2.2 用线性回归预测房价

线性模型&损失函数&目标函数

主讲人: 李辉楚吴

前情提要——构建预测模型的三个步骤

思考: 仅考虑单个特征, 应如何设计预测模型? 如何选择最优模型?

如何构建最优的预测模型

继续使用波士顿的房价数据

1978年波士顿区域房屋价格表

x₁: 犯罪率 (%)	0.00632	0.02731	0.02729	0.03237	0.06905
x ₂ : 大住宅用地占比 (%)	18.00	0.00	0.00	0.00	0.00
x ₃ : 非零售商业用地占比 (%)	2.31	7.07	7.07	2.18	2.18
x₄∶ 景观房 (0/1)	0	0	0	0	0
<i>x</i> ₅ ∶ 氮氧化物浓度 (ppm)	0.538	0.469	0.469	0.458	0.458
<i>x</i> ₆ ∶ 平均房间数 (个)	6.575	6.421	7.185	6.998	7.147
x ₇ ∶ 老旧房屋占比 (%)	65.2	78.9	61.1	45.8	54.2
x ₈ : 离就业中心的加权距离	4.09	4.9671	4.9671	6.0622	6.0622
y: 房价中位数 (千美元)	24.00	21.6	34.7	33.4	36.2

继续使用波士顿的房价数据

1978年波士顿区域房屋价格表

x ₁ : 犯罪率 x ₂ : 大住宅F x ₃ : 非零售下 x ₄ : 景观房	解:化	又考虑	单个排	持征	0.06905 0.00 2.18
x ₅ ∶ 氮氧化物浓度(ppm)	0.538	0.469	0.469	0.458	0.458
<i>x</i> ₆ ∶ 平均房间数 (个)	6.575	6.421	7.185	6.998	7.147
x ₇ ∶ 老旧房屋占比 (%)	65.2	78.9	61.1	45.8	54.2
x ₈ ∶ 离就业中心的加权距离	4.09	4.9671	4.9671	6.0622	6.0622
y∶房价中位数 (千美元)	24.00	21.6	34.7	33.4	36.2

步骤1 一大堆数据

输入数据 <i>x</i> (特征,Feature)	输出结果 <i>y</i> (目标,Target 标签,Label)
6.575	24.0
6.421	21.6
7.185	34.7
6.998	33.4
7.147	36.2

更直观的表示

房价与平均房间数正相关

一堆侯型 f_1, f_2, \dots, f_n

随意地构建工程主函数y = f(x)

一堆模型 f₁,f₂,...,f_n

随意地构建函数y = f(x)

可以选择**线性函数** y = wx + b

w (weight): 权重 | 参数 | 系数

b (bias): 偏见 | 偏好

def pred_linear(x, w, b):
return w * x + b

一堆模型 f₁,f₂,...,f_n

随意地构建函数y = f(x)

可以选择**线性函数** y = wx + b

w (weight): 权重 | 参数 | 系数

b (bias): 偏见 | 偏好

def pred_linear(x, w, b):
return w * x + b

当 (w, b) ← (1,4) 时······

一堆模型 f₁,f₂,...,f_n

随意地构建函数y = f(x)

可以选择**线性函数** y = wx + b

w (weight): 权重 | 参数 | 系数

b (bias): 偏见 | 偏好

def pred_linear(x, w, b):
return w * x + b

当 (w,b) ← (1,4) 时······

当 (w,b) ← (6,-4) 时……

一堆模型 f₁,f₂,...,f_n

随意地构建函数y = f(x)

可以选择**线性函数** y = wx + b

w (weight): 权重 | 参数 | 系数

b (bias): 偏见 | 偏好

def pred_linear(x, w, b):
return w * x + b

当 (w, b) ← (1,4) 时······

当 (w,b) ← (6,-4) 时……

当 (w, b) ← (11, −47) 时······

一堆模型 f₁,f₂,...,f_n

随意地构建函数y = f(x)

可以选择**线性函数** y = wx + b

练习: 也可以尝试非线性函数

$$y = w\frac{1}{x} + b$$

$$y = we^x + b$$

$$y = wx^n + b$$

已经设计了一大堆不知道有没有用的函数

怎样选出最优的结果呢?

选择最优模型

思考一下: 如何判断预测模型的好坏?

和真实值越接近越准

设y为真实值, \hat{y} 为预测值

 $x = x_0$ 时的预测误差可记为:

单个结果 $|y_0 - \widehat{y_0}|^2$ 缺乏说服力

一 "不管预测值高了或者低了都算作误差,所以应该消除正负号"

选择最优模型

继续思考: 如何对整体进行评价?

- **计算所有结果的和** 误差会随样本数量增加而变大
- 取平均值

保证误差不随样本数量变化

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

选择最优模型

继续思考: 如何对整体进行评价?

- **计算所有结果的和** 误差会随样本数量增加而变大
- 取平均值

保证误差不随样本数量变化

$$\frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2$$

"通常我们会写成这样,因为方便计算。可以思考一下原因。"

选择最优模型

继续思考: 如何对整体进行评价?

- **计算所有结果的和** 误差会随样本数量增加而变大
- 取平均值

保证误差不随样本数量变化

$$Loss = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2$$

损失函数

衡量模型好坏

选择最优模型

损失函数是描述预测函数好坏的函数

变换一下形式:
$$Loss = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2$$
 \longrightarrow $\hat{y_i} = wx_i + b$

Loss的结果仅与预测函数的参数 w 和 b 相关

选择最优模型

怎样找出最好的预测模型呢?

屠呦呦,中国首位诺贝尔医学奖获得者

- 查阅大量中医古籍找出2000+中草药制剂
- 筛选出640可能的治疟药方
- 从200种草药种得到380种提取物
- 经历190失败
- 对虐原虫的抑制率达到100%

向着确定的目标不断努力, 是成功的必要条件

人民网, 屠呦呦自述:190次失败之后的成功. 2015. http://politics.people.com.cn/n/2015/1005/c70731-27664603.html

选择最优模型

• 给出w和b"所有"的值

 $w \in [w_{min}, w_{max}]$ $b \in [b_{min}, b_{max}]$

• 尝试所有的情况

for w in w_list:
for b in b_list:
 loss(x, y, w, b)

• 选择最优的结果

 $w^*, b^* = arg \min_{w,b} L(w,b)$

怎样找出最好的预测模型呢?

- 查阅大量中医古籍找出2000+中草药制剂
- 筛选出640可能的治疟药方
- 从200种草药种得到380种提取物
- 经历190失败
- 对虐原虫的抑制率达到100%

目标函数 (Objective Function)

指导算法选出最优的预测模型。

选择最优模型

• 给出w和b"所有"的值

$$w \in [-100,100]$$

$$b \in [-100,100]$$

颜色越深, 损失越小, 模型预测得越准确

选择最优模型

• 给出w和b"所有"的值

$$w \in [-100,100]$$

$$b \in [-100,100]$$

· 根据目标函数得到最优解

$$w = 9.55$$

$$b = -37.69$$

选择最优模型

• 给出w和b"所有"的值

$$w \in [-100,100]$$

$$b \in [-100,100]$$

根据目标函数得到最优解

$$w = 9.55$$

$$b = -37.69$$

仅参考"平均房间数"时的最优预测函数

更加复杂的情况下是否还能如此呢?

- 当房价相关特征的数量为10时
- 线性模型至少由10个参数决定
- 损失函数的计算次数 N_{Loss} :

$$N_{Loss} = 100^{10} = 10^{20} \ (\%)$$

- 计算一次Loss平均耗时 0.382 (毫秒)
- 计算10²⁰次Loss耗时约 12亿年

"资源有限的情况下, 还是不要蛮干。"

"T博士建议考虑一下 Gradient Descend, 也就 是梯度下降。"

蛮力法面对复杂问题时的不足

下节内容

用梯度下降的方式找到最优解

