Министерство Науки и Высшего Образования Российской Федерации Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования

Национальный Исследовательский Ядерный Университет «МИФИ»

Институт Ядерной Физики и Технологий Кафедра Теплофизики

Пояснительная записка к курсовому проекту на тему:

«Инженерные расчеты и проектирование реактора ВВЭР-1000»

Студент: Панин М.Д.		
Руководитель:	Маслов Ю.А.	
Руководитель со стороны 5 кафедры:	Терновых М.Ю.	
Рецензент		
·	V. D.C.	
Зав. Кафедрой	Харитонов В.С.	

Москва 2021

Содержание

1.	Опи	сание конструкции реактора	3
2.	Тепл	офизический расчет	4
	2.1.	Постановка задачи	4
	2.2.	Исходные данные для проведения расчетов	5
	2.3.	Выбор турбины	6
		Расчет КПД термодинамического цикла	8
		Расчет изменения теплового потока в наиболее нагруженном ка-	
		нале	10
	2.6.	Расчет распределения температуры теплоносителя по высоте	10
	2.7.	Расчет распределения температуры внешней стенки оболочки по	
		высоте	11
	2.8.	Расчет температуры топлива	13
	2.9.	Определение перепадов давления и необходимой мощности на-	
		сосов на прокачку	14
	2.10.	Выводы из теплофизического расчета	15

1. Описание конструкции реактора

ВВЭР-1000 конструктивно относится к классу гетерогенных корпусных реакторов. С точки зрения спектра нейтронов он является тепловым. В качестве теплоносителя и замедлителя используется легкая вода под давлением. В качестве топлива в реакторе используется низкообогащенным диоксид урана UO_2 . Общий вид реактора в сборке представлен на рисунке 1.1.

В верхней части реактора расположена герметично закрытая крышка с установленными на ней приводами механизмов и органов регулирования и защиты. Также крышка оснащена патрубками для вывода кабелей датчиков внутриреакторного контроля. Крепление к корпусу осуществляется с помощью шпилек.

Реактор имеет двухконтурную систему. Энергия, выделяющаяся в результате ценой реакции деления ядер урана, преобразуется в тепловую энергию теплоносителя первого контура. Далее нагретый теплоноситель поступает с помощью тепловых насосов в парогенераторы, где происходит отдача тепла воде второго контура. Образовавшийся в парогенераторах пар далее поступает в паротурбинную установку, приводящую в движение турбогенератор, который вырабатывает электроэнергию.

После передачи энергии в парогенераторах вода первого контура поступает в реактор через нижний ряд напорных патрубков. Сплошная кольцевая перегородка между рядами нижних и верхних патрубков, дистанцирующая корпус реактора и его шахту, формирует движение потока теплоносителя вниз. Поэтому вода проходит вниз по кольцевому зазору между корпусом и внутрикорпусной шахтой, затем через перфорированное эллиптическое днище и опорные трубы шахты входит в топливные тепловыделяющие сборки. Из ТВС через перфорированную нижнюю плиту блока защитных труб (БЗТ) теплоноситель выходит в межтрубное пространство БЗТ, а затем через кольцевой зазор между шахтой и корпусом и четыре верхних выходных патрубка из реактора.

Рисунок 1.1. Общий вид реактора ВВЭР-1000 в сборе

- 1. верхний блок;
- 2. привод СУ3;
- 3. шпилька;
- 4. труба для загрузки образцов-свидетелей;
- 5. уплотнение;
- 6. корпус реактора;
- 7. блок защитных труб;
- 8. шахта;
- 9. выгородка активной зоны;
- 10. топливные сборки;
- 11. теплоизоляция реактора;
- 12. крышка реактора;
- 13. регулирующие стержни;
- 14. топливные стержни.

2. Теплофизический расчет

2.1. Постановка задачи

В данном разделе будут определены основные термодинамические и гидравлические параметры реакторной установки. Теплофизический расчет подразумевает следующий ряд задач:

- 1. Выбор турбины и разработка принципиальной теплосиловой схемы установки:
- 2. Рассчет КПД проектируемой установки;

- 3. Рассчет основных теплофизических характеристик, таких как мощность ТВС и твэла, расход и скорость теплоносителя, коэффициент теплоотдачи;
- 4. Построение распределения температур теплоносителя, оболочки и топлива по длинне для наиболее напряжённого канала;
- 5. Определение максимально возможных температур теплоносителя, оболочки и топлива;
- 6. Рассчёт перепадов давлений и мощности, необходимой на прокачку теплоносителя;
- 7. Рассчёт коэффициента запаса до кризиса теплообмена;

2.2. Исходные данные для проведения расчетов

Для проведения теплогидравлического расчета реакторной установки использовались следующие характеристики, представленные в Таблице 2.1.

Таблица 2.1: Исходные данные для проектируемого РУ ВВЭР-1000

Характеристика	Значение
Электрическая мощность реактора, МВт	1000
Температура теплоносителя на входе в АЗ $T_{ m BX}$, ° C	287
Температура теплоносителя на выходе АЗ $T_{\scriptscriptstyle m BMX}$, $^{\circ}C$	320
Температура питательной воды, , $^{\circ}C$	220
Температура свежего пара, $^{\circ}C$	281
Давление свежего пара	6.5
Температура пара после пароперегревателей, ${}^{\circ}C$	250
Давление в А3, МПа	15.7
Степень сухости пара прсле ЦВД и ЦНД, %	80
Количество петель РУ	4
Число ТВС N_{TBC} , шт	163
Число твэл в ТВС $N_{{}_{TВЭЛ}}$, шт	317
Коэффициент неравномерности по высоте АЗ	1.5
Коэффициент неравномерности по радиусу АЗ	1.25
Высота АЗ H_{AZ} , м	3.5
Диаметр твэл $d_{\scriptscriptstyle \mathrm{TB}}$, мм	9.1
Размер ТВС «под ключ» а, мм	234
Диаметр центрального канала в ТВС $D_{ m ext{ iny L},}$ мм	10.3
Число направляющих каналов в ТВС $N_{ m H.K.}$, шт	12
Шаг решетки ТВС S_m , мм	12,75
Диаметр направляющего канала в ТВС $D_{\scriptscriptstyle m H.K}$, мм	12.6
Толщина оболочки твэл $\delta_{ ext{твэл}}$, мм	0.65
Толщина газового зазора в твэл $\delta_{{}_{\Gamma}}$, мм	0.135
Диаметр топливной таблетки $d_{ m ton}$, мм.	7.53
Диаметр отверстия топливной таблетки $d_{ ext{orb}}$, мм	1.3

2.3. Выбор турбины

В качестве турбины в расчетах будем использовать модель K-1000-60/1500-2. Её характеристики представлены в таблице 2.2

Таблица 2.2: Параметры турбины К-1000-60/1500-2

Параметр	Значение или Название	
Прототип турбины	K-1000-60/1500	
Температура питательной воды, $^{\circ}C$	220	
Температура свежего пара, $^{\circ}C$	281	
Давление свежего пара, $^{\circ}C$	6.5	
Температура после промежуточного перегрева, ${}^{\circ}C$	250	
Количество регенеративных подогревателей	7	

Рисунок 2.1. Тепловая схема АЭС: 1 – ядерный реактор, 2 – главный циркуляционный насос, 3 – парогенератор, 4 – цилиндр высокого давления, 5 – сепаратор-пароперегреватель, 6 – цилиндры низкого давления, 7 – генератор, 8 – конденсатор, 9 – конденсационный электронасос, 10 – подогреватель низкого давления, 11 – охладитель, 12 – станция насосная, 13 – деаэратор, 14 – плунжерный электронасос, 15 – подогреватель высокого давления, 16 – конденсационный насос с гидротурбинным приводом

2.4. Расчет КПД термодинамического цикла

Рисунок 2.2. ТЅ диаграмма турбинного цикла в реакторе ВВЭР1000 : hbc — нагрев и испарение в парогенераторе; cd — расширение пара в ЦВД; de — паротделяется от конденсата в сепараторе; ef — пар поступает в промежуточный пароперегреватель; fk — расширение пара в ЦНД; ka конденсация в конденсаторе; ад — регенеративный подогрев в ПНД; gh — регенеративный подогрев ПВД6

Таблица 2.3: Значения параметров TS-диаграммы

Точка	Р, МПа	\mid T, $^{\circ}C$	S, Дж/(кг*K)	h, кДж/кг
h	2.6	220	2517	943.7
b	6.5	281	3076	2780
С	6.5	281	5852	2779
d	1.13	185	5852	2465
е	1.13	185	6543	2782
f	1.13	250	6863	2938
k	0.0023	20	6863	1998
k'	0.0023	20	295.2	83.92
a	6.5	20	295.2	90
g	1.13	185	2188	785.3

Произведём расчет КПД для турбины К-1000-60/1500. Термический КПД без регенерации:

$$\eta_{t0} = 1 - \frac{T_k \cdot \left(s_f - s_a \right) \cdot x_d}{\left(h_c - h_g \right) + x_d \left(\left(h_g - h_a \right) + \left(h_f - h_e \right) \right)} = 0.424$$

Термический КПД с идеальной регенерацией:

$$\eta_{t\infty} = 1 - \frac{T_k \cdot \left(s_f - s_g \right) \left(s_c - s_h \right)}{\left(h_c - h_h \right) \cdot \left(s_e - s_g \right) + \left(h_f - h_e \right) \cdot \left(s_f - s_h \right)} = 0.473$$

Термический КПД с n=7 регенеративными отборами:

$$\eta_{tn} = \eta_{t0} + (\eta_{t\infty} - \eta_{t0}) \cdot \frac{n}{n+1} = 0.467$$

Учитываем: $\eta^{\text{вн}}=0.85$ — внутренний КПД турбины; $\eta_{\text{ос}}=0.98$ — коэффициент использования тепла, учитывающий; потери тепла в окружающую среду в прочем энергооборудовании; $\eta_{\text{эг}}=0.98$ — КПД электрогенератора; $\eta_{\text{мех}}=0.97$ — КПД механический, Вычисляем КПД брутто АЭС как:

$$\eta_{\rm брутто} = \eta^7 \cdot \eta^{\rm bh} \cdot \eta_{\rm oc} \cdot \eta_{\rm 9r} \cdot \eta_{\rm mex} = 0.37$$

Тепловая мощность реактора при номинальной электрической мощности $Q_{\text{эл}}=1000~\mathrm{MBt}$ равна:

$$Q_{ ext{теп}} = rac{Q_{ ext{эл}}}{\eta^{ ext{брутто}}} = 2700$$

2.5. Расчет изменения теплового потока в наиболее нагруженном канале

Из условия $K_z=rac{1}{\int_{-H_{\rm a3}/2}^{H_{\rm a3}/2}\cos\left(rac{\pi\cdot z}{H_{
m ap}}
ight)dz}=1.5$ находим эфективную добавку к высоте

активной зоны. Эффективная высота активной зоны будет равна $H_{\rm эф}=2.66$ м. Максимальная величина теплового потока на один твэл:

$$q_{max} = \frac{Q_{\text{\tiny TE\Pi}} K_r K_z}{N N_{\text{\tiny TBЭЛ}} H_{\text{\tiny A3}}} = 279.93 \ \frac{\text{Bt}}{\text{\tiny CM}}$$

Зависимость величины теплового потока от высоты:

$$q(z) = q_{max} \cos \left(\frac{\pi \cdot z}{H_{\rm 9\varphi}} \right) = 279.93 \cos \left(\frac{\pi \cdot z}{266} \right) \, \left[\frac{\rm Bt}{\rm cm} \right]$$

2.6. Расчет распределения температуры теплоносителя по высоте

Энтальпия входа $h_{\text{вх}} = 1.268 \cdot 10^6$.

Энтальпия выхода $\widetilde{h}_{\text{вых}} = 1.453 \cdot 10^6$.

Расход теплоносителя через ТВС:

$$G = \frac{Q_{\text{Teff}}}{(h_{\text{rx}} - h_{\text{rx}})N_{\text{TBC}}} = 89.67 \; \frac{\text{K}\Gamma}{\text{C}}$$

Расход теплоносителя через реактор:

$$G_{\mathrm{peak}} = \frac{Q_{\mathrm{Teff}}}{(h_{\mathrm{rhix}} - h_{\mathrm{rx}})} = 14615.6 \; \frac{\mathrm{K}\Gamma}{\mathrm{C}}$$

Средняя теплоемкость воды:

$$C_p = \frac{h_{\text{вых}} - h_{\text{вх}}}{T_{\text{вых}} - T_{\text{вх}}} = 5606.06 \ \frac{\text{Дж}}{\text{кг} \cdot \text{K}}$$

Распределение температуры теплоносителя по высоте реактора:

$$T(z) = T_{\rm BX} + \frac{N_{\rm TBC}N_{\rm TB3JI}q_{\rm max}H_{\rm 9\varphi}}{G_{\rm peak}C_p\pi} \left[\sin\left(\frac{\pi z}{H_{\rm 9\varphi}}\right) + \sin\left(\frac{\pi H_{\rm A3}}{2H_{\rm 9\varphi}}\right) \right]$$

Отсюда максимальная температура жидкости $T_{\mathrm{TH}}^{max}=315.092~^{\circ}C.$ График изменения температуры теплоносителя по высоте представлен на 2.3

Рисунок 2.3. Изменение температуры теплоносителя по высоте

Максимальная температура теплоносителя определяется из температуры кипения теплоносителя при давлении в активной зоне. Температура насыщения воды при давлении $15.7~\mathrm{M\Pi a} - 345.8~^\circ C$. Отсюда следует что запас до кипения $\approx 31 ^\circ C$.

2.7. Расчет распределения температуры внешней стенки оболочки по высоте

Площадь проходного сечения:

$$S_{\rm npox} = \sqrt{3}/2(a-2\cdot\delta)^2 - N_{\rm tben}\frac{\pi d_{\rm tb}^2}{4} - N_{\rm h.k.}\frac{\pi D_{\rm h.k.}^2}{4} - \frac{D_{\rm ti.tp}^2\pi}{4} = 2.4\cdot10^4~{\rm mm}^2$$

Периметр:

$$\Pi = (2(a-2\delta)\sqrt{3}) - N_{\text{твэл}}\,\pi d_{\text{тв}} + N_{\text{н.к}}\,\pi D_{\text{н.к}} + \pi D_{\text{ц.к}} = 10370$$
мм

Гидравлический диаметр:

$$d_{\Gamma} = rac{4S_{
m npox}}{\Pi} = 9.26$$
mm

Определим коэффициент теплоотдачи в режиме турбулентного стационарного течения несжимаемой жидкости. По формуле Б.С.Петухова, В.В. Кирил-

лова: Число Рейнолдса:

$$\mathrm{Re} = \frac{G_{\mathrm{pear}} \cdot d_{\mathrm{r}}}{N_{\mathrm{TBC}} \cdot S_{\mathrm{npox}} \cdot \mu} = 5.15 \cdot 10^{5}$$

Коэффициент гидравлического сопротивления:

$$\xi = (1,82 \cdot \log(\text{Re}) - 1.64)^{-2} = 0.013$$

Расчитываем число Нуссельта:

$$Nu = \frac{\frac{\xi}{8} \cdot Re \cdot Pr}{k + 12.7 \cdot \left(Pr^{\frac{2}{3}} - 1\right) \cdot \sqrt{\frac{\xi}{8}}} = 976.059$$

Коэффициент теплоотдачи:

$$\alpha_1 = \frac{Nu\lambda_{\mathrm{cp}}}{d_{\mathrm{r}}} = 4.71 \cdot 10^4 \frac{\mathrm{Bt}}{\mathrm{m}^2 \cdot K}$$

По формуле Диттуса-Болтера:

$$Nu = 0.023Re^{0.8}Pr^{0.4} = 973.598$$

Коэффициент теплоотдачи:

$$\alpha_2 = \frac{Nu\lambda_{\rm cp}}{d_{\rm r}} = 4.69 \cdot 10^4 \frac{\rm Bt}{{\rm m}^2 \cdot K}$$

По формула М.А. Михеева:

$$Nu = 0.021 Re^{0.8} Pr^{0.43} = 897.762$$

Коэффициент теплоотдачи:

$$\alpha_3 = \frac{Nu\lambda_{\mathrm{cp}}}{d_{\mathrm{r}}} = 4.33 \cdot 10^4 \frac{\mathrm{Bt}}{\mathrm{m}^2 \cdot K}$$

Усредним коэффициент теплоотдачи:

$$\alpha = \frac{\alpha_1 + \alpha_2 + \alpha_3}{3} = 4.58 \cdot 10^4 \frac{\text{Bt}}{\text{m}^2 \cdot K}$$

Распределение температуры внешней стенки твэла по высоте реактора:

$$T_{\mathrm{o6}}\left(z\right) = T_{\mathrm{th}}\left(z\right) + \frac{q_{\mathrm{max}}\cdot\cos\left(\frac{\pi\cdot z}{H_{\ni\phi}}\right)}{\pi d_{\mathrm{tb}}\,\alpha}$$

Распределение температуры внешней стенки твэла по высоте реактора представлено на 2.4

Рисунок 2.4. Изменение температуры стенки твэла по высоте

Из 2.4 видно, что максимальная температура $T_{
m of}^{
m max}=326.2^{\circ}C$ стенки достигается в $Z_{
m max}=0.517$. Отсюда можно сделать вывод о том, что также отсутствует поверхностное кипения теплоносителя.

2.8. Расчет температуры топлива

Произведём расчет термического сопротивления оболочки, газового зазора и топлива:

$$\sum R_i = \frac{\ln \frac{d_{_{\rm TB}}}{d_{_{\rm TB}}-2\delta}}{2\pi\lambda_{_{\rm OB}}} + \frac{\ln \frac{d_{_{\rm TB}}-2\delta}}{d_{_{\rm TOI}}}}{2\pi\lambda_{_{\rm TB}}} + \frac{\frac{1}{2} - \frac{d_{_{\rm OTB}}^2}{d_{_{\rm TOI}}-d_{_{\rm OTB}}^2} \ln \frac{d_{_{\rm TOII}}}{d_{_{\rm OTB}}}}{2\pi\lambda_{_{\rm TOII}}} = 0.04 \; \frac{{\rm M} \cdot {\rm K}}{{\rm BT}}$$

где

- $\lambda_{\text{г.з.}} = 0.35 \, \frac{\text{Вт}}{\text{м·K}}$ теплопроводность газового слоя
- $\lambda_{\text{об}}=23~\frac{\text{Вт}}{\text{м}\cdot\text{K}}$ теплопроводность оболочки
- $\lambda_{\text{топ}} = 3 \, \frac{\text{Вт}}{\text{м·K}}$ теплопроводность топлива
- $\delta_{\text{г.з}} = \frac{d_{\text{твэл}} 2\delta_{\text{o6}} d_{\text{топ}}}{2} = 3~\frac{\text{Вт}}{\text{м·К}}$ толщина газового зазора

Распределение температур в топливе по высоте активной зоны:

$$T_{\text{топ}}\left(z\right) = T_{\text{cr}}(z) + \Sigma R_i \cdot q_{\text{max}} \cdot \cos\left(\frac{\pi \cdot z}{H_{\text{эф}}}\right)$$

График изменения температуры топлива по высоте представлен на 2.5

Рисунок 2.5. Изменение температуры топлива по высоте

Максимальная температура топлива $T_{\rm топ}=1441^{\circ}C$ при $Z_{\rm max}=0.012$ м. Максимально допустимая температура топлива при авариях определяется температурой плавления оксида урана и составляет с некоторым запасом $2600^{\circ}C$. Однако в условиях нормальной эксплуатации максимально допустимая температура топлива определяется сколонностью топлива к усиленному распуханию начиная с некоторой температуры, которая равна $1990^{\circ}C$.

2.9. Определение перепадов давления и необходимой мощности насосов на прокачку

Для того чтобы определить мощность на прокачку теплоносителя через реактор, найде перепад давления в ТВС Гидравлическое сопротивление трения:

$$\Delta P_{\rm Tp} = \frac{1}{2d_{\rm r}} \cdot \left(\frac{G_{\rm TBC}}{N_{\rm TBC}S_{\rm npox}}\right)^2 \cdot \frac{\xi_{\rm Tp}}{\rho_{\rm cp}} = 1.363 \cdot 10^4 \rm \Pi a$$

Потеря напора на ускорение:

$$\Delta P_{\rm yck} = \left(\frac{G}{N_{\rm TBC} \cdot S_{\rm npox}}\right)^2 \cdot \left(\frac{1}{\rho_{\rm вых}} - \frac{1}{\rho_{\rm вx}}\right) = 1.94 \cdot 10^3 \Pi {\rm a}$$

, где $ho_{\scriptscriptstyle
m BЫX}=680.8~{
m rac{K\Gamma}{M^2}}$, $ho_{\scriptscriptstyle
m BX}=752.1~{
m rac{K\Gamma}{M^2}}$.

Нивелирный напор:

$$\Delta P_{\text{\tiny HUB}} = (\rho_{\text{\tiny BX}} - \rho_{\text{\tiny BЫX}}) \cdot g \cdot H_{\text{\tiny A3}} = 2.45 \cdot 10^3 \Pi \text{a}$$

Местное сопротивление:

$$\Delta P_{\text{\tiny MECT}} = \frac{\left(\frac{G}{N_{\text{\tiny TBC}} \cdot S_{\text{\tiny TIPOX}}}\right)^2}{2} \cdot \left(\frac{\xi_{\text{\tiny BX}}}{\rho_{\text{\tiny BX}}} + \frac{13\xi_{\text{\tiny PEIII}}}{\rho_{\text{\tiny Cp}}} + \frac{\xi_{\text{\tiny BbIX}}}{\rho_{\text{\tiny BbIX}}}\right) = 6.17 \cdot 10^4 \Pi \text{a}$$

где $\xi_{\rm BX}=2.6$ — коэффициент сопротивления на входе в кассету; $\xi_{\rm BMX}=0.26$ — коэффициент сопротивления на выходе из кассеты, $\xi_{\rm pem}=0.45$ — коэффициент сопротивления при проходе через дистанцирующую решетку Общее сопротивление каналов:

$$\Delta P = \Delta P_{\scriptscriptstyle \mathrm{TD}} + \Delta P_{\scriptscriptstyle \mathrm{VCK}} + \Delta P_{\scriptscriptstyle \mathrm{HUB}} \, + \Delta P_{\scriptscriptstyle \mathrm{MeCT}} \, = 6.97 \cdot 10^4 \; \Pi$$
а

Мощность, необходимая для прокачки теплоносителя через весь реактор:

$$N_{\rm np} = N_{\rm TBC} \frac{\Delta P \cdot G_{\rm TBC}}{\eta_{\rm hac} \cdot \rho_{\rm ry}} = 1.937 \cdot 10^6 \; \rm Bt$$

КПД реактора с учетом потерь на прокачку теплоносителя:

$$\eta' = \frac{Q_{\mathrm{эл}} - N_{\mathrm{пр}}}{Q_{\mathrm{теп}}} = 0.369$$

2.10. Выводы из теплофизического расчета

По итогам теплогидравлического расчета были определены основные термодинамические и теплогидравлические параметру РУ ВВЭР-1000. Были выполнены следующие поставленные задачи:

- 1. Произведен выбор турбины и определён её КПД равный 0.369 с учетом мощности, необходимой на прокачку теплоносителя.
- 2. Были найдены зависимости температуры оболочки и теплоносителя от высоты A3, было выяснено, что поверхностного кипения не наблюдается, и максимальная тепература оболочки твэла $326.2\ ^{\circ}C$ не превышает предельно допустимую.
- 3. Определена зависимость температуры топлива от высоты A3, максимальная температура топлива $1441^{\circ}C$ не превышает предельное значение $1900^{\circ}C$.