

Teoremas Booleanos e Simplificação Algébrica

Universidade Federal de Uberlândia Faculdade de Computação Prof. João Henrique de Souza Pereira

Créditos dos slides para o Prof. Dr. Daniel D. Abdala

Na Aula Anterior ...

- Conceitos básicos da Álgebra Booleana;
- Variáveis e Funções Booleanas;
- Operações E, OU e NÃO;
- Tabelas Verdade;
- Exemplos de Funções Lógicas;
- Operações compostas:
 - NÃO-E
 - NÃO-OU
 - OU-Exclusivo
 - NÃO-OU-Exclusivo
- Circuitos Lógicos Gerados a partir de Expressões Booleanas;
- Expressões Booleanas Geradas por Circuitos Lógicos;
- Interligação entre Expressões, Circuitos e Tabelas Verdade.

Nesta Aula

- Propriedades Básicas;
- Identidades Auxiliares;
- Teoremas Booleanos;
- Universalidade das Portas NAND e NOR;
- Simplificação de funções via manipulação algébrica;
- Formas canônicas de funções lógicas:
 - Soma de Produtos
 - Produto de Somas
- Obtenção de formas canônicas via manipulação algébrica;
- Obtenção de formas canônicas via tabela da verdade.

Propriedades Básicas (Identidades)

•
$$X + 0 = X$$

•
$$X \cdot 1 = X$$

•
$$X + 1 = 1$$

•
$$X \cdot 0 = 0$$

•
$$X + X = X$$

$$\bullet \quad X \cdot X = X$$

•
$$X + \overline{X} = 1$$

•
$$X \cdot \overline{X} = 0$$

•
$$\overline{\overline{X}} = X$$

Como podemos provar tais identidades?

Provando Identidades via Tabela da Verdade

• Ex: X + 0 = X

X	0	X+0
0	0	0
1	0	1

• Ex: $X \cdot 1 = X$

X	1	X·1
0	1	0
1	1	1

Propriedades

- Comutativa
 - -X+Y=Y+X
 - $X \cdot Y = Y \cdot X$
- Associativa
 - X+(Y+Z) = (X+Y)+Z
 - $X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$
- Distributiva
 - $X \cdot (Y+Z) = (X \cdot Y) + (X \cdot Z)$
 - $X+(Y\cdot Z) = (X+Y)\cdot (X+Z)$
 - $(X+Y)\cdot (Z+W) = X\cdot Z + X\cdot W + Y\cdot Z + Y\cdot W$
 - $(X \cdot Y) + (Z \cdot W) = (X + Z) \cdot (X + W) \cdot (Y + Z) \cdot (Y + W)$

Teoremas de DeMorgan

- Teorema 1: O complemento do produto é igual à soma dos complementos
- $\overline{A \cdot B} = \overline{A} + \overline{B}$
- Prova: (via tabela verdade)

Α	В	Ā·B	Ā+B
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Teoremas de DeMorgan

- Teorema 2: O complemento da soma é igual ao produto dos complementos
- $\overline{A+B} = \overline{A} \cdot \overline{B}$
- Prova: (via tabela verdade)

Α	В	A+B	Ā⋅B
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Identidades Auxiliares

- $A+A\cdot B = A$
 - Prova:

a)
$$A \cdot 1 = A$$

- b) $A \cdot (1+B) = A + A \cdot B$ (distributiva)
- c) 1+B=1
- d) $A \cdot 1 = A : A + A \cdot B = A$
- A.A+B = A+B
- $\overline{A}+(A\cdot B)=\overline{A}+B$

Universalidade NAND

• Significa que usando apenas portas NAND $(\overline{A \cdot B})$ é possível obter qualquer outra porta

Universalidade NOR

 Significa que usando apenas portas NOR (A+B) é possível obter qualquer outra porta

Simplificação Algébrica

- Porque é necessário simplificar equações Booleanas?
 - Funções Booleanas são traduzidas para circuitos digitais. Quando mais simples, menos portas lógicas serão necessárias;
 - O circuito fica mais simples de implementar fisicamente;
 - Há menor geração de calor, e menor consumo de energia.

Simplificação Algébrica

- Existem diferentes formas de simplificar uma função Booleana:
 - Manipulação Algébrica
 - Simplificação via Mapas de Veitch-Karnaugh
- Em simplificação algébrica, a função é manipulada via as identidades e propriedades Booleanas com o intuito de se buscar uma versão reduzida da função.

Propriedades/Teoremas

Propriedades	Propriedades
X + 0 = X	X+Y=Y+X
$X \cdot 1 = X$	$X \cdot Y = Y \cdot X$
X + 1 = 1	X+(Y+Z)=(X+Y)+Z
$X \cdot 0 = 0$	$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$
X + X = X	$X \cdot (Y+Z) = (X \cdot Y) + (X \cdot Z)$
$X \cdot X = X$	$X+(Y\cdot Z)=(X+Y)\cdot (X+Z)$
$X + \overline{X} = 1$	$(X+Y) \cdot (Z+W) = X \cdot Z + X \cdot W + Y \cdot Z + Y \cdot W$
$X \cdot \overline{X} = 0$	$(X\cdot Y)+(Z\cdot W)=(X+Z)\cdot (X+W)\cdot (Y+Z)\cdot (Y+W)$
$\overline{\overline{X}} = X$	$A+A\cdot B=A$
$\overline{X \cdot Y} = \overline{X} + \overline{Y}$	$(A+B)\cdot(A+C) = A + B\cdot C$
$\overline{X+Y} = \overline{X} \cdot \overline{Y}$	$\overline{A}+(A\cdot B)=\overline{A}+B$
$A \bigoplus B = \overline{A} \cdot B + A \cdot \overline{B}$	

Exemplo

Passo	Equação	Propriedade
0	A+Ā·B	(1·X=X)
1	(1·A)+(Ā·B)	Distributiva
2	$(1+\overline{A})\cdot(1+B)\cdot(A+\overline{A})\cdot(A+B)$	(1 + X = 1)
3	1·1·(A+A)·(A+B)	$(1 \cdot X = X)$
4	(A+A)·(A+B)	$(X + \overline{X} = 1)$
5	1·(A+B)	$(1 \cdot X = X)$
6	A+B	
	$A + \overline{A} \cdot B = A + B$	

Exemplo

Passo	Equação	Propriedade
0	$(A \cdot B \cdot C) + (A \cdot \overline{C}) + (A \cdot \overline{B})$	evidência A
1	$A \cdot ((B \cdot C) + \overline{C} + \overline{B})$	= X=X
2	$A \cdot ((B \cdot C) + \overline{\overline{C} + \overline{B}})$	DeMorgan
3	$A \cdot ((B \cdot C) + (\overline{C \cdot B}))$	$\overline{\overline{X}}=X$
4	$A \cdot ((B \cdot C) + (\overline{C \cdot B}))$	$BC=X/X+\overline{X}=1$
5	A· 1	X· 1=X
6	A	
	$\therefore (A \cdot B \cdot C) + (A \cdot \overline{C}) + (A \cdot \overline{B}) = A$	

Exemplo

Passo	Equação	Propriedade
0	$(\overline{(A+B)\cdot C})+(\overline{D\cdot (B+C)})$	DeMorgan
1	$((\overline{A+B})+\overline{C})+(\overline{D}+(\overline{B+C}))$	DeMorgan
2	$(\overline{A} \cdot \overline{B}) + \overline{C} + (\overline{D} + \overline{B} \cdot \overline{C})$	evidência C
3	$(\overline{A} \cdot \overline{B}) + (\overline{C} \cdot (1 + \overline{B})) + \overline{D}$	(1+X=1)
4	(Ā·B̄)+C̄+D̄	
	$\therefore (\overline{(A+B)\cdot C}) + (\overline{D\cdot (B+C)}) = (\overline{A}\cdot \overline{B}) + \overline{C} + \overline{D}$	

Mintermos e Maxtermos

- Funções lógicas podem ser padronizadas utilizando duas formas padrão:
 - SdP Soma de Produtos (∏M) expressão é uma soma
 (OU) de produtos (E) de variáveis (Mintermos);
 - PdS Produto de Somas (∑M) expressão é um produto
 (E) de somas (OU) de variáveis (Maxtermos);
- Regra: Todos os termos devem possuir todas as variáveis da equação!

Mintermos e Maxtermos

 Cada mintermo ou maxtermo se associa a uma possibilidade de entrada de uma função lógica

A	В	mintermo	maxtermo
0	0	$\overline{A} \cdot \overline{B}$	Ā+B
0	1	Ā·B	Ā+B
1	0	A⋅B	A+B
1	1	A·B	A+B

SdP e PdS

- Ex: SdP
 - $-F(A,B,C) = A \cdot B \cdot \overline{C} + A \cdot B \cdot C + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C$
 - $-F(A,B,C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C$
- Ex:PdS
 - $-F(A,B,C) = (\overline{A} + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C})$
 - $F(A,B) = (\overline{A}+B)\cdot (A+\overline{B})\cdot (\overline{A}+\overline{B})$
- Funções que não estão nas formas canônicas
 - $F(A,B,C) = A \cdot B + \overline{A} \cdot C + B \cdot \overline{C}$
 - $F(A,B) = A \cdot (A + \overline{B})$

Usando Identidades para Obtenção das Formas Canônicas

• Exemplo, dada a função abaixo, encontre sua forma canônica de mintermos:

$$F(A,B) = A + (\overline{A} \cdot B)$$

Passo	Equação	Propriedade
0	A+(Ā·B)	X·1=X
1	(1·A)+(Ā·B)	X+X=1
2	$((B+\overline{B})\cdot A)+(\overline{A}\cdot B)$	distributiva
3	$(A \cdot B) + (A \cdot \overline{B}) + (\overline{A} \cdot B)$	
	$\therefore A + (\overline{A} \cdot B) = (A \cdot B) + (A \cdot \overline{B}) + (\overline{A} \cdot B)$	
	$\prod M_F = (A \cdot B) + (A \cdot \overline{B}) + (\overline{A} \cdot B)$	

Usando Identidades para Obtenção das Formas Canônicas

• Mesmo exemplo, dada a função abaixo, encontre sua forma canônica de maxtermos:

$$F(A,B) = A + (\overline{A} \cdot B)$$

Passo	Equação	Propriedade
0	A+(A·B)	X·1=X
1	(1·A) +(Ā·B)	distributiva
2	(1+A)·(1+B)·(A+A)·(A+B)	(1+X=1)
3	1·1·(A+A)·(A+B)	$(X+\overline{X}=1)$
4	1·1·1·(A+B)	(1·1=1) / 1·X=X
5	A+B	
	$\therefore A + (\overline{A} \cdot B) = A + B$	
	$\sum M_F = A+B$	

Usando Identidades para Obtenção das Formas Canônicas

 Usar manipulação Algébrica para encontrar as formas canônicas de uma função Booleana qualquer pode ser problemático em alguns casos:

 Felizmente, há uma forma mais simples para obtenção de funções em sua forma canônica

Utilizando TV para Obtenção de Formas Canônicas

- A partir da tabela verdade de uma função é muito simples encontrar a sua forma canônica;
- Vejamos um exemplo. Considere a função:

$$F(A,B) = A + (\bar{A} \cdot B)$$

 O primeiro passo, refere-se a construir sua tabela verdade

Método da Tabela

- A partir da tabela é possível identificar os mintermos e maxtermos:
 - Mintermos correspondem a linhas com "1";
 - Maxtermos correspondem a linhas com "0".

Método da Tabela

- Para representar a função com base em seus mintermos (∏M_F) selecionamos as linhas nas quais o resultado é igual a "1".
- Em seguida, verificamos suas variáveis de entrada (na linha). Se a variável for igual a 0, marcamos ela com "-", caso contrário, usamos a variável diretamente.

Α	В	Ā·B	A+(A·B)	
0	1	1	1	→ ĀB
1	0	0	1	\Rightarrow $A\bar{B} > TM_F = \bar{A}B + A\bar{B} + AB$
1	1	0	1	→ AB

Método da Tabela

- Para representar a função com base em seus maxtermos (∑M_F) selecionamos as linhas nas quais o resultado é igual a "0".
- Em seguida, verificamos suas variáveis de entrada (na linha). Se a variável for igual a 1, marcamos ela com "-", caso contrário, usamos a variável diretamente.

	A+(Ā·B)				
\Rightarrow A+B \Rightarrow $\sum M_F = A+B$	0	0	0	0	

Exercício

Prove via manipulação algébrica que:

$$\bar{A}\bar{B}C+\bar{A}\bar{B}\bar{C}+\bar{A}BC+\bar{A}B\bar{C}+ABC=\bar{A}+BC$$

Exercício

 Prove via tabela verdade TODAS as propriedades e teoremas apresentados nesta aula.

Pro Lar

- Leitura (Tocci): 3.10,3.11 (pp. 67-72)
- Leitura (Tocci): 4 4.3 (pp. 100 -106)
- Leitura (Capuano): 4 4.7 (pp. 93-100)
- Leitura (Capuano): 4.8 (pp. 100-104)
- Exercícios (Tocci): E = {3.22-3.24}
- Exercícios (Tocci): $E = \{4.1 4.3\}$

Bibliografia Comentada

TOCCI, R. J., WIDMER, N. S., MOSS, G. L. **Sistemas Digitais – Princípios e Aplicações**. 11ª Ed. Pearson Prentice Hall, São Paulo, S.P., 2011, Brasil.

- CAPUANO, F. G., IDOETA, I. V. Elementos de Eletrônica Digital. 40º Ed. Editora Érica.
- São Paulo. S.P. 2008. Brasil.