

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО» ФАКУЛЬТЕТ ПРИКЛАДНОЇ МАТЕМАТИКИ

Кафедра системного програмування та спеціалізованих комп'ютерних систем

Лабораторна робота №1

з дисципліни «Паралельні та розподілені обчислення»

TEMA: «Робота з компіляторами мов С та Java в режимі командного рядка»

Виконав: студент II курсу

ФПМ групи КВ-04

Устименко Ілля Віталійович

Перевірила:

Постановка задачі

1. Написати програму розв'язання задачі пошуку (за варіантом) у двовимірному масиві (матриці) одним з алгоритмів методу лінійного пошуку.

Розміри матриці m та n взяти самостійно у межах від 7 до 10. Розмір матриці повинен задаватися аргументом запуску програми.

Програма обов'язково повинна бути написана і структурована таким чином:

- a) оголошення структур даних (typedef) повинно бути зроблено у окремому заголовочному файлі;
- b) повинно бути щонайменше три файли із вихідним кодом (не враховуючи необхідні заголовочні файли), що міститимуть реалізації функцій введення (випадкові значення, наперед сортовані значення, з клавіатури), обробки, та виведення на друк (pretty_print) елементів матриці;
- с) для виконання завдання обробки елементів матриці повинно бути написано дві різні функції:
 - 1) з додатковими операторами виведення налагоджувальної інформації на друк (debug-версія);
 - 2) з виконанням заданих дій без додаткового виведення налагоджувальної інформації (release-версія).
- 4. Вибір функції повинен робити користувач при запуску програми через аргумент запуску. Наприклад, опція -d вмикає debug режим.
- 5. Для компіляції написаної багатофайлової програми написати окремий makeфайл, причому:
- а) при зміні одного із вихідних файлів повинен перекомпільовуватися лише цей файл (а також відбуватися дії, необхідні для генерації бінарного файлу);
- b) при видаленні бінарного файлу та незмінних вихідних файлах повинне відбуватися лише лінкування (компоновка бінарного файлу з об'єктних);
- с) забезпечити окрему ціль для очистки згенерованих файлів; 6. Забезпечити можливість компіляції написаної багатофайлової програми двома способами:
 - а) за допомогою однієї команди дсс;
 - b) за допомогою make-файлу. Марченко О.І., Марченко О.О.
- 7.Виконати тестування та налагодження програми на комп'ютері. При тестуванні програми необхідно підбирати такі вхідні набори початкових значень матриці, щоб можна було легко відстежити коректність виконання пошуку і ця коректність була б протестована для всіх можливих випадків. З метою тестування дозволяється використовувати матриці меншого розміру.

Варіант 17

Задано матрицю дійсних чисел A[n][n]. У побічній діагоналі матриці знайти перший додатний і останній від'ємний елементи, а також поміняти їх місцями.

Програма мовою C main.c:

```
#include "process.h"
#include "action.h"
#include "work_with_memory.h"

int main(int argc,char*argv[])
{
    if(work_with_arg(argc,argv) == 'd')
    {
       make_arr();
       debug();
    }
    else
    {
       make_arr();
       realese();
       }
       del_arr();
}
```

action.h:

```
#ifndef ACTION_H
#define ACTION_H
void realese();
void debug();
#endif
```

action.c:

```
#include"input.h"
#include"pretty print.h"
#include"process.h"
#include <stdio.h>
void realese()
   printf("realese\n");
   printf("----With random array and relese function-----\n");
   inputRand();
   outputArr();
   findAndSwapRelease();
   outputArr();
   printf("-----With sorted array and release function-----\n");
   inputSorted();
   outputArr();
   findAndSwapRelease();
   outputArr();
   printf("-----With array from keyboard and release function-----\n");
   inputKeyboard();
   findAndSwapRelease();
```

```
outputArr();
void debug()
   printf("debug\n");
   printf("----With random array and debug function-----\n");
   inputRand();
   outputArr();
   findAndSwapDebug();
   outputArr();
   printf("-----With sorted array and release function-----\n");
   inputSorted();
   outputArr();
   findAndSwapDebug();
   outputArr();
   printf("-----With array from keyboard and release function-----\n");
   inputKeyboard();
   findAndSwapDebug();
   outputArr();
```

input.h:

```
#ifndef INPUT_H
#define INPUT_H
    void inputRand(void);
    void inputSorted(void);
    void inputKeyboard(void);
#endif
```

input.c:

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "typedef.h"
void inputRand()
    srand(time(0));
 for (int i = 0; i < how n; ++i)</pre>
        for (int j = 0; j < how n; ++j)
             arr[i][j] = -40 + rand() % 100;
void inputSorted()
    int b = 0;
    for(int i = 0; i < how_n ; ++i)</pre>
        for (int j = 0; j < how n; ++j)
             arr[i][j] = b;
             ++b;
    }
```

process.h:

```
#ifndef PROCESS_H
#define PROCESS_H
void findAndSwapRelease(void);
void findAndSwapDebug(void);
char work_with_arg(int argc,char*argv[]);
#endif
```

process.c:

```
#include <stdlib.h>
#include "typedef.h"
#include <getopt.h>
#include <stdio.h>
char work with arg(int argc,char*argv[]){
   char deb or rea='r';
   char take char;
    while((take_char = getopt(argc,argv,"drn:"))!=-1)
        switch(take_char)
           case'r':
           deb or rea = 'r';
           break;
           case'd':
           deb or rea = 'd';
           break;
           case'n':
           how n = atoi(optarg);
           break;
    return deb or rea;
void findAndSwapRelease() {
    int tmp, firstPositive, ifpos = -1, lastNegative, ilneg = -1;
    for (int i = 0; i < how_n; ++i)</pre>
        if(arr[how n-1-i][i] >= 0)
            firstPositive = arr[how n-1-i][i];
            ifpos = i;
            break;
    for(int i = 0; i < how_n; ++i) {</pre>
```

```
if(arr[i][how n-1-i] < 0)
            lastNegative = arr[i][how n-1-i];
            ilneg = i;
            break;
    if ((ifpos != -1) \&\& (ilneg != -1)) {
        tmp = arr[how n-1-ifpos][ifpos];
        arr[how n-1-ifpos][ifpos] = arr[ilneg][how n-1-ilneg];
        arr[ilneg][how n-1-ilneg] = tmp;
               printf("\nswap\n");
    }else if(ifpos == -
1) {printf("\nno Positive in a mass\n\n");}else{printf("\nno Negative in a mass\n\n");}
void findAndSwapDebug() {
    int tmp, firstPositive, ifpos = -1, lastNegative, ilneg = -1;
    for (int i = 0; i < how n; ++i)
        printf("arr[%d][%d]=%d\n", how n-1-i, i, arr[how n-1-i][i]);
        if (arr[how n-1-i][i] >= 0)
            firstPositive = arr[how n-1-i][i];
            ifpos = i;
            printf("firstPositive = %d\t", firstPositive);
            printf("ifpos=%d",ifpos);
            break:
    printf("\n\n");
    for (int i = 0; i < how n; ++i) {</pre>
        printf("arr[%d][%d]=%d\n",i,how n-1-i,arr[i][how_n-1-i]);
        if(arr[i][how n-1-i] < 0)
            lastNegative = arr[i][how n-1-i];
            ilneg = i;
            printf("lastNegative =%d\t", lastNegative);
            printf("ilneg=%d\n\n",ilneg);
        }
    if((ifpos != -1) &&(ilneg != -1)) {
        tmp = arr[how n-1-ifpos][ifpos];
        arr[how n-1-ifpos][ifpos] = arr[ilneg][how n-1-ilneg];
        arr[ilneg][how n-1-ilneg] = tmp;
        printf("sideways diagonal after swapping:");
        for(int i = 0; i < how n; i++) {
            printf("%d\t", arr[how n-1-i][i]);
    }else if(ifpos == -
1) {printf("\nno Positive in a mass\n\n");} else {printf("\nno Negative in a mass\n\n");}
    printf("\n\n");
```

pretty print.h:

```
pretty_print.c:
```

```
#include <stdio.h>
#include "typedef.h"
void outputArr()
    for (int i = 0; i < how n; ++i)</pre>
        for (int j = 0; j < how n ; ++j)
            printf("%d\t",arr[i][j]);
        printf("\n");
    printf("\n");
#ifndef TYPEDEF H
```

typedef.h:

```
#define TYPEDEF H
    extern int how n;
    extern int** arr;
#endif
```

typedef.c:

```
#include "typedef.h"
int** arr;
int how n = 10;
```

#include<stdlib.h>

work_with_memory.h:

```
#ifndef WORK WITH MEMORY H
#define WORK WITH MEMORY H
void make arr();
void del arr();
#endif
```

work_with_memory.c:

```
#include"typedef.h"
void make arr()
    arr = (int**) malloc(how n * sizeof(int*));
    for (int i = 0; i < how n; ++i)</pre>
        *(arr+i) = (int*) malloc(how n * sizeof(int));
void del arr()
    for (int i = 0; i < how n; ++i)
        free(arr[i]);
    free(arr);
```

Командні рядки для компілювання та запуска програми мовою С

термінал:

gcc -o create main.c action.c input.c pretty_print.c process.c typedef.c work_with_memory.c

./create

make build-скомпілювати програму, або якщо якихось файли є-скомпілювати, ті яких нема

make rebuild-перекомпілювати повністю програму

make run-скомпілювати і запустити

make debug-скомпілювати в режимі дебаг

make realese-скомпілювати в режимі-реліз

make clean-очистити об'єктні файли і сам бінарний файл

визов дебаг режиму чи розміру матриці ./create -r -n4-приклад ./create -(вид режиму r чи d) -n(розмырнысть матриці число)

makefile:

```
.PHONY:build clean rebuild run greet debug realese
greet:
       @echo "Terminating make - please specify target explicitly"
       @echo " build : fast rebuild / build"
       @echo "
                rebuild : full rebuild"
       @echo " run : run after fast rebuild / build"
       @echo "
                clean : perform full clean"
build: create
rebuild:clean create
run:build
       ./create
debug: build
       ./create -d
realese: build
       ./create -r
clean:
       rm -rvf *.o create
main.o:main.c process.h action.h work with memory.h
      gcc -c -o main.o main.c
process.o:process.c typedef.h
       gcc -c -o process.o process.c
action.o: action.c input.h process.h pretty print.h
       gcc -c -o action.o action.c
work with memory.o: work with memory.c typedef.h
       gcc -c -o work with memory.o work with memory.c
```

Тести:

Побудова програми:

```
student@virt-linux:~/kpi/pp/lab_1$ make build
gcc -c -o main.o main.c
gcc -c -o process.o process.c
gcc -c -o action.o action.c
gcc -c -o work_with_memory.o work_with_memory.c
gcc -c -o input.o input.c
gcc -c -o pretty_print.o pretty_print.c
gcc -c -o typedef.o typedef.c
gcc -o create main.o process.o action.o work_with_memory.o input.o pretty_print.o
```

Тест роботи с параметрами:

```
student@virt-linux:~/kpi/pp/lab_1$ ./create -r -n7
realese
----With random array and relese function----
19
       39
               53
                       - 37
16
                       - 35
                               5
       28
               56
                                      -25
                                              -36
34
                               40
       32
               9
                       54
                                      59
                                              -5
8
       2
               -37
                      - 37
                             -24
                                      -35
                                              15
- 18
       -17
              52
                      41
                              - 37
                                      45
                                              -4
-17
                                      -39
       31
               - 35
                       39
                               -1
                                              -4
-4
       29
                       22
                               1
                                      50
                                              17
swap
19
       39
               53
                       -37
                               28
                                      -6
                                              29
16
       28
              56
                       -35
                              5
                                      31
                                              -36
34
       32
               9
                       54
                             40
                                      59
                                              -5
               -37
8
       2
                       -37
                               -24
                                      -35
                                              15
- 18
       -17
               52
                               -37
                                      45
                       41
                                              -4
-17
       -25
               -35
                       39
                               -1
                                      - 39
                                              -4
-4
       29
               1
                       22
                               1
                                      50
                                              17
     -With sorted array and release function---
Θ
                                      5
                                              6
       1
                       3
                               4
7
       8
               9
                       10
                               11
                                      12
                                              13
14
       15
              16
                       17
                               18
                                      19
                                              20
21
       22
              23
                      24
                              25
                                      26
                                              27
28
       29
               30
                       31
                              32
                                      33
                                              34
35
                                              41
       36
              37
                       38
                              39
                                      40
42
       43
                       45
                               46
                                      47
                                              48
               44
no Negative in a mass
Θ
                                      5
                                              6
       1
               2
                       3
                               4
7
       8
               9
                       10
                              11
                                      12
                                              13
14
       15
               16
                       17
                              18
                                      19
                                              20
21
       22
               23
                       24
                               25
                                      26
                                              27
28
       29
               30
                       31
                               32
                                      33
                                              34
35
       36
               37
                       38
                               39
                                      40
                                              41
42
       43
               44
                       45
                               46
                                      47
                                              48
-----With array from keyboard and release function----
```

без параметрів:

w 4	/ith rand -38	oom array -10	and re	-9	53	23	-3	-12	6
4	-36 -34	41	25	59	-2	-40	- 5 55	56	-20
31	6	18	37	-26	-15	-26	11	-6	31
8	30	33	-22	-11	16	23	4	53	3
1	-3	9	-16	14	8	22	14	4	-30
_ 14	-35	17	-4	42	31	22	57	-18	56
20	-30	-22	5	40	59	-39	56	55	6
1	-2	43	1	22	49	1	37	55	45
1	33	3	56	-31	- 15	-21	-17	34	2
1	6	-36	49	3	-3	0	4	-7	48
o_Neg	ative_i	n_a_mass							
4	-38	-10	19	-9	53	23	-3	-12	6
	-34	41	25	59	-2	-40	55	56	-20
31	6	18	37	-26	-15	-26	11	-6	31
8	30	33	-22 16	-11	16	23	4	53	3
1 14	-3 -35	9 17	-16 -4	14 42	8 31	22 22	14 57	4 -18	-30 56
20	-30	-22	5	40	59	-39	56	55	6
1	-2	43	1	22	49	1	37	55	45
1	33	3	56	-31	- 15	-21	-17	34	2
1	6	-36	49	3	-3	0	4	-7	48
		rted arra							
	1	2	3	4	5	6	7	8	9
0	11	12	13	14	15	16	17	18	19
0 0	21 31	22 32	23 33	24 34	25 35	26 36	27 37	28 38	29 39
0	41	42	43	44	45	46	47	48	49
0	51	52	53	54	55	56	57	58	59
0	61	62	63	64	65	66	67	68	69
0	71	72	73	74	75	76	77	78	79
0	81	82	83	84	85	86	87	88	89
0	91	92	93	94	95	96	97	98	99
o_Neg	jative_i	n_a_mass							
	1	2	3	4	5	6	7	8	9
0	11	12	13	14	15	16	17	18	19
0	21	22	23	24	25	26	27	28	29
0 0	31 41	32 42	33 43	34 44	35 45	36 46	37 47	38 48	39 40
0 0	51	42 52	43 53	54	45 55	46 56	47 57	48 58	49 59
0	61	62	63	64	65	66	67	68	69
0	71	72	73	74	75	76	77	78	79
0	81	82	83	84	85	86	87	88	89
0	91	92	93	94	95	96	97	98	99

очищення:

```
student@virt-linux:~/kpi/pp/lab_1$ make clean
rm -rvf *.o create
removed 'action.o'
removed 'input.o'
removed 'main.o'
removed 'pretty_print.o'
removed 'process.o'
removed 'typedef.o'
removed 'work_with_memory.o'
removed 'create'
```

Перебудова:

```
student@virt-linux:~/kpi/pp/lab_1$ make rebuild
rm -rvf *.o create
removed 'action.o'
removed 'input.o'
removed 'main.o'
removed 'pretty_print.o'
removed 'process.o'
removed 'typedef.o'
removed 'work with memory.o'
removed 'create'
gcc -c -o main.o main.c
gcc -c -o process.o process.c
gcc -c -o action.o action.c
gcc -c -o work with memory.o work with memory.c
gcc -c -o input.o input.c
gcc -c -o pretty print.o pretty print.c
gcc -c -o typedef.o typedef.c
qcc -o create main.o process.o action.o work with memory.o input.o pretty print.o typedef.o
student@virt-linux:~/kpi/pp/lab 1$ S
```

Дебаг режим:

```
student@virt-linux:~/kpi/pp/lab_1$ make debug
/create -d
debug
 ----With random array and debug function-----
         38
                             41
                                                           46
                                                                     -15
                                                                               42
                                                                                         -30
                                                 -6
46
          -18
                   16
                             -24
                                       14
                                                 -1
                                                           -6
                                                                               -39
                                                                                         15
20
          13
                             6
                                       51
                                                           13
                                                                     15
                                                                               37
                                                 -4
- 3
10
          -20
                   -6
                             5
                                       13
                                                 -3
                                                           -8
                                                                     Θ
                                                                               -26
                                                                                         -26
                   49
                             18
                                                 55
                                                                     14
                                                                               15
                                                                                         11
          12
                                       28
                                                           58
-21
35
         -24
                   -36
                                       -26
                                                 55
                                                           38
                                                                               -37
                                                                                         16
                             21
          Θ
                   -12
                                       -2
                                                 41
                                                           10
                                                                     -18
                                                                               -19
                                                                                         24
48
                   -23
                                                                                         40
         -16
                             37
                                       42
                                                           -16
                                                                               52
                   8
                                       -34
                                                                                         51
14
          -29
                             48
                                                 22
                                                           -4
                                                                     44
                                                                               42
52
                   43
          17
                             -20
                                       30
                                                 -19
                                                           -38
                                                                     -20
                                                                               55
                                                                                         35
arr[9][0]=52
firstPositive = 52
                             ifpos=0
arr[0][9]=-30
lastNegative =-30
                             ilneg=0
sideways diagonal after swapping:-30
                                                 -29
                                                                     21
                                                                               -26
                                                                                                   -8
                                                                                                             15
                                                           -23
                                                                                         55
          38
                   -32
                             41
                                       11
                                                 -6
                                                           46
                                                                     - 15
                                                                               42
                                                                                         52
46
         -18
                   16
                             -24
                                       14
                                                                               -39
                                                 -1
                                                           -6
                                                                     -32
                                                                                         25
20
                             6
                                       51
                                                           13
                                                                     15
                                                                                         15
          13
                   31
                                                                               37
- 3
10
                                                                                         -26
                             5
                                       13
          -20
                                                           -8
                                                                     Θ
                                                                               -26
          12
                   49
                             18
                                       28
                                                 55
                                                           58
                                                                     14
                                                                               15
                                                                                         11
-21
35
         -24
                   -36
                                                 55
                                                                     27
                                                                                         16
                             2
                                       -26
                                                           38
                                                                               -37
         Θ
                   -12
                             21
                                                 41
                                                           10
                                                                     -18
                                                                               - 19
                                                                                         24
48
          -16
                   -23
                             37
                                       42
                                                 -3
                                                           -16
                                                                     -8
                                                                               52
                                                                                         40
14
                                                                     44
         -29
                             48
                                       -34
                                                 22
                                                           -4
                                                                               42
- 30
                   43
                                                                               55
          17
                             -20
                                       30
                                                 -19
                                                           -38
                                                                     -20
                                                                                         35
     --With sorted array and release function---
                             3
                                       4
                                                           6
                                                                               8
                                                                                         9
                   12
10
          11
                                       14
                                                 15
                                                                     17
                                                                                         19
                             13
                                                           16
                                                                               18
20
30
          21
                                       24
                                                 25
                   22
                             23
                                                           26
                                                                     27
                                                                               28
                                                                                         29
         31
                   32
                             33
                                       34
                                                 35
                                                           36
                                                                     37
                                                                               38
                                                                                         39
10
         41
                   42
                             43
                                       44
                                                 45
                                                           46
                                                                     47
                                                                               48
                                                                                         49
50
                   52
                                       54
                                                 55
                                                                     57
                                                                                         59
         51
                                                           56
                                                                               58
50
                   62
                                       64
                                                 65
                                                                     67
                                                                                         69
         61
                             63
                                                           66
                                                                               68
70
          71
                             73
                                       74
                                                 75
                                                           76
                                                                     77
                                                                               78
                                                                                         79
80
         81
                   82
                                       84
                                                 85
                                                                                         89
                             83
                                                           86
                                                                     87
                                                                               88
90
          91
                   92
                             93
                                       94
                                                 95
                                                           96
                                                                     97
                                                                               98
                                                                                         99
arr[9][0]=90
firstPositive = 90
                             ifpos=0
arr[0][9]=9
arr[1][8]=18
arr[2][7]=27
arr[3][6]=36
arr[4][5]=45
arr[5][4]=54
arr[6][3]=63
arr[7][2]=72
arr[8][1]=81
arr[9][0]=90
no Negative in a mass
          1
                             3
                                                           6
                                                                               8
10
                   12
                             13
                                       14
                                                 15
                                                           16
                                                                               18
                                                                                         19
20
30
          21
                   22
                                       24
                                                 25
                                                           26
                                                                     27
                                                                               28
                                                                                         29
         31
                   32
                             33
                                       34
                                                 35
                                                           36
                                                                     37
                                                                               38
                                                                                         39
10
                   42
                                       44
                                                 45
                                                                                         49
         41
                             43
                                                           46
                                                                               48
                                       54
                                                                     57
          51
                   52
                             53
                                                           56
                                                                               58
                                                                                         59
```

Режим реліз:

Режим реліз:											
student@virt-linux:~/kpi/pp/lab_1\$ make realese											
./create -r											
realese											
With random array and relese function											
- 17	27	-12	-40	38	-26	37	-24	17	-14		
32	-11	-16	-35	-35	-21	21	-27	3	36		
-36	-20	-6	53	5	15	46	-36	-32	-22		
23	43	45	51	44	-24	18	21	-8	27		
-1	17	9	24	22	-34	43	-17	-21	-14		
12	-17	6	46	28	3	1	-33	-40	-39		
- 15	23	45	23	-33	29	39	25	42	23		
44	-19	-20	-7	45	42	-1	-19	18	18		
7	-30	-6	6	8	-38	1	1	-31	1		
3	-5	17	40	10	24	-39	-11	41	43		
,	_		10	10		33		12	15		
swap											
- 17	27	-12	-40	38	-26	37	-24	17	3		
32	-11	-16	-35	-35	-21	21	-27	3	36		
-36	-20	-6	53	5	15	46	-36	-32	-22		
- 30 23	43	45	51	44	-24	18	21	-32	27		
-1	17	9	24	22	-34	43	-17	-21	-14		
- 1 12	-17	6	46	28	3	1	-33	-40			
- 15	23	45				39	25		-39		
				-33	29			42	23		
44	-19	-20	-7	45	42	-1	- 19	18	18		
7	-30	-6	6	8	-38	1	1	-31	1		
- 14	-5	17	40	10	24	-39	-11	41	43		
1.0		ad auua	and nal	f	ation						
				ease fun			-		0		
0	1	2	3	4	5	6	7	8	9		
10	11	12	13	14	15	16	17	18	19		
20	21	22	23	24	25	26	27	28	29		
30	31	32	33	34	35	36	37	38	39		
40	41	42	43	44	45	46	47	48	49		
50	51	52	53	54	55	56	57	58	59		
60	61	62	63	64	65	66	67	68	69		
70	71	72	73	74	75	76	77	78	79		
80	81	82	83	84	85	86	87	88	89		
90	91	92	93	94	95	96	97	98	99		
no_Nega	tive_in_	a_mass									
_		_	_		_	_	_	_	•		
0	1	2	3	4	5	6	7	8	9		
10	11	12	13	14	15	16	17	18	19		
20	21	22	23	24	25	26	27	28	29		
30	31	32	33	34	35	36	37	38	39		
40	41	42	43	44	45	46	47	48	49		
50	51	52	53	54	55	56	57	58	59		
60	61	62	63	64	65	66	67	68	69		
70	71	72	73	74	75	76	77	78	79		
80	81	82	83	84	85	86	87	88	89		
90	91	92	93	94	95	96	97	98	99		

Wi	th rando	m array	and rele	se funct	ion				
7	-33	48	-36	52	46	13	9	-1	46
20	33	42	58	-24	52	-27	52	48	-38
-4	52	48	0	30	47	-31	43	-38	-25
-19	9	- 18	- 30	13	27	8	18	-24	-1
5	36	-27	39	-13	41	-17	0	33	23
54	22	15	-6	-38	- 15	34	24	20	36
39	42	37	14	52	43	- 19	0	1	49
-9	-2	-23	4	30	4	37	53	-4	-37
17	-9	25	-28	25	27	50	-1	-9	10
27	23	-8	5	-23	36	-12	50	28	- 19
swap									
7	-33	48	-36	52	46	13	9	-1	46
20	33	42	58	-24	52	-27	52	48	-38
-4	52	48	0	30	47	-31	43	-38	-25
-19	9	-18	- 30	13	27	8	18	-24	-1
5	36	- 27	39	-13	41	- 17	0	33	23
54	22	15	-6	27	- 15	34	24	20	36
39	42	37	14	52	43	- 19	0	1	49
-9	-2	-23	4	30	4	37	53	-4	-37
17	-9	25	-28	25	27	50	-1	-9	10
-38	23	-8	5	-23	36	-12	50	28	- 19