

Table des matières

1	Caractérisation		
	1.1	Localisation et cloture intégrale	
	1.2	Cas affine	
	1.3	Cas général	
2	Normalisation		
	2.1	Clôture intégrale dans une extension finie, cas des k -algèbres .	
		Construction	

. . .

TABLE DES MATIÈRES

Chapitre 1

Caractérisation

On dit qu'une variété algébrique intègre X est normale si pour tout ouvert $U \subset X$, $\mathcal{O}_X(U)$ est intégralement clos.

1.1 Localisation et cloture intégrale

À savoir que la localisation commute avec clôture intégrale. À prouver (c'est pas dur).

Pour S une partie multiplicative, si A est intégralement clos, et $x^n + \sum a_i x^i = 0$ avec $a_i \in S^{-1}A$. Il existe s tel que $sx \in A$ puis $x \in S^{-1}A$. Si A est pas intégralement clos c'est pareil en fait.

1.2 Cas affine

Il suffit que A(X) soit intégralement clos ! Car pour tout $U = \cup D(f_i)$ on a

$$\mathcal{O}_X(U) = \cap_i A(D(f_i))$$

et que cette intersection est intégralement close car les $A(X)_{f_i}$ sont intégralement clos par la propriété de commutativité du dessus.

1.3 Cas général

Remarque 1. Étant donné un ouvert affine U, on a $\mathcal{O}_{X,x} = A(U)_{\mathfrak{p}_x}$, en particulier par propriété de commutativité du dessus c'est encore intégralement clos.

On peut prouver que dans une variété intègre on a toujours

$$\mathcal{O}_X(U) = \cap_{x \in U} \mathcal{O}_{X,x}$$

en particulier toutes les sous-variétés de X sont normales si X est normale. Ce sera utile pour la normalisation.

Chapitre 2

Normalisation

Une/la normalisation c'est un

$$\pi\colon X'\to X$$

birationnel fini avec X' normale. On peut aussi normaliser dans une extension L de k(X). La première est la normalisation dans k(X). C'est unique à isomorphisme canonique près.

2.1 Clôture intégrale dans une extension finie, cas des k-algèbres

Théoreme 2.1.1. Si A est une k-algèbre de t.f intègre, typiquement A(X), et L/k(X) finie. Alors $\tilde{A} = B$ dans L est finie sur A.

C'est étonnant ducoup vu qu'on assume rien sur l'extension et la caractéristique. Faut utiliser la normalisation de Noether pour la partie purement inséparable.

2.2 Construction

Étant donné une k-algèbre de type fini intègre, suffit de savoir que sa clôture intégrale dans un corps est de type fini sur k intègre. Puis on trouve une variété affine! Ensuite on peut recoller.

Cas affine

C'est direct.

Unicité

Donc en gros de

$$\mathcal{O}_{X'}(\pi^{-1}U) = \bigcap_{x \in \pi^{-1}U} \mathcal{O}_{X',x}$$

car X' normale implique intègre par déf. On déduit que

$$\pi^{-1}U$$

est normale, en plus par finitude de π . C'est affine si U est affine et c'est forcément la clôture de A(U) dans k(X'). D'où l'unicité canonique.

Cas général

Y suffit de prendre les normalisations affines

$$\pi_i \colon X_i' \to X_i$$

et de remarquer que $\pi_i^{-1}(X_i \cap X_j)$ et $\pi_j^{-1}(X_i \cap X_j)$ sont deux normalisations de $X_i \cap X_j$ d'où par l'unicité on peut recoller les X_i' !

Normalisation simple

Donc si on normalise dans k(X), on peut remarquer que la birationalité est pas trop dure. Car

$$A(X) \subset \tilde{A(X)} \subset k(X)$$

et $\tilde{A(X)}$ de type fini sur k force

$$A(X) = k[f_i/g_i, i = 1, \dots, r]$$

avec $f_i, g_i \in A(X)$. En particulier,

$$A(X)_{g_1\dots g_r} = \tilde{A(X)}.$$

Ça montre que pour tout $x \in D(g_1 \dots g_r)$, $\mathcal{O}_{X,x}$ est intégralement clos. D'où $D(g_1 \dots g_r)$ est normale puis la birationalité par unicité.