Herschel-Bulkley formulation for non-Newtonian flows

Features:

- Yield stress τ_y
- Power law dependance on the strain rate
 - Shear thinning for n < 1.
 - Shear thickening for n > 1.
- Bingham model for n = 1.
- Newtonian fluid for n=1 and $\tau_y=0$.

ε -formulation

$$\tau = \tau_y \, \mathcal{I} \; + \; K \left(2 \mathcal{D} \right)^n = 2 \bigg\lceil \frac{\tau_y}{2 \|\mathcal{D}\| + \varepsilon} \, \mathcal{I} + K \left(2 \|\mathcal{D}\| + \epsilon \right)^{n-1} \bigg\rceil \mathcal{D}.$$

Normalizing stresses with γ/R_0 , length with R_0 , and velocity with $\sqrt{\gamma/\rho_l R_0}$...

$$\tilde{\tau} = 2 \bigg[\frac{\mathcal{J}}{2 \|\tilde{\mathcal{D}}\| + \varepsilon} \, \mathcal{I} + Oh_K \, \big(2 \|\tilde{\mathcal{D}}\| + \epsilon \big)^{n-1} \bigg] \tilde{\mathcal{D}}.$$

Here, the effective Ohnesorge is

$$Oh_K = \frac{K}{\sqrt{\rho_l^n \gamma^{2-n} R_0^{3n-2}}}$$

The plasto-capillary number \mathcal{J} is

$$\mathcal{J} = \frac{\tau_y R_0}{\gamma}$$

One can easily see that putting n=1 recovers the Bingham model with $Oh=\eta_l/\sqrt{\rho_l\gamma R_0}$. Additionally, with n=1 & $\mathcal{J}=0$, the model will give a Newtonian response.

More details on the implementation

Calculate the norm of the deformation tensor \mathcal{D} :

$$\begin{split} \mathcal{D}_{11} &= \frac{\partial u_r}{\partial r} \\ \mathcal{D}_{22} &= \frac{u_r}{r} \\ \mathcal{D}_{13} &= \frac{1}{2} \left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \right) \\ \mathcal{D}_{31} &= \frac{1}{2} \left(\frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z} \right) \\ \mathcal{D}_{33} &= \frac{\partial u_z}{\partial z} \\ \mathcal{D}_{12} &= \mathcal{D}_{23} = 0. \end{split}$$

The second invariant is $\mathcal{D}_2 = \sqrt{\mathcal{D}_{ij}\mathcal{D}_{ij}}$ (this is the Frobenius norm)

$$\mathcal{D}_2^2=\mathcal{D}_{ij}\mathcal{D}_{ij}=\mathcal{D}_{11}\mathcal{D}_{11}+\mathcal{D}_{22}\mathcal{D}_{22}+\mathcal{D}_{13}\mathcal{D}_{31}+\mathcal{D}_{31}\mathcal{D}_{13}+\mathcal{D}_{33}\mathcal{D}_{33}$$

Note: $\|\mathcal{D}\| = D_2/\sqrt{2}$.

We use the formulation as given in Balmforth et al. (2013) [1], who use the strain rate tensor $\dot{\mathcal{S}}$ which and its norm $\sqrt{\frac{1}{2}\dot{\mathcal{S}}_{ij}\dot{\mathcal{S}}_{ij}}$. Of course, given $\dot{\mathcal{S}}_{ij}=2D_{ij}$.

Calculate the equivalent viscosity

Factorizing with $2\mathcal{D}_{ij}$ to obtain an equivalent viscosity

$$\eta_{\mathrm{eff}} = \frac{\mathcal{J}}{2\|\tilde{\mathcal{D}}\| + \varepsilon}\,\mathcal{I} + Oh_K \left(2\|\tilde{\mathcal{D}}\| + \epsilon\right)^{n-1}$$

In this formulation, ε is a small number to ensure numerical stability. The term

$$\frac{\tau_y}{\varepsilon} + \dots$$

is equivalent to the μ_{max} of the previous (v1.0, see: GitHub) formulation [2].

Note: The fluid flows always, it is not a solid, but a very viscous fluid.

Reproduced from: P.-Y. Lagrée's Sandbox. Here, we use a face implementation of the regularisation method, described here.

Further exploration:

Video showcasing a typical simulation of bubble bursting in a Herschel–Bulkley fluid medium Open on YouTube

More resources

GitHub	Demo	License	Latest Changes
-------------------------	------	---------	----------------

- [1] N. J. Balmforth, I. A. Frigaard, and G. Ovarlez, "Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics," *Annu. Rev. Fluid Mech.*, vol. 46, pp. 121–146, Jan. 2014, doi: 10.1146/annurev-fluid-010313-141424.
- [2] V. Sanjay, D. Lohse, and M. Jalaal, "Bursting bubble in a viscoplastic medium," *J. Fluid Mech.*, vol. 922, p. A2, 2021.