Kevin G. Chan

CONTACT Information Ph.D. Candidate

Electrical & Computer Engineering

University of California, Santa Barbara

kevin@kchan.me

http://www.kchan.me

EDUCATION

University of California, Santa Barbara, Santa Barbara, CA

Ph.D. Candidate, Electrical and Computer Engineering

- Adviser: Dr. Michael Liebling
- Group: Systems Bioimaging Laboratory
- Area of Study: Signal & Image Processing
- Thesis: Computational imaging methods for improving resolution in biological microscopy

University of California, Santa Barbara, Santa Barbara, CA

M.S., Electrical and Computer Engineering, 2013

Harvey Mudd College, Claremont, CA

B.S., Engineering, 2011

Work Experience

Idiap Research Institute, Martigny, Switzerland

2015 - 2016

Computational Imaging Intern

- Designed and assembled a computational imaging system with active illumination for temporal superresolution.
- Investigated the performance of different active illumination codes using computational simulations.
- Developed a video reconstruction algorithm capable of achieving temporal superresolution by a factor of up to $6\times$.

FLIR Systems, Goleta, CA

2015

Video, Signal Processing, and Algorithms Intern

- Developed image processing simulations for infrared camera systems.
- Implemented single image superresolution for low-cost, low-resolution infrared camera sensors.
- Implemented a spatially-variant, point spread function-aware algorithm for infrared image deblurring.

RESEARCH EXPERIENCE

Systems Bioimaging Laboratory, UC Santa Barbara

2012-present

Graduate Student Researcher

• I am currently working on biological image processing algorithms, including temporal superresolution, tomographic reconstruction, and blood flow video analysis.

- I am developing computational imaging methods that combine novel hardware with image processing algorithms for cardiac fluorescence microscopy. I apply these methods to imaging experiments with in vivo microscopy of live transgenic zebrafish.
- I develop bioimage processing tools for ImageJ and Imaris with Java and Matlab.

Computer Science Department, Harvey Mudd College

2010

Undergraduate Researcher

- I helped develop LogiSketch, an educational software system written in C# for sketching and simulating digital logic circuits on a tablet PC.
- I implemented a decision tree algorithm to increase recognition speed and a context-based refinement algorithm to increase recognition accuracy.
- I implemented on-line learning with a Bayes Classifer to improve recognition robustness and adapt to the user's individual drawing style.

Laboratory of Neuroimaging, UCLA

2009

Undergraduate Researcher

- I collaborated with a multidisciplinary team to analyze registration of tetrahedral-based volumetric meshes of the brain.
- I implemented various metrics in Matlab for localizing and quantifying changes during registration.
- I applied my analysis methods to MRI data from a study of Alzheimer's Disease from the Alzheimer's Disease Neuroimaging Initiative (ADNI).

TEACHING EXPERIENCE

UC Santa Barbara, Santa Barbara, CA

Teaching Assistant

2011-2015

- ECE 2A, 2B, 2C: Circuits, Devices, and Systems
- ECE 15A: Fundamentals of Logic Design
- ECE 178: Digital Image and Video Processing
- ECE 278B: Principles of Biological Microscopy

Research Mentorship Program

2012, 2013

• I mentored 1-2 high school students for 6 weeks in the summer as they conducted a research project in the Systems Bioimaging Lab.

Condor Techs 2013

• I mentored 4 students from Oxnard College for 2 weeks in the summer as they conducted a short research project in the Systems Bioimaging Lab.

SKILLS

- Matlab, Java, C#, C, Python
- Microsoft Office, LaTeX, SVN
- ImageJ, Imaris, Adobe Photoshop, Adobe Illustrator

PUBLICATIONS

- **K. G. Chan**, S. Calinon, and M. Liebling, "Temporal superresolution imaging of repeating processes using a single camera and active illumination," *IEEE Transactions on Computational Imaging*, (submitted).
- **K. G. Chan**, S. J. Streichan, L. A. Trinh, and M. Liebling, "Simultaneous temporal superresolution and denoising for cardiac fluorescence microscopy," *IEEE Transactions on Computational Imaging*, vol. 2, no. 3, pp. 348–358, 2016.
- **K. G. Chan** and M. Liebling, "A point-spread-function-aware filtered back-projection algorithm for focal-plane-scanning optical projection tomography," in *IEEE International Symposium on Biomedical Imaging*, 2016.
- N. Chacko, **K. G. Chan**, and M. Liebling, "Intensity-based point-spread-function-aware registration for multi-view applications in optical microscopy," in *IEEE International Symposium on Biomedical Imaging*, 2015.
- **K. G. Chan** and M. Liebling, "Estimation of divergence-free 3D cardiac blood flow in a zebrafish larva using multi-view microscopy," in *IEEE International Symposium on Biomedical Imaging*, 2015.
- **K. Chan**, L. Trinh, and M. Liebling, "A temporal superresolution method applied to low-light cardiac fluorescence microscopy," in *Proceedings of the IEEE Asilomar Conference on Signals, Systems and Computers*, 2013.