# merging the procedural and declarative proof styles

## Freek Wiedijk

Radboud University Nijmegen

Mathematics, Algorithms and Proofs ICTP, Trieste, Italy 2008 08 25, 14:00

Mathematical Logic and Computers satellite workshop of ALC 10 Kobe, Japan 2008 08 31, 14:50

# which system is best for formal mathematics?

## 80 out of 100 theorems

| 1.  | The Irrationality of the Square Root of 2                       | ≥ 17 |
|-----|-----------------------------------------------------------------|------|
| 2.  | Fundamental Theorem of Algebra                                  | 4    |
| 3.  | The Denumerability of the Rational Numbers                      | 6    |
| 4.  | Pythagorean Theorem                                             | 6    |
| 5.  | Prime Number Theorem                                            | 2    |
| 6.  | Gödel's Incompleteness Theorem                                  | 3    |
| 7.  | Law of Quadratic Reciprocity                                    | 4    |
| 8.  | The Impossibility of Trisecting the Angle and Doubling the Cube | 1    |
| 9.  | The Area of a Circle                                            | 1    |
| 10. | Euler's Generalization of Fermat's Little Theorem               | 4    |
| 11. | The Infinitude of Primes                                        | 6    |
| 12. | The Independence of the Parallel Postulate                      | 0    |
| 13. | Polyhedron Formula                                              | 1    |
|     |                                                                 |      |

1

## five systems



## procedural versus declarative



## • procedural

#### EESENESSSWWWSEEE

HOL, Coq, Isabelle

#### declarative

(0,0) (1,0) (2,0) (3,0) (3,1) (2,1) (1,1) (0,1) (0,2) (0,3) (0,4) (1,4) (1,3) (2,3) (2,4) (3,4) (4,4) Mizar, Isabelle

#### the state of the art in formal mathematics

## Georges Gonthier

## Coq

Four Color Theorem, 2004

Neil Robertson, Daniel Sanders, Paul Seymour, Robin Thomas The four colour theorem 43 pp.

John Harrison

#### HOL

Prime Number Theorem, 2008

Donald Newman Analytic Number Theory, chapter VII 9 pp.

## the systems

HOL

← most theorems

## Isabelle

Coq

← four color theorem + intuitionistic weirdness

Mizar

← most mathematical

## **HOL Light**

#### overview

$$\mathsf{LCF} \to \mathsf{HOL} \to \left\{ \begin{array}{l} \mathsf{HOL4} \\ \mathsf{HOL\ Light} \\ \mathsf{ProofPower} \end{array} \right.$$



higher order logic = weak, typed set theory

very nice open architecture

only 394 lines of ocaml code need to be trusted

relatively strong automation



#### example: session

```
HOL Light 2.20++, built 11 March 2008 on OCaml 3.09.2 with ckpt
val it : unit = ()
# g '!n. nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2';;
                                                        000000
val it : goalstack = 1 subgoal (1 total)
                                                        000000
                                                        0000000
'!n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2'
                                                        0000000
                                                        0000000
# e INDUCT_TAC;;
val it : goalstack = 2 subgoals (2 total)
 0 ['nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2']
'nsum (1..SUC n) (\ildot{i. i}) = (SUC n * (SUC n + 1)) DIV 2'
'nsum (1..0) (\ildot{i. i}) = (0 * (0 + 1)) DIV 2'
# e (ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG]);;
val it : goalstack = 1 subgoal (2 total)
'(if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2'
#
```

### example: session (continued)

```
'(if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2'
# e ARITH TAC:;
val it : goalstack = 1 subgoal (1 total)
  0 ['nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2']
'nsum (1..SUC n) (\ildot{i. i}) = (SUC n * (SUC n + 1)) DIV 2'
# e (ASM REWRITE TAC[NSUM CLAUSES NUMSEG]);;
val it : goalstack = 1 subgoal (1 total)
  0 ['nsum (1..n) (1. i) = (n * (n + 1)) DIV 2']
'(if 1 <= SUC n then (n * (n + 1)) DIV 2 + SUC n else (n * (n + 1)) DIV 2) =
 (SUC n * (SUC n + 1)) DIV 2'
# e ARITH_TAC;;
val it : goalstack = No subgoals
#
```

#### lemmas and tactics

```
# NSUM_CLAUSES_NUMSEG;;
val it : thm =
  |-(!m. nsum (m..0) f = (if m = 0 then f 0 else 0)) / 
     (!m n.
          nsum (m..SUC n) f =
          (if m \le SUC n then nsum (m..n) f + f (SUC n) else nsum (m..n) f))
# INDUCT_TAC;;
val it : tactic = <fun>
# ASM_REWRITE_TAC;;
val it : thm list -> tactic = <fun>
# ARITH_TAC;;
val it : tactic = <fun>
#
```

## example: in the file

```
let ARITHMETIC_PROGRESSION_SIMPLE = prove
  ('!n. nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2',
   INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN
   ARITH_TAC);;
```

#### Mizar

#### overview

1973 – today

## **Andrzej Trybulec**

Białystok, Poland

first order logic +
Tarski-Grothendieck set theory
= ZFC + arbitrarily large inaccessible cardinals



very nice natural language-like proof language very nice type system

MML = Mizar Mathematical Library

2.2 million lines of code, 55 thousand lemmas

#### example

```
theorem Th1:
  (for i holds s.i = i) implies for n holds Partial_Sums(s).n = n*(n + 1)/2
proof
  assume
A1: for i holds s.i = i;
  defpred X[Element of NAT] means Partial_Sums(s).$1 = $1*($1 + 1)/2;
  Partial_Sums(s).0 = s.0 by SERIES_1:def 1
    .= 0*(0 + 1)/2 by A1;
  then
A2: X[0];
A3: now let n;
    assume X[n];
    then Partial_Sums(s).(n + 1) = n*(n + 1)/2 + s.(n + 1) by SERIES_1:def 1
      .= n*(n + 1)/2 + (n + 1) by A1;
    hence X[n + 1];
  end;
  thus for n holds X[n] from NAT_1:sch 1(A2,A3);
end;
```

#### lemmas

```
definition
  let s be Real_Sequence;
  func Partial_Sums(s) -> Real_Sequence means
:: SERIES_1:def 1
    it.0 = s.0 \& for n holds it.(n + 1) = it.n + s.(n + 1);
end;
scheme :: NAT_1:sch 1
  Ind { P[Nat] } : for k being Element of NAT holds P[k]
provided
 P[0]
and
  for k being Element of NAT st P[k] holds P[k + 1];
```

#### the best of both worlds

a proof assistant that is not **too** frustrating

HOL, Isabelle, Coq, Mizar
I know three intimately
they are all frustrating in different ways

• just learn Isabelle!

 $\mbox{lsabelle} = \mbox{HOL-like system} + \mbox{Mizar-like proofs}$   $\mbox{does not } \mbox{integrate the procedural and declarative proof styles}$ 

- build an (n+1) st system!
- improve an existing system!

### current attempt: improve HOL!

yet another Mizar-style proof language on top of HOL Light
Mizar-style proofs as **first class objects**Mizar-style **user interface** 

• 'A Mizar Mode for HOL' by John Harrison TPHOLs 1996

• Mizar Light TPHOLs 2001

Mizar Light II
 unpublished

• 'Changing proof style' by John Harrison HOL Light tutorial

Mizar Light III

## evolution of Mizar Light syntax

### • Mizar Light

```
prove('a ==> a',
   ASSUME_A(0, 'a:bool') THEN
   THUS_A(1, 'a:bool') (BY [0][]));;
```

### • Mizar Light II

```
theorem "a ==> a"
  [assume "a";
  hence "a"];;
```

### • Mizar Light III

```
a ==> a
proof
  assume a;
  thus a;
end;
```

### the example in Mizar Light

```
!n. nsum(0..n) (\i. i) = (n*(n + 1)) DIV 2
proof
   nsum(0..0) (\i. i) = 0 by NSUM_CLAUSES_NUMSEG;
        .= (0*(0 + 1)) DIV 2 [A1] by ARITH_TAC;
   now let n be num;
   assume nsum(0..n) (\i. i) = (n*(n + 1)) DIV 2;
   nsum(0..SUC n) (\i. i) = (n*(n + 1)) DIV 2 + SUC n
        by NSUM_CLAUSES_NUMSEG,ARITH_RULE '0 <= SUC n';
   thus .= ((SUC n)*(SUC n + 1)) DIV 2 by ARITH_TAC;
   end;
   qed by INDUCT_TAC,A1;</pre>
```

- Mizar proof language
- HOL Light statements without quotes!
- HOL Light tactics in the justifications!



```
⟨statement⟩ by ⟨tactic⟩, ⟨theorem⟩, ..., ⟨label⟩, ...;
```

- (tactic) should have ML type thm list -> tactic
- the step naturally corresponds to a certain goal
   the (label)s label the assumptions in that goal
- just keep the assumptions in the goal that occur in the list
- run the tactic with both theorems and assumptions as argument
- if the tactic succeeds: turn resulting subgoals into statements these should all be in the list

```
now
  thus | [A1] by #;
end;
```

```
now thus !n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A1] by #INDUCT_TAC; end;
```

```
now
nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2 [A1] by #;
now [A2]
let n be num;
assume nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A3];
thus nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2 [A4] by #;
end;
thus !n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A5] by INDUCT_TAC,A1,A2;
end;
```

```
now
nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2 [A1]
by #REWRITE_TAC,NSUM_CLAUSES_NUMSEG;
now [A2]
let n be num;
assume nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A3];
thus nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2 [A4] by #;
end;
thus !n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A5] by INDUCT_TAC,A1,A2;
end;
```

```
now
  (if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2 [A1] by #ARITH_TAC;
  nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2 [A2]
  by REWRITE_TAC,NSUM_CLAUSES_NUMSEG,A1;
  now [A3]
  let n be num;
  assume nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A4];
  thus nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2 [A5] by #;
  end;
  thus !n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A6] by INDUCT_TAC,A2,A3;
end;
```

```
now
  (if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2 [A1] by ARITH_TAC;
  nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2 [A2]
  by REWRITE_TAC,NSUM_CLAUSES_NUMSEG,A1;
  now [A3]
  let n be num;
  assume nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A4];
  thus nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2 [A5] by #;
  end;
  thus !n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A6] by INDUCT_TAC,A2,A3;
end;
```

```
now
  (if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2 [A1] by ARITH_TAC;
  nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2 [A2]
  by REWRITE_TAC,NSUM_CLAUSES_NUMSEG,A1;
  now [A3]
  let n be num;
  assume nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A4];
  thus nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2 [A5]
  by #REWRITE_TAC,NSUM_CLAUSES_NUMSEG,A4;
  end;
  thus !n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A6] by INDUCT_TAC,A2,A3;
  end;
end;
```

```
now
  (if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2 [A1] by ARITH_TAC;
 nsum (1..0) (\ilde{i}. i) = (0 * (0 + 1)) DIV 2 [A2]
    by REWRITE_TAC, NSUM_CLAUSES_NUMSEG, A1;
 now [A3]
    let n be num;
    assume nsum (1..n) (\ilde{i}.i) = (n * (n + 1)) DIV 2 [A4];
    (if 1 <= SUC n then (n * (n + 1)) DIV 2 + SUC n else (n * (n + 1)) DIV 2 =
      (SUC n * (SUC n + 1)) DIV 2 [A5] by #ARITH_TAC;
    thus nsum (1..SUC n) (\i i) = (SUC n * (SUC n + 1)) DIV 2 [A6]
      by REWRITE_TAC, NSUM_CLAUSES_NUMSEG, A4, A5;
  end;
 thus !n. nsum (1..n) (\in i) = (n * (n + 1)) DIV 2 [A7] by INDUCT_TAC, A2, A3;
end;
```

```
now
  (if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2 [A1] by ARITH_TAC;
 nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2 [A2]
    by REWRITE_TAC, NSUM_CLAUSES_NUMSEG, A1;
 now [A3]
    let n be num;
    assume nsum (1..n) (\ilde{i}.i) = (n * (n + 1)) DIV 2 [A4];
    (if 1 <= SUC n then (n * (n + 1)) DIV 2 + SUC n else (n * (n + 1)) DIV 2 =
      (SUC n * (SUC n + 1)) DIV 2 [A5] by ARITH_TAC;
    thus nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2 [A6]
      by REWRITE_TAC, NSUM_CLAUSES_NUMSEG, A4, A5;
  end;
 thus !n. nsum (1..n) (\in i) = (n * (n + 1)) DIV 2 [A7] by INDUCT_TAC, A2, A3;
end;
```

## text typed while 'growing' the proof

```
!n. nsum (1..n) (\ildot{i}. i) = (n * (n + 1)) DIV 2
INDUCT TAC
REWRITE_TAC, NSUM_CLAUSES_NUMSEG
ARITH TAC
REWRITE_TAC, NSUM_CLAUSES_NUMSEG, A4
ARITH_TAC
this corresponds to the traditional session:
g '!n. nsum(1..n) (1. i) = (n*(n + 1)) DIV 2';;
e INDUCT_TAC;;
  (ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG]);;
e ARITH TAC::
  (ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG]);;
e ARITH_TAC;;
```

## merging the declarative and procedural proof styles

two ways of working on a Mizar Light proof:

- the declarative way: free form text editing just type and edit the proof yourself
- the procedural way: generate new steps by executing a tactic at an unjustified line

both freely mixed

not two 'modes' in the proof script

## Mizar-style error messages

### porting formal mathematics

#### formalization for the future

currently, when a proof assistant dies its mathematical library dies formal proof languages should be **generic** 

three approaches to porting formal mathematics:

- convert the low-level 'proof objects'
   works, but no converted proofs on the user-level
- port procedural scripts using similar tactics in the other system does not work
- port declarative scripts by just translating the statements
   all declarative proof languages are basically the same!
   works approximately, but with converted proofs on the user-level!

## the HOL Light example (repeat)

```
let ARITHMETIC_PROGRESSION_SIMPLE = prove
  ('!n. nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2',
   INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN
   ARITH_TAC);;
```

### the Mizar Light conversion of the HOL Light example

```
!n. nsum (1..n) (\ilde{i}.i) = (n * (n + 1)) DIV 2
proof
  (if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2 by ARITH_TAC;
  nsum (1..0) (\id i) = (0 * (0 + 1)) DIV 2 [A1]
    by ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG];
  !n. nsum (1..n) (\ildot{i. i}) = (n * (n + 1)) DIV 2
      ==> nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2
  proof
    let n be num;
    assume nsum (1..n) (\ilde{i}.i) = (n * (n + 1)) DIV 2 [A2];
    (if 1 \le SUC n then (n * (n + 1)) DIV 2 + SUC n else (n * (n + 1)) DIV 2) =
      (SUC n * (SUC n + 1)) DIV 2 by ARITH_TAC;
  qed by ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG], A2;
qed by INDUCT_TAC, A1;
```

### the Mizar example (repeat)

```
theorem
  (for i holds s.i = i) implies for n holds Partial_Sums(s).n = n*(n + 1)/2
proof
  assume
A1: for i holds s.i = i;
  defpred X[Element of NAT] means Partial_Sums(s).$1 = $1*($1 + 1)/2;
  Partial_Sums(s).0 = s.0 by SERIES_1:def 1
    .= 0*(0 + 1)/2 by A1;
  then
A2: X[0];
A3: now let n;
    assume X[n];
    then Partial_Sums(s).(n + 1) = n*(n + 1)/2 + s.(n + 1) by SERIES_1:def 1
      = n*(n + 1)/2 + (n + 1) by A1
   hence X[n + 1];
  end;
  thus for n holds X[n] from NAT_1:sch 1(A2,A3);
end;
```

## the Mizar Light conversion of the Mizar example

```
!s. (!i. s i = i) ==> !n. nsum(0..n) s = (n*(n + 1)) DIV 2
proof
  let s be num->num;
  assume !i. s i = i [A1];
  set X = n. (nsum(0..n) s = (n*(n + 1)) DIV 2);
  nsum(0..0) s = s 0 by NSUM_CLAUSES_NUMSEG';
   .= 0 by A1;
    .= 0*(0 + 1) DIV 2 by ARITH_TAC;
  X 0 [A2]:
  now [A3] let n be num;
    assume X n;
    nsum(0..n + 1) s = (n*(n + 1)) DIV 2 + s (n + 1) by NSUM_CLAUSES_NUMSEG';
      .= (n*(n + 1)) DIV 2 + (n + 1) by A1;
    thus X (n + 1) by ARITH_TAC;
  end;
  !n. X n by MATCH_MP_TAC, num_INDUCTION', A2, A3;
qed;
```

#### outlook

## Mizar Light III is not **just** vaporware...

implementation currently just starting

#### what is there:

- parser and checker (including tactics in the justifications!)
- all examples in this talk are processed correctly

### what is not there (yet):

- proper error messages
- a Mizar-style user interface
- 'growing' a proof by executing tactics
- conversion from procedural HOL Light or Mizar (or other systems)

## the history and future of mathematics



Euclid **proof** 



Cauchy rigor



de Bruijn **formality** 

## needed for this third revolution of formality to happen:

- formalization should be much closer to traditional mathematics
- full automation of high school mathematics