An Embarrassment of Pandas

Kade Killary

August 10, 2019

Contents

DataFrames	
Options - documentation	
Read csv from URL or S3 - s3fs	
Read an Excel file - documentation	
Read multiple files at once - glob	
Recursively grab all files in a directory	
Read in data from SQLite3	
Read in data from Postgres - bigquery, snowflake	
Normalizing nested JSON - documentation	
Column headers	
Filtering DataFrame - using pd.Series.isin()	
Filtering DataFrame - using pd.Series.str.contains()	
Filtering DataFrame & more - using df.query() - documentation	
Joining - documentation	
Select columns based on data type	
Apply function to multiple columns of the same data type	
Reverse column order	
Correlation matrix	
Descriptive statistics	
Styling numeric columns - documentation	
Add highlighting for max and min values	
Conditional formatting for one column	
Series	
Value counts as percentages	
Replacing errant characters	
Replacing false conditions - documentation	
Missing Values	
Percent nulls by column	
Dropping columns - documentation	
Dropping duplicate rows - documentation	
Dropping columns based on NaN threshold - documentation	
Replacing using fillna() - documentation	
Replace values across entire DataFrame	
Replace numeric values containing a letter with NaN	
Drop rows where any value is 0	
Drop rows where all values are $0 \dots \dots$	
Method Chaining	
Chaining multiple operations	
Pipelines for data processing	
1 pennes for data processing	
Aggregation	
Use as_index = False to avoid setting index	
By date offset - documentation	

Disast tables decrementation	
Pivot table - documentation	
Named aggregations - Pandas $>= 0.25$ - documentation	8
New Columns	10
Using df.eval()	
Based on one condition - using np.where()	
Based on multiple conditions - using np.where()	
Based on multiple conditions - using np.select()	10
Based on manual mapping - using pd.Series.map()	10
Automatically generate mappings from dimension	10
Splitting a string column	
Using list comprehensions	
Using regular expressions	
Widening a column - documentation	11
Feature Engineering	11
Instead of split-apply-combine, transform()	
Extracting various date components - documentation	
Time between two dates	
Weekend column	
Get prior date	
Days since prior date	
Percent change since prior date	
Percentile rank for measure	
Occurrences of word in row	
Distinct list aggregation	
User-item matrix	
Binning	
Dummy variables	
Sort and take first value by dimension	
MinMax normalization	
Z-score normalization	
Log transformation	
Boxcox transformation	
Reciprocal transformation	
Square root transformation	
Winsorization	
Mean encoding	
Z-scores for outliers	
Interquartile range (IQR)	
Geocoder - github	
Geopy - github	
RFM - Recency, Frequency and Monetary	
Haversine	
Manhattan	
	10
Random	16
Union two categorical columns - documentation	16
Testing - documentation	
Dtype checking - documentation	
Infer column dtype, useful to remap column dtypes documentation	

DataFrames

${\bf Options\ -\ documentation}$

```
# More columns
pd.set_option("display.max_columns", 500)
```

```
# More rows
pd.set_option("display.max_rows", 500)
# Floating point precision
pd.set_option("display.precision", 3)
# Increase column width
pd.set_option("max_colwidth", 50)
# Change default plotting backend - Pandas ≥ 0.25
# https://github.com/PatrikHlobil/Pandas-Bokeh
pd.set_option("plotting.backend", 'pandas_bokeh')
Useful read csv() options - documentation
pd.read_csv(
    "data.csv.gz",
   delimiter = "^",
   # line numbers to skip (i.e. headers in an excel report)
   skiprows = 2,
   # used to denote the start and end of a quoted item
   quotechar = "|",
   # return a subset of columns
   usecols = ["return_date", "company", "sales"],
   # data type for data or columns
   dtype = { "sales": np.float64 },
   # additional strings to recognize as NA/NaN
   na_values = [".", "?"],
   # convert to datetime, instead of object
   parse_dates = ["return_date"],
   # for on-the-fly decompression of on-disk data
   # options - gzip, bz2, zip, xz
   compression = "gzip",
   # encoding to use for reading
   encoding = "latin1",
   # read in a subset of data
   nrows = 100
)
Read csv from URL or S3 - s3fs
pd.read_csv("https://bit.ly/2KyxTFn")
# Requires s3fs library
pd.read_csv("s3://pandas-test/tips.csv")
Read an Excel file - documentation
pd.read_excel("numbers.xlsx", sheet_name="Sheet1")
# Multiple sheets with varying parameters
with pd.ExcelFile("numbers.xlsx") as xlsx:
   df1 = pd.read_excel(xlsx, "Sheet1", na_values=["?"])
   df2 = pd.read_excel(xlsx, "Sheet2", na_values=[".", "Missing"])
```

```
Read multiple files at once - glob
import glob
# ignore index = True to avoid duplicate index values
df = pd.concat([pd.read_csv(f) for f in glob.glob("*.csv")], ignore_index = True)
# More options
df = pd.concat([pd.read_csv(f, encoding = "latin1") for f in glob.glob("*.csv")])
Recursively grab all files in a directory
import os
import glob
files = [os.path.join(root, file)
       for root, dir, files in os.walk("./directory")
       for file in glob.glob("*.csv")]
Read in data from SQLite3
import sqlite3
conn = sqlite3.connect("flights.db")
df = pd.read_sql_query("select * from airlines", conn)
conn.close()
Read in data from Postgres - bigquery, snowflake
```

```
from sqlalchemy import create_engine
# Port 5439 for Redshift
engine = create_engine("postgresql://user@localhost:5432/mydb")
df = pd.read_sql_query("select * from airlines", engine)
# Get results in chunks
for chunk in pd.read_sql_query("select * from airlines", engine, chunksize=5):
    print(chunk)
# Writing back
df.to sql(
    "table"
    schema="schema"
    # fail, replace or append
    if_exists="append",
    # write back in chunks
    chunksize = 10000
)
```

Normalizing nested JSON - documentation

```
from pandas.io.json import json_normalize

json_normalize(data, "counties", ["state", "shortname", ["info", "governor"]])

# How deep to normalize - Pandas \geq 0.25

json_normalize(data, max_level=1)
```

Column headers

```
# Lower all values
df.columns = [x.lower() for x in df.columns]
# Strip out punctuation, replace spaces and lower
df.columns = df.columns.str.replace("[^\w\s]", "").str.replace(" ", "_").str.lower()
# Condense multiindex columns
df.columns = ["_".join(col).lower() for col in df.columns]
# Double transpose to remove bottom row for multiindex columns
df.T.reset index(1, drop=True).T
Filtering DataFrame - using pd.Series.isin()
df[df["dimension"].isin(["A", "B", "C"])]
# not in
df[~df["dimension"].isin(["A", "B", "C"])]
Filtering DataFrame - using pd.Series.str.contains()
df[df["dimension"].str.contains("word")]
# not in
df[~df["dimension"].str.contains("word")]
Filtering DataFrame & more - using df.query() - documentation
df.query("salary > 100000")
df.query("name = 'john'")
df.query("name = 'john' | name = 'jack'")
df.query("name = 'john' and salary > 100000")
df.query("name.str.contains('a')")
# Grab top 1% of earners
df.query("salary > salary.quantile(.99)")
# Make more than the mean
df.query("salary > salary.mean()")
# Subset by top 3 most frequent products purchased
df.query("item in item.value_counts().nlargest(3).index")
# Query for null values
df.query("column.isnull()")
# Query for non-nulls
df.query("column.notnull()")
# @ - allows you to refer to variables in the environment
names = ["john", "fred", "jack"]
df.query("name in @names")
```

```
# Reference columns with spaces using backticks - Pandas ≥ 0.25
df.query("`Total Salary` > 100000")
Joining - documentation
# Inner join
pd.merge(df1, df2, on = "key")
# Left join on different key names
pd.merge(df1, df2, right_on = ["right_key"], left_on = ["left_key"], how = "left")
Select columns based on data type
df.select_dtypes(include = "number")
df.select_dtypes(exclude = "object")
Apply function to multiple columns of the same data type
df.select_dtypes(include = "object").apply(lambda x: x.str.lower())
Reverse column order
df.loc[:, ::-1]
Correlation matrix
df.corr()
# With another DataFrame
df.corrwith(df_2)
Descriptive statistics
df.describe(include=[np.number]).T
dims = df.describe(include=[pd.Categorical]).T
# Add percent frequency for top dimension
dims["frequency"] = dims["freq"].div(dims["count"])
Styling numeric columns - documentation
styling_options = {"sales": "${0:,.0f}", "percent_of_sales": "{:.2%f}"}
df.style.format(styling_options)
Add highlighting for max and min values
df.style.highlight_max(color = "lightgreen").highlight_min(color = "red")
Conditional formatting for one column
df.style.background(subset = ["measure"], cmap = "viridis")
```

Series

Value counts as percentages

```
# See NaNs as well
df["meaure"].value_counts(normalize = True, dropna = False)
```

Replacing errant characters

```
df["sales"].str.replace("$", "")
```

Replacing false conditions - documentation

```
df["steps_walked"].where(df["steps_walked"] > 0, 0)
```

Missing Values

Percent nulls by column

```
(df.isnull().sum() / df.isnull().count()).sort_values(ascending=False)
```

Dropping columns - documentation

```
df.drop(["column_a", "column_b"], axis = 1)
```

Dropping duplicate rows - documentation

```
df.drop_duplicates(subset=["order_date", "product"], keep="first")
```

Dropping columns based on NaN threshold - documentation

```
# Any column with 90% missing values will be dropped
df.dropna(thresh = len(df) * .9, axis = 1)
```

Replacing using fillna() - documentation

```
# Impute DataFrame with all zeroes
df.fillna(0)

# Impute column with all zeroes
df["measure"].fillna(0)

# Impute measure with mean of column
df["measure"].fillna(df["measure"].mean())

# Impute dimension with mode of column
df["dimension"].fillna(df["dimension"].mode())

# Impute by another dimension's mean
df["age"].fillna(df.groupby("sex")["age"].transform("mean"))
```

Replace values across entire DataFrame

```
df.replace(".", np.nan)
df.replace(0, np.nan)
```

Replace numeric values containing a letter with NaN

```
df["zipcode"].replace(".*[a-zA-Z].*", np.nan, regex=True)
```

Drop rows where any value is 0

```
df[(df \neq 0).all(1)]
```

Drop rows where all values are 0

```
df = df[(df.T \neq 0).anv()]
```

Method Chaining

Chaining multiple operations

Pipelines for data processing

```
def fix_headers(df):
    df.columns = df.columns.str.replace("[^\w\s]", "").str.replace(" ", "_").str.lower()
    return df
def drop_columns_missing(df, percent):
    df = df.dropna(thresh = len(df) * percent, axis = 1)
    return df
def fill_missing(df, value):
    df = df.fillna(value)
    return df
def replace_and_convert(df, col, orig, new, dtype):
    df[col] = df[col].str.replace(orig, new).astype(dtype)
    return df
(df.pipe(fix_headers)
    .pipe(drop_columns_missing, percent=0.3)
    .pipe(fill_missing, value=0)
    .pipe(replace_and_convert, col="sales", orig="$", new="", dtype=float)
```

Recommended Read - Effective Pandas

Aggregation

Use as_index = False to avoid setting index

```
# this
df.groupby("dimension", as_index = False)["measure"].sum()
```

```
# versus this
df.groupby("dimension")["measure"].sum().reset_index()
By date offset - documentation
# H for hours
# D for days
# W for weeks
# WOM for week of month
# Q for quarter end
# A for year end
df.groupby(pd.Grouper(key = "date", freq = "M"))["measure"].agg(["sum", "mean"])
Measure by dimension - documentation
# count - number of non-null observations
# sum - sum of values
# mean - mean of values
# mad - mean absolute deviation
# median - arithmetic median of values
# min - minimum
# max - maxmimum
# mode - mode
# std - unbiased standard deviation
# first - first value
# last - last value
# nunique - unique values
df.groupby("dimension")["measure"].sum()
# Specific aggregations for columns
df.groupby("dimension").agg({"sales": ["mean", "sum"], "sale_date": "first", "customer": "nunique"})
Pivot table - documentation
pd.pivot_table(
   df,
   values=["sales", "orders"],
    index=["customer_id"],
   aggfunc={
        "sales": ["sum", "mean"],
        "orders": "nunique"
)
Named aggregations - Pandas \geq 0.25 - documentation
# DataFrame - Version 1
df.groupby("country").agg(
   min_height = pd.NamedAgg(column = "height", aggfunc = "min"),
   max_height = pd.NamedAgg(column = "height", aggfunc = "max"),
   average_weight = pd.NamedAgg(column = "weight", aggfunc = np.mean)
)
# DataFrame - Version 2
df.groupby("country").agg(
   min_height=("height", "min"),
   max_heights=("height", "max"),
```

average_weight=("weight", np.mean)

```
)
# Series
df.groupby("gender").height.agg(
   min_height="min",
   max height="max"
)
New Columns
Using df.eval()
df["sales"] = df.eval("price * quantity")
# Assign to different DataFrame
pd.eval("sales = df.price * df.quantity", target=df_2)
# Multiline assignment
df.eval("""
aov = price / quantity
aov_gt_50 = (price / quantity) > 50
top_3_customers = customer_id in customer_id.value_counts().nlargest(3).index
bottom_3_customers = customer_id in customer_id.value_counts().nsmallest(3).index
Based on one condition - using np.where()
np.where(df["gender"] = "Male", 1, 0)
Based on multiple conditions - using np.where()
\label{lem:np.where} $$\inf(df["measure"] < 5$, "Low", np.where(df["measure"] < 10$, "Medium", "High"))$
Based on multiple conditions - using np.select()
conditions = [
   df["country"].str.contains("spain"),
   df["country"].str.contains("italy"),
   df["country"].str.contains("chile"),
   df["country"].str.contains("brazil")
]
choices = ["europe", "europe", "south america", "south america"]
data["continent"] = np.select(conditions, choices, default = "other")
Based on manual mapping - using pd.Series.map()
values = {"Low": 1, "Medium": 2, "High": 3}
df["dimension"].map(values)
Automatically generate mappings from dimension
dimension_mappings = {v: k for k, v in enumerate(df["dimension"].unique())}
df["dimension"].map(dimension_mappings)
```

```
Splitting a string column
```

```
df["email"].str.split("@", expand = True)[0]
```

Using list comprehensions

```
df["domain"] = [x.split("@")[1] for x in df["email"]]
```

Using regular expressions

```
import re

pattern = "([A-Z0-9._%+-]+)@([A-Z0-9.-]+)"

# Inserting colum headers, applied after extract
pattern = "(?P<email>[A-Z0-9._%+-]+)@(?P<domain>[A-Z0-9.-]+)"

# Generates two columns
email_components = df["email"].str.extract(pattern, flags=re.IGNORECASE)
```

Widening a column - documentation

```
df.pivot(index = "date", columns = "companies", values = "sales")
```

Feature Engineering

Instead of split-apply-combine, transform()

```
# this
df["mean_company_salary"] = df.groupby("company")["salary"].transform("mean")

# versus this
mean_salary = df.groupby("company")["salary"].agg("mean").rename("mean_salary").reset_index()
df_new = df.merge(mean_salary)
```

Extracting various date components - documentation

```
df["date"].dt.year
df["date"].dt.quarter
df["date"].dt.month
df["date"].dt.week
df["date"].dt.day
df["date"].dt.weekday
df["date"].dt.weekday_name
df["date"].dt.hour
```

Time between two dates

```
# Days between
df["first_date"].sub(df["second_date"]).div(np.timedelta64(1, "D"))
# Months between
df["first_date"].sub(df["second_date"]).div(np.timedelta64(1, "M"))
```

```
# Equivalent to above
(df["first_date] - df["second_date"]) / np.timedelta64(1, "M")
Weekend column
df["is_weekend"] = np.where(df["date"].dt.dayofweek.isin([5, 6]), 1, 0)
Get prior date
df.sort_values(by=["customer_id, "order_date"])\
    .groupby("customer_id")["order_date"].shift(periods=1)
Days since prior date
df.sort_values(by = ["customer_id", "order_date"])\
    .groupby("customer_id")["order_date"]\
    .diff()\
    .div(np.timedelta64(1, "D"))
Percent change since prior date
df.sort_values(by = ["customer_id", "order_date"])\
    .groupby("customer_id")["order_date"]\
    .pct_change()
Percentile rank for measure
df["salary"].rank(pct=True)
Occurrences of word in row
import re
df["review"].str.count("great", flags=re.IGNORECASE)
Distinct list aggregation
df["unique_products"] = df.groupby("customer_id").agg({"products": "unique"})
# Transform each element -> row - Pandas ≥ 0.25
df["unique_products"].explode()
User-item matrix
df.groupby("customer_id")["products"].value_counts().unstack().fillna(0)
Binning
pd.qcut(data["measure"], q = 4, labels = False)
# Numeric
pd.cut(df["measure"], bins = 4, labels = False)
# Dimension
pd.cut(df["age"], bins = [0, 18, 25, 99], labels = ["child", "young adult", "adult"])
```

Dummy variables

```
# Use drop_first = True to avoid collinearity
pd.get_dummies(df, drop_first = True)
```

Sort and take first value by dimension

```
df.sort_values(by = "variable").groupby("dimension").first()
```

MinMax normalization

```
df["salary_minmax"] = (
    df["salary"] - df["salary"].min()) / (df["salary"].max() - df["salary"].min()
)
```

Z-score normalization

```
df["salary_zscore"] = (df["salary"] - df["salary"].mean()) / df["salary"].std()
```

Log transformation

```
# For positive data with no zeroes
np.log(df["sales"])

# For positive data with zeroes
np.log1p(df["sales"])

# Convert back - get predictions if target is log transformed
np.expm1(df["sales"])
```

Boxcox transformation

```
from scipy import stats

# Must be positive
stats.boxcox(df["sales"])[0]
```

Reciprocal transformation

```
df["age_reciprocal"] = 1.0 / df["age"]
```

Square root transformation

```
df["age_sqrt"] = np.sqrt(df["age"])
```

Winsorization

```
upper_limit = np.percentile(df["salary"].values, 99)
lower_limit = np.percentile(df["salary"].values, 1)

df["salary"].clip(lower = lower_limit, upper = upper_limit)
```

Mean encoding

```
df.groupby("dimension")["target"].transform("mean")
```

Z-scores for outliers

```
from scipy import stats
import numpy as np
z = np.abs(stats.zscores(df))
df = df[(z < 3).all(axis = 1)]
Interquartile range (IQR)
q1 = df["salary"].quantile(0.25)
q3 = df["salary"].quantile(0.75)
iqr = q3 - q1
df.query("(@q1 - 1.5 * @iqr) ≤ salary ≤ (@q3 + 1.5 * @iqr)")
Geocoder - github
Geopy - github
import geocoder
df["lat_long"] = df["ip"].apply(lambda x: geocoder.ip(x).latlng)
RFM - Recency, Frequency and Monetary
rfm = (
   df.groupby("customer_id")
    .agg(
            "order_date": lambda x: (x.max() - x.min()).days,
            "order_id": "nunique",
           "price": "mean",
        }
   )
        columns={"order_date": "recency", "order_id": "frequency", "price": "monetary"}
    )
)
rfm_quantiles = rfm.quantile(q=[0.2, 0.4, 0.6, 0.8])
recency_conditions = [
   rfm.recency ≥ rfm_quantiles.recency.iloc[3],
   rfm.recency ≥ rfm_quantiles.recency.iloc[2],
   rfm.recency ≥ rfm_quantiles.recency.iloc[1],
   rfm.recency ≥ rfm_quantiles.recency.iloc[0],
   rfm.recency \le rfm_quantiles.recency.iloc[0],
]
frequency_conditions = [
   rfm.frequency ≤ rfm_quantiles.frequency.iloc[0],
   rfm.frequency ≤ rfm_quantiles.frequency.iloc[1],
   rfm.frequency ≤ rfm_quantiles.frequency.iloc[2],
   rfm.frequency ≤ rfm_quantiles.frequency.iloc[3],
    rfm.frequency ≥ rfm_quantiles.frequency.iloc[3],
]
monetary_conditions = [
```

```
rfm.monetary ≤ rfm_quantiles.monetary.iloc[0],
    rfm.monetary ≤ rfm_quantiles.monetary.iloc[1],
    \texttt{rfm.monetary} \; \leqslant \; \texttt{rfm\_quantiles.monetary.iloc[2],} \\
    rfm.monetary ≤ rfm_quantiles.monetary.iloc[3],
    rfm.monetary > rfm_quantiles.monetary.iloc[3],
1
ranks = [1, 2, 3, 4, 5]
rfm["r"] = np.select(recency_conditions, ranks, "other")
rfm["f"] = np.select(frequency_conditions, ranks, "other")
rfm["m"] = np.select(monetary_conditions, ranks, "other")
rfm["segment"] = rfm["r"].astype(str).add(rfm["f"].astype(str))
segment_map = {
    r"[1-2][1-2]": "hibernating",
    r"[1-2][3-4]": "at risk",
    r"[1-2]5": "cannot lose",
    r"3[1-2]": "about to sleep",
    r"33": "need attention",
    r"[3-4][4-5]": "loyal customers",
    r"41": "promising",
    r"51": "new customers",
    r"[4-5][2-3]": "potential loyalists",
    r"5[4-5]": "champions",
}
rfm["segment"] = rfm.segment.replace(segment_map, regex=True)
Haversine
import numpy as np
from numpy import pi, deg2rad, cos, sin, arcsin, sqrt
def haversine(s_lat, s_lng, e_lat, e_lng):
    determines the great-circle distance between two point
    on a sphere given their longitudes and latitudes
    # approximate radius of earth in miles
    R = 3959.87433
    s_lat = s_lat * np.pi / 180.0
    s_lng = np.deg2rad(s_lng)
    e_lat = np.deg2rad(e_lat)
    e_lng = np.deg2rad(e_lng)
    d = (
        np.sin((e_lat - s_lat) / 2) ** 2
        + np.cos(s_lat) * np.cos(e_lat) * np.sin((e_lng - s_lng) / 2) ** 2
    return 2 * R * np.arcsin(np.sqrt(d))
df['distance'] = haversine(
    df["start_lat"].values,
    df["start_long"].values,
```

```
df["end_lat"].values,
    df["end_long"].values
)
```

Manhattan

```
def manhattan(s_lat, s_lng, e_lat, e_lng):
    """
    sum of horizontal and vertical distance between
    two points
    """
    a = haversine(s_lat, s_lng, s_lat, e_lng)
    b = haversine(s_lat, s_lng, e_lat, s_lng)
    return a + b
```

Random

Union two categorical columns - documentation

```
from pandas.api.types import union_categoricals

food = pd.Categorical(["burger king", "wendys"])
food_2 = pd.Categorical(["burger king", "chipotle"])
union_categoricals([food, food_2])
```

Testing - documentation

```
from pandas.util.testing import assert_frame_equal

# Methods for Series and Index as well
assert_frame_equal(df_1, df_2)
```

Dtype checking - documentation

```
from pandas.api.types import is_numeric_dtype
is_numeric_dtype("hello world")
# False
```

Infer column dtype, useful to remap column dtypes documentation

```
from pandas.api.types import infer_dtype
infer_dtype(["john", np.nan, "jack"], skipna=True)
# string
infer_dtype(["john", np.nan, "jack"], skipna=False)
# mixed
```