

<u>El Horario y las tutorías</u>

Lunes	Martes	Miércoles	Jueves	Viernes
			ISoft (AI1.2) 8:00-10:00	
		ISoft (AI1.2) 10:00-11:00		ISoft GL2 (AI0.1) 10:00 – 11:00
				ISoft GL2 (AI1.1) 12:00 – 14:00

- Mikel Larrañaga (e-mail: mikel.larranaga@ehu.eus)
 - * Tutorías

Miércoles: 08:00 – 10:00h
 Jueves: 10:00 – 12:00h

• Viernes: 08:00 – 10:00 (Semanas pares)

10:00 – 12:00 (Semanas impares)

La asignatura

> Objetivo

Diseñar e implementar aplicaciones, cuyos requisitos han sido previamente capturados, aplicando arquitecturas software de varios niveles y utilizando el lenguaje de modelado UML con el fin de desarrollar proyectos software siguiendo un proceso sistemático y apoyándose en herramientas que permiten mejorar la calidad del software.

> 6 créditos ECTS

- Clases magistrales: 45 horas
 - 3h semanales
- * Laboratorios (prácticas de ordenador): 20 horas
 - Laboratorios de 2h cada 2 semanas (semanas pares)
- * Trabajo no presencial: 90 horas

<u>as competencias</u>

- Saber distinguir las diversas etapas que componen todo proceso de ingeniería del software.
- Saber entender un sistema software con orientación a objetos en el lenguaje UML.
- ❖ Saber diseñar un sistema software en una arquitectura de varios niveles a partir del análisis.
- * Saber implementar un sistema a partir del diseño de la aplicación.

Transversal:

 Saber comunicar y transmitir conocimientos, habilidades y destrezas de la profesión de Ingeniero en Informática

El programa (http://egela.ehu.eus)

Unidad 1. Introducción a la Ingeniería del Software

Tras revisar la evolución de los productos hardware y software a lo largo de su historia, justifica y describe el concepto "Ingeniería del Software" presentando:

- ☐ Su motivación y el ciclo de vida del software
- ☐ Objetivos, propiedades y tecnologías de programación asociados.
- Unidad 2. Especificación de artefactos UML
 Estudio de los diferentes artefactos existentes en UML
- Unidad 3. Arquitecturas software de varios niveles: Presentación, Lógica de Negocio y Datos

Diseño de las diferentes capas que componen un sistema software

- Unidad 4. Diseño y programación orientados a objetos
 Realización del diseño de la funcionalidad de un sistema software
- Unidad 5. Implementación de algún producto concreto
 Implementación de un sistema de software utilizando un conjunto de lenguajes y herramientas actuales

Laboratorio Magistral Introducción + Arquitecturas de varios niveles Interfaces gráficas Metodología de trabajo + Ejemplo Diseño Diseño (Incluyendo herencia simple y múltiple) GUI + Revisión estado proyecto 9 10 11 12 13 Java 8 Revisión estado proyecto 14 15

El proyecto

- En la segunda o tercera semana del cuatrimestre, se presentarán los requisitos funcionales del sistema que se deberá desarrollar a lo largo del cuatrimestre.
- El Diseño e implementación de dicho sistema requerirá la puesta en práctica de los conceptos que se abordan en la asignatura.
- El proceso de desarrolló constará de diferentes iteraciones en las que se construirán productos parciales correctos que se ampliarán incrementalmente hasta obtener el sistema final
 - > Cubrir los requisitos funcionales establecidos
 - Adecuadamente diseñado
 - Operativo
 - > Robusto

Evaluación

- Convocatorias
 - Ordinaria
 - Examen 7 semana (aprox.) (30%)
 - Examen de mayo (30%)
 - Extraordinaria (Junio-Julio)
- > Sistema de evaluación:
 - ❖ Proyecto (40%)
 - * Exámenes (60%)

Evaluación

- Calificación final:
- Si el alumno NO se presenta al examen, obtendrá un "No presentado"
- Si el alumno se presenta al examen final, la nota de prácticas en ese curso se añadirá a la que obtenga en el examen escrito, siempre y cuando en el total de la nota de examen escrito alcance un mínimo de 3,5 puntos sobre 10.
- Para calificar el proyecto se tendrá en cuenta tanto el trabajo individual como el funcionamiento global del grupo. Si algún miembro del grupo no colabora o trabaja de manera autónoma sin contar con el resto, a la nota del grupo se le aplicará un factor de corrección de 0,5. La nota definitiva, en este caso, sería nota*0.5
- ACLARACIÓN!! La nota de prácticas se guarda durante todo el curso, pero no para años siguientes.
- Existe la posibilidad de renunciar a la evaluación mixta en la convocatoria extraordinaria y optar al 100% de la nota de la asignatura mediante un examen final.

Bibliografía

- > Ingeniería del Software. Un enfoque práctico. Roger S. Pressman. MacGraw-Hill, 2001. 5a Edición.
- Ingeniería El Proceso Unificado de Desarrollo de Software Jacobson, Booch, Rumbaugh. Editorial Addison Wesley, 1999
- Construcción de Software Orientado a Objetos. Bertrand Meyer. Prentice-Hall. 1998.
- Java 8 in Action. Raoul-Gabriel Urma, Mario Fusco, Alan Mycroft. Manning. 2014

Evaluación

- > Casos excepcionales:
- Solamente podrán obtener el 100% de la nota mediante el examen escrito los casos excepcionales justificados al comienzo del curso.
- ❖ Deben comunicarse al profesor al comienzo de la asignatura o cuando la circunstancia excepcional ocurra, si se da a lo largo de la asignatura.
- Justificación documentada adecuadamente.