Algorithm Programming Assignment B10901027 楊竣凱

1. algorithm

To achieve minimum cost we need to select edges in descending order, and use Kruskal's algorithm to form a spanning tree.

- (1). sort edges by radix sort
- (2). from largest to smallest weighted edge, add into tree(or discard it) by some condition for undirected graph and directed graph, there are different conditions
 - undirectred graph:
 - as long as two end vertices are not in the same group, we can add the edge (won't form a cycle)
 - => using disjoint set with path compression and union by rank
 - \Rightarrow O(α (V)) for each step
 - directred graph:

we use a path matrix to store whether there is a path (paths[i][j] is true when there is a path from i to j) and disjoint set to store whether they are connected

- 1. check whether it will form an edge \Rightarrow O(V)
- 2. if yes, discard it
- 3. else if two ends are in the same set (already be a spanning tree)
 - a. if weight< 0 then there is no need to add a negative edge between them, because it can reduce out cost
 - b. but if it is positive, as long as it won't form a cycle, we can add it
- 4. to add an edge
 - a. We need to update all vertices that have a path to the start end ($\exists i \rightarrow start \ end$), for each vertex it need to add every vertex that the stop end can reach into its path => $O(V^2)$
 - (if $i\rightarrow$ start end and stop end \rightarrow j, then after this step $i\rightarrow$ j)
 - b. merge two ends into the same group \Rightarrow O($\alpha(V)$)

2. time complexity

- undirectred graph:
 - \circ radix sort \Rightarrow O(E)
 - \circ initialization of disjoint set => O(V)
 - o for each edge, some operation with disjoint set \Rightarrow O(E $\alpha(V)$)

total
$$\Rightarrow$$
 O(E+V+E $\alpha(V)$) = O(V+E)

- directred graph:
 - \circ radix sort =>O(E)
 - o initialization of disjoint set and path matrix \Rightarrow O(V+V²) = O(V²)
 - o for each edge, some operation analysed above => $O(E(V^2 + \alpha(V))) = O(EV^2)$ total => $O(E+V^2+EV^2) = O(EV^2)$
- 3. running result

using local machine: Intel® Core™ i7-8565U CPU @ 1.80GHz Ubuntu 20.04.6 LTS

case	type	total weight of removed edges	running time(ms)
public_case_1	u	21	5.882552
public_case_2	u	-3330	3.965029
public_case_3	d	-21468	4.953965
public_case_4	u	0	3.369494
public_case_7	d	-10515	3.141739
public_case_8	d	-70938	75.361813