1.	measure volume / amount of oxygen formed / mass lost / and time / against time / per unit time OR measure absorbance / transmission against time / per unit time	1
	time taken for the concentration / mass / amount of a reactant to fall to half (its original value) / to halve	1
	t _{1/2} = 150 s AND evidence on graph / paper of one half-life	1
	no change	1
	M1: evidence on graph of tangent AND 4 to 5×10^{-4} M2: mol dm ⁻³ s ⁻¹	2
	(c)(i) / 0.10 AND s ⁻¹	1
	M1: $NO_2 + O_3 \rightarrow NO_3 + O_2$	2
2.	M2: $NO_2 + NO_3 \rightarrow N_2O_5$ so it won't change / so it stays constant [1]	1
	constant half-life / both half-lives = 45–55 [1] two half-lives taken (evidence needed) [1]	2
	first order [1] any two rows of data quoted, effect of $[H_2]$ specified [1] effect of $[I_2]$ specified and linked to first order [1]	3
	rate = $k[H_2][I_2]$ [1]	1
	2 × 10 ⁻¹³ [1] mol ⁻¹ dm ³ s ⁻¹ [1]	2
	forward reaction is faster than backward reaction and reaches equilibrium on product side / to the right [1]	1
	forward reaction is negative AND backward reaction is positive [1]	2
3.	equilibrium position further left at higher T [1] colorimetry / (change) in colour / less light transmission / measure absorbance	1 1
	Exp 1 and 2: rate \times 1.75 and [H ₂] \times 1.75 (when [IC <i>I</i>] no change) or calculation e.g.: order = $(0.007/0.004)/(1.75/1.00) = 1$	1
	or Exp 1 and 3: rate \times 2.5 and [H ₂] \times 2.5 (when [IC $\rlap{\ l}$] no change) or Exp 2 and 3: rate \times 10 / 7(1.43) and [H ₂] \times 10 / 7(1.43) (when [IC $\rlap{\ l}$] no change)	
	Exp 4 and 5: rate \times 1.4 and [IC l] \times 1.4 (when [H $_2$] no change) or calculation	1
	(rate=) k[IC/][H ₂]	1
	62 500 or 6.25 × 10 ⁴	1
	$ICl + H_2 \rightarrow HCl + HI$ or $ICl + H_2 \rightarrow IClH_2$ or $ICl + H_2 \rightarrow \frac{1}{2}I_2 + ClH_2$	1
	$\begin{array}{l} HI + ICl \to HCl + I_2 \\ \mathbf{or} \; ICl \!\!\!/\!\!\!/ + ICl \to 2HCl + I_2 \\ \mathbf{or} \; Cl \!\!\!/ \!\!\!/ + ICl \to 2HCl + 1 \!\!\!/ \!\!\!/ 2I_2 \end{array}$	1

international Education [2.15p.na 100 t m.g.] Q. come a to 1 m.g.		
the state and the second of an approximation of U.S. appringst time		
part mark 1: plot a graph of concentration of [H ₂] against time	3	
part mark 2: constant half-life (showing it is 1st order)		
part mark 3: draw tangent AND determine gradient (on conc vs time graph) or draw two tangents to determine two gradients (rate) (on conc vs time graph)		
part mark 4: if conc 1 (at time 1) / conc 2 (at time 2) = gradient 1 / gradient 2		
part mark 5: plot a graph of rate against concentration of [H ₂]		
part mark 6: gives a straight-line through the origin of graph for part mark 5		
2 parts = 1 mark 3 parts = 2 marks 4 parts = 3 marks		
[ICI] doesn't change or [ICI] only changes slightly	1	
provides an alternative route of lower activation energy / E_a or to lower E_a and more molecules with $E \geqslant E_a$	1	
the power to which a concentration of a reactant is raised in the rate equation / law	1	
M1: (using expt 1 and 3) as $[ClO_2] \times 2.5$ rate $\times 6.25$ so 2nd order	2	
M2: (using expt 1 and 2) as $[OH^-] \times 4$ rate $\times 4$ so 1st order		
$rate = k[ClO_2]^2[OH-]$	1	
M1: $k = \text{rate} / [C \log_2]^2 [OH^-]$ $k = 7.20 \times 10^{-4} / (0.02)^2 (0.03)$ k = 60	2	
M2: mol ⁻² dm ⁶ min ⁻¹		
structure of phenol: C ₆ H ₅ OH OR	1	
tangent drawn correctly AND rate = $0.015/260 = 5.8 \times 10^{-5}$ ALLOW values consistent with tangent drawn at 100 sec		
AND half-life decreases (1st box)	1	

5.

6.

change in amount / mass / concen per time	tration of reactant / product	1
decrease in volume or pressure		
8.13 × 10 ⁴ / 81280 / 81300		1
$mol^{-2} dm^6 s^{-1}$		1
$\sqrt{(0.00231/(0.0046 \times 81280))} =$	2.49×10^{-3}	1
2, 1, 3		1
2		1
the total of steps 1 and 2 / the comare two NO and one H ₂	nponents of 2	1
time for amount or mass or conce	entration to halve	1
0.02 at start and 0.01 after 2 seco	onds	1
0.005 after 4 seconds and 0.0025	after 6 seconds	1
$\begin{array}{c} \text{NO + } \frac{1}{2} \text{ O}_2 \rightarrow \text{NO}_2 \text{ or } \text{NO + O}_2 \rightarrow \\ \textbf{AND} \\ \text{NO}_2 + \text{SO}_2 \rightarrow \text{NO + SO}_3 \end{array}$	NO ₂ + ½ O ₂	1
(NO is) regenerated / reformed		1
$SO_3 + H_2O \rightarrow H_2SO_4$ AND acid rain or consequence of this described		
	the order of reaction with respect to [NO]	1
	the order of reaction with respect to [O2]	
	the overall order of reaction 3	
ALL CORRECT [1]		
$k = (1.51 \times 10^{-4}) / (0.003^2 \times 0.0020)$ k = 8389 [1] min 2sf	00)	2
mol ⁻² dm ⁶ s ⁻¹ [1]		
$8400 = (6.05 \times 10^{-5}) / (x^2 \times 0.005)$ $x = \sqrt{(6.05 \times 10^{-5}) / (8400 \times 0.005)}$ $x = \textbf{0.00120} / \textbf{1.20} \times \textbf{10}^{-3} [1] \text{ min } 2$		1
slow(est) [1]		1
correct RDS identified as step 1 with only one S ₂ O ₈ ²⁻ and one I ⁻ [1]		
overall mechanism adds up to che M2 DEP on one $S_2O_8^{2-}$ and o e.g. step 1 $S_2O_8^{2-}$ + $I^- \rightarrow SO_4^{2-}$ + step 2 SO_4I^- + $I^- \rightarrow SO_4^{2-}$ + 1	SO_4I^- RDS = step 1	
no. of $t_{1/2} = 192/48 = 4$ [I ⁻] = 0.0078/16 = 4.9 × 10 ⁻⁴ [1] n	nin 2sf	1

CH₃COCH₃ = 1 2 $I_2 = 0$ $H^{+} = 1$ overall order = 2 M1 3 orders [1] M2 overall order based on their M1 [1] $k = 5.40 \times 10^{-3} / (1.50 \times 10^{-2} \times 7.75 \times 10^{-1})$ 2 k = 0.46(452)[1] $dm^3 \, mol^{-1} \, s^{-1} \, [1] \, 2sf \, min$ 1 decreases no change increases rate constant rate of reaction both [1] 2 draw a tangent at time, t=0 [1] measure the gradient / slope of the tangent [1] 1 straight line graph starting at 0,0 and showing rate α [CH₃COCH₃] [1] slowest step / reaction (in the mechanism) [1] 1 $2Ce^{4+} + Tl^{+} \rightarrow Tl^{3+} + 2Ce^{3+}$ [1] 2 catalyst and (used in step 1 and) regenerated / reformed in step 3 / end of the reaction [1] 8. 1st order (a) (i) 1 1st order 1 (ii) rate = $k[CH_3CHO][OH^-]$ 1 (iii) mol⁻¹ dm³ s⁻¹ (or per any suitable time unit) 1 (iv) 1 (v) calculation from candidate's answer to (iii) (expected answer = 6) 1 (b) (i) rate-determining step: step 1 explanation: both reactant species are in step 1/rate-determining step 1 1 (ii) acid/proton donor/acidic behaviour nucleophilic addition 1 (c) 1 (d) M1: both curly arrows M2: dipole correctly shown 1 9. measure volume / amount of oxygen formed / mass lost / and time / against time / per unit time 1 measure absorbance / transmission against time / per unit time time taken for the concentration / mass / amount 1 of a reactant to fall to half (its original value) / to halve $t_{1/2} = 150 s$ 1 AND evidence on graph / paper of one half-life no change 1 2 M1: evidence on graph of tangent AND 4 to 5×10^{-4} M2: mol dm⁻³ s⁻¹ $(c)(i) / 0.10 \text{ AND } s^{-1}$ 1 M1: $NO_2 + O_3 \rightarrow NO_3 + O_2$ **M2:** $NO_2 + NO_3 \rightarrow N_2O_5$

10

M1: eight electrons around N atom [N=O, N-O, N-C l with N-O as dative] M2: all other electrons correct	2
(rate =) k[ClNO2][NO]	1
$mol^{-1} dm^3 s^{-1}$	1
Yes AND number of moles of reactants in overall equation is the same as order in rate equation	1
 straight line with a negative gradient starting at 2.0 × 10⁻⁴ reaches at 1.8 × 10⁻⁴ at 0.2 seconds Award 1 mark for two points, award 2 marks for all three points 	2
$2 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$	1
The reaction has reached equilibrium	1