EECS 16A Designing Information Devices and Systems I Discussion 10B

1. Op-Amp Rules and Negative Feedback Rules

Here is an equivalent circuit of an op-amp (where we are assuming that $V_{SS} = -V_{DD}$) for reference:

(a) What are the currents flowing into the positive and negative terminals of the op-amp (i.e., what are I^+ and I^-)? Based on this answer, what are some of the advantages of using an op-amp in your circuit designs?

(b) Suppose we add a resistor of value R_L between u_{out} and ground. What is the value of v_{out} ? Does your answer depend on R_L ? In other words, how does R_L affect Av_C ? What are the implications of this with respect to using op-amps in circuit design?

For the rest of the problem, consider the following op-amp circuit in negative feedback:

(c) Assuming that this is an ideal op-amp, what is v_{out} ?

(d) Draw the equivalent circuit for this op-amp and calculate v_{out} in terms of A, v_{in} , and R_L for the circuit in negative feedback. Does v_{out} depend on R_L ? What is v_{out} in the limit as $A \to \infty$?

2. Comparators

For each of the circuits shown below, plot V_{out} for V_{in} ranging from -10V to 10V for part (a) and from 0V to 10V for part (b).

(a)

