【练习题 3 参考解答】

一、(本题满分 21 分,每小题 3 分)单项选择题(请将所选答案填入题号前的方括号内):

I B **1** 1. $\int x f''(x) dx =$

(A) xf(x) - f(x) + C.

(B) xf'(x) - f(x) + C.

(C) f'(x) - f(x) + C.

(D) xf(x) - f'(x) + C.

[A] 2. $\int_0^{\pi} \sqrt{1 + \cos 2x} \, dx =$

(A) $2\sqrt{2}$. (B) $2\sqrt{2}-2$. (C) 0. (D) 2.

【 D 】 3. 设 f(x) 连续,则 $\int_{a}^{b} f(x) dx =$

 $(A) \int_a^b f(3x) d(3x) .$

(B) $\int_{\frac{a}{3}}^{\frac{b}{3}} f(-3x)d(-3x)$.

 $(C) \int_a^b f(-3x)d(-3x).$

 $(D) \int_{\underline{a}}^{\underline{b}} f(3x) d(3x) .$

【 C 】 4. 由曲线 $y = e^x$, y = e, $y = e^2$ 及 y 轴所围平面图形的面积为

(B) $2e^2$. (C) e^2 . (D) e.

【 D 】 5. 微分方程 $\frac{dy}{dr} = \frac{y}{r} + \tan \frac{y}{r}$ 的通解为

(A) $x \sin \frac{y}{x} = C$. (B) $\cos \frac{y}{x} = x^2 + C$. (C) $x^2 \cos \frac{y}{x} = C$. (D) $\sin \frac{y}{x} = Cx$.

【 A 】6. 用待定系数法求二阶方程 $y'' + y = xe^x$ 的一个特解时,其特解的形式应设为

(A) $y^* = (ax+b)e^x$. (B) $y^* = x(ax+b)e^x$. (C) $y^* = axe^x$. (D) $y^* = ax^2e^x$.

【 A 】 7. 曲线 $y = \sqrt{x}$ 与 x 轴及直线 x = 1 所围成的平面图形绕 x 轴旋转一周所得旋转体 的体积是

(B) π . (C) 2π . (D) $\frac{3\pi}{2}$.

二、(本题满分21分,每小题3分)填空题:

1. 设f(x)的一个原函数为 x^2 ,则 $\int x f(x) dx = \frac{2}{3}x^3 + C$.

2.
$$\int_{-1}^{1} \frac{\sin x}{1+x^4} dx = \underline{\qquad 0}$$

3. 设函数
$$f(x) = \int_0^{2x} e^{t^2} dt$$
,则 $f'(x) = \underline{2e^{4x^2}}$.

4. 椭圆
$$x^2 + \frac{y^2}{4} = 1$$
 所围成的平面图形的面积为 2π .

5.
$$\int_0^1 \frac{x dx}{\sqrt{1 - x^2}} = \underline{\qquad 1}.$$

6. 微分方程
$$yy'' + 2y'^2 = 0$$
 的通解为 $y^3 = C_1 x + C_2$.

7. 微分方程
$$y'' - y' - 2y = 0$$
 的通解为 $y = C_1 e^{-x} + C_2 e^{2x}$.

三、(本题满分 8 分) 计算不定积分 $\int x \cos 3x \, dx$.

[解] 原式 =
$$\frac{1}{3} \int x \, d \sin 3x = \frac{1}{3} [x \sin 3x - \int \sin 3x \, dx] = \frac{1}{3} [x \sin 3x - \frac{1}{3} \int \sin 3x \, d3x]$$

= $\frac{1}{3} x \sin 3x + \frac{1}{9} \cos 3x + C$.

四、(本题满分 8 分) 计算定积分 $\int_0^1 \frac{x^2}{x^2+1} dx$.

[解] 原式 =
$$\int_0^1 \frac{x^2 + 1 - 1}{x^2 + 1} dx = \int_0^1 (1 - \frac{1}{x^2 + 1}) dx = \int_0^1 dx - \int_0^1 \frac{1}{x^2 + 1} dx$$

= $x \left| \frac{1}{0} - \arctan x \right|_0^1 = 1 - \frac{\pi}{4}$.

五、(本题满分 8 分) 计算定积分 $\int_0^4 \frac{x+2}{\sqrt{2x+1}} dx$.

[解] 令
$$\sqrt{2x+1} = t$$
 , 得 $x = \frac{1}{2}(t^2 - 1)$, $dx = tdt$, 当 $x = 0$ 时 , $t = 1$; 当 $x = 4$ 时 , $t = 3$
从而原式 = $\frac{1}{2}\int_{1}^{3} \frac{t^2 + 3}{t} \cdot t \, dt = \frac{1}{2}\int_{1}^{3} (t^2 + 3) \, dt = \frac{1}{2} \left(\frac{t^3}{3} + 3t\right) \Big|_{1}^{3} = \frac{22}{3}$.

六、(本题满分 8 分) 求微分方程 $y'-y=2e^{2x}$ 满足初始条件 y(0)=1的特解.

[解] 由一阶线性方程通解公式

$$y = e^{-\int -dx} \left(\int 2e^{2x} e^{\int -dx} dx + C \right) = e^{x} (2e^{x} + C)$$

将 y(0) = 1 代入上式中即得 C = -1

从而满足条件的特解为 $f(x) = e^{x}(2e^{x} - 1)$.

七、(本题满分 8 分) 求微分方程 v'' + 6v' + 13v = 0 的通解.

[解] 所给方程的特征方程为 $r^2+6r+13=0$,其根为 $r_1=-3+2i$, $r_2=-3-2i$ 是一对共轭复根,因此所求通解为 $y=e^{-3x}(C_1\cos 2x+C_2\sin 2x)$.

八、(本题满分 8 分) 求由曲线 $y = \ln x$ 及直线 x = 1 , x = e 以及 x 轴所围成的平面图形绕 x 轴旋转一周所得旋转体的体积 .

[解] 依題意
$$V = \pi \int_{1}^{e} \ln^{2} x \, dx = \pi [x \ln^{2} x] \frac{e}{1} - \int_{1}^{e} x \, d \ln^{2} x] = \pi [x \ln^{2} x] \frac{e}{1} - 2 \int_{1}^{e} \ln x \, dx$$

$$= \pi [e - 2(x \ln x)] \frac{e}{1} - \int_{1}^{e} dx = \pi [e - 2(e - (e - 1))] = \pi (e - 2).$$

九、(本题满分 10 分)将一直角边长为a的等腰直角三角形薄片垂直放入水中,其中一条直角边与水面齐平,求此薄片一侧所受的水压力 (已知水的密度为 ρ).

[解] 在如图所示坐标系下,取典型小区间[x,x+dx],此区间上对应的小片所受的水压力的近似值,即压力元素为

$$dF = \rho g x (a - x) dx$$

从而整个薄片一侧所受水压力

$$F = \int_0^a \rho g x(a-x) dx = \rho g \int_0^a x(a-x) dx = \rho g \left(\frac{a}{2} x^2 - \frac{1}{3} x^3 \right) \Big|_0^a = \frac{1}{6} \rho g a^3.$$