Chapitre 5. Précision des systèmes échantillonnés

1. Erreur statique

On considère le système linéaire asservi suivant :

La précision est évaluée par l'écart entre la sortie réelle et la sortie désirée.

Comme pour les systèmes continus, la précision est déterminée par l'erreur statique.

$$\varepsilon_s = \lim_{t \to +\infty} \varepsilon(t)$$

$$\begin{cases} \varepsilon(z) = E(z) - S(z) \\ S(z) = G(z)\varepsilon(z) \end{cases} \Rightarrow \varepsilon(z) = \frac{E(z)}{1 + G(z)}$$

$$\lim_{t\to+\infty}\varepsilon(t)=\lim_{z\to1}(z-1)\varepsilon(z)$$

$$\lim_{t \to +\infty} \varepsilon(t) = \lim_{z \to 1} (z - 1) \frac{E(z)}{1 + G(z)}$$

$$G(z) = \frac{N(z)}{(z-1)^{\alpha} D_1(z)}; D(z) = (z-1)^{\alpha} D_1(z)$$

$$\lim_{t \to +\infty} \varepsilon(t) = \lim_{z \to 1} (z - 1) \frac{E(z)}{1 + \frac{N(z)}{(z - 1)^{\alpha} D_{1}(z)}}$$

$$= \lim_{z \to 1} \frac{(z-1)^{\alpha+1} D_1(z) E(z)}{(z-1)^{\alpha} D_1(z) + N(z)}$$

1.1.Erreur de position

C'est l'erreur lorsque l'entrée e(t) est un échelon.

$$\varepsilon_{p} = \lim_{t \to +\infty} \varepsilon(t) / e(t) = u(t)$$

$$\varepsilon_{p} = \lim_{z \to 1} \frac{(z-1)^{\alpha+1} D_{1}(z) \frac{z}{z-1}}{(z-1)^{\alpha} D_{1}(z) + N(z)} = \lim_{z \to 1} \frac{(z-1)^{\alpha} D_{1}(z) z}{(z-1)^{\alpha} D_{1}(z) + N(z)}$$

Si $\alpha = 0$ pas de pole z = 1. $D_1(z) = D(z)$

$$\varepsilon_{p} = \lim_{z \to 1} \frac{D_{1}(z)}{D_{1}(z) + N(z)} = \varepsilon_{p} = \lim_{z \to 1} \frac{1}{1 + \frac{N(z)}{D_{1}(z)}} = \frac{1}{1 + G(1)}$$

Si $\alpha \ge 1$:

$$\varepsilon_p = \lim_{z \to 1} \frac{\left(z - 1\right)^{\alpha} D_1(z) z}{\left(z - 1\right)^{\alpha} D_1(z) + N(z)}.$$

1.2. Erreur de vitesse

C'est l'erreur lorsque l'entrée e(t) est un échelon de vitesse (rampe).

$$\varepsilon_{v} = \lim_{t \to +\infty} \varepsilon(t) / e(t) = tu(t)$$

$$\varepsilon_{v} = \lim_{z \to 1} \frac{(z-1)^{\alpha+1} D_{1}(z) \frac{T_{e}z}{(z-1)^{2}}}{(z-1)^{\alpha} D_{1}(z) + N(z)} = \lim_{z \to 1} \frac{(z-1)^{\alpha-1} D_{1}(z) T_{e}}{(z-1)^{\alpha} D_{1}(z) + N(z)}.$$

Si
$$\alpha = 0$$
, $\varepsilon_v = \infty$

Si
$$\alpha = 1$$
, $\varepsilon_{\nu} = \frac{T_e D_1(1)}{N(1)}$

Si
$$\alpha \! > \! 0$$
 , $\epsilon_{_{\scriptscriptstyle V}} \! = \! 0$

1.3. Erreur d'accélération

C'est l'erreur lorsque l'entrée e(t) est un échelon d'accélération.

$$\varepsilon_{a} = \lim_{t \to +\infty} \varepsilon(t) / e(t) = \frac{t^{2}}{2} u(t)$$

$$E(z) = \frac{T_{e}^{2}(z+1)z}{2(z-1)^{3}}$$

$$\varepsilon_{a} = \lim_{z \to 1} \frac{\left(z - 1\right)^{\alpha + 1} D_{1}\left(z\right) \frac{T_{e}^{2}\left(z + 1\right)z}{2\left(z - 1\right)^{3}}}{\left(z - 1\right)^{\alpha} D_{1}\left(z\right) + N(z)} = \lim_{z \to 1} \frac{\left(z - 1\right)^{\alpha - 2} D_{1}\left(z\right)T_{e}^{2}}{\left(z - 1\right)^{\alpha} D_{1}(z) + N(z)} \, .$$

Si
$$\alpha < 2$$
, $\varepsilon_a = \infty$

Si
$$\alpha = 2$$
, $\varepsilon_a = \frac{D_1(1)T_e^2}{N(1)}$

Si
$$\alpha > 2$$
, $\epsilon_a = 0$

Entrée α	u(t)	tu(t)	$\frac{t^2}{2}u(t)$	
0	$\frac{1}{1+G(1)}$	∞	8	∞
1	0	$\frac{T_e D_1(1)}{N(1)}$	8	∞
2	0	0	$\frac{D_1(1)T_e^2}{N(1)}$	8
3	0	0	0	

Exemple 1.

Calculer ε_p , ε_v et ε_a .

$$G(z) = \frac{k(0.37z + 0.26)}{(z-1)(z-0.37)}$$

$$N(z) = k(0.37z + 0.26)$$

$$D(z) = (z-1)^{\alpha} D_1(z)$$

$$D_1(z) = z - 0.37$$

$$\alpha = 1$$

$$\varepsilon_p = 0$$
 ; $\varepsilon_v = \frac{T_e D_1(1)}{N(1)} = \frac{0.63}{0.63k} = \frac{1}{k}$, $\varepsilon_a = \infty$