Intro to Key Themes in Predictive Modeling Illustrated through (Generalized) MLR

Readings/Notation: I'll closely follow Bishop Ch 3.1, 3.2, which uses machine learning notation: parameters are w's (for weights), dependent variable is "t" for target, and model produces output "y". (Also see EA:4.6-4.8, KM: 1.2.2)

Outline/Objectives

- True Performance (Generalization)
- Overfitting /Underfitting
 - Bias Variance Tradeoff

All of the above inform Effective Model Choice and Complexity

• Regularization (Ridge and Lasso)

Concepts carry over to classification problems.

Remember, why we're studying linear regression → When you're fundraising, it's AI → When you're hiring, it's ML → When you're implementing, it's linear regression → When you're debugging, it's printf() credit: internet

Parametric Models

Determine functional form of model (e.g. polynomials, neural nets,...)

- "learn" the parameters (weights) of the model using the training data.
- Example: linear regression
- Generalized linear regression: linear combination of basis functions (basis function expansion)

$$y(x, \mathbf{w}) = \sum_{i=0}^{M} w_i \phi_i(x) = \mathbf{w}^{\mathsf{T}} \phi(x)$$

- Special Case: linear regression.
- Special Case: polynomial regression: (with scalar x)

$$y(x, \mathbf{w}) = w_0 + w_1 x + \ldots + w_M x^M$$

i.e., the basis functions are given by $\phi_i(x) = x^i$

Ordinary Least Squares (OLS)

Minimize a loss function E(w) given by sum-of-squares error (SSE)
 (t's are the target values)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} {\{\mathbf{w}^{\mathsf{T}} \phi(x_n) - t_n\}^2}$$

Best interpretation? Consider Root Mean Squared Error (RMSE) or

Least Squares Solution*

Exact **closed-form** minimizer (ML solution)

$$\mathbf{w}^* = (\boldsymbol{\Phi}^\mathsf{T} \boldsymbol{\Phi})^{-1} \, \boldsymbol{\Phi}^\mathsf{T} \vec{t}$$
where $\vec{t} = (t_1, \dots, t_N)^\mathsf{T}$

"Pseudo inverse solution"

"Direction solution involves inversion of many $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$ where $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$ we desire $(M \mid I)$ where $(M \mid I)$

- "Pseudo-inverse solution" and Φ is the *design matrix* given by \bullet

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \cdots & \phi_M(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \cdots & \phi_M(\mathbf{x}_2) \\ \vdots & \vdots & \vdots \\ \phi_0(\mathbf{x}_N) & \cdots & \phi_M(\mathbf{x}_N) \end{pmatrix} \stackrel{cubic in M}{\bullet \quad \textit{Batch mode training}} \bullet \quad \textit{Explicitly shows collinearity problem}$$

- an (M+1)X(M+1) matrix
- Computation Linear in data set size, cubic in M

Collinearity problem: parameter estimates have high uncertainty if two or more independent variables are highly collinear

Why OLS?

- Minimizing Mean Squared Error (MSE) on the training data yields the Maximum Likelihood Estimate (MLE) solution of the following (assumed) model:
 - Expected value of T given the basis function vector phi is linear in phi.
 - i.e. Conditional mean is linear in the predictors.
 - All distributions around the expected values are assumed to be i.i.d.
 zero mean Gaussian with constant variance.
 - In stats notation:

$$Y|X_1 \dots X_p \sim N(\beta_0 + \beta_1 X_1 \dots + \beta_p X_p, \sigma^2)$$

In new notation: (fill in)

(For Proof see **Bishop pg. 140**)

How can you "verify" that the assumptions seem reasonable?

Total Least Squares (Aside)

Which one is better? Which one should you choose?

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

Model Complexity and Overfitting

• "Noisy sine" example from Chris Bishop

Over-fitting

Root-Mean-Square (RMS) Error vs Polynomial order

Another Example

Effect of Data Set Size

9th Order Polynomial

Learning Curves

Figure 4-15. Learning curves (from AG, pg 132)

- How will these curves look like for different degree polyomials for the "sine curve" example?
- Understand using bias-variance (later)

Regularization (to avoid overfitting)

- "regularization term" imposes penalty on less desirable solutions
 - Cost = MSE + λ Penalty (f)
 - Scikit uses "alpha" to denote lambda.
 - Regularization Penalty is a functional (maps each function f onto a number)
- Popular Penalties
 - ridge regression (sum squared of weights)
 - Lasso (sum of |w|; for large λ yields sparse models)
 - Elastic net: combines both ridge and Lasso
 - number of non-zero weights
 - smoothness of function
 - note: 1. "intercept", i.e. w_0 , not included in penalties
 - 2. customary to standardize all independent variables first (why?)

Ridge Regression Example

• Discourage large values by adding penalty term to error

$$E(\mathbf{w}) = \sum_{n=1}^{N} \{\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Also called shrinkage (stats) or weight decay (neural nets)
- The regularization coefficient λ now controls the effective model complexity
- *Closed form solution: $\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$.
 - Leads to numerical stability as well!

Regularized M = 9 Polynomial

Regularized Parameters

• First col is the unregularized solution

	$\ln \lambda = -\infty$	$\ln \lambda = -20$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.1273
$\mid w_{ extsf{1}}^{m{\star}} \mid$	232.37	5.56	-0.0459
w_2^{\dagger}	-5321.83	-12.27	-0.0578
$w_3^{\frac{7}{4}}$	48568.31	19.01	-0.0460
w_{4}^{\star}	-231639.30	-82.58	-0.0321
w_5^{\star}	640042.26	46.49	-0.0201
w_{6}^{\star}	-1061800.52	141.84	-0.0104
$\mid w_{7}^{\star} \mid$	1042400.18	-29.57	-0.0028
$ w_{8}^{\dot{\star}} $	-557682.99	-231.55	0.0032
$\mid w_{9}^{\star} \mid$	125201.43	142.98	0.0080

Generalization

• Noisy sine problem

Ridge vs. Lasso

• HTF figs 3.7, 3.9: Prostate Cancer example. Red line chosen by Cross-validation

Effect on values of coefficients as "effective degrees of freedom (df)" is increased for (a) Ridge regression (left) and (b) Lasso (Right).

High λ translates to low df, so λ is being progressively decreased from left to right along the x-axis.

Evaluation

- Quality criterion for regression
 - Mean squared error (MSE) or equivalent, e.g. SSE, RMSE
 - true vs. empirical
 - normalized (R² value = % of variance explained)
 - Adjusted R²

Estimating True Performance (Data Driven)

- enough data? Use "holdout" to estimate
- Moderately large? Use k-fold cross-validation

k = 4 example

Shaded subset: validation set for that run

How to evaluate a Regression Model?

- Model = math form + learning method.
 - Will be impacted by given training (and validation) dataset!!
 - Want to evaluate the model irrespective of the specific train/validate dataset used.
 - Need to consider the collection of solutions obtained, not one specific solution.
- Bishop fig 3.5. Compares highly regularized solution (top row) vs. less regularized solution (bottom row). Individual solutions (left), averaged solution (right)

Bias-Variance Dilemma

Usually measured output is not a deterministic function of given inputs

Assume: t = h(x) + zero-mean noise

your model gives y (x). The expected squared loss,

$$\mathbb{E}[L] = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x} + \iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$$

- best predictor: $\mathbb{E}[t \mid x] = h(x)$;
 - MSE_{opt} = variance of the noise inherent in the random variable t. (2nd term on RHS)
- What does the first term comprise of ? (Model_bias)² + Model_variance

Bias: how good the average model is;

Variance: how sensitive the model is to variations in data.

Tradeoff between the two terms as function of model complexity

expected loss =
$$(bias)^2 + variance + noise$$

Math Details: The Bias-Variance Decomposition*

- Suppose we were given multiple data sets, each of size N. Any particular data set, D, will give a particular function y(x;D).
- For any x, The expected loss (over datasets of size N) is

$$\mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x}) \}^2 \right]$$

$$= \underbrace{\{ \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x}) \}^2 + \mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] \}^2 \right]}_{\text{variance}}.$$

(try to express both terms in words)

The Bias-Variance Decomposition II*

Considering all possible values of x, we can write

where expected loss =
$$(\text{bias})^2 + \text{variance} + \text{noise}$$

 $(\text{bias})^2 = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x}$
variance = $\int \mathbb{E}_{\mathcal{D}}[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^2] p(\mathbf{x}) d\mathbf{x}$
noise = $\iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$

Bias: how good the average model is;

Variance: how sensitive the model is to variations in data.

NOTE: the bias and variance concepts here apply to a predictive model, rather than to an estimator of a specific value.

Extra: <u>Understanding the</u> Bias-Variance Tradeoff

Figure 4.26: Cartoon illustration of the bias variance tradeoff. From http://scott.fortmann-roe.com/docs/BiasVariance.html. Used with kind permission of Scott Fortmann-Roe.

See a simple video by Andrew Ng

Including how to use the bias-variance tradeoff to diagnose issues with your model, e.g. how much will more data help, etc.

Effect of Regularization on Bias-Variance

• Bishop 06, fig 3.5. Model is sum of 24 gaussians, with ridge regression

Example from KM, pg. 161

Figure 4.25: Illustration of bias-variance tradeoff for ridge regression. We generate 100 data sets from the true function, shown in solid green. Left: we plot the regularized fit for 20 different data sets. We use linear regression with a Gaussian RBF expansion, with 25 centers evenly spread over the [0,1] interval. Right: we plot the average of the fits, averaged over all 100 datasets. Top row: strongly regularized: we see that the individual fits are similar to each other (low variance), but the average is far from the truth (high bias). Bottom row: lightly regularized: we see that the individual fits are quite different from each other (high variance), but the average is close to the truth (low bias). Adapted from [Bis06] Figure 3.5. Generated by code.probml.ai/book1/4.25.

Bias-Variance vs. Regularization Amount

• What happens to the curves as amount of training data increases? (note: effective model complexity is decreasing towards the right)

Bias-Variance Tradeoff

- Your task: qualitatively plot bias² and variance in fig 2.11
- Change model type? Affect bias
- More training data: decrease variance
 - "consistent estimators" converge to ideal solution as $|D| \rightarrow$ infinity
 - For small data sets, lower complexity models may be preferred.

Ideal solution: suitable model type & complexity

Figure 2.11: Test and training error as a function of model complexity.

Bias –variance tradeoff in encountered in many situations Example: determining # of bins for a histogram.

Application: How do you improve your model?

- Get more training data
- Change complexity (e.g. via regularization)
- Change optimization method
- Change Model type
- Still not acceptable?
 - Change feature space

Extras

Function Approximation / Regression/Prediction

- A predictive modeling technique
 - Given:
 - A set of input (AI) /independent (math)/ explanatory or predictor (stats) variables X
 - corresponding (set of) output/dependent/response variables T
 - Think of training/test datasets as i.i.d. samples from an underlying joint distribution p(X,T)
 - Build: a model relating X to T
 - single value for T given X (most common)
 - e.g. E[T |X], the "regression of t on X.
 - Assumes T = function of X + (zero-mean, symmetric) noise
 - Add Confidence Interval (e.g. based on the Normally distributed noise term in MLR)
 - (Arbitrary) Distribution of T given X

Geometry of Least Squares*

Consider

$$\mathbf{y} = \mathbf{\Phi}\mathbf{w}_{\mathrm{ML}} = \left[oldsymbol{arphi}_{1}, \ldots, oldsymbol{arphi}_{M}
ight]\mathbf{w}_{\mathrm{ML}}.$$
 $\mathbf{y} \in \mathcal{S} \subseteq \mathcal{T}$ $\mathbf{t} \in \mathcal{T}$ \mathbb{Q} N-dimensional M-dimensional

- •S is spanned by $\varphi_1, \dots, \varphi_M$
- •w_{ML} minimizes the distance between t and its orthogonal projection on S, i.e. y.

Comparing Shrinkage Methods B06: fig 3.4

- ridge regression (Regularization Penalty = sum squared of weights)
 vs
- Lasso ((Regularization Penalty = sum of |w|)
 red: constant penalty contour; blue: unregularized error contours

Estimating True Performance (Formula Driven)*

- true mean squared error (MSE = SSE/N) = empirical error + complexity term
 - complexity term = f (model type, # of parameters, # of training points)
 - e.g. linear regression with N samples, P parameters
 Akaike's Final Prediction error = MSE _{empirical} (N+P) / (N P)
 - for nonlinear models, find "effective number of parameters" and plug into linear formulae

Takeaway: Formula Driven Estimates of True Performance specialized for linear models. Not so relevant in data mining context

Breaking News (2019)

- <u>Variance can actually go down in the highly over-</u> parameterized regime (going beyond interpolation)!!
 - Figure below from M. Belkin, D. Hsu, S. Ma, and S. Mandal, "Reconciling modern machine learning practice and the bias-variance trade-off," *Proceedings of the National Academy of Sciences*, vol. 116, no. 32, pp. 15849–15854, 2019.

