世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C12N 15/62, C12P 21/02, 21/06, A61K 38/28, C12N 1/21, 5/10

(11) 国際公開番号

WO99/38984

(43) 国際公開日

1999年8月5日(05.08.99)

AU, CA, CN, IL, JP, KR, NZ, US, 欧州特許 (AT,

(21) 国際出願番号

PCT/JP99/00406

A1

(22) 国際出願日

1999年1月29日(29.01.99)

BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, 1991 SE)

JP

(30) 優先権データ 特願平10/32272

1998年1月30日(30.01.98)

添付公開書類

(81) 指定国

国際調査報告書

(71) 出願人(米国を除くすべての指定国について)

サントリー株式会社(SUNTORY LIMITED)[JP/JP]

〒530-8203 大阪府大阪市北区堂島浜2丁目1番40号 Osaka, (JP)

(72) 発明者:および

(75) 発明者/出願人(米国についてのみ)

大末和廣(OHSUYE, Kazuhiro)[JP/JP]

〒373-0042 群馬県太田市宝町243 Gunma, (JP)

飯田雅之(YABUTA, Masayuki)[JP/JP]

〒374-0038 群馬県館林市西美園町743-88 Gunma, (JP)

鈴木雄司(SUZUKI, Yuji)[JP/JP]

〒326-0831 栃木県足利市堀込町3011-1 Tochigi, (JP)

(74) 代理人

弁理士 石田 敬,外(ISHIDA, Takashi et al.)

〒105-8423 東京都港区虎ノ門三丁日5番1号

虎ノ門37森ビル 青和特許法律事務所 Tokyo, (JP)

(54)Title: PROCESS FOR PRODUCING PEPTIDE WITH THE USE OF ACCESSORY PEPTIDE

(54)発明の名称 補助ペプチドを用いたペプチドの製造方法

(57) Abstract

A process for producing a peptide having a desired biological activity via gene recombination characterized in that an accessory peptide is added to the target peptide followed by the expression thereof. Use of this process makes it possible to prevent agglutination in the recovery and purification steps with the regulation of isoelectric points, to achieve an elevated yield in ion exchange chromatography, to improve the solubility of a fused protein in an enzymatic reaction wherein the target peptide is expressed as the fused protein with another protein and then liberated by enzymatic cleavage, to improve the solubility of the target peptide in an enzymatic reaction wherein the peptide should be enzymatically modified, etc., thus elevating the purification efficiency and yield of the target protein.

- ... CLEAVAGE SITZ REGION (1)
- b ... CLEAVAGE SITE REGION (2)
- C ... PACTECTIVE PERTIDE (ADDED IF NECESSARY)
- d ... ACCESSORY PEPTIDE
- e ... TARGET PEPTIDE
- ... (1) CLEAVING PROTECTIVE PEPTIDE, IF ANY
- 9 ... (2) HODIFYING TARGET PEPDIE IF NECESSARY
- h ... (3) CLEAVING TARGET PEPTIDE

(57)要約

目的の生物学的活性を有するペプチドの遺伝子組換えによる製造 において、該目的ペプチドに補助ペプチドを付加して発現せしめる ことを特徴とする。これにより、等電点を調整して、回収・精製工 程での凝集の防止、イオン交換クロマトグラフィーでの回収率の向 上、目的ペプチドを他のペプチドとの融合蛋白質として発現せしめ た場合における酵素的開裂による目的ペプチドの遊離に際しての酵 素反応時の該融合蛋白質の溶解度の向上、目的ペプチドの酵素によ る修飾が必要な場合における酵素反応時の該ペプチドの溶解度の向 上、等を介して目的ペプチドの精製効率及び収率を向上させること ができる。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

アラブ首長国運邦 アルバニア アルメニア オーストリア オーストラリア オーストラリア オーストラリア ボズニア・ヘルツェゴビナ バルバドス ベルギー AL AM AU A B A B B ベルギー ブルギナ・ファソ ブルガリア JRYAFGHIMNUYZEKE ベテン ブラジル ベラルーシ ヘッルーン カナダ 中央アフリカ コンゴー デスノー ファイス スコートジボアール カメルーン 中国 中キキチドデ ーロッツマ バスコ ー デンマーク エストニア

スペイン フィンランド フランス ガボン SIRABDEHMNWRRUDELNSTPEGPRNO ギギクハイアイイアイ日ケーキャラ・ヤチリネラエ ラアンアガドルラドスリーア・オテルスシー アーシン・ アーシー・ドラー・アドスリーア アドード・アドード 日本 ケキル朝国 アンギ 東国 アンド アント アント アント アント

ML MN MR MW マモモマメニカー リンゴリタイコ ルリクイコーグ ニークウシューグ ニー・ルー・ランド ニー・カー・フートガニー ドルーマンドルー・フトガニア MNNNNPPRRSS

アンファ ロシア スーダン スウェーデン

SSSSTTTTTTTUUUUVYZZ

明細書

補助ペプチドを用いたペプチドの製造方法

発明の分野

本発明は遺伝子組換え技術を用いたペプチドの製造方法に関する

背景技術

多くの生理活性ペプチドが遺伝子組み換え技術を用いて微生物や動物細胞などを宿主として生産されている。目的ペプチドの生産方法としては細胞外に分泌させる方法、細胞内に目的ペプチドのN末端から発現させる、いわゆる直接発現法、また、目的ペプチドのN末端もしくはC末端に保護ペプチドを付加した融合蛋白質発現方法等が知られている。目的ペプチドは上記の方法等により、細胞内外に発現され、化学的もしくは酵素的な切断や修飾を経て、目的ペプチドを生成させ、精製工程により純化され、目的ペプチドを得るという方法が行われている。

一般的に、低分子量のペプチドを生産するには、細胞内に存在する蛋白分解酵素による分解を避けるため、上記の融合蛋白質発現法が使われている。この場合、目的ペプチドと保護ペプチドの間に、目的ペプチドを化学的あるいは酵素反応を用いて切断させるようにデザインした切断部位領域を付加した融合蛋白質を細胞内に発現させた後、化学的もしくは酵素的方法により融合蛋白から目的ペプチドを切断し、目的ペプチドを沈殿やクロマトグラフィー工程を経て単離精製を行う方法が行われている。

更に、カルシトニンのようなC末端がアミド化されたペプチドが

目的ペプチドの場合は、当該ペプチドに係るアミノ酸配列のC末端 部位にグリシンを付加したペプチドを融合蛋白の一部として発現さ せ、蛋白分解酵素により融合蛋白から目的のグリシン付加ペプチド を切断させた後、修飾酵素であるアミド化酵素を作用させ、アミド 化ペプチドを生成し、精製工程を経で目的のアミド化ペプチドが生 産されている。

しかしながら、工業的スケールで様々なペプチドを生産しようとする際には、種々の切断及び修飾反応条件下における目的ペプチドの溶解性やゲル化の問題、カラムクロマトグラフィー工程においてカラムに負荷する試料濃度、カラムからの溶出条件及び溶出後の安定性等に関して問題が生じる場合があり、その原因は目的ペプチドの物理化学的な諸性質によるところが大きい。

例えば、目的ペプチドとしてはヒト・グルカゴン様ペプチドー1 (Glucagon-Like Peptide-1、Bell GI 等、Nature、Vol. 304、p36 8-371、1983、以下、GLP-1 と称する)や、インシュリン放出促進活性を有するGLP-1 の誘導体(以下、GLP-1 誘導体と称する)を挙げることができる。GLP-1 はプレプログルカゴン由来の37アミノ酸残基からなるペプチドであり、プレプログルカゴンがプロセシングされ、GLP-1 のN末端の6 アミノ酸が欠失したGLP-1(7-37) や更にGLP-1(7-36) のC 末端がアミド体に修飾されたGLP-1(7-36)NH₂が生合成される(Mojsow、S.等 J. Clin. Invest. Vol. 79、p616-619、1987)。これらのペプチドホルモン(即ち、GLP-1 やGLP-1 誘導体)は膵臓のベータ細胞に作用しインシュリンの分泌を促進する作用などを有するため、近年、その薬理作用から糖尿病治療薬の可能性が示唆されている(Gutniak MK、等、New England Medicine、Vol. 326、p1316-1322、1992、Nathan DM、等 Diabetes Care、Vol. 15、p270-275、1992)。

上記ペプチドの製法としては、上記のような従来技術に基づき大腸菌等を宿主とした融合蛋白質発現法により製造する場合が考えられる。例えば、GLP-1(7-37)の場合、GLP-1(7-37)のN末端部位又はC末端部位に、化学的あるいは酵素的に融合蛋白からGLP-1(7-37)を切り出すための切断部位領域を介して保護ペプチドを付加した融合蛋白として発現させ、その後、化学的又は酵素的に融合蛋白からGLP-1(7-37)を切り出すことにより製造することができる。また、GLP-1(7-36)NH2の場合は、上記工程に修飾反応の工程を加えることにより製造することができる。即ち、アミド化修飾反応のためにアミド化酵素の基質としてGLP-1(7-37)を上記のように融合蛋白として発現させ(この場合、GLP-1(7-37)を上記のように融合蛋白として発現させ(この場合、GLP-1(7-37)を上記のように融合蛋白として発現させ(この場合、GLP-1(7-37)を上記のように融合蛋白として発現させ(この場合、GLP-1(7-37)を上記のように融合蛋白として発現させ(この場合、GLP-1(7-37)を切り出し、得られたGLP-1(7-37)をアミド化酵素を用いたアミド化修飾反応により、目的のGLP-1(7-36)NH2を製造することができる。

しかしながら、上記の方法により、目的ペプチドであるインシュリン放出促進活性を有するGLP-1 誘導体を製造する場合でも、製法工程上、好ましくない問題が生じるために、未だ工業レベルで安価に供給できる製造法は確立されておらず、その製造法の確立が望まれている。

例えば、目的ペプチドとしてGLP-1(7-37)を挙げた場合の製造法としては、既に述べたように、常法により、保護ペプチドとGLP-1(7-37)からなる融合蛋白質を発現させ、当該蛋白質から直接GLP-1(7-37)を切り出すことにより製造することができ、当該製法の精製工程は(1)酵素による融合蛋白からのGLP-1(7-37)切り出し、(2)クロマトグラフィー工程という方法を用いることができる。しかしながら、GLP-1(7-37)は精製中にゲル化あるいは凝集を起こし

易いため、極端な回収率の低下や、樹脂再生が不可能になるといった物理化学的性質に起因した製造工程上の問題が生じる場合がある。一旦ゲル化した場合、pll10以上で可溶化して精製することも可能ではあるが、好ましからざる修飾体や立体構造変化が生じると言うような問題が見られる(Senderoff RI,等、J Pharm Sci, Vol. 87, p183-189, 1998)。

また、アミド化ベプチドであるGLP-1(7-36)NH2を目的ペプチドとする場合には、アミド化修飾反応に関して問題が生じる場合がある。即ち、アミド化酵素反応の至適pHは弱酸性から中性付近であるが、GLP-1(7-37)及びGLP-1(7-36)NH2の理論上の等電点はそれぞれpI=5.5及びpI=7.5である。従って、アミド化酵素至適pH条件でGLP-1(7-37)への酵素反応を行うと基質であるGLP-1(7-37)の等電点に反応液のpHが近接しているため、GLP-1(7-37)の等電点沈殿を形成しやすいと考えられる。

更に、GLP-1(7-37) が沈殿することで生成されたGLP-1(7-36)NH2 も共沈し、酵素反応が十分進行しない可能性があり、製造工程上の問題が生じる。更に、GLP-1(7-36) も処理(ハンドリング)する際にカラム工程で凝集を起こし、カラム中でゲル化を起こしやすいペプチドであるため、精製上も問題が生じる場合がある。即ち、GLP-1 誘導体においても上記に示した物理化学的性質に起因する製造上の問題が考えられる。

上記のような問題は、何れも工業的スケールでGLP-1 (7-37)、GLP-1 (7-36) NH₂およびGLP-1 誘導体を製造する場合に、当該目的ペプチド自体の物理化学的性質に起因する工業的製造上の問題が生じて、回収率及び工程管理ひいては製造コスト上の面で非常に問題になる。

発明の開示

本発明は、工業的スケールでの遺伝子組換え技術を用いて目的ペプチドを効率よく生産する際に、目的ペプチド自体が有する物理化学的性質のために生じる問題(例えば、当該ペプチドの生産工程上の化学反応的又は酵素反応的処理あるいは精製工程における低溶解性とゲル化の問題)を改善して目的ペプチドを効率的に生産する方法を提供することを目的とする。

なお、本発明に係る目的ペプチドとは、最終的に得ようとしているペプチドだけでなく、その製造過程において必要な製造中間体ペプチドも意味する。

本発明者らは先に述べた問題を回避するために、目的ペプチドに補助ペプチドを付加することにより目的ペプチドが有する問題点を解消して、目的ペプチドを効率よく製造する方法を見出した。即ち、本発明に係るペプチドの製造方法は、目的の生物学的活性を有するペプチドを製造する方法であって、以下の工程;

工程(1);補助ペプチドが付加された目的ペプチド又は補助ペプチドが付加された目的ペプチドにさらに保護ペプチドが付加された融合蛋白質、をコードする塩基配列を有する発現ベクターにより 形質転換された細胞を培養して、当該培養物から前記補助ペプチドが付加された目的ペプチド又は前記融合蛋白質を採取する工程:

工程(2);工程(1)で融合蛋白質を得た場合、当該融合蛋白質から補助ペプチドが付加された目的ペプチドと保護ペプチドを切断分離し、所望によりさらに精製する工程;

工程(3);目的ペプチドに修飾が必要な場合、工程(1)又は 工程(2)で得られた補助ペプチドが付加された目的ペプチドに修 飾反応を施す工程;

工程(4);工程(1)、工程(2)又は工程(3)で得られた

補助ペプチドが付加された目的ペプチドから、補助ペプチドと目的ペプチドを切断分離し、所望によりさらに精製する工程;並びに工程(5);工程(4)で得られた目的ペプチドを精製する工程

を含んでなる当該製造方法である(図1)。

図面の簡単な説明

図1は、補助ベプチドを利用した目的ペプチドの製造方法の概略 を示す。

- 図 2 は、pG117S4HR6GLP-1 の作製方法を示す図である。
- 図 3 は、pGP117S4HompRHKRの作製方法を示す図である。
- 図 4 は、pGP117S4HompRHPRの作製方法を示す図である。
- 図5は、pGP97ompPRの作製方法を示す図である。
- 図 6 は、pGP97ompPRの作製に用いたオリゴヌクレオチド及びプライマーを示す図である。

図7は、pGP97ompPRにコードされた融合蛋白(GP97ompPR)のアミノ酸配列を示す図である。下線部はGLP-1(7-37)の由来のアミノ酸配列を示し、二重下線部は補助ペプチドの配列を示す。↓は大腸菌のmpTプロテアーゼによる切断部位を示し、二重下線の後の矢印はKex2プロテアーゼによる切断部位を示す。

図 8 は、pG97ompPR にコードされた融合蛋白(GP97ompPR)のDN A 塩基配列を示す図であり、塩基番号1 のA から462 のT までがGL P-1(7-37) に係る融合蛋白をコードする領域である。1ac POは大腸菌ラクトースオペロンのプロモーター/ オペレーター領域を示す。

図9は、生産菌の培養と融合蛋白(GP97ompPR)の発現を示す電気泳動図の図面代用写真であり、図中にサンプリング時aからeの試料のSDS-ポリアクリルアミドゲル電気泳動の結果を示す。図

中の矢印は融合蛋白質のバンドを示す。

図10は、封入体に内在する大腸菌OmpTプロテアーゼを用いた融合蛋白(GP97ompPR)の切断を分析した結果を示す図である。

図11は、pG117S4HR6GLP-1にコードされた融合蛋白質のアミノ酸配列を示す図である。図中、下線部はGLP-1(7-37)の由来のアミノ酸配列を示し、二重下線部は補助ペプチド由来のアミノ酸配列を示す。

図12は、pGP117S4HompRHKRにコードされた融合蛋白質のアミノ酸配列を示す図である。図中、下線部はGLP-1(7-37)の由来のアミノ酸配列を示し、二重下線部は補助ペプチド由来のアミノ酸配列を示す。

図13は、pGP117S4HompRHPRにコードされた融合蛋白質のアミノ酸配列を示す図である。図中、下線部はGLP-1(7-37)の由来のアミノ酸配列を示し、二重下線部は補助ペプチド由来のアミノ酸配列を示す。

図14は、SPセファロースビッグビーズからのRHHGP[G]の溶出パターンを示す図であり、溶出開始位置を↓で示し、プールした画分を図に示す。吸光度は280nm で測定した。

図15は、RHHGP[G]からのKex2プロテアーゼによるGLP-1(7-37) の切り出し工程における、各精製工程の分析パターンを示した図であり、A はKex2プロテアーゼによる切断前、B はKex2プロテアーゼ 切断後、C はPorosR2 後の逆相プールを示し、1はRHHGP[G]を、2はGLP-1(7-37)を示す。

図16は、RHHGP[G]のアミド化反応のpH依存性を示す図である

図17は、アミド化反応において、RHHGP[G]がRHHGP-1 に変換される経時変化をイオン交換HPLCにより測定した図であり、1は

RHHGP[G]を、2はRHHGP-1を示す。吸光度は280nm で測定した。

分析条件は以下の通りである。

カラム; Poros S/H 4.6mm I. D. x 50mm、

流速; 1.6 ml/min

溶液A; 30mM BR 緩衝液 pH 6.0

溶液B ; 30mM BR 緩衝液 pH 9.0

平衡化;溶液A

溶出;溶液B 0% → 100% 直線pH勾配

図18は、RHHGP-1を基質とした、Kex2プロテアーゼプロセッシング反応のpH依存性を示す図である。

図19は、マクロフレッフ High-SによるGLP-1(7-36)NH₂精製における溶出パターン及び、形成されたpH勾配を示す図である。吸光度は280nm で測定した。

図 2 0 は、マクロフレッフ High-Sによる不純物の除去状況を示す図であり、A はカラムにロードした試料を、B は溶出後の分析HPLCパターンを示し、また、1 はGLP-1(7-37) を、2 はGLP-1(7-36)NH₂を示す。吸光度は280nm で測定した。

図21は、0mpTによる第1切断、Kex2プロテアーゼによる第2切断を経由して、GLP-1(7-36)NH2を製造した際の、各精製工程標品の分析HPLCパターンをまとめて示した図である。AはOmpT反応後、BはSPセファロース後、CはKex2反応後、Dはマクロブレップ High-S後、EはPorosR2後の逆相HPLCパターンを示し、また、1はGP97ompPRを、2は保護ペプチドを、3はRHHGP[G]を、4はRHHGP-1を、5はGLP-1(7-36)NH2を示す。吸光度は280nmで測定した。

分析条件は以下の通りである。

カラム; YMC Protein RP 4.6mm I. D. x 150mm

流速; 1.0 ml/min

溶液A; 0.1% TFA / 10% アセトニトリル

溶液B; 0.1% TFA / 60% アセトニトリル

平衡化;溶液A

溶出;溶液B 44%→74% /12 分

図22は、RHHGP[G], RHHGP-1, GLP-1(7-37), GLP-1(7-36)NH:溶解度のpH依存性を示す図である。

図 2 3 は、Tween 80による、RHHGP[G]、RHHGP-1 及びGLP-1(7-36)NH,の凝集抑制効果を示す図であり、AはTween 80によるRHHGP[G]及びRHHGP-1 の凝集抑制を示し、BはTween 80によるGLP-1(7-36)NH,凝集抑制を示す。

図 2 4 は、NaC1及び温度によるGLP-1(7-36)NH₂の凝集抑制効果を示す図であり、CはNaC1によるGLP-1[G]凝集抑制を示し、Dは温度によるGLP-1(7-36)NH₂凝集抑制を示す。

発明の実施の形態

本発明に係る補助ペプチドとは、目的ペプチド自体の物理化学的性質に由来する工業的製造上の問題を回避するために用いるペプチドである。目的ペプチド自体の物理化学的性質に由来する製造上の問題のうち、当該ペプチドの製造工程上の化学反応的又は酵素反応的処理及び精製上の問題、例えば、種々の切断及び修飾反応条件下における目的ペプチドの溶解性やゲル化の問題、またカラムクロマトグラフィー工程におけるカラムに負荷する試料濃度、カラムからの溶出条件及び溶出後の安定性等に関する問題が特に注目される。

当該補助ペプチドは目的ペプチドが有している物理化学的性質に応じて適宜作製することができ、例えば目的ペプチドの等電点が中性~弱酸性であり、且つ製造工程上の至適pHも中性~弱酸性でありこのようなpHのもとでは目的ペプチドの溶解度が低すぎる場合には

、補助ペプチドが付加した目的ベプチドの等電点(pI)を8~12となるように補助ペプチドを設計することが望ましく、9~11に設計することが好ましい。(当該補助ペプチドは目的ペプチドのN末端又はC末端の何れに付加してもよい)。また、当該補助ペプチドの大きさ(長さ)は5~50のアミノ酸残基を有するものが好ましく、更に好ましくは5~30アミノ酸残基以下を有することであるが、塩基性アミノ酸又は酸性アミノ酸を少なくとも1つ以上含む。

本発明により生産することができる目的ペプチドは特に限定され るものではないが、上記のGLP-1 誘導体の他にも200 アミノ酸残基 以下のアミノ酸配列を有するペプチドの製法に好適である。そのよ うなペプチドの例としては、副腎皮質刺激ホルモン(Adrenocortic otropic hormone), アドレノメデュリン(Adrenomedullin), アミリ ン(Amylin), アンジオテンシン (Angiotensin) I, アンジオテンシ ン(Angiotensin) II, アンジオテンシン (Angiotensin) III,A型 ナトリウム利尿ペプチド(A-type Natriuretic Peptide), B型ナト リウム利尿ペプチド(B-type Natriuretic Peptide), ブラジキニン (Bradykinin), ビッグガストリン (Big Gastrin), カルシトニン(C alcitonin),カルシトニン遺伝子関連ペプチド(Calcitonin gene related peptide), コレシストキニン (Cholecystokinin), コルチ コトロピン放出因子(Corticotropin Releasing Factor), コルチス タチン (Cortistatin), C型ナトリウム利尿ペプチド(C-type Natr iuretic Peptide),デフェシン(Defesin)1,デルタ・スリープ、 インデューシングペプチド(Delta Sleep-Inducing Peptide), ダイ ノルフィン (Dynorphin), エラフィン(Elafin), α - エンドルフィ ν (α-Endorphin), β -エンドルフィン (β -Endorphin), エンドルフィン (γ-Endorphin), エンドセリン-1(Endothelin-1), エンドセリン-2(Endothelin-2), エンドセリン-3(Endothe

lin-3), ビッグエンドセリン-1(Big Endothelin-1), ビッグエン ドセリン-2(Big Endothelin-2), ビッグエンドセリン-3(Big E ndothelin-3), エンケファリン(Enkephalin), ガラニン (Galanin) , ビッグガストリン (Big Gastrin), ガストリン (Gastrin), GIP (Gastric Inhibitory Polypeptide), ガストリン放出ペプチド (Ga strin Releasing Peptide), グルカゴン(Glucagon), グルカゴン様 ペプチドー 2 (Glucagon-like peptide -2), 成長ホルモン放出因子 (Growth Hormone Releasing Factor), 成長ホルモン(Growth Horm one), グアニリン(Guanylin), ウログアニリン (Uroguanylin), ヒ スタチン5 (Histatin 5), インシュリン (Insulin), ジョイニング ペプチド (Joining Peptide), 黄体ホルモン放出ホルモン (Lutein izing Hormone Releasing Hormone),黒色細胞刺激ホルモン(Melan ocyte Stimulating Hormone), ミドカイン (Midkine), モチリン (Motilin), ニューロキニンA(Neurokinin A), ニューロキニンB(N eurokinin B), ニューロメジンB(Neuromedin B), ニューロメジン C(Neuromedin C), ニューロペプチドY(Neuropeptide Y), ニュー ロテンシン (Neurotensin), オキシトシン(Oxytocin), プロアドレ ノメデュリンN-末端20ペプチド(Proadrenomedullin N-terminal 20 Peptide), クロモグラニンA (Cromogranin A), 副甲状腺ホル モン (Parathyroid Hormone), PTH 関連ペプチド (PTH related pe ptide), ペプチドヒスチジンーメチオニン-27(Peptide Histidine -Methionin-27)、脳下垂体アデニレートサイクラーゼ活性化ポリペ プチド38 (Pituitary Adenylate Cyclase Activating Polypeptide 38), 血小板因子 - 4 (Platelet Factor -4), ペプチドT (Peptid e T), セクレチン(Secretin), 血清胸腺因子 (Serum Thymic Facto r), ソマトスタチン(Somatostatin), サブスタンスP (Substance P), チロトロピン放出ホルモン (Thyrotropin Releasing Hormone)

, ウロコルチン (Urocortin), 管活性腸ベプチド (Vasoactive Intestinal Peptide), バソプレシン (Vasopressin)及びこれらの誘導体等が挙げられる。

また、GLP-1 誘導体としては、上記のGLP-1(7-37) や、GLP-1(7-36)NH2の他に、GLP-1 の37個のアミノ酸残基よりなるペプチドからアミノ酸残基が置換、付加、欠失されたインシュリン放出促進活性を有するペプチド、当該ペプチドに係るアミノ酸が更に修飾されたインシュリン放出促進活性を有するペプチド(例えばアミド体)、及びこれらの組み合わせにより得られるインシュリン放出促進活性を有するペプチドを挙げることができる。

更に、本願発明に係る製法により好適に製造し得るGLP-1 誘導体としては、4.5 から9.0 の等電点を有するGLP-1 誘導体が望ましい。好ましくは5.5 から7.5 の等電点を有するGLP-1誘導体である。

GLP-1 誘導体の具体例としては本発明の実施例に記載した以外に以下のものを例示として挙げることができる。

- ・GLP-1(7-34) 、GLP-1(7-35) 、GLP-1(7-36) 、GLP-1(7-34)NH。 、GLP-1(7-35)NH。及びGLP-1(7-37)NH。
- ・GLP-1(7-37) Arg 、GLP-1(7-37) Arg-Arg 、GLP-1(7-37) Lys 、 GLP-1(7-37) Lys-Lys 、GLP-1(7-37) Lys-Arg 及び GLP-1(7-37) Arg-Lys 並びにこれらのC 末端アミド体、
- ・GLP-1 の8 位のアミノ酸であるAla をThr 、Gly 又はSer に置換したGLP-1(7-37) 及びGLP-1(7-36)NH,、
- ・GLP-1 の26位のアミノ酸であるLys をArg に置換したGLP-1(7-37) 及びGLP-1(7-36)NH₂、
- ・GLP-1 の34位のアミノ酸であるLys をArg に置換したGLP-1(7-37) 及びGLP-1(7-36)NH₂、
 - ・GLP-1 の36位のアミノ酸であるArg をLys に置換したGLP-1(7-

- 37) 及びGLP-1(7-36)NH₂、
- ・GLP-1 の8 位のアミノ酸であるAla をThr, Gly 又はSer に置換し、更に26位のアミノ酸であるLys をArg に置換したGLP-1(7-37)及びGLP-1(7-36)NH₂、
- ・GLP-1 の8 位のアミノ酸であるAla をThr, Gly 又はSer に置換し、更に34位のアミノ酸であるLys をArg に置換したGLP-1(7-37)及びGLP-1(7-36)NH₂、
- ・GLP-1 の8 位のアミノ酸であるAla をThr, Gly 又はSer に置換し、更に36位のアミノ酸であるArg をLys に置換したGLP-1(7-37)及びGLP-1(7-36)NH₂、
- ・GLP-1 の26位のアミノ酸であるLys をArg に置換し、更に34位のアミノ酸であるLys をArg に置換したGLP-1(7-37) 及びGLP-1(7-36)NH₂、
- ・GLP-1 の26位のアミノ酸であるLys をArg に置換し、更に36位のアミノ酸であるArg をLys に置換したGLP-1(7-37) 及びGLP-1(7-36)NII₂、
- ・GLP-1 の34位のアミノ酸であるLys をArg に置換し、更に36位のアミノ酸であるArg をLys に置換したGLP-1(7-37) 及びGLP-1(7-36)NH₂、
- ・GLP-1 の8 位のアミノ酸であるAla をThr, Gly 又はSer に置換し、更に26位のアミノ酸であるLys をArg に置換し、更に34位のアミノ酸であるLys をArg に置換したGLP-1(7-37) 及びGLP-1(7-36)NH₂、
- ・GLP-1 の8 位のアミノ酸であるAla をThr, Gly 又はSer に置換し、更に26位のアミノ酸であるLys をArg に置換し、更に36位のアミノ酸であるArg をLys に置換したGLP-1(7-37) 及びGLP-1(7-36)N H₂、

・GLP-1 の8 位のアミノ酸であるAla をThr, Gly 又はSer に置換し、更に34位のアミノ酸であるLys をArg に置換し、更に36位のアミノ酸であるArg をLys に置換したGLP-1(7-37) 及びGLP-1(7-36)NH₂、

- ・GLP-1 の26位のアミノ酸であるLys をArg に置換し、更に34位のアミノ酸であるLys をArg に置換し、更に36位のアミノ酸であるArg をLys に置換したGLP-1(7-37)及びGLP-1(7-36)NH₂、
- ・GLP-1 の8 位のアミノ酸であるAla をThr. Gly 又はSer に置換し、更に26位のアミノ酸であるLys をArg に置換し、更に34位のアミノ酸であるLys をArg に置換し、更に36位のアミノ酸であるArg をLys に置換したGLP-1(7-37) 及びGLP-1(7-36)NH₂。

目的ペプチドの例としてGLP-1(7-37)を挙げると、精製工程上の問題、例えば、GLP-1(7-37)に起因したゲル化、溶解性などを解決するためにGLP-1(7-37)に塩基性アミノ酸を有する補助ペプチドを付加して、GLP-1(7-37)の生産に用いることができる。即ち、当該補助ペプチドをGLP-1(7-37)に付加することにより、GLP-1(7-37)の等電点(pI=5.5)をアルカリ側にシフトさせ、親水性を増加させることにより精製工程上の問題であるカラム中の凝集性(ゲル化)などを回避することができる。また、当該補助ペプチドをGLP-1(7-37)に付加することにより最初のクロマトグラフィー工程で非常に純度が高くかつ高収量で補助ペプチドとGLP(7-37)からなるポリペプチドを分離する事が可能になり、GLP-1(7-37)の回収率が増加するので、当該工程において補助ペプチドを用いることは非常に有用である。

また、目的ペプチドの例としてGLP-1(7-36)NH₂を挙げると、当該物質はアミド化ペプチドであるので、その製造中間体をまず目的ペプチドとして得る必要があり、具体的に当該ペプチドはGLP-1(7-37

)である。即ち、GLP-1(7-37)に塩基性アミノ酸を有する補助ペプチドを付加してGLP-1(7-36)NH2の生産に用いることができる。塩基性アミノ酸を含む補助ペプチドを付加することにより、GLP-1(7-37)の等電点をアルカリ側にシフトさせることができ、後のアミド化修師反応の際にアミド化酵素反応液のpHにおいて補助ペプチドがGLP-1(7-37)に付加したペプチドの溶解性が増すために沈殿形成が抑えられ、収率及び収量を増加させることができる。また、塩基性アミノ酸を含む親水性補助ペプチドを付加することで目的ペプチドの溶解度を上昇させること、更にはアミド化修師反応における基質としてのGLP-1(7-36)NH2の持つ凝集性を回避でき、アミド化酵素反応後の精製工程において非常に有用である。

上記の何れの場合においても、補助ペプチドがGLP-1(7-37) に付加したペプチドは等電点8~12を有することが望ましく、当該ペプチドを陽イオン交換樹脂に作用させることにより、高収率(98%以上)で当該ペプチドを得ることができる。

補助ペプチドが付加したペプチドから目的ペプチドを得るために、補助ペプチドと目的ペプチドとの間に化学的あるいは酵素的に切断できるような切断部位領域を導入する。当該切断部位領域についても目的ペプチドが有している物理化学的性質に応じて切断効率の高い切断部位領域を設定する。酵素的及び化学的な切断方法としてはMethods in ENZYMOLOGY, 185巻, Gene Expression Technology (David V. Goeddel編集、出版社ACADEMIC PRESS, INC) に記載されている方法も用いることができる。

化学的切断方法としては、メチオニンのC末端側をプロムシアンで切断する方法 (D.V. Goeddel et al, Proc. Natl. Acad. Sci. US A, Vol. 76, p106-110, 1979)、-Asp-Pro- 配列の間を蟻酸で切断

する方法(Biochem. Biophys. Res. Commun., Vol. 40, p1173, 1970)、-Asn-Gly-配列の間をヒドロキシルアミンで切断する方法及びトリプシンのC末端側をBNPS-スカトール又はN-クロロスクシンイミドで切断する方法等が挙げられる。例えば、目的ペプチドに係るアミノ酸配列中にメチオニンが含まれない場合は目的ベプチドに隣接する切断部位領域の末端にメチオニンを導入し、ブロムシアン処理により化学的に切断部位領域での切断を行うことができる。

また、酵素的切断方法としては、切断処理に用いる酵素が基質と して特異的に認識することができる切断部位領域を設定すれば良く 、それらの例としては、X-Gly 又は Pro-X-Gly-Pro配列の-X-Gly-配列の間をコラゲナーゼ(Collagenase)(Proc. Natl.Acad. Sci . USA, Vol. 81, p4692-4696, 1984) で、-Asp-Asp-Asp-Lys- 配列 (配列番号:1)のLys のC末端側をエンテロキナーゼ (Enteroki nase) で、-Ile-Glu-Gly-Arg- 配列(配列番号:2)のArg のC末 端側を血液凝固因子Xa(blood coagulation Factor Xa)(特開昭 61-135591)で、-Gly-Pro-Arg- 配列のArg のC末端側をトロンビ ン (Thrombin) (特開昭62-135500) で、-Arg- のC末端側をトリ プシン (Trypsin) 又はクロストリパイン (Clostripain) で、Ar g 又はLys のC末端側をエンドプロテアーゼ (endoprotease) Arg-C (Nature, Vol. 285, p456-461, 1980) で、Lys-Arg 、Arg-Arg 又 はPro-Arg 配列のC末端側をサッカロミセス・セレビシエ(Saccha romyces cerevisiae) Kex2 プロテアーゼ及びその誘導体 (Bioche m. Biophys. Res. Commun., Vol. 144, p807-814, 1987 、特開平1-199578) で、Lys のC末端側をリシル エンドペプチダーゼ (lysl endopeptidase) 又はエンドペプチダーゼ (endopeptidase) Lys -C(特開昭61-275222)で、Asp 又はGlu のC末端側をスタフィロ コッカス・アウレウス (S. aureus) V8プロテアーゼ (Proc. Nat1

. Acad. Sci. USA, Vol. 69, p3506-3509, 1972)で、-Phe-Arg-配列のC末端側をカリクレイン(Kallikrein)(特開昭62-248489)で、-Pro-Phe-His-Leu-Leu-Val-Tyr-配列(配列番号: 3)のLeu-Leu の間をレニン(renin)で(特開昭60-262595)、-Glu-Gly-Arg-配列のC末端側をウロキナーゼ(Urokinase)(特開平2-100685)で、Val-Asp-Asp-Asp-Lys 配列(配列番号: 4)のC末端側をエンテロペプチダーゼ(entero-peptidase)(Biotechnology、Vol. 6、p1204-1210、1988)で、poly-GlyのC末端側をリソスタフィン(lysostaphin)(特開平1-160496)で、Lys-Arg、Arg-Arg又は Pro-Arg等のC末端側をクリベロミセス・ラクチス(Kluverromy ces lactis)(特開平1-124390)で切断する方法等が挙げられる。

例えば、本願発明に係る実施例においては、Kex2プロテアーゼが認識できるアミノ酸配列(Lys-Arg、Arg-Arg 又はPro-Arg 配列)を切断部位領域に導入し、当該酵素を用いて補助ペプチドから目的ペプチドの切断を行った。

従って、切断処理に使用する酵素の基質特異性及び目的ペプチドのアミノ酸配列に合わせて、切断部位領域のアミノ酸配列中に1つ以上のメチオニン、トリプトファン、プロリン、グリシン、システイン、アルギニン、リジン、アスパラギン酸又はグルタミン酸を存在させることが好ましい。

なお、最終目的ペプチドとするために修飾が必要な場合(例えば、アミド化ペプチド)は、補助ペプチドが付加した目的ペプチド(この場合、最終目的ペプチドの製造中間体ペプチド)から当該目的ペプチドを切り出す前又は切り出した後に修飾反応(例えば、アミド化酵素によるアミド化修飾反応)を行うことができる。更に、効率的に修飾反応を行いたい場合、目的ペプチドを切り出す前に補助ペプチドが付加した目的ペプチドに修飾反応(例えば、アミド化修

飾反応)を行い、補助ペプチドが付加した最終目的ペプチドを得、 その後、補助ペプチドと最終目的ペプチドとの間にある切断部位領 域を切断することにより最終目的ペプチドを得ることができる。

補助ペプチドが付加した目的ペプチドを高発現させれば、高純度の目的ペプチドを高収率で得ることが可能であるが、更に大量の目的ペプチドを得るためには従来の融合蛋白法において行われているような保護ペプチドを更に付加して発現させて製造することもできる。即ち、補助ペプチドが付加した目的ペプチドに更に保護ペプチドを付加した融合蛋白として宿主細胞内に高発現させて製造することもできる(保護ペプチドの付加は補助ペプチドが付加した目的ペプチドのN末端又はC末端の何れに付加してもよい)。

本発明に係る製造法に用いることができる保護ペプチドは特に限定されるものではなく、従来の方法において用いられたものを適なとができる。例えば、特開昭54-145289においる。例えば、特開昭54-145289においる。例えば、特開昭54-145289においる。月のカーガラクトシダーゼに係るアミノ酸配列を用いることができる。ガラクとができる。ガラクとができるが、カーガラクメントは広でいる。本願発りに修ちまた、はいても、補助ペプチドか付加された目的ペプチドカラグメントを保護ペプチドとして用いることもできる。また、保護ペプチドに係るアミノ酸配列をコードするDNA塩基配列を化学合成することも可能である。

保護ペプチドを有する融合蛋白については、切断処理反応後のクロマトグラフィー工程でのフラグメント分離能を高めるために、当該融合蛋白を構成する保護ペプチド若しくは補助ペプチドが付加し

た目的ペプチド及び当該融合蛋白自体に係る各等電点が異なるように工夫して設定することが望ましい。補助ペプチドと目的ペプチドについても同様である。

上記のように保護ペプチドを付加させる場合、補助ペプチドが付加した目的ペプチドと保護ペプチドとの間にも切断部位領域を設定する必要があるが、上述の設定方針に従って適宜好適な切断効率の高い切断部位領域を設定することができる。但し、保護ペプチドを有する融合蛋白から補助ペプチドが付加した目的ペプチドを得る場合、複数の切断部位領域が設けられるため場合の位における多段階の融合蛋白の切断方法が必要になる。この場合、最初に補助ペプチドが付加した目的ペプチドと保護ペプチドとの間の切断部位領域において切断処理を行なうことにより目的ペプチドを得ることができる。

上記の製造方法は汎用性があることを確認するために各切断部位領域を化学的又は酵素的に切断する方法について検討を行い、何れの切断処理方法によっても実施可能であることを確認した。このような切断部位領域に係るペプチド鎖の部位特異的切断方法の代表例としては、

- (1)保護ペプチド及び目的ペプチドがシステイン残基をそのアミノ酸配列中に含まないことを利用し、補助ペプチドが付加した目的ペプチドと保護ペプチドの間にシステインを挿入し、シアノ化、アルカリ処理にて当該部位において融合蛋白を特異的に切断する方法、
- (2)各切断部位領域における切断は共に同一酵素で行うが、酵素認識部位に異なったアミノ酸配列を用いることで、一方の切断部位領域での反応条件下では、他方の切断部位領域での切断が起こら

ない様にする方法、及び

(3)各切断部位領域において共に同一酵素で切断を行うが、補助ペプチドと目的ベプチドの間に存在する切断部位領域(切断部位領域 2)のアミノ酸を修飾することにより、補助ペプチドが付加した目的ペプチドと保護ペプチドの間に存在する切断部位領域(切断部位領域 1)に係る切断の反応条件下では、切断部位領域 2 での切断が起こらない様にし、切断部位領域 1 での切断後、補助ペプチドが付加した目的ペプチドを精製し、修飾されたアミノ酸を再度修飾して切断部位領域 2 を上記酵素で切断可能にする方法等が挙げられる。

なお、本発明において用いることができる宿主細胞は特に限定されるものではなく、従来の方法において既に用いられている原核細胞又は真核細胞、例えば大腸菌等の微生物細胞、酵母又は動物細胞等を、補助ペプチドが付加された目的ペプチドをコードする塩基配列が当該配列を有する発現ベクターにより好適に発現できるものを適宜選択して用いることができる。更に、高発現に必要なその他の要素、例えばプロモーター、ターミネーター、スプライス部位等についても従来の方法において既に知られているものを適宜用いることができる。

本発明に係る目的ペプチドの製法において、目的ペプチドをGLP-1(7-37)及びGLP-1(7-36)NH₂とした場合を以下に説明する。

GLP-1(7-37) 発現プラスミド(以下、pGP97ompPR)がコードする融合蛋白(以下、GP97ompPR)は、GLP-1(7-37) のN末端側に塩基性ペプチド領域を含む補助ペプチドを付加したペプチド(以下、RH HGP[G])を有し、更にRHHGP[G]のN末端側に大腸菌 β -ガラクトシダーゼ誘導体(β -ga197S)を保護ペプチドとして付加した融合蛋白である。当該保護ペプチドとRHHGP[G]との間及びRHHGP[G]に係る

補助ペプチドとGLP-1(7-37) の間には各々切断部位領域が導入されている。当該各領域は、一方の切断部位領域では大腸菌由来の内在性のmpTプロテアーゼにより切断されるように、また他方の切断部位領域ではKex2プロテアーゼ(特許第2643968 号、特開平10-229884等)により切断されるように基質特異性に係るアミノ酸配列を有している。

また、GP97ompPR については、切断処理反応後のクロマトグラフィー工程でのフラグメント分離能を高めるために、GP97ompPR を構成する β -ga197S 若しくはRHHGP[G]及びGP97ompPR 自体に係る各等電点が異なるように工夫され設定されている。例えば、後述の実施例ではGP97ompPR の等電点は5.95、 β -ga197S の等電点は4.60及びRHHGP[G]の等電点は10.09 となるように設定されている。

次に、pGP97ompPRにより形質転換された大腸菌(W3110/pGP97ompPR)を培養してGP97ompPR の発現を行った。GP97ompPR は菌体内に不溶性蛋白として高発現され、封入体中に蓄積された。最終菌体濃度は約0D660nm = 180 であった。

菌体破砕後、尿素を用いてGP97ompPR を可溶化した後、封入体中に含まれる内在性0mpTプロテアーゼによりGP97ompPR 中に存在する保護ペプチド β -ga197S と補助ペプチドが付加した目的ペプチドRH HGP[G]の間の切断部位領域を切断した。0mpTプロテアーゼは特異的に当該切断部位領域を切断し、切断効率は8.5%であった。

次に、 β -gal97S とRHHGP[G]を分離するため、また尿素を除去するために陽イオン交換クロマトグラフィーを行った。未切断のGP97 ompPR (pI=5.95)と β -gal97 (pI=4.60)は等電点が酸性側のためにこのカラムに吸着せず、RHHGP[G] (pI=10.09) が吸着された後、溶出される。このわずか 1 工程のカラム処理により純度が99 %のRHHGP[G]が得られた。生産工程の最初のカラム工程でこの様な純度

が高く、かつ高収率でRHHGP[G]が得られることは、工業的な大量生産上非常に有用である。

Kex2プロテアーゼを用いて、RHHGP[G](1.0 g)中に存在する、補助ベプチドと目的ペプチドの間の切断部位領域を切断した。後述の実施例に係る反応条件では切断効率95%で反応が進行した。また、回収率は90%であった。

次に、GLP-1(7-37) を更に精製するため逆相クロマトグラフィーを行った。本工程の回収率は80%で、全工程の最終収率は約64%であり、純度98%のGLP-1(7-37)が0.72 g得られた。精製に使用した培養液は0.36リットル相当であり、培養液1リットルあたり約2.0 g得られたことになる。この収率及び収量は共に非常に高く、補助ペプチドを用いた本発明に係る製法の有用性が実証できた。即ち、本発明に係る製造法は目的ペプチドを十分に工業的スケールで製造することを実施可能ならしめるものである。

本発明に係る製造法を用いたGLP-1(7-37)の製造に関し、各工程における収率については後記の表 2 - Bに示した。

表 2 - B から明らかなように、各工程の回収率は非常に高く、最終の回収率が 6 4 % と非常に高いことが示された。

更に、目的ペプチドをGLP-1(7-36)NH、とする場合は、当該ペプチドはアミド化ペプチドであるためにアミド化修飾反応が必要となる。当該ペプチドは例えば、次のようにして得ることができる。

上述のように既に得られたRHHGP[G]に、アミド化酵素 (B. B. R. C. Vol. 150, p1275-1281, 1988、EP299790A 等) 用いてアミド化修飾 反応を行った。後述の実施例で示した反応条件では、酵素基質としてのRHHGP[G]及び反応生成物であるアミド化された補助ペプチドが付加したGLP-1(7-36)NH2 (以下、RHHGP-1 と称する)の凝集やゲル化は起こらず、98%の高い反応率(回収率95%)でRHHGP-1 を生成

することができた。これらの結果より、RHHGP[G]を基質としてアミド化酵素反応を行う際の補助ペプチドの有用性が実証された。

アミド化修飾反応後、Kex2プロテアーゼを用いてRHHGP-1 中に存在する補助ペプチドと目的ペプチドの間の切断部位領域を切断した。後述の実施例に係る反応条件では切断効率 9 5 %以上(回収率90%)で反応が進行した。

次に、GLP-1(7-36)NH2を更に精製するため陽イオン交換クロマトグラフィーを行った後、疎水性クロマトグラフィーを行った。全工程の最終収率は約50%であり、純度98%のGLP-1(7-36)NH2が13.5 g得られた。精製に使用した培養液は8リットル相当であり、培養液1リットルあたり約1.68g得られたことになる。この収率及び収量は共に非常に高く、補助ペプチドを用いた本発明に係る製法の有用性が実証できた。即ち、本発明に係る製造法は目的ペプチドを十分に工業的スケールで製造することを実施可能ならしめるものである

GLP-1(7-36)NH₂の製造に係る本発明の意図の一つとして、補助ペプチドが付加したGLP-1(7-37)からなるペプチドを経ることにより、上述のようにアミド化酵素のような修飾酵素等の反応時における凝集性の改善や溶解度を上げるということが挙げられる。そこで、当該有用性があるか否かについて更に検討してみるために、RHHGP[G]、RHHGP-1、GLP-1(7-37)及びGLP-1(7-36)NH₂を精製し、各々のペプチドの溶解度のpH依存性を調べた。その結果、GLP-1(7-37)は予想した通りにpH5.0からpH7.0の範囲で溶解度が低いことが明らかになった。一方、RHHGP[G]はpH4.0からpH6.0付近まで溶解度が高い結果が得られた。この結果により、アミド化酵素反応は弱酸性領域で行なわれるために、酵素基質としては補助ペプチドを有するRHHGP[G]をGLP-1(7-37)の代わりに用いる有用性が確認された。

各ペプチドの溶解度のpH依存性を検討した実験において、RHHGP[G]及びRHHGP-1 は各々pH6.0、pH6.4付近で急激に溶解度が低下した。また、GLP-1(7-36)NH2は経時的に沈殿あるいは微結晶を形成した。従って、RHIIGP[G]及びRHHGP-1 の中性から弱アルカリ領域での溶解度を上げる物質、及び弱酸性から弱アルカリ領域で目的ペプチドの溶解性を維持できる物質があれば、生産工程上非常に有用であると考えられる。

そこで、そのような物質を鋭意検討した結果、反応液にRHHGP[G]及びRHHGP-1 の場合は界面活性剤の添加(例えば、Tween 80、0.1%添加)、GLP-1(7-36)NH2の場合は界面活性剤の添加(例えば、Tween 80、0.3%以上の添加)及び/又は塩の添加(例えばNaC1 100mM以上の添加)により有効に凝集を防ぐことができることを見出し、本発明に係る製法工程に導入してその有用性もあわせて実証することができた。

本発明に係る製造法を用いたGLP-1(7-36)NH2の製造工程について、GLP-1(7-36)NH2の10グラムスケールの精製を行った各工程収率のまとめを表1に示した(生産菌W3110/pGP97ompPRを20リットル培養し、その培養液8リットル相当分を精製に使用した)。

<u>表 1</u> GLP-1(7-36)NH₂生産工程のまとめ

工程	GLP-1(7-37)/ GLP-1(7-36)	単 位 工 程 収 率	全回収率
	NH ₂ 量(g)	(%)	(%)
培養(8 L培養液相当)	26.87	100	100
OmpT反応	22.95	85.4	85. 4
SPセファロースクロマト	20.22	98.8	76.2
アミド化酵素反応	20.70	100	77.0
Kex2酵素反応	18.70	90.4	69.6

MacroPrep HSクロマト 16.78 93.7 62.4 Poros R2クロマト 13.48 80.4 50.2

培養からアミド化酵素反応の工程はGLP-1(7-37) 量、Kex2工程からPoros R2クロマト工程まではGLP-1(7-36)NH2量を示す。GLP-1(7-37)/GLP-1(7-36)NH2量はHPLCのピーク面積とアミノ酸の数比からの換算値から求めた。

表1から明らかなように各工程の単位工程収率は非常に高く、また最終の回収率が約50%と非常に高いことが示された。従って、本発明に係るペプチドの製造法がGLP-1(7-36) NH,の製造において適用可能であり、且つ工業生産レベルでのスケールアップが可能であることは明らかである。更に、0mpTプロテアーゼ及びKex2プロテアーゼによる切断処理反応の工程において単位工程収率が各々85%及び90.4%であることから、設定した各切断部位領域には酵素による切断処理反応に非常に適したアミノ酸配列が用いられていることも確認された。

以上のように、本発明ではインシュリン放出促進活性を有するGLP-1 誘導体の製法を例として、目的のペプチドが本来有する物理化学的性質のため製造工程上問題となる点を補助ペプチドを用いることで改善できることを実証した。具体例として挙げたGLP-1(7-37)及びGLP-1(7-36)NH2に代表されるGLP-1 誘導体の持つ物理化学的性質による製造上の問題は、本発明に係る製法により克服する事が可能であり、本発明が当該GLP-1 誘導体の製造においても有用であることは言うまでもない。

また、上記のGLP-1 誘導体の製造においても保護ペプチドを付加した融合蛋白を用いた製法により行うことができるが、当該融合蛋白から補助ペプチドが付加した目的ペプチドを経て目的ペプチドを得る場合、複数の切断部位領域が設けられるために各領域における

多段階の融合蛋白の切断方法が必要になる。

そこで、各切断部位領域を化学的又は酵素的に切断する方法について検討を行い、特に、後述の実施例において確認された大腸菌OmpTプロテアーゼで切断する方法以外によっても可能であることを確認した。このような、切断部位領域に係るペプチド鎖の部位特異的切断方法の代表例としては、

- (1)保護ペプチド及び目的ペプチドがシステイン残基をそのアミノ酸配列中に含まないことを利用し、保護ペプチドのC末端にシステインを挿入し、シアノ化、アルカリ処理にて該システインN末端側で融合蛋白を特異的に切断する方法、
- (2)各切断部位領域における切断は共にKex2プロテアーゼで行うが、酵素認識部位に異なったアミノ酸配列を用いることで、一方の切断部位領域での反応条件下では他方の切断部位領域での切断が起こらない様にする方法、及び
- (3)各切断部位領域において共にKex2プロテアーゼで切断を行うが、一方の切断部位領域(切断部位領域 2)のアミノ酸を修飾することにより、他方の切断部位領域(切断部位領域 1)に係る切断の反応条件下では、前者の切断部位領域(切断部位領域 2)での切断が起こらない様にし、後者の切断部位領域(切断部位領域 1)での切断後、補助ペプチドと目的ペプチドからなるペプチドを精製し、修飾されたアミノ酸を再度修飾して前者の切断部位領域(切断部位領域 2)をKex2プロテアーゼで切断可能にする方法等が挙げられる。

実施例

以下に、GLP-1 誘導体を目的ペプチドとして、本発明を具体的実施例により更に詳細に説明する。

まず、目的ペプチドとしてGLP-1(7-37)を挙げた場合の製造法と

しては、既に述べたように、常法により、保護ペプチドとGLP-1(7-37)からなる融合蛋白質を発現させ、当該蛋白質から直接GLP-1(7-37)を切り出すことにより製造することができるが、精製工程に関してGLP-1(7-37)の物理化学的性質上、精製中にゲル化あるいは凝集を起こし、極端な回収率の低下や、樹脂再生が不可能になるといった問題が見られた。そこで、補助ペプチドを付加することにより、GLP-1(7-37)の物理化学的性質を変化させ、上記欠点を回避することができた。以下具体的に当該ペプチドの製造法を説明する。

実施例1. プラスミドの構築

GLP-1(7-37) を生産するためにデザインされた融合蛋白質(GP97ompPR) をコードするpGP97ompPR発現プラスミドは、以下に示す 4 段階のステップを経て作製した。なお、制限酵素処理、ライゲーション反応、5'末端のリン酸化、PCR の条件は常法に従った。

(1) <u>ステップ1</u> <u>pG117S4HR6GLP-1</u> の作製

大腸菌0mpTプロテアーゼにより切断されるGP97ompPR を設計する目的で、0mpTプロテアーゼの認識配列であるArg-Arg 配列を有するアミノ酸配列R6(図2参照)をコードするR6合成DNA(図6参照)をpG117S4HGP (特開平9-296000参照)のStuI部位に挿入し、pG117S4HR6GLP-1を作製した(図2)。

(2) ステップ 2 pGP117S4HompRHKRの作製

大腸菌OmpTプロテアーゼによる切断の効率をさらに高めるため、R6部分の配列を変化させた。pG117S4HR6GLP-1 をNsi I 及びHind III で切断して得られる3.2kb の断片 (断片A)、pG117S4HR6GLP-1をBamH I及びHind IIIで切断して得られる0.2kb の断片 (断片B)、及びOmpTプロテアーゼの認識配列であるArg-Arg 配列を有するアミノ酸配列し1 (図3参照)の一部をコードするL1合成DNA (図6参照)を連結させ、pGP117S4HompRHKRを作製した(図3)。

(3) ステップ3 pGP117S4HompRHPRの作製

切断部位領域における大腸菌のmpTプロテアーゼ認識配列とKex2プロテアーゼ認識配列とを異なった配列とするため、Kex2プロテアーゼ認識配列をLys-Arg からPro-Arg に置換することを行った。P1及びP2プライマー(図 6 参照)を合成し、pGP117S4HompRHKRを鋳型としてPCR を行い、0.1kb のDNA 断片を調製した。得られたDNA 断片をBg1 I1及びSph I で処理した後、 pGP117S4HompRHKR をBg1 I1及びHind IIIで切断して得られる3.2kb の断片(断片C)とpGP117S4HompRHKRをSph I 及びHind IIIで切断して得られる0.2kb の断片(断片D)に連結し、pGP117S4HompRHPRを作製した(図 4)。

(4)ステップ4 pGP97ompPRの作製(図5)

保護ペプチド部分をさらに縮小する目的で、 pGP97ompPR を作製した。P3及びP4プライマー(図 6 参照)を合成し、pGP117S4HompRH PRを鋳型としてPCR を行い、DNA 断片を調製した。得られたDNA 断片をPvu I1及びNsi I で処理した後、pGP117S4HompRHPRをPvu I1及びNsi I で切断して得られる3.2kb の断片に連結し、pGP97ompPRを作製した。

作製されたプラスミドpGP97ompPRがコードする融合蛋白(GP97ompPR)のアミノ酸配列を図7に、当該アミノ酸配列をコードするDNA 塩基配列を図8に示す。

実施例 2. 融合蛋白(GP97ompPR) の発現

pGP97ompPR を有する大腸菌W3110 株を30リットル・ジャーファーメンターを用いて、4 g/1 K2HPO4、 4 g/1 KH2PO4、 2.7 g/1 Na2HPO4、 0.2 g/1 NH4C1、 1.2 g/1 (NH4)2SO4、 4 g/1 酵母エキス、 2 g/1 MgSO4・7H2O、 40 mg/1 CaCl2・2H2O、 40 mg/1 FeSO4・7H2O、 10 mg/1 MnSO4・nH2O、 10 mg/1 AlCl3・6H2O、 4 mg/1 CoCl2・6H2O、 2 mg/1 ZnSO4・7H2O、 2 mg/1 Na2MoO4・2H2O、 1 mg/

1 CuCl: ・2H₂O, 0.5 mg/1 H₃BO₁, 10mg/1テトラサイクリンを含む培地(20L、pH7.0)で、培養温度を12時間までは32℃、その後は37℃とし、グルコースを添加しながら、24時間にわたり培養を行った。培地pHは28%アンモニア液を添加し、pH7.0に制御した。図9は菌体濃度(0D660)の推移と各サンプリング時点における融合蛋白質(GP97ompPR)の発現を、16% SDS-PAGEにより調べた結果である。GP97ompPR は封入体として発現し、培養終了時には全菌体蛋白質の30%以上を占めた。

培養後、マントンゴリーンホモジナイザー(15M-8TA)を用いて、培養液を500Kg/cm2の条件でホモジナイズ処理し、遠心機により沈殿画分(封入体)を回収した。次に得られた沈殿を洗浄するため、培養液と等量の脱イオン水を添加し、懸濁後、再度遠心分離を行い、沈殿を回収した。この洗浄操作をさらにもう一度繰り返し、最終的に得られた沈殿を適量の脱イオン水に懸濁した。

実施例3. GP97ompPR の大腸菌OmpTプロテアーゼによるプロセッシング

得られた封入体懸濁液を0D660 の値が1000となるように希釈した後、その1000 ml を採取し、pH未調整の1M Tris-HC1 を250 ml、0.5M EDTA(pH8.0)を10 ml、粉末尿素1200 gを添加し、その後、脱イオン水を加え最終容量を5000 ml とした。次に、塩酸を用いてpHを7.5 に調整し、37℃で2 時間加温した。この操作により封入体中に存在している大腸菌0mpTプロテアーゼが働き、GP97ompPR を切断し、RHHGP[G]が遊離された。図10はGP97ompPR からのRHHGP[G]の切り出しを、逆相HPLCにより分析した結果である。分析はYMC PROTEIN-PRカラムを用い、溶液A に0.1%トリフルオロ酢酸を含む10% アセトニトリル溶液、溶液B には0.095%トリフルオロ酢酸を含む70% アセトニトリル溶液を用い、1m1/min の流速にて、溶液B を13分間で44

%から70%とする直線濃度勾配で行った。本操作により85% のGP97 ompPR が切断を受け、反応終了後の試料には、RHHGP[G]に相当するビークが得られた(図21A)。

なお、大腸菌のmpTプロテアーゼを用いた切断処理による融合蛋白からの補助ペプチドが付加したGLP-1(7-37) の切出しはpGP97ompPR由来の融合蛋白に限ったものではなく、実施例 1 で作製されたpG117S4HR6GLP-1 、pGP117S4HompRHKR及びpGP117S4HompRHPR由来の融合蛋白質においても同様に可能であった。これらのプラスミド由来の融合蛋白のアミノ酸配列を図 1 1、図 1 2 及び図 1 3 に示す。

実施例 4. RHHGP[G]の精製

大腸菌のmpTプロテアーゼ反応後、尿素、Tween 80をそれぞれ、7M、0.1%となるように添加した後、NaOHにてpHを8.0 とした。その後、遠心分離して上清を得た。SP-Sepharose BigBeads (アマシャム・ファルマシアバイオテクノロジー社)を充塡したカラムを100 mM Tris HC1 (pH8.0) / 5 M尿素 / 0.1% Tween 80にて平衡化した。上記の上清を平衡化したカラムに添加し、同平衡化液にて洗浄、次いで、0.2 M NaC1 / 20 mM Tris HC1 (pH8.0) / 0.1% Tween 80 にて洗浄し、0.5 M NaC1/20 mM Tris HC1 (pH8.0) / 0.1% Tween 80 にて溶出した (図14)。

本溶出液中のRHHGP[G]の純度は98%と非常に高かった。補助ペプチド付加および、低圧クロマトカラムからのステップ溶出という簡便な工程で、このような高純度のペプチドが得られた理由は、補助ペプチド設計の際に、親水性アミノ酸の導入や等電点を考慮しイオン交換カラムでの精製を行ったことによる。

以上の結果が本工程以降の精製工程の省力化に大きく寄与したことを、実施例 5 で示す。

実施例 5. RHHGP[G]からのGLP-1(7-37) の切り出し及び精製

実施例 4 で精製されたRHHGP[G]を次に示す反応液組成とし、Kex2プロテアーゼによるプロセッシングを行った。反応液組成;5.0 mg/m1 RHHGP[G], 20 mM Tris HCl, 0.1% Tween 80, 0.3 M NaCl, pH 8.0, 2.0 mM CaCl₂, 8000 unit/m1 Kex2プロテアーゼ(約1.0 mg/L)。1 時間で9 5 %の反応率を得た(図15-B)。本反応中、GL P-1(7-37) の沈殿形成は観察されなかった。

酵素反応後、直ちに本反応液に酢酸アンモニウムを最終10 mM となるように添加し、塩酸にてpH4.5 とした。10 mM 酢酸アンモニウム(pH 4.5)で平衡化したPoros R2カラムに、10 mg GLP-1(7-37)相当量 / 1 ml 樹脂となるように負荷し、同平衡化液つづいて0.2%酢酸/10% アセトニトリルで洗浄し、0.2%酢酸/40% アセトニトリルで溶出した。アセトニトリルを除去したのち、凍結乾燥品を得た。GLP-1(7-37)の回収率は80%で、純度は99%であった(図15-C)。

保護ペプチドと目的ペプチドからなる融合蛋白質から直接GLP-1(7-37)を切り出す方法(例えば、特開平9-296000参照)と本発明の方法の比較を表 2 に示す。

表 2 GLP-1(7-37) 生産工程の比較

工程	純 度 (%)	単位工程収率 (%)	全回収率(%)
Kex2酵素反応	15	·	100
酸沈殿処理	- .	68	68
ろ過	75	8.8	60
陽イオン交換クロマト	95	95	57
逆相クロマト	99	72	41

R

<u>A</u>

工程	純 度 (%)	単位工程収率(%)	全回収率 (%)
OmpT反応	24	-	100
ろ過	24	90	90
陽イオン交換クロマト	99	99	89
Kex2酵素反応	96	90	80
逆相クロマト	98	80	64

Aは、保護ペプチドと目的ペプチドからなる融合蛋白質から直接 GLP-1(7-37) を切り出す方法による。Bは、補助ペプチドが付加された目的ペプチドにさらに保護ペプチドが付加された融合蛋白質からGLP-1(7-37) を切り出す方法による。

RHHGP[G]を中間体とすることで、純度 9 9 %のGLP-1(7-37) が簡便かつ高収率で得られた。本精製方法ではHPLCを使用しないため、工業的スケールへの拡大が容易であることは言うまでもない。

次に、目的ペプチドに修飾が必要な場合の例を以下に示す。GLP-1(7-36)NH2はアミド化ペプチドであるためにアミド化修飾反応が必要である。

<u>実施例 6</u>. 補助ペプチドが付加したGLP-1(7-37) のアミド化修飾 反応

アミド化酵素を用いて実施例 4 で得られたRHHGP[G]をRHHGP-1 に変換した。RHHGP[G]を基質とした場合の反応条件を決定するため、0.5 mlの反応容積でp H、温度、硫酸銅濃度、カタラーゼ濃度、基質濃度、Lーアスコルビン酸、及び濃度アミド化酵素濃度の至適化を行った。また、RHHGP[G]とRHHGP-1 の分離分析は、イオン交換HPLCカラム(Poros S/H 、パーセプティブバイオシステム社)を用い、バルビツールを除く30 mM Britton - Robinson緩衝液(以下、BR緩衝液)存在下、pH勾配溶出(6.0~9.0)で行った。

本反応条件の至適pHは5.0~5.5 であった(図16)。至適反応条件は10 mM 酢酸ナトリウム(pH 5.0)、5.0 μ M 硫酸銅、0.5 g/1 L-rスコルビン酸、1 μ M / mlカタラーゼ、5.0 mg / ml RHHG P[G]、温度32℃、1500 unit / mlrミド化酵素であった。本条件に後述の実施例11において判明した凝集抑制効果を有するTween 80(0.1%)を加え、RHHGP[G]溶液 5 リットルを上記の条件で反応を行い、EDTAを添加することで反応を停止した。本条件下による反応の結果、RHHGP[G]は1時間で98%以上の反応率でRHHGP-1 に変換された(図17)。

実施例 7. RIIIIGP-1 からKex2プロテアーゼによる $GLP-1(7-36)NH_2$ の切り出し

Kex2プロテアーゼによるプロセッシング反応は、基質となる部分の配列によってpH依存性及び活性変化を示す(EP794255A)。そこで、0.5 m1反応容量でpH、塩化カルシウム濃度及び添加酵素量の至適化を行った。RHHGP-1 の場合は、pH8.0 で最大となることが示された(図18)。RHHGP-1 を基質にした場合の至適反応条件は、10 mM Tris・HC1 (pH8.0)、1 mM塩化カルシウム、8,000 units / ml Kex2 プロテアーゼ及び反応温度30~32℃とした。後述の実施例11の結果から、反応溶液中のNaC1濃度を0.1 M以上とし、更にTwee n 80を0.1 % 反応溶液中に添加することで凝集を回避する事ができた。

実施例 6 のアミド化反応後の試料溶液本条件で30℃で 2 時間反応させることで、95%以上の反応率を得た(図 2 1 C)。本反応中、GLP-1(7-36)NH₂の沈殿形成はみられなかった。

実施例 8. GLP-1(7-36)NH2の精製

微量混在する不純物を除去するため、陽イオン交換樹脂(MacroPrep High-S、バイオラッド社)を用い、pH勾配溶出にてGLP-1(7-36

NH₂と分離した。カラムを、20 mM BR緩衝液(pH 4.5) / 20 mM N aC1 / 0.3 % Tween 80にて平衡化した。試料溶液の組成を0.3 M Na C1 / 0.3 % Tween 80 、pH 4.5 とした。当該試料溶液をカラムに添加し、平衡化液にて洗浄した。平衡化液(A液)と、溶出液(B液;平衡化液と同じ組成でpH 7.0)を用いて50 % B液から100 % B液へのリニアグラジエントにて、GLP-1(7-36)NH₂の溶出を行い(図19)、不純物の割合を0.5 % 未満とした(図20)。本工程で、実施例7までに添加された各試薬、未反応物及び微量不純物の大半は除去され、純度98%以上のGLP-1(7-36)NH₂が得られた(図21D)。プールされた溶液はpH4.5 、4℃にて保存した。

実施例 9. GLP-1(7-36)NII2の最終精製

前述の実施例 8 で純度 9 8 %以上のGLP-1(7-36)NH2が得られた。しかし、医薬品として使用する場合には目的ペプチドの純度もさることながら、非ペプチド性のエンドトキシンの混入を避けなければならない。そこでペプチド性医薬品最終精製に頻繁に使用される分取逆相HPLCカラムを使用し、エンドトキシンなどの除去を試みたが、カラム内でGLP-1(7-36)NH2の凝集及び/又はゲル化が起こる場合があった。GLP-1(7-36)NH2の易凝集性は、スケールアップに際し、大きな危険因子となることが予測された。

一方、疎水性クロマト樹脂は、逆相クロマト樹脂と同様に、物質の疎水性を利用して吸着させるものであるが、その官能基の密度は一般に低く、吸着容量は5-15mg/ml樹脂である。しかし、担体の種類、官能基の種類は豊富で、GLP-1(7-36)NH。の様な易凝集性を有するペプチドでも、高回収率を与えるものを選べる可能性がある。そこで種々の疎水性クロマト樹脂を検討した結果、ブチル基、イソブチル基、ヘキシル基あるいはフェニル基を持つ親水性の担体からなる樹脂、あるいは、Poros R2に代表されるポリスチレン系

の樹脂が適していることが判明した。以下、そのような樹脂の一つとして、Poros R2(パーセプティブバイオシステム社)の例を示す

本樹脂のGLP-1(7-36)NH₂に対する最大吸着容量は約12mg/m 1樹脂と、他の疎水性クロマト用樹脂にくらべて高く、溶出時のGL P-1(7-36)NH₂濃度が高くなり、凍結乾燥に適していることが示唆された。

800 m1のカラムを、10mM酢酸アンモニウム(pH4.5)にて平衡化し、実施例8における試料溶液を添加し、平衡化液で洗浄後、さらに0.2 %酢酸で洗浄し、0.2 %酢酸/40%アセトニトリルで溶出した。GLP-1(7-36)NH2の回収率は80%で、純度は98%であった(図21E)。本標品は、揮発性の酸を低濃度含むのみであり、アセトニトリル除去の後、容易に凍結乾燥が行えた。凍結乾燥品を再溶解し、ゲル化法(リムルスES-II テスト、和光純薬社)にてエンドトキシンを測定した結果、検出限界以下(0.03u/mg以下)であった。上記の方法で示したカラム操作で高収率かつ高純度のGLP-1(7-36)NH2が精製でき、さらに凍結乾燥できる溶媒で溶出できることは産業上非常に有用であることは言うまでもない。

実施例10.補助ペプチドを用いることによる凝集性の緩和

補助ペプチドを利用する本発明に係る製造法においては、従来の製法では問題となっていた目的ペプチドの物理化学的性質に由来する特性である凝集性の改善を一つの目的としているので、当該改善の有無を検討する必要がある。そこで本実施例においては、補助ペプチドとGLP-1(7-37) からなるペプチド及びアミド化された補助ペプチドとGLP-1(7-36)NH2からなるペプチドの凝集性がGLP-1(7-37) 及びGLP-1(7-36)NH2に比較して改善されているかを検討した。

まず、RHHGP[G]を精製し、その凝集性がGLP-1(7-37) に比べて改

善されているかを調べるとともに凝集を抑制する物質の検索を行った。各ペプチドの試料は、RHHGP[G]についてはSP-Sepharose BigBe ads クロマトグラフィーにて精製した試料を、RHHGP-1 については精製したRHHGP[G]をアミド化した試料を、GLP-1(7-37) については精製したRHHGP[G]をKex2プロテアーゼにより切断した試料を、GLP-1(7-36)NH.についてはRHHGP-1 をKex2プロテアーゼにより切断した試料を、各々Poros R2カラムを用いてアセトニトリル濃度勾配溶出することで純度 9 8 %にまで精製し、凍結乾燥して調製した。

凝集性は各ペプチドの溶解性に密接に関係していると考えられるので、各ペプチドの溶解度のpH依存性を検討した。その結果を図22及び図23に示す。GLP-1(7-37)はpH5.5からpH6.5、即ち、アミド化酵素反応条件至適pHである弱酸性から中性pH条件下では溶解性が低く、製造中間体として不適切であることが判る。

一方、RHHGP[G]及びRHHGP-1 は、pH 6.2付近から溶解度が低下するものの、少なくともpH 5 からpH6 までは十分な溶解性が保持できるため、アミド化酵素反応条件でも十分効率よく反応が行えることが確認できた。

実施例11. 凝集抑制をもつ物質のスクリーニング

補助ペプチドを利用する本発明に係る製造法を用いたGLP-1(7-36)NH2の工業的レベルでの製造方法の確立において、中性から弱アルカリ性の領域でRHHGP[G]及びRHHGP-1 の溶解度を上げる物質、及び弱酸性から弱アルカリ性の領域でGLP-1(7-36)NH2の溶解性を維持できる物質があればさらに良い(GLP-1(7-36)NH2は図22に示した試験においてGLP-1(7-37)より遅れるが、pH5.3からpH8.0の広い範囲で経時的に沈殿あるいは微結晶を形成することが明らかになった)。

上記の各ペプチドの溶解性を維持できるように溶液に添加する物

質として、界面活性剤、糖類、塩、有機溶媒等が候補として考えられる。そこで、界面活性剤としてはTween 80、Triton X-100、糖類としてはグルコース、マンニトール、シュークロース、塩としてはNaC1、有機溶媒としてはエタノール、グリセロール、DMSOについてその凝集抑制能の検討を行った。

RHHGP[G]、 RHHGP-1及びGLP-1(7-36)NH₂の10 mg / m1水溶液を調整し、予め0. 1 m l の300 mM BR 緩衝液(pH7.9)、及び0.1 mlの1 0 倍濃度の被検物質溶液が入ったプラスチックチューブに、各ペプチド溶液0.8 mlを加え、pHをRHHGP[G]はpH7.5 - 8.5 、RHHGP-1はpH8.0 、GLP-1(7-36)NH₂はpH 6.5と凝集の起こりやすいp Hに調製し、濁度(6 6 0 n m の吸光度)を経時的に測定した。得られた結果の内、Tween 80、 NaCl 及び温度による凝集能抑制効果を図23及び図24に示した。

RHHGP[G]、RHHGP-1 は0.1 % Tween 80にて沈殿形成が強く抑制されたが(図 2 3 A)、GLP-1(7-36)NH2では0.3 % 以上のTween 80(図 2 3 B)、100 mM以上のNaCl(図 2 4 C)及び/又は低温(図 2 4 D)で凝集が抑制されることが判明した。

上記の結果により、実際の生産系でのpH条件に関して、本発明に係るペプチドの製造法を用いる場合、反応液に塩及び界面活性剤の添加が目的ペプチドの凝集抑制に有用であることが実証され、高純度かつ高収量で目的のペプチドを生産することができることが示された。

実施例12. 切断部位領域における切断方法

切断部位領域において切断処理をする際に用いられる切断方法について検討した。即ち、(1)切断部位領域1:シアノ化/アルカリ化、切断部位領域2:Kex2プロテアーゼ、(2)切断部位領域1:Kex2プロテアーゼ、及び(

3)切断部位領域1:DTNB(5、5'-ditiobis-(2-nitrobenzoic acid))付加/Kex2プロテアーゼ、切断部位領域2:還元/Kex2プロテアーゼである場合の各切断方法について、目的ペプチドをGLP-1(7-37)及びGLP-1(7-36)NH2として検討したところ、本発明に係る製法おいて保護ペプチドを有する融合蛋白を用いる場合に、多段階切断反応による切断が化学的又は酵素的処理により実施可能であることが明らかとなった。

各方法に係る結果を以下に示す。切断反応後に生成する補助ペプチドとGLP-1(7-37)からなるポリペプチドの親水性を増加させ、中性付近での溶解性を改善するために、全ての補助ペプチド中に4連続するヒスチジン配列を導入した。

A. <u>(1) の方法を用いたシステイン残基での特異的切断を経由</u> するGLP-1(7-37) の製造方法

本方法は、目的ペプチドがシステインを含まない場合、一方の切断部位領域中(切断部位領域1)のシステイン残基を化学的に切断する方法であり、例えば、発現した融合蛋白を得た後にCADP(1-c yano-4-dimethylamino-pyridinium tetrafluoroborate)でシステイン残基をシアノ化した後、アルカリ(NaOH)処理することより切断部位領域のシステインのN-末端側で特異的に切断できることを確認した。

即ち、まず補助ペプチドとしてGCHHHH(配列番号: 5)のアミノ酸配列に隣接した切断部位領域1のアミノ酸配列としてPGGRPSRHKR(配列番号: 6)を選択し、融合蛋白中に導入した。当該融合蛋白を30mg/ml の濃度で、50mM Tris・HCl (pH8.2)、5M尿素、10m M DTT (dithiothreitol)に溶解し、30℃の恒温槽中で30分保温してシステインを完全に還元した。これを10mM Tris・HCl (pH8.2)、5M尿素で平衡化したゲルろ過カラム(ファルマシア社製 PD10カ

WO 99/38984 PCT/JP99/00406

ラム)にてDTT を除去した。

システインをシアノ化するため、酢酸を最終0.1Mとなるように加え、さらにCADPをシステインの 4 倍モル量加え、30℃で1時間反応させた。残存SH基を、DTNBで定量することで、シアノ化反応を検証した。

10mM酢酸、5M尿素で平衡化したPD10カラムで過剰の試薬を除去し、NaOHを最終50mMになるように添加し室温で30分放置してシアノ化されたシステイン部位で上記融合蛋白を特異的に切断した。切断率は約50-70 %であった。

他方の切断部位領域(切断部位領域 2)については実施例 7 と同様の方法で切断処理を行った。

B. <u>(2) の方法を用いたKex2プロテアーゼによる切断部位領域</u> <u>の切断</u>

各切断部位領域はKex2プロテアーゼ切断部位領域を有しているが、一方の切断部位領域(切断部位領域 2)のアミノ酸配列は他方の切断部位領域(切断部位領域 1)での切断に係る反応条件では殆ど切断されないように設計された。

Kex2プロテアーゼの切断部位領域に係る切断認識配列の最適化において、P1、P2サブサイトの他に、P4サブサイトのアミノ酸残基に電荷が本酵素の活性に大きく影響すること、特にP4サブサイトに酸性アミノ酸が存在すると、一定の条件下では融合蛋白が全く切断されないことが知られている(特開平9-296000)。これを利用し、例えば、補助ペプチドとしてのHRHKRSHHHH(配列番号:7)からなるアミノ酸配列に隣接した切断部位領域2のアミノ酸配列をSDHKR(配列番号:8)としてP4サブサイトにアスパラギン酸(D)を導入したところ、融合蛋白中の切断部位領域1に係るKex2プロテアーゼによる切断では90%以上が切断されたが、切断部位領域

WO 99/38984 PCT/JP99/00406

2 は切断から保護された。この結果より、P 4 サブサイトにアスパラギン酸を導入することで、切断部位領域 1 が特異的に切断されることが明らかになった。

得られた補助ペプチドが付加したGLP-1(7-37)を分離するため、イオン交換とゲルろ過機能を有するカラムクロマトグラフィー(例えば、セルロファインC-200カラムクロマトグラフィー)を行ったところ、目的の補助ペプチドが付加したGLP-1(7-37)が特異的に吸着された。一部未反応の融合蛋白も吸着するが、塩濃度勾配で容易に分離できた。回収率は94%であった。なお、このクロマトグラフィーは他の補助ペプチドが付加したGLP-1(7-36)NH2にも適用できる

次に、アミド化修飾反応を行った後に、補助ペプチドが付加したGLP-1(7-36)NH2からGLP-1(7-36)NH2を切りだすために切断部位領域2においてKex2プロテアーゼによる切断処理を行った。尿素(変性剤)が存在し且つアルカリ性という第一切断条件下では、Kex2プロテアーゼは切断部位領域2を切断しなかったが、尿素がない状態では、適当なpHを選ぶことで、切断部位領域2を認識できることが判明した。最適pHは6.5-7.3 で、切断部位領域1における切断反応条件のpH8.2 では切断されにくかったことが示された。

これは、上記補助ペプチドが付加したGLP-1(7-36) NH2 が、それに保護ペプチドが更に付加した融合蛋白とは異なり、尿素非存在下でも、広いpH領域で可溶性であるためである。そこでKex2プロテアーゼを反応させ、逆相HPLCにてペプチドを分離定量し98%以上の切断で終了とした。本系は反応液中に尿素を含んでいないため、Kex2プロテアーゼの失活はほとんど起こらない。そのため必要なKex2プロテアーゼ量は基質とのモル比で1:20000~1:40000 と極端に少なくてすむ利点がある。

上記のように、各切断部位領域に係る切断処理において同一の酵素を使用することでGLP-1(7-37)及びGLP-1(7-36)NH₂が生産できることを実証することができた。

C. (3) の方法を用いたシステインの特異的修飾を利用する切断方法

本方法は上記B. (2)の方法とほぼ同様の方法であるが、目的ペプチドにシステイン残基が存在しない場合、一方の切断部位領域(切断部位領域 2)のP4サプサイトに導入したシステイン残基を修飾、即ちシステインの側鎖をDTNB(dithionitriobenzoic acid)で処理を行うことで他方の切断部位領域(切断部位領域1)に係るKex2プロテアーゼ切断反応時の切断から保護し、補助ペプチドが付加したGLP-1(7-37)からなるペプチドを得た後に還元を行い、切断部位領域2をKex2プロテアーゼで切断する方法である。このような修飾反応にはスルフォン酸化、DTNBによる非対称ジスルフィド化が代表例として挙げられるが、システイン側鎖に負電荷を与える方法であればよく、特に限定されるものではない。例えば、補助ペプチドとしてのHRHKRSHHHH(配列番号:7)からなるアミノ酸配列に隣接した切断部位領域2のアミノ配列をSCHKR(配列番号:24)として融合蛋白に導入する。

上記のようにデザインされた融合蛋白を発現させ、得られた融合蛋白にDTNB処理を行い、システインを非対象ジスルフィドとした。完全にシステインが修飾されていることを確認後、Kex2プロテアーゼによる切断処理反応を行い、定量的に補助ペプチドの付加したGLP-1(7-37)からなるペプチドが得られることを確認した。即ち、切断部位領域2においてKex2プロテアーゼのアミノ酸配列認識部位のP4サブサイトをシステインとし、その側鎖特異的に負の電荷を導入することで、切断部位領域1に係るKex2プロテアーゼによる切断

時に切断部位領域2は切断から保護された。

次に、上記Bと同様に精製及びアミド化反応を行い、DTT を加えて補助ベプチドが付加したGLP-1(7-36)NH₂を還元し、疎水性カラムクロマトグラフィーにより純度98%まで精製し凍結乾燥を行った。本品を5 mg/ml の濃度で20 mM BisTris (pH7.0), 2 mM塩化カルシウムに溶解し、1000ユニット/ mlのKex2プロテアーゼを加え、30℃で反応させたところ、補助ペプチドが付加されたGLP-1(7-36)NH₂が生成した。

本実施例では切断部位領域2を還元状態で行ったが、正電荷を持たせるような修飾を行って、Kex2プロテアーゼに対する反応性を変化させることも可能であることは言うまでもない。

産業上の利用可能性

本願発明により、生理活性ペプチドを工業的スケールで効率的にかつ安価に製造する方法が提供された。具体的には本願明細書の実施例に記載されているように、今まで、工業的スケールでの生産が困難であったGLP-1 誘導体が高純度、且つ高収量で生産することが可能であることが示された。本願発明に係る製法はGLP-1 誘導体以外の生理活性ペプチドの効果的な製造に用いることができ、産業上の有用性は極めて高い。

請求の範囲

1. 目的の生物学的活性を有するペプチドの製造方法であって、 工程(1);補助ペプチドが付加された目的ペプチド又は補助ペ プチドが付加された目的ペプチドにさらに保護ペプチドが付加され た融合蛋白質、をコードする塩基配列を有する発現ベクターにより 形質転換された細胞を培養して、当該培養物から前記補助ペプチド

工程(2);工程(1)で融合蛋白質を得た場合、当該融合蛋白質から補助ペプチドが付加された目的ペプチドと保護ペプチドを切断分離し、所望によりさらに精製する工程:

が付加された目的ペプチド又は前記融合蛋白質を採取する工程:

工程(3);目的ペプチドに修飾が必要な場合、工程(1)又は 工程(2)で得られた補助ペプチドが付加された目的ペプチドに修 飾反応を施す工程、

工程(4);工程(1)、工程(2)又は工程(3)で得られた 補助ペプチドが付加された目的ペプチドから、補助ペプチドと目的 ペプチドを切断分離し、所望によりさらに精製する工程;並びに

工程(5);工程(4)で得られた目的ペプチドを精製する工程

を含んでなる方法。

- 2. 前記補助ペプチドが 5 ~ 5 0 のアミノ酸残基を有することを 特徴とする請求項 1 記載の製造方法。
- 3. 前記補助ペプチドが付加された目的ペプチドの等電点が8~12であることを特徴とする請求項1乃至2記載の製造方法。
- 4. 前記目的ペプチドが200以下のアミノ酸残基を有することを特徴とする請求項1乃至3のいずれか1項記載の製造方法。
 - 5. 前記保護ペプチドが30~200アミノ酸残基を有するこ

とを特徴とする請求項1乃至4のいずれか1項記載の製造方法。

- 6. 精製工程において、イオン交換樹脂を用いることを特徴とする請求項1乃至5のいずれか1項記載の製造方法。
- 7. イオン交換樹脂が陽イオン交換樹脂であることを特徴とする請求項6記載の製造方法。
- 8. 精製工程において逆相または、疎水性クロマトグラフィーを用いること特徴とする請求項1乃至5のいずれか1項記載の製造方法。
- 9. 目的ペプチドの溶解性を維持するために工程(1)~(5)の少なくとも1つの工程において界面活性剤及び/又は塩を添加することを特徴とする請求項1乃至8のいずれか1項記載の製造方法
- 10. 宿主細胞が原核細胞又は真核細胞であることを特徴とする請求項1乃至9のいずれか1項記載の製造方法。
- 11. 宿主細胞が大腸菌であることを特徴とする請求項10記載の製造方法。
- 12.補助ペプチドが付加された目的ペプチドの等電点が8~12であることを特徴とする請求項1乃至11のいずれか1項記載の製造方法。
- 13.目的ペプチドがアミド化ペプチドであることを特徴とする請求項1乃至11のいずれか1項記載の製造方法。
- 14.目的ペプチドがインシュリン放出促進活性を有するGLP-1 誘導体であることを特徴とする請求項1乃至11のいずれか1項記載の製造方法。
- 15. 補助ペプチドが付加されたインシュリン放出促進活性を有するGLP-1 誘導体の等電点が8~12であることを特徴とする請求項14記載の製造方法。

- 16. インシュリン放出促進活性を有するGLP-1 誘導体の等電点が4.5~9.0 であることを特徴とする請求項14乃至15記載の製造方法。
- 17. インシュリン放出促進活性を有するGLP-1 誘導体の等電点が5.5~7.5 であることを特徴とする請求項14乃至15記載の製造方法。
- 18. 精製工程においてイオン交換樹脂を用いることを特徴とする請求項12乃至17のいずれか1項記載の製造方法。
- 19. イオン交換樹脂が陽イオン交換樹脂であることを特徴とする請求項18記載の製造方法。
- 20.精製工程において逆相または、疎水性クロマトグラフィーを用いること特徴とする請求項12乃至17のいずれか1項記載の製造方法。
- 21.目的ペプチドの溶解性を維持するために界面活性剤及び/ 又は塩を添加することを特徴とする請求項12乃至17のいずれか 1項記載の製造方法。
- 2 2. 得られたインシュリン放出促進活性を有するGLP-1 誘導体の純度が98%以上であることを特徴とする請求項14乃至21のいずれか1項記載の製造方法。
- 23. 最終精製物におけるエンドトキシンの含有量が0.03ユニット/mg以下であることを特徴とする請求項1乃至22のいずれか1項記載の製造方法。
- 2 4. 請求項1 4 乃至2 3 のいずれか1 項記載の製造方法により得られたインシュリン放出促進活性を有するGLP-1 誘導体を有効成分とする糖尿病治療用医薬組成物。
- 25.補助ペプチドが付加された目的ペプチド又は補助ペプチドが付加された目的ペプチドにさらに保護ペプチドが付加された融合

WO 99/38984 PCT/JP99/00406

蛋白質をコードする塩基配列を有する発現ベクター。

26. 補助ペプチドが付加された目的ペプチド又は補助ペプチドが付加された目的ペプチドにさらに保護ペプチドが付加された融合蛋白質をコードする塩基配列を有する発現ベクターで形質転換された原核又は真核宿主細胞。

27. 宿主細胞が大腸菌であることを特徴とする請求項26記載の細胞。

R 6 の配列

対応するアミノ酸配列

5. CAG 3. GTC GIn I

ATG CAT GGT TAT GAC GCG GAG CTC CGG CTG TAT CGC CGT CAT CAC CGG TAC GTA CCA ATA CTG CGC CTC GAG GCC GAC ATA GCG GCA GTA GTG GCC Met His Gly Tyr Asp Ala Glu Leu Arg Leu Tyr Arg Arg His Arg

(配列番号:11)(配列番号:12)

ည်ကိ TCC AGG Ser GGA CCT AGG (Ser TGG GGT CGT 1 ACC CCA GCA A Trp Gly Arg S

L1の配列

3 (配列番号13) 5 (配列番号14) CTG TAT CGC CGT GAT CAC GGT TCC G GAC ATA GCG GCA GTA GTG CCA AGG CCT AG GAC GCG GAG CTC CGC CTG CGC CTC GAG GCG TAT 5. T GGT T 3' ACGTA CCA A

5'GAC TCA GAT CTT CCT GAG GCC GAT 3'(配列番号:15) P 1 プライマーの配列

5'AAA GGT ACC TTC CGC ATG CCG CGC ATG TCG AGA AGG 3'(配列番号:16) 2プライマーの配列

5'AGG CCA GGA ACC GTA AAA AG 3'(配列番号:17) P 3 プライマーの配列

5. AAA ATG CAT CGC ATC GTA ACC GTG CAT CT 3'(配列番号:18) P 4 プライマーの配列

								_ •	3	3707	LOU	Gln	Ara	Lvs	15
Met '	Thr	Met	Ile	Thr	Asp	Ser	Leu	Ala	Val	vai	рец	Gln		 -	
_		A CD	Δen	Pro	Gly	Val	Thr	Gln	Leu	Asn	Arg	Leu	Ala	Ala	30
Asp	TTP	Asp		.1-	Cor	ጥተገ	Ara	Asn	Ser	Asp	Asp	Ala	Arg	Thr	45
His	Pro	Pro	Phe	Ala	Ser	TLP	ni g		_		Clar	. Glu	מאינע	Arg	60
Asp	Arg	Pro	Ser	Gln	Gln	Leu	Arg	Ser	Leu	Asn	GIY	Giu	112	Arg	5 5
Dhe	Ala	Trp	Phe	Pro	Ala	Pro	Glu	Ala	Val	Pro	Ala	Ser	Leu	Leu	75
FIIC			T	Pro	Glu	Ala	Asp	Thr	· Val	. Val	. Val	Pro	Ser	Asn	90
Glu	Ser	Asp	ьeu	rio	02-	_		Mot	. ui-	: G]\	, TVI	Asp	Ala	Glu	105
Trp	Glņ	Met	His	Gly	, Tyr ↓	Asp) Ale	i Met	. 1112	, כבט	-1-	_	0	Glu	120
Leu	Arg	Leu	туг	Arg	Arc	His	: His	Gly	/ Se	c Gly	y Se	r Pro	Sei	<u>Arq</u>	120
			Y	- 21.		Gla	, Thi	r Ph	e Th	r Se	r As	p Va	l Se	r Ser	135
<u>His</u>	Pro	Arc	ī Hrz	S Alc	7 611	<u> </u>			-				- TO	u Wal	150
Tyr	Lev	Gli	ı Gly	y Gli	n Ala	a Ala	a Ly	s Gl	u Ph	e Il	e Al	a TT	<u>p ne</u>	u Val	
			g Gl												
TĀS			15	4											
				/ 3	51 Fil 3	4早.	207								

(配列番号:20)

pGP97ompPRにコードされた融合蛋白(GP97ompPR)のアミノ酸配列

lac PO CCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCG

GATAACAATTTCACACAGGAAACAGCT ATG ACC ATG ATT ACG GAT TCA CTG GCC Met Thr Met Ile Thr Asp Ser Leu Ala GTC GTT TTA CAA CGT AAA GAC TGG GAT AAC CCT GGC GTT ACC CAA CTT Val Val Leu Gln Arg Lys Asp Trp Asp Asn Pro Gly Val Thr Gln Leu AAT CGC CTT GCA GCA CAT CCC CCT TTC GCC AGC TGG CGT AAT AGC GAC Asn Arg Leu Ala Ala His Pro Pro Phe Ala Ser Trp Arg Asn Ser Asp GAC GCC CGC ACC GAT CGC CCT TCC CAA CAG TTG CGC AGC CTG AAT GGC Asp Ala Arg Thr Asp Arg Pro Ser Gln Gln Leu Arg Ser Leu Asn Gly GAA TGG CGC TTT GCC TGG TTT CCG GCA CCA GAA GCG GTG CCG GCA AGC Glu Trp Arg Phe Ala Trp Phe Pro Ala Pro Glu Ala Val Pro Ala Ser TTG CTG GAG TCA GAT CTT CCT GAG GCC GAT ACT GTC GTC GTC CCC TCA Leu Leu Glu Ser Asp Leu Pro Glu Ala Asp Thr Val Val Val Pro Ser AAC TGG CAG ATG CAC GGT TAC GAT GCG ATG CAT GGT TAT GAC GCG GAG Asn Trp Gln Met His Gly Tyr Asp Ala Met His Gly Tyr Asp Ala Glu CTC CGC CTG TAT CGC CGT CAT CAC GGT TCC GGA TCC CCT TCT CGA CAT Leu Arg Leu Tyr Arg Arg His His Gly Ser Gly Ser Pro Ser Arg His CCG CGG CAT GCG GAA GGT ACC TTT ACC AGC GAT GTG AGC TCG TAT CTG Pro Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu GAA GGT CAG GCG GCA AAA GAA TTC ATC GCG TGG CTG GTG AAA GGC CGT Glu Gly Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg 462 Gly *** 終止コドン

TTGACAGCTTATCATCGATAAGCTTTA

(配列番号:19)

Fig.9

Fig.10

Met Thr Met Ile Thr Asp Ser Leu Ala Val Val Leu Gln Arg Lys Asp Trp Asp Asn Pro Gly Val Thr Gln Leu Asn Arg Leu Ala Ala His Pro Pro Phe Ala Ser Trp Arg Asn Ser Asp Asp Ala Arg Thr Asp Arg Pro Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu Trp Arg Phe Ala Trp Phe Pro Ala Pro Glu Ala Val Pro Ala Ser Leu Leu Glu Ser Asp Leu Pro Glu Ala Asp Thr Val Val Pro Ser Asn 105 Trp Gln Met His Gly Tyr Asp Ala Pro Ile Tyr Thr Asn Val Thr Tyr Pro Ile Thr Val Asn Pro Pro Phe Val Pro Thr Glu Pro His His His His Gly Gly Arg Gln Met His Gly Tyr Asp Ala Glu 150 Leu Arg Leu Tyr Arg Arg His His Arg Trp Gly Arg Ser Gly Ser 165 Pro Ser Arg His Lys Arg His Ala Glu Gly Thr Phe Thr Ser Asp 180 Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly

(配列番号:21)

pG117S4HR6GLP-1にコードされた融合蛋白質のアミノ酸配列

15 Met Thr Met Ile Thr Asp Ser Leu Ala Val Val Leu Gln Arg Lys Asp Trp Asp Asn Pro Gly Val Thr Gln Leu Asn Arg Leu Ala Ala His Pro Pro Phe Ala Ser Trp Arg Asn Ser Asp Asp Ala Arg Thr Asp Arg Pro Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu Trp Arg Phe Ala Trp Phe Pro Ala Pro Glu Ala Val Pro Ala Ser Leu Leu Glu Ser Asp Leu Pro Glu Ala Asp Thr Val Val Val Pro Ser Asn Trp Gln Met His Gly Tyr Asp Ala Pro Ile Tyr Thr Asn Val Thr Tyr Pro Ile Thr Val Asn Pro Pro Phe Val Pro Thr Glu Pro His His His His Gly Gly Arg Gln Met His Gly Tyr Asp Ala Glu 150 Leu Arg Leu Tyr Arg Arg His His Gly Ser Gly Ser Pro Ser Arg 165 His Lys Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser 180 Tyr Leu Glu Gly Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly

(配列番号:22)

pGP117S4HompRHKRにコードされた融合蛋白質のアミノ酸配列

Met Thr Met Ile Thr Asp Ser Leu Ala Val Val Leu Gln Arg Lys Asp Trp Asp Asn Pro Gly Val Thr Gln Leu Asn Arg Leu Ala Ala His Pro Pro Phe Ala Ser Trp Arg Asn Ser Asp Asp Ala Arg Thr Asp Arg Pro Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu Trp Arg Phe Ala Trp Phe Pro Ala Pro Glu Ala Val Pro Ala Ser Leu Leu Glu Ser Asp Leu Pro Glu Ala Asp Thr Val Val Val Pro Ser Asn Trp Gln Met His Gly Tyr Asp Ala Pro Ile Tyr Thr Asn Val Thr Tyr Pro Ile Thr Val Asn Pro Pro Phe Val Pro Thr Glu Pro His His His His Gly Gly Arg Gln Met His Gly Tyr Asp Ala Glu Leu Arg Leu Tyr Arg Arg His His Gly Ser Gly Ser Pro Ser Arg His Pro Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly

(配列番号:23)

pGP117S4HompRHPRにコードされた融合蛋白質のアミノ酸配列

Fig.14

Fig.15

Fig.16

Fig.18

Fig.19

Fig.20

Fig.22

ρН

Fig.23 A

B

Tween 80

Fig.24


```
配列表
```

SEQUENCE LISTING

<110> Suntory Limited

<120> Process for production of peptide using supplementary

peptide

<130> F962

<150> JP 10-032272

<151> 1998-01-30

<160> 24

<210> 1

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence adjacent to a site cleaved by ente rokinase

<400> 1

Asp Asp Asp Lys

1

<210> 2

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence adjacent to a site cleaved by bloo d coagulation Factor Xa

<400> 2

```
Ile Glu Gly Arg
```

1

<210> 3

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence containing a site cleaved by renin

<400> 3

Pro Phe His Leu Leu Val Tyr

<210> 4

1

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223>

<400> 4

Val Asp Asp Asp Asp Lys

1 .

5

<210> 5

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence of supplementry peptide

<400> 5

Gly Cys His His His His

·

<210> 6

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence containing a chemically cleaved si

te

<400> 6

Pro Gly Gly Arg Pro Ser Arg His Lys Arg

1

5

10

<210> 7

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence of supplementry peptide

<400> 7

His Arg His Lys Arg Ser His His His

1 -

5

10

<210> 8

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence containing a site cleaved by Kex2

```
protease
```

<400> 8

Ser Asp His Lys Arg

1

5

<210> 9

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence of containing a position cleaved b

y OmpT

<400> 9

Gln Met His Gly Tyr Asp Ala Glu Leu Arg Leu Tyr Arg Arg His His

1 .

5

10

15

Arg Trp Gly Arg Ser Gly Ser

20

<210> 10

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence containing a position cleaved by 0

прТ

<400> 10

Gln Met His Gly Tyr Asp Ala Glu Leu Arg Leu Tyr Arg Arg His His

1

5

10

WO 99/38984 PCT/JP99/00406

Gly Ser Gly Ser

20

<210> 11

<211> 69

<212> DNA

<213> Artificial Sequence

<220>

 $\ensuremath{^{<}223>}$ Nucleotide sequence coding for an amino acid sequence containing a site cleaved by $0\ensuremath{^{mp}T}$

<400> 11

cag atg cat ggt tat gac gcg gag ctc cgg ctg tat cgc cgt cat cac 48
Gln Met His Gly Tyr Asp Ala Glu Leu Arg Leu Tyr Arg Arg His His

1 5 10 15

cgg tgg ggt cgt tcc gga tcc 69

Arg Trp Gly Arg Ser Gly Ser

20

<210> 12

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence containing a site cleaved by OmpT

<400> 12

Gln Met His Gly Tyr Asp Ala Glu Leu Arg Leu Tyr Arg Arg His His

Arg Trp Gly Arg Ser Gly Ser

20

10

<210> 16

<210> 13 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence coding for an amino acid sequence containing a site cleaved by OmpT <400> 13 tggttatgac gcggagctcc gcctgtatcg ccgtcatcac ggttccg 47 <210> 14 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence coding for an amino acid sequence containing a site cleaved by OmpT <400> 14 gatccggaac cgtgatgacg gcgatacagg cggagctccg cgtcataacc atgca 55 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 15 gactcagatc ttcctgaggc cgat

WO 99/38984		PCT/J	P99/0040
<211> 36			
<212> DNA			
<213> Artificial Sequenc	:e		
<220>			
<223> Primer			
<400> 16			
aaaggtacct teegcatgee gegga	itgtcg agaagg		36
<210> 17			
<211> 20			
<212> DNA			
<213> Artificial Sequenc	e		
<220>		,	
<223> Primer			
<400> 17	·	e e	
aggccaggaa ccgtaaaaag			20
<210> 18			
<211> 29			
<212> DNA			
<213> Artificial Sequenc	e		
<220>	· · · · · · · · · · · · · · · · · · ·		-
<223> Primer			
<400> 18			
aaaatgcatc gcatcgtaac cgtgca	atct		29
<210> 19			
<211> 627			
<212> DNA			
<213> Artificial Sequence	e	•	•

PCT/JP99/00406 WO 99/38984

<220>.

<223> Nucleotide sequence coding for a fusion protein compri sing GLP-1, supplementary peptide and β -galactosidase prote ctive peptide

<400> 19

cccaggettt acaetttatg etteeggete gtatgttgtg tggaattgtg ageggataac 60 aatttcacac aggaaacage t atg acc atg att acg gat tca ctg gcc gtc 111 Met Thr Met Ile Thr Asp Ser Leu Ala Val 10 gtt tta caa cgt aaa gac tgg gat aac cct ggc gtt acc caa ctt aat 159 Val Leu Gln Arg Lys Asp Trp Asp Asn Pro Gly Val Thr Gln Leu Asn 15 20 25 cgc ctt gca gca cat ccc cct ttc gcc agc tgg cgt aat agc gac gac 207 Arg Leu Ala Ala His Pro Pro Phe Ala Ser Trp Arg Asn Ser Asp Asp 30 35 40 gcc cgc acc gat cgc cct tcc caa cag ttg cgc agc ctg aat ggc gaa 255 Ala Arg Thr Asp Arg Pro Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu 45 50 55 tgg cgc ttt gcc tgg ttt ccg gca cca gaa gcg gtg ccg gca agc ttg 303 Trp Arg Phe Ala Trp Phe Pro Ala Pro Glu Ala Val Pro Ala Ser Leu 60 65 70 ctg gag tca gat ctt cct gag gcc gat act gtc gtc gtc ccc tca aac 351 Leu Glu Ser Asp Leu Pro Glu Ala Asp Thr Val Val Val Pro Ser Asn 75 80 85 90 tgg cag atg cac ggt tac gat gcg atg cat ggt tat gac gcg gag ctc 399 Trp Gln Met His Gly Tyr Asp Ala Met His Gly Tyr Asp Ala Glu Leu

100

105

WO 99/38984 PCT/JP99/00406

cgc	ctg	tat	cgc	cgt	cat	cac	ggt	tcc	gga	tcc	cct	tct	cga	cat	ccg	4	447
Arg	Leu	Tyr	Arg	Arg	His	His	Gly	Ser	Gly	Ser	Pro	Ser	Arg	His	Pro		
,			110				•	115			•		120				
cgg	cat	gcg	gaa	ggt	acc	ttt	acc	agc	gat	gtg	agc	tcg	tat	ctg	gaa	4	195
Arg	His	Ala	Glu	Gly	Thr	Phe	Thr	Ser	Asp	Val	Ser	Ser	Tyr	Leu	Glu		
		125	· Naci				130					135					
ggt	cag	gcg	gca	aaa	gaa	ttc	atc	gcg	tgg	ctg	gtg	aaa	ggc	cgt	ggt	5	43
G1y	G1n	Ala	Ala	Lys	Glu	Phe	Ile	Ala	Trp	Leu	Val	Lys	Gly	Arg	Gly		
	140					145					150				,		
taag	tcga	ıca g	cccg	ccta	aa tg	agcg	ggct	ttt	ttt	tctc	ggaa	attaa	att o	tcat	gttt	g 6	03
acag	ctta	tc a	tcga	taag	c tt	ta										6	27
<210>	20																
<211>	15	4													•		
<212>	PR'	Γ															
<213>	Art	tifi	cia	1 S	eque	ence	· !		,	-	-						
<220>					•												
(223>	Ami	ino	aci	d s	eque	ence	of	a i	fusi	ion	pro	teir	ı co	mpr	isin	g G	LP
·1, sı	ıpp1	ene	nta	ry j	pept	ide	an	d ß	-ga	alac	tos	idas	se p	rot	ecti	ve	рe
tide		٠		•.								-				•	
40,0>	20														•		
Met T	hr M	let I	[le]	Thr A	Asp S	Ser I	Leu .	Ala '	Val	Val	Leu	Gln	Arg :	Lys .	Asp		
1 .				5		•			10					15.			
Trp A	sp A	sn P	ro G	31y \	/al]	Chr (Gln l	Leu /	Asn	Arg :	Leu .	Ala.	Ala l	His I	Pro		
			20					25					30				
Pro P	he A	la S	er T	rp A	rg A	sn S	Ser A	Asp A	lsp.	Ala ,	Arg '	Thr .	Asp A	Arg l	Pro .		
		35	• • •			-	40	-			•	45				•	
										•		. 1	•				

Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu Trp Arg Phe Ala Trp Phe 50 55 60 Pro Ala Pro Glu Ala Val Pro Ala Ser Leu Leu Glu Ser Asp Leu Pro 65 70 75 Glu Ala Asp Thr Val Val Val Pro Ser Asn Trp Gln Met His Gly Tyr 85 90 Asp Ala Met His Gly Tyr Asp Ala Glu Leu Arg Leu Tyr Arg Arg His 100 105 110 His Gly Ser Gly Ser Pro Ser Arg His Pro Arg His Ala Glu Gly Thr 115 120 125 Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys Glu 130 135 140 Phe Ile Ala Trp Leu Val Lys Gly Arg Gly 145 150. <210> 21 <211> 187 <212> PRT <213> Artificial Sequence <220> <223> Amino acid sequence of a fusion protein comprising GLP -1, supplementary peptide and eta -galactosidase protective pe ptide <400> 21 Met Thr Met Ile Thr Asp Ser Leu Ala Val Val Leu Gln Arg Lys Asp 1 - 5 10 Trp Asp Asn Pro Gly Val Thr Gln Leu Asn Arg Leu Ala Ala His Pro 20 25 30

<220>

Pro Phe Ala Ser Trp Arg Asn Ser Asp Asp Ala Arg Thr Asp Arg Pro 35 40 45 Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu Trp Arg Phe Ala Trp Phe 50 55 60 Pro Ala Pro Glu Ala Val Pro Ala Ser Leu Leu Glu Ser Asp Leu Pro 65 70 75 80 Glu Ala Asp Thr Val Val Val Pro Ser Asn Trp Gln Met His Gly Tyr 85 90 Asp Ala Pro Ile Tyr Thr Asn Val Thr Tyr Pro Ile Thr Val Asn Pro 100 105 110 Pro Phe Val Pro Thr Glu Pro His His His His Gly Gly Arg Gln 115 120 125 Met His Gly Tyr Asp Ala Glu Leu Arg Leu Tyr Arg Arg His His Arg 130 135 140 Trp Gly Arg Ser Gly Ser Pro Ser Arg His Lys Arg His Ala Glu Gly 145 150 155 160 Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys 165 170 175 Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly 180 185 <210> 22 <211> 184 <212> PRT <213> Artificial Sequence

1 1 / 1 4

<223> Amino acid sequence of a fusion protein comprising GLP

-1, supplementary peptide and eta -galactosidase protective pe

WO 99/38984

PCT/JP99/00406

ptide

<400> 22

Met Thr Met Ile Thr Asp Ser Leu Ala Val Val Leu Gln Arg Lys Asp Trp Asp Asn Pro Gly Val Thr Gln Leu Asn Arg Leu Ala Ala His Pro Pro Phe Ala Ser Trp Arg Asn Ser Asp Asp Ala Arg Thr Asp Arg Pro Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu Trp Arg Phe Ala Trp Phe Pro Ala Pro Glu Ala Val Pro Ala Ser Leu Leu Glu Ser Asp Leu Pro Glu Ala Asp Thr Val Val Val Pro Ser Asn Trp Gln Met His Gly Tyr Asp Ala Pro Ile Tyr Thr Asn Val Thr Tyr Pro Ile Thr Val Asn Pro Pro Phe Val Pro Thr Glu Pro His His His His Gly Gly Arg Gln Met His Gly Tyr Asp Ala Glu Leu Arg Leu Tyr Arg Arg His His Gly Ser Gly Ser Pro Ser Arg His Lys Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly

WO 99/38984 PCT/JP99/00406

<211> 184

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence of a fusion protein comprising GLP -1, supplementary peptide and β -galactosidase protective peptide

<400> 23

Met Thr Met Ile Thr Asp Ser Leu Ala Val Val Leu Gln Arg Lys Asp

1 5 10 15

Trp Asp Asn Pro Gly Val Thr Gln Leu Asn Arg Leu Ala Ala His Pro
20 25 30

Pro Phe Ala Ser Trp Arg Asn Ser Asp Asp Ala Arg Thr Asp Arg Pro
35 40 45

Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu Trp Arg Phe Ala Trp Phe
50 55 60

Pro Ala Pro Glu Ala Val Pro Ala Ser Leu Leu Glu Ser Asp Leu Pro 65 70 75 80

Glu Ala Asp Thr Val Val Val Pro Ser Asn Trp Gln Met His Gly Tyr

85 90 95

Asp Ala Pro Ile Tyr Thr Asn Val Thr Tyr Pro Ile Thr Val Asn Pro
100 105 110

Pro Phe Val Pro Thr Glu Pro His His His His Gly Gly Arg Gln
115 120 125

Met His Gly Tyr Asp Ala Glu Leu Arg Leu Tyr Arg Arg His His Gly
130 135 140

Ser Gly Ser Pro Ser Arg His Pro Arg His Ala Glu Gly Thr Phe Thr

145

150

155

160

Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys Glu Phe Ile

165

170

175

Ala Trp Leu Val Lys Gly Arg Gly

180

<210> 24

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence containing a site cleaved by Kex2

Protease

<400> 24

Ser Cys His Lys Arg

1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/00406

0.1							
A CLAS	SSIFICATION OF SUBJECT MATTER .C1 ⁶ C12N15/62, C12P21/02, C1	2P21/06, A61K38/28, C121	N1/21, C12N5/10				
According	to International Patent Classification (IPC) or to both	national classification and IPC					
	DS SEARCHED		· · · · · · ·				
Minimum Int	documentation searched (classification system follow .C1 ⁶ C12N15/62, C12P21/02, C12A61K38/28, C12N1/21, C12	P21/06, C07K19/00, C07K1	/107, C07K1/36,				
Documenta	ation searched other than minimum documentation to	the extent that such documents are include	d in the fields searched				
Blectronic	data base consulted during the international search (n SIS (DIALOG), MEDLINE (DIALOG	ame of data base and, where practicable, s), WPI (DIALOG), JICST I	earch terms used) File (JOIS)				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.				
<u>x</u>	JP, 5-328992, A (Suntory Lt	.d.),	25-27				
A	14 December, 1993 (14. 12.	93)	1-24				
	& EP, 528686, A2 & AU, 92; & CA, 2076320, A & US, 56	21078, A 70340. A					
			•				
<u>X</u> A	JP, 8-187094, A (Suntory Lt	d.),	<u>25-27</u>				
Α	23 July, 1996 (23. 07. 96) & EP, 700995, A2 & HU, 73:	394. A	1-24				
<u>X</u> A	JP, 9-296000, A (Suntory Lt 18 November, 1997 (18. 11. 9	d.), 97)	<u>25-27</u> 1-24				
	& EP, 794255, A2 & KR, 970	065554, A					
}	•						
.							
	r documents are listed in the continuation of Box C.	See patent family annex.	÷				
"A" docume consider "E" earlier d	categories of cited documents: nt defining the general state of the art which is not ed to be of particular relevance locument but published on or after the international filing date	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be					
cited to o	nt which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other eason (as specified)	considered novel or cannot be considered when the document is taken alone "Y" document of particular relevance; the cla					
O" document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is means							
	nt published prior to the international filing date but later than ity date claimed	being obvious to a person skilled in the a document member of the same patent far	rt				
	ctual completion of the international search pril, 1999 (27. 04. 99)	Date of mailing of the international sear 18 May, 1999 (18. 0					
	ailing address of the ISA/	Authorized officer					
_							
acsimile No	•	Telephone No.					

A. 発明の属する分野の分類(国際特許分類(1 P C))

Int. Cl° C12N15/62, C12P21/02, C12P21/06, A61K38/28, C12N1/21, C12N5/10

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

lnt. Cl° C12N15/62, C12P21/02, C12P21/06, C07K19/00, C07K1/107, C07K1/36, A61K38/28, C12N1/21, C12N5/10

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) BIOSIS (DIALOG), MEDLINE (DIALOG), WPI (DIALOG), JICSTファイル (JOIS)

C. 関連する	5と認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
XA	JP, 5-328992, A (サントリー株式会社) 14. 12月. 1993 (14. 12. 93) &EP, 528686, A2&AU, 9221078, A &CA, 2076320, A&US, 5670340, A	25-27 1-24
X A	JP, 8-187094, A(サントリー株式会社) 23. 7月. 1996(23. 07. 96) &EP, 700995, A2&HU, 73394, A	25-27 1-24
X A	JP, 9-296000, A (サントリー株式会社) 18. 11月. 1997 (18. 11. 97) &EP, 794255, A2&KR, 97065554, A	25-27 1-24

□ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

27.04.99

国際調査報告の発送日

18,05,99

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)
郵便無景100-8915

郵便番号100-8915 東京都千代田区段が関三丁目4番3号 4B 9453

電話番号 03-3581-1101 内線 3448