

THE UNIVERSITY OF TEXAS AT AUSTIN

CS383C Numerical Analysis

HW07 Cholesky Factorization

Edited by LATEX

Department of Computer Science

STUDENT

Jimmy Lin

xl5224

COURSE COORDINATOR

Robert A. van de Geijn

UNIQUE NUMBER
53180

RELEASE DATE **Oct. 24 2014**

DUE DATE
Oct. 30 2014

TIME SPENT
2 hours

October 26, 2014

Exercises

Exercise 3.	Prove that $A = B^H B$ is HPD.	2
Exercise 4.	Show that diagonal elements are real and positive.	2
Exercise 14.	Implement Cholesky Factorization	3
Exercise 15.	Relationship of Cholesky Factorization and QR	3

Exercise 3. Prove that $A = B^H B$ is HPD.

To prove that $A = B^H B$ is HPD, we need to show both of the following:

 $\bullet \ A^H = A.$

Proof.

$$A^{H} = (B^{H}B)^{H} = B^{H}(B^{H})^{H} = B^{H}B = A$$
 (1)

• $\forall x \neq 0, \ x^H A x > 0.$

Proof. Let x be arbitrary non-zero vector in \mathbb{C}^n

$$x^{H}Ax = x^{H}B^{H}Bx = (Bx)^{H}Bx = ||Bx||_{2}^{2} > 0$$
(2)

Note that for $x \neq 0$, $Bx = \sum_{i} B_i x_i \neq 0$, otherwise B is not linearly independent columns. \Box

Since two properties above are proven, then we can conclude that

If $B \in \mathbb{C}^{m \times n}$ has linearly independent columns, then $A = B^H B$ is HPD.

Exercise 4. Show that diagonal elements are real and positive.

• diagonal elements of $A \in \mathbb{C}^{m \times m}$ are real.

Proof. Since A is HPD, then $A^H = A$. Hence, for diagonal elements $\theta_0, \theta_1, ..., \theta_{m-1}$, then

$$\forall i = 0, ..., m - 1, \ \theta_i^H = \theta_i \tag{3}$$

Let $\theta_i = x_i + y_i j$, where j denotes imaginary unit, then

$$\forall i = 0, ..., m - 1, -y_i = y_i \tag{4}$$

That tells us

$$\forall i = 0, ..., m - 1, \ y_i = 0 \tag{5}$$

Then it can be concluded that

all diagonal elements $\theta_0, \theta_1, ..., \theta_{m-1}$ are real. (all imaginary part is zero.)

• diagonal elements of $A \in \mathbb{C}^{m \times m}$ are positive.

Proof. Since $A \in \mathbb{C}^{m \times m}$ is HPD, then

$$\forall x \neq 0, \ x^H A x > 0 \tag{6}$$

Let $e_0, ... e_{m-1}$ denotes unit vector (whose imaginary part is zero) that spans through the whole \mathbb{C}^m . And let $\theta_0, \theta_1, ..., \theta_{m-1}$ denotes diagonal elements of HPD matrix A.

$$\forall i = 0, ..., m - 1, \ \theta_i = e_i^H A e_i > 0 \tag{7}$$

Note that the $e_i^H A e_i \neq 0$ since $e_i \neq 0$. Hence, it can be conclude that

all diagonal elements $\theta_0, \theta_1, ..., \theta_{m-1}$ are positive.

Exercise 14. Implement Cholesky Factorization

```
% Copyright 2014 The University of Texas at Austin
% For licensing information see
                http://www.cs.utexas.edu/users/flame/license.html
% Programmed by: Jimmy Lin
                linxin@gmail.com
function [ A_out ] = CHOL_unb( A )
  [ ATL, ATR, ...
   ABL, ABR ] = FLA_Part_2x2(A, ...
                               0, 0, 'FLA_TL' );
  while ( size( ATL, 1 ) < size( A, 1 ) )
                    A02, ...
    [ A00, a01,
      a10t, alpha11, a12t, ...
                  A22 ] = FLA_Repart_2x2_to_3x3 ( ATL, ATR, ...
                                                     ABL, ABR, ...
                                                     1, 1, 'FLA_BR');
    a01 = zeros(size(a01));
    A02 = zeros(size(A02));
    a12t = zeros(size(a12t));
    alpha11 = sqrt(alpha11);
    a21 = a21 / alpha11;
    A22 = A22 - tril (a21 * a21');
    [ ATL, ATR, ...
      ABL, ABR ] = FLA_Cont_with_3x3_to_2x2 ( A00, a01,
                                              a10t, alpha11, a12t, ...
                                                            A22, ...
                                              A20, a21,
                                              'FLA_TL' );
  end
  A_{\text{out}} = [ATL, ATR]
           ABL, ABR ];
```

return

Exercise 15. Relationship of Cholesky Factorization and QR

Proof. For matrix $B \in \mathbb{C}^{m \times n}$ with linearly independent columns, it has an unique QR factorization such that B = QR, where $Q \in \mathbb{C}^{m \times n}$ and $R \in \mathbb{C}^{n \times n}$. And then for HPD matrix A, we have

$$A = B^H B = (QR)^H QR = R^H Q^H QR = \underbrace{R^H}_{L} \underbrace{R}_{LH}$$
(8)