沒有星號題的答案見課本後面

Section 1-6

課本 proble 19, 23, 31, 37, 38*, 45*, 47*

38 FTTTFFTTFT

45

a) Clearly \mathbf{v}_1 , $2\mathbf{v}_1+\mathbf{v}_2\in\operatorname{sp}(\mathbf{v}_1,\ \mathbf{v}_2)$ and therefore $\operatorname{sp}(\mathbf{v}_1,\ 2\mathbf{v}_1+\mathbf{v}_2)\subseteq\operatorname{sp}(\mathbf{v}_1,\ \mathbf{v}_2)\ .$

Also, $\mathbf{v}_1 = \mathbf{l}\mathbf{v}_1 + \mathbf{0}(2\mathbf{v}_1 + \mathbf{v}_2)$ and $\mathbf{v}_2 = (-2)\mathbf{v}_1 + \mathbf{1}(2\mathbf{v}_1 + \mathbf{v}_2)$ showing that $\mathbf{v}_1, \mathbf{v}_2 \in \mathrm{sp}(\mathbf{v}_1, 2\mathbf{v}_1 + \mathbf{v}_2)$ and therefore

$$sp(v_1, v_2) \subseteq sp(v_1, 2v_1 + v_2).$$

Thus $sp(v_1, v_2) = sp(v_1, 2v_1 + v_2)$.

b) Clearly \mathbf{v}_1 + \mathbf{v}_2 , \mathbf{v}_1 - $\mathbf{v}_2 \in \operatorname{sp}(\mathbf{v}_1, \mathbf{v}_2)$ and therefore

$$sp(v_1 + v_2, v_1 - v_2) \subseteq sp(v_1, v_2).$$

Also, $\mathbf{v}_1 = \frac{1}{2}(\mathbf{v}_1 + \mathbf{v}_2) + \frac{1}{2}(\mathbf{v}_1 - \mathbf{v}_2)$ and $\mathbf{v}_2 = \frac{1}{2}(\mathbf{v}_1 + \mathbf{v}_2) - \frac{1}{2}(\mathbf{v}_1 - \mathbf{v}_2)$ so $\mathbf{v}_1, \mathbf{v}_2 \in \mathrm{sp}(\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 - \mathbf{v}_2)$ and therefore

$$sp(v_1, v_2) \subseteq sp(v_1 + v_2, v_1 - v_2).$$

Thus $sp(v_1, v_2) = sp(v_1 + v_2, v_1 - v_2)$.

47 Clearly $W_1 \cap W_2$ is nonempty; it contains 0. Let $\vec{v}, \vec{w} \in (W_1 \cap W_2)$. Then $\vec{v}, \vec{w} \in W_1$ and $\vec{v}, \vec{w} \in W_2$, so $\vec{v} + \vec{w} \in W_1$ and $\vec{v} + \vec{w} \in W_2$ since W_1 and W_2 are subspaces. Thus $\vec{v} + \vec{w} \in (W_1 \cap W_2)$. Similarly, $r\vec{v} \in W_1$ and $r\vec{v} \in W_2$. Since W_1 and W_2 are subspaces. Thus $r\vec{v} \in (W_1 \cap W_2)$. Thus W_1 and W_2 are subspaces. Thus $W_1 \cap W_2$ is a subspace of \mathbb{R}^n