Lecture - 3

Training a neural Network - 1

So far ...

- Neural network (Network of Perceptron/MLP) can:
- model any Boolean function
- Model any decision boundary
- Model any continuous valued function (how?)

Neural Network can compute any func.

Neural Network

 W_{ij} w'_{jk} u'_k Output Input Output layer Input layer Hidden layer

Option 1: Follow Lecture 2 and construct by hand

Option 2: Automatic estimation of an MLP

Option 1: Follow Lecture 2 and construct by hand

Option 2: Automatic estimation of an MLP

Automatic estimation of MLP

Problem: g(x) is not known everywhere

Automatic estimation of MLP

Module 1: Learning Algorithm

Data: $\mathcal{D}=\{\mathbf{x}_i,\hat{y_i}\}_{i=1}^n,\ where\ \mathbf{x}_i=\{x_{i1},x_{i2},\cdots,x_{im}\}$ is a sample, and $\hat{y_i}\in\{+1,-1\}$ is a class label.

Data: $\mathcal{D}=\{\mathbf{x}_i,\hat{y_i}\}_{i=1}^n,\ where\ \mathbf{x}_i=\{x_{i1},x_{i2},\cdots,x_{im}\}$ is a sample, and $\hat{y_i}\in\{+1,-1\}$ is a class label.

$$y = \mathcal{F}(\mathbf{x}, \mathbf{w})$$

Data: $\mathcal{D}=\{\mathbf{x}_i,\hat{y_i}\}_{i=1}^n,\ where\ \mathbf{x}_i=\{x_{i1},x_{i2},\cdots,x_{im}\}$ is a sample, and $\hat{y_i}\in\{+1,-1\}$ is a class label.

$$y = \mathcal{F}(\mathbf{x}, \mathbf{w})$$

Data: $\mathcal{D}=\{\mathbf{x}_i,\hat{y_i}\}_{i=1}^n,\ where\ \mathbf{x}_i=\{x_{i1},x_{i2},\cdots,x_{im}\}$ is a sample, and $\hat{y_i}\in\{+1,-1\}$ is a class label.

Model: $y = \mathcal{F}(\mathbf{x}, \mathbf{w})$ where \mathcal{F} is a neural network.

Parameters: W needs to be learnt.

Learning Algo: Perceptron learning algo., gradient descent

Loss function: To guide learning algorithm

The problem

$$W^* = rg \min_W \sum_{i=1}^n \mathcal{DIV}ig(\mathcal{F}(x_i,W),\hat{y_i}ig)$$

The problem

$$\mathcal{L}(W) = \mathcal{DIV}(\mathcal{F}(W,x),\hat{y})$$

Divergence (intuitively a function f(a,b) which has lower value when a = b)

Example of Divergence function

Least Mean Square

$$DIV(y,\hat{y})=rac{1}{2}(y-\hat{y})^2$$

Cross-entropy

$$\mathcal{DIV}(y,\hat{y}) = -ylog(\hat{y}) - (1-y)log(1-\hat{y})$$

The Problem

$$\mathcal{L}(W) = \mathcal{DIV}(\mathcal{F}(W,x),\hat{y})$$

Is a neural network parameterized by W and takes input ${oldsymbol {\mathcal X}}$

What is F?

What is F?

$$Y = \mathcal{F}(X, W)$$

What is F?

$$Y = \mathcal{F}(X, W)$$

How does each neuron look?

How does each neuron look?

What is f?

$$f(z) = \frac{1}{1 + \exp(-z)}$$

$$f'(z) = f(z)(1 - f(z))$$

Sigmoid

$$f(z) = \tanh(z)$$

$$f'(z) = (1 - f^2(z))$$

tanh

$$f(z) = \begin{cases} 0, & z < 0 \\ z, & z \ge 0 \end{cases}$$
 [*]
$$f'(z) = \begin{cases} 1, z \ge 0 \\ 0, z < 0 \end{cases}$$

[*]
$$f'(z) = \begin{cases} 1, z \ge 0 \\ 0, z < 0 \end{cases}$$

ReLU

$$f(z) = \log(1 + \exp(z))$$

$$f'(z) = \frac{1}{1 + \exp(-z)}$$

 $f'(z) = \frac{1}{1 + \exp(-z)}$ Log likelihood

Back to the problem ...

$$\mathcal{L}(W) = \mathcal{DIV}(\mathcal{F}(W,x), \hat{m{y}})$$
 Groundtruth label

Example of \hat{y} : Cat vs dog Classifier

Example of \hat{y} : Cat vs dog Classifier

Example of \hat{y} : Digit classification

Example of \hat{y} : Digit classification

Example of \hat{y} : Digit classification

The problem

$$W^* = rg \min_W \sum_{i=1}^n \mathcal{DIV}ig(\mathcal{F}(x_i,W),\hat{y_i}ig)$$

Back to high school ...

Let us understand?

- 1. What is a derivative?
- 2. What is gradient?
- 3. How to minimize a function?
- 4. What does direction of the gradient says?

On paper and pen!

Gradient Descent

- 1. Initialize $iteration(t) \leftarrow 0, \eta, \mathbf{w}^0$
- 2. While $|f(\mathbf{w}^t) f(\mathbf{w}^{t+1})| > \epsilon$

(i)
$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta
abla f(\mathbf{w^t})^T$$

(ii)
$$t = t + 1$$

