Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «ВЫЧИСЛИТЕЛЬНЫЕ КОМПЛЕКСЫ»

 $\begin{array}{c} {\rm Выполнил} \\ {\rm студент\ группы\ 3630102/70201} \end{array}$

Густомясов Евгений

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1	Пос	тановка задачи	2
2	Кон	Конкретизация задачи и теория	
3	Pea	лизация	3
4	Результаты		3
5	5 Приложения		8
С	пис	ок иллюстраций	
	1	Изменение 1-ой координаты для двух методов	5
	2	Изменение 3-ой координаты для двух методов	
	3	Изменение 2-ой координаты для двух методов	7
	4	Зависимость $x_3(x_2)$ для двух метолов	

1 Постановка задачи

Требуется решить ИСЛАУ с применением аппарата линейного программирования для проведения регуляризации рассматриваемой системы.

2 Конкретизация задачи и теория

При решении данной задачи имеет рассмотреть ИСЛАУ Ax = b точечной марицей Aи интервальной правой частью $\mathbf b$ при которых система не имеет решений до проведения регуляризации. В данной работе выбрана несовместная ИСЛАУ:

$$\begin{pmatrix} 3 & -5 & 2 \\ 7 & -4 & 1 \\ 5 & 7 & -4 \end{pmatrix} \cdot x = \begin{pmatrix} [3;7] \\ [1;3] \\ [-1;3] \end{pmatrix} \tag{1}$$

В первую очередь с помощью распознающего функционала Tol(x) проверяется отсутствие решений у данной системы. С помощью программы tolsolvty были найдены максимум функционала распознающего функционала maxTol и значение аргумента, в которой он достигался argmaxTol:

$$maxTol = -0.33333366; argmaxTol = \begin{pmatrix} 0.27617596 \\ -0.32068788 \\ 0.11734951 \end{pmatrix}$$
 (2)

Поскольку maxTol < 0, допусковое множество ИСЛАУ пусто и система несовместна. Далее для получения решения проводится l_1 -регуляризация, заключающуюся в изменении радиусов компонент вектора \mathbf{b} их поэлементным домножением на вектор масштабирующих множителей ω :

$$\mathbf{b} = \begin{pmatrix} [midb_1 - radb_1; midb_1 + radb_1] \\ [midb_2 - radb_2; midb_2 + radb_2] \\ [midb_3 - radb_3; midb_3 + radb_3] \end{pmatrix} \rightarrow \bar{\mathbf{b}} = \begin{pmatrix} [midb_1 - \omega_1 radb_1; midb_1 + \omega_1 radb_1] \\ [midb_2 - \omega_2 radb_2; midb_2 + \omega_2 radb_2] \\ [midb_3 - \omega_3 radb_3; midb_3 + \omega_3 radb_3] \end{pmatrix}$$
(3)

При этом масштабирующие множители подбираются так, чтобы регуляризованная ИСЛАУ $A\cdot x=\bar{\mathbf{b}}$ стала разрешима, но сумма этих множителей $\sum_i \omega_i$ была минимально возможной.

Накладывая на масштабирующие множители естественное требование их неотрицательности, и введя вектор $u=\binom{x}{\omega},$ можно записать полученную задачу в виде:

$$\begin{cases} u_{4,5,6} \geq 0 \\ c \cdot u = (0,0,0,1,1,1) \cdot u = (0,0,0,1,1,1) \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \sum_i \omega_i = \min_u \\ (4)$$

$$C \cdot u \leq r, \text{где } C = \begin{pmatrix} -A & -diag(rad(\mathbf{b})) \\ A & -diag(rad(\mathbf{b})) \end{pmatrix}, r = \begin{pmatrix} -mid(\mathbf{b}) \\ mid(\mathbf{b}) \end{pmatrix}$$
жиая задача и решается динейным программированием с применением стан-

Полученная задача и решается линейным программированием с применением стандартной функции linprog пакета scipy.optimize. В результате решения определяются одновременно и необходимые масштабирующие множители, и соответствующее им появившееся в результате регуляризации решения ИСЛАУ.

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Matlab и Python. Использованы библиотеки IntLab для интервальной арифметики, tolsolovty для нахождения решения ИСЛАУ. Также используется оптимизатор scipy.optimize на Python с различными методами решения задачи линейного программирования. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

Имеем $rad(\mathbf{b}) = 2, mid(\mathbf{b}) = \begin{pmatrix} 4 & 2 & 3 \end{pmatrix}$. После регуляризации получено:

$$c = (0, 0, 0, 1, 1, 1); C = \begin{pmatrix} -3 & 5 & -2 & -2 & 0 & 0 \\ -7 & 4 & -1 & 0 & -2 & 0 \\ -5 & -7 & 4 & 0 & 0 & -2 \\ 3 & -5 & 2 & -2 & 0 & 0 \\ 7 & -4 & 1 & 0 & -2 & 0 \\ 5 & 7 & -4 & 0 & 0 & -2 \end{pmatrix}; r = \begin{pmatrix} -4 & -2 & -3 & 4 & 2 & 3 \end{pmatrix}$$
(5)

В результате применения стандартного linprog для решения задачи линейного программирования с использованием значений из (5) без дополнительных ограничений получны следующие результаты:

• Решение регуляризованной ИСЛАУ методом method = 'interior-point':

$$x \approx \begin{pmatrix} 0.3638\\ 0.1116\\ -0.0999 \end{pmatrix}, \omega \approx \begin{pmatrix} 1.8333\\ 0\\ 0 \end{pmatrix}$$
 (6)

• Решение регуляризованной ИСЛАУ методом method = 'simplex':

$$x \approx \begin{pmatrix} 0.37681159420289856\\ 0.15942028985507248\\ 0 \end{pmatrix}, \omega \approx \begin{pmatrix} 1.83333333333333333333\\ 0\\ 0 \end{pmatrix}$$
 (7)

Заметно, что масштабирующие коэффициенты в обеих задачах совпали и их сумма равна 1.8333.

Рассмотрим изменения нижних границ для 1-й, 2-й и 3-й границ соответственно, чтобы убедиться в расширении интервала для достоверных решений.

Во всех графиках ниже по оси абцисс - значение нижней границы компоненты, по оси ординат - значение самой компоненты.

При изменении границ для одной из координат в обоих методах компоненты вектора решения остаются одинаковыми.

Поменяем 1-ую компоненту, здесь есть небольшое отличие в методах для зависимости $x_2(x_1)$:

Change 1 coord with interior-point 10 i 3 5 i_sum_w 0 ि Hange 1&oorि With डेंग्निशex^{1.50} 0.25 1.75 0.00 s_2 s_3 10 s_sum_w 5 0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Рис. 1: Изменение 1-ой координаты для двух методов

Поменяем 2-ую компоненту, здесь значения зависимостей $w_2(x_2)$ и $sumw(x_2)$ совпадают полностью:

Рис. 2: Изменение 3-ой координаты для двух методов

Поменяем 3-ую компоненту, здесь значения всех зависимостей в обоих методах полностью совпадают:

Рис. 3: Изменение 2-ой координаты для двух методов

Рассмотрим зависимость 3-ей компоненты от изменения границ 2-ой компоненты решения для двух методов:

Рис. 4: Зависимость $x_3(x_2)$ для двух методов

Имеем пересечение в одной точке.

5 Приложения

Kод программы на GitHub, URL: https://github.com/YudzhinNSK/VK_labs/tree/main/lab4