Bases de datos distribuidas (dblinks)

Álvaro González Sotillo

14 de febrero de 2023

Índice

1. Introducción		1
2. Particiones de	los datos	2
$3. \; DBLink$		2
4. Referencias		4

1. Introducción

- \blacksquare Hasta ahora, la base de datos es un $\mathbf{SPOF}\ (single\ point\ of\ failure)$
- Para evitar este problema, las bases de datos se suelen distribuir
 - Se reparten los datos entre varios servidores
 - Los datos pueden estar o no replicados

1.1. Ventajas de la distribución

- Tolerancia a fallos
- Escalabilidad y balanceo de carga
 - CPU
 - Disco
- Posiblemente, mayor velocidad de lectura

1.2. Desventajas

- Mayor complejidad
 - Despliegue
 - Lógica de los programas clientes
 - ACID más difícil (aunque suele estar resuelto por los SGBD)
- Generalmente, escrituras más lentas

2. Particiones de los datos

- Horizontal
 - Las filas de una tabla se reparten entre servidores
- Vertical
 - Las columnas de una tabla se reparten entre servidores
- Mixta
 - Horizontal y vertical combinadas

2.1. Partición horizontal

FECHA	N	OMBRE	PADRE	Μ	ADRE	SI	ΓΙΟ
XXXXX	ххх уууууу		ZZZZ	w	wwwww		ntiago Apóstol
XXXXX	У.	уууууу	ZZZZ	W	www	Sa	ntiago Apóstol
FECHA NOMBRE PADRE MADRE SITIO				SITIO			
XXXX	х	уууууу	ZZZZ		wwwww	W	Almudena
XXXX	X	ууууууу	ZZZZ		wwwww	W	Almudena
FECHA	N	NOMBRE	PADRE	N	ADRE	SI'	TIO
XXXXX	У	ууууу	ZZZZ	W	wwww	Sa	grada Familia
XXXXX	V	VVVVVV	ZZZZ	w	wwww	Sa	grada Familia

- El registro eclesiástico se divide por parroquias
- La tabla completa se recupera con UNION

2.2. Partición vertical

DNI (pk) FACTURA CUENTAS DE BANCO HERENCIAS LOTERÍA ALQUILER

- Las facturas son personales.
- Las cuentas las conoce el banco
- El gestor maneja las herencias, alquileres y premios de lotería
- La información completa de las finanzas se recupera con un JOIN

3. DBLink

- Un servidor de Oracle hace de cliente de otro servidor
- Puede servir para particionado vertical/horizontal
- Las transacciones se coordinan entre todos los servidores de base de datos
 - A CID

3.1. Fichero tnsnames.ora

- Es el fichero que usan los *clientes* de Oracle
- Incluye todos los servidores conocidos por los clientes
- En \$ORACLE_HOME/network/admin/tnsnames.ora
- En este ejemplo:
 - XE : Nombre de la conexión
 - HOST : Nombre/IP del servidor
 - PORT : Puerto TCP de conexión
 - SERVICE_NAME : SID

3.2. Creación de dblink

■ Suponiendo una conexión de nombre B

```
Create database link LNK_DE_A_a_B
connect to USUARIO
identified by CONTRASEÑA
USING 'B';
```

• Referencia a tablas remotas:

```
select * from TABLA@LNK_DE_A_a_B;
```

■ Llamada a funciones/procedimientos remotos:

```
procedimiento@LNK_DE_A_a_B( parametro );
```

3.3. Cadena de conexión

- La cadena de conexión puede ser:
 - Un nombre de tnsnames.ora
 - Desde la versión 10.2, puede ser host:port/service
 - o Si el puerto es 1521, puede omitirse

```
Create database link LNK_DE_A_a_B
connect to USUARIO
identified by CONTRASEÑA
USING 'servidorB.com/XE';
```

3.4. Cerrar conexiones

- Cada usuario que utilice el dblink crea una conexión
- Se cierra automáticamente cuando el usuario cierre su conexión inicial
- \blacksquare Se puede forzar el cierre con

ALTER SESSION CLOSE DATABASE LINK linkname;

3.5. Ejercicio

SERVIDOR A	SERVIDOR B				
Crea el usuario DBLINKA	Crea el usuario DBLINKB				
Crea la tabla TABLAA(clave integer,	Crea la tabla TABLAB(clave integer,				
valor varchar(255))	valor varchar(255))				
Crea un <i>dblink</i> al otro servidor	Crea un dblink al otro servidor				
Crea un sinónimo para acceder a TABLAB sin	Crea un sinónimo para acceder a TABLAA sin				
el @dblink	el @dblink				
Crea una vista TABLATOTAL, con las filas de	Crea una vista TABLATOTAL, con las filas de				
TABLAA y TABLAB	TABLAA y TABLAB				

■ Las columnas de TABLATOTAL serán (usuario, clave, valor), donde usuario indica si la fila viene de DBLINKA o DBLINKB

4. Referencias

- Formatos:
 - Transparencias
 - PDF
 - EPUB
- Creado con:
 - Emacs
 - org-re-reveal
 - Latex
- Alojado en Github