Minimum Enclosing Circle

Mohammed Alshammasi Shahad Qathan Faisal Mushayt Shariq Farooq Aseel Albeshri

Minimum Enclosing Circle

Problem Formulation

Let the given set of n points be denoted by $P := \{p_1, p_2, \dots, p_n\}$, where each $p_i \in \mathbb{R}^2$. Let C(P) denote the minimal enclosing circle of the set P. As a circle can be defined by two parameters: the radius r and the centre p_o , the minimal enclosing circle C(P) of a set of points P is

$$C(P) := argmin_{r,p_o} r^2$$
 s.t. $||p_i - p_o||^2 \le r^2$ $\forall i \in \{1, 2, ..., n\}$ (1)

Brute Force

Two facts to note:

- Minimum enclosing circle always intersects at least two points A and B
- If line AB is not diameter, circle diameter can be shifted towards AB until it intersects a third point

Brute Force Approach:

- Try every pair and triplet to obtain a circle defined by those points \rightarrow O(n^2) pairs and O(n^3) triplets
- Check if all other points lie within the circle, and record minimum area so far \rightarrow O(n)
- Overall running time is $O(n^3 + n^4) \rightarrow O(n^4)$

Welzl's Randomized Algorithm

A randomized recursive algorithm that runs in O(n) time!!

The idea is for a set P containing ($p_1 \dots p_n$), we randomly and uniformly choose a point p_i and recursively compute the MEC for P - { p_i }.

- If p_i is within the computed MEC, we are done
- Else, p_i must lie on the boundary of the MEC

Base case is reached if P becomes empty or an MEC can be found from the remaining points, i.e. There are 3 or less points.

Figure 1: Continous deformation of disk D_0 into disk D_1 in proof of Lemma 1.

```
function procedure B_MINIDISK(P,R); comment: returns b_md(P,R) if P = \emptyset [or |R| = 3] then D := b\_md(\emptyset,R) else choose random p \in P; D := B\_MINIDISK(P - \{p\},R); if [D \text{ defined and}] p \notin D then D := B\_MINIDISK(P - \{p\},R \cup \{p\});
```

return D;

Implementation & Experiments

- For comparison, generate points on a plane using
 - Gaussian distribution
 - Multimodal
- Find MEC using both algorithms (implemented in python)
- Track growth rate of both algorithms

- We expect
 - Welzl's to always find the solution much faster
 - o Brute force to be only tractable on a much smaller n than Welzl's

References

Welzl E. (1991) Smallest enclosing disks (balls and ellipsoids). In: Maurer H. (eds) New Results and New Trends in

Computer Science. Lecture Notes in Computer Science, vol 555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0038202

Thank you!!