Raport - wykrywanie naczyń dna siatkówki oka

1 Skład grupy

- Zuzanna Piniarska 136782
- Mateusz Kałamoniak 136730

2 Zastosowany język programowania i biblioteki

Język programowania: Python

Dodatkowo zastosowane biblioteki

- tensorflow
- numpy
- PIL
- matplotlib
- datetime
- IPython

3 Opis zastosowanych metod

W implementacji posłużyliśmy się w głównej mierze biblioteką Tensorflow. Posłużyła ona do wstępnego przetwarzania obrazu jak i tworzenia sieci neuronowej. Zastosowaliśmy techniki augmentacji takie jak modyfikacja saturacji, kontrastu czy odcienia. Wszystkim z tych funkcji podaliśmy losowe wartości w określonych przedziałach. Dodatkowo obracaliśmy obraz. Z użyciem tak przetworzonych obrazów wytrenowaliśmy sieć neuronową. Zaimplementowaliśmy sieć będącą modyfikacją U-Net i MobileNetV2. Wykorzystaliśmy architekturę z U-Net, natomiast encoder został zaimplementowany

na wzór MobileNetV2. Do optymalizacji zastosowaliśmy algorytm Adam z współczynnikiem uczenia 0.001. Funkcja kosztu składa się z sumy indeksu Jaccarda z wagą 0.3 oraz binary cross entropy z wagą 0.7. Przy tworzeniu sieci sugerowaliśmy się przede wszystkim artykułem M2U-Net: Effective and Efficient Retinal Vessel Segmentation for Real-World Applications (https://arxiv.org/pdf/1811.07738.pdf).

Uzupełnione informacje

Nasza sieć uczyła się przez około 3 godziny, uczyła się na 200 epokach. Ze względu na ilość obrazów wejściowych podzieliliśmy nasz zbiór na 15 obrazów treningowych i 30 obrazów walidujących. Obrazy pochodziły ze zbioru HRF.

Wykorzystaliśmy augumentację 15 obrazów składającą się ze zmiany saturacji, kontrastu i odcienia oraz orientacji.

Rozmiary zdjęć są zmienione na 544x544. Pomijając powyższe zmiany resztę algorytmu staraliśmy się zaimplementować sugerując się pracą naukową.

Podstawowe przetwarzanie:

W podstawowym przetwarzaniu zastosowaliśmy normalizację histogramu za pomocą algorytmu CLAHE (Contrast Limited Adaptive Histogram Equalization), filtr Gaussa, adaptive threshold wyliczony metodą Gaussa oraz dylatacja. Wyniki można uznać za zadowalające jednak sieć neuronowa dużo lepiej poradziła sobie z zadaniem.

4 Wyniki parametrów przetwarzania

4.1 Parametry przetwarzania za pomocą sieci neuronowej

Name	Accuracy	Precision	Sensitivity	Specificity	F1 score
01_dr	0,9312	0,3599	0,4523	0,9569	0,4008
01_g	0,9340	0,5086	0,4260	0,9705	0,4637
01_h	0,8980	0,4992	0,4211	0,9521	0,4568
02_dr	0,9226	0,3996	0,4312	0,9560	0,4148
02_g	0,9317	0,5495	0,4587	0,9697	0,5000
03_h	0,9046	0,5750	0,3780	0,9669	0,4562
04_dr	0,9125	0,2919	0,3899	0,9436	0,3339
04_g	0,9396	0,5417	0,4041	0,9765	0,4629
04_h	0,9143	0,5615	0,4146	0,9663	0,4770
05_dr	0,9367	0,4917	0,4862	0,9666	0,4889
05_g	0,9433	0,5842	0,4545	0,9774	0,5113
07_g	0,9173	0,3861	0,4559	0,9494	0,4181
07_h	0,9256	0,6257	0,4149	0,9757	0,4990
08_g	0,9106	0,3763	0,4869	0,9414	0,4245
09_dr	0,9251	0,4309	0,3310	0,9683	0,3744
09_h	0,9269	0,5419	0,3800	0,9729	0,4467
10_dr	0,9241	0,5930	0,4228	0,9722	0,4936
10_g	0,9276	0,4466	0,4435	0,9615	0,4450
11_g	0,9164	0,4492	0,4335	0,9562	0,4412
11_h	0,9259	0,6491	0,4516	0,9748	0,5326
12_dr	0,9240	0,4351	0,3970	0,9624	0,4152
12_h	0,9182	0,6575	0,4586	0,9720	0,5403
13_dr	0,9222	0,4230	0,3800	0,9620	0,4004
13_g	0,9212	0,4183	0,3987	0,9595	0,4083
13_h	0,9229	0,5689	0,4593	0,9669	0,5083
14_dr	0,9057	0,3926	0,4309	0,9450	0,4109
14_h	0,9255	0,5916	0,4647	0,9694	0,5206
15_dr	0,9109	0,3545	0,4541	0,9426	0,3981
15_g	0,9303	0,5351	0,4000	0,9724	0,4578
15_h	0,9348	0,6129	0,4499	0,9759	0,5189

4.2 Parametry przetwarzania przy pomocy przetwarzania obrazu

Name	Accuracy	Precision	Sensitivity	Specificity	F1 score
01_h.jpg	0,9514	0,8387	0,6479	0,9858	0,7311
12_dr.jpg	0,9583	0,7706	0,5526	0,9880	0,6436
14_h.jpg	0,9576	0,8039	0,6797	0,9842	0,7366
13_h.jpg	0,9577	0,8107	0,6707	0,9851	0,7341
10_g.jpg	0,9624	0,7173	0,7056	0,9804	0,7114
01_dr.jpg	0,9574	0,5605	0,7552	0,9683	0,6435
03_h.jpg	0,9450	0,8120	0,6247	0,9829	0,7061
15_dr.jpg	0,9576	0,6767	0,6738	0,9775	0,6753
11_h.jpg	0,9587	0,8296	0,7021	0,9851	0,7605
04_g.jpg	0,9630	0,7082	0,7285	0,9792	0,7182
15_h.jpg	0,9631	0,8529	0,6394	0,9906	0,7309
09_h.jpg	0,9599	0,7712	0,6876	0,9828	0,7270
09_dr.jpg	0,9558	0,7361	0,5430	0,9858	0,6250
07_h.jpg	0,9600	0,7961	0,7407	0,9814	0,7674
04_dr.jpg	0,9666	0,7253	0,6588	0,9850	0,6905
13_g.jpg	0,9561	0,6746	0,6856	0,9759	0,6801
05_dr.jpg	0,9576	0,6272	0,7891	0,9688	0,6989
10_dr.jpg	0,9488	0,7036	0,7102	0,9715	0,7069
05_g.jpg	0,9653	0,7313	0,7440	0,9808	0,7376
02_dr.jpg	0,9571	0,6476	0,7219	0,9731	0,6827
08_g.jpg	0,9603	0,6889	0,7587	0,9750	0,7221
01_g.jpg	0,9558	0,6471	0,7507	0,9706	0,6950
13_dr.jpg	0,9618	0,8079	0,5762	0,9900	0,6727
02_g.jpg	0,9566	0,6945	0,7396	0,9739	0,7164
04_h.jpg	0,9539	0,7793	0,7109	0,9791	0,7435
12_h.jpg	0,9558	0,8413	0,7119	0,9843	0,7712
15_g.jpg	0,9552	0,6791	0,7296	0,9729	0,7035
07_g.jpg	0,9632	0,7111	0,7339	0,9792	0,7223
14_dr.jpg	0,9547	0,7522	0,6057	0,9835	0,6710
11_g.jpg	0,9578	0,7207	0,7336	0,9764	0,7271

5 Wizualizacja i analiza wyników działania programu

W poniżej przestawionych wynikach po lewej stronie znajduje się oryginalne zdjęcie, po środku predykcja, a po prawej maska.

5.1 Porównanie działania sieci neuronowej i zwykłego przetwarzania obrazu

Po lewej stronie znajduje się efekt prostego przetwarzania obrazu, po środku wynik działania sieci neuronowej, a po prawej - maska.

6 Podsumowanie

Wyniki dla prostego przetwarzania obrazów i sieci neurnowej należy interpretować mając na uwadze wysokie niezrównoważenie klas wynoszące 7,6%.

Zdecydowanie więcej pikseli należy do klasy TRUE oznaczającej naczynia krwionośne, niż do FALSE oznaczącej tło. Accuracy dla prostego przetwarzania na poziomie 92.5% przy takim poziomie niezrównoważnia klas oznacza, że połowa pikseli naczyń krwionośnych została błędnie rozpoznana. Potwierdza to współczynnik Precision o średnim wyniku 49,5%, który mówi o tym ile procent pikseli zaklasyfikowanych do klasy TRUE tak naprawde do niej należy. Dla sieci neuronowej Precision na poziomie 73,3% jest bardzo dobrym wynikiem pozwalającym uznać, że zdecydowana większość naczyń krwionośnych została poprawnie rozpoznana. Przez niezbalansownie klas, wysoka średnia swoistość dla obu podejść nie jest zatem niczym niespodziewanym. Dużo ważniejsza jest czułość i F1-score. Czułość na poziomie 42,7% świadczy o bardzo niskim procencie trafień z poprawnym rozpoznaniem naczynia krwionośnego jako naczynie krwionośne. Ponownie dla sieci neuronowej statystyki są zdecydowanie lepsze, ponad 2/3 pikseli z klasy TRUE zostało poprawnie rozpoznanych. F1-score jest średnia harmoniczna czułości i precyzji, dlatego ze względu na podobne wyniki obu miar, również jest do nich podobny.

	Accuracy	Precision	Sensitivity	Specificity	F1 score
Processing	0,9228	0,4950	0,4277	0,9634	0,4540
M2U-Net	0,9578	0,7372	0,6904	0,9799	0,7084