МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №3

по дисциплине: Теория автоматов и формальных языков тема: «Регулярные языки и конечные распознаватели»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: ст. пр. Рязанов Юрий Дмитриевич

Лабораторная работа №3

Регулярные языки и конечные распознаватели Вариант 8

Цель работы: изучить основные способы задания регулярных языков, способы построения, алгоритмы преобразования анализа и реализации конечных распознавателей

ля,	алгоритмы преобразования, анализа и реализации конечных распознавателей.
1.	Язык L_1 в алфавите $\{0,1\}$, представляющий собой множество цепочек, в которых на предпоследнем месте стоит единица, задан грамматикой: $S \to A10$ $S \to A11$ $A \to 0A$ $A \to 1A$ $A \to \epsilon$
	Построить детерминированный конечный распознаватель языка L_1 .
	Преобразуем заданную грамматику к автоматной правосторонней. Сейчас она является КС-грамматикой. Приведём грамматику и устраним левую рекурсию. Лишних символов в грамматике нет. В грамматике есть ε -правило. Исключим его. $S \to A10$ $S \to A10$ $S \to A11$ $S \to A11$ $S \to A11$
	$A \rightarrow 0$
	$A \to 1A$ $A \to 1$
	Цепных правил в грамматике нет. Левой рекурсии в грамматике также нет.
	левой рекурсии в грамматике также нет.

Грамматика приведена, а также в ней нет левой рекурсии.

Преобразуем грамматику к такому виду, что каждое правило будет начинаться с терминала:

$S \rightarrow 0A10$
$S \rightarrow 1A10$
$S \rightarrow 010$
$S \rightarrow 110$
$S \rightarrow 0A11$
$S \rightarrow 1A11$
$S \rightarrow 011$
$S \rightarrow 111$
$A \rightarrow 0A$

 $A \rightarrow 1A$

 $A \rightarrow 0$ $A \rightarrow 1$ $S \rightarrow 10$ $S \rightarrow 11$

Преобразуем КС-грамматику к правосторонней:

 $S \rightarrow 0N_1$

 $S \rightarrow 1N_1$

 $S \rightarrow 010$

 $S \rightarrow 110$

 $S \rightarrow 0N_2$

 $S \rightarrow 1N_2$

 $S \rightarrow 011$

 $S \rightarrow 111$

 $A \rightarrow 0A$

 $A \rightarrow 1A$

 $A \rightarrow 0$

 $A \rightarrow 1$

 $S \rightarrow 10$

 $S \rightarrow 11$

 $N_1 \rightarrow 0N_1$

 $N_1 \rightarrow 1N_1$

 $N_1 \rightarrow 010$

 $N_1 \rightarrow 110$

 $N_2 \rightarrow 0N_2$

```
N_2 \rightarrow 1N_2
N_2 \rightarrow 011
N_2 \rightarrow 111
```

Исключим лишние символы:

 $S \rightarrow 0N_1$

 $S \rightarrow 1N_1$

 $S \rightarrow 010$

 $S \rightarrow 110$

 $S \rightarrow 0N_2$

 $S \rightarrow 1N_2$

 $S \rightarrow 011$

 $S \rightarrow 111$

 $S \rightarrow$

 $S \rightarrow 11$

 $N_1 \rightarrow 0N_1$

 $N_1 \rightarrow 1N_1$

 $N_1 \rightarrow 010$

 $N_1 \rightarrow 110$

 $N_2 \rightarrow 0N_2$

 $N_2 \rightarrow 1N_2$

 $N_2 \rightarrow 011$

 $N_2 \rightarrow 111$

Получили правостороннюю грамматику. Теперь преобразуем её к автоматной правосторонней грамматике. Введём нетерминалы: $N_3 \to 1$, $N_4 \to 0$, $N_5 \to 1N_3$, $N_6 \to 1N_4$, $N_7 \to \epsilon$ и выполним замену там, где это требуется:

 $S \rightarrow 0N_1$

 $S \rightarrow 1N_1$

 $S \rightarrow 0N_6$

 $S \rightarrow 1N_6$

 $S \rightarrow 0N_2$

 $S \rightarrow 1N_2$

 $S \rightarrow 0N_5$

 $S \rightarrow 1N_5$

 $S \rightarrow 1N_4$ $S \rightarrow 1N_3$

 $N_1 \rightarrow 0N_1$

 $N_1 \rightarrow 1N_1$

 $N_1 \rightarrow 0N_6$

 $N_1 \rightarrow 1N_6$

 $N_2 \rightarrow 0N_2$

 $N_2 \rightarrow 1N_2$

 $N_2 \rightarrow 0N_5$

$$\begin{split} N_2 &\rightarrow 1 N_5 \\ N_3 &\rightarrow 1 N_7 \\ N_4 &\rightarrow 0 N_7 \\ N_5 &\rightarrow 1 N_3 \\ N_6 &\rightarrow 1 N_4 \\ N_7 &\rightarrow \varepsilon \end{split}$$

Теперь можем построить распознаватель по КС-грамматике:

	<u> </u>							1
	S	N_1	N_2	N_3	N_4	N_5	N_6	N_7
1	$N_1, N_2, N_3, N_4, N_5, N_6$	N_1, N_6	N_2, N_5	N_7		N_3	N_4	
0	N_1, N_2, N_5, N_6	N_1, N_6	N_2, N_5		N_7			

Получение недетерминированного конечного распознавателя:

Распознаватель недетерминированный, преобразуем его к детерминированному. ϵ -переходов в распознаввателе нет.

Преобразуем недетерминированный конечный распознаватель в детерминированный:

	{S}	$\{N_1, N_2, \ N_3, N_4, \ N_5, N_6\}$	$\{N_1, N_2, N_5, N_6\}$	$\{N_1, N_2, \ N_3, N_4, \ N_5, N_6, \ N_7\}$	$\{N_1, N_2, N_5, N_6, N_7\}$
1	$\{N_1, N_2, N_3, N_4, N_5, N_6\}$	$\{N_1, N_2, N_3, N_4, N_5, N_6, N_7\}$	$\{N_1, N_2, N_3, N_4, N_5, N_6\}$	$\{N_1, N_2, N_3, N_4, N_5, N_6, N_7\}$	$\{N_1, N_2, N_3, N_4, N_5, N_6\}$
0	$\{N_1, N_2, N_5, N_6\}$	$\{N_1, N_2, N_5, N_6, N_7\}$	$\{N_1, N_2, N_5, N_6\}$	$\{N_1, N_2, N_5, N_6, N_7\}$	$\{N_1, N_2, N_5, N_6\}$

	+			1	1
	S1	S2	S3	S4	S5
1	S2	S4	S2	S4	S2
0	S3	S5	S3	S5	S3

Переход к детерминированному распознавателю

Построили детерминированный конечный распознаватель языка L_1 .

2. Язык L_2 в алфавите $\{0,1\}$, представляющий собой множество цепочек, в которых на последнем месте стоит единица, задан регулярным выражением: (0+1)*1

Построить детерминированный конечный распознаватель языка L_2 . Для начала построим конечный недетерминированный распознаватель языка:

Данный распознаватель языка не является детерминированным, так как он содержит ε-переходы. Преобразуем данный конечный распознаватель языка в детерминированный:

	+			1
	S1	S2	S3	S4
1		S2	S4	
0		S2		
3	S2	S3		

Удалим є-переходы:

 ϵ -замыкания: $\epsilon(S1) = \{S1, S2, S3\}, \, \epsilon(S2) = \{S2, S3\}, \, \epsilon(S3) = \{S3\}, \, \epsilon(S4) = \{S4\}$

	\	\		1
	ε(S1)	ε(S2)	ε(S3)	ε(S4)
	{S1, S2, S3}	{S2, S3}	{S3}	{S4}
1	$\varepsilon(S2), \varepsilon(S4)$	$\varepsilon(S2), \varepsilon(S4)$	ε(S4)	
0	ε(S2)	ε(S2)		

	+	+		1
	S1	S2	S3	S4
1	S2, S3, S4	S2, S3, S4	S4	
0	S2, S3	S2, S3		

Преобразуем недетерминированный конечный распознаватель в детерминирован-

ный:

IIDIII,							
	{S1, S2}	{S2, S3}	{S2, S3, S4}				
1	{S2, S3, S4}	{S2, S3, S4}	{S2, S3, S4}				
0	{S2, S3}	{S2, S3}	{S2, S3}				

Обозначим множества состояний как S'1, S'2, S'3...

S'1 обозначим как начальное состояние, солгасно алгоритму, а S'3 обозначим как допускающее состояние, так как множество $\{S2, S3, S4\}$ включает в себя допускающее состояние S4.

	+		1
	S'1	S'2	S'3
1	S'3	S'3	S'3
0	S'2	S'2	S'2

Переход к детерминированному распознавателю

Построили детерминированный конечный распознаватель языка L_2 .

3. Построить минимальный детерминированный конечный распознаватель языка L_3 в алфавите $\{0,1\}$, представляющий собой множество цепочек, в которых хотя бы на одной из последних двух позиций стоит единица.

Можно отметить, что язык L_1 в алфавите $\{0,1\}$ содержит цепочки, которые оканчиваются на 10 или 11. Язык не эквивалентен L_3 , так как он не учитывает цепочки, которые содержат только 1 или оканчиваются на 01. А язык L_2 в алфавите $\{0,1\}$ содержит цепочки, которые содержат на последней позиции 1 в том числе и цепочку 1, а значит учитывает ещё и цепочки, оканчивающиеся на 01. Язык не эквивалентен L_3 , так как он не учитывает цепочки, которые заканчиваются на 10. Однако если объединим языки, можем получить язык, который содержат все необходимые из обоих языков цепочки, а значит и получим искомый язык L_3 .

	+			1	1	<u> </u>		1
	S1	S2	S3	S4	S5	S'1	S'2	S'3
1	S2	S4	S2	S4	S2	S'3	S'3	S'3
0	S3	S5	S3	S5	S3	S'2	S'2	S'2

Исходный недетерминированный распознаватель

Преобразуем недетерминированный распознаватель в детерминированный:

	{S1, S'1}	{S2, S'3}	{S4, S'3}	{S5, S'2}	{S3, S'2}
1	{S2, S'3}	{S4, S'3}	{S4, S'3}	{S2, S'3}	{S2, S'3}
0	{S3, S'2}	{S5, S'2}	{S5, S'2}	{S3, S'2}	{S3, S'2}

	\	1	1	1	
	S1	S2	S3	S4	S5
1			S3		
0	S5	S4	S4	S5	S5

Переход к детерминированному распознавателю

Построили минимальный детерминированный конечный распознаватель языка L_3 .

4. Написать программу компиляционного типа для реализации минимального детерминированного конечного распознавателя языка L_3 .

```
MESSAGES = {
    -1: "Отвергнуть, последовательность пуста",
   -2: "Отвергнуть, невалидный входной символ",
    -3: "Отвергнуть, слишком короткая цепочка",
    -4: "Отвергнуть, последние два символа не содержат 1",
    0: "Допустить"
def S1(input):
   if len(input) == 0:
        return -1
   if input[0] == '1':
        return S2(input[1:])
    elif input[0] == '0':
        return S3(input[1:])
    else:
        return -2
def S2(input):
   if len(input) == 0:
        return -3
   if input[0] == '1':
        return S4(input[1:])
   elif input[0] == '0':
        return S5(input[1:])
    else:
        return -2
```

```
def S3(input):
   if len(input) == 0:
        return -4
   if input[0] == '1':
       return S4(input[1:])
   elif input[0] == '0':
       return S3(input[1:])
   else:
       return -2
def S4(input):
   if len(input) == 0:
       return 0
   if input[0] == '1':
        return S4(input[1:])
   elif input[0] == '0':
        return S5(input[1:])
        return -2
def S5(input):
   if len(input) == 0:
       return 0
   if input[0] == '1':
       return S4(input[1:])
   elif input[0] == '0':
       return S3(input[1:])
   else:
        return -2
def L3validator(input):
    result = S1(input)
   print(input, MESSAGES[result])
    return result
```

5. Написать программу интерпретационного типа для реализации минимального детерминированного конечного распознавателя языка L_3 .

```
MESSAGES = {
    0: "Отвергнуть, последовательность пуста", # -1
    3: "Отвергнуть, невалидный входной символ", # -2
    1: "Отвергнуть, слишком короткая цепочка", # -3
    2: "Отвергнуть, последние два символа не содержат 1", # -4
    4: "Допустить", # 0
}
```

```
PERMITTING = [3, 4]

MATRIX = {
    "1": [1, 3, 3, 3, 3],
    "0": [2, 4, 2, 4, 2]
}

def L3validator(input):
    input_origin = input
    S = 0
    while len(input) > 0 and S >= 0:
        S = MATRIX[input[0]][S]
        input = input[1:]

if S in PERMITTING:
    S = 4

print(input_origin, MESSAGES[S])
    return S
```

- 6. Подобрать наборы тестовых данных так, чтобы в процессе тестирования сработал каждый переход конечного распознавателя.
 - (а) 10001101 уникальные тестируемые переходы отмечены красным
 - (b) 11 уникальные тестируемые переходы отмечены зелёным
 - (с) 01 уникальные тестируемые переходы отмечены голубым

Тесты для компиляционного варианта программы:

```
# Тестовые данные для всех переходов
assert L3validator("10001101") == 0
assert L3validator("11") == 0
assert L3validator("01") == 0
```

Тесты для интерпретационного варианта программы:

```
# Тестовые данные для всех переходов
assert L3validator("10001101") == 4
assert L3validator("01") == 4
```

- 7. Подобрать наборы тестовых данных так, чтобы в процессе тестирования распознаватель закончил обработку цепочек в каждом состоянии конечного распознавателя.
 - (a) <пустая строка> состояние S1
 - (b) 1 состояние S2
 - (c) 0 состояние S3
 - (d) 11 состояние S4
 - (e) 10 состояние S5

Тесты для компиляционного варианта программы:

```
# Тестовые данные для всех состояний

assert L3validator(""") == -1

assert L3validator("0") == -3

assert L3validator("0") == -4

assert L3validator("11") == 0

assert L3validator("10") == 0
```

Тесты для интерпретационного варианта программы:

```
# Тестовые данные для всех состояний

assert L3validator("") == 0

assert L3validator("1") == 1

assert L3validator("0") == 2

assert L3validator("11") == 4

assert L3validator("10") == 4
```

8. Выполнить тестирование программ для реализации минимального детерминированного конечного распознавателя языка L_3 .

Результаты выполнения компиляционного варианта программы:

```
10001101 Допустить
11 Допустить
01 Допустить
0 твергнуть, последовательность пуста
1 Отвергнуть, слишком короткая цепочка
0 Отвергнуть, последние два символа не содержат 1
11 Допустить
10 Допустить
Process finished with exit code 0
```

Результаты выполнения интерпретационного варианта программы:

```
10001101 Допустить
11 Допустить
01 Допустить
0 твергнуть, последовательность пуста
1 Отвергнуть, слишком короткая цепочка
0 Отвергнуть, последние два символа не содержат 1
11 Допустить
10 Допустить
Process finished with exit code 0
```

Оба варианта программы завершились без ошибок, а значит проверки в проверках истинные, следовательно программа написана верно.

Вывод: в ходе лабораторной работы изучили основные способы задания регулярных языков, способы построения, алгоритмы преобразования, анализа и реализации конечных распознавателей.