Introduction to Parallel Processing

Lecture 2: Serial Performance

08/29/2022 Professor Amanda Bienz

Serial Computer Architecture

EDVAC: First Binary Computer

http://ftp.arl.mil/ftp/historic-computers/

Serial Computer Architecture

Serial Computer Architecture

One Fix: Cache

- Main memory:
 - Large
 - Far from CPU
 - Slow

- Cache:
 - Smaller
 - Closer to CPU
 - Faster

Three little components perform all operations

Everything else used to efficiently move data and instructions

Multicore processors have multiple cores that share main memory, and maybe a level of cache

Multicore Processor

Shared Memory Programming Will come back to this next week

Superscalar Processor

- Capable of executing more than one instruction per cycle
- Typical quality of today's computers
- Some details :
 - Multiple instructions fetched, decoded concurrently
 - Fast caches: > 1 load or store per cycle
 - Multiple floating-point pipelines run in parallel (explanation to follow)

Pipelining: Instruction-level parallelism

- Parallelism occurs in serial computers
- To complete an instruction:
 - Fetch data from memory
 - Decode instruction
 - Execute operation
- A program will have many, many operations.
- Can pipeline the fetch decode execute process

Pipelining

- Similar to assembly lines
- Workers only need to know about their specific task
- Each worker executes his/her task over and over on successive objects
- Each object is then moved to the next worker

Pipelining

Timesteps —

Memory Hierarchy

Main memory 400 cycles

If we are doing big calculations, we should be operating out of main memory.

L3 75 cycles

L2 10 cycles

A cache line is 64 bytes or 8 doubles. If loading directly from main memory, it would take 50 cycles/double. The L3/L2/L1 caches reduce this by an order of magnitude.

L1 4 cycles

CPU 1 flop/cycle

Roofline Models

If you want to learn more...

- "Introduction to High Performance Computing for Scientists and Engineers" by Georg Hager and Gerhard Wellein
- We will talk about caches more in depth next lecture