Q6 - Assignment 4

Rishabh Shah, Shriram SB, Anmol Mishra CS 663 - Digital Image Processing

October 15, 2018

Exercise. Consider a matrix A of size $m \times n$, $m \le n$. Define $P = A^T A$ and $Q = A A^T$. (Note: all matrices, vectors and scalars involved in this question are real-valued).

1. Prove that for any vector \boldsymbol{y} with appropriate number of elements, we have $\boldsymbol{y}^t \boldsymbol{P} \boldsymbol{y} \geq 0$. Similarly show that $\boldsymbol{z}^t \boldsymbol{Q} \boldsymbol{z} \geq 0$ for a vector \boldsymbol{z} with appropriate number of elements. Why are the eigenvalues of \boldsymbol{P} and \boldsymbol{Q} non-negative?

Answer.

$$y^{t}Py = y^{t}A^{t}Ay$$

$$= (Ay)^{t}(Ay)$$

$$= x^{t}x$$

$$= ||x||^{2}$$

$$(Using, x = Ay)$$

$$(Thus, y^{T}Py \ge 0)$$

$$z^{t}Qz = z^{t}AA^{t}z$$

$$= (A^{t}z)^{t}(A^{t}y)$$

$$= x^{t}x$$

$$= ||x||^{2}$$

$$(Using, x = A^{t}z)$$

$$(Thus, z^{T}Qz \ge 0)$$

Assume there exists negative eigenvalue $(\lambda < 0)$ for given matrix P. Let $v \neq 0$ be the corresponding eigenvector. Since we had proved $y^t P y \geq 0 \forall y$, if we substitute y = v $v^t P v = v^t \lambda v = \lambda ||v||^2$

Since $\lambda < 0$ and $v \neq 0$, R.H.S < 0 and $L.H.S \geq 0$ which is impossible. Thus, every eigenvalue (for non zero eigenvector) of P is non negative.

Similarly for Q, if we assume there exists negative eigenvalue ($\lambda < 0$). Let $v \neq 0$ be the corresponding eigenvector. Since we had proved $z^tQz \geq 0 \forall z$, if we substitute z = v $v^tQv = v^t\lambda v = \lambda ||v||^2$

Since $\lambda < 0$ and $v \neq 0$, R.H.S < 0 and $L.H.S \geq 0$ which is impossible. Thus, every eigenvalue (for non zero eigenvector) of Q is non negative.

2. If u is an eigenvector of P with eigenvalue λ , show that Au is an eigenvector of Q with eigenvalue λ . If v is an eigenvector of Q with eigenvalue μ , show that A^Tv is an eigenvector of P with eigenvalue μ . What will be the number of elements in u and v?

Answer.

$$Q \times (Au) = A \times (A^{t}A) \times u$$
$$= A \times (P) \times u$$
$$= A \times (\lambda u)$$
$$= \lambda (Au)$$

(Thus, Au is the eigenvector of Q with same eigenvalue λ) For the above we also need to ensure $u \neq 0 \implies Au \neq 0$

$$Pu = \lambda u$$
$$A^t \times (Au) = \lambda u$$

So if Au=0 this implies L.H.S=0 and consequently R.H.S=0 but since we assumed $u\neq 0$ this case is not possible. Thus by contradiction $u\neq 0 \implies Au\neq 0$

$$P \times (A^t v) = A^t \times (AA^t) \times v$$
$$= A^t \times (Q) \times v$$
$$= A^t \times (\lambda v)$$
$$= \lambda (A^t v)$$

(Thus, $A^t v$ is the eigenvector of P with same eigenvalue λ) For the above we also need to ensure $v \neq 0 \implies A^t v \neq 0$

$$Qv = \lambda v$$
$$A \times (A^t v) = \lambda v$$

So if $A^t v = 0$ this implies L.H.S = 0 and consequently R.H.S = 0 but since we assumed $v \neq 0$ this case is not possible. Thus by contradiction $v \neq 0 \implies A^t v \neq 0$

A is $m \times n$ matrix, thus for $A \times u$ to exist and to result in a column vector, u must be $n \times 1$ vector. A^t is $n \times m$ matrix, thus for $A^t \times v$ to exist and to result in a column vector, v must be $m \times 1$ vector. Thus, the number of elements in u = n and v = m

3. If v_i is an eigenvector of Q and we define $u_i \triangleq \frac{A^T v_i}{\|A^T v_i\|_2}$. Then prove that there will exist some real, non-negative γ_i such that $Au_i = \gamma_i v_i$.

Answer.

$$Au_{i} = A \times \frac{A^{T}v_{i}}{\|A^{T}v_{i}\|_{2}}$$

$$= \frac{(AA^{T}) \times v_{i}}{\|A^{T}v_{i}\|_{2}}$$

$$= \frac{Qv_{i}}{\|A^{T}v_{i}\|_{2}}$$

$$= \frac{\lambda_{i}}{\|A^{T}v_{i}\|_{2}}v_{i} \qquad (where Qv_{i} = \lambda_{i}v_{i})$$

$$= \gamma_{i}v_{i} \qquad (Using, \gamma_{i} = \frac{\lambda_{i}}{\|A^{T}v_{i}\|_{2}})$$

Since $\lambda_i \geq 0$ and $||A^T v_i||_2 > 0 \Longrightarrow \gamma_i \geq 0$.

Hence Proved.

4. It can be shown that $\boldsymbol{u}_i^T\boldsymbol{u}_j=0$ for $i\neq j$ and likewise $\boldsymbol{v}_i^T\boldsymbol{v}_j=0$ for $i\neq j$ for correspondingly distinct eigenvalues. Now, define $\boldsymbol{U}=[\boldsymbol{v}_1|\boldsymbol{v}_2|\boldsymbol{v}_3|...|\boldsymbol{v}_m]$ and $\boldsymbol{V}=[\boldsymbol{u}_1|\boldsymbol{u}_2|\boldsymbol{u}_3|...|\boldsymbol{u}_m]$. Now show that $\boldsymbol{A}=\boldsymbol{U}\boldsymbol{\Gamma}\boldsymbol{V}^T$ where $\boldsymbol{\Gamma}$ is a diagonal matrix containing the non-negative values $\gamma_1,\gamma_2,...,\gamma_m$. With this, you have just established the existence of the singular value decomposition of any matrix \boldsymbol{A} . This is a key result in linear algebra and it is widely used in image processing, computer vision, computer graphics, statistics,

machine learning, numerical analysis, natural language processing and data mining.

Answer.

$$AV = A[u_1 \mid u_2 \mid \dots \mid u_m]$$

$$= [Au_1 \mid Au_2 \mid \dots \mid Au_m]$$

$$= [\gamma_1 v_1 \mid \gamma_2 v_2 \mid \dots \mid \gamma_m v_m]$$
 (From previous proof)
$$= [v_1 \mid v_2 \mid \dots \mid v_m] \times D$$
 (where $D = \begin{bmatrix} \gamma_1 & 0 & \dots & 0 \\ 0 & \gamma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \gamma_m \end{bmatrix}$)
$$= U \times D$$
 ... Equation (1)

$$\begin{split} V^t \times V &= [u_1 \mid u_2 \mid \dots \mid u_m] \times \begin{bmatrix} u_1^t \\ u_2^t \\ \vdots \\ u_m^t \end{bmatrix} \\ &= \begin{bmatrix} u_1^t u_1 & u_1^t u_2 & \dots & u_1^t u_m \\ u_2^t u_1 & u_2^t u_2 & \dots & u_2^t u_m \\ \vdots & \vdots & \ddots & \vdots \\ u_m^t u_1 & u_m^t u_2 & \dots & u_m^t u_m \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \end{split}$$
 (Since $||u_i|| = 1$ (from previous part) and $u_i^t \times u_j = 0 \ \forall \ i \neq j$)

Also since V is a orthonormal matrix

$$V^t \times V = V \times V^t$$

$$V \times V^t = I \qquad \qquad \dots \quad Equation \quad (2)$$

$$AV = UD \qquad From \ Equation \ (1)$$

$$A \times (V \times V^t) = U \times D \times V^t$$

$$AI = UDV^t \qquad From \ Equation \ (2)$$

 $A = UDV^t$ Singular Value Decomposition for every matrix A exists