Provas

Prof^a Jerusa Marchi

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina
e-mail: jerusa@inf.ufsc.br

Provas

- O que é uma Prova?
 - Algo que demonstra que uma afirmação ou um fato é verdadeiro
 - Em matemática, prova = demonstração
 - A demonstração consiste na apresentação ou no particular arranjo dos argumentos que produzem a prova
 - Uma prova é uma forma de comunicação que visa convercer, a quem a leia, que uma afirmação segue a partir de outras e que se estas outras são verdadeiras, então aquela também deve ser

Alguns Conceitos Básicos

Definições

- descreve os objetos e as noções utilizadas
- Exemplos:
 - Definição de Conjunto, Conjunto Vazio, Conjunto Unitário
- Após definidos os objetos, são construídas asserções sobre suas propriedades

Alguns Conceitos Básicos

Prova

 Uma prova é uma sequência de argumentos logicamente coerentes que visam demonstrar que uma asserção é verdadeira

Teorema

Asserção demonstrada verdadeira

Lema

Um teorema que assiste a um outro de maior importância

Corolário

Uma asserção cuja verdade decorre diretamente de um teorema

Provas

- Para não desanimar...
 - A construção de provas matemáticas nem sempre é fácil
 - Conhecer bem a asserção que se quer provar é fundamental
 - leia a asserção e certifique-se de tê-la entendido (notação e definições)
 - se necessário, divida a asserção nas partes que a compõem A sse B = A se B e B se A
 - teste a asserção para vários exemplos antes de tentar prová-la
 - teste a asserção visando encontrar algum contraexemplo

Provas por Indução

- Método:
 - mostrar que a afirmação é válida para 1 (base)
 - ullet assumir que a afirmação é válida para n (hipótese)
 - mostrar que a afirmação é válida para n+1 (passo)
- Baseia-se no método de geração dos números naturais: adicionar 1 e na regra de inferência Modus Ponens

$$(A \land (A \rightarrow B)) \rightarrow B$$

o ponto inicial pode ser qualquer número

Prova:

Base:

$$1 = \frac{1}{2}1.(1+1)$$

Hipótese

$$1 + 2 + \dots + n = \frac{1}{2}n.(n+1)$$

Passo

$$1 + 2 + \dots + n + (n+1) = \left[\frac{1}{2} \ n \cdot (n+1)\right] + (n+1)$$

Logo

$$1 + 2 + \dots + n + (n+1) = \frac{1}{2} n^2 + n + \frac{1}{2} (2n+2)$$

е

$$1 + 2 + \dots + n + (n+1) = \frac{1}{2} (n^2 + 3n + 2)$$

Portanto

$$1 + 2 + \dots + n + (n+1) = \frac{1}{2} (n+1) \cdot (n+2)$$

Ou seja

$$1 + 2 + \dots + n + (n+1) = \frac{1}{2} (n+1).((n+1)+1)$$

Como queríamos demonstrar.

Prova por Contradição

- Método:
 - Assume-se por hipótese que a proposição que se quer demonstrar é falsa, ou seja, a sua negação é verdadeira
 - Se disso deriva-se uma contradição, então não se pode assumir tal hipótese e, portanto a proposição é verdadeira

• Exemplo: Prove que $\sqrt{2}$ é irracional.

Prova: Suponha que $\sqrt{2}=\frac{p}{q}$, p e q inteiros. Suponha também que $\frac{p}{q}$ seja uma fração irredutível, isto é, nenhum número divide ambos p e q. Então, $p=\sqrt{2}q$, e $p^2=2q^2$. Logo, p^2 é par e p é portanto par também. Assim desde que $\frac{p}{q}$ é fração irredutível, q é impar. Mas se p=2r, então $(2r)^2=2q^2$ e $4r^2=2q^2$. Portanto $2r^2=q^2$, o que significa que q^2 é par e assim q é par. Contradição.

Prova por Construção

 Consiste em contruir a prova por meio de outras asserções verdadeiras

● Exemplo: Prove que $A-(B\cup C)=(A-B)\cap (A-C)$ Prova: Para construir esta prova, inicialmente tomemos $L=A-(B\cup C)$ e $R=(A-B)\cap (A-C)$. Se L=R então (i) $L\subseteq R$ e (ii) $R\subseteq L$.

- (i) Se $x \in L$, então $x \in A$, mas $x \notin B$ e $x \notin C$. Logo, $x \in A B$ e $x \in A C$, sendo portanto um elemento de R. Então, $L \subseteq R$.
- (ii) Seja $x \in R$, então $x \in A B$ e $x \in A C$, sendo portanto, um elemento de A, mas não de B, nem de C. Logo, $x \in A$, mas $x \notin B \cup C$, logo $x \in L$. Portanto $R \subseteq L$.

Como queríamos demonstrar.

Prova por Contraexemplo

- Para mostrar que uma proposição sobre alguma classe de objetos não é verdadeira, basta apenas apresentar um objeto para o qual falhe a propriedade
- Consiste em encontrar um exemplo que demonstre a incorretude de um suposto teorema

Exemplo: Suposto teorema: Para todo número x, se x é um número primo então x é impar.

Contraexemplo: O inteiro 2 é um número primo, mas 2 é par.