ECE 449/590 – OOP and Machine Learning Lecture 19 Back-Propagation

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

October 31, 2022

Reading Assignment

► This lecture: Deep Learning 6.5

▶ Next lecture: Deep Learning 7, 8

Forward and Back-Propagation

- **Forward propagation**: compute \hat{y} from x
 - ▶ During training to compute $J(\theta)$.
 - During inference to make predictions.
- ▶ Back-propagation, a.k.a. backprop: compute $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
 - ▶ During training, after $J(\theta)$ is computed.
 - To support SGD and its variants.
 - ► An algorithm to compute gradient/Jacobian for arbitrary function represented as DAG in general.

Computation Graphs

▶ Nodes are named by their outputs.

The Chain Rule (1-D)

lacktriangle Scalar functions: for y=g(x) and z=f(y)=f(g(x))

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

- Let z = h(x), the chain rule says h'(x) = f'(g(x))g'(x).
- We can calculate the derivative of z to x as long as we can calculate those for g and f.
 - In addition, we would need to know g(x) this is available from the forward propagation.

Repeated Subexpressions

Figure 6.9

(Goodfellow 2017)

The Chain Rule I

 $\qquad \qquad \textbf{For } \boldsymbol{y} = \boldsymbol{g}(\boldsymbol{x}) \text{ and } \boldsymbol{z} = f(\boldsymbol{y}) = f(\boldsymbol{g}(\boldsymbol{x})) = h(\boldsymbol{x}),$

$$\nabla_{\boldsymbol{x}} z = (\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}})^{\top} \nabla_{\boldsymbol{y}} z$$

- ightharpoonup Let $oldsymbol{x}\in\mathbb{R}^m$, $oldsymbol{y}\in\mathbb{R}^n$.
- $\qquad \qquad \textbf{Write } \boldsymbol{y} = \boldsymbol{g}(\boldsymbol{x}) \text{ as } y_1 = g_1(\boldsymbol{x}), \dots, y_n = g_n(\boldsymbol{x}).$
 - ▶ The Jacobian $\frac{\partial y}{\partial x} \in \mathbb{R}^{n \times m}$ has $\frac{\partial g_j}{\partial x_i}(x)$ on its jth row for j = 1, 2, ..., n and ith column for i = 1, 2, ..., m.

The Chain Rule II

Need to reuse y = g(x) calculated from forward propagation.

The Backprop Algorithm

- Idea: apply chain rules recursively to compute gradients.
 - Utilize values calculated in forward propagation to save computations.
- ▶ Input: h(x) = f(g(x))
- Output: $\nabla_{\boldsymbol{x}} h(\boldsymbol{x})$ at a given $\boldsymbol{x} = \boldsymbol{a}$.
- Details
 - Evaluate y = g(x) by forward propagation for x = a to obtain y = b = g(a).
 - ightharpoonup Compute Jacobian of g(x) directly at x=a.
 - Compute $\nabla_y f(y)$ for y = b directly if possible or apply Backprop (recursively) to compute it.
 - Use the chain rule to compute $\nabla_x h(x)$ for x = a using Jacobian of g(x) at x = a and $\nabla_y f(y)$ at y = b.
- ► The recursive step computes gradients from outputs toward inputs layer by layer – that's why the algorithm is called Backprop.

Symbol-to-Symbol Differentiation

Some Simple Cases

- y = g(x), z = f(y) = f(g(x)) = h(x). Assume $x, y \in \mathbb{R}^n$.
- For $g_i(x) = a_i x_i + b_i$, the Jacobian is simply diag (a_1, \ldots, a_n) .

$$\frac{\partial h}{\partial x_i}(\boldsymbol{x}) = a_i \frac{\partial f}{\partial y_i}(\boldsymbol{g}(\boldsymbol{x}))$$

For $g_i(\mathbf{x}) = \text{ReLU}(x_i)$, the Jacobian is $\text{diag}(u(x_1), \dots, u(x_n))$.

$$\frac{\partial h}{\partial x_i}(\boldsymbol{x}) = u(x_i) \frac{\partial f}{\partial y_i}(\boldsymbol{g}(\boldsymbol{x}))$$

- \blacktriangleright u(x) is the step function: 0 if $x \le 0$ and 1 otherwise.
- ightharpoonup Similar results when g(x) is element-wise.

Cross-Entropy Loss Function I

- ► Assume there are C classes and each minibatch has N examples.
 - Let $z^{(1)}, \dots, z^{(N)} \in \mathbb{R}^C$ be generated from the output units.
 - Let y_1, \ldots, y_N be the training labels. They are constants.
- Cross-entropy loss with softmax,

$$J(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{k=1}^{N} \log \frac{exp(z_{y_k}^{(k)})}{\sum_{j=1}^{C} exp(z_j^{(k)})} = \frac{1}{N} \sum_{k=1}^{N} L_{y_k}(\boldsymbol{z}^{(k)})$$

- ▶ Loss per example: $L_y(z) = -z_y + \log \sum_{j=1}^{C} exp(z_j)$
- ▶ To compute $\nabla_{\theta} J$ as a whole would require to apply backprop to all examples, e.g. to obtain $\nabla_{z^{(1)} \dots z^{(N)}} J$ first.
- ▶ Alternatively, we may apply Backprop one example at a time.
 - ightharpoonup Compute $\nabla_{\theta} L_{y_k}(\boldsymbol{z}^{(k)})$ via Backprop for each $k=1,2,\ldots,N$.
 - ► Then calculate the average.
 - Easier to understand conceptually.

Cross-Entropy Loss Function II

$$L_y(\boldsymbol{z}) = -z_y + \log \sum_{j=1}^{C} exp(z_j)$$

- As discussed in the previous slide, let's focus on z from a single training example x and the training label y.
- ightharpoonup For $j \neq y$,

$$\frac{\partial L_y}{\partial z_j} = \frac{\frac{\partial}{\partial z_j} \sum_{j'=1}^C exp(z_{j'})}{\sum_{j'=1}^C exp(z_{j'})} = \frac{exp(z_j)}{\sum_{j'=1}^C exp(z_{j'})}$$

ightharpoonup For j=y,

$$\frac{\partial L_y}{\partial z_y} = \frac{exp(z_y)}{\sum_{i=1}^{C} exp(z_{i'})} - 1$$

Note that the index j' is used for the summation in softmax.

Linear Layers I

- Consider a minibatch of N examples.
 - ▶ Inputs with I features: $oldsymbol{x}^{(1)}, \dots, oldsymbol{x}^{(N)} \in \mathbb{R}^I$
 - $lackbox{ Outputs with } O ext{ features: } oldsymbol{v}^{(1)}, \dots, oldsymbol{v}^{(N)} \in \mathbb{R}^O$
 - Computed by forward propagation.
- ▶ Parameters: $W \in \mathbb{R}^{I \times O}, b \in \mathbb{R}^{O}$
 - ► The function g: $v^{(k)} = g(x^{(k)}, W, b) = W^{\top}x^{(k)} + b$.
- ▶ The loss function $J(\theta) = \frac{1}{N} \sum_{k=1}^{N} L_{y_k}(\mathbf{z}^{(k)})$
 - For each example k, $z^{(k)}$ are computed from $u^{(k)}$.
 - Loss per example:

$$L_y(\boldsymbol{z}) = f_y(\boldsymbol{v}) = f_y(\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{W}, \boldsymbol{b})) = h_y(\boldsymbol{x}, \boldsymbol{W}, \boldsymbol{b}).$$

Similar to previous slides, we would like to apply Backprop per example to L_u instead of J.

Linear Layers II

$$L_y(\boldsymbol{z}) = f_y(\boldsymbol{v}) = f_y(\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{W}, \boldsymbol{b})) = h_y(\boldsymbol{x}, \boldsymbol{W}, \boldsymbol{b})$$

- ► Known from Backprop recursively: $(\frac{\partial f_y}{\partial v_1}, \dots, \frac{\partial f_y}{\partial v_O})^{\top}$.
- Need gradients of h_y with respect to x, W, and b.
 - ▶ To continue Backprop recursively: $(\frac{\partial h_y}{\partial x_1}, \dots, \frac{\partial h_y}{\partial x_t})^{\top}$.
 - ▶ To be averaged over all examples for gradients of J:

$$\frac{\partial h_y}{\partial w_{i,j}}$$
 and $\frac{\partial h_y}{\partial b_j}$ for $i=1,\ldots,I,$ and $j=1,\ldots,O.$

Linear Layers III

Since
$$v_j = \sum_{i=1}^I w_{i,j} x_i + b_j$$
, we compute $\frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}}, \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{W}}, \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{b}}$ as
$$\frac{\partial v_j}{\partial x_i} = w_{i,j}, \quad \frac{\partial v_j}{\partial w_{i,j}} = x_i, \quad \frac{\partial v_j}{\partial b_j} = 1.$$

$$\frac{\partial v_j}{\partial w_{i,j'}} = 0 \text{ and } \frac{\partial v_j}{\partial b_{j'}} = 0 \text{ for } j' \neq j.$$

Linear Layers IV

▶ Recall $L_y(z) = f_y(v) = h_y(x, W, b)$, the chain rule is

$$\nabla_{\boldsymbol{x},\boldsymbol{W},\boldsymbol{b}} h_y(\boldsymbol{x},\boldsymbol{W},\boldsymbol{b}) = (\frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}}, \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{W}}, \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{b}})^\top \nabla_{\boldsymbol{v}} f_y(\boldsymbol{v}).$$

► Therefore,

$$\frac{\partial h_y}{\partial x_i} = \sum_{j=1}^{O} \frac{\partial f_y}{\partial v_j} \frac{\partial v_j}{\partial x_i} = \sum_{j=1}^{O} w_{i,j} \frac{\partial f_y}{\partial v_j},$$

$$\frac{\partial h_y}{\partial w_{i,j}} = \sum_{j'=1}^{O} \frac{\partial f_y}{\partial v_{j'}} \frac{\partial v_{j'}}{\partial w_{i,j}} = x_i \frac{\partial f_y}{\partial v_j},$$

$$\frac{\partial h_y}{\partial b_j} = \sum_{j'=1}^{O} \frac{\partial f_y}{\partial v_{j'}} \frac{\partial v_{j'}}{\partial b_j} = \frac{\partial f_y}{\partial v_j}.$$

Linear Layers V

► Forward propagation

Backprop

Summary

► The Backprop algorithm applies the chain rule recursively to compute gradients for functions represented as DAGs.