

Abstract

In this document we compute the implied volatility (BS) with Newton's method, then we use the algorithm to plot the volatility smiles of sp-Index, google, and Cac40 Data. We proceed by introducing some Delta and Gamma Hedging modelization

Table of Contents

Part 1: Volatility smile of LIFFE data	2
Part2: Volatility smiles of big databases	
Part 3: Volatility smiles of CAC40 and Google	
Part 4: Conclusion	5
Part 5: Delta Hedging	5
Part 6 : Many P&L Paths and distribution plots	7
Part 7: Trading frequency	10
Part 8: Value at Risk and stochastic volatility	12
Part 9: Delta hedging with implied volatility and replicating portfolio	14
Part 10: Gamma Hedging	15

Part 1: Volatility smile of LIFFE data

Change in the implied volatility of the underlying relative to a change in strike price K.

Part2: Volatility smiles of big databases

Put smile for SPIndex option data

Volatility Smile SPIndexPut

3D volatility smiles for SPIndex put option data

Call smile for SPIndex option data

Volatility Smile SPIndexCall

3D volatility smiles for SPIndex call option data

<u>Part 3: Volatility smiles of CAC40 and Google</u>

Volatility Smile Google

Volatility smiles for Google data

Volatility Smile CAC40

Volatility smiles for CAC40 Data

Part 4: Conclusion

The implied volatility of the underlying calculated using the BS equation seems to change with the strike price, which might be a bit counterintuitive since the implied volatility should only depend on the underlying instrument, but in practice, we do find a dependency on the strike price.

Part 5: Delta Hedging

Plot of the option and hedging portfolio

The difference between the hedging portfolio and the option

Part 6: Many P&L Paths and distribution plots

Multiple portfolios/options

Multiples As and Bs

Multiple P&Ls

Part 7: Trading frequency

The hedging portfolio and option error goes up as we diminish the trading frequency.

Part 8: Value at Risk and stochastic volatility

Var=-0.05683674505321945

Var=-0.1244923380952303

Asset paths with stochastic volatility model 1

Part 9: Delta hedging with implied volatility and replicating portfolio

Hedging using stochastic implied volatility and historical volatility

Hedging in the case B[0]=V[0]-A[0]*S[0]

Part 10: Gamma Hedging

There is less error if we gamma hedge, mainly because delta hedging is linear, and as shown in the paper the error is proportional to the gamma, so adding an option, adds convexity to the overall approximation, and hence offers better results.