PCT/JP 2004/008004

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 6月 5日

出 願 Application Number:

特願2003-160478

[ST. 10/C]:

[JP2003-160478]

願 人

東京応化工業株式会社

Applicant(s):

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 4月 7日

【書類名】 特許願

【整理番号】 J11699A1

【提出日】 平成15年 6月 5日

【あて先】 特許庁長官 殿

【国際特許分類】 G03F 7/039

【発明の名称】 ホトレジスト組成物用樹脂、ホトレジスト組成物、およ

びレジストパターン形成方法

【請求項の数】 13

【発明者】

【住所又は居所】 神奈川県川崎市中原区中丸子150番地 東京応化工業

株式会社内

【氏名】 羽田 英夫

【発明者】

【住所又は居所】 神奈川県川崎市中原区中丸子150番地 東京応化工業

株式会社内

【氏名】 竹下 優

【特許出願人】

【識別番号】 000220239

【氏名又は名称】 東京応化工業株式会社

【代理人】

【識別番号】 100106909

【弁理士】

【氏名又は名称】 棚井 澄雄

【代理人】

【識別番号】 100064908

【弁理士】

【氏名又は名称】 志賀 正武

【選任した代理人】

【識別番号】 100101465

【弁理士】

【氏名又は名称】 青山 正和

【選任した代理人】

【識別番号】 100094400

【弁理士】

【氏名又は名称】 鈴木 三義

【選任した代理人】

【識別番号】 100106057

【弁理士】

【氏名又は名称】 柳井 則子

【手数料の表示】

【予納台帳番号】 008707

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 0117103

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 ホトレジスト組成物用樹脂、ホトレジスト組成物、およびレジストパターン形成方法

【特許請求の範囲】

【請求項1】 ポリマー末端に炭素原子に結合した水酸基を有し、当該水酸基のα位の炭素原子が、少なくともひとつの電子吸引性基を有することを特徴とするホトレジスト組成物用樹脂。

【請求項2】 ポリマー末端に一CR¹R²OH基(R¹及びR²は、それぞれ独立にアルキル基、ハロゲン原子、又はハロゲン化アルキル基であり、その少なくともひとつはハロゲン原子又はハロゲン化アルキル基から選ばれる電子吸引性基である)を有することを特徴とする請求項1記載のホトレジスト組成物用樹脂。

【請求項3】 前記電子吸引性基がフッ素原子又はフッ素化アルキル基である請求項1又は2記載のホトレジスト組成物用樹脂。

【請求項4】 請求項2に記載のホトレジスト組成物用樹脂において、前記-CR¹R²OH基を有する構成単位(M1)の割合が、当該ホトレジスト組成物用樹脂の、前記構成単位(M1)以外の構成単位の合計100モル%に対して、1モル%以上であることを特徴とするホトレジスト組成物用樹脂。

【請求項5】 ポリマー末端に、pKa6~12を呈する置換基を有することを特徴とするホトレジスト組成物用樹脂。

【請求項6】 前記置換基が-CR¹R²OH基(R¹及びR²は、それぞれ独立にアルキル基、ハロゲン原子、又はハロゲン化アルキル基であり、その少なくともひとつはハロゲン原子又はハロゲン化アルキル基から選ばれる電子吸引性基である)であることを特徴とする請求項5記載のホトレジスト組成物用樹脂

【請求項7】 さらに酸解離性溶解抑制基を有することを特徴とする請求項 1~6のいずれか一項に記載のホトレジスト組成物用樹脂。

【請求項8】 前記ホトレジスト組成物用樹脂は、(a1)酸解離性溶解抑制基を有する(メタ)アクリル酸エステルから誘導される構成単位及び(a2)

ラクトン環を有する(メタ)アクリル酸エステルから誘導される構成単位を有することを特徴とする請求項7記載のホトレジスト用樹脂。

【請求項9】 さらに(a3)水酸基を有する(メタ)アクリル酸エステルから誘導される構成単位を有することを特徴とする請求項8記載のホトレジスト用樹脂。

【請求項10】 質量平均分子量が12000以下であることを特徴とする 請求項1~9のいずれか一項に記載のホトレジスト組成物用樹脂。

【請求項11】 請求項1~10に記載のホトレジスト組成物用樹脂を含む ことを特徴とするホトレジスト組成物。

【請求項12】 さらに含窒素有機化合物を含むことを特徴とする請求項1 1記載のホトレジスト組成物。

【請求項13】 請求項11又は12に記載のホトレジスト組成物を用いることを特徴とするレジストパターン形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ホトレジスト組成物用樹脂、ホトレジスト組成物、およびレジストパターン形成方法に関する。

[0002]

【従来の技術】

これまで化学増幅型レジストの基材樹脂成分としては、KrFエキシマレーザー(248nm)に対する透明性が高いポリヒドロキシスチレンやこれの水酸基を酸解離性の溶解抑制基で保護したものが用いられてきた。しかしながら、今日では、半導体素子の微細化はますます進みArFエキシマレーザー(193nm)を用いた130nm以下の微細なレジストパターンを要するプロセスの開発が精力的に進められている。

ArFエキシマレーザーを光源とするプロセスでは、ポリヒドロキシスチレンのようなベンゼン環を有する樹脂はArFエキシマレーザー(193nm)に対する透明性が不十分である。

従って、そのような欠点を解決したベンゼン環を有さず、透明性に優れかつ耐 ドライエッチング性に優れる樹脂として、エステル部にアダマンタン骨格のよう な多環式炭化水素基を有する(メタ)アクリル酸エステルから誘導される単位を 主鎖に有する樹脂(特許文献1乃至8)などが提案されている。

このような、従来のホトレジスト組成物としては、例えばラジカル重合により 得られる樹脂成分、酸発生剤成分、有機溶剤等を含む化学増幅型のもの等が挙げ られる。また、特許文献 9 では、連鎖移動剤として末端に極性基を持たないもの を用いて重合した樹脂が開示されている。

[0003]

【特許文献1】

特許2881969号公報

【特許文献2】

特開平5-346668号公報

【特許文献3】

特開平7-234511号公報

【特許文献4】

特開平9-73173号公報

【特許文献5】

特開平9-90637号公報

【特許文献6】

特開平10-161313号公報

【特許文献7】

特開平10-319595号公報

【特許文献8】

特開平11-12326号公報

【特許文献9】

特開2001-2735号公報

[0004]

【発明が解決しようとする課題】

近年、半導体素子製造において必要とされるデザインルールはいっそう狭まり 130 nm以下や100 nm付近の解像度が必要とされ、解像度の向上が要望されている。さらに、現像後レジストパターンにてラインエッジラフネス(LER)が発生するという問題もある。該LERはホールレジストパターンではホール 周囲に歪みが生じるし、ラインアンドスペースパターンでは側壁の不均一な凹凸となる。そして、LERは、解像性の要望が高まるにつれ、よりラフネスを小さくすることが要望されている。

しかしながら、従来のホトレジスト組成物においては、LERの改善が不十分である。

[0005]

本発明は前記事情に鑑てなされたもので、解像性、LER特性が良好なホトレジスト組成物用樹脂、およびこれを用いたホトレジスト組成物およびレジストパターン形成方法を提供することを課題とする。

[0006]

【課題を解決するための手段】

本発明においては、下記の手段により上記課題を解決するに至った。

すなわち、第1の発明は、ポリマー末端に炭素原子に結合した水酸基を有し、 当該水酸基の α 位の炭素原子が、少なくともひとつの電子吸引性基を有すること を特徴とするホトレジスト組成物用樹脂又ポリマー末端に、p K a 6 \sim 1 2 を呈 する置換基を有することを特徴とするホトレジスト組成物用樹脂である。

第2の発明は、ポリマー末端に、pKa6~12を呈する置換基を有すること を特徴とするホトレジスト組成物用樹脂である。

第3の発明は、本発明のホトレジスト組成物用樹脂を含むことを特徴とするホトレジスト組成物である。

第4の発明は、本発明のホトレジスト組成物を用いることを特徴とするレジストパターン形成方法である。 なお、本明細書における「構成単位」とは、ポリマー(樹脂)を構成するモノマー単位を示す。

[0007]

【発明の実施の形態】

◆第1の態様

第1の態様のレジスト組成物用樹脂は、ポリマー末端に炭素原子に結合した水酸基を有し、当該水酸基のα位の炭素原子が、少なくともひとつの電子吸引性基を有することを特徴とする。

[0008]

電子吸引性基としては、例えばハロゲン原子、ハロゲン化アルキル基等が挙げられる。ハロゲン原子としてはフッ素原子、塩素原子等が挙げられるが、フッ素原子が好ましい。

ハロゲン化アルキル基において、ハロゲンは前記ハロゲン原子と同様である。 アルキル基は炭素数、例えば1~3程度の低級アルキル基が望ましく、好ましく はメチル基またはエチル基、最も好ましくはメチル基である。具体的には、例え ばトリフルオロメチル基、ジフルオロメチル基、モノフルオロメチル基、パーフ ルオロエチル基等が挙げられるが、特にトリフルオロメチル基が好ましい。

電子吸引性基の数は、1または2であり、好ましくは2である。

[0009]

前記炭素原子に結合した水酸基を有し、当該水酸基の α 位の炭素原子が、少なくともひとつの電子吸引性基を有するとは、より具体的かつ好適には、 $-CR^1R^2OH$ 基を有し、 R^1 及び R^2 は、それぞれ独立にアルキル基、ハロゲン原子、又はハロゲン化アルキル基であり、その少なくともひとつはハロゲン原子又はハロゲン化アルキル基から選ばれる電子吸引性基であるものとして、表すことができる。

ここでのハロゲン原子、又はハロゲン化アルキル基とは前記したものと同様であり、アルキル基としては、メチル基、エチル基、プロピル基などの低級アルキル基が挙げられる。そして、その電子吸引性基は、前記したようにフッ素原子又はフッ素化アルキル基が好ましく、特には R^1 及び R^2 がともにフッ素化アルキル基、中でもトリフルオロメチル基であるときが、合成上、またLERを小さくする効果に優れ好ましい。

このホトレジスト組成物用樹脂においては、前記ポリマー末端に結合している

-CR¹R²OH基(以下、当該基を「末端構造」という場合がある)を有する構成単位(M1)の割合が、ホトレジスト組成物用樹脂の、前記構成単位(M1)以外の構成単位の合計100モル%に対して、1モル%以上(好ましくは2モル%以上)であることが好ましい。なお、構成単位(M1)以外の構成単位の合計には、例えばラジカル重合で用いられるアゾビスイソブチロニトリル(AIBN)等の公知の重合開始剤から誘導される構成単位や樹脂の主成分たるモノマーから誘導される単位を含む。

上限値は特に限定する意義はないが、製造方法等に起因して実用的には例えば 5 モル%以下とされる。また、組成によっては末端構造の割合が多すぎると、レジストパターンの膜減りや、パターンの裾がややテーパー状にある現象等が生じ る場合がある。なお、当然であるが構成単位(M1)のモル数は、末端構造のモル数、水酸基のモル数と等しい。

1 モル%以上とすることにより、末端構造を導入したことによる L E R の改善効果に優れる。これ以下だとその効果に劣る傾向がある。

[0010]

当該末端構造は、例えばポリマーをモノマーと重合開始剤にて、ラジカル重合によって重合する際に、 $-CR^1R^2OH$ 基を有する連鎖移動剤を添加することによりポリマー末端に導入される。この場合、当該末端構造を有する構成単位(M1)とは、この連鎖移動剤から誘導される構成単位(M1)である。

連鎖移動剤は、例えば一般式「 $X-R'-CR^1R^2OH$ 」で示される。

当該式中、Xは水酸基またはチオール基であり、当該連鎖移動剤は、水酸基またはチオール基の水素原子が脱離して、ポリマー末端に結合する。従って、この場合、構成単位(M1)とは、 $\begin{bmatrix} X-R'-CR^1R^2OH \end{bmatrix}$ におけるXの水酸基またはチオール基から水素原子を除いた単位となる。なお、反応性の点から、Xはチオール基が好ましい。

また、R'は2価の脂肪族炭化水素基(直鎖、分岐鎖、環状のいずれでもよい)または2価の芳香族炭化水素基であり、これらの内、直鎖または分岐鎖状の脂肪族炭化水素基が好ましい。

脂環式基としては、例えばシクロヘキシレン基等が挙げられる。芳香族炭化水

素基としては、例えばp-フェニレン基等が挙げられる。

直鎖または分岐鎖状の脂肪族炭化水素基としては、例えばメチレン基、エチレン基、n-プロピレン基、イソプロピレン基等が挙げられるが、エチレン基、n-プロピレン基が好ましい。

好ましい連鎖移動剤の一般式は、 $SH-(CH_2)_m-C(CF_3)_2-OH$ (mは2-4の整数) で表される。これにより、好ましい構成単位(M1) はー $S-(CH_2)_m-C(CF_3)_2-OH$ で表される。

[0011]

末端構造の割合(構成単位(M1)の割合)は、例えば仕込みのモノマーの量や前記連鎖移動剤の量を調整したり、前記連鎖移動剤を添加するタイミングを調整してレジスト組成物用樹脂の質量平均分子量を調整することにより、変化させることができる。

また、合成後のレジスト組成物用樹脂においては、末端構造のモル数(構成単位(M1)のモル数)は例えばプロトンーNMR、カーボンNMR等のNMR(核磁気共鳴スペクトル)によって測定することができる。

[0012]

構成単位(M1)以外の構成単位としては、レジスト組成物用樹脂に用いられているもので、好ましくはラジカル重合により製造されるものであれば特に限定せずに用いることができる。

本発明は、非化学増幅型または化学増幅型のホトレジスト組成物用樹脂のいずれにも適用可能であるが、化学増幅型が好ましい。

また、ネガ型、ポジ型のいずれにも適用可能であるが、ポジ型が好ましい。

化学増幅型であって、ポジ型のレジスト組成物用樹脂としては、例えばKrF エキシマレーザー用として多用されているヒドロキシスチレン系樹脂に酸解離性 溶解抑制基 (保護基)を導入した樹脂や、ArFエキシマレーザー用として多用されている (メタ) アクリル酸系樹脂 (なお、(メタ) アクリル酸とはアクリル酸および/またはメタクリル酸を示す。) に、酸解離性溶解抑制基を導入したもの等が挙げられる。

[0013]

酸解離性溶解抑制基としては、ヒドロキシスチレン系樹脂、(メタ)アクリル 酸系樹脂等にそれぞれ用いられているものを任意に使用可能である。

具体的には、鎖状アルコキシアルキル基、第3級アルキルオキシカルボニル基 、第3級アルキル基、第3級アルコキシカルボニルアルキル基及び環状エーテル 基、等が挙げられる。

鎖状アルコキシアルキル基としては、1-エトキシエチル基、1-メトキシメチルエチル基、1ーイソプロポキシエチル基、1ーメトキシプロピル基、1-nーブトキシエチル基などが、第3級アルキルオキシカルボニル基としては、tert-ブチルオキシカルボニル基、tert-アミルオキシカルボニル基などが、第3級アルキル基としては、tert-ブチル基、tert-アミル基などのような鎖状第3級アルキル基、2-メチルーアダマンチル基、2-エチルアダマンチル基などのような脂肪族多環式基を含む第3級アルキル基などが、第3級アルコキシカルボニルアルキル基としては、tert-ブチルオキシカルボニルメチル基、tert-アミルオキシカルボニルメチル基などが、環状エーテル基としては、テトラヒドロピラニル基、テトラヒドロフラニル基などが挙げられる。下記に本発明において、好ましい(メタ)アクリル酸系樹脂の具体例を示す。

[0014]

構成単位(M1)以外の構成単位としては、例えば以下の様なものが挙げられる。

(a1):酸解離性溶解抑制基を有する(メタ)アクリル酸エステルから誘導される構成単位。

この樹脂は、さらに、任意に下記構成単位(a2)、(a3)を含んでいてもよく、好ましくは構成単位(a1)及び(a2)、さらに好ましくは(a1)、(a2)及び(a3)を含むことが好ましい。

- (a2):ラクトン環を有する(メタ)アクリル酸エステルから誘導される構成 単位。
 - (a3):水酸基を有する(メタ)アクリル酸エステルから誘導される構成単位

なお、通常、ポリマー末端には、前記末端構造の他に、ラジカル重合開始剤か

ら導入される構成単位が少量導入される。

[0015]

· · 構成単位 (a 1)

構成単位(a1)において、酸解離性溶解抑制基は、特に限定するものではない。一般的には(メタ)アクリル酸の側鎖のカルボキシル基と、環状または鎖状の第3級アルキルエステルを形成するものが広く知られているが、特に脂肪族多環式基含有酸解離性溶解抑制基が好ましく用いられる。

前記脂肪族多環式基としては、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカン等から1個の水素原子を除いた基等を例示できる。具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等のポリシクロアルカンから1個の水素原子を除いた基等が挙げられる。これらの中でもアダマンチル基、ノルボルニル基、テトラシクロドデカニル基が工業上好ましい。

[0016]

より具体的には、下記一般式(I)、(II)又は(III)等が挙げられる

[0017]

【化1】

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(式中、Rは水素原子又はメチル基、R¹は低級アルキル基である。)

[0018]

【化2】

(式中、R は水素原子又はメチル基、R 2 及びR 3 はそれぞれ独立に低級アルキル基である。)

[0019]

[化3]

(式中、Rは水素原子又はメチル基、R4は第3級アルキル基である。)

[0020]

式中、 R^1 としては、炭素数 $1\sim5$ の低級の直鎖又は分岐状のアルキル基が好ましく、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソプチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。

[0021]

前記 R^2 及び R^3 は、それぞれ独立に、好ましくは炭素数 $1\sim5$ の低級アルキ

ル基であると好ましい。中でも、 R^2 、 R^3 が共にメチル基である場合が工業的に好ましく、具体的には、2-(1-rグマンチル)-2-メチループロピル(メタ)アクリレートから誘導される構成単位を挙げることができる。

[0022]

前記R⁴は、tertーブチル基やtert-アミル基のような第3級アルキル基であり、tertーブチル基である場合が工業的に好ましい。

また、基一COOR 4 は、式中に示したテトラシクロドデカニル基の3 または4 の位置に結合していてよいが、結合位置は特定できない。また、(メタ)アクリレート構成単位のカルボキシル基残基も同様に式中に示した8 または9 の位置に結合していてよいが、結合位置は特定できない。

[0023]

構成単位(a1)は、全構成単位の合計に対して、20~60モル%であることが望ましい。

[0024]

· · 構成単位 (a2)

構成単位(a2)としては、(メタ)アクリル酸エステルのエステル側鎖部にラクトン環からなる単環式基またはラクトン環を有する脂肪族多環式基が結合した構成単位が挙げられる。なお、このときラクトン環とは、一〇一C(〇)一構造を含むひとつの環を示し、これをひとつの目の環として数える。したがって、ここではラクトン環のみの場合は単環式基、さらに他の環構造を有する場合は、その構造に関わらず多環式基と称する。

そして、構成単位 (a 2) としては、具体的には例えば、γーブチロラクトンから水素原子1つを除いた単環式基や、ラクトン環含有ビシクロアルカンから水素原子を1つを除いた多環式基等が挙げられる。

具体的には、例えば以下の構造式 (IV) ~ (VII) で表される構成単位が好ましい。

[0025]

【化4】

(式中、Rは水素原子又はメチル基、mは0又は1である。)

[0026]

【化5】

(式中、Rは水素原子又はメチル基である。)

[0027]

【化6】

(式中、Rは水素原子又はメチル基である。)

[0028]

【化7】

(式中、Rは水素原子又はメチル基である。)

[0029]

構成単位 (a 2) は全構成単位の合計に対して、 $20\sim60$ モル%含まれていると好ましい。

[0030]

· · 構成単位 (a 3)

構成単位(a3)としては、例えばArFエキシマレーザ用のホトレジスト組成物用の樹脂において、多数提案されているものの中から適宜選択して用いることができ、例えば水酸基含有脂肪族多環式基を含むことが好ましい。該多環式基としては、前記構成単位(a1)の説明において例示したものと同様の多数の多環式基から適宜選択して用いることができる。

具体的に、構成単位 (a3) としては、水酸基含有アダマンチル基や、カルボキシル基含有テトラシクロドデカニル基を有するものが好ましく用いられる。

さらに具体的には、下記一般式(VIII)で表される構成単位を挙げることができる。

【化8】

$$\begin{pmatrix} C \\ H_2 \\ O \end{pmatrix}$$
 $C \end{pmatrix}$ $C \rangle$ $C \rangle$

(式中、Rは水素原子又はメチル基である。)

[0032]

構成単位(a3)は全構成単位の合計に対して、 $10\sim50$ モル%含まれていると好ましい。

[0033]

また、構成単位 (a1) ~ (a3) 以外の他の構成単位 (a4) も挙げられる

構成単位 $(a\ 4)$ は、上述の構成単位 $(a\ 1)$ \sim $(a\ 3)$ に分類されない他の構成単位であれば特に限定するものではない。

例えば脂肪族多環式基を含み、かつ (メタ) アクリル酸エステルから誘導される構成単位等が好ましい。該多環式基は、例えば、前記の構成単位 (a 1) の場合に例示したものと同様のものを例示することができ、特にトリシクロデカニル基、アダマンチル基、テトラシクロドデカニル基から選ばれる少なくとも1種以上であると、工業上入手し易い等の点で好ましい。

構成単位(a4)として、具体的には、下記(IX) \sim (XI) の構造のものを例示することができる。

[0034]

【化9】

$$\begin{pmatrix} C \\ H_2 \\ O \end{pmatrix} \begin{pmatrix} C \\ O \\ \end{pmatrix} \begin{pmatrix} C \\ C \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} C \\ C \\ C \\ \end{pmatrix} \begin{pmatrix} C \\ C \\ C \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} C \\ C \\ C \\ \end{pmatrix} \begin{pmatrix} C \\ C \\ C \\ \end{pmatrix} \begin{pmatrix} C \\ C \\ C \\ \end{pmatrix}$$

(式中Rは水素原子又はメチル基である)

[0035]

【化10】

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(式中Rは水素原子又はメチル基である)

[0036]

【化11】

(式中 R は水素原子又はメチル基である)

[0037]

構成単位 (a 4) は全構成単位の合計に対して $1\sim2$ 5モル%含まれていると好ましい。

[0038]

なお、レジスト組成物用樹脂は1種または2種以上の樹脂から構成することが できる。

[0039]

そして、例えば構成単位(M1)以外の構成単位を誘導するモノマーを、例えばアゾビスイソブチロニトリル(AIBN)のようなラジカル重合開始剤を用いた公知のラジカル重合等によって重合させ、質量平均分子量の調整、構成単位(M1)の割合の調整等の点から、適当な時期に連鎖移動剤として前記末端構造を有する連鎖移動剤を添加し、重合を連鎖移動させることによって本発明のレジスト組成物用樹脂を得ることができる。

[0040]

本発明のレジスト組成物用樹脂の質量平均分子量(ゲルパーミエーションクロマトグラフィによるポリスチレン換算質量平均分子量、以下同様。)は、例えば約12000以下、好ましくは10000以下、さらに好ましくは8000以下とされる。

特に8000以下とすることにより末端構造の導入量を多くすることができ、 LER改善効果が向上する。また、パターン形状をより矩形にすることができる という効果も得られる。

下限値は特に限定するものではないが、パターン倒れの抑制、解像性等の点で、好ましくは4000以上、さらに好ましくは5000以上とされる。

[0041]

第1の態様においては、この様なレジスト組成物用樹脂の構造により、LER 特性が向上する。

さらに、レジストパターンの倒れも低減することができる。そして、パターン 倒れの低減により解像性も向上する。また、焦点深度幅特性が向上する。また、 ディフェクトも低減する。

なお、LERが向上する理由は定かではないが、従来、例えばラジカル重合による得られる樹脂成分のポリマー末端は、疎水性の重合開始剤や、疎水性の連鎖移動剤(停止剤)から誘導される構造を含み、アルカリ現像液への溶解を阻害する可能性があるのに対し、本発明においては、電子吸引性基が存在することによって、水酸基の水素が解離しやすくなるため、樹脂に適度な酸性度が付与され、その結果、アルカリ現像液への溶解性が向上し、レジストパターンの露光部と未露光部の境界面のLER特性が向上するものと推測される。

◆第2の態様

第2の態様のレジスト組成物用樹脂は、ポリマー末端に、pKa6~12、好ましくは7~10を呈する置換基を有することを特徴とする。

このような範囲とすることにより、適度な酸性度を生じさせることができるため、LER特性が良好となり、かつレジストパターンの膨潤を抑制することができる。

[0043]

該置換基において水素イオンを発生する基としてはアルコール性水酸基が挙げられる。カルボキシル基の水酸基は、pKaが小さくなりすぎアルカリ現像すると膨潤しすぎるので好ましくない。

当該置換基のp K a は、例えばこのアルコール性水酸基の α 位の炭素原子に電子吸引性基が結合していると小さな値となり、結合していないと大きな値となる。つまり、前記アルコール性水酸基と、前記 α 位の炭素原子と、これに結合する原子および/または置換基(β 位の炭素原子をのぞく)とをあわせた末端構造の特性によって変化する値である。

p K a は、α位の炭素原子に結合する電気吸引性基の種類や数、ポリマー末端の置換基の種類等を調整することによって変化させることができる。

すなわち、第1の態様の様に、 α 位の炭素原子に電子吸引性基が結合することにより、p K a を小さくすることができる。

このp K a の数値範囲を満足するには、第1 の態様の構成が好ましく、当該置換基としては、 $-CR^1R^2OH$ 基(R^1 及び R^2 は、それぞれ独立にアルキル基、ハロゲン原子、又はハロゲン化アルキル基であり、その少なくともひとつはハロゲン原子又はハロゲン化アルキル基から選ばれる電子吸引性基である)で表されるものが好ましい。

[0044]

なお、pKaは水溶液中の酸解離定数によって表されるものである。pKa は、前記末端構造の酸性度を測定できる様なモノマーを用意し、滴定等の定法に よって測定することができる。

ページ: 19/

また、pKaは文献等に記載の値を用いることもできる。

[0045]

第2の態様においては、この様なレジスト組成物用樹脂の構造により、LER 特性が向上する。

さらに、レジストパターンの倒れも低減することができる。そして、パターン 倒れの低減により解像性も向上する。また、焦点深度幅特性が向上する。また、 ディフェクトも低減する。

なお、LERが向上する理由は第1の態様における理由と同様である。

[0046]

[ホトレジスト組成物]

本発明のホトレジスト組成物は本発明のレジスト組成物用樹脂を用いるもので ればその他の組成は特に限定しない。

例えば化学増幅型でポジ型のホトレジスト組成物の場合は、本発明のレジスト 組成物用樹脂であって、酸解離性溶解抑制基を有する樹脂成分(A)、酸発生剤 成分(B)、有機溶剤(C)、その他必要に応じて含窒素有機化合物(D)等の 添加剤等を含む。以下、ArFエキシマレーザーで露光するのに適した組成例を 示す。

(A) 成分の含有量は、形成しようとするレジスト膜厚に応じて調整すればよい。一般的には、固形分濃度にして、 $8\sim25$ 質量%、より好ましくは $10\sim2$ 0 質量%である。

[0047]

・酸発生剤成分(B)

酸発生剤成分(B)としては、従来、化学増幅型レジストにおける酸発生剤として公知のものの中から任意のものを適宜選択して用いることができる。

該酸発生剤のなかでもフッ素化アルキルスルホン酸イオンをアニオンとするオニウム塩が好ましい。好ましい酸発生剤の例としては、ジフェニルヨードニウムトリフルオロメタンスルホネート、(4-メトキシフェニル)フェニルヨードニウムトリフルオロメタンスルホネート、ビス(p-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムトリ

フルオロメタンスルホネート、 (4ーメトキシフェニル) ジフェニルスルホニウムトリフルオロブタンスルホネート、 (4ーメチルフェニル) ジフェニルスルホニウムノナフルオロブタンスルホネート、 (pーtertーブチルフェニル) ジフェニルスルホニウムトリフルオロメタンスルホネート、 ジフェニルヨードニウムノナフルオロブタンスルホネート、 ビス (pーtertーブチルフェニル) ヨードニウムノナフルオロブタンスルホネート、トリフェニルスルホニウムノナフルオロブタンスルホネート、 トリフェニルスルホニウムノナフルオロブタンスルホネート、 (4ートリフルオロメチルフェニル) ジフェニルスルホニウムトリフルオロメタンスルホネート、 トリ (pーtertーブチルフェニル) スルホニウムトリフルオロブタンスルホネート、トリ (pーtertーブチルフェニル) スルホニウムトリフルオロメタンスルホネート等のオニウム塩等が挙げられる。これらのうち、スルホニウム塩が好ましく、特にはそのノナフルオロブタンスルホネート塩が好ましい。 (B) 成分として、1種の酸発生剤を単独で用いてもよい。

(B) 成分の使用量は、(A) 成分100質量部に対し、0.5~30質量部とされる。

[0048]

・有機溶剤(C)

(C) 成分としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを1種又は2種以上適宜選択して用いることができる。

例えば、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2ーヘプタノン等のケトン類や、エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジプロピレングリコール、又はジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル又はモノフェニルエーテル等の多価アルコール類及びその誘導体や、ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルピン酸メチル、ピルピン酸エチル、メトキシプロピオン酸メチル

、エトキシプロピオン酸エチル等のエステル類等を挙げることができる。これら の有機溶剤は単独で用いてもよく、2種以上の混合溶剤として用いてもよい。

使用量は特に限定しないが、基板等に塗布可能な濃度とされる。

[0049]

·含窒素有機化合物(D)

レジストパターン形状、引き置き経時安定性等を向上させるために、さらに任 意の(D)成分として含窒素有機化合物を配合させることができる。

この含窒素有機化合物は、既に多種多様なものが提案されているので、公知の ものから任意に用いれば良いが、第2級低級脂肪族アミンや第3級低級脂肪族ア ミンが好ましい。

ここで、低級脂肪族アミンとは炭素数5以下のアルキルまたはアルキルアルコールのアミンを言い、この第2級や第3級アミンの例としては、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジーnープロピルアミン、トリーnープロピルアミン、トリペンチルアミン、ジエタノールアミン、トリエタノールアミン等が挙げられるが、特にトリエタノールアミンのような第3級アルカノールアミンが好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

これらは、(A) 成分100質量部に対して、通常0.01~2.0質量部の 範囲で用いられる。

[0050]

また、前記(D)成分との配合による感度劣化を防ぎ、またレジストパターン 形状、引き置き安定性等の向上の目的で、さらに任意の(E)成分として、有機 カルボン酸又はリンのオキソ酸若しくはその誘導体を含有させることができる。 なお、(D)成分と(E)成分は併用することもできるし、いずれか1種を用い ることもできる。

有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸 、安息香酸、サリチル酸等が好適である。

リンのオキン酸若しくはその誘導体としては、リン酸、リン酸ジ - n - ブチルエステル、リン酸ジフェニルエステル等のリン酸又はそれらのエステルのような

誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸・ジ・n・プチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸及びそれらのエステルのような誘導体、ホスフィン酸、フェニルホスフィン酸等のホスフィン酸及びそれらのエステルのような誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。

(E) 成分は、(A) 成分100質量部当り0.01~5.0質量部の割合で 用いられる。

[0051]

・その他の任意成分

本発明のホトレジスト組成物には、さらに所望により混和性のある添加剤、例えばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための 界面活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤等を適 宜、添加含有させることができる。

[0052]

[レジストパターン形成方法]

本発明のレジストパターン形成方法は本発明のホトレジスト組成物を用いるものであれば特に限定されない。

本発明のレジストパターン形成方法は例えば以下の様にして行うことができる

すなわち、まずシリコンウェーハのような基板上に、例えばポジ型のホトレジスト組成物をスピンナー等で塗布し、80~150℃の温度条件下、プレベークを40~120秒間、好ましくは60~90秒間施し、これに例えばArF露光装置等により、ArFエキシマレーザー光を所望のマスクパターンを介して選択的に露光した後、80~150℃の温度条件下、PEB(露光後加熱)を40~120秒間、好ましくは60~90秒間施す。次いでこれをアルカリ現像液、例えば0.1~10質量%テトラメチルアンモニウムヒドロキシド水溶液を用いて現像処理する。このようにして、マスクパターンに忠実なレジストパターンを得ることができる。

なお、基板とホトレジスト組成物の塗布層との間には、有機系または無機系の

また、露光に用いる波長は、特に限定されず、レジスト組成物用樹脂等の特性に応じて、ArFエキシマレーザー、KrFエキシマレーザー、 F_2 エキシマレーザー、EUV (極紫外線)、VUV (真空紫外線)、EB (電子線)、X線、軟X線等の放射線を用いて行うことができる。

[0053]

この様に本発明においては、LER特性等が良好なレジスト用樹脂を提供できるので、半導体素子、液晶素子などの電子素子の製造に好適なホトレジスト組成物が提供できる。そして、好ましくは、例えばレジスト用樹脂の構成単位を適宜選択することにより、200nm以下の波長、中でもArFエキシマレーザー用の化学増幅型ホトレジスト組成物を提供できる。

[0054]

【実施例】

以下、本発明を実施例を示して詳しく説明する。

(実施例1)

γープチロラクトンメタクレート (一般式 (VII) においてRがメチル基である単位に相当するモノマー) /メチルアダマンチルメタクリレート (一般式 (I)) においてRがメチル基で、R¹がメチル基ある単位に相当するモノマー) /ヒドロキシアダマンチルアクリレート (一般式 (VIII) においてRが水素原子である単位に相当するモノマー) = 50/30/20 (モル%) の組成のモノマー0.1molをTHF (テトラヒドロフラン) 150mlに溶解させ、AIBN (前記モノマー100モル%に対して4モル%)を用いて70℃でラジカル重合を開始し、重合の連鎖移動剤として下記化学式

[0055]

【化12】

[0056]

得られたレジスト組成物用樹脂100質量部に、それぞれ以下の成分を混合、 溶解してポジ型ホトレジスト組成物を製造した。

- (B) 成分:トリフェニルスルホニウムノナフルオロブタンスルホネート 3. 0質量部
- (D) 成分:トリエタノールアミン 0.1質量部
- (C) 成分:プロピレングリコールモノメチルエーテルアセテート/乳酸エチル =80/20(質量比)との混合溶剤900質量部

[0057]

ついで、得られた化学増幅型ポジ型ホトレジスト組成物を、スピンナーを用いてシリコンウェーハ上に塗布し、ホットプレート上で120℃、90秒間プレベーク (PAB処理) し、乾燥することにより、膜厚250nmのレジスト層を形成した。

ついで、ArF露光装置NSR-S302 (Nikon社製NA (開口数) = 0. 60, 2/3 輪帯照明) により、ArFエキシマレーザー (193 nm) を、マスクパターンを介して選択的に露光した。

そして、120℃、90秒間の条件でPEB処理し、さらに23℃にて2.3

8質量%テトラメチルアンモニウムヒドロキシド水溶液で、23℃の温度条件下で60秒間パドル現像し、その後20秒間水洗して乾燥した。

[0058]

120nmのラインアンドスペースパターン(1:1)が忠実に再現される露 光量で形成したレジストパターンについて、SEM(走査型電子顕微鏡)を用い て断面形状を観察した。

パターン形状は矩形のままで、膜減り等もなく、解像性も良好であった。

また、120nmのラインアンドスペースパターン(1:1)の焦点深度幅は500nmであった。

[0059]

また、ラインアンドスペースパターンのラインエッジラフネスを示す尺度である 3σ を求めたところ、7.2 nmであった。

なお、 3σ は、側長SEM(日立製作所社製,商品名「S-9220」)により、試料のレジストパターンの幅を32箇所測定し、その結果から算出した標準偏差(σ)の3倍値(3σ)である。この 3σ は、その値が小さいほどラフネスが小さく、均一幅のレジストパターンが得られたことを意味する。

また、ディフェクトを、KLAテンコール社製の表面欠陥観察装置 KLA2132(製品名)を用いて測定し、ウェーハ内の欠陥数を評価した。試験に用いたウェーハは3枚であり、その平均値を求めた。結果は3個であった。

また、選択的露光における露光時間を長くしていき、それに伴いパターンが細くなっていったときにどこでパターン倒れが生じるかどうかを測定したところ、パターンの幅が57nmとなった時点で倒れが生じた。

[0060]

(実施例2)

前記化学式12で表される連鎖移動剤の割合を、2モル%から3モル%に変更 した以外は実施例1と同様にして質量平均分子量10000のレジスト組成物用 樹脂を得た。

そして、実施例1と同様にして評価した。結果を表1にまとめて示した。

[0061]

(実施例3)

レジスト組成物用樹脂の質量平均分子量が7000になる様に調整した以外は 、実施例2と同様にしてレジスト組成物用樹脂を得た。

そして、実施例1と同様にして評価した。結果を表1にまとめて示した。

[0062]

(実施例4)

仕込みのモノマー組成をノルボルナンラクトンアクリレート(一般式(V)においてRが水素原子である単位に相当するモノマー)/エチルアダマンチルメタクリレート(一般式(I)においてRがメチル基で、R 1 がエチル基ある単位に相当するモノマー)/ヒドロキシアダマンチルアクリレート(一般式(VIII)においてRが水素原子である単位に相当するモノマー)=50/30/20(モル%)とした以外は、実施例3と同様にして質量平均分子量が7000のレジスト組成物用樹脂を得た。

そして、実施例1と同様にして評価した。結果を表1にまとめて示した。

[.0063]

(比較例1)

実施例1において、連鎖移動剤を用いない以外は同様にして、レジスト組成物 用樹脂を製造し、次いで実施例1と同様な組成のレジスト組成物を調製し、実施 例1と同様な方法でポジ型ホトレジスト組成物を調製した。。

そして、実施例1と同様にして評価した。結果を表1にまとめて示した。

[0064]

(比較例 2)

実施例4において、連鎖移動剤を用いない以外は同様にして、レジスト組成物 用樹脂を製造し、次いで実施例1と同様な組成のレジスト組成物を調製し、実施 例1と同様な方法でポジ型ホトレジスト組成物を調製した。 そして、実施例1 と同様にして評価した。結果を表1にまとめて示した。

[0065]

【表1】

	パターン形状	焦点深度幅 (nm)	LER (3δ) (nm)	倒れ (nm)	ディフェク ト
実施例 1	矩形	500	7. 2	5 7	3
実施例2	矩形 (少し裾がテーパー状)	550	6. 5	5 5	2
実施例3	矩形	500	5. 1	5 8	1
実施例 4	矩形	500	6.0	60	1
比較例1	矩形	500	9.8	7 2	10
比較例2	矩形	550	8. 0	6 9	1 2

[0066]

表1の結果より、本発明に係る実施例においては、パターン形状は矩形であり、焦点深度幅特性に優れ、かつLER特性が良好で、パターン倒れを防ぐことができたので、解像性も良好で、さらにディフェクトも良好であった。

[0067]

【発明の効果】

以上説明したように本発明においては、解像性とLER特性を向上させることができる。

【書類名】 要約書

【要約】

【課題】 解像性、ラインエッジラフネス特性が良好なホトレジスト組成物用樹脂、およびこれを用いたホトレジスト組成物およびレジストパターン形成方法を提供する。

【解決手段】 ポリマー末端に炭素原子に結合した水酸基を有し、当該水酸基の α位の炭素原子が、少なくともひとつの電子吸引性基を有することを特徴とする ホトレジスト組成物用樹脂。

【選択図】 なし

認定・付加情報

特許出願の番号 特願2003-160478

受付番号 50300943824

書類名 特許願

担当官 北原 良子 2413

作成日 平成15年 6月12日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000220239

【住所又は居所】 神奈川県川崎市中原区中丸子150番地

【氏名又は名称】 東京応化工業株式会社

【代理人】 申請人

【識別番号】 100106909

【住所又は居所】 東京都新宿区高田馬場3-23-3 ORビル

【氏名又は名称】 棚井 澄雄

【代理人】

【識別番号】 100064908

【住所又は居所】 東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】 志賀 正武

【選任した代理人】

【識別番号】 100101465

【住所又は居所】 東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】 青山 正和

【選任した代理人】

【識別番号】 100094400

【住所又は居所】 東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】 鈴木 三義

【選任した代理人】

【識別番号】 100106057

【住所又は居所】 東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】 柳井 則子

次頁無

特願2003-160478

出願人履歴情報

識別番号

[000220239]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住所

神奈川県川崎市中原区中丸子150番地

氏 名

東京応化工業株式会社