ESIoT Project Design Document

1. Title of the Project

Smart Lecture Hall System with Bluetooth Attendance, Environmental Automation, and IoT Integration

2. Objective

- To automate lighting, fan, and AC systems using occupancy detection (PIR) and environmental sensors (LDR, DHT22) for energy efficiency.
- To control projector and curtains based on timetable and ambient light for seamless classroom operations.
- To implement Bluetooth-based attendance logging and doubt submission via Blynk app, displayed on the projector.
- To enable real-time monitoring and manual control through a Flask web dashboard hosted on Raspberry Pi.

3. System Diagram/Architecture

4. Data Flow Diagram (DFD) from functionality point of view

for Sensor Data Collection

for Cloud Update

5. Programming Functions and Complete Algorithm

1. Function 1: read_sensors()

- o Purpose: Reads data from PIR, LDR, and DHT22 sensors.
- o Input: None (direct hardware pin access).
- Output: Occupancy status (boolean), light level (0–1023), temperature (°C).

2. Function 2: control_actuators(occupancy, lightLevel, temp)

- o Purpose: Controls relays for lights, fan, and AC based on sensor data.
- o Input:
 - occupancy (boolean from PIR).
 - lightLevel (integer from LDR).
 - temp (float from DHT22).
- Output: Relay states (HIGH/LOW for lights, fan, AC)

3. Function 3: read_bluetooth()

- o Purpose: Reads student ID from HC-05 Bluetooth module.
- Input: Serial data from Serial1.
- o Output: String (student ID).

4. Function 4: log_attendance(id)

- o Purpose: Writes student ID and timestamp to SD card.
- o Input: id (student ID string).
- Output: Log entry in "attendance.txt".

5. Function 5: update_lcd(id)

- o Purpose: Displays attendance confirmation and timer on LCD.
- o Input: id (student ID string) and elapsed time (millis()).
- o Output: LCD text update.

6. Function 6: handle doubt()

- o Purpose: Sends doubt signal to Raspberry Pi via ESP32.
- o Input: Blynk button press (HTTP request).
- o Output: GPIO 17 HIGH (projector ON).

7. Function 7: check_schedule()

- o Purpose: Validates if current time aligns with class timetable.
- o Input: None (fetches system time internally).
- o Output: Boolean (True if 9 AM-5 PM, False otherwise).

8. Function 8: control_curtains(lightLevel)

- o Purpose: Adjusts curtains based on ambient light.
- o Input: lightLevel (integer value from LDR sensor).
- o Output: Stepper motor direction (open/close).

Algorithm:

1. System Initialization

- Arduino:
- Initialize PIR, LDR, DHT22 sensors.
- Set up pins for Relay (Light, Fan, AC).
- Initialize Bluetooth module (Serial1.begin(9600)).
- Initialize LCD (lcd.init(), lcd.backlight()).
- Initialize SD card for attendance logging (SD.begin(53)).
- Configure stepper motor pins (8, 9, 10, 11).
- Set up LDR sensor on A1.
- Raspberry Pi:
- Set GPIO 17 as OUTPUT (projector relay control).

2. Main Loop (Arduino)

Loop begins and runs continuously:

A. Sensor Reading Function (read_sensors)

- Read PIR → occupancy (boolean)
- Read LDR → lightLevel (0–1023)
- Read DHT22 → temperature (°C)

B. Actuator Control Function (control_actuators)

- If occupancy is true:
- If lightLevel < threshold → turn ON light relay
- If temp > threshold → turn ON fan or AC relay
- Else:

- Turn OFF relays (no one is present)

C. Bluetooth Attendance Logging

- If Serial1.available():
- Read ID from Bluetooth (Serial1.readStringUntil('\n'))
- Log (ID + timestamp) to SD card using log attendance()
- Display "Attendance: [ID]" on LCD

D. Time Tracking

- Use millis()/60000 to calculate elapsed minutes
- Update LCD with "Time: XX mins"

E. Blynk Doubt Button Monitoring (ESP32 Part)

- If doubt button is pressed in Blynk:
- Send HTTP request to Raspberry Pi

F. Projector Control (Raspberry Pi loop)

- Get current hour
- If 9 ≤ hour < 17 → GPIO 17 HIGH (turn ON projector)
- Else → GPIO 17 LOW
- Wait 60 seconds

G. Curtain Control (Arduino Sub-loop)

- Read lightLevel from LDR (A1)
- If lightLevel > 700 → rotate stepper motor 2048 steps clockwise (open curtain)
- Else → rotate 2048 steps counterclockwise (close curtain)
- Wait 60 seconds

3. Repeat entire loop indefinitely.

7. Equipment Required

S. No.	Component	Specification	Quantity
1	Arduino Mega	ATmega2560 Microcontroller	2
2	Raspberry Pi 5	Broadcom BCM2712 CPU	1
3	PIR Motion Sensor	HC-SR501	1
4	LDR Sensor	Light-dependent resistor	1
5	DHT22 Sensor	Temperature/Humidity	1
б	HC-05 Bluetooth Module	Serial communication	1
7	5V Relay Modules	4-channel	2 sets
8	Stepper Motor + Driver	28BYJ-48 + ULN2003	1
9	MicroSD Card Module	SPI interface	1
10	ESP32	Wi-Fi/BLE	1
11	16x2 LCD (I2C)	1602A	1
12	Breadboard & Jumper Wires	Prototyping	1 set

Prepared by:

Name1: Atharv Shah

Roll Number1: 23UCC525

Name2: Noor

Roll Number2: 23UCC580

Name3: Soham Pal

Roll Number3: 23UCC604