Assignment 4: CS 215

Devansh Jain	Harshit Varma
190100044	190100055

November 13, 2020

Question 6

Instructions for running the code:

1. Unzip and cd to q6/code, under this find the file named q6.m

2. Run the file, required plots will be generated and saved to the q6/results folder q6i.jpg: Mean and the 4 eigenvectors

q6ii.jpg: Top 10 eigenvalues

comparison_i.jpg: Comparison for i^{th} image

generated_fruits.jpg: 3 generated images of the fruits

Mean and the eigenvectors

Closest Representation:

Let $d = 80 \times 80 \times 3$

Let the sample mean of the original data be $\mu \in \mathbb{R}^d$, the sample covariance matrix of the original data be $C \in \mathbb{R}^{d \times d}$

Let the 4 chosen (normalized) eigenvectors of C be $e_1, e_2, e_3, e_4 \in \mathbb{R}^d$

Let the original images (uncentered) be $\{x_i\}_{i=1}^N$, in this case N=16

Then, the projection of x_i onto the new dimensions will be given by $\sum_{j=1}^4 ((x_i - \mu) \cdot e_j) e_j$.

Now, since the projections are in a mean centered space, to come back into the uncentred space, we need to add μ to get the reconstruction of the original image:

$$r_i = \mu + \sum_{j=1}^{4} ((x_i - \mu) \cdot e_j)e_j$$

Thus, the coefficients used in the linear combination are $cij = (x_i - \mu) \cdot e_j$, now we need to prove that these coefficients indeed minimize the frobenius norm, which is equivalent to minimizing the square of the frobenius norm.

For the i^{th} unrolled image, square of the frobinius norm is given by:

$$f_i^2 = ||x_i - r_i||^2$$

Note that x_i is **exactly** equal to $\mu + \sum_{j=1}^{d} ((x_i - \mu) \cdot e_j) e_j$ (Sum of projections over **all** the eigenvectors of C), thus:

$$f_i^2 = \left\| \mu + \sum_{j=1}^d ((x_i - \mu) \cdot e_j) e_j - (\mu + \sum_{j=1}^4 ((x_i - \mu) \cdot e_j) e_j) \right\|^2$$

$$= \left\| \sum_{j=1}^d ((x_i - \mu) \cdot e_j) e_j - \sum_{j=1}^4 ((x_i - \mu) \cdot e_j) e_j \right\|^2$$

$$= \left\| \sum_{j=5}^d ((x_i - \mu) \cdot e_j) e_j \right\|^2 = \left\| \sum_{j=5}^d c_{ij} e_j \right\|^2$$

Since any pair of e_i s are orthogonal, and e_i are unit vectors,

$$f_i^2 = \left\| \sum_{j=5}^d c_{ij} e_j \right\|^2 = \sum_{j=5}^d c_{ij}^2 = \sum_{j=5}^d ((x_i - \mu) \cdot e_j)^2$$

Thus we need to **minimize** $\sum_{j=5}^{d} ((x_i - \mu) \cdot e_j)^2$

Now, the variance of the projected data which PCA maximizes is $\sum_{j=1}^{4} ((x_i - \mu) \cdot e_j)^2$

Since,

$$x_{i} = \mu + \sum_{j=1}^{d} ((x_{i} - \mu) \cdot e_{j})e_{j}$$
$$(x_{i} - \mu)^{2} = (\sum_{j=1}^{d} ((x_{i} - \mu) \cdot e_{j})e_{j})^{2}$$

Since any pair of e_i s are orthogonal, and e_i are unit vectors,

$$= \sum_{j=1}^{d} ((x_i - \mu) \cdot e_j)^2 = \sum_{j=1}^{4} ((x_i - \mu) \cdot e_j)^2 + \sum_{j=5}^{d} ((x_i - \mu) \cdot e_j)^2$$

$$(x_i - \mu)^2 = constant = \sum_{j=1}^{4} ((x_i - \mu) \cdot e_j)^2 + \sum_{j=5}^{d} ((x_i - \mu) \cdot e_j)^2$$

Thus, **maximizing** the variance of the projected data: $\sum_{j=1}^{4} ((x_i - \mu) \cdot e_j)^2$ is same as **minimizing** the frobenius norm of the difference: $\sum_{j=5}^{d} ((x_i - \mu) \cdot e_j)^2 = f_i^2$.

Thus, in effect, PCA minimizes the frobenius norm of the difference between the projected and the actual image.

We follow the same way to reconstruct the images in our algorithm.

Let $E = [e_1 \ e_2 \ e_3 \ e_4]^T \in \mathbb{R}^{d \times 4}$, let $X \in \mathbb{R}^{d \times 16}$ contain the mean centered data, then $A = X^T E \in \mathbb{R}^{16 \times 4}$, where $A_{ij} = c_{ij}$, and thus the reconstructed data $\hat{X} = \mu + EA^T \in \mathbb{R}^{d \times 16}$, here μ is added to each column of EA^T .

In MATLAB:

% data is the mean centered data
% Q4 contains the 4 eigenvectors, coeffs contain the required coefficients
coeffs = data' * Q4; % 16x4
data_reconstructed = mu + Q4*coeffs';

We obtain the following reconstructions:

Image: 1

Image: 2

Image: 3 Image: 4 Original Reconstructed Original Reconstructed Image: 5 Image: 6 Original Original Reconstructed Reconstructed Image: 7 Image: 8 Original Original Reconstructed Reconstructed Image: 9 Image: 10 Reconstructed Original Reconstructed

Image: 12

Image: 11 Original Reconstructed Original Reconstructed Image: 13 Image: 14 Original Original Reconstructed Reconstructed Image: 15 Image: 16 Original Reconstructed Original Reconstructed

Generating new images:

For generating new images, we need to sample data in the reduced domain and then project it back into the original domain.

In the projected domain, each point looks like $\mathbf{c} = [c_1 \ c_2 \ c_3 \ c_4]^T \in \mathbb{R}^4$, to project this back into the original domain (\mathbb{R}^d) :

$$x_{gen} = \mu + \sum_{j=1}^{4} c_j \mathbf{e_j}$$

Thus, we need to sample \mathbf{c} .

We assume that $c \sim \mathcal{N}(\mathbf{0}, C)$ (A 0-mean multivariate gaussian with covariance matrix $C \in \mathbb{R}^{4\times 4}$)

We take $C = diag([\lambda_1, \lambda_2, \lambda_3, \lambda_4])$, since the variance of the original data along the chosen eigenvectors is given by the corresponding eigenvalues.

Now we sample random vectors \mathbf{c} from this multivariate gaussian, project back to the original space and plot the images.

We achieve the following results which are different, but representative of the dataset:

Generated fruits

Figure 1: Generated images