Имя, фамилия и номер группы:

- 1. Найдите SVD-разложение матрицы $\begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & 0 \end{pmatrix}$
- 2. Найдите дифференциал $d \exp(r^T A r + b r)$, где $A^T = A$ и b это константы.
- 3. Постройте регрессию вектора $y=(4,2,-2)^T$ на вектора $x=(2,1,-1)^T$ и $z=(-1,0,2)^T$ без константы. Будет ли в этой модели TSS=RSS+ESS?
- 4. Известно, что y=2x+3z. Винни-Пух построил регрессию $\hat{y}_i=\hat{\beta}_1+0.16x_i$. Пятачок построил регрессию $\hat{x}_i=\hat{\alpha}_1+1\cdot y_i$.

Помогите Сове найти коэффициент $\hat{\gamma}_2$ в регрессии $\hat{y}_i = \hat{\gamma}_1 + \hat{\gamma}_2 z_i$.

- 5. Величины U_1 и U_2 независимы и равномерны U[0;1]. Рассмотрим пару величин $Y_1=R\cdot\cos\alpha$, $Y_2=R\cdot\sin\alpha$, где $R=\sqrt{-2\ln U_1}$, а $\alpha=2\pi U_2$.
 - а) Найдите вероятностную дифференциальную форму для пары Y_1, Y_2 ;
 - б) Как называется совместный закон распределения Y_1 и Y_2 ?
 - в) Верно ли, что Y_1 и Y_2 независимы?
- 6. Василий проецирует вектор $u=(u_1,u_2,u_3,u_4,u_5)'$ на линейную оболочку векторов a=(1,1,2,2,2)' и b=(1,3,3,3,3)'. Вектор u имеет стандартное многомерное нормальное распределение. Обозначим проекцию \hat{u} .
 - а) Найдите \hat{u} и $||\hat{u}||^2$.
 - б) Как распределена величина $||\hat{u}||^2$?
- 7. Докажите, для любой линейной по y несмещённой оценки $\hat{\beta}^*$ выполнено условие $\mathrm{Cov}(\hat{\beta}^* \hat{\beta}, \hat{\beta}) = 0$, где $\hat{\beta}$ оценка МНК.