Voorbereidende case vacature statisticus

Context

Het laboratorium overweegt een nieuwe analysetechniek te gebruiken om bepaalde concentraties in bodemstalen te meten. Ze hebben op eigen houtje een experiment opgezet waarbij ze een aantal stalen gemeten hebben met beide technieken. Nu komen ze met hun metingen bij jou aankloppen met de vraag te bepalen welke techniek het beste is.

Opdracht

- 1. Verwerk de gegevens naar eigen goeddunken.
- 2. Beschrijf jouw aanpak en conclusies in een beknopt technisch rapport voor je collega-statistici. Zorg er voor dat ze voldoende informatie hebben zodat ze in staat zijn om jouw analyse opnieuw uit te voeren. Max. 4 bladzijden (eventuele figuren tellen we niet mee).
- 3. Maak een presentatie van max. 5 min waarin je een antwoord geeft aan de laboranten. Je zal deze presenteren tijdens het sollicitatiegesprek.

Je dient je technisch rapport en de presentatie uiterlijk in op woensdag 18 november 13:00. Stuur hiervoor beide documenten als pdf naar rekrutering@inbo.be; thierry.onkelinx@inbo.be en hans.vancalster@inbo.be.

Omschrijving gegevens

De gegevens zijn beschikbaar in het bestand labotest.txt en in onderstaande tabel. De gegevens bestaan uit vijf variabelen:

- Staal: de unieke naam van elk staal.
- Toestel: het unieke nummer van elk toestel.
- Type: de oude of nieuwe analysetechniek.
- Prep: de voorbereiding van het deelstaal vooraleer we de concentratie meten.
- Concentratie: de gemeten concentratie (mg/g).

Tabel 1: De gegevens

Staal	Toestel	Type	Prep	Concentratie
ref_laag_100_a	1	OUD	CR	77.6
$ref_laag_100_b$	1	OUD	CR	77.2
$ref_laag_100_c$	1	OUD	CR	78.0
$ref_mid_320_a$	1	OUD	CR	247.1
$ref_mid_320_b$	1	OUD	CR	245.2
$ref_mid_320_c$	1	OUD	CR	246.9
$ref_hoog_1000_a$	1	OUD	CR	764.9
$ref_hoog_1000_b$	1	OUD	CR	764.9
$ref_hoog_1000_c$	1	OUD	CR	790.6
$staal_123$	1	OUD	CR	501.9
$ref_laag_100_a$	2	OUD	CR	76.8
$ref_laag_100_b$	2	OUD	CR	78.4
$ref_laag_100_c$	2	OUD	CR	77.2

Staal	Toestel	Type	Prep	Concentratie
ref_mid_320_a	2	OUD	CR	247.9
$ref_mid_320_b$	2	OUD	CR	247.7
$ref_mid_320_c$	2	OUD	CR	252.0
ref_hoog_1000_a	2	OUD	CR	771.5
ref_hoog_1000_b	2	OUD	CR	765.9
ref_hoog_1000_c	2	OUD	CR	774.4
staal_123	2	OUD	CR	490.9
$ref_laag_100_a$	3	OUD	CR	77.2
ref_laag_100_b	3	OUD	CR	79.4
ref_laag_100_c	3	OUD	CR	76.8
ref_mid_320_a	3	OUD	CR	246.5
ref_mid_320_b	3	OUD	CR	250.8
ref mid 320 c	3	OUD	CR	243.4
ref_hoog_1000_a	3	OUD	CR	768.0
ref_hoog_1000_b	3	OUD	CR	778.8
ref_hoog_1000_c	3	OUD	CR	763.1
staal 123	3	OUD	CR	494.8
ref laag 100 a	4	OUD	$\overline{\mathrm{CR}}$	76.7
ref_laag_100_b	4	OUD	$\overline{\mathrm{CR}}$	76.8
ref_laag_100_c	4	OUD	$\overline{\mathrm{CR}}$	77.2
ref mid 320 a	4	OUD	CR	247.7
ref_mid_320_b	4	OUD	CR	247.2
ref_mid_320_c	4	OUD	CR	248.1
ref_hoog_1000_a	4	OUD	CR	768.6
ref_hoog_1000_b	4	OUD	CR	783.6
ref_hoog_1000_c	4	OUD	CR	766.7
staal 123	4	OUD	CR	508.9
ref_laag_100_a	5	OUD	CR	79.0
ref_laag_100_b	5	OUD	CR	77.2
ref_laag_100_c	5	OUD	CR	78.4
ref_mid_320_a	5	OUD	CR	248.0
ref_mid_320_b	5	OUD	CR	244.8
ref_mid_320_c	5	OUD	CR	242.8
ref_hoog_1000_a	5	OUD	CR	781.3
ref_hoog_1000_b	5	OUD	CR	776.5
ref_hoog_1000_c	5	OUD	CR	770.4
staal_123	5	OUD	CR	495.3
ref_laag_100_a	6	OUD	CR	77.4
ref_laag_100_b	6	OUD	CR	78.1
ref laag 100_b	6	OUD	CR	76.8
	6	OUD	CR	249.6
ref_mid_320_a ref_mid_320_b	6	OUD	CR	249.0 256.2
ref_mid_320_c	6	OUD	CR	249.5
	6	OUD	CR	774.6
ref_hoog_1000_a ref_hoog_1000_b	6		CR	
		OUD		776.4
ref_hoog_1000_c	6	OUD	CR	788.5
staal_123	6 7	OUD	CR	496.1
ref_laag_100_a ref_laag_100_b	7	OUD OUD	$\frac{\mathrm{CR}}{\mathrm{CR}}$	77.1
_ 0	7			77.1
ref_laag_100_c		OUD	CR	77.9
ref_mid_320_a	7	OUD	CR	249.1
$ref_mid_320_b$	7	OUD	CR	248.0

Staal	Toestel	Type	Prep	Concentratie
$ref_mid_320_c$	7	OUD	CR	249.4
$ref_hoog_1000_a$	7	OUD	CR	766.4
$ref_hoog_1000_b$	7	OUD	CR	783.1
$ref_hoog_1000_c$	7	OUD	CR	797.7
$staal_123$	7	OUD	CR	499.8
$ref_laag_100_a$	8	OUD	CR	77.5
$ref_laag_100_b$	8	OUD	CR	77.0
$ref_laag_100_c$	8	OUD	CR	78.2
$ref_mid_320_a$	8	OUD	CR	251.2
$ref_mid_320_b$	8	OUD	CR	253.0
$ref_mid_320_c$	8	OUD	CR	251.8
$ref_hoog_1000_a$	8	OUD	CR	771.3
ref_hoog_1000_b	8	OUD	CR	786.8
ref_hoog_1000_c	8	OUD	CR	773.6
staal_123	8	OUD	CR	332.2
$ref_laag_100_a$	9	NIEUW	CR	80.6
ref_laag_100_b	9	NIEUW	CR	79.5
ref_laag_100_c	9	NIEUW	CR	80.1
ref mid 320 a	9	NIEUW	CR	255.1
ref_mid_320_b	9	NIEUW	CR	254.3
ref_mid_320_c	9	NIEUW	CR	254.4
ref_hoog_1000_a	9	NIEUW	CR	797.1
ref_hoog_1000_b	9	NIEUW	CR	787.0
ref_hoog_1000_c	9	NIEUW	CR	819.8
staal 123	9	NIEUW	CR	515.9
ref_laag_100_a	10	NIEUW	$\overline{\mathrm{CR}}$	79.6
ref_laag_100_b	10	NIEUW	$\overline{\mathrm{CR}}$	78.4
ref_laag_100_c	10	NIEUW	$\overline{\mathrm{CR}}$	79.6
ref_mid_320_a	10	NIEUW	$\overline{\mathrm{CR}}$	256.6
ref_mid_320_b	10	NIEUW	$\overline{\mathrm{CR}}$	254.3
ref_mid_320_c	10	NIEUW	$\overline{\mathrm{CR}}$	251.8
ref_hoog_1000_a	10	NIEUW	$\overline{\mathrm{CR}}$	804.3
ref_hoog_1000_b	10	NIEUW	$\overline{\mathrm{CR}}$	799.3
ref_hoog_1000_c	10	NIEUW	$\overline{\mathrm{CR}}$	791.8
staal 123	10	NIEUW	$\overline{\mathrm{CR}}$	507.9
ref_laag_100_a	11	NIEUW	CR	81.1
ref_laag_100_b	11	NIEUW	CR	79.2
ref_laag_100_c	11	NIEUW	CR	79.9
ref mid 320 a	11	NIEUW	CR	258.0
ref_mid_320_b	11	NIEUW	CR	261.7
ref_mid_320_c	11	NIEUW	CR	254.4
ref_hoog_1000_a	11	NIEUW	CR	789.7
ref_hoog_1000_b	11	NIEUW	CR	803.0
ref_hoog_1000_c	11	NIEUW	CR	798.0
staal_123	11	NIEUW	CR	512.6
ref_laag_100_a	12	NIEUW	CR	79.6
ref_laag_100_b	12	NIEUW	CR	80.8
ref_laag_100_c	$\frac{12}{12}$	NIEUW	CR	79.1
ref_mid_320_a	12	NIEUW	CR	256.2
ref_mid_320_b	12	NIEUW	CR	256.7
ref_mid_320_c	$\frac{12}{12}$	NIEUW	CR	250.7 257.9
ref_hoog_1000_a	$\frac{12}{12}$	NIEUW	CR	792.4
101_1100g_1000_a	12	TATE O W	OIU	192.4

Staal	Toestel	Type	Prep	Concentratie
$ref_hoog_1000_b$	12	NIEUW	CR	815.7
$ref_hoog_1000_c$	12	NIEUW	CR	792.9
$staal_123$	12	NIEUW	CR	510.9
$ref_laag_100_a$	1	OUD	ML	85.6
$ref_laag_100_b$	1	OUD	ML	83.4
$ref_laag_100_c$	1	OUD	ML	85.7
$ref_mid_320_a$	1	OUD	ML	269.6
$ref_mid_320_b$	1	OUD	ML	271.5
$ref_mid_320_c$	1	OUD	ML	269.8
$ref_hoog_1000_a$	1	OUD	ML	839.7
ref_hoog_1000_b	1	OUD	ML	843.6
ref_hoog_1000_c	1	OUD	ML	854.5
staal 123	1	OUD	ML	541.6
ref_laag_100_a	2	OUD	ML	86.5
ref_laag_100_b	2	OUD	ML	85.8
ref laag 100 c	2	OUD	ML	85.2
ref_mid_320_a	2	OUD	ML	269.7
ref_mid_320_b	2	OUD	ML	273.3
ref_mid_320_c	2	OUD	ML	278.1
ref_hoog_1000_a	$\overline{2}$	OUD	ML	850.9
ref_hoog_1000_b	2	OUD	ML	867.6
ref_hoog_1000_c	2	OUD	ML	859.1
staal_123	2	OUD	ML	549.1
ref_laag_100_a	3	OUD	ML	84.8
ref_laag_100_b	3	OUD	ML	84.8
ref_laag_100_c	3	OUD	ML	82.8
ref_mid_320_a	3	OUD	ML	278.0
ref_mid_320_b	3	OUD	ML	273.1
ref_mid_320_c	3	OUD	ML	275.7
ref_hoog_1000_a	3	OUD	ML	869.8
ref_hoog_1000_b	3	OUD	ML	867.8
ref_hoog_1000_c	3	OUD	ML	855.6
staal_123	3	OUD	ML	552.1
ref_laag_100_a	$\frac{3}{4}$	OUD	ML	83.6
ref_laag_100_b	4	OUD	ML	83.5
ref_laag_100_c	4	OUD	ML	84.7
ref_mid_320_a	4	OUD	ML	274.1
ref_mid_320_b	4	OUD	ML	270.6
ref mid 320 c	4	OUD	ML	271.0
ref_hoog_1000_a	4	OUD	ML	849.7
ref_hoog_1000_b	4	OUD	ML	831.2
ref_hoog_1000_c	4	OUD	ML	844.0
staal_123	$\frac{4}{4}$	OUD	ML	506.5
	4 5	OUD		
ref_laag_100_a			ML	84.6
ref_laag_100_b	5	OUD	ML	83.7
ref_laag_100_c	5	OUD	ML	86.3
ref_mid_320_a	5	OUD	ML	272.5
ref_mid_320_b	5 5	OUD	ML MI	274.3
ref_mid_320_c	5	OUD	ML	273.2
ref_hoog_1000_a	5	OUD	ML	844.3
ref_hoog_1000_b	5	OUD	ML	831.5
ref_hoog_1000_c	5	OUD	ML	850.8

Staal	Toestel	Type	Prep	Concentratie
staal_123	5	OUD	ML	542.2
$ref_laag_100_a$	6	OUD	ML	84.4
ref_laag_100_b	6	OUD	ML	84.3
ref_laag_100_c	6	OUD	ML	84.8
ref mid 320 a	6	OUD	ML	271.7
ref_mid_320_b	6	OUD	ML	272.2
$ref_{mid_320_c}$	6	OUD	ML	270.4
ref_hoog_1000_a	6	OUD	ML	850.4
ref_hoog_1000_b	6	OUD	ML	856.4
ref_hoog_1000_c	6	OUD	ML	858.4
staal 123	6	OUD	ML	548.0
ref_laag_100_a	7	OUD	ML	85.0
ref_laag_100_b	7	OUD	ML	84.4
ref_laag_100_c	7	OUD	ML	86.1
ref_mid_320_a	7	OUD	ML	269.2
ref_mid_320_b	7	OUD	ML	274.6
ref_mid_320_c	7	OUD	ML	270.9
ref_hoog_1000_a	7	OUD	ML	846.3
ref_hoog_1000_b	7	OUD	ML	852.3
ref_hoog_1000_c	7	OUD	ML	843.9
staal 123	7	OUD	ML	545.4
	8	OUD	ML	86.2
ref_laag_100_a ref_laag_100_b	8	OUD	ML	85.4
ref_laag_100_c	8	OUD	ML	85.0
ref_mid_320_a	8	OUD	ML	270.8
	8		ML	
ref_mid_320_b	8	OUD	$^{ m ML}$	270.6
ref_mid_320_c	8	OUD		266.5
ref_hoog_1000_a		OUD	ML	838.2
ref_hoog_1000_b	8	OUD	ML	854.0
ref_hoog_1000_c	8	OUD	ML	857.0
staal_123	8	OUD	ML	542.3
ref_laag_100_a	9	NIEUW	ML	99.8
ref_laag_100_b	9	NIEUW	ML	99.1
ref_laag_100_c	9	NIEUW	ML	100.1
ref_mid_320_a	9	NIEUW	ML	321.0
ref_mid_320_b	9	NIEUW	ML	317.8
ref_mid_320_c	9	NIEUW	ML	327.2
ref_hoog_1000_a	9	NIEUW	ML	1005.9
ref_hoog_1000_b	9	NIEUW	ML	995.6
ref_hoog_1000_c	9	NIEUW	ML	1003.4
staal_123	9	NIEUW	ML	639.1
ref_laag_100_a	10	NIEUW	ML	100.1
ref_laag_100_b	10	NIEUW	ML	98.4
ref_laag_100_c	10	NIEUW	ML	99.5
$ref_mid_320_a$	10	NIEUW	ML	323.5
$ref_mid_320_b$	10	NIEUW	ML	322.7
$ref_mid_320_c$	10	NIEUW	ML	316.9
ref_hoog_1000_a	10	NIEUW	ML	1020.7
$ref_hoog_1000_b$	10	NIEUW	ML	984.4
$ref_hoog_1000_c$	10	NIEUW	ML	987.3
$staal_123$	10	NIEUW	ML	654.2
$ref_laag_100_a$	11	NIEUW	ML	99.2

Staal	Toestel	Type	Prep	Concentratie
ref_laag_100_b	11	NIEUW	ML	102.5
ref_laag_100_c	11	NIEUW	ML	99.6
ref_mid_320_a	11	NIEUW	ML	320.7
$ref_mid_320_b$	11	NIEUW	ML	319.1
$ref_mid_320_c$	11	NIEUW	ML	322.4
ref_hoog_1000_a	11	NIEUW	ML	998.0
$ref_hoog_1000_b$	11	NIEUW	ML	998.5
$ref_hoog_1000_c$	11	NIEUW	ML	1016.2
$staal_123$	11	NIEUW	ML	647.9
$ref_laag_100_a$	12	NIEUW	ML	99.0
$ref_laag_100_b$	12	NIEUW	ML	99.2
ref_laag_100_c	12	NIEUW	ML	97.7
$ref_mid_320_a$	12	NIEUW	ML	321.2
$ref_mid_320_b$	12	NIEUW	ML	324.6
$ref_mid_320_c$	12	NIEUW	ML	319.2
ref_hoog_1000_a	12	NIEUW	ML	1015.0
$ref_hoog_1000_b$	12	NIEUW	ML	999.1
ref_hoog_1000_c	12	NIEUW	ML	991.5
staal_123	12	NIEUW	ML	647.4