

NCERT Solutions for Class 9 Maths

Chapter 8 – Quadrilaterals

Exercise 8.1

1. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Ans:

Given: Diagonals of the parallelogram are the same.

To prove: It is a rectangle.

Consider ABCD be the given parallelogram.

Now we need to show that ABCD is a rectangle, by proving that one of its interior angles is.

In $\triangle ABC$ and $\triangle DCB$,

AB = DC (side opposite to the parallelogram are equal)

BC = BC (in common)

AC = DB (Given)

 $\therefore \triangle ABC \cong \triangle DCB$ (By SSS Congruence rule)

 $\Rightarrow \angle ABC = \angle DCB$

The sum of the measurements of angles on the same side of a transversal is known to be 180° Hence, ABCD is a rectangle because it is a parallelogram with a 90° inner angle.

2. Show that the diagonals of a square are equal and bisect each other at right angles.

Ans:

Given: A square is given.

To find: The diagonals of a square are the same and bisect each other at 90°

Consider ABCD to be a square.

Consider the diagonals AC and BD intersect each other at a point O.

We must first show that the diagonals of a square are equal and bisect each other at right angles,

$$AC = BD, OA = OC, OB = OD.$$

In $\triangle ABC$ and $\triangle DCB$,

AB = DC (Sides of the square are equal)

 $\angle ABC = \angle DCB$ (All the interior angles are of the value 90°)

BC = CB (Common side)

∴ $\triangle ABC \cong \triangle DCB$ (By SAS congruency)

AC = DB (By CPCT)

Hence, the diagonals of a square are equal in length.

In $\triangle AOB$ and $\triangle COD$,

 $\angle AOB = \angle COD$ (Vertically opposite angles)

 $\angle ABO = \angle CDO$ (Alternate interior angles)

AB = CD (Sides of a square are always equal)

 $\therefore \triangle AOB \cong \triangle COD \text{ (By AAS congruence rule)}$

AO = CO and OB = OD (By CPCT)

As a result, the diagonals of a square are bisected.

In $\triangle AOB$ and $\triangle COB$,

Because we already established that diagonals intersect each other,

$$AO = CO$$

AB = CB (Sides of a square are equal)

BO = BO (Common)

 $\therefore \triangle AOB \cong \triangle COB$ (By SSS congruency)

 $\therefore \angle AOB = \angle COB$ (By CPCT)

However, (Linear pair)

As a result, the diagonals of a square are at right angles to each other.

3. Diagonal AC of a parallelogram ABCD is bisecting $\angle A$ (see the given figure).

Show that

- (i) It is bisecting $\angle C$ also,
- (ii) ABCD is a rhombus

Ans:

Given: Diagonal AC of a parallelogram ABCD is bisecting $\angle A$

To find: (i) It is bisecting $\angle C$ also,

(ii) ABCD is a rhombus

(i) ABCD is a parallelogram.

$$\angle DAC = \angle BCA$$
 (Alternate interior angles) ... (1)

And
$$\angle BAC = \angle DCA$$
 (Alternate interior angles) ... (2)

However, it is given that AC is bisecting $\angle A$

$$\angle DAC = \angle BAC \dots (3)$$

From Equations (1), (2), and (3), we obtain

$$\angle DAC = \angle BCA = \angle BAC = \angle DCA \dots (4)$$

$$\angle DCA = \angle BCA$$

Hence, AC is bisecting $\angle C$

(ii) From Equation (4), we obtain

$$\angle DAC = \angle DCA$$

DA = DC (Side opposite to equal angles are equal)

However, DA = BC and AB = CD (Opposite sides of a parallelogram)

$$AB = BC = CD = DA$$

As a result, ABCD is a rhombus.

4. ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that:

(i) ABCD is a square

(ii) Diagonal BD bisects $\angle B$ as well as $\angle D$.

Ans:

Given: ABCD is a rectangle where the diagonal AC bisects $\angle A$ as well as $\angle C$.

To find: (i) ABCD is a square

(ii) Diagonal BD bisects $\angle B$ as well as $\angle D$.

(i).

It is given that ABCD is a square.

$$\angle A = \angle C$$

$$\Rightarrow \frac{1}{2} \angle A = \frac{1}{2} \angle C \text{ (AC bisects } \angle A \text{ and } \angle C)$$

$$\Rightarrow \angle DAC = \frac{1}{2} \angle DCA$$

CD = DA (Sides that are opposite to the equal angles are also equal)

Also, DA = BC and AB = CD (Opposite sides of the rectangle are same)

$$AB = BC = CD = DA$$

ABCD is a rectangle with equal sides on all sides.

Hence, ABCD is a square.

(ii) Let us now join BD.

In $\triangle BCD$,

BC = CD (Sides of a square are equal to each other)

 $\angle CDB = \angle CBD$ (Angles opposite to equal sides are equal)

However, $\angle CDB = \angle ABD$ (Alternate interior angles for $AB \parallel CD$)

$$\angle CBD = \angle ABD$$

BD bisects $\angle B$.

Also, $\angle CBD = \angle ADB$ (Alternate interior angles for $BC \parallel AD$)

$$\angle CDB = \angle ABD$$

BD bisects $\angle D$ and $\angle B$.

5.In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see the given figure).

Show that:

(i) $\triangle APD \cong \triangle CQB$

(ii)
$$AP = CQ$$

(iii) $\triangle AQB \cong \triangle CPD$

(iv)
$$AQ = CP$$

(v) APCQ is a parallelogram

Ans:

Given: A parallelogram is given.

To prove: (i) $\triangle APD \cong \triangle CQB$

(ii)
$$AP = CQ$$

(iii)
$$\Delta AQB \cong \Delta CPD$$

(iv)
$$AQ = CP$$

(v) APCQ is a parallelogram

(i) In $\triangle APD$ and $\triangle CQB$,

 $\angle ADP = \angle CBQ$ (Alternate interior angles for $BC \parallel AD$)

AD = CB (Opposite sides of the parallelogram ABCD)

DP = BQ (Given)

 $\therefore \triangle APD \cong \triangle CQB$ (Using SAS congruence rule)

(ii) As we had observed that $\triangle APD \cong \triangle CQB$,

AP = CQ (CPCT)

(iii) In $\triangle AQB$ and $\triangle CPD$,

 $\angle ABQ = \angle CDP$ (Alternate interior angles for $AB \parallel CD$)

AB = CD (Opposite sides of parallelogram ABCD)

BQ = DP (Given)

 $\therefore \triangle AQB \cong \triangle CPD$ (Using SAS congruence rule)

(iv) Since we had observed that $\triangle AQB \cong \triangle CPD$,

$$\therefore AQ = CP \text{ (CPCT)}$$

(v) From the result obtained in (ii) and (iv),

$$AQ = CP$$
 and $AP = CQ$

APCQ is a parallelogram because the opposite sides of the quadrilateral are equal.

6. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (See the given figure).

Show that

(i)
$$\triangle APB \cong \triangle CQD$$

(ii)
$$AP = CQ$$

Ans:

(i) In $\triangle APB$ and $\triangle CQD$,

$$\angle APB = \angle CQD$$
 (Each 90°)

AB = CD (The opposite sides of a parallelogram ABCD)

 $\angle ABP = \angle CDQ$ (Alternate interior angles for $AB \parallel CD$)

 $\therefore \triangle APB \cong \triangle CQD$ (By AAS congruency)

(ii) By using

 $\therefore \triangle APB \cong \triangle CQD$, we obtain

AP = CQ (By CPCT)

7. ABCD is a trapezium in which AB \parallel CD and AD = BC (see the given figure).

Show that

- (i) $\angle A = \angle B$
- (ii) $\angle C = \angle D$
- (iii) $\triangle ABC \cong \triangle BAD$
- (iv) diagonal AC = diagonal BD

(Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.)

Ans:

Given: ABCD is a trapezium.

To find: (i) $\angle A = \angle B$

- (ii) $\angle C = \angle D$
- (iii) $\triangle ABC \cong \triangle BAD$
- (iv) diagonal AC = diagonal BD

Let us extend AB by drawing a line through C, which is parallel to AD, intersecting AE at point

E. It is clear that AECD is a parallelogram.

(i) AD = CE (Opposite sides of parallelogram AECD)

However, AD = BC (Given)

Therefore, BC = CE

 $\angle CEB = \angle CBE$ (Angle opposite to the equal sides are also equal)

Considering parallel lines AD and CE.

AE is the transversal line for them (Angles on a same side of transversal)

(Using the relation $\angle CEB = \angle CBE$) ... (1)

However, (Linear pair angles) ... (2)

From Equations (1) and (2), we obtain $\angle A = \angle B$

(ii) $AB \parallel CD$

Also, $\angle C + \angle B = 180^{\circ}$ (Angles on a same side of a transversal)

$$\therefore \angle A + \angle D = \angle C + \angle B$$

However, $\angle A = \angle B$ (Using the result obtained in (i))

$$\therefore \angle C = \angle D$$

(iii) In $\triangle ABC$ and $\triangle BAD$,

AB = BA (Common side)

$$BC = AD$$
 (Given)

 $\angle B = \angle A$ (Proved before)

 $\therefore \triangle ABC \cong \triangle BAD$ (SAS congruence rule)

(iv) We had seen that, $\triangle ABC \cong \triangle BAD$

$$\therefore AC = BD \text{ (By CPCT)}$$

Exercise 8.2

1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see the given figure). AC is diagonal. Show that:

(i)
$$SR \parallel AC$$
 and $SR = \frac{1}{2}AC$

(ii)
$$PQ = SR$$

(iii) PQRS is a parallelogram.

Ans:

Given: ABCD is a quadrilateral

To prove: (i) $SR \parallel AC$ and $SR = \frac{1}{2}AC$

(ii)
$$PQ = SR$$

(iii) PQRS is a parallelogram.

(i) In $\triangle ADC$, S and R are the mid-points of sides AD and CD respectively.

In a triangle, the line segment connecting the midpoints of any two sides is parallel to and half of the third side.

$$\therefore SR \parallel AC \text{ and } SR = \frac{1}{2} AC \dots (1)$$

(ii) In \triangle ABC, P and Q are mid-points of sides AB and BC respectively. Therefore, by using midpoint theorem,

$$PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC \dots (2)$$

Using Equations (1) and (2), we obtain

$$PQ \parallel SR \text{ and } PQ = \frac{1}{2}SR \dots (3)$$

$$\therefore PQ = SR$$

(iii) From Equation (3), we obtained

$$PQ \parallel SR$$
 and $PQ = SR$

Clearly, one pair of quadrilateral PQRS opposing sides is parallel and equal. PQRS is thus a parallelogram.

2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.

Ans:

Given: ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively.

To find: Quadrilateral PQRS is a rectangle.

In $\triangle ABC$, P and Q are the mid-points of sides AB and BC respectively.

$$PQ \parallel AC$$
, $PQ = \frac{1}{2}AC$ (Using mid-point theorem) ... (1)

In $\triangle ADC$, R and S are the mid-points of CD and AD respectively.

$$RS \parallel AC$$
, $RS = \frac{1}{2} AC$ (Using mid-point theorem) ... (2)

From Equations (1) and (2), we obtain

$$PQ \parallel RS$$
 and $PQ = RS$

It is a parallelogram because one pair of opposing sides of quadrilateral PQRS is equal and parallel to each other. At position O, the diagonals of rhombus ABCD should cross.

In quadrilateral OMQN,

$$MQ \parallel ON (PQ \parallel AC)$$

$$QN \parallel OM (QR \parallel BD)$$

Hence, OMQN is a parallelogram.

$$\therefore \angle MQN = \angle NOM$$

$$\therefore \angle PQR = \angle NOM$$

Since,

 $\angle NOM = 90^{\circ}$ (Diagonals of the rhombus are perpendicular to each other)

$$\therefore \angle PQR = 90^{\circ}$$

Clearly, PQRS is a parallelogram having one of its interior angles as.

So, PQRS is a rectangle.

3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Ans:

Given: ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively.

To prove: The quadrilateral PQRS is a rhombus.

Let us join AC and BD.

In $\triangle ABC$, P and Q are the mid-points of AB and BC respectively.

$$\therefore PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC \text{ (Mid-point theorem) ... (1)}$$

Similarly, in
$$\triangle ADC$$
, $SR \parallel AC$, $SR = \frac{1}{2} AC$ (Mid-point theorem) ... (2)

Clearly, $PQ \parallel SR$ and PQ = SR

It is a parallelogram because one pair of opposing sides of quadrilateral PQRS is equal and parallel to each other.

$$\therefore PS \parallel QR$$
, $PS = QR$ (Opposite sides of parallelogram) ... (3)

In $\triangle BCD$, Q and R are the mid-points of side BC and CD respectively.

∴
$$QR \parallel BD$$
, $QR = \frac{1}{2}BD$ (Mid-point theorem) ... (4)

Also, the diagonals of a rectangle are equal.

$$\therefore AC = BD \dots (5)$$

By using Equations (1), (2), (3), (4), and (5), we obtain

$$PQ = QR = SR = PS$$

So, PQRS is a rhombus

4. ABCD is a trapezium in which $AB \parallel DC$, BD is a diagonal and E is the mid - point of AD. A line is drawn through E parallel to AB intersecting BC at F (see the given figure). Show that F is the mid-point of BC.

Ans:

Given: ABCD is a trapezium in which $AB \parallel DC$, BD is a diagonal and E is the mid - point of AD. A line is drawn through E parallel to AB intersecting BC at F.

To prove: F is the mid-point of BC.

Let EF intersect DB at G.

We know that a line traced through the mid-point of any side of a triangle and parallel to another side bisects the third side by the reverse of the mid-point theorem.

In $\triangle ABD$, $EF \parallel AB$ and E is the mid-point of AD.

Hence, G will be the mid-point of DB.

As
$$EF \parallel AB$$
, $AB \parallel CD$,

 $\therefore EF \parallel CD$ (Two lines parallel to the same line are parallel)

In $\triangle BCD$, $GF \parallel CD$ and G is the mid-point of line BD. So, by using converse of mid-point theorem, F is the mid-point of BC.

5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see the given figure). Show that the line segments AF and EC trisect the diagonal BD.

Ans:

Given: In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively to prove: The line segments AF and EC trisect the diagonal BD.

ABCD is a parallelogram.

$$AB \parallel CD$$

And hence, $AE \parallel FC$

Again, AB = CD (Opposite sides of parallelogram ABCD)

$$\frac{1}{2}AB = \frac{1}{2}CD$$

AE = FC (E and F are mid-points of side AB and CD)

In quadrilateral AECF, one pair of the opposite sides (AE and CF) is parallel and same to each other. So, AECF is a parallelogram.

 $\therefore AF \parallel EC$ (Opposite sides of a parallelogram)

In $\triangle DQC$, F is the mid-point of side DC and $FP \parallel CQ$ (as $AF \parallel EC$).

So, by using the converse of mid-point theorem, it can be said that P is the mid-point of DQ.

$$\therefore DP = PQ \dots (1)$$

Similarly, in $\triangle APB$, E is the mid-point of side AB and $EQ \parallel AP$ (as $AF \parallel EC$).

As a result, the reverse of the mid-point theorem may be used to say that Q is the mid-point of PB.

$$\therefore PQ = QB \dots (2)$$

From Equations (1) and (2),

$$DP = PQ = BQ$$

Hence, the line segments AF and EC trisect the diagonal BD.

6. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

- (i) D is the mid-point of AC
- (ii) MD \perp AC
- (iii) $CM = MA = \frac{1}{2}AB$

Ans:

Given: ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D.

To prove: (i) D is the mid-point of AC.

- (ii) MD \perp AC
- (iii) $CM = MA = \frac{1}{2}AB$
- (i) In $\triangle ABC$,

It is given that M is the mid-point of AB and $MD \parallel BC$.

Therefore, D is the mid-point of AC. (Converse of the mid-point theorem)

- (ii) As DM || CB and AC is a transversal line for them, therefore, (Co-interior angles)
- (iii) Join MC.

In $\triangle AMD$ and $\triangle CMD$,

AD = CD (D is the mid-point of side AC)

$$\angle ADM = \angle CDM$$
 (Each)

DM = DM (Common)

∴ $\triangle AMD \cong \triangle CMD$ (By SAS congruence rule)

Therefore,

$$AM = CM \text{ (By CPCT)}$$

However,

$$AM = \frac{1}{2} AB$$
 (M is mid-point of AB)

Therefore, it is said that $CM = AM = \frac{1}{2}AB$.