Nullstellensatz

Jakub Löwit

Abstrakt. Na přednášce se budeme zabývat takzvanými *větami o nulách*, které dávají do souvislosti množiny polynomů a množiny jejich společných řešení. Nejzajímavější pro nás bude takzvaná *Combinatorial Nullstellensatz*, s jejíž pomocí hravě zvítězíme nad mnoha netriviálními kombinatorickými úlohami.

Větv o nulách

Definice. Těleso je množina K obsahující přinejmenším dva význačné prvky 0 a 1, společně s binárními operacemi "plus" a "krát", které splňují vcelku intuitivní axiomy (obě operace jsou asociativní a komutativní; přičítání nuly nic nemění; násobení jedničkou nic nemění; násobení je distributivní vůči sčítání; pro každý prvek a existuje prvek -a, který se s ním sečte na 0; pro každý nenulový prvek b existuje prvek b^{-1} , který se s ním vynásobí na 1).

Ačkoli různých těles existuje spousta, my bude pracovat jenom s několika dobře známými*),†):

- C komplexní čísla
- \bullet \mathbb{R} reálná čísla
- \mathbb{Q} racionální čísla
- \mathbb{Z}_p zbytky modulo **prvočíslo** p

Značení.

- Pro dané těleso K můžeme uvažovat polynomy s koeficienty v K. Množinu všech takových polynomů značíme $K[x_1, \ldots, x_n]$.
- Dostaneme-li n-tici čísel $(s_1, \ldots, s_n) \in K^n$ a polynom $f \in K[x_1, \ldots, x_n]$, můžeme do něj naše čísla dosadit, čímž dostaneme číslo $f(s_1, \ldots, s_n) \in K$.
- Pro libovolnou množinu polynomů $F \subseteq K[x_1, \ldots, x_n]$ tak dostáváme množinu jejich společných nul V(F), tj. množinu všech n-tic (s_1, \ldots, s_n) , které pro každý polynom $f \in F$ splňují $f(s_1, \ldots, s_n) = 0$.
- Naopak pro libovolnou množinu $S\subseteq K^n$ takových n-tic můžeme uvažovat množinu I(S) všech polynomů, které se na ní nulují.

Cvičení. Zamyslete se, jak se "hledání společných nul" a "hledání nulujících se polynomů" chová pro polynomy v jedné proměnné nad \mathbb{C} .

^{*)} Takže pokud o tělesech nic nevíš, vůbec to nevadí a můžeš si místo obecného K po celou dobu představovat třeba reálná čísla \mathbb{R} . Pro jiná tělesa než \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p větu stejně používat nebudeme.

^{†)} Naproti tomu \mathbb{N}, \mathbb{Z} či \mathbb{Z}_m pro složené číslo m tělesa nejsou – všem totiž chybí multiplikativní inverzy k některým nenulovým prvkům.

Obecně bychom rádi pochopili, jak spolu množiny polynomů a množiny jejich společných nul souvisí. Pro polynomy v jedné proměnné je situace vcelku přehledná – a přinejmenším jsme se už všichni s takovými příklady mnohokrát setkali. Naopak pro více proměnných se problém velmi rychle komplikuje. Přesto se v něm ale často dá najít jakýsi systém. A taková tvrzení se pak typicky nazývají věty o nulách.

No a proč nás zajímají? Důležitost souvislosti množin polynomů s jejich společnými nulami v rámci algebry je vcelku očividná. My si ale budeme chtít ilustrovat především důsledky pro řešení kombinatorických a teoriečíselných úloh. Pokud se nám takovou úlohu povede převést čistě do řeči polynomů a jejich hodnot, najednou se nám otevře silný a přehledný algebraický aparát, který můžeme použít. Ačkoli v této přednášce je náš arzenál představován "pouze" jednou větou (avizovanou Combinatorial Nullstellensatz), tento přístup funguje obecněji. Čím větší znalost polynomů získáme, tím lépe budeme umět "převádět úlohy do algebry".

Combinatorial Nullstellensatz

Zformulujme a dokažme tedy slíbenou větu, se kterou přišel v roce 1999 původem izraelský matematik Noga Alon. Sama o sobě tato věta není bůhvíjak "překvapivá", ale je nehorázně užitečná právě při převádění kombinatorických problémů do algebry.

Pozorování.

- Buď K těleso, $f \in K[x]$ polynom s k různými kořeny $s_1, \ldots, s_k \in K$. Potom $f = h \cdot (x s_1) \cdots (x s_k)$ pro nějaký polynom $h \in K[x]$.
- Buď Ktěleso, $f \in K[x]$ nenulový polynom stupně d. Pak f má nejvýš d kořenů.

Důkaz. Má-li f kořen v $r \in K$, zkusme jej vydělit (se zbytkem) polynomem (x-r), čímž dostaneme vyjádření $f = h \cdot (x-r) + c$ pro nějaké $h \in K[x]$ nižšího stupně a konstantu $c \in K$. Jenže f(r) = 0 z předpokladu, takže c = 0, pročež $f = h \cdot (x-r)$. Induktivně (dokud má h nějaký kořen) proto můžeme pokračovat a získat

$$f = h \cdot (x - r_1) \cdot \cdot \cdot (x - r_j),$$

kde $h \in K[x]$ je polynom bez kořene. Tedy r_1, \ldots, r_j jsou všechny kořeny f (i s násobnostmi).

V první části jsou nyní všechna s_1,\ldots,s_k obsažena mezi r_1,\ldots,r_j , což dává hledaný tvar, tj. f je skutečně (polynomiálním) násobkem $(x-s_1)\cdots(x-s_k)$. V druhé části dostáváme díky $f\neq 0$ nerovnost stupňů $k\leq j\leq d$, čímž jsme hotovi.

Lemma (Rozklad na součet). Mějme těleso K a několik jeho konečných podmnožin S_1, \ldots, S_n . Dále mějme polynom $f \in K[x_1, \ldots, x_n]$, který se nuluje na celé množině $S_1 \times \cdots \times S_n$. Pro $i = 1, \ldots, n$ označme $g_i = \prod_{j \in S_i} (x_i - s_j)$. Pak existují polynomy $h_1, \ldots, h_n \in K[x_1, \ldots, x_n]$ takové, že

$$f = h_1 g_1 + \dots + h_n g_n.$$

Ty lze navíc zvolit tak, aby $\deg h_i + \deg g_i \leq \deg f$ pro všechna $i=1,\ldots,n$.

Poznámka. Rovnost z lemmatu lze vyjádřit slovy jako "f je lineární kombinace polynomů g_1, \ldots, g_n s koeficienty v $K[x_1, \ldots, x_n]$ ".

Poznámka. Všimněte si, že v případě n=1 se lemma skutečně degeneruje na první část předchozího pozorování.

 $D\mathring{u}kaz$. Nejprve zpozorujme, že postupným odečítáním polynomů tvaru h'_ig_i jako ve znění lemmatu můžeme převést f na polynom f', ve kterém se každé x_i objevuje pouze v mocninách $0, 1, \ldots, |S_i| - 1$. Vskutku, g_i je polynom v proměnné x_i tvaru

$$x_i^{|S_i|} + \sum_{j=0}^{|S_i|-1} c_j x_i^j$$

pro nějaké konstanty c_j . Pokud se tedy v f vyskytuje člen obsahující $x_i^{|S_i|}$, odečtením vhodného polynomu tvaru $h_i'g_i$ ho umíme nahradit součtem $h_i'c_ix_i^j$ pro $j=0,\ldots,|S_i|-1$ (kde h_i' splňuje podmínku se stupni). Opakováním tohoto odečítání se tak skutečně zbavíme všech x_i s exponenty $\geq |S_i|$.

Takto upravený f' se stále nuluje na celém $S_1 \times \cdots \times S_n$. Tvrdíme, že f' = 0. To snadno ověříme indukcí na n, přičemž případ n = 1 plyne z předchozího pozorování. Pro $n \geq 2$ rozepišme f' jako součet členů podle exponentu u x_n , tj.

$$f' = \sum_{j=0}^{|S_n|-1} f_j' x_n^j,$$

kde $f_j' \in K[x_1,\ldots,x_{n-1}]$ jsou polynomy ve zbylých proměnných. Pokud se některý z f_j' nenuluje na některém $(s_1,\ldots,s_{n-1}) \in K^{n-1}$, částečným dosazením získáme nenulový polynom jedné proměnné $f'(s_1,\ldots,s_{n-1},x_n)$ stupně nejvýše $|S_n|-1$, který se nuluje na celém $|S_n|$, což je spor s předchozím pozorováním. Tedy všechny f_j se nulují na celém $S_1 \times \cdots \times S_{n-1}$, z indukčního předpokladu se tedy jedná o nulové polynomy, pročež také f'=0.

Tím jsme hotovi: z konstrukce f' je jasné, že $f = f' + h_1 g_1 + \cdots + h_n g_n$ pro polynomy h_i , g_i jako ve znění lemmatu, ale zároveň jsme ukázali f' = 0.

Nyní můžeme zajásat, protože naše napjatě očekávaná věta je pouze elegantním důsledkem předchozího explicitního lemmatu.

Věta (Combinatorial Nullstellensatz). Mějme těleso K, několik jeho konečných podmnožin S_1, \ldots, S_n , a polynom $f \in K[x_1, \ldots, x_n]$. Předpokládejme, že platí deg $f = t_1 + \cdots + t_n$ pro $t_1, \ldots, t_n \in \mathbb{N}_0$ splňující

- (i) $t_i < |S_i|$ pro všechna $i = 1, \ldots, n$,
- (ii) koeficient u $x_1^{t_1} \cdots x_n^{t_n}$ v polynomu f je nenulový.

Potom existují $s_i \in S_i$ pro $i=1,\ldots,n$ taková, že $f(s_1,\ldots,s_n) \neq 0$.

Poznámka. Všimněte si, že v případě n=1 věta říká: Je-li $S\subseteq K$ konečná podmnožina a $f\in K[x]$ polynom stupně $\deg f=t<|S|$, pak existuje $s\in S$ splňující $f(s)\neq 0$.

 $D\mathring{u}kaz$. Věta je důsledkem předchozího lemmatu – kdyby se f nuloval na celé množině $S_1 \times \cdots \times S_n$, mohli bychom jej přepsat jako

$$f = \sum_{i=1}^{n} h_i g_i,$$

kde $g_i=\prod_{j\in S_i}(x_i-s_j)$ a zároveň deg $h_i+\deg g_i\leq \deg f$ pro všechna $i=1,\ldots,n$. Součet členů maximálního stupně v f proto tvaru

$$\sum_{i=1}^{n} h_i' \cdot x_i^{|S_i|},$$

kde h_i' značí součet členů maximálního stupně v h_i . Má-li tedy nějaký člen polynomu f maximálního stupně nenulový koeficient, musí obsahovat některé x_i v mocnině $\geq |S_i|$. Jenže díky bodu (i) máme pro všechna i nerovnost $|S_i| > t_i$, takže člen (maximálního stupně) $x_1^{t_1} x_2^{t_2} \cdots x_n^{t_n}$ musí mít nulový koeficient, což je ve sporu s bodem (ii). Polynom f se tedy na celé množině $S_1 \times \cdots \times S_n$ nulovat nesmí.

Úlohy

Konečně nadchází čas si použití naší teorie pořádně procvičit. Při tom uvidíme důsledky *Combinatorial Nullstellensatz* zasahující do kombinatoriky a teorie grafů, kombinatorické geometrie, algebry, i teorie čísel.

Ačkoli následující úlohy nezřídka mají i pěkná elementární řešení, často je velmi neelementární na ně přijít. *Combinatorial Nullstellensatz* je skutečně silná, takže se není třeba divit, že ji často opravdu stačí přímočaře použít, a občas tak získat i obecnější výsledek. K její aplikaci nám stačí chytře zvolený polynom, jehož stupeň a vhodný "vedoucí koeficient" máme pod kontrolou.

Úloha 1. V každém vrcholu pravidelného 100-úhelníku jsou napsaná dvě přirozené čísla. Ukažte, že lze z každého vrcholu smazat jedno číslo tak, aby v žádných dvou sousedních vrcholech nezbyla stejná čísla. (ARO 2007)

Úloha 2. Pro přirozené číslo n označme

$$S = \{(x, y, z) \mid x, y, z \in \{0, 1, \dots, n\}, (x, y, z) \neq (0, 0, 0)\}.$$

Určete nejmenší přirozené číslo m, pro které může být S pokryta m rovinami, které neprochází počátkem. (IMO 2007, 6)

Úloha 3. Mějme prvočíslo p a dvě množiny A, B některých zbytků modulo p. Označme A+B množinu těch zbytků, které lze získat jako a+b pro $a \in A$, $b \in B$. Dokažte nerovnost $|A+B| \ge \min\{p, |A| + |B| - 1\}$. (Cauchy-Davenport)

Úloha $^{\natural}$ 4. Mějme prvočíslo p a polynomy $f_1,\ldots,f_m\in\mathbb{Z}_p[x_1,\ldots,x_n]$ splňující

$$\sum_{i=1}^{m} \deg f_i < n.$$

Ukažte, že pokud má soustava $f_1 = \cdots = f_m = 0$ řešení nad \mathbb{Z}_p , pak má nějaké další řešení nad \mathbb{Z}_p . (Chevalley-Warning)

Úloha 5. Nadroviny H_1, \ldots, H_m v \mathbb{R}^n pokrývají všechny vrcholy jednotkové hyperkrychle $\{0,1\}^n$ kromě jednoho. Dokažte $m \geq n$.

Úloha^{\dagger} **6.** Mějme prvočíslo p a graf *) G, jehož vrcholy mají stupeň nejvýše 2p-1 a průměrný stupeň ostře větší než 2p-2. Dokažte, že z G můžeme smazáním některých hran a vrcholů vyrobit neprázdný graf G', ve kterém má každý vrchol stupeň p.

Úloha 7. Buď p prvočíslo a A podmnožina \mathbb{Z}_p . Ukažte nerovnost

$$|\{x+y \mid x, y \in A, x \neq y\}| \ge \min\{p, 2|A| - 3\}.$$

Úloha 8. Buď p prvočíslo a d přirozené číslo. Dokažte, že pro libovolné celé číslo k existují celá čísla x_1, \ldots, x_d splňující $x_1^d + \cdots + x_d^d \equiv k \pmod{p}$.

Úloha $^{\sharp}$ 9. Buď p prvočíslo a A množina přirozených čísel splňující, že

- (i) prvky množiny A mají dohromady p-1 prvočíselných dělitelů,
- (ii) součin prvků jakékoli neprázdné podmnožiny $X\subseteq A$ není roven p-té mocnině přirozeného čísla.

Kolik nejvýše prvků může obsahovat množina A? (IM

(IMO Shortlist 2003)

Úloha 10. Mějme prvočíslo p a množiny S_1, \ldots, S_k zbytků modulo p, jež všechny obsahují 0. Předpokládejme $\sum_{i=1}^k (|S_i|-1) \ge p$. Ukažte, že pro libovolná $a_1, \ldots, a_k \in \mathbb{Z}_p$ má rovnice $a_1x_1 + \cdots + a_kx_k = 0$ nenulové řešení $(x_1, \ldots, x_n) \in S_1 \times \cdots \times S_k$.

Úloha 11. Mějme množiny S_1, \ldots, S_n zbytků modulo prvočíslo p, dále mějme polynomy $f_1, \ldots, f_k \in \mathbb{Z}_p[x_1, \ldots, x_n]$ splňující

$$(p-1)\sum_{i=1}^k \deg f_i < \sum_{j=1}^n (|S_i|-1).$$

Ukažte, že pokud má rovnice $f_1 = \cdots = f_k = 0$ řešení z $S_1 \times \cdots \times S_n$, pak má další takové řešení.

Úloha[‡] **12.** Mějme prvočíslo p, přirozené číslo n a vektory $x_1, \ldots, x_{(p-1)n+1}$ nad \mathbb{Z}_p . Dokažte existenci neprázdné podmnožiny $I \subseteq \{1, \ldots, (p-1)n+1\}$ splňující $\sum_{i \in I} x_i = 0$.

 $^{^{*)}}$ V grafu G dokonce můžeme povolit existenci násobných hran.

Úloha 13. Buď G=(V,E) graf. Pro každý vrchol $v\in V$ máme množinu zakázaných stupňů B(v). Dokažte:

- (i) Pokud B(v) obsahuje pouze kladná čísla a zároveň $\sum_{v \in V} |B(v)| < |E|$, pak lze smazáním některých hran získat podgraf H (s alespoň jednou hranou), jehož všechny vrcholy mají povolené stupně.
- (ii) Pokud B(v) může obsahovat i nulu a pro všechny $v \in V$ platí $|B(v)| \leq \frac{1}{2} \deg v$, tak lze smazáním některých hran získat podgraf H (klidně bez hran), jehož všechny vrcholy mají povolené stupně.

Úloha^{\dagger} **14.** Buď n přirozené číslo. Ukažte, že z každých 2n-1 celých čísel lze vybrat n, jejichž součet je dělitelný n.

Úloha 15. Buď p prvočíslo, d přirozené číslo a G = (V, E) graf s|V| > d(p-1) vrcholy. Ukažte, že potom existuje neprázdná podmnožina vrcholů U taková, že počet klik na d vrcholech protinajících U je kongruentní 0 modulo p.

Úloha 16. Buď p prvočíslo a d přirozené číslo. Kolik nejméně prvků musí mít podmnožina $Y \subseteq \mathbb{Z}_p^d$, která protíná každou nadrovinu? (Brouwer-Schrijver)

Úloha 17. Buď G=(V,E) bipartitní graf. Pro každý vrchol $v\in V$ máme dánu množinu povolených barev L(v). Rádi bychom obarvili každý vrchol v některou barvou z L(v) tak, aby sousedící vrcholy dostaly různé barvy. Předpokládejme, že hrany G lze orientovat tak, aby každý vrchol v měl vstupní stupeň $\deg_{\mathrm{in}}(v)<|L(v)|$. Dokažte, že G lze korektně obarvit.

Úloha 18. Buď p prvočíslo, $k \leq p-1$, a $a_1, \ldots, a_k \in \mathbb{Z}_p$ ne nutně různé zbytky. Dokažte, že pro jakékoli po dvou různé zbytky $b_1, \ldots, b_k \in \mathbb{Z}_p$ existuje permutace σ taková, že $a_1 + b_{\sigma(1)}, \ldots, a_k + b_{\sigma(k)}$ jsou také po dvou různé.

Úloha 19. Je dáno **sudé** přirozené číslo n. Mějme přirozené číslo k a vektory $v_1, \ldots, v_k \in \{\pm 1\}^n$ takové, že každý vektor $v \in \{\pm 1\}^n$ je kolmý na některý z nich. Ukažte, že nejmenší možná hodnota k je právě n.

Chevalley-Warning Theorem

Zdůrazněme nyní jednu z předchozích úloh, jejíž řešení dalo v minulém století pár matematikům celkem zabrat.

Věta (Chevalley-Warning). Mějme prvočíslo p spolu s polynomy $f_1, \ldots, f_m \in \mathbb{Z}_p[x_1, \ldots, x_n]$ splňujícími

$$\sum_{i=1}^{m} \deg f_i < n.$$

Pokud má soustava $f_1 = \cdots = f_m = 0$ nějaké řešení v \mathbb{Z}_p^n , pak má ještě další takové řešení. Přesněji, počet řešení této soustavy nad \mathbb{Z}_p^n je násobkem p.

My většinu *Chevalley-Warningovy věty* dokázali jako důsledek *Nullstellensatz*. Mírně obecnější verze zmíněná výše ale z *Nullstellensatz* přímo nevyplývá. Přesto její důkaz není nijak přehnaně komplikovaný – jen celkem trikový.

 $D\mathring{u}kaz$. Označíme-li $h = \prod_{i=1}^{m} (1 - f_i^{p-1})$, počet řešení soustavy $f_1 = \cdots = f_m = 0$ lze díky Malé Fermatově větě vyjádřit jako

$$\sum_{(a_1,\dots,a_n)\in\mathbb{Z}_p^n} h(a_1,\dots,a_n) = \sum_{(a_1,\dots,a_n)\in\mathbb{Z}_p^n} \prod_{i=1}^m \left(1 - f_i(a_1,\dots,a_n)^{p-1}\right).$$

Každý člen $x_1^{t_1} \cdots x_n^{t_n}$ polynomu h do výsledné sumy přispívá hodnotou

$$\sum_{(a_1, \dots, a_n) \in \mathbb{Z}_p^n} x_1^{t_1} \cdots x_n^{t_n} = \prod_{i=1}^n \sum_{a \in \mathbb{Z}_p} a^{t_i}.$$

Ukážeme, že ve skutečnosti každý takový člen přispívá nulou. Z podmínky ze zadání je deg h < n(p-1), takže každý člen $x_1^{t_1} \cdots x_n^{t_n}$ polynomu h obsahuje některé x_j pouze v mocnině $0 \le t_j \le p-2$. Potom ale modulo p (například z existence primitivního prvku) platí

$$\sum_{a \in \mathbb{Z}_p} a^{t_i} = 0.$$

Dle předchozí rovnosti tedy každý člen h do sumy přispívá nulou, čímž jsme hotovi.

Chevalley-Warningova věta je sama o sobě velmi praktickým nástrojem – a oproti Combinatorial Nullstellensatz je na první pohled trochu přehlednější. Ve skutečnosti už jsme mnohé její aplikace viděli – například úlohy z předešlé sekce označené symbolem \(\beta\) (a určitě i lecjaké další) se dají alternativně přímočaře nahlédnout z naší "slabší verze" Chevalley-Warningovy věty. Ukažme si nyní úlohu, ve které tuto větu použijeme v plné síle.

Úloha 20. Buď p prvočíslo a a_1, \ldots, a_{2p-1} zbytky modulo p. Buď b libovolný zbytek modulo p. Nahlédněte, že počet p-prvkových podmnožin $I \subset \{1, \ldots 2p-1\}$, součet jejichž prvků je kongruentní číslu b modulo p, je kongruentní 0 nebo 1 modulo p.

Hilbert's Nullstellensatz

Pro dodání jistého kontextu na závěr uveďme jinou (mnohem slavnější) nullstellensatz – tu Hilbertovu, která byla zformulována přibližně o sto let dřív. Ačkoli spolu obě věty souvisí, ani jedna není přímým důsledkem druhé. $Hilbertova\ Nullstellensatz$ sice popisuje "množiny nulujících se polynomů" pro libovolné $S\subseteq K^n$ (tj. ne nutně hyperkrychli), ale na druhou stranu funguje pouze nad extra pěknými tělesy K (těmi algebraicky uzavřenými).

Definice. Těleso K se nazývá algebraicky uzavřené, má-li každý nekonstantní polynom v jedná proměnné $f \in K[x]$ nějaký kořen.

Věta (Základní věta algebry*). Komplexní čísla C jsou algebraicky uzavřená.

^{*) &}quot;...která není ani základní, ani algebry", jak říká známá anekdota.

Cvičení. Rozmyslete si, že tělesa \mathbb{Q} , \mathbb{R} , \mathbb{Z}_p pro prvočíslo p **nejsou** algebraicky uzavřená .

Z našich známých příkladů je tedy algebraicky uzavřené pouze $\mathbb C.$ Ačkoli je tento fakt obecně známý, důkaz vyžaduje netriviální práci.

Věta (Hilbert's Nullstellensatz). Buď K algebraicky uzavřené těleso, $G \subseteq K[x_1,\ldots,x_n]$ množina polynomů. Označme $V(G) \subseteq K^n$ množinu jejich společných nul. Pro libovolný polynom $f \in K[x_1,\ldots,x_n]$ je potom ekvivalentní:

- (i) f se nuluje na celé množině V(G),).
- (ii) Existují $m, k \in \mathbb{N}$, pro které se dá f^m zapsat jako $f^m = f_1g_1 + \cdots + f_kg_k$ pro vhodné $f_1, \ldots, f_k \in K[x_1, \ldots, x_n]$ a $g_1, \ldots, g_n \in G$.

Cvičení. Všimněte si, že z předchozí věty třeba vyplývá:

Jsou-li $g_1,\ldots,g_k\in\mathbb{C}[x_1,\ldots,x_n]$ takové komplexní polynomy, že soustava rovnic $g_1=\cdots=g_k=0$ nemá řešení v $\mathbb{C},$ tak už nutně existují polynomy $h_1,\ldots,h_k\in\mathbb{C}[x_1,\ldots,x_n]$ splňující

$$h_1q_1 + \dots + h_nq_n = 1.$$

Literatura a zdroje

Úlohy z příspěvku jsou poměrně standardní a provařené (a upřímně je celkem těžké najít víc "olympiádních" použití této metody). Většina příspěvku je převzatá z přehledné kapitolky v [1]. Pro další aplikace se dá podívat na původní článek [2]. Pro širší algebraický kontext lze použít článek [3].

- [1] Titu Andreescu, Gabriel Dospinescu; Problems from the Book, XYZ Press
- [2] Noga Alon; Combinatorial Nullstellensatz, 1999
- [3] Terence Tao; Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory, 2014
- [4] Evan Chen; Combinatorial Nullstellensatz, Berkley Math Circle, 2013
- [5] Robert Šámal; Kombinatorika a grafy III, přednáška, 2018
- [6] Štěpán Šimsa; Combinatorial Nullstellensatz, Sborník iKS, 2013

Hinty

- **Hint 1.** Použijte Nullstellensatz na polynom $\prod_{i=1}^{100} (x_i x_{i+1}) \in \mathbb{Q}[x_1, \dots, x_{100}]$, kde do každého S_i dosazujeme dvě různá čísla. Využijte sudost čísla 100.
- **Hint 2.** Vyjde m=3n. Kdyby m<3n, vynásobte lineární rovnice všech příslušných rovin a nakonec odečtěte vhodný skalární násobek $\prod_{i=1}^{n}(x-j)\cdot\prod_{j=1}^{n}(y-j)\cdot\prod_{j=1}^{n}(z-j)$.
- **Hint 3.** Kdyby platila opačná nerovnost, vezměte polynom $\prod_{c \in A+B} (x+y-c)$, který se nuluje na $A \times B$.
- **Hint 4.** Při vybírání polynomu použijte Malý Fermatův fígl pro všechna $x \in \mathbb{Z}_p$ platí: x = 0, právě když $(x^{p-1} 1) \neq 0$. Použijte fígl, vynásobte všech m věcí dohromady, nakonec opravte triviální nenulu přičtením vhodného polynomu vyššího stupně (p-1)n.
- **Hint 5.** Kdyby m < n, vynásobte rovnice rovin dohromady a přičtením polynomu stupně n opravte zbylou nenulu.
- **Hint 6.** Každé hraně e přiřaďte jednu proměnnou x_e , do které budeme chtít dosazovat $\{0,1\}$; pro každý vrchol pak s pomocí Malého Fermata napište jednu rovnici. Všimněte si nulového (ne)řešení.
- **Hint 7.** Vynásobte (x + y c) přes všechna c jako na levé straně nerovnosti. Kde všude se nuluje polynom (x y)? Buďte opatrní při ověřování předpokladů Nullstellensatz.
- **Hint 8.** S pomocí řádů búno mějmte $d \mid p-1$. Polynom $(x_1^d + \cdots + x_d^d k)^{p-1} 1$ společně s Malým Fermatovým fíglem pak postačí.
- **Hint 9.** Vyjde $(p-1)^2$, konstrukce je jasná. Čísla z A odpovídají vektorům délky p-1. Kdyby $|A| \geq (p-1)^2 + 1$, uvažte |A| proměnných s hodnotami v $\{0,1\}$. Napište s Malým Fermatem pro každé z daných prvočísel rovnici stupně p-1, jejichž součin se nuluje právě když platí druhá podmínka. Přičtením vhodného polynomu stupně |A| opravte triviální nenulu.

Ve skutečnosti lze zapomenout na první podmínku a číslo p-1 nahradit obecným d. Stejný postup pak dává výsledek d(p-1).

- **Hint 10.** Vezměte $(a_1x_1 + \cdots + a_kx_k)^{p-1} 1$ a odečtěte polynom stupně $\sum_{i=1}^k (|S_i| 1)$ tak, aby se výsledek nuloval na celém $S_1 \times \cdots \times S_k$.
- **Hint 11.** Kdyby to tak nebylo, vezměte polynom $\prod_{i=1}^k (1-f_i^{p-1})$ a opravte jeho jediné neřešení odečtením vhodného polynomu stupně $\sum_{j=1}^n (|S_i|-1)$.
- **Hint 12.** Kdyby to tak nebylo, v každé z n složek s pomocí Malého Fermata napište jednu rovnici, vynásobte, pak přičtením opravte triviální nenulu.

Hint 13.

- (i) Pro každou hranu e vezměte jednu proměnnou x_e , pro každý vrchol v napište |B(v)| lineárních rovnic, které se nemají nulovat. Opravte triviální (ne)řešení.
- (ii) Vezměte polynom stupně $\sum_{v \in V} |B(v)|$ ze začátku předchozí části. Hledejte vhodný nenulový "vedoucí" koeficient. Může se hodit buď Hallova věta, nebo vhodná orientace grafu.
- **Hint 14.** Pro *n* prvočíslo použijte *Chevalley-Warningovu větu* společně s Malým Fermatem. Pak ukažte, že dokazovaná vlastnost se dědí z činitelů na součin.
- **Hint 15.** Pro každý vrchol $v \in V$ představte proměnnou x_v , která bude nabývat hodnot z $\{0,1\}$ podle toho, zda $x \in U$ nebo $x \notin U$. Pro každou d-kliku v G napište polynom stupně d, který se po dosazení dává 1 či 0 v závislosti na tom, zda klika protíná U či nikoli. Pak

sečtěte tyto polynomy přes všechny d-kliky a pomocí Malého Fermata vyrobte polynom stupně d(p-1), který je nenulový právě pro hledaná U. Opravte triviální (ne)řešení.

Hint 16. Odpověď je d(p-1)+1, pro konstrukci stačí vzít "souřadnicové přímky". Pro spor ať |Y|=d(p-1), BÚNO obsahuje Y počátek o. Pak $Y'=Y\setminus \{o\}$ protíná každou nadrovinu s rovnicí $a_1y_1+\cdots+a_dy_d=1$, kde a_1,\ldots,a_d nejsou všechny nulové, tj. polynom $\prod_{(y_1,\ldots,y_n)\in Y'}(x_1y_1+\cdots+x_dy_d)\in \mathbb{Z}_p[x_1,\ldots,x_d]$ se nuluje všude kromě počátku.

Hint 17. Pro každý vrchol $v \in V$ vezměte jednu proměnnou nabývající hodnot z L(v), graf zorientujte a uvažte $\prod_{(u,v) \text{ hrana}} (x_u - x_v)$. Pro použití Nullstellensatz teď stačí ukázat, že koeficient u $\prod_{v \in V} x_v^{\deg_{\text{in}}(v)}$ je nenulový. Každá orientace grafu G se stejnými vstupními a výstupními stupni do tohoto koeficientu přispěje ± 1 , kde znaménko závisí na tom, kolik hran je třeba otočit. S pomocí Eulerovských tahů nahlédněte, že v případě bipartitního grafu je to vždy +1.

Hint 18. Vezměte $B=\{b_1,\dots,b_k\}$ a proměnné x_1,\dots,x_k . Kdyby tvrzení neplatilo, polynom

$$\prod_{1 \le i < j \le k} (x_i - x_j) \cdot \prod_{1 \le i < j \le k} (x_i - x_j + a_i - a_j)$$

by se nuloval na hyperkrychli $B^k\subseteq \mathbb{Z}_p^k.$ Dokažte, že koeficient u $x_1^{k-1}\cdots x_k^{k-1}$ je k!.

Hint 19. Kdo to dořeší, dostane čokoládku.

Hint 20. Vezměte 2p-1 proměnných, uvažte rovnice $\sum_{i=1}^{2p-1} x_i^{p-1} = 0$ a $\sum_{i=1}^{2p-1} x_i^{p-1} a_i$. Jak souvisí počet jejich společných řešení s hledaným počtem podmnožin I?