



# Modèles Bayésiens hiérarchiques

## On souhaite modéliser la fréquence des sinistres d'un ensemble de conducteurs dans trois villes différentes A, B, C

#### Trois variables à estimer:

$$\lambda_A, \lambda_B, \lambda_C$$

## On peut considérer une approche indépendante:

# Données C Données B Données A $\lambda_A \sim \text{prior}_A$

### Quels sont les inconvénients de ce modèle?

## Aucun lien entre les régions: on n'exploite pas les similarités entre les régions



## $\alpha, \beta$ fixés (vaguement, ou données historiques)

# Implicitement à quoi correspondent les quantités:

$$\frac{\alpha}{\beta}$$
 et  $\frac{\alpha}{\beta^2}$ 

### Quels sont les inconvénients de ce modèle?

# Modèles Bayésiens hiérarchiques

On souhaite modéliser la fréquence des sinistres d'un ensemble de conducteurs dans trois villes différentes A, B, C

Trois variables à estimer:  $\lambda_A, \lambda_B, \lambda_C$ 

On peut considérer une approche indépendante:

Quels sont les inconvénients de ce modèle ?



Aucun lien entre les régions: on n'exploite pas les similarités entre les régions

Et si on utilise la même prior ?



 $\lambda_A, \lambda_B, \lambda_C \sim \text{Gamma}(\alpha, \beta)$ 

 $\alpha, \beta$  fixés (vaguement, ou données historiques)

Implicitement à quoi correspondent les quantités:

 $\frac{\alpha}{\beta}$  et  $\frac{\alpha}{\beta^2}$ 



# Modèles Bayésiens hiérarchiques



Ne pas forcer les paramètres a priori, les considérer comme des variables aléatoires à estimer:

$$\lambda_A, \lambda_B, \lambda_C \sim \text{Gamma}(\alpha, \beta)$$

Un modèle bayésien hiérarchique modélise les similarités et les différences entre les groupes à partir des données

