School of Computing and Information Systems The University of Melbourne COMP30027 Machine Learning (Semester 1, 2021)

Week 3

1. Approximately 1% of women aged between 40 and 50 have breast cancer. 80% of mammogram screening tests detect breast cancer when it is there. 90% of mammograms DO NOT show breast cancer when it's **NOT** there¹. Based on this information complete the following table.

Cancer	Probability			
No	99%			
Yes	1%			

Cancer	Test	Probability		
Yes	Positive	80%		
Yes	Negative	••		
No	Positive	?		
No	Negative	90%		

- 2. Based on the results in question 1, calculate the **marginal probability** of 'positive' results in a Mammogram Screening Test.
- 3. Based on the results in question 1, calculate P(Cancer = 'yes' | Test = 'positive'), using the Bayes Rule.
- 4. Given the following dataset:

ID	Outl	Temp	Humi	Wind	PLAY		
Training Instances							
A	S	h	n	F	N		
В	\mathbf{s}	h	h	T	N		
C	o	h	h	F	Y		
D	r	m	h	F	Y		
E	r	c	n	F	Y		
F	r	c	n	T	N		
TEST INSTANCES							
G	О	m	n	T	?		
Н	?	h	?	F	?		

- (i). Explain which of the given instances are 'test' instances and which ones are the 'train' instances.
- (ii). Build a Naïve Bayes model for the given training instances.
- 5. Using the Naïve Bayes model that you developed in question 4, classify the given test instances.
 - (i). No smoothing.
 - (ii). Using the "epsilon" smoothing method.
 - (iii). Using "Laplace" smoothing ($\alpha = 1$)

¹ Remember these numbers are not accurate and simplified to ease the calculations in this question.