

REPORT NO. 1092 February 1960

> -- DEC 1805 CIRCULATING COPY

COMPILED FREE-AIR BLAST DATA ON BARE SPHERICAL PENTOLITE

H. J. Goodman

TECHNICAL REPORTS SECTION STAND BRANCH

Approved for public release distribution timberes

Department of the Army Project No. 5B03-04-002
Ordnance Management Structure Code 5010.11.815
BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

DEPARTMENT OF THE ARMY

UNITED STATES ARMY LABORATORY COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND 21005-5066

REPLY TO ATTENTION OF

SLCBR-DD-S (380a)

10 September 1991

MEMORANDUM FOR SEE DISTRIBUTION

SUBJECT: Distribution Statement for BRL Report No. 1092

- 1. Reference: BRL Report No. 1092, "Compiled Free-Air Blast Data on Bare Spherical Pentolite," by H. J. Goodman, February 1960, UNCLASSIFIED.
- 2. We have reviewed the referenced document and have determined that the following distribution statement applies:

Approved for public release; distribution unlimited.

- 3. Request that you mark your copy of the document with the distribution statement cited above and attach a copy of this letter to the inside of the front cover of the document. Please pass this notice to your technical libraries or any other offices which might have the report. Please disregard this notice, if you no longer have the document.
- 4. Point of contact is Mr. Douglas J. Kingsley, telephone 301-278-6960.

FOR THE DIRECTOR:

P. ANN BROWN

Chief, Security Office

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1092

FEBRUARY 1960

COMPILED FREE-AIR BLAST DATA ON BARE SPHERICAL PENTOLITE

H. J. Goodman

THE STATE OF THE S

Department of the Army Project No. 5B03-04-002 Ordnance Management Structure Code 5010.11.815 Ordnance Research and Development Project No. TB3-0112

ABERDEEN PROVING GROUND, MARYLAND

TABLE OF CONTENTS

																								I	Page
ABSTRACT	• •	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•		•	•	•	•	•	•	•	3
SYMBOLS		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	5
INTRODUCTION		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
COMPILATION OF DA	ATA	•	•,	•	•	•	٠	•	٠	•		•	•		•	•	•	•	•	•		•	•	•	8
DISCUSSION	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	a	•	•	•	•	16
CONCLUSION		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	35
ACKNOWLEDGEMENT	• •	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	٠	•	•	•	•	•	•	35
APPENDIX		•	•		•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠		37
Free-Air Mea	sur	en	ıer	ıts	3 (n	Bε	re	: 5	ph	er	·ic	al	. F	er	tc	li	.te	€.	•	•	•	•	•	37
REFERENCES	• •	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	٠	٠		٠	•	44
DISTRIBUTION LIST	C .																							•	47

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1092

HJGoodman/sec Aberdeen Proving Ground, Md. February 1960

COMPILED FREE-AIR BLAST DATA ON BARE SPHERICAL PENTOLITE

ABSTRACT

Free-air blast parameters (peak pressure, positive impulse and positive duration) from the detonation of spherical 50/50 Pentolite charges fired at sea level conditions have been compiled. Analytic expressions for side-on pressure, side-on positive impulse and normally reflected impulse have been determined by fitting least squares polynomials to the data. The function for side-on pressure extends over all scaled distances where pressure might be of military importance, and is of the asymptotic form given by Kirkwood and Brinkley.

SYMBOLS

R = radial distance from center of explosive (ft).

a = charge radius (ft).

W = explosive weight (1b).

 $X = \frac{R}{a}$ (numerical value of scaled distance in charge radii).

 $Z = \frac{R}{v^{1/3}} = \text{scaled distance.}$

= $0.1323 \times ft/lb^{1/3}$.

p = total peak pressure (psi).

p = ambient sea level pressure.

P = p-p = excess pressure (psi).

 $y = \frac{p}{p_0} = \text{excess pressure ratio.}$

 $I = \int_{t}^{t+\Delta t} (p-p_0) dt = positive impulse (psi msec).$

t = time of arrival of shock front (reported in milliseconds).

 Δt = positive duration (reported in milliseconds).

c = sound velocity at ambient conditions (ft/sec).

U = shock front velocity (ft/sec).

 $M = \frac{U}{c_0} = Mach number of shock front.$

N = number of observations.

σ = standard deviation of individual measurement.

 $\bar{\sigma}$ = standard deviation of mean.

ln = natural logarithm.

INTRODUCTION

Spherical 50/50 Pentolite charges are commonly used as standards in air shock measurements because of the reproducibility of results with this explosive. This report collects available unclassified air shock data, excepting measurements reported before 1945. Earlier measurements are omitted because of improvements in measuring techniques which have been made since 1945 and because so many of the early experiments were carried out under hurried wartime conditions. The consistency of the measurements of peak pressure and of reflected impulse made by widely different techniques is better than the original reports suggest and warrant fitting equations to the results so that smoothed average values would be available for test of instrumentation, planning of experiments, etc. However, side-on impulse and duration measurements are less satisfactory.

Existing data did not adequately determine the slope of the pressure-distance curve at long distances. Therefore, some new measurements made at pressures lower than those of military interest are reported here. In the region between the charge surface and a scaled distance of 1.5 ft/lb^{1/3}, peak pressure and reflected impulse data are each from a single source; however, the optical and mechanical methods used in this range of data give results which extrapolate well to piezoelectric gage results.

For planning of experiments the time of arrival of a shock is also of interest. Therefore, this parameter was computed and reported with the data, as well as the slope of the peak pressure-distance curve.

COMPILATION OF DATA

Collected data on the more commonly reported parameters are given in Figures 1 - 4 and the tables of the Appendix. The height of each symbol is approximately 3g except where a larger size is required for visibility. The authors, with the exception of Sultanoff and McVey 1,2*, reported standard deviations of their data. The present report estimates the standard deviations of the data of Sultanoff and McVey by averaging data at the same scaled distance over the charge weights used and then computing the standard deviation of the individual from this average. Stoner and Bleakney report the standard deviation of their pressuredistance curve. Three peak pressures were computed from their reported formula. Curtis reports the deviation of the mean for each charge weight and distance. All other authors report the standard deviation of the individual, computed in the same way. The use of only three points from the work of Stoner and Bleakney may appear to give little weight to their extensive measurements. However, the high weight given these points by using the error of the curve at least partially compensates for this. The standard deviation of a measurement in their work was about the same as in most others. Curtis's work is overweighted, but this is of little importance in view of the large number of measurements from other sources. In any case, the information given in reports is not sufficient to make new estimates of error, on a comparable basis, possible. The agreement between optical and gage data is better than would be expected, since measured charge radii are used in reporting optical data while weights only are given in reporting gage data. Thus the effect of detonator wells, explosive density, booster used, etc., on scaling of distance differs. Unpublished data are also reported. Most of these were obtained as control rounds in comparisons of explosives. A few measurements at large distances from the charge were made by Johnson and Schlueter for this compilation. Atlantic pencil gages were used because a high sensitivity

Superscripts refer to references listed at end of report.

was needed. The relatively poor aerodynamic form of these gages is unimportant at these low pressures. These side-on pressure measurements are shown in Figures la, lb and 4 and tabulated in Table I of the Appendix.

The number of actual measurements of normally reflected pressure is small, but Mills and Hoffman have computed a considerable number of reflected pressures from their measured side-on pressures. However, only those reflected pressures which were actually measured are tabulated in Table II of the Appendix.

Mills and Hoffman made a large number of measurements of side-on positive impulse at distances of 1.48 ft/lb $^{1/3}$ to 14.81 ft/lb $^{1/3}$. These, along with other available side-on impulse measurements 9,10,11 are shown in Figure 2 and Table I of the Appendix.

No measurements of normally reflected impulse at distances less than 3.8 charge radii have been reported. Measurements at ambient atmospheric pressures simulating altitudes up to 100,000 feet have been made by Olson, Patterson, and Williams by a mechanical gage, giving higher precision than is obtainable with piezoelectric gages. They have been scaled by Sachs's 9a scaling law and combined with sea level measurements 8,13.

However, Sachs's scaling is most improbable at the charge surface, since there the peak pressure ratio (p/p_0) is independent of ambient pressure except as the equation of state of air may be changed. It gives the same reflected impulse as the well-founded assumption p/p_0 independent of p_0 . For, from Sachs's scaling of the data used in Figure 2, we have close to the charge the approximate relation,

$$\frac{I}{W^{1/3}p_o^{2/3}} \approx \frac{AW^{2/3}}{R^2p_o^{2/3}}$$
,

or I independent of $\mathbf{p}_{_{\text{O}}}$ and varying inversely with the area of the shock front.

From p/p_0 independent of p_0 at shock formation it follows that the material velocity and density of the explosion products are also independent of p_0 . Since the contribution of static impulse to dynamic impulse is negligible close to the charge (Figure 2), the reflected impulse is determined by the outward flow of explosion products until the separation of shock front and contact surface is great enough to include a significant mass of air. Thus the total momentum of the outward flow changes only slowly, giving a reflected impulse independent of pressure and varying inversely as the area of the shock front. This physical picture of the cause of the observed results is at least more reasonable than the application of Sachs' scaling, with time scaling based on invariance of the velocity of sound in the ambient air, to a positive phase still largely in the explosion.

Other unpublished pressure and impulse data half way between two equal charges have been reported. 11

Available reflected and side-on measurements of duration of the first positive phase are shown in Figure 3 and Tables I and II of the Appendix.

The size of the detonation wells, boostering, etc., are seldom fully reported. As neither ambient pressures or temperatures are commonly stated, all measurements are arbitrarily assumed to have been made at 14.7 psi and 300°K with ambient sound velocity 1139.4 ft/sec. The charge density is assumed to be 1.65 gm/cc.

From p/p_0 independent of p_0 at shock formation it follows that the material velocity and density of the explosion products are also independent of p_0 . Since the contribution of static impulse to dynamic purples is negligible close to the charge (Figure 2), the reflected impulse is determined by the outward flow of explosion products until the separation of shock front and contact surface is great enough to include a cignificant mass of air. Thus the total momentum of the outward flow charges only slowly, giving a reflected impulse independent of pressure and varying inversely as the area of the shock front. This physical picture of the cause of the observed results is at least more reasonable than the application of Sachs' scaling, with time scaling based on invariance of the velocity of sound in the embient air, to a positive phase still largely in the explosion.

Other unpublished pressure and inpulse data half way between two equal charges have been reported.

Available reflected and side-on measurements of duration of the first positive phase are shown in Figure 5 and Tables I and II of the Appendix.

The size of the detonation wells, boostering, etc., are seldom fully reported. As neither umbient pressures or temperatures are commonly stated, all measurements are arbitrarily assumed to have been made at 14.7 psi and 500 M with ambient sound velocity 1159.4 ft/sec. The charge density is assumed to be 1.65 gm/cc.

DISCUSSION

The excellent agreement between pressure measurements made by various methods suggested that a single formula could be fitted to the whole pressure range which had been studied. Previous investigators 3,4,9 made least squares fits of the side-on peak pressure data to a polynomial in Z^{-1} . This type of function is an adequate empirical representation for 4 ft $\left[\frac{\text{atm}}{1\text{b}}\right]^{1/3} \leq p_0^{-1/3}Z \leq 30$ ft $\left[\frac{\text{atm}}{1\text{b}}\right]^{1/3}$. However, this type of function will not fit over the entire range that is of military importance. Kirkwood and Brinkley should be

(1)
$$P = P_1 R^{-1} (\ln R/R_1)^{-1/2}$$

where P_1 and R_1 are constant. The parameter $yX \left[\begin{array}{c} X \ln X \\ X-1 \end{array} \right]^{1/2}$ was calculated (Figure 4) from the experimental data, with the factor $\left[X/(X-1) \right]^{1/2}$ introduced to eliminate the zero value at the charge surface. Although the parameter was chosen to be constant at long distances, it is seen in Figure 4 that it is constant close to the charge, but only approaching an asymptote at the longest distances at which measurements are made. The parameter used has the advantage over fitting the pressure directly of a smaller range, thus improving the fit obtained by minimizing the standard deviation of the regression. One group of pressure measurements made by Sultanoff and McVey² is seen as a bulge in the plotted data of their report as well as here. It may result from their selecting a quadratic distance-time curve thus forcing a linear fit to the velocity. This is equivalent to assuming a pressure distance relation of the form

$$P = c(1 - bR)^2$$

where c and b are constants. Close to the charge, a third order distancetime fit was used.

A simple form of function constant at both short and large distances is A + B/ [Polynomial in (X - 1)]. When such a function was fitted to $yX \left[\frac{X \ln X}{X - 1} \right]^{1/2}$ using all data, the value of A was too large for

consistency with data at large distances, which should determine A. A weighted fit to data for $1.756 \pm X \pm 512$ of a fifth order polynomial in X^{-1} (significant at the 5% level) was therefore used to determine A. Fixing A, the best expression found was

(2)
$$y \times \left[\frac{X \ln X}{X-1}\right]^{1/2} = A + \frac{B}{1 + c(X-1)^2}$$

with the values of the constants

A =
$$48.16 \pm 3.8$$

B = 770.2 ± 3.6
C = $4.048 \times 10^{-3} \pm 4.8 \times 10^{-5}$

for $1 \leq X \leq 512$.

The standard deviation of the regression is 10.5. No significant improvement in the fit was obtained by using a larger number of constants. The data were weighted in the usual way in computing the best values of the constants, using the standard deviation reported in Table I of the Appendix.

If the scaled distance is expressed in $ft/lb^{1/3}$ instead of charge radii, $Z = 0.1323 \text{ X } ft/lb^{1/3}$, equation (2) becomes

(2a)
$$(p - p_0) Z \left[\frac{Z \ln \left(\frac{Z}{a} \right)}{Z - a} \right]^{1/2} = A_1 + \frac{B_1}{1 + C_1(Z - a)^2}$$

where

$$A_1 = 93.66 \text{ psi ft/lb}^{1/3}$$
 $B_1 = 1498 \text{ psi ft/lb}^{1/3}$
 $C_1 = 0.2309 \text{ lb}^{2/3}/\text{ft}^2$

for $a \le Z \le 68$ ft/lb^{1/3}.

The value of "a" used is 0.1323 ft/lb^{1/3} (explosive density, 1.65 gm/cc). Peak pressures have been computed from Equation (2) and (2a) and tabulated in Table I. Figures la, lb, and 5 are plots of the tabulated pressures.

TABLE I
Side-On Peak Pressure From Equation 2 and Some Derived Quantities

X Charge	Z	$t/s^{1/3}$	У	p - p _o	dy/dx	M Mach
radii	ft/lb ^{1/3}	$msec/lb^{1/3}$	atm	psi		Number
1.000	0.1323	0.00000	818.4	12030	-1023.	25.24
1.005	0.1330	0.000023	813.3	11955	-1011.	25.16
1.010	0.1336	0.000046	808.2	11881	-1000.	25.08
1.015	0.1343	0.000069	803.3	11808	- 988.8	25.00
1.020	0.1349	0.000092	798.4	11736	- 977.8	24.93
1.025	0.1356	0.000116	793.5	11664	- 967.0	24.86
1.030	0.1363	0.000139	788.7	11594	- 956.4	24.78
1.035	0.1369	0.000165	783.9	11524	- 945.9	24.71
1.040	0.1376	0.000186	779.2	11454	- 935.6	24.64
1.045	0.1383	0.000210	774.6	11386	- 925.4	24.57
1.050	0.1389	0.000234	770.0	11318	- 915.4	24.50
1.075	0.1422	0.000353	747.7	10991	- 867.7	24.14
1.100	0.1455	0.000474	726.6	10680	- 823.6	23.79
1.125	0.1488	0.000597	706.5	10385	- 782.6	23.46
1.150	0.1521	0.000722	687.4	10105	- 744.5	23.15
1.175	0.1555	0.000848	669.2	9838	- 709.0	22.85
1.200	0.1588	0.000976	651.9	9583	- 676.0	22.55
1.225	0.1621	0.001105	635.4	9341	- 645.1	22.27
1.250	0.1654	0.001237	619.6	9109	- 616.2	22.00
1.275	0.1687	0.001369	604.6	8888	- 589.2	21.74
1.300	0.1720	0.001504	590.2	8676	- 563.9	21.48
1.325	0.1753	0.001640	576.4	8473	- 540.1	21.23
1.350	0.1786	0.001776	563.2	8278	- 517.7	21.00
1.375	0.1819	0.001959	550.5	8092	- 496.7	20.76
1.400	0.1852	0.002056	538.3	7913	- 476.9	20.53
1.425	0.1885	0.002199	526.6	7742	- 458.2	20.31
1.450	0.1918	0.002342	515.4	7576	- 440.6	20.10
1.475	0.1951	0.002487	504.6	7418	- 423.9	19.89
1.500	0.1985	0.002635	494.2	7265	- 408.2	19.69
1.525	0.2018	0.002782	484.2	7117	- 393.2	19.50
1.550	0.2051	0.002932	474.5	6976	- 379-1	19.31
1.575	0.2084	0.003083	465.2	6839	- 365.7	19.12
1.600	0.2117	0.003235	456.2	6707	- 353.0	18.94
1.625	0.2150	0.003389	447.6	6579	- 340.9	18.76
1.650	0.2183	0.003545	439.2	6456	- 329.4	18.59
1.675	0.2216	0.003702	431.1	6337	- 318.4	18.45
1.700	0.2249	0.003860	423.3	6222	- 308.0	18.26
1.725	0,2282	0.004020	415.7	6111	- 298.1	18.10
1.750	0.2315	0.004180	408.4	6003	- 288.6	17.94
1.775	0.2348	0.004343	401.2	5898	- 279.6	17.79
1.800	0.2381	0.004508	394.4	5 797	- 270.9	17.64
1.825	0,2414	0.004672	387.7	5699	- 262.7	17.50
1.850	0,2448	0.004838	381.2	5604	- 254.8	17.36
1.875	0.2481	0.005007	375.0	5512	- 247.3	17.22

TABLE I (Cont'd)
Side-On Peak Pressure From Equation 2 and Some Derived Quantities

X Charge radii	z ft/1b ^{1/3}	t/W ^{1/3} 1/3 msec/lb	·y atm	p - p psi	dy/dx	M Mach Number	
Charge radii 1.900 1.925 1.950 1.975 2.000 2.025 2.050 2.075 2.100 2.125 2.150 2.175 2.200 2.225 2.350 2.325 2.350 2.375	ft/1b ^{1/3} 0.2514 0.2547 0.2580 0.2613 0.2646 0.2679 0.2712 0.2745 0.2778 0.2811 0.2844 0.2878 0.2911 0.2944 0.2977 0.3010 0.3043 0.3076 0.3109 0.3142	0.005176 0.005347 0.005519 0.005692 0.005692 0.005867 0.006042 0.006220 0.006398 0.006578 0.006759 0.006941 0.007126 0.007310 0.007496 0.007874 0.008063 0.008254 0.00841	368.9 363.0 357.2 351.6 346.2 340.9 335.8 325.9 321.2 312.1 307.7 303.4 299.3 295.2 287.4 283.6 279.9	5422 5422 5336 5251 5089 5012 4936 4863 4792 4654 4588 4523 4460 4339 4224 4169 4114	- 240.0 - 233.1 - 226.5 - 220.2 - 214.0 - 208.2 - 202.6 - 197.2 - 192.0 - 182.2 - 177.6 - 173.1 - 168.8 - 164.6 - 160.7 - 156.8 - 153.1 - 149.5 - 146.0	Mach Number 17.08 16.94 16.81 16.68 16.56 16.44 16.32 16.08 15.96 15.96 15.74 15.53 15.43 15.32 15.22 15.22 15.02 14.93	
2.400 2.425 2.475 2.500 2.525 2.550 2.550 2.650 2.660 2.660 2.660 2.675 2.775 2.775 2.800 2.875	0.3175 0.3208 0.3241 0.32308 0	0.008836 0.009032 0.009230 0.009428 0.009628 0.009630 0.01003 0.01004 0.01065 0.01065 0.01106 0.01127 0.01148 0.01169 0.01191 0.01233 0.01255 0.01277 0.01299 0.01321 0.01343 0.01365 0.01388 0.01411	276.38 272.89.39.64 269.39.64 259.42 259.42 241.57 241.57 223.27	4061 4009 3959 3861 3813 3767 3677 3634 3559 3459 3459 3210 3176 3176 3176 3176 3176 3176 3177 3045	- 142.7 - 139.4 - 136.3 - 133.3 - 130.4 - 127.5 - 124.8 - 122.1 - 119.5 - 117.0 - 114.6 - 112.3 - 110.0 - 107.8 - 105.6 - 103.6 - 101.5 - 99.57 - 97.60 - 95.80 - 94.00 - 92.24 - 88.88 - 87.26 - 85.69	14.83 14.74 14.65 14.47 14.38 14.30 14.22 14.13 14.05 13.88 13.80 13.65 13.56 13.56 13.56 13.65 13.65 13.65 13.65 13.65 13.65 13.65 13.65 13.65 13.65	

TABLE I (Cont'd)
Side-On Peak Pressure From Equation 2 and Some Derived Quantities

X Charge radii	Z ft/16 ^{1/3}	t/w ^{1/3} msec/lb ^{1/3}	y	p - p psi	dy/dx	M Mach Number
1.900	0.2514	0.005176	368.9	5422	- 240.0	17.08
1.925	0.2547	0.005347	363.0	5336	- 233.1	16.94
1.950	0.2580	0.005519	357.2	5251	- 226.5	16.81
1.975	0.2613	0.005692	351.6	5169	- 220.2	16.68
2.000	0.2646	0.005867	346.2	5089	- 214.0	16.56
2.025	0.2679	0.006042	340.9	5012	- 208.2	16.44
2.050	0.2712	0.005220	335.8	4936	- 202.6	16.32
2.075	0.2745	0.605398	3 3 0.8	4863	- 197.2	16.20
2.100	0.2778	0. 006578	325.9	4791	- 192.0	16.08
2.125	0.2811	0.006759	321.2	4722	- 187.0	15.96
2.150	0.2844	0.006941	316.6	4654	- 182.2	15.85
2.175	0.2878	0.007126	312.1	4588	- 177.6	15.74
2.200	0.2911	0.007510	307.7	4523	- 173.1	15.64
2.225	0.2944	0.007496	303.4	4460	- 168.8	15.53
2.250	0.2977	0.00768 4	299.3	4399	- 164.6	15.43
2.275	0.3010	0.007874	295.2	4339	- 160.7	15.32
2.300	0.3043	0.008063	291.2	4281	- 156.8	15.22
2.325	0.3076	0.008254	287.4	4224	- 153.1	15.12
2.350	0.3109	0.008447	285.6	4169	- 149.5	15.02
2.375	0.3142	0.008641	279.9	4114	- 146.0	14.93
2.400	0.3175	0.008836	276.3	4061	- 142.7	14.83
2.425	0.3208	0.009032	272.8	4009	- 139.4	14.74
2.450	0.3241	0.009230	269.3	3959	- 136.3	14.65
2.475	0.3274	0.009428	265.9	3909	- 133.3	14.56
2.500	0.3308	0.009628	262.6	7861	- 130.4	14.47
2.525	0.3341	0.009830	259.4	3813	- 127.5	14.38
2.550	0.3574	0.01003	256.3	3767	- 124.8	14.30
2.575	0.3407	0.01024	253.2	3722	- 122.1	14.22
2.600	0.3440	0.01044	250.2	367 7	- 119.5	14.13
2.625	0.3473	0.01065	247.2	3634	- 117.0	14.05
2,650	0.5506	0.01085	244.3	3591	- 114.6	13.96
2.675	0.3539	0.01106	241.5	3550	- 112.3	13.88
2.700	0.3572	0.01127	238.7	3509	- 110.0	13.80
2.725	0.3605	0.01148	236.0	3469	- 107.8	13.73
2.750	0.3638	0.01169	233.3	3430	- 105.6	13.65
2.775	0.3671	0.01191	230.7	3391	- 103.6	13.58
2.800	0.3704	0.01211	228.1	3354	- 101.5	13.50
2.825	0.3737	0.01233	225.6	5317	- 99.57	13.43
2.850	0.3771	0.01255	223.2	3280	- 97.60	13.36
2.875	0.3804	0.01277	220.7	3245 503.0	- 95.80	13.29
2.900	0.3837	0.01299	218.4	3210	- 94.00	13.22
2.925	0.3870	0.01321	216.0	3176	- 92.24	13.15
2.950	0.3905	0.01343	213.8	3142	- 90.54	13.08
2.975	0.3936	0.01365	211.5	3109	- 88.88	13.01
3.000	0.3969	0.01588	209.3	3077	- 87.26	12.94
3.025	0.4002	0.01411	207.2	3045	- 85.69	12.87

TABLE I (Cont'd)
Side-On Peak Pressure From Equation 2 and Some Derived Quantities

X Charge radii	Z ft/lb ^{1/3}	$t/\sqrt{1/3}$ msec/lb $1/3$	y atm	p - p	dy/dx	M Mach Number
Charge radii 3.050 3.075 3.100 3.125 3.175 3.200 3.225 3.250 3.255 3.300 3.325 3.375 3.400 3.425 3.450 3.450 3.550 3.575 3.600 3.625	z ft/1b 0.4035 0.4068 0.4101 0.4134 0.4201 0.4234 0.4267 0.4267 0.4264 0.4366 0.4366 0.4366 0.4366 0.4465 0.4465 0.4564 0.4564 0.4597 0.4664 0.4697 0.4664 0.4763 0.4763 0.4763 0.4829	0.01433 0.01456 0.01456 0.01478 0.01501 0.01524 0.01548 0.01571 0.01594 0.01617 0.01642 0.01665 0.01689 0.01713 0.01737 0.01761 0.01786 0.01810 0.01859 0.01859 0.01859 0.01859 0.01959 0.01959 0.01959 0.01959 0.01964 0.02009		p - po psi 3014 2983 2953 2954 2895 2866 2858 2810 2783 2757 2730 2679 2630 2605 2558 2535 2558 2558 2555 2490 2468 2468 2494	- 84.16 - 82.67 - 81.22 - 79.81 - 78.43 - 77.09 - 75.78 - 74.51 - 73.26 - 72.05 - 70.87 - 69.71 - 68.58 - 67.48 - 65.36 - 64.34 - 63.36 - 61.40 - 69.56 - 70.87 - 69.71	Mach Number 12.81 12.74 12.68 12.62 12.56 12.50 12.44 12.38 12.32 12.26 12.21 12.16 12.04 11.98 11.91 11.85 11.80 11.75 11.66 11.56 11.56 11.56
5.650 3.675 3.7750 3.7750 3.8750 3.825 3.825 3.825 3.925 3.925 4.025 4.050 4.050 4.125 4.175	0.4829 0.4862 0.4895 0.4928 0.4994 0.5027 0.5060 0.5094 0.5127 0.5160 0.5193 0.5226 0.5259 0.5259 0.5358 0.5358 0.5391 0.5457 0.5457 0.5524	0.02059 0.02054 0.02060 0.02085 0.02111 0.02136 0.02165 0.02189 0.02215 0.02268 0.02294 0.02321 0.02374 0.02401 0.02428 0.02455 0.02564 0.02564	162.7 162.7 162.7 158.7 158.7 158.7 159.4 159.7 159.7 147.7 144.8 144.9 147.7 144.8 144.9 149.8 139.8 137.7	2404 2383 2363 2343 2303 2284 2265 2246 2209 2191 2174 2156 2139 2105 2089 2072 2056 2040 2024	- 56.94 - 56.11 - 55.50 - 55.20 - 5	11.47 11.42 11.37 11.32 11.28 11.28 11.18 11.09 11.05 11.00 10.96 10.92 10.88 10.84 10.80 10.76 10.72 10.67 10.63 10.59

TABLE I (Cont'd)
Side-On Peak Pressure From Equation 2 and Some Derived Quantities

X Charge radii	z ft/lb ^{1/3}	$t/U^{1/3}$ msec/lb ^{1/3}	y atm	p - p _o	dy/dx	M Mach Number
	1/3 1/3 1/3 0.5557 0.5590 0.5623 0.5689 0.5689 0.5755 0.5788 0.5881 0.5887 0.5986 0.5986 0.6053 0.6053 0.6053 0.6119 0.6152 0.6218 0.6218 0.6251 0.6350 0.6383 0.6450 0.6450 0.6450 0.6450 0.6549 0.6582 0.6747 0.6880 0.6747 0.6880 0.6747 0.6880 0.6747 0.6880 0.6747 0.6880 0.6747 0.6880 0.6747 0.7806 0.7541 0.7543 0.7543 0.8070 0.8203	msec/lb ^{1/3} 0.02592 0.02620 0.02647 0.02674 0.02703 0.02759 0.02759 0.02788 0.02816 0.02845 0.02845 0.02902 0.02960 0.02989 0.03018 0.03047 0.03105 0.03105 0.03164 0.03194 0.03254 0.03254 0.03254 0.03374 0.03374 0.03374 0.03374 0.03374 0.03377 0.03496 0.03528 0.035651 0.03777 0.03904 0.03904 0.03905 0.04699 0.04637 0.04977 0.05117	•	psi 2009 1994 1978 1964 1978 1964 1990 1990 1892 1878 1864 1850 1837 1824 1811 1798 1785 1772 1760 1748 1735 1771 1700 1688 1676 1654 1654 1654 1654 1651 1610 1599	- 42.11 - 41.58 - 40.055 - 40.055 - 39.60 - 39.60 - 39.60 - 37.68 - 37.69 - 27.89 - 20.69 - 21.36 -	Mach
6.300 6.400 6.500 6.600	0 .8335 0 .8467 0 .8600 0 .8732	0.05260 0.05404 0.05550 0.05696	79•39 77•65 75•97 74•34	1167 1142 1117 1093	- 18.02 - 17.45 - 16.90 - 16.39	8.105 8.020 7.937 7.855

TABLE I (Cont*d)
Side-On Peak Pressure from Equation 2 and Some Derived Quantities

Charge radii	Z ft/lb ^{1/3}	$t/\sqrt[4]{3}$ msec/lb	y a.tm	p - p _o psi	dy/dx	M Mach Number
6.700	0.8864	0.05845	72.76	1070	- 15.89	7.776
6.800	0.8996	0.05995	71.23	1047	- 15.42	7.698
6.900	0.9129	0.06147	69.75	1025	- 14.97	7.621
7.000	0.9261	0.06300	68.32	1004	- 14.54	7 • 545
7.100	0.9393	0.06455	66.92	983.7	- 14.14	7.471
7.200	0.9526	0.06612	65.57	963.8	- 13.74	7 • 399
7.300	o•9658	0.06768	64.25	944.5	- 13.37	7.328
7.400	0.9790	0.06927	62.98	925.8	- 13.01	7.258
7.500	0.9923	0.07089	61.74	907.6	- 12.66	7.189
7.600	1.005	0.07251	60.53	889.8	- 12.33	7.121
7. <u>7</u> 00	1.019	0.07415	59.36	872.6	- 12.02	7.056
7.800	1.032	0.07580	58.22	855.8	- 11.71	6.990
7.900	1.045	0.07747	57.11	839.6	- 11.42	6.926
8.000	1.058	0.07915	56.03	823.7	- 11.14	6.863
8.100	1.072	0.08085	54.98	808.2	- 10.87	6.802
8.200	1.085	0.08257	53.96	793.2	- 10.61	6.742
8.300	1.098	0.08430	52.96	778.5	- 10.36	6.682
8.400	1.111	0.08604	51.99	764.2	- 10.11	6.623
8.500	1.125	0.08780	51.04	750.3	- 9.882	6.565
8.600	1.138	0.08959	50.12	736.8	- 9.657	6.509
8.700	1.151	0.09137	49.22	723.5	- 9.441	6.453
8.800	1.164	0.09318	48.34	710.6	- 9.232	6.398
8.900	1.177	0.09500	47.48	698.0	- 9.030	6.343
9.000	1.191	0.09684	46.65	685.7	- 8.835	6.290
9.100	1.204	0.09870	45.83	673 . 7	- 8.647	6.238
9.200	1.217	0.1006	45.04	662.0	- 8.465	6.187
9.300	1.230	0.1034	44.26	650.6	- 8.289	6.136
9.400	1.244	0.1040	43.50	639.4	- 8.118	6.086
9,500	1.257	0.1063	42.75	628.5	- 7•953	6.036
9.600	1.270	0.1082	42.03	617.8	- 7·794	5.988
9.700	1.283	0.1101 0.1121	41.32 40.63	607.4 597.2	- 7.639 - 7.489	5•940 5•892
9.800	1.297 1.310	0.1141	39 •95	587 . 2	- 7.344	5.846
9.900 10.00	1.323	0.1161	39.29	57 7. 5		5.800
10.40	1.576	0.1242	36.78	540.6	- 7.203 - 6.679	5.622
10.40	1.429	0.1326	34.48	506.8	- 6.213	5.453
11.20	1.482	0.1412	32.36	475•7	- 5.797	5.291
11.60	1.535	0.1501	30.42	447.1	- 5.422	5.139
12.00	1.588	0.1593	28.62	420.7	- 5.084	4.994
12.40	1.641	0.1687	26.95	396 . 2	- 4.778	4.856
12.80	1.693	0.1785	25.42	373 . 6	- 4.499	4.723
13.20	1.746	0.1884	23.99	352 . 6	- 4.245	4.597
13.60	1.799	0.1987	22.66	333 . 1	- 4.013	4.477
14.00	1.852	0.2091	21.43	315.0	- 3.799	4.361
14.40	1.905	0.2199	20.28	298.1	- 3.603	4.250
14.80	1.958	0.2311	19.21	282.4	- 3.422	4.145
15.20	2.011	0.2423	18.21	267.7	- 3.254	4.044
		U >		, - ,	J / .	

TABLE I (Cont'd)

Side-On Peak Pressure from Equation 2 and Some Derived Quantities

X Charge radii	2 ft/1b ^{1/3}	t/N ^{1/3} msec/1b ^{1/3}	y atm	p - p _o psi	dy/dx	M Mach Number
15.60 16.80 17.60 18.40 18.40 19.60 18.40 19.60 20.00 21.00 21.00 21.00 22.20 23.00 24.00 25.00 27.00 28.00 29.00 29.00 31.00 33.00 33.00 33.00 41	2.064 2.1170 2.2768 2.12768 2.13768 2.	0.2540 0.2659 0.2659 0.2781 0.2905 0.3033 0.3164 0.3298 0.3433 0.3573 0.3573 0.3573 0.3716 0.4008 0.4391 0.4793 0.5652 0.6564 0.7077 0.7588 0.8661 0.9222 0.9799 1.039 1.100 1.163 1.227 1.292 1.360 1.428 1.428 1.5699 1.642 1.715 1.789 1.866 1.943 2.020 2.179 2.179	17.28 16.41 15.59 14.11 15.59 14.11 12.81 12.66 11.64 10.17 12.29 14.10.64 10.17 12.20 11.66 11.	254.2 218.0 5 6 3 6 4 7 4 6 1 7 0 7 5 8 8 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 3.098 - 2.954 - 2.819 - 2.694 - 2.777 - 2.364 - 2.268 - 2.177 - 2.364 - 2.091 - 1.935 - 1.612 - 1.362 - 1.479 - 1.362 - 1.082 - 1.082 - 1.082 - 1.082 - 1.0882 - 1.0939882587267684464576101574694929740583876535953595325428792297	3.5.7.6.6.5.7.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
	•					

TABLE I (Cont'd)
Side-On Peak Pressure from Equation 2 and Some Derived Quantities

X Charge radii	z ft/1b ^{1/3}	$t/\sqrt[4]{3}$ msec/lb	y atm	p - p _o psi	dy/dx	M Mach Number
Charge radii 60.00 62.00 64.00 66.00 68.00 70.00 74.00 76.00 78.00 82.00 84.00 86.00 90.00 92.00 96.00 96.00 105.0 115.0 125.0 125.0 145.0 145.0	7.938 8.203 8.467 8.732 8.996 9.526 9.526 9.790 9.005 10.58 10.58 10.58 11.11 11.38 11.64 11.91 12.17 12.44 12.70 12.96 13.23 13.89 14.55 15.21 15.88 16.53 17.86 18.52 19.18	3.116 3.296 3.478 3.662 3.848 4.036 4.226 4.418 4.611 4.806 5.002 5.200 5.398 5.597 5.798 6.000 6.203 6.406 6.610 6.816 7.021 7.539 8.062 8.587 9.115 9.647 10.18 10.72 11.25 11.80	0.8108 0.7574 0.7097 0.6668 0.6282 0.5932 0.5615 0.5327 0.4822 0.4601 0.4397 0.4209 0.4209 0.4209 0.4209 0.3584 0.3724 0.	P-Po P81 11.13 9.234 9.234 9.234 9.254 9.2	- 0.2142 - 0.2001 - 0.1873 - 0.1757 - 0.1651 - 0.1554 - 0.1466 - 0.1384 - 0.1310 - 0.1240 - 0.1177 - 0.1118 - 0.1063 - 0.1012 - 0.09642 - 0.09199 - 0.08786 - 0.08400 - 0.08038 - 0.07699 - 0.07380 - 0.06664 - 0.06045 - 0.05508 - 0.05039 - 0.04626 - 0.05937 - 0.03590	Mach Number 1.3019 1.2842 1.2682 1.2536 1.2403 1.2282 1.2171 1.2069 1.1975 1.1888 1.1808 1.1734 1.1665 1.1601 1.1541 1.1486 1.1433 1.1339 1.1296 1.1255 1.1164 1.1084 1.1014 1.09524 1.08977 1.089488 1.08049 1.07652 1.07292
150.0 155.0 160.0 165.0 170.0 175.0 180.0 185.0 190.0 200.0 205.0 210.0 220.0 225.0	19.84 20.51 21.17 21.83 22.49 23.15 23.81 24.48 25.14 25.80 26.46 27.12 27.78 28.44 29.11 29.77	12.33 12.88 13.42 13.97 14.51 15.07 15.62 16.16 16.72 17.28 17.82 17.82 18.38 18.94 19.70 20.05 20.61	0.1682 0.1607 0.1538 0.1476 0.1418 0.1364 0.1314 0.1268 0.1225 0.1185 0.1147 0.1112 0.1078 0.1047 0.1018 0.09897	2.472 2.362 2.262 2.169 2.084 2.005 1.932 1.864 1.742 1.686 1.539 1.496 1.455	- 0 .03158 - 0 .02948 - 0 .02759 - 0 .02587 - 0 .02430 - 0 .02156 - 0 .02036 - 0 .01925 - 0 .01823 - 0 .01729 - 0 .01642 - 0 .01562 - 0 .01417 - 0 .01352	1.06964 1.06664 1.06389 1.06136 1.05901 1.05684 1.05295 1.05119 1.04955 1.04801 1.04656 1.04520 1.04392 1.04270 1.04155

TABLE I (Cont'd)
Side-On Peak Pressure from Equation 2 and Some Derived Quantities

X Charge	Z	t/W ^{1/3}	y	p - p _O	dy/dx	M Mach
radii	ft/lb ^{1/3}	msec/lb ^{1/3}	atm	psi		Number
230.0	30.43	21.17	0.09633	1.416	- 0.01291	1.04046
235.0	31.25	21.72	0.09382	1.379	- 0.01234	1.03943
240.0	31.75	22.28 22.84	0.09144	1.344	- 0.01181	1.03845
245.0	32.41 33.08	23.40	0.08918 0.08702	1.311 1.279	- 0.01131 - 0.01085	1.03751
250.0 255.0	33.74	23 . 96	0.08497	1.249	- 0.01041	1.03662
260.0	34.40	24.52	0.08301	1.220	- 0.00999	1.03 <u>5</u> 78 1.03496
265.0	35 . 06	25.08	0.08114	1.193	- 0.00960	1.03419
270.0	35•72	25.64	0.07935	1.166	- 0.00904	1.03345
275.0	36.48	26.21	0.07764	1.141	- 0.00889	1.03274
280.0	37.04	26.76	0.07600	1.117	- 0.00856	1.03206
285.0	37.70	27.33	0.07442	1.094	- 0 .00825	1.03140
290.0	38.37	27.89	0.07291	1.072	- 0 .0 0796	1.03078
295.0	39.03	28.46	0.07146	1.050	- 0.00768	1.03017
300.0	39.69	29.02	0.07007	1.030	- 0.00741	1.02959
305.0	40.35	29.58	0.06873	1.010	- 0.00716	1.02903
310.0	41.01	30.14	0.06744	•9913	- 0.00692	1.02850
315.0	41.67	30.71	0.06619	.9731	- 0.00669	1.02798
320.0	42.33	31.28	0.06499	•9554	- 0.00648	1.02748
325.0	43.00	31.84	0.06384	•9384	- 0.00627	1.02699
330.0	43.66	32.41	0.06272	.9220	- 0.00608	1.02653
335.0	44.32	32.9 8	0.06164	.9061	- 0.00589	1.02608
340.0	44.98	<i>33</i> • 54	0 .06060	.8908	- 0.00571	1.02564
<i>3</i> 45•0	45.64	34.10	0 •05959	.8760	- 0.00554	1.02522
350.0	46.30	34.67	0.05861	.8616	- 0.00537	1.02481
355.0	46.97	35.24	0 •05767	·8½77	- 0.00522	1.02442
360.0	47.63	35.81	0 .05675	.8343	- 0.00507	1.02403
365.0	48.29	36.38	0.05587	.8212	- 0 .00492	1.02366
370.0	48.95	36.95	0 .05501	.8086	- 0 .00479	1.02330
375.0	49.61	37 • 50	0.05417	.7963	- 0.00465	1.02295
380.0	50.27	38.07	0.05336	.7844	- 0.00453	1.02261
385.0	50.94	38.64	0.05258	•7729	- 0 .00441	1.02228
390.0	51.60	39.21 20.79	0.05181	.7616	- 0 .00429	1.02196
395.0	52 . 26	39.78	0.05107	•7507	- 0.00418	1.02165
400.0 405.0	52 .92	40.35	0 .05035	.7401	- 0.00407	1.02135
405.0	53•58 54•24	40.92 41.49	0.04965 0.04896	.7298	- 0.00396 - 0.00386	1.02106 1.02077
415.0	54.90	42.06	0.04090	.7198 .7100	- 0.00377	1.02049
420.0	55.57	42.62	0.04765	•7005	- 0.00367	1.02049
425.0	56.23	43.19	0.04702	.6912	- 0.00359	1.01995
430.0	56.89	43.76	0.04641	.6822	- 0.00350	1.01969
435.0	57•55	44.33	0.04581	•6734	- 0.00342	1.01944
440.0	58.21	44.90	0.04522	.6648	- 0.00334	1.01920
445.0	58.87	45.47	0.04466	.6564	- 0 .00326	1.01896
450.0	59•5 4	46.04	0.04410	•6483	- 0.00318	1.01872
	//-/-		· · ·		7 5,2 50	,

TABLE I (Cont'd)
Side-On Peak Pressure from Equation 2 and Some Derived Quantities

X Charge radii	z ft/lb ^{1/3}	$t/w^{1/3}$ msec/lb ^{1/3}	y atm	p - p _o psi	dy/dx	M Mach Number
455.0 460.0 465.0 470.0 475.0 480.0 485.0 490.0 500.0 505.0 515.0 520.0	60.20 60.86 61.52 62.18 62.84 63.50 64.17 64.83 65.49 66.15 66.81 67.47 68.13	46.61 47.18 47.74 48.33 48.90 49.46 50.03 50.60 51.17 51.74 52.32 52.89 53.46 54.03	0.04356 0.04303 0.04251 0.04201 0.04152 0.04104 0.04056 0.04010 0.03965 0.03878 0.03836 0.03795	0.6403 0.6325 0.6249 0.6175 0.6103 0.6032 0.5963 0.5895 0.5829 0.5764 0.5701 0.5639 0.5578 0.5519	- 0.00311 - 0.00304 - 0.00297 - 0.00291 - 0.00278 - 0.00272 - 0.00267 - 0.00261 - 0.00256 - 0.00250 - 0.00240 - 0.00236	1.01850 1.01827 1.01806 1.01784 1.01764 1.01794 1.01704 1.01685 1.01667 1.01648 1.01631 1.01613 1.01596

The slope of the peak pressure-distance relation ¹⁹, shock velocity and time of arrival computed from Equation 2 and the Hugoniot Tables of Shear and Day ²⁰ are given in Table I. The BKR ^{2a} Tables were used by Sultanoff and McVey to determine peak pressure and these pressures were used in obtaining Equation 2. The error introduced in using differing tables is less than one percent, hence no adjustment in these values was made. The pressure, time of arrival and shock velocity are reported in the complete tables of Makino and Shear ²¹.

No least square fit was made to the normally reflected peak pressure data as the number of measurements is small. However, two smooth curves have been determined for this parameter as shown in Figures la and lb. One is an eye fit to the data. The other is from the side-on peak pressures of Table I using the relation

(3)
$$\frac{P_r}{P_s} = 2 + \frac{6y}{y+7}, y < 20,$$

where P_s is side-on excess peak pressure and P_r is normally reflected peak pressure. For side-on peak pressures over 20 atmospheres, the table of Doering and Burkhardt²² was used. The computed results are included in Table II.

Least square polynomials in Z^{-1} were fitted to the product IZ. The side-on impulse is

(4)
$$\frac{r}{p_0^{2/3}W^{1/3}} = \frac{a_1}{p_0^{1/3}Z} + \frac{a_2}{(p_0^{1/3}Z)^2}$$

where

$$a_1 = (63.33 + 1.2) \frac{\text{psi msec}}{\text{atm}^{1/3} \text{ lb}^{2/3} \text{ ft}^{-1}}$$

$$a_2 = (-62.89 + 5.6) \frac{\text{psi msec}}{\text{lb ft}^{-2}}.$$

The standard deviation of the regression is 6.7 $\frac{\text{psi msec ft}}{(\text{atm lb})}$ for

2.380 ft
$$\left[\frac{\text{atm}}{\text{lb}}\right]^{1/3} \leq P_0^{1/3} Z \leq 68 \text{ ft } \left[\frac{\text{atm}}{\text{lb}}\right]^{1/3}$$
. Values for

 $p_0^{1/3}$ Z \geq 2.380 ft $\left[\frac{\text{atm}}{1b}\right]^{1/3}$ were determined by extending the derived curve by eye through the experimental points. However, these eye fit values cannot be relied on because it is impossible to determine the correct extension of the derived impulse due to the limited number of points in this region.

The fit for the normally reflected impulse is

(5)
$$\frac{I}{p_0^{2/3} \sqrt{1/3}} = \frac{b_1}{p_0^{1/3} Z} + \frac{b_2}{(p_0^{1/3} Z)^2} + \frac{b_3}{(p_0^{1/3} Z)^3} ,$$

where

$$b_{1} = (120.4 + 3.8) \frac{\text{psi msec}}{\text{atm}^{1/3} \text{ lb}^{2/3} \text{ ft}^{-1}},$$

$$b_{2} = (138.4 + 5.2) \frac{\text{psi msec}}{\text{lb ft}^{-2}},$$

$$b_{3} = (3.708 + 0.7) \frac{\text{psi msec}}{\text{atm}^{-1/3} \text{ lb}^{4/3} \text{ ft}^{-3}}$$

and the standard deviation of the regression is 22.1 $\frac{\text{psi msec ft}}{\text{[atm lb]}}$ for

0.1096 ft
$$\left[\frac{\text{atm}}{\text{lb}}\right]^{1/3} \leq p_0^{1/3} \text{ Z} \leq 23.80 \text{ ft } \left[\frac{\text{atm}}{\text{lb}}\right]^{1/3}$$
. Values from the

above equations are tabulated in Table II and graphed in Figure 2. All coefficients in the equations are significant at the 5% level.

Side-On Positive Impulse and Positive Duration and Normally
Reflected Pressure, Impulse and Duration

I/p₀2/3_W1/3 X Charge atm psi msec/atm^{2/3} lb^{1/3} $(msec)/(lb^{1/3})$ ft radii psi reflected side-on reflected side-on reflected 0.80 0.1058 16,515 10,354 1.00 0.1323 1.50 0.1984 4,569 2,617 2.00 0.2646 2.50 1,722 0.3308 0.3969 1,235 3.00 938.0 3.50 0.4630 4.0 0.5292 742.9 4.5 0.5953 607.2 508.6 5.0 0.6615 5.5 6.0 0.7276 434.4 376.9 0.7938 6.5 0.8600 331.4 294.7 7.0 0.9261 7.5 0.9922 264.5 8.0 1.084 239.4 1.124 218.1 8.5 9.0 1.191 200.0 1.256 184.5 9.5 1.323 4234 17.56 0.1445 10.0 170.9 1.588 2969 17.25 12.0 131.1 0.1769 0.1716 1.852 105.5 14.0 2087 16.75 0.2351 0.2160 0.2612 16.0 2.117 1514 16.10 87.81 0.3056 2.381 0.3119 18.0 15.49 0.3820 1110 74.95 2.646 824.7 65.22 20.0 14.93 0.4580 0.3674 22.0 2.911 532.1 14.31 0.4272 57.64 0.5380 485.1 24.0 13.68 0.6109 3.175 51.57 0.4906 3.440 26.0 46.62 379.3 13.07 0.6837 0.5579 3.704 28.0 301.4 12.49 42.51 0.7541 0.6260 0.8224 3.969 242.6 11.94 30.0 39.04 0.6967 32.0 4.234 200.0 11.42 36.08 0.8884 0.7687 4.498 164.6 34.0 10.95 33.53 0.9524 0.8414 4.763 136.0 10.50 36.0 31.31 1.014 0.9143 29.35 **38.**0 5.027 114.7 10.08 1.074 0.9868 5.292 97.76 9.699 27.62 1.132 1.058 40.0 42.0 5.557 84.53 9.338 26.08 1.200 1.129 5.821 73.50 9.001 24.70 1.243 44.0 1.197 64.24 1.264 8.687 23.46 1.295 46.0 6.086 1.346 56.89 8.392 22.33 1.328 48.0 6.350 8.116 1.389 50.0 6.615 50.72 21.31 1.395 6.880 7.857 20.37 1.442 1.446 45.28 52.0 7.144 41.16 7.613 19.51 1.488 1.500 54.0

TABLE II (Cont'd)

Side-On Positive Impulse and Positive Duration and Normally Reflected Pressure, Impulse and Duration

X	$p_0^{1/2}z$	p - p	I/p	2/3 _W 1/3		_W 1/3
Charge radii	$ft \left[\frac{atm}{1b} \right]^1$	/3 psi	psi msec/a	tm ^{2/5} 1b1/3	(msec)/	(lb ^{1/3})
		reflected	side-on	reflected	side-on	reflected
56.0 56.0 56.0 60.0	7.409 7.409 7.673 8.4736 8.4736 9.261 8.99.526 10.328 10.328 11.384 11.32.446 13.85 14.528 13.85 14.86 17.89 18.14 18.17 18.18 19.526 19.526 19.53 19.	37.19 34.10 31.31 26.70 21.49 21	7.383 7.166 6.781 6.785 6.785 6.4089 7.7662 6.959 7.7662 6.959 7.7662 7.7662 7.786 7	18.72 17.99 17.32 16.69 16.10 15.56 15.05 14.57 14.12 13.30 12.93 12.57 12.92 11.62 11.06 10.79 10.55 10.08 9.557 10.08 9.557 10.08 9.557 10.68 9.764 7.447 7.684 6.652 6.400 6.182 5.400 5.400 6.182 5.400 6.183 5.400 6.183 5.400 6.183 5.400 6.183 5.400 6.183 6.400	1.533 1.575 1.616 1.657 1.696 1.733 1.770 1.805 1.839 1.903 1.903 1.992 2.047 2.099 2.147 2.170 2.215 2.366 2.448 2.567 2.638	1.551 1.598 1.640 1.678 1.712 1.742 1.768 1.790 1.809 1.824 1.846 1.875 1.902 1.929 1.953 1.977 1.997 2.017 2.036 2.052 2.068 2.081 2.093
205	27.12		2.243		2.986	

TABLE II (Cont'd)

Side-On Positive Impulse and Positive Duration and Normally Reflected Pressure, Impulse and Duration

Х	P _{1/2} Z	p - p _o	I/p 2/3 _W 1/3		Δt/W ¹ /3	
Charge radii	ft $\left[\frac{\text{atm}}{\text{lb}}\right]^{1/3}$	psi	psi msec/atm ^{2/3} lb ^{1/3}		$(msec)/(lb^{1/3})$	
		reflected	side-on	reflected	side-on	reflected
210 215 222 235 245 255 265 265 275 285 295 295 295 295 295 295 295 295 295 29	27.44 27.44 27.45 27.40		2.192 2.142 2.095 2.050 2.050 2.050 2.007 1.966 1.888 1.852 1.816 1.750 1.659 1.659 1.659 1.659 1.552 1.479 1.456 1.435 1.373 1.373 1.373 1.298 1.215		3.020 3.044 3.080 3.127 3.150 3.1285 3.230 3.250 3.250 3.358 3.368 3.368 3.499 3.499 3.499 3.568	

TABLE II (Cont'd)

Side-On Positive Impulse and Positive Duration and Normally Reflected Pressure, Impulse and Duration

	1/3	Reflected fressure, impulse and buration						
X	$p_o^{1/3}z$	p - p	$I/p_0^{2/3} w^{1/3}$					
Charge radii	$ft \left[\frac{atm}{lb} \right]^{1/3}$	psi	psi msec/atm ^{2/3} lb ^{1/3}		$(msec)/(1b^{1/3})$			
		reflected	side-on	reflected	side-on	reflected		
415	54.90		1.129					
420	55•57		1.116					
425 425	56.23		1.103					
430	56.89		1.090					
435	57 • 55		1.078					
1110	58.21		1.066					
445	58.87		1.054		•			
450	59.54		1.043					
455	60.20		1.032					
460	60.86		1.021					
465	61.52		1.010		-			
470	62.18		•9992					
475	62.84		.9888					
480	63.50		. 9787			,		
485	64.16		. 9688					
490	64.83		•9590					
495	65.49		•9495		•			
500	66.15		•9402					
505	66.81		.9310					
510	67.47		.9220					
515	68.13		•9132					
520	68.80		•9045					

No least square fits have been made to the duration data. Curves drawn by eye (Figure 3) have been determined and the points from the curves tabulated in Table II.

CONCLUSION

Pentolite is recommended as a standard explosive when the side-on peak pressure in a blast wave is considered because of excellent agreement of measurements of various investigators and the large number of observations available. The precision of the measurements shows the excellent reproducibility of results from this explosive.

The measurements of other parameters, side-on impulse and duration, reflected pressure and duration are not as precise as side-on pressure measurements. Recent measurements of normally reflected impulse with a mechanical gage indicate that this parameter can be determined with a high precision over the range where it might be of military importance. Data in the small range of scaled distances in which both mechanical and piezoelectric measurements have been made suggest that the measurements are also of good reliability. It is not a priori obvious that the mechanical measurements integrate over the same time as the piezoelectric but recent studies with plugs of differing masses, as well as overall agreement in the results, indicate that any differences in times are of little importance. Within experimental accuracy, normally reflected impulse approaches a value that is two times the side-on impulse at large distances, as would be expected. 23,24

ACKNOWLEDGEMENT

The contributions of Lloyd Campbell of the Computing Laboratory to this work, especially in determining the non-linear analytical functions and their standard deviations by least squares are gratefully acknowledged.

H. J. GOODMAN

APPENDIX

Free-Air Measurements on Bare Spherical Pentolite

TABLE I
Experimental Side-On Pressure, Impulse and Duration

Ref.	Z	A	-	N	$I/W^{1/3}$	7	N	$\Delta t/W^{1/3}$	ā	N
No.	ft/lb ^{1/3}	atm			psi	msec/lb ^{1/3}	3	msec/	1b ^{1/3}	
1 1 1 1	.1323 .1460 .1570 .1669 .1760	817.3 723.5 660.0 616.7 575.0	3.1877 8.971 12.01 15.91 17.08	科科科科						
1 1 1 1	.1860 .2000 .2330 .2661 .2990	536.4 492.9 407.6 348.2 302.4	19.10 20.41 17.69 10.59 13.09	孙 孙 49 15						
1 1 1 1	• 3329 • 3990 • 5311 • 6650 • 7979	281.3 231.4 165.0 124.8 94.35	12.21 12.80 13.10 8.968 9.435	15 15 15 15						,
1 2 1 2	.9300 1.061 1.070 1.196 1.320	75.17 61.40 56.00 50.88 40.48	6.508 3.332 6.156	15 15 15 15 15						ŕ
1 2 8 2 2	1.328 1.480 1.510 1.590 1.860	42.56 31.20 31.66 29.73 22.38	•3713 •7535 •8503	2 15	16.51 16.92	•756 •173	14 3	.122	•011	13 1
8 2 8	2.010 2.130 2.401 2.480	18.04 16.94 13.67 11.99	.2039 .4167 .7546 .1199	25 20	17.42	•457 •914	7 8	.292	.008	16 15
.8 11 11 2	2.520 2.661 2.780 2.830 2.950	11.61 10.41 8.558 8.000 8.50	.1822 8 .1249 0 .3584	25 11 3	14.76 9.50 12.06	.125 .417 2.400	9 10 4	•526	.028	6

TABLE I (Cont'd)
Experimental Side-On Pressure, Impulse and Duration

	Z	У	G	N	I/W1/3	- σ	N	∆t/W ¹ /	/3 σ	N
Ref.	ft/lb ^{1/3}	atı	<u>n</u>		psi ms	ec/lb ^{1/3}		msec	:/1b ^{1/3}	
8 2,8 11 11 8	3.010 3.221 3.270 3.329 3.440	7•388 6•965 6•490 5•558 5•388	.1182 .2595 .2012 .1979 .0668	11 25 11 3	14.32 16.14 11.93 11.64 12.24	.488 •931 1•140 2•800 •163	13 3 8 4 6	• 453 •545	.010 .059	16 4
2 8 8 8 2	3.490 3.620 3.640 3.670 3.750	5.415 5.476 4.571 5.095 4.476	.0655 .4102 .0401 .0361 .1182	20 2 12 2 2	12.73 16.23	.418 .721	20 2	0.629 0.579	.013	20
11 2 8 8	3.770 3.830 4.019 4.030 4.039	4.259 3.952 3.741 4.014 4.068	.0384 .0210 .1231 .0189 .0448	12 4 25 8 8	9.869 9.166 15.71 11.73	•548 •393 •506 •114	9 4 7 13	0.744 0.840	.024 .029	7 13
9 11 2 11 8	4.110 4.260 4.290 4.341 4.361	4.163 2.959 3.374 2.803 3.088	.0218 .0080 .2311 .0297 .0321	5 12 20 4 4	13.15 7.73 8.127	.283 .511 1.10	7 9 4	0.919	.007	7
10 8 3,10 11	4.410 4.420 4.69 4.760	2.796 3.163 2.585 2.231	.0294 .0348 .0427 .0471	64 6 20 12	12.30 10.50 8.783	1.43 .212 .501	11 18 9	0.879	.021	11
2 11 8 4 4	4.830 4.840 4.930 4.960 4.980	2.469 2.184 2.136 1.871 2.150	.0096 .0295 .0102 .0299 .1780	10 4 14 15 33	8.244 9.903 10.66 10.54	.259 .206 .150 .180	4 25 15 32	0.872 1.190 1.140	.016 .014 .022	25 16 33
8 8 4 4,2 8,10	5.000 5.040 5.070 5.100 5.110	2.429 2.088 2.000 2.172 2.102	.0231 .0549 .0368 .0341 .0161	11 17 4 13 47	11.84 10.95 9.840 10.08 9.560	.435 .169 .370 .200 .539	8 15 4 3 45	1.090 1.030 1.140 1.060 1.090	.035 .017 .015 .020 .032	13 19 4 3 7
9 9 8 8 9	5.289 5.590 5.640 5.650 5.871	1.884 1.673 1.639 1.653 1.673	.1019 .0639 .0234 .0095 .0187	7 7 8 7 10	7.510 12.03 9.721	.190 .131 .131	6 14 8	0.564 1.170 1.170	.010 .015 .028	6 16 13

TABLE I (Cont'd)

Experimental Side-On Pressure, Impulse and Duration

Ref.	Z	У	σ	N	$I/W^{1/3}$	ō	N	Δt/W ^{1/3}	3 -	N
No.	ft/1b ^{1/3}	atm		,	psi msed	:/1b ^{1/3}		msec,	/1b ^{1/3}	
կ 4 10	5•979 5•990 6•171	1.306 1.429 1.231	.0246 .0414 .0129	16 33 33	9.380 9.019 8.300	•130 •084 •074	16 34	1.460 1.300	.021	16 36
8 8	6.409 6.460	1.320 1.265	.0095	5 8	10.40 10.32	.157 .186	9 9	1.414	.019 .018	10
8 8 9	6.500 6.630 6.740	1.238 1.279 1.041	.0109 .0136 .0347	7 5 7	8.420 9.161	•141 •139	12 6	1.300	.028 .066	13 6
9	6.760 7.170	1,299 .9796	.0156 .0150	18 14	6.250 8.039	.053 .190	8 1 5	0.875 1.700	.014 .034	8 16
4 9	7•271 7•399	.966 1.054	.0626 .0191	36 13	7.580	•068	39	1.610	.027	40
9 8 8	7.450 7.470	1.061 .9116	.0952 .0102	6 4	7.820 7.960	.112 .290	11 8	1.431 1.470	.018 .074	12 6
4 4 9	8.089 8.120 8.279	•7619 •7755 •9048	.0190	3 3 3	6.820 6.579	.180 .260	3 3	1.750 2.290	.077 .040	3 3,
9 9 9	8.290 8.310	1.068 .7074	.0137	24 6	5.460	•080	6	1.060	.023	6
4 9 10 4	8.420 8.430 8.610 8.640 8.720	.7143 .7211 .7619 .6259 .6741	.0211 .0067 .0150 .0064 .0150	43 16 7 18 6	6.851 7.220 6.669 5.999 7.450	.110 .120 .105 .042 .270	43 16 7 13 6	1.820 1.921 1.190 1.880	.022 .027 .017	44 16 7 6
4 8 8 4 8	8.770 9.489 9.531 9.570 9.710	.6769 .5912 .5993 .5534 .6218	.0401 .0009 .0009 .0029	6 5 5 37 4	7.081 6.070 5.940 6.210 6.590	.370 .159 .101 .084 .141	6 6 10 46 8	1.830 1.740 1.556 2.001 1.780	.049 .056 .029 .019 .029	6 6 10 47 8
49944448	10.06 10.40 11.00 11.17 11.20 11.25 11.63 11.84	.5476 .4320 .5129 .4197 .4347 .3837 .3946 .4735	.0095 .0072 .0128 .0015 .0122 .0126 .0023 .0044	12 15 18 4 10 4 42 6	6.661 5.180 5.019 5.130 5.220 5.090 5.201	.220 .077 .080 .057 .130 .065	12 8 8 4 4 42 10	2.150 1.720 1.590 2.130 2.330 2.210 2.010	.029 .023 .013 .028 .080 .024	12 8 8 4 4 42 10
4 9	12.26 13.10	.3605 .3639	.0052 .0061	16 7	4.681	• <i>33</i> 0	16	2,260	.028	16

TABLE I (Cont'd)

Experimental Side-On Pressure, Impulse and Duration

	Z	У	· •	N	I	/W ^{1/3}	σ	N	∆t/W ^{l/}	3 3	N
Ref.	ft/lb ^{1/3}	atm				psi mse	2/1b ^{1/3}		msec	1/3	
8 8 9 9	13.42 13.46 13.50 13.60	.3327 .3163 .4741 .3048	.0044 .0082 .0193 .0197	4 5 27 5		4.280 4.380 5.069 3.230	.081 .143 .225 .067	8 5 4	1.970 1.880 1.901 1.560	.046 .029 .016 .071	8 8 5 4
4 9 4 8 4	13.96 14.11 14.53 14.81 14.93	• 3020 • 3000 • 2694 • 2660 • 2755	.0029 .0084 .0205 .0027 .0038	12 15 39 12 16		3.900 3.939 4.320 4.510	.180 .056 .040 .058	12 39 16 16	2.270 2.430 2.430 2.551	.014 .019 .028 .032	12 40 17 16
9 9 9 3 9	16.60 16.80 17.00 17.34 17.40	.1633 .2 0 46 .2170 .2116 .2007	.0041 .0048 .0054 .0013 .0027	6 8 8 1 5		3.321 2.890	.118 .134	7 5	2.150 1.941	.039 .097	7. 5.
9 4 4 4	17.60 19.23 19.36 20.04 20.22	.2095 .1599 .1707 .1619 .1660	.2849 .0027 .0085 .0013 .0012	10 6 6 3 46		2.790 3.190 3.300 2.899	.087 .190	6 6 3 46	2.790 2.960 2.960 2.780	.160 .220 .220 .023	6 6 46
49994	20.62 21.01 21.30 22.20	.1422 .1605 .1524	.0008 .0075 .0116 .0038	15 7 7 12		2.899 2.590	.041 .124	15 5	0.2970 0.2310	.023	15 5
4 9 9 4 4	25.23 25.70 26.70 29.07	.0952 .1082 .1041	.0010 .0082 .0027 .0008	3 6 7 16 46		1.890 2.220	.059 .022 .024	7 15 46	3.241 2.571 3.310	.031	3 6 16
+3 4 4 5 5	29.19 30.00 34.40 40.61 40.73 45.00	.0980 .0796 .0654 .0660	.0005 .0014 .0010 .0015 .0011	10 42 16 16		1.730 1.440 1.500 1.450	.033 .016 .026	10 44 16 16	3.080 3.210 3.350 3.460	.023 .060 .021	50 10 46 10
5	68.00		.0004	8		0.960	.016	8			

TABLE II

Experimental Values of Normally Reflected Pressure,
Impulse and Duration

Ref.	p _o ^{1/3} z	У	ā	N	$I/p_0^{2/3} \sqrt{1/3}$	ā ·	N	Δt/W ^{1/}	3 - 5	N
No.	ft(atm/lb) ^{1/3}	atm			psi msec/at	m ² / Jb ¹ / J		msec/	lb /	
12 12 12 12 12	.1096 .187 .219 .320 .378		1		15,293.9 5,270.0 3,960.6 1,784.8 1,325.2	426.67 148.37 92.33 77.33 45.58	4 9 9 7 26			
12 13 12 12 13	.438 .500 .641 .741 .750				1,209.6 795.6 487.8 415.0 374.4	86.67 32.20 26.03 29.82 15.70	8 37 7 10 73			
15 12 8 14 13	1.00 1.28 1.48 1.50 1.50	243.6 2	.925	3	229.7 173.8 119.4 118.6 130.9	13.30 22.14 14.20 6.37 7.61	77 7 17 3 124	.149 .200	.018 .006	13 3
8 13 8 14 8	1.51 2.00 2.01 2.32 2.48	99.05 6	.162	4	119.3 82.6 79.3 80.7 63.5	5,99 6,06 8,36 13,60	2 20 4 4 36	.190 .280 .323 .306	.017 .042	3 13 4 36
13 8 14 8 8	2.50 2.52 3.00 3.01 3.22	40.79		1	55.9 72.8 55.8 54.0 56.7	7•77 18•30 7•77 3•77	71 11 1 22 8	• 334 • 431 • 431 • 471	.023 .060 .037	11 1 24 10
14 8 .8 8 8	3.32 3.44 3.62 3.64 3.67	26.71 1.	469	6	41.9 51.9 47.9 44.0 49.2	3.50 3.16 7.56 1.89	6 1 23 4	.491 .584 .446 .618 .567	.035 .086 .091	6 12 1 22 2
8 8 8 8	4.03 4.04 4.11 4.42 4.93				44.8 40.3 40.3 40.5 28.0	2.70 3.42 3.43 2.72 2.58	9 21 9 14 28	•735 •698 •857 •870 •810	.058 .092 .071 .070	9 22 10 14 27

TABLE II (Cont'd)

Experimental Values of Normally Reflected Pressure,
Impulse and Duration

Ref.	p _o ^{1/3} z ft(atm/lb) ^{1/3}	y at	ō tm	N	$I/p_0^{2/3}$ $\sqrt{1/3}$ psi msec/atm	2/3 _{1b} 1/3	N	Δt/W 1/3	3 1b ^{1/3}	N
8 8 7 8 8	5.00 5.04 5.10 5.11 5.64	5.81	O.2¼4	21	34.8 31.2 31.0 30.5 29.9	1.45 4.51 4.20 1.51 1.12	19 24 21 7 14	1.030 1.010 1.110 1.120	.041 .127 .153 .123	20 29 8 16
8 7 8 8 8	5.65 6.00 6.41 6.46 6.50	3.61	0.211	5	24.2 24.4 25.1 24.1 20.1	4.77 1.30 0.90 0.39 2.21	15 5 10 10 12	1.190 1.350 1.270 1.450	.109 .125 .159 .150	15 10 12 13
8 8 8 7 8	6.63 7.45 7.47 7.50 9.49	2.17	0.061	17	22.8 22.2 19.9 20.5 14.9	0.71 2.04 0.80 1.00 0.29	8 12 7 17 7	1.410 1.490 1.510	.084 .104 .031	5 8
8 7 8 8 8	9.53 9.60 9.71 11.84 13.41	1.18	0.027	21	14.4 14.0 14.0 11.8 9.72	0.43 0.40 0.65 1.89 0.39	9 21 8 12 8	1.680 1.930 2.020 2.090	.123 .151 .101 .087	10 8 12 8
8 8 7	13.46 14.81 23.80	0,265	0.014	9	9.29 8.64 4.96	0.21 0.52 0.40	8 20 9	1.730 2.370	.056 .125	8 20

REFERENCES

- 1. Sultanoff, M. and McVey, G. "Shock-Pressure at and Close to the Surface of Spherical Pentolite Charges Inferred from Optical Measurements," BRL Report No. 917, Aberdeen Proving Ground, Maryland, August 1954.
- 2. Sultanoff, M. and McVey, G. "Observations from Spherical Pentolite Charges," BRL Report No. 984, Aberdeen Proving Ground, Maryland, July 1956.
- 2a. Brinkley, S. R., Jr., Kirkwood, J. G. and Richardson, J. M. Tables of Properties of Air Along the Hugoniot Curve and the Adiabatics Terminating in the Hugoniot Curve, OSRD Report No. 3550, April 1944.
- 3. Stoner, R. G. and Bleakney, W. "The Attenuation of Spherical Shock Waves in Air," Journal of Applied Physics, Volume 19, No. 7, July 1948.
- 4. Curtis, W. "Free Air Blast Measurements on Spherical Pentolite," BRL Memorandum Report No. 544, Aberdeen Proving Ground, Maryland July 1951.
- 5. Unpublished Side-on excess pressure data supplied by C. Johnson and D. Schlueter of Special Problems Branch, Terminal Ballistics Laboratory, BRL, Aberdeen Proving Ground, Maryland, April 1958.
- 6. Fitzgerald, J. W. "Design Considerations for Pencil Type Air Blast Gages." Contract No. DA-36-034-ORD-1860, prepared for BRL by Atlantic Research Corporation, Alexandria, Va., November 1, 1955.
- 7. Goldstein, H. and Hoffman, A. "Preliminary Face-on Air Blast Measurements," BRL Technical Note No. 788, Aberdeen Proving Ground, Maryland, April 1953.
- 8. Hoffman, A. J. and Mills, S. N., Jr. "Air Blast Measurements About Explosive Charges at Side-on and Normal Incidence," BRL Report No. 988, Aberdeen Proving Ground, Maryland, July 1956.
- 9. Dewey, J. and Sperrazza, J. "The Effect of Atmospheric Pressure and Temperature on Air Shock," BRL Report No. 721, Aberdeen Proving Ground, Maryland, May 1950.
- 9a. Sachs, R. G. "The Dependence of Blast on Ambient Pressure and Temperature," BRL Report No. 466, Aberdeen Proving Ground, Maryland, May 1944.

- 10. Unpublished Data compiled by Air Blast Section, Special Problems Branch, Terminal Ballistics Laboratory, BRL, Aberdeen Proving Ground, Maryland, 1955.
- 11. Unpublished Data on Spherical Pentolite by R. Hippensteel, Terminal Ballistics Laboratory, BRL, Aberdeen Proving Ground, Maryland, March 1958.
- 12. Olson, W. C., Patterson, J. D., II and Williams, J. S. "The Effect of Atmospheric Pressure on Normally Reflected Impulse from Air Blast Waves at Small Scaled Distances," BRL Memorandum Report (in preparation).
- 13. Johnson, O. T., Patterson, J. D., II and Olson, W. C. "A Simple Mechanical Method for Measuring the Reflected Empulse of Air Blast Waves," BRL Memorandum Report No. 1088, Aberdeen Proving Ground, Maryland, July 1957.
- 14. Unpublished Gage Data on The Pressure Half Way Between Similar Charges by J. Wenig and W. C. Olson, Special Problems Branch, TBL, BRL (in preparation) Aberdeen Proving Ground, Maryland, 1959.
- 15. Kirkwood, J. G. and Brinkley, S. R., Jr. "Theory of Propagation of Shock Waves from Explosives," NDRC Report No. A318, Munitions Building, Washington, D. C. March 1945.
- 16. Brinkley, S. R., Jr. and Kirkwood, J. G. "Theory of the Propagation of Shock Waves," The Physical Review, Volume 71, Number 9, May 1947.
- 17. Makino, R. "The Kirkwood-Brinkley Theory of the Propagation of Spherical Shock Waves, and Its Comparison with Experiment," BRL Report No. 750, Aberdeen Proving Ground, Maryland, April 1951.
- 18. Osborne, M. F. M. and Taylor, A. H. "Non-Linear Propagation of Underwater Shock Waves," Physical Review, Volume 70, Number 5, March 1946.
- 19. Carsen, B. and Stanton, J. S. "Journal of Applied Physics, Vol. 19, NAVORD Report No. 1011, and NOTS-1286 (1948).
- 20. Shear, R. E. and Day, B. D. "Tables of Thermodynamics and Shock Front Parameters for Air," BRL Memorandum Report No. 1206, Aberdeen Proving Ground, Maryland, May 1959.
- 21. Makino, R. C. and Shear, R. E. "Numerical Integration of Equations of Spherical Unsteady Flow Behind a Known Shock Line," BRL Report (to be published) Aberdeen Proving Ground, Maryland.

- 22. Doering, W. and Burkhardt, G. "Contributions to the Theory of Detonation" (Translation from German prepared by Brown University), Technical Report No. F-TS-1227-1A (GDAMA9-T-46), Headquarters, Air Materiel Command, Wright-Patterson Air Force Base, Dayton, Ohio, May 1949.
- 23. Courant, R. and Friedrich, K. O. "Supersonic Flow and Shock Waves," Volume I, Interscience Publishers, Inc., New York, 1948.
- 24. Makino, R. C. and Shear, R. E. "Estimation of Normally Reflected Impulse of Blast Waves," BRL Technical Note No. 1010, Aberdeen Proving Ground, Maryland, May 1955.
- 25. Scarborough, J. B. "Numerical Mathematical Analysis," Second Edition, The Johns Hopkins Press, Baltimore, Maryland, 1950.
- 26. Armendt, B. F., Smith, R. and Wise, R. C. "The Initial Decay of Pressure Behind a Shock Front: Comparison of Experimental and Calculated Results," BRL Memorandum Report No. 997, Aberdeen Proving Ground, April 1956.
- 27. Makino, R. C. and Goodman, H. J. "Air Blast Data on Bare Explosives of Different Shapes and Composition (U)," BRL Memorandum Report No. 1015, Aberdeen Proving Ground, Maryland, June 1956.

No. of Copies	Organization	No. of Copies	Organization
1	Chief of Ordnance Department of the Army Washington 25, D. C. Attn: ORDTB - Bal Sec	2	Commander Naval Ordnance Laboratory White Oak Silver Spring 19, Maryland
1	Commanding Officer Diamond Ordnance Fuze Laboratories Washington 25, D. C. Attn: ORDTL-012	2	Commander Naval Ordnance Test Station China Lake, California Attn: Technical Library
10	Director Armed Services Technical Information Agency	1	Commander Naval Air Development Center Johnsville, Pennsylvania
	Arlington Hall Station Arlington 12, Virginia Attn: TJPCR	1	Chief of Naval Operations Department of the Navy Washington 25, D. C. Attn: Op 374 - Dr. J.
1	Office of Technical Services Department of Commerce		Steinhardt
10	Washington 25, D. C. British Joint Services Mission 1800 K Street, N. W. Washington 6, D. C.	1	Commanding Officer Naval Ordnance Laboratory Corona, California Attn: Dr. H. A. Thomas
	Attn: Reports Officer Of Interest to: Mr. G. Simm R.A.E.	5	Chief of Staff U. S. Air Force Washington 25, D. C. Attn: AFDRD-AC DCS/O - Operations
14	Canadian Army Staff 2450 Massachusetts Avenue Washington 8, D. C.	_	Analysis Division AFDRQ
3	Chief, Bureau of Naval Weapons Department of the Navy Washington 25, D. C.	2	Director Air University Maxwell Air Force Base Alabama Attn: AUL-5946
2	Commander U. S. Naval Weapons Laboratory Dahlgren, Virginia	1	Director of Research and Development U. S. Air Force Washington 25, D. C. Attn: Armament Division (AFDRD-AR/1)

No. of Copies	Organization	No. of Coples	Organization
3	Commander Wright Air Development Center Wright Patterson Air Force Base Ohio Attn: WCLGR-4	ц	U. S. Atomic Energy Commission Los Alamos Scientific Lab. P. O. Box 1663 Los Alamos, New Mexico
	WCLDI WCLSS-1	l	Director National Aeronautics and Space Administration
l	Commander Air Technical Intelligence Cente Wright Patterson Air Force Base	r	1520 H Street Washington 25, D. C.
	Ohio Attn: Associated Equipment Section, ATIAS		Commanding Officer Picatinny Arsenal Dover, New Jersey Attn: Feltman Research &
1	Director, Project RAND Department of the Air Force 1700 Main Street Santa Monica, California	1	Engineering Labs. Commanding General Frankford Arsenal
3	Commander Air Proving Ground Center		Philadelphia 37, Pennsylvania Attn: Reports Group
	Eglin Air Force Base, Florida Attn: PGR PGTRI PGW	1	Director Operations Research Office Department of the Army 6935 Arlington Road Bethesda, Maryland
2	Commander Air Research & Development		Washington 14, D. C.
	Command Andrews Air Force Base Washington 25, D. C. Attn: RDTWMB		Armour Research Foundation 35 West 33rd Street Chicago 16, Illinois Attn: F. Porzel
l	Director IDA/Weapon Systems Evaluation Group Room 1E880, The Pentagon Washington 25, D. C.	1	Applied Physics Laboratory The Johns Hopkins University 8621 Georgia Avenue Silver Spring, Maryland
1	U. S. Atomic Energy Commission Sandia Corporation P. O. Box 5400 Albuquerque, New Mexico	1	Aerojet-General Corporation 6352 North Irwindale Road Azusa, California

No. of Copies	Organization	No. of Copies	Organization
1	Boeing Airplane Company Wichita, Kansas Attn: Mr. W. A. Pearce	1	Grumann Aircraft Engineering Corporation Bethpage, Long Island New York
1	Boeing Airplane Company Seattle 14, Washington Attn: Mr. J. Christian Armament Unit	1	Attn: Armament Group Hughes Aircraft Company Culver City, California
1	CONVAIR Division of General Dynamics Corporation P. O. Box 1950	·l	Attn: Mr. Dana Johnson Research & Develop- ment Labs. Johns Hopkins University
1	San Diego 12, California CONVAIR	*	Institute for Cooperative Research 3506 Greenway
_	Division of General Dynamics Corporation Fort Worth 1, Texas	1	Baltimore 18, Maryland Lockheed Aircraft Corp.
1	Chance-Vought Aircraft Company P. O. Box 5907 Dallas, Texas Attn: Dr. C. C. Wan		Military Operations Research Division Burbank, California Attn: Mr. R. A. Bailey Division Engineer
1	Cornell Aeronautical Lab., Inc. 4455 Genessee Street Buffalo 5, New York Attn: Elma Evans, Librarian	2	Massachusetts Institute of Technology Cambridge 39, Massachusetts Attn: Dr. James Mar, Bldg 23-111
1	California Institute of Technology Guggenheim Aeronautical Lab.		Dr. Emmett A. Witmer Room 41-219
	Pasadena, California Attn: H. W. Leipmann	1	McDonnell Aircraft Corp. P. 0. Box 516 St. Louis 3, Missouri
1	Douglas Aircraft Company Long Beach, California	1	Attn: Armament Group The Martin Company
3	General Electric Company Aeronautics & Ordnance Systems Division 1 River Road Schenectady 5, New York	-	Baltimore 3, Maryland Attn: Mr. S. L. Rosing Mail No. 356 Middle River, Maryland

No. of Copies	Organization `	No. of Copies	Organization
1	Professor K. O. Friedrichs New York University Applied Mathematics Panel New York, New York	1	Army Research Office Arlington Hall Station Arlington, Virginia
1	North American Aviation, Inc. 12214 Lakewood Boulevard Downey, California Attn: Mr. D. H. Mason	1	Director of Defense Research and Engineering (OSD) Washington 25, D. C. Attn: Director/Ordnance
	Mr. J. Werd Engineering Technical File	1	Commander Arnold Engineering Develop- ment Center Tullahoma, Tennessee
1	Northrop Aircraft, Inc. 1001 E. Broadway Hawthorne, California	2	Attn: AEOI Commander
1	Director of Statistical Lab. Purdue University Lafayette, Indiana Attn: Dr. Kossach		Air Force Cambridge Research Center, ARDC L. G. Hanscom Field Bedford, Massachusetts Attn: CRRDM, Lt. G. Meltz
2	Republic Aviation Corp. Farmingdale, Long Island New York	1	Midwest Research Institute 425 Volker Boulevard Kansas City 10, Missouri Attn: B. L. Rhodes
2	The Rand Corporation 2500 Colorado Avenue Santa Monica, California Attn: H. L. Brode F. R. Gilmore	2	Iawrence Radiation Laboratory Technical Information Division Livermore, California Attn: Dr. Sidney Fernbach Dr. John Foster
1	Sanford Research Institute Menlo Park, California	7	Mr. Bruce Crowley
ı	University of Utah Institute of Rate Processes Salt Lake City, Utah Attn: M. A. Cook	1	Professor W. Bleakney Palmer Physical Laboratory Princeton University Princeton, New Jersey
1	University of Michigan Department of Engineering Ann Arbor, Michigan Attn: Dr. O. Laporte	1	Dr. S. R. Brinkley Alcoa Building Pittsburgh 19, Pennsylvania

No. of Copies	Organization
5	Mr. Benjamin Day 164 Cornell Quarters Ithaca, New York
1	Professor J. P. Hirschfelder University of Wisconsin Naval Research Laboratory Mädison, Wisconsin
1	Professor John G. Kirkwood Sterling Chemical Laboratory Yale University New Haven, Connecticut
1	Dr. J. S. Rinehart University of Colorado School of Mines Golden, Colorado

duration) from the detonation of spherical 50/50 Pentolite charges fired at sea level conditions have been compiled. Analytic expressions for side-on pressure, side-on positive impulse and normally reflected inpulse have been determined by fitting least squares polynomials to the data. The function for side-on pressure extends over all scaled distances where pressure might be of military importance, and is of the asymptotic form given by Kirkwood and Brinkley. Preceds blast parameters (peck pressure, positive impulse and positive duration) from the detonation of spherical 50/50 Fentolite charges fired at sea lovel conditions have been compiled. Analytic expressions for side-on pressure, side-on positive impulse and normally reflected impulse have been determined by fitting least squares polymomials to the data. The function for side-on pressure extends over all scaled distances where pressure might be of military importance, and is of the esymptotic form given by Kirkwood and Brinkley. Danlo-iv- charges Explosive charges UNCLASSIFIED THE LASSIFTED Penement. Measurement Air Minet -Air blast -Blast DA Froj No. 5805-04-002, OMSC No. 5010.11.815, OKO Froj No. IB3-0112 URSIASSIFIED Report DA Proj No. 5805-04-002, OMSC No. 5010.11.815, ORD Proj No. TB3-0112 URCIASSIFIED Report COMPLIED FREE-AIR BLAST DATA ON BARE SPITSHICAL FENTOLINE COMPLIED FFEE-AIR BLAST DATA ON BARE SPHERICAL FERTOLFTE AD Accession No. Bellistic Research Laboratories, AFG AD Accession No. Balliotic Research Isboratories, APG BRL Report No. 1092 February 1960 BRL Report No. 1092 February 1960 H. J. Goodman H. J. Goodman duration) from the detonation of spharical 50/50 Pentolite charges fired at sea level conditions have been compiled. Analytic expressions for side-on pressure, side-on positive impulse and normally reflected impulse have been determined by fitting least squares polynomials to the data. The function for side-on pressure side-on positive impulse and normally reflected impulse have been determined by fitting least squares polynomials to the data. The function for side-on pressure extends over all scaled distances where pressure might be of military importance, extends over all scaled distances where pressure might be of military importance, and is of the asymptotic form given by Kirkwood and Brinkley. Free-air blast parameters (peak pressure, positive impulse and positive duration) from the detonation of spherical 50/50 Pentolite charges fired at sea level conditions have been compiled. Analytic expressions for side-on pressure, Explosive charges -Explosive charges UNCLASSIFIED UNCLASSIFIED Free-sir blast parameters (peak pressure, positive impulse and positive Measurement Heasurement Air blast . Pro. 1 No. 5803-04-002, OMSC No. 5010.11.815, OMD Pro. 103-0112 DA Froj No. 5805-04-022, OKSC No. 5010.11.815, OKD Proj No. TB5-0112 UNCIASBIFIED Report Blast and is of the asymptotic form given by Kirkwood and Brinkley. COMPLIED FREE-AIR BLAST DATA ON BARE SPEERICAL FENTOLITE COMPLIED FREE-AIR BLAST DATA ON BARE SPRERICAL FERTOLFIE ACCESSION NO. BALLIStic Research Laboratories, APG Pallistic Research Laboratories, APG BRL Report No. 1092 February 1960 BRL Report No. 1092 February 1960 DA Proj No. 5805-04. UNCLASSIFIED Report

6.