Recall:

1) The least square solutions of a matrix equation $A\mathbf{x} = \mathbf{b}$ are the solutions of the equation

$$A\mathbf{x} = \operatorname{proj}_{\operatorname{Col}(A)}\mathbf{b}$$

- 2) If $A\mathbf{x} = \mathbf{b}$ is a consistent equation, then $\mathbf{b} \in \operatorname{Col}(A)$, and $\operatorname{proj}_{\operatorname{Col}(A)}\mathbf{b} = \mathbf{b}$. In such case the least square solutions of $A\mathbf{x} = \mathbf{b}$ are just the ordinary solutions.
- 3) If Ax = b is inconsistent, then the least square solutions are the best substitute for the (nonexistent) ordinary solutions.
- 4) If $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ is an orthogonal basis of a subspace V of \mathbb{R}^n then

$$\operatorname{proj}_{V} \mathbf{w} = \left(\frac{\mathbf{w} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} + \ldots + \left(\frac{\mathbf{w} \cdot \mathbf{v}_{k}}{\mathbf{v}_{k} \cdot \mathbf{v}_{k}}\right) \mathbf{v}_{k}$$

5) If $\{v_1, \ldots, v_k\}$ is an arbitrary basis of V then we can use the Gram-Schmidt process to obtain an orthogonal basis of V.

How to compute least square solutions of Ax = b (version 1.0)

- 1) Compute a basis of Col(A).
- 2) Use the Gram-Schmidt process to get an orthogonal basis of Col(A).
- 3) Use the orthogonal basis to compute $proj_{Col(A)}\mathbf{b}$.
- 4) Compute solutions of the equation $A\mathbf{x} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$.

Next goal: Simplify this.

Definition

If V is a subspace of \mathbb{R}^n then the *orthogonal complement* of V is the set V^{\perp} of all vectors orthogonal to V:

$$V^{\perp} = \{ \mathbf{w} \in \mathbb{R}^n \mid \mathbf{w} \cdot \mathbf{v} = 0 \text{ for all } \mathbf{v} \in V \}$$

Note: If V= R", w ∈ R" then (w-projvw) ∈ V"

Proposition

If V is a subspace of \mathbb{R}^n then:

- 1) V^{\perp} is also a subspace of \mathbb{R}^n .
- 2) For each vector $\mathbf{w} \in \mathbb{R}^n$ there exist unique vectors $\mathbf{v} \in V$ and $\mathbf{z} \in V^{\perp}$ such that $\mathbf{w} = \mathbf{v} + \mathbf{z}$.

Proof of 2) Take
$$V = \text{proj}_V W$$
, $Z = W - \text{proj}_V W$.

40-3

Definition

If A is an $m \times n$ matrix then the *row space* of A is the subspace Row(A) of \mathbb{R}^n spanned by rows of A.

Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\operatorname{Row}(A) = \operatorname{Span}\left(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}\right)$$

Proposition

If A is a matrix then

$$Row(A)^{\perp} = Nul(A)$$

Note: If
$$A = \begin{bmatrix} r_1 & r_2 \\ r_2 & r_3 \end{bmatrix}$$
 rows of A
then: $Av = \begin{bmatrix} r_1 & v \\ r_2 & v \end{bmatrix}$

$$Av = \begin{bmatrix} r_1 & v \\ r_2 & v \end{bmatrix}$$

$$Av = \begin{bmatrix} r_1 & v \\ r_2 & v \end{bmatrix}$$

$$Av = \begin{bmatrix} r_1 & v \\ r_2 & v \end{bmatrix}$$

$$Av = \begin{bmatrix} r_1 & v \\ r_2 & v \end{bmatrix}$$

$$Av = \begin{bmatrix} r_1 & v \\ r_2 & v \end{bmatrix}$$

$$Av = 0$$

$$Av = 0$$

$$av = 0, v = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, v = 0, \dots, v = 0$$

$$av = 0, \dots, v =$$

Corollary

If A is a matrix then

$$Col(A)^{\perp} = Nul(A^{T})$$

<u>e.g.</u>;

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$Col(A) = Span([4], [2], [3])$$

$$Col(A) = Span \left(\begin{bmatrix} 1\\4 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix}, \begin{bmatrix} 3\\6 \end{bmatrix}\right)$$
 $Ron(A^T) = Span \left(\begin{bmatrix} 1\\4 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix}, \begin{bmatrix} 3\\6 \end{bmatrix}\right)$

Proof of Corollary

Back to least square solutions

Theorem

A vector $\hat{\mathbf{x}}$ is a least square solution of a matrix equation

$$Ax = b$$

if and only if \hat{x} is an ordinary solution of the equation

$$(A^T A)\mathbf{x} = A^T \mathbf{b}$$

 $\frac{Proof}{}$: If \hat{x} is a least squares solution of Ax = b then:

This gives:

$$(b-A\hat{x}) = (b-proj_{Col(A)}b) \in Col(A)^{\perp} = Nul(A^{T})$$

We obtain:

This shows that \hat{x} is a solution of the equation $A^TAx = A^Tb$

The proof of the other implication is similar.

Definition

The equation

$$(A^T A)\mathbf{x} = A^T \mathbf{b}$$

is called the *normal equation* of $A\mathbf{x} = \mathbf{b}$.

How to compute least square solutions of Ax = b (version 2.0)

- 1) Compute $A^T A$, $A^T \mathbf{b}$.
- 2) Solve the normal equation $(A^TA)\mathbf{x} = A^T\mathbf{b}$.

Example. Compute least square solutions of the following equation:

$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 + x_2 = 1 \\ 2x_2 = 2 \\ 0 = 3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 + x_2 = 1 \\ 2x_2 = 3 \\ 0 = 3 \end{bmatrix}$$
The solutions !

Solution:

$$A^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 5 \end{bmatrix}$$

$$A^{T}b = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

The normal equation:

$$A^{T}A \times = A^{T} b$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} \times_{1} \\ \times_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 5 & 5 \end{bmatrix} \xrightarrow{\text{reduction}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

least sq. solution:
$$\hat{\chi} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$