Test 5 Section 3 (652)

```
1) A 9) 2/5, 0.4 17) 8
```

2) E 10) 128 18) 70

3) B 11) 2400 4) C 12) 3

5) D 13) 8/3, 2.66, 2.67

6) A 14) 22.5<x<27.5, 45/2<x<55/2

7) C 15) 24

8) A 16) 10

$$2) \quad 3\left(\frac{\lambda}{\lambda}\right)\lambda_{5} = 9\times\lambda$$

5)
$$8 + (26-1)9 = 26th$$
 (D)

7)
$$(n)+(n+1)=t$$
 $\Rightarrow 2n+1=t$ $2n-t=1$ $2n-t=1$

6)
$$try ... A is not sufficient
9) $2(x-3)=8$ $\frac{x-3}{x+3}=\frac{4}{10}=\frac{2}{5}$
 $\frac{x}{x+3}=\frac{10}{10}$$$

8)
$$3(1) = 3(0) + 6(1) + 2(2) + 1(3)$$

 $= 6 + 4 + 3 = 13$
 $5 + 6 = 12$
13, $13 + 10$
 $1 = 0$

$$\begin{array}{c}
 (0) \\
 2x - 3 = 253 \\
 2x - 256 \\
 x = 128
 \end{array}$$

1b)
$$A = GYT$$

$$A = T(3G)$$

$$A = T(2 = 3CT + 64T)$$

$$A = 100T$$

$$A = 100T$$

$$A = 100T$$

H says "positive" factors

not "prime" feeter \(\begin{array}{c} \begin{a

18)
$$h(t) = C - (d - 4t)^{2}$$

 $10b = C - (d - 4)^{2}$
 $10b = C - (d - 10)^{2}$
 $10b = C - (d - 10)^{2}$
 $10b = C - (d - 2)^{2}$
 $10b = C - (d - 4)^{2}$
 $10b = C - (d - 10)^{2}$
 $10b = C - (d - 10)^{2}$

$$d=10 \qquad 6 = C - d^{2}$$

$$6 = C - 100$$

$$106 = C$$

$$h(4) = C - (d - 44)^{2}$$

$$h(1) = C - (d - 4)^{2}$$

$$h(1) = 106 - (10 - 4)^{2}$$

$$= 106 - 36$$

$$= 70$$

Test 5 Section 7 (669)

- 1) C
- 2) D
- 3) D
- 4) C
- 5) B
- 6) D
- 7) C
- 8) C

- 9) A
- 10) D
- 11) C
- 12) E
- 13) A
- 14) C
- 15) E
- 16) C

- 17) D
- 18) B
- 19) A
- 20) E

1) (C) 2) (D) 3)
$$10+ 2*chs = 0$$

(b) $6+(6+12+16+1) = 10$
(c) $40=410$
(d) $40=410$
(e) $40=410$
(f) $40=410$

7)
$$2y=50$$
 $y=25$: $z=65$ ©
8) $13=326$ $26=326$ $52=3252$

10)
$$4x - 2x^{2} - 4 + 2x = 0$$

$$2x^{2} - 6x + 4 = 0$$

$$(2x - 2)(x - 3) = 0$$

$$2x - 2 = 0 \text{ of } x - 2 = 0 \text{ D}$$

$$2x = 2 \qquad x = 2$$

$$x = 1$$

$$1) \quad x^{3} = y^{9} = 7(x^{3})^{\frac{1}{3}} = (y^{9})^{\frac{1}{3}}$$

$$x = y^{3}$$

August 02, 2012

(1)
$$\chi^{3} = \gamma^{9}$$
 $\chi^{3} = \chi^{9}$
 $\chi^{3} = \chi^{9}$
 $\chi^{4} = \chi^{4}$
 $\chi^{5} = \chi^{4}$
 $\chi^{5} = \chi^{4}$

14)
$$X+9=(X-3)^2=X^2-CX+9$$

 $X=X^2-CX$

test5.notebook August 02, 2012

(7)
$$A = \frac{\Pi(1)^2}{\Pi(\frac{1}{2})^2} = \frac{\Pi}{4\Pi} = 4$$

or
$$(x^{-\frac{4}{3}} = k^{-2})^{-\frac{24}{4}}$$

 $X = k^{\frac{4}{4}} = k^{\frac{2}{4}}$
 $(xy)^{\frac{2}{3}} = (nk)^{-\frac{2}{3}}$
 $(xy)^{\frac{2}{3}} = \frac{1}{nk}$

$$(y^{\frac{4}{3}} = n^2)^{\frac{4}{3}}$$

 $y = n^{\frac{4}{3}} = n^3$

20)
$$f(x) \Rightarrow f(x-y) + k$$

add h to every x.

"slide" graph h units

to the right.

 $g(x) = x^2 + x$
 $g(x) = f(x+h) + k$
 $g(x) = f(x+h) + k$
 $g(x) = f(x+h) + k$

Shile to $x + y = x + k$

Shile to $x + y = x + k$

No help

 $f(x) = x^2 + x$
 $f(x) = x^2 + x$

The proof of the points of the poin

Test 5 Section 9 (679)

1)	В
-	•	

2) A 3) B

4) E

5) D

6) D

7) B

8) C

9) D

10) B

11) B

12) A

13) D

14) E

15) D

16) C

1)
$$\frac{16}{16} = \frac{3}{5}$$
 B
2) A 3) B 4) E
5) $\frac{1.2 \times 5}{1 \times 5} = \frac{6}{5}$ D
6) D
7) Integers $\frac{1}{5} \times 4$

8)
$$|U-W|$$
 is distance between $U,W = X$ C

9) $\frac{(n+5)5-5}{5} = \frac{5n+25-5}{5} = \frac{5n+20}{5}$

10) $4x = 2+1$

For each poster

test5.notebook August 02, 2012

13 alt (better)

(a + b + 7 = 180 2=30 at b = 150 at x + b + y = 360 at b + x + y = 360 x + y = 210 x + y = 210

(a) Vertex x-coard =
$$-\frac{b}{2a}$$
 (-)

(a) Care up

 $f(0) = 0 + 0 + C$

(b) $f(0) = 0 + 0 + C$

(c) $f(0) = 0 + 0 + C$

(d) $f(0) = 0 + 0 + C$

(e) $f(0) = 0 + 0 + C$

(f) $f(0) = 0 + 0 + C$

(f)

16)
$$\alpha = \alpha - 2$$
 $\alpha = \alpha - 2$
 $\alpha = \alpha - 2$