PRINCIPIOS DE DISEÑO DE SISTEMAS DIGITALES EJERCICIOS TEMA 1

- Convertir al sistema decimal los siguientes números en sistema binario:
 - a. $11 = 1 \cdot 2^1 + 1 \cdot 2^0 = 2 + 1 = 3$
 - b. $100 = 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 4$
 - c. $111 = 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 4 + 2 + 1 = 7$
 - d. $1000 = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 8$
 - e. $11101 = 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 16 + 8 + 4 + 1 = 29$
 - f. $11,011 = 1 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = 2 + 1 + 0,25 + 0,125$ = 3,375
- 2. ¿Cuál es el número decimal más alto que se puede expresar con los siguientes número de bits?
 - a. $2 \text{ bit } \rightarrow 2^2 1 = 3$
 - b. $7 \text{ bit } \rightarrow 2^7 1 = 127$
 - c. $10 \text{ bit } \rightarrow 2^{10} 1 = 1023$
- 3. ¿Cúantos bits son necesarios para expresar los siguientes números binarios?
 - a. $17 \rightarrow 4$ bits $\rightarrow 2^4 1 = 15 \rightarrow 4$ bits no son suficientes. 5 bits $\rightarrow 2^5 1 = 31 \rightarrow 5$ bits.
 - b. $81 \rightarrow 6$ bits $\rightarrow 2^6 1 = 63 \rightarrow 6$ bits no son suficientes. 7 bits $\rightarrow 2^7 1 = 127 \rightarrow 7$ bits.
 - c. $35 \rightarrow 5$ bits $\rightarrow 2^5 1 = 31 \rightarrow 5$ bits no son suficientes. 6 bits $\rightarrow 2^6 - 1 = 63 \rightarrow 6$ bits.
 - d. $32 \rightarrow 5$ bits $\rightarrow 2^5 1 = 31 \rightarrow 5$ bits no son suficientes. 6 bits $\rightarrow 2^6 - 1 = 63 \rightarrow 6$ bits.
- 4. Convertir al sistema decimal:
 - a. $E5_{16} = E \cdot 16^1 + 5 \cdot 16^0 = 14 \cdot 16 + 5 = 224 + 5 = 229_{10}$
 - b. $B2F8_{16} = B \cdot 16^3 + 2 \cdot 16^2 + 15 \cdot 16^1 + 8 \cdot 16^0 = 11 \cdot 4.096 + 2 \cdot 256 + 15 \cdot 16 + 8 = 45.816_{10}$
- 5. Convierte al sistema decimal el siguiente número en base ocho:

$$2374_8 = 2 \cdot 8^3 + 3 \cdot 8^2 + 7 \cdot 8^1 + 4 \cdot 8^0 = 2 \cdot 512 + 3 \cdot 64 + 7 \cdot 8 + 4 = 1276_{10}$$

- 6. Conversión binario-hexadecimal
 - a. $11001010010101111 \rightarrow 1100 1010 0101 0111$

b. $01101001101 \rightarrow 001101001101$

3 4 D

7. Conversión hexadecimal-binario

```
a. 10A4_{16} \rightarrow 0001 0000 1010 0100 \rightarrow 1000010100100<sub>2</sub> b. CF8E<sub>16</sub> \rightarrow 1100 1111 1000 1110 \rightarrow 1100111110001110<sub>2</sub> c. 9742_{16} \rightarrow 1001 0111 0100 0010 \rightarrow 1001011101000010<sub>2</sub>
```

8. Conversión decimal-hexadecimal

a.
$$650_{10} \rightarrow 650 / 16 = 40,625$$
 Resto $\rightarrow 0,625 \cdot 16 = 10 \rightarrow A$ (LSB) $40 / 16 = 2,5$ Resto $\rightarrow 0,5 \cdot 16 = 8$ $2 / 16 = 0,125$ Resto $\rightarrow 0,125 \cdot 16 = 2$ (MSB) Terminado porque el cociente es 0.. $650_{10} = 28A_{16}$

b.
$$4025_{10} \rightarrow 4025 / 16 = 251,5625$$
 Resto $\rightarrow 0,5625 \cdot 16 = 9$ (LSB) $251 / 16 = 15,6875$ Resto $\rightarrow 0,6875 \cdot 16 = 11 \rightarrow B$ $15 / 16 = 0,9375$ Resto $\rightarrow 0,9375 \cdot 16 = 15 \rightarrow F$ Terminado porque el cociente es 0. $4025_{10} = FB9_{16}$

- 9. Convierte de decimal a binario (Máximo cuatro cifras a la derecha de la coma, si la conversión no es completa, indica el error relativo):
 - a. $177,625 \rightarrow 10110001,101$
 - b. $78,4375 \rightarrow 1001110,0111$
 - c. $113,7 \rightarrow 1110001,1011 = 113,6875 \rightarrow E_{abs} = 0,0125$ $E_{relativo} = 100 \cdot E_{abs} / 113,7 = 0,0109938 \simeq 0,011\%$
- 10. Conversión de binario a decimal y a hexadecimal y octal:
 - a. $10011100,1001 \rightarrow 156,5625_{10} \rightarrow 9C,9_{16} \rightarrow 234,44_{8}$
 - b. $110111,001 \rightarrow 55,125_{10} \rightarrow 37,2_{16} \rightarrow 67,1_{8}$
 - c. $1001001,001 \rightarrow 73,125_{10} \rightarrow 49,2_{16} \rightarrow 111,1_{8}$
- 11. Expresión de números negativos. Escribe con 8 bits el siguiente número decimal en magnitud con signo, complemento a 1, complemento a 2 y exceso a 128:

a. -113 S&M: 11110001 Comp. a 1: 10001110 Comp. a 2: 10001111 Exceso: 00001111 b. -78 S&M: 11001110 Comp. a 1: 10110001 Comp. a 2: 10110010 Exceso: 00110010 12. ¿Qué número decimal representan los siguientes números binarios en cada sistema? Rellena la tabla y utiliza los valores para comprobar si el resultado de las sumas propuestas puede ser correcto (para cada sistema existen unos límites en los resultados posibles, superarlos produce desbordamiento: resultado en 9 bit o signo opuesto).

		Binario natural	Magnitud con signo	Compl. a 1	Compl. a 2	Exceso a 128
Α	01001010	+74	+74	+75	+74	-54
В	00101010	+42	+42	+42	+42	-86
С	01001100	+76	+76	+76	+76	-52
D	01010100	+84	+84	+84	+84	-44
Е	10100010	+162	-34	-93	-94	+34
F	11101110	+238	-110	-17	-18	+110
G	11000001	+193	-65	-62	-63	65
Н	10111001	+185	-57	-70	-71	57

- a. **Binario natural**: $0 \le N \le 2^n 1 \rightarrow n = 8$ bit $\rightarrow [0, 255]$
 - 1. A+B (74+42=116, bien).
 - 2. C+D (76+84=160, bien).
 - 3. E+F (162+238=400, desbordamiento).
 - 4. G+H (193+185=378, desbordamiento).
- b. **Complemento a 2**: $-2^{n-1} \le N \le 2^{n-1} 1 \to n = 8$ bit $\to [-128, 127]$
 - 1. C+D((76)+(84)=(160), suma negativa, desbordamiento).
 - 2. E+F((-94)+(-18)=(-112), suma negativa, bien).
 - 3. G+H ((-63)+(-71)=(-134), suma positiva, desbordamiento).
 - 4. B+G(42+(-63)=(-21), suma negativa, bien).
- 13. Números decimales codificados en binario: Convertir de BCD a decimal y a binario natural.

a. $0010\ 0101\ 0111$ 257_{10} 100000001_2 b. $0110\ 0011\ 1000$ 638_{10} 10011111110_2

- 14. Coma flotante IEEE Std. 754: Convierte los siguientes números de hexadecimal a decimal (están escritos en coma flotante y precisión sencilla según el estándar IEEE 754):