Parametrized Two-Player Nash Equilibrium [5] ny Hermelin, Chien-Chung Huang, Stefan Kratsch, and Magi

Danny Hermelin, Chien-Chung Huang, Stefan Kratsch, and Magnus Wahlström

Merkouris Papamichail†

[†]IGP in Algorithms, Logic and Discrete Mathematics NKUA, NTUA

Parametrized Algorithms & Complexity, Spring 2021

- Results
- 2 Preliminaries
 - Probability Simplex
 - 2-player Normal Form Games
 - Nash Equilibrium
 - Computation Aspects of Nash Equilibria
- Interlude
- 4 ℓ-sparse Games
 - Definition
 - Utilizing the Game Graph
 - The Algorithm
- 5 Localy Bounded Treewidth Games
 - Definitions
 - Equilibrium Patterns
 - Example
- 6 Conclusions & Future Work
- Bibliography

- Results
- 2 Preliminaries
 - Probability Simplex
 - 2-player Normal Form Games
 - Nash Equilibrium
 - Computation Aspects of Nash Equilibria
- Interlude
- 4 ℓ-sparse Games
 - Definition
 - Utilizing the Game Graph
 - The Algorithm
- 5 Localy Bounded Treewidth Games
 - Definitions
 - Equilibrium Patterns
 - Example
- 6 Conclusions & Future Work
- Bibliography

Results

Problems	Computation Time
ℓ -sparse Games	$\ell^{O(k\ell)} \cdot n^{O(1)}$
Locally Bounded Treewidth Games	$f(k,\ell) \cdot n^{O(1)}$
k-unbalanced Games	$\ell^{O(k^2)} \cdot n^{O(1)}$

- Results
- 2 Preliminaries
 - Probability Simplex
 - 2-player Normal Form Games
 - Nash Equilibrium
 - Computation Aspects of Nash Equilibria
- Interlude
- 4 ℓ-sparse Games
 - Definition
 - Utilizing the Game Graph
 - The Algorithm
- 5 Localy Bounded Treewidth Games
 - Definitions
 - Equilibrium Patterns
 - Example
- Conclusions & Future Work
- Bibliography

Probability Simplex

d-Simplex

Let $\langle e^1, e^2, \dots, e^{d+1} \rangle$ be the *normal* base of \mathbb{R}^{d+1} . We call the set $\Delta_d = convex(\langle e^1, e^2, \dots, e^{d+1} \rangle) \subset \mathbb{R}^{d+1}$, a d-Simplex.

- **1** A d-Simplex is a d-dimensional object in d+1-dimensional space.
- 2 For all $x \in \Delta_d$, we have x > 0.
- § For all $x \in \Delta_d$, we have $\sum_{i=1}^{d+1} x_i = 1$.
- **a** Each $x \in \Delta_d$ defines a *probability distribution* on *d* possibilities.
- **⑤** For some $x \in \Delta_d$, we call *support* the set $S(x) = \{i \in [d+1] \mid x_i > 0\}$

Figure 1: The 2-simplex in \mathbb{R}^3 .

2-player Normal Form Games

Bi-matrix Game

- 2-player game.
- 2 Player 1 has *m* strategies. while player 2 has *n* strategies.
- **3** Let $A, B \in \mathbb{R}^{m \times n}$ two real matrices.
- The two players choose a vector of their respective simplices, simultaneously:
 - Player 1 chooses some $x \in \Delta_{m-1}$.
 - **2** player 2 chooses some $y \in \Delta_{n-1}$
- **1** The players obtain u_1, u_2 units of utility, respectively, where:
 - $u_1 = x^t A y$
 - $u_2 = x^t B y$

Notes:

- 1 "Every" 2-player game can be represented as a Bi-matrix game.
- ② We assume that A = B [6].

Nash Equilibrium

Definition

Let $(x^*, y^*) \in \Delta_{m-1} \times \Delta_{n-1}$ be the two strategies of the two players. We say that the *strategy profile* (x^*, y^*) is a *Nash Equilibrium* (NE), iff,

- For all $x \in \Delta_m$, we have $(x^*)^t A y^* \ge x^t A y^*$, and
- ② for all $y \in \Delta_n$, we have $(x^*)^t A y^* \ge (x^*)^t A y$.

I.e. my strategy is optimal, for a fixed strategy of the other player; and this is true for both players.

Notes:

- The Nash Equilibrium is the most acceptable solution concept for a Normal Form Game.
- ② John Nash proved (1950) that *every* Normal Form Game has a NE.

Computing a Nash Equilibrium

▶ Remember: For some $x \in \Delta_d$ we call *support* of x the set $S(x) = \{i \in [d+1] \mid x_i > 0\}$ containing the indices of the positive coordinates of x.

Support Lemma

The pair of strategy vectors (x, y) is a Nash equilibrium for the Bi-matrix game (A, B) iff:

- ② $y_t > 0 \Rightarrow (x^t B)_t \ge (x^t B)$, for all $i \ne t$

Algorithm: Support Enumeration

- "Guess" a support vector for each player.
- Oetermine whether the inequalities of Support Lemma hold.

Complexity of Computing a NE

- Computing a NE is PPAD-complete, even for a 2-player game
 [3, 1, 2].
 Hence, we do not expect to find a polynomial-time algorithm fro NE.
- ② Computing a NE is as difficult as computing the support of a NE [6].
- **3** We can compute a NE of a Bi-matrix game, where the *support is* bounded by k, in $n^{O(k)}$ time (see Support Enum.).
- Unless FPT = W[1], there is no $n^{o(k)}$ time algorithm for computing a NE with support of size at most k in a Bi-matrix game [4].

- Results
- 2 Preliminaries
 - Probability Simplex
 - 2-player Normal Form Games
 - Nash Equilibrium
 - Computation Aspects of Nash Equilibria
- Interlude
- 4 ℓ-sparse Games
 - Definition
 - Utilizing the Game Graph
 - The Algorithm
- 5 Localy Bounded Treewidth Games
 - Definitions
 - Equilibrium Patterns
 - Example
- 6 Conclusions & Future Work
- Bibliography

Towards a FPT Algorithm

- Finding a proper parameter:
 - The obvious parameters, i.e. the number of players or the size of the support, *are not suitable*.
 - We consider ℓ-sparse Bi-matrix games, which have at most ℓ non-zero values in each row or column.
 - We, also, will consider (A, B) Bi-matrix games, where the matrices have at most ℓ different values.
 - Parameter (in both cases): $\ell + k$, where k is an upper bound to the size of the support.
- Finding a structure:
 - It's not obvious which discrete structure to utilize.
 - We will extrapolate a Game Graph, by considering the non-zero entries of the payoff matrices.
 - In ℓ -sparse Bi-matrix games we will have $\Delta(G) \leq \ell$, where G is the Game Graph.
 - In games with ℓ different values, the Game Graph will exploit the Locally Bounded Treewidth.

- Results
- 2 Preliminaries
 - Probability Simplex
 - 2-player Normal Form Games
 - Nash Equilibrium
 - Computation Aspects of Nash Equilibria
- Interlude
- 4 ℓ-sparse Games
 - Definition
 - Utilizing the Game Graph
 - The Algorithm
- 5 Localy Bounded Treewidth Games
 - Definitions
 - Equilibrium Patterns
 - Example
- 6 Conclusions & Future Work
- Bibliography

Game Graph

Game Graph

Let (A, B) be a Bi-matrix game. Let $\mathcal{G} = A \vee B$ be the matrix, where,

$$\mathcal{G}[i][j] = \begin{cases} 1, & A[i][j] \neq 0 \text{ or } B[i][j] \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

We call the *bipartite* $G = (S^1 \cup S^2, E)$, induced by \mathcal{G} the *game graph* of (A, B). Where S^1, S^2 the set of strategies of each player, respectively.

Note: For ease of the presentation, we (often) assume A = B, and $A, B \ge 0$.

Game Graph: Example

$$A = \begin{bmatrix} 0 & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \\ 0 & 0 & a_{53} & a_{54} \end{bmatrix}$$

Figure 2: The game graph induced by the A.

Utilizing the Game Graph

Minimal Nash Equilibria

A Nash Equilibrium (x, y) is *minimal*, if for any Nash Equilibrium (x', y'), with $S(x') \subseteq S(x)$ and $S(y') \subseteq S(y)$, we have S(x') = S(x) and S(y') = S(y).

Lemma

If minimal $NE \Rightarrow connected$

Game Graph: Example 2 (a)

Lemma

If *not* connected \Rightarrow *not* minimal NE

$$\begin{bmatrix} 0 & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \\ 0 & 0 & a_{53} & a_{54} \end{bmatrix} \begin{bmatrix} 0 \\ y_1 \\ 0 \\ y_2 \end{bmatrix}$$

Remarks Since the induced graph is *not connected*, then the NE (x, y) is not minimal. In deed the strategy profile x' = (0, 1, 0, 0, 0), y' = (0, 1, 0, 0) is a NE.

Game Graph: Example 2 (b)

Lemma

If minimal NE \Rightarrow connected

$$\begin{bmatrix} 0 & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & a_{24} \\ 0 & 0 & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \\ 0 & 0 & a_{53} & a_{54} \end{bmatrix} \begin{bmatrix} 0 \\ y_1 \\ 0 \\ y_2 \end{bmatrix}$$

- ▶ Remarks If we assume that $a_{24} > 0$, then the same trick won't work, (x', y') will not be a NE.
- ▶ Note: That Lemma 2 is not a characterization. Hence, we could have a connected induced graph, that does not correspond to a NE NE

An FPT Algorithm for ℓ -sparse Games (1)

Lemma

We can enumerate all the induced subgraphs on t vectices, with c connected components in,

$$(\Delta+1)^{2t}\cdot n^{c+O(1)}$$

time.

Algorithm

- Enumerate all induced *connected* subgraphs on k vertices.
- ② Let V^1, V^2 be the corresponding support from the previous graph.
- 3 Check the Support Lemma for the given support.

An FPT Algorithm for ℓ -sparse Games (2)

Theorem

A Nash Equilibrium in a ℓ -sparse Bi-matrix game, where the support sizes is bounded by k, can be computed in $\ell^{O(k\ell)} \cdot n^{O(1)}$.

Corollary

The problem of determining whether a Nah Equilibrium with support sizes at most k exists in an ℓ -sparse Bi-matrix game, admits *no polynomial kernel*.

- Results
- 2 Preliminaries
 - Probability Simplex
 - 2-player Normal Form Games
 - Nash Equilibrium
 - Computation Aspects of Nash Equilibria
- Interlude
- 4 ℓ-sparse Games
 - Definition
 - Utilizing the Game Graph
 - The Algorithm
- 5 Localy Bounded Treewidth Games
 - Definitions
 - Equilibrium Patterns
 - Example
- 6 Conclusions & Future Work
- Bibliography

Locally Bounded Treewidth

Definition

A graph class has *locally bounded treewidth* if there is a function $f: \mathbb{N} \to \mathbb{N}$ such that for every graph G = (V, E) of the class, any vertex v, and any $d \in \mathbb{N}$, the subgraph of G induced by all vertices within distance at most d from v has treewidth at most f(d).

▶ Note: The crucial property of locally bounded treewidth graphs is that first-order queries can be answered in FPT time on such graphs, when the parameter is the size of the first-order formula.

A New Class of Games: Bounded Valued Matrices

Bounded Valued Bi-matrix Games

Let $P \subset \mathbb{Q}$, and $|P| \leq \ell$, for some value ℓ . We consider a subclass of Bi-matrix games (A, B), where $A, B \in P^{m \times n}$.

- ▶ Note: In this section we will present an algorithm that finds an equilibrium with support sizes at most k, when the game come from a graph with locally bounded treewidth.
- ▶ Parameter: $\ell + k$

Theorem

A Nash Equilibrium in a *locally bounded treewidth* game, where the support sizes are bounded by k, and the payoff matrices have at most ℓ different values, can be computed in $f(k,\ell) \cdot n^{O(1)}$ time for some computable function $f(\cdot)$.

Equilibrium Patterns

Definition

- (a) Let I, J be two subsets of k elements in [n]. We say that two matrices $A^*, B^* \in \mathbb{Q}^{k \times k}$ occur in the Bi-matrix game (A, B) if $A^* = A_{I,J}$ and $B^* = B_{I,J}$.
- (b) The pair (A^*, B^*) forms an equilibrium pattern if there exists an equilibrium (x, y) where (A^*, B^*) occurs in the game (A, B), at (S(x), S(y)).
 - **1** Our algorithm will try all possible ℓ^{2k^2} pairs of matrices (A^*, B^*) .
 - 2 For each pair we determine whether it is an equilibrium pattern.
 - **3** When does a pair of matrices (A^*, B^*) form an equilibrium pattern?
 - a) It must occur in the game (A, B) for some indices sets I, J.
 - b) There must be an equilibrium (x, y) with S(x) = I and S(y) = J, such that neither player has better alternative.

Quering an Equilibrium Pattern with a First-Order Formula

▶ Example: Consider a win-lose, $P = \{0, 1\}$, game (A, B), encoded into relations A/2, B/2, such that A(r, c) is *true* iff A[r][c] = 1. Likewise for B.

$$A^{\star} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \exists r_1, r_2, c_1, c_2$$

$$A(r_1, c_1) \wedge \neg A(r_1, c_2) \wedge \neg A(r_2, c_1) \wedge A(r_2, c_2) \wedge A(r_2, c_2) \wedge \neg A(r_2, c_1) \wedge A(r_2, c_2) \wedge \neg A(r_2, c_1) \wedge \neg A(r_2, c_2) \wedge$$

Note: In general, with ℓ different values, there would be $\ell-1$ relations A_i and B_i encoding the game, where $A_i(r,c)$ is true if $A_{r,c}=z_i$, for every $z_i \in P$ except the zero value.

The pattern (A^*, B^*) .

- Results
- 2 Preliminaries
 - Probability Simplex
 - 2-player Normal Form Games
 - Nash Equilibrium
 - Computation Aspects of Nash Equilibria
- Interlude
- 4 ℓ-sparse Games
 - Definition
 - Utilizing the Game Graph
 - The Algorithm
- 5 Localy Bounded Treewidth Games
 - Definitions
 - Equilibrium Patterns
 - Example
- 6 Conclusions & Future Work
- Bibliography

Conclusions & Future Work

Conclusions

- We presented parametrised algorithms to compute a Nash Equilibrium in 2-player games.
- We defined an underlying graph structure in Bi-matrix Games.
- We utilized the graph-theoretical structure inherited in Bi-matrix Games.

Future Work

- Is there a polynomial-time algorithm for computing Nash equilibria in games of bounded treewidth?
- Can we remove the assumption regarding the number of different values in the algorithm for Locally Bounded Treewidth Games?

Thank you for your time!

- Results
- 2 Preliminaries
 - Probability Simplex
 - 2-player Normal Form Games
 - Nash Equilibrium
 - Computation Aspects of Nash Equilibria
- Interlude
- 4 ℓ-sparse Games
 - Definition
 - Utilizing the Game Graph
 - The Algorithm
- 5 Localy Bounded Treewidth Games
 - Definitions
 - Equilibrium Patterns
 - Example
- 6 Conclusions & Future Work
- Bibliography

Bibliography

X. CHEN AND X. DENG, *3-nash is ppad-complete*", Electronic Colloquium on Computational Complexity (ECCC), (2005).

———, Settling the complexity of two-player nash equilibrium, in 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06), 2006, pp. 261–272.

K. DASKALAKIS AND C. PAPADIMITRIOU, *Three-player games are hard*, Electronic Colloquium on Computational Complexity (ECCC), (2005).

V. ESTIVILL-CASTRO AND M. PARSA, *Computing nash equilibria gets harder - new results show hardness even for parameterized complexity*, Conferences in Research and Practice in Information Technology Series, 94 (2009).

D. HERMELIN, C.-C. HUANG, S. KRATSCH, AND M. WAHLSTRÖM, *Parameterized two-player nash equilibrium*, in Graph-Theoretic Concepts in Computer Science, P. Kolman and J. Kratochvíl, eds., Berlin, Heidelberg, 2011, Springer Berlin Heidelberg, pp. 215–226.

N. NISAN, T. ROUGHGARDEN, E. TARDOS, AND V. V. VAZIRANI, *Algorithmic Game Theory*, Cambridge University Press, New York, NY, USA, 2007.