计算机组织与体系结构

第五讲

计算机科学与技术学院 舒燕君

Recap

- 成本与价格: 学习曲线
- 基准测试程序
- 计算机系统设计与分析
 - ✓计算机成本与价格
 - ✓基准测试程序
 - ✓量化分析的基本原则(大概率优先)
- CPU性能公式

成本-时间因素: 学习曲线

• 产品价格随时间变化的特性,就是价格随时间下降的 趋势

2.3.2 基准测试程序

- 性能与测试程序的执行时间相关,那么用什么做测试程序呢?
- 五类测试程序
 - 真实程序
 - 修正的(或者脚本化)应用程序
 - 核心程序
 - 小测试程序
 - 合成测试程序
- 测试程序包(组件, benchmark suites)
 - 选择一组各个方面有代表性的测试程序组成
 - 尽可能全面地测试了一个计算机系统的性能

2.3.3 量化设计的基本原则

- 1. 大概率事件优先原则
 - 追求全局的最优结果
- 2. Amdahl定律
 - 系统性能加速比, 受限于该部件在系统中所占的重要性
 - 可以定量计算
- 3. 程序的局部性原理
 - 程序执行时所访问存储器在时-空上是相对地簇聚
 - 这种簇聚包括指令和数据两部分

CPU性能公式

• 假设计算机系统有n 种指令,其中第i 种指令的处理 时间为CPI_i,在程序中第i 种指令出现的次数为IC_i。

$$T_{CPU} = \sum (IC_i \times CPI_i) / f$$
$$= \sum (IC_i \times CPI_i) \times T_{CLK}$$

$$CPI = \sum (IC_i \times CPI_i) / IC$$
$$= \sum [(IC_i / IC) \times CPI_i]$$

其中: IC_i/IC 反映了第i种指令在程序中所占的比例。

Quiz 2

- 1. 假设某台机器运行一个测试程序的执行时间为100秒,其中CPU处理时间占90%,I/O处理时间占10%,若CPU的执行速度每年能够提高50%,请问5年后在这台机器上,运行该测试程序将耗费多少秒?I/O处理时间占多少百分比?
- 2. 在某台机器上的一个测试程序中,浮点运算(FP)指令在总执行时间中占50%,其中求浮点数平方根(FPSQR)的操作占浮点运算时间的40%。现有两种方法提高FPSQR的运算速度。一种方法是增加专门的FPSQR硬件,可以将FPSQR的操作速度提高为原来的10倍。另一种方法是提高所有的FP运算指令的执行速度为原来的1.6倍从而达到提高求浮点数平方根操作的速度。试比较这两种方法对机器速度的影响。

1.
$$S_n = \frac{1}{(1 - Fe) + \frac{Fe}{Se}} = \frac{1}{(1 - 0.9) + \frac{0.9}{(1.5)^5}} \approx 4.58$$

5年后的运行时间: T=100/4.58=21.85s

I/O占比: 10/21.85=45.77%

2.
$$SPEEDUP_{FPSQR} = \frac{1}{(1 - 0.5 \times 0.4) + \frac{0.5 \times 0.4}{10}} = \frac{1}{0.82} = 1.22$$

 $SPEEDUP_{FP} = \frac{1}{(1 - 0.5) + \frac{0.5}{1.6}} = \frac{1}{0.8125} = 1.23$

Quiz 2 结果统计

- 第1章 计算机系统概论
- 第2章 计算机系统量化分析基础
- 第3章 总线
- 第4章 指令系统
- 第5章 CPU设计
- 第6章 基本流水线技术
- 第7章 指令级并行
- 第8章 存储系统的结构与优化
- 第9章 IO系统

第3章系统总线

- 3.1 总线的基本概念
- 3.2 总线的分类
- 3.3 总线特性及性能指标
- 3.4 总线结构
- 3.5 总线控制

3.1 总线的基本概念

- 一、为什么要用总线
- 二、什么是总线

总线是连接各个部件的信息传输线,

是各个部件共享的传输介质

三、总线上信息的传送

 事行

 并行

四、总线结构的计算机举例

3.1

1. 面向 CPU 的双总线结构框图

2. 单总线结构框图

3.1

3. 以存储器为中心的双总线结构框图

3.2 总线的分类

- 1. 片内总线 芯片内部的总线
- 2. 系统总线 计算机各部件之间 的信息传输线 双向 与机器字长、存储字长有关 地址总线 单向 与存储地址、 I/O地址有关 控制总线 有出 有入

中断请求、总线请求

存储器读、存储器写总线允许、中断确认

3. 通信总线

用于 计算机系统之间 或 计算机系统 与其他系统(如控制仪表、移动通信等) 之间的通信

8085 的系统总线

2.8085 的外部引脚

(1) 地址和数据信号

$$A_{15}\sim A_8$$
 $AD_7\sim AD_0$
SID SOD

(2) 定时和控制信号

$$\lambda$$
 X_1 X_2 出 CLK ALE S_0 S_1 IO/\overline{M} \overline{RD} \overline{WR}

(3) 存储器和 I/O 初始化

(4) 与中断有关的信号

入 INTR

出 INTA

Trap 重新启动中断

(5) CPU 初始化

入 Reset in

出 Reset out

(6) 电源和地

$$V_{\rm CC}$$
 +5 V

 $V_{
m SS}$ 地

3.3 总线特性及性能指标

二、总线特性

1. 机械特性 尺寸、形状、管脚数及排列顺序

2. 电气特性 传输方向 和有效的 电平 范围

3. 功能特性 每根传输线的功能 {数据控制

4. 时间特性 信号的时序关系

三、总线的性能指标

- 1. 总线宽度 数据线的根数
- 2. 总线带宽 每秒传输的最大字节数 (MBps)
- 3. 时钟同步/异步 同步、不同步
- 4. 总线复用 地址线与数据线复用
- 5. 信号线数 地址线、数据线和控制线的总和
- 6. 总线控制方式 突发、自动、仲裁、逻辑、计数
- 7. 其他指标 负载能力

四、总线标准

ISA EISA 总线标准 准 **VESA(LV-BUS)** 界 **PCI AGP** 面 **RS-232 USB**

总线标准	数据线	总线时钟	带宽
ISA	16	8 MHz(独立)	16 MBps
EISA	32	8.33 MHz (独立)	33 MBps
VESA (VL-BUS)	32	33 MHz (CPU)	133 MBps
PCI	32	33 MHz (独立)	132 MBps
	64	66 MHz (独立)	528 MBps
AGP	32	66.7 MHz (独立)	266 MBps
		133 MHz(独立)	533 MBps
RS-232	串行通信 总线标准	数据终端设备(计算机)和数据通信设备 (调制解调器)之间的标准接口	
USB	串行接口总线标准	普通无屏蔽双绞线	1.5 Mbps (USB1.0)
		带屏蔽双绞线	12 Mbps (USB1.0)
		最高	480 Mbps (USB2.0)

3.4 总线结构

一、单总线结构

单总线 (系统总线)

二、多总线结构

1. 双总线结构

2. 三总线结构

3. 三总线结构的又一形式

3.4

1. 传统微型机总线结构

2. VL-BUS局部总线结构

4. 多层 PCI 总线结构

x86 架构总线连接示意

TaiShan服务器内部视图

TaiShan服务器逻辑结构

3.5 总线控制

- 一、总线判优控制
 - 1. 基本概念
 - 主设备(模块) 对总线有 控制权
 - 从设备(模块) 响应 从主设备发来的总线命令

• 总线判优控制 {

分布式

计数器定时查询独立请求方式

2. 链式查询方式

3.5

4. 独立请求方式

3.5

二、总线通信控制

1. 目的 解决通信双方 协调配合 问题

2. 总线传输周期

申请分配阶段 主模块申请,总线仲裁决定

寻址阶段 主模块向从模块 给出地址 和 命令

传数阶段 主模块和从模块 交换数据

结束阶段 主模块 撤消有关信息

3. 总线通信的四种方式

同步通信 由统一时标控制数据传送

异步通信 采用应答方式,没有公共时钟标准

半同步通信 同步、异步结合

. 分离式通信 充分挖掘系统总线每个瞬间的潜力

(1) 同步式数据输入

(2) 同步式数据输出

异步通信

主设备 请 求 回答

不互锁 单机 半互锁 多机

从设备

全互锁 网络通信

(4) 半同步通信(同步、异步 结合) 3.5

同步 发送方 用系统 时钟前沿 发信号接收方 用系统 时钟后沿 判断、识别

异步 允许不同速度的模块和谐工作

增加一条 "等待"响应信号 WAIT

以输入数据为例的半同步通信时序 3.5

- T_1 主模块发地址
- T_2 主模块发命令
- $T_{\rm w}$ 当 $\overline{\rm WAIT}$ 为低电平时,等待一个T
- $T_{\rm w}$ 当 $\overline{\rm WAIT}$ 为低电平时,等待一个 T
 - •
- T。 从模块提供数据
- T_{4} 从模块撤销数据,主模块撤销命令

(4) 半同步通信(同步、异步 结合) 3.5

上述三种通信的共同点

一个总线传输周期(以输入数据为例)

• 主模块发地址、命令 占用总线

• 从模块准备数据 不占用总线 总线空闲

• 从模块向主模块发数据 占用总线

(5) 分离式通信

充分挖掘系统总线每个瞬间的潜力

一个总线传输周期

子周期1 主模块 申请 占用总线,使用完后即 放弃总线 的使用权

子周期2

从模块 申请 占用总线,将各种信

息送至总线上

主模块

分离式通信特点

- 1. 各模块有权申请占用总线
- 2. 采用同步方式通信,不等对方回答
- 3. 各模块准备数据时,不占用总线
- 4. 总线被占用时,无空闲

充分提高了总线的有效占用

第三章作业

• 唐朔飞教材, P66, T6, T14, T15

(和第一、二章作业一起交,9月29日下午交到综合楼514)

• 阅读报告:基于"Requirements Bottlenecks and Good Fortune Agents for Microprocessor Evolution", Y. Patt, IEEE 2001,对当前计算机领域新技术的调研和展望。

(电子版,格式自定,5000字以内,10月13日之前提交给助教,选修同学可选做)