НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» ІМЕНІ ІГОРЯ СІКОРСЬКОГО ФАКУЛЬТЕТ ЕЛЕКТРОНІКИ КАФЕДРА КЕОА

Лабораторна робота 3

Тема

"Дослідження польового МДН транзистора з індукованим п-каналом"

Виконав:

студент II -го курсу ФЕЛ

гр. ДК-92

Загреба А.Я.

Досліджувані схеми: польовий транзистор 2N7000, підсилювач на польовому транзисторі 2N7000.

Прилади: Осцилоскоп САГА, УПР-1, мультиметр DT-182, лінійний стабілізатор напруги M212.1.

Схема 1

Данні отримані у ЛТспайс

	UB	I mA
1	0	0
2	0,5	0
3	1	0
4	1,5	0
5	1,6	0
6	1,7	0,9
7	1,8	3,4
8	1,9	7,4
9	2	13,
10	2,1	19,8

Ic1=3.406 mA

Uc1=1.8 B

Ic2=3.4*4=13.6 mA

Uc2=2.0 B

$$b = \frac{2 I_{c1}}{(U_{3R1} - U_{II})^2}$$

b=2*3.4/(1.8-1.6)^2/1000=0.17

$$Ic = \frac{0.17}{2} * (Uc - 1.6)^2$$

Данні отримані при реальних вимірюваннях

	UB	I mA
1	0	0
2	0,5	0
3	1	0
4	1,5	0
5	1,6	0
6	1,7	0,25
7	1,8	4,6
8	1,9	6,9
9	2	9,1
10	2,1	15,1

Ic1=2,5 mA

Uc1=1.75 B

Ic2=2,5*4=10 mA

Uc2=1,9 B

Uπ=2*1,75-1,9=1.6B

$$b = \frac{2 I_{c1}}{(U_{3B1} - U_{\Pi})^2}$$

b=2*9/(2-1.6)^2/1000=18/160=0,11

$$Ic = \frac{0.11}{2} * (Uc - 1.6)^2$$

Синій графік – данні отримані за допомогою формули.

Червоний графік – данні отриманні у ЛТспайс

Фіолетовий - данні отримані за допомогою формули, яка отримана по реальним вімірам.

Зелений графік - данні отримані при реальних вимірах

3 графіків можна зробити вивід, що формула досить точно описує струм після відкрття транзистора.

В якості джерела напруги було використано УПР-1, для виміру струму мультиметр DT-182, в якості вольтметра Осцилоскоп САГА.

Схема 2

0,2>=1.8-1.6=0,2

0,3>=1.9-1.6=0,3

0,4>=2-1.6=0,4

0,45<2.1-1.6=0,5

При напругах U3B=1,7,1,8,1,9,2 струм перестає рости при $UBc=U3B-U\pi$, а при U3B=2,1 на 0,05B раніше, на мій погляд причиною цього стала не дуже точна модель транзистора у ЛTспайс.

	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
1,7	0	2,2	2,3	2,4	2,43	2,5	2,54	2,6	2,66	2,72	2,77
1,8	0	4,3	4,8	5	5	5,2	5,25	5,36	5,44	5,5	5,6
1,9	0	4,21	5,2	5,5	5,7	6	6,3	6,6	6,9	7	7,1
2	0	11,9	15,9	16,8	17,1	17,6	17,8	18,2	18,5	18,9	19,3
2,1	0	13,7	17,6	18	18,2	18,5	18,8	19,4	20	20,8	21,5

Виміри зробленні практично.

0.5>1.7-1.6

0.5>1.8-1.6

0.5 > 1.9 - 1.6

1>2-1.6

1>2.1-1.6

Шаг для V2, був взятий 0.5, а не 0.05, так як точність вимірювальних приладів не дозволяла взяти шаг менше.

Генератором напргуи Uвс виступає УПР1, в якості генератора напруги виступає Uзв лінійний стабілізатор напруги M212.1, після якого підключено подільник напруги. Струм вимірювався за допомогою мультиметра DT-182.

Схема 3

Right-Click to manually enter Left Vertical Axis Limits [V]

Амплітуда на вході — 20 мB

Амплітуда на виході – 264мВ

Ku=-264/20=-13.2

Ic0=0.4mA

 $U_{3B}0=1,7B$

Right-Click to manually enter Left Vertical Axis Limits [V]

При амплітуді вхідного сигналу 70мВ, на виході з'являються спотворення сигналу.

Uзв1=1,9B

Ic1=4mA

 $\Delta Ic = 4-0.4 = 3.6 \text{mA}$

gm=3.6/(0.2048*1000)=0.017

gm=b*(Uзв0-Uп)=0,17*(1,7-1,6)=0,017

Ku=-1200*0.017=-17

Теоретично розрахований коєфіцієнт не зійшовся з виміряним на практиці. Причиною цього на мій погляд стали округлення та не точне встановлення курсорів.

Як виглядає схема зібрана у житті

Вхідний і вихідний сигнал

Амплітуда на вході – 20мВ

Амплітуда на виході – 175мВ

Ku=-175/20=-8,75

Ic0=Ur3/R3=0,5/1200=0,00042=0,42mA

Uзв0=1,7B

Зсув по фазі не маю змоги показати, так як ϵ тільки одноканальний осцилограф.

При вхідній амплітуді 80мВ, на виході починаються спотворення сигналу. (На фото спотворення при 90мВ, так як на фото не видно спотворення при 80)

Тепер резистор Р3 я заміню на резистор опором 61k

Uзв0=1,9B

Ic1=4,6/1200*1000=3.83mA

 $\Delta Ic = 3.83 - 0.42 = 3.41 \text{ mA}$

gm=3.41/(0.2*1000)=0.017

 $gm=b*(U_{3B}0-U_{\Pi})=0,11*(1,7-1,6)=0,011$

Ku=-1200*0.011=-13.2

Ku=-1200*0.017=-20.46

Теоретично розрахований коєфіцієнт не зійшовся з виміряним на практиці. Причиною цього на мій погляд стала мала точність вімірбвальних приладів, паразитні характеристики елементів та заокруглення.

В якості генератора сигналу та блока живлення виступае УПР-1, для виведення сигналу використовувався осцилоскоп САГА. Для заміру струму стоку, я вимірював напругу на резисторі R3, після чого за закононм Ома знаходив струм. Оскільки цей резистор підключено послідовно з стоком транзистора їх струм рівний.

Висновок: Під час виконання цієї лабораторної, я знайшов Uп транзистора, Uп розраховане за данними отриманими у ЛТспайс та розраховане за данними отриманими при реальних вимірюваннях. Розрахував коефіцієнт в для реального транзистора та для моделі у ЛТспайс, в вийшов трохи різний, я вважаю, причиною цього стали паразитні характеристики зєднаннь, недостатня точнічть приладів, та не ідеальність самого транзистора (я проводив виміри на 3х транзисторах, у лабораторну вніс найбільш близькі до теоретичних).

Також я перевірив, що транзистор повністю відкривається при Ивс> Изв – Ип.

При дослідженні третьої схеми я вирахував коефіцієнт підсилення, для схеми у ЛТспайс та зібраної у житті, він вийшов різний. Теоретичний та практичний у ЛТспайс вийшов різним через заокруглення. Теоретичний та практичний коефіцієнт підсилу житті вийшов різним через паразитні характеристики. Крефіцієнти підсилення при реальних вимірах та при вимірах у ЛТспайс вийшли різними через не ідеальність єлементів. gm при підрахунку різними формулами у реальних вимірах вийшов через неточність вимірів.