

Zbieranie diamentów

W Bajtockich górach odkryto kopalnie diamentów. Dla uproszczenia można założyć, że kopalnia ma N komnat ponumerowanych liczbami całkowitymi od 0 do N-1. Komnaty połączone są M jednokierunkowymi korytarzami w taki sposób, że z każdej komnaty wychodzi przynajmniej jeden korytarz. W każdym korytarzu znajduje się pewna liczba diamentów, które można zebrać, jeżeli przejdzie się danym korytarzem. Ta liczba diamentów **nie zmienia się** po przejściu danym korytarzem - pozostaje taka sama dla kolejnych przejść.

Możliwe jest, że korytarz łączy komnatę z nią samą lub, że wiele korytarzy łączy tę samą parę komnat (być może również w tym samym kierunku). Ponadto, nie jest gwarantowane, że komnaty są spójne – może istnieć para komnat (x,y), że nie można dostać się z x do y.

Piotr przejdzie K korytarzami, aby zebrać diamenty. Wybierze pewną komnatę s, w której zacznie. Następnie przejdzie do kolejnej komnaty korytarzem wychodzącym z komnaty si będzie to powtarzał, dopóki nie przejdzie K korytarzy. Zwróć uwagę, że komnaty i korytarze, którymi chodzi, mogą się powtarzać oraz liczba diamentów zebranych w korytarzu nie zmienia się mimo wielokrotnego przechodzenia tym korytarzem. Zwróć uwagę, że zawsze będzie mógł przejść przez K korytarzy.

Piotr wybierze s oraz ścieżkę korytarzy w następujący sposób: Najpierw chce zmaksymalizować liczbę diamentów, które zbierze w pierwszym korytarzu, który przejdzie. Wśród wszystkich tych opcji wybierze tę, która maksymalizuje liczbę diamentów, które zbierze w drugim korytarzu. I tak powtórzy K razy. Innymi słowy, Piotr chce wybrać leksykograficznie największą ścieżkę. Pomóż mu i policz ile diamentów zbierze, jeżeli wybierze ścieżkę zgodnie z opisem.

🕙 Szczegóły implementacji

Należy zaimplementować funkcję calculate diamonds:

long long int calculate diamonds(int N, int M, int K, std::vector<int> u, std::vector<int> v, std::vector<int> d)

- N: liczba komnat w kopalni diamentów;
- *M*: liczba korytarzy między komnatami;
- *K*: liczba korytarzy, które przejdzie Piotr;
- u, v, d: vectory majace M liczb całkowitych, opisujące komnaty startowe, komnaty końcowe i liczby diamentów kolejnych korytarzy.

Ta funkcja zostanie wywołana raz dla każdego testu i powinna zwrócić jedną liczbę -

sumaryczną liczbę diamentów, które zbierze Piotr używając jego strategii.

Ograniczenia

- $1 \le N \le 2000$
- $1 \le M \le 4000$
- $1 \le K \le 10^9$
- $0 \le u[i], v[i] < N$
- $1 \le d[i] \le 10^9$ dla każdego $0 \le i < M$
- Gwarantowane jest, że z każdej komnaty wychodzi przynajmniej jeden korytarz.
- · Zwróć uwagę na mały limit pamięci: 4 MB.

Podzadania

Podzadanie	Punkty	Wymagane podzadania	N	M	K	Dodatkowe ograniczenia
0	0	_	_	_	_	Przykłady.
1	11	0	≤ 10	≤ 20	≤ 10	-
2	10	0 - 1	≤ 100	$\leq 1~000$	≤ 1000	-
3	26	0 - 2	≤ 100	$\leq 1~000$	$\leq 10^{9}$	-
4	11	_	≤ 2 000	=N	$\leq 10^9$	Każda komnata ma dokładnie jeden korytarz zaczynający się w niej oraz dokładnie jeden korytarz kończący się w niej.
5	10	_	$\leq 2~000$	$ \leq 4 000 $	$\leq 10^9$	Wszystkie $d[i]$ są różne.
6	11	_	$\leq 2~000$	≤ 4 000	$\leq 10^9$	Jest dokładnie j edno $d[i] = 2$ $(0 \le i < M)$ oraz w szystkie p ozostałe w artości d w ynoszą 1.
7	21	0 - 6	$\leq 2~000$	$\leq 4~000$	$\leq 10^9$	_

Przykład 1

Rozważmy następujące wywołanie oraz rysunek dla N=5, M=6 i K=4:

calculate_diamonds(5, 6, 4, $\{2, 0, 4, 2, 3, 1\}, \{0, 4, 1, 3, 1, 4\}, \{12, 8, 9, 12, 8, 10\}\}$

Piotr wybierze do przejścia następujące korytarze: $2 \stackrel{12}{\rightarrow} 3 \stackrel{8}{\rightarrow} 1 \stackrel{10}{\rightarrow} 4 \stackrel{9}{\rightarrow} 1$. Sumaryczna liczba diamentów, które zbierze to 39, co powinno być wynikiem wywołania funkcji.

Przykład 2

Rozważmy następujące wywołanie oraz rysunek dla N=5, M=5 i K=4:

Jest 5 opcji, aby przejść 4 korytarze:

- (1) $0 \xrightarrow{7} 1 \xrightarrow{6} 0 \xrightarrow{7} 1 \xrightarrow{6} 0$;
- (2) $1 \xrightarrow{6} 0 \xrightarrow{7} 1 \xrightarrow{6} 0 \xrightarrow{7} 1$;
- (3) $2 \stackrel{7}{\rightarrow} 3 \stackrel{7}{\rightarrow} 4 \stackrel{1}{\rightarrow} 2 \stackrel{7}{\rightarrow} 3;$
- (4) $3 \stackrel{7}{\rightarrow} 4 \stackrel{1}{\rightarrow} 2 \stackrel{7}{\rightarrow} 3 \stackrel{7}{\rightarrow} 4;$
- $(5) \ 4 \xrightarrow{1} 2 \xrightarrow{7} 3 \xrightarrow{7} 4 \xrightarrow{1} 2.$

Opcje (2) i (5) nie maksymalizują liczby diamentów w pierwszym korytarzu. Wśród opcji (1), (3) i (4), tylko (3) maksymalizuje liczbę diamentów w drugim korytarzu, zatem jest to najlepsza opcja dla Piotra. Zauważ, że opcja (3) nie maksymalizuje liczby diamentów w trzecim korytarzu ani nie maksymalizuje sumarycznej liczby diamentów, jednak jest to jedyna największa leksykograficznie ścieżka. Sumaryczna liczba diamentów, które zbierze Piotr to 22, co powinno być wynikiem wywołania funkcji.

Przykładowa biblioteczka

Format wejścia jest następujący:

- wiersz 1: trzy liczby całkowite wartości N, M oraz K.
- wiersz 1+i: trzy liczby całkowite u[i], v[i], d[i] opisujące korytarz zaczynający się w

EJOI 2025 Dzień 1 Zbieranie diamentów Polski

komnacie u[i] i kończący się w komnacie v[i] mający d[i] diamentów.

Format wyjścia jest następujący:

• wiersz 1: jedna liczba całkowita – zwrócona wartość przez twoją funkcję.