Statistical NLP

CSE 256, Spring 2019

Lecture 2: Language Modeling (part 1)

Ndapa Nakashole, UCSD 3 April 2019

Announcements

- Reading for today
 - Michael Collins: language modeling notes
- Programming assignment one will be on TritonEd today
- Updated TA list
 - Farheen Ahluwalia [ddfahluwal@eng.ucsd.edu]
 - Jimmy Ye [jiy 162@eng.ucsd.edu]
 - Sharathabhinav Dharmaji sdharmaj@ucsd.edu]
 - Tayal, Piyush [ptayal@ucsd.edu]

A Quick Review of Probability (1/2)

- Sample Space: (e.g., \mathcal{X} , \mathcal{Y})
- Random Variables: (e.g., X, Y)
- Typical Statement:

"random variable X takes value $x \in \mathcal{X}$ with probability p(X = x)" or simply, p(x)

A Quick Review of Probability (2/2)

- Joint Probability: p(X = x, Y = y)
- Conditional Probability: p(X = x | Y = y)= $\frac{p(X=x,Y=y)}{p(Y=y)}$

Always true:

$$p(X = x, Y = y)$$

= $p(X = x | Y = y).p(Y = y)$
= $p(Y = y | X = x).p(X = x)$

Sometimes true:

$$p(X = x, Y = y)$$

$$= p(X = x).p(Y = y)$$

The language modeling problem

 \bullet \mathcal{V} is a finite vocabulary

E.g.,
$$V = \{the, man, a, girl, telescope, park, \ldots\}$$

• V^{\dagger} is a set of sequences

the man STOP

the man saw STOP

the the STOP

the man saw the girl with the telescope STOP

The language modeling problem (continued)

 A language model is a probability distribution over sequences of words (sentences)

p: (sequence of words) $\to \mathbb{R}$

- $p(x) \ge 0 \text{ for all } x \in \mathcal{V}^{\dagger}$
- $\bullet \quad \sum_{x \in \mathcal{V}^{\dagger}} p(x) = 1$

Language modeling:

Estimate p from example sequences

The language modeling problem (continued)

- Input: $x_{1:n}$ ("training data")
- Output: $p: \mathcal{V}^{\dagger} \to \mathbb{R}^+$
- p should be a measure of plausibility (not grammaticality).

```
p(\text{the STOP}) = 10^{-12}
p(\text{the man STOP}) = 10^{-8}
p(\text{the man saw the STOP}) = 2 \times 10^{-8}
p(\text{the girl saw saw STOP}) = 10^{-15}
\dots
p(\text{the girl walked to the park STOP}) = 2 \times 10^{-9}
\dots
```


• Why is this a useful thing to do?

Noisy channel model

$$p(\boldsymbol{d}) \leftarrow \text{source model}$$

 $p(\boldsymbol{o}|\boldsymbol{d}) \leftarrow \text{channel model}$

$$d^* = \arg \max_{\mathbf{d}} p(\mathbf{d}|\mathbf{o})$$

$$= \arg \max_{\mathbf{d}} \frac{p(\mathbf{o}|\mathbf{d}) \cdot p(\mathbf{d})}{p(\mathbf{o})}$$

$$= \arg \max_{\mathbf{d}} p(\mathbf{o}|\mathbf{d}) \cdot p(\mathbf{d})$$

When the source is language

- When the source is language
 - the source model is a language model

Noisy Channel Example: Speech Recognition

 Source generates sequence of words; channel produces sound waves.

Acoustic confusions: from the channel model p(a|w)

word sequence $\log p(acoustics \mid word \; sequence)$	ience)
the station signs are in deep in english	-14732
the stations signs are in deep in english	-14735
the station signs are in deep into english	-14739
the station 's signs are in deep in english	-14740
the station signs are in deep in the english	-14741
the station signs are indeed in english	-14757 ← ●
the station 's signs are indeed in english	-14760
the station signs are indians in english	-14790
the station signs are indian in english	-14799
the stations signs are indians in english	-14807
the stations signs are indians and english	-14815

Translation: codebreaking?

"Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized methods in cryptography—methods which I believe succeed even when one does not know what language has been coded—one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.' "

Warren Weaver (1947)

Noisy Channel Example: Machine Translation

Source: generates sequence of English words

Other noisy channel models

- Handwriting recognition, OCR
- Grammar/spelling correction
- Document summarization
- Dialog generation

•

A Naive Language Model

- We have N training sentences
- For any sentence x_1, \ldots, x_n ,
 - $c(x_1, \dots x_n)$: \leftarrow number of times the sentence is seen in our training data

• A naive estimate:

$$p(x_1 \dots x_n) = \frac{c(x_1 \dots x_n)}{N}$$

A Naive Language Model: is it a well-formed LM?

- It is a well-formed language model but ...
- Assigns probability zero to any sentence not in the training data
- Need models that generalize to new test sentences
 - (i.e., sentences we have not seen before)

- The language modeling problem
- N-gram models

Markov Processes

- We have sequence of random variables X_1, X_2, \dots, X_n . -each random variable can take any value in a finite set \mathcal{V} -for now we assume the length n is fixed (e.g., n=100).
- Our goal is to model the joint probability:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $|\mathcal{V}|^n$ possible sequences of of length n!

Chain Rule

$$p(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \prod_{i=2}^{n} P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

$$P(X_1 = x_1) \cdot P(X_2 = x_2 | X_1 = x_1) \cdot P(PX_3 = x_3 | X_2 = x_2, X_1 = x_1) \dots$$

First-order Markov Processes

$$p(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

$$\stackrel{\text{assumption}}{=} P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_{i-1} = x_{i-1})$$

The first-order Markov assumption:

$$P(X_i = x_i)|X_1 = x_1 \dots X_{i-1} = x_{i-1})$$
assumption
$$= P(X_i = x_i|X_{i-1} = x_{i-1})$$

Second-order Markov Process

$$P(X_{1} = x_{1}, X_{2} = x_{2}, \dots X_{n} = x_{n})$$

$$\stackrel{\text{assumption}}{=} P(X_{1} = x_{1}) \times P(X_{2} = x_{2} | X_{1} = x_{1})$$

$$\times \prod_{i=3}^{n} P(X_{i} = x_{i} | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

$$= \prod_{i=1}^{n} P(X_{i} = x_{i} | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

(For convenience we assume $x_0 = x_{-1} = *$, where * is a special 'start' symbol)

Modeling variable length sequences

- We would like the length of the sequence, n to also be a random variable
- Simple solution: always define $X_n = STOP$ where STOP is a special symbol
- Then use a Markov process as before:

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$\stackrel{\text{assumption}}{=} \prod_{i=1}^n P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

$$(\text{assume } x_0 = x_{-1} = *)$$

Markov Models == n-gram Models

(n-1) th-order Markov assumption $\equiv n$ -gram model

- Unigram model is n = 1 case \rightarrow no conditioning on previous words
- For a long time, trigram models (n = 3) were widely used.
- 5-gram models (n=5) not uncommon in phrase-based MT

- The language modeling problem
- N-gram models

Acknowledgements

- Includes content from
 - Michael Collins
 - Noah Smith
 - Dan Klein
 - and many others indirectly ...