1 Kombinatorik

Anzahl der Möglichkeiten:

1. Mit Reihenfolge: (Variation)

(a) k aus n mit zurücklegen: n^k

(b) k aus n ohne zurücklegen: $k!\binom{n}{k}$

2. Ohne Reihenfolge: (Kombination)

(a) k aus n mit zurücklegen: $\binom{n+k-1}{k}$

(b) k aus n ohne zurücklegen: $\binom{n}{k}$

3. Ohne Reihenfolge: (Permutation)

(a) n ohne gleiche Elemente: n!

(b) n ohne zurücklegen: $\frac{n!}{\prod (k_i!)}$ mit k_i Anzahl der Elemente i.

2 Wahrscheinlichkeit

2.1 Elementarereignis

Schliessen sich gegenseitig aus. Ein einelementiges Versuchsergebnis ist ein Elementarereignis. Z.B. $\omega_1 = \text{Kopf}$, $\omega_2 = \text{Zahl}$.

2.2 Ereignisraum

Menge aller möglichen Ereignisse: $\Omega = \omega_1 \cup \omega_2$. Werfen zweier Münzen: $\Omega_2 = \Omega \times \Omega$

2.3 Bernoulli/Laplace

Endlich viele Ereignisse: $P = \frac{\sum \text{Erfolgsmoeglichkeiten}}{\sum \text{Alle Moeglichkeiten}}$. Auch Gegenereignis betrachten!!!

2.4 nach von Mises

Statistischer Wahrscheinlichkeitsbegriff: $P(A) = \lim_{n \to \infty} H(A, n) = \lim_{n \to \infty} \frac{n_A}{n}$ mit H(A, n) relative Wahrscheinlichkeit von A, also n_A Anzahl der Versuche wo A eintritt und n Gesamtanzahl der Versuche.

2.5 nach Kolmogorov

Massaxiom: $P(A) \ge 0$, Normierungsaxiom: $P(\Omega) = 1$, Additivitaetsaxiom: $P(A \cup B) = P(A) + P(B)$ mit $A \cap B = \emptyset$. Bertrands Paradoxon.

2.6 Bayes Law

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

2.7 Erwartungswert

 $E\left\{X\right\}$ ist eine lineare Operation. Ausserdem ist $E\left\{X\cdot Y\right\}=E\left\{X\right\}\cdot E\left\{Y\right\}$ wenn X und Y stochastisch unabhängig.

1

2.8 Varianz

Nichtlinear. Fuer statistisch unabhaengige X_i : $Var\left\{\sum_{i=1}^{N} \{X_i\}\right\} = \sum_{i=1}^{N} Var\left\{X_i\right\}$

3 Funktionen

3.1 Verteilungsfunktion

 $F_X(c) = P(X \le c) = \int f_X(c)dc$ wobei f(c) die Wahrscheinlichkeitsdichtefunktion ist.

Erwartungswert:
$$E\{X\} = \int_{-\infty}^{\infty} x \cdot f(x) dx$$
. Varianz: $Var\{X\} = E\{(X - E\{X\})^2\}$

3.2 Poissionverteilung

$$f_X(k) = \frac{A^k e^{-A}}{k!}$$

3.3 Gleichverteilung

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{für } x \in [a,b] \\ 0 & \text{sonst} \end{cases} \text{ und } F_X(x) = \begin{cases} 0 & \text{für } x \le a \\ \frac{x-a}{b-a} & \text{für } a \le x \le b \\ 1 & \text{für } b \le x \end{cases}$$

3.4 Normalverteilung

$$f_X(x) = \frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}}{\sqrt{2\pi}\sigma} \text{ und } F_X(x) = \int\limits_{-\infty}^x \frac{e^{-\frac{1}{2}\left(\frac{u-\mu}{\sigma}\right)^2}}{\sqrt{2\pi}\sigma} du. \text{ Standard-NV hat Varianz } \sigma^2 = 1 \text{ und Erwartungswert } \mu = 0.$$

3.5 Exponential verteilung

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{für } x \geq 0 \\ 0 & \text{für } x < 0 \end{cases} \text{ hat den Erwartungswert } \frac{1}{\lambda}. \text{ Dazugehörige Verteilungsfunktion: } F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{für } x \geq 0 \\ 0 & \text{für } x < 0 \end{cases}$$

3.5.1 Bedingte Wahrscheinlichkeit

$$c,d \in \mathbb{R}, P(x>c|x>d) = \frac{P(x>c\cap x>d)}{P(x>d)}, c>d \Rightarrow \{x>c\} \subset \{x>d\} \Rightarrow P(x>c|x>d) = \frac{P(x>c)}{P(x>d)}$$

Im Falle der Exponantialfunktion: $\frac{P(x>c)}{P(x>d)} = F_X(c-d)$

4 Zweidimensionaler Kram

4.1 Verbundverteilungsfunktion

$$x \in [a,b], y \in [c,d] \quad F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t)dtds \qquad F_{\vec{X}} = \begin{cases} 0 & x \leq a, y \leq c \\ F_{X,Y}(x,y) & a \leq x \leq b, c \leq y \leq d \\ F_{X,Y}(b,y) & b \leq x, c \leq y \leq d \\ F_{X,Y}(x,d) & a \leq x \leq b, d \leq y \\ 1 & b \leq x, d \leq y \end{cases}$$

4.2 Randdichteverteilung

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$
 $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx$

2

4.3 Misc

X und Y sind statistisch unabhängig $\Leftrightarrow F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$.