CSC355-Database Systems Week-3 Lecture 1 & 2 Semeste r 4- Spring 2021

Lahore Garrison University

Previous Lecture

Chapter 2-Database Environment

Three Level Architecture

Mapping

Data Independence

Database Language (DDL)

Data Definition Language (DDL)

- ► Allows the DBA or user to describe or name entities, attributes, and relationships required for the application
- Plus, any associated integrity and security constraints.

Database Language (DML)

Data Manipulation Language (DML)

Provides basic data manipulation operations on data held in the database.

Procedural DML

► Allows user to tell system exactly how to manipulate data.

Non-Procedural DML

Allows user to state what data is needed rather than how it is to be retrieved.

```
try{
    Statement st = connection.createStatement();
    ResultSet rs = st.executeQuery("SELECT * FROM students");
    while(rs.next){
        String s = rs.getString(1);
        //dst...
    }
} catch(SQLException e){}
```

```
INSERT INTO Employee (Id, LastName, FirstName)
VALUES (7, 'Muhammad', 'Faizan')
```

DDL

VERSUS

DML

DDL

DML

A type of SQL command that helps to define database schemas A type of SQL command that helps to retrieve and manage data in relational databases

Stands for Data Definition

Language

Stands for Data Manipulation Language

Create, drop, alter are some DDL commands

Insert, update, delete and select are some commands

Commands affect the entire database or the table

Commands affect one or more records in a table

DDL vs. DML

Database Language (DML)

Fourth Generation Languages (4GLs)

- Forms generators: A forms generator is an interactive facility for rapidly creating data input and display layouts for screen forms.
- Report generators: A report generator is a facility for creating reports from data stored in the database.
- ► Graphics generators: A graphics generator is a facility to retrieve data from the database and display the data as a graph showing trends and relationships in the data.
- ► Application generators: An application generator is a facility for producing a program that interfaces with the database.

Lahore Garrison University 6

Data Model

Integrated collection of concepts for describing data, relationships between data, and constraints on the data in an organization.

Data Model comprises:

- A structural part consisting of a set of rules according to which databases can be constructed;
- A manipulative part defining the types of operation that are allowed on the data (this includes the operations that are used for updating or retrieving data from the database and for changing the structure of the database);
- Possibly a set of integrity rules which ensures that the data is accurate.

Data Model

- Purpose
 - ► To represent data in an understandable way.
- Categories of data models include:
 - Object-based
 - Record-based
 - Physical.

Data Models

- Object-Based Data Models
 - Entity-Relationship
 - Semantic
 - Functional
 - Object-Oriented.
- Record-Based Data Models
 - Relational Data Model
 - Network Data Model
 - Hierarchical Data Model.
- Physical Data Models

Relational Data Model

Branch

branchNo	street	city	postCode	
B005	22 Deer Rd	London	SW1 4EH	
B007	16 Argyll St	Aberdeen	AB2 3SU	
B003	163 Main St	Glasgow	G11 9QX	
B004	32 Manse Rd	Bristol	BS99 1NZ	
B002	56 Clover Dr	London	NW10 6EU	

Staff

staffNo	fName	IName	position	sex	DOB	salary	branchNo
SL21	John	White	Manager	М	1-Oct-45	30000	B005
SG37	Ann	Beech	Assistant	F	10-Nov-60	12000	B003
SG14	David	Ford	Supervisor	М	24-Mar-58	18000	B003
SA9	Mary	Howe	Assistant	F	19-Feb-70	9000	B007
SG5	Susan	Brand	Manager	F	3-Jun-40	24000	B003
SL41	Julie	Lee	Assistant	F	13-Jun-65	9000	B005

Network Data Model

B005	22 Deer Rd	London		_	SL41	Jul e	Lee		Assistant	9000
B007	16 Argyl St	Aberdeen		\setminus	SL21	John	White		Manager	30000
B003	163 Main St	Glasgow		Y	SA9	Mary	Howe		Assistant	9000
B004	32 Manse Rd	Bristol		Y	SG37	Ann	Beech		Assistant	12000
B002	56 Clover Dr	London	\	Y	SG14	David	Ford		Supervisor	18000
				Y	SG5	Susan	Brand		Manager	24000

Hierarchical Data Model

Conceptual Modelling

- Conceptual schema is the core of a system supporting all user views.
- Should be complete and accurate representation of an organization's data requirements.
- Conceptual modelling is process of developing a model of information usage, that is independent of implementation details.
- Result is a conceptual data model.

- **1. Data storage, retrieval, and update:** A DBMS must furnish users with the ability to store, retrieve, and update data in the database.
- **2.** A user-accessible catalog: A DBMS must furnish a catalog in which descriptions of data items are stored and which is accessible to users. The amount of information and the way the information is used vary with the DBMS. Typically, the system catalog stores:
- I. names, types, and sizes of data items;
- II. names of relationships;
- III. integrity constraints on the data;
- IV. names of authorized users who have access to the data and many more.

3. Transaction support: A DBMS must furnish a mechanism which will ensure either that all the updates corresponding to a given transaction are made or that none of them is made.

A more complicated example might be to delete a member of staff from the database *and* to reassign the properties that he or she managed to another member of staff. In this case, there is more than one change to be made to the database.

If the transaction fails during execution, perhaps because of a computer crash, the database will be in an **inconsistent** state: some changes will have been made and others not.

4. Concurrency control services: A DBMS must furnish a mechanism to ensure that the database is updated correctly when multiple users are updating the database concurrently.

Concurrent access is relatively easy if all users are only reading data, as there is no way that they can interfere with one another. However, when two or more users are accessing the database simultaneously and at least one of them is updating data, there may be interference that can result in inconsistencies.

Time	T_1	T_2	bal _x
t_1		$\operatorname{read}(bal_{x})$	100
t_2	$\operatorname{read}(\mathbf{bal_x})$	$bal_{\mathbf{x}} = bal_{\mathbf{x}} + 100$	100
t ₃	$bal_x = bal_x - 10$	write(bal _x)	200
t_4	$write(\mathbf{bal_x})$		90
t ₅			90

- **5. Recovery services:** A DBMS must furnish a mechanism for recovering the database if the database is damaged in any way.
- **6. Authorization services:** A DBMS must furnish a mechanism to ensure that only authorized users can access the database.

For example, we may want only branch managers to see salary-related information for staff and prevent all other users from seeing this data. Additionally, we may want to protect the database from unauthorized access.

The term **security** refers to the protection of the database against unauthorized access, either intentional or accidental.

- 7. Support for data communication: A DBMS must be capable of integrating with communication software.
- **8. Integrity services:** Database integrity refers to the correctness and consistency of stored data: it can be considered as another type of database protection. While integrity is related to security, it has wider implications: integrity is concerned with the quality of data itself.

Integrity is usually expressed in terms of *constraints*, which are consistency rules that the database is not permitted to violate. For example, we may want to specify a constraint that no member of staff can manage more than 100 properties at any one time.

- **9. Services to promote data independence:** A DBMS must include facilities to support the independence of programs from the actual structure of the database. Data independence is normally achieved through a view or subschema mechanism.
- 10. Utility services: Utility programs help the DBA to administer the database effectively.
- ► Import facilities, to load the database from flat files, and export facilities, to unload the database to flat files;
- Monitoring facilities, to monitor database usage and operation;
- Statistical analysis programs, to examine performance or usage statistics;
- Index reorganization facilities, to reorganize indexes and their overflows;
- Garbage collection and reallocation, to remove deleted records physically from the storage devices, to consolidate the space released, and to reallocate it where it is needed.

Next lecture

- Components of a DBMS
- **► Multi-User DBMS Architectures**