

mk rel 1con hret= /lavicon. 200

Centro Universitário Presidente Antônio Carlos Teoria de Grafos

Caminho Mínimo - Algoritmo Dijkstra Felipe Roncalli de Paula Carneiro

felipecarneiro@unipac.br

O que vamos aprender nessa aula

- Grafos com pesos;
- Caminhos Mínimos
- Dijkstra;
- Algoritmo de Dijkstra;

Grafos com Pesos

Anotar arestas do grafo com "intensidade" do relacionamento peso da aresta (weight) função w(e) retorna peso da aresta:

Edsger Wybe Dijkstra

- Renomado professor e pesquisador em Computação;
- Recebeu Prêmio Turing em 1972;
- Contribuições fundamentais em ling. de programação e verificação formal;

11/5/1930 - 6/8/2002

- Algoritmo de Dijkstra utilizado em vários sistemas (redes, GPS, etc);
 - Documentário: Discipline in Thought (2000)
 http://www.cs.utexas.edu/users/EWD/video-audio/Noo rderlichtVideo.html

Grafos com Pesos

Anotar arestas do grafo com "intensidade" do relacionamento peso da aresta (weight) função w(e) retorna peso da aresta:

•
$$w(2,6) = 7$$

•
$$w(5,6) = log(2)$$

•
$$w(2,4) = 0$$

•
$$w(3,1) = -1$$

Comprimento com Pesos

- Comprimento de um caminho soma dos pesos das arestas que definem caminho;
- Caminho p = (v1, v2, ..., vk);

$$C(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

Comprimento com Pesos

- Comprimento de um caminho soma dos pesos das arestas que definem caminho;
- Caminho p = (v1, v2, ..., vk);

$$C(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

•
$$p = (1,2,6,7) \rightarrow C(p) = 7.1$$

•
$$p = (1,3,4,7) \rightarrow C(p) = -1$$

•
$$p = (2,4,7,6,5) \rightarrow C(p) = 2 + log(2)$$

Distância com Pesos

 Comprimento do menor caminho simples entre dois vértices;

P(u,v): conjunto com todos os caminhos simples

$$d(u,v)=\min_{p\in P(u,v)}C(p)$$

Distância com Pesos

- Comprimento do menor caminho simples entre dois vértices;
- P(u,v): conjunto com todos os caminhos simples entre u e v

$$d(u,v)=\min_{p\in P(u,v)}C(p)$$

•
$$d(4,1) = 1$$

•
$$d(1,7) = -1$$

•
$$d(3,5) = 2.1 + log(2)$$

•
$$d(5,7) = log(2) - 1$$

• Menor caminho não necessariamente é o mais curto em arestas!

Grafos Direcionados com Pesos

- Relacionamentos assimétricos com pesos (diferentes intensidades):
 - ruas em uma cidade;
 - similaridade entre seguidores do twitter;
- Mesma ideia: arestas possuem "intensidade" do relacionamento
 - função w(e) retorna peso da aresta;
 - aresta direcionada, pesos potencialmente diferentes nas duas direções;

Problema - Viagem entre Cidades

- Problema 1: Como saber se duas cidades estão "conectadas" por estradas?
- Problema 2: Qual é o menor (melhor) caminho entre duas cidades?

Problema - Viagem entre Cidades

Abstração via grafos com pesos

- Problema 1: Como saber se duas cidades estão "conectadas" por estradas? (RESOLVIDO)
- Problema 2: Qual é o menor (melhor) caminho entre duas cidades?

Distância em Grafos com Pesos

- Calcular caminho mais curto entre cidades é calcular a distância em grafos com peso
 - assumir pesos positivos;
- Dado G, com pesos;
- Determinar a distância do vértice s ao d;
- Como resolver este problema?
- Como resolvemos problemas sem pesos?

Distância em Grafos com Pesos

- Ideia: partindo de s, expandir os caminhos, incluindo vértices;
- Mas em que ordem?
 - Na ordem que garanta que iremos passar por caminhos mínimos!
- Expandir caminhos mínimos até chegar em d;

Distância em Grafos com Pesos

• Exemplo: distância entre a e g?

- Começar em a, expandir
- Qual próximo vértice?
- Qual vértice nos dá caminho mínimo?

Exercício

- Quais os caminhos entre a e os demais vértices?
- Qual a distância entre a e os demais vértices?

Algoritmo de Dijkstra

- Tornando a ideia em algoritmo
 - a cada passo, adicionar o vértice para o qual temos o menor caminho

• Ideias:

- Manter dois conjuntos de vértices (descobertos, explorados)
- Manter comprimento do menor caminho conhecido até o momento para cada vértice descoberto
- Adicionar o vértice de menor caminho ao conjunto explorado
- Atualizar distâncias através deste vértice, descobrindo novos vértices

Algoritmo de Dijkstra

- Condições Necessárias:
 - Não admite pesos negativos;
 - Peso Nulo (0) é possível;
 - Pode ser aplicado tanto em grafos orientados ou não orientados;

Algoritmo de Dijkstra

```
    Dijkstra(G, s)
    Para cada vértice v
    dist[v] = infinito
    Define conjunto S = 0 // inicia vazio
    dist[s] = 0
    Enquanto S != V
    Selecione u em V-S, tal que dist[u] é mínima
    Adicione u em S
    Para cada vizinho v de u faça
    Se dist[v] > dist[u] + w(u,v) então
    dist[v] = dist[u] + w(u,v)
    Retorna dist[]
```

- S é o conjunto dos vértices explorados;
- V é o conjunto dos vértices do grafo;
- w(u,v) é o peso da aresta (u,v);
- dist[v] é a melhor estimativa da distância de s a v;
- se v é explorado, então dist[v] é a distância de s a v;

		vet	or dist	[]éd	[] na	tabela	abai	ΧO
Passo	Conjunto S	d[a]	d[b]	d[c]	d[d]	d[e]	d[f]	d[g]
0	{}	0	inf	inf	inf	inf	inf	inf

		vetor dist[] é d[] na tabela abaixo							
F	Passo	Conjunto S	d[a]	d[b]	d[c]	d[d]	d[e]	d[f]	d[g]
	0	{}	0	inf	inf	inf	inf	inf	inf
	1	{a}	-	1	inf	4	2	inf	inf

		vetor dist[] é d[] na tabela abaixo							
Pas	so Conju	ınto S d[a]	d[b]	d[c]	d[d]	d[e]	d[f]	d[g]	
0	{	} 0	inf	inf	inf	inf	inf	inf	
1	{	a} -	1	inf	4	2	inf	inf	
2	{a	,b}	-	5	3	2	inf	inf	

		vetor dist[] é d[] na tabela abaixo						
Passo	Conjunto S	d[a]	d[b]	d[c]	d[d]	d[e]	d[f]	d[g]
0	{}	0	inf	inf	inf	inf	inf	inf
1	{a}	-	1	inf	4	2	inf	inf
2	{a,b}		-	5	3	2	inf	inf
3	{a,b,e}			5	3	-	5	inf

		vetor dist[] é d[] na tabela abaixo							
Passo	Conjunto S	d[a]	d[b]	d[c]	d[d]	d[e]	d[f]	d[g]	
0	{}	0	inf	inf	inf	inf	inf	inf	
1	{a}	-	1	inf	4	2	inf	inf	
2	{a,b}		-	5	3	2	inf	inf	
3	{a,b,e}			5	3	-	5	inf	
4	{a,b,e,d}			4	-		5	inf	

	vetor dist[] é d[] na tabela abaixo							
Passo	Conjunto S	d[a]	d[b]	d[c]	d[d]	d[e]	d[f]	d[g]
0	{}	0	inf	inf	inf	inf	inf	inf
1	{a}	-	1	inf	4	2	inf	inf
2	{a,b}		-	5	3	2	inf	inf
3	{a,b,e}			5	3	-	5	inf
4	{a,b,e,d}			4	-		5	inf
5	{a,b,e,d,c}			-			5	6

		vetor dist[] é d[] na tabela abaixo						
Passo	Conjunto S	d[a]	d[b]	d[c]	d[d]	d[e]	d[f]	d[g]
0	{}	0	inf	inf	inf	inf	inf	inf
1	{a}	-	1	inf	4	2	inf	inf
2	{a,b}		-	5	3	2	inf	inf
3	{a,b,e}			5	3	-	5	inf
4	{a,b,e,d}			4	-		5	inf
5	{a,b,e,d,c}			-			5	6
6	${a,b,e,d,c,f}$						-	6

		vet	or dist	[]éd	[] na	tabela	abai:	ΧO
Passo	Conjunto S	d[a]	d[b]	d[c]	d[d]	d[e]	d[f]	d[g]
0	{}	0	inf	inf	inf	inf	inf	inf
1	{a}	_	1	inf	4	2	inf	inf
2	{a,b}		-	5	3	2	inf	inf
3	{a,b,e}			5	3	-	5	inf
4	$\{a,b,e,d\}$			4	-		5	inf
5	$\{a,b,e,d,c\}$			-			5	6
6	${a,b,e,d,c,f}$						-	6
7	${a,b,e,d,c,f,g}$							-

E qual é o caminho???

Temos que guardar a informação do predecessor no mesmo momento que atualizamos a distância!!!

		vetor dist[] é d[] na tabela abaixo								
Passo	Conjunto S	d[a]	d[b]	d[c]	d[d]	d[e]	d[f]	d[g]		
0	{}	0	inf	inf	inf	inf	inf	inf		
1	{a}	_	1	inf	4	2	inf	inf		
2	{a,b}		-	5	3	2	inf	inf		
3	{a,b,e}			5	3	-	5	inf		
4	{a,b,e,d}			4	-		5	inf		
5	$\{a,b,e,d,c\}$			-			5	6		
6	{a,b,e,d,c,f}						-	6		
7	${a,b,e,d,c,f,g}$							_		

Exercício

• Encontre o menor caminho utilizando Dijkstra entre a e f, Faça o passo a passo.

Dúvidas??