Glycogen and body hydration status are confounders of liver shMOLLI T₁ measurements

Ferenc E Mózes¹, Elizabeth M Tunnicliffe¹, Ladislav Valkovič^{1,2}, Michael Pavlides^{1,3}, Matthew D Robson^{1,4}

¹University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK, ²Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia, ³Translational Gastroenterology Unit, University of Oxford, Oxford, UK, ⁴Perspectum Diagnostics, Oxford, UK

Introduction: The global prevalence of non-alcoholic fatty liver disease is estimated to be 20% and rising¹. There is therefore an increased need for the development of non-invasive diagnostic, and therapy monitoring methods for this condition as an alternative to liver biopsy, the current reference standard. Recent studies have indicated that shortened Modified Look-Locker Inversion recovery (shMOLLI) T₁ mapping of the liver may be a suitable option^{2,3}. However, the relatively high standard deviation in shMOLLI T₁ measurements of healthy individuals' livers is still unexplained (49 ms in liver² compared to 25 ms in myocardium⁴). We hypothesise that differences in glycogen and body hydration between participants contribute to this standard deviation. The aim of this study was thus to explore the effects of liver glycogen concentration and hydration changes on liver shMOLLI T₁ values in healthy participants.

Methods: Eight healthy volunteers (3 female, mean age = 31 ± 7 yrs) underwent shMOLLI T₁ mapping, T₂* mapping, MRS and non-localised **PDFF** abundance 13C spectroscopy on a 3 T imager at five defined time points (fig 1): 2 hours after the consumption of a 1300 kcal meal, 12 hours after the first scan after an overnight fasting period, consecutively 2 hours after exercise on a stationary bicycle, then, on a subsequent visit, after 12 hours of fasting including 3 hours of water fasting following another 1300 kcal meal, and finally 1 hour later after drinking 1.5 I of isotonic water. The ratio of the crosssectional area of the inferior vena cava and the aorta was used as a surrogate marker of hydration and glycogen concentrations were derived from the ¹³C MRS data using the phantom replacement method⁵.

Results: All participants had $T_2^* > 17$ ms and their PDFF ranged from 0.27% to

Figure 1 Timing of MRI scans and study procedures

Figure 2 shMOLLI R₁ correlates with both liver glycogen concentration and body hydration status

3.13%. Measured shMOLLI R₁ values correlated positively with glycogen concentration and negatively with hydration, as shown in fig. 2. There was a mean decrease of 35±24 ms between the fed and the fasted shMOLLI T₁ measurements and a mean increase of 19±28 ms between the water fasted and the over-hydrated shMOLLI T₁ measurements. The results suggest a linear model of the form: $R_1[s^{-1}] = 1.399 - 0.088 \times IVC/Ao[s^{-1}] + 0.828 \times Glyco[s^{-1}M^{-1}]$.

Discussion and conclusion: Liver shMOLLI T₁ measurements in healthy volunteers are affected by liver glycogen concentration and hydration status. We expect that our findings will have an impact on preparing MRI study participants more carefully by giving specific instructions before scans. The results also inform interpretation of data from subjects who are dieting and patients with impaired liver glycogen storage.

Acknowledgements: UK Medical Research Council Doctoral Training Award (MR/K501256/1); Scatcherd European Scholarship; RDM Scholars Programme, and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

References: [1] Younossi et al. Hepatol 2016 [2] Banerjee et al. JHepatol 2014 [3] Pavlides et al. JHepatol 2016 [4] Piechnik et al. JCMR 2013 [5] Lei et al. MRM 2007