1 Tema

Os automóveis representam um importante papel na sociedade atual não sendo aproveitados somente para locomoção civil, mas também utilizados como meio de serviço. O Departamento Nacional de Trânsito (DENATRAN), órgão governamental responsável pelo levantamento da frota de veículos do território nacional, estima em sua última pesquisa, realizada em abril de 2018, que o Brasil possuía 98 201 128 veículos registrados, sendo que a região sudeste detém 48,63% destes cadastros, ou seja, a região possui 1,8 carros por habitante*.

Segundo (FULLER, 2005), o comportamento de um motorista pode ser modelado utilizando a capacidade do motorista e a tarefa de direção em si. A capacidade do motorista caracteriza a parcela biológica do modelo, sendo responsável pela velocidade de processamento, tempo de reação e seus limites físicos. Já a tarefa de direção corresponde à parcela sistemática que está sujeita a interferências externas, como visibilidade e características da via.

Sensores automobilísticos controlam e monitoram a utilização do veículo Cada motorista é um ator distinto, pois interage de forma única com os sensores A bioassinatura é obtida através da condensação, normalização, análise e extração de características dos dados sensoriados

1.1 Motivação

A bioassinatura, por ser única para cada motorista, pode ser aplicada na prevenção à fraudes e roubos Por utilizar dados veiculares sensoriados, é um método não intrusivo que pode ser utilizado isoladamente ou em conjunto com outras soluções de identificação

1.2 Lacuna

Atualmente, a análise do perfil de condução de um motorista preocupa-se em inferir o seu estado fisiológico Existem poucos estudos que utilizam os mesmos dados sensoriados para inferir a identidade do motorista, de forma não intrusiva, e classificá-lo dentro de um grupo

2 Objetivo

Confeccionar um modelo para inferência da identidade do condutor veicular utilizando a sua bioassinatura de condução em conjunto com os dados sensoriados instantâneos do veículo.

2.1 Hipótese

Com o uso de técnicas de aprendizagem profunda é possível obter um resultado mais apurado ao realizar a extração de características, quando utilizada em séries temporais de alta dimensionalidade, e também apresentar menores índices de erro ao realizar classificações em sistemas com muitos grupos. A expectativa, ao aplicar tais técnicas, recai sobre menores índices de falso-positivos e falso-negativos ao aplicar-se f-score sobre os resultados gerados. Também é esperado que o custo computacional para sua operação não inviabilize a utilização pelo mercado.

2.2 Justificativa

Caso a aplicação da técnica de aprendizagem profunda apresente os resultados esperados, será possível explorar novas maneiras para criar-se perfis comportamentais não intrusivos

3 Metodologia

Pesquisa quantitativa Utilização de dados reais captados por sensores Geração das bioassinaturas, testes e validação das mesmas Inferência do motorista Utilização de métodos de aprendizagem profunda Geração das bioassinaturas Inferência da identidade em tempo real Análise estatística para avaliação dos resultados obtidos

3.1 Avaliação

Geração das bioassinaturas Comparação do tempo de execução e custo computacional Complexidade de aplicação do método de geração Inferência do condutor f-score Tempo médio para convergência e custo computacional

Escolha do "melhor modelo" Razão ponderada entre os resultados obtidos

4 Contribuições e Limitações

4.1 Contribuições

Modelo para geração e validação de bioassinaturas veiculares Alternativa aos métodos de identificação intrusivos

4.2 Limitações

Restrição a um tipo de veículo Limitação a motoristas experientes Não há classificação das rotas

$\mathbf{Refer \hat{e}ncias}^1$

FULLER, R. Towards a general theory of driver behaviour. *Accident Analysis and Prevention*, v. 37, n. 3, p. 461–472, 2005. Citado na página 1.

De acordo com a Associação Brasileira de Normas Técnicas. NBR 6023.