Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 20

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S3.

$$\begin{bmatrix}
1 & 3 & 3 & 1 \\
-1 & 3 & 1 \\
-3 & 1 & 2
\end{bmatrix}, \begin{bmatrix} 2 & 3 & 1 \\
0 & 1 & 1 \\
1 & 4 & -2 & 1
\end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\
1 & 1 & 1 \\
-7 & 1 & 2
\end{bmatrix}.$$
Find a basis of W .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then
$$\left\{ \begin{bmatrix} 1\\-1\\3\\-3 \end{bmatrix}, \begin{bmatrix} 3\\-1\\4\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-7 \end{bmatrix} \right\}$$
 is a basis for W .

Standard S4. $\begin{bmatrix}
1 \\
-1 \\
3 \\
-3
\end{bmatrix}, \begin{bmatrix}
2 \\
0 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
3 \\
-1 \\
4 \\
-2
\end{bmatrix}, \begin{bmatrix}
1 \\
1 \\
1 \\
-7
\end{bmatrix}$ Compute the dimension of W.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and $\mathbb{R}^4.$

Solution:

$$\begin{bmatrix} 3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Standard A2.

Mark:

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ \sqrt{x}+\sqrt{y} \end{bmatrix}$. Determine if T is a linear transformation.

Solution:

$$T\left(\begin{bmatrix}0\\4\end{bmatrix}\right) = \begin{bmatrix}4\\2\end{bmatrix} \neq \begin{bmatrix}4\\4\end{bmatrix} = 4T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$$

So T is not a linear transformation.

Additional Notes/Marks