Exercice 1. Soit

$$\begin{cases} x_n &= \frac{3}{4}x_{n-1} + \frac{1}{4}z_{n-1} \\ y_n &= \frac{1}{4}x_{n-1} + \frac{2}{3}y_{n-1} + \frac{1}{4}z_{n-1} \\ z_n &= \frac{1}{3}y_{n-1} + \frac{1}{2}z_{n-1} \end{cases}$$

- 1. On pose $V_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$, montrer qu'il existe entier V_n et V_{n-1} une relation de la forme $V_n = SV_{n-1}$ où S est une matrice à déterminer. En déduire V_n en fonction de S et de V_0 .
- 2. Résoudre et discuter en fonction du paramètre réel λ , l'équation $SV=\lambda V,$ où $V=\begin{pmatrix} x\\y\\z \end{pmatrix}\in\mathbb{R}^3.$

Pour quelles valeurs de λ , existe-t-il au moins une solution différente de $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$? donner précisément l'ensemble des solutions correspondantes.

3. On considère les vecteurs

$$\begin{cases}
\varepsilon_1 = 2e_1 + 3e_2 + 2e_3 \\
\varepsilon_2 = e_1 - e_3 \\
\varepsilon_3 = 3e_1 + e_2 - 4e_3
\end{cases}$$

où (e_1, e_2, e_3) est la base canonique de \mathbb{R}^3 . Montrer que $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 .

4. On pose $P = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 0 & 1 \\ 2 & -1 & -4 \end{pmatrix}$. Pourquoi peut-on affirmer que P est inversible? Calculer son inverse P^{-1} .

5. On pose $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{5}{12} \end{pmatrix}$. Calculer PDP^{-1} .

6. En déduire la limite de V_n quand n tend vers $+\infty$.