FEA modeling best practice

Simone Coniglio, PhD Mechanical Engineering Airbus Operations SAS

Outline

- FEM review
- FE classification
 - Geometry classification
 - Kinematic hypothesis
 - Shape function polynomial basis
 - DOFs per node
 - Node per element
- FE library
 - 3D bar
 - 3D beam
 - 3D shell
 - 3D solid
 - 2D beam
 - 2D shell axisymmetric
 - 2D solid planar stress
 - 2D solid planar strain
 - 2D solid axisymmetric
- Industrial examples

FEM review

Elastostatics equations

Figure 1.1: linear elastostatics problem definition

Strong formulation

$$\nabla \cdot [\sigma] + \{b\} = \{0\} \qquad \forall \{x\} \in \Omega / \partial \Omega$$
$$\{u\} = \{\bar{u}\} \qquad \forall \{x\} \in \partial \Omega_u$$
$$[\sigma] \cdot \{\hat{n}\} = \{\bar{t}\} \qquad \forall \{x\} \in \partial \Omega_\sigma$$
$$[\sigma] = [[E]] : [\varepsilon] \qquad \forall \{x\} \in \Omega$$

Virtual work principle + Divergence theorem

Weak formulation

$$\int_{\partial\Omega_{\sigma}}\left\{v\right\}^{T}\left\{\bar{t}\right\}d\partial\Omega+\int_{\Omega}\left\{v\right\}^{T}\left\{b\right\}d\Omega=\int_{\Omega}\left(\nabla_{sym}\left\{v\right\}\right)^{T}E\left[D\right]\nabla_{sym}\left\{u\right\}d\Omega\quad\forall\left\{v\right\}\in\mathbb{V}$$

FEM review

kinematics

$$\{v\} = [N]^{(h)} \{v\}^{(h)}$$
 $\{u\} = [N]^{(h)} \{u\}^{(h)}$

(a) Reference element in the (ξ,η,ζ) space (b) Corresponding mapped element in the (x,y,z) space

Figure 1.2: Classic Mapping in FEA

$$\left\{X_g\right\} = \left\{\begin{array}{c} x \\ y \\ z \end{array}\right\} = \left[\begin{array}{c} \left\{x_n\right\}^T \\ \left\{y_n\right\}^T \\ \left\{z_n\right\}^T \end{array}\right] \left\{N_n(\xi, \eta, \zeta)\right\}$$

Local equilibrium

$$\begin{split} [K]^{(h)} \left\{u\right\}^{(h)} &= \left\{f\right\}^{(h)} \\ K_{i,j}^{(h)} &= \int_{\Omega} \left(\left[\nabla_{sym} N_i\right]^{(h)}\right)^T E\left[D\right] \left[\nabla_{sym} N_j\right]^{(h)} d\Omega \\ f_i^{(h)} &= \int_{\partial \Omega \sigma} \left(\left[N_i\right]^{(h)} \cdot \left\{\overline{t}\right\}\right) d\partial\Omega + \int_{\Omega} \left(\left[N_i\right]^{(h)} \cdot \left\{b\right\}\right) d\Omega \end{split}$$

Global equilibrium

$$\begin{split} [K]^{(h)} \left\{u\right\}^{(h)} &= \left\{f\right\}^{(h)} \\ K_{i,j}^{(h)} &= \sum_{el=1}^{n_{el}} E_{el} \int_{\Omega_{el}} \left(\left[\nabla_{sym} N_i\right]^{(h)}\right)^T [D] \left[\nabla_{sym} N_j\right]^{(h)} d\Omega_{el} \\ f_i^{(h)} &= \sum_{el=1}^{n_{el}} \int_{\partial \Omega_{\sigma} \cap \partial \Omega_{el}} \left([N_i]^{(h)} \cdot \left\{\bar{t}\right\}\right) d\partial \Omega_{el} + \int_{\Omega_{el}} \left([N_i]^{(h)} \cdot \left\{b\right\}\right) d\Omega_{el} \end{split}$$

Numerical integration

$$\begin{split} K_{i,j}^{(h)} &= \sum_{el=1}^{n_{el}} E_{el} \sum_{k=1}^{N_{GP}} \left(\left[\nabla_{sym} N_{ik} \right]^{(h)} \right)^T [D] \left[\nabla_{sym} N_{jk} \right]^{(h)} |[J_k]| \, \omega_k \\ f_i^{(h)} &= \sum_{el=1}^{n_{el}} \sum_{l=1}^{n_{GP}} \left([N_{il}]^{(h)} \cdot \left\{ \bar{t}_l \right\} \right) |[J_l]| \, \omega_l + \sum_{k=1}^{N_{GP}} \left([N_{ik}]^{(h)} \cdot \left\{ b_k \right\} \right) |[J_k]| \, \omega_k \end{split}$$

FEM review

Solution and post processing

$$\begin{split} \left[\mathbf{K_{bb}}\right]\left\{u_b\right\} + \left[\mathbf{K_{bf}}\right]\left\{u_f\right\} &= \left\{R_b\right\} + \left\{F_b\right\} \\ \left[\mathbf{K_{fb}}\right]\left\{u_b\right\} + \left[\mathbf{K_{ff}}\right]\left\{u_f\right\} &= \left\{R_f\right\} + \left\{F_f\right\} \end{split}$$

$$\begin{split} \{u_f\} &= \left[\mathbf{K_{ff}}\right]^{-1} \left(-\left[\mathbf{K_{fb}}\right] \{u_b\} + \{F_f\}\right) \\ \{R_b\} &= \left[\mathbf{K_{bb}}\right] \{u_b\} + \left[\mathbf{K_{bf}}\right] \{u_f\} - \{F_b\} \end{split}$$

$$\{\varepsilon\} = [B_{gp}]\{u_{el}\} \quad \{\sigma\} = [D][B_{gp}]\{u_{el}\}$$

Geometry classification

Kinematic hypothesis

Axial symmetry

Shape function polynomial basis

Sample of some simple element shapes and standard node placement. By convention nodes are numbered anti-clockwise.

DOFs per node

Solid point: Material point kinematics (u, v, w) Shell thickness: Rigid thickness kinematics $(u, v, w, \phi_x, \phi_y)$ Beam cross section: Rigid section $(u, v, w, \phi_x, \phi_y, \phi_z)$

3D bar element

Source: ANSYS (2007)

Rod cross section: Rigid section (u, v, w)

Shape functions

Linear 2 node element

Quadratic 3 node element

3D beam element

2 node element

Beam cross section: Rigid section $(u, v, w, \phi_x, \phi_y, \phi_z)$

Shape functions

Traction, Torsion $< 1, \xi >$

Bending $<1,\xi,\xi^2,\xi^3>$

3D shell element

Shell thickness: Rigid thickness kinematics $(u, v, w, \phi_x, \phi_y)$

3-node Triangular $<1,\xi,\eta>$

6-node Triangular $< 1, \xi, \eta, \xi^2, \xi \eta, \eta^2 >$

4-node Quadrilateral $<1,\xi,\eta,\xi\eta>$

8-node Quadrilateral $<1,\xi,\eta,\xi\eta,\xi^2,\eta^2,\xi^2\eta,\xi\eta^2>$

3D solid element

Solid point: Material point kinematics (u, v, w)

2D beam element \ 2D shell axisymmetric

2 node element

Beam cross section: Rigid section (u, v, ϕ_z)

Shape functions

Traction $<1,\xi>$

Bending $<1,\xi,\xi^2,\xi^3>$

2D solid plane stress\ 2D solid plane strain\ 2D solid axisymmetric

Solid point:

Material point kinematics (u, v)

3-node Triangular $<1,\xi,\eta>$

6-node Triangular $< 1, \xi, \eta, \xi^2, \xi \eta, \eta^2 >$

$$<1,\xi,\eta,\xi\eta>$$

$$<1,\xi,\eta,\xi\eta,\xi^2,\eta^2,\xi^2\eta,\xi\eta^2>$$

Bridge piers
What kind of FE can you use?

Bridge cables
What kind of FE can you use?

Roof frames
What kind of FE can you use?

Helicopter blades
What kind of FE can you use?

Wing box What kind of FE can you use?

Dam What kind of FE can you use?

Engine block
What kind of FE can you use?

Rocket Fairings
What kind of FE can you use?

Water reservoir What kind of FE can you use?