Recitation Solutions 12

- Here is a set of additional problems. They range from being very easy to very tough. The best way to learn the material in 310 is to solve problems on your own.
- Feel free to ask (and answer) questions about this problem set on Piazza.
- This is an **optional** problem set; do not turn this in for grading.
- While you don't have to turn this in, be warned that this material can appear in a quiz or exam.
- 1. Suppose that $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$. Prove using induction that for every $n \ge 1$,

$$F_1^2 + F_2^2 + \dots F_n^2 = F_n \cdot F_{n+1}.$$

Solution

Base case: For n = 1, $F_1^2 = 1$ and $F_1^2 \cdot F_2^2 = 1$.

Induction Hypothesis: For some k, $\sum_{i=1}^{k} F_I^2 = F_k F_{k+1}$.

Induction Step: Suppose the induction hypothesis is true. Then,

$$\begin{split} \sum_{i=1}^{k+1} F_i^2 &= \sum_{i=1}^{k} F_i^2 + F_{k+1}^2 \\ &= F_k F_{k+1} + F_{k+1}^2 \\ &= F_{k+1} (F_k + F_{k+1}) \\ &= F_{k+1} F_{k+2} \end{split} \quad (\because Induction \, Hypothesis)$$

2. Consider the following algorithm in pseudocode form:

function sq(n):

$$S \leftarrow 0, i \leftarrow 0$$
 while $i < n$
$$S \leftarrow S + n$$

$$i \leftarrow i + 1$$
 return S

Two questions:

- (i) Figure out what the algorithm is supposed to be doing, and using induction, prove that the algorithm is correct.
- (ii) Analyze the algorithm's efficiency (in terms of running time), assuming that each add operation takes a unit amount.

Solution

The algorithm is calculating the square of the n.

Proof the correctness with Induction.

Base case n = 0. $0^2 = 0$.

Induction Hypothesis: Assume $SQ(k) = k^2$ for some k.

Induction Step: When $k \to k+1$,

We adds extra 1 for each loop, and there are one more loop adding k+1.

Therefore, the output of the algorithm is equal to $k^2 + 1 \times k + k + 1$ where k^2 comes from the induction hypothesis.

Since $k^2 + k + k + 1 = k^2 + 2k + 1 = (k+1)^2$, the induction shows that the algorithm is correct.

Only considering the add operation, the total operation is equal to 2n from adding S and i.

3. Consider the following "algorithm" that prints out a bunch of things (it is unimportant what it prints out):

for
$$(i = n; i \ge 1; i = i/2)$$
:
for j in $[1, i]$:
print xyz

Assume that each print command takes 1 unit of time. Using big-Oh notation, estimate the running time of the algorithm as a function of n.

Solution

In the first for loop, there are $\lfloor \log_2 n \rfloor + 1$ cycles. And for the i^{th} cycle, the algorithm prints $\lfloor \frac{n}{2^{i-1}} \rfloor$ times.

The total counts of printing is equivalent to

$$\sum_{i=0}^{\lfloor \log_2 n \rfloor} n(\frac{1}{2})^i = n \cdot \frac{1 - (1/2)^{\lfloor \log_2 n \rfloor + 1}}{1 - 1/2}$$

$$\leq n \cdot \frac{1 - (1/2)^{(\log_2 n) + 1}}{1 - 1/2}$$

$$= n \cdot 2 - 2(1/2)^{(\log_2 n) + 1}$$

$$= n \cdot (2 - n^{-1})$$

$$= 2n - 1$$

Therefore, $\mathcal{O}(n)$.

The easier way to think about is that $\sum_{i=0}^{\infty} (1/2)^i = 2$ which is greater than any finite $\sup \sum_{i=0}^k (1/2)^i$ for any k. Then we can put the inequality such that $\sum_{i=0}^{\lfloor \log_2 n \rfloor} n(1/2)^i \leq \sum_{i=0}^{\infty} n(1/2)^i$.

4. Two algorithms (call them A and B) have different time complexities. The first algorithm exhibits time complexity $T_A(n) = 5n \log_{10} n$ microseconds, and the second exhibits time complexity $T_B(n) = 25n$ microseconds, for a problem of input size n. Which algorithm is better in the Big-Oh sense? For which problem sizes does it outperform the other?

Solution

In Big-Oh notation, $T_A(n)$ and $T_B(n)$ correspond to $\mathcal{O}(n \log_{10} n)$ and $\mathcal{O}(n)$ respectively. Therefore, in Big-Oh sense, $T_B(n)$ is better algorithm.

But if we directly want to compare both algorithms with actual input size n, we can substract $T_B(n)$ with $T_A(n)$ and observe n's condition to make the substraction positive.

$$T_B(n) - T_A(n) = 25n - 5n \log_{10} n$$

= $5n(5 - \log_{10} n) \ge 0$

Therefore,

$$5 - \log_{10} n \ge 0$$
$$5 \ge \log_{10} n$$
$$10^5 \ge n$$

So we can conclude that $T_A(n)$ is better than $T_B(n)$ if the input size is smaller than 10^5 .