Inteligencia Artificial Avanzada

Clustering

PhD.(c) Junior Fabian Arteaga

UNSUPERVISED LEARNING

Aprendizaje No Supervisado

Nos permite abordar los problemas con poca o ninguna idea de cómo deben ser nuestros resultados. Podemos derivar la estructura de los datos donde no necesariamente sabemos el efecto de las variables.

Clustering

Clustering es la clasificación de objetos en diferentes grupos, o más precisamente, la partición de un dataset en subconjuntos (clusters), de modo que los datos de cada subconjunto "idealmente" comparten algún característica en común. Esto en base a una medida de distancia definida.

Clustering

Clustering es un método de clasificación no supervisada: No existen clases predefinidas

Partitional Clustering

Los algoritmos particionales determinan todos los clusters a la vez.

- K-means y sus variaciones
- Fuzzy c-means clustering
- QT clustering algorithm

Clustering

- Un buen método de clustering producirá clusters de alta calidad con:
 - Alta similaridad intra-class
 - Baja similaridad inter-class

La calidad del resultado de clustering depende de 2 factores importantes:
 La medida de similitud empleada y por la implementación.

 La calidad de un método de clustering es medida por su capacidad para descubrir algunos o todos los patrones ocultos en el dataset.

Clustering (Métricas de Distancias)

• Las medidas de distancia determinará cómo es calculada la similaridad de dos elementos, además esta medida influye en la forma de los clusters.

<u>Distancia Euclidiana</u> (2-norm distance) está dada por:

$$d_{\mathbf{x},\mathbf{y}} = \sqrt{\sum_{j=1}^{J} (x_j - y_j)^2}$$

<u>Distancia de Manhattan</u> (1-norm distance) está dada por:

$$\sum_{i=1}^{k} |x_i - y_i|$$

K-means Clustering

 El algoritmo K-means es un algoritmo para agrupar "n" objetos en "k" particiones, en base en sus atributos. (k<n)

• Este algoritmo es el método de partición más simple para el análisis de clusters y es ampliamente utilizado en aplicaciones de data mining.

 Cada cluster está representado por el centro del cluster (centroide). El algoritmo converge en centroides estables para cada cluster.

K-means Algorithm

Input: K, data

Inicialización: Establecer **k** centroides (randomly)

- 1.) Asignar cada dato al cluster más cercano, según alguna métrica de distancia.
- Calcular nuevos centroides de cada cluster.
 Centroide es el centro del cluster (mean point).
- 3.) Ir al paso 1, detenerse cuando no hay más asignaciones.

Clustering

K-means Algorithm

K-means Method

K-means Clustering

• Un algoritmo para particionar (o agrupar) N data points en K subconjuntos disjuntos S_i , debe minimizar el criterio de la suma de los cuadrados:

$$J = \sum_{j=1}^K \sum_{n \in \mathcal{S}_j} |x_n - \mu_j|^2,$$

• Donde X_n es un vector representando el n-ésimo data point y u_j es el centroide geométrico de los data points en S_j .

Supongamos que tenemos 4 tipos de Medicina (A, B, C, D) y cada uno tiene 2 atributos (pH, Peso). Nuestro objetivo es agrupar estos objetos en K=2 grupos de medicina.

Medicin e	Weight	pH- Index
А	1	1
В	2	1
С	4	3
D	5	4

Paso 1: Establecer los seed points (centroides) iniciales

$$c_{1} = A, c_{2} = B$$

$$\mathbf{D}^{0} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix} \quad \begin{array}{c} \mathbf{c}_{1} = (1,1) & group - 1 \\ \mathbf{c}_{2} = (2,1) & group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

$$\begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad Y$$

$$d(D, c_{1}) = \sqrt{(5-1)^{2} + (4-1)^{2}} = 5$$

$$d(D, c_{2}) = \sqrt{(5-2)^{2} + (4-1)^{2}} = 4.24$$

Asignar cada objeto al cluster con el seed point (centroide) más cercano

Paso 2: Calcular los nuevos centroides en base a las nuevas particiones

$$c_1 = (1, 1)$$

$$c_2 = \left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right)$$
$$= \left(\frac{11}{3}, \frac{8}{3}\right)$$

Paso 2: Renovar las particiones en base a los nuevos centroides

$$\mathbf{D}^{1} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 3.14 & 2.36 & 0.47 & 1.89 \end{bmatrix} \begin{array}{c} \mathbf{c}_{1} = (1,1) & group - 1 \\ \mathbf{c}_{2} = (\frac{11}{3}, \frac{8}{3}) & group - 2 \\ A & B & C & D \\ \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \begin{array}{c} X \\ Y \end{array}$$

Calcular las distancias a los nuevos centroides

Paso 3: Repetir los dos primeros pasos hasta la convergencia

$$\mathbf{D}^{2} = \begin{bmatrix} 0.5 & 0.5 & 3.20 & 4.61 \\ 4.30 & 3.54 & 0.71 & 0.71 \end{bmatrix} \quad \mathbf{c}_{1} = (1\frac{1}{2}, 1) \quad group - 1 \\ \mathbf{c}_{2} = (4\frac{1}{2}, 3\frac{1}{2}) \quad group - 2 \\ A \quad B \quad C \quad D \\ \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad X \\ Y$$

Calcular las distancias a los nuevos centroides

K-means Clustering (Problemas)

- Puede converger a un óptimo local
- Complejidad O(tKn): n = número de objetos, K = número de clusters, t = número de iteraciones.
- Se necesita especificar el K a priori.
- Sensible a outliers (K-medoids algorithm)
- Sensible a la forma de la distribución de la data
- ¿Cómo medir la performance del algoritmo?

K-means Clustering (Performance)

Elbow Method:

 Calcular la suma de los errores cuadrados (SSE) para algunos valores de k (2,4,6,8..).

SSE es definida por

$$SSE = \sum_{i=1}^{K} \sum_{x \in c_i} dist(x, c_i)^2$$

K-means Clustering (Performance)

Elbow Method:

