MATH 173 PROBLEM SET 3

Stepan (Styopa) Zharkov

April 20, 2022

Problem 1. TODO

Solution. As the hint suggests, u'=0 means by definition $u(\phi)=0$ for any $\phi\in C_c^\infty(\mathbb{R})$. For any $\psi\in C_c^\infty(\mathbb{R})$, let $\phi_0\in C_c^\infty(\mathbb{R})$ be a bump function such that $\int_{\mathbb{R}}\phi_0(x)dx=1$. Let $\hat{\psi}=\psi-\phi_0\int_{\mathbb{R}}\psi(x)dx$. We see that

$$\int_{\mathbb{R}} \hat{\psi}(x) dx = \int_{\mathbb{R}} \psi(x) dx - \int_{R} \psi(x) dx \cdot \int_{\mathbb{R}} \phi_0(x) dx = \int_{\mathbb{R}} \psi(x) dx - \int_{\mathbb{R}} \psi(x) dx = 0.$$

So, we can let

$$\phi(x) = \int_{-\infty}^{x} \hat{\psi}(x) dx.$$

We see $\hat{\psi}$ has compact support and is in $C_c^{\infty}(\mathbb{R})$ (since it is the sum of two compact support functions). Since $\int_{\mathbb{R}} \hat{\psi}(x) dx = 0$, we know ϕ must have compact support as well and be in $C_c^{\infty}(\mathbb{R})$. Now, let $c = u(\phi_0)$. We see that by linearity of u,

$$u(\psi) = u(\hat{\psi}) + u(\phi_0) \cdot \int_{\mathbb{R}} \psi(x) dx = u(\phi') + c \int_{\mathbb{R}} \psi(x) dx = 0 + c \int_{\mathbb{R}} \psi(x) dx = c \int_{\mathbb{R}} \psi(x) dx,$$

which is exactly what we wanted to prove.

Problem 2.TODO

Solution. First, let us define f(x-ct) in a way that aligns with the case that f is a nice function. We see that if f were nice, then

$$f(x - ct)(\phi) = \int_{\mathbb{R}^2} f(x - ct)\phi(t, x)dxdt$$

$$= \int_{\mathbb{R}^2} f(z)\phi(s, z + cs)dzds$$

$$= \int_{\mathbb{R}^2} f(z)\phi(s, z + cs)dsdz$$

$$= \int_{z \in \mathbb{R}} f(z) \int_{s \in \mathbb{R}} \phi(s, z + cs)dsdz$$

$$= f\left(\int_{t \in \mathbb{R}} \phi(t, z + ct)dt\right).$$

So, we see that $f(x-ct)(\phi) = f(\Phi)$ where $\Phi = \int_{\mathbb{R}} \phi(s,z+cs)ds$. Note that $\Phi \in C_c^{\infty}(\mathbb{R})$ because the integral of a smooth function is smooth and ϕ is compactly supported. So, we can define u = f(x-ct).

Now, we must show that u satisfies the PDE. This is done by simply writing out our definition and using the linearity of f. More precisely,

$$(u_t + cu_x)(\phi) = -f\left(\int_s \phi_t(s, z + cs)ds\right) - cf\left(\int_s \phi_x(s, z + cs)ds\right)$$

$$= -f\left(\int_s \left[\phi_t(s, z + cs) + s\phi_x(s, z + cs)\right]ds\right)$$

$$= -f\left(\int_s \partial_s \phi(s, z + cs)ds\right)$$

$$= -f(0)$$

$$= 0.$$

Note that we used the fundamental theorem of calculus, that ϕ has compact support, and that f is linear in the above computation.

Thus, u = f(x - ct) by definition and u solves the PDE in the sense of distribution, as we wanted to show.

Problem 3. TODO

Solution.

1. This part follows directly from what we have done in class. We can factor

$$u_{xx} - u_{xt} - 6u_{tt} = (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)u,$$

so the general C^2 solution is

$$u(x,t) = g(2x-t) + f(3x+t)$$

for some C^2 functions f, q.

2. This problem is similar to problem 2, but here we should apply a trick instead of mindlessly taking derivatives. We will split up $(\partial_x - 3\partial_t)(\partial_t + 2\partial_t)$ and apply them to the parts of u in different orders. More precisely, we see that

$$(\partial_x - 3\partial_t)(\partial_t + 2\partial_t)u = (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)(g(2x - t) + f(3x + t))$$

= $(\partial_t + 2\partial_t)(\partial_x - 3\partial_t)f(3x + t) + (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)g(2x - t).$

By a similar derivation to that in problem 2, we can define

$$f(3x+t)(\phi) = f\left(\frac{1}{3}\int_{s}\phi(s,(z-s)/3)ds\right)$$

and

$$g(2x-t)(\phi) = g\left(\frac{1}{2}\int_{s}\phi(s,(z+s)/2)ds\right)$$

Now, we see that

$$(\partial_t + 2\partial_t)(\partial_x - 3\partial_t)f(3x + t)(\phi) = (\partial_t + 2\partial_t)(\partial_x - 3\partial_t)f\left(\frac{1}{3}\int_s \phi(s, (z - s)/3)ds\right)$$

$$= -(\partial_t + 2\partial_t)f\left(\int_s \left[\frac{1}{3}\phi_x(s, (z - s)/3) - \phi_t(s, (z - s)/3)\right]ds\right)$$

$$= -(\partial_t + 2\partial_t)f\left(\int_s \partial_s \phi(s, (z - s)/3)ds\right)$$

$$= -(\partial_t + 2\partial_t)f(0)$$

$$= -(\partial_t + 2\partial_t)f(0)$$

$$= -(\partial_t + 2\partial_t)0$$

$$= 0.$$

where we used the fundamental theorem of calculus along with the fact that ϕ must have compact support.

Similarly,

$$\begin{split} (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)g(2x - t)(\phi) &= (\partial_x - 3\partial_t)(\partial_t + 2\partial_t)g\left(\frac{1}{2}\int_s \phi(s,(z+s)/2)ds\right) \\ &= -(\partial_t - 3\partial_t)g\left(\int_s \left[\frac{1}{2}\phi_x(s,(z+s)/2) + \phi_t(s,(z-s)/2)\right]ds\right) \\ &= -(\partial_t - 3\partial_t)g\left(\int_s \partial_s \phi(s,(z+s)/2)ds\right) \\ &= -(\partial_t + 2\partial_t)f(0) \\ &= -(\partial_t + 2\partial_t)0 \\ &= 0, \end{split}$$

where, again, we used the fundamental theorem of calculus along with the fact that ϕ must have compact support.

From this, we can conclude that

$$u_{xx}-u_{xt}-6u_{tt}=(\partial_t+2\partial_t)(\partial_x-3\partial_t)f(3x+t)+(\partial_x-3\partial_t)(\partial_t+2\partial_t)g(2x-t)=0+0=0.$$

So
$$v + w$$
 does indeed solve the PDE in part (a).

Problem 4. TODO

Solution. This problem can be solved using the standard method for second order hyperbolic PDEs of two variables with constant coefficients that we saw in class.

First, we can factor

$$u_{xx} + 3u_{xy} - 4u_{yy} = (\partial_x - \partial_y)(\partial_x + 4\partial_y)u.$$

So, as we know, the general solution has the form

$$u(t, x) = f(4x - y) + g(x + y).$$

Now, we just need to use the initial conditions to find the specific f and g. We see that

$$f(3x) + g(2x) = \sin x$$

and that

$$4f'(3x) + g'(2x) = 0.$$

Taking the derivative of the former gives us that

$$3f'(3x) + 2g'(2x) = \cos x.$$

Now, we have a system of linear equations, so we can solve to see that

$$3f'(3x) = -\frac{3}{5}\cos x$$
 and $g'(2x) = \frac{8}{5}\cos x$.

Since $f(3x) + g(2x) = \sin x$, the constant during integration must be the same, so we can assume it to vanish and

$$f(x) = -\frac{3}{5}\sin(x/3)$$
 and $g(x) = \frac{8}{5}\sin(x/2)$.

Plugging this back in, we see that

$$u(x,t) = -\frac{3}{5}\sin\left(\frac{4x-y}{3}\right) + \frac{8}{5}\sin\left(\frac{x+y}{2}\right),\,$$

which is the solution we were after.

Problem 5. TODO

Solution. We assume $t \ge 0$, as always. First, lets' consider the case c = 0. Then, we have $u_{tt} = 0$, so $u_t(x,t)$ is constant along the line $\{(t,x_0)\}$ for any x_0 . So, u(t,x) has is a line of constant slope along any $\{(t,x_0)\}$. The starting point and the slope are defined by the initial conditions, so we see that

$$u(t,x) = \phi(x) + t\psi(x).$$

This vanishes when $\phi(0) + t\psi = 0$. Since ϕ, ψ are positive, ϕ must be 0, so $|x| \ge 1$. Any point where $|x| \ge 1$ works.

We can also check that u is linear (and thus C^{∞}) everywhere except for the places where of ϕ and ψ are not C^{∞} . In other words u is C^{∞} when $x \neq -1, 0, 1$.

Now, let's look at the nonzero case. We know from the notes that the solution is

$$u(t,x) = \frac{1}{2}(\phi(x+ct) + \phi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(\sigma) d\sigma.$$

Notice that we can assume c>0 because c<0 would also flip the integral, leading to the same solution.

We see that ϕ , ψ are non-negative, so this vanishes only when $\phi(x-ct)=0$, $\phi(x+c)=0$, and $\psi=0$ on the interval (x-ct,x+ct). For the analysis of when u vanishes, we will only consider c=1. Instead of writing out the cases, consider the following picture of where this is true:

TODO: image

We see that u is C^{∞} everywhere but the discontinuities of ϕ, ψ . In other words, u is C^{∞} when $x + ct \neq -1, 0$, or 1.

Problem 6. TODO

Solution. As the hint suggests, consider $v(x_0, x_n, t) = u(x_0, x_n, t) - u(x_0, -x_n, t)$. Notice that

$$v_{tt} - c^2 \Delta_x v = u_{tt}(x_0, x_n, t) - u_{tt}(x_0, -x_n, t) - c^2 \Delta_x u(x_0, x_n, t) + c^2 \Delta_x u(x_0, -x_n, t) = f(x_0, x_n, t) - f(x_0, -x_n, t) = 0.$$

We also see that

$$v(x, x_n, 0) = u(x_0, x_n, 0) - u(x_0, -x_n, 0) = \phi(x_0, x_n) - \phi(x_0, -x_n)$$

and

$$v_t(x, x_n, 0) = u_t(x_0, x_n, 0) - u_t(x_0, -x_n, 0) = \psi(x_0, x_n) - \psi(x_0, -x_n).$$

So, v solves the equation $v_{tt} - c^2 \Delta_x v = 0$ with 0 initial conditions. We know that the only solution to this is v = 0. Thus, we see that $u(x_0, x_n, t) - u(x_0, -x_n, t) = v(x_0, x_n, t) = 0$, so

$$u(x_0, x_n, t) = u(x_0, -x_n, t),$$

and u is even with respect to x_n , exactly as we wanted.

Problem 7. TODO	◁
Solution. TODO	