(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-317464

(43)公開日 平成11年(1999)11月16日

(51) Int.Cl. ⁶		識別記号
H01L	21/8247	
	29/788	

29/792 27/115 FΙ

H01L 29/78

371

27/10

434

審査請求 未請求 請求項の数19 OL (全 23 頁)

(21)出願番号

特願平10-325431

(22)出願日

平成10年(1998)11月16日

(31)優先権主張番号 特願平10-49774 (32)優先日

平10(1998) 3月2日

(33)優先権主張国

日本(JP)

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 青笹 浩

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72)発明者 寺野 登志夫

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 山本 孝久

(54) 【発明の名称】 電気的書き換えが可能なメモリ素子及びその製造方法

(57)【要約】

【課題】コントロールゲートとフローティングゲートの 容量結合比を大きくとることが可能な半導体不揮発性記 憶装置の製造方法を提供する。

【解決手段】チャネル形成領域を有する半導体基板10 と、チャネル形成領域を素子分離するように半導体基板 10に形成された溝に埋め込まれた素子分離絶縁膜21 aと、少なくともチャネル形成領域の上層に形成された 電荷蓄積層30bと、電荷蓄積層30bの上層に形成さ れた第1コントロールゲート31aと、少なくとも第1 コントロールゲート31aの配線方向と直交する方向の 電荷蓄積層30bの側壁面と対向するように形成され、 第1コントロールゲート31aと同電位に保持された第 2コントロールゲート32aと、チャネル形成領域に接 続して形成されたソース・ドレイン領域11とを有する メモリトランジスタを有する構成とする。

【特許請求の範囲】

【請求項1】(イ)半導体基板に形成された、チャネル 形成領域及びソース/ドレイン領域と、

- (ロ) 半導体基板に形成され、チャネル形成領域及びソース/ドレイン領域に沿って設けられた素子分離領域と、
- (ハ)チャネル形成領域の上方に、第1の絶縁膜を介し て形成された電荷蓄積部と、
- (ニ) 電荷蓄積部の上方に、第2の絶縁膜を介して形成 された制御電極と、
- (ホ)制御電極から延在し、素子分離領域上に位置する ワード線と、
- (へ)制御電極及びワード線の延びる方向と平行な電荷蓄積部の側壁面上に第3の絶縁膜を介して形成され、制御電極と同電位に保持されたシールド用導電層、から成ることを特徴とする電気的書き換えが可能なメモリ素子。

【請求項2】制御電極とシールド用導電層とは電気的に接続されていることを特徴とする請求項1に記載の電気的書き換えが可能なメモリ素子。

【請求項3】第3の絶縁膜は電荷蓄積部の側壁面及び制 御電極の側壁面の一部を被覆し、シールド用導電層は第 3の絶縁膜で被覆されていない制御電極の側壁面まで延 在し、以て、制御電極とシールド用導電層とが接続され ていることを特徴とする請求項2に記載の電気的書き換

 $V_{tn} = \{ (C_1 + C_2) / (C_1 + C_2 + C_{tun}) \} \times V_{cg}$ (1)

30

【請求項9】(イ)半導体基板に形成された、チャネル 形成領域及びソース/ドレイン領域と、

- (ロ) 半導体基板に形成され、チャネル形成領域及びソース/ドレイン領域に沿って設けられた素子分離領域と、
- (ハ) 少なくともチャネル形成領域の上方に、第1の絶 縁膜を介して形成された電荷蓄積部と、
- (ニ)電荷蓄積部の上方に、第2の絶縁膜を介して形成 された制御電極と、
- (ホ)制御電極から延在し、素子分離領域上に位置する ワード線と、
- (へ)制御電極及びワード線の延びる方向と平行な電荷 蓄積部の側壁面上に第3の絶縁膜を介して形成され、制 御電極と同電位に保持されたシールド用導電層、から構 40 成された電気的書き換えが可能なメモリ素子の製造方法 であって、
- (A) 半導体基板表面に第1の絶縁膜を形成した後、該 第1の絶縁膜上に第1の材料層を堆積させ、次いで、該 第1の材料層をパターニングする工程と、
- (B) パターニングされた第1の材料層によって被覆されていない半導体基板の領域に、素子分離領域を形成する工程と、
- (C)全面に第2の絶縁膜を堆積させた後、第2の材料 層を該第2の絶縁膜上に堆積させ、次いで、第2の材料 50

えが可能なメモリ素子。

【請求項4】第3の絶縁膜は、ソース/ドレイン領域の 上方まで延在していることを特徴とする請求項3に記載 の電気的書き換えが可能なメモリ素子。

【請求項5】素子分離領域は、半導体基板に形成された 構部、及び、該構部を埋める絶縁材料から構成されてい ることを特徴とする請求項1に記載の電気的書き換えが 可能なメモリ素子。

【請求項6】電荷蓄積部は、導電材料から構成された浮 遊電極から成ることを特徴とする電気的書き換えが可能 なメモリ素子。

【請求項7】電荷蓄積部は、絶縁層、及び、該絶縁層中に形成された導電性微小結晶粒子から成ることを特徴とする請求項1に記載の電気的書き換えが可能なメモリ素子。

【請求項8】制御電極と電荷蓄積部との間の容量値をC1、シールド用導電層と電荷蓄積部との間の容量値をC2、電荷蓄積部とチャネル形成領域との間の容量値をCtun とし、制御電極及びシールド用導電層に電位Vcgを印加したとき、電荷蓄積部とチャネル形成領域との間に式(1)で表される電位Vtnが発生することを特徴とする請求項1に記載の電気的書き換えが可能なメモリ素子。

【数1】

層、第2の絶縁膜及び第1の材料層をパターニングし、 以て、第2の材料層から成る制御電極及びワード線、並 びに、第1の材料層から成る電荷蓄積部を形成する工程 と、

- (D) 制御電極及びワード線の延びる方向と平行な電荷 蓄積部の側壁面上に第3の絶縁膜を介してシールド用導 電層を形成する工程と、
- (E) 電荷蓄積部の下方の半導体基板にチャネル形成領域を形成し、併せて、チャネル形成領域から延在する半導体基板の領域にソース/ドレイン領域を形成する工程、から成ることを特徴とする電気的書き換えが可能なメモリ素子の製造方法。

【請求項10】前記工程(B)は、

- (B-1) パターニングされた第1の材料層によって被 覆されていない半導体基板の領域に溝部を形成する工程 と、
- (B-2)全面に絶縁材料を堆積させた後、該絶縁材料をエッチバックし、以て、半導体基板に形成された溝部、及び、該溝部を埋める絶縁材料から構成された素子分離領域を形成し、併せて、第1の材料層が絶縁材料から突出した構造を得る工程、から成ることを特徴とする請求項9に記載の電気的書き換えが可能なメモリ素子の製造方法。
- 【請求項11】前記工程(B-1)は、第1の材料層を

2

パターニングするためのエッチング用マスクを用いて半 導体基板をエッチングする工程から成ることを特徴とす る請求項10に記載の電気的書き換えが可能なメモリ素 子の製造方法。

【請求項12】前記工程(D)は、

(D-1)全面に第3の絶縁膜を堆積させた後、第3の 絶縁膜を部分的に除去することによって、電荷蓄積部の 側壁面、及び制御電極の側壁面の一部を被覆する第3の 絶縁膜を得る工程と、

(D-2) 導電体から成る第3の材料層を全面に堆積させた後、第3の材料層をエッチバックし、以て、第3の 絶縁膜で被覆されていない制御電極の側壁面まで延在 し、第3の材料層から成り、制御電極と接続されたシールド用導電層を得る工程、から成ることを特徴とする請求項9に記載の電気的書き換えが可能なメモリ素子の製造方法。

【請求項13】前記工程 (D-1) は、全面に第3の絶縁膜を堆積させた後、制御電極の頂面上の第3の絶縁膜を除去し、次いで、第3の絶縁膜をエッチバックする工程から成ることを特徴とする請求項12に記載の電気的書き換えが可能なメモリ素子の製造方法。

【請求項14】前記工程(D)は、

(D-1)全面に第3の絶縁膜を堆積させた後、第3の 絶縁膜上に第4の材料層を堆積させる工程と、

(D-2) 第4の材料層及び第3の絶縁膜を部分的に除去し、以て、少なくとも制御電極の頂面を露出させる工程と

(D-3) 第4の材料層を除去する工程と、

(D-4) 導電体から成る第3の材料層を全面に堆積させた後、第3の材料層をエッチバックし、以て、第3の 30 絶縁膜で被覆されていない制御電極の部分まで延在し、第3の材料層から成り、制御電極と接続されたシールド用導電層を得る工程、から成ることを特徴とする請求項9に記載の電気的書き換えが可能なメモリ素子の製造方法。

【請求項15】前記工程(D-2)において、第4の材料層及び第3の絶縁膜をエッチバックし、以て、電荷蓄積部の側壁面及び制御電極の側壁面の一部を被覆し、且つ、半導体基板の上方まで延在する第3の絶縁膜を得ることを特徴とする請求項14に記載の電気的書き換えが40可能なメモリ素子の製造方法。

【請求項16】前記工程(D-2)と工程(D-3)との間で、露出した制御電極の表面洗浄を行うことを特徴とする請求項14に記載の電気的書き換えが可能なメモリ素子の製造方法。

【請求項17】第4の材料層はレジスト材料から成ることを特徴とする請求項14に記載の電気的書き換えが可能なメモリ素子の製造方法。

【請求項18】第1の材料層は導電材料から成り、電荷 蓄積部は浮遊電極から構成されることを特徴とする請求 50 項9に記載の電気的書き換えが可能なメモリ素子の製造 方法。

【請求項19】第1の材料層は、絶縁層、及び、該絶縁層中に形成された導電性微小結晶粒子から成ることを特徴とする請求項9に記載の電気的書き換えが可能なメモリ素子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電気的書き換えが可能なメモリ素子及びその製造方法に関し、特に、制御電極とチャネル形成領域との間に電荷蓄積部を有する電気的書き換えが可能なメモリ素子及びその製造方法に関する。

[0002]

【従来の技術】電気的書き換えが可能なメモリ素子(EEPROM: Electrically Erasableand Programmable ROM)はDRAM(Dynamic Random Access Memory)などの他のメモリ素子と比較して1ビット当たりの記憶素子の面積を理論上最も小さくできることから、メモリ素子の大容量化が期待されており、特に、フロッピーディスク等の磁気記憶装置の代替手段として検討が活発に行われている。EEPROMとしては、浮遊電極(フローティングゲート)型、MNOS型あるいはMONOS型、TEXTUREDPOLY型など、様々な特徴を有する構造のEEPROMが開発されている。

【0003】EEPROMの一種である浮遊電極型メモリ素子の製造方法の一例を、半導体基板等の模式的な一部断面図である図18~図20を参照して、以下、説明する

【0004】 [工程-10A] 先ず、シリコン半導体基板から成る半導体基板110に対して、LOCOS法に基づき酸化シリコンから成る素子分離領域113を形成する。次に、素子分離領域113で分離された半導体基板110の領域にウエル110Bを形成するためにイオン注入を行い、更には、半導体基板110のかかる領域における閾値電圧調整のためのイオン注入を行う。その後、例えば熱酸化法に基づき、半導体基板110の表面にSiO2から成る第1の絶縁膜(トンネル絶縁膜)11を形成する。この状態を図18の(A)に示す。

【0005】 [工程-20A] 次に、例えばCVD (Chemical Vapor Deposition) 法に基づき、不純物を含有したポリシリコンから成る第1の材料層112Aを全面に堆積させる(図18の(B) 参照)。そして、リソグラフィ技術及びRIE (反応性イオンエッチング)等のドライエッチング技術に基づき、第1の材料層112Aをパターニングする。パターニングされた第1の材料層112Aは帯状の形状である。

【0006】 [工程-30A] その後、図19の(A) に示すように、例えばCVD法に基づき、全面(より具体的には、素子分離領域113上及びパターニングされ

た第1の材料層112A上)に第2の絶縁膜115を堆積させ、更に、第2の絶縁膜115上に、例えば不純物を含有するポリシリコンから成る第2の材料層116Aを堆積させる。第2の絶縁膜115は、例えば、ONO膜(シリコン酸化膜/シリコン酸化膜/シリコン酸化膜の積層絶縁膜)から構成することができる。

【0007】次に、リソグラフィ技術及びドライエッチング技術に基づき、第2の材料層116A、第2の絶縁膜115及び第1の材料層112Aをパターニングすることによって、第2の材料層116Aから成る制御電極116及びワード線、並びに、第1の材料層112Aから成る電荷蓄積部112を形成する(図19の(B)参照)。ここで、第2の材料層116Aのエッチングに引き続き、第2の絶縁膜115及び第1の材料層112Aのエッチングを行うことによって、自己整合的に第2の絶縁膜115及び第1の材料層112Aのエッチングを行うことができる。尚、ワード線は、図19の(B)の紙面垂直方向に、制御電極116から延在して延びている。

【0008】 [工程-40A] その後、制御電極116 をマスクとして用いたイオン注入を行い、ソース/ドレイン領域118を制御電極116と自己整合的に形成する(図20の(A)参照)。尚、電荷蓄積部112の下方の半導体基板110の領域がチャネル形成領域119 に相当する。

【0009】 [工程-50A] 次に、層間絶縁層120の形成、及び、ソース/ドレイン領域118に達する配線121の形成を行い、図20の(B) に示す構造を有するメモリ素子を得ることができる。

【0010】このような構造を有するメモリ素子は、制御電極116とチャネル形成領域119との間に絶縁膜111,115を介して浮遊電極(フローティングゲート)から成る電荷蓄積部112が設けられた電界効果型トランジスタから構成されている。電荷蓄積部112である浮遊電極は電荷を保持する機能を有し、第1の絶縁膜(トンネル絶縁膜)111及び第2の絶縁膜115は、電荷を電荷蓄積部112に閉じ込める役割を有する。

【0011】電荷蓄積部112に電荷が蓄積されると、この蓄積電荷により電界が発生する結果、メモリ素子の 40 閾値電圧 Vth が変化する。例えば、メモリ素子が n チャネル型の場合、電荷蓄積部112に電荷を蓄積することで閾値電圧 Vth が正の方向にシフトする。メモリ素子に記憶されたデータを読み出す際には、所定の読み出し電圧を制御電極116に印加する。閾値電圧 Vth が正の方向にシフトしている場合、読み出し電圧を制御電極116に印加してもメモリ素子のソース/ドレイン領域118の間にチャネル電流は流れない。一方、電荷蓄積部112に電荷が蓄積されてない場合には、制御電極116に読み出し電圧を印加したとき、メモリ素子のソース/50

ドレイン領域118の間にチャネル電流が流れる。このチャネル電流が「流れる」あるいは「流れない」ことを"1"あるいは"0"に対応させて、メモリ素子にデータを記憶することができる。

【0012】上記の構造を有するメモリ素子を集積化すると、図3の(B)に等価回路図に示すNOR型メモリセルを構成することができる。図3の(B)においては、4つのメモリ素子 M_{11} , M_{12} , M_{21} , M_{22} が示されており、ワード線W L_1 にメモリ素子 M_{11} , M_{21} の制御電極が接続されており、ワード線W L_2 にメモリ素子 M_{12} の制御電極が接続されている。メモリ素子 M_{11} , メモリ素子 M_{12} の一方のソース/ドレイン領域はビット線B L_1 に接続され、他方のソース/ドレイン領域はソース線S L_1 に接続され、他方のソース/ドレイン領域はビット線B L_2 に接続され、他方のソース/ドレイン領域はビット線B L_2 に接続され、他方のソース/ドレイン領域はビット線B L_2 に接続され、他方のソース/ドレイン領域はソース線S L_2 に接続されている。

【0013】このNOR型メモリセルにおいて、メモリ素子にデータを書き込む場合、例えば、制御電極116に高電位(V_{pp})を印加し、ビット線に例えば0ボルトを印加する。これによって、制御電極116とチャネル形成領域119との間の電位差に基づき、ファウラー・ノルドハイム(Fowler-Nordheim)・トンネル現象によって、チャネル形成領域119から電荷蓄積部112への電子の注入が生じる。以上の結果、メモリ素子の閾値電圧 V_{th} が正の方向にシフトし、データ"0"がメモリ素子に記憶される。

【0014】例えばメモリ素子Mnnのデータを読み出す場合には、ワード線WLnにアクセス(メモリ素子がnチャネル型である場合には正の読み出し電圧を印加)し、ビット線BLnとソース線SLnとの間を流れる電流の有無を検知して、"0"あるいは"1"のデータを判定する。データの消去においては、ファウラー・ノルドハイム・トンネル現象に基づき、電荷蓄積部から半導体基板へと電子を引き抜く。

【0015】一方、上記の構造を有するメモリ素子を直列接続すると、図3の(A)に等価回路図に示すNANDストリング型メモリセルを構成することができる。浮遊電極を有する従来のNANDストリング型メモリセルの模式的な一部断面図を図21に示す。NANDストリング型メモリセルを構成する各メモリ素子Mo~M7のそれぞれは、例えばp型ウエル110B内に形成されたソース/ドレイン領域118及びチャネル形成領域119、チャネル形成領域119の上方に第1の絶縁膜(トンネル絶縁膜)111を介して形成された電荷蓄積部(浮遊電極、フローティングゲートあるいは電荷蓄積電極とも呼ばれる)112、並びに、電荷蓄積部112の上方に第2の絶縁膜115を介して形成された制御電極116(コントロールゲートあるいは制御ゲートとも呼ばれる)から構成されている。そして、NANDストリ

ング型メモリセルにおいては、メモリ素子の一方のソー ス/ドレイン領域118を、隣接するメモリ素子の他方 のソース/ドレイン領域118と共有化させることによ って、複数のメモリ素子が直列接続されている。尚、複 数のメモリ素子がこのように直列接続されている形態を メモリ・ストリングと呼ぶ。また、メモリ・ストリング の一端のメモリ素子Moは、第1の選択トランジスタD SG及びコンタクトホールを介してビット線BLに接続 されており、メモリ・ストリングの他端のメモリ素子M 7は、第2の選択トランジスタSSGを介して共通ソー ス線に接続されている。尚、図3の(A)に示すよう に、複数のNANDストリング型メモリセルが列方向に 配設され、制御電極116は、行方向に配設されたワー ド線と一体に形成されている。ここで、参照番号110 はp型シリコン半導体基板を示し、参照番号110Aは n型ウエルを示す。尚、1つのNANDストリング型メ モリセルを構成するメモリ素子の個数は8個に限定され ない。

【0016】従来のNANDストリング型メモリセルにおけるメモリ素子へのデータ書き込み動作の概要を、以 20下、説明する。

【0017】NANDストリング型メモリセルにおい て、データは、ビット線BLから最も離れた位置に位置 するメモリ素子M₇から順に書き込まれる。データ書き 込み動作においては、データを書き込むべきメモリ素子 (以下、便宜上、選択メモリ素子と呼ぶ)の制御電極1 16に高電位VPP (例えば約20ボルト)を印加する。 かかるメモリ素子以外のメモリ素子(以下、便宜上、非 選択メモリ素子と呼ぶ)の制御電極116にはプログラ ム禁止電位(パス電圧とも呼ばれる)である中間電位V PPm (例えば約10ボルト)を印加する。一方、ビット 線BLに、例えば0ボルトを印加する。そして、第1の 選択トランジスタDSGを導通させ、第2の選択トラン ジスタSSGを非導通状態にすると、ビット線BLの電 位はメモリ素子のソース/ドレイン領域118へと転送 される。そして、選択メモリ素子においては、制御電極 116とチャネル形成領域119との間の電位差に基づ き、ファウラー・ノルドハイム・トンネル現象によっ て、チャネル形成領域119から電荷蓄積部112への 電子の注入が生じる。その結果、選択メモリ素子の閾値 40 電圧Vth が当初の負から正方向にシフトし、データが選 択メモリ素子に書き込まれる。一方、非選択メモリ素子 においては、制御電極116とチャネル形成領域119 との間には大きな電位差が生ぜず、チャネル形成領域1 19から電荷蓄積部112への電子の注入は生じない。 その結果、非選択メモリ素子の閾値電圧は当初の値から 変化せず、当初のデータが非選択メモリ素子に保持され る。各メモリ素子の閾値電圧Vth の分布を図22に模式 的に示す。

【0018】ワード線は他のNANDストリング型メモ 50

リセルと共通化されている。従って、選択メモリ素子の 制御電極116に接続されたワード線に接続された他の NANDストリング型メモリセルを構成するメモリ・ス トリング(以下、このようなメモリ・ストリングを他の メモリ・ストリングと呼ぶ)におけるメモリ素子(以 下、このようなメモリ素子を、他の選択メモリ素子と呼 ぶ)の制御電極116にも、高電位Vppが印加される。 かかる他の選択メモリ素子にデータを書き込んではなら ない場合には、即ち、かかる他の選択メモリ素子へのデ ータの書き込みが禁止されている場合には、他のメモリ ・ストリングに接続されているビット線BLに中間電位 V』(例えば約10ボルト)を印加する。これによっ て、他の選択メモリ素子においては、制御電極116と チャネル形成領域119との間には大きな電位差が生ぜ ず、チャネル形成領域119から電荷蓄積部112への 電子の注入が生じない。従って、他の選択メモリ素子に データが書き込まれず、当初のデータが保持される。

【0019】データ読み出し動作においては、ビット線 BLに例えば1.5ボルトを印加し、第1の選択トラン ジスタDSG及び第2の選択トランジスタSSGのゲー ト電極に、例えば V cc を印加し、第1の選択トランジス タDSG及び第2の選択トランジスタSSGを導通状態 とする。また、非選択メモリ素子の制御電極116には Vcc を印加する。これによって、非選択メモリ素子は導 通状態となる。一方、選択メモリ素子の制御電極116 にはOボルトを印加する。選択メモリ素子の閾値電圧V th に依存して、選択メモリ素子は導通状態あるいは非導 通状態となる。即ち、選択メモリ素子にデータ「0」が 保持されている場合には、選択メモリ素子は非導通状態 となり、ビット線BLの電位は1.5ボルトを保持す る。また、選択メモリ素子にデータ「1」が保持されて いる場合には、選択メモリ素子は導通状態となり、ビッ ト線BLの電位は1.5ボルトよりも低下する。このビ ット線の電位をビット線制御回路によって検出すること により、選択メモリ素子にデータ「0」あるいは「1」 が保持されていることを読み出すことができる。

【0020】NAND型ストリング型メモリセルにおいては、データの消去はブロック単位一括で行われる。データ消去動作においては、ビット線BL、第1の選択トランジスタDSG及び第2の選択トランジスタSSGのゲート電極、共通ソース線の全てをフローティング状態とし、半導体基板10にVerase (例えば20ボルト)を印加し、選択ブロックのワード線電位を0ボルトとする。また、非選択ブロックのワード線をフローティング状態とする。これによって、選択ブロックにおいては、電荷蓄積部112からの電子の引き抜きによりデータが消去される。

【0021】このようなメモリ素子において、LOCO S構造を有する素子分離領域を形成すると、バーズビー クの存在によって素子分離幅が広くなり、また、分離耐 圧が低下するという問題が生じる場合がある。このような場合には、電荷蓄積部と素子分離領域の合わせを自己整合的に行うSA-STI (Self-Align Shallow Trench Isolation) 法によって形成された素子分離領域を採用することが好ましく、これによって、セル面積を一層縮小することが可能となる。このようなSA-STI法が、例えば、特開平8-17948号公報に開示されている。

【0022】SA-STI法に基づくメモリ素子(SA - STI構造を有するメモリ素子と呼ぶ)の模式的な一 部断面図を図23の(A)及び(B)に示し、模式的な 配置図を図24に示す。尚、図23の(A)は図24の 矢印A-Aに沿った模式的な一部断面図であり、図23 の(B)は図24の矢印B-Bに沿った模式的な一部断 面図である。トレンチ型の素子分離領域13で分離され た半導体基板10の活性領域(半導体基板10の突起部 10A)と、制御電極16とが重複する領域には、不純 物を含有するポリシリコンから成る電荷蓄積部12が形 成されている。電荷蓄積部12と半導体基板10との間 には、例えばSiO2から成る第1の絶縁膜(トンネル 絶縁膜) 11が形成されている。一方、電荷蓄積部12 と制御電極16との間には、ONO膜から成る第2の絶 縁膜15が形成されている。また、制御電極16の両側 の半導体基板10の領域にはソース/ドレイン領域18 が形成されており、電荷蓄積部12の下方の半導体基板 10はチャネル形成領域19に相当する。制御電極16 からワード線17が延在する。制御電極16及びワード 線17は、例えば不純物を含有するポリシリコンから構 成され、一体的に形成されている。尚、制御電極16の 上方には、層間絶縁層30を介してビット線(図示せ ず)が、ワード線17と例えば直交する方向に配線され ており、ビットコンタクト部(図示せず)において一方 のソース/ドレイン領域18と接続されている。メモリ 素子の一方のソース/ドレイン領域18を、隣接するメ モリ素子の他方のソース/ドレイン領域18と共有化さ せることによって、複数のメモリ素子が直列接続され、 NANDストリング型メモリセルが構成される。トレン チ型の素子分離領域13は、半導体基板10に形成され た溝部13Aと、溝部13Aを埋める絶縁材料14から 構成されている。

【0023】このようなSA-STI構造を有するメモリ素子においても、電荷蓄積部12における電荷蓄積の有無によってメモリ素子の閾値電圧 V_{th} が変化し、この閾値電圧 V_{th} の変化により記憶されたデータの判別を行うことができる。また、理論的には、最小のセル面積を4 F^2 (ここでFは minimum feature size)とすることができるので、セル面積を縮小し、メモリセルの大容量化、チップコスト、ビットコストの低減を図ることが可能である。

【0024】以下、SA-STI構造を有するメモリ素 50

子の製造方法の概要を、半導体基板等の模式的な一部断面図である図4~図10及び図25を参照して説明する。尚、従来のSA-STI構造を有するメモリ素子の製造方法は、本発明のメモリ素子の製造方法と相当の工程で一致している。それ故、本発明のメモリ素子の製造方法を説明する半導体基板等の模式的な一部断面図等(図4~図10)を参照して、従来のSA-STI構造を有するメモリ素子の製造方法を説明し、本発明のメモリ素子の製造方法と異なる工程に関してのみ、図25を

リ素子の製造方法と異なる工程に関してのみ、図25を 参照して説明する。尚、特に断りの無い限り、図24の 矢印A-Aに沿ったと同様の半導体基板等の模式的な一 部断面図に基づき、従来のSA-STI構造を有するメ モリ素子の製造方法を説明する。

【0025】 [工程-10B] 先ず、シリコン半導体基板から成る半導体基板10に、周辺素子を形成すべき領域とメモリ素子を形成すべき領域とを分離をするためにLOCOS構造を有する素子分離ゾーン(図示せず)を形成する。そして、メモリ素子を形成すべき半導体基板10の領域にウエル(図示せず)を形成するためのイオン注入を行い、更には、メモリ素子を形成すべき半導体基板10の領域における閾値電圧調整のためのイオン注入を行う。その後、例えば熱酸化法により、厚さ7-8nm程度のSiO2から成る第1の絶縁膜(トンネル絶縁膜)11を半導体基板10の表面に形成する。次いで、第1の絶縁膜11の上に、例えばCVD法に基づき、不純物を含有するポリシリコンから成る厚さ0.25 μ m乃至0.30 μ mの第1の材料層12Aを堆積させる。この状態を図4の(A)に示す。

【0026】次に、第1の材料層12A上にレジスト材料から成るエッチング用マスク40をリソグラフィ技術に基づき形成し、かかるエッチング用マスク40を用いて、例えばRIE法により第1の材料層12Aをパターニングする。この状態を図4の(B)に示すが、パターニングされた第1の材料層12Aは、図4の(B)の紙面垂直方向に延びている。

【0027】 [工程-20B] 次に、図5の(A) に示すように、エッチング用マスク40を用いて、例えばR I E 法に基づきエッチングを引き続き行い、半導体基板10に溝部13Aを自己整合的に形成する。これによって、パターニングされた第1の材料層12Aの下方には、半導体基板10の突起部10Aが残される。

【0028】次いで、エッチング用マスク40を除去し、例えばCVD法あるいはバイアスECR(バイアス印加型 Electron Cyclotron Resonance プラズマCVD)法に基づき、トレンチ状の溝部13A内を含む全面にSiO2から成る厚さ0.7~1 μ mの絶縁材料14を堆積させる(図5の(B)参照)。

【0029】その後、例えばRIE法に基づき絶縁材料 14をエッチバックする。こうして、トレンチ状の溝部 13Aに絶縁材料14が埋め込まれたトレンチ型の素子

12

分離領域13を、パターニングされた第1の材料層12 Aの間の半導体基板10の領域に自己整合的に形成する ことができる(図6の(A)及び(B)参照)。また、 この状態における模式的な配置図を図7に示す。尚、図 6の(A)は、図7の矢印A-Aに沿った半導体基板等 の模式的な一部断面図であり、図6の(B)は、図7の 矢印B-Bに沿った半導体基板等の模式的な一部断面図 である。尚、図8の(A)、図9の(A)及び図10の (A) は、図7の矢印A-Aに沿ったと同様の半導体基 板等の模式的な一部断面図であり、図8の(B)、図9 の (B) 及び図10の (B) は、図7の矢印B-Bに沿 ったと同様の半導体基板等の模式的な一部断面図であ

【0030】 [工程-30B] 次に、図8に示すよう に、例えばCVD法あるいは熱酸化法により、例えばO NO膜(酸化膜/窒化膜/酸化膜の積層絶縁膜)から成 る第2の絶縁膜15を全面に堆積させる。

【0031】 [工程-40B] その後、全面に、例えば CVD法に基づき、不純物を含有するポリシリコンから 成る厚さ0.3~0.4 µ mの第2の材料層16Aを堆 20 積させる。この状態を図9の(A)及び(B)に示す。 次に、リソグラフィ技術及びドライエッチング技術に基 づき、第2の材料層16A、第2の絶縁膜15及び第1 の材料層12Aをパターニングする。こうして、第2の 材料層16Aから成る制御電極16及びワード線17、 並びに、第1の材料層12Aから成る電荷蓄積部12を 形成することができる。この状態を図10の(A)及び (B) に示す。尚、電荷蓄積部12が、制御電極16と 半導体基板10の突起部10Aとの重複領域に残され、 個々のメモリ素子毎に分離された形状となる。

【0032】 [工程-50B] 次に、制御電極16をマ スクとして用いて、不純物を例えば5×10¹³ cm⁻²の ドーズ量で半導体基板10の露出した突起部10Aにイ オン注入する。これによって、制御電極16の両側の半 導体基板10の突起部10Aの一部分にソース/ドレイ ン領域18を自己整合的に形成することができる(図2 5参照)。その後、例えばCVD法によりPSGあるい はBPSG等から成る層間絶縁層30を形成し、図23 及び図24に示したメモリ素子を得ることができる。以 降の工程としては、例えば、ソース/ドレイン領域18 の上方の層間絶縁層30に開口部を形成し、かかる開口 部内を含む層間絶縁層30上に配線材料層を堆積させ、 配線材料層をパターニングすることによってビット線を 設ける。更に、周辺回路の形成等により所望のメモリセ ルを完成させる。

[0033]

【発明が解決しようとする課題】ところで、浮遊電極型 のメモリ素子にあっては、電荷蓄積部とチャネル形成領 域との間に、例えばファウラー・ノルドハイム・トンネ ル電流を発生させることによって、メモリ素子へのデー 50

タの書き込み、あるいはデータの消去を行う。それ故、 制御電極に電位を印加し、電荷蓄積部とチャネル形成領 域間との間に大きな電位差を生成させる必要がある。と ころで、電荷蓄積部とチャネル形成領域との間の電位差 は、制御電極と電荷蓄積部との間の容量結合と、電荷蓄 積部とチャネル形成領域との間の容量結合の比によって 決まる。然るに、浮遊電極型のメモリ素子においては、 セル面積の縮小化に伴い、十分な値の容量結合比を確保 することが困難となってきている。

【0034】容量結合比が小さい場合、メモリ素子への データの書き込みの際に、制御電極に印加すべき電位を 一層高くする必要がある。従って、電源電圧から動作電 圧 (制御電極に印加すべき電位) にまで昇圧させるため の昇圧回路の面積が増大する結果、メモリ素子の製造コ ストの上昇を招くばかりか、昇圧時間が延長し、メモリ 素子の動作速度の低下の原因となる。メモリ素子の微細 化が進むほど、容量結合比を大きくする必要が益々高く なり、如何に容量結合比を大きくするかが、重要な技術 的課題となっている。

【0035】殊に、従来のSA-STI構造を有するメ モリ素子においては、十分な容量結合比を得るために電 荷蓄積部12の厚さを厚くし、電荷蓄積部12と対向す る制御電極16の面積を増大させる、即ち、電荷蓄積部 12の側壁にまで制御電極16が延びる構造とする必要 がある(図23の(A)参照)。しかしながら、電荷蓄 積部12の厚膜化(即ち、第1の材料層12Aの厚膜 化) は、 [工程-40B] における第1の材料層12A のパターニングを困難なものにさせる。

【0036】更に、第1の材料層12Aの厚膜化は、 [工程-20B] において、トレンチ状の溝部13A内 を含む全面にSiO2から成る絶縁材料14を堆積させ る際の溝部13Aのアスペクト比の増加を招き、トレン チ型の素子分離領域の形成を一層困難なものにさせる。

【0037】また、電荷蓄積部12の厚膜化は、電荷蓄 積部12とソース/ドレイン領域18の容量結合に起因 した容量結合比の低下を引き起こし、電荷蓄積部12と チャネル形成領域19との間に実効的に生成する電位差 が減少するため、データ書き込み時に制御電極16に印 加すべき電位の低電位化を妨げる要因となる。

【0038】従って、本発明は、容量結合比を増大さ せ、しかも、ソース/ドレイン領域と電荷蓄積部との間 の容量結合による容量結合比の低下を防止し、これによ り、データ書き込み時に制御電極に印加すべき電位の低 下、昇圧時間の短縮化、製造コストの低減、メモリ素子 の高集積化、微細化を可能とする電気的書き換えが可能 なメモリ素子及びその製造方法を提供することを目的と する。

[0039]

【課題を解決するための手段】上記の目的を達成するた めの本発明の電気的書き換えが可能なメモリ素子は、

(イ) 半導体基板に形成された、チャネル形成領域及びソース/ドレイン領域と、(ロ) 半導体基板に形成され、チャネル形成領域及びソース/ドレイン領域に沿って設けられた素子分離領域と、(ハ) チャネル形成領域の上方に、第1の絶縁膜を介して形成された電荷蓄積部と、(ニ) 電荷蓄積部の上方に、第2の絶縁膜を介して形成された制御電極と、(ホ) 制御電極から延在し、素子分離領域上に位置するワード線と、(へ) 制御電極及びワード線の延びる方向と平行な電荷蓄積部の側壁面上に第3の絶縁膜を介して形成され、制御電極と同電位に保持されたシールド用導電層、から成ることを特徴とする。

【0040】制御電極とシールド用導電層とを同電位に保持するために、制御電極の電位を制御するための制御回路とシールド用導電層の電位を制御するための制御回路とを個別に設けてもよいが、回路構成の簡素化の観点からは、制御電極とシールド用導電層とを電気的に接続することが望ましい。この場合、第3の絶縁膜が電荷蓄積部の側壁面及び制御電極の側壁面の一部を被覆し、シールド用導電層が第3の絶縁膜で被覆されていない制御20電極の側壁面まで延在し、以て、制御電極とシールド用

 $V_{tn} = \{ (C_1 + C_2) / (C_1 + C_2 + C_{tun}) \} \times V_{cg}$ (1)

【0044】上記の目的を達成するための本発明の電気 的書き換えが可能なメモリ素子の製造方法は、(イ)半 導体基板に形成された、チャネル形成領域及びソース/ ドレイン領域と、(ロ)半導体基板に形成され、チャネ ル形成領域及びソース/ドレイン領域に沿って設けられ た素子分離領域と、(ハ)少なくともチャネル形成領域 の上方に、第1の絶縁膜を介して形成された電荷蓄積部 と、(二)電荷蓄積部の上方に、第2の絶縁膜を介して 形成された制御電極と、(ホ)制御電極から延在し、素 子分離領域上に位置するワード線と、(へ)制御電極及 びワード線の延びる方向と平行な電荷蓄積部の側壁面上 に第3の絶縁膜を介して形成され、制御電極と同電位に 保持されたシールド用導電層、から構成された電気的書 き換えが可能なメモリ素子の製造方法であって、(A) 半導体基板表面に第1の絶縁膜を形成した後、該第1の 絶縁膜上に第1の材料層を堆積させ、次いで、該第1の 材料層をパターニングする工程と、(B)パターニング された第1の材料層によって被覆されていない半導体基 板の領域に、素子分離領域を形成する工程と、(C)全 面に第2の絶縁膜を堆積させた後、第2の材料層を該第 2の絶縁膜上に堆積させ、次いで、第2の材料層、第2 の絶縁膜及び第1の材料層をパターニングし、以て、第 2の材料層から成る制御電極及びワード線、並びに、第 1の材料層から成る電荷蓄積部を形成する工程と、

(D) 制御電極及びワード線の延びる方向と平行な電荷 蓄積部の側壁面上に第3の絶縁膜を介してシールド用導 電層を形成する工程と、(E) 電荷蓄積部の下方の半導 体基板にチャネル形成領域を形成し、併せて、チャネル 50 導電層とが接続されている構成とすることが望ましい。 更には、第3の絶縁膜はソース/ドレイン領域の上方ま で延在していることが望ましい。

【0041】素子分離領域は、LOCOS構造あるいはトレンチ構造を有していてもよいが、セル面積を一層縮小するといった観点からは、トレンチ型の素子分離領域、即ち、半導体基板に形成された溝部、及び該溝部を埋める絶縁材料から構成されていることが好ましく、更には、SA-STI法に基づくトレンチ型の素子分離領域とすることが一層好ましい。

【0042】本発明の電気的書き換えが可能なメモリ素子においては、制御電極及びシールド用導電層に電位 V_{cg} を印加したとき、電荷蓄積部とチャネル形成領域との間に式(1)で表される電位 V_{tn} が発生する。尚、 C_{1} 、 C_{2} 及び C_{tun} は、それぞれ、制御電極と電荷蓄積部との間の容量値、シールド用導電層と電荷蓄積部との間の容量値、及び電荷蓄積部とチャネル形成領域との間の容量値である。

【0043】 【数2】

形成領域から延在する半導体基板の領域にソース/ドレ イン領域を形成する工程、から成ることを特徴とする。 【0045】本発明の電気的書き換えが可能なメモリ素 子の製造方法においては、前記工程(B)は、LOCO S法に基づき形成することもできるが、SA-STI法 に基くことが、セル面積を一層縮小するといった観点か ら好ましい。即ち、(B-1)パターニングされた第1 の材料層によって被覆されていない半導体基板の領域に 溝部を形成する工程と、(B-2)全面に絶縁材料を堆 積させた後、該絶縁材料をエッチバックし、以て、半導 体基板に形成された溝部、及び、該溝部を埋める絶縁材 料から構成された素子分離領域を形成し、併せて、第1 の材料層が絶縁材料から突出した構造を得る工程から成 ることが好ましい。この場合、工程(B-1)は、第1 の材料層をパターニングするためのエッチング用マスク を用いて半導体基板をエッチングする工程、即ち、パタ ーニングされた第1の材料層に対して半導体基板を自己 整合的にエッチングする工程から成ることが望ましい。 【0046】一方、前記工程(D)は、(D-1)全面 に第3の絶縁膜を堆積させた後、第3の絶縁膜を部分的

に第3の絶縁膜を堆積させた後、第3の絶縁膜を部分的に除去することによって、電荷蓄積部の側壁面、及び制御電極の側壁面の一部を被覆する第3の絶縁膜を得る工程と、(D-2)導電体から成る第3の材料層を全面に堆積させた後、第3の材料層をエッチバックし、以て、第3の絶縁膜で被覆されていない制御電極の側壁面まで延在し、第3の材料層から成り、制御電極と接続されたシールド用導電層を得る工程から成ることが好ましい。この場合、工程(D-1)は、全面に第3の絶縁膜を堆

積させた後、制御電極の頂面上の第3の絶縁膜を除去し、次いで、第3の絶縁膜をエッチバックする工程から成ることが望ましい。制御電極の頂面上の第3の絶縁膜を除去する方法として、化学的機械的研磨法(CMP)法を挙げることができる。

【0047】あるいは又、前記工程(D)は、(D-1)全面に第3の絶縁膜を堆積させた後、第3の絶縁膜 上に第4の材料層を堆積させる工程と、(D-2)第4 の材料層及び第3の絶縁膜を部分的に除去し、以て、少 なくとも制御電極の頂面を露出させる工程と、(D-3) 第4の材料層を除去する工程と、(D-4) 導電体 から成る第3の材料層を全面に堆積させた後、第3の材 料層をエッチバックし、以て、第3の絶縁膜で被覆され ていない制御電極の部分まで延在し、第3の材料層から 成り、制御電極と接続されたシールド用導電層を得る工 程から成ることが好ましい。この場合、工程(D-2) において、第4の材料層及び第3の絶縁膜をエッチバッ クレ、以て、電荷蓄積部の側壁面及び制御電極の側壁面 の一部を被覆し、且つ、半導体基板の上方まで延在する 第3の絶縁膜を得ることが望ましい。また、工程(D-2) と工程 (D-3) との間で、露出した制御電極の表 面に存在する自然酸化膜を除去するために、露出した制 御電極の表面洗浄を行うことが望ましい。尚、工程(D -3)において第4の材料層を除去するとき第3の絶縁 膜が除去されないように、第4の材料層を構成する材料 を選択する必要があり、例えば、第4の材料層を構成す る材料としてレジスト材料を挙げることができる。第3 の絶縁膜/第4の材料層を構成する材料の組合せとし て、SiO2/レジスト材料、SiN/レジスト材料、 SiO2/SiN、SiN/SiO2を例示することがで 30 きる。

【0048】本発明の電気的書き換えが可能なメモリ素子及びその製造方法においては、半導体基板として、シリコン半導体基板、ウエルが形成されたシリコン半導体基板を挙げることができる。メモリ素子をnチャネル型とする場合、p型シリコン半導体基板半導体基板、p型ウエルが形成されたn型シリコン半導体基板、n型ウエルが形成され、且つp型ウエルがかかるn型ウエル内に形成されたp型シリコン半導体基板を用いることが好ましい。メモリ素子の全てが1つのp型ウエル内に形成されていてもよいし、複数のp型ウエル内に複数のメモリ素子を形成してもよい。

【0049】第1の絶縁膜(トンネル絶縁膜)は、半導体基板の表面を例えば熱酸化処理、あるいは熱酸化処理及び窒化処理することによって形成することができ、SiO2、SiO2/SiN、SiON、SiO2/SiON等から構成することができる。第2の絶縁膜は、ONO膜、ON膜、SiO2膜、SiN膜、SiON膜等から構成することができる。第3の絶縁膜も、ONO膜、ON膜、SiO2膜、SiN膜、SiON膜等から構成

することができる。溝部を埋める絶縁材料として、Si O2、SiN、SiONを例示することができる。

【0050】制御電極及びワード線(あるいは第2の材料層)は、例えば、不純物を含有するポリシリコン層、不純物を含有するポリシリコン層とタングステンシリサイド等のシリサイド層の積層構造(ポリサイド構造)、タングステン等の高融点金属材料層や、シリサイド層から構成することができる。シールド用導電層(あるいは第3の材料層)も、例えば、不純物を含有するポリシリコン層、タングステン等の高融点金属材料層や、シリサイド層から構成することができる。

【0051】メモリ素子を浮遊電極型メモリ素子とする場合、即ち、電荷蓄積部を、導電材料から構成された浮遊電極から構成する場合、導電材料(あるいは第1の材料層を構成する導電材料)として、不純物を含有するポリシリコンを挙げることができる。

【0052】メモリ素子をナノクリスタル型メモリ素子とする場合、即ち、電荷蓄積部(あるいは第1の材料層)を、絶縁層及び該絶縁層中に形成された導電性微小結晶粒子から構成する場合、導電性微小結晶粒子をシリコンやゲルマニウムから構成することができ、絶縁層をONO膜、ON膜、SiO2膜、SiN膜、SiON膜等から構成することができる。導電性微小結晶粒子は第1の絶縁膜上に形成されていてもよいし、絶縁層中に点在していてもよい。

【0053】本発明のメモリ素子が複数集積された不揮 発性半導体メモリセルの構造として、EEPROMの一 種であるNOR型、NANDストリング型メモリセル、 DINOR型やAND型を挙げることができる。

【0054】NANDストリング型メモリセルの場合、不揮発性半導体メモリセルは、複数のメモリ素子が直列接続されたNANDストリング、NANDストリングの一端のメモリ素子に接続された第1の選択トランジスタ、及びNANDストリングの他端のメモリ素子に接続された第2の選択トランジスタから構成され、NANDストリングの一端のメモリ素子の一方のソース/ドレイン領域は、第1の選択トランジスタを介してビット線に接続されており、NANDストリングの他端のメモリ素子の他方のソース/ドレイン領域は、第2の選択トランジスタを介して共通ソース線に接続されている。尚、第1の選択トランジスタ及び第2の選択トランジスタは、例えば、通常のnチャネル型MOS FETから構成することができる。

【0055】本発明においては、制御電極及びワード線の延びる方向と平行な電荷蓄積部の側壁面上に第3の絶縁膜を介して形成され、制御電極と同電位に保持されたシールド用導電層が形成されている。それ故、制御電極と電荷蓄積部との間の容量結合のみならず、シールド用導電層と電荷蓄積部との間の容量結合が得られるので、容量結合比を従来より大きくすることができる。しか

も、シールド用導電層が存在するので、電荷蓄積部とソース/ドレイン領域の容量結合に起因した容量結合比の低下を防止することができる。その結果、動作電圧及び電源電圧を低下させることが可能となり、昇圧回路の面積増加や昇圧時間の延長を抑制することができるばかりか、メモリ素子の高集積化、微細化が可能となる。しかも、従来の技術と異なり、十分な容量結合比を得るために電荷蓄積部12の厚さを厚くする必要が無くなり、従来のメモリ素子の製造プロセスにおける問題点を確実に解決することが可能となる。

【0056】本発明の電気的書き換えが可能なメモリ素子においては、制御電極とチャネル形成領域との間に電荷蓄積部を有する電界効果型トランジスタが構成される。制御電極、半導体基板あるいはソース/ドレイン領域等に適切な電位を印加すると、ファウラー・ノルドハイム・トンネル電流が生じ、電荷蓄積部へ電荷が注入され、あるいは電荷蓄積部から半導体基板へ電荷が放出される。このように電荷蓄積部に電荷が蓄積されると、この蓄積電荷による電界が発生するため、メモリ素子の閾値電圧Vthが変化する。この閾値電圧Vthの変化により記憶されたデータの判別が可能となる。

【0057】本発明において、SA-STI法に基づき 素子分離領域を形成すれば、LOCOS法にて素子分離 領域を形成した場合と比較して、セル面積を縮小するこ とが可能となる。

[0058]

【発明の実施の形態】以下、図面を参照して、発明の実施の形態(以下、実施の形態と略称する)に基づき本発明を説明する。

【0059】(実施の形態1)実施の形態1のメモリ素子は、SA-STI法に基づくメモリ素子(SA-STI構造を有するメモリ素子)であり、所謂、浮遊電極型メモリ素子である。実施の形態1のメモリ素子の模式的な一部断面図を図1の(A)及び(B)に示し、模式的な配置図を図2に示す。尚、図1の(A)は図2の矢印A-Aに沿った模式的な一部断面図であり、図1の

(B) は図2の矢印B-Bに沿った模式的な一部断面図である。

【0060】実施の形態1のメモリ素子は、従来のSA-STI構造を有するメモリ素子と同様に、チャネル形 40成領域19及びソース/ドレイン領域18と、素子分離領域13と、電荷蓄積部12と、制御電極16と、制御電極16から延在し、そして素子分離領域13上に位置するワード線17から構成されている。

【0061】チャネル形成領域19及びソース/ドレイン領域18は、半導体基板10(より具体的には、半導体基板10に設けられた突起部10A)に形成されている。尚、ソース/ドレイン領域18は、制御電極16の両側の半導体基板10の領域に形成されており、電荷蓄積部12の下方の半導体基板10がチャネル形成領域1

9に相当する。また、素子分離領域13は、半導体基板10に形成され、チャネル形成領域19及びソース/ドレイン領域18に沿って設けられている。トレンチ型の素子分離領域13は、半導体基板10に形成された溝部13Aと、溝部13Aを埋める絶縁材料14から構成されている。絶縁材料14はSiO2から成る。

【0062】更には、不純物を含有するポリシリコンから成り、そして浮遊電極から構成された電荷蓄積部12が、チャネル形成領域19の上方に、SiO2から成る第1の絶縁膜11(トンネル絶縁膜)を介して形成されている。また、制御電極16は、電荷蓄積部12の上方に、ONO膜から成る第2の絶縁膜15を介して形成されている。より具体的には、トレンチ型の素子分離領域13で分離された半導体基板10の活性領域(半導体基板10の突起部10A)と、制御電極16とが重複する領域に、不純物を含有するポリシリコンから成る電荷蓄積部12が形成されている。

【0063】制御電極16及びワード線17は、不純物を含有するポリシリコンから構成され、一体的に形成されている。また、制御電極16は、制御電極16及びワード線17の延びる方向と直交する電荷蓄積部12の側壁面12Cの一部を、第2の絶縁膜15を介して被覆している。これによって、制御電極16と電荷蓄積部12との間の容量結合の増加を図ることができる。

【0064】制御電極16の上方には、アルミニウム等 の金属配線材料から成るビット線(図示せず)が、層間 絶縁層30を介してワード線17と例えば直交する方向 に配線されており、ビットコンタクト部(図示せず)に おいて一方のソース/ドレイン領域18と接続されてい る。メモリ素子の一方のソース/ドレイン領域18を、 隣接するメモリ素子の他方のソース/ドレイン領域18 と共有化させることによって、複数のメモリ素子が直列 接続され、NANDストリング型メモリセルが構成され る。尚、層間絶縁層を構成する材料として、BPSG、 PSG、BSG、AsSG、PbSG、SbSG、NS G、SOG、LTO (Low TemperatureOxide、低温CV D-SiO2)、HTO (High Temperature Oxide、高 温CVD-SiO2)、SiN、SiON、あるいは、 これらの材料の積層構造 [例えばONO膜 (SiO2膜 /SiN膜/SiO2膜)、ON膜(SiO2膜/SiN 膜)]を挙げることができる。

【0065】実施の形態1のメモリ素子においては、従来のメモリ素子と異なり、制御電極16及びワード線17の延びる方向(図2において、矢印「X」で示す)と平行な電荷蓄積部12の側壁面12B上に、ONO膜から成る第3の絶縁膜20を介して、シールド用導電層21が形成されている。制御電極16とシールド用導電層21とは電気的に接続されている。より具体的には、第3の絶縁膜20が、電荷蓄積部12の側壁面12B及び制御電極16の側壁面16Bの一部を被覆しており、シ

ールド用導電層 2 1 が、第3の絶縁膜 2 0 で被覆されていない制御電極 1 6 の側壁面 1 6 B まで延在している。これによって、シールド用導電層 2 1 は制御電極 1 6 と同電位に保持される。シールド用導電層 2 1 を設けることによって、制御電極 1 6 と電荷蓄積部 1 2 との間の容量結合のみならず、シールド用導電層 2 1 と電荷蓄積部 1 2 との間の容量結合が得られるので、容量結合比を従来より大きくとることができる。しかも、シールド用導電層 2 1 が存在するので、電荷蓄積部 1 2 とソース/ドレイン領域 1 8 の容量結合に起因した容量結合比の低下を防止することができる。

【0066】実施の形態1の浮遊電極型のメモリ素子に おいては、電荷蓄積部12は電荷を保持する機能を有 し、第1の絶縁膜(トンネル絶縁膜)11、第2の絶縁 膜15及び第3の絶縁膜20は電荷を電荷蓄積部12に 閉じ込める役割を有する。制御電極16及びシールド用 導電層21、半導体基板10あるいはソース/ドレイン 領域18等に適切な電位を印加すると、ファウラー・ノ ルドハイム・トンネル電流が生じ、第1の絶縁膜11を 通して半導体基板10から電荷蓄積部12へ電荷が注入 され、あるいは、電荷蓄積部12から半導体基板10へ 電荷が放出される。このように電荷蓄積部12に電荷が 蓄積されると、この蓄積電荷による電界が発生するた め、メモリ素子の閾値電圧 Vth が変化する。この閾値電 圧Vth変化により、記憶されたデータの判別が可能とな る。例えば、電荷蓄積部12に電子を蓄積することでデ ータ"0"の記憶を行い、また、電荷蓄積部12に蓄積 した電子を半導体基板10に放出することでデータの消 去を行うことができる。これとは逆に、電荷蓄積部12 に電子を蓄積することでデータの消去を行い、また、電 荷蓄積部12に蓄積した電子を半導体基板10に放出す ることでデータの書き込みを行う形式としてもよい。

【0067】実施の形態1の浮遊電極型メモリ素子から、例えば、図3の(A)の等価回路図に示すようなNAND型ストリング型メモリセルを構成することができるし、あるいは又、図3の(B)に等価回路を示すように、NOR型メモリセルを構成することもできる。尚、NOR型メモリセルを構成することもできる。尚、NOR型メモリセルを構成する場合、図1の(B)において図面上、右側と左側にそれぞれ形成された隣接する2つのメモリ素子の間に形成され、隣接するメモリ素子40でソース/ドレイン領域18が共有された形態とはせずに、隣接するメモリ素子でソース/ドレイン領域18を共有しない形態とすればよい。

【0068】以下、図1及び図2に示した実施の形態1のメモリ素子の製造方法を、半導体基板等の模式的な一部断面図、図4~図6、図8~図13、及び配置図である図7を参照して、以下、説明する。

【0069】 [工程-100] 先ず、半導体基板10の 表面に第1の絶縁膜11を形成した後、第1の絶縁膜1 1上に第1の材料層12Aを堆積させ、次いで、第1の 材料層12Aをパターニングする。具体的には、従来の 製造方法の[工程-10B] と同様に、シリコン半導体 基板から成る半導体基板10に、周辺素子を形成すべき 領域とメモリ素子を形成すべき領域とを分離をするため にLOCOS構造を有する素子分離ゾーン(図示せず) を形成する。そして、メモリ素子を形成すべき半導体基 板10の領域にウエル(図示せず)を形成するためのイ オン注入を行い、更には、メモリ素子を形成すべき半導 体基板10の領域における閾値電圧調整のためのイオン 注入を行う。その後、例えば熱酸化法により、厚さ7~ 8nm程度のSiO2から成る第1の絶縁膜(トンネル 絶縁膜) 11を半導体基板10の表面に形成する。次い で、第1の絶縁膜11の上に、例えばCVD法に基づ き、不純物を含有するポリシリコンから成る厚さ0.1 0μm乃至0.15μmの第1の材料層12Aを堆積さ せる。この状態を図4の(A)に示す。尚、従来のメモ リ素子においては、電荷蓄積部12と対向する制御電極 16の面積を増大させるために、0.25 µ m乃至0. 30μmの第1の材料層12Aを堆積させる必要があ る。一方、実施の形態1においては、後にシールド用導 電層21を形成する結果、容量結合比の増加を図ること ができるので、厚さ0. 10μm乃至0. 15μmの第 1の材料層12Aを堆積させればよい。それ故、後述す る[工程-120]における第1の材料層12Aのパタ ーニングが困難となることが無いし、 [工程-110] において、トレンチ状の溝部13A内を含む全面にSi O2から成る絶縁材料14を堆積させる際に溝部13A のアスペクト比の増加を招き、トレンチ型の素子分離領 域の形成を一層困難なものにさせるといった問題の発生 を回避することができる。

【0070】次に、第1の材料層12A上にレジスト材料から成るエッチング用マスク40をリソグラフィ技術に基づき形成し、かかるエッチング用マスク40を用いて、例えばRIE法により第1の材料層12Aをパターニングする。この状態を図4の(B)に示すが、パターニングされた第1の材料層12Aは、図4の(B)の紙面垂直方向に延びている。

【0071】 [工程-110] 次に、パターニングされた第1の材料層12Aによって被覆されていない半導体基板10の領域に、素子分離領域13を形成する。具体的には、図5の(A)に示すように、エッチング用マスク40及びパターニングされた第1の材料層12Aをエッチング用マスクとして用いて、例えばRIE法に基づきエッチングを引き続き行い、半導体基板10に溝部13Aを自己整合的に形成する。これによって、パターニングされた第1の材料層12Aの下方には、半導体基板10の突起部10Aが残される。次いで、エッチング用マスク40を除去し、例えばCVD法あるいはバイアスECR法に基づき、トレンチ状の溝部13A内を含む全面にSiO2から成る厚さ0.7~1 μ mの絶縁材料1

4を堆積させる(図5の(B)参照)。その後、例えば RIE法に基づき絶縁材料14をエッチバックする。こ うして、トレンチ状の溝部13Aに絶縁材料14が埋め 込まれたトレンチ型の素子分離領域13を、パターニン グされた第1の材料層12Aの間の半導体基板10の領 域に自己整合的に形成することができる(図6の(A) 及び(B) 参照)。また、この状態における模式的な配 置図を図7に示す。

【0072】 [工程-120] 次に、全面に第2の絶縁 膜15を堆積させた後、第2の材料層16Aを第2の絶 10 縁膜15上に堆積させ、次いで、第2の材料層16A、 第2の絶縁膜15及び第1の材料層12Aをパターニン グし、以て、第2の材料層16Aから成る制御電極16 及びワード線17、並びに、第1の材料層12Aから成 る電荷蓄積部12を形成する。具体的には、図8に示す ように、例えばCVD法あるいは熱酸化法により、ON O膜(酸化膜/窒化膜/酸化膜の積層絶縁膜) から成る 第2の絶縁膜15を全面に堆積させる。第2の絶縁膜1 5の膜厚は、例えば14~18 nmとすればよい。尚、 図においては、第2の絶縁膜15を1層で表した。

【0073】その後、全面に、例えばCVD法に基づ き、不純物を含有するポリシリコン(厚さ約0.1μ m) 及びタングステンシリサイド(厚さ約0.1 µ m) の2層構成のポリサイドから成る第2の材料層16Aを 堆積させる。この状態を図9の(A)及び(B)に示す が、図においては第2の材料層16Aを1層で表した。 次に、リソグラフィ技術及びドライエッチング技術に基 づき、第2の材料層16A、第2の絶縁膜15及び第1 の材料層12Aをパターニングする。こうして、第2の 材料層16Aから成る制御電極16及びワード線17、 並びに、第1の材料層12Aから成る電荷蓄積部12を 形成することができる。この状態を図10の(A)及び (B) に示す。尚、図10の(A) に示すように、電荷 蓄積部12が、制御電極16と半導体基板10の突起部 10Aとの重複領域に残され、個々のメモリ素子毎に分 離された形状となる。

【0074】以上の工程は、従来のSA-STI構造を 有するメモリ素子の製造方法と同様の工程である。

【0075】 [工程-130] 次に、制御電極16及び ワード線17の延びる方向と平行な電荷蓄積部12の側 40 壁面12B上に第3の絶縁膜20を介してシールド用導 電層21を形成する。具体的には、先ず、全面に、ON O膜から成る第3の絶縁膜20をCVD法にて堆積させ る (図11の(A) 参照)。尚、第3の絶縁膜20の厚 さは、第2の絶縁膜15の厚さと同程度とすることが望 ましいが、第2の絶縁膜15の厚さよりも厚くともよ い。その後、例えばCMP法に基づき、第3の絶縁膜2 0を研磨することによって、制御電極16の頂面上の第 3の絶縁膜20を除去する(図11の(B)参照)。こ のとき、制御電極16の頂面が研磨のストッパとして機 50

能する。次に、第3の絶縁膜20をRIE法に基づきエ ッチバックする。これによって、図12の(A)に示す ように、制御電極16及びワード線17の延びる方向と 平行な電荷蓄積部12の側壁面12B、及び制御電極1 6の側壁面16Bの一部(例えば制御電極16の厚さの 約90%)を被覆するサイドウオール形状の第3の絶縁 膜20を得ることができる。尚、制御電極16の頂面上 の第3の絶縁膜20を除去してあるので、電荷蓄積部1 2の側壁面12B及び制御電極16の側壁面16Bの一 部を被覆する第3の絶縁膜20を、確実に自己整合的に 得ることができる。

【0076】その後、導電体である、不純物を含有した 厚さ0.1~0.3 μ mの第3の材料層21AをCVD 法にて全面に堆積させた後(図12の(B)参照)、第 3の材料層21Aをエッチバックする(図13の(A) 参照)。これによって、第3の絶縁膜20で被覆されて いない制御電極16の側壁面16Bまで延在し、第3の 材料層21Aから成り、制御電極16と接続されたシー ルド用導電層21を得ることができる。断面形状がサイ ドウオール形状のシールド用導電層21の底部の厚さは 特に制限が無く、隣接するシールド用導電層21と接し ない(電気的に接続していない)厚さであればよい。 尚、シールド用導電層21の底面と半導体基板10との 間には第1の絶縁膜11が存在するので、シールド用導 電層21と半導体基板10とが短絡することはない。

【0077】[工程-140]次に、電荷蓄積部12の 下方の半導体基板10に形成されたチャネル形成領域1 9から延在する半導体基板10の領域にソース/ドレイ ン領域18を形成する。具体的には、制御電極16をマ スクとして用いて、不純物を例えば5×10¹³ c m-2 の ドーズ量で半導体基板10の露出した突起部10Aにイ オン注入する。これによって、制御電極16の両側の半 導体基板10の突起部10Aの一部分にソース/ドレイ ン領域18を自己整合的に形成することができる(図1 3の(B)参照)。その後、例えばCVD法によりPS GあるいはBPSG等から成る層間絶縁層30を形成 し、図1及び図2に示したメモリ素子を得ることができ る。以降の工程としては、例えば、ソース/ドレイン領 域18の上方の層間絶縁層30に開口部を形成し、かか る開口部内を含む層間絶縁層30上に配線材料層を堆積 させ、配線材料層をパターニングすることによってビッ ト線を設ける。更に、周辺回路の形成等により所望のメ モリセルを完成させる。

【0078】尚、[工程-120]と[工程-130] との間において、制御電極16をマスクとして用いて、 低濃度 (例えば、ドーズ量5×10¹³ c m⁻²) の不純物 を半導体基板10の露出した突起部10Aにイオン注入 し(図14の(A)参照)、[工程-140] におい て、高濃度(例えば、ドーズ量1×10¹⁵ c m⁻²)の不 純物を半導体基板10の露出した突起部10Aにイオン 注入することもできる(図14の(B)参照)。これに よって、LDD (Lightly Doped Drain) 構造を有する ソース/ドレイン領域18を形成することができる。

【0079】あるいは又、 [工程-120]と [工程-130] との間において、制御電極16をマスクとして用いて、不純物を半導体基板10の露出した突起部10 Aにイオン注入し、半導体基板10の露出した突起部10 Aにソース/ドレイン領域18を形成し、 [工程-140] におけるソース/ドレイン領域形成のためのイオン注入を省略することもでき、かかる製造方法も本発明の電気的書き換えが可能なメモリ素子の製造方法に包含される。

【0080】実施の形態1における電気的書き換えが可 能なメモリ素子の製造方法においては、制御電極16と 半導体基板10に形成されたチャネル形成領域19との 間に、絶縁膜11,12,20によって被覆された浮遊 電極である電荷蓄積部12を有する電界効果型トランジ スタタイプのメモリ素子を形成することができる。しか も、制御電極16及びワード線17の延びる方向と平行 な電荷蓄積部12の側壁面12B上に第3の絶縁膜20 を介して形成され、制御電極16と同電位に保持された シールド用導電層21が形成されるので、容量結合比を 従来のメモリ素子よりも大きくすることが可能となり、 動作電圧及び電源電圧を低下させることができるばかり か、昇圧回路の面積増加や昇圧時間の増大の抑制が可能 であり、メモリ素子の高集積化、微細化をすることが可 能となる。また、SA-STI法によって素子分離領域 13を形成するので、LOCOS構造を有する素子分離 領域よりもセル面積を縮小することが可能となる。

【0081】(実施の形態2)実施の形態2は、実施の形態1において説明した電気的書き換えが可能なメモリ素子の製造方法の変形である。実施の形態2にて製造されるメモリ素子の構造は、実質的に、実施の形態1にて説明したメモリ素子の構造と同じである。但し、実施の形態2のメモリ素子においては、第3の絶縁膜20がソース/ドレイン領域18の上方まで延在している点が、実施の形態1のメモリ素子と相違する。

【0082】以下、半導体基板等の模式的な一部断面図である図15~図17を参照して、実施の形態2における電気的書き換えが可能なメモリ素子の製造方法を説明する。尚、図15~図17は、図2の矢印A-Aに沿ったと同様の半導体基板等の模式的な一部断面図である。 【0083】 [工程-200] 実施の形態1の [工程-

【0083】 [工程-200] 実施の形態1の [工程-100] ~ [工程-120] を実行する。即ち、半導体基板10の表面に第1の絶縁膜11を形成した後、第1の絶縁膜11上に第1の材料層12Aを堆積させ、次いで、第1の材料層12Aをパターニングする。次いで、パターニングされた第1の材料層12Aによって被覆されていない半導体基板10の領域に、SA-STI構造を有する素子分離領域13を形成する。次に、全面に第

2の絶縁膜15を堆積させた後、第2の材料層16Aを第2の絶縁膜15上に堆積させ、次いで、第2の材料層16A、第2の絶縁膜15及び第1の材料層12Aをパターニングする。これによって、第2の材料層16Aから成る制御電極16及びワード線17、並びに、第1の材料層12Aから成る電荷蓄積部12を形成することができる(図10の(A)及び(B)参照)。

【0084】 [工程-210] 次に、制御電極16及びワード線17の延びる方向と平行な電荷蓄積部12の側壁面12B上に第3の絶縁膜20を介してシールド用導電層21を形成する。実施の形態2においては、先ず、全面にSiO2から成る第3の絶縁膜20をCVD法にて堆積させる(図15の(A)参照)。次いで、第3の絶縁膜20上に、スピンコート法にてレジスト材料から成る第4の材料層50を堆積させる(図15の(B)参照)。第4の材料層40の厚さは、制御電極16の頂面に形成された第3の絶縁膜20を十分に被覆する厚さとする。

【0085】その後、第4の材料層50及び第3の絶縁 膜20を部分的に除去した後、第3の絶縁膜20をエッ チバックすることによって、少なくとも制御電極16の 頂面を露出させる(図16の(A)参照)。第4の材料 層50及び第3の絶縁膜20の部分的な除去は、RIE 法に基づき第4の材料層50及び第3の絶縁膜20を同 時にエッチバックしてもよいし、第4の材料層50をエ ッチバックした後、第3の絶縁膜20をエッチバックし てもよい。更には、第4の材料層50をエッチバックし た後、第3の絶縁膜20をCMP法に基づき部分的に研 磨することで第3の絶縁膜20を部分的に除去してもよ く、これによって、制御電極16の頂面上の第3の絶縁 膜20が除去される。実施の形態2においては、電荷蓄 積部12の側壁面12Bの全て、及び制御電極16の側 壁面16日の一部を被覆し、且つ、半導体基板10(よ り具体的には、突起部10A)の上方まで延在する第3 の絶縁膜が得られるように、第3の絶縁膜をエッチバッ クする。次いで、アッシング処理を行うことによって、 レジスト材料から成る第4の材料層50を除去する(図 16の(B)参照)。尚、使用する第4の材料層の材料 によっては、ドライエッチングやウエットエッチングに よって第4の材料層を除去する。

【0086】 [工程-220] 次に、露出した制御電極 16の表面に存在する自然酸化膜を除去するために、希フッ酸を用いて、露出した制御電極16の表面洗浄を行う。その後、実施の形態1の [工程-130] と同様に、導電体から成る第3の材料層21Aを全面に堆積させた後、第3の材料層21Aをエッチバックする。即ち、導電体である、不純物を含有した厚さ0.1~0.3μmの第3の材料層21AをCVD法にて全面に堆積させた後(図17の(A)参照)、第3の材料層21Aをエッチバックする(図17の(B)参照)。これによ

って、第3の絶縁膜20で被覆されていない制御電極16の側壁面16Bまで延在し、第3の材料層21Aから成り、制御電極16と接続されたシールド用導電層21を得ることができる。

【0087】 [工程-230] 以降、実施の形態1の [工程-140] を実行することによって、所望のメモ リセルを完成させる。

【0088】尚、 [工程-210] の前に、制御電極16をマスクとして用いて、低濃度(例えば、ドーズ量5× 10^{13} cm $^{-2}$)の不純物を半導体基板10の露出した突起部10Aにイオン注入し、 [工程-230] において、高濃度(例えば、ドーズ量 1×10^{15} cm $^{-2}$)の不純物を半導体基板10の露出した突起部10Aにイオン注入することもできる。これによって、LDD構造を有するソース/ドレイン領域18を形成することができる。

【0089】あるいは又、[工程-210]の前に、制御電極16をマスクとして用いて、不純物を半導体基板10の露出した突起部10Aにイオン注入し、半導体基板10の露出した突起部10Aにソース/ドレイン領域2018を形成し、[工程-230]におけるソース/ドレイン領域形成のためのイオン注入を省略することもでき、かかる製造方法も本発明の電気的書き換えが可能なメモリ素子の製造方法に包含される。

【0090】実施の形態1の電気的書き換えが可能なメ モリ素子の製造方法においては、「工程-130]にお いて、第3の絶縁膜20をRIE法に基づきエッチバッ クしたとき、第1の絶縁膜11が同時にエッチングされ る虞が皆無とは云えない。また、第3の材料層21Aを CVD法にて全面に堆積させる前に、制御電極16上の 自然酸化膜の除去のためにフッ酸洗浄を行うことが好ま しいが、このフッ酸洗浄によっても、第1の絶縁膜11 が同時にエッチングされる虞が皆無とは云えない。第1 の絶縁膜11がエッチングされて消失した場合、第3の 材料層21Aとソース/ドレイン領域18とが短絡す る。従って、このような問題が発生することを防止する ために、第1の絶縁膜11の膜厚を或る程度厚くする必 要がある場合がある。然るに、第1の絶縁膜11の膜厚 を厚くした場合、シールド用導電層21と電荷蓄積部1 2との間の結合容量の低下を招く。一方、実施の形態2 の電気的書き換えが可能なメモリ素子の製造方法におい ては、ソース/ドレイン領域18の上方に第3の絶縁膜 20が残されるので、第3の材料層21Aとソース/ド レイン領域18とが短絡するといった問題の発生を確実 に防止することができ、しかも、第3の絶縁膜20の膜 厚を薄くすることができる。

【0091】以上、本発明を、発明の実施の形態に基づき説明したが、本発明はこれらに限定されるものではない。発明の実施の形態においては、専ら、浮遊電極型メモリ素子を例にとり説明を行ったが、電荷蓄積部の形態 50

は浮遊電極型に限定されず、図26に模式的な一部断面図を示すように、ナノクリスタル型メモリ素子とすることもできる。ナノクリスタル型の電荷蓄積部は、チャネル形成領域19上に形成された第1の絶縁膜(トンネル絶縁膜)11の上に形成された絶縁層61、及び、絶縁層61中に形成された導電性微小結晶粒子60はSiから構成されている。導電性微小結晶粒子60はSiから構成されており、半球状である。ナノクリスタル型メモリ素子の詳細に関しては、例えば、文献 "Volatile and Non-VolatileMemories in Silicon with Nano-Crystal Storage", Sandip Tiwari, et al., IEDM 95, pp521-524 (20.4.1-20.4.4)、あるいは、文献 ""Fast and Long Retention-Time Nano-Crystal Memory", H.I. Hanafi, et al., IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 43, No. 9, September 1996, pp1554-1558 を参照されたい。

【0092】また、素子分離領域の構造は、SA-ST I構造に限定されず、通常のトレンチ構造、LOCOS 構造とすることができる。また、半導体基板表面に第1 の絶縁膜を形成する前に素子分離領域の形成を行っても よく、かかる製造方法も本発明の電気的書き換えが可能 なメモリ素子の製造方法に包含される。発明の実施の形 態にて説明した各種の材料や膜厚等も例示であり、適宜 変更することができる。図27に模式的な一部断面図を 示すように、電荷蓄積部12は、チャネル形成領域19 の上方のみならず、素子分離領域13上に形成された構 造とすることもできる。尚、図27は図2の矢印A-A に沿ったと同様の模式的な一部断面図である。図27に 示した電荷蓄積部12の構造は、例えば、 [工程-11 0] に引き続き、不純物を含有するポリシリコン層12 DをCVD法にて全面に堆積させた後、かかるポリシリ コン層12Dをエッチバックすることによって得ること ができる。

[0093]

【発明の効果】本発明においては、シールド用導電層を 設けることによって、容量結合比の増加を図り、しか も、電荷蓄積部とソース/ドレイン領域との間の容量結 合による容量結合比の減少を防止することができる。そ の結果、動作電圧の低下及び昇圧時間の短縮、製造コス トの低減、メモリ素子の高集積化、微細化をすることが できる。しかも、従来の技術と異なり、十分な容量結合 比を得るために電荷蓄積部の厚さを厚くする必要が無く なり、従来のメモリ素子の製造プロセスにおける問題点 を確実に解決することが可能となる。また、メモリ素子 を微細化したとき、電荷蓄積部とソース/ドレイン領域 との間の結合容量等の寄生容量が大きいと、メモリ素子 へのデータの書き込み速度が低下する虞があるが、シー ルド用導電層を設けることによって寄生容量の低減を図 ることができる結果、メモリ素子へのデータの書き込み 速度が低下することを抑制することができる。

【図面の簡単な説明】

【図1】本発明のメモリ素子の模式的な一部断面図である。

【図2】本発明のメモリ素子の模式的な配置図である。

【図3】NAND型メモリセル及びNOR型メモリセルの等価回路を示す図である。

【図4】発明の実施の形態1におけるメモリ素子の製造 方法を説明するための半導体基板等の模式的な一部断面 図である。

【図5】図4に引き続き、発明の実施の形態1における メモリ素子の製造方法を説明するための半導体基板等の 模式的な一部断面図である。

【図6】図5に引き続き、発明の実施の形態1における メモリ素子の製造方法を説明するための半導体基板等の 模式的な一部断面図である。

【図7】図6に示した状態における模式的な配置図である。

【図8】図6に引き続き、発明の実施の形態1における メモリ素子の製造方法を説明するための半導体基板等の 模式的な一部断面図である。

【図9】図8に引き続き、発明の実施の形態1における メモリ素子の製造方法を説明するための半導体基板等の 模式的な一部断面図である。

【図10】図9に引き続き、発明の実施の形態1におけるメモリ素子の製造方法を説明するための半導体基板等の模式的な一部断面図である。

【図11】図10に引き続き、発明の実施の形態1におけるメモリ素子の製造方法を説明するための半導体基板等の模式的な一部断面図である。

【図12】図11に引き続き、発明の実施の形態1にお 30 けるメモリ素子の製造方法を説明するための半導体基板 等の模式的な一部断面図である。

【図13】図12に引き続き、発明の実施の形態1におけるメモリ素子の製造方法を説明するための半導体基板等の模式的な一部断面図である。

【図14】発明の実施の形態1におけるメモリ素子の製造方法の変形例を説明するための半導体基板等の模式的な一部断面図である。

【図15】発明の実施の形態2におけるメモリ素子の製造方法を説明するための半導体基板等の模式的な一部断 40 面図である。

【図16】図15に引き続き、発明の実施の形態2におけるメモリ素子の製造方法を説明するための半導体基板

等の模式的な一部断面図である。

【図17】図16に引き続き、発明の実施の形態2におけるメモリ素子の製造方法を説明するための半導体基板等の模式的な一部断面図である。

28

【図18】従来のメモリ素子の製造方法を説明するため の半導体基板等の模式的な一部断面図である。

【図19】図18に引き続き、従来のメモリ素子の製造 方法を説明するための半導体基板等の模式的な一部断面 図である。

【図20】図19に引き続き、従来のメモリ素子の製造 方法を説明するための半導体基板等の模式的な一部断面 図である。

【図21】従来のNANDストリング型メモリセルの模式的な一部断面図である。

【図22】メモリ素子の閾値電圧Vth の分布を模式的に示す図である。

【図23】従来のSA-STI法に基づくメモリ素子の 模式的な一部断面図である。

【図24】図23に示した従来のSA-STI法に基づ くメモリ素子の模式的な配置図である。

【図25】従来のSA-STI法に基づくメモリ素子の 製造方法を説明するための半導体基板等の模式的な一部 断面図である。

【図26】ナノクリスタル型メモリ素子の模式的な一部 断面図である。

【図27】電荷蓄積部が素子分離領域上まで延びる構造を有する本発明のメモリ素子の模式的な一部断面図である。

【符号の説明】

10・・半導体基板、10A・・半導体基板の突起部、11・・第1の絶縁膜、12・・・電荷蓄積部、12A・・第1の材料層、12B, 12C・・・電荷蓄積部の側壁面、13・・素子分離領域、13A・・・溝部、14・・絶縁材料、15・・・第2の絶縁膜、16・・・制御電極、16A・・・第2の材料層、16B・・・制御電極の側壁面、17・・・ワード線、18・・・ソース/ドレイン領域、19・・・チャネル形成領域、20・・・第3の絶縁膜、21・・・シールド用導電層、21A・・・第3の材料層、30・・・層間絶縁層、40・・・エッチング用マスク、50・・・第4の材料層、60・・・導電性微小結晶粒子、61・・・絶縁層61

【図1】

【図4】

【図4】

【図2】

【図5】

【図5】

(A) [工程-110]

(B) [工程-110] 続き・

【図3】

【図7】

【図6】

【図6】

【図8】

【図8】

[工程-120]

(A)

【図9】

【図9】 [工程-120] 続き

【図18】

【図18】

(B) [工程-20A]

【図10】

【図10】 [工程-120] 続き

【図22】

【図22】

【図11】

【図12】

(B) [工程-130] 続き

【図12】

(A) [工程-130] 続き

(B) [工程-130] 続き

【図21】

【図13】

【図13】

(A) [工程-130] 続き

(B) [工程-140]

[図24]

【図14】

【図14】

(B)

【図25】

【図25】

【図15】

【図15】

(B) [工程-210] 続き

【図16】

【図16】

(A) [工程-210] 続き

(B) [工程-210]続き

【図26】

【図26】

【図27】

【図27】

【図17】

【図17】

(A) [工程-220]

(B) [工程-220]

【図19】

【図19】

(A) [工程-30A]

(B) [工程-30A] 続き

【図20】

【図23】

