

Tarea 3 - Algoritmos Geneticos

Materia: Sistemas Inteligentes II Profesor: Javier Enrique Gomez Avila

Carlos Omar Rodriguez Vazquez 219570126

Fecha de Entrega: September 9, 2024

1 Introducción

Los Algortimos Gnéticos (GA) son simulaciones de la selección natural y pueden resolver problemas de optimización. En genearl, los GA mejoran los individuos de la población resolviendo los siguientes operaciones durante un proceso iterativo.

- Selección
- Reproducción
- Mutación

1.1 Inicialización

La inicializción de los individuos de la población dentro del espacio de trabajo del espacio continuo, se realiza mediante la siguiente ecuación

$$\mathbf{x}_i = \mathbf{x}_l + (\mathbf{x}_u - \mathbf{x}_l) \odot \mathbf{r}$$

donde $i=1,2,3,\ldots,N$ con N como el tamaño de la población y

- \mathbf{x}_i individuo i en la pobalción
- \bullet \mathbf{x}_l límite inferior del espacio de búsqueda
- \bullet \mathbf{x}_u límite superior del espacio de búsqueda
- r vector de núemero aleatorios

Además, $\mathbf{x}_i, \mathbf{x}_l, \mathbf{x}_u, \mathbf{r} \in \mathbb{R}^D$ com D como el tamaño de la dimensión del problema.

1.2 Evaluación de la función objetivo

Para minimar una Función Ojetivo $f(\mathbf{x}$ se propone evaluar la aptitud de cada individuo i como sigue

$$aptitud_i(\mathbf{x}_i) = \begin{cases} \frac{1}{1+f(\mathbf{x}_i)} & \text{si } f(\mathbf{x}_i) \ge 0\\ 1+|f(\mathbf{x}_i)| & \text{si } f(\mathbf{x}_i) < 0 \end{cases}$$

Esto debido a que los GA por naturaleza maximinaz. Además, es necesario obetener valores postitivos en la $aptitud_i$, para poder realizar la operación de Selección.

1.3 Selección

En la operación de selección, algunos individuos son seleccionados para reproducirse, típicamente con base a su aptitud. Existen diferentes tipos de selección. Como por ejemplo: selección por ruleta, selección por torneo, entre otros.

Selección por ruleta

En la selección por ruleta, cada individuo es asignado dependiendo a la proporción de su aptitud. Un valor de aptitud grande tiene más probabilidades de ser seleccionado.

Para cada individuo i se asigna una probabilidad de selección como sigue

$$p_i = \frac{aptitud}{\sum_{k=1}^{N} aptitud_k}$$

donde

- $aptitud_i$ es la aptitud del individuo i
- \bullet N es el total de individuos en la población

Dependiendo del valor p_i , eel individuo i puede ser seleccionado como un padre para crear descendencia.

Selección por Ranking

La selección pro ranking ordena a los individuos del mejor al peor y realiza la selección con baes a un ranking en vez del valor de la aptitud.

Una vez ordenados los individuos, se le asigna a cada uno un peso. Al mejor individuo se le asigna un peso de N y al peor individuo un peso de 1. Se calcula entonces la probablidad del ranking en vez de la probablidad con base en la aptitud.

1.4 Cruza

En la operación de Cruza, dos padres son seleccionados en baase a su aptitud para generar dos hijos. Importante: Un padre no se puede cruzar consigo mismo, pero puede ser sleeccionado varias veces.

Cruza Base

En la cruza base los padres intercambian información del cromosoma a partir de un punto de cruce p. Dados dos padres \mathbf{x}_1 y \mathbf{x}_2 , generamos dos hijos \mathbf{y}_1 y \mathbf{y}_2 . El punto de cruce p se calcula aleatoriamente tal que $p \in \{1, D\}$ con D como la dimension del problema.

Cruza Aritmética

En la cruza aritmética, dos hijos se crean con la base en la siguiente regla

$$\mathbf{y}_1 = \alpha; \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2$$
$$\mathbf{y}_2 = (1 - \alpha)\mathbf{x}_1 + \alpha\mathbf{x}_2$$

Se deben seleccionar tantos padres necesarios para crear hijos suficientes y mantener el tamaño de la población N.

1.5 Mutación

En la operación de Mutación, cada elemento del cromosoma $j \in \{1, D\}$ de cada hijo generado $i \in \{1, N\}$, tiene la probabilidad de ser mutado.

Mutación Base

La Mutación base se calcula de la siguiente manera

$$y_{ij} = \begin{cases} y_{ij} & \text{si } r_a \ge p_m \\ x_{lj} + (x_{uj} - x_{lj})r_b & \text{si } r_a < p_m \end{cases}$$

donde p_m es la probablidad de mutación y $r_a, r_b \in [0, 1]$ son números aleatorios. La probablidad de mutación es seleccionada por el usuario tal que $p_m \in [0, 1]$.

Mutación - Diatribución normal

La Mutación se calcula de la siguiente manera

$$y_{ij} = \begin{cases} y_{ij} & \text{si } r_a \ge p_m \\ x_{lj} + N(0, 1) & \text{si } r_a < p_m \end{cases}$$

donde p_m es la probablidad de mutación y $r_a, r_b \in [0, 1]$ son números aleatorios y N(0, 1) representa un número aleatorio con una distribución normal de medio 0 y varianza 1. La probablidad de mutación es seleccionada por el usuario tal que $p_m \in [0, 1]$.

1.6 Algoritmo Genético

Algorithm 1 Algoritmo GA

```
    N ← definir población total
    x<sub>i</sub> ← inicializar N padres aleatoriamente, i ∈ {1, N}
    do
    aptitud ← calcular la aptitud de cada individuo (padres) i
    y<sub>i</sub> ← {∅} generar conjunto vacióo de hijos, i ∈ {1, N}
    while que la población y sea menor que N do
    selección de padres r<sub>1</sub> y r<sub>2</sub> tal que r<sub>1</sub> ≠ r<sub>2</sub>
    padres {x<sub>r1</sub>, x<sub>r2</sub>} generan hijos {y<sub>1</sub>, y<sub>2</sub>}
```

10: end while

11: Mutar aleatoriamente a los hijos \mathbf{y}_i

 $\mathbf{y} \leftarrow \mathbf{y} \cup \{\mathbf{y}_1, \mathbf{y}_2\}$

12: $\mathbf{x} \leftarrow \mathbf{y}$

9:

13: **while** que se cumpla el total de generaciones G

1.7 Algoritmo Genético Elitista

El problema con el GA clásico es que los padres mueren y los hijos

Algorithm 2 Algoritmo GA

```
1: N \leftarrow definir población total
 2: E \leftarrow definir número de indiviuos Elite
 3: \mathbf{x}_i \leftarrow \text{inicializar } N \text{ padres aleatoriamente, } i \in \{1, N-E\}
    do
          aptitud 

calcular la aptitud de cada individuo
    (padres) i
          \mathbf{y}_i \leftarrow \{\emptyset\} generar conjunto vación de hijos, i \in \{1, N\}
          while que la población y sea menor que N-E do
 7:
 8:
               selección de padres \mathbf{r}_1 y \mathbf{r}_2 tal que r_1 \neq r_2
               padres \{\mathbf{x}_{r_1}, \mathbf{x}_{r_2}\} general hijos \{\mathbf{y}_1, \mathbf{y}_2\}
 9:
               \mathbf{y} \leftarrow \mathbf{y} \cup \{\mathbf{y}_1, \mathbf{y}_2\}
10:
          end while
11:
          Mutar aleatoriamente a los hijos \mathbf{y}_i
12:
13:
          \mathbf{x}_E \leftarrow \text{seleccionar mejores } E \text{ padres}
14:
          \mathbf{x} \leftarrow \mathbf{y} \cup \mathbf{x}_E
15: while que se cumpla el total de generaciones G
```

2 Desarrollo

Para elegir la 'mejor' variante del algortimos genéticos se tomo como base la variante elitista y a partir de ella se modificaron los apartados de selección, cruza y mutación. Por lo que resultaron 8 variantes ya que para cada uno de los apartados tiene 2 posiblidades.

De estas 8 variantes se realizaron 50 ejecuiones para cada una de ellar y se toma a la que tuvo el mejor promedio.

Figure 1: Comparación de las diferentes variantes del GA.

La mejor variante del GA fue la variante 4 la cual es la cual utiliza la Selección por Ruleta, Cruza Aritmética y Mutación - Distribución normal.

2.1 Función Objetivo 1

• Función Objetivos: $f(x) = xe^{-x^2-y^2}$

• Numero de iteraciones: n = 50

(a) Gráfica de la función objetivo (b) Gráfica de convergencon el mejor valor obtenido. cia.

Mínimo global en
$$\mathbf{x} = (-0.70716, -7.826 \cdot 10^{-5})$$
 con valor $f(\mathbf{x}) = -0.4288819$

(c) Gráfica de convergencia.

Figure 2: Resultados obtenidos utilizando la variante elegida del GA.

2.2 Función Objetivo 2

• Función Objetivos: $f(x) = (x-2)^2 + (y-2)^2$

• Numero de iteraciones: n = 100

(a) Gráfica de la función objetivo (b) Gráfica de convergencon el mejor valor obtenido. cia.

Mínimo global en
$$\mathbf{x} = (2.00002, 1.99995)$$
 con valor $f(\mathbf{x}) = 3.1266 \cdot 10^{-9}$

(c) Gráfica de convergencia.

Figure 3: Resultados obtenidos utilizando la variante elegida del GA.

3 Conclusiones

El algoritmo genético es una excelente herramienta de optimización y una introducción ideal a los conceptos de selección, cruce y mutación de individuos, los cuales representan las posibles soluciones al problema. En cada fase del proceso, existen diferentes variantes que pueden generar resultados variados, y conocerlas permite elegir la más adecuada según el tipo de función objetivo.