Anexos

CALCULOS (TEOREMA DE THÉVENIN)

1.- Para calcular el valor del voltaje y la resistencia en R_5 en el circuito original realizamos un análisis de mayas.

Malla 1

$$12 - 560I_1 - 4700I_1 + 4700I_2 = 0$$
$$5260I_1 - 4700I_2 = 12$$

Malla 2

$$2 - 330I_2 + 330I_3 - 4700I_2 + 4700I_1 = 0$$
$$4700I_1 - 5030I_2 + 330I_3 = -2$$

Malla 3

$$-100I_3 - 1000I_3 - 330I_3 + 330I_2 = 0$$
$$330I_2 - 1430I_3 = 0$$

$$5260I_1 - 4700I_2 = 12$$
 $4700I_1 - 5030I_2 + 330I_3 = -2$

$$330I_2 - 1430I_3 = 0$$
Sistema de ecuaciones

Para resolver este sistema de ecuaciones se utilizó la calculadora matrixcalc.org dando como resultados:

$$I_1 = 17.35 \, mA$$

 $I_2 = 16.86 \, mA$
 $I_3 = 3.89 \, mA$
 $\therefore I_{R_5} = 3.89 \, mA$

En la calculadora se ingresó una matriz de 3x4 donde x_1 , x_2 y x_3 son los valores de I_1 , I_2 y I_3 respectivamente.

Para calcular el voltaje tenemos

$$V_{R_5} = I_3 \cdot R_5$$

$$V_{R_5} = 3.89 \times 10^{-3} \cdot 1 \times 10^{-3}$$

$$V_{R_5} = 3.89 V$$

2.- Para el análisis circuito equivalente de Thévenin

Para el Voltaje de Thévenin se retira la resistencia de carga que en este caso es R_5 , se abre el circuito y se analiza al circuito en este caso se usa el método de análisis por mallas.

Malla 1

$$12 - 560I_1 - 4700I_1 + 4700I_2 = 0$$
$$5260I_2 - 4700I_2 = 12$$

Malla 2

$$2 - 330I_2 - 4700I_2 + 4700I_1 = 0$$
$$4700I_1 - 5030I_2 = -2$$

$$5260I_2 - 4700I_2 = 12$$
 Sistema de ecuaciones $4700I_1 - 5030I_2 = -2$

Para resolver este sistema de ecuaciones se utilizó la calculadora matrixcalc.org dando como resultados:

$$I_1 = 15.97mA$$

 $I_2 = 15.32 mA$

En la calculadora se ingresó una matriz de 2x3 donde x_1 y x_2 son los valores de I_1 y I_2 respectivamente.

Para calcular el Voltaje de Thévenin tenemos:

$$V_{TH} = I_2 \cdot R_3$$

$$V_{TH} = 15.32 \cdot 0.33$$

$$V_{TH}=5.06$$

Para la Resistencia de Thévenin se cortocircuitan las fuentes de voltaje, se retira el resistor de carga y posteriormente se realiza el respectivo análisis

$$R1||R2 = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{560 \cdot 4700}{560 + 4700} = 500.28 = R_{eq1}$$

$$R_{TH} = \frac{R_{eq1} \cdot R_3}{R_{eq1} + R_3} + R_4 = \frac{500.38 \cdot 330}{500.38 + 330} + 100$$

$$\therefore R_{TH} = 298.85 \,\Omega$$

Entonces como resultado tenemos el circuito equivalente de Thévenin

Al circuito de Thévenin se le agrega el resistor de carga R_5 para obtener el valor del voltaje y la corriente por medio del resistor obteniendo los siguientes resultados.

$$V_{R5} = \left(\frac{R_5}{R_{TH} + R_5}\right) \cdot V_{TH} = \left(\frac{1000}{298.85 + 1000}\right) \cdot 5.06$$

$$V_{R_5} = 3.89 V$$

$$I_{R_5} = \frac{V_{TH}}{R_T} = \frac{5.06}{298,85 + 1000}$$

$$I_{R_5} = 3.89 \, mA$$

3.- Para calcular el porcentaje de error tenemos la siguiente formula

$$\%$$
 Error = $\frac{Valor\ te\'orico - Valor\ calculado}{Valor\ te\'orico} \times 100$

Para el V_{TH} tenemos

%
$$Error = \frac{5.06 - 5.06}{5.06} \times 100 \rightarrow \text{ % } Error = 0 \text{ %}$$

Para el R_{TH} tenemos

$$\% Error = \frac{299 - 298.85}{299} \times 100 \rightarrow \% Error = 0.05 \%$$

Para el V_{R_5} en el circuito original tenemos

%
$$Error = \frac{3.89 - 3.89}{3.89} \times 100 \rightarrow \text{\% } Error = 0 \text{ \%}$$

Para la I_{R_5} en el circuito original tenemos

%
$$Error = \frac{3.89 - 3.89}{3.89} \times 100 \rightarrow \text{% } Error = 0 \text{ }\%$$

Para el V_{R_5} en el circuito de Thévenin tenemos

%
$$Error = \frac{3.85 - 3.89}{3.85} \times 100 \rightarrow \boxed{\% Error = -1.03 \%}$$

Para la I_{R_5} en el circuito de Thévenin tenemos

%
$$Error = \frac{3.85 - 3.89}{3.89} \times 100 \rightarrow \boxed{\% Error = -1.03 \%}$$