AMATH 568 Homework 6

Cade Ballew #2120804

February 16, 2022

1 Problem 1

Considering the boundary-value problem

$$\begin{cases} y_1''(x) + \frac{1}{16}y_1(x) = f(x), & x \in (-\pi, \pi), \\ y_1(-\pi) = 0, \\ y_1(\pi) = 0, \end{cases}$$

for a continuous function $f: [\pi, \pi] \to \mathbb{R}$, we apply the method of variation of parameters to solve for y_1 . Solving the homogeneous equation

$$y_1''(x) + \frac{1}{16}y_1(x) = 0,$$

we get characteristic polynomial $r^2 + 1/16 = 0$, so $r = \pm i/4$ and a general solution is given by $2c_1\cos(x/4) + 2c_2\sin(x/4) = c_1c(x) + c_2s(x)$. Then, by (7.14) in the text, variation of parameters gives that a general solution to our original equation is given by

$$y_1(x) = s(x) \int_{x_0}^x \frac{c(t)f(t)}{W[c,s](t)} dt - c(x) \int_{x_0}^x \frac{s(t)f(t)}{W[c,s](t)} dt + c_1 c(x) + c_2 s(x).$$

First, compute the Wronskian

$$W[c,s](x) = \det \begin{pmatrix} c(x) & s(x) \\ c'(x) & s'(x) \end{pmatrix} = \det \begin{pmatrix} 2\cos\frac{x}{4} & 2\sin\frac{x}{4} \\ -\frac{1}{2}\sin\frac{x}{4} & \frac{1}{2}\cos\frac{x}{4} \end{pmatrix} = \cos^2\frac{x}{4} + \sin^2\frac{x}{4} = 1.$$

Now, we take $x_0 = -\pi$ and impose our boundary conditions.

$$0 = y_1(-\pi) = c_1 c(-\pi) + c_2 s(-\pi) = \sqrt{2}c_1 - \sqrt{2}c_2,$$

so $c_1 = c_2$. Making this substitution,

$$0 = y_1(\pi) = s(\pi) \int_{-\pi}^{\pi} c(t)f(t)dt - c(\pi) \int_{-\pi}^{\pi} s(t)f(t)dt + c_1(c(\pi) + s(\pi)),$$

$$c(\pi) + s(\pi) = 2\sqrt{2}$$
, so $s(\pi)/(c(\pi) + s(\pi)) = c(\pi)/(c(\pi) + s(\pi)) = 1/2$ and $c_2 = c_1 = \frac{1}{2} \int_{-\pi}^{\pi} s(t)f(t)dt - \frac{1}{2} \int_{-\pi}^{\pi} c(t)f(t)dt$.

Thus.

$$\begin{split} y_1(x) &= c(x) \left(-\int_{-\pi}^x s(t) f(t) dt + \frac{1}{2} \int_{-\pi}^\pi s(t) f(t) dt - \frac{1}{2} \int_{-\pi}^\pi c(t) f(t) dt \right) \\ &+ s(x) \left(\int_{-\pi}^x c(t) f(t) dt + \frac{1}{2} \int_{-\pi}^\pi s(t) f(t) dt - \frac{1}{2} \int_{-\pi}^\pi c(t) f(t) dt \right) \\ &= c(x) \left(\int_x^{-\pi} s(t) f(t) dt + \int_{-\pi}^\pi s(t) f(t) dt - \frac{1}{2} \int_{-\pi}^\pi s(t) f(t) dt - \frac{1}{2} \int_{-\pi}^\pi c(t) f(t) dt \right) \\ &+ s(x) \left(\int_{-\pi}^x c(t) f(t) dt - \frac{1}{2} \int_{-\pi}^\pi [c(t) - s(t)] f(t) dt \right) \\ &= c(x) \left(\int_x^\pi s(t) f(t) dt - \frac{1}{2} \int_{-\pi}^\pi [s(t) + c(t)] f(t) dt \right) \\ &+ s(x) \left(\int_{-\pi}^x c(t) f(t) dt - \frac{1}{2} \int_{-\pi}^\pi [c(t) - s(t)] f(t) dt \right). \end{split}$$

2 Problem 2

Considering the nonlinear boundary-value problem

nsidering the nonlinear boundary-value problem
$$\begin{cases} y''(x;\epsilon) + \left(\frac{\sigma}{2}\right)^2 y(x;\epsilon) + \epsilon \sin y(x;\epsilon) = 0, & x \in (-\pi,\pi), \quad 0 < \epsilon \ll 1, \\ y(-\pi) = 1, \\ y(\pi) = 0, \end{cases}$$

we first take $\sigma = 1/2$ and $y(x; \epsilon) = \sum_{n=0}^{\infty} \epsilon^n y_n(x)$. Note that this is a regularly perturbed problem, because it has a solution when we take $\epsilon = 0$ which we can see when solving for $y_0(x)$. Plugging in our expansion for y and matching powers of ϵ , y_0 must satisfy the BVP

$$\begin{cases} y_0''(x) + \frac{1}{16}y_0(x) = 0, & x \in (-\pi, \pi), \\ y_0(-\pi) = 1, \\ y_0(\pi) = 0. \end{cases}$$

We know from problem 1 that a general solution to this problem is given by

$$y_0 = c_1 c(x) + c_2 s(x).$$

Plugging in the boundary conditions, we get the system

$$1 = y_0(-\pi) = \sqrt{2}(c_1 - c_2)$$
$$0 = y_0(\pi) = \sqrt{2}(c_1 + c_2)$$

which gives that $c_1 = \frac{1}{2\sqrt{2}}$, $c_2 = -\frac{1}{2\sqrt{2}}$, so

$$y_0(x) = \frac{1}{2\sqrt{2}}c(x) - \frac{1}{2\sqrt{2}}s(x).$$

Now, looking at the terms with ϵ^1 , we see that y_1 must satisfy the BVP

$$\begin{cases} y_1''(x) + \frac{1}{16}y_1(x) + \sin(y_0(x)) = 0, & x \in (-\pi, \pi), \\ y_1(-\pi) = 0, \\ y_1(\pi) = 0, \end{cases}$$

but this is precisely the BVP that we solved in problem 1 if we take

$$f(x) = -\sin(y_0(x)) = -\sin\left(\frac{1}{2\sqrt{2}}c(x) - \frac{1}{2\sqrt{2}}s(x)\right).$$

Thus, we can use our prior work to conclude that

$$y_1(x) = -c(x) \left(\int_x^{\pi} s(t) \sin \left(\frac{1}{2\sqrt{2}} c(t) - \frac{1}{2\sqrt{2}} s(t) \right) dt - \frac{1}{2} \int_{-\pi}^{\pi} [s(t) + c(t)] \sin \left(\frac{1}{2\sqrt{2}} c(t) - \frac{1}{2\sqrt{2}} s(t) \right) dt \right) - s(x) \left(\int_{-\pi}^{x} c(t) \sin \left(\frac{1}{2\sqrt{2}} c(t) - \frac{1}{2\sqrt{2}} s(t) \right) dt - \frac{1}{2} \int_{-\pi}^{\pi} [c(t) - s(t)] \sin \left(\frac{1}{2\sqrt{2}} c(t) - \frac{1}{2\sqrt{2}} s(t) \right) dt \right).$$

If we instead consider $\sigma=2$, our problem is singularly perturbed, because it is no longer possible to find a function that satisfies the boundary conditions when $\epsilon=0$. More explicitly, the BVP

$$\begin{cases} y_0''(x) + y_0(x) = 0, & x \in (-\pi, \pi), \\ y_0(-\pi) = 1, \\ y_0(\pi) = 0 \end{cases}$$

has characteristic polynomial r^2+1 with roots $r=\pm i$ which yields a general solution of

$$y_0(x) = c_1 \cos x + c_2 \sin x.$$

Imposing the first boundary condition requires $1 = y(-\pi) = -c_1$, but imposing the second requires $0 = y(\pi) = c_1$. Clearly, these cannot both hold simultaneously.

3 Problem 3

3.1 Part a

Now, define an integral operator \mathcal{L} such that $\mathcal{L}f = y_1$ where y_1 is as found in problem 1. Then, by the triangle inequality

$$\begin{split} \|\mathcal{L}f\|_{\infty} &= \max_{-\pi \leq x \leq \pi} \left| c(x) \left(\int_{x}^{\pi} s(t)f(t)dt - \frac{1}{2} \int_{-\pi}^{\pi} [s(t) + c(t)]f(t)dt \right) \right. \\ &+ s(x) \left(\int_{-\pi}^{x} c(t)f(t)dt - \frac{1}{2} \int_{-\pi}^{\pi} [c(t) - s(t)]f(t)dt \right) \right| \\ &\leq \max_{-\pi \leq x \leq \pi} \left\{ |c(x)| \left(\int_{x}^{\pi} |s(t)||f(t)|dt + \frac{1}{2} \int_{-\pi}^{\pi} |s(t) + c(t)||f(t)|dt \right) + |s(x)| \left(\int_{-\pi}^{x} |c(t)||f(t)|dt + \frac{1}{2} \int_{-\pi}^{\pi} |c(t) - s(t)||f(t)|dt \right) \right\}. \end{split}$$

Now, note that $|c(x)|, |s(x)| \le 2$ for all $x \in \mathbb{R}$, so $|c(x) - s(x)|, |c(x) + s(x)| \le 4$ by the triangle inequality as well. Then,

$$\begin{split} \|\mathcal{L}f\|_{\infty} &\leq \max_{-\pi \leq x \leq \pi} \left\{ 2 \left(\int_{x}^{\pi} 2|f(t)|dt + \frac{1}{2} \int_{-\pi}^{\pi} 4|f(t)|dt \right) \right. \\ &+ 2 \left(\int_{-\pi}^{x} 2|f(t)|dt + \frac{1}{2} \int_{-\pi}^{\pi} 4|f(t)|dt \right) \right\} \\ &= \max_{-\pi \leq x \leq \pi} \left\{ 4 \int_{x}^{\pi} |f(t)|dt + 8 \int_{-\pi}^{\pi} |f(t)|dt + 4 \int_{-\pi}^{x} |f(t)|dt \right\} \\ &= \max_{-\pi \leq x \leq \pi} \left\{ 12 \int_{-\pi}^{\pi} |f(t)|dt \right\} \leq \max_{-\pi \leq x \leq \pi} \left\{ 12 \int_{-\pi}^{\pi} \max_{-\pi \leq x \leq \pi} |f(x)|dt \right\} \\ &= \max_{-\pi \leq x \leq \pi} \left\{ 12 \max_{-\pi \leq x \leq \pi} |f(x)| \int_{-\pi}^{\pi} dt \right\} = \max_{-\pi \leq x \leq \pi} \left\{ 24\pi \max_{-\pi \leq x \leq \pi} |f(x)| \right\} \\ &= 24\pi \max_{-\pi \leq x \leq \pi} |f(x)| = 24\pi \|f\|_{\infty}. \end{split}$$

Thus, $\|\mathcal{L}f\|_{\infty} \leq C\|f\|_{\infty}$ where $C \geq 24\pi > 0$.

3.2 Part b

Now, consider $Y(x; \epsilon) = y(x; \epsilon) - y_0(x)$ where y, y_0 satisfy their respective differential equations as in problem 2. Then,

$$Y''(x;\epsilon) + \left(\frac{\sigma}{2}\right)^2 Y(x;\epsilon) + \epsilon \sin\left(Y(x;\epsilon) + y_0(x)\right)$$

$$= y''(x;\epsilon) - y_0(x) + \left(\frac{\sigma}{2}\right)^2 (y(x;\epsilon) - y_0(x)) + \epsilon \sin y(x;\epsilon)$$

$$= \left(y''(x;\epsilon) + \left(\frac{\sigma}{2}\right)^2 y(x;\epsilon) + \epsilon \sin y(x;\epsilon)\right) - \left(y''_0(x) + \left(\frac{\sigma}{2}\right)^2 y_0(x)\right) = 0.$$

Similarly,

$$Y(-\pi) = y(-\pi) - y_0(-\pi) = 1 - 1 = 0$$

and

$$Y(\pi) = y(\pi) - y_0(\pi) = 0 - 0 = 0,$$

so Y must satisfy the BVP

$$\begin{cases} Y''(x;\epsilon) + \left(\frac{\sigma}{2}\right)^2 Y(x;\epsilon) + \epsilon \sin\left(Y(x;\epsilon) + y_0(x)\right) = 0, & x \in (-\pi,\pi), \\ Y(-\pi) = 0, \\ Y(\pi) = 0. \end{cases}$$

Now, observe that this is the BVP from problem 1 taken with $f(x) = -\epsilon \sin(Y(x;\epsilon) + y_0(x))$. Thus, the result of problem 1 tells us that if a solution to this BVP exists, it is given by

$$Y = -\epsilon \mathcal{L}\sin(Y + y_0).$$

Also, if such a function exists, it clearly solves the BVP. Thus, a solution to this BVP exists iff a solution to the above fixed point problem exists.

3.3 Part c

Considering V, Y, real valued and continuous on $[-\pi, \pi]$, note that the operator \mathcal{L} is linear, because all integrals in \mathcal{L} involve f and integrals are known to be linear operators. Thus,

$$\begin{aligned} &\|\epsilon \mathcal{L}\sin(Y+y_0) - \epsilon \mathcal{L}\sin(V+y_0)\|_{\infty} = \|\mathcal{L}(\epsilon(\sin(Y+y_0) - \sin(V+y_0)))\|_{\infty} \\ &\leq C\|\epsilon(\sin(Y+y_0) - \sin(V+y_0))\|_{\infty} = C \max_{-\pi \leq x \leq \pi} |\epsilon(\sin(Y+y_0) - \sin(V+y_0))(x)| \\ &= \epsilon C \max_{-\pi \leq x \leq \pi} |\sin(Y(x) + y_0(x)) - \sin(V(x) + y_0(x))| \,. \end{aligned}$$

Now, we apply the hint that the MVT implies that $\sin(x) - \sin(y) = \cos(\xi)(x-y)$ for ξ between x and y for $x = \sin(Y(x') + y_0(x'))$ and $y = \sin(V(x') + y_0(x'))$ where

$$x' = \arg \max_{-\pi \le x \le \pi} |\sin(Y(x) + y_0(x)) - \sin(V(x) + y_0(x))|.$$

Then,

$$\sin(Y(x') + y_0(x')) - \sin(V(x') + y_0(x')) = \cos \xi (Y(x') - V(x')).$$

for some ξ between $Y(x') + y_0(x')$ and $V(x') + y_0(x')$, so

$$\begin{split} & \max_{-\pi \leq x \leq \pi} |\sin(Y(x) + y_0(x)) - \sin(V(x) + y_0(x))| \\ & = |\sin(Y(x') + y_0(x')) - \sin(V(x') + y_0(x'))| \\ & = |\cos \xi(Y(x') - V(x'))| \leq \max_{-\pi \leq x \leq \pi} |\cos \xi(Y(x) - V(x))|. \end{split}$$

Thus,

$$\|\epsilon \mathcal{L}\sin(Y+y_0) - \epsilon \mathcal{L}\sin(V+y_0)\|_{\infty} \le \epsilon C \max_{-\pi \le x \le \pi} |\cos \xi(Y(x) - V(x))|$$

$$= \epsilon C \underbrace{|\cos \xi|}_{<1} \max_{-\pi \le x \le \pi} |Y(x) - V(x)| \le \epsilon C \|V - Y\|_{\infty}.$$

Thus, if we take $0 < \epsilon < \frac{1}{C} = \frac{1}{24\pi}$ and $L = \epsilon C$, then

$$\|\epsilon \mathcal{L}\sin(Y+y_0) - \epsilon \mathcal{L}\sin(V+y_0)\|_{\infty} \le L\|V-Y\|_{\infty}, \quad 0 < L < 1.$$

Now, we can invoke theorem 6.2 in the text by taking \mathcal{B} to be the space of real-valued functions on the interval $[-\pi, \pi]$ taken with the infinity norm. This space is known to be complete, so \mathcal{B} is a Banach space. We take X to be the subset of bounded functions in \mathcal{B} and consider $T_{\epsilon}: X \to X$ such that $T_{\epsilon}(Y) = -\epsilon \mathcal{L} \sin(Y + y_0)$. Taking $\rho = L$, then there exists a unique $f \in X$ such that $f = T_{\epsilon}(f)$, i.e. a solution to the problem $Y = -\epsilon \mathcal{L} \sin(Y + y_0)$ both exists and is unique. Therefore, we know that a solution our original differential equation both exists and is unique.

3.4 Part d

Now that we know that there is in fact a solution such that $Y = -\epsilon \mathcal{L} \sin(Y + y_0)$, then by part a,

$$||Y||_{\infty} = ||-\epsilon \mathcal{L}\sin(Y+y_0)||_{\infty} = \epsilon ||\mathcal{L}\sin(Y+y_0)||_{\infty} \le C\epsilon ||\sin(Y+y_0)||_{\infty}$$
$$= C\epsilon \max_{-\pi \le x \le \pi} \underbrace{|\sin(Y(x)+y_0(x))|}_{\le 1} \le C\epsilon.$$

Thus, $||Y||_{\infty} = O(\epsilon)$ as $\epsilon \to 0$ by definition.

4 Problem 4

Now consider $W(x; \epsilon) = y(x; \epsilon) - y_0(x) - \epsilon y_1(x)$. Then, using the differential equations that y, y_0, y_1 must satisfy,

$$W''(x;\epsilon) + \left(\frac{\sigma}{2}\right)^2 W(x;\epsilon) + \epsilon \sin\left(W(x;\epsilon) + y_0(x) + \epsilon y_1(x)\right) - \epsilon \sin(y_0(x))$$

$$= y''(x;\epsilon) - y_0''(x) - \epsilon y_1''(x) + \left(\frac{\sigma}{2}\right)^2 (y(x;\epsilon) - y_0(x) - \epsilon y_1(x)) + \epsilon \sin y(x;\epsilon) - \epsilon \sin(y_0(x))$$

$$= \left(y''(x;\epsilon) + \left(\frac{\sigma}{2}\right)^2 y(x;\epsilon) + \epsilon \sin y(x;\epsilon)\right) - \left(y_0''(x) + \left(\frac{\sigma}{2}\right)^2 y_0(x)\right) - \epsilon \left(y_1''(x) + \left(\frac{\sigma}{2}\right)^2 y_1(x) + \sin(y_0(x))\right)$$

$$= 0.$$

Also, we have boundary conditions

$$W(-\pi) = y(\pi) - y_0(-\pi) - \epsilon y_1(-\pi) = 1 - 1 - 0 = 0$$

$$W(\pi) = y(\pi) - y_0(\pi) - \epsilon y_1(\pi) = 0 - 0 - 0 = 0.$$

Thus, W satisfies the BVP

Thus,
$$W$$
 satisfies the BVP
$$\begin{cases} W''(x;\epsilon) + \left(\frac{\sigma}{2}\right)^2 W(x;\epsilon) + \epsilon \sin\left(W(x;\epsilon) + y_0(x) + \epsilon y_1(x)\right) - \epsilon \sin(y_0(x)) = 0, & x \in (-\pi,\pi), \\ Y(-\pi) = 0, \\ Y(\pi) = 0. \end{cases}$$

which is equivalent to the fixed point problem

$$W = -\epsilon \mathcal{L}(\sin(W + y_0 + \epsilon y_1) - \sin(y_0)).$$

Since we know that Y and therefore W exists, we can use the linearity of W(which is clear since it's an integral operator), the result of part a, and the Taylor expansion of $\sin(y(x))$ (as on page 2 of part 5 of the lecture notes) to

$$||W||_{\infty} = ||-\epsilon \mathcal{L}(\sin(W + y_0 + \epsilon y_1) - \sin(y_0))||_{\infty} \le \epsilon C ||\sin(W + y_0 + \epsilon y_1) - \sin(y_0)||_{\infty}$$
$$= \epsilon C ||\sin(y) - \sin(y_0)||_{\infty} = \epsilon C ||\sin(y_0) + \epsilon \cos(y_0)y_1 + O(\epsilon^2) - \sin(y_0)||_{\infty}$$
$$= \epsilon^2 C ||\cos(y_0)y_1 + O(\epsilon)||_{\infty}$$

Since our functions are defined on a bounded interval and continuous, we know that they must be bounded on that interval. In particular, this means that

$$||W||_{\infty} \le \epsilon^2 C \max_{-\pi \le x \le \pi} |\cos(y_0(x))y_1(x) + \mathcal{O}(\epsilon)| = \epsilon^2 C \max_{-\pi \le x \le \pi} \underbrace{|\cos(y_0(x))|}_{\le 1} |y_1(x)| + \mathcal{O}(\epsilon^3)$$

$$\le \epsilon^2 CM + \mathcal{O}(\epsilon^3)$$

for some M > 0. Clearly, this means that $||W||_{\infty} = O(\epsilon^2)$ as $\epsilon \to 0$.