CUDA code generation

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Code generation

Computers are much better than humans at performing tedious repetitive tasks, such as large matrix-matrix multiplications.

Sometimes, this includes writing code!

The purpose of this presentation is to give an example, and show how simple and effective code generation can be.

The mathematical task

The objective was to compute

$$O_{ij} = \sum_{k,l} A_{ik} B_{il} C_{jkl}$$

where A, B, O are $N \times D$ matrices, with $D \le 32 \ll N$, and C is a $D \times D \times D$ tensor with all elements known at compile time, and only a fraction 0.1 < s < 0.25 non-zero.

Initial assessment:

- too much sparsity to use tensor cores?
- want to load in the elements of A and B only once
- ullet want to use only one thread for each output O_{ij}

The mathematical task

$$O_{ij} = \sum_{k,l} A_{ik} B_{il} C_{jkl}$$

where A, B, O are $N \times D$ matrices, with $D \le 32 \ll N$, and C is a $D \times D \times D$ tensor with sparsity s.

Initial assessment (continued):

- could do only one O_{ij} per thread, with different threads in a warp having same i, different j warp loads in i^{th} row of A and B
- if N is sufficiently big, and/or there are multiple such products to be computed, better for a single thread to do whole i^{th} row of O this is what I chose to implement

The mathematical task

$$O_{ij} = \sum_{k,l} A_{ik} B_{il} C_{jkl}$$

where A, B, O are $N \times D$ matrices, with $D \le 32 \ll N$, and C is a $D \times D \times D$ tensor with sparsity s.

Initial assessment (continued):

- each thread has to
 - load 2D elements of A, B
 - do D^2 products for $A_{ik}B_{il}$, and then $s\,D^3$ FMAs
 - store D elements of O
- when D = 25, s = 0.25, about 30 FMAs per load/store
- ullet needs less than 3D registers

```
// include files
#include <stdio.h>
#include <string.h>
#include <math.h>
//
// kernel routine
___global___ void O_calc(int N, int D,
                const float* ___restrict__ d_A,
                const float* ___restrict___ d_B,
                       float* ___restrict__ d_0)
  int tid = threadIdx.x + blockDim.x*blockIdx.x;
  float prod1, prod2;
                                   CUDA code generation – p. 6/18
```

```
//
// load in A and B into registers
//
  float A00 = d_A[tid + 0*N];
  float B00 = d_B[tid + 0*N];
  float A01 = d_A[tid + 1*N];
  float B01 = d_B[tid + 1*N];
  float A02 = d_A[tid + 2*N];
  float B02 = d_B[tid + 2*N];
  float A03 = d_A[tid + 3*N];
  float B03 = d_B[tid + 3*N];
```

```
//
// initialise O in registers
//

float 000 = 0.0f;
float 001 = 0.0f;
float 002 = 0.0f;
float 003 = 0.0f;
...
...
...
```

```
//
// perform calculations
//
 prod1 = A00*B00;
 000
       = 000 + 0.174377f*prod1;
       = 020 + 0.081610f*prod1;
 020
 prod2 = A00*B01;
 005
       = 005 + 0.074208f*prod2;
 010
       = 010 + 0.139085f*prod2;
 012
       = 012 + 0.030585f*prod2;
 013
       = 013 + 0.136700f*prod2;
 014
       = 014 + 0.237413f*prod2;
       = 024 + 0.204053f*prod2;
 024
```

```
// write out 0 to device array
//
  d_0[tid + 0*N] = 000;
  d_0[tid + 1*N] = 001;
  d_0[tid + 2*N] = 002;
  d_0[tid + 3*N] = 003;
```

CUDA kernel code generation

Total code length: 5375 lines for D=25, 25% sparsity

This was generated by about 60 lines of python

```
import numpy as np
def code_gen(C):
  if ( C.ndim != 3):
      raise ValueError ('C has wrong number of dimen
  if (max(C.shape)!= min(C.shape)):
      raise ValueError ('C has unequal dimensions')
  D = C.shape[1]
  print('//
  print('// include files
  print('//
  print('
  print('#include <stdlib.h>
  print('#include <stdio.h>
  print('#include <string.h>
  print('#include <math.h>
```

```
print('//
print ('// kernel routine
print('//
                                                 ')
print('
print('___global___ void O_calc(int N, int D,
print(' const float* __restrict__ d_A,
print(' const float* __restrict__ d_B,
                                                 ')
print('
                   float* ___restrict___ d_0)
print('{
print(' int tid = threadIdx.x + blockDim.x*blockId
print(' float prod1, prod2;
```

```
print('//
print ('// load in A and B into registers
print('//
for d in range(D):
  print(f' float A\{d:02d\} = d_A[tid+\{d:2d\}*N];')
  print(f' float B\{d:02d\} = d_B[tid+\{d:2d\}*N];')
print('//
print ('// initialise O in registers
print('//
for d in range(D):
  print(f' float O\{d:02d\} = 0.0f;
                                                   ')
```

```
print('//
print (' // perform calculations
print('//
for k in range(D):
  for l in range(D):
    if (k+1 > 0):
      print()
    m = np.mod(1 + k*D, 2) + 1
    print(f' prod{m:d} = A\{k:02d\}*B\{1:02d\};
    for j in range(D):
      if (C[j,k,1] != 0.0):
        print(f' O\{j:02d\} = O\{j:02d\}
                      + {C[j,k,l]:f}f*prod{m:d}; ')
```

Extension

Here we knew the values of all elements of \mathcal{C} at compile time.

If instead we knew the sparsity pattern (i.e. which elements are zero) but not the values of the non-zero elements, then we could load the non-zero values into shared memory, and then all threads could load them in from there when needed – would need just minor changes to the generator code

(The constant cache is only 8KB so might not be big enough to hold all of the non-zeros)

Conclusion

Code generation is surprisingly easy.

I don't use it often in my research, but I have used it previously on a major project (OP2 – a separate talk) and one other small project.