ECE 657 Assignment 1

Akshay Pala

Oghenerukevwe Ahwin

Uche Elekwa

June 13, 2021

QUESTION 2

- $o_1 = neuron3.$
- $o_2 = neuron4.$
- $o_3 = neuron5$.

- $\mathbb{C}W_{15}x + W_{25}y + b = o_3$
- h1 = activation function at neuron 3
- h2 = activation function at neuron 4
- h3 = activation function at neuron 5

$$w_{36}h_1 + w_{46}h_2 + w_{56}h_3 + b = 2$$

Class = 1 if point falls within the triangle Class = 0 if point falls outside the triangle At (0,0) (1,3) (3,1):

X	У	Z
0	0	1
1	3	1
3	1	1

$$b + h_1 w_{36} + h_2 w_{46} + h_3 w_{56} > 0 - \mathbb{O}$$

$$b + h_1 w_{36} + h_2 w_{46} + h_3 w_{56} > 0 - \textcircled{E}$$

$$b + h_1 w_{36} + h_2 w_{46} + h_3 w_{56} > 0 - \textcircled{F}$$

At (0,0)

- A becomes $b = o_1$
- B becomes $b = o_2$
- \mathbb{C} becomes $b = o_3$

if b=1 then
$$o_1, o_2, o_3 = 1$$

At (1,3)

- A becomes $w_{13} + 3w_{23} + 1 = o_1 > 0$
- B becomes $w_{14} + 3w_{24} + 1 = o_2 > 0$
- \bigcirc becomes $w_{15} + 3w_{25} + 1 = o_3 > 0$

At (3,1)

A becomes $3w_{13} + w_{23} + 1 = o_1 > 0$

$$\textcircled{B}$$
 becomes $3w_{14} + w_{24} + 1 = o_2 > 0$

$$\bigcirc$$
 becomes $3w_{15} + w_{25} + 1 = o_3 > 0$

Using activation function as sign function ; Sign $o_1, o_2, o_3 = -1, 0, 1$

if $o_1, o_2, o_3 < 0$

 $o_1, o_2, o_3 = 0$

 $o_1, o_2, o_3 > 0$

At (0,0), o_1 , o_2 , o_3 are all greater than zero. Thus, h_1 , h_2 , h_3 are all equal to 1

(0,0):

 $b + h_1 w_{36} + h_2 w_{46} + h_3 w_{56}. > 0$

 $b + w_{36} + w_{46} + w_{56} > 0$

At (3,1) and (1,3) o_1 , o_2 , o_3 are all greater than 0.

Thus, h1, h2, h3 = 1

(E) and (F) becomes

 $b + w_{36} + w_{46} + w_{56} > 0$

 $b > -w_{36} - w_{46} - w_{56}$

if $w_{36} = w_{46} = w_{56} = 1$ and b = 1 then \bigcirc and \bigcirc are satisfied

From (A). $w_{13}x + w_{23}y + b > 0$

From (B). $w_{14}x + w_{24}y + b > 0$

From \mathbb{O} . $w_{15}x + w_{25}y + b > 0$ if b=1 then $o_1, o_2, o_3 = 1$

 $b > -w_{13}x - w_{23}y$

 $b > -w_{14}x - w_{24}y$

 $b > -w_{15}x - w_{25}y$

At (0,0): b > 0, b = 1

At (1,3):

 $b > -w_{14} - 3w_{24}$

 $b > -w_{13} - 3w_{23}$

 $b > -w_{15} - 3w_{25}$

if b=1 and $w_{14} = w_{24} = w_{13} = w_{23} = w_{15} = w_{25} = 1$ then the above holds

At (3,1):

 $b > -3w_{13} - w_{23}$

 $b > -3w_{14} - w_{24}$

$$b > -3w_{15} - w_{25}$$

The equality holds as well with b = 1 and all weight values as 1

b=1

- $w_{13} = 1$
- w_{23} . = 1
- w_{14} . = 1
- w_{24} . = 1
- w_{15} . = 1
- w_{25} . = 1
- w_{36} . = 1
- $w_{46} = 1$
- w_{56} . = 1

QUESTION 3

Widrow Hoff is mathematically represented as:

$$\Delta w^k = \eta(\mathbf{t}^k - w^k x^k) \frac{x^k}{||x^k||^2}$$
 (1)

$$\Delta w^k = w^{(k+1)} - w^k - (2)$$

Show that if the same input vector x^k is presented at iteration (k + 1) then:

$$\Delta w^{k+1} = (1-\eta)\Delta w^{(k)} - (3)$$

With x^k being present at iteration (k+1), equation 3 is valid because if x^k is present, t^k is present as well

$$x^{k+1} = x^k$$
 ——(4)

$$t^{k+1} = t^k$$
 —— (5)

Then we derive:

$$\Delta w^{k+1} \cdot = \eta(\mathbf{t}^k - w^{k+1} x^k) \frac{x^k}{\|x^k\|^2} - (6)$$

From equation 2, we make $\mathbf{w}^{(k+1)}$ the subject of the formula

$$\mathbf{w}^{(k+1)} = \Delta w^k + w^k - (7)$$

Sub (7) in (6)

$$\Delta w^{k+1}$$
. = $\eta(t^k - (\Delta w^k + w^k) x^k) \frac{x^k}{||x^k||^2}$ — (8)

$$\Delta w^{k+1}. = \eta \mathsf{t}^k \; [\tfrac{x^k}{||x^k||^2}] - \eta \Delta w^k x^k [\tfrac{x^k}{||x^k||^2}] + \eta w^k x^k [\tfrac{x^k}{||x^k||^2}] - - - - - (9)$$

$$\Delta w^{k+1}. = \eta(\mathbf{t}^k - \mathbf{w}^k x^k)[\ \mathbf{x}^k_{\ \overline{||x^k||^2}}] - \eta \Delta w^k[\frac{x^k x^k}{||x^k||^2}] - - - - - (10)$$

$$\Delta w^{k+1}$$
. = $\Delta w^k - \eta \Delta w^k \left[\frac{x^k x^k}{||x^k||^2} \right] - - - - - (11)$