Reference Books

- **1. Modern Physics:** K.S. Krane; John Wiley 1998, 2nd Edition
- 2. Introduction to Modern Physics: F.K. Richtmyer, E.H. Kennard, John N. Cooper; Tata Mc Graw Hill 1976 6th edition
- **3. Quantum Physics:** R. Eisberg and R. Resnik John Wiley 2002; 2nd Edition
- **4. Concepts of Modern Physics:** Arthur Beiser; Mc Graw Hill International,1987 4th Ed.

- **5. Introduction to Modern Physics:** H.S.Mani and G.K.Mehta; Affiliated East-West 1988
- **6. Elements of Modern Physics:** S. H. Patil; Tata Mc Graw Hill 1984

Evaluation Scheme

- In-semester (60%)
 - Two Announced Tests (30% total)
 - One Mid-semester (30%)
 - All tests and mid-sem are compulsory and no re-exam or compensation in any form will be given on any ground whatsoever.
- End-semester (40%)

Attendance Policy

- Attendance is compulsory but would not affect grades.
- Warning
- Attendance is helpful in understanding the subject.
- Students with poor attendance find it difficult to cope with tests and often land up with poor grades or even fail the course.

Warning

- It would be presumed that any announcement about test/ quizzes etc. made in the class will reach everyone.
- No notice may be circulated for that.

Modern Physics (How Modern?)

- Not really so modern.
- Seeds were grown more than a century ago.

Degrees of Freedom

- Equipartition law involved the use of the concept of degrees of freedom.
- The degree of freedom can be Translational, Rotational or Vibrational.

Distribution of Energy

At a finite temperature T, the energy is distributed as follows, where k is Boltzmann Constant.

For each Translational and Rotational degree of freedom

kΤ

For each Vibrational degree of freedom

Specific Heat of Gases

Specific Heat deals with the increase of temperature as heat is being consumed by the system. We deal with Molar Specific Heat at constant volume C_v.

$$C_{v} = \left(\frac{\partial \varepsilon}{\partial T}\right)_{v}$$

Monatomic Gases

Consider Monatomic gases like inert gases. Only translation of molecules are possible.

$$d.f. = 3N_A$$

$$\varepsilon = 3N_A \times \frac{1}{2}kT$$

$$C_v = \frac{3}{2}N_A k = \frac{3}{2}R$$

R is gas constant. R= 8.31 J/(mole.K)

Diatomic Gases

Rigid Molecule
$$\varepsilon = 5N_A \times \frac{1}{2}kT$$

$$C_v = \frac{5}{2}N_A k = \frac{5}{2}R$$

Flexible Molecule

$$\varepsilon = 5N_A \times \frac{1}{2}kT + N_A kT$$

$$C_v = \frac{7}{2}N_A k = \frac{7}{2}R$$

Experimental Data

- A good agreement for monatomic gases.
- For diatomic gases one gets a value of 2.5 R at room temperature. But tends to increase for many of them with increase of T, approaching a value of 3.5 R.

Hydrogen Gas

Hydrogen gas shows 1.5 R around 100K and ~2.5 R around room temperature. Increases and tends to 3.5 R around 1000K, before dissociating.

Dulong and Petit law

- The specific heat of all solids is 3R.
- Can be derived on the basis of equipartition law.

$$\varepsilon = 3N_A \times kT$$

$$C_v = \frac{d\varepsilon}{dT} = 3N_A k = 3R$$

Experiment

- Good agreement at RT for a very large number of solids.
- At low temperature approaches zero.
- •At high temperature approaches 3R.
- •A low temperature $C_{\nu} \propto T^3$.
- Some excitations other than vibration can also contribute in some specific solids.