Справочный материал для подготовки к ЕГЭ

Таблица квадратов

a^2	0	1	2	3	4	5	6	7	8	9
10	100	121	144	169	196	225	256	289	324	361
20	400	441	484	529	576	625	676	729	784	841
30	900	961	1024	1089	1156	1225	1296	1369	1444	1521
40	1600	1681	1764	1849	1936	2025	2116	2209	2304	2401
50	2500	2601	2704	2809	2916	3025	3136	3249	3364	3481
60	3600	3721	3844	3969	4096	4225	4356	4489	4624	4761
70	4900	5041	5184	5329	5476	5625	5776	5929	6084	6241
80	6400	6561	6724	6889	7056	7225	7396	7569	7744	7921
90	8100	8281	8464	8649	8836	9025	9216	9409	9604	9801
100	10000	10201	10404	10609	10816	11025	11236	11449	11664	11881
110	12100	12321	12544	12769	12996	13225	13456	13689	13924	14161
120	14400	14641	14884	15129	15376	15625	15876	16129	16384	16641
130	16900	17161	17424	17689	17956	18225	18496	18769	19044	19321
140	19600	19881	20164	20449	20736	21025	21316	21609	21904	22201
150	22500	22801	23104	23409	23716	24025	24336	24649	24964	25281
160	25600	25921	26244	26569	26896	27225	27556	27889	28224	28561
170	28900	29241	29584	29929	30276	30625	30976	31329	31684	32041
180	32400	32761	33124	33489	33856	34225	34596	34969	35344	35721
190	36100	36481	36864	37249	37636	38025	38416	38809	39204	39601
200	40000	40401	40804	41209	41616	42025	42436	42849	43264	43681

Таблица степеней

a^n	1	2	3	4	5	6	7	8	9	10
2	2	4	8	16	32	64	128	256	512	1024
3	3	9	27	81	243	729	2187	6561	19683	59049
4	4	16	64	256	1024	4096	16384	65536	262144	1048576
5	5	25	125	625	3125	15625	78125	390625	1953125	9765625
6	6	36	216	1296	7776	46656	279936	1679616	10077696	60466176
7	7	49	343	2401	16807	117649	823543	5764801	40353607	282475249
8	8	64	512	4096	32768	262144	2097152	16777216	134217728	1073741824
9	9	81	729	6561	59049	531441	4782969	43046721	387420489	3486784401
10	10	100	1000	10000	100000	1000000	10000000	100000000	1000000000	10000000000
11	11	121	1331	14641	161051	1771561	19487171	214358881	2357947691	25937424601
12	12	144	1728	20736	248832	2985984	35831808	429981696	5159780352	61917364224

Формулы сокращенного умножения

$$(a-b)(a+b)=a^2-b^2$$
 – разность квадратов; $a^3+b^3=(a+b)(a^2-ab+b^2)$ – сумма кубов; $(a-b)^2=a^2-2ab+b^2$ – квадрат разности; $(a-b)^3=a^3-3a^2b+3ab^2-b^3$ – куб разности; $(a+b)^2=a^2+2ab+b^2$ – квадрат суммы; $(a+b)^3=a^3+3a^2b+3ab^2+b^3$ – куб суммы; $a^3-b^3=(a-b)(a^2+ab+b^2)$ – разность кубов; $(a-b)^2=(b-a)^2$ – квадрат разности. $\mathbf{Mодуль\ числa}\ |a|=\begin{bmatrix} a,\ ecnu\ a\geq 0,\ -a,\ ecnu\ a< 0. \end{bmatrix}$

Модуль числа
$$|a| = \begin{bmatrix} a, ecлu & a \ge 0, \\ -a, ecлu & a < 0. \end{bmatrix}$$

Свойства модуля

1.
$$|a-b|=|b-a|$$
;

2.
$$\sqrt{a^2} = |a|$$
;

3.
$$(\sqrt{a})^2 = a, \quad a \ge 0$$
;

4.
$$|a|^2 = a^2$$
;

5.
$$|x| \le a \iff -a \le x \le a, \quad a \ge 0;$$

6.
$$|x| \ge a \iff x \ge a \quad \text{unu} \quad x \le -a$$
.

Уравнения и неравенства с модулем

1.
$$|f(x)| = g(x) \Leftrightarrow \begin{cases} g(x) \ge 0, \\ f(x) = g(x), \\ f(x) = -g(x). \end{cases}$$

2.
$$|f(x)| = |g(x)| \Leftrightarrow (f(x))^2 = (g(x))^2 \Leftrightarrow \begin{bmatrix} f(x) = g(x), \\ f(x) = -g(x) \end{bmatrix} \Leftrightarrow \begin{bmatrix} f(x) - g(x) = 0, \\ f(x) + g(x) = 0. \end{bmatrix}$$
3. $|f(x)| < g(x) \Leftrightarrow -g(x) < f(x) < g(x) \Leftrightarrow \begin{cases} f(x) < g(x), \\ f(x) > -g(x). \end{cases}$

$$\mathbf{3.} \quad |f(x)| < g(x) \iff -g(x) < f(x) < g(x) \iff \begin{cases} f(x) < g(x), \\ f(x) > -g(x). \end{cases}$$

4.
$$|f(x)| > g(x) \Leftrightarrow \begin{bmatrix} f(x) > g(x), \\ f(x) < -g(x). \end{bmatrix}$$

5.
$$|f(x)| < |g(x)| \iff (f(x))^2 < (g(x))^2 \iff (f(x) - g(x))(f(x) + g(x)) < 0.$$

Последовательности и прогрессии

Прогрессия	Арифметическая	Геометрическая
Формула n -го члена, $n \in N$	$a_n = a_1 + (n-1) \cdot d$	$b_n = b_1 \cdot q^{n-1}$
Рекуррентная формула	$a_{n+1} = a_n + d$	$b_{n+1} = b_n \cdot q$
Характеристическое свойство	$\frac{a_{n+1} + a_{n-1}}{2} = a_n$	$b_{n+1} \cdot b_{n-1} = b_n^2, b_n \neq 0$
Формула суммы <i>п</i> первых членов	$S_n = rac{a_1 + a_n}{2} \cdot n$ $S_n = rac{2a_1 + (n-1)d}{2} \cdot n$	$S_n = rac{b_1 - b_n \cdot q}{1 - q}$ $S_n = rac{b_1 ig(1 - q^nig)}{1 - q}$
Дополнительные формулы	$\frac{a_n - a_m}{n - m} = d, n \neq m$	$b_n:b_m=q^{n-m}$

Бесконечно убывающая геометрическая прогрессия $0 < |q| < 1, \ S = \frac{b_1}{1-q}$ — формула суммы

Метод координат на плоскости

Для векторов $\vec{a} = \{x_a, y_a\}$ и $\vec{b} = \{x_b, y_b\}$ имеют место действия:

- **1)** сложение $\vec{a} + \vec{b} = \{x_a + x_b; y_a + y_b\};$
- **2)** вычитание $\vec{a} \vec{b} = \{x_a x_b; y_a y_b\};$
- **3)** умножение на число $k \cdot \vec{a} = \{kx_a; ky_a\}$.

<u>Скалярное произведение векторов:</u> $\vec{a} \cdot \vec{b} = x_a \cdot x_b + y_a \cdot y_b = |\vec{a}| \cdot |\vec{b}| \cos |\vec{a}; \vec{b}|$.

$$\cos\left(\vec{a}; \vec{b}\right) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{x_a \cdot x_b + y_a \cdot y_b}{\sqrt{x_a^2 + y_a^2} \cdot \sqrt{x_b^2 + y_b^2}}.$$

<u>Длина вектора</u> \vec{a} : $|\vec{a}| = \sqrt{x_a^2 + y_a^2}$

Пусть заданы точки $\mathit{A}(x_{\scriptscriptstyle A},y_{\scriptscriptstyle A})$ и $\mathit{B}(x_{\scriptscriptstyle B},y_{\scriptscriptstyle B})$, тогда

<u>Координаты вектора:</u> $\overrightarrow{AB}\{x_{\scriptscriptstyle B}-x_{\scriptscriptstyle A};\,y_{\scriptscriptstyle B}-y_{\scriptscriptstyle A}\}.$

<u>Координаты середины отрезка</u> AB: $x_M = \frac{x_A + x_B}{2}$; $y_M = \frac{y_A + y_B}{2}$.

 $\underline{Paccmoяние\ между\ moчками}\ A$ и B (длина вектора \overrightarrow{AB}): $AB = \left|\overrightarrow{AB}\right| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

Тригонометрия

1.
$$\cos^2 \alpha + \sin^2 \alpha = 1$$
; $tg \alpha \cdot ctg \alpha = 1$;

2.
$$tg \alpha = \frac{\sin \alpha}{\cos \alpha};$$
 $ctg \alpha = \frac{\cos \alpha}{\sin \alpha};$

3.
$$tg \alpha = \frac{1}{ctg \alpha};$$
 $ctg\alpha = \frac{1}{tg \alpha};$

4.
$$1+tg^2\alpha = \frac{1}{\cos^2\alpha}$$
; $1+ctg^2\alpha = \frac{1}{\sin^2\alpha}$;

5.
$$sin(\alpha \pm \beta) = sin \alpha \cdot cos \beta \pm cos \alpha \cdot sin \beta$$
;

6.
$$cos(\alpha \pm \beta) = cos \alpha \cdot cos \beta \mp sin \alpha \cdot sin \beta$$
;

7.
$$tg(\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha \cdot tg \beta};$$

8.
$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$
;

9.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$
;

10.
$$\cos 2\alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$
;

11.
$$tg 2\alpha = \frac{2tg \alpha}{1 - ta^2 \alpha};$$
 $ctg 2\alpha = \frac{ctg^2 \alpha - 1}{2cta \alpha};$

12.
$$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cdot \cos \frac{\alpha \mp \beta}{2}$$
;

13.
$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$
;

14.
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$
;

15.
$$tg \alpha \pm tg \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta}$$

16.
$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
; $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$;

17.
$$\sin \alpha \cdot \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta));$$

18.
$$\cos \alpha \cdot \cos \beta = \frac{1}{2} (\cos(\alpha + \beta) + \cos(\alpha - \beta));$$

19.
$$\sin \alpha \cdot \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

20.
$$\left|\sin\frac{\alpha}{2}\right| = \sqrt{\frac{1-\cos\alpha}{2}}$$
; $\left|\cos\frac{\alpha}{2}\right| = \sqrt{\frac{1+\cos\alpha}{2}}$;

21.
$$tg\frac{\alpha}{2} = \frac{\sin\alpha}{1 + \cos\alpha}; \qquad ctg\frac{\alpha}{2} = \frac{\sin\alpha}{1 - \cos\alpha}.$$

Таблица значений тригонометрических функций

α, <i>рад</i>	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
α, °	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sinα	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tgα	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	_	- √3	-1	$-\frac{1}{\sqrt{3}}$	0
ctgα	_	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	_	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	_

Решение тригонометрических уравнений

Vagauauua	Ofwas payages	Частные случаи					
Уравнение	Общее решение	a = 0	a = 1	$\alpha = -1$			
	$x = (-1)^n \arcsin \alpha + \pi n$						
$\sin x = a$	$\int x_1 = \arcsin a + 2\pi n$	$x = \pi n$	$x = \frac{\pi}{2} + 2\pi n$	$x = -\frac{\pi}{2} + 2\pi n$			
	$x = \pm arccos a + 2\pi n$						
$\cos x = a$	$\begin{bmatrix} \mathbf{u} \mathbf{n} \mathbf{u} \\ x_1 = \arccos \alpha + 2\pi n \end{bmatrix}$	$x = \frac{\pi}{2} + \pi n$	$x = 2\pi n$	$x = \pi + 2\pi n$			
tg x = a	$x = arctg \ a + \pi n$	$x = \pi n$	$x = \frac{\pi}{4} + \pi n$	$x = -\frac{\pi}{4} + \pi n$			
ctg x = a	$x = arcctg \ a + \pi n$	$x = \frac{\pi}{2} + \pi n$	$x = \frac{\pi}{4} + \pi n$	$x = \frac{3\pi}{4} + \pi n$			
где п	$\in \mathbf{Z}$ (Z – множество целых чи	сел:, -4, -3,	-2, -1, 0, 1, 2,	3, 4,)			

Свойства четности и нечетности тригонометрических функций

$$cos(-x) = cos x$$
 – четная
 $sin(-x) = -sin x$ – нечетная
 $tg(-x) = -tgx$ – нечетная
 $ctg(-x) = -ctgx$ – нечетная

$$arccos(-x) = \pi - arccos x$$

 $arcsin(-x) = -arcsin x$
 $arctg(-x) = -arctgx$
 $arcctg(-x) = \pi - arcctgx$

Обратные тригонометрические функции

$$arcsin a = t, \ t \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right], \ sin t = a, \ a \in [-1; 1]$$

$$arctg a = t, \ t \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right], \ tgt = a, \ a \in R$$

$$arcsin(sin t) = t, \ t \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

$$arctg (tgt) = t, \ t \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

$$tg(arctg a) = a, \ a \in R$$

$$arccos a = t, \ t \in [0; \pi], \ cos t = a, \ a \in [-1; 1]$$

$$arcctg a = t, \ t \in (0; \pi), \ ctgt = a, \ a \in R$$

$$arccos(cos t) = t, \ t \in [0; \pi]$$

$$arcctg (ctgt) = t, \ t \in (0; \pi)$$

$$cos(arccos a) = a, \ a \in [-1; 1]$$

$$ctg(arcctg a) = a, \ a \in R$$

$$arctg \ a = t, \ t \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right], \ tg \ t = a, \ a \in R$$
 $arctg \ (tg \ t) = t, \ t \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$
 $tg(arctg \ a) = a, \ a \in R$
 $arcctg \ a = t, \ t \in (0; \pi), \ ctg \ t = a, \ a \in R$
 $arcctg \ (ctg \ t) = t, \ t \in (0; \pi)$
 $ctg(arcctg \ a) = a, \ a \in R$

Формулы приведения

$$\sin\left(\frac{\pi}{2} \pm t\right) = \cos t \qquad \cos\left(\frac{\pi}{2} \pm t\right) = \mp \sin t \qquad tg\left(\frac{\pi}{2} \pm t\right) = \mp ctgt \qquad ctg\left(\frac{\pi}{2} \pm t\right) = \mp tgt$$

$$\sin(\pi \pm t) = \mp \sin t \qquad \cos(\pi \pm t) = -\cos t \qquad tg(\pi \pm t) = \pm tgt \qquad ctg(\pi \pm t) = \pm ctgt$$

$$\sin\left(\frac{3\pi}{2} \pm t\right) = -\cos t \qquad \cos\left(\frac{3\pi}{2} \pm t\right) = \pm \sin t \qquad tg\left(\frac{3\pi}{2} \pm t\right) = \mp ctgt \qquad ctg\left(\frac{3\pi}{2} \pm t\right) = \mp tgt$$

$$\sin(2\pi \pm t) = \pm \sin t \qquad \cos(2\pi \pm t) = \cos t \qquad tg(2\pi \pm t) = \pm tgt \qquad ctg(2\pi \pm t) = \pm ctgt$$

Знаки тригонометрических функций

tg t, ctg t

Показательные уравнения и неравенства **1.** $a^{f(x)} = a^{g(x)} \Leftrightarrow_{a \neq 1} f(x) = g(x)$.

2.
$$(a(x))^{f(x)} = (a(x))^{g(x)} \Leftrightarrow \begin{bmatrix} a(x) = 1, \\ a(x) > 0, \\ f(x) = g(x). \end{bmatrix}$$

$$\begin{cases} f(x) = g(x) \\ f(x) = g(x) \end{cases}$$
3. $a^{f(x)} > a^{g(x)} \Leftrightarrow (a-1)(f(x)-g(x)) > 0.$

4.
$$a^{f(x)} \ge a^{g(x)} \iff (a-1)(f(x)-g(x)) \ge 0.$$

5.
$$\frac{a^{f(x)} - a^{g(x)}}{h(x)} \ge 0 \iff \frac{(a-1)(f(x) - g(x))}{h(x)} \ge 0.$$

6.
$$\frac{a^{f(x)} - a^{g(x)}}{h(x)} \le 0 \Leftrightarrow \frac{(a-1)(f(x) - g(x))}{h(x)} \le 0.$$

7.
$$\frac{a^{f(x)} - a^{g(x)}}{a^{h(x)} - a^{p(x)}} \le 0 \Leftrightarrow \frac{f(x) - g(x)}{h(x) - p(x)} \le 0.$$

8.
$$(a(x))^{f(x)} > (a(x))^{g(x)} \Leftrightarrow \begin{cases} a(x) > 0, \\ (a(x) - 1)(f(x) - g(x)) > 0. \end{cases}$$

$$(a(x))^{f(x)} \ge (a(x))^{g(x)} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} a(x) > 0, \\ (a(x) - 1)(f(x) - g(x)) \ge 0. \end{cases}$$

Корень п-ой степени

$\sqrt[n]{a} = b$, $b^n = a$, $\partial e \ a \ge 0$, $b \ge 0$, $n \in \mathbb{N}$, n > 1Свойства корня п-ой степени

1.
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$
, $z \partial e \ a \ge 0$, $b \ge 0$;

2.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
, $\partial e \ a \ge 0$, $b > 0$;

3.
$$\left(\sqrt[n]{a}\right)^k = \sqrt[n]{a^k}$$
, $a \ge 0$;

4.
$$\sqrt[k]{\sqrt[n]{a}} = \sqrt[nk]{a}$$
, $\partial e \ a \ge 0$;

5.
$$\sqrt[np]{a^{kp}} = \sqrt[n]{a^k}$$
, $r\partial e \ a \ge 0$;

6.
$$\sqrt[n]{a^n} = \begin{cases} |a|, & n - \text{четно}, \\ a, & n - \text{нечетно}; \end{cases}$$

7.
$$\sqrt[n]{-a} = -\sqrt[n]{a}, n - \text{нечетно};$$

8.
$$a^{\frac{k}{n}} = \sqrt[n]{a^k}$$
, $e^{in} \partial e^{in} \partial e^{in} \partial e^{in}$

Степени

 $a^{rac{p}{q}} = \sqrt[q]{a^p}$, $z \partial e \ a \ge 0$, $q \in N$, $p \in Z$ Свойства степени (для $n \in R$, $k \in R$)

1.
$$a^0 = 1$$
, $e^0 = 0$;

2.
$$a^1 = a$$
;

3.
$$a^{-1} = \frac{1}{a}$$
, $e \partial e \ a \neq 0$;

4.
$$a^{-n} = \frac{1}{a^n}$$
, $\partial e \ a \neq 0$;

5.
$$a^n \cdot a^k = a^{n+k}$$
;

6.
$$a^n : a^k = a^{n-k}, \ \textit{rde} \ a \neq 0;$$

7.
$$(a^n)^k = a^{nk}$$
;

8.
$$a^n \cdot b^n = (ab)^n$$
;

9.
$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$
, $\partial e \ b \neq 0$;

10.
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$$
, $\partial e \ a \neq 0$, $b \neq 0$.

Иррациональные уравнения и неравенства

1.
$$\sqrt{f(x)} = \sqrt{g(x)} \Leftrightarrow \begin{cases} g(x) \ge 0, \\ f(x) = g(x) \end{cases} \Leftrightarrow \begin{cases} f(x) \ge 0, \\ f(x) = g(x) \end{cases}$$
2. $\sqrt{f(x)} = g(x) \Leftrightarrow \begin{cases} g(x) \ge 0, \\ f(x) = g(x). \end{cases}$

2.
$$\sqrt{f(x)} = g(x) \Leftrightarrow \begin{cases} g(x) \ge 0, \\ f(x) = g^2(x). \end{cases}$$

3.
$$\frac{\sqrt{f(x)}}{g(x)} \ge 0 \Leftrightarrow \begin{bmatrix} f(x) = 0, \\ g(x) \ne 0; \\ f(x) > 0, \\ g(x) > 0. \end{bmatrix}$$

$$4. \quad \sqrt{f(x)} < g(x) \Leftrightarrow \begin{cases} g(x) > 0, \\ f(x) \ge 0, \\ f(x) < g^2(x). \end{cases}$$

5.
$$\sqrt{f(x)} > g(x) \Leftrightarrow \begin{cases} g(x) < 0, \\ f(x) \ge 0; \\ g(x) \ge 0, \\ f(x) > g^2(x). \end{cases}$$
6. $\sqrt{f(x)} \le \sqrt{g(x)} \Leftrightarrow \begin{cases} f(x) \ge 0, \\ f(x) \le g(x). \end{cases}$
7. $\sqrt{f(x)} < \sqrt{g(x)} \Leftrightarrow \begin{cases} f(x) \ge 0, \\ f(x) \le g(x). \end{cases}$

6.
$$\sqrt{f(x)} \le \sqrt{g(x)} \Leftrightarrow \begin{cases} f(x) \ge 0, \\ f(x) \le g(x) \end{cases}$$

7.
$$\sqrt{f(x)} < \sqrt{g(x)} \Leftrightarrow \begin{cases} f(x) \ge 0, \\ f(x) < g(x). \end{cases}$$

Логарифм

$$log_a b = c$$
, $a^c = b$, где $a > 0$, $a \ne 1$, $b > 0$.

Основное логарифмическое тождество: $a^{\log_a b} = b$.

Свойства логарифмов

1	$log_a 1 = 0$	6	$\log_{a^k} a^m = \frac{m}{k}$	11	$\log_{a^k} b^m = \frac{m}{k} \log_a b$
2	$log_a a = 1$	7	$\log_c(ab) = \log_c a + \log_c b$	12	$\boldsymbol{a}^{log_cb}=\boldsymbol{b}^{log_ca}$
3	$\log_a \frac{1}{a} = -1$	8	$\log_c\left(\frac{a}{b}\right) = \log_c a - \log_c b$	13	$\log_a b = \frac{\log_c b}{\log_c a}$
4	$\log_{a^k} a = \frac{1}{k}$	9	$\log_{a^k} b = \frac{1}{k} \log_a b$	14	$\log_a b = \frac{1}{\log_b a}$
5	$log_a a^m = m$	10	$log_a b^m = mlog_a b$	15	$\log_a b \cdot \log_c d = \log_c b \cdot \log_a d$

Логарифмические уравнения и неравенства

11	При условии $f(x) > 0$, $g(x) > 0$, $a(x) > 0$, $a(x) \neq 1$, $h(x) > 0$, $h(x) \neq 1$, $p(x) > 0$, $p(x) \neq 1$								
	выполняются след	ующие переходы:							
1	$\log_a f(x) = \log_a g(x)$	f(x) = g(x)							
2	$\log_{a(x)} f(x) = \log_{a(x)} g(x)$	f(x) = g(x)							
3	$log_a f(x) > 0$ или $(< 0; \ge 0; \le 0)$	$(a-1)(f(x)-1)>0$ или $(<0; \ge 0; \le 0)$							
4	$log_{a(x)} f(x) > 0$ или $(<0; \ge 0; \le 0)$	$(a(x)-1)(f(x)-1)>0$ или $(<0; \ge 0; \le 0)$							
5	$\log_a f(x) > \log_a g(x)$ или $(<; \geq; \leq)$	$(a-1)(f(x)-g(x))>0$ или $(<0; \ge 0; \le 0)$							
6	$log_{a(x)} f(x) > log_{a(x)} g(x)$ или $(<; \geq; \leq)$	$(a(x)-1)(f(x)-g(x))>0$ unu $(<0; \ge 0; \le 0)$							
7	$\log_{h(x)} a(x) - \log_{p(x)} a(x) > 0$	(a(x)-1)(h(x)-1)(p(x)-1)(p(x)-h(x)) > 0							
'	или (< 0; ≥ 0; ≤ 0)	или $(<0; \ge 0; \le 0)$							
8	$\log_{h(x)} f(x) \cdot \log_{p(x)} g(x) > 0$	$\left \frac{(f(x)-1)(g(x)-1)}{(h(x)-1)(p(x)-1)} > 0 \right $ unu $(<0; \ge 0; \le 0)$							
0	или (< 0; ≥ 0; ≤ 0)	(h(x)-1)(p(x)-1)							
	$log \rightarrow f(r)$	(f(x)-1)							
9	$\left rac{\log_{h(x)}f(x)}{\log_{p(x)}g(x)}>0 ight.$ עדע $\left(<0;\ \geq0;\ \leq0 ight)$	$\frac{(g(x)-1)(h(x)-1)(p(x)-1)}{(g(x)-1)(h(x)-1)(p(x)-1)} > 0$							
	$\log_{p(x)}g(x)$	или $(<0; \ge 0; \le 0)$							

Соотношения в правильных многоугольниках

n	S(a)	R(a)	r(a)	a(r)	a(R)	R(r)	r(R)	S(R)	S(r)	P(a)	P(r)	P(R)	h(a)
Δ	$\frac{a^2\sqrt{3}}{4}$	$\frac{a}{\sqrt{3}}$	$\frac{a}{2\sqrt{3}}$	$2\sqrt{3}r$	$R\sqrt{3}$	2r	$\frac{R}{2}$	$\frac{3\sqrt{3}R^2}{4}$	$3\sqrt{3}r^2$	За	$6\sqrt{3}r$	$3R\sqrt{3}$	$\frac{a\sqrt{3}}{2}$
	a^2	$\frac{a}{\sqrt{2}}$	$\frac{a}{2}$	2r	$R\sqrt{2}$	$r\sqrt{2}$	$\frac{R}{\sqrt{2}}$	$2R^2$	$4r^2$	4a	8 <i>r</i>	$4\sqrt{2}R$	_
\bigcirc	$\frac{3a^2\sqrt{3}}{2}$	а	$\frac{a\sqrt{3}}{2}$	$\frac{2r}{\sqrt{3}}$	R	$\frac{2r}{\sqrt{3}}$	$\frac{R\sqrt{3}}{2}$	$\frac{3\sqrt{3}R^2}{2}$	$2\sqrt{3}r^2$	6a	$4\sqrt{3}r$	6R	_

Обозначения

a – сторона правильного n-угольника

 ${\it R}$ – радиус описанной окружности около правильного n-угольника

r – радиус вписанной окружности в правильный n-угольник

 ${f S}$ – площадь правильного n-угольника

Р – периметр правильного n-угольника

h(a) – высота, проведенная к стороне правильного *n*-угольника

Теория вероятностей

<u>Вероятностью</u> события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместимых событий, которые могут произойти в результате одного испытания или наблюдения: $P(A) = \frac{m}{a}$.

(Пусть k – количество бросков монеты, тогда количество всевозможных исходов: $n=2^k$.

Пусть k – количество бросков кубика, тогда количество всевозможных исходов: $n = 6^k$)

<u>Свойство 1.</u> Вероятность достоверного события равна единице.

<u>Свойство 2.</u> Вероятность невозможного события равна нулю.

<u>Свойство 3.</u> Вероятность случайного события есть положительное число, заключенное между нулем и единицей $0 \le P(A) \le 1$.

<u>Теорема сложения вероятностей несовместных событий:</u> P(A + B) = P(A) + P(B).

<u>Теорема сложения вероятностей совместных событий:</u> $P(A + B) = P(A) + P(B) - P(A \cdot B)$.

Производная

Функция, <i>f(x)</i>	Производная, ƒ '(х)	Функция, <i>f(x)</i>	Производная, f'(x)
A (const), $A \in R$	0	$\sin x$	$\cos x$
$kx + b, k \in R, b \in R$	$k, k \in R$	cos x	$-\sin x$
χ^2	2x	$\cos^2 x$	- sin 2x
$x^n, n \in N$	nx^{n-1} , $n \in N$	sin²x	sin 2x
$\frac{1}{x}$	$-\frac{1}{\kappa^2}$	e^x	e^x
$\frac{1}{x^n}$, $n \in N$	$-\frac{n}{x^{n+1}}, n \in N$	$a^{\scriptscriptstyle x}$	a ^x ln a
$\sqrt[n]{x}$, $n \in N$	$\frac{1}{n\sqrt[n]{x^{n-1}}}, n \in N$	ln x	$\frac{1}{x}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$log_a x$	$\frac{1}{x \ln a}$
$\frac{1}{\sqrt{x}}$	$-\frac{1}{2x\sqrt{x}}$	arcsin x	$\frac{1}{\sqrt{1-x^2}}$
$x^a, a \in R$	ax^{a-1} , $a \in R$	arccos x	$-\frac{1}{\sqrt{1-x^2}}$
tg x	$\frac{1}{\cos^2 x}$	arctg x	$\frac{1}{1+x^2}$
ctg x	$-\frac{1}{\sin^2 x}$	arcctg x	$-\frac{1}{1+x^2}$

Правила дифференцирования

1.
$$(u+v)'=u'+v';$$

2.
$$(Cu)' = C \cdot u';$$

3.
$$(u \cdot v)' = u' \cdot v + u \cdot v';$$

$$4. \left(\frac{1}{v}\right) = -\frac{v}{v^2};$$

5.
$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$
.

Производная сложной функции

$$(h(f(x)))' = h'(f(x)) \cdot f'(x)$$

<u>Геометрический смысл производной</u> состоит в том, что значение производной функции в точке x_0 равно угловому коэффициенту касательной (тангенсу угла α), проведенной к графику функции в точке с абсциссой x_0 .

$$k = f'(x_o) = tg \alpha$$

Уравнение касательной к графику функции f(x) в точке с абсциссой x_0 :

$$y = f'(x_o)(x - x_o) + f(x_o)$$

<u>Физический смысл производной</u> состоит в том, что производная от координаты по времени есть <u>мгновенная скорость:</u>

$$v(t) = s'(t)$$

Если в точке x_0 производная функции f(x) меняет знак с «+» на «-», то x_0 – \underline{movka} максимума функции f(x).

Если в точке x_0 производная функции f(x) меняет знак с «–» на «+», то x_0 – $\underline{moч\kappa a}$ минимума функции f(x).

Логарифмические уравнения и неравенства

1.
$$log_a f(x) = log_a g(x) \Leftrightarrow \begin{cases} f(x) = g(x), \\ f(x) > 0, \\ g(x) > 0. \end{cases}$$

1.
$$\log_a f(x) = \log_a g(x) \Leftrightarrow \begin{cases} f(x) = g(x), \\ f(x) > 0, \\ g(x) > 0. \end{cases}$$
6. $\log_{a(x)} f(x) < 0 \Leftrightarrow \begin{cases} a(x) > 0, \\ f(x) > 0, \\ (a(x) - 1)(f(x) - 1) < 0. \end{cases}$
2. $\log_{a(x)} f(x) = \log_{a(x)} g(x) \Leftrightarrow \begin{cases} f(x) = g(x), \\ a(x) > 0, \\ a(x) > 0, \\ a(x) > 1, \end{cases}$

$$\begin{cases} f(x) = g(x), \\ a(x) > 0, \\ a(x) > 0, \\ a(x) > 1, \end{cases}$$

$$\begin{cases} f(x) = g(x), \\ a(x) > 0, \\ a(x) > 1, \end{cases}$$

$$\begin{cases} f(x) > 0, \\ g(x) > 0. \end{cases}$$
7. $\log_{a(x)} f(x) \ge 0 \Leftrightarrow \begin{cases} a(x) > 0, \\ a(x) \ne 1, \\ f(x) > 0, \\ (a(x) - 1)(f(x) - 1) \ge 0. \end{cases}$
8. $\log_{a(x)} f(x) \le 0 \Leftrightarrow \begin{cases} f(x) > 0, \\ a(x) \ne 1, \\ f(x) > 0, \\ (a(x) - 1)(f(x) - 1) \le 0. \end{cases}$
9. $\log_a f(x) > \log_a g(x) \Leftrightarrow \begin{cases} f(x) > 0, \\ g(x) > 0, \\ (a(x) - 1)(f(x) - 1) \le 0. \end{cases}$
9. $\log_a f(x) > \log_a g(x) \Leftrightarrow \begin{cases} f(x) > 0, \\ g(x) > 0, \\ (a(x) - 1)(f(x) - g(x)) > 0. \end{cases}$

3.
$$log_a f(x) > 0 \Leftrightarrow \begin{cases} f(x) > 0, \\ (a-1)(f(x)-1) > 0. \end{cases}$$

4.
$$log_a f(x) < 0 \Leftrightarrow \begin{cases} f(x) > 0, \\ (a-1)(f(x)-1) < 0 \end{cases}$$

5.
$$log_{a(x)} f(x) > 0 \Leftrightarrow \begin{cases} a(x) > 0, \\ f(x) > 0, \\ (a(x) - 1)(f(x) - 1) > 0. \end{cases}$$

6.
$$log_{a(x)} f(x) < 0 \Leftrightarrow \begin{cases} a(x) > 0, \\ f(x) > 0, \\ (a(x) - 1)(f(x) - 1) < 0 \end{cases}$$

7.
$$\log_{a(x)} f(x) \ge 0 \Leftrightarrow \begin{cases} a(x) > 0, \\ a(x) \ne 1, \\ f(x) > 0, \\ (a(x) - 1)(f(x) - 1) \ge 0. \end{cases}$$

8.
$$log_{a(x)} f(x) \le 0 \Leftrightarrow \begin{cases} a(x) > 0, \\ a(x) \ne 1, \\ f(x) > 0, \\ (a(x) - 1)(f(x) - 1) \le 0. \end{cases}$$

9.
$$\log_a f(x) > \log_a g(x) \Leftrightarrow \begin{cases} f(x) > 0, \\ g(x) > 0, \\ (a-1)(f(x)-g(x)) > 0 \end{cases}$$

$$\mathbf{10.} \log_{a(x)} f(x) < \log_{a(x)} g(x) \iff \begin{cases} a(x) > 0, \\ f(x) > 0, \\ g(x) > 0, \\ (a(x) - 1)(f(x) - g(x)) < 0. \end{cases}$$

$$[a(x) > 0,]$$

11.
$$\log_{a(x)} f(x) \ge \log_{a(x)} g(x) \Leftrightarrow \begin{cases} a(x) > 0, \\ a(x) \ne 1, \\ f(x) > 0, \\ g(x) > 0, \\ (a(x) - 1)(f(x) - g(x)) \ge 0. \end{cases}$$

$$\begin{aligned} & h(x) > 0, \\ & h(x) \neq 1, \\ & p(x) > 0, \\ & \{ \frac{f(x) - 1)(g(x) - 1)}{(h(x) - 1)(p(x) - 1)} \leq 0, \\ & p(x) \neq 1, \\ & f(x) > 0, \\ & g(x) > 0. \end{aligned}$$

$$\mathbf{13.} \frac{\log_{h(x)} f(x)}{\log_{p(x)} g(x)} \ge 0 \Leftrightarrow \begin{cases}
h(x) > 0, \\
h(x) \ne 1, \\
p(x) > 0, \\
p(x) \ne 1, \\
f(x) > 0, \\
g(x) > 0, \\
g(x) > 0, \\
g(x) \ne 1, \\
\frac{(f(x) - 1)}{(h(x) - 1)(p(x) - 1)(g(x) - 1)} \ge 0.
\end{cases}$$