Modeling and Simulation of Combustion of Metal-Liquid Oxidizer Propellants

A Dissertation Presented to the Faculty of the Indian Institute of Technology Gandhinagar

Ву,

Prasanna P Kulkarni,

In partial fulfillment of requirements for the degree of

Doctor of Philosophy, 2025

Declaration

I, Prasanna P Kulkarni, hereby declare that the research reported in this thesis ti-

tled "Modeling and Simulation of Combustion of Metal-Liquid Oxidizer Pro-

pellants" was carried out by me in the Department of Mechanical Engineering,

Indian Institute of Technology Gandhinagar, under the supervision of Prof. Dilip

Srinivas Sundaram. I also declare that this work has not been submitted elsewhere

for a degree.

Prasanna P Kulkarni

(Roll no.: 17210069)

2

Certificate

It is certified that the work reported in this thesis titled "Modeling and Simulation of Combustion of Metal-Liquid Oxidizer Propellants" has been carried out by Prasanna P Kulkarni (17210069), at Indian Institute of Technology Gandhinagar under my supervision, and this work has not been submitted elsewhere for a degree.

Dr. Dilip Srinivas Sundaram
Associate Professor, Mechanical Engineering
Indian Institute of Technology Gandhinagar
Palaj – 382355, Gandhinagar, Gujarat, India

Dedication

Abstract

Add abstract

Acknowledgements

Add Acknowledgements

Table of Contents

Abstract	5
Table of Contents	7
List of Figures	9
List of Tables	10
Nomenclature	11
Chapter 1: Introduction	14
Chapter 2: A Comprehensive Examination of Combustion of Metal-	4.
Liquid Oxidizer Mixtures	15
Chapter 3: A Computational Fluid Dynamics Model of Metal Water	
Combustion in a Strand Burner	16
Chapter 4: Nano-Aluminum and Water Strand Combustion	17

Chapter 5: Effects of Particle Size, Packing Density, and Equivalence		
Ratio on Burning rates	18	
Chapter 6: Conclusion and Future Scope	19	
Appendix I: Calculation of heat release (Q_r)	20	
Appendix II: Burning time correlation of Mg in water var	oor 21	

List of Figures

List of Tables

Nomenclature

Symbol	Meaning
Al	Aluminum
C_D	Drag coefficient
C_p	Specific heat
d_p	Particle diameter
D_d	Departure diameter
D_{AB}	Binary diffusion coefficient
E_a	Activation energy
f	Drag factor
f_d	Departure frequency
f_{i}	Momentum source for i^{th} phase
F	Force
F_{net}	Net force
h	Enthalpy per unit mass
h_m	Mass transfer coefficient
h_{fg}	Enthalpy of vaporization
H	Enthalpy per unit mole
J	Nucleation rate
k_{eff}	Effective/mixture thermal conductivity
k	Thermal conductivity
$\dot{m}^{''}$	Mass flux
$\dot{m}^{\prime\prime\prime}$	Mass source/sink term per unit volume
Mg	Magnesium
MW	Molecular weight
M_p^o	Initial particle mass

N	Number density
P, p	Pressure
Q_r	Heat release per kg of metal consumed
R	Bubble radius
Re_r	Relative reynolds number
Ru	Universal gas constant
r_b	Linear burning rate
S	Geometrical factor
Sh	Sherwood number
Sc	Schmidt number
T	Temperature
T'	Temperature gradient
u	Velocity
u	Velocity vector
V	Bubble volume
W	Work done
X	Mole fraction
X_{eff}	Effective mole fraction
Y	Mass fraction

Greek letters

Symbol	Meaning
α	Volume fraction
α^d	Thermal diffusivity
μ_g	Gas phase dynamic viscosity
ω	Collision integral
ϕ	Volume fraction
ho	Density
σ	Surface tension
σ_{Ab}	Average hard-sphere collision diameter
σ_e	Evaporation coefficient
θ	Contact angle
$ au_b$	Particle burning time
au	Shear stress tensor
θ	Granular temperature

Subscripts

Symbol	Meaning
\overline{a}	Ambient temperature and pressure
<mark>Ar</mark>	Argon
\overline{cr}	Critical bubble size
D	Drag
eq	Equilibrium
f	Fluid phase
g	Gas pahse
lw	Liquid water
M	Metal
MO	Metal oxide
mp	Moving particles
p	Particle phase
PC	Phase change
sp	Stationary particles
sat	Saturation
vo	Void phase
wv	Water vapor

Introduction

Add Introduction

A Comprehensive Examination of Combustion of Metal-Liquid
Oxidizer Mixtures

A Computational Fluid Dynamics Model of Metal Water Combustion in a Strand Burner

Nano-Aluminum and Water Strand Combustion

Effects of Particle Size, Packing

Density, and Equivalence Ratio on

Burning rates

Conclusion and Future Scope

Add conclusion

Appendix I

Calculation of Heat Release (Q_r) :

Appendix one

Appendix II

Burning Time Correlation of Mg in

Water Vapor:

Appendix two