Chapter 10 Sequential Logic Design

Design

Design the sequential circuit using J-K Flip-Flop

anany.	JnKn					
	OX					
01	1 X					
10	× 1					
11	×0					
Resent Sta Q1nQ2n	C 7247	X=1	JInKIn OX	p Inputs 0 J2nK2n	71= 1 71= 11nK1n	
0/1	110	101	1 ×		-	-
111	111	00	ΧO			
10	10	111	XO			1

Design (Contd.)

QnQn+1	JnKn_						
_	OX						
-	1 X						
10	×1						
	XO						
Resent Sta Q1nQ2n	te Next S Q1n+1	Next State Q1n+1 Q2n+1		o Inputs	76=1 74 KA 1 TO. KO		
~~~~ <b>~</b>		X=1	JInKin	J2nk2n	JInKIn	J2nK2n	
(O)O	00	LOA	OX		OX		
10/1	110	101	1 ×		OX		
111	111	00	χO		X1		
10	110	111	XO		XO		
M	19	17	η	4			

#### Design (Contd.)



Resent State Q1nQ2n	Next 5	late 1	Flip-F	Top Inpl	Hs x=1	.145
X111X21	X=0	$\chi = 1$	Jinkin		J1nKin	J2nk2n
00	00	01	OX	OX	OX	1×
01	10	01	1×	×4	OX	XO
1 1	11	00	XO	XO	XA	X1
10	10	11	ΧO	OX	,XO.	1X
	1	-n°	la a	K		
	JJ.	$ \begin{array}{c}                                     $	00 X X X		$ X  \times  X $ $ X  =  X $ $ X  =  X $ $ X  =  X $ $ X  =  X $	nx
	<u>J2n</u>	Which (	O A X	K	2n: 2 01/20 01	XX 10 01

 $J2n = \chi$ 



 $J2_n = x$ 

X

 $K2_n = Q1_n' x' + Q1_n x$ 

X

### Design (Contd.)

X



 $J2_n = x$ 







Table 10.13 Excitation for the sequential circuit specified by the state table of Table 10.4.

Present state	Next	state	Flip-flop inputs						Output z	
$Q1_n Q2_n Q3_n \mid Q1_{n+1} Q2_{n+1} Q3_{n+1}$		$2_{n+1}Q3_{n+1}$	x = 0			x = 1			125	
			$S1_nR1_nS2_nR2_nS3_nR3_nS1_nR1_nS2_nR2_nS3_nR3_n$						Input x	
	x = 0	x = 1	20 21						0	1
001	001	010	0x	0x	x0	0x	10	01	0	0
010	011	100	0x	x0	10	10	01	0x	0	0
011	001	100	0x	01	x0	10	01	01	0	0
100	101	100	x0	0x	10	x0	0x	0x	0	1
101	001	100	01	0x	$\mathbf{x}$ 0	x0	0x	01	0	1











Step 7. The logic diagram is shown in Figure 10.10.



