§1. Топологические пространства

Опр.. Пусть на мн-ве X задано семейство au, удовлетворяющие условиям:

- 1. $X, \emptyset \in \tau$
- **2.** \forall U_{α} , $\alpha \in A$ $U_{\alpha} \in \tau$ $\forall \alpha \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \tau$
- **3.** $\forall U_i, i = \overline{1, n} \quad U_i \in \tau \Rightarrow \bigcap_{i=1}^n U_i \in \tau$

Тогда (X, τ) - топологическое простванство. τ - топология

Опр.. $U \in \tau \Rightarrow U$ - открытое. CU - замкнутое

Опр.. У открытое мн-во, содеражащие точку х, называется его окресностью

 $\overline{\text{Teope}}$ ма Мн-во $U \in \tau \Leftrightarrow \forall x \in U$ входит в него с нек-рой окр-тью

Опр. Пусть на мн-ве Х задано отображение

 $\overline{d: X \times} X \to \mathbb{R}^+$, удовлетворяющие условиям:

- 1. $d(A,B) \geq 0, \forall A,B$
- $d(A,B) = 0 \Leftrightarrow A=B$
- 2. $d(A,B) = d(B,A) \forall A,B$
- 3. $d(A,B) + d(B,C) \ge d(A,C) \quad \forall A,B,C \in X$

Тогда (X, d) - метрическое пространство

Опр. Пусть (X, d) - метр. пр-во.

Тогда объединение произвольных наборов открытых шаров является топологией

$$d(a,b) = \sqrt{\sum_{i}^{n} (a_i - b_i)^2}$$

 $(\mathbb{R}^n, \mathbf{d})$ - метр. пр-во

 $\tau_0 = \tau_d$

Опр. Пусть (X, τ) - топология. $A \subset X$

Тогда $\tau_A = \{U \cap A | U \in \tau\}$ называется топологией индуцированной их X на А (A, τ_A) — подпространство пространсва (X, τ)

Теорема (Транзитовность инд. топологии) Let (X, τ) , $B \subset A \subset X$

 $Tor \overline{дa} \ \tau_B = (\tau_A)_B$

Д-во.

1. $\tau_B \subset (\tau_A)_B$

 $\forall U \in \tau_B \Rightarrow \exists V \in \tau \quad | \quad U = V \cap B \Rightarrow \tilde{V} = V \cap A \in \tau \Rightarrow \tilde{V} \cap B = (V \cap A) \cap B = V \cap B \Rightarrow U \in (\tau_A)_B$

2. $(\tau_A)_B \subset \tau_B$

$$\forall U \in (\tau_A)_B \Rightarrow \exists V \in \tau_A \quad | \quad U = V \cap B \Rightarrow \exists \tilde{V} \in \tau | V = \tilde{V} \cap A \Rightarrow U = \tilde{V} \cap B \in \tau_B$$

 $\underline{\text{Опр.}}\ (X,\tau)\Sigma\subset \tau$ наз-ся базой $\tau,$ если каждое открытое множество является объединением подмножеств из Σ

 $\underline{\Pi} \underline{\mathbf{p}} \ (X, \tau_d) \ \Sigma$ - база τ_d состоит из открытых шаров

Теорема (Критерий базы в топологическом пространстве)

Let (X, τ)

 Σ является базой \Leftrightarrow

- 1. $\Sigma \subset \tau$
- 2. $\forall U \in \tau, \ \forall x \in U \ \exists V \in \Sigma \ | \ x \in V \subset U$

Теорема (Критерий базы в на мн-ве)

Пусть Х множество без топологии

 Σ - база некоторой топологии \Leftrightarrow

1.
$$X = \bigcup U_{\alpha}, U_{\alpha} \in \Sigma$$

2.
$$\forall U, V \in \Sigma \quad \forall x \in U \cap V \exists W \in \Sigma \mid x \in W \subset U \cap V$$

Опр. Let
$$(X, \tau)$$
 - т.п. $\forall A \subset X$

т. а называется внутренней, если $\exists U_a \mid U_a \subset A$

мн-во внутренних точек Int A = A

Теорема $\forall A \Rightarrow \operatorname{Int} A \in \tau$

Теорема $A \in \tau \Leftrightarrow A = Int A$

Теорема $\forall A, B \Rightarrow$

 $\overline{\mathbf{1.}\ A\subset B}\Rightarrow \mathrm{Int}A\subset \mathrm{Int}B$

2. $\operatorname{Int}(A \cap B) = \operatorname{Int}A \cap \operatorname{Int}B$

Д-во.

$$\forall x \in \operatorname{Int} A \Rightarrow \exists U_x \mid U_x \subset A \xrightarrow{A \subset B} U_x \subset B \Rightarrow x \in \operatorname{Int} B$$

2. a)
$$\operatorname{Int}(A \cap B) \stackrel{?}{\subset} \operatorname{Int} A \cap \operatorname{Int} B$$

 $\forall x \in \operatorname{Int}(A \cap B) \Rightarrow \exists U_x \subset A \cap B \Rightarrow U_x \subset A \land U_x \subset B \Rightarrow x \in \operatorname{Int}A \land x \in intB \Rightarrow x \in \operatorname{Int}A \cap \operatorname{Int}B$ b) $\stackrel{?}{\supset}$

$$\forall x \in \operatorname{Int} A \cap \operatorname{Int} B \Rightarrow \begin{cases} x & \in \operatorname{Int} A \Rightarrow \exists U_x \mid U_x \subset A \\ x & \in \operatorname{Int} B \Rightarrow \exists V_x \mid V_x \subset B \end{cases} \Rightarrow W_x = U_x \cap V_x \Rightarrow W_x \subset A \cap B$$

Теорема. Внутренность множества А является объединением всех открытых подмножеств, содержащихся во множестве А

$$Int A = \bigcup_{i \in I} A_i \quad A_i \in \tau \ A_i \subset A$$

$$\underline{\mathcal{H}}_{-\mathbf{BO}}.$$
1. Int $A \stackrel{?}{\subset} \bigcup_{i \in I} A_i \quad A_i \in \tau, \ A_i \subset A$

$$\operatorname{Int} A \in \tau, \ \operatorname{Int} A \subset A \Rightarrow \operatorname{Int} A = A_{i_0}$$

$$\mathbf{2.} \ \operatorname{Int} A \stackrel{?}{\supset} \bigcup_{i \in I} A_i$$

$$\forall x \in \bigcup_{i \in I} A_i \quad x \in A_{i_0}, \ A_{i_0} \in \tau \quad A_{i_0} \subset A$$

 A_{i_0} окрестность т.х, которая включена в $A \Rightarrow x \in \text{Int} A$

Опр. точка а называется точкой прикосновения множества А, если любая окресность точки а пересекается со множеством А.

Множество точек прикосновения называется замыканием A

$$\underline{\mathbf{\Pi}\mathbf{p}}. \ (\mathbf{R}, \tau_0) \ A = [0, 1) \cup \{2\}$$

$$\overline{A} = [0, 1] \cup \{2\}$$