RECITATION: REVIEW OF DERIVATIVE AND INTEGRATION RULES

1. Fill out the table below.

$\frac{d}{dx}(e^x) = e^{X}$	$\frac{d}{dx}(\ln(x)) = \frac{1}{x}$	$\begin{vmatrix} \frac{d}{dx} (x^k) = \mathbf{k} \mathbf{x} \\ \text{where } k \neq 0 \end{vmatrix}$
$\frac{d}{dx}(c) = \mathbf{D}$	$\frac{d}{dx}\left(\sin(x)\right) = \cos(x)$	$\frac{d}{dx}(\cos(x)) = -\sin(x)$
where c is a constant $\frac{d}{dx}(\tan(x)) = \sec^2(x)$	$\frac{d}{dx}(\sec(x)) = \mathbf{Se}(x) + \mathbf{an}(x)$	$\frac{d}{dx}\left(\arcsin(x)\right) = $
$\frac{d}{dx}(\arctan(x)) = $	$\frac{d}{dx}\left(f(x)\cdot g(x)\right) =$	$\frac{1 - x^2}{\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right)} = g \cdot f' - f \cdot g'$
1+x2	f.g'+f'.g	g ²
$\frac{\frac{d}{dx}(f(g(x))) =}{\mathbf{f}'(\mathbf{g}) \cdot \mathbf{g}'}$	$\frac{d}{dx}(k \cdot g(x)) = \mathbf{k} \cdot \mathbf{g}(\mathbf{k})$ where k is a constant	$\frac{d}{dx}(f(x) + g(x)) = $ $f' + g'$
$\frac{d}{dx}(\csc(x)) = - \csc(x) \cot(x)$	$\frac{d}{dx}\left(\cot(x)\right) =$	$\frac{d}{dx}(x) = \begin{cases} 1 & x > 0 \end{cases}$
- COLIX/LOUCY/	- LSC (X)	(-1 x20

2. Write the equivalent integral formula where possible.

 $\int \cos(x) dx = \sin(x) + c$

$$\int e^{x} dx = e^{x} + C$$

$$\int \sec^{2}(x) dx = \tan(x) + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int x^{k} dx = \frac{1}{k+1} \times x^{k+1} + C$$

$$\int \frac{1}{\sqrt{1-x^{2}}} dx = \arcsin(x) + C$$

$$\int \sin(x) dx = -\cos(x) + C$$

$$\int \frac{dx}{\sqrt{1+x^{2}}} = \arctan(x) + C$$

1

4-10