Université Paris-Sud - Topologie et Calcul Différentiel - Année 2022-2023

Examen du mardi 25 Avril 2023

Début 13h45 Durée : 3 heures

Les téléphones portables doivent obligatoirement être rangés <u>éteints</u>. Les documents et tout autre appareil électronique sont interdits.

Dans cet énoncé, \mathbb{R}^n est automatiquement muni de la norme euclidienne $||\ ||_2$, et de la distance euclidienne. On note $\langle x;y\rangle$ le produit scalaire entre x et $y\in\mathbb{R}^n$. Et on n'hésitera pas à noter 0 au lieu de $(0,0,\ldots,0)\in\mathbb{R}^n$.

Exercice 1.

On considère les fonctions f_1 et f_2 , de \mathbb{R}^4 dans \mathbb{R} , définies par les formules

$$f_1(x, y, z, t) = \exp(x + y) + \exp(z + t)$$
 (1)

$$f_2(x, y, z, t) = x^3 - y^3 + z^3 - t^3.$$
(2)

- 1. Calculer les deux vecteurs $\nabla f_1(x, y, z, t)$ et $\nabla f_2(x, y, z, t)$. Que valent ces deux vecteurs au point (1, 1, 1, 1)?
- 2. Expliquez, sans faire de calcul supplémentaire, pour quoi f_1 et f_2 sont de classe C^1 sur \mathbb{R}^4 .

On pose
$$F = (f_1, f_2)$$
, et $w = F(1, 1, 1, 1) = (2e^2, 0) \in \mathbb{R}^2$.

- 3. Enoncer le théorème des fonctions implicite (pour F au point (1,1,1,1)) et en déduire qu'il existe une fonction φ , définie au voisinage de (1,1) dans \mathbb{R}^2 , et un voisinage de (1,1,1,1) dans \mathbb{R}^4 , dans lequel l'équation F(x,y,z,t)=w est équivalente au fait que $(x,y)=\varphi(z,t)$.
- 4. On note φ_1 et φ_2 les deux coordonnées de φ . Déduire de la question précédente que $F(\varphi_1(z,t),\varphi_2(z,t),z,t)=w$ au voisinage de (1,1).
- 5. Calculer alors $\frac{\partial \varphi_1}{\partial z}(1,1)$ et $\frac{\partial \varphi_2}{\partial z}(1,1)$.

Exercice 2.

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = (x-1)^2(x+1)^2 + \operatorname{ch}(x+y-1) \text{ pour tout } (x,y) \in \mathbb{R}^2.$$
 (3)

On rappelle que $\operatorname{ch}(t) = \frac{1}{2}(e^t + e^{-t})$ pour $t \in \mathbb{R}$.

- 1. Rappeler pourquoi f est (au moins) de classe C^2 .
- 2. Calculer $\nabla f(x,y)$.
- 3. Déterminer les points critiques de f. Indication : il y en a 3.
- 4. Calculer la matrice H(x,y) des dérivées secondes de f au point (x,y).
- 5. Démontrer que H(1,0) est définie positive. Indication : écrire la forme quadratique comme somme de deux carrés, ou utiliser déterminant et trace.
- 6. Peut-on en déduire immédiatement que f a un minimum global au point (1,0)?
- 7. Vérifier que f(1,0) = f(-1,2) = 1 et démontrer directement que f a un minimum global en (1,0) et en (-1,2).
- 8. Calculer H(0,1) et vérifier que son déterminant est < 0. Est-ce que f peut avoir un extremum local en (0,1)?
- 9. Déduire de ce qui précède que f n'a pas de maximum local.

Exercice 3.

On considère l'application $F=(F_1,F_2):\mathbb{R}^2\to\mathbb{R}^2$ définie par

$$F_1(x,y) = \frac{9x}{10} + \frac{1}{10}\cos(x+y)$$
 et $F_2(x,y) = \frac{11y}{10} + \frac{1}{10}\cos(x-y)$

pour $(x, y) \in \mathbb{R}^2$.

- 1. Calculer les dérivées partielles $\frac{\partial F_1}{\partial x}$, $\frac{\partial F_2}{\partial y}$, $\frac{\partial F_2}{\partial x}$, $\frac{\partial F_2}{\partial y}$ en tout point $(x,y) \in \mathbb{R}^2$. Vérifier que $\frac{8}{10} \le \frac{\partial F_1}{\partial x}(x,y) \le 1$, $\left|\frac{\partial F_1}{\partial y}(x,y)\right| \le \frac{1}{10}$, $\left|\frac{\partial F_2}{\partial x}(x,y)\right| \le \frac{1}{10}$, et $1 \le \frac{\partial F_2}{\partial y}(x,y) \le \frac{12}{10}$ en tout point.
- 2. Déduire de ce qui précède que la fonction F est différentiable sur \mathbb{R}^2 . On notera DF(x,y) sa différentielle au point (x,y).
- 3. Ecrire la matrice de DF(x,y). Calculer son déterminant J(x,y) (sans chercher à simplifier le produit de sinus), et démontrer que $J(x,y) \ge \frac{8}{10} \frac{1}{100} > \frac{1}{2}$.
- 4. Démontrer que pour tout $(x_0, y_0) \in \mathbb{R}^2$ il existe un voisinage ouvert V de (x_0, y_0) dans \mathbb{R}^2 , et un voisinage ouvert W de $F(x_0, y_0)$ dans \mathbb{R}^2 tels que $F: V \to W$ soit un difféomorphisme de classe C^1 .

On se propose maintenant de démontrer que F est en fait bijective sur \mathbb{R}^2 tout entier. Pour tout $(\alpha, \beta) \in \mathbb{R}^2$, On définit la fonction $G_{\alpha,\beta}$ par

$$G_{\alpha,\beta}(x,y) = (x + \alpha, y + \beta) - F(x,y) = (x + \alpha - F_1(x,y), y + \beta - F_2(x,y))$$

pour $(x,y) \in \mathbb{R}^2$. Ainsi $G_{\alpha,\beta}$ est différentiable (on ne demande pas de le vérifier).

- 5. Ecrire la matrice de la différentielle $DG_{\alpha,\beta}(x,y)$ au point (x,y).
- 6. Démontrer l'inégalité triangulaire pour les applications linéaires de \mathbb{R}^2 dans \mathbb{R}^2 , à savoir que pour tout choix d'applications linéaires L_1, L_2 de \mathbb{R}^2 dans \mathbb{R}^2 , on a $|||L_1+L_2||| \leq |||L_1|||+|||L_2|||$. On commencera évidemment par rappeler la définition de la norme d'opérateur $|||L_i||$ de L_i .
- 7. En déduire que si $L: \mathbb{R}^2 \to \mathbb{R}^2$ a la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, alors $|||L||| \le |a| + |b| + |c| + d|$.
- 8. Montrer que que $||DG_{\alpha,\beta}(x,y)||| \leq \frac{6}{10}$ (on pourrait faire mieux, mais on n'en aura pas besoin).
- 9. Démontrer que $||G_{\alpha,\beta}(x,y) G_{\alpha,\beta}(x',y')||_2 \le \frac{6}{10}||(x',y') (x,y)||_2$ pour tous $(x,y), (x',y') \in \mathbb{R}^2$.
- 10. En déduire que pour tout $(\alpha, \beta) \in \mathbb{R}^2$, l'équation $G_{\alpha,\beta}(x,y) = (x,y)$ a une solution unique dans \mathbb{R}^2 .
- 11. En déduire que l'application $F:\mathbb{R}^2 \to \mathbb{R}^2$ est une bijection.
- 12. Déduire de ce qui précède que l'application $F: \mathbb{R}^2 \to \mathbb{R}^2$ est un difféomorphisme de classe C^1 . Indication : on pourra utiliser la question 4, non sans vérifier que l'inverse de $f: V \to W$ est bien la restriction à W de f^{-1} .
- 13. Quelle est la différentielle de la réciproque F^{-1} au point $(\frac{1}{10}, \frac{1}{10}) = F(0, 0)$?

Exercice 4. On se donne une fonction différentiable $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 , et on suppose de plus que f est convexe. Rappelons que cela signifie que pour tout $X \in \mathbb{R}^2$, tout $Y \in \mathbb{R}^2$, et tout $t \in (0,1)$,

$$f((1-t)X + tY) \le (1-t)f(X) + tf(Y). \tag{4}$$

Pour tout vecteur non nul $e \in \mathbb{R}^2$, on note $f_e : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f_e(z) = f(ze)$ pour $z \in \mathbb{R}$.

- 1. Démontrer que f_e est convexe.
- 2. Montrer que f_e est dérivable et que $f'_e(z) = \langle \nabla f(ze); e \rangle$ pour tout $z \in \mathbb{R}$.
- 3. Démontrer que pour tout $e \in \mathbb{R}^2$ non nul, $z \mapsto \langle \nabla f(ze); e \rangle$ est une fonction croissante.
- 4. On suppose à partir de maintenant que 0 est un point critique de f. Vérifier que $f'_e(0) = 0$. En déduire que $f'_e(z) \ge 0$ pour $z \ge 0$ et $f'_e(z) \le 0$ pour $z \le 0$, puis que $f_e(w) \ge f_e(0)$ pour tout $w \in \mathbb{R}$.
- 5. Déduire de ce qui précède que f a un minimum global en 0.