Design and Analysis of Algorithms

LAB EXPERIMENT-04

NAME:RIYA KUMARI

BATCH:34

SAPID:590016221

SUBMITTED TO:ARYAN SIR

GITHUB REPOSITORY: https://github.com/Riyakumari1314/DAA-2nd-year

```
Implement Quick sort and analyze its time complexity.
#include<stdio.h>
void swap(int*a,int*b){
    int temp=*a;
    *a=*b:
    *b=temp;
int partition(int arr[],int low,int high){
    int pivot=arr[high];
    int i=(low-1);
    for(int j=low;j<high;j++){</pre>
        if(arr[j]<pivot){
            i++;
            swap(&arr[i],&arr[j]);
    swap(&arr[i+1],&arr[high]);
    return (i+1);
void quicksort(int arr[],int low,int high){
    if(low<high){
        int pi=partition(arr,low,high);
        quicksort(arr,low,pi-1);
        quicksort(arr,pi+1,high);
void printArray(int arr[],int size){
    for(int i=0; i < size; i++)
        `printf("%d ",arŕ[i]);
    printf("\n");
int main(){
    int n:
    printf("Enter number of elements: "); scanf("%d",&n);
    int arr[n];
    printf("Enter %d elements: ",n);
    for(int i=0;i<n;i++){
        scanf("%d",&arr[i]);
    printf("\noriginal array: ");
    printArray(arr,n);
    quicksort(arr,0,n-1);
    printf("sorted array: ");
    printArray(arr,n);
    return 0:
```

Output-

```
PS E:\DAA> cd "e:\DAA\" ; if ($?) { gcc quicksort.c -o quicksort } ; if ($?) { .\quicksort } Enter number of elements: 5
Enter 5 elements: 23 12 44 25 16

original array: 23 12 44 25 16
sorted array: 12 16 23 25 44
PS E:\DAA> []
```

Time complexity Analysis-

	Namo!-Riyar Kumavri Batch: 34	
-	Sapid! - 5900 16221	
-	T(n) = 2T(n/2) + O(n)	
	By using Master's Theorem	
	a=2 $b=2$ $K=1$ $p=0$	
	$a = b^k$	
	2 = 2'	
-		
>	If $a=b^k$ and $p>-1$.	
-		
	So, T(n)= O(n logo logo n)	
•	$= O(n\log^2 \log n)$ $[T(n) = O(n\log n)]$	
•	[T(n) = 0(nlogn)]	
•	By using Substitution method.	
	T(n) = 2T(n(2) + n	
•		
	$T(n/2) = 2^2 + (n/2^2) + 2n$	
	$T(m/4) = 2^3T(m/23) + 3n$ $T(m/8) = 2^4T(m/24) + 4n$	
	T (1/8) = 24 [(n/2f)+4n	
	$T(m) = 2kT(m/2k) + k \cdot m$	
	$\frac{\mathfrak{I}}{\mathfrak{I}^{K}} = 1$	
	n=2k	
	So, K= logn	
	Now, $T(n) = n \cdot T(1) + kn$	
	$T(n) = o(n \log n)$	
	T(n) = O(n Logn)	

