Nombre de zéros d'une équation différentielle

Leçons: 220, 221, 224

On considère l'équation différentielle linéaire du second ordre (E): y'' + qy = 0. On suppose que $q \in \mathscr{C}^1([a, +\infty[, \mathbb{R}_+^*), \operatorname{que} \int_a^{+\infty} \sqrt{q(u)} \mathrm{d}u = +\infty$ et que $q'(x) = o_{+\infty}(q^{3/2}(x))$. On se donne une solution y non nulle de (E) et on cherche à obtenir un équivalent à l'infini de la fonction $N: x \mapsto \operatorname{Card}\{u \in [a, x]: y(u) = 0\}$.

Théorème 1

Sous ces hypothèses, on a

$$N(x) \sim_{x \to +\infty} \frac{1}{\pi} \int_{a}^{x} \sqrt{q(u)} du.$$

Lemme 2

Soient y_1 et y_2 deux fonctions de $\mathscr{C}^1([a,+\infty[,\mathbb{R}_+^*])$ sans zéro commun. Alors si $w=y_1y_2'-y_2y_1'$ (Wronskien), et $y_1(a)+iy_2(a)=r_0e^{i\theta_0}$, il existe $r,\theta\in\mathscr{C}^1([a,+\infty[,\mathbb{R}])$ tels que $y_1=r\cos\theta$, $y_2=r\sin\theta$ où $r=\sqrt{y_1^2+y_2^2}$ et $\forall x,\theta(x)=\theta_0+\int_a^x\frac{w(t)}{r(t)^2}\mathrm{d}t$.

Démonstration. Posons $\varphi = y_1 + iy_2$. Par hypothèse, cette fonction ne s'annule pas donc $\psi: x \mapsto \int_a^x \frac{\varphi'(t)}{\varphi(t)} \mathrm{d}t + \ln r_0 + i\theta_0$ est bien définie et \mathscr{C}^1 sur $[a, +\infty[$.

De plus, un calcul rapide montre que $\left(\varphi e^{-\psi}\right)'=0$ donc

$$\forall x, \varphi(x) = e^{\psi(x)}(\varphi(a)e^{-\psi(a)}) = e^{\psi(x)}(r_0e^{i\theta_0} \times r_0^{-1}e^{-i\theta_0} = e^{\psi(x)}.$$

Donc

$$\varphi(x) = r_0 e^{i\theta_0} \exp\left(\int_a^x \frac{\varphi'(t)}{\varphi(t)} dt\right) = r_0 e^{i\theta_0} \exp\left(\int_a^x \frac{(y_1' + iy_2')(y_1 - iy_2)(t)}{r^2(t)} dt\right)$$

$$= r_0 e^{i\theta_0} \exp\left(i\int_a^x \frac{w(t)}{r^2(t)} dt + \int_a^x \frac{(y_1'y_1 + y_2'y_2)(t)}{r^2(t)} dt\right)$$

$$= r_0 e^{i\theta_0} \exp\left(i\int_a^x \frac{w(t)}{r^2(t)} dt + \ln r(x) - \ln r(a)\right) = r(x)e^{i\theta_0} \exp\left(i\int_a^x \frac{w(t)}{r^2(t)} dt\right)$$

$$\operatorname{car}(r^2)' = y_1'y_1 + y_2'y_2. \operatorname{Donc}\varphi(x) = r(x)e^{i\theta(x)} \operatorname{où}\theta(x) = \theta_0 + \int_a^x \frac{w(t)}{r^2(t)} dt.$$

Démonstration (du théorème). **Étape 1 : changement de variable** : Posons $\tau(x) = \int_a^x \sqrt{q(u)} du$. La fonction τ est de classe \mathscr{C}^1 sur $[a, +\infty[, \forall x \geqslant a, \tau'(x) = \sqrt{q(x)} > 0 \text{ et } \tau(x) \xrightarrow[x \to +\infty]{} +\infty$, de sorte que τ est une bijection de classe \mathscr{C}^1 de $[a, +\infty[$ sur $[0, +\infty[$.

Posons $Y = y \circ \tau^{-1}$. On a $\forall x > 0, y'(x) = Y'(\tau(x))\sqrt{g(x)}$ et

$$y''(x) = Y''(\tau(x))q(x) + Y'(\tau(x)) \times \frac{q'(x)}{2\sqrt{q(x)}}.$$

Ainsi:

$$0 = y''(x) + q(x)y(x) = q(x)Y''(\tau(x)) + \frac{q'(x)}{2\sqrt{q(x)}}Y'(\tau(x)) + q(x)Y(\tau(x))$$

Posons pour $t \ge 0$, $\varphi(t) = \frac{q'(\tau^{-1}(t))}{2a^{3/2}(\tau^{-1}(t))}$. La fonction Y est donc solution de (E'): $Y'' + \varphi Y' + Y = 0$

Étape 2: utilisons le lemme pour écrire $Y = r \sin \theta$, $Y' = r \cos \theta$. En effet, Y et Y' n'ont pas de zéro commun, car sinon, selon le théorème de Cauchy-Lipschitz, Y serait nulle. Donc

$$Y' = r' \sin \theta + r \theta' \cos \theta = r \cos \theta \tag{1}$$

et d'autre part

$$Y'' = r'\cos\theta - r\theta'\sin\theta = -\varphi r\cos\theta - r\sin\theta. \tag{2}$$

L'opération (1) $\times \cos \theta + (2) \times (-\sin \theta)$ donne $r\theta' = r + \varphi r \cos \theta \sin \theta$, d'où $\theta' = 1 + \varphi \cos \theta \sin \theta$. En particulier, comme $\cos \theta \sin \theta = \frac{1}{2} \sin(2\theta)$, $|\theta'(t) - 1| \le \frac{1}{2} |\varphi(t)|$.

Étape 3 : étude asymptotique. Puisque $\varphi(t) \xrightarrow[t \to +\infty]{} 0$ par hypothèse, θ' tend vers 1 à l'infini. Par intégration des équivalents, on a $\theta(t) \sim t$.

Notons M(t) le nombre de zéros de Y sur [0, t], montrons que $M(t) \sim \frac{l}{\pi}$ quand t tend vers $+\infty$.

Montrons d'abord par l'absurde que $M(t) < \infty$ pour tout t. Si il existait t_0 tel que $M(t_0) = \infty$, alors l'ensemble des zéros de Y dans $[0, t_0]$ aurait un point d'accumulation u. Soit $(u_n)_n$ suite de zéros de Y tendant vers u. Alors

$$0 = \frac{Y(u_n) - Y(u)}{u_n - u} \xrightarrow[n \to +\infty]{} Y'(u),$$

ce qui contredit l'absence de zéro commun de Y et Y'. Donc pour tout t, $M(t) < \infty$. Fixons $t_0 \ge 0$ tel que $\theta'(t) > 0$ sur $[t_0, +\infty[$. Alors

$$M(t) \backsim_{t \to +\infty} \operatorname{Card} \left\{ u \in [t_0, t] : \sin \theta(u) = 0 \right\} = \operatorname{Card} \left\{ v \in [\theta(t_0), \theta(t)] : \sin v = 0 \right\}$$

puisque θ est un \mathscr{C}^1 -difféomorphisme de $[t_0, t]$ sur $[\theta(t_0), \theta(t)]$. Donc

$$M(t) \sim_{t \to +\infty} \operatorname{Card} \{k \in \mathbb{Z} : \theta(t_0) \leqslant k\pi \leqslant \theta(t)\} = \operatorname{E}\left(\frac{\theta(t)}{\pi}\right) - \operatorname{E}\left(\frac{\theta(t_0)}{\pi}\right),$$

de sorte que $M(t) \sim_{t \to +\infty} \frac{\theta(t)}{\pi} \sim \frac{t}{\pi}$. Or, on se convainc sans mal que $N(x) = M(\tau(x))$ donc

$$N(x) \sim_{x \to +\infty} \frac{\tau(x)}{\pi} = \frac{1}{\pi} \int_{a}^{x} \sqrt{q(u)} du.$$

Remarque. • Le jour de l'oral, faire le lemme technique rapidement ou l'admettre pour avoir assez de temps pour la suite.

• Si la condition $q' = o(q^3/2)$ n'est pas vérifiée, le résultat n'est plus vrai. Par exemple, si $q(x) = \frac{1}{4x^2}$, $q'(x) = -\frac{1}{2x^3}$, et $y'' + \frac{1}{4x^2}y = 0$ admet pour solution générale $\sqrt{x}(a + b \ln(x))$, $a, b \in \mathbb{R}$ – puisque \sqrt{x} et $\sqrt{x} \ln(x)$ sont solutions – qui s'annule au plus une fois sur \mathbb{R}_+ .

Référence : Hervé QUEFFÉLEC et Claude ZUILY (2013). *Analyse pour l'agrégation*. 4^e éd. Dunod p. 405