Topics we will discuss in this class

- Finite Difference Methods (First 10 weeks; 5620)
 - Steady state problems
 - initial problems
- Build your own simulation (Last 5 weeks; 5910)

Chapter 1: Finite Difference Approximation

Example: $\frac{dA}{dt} = kA, A(0) = A_0$

 $\frac{1}{A}dA = kdt \rightarrow ln|A| = kt + c_0$

 $A(t)=e^{kt+c_0}=c_1e^{kt}\to c_1=A_0$

 $A(t) = A_0 e^{kt}$

Example: $\frac{dP}{dt} = \alpha P - \beta P^2$, $P(0) = P_0$

Example - spring mass system: $\frac{d^2y}{dt^2}=\alpha\frac{dy}{dt}+ky=f(t), y(0)=y_0, \frac{dy}{dt}(0)=\nu_0$

Example: $y'' + \frac{P}{EI}y = 0, y(0) = 0, y(L) = 0$

This example has the solution: $\boxed{y(x) = c_1\cos(\lambda x) + c_2\sin(\lambda x)}, \\ assumingy(L) = c_2\sin(\lambda L) = 0, \\ c_2 = 0, \\ \sin(\lambda L) = 0, \\ \lambda L = n\pi.$

This means $y_n(x) = c_2 \sin(\frac{\pi n}{T} x)$

 $\begin{array}{l} \textit{Example - Heat equation: } \frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \\ u(x,0) = f(x), u(o,t) = g_1(t), u(',l) = g_2(l) \end{array}$

Example - Potential Equation: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \Delta u = f(x,y)$ This a BVP, 2nd order, partial diff eq.

Example - Conservation Laws: $\frac{\partial u}{\partial t} + \alpha \frac{\partial u}{\partial x} = 0$

 $u(x, o) = f(x), x \in \mathbb{R}$

Example - Cahn-Hilliard Equation: we just looked at the wikipedia page lol.

Definitions

- $\bullet \ f'(\alpha) \approx \frac{f(x) f(\alpha)}{x \alpha}.$ The difference quotient
- Increment Notation: $x a = h \to x = a + h \to f'(a) \approx \frac{f(a+h) f(a)}{h}$