

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Carry-lookahead and Prefix adders - 2

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Carry-lookahead and Prefix adders - 2

Reetinder Sidhu

Department of Computer Science and Engineering

CARRY-LOOKAHEAD AND PREFIX ADDERS - 2

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - Carry-lookahead and Prefix adders 2
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

Carry-Lookahead Adder

CARRY-LOOKAHEAD AND PREFIX ADDERS - 2 Scaling Carry-Lookahead Adders

- Ripple carry adders are compact but slow
- Carry-lookahead adders are fast enough but difficult to scale to large sizes

CARRY-LOOKAHEAD AND PREFIX ADDERS - 2 Scaling Carry-Lookahead Adders

- Ripple carry adders are compact but slow
- Carry-lookahead adders are fast enough but difficult to scale to large sizes
- One solution is a hybrid approach:
 - Split the adder into a number of blocks
 - Use carry-lookahead technique to add bits in each block
 - Combine the blocks together using ripple carry technique

Carry-lookahead for blocks which are combined using ripple carry technique:

Each 4-bit block can be a carry-lookahead adder

- Each 4-bit block can be a carry-lookahead adder
- Critical path is from a_0 , b_0 and c_{in} to s_{31}

- Each 4-bit block can be a carry-lookahead adder
- Critical path is from a_0 , b_0 and c_{in} to s_{31}
- So it is important to compute c_3, c_7, \ldots, c_{27} quickly

- Each 4-bit block can be a carry-lookahead adder
- Critical path is from a_0 , b_0 and c_{in} to s_{31}
- So it is important to compute c_3, c_7, \ldots, c_{27} quickly
- Not so important to compute sum outputs s_0 to s_{30} quickly

- Each 4-bit block can be a carry-lookahead adder
- Critical path is from a_0 , b_0 and c_{in} to s_{31}
- So it is important to compute c_3, c_7, \ldots, c_{27} quickly
 - So use carry lookahead approach to compute above carry values
- Not so important to compute sum outputs s_0 to s_{30} quickly

- Each 4-bit block can be a carry-lookahead adder
- Critical path is from a_0 , b_0 and c_{in} to s_{31}
- So it is important to compute c_3, c_7, \ldots, c_{27} quickly
 - So use carry lookahead approach to compute above carry values
- Not so important to compute sum outputs s_0 to s_{30} quickly
 - So use ripple carry technique inside each block as well to compute the sum outputs

CARRY-LOOKAHEAD AND PREFIX ADDERS - 2

Block structure

- $c_{out} = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_{in}$ = $g_3 + p_3(g_2 + p_2g_1 + p_2p_1g_0) + p_3p_2p_1p_0c_{in}$ = $g_3 + p_3(g_2 + p_2(g_1 + p_1g_0)) + p_3p_2p_1p_0c_{in}$
- Logic circuit for above Boolean formula shown in figure

- Critical path is from a_0 , b_0 and c_{in} to s_{31}
- Three parts of the critical path delay are the time required to:
 - compute various p and g
 - for carry to propagate from c₀ to c₂₇
 - compute sum s₃₁

- Time required to compute various p and g:
 - ► Compute p_i and g_i (0 ≤ i < 4) in each block in time t_{pg}
 - ► Compute g_{3:0} in each block in time t_{pg block}

- Time required for carry to propagate from c₀ to c₂₇:
 - In each block, c_{in} propagates through an AND gate and an OR gate to emerge as c_{out} in time t_{AND OR}
 - Since carry propagates in above manner through first seven blocks, time required is 7t_{AND OR}

- Time required to compute sum s₃₁:
 - Once c₂₇ is available, it needs to propagate through the four full adders, each of which takes time t_{EA}
 - ► So total time required is 4t_{FA}
- So critical path delay is:
 - $t_{CLA} = t_{pg} + t_{pg_block} + 7t_{AND_OR} + 4t_{FA}$

- Generalizing, if we assume an *N*-bit adder is constructed using *k*-bit blocks:
 - $\frac{N}{k}$ blocks each if size k will be used
 - ► Hence critical path delay would be:

$$t_{CLA} = t_{pg} + t_{pg_block} + (\frac{N}{k} - 1)t_{AND_OR} + kt_{FA}$$

