

Logika Matematika

A. KALIMAT TERBUKA DAN PERNYATAAN

Kalimat terbuka adalah kalimat yang tidak mempunyai nilai kebenaran yang pasti.

Contoh: Biarkan dia pergi!

Kapan kau menemuinya?

 $x + 1 > 0, x \in R$

2 + x = 5

- Pernyataan (proposisi) adalah kalimat tertutup yang mempunyai nilai kebenaran benar/salah, tidak keduanya pada saat yang bersamaan.
- Pernyataan dilambangkan dengan huruf kecil (p, q, r, dst.) dan nilai kebenaran dilambangkan dengan τ(x), dengan B = benar, S = salah.

Contoh:

p: Hasil kali 5 dengan 6 adalah 30.

 $[\tau(p) = B]$

q : Seluruh bilangan prima adalah

ganjil. $[\tau(q) = S]$

 $r : 20 + 3 > 1 [\tau(r) = B]$

s : $x^2 - x + 2 < 0$. [$\tau(s) = S$]

B. KUANTOR DAN NEGASI

- Kuantor adalah simbol yang melambangkan kalimat terbuka dalam semesta pembicaraan pernyataan.
- 🔌 Kuantor terbagi menjadi dua:
 - 1) Kuantor universal (∀)

Menyatakan adanya 'seluruh' atau 'setiap' hal yang terdapat dalam pernyataan.

∀x.p: semua x bersifat/berlaku bagi p.

- a. Bernilai **benar** jika tidak ditemukan nilai x yang membuat p salah.
- b. Bernilai **salah** jika ditemukan x yang membuat p salah.

2) Kuantor eksistensial (3)

Menyatakan hanya adanya 'beberapa' atau 'sebagian' hal yang terdapat dalam pernyataan.

3x.p: ada/beberapa x bersifat/berlaku bagi p.

- a. Bernilai **benar** jika ditemukan nilai x yang membuat p benar.
- b. Bernilai **salah** jika tidak ditemukan x yang membuat p benar.

Contoh:

P = {Adi, Ida, Rani}

Q = {Dita, Rina}

p(x,y) = "x adalah kakak y"

 $(\forall_{x\in P})(\exists_{y\in Q})(p(x,y))$: Untuk setiap x pada P, berhubungan dengan beberapa y pada Q, sedemikian hingga x adalah kakak dari y.

Berarti, setiap anggota P adalah salah satu kakak dari anggota Q (Dita/Rina).

- Negasi (ingkaran) adalah lawan atau kebalikan dari suatu pernyataan.
- Negasi dilambangkan dengan ∼p, dan dibaca bukan atau tidak.

Contoh:

p : Ibukota negara Indonesia adalah Jakarta. $[\tau(p) = B]$

 \sim p : Ibukota negara Indonesia bukan Jakarta. [$\tau(\sim p) = S$]

q : 3 > 5 [τ (q) = S]

 $\sim q : 3 \le 5 [\tau(\sim q) = B]$

 $r : x^2 = 25 [\tau(r) = B]$

 $\sim r : x^2 \neq 25 [\tau(\sim r) = S]$

Tabel kebenaran:

р	~p	q	~q	r	~r
В	S	S	В	В	S

C. PERNYATAAN MAJEMUK

- Pernyataan majemuk adalah dua buah pernyataan atau lebih yang dihubungkan dengan operasi logika matematika.
- Operasi logika matematika antara lain: konjungsi (Λ), disjungsi (V), implikasi (→), dan biimplikasi (↔).
- Nilai kebenaran pernyataan majemuk biasanya dituliskan dalam tabel kebenaran.

D. KONJUNGSI & DISJUNGSI

- **Konjungsi** menyatakan hubungan 'p dan/meskipun/tetapi/walaupun q', dan dilambangkan dengan Λ.
- Nilai konjungsi bernilai benar jika kedua pernyataan benar (Β Λ Β).

Tabel kebenaran:

р	q	рΛq
В	В	В
В	S	S
S	В	S
S	S	S

Contoh:

p : Hari ini hujan. $[\tau(p) = B]$

q : Hari ini berangin. $[\tau(q) = B]$

 $p \wedge q$: Hari ini hujan dan berangin. $[\tau(p \wedge q) = B]$

- Disjungsi menyatakan hubungan 'p atau q', dan dilambangkan dengan V.
- 🔪 Nilai disjungsi bernilai salah jika kedua pernyataan salah (S V S).

Tabel kebenaran:

р	q	рVq
В	В	В
В	S	В
S	В	В
S	S	S

Contoh:

 $: 5 + 10 = 20. [\tau(p) = S]$

: 20 bukan bilangan genap. $[\tau(q) = S]$

p V q : 5 + 10 = 20 atau 20 bukan bilangan genap. $[\tau(p V q) = S]$

- Nisjungsi terdiri dari dua:
 - 1) Disjungsi inklusif, yaitu disjungsi yang biasa digunakan, dimana kemungkinan benar ada tiga, yaitu hanya p yang benar, hanya q yang benar, atau benar kedua-duanya.

р	q	рVq
В	В	В
В	S	В
S	В	В
S	S	S

2) Disjungsi eksklusif, yaitu disjungsi yang bernilai benar jika hanya ada salah satu pernyataan yang dilambangkan benar, dengan ⊕ atau ⊻.

р	q	p⊻q
В	В	S
В	S	В
S	В	В
S	S	S

- Nonjungsi dan disjungsi dapat dianalogikan ke dalam rangkaian listrik.
- Nangkaian listrik seri bersifat konjungsi, karena jika seluruh elemen terhubung (B Λ B), maka barulah arus listrik akan mengalir (B).
- 🔪 Rangkaian listrik paralel bersifat disjungsi, karena apabila seluruh elemen tidak terhubung (S V S), maka arus listrik akan terputus (S).

р	q	rangkaian	рΛq
1	1	tertutup	1
1	0	terbuka	0
0	1	terbuka	0
0	0	terbuka	0

р	q	rangkaian	p V q
1	1	tertutup	1
1	0	tertutup	1
0	1	tertutup	1
0	0	terbuka	0

Analogi rangkaian listrik dari pernyataan logika matematika:

Contoh pernyataan:

[p V (q Λ r)] Λ [s V t]

IMPLIKASI

- 🦠 **Implikasi** menyatakan hubungan 'jika p maka q' atau 'q jika p', dan dilambangkan dengan →.
- 🦠 Pernyataan jika (p) dari implikasi disebut hipotesis/premis, sedangkan pernyataan maka (g) dari implikasi disebut konsekuen/kesimpulan.
- Nilai implikasi bernilai salah jika hipotesis benar namun konsekuennya salah (B \rightarrow S).

Tabel kebenaran:

р	q	$p \rightarrow q$
В	В	В
В	S	S
S	В	В
S	S	В

Contoh:

: Hari ini mendung. $[\tau(p) = B]$

: Hari ini tidak akan hujan. $[\tau(q) = S]$

 $p \rightarrow q$: Jika hari ini mendung maka hari

ini tidak akan hujan. $[\tau(p \land q) = S]$

Macam-macam implikasi:

1) Konvers, merupakan kebalikan dari implikasi biasanya.

 $p \rightarrow q$ menjadi $q \rightarrow p$

2) Invers, merupakan implikasi yang kedua pernyataannya dinegasikan.

 $p \rightarrow q$ menjadi $\sim p \rightarrow \sim q$

3) Kontraposisi, merupakan kebalikan dari implikasi biasa yang kedua pernyatannya dinegasikan.

 $p \rightarrow q$ menjadi $\sim q \rightarrow \sim p$

,	p	9	~ <i>p</i>	~q	$p \rightarrow q$	$q \rightarrow p$	~p →~q	~ <i>q</i> → ~ <i>p</i>
	В	В	S	S	В	В	В	В
	В	S	S	В	S	В	В	S
	S	В	В	S	В	S	S	В
	S	S	В	В	В	В	В	В

F. BIIMPLIKASI

- Bimplikasi menyatakan hubungan 'p jika dan hanya jika q' atau 'jika p maka q dan jika q maka p', dan dilambangkan dengan ↔.

Tabel kebenaran:

р	q	$p \leftrightarrow q$
В	В	В
В	S	S
S	В	S
S	S	В

Contoh:

p : Hari ini tidak hujan. $[\tau(p) = S]$

q : Hari ini tidak mendung. $[\tau(q) = S]$

 $p \leftrightarrow q$: Hari ini tidak hujan jika dan hanya jika hari ini tidak mendung. $[\tau(p \land q) = B]$

G. EKUIVALENSI DAN ALJABAR LOGIKA MATEMATIKA

- Ekuivalensi dua pernyataan majemuk dapat dicari menggunakan tabel kebenaran dan aljabar logika matematika, dan dilambangkan dengan ≡.
- Jenis-jenis tabel kebenaran dari hasil akhir nilai kebenarannya:
 - 1) Tautologi, hasil akhirnya benar semua.
 - 2) Kontradiksi, hasil akhirnya salah semua.
 - 3) **Kontingensi**, hasil akhirnya ada yang benar dan ada yang salah.
- Aljabar/sifat dalam operasi logika matematika:

IDEMPOTEN

 $p \wedge p \equiv p$

pVp≡p

KOMPLEMEN

 $p \land \sim p \equiv (S)$

 $p V \sim p \equiv (B)$

INVOLUSI

~(~p) ≡ p

IDENTITAS

 $p \land (B) \equiv p$

 $p V (B) \equiv (B)$

 $p \land (S) \equiv (S)$

 $p V (S) \equiv p$

ABSORPSI

 $p \land (p \lor q) \equiv p$

 $p V (p \Lambda q) \equiv p$

KOMUTATIF

 $p \land q \equiv q \land p$

 $pVq \equiv qVp$

ASOSIATIF

 $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$

 $p V (q V r) \equiv (p V q) V r$

DISTRIBUTIF

 $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$

 $p V (q \wedge r) \equiv (p V q) \wedge (p V r)$

DE MORGAN

 \sim (p \land q) \equiv \sim p \lor \sim q

$$\sim (p \rightarrow q) \equiv p \land \sim q$$

$$\sim$$
(p V q) \equiv \sim p \land \sim q

$$\sim$$
(p \leftrightarrow q) \equiv \sim p \leftrightarrow q \equiv p \leftrightarrow \sim q

$$\sim$$
(\exists .p) $\equiv \forall$.(\sim p)

$$\sim$$
(\forall . p) \equiv \exists .(\sim p)

IMPLIKASI

$$p \rightarrow q \equiv \sim p V q$$

$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

$$q \rightarrow p \equiv \sim p \rightarrow \sim q$$

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

Contoh:

Buktikan bahwa \sim (p \leftrightarrow q) ekuivalen dengan p \leftrightarrow q dengan tabel kebenaran dan aljabar logika matematika!

Dengan tabel kebenaran

~	р	\leftrightarrow	q
S	В	В	В
В	В	S	S
В	S	S	В
S	S	В	S
(2)		(1)	

р	\leftrightarrow	q
В	В	В
В	S	S
S	S	В
S	В	S
	(3)	

P

Dengan aljabar logika matematika

- $= \sim (p \leftrightarrow q)$ De Morgan
- = \sim [(p \rightarrow q) \land (q \rightarrow p)] sifat implikasi
- = \sim [(\sim p V q) Λ (\sim q V p)] De Morgan
- = \sim (\sim p V q) V \sim (\sim q V p) De Morgan
- = $(p \land \sim q) \lor (q \land \sim p)$ distributif
- = $[(p \land \sim q) \lor q] \land [(p \land \sim q) \lor \sim p]$ distributif
- $= [(p \lor q) \land (\sim q \lor q)] \land [(p \lor \sim p) \land (\sim q \lor \sim p)]$

(B)

P (B) komplemen lalu identitas

- = $(p \ V \ q) \ \Lambda \ (\sim q \ V \sim p)$ sifat implikasi
- = $(\sim p \rightarrow q) \Lambda (q \rightarrow \sim p)$ pengertian biimplikasi

 $= \sim p \leftrightarrow q$ ekuivalen

H. PENARIKAN KESIMPULAN

Nesimpulan dikatakan sah apabila:

Premis 1 : a
Premis 2 : b
∴ c

logis bila (a Λ b) \rightarrow c nilai akhirnya tautologi.

▼ Tiga rumus logis premis-premis:

1) Modus Ponen

Premis 1 : $p \rightarrow q$ Premis 2 : p $\therefore q$

Jika p terjadi maka q terjadi, dan p terjadi lagi, maka dipastikan q terjadi.

2) Modus Tollen

Premis 1 : $p \rightarrow q$ Premis 2 : $\sim q$ $\therefore \sim p$

Jika p terjadi maka q terjadi, namun q sebenarnya tidak terjadi, maka dipastikan p tidak terjadi.

3) Silogisme

Premis 1 : $p \rightarrow q$ Premis 2 : $q \rightarrow r$ $\therefore p \rightarrow r$

Jika p terjadi maka q terjadi, dan jika q terjadi maka r terjadi, maka dipastikan jika p terjadi maka r terjadi juga.

Contoh:

Jika A berteman dengan B, maka A tidak berteman dengan C. C berteman dengan D atau C tidak berteman dengan A. Jika A berteman dengan D, maka C tidak berteman dengan D. Diketahui A berteman dengan D.

Jawab:

Analogi:

p = "A berteman dengan B"

q = "A berteman dengan C"

r = "C berteman dengan D"

s = "A berteman dengan D"

Pernyataan:

1) $p \rightarrow \sim q$

2)
$$r V q \equiv \sim r \rightarrow q$$

3)
$$s \rightarrow \sim r$$

4) s

Kesimpulan:

$$\begin{array}{ccc}
s \to \sim r & \longrightarrow & \sim r \to q \\
\underline{s} & & \sim r & \longrightarrow & \frac{r}{\sim r} & \longrightarrow & \frac{q}{\cdots \sim p \text{ (Tollen)}} \\
\vdots & \sim r \text{ (Ponen)} & & & & \frac{q}{\cdots \sim p \text{ (Tollen)}}
\end{array}$$

Jadi, kesimpulannya adalah, A tidak berteman dengan B