Opgave 4.2

Als het niet waait dan is het half 3.

Het is half 3.

Het waait niet.

Opgave 5.12

Het bereik van de negatietekens zijn respectievelijk p en de ander q.

Opgave 5.23

$$(1) \begin{array}{c|c} \varphi & \varphi \lor \varphi \\ \hline 0 & 1 \\ 1 & 1 \end{array}$$

Tautologie

	φ	ψ	$(\varphi \wedge \psi)$	$(\varphi \wedge \psi) \to \varphi$
	0	0	0	1
(2)	0	1	0	1
	1	0	0	1
	1	1	1	1

Tautologie

	φ	ψ	$(\varphi \lor \psi)$	$\varphi \to (\varphi \lor \psi)$
	0	0	0	1
(3)	0	1	1	1
	1	0	1	1
	1	1	1	1

Tautologie

	φ	ψ	$\neg \varphi$	$(\varphi \to \psi)$	$\neg \varphi \to (\varphi \to \psi)$
	0	0	1	1	1
(4)	0	1	1	1	1
	1	0	0	0	1
	1	1	0	1	1

Tautologie

November 2017 Pagina 1 van 4

	φ	ψ	$(\varphi \to \psi)$	$((\varphi \to \psi) \to \varphi) \to \varphi$
	0	0	1	0
(5)	0	1	1	0
	1	0	0	1
	1	1	1	1

Geen Tautologie

	φ	ψ	χ	$(\varphi \to \psi)$	$(\varphi \to \chi)$	$(\psi \to \chi)$	$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
	0	0	0	1	1	1	1
	0	0	1	1	1	1	1
	0	1	0	1	1	0	1
(6)	0	1	1	1	1	1	1
	1	0	0	0	0	1	1
	1	0	1	0	1	1	1
	1	1	0	1	0	0	1
	1	1	1	1	1	1	1

Tautologie

Opgave 5.26

 $p \wedge q$

Opgave 5.28

$\neg \varphi$	$\neg \psi$	$(\varphi \to \psi)$
1	1	1
1	0	1
0	1	0
0	0	1

De bovenste regel laat zien dat Modes Tollens geldig is.

Opgave 5.49

Functioneel volledigheid: $\{\land, \neg\}$

p	q	$\neg(p \land \neg q)$
1	1	1
0	1	1
1	0	0
0	0	0

Functioneel volledigheid: $\{\rightarrow, \neg\}$

p	q	$(p \to p) \to q$
1	1	1
0	1	1
1	0	0
0	0	0

Functioneel volledigheid: $\{\vee,\neg\}$

November 2017

p	q	$\neg (p \vee \neg q) \vee q$
1	1	1
0	1	1
1	0	0
0	0	0

Opgave 5.52

Connectieven $\{\land, \lor, \rightarrow, \leftrightarrow\}$ omschreven m.b.v. †.

p	q	†	$(p \dagger p) \dagger (q \dagger q)$	$(p \dagger q) \dagger (p \dagger q)$?	?
1	1	0	1	1	1	1
0	1	0	0	1	1	0
1	0	0	0	1	0	0
0	0	1	0	0	1	1

Connectieven $\{\land, \lor, \rightarrow, \leftrightarrow\}$ omschreven m.b.v. |.

p	q		$(p \mid q) \mid (p \mid q)$	(p p) (q q)	?	?
1	1	0	1	1	1	1
0	1	1	0	1	1	0
1	0	1	0	1	0	0
0	0	1	0	0	1	1

Inductiebewijzen 8

Te bewijzen: iedere propositielogische formule waarin \vee het enige connectief is, waar is, iff tenminste een van zijn atomaire zinnen die in de formule voorkomen waar is.

Base case: Er is geen connectief.

I.H.: Voor alle zinnen met minder compexiteit dan ϕ geldt de te bewijzen stelling.

I.S.: - $\phi = \psi \vee \chi$. Volgens I.H. zijn ψ en χ waar, dus ψ is waar of χ is waar, dus ϕ is waar.

Inductiebewijzen 9

Neem een taal zonder negatie en waarin geldt dat voor alle $p \in ATOM : V(p) = 1$.

Te bewijzen: voor alle formules ϕ geldt dat $V(\phi) = 1$.

Base case: $\phi = p, V(p) = 1$.

IH: Voor alle formules met minder compexiteit dan ϕ geldt de te bewijzen stelling. **I.S.:**

 $-\phi = \psi \vee \chi$: Volgens I.H. is $V(\psi) = 1$, dus ook $V(\psi \vee \chi) = 1$.

- $\phi = \psi \wedge \chi$: Volgens I.H. is $V(\psi) = 1 = V(\chi)$, dus ook $V(\psi \wedge \chi) = 1$.

- $\phi = \psi \to \chi$: Volgens I.H. is $V(\chi) = 1$, dus ook $V(\psi \to \chi) = 1$.

November 2017 Pagina 3 van 4

Inductiebewijzen 10

Te bewijzen: dat geldt voor alle formules uit de propositielogica, en alle valuaties V, ofwel $V(\phi) = 1$, ofwel $V(\phi) = 0$, maar nooit $V(\phi) = 1$ en $V(\phi) = 0$.

Base case: $\phi = p$, V(p) = 1 of V(p) = 0, geldt voor een enkele propositie.

IH: Voor alle formules met minder compexiteit dan ϕ geldt de te bewijzen stelling.

I.S.:

- $\phi = \psi \vee \chi$: Volgens I.H. is $V(\psi) = 1$ of 0, dus ook $V(\psi \vee \chi) = 1$ of 0.
- $\phi = \psi \wedge \chi$: Volgens I.H. is $V(\psi) = 1$ of 0, net als χ , due ook $V(\psi \wedge \chi) = 1$ of 0.
- $\phi = \psi \to \chi$: Volgens I.H. is $V(\chi) = 1$ of 0, net als χ , dus ook $V(\psi \to \chi) = 1$ of 0.

Inductiebewijzen 11

Te bewijzen: dat elke formule waarin enkel de symbolen $p_{i}(x,t)$, to permit the option of logisch equivalent is aan p.

Base case: $\phi = p$, p zonder connectieven is gelijk aan p.

IH: Voor alle formules met minder compexiteit dan ϕ geldt de te bewijzen stelling.

I.S.:

- $-(\phi \rightarrow \phi) = \phi$
- $-(\phi) \rightarrow \phi = \phi$
- $-\phi \rightarrow (\phi) = \phi$

November 2017 Pagina 4 van 4