ({\it data\_source},
```

```
start=datetime.date(1, 1, 1),
end=datetime.date(9999, 12, 31),
com-
po-
nent_path='',
out-
put_path=None)
```

Report an income statement of a general ledger.

- data_source The object to report on.
- end The start date to generate the report for.
- end The end date to generate the report for.
- **component_path** The path of the component to filter the report's transactions by.
- **output_path** The path to write the report file to.

Parameters

- data_source The object to report on.
- **output_path** The path to write the report file to.

```
class auxi.modelling.financial.reporting.ReportType
Represents a report type, e.g. balance sheet or income statement.
```

```
balance_sheet = <ReportType.balance_sheet: (1,)>
cash_flow = <ReportType.cash_flow: 4>
income_statement = <ReportType.income_statement: (2,)>
transaction_list = <ReportType.transaction_list: (3,)>
```

```
class auxi.modelling.financial.reporting.TransactionList(data_source,
```

```
start=datetime.date(1, 1, 1),
end=datetime.date(9999, 12, 31),
com-
po-
nent_path='',
out-
put_path=None)
```

Report on a list of transactions.

- data_source The object to report on.
- end The start date to generate the report for.
- end The end date to generate the report for.
- **component_path** The path of the component to filter the report's transactions by.
- **output_path** The path to write the report file to.

ReportType enum

```
class auxi.modelling.financial.reporting.ReportType
    Represents a report type, e.g. balance sheet or income statement.

balance_sheet = <ReportType.balance_sheet: (1,)>
    cash_flow = <ReportType.cash_flow: 4>
    income_statement = <ReportType.income_statement: (2,)>
    transaction_list = <ReportType.transaction_list: (3,)>
```

Report class

Parameters

- data_source The object to report on.
- **output_path** The path to write the report file to.

```
render (format = \langle ReportFormat.printout: (1, ) > )
Render the report in the specified format
```

Parameters format – The format. The default format is to print the report to the console.

Returns If the format was set to 'string' then a string representation of the report is returned.

GeneralLedgerStructure class

Report on a general ledger structure.

Parameters

- data_source The object to report on.
- **output_path** The path to write the report file to.

```
render (format = \langle ReportFormat.printout: (1, ) > )
Render the report in the specified format
```

Parameters format – The format. The default format is to print the report to the console.

Returns If the format was set to 'string' then a string representation of the report is returned.

put_path=None)

TransactionList class

Report on a list of transactions.

Parameters

- data_source The object to report on.
- end The start date to generate the report for.
- end The end date to generate the report for.
- **component_path** The path of the component to filter the report's transactions by.
- **output_path** The path to write the report file to.

```
render (format = \langle ReportFormat.printout: (1, ) > )
Render the report in the specified format
```

Parameters format – The format. The default format is to print the report to the console.

Returns If the format was set to 'string' then a string representation of the report is returned.

BalanceSheet class

Report a balance sheet of a general ledger.

- data_source The object to report on.
- **end** The end date to generate the report for.
- **output_path** The path to write the report file to.

```
render (format = < ReportFormat.printout: (1, ) > )
Render the report in the specified format
```

Parameters format – The format. The default format is to print the report to the console.

Returns If the format was set to 'string' then a string representation of the report is returned.

IncomeStatement class

Report an income statement of a general ledger.

Parameters

- data_source The object to report on.
- end The start date to generate the report for.
- end The end date to generate the report for.
- **component_path** The path of the component to filter the report's transactions by.
- **output_path** The path to write the report file to.

```
render (format = \langle ReportFormat.printout: (1, ) > )
Render the report in the specified format
```

Parameters format – The format. The default format is to print the report to the console.

Returns If the format was set to 'string' then a string representation of the report is returned.

auxi.modelling.business package

auxi.modelling.business.basic module

This module provides class and functions for basic business activities.

put_path=None)

class auxi.modelling.business.basic.BasicActivity(name,

```
dt_account,

cr_account,

amount=0,

start=datetime.datetime(1,

1, 1, 0, 0),

end=datetime.datetime(9999,

12, 31, 23, 59,

59, 999999),

interval=1,

descrip-

tion=None)
```

An activity class that provides the most basic activity functionality: periodically create a transaction between two specified accounts.

Parameters

- **name** The name.
- **dt account** The debit account.
- **cr_account** The credit account.
- amount The amount of an activity.
- **start** The datetime the activity should be started.
- **end** The datetime the activity should be run until.
- **interval** The interval of the activity.
- **description** The description.

get_referenced_accounts()

Retrieve the general ledger accounts referenced in this instance.

Returns The referenced accounts.

run (clock, generalLedger)

Execute the activity at the current clock cycle.

- **clock** The clock containing the current execution time and period information.
- **generalLedger** The general ledger into which to create the transactions.

```
class auxi.modelling.business.basic.BasicLoanActivity (name,
```

```
bank_account,
loan_account,
inter-
est_account,
amount=0,
inter-
est_rate=0.0,
start=datetime.datetime(1,
1, 1, 0,
0), dura-
tion=60,
inter-
val=1,
descrip-
tion=None)
```

An activity class that provides the most basic activity functionality for a loan: Creates a loan transaction and periodically create transactions to consider the interest and to pay the interest.

Parameters

- **name** The name.
- **description** The description.
- **bank_account** The asset account that is increased.
- **loan_account** The liability account that is decreased.
- **interest_account** The expense account the interest is added to.
- amount The loan amount. The default amount is 0
- interest_rate The interest rate as a fraction of the whole (e.g. 0.15 = 15%). The default value is 0.0
- **start** The datetime the activity should be started.
- **duration** The duration of the loan in months.
- **interval** The interval of the activity.

amount

get_referenced_accounts()

Retrieve the general ledger accounts referenced in this instance.

Returns The referenced accounts.

```
interest rate
```

```
prepare_to_run (clock, period_count)
```

Prepare the activity for execution.

- **clock** The clock containing the execution start time and execution period information.
- **period_count** The total amount of periods this activity will be requested to be run for.

run (clock, generalLedger)

Execute the activity at the current clock cycle.

Parameters

- **clock** The clock containing the current execution time and period information.
- **generalLedger** The general ledger into which to create the transactions.

BasicActivity class

class auxi.modelling.business.basic.BasicActivity (name,

```
dt_account,

cr_account,

amount=0,

start=datetime.datetime(1,

1, 1, 0, 0),

end=datetime.datetime(9999,

12, 31, 23, 59,

59, 999999),

interval=1,

descrip-

tion=None)
```

An activity class that provides the most basic activity functionality: periodically create a transaction between two specified accounts.

Parameters

- name The name.
- **dt_account** The debit account.
- **cr_account** The credit account.
- amount The amount of an activity.
- **start** The datetime the activity should be started.
- end The datetime the activity should be run until.
- **interval** The interval of the activity.
- **description** The description.

get referenced accounts()

Retrieve the general ledger accounts referenced in this instance.

Returns The referenced accounts.

get_referenced_accouts()

Retrieve the general ledger accounts referenced in this instance.

Returns The referenced accounts.

name

```
prepare_to_run (clock, period_count)
```

Prepare the activity for execution.

Parameters

- **clock** The clock containing the execution start time and execution period information.
- **period_count** The total amount of periods this activity will be requested to be run for.

```
run (clock, generalLedger)
```

Execute the activity at the current clock cycle.

Parameters

- **clock** The clock containing the current execution time and period information.
- **generalLedger** The general ledger into which to create the transactions.

```
set_parent_path(value)
```

Set the parent path and the path from the new parent path.

Parameters value – The path to the object's parent

BasicLoanActivity class

```
class auxi.modelling.business.basic.BasicLoanActivity (name,
```

```
bank_account,
loan_account,
inter-
est_account,
amount=0,
inter-
est_rate=0.0,
start=datetime.datetime(1,
1, 1, 0,
0), dura-
tion=60,
inter-
val=1,
descrip-
tion=None)
```

An activity class that provides the most basic activity functionality for a loan: Creates a loan transaction and periodically create transactions to consider the interest and to pay the interest.

Parameters

- name The name.
- **description** The description.
- bank_account The asset account that is increased.
- **loan_account** The liability account that is decreased.
- **interest_account** The expense account the interest is added to.
- amount The loan amount. The default amount is 0
- interest_rate The interest rate as a fraction of the whole (e.g. 0.15 = 15%). The default value is 0.0
- **start** The datetime the activity should be started.
- **duration** The duration of the loan in months.
- interval The interval of the activity.

amount

get_referenced_accounts()

Retrieve the general ledger accounts referenced in this instance.

Returns The referenced accounts.

get_referenced_accouts()

Retrieve the general ledger accounts referenced in this instance.

Returns The referenced accounts.

interest_rate

name

prepare_to_run (clock, period_count)

Prepare the activity for execution.

Parameters

- **clock** The clock containing the execution start time and execution period information.
- **period_count** The total amount of periods this activity will be requested to be run for.

run (clock, generalLedger)

Execute the activity at the current clock cycle.

- clock The clock containing the current execution time and period information.
- **generalLedger** The general ledger into which to create the transactions.

```
set_parent_path(value)
```

Set the parent path and the path from the new parent path.

Parameters value – The path to the object's parent

auxi.modelling.business.models module

This module provides classes to work with business models.

class auxi.modelling.business.models.TimeBasedModel(name,

description=None,
start_datetime=datetime.datetime(
6, 7, 14,
37, 5,
224668), period_duration=<TimePeriod.year:
8>, period_count=1)

Represents an time based model class. An instance of this class is by default configured to run only once, thus functioning as a steady state model. The instance's time based parameters must be configured for it to function as a time based model.

Parameters

- name The name.
- **description** The description.
- start datetime The start datetime of the model.
- **period_duration** The duration of the model's time period. e.g. month, day etc.
- **period_count** The number of periods to execute the model for.

```
create_entity (name, gl_structure, description=None)
```

Create an entity and add it to the model.

Parameters

- **name** The entity name.
- **gl_structure** The entity's general ledger structure.
- **description** The entity description.

Returns The created entity.

name

prepare_to_run()

Prepare the model for execution.

remove_entity(name)

Remove an entity from the model.

Parameters name – The name of the entity to remove.

run()

Execute the model.

TimeBasedModel class

```
class auxi.modelling.business.models.TimeBasedModel(name,
```

description=None,
start_datetime=datetime.datetime(
6, 7, 14,
37, 5,
224668), period_duration=<TimePeriod.year:
8>, period_count=1)

Represents an time based model class. An instance of this class is by default configured to run only once, thus functioning as a steady state model. The instance's time based parameters must be configured for it to function as a time based model.

Parameters

- name The name.
- **description** The description.
- **start datetime** The start datetime of the model.
- **period_duration** The duration of the model's time period. e.g. month, day etc.
- **period_count** The number of periods to execute the model for.

```
create_entity (name, gl_structure, description=None)
```

Create an entity and add it to the model.

Parameters

- name The entity name.
- **gl_structure** The entity's general ledger structure.
- **description** The entity description.

Returns The created entity.

name

```
prepare_to_run()
```

Prepare the model for execution.

```
remove_entity(name)
```

Remove an entity from the model.

Parameters name – The name of the entity to remove.

```
run()
```

Execute the model.

auxi.modelling.business.structure module

This module provides an classes used to create a business structure.

```
class auxi.modelling.business.structure.Activity (name,
```

```
start=datetime.datetime(1,
1, 1, 0, 0),
end=datetime.datetime(9999,
12, 31, 23, 59,
59, 999999),
interval=1, de-
scription=None)
```

Represents an activity base class. An activity will typically represent a transaction activity in a business.

Parameters

- name The name.
- **description** The description.
- **start** The datetime the activity should be started.
- end The datetime the activity should be run until.
- **interval** The interval of the activity.

get_referenced_accouts()

Retrieve the general ledger accounts referenced in this instance.

Returns The referenced accounts.

name

```
prepare_to_run (clock, period_count)
```

Prepare the activity for execution.

Parameters

- **clock** The clock containing the execution start time and execution period information.
- **period_count** The total amount of periods this activity will be requested to be run for.

```
set_parent_path(value)
```

Set the parent path and the path from the new parent path.

Parameters value – The path to the object's parent

```
class auxi.modelling.business.structure.Component (name, gl, description=None)
```

Represents an component class. A component class that represents a component of an entity. A component has business activities

Parameters

- name The name.
- **description** The description.

add_activity (activity)

Add an activity to the component.

Parameters activity – The activity.

create_component (name, description=None)

Create a sub component in the business component.

Parameters

- name The new component's name.
- **description** The new component's description.

Returns The created component.

get_activity(name)

Retrieve an activity given its name.

Parameters name – The name of the activity.

Returns The activity.

get_component (name)

Retrieve a child component given its name.

Parameters name – The name of the component.

Returns The component.

name

prepare_to_run (clock, period_count)

Prepare the component for execution.

Parameters

- **clock** The clock containing the execution start time and execution period information.
- **period_count** The total amount of periods this activity will be requested to be run for.

remove_component (name)

Remove a sub component from the component.

Parameters name – The name of the component to remove.

```
run (clock, generalLedger)
```

Execute the component at the current clock cycle.

Parameters

- clock The clock containing the current execution time and period information.
- **generalLedger** The general ledger into which to create the transactions.

```
set_parent_path(value)
```

Set the parent path and the path from the new parent path.

Parameters value – The path to the object's parent.

Represents an entity class. An entity consists of business components e.g. Sales department. It executes its components and performs financial year end transcations.

Parameters

- **name** The name.
- **gl_structure** The general ledger structure the entity's general ledger will be initialized with.
- **description** The description.
- **period_count** The number of periods the entity should be run for.

create_component (name, description=None)

Create a component in the business entity.

Parameters

- name The component's name.
- **description** The component's description.

Returns The created component.

name

prepare_to_run (clock, period_count)

Prepare the entity for execution.

Parameters

- **clock** The clock containing the execution start time and execution period information.
- **period_count** The total amount of periods this activity will be requested to be run for.

remove_component (name)

Remove a component from the entity.

Parameters name – The name of the component to remove.

run (clock)

Execute the entity at the current clock cycle.

Parameters clock – The clock containing the current execution time and period information.

set_parent_path(value)

Set the parent path and the path from the new parent path.

Parameters value – The path to the object's parent

Activity class

class auxi.modelling.business.structure.Activity(name,

start=datetime.datetime(1, 1, 1, 0, 0), end=datetime.datetime(9999, 12, 31, 23, 59, 59, 999999), interval=1, description=None)

Represents an activity base class. An activity will typically represent a transaction activity in a business.

Parameters

- name The name.
- **description** The description.
- **start** The datetime the activity should be started.
- end The datetime the activity should be run until.
- **interval** The interval of the activity.

get_referenced_accouts()

Retrieve the general ledger accounts referenced in this instance.

Returns The referenced accounts.

name

prepare_to_run (clock, period_count)

Prepare the activity for execution.

Parameters

- **clock** The clock containing the execution start time and execution period information.
- **period_count** The total amount of periods this activity will be requested to be run for.

set_parent_path(value)

Set the parent path and the path from the new parent path.

Parameters value – The path to the object's parent

Component class

class auxi.modelling.business.structure.Component (name, gl, description=None)

Represents an component class. A component class that represents a component of an entity. A component has business activities

Parameters

- name The name.
- **description** The description.

add_activity (activity)

Add an activity to the component.

Parameters activity – The activity.

create_component (name, description=None)

Create a sub component in the business component.

Parameters

- name The new component's name.
- **description** The new component's description.

Returns The created component.

get_activity (name)

Retrieve an activity given its name.

Parameters name – The name of the activity.

Returns The activity.

get_component (name)

Retrieve a child component given its name.

Parameters name – The name of the component.

Returns The component.

name

prepare_to_run (clock, period_count)

Prepare the component for execution.

Parameters

- **clock** The clock containing the execution start time and execution period information.
- **period_count** The total amount of periods this activity will be requested to be run for.

remove_component (name)

Remove a sub component from the component.

Parameters name – The name of the component to remove.

run (clock, generalLedger)

Execute the component at the current clock cycle.

Parameters

- clock The clock containing the current execution time and period information.
- **generalLedger** The general ledger into which to create the transactions.

```
set_parent_path(value)
```

Set the parent path and the path from the new parent path.

Parameters value – The path to the object's parent.

Entity class

Represents an entity class. An entity consists of business components e.g. Sales department. It executes its components and performs financial year end transcations.

Parameters

- name The name.
- **gl_structure** The general ledger structure the entity's general ledger will be initialized with.
- **description** The description.
- **period_count** The number of periods the entity should be run for.

```
create_component (name, description=None)
```

Create a component in the business entity.

Parameters

- **name** The component's name.
- **description** The component's description.

Returns The created component.

name

```
prepare_to_run (clock, period_count)
```

Prepare the entity for execution.

- **clock** The clock containing the execution start time and execution period information.
- **period_count** The total amount of periods this activity will be requested to be run for.

```
remove_component (name)
```

Remove a component from the entity.

Parameters name – The name of the component to remove.

```
run (clock)
```

Execute the entity at the current clock cycle.

Parameters clock – The clock containing the current execution time and period information.

```
set_parent_path(value)
```

Set the parent path and the path from the new parent path.

Parameters value – The path to the object's parent

4.1.2 auxi tools package

auxi tools chemistry package

auxi tools chemistry stoichiometry module

This module provides a number of functions for doing stoichiometry calculations.

An element in the periodic table.

Parameters

- **period** Period to which the element belongs.
- **group** Group to which the element belongs.
- atomic_number Number of protons in the element's nucleus.
- **symbol** Element's symbol.
- molar_mass [kg/kmol] Element's standard atomic mass.

```
auxi.tools.chemistry.stoichiometry.amount (compound, mass)

Calculate the number of moles in the specified mass of a chemical compound.
```

Parameters

- **compound** Formula and phase of a compound, e.g. 'Fe2O3[S1]'. The phase may be omitted.
- mass [kg]

Returns Amount. [kmol]

auxi.tools.chemistry.stoichiometry.convert_compound (mass, source,

target,

element)
Convert the specified mass of the source compound to the target using element as basis.

Parameters

- mass Mass of from_compound. [kg]
- **source** Formula and phase of the original compound, e.g. 'Fe2O3[S1]'.
- target Formula and phase of the target compound, e.g. 'Fe[S1]'.
- **element** Element to use as basis for the conversion, e.g. 'Fe' or 'O'.

Returns Mass of target. [kg]

auxi.tools.chemistry.stoichiometry.element_mass_fraction(compound, el-e-

ment)

Determine the mass fraction of an element in a chemical compound.

Parameters

- compound Formula of the chemical compound, 'FeCr2O4'.
- **element** Element, e.g. 'Cr'.

Returns Element mass fraction.

auxi.tools.chemistry.stoichiometry.element_mass_fractions (compound, el-

e-

ments)

Determine the mass fractions of a list of elements in a chemical compound.

Parameters

- **compound** Formula and phase of a chemical compound, e.g. 'Fe2O3[S1]'.
- elements List of elements, ['Si', 'O', 'Fe'].

Returns Mass fractions.

auxi.tools.chemistry.stoichiometry.elements(compounds)

Determine the set of elements present in a list of chemical compounds.

The list of elements is sorted alphabetically.

Parameters compounds – List of compound formulas and phases, e.g. ['Fe2O3[S1]', 'Al2O3[S1]'].

Returns List of elements.

auxi.tools.chemistry.stoichiometry.mass (compound, amount)
Calculate the mass of the specified amount of a chemical compound.

Parameters

- **compound** Formula and phase of a compound, e.g. 'Fe2O3[S1]'. The phase may be omitted.
- amount [kmol]

Returns Mass. [kg]

```
auxi.tools.chemistry.stoichiometry.molar_mass(compound='')

Determine the molar mass of a chemical compound.
```

The molar mass is usually the mass of one mole of the substance, but here it is the mass of 1000 moles, since the mass unit used in pmpy is kg.

Parameters compound – Formula of a chemical compound, e.g. 'Fe2O3'.

Returns Molar mass. [kg/kmol]

```
auxi.tools.chemistry.stoichiometry.stoichiometry_coefficient (compound, el-e
```

Determine the stoichiometry coefficient of an element in a chemical compound.

Parameters

- compound Formula of a chemical compound, e.g. 'SiO2'.
- element Element, e.g. 'Si'.

Returns Stoichiometry coefficient.

```
auxi.tools.chemistry.stoichiometry.stoichiometry_coefficients (compound, el-
e-
ments)
```

Determine the stoichiometry coefficients of the specified elements in the specified chemical compound.

Parameters

- compound Formula of a chemical compound, e.g. 'SiO2'.
- elements List of elements, e.g. ['Si', 'O', 'C'].

Returns List of stoichiometry coefficients.

Element class

An element in the periodic table.

ment)

Parameters

- **period** Period to which the element belongs.
- **group** Group to which the element belongs.
- atomic_number Number of protons in the element's nucleus.
- **symbol** Element's symbol.
- molar_mass [kg/kmol] Element's standard atomic mass.

auxi tools chemistry thermochemistry module

This module provides classes and functions for doing thermochemical calculations.

class auxi.tools.chemistry.thermochemistry.**Compound**(*dictionary*) Represents a chemical compound.

Parameters dictionary – Dictionary containing the data required to initialise the compound.

Cp (*phase*, *temperature*)

Calculate the heat capacity of a phase of the compound at a specified temperature.

Parameters

- phase A phase of the compound, e.g. 'S', 'L', 'G'.
- temperature [K]

Returns [J/mol/K] Heat capacity.

G (*phase*, *temperature*)

Calculate the Gibbs free energy of a phase of the compound at a specified temperature.

Parameters

- phase A phase of the compound, e.g. 'S', 'L', 'G'.
- temperature [K]

Returns [J/mol] Gibbs free energy.

H (phase, temperature)

Calculate the enthalpy of a phase of the compound at a specified temperature.

Parameters

- phase A phase of the compound, e.g. 'S', 'L', 'G'.
- temperature [K]

Returns [J/mol] Enthalpy.

S (*phase*, *temperature*)

Calculate the enthalpy of a phase of the compound at a specified temperature.

Parameters

- phase A phase of the compound, e.g. 'S', 'L', 'G'.
- temperature [K]

Returns [J/mol/K] Entropy.

formula = None

Chemical formula, e.g. 'Fe', 'CO2'.

get_phase_list()

Get a list of the compound's phases.

Returns List of phases.

get_reference()

molar mass = None

Molar mass. [kg/mol]

auxi.tools.chemistry.thermochemistry.**Cp** (*compound_string*, *temperature*, *mass=1.0*)

Calculate the heat capacity of the compound for the specified temperature and mass.

Parameters

- **compound_string** Formula and phase of chemical compound, e.g. 'Fe2O3[S1]'.
- temperature [°C]
- mass [kg]

Returns [kWh/K] Heat capacity.

class auxi.tools.chemistry.thermochemistry.CpRecord(dictionary)

A heat capacity (Cp) equation record for a compound phase over a specific temperature range.

Parameters dictionary – A dictionary containing the data required to initialise the phase.

Cp (temperature)

Calculate the heat capacity of the compound phase.

Parameters temperature – [K]

Returns [J/mol/K] Heat capacity.

H (temperature)

Calculate the portion of enthalpy of the compound phase covered by this Cp record.

Parameters temperature – [K]

Returns [J/mol] Enthalpy.

S (temperature)

Calculate the portion of entropy of the compound phase covered by this Cp record.

Parameters temperature – [K]

Returns Entropy. [J/mol/K]

Tmax = None

[K] The maximum temperature of the range covered by this record.

Tmin = None

[K] The minimum temperature of the range covered by this record.

auxi.tools.chemistry.thermochemistry.**G**(compound_string, temperature, mass=1.0)

Calculate the Gibbs free energy of the compound for the specified temperature and mass.

Parameters

- **compound_string** Formula and phase of chemical compound, e.g. 'Fe2O3[S1]'.
- temperature [°C]
- mass [kg]

Returns [kWh] Gibbs free energy.

auxi.tools.chemistry.thermochemistry.**H**(compound_string, temperature, mass=1.0)

Calculate the enthalpy of the compound for the specified temperature and mass.

Parameters

- **compound_string** Formula and phase of chemical compound, e.g. 'Fe2O3[S1]'.
- temperature [°C]
- mass [kg]

Returns [kWh] Enthalpy.

class auxi.tools.chemistry.thermochemistry.Phase (dictionary)
 A phase of a chemical compound.

Parameters dictionary – Dictionary containing the data required to initialise the phase.

Cp (temperature)

Calculate the heat capacity of the compound phase at the specified temperature.

Parameters temperature – [K]

Returns [J/mol/K] The heat capacity of the compound phase.

DHref = None

[J/mol] The formation enthalpy of the phase at Tref.

G (temperature)

Calculate the heat capacity of the compound phase at the specified temperature.

Parameters temperature – [K]

Returns [J/mol] The Gibbs free energy of the compound phase.

H (temperature)

Calculate the enthalpy of the compound phase at the specified temperature.

Parameters temperature – [K]

Returns [J/mol] The enthalpy of the compound phase.

S (temperature)

Calculate the entropy of the compound phase at the specified temperature.

Parameters temperature – [K]

Returns [J/mol/K] The entropy of the compound phase.

Sref = None

[J/mol/K] The standard entropy of the phase at Tref.

Tref = None

[K] The reference temperature of the phase.

name = None

The phase's name, e.g. solid, liquid, gas, etc.

symbol = None

The phase's symbol, e.g. S1 = solid 1, L = liquid, etc.

auxi.tools.chemistry.thermochemistry. \mathbf{S} (compound_string, temperature, mass=1.0)

Calculate the entropy of the compound for the specified temperature and mass.

Parameters

- **compound_string** Formula and phase of chemical compound, e.g. 'Fe2O3[S1]'.
- temperature [°C]
- mass [kg]

Returns [kWh/K] Entropy.

- auxi.tools.chemistry.thermochemistry.get_datafile_references()
 Retrieve all the references used by the datafiles.
- auxi.tools.chemistry.thermochemistry.list_compounds()

 List all compounds that are currently loaded in the thermo module, and their phases.
- auxi.tools.chemistry.thermochemistry.load_data_auxi (path='') Load all the thermochemical data auxi files located at a path.

Parameters path – Path at which the data files are located.

auxi.tools.chemistry.thermochemistry.load_data_factsage (path='') Load all the thermochemical data factsage files located at a path.

Parameters path – Path at which the data files are located.

auxi.tools.chemistry.thermochemistry.molar_mass(compound)

Determine the molar mass of a chemical compound.

Parameters compound – Formula of a chemical compound, e.g. 'Fe2O3'.

Returns [kg/mol] Molar mass.

Writes a compound to an auxi file at the specified directory.

Parameters

- **dir** The directory.
- **compound** The compound.

CpRecord class

class auxi.tools.chemistry.thermochemistry.CpRecord(dictionary)

A heat capacity (Cp) equation record for a compound phase over a specific temperature range.

Parameters dictionary – A dictionary containing the data required to initialise the phase.

Cp (*temperature*)

Calculate the heat capacity of the compound phase.

Parameters temperature – [K]

Returns [J/mol/K] Heat capacity.

H (temperature)

Calculate the portion of enthalpy of the compound phase covered by this Cp record.

Parameters temperature – [K]

Returns [J/mol] Enthalpy.

S (temperature)

Calculate the portion of entropy of the compound phase covered by this Cp record.

Parameters temperature – [K]

Returns Entropy. [J/mol/K]

Tmax = None

[K] The maximum temperature of the range covered by this record.

Tmin = None

[K] The minimum temperature of the range covered by this record.

Phase class

class auxi.tools.chemistry.thermochemistry.Phase (dictionary)
 A phase of a chemical compound.

Parameters dictionary – Dictionary containing the data required to initialise the phase.

Cp (temperature)

Calculate the heat capacity of the compound phase at the specified temperature.

Parameters temperature – [K]

Returns [J/mol/K] The heat capacity of the compound phase.

DHref = None

[J/mol] The formation enthalpy of the phase at Tref.

G (temperature)

Calculate the heat capacity of the compound phase at the specified temperature.

Parameters temperature – [K]

Returns [J/mol] The Gibbs free energy of the compound phase.

H (temperature)

Calculate the enthalpy of the compound phase at the specified temperature.

Parameters temperature – [K]

Returns [J/mol] The enthalpy of the compound phase.

S (temperature)

Calculate the entropy of the compound phase at the specified temperature.

Parameters temperature – [K]

Returns [J/mol/K] The entropy of the compound phase.

Sref = None

[J/mol/K] The standard entropy of the phase at Tref.

Tref = None

[K] The reference temperature of the phase.

name

The phase's name, e.g. solid, liquid, gas, etc.

symbol = None

The phase's symbol, e.g. S1 = solid 1, L = liquid, etc.

Compound class

class auxi.tools.chemistry.thermochemistry.Compound(dictionary)
 Represents a chemical compound.

Parameters dictionary – Dictionary containing the data required to initialise the compound.

Cp (*phase*, *temperature*)

Calculate the heat capacity of a phase of the compound at a specified temperature.

- phase A phase of the compound, e.g. 'S', 'L', 'G'.
- temperature [K]

Returns [J/mol/K] Heat capacity.

G (*phase*, *temperature*)

Calculate the Gibbs free energy of a phase of the compound at a specified temperature.

Parameters

- phase A phase of the compound, e.g. 'S', 'L', 'G'.
- temperature [K]

Returns [J/mol] Gibbs free energy.

H (*phase*, *temperature*)

Calculate the enthalpy of a phase of the compound at a specified temperature.

Parameters

- phase A phase of the compound, e.g. 'S', 'L', 'G'.
- temperature [K]

Returns [J/mol] Enthalpy.

S (*phase*, *temperature*)

Calculate the enthalpy of a phase of the compound at a specified temperature.

Parameters

- phase A phase of the compound, e.g. 'S', 'L', 'G'.
- temperature [K]

Returns [J/mol/K] Entropy.

formula = None

Chemical formula, e.g. 'Fe', 'CO2'.

get_phase_list()

Get a list of the compound's phases.

Returns List of phases.

get_reference()

$molar_mass = None$

Molar mass. [kg/mol]

CHAPTER

FIVE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
auxi.modelling.business.basic,
    80
auxi.modelling.business.models,
    86
auxi.modelling.business.structure,
    88
auxi.modelling.financial.des,67
auxi.modelling.financial.reporting,
    76
auxi.modelling.process.materials.chem,
    53
auxi.modelling.process.materials.psd,
    56
auxi.modelling.process.materials.slurry,
    59
auxi.modelling.process.materials.thermo,
    62
auxi.tools.chemistry.stoichiometry,
    94
auxi.tools.chemistry.thermochemistry,
    97
```

Α			uxi.modelling.financia	al.reporting	(module	e),	
AccountType auxi.mode 71	(class elling.financial.des),	in 67,	76 uxi.modelling.process ule), 53	.materials.cl	nem (mo	d-	
Activity	(class elling.business.structure	in e),	uxi.modelling.process ule), 56 uxi.modelling.process	•	·		
add_activity() (aux method),			uxi.modelling.process	.materials.th	nermo		
add_assay() (auxi. method),	modelling.process.mate	erials.	em.Matemadule), 62 uxi.tools.chemistry.sto	oichiometry	(module	e),	
method),			uxi.tools.chemistry.th	ermochemis	try (mo	d-	
method), add_assay() (auxi. method).	modelling.process.mate 60 modelling.process.mate 63	erials.1	3 ermo.Material alance_sheet (auxi.mo	odelling.fina 78	ncial.repo	orting.ReportTypo	
method)	delling.process.materia 55 delling.process.materia		alance_sheet()		es.Gener	alLedger	
method).	58 elling.business.basic.Ba		memod), 07, 7	(class		in	
attribute), amount()		odule	MaterialPackage BasicActivity auxi.modelling 80, 83	(class g.business.ba		in	
94 asset (auxi.modelling.financial.des.AccountTyp attribute), 67, 71			BasicLoanActivity auxi.modelling 81, 84	(class g.business.ba		in	
AT (in module at 67	ıxi.modelling.financial.	des),					
auxi.modelling.business.basic (module), 80 auxi.modelling.business.models (module), 86 auxi.modelling.business.structure (module), 88 auxi.modelling.financial.des (module), 67			cash_flow (auxi.modelling.financial.reporting.ReportType attribute), 77, 78 clear() (auxi.modelling.process.materials.chem.MaterialPackamethod), 55 clear() (auxi.modelling.process.materials.psd.MaterialPackag				
auxi.mouching.iii	ianciai.ucs (inounic), 07	method), 58					

```
clear() (auxi.modelling.process.materials.slurry.MatatriadPankagent()
                                                                                                          (auxi.modelling.business.structure.Entity
               method), 61
clear() (auxi.modelling.process.materials.thermo.Material Petrology 90, 93
               method), 65
                                                                                          create_empty_assay()
clone () \ (auxi.modelling.process.materials.chem. Material \textbf{\textit{Packiage}} odelling.process.materials.chem. Materials.chem. Materials.chem. Materials.chem. Materials.chem. Materials.chem. Materials.chem. Materials.chem. 
               method), 55
                                                                                                          method), 54
clone() (auxi.modelling.process.materials.psd.MaterialParolptyeassay()
               method), 58
                                                                                                          (auxi.modelling.process.materials.psd.Material
clone() (auxi.modelling.process.materials.slurry.Materialmatkage, 57
               method), 61
                                                                                          create_empty_assay()
clone() (auxi.modelling.process.materials.thermo.Materiala.delling.process.materials.slurry.Material
               method), 65
                                                                                                          method), 60
Component
                                               (class
                                                                                  in create_empty_assay()
               auxi.modelling.business.structure),
                                                                                                          (auxi.modelling.process.materials.thermo.Material
                                                                                                          method), 64
               88, 92
Compound
                                                                                   in create_entity()
                                               (class
               auxi.tools.chemistry.thermochemistry),
                                                                                                          (auxi.modelling.business.models. Time Based Model\\
                                                                                                          method), 86, 87
                                                                                          create_package()
compound_count
               (auxi.modelling.process.materials.thermo.Mater(aluxi.modelling.process.materials.chem.Material
                                                                                                          method), 54
               attribute), 64
compounds (auxi.modelling.process.materials.thereateMtatckingle()
               attribute), 64
                                                                                                          (auxi.modelling.process.materials.psd.Material
                                                                                                          method), 57
convert_compound()
                                                     (in
                                                                        module
                                                                                          create_package()
               auxi.tools.chemistry.stoichiometry),
               94
                                                                                                          (auxi.modelling.process.materials.slurry.Material
converted_assays
                                                                                                          method), 60
               (auxi.modelling.process.materials.thermond/latetepiadkage()
                                                                                                          (auxi.modelling.process.materials.thermo.Material
               attribute), 64
Cp() (auxi.tools.chemistry.thermochemistry.Compound method), 64
               method), 97, 102
                                                                                          create_transaction()
Cp() (auxi.tools.chemistry.thermochemistry.CpRecord (auxi.modelling.financial.des.GeneralLedger
               method), 98, 101
                                                                                                          method), 67, 75
Cp() (auxi.tools.chemistry.thermochemistry.Phase
               method), 99, 102
                                                                                          description (auxi.modelling.process.materials.thermo.Materia
Cp()
                                      (in
                                                                        module
                                                                                                          attribute), 64
               auxi.tools.chemistry.thermochemistry),
                                                                                          DHref (auxi.tools.chemistry.thermochemistry.Phase
                                                                                                          attribute), 99, 102
CpRecord
                                              (class
               auxi.tools.chemistry.thermochemistry),
               98, 101
                                                                                          Element
                                                                                                                                      (class
create_account()
               (auxi.modelling.financial.des.GeneralLedgerAccount 94, 96
               method), 69, 72
                                                                                          element_mass_fraction()
                                                                                                                                                   (in
                                                                                                                                                                  module
create_component()
                                                                                                          auxi.tools.chemistry.stoichiometry),
               (auxi.modelling.business.structure.Component
               method), 89, 92
                                                                                          element_mass_fractions()
                                                                                                                                                    (in
                                                                                                                                                                  module
                                                                                                          auxi.tools.chemistry.stoichiometry),
```

	95			get_acti	vity() (auxi.modelling.business.structure.Component
elemen	''		dule		method), 89, 92
	auxi.tools.chemis	try.stoichiometr	y),	get_ass	ay() (auxi.modelling.process.materials.chem.Material method), 55
Entity	(cla	ass	in	get_ass	$ay () \ (auxi.modelling.process.materials.psd. Material Pattern \ (auxi.modelling.process.materials.psd. \ (auxi.modelling.process.psd. \ (auxi.modelling.psd. \ (auxi.mod$
	auxi.modelling.b	usiness.structure),		method), 59
	90, 93			-	ay() (auxi.modelling.process.materials.slurry.Material
equity	(auxi.modelling.fin	ancial.des.Acco	untTy	-	method), 62
	attribute), 67, 71			_	ay() (auxi.modelling.process.materials.thermo.Materia
expens	e (auxi.modelling.f	inancial.des.Acc	count		method), 66
	attribute), 67, 71			_	ay_total()
extract		process.material	s.chei	m.Materi	al Rucikange lelling.process.materials.chem.Material
	method), 55				method), 54
extract	() (auxi.modelling.	process.material	s.psd.	Matearal	
	method), 58				(auxi.modelling.process.materials.psd.Material
extract	() (auxi.modelling.	process.material	s.slur	•	_
	method), 61			_	ay_total()
extract		process.material	s.ther	mo.Mate	manakadelling.process.materials.slurry.Material
	method), 65				method), 61
F				get_ass	ay_total()
formul	a (auxi.tools.chemi	stry thermochem	nictry	Compou	(auxi.modelling.process.materials.thermo.Material
TOTTIUL	attribute), 98, 103	su y.mermoenen l	nsu y.		
_	attilbute), 96, 10.	,		get_chi	ld_account()
G					(auxi.modelling.financial.des.GeneralLedgerAccount
G() (au	xi.tools.chemistry.	thermochemistry	.Com	npound	method), 69, 72
	method), 97, 103	-		get_con	
G() (au	xi.tools.chemistry.	thermochemistry	.Phas	se	(auxi.modelling.business.structure.Component
	method), 99, 102			4	method), 89, 92
G()	(in	mo	dule	get_con	npound_amount()
	auxi.tools.chemis	try.thermochemi	istry),	,	(auxi.modelling.process.materials.thermo.MaterialPa
	99			ant nom	method), 66
Genera	ılLedger	(class	in	get_con	npound_amounts()
	auxi.modelling.fi	nancial.des),	67,		(auxi.modelling.process.materials.thermo.MaterialPamethod), 66
	74			got con	
Genera	lLedgerAccount	(class	in	get_con	npound_index() (auxi.modelling.process.materials.chem.Material
	auxi.modelling.fi	nancial.des),	68,		method), 54
	71			get con	npound_index()
Genera	lLedgerStructure	(class	in	gct_con	(auxi.modelling.process.materials.thermo.Material
	auxi.modelling.fi	nancial.des),	69,		method), 64
	73			get con	npound_mass()
Genera	lLedgerStructure	(class	in	get_con	(auxi.modelling.process.materials.chem.MaterialPac
	auxi.modelling.fi	nancial.reporting	g),		method), 55
	76, 78			get con	
get_acc	count() (auxi.mode	lling.financial.de	es.Gei	n ē rāfLed	gerStructure (auxi.modelling.process.materials.thermo.MaterialPa
	method), 70, 73				method), 66
get_acc	count_decendants())		get con	
	(auxi.modelling.f	inancial.des.Gen	eralL	edgerStr	npound_mass_fraction() ucture (auxi.modelling.process.materials.chem.MaterialPac
	method), 70, 74				(maximodelling.process.materials.enem.iviateriali ael

```
method), 56
                                                                                                                                                                                        get_referenced_accouts()
get_datafile_references()
                                                                                                                                                    module
                                                                                                                                                                                                                        (auxi.modelling.business.basic.BasicLoanActivity
                                                                                                                    (in
                               auxi.tools.chemistry.thermochemistry),
                                                                                                                                                                                                                        method), 85
                                                                                                                                                                                         get_referenced_accouts()
get_density() (auxi.modelling.process.materials.slurry.Meanrialflockaling.business.structure.Activity
                               method), 62
                                                                                                                                                                                                                        method), 88, 91
get_element_mass()
                                                                                                                                                                                        get_size_class_index()
                               (auxi.modelling.process.materials.chem.MaterialRuxkagedelling.process.materials.psd.Material
                                                                                                                                                                                                                        method), 58
                               method), 56
                                                                                                                                                                                        get_size_class_index()
get_element_mass()
                               (auxi.modelling.process.materials.thermo.Mater(\textbf{alPxickagte}) ling.process.materials.slurry.Material
                                                                                                                                                                                                                        method), 61
                               method), 66
get_element_mass_dictionary()
                                                                                                                                                                                        get_size_class_mass()
                               (auxi.modelling.process.materials.chem.MaterialRaxkagedelling.process.materials.psd.MaterialPacka
                                                                                                                                                                                                                        method), 59
                               method), 56
get_element_mass_dictionary()
                                                                                                                                                                                        get_size_class_mass()
                               (auxi.modelling.process.materials.thermo.MaterialPacknoglelling.process.materials.slurry.MaterialPac
                                                                                                                                                                                                                        method), 62
get_element_masses()
                                                                                                                                                                                        get_size_class_mass_fraction()
                               (auxi.modelling.process.materials.chem.MaterialPackagedelling.process.materials.psd.MaterialPacka
                                                                                                                                                                                                                        method), 59
                               method), 56
get_element_masses()
                                                                                                                                                                                         get_size_class_mass_fraction()
                               (auxi.modelling.process.materials.thermo.Material \textit{Paicknowle} lling.process.materials.slurry.Material Pacchage the process of the process
                               method), 66
                                                                                                                                                                                                                        method), 62
get_mass() (auxi.modelling.process.materials.chgut_MalderinhRass()age
                               method), 56
                                                                                                                                                                                                                        (auxi.modelling.process.materials.slurry.MaterialPac
get_mass() (auxi.modelling.process.materials.psd.MaterialPthodge62
                               method), 59
                                                                                                                                                                                        get_volume() (auxi.modelling.process.materials.slurry.Materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.slurry.materials.materials.materials.slurry.materials.slurry.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.materials.material
get_mass() (auxi.modelling.process.materials.slurry.MateriatlRadkage
                               method), 62
                                                                                                                                                                                        get_volume_fraction_solids()
                                                                                                                                                                                                                         (auxi.modelling.process.materials.slurry.MaterialPac
get_mass_fraction_solids()
                               (auxi.modelling.process.materials.slurry.Material Pettology 62
                               method), 62
get_phase_list()
                               (auxi.tools.chemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermochemistry.thermoch
                                                                                                                                                                                                                         attribute). 65
                               method), 98, 103
                                                                                                                                                                                        H() (auxi.tools.chemistry.thermochemistry.Compound
get_reference()
                               (auxi.tools.chemistry.thermochemistry.Compourmethod), 97, 103
                                                                                                                                                                                         H() (auxi.tools.chemistry.thermochemistry.CpRecord
                               method), 98, 103
                                                                                                                                                                                                                        method), 98, 101
get_referenced_accounts()
                               (auxi.modelling.business.basic.BasicActivit (auxi.tools.chemistry.thermochemistry.Phase) and the control of t
                                                                                                                                                                                                                         method), 100, 102
                               method), 81, 83
                                                                                                                                                                                        H()
                                                                                                                                                                                                                                                                     (in
                                                                                                                                                                                                                                                                                                                                             module
get_referenced_accounts()
                               (auxi.modelling.business.basic.BasicLoanActivity^{uxi.tools.chemistry.thermochemistry}),\\
                               method), 82, 85
get_referenced_accouts()
                               (auxi.modelling.business.basic.BasicActivity income_statement
                               method), 83
                                                                                                                                                                                                                         (auxi.modelling.financial.reporting.ReportType
```

```
attribute), 77, 78
                                                                                                    61
income_statement()
                                                                                     MaterialPackage
                                                                                                                                      (class
                                                                                                                                                                    in
              (auxi.modelling.financial.des.GeneralLedger
                                                                                                    auxi.modelling.process.materials.thermo),
              method), 68, 75
                                                                              in molar_mass (auxi.tools.chemistry.thermochemistry.Compoun
IncomeStatement
                                                 (class
              auxi.modelling.financial.reporting),
                                                                                                    attribute), 98, 103
                                                                                     molar_mass()
                                                                                                                                 (in
                                                                                                                                                         module
interest_rate (auxi.modelling.business.basic.BasicLoanAatixittools.chemistry.stoichiometry),
              attribute), 82, 85
                                                                                                    96
                                                                                     molar_mass()
                                                                                                                                 (in
                                                                                                                                                          module
                                                                                                    auxi.tools.chemistry.thermochemistry),
liability (auxi.modelling.financial.des.AccountType
                                                                                                    100
              attribute), 67, 71
                                                                    module
list_compounds()
                                               (in
              auxi.tools.chemistry.thermochemistry), name (auxi.modelling.business.basic.BasicActivity
               100
                                                                                                    attribute), 84
                                                                    module name (auxi.modelling.business.basic.BasicLoanActivity
load_data_auxi()
                                              (in
              auxi.tools.chemistry.thermochemistry),
                                                                                                   attribute), 85
               100
                                                                                     name (auxi.modelling.business.models.TimeBasedModel
load_data_factsage()
                                                                                                    attribute), 86, 87
                                                                    module
              auxi.tools.chemistry.thermochemistry), name (auxi.modelling.business.structure.Activity
                                                                                                    attribute), 88, 91
               100
                                                                                     name (auxi.modelling.business.structure.Component
M
                                                                                                    attribute), 89, 92
mass (auxi.modelling.process.materials.thermo.MaterialPackagelling.business.structure.Entity
              attribute), 66
                                                                                                    attribute), 90, 93
                                                                    module
mass()
                                      (in
                                                                                     name (auxi.modelling.financial.des.GeneralLedger
              auxi.tools.chemistry.stoichiometry),
                                                                                                    attribute), 75
                                                                                     name\ (auxi.modelling.financial.des. General Ledger Account
Material
                                         (class
                                                                              in
                                                                                                    attribute), 69, 72
              auxi.modelling.process.materials.chem)_{name\ (auxi.modelling.financial.des.GeneralLedgerStructure)}
                                                                                                    attribute), 74
Material
                                         (class
                                                                                    name\ (auxi.modelling.financial.des. Transaction
              auxi.modelling.process.materials.psd),
                                                                                                    attribute), 73
               56
                                                                                     name (auxi.modelling.financial.des.TransactionTemplate
Material
                                         (class
                                                                                                    attribute), 73
              auxi.modelling.process.materials.slurry)_{\mbox{\scriptsize name}} (auxi.modelling.process.materials.thermo.Materials) (auxi.modelling.process.materials) (auxi.mode
              59
                                                                                                    attribute), 64
Material
                                         (class
                                                                              in name (auxi.tools.chemistry.thermochemistry.Phase
              auxi.modelling.process.materials.thermo),
                                                                                                    attribute), 100, 102
              62
                                                                             _{in} P
MaterialPackage
                                                 (class
              auxi.modelling.process.materials.chem)P (auxi.modelling.process.materials.thermo.MaterialPackage
              55
                                                                                                    attribute), 65
MaterialPackage
                                                 (class
                                                                              in Phase
                                                                                                                            (class
              auxi.modelling.process.materials.psd),
                                                                                                    auxi.tools.chemistry.thermochemistry),
              58
                                                                                                    99, 101
MaterialPackage
                                                 (class
                                                                              in prepare_to_run()
              auxi.modelling.process.materials.slurry),
                                                                                                    (auxi.modelling.business.basic.BasicActivity
```

```
method), 84
                                                                                       ReportType
                                                                                                                                     (class
                                                                                                                                                                       in
                                                                                                       auxi.modelling.financial.reporting),
prepare_to_run()
               (auxi.modelling.business.basic.BasicLoanActivity), 78
               method), 82, 85
                                                                                       revenue (auxi.modelling.financial.des.AccountType
                                                                                                       attribute), 67, 71
prepare_to_run()
               (auxi.modelling.business.models.TimeBase())Vhockelmodelling.business.basic.BasicActivity
               method), 86, 87
                                                                                                      method), 81, 84
prepare_to_run()
                                                                                       run() (auxi.modelling.business.basic.BasicLoanActivity
               (auxi.modelling.business.structure.Activity
                                                                                                       method), 83, 85
               method), 88, 91
                                                                                       run() (auxi.modelling.business.models.TimeBasedModel
prepare_to_run()
                                                                                                       method), 87
               (auxi.modelling.business.structure.Component
               method), 89, 92
                                                                                                      method), 89, 92
prepare_to_run()
                                                                                       run() (auxi.modelling.business.structure.Entity
               (auxi.modelling.business.structure.Entity
                                                                                                      method), 90, 94
               method), 90, 93
R
                                                                                       S() (auxi.tools.chemistry.thermochemistry.Compound
raw_assays (auxi.modelling.process.materials.thermo.Materialod), 97, 103
               attribute), 65
                                                                                       S() (auxi.tools.chemistry.thermochemistry.CpRecord
remove_account()
                                                                                                       method), 98, 101
               (auxi.modelling.financial.des.GeneralLestoctates.chemistry.thermochemistry.Phase
               method), 69, 72
                                                                                                      method), 100, 102
remove_component()
                                                                                       S()
                                                                                                                                                              module
                                                                                                                           (in
               (auxi.modelling.business.structure.Component auxi.tools.chemistry.thermochemistry),
               method), 89, 92
                                                                                                       100
remove_component()
                                                                                       set_parent_path()
               (auxi.modelling.business.structure.Entity
                                                                                                      (auxi.modelling.business.basic.BasicActivity
               method), 90, 93
                                                                                                       method), 84
remove_entity()
                                                                                       set_parent_path()
               (auxi.modelling.business.models.TimeBasedModelxi.modelling.business.basic.BasicLoanActivity
               method), 86, 87
                                                                                                       method), 85
render() (auxi.modelling.financial.reporting.BalanceSheett_path()
               method), 79
                                                                                                      (auxi.modelling.business.structure.Activity
render() (auxi.modelling.financial.reporting.GeneralLedgerShoot)use, 91
               method), 78
                                                                                       set_parent_path()
render() \ (auxi.modelling.financial.reporting.Income \\ \overline{S} tate \\ (\textbf{nent}.modelling.business.structure.Component) \\ \\ (\textbf{nent}.modell
               method), 80
                                                                                                      method), 90, 93
render() (auxi.modelling.financial.reporting.Report_parent_path()
               method), 78
                                                                                                       (auxi.modelling.business.structure.Entity
render() (auxi.modelling.financial.reporting.TransactionIriethod), 91, 94
               method), 79
                                                                                       set_parent_path()
Report
                                         (class
                                                                                in
                                                                                                      (auxi.modelling.financial.des.GeneralLedgerAccount
               auxi.modelling.financial.reporting),
                                                                                                      method), 69, 72
               77, 78
                                                                                       Sref (auxi.tools.chemistry.thermochemistry.Phase
report() (auxi.modelling.financial.des.GeneralLedgerStructurioute), 100, 102
               method), 70, 74
                                                                                       stoichiometry_coefficient()
                                                                                                                                                (in
                                                                                                                                                              module
                                                                                                       auxi.tools.chemistry.stoichiometry),
```

```
96
stoichiometry_coefficients()
                               (in
                                     module
        auxi.tools.chemistry.stoichiometry),
symbol (auxi.tools.chemistry.thermochemistry.Phase
        attribute), 100, 102
T
T (auxi.modelling.process.materials.thermo.MaterialPackage
        attribute), 65
TimeBasedModel
                           (class
                                           in
        auxi.modelling.business.models),
        86, 87
Tmax (auxi.tools.chemistry.thermochemistry.CpRecord
        attribute), 99, 101
Tmin (auxi.tools.chemistry.thermochemistry.CpRecord
        attribute), 99, 101
Transaction
                        (class
                                           in
        auxi.modelling.financial.des),
                                          70,
        72
transaction_list
        (auxi.modelling.financial.reporting.ReportType
        attribute), 77, 78
transaction_list()
        (auxi.modelling.financial.des.GeneralLedger
        method), 68, 75
TransactionList
                          (class
                                           in
        auxi.modelling.financial.reporting),
        77, 79
TransactionTemplate
                             (class
                                           in
        auxi.modelling.financial.des),
                                          71,
Tref (auxi.tools.chemistry.thermochemistry.Phase
        attribute), 100, 102
V
validate_account_names()
        (auxi.modelling.financial.des.GeneralLedgerStructure
        method), 70, 74
W
write_compound_to_auxi_file() (in module
        auxi.tools.chemistry.thermochemistry),
        101
```