

Motivation: Monte Carlo Methods

Problem: Integrals for non-linear, non-Gaussian state space models

• Bayes's theorem:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{\int_{\mathcal{Z}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}}$$

· Maximum *a posteriori* estimate:

$$\mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})}[\mathbf{z}] = \int_{\mathcal{T}} \mathbf{z} p(\mathbf{z} \mid \mathbf{x}) d\mathbf{z}$$

Variance

$$\operatorname{Var}_{p(\mathbf{z} \mid \mathbf{x})}[\mathbf{z}] = \int_{\mathcal{Z}} \mathbf{z}^2 p(\mathbf{z} \mid \mathbf{x}) d\mathbf{z} - \boldsymbol{\mu}$$

x: Data vector, z: Latent vector

Monte Carlo methods: Algorithms that solve integrals by random sampling

 Draw samples (random variates) from a proposal distribution:

$$\mathbf{z}^{(i)} \sim q(\mathbf{z})$$

· Approximate integrals, e.g.,

$$\mathbb{E}_{p(\mathbf{z}_n \mid \mathbf{x}_{1:n})}[\mathbf{z}] \approx \frac{1}{I} \sum_{i=1}^{I} \mathbf{z}^{(i)}$$

How do we draw the random samples?

 $q(\cdot)$: Proposal pdf, $p(\cdot)$: Target pdf

Lecture Overview

Week 4: Bayesian Inference

Week 5: Markov Chain Monte Carlo (MCMC)

Part 1: Basic Sampling Methods: Rejection Sampling

Part 2: Markov Chain Monte Carlo: Metropolis-Hastings

Part 3: Markov Chain Monte Carlo: Gibbs Sampling

Week 6: Importance Sampling & Sequential Monte Carlo

Learning Outcomes

Following this week's lecture on Markov Chain Monte Carlo methods, you should be able to:

- 1) Explain how random sampling can be used to approximate integrals;
- 2) Understand how MCMC methods use Markov chains to sample from target distributions;
- 3) Apply different techniques for MCMC to real-world problems.

Further Reading

Textbooks:

- · C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
- · K. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
- · D. Barber, Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.
- · Goodfellow, Bengio, Courville, Bengio, Deep Learning. MIT Press, 2016.

Tutorial papers:

- · R. M. Neal, "Probabilistic Inference using Markov Chain Monte Carlo methods," Technical Report CRG-TR-03-1, 1993. <u>Online</u>
- · C. J. Geyer, "Practical Markov Chain Monte Carlo," in Statistical Science, 7(4), 1992. Online

Basic Sampling Methods: Rejection Sampling

COMP6247 - Reinforcement and Online Learning

Rejection Sampling Algorithm:

For $\ell = 1,...,L$:

 $p(\cdot)$: Target pdf

COMP6247 - Reinforcement and Online Learning

Rejection Sampling Algorithm:

For $\ell = 1,...,L$: Repeat:

1. Draw candidate $\tilde{\mathbf{z}} \sim q(\mathbf{z})$

 $p(\cdot)$: Target pdf

COMP6247 - Reinforcement and Online Learning

Rejection Sampling Algorithm:

For $\ell = 1,...,L$: Repeat:

1. Draw candidate $\tilde{\mathbf{z}} \sim q(\mathbf{z})$

 $p(\cdot)$: Target pdf

COMP6247 - Reinforcement and Online Learning

Rejection Sampling Algorithm:

For
$$\ell = 1,...,L$$
:
Repeat:

- 1. Draw candidate $\tilde{\mathbf{z}} \sim q(\mathbf{z})$
- 2. Draw $u \sim \mathcal{U}\left[0, k \, q(\tilde{\mathbf{z}})\right]$

 $p(\cdot)$: Target pdf

COMP6247 - Reinforcement and Online Learning

Rejection Sampling Algorithm:

For
$$\ell = 1, ..., L$$
:

Repeat:

1. Draw candidate $\tilde{\mathbf{z}} \sim q(\mathbf{z})$

2. Draw $u \sim \mathcal{U}\left[0, k \, q(\tilde{\mathbf{z}})\right]$

Until $u \leq p(\tilde{\mathbf{z}})$.

3. Accept $\hat{\mathbf{z}}^{(\ell)} = \tilde{\mathbf{z}}$

 $p(\cdot)$: Target pdf

Rejection Sampling Algorithm:

For
$$\ell = 1,...,L$$
:

Repeat:

- 1. Draw candidate $\tilde{\mathbf{z}} \sim q(\mathbf{z})$
- 2. Draw $u \sim \mathcal{U}\left[0, k \, q(\tilde{\mathbf{z}})\right]$

Until $u \leq p(\tilde{\mathbf{z}})$.

3. Accept $\hat{\mathbf{z}}^{(\ell)} = \tilde{\mathbf{z}}$

 $p(\cdot)$: Target pdf

 $q(\cdot)$: Proposal pdf, k: Scaling constant

Iteration 1

COMP6247 - Reinforcement and Online Learning

Rejection Sampling Algorithm:

For
$$\ell = 1, ..., L$$
:

Repeat:

1. Draw candidate $\tilde{\mathbf{z}} \sim q(\mathbf{z})$

2. Draw $u \sim \mathcal{U}\left[0, k \, q(\tilde{\mathbf{z}})\right]$

Until $u \leq p(\tilde{\mathbf{z}})$.

3. Accept $\hat{\mathbf{z}}^{(\ell)} = \tilde{\mathbf{z}}$

 $p(\cdot)$: Target pdf

Acceptance Criterion:

$$\alpha = \frac{p(\tilde{\mathbf{z}})}{k \, q(\tilde{\mathbf{z}})}, \quad \text{where } \tilde{\mathbf{z}} \sim p(\mathbf{z})$$

$$p(\text{accept}) = \mathbb{E}_{q(\mathbf{z})} \left[\frac{p(\mathbf{z})}{k \, q(\mathbf{z})} \right] = \int_{\mathcal{Z}} \frac{p(\mathbf{z})}{k \, q(\mathbf{z})} \, q(\mathbf{z}) \, d\mathbf{z}$$
$$= \frac{1}{k} \int_{\mathcal{Z}} p(\mathbf{z}) \, d\mathbf{z}$$

Number of rejected samples \propto area between curves. Keep k as small as possible, <u>s.th</u>. $k q(\mathbf{z}) \geq p(\mathbf{z})!$

Acceptance Criterion:

$$\alpha = \frac{p(\tilde{\mathbf{z}})}{k \, q(\tilde{\mathbf{z}})}, \quad \text{where } \tilde{\mathbf{z}} \sim p(\mathbf{z})$$

Scaling constant s.th.

$$k q(\mathbf{z}) \ge p(\mathbf{z})$$

$$p(\text{accept}) = \mathbb{E}_{q(\mathbf{z})} \left[\frac{p(\mathbf{z})}{k \, q(\mathbf{z})} \right] = \int_{\mathcal{Z}} \frac{p(\mathbf{z})}{k \, q(\mathbf{z})} \, q(\mathbf{z}) \, d\mathbf{z}$$
$$= \frac{1}{k} \int_{\mathcal{Z}} p(\mathbf{z}) \, d\mathbf{z}$$

Number of rejected samples \propto area between curves. Keep k as small as possible, $\underline{s.th}$. $k q(\mathbf{z}) \geq p(\mathbf{z})!$

Acceptance Criterion:

$$\alpha = \frac{p(\tilde{\mathbf{z}})}{k \, q(\tilde{\mathbf{z}})}, \quad \text{where } \tilde{\mathbf{z}} \sim p(\mathbf{z})$$

Scaling constant s.th. Proposal distribution $k q(\mathbf{z}) \ge p(\mathbf{z})$

$$\begin{aligned} p(\text{accept}) &= \mathbb{E}_{q(\mathbf{z})} \left[\frac{p(\mathbf{z})}{k \, q(\mathbf{z})} \right] = \int_{\mathcal{Z}} \frac{p(\mathbf{z})}{k \, q(\mathbf{z})} \, q(\mathbf{z}) \, d\mathbf{z} \\ &= \frac{1}{k} \int p(\mathbf{z}) \, d\mathbf{z} \end{aligned}$$

Number of rejected samples \propto area between curves. Keep k as small as possible, <u>s.th</u>. $k q(\mathbf{z}) \geq p(\mathbf{z})!$

Acceptance Criterion:

$$\alpha = \frac{p(\tilde{\mathbf{z}})}{k \, q(\tilde{\mathbf{z}})}, \quad \text{where } \tilde{\mathbf{z}} \sim p(\mathbf{z})$$

Scaling constant s.th. Proposal distribution $k q(\mathbf{z}) \ge p(\mathbf{z})$

$$\begin{aligned} p(\text{accept}) &= \mathbb{E}_{q(\mathbf{z})} \left[\frac{p(\mathbf{z})}{k \, q(\mathbf{z})} \right] = \int_{\mathcal{Z}} \frac{p(\mathbf{z})}{k \, q(\mathbf{z})} \, q(\mathbf{z}) \, d\mathbf{z} \\ &= \frac{1}{k} \int p(\mathbf{z}) \, d\mathbf{z} \end{aligned}$$

Number of rejected samples \propto area between curves. Keep k as small as possible, $\underline{s.th}$. $k q(\mathbf{z}) \geq p(\mathbf{z})!$

Conclusion: Rejection Sampling

Assumptions:

- · Target distribution, $p(\mathbf{z})$, is difficult to sample from, but can be evaluated directly
- · Sample from proposal distribution, $q(\mathbf{z})$

Advantages:

 \cdot Easy to implement + fast if z is one- or two-dimensional

Limitations:

- Multimodal distributions: Difficult to find good proposal distribution (high rejection rate)
- \cdot Exponential decrease in acceptance rate with increasing dimensionality of ${f z}$

Markov Chain Monte Carlo: Metropolis-Hastings

Markov Chain Monte Carlo

Principle: Use Markov chains to sample from a given distribution

Primer: Markov Chains

First-order Markov chain:

$$p(\mathbf{z}^{(m+1)} | \mathbf{z}^{(1)}, ..., \mathbf{z}^{(m)}) = p(\mathbf{z}^{(m+1)} | \mathbf{z}^{(m)}) \triangleq T_m(\mathbf{z}^{(m)} | \mathbf{z}^{(m+1)})$$

Transition operator

Homogeneous Markov chain:

$$T_1(\cdot) = \dots = T_m(\cdot) \triangleq T(\cdot)$$

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm:

For
$$\ell = 1,...,L$$
:

- 1. Draw candidate: $\tilde{\mathbf{z}} \sim q(\mathbf{z} \mid \mathbf{z}^{(\ell)})$
- 2. Draw $u \sim \mathcal{U}\left[0,1\right]$

3. Evaluate
$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}$$

if
$$u \leq \alpha$$
.

Accept
$$\hat{\mathbf{z}}^{(\ell+1)} = \tilde{\mathbf{z}}$$

else:

Accept
$$\hat{\mathbf{z}}^{(\ell+1)} = \mathbf{z}^{(\ell)}$$

 $p(\,\cdot\,)$: Target pdf, $q(\,\cdot\,)$: Proposal pdf

 $\mathbf{z}^{(\ell)}$: Current accepted sample

14 / 10

Bayes's Theorem:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{\int_{\mathcal{Z}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}}$$

Bayes's Theorem:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{\int_{\mathcal{Z}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}}$$

Assume $p(\mathbf{x} \mid \mathbf{z})$ and $p(\mathbf{z})$ are non-Gaussian $\rightarrow p(\mathbf{z} \mid \mathbf{x})$ generally intractable

Bayes's Theorem:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{\int_{\mathcal{Z}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}}$$

Assume $p(\mathbf{x} \mid \mathbf{z})$ and $p(\mathbf{z})$ are non-Gaussian $\rightarrow p(\mathbf{z} \mid \mathbf{x})$ generally intractable

Approximate posterior pdf by sampling from $p(\mathbf{z} \mid \mathbf{x})$:

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}} \mid \mathbf{x})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)} \mid \mathbf{x})}$$

Bayes's Theorem:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{\int_{\mathcal{Z}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}}$$

Assume $p(\mathbf{x} \mid \mathbf{z})$ and $p(\mathbf{z})$ are non-Gaussian $\rightarrow p(\mathbf{z} \mid \mathbf{x})$ generally intractable

Approximate posterior pdf by sampling from $p(\mathbf{z} \mid \mathbf{x})$:

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}} \mid \mathbf{x})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)} \mid \mathbf{x})}$$

Bayes's Theorem:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{\int_{\mathcal{X}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}}$$

Assume $p(\mathbf{x} \mid \mathbf{z})$ and $p(\mathbf{z})$ are non-Gaussian $\rightarrow p(\mathbf{z} \mid \mathbf{x})$ generally intractable

Approximate posterior pdf by sampling from $p(\mathbf{z} \mid \mathbf{x})$:

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}} \mid \mathbf{x})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)} \mid \mathbf{x})} = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) \frac{p(\mathbf{x} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{p(\mathbf{x})}}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) \frac{p(\mathbf{x} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}{p(\mathbf{x})}}$$

Bayes's Theorem:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{\int_{\mathcal{X}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}}$$

Assume $p(\mathbf{x} \mid \mathbf{z})$ and $p(\mathbf{z})$ are non-Gaussian $\rightarrow p(\mathbf{z} \mid \mathbf{x})$ generally intractable

Approximate posterior pdf by sampling from $p(\mathbf{z} \mid \mathbf{x})$:

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}} \mid \mathbf{x})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)} \mid \mathbf{x})} = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) \frac{p(\mathbf{x} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{p(\mathbf{x})}}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) \frac{p(\mathbf{x} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}{p(\mathbf{x})}}$$

Bayes's Theorem:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{\int_{\mathcal{Z}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}}$$

Assume $p(\mathbf{x} \mid \mathbf{z})$ and $p(\mathbf{z})$ are non-Gaussian $\rightarrow p(\mathbf{z} \mid \mathbf{x})$ generally intractable

Approximate posterior pdf by sampling from $p(\mathbf{z} \mid \mathbf{x})$:

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}} \mid \mathbf{x})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)} \mid \mathbf{x})} = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) \frac{p(\mathbf{x} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{p(\mathbf{x})}}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) \frac{p(\mathbf{x} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}{p(\mathbf{x})}} = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\mathbf{x} \mid \tilde{\mathbf{z}}) p(\mathbf{x} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}$$

Bayes's Theorem:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{\int_{\mathcal{Z}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}}$$

Assume $p(\mathbf{x} \mid \mathbf{z})$ and $p(\mathbf{z})$ are non-Gaussian $\rightarrow p(\mathbf{z} \mid \mathbf{x})$ generally intractable

Approximate posterior pdf by sampling from $p(\mathbf{z} \mid \mathbf{x})$:

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}} \mid \mathbf{x})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)} \mid \mathbf{x})} = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) \frac{p(\mathbf{x} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{p(\mathbf{x})}}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) \frac{p(\mathbf{x} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}{p(\mathbf{x})}} = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\mathbf{x} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}$$

Bayes's Theorem:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{\int_{\mathcal{X}} p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}}$$

Assume $p(\mathbf{x} \mid \mathbf{z})$ and $p(\mathbf{z})$ are non-Gaussian $\rightarrow p(\mathbf{z} \mid \mathbf{x})$ generally intractable

Approximate posterior pdf by sampling from $p(\mathbf{z} \mid \mathbf{x})$:

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}} \mid \mathbf{x})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)} \mid \mathbf{x})} = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) \frac{p(\mathbf{x} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{p(\mathbf{x})}}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) \frac{p(\mathbf{x} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}{p(\mathbf{x})}} = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\mathbf{x} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}$$

Metropolis-Hastings allows us to approximate analytically intractable pdfs!

COMP6247 - Reinforcement and Online Learning

Metropolis-Hastings Algorithm:

For
$$\ell = 1,...,L$$
:

- 1. Draw candidate: $\tilde{z} \sim q(z \mid z^{(\ell)})$
- 2. Draw $u \sim \mathcal{U}[0,1]$

3. Evaluate
$$\alpha = \frac{q(z^{(\ell)} \mid \tilde{z}) p(\mathbf{x} \mid \tilde{z}) p(\tilde{z})}{q(\tilde{z} \mid z^{(\ell)}) p(\mathbf{x} \mid z^{(\ell)}) p(z^{(\ell)})}$$

if $u \leq \alpha$.

Accept
$$\hat{z}^{(\ell+1)} = \tilde{z}$$

else:

Accept
$$\hat{z}^{(\ell+1)} = z^{(\ell)}$$

 $p(\cdot)$: Target pdf, $q(\cdot)$: Proposal pdf

 $\mathbf{z}^{(\ell)}$: Current accepted sample

State-Space Model

Dataset of i.i.d. datapoints:
$$p(\mathbf{x} \mid z) = \prod_{n=1}^{N} p(x_n \mid z)$$

Likelihood:
$$p(x_n | z) = \mathcal{M}(x_n | z, \kappa_l)$$

Prior:
$$p(z) = \mathcal{M}(z \mid \mu_0, \kappa_0)$$

Posterior:
$$p(z \mid \mathbf{x}) = ?$$

Proposal:
$$q(z \mid z^{(\ell)}) = \mathcal{M}\left(z \mid z^{(\ell)}, \kappa_p\right)$$

Von Mises Distribution:

$$p(x \mid \mathbf{z}) = \frac{\exp\left\{\kappa \cos(x - \mu)\right\}}{2\pi I_0(\kappa)}$$

 $-\pi \le x \le \pi$: Angle, $\kappa > 0$: Concentration,

Application: Intractable Posterior

COMP6247 - Reinforcement and Online Learning

Metropolis-Hastings Algorithm:

For
$$\ell = 1,...,L$$
:

- 1. Draw candidate: $\tilde{z} \sim q(z \mid z^{(\ell)})$
- 2. Draw $u \sim \mathcal{U}\left[0,1\right]$

3. Evaluate
$$\alpha = \frac{q(z^{(\ell)} \mid \tilde{z}) p(\mathbf{x} \mid \tilde{z}) p(\tilde{z})}{q(\tilde{z} \mid z^{(\ell)}) p(\mathbf{x} \mid z^{(\ell)}) p(z^{(\ell)})}$$

if $u \leq \alpha$.

$$\operatorname{Accept} \hat{z}^{(\ell+1)} = \tilde{z}$$

else:

Accept
$$\hat{z}^{(\ell+1)} = z^{(\ell)}$$

 $p(\cdot)$: Target pdf, $q(\cdot)$: Proposal pdf

 $\mathbf{z}^{(\ell)}$: Current accepted sample

Metropolis-Hastings: Acceptance Criterion

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}, \text{ where } \tilde{\mathbf{z}} \sim q(\mathbf{z} \mid \mathbf{z}^{(\ell)})$$

 $\mathbf{z}^{(\ell)}$: Current accepted sample, $q(\cdot)$: Proposal, $p(\cdot)$: Target

Metropolis-Hastings: Acceptance Criterion

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}, \text{ where } \tilde{\mathbf{z}} \sim q(\mathbf{z} \mid \mathbf{z}^{(\ell)})$$

 $\mathbf{z}^{(\ell)}$: Current accepted sample, $q(\cdot)$: Proposal, $p(\cdot)$: Target

If the proposal is a symmetric distribution: $q(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = q(\mathbf{z}^{(\ell)} \mid \mathbf{z})$

Metropolis-Hastings: Acceptance Criterion

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}, \text{ where } \tilde{\mathbf{z}} \sim q(\mathbf{z} \mid \mathbf{z}^{(\ell)})$$

 $\mathbf{z}^{(\ell)}$: Current accepted sample, $q(\cdot)$: Proposal, $p(\cdot)$: Target

If the proposal is a symmetric distribution: $q(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = q(\mathbf{z}^{(\ell)} \mid \mathbf{z})$

Example:

$$p(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = \frac{1}{(2\pi)^{\frac{Q}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} \left(\mathbf{z} - \mathbf{z}^{(\ell)}\right)^T \mathbf{\Sigma}^{-1} \left(\mathbf{z} - \mathbf{z}^{(\ell)}\right)\right\}$$

Metropolis-Hastings: Acceptance Criterion

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}, \text{ where } \tilde{\mathbf{z}} \sim q(\mathbf{z} \mid \mathbf{z}^{(\ell)})$$

 $\mathbf{z}^{(\ell)}$: Current accepted sample, $q(\cdot)$: Proposal, $p(\cdot)$: Target

If the proposal is a symmetric distribution: $q(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = q(\mathbf{z}^{(\ell)} \mid \mathbf{z})$

Example:

$$p(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = \frac{1}{(2\pi)^{\frac{Q}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} \left(\mathbf{z} - \mathbf{z}^{(\ell)}\right)^T \mathbf{\Sigma}^{-1} \left(\mathbf{z} - \mathbf{z}^{(\ell)}\right)\right\} = \frac{1}{(2\pi)^{\frac{Q}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} \left(\mathbf{z}^{(\ell)} - \mathbf{z}\right)^T \mathbf{\Sigma}^{-1} \left(\mathbf{z}^{(\ell)} - \mathbf{z}\right)\right\} = p(\mathbf{z}^{(\ell)} \mid \mathbf{z})$$

Metropolis-Hastings: Acceptance Criterion

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}, \text{ where } \tilde{\mathbf{z}} \sim q(\mathbf{z} \mid \mathbf{z}^{(\ell)})$$

 $\mathbf{z}^{(\ell)}$: Current accepted sample, $q(\cdot)$: Proposal, $p(\cdot)$: Target

If the proposal is a symmetric distribution: $q(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = q(\mathbf{z}^{(\ell)} \mid \mathbf{z})$

Example:

$$p(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = \frac{1}{(2\pi)^{\frac{Q}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} \left(\mathbf{z} - \mathbf{z}^{(\ell)}\right)^T \mathbf{\Sigma}^{-1} \left(\mathbf{z} - \mathbf{z}^{(\ell)}\right)\right\} = \frac{1}{(2\pi)^{\frac{Q}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} \left(\mathbf{z}^{(\ell)} - \mathbf{z}\right)^T \mathbf{\Sigma}^{-1} \left(\mathbf{z}^{(\ell)} - \mathbf{z}\right)\right\} = p(\mathbf{z}^{(\ell)} \mid \mathbf{z})$$

Metropolis-Hastings: Acceptance Criterion

$$\alpha = \frac{q(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}) p(\tilde{\mathbf{z}})}{q(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}) p(\mathbf{z}^{(\ell)})}, \quad \text{where } \tilde{\mathbf{z}} \sim q(\mathbf{z} \mid \mathbf{z}^{(\ell)})$$

 $\mathbf{z}^{(\ell)}$: Current accepted sample, $q(\cdot)$: Proposal, $p(\cdot)$: Target

Metropolis: Acceptance Criterion

$$\alpha = \frac{p(\tilde{\mathbf{z}})}{p(\mathbf{z}^{(\ell)})}, \text{ where } \tilde{\mathbf{z}} \sim q(\mathbf{z} \mid \mathbf{z}^{(\ell)})$$

 $\mathbf{z}^{(\ell)}$: Current accepted sample, $q(\cdot)$: Proposal, $p(\cdot)$: Target

If the proposal is a symmetric distribution: $q(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = q(\mathbf{z}^{(\ell)} \mid \mathbf{z})$

Example:

$$p(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = \frac{1}{(2\pi)^{\frac{Q}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} \left(\mathbf{z} - \mathbf{z}^{(\ell)}\right)^T \mathbf{\Sigma}^{-1} \left(\mathbf{z} - \mathbf{z}^{(\ell)}\right)\right\} = \frac{1}{(2\pi)^{\frac{Q}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} \left(\mathbf{z}^{(\ell)} - \mathbf{z}\right)^T \mathbf{\Sigma}^{-1} \left(\mathbf{z}^{(\ell)} - \mathbf{z}\right)\right\} = p(\mathbf{z}^{(\ell)} \mid \mathbf{z})$$

COMP6247 - Reinforcement and Online Learning

Markov Chain Monte Carlo: Gibbs Sampling

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample z_k from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{\setminus k}^{(\ell)})$:

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample
$$z_k$$
 from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{\setminus k}^{(\ell)})$:

$$\alpha = \frac{q_k \left(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}\right) p\left(\tilde{\mathbf{z}}\right)}{q_k \left(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}\right) p\left(\mathbf{z}^{(\ell)}\right)}$$

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample z_k from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{\setminus k}^{(\ell)})$:

COMP6247 - Reinforcement and Online Learning

$$\alpha = \frac{q_k \left(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}\right) p(\tilde{\mathbf{z}})}{q_k \left(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}\right) p\left(\mathbf{z}^{(\ell)}\right)}$$

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample z_k from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{N_k}^{(\ell)})$:

COMP6247 - Reinforcement and Online Learning

$$\alpha = \frac{q_k \left(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}\right) p\left(\tilde{\mathbf{z}}\right)}{q_k \left(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}\right) p\left(\mathbf{z}^{(\ell)}\right)} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}_{\backslash k}^{(\ell)}) p(\tilde{\mathbf{z}})}{p(\tilde{z}_k \mid \mathbf{z}_{\backslash k}^{(\ell)}) p(\mathbf{z}^{(\ell)})}$$

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample z_k from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{\backslash k}^{(\ell)})$:

$$\alpha = \frac{q_k \left(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}\right) p\left(\tilde{\mathbf{z}}\right)}{q_k \left(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}\right) p\left(\mathbf{z}^{(\ell)}\right)} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}_{\backslash k}^{(\ell)}) p(\tilde{\mathbf{z}})}{p(\tilde{z}_k \mid \mathbf{z}_{\backslash k}^{(\ell)}) p(\mathbf{z}^{(\ell)})}$$

Chain rule: $p(\mathbf{z}) = p(z_k | \mathbf{z}_{\setminus k}^{(\ell)}) p(\mathbf{z}_{\setminus k}^{(\ell)})$

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample z_k from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{\setminus k}^{(\ell)})$:

$$\alpha = \frac{q_k \left(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}\right) p\left(\tilde{\mathbf{z}}\right)}{q_k \left(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}\right) p\left(\mathbf{z}^{(\ell)}\right)} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\mathbf{z}^{(\ell)})} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}^{(\ell)}_{\backslash k})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}^{(\ell)}_{\backslash k})}$$

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample z_k from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{\setminus k}^{(\ell)})$:

COMP6247 - Reinforcement and Online Learning

$$\alpha = \frac{q_k \left(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}\right) p\left(\tilde{\mathbf{z}}\right)}{q_k \left(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}\right) p\left(\mathbf{z}^{(\ell)}\right)} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\mathbf{z}^{(\ell)})} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k})}$$

19 / 10

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample z_k from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{\backslash k}^{(\ell)})$:

$$\alpha = \frac{q_k \left(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}\right) p\left(\tilde{\mathbf{z}}\right)}{q_k \left(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}\right) p\left(\mathbf{z}^{(\ell)}\right)} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\mathbf{z}^{(\ell)})} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}_k \mid \mathbf{z}^{(\ell)}_{\backslash k})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}^{(\ell)}_{\backslash k})}$$

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample z_k from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{\setminus k}^{(\ell)})$:

$$\alpha = \frac{q_k \left(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}\right) p\left(\tilde{\mathbf{z}}\right)}{q_k \left(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}\right) p\left(\mathbf{z}^{(\ell)}\right)} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\mathbf{z}^{(\ell)})} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}^{(\ell)}_{\backslash k})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k})}$$

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample z_k from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{\backslash k}^{(\ell)})$:

$$\alpha = \frac{q_k \left(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}\right) p\left(\tilde{\mathbf{z}}\right)}{q_k \left(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}\right) p\left(\mathbf{z}^{(\ell)}\right)} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\mathbf{z}^{(\ell)})} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}^{(\ell)}_{\backslash k})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k})} = 1$$

Aim:

Sample from a high-dimensional joint pdf, $p(\mathbf{z}) = p(z_1, ..., z_K)$

Assumptions:

- · Joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_K)$ cannot be sampled from
- · Conditional distributions, $p(z_k | \mathbf{z}_{\setminus k})$, can be sampled from easily

where
$$\mathbf{z} = [z_1, ..., z_K]^T$$
 and $\mathbf{z}_{\setminus k} = [z_1, ..., z_{k-1}, z_{k+1}, ..., z_K]^T$

Metropolis-Hastings:

Sample z_k from $q_k(\mathbf{z} \mid \mathbf{z}^{(\ell)}) = p(z_k \mid \mathbf{z}_{\backslash k}^{(\ell)})$:

$$\alpha = \frac{q_k \left(\mathbf{z}^{(\ell)} \mid \tilde{\mathbf{z}}\right) p\left(\tilde{\mathbf{z}}\right)}{q_k \left(\tilde{\mathbf{z}} \mid \mathbf{z}^{(\ell)}\right) p\left(\mathbf{z}^{(\ell)}\right)} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\mathbf{z}^{(\ell)})} = \frac{p(z_k^{(\ell)} \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}^{(\ell)}_{\backslash k}) p(\tilde{\mathbf{z}}^{(\ell)}_{\backslash k})}{p(\tilde{z}_k \mid \mathbf{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k}) p(\tilde{z}^{(\ell)}_{\backslash k})} = 1$$

By sampling from conditionals, the Metropolis-Hastings steps are always accepted.

Gibbs Sampler

COMP6247 - Reinforcement and Online Learning

Gibbs Sampler:

For
$$\ell = 1,...,L$$
:

1. Sample
$$z_1^{(\ell+1)} \sim p(z_1 \mid z_2^{(\ell)}, ..., z_n^{(\ell)})$$

2. Sample
$$z_2^{(\ell+1)} \sim p(z_2 \mid z_1^{(\ell+1)}, z_3^{(\ell)}, ..., z_n^{(\ell)})$$

3....

4. Sample
$$z_K^{(\ell+1)} \sim p(z_K | z_1^{(\ell+1)}, \dots, z_{K-1}^{(\ell+1)})$$

Conclusion: MCMC

Assumptions:

- Target distribution, $p(\mathbf{z})$, is difficult to sample from (and may not be known in closed form)
- · Sample from proposal pdf, $q(\mathbf{z} \mid \mathbf{z}^{(\ell)}) \to \text{Sequence of samples forms a Markov chain}$

Advantages:

- · Allows sampling from a large class of distributions
- Scales well with the dimensionality of the sample space

Limitations:

- Successive samples are highly correlated
 - · Retain only each M^{th} sample and discard rest of sequence, where $M\gg 1$
- · 'Burn-in' period

Learning Outcomes

Following this week's lecture on Markov Chain Monte Carlo methods, you should be able to:

- 1) Explain how random sampling can be used to approximate integrals;
- 2) Understand how MCMC methods use Markov chains to sample from target distributions;
- 3) Apply different techniques for MCMC to real-world problems.

What's Next

Tuesday (2 March):

Q&A Markov Chain Monte Carlo Lab Worksheet Markov Chain Monte Carlo

Week 6: Sequential Monte Carlo

Online learning for sequential data