Práctica 14: Cadenas de Markov

PASE

Noviembre 2021

1 Cadena de Ehrenfest

En [1] se encuentra la siguiente definición:

Sean A y B dos urnas dentro de las cuales se encuentran distribuidas un total de N bolas de acuerdo a cierta configuración inicial, por ejemplo, la urna A tiene i bolas y en la urna B hay N-i bolas. En cada unidad de tiempo se escoge una bola al azar y se cambia de urna. Para tal efecto puede considerarse que las bolas se encuentran numeradas y que se escoge un número al azar, se busca la bola con ese número y se cambia de urna.

Sea X_n el número de bolas en la urna A al tiempo n, entonces la colección $\{X_n: n=0,1,\ldots\}$ constituye una cadena de Markov con espacio de estados finito $\{0,1,\ldots,N\}$. Este modelo fue propuesto por Ehrenfest para describir el intercambio aleatorio de moléculas en dos regiones separadas por una membrana porosa.

2 Ejercicios

En este ejercicio analizamos por medio de la simulación el modelo de la urna de Ehrenfest. Considere a N como el número de bolas totales.

- 1. Escriba todos los estados de la Cadena de Markov.
- 2. Escriba la matriz de transición (y explique claramente de dónde viene la expresión).
- 3. Haga un programa que simule y grafique la trayectoria del proceso: Empieza inicialmente con una distribución inicial π_0 , y simula la trayectoria $X_0, X_1, ... X_n$ hasta un tiempo n dado por el usuario.
- 4. Haga otro programa que simule la trayectoria del proceso hasta un tiempo de paro: Empieza inicialmente con una distribución inicial π_0 , y simula la trayectoria $X_0, X_1, ... X_T$ hasta un tiempo aleatorio T, definido como la primera vez que el proceso toma el estado fijo i_0 (el estado i_0 esta dado por el usuario).

- 5. Usa el algoritmo anteriror para contestar lo siguiente para varios valores de N:
 - (a) Dado que el proceso empezó en 0, ¿Cuánto tarda en promedio en llegar al estado $\lfloor \frac{N}{2} \rfloor ?$
 - (b) Dado que el proceso empezó en 0, ¿Cuánto tarda en promedio en llegar al estado N?
 - (c) Dado que el proceso empezó en N, ¿cuánto tarda en promedio en llegar al estado $\lfloor \frac{N}{2} \rfloor$?
 - (d) Dado que el proceso empezó en N, ¿Cuánto tarda en promedio en llegar al estado 0?
 - (e) ¿Qué observas en los resultados anteriores?
- 6. Fija un N y, para n muy grande, estima con el primer algoritmo la densidad de probabilidades de la variable aleatoria X_n . Después conjetura una densidad conocida con sus parámetros.

Nota: Para las estimaciones (preguntas $5 \ y \ 6$) no es necesario que se guarde toda la trayectoria.

En esta práctica pueden utilizar Python o R. No olviden poner el número de alumno en Moodle, y si desean poner su nombre que sea empezando por el apellido paterno pues así esta en la lista.

[1] L.Rincon.(2012). *Introducción a los Procesos Estocásticos*. Las prensas de ciencias, México.