Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos

Dr. Ricardo Soto

[ricardo.soto@ucv.cl]
[http://www.inf.ucv.cl/~rsoto]

Escuela de Ingeniería Informática Pontificia Universidad Católica de Valparaíso

Marzo, 2010

1. Introducción

Un **autómata** es una máquina teórica que lee instrucciones en forma de símbolos y cambia de estado según éstas.

Áreas de aplicación de la teoría de autómatas:

- Comunicaciones.
- Teoría de Control.
- Circuitos secuenciales.

- Recocimiento de Patrones.
 - :
- Compiladores.

2. Autómatas Finitos Deterministas

- Una Autómata Finito Determinista (AFD) se define como una quintupla $M = (Q, V, \delta, q_0, F)$ donde:
 - Q es un conjunto finito de estados.
 - V es el alfabeto de entrada.
 - $\delta: Q \times V \rightarrow Q$ es la función de transición.
 - q₀ es el estado inicial.
 - F ⊆ Q es el conjunto de estados finales.

Determinista: se sabe con certeza el estado siguiente conociendo el estado actual y el símbolo a leer.

2. Autómatas Finitos Deterministas

Considere el siguiente autómata: $M=(\{q_0,q_1,q_2\},\{0,1\},\delta,q_0,\{q1\})$ donde la función $\delta:\{q_0,q_1,q_2\}\times\{0,1\}\to\{q_0,q_1,q_2\}$ viene dada por:

$$\delta(q_0, 0) = q_0$$
 $\delta(q_0, 1) = q_1$
 $\delta(q_1, 0) = q_0$ $\delta(q_1, 1) = q_2$
 $\delta(q_2, 0) = q_2$ $\delta(q_2, 1) = q_1$

Tabla de transición

δ	0	1
$\rightarrow q_0$	q_0	q_1
# q ₁	q_0	q_2
q_2	q_2	q_1

Diagrama de transición

3. Autómatas Finitos No Deterministas

- Una Autómata Finito No Determinista (AFND) se define como una quintupla $M = (Q, V, \Delta, q_0, F)$ donde:
 - Q es un conjunto finito de estados.
 - V es el alfabeto de entrada.
 - $\Delta : Q \times V \to \mathcal{P}(Q)$ es la función de transición.
 - q₀ es el estado inicial.
 - F ⊆ Q es el conjunto de estados finales.

No Determinista: No se puede determinar con certeza el estado siguiente conociendo el estado actual y el símbolo a leer.

3. Autómatas Finitos No Deterministas

Considere el siguiente autómata: $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \Delta, q_0, \{q1\})$

donde la función $\Delta: \{q_0, q_1, q_2\} \times \{0, 1\} \rightarrow \mathcal{P}(\{q_0, q_1, q_2\})$ viene dada por:

$$\Delta(q_0, 0) = \{q_0\} \quad \Delta(q_0, 1) = \{q_0, q_1\}$$
$$\Delta(q_1, 0) = \{q_0\} \quad \Delta(q_1, 1) = \{q_2\}$$
$$\Delta(q_2, 0) = \{q_2\} \quad \Delta(q_2, 1) = \{q_1\}$$

Tabla de transición

δ	0	1
$\rightarrow q_0$	$\{q_0\}$	$\{q_0, q_1\}$
# q 1	$\{q_0\}$	$\{q_{2}\}$
q_2	{q ₂ }	{ q ₁ }

Diagrama de transición

4. Autómatas Finitos con λ -transiciones

- Una Autómata Finito con λ -transiciones (AFND- λ) se define como una quintupla $M = (Q, V, \Delta, q_0, F)$ donde:
 - Q es un conjunto finito de estados.
 - V es el alfabeto de entrada.
 - $\Delta: Q \times (V \cup \lambda) \rightarrow \mathcal{P}(Q)$ es la función de transición.
 - q₀ es el estado inicial.
 - F ⊆ Q es el conjunto de estados finales.

Un AFND- λ puede decidir de forma no determinista entre cambiar de estado consumiendo o no consumiendo un símbolo de entrada.

4. Autómatas Finitos con λ -transiciones

Considere el siguiente autómata: $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \Delta, q_0, \{q1\})$

donde la función $\Delta: \{q_0, q_1, q_2\} \times \{0, 1, \lambda\} \rightarrow \mathcal{P}(\{q_0, q_1, q_2\})$ viene dada por:

$$\Delta(q_0, 0) = \{q_0\} \quad \Delta(q_0, 1) = \{q_0, q_1\}$$

$$\Delta(q_1, 0) = \{q_0\} \quad \Delta(q_1, 1) = \{q_2\}$$

$$\Delta(q_2, 0) = \{q_2\} \quad \Delta(q_2, \lambda) = \{q_1\}$$

Tabla de transición

δ	0	1	λ
$\rightarrow q_0$	$\{q_0\}$	$\{q_0, q_1\}$	-
# q 1	$\{q_0\}$	$\{q_{2}\}$	-
q ₂	$\{a_2\}$	-	{ <i>a</i> ₁}

Diagrama de transición

5. Ejercicios

Construya un autómata finito para cada uno de los siguientes lenguajes:

•
$$L_1 = \{(ab)^n | n > 1\}$$

•
$$L_2 = \{a^n b^m | n \ge 2 \ y \ m \ge 3\}$$

- Todas las palabras que empiezen con a y terminen con o
- Todas las palabras que empiezen con a, tengan una s y terminen con o
- Todas las palabras que tengan entre 3 y 5 letras

Construya un autómata finito que permita reconocer:

Un número entero

Una letra

Un número real

Un identificador

5. Ejercicios

Obtener la expresión regular asociada al lenguaje aceptado por los siguientes autómatas:

- Una máquina de Turing es un modelo matemático abstracto que formaliza el concepto de algoritmo.
- Fue introducido por Alan Turing en 1936.
- Consta de un cabezal lector/escritor y una cinta infinita en la que el cabezal lee el contenido, borra el contenido anterior y escribe un nuevo valor.

Una máquina de turing se define como una séptupla

$$M = (Q, V, \Gamma, \delta, q_0, B, F)$$
 donde:

- Q es un conjunto finito de estados.
- Γ es el conjunto de símbolos permitidos en la cinta.
- B ∈ Γ es el símbolo blanco.
- $V \in \Gamma$ es el alfabeto de entrada (sin incluir el blanco).
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ es la función de transición.
- q₀ es el estado inicial.
- F ⊆ Q es el conjunto de estados finales.

Considere una máquina de turing que verifica si el número de ceros de una palabra es par: $M = (\{q_0, q_1\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_0\})$ donde la

función δ viene dada por:

$$\delta(q_0, 0) = \{q_1, B, R\} \qquad \delta(q_0, 1) = \{q_0, B, R\}$$

$$\delta(q_1, 0) = \{q_0, B, R\} \qquad \delta(q_1, 1) = \{q_1, B, R\}$$

Para la entrada 00010 el proceso es el siguiente:

Ejercicio: diseñar una máquina de Turing que acepte el lenguaje $L = \{0^n 1^n | n > 1\}$

Solución:

$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

Función de transición:

δ	0	1	X	Y	В
q_0	q_1, X, R	-	-	q_3, Y, R	-
q_1	$q_1, 0, R$	q_2, Y, L	-	q_1, Y, R	-
q_2	$q_2, 0, L$	-	q_0, X, R	q_2, Y, L	-
q ₃	-	-	-	q_3, Y, R	q_4, B, R
q_4	S	S	S	S	S