Discussion on Several Basic Problems within Non-convex Optimization

YWJ HUST-IDC / No Address ywj@hust.edu.cn

Abstract

1 Introduction

This article begin with proof of two statements below:

- 1. All neural networks with more than one hidden layer can only fitting non-convex functions.
- 2. For any linear neural network with square loss function, every local minimum is a global minimum [Kawaguchi(2016)].

2 All Neural Networks with more than One Hidden Layer can Only Fitting Non-convex Functions

Firstly, take a special two layers Neural Network without activate function into consideration. It's defined by $f(w_1, w_2, w_y) = x \cdot w_1 \cdot w_2 \cdot w_y$. Assume that we have ideally perfect weights (w_a, w_b, w_y) to fit our object $LOSS(f(w_1, w_2, w_y))$. if $LOSS(f(w_1, w_2, w_y))$ is convex, for any other weights $(w_1, w_2, w_y) \neq (w_a, w_b, w_y)$ have $LOSS(f(w_1, w_2, w_y)) > LOSS(f(w_a, w_b, w_y))$. Because convex functions have a unique optimal point. By opposite we give this:

$$f(w_1, w_2, w_y) = x \cdot w_a \cdot w_b \cdot w_y = x \cdot w_a \cdot I \cdot w_b \cdot w_y = x \cdot w_a \cdot A \cdot A^{-1} \cdot w_b \cdot w_y = x \cdot w_1 \cdot w_2 \cdot w_y$$

In fact, when (A, A^{-1}) is a pair of opposite elementary transformation, we can always find another set of weights to minimize $LOSS(f(w_1, w_2, w_y))$. To include the circumstance that (w_1, w_2, w_y) and (w_a, w_b, w_y) are exactly the same point, we give these two lemmas:

Lemma 1 For every point meet $w_a = w_1$ or $w_b = w_2$, it's not a unique optimal point.

Lemma 2 If for arbitrary full rank matrix B has: $A \cdot B = A$, then A is a zeros matrix.

Lemma 2 point out that when there isn't a full rank A let $w_a \neq w_a \cdot A$, w_a must be zeros matrix. Which means the following two conditions must be satisfied at most one: 1) There is a full rank A make $w_a \neq w_a \cdot A$, then (w_a, w_b, w_y) is not a unique one and the function is non-convex. 2) w_a or w_b is zeros matrix. If one of (w_a, w_b) is zeros, whatever the rest parameters (w_y) are, the network output a zeros vector. If (w_1, w_2, w_y) is optimal, then for arbitrary w_y , they are equally optimal. Which means (w_1, w_2, w_y) is not a unique one and the function is non-convex. The rest is proof of **Lemma 2**:

Proof 2.1 Condition 1: A is a square matrix, note shape(A) = (n, n):

When n = 1, A and B are both constant, since B is full rank, $B \neq 0$, then A = 0 must be satisfied.

Assume that when n = k, **Lemma 2** is true. When n = k + 1, $A \cdot B = A$ could be written in partitioned matrix format:

$$\left[\begin{array}{cc}A^{kk} & A^{k1}\\A^{1k} & A^{11}\end{array}\right]\cdot\left[\begin{array}{cc}B^{kk} & B^{k1}\\B^{1k} & B^{11}\end{array}\right]=\left[\begin{array}{cc}A^{kk}B^{kk}+A^{k1}B^{1k} & A^{kk}B^{k1}+A^{k1}B^{11}\\A^{1k}B^{kk}+A^{11}B^{1k} & A^{1k}B^{k1}+A^{11}B^{11}\end{array}\right]=\left[\begin{array}{cc}A^{kk} & A^{k1}\\A^{1k} & A^{11}\end{array}\right]$$

The existence of solution A=0 is obviously. Then a special case in set of B could be used to demonstrate A=0 is the unique solution. Set $B^{k1}=0$ and $B^{1k}=0$, because B is full rank, must have $B^{11}\neq 0$ and B^{kk} is an arbitrary full rank one. The equation above could be written into:

$$\left[\begin{array}{cc} A^{kk}B^{kk} & A^{k1}B^{11} \\ A^{1k}B^{kk} & A^{11}B^{11} \end{array}\right] = \left[\begin{array}{cc} A^{kk} & A^{k1} \\ A^{1k} & A^{11} \end{array}\right]$$

According to the assumption about n=k, $A^{kk}=0$. Because B^{11} is a arbitrary constant and $B^{11}\neq 0$, must have $A^{k1}=0$ and $A^{11}=0$. As A^{1k} , padding with zeros and making it a square matrix with shape (n,n). We have the equivalent equation below. According to the assumption about n=k, $A^{1k}=0$.

$$A^{1k} \cdot B^{kk} = A^{1k} \Leftrightarrow \left[\begin{array}{c} A^{1k} \\ O \end{array} \right]^{kk} \cdot B^{kk} = \left[\begin{array}{c} A^{1k} \\ O \end{array} \right]^{kk}$$

The special case of B demonstrate that any other A except A=0 can't fit this case. That means A=0 is the only solution of precondition of **Lemma 2**.

Condition 2: A is not a square.

It's easy to prove **Lemma 2** when padding A into a square one with zeros like dealing with A^{1k} . The detail is omitted

The proof above works even when w_1 and w_2 are not square matrices. And because of two equally optimal point could be always found in the same function, I proved the function must be a non-convex one. Then consider the general networks with an activate function $\alpha()$, for any kind of activate functions we have:

$$\alpha(x \cdot w_1) \cdot A = \alpha(x \cdot w_1 \cdot A)$$

Noted that A denote a elementary transformation. Only when w_1 is squared can A be written as a elementary matrix. Then in a similar way:

$$f(x) = \alpha(x \cdot w_a) \cdot w_b \cdot w_y = \alpha(x \cdot w_a) \cdot I \cdot w_b \cdot w_y = \alpha(x \cdot w_a) \cdot A \cdot A^{-1} \cdot w_b \cdot w_y$$
$$= \alpha(x \cdot w_a \cdot A) \cdot A^{-1} \cdot w_b \cdot w_y = \alpha(x \cdot w_1) \cdot w_2 \cdot w_y$$

End here, proposition in the title has been proved.

3 For Any Linear Neural Network with Square Loss Function, Every Local Minimum is a global minimum.

Before the main proof, a series of lemma are given below:

Lemma 3 Denote A_i as column of matrix A, then:

$$\sum_{i} ||A_i||_2^2 = ||A||_F^2$$

Lemma 4 vec() denote the function unfold a matrix into a vector according to the column order.

$$vec(AXB) = (B^T \otimes A) \cdot vec(X)$$

Before give the rest lemmas, some notations are given here. A linear neural network with square loss function is defined by $L(W) = \sum_i ||\overline{Y}_i(W,X) - Y_i||_2^2$, the forward function is $\overline{Y}(W,X) = W_y W_n \cdots W_2 W_1 X$. d_k denotes the dimension of kth layer, thus W_k has a shape (d_{k-1},d_k) . Let $p = \min(d_1,d_2\cdots d_n)$.

For simplicity, denote the error transposed matrix by r and a constant $\frac{1}{2}$ is added to the loss. By using **Lemma 3**, the loss could be written as matrix product:

$$L(W) = \frac{1}{2} \sum_{i} ||\overline{Y}_{i}(W, X) - Y_{i}||_{2}^{2} = \frac{1}{2} ||\overline{Y}(W, X) - Y||_{F}^{2} = \frac{1}{2} tr(r \cdot r^{T}) = \frac{1}{2} sum(r^{T} \circ r^{T}) = \frac{1}{2} vec(r)^{T} vec(r)$$

If W is a critical point, then for $k \in [1, 2, \dots, n]$, the derivatives of L(W) with respect of W_k equal to 0:

$$\begin{split} \frac{\partial L(W)}{\partial vec(W_k^T)} &= \frac{1}{2} \frac{\partial vec(r)^T vec(r)}{\partial vec(r)^T} \cdot \frac{\partial vec(r)^T}{\partial vec(W_k^T)} \\ &= vec(r) \cdot \frac{\partial vec(W_y W_n \cdots W_2 W_1 X - Y)^T}{vec(W_k^T)} \\ &= vec(r)^T \cdot \frac{\partial vec(X^T W_1^T \cdots W_n^T W_y^T)}{vec(W_k^T)} \\ &= vec(r)^T \cdot \frac{\partial (W_y W_n \cdots W_{k+1} \otimes X^T W_1^T \cdots W_{k-1}^T) \cdot vec(W_k^T)}{vec(W_k^T)} \\ &= vec(r)^T \cdot (W_y W_n \cdots W_{k+1} \otimes X^T W_1^T \cdots W_{k-1}^T) = O \end{split}$$

Since the equation is true statement for every k in $[1, 2, \dots, n]$, choose k = 1 then have:

$$O^{T} = (W_{y}W_{n} \cdots W_{2} \otimes X^{T})^{T} vec(r) = vec(XrW_{y}W_{n} \cdots W_{2})$$

Denote $W_yW_n\cdots W_2$ by C, then $r=CW_1X$:

$$vec(XrW_yW_n\cdots W_2) = vec(XX^TW_1^TC^TC - XY^TC) = O$$

$$C^TCW_1XX^T - C^TYX^T = O$$

With decorrelated X, XX^T is invertible:

$$C^T C W_1 = C^T Y X^T (X X^T)^{-1}$$

For any generalized inverse g the linear equation has a solution:

$$W_1 = (C^T C)^g C^T Y X^T (X X^T)^{-1} + (I - (C^T C)^g C^T C) M$$

M is a matrix determined by the certain generalized inverse. According to the theory of Schur Complement [Zhang(2005)], for any generalized inverse satisfied $A(A^TA)^g(A^TA) = A$, thus:

$$CW_1 = C(C^TC)^g C^T Y X^T (XX^T)^{-1} + (CI - C(C^TC)^g C^T C) M = C(C^TC)^g C^T Y X^T (XX^T)^{-1}$$

For later using, denote the conclusion above as **Lemma 5**:

Lemma 5 For any critical point W in L(W), has:

$$W_y W_n \cdots W_2 W_1 = C(C^T C)^g C^T Y X^T (X X^T)^{-1}$$

Lemma 6 For any critical point W in L(W), it's hessian matrix could be written in format:

$$\nabla^2 L(W) = \begin{bmatrix} \frac{\partial^2 L(W)}{\partial vec(W_y^T)\partial vec(W_y^T)} & \frac{\partial^2 L(W)}{\partial vec(W_y^T)\partial vec(W_n^T)} & \cdots & \frac{\partial^2 L(W)}{\partial vec(W_y^T)\partial vec(W_1^T)} \\ \frac{\partial^2 L(W)}{\partial vec(W_n^T)\partial vec(W_y^T)} & \frac{\partial^2 L(W)}{\partial vec(W_n^T)\partial vec(W_n^T)} & \cdots & \frac{\partial^2 L(W)}{\partial vec(W_n^T)\partial vec(W_1^T)} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 L(W)}{\partial vec(W_1^T)\partial vec(W_y^T)} & \frac{\partial^2 L(W)}{\partial vec(W_1^T)\partial vec(W_n^T)} & \cdots & \frac{\partial^2 L(W)}{\partial vec(W_1^T)\partial vec(W_1^T)} \end{bmatrix}$$

Lemma 7 Denote the range of matrix M as $\Re(M)$. If $\nabla^2 L(W)$ is is positive semidefinite or negative semidefinite at a critical point, then for any $k \in [2, 3, \dots, n, y]$:

$$\Re(W_{k-1}\cdots W_2)\subseteq \Re(C^TC)$$

or:

$$XrW_uW_n\cdots W_{k+1}=O$$

Lemma 8 If $\nabla^2 L(W)$ is is positive semidefinite or negative semidefinite at a critical point, then for any $k \in [2, 3, \dots, n, y]$:

$$rank(W_yW_n\cdots W_k) \ge rank(W_{k-1}\cdots W_2)$$

or:

$$XrW_nW_n\cdots W_{k+1}=O$$

A little more notation are make here before the last lemma. Let $\Sigma = YX^T(XX^T)^{-1}XY^T$. Denote the eigendecomposition of Σ as $\Sigma = U\Lambda U^T$, where $\Lambda_{1,1} > \Lambda_{2,2} > \cdots \Lambda_{d_y,,d_y}$ are the eigenvalues in descending order, with eigenvectors $U = [u_1,u_2,\cdots,u_{d_y}]$ note that Σ is symmetrical. Let $\overline{p} = rank(C)$, remember that p has been defined as $p = \min(d_1,d_2,\cdots,d_n)$, $C = W_yW_n\cdots W_2$, W_2 has shape (d_2,d_1) , then rank(C) has range: $\overline{p} \in [1,2,\cdots \min(d_1,d_2,\cdots d_y)] = [1,2,\cdots \min(p,d_y)]$. Define the \overline{p} largest eigenvectors as $U_{\overline{p}} = [u_1,u_2,\cdots,u_{\overline{p}}]$.

Lemma 9 If $\nabla^2 L(W)$ is positive semidefinite at a critical point, ,then:

$$C(C^TC)^gC^T = U_{\overline{p}}U_{\overline{p}}^T$$

or:

$$Xr = O$$

Finally comes to our main proposition.

Theorem 1 Assume that XX^T and XY^T are of full rank with $d_y \leq d_x$ and Σ has d_y distinct eigenvalues. Then, for any depth $n \geq 1$ and for any layer widths and any input-output dimensions $d_y, d_n, ..., d_1, dx \geq 1$, the loss function L(W) has the following properties: Every local minimum is a global minimum.

Proof 3.1 Condition 1: $rank(W_n...W_2) = p$ and $d_y \le p$. In a critical point, Lemma 8 with k = y implies:

$$rank(W_y) \ge rank(W_n \cdots W_2)$$
 or $Xr = O$

If $d_y < p$, then $rank(W_y) , <math>Xr = O$ would be the necessary condition.

Else if $d_y = p$, from **Lemma 7** with k = y we know $\Re(W_n \cdots W_2) \subseteq \Re(C^T C)$, then we have

$$p = \min(d_n, \dots, d_1) = rank(W_n \dots W_2) \le \Re(C^T C) = rank(C)$$

From **Lemma 8** with k = 2 we have:

$$rank(W_n \cdots W_2) = rank(C) > rank(I_{d_1})$$
 or $XrW_uW_n \cdots W_3 = O$

Note that when k=2 $rank(W_{-1},...W_2)$ is invalid. This could be solved by adding unit matrix to both side of the inequation. Denoted unit matrix with dimension of d_1 as I_{d_1} , then the function becomes $\overline{Y}(W,X)=W_yW_n\cdots W_2I_{d_1}W_1$, apply to **Lemma 8** get the result $rank(W_n\cdots W_2)>rank(I_{d_1})$. Consider the latter, since:

$$rank(W_yW_n\cdots W_3) \ge rank(W_yW_n\cdots W_2) = rank(C) \ge p$$
 and $p = \min(d_n, \dots, d_1) = d_y$

 $W_yW_n\cdots W_3$ has shape (d_y,d_2) and $d_y\leq d_2$. If $rank(W_yW_n\cdots W_3)\geq d_y$, then it's full rank. So we have Xr=O. Consider the former, C has shape (d_n,d_1) and $rank(C)\geq d_1$, so have C^TC is full rank. And the generalized inverse for a invertible matrix is g=-1, we have:

$$Xr = X(CW_1X - Y) = XC(C^TC)^{-1}C^TYX^T(XX^T)^{-1}X - XY = XY - XY = O$$

In total we have Xr = O in **Condition 1**, as X is full rank, always have r = O. And the error matrix of square loss is zeros matrix guarantees W is a global minimum.

Condition 2: $rank(W_n...W_2) = p$ and $d_y > p$.

From **Lemma 9** we have $C(C^TC)^gC^T=I$, then:

$$W = W_y W_n \cdots W_1 = C(C^T C)^{-1} C^T Y X^T (X X^T)^{-1} = U_{\overline{p}} U_{\overline{p}}^T Y X^T (X X^T)^{-1}$$

Since $\overline{p} = rank(C) = min(d_y, d_n, ...d_1)$ and $d_y > p$, $\overline{p} = rank(C) = min(d_n, ...d_1) = p$. the equation can be rewrite as:

$$W_y W_n \cdots W_1 = U_p U_p^T Y X^T (X X^T)^{-1}$$

According to the result in [Baldi and Lu(2012)], this is indeed the expression of a global minimum.

Condition 3: $rank(W_n...W_2) < p$.

Omit.

4 Mathematical Tools for Analysing First and Second Order Based Optimization

An convex minimization problem with finite number of variables could be abstracted into the form below:

$$\min_{\alpha} E(\alpha)$$

In which α denotes the vector of variables, $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_2)^T$. Analogy to the taylor expansion within unary function:

$$f(x) = \sum_{i=0}^{i=2} \frac{1}{i!} f^{i}(x_{0})(x - x_{0})^{i} + O((x - x_{0})^{2})$$

We have the expansion form within high-dimensional condition:

$$E(\alpha) = E(\alpha_0) + E'(\alpha_0)(\alpha - \alpha_0) + \frac{1}{2}E''(\alpha_0)(\alpha - \alpha_0)^2 + O((\alpha - \alpha_0)^2)$$

For the left of equation is constant, each item in the right should be constant too. Reform the right side we have:

$$E(\alpha) = E(\alpha_0) + (\alpha - \alpha_0)^T E'(\alpha_0) + \frac{1}{2}(\alpha - \alpha_0)^T E''(\alpha_0)(\alpha - \alpha_0) + O((\alpha - \alpha_0)^2)$$

For the gradient based method which update α in direction β with a step size of ε as below:

$$\Delta E = E(\alpha + \varepsilon \cdot \beta) - E(\alpha)$$

$$= E(\alpha) + \varepsilon \cdot \beta^T E'(\alpha) + \frac{1}{2} \varepsilon \cdot \beta^T E''(\alpha_0) \cdot \varepsilon \cdot \beta + O((\varepsilon \cdot \beta)^2) - E(\alpha)$$

$$= \varepsilon \cdot \beta^T E'(\alpha) + \frac{1}{2} \varepsilon \cdot \beta^T E''(\alpha_0) \cdot \varepsilon \cdot \beta + O((\varepsilon \cdot \beta)^2)$$

Following the definitions, the first order derivation of multivariate function is the gradient vector of it, $E'(\alpha) = \nabla E(\alpha)$. And the second order derivation is its Hessian matrix, $E''(\alpha) = \mathcal{H}_E(\alpha)$. We have:

$$\Delta E = \varepsilon \cdot \beta^T \nabla E(\alpha) + \frac{1}{2} \varepsilon \cdot \beta^T \mathcal{H}_E(\alpha) \cdot \varepsilon \cdot \beta + O((\varepsilon \cdot \beta)^2)$$

As a lemma, a proof is going below:

Lemma 10 If \mathcal{H} is positive definite, then for all α guarantee $\alpha^T \mathcal{H} \alpha > 0$

Proof 4.1 Because \mathfrak{H} is a Hermitian, $\mathfrak{H} = U\Sigma U^T$. U denote a set of orthogonal basis and let α has coordinate C under U, $\alpha = UC$:

$$\alpha^T \mathcal{H} \alpha = (UC)^T U \Sigma U^T U C = C^T U C = \sum_{i=1}^n c_1^2 \lambda_i$$

Because \mathcal{H} is positive definite, which guarantees $\lambda_i > 0$ for all i. So have $\alpha^T \mathcal{H} \alpha > 0$

Consider the optimal object $\min_{\alpha} E(\alpha)$, we hope $E(\alpha)$ goes down with each step, which requires:

$$\Delta E < 0 \Rightarrow \varepsilon \cdot \beta^T \nabla E(\alpha) + \frac{1}{2} \varepsilon \cdot \beta^T \mathcal{H}_E(\alpha) \cdot \varepsilon \cdot \beta + O((\varepsilon \cdot \beta)^2) < 0$$

Since the second order item is positive definite, ignore the infinitesimal item of higher order,

References

[Baldi and Lu(2012)] Pierre Baldi and Zhiqin Lu. 2012. Complex-Valued Autoencoders. *Neural Networks* 33:136–147. ArXiv: 1108.4135. https://doi.org/10.1016/j.neunet.2012.04.011.

[Kawaguchi(2016)] Kenji Kawaguchi. 2016. Deep Learning without Poor Local Minima. arXiv:1605.07110 [cs, math, stat] ArXiv: 1605.07110. http://arxiv.org/abs/1605.07110.

[Zhang(2005)] Fuzhen Zhang, editor. 2005. *The Schur complement and its applications*. Number v. 4 in Numerical methods and algorithms. Springer, New York.