Final Examination

Date: June 9th, 2011

Duration: 120 minutes

SUBJECT: Electromagnetic Theory	
Dean of School of Electronics &	Lecturer: Tran Van Su, M.Eng.
Telecommunications Engineering	Signature:
Signature:	
	Full name:
Full name:	ruii name.

INTRODUCTIONS:

- 1. This is a closed-book examination
- 2. One sheet of notes allowed during examination period.
- 3. Communications devices are prohibited
- 4. Answer all questions

Question 1 (25 Marks)

The time variation for z = 0 of a function f(z,t) representing a traveling wave propagating in the +z-direction with velocity 150 m/s is shown in Fig. 1. Find the value of the function for each of the following case:

- a) z = 300m, t = 2.5s (15 Marks)
- b) z = -150m, t = 0.5s (10 Marks)

Question 2 (25 Marks)

Two sinusoidally time-varying, linear

vector fields are given at a point by

$$\vec{F}_1 = (C\hat{x} + C\hat{y} + \hat{z})\cos 2\pi \times 10^6 t$$
$$\vec{F}_2 = (C\hat{x} + \hat{y} - 2\hat{z})\sin 2\pi \times 10^6 t$$

where C is a constant

a) Determine the polarization of vector $\vec{F}_1 + \vec{F}_2$ for C = 2 (10 Marks)

(Hint: 1. Are F_1 and F_2 in phase? Are F_1 and F_2 opposite phase? is F_1 perpendicular to F_2)

b) Find the values of C for which the tip of the vector $\vec{F}_1 + \vec{F}_2$ traces a circle with time (15 Marks)

(Hint: (i) Compute the modulus of $\vec{F}_1 + \vec{F}_2$ and determine c to obtain constant magnitude (ii) Check 3 conditions for circular polarization)

Question 3 (25 Marks)

The plane z = 0 forms the boundary between free space (z > 0) and another medium.

a) Write four equations of boundary conditions (5 Marks)

- b) Find $\vec{J}_s(0,0,0)$ at t = 0 if z < 0 is a perfect conductor and $\vec{H}(0,0,0^+) = H_0(3\hat{x} 4\hat{y})\cos\omega t$. (10 Marks)
- c) Find $\vec{H}(0,0,0^+)$ at t = 0 if z < 0 is a magnetic material of $\mu = 20\mu_0$ and $\vec{H}(0,0,0^-) = H_0(10\hat{x} + \hat{z})\cos\omega t$. (10 Marks)

Question 4 (25 Marks)

For the transmission line of the following Figure

- a. Calculate and sketch the bounce diagram of voltages for $0 < t < 5 \mu s$. (5 Marks)
- b. Calculate and sketch the bounce diagram of currents for $0 < t < 5 \mu s$. (5 Marks)
- c. Determine V_{SS} and I_{SS} (5 Marks)
- d. Determine V⁺_{SS} and I⁺_{SS} (5 Marks)
- e. If R_L is substituted by a capacitor C, compute the voltage reflection coefficient at the capacitor for $t = 1\mu s$ and $t \to \infty$ (5 Marks)

