

7 'קובץ הכנה ניסוי מעבדה מס' Tutorial 7.2 – Module ADC12 + Code Example

מעבדת מיקרומחשבים – המחלקה להנדסת חשמל ומחשבים מס' קורס - 361.1.3353

<u>כתיבה ועריכה</u>: חנן ריבוא

מהדורה 1 – שנה"ל תשע"ו

ADC12 (Analog-to-Digital Converter)

קריאה מקדימה, בקובץ מעבדה MSP430x4xx user guide עמודים 773 - 799

A. מודול ADC12 - הקדמה:

- המודול ADC12 תומך ב-16 ערוצים אנלוגיים בלתי תלויים. בזמן נתון, המודול מבצע דגימת ערוץ אחד בלבד בשלבי עבודה של דגימה המרה ואחסון. לכל ערוץ ישנו רגיסטר לאחסון ערך של דגימה בודדת, סה"כ ישנם בשלבי עבודה של דגימה במקביל לעבודת ADC12MEM0 ADC12MEM15. פעולת המודול נעשית במקביל לעבודת לפעולת חומרה).
 - שליטה על ליבת מודול ADC12CTL1, ADC12CTL0 מתבצעת ע"י כתיבה לרגיסטרי הבקרה ADC12CTL1, ADC12CTL0
 - ישנם 12 ערוצים חיצוניים (דרך רגלי הבקר) ו-4 ערוצים פנימיים בתוך הבקר (חיישן טמפ' פנימי, ומתחים פנימיים נוספים)
 - גבולות המתח (מתחי הרפרנס) הם V_{R-} , V_{R+} (סתחי הרפרנס) גבולות המתח (מתחי הרפרנס) הוא V_{R-} , V_{R+} (סתחי הרפרנס) אור באפליקציה באפליקציה. $V_{R-}=\mathbf{1}.\,5v$, $v_{R-}=\mathbf{0}$
 - למודול ADC12 ישנו שעון ADC12CLK הקובע את משך זמן פעולת הדגימה ומשך זמן פעולת ההמרה. ADC12CLK השעון אתן אתן מקורות שונים (מקור של מקורות שונים (מקור של ACLK שעון פנימי של ADC12CLK שעון דרך מקורות נוספים אם איני מקורות נוספים אונים (מקור של אחרב ברירת המחדל שלהם λt , שווה לסכום של משך הדגימה ומשך ההמרה. λt
 - <u>זמני דגימה והמרה (Sample and Conversion Timing):</u>
 תזמון של התחלת כל דגימה מתבצע בעליית האות SHI (איור 1 דיאגרמת בלוקים) הנשלט בעזרת אחד
 מארבעה המקורות הבאים:
 - ADC12CTL1 שברגיסטר ADC12SC . בתוכנה, ע"י ביט
 - .2 אות מוצא מערוץ TA1 של T.A.
 - .Timer B של TB0 .3
 - .Timer B של TB1 .4

<u>דיאגרמת בלוקים בהדגשת הביטים השולטים על תפקוד מודול ADC12:</u>

:ADC12 פירוט הרגיסטרים של מודול.B

(a בקראים ADC12 הנקראים ADC12 בקרה: ישנם 2 רגיסטרי בקרה השולטים על תפקוד המודול ADC12 הנקראים (a ADC12MCTLx ושנו רגיסטר בקרה נוסף לכל ערוץ (ישנם 16 ערוצים) בשם ADC12MCTLx ו-

ADC12MEMx השולט על תפקוד של רגיסטר המכיל את ערך הדגימה מאותו ערוץ בשם (x=1,...,15)

.(x=1,...,15). סה"כ ישנם 18 רגיסטרי בקרה.

ADC12CTL0 (1st control register):									
15 14 13 12	11 10 9 8	. 7	6	5	4	3	2	1	0
SHT1x	SHT0x	MSC	REF2_5V	REFON	ADC12ON	ADC120VIE	ADC12 TOVIE	ENC	ADC12SC
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
Modifiable only when ENC = 0									

SHT0x Bits 11-8

SHTx Bits	ADC12CLK cycles
0000	4
0001	8
0010	16
0011	32
0100	64
0101	96
0110	128
0111	192
1000	256
1001	384
1010	512
1011	768
1100	1024
1101	1024
1110	1024
1111	1024

		These bits define the number of ADC12CLK cycles in registers ADC12MEM0 to ADC12MEM7.
Sample-and-		These bits define the number of ADC12CLK cycles in registers ADC12MEM8 to ADC12MEM15.
MSC	Bit 7	Multiple sample and conversion. Valid only for sequence or repeated modes. The sampling timer requires a rising edge of the SHI signal to trigger each sample-and-conversion. The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed.
REF2_5V	Bit 6	Reference generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V
REFON	Bit 5	Reference generator on 0 Reference off 1 Reference on
ADC12ON	Bit 4	ADC12 on 0 ADC12 off 1 ADC12 on
ADC120VIE	Bit 3	ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to enable the interrupt. O Overflow interrupt disabled Overflow interrupt enabled
ADC12 TOVIE	Bit 2	ADC12 conversion-time-overflow interrupt enable. The GIE bit must also be set to enable the interrupt. O Conversion time overflow interrupt disabled Conversion time overflow interrupt enabled
ENC	Bit 1	Enable conversion 0 ADC12 disabled 1 ADC12 enabled
ADC12SC	Bit 0	Start conversion. Software-controlled sample-and-conversion start. ADC12SC and ENC may be set together with one instruction. ADC12SC is reset automatically. O No sample-and-conversion-start Start sample-and-conversion

ADC120	CTL1 (2	nd Cont	rol Regi	ster):					
15 14 13	3 12	11 10	9	8	7 6 5	4 3	2 1	0	
CSTART	ADDx	SHSx	SHP	ISSH	ADC12DIVx	ADC12SSELx	CONSEQx	ADC12 BUSY	
rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r-(0)	
			Modifiable	only whe	en ENC = 0				
CSTART ADDx	Bits 15-12	con	version	in a se	equence. Th	These bits used for a singl ne value of C to ADC12MEM	le conversion STARTADD		irst
SHSx	Bits 11-10		ADC12 Timer Timer	-hold so 2SC bit _A.OUT _B.OUT _B.OUT	0				
SHP	Bit 9	sam	pling sig sample- SAMP	ınal (SA input sig CON siç	MPCON) to nal directly. gnal is sourc	select. This bit be either the ou ed from the san ed from the san	itput of the sa	ampling timer	
ISSH	Bit 8	Inve 0 1	The sa	ample-in	-and-hold put signal is put signal is	not inverted. inverted.			
ADC12DIVx	Bits 7-5	000 001 010 011	/2 /3 /4 /5 /6 /7	k divide	r				
ADC12 SSELx	Bits 4-3		0 AD0 1 ACL 0 MCI	0120SC .K _K	rce select ;				
CONSEQ	Bits 2-1		0 Sing 1 Seq 0 Rep	ile-chan uence-c eat-sing	ence mode s nel, single-c if-channels jle-channel uence-of-cha	onversion			
ADC12 BUSY	Bit	0 A 0 1) No	operatio	n is active.	s an active san		ersion operati	on.

רגיסטרי מידע, אפשור פסיקות ודגלי פסיקות: (b

L								
Α	ADC12IE (Interrupt Enable Register):							
	15	14	13	12	11	10	9	8
	ADC12IE15	ADC12IE14	ADC12IE13	ADC12IE12	ADC12IE11	ADC12IE10	ADC12IE9	ADC12IE8
	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
١.	7	6	5	4	3	2	1	0
	ADC12IE7	ADC12IE6	ADC12IE5	ADC12IE4	ADC12IE3	ADC12IE2	ADC12IE1	ADC12IE0
'	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
,	ADC12IEx Bits Interrupt enable. These bits enable or disable the interrupt request for the 15-0 ADC12IFGx bits. 0 Interrupt disabled 1 Interrupt enabled							

DC12IFG (Interrupt Flag Register):							
15	14	13	12	11	10	9	8
ADC12 IFG15	ADC12 IFG14	ADC12 IFG13	ADC12 IFG12	ADC12 IFG11	ADC12 IFG10	ADC12 IFG9	ADC12 IFG8
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
ADC12 IFG7	ADC12 IFG6	ADC12 IFG5	ADC12 IFG4	ADC12 IFG3	ADC12 IFG2	ADC12 IFG1	ADC12 IFG0
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
ADC12IFGx	Bits 15-0						

ADC12IV (Interrupt Vector Register): 15 14 13 12 10 8 11 9 0 0 0 0 0 0 0 0 r0 r0 r0 r0 r0 r0 r0 r0 6 5 4 3 2 1 0 0 ADC12IVx 0 r0 r0 r-(0) r-(0) r-(0) r-(0) r-(0) r0

ADC12IVx Bits 15-0 ADC12 interrupt vector value

ADC12IV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
000h	No interrupt pending	-	
002h	ADC12MEMx overflow	-	Highest
004h	Conversion time overflow	-	
006h	ADC12MEM0 interrupt flag	ADC12IFG0	
008h	ADC12MEM1 interrupt flag	ADC12IFG1	
00Ah	ADC12MEM2 interrupt flag	ADC12IFG2	
00Ch	ADC12MEM3 interrupt flag	ADC12IFG3	
00Eh	ADC12MEM4 interrupt flag	ADC12IFG4	
010h	ADC12MEM5 interrupt flag	ADC12IFG5	
012h	ADC12MEM6 interrupt flag	ADC12IFG6	
014h	ADC12MEM7 interrupt flag	ADC12IFG7	
016h	ADC12MEM8 interrupt flag	ADC12IFG8	
018h	ADC12MEM9 interrupt flag	ADC12IFG9	
01Ah	ADC12MEM10 interrupt flag	ADC12IFG10	
01Ch	ADC12MEM11 interrupt flag	ADC12IFG11	
01Eh	ADC12MEM12 interrupt flag	ADC12IFG12	
020h	ADC12MEM13 interrupt flag	ADC12IFG13	
022h	ADC12MEM14 interrupt flag	ADC12IFG14	
024h	ADC12MEM15 interrupt flag	ADC12IFG15	Lowest

C. קינפוג רגלי הבקר:

איור 2 – פירוט רגלי הבקר אתו אנו עובדים במעבדה

כדי לקנפג רגל של הבקר להיות כניסה אנלוגית עבור מודול ADC12 נבצע את השלב הבא. ברצוני לחבר כניסה אנלוגית לרגל A3, מדובר על רגל 2 של הבקר ולה יש <u>3 אפשרויות פעולה:</u>

- P6.3 ערוץ PORT6 שימוש I/O בחירה זו תקשר רגל זו למודול חומרה I/O של PORT6 ערוץ •
- שימוש כניסה אנלוגית בחירה זו תקשר רגל זו למודול חומרה ADC12 לערוץ חיצוני ADC3.
 - שימוש כמוצא של מגבר שרת פנימי לא רלוונטי לקורס זה.

<u>כיצד נבחר בתוכנה אחת מ-3 אפשריות אלו</u>?

22 בעמוד

ונחפש את **A3** או Ctrl+ F נלחץ MSP430xG461x datasheet נלחץ או 196.3 ונחפש את המה אינפוג מתאימה

Port P6 (P6.1, P6.3, and P6.5) pin functions

DIN NAME (DC V)	Τ.,	FUNCTION	CONTROL BITS / SIGNALS					
PIN NAME (P6.X)	X	FUNCTION	P6DIR.x	P6SEL.x	OAADC1	OAPMx	INCHx	
P6.1/A1/OA0O	1	P6.1 (I/O) (see Note 1)	I: 0; O: 1	0	X	0	X	
		OA0O (see Notes 1, 4)	X	X	1	> 0	X	
		A1 (see Notes 1, 3)	X	1	X	0	1	
P6.3/A3/OA1O	3	P6.3 (I/O) (see Note 1)	I: 0; O: 1	0	X	0	X	
		OA1O (see Notes 1, 4)	X	X	1	> 0	X	
		A3 (see Notes 1, 3)	X	1	X	0	3	
P6.5/A5/OA2O	5	P6.5 (I/O) (see Note 1)	I: 0; O: 1	0	Х	0	Х	
		OA2O (see Notes 1, 4)	X	X	1	> 0	X	
		A5 (see Notes 1, 3)	X	1	X	0	5	

©Hanan Ribo

מהטבלה רואים שכדי לבחור רגל **P6.3** לשמש כניסה אנלוגית **A3** נדרש **mov.b** #INCH 3,&ADC12MCTL3 **bis.b** #0x08,&P6SEL לבצע

D. דגימה והמרה:

:דגימה (a

לצורך דגימה של אות חיצוני המשתנה בזמן ישנן מספר גישות אפשריות לטיפול חומרתי בכך.

- בתוך אינטרוול זמן של דגימה, לצורך החלטה על ערך הדגימה לפני המרתה. ניתן לדגום את האות מספר.
 פעמים, בקצב מהיר יותר מקצב השתנות האות ואז לקחת את הערך של ה- Majority vote (ערך עם מספר מופעים הגדול ביותר). אפשרות חלופית, לקחת את הערך הממוצע של הדגימות.
- ii. <u>מקרה שלנו:</u> בתוך אינטרוול זמן של דגימה, לצורך החלטה על ערך הדגימה לפני המרתה. ניתן לדגום פעם אחת ולהחזיק את ערך הדגימה בצורה יציבה. **מעגל זה נקרא sample and hold**.

מעגל זה ממודל ע"י מעגל RC המחובר למתג. כאשר המתג סגור ערך הקבל נטען (sample) לערך הדגימה. מעגל זה ממודל ע"י מעגל t_{sample} לצורך טעינת הקבל לערך ברזולוציה של 12 ביט. כאשר המתג פתוח, ערך הדגימה מוחזק (hold) בצורה יציבה לצורך המרה.

בדיאגרמת מודול ADC הנ"ל, ניתן להבחין שדגימת האות החיצוני המחובר לרגל הבקר במצב של כניסה ADC בדיאגרמת מודול A_x מתבצעת רק כאשר אות SAMPCON=1 , כמתואר בדיאגרמה הבאה.

Vin = Input voltage at pin Ax
Vsignal = External voltage
Rex = External resistance
Rin = Internal MUX-on input resistance
Cin = Input capacitance
Vsample = Capacitance-charging voltage
switch =

Open , SAMPCON= 0
closed , SAMPCON= 1

ביט: ביטוי כללי לזמן הדגימה t_{sample} המינימאלי לרמת דגימה ברזולוציה של 12 ביט

$$t_{sample}>(R_{ex}+R_{in})\cdot\ln(2^{13})\cdot C_{in}+800ns$$
 $R_{ex}=10k\Omega$, $R_{in}=2k\Omega$, $C_{in}=40pF$ ביטוי ל- ADC12, ביטוי ל- גאשר $t_{sample}>(10k+2k)\cdot 9.011\cdot 40p+800n>5.13\mu sec$

:משך זמן הדגימה t_{sample} ניתן לתכנות (ראה סעיף c עמוד 10), אולם עלינו לדאוג לקיום התנאי

$$t_{sample} > 5.13 \mu se$$

b) המרה:

בתוך אינטרוול זמן של דגימה נדרש להמיר אותה לערך הנדרש באורך 12 ביט. ההמרה מתבצעת בחומרה (m=12 בשיטת של 1+1 (במקרה שלנו Successive approximation לוקחת זמן קבוע שעון של המודול ADC12.

<u>קביעת משך זמן הדגימה:</u> (c

אות SHI הופך לאות SAMPCON באחת משתי אפשרויות (באופן ישיר או כטריגר – הבחירה בין השניים SAMPCON שולט באופן ישיר על משך מחזור הדגימה ועל תזמון תחילת ההמרה (SHP) ואות SAMPCON שולט באופן ישיר על משך מחזור הדגימה ועל תזמון תחילת מתבצעת (משך זמן ההמרה הוא קבוע, 13 מחזורים של ADC12CLK). כאשר SAMPCON ב-'1' לוגי מתבצעת דגימה וכאשר SAMPCON יורד ל-'0' מתחילה ההמרה של אותה הדגימה. למעשה ישנן 2 שיטות שונות לדגימה המוגדרות ע"י ביט SHP, קביעה זו הינה עבור כל 16 הערוצים.

:SHP=0 כאשר ביט (1

:SHP=1 כאשר ביט **(2**

אות SHI משמש כטריגר, בעליית אות SHI נכנס לפעולה רכיב בשם SAMPCON הקובע את משך הדגימה (משך אות SAMPCON) השווה ל- $n \cdot \mathrm{ADC12CLK}_{\mathrm{cycles}}$ אות SHI מספר בטווח של $+ \pm 0$ משר אות SHI ו- SHT1x ו-SHT1x אות SHI אות SHI אות אות של לבגימה בודדת ולכן מתאים עבור אופן עבודה של דגימה בודדת, בלבד. כאשר ביט $+ \pm 0$ אות SHI מהווה טריגר לדגימה ראשונה (מתאים לשאר אופני העבודה חוץ מאופן של דגימה בודדת) ושאר SHI הדגימות נעשות באופן אוטומטי מיד לאחר סיום המרת הדגימה הקודמת.

נדרש זמן נוסף t_{sync} לסנכרון בין SAMPCON ו- ADC12CLK.

E. ארבעת אופני העבודה של מודול ADC12.

- : CONSEQx = 00 (Single-channel) דגימה בודדת של הערוץ
- כאשר ביט **ADC12SC** מהווה טריגר להמרת דגימה (SHSx = 0), אם ברצוננו לבצע דגימה נוספת (a thin total delice), אם ברצוננו לבצע דגימה נוספת (a thin total delice). נעלה שוב את ביט ADC12SC ל-1 (הוא יורד ל-0 באופן אוטומטי לאחר הדגימה).
 - ENC כאשר מקורות אחרים מהווים טריגר לדגימה (SHSx > 0) נדרש לכבות ולהדליק את ביט (b בין המרה להמרה.
- לעצירת פעולת המרת הדגימה (לאחר שהמרת הדגימה האחרונה הושלמה, אפשר לבדוק זאת ע"י (c tenc איבדנו אותה) נוריד את BUSY ל-0.
 - : CONSEQx = 10 (repeat-single-channel) דגימה מחזורית של הערוץ (2

הכרחי לקרוא את ערך הדגימה מיד לאחר שהושלמה מרגיסטר ADC12MEMx המתאים ולפני שתושלם המרת הדגימה הבאה. לעצירת פעולת המרת הדגימות נוריד את ENC ל-0 ולאחר שההמרה האחרונה תסתיים תתבצע עצירה.

- :CONSEQx = 01 (sequence) דגימה בודדת של מספר ערוצים באופן טורי (3
- לעצירת פעולת המרת הדגימות נוריד את ENC ל-0 ולאחר שהמרת הערוץ האחרון בסדרה יסתיים תתבצע UC לעצירה מידית נאפס את CONSEQx ולאחר מכן את
 - :CONSEQx = 11 (repeat-sequence) דגימה מחזורית של מספר ערוצים באופן טורי

לעצירת פעולת המרת הדגימות נוריד את ENC ל-0 ולאחר שהמרת הערוץ האחרון בסדרה יסתיים תתבצע ENC לעצירה מידית נאפס את CONSEQx ולאחר מכן את ENC).

- בחירת ערוץ (מתוך ה-16) לביצוע דגימה נוכחית נקבע ע"י מצביע (לפי ערך ביטים של CSTARTADDx (0-0x0F) שערכו נע בין ADC12CTL1 ברגיסטר CSTARTADDx מספר הרגיסטר בדגימת ערוץ אחד (דגימה בודדת / מחזורית) נכתוב בביטים ADC12MEMx המקושר לערוץ.
- כאשר מדובר בדגימה של סדרת ערוצים (דגימה בודדת / מחזורית) נכתוב את מספר הרגיסטר ADC12MEMx
 ADC12MEMX המקושר לערוץ הראשון בסדרה, בביטים ADC12MEMX ולרגיסטר ADC12MEMX המקושר לערוץ האחרון בסדרה (מספר ADC12MEMX הוא הגבוה מבין רגיסטרי אחסון הדגימות בסדרה) נעלה את ביט EOS ל-'1' הנמצא ברגיסטר ADC12MCTLx השייך לו. במקרה זה המצביע CSTARTADDx יתקדם באופן אוטומטי ומוסתר (לא ניתן לראותו בתוכנה) לפי סדר הרגיסטרים ADC12MEMX וכשיגיע לערוץ שאצלו ערך EOS יתחיל את הסדרה מההתחלה (מתאים לאופן repeat-sequence).

הערה: בכל 4 אופני העבודה לסיום עבודה עם מודול ADC12 או כדי לחסוך באנרגיה כשהוא לא בשימוש. לאחר עצירת פעולת ההמרה נוכל לאפס את ביט ADC12ON.

א: ADC12 פסיקות מודול. F

- , ADC12MEM0 ADC12MEM15 (משר המרת הדגימה הושלמה ונכתבת לרגיסטר מתאים מבין ADC12IFGx עולה ל-'1'. דגל זה ירד ל-'0' רק הדגל המתאים עבורו ADC12IFG0 ADC12IFG0 ADC12IFG15 ברגיסטר ADC12MEMx המתאים שלו. ניתן לאפס את לאחר שניגש בתוכנה (פקודה כלשהי המשתמשת בו) לרגיסטר PC המתאים שלו. ניתן לאפס את דגל הפסיקה באופן ידני. בקשת פסיקה תאופשר (מעבר של PC לביצוע ה- ISR שלה) בתנאי שבצענו אפשור בל-16 מקומי לפסיקה (ADC12IEx = 1) ואפשור גלובלי לפסיקה (GIE = 1). סה"כ 16 מקורות פסיקה הקשורים ל-16 ערוצי דגימה של ADC12.
 - ישנם 2 מקורות פסיקה נוספים: (b
 - **הראשון**, כאשר ישנה בקשה ל-ADC12 לביצוע המרה חדשה לפני שהושלמה קודמתה. בתנאי שבצענו (GIE = 1). אפשור מקומי לפסיקה (ADC12TOVIE = 1).
- **השני**, כאשר תוצאת המרה חדשה נכתבת לאחד מרגיסטרי ADC12MEMx לפני שקראנו את קודמתה. בתנאי שבצענו אפשור מקומי לפסיקה (ADC12OVIE = 1) ואפשור גלובלי לפסיקה (GIE = 1).
- וקטור הפסיקה של מודול ADC12 נקרא בשם ADC12_VECTOR והוא קשור ל- 18 מקורות פסיקה של (C מקרה של ADC12_VECTOR) (פירוט בסעיף קודם). במצב זה לצורך ייעול כתיבת הקוד מבחינת זמן ריצה ונוחות (כאשר אנו ADC12 מקורות פסיקה ומעלה) ישנו רגיסטר בשם ADC12IV המכיל ערכים בתחום 0x000 מתאימים ל-18 מקורות הפסיקה לפי הטבלה הבאה:

A DOTAIN		' '	Internation
ADC12IV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
000h	No interrupt pending	-	
002h	ADC12MEMx overflow	-	Highest
004h	Conversion time overflow	-	
006h	ADC12MEM0 interrupt flag	ADC12IFG0	
008h	ADC12MEM1 interrupt flag	ADC12IFG1	
00Ah	ADC12MEM2 interrupt flag	ADC12IFG2	
00Ch	ADC12MEM3 interrupt flag	ADC12IFG3	
00Eh	ADC12MEM4 interrupt flag	ADC12IFG4	
010h	ADC12MEM5 interrupt flag	ADC12IFG5	
012h	ADC12MEM6 interrupt flag	ADC12IFG6	
014h	ADC12MEM7 interrupt flag	ADC12IFG7	
016h	ADC12MEM8 interrupt flag	ADC12IFG8	
018h	ADC12MEM9 interrupt flag	ADC12IFG9	
01Ah	ADC12MEM10 interrupt flag	ADC12IFG10	
01Ch	ADC12MEM11 interrupt flag	ADC12IFG11	
01Eh	ADC12MEM12 interrupt flag	ADC12IFG12	
020h	ADC12MEM13 interrupt flag	ADC12IFG13	
022h	ADC12MEM14 interrupt flag	ADC12IFG14	
024h	ADC12MEM15 interrupt flag	ADC12IFG15	Lowest

מקור פסיקה בעל העדיפות הגבוהה ביותר מייצר מספר ברגיסטר ADC12IV בתחום 0x000 – 0x020 (גם מקור פסיקה ממוסך – אי-אפשור פסיקה באופן מקומי / גלובלי) שאותו נוכל להוסיף לרגיסטר PC כאשר מקור פסיקה ממוסך – אי-אפשור פסיקה באופן מקומי / גלובלי) שאותו נוכל להוסיף לרגיסטר (add &ADC12IV,PC) ISR בפקודה הראשונה של BC (מבאה של שימוש נכון ברגיסטר ADC12IV). כל גישה לרגיסטר (קריאה בלבד) ADC12IV באופן אוטומטי מאפסת אותו.

; Interrupt	handler for ADC12.		Cycles
INT_ADC	12	; Enter Interrupt Service Routine	6
ADD	&ADC12IV,PC	; Add offset to PC	3
RETI		; Vector 0: No interrupt	5
JMP	ADOV	; Vector 2: ADC overflow	2
JMP	ADTOV	; Vector 4: ADC timing overflow	2
JMP	ADM0	; Vector 6: ADC12IFG0	2
		; Vectors 8-32	2
JMP	ADM14	; Vector 34: ADC12IFG14	2
ADM15	; Handler for ADC	C12IFG15 starts here. No JMP required.	
MOV	&ADC12MEM15,xxx	; Move result, flag is reset	
	• •	; Other instruction needed?	
JMP	INT_ADC12	; Check if other interrupts pending	
•	ADC12IFG14-ADC12IFG	1 handlers go here	
ADM0			
MOV	&ADC12MEM0,xxx	; Move result, flag is reset	
		; Other instruction needed?	
RETI		; Return	5
ADTOV			
		; Handle Conv. time overflow	
RETI		; Return	5
ADOV			
		; Handle ADCMEMx overflow	
RETI		; Return	5

: דוגמאות .B

(V_{R-}= 0v, V_{R+} = Avcc = 3.3v הועתבצע אורן (שמתחי הרפרנס הם 1.3v אורן (אורן 1.5v אורן 1.5v

#include <msp430xG46x.h> ·_____ RSEG CSTACK ; Define stack segment RSEG CODE ; Assemble to Flash memory RESET mov.w #SFE(CSTACK),SP mov.w #WDTPW+WDTHOL ; Initialize stackpointer mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT StopWDT SetupADC12 mov.w #SHT0_2+ADC12ON,&ADC12CTL0 ; Sampling time, ADC12 on mov.w #SHP+CSTARTADD_3,&ADC12CTL1 mov.b #INCH 3,&ADC12MCTL3 ;Analog input is A3, VR+=3.3v VR-=0v mov.w #0x08,&ADC12IE ; Enable interrupt bis.w #ENC,&ADC12CTL0 bis.b #0x08.&P6SEL ; P6.3 ADC option select SetupP9 bis.b #0xff,&P9DIR ; P9.0 output bic.b #0xff,&P9OUT bis.w #ADC12SC,&ADC12CTL0 Mainloop : Start sampling/conversion ; LPM0, ADC12 ISR will force exit bis.w #CPUOFF+GIE,SR jmp Mainloop ; Again ADC12_ISR ; Exit LPM0 on reti bic.b #0x01,&P9OUT : P9.0 = 0cmp.w #07FFh,&ADC12MEM3 ; ADC12MEM = A3 > 0.5AVcc? jlo WakeUp bis.b #0x01,&P9OUT ; P9.0 = 1WakeUp bic.w #CPUOFF,0(SP) ; Exit LPM0 on reti reti COMMON INTVEC ; Interrupt Vectors ORG ADC12_VECTOR ; ADC12 Vector DW ADC12_ISR ORG RESET_VECTOR ; POR, ext. Reset DW RESET **END**

בדוגמה זו תתבצע דגימה מחזורית של סדרת ערוצים (3 ערוצים A5 – A3) והכנסת ערך הדגימות לזיכרון ה- P6.4 (מות הקוד, לאחר שתטענו את הקוד לבקר במצב Debugger תוכלו להוציא מהמחולל גל RAM. לצורך בחינת הקוד, לאחר שתטענו את הקוד לבקר במצב OV – 3V בתדר 1kHz ולחברו לרגל הבקר P6.4 (P6.5 לאחר מכן חברו את כניסות P6.5 ערוצים באופן לכניסת P6.3 לצורך חיבור 3 הערוצים במקביל, כך שלמעשה נדגום את הגל המשולש ב-3 ערוצים באופן טורי במטרה להבחין בשינוי הליניארי בין הדגימות (ערכי הדגימות נוכל לראות בחלון memory מתחילת כתובת 1100h). כניסה ל- ISR לצורך שמירת ערכי הדגימות ב- RAM תתבצע רק לאחר דגימת הערוץ האחרון ה- CPU במצב ADC12 ורק המודול ADC12 בפעולה.

```
#include <msp430xG46x.h>
A3result EQU 01100h
                        : Channel A3 results
A4result EQU 01110h
                         ; Channel A4 results
A5result EQU 01120h
                        ; Channel A5 results
     RSEG CSTACK ; Define stack segment
·_____
     RSEG CODE ; Assemble to Flash memory
·
              mov.w #SFE(CSTACK),SP
RESET
                                                  ; Initialize stackpointer
                mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop watchdog
StopWDT
                bis.b #0x38.&P6SEL
                                                  ; Analog inputs A3,A4,A5
SetupADC12
                mov.w #SHT0_8+MSC+ADC12ON,&ADC12CTL0
                mov.w #SHP+CONSEQ_3+CSTARTADD_3,&ADC12CTL1
                mov.w #0x20,&ADC12IE ; Enable ADC12IFG.5 for ADC12MEM5
                 mov.b #INCH 3,ADC12MCTL3
                                           ; A3 goes to MEM3
                mov.b #INCH_3,ADC12MCTL3 ; A3 goes to MEM3
mov.b #INCH_4,ADC12MCTL4 ; A4 goes to MEM4
                 mov.b #EOS+INCH_5,ADC12MCTL5; A5 goes to MEM5, end of sequence
                 clr.w R5
                                            ; Clear pointer
                bis.w #ENC,&ADC12CTL0
Mainloop
                                            : Enable conversions
                bis.w #ADC12SC,&ADC12CTL0
                                             ; Start conversions
                bis.w #CPUOFF+GIE,SR
                                             ; Hold in LPM0, Enable interrupts
                jmp Mainloop
                                             ; Again
ADC12 ISR
                                             : Interrupt Service Routine for ADC12
                                            ; Move results to RAM, IFG reset
     mov.w &ADC12MEM3,A3result(R5)
     mov.w &ADC12MEM4,A4result(R5)
                                            : Move results to RAM, IFG reset
     mov.w &ADC12MEM5,A5result(R5)
                                             ; Move results to RAM,IFG reset
                                             ; Increment results table pointer
     incd.w R5
     and.w #0Eh,R5
                                             ; Modulo pointer
     bic.w #CPUOFF,0(SP)
                                             ; Exit LPM0 on reti
     COMMON INTVEC
                                             ; Interrupt Vectors
 ORG ADC12_VECTOR
                                             ; ADC12 Vector
     DW ADC12 ISR
     ORG RESET_VECTOR
                                            ; POR, ext. Reset
     DW
          RESET
     END
```