V. CIRCUITE LOGICE SECVENŢIALE

Circuite logice secvenţiale

- Circuitele logice secvenţiale, CLS, sunt automate de grad 1
- CLS se obţin din CLC prin introducerea unor reacţii inverse
- CLS alcătuite din:
 - Elemente de memorie binară
 - CLC
- CLS se caracterizează prin faptul că variabilele de ieşire sunt şi dependente de timp şi de starea internă

Circuite logice secvenţiale

- Circuitele logice secvențiale sunt caracterizate printr-o secvență a variabilelor de ieșire și o secvență a stărilor elementelor de memorie, pentru fiecare secvență a variabilelor de intrare
- Clasificare după modul de funcționare (modul de transmitere a semnalelor)
 - CLS asincrone
 - Comportarea este determinată de aplicarea pe intrări a semnalelor în momente oarecare
 - Starea circuitului depinde de ordinea în care se schimbă semnalele

CLS sincrone

- Comportarea este determinată de aplicarea pe intrări a semnalelor în momente discrete, bine determinate în timp
- Sincronizarea se realizează cu ajutorul unor impulsuri date de un generator de tact (ceas; clock)
- **Exemple**: bistabile, numărătoare, registre, memorii RAM

5.1. Circuite basculante bistabile

- Definiție: Circuitele basculante bistabile (CBB sau bistabile) sunt circuite logice secvențiale care au două stări stabile distincte. Trecerea dintr-o stare în alta se face la aplicarea unei comenzi din exterior
- Bistabil:
 - Sistem cu memorie (element de memorie binară) memorează un bit
 - Se asociază uneia dintre cele 2 stări ale bistabilului funcția de memorare a cifrei binare 1 și celei de a doua stări funcția de memorare a cifrei binare 0
 - Poate păstra un timp nedefinit informația binară și în același timp starea sa poate fi citită în orice moment
 - Are 2 ieşiri:
 - Una pune în evidență cifra binară memorată, numită ieşire adevărată Q
 - A doua pune în evidență valoarea negată a cifrei binare memorate, denumită ieşire negată Q

- Bistabilul RS asincron are 2 intrări de date: S (Set) și R (Reset) și două ieșiri Q și \overline{Q} (complementare)
- $\begin{array}{ccc} \bullet & \mathbf{Simbol} & \longrightarrow & \mathbf{S} & \mathbf{Q} \\ \longrightarrow & \mathbf{R} & \overline{\mathbf{Q}} \end{array} \rightarrow$
- Tabel de adevăr

t_n		t_{n+1}
S_n	R_n	Q_{t+1}
0	0	Q_t
0	1	0
1	0	1
1	1	*

- Din punct de vedere logic nu are sens să se facă simultan înscrierea și ștergerea informației, ca urmare Sn = 1 și Rn = 1 va fi o situație interzisă (de **nedeterminare**, pentru că nu se poate prevedea starea finală)
- **Condiția de bună funcționare** care se impune este: $Sn \cdot Rn = 0$

Sinteza circuitului

- Vom considera semnalul de ieşire Q_{t+1} la momentul t_{n+1}
- Ieşirea Q_{t+1} depinde atât de starea intrărilor S_n și R_n cât și de starea Q_t , la momentul t_n
- Vom scrie Q_{t+1} ca o funcție de 3 variabile:

Q_t	S_n	R_n	Q_{t+1}
$ \begin{array}{c} Q_t \\ 0 \\ 0 \end{array} $	0	0	0
0	0	1	0
0	1	0	1
0	1	1	*
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	*

Sinteza circuitului

Diagramele Karnaugh pentru ieşiri:

Funcțiile minimizate în FCM

$$\begin{cases} \overline{Q_{t+1}} = \overline{R_n} \cdot (S_n + Q_t) \\ \overline{Q_{t+1}} = \overline{S_n} \cdot (R_n + \overline{Q_t}) \end{cases}$$

Funcțiile ieșirilor pentru schema circuitului cu porți de tip SAU-NU:

$$\begin{cases} Q_{t+1} = \overline{Q_{t+1}} = \overline{R_n} \cdot (S_n + Q_t) = \overline{R_n} + \overline{(S_n + Q_t)} \\ \overline{Q_{t+1}} = \overline{\overline{Q_{t+1}}} = \overline{\overline{S_n}} \cdot (\overline{R_n} + \overline{\overline{Q_t}}) = \overline{S_n} + \overline{(R_n + \overline{\overline{Q_t}})} \\ R_n \qquad Q \\ S_n \qquad \overline{Q} \end{cases}$$

- Observaţie
 - Pentru Sn = Rn = 1 rezultă $Q_{t+1} = 0$ și $\overline{Q}_{t+1} = 0$, cele două ieșiri nefiind complementare
- Circuitul își pierde în acest caz caracterul de circuit bistabil, cu două stări distincte stabile
 15.11.2019
 Curs 7 Proiectare Logica
 8

Funcțiile ieșirilor pentru schema circuitului cu porți de tip ŞI-NU se obțin din FDM rezultate din DK:

$$\begin{cases} Q_{t+1} = S_n + (Q_t \cdot \overline{R_n}) \\ \overline{Q_{t+1}} = R_n + (\overline{Q_t} \cdot \overline{S_n}) \end{cases}$$

$$\begin{cases} Q_{t+1} = \overline{\overline{S_n + (Q_t \cdot \overline{R_n})}} = \overline{\overline{S_n \cdot (\overline{Q_t \cdot \overline{R_n}})}} \\ \overline{Q_{t+1}} = \overline{\overline{R_n + (\overline{Q_t \cdot \overline{S_n}})}} = \overline{\overline{R_n \cdot (\overline{Q_t \cdot \overline{S_n}})}} \end{cases}$$

5.1.2. Bistabil RS sincron (latch cu ceas)

- Bistabilul RS sincron se obține din bistabilul RS asincron
- Se adaugă porți logice suplimentare cu scopul de a răspunde la semnalele de intrare R și S numai sub acțiunea unui semnal de comandă, numit impuls de tact (ceas; clock)
- Simbol

15.11.2019

Schema cu porți ȘI-NU

- Ieşirile bistabilului RS sincron se modifică doar când semnalul de tact (ceas) CLK este activ
- Cât timp semnalul de CLK are valoarea 0 logic, intrările de date (S şi R) nu influențează bistabilul
- Când semnalul de CLK devine 1, bistabilul urmărește modificările intrărilor de date
- Când CLK redevine 0 bistabilul se zăvorăște (de aceea se numește latch), păstrează informația avută anterior pe ieșire
- Şi la acest bistabil situația intrărilor în care S = R = 1 introduce o **nedeterminare**, de aceea ea trebuie evitată

5.1.2. Bistabil RS sincron (latch cu ceas)

- Funcție de excitație caracteristică pentru fiecare bistabil
- Pune în evidență cum trebuie să fie intrările bistabilului (ce stare trebuie să aibă) pentru a se realiza o tranziție specifică
- Tabelul de excitație pentru bistabilul RS sincron este:

Q_t	Q_{t+1}	R	S
0	0	X	0
0	1	0	1
1	0	1	0
1	1	0	X

5.1.2. Bistabil RS sincron (latch cu ceas)

Observaţie

- În afara intrărilor sincrone, la bistabilul RS sincron se introduc și intrări asincrone, R_a și S_a, la nivelul bistabilului RS asincron (ultimele porți ȘI-NU)
- R_a și S_a sunt utilizate cu scopul forțării la 0, prin R_a , sau la 1, prin S_a , a ieșirii Q a bistabilului
- Apariţia unor comenzi pe intrările asincrone se execută independent de prezenţa sau absenţa tactului CLK
- Intrările asincrone ale unui bistabil sunt prioritare în raport cu intrările sincrone

5.1.3. Bistabil D sincron (delay)

- Are o singură intrare D şi 2 ieşiri complementare, Q şi Q
- Starea următoare a bistabilului D este determinată de modificarea intrării D (nu depinde de valoarea ieşirii, deci de starea anterioară)
- Întârzie cu un tact informația pe care o primește pe intrare (circuit elementar de întârziere)
- Simbol

5.1.3. Bistabil D sincron (delay)

 Bistabilul D sincron se obține din bistabilul RS sincron la care se leagă intrările printr-o poartă de tip NU (negare)

Funcțiile bistabilului D

$$\begin{cases} \frac{Q_{t+1}}{Q_{t+1}} = \frac{D}{D} \end{cases}$$

■ Tabel de adevăr

D	Q
0	0
1	1

5.1.3. Bistabil D sincron (delay)

Tabel de excitație

Q_t	Q_{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

- Starea următoare a bistabilului de tip D sincron depinde doar de semnalul aplicat pe intrare, ea este independentă de starea actuală a bistabilului
- Bistabilul D este cel mai folosit bistabil în registrele de date
- Bistabil D comută pe frontul tactului
- Latch D comută pe nivelul tactului ———

- Bistabilul JK sincron elimină nedeterminarea de pe ieşiri pentru intrările S = R = 1
- Se introduc reacţii (legături inverse) suplimentare

Tabel de adevăr

J	K	Q_{t+1}
0	0	O _t
0	1	0
1	0	1
1	1	$\overline{Q_t}$

■ Tabel de excitație

Q_t	Q_{t+1}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

- Funcțiile bistabilului JK se obțin cu DK, din dezvoltarea tabelului de adevăr
- Tabel de adevăr în forma detaliată

Q_t	J	K	Q_{t+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

DK este:

Funcțiile bistabilului JK

$$\begin{cases} \frac{Q_{t+1}}{Q_{t+1}} = \frac{J}{J} \cdot \frac{Q_t}{Q_t} + \frac{K}{K} \cdot Q_t \\ \frac{Q_{t+1}}{Q_t} = \frac{J}{J} \cdot \frac{Q_t}{Q_t} + \frac{K}{K} \cdot Q_t \end{cases}$$

Legăturile inverse adăugate

$$R = K \cdot Q_t$$
$$S = J \cdot \overline{Q}_t$$

Simbol

Schema cu porți ȘI-NU

Observaţii:

- Şi la bistabilul JK apar intrările asincrone care sunt prioritare în raport cu intrările sincrone
- Atât timp cât intrarea de tact (CLK) rămâne pe 1 logic după stabilirea noii stări, bistabilul intră în oscilație (își tot schimbă starea)
- Pentru a exista o singură comutare, durata impulsului pe CLK trebuie să fie mai mare decât timpul de propagare a semnalului printr-o poartă logică şi mai mică decât timpul de propagare a semnalului prin două porţi logice

5.1.5. Bistabil T sincron (toggle)

- Bistabilul T sincron se obţine din bistabilul JK sincron prin legarea intrărilor J şi K împreună
- Bistabilul T sincron îşi schimbă starea (comută) doar dacă pe intrarea T se aplică valoarea 1 logic
- Schema bistabilului T

5.1.5. Bistabil T sincron (toggle)

Tabel de adevăr

T	Q_{t+1}
0	Qt
1	\overline{Q}_{t}

Tabel de excitație

Q_t	Q_{t+1}	T
0	0	0
0	1	1
1	0	1
1	1	0

DK pentru determinarea funcțiilor bistabilului T

$$\begin{array}{c|cccc} Q_t & T & 0 & 1 \\ \hline 0 & & 1 \\ 1 & 1 & \end{array}$$

Funcțiile bistabilului T

$$\left\{ \begin{array}{l} \displaystyle \frac{Q_{t+1}}{Q_{t+1}} = \overline{T} \cdot Q_t + T \cdot \overline{Q_t} = \overline{T + Q_t} \\ \overline{Q_{t+1}} = \overline{T} \cdot \overline{Q_t} + T \cdot Q_t = \overline{T + Q_t} = T \odot Q_t \end{array} \right.$$

5.1.5. Bistabil T sincron (toggle)

Simbol

- Bistabilul T are aceleași probleme de oscilație, care impun durata impulsului de tact, ca și bistabilul JK
- Bistabilul T este folosit în construirea numărătoarelor binare

Concluzie:

- Deficiența principală a structurilor de bistabile studiate:
 - Nu se poate face o distincţie netă între intrările care condiţionează momentul comutării şi cele care determină modul comutării (nu se face distincţie netă între când şi cum)

- Bistabilele master slave introduc o structură care permite comutarea fără oscilații
- Principiul master-slave poate fi aplicat oricărui tip de circuit bistabil
- Structura master-slave este compusă din 2 celule de memorie, una "master" şi cealaltă "slave"

5.1.6. Bistabile master – slave (MS)

- Impulsul de tact are două fronturi, unul pozitiv ↑, crescător (de urcare de la 0 la 1, în logica pozitivă) şi unul negativ ↓, descrescător (de coborâre de la 1 la 0, în logica pozitivă)
- Pe frontul crescător (ascendent) ↑ al semnalului de tact se face înscrierea informației în master, slave este deconectat
- Pe frontul descrescător următor ↓ se face transferul informației din master în slave
- Informația apare la ieșiri după frontul descrescător ↓ al impulsului de tact
- Se asigură astfel o bună separare între intrările de date şi ieşirile bistabilelor
- Concluzie: Memorarea informației la bistabilele cu structuri master − slave se face pe frontul descrescător ↓ al impulsului de tact
 Curs 7 Proiectare Logica

 Curs 7 Proiectare Logica

5.1.6. Bistabile master – slave (MS)

■ Funcționarea bistabilului master — slave

- t_s este timpul de set-up = perioada în care datele trebuie să fie pregătite înainte de impulsul de tact
- t_H este timpul de holding, de păstrare a datelor
- Pe perioada 1 2 a impulsului de ceas, porţile 1,2 de la intrare nu sunt încă deschise, iar porţile 3,4 se blochează şi astfel slave se izolează de master
- Pe zona 2 3 porțile de intrare 1,2 se deschid și informația trece în master; porțile 3,4 sunt închise și slave își păstrează vechea informație
- Pe zona 3 4 porțile 1,2 se închid și porțile 3,4 nu se deschid încă: master este izolat și de intrare și de slave
- Pe perioada 4 5 porțile 3,4 se deschid și informația apare pe ieșire, în timp ce porțile 1,2 sunt blocate
- Perioada critică este t_H , cea de menținere a datelor la intrarea porților 3,4 pe perioada 4-5