- 1.- "DESIGN FOR ELECTRONIC COMPONENT PATTERNS OVER 400 MICRON LAYERS ON PRINTED CIRCUITS", consisting of a dielectric material substrate (11) over which, the conducting material tracks (12) are drawn and constructed, such as copper, aluminium or similar, depositing between said tracks (12) an adhesive material (14) with the purpose of interlocking to electronic components (13) as a preliminary step, so that once they are adhered to the conducting material track (12), they receive the corresponding soldering material (15) in a wave soldering process, characterised in that in the printed circuits (10) the layer of conducting material or copper track (12) will be h₂ greater than h₁ and the corresponding pads of width a₁ will have a greater width a₂.

2.- "DESIGN FOR ELECTRONIC COMPONENT PATTERNS OVER 400 MICRON LAYERS ON PRINTED CIRCUITS" in accordance with claim 1, characterised in that the conducting parts (13.2) of electronic components (13) will have a width a_2 when the copper conducting layers (12) have a height h_2 greater than 105 microns.