Brückenkurs – Gesammelte Mitschriften

Tag 3, 06.10.2016 - Tag 9, 14.10.2016

1 Die natürlichen Zahlen und das Induktionsprinzip

1.1 Beispiel

Von Tag 2:

Satz

$$\Sigma_{k=1}^{n} k = \frac{1}{2} \cdot n \cdot (n+1)$$

Folgerung (Korollar)

$$\Sigma_{k=1}^n (2 \cdot k - 1) = n^2$$

Beweis

$$\sum_{k=1}^{n} (2k-1) = \sum_{k=1}^{2n} k - \sum_{k=1}^{n} 2k$$

Mit Formel aus Satz auf die Formel angewendet:

$$\frac{1}{2} \cdot 2 \cdot n \cdot (2n+1) - 2 \cdot \frac{1}{2} n(n+1) = 2n^2 + n - n^2 - n = n^2$$

Es wird zuerst die Summe aller Zahlen von 1 bis 2n addiert, danach die Summe aller geraden Zahlen abgezogen Hier auch implizite Verwendung der Assoziativität und Kommutivität der Addition.

1.2 Weiteres Beispiel

Satz Sei $x \neq 1$. Dann gilt: $\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$ ("Geometrische Summe")

Beispiel

$$1 + 2 + 4 + \dots 2^{63} = \frac{1 - 2^{64}}{1 - 2} = 2^{64} - 1 = 18.446.744.073.709.551.615$$

Beweis 1 Ansatz der vollständigen Induktion:

$$n=0 \quad x^0=1; \frac{1-x^2}{1-x}=1$$
 Formel stimmt also für $n=0$

 $n \implies n+1$

$$\sum_{k=0}^{n+1} x^k = x^{n+1} + \sum_{k=0}^n x^k = (I.V)x^{n+1} + \frac{1 - x^{n+1}}{1 - x} = \frac{x^{n+1}(1 - x) + 1 - x^{n+1}}{1 - x} = \frac{1 - x^{n+2}}{1 - x}$$

Beweis 2

$$\Sigma_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \Leftrightarrow (1 - x) \Sigma_{k=0}^{n} x^{k} = 1 - x^{n+1} = \Sigma_{k=0}^{n} x^{k} - \Sigma_{k=0}^{n} x^{k+1} = \Sigma_{k=0}^{n} x^{k} - \Sigma_{k=1}^{n+1} x^{k} = x^{0} - x^{n+1} = 1 - x^{n$$

Für $x \neq 1$. q.e.d.

1.3 Äquivalenz- und Induktionsprinzip

Satz Jede nicht-leere Teilmenge von \mathbb{N}_0 besitzt ein kleinstes Element. (" \mathbb{N}_0 ist wohlgeordnet")

Beweis Sei $M \subseteq \mathbb{N}_0$ ohne kleinstes Element. Wir wollen zeigen dass: $M = \emptyset$, d.h. $P = \{n \in \mathbb{N}_0 | 0, 1, \dots, n \notin M\} = \mathbb{N}_0$ Hierbei Anwendung des Peano-Axioms:

 $0 \in P$ Wäre $0 \notin P$, so wäre $0 \in M$, insbesondere kleinstes Element von M. Dies ist ein Widerspruch, also $0 \in P$.

 $n \in P \implies n+1 \in P$ Wäre $n+1 \notin P$. Dann wäre eine der Zahlen $0, \ldots, n+1 \in M$. Da aber nach Voraussetzung $n \in P$, ist $0, \ldots, n \notin M$. Also $n+1 \in M$. Insbesondere ist n+1 kleinstes Element. Widerspruch, also ist $n+1 \in P$.

2 Die ganzen und die rationalen Zahlen

2.1 Relation

Eine **Relation** auf einer Menge M ist eine Teilmenge $R \subseteq M \times M$ Wir schreiben $x \sim y :\Leftrightarrow .(x,y) \in R$ für $x,y \in M$.

Beispiel $x \leq y$ auf \mathbb{N}_0 :

[Skizze: Punkte auf Gitter, $x, y \leq 4 \in \mathbb{N}_0$. Oberhalb und auf der Diagonale blaue Menge.]

Definition Eine Relation auf M heißt Äquivalenzrelation, falls sie:

- 1. **reflexiv** ist, d.h. $x \sim x$ für alle $x \in M$.
- 2. symmetrisch ist, d.h. $x \sim y \implies y \sim x$ für alle $x, y \in M$.
- 3. **transitiv** ist, d.h. $x \sim y \wedge y \sim z \implies x \sim z$ für alle $x, y, z \in M$.

Beispiel Die Gleichheitsrelation auf einer Menge ist eine Äquivalenzrelation

Beispiel Sei M eine Menge von Menschen. Die Relation "ist verwand mit" (im Sinne von "gehört zur gleichen Familie") ist eine Äquivalenzrelation.

Beispiel Sei M eine Menge von Menschen. Die Relation "hat im gleichen Monat Geburtstag" ist eine Äquivalenzrelation. Dabei ist $M = M_1 \cup M_2 \cup \ldots \cup M_{12}$. Die M_1 heißen die Äquivalenzklassen der Relation und stehen hier für die Monate.

Beispiel Relation \sim auf Z mit $x \sim y :\Leftrightarrow x-y$ gerade. Ist reflexiv und symmetrisch. ist transitiv? $x \sim y, y \sim z \implies x-y$ gerade, y-z gerade. $\implies (x-y)+(y-z)=x-z$ gerade $\implies x\sim z$ Ist also Äquivalenzrelation.

 $\ddot{\mathbf{A}}$ quivalenzklassen In diesem Beispiel: $Z = \{GeradeZahlen\} \cup \{UngeradeZahlen\}$

Definition Sei \sim eine Relation auf einer Menge M. Für $x \in M$ heißt dann $[x]_{(\sim)} := \{y \in M | x \sim y\}$ die Äquivalenzklasse zu x.

Beispiel $[Peter]_{verwandt} = PetersFamilie$

Satz Es gilt für alle Äquivalenzrelationen auf eine Menge M mit $x, y \in M$:

- 1. $x \in [x]$
- $2. \ x \sim y \implies [x] = [y]$
- 3. $[x] \neq [y] \implies [x] \cap [y] = \emptyset$

Beweis

- 1. $x \in [x] \Leftrightarrow x \sim x \text{ ok}$
- 2. Sei $x \sim y$ Zu **zeigen**: [x] = [y]. $z \in [x] \Leftrightarrow x \sim z \implies \substack{x \sim y \\ y \sim x} y \sim z \Leftrightarrow z \in [y]$
- 3. Wir zeigen: $[x] \cap [y] \neq \emptyset \implies [x] = [y]$ Es existiert also $z \in [x] \cap [y]$, d.h. $z \in [x]$ und $z \in [y]$, d.h. $x \sim z$, $y \sim z \implies x \sim y \implies x] = [y]$.

q.e.d.

Definition x heißt **Repräsentant** seiner Äquivalenzklasse [x]: $M = \bigcup [x]$. $\{x \text{ Repräsentantensystem}\}$

Definition Sei R eine Äquivalenzrelation auf einer Menge M. Dann heißt $^M/_R := \{[x]_R | x \in R\}$ der **Quotioent von M nach R**.

2.2 Konstruktion der ganzen Zahlen

Erklärung ganzer Zahlen als Paar zweier natürlicher Zahlen. Dabei Subtraktion der Zahlen. Beispiel: Kontostand zusammengesetzt aus Einzahlungen und Abhebungen.

 $(Einzahlungen, Abhebungen) \sim (Einzahlungen', Abhebungen') \Leftrightarrow E + A' = E' + A$ Auf der Menge der Paare (n,m) natürlicher Zahlen definieren wir die Relation $(n,m) \sim (a,b) : \Leftrightarrow n+b=m+a$ Es ist \sim eine Äquivalenzrelation: Ist reflexiv und symmetrisch. Transitivität:

$$(n,m) \sim (a,b) \wedge (a,b) \sim (u,v) \implies n+b = m+a \wedge a + v = b+u \implies u+b+a+v = m+a+b+u \implies n+v = m+u \implies (n,m) \sim (a,b) \wedge (a,b) \sim (u,v) \implies n+b = m+a \wedge a + v = b+u \implies u+b+a+v = m+a+b+u \implies n+v = m+u \implies (n,m) \sim (a,b) \wedge (a,b) \wedge (a,b) \sim (a,b) \wedge (a,b) \wedge$$

Die Äquivalenzklasse zum Paar (n, m) heißt [n, m]

Beispiel $[3, 2] \sim [5, 4]$

Definition

$$Z = \mathbb{N}_0 \times \mathbb{N}_0 /_{\sim} = \{ [n, m] \mid n, m \in \mathbb{N}_0 \}$$

Jeder natürlichen Zahl n entspricht eine ganze Zahl $[n,0]. \to \mathbb{N}_0 \subseteq Z$ $n \mapsto [n,0].$

Negative Zahlen -[n, m] = [m, n]

Beispiel $n \in \mathbb{N}_0$; -n = -[n, 0] = [0, n] Ist diese Relation wohldefiniert? -[7, 2] = [2, 7]

Zu zeigen $[n,m] \sim [a,b] \Longrightarrow [m,n] \sim [b,a]$ Begründung: Wenn $[n,m] \sim [a,b] \Leftrightarrow n+b=m+a \Leftrightarrow m+a=n+b \Leftrightarrow [m,n] \sim [b,a]$

Addition [n, m] + [a, b] := [n + a, m + b]

Multiplikation $[m, n] \cdot [a, b] := [ma + nb, na + mb]$

2.3 Rationale Zahlen

Auf der Menge $Z \times N_{>0}$ betrachten wir die Relation $(a,s) \sim (b,t) \Leftrightarrow a \cdot t = b \cdot s$

Rechnung \sim ist Äquivalenzrelation. Die Äquivalenzklasse zu (a,s) bezeichnen wir mit $\frac{a}{s}$. $\mathbb{Q}:=\mathbb{Z}^{\times\mathbb{N}_0}/_N$

Addition

$$\frac{a}{s} + \frac{b}{t} := \frac{at + bs}{st}$$

$$\frac{b'}{t'} = \frac{b}{t} \Leftrightarrow tb' = t'b \implies \frac{at + bs}{st} = \frac{at' + b's}{st'} \Leftrightarrow t'b = tb'$$

2.4 Binomialkoeffizienten

Sei x eine (reelle) Zahl, $k \ge 0$ natürliche Zahl. Dann heißt $\binom{x}{k} := \frac{x \cdot (x-1) \cdot \cdots \cdot (x-k+1)}{k!}$ der **Binomialkoeffizient** "x über k".

Spezialfall Sei $0 \le k \le n$ eine natürliiche Zahl. Dann ist $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

3 Binomialkoeffizienten

 $k \in \mathbb{N}_0 : {x \choose k} = \frac{x \cdot (x-1) \cdot (x-2) \dots (x-k+1)}{k!}$ Dabei gilt:

$$\binom{n}{0} = 1, \quad \binom{0}{0} = 1, \quad \binom{0}{k} = 0$$

Spezialfall $0 \le k \le n \in \mathbb{N}_0$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \in \mathbb{Q}$$

Durch Experiment: $\in \mathbb{N}_0$

Aufgabe $\binom{x}{k} = \binom{x-1}{k-1} + \binom{x-1}{k}$ für $k \ge 1$ [Beispiel für rekursive Berechnung von $\binom{5}{3}$]

$$\binom{5}{3} = \binom{4}{2} + \binom{4}{3} = \binom{3}{1} + \binom{3}{2} + \binom{3}{2} + \binom{3}{3} = \dots = \binom{0}{\dots} + \dots + \binom{0}{\dots}$$

Satz Seien $k, n \in \mathbb{N}_0$. Dann ist die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge M durch $\binom{n}{k}$ gegeben.

Beweis mit Induktion über n n=0: $M=\emptyset$. Anzahl der k-elementigen Teilmengen von $M=\begin{cases} 1 & \text{für } k=0 \\ 0 & \text{für } k>0 \end{cases}$ n=>n+1: Sei $M=\{a_0,a_1,\ldots,a_n\}$ n-1-elementigen Teilmengen von $M=\{a_0,a_1,\ldots,a_n\}$ n-1 n-1

Sei $L \subseteq M$ eine k-elementige Teilmenge. Dann ist entweder $L = a_0 \cup L'$ mit $L' \subseteq (k-1)$ -elementig oder $L \subseteq M'$, k-elementig. und alle k-elementigen Teilmengen $L \subseteq M$ entstehen eindeutig auf diese Weise.

Damit ist die Anzahl der k-elementigen Teilmengen von $M \stackrel{IV}{=} \binom{n}{k-1} + \binom{n}{k} \stackrel{Aufg.}{=} \binom{n+1}{k}$ Fall k = 0 trivial, daher k > 0. q.e.d.

3.1 Anwendung

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^{n-k} \cdot y^k$$

Beispiel

$$(x+y)^2 = \binom{2}{0}x^2y^0 + \binom{2}{1}x^1y^1 + \binom{2}{2}x^0y^2 = x^2 + 2xy + y^2$$
$$(x+y)^3 = \binom{3}{0}x^3y^0 + \binom{3}{1}x^2y^1 + \binom{3}{2}x^1y^2 + \binom{3}{3}x^0y^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

Begründung

$$(x+y)^n = (x+y)(x+y)\dots(x+y) = \Sigma n$$
-fache Produkte = $\sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$

Verständnisfrage: Was ist $\sum_{k=0}^{n} {n \choose k}$? = $|P(M)| = 2^n$ = Anzahl der Teilmengen einer n-elementigen Menge

4 Der euklidische Algorithmus

Im Folgenden: $d, n \in \mathbb{N}_0$

4.1 Definition

Die Zahl d teilt n, geschrieben d|n, falls $n = b \cdot d$ für ein $b \in \mathbb{Z}$.

Beispiele 2|100, 11|165, -13|169, 5X21.

4.2 Regeln

- 1. 1|n, n|n, d|0
- $2. \ 0|d \implies d = 0, \ d|1 \implies d = \pm 1$
- 3. $d|n, n|m \implies d|m$
- 4. $d|a,d|b \implies d|(ax+bx)$ für alle $x,y \in \mathbb{Z}$
- 5. $bd|bn, b \neq 0 \implies d|n$
- 6. $d|n, n \neq 0 \implies |d| \leq |n|$ Jedes $n \neq 0$ hat nur endlich viele Teiler; insbesondere 1.
- 7. $d|n, n|d \implies d = \pm n$

Beweis von 4. Es gelte also d|a,d|b d.h. a=sd,b=td für $s,t\in\mathbb{Z}$ Damit ist $ax+by=sdx+tdy=(sx+ty)\cdot d$, also d|ax+by

Konsequenz Aus diesen Regeln ergibt sich, dass jede Zahl endlich viele Teiler hat, also haben je zwei $a, b \in \mathbb{Z}$ einen größten gemeinsamen Teiler, ggT(a, b), wobei ggT(0, 0) := 0.

Es gilt

- ggT(a,b)|a, ggT(a,b)|b.
- $d|a, d|b \implies d|ggT(a,b).$

Beispiel qqT(11,14) = 1, qqT(21,14) = 7, qqT(110,140) = 10, qqT(210,140) = 70.

4.3 Satz: Division mit Rest

 $a, b \in \mathbb{Z}, b \neq 0$. Dann existieren eindeutige $q, r \in \mathbb{Z}$ mit a = bq + r mit $0 \leq r < |b|$.

Beweis $R = \{a - bq \mid q \in \mathbb{Z}\} \cap \mathbb{N}_0$ ist nicht leer. Diese besitzt ein kleinstes Element, welches das gesuchte r = a - bq für das gewünschte q ist.

Bleibt zu zeigen: r < |b|. Dies folgt aus der Minimalität von $r \in R$. q.e.d.

Folgerung Seien $a, b \in \mathbb{Z}$, d = ggT(a, b). Dann $(d) := \{d \cdot n \in \mathbb{Z}\} = \{ax + by | x, y \in \mathbb{Z}\} =: (a, b)$. Insbesondere läßt sich d in der Form d = ax + by für gewisse $x, y \in \mathbb{Z}$ schreiben. (Beispiel: $ggT(9, 6) = 3 = 9 \cdot 1 + 6 \cdot (-1)$)

Beweis " \supseteq " $ax + by \in (d) \Leftrightarrow d|(ax + by)$ (wg. 4. und d|a, d|b)

" \subseteq " Es reicht zu zeigen, dass $d \in (a, b)$. Der Fall a = 0 ist einfach: Also sei $a \neq 0$.

Die Menge $M := ax + by | x, y \in \mathbb{Z} \cap \mathbb{N}_{\geq 1}$ ist nicht leer; damit besitzt sie ein kleinstes Element $m \geq 1$. Wir wissen schon (4.), dass d|m. Division mit Rest liefert a = mq + r, $0 \leq r < m$.

Annahme r > 0. Dann ist $r = a - mq \in M$! Widerspruch! Also r = 0, also a = mq, daher m|a.

Analog (mit b anstelle von a) erhalten wir m|b, also ist m gemeinsamer Teiler von a und b. Damit $m \le d$. Zusammen mit $d \le m$ folgt d = m. Somit $d \in (a, b)$.

$$m \mid a, m \mid b \stackrel{iv}{\Longrightarrow} m \mid ggT(a, b) \square$$

4.4 Praktische Bestimmung des ggT

Verbleibende Zahl 3 = ggT(117, 33).

4.5 Satz über den euklidischen Algorithmus

Seien $a, b \in \mathbb{N}_0, a \ge b \ne 0$.

5 Primzahlen

5.1 Definition

Ein $p \in \mathbb{N}_0$ heißt **Primzahl**, wenn sie genau zwei positive Teiler besitzt.

5.2 Lemma von Euklid

Seien p eine Primzahl, $a, b \in \mathbb{Z}$. Dann: $p \mid (a \cdot b) \implies p \mid a \land p \mid b$

5.2.1 Beweis

Sei d = ggT(p, a). Dann d|p. Nach Voraussetzung ist dann d = 1 oder d = p.

Fall 1: d = p Dann p|a, da p = ggT(p, a).

Fall 2: d = 1 Damit ist 1 = px + ay mit $x, y \in \mathbb{Z}$. $\stackrel{b}{\Longrightarrow} b = bpx + aby \stackrel{p|ab}{\Longrightarrow} p|b$

5.3 Fundamentalsatz der Arithmetik

Satz Jede natürliche Zahl $n \geq 1$ besitzt eine eindeutige Primfaktorzerlegung ("PFZ"), d.h. es existieren eindeutig bestimmte Zahlen $\nu_p(n) \in \mathbb{N}_0$ mit

$$n = \prod_{p \in \mathbb{P}} p^{\nu_p(n)}$$

Beispiel $60 = 2^2 \cdot 3^1 \cdot 5^1 \cdot 7^0 \dots$ hier bspw.: $\nu_3(60) = 1$

Beweis

Existenz Sei $M = \{n \in \mathbb{N} \text{ mit } n \geq 1 \text{ ohne } PFZ\}$. Zu zeigen: $M = \emptyset$. Sei $n \in M$. Dann ist jedenfalls n keine Primzahl, also existieren $2 \leq a, b < n$ mit n = ab. Damit muss $a \in M \vee b \in M$. Insbesondere ist n in M nicht kleinstes Element.

Also hat M kein kleinstes Element und $M = \emptyset$.

Eindeutigkeit Sei $n = p_1 \cdot p_2 \dots p_r = q_1 \cdot q_2 \dots q_s$ mit p_i, q_j Primzahlen. $p_1 \mid p_1 \dots p_r \implies p_1 \mid q_1 \dots q_s \stackrel{Euklid}{\Longrightarrow} p_1 \mid q_j$ für ein j. Da p_1, q_j Primzahlen $\implies p_1 = q_j$. Dann kürze mit $p_1 (= q_j)$ und mache mit p_2 weiter, ...

6 Primzahlen

Satz (Euklid) Es gibt undendlich viele Primzahlen.

Beweis Seien $p_0, \dots p_{n-1}$ Primzahlen.

Dann können wir eine Primzahl p_n konstruieren mit $p_n \notin \{p_0, \dots, p_{n-1}\}$: Dazu betrachte: $e := p_0 \dots p_{n-1} + 1 = q_1 \dots q_s$ mit Primzahlen q_1, \dots, q_s (PFZ)

Da die P-i jeweils e nicht teilen (Rest 1!), die q_j aber e teilen, sind die q_j von p_i verschieden. Damit ist $p_n := q_i$ die gesuchte Primzahl.

Beispiel

Primzahlsatz Sei $\pi(x)$ die Anzahl der Primzahlen $\leq x$. Dann gilt: $\pi(x) \approx \frac{x}{\ln x}$, d.h.

$$\lim_{x \to \infty} {\pi(x) / x / \log x} = 1$$

$$\pi(1) = 0, \pi(2) = 1, \pi(3) = 2, \pi(4) = 2, \pi(5) = 3, \pi(7, 5) = 4, \cdots$$

Riemannsche Vermutung: $\sum_{n=1}^{\infty} \frac{1}{n^s} = \zeta(s)$ Sei p_n die n-te Primzahl $(p_0 = 2, p_1 = 3, \cdots)$.

Behauptung $p_n < e^{2^n}$ (Konvention ¹)

Beweis per Induktion über n n=0

$$p_0 = 2; e^{2^0} = e^1 = e > 2$$

 $n \implies n+1$

$$p_{n+1} \overset{\text{Euklid}}{\leq} p_0 \dots p_n + 1 = e^{2^0 + 2^1 + \dots + 2^n} + 1 = e^{2^{n+1} - 1} + 1 = e^{2^{n+1}} \left(\frac{1}{e} + \frac{1}{e^{2^{n+1}}}\right) < e^{2^{n+1}} \quad \Box$$

7 Algebraische Strukturen

7.1 Definition: Gruppe

Eine Gruppe ist eine Menge G zusammen mit einem ausgezeichneten Element $e \in G$ und einer Verknüpfung $\circ: G \times G \to G, (g,h) \mapsto g \circ h$, so dass folgende Axiome gelten:

- (G1) Die Verknüpfung ist assoziativ: $g \circ (h \circ k) = (g \circ h) \circ k$ für $g, h, k \in G$
- (G2) Das Element e ist neutrales Element: $e \circ g = g = g \circ e$ für $g \in G$
- (G3) Jedes Element besitzt ein Inverses: Für alle $g \in G$ existiert ein $h \in G$ mit $g \circ h = e = h \circ g$

Die Gruppe heißt kommutativ (oder abelsch), falls zusätzlich gilt:

(G4) Die Verknüpfung ist kommutativ: $g \circ h = h \circ g$ für alle $g, h \in G$.

7.1.1 Beispiele

Beispiel
$$G = \mathbb{Z}, e = 0 \in \mathbb{Z}, \circ = + : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

(G1)
$$g + (h + k) = (g + h) + k$$
 für alle $g, h, k \in \mathbb{Z}$

(G2)
$$0+g=g=g+0$$
 für alle $g\in\mathbb{Z}$

(G3)
$$g + (-g) = 0 = (-g) + g$$
 für alle $g \in \mathbb{Z}$

(G4)
$$g + h = h + g$$

 ${}^{1}(a^{b})^{c} = a^{b \cdot c}, a^{b^{c}} =: a^{b^{c}}$

Beispiel $(\mathbb{Q}, 0, +)$ ist genauso eine abelsche Gruppe.

Beispiel $(\mathbb{N}_0, 0, +)$ ist keine Gruppe.

Beispiel $(\mathbb{Z}, 1, \cdot)$ ist **keine Gruppe**, da G3 nicht erfüllt (z.B. existiert kein $n \in \mathbb{Z}mit2 \cdot n = 1$).

Beispiel $(\mathbb{Q}, 1, \cdot)$ ist keine Gruppe, da G3 nicht erfüllt (Es existiert kein $x \in \mathbb{Q}$ mit $0 \cdot x = 1$)

Beispiel $(\mathbb{Q}*,1,\cdot)$, wobei $\mathbb{Q}*:=\mathbb{Q}\setminus 0$ ist eine Gruppe

Beispiel $(\mathbb{Q} \setminus \mathbb{Z}, 1, \cdot)$ ist alles, aber keine Gruppe

7.1.2 Aussage

Sei G eine Gruppe mit zwei neutralen Elementen e, e'. Dann gilt e = e'.

Beweis $e = e \circ e' = e'$, da e neutral und e' neutral. \square

Bemerkung Analog zeigt sich, dass das Inverse zu einem Element eindeutig bestimmt ist.

7.1.3 Aussage

Sei G eine Gruppe. Seien $a, b \in G$ mit Inversen a^{-1} bzw. $b^{-1} \in G$. Dann ist $b^{-1} \cdot a^{-1}$ invers zu $(a \circ b)$ =: $(a \circ b)^{-1}$

Beweis

$$(b^{-1} \circ a^{-1}) \circ (a \circ b) = b^{-1} \circ (a^{-1} \circ a) \circ b = b^{-1} \circ b = e$$

Analog

$$(a \circ b) \circ (b^{-1} \circ a^{-1}) = \dots = e$$

Schreibweise Auch in abstrakten Gruppen schreiben wir häufig \cdot statt \circ für die Verknüpfung und 1 für das neutrale Element. Abkürzung $ab := a \cdot b, a^{-1} :=$ Inverses zu a.

Aussage Sei G eine (multiplikativ geschriebene) Gruppe. Für $a \in G$ gilt dann $(a^{-1})^{-1} = a$

Beweis
$$a \cdot a^{-1} = 1 = a^{-1} \cdot a$$
 \square

Beispiel [Gleichseitiges Dreieck mit gegen den Urzeigersinn nummerierten Ecken 1 - 3] Symmetrien in der Ebene: $\left\{\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}\right\} =: G$ mit e, τ, σ .

Seien $g, h \in G$. Dann sei $g \cdot h$ die Hintereinanderausführung von h und danach g.

Beispiel

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

 $\tau \circ \sigma = e$

Gruppentafel:

0.1 o.P P 0.1.101.									
$a \setminus b$	e	σ	τ						
e	e	σ	τ						
σ	σ	τ	e						
τ	τ	e	σ						

 $\bf Beispiel \quad [$ Gleichseitiges Dreieck mit gegen den Urzeigersinn nummerierten Ecken 1 - 3] Symmetrien im Raum:

$$\left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}$$

mit e, τ , σ , α_1 , α_2 , α_3 .

 $\alpha_1 \circ \sigma = \alpha_2, \ \sigma \circ \alpha_1 = \alpha 3 \neq \alpha_2 = \alpha 1 \circ \sigma$ Also nicht abelsch / kommutativ.

$$\alpha_1^2 = \alpha_1 \circ \alpha_1 = e \implies \alpha_1^{-1} = \alpha_1$$

Definition: symmetrische Gruppe Die **symmetrische Gruppe in** n **Buchstaben** ist die Gruppe der Permutationen von $1, \ldots, n$, geschrieben S_n , d.h. $S_n = \left\{ \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma_1 & \sigma_2 & \cdots & \sigma_n \end{pmatrix} | (\sigma_1, \cdots, \sigma_n) \text{ Permutationen von } (1, \cdots, n) \right\}$

Beispiel {Dreiecks-Symmetrie im Raum} = S_3

7.1.4 Definition: Untergruppe

Eine Teilmenge $U \subseteq G$ einer Gruppe G heißt **Untergruppe**, falls (U1) $e \in U$, (U2) $g, h \in U \implies g \circ h \in U$, (U3) $g \in U \implies g^{-1} \in U$

Beispiel {Dreiecks-Symmetrien in der Ebene} \subseteq {Dreiecks - SymmetrienimRaum}

Beispiel $\mathbb{Z} \subseteq (\mathbb{Q}, 0, +)$ ist Untergruppe

Beispiel $\mathbb{N}_0 \subseteq (\mathbb{Z}, 0, +)$ ist keine Untergruppe.

7.1.5 Definition: Kommutative Ringe

Ein **kommutativer Ring** ist eine Menge R zusammen mit zwei ausgezeichneten Elementen 0 und $1 \in R$ und zwei Verknüpfungen $+: R \times R \mapsto R$ und $\cdot: R \times R \mapsto R$ so dass gilt:

- (R1) $\forall x, y, z \in R : x + (y + z) = (x + y) + z$
- (R2) $\forall x \in R : x + 0 = x = 0 + x$
- (R3) $\forall x \in R \; \exists \; y \in R : x + y = 0 = y + x$
- (R4) $\forall x, y \in R : x + y = y + x$
- (R5) $\forall x, y, z \in R : x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- (R6) $\forall x \in R : x \cdot 1 = x = 1 \cdot x$
- (R7) $\forall x, y \in R : x \cdot y = y \cdot x$
- (R8) $\forall x, y, z \in R : x \cdot (y+z) = x \cdot y + x \cdot z \wedge (y+z) \cdot x = y \cdot x + u \cdot x$

Beispiel $(\mathbb{Z},0,1,+,\cdot)$

Beispiel $(\mathbb{Q}, 0, 1, +, \cdot)$

Beispiel

Menge der Polynome bis X aus \mathbb{Z} $\mathbb{Z}[X] = \{a_n X^n + \cdots + a_1 X + a_0 \mid a_0, \cdots, a_n \in \mathbb{Z}\}$

Beispiel $(\mathbb{Z}[X], 0, 1, +, \cdot)$ $(R[X], 0, 1, +, \cdot)$ falls R kommutativer Ring.

Bemerkung Ist $(R, 0, 1, +, \cdot)$ ein kommutativer Ring, so ist (R, 0, +) eine abelsche Gruppe.

Definition Ist R ein kommutativer Ring, so $R* := \{x \in R \mid \exists y \in R : x \cdot y = 1 = y \cdot x\}$ Es ist $(R*, 1, \cdot)$ eine kommutative Gruppe, die **Einheitengruppe von** R.

Beispiel
$$\mathbb{Z}^* = \{\pm 1\}, \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$$

Definition: Körper Ein Körper K der Menge ist ein kommutativer Ring für den Multiplikation und Addition abelsch definiert sind. Somit gelten für ihn die Axiome der abelschen Gruppen (K, +, 0) und $(K, \cdot, 1)$ und das Distributivgesetz. Außerdem ist definiert: $K* = K \setminus \{0\}$

Beispiel \mathbb{Q} und \mathbb{R} sind Körper.

Beispiel $\mathbb{Q}(\sqrt{2}) := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{R}$ ist ein Unterkörper.

$$0 = 0 + 0\sqrt{2}$$
, $1 = 1 + 0\sqrt{2}$

$$\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{(a+b\sqrt{2})(a-b\sqrt{2})} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} - \frac{a}{a^2-2b^2} =$$

7.4 Beispiele für Ringe

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}\mathbb{Z}[X], \mathbb{Q}[X], \mathbb{R}[X]$ (alle nullteilerfrei)

Beispiel Sei M eine Menge. Sei $R := P(M) = \{N \mid N \subseteq M\}$.

Wir definieren: $A + B := (A \cup B) \setminus (A \cap B), A \cdot B = A \cap B$

[Venn-Diagramm aus Menge M mit A + B und $A \cdot B$ markiert]

Sei $0 := \emptyset$, 1 := M. Dann ist $(R = P(M), 0, 1, +, \cdot)$ ein kommutativer Ring.

Es gilt dann: -A = A, insbesondere $A + A = 2 \cdot A = 0$

Bemerkung Dieser Ring ist für $|M| \ge 2$ nicht **nullteilerfrei**:

Seien $A, B \in \mathbb{R}; A \neq \emptyset; B \neq \emptyset; A \cap B = \emptyset$. Dann gilt: $A\dot{B} = 0$, aber $A \neq 0, B \neq 0$.

Anmerkung Im Ring \mathbb{Z} gibt es immer eine eindeutige Primfaktorzerlegung. Für $\mathbb{Q}[X]$ gibt es irreduzible Polynome, die sich nicht als Produkt anderer Polynome schreiben lassen:

 $x^{2} - 1 = (x - 1)(x + 1)$ ist reduzibel.

 $X^2 + 1$ hingegen ist irreduzibel.

 $x^3 - 1 = (x - 1)(x^2 + x + 1)$ wurde in zwei irreduzible Polynome zerlegt.

8 Rechnen mit Restklassen

8.1 Satz ("9er Probe")

9 | $\sum_{j=0}^{n} a_j \cdot 10^j \Leftrightarrow 9 | \sum_{j=0}^{n} a_j$, wobei $a_j \in \mathbb{Z}$.

Beispiel $9|123456789 \Leftrightarrow 9|(1+2+3+4+5+6+7+8+9) \Leftrightarrow 9|45$

8.2 Definition: Kongruenz

Sei $n \in \mathbb{Z}$. Sind dann $a, b \in \mathbb{Z}$, so heißen a und b kongruent modulo m, falls m | (a - b), d.h. der Rest der Division von a beziehungsweise b durch m ist gleich soweit $m \neq 0$. Wir schreiben dann $a \equiv b(m)$.

Beispiel $5 \equiv 7(2), 8 \equiv 3(5), 9 \equiv -1(10), 4 \equiv 14(1), -3 \equiv -3(0)$

Proposition \equiv (m) ist eine Äquivalenzrelation.

Beweis

$$a \equiv a(m); a \equiv b(m) \Rightarrow b \equiv a(m)$$

$$a \equiv b(m), b \equiv c(m) \Rightarrow a \equiv c(m): m|(a-b), m|(c-b) \Rightarrow \exists \, d, e \in \mathbb{Z}: a-b=dm, c-b=e, \Rightarrow m|(c-a) = b(m), b \equiv c(m) \Rightarrow a \equiv c(m): m|(a-b), m|(c-b) \Rightarrow \exists \, d, e \in \mathbb{Z}: a-b=dm, c-b=e, \Rightarrow m|(c-a) = b(m)$$

8.3 Definition: Restklassen

Die Äquivalenzklassen modulo m heißen Restklassen modulo \mathbf{m} .

Beispiel m=3

$$\begin{bmatrix}
0 \\
]_3 = \{\cdots, -3, 0, 3, 6, \cdots\} \\
[1]_3 = \{\cdots, -2, 1, 4, 7, \cdots\} = [4]_3
 \end{bmatrix}$$

Proposition $a \equiv a'(m), b \equiv b'(m)$. Dann gilt:

$$1. \ a+b \equiv a'+b'(m)$$

2.
$$a \cdot b \equiv a' \cdot b'(m)$$

Beweis

- (a+b) (a'+b') = (a-a') + (b-b') ist durch m teilbar, also 1.
- $a \cdot b a' \cdot b' = a \cdot b a' \cdot b + a' \cdot b a' \cdot b' = (a a') \cdot b + a'(b b')$ ist durch m teilbar, also 2.

8.4 Der Körper \mathbb{F}_3

Damit können wir definieren: $[a]_m + [b]_m := [a+b]_m$ und $[a]_m \cdot [b]_m := [a \cdot b]_m$. Die Mege der Restklassen modulo m $^{\mathbb{Z}}/_{\equiv_{(m)}}$ bezeichnen wir auch mit $^{\mathbb{Z}}/_{(m)}$ Es ist $(^{\mathbb{Z}}/_{(m)}, [0]_m, [1]_m, +, \cdot)$ ein kommutativer Ring, der **Restklassenring modulo m**.

Beispiel m=3

+	[0]	[1]	[2]		[0]	[1]	[2]
[0]	[0]	[1]	[2]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[0]	[1]	[0]	[1]	[2]
[2]	[2]	[0]	[1]	[2]	[0]	[2]	[1]

Dieser Körper wird \mathbb{F}_3 genannt.

8.5 Beweis (9er Probe)

$$9|\sum_{j=0}^{n} a_j \cdot 10^j \Leftrightarrow \sum_{j=0}^{n} a_j \cdot 10^j \equiv 0(9) \Leftrightarrow \sum_{j=0}^{n} a_j \cdot 1^j \equiv 0(9) \Leftrightarrow 9|\sum_{j=0}^{n} a_j$$

9 Konvergente und divergente Folgen

Beispiele für Folgen

- $1, 3, 5, 7, 9, 11, 13, \cdots$
- $1, 4, 9, 16, 25, \cdots$
- $1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, \cdots$

Definition Eine **Folge** a (reeller Zahlen) ist eine Abbildung $a : \mathbb{N}_0 \to \mathbb{R}, n \mapsto a_n$ Für diese Abbildung schreiben wir auch $(a_n)_n \in \mathbb{N}_0$.

Beispiele

- $a_n = n : (a_n)_{n \in \mathbb{N}_0} = (0, 1, 2, 3, \cdots)$
- $b_n = \frac{1}{n} : (b_n)_{n \in \mathbb{N}_{>1}} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \cdots)$
- $c_n = \frac{(-1)^n}{n} : (c_n)_{n \in \mathbb{N}_{\geq 1}} = (-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{2}, \cdots)$

Beispiel: Fibonacci-Folge

$$(F_n)_{n\geq 0}$$
, wobei $F_0=0, F_1=1, F_n+2=F_n+F_{n+1}$
 $\leadsto (F_n)_{n\geq 0}=(0,1,1,2,3,5,8,13,21,34,\cdots)$
 $x^2=2y^2+1:(3,2);(17,12);(99,70),\cdots$
 $\to \text{Folge: } \frac{3}{2},\frac{17}{12},\frac{99}{70},\cdots\leadsto\sqrt{2}$

Definition Eine Folge $(a_n)_{n\geq 0}$ heißt **konvergent mit Grenzwert** a, falls $\forall \varepsilon > 0 \,\exists\, n_0 : \forall n \geq n_0 : |a_n - a| < \varepsilon$ Wir schreiben dann: $\lim_{n\to\infty} a_n = a$

Beispiel $(b_n) = (\frac{1}{n})$. $\lim_{n \to \infty} \frac{1}{n} = 0$. Zu untersuchen: $|\frac{1}{n} - 0| = \frac{1}{n} < \varepsilon$. Sei $\varepsilon > 0$ vorgegeben. Dann wähle $n_0 \in \mathbb{N}_{\geq 1}$ mit $\frac{1}{n_0} < \varepsilon$. Für $n \geq n_0$ gilt dann: $\frac{1}{n} \leq \frac{1}{n_0} < \varepsilon$

Definition Eine Folge (a_n) , für die kein a mit $\lim_{n\to\infty} a_n = a$ existiert, heißt **divergent**.

Beispiel $(a_n) = (-1)^n : 1, -1, 1, -1, \cdots$ divergiert. Annahme: a wäre Grenzwert. Dann gäbe es insbesondere zu $\varepsilon = \frac{1}{2}$ ein n_0 mit $|a_n - a| < \frac{1}{2}$ für $n \ge n_0$. Damit $|a_{n_0} - a| + |a_{n_0+1} - a| < 1$.

9.1 Einschub: Dreiecksungleichung

$$\forall x, y \in \mathbb{R} : |x + y| \le |x| + |y|$$

Beweis

$$x \le |x|, y \le |y| \Rightarrow x + y \le |x| + |y|$$
$$-x \le |x|, -y \le |y| \Rightarrow -(x + y) \le |x| + |y|$$
$$\implies |x + y| \le |x| + |y| \quad \Box$$

Fortsetzung

Nach Dreiecks-Ungleichung: $|a_{n_0} - a + (a - a_{n_0+1})| < 1$, also $|a_{n_0} - a_{n_0+1}| < 1$ Widerspruch! Die Funktion divergiert also.

9.2

Proposition Sind (a_n) und (b_n) Folgen mit $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ so gilt:

1.
$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

2.
$$\lim_{n\to\infty} (a_n \cdot b_n) = (\lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n)$$

3.
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$$
, falls $b\neq 0$

Beisbiei

$$\lim_{n \to \infty} \frac{2n^2 - 3}{n^2 + n + 1} = \lim_{n \to \infty} \frac{2 - \frac{3}{n^2}}{1 + \frac{1}{n} + \frac{1}{n^2}} = \frac{\lim_{n \to \infty} (2 - \frac{3}{n^1})}{\lim_{n \to \infty} (1 + \frac{1}{n} + \frac{1}{n^2})} = \frac{\lim_{n \to \infty} 2 + \lim_{n \to \infty} (-\frac{3}{n^2})}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n^2}} = \frac{2 + 0}{1 + 0 + 0} = 2$$

Beweis zu 1. Zu zeigen: $\forall \varepsilon > 0 \exists n_0 : \forall n \geq n_0 : |a_n + b_n - a - b| < \varepsilon$ Sei $\varepsilon > 0$ vorgegeben.

Da $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$ existieren n_1, n_2 mit $\forall n \geq n_1 : |a_n - a| < \frac{\varepsilon}{2}$ und $\forall n \geq n_2 : |b_n - b| < \frac{\varepsilon}{2}$ Für $n \geq \max(n_1, n_2) = n_0 : |a_n + b_n - a - b| \leq |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Beispiel: Fibonacci-Folge, die Zweite

 $F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, 5, 8, 13, 21, \cdots$

$$\frac{F_{n+1}}{F_n}: \frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \cdots \xrightarrow{?} \phi := \frac{1}{2}(1+\sqrt{5})$$

Satz (Bichet) Es gilt: $F_n = \frac{1}{\sqrt{5}}(\varphi^n - \overline{\varphi}^n)$, wobei $\overline{\varphi} := \frac{1}{2}(1 - \sqrt{5})$

Korollar

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \varphi$$

Beweis

$$\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\lim_{n\to\infty}\frac{\varphi^{n+1}-\overline{\varphi}^{n+1}}{\varphi^n-\overline{\varphi}^n}=\lim_{n\to\infty}\frac{\varphi}{1}=\varphi$$

Die Folge $(x^k)_{k \in \mathbb{N}_0}$ konvergiert für |x| < 1 gegen 0.

Beweis Zu betrachten: Abstand x^k zu 0 für große $k \to |x^k|$ Wir müssen $|x^k - 0| = |x|^k$ abschätzen. Ohne Beschränkung der Allgemeinheit sei $0 \le x < 1$.

Da x < 1, ist $\frac{1}{x} = 1 + y$ für y > 0. Damit ist $\frac{1}{x^n} = (1 + y)^n = 1 + 1 + \binom{n}{2}y^2 + \ldots + \binom{n}{n}y^n \ge 1 + n \cdot y$ Also $x^n \le \frac{1}{1 + n \cdot y} < \frac{1}{n \cdot y}$ Ist also $\varepsilon > 0$ vorgegeben, so wähle $n_0 \ge \frac{1}{\varepsilon y}$. Für alle $n \ge n_0$ ist dann $|x^n| < \varepsilon_0$

Fibonacci-Satz $\varphi := \frac{1}{2}(1+\sqrt{5}), \overline{\varphi} := \frac{1}{2}(1-\sqrt{5}).$ Dann gilt: $F_n = \frac{1}{\sqrt{5}}(\varphi^n - \overline{\varphi}^n)$

Beweis Es gilt: $\varphi^2 = \varphi + 1$ und $\overline{\varphi}^2 = \overline{\varphi} + 1$, also $X^2 - X - 1 = (X - \varphi)(X - \overline{\varphi})$

Dann Induktion über n:

$$\mathbf{n} = \mathbf{0}$$
: $F_0 = 0 \stackrel{\checkmark}{=} \frac{1}{\sqrt{5}} (\varphi^0 - \overline{\varphi}^0)$

$$\mathbf{n=1}: F_1 = 1 \stackrel{\checkmark}{=} \frac{1}{\sqrt{5}} (\varphi^1 - \overline{\varphi}^1)$$

$$\mathbf{n, n+1} \rightarrow \mathbf{n+2}:$$

$$F_n + F_{n+1} \stackrel{IV}{=} \frac{1}{\sqrt{5}} (\varphi^n - \overline{\varphi}^n) + (\varphi^{n+1} - \overline{\varphi}^{n+1}) = \frac{1}{\sqrt{5}} \left(\varphi^n (1 + \varphi) - \overline{\varphi}^n (1 + \overline{\varphi}) \right) = \frac{1}{\sqrt{5}} (\varphi^n \varphi^2 - \overline{\varphi}^n \overline{\varphi}^2) = \frac{1}{\sqrt{5}} (\varphi^{n+2} - \overline{\varphi}^{n+2}) \quad \Box$$

9.4Heron-Verfahren

Sei
$$a_0 = 1, a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n})$$

 $a_0 = 1; a_1 = \frac{3}{2}; a_2 = \frac{17}{12} = 1, 41\overline{6}; a_3 = \frac{577}{408} = 1, 414215...$

Vermutung Die Folge $(a_n)_{n\geq 0}$ konvergiert gegen $\sqrt{2}=1,414213562...$

Beweisskizze Wir zeigen unter der Annahme, dass die Folge konvergiert, dass $a := \lim_{n \to \infty} a_n = \sqrt{2}$: $a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{2}(a_n + \frac{2}{a_n}) = \frac{1}{2}((\lim_{n \to \infty} a_n) + \frac{2}{\lim_{n \to \infty} a_n}) = \frac{1}{2}(a + \frac{2}{a})$ $\implies 2a^2 = a^+2 \implies a^2 = 2 \stackrel{a>0}{\implies} a = \sqrt{2}$

Aufgabe Finde ein Verfahren zur Berechnung von $\sqrt{13}$.

Unendliche Reihen und Dezimalbrüche

Sei (a_k) eine Folge. Dann heißt $s_n := \sum_{k=0}^n a_k = a_0 + a_1 + \ldots + a_n$ die n-te Partielsumme zur Folge (a_k) . Der Grenzwert $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \sum_{k=0}^n a_k = \sum_{k=0}^\infty a_k = a_0 + a_1 + a_2 + a_3 + \ldots$ heißt die **Reihe** zur

Im Falle, dass der Grenzwert gar nicht existiert, sagen wir, die Reihe divergiere.

Satz Für |x| < 1 gilt: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ ("Geometrische Reihe")

Beispiel
$$x = \frac{1}{2}$$

 $\sum_{n=0}^{\infty} (\frac{1}{2})^n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \stackrel{\text{Satz}}{=} \frac{1}{1 - \frac{1}{2}} = 2$

Beweis Schon bekannt:
$$\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$$
.
Damit ist $\sum_{k=0}^{\infty} x^k = \lim_{n \to \infty} \frac{1-x^{n+1}}{1-x} = \frac{1-\lim_{n \to \infty} x^{n+1}}{1-x} = \frac{1-0}{1-x} = \frac{1}{1-x}$

Beispiel $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ ("harmonische Reihe") konvergiert nicht (in \mathbb{R}):

$$\frac{1}{3} + \frac{1}{4} \ge \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
$$\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \ge \frac{4}{8} = \frac{1}{2}$$
$$\frac{1}{9} + \dots + \frac{1}{16} \ge \frac{8}{16} = \frac{1}{2}$$

Wir sehen: Die Folge der Partialsummen ist unbeschränkt.

Warnung $\lim_{k\to\infty} a_k = 0 \stackrel{\text{i. allg.}}{\Rightarrow} \sum_{k=0}^{\infty} a_k$ konvergiert.

Satz $\sum_{k=0}^{\infty} a_k$ konvergiert in $\mathbb{R} \implies \lim_{k \to \infty} a_k = 0$

Beweis Sei $a := \sum_{k=0}^{\infty} a_k$. Sei $\varepsilon > 0$ vorgegeben. Dann existiert ein n_0 , so dass $|\sum_{k=0}^{n-1} a_k - a| < \frac{\varepsilon}{2}$ für alle $n \geq n_0$.

$$|a_n| = |\sum_{k=0}^n a_k - \sum_{k=0}^{n-1} a_k| = |(\sum_{k=0}^n a_k - a) - (\sum_{k=0}^{n-1} a_k - a)| \le |\sum_{k=0}^n a_k - a| + |\sum_{k=0}^{n-1} a_k - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 für $n \ge n_0$.

10 Zahlen als konvergente Reihen

Jede reelle Zahl α ist konvergente Reihe: $\alpha = \sum_{k=0}^{\infty} a_k \cdot 10^{-k}$, wobei $a_0 \in \mathbb{Z}; a_k = \{0, \dots, 9\}$ für k > 0.

Beispiel
$$\pi = 3 + 1 \cdot 10^{-1} + 4 \cdot 10^{-2} + 1 \cdot 10^{-3} + \ldots = 3,141\ldots$$

Warnung 1,00000...=0,99999... Die Dezimaldarstellung ist im Zweifelsfall nicht eindeutig.

Satz Die Reie α beschreibt genau dann eine rationale Zahl, wenn die Folge der a_k (also die Dezimalbruchdarstellung) periodisch ist.

Beispiel
$$0,142857142857... = 0, \overline{142857}$$
 ist rational $(=\frac{1}{7})$ $0,5=0,5\overline{0}$ ist rational $(=\frac{1}{2})$ $0,123456789101112131415...$ ist irrational (da nicht periodisch)

Beweis
$$\Longrightarrow$$
: Sei $\alpha = \frac{u}{v}$ eine rationale Zahl: $u \in \mathbb{Z}$; $v \in \mathbb{N}_{>0}$
Bsp: $\frac{3}{7} = 0, \overline{428571}$ (Beispiel mit schriftlicher Division an der Tafel)

Bei der schriftlichen Division tauchen höchstens v viele Reste auf, das heißt die Dezimalbruchdarstellung von α hat ist periodisch mit der Periodelänge höchstens v.

$$\Leftarrow=$$
: Sei α periodisch, etwa $\alpha=a_0,\ a_1\ a_2\ \overline{a_3}\ \overline{a_4}\ \overline{a_5}$
Dann ist $\alpha=a+a_110^{-1}+a_210^{-2}+(100a_3+10a_4+a_5)\cdot(10^{-5}+10^{-8}+10^{-11}+\ldots)^{-2}$

Beispiel
$$0, 121212... = \frac{12}{100} \cdot \frac{100}{99} = \frac{12}{99} = \frac{4}{33}$$

10.0.1 Die Eulersche Zahl

Sei
$$x \in \mathbb{R}$$
. Dann sei $exp(x) := \sum_{n=0}^{\infty} = \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$

$$\frac{2(10^{-5} + 10^{-8} + 10^{-11} + \dots) = 10^{-5}(1 + 10^{-3} + 10^{-6} + \dots)}{(10^{-5} + 10^{-8} + 10^{-11} + \dots)}$$

Bemerkungen

- \bullet In der Analysis wird die Konvergenz für alle x gezeigt.
- Ebenfalls wird dort $exp(x) = e^x$)

Die Zahl $e:=exp(1)=\sum_{n=0}^{\infty}\frac{1}{n!}=1+1+\frac{1}{2}+\frac{1}{6}+\ldots=2,7182818284\ldots$ heißt **eulersche Zahl**.

Satz e ist irrational.

Beweis Annahme: $e = \frac{a}{b}$; $a, b \in \mathbb{Z}$; b > 0. Sei $m \ge b$ eine ganze Zahl. Dann b|m!.

Also $\alpha := m! (e - \sum_{n=0}^{m} \frac{1}{n!}) = a \frac{m!}{b} - \sum_{n=0}^{m} \frac{m!}{n!} \in \mathbb{Z}.$

Aber:

$$\alpha = \sum_{n=m+1}^{\infty} \frac{m!}{n!} \leq \sum_{n=m+1}^{\infty} \frac{m!}{m! \cdot (m+1)^{n-m}} = \frac{1}{m+1} \cdot \sum_{k=0}^{\infty} \frac{1}{(m+1)^k} = \frac{1}{m+1} \cdot \frac{1}{1 - \frac{1}{m+1}} = \frac{1}{m}$$

Widerspruch! $\stackrel{0<\alpha<1}{\Longrightarrow} \alpha$ kann nicht als ganze Zahl geschrieben werden.

11 Abzählbarkeit und Überabzählbarkeit

Sei $f: M \to N$ eine Abbildung³.

Definition f heißt

- 1. **injektiv**, falls $\forall x, y \in M : (f(x) = f(y) \Rightarrow x = y)$
- 2. surjektiv, falls $\forall z \in N \exists x \in M : f(x) = z$
- 3. bijektiv, falls f *injektiv* und *surjektiv* ist.

Definition Zwei Mengen M und N heißen **gleichmächtig**, falls eine Bijektion $f: M \Rightarrow N$ existiert.

Eine Menge M heißt **abzählbar**, wenn sie gleichmächtig zu \mathbb{N}_0 ist.

Eine unendliche, nicht abzählbare Menge heißt überabzählbar.

Beispiel \mathbb{N}_0 ist abzählbar. $(0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 2, 3 \mapsto 3, \ldots)$

Beispiel $\mathbb Z$ ist abzählbar. $(0\mapsto 0,1\mapsto 1,-1\mapsto 2,2\mapsto 3,-2\mapsto 4,\ldots)$

Exkurs: Gedankenexperiment – **Hilberts Hotel** Hotel mit unendlich vielen Zimmern, alle Zimmer sind belegt. Ein Gast kommt hinzu. Kann dieser ein Zimmer bekommen? Ja: Der Portier fordert alle Gäste auf, in das nächste Zimmer zu ziehen.

Beispiel \mathbb{Q} ist abzählbar: $0, \frac{1}{1}, -\frac{1}{1}, \frac{2}{1}, -\frac{2}{1}, \frac{1}{2}, -\frac{1}{2}, \dots$

Satz (Cantor) \mathbb{R} ist überabzählbar.

Beweis $\,$ Annahme: \mathbb{R} ist abzählbar. Dann gibt es eine Liste aller reeller Zahlen.

$$\alpha^{(0)} = a_0^{(0)}, a_1^{(0)} a_2^{(0)} a_3^{(0)} a_4^{(0)} \dots$$

$$\alpha^{(1)} = a_0^{(1)}, a_1^{(1)} a_2^{(1)} a_3^{(1)} a_4^{(1)} \dots$$

$$\alpha^{(2)} = a_0^{(2)}, a_1^{(2)} a_2^{(2)} a_3^{(2)} a_4^{(2)} \dots$$

:

In Dezimaldarstellung ohne Neunerperiode.

Dann betrachte die reelle Zahl $\beta = b_0$, $b_1b_2b_3\ldots$, wobei wir die b_i s so wählen, dass $b_i \neq a_i^{(i)}$

Dann taucht β in der Liste gar nicht auf.

Somit Widerspruch!: \mathbb{R} ist überabzählbar.

Dieses Vorgehen heißt Cantorsches Diagonalargument.

 $^{^3\}mathrm{Widerspricht}$ nicht, dass ein Element aus Nnicht oder mehrfach zugeordnet wird

12 Die komplexen Zahlen

 $\mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

Beispiel $X^2 + 10X - 144 = 0$

Lösungsansatz Quadratische Ergänzung

$$X^2 + 2 \cdot 5 \cdot X + 5^2 - 5^2 - 144 = 0 \Leftrightarrow (X + 5)^2 = 169 \Leftrightarrow X + 5 = \pm \sqrt{169} = \pm 13 \Leftrightarrow X = -5 \pm 13 = -18, 8$$

Allgemein $X^2 + pX + q = 0$

Lösung
$$\Leftrightarrow X^2 + pX + (\frac{p}{2})^2 - (\frac{p}{2})^2 + q = 0 \Leftrightarrow (X + \frac{p}{2})^2 - (\frac{p}{2})^2 + q = 0 \Leftrightarrow (X + \frac{p}{2})^2 = (\frac{p}{2})^2 - q \Leftrightarrow X + \frac{p}{2} = \pm \frac{1}{2} \sqrt{p^2 - 4q} \Leftrightarrow X = -\frac{p}{2} \pm \frac{1}{2} \sqrt{p^2 - 4q}$$

Definition $\Delta := p^2 - 4q$ heißt die **Diskriminante** der Gleichung / des quadratischen Polynoms. Drei Fälle, jeweils in \mathbb{R} :

- 1. Fall: $\Delta > 0$: 2 (verschiedene) Lösungen
- 2. Fall: $\Delta = 0$: 1 Lösungen
- 3. Fall: $\Delta < 0$: Keine Lösungen

[Darstellung: Funktion $X^2 + pX + q$ in Koordinatensystem für $\Delta = 0, \Delta < 0$ und $\Delta > 0$]

Vergleiche $X^2 - 2 = 0$ hat in \mathbb{Q} keine Lösung, da 8 kein Quadrat in \mathbb{Q} ist. $X^2 + 1 = 0$ hat in \mathbb{R} keine Lösung, da -4 kein Quadrat in \mathbb{R} .

12.1 Die Imaginäre Einheit

Wir suchen einen Körper \mathbb{C} , in dem wir $X^2 + 1 = 0$ lösen können. Damit muss ein $i \in \mathbb{C}$ existieren mit $i^2 = -1$, die sogenannte **imaginäre Einheit**.

Angenommen, ein solches \mathbb{C} existiert. Sind dann $a, b \in \mathbb{R}$, so ist $a + b \cdot i \in \mathbb{C}$.

12.2 Rechnen in \mathbb{C}

Addition
$$(a + b \cdot i) + (c + d \cdot i) = (a + c) + (b + d)i$$

Multiplikation $(a+bi) \cdot (c+di) = ac + adi + cbi + bd \cdot i^2 = (ac - bd) + (ad + bc)i$

Die Menge der Ausdrücke der Form $a+bi; a,b \in \mathbb{R}$, wobei $i^2=-1$ bildet einen kommutativen Ring, der \mathbb{R} umfasst.

Multiplikative Inversen
$$\frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$
, wobei $a \neq 0b \neq 0$ Die Rechnung zeigt, dass $(a+bi)^{-1}$ existiert, nämlich $(a+bi)^{-1} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$

Satz Die Menge $\mathbb{C} := \{a + bi | a, b \in \mathbb{R}\}$, wobei $i^2 = -1$, bildet einen Oberkörper von \mathbb{R} den Körper der komplexen Zahlen.

Warnung \mathbb{C} ist kein angeordneter Körper⁵: Angenommen, es gibt eine Anordnung, die mit den arithmetischen Operationen verträglich ist.

Fall i > 0: $\implies i^2 > 0 \implies -1 > 0 \implies 1 < 0$ Widerspruch zu "Quadrate sind nicht negativ" Fall i < 0: $\implies (-i)^2 > 0 \implies$ Ebenfalls Widerspruch

12.3 Komplexe Zahlenebene

[Darstellung: Ebene komplexer Zahlen statt Zahlenstrahl. Betrag der komplexen Zahl ist Abstand vom Ursprung]

 $^{^4}bdi^2 = -bd$, da qua Definition $i^2 = -1$

⁵Das heißt: In \mathbb{C} : Wenn a < b, c < d gilt **nicht** a + c < b + d

Definition Ist $z = a + bi \in \mathbb{C}$; $a, b \in \mathbb{R}$, so heißt $|z| := \sqrt{a^2 + b^2}$ der **Betrag von** z.

Proposition

1.
$$|z| \ge 0$$

2.
$$|z| = 0 \Leftrightarrow z = 0$$

Aufgabe $|z+w| \leq |z| + |w|$ für alle $z, w \in \mathbb{C}$.

Proposition $|z \cdot w| = |z| \cdot |w|$ für alle $z, w \in \mathbb{C}$.

Beweis
$$(a+bi)\cdot(c+di) = ac - bd + (ad+bc)i \implies |(a+bi)(c+di)|^2 = (ac-bd)^2 + (ad+bc)^2 = |a+bi|^2 \cdot |c+di|^2 = (a^2+b^2)\cdot(c^2+d^2)$$

12.4 Alternative Darstellung

Eine komplexe Zahl z = a + bi lässt sich auch in der Form $z = r(\cos \varphi + i \sin \varphi)$ schreiben. Hierbei ist $r \in \mathbb{R}_{\geq 0}$ der **Betrag** |z| von z und $\varphi \in \mathbb{R}$ heißt das **Argument**.

Multiplikation

$$r(\cos\varphi + i\sin\varphi) \cdot r'(\cos\varphi' + \sin\varphi') = r \cdot r'((\cos\varphi \cdot \cos\varphi' - \sin\varphi\sin\varphi') + i(\cos\varphi\sin\varphi' + \sin\varphi\cos fgft\varphi')) =$$
$$= rr'(\cos(\varphi + \varphi') + i\sin(\varphi + \varphi'))$$

Erfolg In $\mathbb C$ hat jede quadratische Gleichung $X^2+pX+q=0$ (mindestens) eine Lösung, nämlich $X=-\frac{p}{2}\pm\frac{1}{2}\sqrt{\Delta},\ \Delta=p^2-4q.$ $\sqrt{-5}=\sqrt{-1}\cdot\sqrt{5}=\pm i\sqrt{5}$ $\sqrt{r(\cos\varphi+i\sin\varphi)}=\pm\sqrt{r}\cdot(\cos^{\varphi}/_2+i\sin^{\varphi}/_2)$

12.5 Kubische Gleichungen

$$X^3 + aX^2 + bX + c = 0$$

Ansatz
$$X^3 + aX^2 \frac{1}{3}a^2X + \frac{1}{27}a^3 + (b - \frac{1}{3}a^2)X + (c - \frac{1}{27}a^3) = (X + \frac{a}{3})^3 + (b - \frac{1}{3}a^2)X + (c - \frac{1}{27}a^3)$$
 Setze $Y := X + \frac{a}{3}$

$$\begin{array}{l} Y^3 + (b - \frac{1}{3}a^2)(Y - \frac{a}{3}) + (c - \frac{1}{27}a^3) \\ = Y^3 + (b - \frac{1}{3}a^2)Y + (c - \frac{ab}{3} + \frac{2a^3}{27}) \text{ Setze } p := b - \frac{1}{3}a^2, q := c - \frac{ab}{3} + \frac{2a^3}{27} \\ = Y^3 + pY + q \text{ (Kubik in reduzierter Form)} \end{array}$$

Es reicht damit, Gleichungen der Form $Y^3 + pY + q = 0$ zu lösen.

Ansatz
$$Y = U + V$$
. Dann $(U + V)^3 + p(U + V) + q = U^3 + 3U^2V + 3UV^2 + V^3 + pU + pV + q$

Ansatz
$$U^3 + V^3 = -q$$
. Dann $3U^2V + 3UV^2 + pU + pV = 0 = (3 \cdot UV + p) \cdot U + (3 \cdot UV + p) \cdot V$.

Ansatz
$$U \cdot V = -\frac{p}{3}$$
, daraus $U^3 \cdot V^3 = -\frac{p}{27}$

$$\begin{array}{ll} \textbf{L\"osung} & V^3 = -q - U^3. \text{ Also: } U^3(-q - U^3) = -\frac{p^3}{27} \Leftrightarrow (U^3)^2 + qU^3 - \frac{p^3}{27} = 0 \Leftrightarrow U^3 = -\frac{q}{2} \pm \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}} \Leftrightarrow U = \sqrt[3]{-\frac{q}{2} \pm \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}}, \quad V = -\frac{p}{3U}, \quad Y = U + V, \\ X = Y - \frac{a}{3} & \qquad \qquad \end{array}$$

12.6 Gaussscher Fundamentalsatz der Algebra

 $\mathbb C$ ist **algebraisch abgeschlossen**, das heißt: Jedes nicht konstante Polynom hat in $\mathbb C$ eine Nullstelle.

 $P(X) \in \mathbb{C}[X]$, deg. P(X) = n > 0. Nach dem FdA⁶ existiert $z_1 \in \mathbb{C}$ mit $P(z_1) = 0$.

Polynomdivision: $P(X) = (X - z_1) \cdot Q(X) + R$, deg. Q(X) = n - 1, $\mathbb{R} \in \mathbb{C}$. Wegen $P(z_1) = 0$ sogar R = 0. Dann machen wir mit Q(X) anstelle P(X) weiter, usw.

 $P(X) = (X - z_1) \cdot Q(X) = (X - z_1)(X - z_2) \cdot \overline{Q}(X) = \dots = c \cdot (X - z_1)/cdot(X - z_2) \cdot \cdots (X - Z_n).$ Insbesondere lässt sich jedes Polynom über \mathbb{C} als Produkt linearer Polynome schreiben.

Beweis $P(Z) = Z^d + a_1 Z^{d-1} + ... + a_{d-1} Z + a_d; \quad a_i \in \mathbb{C}$

$$\lim_{|Z| \to \infty} |P(X)| = \lim_{|Z| \to \infty} |Z^d(1 + a_1 Z^{-1} + \dots + a_d Z^{-d})| \le \lim_{|z| \to \infty} |z|^d (1 + |a_1| \cdot |z|^{-1} + \dots + |a_d| \cdot |z^{-d}|) = \infty$$

Damit nimmt |P(Z)| an einer Stelle $z_0 \in \mathbb{C}$ ihr Minimum an. Das heißt: $\forall a \in \mathbb{C} : |P(a)| \ge |P(z_0)|$

Annahme $|P(z_0)| > 0$ (sonst $|P(z_0)| = 0$, also $P(z_0) = 0$, also hätten wir Nullstellen) $W = Z - z_0 \Leftrightarrow Z = W + z_0; \quad P(Z) = a + bW^n + W^{n+1} \cdot Q(W), \ a,b \in \mathbb{C}, \ Q(W) \in \mathbb{C}[W]$ Bei W = 0 nimmt P(Z) betraglich sein Minimum an. Wähle $\omega \in \mathbb{C}$ mit $\omega^n = -\frac{a}{b}$. Dann ist $\delta|\omega^{n+1} \cdot Q(\delta \cdot \omega)| < |a|$ für geeignetes $\delta > 0$. $P(\delta \cdot \omega) = a + b \cdot \delta^n \cdot \omega^n + \delta^{n+1} \cdot \omega^{n+1} \cdot Q(\delta \cdot \omega) = a(1 - \delta^n) + \delta^{n+1} \cdot \omega^{n+1} \cdot Q(\delta \cdot \omega)$ $\implies |P(\delta \omega)| \le |a| \cdot |1 - \delta^n| + \delta^{n+1} |\omega^{n+1} Q(\delta \omega)| < |a| \cdot |1 - \delta^n| + |a| \cdot \delta^n \le |a| = |P(z_0)|$

13 Auswahlaxiom, Zornsches Lemma und Ultrafilter

13.1 Auswahlaxiom

Definition Ist M eine Menge nicht-leerer Mengen, so existiert dazu eine Auswahlmenge, das heißt: eine Menge X, so dass $\forall U \in M \exists ! \ a \in U$. mit $a \in X^7$.

Sei Z eine Menge, $\mathscr{X} \subseteq P(Z)$, also ist \mathscr{X} eine Menge von Teilmengen von Z.

Definition Eine **Kette in** \mathscr{X} ist eine Teilmenge $\mathscr{Y} \subseteq \mathscr{X}$ mit $\forall Y_1, Y_2 \in \mathscr{Y} : Y_1 \subseteq Y_2 \wedge Y_2 \subseteq Y_1$

13.2 Zornsches Lemma

Sei Z, \mathcal{X} wie eben. Zusätzlich gelte:

- 1. Ist $X' \subseteq X \in \mathcal{X}$, so auch $X' \in \mathcal{X}$
- 2. Ist $\mathscr{Y} \subseteq \mathscr{X}$ eine Kette, so ist $\cup \mathscr{Y} = \cup Y \in \mathscr{X}$.

Dann besitzt \mathscr{X} ein maximales Element $X_0 \in \mathscr{X}$ bzgl. " \subseteq ", d.h. $\forall X \in \mathscr{X} : X \supseteq X_0 \implies X = X_0$

Beweisidee

- Wegen 2. (Wähle $\mathscr{Y} = \emptyset \subseteq \mathscr{X}$ (Kette)) ist $\emptyset = \cup \emptyset \in \mathscr{X}$.
- Falls \emptyset maximal in \mathcal{X} , sind wir fertig.
- Ansonsten gibt es $X_1 \in \mathcal{X}$ mit $X_0 \subsetneq X_1$.
- Entweder ist X_1 maximal oder wir machen weiter ... $X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq X_3 \subsetneq \ldots \subsetneq X_{\omega}$

Breche der Prozess nicht ab (ansonsten wären wir nach $n \in \mathbb{N}_0$ Schritten fertig.) Wegen 2. ist $X_{\omega} = \bigcup_{i=0}^{\infty} X_i \in \mathscr{X}$.

Ist X_{ω} immer noch nicht maximal, so finden wir $X_{\omega} \subsetneq X_{\omega+1} \subsetneq \ldots \subsetneq X_{\omega+n} \subsetneq \ldots$ Bricht dies immer noch nicht ab, so ist $X_{\omega \cdot 2} = \bigcup_{n=0}^{\infty} X_{\omega+n}$ der nächste Kandidat.

$$X_{0} \subsetneq X_{1} \subsetneq X_{2} \subsetneq \dots X_{\omega}$$

$$X_{\omega} \subsetneq X_{\omega+1} \subsetneq X_{\omega+2} \subsetneq X_{\omega+3} \subsetneq \dots \subsetneq X_{\omega\cdot 2}$$

$$X_{\omega\cdot 2} \subsetneq X_{\omega\cdot 2+1} \subsetneq X_{\omega\cdot 2+2} \subsetneq X_{\omega\cdot 2+3} \subsetneq \dots \subsetneq X_{\omega\cdot 3}$$

⁶Fundamentalsatz der Algebra

⁷∃! bedeutet: "es existiert genau ein Element"

Korollar Sei (Z, \leq) eine teilweise geordnete Menge, das heißt es gilt:

- 1. $\forall z \in Z : z < z$.
- $2. \ \forall x, y \in Z : x \leq y \land y \leq x \implies x = y$
- 3. $\forall x, y, z \in Z : x \leq y \land y \leq z \implies x \leq z$

Besitzt dann jede **Kette** Y in Z (d.h. jede vollständig geordnete Teilmenge von $Y \subseteq Z$) eine **obere Schranke** in Z, das heißt $\exists z \in Z \forall y \in Y : y \leq z$, dann besitzt Z ein maximales Element $z_0 \in Z$, das heißt $\forall z \in Z : z \geq z_0 \implies z = z_0$.

Beweis Sei $\mathscr{X} \subseteq P(Z)$ die Menge der Ketten von (Z, \leq) . Dann sind 1. und 2. vom Zornschen Lemma erfüllt. Damit existiert eine maximale Kette $X_0 \in \mathscr{X}$.

Nach Voraussetzung des Korollars besitzt X_0 eine obere Schranke $z_0 \in Z$.

Annahme z_0 ist nicht maximal, das heißt es existiert $z_1 \in Z$ mit $z_1 \geq z_0, z_1 \neq z_0$. Dann wäre aber $X_0 \cup \{z_1\}$ eine echt größere Kette als X_0 . Dies wäre aber ein **Widerspruch** zur Maximalität von X_0 .

13.3 Ultrafilter

Definition Sei X eine Menge. Ein **Filter** F auf X ist eine Teilmenge $F \subseteq P(X)$ mit

- 1. $X \in F$
- $2. \emptyset \notin F$
- 3. $\forall A \in F : B \supseteq A \Rightarrow B \in F$
- 4. $\forall A, B \in F \Rightarrow A \cap B \in F$

Beispiel Sei $x_0 \in X$ ein Element einer Menge. Dann ist $F := \{A \subseteq X | x_0 \in A\}$ ein Filter, der von x_0 erzeugte Filter.

Filter, die nicht von einem Element erzeugt werden, heißen frei.

Beispiel Sei S eine unendlich große Menge. Dann ist $F := \{A \subseteq X | X \setminus A \text{ endlich}\}$ ein Filter, der sogenannte **Fréchet-Filter** auf X.

Definition Ein **Ultrafilter** auf X ist ein Filter mit 5. $\forall A \subseteq X : A \in F \lor X \setminus A \in F$.

Beispiel Nicht freie Filter⁸ sind Ultrafilter.

Frage Gibt es freie Ultrafilter?

Satz Ist F ein Filter auf X, so gibt es einen Ultrafilter \hat{X} auf X mit $F \subseteq \hat{F}$.

Folgerung Auf jeder unendlichen Menge gibt es einen freien Ultrafilter.

Beweis (Folgerung) Wähle einen Ultrafilter, der den Fréchet-Filter umfasst. □

Beweis (Satz) Sei Z die Menge der Filter \widetilde{F} mit $\widetilde{F} \supseteq F$. Es ist Z bezüglich " \subseteq " teilweise geordnet. Jede Kette \mathbb{F} in Z, also jede Kette von Filtern besitzt eine obere Schranke in Z, nämlich $\cup_{\widetilde{F} \in F} \widetilde{F}$.

Zu überprüfen, dass dies ein Filter ist, also in Z liegt.

z.B. Filgereigenschaft 4. : $A, B \in \bigcup_{\widetilde{F} \in \mathbb{F}} \widetilde{F} \stackrel{?}{\Rightarrow} A \cap B \in \bigcup_{\widetilde{F} \in \mathbb{F}} \mathbb{F}$

 \rightarrow Da \mathbb{F} Kette, $\tilde{F}_1 \subseteq \tilde{F}_2$ oder $\tilde{F}_2 \subseteq \tilde{F}_1$. Ohne Beschränkung der Allgemeinheit: $\tilde{F}_1 \subseteq \tilde{F}_2$.

Also $A, B \in \tilde{F}_2 \Rightarrow A \cap B \in \tilde{F}_2 \in \mathbb{F} \Rightarrow A \cap B \in \cup \mathbb{F}$.

Nach Zorn besitzt Z ein maximales Element \hat{F} .

Behauptung: \hat{F} ist Ultrafilter.

Begründung Unter der Annahme, dass \hat{F} ein Ultrafilter ist, gibt es ein $A \subseteq X$ mit $A \notin \hat{F}$ und $X \setminus A \notin \hat{F}$.

Definition: $\mathscr{Y} := \{G \subseteq X | \exists F \in \hat{F} : G \supseteq F \cap A\}$

Damit ist \mathscr{G} ein Filter; wegen $A \in \mathscr{G}$, aber $A \notin \hat{F}$ ist $\hat{F} \neq \mathscr{G}$. Aber $\hat{F} \subseteq \mathscr{G}$.

Damit \tilde{F} nicht maximal. Widerspruch!

⁸Bspw. Fréchet-Filter