B.Sc.(Hons.) Physics 32221501 Teacher: Mamta S.G.T.B. Khalsa College Quantum Mechanics (2022-23) Lab Assignment # 9 H- atom using Finite Difference Method

Due Date and Time: 11.09.2022, 11:59PM Max. Marks : 20

The objective of this assignment is to

• numerically solve the radial part of Schrödinger Equation for "electron in H-atom" with Finite Difference method and determine the energy eigenvalues and corresponding normalised radial wavefunctions.

1. (10 marks) **Theory**

- (a) Write down the Schrödinger Equation for an electron in H-atom potential in spherical polar coordinates.
- (b) Use separation of variable method to separate this into angular and radial part. (Use $\psi_{n\ell m}(r,\theta,\phi) = \mathcal{R}_{n\ell}(r)\mathcal{Y}_{\ell m}(\theta,\phi)$ and take the separation constant as $\ell(\ell+1)$.)
- (c) Convert the Radial part of the Schrödinger Equation dimensionless form. Take $\mathcal{R}_{n\ell}(r) = \mathcal{K}_{n\ell}(r)/r$ and write the equation satisfied by $\mathcal{K}_{n\ell}(r)$. For this rescale r by Bohr radius and the energies by $|E_1|$, E_1 being the ground state Bohr energy.
- (d) Discuss $V_{\text{eff}}(x)$ and its implications.
- (e) Write down the analytical expressions for Bohr radius, Energy Eigenvalues and Energy eigenfunctions in this dimensionless form.
- (f) Discuss the boundary conditions for numerical solution using finite difference method.

2. (10 marks) **Programming**

- (a) Write a Python code to
 - i. Plot V(r) and $V_{\rm eff}(r)$ as a function of r for $\ell=1,2,3$ on the same plot. Take range of r to be $[r_{\rm min}:r_{\rm max}]$ with $r_{\rm min}=10^{-14}$ and $r_{\rm max}=50$, r being the dimensionless variable.
 - ii. Determine the first ten energy eigenvalues and normalised eigenfunctions for $\ell = 0$ using finite difference method with $r_{\text{max}} = 10$
 - iii. plot the first four radial wavefunctions (as points) along with the corresponding analytical wavefunctions (as continuous curves).
- (b) Extend the code to determine the first ten energy eigenvalues and normalised eigenfunctions for $\ell=1,2$
- (c) Extend the code to plot all radial probability densities (as scatter plots) along with the corresponding analytical wavefunction (as continuous curves) for all ℓ corresponding to a given n. i.e. the following graphs
 - i. radial probability density for $n=0, \ell=0$
 - ii. radial probability density for $n = 1, \ell = 0, 1$
 - iii. radial probability density for $n=2, \ell=0,1,2$