МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 1.3.3

Измерение вязкости воздуха по течению в тонких трубках

Выполнил:

Гисич Арсений

Б03-109

1 Аннотация

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

2 Теоретические сведения

Работа посвящена изучению течения воздуха по прямой трубе круглого сечения. Движение жидкости или газа вызывается перепадом внешнего давления на концах ΔP трубы, чему в свою очередь препятствуют силы вязкого («внутреннего») трения, действующие между соседними слоями жидкости, а также со стороны стенок трубы.

Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона: касательное напряжение между слоями пропорционально перепаду скорости течения в направлении, поперечном к потоку. В частности, если жидкость течёт вдоль оси x, а скорость течения $v_x(y)$ зависит от координаты y, в каждом слое возникает направленное по x касательное напряжение

$$\tau_{xy} = -\eta \frac{\delta v_x}{\delta_y}.\tag{1}$$

Величину η называют коэффициентом динамической вязкости (или просто вязкостью) среды.

Объёмным расходом (или просто расходом) Q называют объём жидкости, протекающий через сечение трубы в единицу времени. Величина Q зависит от перепада давления ΔP , а также от свойств газа (плотности ρ и вязкости η) и от геометрических размеров (радиуса трубы R и её длины L). Основная задача данной работы — исследовать эту зависимость экспериментально.

Характер течения в трубе может быть ламинарным либо турбулентным. При ламинарном течении поле скоростей u(r) образует набор непрерывных линий тока, а слои жидкости не перемешиваются между собой. Турбулентное течение характеризуется образованием вихрей и активным перемешиванием слоев, при этом даже в стационарном течении в каждой точке имеют место существенные флуктуации скорости течения и давления.

Характер течения определяется безразмерным параметром задачи — числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta}.$$

где ρ — плотность среды, u — характерная скорость потока, η — коэффициент вязкости среды, a — характерный размер системы (размер, на котором существенно меняется скорость течения). Это число имеет смысл отношения кинетической энергии движения элемента объёма жидкости к потерям энергии из-за трения в нём $Re \sim K/A_{\rm Tp}$. При достаточно малых Re в потоке доминируют вязкие силы трения и течение, как правило, является ламинарным. С ростом числа Рейнольдса может быть достигнуто его критическое значение $Re_{\rm KD}$, при котором характер течения сменяется с ламинарного на турбулентный.

Из опыта известно, что переход к турбулентному течению по трубкам круглого сечения наблюдается при $Re_{\rm kp}\approx 10^3$ (здесь в качестве u выбрана средняя скорость потока, определяемая через полный расход Q как $\overline{u}=\frac{Q}{\pi R^2}$, а в качестве характерного размера — радиус трубы R). Стоит отметить, что значение $Re_{\rm kp}$ не является универсальным и зависит от геометрии задачи: например, при обтекании сферических или цилиндрических тел потоком жидкости оно составляет всего несколько десятков ($Re_{\rm kp}\sim 10\div 20$).

В целях упрощения теоретической модели течение газа в условиях эксперимента можно считать несжимаемым, то есть принять плотность среды постоянной: $\rho = const.$ Для газов

такое приближение допустимо, если относительный перепад давления в трубе мал $\Delta P \ll P$, а скорость течения значительно меньше скорости звука (число Маха много меньше единицы). В нашем опыте максимальная разность давлений составляет ~ 30 см водного столба (3 кПа), что составляет $\sim 3\%$ от атмосферного давления, причем в «рабочем» (ламинарном) режиме перепад в несколько раз меньше ($\sim 5 \div 10$ см вод. ст.).

Течение Пуазейля. Из опыта известно, что при достаточно малых числах Рейнольдса течение в прямой трубе с гладкими стенками имеет ламинарный характер. В таком случае задача о течении жидкости имеет простое аналитическое решение.

Направим ось x вдоль трубы по направлению потока. В ламинарном потоке скорость течения среды u будет направлена всюду по x (линии тока параллельны стенкам трубки), а давление постоянно в пределах любого сечения и зависит только от продольной координаты P(x). Будем искать частное решение — установившееся течение, в котором профиль скорости u(r) (распределение скорости в зависимости от расстояния до оси r) одинаков в любом поперечном сечении, то есть не зависит от x.

Выделим соосный трубе цилиндр некоторого радиуса r и длины dx (см. Рис. 1). Поскольку при стационарном течении жидкость течёт без ускорения, сумма всех сил, действующих на жидкость в цилиндре, должна быть равна нулю. На жидкость внутри цилиндра действует направленная вдоль оси трубы сила $F_{1x} = -dP \cdot \pi r^2$, где dP = P(x+dx) - P(x) < 0 — разность давлений в сечениях на торцах выделенного участка. На боковые поверхности цилиндра действует касательная сила вязкого трения

 $F_{2r} = -\tau \cdot 2\pi r dx$

$$\begin{array}{c|c}
 & T \\
P & T \\
\hline
 & P \\
\hline
 & dx
\end{array}$$

где согласно закону Ньютона (1) касательное напряжение равно

$$\tau = -\eta \frac{du}{dr}.$$

Из условия баланса сил $F_{1x} + F_{2x} = 0$ находим

$$\frac{dP}{dx} = -\eta \frac{2du}{rdr}. (2)$$

В установившемся течении правая часть полученного выражения является функцией только радиуса r. В левой части (2) находится градиент давления, который не зависит от r вовсе, и, следовательно, обе части уравнения (2) являются константами. Тогда, проводя интегрирование, приходим к следующему. Во-первых, давление в трубе является линейно убывающей функцией координаты

$$P(x) = P_0 - \frac{\Delta P}{l}x,\tag{3}$$

где ΔP — перепад давления на участке длиной l, P_0 — давление в начале участка (в точке x=0). Во-вторых, профиль скорости является параболической функцией с максимумом на оси трубы

$$u(r) = u_{max} - \frac{\Delta P}{4l}r^2.$$

Для нахождения константы интегрирования u_{max} необходимо дополнительно задать граничное условие. Для течения вязкой жидкости обычно используют так называемое условием прилипания: касательная скорость потока вблизи стенок считается равной скорости

движения самих стенок. Физически это означает, что на молекулярном уровне стенки являются шероховатыми, так что при ударе о них молекулы в среднем полностью теряют направленную x-компоненту импульса. В рассматриваемой задаче стенки неподвижны, поэтому имеем

$$u|_{r=R} = 0.$$

Отсюда находим $u_{max} = \frac{\Delta P}{4L} R^2$ и профиль скорости

$$u(r) = \frac{\Delta P}{4L}(R^2 - r^2). \tag{4}$$

Наконец, интегрируя u(r) по сечению трубы, получим объёмный расход жидкости в зависимости от перепада давления на концах:

$$Q = \int_0^R u(r) \cdot 2\pi r dr = \frac{\pi R^4 \Delta P}{8\eta l}.$$
 (5)

Это соотношение называют формулой Пуазейля. Заметим, что средняя скорость потока при пуазейлевском течении, как видно из (5), оказывается вдвое меньше максимальной:

$$\overline{u} \equiv \frac{Q}{\pi R^2} = \frac{u_{max}}{2}.$$

Формула Пуазейля (5) позволяет найти вязкость газа по зависимости расхода от перепада давления в трубе и используется в качестве основной расчётной формулы в данной работе.

Длина установления. Пусть на вход трубы поступает течение, распределение скоростей которого не является пуазейлевским (например, распределение скоростей равномерное, как на Рис. 3). Ясно, что профиль течения (4) не может установиться сразу, а реализуется лишь на некотором расстоянии $l_{\rm уст}$ от начала трубы. Оценим эту длину по порядку величины.

Рассмотрим слой жидкости толщиной dx в поперечном сечении трубы. Кинетическая энергия, запасённая в нём, составляет

$$K \sim \frac{1}{2}\rho u^2 \cdot \pi R^2 dx.$$

Работу, которую совершат вязкие силы трения по перемещению этого слоя на расстояние l, можно оценить как

$$A_{\rm rp} \sim \eta \frac{du}{dr} \cdot \pi R^2 dx \cdot l.$$

Для перепада скоростей воспользуемся оценкой $\frac{du}{dr}\sim \frac{\Delta u}{R}\sim \frac{u}{R}$. Наконец, примем, что работа сил трения, необходимая для

Рис. 2: Распределение давления и скорости течения Пуазейля в трубе

перераспределения скоростей, по порядку величины равна кинетической энергии $K \sim A_{\rm тp}$. Тогда, отбрасываячисленные коэффициенты порядка единицы, получаем грубую оценку для длины установления:

$$l_{\text{yct}} \sim \frac{\rho u R^2}{\eta} = R \cdot Re.$$

Точный численный коэффициент здесь аналитически установить затруднительно (к тому же, он зависит от вида начального распределения u(r). Как показывает опыт, этот коэффициент можно с удовлетворительной точностью принять равным 0,2:

$$l_{\rm ycr} \equiv 0, 2R \cdot Re. \tag{6}$$

Заметим, что если длина трубы мала по сравнению с l_{ycr} , то работой сил трения в ней можно пренебречь и течение в ней будет описываться не формулой Пуазейля, а уравнением Бернулли (при условии, что течение останется ламинарным).

Экспериментально длину установления можно определить, измеряя распределение давления вдоль трубки P(x). На неустановившемся участке будет наблюдаться отклонение от линейного закона (3), и при том же расходе Q градиент давления $\frac{\Delta P}{l}$ будет больше, чем следует из формулы Пуазейля.

Рис. 3: Формирование установившегося течения (в ламинарном режиме)

Вязкость газов. Рассмотрим механизм возникновения вязкости в газах. Молекулы газа участвуют как в направленном движении со средней скоростью потока u, так и в хаотическом тепловом движении, характеризующимся средней тепловой скоростью $\overline{v} = \sqrt{\frac{8k_{\rm B}T}{\pi m}}$ (здесь m — масса молекулы). Молекулы могут свободно перемещаться между слоями и обмениваться друг с другом импульсами при столкновениях. Если в двух соседних слоях потоковые скорости различны, то такой обмен импульсом и приводит к эффективному возникновению силы трения между слоями.

Исходя из приведенных соображений можно получить следующую оценку для коэффициента вязкости идеального газа:

$$\eta \sim \frac{1}{3}\rho \overline{v}\lambda,$$
(7)

где λ — длина свободного пробега молекул газа относительно столкновений друг с другом. Как известно из молекулярно-кинетической теории, длина пробега определяется эффективным («газокинетическим») диаметром молекул d как $\lambda \sim 1/(n\pi d^2)$, где n — объёмная концентрация газа. Видно, что λ обратно пропорциональна плотности газа, поэтому, как следует из (7), вязкость газа не зависит от его плотности и определяется только температурой T. Данный вывод может показаться парадоксальным, поскольку в более плотном газе большее число молекул должно участвовать в передаче импульса между слоями, однако это компенсируется тем, что этот импульс передается на меньшее расстояние.

Заметим также, что закон Ньютона (1) и формула (7) для газов применимы, только когда скорость потока мала по сравнению с тепловой $u \ll \overline{v}$, а характерные размеры системы значительно превышают длину свободного пробега молекул (т.е. система не находится в состоянии высокого вакуума).

3 Методика измерений

Схема экспериментальной установки изображена на Рис. 4. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками. Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Рис. 4: Экспериментальная установка

Газовый счётчик. В работе используется газовый счётчик барабанного типа, позволяющий измерять объём газа ΔV , прошедшего через систему. Измеряя время Δt при помощи секундомера, можно вычислить средний объёмный расход газа $Q = \Delta V/\Delta t$ (для получения массового расхода [кг/с] результат необходимо домножить на плотность газа ρ).

Работа счётчика основана на принципе вытеснения: на цилиндрической ёмкости жёстко укреплены лёгкие чаши (см. Рис. 5, где для упрощения изображены только две чаши), в которые поочередно поступает воздух из входной трубки расходомера. Когда чаша наполняется, она всплывает и её место занимает следующая и т.д. Вращение оси предаётся на счётно-суммирующее устройство.

Для корректной работы счётчика он должен быть заполнен водой и установлен горизонтально по уровню (подробнее см. техническое описание установки).

Рис. 5: Принцип работы барабанного газосчётчика

Микроманометр. В работе используется жидкостный манометр с наклонной трубкой. Разность давлений на входах манометра измеряется по высоте подъёма рабочей жидкости (как правило, этиловый спирт). Регулировка наклона позволяет измерять давление в различных диапазонах.

На крышке прибора установлен трехходовой кран, имеющий два рабочих положения -(0) и (+). В положении (0) производится установка мениска жидкости на ноль, что необходимо сделать перед началом работы (в процессе работы также рекомендуется периодически проверять положение нуля). В положении (+) производятся измерения.

При работе с жидкостным манометром важно не допустить его «зашкаливания» — перелива рабочей жидкости в подводящие трубки (в этом случае работу придется приостановить для просушки трубок, долива спирта и т.д.). Все манипуляции по перестановке измерительных трубок следует проводить, когда манометр находится в положении (0). Подачу газа в систему, наоборот, следует осуществлять в положении (+), чтобы контролировать величину давления и иметь возможность вовремя перекрыть поток.

Перед началом работы с микроманометром необходимо убедиться, что в нём залито достаточное количество спирта, а сам манометр установлен строго горизонтально по

уровням. Подводящие трубки, заполненные спиртом, не должны содержать пузырьков воздуха, а в трубках, заполненных воздухом, не должно быть капель спирта. Подробнее инструкцию по подготовке прибора к работе см. в техническом описании установки.

Используемое оборудование 4

- 1. Система подачи воздуха (компрессор, проводящие трубки);
- 2. Газовый счётчик барабанного типа, $\delta_{\text{счётчика}} = 0,01 \text{ л}$;
- 3. Спиртовой микроманометр с регулируемым наклоном, $\delta_{\text{мкманом}} = 0,05$ см;
- 4. U-образный манометр, $\delta_{\text{маном}} = 0, 25$ см;
- 5. Набор трубок различного диаметра с выходами для подсоединения микроманометра;
- 6. Секундомер;

Результаты измерений и обработка данных 5

Начальные условия: $P_{\text{атм}} = 98,40 \pm 0,05 \text{ к}\Pi \text{a}$ $T = 23.8 \pm 0.1 \,^{\circ}\text{C}$

5.11 трубка

Проведём предварительные расчёты для первой трубки $(l=0,9~{\rm M},d_1=5,25\pm0,05~{\rm MM}).$ $Q_{\rm kp}=\overline{u}\pi r^2=\frac{Re_{\rm kp}\eta\pi R}{\rho}.$ Из закона Менделеева-Клапейрона $\rho=\frac{P_{\rm atm}\mu}{RT}.$ Тогда

$$Q_{\rm kp} = \frac{Re_{\rm kp}\eta\pi rRT}{P_{\rm atm}\mu}.$$
 (8)

При $Re_{\rm kp} \approx 10^3, \eta \sim 2 \cdot 10^{-5}$ Па · с получаем $Q_{\rm kp} \approx 14, 3 \cdot 10^{-5}$ м $^3/{\rm c}.$

По формуле Пуазейля (5) находим

$$\Delta P = \frac{Q_{\rm kp} 8 \eta l}{\pi r^4}.\tag{9}$$

Полученное значение $\Delta P \approx 138~\Pi {\rm a},~{\rm r.~e.}~70$ делений микроманометра.

По формуле (6) оценим длину $l_{\rm ycr} \approx 0,53$ м, что меньше длины выбранного участка. Значит, течение можно считать установившимся.

Полученные результаты измерения $\Delta P(Q)$ при ламинарном течении представленны в таблице 1.

ΔP , дел	ΔP , Πa	$\delta_{\Delta P}$, Πa	Δt , c	$\overline{\Delta t}$, c	$\delta_{\overline{\Delta t}}$, c	ΔV , л	$\delta_{\Delta V}$, л	Q , m^3/c	δ_Q , м $^3/\mathrm{c}$
25	49,03325	0,980665	22,16 21,30 23,20 24,45 24,71	23,16	0,65908	1	0,01	0,0000432	0,0000013
32	62,76256	0,980665	15,13 15,73 15,33 14,16 13,88	14,85	0,3647	1	0,01	0,0000674	0,0000018
38	74,53054	0,980665	12,01 12,76 13,23 13,27 12,71	12,80	0,2449	1	0,01	0,0000781	0,0000017
43	84,33719	0,980665	11,19 10,50 10,95 11,63 11,69	11,19	0,238462	1	0,01	0,0000893	0,0000021
50	98,0665	0,980665	9,95 9,08 9,21 9,64 10,23	9,62	0,234636	1	0,01	0,0001039	0,0000027
56	109,8345	0,980665	8,64 9,18 9,16 8,38 8,33	8,74	0,204656	1	0,01	0,0001144	0,0000029
59	115,7185	0,980665	8,67 8,03 7,92 8,40 8,94	8,39	0,211126	1	0,01	0,0001192	0,0000032

Таблица 1: Ламинарное течение

Полученные результаты измерения $\Delta P(Q)$ при турбулентном течении представленны в таблице 2.

ΔP , дел	ΔP , Πa	$\delta_{\Delta P}, \Pi a$	Δt , c	Δt , c	$\delta_{\overline{\Delta t}}, c$	ΔV , л	$\delta_{\Delta V}$, л	Q , m^3/c	δ_Q , м $^3/\mathrm{c}$
90	176,5197	0,980665	6,76 7,21 7,61 7,63 6,88	7,22	0,200933	1	0,01	0,0001385	0,0000041
109	213,785	0,980665	6,88 7,13 7,01 6,53 6,46	6,80	0,159355	1	0,01	0,0001470	0,0000037
131	256,9342	0,980665	6,33 6,35 6,58 6,19 6,02	6,29	0,128864	1	0,01	0,0001589	0,0000036
142	278,5089	0,980665	6,01 5,74 5,88 6,33 6,21	6,03	0,139521	1	0,01	0,0001657	0,0000042
163	319,6968	0,980665	5,63 5,29 5,62 5,93 5,77	5,65	0,138506	1	0,01	0,0001771	0,0000047
179	351,0781	0,980665	5,63 5,52 5,64 5,33 5,16	5,46	0,128787	1	0,01	0,0001833	0,0000047
194	380,498	0,980665	5,56 5,18 5,08 4,83 5,16	5,16	0,147594	1	0,01	0,0001937	0,0000059

Таблица 2: Турбулентное течение

Полученный график зависимости $Q(\Delta P)$ представлен на Рис. 6.

Рис. 6:

По формуле Пуазейля (5) определим вязкость воздуха $\eta = \frac{\pi R^4 \Delta P}{8Ql}$. Погрешность определяется по формуле

$$\delta_{\eta} = \sqrt{16 \left(\frac{\delta_R}{R}\right)^2 + \left(\frac{\delta_{\Delta P}}{\Delta P}\right)^2 + \left(\frac{\delta_Q}{Q}\right)^2} \cdot \eta. \tag{10}$$

Полученное значение $\eta = 19,82 \pm 0,81 \cdot 10^{-6}$ Па · с.

Из формулы (8) определяем $Re_{\rm kp}$:

$$Re_{\rm Kp} = \frac{Q_{\rm Kp} P_{\rm aTM} \mu}{\eta \pi r R T}.$$
 (11)

Погрешность определяется по формуле:

$$\delta_{Re_{\text{\tiny KP}}} = \sqrt{\left(\frac{\delta_{Q_{\text{\tiny KP}}}}{Q_{\text{\tiny KP}}}\right)^2 + \left(\frac{\delta_{P_{\text{\tiny aTM}}}}{P_{\text{\tiny aTM}}}\right)^2 + \left(\frac{\delta_{\eta}}{\eta}\right)^2 + \left(\frac{\delta_T}{T}\right)^2 + \left(\frac{\delta_r}{r}\right)^2} \cdot Re_{\text{\tiny KP}}.$$
 (12)

Полученное значение $Re_{\text{\tiny KD}} = 919 \pm 39$.

Результаты измерения зависимости P(x) представленны в таблице 3. Полученный график зависимости представлен на Рис. 7. Получаем $l_{\rm ycr} \approx 50$ см, что соотвествует результату, рассчитанному по формуле (6).

x, cm	P(x), дел	$P(x)$, Πa
40	28	54,91724
50	32	62,76256
90	60	117,6798
120	81	158,8677

Таблица 3:

Рис. 7:

5.2 2 трубка

Проведём предварительные расчёты для второй трубки (l=0,5 м, $d_2=3,90\pm0,05$ мм). По формуле (8) получаем $Q_{\rm кp}\approx 10,6\cdot 10^{-5}$ м $^3/{\rm c}$.

По формуле (9) находим $\Delta P \approx 257$ Па, т. е. 131 деление микроманометра.

По формуле (6) оценим длину $l_{\rm ycr} \approx 0.39$ м, что меньше длины выбранного участка. Значит, течение можно считать установившимся.

Полученные результаты измерения $\Delta P(Q)$ при ламинарном течении представленны в таблице 4.

ΔP , дел	ΔP , Πa	$\delta_{\Delta P}$, Πa	Δt , c	$\overline{\Delta t}$, c	$\delta_{\overline{\Delta t}}$, c	ΔV , л	$\delta_{\Delta V}$, л	Q , m^3/c	δ_Q , м $^3/\mathrm{c}$
42	82,37586	0,980665	17,46 18,85 19,26 19,14 18,66	18,67	0,333581	1	0,01	0,0000536	0,0000011
30	58,8399	0,980665	28,42 29,94 28,90 26,86 26,43	28,11	0,656277	1	0,01	0,0000356	0,0000009
21	41,18793	0,980665	41,88 39,58 36,43 36,95 39,14	38,80	0,985132	1	0,01	0,0000258	0,0000007
51	100,0278	0,980665	16,85 15,66 17,15 18,08 17,64	17,08	0,421172	1	0,01	0,0000586	0,0000016
62	121,6025	0,980665	14,59 15,15 14,41 13,67 13,18	14,20	0,359166	1	0,01	0,0000704	0,0000019
56	109,8345	0,980665	$ \begin{array}{r} 14,71 \\ 15,23 \\ 16,24 \\ 15,79 \\ 15,07 \end{array} $	15,41	0,285594	1	0,01	0,0000649	0,0000014
66	129,4478	0,980665	13,75 13,08 12,48 12,97 13,51	13,16	0,238273	1	0,01	0,0000760	0,0000016

Таблица 4: Ламинарное течение

Полученные результаты измерения $\Delta P(Q)$ при турбулентном течении представленны в таблице 5.

ΔP , дел	ΔP , Πa	$\delta_{\Delta P}, \Pi a$	Δt , c	$\overline{\Delta t}$, c	$\delta_{\overline{\Delta t}}$, c	ΔV , л	$\delta_{\Delta V}$, л	Q , m^3/c	δ_Q , м $^3/\mathrm{c}$
80	156,9064	0,980665	11,88 10,93 10,86 11,36 11,80	11,37	0,230078	1	0,01	0,0000880	0,0000020
121	237,3209	0,980665	9,66 8,78 9,93 10,10 10,14	9,72	0,265714	1	0,01	0,0001029	0,0000030
144	282,4315	0,980665	9,06 9,26 9,35 8,61 8,65	8,99	0,177104	1	0,01	0,0001113	0,0000025
178	349,1167	0,980665	7,63 8,21 8,54 8,51 8,13	8,20	0,187286	1	0,01	0,0001219	0,0000030
206	404,034	0,980665	7,35 7,63 8,00 7,93 7,44	7,67	0,157067	1	0,01	0,0001304	0,0000030
83	162,7904	0,980665	10,95 10,51 11,06 12,00 11,83	11,27	0,29416	1	0,01	0,0000887	0,0000025
101	198,0943	0,980665	10,79 10,38 9,81 10,46 10,93	10,47	0,21421	1	0,01	0,0000955	0,0000022

Таблица 5: Турбулентное течение

Полученный график зависимости $Q(\Delta P)$ представлен на Рис. 8.

Рис. 8:

По формуле Пуазейля (5) определим вязкость воздуха $\eta = \frac{\pi R^4 \Delta P}{8Ql}$. Погрешность определяется по формуле (10). Полученное значение $\eta = 19,01 \pm 1,01 \cdot 10^{-6}$ Па · с.

По формулам (11) и (12) получаем $Re_{\kappa p}=844\pm47$:

Результаты измерения зависимости P(x) представленны в таблице 6. Полученный гра-

x, cm	P(x), дел	$P(x)$, Πa
50	75	147,0998
90	135	264,7796
120	184	360,8847

Таблица 6:

фик зависимости представлен на Рис. 9. Получаем $l_{\rm ycr} \approx 40$ см, что соотвествует результату, рассчитанному по формуле (6).

Рис. 9:

Измерения зависимости расхода от радиуса трубы при заданном градиенте $\frac{\Delta P}{l} = \frac{2}{3} \frac{\partial e_A}{c_M}$ (ламинарное течение) представленны в таблице 7.

	$\Delta t, c$	$\overline{\Delta t}, c$	ΔV , A	Q , M^3/c
	8,77			
	8,23			
d_1	8,11	8,37	1	0,0001195
	8,08			
	8,66			
	23,9			
	24,43			
d_2	24,33	24,592	1	0,0000407
	24,2			
	26,1			

Таблица 7: Ламинарное течение

Измерения зависимости расхода от радиуса трубы при заданном градиенте $\frac{\Delta P}{l}=3\frac{\partial e n}{c M}$ (турбулентное течение) представленны в таблице 8.

Графики зависимостей $\ln Q(\ln R)$ представленны на Рис. 10. Коэффициент при x прямой будет являться искомым показателем степени. Полученные значение показателя степени β зависимости $Q \propto R^{\beta}$: при ламинарном течении $\beta \approx 3, 6$, при турбулентном течении $\beta \approx 2, 5$.

	$\Delta t, c$	$\overline{\Delta t}, c$	ΔV , Λ	Q , M^3/c
	4,06			
	4,42			
d_1	4,36	$4,\!306$	1	0,0002322
	4,63			
	4,06			
	$9,\!43$			
	9,03			
d_2	8,5	9,028	1	0,0001108
	8,9			
	9,28			

Таблица 8: Турбулентное течение

Зависимость расхода $\ln Q$ от радиуса трубки $\ln R$ при постоянном градиенте $\Delta P/I$

Рис. 10:

6 Обсуждение результатов и выводы

В работе изучалась зависимость расхода воздуха от перепада давления на заданном участке трубки. По полученным данным вычислялись вязкость воздуха, критическое число Рейнольдса, а также распределение давления по трубе P(x). Полученные значения вязкости воздуха η и критического числа Рейнольдса $Re_{\kappa p}$ представленны в таблице 9. Использованный в работе метод измерений позволяет достичь точности результатов в 5%. Основной вклад в погрешность результатов вносит погрешность определения времени протекания воздуха, вызванная конечностью времени реакции человека. Полученные резуль-

таты соответсвуют табличным значениям вязкости $(18, 1 \cdot 10^{-6} \ \Pi a \cdot c)$ и числа Рейнольдса (1000). Полученные результаты распределения давления соотвествуют расчётным.

	$\eta, \Pi a \cdot c$	$Re_{\kappa p}$
d_1	$19,82 \pm 0,81 \cdot 10^{-6}$	919 ± 39
d_2	$19,01 \pm 1,01 \cdot 10^{-6}$	844 ± 47

Таблица 9: Полученные результаты

Также в данной работе проверялся тот факт, что расход в ламинарном режиме пропорционален четвёртой степени радиуса трубы $Q \propto R^4$, а в турбулентном режиме – $Q \propto R^{2,5}$ (закон Пуазейля). Полученные значения показателя степени – 3, 6 в ламинарном режиме и 2, 5 в турбулентном – соответсвуют теоретической модели.