NOTES ON SCHUBERT CALCULUS AND QUANTUM INTEGRABILITY

Abstract.

Contents

1.	Introduction	1
2.	Lecture 1 (Allen Knutson)	2
3.	Lecture 2 (Allen Knutson)	5
4.	Lecture 3 (Paul Zinn-Justin)	5
5.	Lecture 4 (Paul Zinn-Justin)	5
6.	Lecture 5 (Allen Knutson)	5
7.	Lecture 6 (Allen Knutson)	5
8.	Lecture 7 (Paul Zinn-Justin)	5
9.	Lecture 8 (Paul Zinn-Justin)	5
10.	Lecture 9 (Allen Knutson)	5
11.	Lecture 10 (Allen Knutson)	5
12.	Lecture 11 (Paul Zinn-Justin)	5
13.	Lecture 12 (Paul Zinn-Justin)	5
14.	Lecture 13 (Allen Knutson)	5
15.	Lecture 14 (Paul Zinn-Justin)	5
16.	Lecture 15 (Allen Knutson)	5
17.	Lecture 16 (Allen Knutson)	5
18.	Lecture 17 (Paul Zinn-Justin)	5
19.	Lecture 18 (Paul Zinn-Justin)	5

1. Introduction

Here is a template for a simple commutative diagram in tikz:

$$X' \xrightarrow{f'} Y'$$

$$h' \downarrow h$$

$$X \xrightarrow{f} Y$$

Here is a template for an elaborate commutative diagram in tikz:

2. Lecture 1 (Allen Knutson)

Let V be a k-plane in \mathbb{C}^n with basis represented as a $k \times n$ matrix with basis elements as row vectors. Put this matrix into Reduced Row Echelon Form and consider left action by $GL_k(\mathbb{C})$ and right action by upper triangular matrices to get an open subgroup of right word row operations.

Theorem 2.1. A matrix $Mat_n(\mathbb{C})$ acted on the left by $GL_k(\mathbb{C})$ downward row operations and on the right by upper triangular matrices rightward column operations, that is,

$$\begin{bmatrix} 0 \\ * \end{bmatrix} \circlearrowleft Mat_n(\mathbb{C}) \circlearrowleft \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

has one orbit for each partial permutation matrix. This is the **Bruhet decomposition** of the matrix.

Definition 2.2. A matrix **Schubert Variety** is $\overline{X_{\pi}} := \overline{B_{-}\pi B_{+}}$ where π is the permutation matrix.

Theorem 2.3. $\overline{X_{\pi}}$ is the set of $n \times n$ matrices, M, such that for all $i, j \in [n]$, the $i \times j$ submatrix of M is less than or equal to the $i \times j$ submatrix of π . That is, the determinants summarized by these conditions generate a prime ideal whose vanishing set is $\overline{X_{\pi}}$.

As an example, consider $\pi = 3142$ pictured below:

The arrows are referred to as **death rays** since each leading one eliminates the entries to the right of and below it. In this example we have that

$$m_{11} = m_{12} = 0 = \det \begin{pmatrix} m_{21} & m_{22} \\ m_{31} & m_{32} \end{pmatrix}$$

and the associated Rothe diagram is

$$\left[\begin{array}{cc} 0 & 0 \\ & * \end{array}\right]$$

Two natural questions arise. First, how big is $\overline{X_{\pi}}$? We see that

$$\dim \overline{X_{\pi}} = \dim(B_{-}\pi B_{+})$$

$$= \dim(B_{-} \times B_{+}) - \dim(\operatorname{stab}(\pi))$$

$$= \text{the number of entries crossed out in the death ray diagram}$$

$$= \dim T_{\pi}(B_{-}\pi B_{+})$$

$$= \dim(b_{-}\pi + \pi b_{+})$$

Where b_{-} and b_{+} are lie algebras. Hence the codimension of $\overline{X_{\pi}}$ is the number of entries in the Rothe diagram.

Theorem 2.4. The only essential rank conditions are at the southeast corners of the Rothe diagram.

The second question is what is the volumn of $\mathbb{P}(\overline{X_{\pi}})$? Considering the degree as a projective variety, we get the following axioms for $Y \subseteq \mathbb{P}(V)$ defined by some homogeneous ideal.

- (0) The degree of p^1 is 1.
- (1) If Y is reducible, that is the ideal is not prime, such that $Y = Y_1 \cup Y_2 \cup \cdots \cup Y_k$ and $I \subseteq P_i$ is minimal, then the degree of Y is the sum over the top dimensional components of the product of the multiplicity of Y_i and the degree of Y_i .
- (2) If $W \subseteq V$ is a hyperplane and $\mathbb{P}(W) \supseteq Y$ then the degree of Y in $\mathbb{P}(V)$ is equal to the degree of Y in $\mathbb{P}(W)$.
- (3) If $W \subseteq V$ is a hyperplane and Y is reduced and irreducible, that is I is prime and $Y \subseteq \mathbb{P}(W)$, then the degree of Y in $\mathbb{P}(V)$ is equal to the degree of $Y \cap \mathbb{P}(W)$ in $\mathbb{P}(W)$.

What is the degree of $\mathbb{P}(\overline{X_{\pi}})$? Consider the base case where

$$\pi = w_0^{(n)} = \left[\cdot \cdot \cdot \right]$$

After eliminating entries via death rays we see that $\overline{X_{\pi}} = \left\{ M : \boxed{0}_{*} \right\}$ where the 0's in the upper left of the matrix aligns with axiom 2 and the free variables in the lower left align with axiom 3. This gives us that $\deg(\overline{X_{\pi}}) = 1$.

.

If $\pi \neq w_0^{(n)}$ pick $i \in [n]$ least such that $\pi(i) \neq w_0^{(n)}(i) = n+1-i$. Then $W := \{M : m_i\pi(i) = 0\}$ and

$$\overline{X_{\pi}} \cap W = \overline{X_{\pi}} \cap \left\{ \begin{array}{c} \pi(i) \\ 0 \\ \end{array} \right\} \circlearrowleft B_{-} \times B_{+} \text{ invariant}$$

which is the union of $\overline{X_{\pi'}}$ over certain π' none of which are strictly partial permutations and all multiplicities are 1.

Definition 2.5. A pipe dream for π is a diagram

where each box is filed in with one of two tiles: crosses $j \coprod_{i=1}^{i} j$ when $i \leq j$ and elbows

$$i \stackrel{i}{ } j$$
 when $i \neq j$.

Theorem 2.6. The degree of $\overline{X_{\pi}}$ is the number of pipe dreams of π .

For a torus $T \cong (\mathbb{C}^x)^N$ and $Y \subseteq V$) \circlearrowleft T where Y is a T-invariant subvariety and V is a T-representation can soup up the degree to a T-equivariant cohomology class.

Our above axioms hold from above with the exception of axiom 2 which can be rewritten at follows:

(2) $[Y \subseteq V]$ equals the weight of $T(V/W)[Y \subseteq W]$ for $T \in T^*$. The T^* weight lattice is given by $\operatorname{Hom}(T, \mathbb{C}^x) \cong \mathbb{Z}^N$ such that for $\Lambda = (\lambda_1, \dots, \lambda_N) \in \mathbb{Z}^N$ and $t = (t_1, \dots, t_N) \in (\mathbb{C}^x)^N$, $\Lambda \cdot t = \prod_{i=1}^N t_i^{\lambda_i}$. Then $[Y \subseteq V] \in \operatorname{Sum}(T^*) \cong \mathbb{Z}[Y_1, \dots, Y_n]$.

Definition 2.7. The **Double Schubert Polynomial** is $S_{\pi}(X,Y) = [\overline{X_{\pi}} \subseteq \operatorname{Mat}_n]$ with respect to $T \times T \circlearrowleft \operatorname{Mat}_n$ such that $\overline{S_{\pi}}(X,Y) = \sum_{p} \prod_{c} (X_{row} - Y_{col})$ where p stands for pipe dreams for π and c represents crosses.

Consider the possible pipe dreams for $\pi = 132$.

From these pipe dreams we see that the Double Schubert Polynomial is $S_{132} = (X_2 - Y_1) + (X_1 - Y_2)$.

- 3. Lecture 2 (Allen Knutson)
- 4. Lecture 3 (Paul Zinn-Justin)
- 5. Lecture 4 (Paul Zinn-Justin)
- 6. Lecture 5 (Allen Knutson)
- 7. Lecture 6 (Allen Knutson)
- 8. Lecture 7 (Paul Zinn-Justin)
- 9. Lecture 8 (Paul Zinn-Justin)
- 10. Lecture 9 (Allen Knutson)
- 11. Lecture 10 (Allen Knutson)
- 12. Lecture 11 (Paul Zinn-Justin)
- 13. LECTURE 12 (PAUL ZINN-JUSTIN)
- 14. Lecture 13 (Allen Knutson)
- 15. Lecture 14 (Paul Zinn-Justin)
- 16. Lecture 15 (Allen Knutson)
- 17. LECTURE 16 (ALLEN KNUTSON)
- 18. Lecture 17 (Paul Zinn-Justin)
- 19. Lecture 18 (Paul Zinn-Justin)