* Sup - St Joseph/ICAM Toulouse * -

- 2022-2023 -

vendredi 13 janvier 2023 - Durée 4 h

EXERCICE 1

Pour $z \in D = \mathbb{C} \setminus \{-i\}$, on pose

$$f(z) = \frac{1}{\overline{z} - \mathbf{i}}$$

Le plan est muni d'un repère orthonormé direct.

- **1a.** Déterminer la forme algébrique de f(z) pour $z \in D$, à l'aide de Re(z) et Im(z).
- **b.** Déterminer l'ensemble des nombres complexes $z \in D$ tels que $f(z) \in \mathbb{R}$. En donner une interprétation géométrique simple.
- c. Déterminer l'ensemble des nombres complexes $z \in D$ tels que $f(z) \in \mathbb{U}$, c'est-à-dire |f(z)| = 1. En donner une interprétation géométrique simple.
- **2.** Soit $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.
 - **a.** Montrer que $f(\tan(\theta)) = \frac{i}{2} (1 + e^{-2i\theta})$.
- **b.** Montrer que le point d'affixe $f(\tan(\theta))$ est sur le cercle de centre C d'affixe $\frac{\mathrm{i}}{2}$ et de rayon $\frac{1}{2}$.
- 3. Déterminer les points fixes de f, c'est-à-dire les nombres complexes $z \in D$ tels que f(z) = z.
- 4. Résoudre dans D l'équation

$$(E): f(z) = -\overline{z} + \sqrt{3}$$

EXERCICE 2

Dans cet exercice, n désigne un entier naturel supérieur ou égal à 2, a désigne un nombre complexe qui **n'est pas** une racine $n^{\text{ème}}$ de l'unité, et on note pour tout complexe z:

$$P_n(z) = (az - 1)^n - z^n$$

- 1. Déterminer les racines de P_n , c'est-à-dire les nombres complexes z qui vérifient $P_n(z) = 0$.
- 2. Développer $P_n(z)$ à l'aide de la formule du binôme de Newton. Pour $k \in [0, n]$, on note a_k le coefficient de z^k dans l'expression développée de $P_n(z)$.
- **3.** On admet que le produit des racines de P_n est égal à $(-1)^n \frac{a_0}{a_n}$.
 - a. Montrer que

$$\prod_{k=0}^{n-1} \left(a - e^{\frac{2ik\pi}{n}} \right) = a^n - 1$$

- **b.** Démontrer que cette formule reste vraie pour tout complexe $a \in \mathbb{C}$.
- **c.** En considérant $a = e^{2i\theta}$ avec $\theta \in \mathbb{R}$, simplifier :

$$\prod_{k=0}^{n-1} \sin\left(\frac{k\pi}{n} - \theta\right)$$

EXERCICE 3

On rappelle que pour $n, p \in \mathbb{N}$ tels que $n \ge p$, on a : $\binom{n}{p} = \frac{n!}{p!(n-p)!}$.

Partie I : somme des coefficients successifs d'une colonne du triangle de Pascal

1. En remarquant que pour k et n entiers tels que $0 \le k < n$ on a :

$$\binom{n}{k} = \binom{n+1}{k+1} - \binom{n}{k+1}$$

déterminer pour $k \in \mathbb{N}$ et pour $i \ge k$ une expression de $\sum_{j=k}^{i} \binom{j}{k}$ à l'aide d'un seul coefficient binomial.

2. Déterminer trois entiers a, b et c tels que pour tout $j \in \mathbb{N}$ et $j \geq 3$

$$j^{3} = a \begin{pmatrix} j \\ 3 \end{pmatrix} + b \begin{pmatrix} j \\ 2 \end{pmatrix} + c \begin{pmatrix} j \\ 1 \end{pmatrix}$$

3. En déduire que pour tout $n \in \mathbb{N}^*$:

$$\sum_{i=1}^{n} j^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

Partie II: Formule d'inversion de Pascal

On considère dans cette partie une suite $(u_n)_{n\in\mathbb{N}}$ fixée et pour tout $n\in\mathbb{N}$, on pose :

$$a_n = \sum_{k=0}^n \binom{n}{k} u_k$$

Le but de cette partie est de donner une expression de u_n en fonction des a_k .

1. Vérifier que pour k, n et p dans \mathbb{N} tels que $k \leq p \leq n$ on a :

$$\binom{n+1}{p}\binom{p}{k} = \binom{n+1}{k}\binom{n+1-k}{p-k}$$

2. Montrer que si k et n sont deux entiers naturels tels que $k \leq n$ alors

$$\sum_{j=0}^{n-k} (-1)^j \binom{n+1-k}{j} = (-1)^{n-k}$$

3. Soit $n \in \mathbb{N}$.

a. Donner l'expression de u_{n+1} en fonction de a_{n+1} et des u_k pour $0 \le k \le n$.

b. Prouver par récurrence sur $n \in \mathbb{N}$ que

$$\forall n \in \mathbb{N}, \quad u_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} a_k$$

4. Une application : on considère la suite $(d_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} d_0=1\\ d_{n+1}=(n+1)d_n+(-1)^{n+1}, & \forall n\in\mathbb{N} \end{cases}$

a. Montrer par récurrence que

$$\forall n \in \mathbb{N}, \qquad n! = \sum_{k=0}^{n} \binom{n}{k} d_k$$

b. En déduire que

$$\forall n \in \mathbb{N}, \qquad \frac{d_n}{n!} = \sum_{k=0}^n \frac{(-1)^k}{k!}$$

2

PROBLÈME

Dans tout le problème on pourra utiliser sans justification la limite suivante :

$$\forall q \in \mathbb{R}, \quad \lim_{n \to +\infty} \frac{q^n}{n!} = 0$$

On pose, pour $t \in \mathbb{R}$ et $n \in \mathbb{N}$:

$$R_n(t) = e^t - \sum_{k=0}^n \frac{t^k}{k!}$$

PARTIE I

1a. Montrer que R_n est solution sur $\mathbb R$ de l'équation différentielle :

$$y'(t) - y(t) = \frac{t^n}{n!} \qquad (E)$$

- **b.** Donner la solution générale de l'équation homogène (E_0) associée à (E).
- c. Résoudre (E) en utilisant une méthode de variation de la constante (on exprimera les solutions à l'aide d'une intégrale que l'on ne cherchera pas à calculer.)
- d. En déduire que :

$$\forall t \in \mathbb{R}, \quad R_n(t) = e^t \int_0^t \frac{x^n}{n!} e^{-x} dx$$

e. Montrer que :

$$\forall t \in \mathbb{R}^+, \quad 0 \le R_n(t) \le \frac{t^{n+1}}{(n+1)!} e^t$$

f. En déduire que :

$$\forall t \in \mathbb{R}^+, \quad \lim_{n \to +\infty} \sum_{k=0}^n \frac{t^k}{k!} = e^t$$

2. On considère les suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ définies par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \sum_{k=0}^n \frac{1}{k!} \quad \text{et} \quad v_n = u_n + \frac{1}{n} \cdot \frac{1}{n!}$$

- **a.** Montrer que les suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ sont adjacentes.
- b. En déduire que

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = e$$

PARTIE II

On considère la fonction g définie sur [0;1] par :

$$g(0) = 0$$
 et $\forall x \in]0,1], \quad g(x) = x \ln(x)$

On remarquera que g est continue sur [0;1].

- 1. Dresser le tableau de variations complet de g et en déduire celui de -g.
- **2.** Justifier que l'intervalle $[0; e^{-1}]$ est stable par -g.
- **3.** Déterminer le signe de -g(x) x sur $[0; e^{-1}]$.

4. On définit la suite $(t_n)_{n\in\mathbb{N}}$ par :

$$t_0 \in \left[\frac{1}{3e}; \frac{1}{e} \right]$$
 et $\forall n \in \mathbb{N}, t_{n+1} = -g(t_n)$

a. Montrer par récurrence que :

$$\forall n \in \mathbb{N}, \quad 0 \le t_n \le e^{-1}$$

b. Montrer par récurrence que :

$$\forall n \in \mathbb{N}, \quad t_n \leq t_{n+1}$$

5. En déduire que $(t_n)_{n\in\mathbb{N}}$ converge, et déterminer sa limite.

PARTIE III

On pose:

$$\forall x \in [0; 1], x^{-x} = e^{-g(x)}$$
 et $I = \int_0^1 x^{-x} dx$

On rappelle que g est continue sur [0;1], et ainsi l'intégrale I est bien définie.

1. Montrer que :

$$\forall n \in \mathbb{N}, \quad I = \sum_{k=0}^{n} \frac{(-1)^k}{k!} \int_0^1 (g(x))^k dx + \int_0^1 R_n((-g(x)) dx$$

2. Montrer que :

$$0 \le \int_0^1 R_n(-g(x)) dx \le \frac{e^{\frac{1}{e}}}{e^{n+1}}$$

3. Pour $p, q \in \mathbb{N}$, on pose :

$$I_{p,q} = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} x^{p} \ln^{q}(x) dx$$

et on admet que $I_{p,q}$ est bien définie.

 ${\bf a.}\;\;$ Montrer à l'aide d'une intégration par parties que :

$$\forall p \in \mathbb{N}, \forall q \in \mathbb{N}^*, I_{p,q} = -\frac{q}{p+1}I_{p,q-1}$$

b. Exprimer $I_{p,q}$ en fonction de p et q.

4. Montrer enfin que :

$$I = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^k}$$

Fin de l'énoncé