Réduction

Exercice 1. Étudier la diagonalisabilité de l'endomorphisme ϕ de $\mathcal{M}_n(\mathbb{R})$ défini par $\phi(M)=M+\operatorname{tr}(M)\mathrm{I}_n$.

Exercice 2. Soit E le \mathbb{R} -espace vectoriel des fonctions continues de $[o; +\infty[$ vers \mathbb{R} convergeant en $+\infty$.

Soit T l'endomorphisme de E donné par $\forall x \in [o; +\infty[, T(f)(x) = f(x + 1)]$. Déterminer les valeurs propres de T et les vecteurs propres associés.

Exercice 3. Soit *E* l'espace des fonctions f de classe C^1 de $[o; +\infty[$ vers \mathbb{R} vérifiant f(o) = o.

Pour un élément f de E on pose T(f) la fonction définie par $T(f)(x) = \int_0^x \frac{f(t)}{t} dt$. Montrer que T est un endomorphisme de E et déterminer ses valeurs propres.

Exercice 4. Soit $a \in \mathbb{R}$ et $n \ge 2$.

- 1. Montrer que $\phi(P)(X) = (X-a)(P'(X)-P'(a))-2(P(X)-P(a))$ définit un endomorphisme de $\mathbb{R}_n[X]$.
- 2. À l'aide de la formule de Taylor, déterminer l'image et le noyau de ϕ .
- 3. Trouver ses éléments propres. L'endomorphisme est-il diagonalisable?

Exercice 5.

- 1. Montrer que, pour $z_1, \ldots, z_n \in \mathbb{C}$ avec $z_1 \neq 0$, on a l'égalité $\left|\sum_{k=1}^n z_k\right| = \sum_{k=1}^n |z_k|$ si, et seulement si, il existe n-1 réels positifs $\alpha_2, \ldots, \alpha_n$ tels que $\forall k \geq 2, z_k = \alpha_k z_1$.
- 2. Déterminer toutes les matrices de $\mathcal{M}_n(\mathbb{C})$ telles que $M^n = I_n$ et trM = n

Exercice 6. Soit E un espace vectoriel réel de dimension finie, $f \in \mathcal{L}(E)$ tel que $f^2 = f$. Étudier les éléments propres et la diagonalisabilité de l'endomorphisme $u \mapsto fu - uf$ de $\mathcal{L}(E)$.

Exercice 7. Pour $n \ge 2$, on considère la matrice

$$J = \begin{pmatrix} 0 & 1 & & 0 \\ \vdots & \ddots & \ddots & \\ 0 & & \ddots & 1 \\ 1 & 0 & \cdots & 0 \end{pmatrix}.$$

- 1. Montrer que la matrice J est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$
- 2. En déduire le déterminant de la matrice suivante :

$$\begin{vmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_1 \\ a_1 & \cdots & a_{n-1} & a_0 \end{vmatrix}$$

Exercice 8. Diagonaliser les matrices de $\mathcal{M}_n(\mathbb{R})$

$$\begin{pmatrix}
0 & \cdots & 0 & 1 \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & 1 \\
1 & \cdots & 1 & 1
\end{pmatrix} et \begin{pmatrix}
1 & \cdots & \cdots & 1 \\
\vdots & 0 & \cdots & 0 & \vdots \\
\vdots & \vdots & & \vdots & \vdots \\
\vdots & 0 & \cdots & 0 & \vdots \\
\vdots & 0 & \cdots & 0 & \vdots \\
1 & \cdots & \cdots & \cdots & 1
\end{pmatrix}.$$

Exercice 9. Soient $n \ge 2$, $A \in \mathcal{M}_n(\mathbb{R})$ et f l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par

$$f(M) = \operatorname{tr}(A)M - \operatorname{tr}(M)A$$

où tr désigne la forme linéaire trace.

Étudier la réduction de l'endomorphisme f et préciser la dimension de ses sous-espaces propres.

Exercice 10.

1. Calculer le déterminant (à coefficients réels)

$$D_n = \det A_n = \begin{vmatrix} a_1 + b_1 & a_1 & \cdots & a_1 \\ a_2 & a_2 + b_2 & \cdots & a_2 \\ \vdots & \ddots & \ddots & \vdots \\ a_n & a_n & \cdots & a_n + b_n \end{vmatrix}$$

2. Si $b_1 < b_2 < ... < b_n$ et si $a_i >$ o pour tout i, montrer que A_n est diagonalisable dans \mathbb{R} .

Exercice 11. Soient $n \in \mathbb{N}^*$, A et B dans $\mathcal{M}_n(\mathbb{C})$ et $\lambda_1, \ldots, \lambda_n, \lambda_{n+1}$ deux à deux distincts dans \mathbb{C} . On suppose, pour $1 \le i \le n+1$, que $A+\lambda_i B$ est nilpotente. Montrer que A et B sont nilpotentes.

Exercice 12. Monter que la matrice suivante est diagonalisable

$$A = \begin{pmatrix} 0 & 1 & & & (0) \\ n & \ddots & 2 & & \\ & n-1 & \ddots & \ddots & \\ & & \ddots & \ddots & n \\ (0) & & 1 & 0 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{C})$$

(indice: on pourra interpréter A comme la matrice d'un endomorphisme de $\mathbb{C}_n[X]$)

Exercice 13. Soient E un \mathbb{C} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$.

- 1. Énoncer un critère de diagonalisabilité en terme de polynôme annulateur.
- 2. On suppose $u \in GL(E)$. Montrer que u est diagonalisable si, et seulement si, u^2 l'est.
- 3. Généralisation: Soit $P \in \mathbb{C}[X]$. On suppose $P'(u) \in GL(E)$ Montrer que u est diagonalisable si, et seulement si, P(u) l'est.

Exercice 14. Soient E un \mathbb{R} -espace vectoriel de dimension finie n non nulle et $f \in \mathcal{L}(E)$ vérifiant $f^2 = -\mathrm{Id}_E$.

- 1. Soit $a \in E$ non nul. Montrer que la famille (a, f(a)) est libre. On pose F(a) = Vect(a, f(a)).
- 2. Montrer qu'il existe des vecteurs de E a_1, \ldots, a_p non nuls tels que

$$E = F(a_1) \oplus \cdots \oplus F(a_p).$$

3. En déduire que la dimension de E est paire et justifier l'existence d'une base de E dans laquelle la matrice de f est simple.

Exercice 15. On note $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$ et on pose, pour toute $f \in E$ et tout $x \in \mathbb{R}$,

$$Tf(x) = f(x) + \int_0^x f(t) dt.$$

- 1. L'opérateur *T* est-il un automorphisme de *E* ?
- 2. Existe-t-il un sous-espace vectoriel de E de dimension finie impaire et stable par T?

Exercice 16. Soit $A \in \mathcal{M}_3(\mathbb{R})$ vérifiant $A^2 = 0$ et $A \neq 0$.

Établir que A est semblable à la matrice

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercice 17. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice telle que $A^2 = 0$ et de rang r > 0. Montrer que A est semblable à

$$B = \begin{pmatrix} o & I_r \\ o & o \end{pmatrix}.$$

Exercice 18. Soit $f: \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$ non constante telle que:

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{C})^2, f(AB) = f(A)f(B).$$

Pour $A \in \mathcal{M}_n(\mathbb{C})$, prouver l'équivalence:

A inversible
$$\iff f(A) \neq 0$$
.

Exercice 19. Soient f et g deux endomorphismes d'un \mathbb{C} -espace vectoriel E de dimension finie $n \ge 1$ tels que

$$f \circ g - g \circ f = f$$
.

- 1. Montrer que f est nilpotent.
- 2. On suppose $f^{n-1} \neq 0$. Montrer qu'il existe une base e de E et $\lambda \in \mathbb{C}$ tels que:

$$\operatorname{Mat}_{e} f = \begin{pmatrix} o & 1 & & (o) \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ (o) & & & o \end{pmatrix}$$

et

$$Mat_{e}g = diag(\lambda, \lambda + 1, ..., \lambda + n - 1).$$

Exercice 20. Soient E un \mathbb{C} -espace vectoriel de dimension finie non nulle, $(a,b) \in \mathbb{C}^2$, f et g dans $\mathcal{L}(E)$ tels que

$$f \circ g - g \circ f = af + bg$$
.

Montrer que f et g ont un vecteur propre commun.

Exercice 21. On fixe $A \in \mathcal{M}_p(\mathbb{R})$ et on considère $\Delta : M \in \mathcal{M}_p(\mathbb{R}) \mapsto AM - MA$.

1. Prouver que Δ est un endomorphisme de $\mathcal{M}_p(\mathbb{R})$ et que:

$$\forall n \in \mathbb{N}^*, \forall (M, N) \in \mathcal{M}_p(\mathbb{R})^2, \Delta^n(MN) = \sum_{k=0}^n \binom{n}{k} \Delta^k(M) \Delta^{n-k}(N).$$

2. On suppose que $B = \Delta(H)$ commute avec A. Montrer:

$$\Delta^2(H) = o \text{ et } \Delta^{n+1}(H^n) = o.$$

Vérifier $\Delta^n(H^n) = n!B^n$.

- 3. Soit $\|\cdot\|$ une norme sur $\mathcal{M}_p(\mathbb{R})$. Montrer que $\|B^n\|^{1/n} \xrightarrow[n \to +\infty]{}$ o.
- 4. En déduire que la matrice *B* est nilpotente.

Exercice 22. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On désire établir l'égalité des polynômes caractéristiques

$$\chi_{AB} = \chi_{BA}$$
.

- 1. Établir l'égalité quand $A \in GL_n(\mathbb{C})$.
- 2. Pour $A \notin GL_n(\mathbb{C})$, justifier que pour $p \in \mathbb{N}$ assez grand $A + \frac{1}{p}I_n \in GL_n(\mathbb{C})$. En déduire que l'égalité est encore vraie pour A non inversible.

Exercice 23. Soient $A \in \mathcal{M}_n(\mathbb{C})$ et Φ_A l'endomorphisme de $\mathcal{M}_n(\mathbb{C})$ définie par $\Phi_A(M) = AM$.

- 1. Montrer que les valeurs propres de Φ_A sont les valeurs propres de A.
- 2. Déterminer les valeurs propres de $\Psi_A : M \mapsto MA$.

Exercice 24. Soient E un \mathbb{R} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$, $v \in \mathcal{L}(E)$ diagonalisables vérifiant

$$u^3 = v^3$$
.

Montrer que u = v.

Exercice 25. Soit u un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie non nulle Montrer qu'il existe une droite vectorielle ou un plan vectoriel stable par u.

Exercice 26. Soit *E* un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ tel que

$$u^3 = Id$$
.

Décrire les sous-espaces stables de u. Même question avec E un \mathbb{R} -espace vectoriel.