

Physics 2 Topics & Resources

Updated July 2020

Key Topics

Key Topics Covered in Physics 2

- → Electricity & Circuits
 - ◆ Electric Field
 - ◆ Electric Potential
 - ◆ Capacitance
 - ◆ Capacitors in Circuits
- → Electromagnetism
 - ◆ Magnetic Fields
 - ◆ Force on Moving Charges
 - Field due to a Current
 - ♦ Force between 2 Wires
 - Induced EMF & Faraday's Law
- → Physical Optics
 - ◆ EM Waves
 - ◆ Reflection
 - ♦ Refraction & Internal Reflection
 - ♦ Diffraction & Interference
 - ◆ Polarization
- → Ray Optics
 - ♦ Plane Mirrors
 - ♦ Concave & Convex Mirrors
 - ♦ Converging & Diverging Lenses

- → Fluids
 - ♦ Pascal's Principle & Static Pressure
 - ♦ Buoyancy & Fluid Motion
 - ◆ Bernoulli's Equation
 - ◆ Applications of Bernoulli
- → Thermodynamics
 - ◆ Temperature & Moles
 - ♦ Ideal Gas Law
 - ♦ 1st Law of Thermodynamics
 - ♦ 2nd Law of Thermodynamics
 - Heat Transfer
- → Modern Physics
 - ◆ Quantum Theory
 - ◆ Atomic Structure
 - Nuclear Structure
 - ◆ Radioactive Decay
 - ◆ Special Relativity

Key Formulae in Physics 2

Electricity & Circuits

$$F = rac{kQq}{2}$$
 $ec{E} = rac{ec{E}}{2}$

$$F = \frac{kQq}{r^2} \qquad \vec{E} = \frac{\vec{F}}{q} \qquad W = -\Delta P E = q \Delta V \qquad C = \frac{Q}{V} = \frac{\epsilon_0 A}{d}$$

$$E = \frac{1}{2}CV^2 \qquad \text{Series: } \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_2} \qquad \text{Parallel: } C = C_1 + C_2 + C_3$$

Key Formulae

$$\sin \theta$$

$$F = qvB\sin\theta$$
 $F = IlB\sin\theta$ $B = \frac{\mu_0 I}{2\pi r}$ $B = \frac{\mu_0 NI}{2r}$

$$\sin \theta$$
 B

$$F = qvB\sin\theta \quad F = IlB\sin\theta \quad B = \frac{\mu_0 I}{2\pi r} \quad B = \frac{\mu_0 NI}{2r}$$

$$B = \mu_0 \frac{N}{L} I \quad F_{12} = \frac{\mu_0 I_1 I_2 l}{2\pi r} \quad \epsilon = Blv \quad \Phi = BA\cos\theta \quad \epsilon = -\left(\frac{\Delta\Phi}{\Delta t}\right)$$

$$c = f\lambda$$
 $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $\sin \theta_c = \frac{n_2}{n_1}$

$$\frac{n\lambda}{d} = \frac{x}{L}$$
 $n\lambda = d\sin\theta$

$$\frac{1}{F} = \frac{1}{S_o} + \frac{1}{S_i} \qquad m = -\frac{S_i}{S_o}$$

Key Formulae in Physics 2 (continued)

Fluids

Key Formulae

Funds
$$\frac{F_1}{A_1} = \frac{F_2}{A_2} \quad p = p_0 + \rho g h \quad F_B = \rho g V_d \quad v_1 A_1 = v_2 A_2$$

$$P_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2$$

Thermodynamics

$$U = \frac{3}{2}nRT KE_{avg} = \frac{3}{2}kT v_{rms} = \sqrt{\frac{3kT}{m}} \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$PV = nRT PV = NkT \Delta U = Q + W$$

$$\eta = \frac{W}{Q_{in}} = 1 - \frac{Q_{out}}{Q_{in}} = 1 - \frac{T_C}{T_H} H = \frac{Q}{t} = \frac{kA(T_2 - T_1)}{d}$$

Modern Physics

$$E = hf$$
 $KE_{max} = hf - hf_0$ $p = \frac{h}{\lambda}$ $\lambda = \frac{h}{mv}$ $\Delta x \Delta p \ge \frac{h}{4\pi}$ $E = mc^2$ $\Delta t' = \gamma \Delta t$ $\Delta x' = \frac{\Delta x}{\gamma}$ $\gamma^2 = \frac{1}{(1 - \frac{v^2}{c^2})}$

Units

Units for Physics 2

→ Fundamental SI Units

Length : Meter m

♦ Mass : Kilogram kg

◆ Time : Second s

♦ Electric Current : Ampere A

Temperature : Kelvin K

◆ Amount of substance : Mole mol

◆ Luminous Intensity : Candela cd

→ Derived SI Units

♦ Velocity : m/s

◆ Acceleration: m/s²

• Force : Newton N = $kg m/s^2$

♦ Momentum : kg m/s

lack Impulse : N s = kg m/s

• Frequency: Hertz Hz = s^{-1}

Pressure : Pascal Pa = N/m²

Work/Energy : Joule J = N m

◆ Power : Watt W = J/s

◆ Electric Charge : Coulomb C = A s

▶ Electric Potential : Volt V = J/C

• Resistance : Ohm Ω = V/A

◆ Capacitance : Farad F = C/V

• Magnetic Flux : Weber Wb = kg $m^2/(A s^2)$

Magnetic Flux Density : Tesla T = N/(A m)

• Inductance : Henry H = kg $m^2/(A^2 s^2)$

Physics 2

Additional Resources

- → https://apstudents.collegeboard.org/courses/ap-physics-2-algebra-based
- → https://www.khanacademy.org/science/ap-physics-2
- → https://en.wikipedia.org/wiki/AP_Physics_2