By the proposed method or hints (if any), or otherwise, evaluate each of the following integrals, giving all your answers in exact forms wherever appropriate.

1. $\int \frac{\ln x}{x} dx$	[3]
U= lnx dx = 1	
$= \int u \cdot du = \frac{1}{2} u^2 + C$	
$= \frac{1}{2} (\ln x)^2 + C$	

2. $\int \frac{1}{x^3 - x} dx$; by first decomposing into partial fractions	[5]
$\frac{1}{x^{3}-x} = \frac{1}{x(x^{2}-1)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$	******
= A(x+1)(x-1) + BX(X-1) + c-x(-x+1)	
$X=0$, \Rightarrow $A=-1$, $X=4$, \Rightarrow $C=\frac{1}{2}$ $X=-1$, \Rightarrow	
$\Rightarrow \int \frac{1}{x^2 - x} dx = \int \frac{-1}{x} + \frac{2}{x + 1} + \frac{2}{x - 1} dx$	
= - ln (x + = ln x + 1 + = ln x - 1 + c	

3.	$\int_2^3 \frac{x}{x^2 + 1} \mathrm{d}x;$	by substitution	[5]
		22 X ² +1 dx	
		(x²+1)] ₂	
	$=\frac{1}{2}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)$, 10]-[ln5])	
	= 1 lnz	9"	······································
4.	-9		
	$\int_2^3 \frac{x}{x^2 - 1} \mathrm{d}x$		[5]
	$= \frac{1}{2} \int_{2}^{3}$	x ² -1 dx	
	$= \frac{1}{2} \int_{2}^{3}$	$\left\lfloor z^2 - 1 \right\rfloor_2^3$	
	$= \frac{1}{2} \int_{0}^{2}$ $= \frac{1}{2} \left(\ln \frac{1}{2} \right)$		
	$= \frac{1}{2} \int_{0}^{2}$ $= \frac{1}{2} \left(\ln \frac{1}{2} \right)$	x ² -1] ₂	

	$5. \int_0^4 x\sqrt{2x+1} \mathrm{d}x$	[5]
	$u = \sqrt{2x+1}$ $u^2 = 2x+1$ $x = \frac{u^2-1}{2}$	*****
	x=a, M=1 dx	******
	x=4, U=}	******
1	······································	
	$= \int_{1}^{3} \frac{n^{2}-1}{2} \cdot u u du$	
	$= \frac{1}{2} \int_{1}^{3} (u^{4} - u^{2}) du = \frac{1}{2} \left[\frac{u^{5} - u^{3}}{5} \right]_{1}^{3}$	
	$= \frac{1}{2} \left(\frac{198}{5} + \frac{2}{15} \right) = \frac{298}{15}$	
4	6. $\int \frac{x}{x^2 + x + 1} dx$;	[5]
	$\int x^2 + x + 1$	
	$\int \frac{1}{2}(2x+1) - \frac{1}{2}$ $\frac{1}{2}(2x+1) - \frac{1}{2}$ $\frac{1}{2}(2x+1) - \frac{1}{2}$ $\frac{1}{2}(2x+1) - \frac{1}{2}$	
	$= \frac{1}{2} \int_{-\infty}^{\infty} \left[x^{2} + x + 1 \right] - \frac{1}{2} \int_{-\infty}^{\infty} \left(x + \frac{1}{2} \right)^{2} + \frac{3}{4} dx$	
*	$=\frac{1}{2}\left(\ln\left(\frac{2\lambda^{2}+2\lambda+1}{2\lambda^{2}}\right)-\frac{1}{2\lambda^{2}}\right)\left(\frac{\lambda^{2}+\frac{1}{2\lambda^{2}}}{\sqrt{2\lambda^{2}}}\right)^{2}+\frac{1}{2\lambda^{2}}$	
*.	$= \frac{1}{2} \left[\ln \left(x^2 + x + 1 \right) - \frac{2}{3} \cdot \sqrt{\frac{2}{4}} + \tan \left(\frac{2\sqrt{3}}{3} \left(x + \frac{1}{2} \right) \right) + C \right]$	
	$= \frac{1}{2} \ln \left x^2 + 2(+1) \right - \frac{\sqrt{3}}{3} + m^{-1} \left(\frac{2\sqrt{3}}{3} (x + \frac{1}{2}) \right) + C$	
	3	

7. $\int_0^{\pi^2} \sin \sqrt{x} dx$; by using a suitable substitution, followed by integration by parts	
$M = \int x \qquad x = 0, M = 0 \qquad x = \pi^{2} \qquad M = \pi$ $M = x \qquad dx \qquad dx \qquad dx$	
L'= / dx olv	
$\rho = \frac{1}{2}$ $\frac{1}{2}$	
Jo sinu · zu du = zu (-1001) - Jo (-21001) du	
24 (-1054) - 30 (-220)4) 44	
24451hU	
z -600M = [-24 600M + 251h M].	
٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠	
= [277]-[0] = 27	
8. $\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^{3}} dx$	
δ . $\int_1 \frac{1}{x^3} dx$	
1 (1)	
$u = \frac{1}{x} \qquad \frac{dy}{dx} = -x^{-2} \qquad du = -x^{-2}dx$	
X = 1, $M = 1$	
x(=2, u = 1	
$= \int_{-\infty}^{\infty} e^{u} u^{3} \left(-u^{2}\right) du$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{\frac{3}{3}} \left(-u^{\frac{1}{2}}\right) du$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{\frac{3}{3}} \left(-u^{\frac{1}{2}}\right) du$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{\frac{3}{3}} \left(-u^{\frac{1}{2}}\right) du$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{3} \cdot (-u^{2}) du$ $= \int_{\frac{1}{2}}^{1} u e^{u} du = \left[u e^{u} - e^{u} \right]_{\frac{1}{2}}^{1}$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{3} \cdot (-u^{2}) du$ $= \int_{\frac{1}{2}}^{1} u e^{u} du = \left[u e^{u} - e^{u} \right]_{\frac{1}{2}}^{1}$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{3} \cdot (-u^{2}) du$ $= \int_{\frac{1}{2}}^{1} u e^{u} du = \left[u e^{u} - e^{u} \right]_{\frac{1}{2}}^{1}$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{\frac{3}{3}} \left(-u^{\frac{1}{2}}\right) du$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{3} \cdot (-u^{2}) du$ $= \int_{1}^{\frac{1}{2}} u e^{u} du = \left[u e^{u} - e^{u} \right]_{\frac{1}{2}}^{\frac{1}{2}}$ $u = e^{u} = \left[e - e \right] - \left[\frac{1}{2} e^{\frac{1}{2}} - e^{\frac{1}{2}} \right]$ $= \int_{1}^{\frac{1}{2}} u e^{u} du = \left[e - e \right] - \left[\frac{1}{2} e^{\frac{1}{2}} - e^{\frac{1}{2}} \right]$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{3} \cdot (-u^{2}) du$ $= \int_{\frac{1}{2}}^{1} u e^{u} du = \left[u e^{u} - e^{u} \right]_{\frac{1}{2}}^{1}$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{3} \cdot (-u^{2}) du$ $= \int_{1}^{\frac{1}{2}} u e^{u} du = \left[u e^{u} - e^{u} \right]_{\frac{1}{2}}^{\frac{1}{2}}$ $u = e^{u} = \left[e - e \right] - \left[\frac{1}{2} e^{\frac{1}{2}} - e^{\frac{1}{2}} \right]$ $= \int_{1}^{\frac{1}{2}} u e^{u} du = \left[e - e \right] - \left[\frac{1}{2} e^{\frac{1}{2}} - e^{\frac{1}{2}} \right]$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{03} \cdot (-u^{2}) du$ $= \int_{\frac{1}{2}}^{1} u e^{u} du = \left[u e^{u} - e^{u} \right]_{\frac{1}{2}}^{\frac{1}{2}}$ $= \left[e - e \right] - \left[\frac{1}{2} e^{\frac{1}{2}} - e^{\frac{1}{2}} \right]$ $= \frac{1}{2} e^{\frac{1}{2}}$ $= \frac{1}{2} e^{\frac{1}{2}}$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{03} \cdot (-u^{2}) du$ $= \int_{\frac{1}{2}}^{1} u e^{u} du = \left[u e^{u} - e^{u} \right]_{\frac{1}{2}}^{\frac{1}{2}}$ $= \left[e - e \right] - \left[\frac{1}{2} e^{\frac{1}{2}} - e^{\frac{1}{2}} \right]$ $= \frac{1}{2} e^{\frac{1}{2}}$ $= \frac{1}{2} e^{\frac{1}{2}}$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{03} \cdot (-u^{2}) du$ $= \int_{\frac{1}{2}}^{1} u e^{u} du = \left[u e^{u} - e^{u} \right]_{\frac{1}{2}}^{\frac{1}{2}}$ $= \left[e - e \right] - \left[\frac{1}{2} e^{\frac{1}{2}} - e^{\frac{1}{2}} \right]$ $= \frac{1}{2} e^{\frac{1}{2}}$ $= \frac{1}{2} e^{\frac{1}{2}}$	
$= \int_{1}^{\frac{1}{2}} e^{u} \cdot u^{3} \cdot (-u^{2}) du$ $= \int_{1}^{\frac{1}{2}} u e^{u} du = \left[u e^{u} - e^{u} \right]_{\frac{1}{2}}^{\frac{1}{2}}$ $u = e^{u} = \left[e - e \right] - \left[\frac{1}{2} e^{\frac{1}{2}} - e^{\frac{1}{2}} \right]$ $= \int_{1}^{\frac{1}{2}} u e^{u} du = \left[e - e \right] - \left[\frac{1}{2} e^{\frac{1}{2}} - e^{\frac{1}{2}} \right]$	

9. $\int { m e}^{-x} \sin 2x { m d}x$; by applying integration by parts twice	[6]
$u = e^{-x} v' s_1 h_2 x$	
u'=- e-x V=- 1 cos 2x	
$\overline{I} = e^{-x}(-\frac{1}{2}) \cos 2x - \frac{1}{2} \int e^{-x} \cos 2x \ dx$	
1 = e ^{-γ} √ = ιορο - ζ	
u'=-e-V V= \$51h2X	
===== e corx === (= e sinzx + fe = 1/2 sibz	×.)
$I = -\frac{1}{2}e^{-x}\cos 2x - \frac{1}{4}e^{-x}\sinh 2x - \frac{1}{4}I + C$	
$\Rightarrow I = \frac{4}{5} \left(-\frac{1}{2} e^{-x} \cos x - \frac{1}{4} e^{-x} \sinh 2x \right) + C$	
10. $\int_0^{\frac{\pi}{4}} \sin x \cos 2x dx = -\frac{1}{5} e^{-x} \sin x - \frac{2}{5} e^{-x} \cos x + C$	[6]
$U = LOO \times 2 LOO^{2} \times -1 \qquad \frac{cl 4}{cl x} = -\frac{cl 4}{cl x}$	
$x = 0, \ u = 1$ $x = \frac{\sqrt{L}}{4}, \ u = \frac{\sqrt{L}}{4}$	
*:	
$-\int_{1}^{\sqrt{2}} \left(2u^{2}-1\right) du$	
$= \int_{\sqrt{2}}^{\sqrt{2}} (2u^2 - 1) du$	······································
$= \left[2 \times \frac{1}{3} - 1 \right] = \left[\frac{2}{3} - 1 \right] = \left[\frac{2}{3} \times \frac{1}{4} \times \frac{1}{4} \right]$ $= \left[2 \times \frac{1}{3} - 1 \right] = \left[\frac{2}{3} \times \frac{1}{4} \times \frac{1}{4} \right]$	V2 _ V2]
$= \left(2 \times \frac{3}{3} - 1\right) \sqrt{2}$ $= -\frac{1}{3} + \sqrt{2}$	
5	
	1

11. $\int_{-\frac{1}{a}}^{\frac{1}{2}} \frac{x^3 + x^2 - x + 1}{x^4 - 1} dx;$ by first decomposing into partial fractions	[8]
$\frac{\chi^{2} + \chi^{2} - \chi + 1}{(\chi^{2} - 1)(\chi^{2} + 1)} = \frac{A}{\chi - 1} + \frac{B}{\chi + 1} + \frac{C\chi + D}{\chi^{2} + 1}$	
$\chi^{3} + \chi^{2} - \chi + 1 = A(\chi + 1) (\chi^{2} + 1) + B(\chi - 1) (\chi^{2} + 1) + (c\chi + D) (\chi^{2} + 1)$	2-1)
X=1, -2	
-	
X=-[
-1+1+1+1	
$\lambda = 0 + B(-2)(2) + 0 \Rightarrow B = -\frac{1}{2}$	
$x = 0$ $1 = \frac{1}{2}(1) \cdot (1) - \frac{1}{2}(-1)(1) + D(-1) \Rightarrow D = 0$	
$\chi = \sum_{i=1}^{n} (\frac{1}{2})^{n} (\frac{1}{2})^{n} - \sum_{i=1}^{n} (\frac{1}{2})^{n} (\frac{1}{2})^{n} + \sum_{i=1}^{n} (\frac{1}{2})^{n} = 0$	
$8+4-5+1 = \frac{1}{2}(3)(5) - \frac{1}{2}(+)(5) + (20)(3)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
36	
$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\frac{1}{2}}{x_{+1}} + \frac{-\frac{1}{2}}{x_{+1}} + \frac{1}{x_{+1}} dx$	
J-1 X-1 X-1	
7 2	
$= \left[\frac{1}{2} l_{n}[x-1] - \frac{1}{2} l_{n}[x+1] + \frac{1}{2} l_{n}[x^{3}+1] \right] - \frac{1}{2}$	****
$\frac{1}{2} \left(l_n \frac{1}{2} - l_n \frac{3}{2} + l_n \frac{5}{4} \right) - \frac{1}{2} \left(l_n \left(\frac{3}{2} \right) - l_n \left(\frac{1}{2} \right) + l_n \frac{5}{4} \right) \right)$	
- 0 ± 0 =ln3	

...... THE END