NIEZAWODNOŚĆ I DIAGNOSTYKA UKŁADÓW CYFROWYCH 2

TRANSMISJA W SYSTEMIE ARQ

SPRAWOZDANIE PROJEKTOWE

Autorzy:

Kamil Bauer 259102, Natalia Górnikowska 259097, Kacper Kembłowski 259196

Prowadzący: mgr inż. Agnieszka Pilch

Kod zajęć: K02-08l

Wrocław, 14 czerwca 2022

Spis treści

1	Z ało 1.1	- •	3		
2	Syn	ulator	3		
3 Systemy transmisyjne ARQ					
	3.1	<i>y</i>	4		
		3.1.1 Stop and Wait ARQ	4		
4	Zasa		5		
	4.1		5		
			5		
		4.1.2 Suma kontrolna	5		
5	Kan		6		
	5.1		6		
	5.2	Binary Erasure Channel	6		
6	Ana	liza danych	7		
	6.1	Dane wejściowe i wyjściowe eksperymentu	7		
7	Wyı	niki eksperymentu	8		
	7.1	<u>. </u>	8		
			8		
		7.1.2 Wyniki dla prawdopodobieństwa 0.05	9		
		7.1.3 Wyniki dla prawdopodobieństwa 0.1 \hdots	1		
		7.1.4 Porównanie kosztów operacji $\ \ldots \ \ldots \ 1$			
	7.2	Wyniki dla bitu parzystości w połączeniu z BEC			
		7.2.1 Wyniki dla prawdopodobieństwa 0.01			
		7.2.2 Wyniki dla prawdopodobieństwa 0.05			
		7.2.3 Wyniki dla prawdopodobieństwa 0.1			
	7.0	7.2.4 Porównanie kosztów operacji			
	7.3	Wyniki dla bitu parzystości w połączeniu z BSC oraz BEC 1 7.3.1 Wyniki dla prawdopodobieństwa 0.01			
		7.3.1 Wyniki dla prawdopodobieństwa 0.01			
		7.3.3 Wyniki dla prawdopodobieństwa 0.1			
		7.3.4 Porównanie kosztów operacji			
	7.4	Wyniki dla sumy kontrolnej w połączeniu z BSC			
		7.4.1 Wyniki dla prawdopodobieństwa 0.01 2			
		7.4.2 Wyniki dla prawdopodobieństwa 0.05 2			
		7.4.3 Wyniki dla prawdopodobieństwa 0.1 2	6		
		7.4.4 Porównanie kosztów operacji 2	7		
	7.5	Wyniki dla sumy kontrolnej w połączeniu z BEC 2	8		
		7.5.1 Wyniki dla prawdopodobieństwa 0.01	8		
		7.5.2 Wyniki dla prawdopodobieństwa 0.05			
		7.5.3 Wyniki dla prawdopodobieństwa 0.1			
		7.5.4 Porównanie kosztów operacji			
	7.6	Wyniki dla sumy kontrolnej w połączeniu z BSC oraz BEC 3			
		7.6.1 Wyniki dla prawdopodobieństwa 0.01	3		

8	Okr	eślenie	e właściwości modelowanego systemu 3	38
	7.7	Obser	wacje	38
		7.6.4	Porównanie kosztów operacji	37
		7.6.3	Wyniki dla prawdopodobieństwa 0.1	36
		7.6.2	Wyniki dla prawdopodobieństwa 0.05	34

1 Założenia projektowe

W ramach projektu zrealizowana została symulacja transmisji danych cyfrowych w systemie ARQ (Automatic Repeat Request). Jako testowane kanały komunikacyjne zostały wybrane: BSC (Binary Symmetric Channel) oraz BEC (Binary Erasure Channel). Natomiast do weryfikacji poprawności otrzymywanej wiadomości posłużono się kodem bitu parzystości oraz sumy kontrolnej.

Do zaprogramowania symulacji wykorzystany został język programowania Python.

1.1 Wykorzystane narzędzia

Narzędzia wykorzystane podczas pracy:

- język programowania Python wraz z dołączonymi bibliotekami:
 - * Komm
 - * Numpy
 - * Csv
 - * Panda
 - * Plotly.express
 - * Sys
- Visual Studio Code
- Git
- Microsoft Excel
- \bullet LATEX

2 Symulator

Cały kod źródłowy znajduje się na repozytorium: https://github.com/bauerkamil/NIDUC.git

3 Systemy transmisyjne ARQ

ARQ to skrót od angielskiej nazwy Automatic Repeat Request (ang. automatyczne powtórzenie żądania), znane też jako Automatic Repeat Query (ang. automatyczne powtórzenie zapytania).

System ARQ to strategia kontroli błędów stosowana podczas komunikacji między nadawcą, a odbiorcą. Kontrola błędów danych jest koniecznym krok w celu uzyskania jak najbardziej niezawodnej transmisji danych. Wynika to z faktu, iż żadne medium transmisyjne nie daje stuprocentowej zgodności pakietów wysłanych z tymi otrzymanymi po drugiej stronie. Dane w trakcie przesyłu mogą zostać zmanipulowane, uszkodzone lub nawet utracone. Jednym z rozwiązań tego problemu jest grupa protokołów składających się na system ARQ. Protokoły te są odpowiedzialne za automatyczną retransmisję pakietów, które zostały uszkodzone lub utracone podczas procesu transmisji.

3.1 Rodzaje ARQ

Można wyróżnić trzy główne rodzaje systemów ARQ: Stop and Wait, Go Back -N oraz Selective Repeat/Reject. W tym projekcie został zaimplementowany pierwszy z podanych tu typów.

3.1.1 Stop and Wait ARQ

Stop and Wait ARQ (ang. zatrzymaj i czekaj ARQ) polega na wysyłaniu pojedynczych fragmentów (ramek) pakietu i czekanie na odpowiedź odbiorcy przed wysłaniem kolejnej ramki. Jeżeli odpowiedź świadczy o błędnie otrzymanej ramce, jest ona wysyłana ponownie przed wysłaniem kolejnej.

4 Zasada działania

Główną funkcją zapewniającą działanie oraz poprawność działania systemu jest wysyłanie potwierdzenia (ang. Acknowledgement - ACK) poprzez odbiorcę do nadawcy. Jeżeli nadawca otrzyma informację, że otrzymana przez odbiorcę wiadomość nie zgadza się z kodowaniem (patrz niżej), wysyła wiadomość jeszcze raz.

Rysunek 1: Uproszczony schemat działania

4.1 Kodowanie

Aby możliwym była weryfikacja poprawności otrzymanej wiadomości stosuje się kodowanie, czyli dołączanie dodatkowej informacji pozwalającej na sprawdzenie, czy otrzymana wiadomość jest identyczna z wysłaną. ARQ korzysta z kodów detekcyjnych - pozwalają one jedynie na wykrycie, czy błąd w wiadomości wystąpił, czy też nie. W projekcie zaimplementowano dwa kodowania: bit parzystości oraz sumę kontrolną.

4.1.1 Bit parzystości

Bit parzystości wyliczany jest na podstawie liczby wystąpień 1 w kodzie binarnym przesyłanych danych. Jeżeli wynik zliczania jedynek jest parzysty to do danych dołączany jest dodatkowy bit o wartości 0. Jeżeli zaś wynik jest nieparzysty, dołączany bit ma wartość 1.

Aby rozkodować wiadomość wyciągany jest bit parzystości, a następnie sprawdzana parzystość wystąpienia 1. Następnie porównywana jest ta wartość z ściągniętym wcześniej bitem parzystości.

Kodowanie to jest mało wrażliwe na jednoczesną podwójną zmianę w kodowanej wiadomości (jeżeli nastąpi jednocześnie zmiana dwóch 0 na 1, liczba 1 nadal będzie tak samo parzysta).

4.1.2 Suma kontrolna

Suma kontrolna jest obliczana poprzez podzielenie wysyłanych danych na mniejsze części, o długości równej długości kodu sumy, a następnie arytmetycznemu dodaniu kolejnych bitów z podpakietów. Jeśli po dodaniu długość uzyskanej sumy jest większa niż założona, buty wykraczające poza zakres są dodawane do początku z przesunięciem, aby uzyskać odopwiednią długość. Jeśli natomiast po zsumowaniu długość jest krótsza, suma kontrolna uzupełniana jest zerami z przodu aż do uzyskania żądanej długości. Następnie

wszystkie bity uzyskanego wyniku są negowane (dla uzyskania uzupełnienia) i w ten sposób dołączane do pakietu. Odbiorca wykonuje te same czynności (pomijając dodawanie dołączonego kodowania), a następnie sprawdza, czy uzyskany wynik zgadza się z tym na ostatnich polach otrzymanego pakietu. Kodowanie to jest mało wrażliwe na jednoczesną zmianę w dwóch, odpowiadających sobie miejscach (np podczas sumowania w danym rzędzie zamiana miejscami 1 i 0, lub zmiana również w wysyłanym kodowaniu).

5 Kanały transmisyjne

W tym projekcie wykorzystane zostały gotowe implementacje modeli kanałów dostępne w bibliotece Komm.

5.1 Binary Symmetric Channel

Binary Symmetric Channel (ang. binarny kanał symetryczny) to model kanału komunikacyjnego dla przesyłu bitów, który "odwraca" (neguje) bit z pewnym, podanym prawdopodobieństwem p, w przeciwnym wypadku zaś odbiorca otrzymuje poprawny bit.

5.2 Binary Erasure Channel

Binary Erasure Channel (ang. binarny kanał usuwania) to model kanału komunikacyjnego dla przesyłu bitów, który "usuwa" bit z pewnym, podanym prawdopodobieństwem p, w tym wypadku odbiorca nie otrzymuje wysłanego bitu

6 Analiza danych

Pomiar danych w eksperymencie wykonany został zgodnie z następującymi krokami:

- 1. Wykonanie eksperymentu dla wybranych wartości.
- 2. Powtarzanie eksperymentu, zmieniając długość wiadomości (ilość wysyłanych pakietów).
- 3. Wygenerowanie porównawczych wykresów.
- 4. Powtórzenie kroków 1 3 dla innych modelów kanału.
- 5. Powtórzenie kroków 1 4 dla drugiego kodowania.

6.1 Dane wejściowe i wyjściowe eksperymentu

Danymi wejściowymi eksperymentu były:

- wybór kodowania podany przez użytkownika
- wybór kanału podany przez użytkownika
- losowo wygenerowana wiadomość o długości zadanej przez użytkownika. Przyjęte wartości: [20, 40, 80, 100]
- prawdopodobieństwo zmiany w kanale, podana jako liczba w zakresie 0 do
 1. Przyjęte wartości: [0.1, 0.05, 0.01]
- ilość iteracji dla podanego problemu. Przyjętą wartością było wykonanie 1000 razy danego problemu

Dane wyjściowe zapisywane były do pliku csv, a zawierały takie pola, jak:

- wybór kodowania i kanału
- długość całej wiadomości oraz pakietów, które się na nią składały
- prawdopodobieństwo zakłamania w kanale
- ilość wykonanych iteracji
- ilość wysłanych (również ponownie) pakietów
- ilość błędnie zaakceptowanych bitów
- BER (ang. Bit Error Ratio) stosunek zaakceptowanych błędnych bitów do wszystkich wysłanych
- informację, czy wystąpiło zakłamanie wiadomości

7 Wyniki eksperymentu

7.1 Wyniki dla bitu parzystości w połączeniu z BSC

7.1.1 Wyniki dla prawdopodobieństwa 0.01

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0025	1.2090
40	0.0024	2.4470
60	0.0025	3.6340
80	0.0019	4.8270
100	0.0019	6.0240

Tabela 1: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz kodowaniem bitem parzystości.

Rysunek 2: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz kodowaniem bitem parzystości.

Rysunek 3: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz kodowaniem bitem parzystości.

7.1.2 Wyniki dla prawdopodobieństwa 0.05

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0457	1.7880
40	0.0403	3.7100
60	0.0398	5.3410
80	0.0418	7.2700
100	0.0417	9.0100

Tabela 2: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz kodowaniem bitem parzystości.

Rysunek 4: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz kodowaniem bitem parzystości.

Rysunek 5: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz kodowaniem bitem parzystości.

7.1.3 Wyniki dla prawdopodobieństwa 0.1

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.1021	1.9560
40	0.1030	3.8810
60	0.1040	6.1110
80	0.1017	7.9820
100	0.1033	10.0040

Tabela 3: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz kodowaniem bitem parzystości.

Rysunek 6: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz kodowaniem bitem parzystości.

Rysunek 7: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz kodowaniem bitem parzystości.

7.1.4 Porównanie kosztów operacji

Rysunek 8: Porównanie ilości wysłanych pakietów w zależności od długości wiadomości oraz prawdopodobieństwa przekłamania

7.2 Wyniki dla bitu parzystości w połączeniu z BEC

7.2.1 Wyniki dla prawdopodobieństwa 0.01

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0006	1.1150
40	0.0007	2.1930
60	0.0003	3.3100
80	0.0005	4.4090
100	0.0004	5.5170

Tabela 4: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BEC oraz kodowaniem bitem parzystości.

Rysunek 9: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BEC oraz kodowaniem bitem parzystości.

Rysunek 10: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BEC oraz kodowaniem bitem parzystości.

7.2.2 Wyniki dla prawdopodobieństwa 0.05

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0111	1.5190
40	0.0125	3.0140
60	0.0137	4.4790
80	0.0126	5.9780
100	0.0132	7.4940

Tabela 5: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BEC oraz kodowaniem bitem parzystości.

Rysunek 11: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BEC oraz kodowaniem bitem parzystości.

Rysunek 12: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BEC oraz kodowaniem bitem parzystości.

7.2.3 Wyniki dla prawdopodobieństwa 0.1

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0428	1.8110
40	0.0423	3.5670
60	0.0404	5.4530
80	0.0423	7.2510
100	0.0438	9.0500

Tabela 6: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BEC oraz kodowaniem bitem parzystości.

Rysunek 13: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BEC oraz kodowaniem bitem parzystości.

Rysunek 14: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BEC oraz kodowaniem bitem parzystości.

7.2.4 Porównanie kosztów operacji

Rysunek 15: Porównanie ilości wysłanych pakietów w zależności od długości wiadomości oraz prawdopodobieństwa przekłamania

7.3 Wyniki dla bitu parzystości w połączeniu z BSC oraz BEC

7.3.1 Wyniki dla prawdopodobieństwa 0.01

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0051	1.3000
40	0.0040	2.6230
60	0.0044	3.9200
80	0.0043	5.2350
100	0.0047	6.5670

Tabela 7: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz BEC oraz kodowaniem bitem parzystości.

Rysunek 16: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz BEC oraz kodowaniem bitem parzystości.

Rysunek 17: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz BEC oraz kodowaniem bitem parzystości.

7.3.2 Wyniki dla prawdopodobieństwa 0.05

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0658	1.8980
40	0.0683	3.8600
60	0.0705	5.7560
80	0.0701	7.7760
100	0.0701	9.4880

Tabela 8: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz BEC oraz kodowaniem bitem parzystości.

Rysunek 18: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz BEC oraz kodowaniem bitem parzystości.

Rysunek 19: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz BEC oraz kodowaniem bitem parzystości.

7.3.3 Wyniki dla prawdopodobieństwa 0.1

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.1470	2.0480
40	0.1468	3.9460
60	0.1494	5.8410
80	0.1461	8.1480
100	0.1467	10.1160

Tabela 9: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz BEC oraz kodowaniem bitem parzystości.

Rysunek 20: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz BEC oraz kodowaniem bitem parzystości.

Rysunek 21: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz BEC oraz kodowaniem bitem parzystości.

7.3.4 Porównanie kosztów operacji

Rysunek 22: Porównanie ilości wysłanych pakietów w zależności od długości wiadomości oraz prawdopodobieństwa przekłamania

7.4 Wyniki dla sumy kontrolnej w połączeniu z BSC

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0003	1.2880
40	0.0004	2.5660
60	0.0003	3.8590
80	0.0003	5.1150
100	0.0003	6.4190

Tabela 10: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz kodowaniem sumą kontrolną.

7.4.1 Wyniki dla prawdopodobieństwa 0.01

Rysunek 23: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz kodowaniem sumą kontrolną.

Rysunek 24: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz kodowaniem sumą kontrolną.

7.4.2 Wyniki dla prawdopodobieństwa 0.05

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0085	3.3350
40	0.0086	6.8010
60	0.0084	10.2830
80	0.0077	13.1830
100	0.0084	16.8530

Tabela 11: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz kodowaniem sumą kontrolną.

Rysunek 25: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz kodowaniem sumą kontrolną.

Rysunek 26: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz kodowaniem sumą kontrolną.

7.4.3 Wyniki dla prawdopodobieństwa 0.1

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0449	9.4340
40	0.0434	18.5210
60	0.0460	28.0850
80	0.0439	37.3210
100	0.0441	47.0100

Tabela 12: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz kodowaniem sumą kontrolną.

Rysunek 27: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz kodowaniem sumą kontrolną.

Rysunek 28: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz kodowaniem sumą kontrolną.

7.4.4 Porównanie kosztów operacji

Rysunek 29: Porównanie ilości wysłanych pakietów w zależności od długości wiadomości oraz prawdopodobieństwa przekłamania

7.5 Wyniki dla sumy kontrolnej w połączeniu z BEC

7.5.1 Wyniki dla prawdopodobieństwa 0.01

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0000	1.1300
40	0.0000	2.2870
60	0.0000	3.4050
80	0.0000	4.5410
100	0.0000	5.6300

Tabela 13: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BEC oraz kodowaniem sumą kontrolną.

Rysunek 30: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BEC oraz kodowaniem sumą kontrolną.

Rysunek 31: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BEC oraz kodowaniem sumą kontrolną.

7.5.2 Wyniki dla prawdopodobieństwa 0.05

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0000	1.8970
40	0.0000	3.8530
60	0.0001	5.7140
80	0.0000	7.5670
100	0.0001	9.7390

Tabela 14: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BEC oraz kodowaniem sumą kontrolną.

Rysunek 32: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BEC oraz kodowaniem sumą kontrolną.

Rysunek 33: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BEC oraz kodowaniem sumą kontrolną.

7.5.3 Wyniki dla prawdopodobieństwa 0.1

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0008	3.7520
40	0.0009	7.5600
60	0.0005	11.1660
80	0.0004	15.2990
100	0.0003	18.7730

Tabela 15: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BEC oraz kodowaniem sumą kontrolną.

Rysunek 34: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BEC oraz kodowaniem sumą kontrolną.

Rysunek 35: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BEC oraz kodowaniem sumą kontrolną.

7.5.4 Porównanie kosztów operacji

Rysunek 36: Porównanie ilości wysłanych pakietów w zależności od długości wiadomości oraz prawdopodobieństwa przekłamania

7.6 Wyniki dla sumy kontrolnej w połączeniu z BSC oraz $_{\rm BEC}$

7.6.1 Wyniki dla prawdopodobieństwa 0.01

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0007	1.4170
40	0.0006	2.8950
60	0.0004	4.4160
80	0.0005	5.7670
100	0.0006	7.2870

Tabela 16: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz BEC oraz kodowaniem sumą kontrolną.

Rysunek 37: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz BEC oraz kodowaniem sumą kontrolną.

Rysunek 38: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.01 na kanale BSC oraz BEC oraz kodowaniem sumą kontrolną.

7.6.2 Wyniki dla prawdopodobieństwa 0.05

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.0163	5.7480
40	0.0175	11.4880
60	0.0188	17.1200
80	0.0190	22.4330
100	0.0184	28.3710

Tabela 17: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz BEC oraz kodowaniem sumą kontrolną.

Rysunek 39: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05 na kanale BSC oraz BEC oraz kodowaniem sumą kontrolną.

Rysunek 40: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.05na kanale BSC oraz BEC oraz kodowaniem sumą kontrolną.

7.6.3 Wyniki dla prawdopodobieństwa 0.1

długość wiadomości	średnia wartość BER	średnia ilość wysłanych pakietów
20	0.1070	18.6760
40	0.1048	37.6620
60	0.1049	54.8640
80	0.1035	73.8520
100	0.1037	92.1040

Tabela 18: Tabela ze średnimi badanymi wartościami dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz BEC oraz kodowaniem sumą kontrolną.

Rysunek 41: Wykresy pudełkowe BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz BEC oraz kodowaniem sumą kontrolną.

Rysunek 42: Histogram BER dla różnych długości wysyłanych wiadomości, z prawdopodobieństwem 0.1 na kanale BSC oraz BEC oraz kodowaniem sumą kontrolną.

7.6.4 Porównanie kosztów operacji

Rysunek 43: Porównanie ilości wysłanych pakietów w zależności od długości wiadomości oraz prawdopodobieństwa przekłamania

7.7 Obserwacje

Wraz ze wzrostem prawdopodobieństwa zakłamania bitu w trakcie przesyłu przez kanał znacząco zwiększa się wskaźnik BER otrzymanej wiadomości.

Zgodnie z oczekiwaniami, im większa ilość pakietów musiała zostać wysłana (im dłuższa wiadomość), tym więcej błędów zostało zaakceptowanych, w związku z czym wskaźnik BER zwiększa się wraz ze wzrostem długości wiadomości.

Zauważyć można również znaczną przewagę kodowania sumą kontrolną nad bitem parzystości w celu uzyskania mniej zakłamanej wiadomości. Dzieje się to jednak kosztem długości przesyłanego pakietu oraz ilości ponownego przesyłania pakietu.

8 Określenie właściwości modelowanego systemu

Na podstawie przedstawionych powyżej obserwacji powstały następujące wnioski:

Zalety ARQ:

- Mechanizmy wykrywania i korekcji błędów są dość proste w porównaniu z innymi technikami.
- Można zastosować znacznie prostszy sprzęt dekodujący w porównaniu z innymi technikami.

Wady ARQ:

- Medium lub kanał o wysokiej stopie błędów może powodować zbyt dużą transmisje ramek lub pakietów informacji.
- Wysoki poziom błędów w kanale może również prowadzić do utraty informacji, zmniejszając w ten sposób wydajność lub produktywność systemu.