Maximum Matching Problem: A Randomized, Algebraic Approach

Daniel Alabi

May 15, 2014

- Maximum Matching
 - Toy Problem: Selecting Doubles for Badminton
 - Problem Formulation
 - A Combinatorial Approach
- 2 An Algebraic Approach
 - Detecting the Presence of a Perfect Matching
 - Obtaining a Perfect Matching
 - Rabin-Vazirani Theorem
 - Obtaining a Maximum Matching

Outline

- Maximum Matching
 - Toy Problem: Selecting Doubles for Badminton
 - Problem Formulation
 - A Combinatorial Approach
- 2 An Algebraic Approach
 - Detecting the Presence of a Perfect Matching
 - Obtaining a Perfect Matching
 - Rabin-Vazirani Theorem
 - Obtaining a Maximum Matching

 $M = \{(Rinya, AnnTreesa), (NickJones, Hanan)\}$

$$M = \{(Rinya, AnnTreesa), (NickJones, Hanan)\}$$

Maximum Matching of size 2

 $M = \{(Rinya, AnnTreesa), (NickJones, Hanan), (Hillary, AnnTreesa)\}$

 $\textit{M} = \{(\textit{Daniel}, \textit{Rinya}), (\textit{NickJones}, \textit{Hanan}), (\textit{Hillary}, \textit{AnnTreesa})\}$

Maximum (Perfect) Matching of size 3

Formal Problem Statement

Given an undirected graph G = (V, E), find a set M such that each vertex in V is incident to at most one edge in M and |M| is maximized.

Combinatorial Approaches

Blossom Algorithm [Edmonds, 1965]

Uses blossoms, contractions, and augmenting paths.

It's pretty fast! A modified version of the Blossom Algorithm by Micali and Vazirani runs in $O(|E||V|^{1/2})$.

Outline

- Maximum Matching
 - Toy Problem: Selecting Doubles for Badminton
 - Problem Formulation
 - A Combinatorial Approach
- 2 An Algebraic Approach
 - Detecting the Presence of a Perfect Matching
 - Obtaining a Perfect Matching
 - Rabin-Vazirani Theorem
 - Obtaining a Maximum Matching

Two-Step Process:

Two-Step Process:

lacktriangledown Characterize a graph algebraically using a Tutte matrix T

Two-Step Process:

- lacktriangle Characterize a graph algebraically using a Tutte matrix T
- ② Obtain T^{-1} and use to get edges in a Maximum Matching

Tutte Matrix

A skew-symmetric representation of a graph with indeterminates (formal variables) as entries.

Tutte Matrix

A skew-symmetric representation of a graph with indeterminates (formal variables) as entries.

$$T_{i,j} = \begin{cases} x_{ij} & : \{i,j\} \in E \text{ and } i > j \\ -x_{ji} & : \{i,j\} \in E \text{ and } i < j \\ 0 & : \{i,j\} \notin E \end{cases}$$

Tutte Matrix

$$\begin{pmatrix} 0 & x_{12} & 0 & 0 & x_{15} & 0 \\ -x_{12} & 0 & x_{23} & 0 & x_{25} & 0 \\ 0 & -x_{23} & 0 & x_{34} & 0 & 0 \\ 0 & 0 & -x_{34} & 0 & x_{45} & x_{46} \\ -x_{15} & -x_{25} & 0 & -x_{45} & 0 & 0 \\ 0 & 0 & 0 & -x_{46} & 0 & 0 \end{pmatrix}$$

- Maximum Matching
 - Toy Problem: Selecting Doubles for Badminton
 - Problem Formulation
 - A Combinatorial Approach
- 2 An Algebraic Approach
 - Detecting the Presence of a Perfect Matching
 - Obtaining a Perfect Matching
 - Rabin-Vazirani Theorem
 - Obtaining a Maximum Matching

Tutte's Theorem

Let G be a graph and let T be its Tutte matrix.

Then, $det(T) \not\equiv 0 \iff$ there exists a perfect matching in G

Awesome! So we just have to calculate det(T)

Let G be a graph and let T be its Tutte matrix.

Then, $det(T) \not\equiv 0 \iff$ there exists a perfect matching in G

Awesome! So we just have to determine det(T). But... calculating det(T) is expensive.

Let G be a graph and let T be its Tutte matrix.

Then, $det(T) \not\equiv 0 \iff$ there exists a perfect matching in G

Awesome! So we just have to determine det(T). But... calculating det(T) is expensive.

$$det(T) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_i A_{i\sigma(i)}$$

Let G be a graph and let T be its Tutte matrix.

Then, $det(T) \not\equiv 0 \iff$ there exists a perfect matching in G

Awesome! So we just have to determine det(T). But... calculating det(T) is expensive.

$$det(T) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_i A_{i\sigma(i)}$$

det(T) is a polynomial in the indeterminates in the matrix. det(T) could have a superpolynomial number of terms. Very INEFFICIENT.

Daniel Alabi

Schwartz-Zippel Lemma (Restated)

Suppose $det(T) \not\equiv 0$; set each variable in T to an element in $\{1, \ldots, n^2\}$ uniformly at random.

Then, $Pr[det(T) = 0] \leq 1/n$.

Schwartz-Zippel Lemma (Restated)

Suppose $det(T) \not\equiv 0$; set each variable in T to an element in $\{1, \ldots, n^2\}$ uniformly at random.

Then, $Pr[det(T) = 0] \leq 1/n$.

Now, our algorithm is randomized (Monte Carlo).

- Maximum Matching
 - Toy Problem: Selecting Doubles for Badminton
 - Problem Formulation
 - A Combinatorial Approach
- 2 An Algebraic Approach
 - Detecting the Presence of a Perfect Matching
 - Obtaining a Perfect Matching
 - Rabin-Vazirani Theorem
 - Obtaining a Maximum Matching

Algorithm for Detecting a Perfect Matching

Schwartz-Zippel Lemma (Restated)

Suppose $det(T) \not\equiv 0$; set each variable in T to an element in $\{1, \ldots, n^2\}$ uniformly at random.

Then, $Pr[det(T) = 0] \le 1/n$.

We can now detect the presence of a perfect matching in a graph pretty quickly $(O(n^{2.373}))$.

$G \Rightarrow G - \{i, j\}$

Let G = (V, E) be an undirected simple graph with a perfect matching and T be its associated Tutte matrix. Then $(T^{-1})_{i,j} \neq 0$ if and only if $G - \{i, j\}$ has a perfect matching.

Let G = (V, E) be an undirected simple graph with a perfect matching and T be its associated Tutte matrix. Then $(T^{-1})_{i,j} \neq 0$ if and only if $G - \{i, j\}$ has a perfect matching.

Adjoint Formula

For any non-singular $n \times n$ matrix A, we have $(A^{-1})_{i,j} = \frac{(adjA)_{i,j}}{det(A)}$, where the value of $(adjA)_{i,j}$ (called the adjoint) is the determinant of A after the ith row and jth column have both been deleted.

Let G = (V, E) be an undirected simple graph with a perfect matching and T be its associated Tutte matrix. Then $(T^{-1})_{i,j} \neq 0$ if and only if $G - \{i, j\}$ has a perfect matching.

Proof:

Let G = (V, E) be an undirected simple graph with a perfect matching and T be its associated Tutte matrix. Then $(T^{-1})_{i,j} \neq 0$ if and only if $G - \{i, j\}$ has a perfect matching.

Proof:

$$(T^{-1})_{i,j} \neq 0 \Rightarrow G - \{i,j\}$$
 has a perfect matching.

Let G = (V, E) be an undirected simple graph with a perfect matching and T be its associated Tutte matrix. Then $(T^{-1})_{i,j} \neq 0$ if and only if $G - \{i, j\}$ has a perfect matching.

Proof:

$$(T^{-1})_{i,j} \neq 0 \Rightarrow G - \{i,j\}$$
 has a perfect matching.

- Suppose G has a perfect matching and $(T^{-1})_{i,j} \neq 0$.

Let G = (V, E) be an undirected simple graph with a perfect matching and T be its associated Tutte matrix. Then $(T^{-1})_{i,j} \neq 0$ if and only if $G - \{i, j\}$ has a perfect matching.

Proof:

$$(T^{-1})_{i,j} \neq 0 \Rightarrow G - \{i,j\}$$
 has a perfect matching.

Suppose G has a perfect matching and $(T^{-1})_{i,j} \neq 0$.

– Then by the adjoint formula $(adjT)_{i,j} \neq 0$ which implies that $G - \{i,j\}$ has a perfect matching.

Rabin, Vazirani

Let G = (V, E) be an undirected simple graph with a perfect matching and T be its associated Tutte matrix. Then $(T^{-1})_{i,j} \neq 0$ if and only if $G - \{i, j\}$ has a perfect matching.

Proof:

 $G - \{i, j\}$ has a perfect matching $\Rightarrow (T^{-1})_{i,j} \neq 0$.

Rabin, Vazirani

Let G = (V, E) be an undirected simple graph with a perfect matching and T be its associated Tutte matrix. Then $(T^{-1})_{i,j} \neq 0$ if and only if $G - \{i, j\}$ has a perfect matching.

Proof:

 $G - \{i, j\}$ has a perfect matching $\Rightarrow (T^{-1})_{i,j} \neq 0$.

Suppose $G - \{i, j\}$ has a perfect matching M.

Then if vertices i and j are added back to $G - \{i, j\}$, (i, j) will not be incident on any edge in M.

- So M' = M ∪ {(i,j)} will be a perfect matching for G.

Proof:

$$G - \{i, j\}$$
 has a perfect matching $\Rightarrow (T^{-1})_{i,j} \neq 0$.

Suppose $G - \{i, j\}$ has a perfect matching M.

Then if vertices i and j are added back to $G - \{i, j\}$, (i, j) will not be incident on any edge in M.

So $M' = M \cup \{(i,j)\}$ will be a perfect matching for G.

– Since G has a perfect matching, T^{-1} exists and by the adjoint formula, $(T^{-1})_{i,j} = \frac{(adjT)_{i,j}}{det(T)}$.

Proof:

 $G - \{i, j\}$ has a perfect matching $\Rightarrow (T^{-1})_{i,j} \neq 0$.

Suppose $G - \{i, j\}$ has a perfect matching M.

Then if vertices i and j are added back to $G - \{i, j\}$, (i, j) will not be incident on any edge in M.

So $M' = M \cup \{(i,j)\}$ will be a perfect matching for G.

Since G has a perfect matching, T^{-1} exists and by the adjoint formula,

$$(T^{-1})_{i,j} = \frac{(adjT)_{i,j}}{det(T)}.$$

G has a perfect matching M'; so $det(T) \neq 0$.

- Since $G - \{i, j\}$ has a perfect matching M, $(adjT)_{i,j} \neq 0$.

Proof:

$$G - \{i, j\}$$
 has a perfect matching $\Rightarrow (T^{-1})_{i,j} \neq 0$.

Suppose $G - \{i, j\}$ has a perfect matching M.

Then if vertices i and j are added back to $G - \{i, j\}$, (i, j) will not be incident on any edge in M.

So $M' = M \cup \{(i,j)\}$ will be a perfect matching for G.

Since G has a perfect matching, T^{-1} exists and by the adjoint formula,

$$(T^{-1})_{i,j} = \frac{(adjT)_{i,j}}{\det(T)}.$$

G has a perfect matching M'; so $det(T) \neq 0$.

Since $G - \{(i,j)\}$ has a perfect matching M, $(adjT)_{i,j} \neq 0$.

- Thus, $(T^{-1})_{i,j} \neq 0$

Algorithm for Finding a Perfect Matching

Algorithm FindPerfectMatching(G)1. $M = \emptyset$ 2. while G is not empty 3. T = Tutte matrix of G4. compute T^{-1} 5. Find (i,j) such that $\{i,j\} \in G.E$ and $(T^{-1})_{i,j} \neq 0$ 6. $M = M \cup \{(i,j)\}$ 7. $G = G - \{i,j\}$

return M

Theorem [Lovasz]

Let T be the Tutte matrix of a graph G and let m be the size of the maximum matching in G, then rank(T) = 2m.

Algorithm for obtaining a Maximum Matching

Algorithm FindMaxMatching(G)

- 1. G' = G with n 2m new "dummy" vertices added to G
- 2. Connect each dummy vertex to all the vertices in G
- 3. N = FindPerfectMatching(G')
- 4. M = N with dummy vertices and edges removed
- 5. return M

Takes $O(n^3 \log^2 n)$ time. Not bad.

 Use Gaussian elimination to reduce the amount of matrix inversions you do.

Algorithm FindPerfectMatching(G)1. $M = \emptyset$ 2. while G is not empty 3. T = Tutte matrix of G4. compute T^{-1} 5. Find (i,j) such that $\{i,j\} \in G.E$ and $(T^{-1})_{i,j} \neq 0$ 6. $M = M \cup \{(i,j)\}$ 7. $G = G - \{i,j\}$

return M

- Use Gaussian elimination to reduce the amount of matrix inversions you do.

- Use Gaussian elimination to reduce the amount of matrix inversions you do.
- ② The algorithm is easily parallelizable (it belongs in NC).
- **9** You can also make the algorithm Las Vegas with expected running time $O(n^4 \log^2 n)$.

I implemented Rabin-Varizani's algorithm. Check it out here: http://github.com/alabid/math_comps_code

References I

- Rabin, Vazirani Maximum Matchings in General Graphs through Randomization Journal of Algorithms 10, 551-567, 1989.
- Peterson, Loui
 The General Maximum Matching Algorithm of Micali and Vazirani
 Algorithmica, 511-533, 1988
- Ivan, Virza, Yuen Algebraic Algorithms for Matching

Thanks for listening! W(h)oosah!

Thanks for listening! W(h)oosah! Questions?