HWO6 Coder Bok

I. Unions and Intersections

- (a) $(X \cap Y)$ is a subset of $X \Rightarrow$ always countable
- (b) Y is a subset of $(XUY) \Rightarrow always x$
- (c). At is a subset of $\bigcup_{i \in X} Ai \Rightarrow always x$
- (d) Sometimes:

②
$$\chi=IN$$
 Ai = $\{(i,x) \mid x \in IR \}$ $\bigcap_{i \in X} Ai = \emptyset$ countable

(e) Sometimes:

①
$$Y = IR$$
. $B_i = IN$. $\bigcup_{i \in Y} B_i = IN$ countable

II. Count it

- (a) finite
- (b) 87. countably infinite.
- (c) ?
- (d) when given the length, we can calculate the rank in some order

ef. apple > apply ...

So we can link them with 1.2, ...

- (6) 5
- (f) ?

II. Fixed points

(a) Suppose Find(p) finds the fixed point of program P.

(b) Consider program F(p):

if Find CP) can calculate the fixed point of F, then
Find CP) can find all the programs that halts on input 0 X

(c) if we have Find Fixed (F):

Find Fixed
$$(F) = \begin{cases} N & \text{if } \exists n, F(n) = n \\ n & \text{otherwise.} \end{cases}$$
 (skipped)

IV. Unprogrammable Programs

def F(x):

G(x)

X

return 0

return P(F, x, 0)

if x==0:

return o.

else:

return F(x).

if F(x) halts on 0, then F.G halt on the same set of inputs if F(x) doesn't halt on 0, then F.G don't halt on the same ---

 \Rightarrow . We can define TestHalt(F) = P(F,G) \times to test if F halts on 0.

V- Counting.

- (a) 3×2^{18}
- (b) <u>[04!</u> 2⁵²

(f)
$$20!$$
 $C_{20}^{0} A_{10}^{0}$ $2^{10} \times 10!$ $C_{20}^{0} A_{10}^{0}$