Simulation Parameter / Observable / Task (*) directly observable in experiments.	Methodology Used	Example Material / Type (if applicable)	Notes / Example references
Decomposition and binding / chemisorption mechanisms/mode (kinetics and thermodynamics)	DFT/HF/post-HF/ML + kMC+ MD Hybrid ONIOM method, CCSD(T), MP2, B3LYP & HF/6-31G(d,p) Climbing image-(CI)-NEB, RMD simulations using LAMMPS	Various ALD (mainly Al2O3) + TiO2 + Cu(acac) ₂ , Ti(CpMe ₅) + ZrO ₂	76, 169, 75, 131, 77, 80, 171
Growth rate*, and temperature dependence (kinetics) of growth rate*; based on chemisorption process	DFT + kMC+ MD CFD Mass balance; LBM Monte Carlo	TiO2 ALD Various ALD Zinc Oxide	73,78,83,93,96,157, 158,159,160,161,16 2,163,164,165, 97, 95
Surface desorption, diffusion and reaction rates	Mainly DFT + kMC + MD	Various ALD/ALE	Also involves reading from tables
Binding affinity and sticking coefficients of adsorbate (precursor/etchant/inhibitor)	mainly DFT + kMC and MD Potential extension to ML Empirical and numerical (ANSYS)	HfO2 ALD, Pt precursors on graphene	70,74,79,100,162,1 66,167,168, 148, 147
Film (materials) properties: uniformity, roughness, density, temperature profile (thermal conduction), chemical composition (element analysis)*	CFD and numerical, Mass balance		
Designing (/screening) new ALD precursors, ALE etchants or AS inhibitors (SMIs, SAMs)	DFT and ML (combined with structure prediction) only	Silicon and Carbon precursors	<u>178</u>
Predict cation ratios in ternary oxides (elemental analysis)	Mass balance; LBM Monte Carlo		
Carrier gas flow and temperature profile	GCM/CAMD; CFD; MC Mass balance	HfO2 ALD, Alumina	70,74,79,100,162,1 66,167,168, 149
Modelling the morphology evolution	Mass balance; LBM Monte Carlo		56,66,86,94,179,18 0
Modelling the precursor exposure on 3D substrates	Continuum Fluid Dynamics (CFD) and ANSYS		56,66,86,94,179,18 0
Surface coverage by the adsorbate Surface coverage as a function of time or rotation speed (spatial ALE of Al2O3)	DFT+kMC Continuum Fluid Dynamics (CFD)	Various ALD/ALE	Coatings 2023, 13, 558v Reactor-scale

Design and operation variables, e.g. the gap distance, purge and precursor gas flow rates, substrate velocity, and vacuum pressure have on the substrate film etching per cycle and uniformity.	Continuum Fluid Dynamics (CFD)	spatial ALE of Al2O3	Coatings 2023, 13, 558 v
Precursor pressure inside the reactor Simulated quartz crystal microbalance (QCM) and quadrupole mass spectrometry (QMS) plots	Continuum Fluid Dynamics (CFD)	TiO2 ALD from titanium tetraisopropoxide and titanium tetrachloride precursors.	Reactor-scale
Growing of nanoclusters	DFT, QM/MM calculations using ONIOM implementation (DFT and classical MM)	Copper oxide nanoclusters on porphyrin	<u>175</u>

^{*} directly observable in experiments.

Key parameters / observables and reference methodology*

Atomistic (nano-mesoscale)

- Energy barrier (kinetics), and reaction energies (thermodynamics) (DFT and kMC)
- Sticking coefficient, surface coverage and binding affinity
- etc.

Continuum (meso-macroscale)

- Surface coverage (CFD)
- Film uniformity, roughness, density, temperature profile (thermal conduction), chemical composition

Glossary: Continuum Fluid Dynamics CFD; Group Contribution Method GCM; Computer-Aided Molecular Design CAMD; The Lattice Boltzmann Method LBM; (Kinetic) Monte Carlo kMC/MC; Hartree-Fock HF

^{*} directly observable in experiments.

References

A comprehensive overview and relevant studies can be found in Nanomaterials 2022, 12, 831 (See Table 2)

Also see Coatings 2023, 13, 558

Review of atomic layer deposition process, application and modeling tools - ScienceDirect

Reactor scale simulations of ALD and ALE: Ideal and non-ideal self-limited processes in a cylindrical and a 300 mm wafer cross-flow reactor | Journal of Vacuum Science & Technology A | AIP Publishing