Survey data analysis Week 8: "Nonresponse and nonresponse weights"

© Peter Lugtig

Today

- Lecture on NR
- Exercise working with weights

Literature today

- The increasing problem of nonresponse
- Details of weighting methods
 - Kalton and Flores-cervantes (2003)
 - Brick (2013)

Total Survey Error (TSE) Framework

Nonresponse in LFS over time

Based on Luiten, De leeeuw & Hox (2018) nternational Nonresponse Trends across Countries and Years: An analysis of 36 years of Labour Force Survey data. Survey Insights: Methods from the Field. Retrieved from https://surveyinsights.org/?p=10452.

European Social Survey Nonresponse

Figure 1: Response rates per country, ESS71

From: Beullens, K., Loosveldt G., Vandenplas C. & Stoop I. (2018).Response Rates in the European Social Survey: Increasing, Decreasing, or a Matter of Fieldwork Efforts? Survey Methods: Insights from

the Field. Retrieved from

https://surveyinsights.org/?p=9673

ESS: RR variation in response rate

ESS – increase in fieldwork efforts

Four main types of nonresponse

In survey research we typically distinguish four types of nonresponse:

Unit nonresponse

The sample unit (e.g. person, household, institution) was sampled, i.e. belonged to the gross sample, but did not participate in the survey.

Item nonresponse

The sample unit was sampled and interviewed, but failed to provide answers to all of the survey items.

Attrition

The sample unit was sampled and initially interviewed for a longitudinal surveys, but did not complete all waves of the survey.

Partial (household) nonresponse

The sample unit was sampled and at least one member of the unit interviewed. However, at least one member of the unit did not participate.

Main causes of nonresponse

• Unit nonresponse

non-contact, refusal, unable

Item nonresponse

refusal, don't know, breakoff

Attrition

non-location, non-contact, refusal, unable

• Partial (household) nonresponse

non-contact, refusal, unable

How to prevent nonresponse

• Things you noticed in your adopted survey?

How to prevent nonresponse

- 1. A good questionnaire, invitation letter, etc.
 - keep it simple, keep it simple, test it
- 2. Incentives
 - Preferable unconditional, and cash
- 3. Multiple contact attempts
- 4. Multiple modes (e-mail, mail, phone, f2f)
- 5. Refusal conversion
 - Interviewer training
- 6. Be responsive to questions/remarks/problems

Correction for nonresponse

- Item nonresponse
 - Rich information on individual
- Partial (household) nonresponse
 - Proxy-answers, information on household
- Attrition
 - Information from earlier waves
- Unit nonresponse
 - Weak individual information (only frame)

Imputation

weighting

What is nonresponse bias?

- Nonresponse bias occurs when the sampled units (e.g. individual, household, business ...) are not or only partially observed (e.g. interviewed)
- **AND** observed units are systematically different from unobserved units.

MCAR, MAR, NMAR

- Missing Completely At Random (MCAR):
 The responding units are a random subsample of the gross sample.
- Missing At Random (MAR):
 The responding units are not a random subsample of the gross sample.

 However, the auxiliary information x renders the relationship between y and response r independent.
- Not Missing At Random (NMAR):
 The responding units are not a random subsample of the gross sample. In addition, the auxiliary information x does not render the relationship between y and response r independent.

MCAR

Example: income

- Unit response rates in surveys:
 - **–** ~5-50%
 - Nonresponse: 50-95%!
- Item-nonresponse for income question:
 - **–** ~25%
- What do we have: MCAR, MAR, or MNAR?
 - Discuss!

Item nonresponse (weeks 11,12)

- Use covariates (x) at level of respondent
- Strongly related to both response (R) and Y
- MCAR, MAR, MNAR models

Example item missings in income:

- Education, wealth, age, gender, value of house (X)
- To predict income (Y) and
- Take away relation R-Y

Unit nonresponse

- Few covariates (x) at level of respondent
 - Often only address, or e-mail
- Weakly related to both response (R) and Y

Example Unit Nonresponse:

- Only use address (house price)
- Can predict income (Y), but
- Cannot explain relation R-Y
- Not successful in NR correction

Why weight?

Sampling: selection probabilities may differ

-> design weights

Coverage: sampling list may not cover target population

Nonresponse: not all people in sample will end up in data

-> adjustment weights for coverage/NR

Design weights (repeat from weeks 3-6)

SRS: equal probabilities

no design weights

Stratified, cluster, multistage

- need design weights for unbiased estimatesSee slides for those weeks
- Weights not needed if:
 - you specify correct svydesign (ids=~, strata=~,)
 - You use a HT-estimator (weight = ~inclusionprobabilities)

Different kinds of weights

Sampling: selection probabilities may differ

also known as (aka) design weights

Nonresponse weights

- Nonresponse: not all people in sample will end up in data
 - + Coverage: sampling list may not cover target population
- Aka adjustment weights

Analysis weights = sampling weight * nonresponse weight

The idea behind NR weighting

- X values at level of (sub)population
- One weighting model for all substantive analysis
 - In imputation model often Y-specific.

Population level data?

- 1. Sampling frame (nonresponse)
 - Address.
 - Can be enriched (e.g. use google streetview)
 - Statistics Netherlands: admin data
- 2. Population level statistics (coverage + NR)
 - Gender (50/50), age, income, region, nationality
 - Next week...

How weighting works

- 1. This week: X variables on sampling frame
- 2. Predict $R_{0.1}$ with X
- 3. Get predicted probabilities
- 4. Weight by inverse of probabilities

Propensity-score weights

For propensity-score weights (logistic regression) models estimate the response propensity (predicted probability) of each sample unit given a set of covariates.

- Response rate for all linear combinations of for example:
 - response[0;1] ~ gender+age+region+typehouse
 - Save predicted probabilities

Weight is the scaled inverse of the predicted response propensity of each sample unit.

Brick (2013)

- Review of weighting approaches
 - Propensity score models
 - Sampling frame data is limited
 - Population information is limited
 - Other weighting models
- Can we use more information?
 - Next week:
 - Section 7: paradata?
 - Population data

Next weeks

- Next week: designing weights
- After that
 - Designed big data
 - Two weeks on missing data
 - Non-probability inference
 - Data integration
- Assignment 2 (weighting and imputation)