图论基础

子图和补图

Lijie Wang

丁區

元王国

子图和补图

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

各类子图

子图和补图

Lijie Wang

.

九土区

Definition

设有图 $G = \langle V, E \rangle$ 和图 $G_1 = \langle V_1, E_1 \rangle$.

- 若 $V_1 \subseteq V$, $E_1 \subseteq E$, 则称 G_1 是 G 的子图(subgraph) , 记为 $G_1 \subseteq G$.
- 若 $G_1 \subseteq G$, 且 $G_1 \neq G$ (即 $V_1 \subset V$ 或 $E_1 \subset E$) , 则称 G_1 是 G 的真子图(proper subgraph) , 记为 $G_1 \subset G$.
- 若 $V_1 = V$, $E_1 \subseteq E$, 则称 G_1 是 G 的生成子图(spanning subgraph).
- 设 V₂ ⊆ V 且 V₂ ≠ Ø , 以 V₂ 为结点集 , 以两个端点均在 V₂ 中的边的全体为边集
 的 G 的子图 , 称为 V₂ 导出的 G 的子图 , 简称 V₂ 的导出子图(induced subgraph).

各类子图

Lijie Wang

完全图

子图和补图

Lijie Wang

完全图

,

Definition

- 设 $G = \langle V, E \rangle$ 为一个具有 n 个结点的无向简单图 , 如果 G 中任意两个结点间都有边相 连 , 则称 G 为无向完全图 , 简称 G 为完全图 , 记为 K_n 。
- 设 G=<V,E> 为一个具有 n 个结点的有向简单图,如果 G 中任意两个结点间都有两条方向相反的有向边相连,则称 G 为有向完全图,在不发生误解的情况下,也记为 K_n 。

- 完全图的邻接矩阵除主对角线上的元素为 0 外,其余元素均为 1;
- 无向完全图 K_n 的边数为 $C_n^2 = \frac{1}{2}n(n-1)$;
- 有向完全图 K_n 的边数为 $P_n^2 = n(n-1)$.

完全图举例

Lijie Wang

Definition

设 G=<V,E> 为简单图, $G'=<V,E_1>$ 为完全图,则称 $G_1=<V,E_1-E>$ 为 G 的补图(complement of graph),记为 \overline{G} 。

- 补图 G 就是从完全图中删除图 G 中的边;
- 补图 G 就是以 V 为结点集,以所有能使 G 成为完全图 K_n 的添加边组成的 集合为边集的图:
- 图 G 和它的补图 G 有相同的结点,两个结点在 G 里相邻,当且仅当它们在 G 里不相邻.

子图和补图

Lijie Wang

补图

子图和补图

Lijie Wang

子图

完全图

补图

☞ 注意

画补图时,边和原图是互补关系,但结点不变。尤其是孤立结点,一定不要漏掉!

补图的邻接矩阵

图和补图

Lijie Wang

子图

完全图

Example

邻接矩阵求补图的方法

若设简单图 G 的邻接矩阵 $A=(a_{ij})_{n\times n}$,则它的补图 \overline{G} 的邻接矩阵 $\overline{A}=(\overline{a_{ij}})_{n\times n}$

$$\overline{a_{ij}} = \left\{ egin{array}{ll} 1 - a_{ij} & i
eq j \\ 0 & i = j \end{array}, (i, j = 1, 2, 3, \cdots, n) \right.$$

补图的应用

子图和补图

Lijie Wang

完全图

1958 年美国《数学月刊》上的一个数学问题:

Example

证明:在任意6个人的集会上,总会有3个人相互认识或者有3个人互相不认识(假设认识是相互的)。

Proof.

把参加集会的人作为结点,相互认识的人之间连边,得到图 G,设 \overline{G} 为 G 的补图,这样问题就转化为证明 G 或 \overline{G} 中至少有一个完全子图 K_3 。 考虑完全图 K_6 ,结点 v_1 与其余 S 个结点各有一条边相连,这 S 条边一定有 S 条在 S 或 \overline{G} 中,不妨设有 S 条边在 S 中,设这 S 条边为 $(v_1,v_2),(v_1,v_3),(v_1,v_4)$ 。 考虑结点 v_2,v_3,v_4 。若 v_2,v_3,v_4 在 S 中无边相连,则 v_2,v_3,v_4 相互不认识;若 v_2,v_3,v_4 在 S 中至少有一条边相连,例如 (v_2,v_3) ,则 v_1,v_2,v_3 就相互认识。 因此,总会有 S 个人相互认识或者有 S 个人互相不认识。

图和补图

Lijie Wang

子图

完全图

补图

THE END, THANKS!