Zero-Knolwedge Proof in Group Signature

proposed by David Chaum (Fourth Group Signature Scheme)

- KeyGen $(1^{\lambda}, n)$;
 - \circ Choose a prime p
 - \circ Choose a generator $g \leftarrow \mathbb{Z}_p^*$
 - \circ Each member i chooses $s_i \leftarrow \mathbb{Z}_{p-1}^*$ and compute $y_i \equiv g^{s_i} mod p$
 - \circ Output $pk = \{p, g, \{y_i\}\}$ and $sk_i = \{s_i\}$
- Sign (m, pk, sk_s) ;
 - \circ Computes $\sigma \equiv m^{s_s} \mod p$
 - \circ Output (m, σ)

Note that σ is a valid signature of m if and only if

$$\{\sigma \equiv m^{s_s} mod p igwedge g^{s_s} \in \{y_i\}\}$$

In order to prove this statement, zero-knowledge proof is used.

A signer has to give a zero-knowledge proof that the secret key used in σ and is also used in the public key.

Zero-Knowledge Proof

- allows Provers to convince Verifier that a certain fact is true without giving any information
- involves a number of challenge-response communication rounds between Prover and Verifier
 - 1. [Announcement] Prover ⇒ Verifier
 - 2. [Challenge] Verifier ⇒ Prover
 - 3. [Response] Prover \Rightarrow Verifier
 - 4. [Verification]

Example 1. (Proof of Knowledge for the Square Root)

Let n = pq be the product of two large primes.

Let y be a square $\mod n$ with $\gcd(y,n)=1$, i.e., $x^2\equiv y \mod n$ for some x.

Prover claims to know a square root x of y.

- 1. [Announcement];
 - \circ Choose a random $r \leftarrow \mathbb{Z}_n$
 - Compute $a \equiv r^2 \mod n$
 - \circ Sends a to Verifier
- 2. [Challenge];

- \circ Choose $c \in \{0,1\}$
- Sends c to Prover
- 3. [Response];
 - \circ If c=0, then $z\equiv r \bmod n$
 - $\circ \hspace{0.2cm}$ If c=1, then $z\equiv xr mod n$
 - Sends z to Verifier
- 4. [Verification];
 - \circ Compute $z^2 \mod n$
 - $\circ \ \ \text{If } c \equiv 0 \text{, check } z^2 \equiv a \bmod n$
 - \circ If c=1, check $z^2\equiv ya \bmod n$
 - o If this is true, then Verifier accpets
 - o Otherwise, Verifier rejects

Remark

- Finding square root $\mod n$ is equivalent to factoring n which is a hardness problem of RSA.
- In verification phase, since $z \equiv x^c r \mod n$,
 - $\circ \ \ z^2 \equiv x^{2c} r^2 \equiv y^c a \bmod n$
- If y is not a squre, then only one s or ys is a squre modulo n.
 - the probability p that Prover will not be able to answer is 50%
 - \circ repeat k times, then $p=rac{1}{2^k}$

Example 2. (Proof of Knowledge for Discrete Logarithm)

Let p be a DL-secure prime and $g \leftarrow \mathbb{Z}_p^*$.

Let
$$y = g^x \mod p$$
.

Prover claims <u>to know a discrete logarithm of y</u>, i.e., $x = \log_q y$.

- 1. [Announcement]
 - \circ Choose $r \leftarrow \mathbb{Z}_p^*$
 - $\circ \ \ \mathsf{Compute} \ a = g^r \bmod p$
 - Send a to Verifer
- 2. [Challenge]
 - \circ Choose $c \leftarrow \mathbb{Z}_p^*$
 - \circ Send c to Prover
- 3. [Response]
 - \circ Compute $s = r + cx \mod p 1$
 - \circ Send s to Verifier
- 4. [Verification]

 - o Otherwise, Verifier rejects

Example 3. (Proof of Equality of Discrete Logarithm over Different Groups)

Let p be a DL-secure prime and $g_1, g_2 \leftarrow \mathbb{Z}_p^*$.

Let
$$y_1=g_1^x mod p$$
 and $y_2=g_2^x mod p$.

Prover claims that <u>two discrete logarithm over different groups are the same.</u>

- 1. [Announcement]
 - \circ Choose $r \leftarrow \mathbb{Z}_p^*$
 - $\circ \ \ \mathsf{Computet} \ a = g_1^r \ \mathrm{mod} \ p \ \mathsf{and} \ b = g_2^r \ \mathrm{mod} \ p$
 - \circ Send a and b to Verifier
- 2. [Challenge]
 - \circ Choose $ddc \leftarrow \mathbb{Z}_p^*$
 - \circ Send c to Prover
- 3. [Response]
 - \circ Compute $s = r + cx \mod p 1$
 - \circ Send s to Verifier
- 4. [Verification]
 - $\circ \hspace{0.2cm}$ If $g_1^r=a\cdot y_1^c$ and $g_2^r=b\cdot y_2^r$, then Verifier accepts
 - o Otherwise, Verifier rejects