Introduction

Slide Set 1

### **WELCOME**

TO

SYSC 4405: Introduction to Digital Signal Processing

Dr. Richard M. Dansereau rdanse@sce.carleton.ca

Copyright © by R.M. Dansereau, 2002-2013

Acknowledgements: Elements of content based on lecture slides of Dr. El-Tanany as well as ECE2025 lectures slides of Dr. McClellan and Dr. Schafer at Georgia Tech. Elements of layout and presentation approach based on style of Dr. Kinsner.

Introduction

### Why use DSP?

Example: Digital Data

Why use DSP?

• Ex: Digital Data

What happens if you make a copy of a copy ... of a copy of a VCR tape (analog)?



What happens if you make a copy of a copy ... of a copy of a CD (digital)?



Perfect duplicate possible

?

How about *analog radio* versus *digital radio*?

Analog - always have signal but may have static

Digital - either perfect signal or completely wrong signal

# Introduction to DSP Slide 1.3 Introduction

# Why use DSP? Example: DSL

- Why use DSP?
  - Ex: Digital Data

Traditional phone lines designed to use frequencies from 0 Hz-4000 Hz. Though not "crystal clear", extra signal capacity is available past 4000 Hz if **equalization modem** used.



**Analog Solution** (not used):

Design a *custom* modem for every line with performance degrading as conditions change.

**DSP Solution** (DSL - Digital Subscriber Line):

Allow *generic* modem to test line and setup adaptive equalization when powered on.

#### Introduction

# Why use DSP? • Why use DSP? • Ex: Digital Data • Ex: DSL Analog/Digital Comparison

| Parameter                   | Analog Signal<br>Processing | Digital Signal<br>Processing |
|-----------------------------|-----------------------------|------------------------------|
| <b>Component Tolerances</b> | 1-10%                       | Accurate to # of bits used   |
| Sensitivities "Drift"       | Time & Temperature          | None                         |
| Noise Floor                 | 60 dB Typical               | 90+ dB                       |
| Adaptability                | Hard, Expensive             | Easy, Low Cost               |
| Volume Manufacturing        | Hand Tuning                 | Auto Tuning                  |
| Redesign                    | New Hardware Board          | New Code (Software)          |
| Layout                      | Noise Sensitive             | Noise Immune                 |
| Advanced Functions          | Hardware Intensive          | Additional Software          |
| Multi-Functions             | Multiple Hardware           | More MIPS & Software         |
| Power and Size              | Larger                      | Smaller                      |
| Reliability                 | Lower                       | Higher                       |

#### Introduction to DSP Slide 1.5 Introduction

### DSP Typical System

- Why use DSP?
  - Ex: Digital Data
  - Ex: DŠL
  - Analog vs. Digital

LPF - Low pass filter - Analog-to-digital converter ADC - Digital-to-analog converter DAC RAM/ **ROM DSP** Host Analog Analog Input Output LPF **ADC** DAC LPF Sensor Analog Digital Digital **Digital** signal signal signal signal passes passes converted Output Input converted through through to Digital to Analog **IPF** LPF

#### Introduction

### DSP Definitions

- Why use DSP?
- DSP
  - Typical System

#### Digital Signal Processing:

Processing of real-world signals (represented by a sequence of numbers) using mathematical techniques to perform transformations or to extract information.

#### Digital Signal Processor:

A device or system which performs digital signal processing functions.

#### Analog Signals:

Real-world signals; e.g., light, sound, temperature, pressure.

#### Digital Signals:

Numerical representation of analog signals.

#### Real-Time DSP:

Processing keeps pace with the input and output signals.

#### Non-Real-Time DSP:

Processing is performed off-line; i.e., data is stored and processed at a later time.

#### Introduction

### DSP Applications

#### Why use DSP?

#### DSP

- Typical System
- Definitions

#### Speech/audio:

- speech recognition
- speech synthesis
- text-to-speech
- digital audio
- equalization
- speaker verification
- stereo/surround sound
- 3D sound generation and localization
- audio mixing

#### **Image processing:**

- pattern recognition
- robotic vision
- image enhancement
- facsimile
- satellite weather map
- animation

#### Military/Commercial:

- secure communication
- radar processing
- sonar processing
- beamforming
- air traffic control
- missile guidance

#### **Biomedical:**

- patient monitoring
- computed tomography (CT)
- EEG brain mappers
- ECG analysis
- X-ray storage/enhancement

#### **Telecommuncation:**

- echo cancellation
- adaptive equalization
- spread spectrum
- video conferencing
- data communication

#### **Consumer applications:**

- digital, cellular mobile phones
- digital television
- digital cameras
- digital radio, software radio
- Internet phones, music
- digital answer machines
- interactive entertainment
- active suspension in cars

#### **Instrumentation/control:**

- spectrum analysis
- position and rate control
- noise reduction
- data compression

# Introduction to DSP Slide 1.8 Introduction

# DSP Systems Analog vs Digital

• DSP

- Typical System
- Definitions
- Applications

|                            | Continuous                                                             | Discrete                                                                                                     |
|----------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Signal type                | Analog                                                                 | Digital                                                                                                      |
| Time-domain representation | Differential equations                                                 | Difference equations                                                                                         |
| Transform domain           | Laplace transform for system design, transient response analysis       | Z-transform to study system properties, transient responses and system design                                |
|                            | Fourier transform for analysis in the steady state                     | DFT/FFT: analysis in the steady state                                                                        |
| Basic building blocks      | integrator, differentiator, analog<br>multiplier, adder, sign inverter | unit delay, multiplier,<br>adder, sign inverter                                                              |
| Applications               |                                                                        | Digital filters (FIR and IIR),<br>design and implementation<br>Spectral analysis based on<br>the DFT and FFT |

#### Introduction to DSP Slide 1.9 Introduction

# DSP Systems Typical DSP System

- DSP
- DSP Systems
  - Analog vs Digital

Illustrated below is a signal flow graph for a typical DSP system.



#### **Introduction to DSP Slide 1.10** Introduction

## DSP Systems Life of a Signal (1)

- DSP
- DSP Systems

  - Analog vs Digital
    Typical DSP System



#### Introduction to DSP Slide 1.11 Introduction

### DSP Systems Life of a Signal (2)

- DSP Systems
  - Analog vs Digital
  - Typical DSP System
  - Life of a Signal



#### **Introduction to DSP Slide 1.12** Introduction

## DSP Systems Life of a Signal (3)

- **DSP Systems** 
  - Analog vs Digital
  - Typical DSP System Life of a Signal



Introduction

## Introduction to DSP Main Concepts **Topics Covered**

**DSP Systems** 

- Analog vs Digital
- Typical DSP System
- Life of a Signal

Some of the main topics to be covered in this course are

Signal Representation: Unit impulse and unit step functions

Sampling, Shannon's sampling theorem, Nyquist rate

Difference equations, transfer functions

**Transforms:** *z*-Transform (ZT)

Discrete-time Fourier Transform (DTFT)

Discrete FT (DFT) and Fast FT (FFT)

Convolution Filtering:

Impulse response

Frequency response

**Filter Types:** FIR (Finite Impulse Response) filters

IIR (Infinite Impulse Response) filters

Introduction to design approaches for FIR and IIR filters

# Introduction

### Introduction to DSP | Main Concepts • Main Concepts • Topics Covered FIR Filters

- **DSP Systems**



A main goal of this course is in how to choose values for  $b_{i}$ .

#### Introduction to DSP Slide 1.15 Introduction

# Main Concepts IIR Filters

- DSP Systems
- Main Concepts
  - Topics Covered
  - FIR Filters



A main goal of this course is in how to choose values for  $b_k$  and  $a_k$ .

#### Introduction to DSP Slide 1.16 Introduction

# Main Concepts Designing Filters

- Main Concepts
  - Topics Covered
  - FIR Filters
  - IIR Filters

For example, the IIR filter with values for  $a_k$  and  $b_k$  given below allow us to smooth the following input signal sampled at 1 kHz.

