Wiktor Murawski, 333255, grupa 3, środa 12:15, Projekt 1, Zadanie 23

Obliczanie całek $\iint_D f(x,y)\,dxdy$ na obszarze $D=\{(x,y)\in\mathbb{R}^2:|x|+|y|\leq 1\}$ poprzez podział obszaru D na $4n^2$ trójkątów przystających oraz zastosowanie na każdym z nich kwadratury rzedu drugiego.

Tabela: Tabela

Funkcja	Wynik	n = 1	n = 10	n = 100
	0	0	0	0
f(x,y) = 0	U	0		0
		0	0	0
f(x,y) =	0	0	-3.46945e-18	-1.30104e-18
x+y		0	3.46945e-18	1.30104e-18
f(x,y) =	2	2	2	2
1		0	2.04281e-14	2.00817e-12
f(x,y) =	2	2	2	2
x+y+1		0	2.44249e-15	2.66454e-15
f(x,y) =	3.24	3.24	3.24	3.24
pi*x+2.72*y+1.62		4.44089e-16	4.44089e-16	8.88178e-16
f(x,y) =	4.44089e-16	4.44089e-16	4.44008e-16	4.44096e-16
0.05*x+0.01*y+eps		0	8.13152e-20	7.19978e-21

Wyznaczenie analityczne całki z funkcji stopnia 1

Obliczymy analitycznie
$$I=\int\limits_D f(x,y)\,dxdy$$
 gdzie
$$f(x,y)=ax+by+c \qquad a,b,c\in\mathbb{R}$$
 Niech $D_1=\{(x,y)\in D:x\leq 0\}$ oraz $D_2=\{(x,y)\in D:x>0\}$ Oznaczmy $I_1=\int\limits_{D_1} f(x,y)\,dxdy,\ I_2=\int\limits_{D_2} f(x,y)\,dxdy$ Wtedy $D=D_1\cup D_2$ oraz $I=I_1+I_2$
$$I_1=\int\limits_{-1}^0\int\limits_{-x-1}^{x+1}ax+by+c\,dydx$$

$$I_2=\int\limits_0^1\int\limits_{x-1}^{x+1}ax+by+c\,dydx$$

Wyznaczenie analityczne całki z funkcji stopnia 1

$$I_{1} = \int_{-1}^{0} \int_{-x-1}^{x+1} ax + by + c \, dy dx$$

$$I_{2} = \int_{0}^{1} \int_{x-1}^{-x+1} ax + by + c \, dy dx$$

$$I_{1} = \int_{-1}^{0} \left[axy + \frac{by^{2}}{2} + cy \right]_{-x-1}^{x+1} dx$$

$$I_{2} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{2} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{3} = \int_{-1}^{0} 2ax^{2} + 2ax + 2cx + 2c \, dx$$

$$I_{4} = \left[\frac{ax^{3}}{3} + \frac{ax^{2}}{2} + \frac{cx^{2}}{2} + cx \right]_{-1}^{0}$$

$$I_{5} = \left[\frac{ax^{3}}{3} + \frac{ax^{2}}{2} - \frac{cx^{2}}{2} + cx \right]_{0}^{1}$$

$$I_{5} = \frac{a}{3} + c$$

$$I_{7} = \frac{a}{3} + c$$

Ostatecznie otrzymujemy $I = I_1 + I_2 = 2c$

