LAPORAN UAS

PRAKTIKUM ANALISIS REGRESI TERAPAN

Oleh

Jessi Wijaya 16/394169/PA/17260

Ranggajaya Ciptawan 16/394181/PA/17272

Arum Sekar Murdaya 18/424282/PA/18387

Dosen Pengampu : Zulaela, Drs., Dipl. Med. Stats., M.Si.

Asisten Praktikum : Laras Sekar Kinasih (17829)

Raden Aurelius Andhika V (18066)

LABORATORIUM KOMPUTASI MATEMATIKA DAN STATISTIKA DEPARTEMEN MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA

YOGYAKARTA

2019

BAB I

LATAR BELAKANG

Seorang pengusaha sukses bernama Zara ingin membangun usaha kost di Yogyakarta. Namun, terdapat masalah, dia ingin tahu berapa modal yang ia butuhkan untuk membangun kos-kosan dengan fasilitas yang memadai dan dengan berbagai aspek baik yang lain. Oleh karena itu, dia meminta bantuan kepada kalian sebagai data analyst untuk memprediksi harga kos-kosan berdasarkan berbagai pertimbangan yang ada. Variabel yang ada dalam data (data latih dapat dilihat di file train full.csv) adalah sebagai berikut.

- id : primary key data
- room size : luas kamar
- item 1 : fasilitas barang ke-1 yang ada pada kost
- item 2 : fasilitas barang ke-2 yang ada pada kost
- item 3 : fasilitas barang ke-3 yang ada pada kost
- item 4 : fasilitas barang ke-4 yang ada pada kost
- item 5 : fasilitas barang ke-5 yang ada pada kost
- item 6 : fasilitas barang ke-6 yang ada pada kost
- item 7 : fasilitas barang ke-7 yang ada pada kost
- item 8 : fasilitas barang ke-8 yang ada pada kost
- item 9 : fasilitas barang ke-9 yang ada pada kost
- item 10 : fasilitas barang ke-10 yang ada pada kost
- facility 1 : fasilitas bukan barang ke-1 yang ada pada kost
- facility 2 : fasilitas bukan barang ke-2 yang ada pada kost
- facility 3 : fasilitas bukan barang ke-3 yang ada pada kost
- facility 4 : fasilitas bukan barang ke-4 yang ada pada kost
- facility 5 : fasilitas bukan barang ke-5 yang ada pada kost
- latitude : koordinat garis lintang dari kost
- longitude : koordinat garis bujur dari kost
- distance poi A1: jarak kost terhadap titik POI jenis A ke-1
- distance poi A2 : jarak kost terhadap titik POI jenis A ke-2
- distance poi A3 : jarak kost terhadap titik POI jenis A ke-3
- distance poi A4 : jarak kost terhadap titik POI jenis A ke-4
- distance poi A5 : jarak kost terhadap titik POI jenis A ke-5
- distance poi A6 : jarak kost terhadap titik POI jenis A ke-6
- distance poi B1 : jarak kost terhadap titik POI jenis B ke-1
- distance poi B2 : jarak kost terhadap titik POI jenis B ke-2
- distance poi B3 : jarak kost terhadap titik POI jenis B ke-3
- distance poi B4 : jarak kost terhadap titik POI jenis B ke-4
- male: penyewa yang diperbolehkan

- female : penyewa yang diperbolehkan
- price : harga sewa kost

Sebagai teman Zara yang baik hati dan rajin menabung, lakukan analisis regresi dari asumsi awal sampai akhir (asumsi klasik) untuk mendapatkan model terbaik yang dapat memprediksi harga kost! Selanjutnya, prediksikan harga kost yang akan dibangun oleh Zara (pada data test full.csv) dan berikan saran kepada Zara berdasarkan model yang didapat!

(BONUS)

Jika terdapat asumsi klasik yang tidak terpenuhi, lakukan penanganan terhadap asumsi klasik tersebut, kemudian tuliskan model terbaru setelah dilakukan penanganan!

BAB II DASAR TEORI

Analisis regresi merupakan metode analisis data yang memanfaatkan hubungan antara dua variabel atau lebih, misalnya Berat Badan dengan Umur, Biaya Konsumsi dengan Pendapatan, Daya Ingat dengan Umur, dan lain-lain.

Tujuan regresi

- Menyelidiki bentuk atau pola hubungan antara variabel respon (Y) dengan variabel prediktor (X)
- Mengetahui pengaruh variabel prediktor (X) terhadap variabel responnya (Y)
- Mengestimasi/ menduga/ meramalkan nilai mean atau rata-rata dari variabel respon (Y) populasi berdasarkan variabel prediktor (X) yang telah diberikan.

Langkah analisis regresi

Uji Asumsi

✓ Uji normalitas

Metode analisis data untuk mengetahui apakah data terobservasi mengikuti distribusi normal atau tidak. Uji formal yang dapat dilakukan antara lain uji dari Kolmogorov-Smirnov, Anderson-Darling, dan Shapiro-Wilk.

✓ Uji linearitas

Metode analisis data untuk mengetahui apakah dua variabel mempunyai hubungan yang linear atau tidak secara signifikan. Pengujian pada *SPSS* dengan menggunakan *Scatter Plot*. Dari grafik tersebut akan terlihat hubungan antara dua variabel.

Uji Overall

Menguji kelayakan model yang diperoleh melalui *output* Tabel ANOVA. Dikatakan layak apabila p-value $< \alpha$.

Uji Parsial

Menguji kelayakan konstanta dan koefisien yang diperoleh melalui output Tabel Coefficients. Dikatakan layak apabila p-value $< \alpha$

Kriteria Pemilihan Model Terbaik

1. Koefisien korelasi (R) ↑ Menunjukkan derajat hubungan antara variabel prediktor (independen) dan variabel respon (dependen) yang menunjukkan bahwa keeratan hubungan antara variabel prediktor dengan variabel respon. Model yang baik memiliki R yang besar.

- 2. Koefisien determinasi (R²) ↑ Menunjukkan proporsi variasi dalam variabel dependen yang dapat diterangkan oleh variabel-variabel independen. R² tidak akan turun nilainyajika terjadi penambahan variabel independen baru ke dalam model, oleh karena itu model yang memuat banyak variabel independen akan menghasilkan R² yang besar. Model yang baik memiliki R² yang besar.
- 3. Std. Error of Variance (SE) ↓ Mengukur besarnya keragaman model. Model yang baik memiliki SE yang kecil.
- 4. Adjusted R² ↑ Menunjukkan koreksi terhadap R². Digunakan pada regresi dengan variabel prediktor yang lebih dari 1 karena nilainya dapat naik atau turun tergantung apakah variabel prediktor baik atau tidak jika dimasukkan ke dalam model. Model yang baik memiliki Adjusted R² yang besar.
- 5. Statistic Press (PRESS) ↓ Merupakan jumlahan kuadrat deleted residual. Model yang baik memiliki PRESS yang kecil.
- 6. CP Mallows Jumlah parameter semua terhadap model yang baik jika CP mallows ≤ Parameter (termasuk konstanta). Biasanya memenuhi untuk semua model.
- 7. Akaike Information Criterian (AIC) ↓
 AIC = -2 LogLik +2*p (parameter dengan konstanta)
 Model yang baik memiliki AIC yang kecil.
- 8. Bayes Informastion Criterian (SBC/BIC) ↓
 BIC = -2 LogLik + p*log(n)
 Model yang baik memiliki SBC/BIC yang kecil.

Analisis Residual

Digunakan untuk mengetahui apakah model terbaik yang diperoleh benar-benar baik atau tidak. Dikatakan baik jika **minimal 50%** asumsi terpenuhi.

Asumsi-asumsi dalam analisis residual sebagai berikut:

- 1. Fix independen variabel: diasumsikan terpenuhi
- 2. Linearitas residual dengan independen Untuk mengetahui ada tidaknya hubungan linear antara variabel independen dengan residual.
- 3. Normalitas residual Untuk mengetahui residual berdistribusi normal atau tidak
- 4. Homoskedastisitas Kondisi dimana variabel konstan. Terpenuhi jika variansi residual konstan, dilihat dari plot z resid by z pred. Dikatakan homoskedastisitas jika titik-titik mendekati nol atau tidak membentuk pola.
- 5. No multikolinearitas Kondisi dimana tidak ada hubungan antar variabel independen. Terpenuhi jika VIF< 10 dan TOL > 0,1 (lihat di tabel coefficients)
- 6. No autokorelasi Kondisi dimana tidak ada korelasi antar eror.

BAB III ANALISIS

UJI ASUMSI NORMALITAS

1. Hipotesis

H₀: data berdistribusi normal

H₁: data tidak berdistribusi normal

2. Tingkat signifikansi

 $\alpha = 0.05$

3. Statistik uji

p-value (Sig.) = 0,000

4. Daerah kritik

 H_0 ditolak jika p-value $< \alpha$

5. Kesimpulan

Karena p-value=0,000 < 0,05= α , maka H_0 ditolak yang berarti data tidak berdistribusi normal.

Data variabel dependen (harga sewa kost) tidak memenuhi asumsi normalitas. Akan tetapi, untuk selanjutnya, data ini diasumsikan memenuhi normalitas.

Tests of Normality						
	Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
price	.201	3097	.000	.787	3097	.000
a. Lillie	efors Signific	ance Correct	tion			

Interpretasi:

Karena jumlah data pada kasus, n > 50 maka pada uji asumsi normalitas ini digunakan p-value (Sig.) dari kolom **Kolmogorov-Smirnov** yaitu sebesar 0,000. Dimana p-value (Sig.) = 0,000 $< 0,05 = \alpha$, maka H_0 ditolak yang artinya data variabel dependen (harga sewa kost) tidak memenuhi asumsi normalitas. Akan tetapi, untuk selanjutnya, data ini diasumsikan memenuhi normalitas.

Sehingga asumsi normalitas terpenuhi.

LINEARITAS

Interpretasi:

Dari grafik di atas, dapat disimpulkan bahwa

- Terdapat hubungan linear positif antara *room_size* dengan *price*, yang berarti semakin luas kamar, maka semakin tinggi harga sewa kost.
- Terdapat hubungan linear positif antara *latitute* dengan *price*, yang berarti semakin utara letak kost, maka semakin tinggi harga sewa kost.
- Terdapat hubungan linear positif antara *longitude* dengan *price*, yang berarti semakin timur letak kost, maka semakin tinggi harga sewa kost.
- Terdapat hubungan linear positif antara *distance_poi_A1* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-1, maka semakin tinggi harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_A2* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-2, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_A3* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-3, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_A4* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-4, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_A5* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-5, maka semakin rendah harga sewa kost.

- Terdapat hubungan linear positif antara *distance_poi_A6* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-6, maka semakin tinggi harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_B1* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis B ke-1, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_B2* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis B ke-2, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_B3* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis B ke-3, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear positif antara *distance_poi_B4* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis B ke-4, maka semakin tinggi harga sewa kost.

UJI OVERALL

1. Uji hipotesis

H₀: $\beta_i = 0$, i = 1,2,... (model tidak layak digunakan)

 H_1 : Tidak semua $\beta_i=0, i=1,2,\dots$ (model layak digunakan)

2. Tingkat signifikansi

$$\alpha = 0.05$$

3. Daerah kritik

 H_0 ditolak jika p-value $< \alpha$

4. Statisktik uji dan kesimpulan

model	p-value						kesimpulan
1	p-value = 0 ,	000					Karena p-value = 0,000 < 0,05
			ANOVA ^a				$= \alpha$, maka H_0 ditolak yang
	Model	Sum of Squares	df	Mean Square	F	Sig.	berarti model layak digunakan.
	1 Regression Residual Total	8.097E+14 4.358E+14 1.245E+15	30 3066 3096	2.699E+13 1.422E+11	189.857	.000b	, ,
	a. Dependent Variable:						
2	item_10, item_5, lon- item_3, female, item distance_poi_A1, dis distance_poi_B2, dis	_8, item_6, item_ tance_poi_A3, dis itance_poi_A2	1, distance_	poi_A6, distance_	poi_B1,		Karena p-value = 0,000 < 0,05
			ANOVA ^a				$= \alpha$, maka H ₀ ditolak yang
	Model	Sum of Squares	df	Mean Square	F	Sig.	berarti model layak
	1 Regression Residual Total	8.097E+14 4.358E+14 1.245E+15	29 3067 3096	2.792E+13 1.421E+11	196.465	.000b	digunakan.
	a. Dependent Variable	price					
	b. Predictors: (Constar item_10, item_5, lor female, item_8, item distance_poi_A3, di distance_poi_A2	ngitude, facility_3, n_6, item_1, dista	item_4, faci nce_poi_A6	lity_2, facility_1, ite , distance_poi_B1	em_2, item_i , distance_p	7, item_3, oi_A1,	

3	p-value = 0,0	000	Karena p-value = $0,000 < 0,05$ = α , maka H ₀ ditolak yang				
	Model	Sum of Squares	df	Mean Square	F	Sig.	berarti model layak
	1 Regression Residual	8.096E+14 4.359E+14	28 3068	2.892E+13 1.421E+11	203.540	.000 ^b	digunakan.
	Total	1.245E+15	3096	1.4216+11			diguliakali.
	a. Dependent Variable: b. Predictors: (Constan item_10, item_5, fac item_3, female, item distance_poi_A3, dis distance_poi_A2	it), room_size, dist ility_3, item_4, fac _8, item_6, item_	ility_2, facili 1, distance_	ty_1, item_2, dista _poi_A1, distance	nce_poi_B4 _poi_B1,	, item_7,	
4	p-value = 0,0		ANOVA ^a				Karena p-value = $0,000 < 0,05$ = α , maka H ₀ ditolak yang
	Model	Sum of Squares	df	Mean Square	F	Sig.	
	1 Regression	8.096E+14	27	2.998E+13	211.092	.000b	berarti model layak
	Residual Total	4.359E+14 1.245E+15	3069 3096	1.420E+11			digunakan.
	a. Dependent Variable: b. Predictors: (Constan item_10, item_5, fac item_3, female, item distance_poi_A3, dis	it), room_size, dis ility_3, item_4, fac _8, item_6, item_	ility_2, facili 1, distance	ity_1, item_2, dista _poi_A1, distance	ance_poi_B4 _poi_B1,	, item_7,	
5	p-value = 0,0		ANOVA ^a				Karena p-value = $0,000 < 0,05$
		Sum of				1	$= \alpha$, maka H ₀ ditolak yang
	Model 1 Regression	Squares 8.096E+14	df 26	Mean Square 3.114E+13	F 219.269	Sig.	berarti model layak
	Residual Total	4.359E+14 1.245E+15	3070 3096	1.420E+11	219.209	.000	digunakan.
6	b. Predictors: (Constanter), factitem_10, item_5, factitem_3, female, item distance_poi_A5, dis	ility_3, item_4, fac _8, item_6, item_ stance_poi_A6, dis	ility_2, facili 1, distance_	ty_1, item_2, dista _poi_B1, distance	nce_poi_B4 _poi_A3,		Karena p-value = $0,000 < 0,05$ = α , maka H_0 ditolak yang
	Model	Sum of Squares	df	Mean Square	F	Sig.	· ·
	i i wodel	oquai oa			1 '	vig.	berarti model layak
	1 Regression	8.093E+14	25	3.237E+13	227.917	.000b	
		8.093E+14 4.362E+14 1.245E+15	3071 3096	3.237E+13 1.420E+11	227.917	.000 ^b	digunakan.
	1 Regression Residual	4.362E+14 1.245E+15 : price nt), room_size, dis m_4, facility_2, ite n_6, item_1, distar	3071 3096 tance_poi_ m_2, facility nce_poi_B1	1.420E+11 A4, facility_5, male /_1, distance_poi_ , distance_poi_A3	e, latitude, ite _B4, item_7,	m_10, item_3,	
7	1 Regression Residual Total a. Dependent Variable b. Predictors: (Constar item_5, facility_3, ite female, item_8, item	4.362E+14 1.245E+15 : price nt), room_size, dis m_4, facility_2, ite n_6, item_1, distar stance_poi_B2, di	3071 3096 tance_poi_ m_2, facility nce_poi_B1	1.420E+11 A4, facility_5, male /_1, distance_poi_ , distance_poi_A3	e, latitude, ite _B4, item_7,	m_10, item_3,	digunakan. Karena p-value = 0,000 < 0,05
7	1 Regression Residual Total a. Dependent Variable b. Predictors: (Constar item_5, facility_3, ite female, item_8, item distance_poi_A6, dis	4.362E+14 1.245E+15 : price nt), room_size, dis m_4, facility_2, ite n_6, item_1, distar stance_poi_B2, di	3071 3096 tance_poi_ m_2, facilit nce_poi_B1 stance_poi	1.420E+11 A4, facility_5, male /_1, distance_poi_ , distance_poi_A3	e, latitude, ite _B4, item_7,	m_10, item_3,	digunakan. Karena p-value = $0,000 < 0,05$ = α , maka H_0 ditolak yang
7	1 Regression Residual Total a. Dependent Variable b. Predictors: (Constar item_5, facility_3, ite female, item_8, item distance_poi_A6, dis p-value = 0,0	4.362E+14 1.245E+15 : price 10, room_size, dis m_4, facility_2, ite n_6, item_1, distar stance_poi_B2, di	3071 3096 tance_poi_ m_2, facility nce_poi_B1 stance_poi	1.420E+11 A4, facility_5, main_1, distance_poi_A3_A2 Mean Square 3.371E+13	e, latitude, ite B4, item_7, 8, distance_p	m_10, item_3, oi_A5,	digunakan. Karena p-value = $0,000 < 0,05$ = α , maka H_0 ditolak yang berarti model layak
7	1 Regression Residual Total a. Dependent Variable b. Predictors: (Constar item_5, facility_3, ite female, item_8, item distance_poi_A6, di: p-value = 0, Model 1 Regression Residual Total	4.362E+14 1.245E+15 : price tl), room_size, dis m_4, facility_2, ite_5, ftem_1, distar stance_poi_B2, di 000 Sum of Squares 8.090E+14 4.365E+14 1.245E+15	3071 3096 tance_poi_ m_2, facilith toe_poi_B1 stance_poi ANOVA df	1.420E+11 A4, facility_5, main _1, distance_poi _distance_poi_A3 _A2 Mean Square	e, latitude, ite B4, item_7, 3, distance_p	m_10, item_3, oi_A5,	digunakan. Karena p-value = $0,000 < 0,05$ = α , maka H_0 ditolak yang
7	1 Regression Residual Total a. Dependent Variable b. Predictors: (Constar item_5, facility_3, ite female, item_8, item distance_poi_A6, di: p-value = 0,0	4.362E+14 1.245E+15 : price 10, room_size, dism_4, facility_2, ite_5, ftem_1, distar stance_poi_B2, di 0000 Sum of Squares 8.090E+14 4.365E+14 1.245E+15 price 0, room_size, disfm_4, facility_2, fac 6, item_1, distan	3071 3096 tance_poi_ m_2, facilith ice_poi_B1 stance_poi ANOVA ^a df 24 3072 3096 tance_poi_illty_1, item	1.420E+11 A4, facility_5, mainum, distance_poi_A3_A2 Mean Square 3.371E+13 1.421E+11 A2, facility_5, mainum, distance_p, distance_poi_A3_A2	e, latitude, ite B4, item_7, distance_p F 237.240	m_10, item_3, oi_A5, Sig000 ^b .ititude, item_3,	digunakan. Karena p-value = $0,000 < 0,05$ = α , maka H_0 ditolak yang berarti model layak
7	1 Regression Residual Total a. Dependent Variable b. Predictors: (Constar item_5, facility_3, ite female, item_8, item distance_poi_A6, di p-value = 0,(Model 1 Regression Residual Total a. Dependent Variable: b. Predictors: (Constan item_5, facility_3, iter female, item_8, item	4.362E+14 1.245E+15 : price 10, room_size, dis m_4, facility_2, ite6, item_1, distant stance_poi_B2, di 0000 Sum of Squares 8.090E+14 4.365E+14 1.245E+15 price 10, room_size, distant m_4, facility_2, fac_6, item_1, distant stance_poi_A3	3071 3096 tance_poi_ m_2, facilith ice_poi_B1 stance_poi ANOVA ^a df 24 3072 3096 tance_poi_illty_1, item	1.420E+11 A4, facility_5, mainum, distance_poi_A3_A2 Mean Square 3.371E+13 1.421E+11 A2, facility_5, mainum, distance_p, distance_poi_A3_A2	e, latitude, ite B4, item_7, distance_p F 237.240	m_10, item_3, oi_A5, Sig000 ^b .ititude, item_3,	digunakan. Karena p-value = $0,000 < 0,05$ = α , maka H_0 ditolak yang berarti model layak
	1 Regression Residual Total a. Dependent Variable b. Predictors: (Constar item_5, facility_3, ite female, item_8, item distance_poi_A6, dis p-value = 0,0 Model 1 Regression Residual Total a. Dependent Variable: b. Predictors: (Constan item_5, facility_3, iter female, item_8, item, distance_poi_B1, dis	4.362E+14 1.245E+15 : price 10, room_size, dis m_4, facility_2, ite6, item_1, distant stance_poi_B2, di 0000 Sum of Squares 8.090E+14 4.365E+14 1.245E+15 price 10, room_size, distant m_4, facility_2, fac_6, item_1, distant stance_poi_A3	3071 3096 tance_poi_ m_2, facilith ice_poi_B1 stance_poi ANOVA ^a df 24 3072 3096 tance_poi_illty_1, item	1.420E+11 A4, facility_5, mainum, distance_poi_A3_A2 Mean Square 3.371E+13 1.421E+11 A2, facility_5, mainum, distance_p, distance_poi_A3_A2	e, latitude, ite B4, item_7, distance_p F 237.240	m_10, item_3, oi_A5, Sig000 ^b .ititude, item_3,	digunakan. Karena p-value = $0,000 < 0,05$ = α , maka H_0 ditolak yang berarti model layak digunakan. Karena p-value = $0,000 < 0,05$
	1 Regression Residual Total a. Dependent Variable b. Predictors: (Constar item_5, facility_3, ite female, item_8, item distance_poi_A6, dis p-value = 0,0 Model 1 Regression Residual Total a. Dependent Variable: b. Predictors: (Constan item_5, facility_3, iter female, item_8, item, distance_poi_B1, dis	4.362E+14 1.245E+15 : price 10, room_size, dis m_4, facility_2, ite6, item_1, distant stance_poi_B2, di 0000 Sum of Squares 8.090E+14 4.365E+14 1.245E+15 price 10, room_size, distant m_4, facility_2, fac_6, item_1, distant stance_poi_A3	3071 3096 tance_poi_ m_2, facilith ice_poi_B1 stance_poi ANOVA ^a df 24 3072 3096 tance_poi_illty_1, item	1.420E+11 A4, facility_5, mainum, distance_poi_A3_A2 Mean Square 3.371E+13 1.421E+11 A2, facility_5, mainum, distance_p, distance_poi_A3_A2	e, latitude, ite B4, item_7, distance_p F 237.240	m_10, item_3, oi_A5, Sig000 ^b .ititude, item_3,	digunakan. Karena p-value = $0,000 < 0,05$ = α , maka H_0 ditolak yang berarti model layak digunakan. Karena p-value = $0,000 < 0,05$ = α , maka H_0 ditolak yang
	1 Regression Residual Total a. Dependent Variable b. Predictors: (Constar item_5, facility_3, ite female, item_8, item distance_poi_A6, dis p-value = 0,0 Model 1 Regression Residual Total a. Dependent Variable: b. Predictors: (Constan item_5, facility_3, iter female, item_8, item, distance_poi_B1, dis	4.362E+14 1.245E+15 : price 10, room_size, dis m_4, facility_2, ite6, item_1, distant stance_poi_B2, di 0000 Sum of Squares 8.090E+14 4.365E+14 1.245E+15 price 10, room_size, distant m_4, facility_2, fac_6, item_1, distant stance_poi_A3	3071 3096 tance_poi_ m_2, facilith ice_poi_B1 stance_poi ANOVA ^a df 24 3072 3096 tance_poi_illty_1, item	1.420E+11 A4, facility_5, mainum, distance_poi_A3_A2 Mean Square 3.371E+13 1.421E+11 A2, facility_5, mainum, distance_p, distance_poi_A3_A2	e, latitude, ite B4, item_7, distance_p F 237.240	m_10, item_3, oi_A5, Sig000 ^b .ititude, item_3,	digunakan. Karena p-value = $0,000 < 0,05$ = α , maka H_0 ditolak yang berarti model layak digunakan. Karena p-value = $0,000 < 0,05$

		ANOVA ³					
	Model	ı	Sum of Squares	df	Mean Square	F	Sig.
Į	1	Regression	8.086E+14	23	3.516E+13	247.285	.000 ^b
		Residual	4.369E+14	3073	1.422E+11		
ı		Total	1.245E+15	3096			
ļ	a. De	pendent Variable	: price				
	iter fen	a. Dependent Variable: price b. Predictors: (Constant), room_size, distance_poi_A2, facility_5, male, item_10, latitude, item_5, facility_3, item_4, facility_2, facility_1, item_2, item_7, distance_poi_B4, item_3, female, item_8, item_1, distance_poi_A5, distance_poi_B2, distance_poi_A6, distance_poi_B1, distance_poi_A3					

Berdasarkan uji overall, dapat disimpulkan bahwa semua model yang diuji layak digunakan.

UJI PARSIAL

Model	variabel	hipotesis	p-value	kesimpulan
	independen			
1	konstanta	H ₀ : $\beta_0 = 0$ (konstanta tidak signifikan) H ₁ : $\beta_0 \neq 0$ (konstanta signifikan)	0,875	karena p-value=0,875>0,05= α , maka H_0 tidak ditolak yang berarti konstanta tidak signifikan.
	$item_{1}(x_{1})$	H ₀ : $\beta_1 = 0$ (koefisien x_1 tidak signifikan) H ₁ : $\beta_1 \neq 0$ (koefisien x_1 signifikan)	0,006	karena p-value=0,006<0,05= α , maka H ₀ ditolak yang berarti koefisien x_1 signifikan.
	$item_2(x_2)$	H_0 : $\beta_2 = 0$ (koefisien x_2 tidak signifikan) H_1 : $\beta_2 \neq 0$ (koefisien x_2 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_2 signifikan.
	$item_3(x_3)$	H ₀ : $\beta_3 = 0$ (koefisien x_3 tidak signifikan) H ₁ : $\beta_3 \neq 0$ (koefisien x_3 signifikan)	0,011	karena p-value=0,011<0,05= α , maka H ₀ ditolak yang berarti koefisien x_3 signifikan.
	$item_4(x_4)$	H ₀ : $\beta_4 = 0$ (koefisien x_4 tidak signifikan) H ₁ : $\beta_4 \neq 0$ (koefisien x_4 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_4 signifikan.
	$item_5(x_5)$	H ₀ : $\beta_5 = 0$ (koefisien x_5 tidak signifikan) H ₁ : $\beta_5 \neq 0$ (koefisien x_5 signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_5 signifikan.
	$item_6(x_6)$	H_0 : $\beta_6 = 0$ (koefisien x_6 tidak signifikan)	0,090	karena p-value=0,09>0,05= α , maka H ₀ tidak ditolak yang

	$H_1: \beta_6 \neq 0$ (koefisien x_6 signifikan)		berarti koefisien x_6 tidak signifikan.
item_7 (x ₇)	H_0 : $\beta_7 = 0$ (koefisien x_7 tidak signifikan) H_1 : $\beta_7 \neq 0$ (koefisien x_7 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_7 signifikan.
item_8 (x ₈)	H ₀ : $\beta_8 = 0$ (koefisien x_8 tidak signifikan) H ₁ : $\beta_8 \neq 0$ (koefisien x_8 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_8 signifikan.
item_9 (x ₉)	H ₀ : $\beta_9 = 0$ (koefisien x_9 tidak signifikan) H ₁ : $\beta_9 \neq 0$ (koefisien x_9 signifikan)	0,872	karena p-value=0,872>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_9 tidak signifikan.
item_10 (x ₁₀)	$H_0: \beta_{10} = 0$ (koefisien x_{10} tidak signifikan) $H_1: \beta_{10} \neq 0$ (koefisien x_{10} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{10} signifikan.
facility_ $l(x_{11})$	H ₀ : $\beta_{11} = 0$ (koefisien x_{11} tidak signifikan) H ₁ : $\beta_{11} \neq 0$ (koefisien x_{11} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{11} signifikan.
facility_2 (x_{12})	H ₀ : $\beta_{12} = 0$ (koefisien x_{12} tidak signifikan) H ₁ : $\beta_{12} \neq 0$ (koefisien x_{12} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{12} signifikan.
facility_3 (x_{13})	H ₀ : $\beta_{13} = 0$ (koefisien x_{13} tidak signifikan) H ₁ : $\beta_{13} \neq 0$ (koefisien x_{13} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{13} signifikan.
facility_4 (x_{14})	H ₀ : $\beta_{14} = 0$ (koefisien x_{14} tidak signifikan) H ₁ : $\beta_{14} \neq 0$ (koefisien x_{14} signifikan)	0,214	karena p-value=0,214>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{14} tidak signifikan.

facili		: $\beta_{15} = 0$ (koefisien x_{15} tidak signifikan) : $\beta_{15} \neq 0$ (koefisien x_{15} signifikan)	0,040	karena p-value=0,04<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{15} signifikan.
latitu		: $\beta_{16} = 0$ (koefisien x_{16} tidak signifikan) : $\beta_{16} \neq 0$ (koefisien x_{16} signifikan)	0,038	karena p-value=0,038<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{16} signifikan.
longi		: $\beta_{17} = 0$ (koefisien x_{17} tidak signifikan) : $\beta_{17} \neq 0$ (koefisien x_{17} signifikan)	0,780	karena p-value=0,78>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{17} tidak signifikan.
$dista (x_{18})$)	: $\beta_{18} = 0$ (koefisien x_{18} tidak signifikan) : $\beta_{18} \neq 0$ (koefisien x_{18} signifikan)	0,486	karena p-value=0,486>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{18} tidak signifikan.
$dista (x_{19})$)	: $\beta_{19} = 0$ (koefisien x_{19} tidak signifikan) : $\beta_{19} \neq 0$ (koefisien x_{19} signifikan)	0,063	karena p-value=0,063>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{19} tidak signifikan.
$dista (x_{20})$)	: $\beta_{20} = 0$ (koefisien x_{20} tidak signifikan) : $\beta_{20} \neq 0$ (koefisien x_{20} signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{20} signifikan.
$dista (x_{21})$)	: $\beta_{21} = 0$ (koefisien x_{21} tidak signifikan) : $\beta_{21} \neq 0$ (koefisien x_{21} signifikan)	0,137	karena p-value=0,137>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{21} tidak signifikan.
$dista (x_{22})$)	: $\beta_{22} = 0$ (koefisien x_{22} tidak signifikan) : $\beta_{22} \neq 0$ (koefisien x_{22} signifikan)	0,003	karena p-value=0,003<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{22} signifikan.
$dista (x_{23})$)	: $\beta_{23} = 0$ (koefisien x_{23} tidak signifikan) : $\beta_{23} \neq 0$ (koefisien x_{23} signifikan)	0,000	karena p-value=0,000 <0,05= α , maka H ₀ ditolak yang berarti koefisien x_{23} signifikan.

	distance_poi_B1 (x ₂₄)	H ₀ : $\beta_{24} = 0$ (koefisien x_{24} tidak signifikan) H ₁ : $\beta_{24} \neq 0$ (koefisien x_{24} signifikan)	0,175	karena p-value=0,175>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{24} tidak signifikan.
	$distance_poi_B2$ (x_{25})	$H_0: \beta_{25} = 0$ (koefisien x_{25} tidak signifikan) $H_1: \beta_{25} \neq 0$ (koefisien x_{25} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{25} signifikan.
	distance_poi_B3 (x ₂₆)	$H_0: \beta_{26} = 0$ (koefisien x_{26} tidak signifikan) $H_1: \beta_{26} \neq 0$ (koefisien x_{26} signifikan)	0,523	karena p-value=0,523>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{26} tidak signifikan.
	distance_poi_B4 (x ₂₇)	H ₀ : $\beta_{27} = 0$ (koefisien x_{27} tidak signifikan) H ₁ : $\beta_{27} \neq 0$ (koefisien x_{27} signifikan)	0,003	karena p-value=0,003<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{27} signifikan.
	male (x ₂₈)	$H_0: \beta_{28} = 0$ (koefisien x_{28} tidak signifikan) $H_1: \beta_{28} \neq 0$ (koefisien x_{28} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{28} signifikan.
	female (x ₂₉)	H ₀ : $\beta_{29} = 0$ (koefisien x_{29} tidak signifikan) H ₁ : $\beta_{29} \neq 0$ (koefisien x_{29} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{29} signifikan.
	room_size (x ₃₀)	H ₀ : $\beta_{30} = 0$ (koefisien x_{30} tidak signifikan) H ₁ : $\beta_{30} \neq 0$ (koefisien x_{30} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{30} signifikan.
2	konstanta	H ₀ : $\beta_0 = 0$ (konstanta tidak signifikan) H ₁ : $\beta_0 \neq 0$ (konstanta signifikan)	0,871	karena p-value=0,871>0,05= α , maka H $_0$ tidak ditolak yang berarti konstanta tidak signifikan.
	item_1 (x ₁)	H ₀ : $\beta_1 = 0$ (koefisien x_1 tidak signifikan) H ₁ : $\beta_1 \neq 0$ (koefisien x_1 signifikan)	0,006	karena p-value=0,006<0,05= α , maka H ₀ ditolak yang berarti koefisien x_1 signifikan.

item_2 (x ₂)	H ₀ : $\beta_2 = 0$ (koefisien x_2 tidak signifikan) H ₁ : $\beta_2 \neq 0$ (koefisien x_2 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_2 signifikan.
item_3 (x ₃)	$H_0: \beta_3 = 0$ (koefisien x_3 tidak signifikan) $H_1: \beta_3 \neq 0$ (koefisien x_3 signifikan)	0,010	karena p-value=0,01<0,05= α , maka H ₀ ditolak yang berarti koefisien x_3 signifikan.
item_4(x ₄)	$H_0: \beta_4 = 0$ (koefisien x_4 tidak signifikan) $H_1: \beta_4 \neq 0$ (koefisien x_4 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_4 signifikan.
item_5 (x ₅)	H ₀ : $\beta_5 = 0$ (koefisien x_5 tidak signifikan) H ₁ : $\beta_5 \neq 0$ (koefisien x_5 signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_5 signifikan.
item_6 (x ₆)	$H_0: \beta_6 = 0$ (koefisien x_6 tidak signifikan) $H_1: \beta_6 \neq 0$ (koefisien x_6 signifikan)	0,088	karena p-value=0,088>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_6 tidak signifikan.
$item_7(x_7)$	H ₀ : $\beta_7 = 0$ (koefisien x_7 tidak signifikan) H ₁ : $\beta_7 \neq 0$ (koefisien x_7 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_7 signifikan.
item_8 (x ₈)	H ₀ : $\beta_8 = 0$ (koefisien x_8 tidak signifikan) H ₁ : $\beta_8 \neq 0$ (koefisien x_8 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_8 signifikan.
item_10 (x ₁₀)	H ₀ : $\beta_{10} = 0$ (koefisien x_{10} tidak signifikan) H ₁ : $\beta_{10} \neq 0$ (koefisien x_{10} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{10} signifikan.
facility_ l (x_{11})	$H_0: \beta_{11} = 0$ (koefisien x_{11} tidak signifikan) $H_1: \beta_{11} \neq 0$ (koefisien x_{11} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{11} signifikan.

facility_		: $\beta_{12} = 0$ (koefisien x_{12} tidak signifikan) : $\beta_{12} \neq 0$ (koefisien x_{12} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{12} signifikan.
facility_	. 20.	: $\beta_{13} = 0$ (koefisien x_{13} tidak signifikan) : $\beta_{13} \neq 0$ (koefisien x_{13} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{13} signifikan.
facility_		: $\beta_{14} = 0$ (koefisien x_{14} tidak signifikan) : $\beta_{14} \neq 0$ (koefisien x_{14} signifikan)	0,215	karena p-value=0,215>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{14} tidak signifikan.
facility_		: $\beta_{15} = 0$ (koefisien x_{15} tidak signifikan) : $\beta_{15} \neq 0$ (koefisien x_{15} signifikan)	0,040	karena p-value=0,04<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{15} signifikan.
latitude		: $\beta_{16} = 0$ (koefisien x_{16} tidak signifikan) : $\beta_{16} \neq 0$ (koefisien x_{16} signifikan)	0,038	karena p-value=0,038<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{16} signifikan.
longitud		: $\beta_{17} = 0$ (koefisien x_{17} tidak signifikan) : $\beta_{17} \neq 0$ (koefisien x_{17} signifikan)	0,775	karena p-value=0,775>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{17} tidak signifikan.
$distance (x_{18})$: $\beta_{18} = 0$ (koefisien x_{18} tidak signifikan) : $\beta_{18} \neq 0$ (koefisien x_{18} signifikan)	0,485	karena p-value=0,485>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{18} tidak signifikan.
$distance (x_{19})$	_	: $\beta_{19} = 0$ (koefisien x_{19} tidak signifikan) : $\beta_{19} \neq 0$ (koefisien x_{19} signifikan)	0,061	karena p-value=0,061>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{19} tidak signifikan.
		: $\beta_{20} = 0$ (koefisien x_{20} tidak signifikan) : $\beta_{20} \neq 0$ (koefisien x_{20} signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{20} signifikan.

distance_poi_A4 (x ₂₁)	H ₀ : $\beta_{21} = 0$ (koefisien x_{21} tidak signifikan) H ₁ : $\beta_{21} \neq 0$ (koefisien x_{21} signifikan)	0,138	karena p-value=0,138>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{21} tidak signifikan.
$\begin{array}{c} distance_poi_A5 \\ (x_{22}) \end{array}$	H ₀ : $\beta_{22} = 0$ (koefisien x_{22} tidak signifikan) H ₁ : $\beta_{22} \neq 0$ (koefisien x_{22} signifikan)	0,003	karena p-value=0,003<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{22} signifikan.
distance_poi_A6 (x ₂₃)	H ₀ : $\beta_{23} = 0$ (koefisien x_{23} tidak signifikan) H ₁ : $\beta_{23} \neq 0$ (koefisien x_{23} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{23} signifikan.
distance_poi_B1 (x ₂₄)	$H_0: \beta_{24} = 0$ (koefisien x_{24} tidak signifikan) $H_1: \beta_{24} \neq 0$ (koefisien x_{24} signifikan)	0,173	karena p-value=0,173>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{24} tidak signifikan.
distance_poi_B2 (x ₂₅)	H ₀ : $\beta_{25} = 0$ (koefisien x_{25} tidak signifikan) H ₁ : $\beta_{25} \neq 0$ (koefisien x_{25} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{25} signifikan.
distance_poi_B3 (x ₂₆)	H ₀ : $\beta_{26} = 0$ (koefisien x_{26} tidak signifikan) H ₁ : $\beta_{26} \neq 0$ (koefisien x_{26} signifikan)	0,523	karena p-value=0,523>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{26} tidak signifikan.
distance_poi_B4 (x ₂₇)	H ₀ : $\beta_{27} = 0$ (koefisien x_{27} tidak signifikan) H ₁ : $\beta_{27} \neq 0$ (koefisien x_{27} signifikan)	0,003	karena p-value=0,003<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{27} signifikan.
male (x ₂₈)	H ₀ : $\beta_{28} = 0$ (koefisien x_{28} tidak signifikan) H ₁ : $\beta_{28} \neq 0$ (koefisien x_{28} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{28} signifikan.
female (x_{29})	H ₀ : $\beta_{29} = 0$ (koefisien x_{29} tidak signifikan) H ₁ : $\beta_{29} \neq 0$ (koefisien x_{29} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{29} signifikan.

	room_size (x ₃₀)	H ₀ : $\beta_{30} = 0$ (koefisien x_{30} tidak signifikan) H ₁ : $\beta_{30} \neq 0$ (koefisien x_{30} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{30} signifikan.
3	konstanta	$H_0: \beta_0 = 0$ (konstanta tidak signifikan) $H_1: \beta_0 \neq 0$ (konstanta signifikan)	0,034	karena p-value= $0.034<0.05=\alpha$, maka H_0 tiditolak yang berarti konstanta signifikan.
	$item_1(x_1)$	H ₀ : $\beta_1 = 0$ (koefisien x_1 tidak signifikan) H ₁ : $\beta_1 \neq 0$ (koefisien x_1 signifikan)	0,006	karena p-value=0,006<0,05= α , maka H ₀ ditolak yang berarti koefisien x_1 signifikan.
	item_2 (x ₂)	H ₀ : $\beta_2 = 0$ (koefisien x_2 tidak signifikan) H ₁ : $\beta_2 \neq 0$ (koefisien x_2 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_2 signifikan.
	item_3 (x ₃)	H ₀ : $\beta_3 = 0$ (koefisien x_3 tidak signifikan) H ₁ : $\beta_3 \neq 0$ (koefisien x_3 signifikan)	0,010	karena p-value=0,01<0,05= α , maka H ₀ ditolak yang berarti koefisien x_3 signifikan.
	$item_4(x_4)$	H ₀ : $\beta_4 = 0$ (koefisien x_4 tidak signifikan) H ₁ : $\beta_4 \neq 0$ (koefisien x_4 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_4 signifikan.
	item_5 (x ₅)	H ₀ : $\beta_5 = 0$ (koefisien x_5 tidak signifikan) H ₁ : $\beta_5 \neq 0$ (koefisien x_5 signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_5 signifikan.
	item_6 (x ₆)	H ₀ : $\beta_6 = 0$ (koefisien x_6 tidak signifikan) H ₁ : $\beta_6 \neq 0$ (koefisien x_6 signifikan)	0,090	karena p-value=0,09>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_6 tidak signifikan.
	item_7 (x ₇)	H ₀ : $\beta_7 = 0$ (koefisien x_7 tidak signifikan) H ₁ : $\beta_7 \neq 0$ (koefisien x_7 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_7 signifikan.

item_8 (x ₈)	$H_0: \beta_8 = 0$ (koefisien x_8 tidak signifikan) $H_1: \beta_8 \neq 0$ (koefisien x_8 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_8 signifikan.
item_10 (x ₁₀)	$H_0: \beta_{10} = 0$ (koefisien x_{10} tidak signifikan) $H_1: \beta_{10} \neq 0$ (koefisien x_{10} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{10} signifikan.
facility_l (x ₁₁)	$H_0: \beta_{11} = 0$ (koefisien x_{11} tidak signifikan) $H_1: \beta_{11} \neq 0$ (koefisien x_{11} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{11} signifikan.
facility_2 (x_{12})	H ₀ : $\beta_{12} = 0$ (koefisien x_{12} tidak signifikan) H ₁ : $\beta_{12} \neq 0$ (koefisien x_{12} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{12} signifikan.
facility_3 (x_{13})	$H_0: \beta_{13} = 0$ (koefisien x_{13} tidak signifikan) $H_1: \beta_{13} \neq 0$ (koefisien x_{13} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{13} signifikan.
facility_4 (x_{14})	$H_0: \beta_{14} = 0$ (koefisien x_{14} tidak signifikan) $H_1: \beta_{14} \neq 0$ (koefisien x_{14} signifikan)	0,212	karena p-value=0,212>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{14} tidak signifikan.
facility_5 (x_{15})	H ₀ : $\beta_{15} = 0$ (koefisien x_{15} tidak signifikan) H ₁ : $\beta_{15} \neq 0$ (koefisien x_{15} signifikan)	0,040	karena p-value=0,04<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{15} signifikan.
latitude (x ₁₆)	H ₀ : $\beta_{16} = 0$ (koefisien x_{16} tidak signifikan) H ₁ : $\beta_{16} \neq 0$ (koefisien x_{16} signifikan)	0,040	karena p-value=0,04<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{16} signifikan.
$distance_poi_AI$ (x_{18})	$H_0: \beta_{18} = 0$ (koefisien x_{18} tidak signifikan) $H_1: \beta_{18} \neq 0$ (koefisien x_{18} signifikan)	0,449	karena p-value=0,449>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{18} tidak signifikan.

	poi_A2 $H_0: \beta_{19} = 0$ (ko x_{19} tidak sigr $H_1: \beta_{19} \neq 0$ (ko x_{19} signifikan	nifikan) m pefisien be	arena p-value=0,06>0,05= α , naka H_0 tidak ditolak yang erarti koefisien x_{19} tidak ignifikan.
$\begin{array}{c} distance_\\ (x_{20}) \end{array}$	poi_A3 $H_0: \beta_{20} = 0$ (ko x_{20} tidak sigr $H_1: \beta_{20} \neq 0$ (ko x_{20} signifikan	nifikan) m pefisien ke	arena p-value= $0.002<0.05=\alpha$, naka H_0 ditolak yang berarti oefisien x_{20} signifikan.
$\begin{array}{c} distance_\\ (x_{21}) \end{array}$	poi_A4 $H_0: \beta_{21} = 0$ (ko x_{21} tidak sigr $H_1: \beta_{21} \neq 0$ (ko x_{21} signifikan	nifikan) m pefisien be	arena p-value=0,125>0,05= α , naka H ₀ tidak ditolak yang erarti koefisien x_{21} tidak ignifikan.
$\begin{array}{c} distance_\\ (x_{22}) \end{array}$	$ poi_A5 $ $ H_0: \beta_{22} = 0 \text{ (ko)} $ $ x_{22} \text{ tidak sign} $ $ H_1: \beta_{22} \neq 0 \text{ (ko)} $ $ x_{22} \text{ signifikan} $	nifikan) m pefisien ke	arena p-value= $0.003<0.05=\alpha$, naka H_0 ditolak yang berarti oefisien x_{22} signifikan.
$distance_ (x_{23})$	μoi_A6 $H_0: \beta_{23} = 0$ (ko x_{23} tidak sigr $H_1: \beta_{23} \neq 0$ (ko x_{23} signifikan	nifikan) m pefisien ke	arena p-value=0,000<0,05= α , naka H ₀ ditolak yang berarti oefisien x_{23} signifikan.
$\begin{array}{c} distance_\\ (x_{24}) \end{array}$	$\mu oi_B I$ $H_0: \beta_{24} = 0$ (ko x_{24} tidak sigr $H_1: \beta_{24} \neq 0$ (ko x_{24} signifikan	nifikan) m pefisien be	arena p-value=0,17>0,05= α , naka H_0 tidak ditolak yang erarti koefisien x_{24} tidak ignifikan.
$\begin{array}{c} distance_\\ (x_{25}) \end{array}$	poi_B2 $H_0: \beta_{25} = 0$ (ko x_{25} tidak sign $H_1: \beta_{25} \neq 0$ (ko x_{25} signifikan	nifikan) m pefisien ke	arena p-value= $0.001 < 0.05 = \alpha$, naka H ₀ ditolak yang berarti oefisien x_{25} signifikan.
distance_ (x ₂₆)	poi_B3 $H_0: \beta_{26} = 0$ (ko x_{26} tidak sign $H_1: \beta_{26} \neq 0$ (ko x_{26} signifikan	nifikan) m pefisien be	arena p-value=0,469>0,05= α , naka H ₀ tidak ditolak yang erarti koefisien x_{26} tidak ignifikan.
distance_ (x ₂₇)	poi_B4 $H_0: \beta_{27} = 0$ (ko x_{27} tidak sigr $H_1: \beta_{27} \neq 0$ (ko x_{27} signifikan	nifikan) m pefisien ke	arena p-value=0,002<0,05= α , naka H_0 ditolak yang berarti oefisien x_{27} signifikan.

	male (x_{28})	H ₀ : $\beta_{28} = 0$ (koefisien x_{28} tidak signifikan) H ₁ : $\beta_{28} \neq 0$ (koefisien x_{28} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{28} signifikan.
	female (x ₂₉)	$H_0: \beta_{29} = 0$ (koefisien x_{29} tidak signifikan) $H_1: \beta_{29} \neq 0$ (koefisien x_{29} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{29} signifikan.
	room_size (x ₃₀)	H ₀ : $\beta_{30} = 0$ (koefisien x_{30} tidak signifikan) H ₁ : $\beta_{30} \neq 0$ (koefisien x_{30} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{30} signifikan.
4	konstanta	H ₀ : $\beta_0 = 0$ (konstanta tidak signifikan) H ₁ : $\beta_0 \neq 0$ (konstanta signifikan)	0,022	karena p-value=0,022<0,05= α , maka H_0 tiditolak yang berarti konstanta signifikan.
	$item_l(x_1)$	H ₀ : $\beta_1 = 0$ (koefisien x_1 tidak signifikan) H ₁ : $\beta_1 \neq 0$ (koefisien x_1 signifikan)	0,005	karena p-value=0,005<0,05= α , maka H ₀ ditolak yang berarti koefisien x_1 signifikan.
	$item_2(x_2)$	H ₀ : $\beta_2 = 0$ (koefisien x_2 tidak signifikan) H ₁ : $\beta_2 \neq 0$ (koefisien x_2 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_2 signifikan.
	item_3 (x ₃)	H_0 : $\beta_3 = 0$ (koefisien x_3 tidak signifikan) H_1 : $\beta_3 \neq 0$ (koefisien x_3 signifikan)	0,010	karena p-value=0,01<0,05= α , maka H ₀ ditolak yang berarti koefisien x_3 signifikan.
	item_4(x ₄)	H ₀ : $\beta_4 = 0$ (koefisien x_4 tidak signifikan) H ₁ : $\beta_4 \neq 0$ (koefisien x_4 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_4 signifikan.
	item_5 (x ₅)	H_0 : $\beta_5 = 0$ (koefisien x_5 tidak signifikan) H_1 : $\beta_5 \neq 0$ (koefisien x_5 signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_5 signifikan.

item_6 (x ₆)	H ₀ : $\beta_6 = 0$ (koefisien x_6 tidak signifikan) H ₁ : $\beta_6 \neq 0$ (koefisien x_6 signifikan)	0,095	karena p-value=0,095>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_6 tidak signifikan.
item_7 (x ₇)	H ₀ : $\beta_7 = 0$ (koefisien x_7 tidak signifikan) H ₁ : $\beta_7 \neq 0$ (koefisien x_7 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_7 signifikan.
item_8 (x ₈)	$H_0: \beta_8 = 0$ (koefisien x_8 tidak signifikan) $H_1: \beta_8 \neq 0$ (koefisien x_8 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_8 signifikan.
item_10 (x ₁₀)	H ₀ : $\beta_{10} = 0$ (koefisien x_{10} tidak signifikan) H ₁ : $\beta_{10} \neq 0$ (koefisien x_{10} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{10} signifikan.
facility_ $I(x_{11})$	H ₀ : $\beta_{11} = 0$ (koefisien x_{11} tidak signifikan) H ₁ : $\beta_{11} \neq 0$ (koefisien x_{11} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{11} signifikan.
facility_2 (x_{12})	H ₀ : $\beta_{12} = 0$ (koefisien x_{12} tidak signifikan) H ₁ : $\beta_{12} \neq 0$ (koefisien x_{12} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{12} signifikan.
facility_3 (x_{13})	H ₀ : $\beta_{13} = 0$ (koefisien x_{13} tidak signifikan) H ₁ : $\beta_{13} \neq 0$ (koefisien x_{13} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{13} signifikan.
facility_4 (x_{14})	H ₀ : $\beta_{14} = 0$ (koefisien x_{14} tidak signifikan) H ₁ : $\beta_{14} \neq 0$ (koefisien x_{14} signifikan)	0,190	karena p-value=0,19>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{14} tidak signifikan.
facility_5 (x_{15})	H ₀ : $\beta_{15} = 0$ (koefisien x_{15} tidak signifikan) H ₁ : $\beta_{15} \neq 0$ (koefisien x_{15} signifikan)	0,041	karena p-value=0,041<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{15} signifikan.

latitude (x ₁₆)	$H_0: \beta_{16} = 0$ (koefisien x_{16} tidak signifikan) $H_1: \beta_{16} \neq 0$ (koefisien x_{16} signifikan)	0,027	karena p-value=0,027<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{16} signifikan.
$distance_poi_A$ (x_{18})	$H_0: β_{18} = 0$ (koefisien x_{18} tidak signifikan) $H_1: β_{18} \neq 0$ (koefisien x_{18} signifikan)	0,730	karena p-value=0,73>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{18} tidak signifikan.
distance_poi_A (x ₁₉)	2 $H_0: \beta_{19} = 0$ (koefisien x_{19} tidak signifikan) $H_1: \beta_{19} \neq 0$ (koefisien x_{19} signifikan)	0,044	karena p-value=0,044<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{19} signifikan.
$distance_poi_A$ (x_{20})	3 H ₀ : $\beta_{20} = 0$ (koefisien x_{20} tidak signifikan) H ₁ : $\beta_{20} \neq 0$ (koefisien x_{20} signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{20} signifikan.
distance_poi_A (x ₂₁)	$ H_0: β_{21} = 0 \text{ (koefisien } x_{21} \text{ tidak signifikan)} $ $ H_1: β_{21} \neq 0 \text{ (koefisien } x_{21} \text{ signifikan)} $	0,175	karena p-value=0,175>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{21} tidak signifikan.
distance_poi_A (x ₂₂)	5 $H_0: \beta_{22} = 0$ (koefisien x_{22} tidak signifikan) $H_1: \beta_{22} \neq 0$ (koefisien x_{22} signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{22} signifikan.
distance_poi_A (x ₂₃)	6 H ₀ : $\beta_{23} = 0$ (koefisien x_{23} tidak signifikan) H ₁ : $\beta_{23} \neq 0$ (koefisien x_{23} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{23} signifikan.
distance_poi_E (x ₂₄)	H ₀ : $\beta_{24} = 0$ (koefisien x_{24} tidak signifikan) H ₁ : $\beta_{24} \neq 0$ (koefisien x_{24} signifikan)	0,140	karena p-value=0,14>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{24} tidak signifikan.
distance_poi_E (x ₂₅)	H ₀ : $\beta_{25} = 0$ (koefisien x_{25} tidak signifikan) H ₁ : $\beta_{25} \neq 0$ (koefisien x_{25} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{25} signifikan.

	$distance_poi_B4$ (x_{27})	H ₀ : $\beta_{27} = 0$ (koefisien x_{27} tidak signifikan) H ₁ : $\beta_{27} \neq 0$ (koefisien x_{27} signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{27} signifikan.
	male (x ₂₈)	$H_0: \beta_{28} = 0$ (koefisien x_{28} tidak signifikan) $H_1: \beta_{28} \neq 0$ (koefisien x_{28} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{28} signifikan.
	female (x_{29})	$H_0: \beta_{29} = 0$ (koefisien x_{29} tidak signifikan) $H_1: \beta_{29} \neq 0$ (koefisien x_{29} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{29} signifikan.
	room_size (x ₃₀)	$H_0: \beta_{30} = 0$ (koefisien x_{30} tidak signifikan) $H_1: \beta_{30} \neq 0$ (koefisien x_{30} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{30} signifikan.
5	konstanta	$H_0: \beta_0 = 0$ (konstanta tidak signifikan) $H_1: \beta_0 \neq 0$ (konstanta signifikan)	0,010	karena p-value=0,01<0,05= α , maka H ₀ tiditolak yang berarti konstanta signifikan.
	$item_1(x_1)$	H ₀ : $\beta_1 = 0$ (koefisien x_1 tidak signifikan) H ₁ : $\beta_1 \neq 0$ (koefisien x_1 signifikan)	0,005	karena p-value=0,005<0,05= α , maka H ₀ ditolak yang berarti koefisien x_1 signifikan.
	$item_2(x_2)$	H ₀ : $\beta_2 = 0$ (koefisien x_2 tidak signifikan) H ₁ : $\beta_2 \neq 0$ (koefisien x_2 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_2 signifikan.
	item_3 (x ₃)	H ₀ : $\beta_3 = 0$ (koefisien x_3 tidak signifikan) H ₁ : $\beta_3 \neq 0$ (koefisien x_3 signifikan)	0,010	karena p-value=0,01<0,05= α , maka H ₀ ditolak yang berarti koefisien x_3 signifikan.
	item_4(x ₄)	H ₀ : $\beta_4 = 0$ (koefisien x_4 tidak signifikan) H ₁ : $\beta_4 \neq 0$ (koefisien x_4 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_4 signifikan.

item_5 (x ₅)	H ₀ : $\beta_5 = 0$ (koefisien x_5 tidak signifikan) H ₁ : $\beta_5 \neq 0$ (koefisien x_5 signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_5 signifikan.
item_6 (x ₆)	H ₀ : $\beta_6 = 0$ (koefisien x_6 tidak signifikan) H ₁ : $\beta_6 \neq 0$ (koefisien x_6 signifikan)	0,092	karena p-value=0,092>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_6 tidak signifikan.
item_7 (x ₇)	H ₀ : $\beta_7 = 0$ (koefisien x_7 tidak signifikan) H ₁ : $\beta_7 \neq 0$ (koefisien x_7 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_7 signifikan.
item_8 (x ₈)	H ₀ : $\beta_8 = 0$ (koefisien x_8 tidak signifikan) H ₁ : $\beta_8 \neq 0$ (koefisien x_8 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_8 signifikan.
item_10 (x ₁₀)	$H_0: \beta_{10} = 0$ (koefisien x_{10} tidak signifikan) $H_1: \beta_{10} \neq 0$ (koefisien x_{10} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{10} signifikan.
facility_ $l(x_{11})$	H ₀ : $\beta_{11} = 0$ (koefisien x_{11} tidak signifikan) H ₁ : $\beta_{11} \neq 0$ (koefisien x_{11} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{11} signifikan.
facility_2 (x_{12})	H ₀ : $\beta_{12} = 0$ (koefisien x_{12} tidak signifikan) H ₁ : $\beta_{12} \neq 0$ (koefisien x_{12} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{12} signifikan.
facility_3 (x_{13})	H ₀ : $\beta_{13} = 0$ (koefisien x_{13} tidak signifikan) H ₁ : $\beta_{13} \neq 0$ (koefisien x_{13} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{13} signifikan.
facility_4 (x_{14})	H ₀ : $\beta_{14} = 0$ (koefisien x_{14} tidak signifikan) H ₁ : $\beta_{14} \neq 0$ (koefisien x_{14} signifikan)	0,190	karena p-value=0,19>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{14} tidak signifikan.

facilii	: $\beta_{15} = 0$ (koefisien x_{15} tidak signifikan) : $\beta_{15} \neq 0$ (koefisien x_{15} signifikan)	0,040	karena p-value=0,04<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{15} signifikan.
latitud	: $\beta_{16} = 0$ (koefisien x_{16} tidak signifikan) : $\beta_{16} \neq 0$ (koefisien x_{16} signifikan)	0,013	karena p-value=0,013<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{16} signifikan.
$distan$ (x_{19})	: $\beta_{19} = 0$ (koefisien x_{19} tidak signifikan) : $\beta_{19} \neq 0$ (koefisien x_{19} signifikan)	0,047	karena p-value=0,047<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{19} signifikan.
$distan$ (x_{20})	: $\beta_{20} = 0$ (koefisien x_{20} tidak signifikan) : $\beta_{20} \neq 0$ (koefisien x_{20} signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{20} signifikan.
$distar (x_{21})$: $\beta_{21} = 0$ (koefisien x_{21} tidak signifikan) : $\beta_{21} \neq 0$ (koefisien x_{21} signifikan)	0,139	karena p-value=0,139>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{21} tidak signifikan.
$distar (x_{22})$: $\beta_{22} = 0$ (koefisien x_{22} tidak signifikan) : $\beta_{22} \neq 0$ (koefisien x_{22} signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{22} signifikan.
$distan$ (x_{23})	: $\beta_{23} = 0$ (koefisien x_{23} tidak signifikan) : $\beta_{23} \neq 0$ (koefisien x_{23} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{23} signifikan.
$distan$ (x_{24})	: $\beta_{24} = 0$ (koefisien x_{24} tidak signifikan) : $\beta_{24} \neq 0$ (koefisien x_{24} signifikan)	0,145	karena p-value=0,145>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{24} tidak signifikan.
$distan$ (x_{25})	: $\beta_{25} = 0$ (koefisien x_{25} tidak signifikan) : $\beta_{25} \neq 0$ (koefisien x_{25} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{25} signifikan.

	distance_poi_B4 (x ₂₇)	H ₀ : $\beta_{27} = 0$ (koefisien x_{27} tidak signifikan) H ₁ : $\beta_{27} \neq 0$ (koefisien x_{27} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{27} signifikan.
	male (x_{28})	H ₀ : $\beta_{28} = 0$ (koefisien x_{28} tidak signifikan) H ₁ : $\beta_{28} \neq 0$ (koefisien x_{28} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{28} signifikan.
	female (x_{29})	$H_0: \beta_{29} = 0$ (koefisien x_{29} tidak signifikan) $H_1: \beta_{29} \neq 0$ (koefisien x_{29} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{29} signifikan.
	room_size (x ₃₀)	H ₀ : $\beta_{30} = 0$ (koefisien x_{30} tidak signifikan) H ₁ : $\beta_{30} \neq 0$ (koefisien x_{30} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{30} signifikan.
6	konstanta	$H_0: \beta_0 = 0$ (konstanta tidak signifikan) $H_1: \beta_0 \neq 0$ (konstanta signifikan)	0,009	karena p-value=0,009<0,05= α , maka H ₀ tiditolak yang berarti konstanta signifikan.
	item_1 (x ₁)	H ₀ : $\beta_1 = 0$ (koefisien x_1 tidak signifikan) H ₁ : $\beta_1 \neq 0$ (koefisien x_1 signifikan)	0,006	karena p-value=0,006<0,05= α , maka H ₀ ditolak yang berarti koefisien x_1 signifikan.
	item_2 (x ₂)	H ₀ : $\beta_2 = 0$ (koefisien x_2 tidak signifikan) H ₁ : $\beta_2 \neq 0$ (koefisien x_2 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_2 signifikan.
	item_3 (x ₃)	H ₀ : $\beta_3 = 0$ (koefisien x_3 tidak signifikan) H ₁ : $\beta_3 \neq 0$ (koefisien x_3 signifikan)	0,009	karena p-value=0,009<0,05= α , maka H ₀ ditolak yang berarti koefisien x_3 signifikan.
	item_4(x ₄)	H ₀ : $\beta_4 = 0$ (koefisien x_4 tidak signifikan) H ₁ : $\beta_4 \neq 0$ (koefisien x_4 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_4 signifikan.

item_5 (x ₅)	H ₀ : $\beta_5 = 0$ (koefisien x_5 tidak signifikan) H ₁ : $\beta_5 \neq 0$ (koefisien x_5 signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_5 signifikan.
item_6 (x ₆)	H ₀ : $\beta_6 = 0$ (koefisien x_6 tidak signifikan) H ₁ : $\beta_6 \neq 0$ (koefisien x_6 signifikan)	0,093	karena p-value=0,093>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_6 tidak signifikan.
item_7 (x ₇)	H ₀ : $\beta_7 = 0$ (koefisien x_7 tidak signifikan) H ₁ : $\beta_7 \neq 0$ (koefisien x_7 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_7 signifikan.
item_8 (x ₈)	H ₀ : $\beta_8 = 0$ (koefisien x_8 tidak signifikan) H ₁ : $\beta_8 \neq 0$ (koefisien x_8 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_8 signifikan.
item_10 (x ₁₀)	$H_0: \beta_{10} = 0$ (koefisien x_{10} tidak signifikan) $H_1: \beta_{10} \neq 0$ (koefisien x_{10} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{10} signifikan.
facility_ $l(x_{11})$	$H_0: \beta_{11} = 0$ (koefisien x_{11} tidak signifikan) $H_1: \beta_{11} \neq 0$ (koefisien x_{11} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{11} signifikan.
facility_2 (x_{12})	H ₀ : $\beta_{12} = 0$ (koefisien x_{12} tidak signifikan) H ₁ : $\beta_{12} \neq 0$ (koefisien x_{12} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{12} signifikan.
facility_3 (x_{13})	H ₀ : $\beta_{13} = 0$ (koefisien x_{13} tidak signifikan) H ₁ : $\beta_{13} \neq 0$ (koefisien x_{13} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{13} signifikan.
facility_5 (x_{15})	H ₀ : $\beta_{15} = 0$ (koefisien x_{15} tidak signifikan) H ₁ : $\beta_{15} \neq 0$ (koefisien x_{15} signifikan)	0,030	karena p-value=0,03<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{15} signifikan.

latitude (s signifikan) O (koefisien	karena p-value=0,012<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{16} signifikan.
$\begin{array}{c} distance_\\ (x_{19}) \end{array}$		signifikan) O (koefisien	karena p-value=0,045<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{19} signifikan.
$\begin{array}{c} distance_\\ (x_{20}) \end{array}$	poi_A3 $H_0: \beta_{20} = 0$ $x_{20} \text{ tidak}$ $H_1: \beta_{20} \neq 0$ $x_{20} \text{ signs}$	s signifikan) O (koefisien	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{20} signifikan.
$\begin{array}{c} distance_\\ (x_{21}) \end{array}$	poi_A4 $H_0: \beta_{21} = 0$ $x_{21} \text{ tidak}$ $H_1: \beta_{21} \neq 0$ $x_{21} \text{ significant } \beta_{21} \neq 0$	x signifikan) O (koefisien	karena p-value=0,146>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{21} tidak signifikan.
$\begin{array}{c} distance_\\ (x_{22}) \end{array}$	poi_A5 $H_0: \beta_{22} = 0$ $x_{22} \text{ tidak}$ $H_1: \beta_{22} \neq 0$ $x_{22} \text{ significant } \beta_{22} = 0$	s signifikan) O (koefisien	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{22} signifikan.
$\begin{array}{c} distance_\\ (x_{23}) \end{array}$	poi_A6 $H_0: \beta_{23} = 0$ $x_{23} \text{ tidak}$ $H_1: \beta_{23} \neq 0$ $x_{23} \text{ sign}$	a signifikan) O (koefisien	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{23} signifikan.
$distance_{-} \\ (x_{24})$	poi_B1 H ₀ : $\beta_{24} = 0$ $x_{24} \text{ tidak}$ H ₁ : $\beta_{24} \neq 0$ $x_{24} \text{ significant } \beta_{24} = 0$	x signifikan) O (koefisien	karena p-value=0,139>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_{24} tidak signifikan.
distance_ (x ₂₅)	poi_B2 $H_0: \beta_{25} = 0$ $x_{25} \text{ tidak}$ $H_1: \beta_{25} \neq 0$ $x_{25} \text{ significant } \beta_{25} \neq 0$	x signifikan) O (koefisien	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{25} signifikan.
$distance_{-}$ (x_{27})	poi_B4 $H_0: \beta_{27} = 0$ $x_{27} \text{ tidak}$ $H_1: \beta_{27} \neq 0$ $x_{27} \text{ sign}$	x signifikan) O (koefisien	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{27} signifikan.

	male (x ₂₈)	H ₀ : $\beta_{28} = 0$ (koefisien x_{28} tidak signifikan) H ₁ : $\beta_{28} \neq 0$ (koefisien x_{28} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{28} signifikan.
	female (x ₂₉)	$H_0: \beta_{29} = 0$ (koefisien x_{29} tidak signifikan) $H_1: \beta_{29} \neq 0$ (koefisien x_{29} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{29} signifikan.
	room_size (x ₃₀)	H ₀ : $\beta_{30} = 0$ (koefisien x_{30} tidak signifikan) H ₁ : $\beta_{30} \neq 0$ (koefisien x_{30} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{30} signifikan.
7	konstanta	H ₀ : $\beta_0 = 0$ (konstanta tidak signifikan) H ₁ : $\beta_0 \neq 0$ (konstanta signifikan)	0,007	karena p-value=0,007<0,05= α , maka H ₀ tiditolak yang berarti konstanta signifikan.
	$item_l(x_1)$	H ₀ : $\beta_1 = 0$ (koefisien x_1 tidak signifikan) H ₁ : $\beta_1 \neq 0$ (koefisien x_1 signifikan)	0,007	karena p-value=0,007<0,05= α , maka H ₀ ditolak yang berarti koefisien x_1 signifikan.
	item_2 (x ₂)	H ₀ : $\beta_2 = 0$ (koefisien x_2 tidak signifikan) H ₁ : $\beta_2 \neq 0$ (koefisien x_2 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_2 signifikan.
	item_3 (x ₃)	H_0 : $\beta_3 = 0$ (koefisien x_3 tidak signifikan) H_1 : $\beta_3 \neq 0$ (koefisien x_3 signifikan)	0,008	karena p-value=0,008<0,05= α , maka H ₀ ditolak yang berarti koefisien x_3 signifikan.
	item_4(x ₄)	H ₀ : $\beta_4 = 0$ (koefisien x_4 tidak signifikan) H ₁ : $\beta_4 \neq 0$ (koefisien x_4 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_4 signifikan.
	item_5 (x ₅)	H ₀ : $\beta_5 = 0$ (koefisien x_5 tidak signifikan) H ₁ : $\beta_5 \neq 0$ (koefisien x_5 signifikan)	0,003	karena p-value=0,003<0,05= α , maka H ₀ ditolak yang berarti koefisien x_5 signifikan.

item_6 (x ₆)	H ₀ : $\beta_6 = 0$ (koefisien x_6 tidak signifikan) H ₁ : $\beta_6 \neq 0$ (koefisien x_6 signifikan)	0,093	karena p-value=0,093>0,05= α , maka H ₀ tidak ditolak yang berarti koefisien x_6 tidak signifikan.
item_7 (x ₇)	H ₀ : $\beta_7 = 0$ (koefisien x_7 tidak signifikan) H ₁ : $\beta_7 \neq 0$ (koefisien x_7 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_7 signifikan.
item_8 (x ₈)	H_0 : $\beta_8 = 0$ (koefisien x_8 tidak signifikan) H_1 : $\beta_8 \neq 0$ (koefisien x_8 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_8 signifikan.
item_10 (x ₁₀)	$H_0: \beta_{10} = 0$ (koefisien x_{10} tidak signifikan) $H_1: \beta_{10} \neq 0$ (koefisien x_{10} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{10} signifikan.
facility_ $1(x_{11})$	$H_0: \beta_{11} = 0$ (koefisien x_{11} tidak signifikan) $H_1: \beta_{11} \neq 0$ (koefisien x_{11} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{11} signifikan.
facility_2 (x_{12})	H ₀ : $\beta_{12} = 0$ (koefisien x_{12} tidak signifikan) H ₁ : $\beta_{12} \neq 0$ (koefisien x_{12} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{12} signifikan.
facility_3 (x_{13})	H ₀ : $\beta_{13} = 0$ (koefisien x_{13} tidak signifikan) H ₁ : $\beta_{13} \neq 0$ (koefisien x_{13} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{13} signifikan.
facility_5 (x_{15})	H ₀ : $\beta_{15} = 0$ (koefisien x_{15} tidak signifikan) H ₁ : $\beta_{15} \neq 0$ (koefisien x_{15} signifikan)	0,028	karena p-value=0,028<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{15} signifikan.
latitude (x ₁₆)	H ₀ : $\beta_{16} = 0$ (koefisien x_{16} tidak signifikan) H ₁ : $\beta_{16} \neq 0$ (koefisien x_{16} signifikan)	0,009	karena p-value=0,009<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{16} signifikan.

	(x_{19})	$H_0: \beta_{19} = 0$ (koefisien x_{19} tidak signifikan) $H_1: \beta_{19} \neq 0$ (koefisien x_{19} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{19} signifikan.
	(x_{20})	$H_0: \beta_{20} = 0$ (koefisien x_{20} tidak signifikan) $H_1: \beta_{20} \neq 0$ (koefisien x_{20} signifikan)	0,004	karena p-value=0,004<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{20} signifikan.
	(x_{22})	$H_0: \beta_{22} = 0$ (koefisien x_{22} tidak signifikan) $H_1: \beta_{22} \neq 0$ (koefisien x_{22} signifikan)	0,003	karena p-value=0,003<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{22} signifikan.
	listance_poi_A6 (x ₂₃)	$H_0: \beta_{23} = 0$ (koefisien x_{23} tidak signifikan) $H_1: \beta_{23} \neq 0$ (koefisien x_{23} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{23} signifikan.
	(x_{24})	$H_0: \beta_{24} = 0$ (koefisien x_{24} tidak signifikan) $H_1: \beta_{24} \neq 0$ (koefisien x_{24} signifikan)	0,011	karena p-value=0,011<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{24} signifikan.
	(x_{25})	$H_0: \beta_{25} = 0$ (koefisien x_{25} tidak signifikan) $H_1: \beta_{25} \neq 0$ (koefisien x_{25} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{25} signifikan.
	(x_{27})	H ₀ : $\beta_{27} = 0$ (koefisien x_{27} tidak signifikan) H ₁ : $\beta_{27} \neq 0$ (koefisien x_{27} signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{27} signifikan.
m		$H_0: \beta_{28} = 0$ (koefisien x_{28} tidak signifikan) $H_1: \beta_{28} \neq 0$ (koefisien x_{28} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{28} signifikan.
fe	ζ Ξ.,	$H_0: \beta_{29} = 0$ (koefisien x_{29} tidak signifikan) $H_1: \beta_{29} \neq 0$ (koefisien x_{29} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{29} signifikan.

	room_size (x ₃₀)	H ₀ : $\beta_{30} = 0$ (koefisien x_{30} tidak signifikan) H ₁ : $\beta_{30} \neq 0$ (koefisien x_{30} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{30} signifikan.
8	konstanta	$H_0: \beta_0 = 0$ (konstanta tidak signifikan) $H_1: \beta_0 \neq 0$ (konstanta signifikan)	0,007	karena p-value= $0.007<0.05=\alpha$, maka H_0 tiditolak yang berarti konstanta signifikan.
	$item_l(x_1)$	H ₀ : $\beta_1 = 0$ (koefisien x_1 tidak signifikan) H ₁ : $\beta_1 \neq 0$ (koefisien x_1 signifikan)	0,009	karena p-value=0,009<0,05= α , maka H ₀ ditolak yang berarti koefisien x_1 signifikan.
	item_2 (x ₂)	$H_0: \beta_2 = 0$ (koefisien x_2 tidak signifikan) $H_1: \beta_2 \neq 0$ (koefisien x_2 signifikan)	0,001	karena p-value= $0.001<0.05=\alpha$, maka H ₀ ditolak yang berarti koefisien x_2 signifikan.
	item_3 (x ₃)	H ₀ : $\beta_3 = 0$ (koefisien x_3 tidak signifikan) H ₁ : $\beta_3 \neq 0$ (koefisien x_3 signifikan)	0,009	karena p-value=0,009<0,05= α , maka H ₀ ditolak yang berarti koefisien x_3 signifikan.
	$item_4(x_4)$	H ₀ : $\beta_4 = 0$ (koefisien x_4 tidak signifikan) H ₁ : $\beta_4 \neq 0$ (koefisien x_4 signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_4 signifikan.
	item_5 (x ₅)	H ₀ : $\beta_5 = 0$ (koefisien x_5 tidak signifikan) H ₁ : $\beta_5 \neq 0$ (koefisien x_5 signifikan)	0,010	karena p-value=0,01<0,05= α , maka H ₀ ditolak yang berarti koefisien x_5 signifikan.
	$item_7(x_7)$	H ₀ : $\beta_7 = 0$ (koefisien x_7 tidak signifikan) H ₁ : $\beta_7 \neq 0$ (koefisien x_7 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_7 signifikan.
	item_8 (x ₈)	H ₀ : $\beta_8 = 0$ (koefisien x_8 tidak signifikan) H ₁ : $\beta_8 \neq 0$ (koefisien x_8 signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_8 signifikan.

ite.		H ₀ : $\beta_{10} = 0$ (koefisien x_{10} tidak signifikan) H ₁ : $\beta_{10} \neq 0$ (koefisien x_{10} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{10} signifikan.
fac		H ₀ : $\beta_{11} = 0$ (koefisien x_{11} tidak signifikan) H ₁ : $\beta_{11} \neq 0$ (koefisien x_{11} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{11} signifikan.
fac		H ₀ : $\beta_{12} = 0$ (koefisien x_{12} tidak signifikan) H ₁ : $\beta_{12} \neq 0$ (koefisien x_{12} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{12} signifikan.
fac		H ₀ : $\beta_{13} = 0$ (koefisien x_{13} tidak signifikan) H ₁ : $\beta_{13} \neq 0$ (koefisien x_{13} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{13} signifikan.
fac		H ₀ : $\beta_{15} = 0$ (koefisien x_{15} tidak signifikan) H ₁ : $\beta_{15} \neq 0$ (koefisien x_{15} signifikan)	0,029	karena p-value= $0.029 < 0.05 = \alpha$, maka H ₀ ditolak yang berarti koefisien x_{15} signifikan.
lat		H ₀ : $\beta_{16} = 0$ (koefisien x_{16} tidak signifikan) H ₁ : $\beta_{16} \neq 0$ (koefisien x_{16} signifikan)	0,009	karena p-value=0,009<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{16} signifikan.
	19)	H ₀ : $\beta_{19} = 0$ (koefisien x_{19} tidak signifikan) H ₁ : $\beta_{19} \neq 0$ (koefisien x_{19} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{19} signifikan.
	20)	H ₀ : $\beta_{20} = 0$ (koefisien x_{20} tidak signifikan) H ₁ : $\beta_{20} \neq 0$ (koefisien x_{20} signifikan)	0,004	karena p-value=0,004<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{20} signifikan.
	22)	H ₀ : $\beta_{22} = 0$ (koefisien x_{22} tidak signifikan) H ₁ : $\beta_{22} \neq 0$ (koefisien x_{22} signifikan)	0,004	karena p-value=0,004<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{22} signifikan.

$\begin{array}{c} distance_poi_A6 \\ (x_{23}) \end{array}$	H ₀ : $\beta_{23} = 0$ (koefisien x_{23} tidak signifikan) H ₁ : $\beta_{23} \neq 0$ (koefisien x_{23} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{23} signifikan.
distance_poi_B1 (x ₂₄)	$H_0: \beta_{24} = 0$ (koefisien x_{24} tidak signifikan) $H_1: \beta_{24} \neq 0$ (koefisien x_{24} signifikan)	0,012	karena p-value=0,012<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{24} signifikan.
$\begin{array}{c} distance_poi_B2 \\ (x_{25}) \end{array}$	$H_0: \beta_{25} = 0$ (koefisien x_{25} tidak signifikan) $H_1: \beta_{25} \neq 0$ (koefisien x_{25} signifikan)	0,001	karena p-value=0,001<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{25} signifikan.
$distance_poi_B4$ (x_{27})	H ₀ : $\beta_{27} = 0$ (koefisien x_{27} tidak signifikan) H ₁ : $\beta_{27} \neq 0$ (koefisien x_{27} signifikan)	0,002	karena p-value=0,002<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{27} signifikan.
male (x ₂₈)	H ₀ : $\beta_{28} = 0$ (koefisien x_{28} tidak signifikan) H ₁ : $\beta_{28} \neq 0$ (koefisien x_{28} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{28} signifikan.
female (x_{29})	$H_0: \beta_{29} = 0$ (koefisien x_{29} tidak signifikan) $H_1: \beta_{29} \neq 0$ (koefisien x_{29} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{29} signifikan.
room_size (x ₃₀)	$H_0: \beta_{30} = 0$ (koefisien x_{30} tidak signifikan) $H_1: \beta_{30} \neq 0$ (koefisien x_{30} signifikan)	0,000	karena p-value=0,000<0,05= α , maka H ₀ ditolak yang berarti koefisien x_{30} signifikan.

KRITERIA PEMILIHAN MODEL TERBAIK

Kriteria pemilihan model terbaik yaitu

- R, R² dan Adj. R² terbesar
- SE, AIC, SBC dan PRESS terkecil
- CP Mallows \leq parameter (termasuk konstansta)

kriteria	R↑	$R^2\uparrow$	Adj. R ² ↑	SE↓	AIC ↓	SBC ↓	PRESS ↓	CP
								Mallows
model	0,806	0,650	0,647	377031,211	79562,319	79749,503	4,59E+14	31
1	0,800 ✓	0,030 ✓	0,047 ✓	377031,211	79302,319	19749,303	4,39E+14	31 ✓
model	0,806	0,650	0,647	376971,332	79560,346	79741,491	4,59E+14	30
2	√	√	<i>√</i>	370771,332	77500,540	77771,771	+,57D+1+	√
model	0,806	0,650	0,647	376911,891	79558,428	79733,535	4,58E+14	29
3	✓	✓	✓					✓
model	0,806	0,650	0,647	376885,693	79556,957	79726,027	4,58E+14	28
4	✓	✓	\checkmark					\checkmark
model	0,806	0,650	0,647	376831,618	79555,077	79718,109	4,54E+14	27
5	✓	✓	✓	✓			✓	✓
model	0,806	0,650	0,647	376875,818	79554,813	79711,805	4,54E+14	26
6	✓	✓	\checkmark		✓		✓	\checkmark
model	0,806	0,650	0,647	376943,966	79554,941	79705,895	4,54E+14	25
7	✓	✓	✓				✓	✓
model	0,806	0,649	0,647	377055,936	79555,788	79700,705	4,54E+14	24
8	✓		✓			✓	✓	✓

Berdasarkan kriteria pemilihan model terbaik, model 5 dan model 6 memenuhi kirteria paling banyak. Dengan urutan pertimbangan PRESS terkecil, AIC terkecil, BIC terkecil dari keduanya, diperoleh model 6 mempunyai nilai AIC yang lebih kecil, maka model 6 merupakan model terbaik.

MODEL SUMMARY

Berikut interpretasi model summary dari model 6:

• R = 0.806

Menunjukkan derajat hubungan antara variabel dependen (*price*) dan variabel independen (*item_1*, *item_2*, *item_3*, *item_4*, *item_5*, *item_6*, *item_7*, *item_8*, *item_10*, *facility_1*, *facility_2*, *facility_3*, *facility_5*, *latitude*, *distance_poi_A2*, *distance_poi_A3*, *distance_poi_A4*, *distance_poi_A5*, *distance_poi_A6*, *distance_poi_B1*, *distance_poi_B2*, *distance_poi_B4*, *male*, *female*, *room_size*) yaitu

sebesar 0,806. Nilai ini menunjukkan bahwa terdapat hubungan erat antara variabel dependen dengan variabel independen.

• $R^2 = 0.650$

Menunjukkan bahwa 65% dari variabel dependen (*price*) dapat dijelaskan oleh variabel independen (*item_1*, *item_2*, *item_3*, *item_4*, *item_5*, *item_6*, *item_7*, *item_8*, *item_10*, *facility_1*, *facility_2*, *facility_3*, *facility_5*, *latitude*, *distance_poi_A2*, *distance_poi_A3*, *distance_poi_A4*, *distance_poi_A5*, *distance_poi_A6*, *distance_poi_B1*, *distance_poi_B2*, *distance_poi_B4*, *male*, *female*, *room_size*). Sedangkan, sisanya dijelaskan oleh sebab-sebab lain.

- Adjusted R² = 0,647
 Menunjukkan koreksi terhadap R² sebesar 64,7%
- Std Error of the Estimate = 376875,818 Menunjukkan besarnya variasi model regresi sebesar 376875,818.

MODEL REGRESI TERBAIK

```
price = -7330237,675 + 77321,927*item\_1 + 63626,122*item\_2 + 51707,766\\ * item\_3 - 91503,1*item\_4 + 71175,295*item\_5 - 38401,736\\ * item\_6 + 148440,33*item\_7 + 439636,22*item\_8 + 136682,855\\ * item\_10 + 233487,635*facility\_1 + 53451,674*facility\_2\\ + 55375,355*facility\_3 + 30159,677*facility\_5 - 915037,993\\ * latitude - 143,706*distance\_poi\_A2 - 158,984*distance\_poi\_A3\\ - 41,393*distance\_poi\_A4 + 81,684*distance\_poi\_A5 + 117,981\\ * distance\_poi\_A6 + 87,551*distance\_poi\_B1 + 149,024\\ * distance\_poi\_B2 - 94,238*distance\_poi\_B4 + 391594,907*male\\ + 374118,442*female + 20220,144*room\_size
```

ANALISIS RESIDUAL

Dikatakan baik jika minimal 50% asumsi berikut terpenuhi.

1. Fix independen variabel: diasumsikan terpenuhi

2. Linearitas

Interpretasi:

Dari grafik di atas, dapat disimpulkan bahwa

- Terdapat hubungan linear positif antara *room_size* dengan *price*, yang berarti semakin luas kamar, maka semakin ti harga sewa kost.
- Terdapat hubungan linear positif antara *latitute* dengan *price*, yang berarti semakin utara letak kost, maka semakin tinggi harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_A2* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-2, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_A3* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-3, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_A4* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-4, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_A5* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-5, maka semakin rendah harga sewa kost.

- Terdapat hubungan linear positif antara *distance_poi_A6* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis A ke-6, maka semakin tinggi harga sewa kost
- Terdapat hubungan linear negatif antara *distance_poi_B1* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis B ke-1, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear negatif antara *distance_poi_B2* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis B ke-2, maka semakin rendah harga sewa kost.
- Terdapat hubungan linear positif antara *distance_poi_B4* dengan *price*, yang berarti semakin jauh jarak kost terhadap titik POI jenis B ke-4, maka semakin tinggi harga sewa kost.

Dengan adanya hubungan linear antara variabel prediktor dengan variabel respon, maka asumsi linearitas **terpenuhi**.

3. Normalitas residual; untuk mengetahui residual berdistribusi normal atau tidak

Inferensi

a. Hipotesis

 H_0 : residual berdistribusi normal

 H_1 : residual tidak berdistribusi normal

b. Tingkat Signifikansi : $\alpha = 0.05$

c. Statistik Uji : p-value (Sig.) = 0,000

d. Daerah Kritik

 H_0 ditolak jika p-value $< \alpha$

e. Kesimpulan

Karena p-value = $0,000 < 0,05 = \alpha$, maka H_0 ditolak yang artinya residual tidak berdistribusi normal. Sehingga asusmsi normalitas residual tidak terpenuhi.

Tests of Normality

	Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk			
	Statistic df Sig. Statistic df				df	Sig.	
Unstandardized Residual	.175 3097 .000			.736	3097	.000	

a. Lilliefors Significance Correction

Interpretasi:

Karena jumlah data pada kasus, n > 50 maka pada uji asumsi normalitas residual ini digunakan p-value (Sig.) dari kolom **Kolmogorov-Smirnov** yaitu sebesar 0,000. Dimana p-value = $0,000 < 0,05 = \alpha$, maka H_0 ditolak yang artinya residual tidak berdistribusi normal. Sehingga asusmsi normalitas residual tidak terpenuhi.

Interpretasi:

Berdasarkan *Q-Q Plot* di atas titik-titiknya tidak berada di sekitar garis diagonal, yang menunjukkan errornya tidak berdistribusi normal. Sehingga dengan *Q-Q Plot* disimpulkan bahwa asusmsi normalitas residual tidak terpenuhi.

Dari dua cara di atas, dapat disimpulkan bahwa asumsi normalitas residual tidak terpenuhi.

4. Homoskedastisitas

Kondisi dimana variabel konstan. Terpenuhi jika variansi residual konstan, dilihat dari plot z resid by z pred. Dikatakan homoskedastisitas jika titik-titik mendekati nol atau tidak membentuk pola.

Interpretasi:

Dari *scatter plot* di atas, terlihat bahwa grafiknya sudah dapat dikatakan meannya di sekitar 0 namun variansi errornya tidak konstan, dilihat dari plot z resid by z pred yaitu semakin bertambahnya nilai X, residualnya semakin menyebar. Sehingga asumsi homoskedastisitas **tidak terpenuhi**.

5. No multikolinearitas

Kondisi dimana tidak ada hubungan antar variabel independen. Terpenuhi jika VIF< 10 dan TOL > 0,1.

Coefficients^a

	Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1 (Constant)	-7330237.675	2816082.806		-2.603	.009		
room_size	20110.144	1907.434	.130	10.543	.000	.747	1.339
item_1	77321.927	28159.880	.059	2.746	.006	.246	4.067
item_2	63626.122	18277.467	.050	3.481	.001	.560	1.785
item_3	51707.766	19679.396	.040	2.628	.009	.503	1.987
item_4	-91503.100	27393.190	070	-3.340	.001	.260	3.851
item_5	71175.295	23359.255	.054	3.047	.002	.361	2.771
item_6	-38401.736	22875.193	030	-1.679	.093	.355	2.814
item_7	148440.330	24466.124	.094	6.067	.000	.479	2.090
item_8	439636.220	24781.098	.303	17.741	.000	.392	2.551
item_10	136682.855	29963.098	.051	4.562	.000	.905	1.105
facility_1	233487.635	26216.499	.128	8.906	.000	.550	1.820
facility_2	53451.674	15953.237	.042	3.351	.001	.725	1.379
facility_3	55375.355	15601.626	.043	3.549	.000	.767	1.304
facility_5	30159.677	13918.988	.024	2.167	.030	.950	1.053
latitude	-915037.993	362680.446	058	-2.523	.012	.217	4.616
distance_poi_	A2 -143.706	71.576	616	-2.008	.045	.001	826.407
distance_poi_	A3 -158.984	51.542	766	-3.085	.002	.002	541.383
distance_poi_	A4 -41.393	28.489	181	-1.453	.146	.007	135.737
distance_poi_	A5 81.684	26.768	.379	3.052	.002	.007	135.424
distance_poi_	A6 117.981	27.753	.620	4.251	.000	.005	186.412
distance_poi_	B1 87.551	59.114	.376	1.481	.139	.002	565.004
distance_poi_	B2 149.024	44.096	.713	3.380	.001	.003	390.736
distance_poi_	B4 -94.238	29.120	478	-3.236	.001	.005	190.988
male	391594.907	20432.578	.307	19.165	.000	.443	2.256
female	374118.442	22470.546	.267	16.649	.000	.443	2.258

a. Dependent Variable: price

Interpertasi:

Dari tabel Coefficients di atas, pada bagian kolom Collinearity Statistics diperoleh nilai TOL dan VIF sebagai berikut:

	TO	OL		VIF					
0,747	✓	0,950	✓	1,339	✓	1,053	✓		
0,246	✓	0,217	✓	4,067	✓	4,616	✓		
0,560	✓	0,001	X	1,785	✓	826,407	X		
0,503	✓	0,002	X	1,987	✓	541,383	X		
0,260	✓	0,007	X	3,851	√	135,737	X		
0,361	✓	0,007	X	2,771	√	135,424	X		
0,355	✓	0,005	X	2,814	√	186,412	X		
0,479	✓	0,002	X	2,090	√	565,004	X		
0,392	✓	0,003	X	2,551	✓	390,736	X		
0,905	✓	0,005	X	1,105	✓	190,988	X		
0,550	✓	0,443	✓	1,820	✓	2,266	✓		
0,725	✓	0,443	✓	1,379	✓	2,258	✓		
0,767	✓			1,304	✓				

Dengan : ✓ TOL atau VIF memenuhi syarat yaitu TOL>0,1 dan VIF<10 X TOL atau VIF tidak memenuhi syarat

Karena terdapat nilai TOL dan VIF yang tidak memenuhi syarat, maka asumsi no multikolinearitas **tidak terpenuhi**.

6. No autokorelasi

Kondisi dimana tidak ada korelasi antar eror Uji Run

a. Hipotesis

 H_0 : residual bersifat acak (No autokorelasi)

 H_1 : residual tidak bersifat acak b. Tingkat Signifikansi : $\alpha = 0.05$

- c. Statistik Uji : p-value (Asymp. Sig.) = 0,127
- d. Daerah Kritik

 H_0 ditolak jika p-value $< \alpha$

e. Kesimpulan

Karena p-value = $0.127 > 0.05 = \alpha$, maka H_0 tidak ditolak yang artinya residual bersifat acak (No autokorelasi). Sehingga asusmsi no autokorelasi **terpenuhi**.

Runs Test

	Unstandardiz ed Residual
Test Value ^a	-28484.93763
Cases < Test Value	1548
Cases >= Test Value	1549
Total Cases	3097
Number of Runs	1592
Z	1.528
Asymp. Sig. (2-tailed)	.127

a. Median

Interpretasi:

Karena jumlah variabel independen 25 maka untuk menguji asumsi no autokorelasi digunakan Uji Run. Diperoleh nilai p-value = $0.127 > 0.05 = \alpha$, maka H_0 tidak ditolak yang artinya residual bersifat acak (No autokorelasi). Sehingga asusmsi no autokorelasi **terpenuhi**.

SIMPULAN ANALISIS RESIDUAL

Dari analisis residual yang telah dilakukan, diperoleh hasil sebagai berikut:

No	Asumsi	Keputusan
1	Fix independen variabel	Terpenuhi
2	Linearitas	Terpenuhi
3	Normalitas residual	Tidak terpenuhi
4	Homoskedastisitas	Tidak terpenuhi
5	No multikolinearitas	Tidak terpenuhi
6	No autokorelasi	Terpenuhi

Maka diperoleh kesimpulan bahwa model regresi terbaik dalam kasus ini memenuhi 3/6 asumsi atau 50% asumsi terpenuhi, sehingga dapat dikatakan model terbaik tersebut benar-benar baik dan dapat digunakan untuk analisis lebih lanjut. Diperoleh modelnya sebagai berikut:

```
price = -7330237,675 + 77321,927*item\_1 + 63626,122*item\_2 + 51707,766\\ * item\_3 - 91503,1*item\_4 + 71175,295*item\_5 - 38401,736\\ * item\_6 + 148440,33*item\_7 + 439636,22*item\_8 + 136682,855\\ * item\_10 + 233487,635*facility\_1 + 53451,674*facility\_2\\ + 55375,355*facility\_3 + 30159,677*facility\_5 - 915037,993\\ * latitude - 143,706*distance\_poi\_A2 - 158,984*distance\_poi\_A3\\ - 41,393*distance\_poi\_A4 + 81,684*distance\_poi\_A5 + 117,981\\ * distance\_poi\_A6 + 87,551*distance\_poi\_B1 + 149,024\\ * distance\_poi\_B2 - 94,238*distance\_poi\_B4 + 391594,907*male\\ + 374118,442*female + 20220,144*room\_size
```

Interpretasi:

- Kost dengan fasilitas barang ke-1 memiliki harga sewa kost 77321,927 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-1.
- Kost dengan fasilitas barang ke-2 memiliki harga sewa kost 63626,122 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-2.
- Kost dengan fasilitas barang ke-3 memiliki harga sewa kost 51707,766 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-3.
- Kost dengan fasilitas barang ke-4 memiliki harga sewa kost 91503,1 lebih rendah dibandingkan kost yang tidak mempunyai fasilitas barang ke-4.
- Kost dengan fasilitas barang ke-5 memiliki harga sewa kost 71175,295 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-5.
- Kost dengan fasilitas barang ke-6 memiliki harga sewa kost 38401,736 lebih rendah dibandingkan kost yang tidak mempunyai fasilitas barang ke-6.
- Kost dengan fasilitas barang ke-7 memiliki harga sewa kost 148440,33 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-7.
- Kost dengan fasilitas barang ke-8 memiliki harga sewa kost 439636,22 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-8.
- Kost dengan fasilitas barang ke-10 memiliki harga sewa kost 136682,855 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-10.
- Kost dengan fasilitas bukan barang ke-1 memiliki harga sewa kost 233487,635 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas bukan barang ke-1.
- Kost dengan fasilitas bukan barang ke-2 memiliki harga sewa kost 53451,674 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas bukan barang ke-2.
- Kost dengan fasilitas bukan barang ke-3 memiliki harga sewa kost 55375,355 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas bukan barang ke-3.
- Kost dengan fasilitas bukan barang ke-5 memiliki harga sewa kost 30159,677 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas bukan barang ke-5.
- Setiap penambahan 1 satuan koordinat garis lintang dari kost, maka harga sewa kost berkurang sebesar 915037,993, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis A ke-2, maka harga sewa kost berkurang sebesar 143,706, dengan asumsi variabel lain konstan.

- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis A ke-3, maka harga sewa kost berkurang sebesar 158,984, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis A ke-4, maka harga sewa kost berkurang sebesar 41,393, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis A ke-5, maka harga sewa kost bertambah sebesar 81,684, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis A ke-6, maka harga sewa kost bertambah sebesar 117,981, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis B ke-1, maka harga sewa kost bertambah sebesar 87,551, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis B ke-2, maka harga sewa kost bertambah sebesar 149,024, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis B ke-4, maka harga sewa kost berkurang sebesar 94,238, dengan asumsi variabel lain konstan.
- Kost yang memperbolehkan penyewa laki-laki memiliki harga kost 391594,907 lebih besar dibandingkan kost yang tidak memperbolehkan penyewa laki-laki.
- Kost yang memperbolehkan penyewa perempuan memiliki harga kost 374118,442 lebih besar dibandingkan kost yang tidak memperbolehkan penyewa perempuan.
- Setiap penambahan 1 satuan luas kamar kost, maka harga sewa kost bertambah sebesar 20220,144, dengan asumsi variabel lain konstan.

PREDIKSI HARGA KOST

Dari model terakhir diperoleh formula untuk memprediksi harga kost yang akan dibangun Zara. Formula tersebut sebagai berikut:

```
= (-7330237.675) + (77321.927*C2) + (63626.122*D2) + (51707.766*E2) - (91503.1*F2) + (71175.295*G2) - (38401.736*H2) + (148440.33*I2) + (439636.22*J2) + (136682.855*L2) + (233487.635*M2) + (53451.674*N2) + (55375.355*O2) + (30159.677*Q2) - (915037.993*R2) - (143.706*U2) - (158.984*V2) - (41.393*W2) + (81.684*X2) + (117.981*Y2) + (87.551*Z2) + (149.024*AA2) - (94.238*AC2) + (391594.907*AD2) + (374118.442*AE2) + (20220.144*B2)
```

Contoh hasil prediksi apabila ukuran kamar 12 satuan luas; terdapat item_1, item_2, item_3, item_5,

 $item_6, item_7, item_8, item_9, facility_2, facility_4; latitude -7.76202; longtitude 110.3836; distance_poi_A1 7957; distance_poi_A2 953; distance_poi_A3 2184; distance_poi_A4 2143; distance_poi_A5 3040; distance_poi_A6 6724; distance_poi_B1 1022; distance_poi_B2 1722; distance_poi_B3 4540; distance_poi_B4 6501; penyewa female. \\ Price = (-7330237.675) + (77321.927*1) + (63626.122*1) + (51707.766*1) - (91503.1*0) + (71175.295*1) - (38401.736*1) + (148440.33*1) + (439636.22*1) + (136682.855*1) + (233487.635*0) + (53451.674*1) + (55375.355*0) + (30159.677*0) - (915037.993*-7.76202) - (143.706*953) - (158.984*2184) - (41.393*2143) + (81.684*3040) + (117.981*6724) + (87.551*1022) + (149.024*1722) - (94.238*6501) + (391594.907*0) + (374118.442*1) + (20220.144*12) \\ \end{cases}$

Diperoleh *price* = 1458222.196

Hasil prediksi lengkap terhadap data full test terlampir di lampiran

SARAN

Bagi Zara sebagai calon pemilik kos yang ingin mengetahui berapa modal yang dibutuhkan untuk membangun kos (kosan dengan fasilitas yang memadai dan dengan berbagai aspek baik yang lain), maka berdasarkan model yang didapat diberikan beberapa saran sebagai berikut:

- ✓ Harga kost dipengaruhi oleh item_1, item_2, item_3, item_4, item_5, item_6, item_7, item_8, item_10, facility_1, facility_2, facility_3, facility_5, latitude, distance_poi_A2, distance_poi_A3, distance_poi_A4, distance_poi_A5, distance_poi_A6, distance_poi_B1, distance_poi_B2, distance_poi_B4, male, female, room size.
- ✓ Menentukan harga kost yang dikehendaki. Jika ingin memilih harga kost yang tinggi maka sebaiknya dilakukan dengan totalitas bahwa kost tersebut memang layak memiliki harga tinggi. Hal ini dapat dilakukan dengan menawarkan fasilitas yang lengkap baik itu barang maupun bukan barang, memiliki lokasi yang strategis, dan ukuran kamar yang sebanding. Namun jika ingin harga kost yang standart ke bawah harus benar-benar cermat menentukan kebutuhan yang memang diperlukan saja. Untuk penyewa sendiri baik *male* maupun *female* memiliki pengaruh yang sama-sama positif terhadap harga kost.

BAB IV KESIMPULAN

Variabel dependennya yaitu *price*. Variabel independennya yaitu *item_1*, *item_2*, *item_3*, *item_4*, *item_5*, *item_6*, *item_7*, *item_9*, *item_9*, *item_10*, *facility_1*, *facility_2*, *facility_3*, *facility_4*, *facility_5*, *latitude*, *longtitude*, *distance_poi_A1*, *distance_poi_A2*, *distance_poi_A3*, *distance_poi_B4*, *distance_poi_B4*

Model regresi terbaik dan benar-benar baik yang diperoleh adalah sebagai berikut:

```
price = -7330237,675 + 77321,927*item\_1 + 63626,122*item\_2 + 51707,766\\ * item\_3 - 91503,1*item\_4 + 71175,295*item\_5 - 38401,736\\ * item\_6 + 148440,33*item\_7 + 439636,22*item\_8 + 136682,855\\ * item\_10 + 233487,635*facility\_1 + 53451,674*facility\_2\\ + 55375,355*facility\_3 + 30159,677*facility\_5 - 915037,993\\ * latitude - 143,706*distance\_poi\_A2 - 158,984*distance\_poi\_A3\\ - 41,393*distance\_poi\_A4 + 81,684*distance\_poi\_A5 + 117,981\\ * distance\_poi\_A6 + 87,551*distance\_poi\_B1 + 149,024\\ * distance\_poi\_B2 - 94,238*distance\_poi\_B4 + 391594,907*male\\ + 374118,442*female + 20220,144*room\_size
```

Interpretasi:

- Kost dengan fasilitas barang ke-1 memiliki harga sewa kost 77321,927 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-1.
- Kost dengan fasilitas barang ke-2 memiliki harga sewa kost 63626,122 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-2.
- Kost dengan fasilitas barang ke-3 memiliki harga sewa kost 51707,766 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-3.
- Kost dengan fasilitas barang ke-4 memiliki harga sewa kost 91503,1 lebih rendah dibandingkan kost yang tidak mempunyai fasilitas barang ke-4.
- Kost dengan fasilitas barang ke-5 memiliki harga sewa kost 71175,295 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-5.
- Kost dengan fasilitas barang ke-6 memiliki harga sewa kost 38401,736 lebih rendah dibandingkan kost yang tidak mempunyai fasilitas barang ke-6.
- Kost dengan fasilitas barang ke-7 memiliki harga sewa kost 148440,33 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-7.
- Kost dengan fasilitas barang ke-8 memiliki harga sewa kost 439636,22 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-8.
- Kost dengan fasilitas barang ke-10 memiliki harga sewa kost 136682,855 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas barang ke-10.
- Kost dengan fasilitas bukan barang ke-1 memiliki harga sewa kost 233487,635 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas bukan barang ke-1.

- Kost dengan fasilitas bukan barang ke-2 memiliki harga sewa kost 53451,674 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas bukan barang ke-2.
- Kost dengan fasilitas bukan barang ke-3 memiliki harga sewa kost 55375,355 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas bukan barang ke-3.
- Kost dengan fasilitas bukan barang ke-5 memiliki harga sewa kost 30159,677 lebih tinggi dibandingkan kost yang tidak mempunyai fasilitas bukan barang ke-5.
- Setiap penambahan 1 satuan koordinat garis lintang dari kost, maka harga sewa kost berkurang sebesar 915037,993, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis A ke-2, maka harga sewa kost berkurang sebesar 143,706, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis A ke-3, maka harga sewa kost berkurang sebesar 158,984, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis A ke-4, maka harga sewa kost berkurang sebesar 41,393, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis A ke-5, maka harga sewa kost bertambah sebesar 81,684, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis A ke-6, maka harga sewa kost bertambah sebesar 117,981, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis B ke-1, maka harga sewa kost bertambah sebesar 87,551, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis B ke-2, maka harga sewa kost bertambah sebesar 149,024, dengan asumsi variabel lain konstan.
- Setiap penambahan 1 satuan jarak kost terhadap titik POI jenis B ke-4, maka harga sewa kost berkurang sebesar 94,238, dengan asumsi variabel lain konstan.
- Kost yang memperbolehkan penyewa laki-laki memiliki harga kost 391594,907 lebih besar dibandingkan kost yang tidak memperbolehkan penyewa laki-laki.
- Kost yang memperbolehkan penyewa perempuan memiliki harga kost 374118,442 lebih besar dibandingkan kost yang tidak memperbolehkan penyewa perempuan.
- Setiap penambahan 1 satuan luas kamar kost, maka harga sewa kost bertambah sebesar 20220,144, dengan asumsi variabel lain konstan.

LAMPIRAN

UJI PARSIAL

• Model 1

	Coefficients*									
				Standardized			Colline	earity		
		Unstandardiz	red Coefficients	Coefficients			Statis	tics		
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF		
1	(Constant)	8339891.539	53178247.069		.157	.875				
	item_1	77170.442	28262.145	.059	2.731	.006	.244	4.093		
	item_2	61950.360	18347.599	.048	3.376	.001	.556	1.797		
	item 3	50410.566	19771.330	.039	2.550	.011	.499	2.004		
	item_4	-91763.923	27462.443	070	-3.341	.001	.259	3.867		
	item_5	72741.999	23799.137	.055	3.056	.002	.348	2.874		
	item_6	-39945.038	23540.896	031	-1.697	.090	.336	2.978		
	item 7	148614.318	24562.977	.094	6.050	.000	.475	2.105		
	item_8	439490.548	24815.774	.302	17.710	.000	.391	2.556		
	item_9	3006.618	18684.801	.002	.161	.872	.540	1.852		
	item_10	136912.388	30012.012	.051	4.562	.000	.903	1.108		
	facility 1	234382.565	26270.074	.129	8.922	.000	.548	1.826		
	facility_2	51602.574	16058.311	.041	3.213	.001	.716	1.396		
	facility_3	54960.521	15636.119	.043	3.515	.000	.764	1.309		
	facility_4	17512.119	14099.520	.014	1.242	.214	.950	1.053		
	facility 5	28757.332	13977.080	.023	2.057	.040	.943	1.061		
	latitude	-825769.003	396972.858	052	-2.080	.038	.181	5.526		
	longitude	-135669.107	484577.394	008	280	.780	.156	6.410		
	distance_poi_A1	-9.163	13.159	047	696	.486	.025	39.969		
	distance poi A2	-135.656	72.857	582	-1.862	.063	.001	855.536		
	distance_poi_A3	-160.142	52.313	772	-3.061	.002	.002	557.246		
	distance_poi_A4	-50.838	34.185	222	-1.487	.137	.005	195.287		
	distance_poi_A5	80.216	27.179	.372	2.951	.003	.007	139.502		
	distance poi A6	124.022	32.334	.652	3.836	.000	.004	252.812		
	distance_poi_B1	81.022	59.762	.348	1.356	.175	.002	576.980		
	distance_poi_B2	152.919	44.318	.732	3.450	.001	.003	394.363		
	distance_poi_B3	11.132	17.419	.050	.639	.523	.019	53.580		
	distance poi B4	-95.746	31.860	485	-3.005	.003	.004	228.426		
	male	390996.321	20533.342	.307	19.042	.000	.439	2.277		
	female	375117.645	22548.750	.268	16.636	.000	.440	2.272		
	room_size	20146.853	1909.212	.131	10.552	.000	.746	1.340		

a. Dependent Variable: price

		Coefficients*								
				Standardized						
		Unstandardiz	ed Coefficients	Coefficients			Collinearity	Statistics		
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF		
2	(Constant)	8639781.699	53137139.259		.163	.871				
	item_1	77228.994	28255.314	.059	2.733	.006	.244	4.093		
	item_2	62071.087	18329.341	.048	3.386	.001	.557	1.794		
	item 3	50668.704	19703.012	.039	2.572	.010	.502	1.991		
	item_4	-91616.189	27442.733	070	-3.338	.001	.259	3.863		
	item_5	73415.938	23423.991	.056	3.134	.002	.359	2.785		
	item_6	-39096.975	22939.707	031	-1.704	.088	.354	2.829		
	item 7	148918.911	24486.042	.094	6.082	.000	.478	2.092		
	item_8	439629.471	24798.813	.303	17.729	.000	.392	2.553		
	item_10	137072.391	29990.771	.051	4.570	.000	.904	1.107		
	facility_1	234556.974	26243.536	.129	8.938	.000	.549	1.823		
	facility 2	51794.645	16011.344	.041	3.235	.001	.720	1.388		
	facility_3	55047.052	15624.387	.043	3.523	.000	.765	1.307		
	facility_4	17467.332	14094.533	.014	1.239	.215	.950	1.052		
	facility_5	28705.216	13971.108	.023	2.055	.040	.943	1.060		
	latitude	-822375.889	396349.455	052	-2.075	.038	.181	5.510		
	longitude	-138147.857	484255.566	008	285	.775	.156	6.403		
	distance_poi_A1	-9.180	13.156	047	698	.485	.025	39.966		
	distance_poi_A2	-136.265	72.747	584	-1.873	.061	.001	853.234		
	distance poi A3	-160.365	52.286	773	-3.067	.002	.002	556.853		
	distance_poi_A4	-50.699	34.169	221	-1.484	.138	.005	195.164		
	distance_poi_A5	80.222	27.175	.372	2.952	.003	.007	139.501		
	distance_poi_A6	123.889	32.318	.651	3.833	.000	.004	252.646		
	distance poi B1	81.382	59.710	.349	1.363	.173	.002	576.170		
	distance_poi_B2	153.220	44.272	.733	3.461	.001	.003	393.661		
	distance_poi_B3	11.122	17.416	.050	.639	.523	.019	53.579		
	distance_poi_B4	-95.545	31.830	484	-3.002	.003	.004	228.074		
	male	390749.767	20472.842	.307	19.086	.000	.442	2.264		
	female	374986.664	22530.474	.268	16.644	.000	.441	2.269		
	room_size	20146.005	1908.901	.131	10.554	.000	.746	1.340		

a. Dependent Variable: price

			Соепісі	onico				
				Standardized				
		Unstandardize	d Coefficients	Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
3	(Constant)	-6493900.739	3063295.840		-2.120	.034		
	item_1	76970.157	28236.514	.059	2.726	.006	.245	4.088
	item_2	61987.666	18324.265	.048	3.383	.001	.557	1.794
	item 3	50645.817	19699.898	.039	2.571	.010	.502	1.991
	item_4	-91532.764	27437.067	070	-3.336	.001	.259	3.863
	item_5	73358.722	23419.625	.056	3.132	.002	.359	2.785
	item_6	-38880.585	22923.730	030	-1.696	.090	.354	2.825
	item 7	148983.306	24481.335	.094	6.086	.000	.478	2.092
	item_8	439775.515	24787.816	.303	17.742	.000	.392	2.552
	item_10	136965.894	29983.958	.051	4.568	.000	.904	1.106
	facility_1	234689.458	26235.498	.129	8.945	.000	.549	1.822
	facility 2	51966.381	15997.627	.041	3.248	.001	.721	1.386
	facility_3	54854.736	15607.500	.043	3.515	.000	.766	1.305
	facility_4	17581.448	14086.746	.014	1.248	.212	.951	1.052
	facility_5	28711.814	13968.997	.023	2.055	.040	.943	1.060
	latitude	-808196.238	393161.612	051	-2.056	.040	.184	5.423
	distance_poi_A1	-9.813	12.966	050	757	.449	.026	38.828
	distance_poi_A2	-136.603	72.727	586	-1.878	.060	.001	853.007
	distance_poi_A3	-159.777	52.238	770	-3.059	.002	.002	555.986
	distance poi A4	-51.997	33.860	227	-1.536	.125	.005	191.704
	distance_poi_A5	81.211	26.949	.377	3.014	.003	.007	137.231
	distance_poi_A6	124.824	32.147	.656	3.883	.000	.004	250.048
	distance_poi_B1	81.928	59.671	.352	1.373	.170	.002	575.578
	distance poi B2	152.883	44.250	.732	3.455	.001	.003	393.381
	distance_poi_B3	12.270	16.942	.055	.724	.469	.020	50.717
	distance_poi_B4	-97.568	31.026	494	-3.145	.002	.005	216.755
	male	390602.507	20463.269	.307	19.088	.000	.442	2.263
	female	374940.007	22526.507	.268	16.644	.000	.441	2.268
	room_size	20148.524	1908.595	.131	10.557	.000	.746	1.340

a. Dependent Variable: price

	Coefficients*								
				Standardized					
		Unstandardize	d Coefficients	Coefficients			Collinearity	Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF	
4	(Constant)	-6891482.934	3013471.875		-2.287	.022			
	item_1	78320.913	28172.669	.060	2.780	.005	.246	4.071	
	item_2	61937.192	18322.713	.048	3.380	.001	.557	1.794	
	item 3	50621.154	19698.343	.039	2.570	.010	.502	1.991	
	item_4	-90584.662	27403.696	069	-3.306	.001	.259	3.854	
	item_5	72775.504	23403.963	.055	3.110	.002	.359	2.782	
	item_6	-38215.631	22903.562	030	-1.669	.095	.354	2.821	
	item 7	148594.906	24473.565	.094	6.072	.000	.478	2.091	
	item_8	440008.577	24783.807	.303	17.754	.000	.392	2.551	
	item_10	137532.613	29971.424	.052	4.589	.000	.904	1.106	
	facility_1	234718.910	26233.434	.129	8.947	.000	.549	1.822	
	facility 2	52234.725	15992.097	.041	3.266	.001	.722	1.385	
	facility_3	55056.271	15603.810	.043	3.528	.000	.767	1.304	
	facility_4	18408.381	14039.309	.014	1.311	.190	.957	1.045	
	facility_5	28601.441	13967.084	.023	2.048	.041	.944	1.060	
	latitude	-858343.015	386986.569	054	-2.218	.027	.190	5.255	
	distance_poi_A1	-3.155	9.142	016	345	.730	.052	19.306	
	distance_poi_A2	-144.624	71.873	620	-2.012	.044	.001	833.224	
	distance_poi_A3	-164.059	51.898	791	-3.161	.002	.002	548.864	
	distance poi A4	-39.748	29.330	174	-1.355	.175	.007	143.870	
	distance_poi_A5	83.094	26.821	.386	3.098	.002	.007	135.953	
	distance_poi_A6	123.334	32.078	.648	3.845	.000	.004	249.025	
	distance_poi_B1	87.295	59.204	.375	1.474	.140	.002	566.703	
	distance poi B2	153.045	44.246	.733	3.459	.001	.003	393.370	
	distance_poi_B4	-97.765	31.022	495	-3.151	.002	.005	216.738	
	male	390291.580	20457.180	.306	19.078	.000	.442	2.262	
	female	374586.008	22519.459	.267	16.634	.000	.441	2.267	
	room size	20106.105	1907.548	.130	10.540	.000	.747	1.339	

a. Dependent Variable: price

Model 5

	Coefficients*								
				Standardized					
		Unstandardize	d Coefficients	Coefficients			Collinearity	Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF	
5	(Constant)	-7261173.557	2816244.795		-2.578	.010			
	item_1	78379.420	28168.117	.060	2.783	.005	.246	4.070	
	item_2	61947.873	18320.058	.048	3.381	.001	.557	1.794	
	item 3	50594.937	19695.370	.039	2.569	.010	.502	1.991	
	item_4	-90737.175	27396.201	069	-3.312	.001	.260	3.853	
	item_5	72945.005	23395.452	.056	3.118	.002	.360	2.781	
	item_6	-38601.191	22873.016	030	-1.688	.092	.355	2.814	
	item 7	148396.159	24463.278	.094	6.066	.000	.479	2.090	
	item_8	440038.985	24780.094	.303	17.758	.000	.392	2.551	
	item_10	137558.865	29967.027	.052	4.590	.000	.904	1.106	
	facility_1	234583.406	26226.732	.129	8.944	.000	.549	1.822	
	facility 2	52096.531	15984.789	.041	3.259	.001	.722	1.384	
	facility_3	55075.065	15601.477	.043	3.530	.000	.767	1.304	
	facility_4	18412.232	14037.290	.014	1.312	.190	.957	1.045	
	facility_5	28736.994	13959.557	.023	2.059	.040	.944	1.059	
	latitude	-904842.700	362721.202	057	-2.495	.013	.217	4.618	
	distance_poi_A2	-142.407	71.575	611	-1.990	.047	.001	826.566	
	distance_poi_A3	-162.140	51.592	782	-3.143	.002	.002	542.563	
	distance_poi_A4	-42.146	28.491	184	-1.479	.139	.007	135.792	
	distance poi A5	82.565	26.774	.383	3.084	.002	.007	135.509	
	distance_poi_A6	117.783	27.751	.619	4.244	.000	.005	186.417	
	distance_poi_B1	86.231	59.116	.370	1.459	.145	.002	565.168	
	distance_poi_B2	152.092	44.153	.728	3.445	.001	.003	391.836	
	distance poi B4	-94.075	29.117	477	-3.231	.001	.005	190.992	
	male	390458.050	20448.558	.307	19.095	.000	.442	2.260	
	female	375034.197	22478.756	.268	16.684	.000	.443	2.260	
	room_size	20101.248	1907.223	.130	10.540	.000	.747	1.339	

a. Dependent Variable: price

Model 6

	Coefficients*								
				Standardized					
		Unstandardize	ed Coefficients	Coefficients			Collinearity	Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF	
6	(Constant)	-7330237.675	2816082.806		-2.603	.009			
	item_1	77321.927	28159.880	.059	2.746	.006	.246	4.067	
	item_2	63626.122	18277.467	.050	3.481	.001	.560	1.785	
	item 3	51707.766	19679.396	.040	2.628	.009	.503	1.987	
	item_4	-91503.100	27393.190	070	-3.340	.001	.260	3.851	
	item_5	71175.295	23359.255	.054	3.047	.002	.361	2.771	
	item_6	-38401.736	22875.193	030	-1.679	.093	.355	2.814	
	item 7	148440.330	24466.124	.094	6.067	.000	.479	2.090	
	item_8	439636.220	24781.098	.303	17.741	.000	.392	2.551	
	item_10	136682.855	29963.098	.051	4.562	.000	.905	1.105	
	facility_1	233487.635	26216.499	.128	8.906	.000	.550	1.820	
	facility 2	53451.674	15953.237	.042	3.351	.001	.725	1.379	
	facility_3	55375.355	15601.626	.043	3.549	.000	.767	1.304	
	facility_5	30159.677	13918.988	.024	2.167	.030	.950	1.053	
	latitude	-915037.993	362680.446	058	-2.523	.012	.217	4.616	
	distance poi A2	-143.706	71.576	616	-2.008	.045	.001	826.407	
	distance_poi_A3	-158.984	51.542	766	-3.085	.002	.002	541.383	
	distance_poi_A4	-41.393	28.489	181	-1.453	.146	.007	135.737	
	distance_poi_A5	81.684	26.768	.379	3.052	.002	.007	135.424	
	distance poi A6	117.981	27.753	.620	4.251	.000	.005	186.412	
	distance_poi_B1	87.551	59.114	.376	1.481	.139	.002	565.004	
	distance_poi_B2	149.024	44.096	.713	3.380	.001	.003	390.736	
	distance_poi_B4	-94.238	29.120	478	-3.236	.001	.005	190.988	
	male	391594.907	20432.578	.307	19.165	.000	.443	2.256	
	female	374118.442	22470.546	.267	16.649	.000	.443	2.258	
	room_size	20110.144	1907.434	.130	10.543	.000	.747	1.339	

a. Dependent Variable: price

Model 7

Coefficients*

	Coefficients*								
				Standardized					
		Unstandardize	ed Coefficients	Coefficients			Collinearity	Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF	
7	(Constant)	-7579466.337	2811362.082		-2.696	.007			
	item_1	75467.170	28136.017	.058	2.682	.007	.246	4.059	
	item_2	64172.037	18276.909	.050	3.511	.000	.560	1.784	
	item 3	52255.578	19679.342	.040	2.655	.008	.503	1.986	
	item_4	-91837.498	27397.176	070	-3.352	.001	.260	3.851	
	item_5	70069.833	23351.083	.053	3.001	.003	.361	2.769	
	item_6	-38461.161	22879.293	030	-1.681	.093	.355	2.814	
	item 7	148209.428	24470.032	.094	6.057	.000	.479	2.090	
	item_8	440693.813	24774.885	.303	17.788	.000	.392	2.548	
	item_10	135859.940	29963.162	.051	4.534	.000	.905	1.105	
	facility_1	232381.620	26210.184	.128	8.866	.000	.550	1.818	
	facility 2	53526.898	15956.038	.042	3.355	.001	.725	1.379	
	facility_3	55023.656	15602.569	.043	3.527	.000	.767	1.304	
	facility_5	30570.621	13918.630	.024	2.196	.028	.950	1.052	
	latitude	-948427.979	362017.094	060	-2.620	.009	.218	4.597	
	distance poi A2	-211.660	54.193	908	-3.906	.000	.002	473.564	
	distance_poi_A3	-143.881	50.492	694	-2.850	.004	.002	519.364	
	distance_poi_A5	53.001	18.082	.246	2.931	.003	.016	61.770	
	distance_poi_A6	112.102	27.462	.589	4.082	.000	.005	182.450	
	distance poi B1	130.763	51.097	.561	2.559	.011	.002	421.989	
	distance_poi_B2	146.395	44.067	.701	3.322	.001	.003	390.078	
	distance_poi_B4	-89.540	28.946	454	-3.093	.002	.005	188.634	
	male	391661.188	20436.222	.307	19.165	.000	.443	2.256	
	female	375285.115	22460.256	.268	16.709	.000	.443	2.255	
	room_size	20172.356	1907.298	.131	10.576	.000	.747	1.338	

a. Dependent Variable: price

_

Coefficients*

			Coeffici	enta-				
				Standardized				
		Unstandardize	ed Coefficients	Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
8	(Constant)	-7538629.688	2812092.201		-2.681	.007		
	item_1	73418.380	28117.959	.056	2.611	.009	.247	4.051
	item_2	61719.142	18223.982	.048	3.387	.001	.564	1.773
	item 3	51739.377	19682.791	.040	2.629	.009	.504	1.986
	item_4	-92382.692	27403.394	071	-3.371	.001	.260	3.850
	item_5	42297.191	16507.274	.032	2.562	.010	.723	1.383
	item_7	147232.402	24470.395	.093	6.017	.000	.479	2.089
	item 8	438848.901	24757.917	.302	17.726	.000	.393	2.543
	item_10	133269.319	29932.393	.050	4.452	.000	.908	1.102
	facility_1	235022.256	26170.841	.129	8.980	.000	.552	1.812
	facility_2	51246.128	15902.973	.040	3.222	.001	.731	1.369
	facility 3	54628.081	15605.429	.043	3.501	.000	.767	1.304
	facility_5	30428.261	13922.507	.024	2.186	.029	.950	1.052
	latitude	-942869.724	362109.526	060	-2.604	.009	.218	4.597
	distance_poi_A2	-210.143	54.201	901	-3.877	.000	.002	473.432
	distance poi A3	-145.478	50.498	701	-2.881	.004	.002	519.180
	distance_poi_A5	52.644	18.086	.244	2.911	.004	.016	61.762
	distance_poi_A6	112.924	27.466	.593	4.111	.000	.005	182.392
	distance_poi_B1	129.021	51.101	.554	2.525	.012	.002	421.816
	distance poi B2	148.782	44.057	.712	3.377	.001	.003	389.673
	distance_poi_B4	-90.360	28.950	458	-3.121	.002	.005	188.580
	male	394463.144	20374.186	.310	19.361	.000	.446	2.241
	female	376888.984	22446.648	.269	16.790	.000	.444	2.251
	room size	20178.146	1907.862	.131	10.576	.000	.747	1.338

a. Dependent Variable: price

MODEL SUMMARY dan KRITERIA PEMILIHAN MODEL TERBAIK

Descriptive Statistics

	N	Sum
PRESS_1	3097	4.59E+14
PRESS_2	3097	4.59E+14
PRESS_3	3097	4.58E+14
PRESS_4	3097	4.58E+14
PRESS_5	3097	4.54E+14
PRESS_6	3097	4.54E+14
PRESS_7	3097	4.54E+14
PRESS_8	3097	4.54E+14
Valid N (listwise)	3097	

Model Summaryb

						Selection Criteria					
					Akaike	Akaike Amemiya Mallows' Schwarz					
			Adjusted R	Std. Error of the	Information Prediction F		Prediction	Bayesian			
Model	R	R Square	Square	Estimate	Criterion	Criterion	Criterion	Criterion	Durbin-Watson		
1	.806ª	.650	.647	377031.211	79562.319	.357	31.000	79749.503	2.028		

a. Predictors: (Constant), room_size, distance_poi_A4, facility_4, facility_5, latitude, male, item_10, item_5, longitude, facility_3, item_4, facility_1, item_2, item_9, item_7, item_3, female, item_6, item_6, item_1, distance_poi_A6, distance_poi_B1, distance_poi_A1, distance_poi_A3, distance_poi_B3, distance_poi_B4, distance_poi_B2, distance

Model Summary^b

						Selection Criteria				
					Akaike Amemiya Mallows' Schwarz					
			Adjusted R	Std. Error of the	Information Prediction Prediction Bayesian					
Model	R	R Square	Square	Estimate	Criterion	Criterion	Criterion	Criterion	Durbin-Watson	
2	.806*	.650	.647	376971.332	79560.346	.357	30.000	79741.491	2.028	

a. Predictors: (Constant), room_size, distance_poi_A4, facility_4, facility_5, latitude, male, item_10, item_5, longitude, facility_3, item_4, facility_2, facility_1, item_2, item_7, item_3, female, item_8, item_6, item_1, distance_poi_A6, distance_poi_B1, distance_poi_A1, distance_poi_A3, distance_poi_B3, distance_poi_B4, distance_poi_B4, distance_poi_B2, distance_poi_B2, distance_poi_B2

Model Summary^b

						Selection Criteria				
					Akaike	Amemiya	Mallows'	Schwarz		
			Adjusted R	Std. Error of the	Information Prediction Prediction Ba		Bayesian			
Model	R	R Square	Square	Estimate	Criterion	Criterion	Criterion	Criterion	Durbin-Watson	
3	.806ª	.650	.647	376914.891	79558.428	.357	29.000	79733.535	2.027	

a. Predictors: (Constant), room_size, distance_poi_A4, facility_4, facility_5, latitude, male, item_10, item_5, facility_3, item_4, facility_2, facility_1, item_2, distance_poi_B4, item_7, item_3, female, item_6, item_6, item_1, distance_poi_A1, distance_poi_B1, distance_poi_A3, distance_poi_B3, distance_poi_A5, distance_poi_A6, distance_poi_B2, distance_poi_A2

b. Dependent Variable: price

b. Dependent Variable: price

b. Dependent Variable: price

Model Summary^b

						Selection Criteria				
					Akaike	Amemiya	Mallows'	Schwarz		
			Adjusted R	Std. Error of the	Information Prediction Prediction Bayesian					
Model	R	R Square	Square	Estimate	Criterion	Criterion	Criterion	Criterion	Durbin-Watson	
4	.806*	.650	.647	376885.693	79556.957	.356	28.000	79726.027	2.027	

a. Predictors: (Constant), room_size, distance_poi_A4, facility_4, facility_5, latitude, male, item_5, facility_3, item_4, facility_2, facility_1, item_2, distance_poi_B4, item_7, item_3, female, item_6, item_6, item_1, distance_poi_A1, distance_poi_B1, distance_poi_A3, distance_poi_A5, distance_poi_A6, distance_poi_B2, distance_poi_A2
b. Dependent Variable: price

Model Summaryb

						Selection Criteria			
					Akaike Amemiya Mallows' Schwarz				
			Adjusted R	Std. Error of the	Information Prediction Prediction Bayesian				
Model	R	R Square	Square	Estimate	Criterion	Criterion	Criterion	Criterion	Durbin-Watson
5	.806ª	.650	.647	376831.618	79555.077	.356	27.000	79718.109	2.027

a. Predictors: (Constant), room_size, distance_poi_A4, facility_4, facility_5, latitude, male, item_10, item_5, facility_3, item_4, facility_2, facility_1, item_2, distance_poi_B4, item_7, item_3, female, item_8, item_6, item_1, distance_poi_B1, distance_poi_A3, distance_poi_A5, distance_poi_B2, distance_poi_B2, distance_poi_A2

b. Dependent Variable: price

Model Summary^b

						Selection Criteria				
					Akaike	Amemiya	Mallows'	Schwarz		
			Adjusted R	Std. Error of the	Information	Prediction	Prediction	Bayesian		
Model	R	R Square	Square	Estimate	Criterion	Criterion	Criterion	Criterion	Durbin-Watson	
6	.806*	.650	.647	376875.818	79554.813	.356	26.000	79711.805	2.028	

a. Predictors: (Constant), room_size, distance_poi_A4, facility_5, male, latitude, item_10, item_5, facility_3, item_4, facility_2, item_2, facility_1, distance_poi_B4, item_7, item_3, female, item_8, item_6, item_1, distance_poi_B1, distance_poi_A3, distance_poi_A5, distance_poi_B6, distance_poi_B2, distance_poi_B2

b. Dependent Variable: price

Model Summaryb

						Selection Criteria				
					Akaike Amemiya Mallows' Schwarz					
			Adjusted R	Std. Error of the	Information Prediction Prediction Bayesian					
Model	R	R Square	Square	Estimate	Criterion	Criterion	Criterion	Criterion	Durbin-Watson	
7	.806°	.650	.647	376943.966	79554.941	.356	25.000	79705.895	2.028	

a. Predictors: (Constant), room_size, distance_poi_A2, facility_5, male, item_10, latitude, item_5, facility_3, item_4, facility_1, item_2, item_7, distance_poi_B4, item_3, female, item_8, item_6, item_1, distance_poi_A5, distance_poi_B2, distance_poi_A6, distance_poi_B1, distance_poi_B1

b. Dependent Variable: price

Model Summary^b

						Selectio	n Criteria		
					Akaike Amemiya Mallows' Schwarz				
			Adjusted R	Std. Error of the	Information Prediction Prediction Bayesian				
Model	R	R Square	Square	Estimate	Criterion	Criterion	Criterion	Criterion	Durbin-Watson
8	.806*	.649	.647	377055.936	79555.788	.356	24.000	79700.705	2.026

a. Predictors: (Constant), room_size, distance_poi_A2, facility_5, male, item_10, latitude, item_5, facility_3, item_4, facility_2, facility_1, item_2, item_7, distance_poi_B4, item_3, female, item_8, item_1, distance_poi_A5, distance_poi_B2, distance_poi_A6, distance_poi_B1, distance_poi_A3

b. Dependent Variable: price

PREDIKSI HARGA KOST

id	Price	id	Price	id	Price	id	Price
3097	1458222.196	3121	840944.5962	3145	761943.8238	3169	650717.2132
3098	819253.1507	3122	1673488.28	3146	904611.6645	3170	1295548.448
3099	1363521.064	3123	651491.6444	3147	940456.9307	3171	1030171.467
3100	946389.6978	3124	698833.1746	3148	962262.3961	3172	698174.5943
3101	1135616.566	3125	2038810.392	3149	567756.6094	3173	544401.0901
3102	1566829.51	3126	1418497.567	3150	1006430.02	3174	427863.7125
3103	554129.6189	3127	531691.6598	3151	542655.2922	3175	598981.7447
3104	1953829.704	3128	2102890.022	3152	1312120.018	3176	2036079.571
3105	712439.9111	3129	597928.9509	3153	591676.699	3177	709186.03
3106	508898.6193	3130	739331.1865	3154	1717032.806	3178	671185.95
3107	583179.8166	3131	1481521.77	3155	416624.1037	3179	320191.0054
3108	1612075.866	3132	509155.2144	3156	1461374.302	3180	623492.9134
3109	791681.4652	3133	250235.5765	3157	410170.9892	3181	1370914.513
3110	523196.1641	3134	775920.1	3158	830779.161	3182	393354.5328
3111	819641.2832	3135	612412.7317	3159	968823.3562	3183	768371.4069
3112	934987.5233	3136	1145042.655	3160	890350.5898	3184	659734.2883
3113	1018791.22	3137	403727.8789	3161	1189431.168	3185	1762209.87
3114	1235667.346	3138	1694108.055	3162	1486555.119	3186	795554.3895
3115	1195887.838	3139	389757.5991	3163	386195.0879	3187	536337.0479
3116	1470081.403	3140	1737198.611	3164	342213.273	3188	846150.9002
3117	471617.8957	3141	1574647.359	3165	633623.1265	3189	608164.106
3118	578124.2497	3142	845875.617	3166	267781.6781	3190	507517.3339
3119	952915.9839	3143	861028.2837	3167	743888.9461	3191	1497468.513
3120	418047.0263	3144	474118.9402	3168	1129399.464	3192	1093646.033

id	Price	id	Price	id	Price	id	Price
3193	1880720.416	3218	1144707.548	3243	400476.9817	3268	767688.7752
3194	604582.726	3219	733043.4557	3244	471147.5453	3269	741087.9606
3195	508395.3072	3220	1891545.592	3245	469290.077	3270	504468.2747
3196	554909.8429	3221	924880.3954	3246	634313.6513	3271	545911.0995
3197	888514.6359	3222	1672854.351	3247	420730.0794	3272	545779.7428
3198	736433.854	3223	318965.7516	3248	488856.4897	3273	2478684.875
3199	516659.5756	3224	471722.7797	3249	618910.5475	3274	573717.9952
3200	430024.6475	3225	1622112.376	3250	948735.5635	3275	854430.0428
3201	879373.1258	3226	490408.7441	3251	1715695.823	3276	254765.5397
3202	274145.0536	3227	310629.556	3252	651145.8805	3277	1283039.598
3203	694455.8845	3228	730536.0885	3253	1825581.932	3278	1459480.685
3204	1811217.656	3229	903786.5793	3254	1394881.384	3279	498085.4732
3205	472214.8845	3230	402608.5679	3255	1719165.591	3280	688968.4033
3206	1831211.192	3231	485569.1301	3256	418155.3191	3281	1018203.487
3207	228316.4113	3232	797064.1557	3257	671672.3489	3282	519642.5131
3208	1161046.078	3233	504976.5305	3258	502394.1233	3283	569565.3967
3209	702353.6174	3234	1044091.124	3259	2040392.492	3284	2241518.962
3210	1519010.951	3235	802027.8541	3260	1882853.289	3285	496903.9979
3211	356935.6943	3236	389378.4683	3261	1821739.217	3286	2090728.965
3212	676711.207	3237	534122.7356	3262	1859475.059	3287	521822.6371
3213	800182.1554	3238	421038.3351	3263	696463.5511	3288	428213.5864
3214	2141961.507	3239	286617.9956	3264	633888.8978	3289	1457990.367
3215	355170.1518	3240	577643.0576	3265	475443.272	3290	917311.398
3216	745479.9122	3241	597472.1886	3266	423612.5421	3291	473117.8051
3217	764656.4796	3242	1988021.982	3267	819429.1918	3292	956664.7018

id	Price	id	Price	id	Price	id	Price
3293	529686.593	3318	484383.7862	3343	1680730.901	3368	519635.9483
3294	2155280.102	3319	490809.7655	3344	720981.1682	3369	1321270.425
3295	1303604.853	3320	682485.798	3345	1751510.124	3370	992781.3671
3296	459371.1785	3321	1652479.039	3346	531205.9617	3371	598690.0378
3297	1811622.244	3322	745412.111	3347	627440.0346	3372	1284877.269
3298	1874257.894	3323	807078.3854	3348	548478.912	3373	570139.4792
3299	1455261.534	3324	498878.9142	3349	473970.7699	3374	1322206.037
3300	1569285.091	3325	665471.6461	3350	476317.5305	3375	925355.4037
3301	861009.714	3326	1536082.859	3351	1843550.804	3376	767733.6859
3302	490648.7098	3327	458426.1151	3352	703532.9629	3377	805820.0351
3303	552780.2385	3328	2103019.601	3353	465570.7187	3378	342842.7782
3304	571172.2067	3329	808929.0147	3354	460088.9909	3379	604870.6765
3305	651801.9092	3330	207460.8843	3355	792065.6483	3380	525852.8032
3306	1519968.654	3331	335709.2699	3356	560760.3469	3381	632538.5467
3307	535805.5175	3332	379537.8461	3357	479091.0156	3382	359944.398
3308	520022.9237	3333	1199446.336	3358	1088830.81	3383	377966.4154
3309	496990.5183	3334	1121325.579	3359	1468611.538	3384	627225.7646
3310	598566.5598	3335	1128925.385	3360	464076.2409	3385	573316.9828
3311	431388.996	3336	538182.0843	3361	885471.5826	3386	441996.6321
3312	238172.4825	3337	986304.8529	3362	1596765.066	3387	1696458.143
3313	1373062.524	3338	358549.0965	3363	952114.6901	3388	562137.8161
3314	684821.2253	3339	631478.2852	3364	495654.1702	3389	578277.3602
3315	501113.2912	3340	483255.0001	3365	484222.1344	3390	574247.3461
3316	1509967.791	3341	389266.2089	3366	1105437.575	3391	577995.8964
3317	820551.2621	3342	653533.1773	3367	403402.1753	3392	511175.762

id	Price	id	Price	id	Price	id	Price
3393	938389.2695	3418	613541.9731	3443	735060.6871	3468	691307.9671
3394	1581178.755	3419	598849.6745	3444	855128.6582	3469	494421.4917
3395	558411.0856	3420	493196.7781	3445	342285.8985	3470	1442775.888
3396	689040.4662	3421	855113.6214	3446	724474.4686	3471	280280.776
3397	898164.2216	3422	792789.8122	3447	878063.3752	3472	472094.9978
3398	893115.3701	3423	1296637.324	3448	901849.4858	3473	528795.6987
3399	796677.2836	3424	2257430.254	3449	1845783.21	3474	1645908.843
3400	865198.1643	3425	406910.8397	3450	388773.1211	3475	912474.0799
3401	836361.8065	3426	676698.6918	3451	1734098.7	3476	513198.2784
3402	1193194.174	3427	961686.6096	3452	511006.3293	3477	1144740.202
3403	249050.3162	3428	1009989.207	3453	328150.3146	3478	872246.5493
3404	535537.6742	3429	833202.5359	3454	1762031.314	3479	646470.0132
3405	1719159.925	3430	888112.1728	3455	520687.7608	3480	1584877.89
3406	699910.4907	3431	631548.2948	3456	707516.1446	3481	650072.9018
3407	1384573.256	3432	2027626.97	3457	470294.6606	3482	1015844.675
3408	632278.2984	3433	443412.0455	3458	673502.3689	3483	756232.9581
3409	582436.196	3434	1813958.312	3459	486608.6401	3484	593522.4999
3410	779003.2762	3435	1302581.208	3460	1697071.912	3485	740009.2815
3411	1812697.592	3436	955434.1964	3461	1236809.09	3486	555223.3834
3412	741160.0798	3437	938213.8387	3462	467746.2471	3487	735571.5502
3413	929921.5098	3438	708509.5398	3463	1647288.676	3488	472672.138
3414	461667.18	3439	476873.5278	3464	602761.1243	3489	1804642.079
3415	550540.9057	3440	688327.4895	3465	1133453.387	3490	1629831.363
3416	386809.8719	3441	1267082.662	3466	630962.7853	3491	522286.2543
3417	1514091.04	3442	425701.5811	3467	455546.9331	3492	683279.5822

id	Price	id	Price	id	Price	id	Price
3493	1494313.312	3518	556506.0768	3543	672549.9211	3568	510834.3945
3494	687804.9223	3519	845904.7031	3544	526904.2875	3569	1042343.06
3495	507869.0022	3520	578653.7199	3545	362789.1838	3570	748312.3609
3496	2256242.548	3521	708475.2979	3546	642654.8854	3571	405783.7356
3497	359942.4874	3522	895892.0933	3547	942306.4468	3572	795792.9411
3498	877485.0247	3523	935505.8673	3548	584963.4756	3573	378033.3801
3499	480088.9812	3524	399302.6425	3549	895964.4851	3574	1309715.038
3500	645447.1242	3525	452899.3047	3550	1644465.686	3575	588114.3631
3501	741225.4962	3526	577954.2203	3551	951039.6554	3576	902233.1882
3502	1110890.848	3527	528730.9653	3552	639916.1174	3577	368943.2964
3503	1686934.766	3528	524488.5895	3553	581747.4361	3578	944273.232
3504	1403985.964	3529	471569.4255	3554	272566.2385	3579	555735.7245
3505	2072147.094	3530	873179.886	3555	1503486.325	3580	403107.8399
3506	1484693.389	3531	518960.6196	3556	1746888.294	3581	1489940.707
3507	454568.818	3532	751282.2513	3557	1022322.611	3582	438063.9736
3508	404924.7292	3533	2023513.231	3558	355123.9506	3583	544798.2946
3509	1572552.2	3534	523368.8814	3559	511072.5487	3584	595100.0114
3510	1029768.679	3535	572570.508	3560	639657.4956	3585	1496410.551
3511	446775.7018	3536	1755905.719	3561	469668.5036	3586	691992.7823
3512	1618454.062	3537	247906.6424	3562	487132.9401	3587	485965.6116
3513	743582.2592	3538	953250.2477	3563	676018.2365	3588	382214.6141
3514	644813.2381	3539	1530799.497	3564	1747872.602	3589	480412.0342
3515	487551.8637	3540	399941.6423	3565	1204998.847	3590	397032.9958
3516	1230344.052	3541	460533.8814	3566	611266.1451	3591	563704.428
3517	659010.0334	3542	941843.0774	3567	693448.0581	3592	1512313.023

id	Price	id	Price	id	Price	id	Price
3593	1110939.535	3618	1323286.463	3643	1834791.462	3668	420630.3336
3594	673810.5478	3619	2067013.108	3644	776673.7882	3669	1637257.111
3595	1352035.023	3620	520885.3202	3645	779636.9366	3670	546382.2081
3596	914105.8025	3621	567651.9042	3646	1147783.084	3671	606393.7368
3597	525489.4064	3622	577225.7828	3647	1161631.183	3672	348407.4659
3598	805154.3219	3623	790231.1242	3648	1387460.252	3673	806952.4924
3599	775155.9019	3624	415879.1854	3649	978638.5381	3674	748521.6133
3600	728382.2535	3625	782620.5957	3650	779572.8454	3675	937320.6232
3601	1135593.312	3626	1141738.638	3651	1348044.174	3676	346256.8555
3602	887118.0748	3627	1724877.268	3652	508636.3168	3677	666730.2613
3603	2106089.225	3628	586939.5952	3653	441292.2773	3678	474026.8989
3604	701508.9762	3629	704638.3021	3654	1022967.934	3679	382871.9238
3605	2235388.712	3630	431400.4764	3655	2250462.363	3680	466078.2658
3606	1731548.912	3631	663091.3023	3656	819094.3391	3681	413629.5537
3607	508280.76	3632	1642116.82	3657	628665.6508	3682	1281355.935
3608	1428530.92	3633	325540.6934	3658	2070782.107	3683	1217450.871
3609	1420494.691	3634	1590349.444	3659	1973719.963	3684	2177855.06
3610	1528299.785	3635	239787.5668	3660	1523940.645	3685	1552073.035
3611	691666.1409	3636	949296.2683	3661	332480.8844	3686	329526.8737
3612	675843.7724	3637	1775717.346	3662	495071.6838	3687	356803.4031
3613	721610.1208	3638	618647.695	3663	487874.7428	3688	480718.6262
3614	682342.537	3639	1002453.745	3664	596802.7521	3689	1762371.234
3615	507885.0758	3640	474745.6968	3665	518864.3669	3690	1007476.905
3616	1436034.88	3641	635151.2395	3666	546489.2337	3691	561451.2203
3617	695917.5179	3642	970972.367	3667	695028.5638	3692	892797.0725

id	Price	id	Price	id	Price	id	Price
3693	1452862.717	3718	554898.381	3743	698122.5201	3768	1457429.97
3694	818274.3272	3719	633788.1817	3744	300121.1141	3769	2041722.853
3695	1151293.009	3720	731163.397	3745	966225.1887	3770	359714.891
3696	1417290.561	3721	828518.3938	3746	760308.2169	3771	510816.0317
3697	584992.7334	3722	449823.1412	3747	860171.2247	3772	380976.079
3698	666124.9966	3723	512896.3683	3748	634032.5207	3773	473938.0701
3699	444108.67	3724	1030197.809	3749	712534.9854	3774	834351.8625
3700	1104938.666	3725	1649338.898	3750	451266.1231	3775	180834.1344
3701	209498.8575	3726	332712.9484	3751	1053697.229	3776	426687.7565
3702	1224479.302	3727	764524.1883	3752	2239016.69	3777	487656.5037
3703	1572229.321	3728	524398.741	3753	396553.4897	3778	837373.1696
3704	1672550.402	3729	478906.9662	3754	1227383.501	3779	1144508.39
3705	1659301.919	3730	1032750.591	3755	1710555.017	3780	595911.2266
3706	1752334.783	3731	553712.5644	3756	773684.3904	3781	484047.7296
3707	1409683.683	3732	710358.745	3757	694600.9634	3782	1788120.824
3708	423548.4944	3733	333325.0857	3758	488850.7178	3783	522412.3019
3709	431937.2592	3734	751076.683	3759	709272.6283	3784	801437.5182
3710	1380501.119	3735	335862.3767	3760	2114013.464	3785	758040.8432
3711	1378306.946	3736	548860.9395	3761	693486.4332	3786	425866.4314
3712	1013846.187	3737	550116.1508	3762	1467065.268	3787	1337924.217
3713	498267.2665	3738	901585.9539	3763	1110653.437	3788	710574.7977
3714	934348.808	3739	357676.357	3764	1233866.454	3789	1546876.204
3715	2088776.481	3740	555035.9785	3765	1345858.602	3790	477576.5318
3716	1423007.75	3741	594545.6268	3766	1862657.09	3791	1084162.993
3717	804577.1187	3742	427854.0415	3767	930072.5282	3792	351598.5456

id	Price	id	Price	id	Price	id	Price
3793	475756.0002	3818	1032759.477	3843	1201353.465	3868	1990499.216
3794	1665487.189	3819	860001.738	3844	506140.5168	3869	881256.3407
3795	842504.2547	3820	359451.4346	3845	756485.6838	3870	436374.4153
3796	613282.6531	3821	1205751.177	3846	2282099.666	3871	837061.7618
3797	752264.1523	3822	489882.2526	3847	699905.4064	3872	512918.878
3798	625022.7449	3823	1013278.819	3848	621018.0963	3873	1321259.757
3799	641558.7611	3824	1155269.166	3849	540573.7669	3874	943910.0406
3800	382094.5556	3825	1224305.858	3850	1090844.148	3875	735926.5908
3801	537505.5405	3826	464927.44	3851	2243111.103	3876	1145300.253
3802	593009.9778	3827	436374.5591	3852	495107.3424	3877	648789.3191
3803	596793.2136	3828	1411286.39	3853	460735.7071	3878	605481.286
3804	715488.3821	3829	560260.1274	3854	2056423.949	3879	492887.348
3805	1134441.216	3830	1540151.325	3855	437348.6651	3880	442211.1685
3806	376405.7237	3831	1636565.629	3856	760679.815	3881	649098.9498
3807	298646.0427	3832	636534.4345	3857	776155.4557	3882	1273005.437
3808	970329.6117	3833	497809.4941	3858	954293.8961	3883	317701.9796
3809	1666172.406	3834	807605.7525	3859	1342615.217	3884	610747.5708
3810	588703.1743	3835	695463.9281	3860	951348.5591	3885	825629.0567
3811	772152.7925	3836	618420.461	3861	1660847.222	3886	631037.9823
3812	515579.1842	3837	610655.1552	3862	470468.2436	3887	704315.3076
3813	872716.8976	3838	1184993.431	3863	363771.0024	3888	1815208.099
3814	599480.2021	3839	710659.0686	3864	397342.9005	3889	441873.6192
3815	644934.6517	3840	676964.4028	3865	605008.1484	3890	1280662.033
3816	607226.5033	3841	748978.8936	3866	800436.1189	3891	1862760.834
3817	986937.3511	3842	1029645.66	3867	337680.2833	3892	356908.7429

id	Price	id	Price	id	Price	id	Price
3893	2136364.361	3918	367389.2041	3943	445516.6676	3968	1561934.428
3894	570008.2704	3919	573671.1035	3944	524577.2589	3969	1160304.706
3895	597768.515	3920	584695.0726	3945	1595676.508	3970	672993.8195
3896	1266917.228	3921	1359157.741	3946	990791.6332	3971	749196.1385
3897	1268694.687	3922	1022957.276	3947	1208829.302	3972	627048.988
3898	2098543.859	3923	469606.6413	3948	620877.4139	3973	547731.106
3899	721137.1583	3924	474803.8845	3949	559144.7959	3974	735032.9425
3900	447036.31	3925	480612.7246	3950	495548.9121	3975	1523840.14
3901	337969.9821	3926	826441.5664	3951	1135562.016	3976	1274098.42
3902	634119.4606	3927	406409.9157	3952	766525.1108	3977	1331795.873
3903	370657.3015	3928	2023436.075	3953	656550.769	3978	2388102.606
3904	378825.5411	3929	704035.2646	3954	1642936.861	3979	1344616.559
3905	363338.6912	3930	1125081.02	3955	943903.7927	3980	608898.9617
3906	279203.4459	3931	583375.0854	3956	840007.6432	3981	1201158.621
3907	580200.0338	3932	758104.2202	3957	733903.2549	3982	1453340.213
3908	1561845.81	3933	684676.7187	3958	630231.7472	3983	633164.175
3909	572149.9022	3934	569121.0189	3959	964484.268	3984	489531.7278
3910	1067805.896	3935	1503244.646	3960	633893.2059	3985	2045406.08
3911	2037241.162	3936	1771447.147	3961	761996.884	3986	817797.0986
3912	505116.4102	3937	308857.3065	3962	1271844.691	3987	1864023.651
3913	662696.9433	3938	1693407.272	3963	1910166.44	3988	775653.0873
3914	437374.2852	3939	606922.3806	3964	2241446.414	3989	463288.3358
3915	1555382.56	3940	2115688.473	3965	1356045.699	3990	556492.1469
3916	696373.0213	3941	1662460.952	3966	671497.6598	3991	428036.5824
3917	876135.3195	3942	707939.2431	3967	346538.7623	3992	655028.8388

id	Price	id	Price	id	Price	id	Price
3993	439497.5503	4018	995410.702	4043	447810.82	4068	573126.0532
3994	360002.5487	4019	1522972.967	4044	573999.6697	4069	628202.8673
3995	734650.2968	4020	365981.7612	4045	910173.1456	4070	1303324.344
3996	742416.782	4021	716537.7837	4046	444193.79	4071	558095.0427
3997	1004385.782	4022	1112411.887	4047	628632.1792	4072	452170.564
3998	658583.3345	4023	1555793.295	4048	763677.4509	4073	574535.1059
3999	2098910.374	4024	689210.7317	4049	668891.851	4074	382615.8402
4000	709995.275	4025	467566.2267	4050	394870.6344	4075	789302.3403
4001	661602.0261	4026	1755309.665	4051	400169.1594	4076	484039.1894
4002	882392.6198	4027	1695290.944	4052	1362558.336	4077	388552.5759
4003	391723.144	4028	612485.6092	4053	725911.8046	4078	921391.8671
4004	782644.2826	4029	1030861.556	4054	543167.0579	4079	1073429.201
4005	851168.6717	4030	689203.1193	4055	588203.7642	4080	415212.3022
4006	488792.5125	4031	350209.64	4056	750350.6839	4081	514335.477
4007	1089888.024	4032	585373.5404	4057	629231.715	4082	662758.5366
4008	1305020.576	4033	1738068.964	4058	675209.7258	4083	795973.3562
4009	1338132.909	4034	554626.2019	4059	907616.572	4084	1432271.308
4010	1452152.772	4035	1350464.822	4060	1620435.633	4085	883788.1294
4011	467500.1011	4036	464935.0693	4061	1499812.08	4086	565650.406
4012	1422655.483	4037	1298392.376	4062	773927.5071	4087	477356.4495
4013	1624454.916	4038	1201408.873	4063	499797.3185	4088	597910.8882
4014	416800.7268	4039	534111.4624	4064	687762.948	4089	351393.5013
4015	1120201.142	4040	2476460.362	4065	570821.9424	4090	1057624.047
4016	1701538.616	4041	925757.0126	4066	765047.4428	4091	927692.2021
4017	1179570.821	4042	1141612.032	4067	628115.8731	4092	1083030.711

id	Price	id	Price
4093	1171323.018	4118	1689631.44
4094	572337.1729	4119	768903.5744
4095	1424154.362	4120	1964457.982
4096	892710.8351	4121	484941.5437
4097	551253.1674	4122	787337.4969
4098	500566.5233	4123	395172.6041
4099	854776.9395	4124	594606.4924
4100	586690.3762	4125	2035602.884
4101	1831560.012	4126	612237.0725
4102	2368019.997	4127	399892.4451
4103	548787.6314	4128	597398.8867
4104	1830873.748	4129	1863562.156
4105	1330761.035		
4106	1749993.172		
4107	548816.1746		
4108	337596.9667		
4109	197906.6776		
4110	319313.203		
4111	562497.7408		
4112	563850.9096		
4113	1202068.655		
4114	687121.8361		
4115	415820.0732		
4116	833490.0542		
4117	1965017.698		