

Technologiemodul

Virtual Master _____

Referenzhandbuch

ь.

Inhalt

1	Über diese Delumentation					
1.1	Über diese Dokumentation					
1.2	Dokumenthistorie Verwendete Konventionen					
1.3	Verwendete Konventionen Definition der verwendeten Hinweise					
2	Sicherheitshinweise					
3	Funktionsbeschreibung "Virtual Master"					
3.1	Übersicht der Funktionen					
3.2	Übersicht der FunktionenWichtige Hinweise zum Betrieb des Technologiemoduls					
3.3	Funktionsbaustein L_TT1P_VirtualMaster[Base/State/High]					
	3.3.1 Eingänge und Ausgänge					
	3.3.2 Eingänge					
	3.3.3 Ausgänge					
	3.3.4 Parameter					
3.4	State machine für die Varianten "Base" und "State"					
3.5	State machine für die Variante "High"					
3.6	Stopp-Funktion					
3.7	Handfahren (Jogging)					
3.8	Einzeitaktbetrieb					
3.9	Dauerfahrbetrieb					
3.10	Startposition laden					
3.11	Geschwindigkeitsgieichiaut					
3.12	wegbasierter Positionsgleichiaur					
3.13	Zeitbasierter Positionsgieichiaur					
3.14	CPU-Auslastung (Beispiel Controller 3231 C)					
	Index					
	Ihre Meinung ist uns wichtig					

1 Über diese Dokumentation

Diese Dokumentation ...

- enthält ausführliche Informationen zu den Funktionalitäten des Technologiemoduls "Virtual Master";
- ordnet sich in die Handbuchsammlung "Controller-based Automation" ein. Diese besteht aus folgenden Dokumentationen:

Dokumentationstyp	Thema
Produktkatalog	Controller-based Automation (Systemübersicht, Beispieltopologien) Lenze-Controller (Produktinformationen, Technische Daten)
Systemhandbücher	Visualisierung (Systemübersicht/Beispieltopologien)
Kommunikationshandbücher Online-Hilfen	Bussysteme • Controller-based Automation EtherCAT® • Controller-based Automation CANopen® • Controller-based Automation PROFIBUS® • Controller-based Automation PROFINET®
Referenzhandbücher Online-Hilfen	Lenze-Controller: • Controller 3200 C • Controller c300 • Controller p300 • Controller p500
Software-Handbücher Online-Hilfen	Lenze Engineering Tools: • »PLC Designer« (Programmierung) • »Engineer« (Parametrierung, Konfigurierung, Diagnose) • »VisiWinNET® Smart« (Visualisierung) • »Backup & Restore« (Datensicherung, Wiederherstellung, Aktualisierung)

Weitere Technische Dokumentationen zu Lenze-Produkten

Weitere Informationen zu Lenze-Produkten, die in Verbindung mit der Controller-based Automation verwendbar sind, finden Sie in folgenden Dokumentationen:

Pla	nung / Projektierung / Technische Daten
	Produktkataloge
Mo	ontage und Verdrahtung
	Montageanleitungen
	Gerätehandbücher • Inverter Drives/Servo Drives
Par	rametrierung / Konfigurierung / Inbetriebnahme
	Online-Hilfe / Referenzhandbücher
	Online-Hilfe / Kommunikationshandbücher • Bussysteme • Kommunikationsmodule
Bei	ispielapplikationen und Vorlagen
	Online-Hilfe / Software- und Referenzhandbücher • Application Sample i700 • Application Samples 8400/9400 • FAST Application Template Lenze/PackML • FAST Technologiemodule

- ☐ Gedruckte Dokumentation
- ☐ PDF-Datei / Online-Hilfe im Lenze **Engineering Tool**

Aktuelle Dokumentationen und Software-Updates zu Lenze-Produkten finden Sie im Download-Bereich unter:

www.lenze.com

Zielgruppe

Diese Dokumentation richtet sich an alle Personen, die ein Lenze-Automationssystem auf Basis der Application Software Lenze FAST programmieren und in Betrieb nehmen.

1.1 Dokumenthistorie

1.1 Dokumenthistorie

Version	Version		Beschreibung
4.2	05/2017	TD17	Inhaltliche Struktur geändert.Allgemeine Korrekturen
4.1	04/2016	TD17	Allgemeine Korrekturen
4.0	10/2015	TD17	Korrekturen und Ergänzungen Inhaltliche Struktur geändert.
3.0	05/2015	TD17	 Allgemeine Korrekturen Neu: Parameter eSyncMode (siehe Parameterstruktur L_TT1P_scPar_VirtualMaster[Base/State/High] (□ 16)) Neu: Zeitbasierter Positionsgleichlauf (□ 28)
2.0	01/2015	TD17	 Allgemeine redaktionelle Überarbeitung Modularisierung der Inhalte für die »PLC Designer« Online-Hilfe
1.0	04/2014	TD00	Erstausgabe

1.2 Verwendete Konventionen

1.2 Verwendete Konventionen

Diese Dokumentation verwendet folgende Konventionen zur Unterscheidung verschiedener Arten von Information:

Informationsart	Auszeichnung	Beispiele/Hinweise							
Zahlenschreibweise	Zahlenschreibweise								
Dezimaltrennzeichen	Punkt	Es wird generell der Dezimalpunkt verwendet. Zum Beispiel: 1234.56							
Textauszeichnung	Textauszeichnung								
Programmname	» «	»PLC Designer«							
Variablenbezeichner	kursiv	Durch Setzen von <i>bEnable</i> auf TRUE							
Funktionsbausteine	fett	Der Funktionsbaustein L_MC1P_AxisBasicControl							
Funktionsbibliotheken		Die Funktionsbibliothek L_TT1P_TechnolgyModules							
Quellcode	Schriftart "Corier new"	<pre>dwNumerator := 1; dwDenominator := 1;</pre>							
Symbole	Symbole								
Seitenverweis	(□ 6)	Verweis auf weiterführenden Informationen: Seitenzahl in PDF-Datei.							

Variablenbezeichner

Die von Lenze verwendeten Konventionen, die für die Variablenbezeichner von Lenze Systembausteinen, Funktionsbausteinen sowie Funktionen verwendet werden, basieren auf der sogenannten "Ungarischen Notation", wodurch anhand des Bezeichners sofort auf die wichtigsten Eigenschaften (z. B. den Datentyp) der entsprechenden Variable geschlossen werden kann, z. B. xAxisEnabled.

1.3 Definition der verwendeten Hinweise

1.3 Definition der verwendeten Hinweise

Um auf Gefahren und wichtige Informationen hinzuweisen, werden in dieser Dokumentation folgende Signalwörter und Symbole verwendet:

Sicherheitshinweise

Aufbau der Sicherheitshinweise:

Piktogramm und Signalwort!

(kennzeichnen die Art und die Schwere der Gefahr)

Hinweistext

(beschreibt die Gefahr und gibt Hinweise, wie sie vermieden werden kann)

Piktogramm	Signalwort	Bedeutung
A	Gefahr!	Gefahr von Personenschäden durch gefährliche elektrische Spannung Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
\triangle	Gefahr!	Gefahr von Personenschäden durch eine allgemeine Gefahrenquelle Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
STOP	Stop!	Gefahr von Sachschäden Hinweis auf eine mögliche Gefahr, die Sachschäden zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.

Anwendungshinweise

Piktogramm	Signalwort	Bedeutung
i	Hinweis!	Wichtiger Hinweis für die störungsfreie Funktion
	Tipp!	Nützlicher Tipp für zum einfachen Bedienen
Ý		Verweis auf andere Dokumentation

2 Sicherheitshinweise

Beachten Sie die Sicherheitshinweise in dieser Dokumentation, wenn Sie ein Automationssystem oder eine Anlage mit einem Lenze-Controller in Betrieb nehmen möchten.

Die Gerätedokumentation enthält Sicherheitshinweise, die Sie beachten müssen!

Lesen Sie die mitgelieferten und zugehörigen Dokumentationen der jeweiligen Komponenten des Automationssystems sorgfältig durch, bevor Sie mit der Inbetriebnahme des Controllers und der angeschlossenen Geräte beginnen.

Gefahr!

Hohe elektrische Spannung

Personenschäden durch gefährliche elektrische Spannung

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

Die Spannungsversorgung ausschalten, bevor Arbeiten an den Komponenten des Automationssystems durchgeführt werden.

Nach dem Ausschalten der Spannungsversorgung spannungsführende Geräteteile und Leistungsanschlüsse nicht sofort berühren, weil Kondensatoren aufgeladen sein können.

Die entsprechenden Hinweisschilder auf dem Gerät beachten.

Gefahr!

Personenschäden

Verletzungsgefahr besteht durch ...

- nicht vorhersehbare Motorbewegungen (z. B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Schutzmaßnahmen

- Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).
- Während der Inbetriebnahme einen ausreichenden Sicherheitsabstand zum Motor oder den vom Motor angetriebenen Maschinenteilen einhalten.

Stop!

Beschädigung oder Zerstörung von Maschinenteilen

Beschädigung oder Zerstörung von Maschinenteilen besteht durch ...

- Kurzschluss oder statische Entladungen (ESD);
- nicht vorhersehbare Motorbewegungen (z. B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Mögliche Folgen

Beschädigung oder Zerstörung von Maschinenteilen

Schutzmaßnahmen

- Vor allen Arbeiten an den Komponenten des Automationssystems immer die Spannungsversorgung ausschalten.
- Elektronische Bauelemente und Kontakte nur berühren, wenn zuvor ESD-Maßnahmen getroffen wurden.
- Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).

3.1 Übersicht der Funktionen

3 Funktionsbeschreibung "Virtual Master"

3.1 Übersicht der Funktionen

Neben den Grundfunktionen zur Bedienung des Funktionsbausteins **L_MC1P_AxisBasicControl** und der **Halt-Funktion** bietet das Technologiemodul folgende Funktionalitäten, die den Varianten "Base", "State" und "High" zugeordnet sind:

Funktionalität		Variante			
	Base	State	High		
Stopp-Funktion (120)	•	•	•		
Handfahren (Jogging) (21)	•	•	•		
Einzeltaktbetrieb (🕮 22)	•	•	•		
Dauerfahrbetrieb (🕮 23)	•	•	•		
Startposition laden (24)	•	•	•		
Geschwindigkeitsgleichlauf (25)		•			
Wegbasierter Positionsgleichlauf (26)			•		
Zeitbasierter Positionsgleichlauf (🕮 28)			•		

»PLC Designer« Online-Hilfe

Hier finden Sie ausführliche Informationen zum Funktionsbaustein **L_MC1P_AxisBasicControl** und zur **Halt-Funktion**.

Wichtige Hinweise zum Betrieb des Technologiemoduls 3.2

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

Einstellung des Betriebsmodus

Der Betriebsmodus (Mode of Operation) für die Querschneider-Achse muss auf "Zyklisch synchrone Position" (csp) eingestellt werden, da die Achse über den Positionsleitwert geführt wird.

Kontrollierter Anlauf der Achsen

Bewegungsbefehle, die im gesperrten Achszustand (xAxisEnabled = FALSE) gesetzt werden, müssen nach der Freigabe (xRequlatorOn = TRUE) erneut durch eine FALSE ∕TRUE-Flanke aktiviert werden.

So wird verhindert, dass der Antrieb nach der Reglerfreigabe unkontrolliert anläuft.

Beispiel Handfahren (Jogging) (21):

- 1. Im gesperrten Achzustand (xAxisEnabled = FALSE) wird xJogPos = TRUE gesetzt.
 - xRegulatorOn = FALSE (Achse ist gersperrt.) ==> Zustand "READY" (xAxisEnabled = FALSE)
 - xJoqPos = TRUE (Handfahren soll ausgeführt werden.)
- 2. Achse freigeben.
 - xRegulatorOn = TRUE ==> Zustand "READY" (xAxisEnabled = TRUE)
- 3. Handfahren ausführen.
 - xJoaPos = FALSE对TRUE ==> Zustand "JOGPOS"

3.3 Funktionsbaustein L_TT1P_VirtualMaster[Base/State/High]

3.3 Funktionsbaustein L_TT1P_VirtualMaster[Base/State/High]

Die Abbildung zeigt die Zugehörigkeit der Ein- und Ausgänge für die Varianten "Base", "State" und "High".

Die zusätzlichen Ein- und Ausgänge der Varianten "State" und "High" sind schattiert dargestellt.

3.3.1 Eingänge und Ausgänge

Bezeichner Datentyp		Beschreibung		Verfügbar in Variante		
			Base	State	High	
VirtualAxis	AXIS_REF	Referenz auf die virtuelle Master-Achse	•	•	•	

Funktionsbeschreibung "Virtual Master" Funktionsbaustein L_TT1P_VirtualMaster[Base/State/High] 3

Eingänge 3.3.2

Bezeichner Datentyp	Beschrei	bung		rfügbai /arianto	
			Base	State	High
xEnableInternalControl BOOL	TRUE	In der Visualisierung ist die interne Steuerung der Achse über die Schaltfläche "Internal Control" auswählbar.	•	•	•
xEnable	Ausführ	ung des Funktionsbausteins	•	•	•
BOOL	TRUE	Der Funktionsbaustein wird ausgeführt.			
	FALSE	Der Funktionsbaustein wird nicht ausgeführt.			
scCtrlABC scCtrl_ABC	• scCtr • Liegt gewe • Vom	sstruktur für den Funktionsbaustein _AxisBasicControl ABC kann im Zustand "Ready" genutzt werden. eine Anforderung an, wird in den Zustand "Service" echselt. Zustand "Service" wird zurück in den Zustand "Ready" echselt, wenn keine Anforderung mehr anliegt.	•	•	•
xResetError BOOL	TRUE	Fehler der Achse oder der Software zurücksetzen.	•	•	•
xRegulatorOn BOOL	TRUE	Reglerfreigabe der Achse aktivieren (über den Funktionsbaustein MC_Power).	•	•	•
xStop BOOL	TRUE	Aktive Bewegung abbrechen und Achse mit der über den Parameter IrStopDec definierten Verzögerung in den Stillstand führen. • Ein Wechsel in den Zustand "Stop" erfolgt. • Das Technologiemodul bleibt im Zustand "Stop", solange xStop = TRUE (oder xHalt = TRUE) gesetzt ist. • Der Eingang ist auch bei "Internal Control" aktiv.	•	•	•
xHalt BOOL	TRUE	Aktive Bewegung abbrechen und Achse mit der über den Parameter IrHaltDec definierten Verzögerung in den Stillstand führen. • Ein Wechsel in den Zustand "Stop" erfolgt. • Das Technologiemodul bleibt im Zustand "Stop", solange xHalt = TRUE (oder xStop = TRUE) gesetzt ist.	•	•	•
scPar		meterstruktur enthält die Parameter des	•	•	•
L_TT1P_scPar_Virtual Master[]	Der Date	ogiemoduls. entyp ist abhängig von der verwendeten Variante ate/High).			
xContinuous BOOL	TRUE	Dauerfahrbetrieb ausführen. (Abbruch der Funktion über die Eingänge xStop und xHalt oder durch Einschalten der realen Master- Achse.)	•	•	•
xCycle BOOL	TRUE	Einzeltaktbetrieb ausführen. (Abbruch der Funktion über die Eingänge xStop und xHalt oder durch Einschalten der realen Master- Achse.)	•	•	•
xLoadStartPos BOOL	TRUE	 Startposition (Eingang IrStartPos) laden. Diese Funktion ist auch bei gesperrter Achse oder bei xStop/xHalt = TRUE ausführbar. Diese Funktion ist während des Positionsgleichlaufes nicht ausführbar. 	•	•	•
xJogPos BOOL	TRUE	Achse in positive Richtung fahren (Handfahren). Ist xJogNeg auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•	•

Bezeichner	Bezeichner Bes Datentyp		Beschreibung		Verfügbar in Variante			
				Base	State	High		
xJogNeg	BOOL	TRUE	Achse in negative Richtung fahren (Handfahren). Ist xJogPos auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•	•		
IrSetVel	LREAL	erneuter übernon Die Dreh vorgege • Einhe • Initia • Gülti • Pos xCJ • Ne	schwindigkeitswerte werden jederzeit und ohne m Flankenwechsel an einem der Steuereingänge nmen. urichtung wird über den Parameter eSetDirection	•	•	•		
IrStartPos	LREAL	Wird mi	de Startposition t dem Eingang xLoadStartPos = TRUE übernommen. eit: units	•	•	•		
IrTargetPos	LREAL	Zielposit • Einhe	ion it: units	•	•	•		
MasterAxis	AXIS_REF	Referenz	auf die reale Master-Achse		•	•		
xSyncMasterAxis		virtuelle	nisierung der realen Master-Achse (Leitachse) auf die Master-Achse e Master-Achse wird am Eingang MasterAxis ert.		•	•		
		TRUE	State-Variante: Die virtuelle Master-Achse wird an die reale Master-Achse (Leitachse) geschwindigkeitssynchron gekuppelt. Über den Parameter IrMasterAccDec wird die Beschleunigung/Verzögerung (in units/s²) für das Ein- und Auskuppeln vorgegeben. High-Variante: Die virtuelle Master-Achse wird an die reale Master-Achse (Leitachse) geschwindigkeits- und positionssynchron gekuppelt. Über den Parameter IrMasterSyncInDist wird der relative Einkuppelweg (in units), bezogen auf die virtuelle Master-Position, vorgegeben.					
		TRUE'	Die virtuelle Master-Achse wird von der realen Master-Achse abgekoppelt und über die Parameter IrSetVel, IrAcc, IrDec in die Zielposition (Eingang IrTargetPos) geführt.					

3

Funktionsbeschreibung "Virtual Master" Funktionsbaustein L_TT1P_VirtualMaster[Base/State/High] 3

3.3

Ausgänge 3.3.3

Bezeichner Datenty	Beschreibung		_			rfügbai Variant	
			Base	State	High		
xInternalControlActive BOO	TRUE	Die interne Steuerung der Achse ist über die Visualisierung aktiviert. (Eingang xEnableInternalControl = TRUE)	•	•	•		
eTMState L_TT1P_State	▶ <u>State</u>	r Zustand des Technologiemoduls <u>machine für die Varianten "Base" und "State"</u> (🖺 18) <u>machine für die Variante "High"</u> (🖺 19)	•	•	•		
scStatusABC scStatus_ABC	1	der Zustandsdaten des Funktionsbausteins _ AxisBasicControl	•	•	•		
xError BOO	TRUE .	Im Technologiemodul liegt ein Fehler vor.	•	•	•		
xWarning BOO	TRUE .	Im Technologiemodul liegt eine Warnung vor.	•	•	•		
eErrorID L_IE1P_Erro	ID der Fe oder xW	chler- oder Warnungsmeldung, wenn xError = TRUE larning = TRUE ist.	•	•	•		
	Hier find	zhandbuch "FAST Technologiemodule": Ien Sie Informationen zu Fehler- oder gsmeldungen.					
scErrorInfo L_TT1P_scErrorInfo		formationsstruktur für eine genauere Analyse der sache	•	•	•		
xAxisEnabled BOO	TRUE .	Die Achse ist freigegeben.	•	•	•		
xBusy	TRUE .	Die Anforderung/Aktion wird zur Zeit ausgeführt.	•	•	•		
xInTarget BOO	TRUE	Die Achse hat die Zielposition (Eingang IrTargetPos) erreicht und befindet sich im Stillstand.	•	•	•		
IrActPos LREA		Aktuelle Istposition • Einheit: units		•	•		
IrActVel LREA		Istgeschwindigkeit eit: units/s	•	•	•		
IrSetPosOut LREA	Sollposit	cion eit: units	•	•	•		
IrSetVelOut LREA	_	hwindigkeit eit: units/s	•	•	•		
xAccDecSync BOO	TRUE	Die Synchronisierungsfunktion ist aktiv. Die virtuelle Master-Achse ist an die reale Master- Achse (Leitachse) gekuppelt.		•	•		
xSynchronised BOO	TRUE .	Die virtuelle Master-Achse ist mit der realen Master- Achse (Leitachse) synchronisiert.		•	•		
		State-Variante: Die virtuelle Master-Achse ist geschwindigkeitssynchron zur realen Master-Achse (Leitachse).					
		High-Variante: Die virtuelle Master-Achse ist geschwindigkeits- und positionssynchron zur realen Master-Achse (Leitachse).					

Funktionsbaustein L_TT1P_VirtualMaster[Base/State/High]

3.3.4 Parameter

L_TT1P_scPar_VirtualMaster[Base/State/High]

Die Struktur **L_TT1P_scPar_VirtualMaster[Base/State/High]** enthält die Parameter des Technologiemoduls.

Hinweis!

Änderungen der Parameterwerte werden erst bei erneuter Ausführung der Funktionen berücksichtigt.

Bezeichner	Datentyp	Beschreibung	Verfügbar in Variante		
			Base	State	High
IrStopDec	LREAL	Verzögerung für die Stopp-Funktion und bei Auslösung der Hardware-Endschalter, Software-Endlagen und Schleppfehlerüberwachung • Einheit: units/s ² • Initialwert: 10000	•	•	•
IrStopJerk	LREAL	Ruck für die Stopp-Funktion und bei Auslösung der Hardware- Endschalter, Software-Endlagen und Schleppfehlerüberwachung • Einheit: units/s ³ • Initialwert: 100000	•	•	•
IrHaltDec	LREAL	Verzögerung für die Halt-Funktion Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: units/s² • Initialwert: 3600 • Nur positive Werte sind zulässig.	•	•	•
lrJerk	LREAL	Ruck zum Ausgleich bei einer Kupplungs- oder Haltfunktion • Einheit: units/s³ • Initialwert: 100000	•	•	•
lrJogJerk	LREAL	Ruck für das Handfahren • Einheit: units/s³ • Initialwert: 10000	•	•	•
IrJogVel	LREAL	Maximale Geschwindigkeit, mit der das Handfahren durchgeführt werden soll. • Einheit: units/s • Initialwert: 10	•	•	•
IrJogAcc	LREAL	Beschleunigung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal beschleunigt werden soll. • Einheit: units/s ² • Initialwert: 100	•	•	•
IrJogDec	LREAL	Verzögerung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: units/s² • Initialwert: 100	•	•	•
IrAcc	LREAL	Beschleunigung Vorgabe, mit welcher Geschwindigkeitsänderung maximal beschleunigt werden soll. • Einheit: units/s ² • Initialwert: 100	•	•	•

Funktionsbeschreibung "Virtual Master" Funktionsbaustein L_TT1P_VirtualMaster[Base/State/High] 3

3.3

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante		
		Base	State	High	
IrDec LREAL	Verzögerung Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: units/s ² • Initialwert: 100		•	•	
eDirection MC_DIRECTION	Fahrrichtung • Initialwert: 1 (Positive Richtung)	•	•	•	
	Aktuelle Richtung beibehalten. Nur einstellbar für: Dauerfahrbetrieb (Eingang xContinuous = TRUE) Synchronisierung mit der realen Master-Achse (xSyncMasterAxis = TRUE)				
	1 Positive Richtung				
	2 Negative Richtung				
IrMasterAccDec LREAL	Beschleunigung/Verzögerung für das Ein-/Auskuppeln bei der Synchronisierung (Eingang xSyncMasterAxis = TRUE) • Einheit: units/s ² • Initialwert: 100		•		
eSyncMode L_TT1P_SyncModeVirtual	Modus für den Einkuppelvorgang • Initialwert: 5 (Ramp_Dist)			•	
Master	Ramp_Time: Zeitbasiertes Einkuppeln innerhalb eines Zeitfensters (Zeitbasierter Positionsgleichlauf)				
	5 Ramp_Dist: Wegbasiertes Einkuppeln auf die Kurvenscheibe (Wegbasierter Positionsgleichlauf)				
IrMasterSyncInDist LREAL	Relativer Ein-/Auskuppelweg, bezogen auf die virtuelle Master-Position, für die Synchronisierung (Eingang xSyncMasterAxis = TRUE) • Einheit: units • Initialwert: 90			•	
lrSyncInTime LREAL	Dauer des Einkuppelvorgangs im zeitbasierten Kupplungsmodus (Parameter eSyncMode = 3) • Einheit: s • Initialwert: 5			•	

3.4 State machine für die Varianten "Base" und "State"

3.4 State machine für die Varianten "Base" und "State"

- [3-1] State machine für die Varianten "Base" und "State" des Technologiemoduls
 - (*1 Im Zustand "Ready" muss xRegulatorOn auf TRUE gesetzt werden.
 - (*2 Im Zustand "ERROR" muss xResetError zum Quittieren und Zurücksetzen der Fehler auf TRUE gesetzt werden.

3.5 State machine für die Variante "High"

3.5 State machine für die Variante "High"

[3-2] State machine für die Variante "High" des Technologiemoduls

- (*1 Im Zustand "Ready" muss xRegulatorOn auf TRUE gesetzt werden.
- (*2 Im Zustand "ERROR" muss xResetError zum Quittieren und Zurücksetzen der Fehler auf TRUE gesetzt werden.

3.6 Stopp-Funktion

3.6 Stopp-Funktion

Die virtuelle Master-Achse wird durch Setzen des Eingangs xStop = TRUE mit dem Parameter IrStopDec in den Stillstand geführt.

Diese Funktion hat die zweithöchste Priorität (höchste Priorität hat "Startposition laden (🗆 24)").

Solange xStop = TRUE gesetzt ist, bleibt die virtuelle Achse im Stillstand.

Der Einzeltakt- und Dauerfahrbetrieb müssen nach einem Stopp neu gestartet werden.

Die Bewegung der virtuellen Master-Achse wird auch während der Synchronisierung (Eingang xSyncMasterAxis = TRUE) gestoppt. Sobald xStop = FALSE gesetzt wird, erfolgt die Synchronisierung mit der realen Master-Achse.

[3-3] Signalverlauf für die Stopp-Funktion

Einzustellende Parameter

Die Parameter für die Stopp-Funktion befinden sich in der Parameterstruktur L TT1P scPar VirtualMaster[Base/State/High] (16).

```
lrStopDec : LREAL := 10000; // Deceleration [units/s^2]
lrStopJerk : LREAL := 100000; // Jerk [units/s^3]
```

3.7 Handfahren (Jogging)

3.7 Handfahren (Jogging)

Mit dem Eingang xJogPos = TRUE wird die virtuelle Master-Achse in positive Richtung und mit dem Eingang xJogNeg = TRUE in negative Richtung gefahren. Die Achse wird solange gefahren, wie der Eingang TRUE gesetzt bleibt.

Der laufende Fahrbefehl kann nicht durch den anderen Jog-Befehl abgelöst werden. Erst wenn beide Eingänge zurückgesetzt wurden, wechselt die State machine wieder zurück in den Zustand "Ready".

Einzustellende Parameter

Die Parameter für das Handfahren befinden sich in der Parameterstruktur L_TT1P_scPar_VirtualMaster[Base/State/High] (\(\simegrightarrow\) 16).

Die Parameterwerte können während des Betriebs verändert werden. Sie werden bei erneutem Setzen der Eingänge xlogPos = TRUE oder xlogNeg = TRUE übernommen.

3.8 Einzeltaktbetrieb

3.8 Einzeltaktbetrieb

Der Einzeltaktbetrieb wird mit dem Eingang xCycle = TRUE gestartet.

Der Takt beginnt an der aktuellen Position *IrActPos* der virtuellen Master-Achse und endet an der Zielposition *IrTargetPos*.

Die Drehrichtung wird mit den Parameter eDirection festgelegt:

- Wert '1' = Positive Richtung (Initialwert)
- Wert '2' = Negative Richtung

Die Fahrgeschwindigkeit wird am Eingang IrSetVel vorgegeben.

Bei Unterbrechung des Einzeltaktbetriebs, z. B. durch Stopp oder Einkuppeln auf die reale Master-Achse, muss erneut der Eingang xCycle = TRUE gesetzt werden.

[3-4] Signalverlauf für den Einzeltaktbetrieb

Einzustellende Parameter

Die Parameter für den Einzeltaktbetrieb befinden sich in der Parameterstruktur L_TT1P_scPar_VirtualMaster[Base/State/High] (\(\sigma\) 16).

```
eDirection: MC_DIRECTION := 1; // 1 = Positive direction
lrAcc: LREAL := 100; // Acceleration [units/s^2]
lrDec: LREAL := 100; // Deceleration [units/s^2]
lrJerk: LREAL := 100000; // Jerk [units/s^3]
```

3.9 Dauerfahrbetrieb

3.9 Dauerfahrbetrieb

Der Dauerfahrbetrieb wird mit dem Eingang xContinuous = TRUE gestartet und bleibt solange aktiv, bis xContinuous = FALSE gesetzt wird.

Der Takt beginnt an der Sollposition *IrSetPosOut* der virtuellen Master-Achse und endet an der Zielposition *IrTargetPos*.

Die Drehrichtung wird mit den Parameter eDirection festgelegt:

- Wert '1' = Positive Richtung (Initialwert)
- Wert '2' = Negative Richtung

Die Fahrgeschwindigkeit wird am Eingang IrSetVel vorgegeben.

Bei Unterbrechung des Einzeltaktbetriebs, z. B. durch Stopp oder Einkuppeln auf die reale Master-Achse, muss erneut der Eingang *xContinuous* = TRUE gesetzt werden.

[3-5] Signalverlauf für den Dauerfahrbetrieb

Einzustellende Parameter

Die Parameter für den Dauerfahrbetrieb befinden sich in der Parameterstruktur L_TT1P_scPar_VirtualMaster[Base/State/High] (\(\simeg)\) 16).

```
eDirection: MC_DIRECTION := 1; // 1 = Positive direction
lrAcc: LREAL := 100; // Acceleration [units/s^2]
lrDec: LREAL := 100; // Deceleration [units/s^2]
lrJerk: LREAL := 100000; // Jerk [units/s^3]
```

3.10 Startposition laden

Stop!

Beschädigungen an Maschinenteilen

Maschinenteile können beschädigt werden durch "Schlag" an der/den Antriebswelle(n).

Mögliche Folgen

Beschädigung oder Zerstörung von Maschinenteilen

Schutzmaßnahmen

Die Funktion "Startposition laden" nur aktivieren, wenn ...

- · sich die Master-Achse imStillstand befindet oder
- alle Folgeachsen abgekoppelt sind.

Die Funktion "Startposition laden" unterstützt den Abgleich der Position des virtuellen Masters mit der Position der realen Master-Achse.

Beispiel: Die reale Master-Achse steht bei 60°. Mit Ausführung der Funktion "Startposition laden" wird die Startposition des virtuellen Masters auf 60° eingestellt.

Durch Setzen des Eingangs xLoadStartPos = TRUE wird die eingestellte Startposition IrStartPos direkt ("hart") als Sollposition IrSetPosOut übernommen.

Die Funktion "Startposition laden" ist <u>nicht</u> ausführbar in den Zuständen ERROR, SYNCHRONISING POS und POS IS SYNCHRONISED.

[3-6] Signalverlauf für die Funktion "Startposition laden"

3.11 Geschwindigkeitsgleichlauf

._____

3.11 Geschwindigkeitsgleichlauf

Mit dem Eingang xSyncMasterAxis = TRUE wird die virtuelle Master-Achse mit der realen Master-Achse synchronisiert. Die Geschwindigkeit der realen Master-Achse wird am Eingang MasterAxis eingekuppelt (Geschwindigkeitsgleichlauf). Dies kann auch während des Betriebs, wenn sich also die reale Achse dreht, geschehen.

Mit xSyncMasterAxis = FALSE wird der Geschwindigkeitsgleichlauf beendet und die virtuelle Master-Achse mit der im Parameter *IrMasterAccDec* festgelegten Verzögerung in den Stillstand gebremst. Die Zielposition ergibt sich aus der Verzögerung.

Die <u>Stopp-Funktion</u> (\square 20) und die Funktion <u>Startposition laden</u> (\square 24) sind auch während des Gleichlaufs ausführbar.

Bis »PLC Designer« Version 3.5.1.10:

Nach einem Schnellhalt (QSP) muss der Geschwindigkeitsgleichlauf nicht erneut ausgeführt werden. Die virtuelle Achse wird sofort wieder mit der realen Achse synchronisiert.

[3-7] Signalverlauf beim Ein-/Auskuppeln in der State-Variante

Einzustellende Parameter

Der Parameter *IrMasterAccDec* für die Kupplungsfunktion befindet sich in der Parameterstruktur <u>L TT1P scPar VirtualMaster[Base/State/High]</u> (<u>L 16</u>).

lrMasterAccDec : LREAL := 100;

3.12 Wegbasierter Positionsgleichlauf

Mit dem Parameter eSyncMode = 5 wird der wegbasierte Positionsgleichlauf vorgegeben.

Über den Parameter *eDirection* wird die Einkuppelrichtung bezogen auf die Drehrichtung der realen Master-Achse eingestellt:

- *eDirection = 0*: Aktuelle Drehrichtung beibehalten.
 - Nur einstellbar für:
 - Dauerfahrbetrieb (Eingang xContinuous = TRUE)
 - Synchronisierung mit der realen Master-Achse (xSyncMasterAxis = TRUE)
- eDirection = 1: Positive Drehrichtung (Initialwert)
- eDirection = 2: Negative Drehrichtung

Mit dem Eingang xSyncMasterAxis = TRUE wird die virtuelle Master-Achse mit der realen Master-Achse synchronisiert. Die Position der realen Achse wird über die im Parameter IrMasterSyncInDist festgelegten Distanz auf die virtuelle Achse eingekuppelt (Positionsgleichlauf).

Der Positionsgleichlauf ist nur im Zustand "READY" möglich.

Während des Betriebs, wenn sich also die reale Achse dreht, ist der Positionsgleichlauf <u>nicht</u> möglich.

Mit xSyncMasterAxis = FALSE wird der Positionsgleichlauf beendet. Die virtuelle Master-Achse wird über die Parameter IrSetVel, IrAcc, IrDec in die Zielposition (Eingang IrTargetPos) geführt.

Die <u>Stopp-Funktion</u> (20) und die Funktion <u>Startposition laden</u> (24) sind auch während des Gleichlaufs ausführbar.

[3-8] Signalverlauf beim Ein-/Auskuppeln in der High-Variante

3.12 Wegbasierter Positionsgleichlauf

Einzustellende Parameter

Die Parameter für die Kupplungsfunktion befinden sich in der Parameterstruktur L TT1P scPar VirtualMaster[Base/State/High] (16).

3.13 Zeitbasierter Positionsgleichlauf

3.13 Zeitbasierter Positionsgleichlauf

Mit dem Parameter eSyncMode = 3 wird der zeitbasierte Positionsgleichlauf vorgegeben.

Über den Parameter *eDirection* wird die Einkuppelrichtung bezogen auf die Drehrichtung der realen Master-Achse eingestellt:

• *eDirection = 0*: Aktuelle Drehrichtung beibehalten.

Nur einstellbar für:

- Dauerfahrbetrieb (Eingang xContinuous = TRUE)
- Synchronisierung mit der realen Master-Achse (xSyncMasterAxis = TRUE)
- eDirection = 1: Positive Drehrichtung (Initialwert)
- eDirection = 2: Negative Drehrichtung

Die virtuelle Achse wird innerhalb einer definierten Zeit (Parameter *IrSyncInTime*) über ein Polynom 5. Grades von ihrer aktuellen Position auf die resultierende Position der realen Master-Achse eingekuppel. Die Bewegung wird innerhalb des Taktes der Modulo-Achsen ausgeführt.

Dieser Kupplungsmodus ist unabhängig von der Bewegung der realen Master-Achse. Die Synchronisierung der virtuellen Master-Achse auf die Position erfolgt auch, wenn die reale Master-Achse stillsteht.

Der Positionsgleichlauf ist nur im Zustand "READY" möglich.

Einzustellende Parameter

Die Parameter für die Kupplungsfunktion befinden sich in der Parameterstruktur LTT1P scPar VirtualMaster[Base/State/High] (16).

3.14 CPU-Auslastung (Beispiel Controller 3231 C)

3.14 CPU-Auslastung (Beispiel Controller 3231 C)

Die folgende Tabelle zeigt die CPU-Auslastung in Mikrosekunden am Beispiel des Controller 3231 C (ATOM™-Prozessor, 1.6 GHz).

Variante	Beschaltung des Technologiemoduls	CPU-Auslastung	
		Durchschnitt	Maximale Spitze
Base	xEnable := TRUE; xRegulatorOn := TRUE; xSyncVel := TRUE;	50 μs	115 μs
State	xEnable := TRUE; xRegulatorOn := TRUE; xSyncVel := TRUE;	50 μs	115 μs
High	xEnable := TRUE; xRegulatorOn := TRUE; xSyncVel := TRUE;	55 μs	118 μs

A	К
Anlauf der Achsen 11	Kontrollierter Anlauf der Achsen 11
Anwendungshinweise 7	
Aufbau der Sicherheitshinweise 7	L
Ausgänge <u>15</u>	L_TT1P_scPar_VirtualMasterBase <u>16</u>
	L_TT1P_scPar_VirtualMasterHigh <u>16</u>
В	L_TT1P_scPar_VirtualMasterState <u>16</u>
Betriebsmodus <u>11</u>	L_TT1P_VirtualMasterBase <u>12</u>
_	L_TT1P_VirtualMasterHigh <u>12</u>
C	L_TT1P_VirtualMasterState <u>12</u>
CPU-Auslastung (Beispiel Controller 3231 C) 29	_
D.	P
D	Parameterstruktur L_TT1P_scPar_VirtualMasterBase/State/
Dauerfahrbetrieb 23	High <u>16</u>
Dokumenthistorie <u>5</u>	S
E	
	Sicherheitshinweise 7, 8 Startposition laden 24
Eingänge 13	State machine für die Variante "High" 19
Eingänge und Ausgänge 12	State machine für die Varianten "Base" und "State" 18
Einzeltaktbetrieb 22	Stopp-Funktion 20
E-Mail an Lenze <u>31</u>	Synchronisierung der Geschwindigkeit 25
F	Synchronisierung der Position (wegbasiert) 26
Feedback an Lenze <u>31</u>	Synchronisierung der Position (wegbasiert) 28
Funktionen des Technologiemoduls (Übersicht) 10	Synchronisierung der Fosition (zeitbasiert) 20
Funktionsbaustein L_TT1P_VirtualMasterBase/State/High 12	V
Funktionsbeschreibung "Virtual Master" 10	Variablenbezeichner <u>6</u>
Tankers specific bang Thead Master 40	Verwendete Konventionen 6
G	Virtual Master (Funktionsbeschreibung) 10
Geschwindigkeitsgleichlauf 25	·
Gestaltung der Sicherheitshinweise 7	W
_	Wegbasierter Positionsgleichlauf 26
Н	
Handfahren (Jogging) 21	Z
Hinweise zum Betrieb des Technologiemoduls 11	Zeitbasierter Positionsgleichlauf 28
	Zielgruppe <u>4</u>
J	Zustände für die Variante "High" 19
Jogging (Handfahren) 21	Zustände für die Varianten "Base" und "State" 18

Ihre Meinung ist uns wichtig

Wir erstellten diese Anleitung nach bestem Wissen mit dem Ziel, Sie bestmöglich beim Umgang mit unserem Produkt zu unterstützen.

Vielleicht ist uns das nicht überall gelungen. Wenn Sie das feststellen sollten, senden Sie uns Ihre Anregungen und Ihre Kritik in einer kurzen E-Mail an:

feedback-docu@lenze.com

Vielen Dank für Ihre Unterstützung. Ihr Lenze-Dokumentationsteam Lenze Automation GmbH
Postfach 10 13 52, 31763 Hameln
Hans-Lenze-Straße 1, 31855 Aerzen
GERMANY
HP Hannover P 205381

HR Hannover B 205381

[+49 5154 82-0

<u>+49 5154 82-2800</u>

Service

Lenze Service GmbH Breslauer Straße 3, 32699 Extertal GERMANY

- © 008000 24 46877 (24 h helpline)
- 💾 +49 5154 82-1112
- @ service@lenze.com

