A fast Genetic Algorithm for the Max Cut-Clique Problem

Giovanna Fortez Hitateguy

Tutores de Tesis

Franco Robledo - Pablo Romero

Omar Viera

Instituto de Computación Facultad de Ingeniería Universidad de la República

26 de noviembre de 2019

Agenda

- Problema
- 2 Estado del arte
- 3 Complejidad
- 4 Algoritmo
- 6 Resultados
- **6** Conclusiones

Definición

Problema

Máximo Clique-Corte (MCC)

Dado un grafo \mathcal{G} simple, se desea encontrar un *Clique* \mathcal{C} tal que el corte inducido por sus nodos tenga máximo cardinal.

Publicaciones Externas

Publicaciones

Publicaciones

- Martins, P.(2012). Cliques with maximum/minimum edge neighborhood and neighborhood density. Computers And Operations Research, 39(3):594-608.
- Martins, P., Ladrón, A. and Ramalhinho, H. (2014). Maximun cut-clique problem: ILS heuristics and a data analysis application. International Transactions in Operational Research, 22(5):775-809.
- Gouveia, L. and Martins, P.(2015). Solving the maximum edge-weigth clique problem in sparse graphs with compact formulation. Journal on Computational Optimization, 3(1):1-30.

Publicaciones

Publicaciones Locales

- Bourel, M., Canale, E., Robledo, F., Romero, P., and Stábile, L. (2018a). Complexity and Heuristics for the Max Cut-Clique Problem. In International Conference on Variable Neighborhood Search. ICVNS 2018. Lecture Notes in Computer Science, vol. 11328. Springer, pages 28-40.
- Bourel, M., Canale, E., Robledo, F., Romero, P., and Stábile, L. (2018b). A GRASP/VND Heuristic for the Max Cut-Clique problem. In International Conference on Machine Learning, Optimization, and Data Science. Lecture Notes in Computer Science, vol. 11331. Springer, pages 357-367.
- Bourel, M., Canale, E., Robledo, F., Romero, P., and Stábile, L. (2019). Complexity and Heuristics for the Weighted Max Cut-Clique Problem. International Transactions in Operational Research. Under revision to be published.

Complejidad

Proposition

El problema MCC pertenece al conjunto de problemas \mathcal{NP} -Completos.

Demostración.

Reducción desde MAX -CLIQUE.

Algoritmo Genético

Por la complejidad inherente al problema, se presenta una solución basada en Algoritmos Genéticos.

Algoritmos Genéticos

- 1 Initialize(P_0);
- 2 generation = 0;
- 3 While (notstopCriteria);
- 4 evaluate(P(generation));
- 5 $parents \leftarrow selection(P(generation));$
- 6 offspring ← evolutiveOperators(parents);
- 7 newpop ← replacement(offspring, P(generation));
- 8 generation + +;
- 9 $P(generation) \leftarrow newpop;$

Return BestSolutionEverFound;

Representación de la solución

Las soluciones factibles del problema, son todos los cliques que se encuentren en $\mathcal{G} = (V, E)$.

Para representar un clique se define una tupla binaria de largo n = |V|, como:

$$X_i = egin{cases} 1 & ext{si nodo } i \in \mathcal{C} \ 0 & ext{si no} \end{cases}$$
 , $orall i \in V$

Función de Adecuación

- Coincide con la función objetivo
- \bullet Busca maximizar la cantidad de aristas en el corte generado por el clique $\mathcal C$

Función de Fitness

$$|\delta(\mathcal{C})| = \sum_{v \in \mathcal{C}} deg(v) - |\mathcal{C}| \times |\mathcal{C} - 1|$$

Operadores Evolutivos

Cruzamiento

Cruzamiento de 2 puntos

Operadores Evolutivos

Mutación

Mutación Simple

Tratamiento

Se utiliza algoritmo de corrección basado en la etapa de construcción del GRASP/VND, luego de las siguiente etapas.

- inicialización la población
- aplicación del operador de Cruzamiento
- aplicación del operador de Mutación

Ajuste de Parámetros

Instancias utilizadas

Instancia	V	<i>E</i>	Densidad	E(C)
p_hat300-1	300	10933	0.244	789
MANN_a9	45	918	0.9273	412
keller4	171	9435	0.649	1140

Resultado de la calibración

Parámetro	Valor
tamaño población	200
prob. cruzamiento	0.8
prob. mutación	0.1

Resultados I

Instancias de prueba

Caracterización instancias

Instancias	Características de las instancias			
	<i>V</i>	<i>E</i>	Densidad	E(C)
c-fat200-1	200	1534	0.071	81
c-fat200-2	200	3235	0.163	306
c-fat200-5	200	8473	0.426	1892
c-fat500-1	500	4459	0.036	110
c-fat500-2	500	9139	0.073	380
c-fat500-5	500	23191	0.186	2304
c-fat500-10	500	46627	0.374	8930
p_hat300-2	300	21928	0.489	4637
p_hat300-3	300	33390	0.744	7740
keller5	776	225990	0.752	15184
MANN_a27	378	70551	0.990	31284
c125_9	125	69632	0.899	236406

Resultados II

Resultados obtenidos

	GRASP/VND		Algoritmo Genético		GAP
Instancias	E(C) prom.	T(s) prom.	E(C) prom.	T(s) prom.	(%)
c-fat200-1	81	0.37	81	6.4	0.0
c-fat200-2	306	0.81	306	7.5	0.0
c-fat200-5	1892	4.94	1892	12.5	0.0
c-fat500-1	110	2.46	110	16.15	0.0
c-fat500-2	380	5.83	380	14.3	0.0
c-fat500-5	2304	10.85	2304	20.36	0.0
c-fat500-10	8930	65.74	8930	32.59	0.0
p_hat300-2	4636.2	3659.39	4633.40	171.9	≈0.0
p_hat300-3	7726.8	3992.42	7387.27	279.8	0.04
c125_9	2766	253.25	2737.2	5.0	0.01
keller5	15183.24	1167.64	12382	50.57	0.18
MANN_a27	31244.10	548.54	30405	46.49	0.03

Conclusiones

Conclusiones

- Aplicaciones diversas en diferentes áreas.
- Se demuestra la \mathcal{NP} -Completitud.
- Solución competitiva con las existentes y con tiempos de ejecución muy buenos.

Trabajo Futuro

Trabajo Futuro

Trabajo Futuro

- Aplicaciones reales en grandes superficies.
- Explorar la versión con pesos en las aristas, (WMCC).

Gracias

Fin

Gracias por su atención.