Database Management System

Course Objectives:

The course objective is to provide fundamental concept, theory and practices in design and implementation of Database Management System.

- 1. Introduction [3 hours]
 - a.Concepts and Applications
 - b. Objective and Evolution
 - c.Data Abstraction and Data Independence
 - d.Schema and Instances
 - e.Concepts of DDL, DML and DCL
- 2.Data Models [7 hours]
 - a.Logical, Physical and Conceptual
 - b.E-R Model
 - c.Entities and Entities sets
 - d.Relationship and Relationship sets
 - e.Strong and Weak Entity Sets
 - f. Attributes and Keys
 - g.E-R Diagram
 - h. Alternate Data Model (hierarchical, network, graph)
- 3. Relational Languages and Relational Model [7 hours]
 - a.Introduction to SQL
 - b. Features of SQL
 - c.Queries and Sub-Queries
 - d. Set Operations
 - e.Relations (Joined, Derived)
 - f.Queries under DDL and DML Commands
 - g.Embedded SQL
 - h. Views
 - i.Relational Algebra
 - j.Database Modification
 - k.QBE and domain relational calculus
- 4. Database Constraints and Normalization [6 hours]
 - a.Integrity Constraints and Domain Constraints
 - b. Assertions and Triggering
 - c.Functional Dependencies
 - d.Multi-valued and Joined Dependencies
 - e.Different Normal Forms (1st, 2nd, 3rd, BCNF, DKNF)
- 5. Query Processing and Optimization [4 hours]
 - a. Query Cost Estimation
 - b.Query Operations
 - c.Evaluation of Expressions
 - d. Query Optimization
 - e. Query Decomposition
 - f.Performance Tuning

- 6. File Structure and Hashing [4 hours]
 - a. Records Organizations
 - b. Disks and Storage
 - c.Remote Backup System
 - d. Hashing Concepts, Static and Dynamic Hashing
 - e.Order Indices
 - f.B+ tree index
- 7. Transactions processing and Concurrency Control [6 hours]
 - a.ACID properties
 - **b.Concurrent Executions**
 - c. Serializability Concept
 - d.Lock based Protocols
 - e.Deadlock handling and Prevention
- 8. Crash Recovery [4 hours]
 - a. Failure Classification
 - b.Recovery and Atomicity
 - c.Log-based Recovery
 - d.Shadow paging
 - e. Advanced Recovery Techniques
- 9. Advanced database Concepts [4 hours]
 - a.Concept of Objet-Oriented and Distributed Database Model
 - b. Properties of Parallel and Distributed Databases
 - c.Concept of Data warehouse Database
 - d.Concept of Spatial Database

Practical:

- 1. Introduction and operations of MS-Access or MySQL or any suitable DBMS
- 2. Database Server Installation and Configuration (MS-SQLServer, Oracle)
- 3.DB Client Installation and Connection to DB Server. Introduction and practice with SELECT Command with the existing DB.
- 4. Further Practice with DML Commands
- 5. Practice with DDL Commands. (Create Database and Tables).
- 6.Practice of Procedure/Trigger and DB Administration & other DBs (MySQL, PG-SQL, DB2.)
- 7. Group Project Development.
- 8. Project Presentation and Viva

References

- 1. H. F. Korth and A. Silberschatz, "Database system concepts", McGraw Hill, 2010.
- 2. A. K. Majumdar and P. Bhattacharaya, "Database Management Systems", Tata McGraw Hill, India, 2004.

Evaluation Scheme:

The question will cover all the chapters of the syllabus. The evaluation scheme will be as indicated in the table below:

Chapter	Hour	Marks Distribution*
1	3	4
2	7	12
3	7	12
4	6	12
5	4	8
6	4	8
7	6	12
8	4	6
9	4	6
Total	45	80

^{*}Note: There may be minor deviation in marks distribution.