Final_Project

Stat 442 / Stat 842 / CM 762

Due April 22nd 2025

Plot 1 -> Option 3: Radar Plots

```
# read evolving-hockey csv file
eh <- read_csv("Data/league_centers.csv")</pre>
# define six center players
centers <- c(
  "Auston Matthews",
  "Dylan Strome",
  "Jack Eichel",
  "Joel Eriksson Ek",
  "Tim Stützle",
  "Mark Scheifele"
# build radar data frame
radar_df <- eh %>%
  filter(Player %in% centers) %>%
  transmute(
              = paste0(Player, " - ", Team),
    group
    Goals
              = G.
   Assists = A1 + A2,
   Points = Points,
              = iSF,
    SOG
   FOdiff = `FO±`,
   Hits
              = iHF,
               = TOI
    TOT
  )
# rescale metrics to 0-1
radar_scaled <- radar_df %>%
  mutate(across(-group, ~ rescale(.x, to = c(0,1))))
# set axis labels color palette
axis_labels <- c("G","A","Pts","SOG","F0±","Hits","TOI")</pre>
palette <- brewer.pal(n = nrow(radar_scaled), name = "Set2")</pre>
names(palette) <- radar_scaled$group</pre>
# generate radar plot per center
plots <- purrr::map(radar_scaled$group, function(name) {</pre>
```

```
df <- filter(radar_scaled, group == name)</pre>
 ggradar(
   df,
   grid.min
                            = 0.
   grid.mid
                           = 0.5,
   grid.max
                            = 1,
                            = 0,
   centre.y
   axis.labels
                           = axis labels,
                           = 3.5,
   axis.label.size
   grid.label.size
                           = 4,
   group.colours
                           = palette[name],
   group.line.width
                           = 0.5,
   group.point.size = 4,
   background.circle.colour = "white",
   gridline.min.colour = "grey30",
                           = "grey30",
   gridline.mid.colour
                        = "grey30"
   gridline.max.colour
 ) +
   ggtitle(name) +
   theme(
     plot.title
                 = element_text(size = 14, face = "bold", hjust = 0.5),
     legend.position = "none",
     plot.background = element_rect(fill = "white", color = "grey80", size = 0.5),
     panel.background= element_rect(fill = NA)
})
# arrange plots and add caption
radar_center <- wrap_plots(plots, ncol = 2) +</pre>
 plot_annotation(
   title = "2024-25 Regular Season Center Comparison",
   subtitle = "Conference Leaders and Wild Card Cores",
   caption = paste(
     "Legend:",
     "G = Goals",
     "A = Assists",
     "Pts = Points (G + A)",
     "SOG = Shots on Goal",
     "FO± = Face off Differential",
     "Hits = Individual Hits",
     "TOI = Total Ice Time (minutes)",
     sep = "\n"
   ),
 theme = theme(
     plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
     plot.caption = element_text(hjust = 0, size = 10),
     plot.caption.position = "plot",
     plot.subtitle = element_text(hjust = 0.5, size = 14),
   )
 )
# save combined radar plots
ggsave(
 filename = "seven_spoke_radars.png",
```

```
plot = radar_center,
width = 10,
height = 12,
dpi = 600
)
print(radar_center)
```

2024–25 Regular Season Center Comparison

Conference Leaders and Wild Card Cores

Legend:
G = Goals
A = Assists
Pts = Points (G + A)
SOG = Shots on Goal
FO± = Face off Differential
Hits = Individual Hits
TOI = Total Ice Time (minutes)

Plot 2 -> Option 2: Geographical Plot

```
library(readr)
library(dplyr)
library(ggplot2)
library(viridis)
library(sportyR)
# 1) Read full-season MoneyPuck data
shots <- read_csv("Data/shots_2024.csv", show_col_types = FALSE)</pre>
# 2) Filter for Toronto 5×5 on-goal shots
leaf_5v5 <- shots %>%
  filter(
    teamCode
                     == "TOR",
    homeSkatersOnIce == 5,
    awaySkatersOnIce == 5,
    goal
    shotOnEmptyNet == FALSE
  ) %>%
  mutate(
    is_home = (teamCode == homeTeamCode),
    x plot = if else(
                isHomeTeam == 1,
                -abs(arenaAdjustedXCord), # home goals on left
                abs(arenaAdjustedXCord)
              ),
   y_plot = arenaAdjustedYCord
# 3) Define the 12 Toronto forwards of interest
forwards_list <- c(</pre>
  "Matthew Knies", "Auston Matthews", "Mitch Marner",
 "Max Domi", "John Tavares", "William Nylander", "Bobby McMann", "Pontus Holmberg", "Nicholas Robertson",
  "Steven Lorentz", "Scott Laughton", "Calle Jarnkrok"
leaf_forwards <- leaf_5v5 %>%
  filter(shooterName %in% forwards_list)
# 4) Build & render the rink + forwards' goals
leaf_plot <-</pre>
  geom_hockey(league = "NHL", display_range = "full") + # rink background
  geom_point(
                                                            # forwards' goal dots
    data = leaf_forwards,
    aes(x = x_plot, y = y_plot, shape = is_home),
    color = "red", size = 2, alpha = 0.8
  ) +
  scale_shape_manual(
                                                            # home vs away shapes
   name = "Venue",
   values = c(`FALSE` = 1, `TRUE` = 16),
   labels = c("Away Goal", "Home Goal")
```

```
) +
 scale_x_continuous(
                                                        # x-axis ticks/labels
  name = "Feet from Centre Line",
  breaks = seq(-100, 100, 50),
   labels = abs(seq(-100, 100, 50))
 ) +
                                                        # y-axis ticks/labels
 scale_y_continuous(
  name = "Feet from Centre Ice (Mid Ice)",
  breaks = seq(-42.5, 42.5, 21)
 coord_fixed(xlim = c(-100, 100), ylim = c(-42.5, 42.5)) +
 labs(
          = "Leafs 5×5 Forwards' Goals",
   title
   subtitle = "Toronto Maple Leafs | 2024-25 Regular Season (Home & Away)",
   caption = "Data: MoneyPuck"
 theme_minimal(base_size = 14) +
 theme(
   panel.background = element_rect(fill = "white"),
   panel.grid.major = element_line(color = "grey90"),
   panel.grid.minor = element_blank(),
   plot.title
               = element_text(hjust = 0.5, face = "bold", size = 18),
   plot.subtitle = element_text(hjust = 0.5, size = 14),
   axis.title = element_text(face = "italic", size = 12),
   legend.position = "right"
 )
# 5) Print count and plot
total_goals <- nrow(leaf_forwards)</pre>
cat("Total goals by selected forwards:", total_goals, "\n")
```

Total goals by selected forwards: 145

```
# 6) Save the final plot (with legends & axes)
ggsave(
   filename = "leafs_forwards_goals_plot.png",
   plot = leaf_plot,
   limitsize = FALSE,
   width = 10,
   height = 10,
   dpi = 600
)
```

Leafs 5×5 Forwards' Goals

Toronto Maple Leafs | 2024–25 Regular Season (Home & Away)

Data: MoneyPuck

Plot $3 \rightarrow$ Option 5: Table

```
# read defense csv file
defs <- read_csv("Data/defensemen.csv", show_col_types = FALSE)</pre>
# filter listed defense players
defense_list <- c(</pre>
                   "Morgan Rielly", "Oliver Ekman-Larsson", "Brandon Carlo", "Chris Tanev",
  "Jake McCabe",
  "Simon Benoit",
  "Philippe Myers", "Conor Timmins", "Dakota Mermis"
defs_filtered <- defs %>% filter(Player %in% defense_list)
# build defense summary table
def_tab <- defs_filtered %>%
  transmute(
    Player
                = Player,
                = GP
   TOI_per_GP = round(TOI / GP, 1),
Assists = as.numeric(A1 + A2),
Blocks = as.numeric(iBLK),
Hits = as.numeric(iHF),
   Takeaways = as.numeric(TAKE),
   Giveaways = as.numeric(GIVE)
  ) %>%
  arrange(desc(Blocks)) %>%
  mutate(
    Blocks_pct = Blocks
                                / max(Blocks),
    Hits_pct = Hits / max(Hits),
    Takeaways_pct = Takeaways / max(Takeaways)
  )
# define custom color palettes
bar_fill <- "#66c2a5"
             <- "#a6d854"
toi fill
give_palette <- c("#fee0d2", "#de2d26")</pre>
# build gt table
table_gt <- def_tab %>%
  gt() %>%
  # embed headshot and name
  text_transform(
    locations = cells_body(columns = "Player"),
    fn = function(names) {
      map(names, function(name) {
        img <- as.character(</pre>
          local_image(
             filename = glue("dline/{tolower(gsub(' ', '-', name))}.png"),
             height = px(30)
          )
        html(paste0(img, " ", name))
```

```
})
 }
) %>%
tab_header(
 title = md("**2024-25 Maple Leafs Defense Summary**"),
 subtitle = "The Nine D-Men, ranked by Blocks"
) %>%
# show bar chart columns
gt_plt_bar_pct(Blocks_pct, fill = bar_fill, scaled = FALSE) %>%
gt_plt_bar_pct(Hits_pct, fill = bar_fill, scaled = FALSE) %>%
gt_plt_bar_pct(Takeaways_pct, fill = bar_fill, scaled = FALSE) %>%
# color code qiveaways column
data_color(
 columns = "Giveaways",
 fn
         = scales::col_numeric(
             palette = give_palette,
             domain = c(0, max(def_tab$Giveaways, na.rm = TRUE))
          )
) %>%
# highlight high toi values
tab style(
           = cell fill(color = toi fill),
 style
 locations = cells_body(columns = "TOI_per_GP", rows = TOI_per_GP > 20)
) %>%
# set table column labels
cols_label(
 Player
               = "Player",
               = "GP".
 TOI_per_GP = "TOI per GP (min)",
            = "Assists",
 Assists
               = "Giveaways",
 Giveaways
 Blocks_pct = "Blocks",
 Hits_pct = "Hits",
 Takeaways_pct = "Takeaways"
) %>%
# set custom column widths
cols_width(
 Player
               \sim px(220),
 GP
               \sim px(50),
 TOI_per_GP
               ~ px( 90),
               ~ px( 70),
 Assists
               ~ px( 70),
 Giveaways
 Blocks_pct
             \sim px(80),
              ~ px( 80),
 Hits_pct
 Takeaways_pct ~ px( 80)
) %>%
```

```
# stripe header row background
 tab_style(
           = cell_fill(color = "#deeaee"),
   style
   locations = cells_column_labels(everything())
 ) %>%
 # bold and center headers
 tab_style(
          = list(cell_text(weight = "bold", align = "center")),
   style
   locations = cells_column_labels(everything())
 ) %>%
 # add legend footnotes
 tab_footnote(
   footnote = md(" *Giveaways*: darker red = more giveaways"),
   locations = cells_title(groups = "subtitle")
 ) %>%
 tab_footnote(
   footnote = md(" *TOI per GP*: green = over 20 minutes/game"),
   locations = cells_title(groups = "subtitle")
 ) %>%
 # add data source note
 tab_source_note(
   source_note = md("Data: Evolve Hockey")
 ) %>%
 tab style(
          = cell_text(align = "right"),
   locations = cells_source_notes()
 ) %>%
 # enable alternating row strip
 opt_row_striping() %>%
 tab_options(
  row.striping.background_color = "#deeaee",
                               = pct(100),
   table.width
   data_row.padding
                               = px(6),
   column_labels.font.size = px(12)
# save table image file
gtsave(data = table_gt, filename = "maple_leafs_defense_table.png")
```

2024-25 Maple Leafs Defense Summary

The Nine D-Men, ranked by Blocks 1,2

Player	GP	TOI per GP (min)	Assists	Blocks	Hits	Takeaways	Giveaways	Blocks	Hits	Takeaways
Chris Tanev	75	19.7	15	190	20	10	80			
Jake McCabe	66	21.5	21	135	118	9	83			
Morgan Rielly	82	21.4	34	131	21	20	99			
Simon Benoit	78	16.5	9	111	204	16	70			
Oliver Ekman-Larsson	77	21.1	25	83	108	28	95			
Conor Timmins	51	16.3	6	77	40	10	44		•	
Philippe Myers	36	16.2	3	42	76	13	45			
Brandon Carlo	20	19.2	3	38	26	7	25	•		
Dakota Mermis	3	16.7	1	3	3	0	5			

¹ Giveaways: darker red = more giveaways

Data: Evolve Hockey

² TOI per GP: green = over 20 minutes/game

Plot 4 -> Option 1: Tier List

```
# wrangle game and team data
all_games <- read_csv("Data/all_teams.csv", show_col_types = FALSE)</pre>
df <- all games %>%
 filter(
                                 # filter toronto regular games
# select team level games
   playerTeam == "TOR",
               == "Team Level",
   position
   situation == "all",
                                     # include all game situations
   playoffGame == 0,
                                       # exclude playoff season games
   season %in% c(2022,2023,2024)
                                       # seasons 2022 to 2024
  ) %>%
 mutate(
   opposingTeam = if_else(opposingTeam == "ARI", "UTA", opposingTeam), # rename arizona to utah
              = as.integer(goalsAgainst > goalsFor)
                                                                           # create loss indicator flag
 ) %>%
  group_by(opposingTeam) %>%
  summarise(
          = n(),
   games
   losses = sum(loss),
   loss_pct = round(100 * losses / games, 1),
    .groups = "drop"
  ) %>%
  mutate(
   tier = case_when(
     loss_pct >= 65 ~ "S (>=65\%)",
     loss_pct >= 60 ~ "A (>=60%)",
     loss_pct \geq 50 \sim "B (\geq 50\%)",
     loss_pct >= 40 ~ "C (>=40\%)",
     loss_pct >= 30 ~ "D (>=30%)",
     TRUE
                 ~ "F (<30%)"
   ),
   abbr = opposingTeam
  ) %>%
  arrange(
   factor(tier, levels=c("S (>=65%)","A (>=60%)","B (>=50%)","C (>=40%)","D (>=30%)","F (<30%)")),
   desc(loss_pct)
# set logo directory
logo_dir
          <- "nhl_logos_light"
# load logo rasters
logo_raster <- lapply(df$abbr, function(team) {</pre>
 readPNG(
   rsvg_png(
      file.path(logo_dir, paste0(team, "_light.svg"))
 )
})
# name each raster by team abbreviation
names(logo_raster) <- df$abbr</pre>
```

```
# define tierlist plotting function
tierlist <- function(df,</pre>
                    tiernames = c("S (>=65%)","A (>=60%)","B (>=50%)","C (>=40%)","D (>=30%)","F (<30"
                    tiercols = c("lightblue", "green", "lightgreen", "yellow", "#fcb124", "#fc3030"),
                    main = "Leafs Loss % vs Opponents (22-25)",
                    margin_x = 0.2,
                    tile_gap = 0.25,
                    tile scale = 1.12,
                    logo_scale = 1.25,
                    title_cex = 2.5){
 # define layout constants
           <- 1.2
 sub_h
 logo_sq
            <- 0.60 * sub_h * tile_scale # tile and logo base size
 left_band <- 1.2</pre>
 right_band <- 9.8
 # compute tiles per row
 band_w <- right_band - left_band - 2 * margin_x</pre>
 max_tiles <- floor((band_w + tile_gap) / (logo_sq + tile_gap))</pre>
 # compute rows and heights
 band_tbl <- df %>%
   count(tier, name="n") %>%
   complete(tier=tiernames, fill=list(n=0)) %>%
     rows
           = pmax(1, ceiling(n / max_tiles)),
     band_h = rows * sub_h
   )
 canvas_h \leftarrow 1.5 + sum(band_tbl\$band_h) + 0.5
 # initialize plotting canvas
 par(mar=rep(0,4), xpd=NA)
 plot.new()
 plot.window(xlim=c(0,10), ylim=c(0,canvas_h), asp=1)
 rect(0,0,10,canvas h, col="black", border=NA)
 text(5, canvas_h-0.8, main, col="white", cex=title_cex, font=2)
 # calculate x positions for tiles
 starts_at <- left_band + margin_x + logo_sq/2</pre>
          <- logo_sq + tile_gap</pre>
 step
 col_x
           <- starts_at + step * (0:(max_tiles-1))</pre>
 # draw enlarged team logos
 draw_logo <- function(ras, cx, cy) {</pre>
 ar <- dim(ras)[2] / dim(ras)[1]
 if (ar >= 1) {
   w_use <- logo_disp</pre>
   h_use <- logo_disp / ar
 } else {
   h_use <- logo_disp
```

```
w_use <- logo_disp * ar</pre>
  }
  rasterImage(ras, cx - w_use / 2, cy - h_use / 2, cx + w_use / 2,
              cy + h_use / 2, interpolate = TRUE)
}
  # iterate through each tier
  y_top <- canvas_h - 1.5</pre>
  for(i in seq_along(tiernames)){
    tn <- tiernames[i]</pre>
    band <- band_tbl[band_tbl$tier==tn,]</pre>
    y_bot<- y_top - band$band_h
    # draw tier colored band
    rect(left_band, y_bot, right_band, y_top, col=tiercols[i], border=NA)
    # draw two-line tier label
            <- (y_top + y_bot)/2
    mid_y
    label_main <- sub(" .*","",tn)</pre>
                                                               # extract main tier letter
    label_sub \leftarrow gsub(".*\)((.*)\).*","\1",tn) # extract tier percent label
               <- left_band - 0.4
    x label
    # draw big tier letter
    text(x_label, mid_y+0.15, label_main, col="white", cex=2,font=2,adj=c(0.5,0.5))
    # draw small tier percentage
    text(x label, mid y-0.15, label sub, col="white", cex=1, font=1, adj=c(0.5,0.5))
    # plot logos with loss pct
    tier_df<- df[df$tier==tn,]</pre>
    if(nrow(tier_df)>0){
      ix <- rep(1:band$rows, each=max_tiles)[seq_len(nrow(tier_df))]</pre>
      for(r in 1:band$rows){
        chunk<-tier df[ix==r,]</pre>
        cx <- col_x[seq_len(nrow(chunk))]</pre>
        cy \leftarrow y_{top-(r-0.5)*sub_h}
        y_lab < cy-logo_sq/2 -0.05
        for(j in seq_len(nrow(chunk))){
          rect(cx[j]-logo_sq/2,cy-logo_sq/2, cx[j]+logo_sq/2,cy+logo_sq/2, col="white",border="black")
          draw_logo(logo_raster[[chunk$abbr[j]]],cx[j],cy)
          text(cx[j],y_lab,paste0(chunk$loss_pct[j],"%"), cex=0.8,font=2,adj=c(0.5,1))
        }
      }
    }
    y_top <- y_bot</pre>
  # add data source label
  text(x=right_band, y=0.2, "Data: Money Puck", col="white", cex=1, adj=c(1,0))
}
# save tier list image using base R method
png("leafs_tier_list.png", width = 12, height = 12, units = "in", res = 600)
```

```
tierlist(df) # now title_cex will be used properly
dev.off()
```

pdf ## 2

tierlist(df)

