Série 2011

Procédures de qualification

Planificatrice-électricienne CFC Planificateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2 Bases technologiques

Nom, prénom	N° de candidat	Date

Temps: 30 minutes

Auxiliaires: Formulaire, calculatrice de poche (sans banque de données), règle, cercle,

équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leurs unités soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.
- Pour des exercices avec des réponses à choix multiple, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.
- Si dans un exercice on demande plusieurs réponses vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 26,0

25,0 - 26,0	Points = Note	6,0
22,5 - 24,5	Points = Note	5,5
19,5 - 22,0	Points = Note	5,0
17,0 - 19,0	Points = Note	4,5
14,0 - 16,5	Points = Note	4,0
12,0 - 13,5	Points = Note	3,5
9,5 - 11,5	Points = Note	3,0
6,5 - 9,0	Points = Note	2,5
4,0 - 6,0	Points = Note	2,0
1,5 - 3,5	Points = Note	1,5
0.0 - 1.0	Points = Note	1.0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 9.9.2008)

Signature des	Points	Note
expertes / experts:	obtenus	

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2012.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Planificatrice-électricienne CFC / Planificateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	cices						Nombre d maximal	obtenus
1.	 Cochez les réponses correctes. Une diode Zener ne peut être utilisée que da Il existe des LED de couleurs bleue, verte, ro Plus la lumière est intense, plus grande est la photo résistance (LDR). Le courant dans un thyristor ne peut circuler Un triac permet de contrôler le passage du co Le transistor peut être utilisé pour amplifier un 	uge e a résis que da ourant	t bland tance ans ur dans	che. d'une n sens			3	
2.	2. Analyse d'un circuit logique de commande LOGO : Déterminer l'état (1 ou 0) des sorties Q1 et Q2 du circuit, pour chaque combinaison possible des 3 entrées I1, I2 et I3. Complétez la table de vérité.				4			
		l1	12	13	Q1	Q2		
		0	0	0				
		0	0	1				
		0	1	0				
		0	1	1				
		1	0	0				
		1	0	1				
		1	1	0				
		1	1	1				
	,	<u> </u>						

Exe	rcices	maximal	obtenus
3.	Dans un couloir de 2,5m de largeur, les supports pour un éclairage LED sont montés à une hauteur de 0,3 m du sol. Les supports sont répartis à gauche et à droite du couloir de sorte que le rayon produit par une lampe effleure le rayon produit par la lampe suivante. L'angle d'ouverture des lampes est de 35 ° (voir le croquis). A quelle distance x, les lampes doivent-elle être montées? Mur gauche Distance x Mur droite	3	
4.	Cochez les réponses correctes. - Un champ magnétique est produit par un électro-aimant dont l'alimentation est coupée. - Un champ magnétique est produit par la circulation d'un courant dans un conducteur. - Un champ électrique est produit par deux électrodes de charges différentes. - Un champ électrique est produit par la circulation d'un courant dans un conducteur.	2	
L	1		

Exer	cices	Nombre d maximal	le points obtenus
5.	Une batterie de pile se compose de deux modules plats couplés en parallèle. Chaque module a une résistance interne R_i = 1 Ω et une force électromotrice (tension à vide) E = 4,5 V .	3	
	Calculez le courant de décharge pour lequel la tension aux bornes de la batterie chute à 4 V.		
6.	Quel est le moment du couple produit à l'axe d'un moteur ayant une puissance utile de 3,5 kW et une vitesse de rotation de 1'440 min ⁻¹ ?	3	

Exer	cices	Nombre d maximal	e points obtenus
7.	Une partie de l'énergie renouvelable sera produite dans le futur par des cellules photovoltaïques. Dans notre région, on compte une énergie lumineuse de 4'130 MJ par m² de cellules et par année. Calculez l'énergie électrique moyenne en kWh produite annuellement par une installation de 5m². Le rendement de l'installation d'énergie est de 17%.	2	
8.	Un chauffe-eau a un corps de chauffe dont la résistance est de R = $26,45~\Omega$. Il est branché au le réseau $230~V$. Six litres d'eau sont portés à ébullition ($100~^{\circ}C$) en 25 minutes. Quelle est la température de l'eau froide, sachant que le chauffe-eau a un rendement de $75~\%$? $c_{eau} = 4190 \frac{J}{kg \cdot K}$	3	

Exercices	Nombre of maximal	de points obtenus
9. Un installateur électricien reçoit le mandat de remplacer les cinq lampes à incandescence installées dans un bar par des ampoules LED.	3	
$\frac{\text{Caract\'eristique des lampes :}}{\text{Lampe à incandescence :}P_{\text{Linc}} = 40\text{W}, \Phi_{\text{Linc}} = 430\text{Im} .}$ $\text{Lampe LED:} \text{BIOLEDEX® VEO 8 W} \text{E27 600 Im, 230 V}.$		
a) Combien d'ampoules LED doivent être installées pour obtenir au moins le même flux lumineux des ampoules à incandescence? b) Quelle est l'efficacité lumineuse des 2 types de lampes?		
Total	26	