Coupling Towards The Past: Local Sampling from Markov Chains

Poster presenter: Chunyang Wang

Based on joint works with Weiming Feng, Heng Guo, Hongyang Liu, Jingcheng Liu, Jiaheng Wang, Yitong Yin and Yixiao Yu

1 Nanjing University

2 the University of Hong Kong

3 the University of Edinburgh

Spin Systems and Gibbs sampling

graph
$$G = (V, E)$$
 $q \ge 2$ states
configuration $\sigma \in [q]^V$

external fields $\lambda_v \in \mathbb{R}^q_{\geq 0}$ for each $v \in V$

interaction matrix $A_e \in \mathbb{R}^{q \times q}_{\geq 0}$ for each $e \in E$

weight:
$$w(\sigma) = \prod_{v \in V} \lambda_v(\sigma(v)) \prod_{(u,v) \in E} A_e(\sigma(u), \sigma(v))$$
partition function: $Z = \sum_{\sigma \in [q]^V} w(\sigma)$
Gibbs distribution: $\mu(\sigma) = \frac{w(\sigma)}{Z}$

(Systematic Scan) Gibbs Sampling/Glauber Dynamics

start with arbitrary configuration σ with $w(\sigma) > 0$; at each time $1 \le t \le T$:

 $\begin{array}{ll} \text{pick the vertex } v = v_{t \mod n}; \text{ (assume } V = \{v_0, ..., v_{n-1}\}); \\ \text{resample } \sigma_v \sim \mu_v \Big(\cdot \mid \sigma_{V \setminus \{v\}} \Big); \\ \sigma; & \text{converges to } \mu \text{ as } T \rightarrow \infty! \\ \end{array}$

return σ :

Coupling Towards The Past (CTTP)

Idea: Imagine the chain runs from the infinite past to time 0, can we somehow deduce its final state (distributed as μ)?

Local Uniformity (Marginal Lower Bound) ^µ

$$\begin{split} \forall c \in [q], \quad & \mu_{v}^{\min}(c) \triangleq \min_{\mu(\sigma_{V \setminus \{v\}}) > 0} \mu_{v}\left(c \mid \sigma_{V \setminus \{v\}}\right) \\ \theta - \text{(locally) uniform: } \sum_{c \in [q]} \mu_{v}^{\min}(c) \geq \theta \end{split}$$

With probability θ , an update can be directly resolved!

Otherwise, we need to know its neighbors' states to determine...

sufficient condition for termination: $(1 - \theta)\Delta \le 1$ (Δ : maximum degree of graph)

a perfect (no bias) local (produces local samples within local time) sampler

a direct-sum style decomposition of Markov chains:

resolving a single update takes O(1/n) time of learning the entire configuration

naming: hidden (default) grand coupling + backward deduction of states

Application: Deterministic Counting

CTTP often gives exponential tail bound: $\Pr[t_{\text{run}} \ge T] \le \exp(-O(T))$

truncate up to
$$K = O_{\Delta} \left(\log \frac{n}{\varepsilon} \right)$$
 random bits: ε -approximate marginals

brute force enumeration

→ efficient deterministic approximate counting matching MCMC bounds also applies to problems with high-order constraints

Hypergraph Independent Sets (HIS)

Let $H = (V, \mathcal{E})$ be a hypergraph.

 $S \subseteq V$ is a (weak) independent set if $S \cap e \neq e$ for all $e \in V$.

We obtain optimal (on the exponent) deterministic approximate counting algorithms for k-uniform (|e| = k for all $e \in \mathcal{E}$) HIS:

Hypergraph independent sets	Reference	Bound	Running time
Randomised counting / sampling	[BDK08, BDK06]	$\Delta \le k - 2$	$\tilde{O}(n^2) / O(n \log n)$
	[HSZ19, QWZ22]	$\Delta \lesssim 2^{k/2}$	$\tilde{O}(n^2) / O(n \log n)$
	[BGG ⁺ 19]	$\Delta \leq k$	$n^{O(\log(k\Delta))}$
Deterministic counting	[JPV21b]	$\Delta \lesssim 2^{k/7}$	$n^{\mathrm{poly}(k,\Delta)}$
	[HWY23]	$\Delta \lesssim 2^{k/5}$	$n^{\mathrm{poly}(k,\Delta)}$
	Our result	$\Delta \lesssim 2^{k/2}$	$n^{\operatorname{poly}(k,\Delta)}$
Hardness	[BGG ⁺ 19]	$\Delta \geq 5 \cdot 2^{k/2}$ assuming $\mathbf{P} \neq \mathbf{NP}$	

Application: Analytical Stability

CTTP provides a direct-sum style decomposition of the Gibbs measure. lift to the complex plane

→ analytical stability of certain polynomials matching MCMC bounds

Hypergraph Independence Polynomial (HIP)

Let $H = (V, \mathcal{E})$ be a hypergraph and Ω collect its independent sets. The (univariate) independence polynomial $Z_H : \mathbb{C} \to \mathbb{C}$ of H is given as:

$$Z_H(\lambda) = \sum_{S \subseteq \Omega} \lambda^{|S|}$$

Complex zeroes of $Z_H(\lambda)$ are often called Lee-Yang zeroes.

We obtain optimal (on the exponent) zero-free regions for k-uniform HIP: [GMP+24] Our result

[Zhang'23] Rapid mixing of Markov chains

[HSZ19, HSW21, QWZ22, FGW+23] **Extending CTTP: Local Sampling near Criticality**

NP-Hard [BGG+10]

The requirement of local uniformity may be restrictive for certain models. improved grand coupling and deduction rules

 \rightarrow efficient local samplers near criticality for Ising model and q-colorings

Instance	Tractable	Our result	
	Global sampling	Local sampling	(local sampling)
Ising model	$\beta \in \left(\frac{\Delta - 2}{\Delta}, \frac{\Delta}{\Delta - 2}\right)$	$\beta \in \left(1 - \frac{1}{\Theta(\Delta^2)}, 1 + \frac{1}{\Theta(\Delta^2)}\right)$	$\beta \in \left(\frac{\Delta - 0.5}{\Delta}, \frac{\Delta}{\Delta - 0.5}\right)$
q-colorings	$q \ge 1.809\Delta$	N/A	$q \ge 65\Delta$

- first local sampler for near-critical Ising model;
- first local sampler for q-coloring (also near-critical);
- perfect samplers:
- expected linear running time: $O(\Delta \cdot |\Lambda|)$ for Ising; $O(\Delta^2 q \cdot |\Lambda|)$ for q-colorings.
- Towards derandomising Markov Chain Monte Carlo. Weiming Feng, Heng Guo, Chunyang Wang, Jiaheng Wang, Yitong Yin. In **SICOMP** '25 (preliminary version in **FOCS** '23). Phase transitions via Complex Extensions of Markov Chains. Jingcheng Liu, Chunyang Wang, Yitong Yin, Yixiao Yu. In **STOC** '25. Local Gibbs Sampling beyond Local Uniformity. Hongyang Liu, Chunyang Wang, Yitong Yin. To appear in **SODA** '26.