

Natural Language Processing IN2361

Prof. Dr. Georg Groh

Organisation:

- Wed + Fr 14-16, Interim 1 HS 2, all recorded on RBG Live
- Moodle with all materials.
- complete literature: freely available on Web. Every lecture has corresponding background reading
- no tutorials
- 120 min live written exam + repeat exam
- further elements from our NLP universe:
 - NLP 2.0 (Advanced Deep Learning: NLP) in SS
 - Lab course NLP, 10 ECTS, in SS: 50-60 seats
 - Lab course Ethical AI, 10 ECTS, in SS: 20 seats
 - Lab course Explainable AI, 10 ECTS, in WS: 20-40 seats
 - Seminar Ethical AI, 5 ECTS, in SS: 20 seats.

Chapter 2 Regular Expressions, Text-Normalization, Edit-Distance

- content is based on [1] and [2]
- certain elements (e.g. equations or tables) were taken over or taken over in a modified form from [1] or [2]
- citations of [1] and [2] or from [1] or [2] are omitted for legibility
- errors are fully in the responsibility of Georg Groh
- BIG thanks to Dan and James for a great book!

```
User<sub>1</sub>: Men are all alike.
```

ELIZA₁: IN WHAT WAY

User₂: They're always bugging us about something or other.

ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE

User₃: Well, my boyfriend made me come here.

ELIZA₃: YOUR BOYFRIEND MADE YOU COME HERE

User₄: He says I'm depressed much of the time.

ELIZA₄: I AM SORRY TO HEAR YOU ARE DEPRESSED

ELIZA Conversation 1966

```
s/.* I'M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
s/.* all .*/IN WHAT WAY/
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/
```

Regular Expression: algebraic notation for characterizing a set of strings
 → simple deterministic classifier (e.g. for searching) or for substitutions

[]: disjunction of letters:

Pattern	Matches
[wW]oodchuck	Woodchuck or woodchuck
[1234567890]	a single digit

[-]: ranges:

Pattern	Matches	
[A-Z]	an upper case letter	Drenched Blossoms
[a-z]	a lower case letter	my beans were impatient
[0-9]	a single digit	Chapter 1: Down the Rabbit Hole

caret: [^]: negation (if first in []): you need to put first otherwise it is a character

Pattern	Matches	
[^A-Z]	not an upper case letter	Oyfn pripetchik
[^Ss]	neither 'S' nor 's'	\underline{I} have no exquisite reason
[e^]	either e or ^	^^ee Look here
[^e^]	neither e nor ^	^^ee <u>L</u> ook here
a^b	the pattern a caret b	Look up <u>a^b</u> now

|: disjunction:

Pattern	Matches
yours mine	yours or mine
a b c	same as [abc]
[gG]roundhog [Ww]oodchuck	obvious
<pre>gupp(y ies)</pre>	guppy or guppies

star is zero or more char

? * + {} quantifiers (for counting); . wildcards

Pattern	Matches	
colou?r	optional previous char or expr	<u>color</u> or <u>colour</u>
o*h!	zero or more of previous char or expr	<u>h!</u> or <u>oh!</u> or <u>ooh!</u>
o+h!	one or more of previous char or expr	oh! or ooh! or oooh!
a{3,5}	{x,y} : exactly x to y many	aaa or aaaaa or aaaaa
beg.n	. matches any char except \r	begin or begun or beg3n

^ \$ \b \B anchors:

Pattern	Matches	
^[A-Z]	at start of a line	Palo Alto
^[^A-Za-z]		<pre>1 "Hello"</pre>
\.\$	at end of the line	The end.
•\$		The end? The end!
\bthe\b	matches word boundaries	the world but not other

Text Normalization

Basic (application specific!) tasks:

- Segmenting / tokenizing words in running text
- Normalizing word formats (e.g. lemmatization)
- Segmenting sentences in running text

Example: How Many Words?

I do uh main- mainly business data processing

o disfluencies in utterances: fragments, fillers, (similar also: emoticons) etc.

Seuss's cat in the hat is different from other cats!

- Lemma: same stem + part of speech + rough word sense
 cat and cats = same lemma
- Wordform: the full inflected surface form
 cat and cats = different wordforms

Example: How Many Words?

they lay back on the San Francisco grass and looked at the stars and their

- Type: an element of the vocabulary V.
- Token: an instance of that type in running text. Number of Tokens: N
 How many in example? 15 tokens, 13 types

Corpora:

Corpus	Tokens = N	$\mathbf{Types} = V $
Shakespeare	884 thousand	31 thousand
Brown corpus	1 million	38 thousand
Switchboard telephone conversations	2.4 million	20 thousand
COCA	440 million	2 million
Google N-grams	1 trillion	13 million

Heran's / Heaps' Law:

$$|V| = kN^{\beta}$$

Which words should be in vocabulary formula

$$0 < \beta < 1$$
 , $k > 0$ $\beta \approx 0.7$

Word Tokenization

- Tokenization: segment text into words
- Issues:
- Finland's capital → Finland Finland's ?
- clitics: what're, I'm, isn't \rightarrow what are, I am, is not, what 're, is n't?
- \$4.99 \rightarrow \$4.99 \$4.99?
- $state-of-the-art \rightarrow state of the art ?$
- *lowercase* → lower-case lowercase lower case ?
- San Francisco \rightarrow one token or two? ($\leftarrow \rightarrow$ NER)
- m.p.h., Ph.D., $AT&T \rightarrow$ keep together?
- www.google.de → http://www.google.de?
- 233,455 → 233.455 ? 233455 ?
- count punctuation as separate words?
- wtf, lol, ⓒ, :-) →
- Penn Treebank tokenization standard:

Input: "The San Francisco-based restaurant," they said, "doesn't charge \$10".

Tokenization – Language Specific Issues

- French
 - clitics example: L'ensemble → one token or two?
 - L?L'?Le?
 - Want *l'ensemble* to match with *un ensemble*
- German
 - noun compounds are not segmented: example: Lebensversicherungsgesellschaftsangestellter ('life insurance company employee')
 - → German information retrieval needs compound splitter
- Chinese and Japanese
 - no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
 - "character-based" "radical based".....?

 treating all issues of tokenization by rules + automata (fast) is complicated → use ML-based (neural) sequence models with handlabelled training data.
 But is there a third, more simple, data-driven way, bridging btw. word-

→ Byte Pair Encoding (BPE):

level and character-level?

- o iteratively merge frequent pairs of characters:
 - start with symbol-vocabulary of characters + end-of-word-character.
 - for most frequent character n-gram pair in words: create new n-gram.
 - iterate. → word segmentation into character n-grams
- benefits: example: low, lowest in training set but lower not in training set but in test set → lower is decomposed as low + er: low and er may be known → compositional representation of unknowns

iteratively merge frequent pairs of characters:

- start with symbol-vocabulary of characters + end-of-word-character.
- for most frequent character n-gram pair in words: create new n-gram.
- iterate. → word segmentation into character n-grams

#occ	word
5	low_
2	lowest_
6	newer_
3	wider_
2	new_

En cok tekrar eden karakter ikililerine bakiyor ilk basta r_ mesela 9 kere r_ yeni bir karakterdir diyor

_ , d, e, i, l, n, o, r, s, t, w

all characters in vocab

_ : end of word token

iteratively merge frequent pairs of characters:

- start with symbol-vocabulary of characters + end-of-word-character.
- for most frequent character n-gram pair in words: create new n-gram.
- iterate. → word segmentation into character n-grams

#occ	word
5	low_
2	lowest_
6	n e w e r _
3	wider_
2	n e w _

most frequent pair: r (#occ=9)

iteratively merge frequent pairs of characters:

- start with symbol-vocabulary of characters + end-of-word-character.
- for most frequent character n-gram pair in words: create new n-gram.
- iterate. → word segmentation into character n-grams

#occ	word
5	low_
2	lowest_
6	n e w <mark>er</mark> _
3	wider_
2	n e w _

most frequent pair: e r_ (#occ=9)

iteratively merge frequent pairs of characters:

- start with symbol-vocabulary of characters + end-of-word-character.
- for most frequent character n-gram pair in words: create new n-gram.
- iterate. → word segmentation into character n-grams

#occ	word
5	low_
2	lowest_
6	n ew er_
3	wider_
2	n ew _

most frequent pair: ew (#occ=8)

next merge	current "vocabulary"
(n, ew)	_ , d, e, i, l, n, o, r, s, t, w, r_ , er_ , ew, new
(I, o)	_ , d, e, i, l, n, o, r, s, t, w, r_ , er_ , ew, new, lo
(lo, w)	_ , d, e, i, l, n, o, r, s, t, w, r_ , er_ , ew, new, lo, low
(new, er _)	_ , d, e, i, l, n, o, r, s, t, w, r_ , er_ , ew, new, lo, low, newer_
(low, _)	_ , d, e, i, l, n, o, r, s, t, w, r_ , er_ , ew, new, lo, low, newer_ , low_

I o w e r _ → low er_ (via greedy longest match first decoding (maximum matching, MaxMatch)) after learning token set

- o algorithm's meta parameter: number k of merge steps: if k large → most words and affixes will get their own character N-gram representation
- o alternative: wordpiece algorithm (e.g. used for BERT): merge pairs not based on frequency but in terms of maximizing the likelihood of the resulting language model of word pieces (while minimizing the number of wordpieces)

Word Normalization

- Normalization: mapping words / tokens in a standard format
 → create equivalence classes: {U.S., U.S.A, USA} → USA
- possible element: Case-Folding / Lowercasing: not always helpful:
 - GOOD LORD! it's US, you fool! not you alone!
 (<-> sentiment analysis, information extraction,)
 - The US government announced .. vs. it was us that had the trouble (<-> information extraction, information retrieval...)
- standard algorithms for tokenization + normalization:
 - deterministic algorithms based on regular expressions compiled into very efficient finite state automata.
 - also possible: ML-based models trained on large hand segmented corpora

Lemmatization

- Reduce inflections or variant forms to base form
 - \circ am, are, is \rightarrow be
 - \circ car, cars, car's, cars' \rightarrow car
 - \circ the boy's cars are different colors \rightarrow the boy car be different color
- most sophisticated classic method: morphological parsing
 - Morphology: study of way words are built up from smaller meaningbearing units called
 - o Morphemes:
 - Stems: The core meaning-bearing units
 - Affixes: Bits and pieces that adhere to stems
 - example: cats \rightarrow stem: *cat*, affix: *s*

Stemming

- "Poor man's lemmatization": reduce terms to their stems (mostly in / from information retrieval)
- Stemming: crude chopping of affixes (language dependent)

Example:

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Stemming for English: Porter's Stemmer

Set of term rewriting rules, applied to words repeatedly in passes

```
Step 1a
                                                          Step 2 (for long stems)
   sses \rightarrow ss caresses \rightarrow caress
                                                             ational \rightarrow ate relational \rightarrow relate
   ies \rightarrow i ponies \rightarrow poni
                                                             izer \rightarrow ize digitizer \rightarrow digitize
   ss \rightarrow ss \quad caress \rightarrow caress
                                                             ator \rightarrow ate operator \rightarrow operate
   s \rightarrow \emptyset cats \rightarrow cat
                                                             •••
Step 1b
                                                          Step 3 (for longer stems)
    (*v*)ing \rightarrow \emptyset walking \rightarrow walk
                                                             al \rightarrow \emptyset revival \rightarrow reviv
                          sing \rightarrow sing
                                                             able \rightarrow \emptyset adjustable \rightarrow adjust
    (*v*)ed \rightarrow \emptyset plastered \rightarrow plaster
                                                             ate \rightarrow \emptyset activate \rightarrow activ
```

Errors of Co	mmission	Errors of	Omission
organization	organ	European	Europe
doing	doe	analysis	analyzes
numerical	numerous	noise	noisy
policy	police	sparse	sparsity

Sentence Segmentation

- !, ? are relatively unambiguous
- Period "." is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
 - For each ".": apply classifier:
 features from "."'s neighborhood →
 class1: endOfSentence or
 class2: NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machinelearning

Sentence Segmentation with Decision Tree

Edit Distance and Alignment

How similar are two strings?

- Spell correction
 - the user typed "graffe": which word is closest?
 - graf
 - graft
 - grail
 - giraffe

- Computational Biology
 - Align two sequences of nucleotides
 AGGCTATCACCTGACCTCCAGGCCGATGCCC
 TAGCTATCACGACCGCGGTCGATTTGCCCGAC
 - Resulting alignment:

```
-AGGCTATCACCTGACCTCCAGGCCGA—-TGCCC---
TAG-CTATCAC—-GACCGC--GGTCGATTTGCCCGAC
```

Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

- Minimum Edit Distance between two strings is the minimum number of editing operations
 - o insertion
 - o deletion
 - o substitution

needed to transform one into the other

Levenshtein distance: assign costs: if each operation has cost of $1 \rightarrow$ dist = 5 if substitutions cost $2 \rightarrow$ dist = 8

Algorithm for MinEditDistance

- Todo: search for shortest weighted path
 (sequence of edits with minimal overall cost)
 from start string X (length n) to target string Y (length m)
- Define: D[i,j] = minEditDist btw.
 first i characters of X (X[1..i]) and
 first j characters of Y (Y[1..j])
- → minEditDist(X, Y) = D[m,n]
- Approach: Dynamic Programming: compute D(i,j) for small i,j and compute larger D(i,j) based on previously computed smaller values

Algorithm for MinEditDistance

```
function MIN-EDIT-DISTANCE(source, target) returns min-distance
```

```
n \leftarrow \text{LENGTH}(source)
m \leftarrow \text{LENGTH}(target)
Create a distance matrix distance [n+1,m+1]
# Initialization: the zeroth row and column is the distance from the empty string
     D[0,0] = 0
     for each row i from 1 to n do
         D[i,0] \leftarrow D[i-1,0] + del-cost(source[i])
     for each column j from 1 to m do
         D[0,j] \leftarrow D[0,j-1] + ins-cost(target[j])
# Recurrence relation:
for each row i from 1 to n do
     for each column j from 1 to m do
        D[i,j] \leftarrow MIN(D[i-1,j] + del-cost(source[i]),
                         D[i-1,j-1] + sub\text{-}cost(source[i],target[j]),
                         D[i,j-1] + ins-cost(target[j])
  Termination
return D[n,m]
```

Algorithm for MinEditDistance

return D[n,m]

function MIN-EDIT-DISTANCE(sour Confusion matrix for spelling errors sub[X, Y] = Substitution of X (incorrect) for Y (correct) option: may want to choose non-uniform costs here listance[n Initialization: the zeroth row and Recurrence relation: for each row i from 1 to n do for each column j from 1 to m $D[i,j] \leftarrow MIN(D[i-1,j] \neq del-cost(source[i]),$ D[i-1,j-1] + sub-cost(source[i], target[j]),D[i,j-1] + ins-cost(target[j])**Termination**

Algorithm for MinEditDistance (Levenshtein)

Initialization

$$D(i,0) = i$$

 $D(0,j) = j$

Recurrence Relation:

```
For each i=1...M

For each j=1...N

D(i,j)=\min \begin{cases} D(i-1,j)+1 & \text{i-1} \to i: another deletion from source is necessary} \\ D(i,j-1)+1 & \text{j-1} \to j: another insertion into target is necessary} \\ D(i-1,j-1)+1 & \text{2; if } X(i) \neq Y(j) \\ 0; if X(i) = Y(j) \end{cases}
```

• Termination:

D(N,M) is distance

Algorithm for MinEditDistance (Levenshtein)

:	
- 1	\square
J	\neg

Src\Tar	#	e	X	e	c	u	t	i	0	n
#	0	1	2	3	4	5	6	7	8	9
i		2	3	4	5	6	7	6	7	8
n	2	3	4	5	6	7	8	7	8	7
t	3	4	(5)	6	7	8	7	8	9	8
e	4	3	4	5	6	7	8	9	10	9
n	5	4	5	6	7	8	9	10	11	10
t	6	5	6	7	8	9	8	9	10	11
i	7	6	7	8	9	10	9	8	9	10
0	8	7	8	9	10	11	10	9	8	9
n	9	8	9	10	11	12	11	10	9	8

first column always like that
$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases}$$
 {2; if $X(i) \neq Y(j)$ 0; if $X(i) = Y(j)$

Extension of Algorithm: Compute Alignment

 Alignment of X and Y: from (n,m): reconstruct non-decreasing path through matrix ("backtrace"): remember in each step "where we came from"

	tai	'	J 🖳								
src :		#	e	X	e	c	u	t	i	0	n
310	#	0	1	2	3	4	5	6	7	8	9
i	i	1	<u> </u>	\ ←↑3	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	←7	← 8
Ţ	n	2	$\nwarrow \leftarrow \uparrow 3$	<u> </u>	\ ←↑ 5	<u> </u>	<u> </u>	<u> </u>	↑7	<u> </u>	₹7
Ť	t	3	<u> </u>	₹ ←↑ 5	<u> </u>	<u> </u>	<u> </u>	₹7	←↑ 8	<u> </u>	† 8
	e	4	₹ 3	← 4	₹ ← 5	← 6	←7	← ↑ 8	<u> </u>	<u> </u>	↑9
	n	5	↑4	₹ ←↑ 5	<u> </u>	<u> </u>	<u> </u>	<u> </u>	△ ←↑ 10	<u> </u>	₹ ↑ 10
	t	6	† 5	<u> </u>	<u> </u>	<u> </u>	<u> </u>	₹ 8	← 9	← 10	← ↑ 11
	i	7	† 6	<u> </u>	<u> </u>	<u> </u>	△ ←↑ 10	↑9	₹ 8	← 9	← 10
	0	8	_† 7	₹ ←↑8	\← ↑9	₹ ←↑ 10	<-↑ 11	↑ 10	↑9	₹8	←9
	n	9	↑8	<u> </u>	₹ ←↑ 10	<u> </u>	<u></u>	↑11	↑ 10	↑9	₹ 8

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + \begin{cases} 2; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}$$
 substitution

Bibliography

- (1) Dan Jurafsky and James Martin: Speech and Language Processing (3rd ed. draft, version Jan, 2022); Online: https://web.stanford.edu/~jurafsky/slp3/ (URL, Oct 2022) (this slideset is especially based on chapter 2)
- (2) Powerpoint slides from Dan Jurafsky and James Martin: Speech and Language Processing (3rd ed. draft); Online: https://web.stanford.edu/~jurafsky/slp3/ (URL, Oct 2022)

Recommendations for Studying

minimal approach:

work with the slides and understand their contents! Think beyond instead of merely memorizing the contents

standard approach:

minimal approach + read the corresponding pages in Jurafsky [1]

interested students

standard approach + do a selection of the exercises in Jurafsky [1]