

Prof. Dr. Florian Künzner

Technical University of Applied Sciences Rosenheim, Computer Science

CA 3 – Logical hardware

The lecture is based on the work and the documents of Prof. Dr. Theodor Tempelmeier

Computer Science

Goal

Goal

Computer Science

CA::Logical hardware

- Logical algebra
- Logical elements
- Combinatorial circuits
- Sequential circuits

Computer Science

Logical algebra

Notation:

Operators $\vee, +, OR$

$$\vee, +, \mathit{OR}$$

$$\wedge, \cdot, AND$$

$$\neg, \bar{x}, NOT$$

Operand $\{0,1\}$

Axiom

$$a + b = b + a$$

$$(2+b)+c=2+(b+c)$$

$$a+(a\cdot b)=a$$

$$a + 0 = a$$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot b)$$

$$a \cdot \neg a = 0$$

De Morgan
$$\neg(a \cdot b) = \neg a + \neg b$$

$$a \cdot b = b \cdot a$$

$$(a+b)+c=a+(b+c)$$
 $(a \cdot b) \cdot c=a \cdot (b \cdot c)$

$$a \cdot (a+b) = a$$

$$a \cdot 1 = a$$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) \ a + (b \cdot c) = (a+b) \cdot (a+c)$$

$$a + \neg a = 1$$

$$\neg(a+b) = \neg a \cdot \neg b$$

Computer Science

Logical elements

Type	New DIN norm	American norm
OR		
XOR		
AND	&	
Invert	_ 1 -	
	0	o

Combinatorial circuits

A combination of logical elements into a circuit.

- Switching function = logical combinations
- Representation by truth tables or boolean expressions

Sequential circuits

Definition

Sequential circuits = combinational circuit + clock pulse + internal states

- Through the clock pulse it is a clocked (getaktete) operation mode
- Internal states (e.g. through flip-flop registers)

Sequential circuits

A combinational circuit with a clock pulse.

- Flip-flop registers at input and output (I/O registers)
- Clock pulse for transfer data at a defined time

Computer Science

Sequential circuits

Also called synchronous circuits:

- Theoretically divided into combinational circuit and memory elements (registers).
- It takes t_{max} time until all signals are through the network of logic elements.
- Signals are only transferred to memory elements (I/O registers) at defined clock times (clock pulse).

Condition

$$\frac{1}{\text{clock rate (frequency)}} > t_{max} \tag{1}$$

If you want higher clock rate $\Rightarrow t_{max}$ has to be reduced:

- Improvements in electrical engineering and solid state physics
- Redesign of circuit with less logic elements

Summary

CAMPUS Rosenheim **Computer Science**

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after | ask you to

CAMPUS Rosenheim **Computer Science**

Summary and outlook

Summary

- Logical algebra
- Logical elements
- Combinatorial circuits
- Sequential circuits

Outlook

Technical realisation