MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2017/18, primer semestre. Examen de reavaluació: 30 de gener de 2018.

1.- [4 punts]

Es vol avaluar la funció $f(x,y) = \frac{x-y^2}{y+x^2}$ en valors $x \approx 10$ i $y \approx 5$.

- (a) Se suposa que l'obtenció de precisió en les dades x i y costa molt, i aquest cost és similar per a les dues dades. On és més eficient dedicar l'esforç: a millorar la precisió en x, o a millorar la precisió en y? Raoneu-ho usant propagació de l'error de les dades.
- (b) Se suposa que cada operació elemental (elevar al quadrat, sumar, restar, dividir) es fa amb un error relatiu fitat per u << 1. Trobeu una fita, a primer ordre en u, de l'error relatiu en el resultat aproximat obtingut, que sigui de la forma Ku, amb K una constant (podeu usar x = 10 i y = 5 per a trobar la constant K).
- (c) Calculeu l'aproximació de f(x, y) que s'obté quan x = 10.17, y = 5.115 i suposant que cada operació individual es fa arrodonint el resultat a 4 dígits significatius.

2.- [6 punts]

Sigui $A_n = (a_{ij})_{1 \le i,j \le n}$, $n \ge 4$, una matriu banda (1,2). O sigui $a_{ij} = 0$ quan i > j+1 o j > i+2.

- (a) Suposant que A_n admet la factorització LU, escriviu les fórmules recurrents que permeten trobar els elements essencials de L i de U (de manera similar al cas tridiagonal). Treballeu només amb 4 vectors i un sol subíndex. Compteu la quantitat de divisions i la quantitat de productes, en funció de n
- (b) Notem $D_n = det(A_n)$. En el cas $a_{ii} = 3$, $a_{i+1,i} = a_{i,i+1} = a_{i,i+2} = -1$ (per als valors de i que tinguin sentit), trobeu una fórmula lineal de D_n en funció de D_{n-1} , D_{n-2} i D_{n-3} . Useu-la per a calcular D_8 .
- (c) Se suposa ara que n = 4, que $a_{ii} = c$ (paràmetre) i $a_{i+1,i} = a_{i,i+1} = a_{i,i+2} = -1$. Per quins valors del paràmetre c NO es pot aplicar l'eliminació gaussiana sense pivotatge a A_4 ?

3.- [6 punts]

D'una funció $f: R \to R$, tan diferenciable com calgui, es coneixen les dades $f_0 = f(x_0)$, $f_1 = f(x_0 + h)$ i $g_1 = f'(x_0 + h)$, on h > 0. Notem $M_j = \max_{x_0 \le z \le x_0 + h} |f^{(j)}(z)|$, $\forall j \ge 0$. Es vol calcular aproximadament $I \equiv \int_{x_0}^{x_0 + h} f(x) dx$.

- (a) Sigui p(x) el polinomi interpolador de f(x) en les tres dades de l'enunciat. Doneu una fita de |f(x) p(x)|, comuna per a tots els $x \in [x_0, x_0 + h]$, com més bona millor, de la forma KM_jh^p , amb constants adequades K, j i p.
- (b) S'aproxima $I \approx \int_{x_0}^{x_0+h} p(x) dx$. Doneu una fórmula de l'aproximació en funció de f_0 , f_1 , g_1 i h. Trobeu també una expressió de l'error en aquesta aproximació que sigui de la forma $Kf^{(j)}(\xi)h^p$, amb constants adequades K, j i p.
- (c) Aplicació. D'una funció concreta f(x) es coneixen f(0) = 0.2955, f(0.1) = 0.3894, f(0.2) = 0.4794, f'(0.1) = 0.9211 i f'(0.2) = 0.8776. Trobeu l'aproximació de $I \equiv \int_0^{0.2} f(x) dx$ que s'obté quan s'aplica la fórmula de l'apartat (b) per separat als intervals [0,0.1] i [0.1,0.2], i després se sumen els resultats (o sigui, s'usa la fórmula composta).

4.- [4 punts]

Siguin a < b reals i $f: [a, b] \to R$, de classe $C^2[a, b]$ verificant:

$$f(a) > 0$$
, $f(b) < 0$, $f'(x) < 0 \ \forall x \in (a,b)$, $f''(x) > 0 \ \forall x \in (a,b)$.

És evident que f té un únic zero a (a,b) i que és simple; sigui α . Es genera una successió $(x_k)_{k\geq 0}$ pel mètode Regula Falsi, amb $x_0=a$ i $x_1=b$.

- (a) Trobeu una expressió explícita $x_2 = x_1 F(x_0, x_1, f(x_0), f(x_1))$, i demostreu que $\alpha < x_2 < x_1$. Deduïu l'expressió general de x_{k+1} en funció de x_k , $f(x_k)$, a i f(a), i demostreu que la successió $(x_k)_{k>0}$ és estrictament monòtona decreixent i que té límit α .
- (b) Demostreu que, sota les hipòtesis de l'enunciat, la successió generada per Regula Falsi té ordre 1. Trobeu el coeficient asimptòtic de l'error (depèn de a, f(a), α i $f'(\alpha)$).

Feu cada exercici en fulls diferents

Qualificacions: Dilluns, 5 de febrer, al Campus Virtual. **Revisió**: Dimarts, 6 de febrer, de 12h a 13h, al xalet.