Theory of Statistical Learning Part II

Damien Garreau

Université Côte d'Azur

2022-2023

1. Linear predictors

1.1. Linear classification

Linear functions

- $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$
- ► thus $x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,d})^{\top}$
- we consider no bias term (otherwise *affine*):

$$\{h: x \mapsto w^{\top}x, w \in \mathbb{R}^d\}$$
.

Reminder: given two vectors $u, v \in \mathbb{R}^d$,

$$\langle u, v \rangle = u^{\top} v = \sum_{i=1}^{d} u_i v_i$$
.

- **b** binary classification: 0-1 loss, $\mathcal{Y} = \{-1, +1\}$
- ▶ **Important:** compose h with $\phi : \mathbb{R} \to \mathcal{Y}$ (typically the sign)

The sign function

Figure: the sign function

Halfspaces

▶ thus our function class is

$$\mathcal{H} = \{ x \mapsto \operatorname{sign}(w^{\top} x), w \in \mathbb{R}^d \}.$$

ightharpoonup gives label +1 to vector pointing in the same direction as w

VC dimension of halfspaces

Proposition: the VC dimension of halfspaces in dimension d is exactly d + 1.

Consequence: \mathcal{H} is PAC learnable with sample complexity

$$\Omega\left(rac{d+\log(1/\delta)}{arepsilon}
ight)$$
 .

Linearly separable data

- ▶ Important assumption: data is linearly separable
- ▶ that is, there is a $w^* \in \mathbb{R}^d$ such that

$$y_i = \operatorname{sign}(\langle w^*, x_i \rangle) \quad \forall 1 \leq i \leq n.$$

Linear programming

Empirical risk minimization: recall that we are looking for w such that

$$\hat{\mathcal{R}}_{S}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_{i} \neq \operatorname{sign}(w^{\top} x_{i})}$$

is minimal

- Question: how to solve this?
- we want $y_i = \operatorname{sign}(w^\top x_i)$ for all $1 \le i \le n$
- equivalent formulation: $y_i \langle w, x_i \rangle > 0$
- ightharpoonup we know that there is a vector that satisfies this condition (w^*)
- let us set $\gamma = \min_i \{ y_i \langle w^*, x_i \rangle \}$ and $\overline{w} = w^* / \gamma$
- we have shown that there is a vector such that $y_i\langle \overline{w}, x_i \rangle \geq 1$ for any $1 \leq i \leq n$ (and it is an ERM)

Linear programming, ctd.

▶ define the matrix $A \in \mathbb{R}^{n \times d}$ such that

$$A_{i,j}=y_ix_{i,j}.$$

- ► **Intuition:** observations × labels
- ightharpoonup remember that we have the ± 1 label convention
- ightharpoonup define $v = (1, \dots, 1)^{\top} \in \mathbb{R}^n$
- ▶ then we can rewrite the above problem as

maximize
$$\langle u, w \rangle$$
 subject to $Aw \leq v$.

- ▶ we call this sort of problems linear programs¹
- ▶ solvers readily available, e.g., scipy.optimize.linprog if you use Python

¹Boyd, Vandenberghe, Convex optimization, Cambridge University Press, 2004

The perceptron

- ▶ another possibility: the perceptron²
- ▶ **Idea:** iterative algorithm that constructs $w^{(1)}, w^{(2)}, \dots, w^{(T)}$
- update rule: at each step, find i that is misclassified and set

$$w^{(t+1)} = w^{(t)} + y_i x_i$$
.

- Question: why does it work?
- pushes w in the right direction:

$$y_i\langle w^{(t+1)}, x_i\rangle = y_i\langle w^{(t)} + y_ix_i, x_i\rangle = y_i\langle w^{(t)}, x_i\rangle + \|x_i\|^2$$

remember, we want $y_i \langle w, x_i \rangle > 0$ for all i

 $^{^2}$ Rosenblatt, The perceptron, a perceiving and recognizing automaton, tech report, 1957

1.2. Linear regression

Least squares

► regression ⇒ squared-loss function

$$\ell(y,y')=(y-y')^2.$$

still looking at linear functions:

$$\mathcal{H} = \{h : x \mapsto \langle w, x \rangle \text{ s.t. } w \in \mathbb{R}^d\}.$$

empirical risk in this context:

$$\hat{\mathcal{R}}_{\mathcal{S}}(h) = \frac{1}{n} \sum_{i=1}^{n} (w^{\top} x_i - y_i)^2 = F(w).$$

- also called mean squared error
- empirical risk minimization: we want to minimize $w \mapsto F(w)$ with respect to $w \in \mathbb{R}^d$
- F is a convex, smooth function

Least squares, ctd.

let us compute the gradient of *F*:

$$\frac{\partial F}{\partial w_j}(w) = \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_j} (w^\top x_i - y_i)^2
= \frac{1}{n} \sum_{i=1}^n 2 \cdot \frac{\partial}{\partial w_j} (w^\top x_i - y_i) \cdot (w^\top x_i - y_i)
= \frac{1}{n} \sum_{i=1}^n 2 \cdot \frac{\partial}{\partial w_j} (\cdots + w_j x_{i,j} + \cdots - y_i) \cdot (w^\top x_i - y_i)
\frac{\partial F}{\partial w_j}(w) = \frac{2}{n} \sum_{i=1}^n x_{i,j} \cdot (w^\top x_i - y_i).$$

Ι4

Least squares, ctd.

- it is more convenient to write $\nabla F(w) = 0$ in matrix notation
- ▶ define $X \in \mathbb{R}^{n \times d}$ the matrix such that line i of X is observation x_i
- ▶ one can check that, for any $1 \le j, k \le d$,

$$(X^{\top}X)_{j,k} = \sum_{i=1}^{n} x_{i,j} x_{i,k}.$$

► thus

$$(X^{\top}Xw)_{j} = \sum_{k=1}^{d} (X^{\top}X)_{j,k} w_{k}$$
$$= \sum_{k=1}^{d} \sum_{i=1}^{n} x_{i,j}x_{i,k} w_{k}$$
$$= \sum_{i=1}^{n} x_{i,j}w^{\top}x_{i}.$$

Least squares, ctd.

thus, if we define

$$A = X^ op X = \sum_{i=1}^n x_i x_i^ op \in \mathbb{R}^{d imes d}$$
 and $b = X^ op y = \sum_{i=1}^n y_i x_i \in \mathbb{R}^d$,

solving $\nabla F(w) = 0$ is equivalent to solving

$$Aw = b$$
.

▶ if *A* is invertible, straightforward:

$$\hat{w} = A^{-1}b$$

- ightharpoonup computational cost: $\mathcal{O}\left(d^3\right)$ (inversion is actually a bit less)
- what happens when A is not invertible?

Singular value decomposition

since A is symmetric, it has an eigendecomposition

$$A = VDV^{\top}$$
,

with $D \in \mathbb{R}^d$ diagonal and V orthonormal

▶ define *D*⁺ such that

$$D_{i,i}^+=0$$
 if $D_{i,i}=0$ and $D_{i,i}^+=rac{1}{D_{i,i}}$ otherwise.

- ightharpoonup define $A^+ = VD^+V^\top$
- ▶ then we set

$$\hat{w}=A^+b.$$

Singular value decomposition, ctd.

- why did we do that?
- let v_i denote the *i*th column of V, then

$$A\hat{w} = AA^+b$$
 (definition of \hat{w})
 $= VDV^\top VD^+V^\top b$ (definition of A^+)
 $= VDD^+V^\top b$ (V is orthonormal)
 $A\hat{w} = \sum_{i:D_{i,i}\neq 0} v_i v_i^\top b$.

- \blacktriangleright in definitive, $A\hat{w}$ is the projection of b onto the span of v_i such that $D_{i,i} \neq 0$
- ▶ since the span of these v_i is the span of the x_i and b is in the linear span of the x_i , we have $A\hat{w} = b$
- ▶ cost of SVD: $\mathcal{O}(dn^2)$ if d > n (SVD of X)

Exercise

Exercise: Of course, one does not have to use the squared loss. Instead, we may prefer to use

$$\ell(y,y')=|y-y'|.$$

1. show that, for any $v \in \mathbb{R}^d$,

$$\|v\|_1 = \min_z \mathbf{1}^\top z$$
 subject to $z \ge |v|$.

- 2. deduce that ERM with the absolute value loss function is equivalent to minimizing the linear function $\sum_{i=1}^{n} s_i$, where the s_i satisfy linear constraints
- 3. write this as a linear program, that is, find $A \in \mathbb{R}^{2n \times (n+d)}$, $v \in \mathbb{R}^{d+n}$, and $b \in \mathbb{R}^{2n}$ such that the problem can be written

minimize
$$c^{\top}v$$
 subject to $Av \leq b$.

Correction of the exercise

- 1. We have $|v| \ge |v|$ and $\mathbf{1}^\top |v| = ||v||_1$.
- 2. In that case, the empirical risk can be written

$$\hat{\mathcal{R}}_{S}(w) = \frac{1}{n} \sum_{i=1}^{n} |y_{i} - w^{\top} x_{i}|.$$

We deduce the result from question 1.

3. One possibility is to define $v = (w_1, ..., w_d, s_1, ..., s_n)^{\top} \in \mathbb{R}^{n+d}$, $c = (0, ..., 0, 1, ..., 1)^{\top} \in \mathbb{R}^{d+n}$, $b = (y_1, ..., y_n, -y_1, ..., -y_n)^{\top} \in \mathbb{R}^{2n}$, and

$$A = \begin{pmatrix} X & -I_n \\ -X & -I_n \end{pmatrix} \in \mathbb{R}^{2n \times (n+d)},$$

with $X \in \mathbb{R}^{n \times d}$ the matrix whose lines are the x_i s and I_n the identity matrix.

Recap

- ▶ What happens when we invoke sklearn.linear_model.LinearRegression with default parameters?
- ightharpoonup fit_intercept is True ightharpoonup assumes that the data is not centered (our maths are not totally accurate)
- ightharpoonup normalize is False ightharpoonup we are responsible for the normalization of our data
- behind the scenes, calls scipy.linalg.lstsq when fitting, which itself calls LAPACK (Linear Algebra PACKage)³
- ► LAPACK is coded in Fortran90

³http://www.netlib.org/lapack/

1.3. Ridge regression

Ridge regression

same hypothesis class: linear functions

$$\mathcal{H} = \{ h : x \mapsto w^{\top} x, w \in \mathbb{R}^d \}$$

squared loss:

$$\ell(y,y')=(y-y')^2.$$

▶ **Idea:** regularization:

minimize
$$\left\{\frac{1}{n}\sum_{i=1}^{n}(y_i - w^{\top}x_i)^2 + \lambda \|w\|^2\right\}$$
,

with $\|u\|^2 = u_1^2 + \cdots + u_d^2$ and $\lambda > 0$ a regularization parameter

Exercise

Exercise: Let $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$ be n given training samples. For any $w \in \mathbb{R}^d$, set

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2 + \lambda \|w\|^2.$$

Notice that F is a convex smooth function.

1. show that the minimizer \hat{w} satisfies

$$(X^{\top}X + n\lambda I_d) w = X^{\top}y.$$

2. show that $X^{\top}X + n\lambda I_d$ is an invertible matrix

Correction of the exercise

1. Let $1 \le j \le d$ and let us compute $\partial_i F$:

$$\frac{\partial F}{\partial w_j}(w) = \frac{\partial}{\partial w_j} \left(\frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i)^2 \right) + \frac{\partial}{\partial w_j} (\lambda (w_1^2 + \cdots w_d^2))$$
$$= \frac{2}{n} \sum_{i=1}^n x_{i,j} \cdot (w^\top x_i - y_i) + 2\lambda w_j,$$

where we used the derivation for the least squares. We deduce the result by setting to zero and multiplying by n.

Correction of the exercise, ctd.

2. By contradiction, suppose that $X^{T}X + n\lambda I_d$ is not invertible. Then

$$\det\left(X^{\top}X+n\lambda I_{d}\right)=0.$$

In other words, $-n\lambda$ is an eigenvalue of $X^{\top}X$. Since $X^{\top}X$ is a symmetric matrix, its spectrum is $\subseteq \mathbb{R}$. Moreover, it is positive definite, thus all eigenvalues are non-negative. Since $\lambda > 0$, we deduce that $-n\lambda$ cannot be an eigenvalue of $X^{\top}X$ and we can conclude.

Recap

- What happens when we invoke sklearn.linear_model.Ridge with default settings?
- lacktriangle alpha $=1 o\lambda=1/n$ with our notation, barely any regularization if n large
- ▶ fit_intercept is True → does not consider centered data (so our analysis is not entirely accurate)
- ightharpoonup normalize is False ightharpoonup we decide whether we normalize our data
- ▶ solver is auto → sklearn will decide how to solve the minimization problem depending on the size of the data: the solution could be not exact!
- ightharpoonup tol tolerance threshold on the residuals

1.4. Polynomial regression

Polynomial regression

- linear regression is a powerful tool, especially because we can transform the inputs in a non-linear fashion
- **Example:** polynomial regression in \mathbb{R}
- ▶ inputs $x_1, \ldots, x_n \in \mathbb{R}$
- define the mapping $\phi(x) = (1, x, x^2, \dots, x^p)^{\top}$
- then

$$\langle w, \phi(x) \rangle = w_0 + w_1 x + w_2 x^2 + \cdots + w_p x^p,$$

- and we can find the best coefficients by linear regression
- lacktriangle numpy.polyfit ightarrow very handy when we want to fit univariate data

Polynomial regression, ctd.

- **Example:** data = degree three polynomial + Gaussian noise with small variance
- ▶ fit a degree 3 polynomial:

Remark: in practice, we do not know the degree of the polynomial!

Polynomial regression, ctd.

- typical case of under / overfitting:
 - when degree too low, poor fit
 - ▶ when degree too high, wiggly function $(n+1 \Rightarrow \text{interpolation})$

1.5. Logistic regression

Logistic regression

- ightharpoonup classification with $\mathcal{Y} = \{0, 1\}$
- however, we predict the probability of belonging to class 1
- hypothesis class:

$$\mathcal{H} = \{ x \mapsto \phi(\langle w, x \rangle), w \in \mathbb{R}^d \},\,$$

with ϕ the *logistic function* (aka *sigmoid* function)

$$\phi(z) = \frac{1}{1 + \mathrm{e}^{-z}} \,.$$

- ▶ Intuition: squeeze the score between 0 and 1 to transform it into a probability
- $ightharpoonup \mathbb{P}(y=1\,|\,x) = \phi(w^{ op}x) \text{ and } \mathbb{P}(y=0\,|\,x) = 1 \phi(w^{ op}x)$

Logistic function

Figure: the logistic function $\phi: t \mapsto 1/(1 + e^{-t})$.

Logistic loss

- ▶ **Next:** we need to define a loss function
- \blacktriangleright for any y, y', we define the *logistic loss*:

$$\ell(y, y') = -(1 - y) \log(1 - y') - y \log y'.$$

Logistic regression

- ▶ finally, logistic regression = empirical risk minimization with the logistic loss
- ▶ that is, minimize for $w \in \mathbb{R}^d$

$$\hat{\mathcal{R}}_{\mathcal{S}}(w) = \sum_{i=1}^{n} \left\{ -(1-y_i) \log(1-\phi(w^{\top}x_i)) - y_i \log \phi(w^{\top}x_i) \right\}.$$

- Remark (i): we can show that this is equivalent to maximum likelihood for a certain prior distribution
- Remark (ii): complicated to optimize (see exercise)

Logistic regression in dimension 1

Example: in dimension one:

Logistic regression in dimension 2

Example: in dimension two:

Exercise

Exercise: Recall that we defined the logistic loss by

$$\ell(y, y') = -(1 - y) \log(1 - y') - y \log y'$$
.

1. Show that ERM with the logistic loss is equivalent to minimizing

$$F(w) = \sum_{i=1}^{n} \log(1 + \exp(-\tilde{y}_i \langle w, x_i \rangle)),$$

where $\tilde{y}_i = \text{sign}(y_i - 0.5)$. Deduce that $\hat{\mathcal{R}}$ is a convex function of w.

- 2. Compute the gradient of $\hat{\mathcal{R}}$ with respect to w. Hint: show that $\phi'(z) = \phi(z)(1 \phi(z))$.
- 3. Can you solve $\nabla \hat{\mathcal{R}}(w) = 0$? If not, propose a strategy for finding a good w.

Correction of the exercise

1. Let us set $1 \le i \le n$. We write

$$\begin{split} \ell(y_i, \phi(w^\top x_i)) &= -(1 - y_i) \log(1 - \phi(w^\top x_i)) - y_i \log \phi(w^\top x_i) \\ &= -(1 - y_i) \log \frac{\mathrm{e}^{-w^\top x_i}}{1 + \mathrm{e}^{-w^\top x_i}} - y_i \log \frac{1}{1 + \mathrm{e}^{-w^\top x_i}} \\ &= -(1 - y_i) \log \mathrm{e}^{-w^\top x_i} + \log(1 + \mathrm{e}^{-w^\top x_i}) \,. \end{split}$$

If $y_i = 0$, the last display equals

$$\log(1 + \exp(w^{\top}x_i)),$$

if $y_i = 1$, it is

$$\log(1 + \exp(-w^{\top}x_i))$$
.

One can check directly that $x \mapsto \log(1 + e^{-x})$ is convex. By composition, F is a sum of convex functions, thus convex.

Correction of the exercise, ctd.

2. Let $1 \le i \le d$. We write

$$\begin{split} \frac{\partial \hat{\mathcal{R}}(w)}{\partial w_j} &= -\sum_{i=1}^n \frac{\partial}{\partial w_j} \left\{ (1 - y_i) \log(1 - \phi(w^\top x_i)) + y_i \log \phi(w^\top x_i) \right\} \\ &= -\sum_{i=1}^n \left\{ \frac{-(1 - y_i)}{1 - \phi(w^\top x_i)} + \frac{y_i}{\phi(w^\top x_i)} \right\} \frac{\partial}{\partial w_j} \phi(w^\top x_i) \\ &= -\sum_{i=1}^n \left\{ \frac{-(1 - y_i)}{1 - \phi(w^\top x_i)} + \frac{y_i}{\phi(w^\top x_i)} \right\} \phi(w^\top x_i) (1 - \phi(w^\top x_i)) x_{i,j} \\ \frac{\partial \hat{\mathcal{R}}(w)}{\partial w_j} &= -\sum_{i=1}^n \left(y_i - \phi(w^\top x_i) \right) x_{i,j} \,. \end{split}$$

3. It does not seem possible to solve $\nabla F(w) = 0$ in closed-form, one has to use gradient descent.

Recap

- What happens when we call sklearn.linear_model.LogisticRegression?
- ightharpoonup penalty is $\ell_2 o ext{there}$ is regularization by default! (not much though, C=1)
- ▶ fit_intercept is True → again, our maths are not entirely accurate
- \triangleright solver is liblinear \rightarrow since there is no closed-form, a solver will be used
- liblinear uses coordinate descent
- will default soon to lbfgs (limited memory Broyden-Fletcher- -Goldfarb-Shanno)
- do not worry too much about the solvers, just change if you see that it is not converging

1.6. Support vector machines

Support vector machines

- ▶ classification with $x_1, ..., x_n \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$
- **Recall:** linearly separable means that there exist (w, b) such that

$$\forall i \in [n], \qquad y_i(w^\top x_i + b) > 0.$$

- ▶ Remark: all halfspaces satisfying this condition are empirical risk minimizers
- Question: which one should we pick?

Some intuition

▶ **Idea:** choose the one with maximum *margin*

▶ Intuitively, we would prefer the red line instead of the blue one

Margins

Definition: The margin of a hyperplane with respect to a training set is defined as the minimal distance between a point in the training set and the hyperplane.

- ► Hard-SVM⁴ = minimizing empirical risk and choosing the max margin hyperplane
- Question: how to put this in equation?
- ▶ first, we need to express the distance between a point and a hyperplane:

Lemma: Assume that ||w|| = 1. Then the distance between x and the hyperplane defined by (w, b) is given by $|w^{\top}x + b|$.

⁴Boser, Guyon, Vapnik, *A training algorithm for optimal margin classifiers*, 5th workshop on computational learning theory, 1992

Proof of the lemma

we want to compute

$$\min\{||x - v|| \quad \text{s.t.} \quad w^{\top}v + b = 0\}.$$

ightharpoonup take $v = x - (w^{\top}x + b)w$:

$$w^{\top}v + b = w^{\top}x - (w^{\top}x + b)||w||^2 + b = 0,$$

since ||w|| = 1.

moreover,

$$||x - v|| = |w^{T}x + b| ||w|| = |w^{T}x + b|.$$

- for now, we have a point v on the hyperplane with distance $|w^Tx + b|$
- let us show that any other point has a larger distance

Proof of the lemma, ctd.

let u such that $w^{\top}u + b = 0$, then

$$||x - u||^{2} = ||x - v + v - u||^{2}$$

$$= ||x - v||^{2} + ||v - u||^{2} + 2(x - v)^{T}(v - u)$$

$$\geq ||x - v||^{2} + 2(x - v)^{T}(v - u)$$

$$= ||x - v||^{2} + 2(w^{T}x + b)w^{T}(v - u)$$

▶ notice that $w^{\top}v = w^{\top}u = -b$, therefore

$$||x - u||^2 \ge ||x - v||^2$$
.

Hard-SVM rule

- **Consequence of the lemma:** the closest point in the training set has distance $\min_i |w^\top x_i + b|$ to the hyperplane
- we can rewrite the hard-SVM rule as

$$(\hat{w}, \hat{b}) \in \underset{(w,b),\|w\|=1}{\operatorname{arg \, max}} \min_{i} \left| w^{\top} x_i + b \right| \quad \text{s.t.} \quad y_i(w^{\top} x_i + b) > 0 \quad \forall i \, .$$

- ▶ **Intuition:** x_i on the right side of the hyperplane if y_i and $w^\top x_i + b$ have the same sign
- in the separable case, it is possible to show that an equivalent formulation is

$$(\hat{w}, \hat{b}) \in \underset{(w,b),||w||=1}{\operatorname{arg max}} \min_{i} y_i(w^{\top}x_i + b).$$

Hard-SVM as quadratic programming

▶ as in the first linear example, possible to reframe as a standard optimization problem

Lemma: Let (w_0, b_0) be the solution of the following QP:

$$(w_0, b_0) \in \operatorname*{arg\,min} \|w\|^2 \qquad \text{s.t.} \qquad y_i(w^\top x_i + b) \geq 1 \quad \forall i \,.$$

Then $\hat{w} = w_0 / \|w_0\|$ and $\hat{b} = b_0 / \|w_0\|$ satisfy the Hard-SVM rule.

▶ QP = quadratic programming: objective is a quadratic function and the constraints are linear inequalities