Smart Farmer-IOT Enabled Smart Farming Application

SPRINT - 4

TITLE	Smart Farmer-IOT Enabled Smart Farming Application
DOMAIN NAME	INTERNET OF THINGS
TEAM ID	PNT2022TMID20449
LEADER NAME	KARTHIKA A
TEAM MEMBER NAME	KAVIYA SATHYA HARI KARA SANKAR SURYA
MENTOR NAME	MANJUBASHINI B

Receiving commands from IBM cloud using Python program

import time import sys import ibmiotf.application import ibmiotf.device import random

#Provide your IBM Watson Device Credentials

```
organization = "157uf3"
deviceType = "IOT DEV"
deviceId = "1911073"
authMethod = "token"
authToken = "1911073abcdefgh"
# Initialize GPIO
def myCommandCallback(cmd):
   print("Command received: %s" % cmd.data['command'])
   status=cmd.data['command']
if status=="motoron":
   print ("motor is on")
elif
status == "motoroff":
    print("motor is off")
else:
   print ("please send proper command")
try:
   deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
   deviceCli = ibmiotf.device.Client(deviceOptions)
#.....
except Exception as e:
    print("Caught exception connecting device: %s" % str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type
"greeting" 10 times deviceCli.connect()
while True:
#Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
data = { 'temp' : temp, 'Humid': Humid, 'Mois': Mois}
#print data
```

```
def myOnPublishCallback():
    print ("Published Temperature = %s C" % temp, "Humidity = %s %%" % Humid,
"Moisture =%s deg c" % Mois "to IBM Watson")
   success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on publish=myOnPublishCallback) if not success:
   print("Not connected to IoTF") time.sleep(10)
   deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud deviceCli.disconnect()
```

ibmiotpublishsubscribe.py - C:\Users\ELCOT.Downloads\ibmiotpublishsubscribe.py (3.7.0)
File Edit Format Run Options Window Help - 0 × import time import sys import ibmiotf.application import ibmiotf.device import random #Provide your IBM Watson Device Credentials organization = "157uf3" deviceType = "abcd" deviceId = "7654321" authMethod = "token" authToken = "87654321" # Initialize GPIO def myCommandCallback(cmd):

Flow chart

OBSERVATIONS AND RESULTS

Advantages & Disadvantages

Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.

• Farmers wanted to adapt the use of Mobile App.

Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.

Bibliography

IBM cloud reference: https://cloud.ibm.com/

IoT simulator:

https://watson-iot-sensor-simulator.mybluemix.net/

OpenWeather: https://openweathermap.org/