Architecture des machines parallèles modernes

Ronan Keryell Département Informatique ENST Bretagne

rk@enstb.org

14 février 2006

http://top500.org

- Liste 500 plus gros ordinateurs déclarés dans le monde depuis 1993
- Top 10 : crème de la crème
- Étalon : factorisation de matrice LU LINPACK
 - Plus de calculs que de communications
 - Cas d'école hyper régulier rarement rencontré dans la vraie vie
 - À à considérer comme une puissance crête (efficace)

- IBM BlueGene/L au Lawrence Livermore National Laboratory du Département américain de l'énergie (DOE) : culmine à 280 TFLOPS (2,8.10¹⁴ opérations flottantes par seconde) avec 131 072 processeurs
- IBM ASCI Purple dans même laboratoire et construit à base de systèmes *pSeries* 575 : 63 TFLOPS avec 10 240 processeurs
- sgi Columbia de la NASA/Ames: 51 TFLOPS
- 2 ordinateurs des Sandia National Laboratories encore du DOE, une grappe à base de PowerEdge de Dell et un Cray XT3 à base d'Opteron;
- Japonais Earth Simulator de NEC, longtemps première place : relégué à la 7^{ème} place avec ses « modestes »

35 TFLOPS

 Cray XT3 au Oak Ridge National Laboratory du DOE est 10^{ème} avec 20 TFLOPS

Prédominance stratégique des USA... ©

- Tendance à utilisation massive de processeurs standards
- Moins de processeurs vectoriels

Composantes complémentaires

- Puissance brute des processeurs
- Débit et latence mémoire
- Débit et latence du réseau d'interconnexion
- Entrées-sorties
- A Dépend de l'application visée ©

- Processeurs vectoriels de 16 GFLOPS : 1 processeur scalaire + 4 processeurs vectoriels
- 8 processeurs par nœud
- 512 nœuds = 65 TFLOPS
- Processeur CMOS mono-chip 90 nm & 9 niveaux de cuivre
- 8 210 pattes dont 1 923 de signaux!
- Record du monde de 300 Go/s circuit-extérieur

- Processeurs vectoriels de 18 GFLOPS : 4 processeurs vectoriels
- 16 à 8 192 → 147 TFLOPS
- Mémoire partagée
- Réseau avec 16 tores 2D

http://www.cray.com/products/x1e

- ASCI Purple : 10 240 processeurs, Nº 2 au Top 500 en 2005
- Version spéciale cluster (grappe)
- 8 Power5 1,9 GHz 64 bits ou 8 bi-cœur 1,5 GHz/lame
- 4 liaisons InfiniBand vers switches (TopSpin MPI...)
- 2 Ethernet 1 Gb/s
- AIX5L ou Linux

http://www-03.ibm.com/servers/eserver/pseries/news/related/2004/m204

- 64 bits
- Pipeline 15 étages
- 8 instructions/cycle
- SMT (Simultaneous Multi-Threading) à priorité pour remplir bulles du pipeline du Power4
- 120 registres physiques entiers + 120 flottants partagés par les 32+32 registres virtuels des 2 threads : renommage à la volée style

$$r3 = r1 + r2$$

=: $r3 = r1 + r2$; $r1' = r4 * r5$

IBM Power 5

 Centaines de compteurs de performance pour comprendre ce qui se passe ©

http://www.llnl.gov/asc/platforms/bluegenel/overview.html http://www.llnl.gov/asc/platforms/bluegenel/arch.html

- Nº 1 au Top 500 en 2005 avec 131 072 processeurs
- Base de 2 PowerPC440 700 MHz avec 2 unités de calcul flottant
- 10× efficacité électrique par rapport aux pSeries
- Réseau tore 3D + arbre pour réductions/diffusions
 - Diamètre 64
 - Latence inter-nœud de 100 ns
 - 6,4 ns latence maximum
 - 175 Mo/s/lien assez faible

(compare this with a 1988 Cray YMP/8 at 2.7 GF/s)

Compute Chip

2 processors

2.8/5.6 GF/s

4 MiB* eDRAM

16 compute cards 0-2 I/O cards 32 nodes (64 CPUs) $(4 \times 4 \times 2)$ 90/180 GF/s 16 GiB* DDR

Node Card

500 W

Cabinet

2 midplanes 1024 nodes (2,048 CPUs) (8 x 8 x 16) 2.9/5.7 TF/s 512 GiB* DDR 15-20 kW

(131,072 CPUs) (32 x 32 x 64)

180/360 TF/s

32 TiB*

1.5 MW 2,500 sq.ft.

MTBF 6.16 Days

* http://physics.nist.gov/cuu/Units/binary.html

Compute Card or I/O Card

FRU (field replaceable unit)

25 mm x 32 mm

2 nodes (4 CPUs)

 $(2 \times 1 \times 1)$

2 x (2.8/5.6) GF/s

2 x 512 MiB* DDR

15 W

- MTBF de BlueGene/L : 6 jours...
- 1951 : simulateur temps réel Whirlwind de Jay
 FORRESTER & Bob EVERETT
 - ► 500 000 +/s, 50 000 ×/s $5,6 \cdot 10^{-9} \times \text{BlueGene/L} \odot \longrightarrow +51 \%/\text{an en 54 ans}$
 - Mémoire à tores
 - ▶ Lampes → consomme \$32 000 de tubes/mois! ☺
- Faire du check-pointing & redondance
- Projet ANR ARA SSIA SafeScale plus général prenant en compte attaques malicieuses dans grilles (ENSTB-IMAG-Paris 13-IRISA)

- Jeu d'instruction à la x86
- Mode 64 bits qui double aussi nombre de registres
- Superscalaire à exécution dans le désordre de 9 instructions/cycle
 - 3 instructions entières
 - 3 générations d'adresses
 - 3 calculs flottants (add, mul, mémoire)
- Interface par 3 canaux HyperTransport de 8 Go/s au monde extérieur (mais 0,1×SX-8)

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_o

- Bi-cœur: 10⁹ transistors...
- Pipeline et exécution dans l'ordre de 6 instructions/cycle
- 128 registres entiers, 128 registres flottants, 128 registres prédicats/conditions visibles
- Contrôle très fin de la micromachine avec VLIW EPIC
- Encore plus de stress sur le compilateur (et programmeurs
 ③)
- Mais permet d'avoir de bonnes performances

- Applications multimédia : couleurs sur 8 bits, son sur 16 bits, modem...
- Adaptation des processeurs standards aux petites données
- Faire calcul sur petites données indépendantes plutôt qu'une grosse
- Instructions SSE3 traitent 128 bits de données comme du calcul SIMD ou vectoriel/cycle sur
 - 2 entiers ou flottants double précision 64 bits
 - 4 entiers ou flottants simple précision 32 bits
 - 8 entiers 16 bits
 - ▶ 16 entiers 8 bits

- Instructions
 - Calculs divers
 - Compactage-décompactage
 - Conversions de format
 - Comparaisons
- Ne marche que pour données contiguës en mémoire
- Pas de scatter/gather ©

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_c

- Organisation depuis 1975 en tableau de bit avec commande selon une ligne (rangée) puis une colonne
- Adresse envoyée d'abord suivant la rangée
 (échantillonnée sur RAS (Row Address Strobe) puis la
 colonne (échantillonnée sur CAS (Column Address Strobe)
- Stockage dans un simple condensateur
 nécessité de
 « rafraîchir » la donnée régulièrement (moins de 5 % du
 temps)
- Par commodité, mémoires vendues souvent sous forme de barettes SIMM (Single) ou DIMM (Dual Inline Memory Module)
- Gain en vitesse :

- Grand débit interne disponible (parallélisme sur les rangées)
- Éviter un cycle de RAS si localité dans la même page : Fast Page Mode - se contente de lire dans le tampon de sortie des rangées
- Évite des verrous externes pour échantillonner les signaux → SDRAM (Synchronous DRAM) avec bascules D à l'intérieur
- Échantillonnage des signaux sur front montant et descendant → DDR (Double Data Rate)
- DDR2 pour des transferts de plus de 400 MHz,
 256 Mb–4 Gb, diminution consommation
 - ▶ 1,8 V

- Mode de terminaison des lignes programmable et synchrone en multi-banc sur les écritures
- ► Taille de page (rangée) moitié par rapport au DDR : division consommation par 2 lors d'une commande ACTIVATE (≈RAS)
- Réglage fin du pipeline des opérations
- DDR2-667 MHz (barettes PC2-5400) 5-5-5 (latence CAS (CL), latence RAS (RCD), latence précharge (RP) en cycles) a une latence de 5 cycles CAS : $3 \times 5 = 15 \, \mathrm{ns}$
- Si accès aléatoire, latence totale = CL + RAS → 10 cycles, 30 ns sur premier bit d'une page

- Si accès aléatoires en permanence à la mémoire, temps de précharge en plus, 15 cycles, 45 ns
- Latence semblable à de la DDR mais débit double
 45 ns pour Opteron 3 GHz = 1620 instructions! ☺
 La localité est toujours importante!
- RAMBUS
 - Remplacer signaux mémoires DRAM classiques par des bus rapide à transactions éclatées (lecture/écriture, retour,...)
 - Interfaces plus chères
- Projets de recherche PIM (Processors In Memory) : énorme débit processeurs-mémoires si local
 - → Revoir modèles de calcul/programmation?

- Liaison à 10 Gb/s (4×)
- Latence 6 μ s
- Exemple de réseau de 512 nœuds http://www.topspin.com style fat-tree

- Elan4 QsNet II qui équipe Bull Tera-10 du CEA/DAM
- 912 Mo/s
- MPI sur Opteron
 - \blacktriangleright 1,5 μ s latence
 - <2 μs barrière</p>
- À la recherche du temps perdu...
 - 990 ns dans chipset processeur
 - 240 ns dans carte Elan
 - 218 ns dans câbles (vitesse de la lumière ©)
 - 213 ns dans switches Elan
- http://www.quadrics.com
- ≈\$1 700/port en 2006

- 10 Gb/s en Gigabit Ethernet ou Myrinet
- Myrinet : protocole plus efficace qu'Ethernet (entêtes...) : 9,8 Gb/s, 2 μ s de latence MPI
- http://www.myri.com

- Le réseau de base pour les masses!
- La solution du pauvre...
- 1 Gb/s mais latence assez élevée (couches protocolaires)
- Utilisé sur machines haut de gamme comme lien d'administration

- Recherche débridée 1980-2000
- Dans la vraie vie actuelle : topologies simples à réaliser
 - Grilles 2D ou 3D
 - Fat-tree : réseaux multi-étage de routeurs favorisant localité
- Quelques constructeurs font encore du « sur mesure » (sur bus HyperTransport Opteron dans Cray XT3)

- Processeurs généralistes : optimisés pour opérations courantes
- Certaines applications ne fonctionnent pas forcément très bien sur ces processeurs prédéfinis
- Pour dépasser inefficacité : rajout de circuits logiques reconfigurables (programmables)
- Réalisent matériellement algorithmes voulus
- Très efficace en bioinformatique ou traitement d'image

- 144 Opterons
- Réseau spécifique sur canaux HyperTransport
- Synchronisation matérielle
- Cartes accélératrices à base de FPGA Xilinx Virtex 4.

- Demande continue du grand public pour jeux vidéo toujours plus réalistes
 - Suréchantillonnage
 - Transluscence
 - Modèles d'illumination globale
 - **...**
- Cartes d'accélérations graphiques extrêmement performantes
- Algorithmes en constante évolution → Cartes graphiques
 ≡ véritables supercalculateurs
 - Beaucoup de mémoire

- Spécialisées mais néanmoins programmables avec compilateurs C ou C++
- Possible de faire travailler plusieurs cartes ensembles (technologie SLI de nVidia)
- Idée : utiliser pipelines de transformations géométriques pour calculs scientifiques

- Unix règne en maître absolu
- Toujours plus de puissance
 - Nombre de processeurs /
 - Superscalaires voire vectoriels, instructions SIMD, multi-cœurs (sauf portables)
 - Coprocesseurs graphiques, reconfigurables
 - Retour des machines virtuelles des années 70 : virtualisation des machines parallèles avec différents OS...
- Architectures de plus en plus hétérogènes
 - Outils automatiques peu efficaces généralement dans vraie vie

- Complexité pour le programmeur
- Diversité architecturale --- nivellement par le bas du modèle de programmation : passage de message (MPI = assembleur du parallélisme)
- Comment rester proche puissances crêtes annoncées?
- Real Politik : retour à compromis de modèles de programmation hétérogènes pour architecture hétérogène
 - Nœuds SMP programmés en OpenMP en interne (multi-thread pour les nuls ②)
 - Interconnexion de ces nœuds programmés en MPI (passage de messages pour les nuls ©)

- Pour programmeurs
 - Maîtriser complexité globale + complexité applications
 - Tolérer latence mémoire (NUMA) + réseaux (GRID)
- Architectes
 - Machines efficaces simplement
- Spécialistes en compilation
 - Créer chaînon manquant!
 - Fournir outils plus efficaces et de plus haut niveau

Conférence à l'ENST Bretagne

- « Les grands moyens de simulation numérique du CEA »
- Hervé Lozach
- Mercredi 8 mars 2006, 13h50–16h50

1	Titre 0
2	Top 500
1	Introduction
1	Top 500
3	Le Top 10
4	Parallélisme massif 5
5	Architectures 6
6	Types de processeurs 8
7	Performance globale 9
8	Nec SX-8
7	Architectures vectorielles 9
9	Cray X1E
10	IBM p5-575

9	Processeurs	su-
	perscalaires.	11
11	IBM Power 5	13
12	IBM BlueGene/L	15
13	Tolérance aux pannes	17
14	AMD Opteron	18
15	Intel Itanium2	20
16	Bull Tera-10	21
17	Instructions SIMD	22
16	Jeux d'instruction	SIMD 21
18	Mémoire dynamiques (DRAM) .	24
17	Mémoire	23
19	Infiniband	28
18	Réseaux d'in	ter-
	connexion	27

. 35

. 38

. 37

40

41

42

. 43

Table des matières

21	Quadrics	25	Cartes d'accélé- ration graphique
	Ethernet		Conclusion
23	Topologie		
24	Systèmes reconfigurables	26	Conclusion
23	Les systèmes re-	28	Défis futurs
	configurables 33	29	Minute de publicité
25	Configurables 33 Cray XD1		Minute de publicité
		30	

