A PRELIMENERY REPORT ON

CONTROLLING ROBOT BY USING GOOGLE ASSISTANT, BLUETOOTH AND VOICE COMMAND

SUBMITTED TO THE SAVITRIBAI PHULE PUNE UNIVERSITY, PUNE IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

BACHELOR OF COMPUTER ENGINEERING

SUBMITTED BY

KAWADE PAVAN HANUMANT

MAGAR SWAPNIL DHANAJI

PATIL NIKHIL SUDHAKAR

SAWANT SHIVAJI BALASAHEB

Exam No: B191104251

Exam No: B191104262

DEPARTMENT OF COMPUTER ENGINEERING

ABMSP'S ANANTRAO PAWAR COLLEGE OF ENGINEERING & RESEARCH,

PARVATI, PUNE 411009

SAVITRIBAI PHULE PUNE UNIVERSITY 2023-24

Akhil Bharativa Maratha Shikshan Parishad's

Anantrao Pawar College of Engineering & Research, Parvati, Pune

Sr. No. 103, Parvati, Pune - 411 009.
Tel.: 020-24218901/8959 Tele Fax: 020-24213929
Approved by AICTE & Govt. of Maharashtra, Affiliated to Savitribai Phule Pune University
Savitribai Phule Pune University Identification No. PU/PN/Engg. /441/2012, DTE CODE:- EN 6794

Department of Computer Engineering

CERTIFICATE

This is to certify that the project report entitles

CONTROLLING ROBOT BY USING GOOGLE ASSISTANT, BLUETOOTH AND VOICE COMMAND

Submitted by

KAWADE PAVAN HANUMANT

MAGAR SWAPNIL DHANAJI

PATIL NIKHIL SUDHAKAR

SAWANT SHIVAJI BALASAHEB

Exam No: B191104227

Exam No: B191104226

Exam No: B191104251

is a bonafide student of this institute and the work has been carried out by him under the supervision of **Prof. Anil Lohar** and it is approved for the partial fulfillment of the requirement of Savitribai Phule Pune University, for the award of the degree of **Bachelor of Engineering** Computer Engineering.

Prof. Anil Lohar.

Guide

Department of Computer Engineering

Prof. Rama Gaikwad

Head,

Department of Computer Engineering

Dr. S. B. Thakare

Principal,

Anantrao Pawar College of Engineering & Research. Pune – 09

Place: Pune

Date: 09/11/2023

ACKNOWLEDGEMENT

Certainly, controlling a robot using Google Assistant, Bluetooth, and voice command acknowledgment is an intricate process that demands the integration of various technologies and components. This project would involve using a microcontroller board like Arduino or Raspberry Pi for the robot's control, a compatible Bluetooth module, motors, motor drivers, and a power source. With deep sense of gratitude we would like to thank all the people who have lit our path with their kind guidance. We are very grateful to these intellectuals who did their best to help during our project work.

The special gratitude goes to **Prof. Anil Lohar** excellent and precious guidance in completion of this work. We thanks to all the Teaching and non-teaching for their appreciable help for our working project. With various industry owners or lab technicians to help, it has been our endeavor throughout our work to cover the entire project work.

We remain indebted to **Prof. Rama Gaikwad**, Head Of Department Computer Engineering Department for his timely suggestion and valuable guidance.

It is our proud privilege to express a deep sense of gratitude to **Prof. Dr. Sunil Thakare** Principal of Anantrao Pawar College of Engineering and Research, Pune for his comments and kind permission to complete this project.

We are also thankful to our parents who provided their wishful support for our project completion successfully. And lastly we thank our all friends and the people who are directly or indirectly related to our project work. Furthermore, the project would require thorough testing of the entire system to ensure seamless communication between Google Assistant and the robot, as well as reliable execution of voice commands. A rigorous testing process would help identify and resolve any potential issues related to connectivity, command interpretation, or hardware functionality. Collaborating with the computer department would provide valuable insights and expertise, particularly in terms of optimizing the software and hardware components, ensuring data security, and addressing any technical challenges that may arise during the development and implementation phases. Their involvement could significantly contribute to the overall success of the project and help streamline the integration of various technologies.

Sawant Shivaji Balasaheb Kawade Pavan Hanumant Magar Swapnil Dhanaji Patil Nikhil Sudhakar

ABSTRACT

The integration of contemporary technologies has led to the development of an innovative system for controlling a robot through the utilization of Google Assistant, Bluetooth, and voice commands. This project aimed to create a user-friendly and efficient mechanism for remote robot operation, enhancing the accessibility and convenience of controlling robotic systems in various categories. Through the seamless integration of Google Assistant, users were able to issue commands to the robot using natural language, simplifying the control process and enabling intuitive interaction. Leveraging the robust capabilities of the Google Assistant platform, users could effortlessly navigate the robot's functionalities, including navigation, manipulation, and various other tasks, all through simple voice commands. The implementation of Bluetooth technology facilitated a reliable and secure wireless communication channel between the controlling device and the robot, ensuring real-time transmission of commands and data without compromising on data integrity or security. This enabled a smooth and responsive control experience, empowering users to operate the robot from a distance with minimal latency.

Furthermore, the development of a sophisticated voice recognition system enabled the system to accurately interpret and execute a diverse range of voice commands, thereby providing users with a seamless and intuitive control interface. The voice recognition system's robust design and efficient processing capabilities enhanced the system's responsiveness and accuracy, enabling precise and prompt execution of user commands. The successful integration of these technologies culminated in a comprehensive and user-centric control system that revolutionizes the way robots are operated. This system not only simplifies the control process but also enhances the overall user experience, making robotic operations more accessible and intuitive for users across various domains, including home automation, industrial applications, and educational environment.

TABLE OF CONTENTS

LIST OF ABBREVATIONS	I
LIST OF FIGURES	II
LIST OF TABLES	II

CHAPTER		PAGE NO
Sr.No.	Title of Chapter	
01	Introduction	01
01	1.1 Motivation	01
	1.2 Problem Definition	01
02	Literature Survey	03
03	Software Requirements Specification	06
	3.1 Introduction	06
	3.1.1 Project Scope	06
	3.1.2 User Classes and Characteristics	06
	3.1.3 Assumptions and Dependencies	07
	3.2 Functional Requirements	08
	3.2.1 System Feature	08
	3.3 External Interface Requirements	08
	3.3.1 User Interfaces	08
	3.3.2 Hardware Interfaces	09
	3.3.3 Software Interfaces	09
	3.4 Nonfunctional Requirements	09
	3.4.1 Performance Requirements	09
	3.4.2 Safety Requirements	10
	3.4.3 Security Requirements	11
	3.5 System Requirements	12
	3.3.1 Database Requirements	12
	3.3.2 Software Requirements	12
	5.3.3 Hardware Requirements	13
	3.6 Analysis Models: SDLC Model to be applied	14
	3.7 System Implementation Plan	14
04	System Design	16
	4.1 System Architecture	16
	4.2 Data Flow Diagrams	19
	4.3 UML Diagrams	21
05	Other Specification	23
	5.1 Advantages	23
	5.2 Limitations	23
	5.3 Applications	24

06	Conclusions & Future Work	
07	References	27 28
08	Appendix	20
	8.1 Certificates	28
	8.2 Publication	29
	8.3 Plagiarism Report	33

LIST OF ABBREVATIONS

ABBREVIATION ILLUSTRATION

API: Application Programming Interface IDE: Integrated Development Environment

SDK: Software Development Kit

UI: User Interface UX: User Experience

SDLC: Software Development Life Cycle

AI: Artificial Intelligence
IoT: Internet of Things
SSL: Secure Sockets Layer

HTTP: Hypertext Transfer Protocol

LIST OF FIGURES

FIGURE	ILLUSTRATION	PAGE NO.	
1.1	Architecture with google assistant	16	
1.2	Architecture with Bluetooth module	17	
1.3	Architecture with hand gesture	18	
1.4	Data Flow with Bluetooth module	19	
1.5	Data Flow with google assistant	20	
1.6	UML Diagram for Controlling Robot	21	
1.7	Project Module	22	

LIST OF TABLES		
Table		Page No
1.1 Literature Survey		05