Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

27

This manuscript was compiled on July 7, 2023

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges-Lehmann estimator

Weighted Inequalities and Binomial Mean

Analogous to the γ -orderliness, the γ -trimming inequality for a right-skewed distribution is defined as $\forall 0 \leq \epsilon_1 \leq \epsilon_2 \leq$ $\frac{1}{1+\gamma}$, $TM_{\epsilon_1,\gamma} \geq TM_{\epsilon_2,\gamma}$. γ -orderliness is a sufficient condition for the γ -trimming inequality, as proven in the SI Text. The next theorem shows a relation between the ϵ, γ -quantile average and the ϵ, γ -trimmed mean under the γ -trimming inequality, suggesting the γ -orderliness is not a necessary condition for the γ -trimming inequality.

Theorem .1. For a distribution that is right-skewed and follows the γ -trimming inequality, it is asymptotically true that the quantile average is always greater or equal to the corresponding trimmed mean with the same ϵ and γ , for all $0 \le \epsilon \le \frac{1}{1+\gamma}$.

Proof. According to the definition of the γ -trimming inequality: $\forall 0 \leq \epsilon \leq \frac{1}{1+\gamma}, \ \frac{1}{1-\epsilon-\gamma\epsilon+2\delta} \int_{\gamma\epsilon-\delta}^{1-\epsilon+\delta} Q\left(u\right) du \geq$ $\frac{1}{1-\epsilon-\gamma\epsilon}\int_{\gamma\epsilon}^{1-\epsilon}Q\left(u\right)du$, where δ is an infinitesimal positive quantity. Subsequently, rewriting the inequality gives $\int_{\gamma\epsilon-\delta}^{1-\epsilon+\delta}Q\left(u\right)du-\frac{1-\epsilon-\gamma\epsilon+2\delta}{1-\epsilon-\gamma\epsilon}\int_{\gamma\epsilon}^{1-\epsilon}Q\left(u\right)du \geq 0 \Leftrightarrow \int_{1-\epsilon}^{1-\epsilon+\delta}Q\left(u\right)du+\int_{\gamma\epsilon-\delta}^{\gamma\epsilon}Q\left(u\right)du-\frac{2\delta}{1-\epsilon-\gamma\epsilon}\int_{\gamma\epsilon}^{1-\epsilon}Q\left(u\right)du \geq 0.$ Since $\delta \to 0^+, \ \frac{1}{2\delta}\left(\int_{1-\epsilon}^{1-\epsilon+\delta}Q\left(u\right)du+\int_{\gamma\epsilon-\delta}^{\gamma\epsilon}Q\left(u\right)du+\int_{\gamma\epsilon-\delta}^{\gamma\epsilon}Q\left(u\right)du\right)=0$ $\frac{Q(\gamma\epsilon)+Q(1-\epsilon)}{2} \geq \frac{1}{1-\epsilon-\gamma\epsilon} \int_{\gamma\epsilon}^{1-\epsilon} Q(u) du$, the proof is com-23

An analogous result about the relation between the ϵ, γ trimmed mean and the ϵ, γ -Winsorized mean can be obtained in the following theorem.

Theorem .2. For a right-skewed distribution following the γ -trimming inequality, asymptotically, the Winsorized mean is always greater or equal to the corresponding trimmed mean with the same ϵ and γ , for all $0 \leq \epsilon \leq \frac{1}{1+\gamma}$, provided that $0 \le \gamma \le 1$. If assuming γ -orderliness, the inequality is valid for any non-negative γ .

33 Proof. According to Theorem .1,
$$\frac{Q(\gamma\epsilon)+Q(1-\epsilon)}{2} \geq \frac{1}{1-\epsilon-\gamma\epsilon} \int_{\gamma\epsilon}^{1-\epsilon} Q(u) \, du \quad \Leftrightarrow \quad \gamma\epsilon \left(Q\left(\gamma\epsilon\right)+Q\left(1-\epsilon\right)\right) \geq \frac{1}{2} \left(\frac{2\gamma\epsilon}{1-\epsilon-\gamma\epsilon}\right) \int_{\gamma\epsilon}^{1-\epsilon} Q(u) \, du. \quad \text{Then, if } 0 \leq \gamma \leq \frac{1}{2} \left(1-\frac{1}{2}\right) \int_{\gamma\epsilon}^{1-\epsilon} Q(u) \, du + \gamma\epsilon \left(Q\left(\gamma\epsilon\right)+Q\left(1-\epsilon\right)\right) \geq \frac{1}{2} \left(1-\frac{1}{2}\right) \int_{\gamma\epsilon}^{1-\epsilon} Q(u) \, du + \gamma\epsilon Q(\gamma\epsilon) + \epsilon Q(1-\epsilon) \geq \int_{\gamma\epsilon}^{1-\epsilon} Q(u) \, du + \gamma\epsilon Q(\gamma\epsilon) + \epsilon Q(1-\epsilon) \geq \int_{\gamma\epsilon}^{1-\epsilon} Q(u) \, du + \gamma\epsilon Q(\gamma\epsilon) + \epsilon Q(1-\epsilon) \geq \int_{\gamma\epsilon}^{1-\epsilon} Q(u) \, du + \gamma\epsilon Q(\gamma\epsilon) + Q(\gamma\epsilon)$$

Hodges–Lehmann inequality and γ -U-orderliness

41

42

43

44

45

46

47

49

50

51

52

53

54

55

56

57

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76 77

79

80

The Hodges-Lehmann estimator stands out as a unique robust location estimator due to its definition being substantially dissimilar from conventional L-estimators, R-estimators, and M-estimators. In their landmark paper, Estimates of location based on rank tests, Hodges and Lehmann (1) proposed two methods for computing the H-L estimator: the Wilcoxon score R-estimator and the median of pairwise means. The Wilcoxon score R-estimator is a location estimator based on signedrank test, or R-estimator, (1) and was later independently discovered by Sen (1963) (2, 3). However, the median of pairwise means is a generalized L-statistic and a trimmed U-statistic, as classified by Serfling in his novel conceptualized study in 1984 (4). Serfling further advanced the understanding by generalizing the H-L kernel as $hl_k(x_1, \ldots, x_k) = \frac{1}{k} \sum_{i=1}^k x_i$, where $k \in \mathbb{N}$ (4). Here, the weighted H-L kernel is defined as $whl_k(x_1,...,x_k) = \frac{\sum_{i=1}^k x_i \mathbf{w}_i}{\sum_{i=1}^k \mathbf{w}_i}$, where \mathbf{w}_i s are the weights

applied to each element.

By using the weighted H-L kernel and the L-estimator, it is now clear that the Hodges-Lehmann estimator is an LLstatistic, the definition of which is provided as follows:

$$LL_{k,\epsilon,\gamma,n} := L_{\epsilon_0,\gamma,n} \left(\operatorname{sort} \left(\left(whl_k \left(X_{N_1}, \cdots, X_{N_k} \right) \right)_{N=1}^{\binom{n}{k}} \right) \right),$$

where $L_{\epsilon_0,\gamma,n}(Y)$ represents the ϵ_0,γ -L-estimator that uses the sorted sequence, sort $\left(\left(whl_k\left(X_{N_1},\cdots,X_{N_k}\right)\right)_{N=1}^{\binom{n}{k}}\right)$, as input. The upper asymptotic breakdown point of $LL_{k,\epsilon,\gamma}$ is $\epsilon = 1 - (1 - \epsilon_0)^{\frac{1}{k}}$, as proven in DSSM II. There are two ways to adjust the breakdown point: either by setting k as a constant and adjusting ϵ_0 , or by setting ϵ_0 as a constant and adjusting k. In the above definition, k is discrete, but the bootstrap method can be applied to ensure the continuity of k, also making the breakdown point continuous. Specifically, if $k \in \mathbb{R}$, let the bootstrap size be denoted by b, then first sampling the original sample (1 - k + |k|)b times with each sample size of $\lfloor k \rfloor$, and then subsequently sampling $(1 - \lceil k \rceil + k)b$ times with each sample size of $\lceil k \rceil$, $(1-k+|k|)b \in \mathbb{N}$, $(1-\lceil k \rceil+k)b \in \mathbb{N}$. The corresponding kernels are computed separately, and the pooled sorted sequence is used as the input for the L-estimator. Let \mathbf{S}_k represent the sorted sequence. Indeed, for any finite sample, X, when k = n, S_k becomes a single point, $whl_{k=n}(X_1,\ldots,X_n)$. When $\mathbf{w}_i=1$, the minimum of \mathbf{S}_k is $\frac{1}{k}\sum_{i=1}^k X_i$, due to the property of order statistics. The maximum of \mathbf{S}_k is $\frac{1}{k} \sum_{i=1}^k X_{n-i+1}$. The monotonicity of the order statistics implies the monotonicity of the extrema with respect to k, i.e., the support of \mathbf{S}_k shrinks monotonically. For

T.L. designed research, performed research, analyzed data, and wrote the paper. The author declares no competing interest.

¹To whom correspondence should be addressed. E-mail: tl@biomathematics.org

unequal \mathbf{w}_i s, the shrinkage of the support of \mathbf{S}_k might not be 81 strictly monotonic, but the general trend remains, since all 82 *LL*-statistics converge to the same point, as $k \to n$. Therefore, 83 if $\frac{\sum_{i=1}^{n} X_i \mathbf{w}_i}{\sum_{i=1}^{n} \mathbf{w}_i}$ approaches the population mean when $n \to \infty$, all LL-statistics based on such consistent kernel function ap-85 proach the population mean as $k \to \infty$. For example, if $whl_k = \mathrm{BM}_{\nu,\epsilon_k,n=k}, \ \nu \ll \epsilon_k^{-1}, \ \epsilon_k \to 0, \ \mathrm{such \ kernel \ function \ is}$ 87 consistent. These cases are termed the LL-mean ($LLM_{k,\epsilon,\gamma,n}$). 88 By substituting the WA_{ϵ_0,γ,n} for the $L_{\epsilon_0,\gamma,n}$ in LL-statistic, 89 the resulting statistic is referred to as the weighted L-statistic 90 $(WL_{k,\epsilon,\gamma,n})$. The case having a consistent kernel function is 91 termed as the weighted L-mean (WLM_{k, ϵ,γ,n}). The $w_i=1$ 92 case of $WLM_{k,\epsilon,\gamma,n}$ is termed the weighted Hodges-Lehmann 93 mean (WHLM_{k, ϵ,γ,n}). The WHLM_{k=1, ϵ,γ,n} is the weighted 94 average. If $k \geq 2$ and the WA in WHLM is set as TM_{ϵ_0} , it 95 is called the trimmed H-L mean (Figure ??, k=2, $\epsilon_0=\frac{15}{64}$). 96 The THLM_{$k=2,\epsilon,\gamma=1,n$} appears similar to the Wilcoxon's one-97 sample statistic investigated by Saleh in 1976 (5), which in-98 volves first censoring the sample, and then computing the 99 mean of the number of events that the pairwise mean is 100 greater than zero. The THLM $_{k=2,\epsilon=1-\left(1-\frac{1}{2}\right)^{\frac{1}{2}},\gamma=1,n}$ is the 101 Hodges-Lehmann estimator, or more generally, a special case of the median Hodges-Lehmann mean $(mHLM_{k,n})$. $mHLM_{k,n}$ 103 is asymptotically equivalent to the $MoM_{k,b=\frac{n}{r}}$ as discussed 104 previously, Therefore, it is possible to define a series of loca-105 tion estimators, analogous to the WHLM, based on MoM. For 106 example, the γ -median of means, $\gamma moM_{k,b=\frac{n}{L},n}$, is defined by 107 replacing the median in $MoM_{k,b=\frac{n}{k},n}$ with the γ -median. 108

The hl_k kernel distribution, denoted as F_{hl_k} , can be defined as the probability distribution of the sorted sequence sort $\left(\left(hl_k\left(X_{N_1},\cdots,X_{N_k}\right)\right)_{N=1}^{\binom{n}{k}}\right)$. For any real value y, the cdf of the hl_k kernel distribution is given by: $F_{h_k}(y) = \Pr(Y_i \leq y)$. where Y_i represents an individual element from the sorted sequence. The overall hl_k kernel distributions possess a twodimensional structure, encompassing n kernel distributions with varying k values, from 1 to n, where one dimension is inherent to each individual kernel distribution, while the other is formed by the alignment of the same percentiles across all kernel distributions. As k increases, all percentiles converge to X, leading to the concept of γ -U-orderliness:

$$(\forall k_{2} \geq k_{1} \geq 1, \gamma m \text{HLM} \underset{k_{2}, \epsilon = 1 - \left(\frac{\gamma}{1 + \gamma}\right)^{\frac{1}{k_{2}}}, \gamma}{} \geq \gamma m \text{HLM} \underset{k_{1}, \epsilon = 1 - \left(\frac{\gamma}{1 + \gamma}\right)^{\frac{1}{N}} \text{heorem .4. Let } B(k, \gamma, t, n) = e^{-\frac{2n}{k}\left(\frac{1}{1 + \gamma} - \frac{1}{k + t^{2}}\right)^{2}}. \quad If \quad \text{147} \\ (\forall k_{2} \geq k_{1} \geq 1, \gamma m \text{HLM} \underset{k_{2}, \epsilon = 1 - \left(\frac{\gamma}{1 + \gamma}\right)^{\frac{1}{k_{2}}}, \gamma}{} \leq \gamma m \text{HLM} \underset{k_{1}, \epsilon = 1 - \left(\frac{\gamma}{1 + \gamma^{2}}\right)^{\frac{1}{\sqrt{2}}} \frac{2}{\sqrt{2}} + 18\gamma - 8\gamma t^{2} - 8t^{2} + 9 + \frac{1}{2}\left(3\gamma - 2t^{2} + 3\right), B \text{ is monotonic decreasing with respect to } k.$$

where $\gamma m HLM_k$ sets the WA in WHLM as γ -median, with γ being constant. The direction of the inequality depends on the relative magnitudes of $\gamma m \text{HLM}_{k=1,\epsilon,\gamma} = \gamma m$ and $\gamma m \text{HLM}_{k=\infty,\epsilon,\gamma} = \mu$. The Hodges-Lehmann inequality can be defined as a special case of the γ -U-orderliness when $\gamma = 1$. When $\gamma \in \{0, \infty\}$, the γ -U-orderliness is valid for any distribution as previously shown. If $\gamma \notin \{0, \infty\}$, analytically proving the validity of the γ -U-orderliness for a parametric distribution is pretty challenging. As an example, the hl_2 kernel distribution has a probability density function $f_{hl_2}(x) = \int_0^{2x} 2f(t) f(2x-t) dt$ (a result after the transformation of variables); the support of the original distribution is assumed to be $[0,\infty)$ for simplicity. The expected value of the H-L estimator is the positive solution of $\int_0^{\text{H-L}} \left(f_{hl_2}(s)\right) ds = \frac{1}{2}$.

For the exponential distribution, $f_{hl_2,exp}(x) = 4\lambda^{-2}xe^{-2\lambda^{-1}x}$, λ is a scale parameter, $E[\text{H-L}] = \frac{-W_{-1}(-\frac{1}{2e})-1}{2}\lambda \approx 0.839\lambda$. where W_{-1} is a branch of the Lambert W function which cannot be expressed in terms of elementary functions. However, the violation of the γ -U-orderliness is bounded under certain assumptions, as shown below.

124

125

126

127

131

Theorem .3. For any distribution with a finite second central moment, σ^2 , the following concentration bound can be established for the γ -median of means,

$$\mathbb{P}\left(\gamma moM_{k,b=\frac{n}{k},n}-\mu>\frac{t\sigma}{\sqrt{k}}\right)\leq e^{-\frac{2n}{k}\left(\frac{1}{1+\gamma}-\frac{1}{k+t^2}\right)^2}.$$

Proof. Denote the mean of each block as $\widehat{\mu_i}$, $1 \leq i \leq b$. Ob-

serve that the event $\left\{\gamma m \text{oM}_{k,b=\frac{n}{k},n} - \mu > \frac{t\sigma}{\sqrt{k}}\right\}$ necessitates

the condition that there are at least $b(1-\frac{\gamma}{1+\gamma})$ of $\widehat{\mu}_i$ s larger than μ by more than $\frac{t\sigma}{\sqrt{k}}$, i.e., $\left\{\gamma moM_{k,b=\frac{n}{k},n} - \mu > \frac{t\sigma}{\sqrt{k}}\right\} \subset$ $\left\{\sum_{i=1}^{b} \mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right) > \frac{t\sigma}{\sqrt{k}}} \geq b\left(1-\frac{\gamma}{1+\gamma}\right)\right\}$, where $\mathbf{1}_{A}$ is the indicator of event A. Assuming a finite second central moment, 134 σ^2 , it follows from one-sided Chebeshev's inequality that 135
$$\begin{split} \mathbb{E}\left(\mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)>\frac{t\sigma}{\sqrt{k}}}\right) &= \mathbb{P}\left((\widehat{\mu_{i}}-\mu)>\frac{t\sigma}{\sqrt{k}}\right) \leq \frac{\sigma^{2}}{k\sigma^{2}+t^{2}\sigma^{2}}.\\ \text{Given that } \mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)>\frac{t\sigma}{\sqrt{k}}} &\in & [0,1] \text{ are independent} \end{split}$$
136 137 and identically distributed random variables, according to the aforementioned inclusion relation, the onesided Chebeshev's inequality and the one-sided 140 effding's inequality, $\mathbb{P}\left(\gamma m \circ M_{k,b=\frac{n}{k},n} - \mu > \frac{t\sigma}{\sqrt{k}}\right)$ 141 $\mathbb{P}\left(\sum_{i=1}^{b} \mathbf{1}_{\left(\widehat{\mu_{i}} - \mu\right) > \frac{t\sigma}{\sqrt{k}}} \ge b\left(1 - \frac{\gamma}{1+\gamma}\right)\right)$ 142 $\mathbb{P}\left(\frac{1}{b}\sum_{i=1}^{b}\left(\mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)>\frac{t\sigma}{\sqrt{k}}}-\mathbb{E}\left(\mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)>\frac{t\sigma}{\sqrt{k}}}\right)\right)\geq$ 143 $\left(1 - \frac{\gamma}{1+\gamma}\right) - \mathbb{E}\left(\mathbf{1}_{\left(\widehat{\mu_i} - \mu\right) > \frac{t\sigma}{\sqrt{k}}}\right)\right)$ 144 $-2b\left(\left(1-\frac{\gamma}{1+\gamma}\right)-\mathbb{E}\left(\left.\mathbf{1}_{\left(\widehat{\mu_{i}}-\mu\right)}\right>\frac{t\sigma}{\sqrt{k}}\right)\right)$ 145 $e^{-2b\left(1-\frac{\gamma}{1+\gamma}-\frac{\sigma^2}{k\sigma^2+t^2\sigma^2}\right)^2} = e^{-2b\left(\frac{1}{1+\gamma}-\frac{1}{k+t^2}\right)^2}$ 146

Proof. Since
$$\frac{\partial B}{\partial k} = \left(\frac{2n\left(\frac{1}{\gamma+1} - \frac{1}{k+t^2}\right)^2}{k^2} - \frac{4n\left(\frac{1}{\gamma+1} - \frac{1}{k+t^2}\right)}{k(k+t^2)^2}\right)$$
 151
$$e^{-\frac{2n\left(\frac{1}{\gamma+1} - \frac{1}{k+t^2}\right)^2}{k}} \quad \text{and} \quad n \in \mathbb{N}, \quad \frac{\partial B}{\partial k} \leq 0 \iff 152$$

$$\frac{2n\left(\frac{1}{\gamma+1} - \frac{1}{k+t^2}\right)^2}{k^2} - \frac{4n\left(\frac{1}{\gamma+1} - \frac{1}{k+t^2}\right)}{k(k+t^2)^2} \leq 0 \iff 153$$

$$\frac{2n\left(-\gamma+k+t^2-1\right)\left(k^2-3(\gamma+1)k+2kt^2+t^2\left(-\gamma+t^2-1\right)\right)}{(\gamma+1)^2k^2\left(k+t^2\right)^3} \leq 0 \iff 154$$

$$\left(-\gamma+k+t^2-1\right)\left(k^2-3(\gamma+1)k+2kt^2+t^2\left(-\gamma+t^2-1\right)\right) \leq 0 \iff 154$$

$$\left(-\gamma+k+t^2-1\right)\left(k^2-3(\gamma+1)k+2kt^2+t^2\left(-\gamma+t^2-1\right)\right) \leq 0. \text{ When the factors are expanded, it yields a cubic inequality in terms of } k: k^3+k^2\left(3t^2-4(\gamma+1)\right)+3k\left(\gamma-t^2+1\right)^2+157$$

$$t^2\left(\gamma-t^2+1\right)^2 \leq 0. \text{ Assuming } 0 \leq t^2 < \gamma+1 \text{ and } \gamma \geq 0, 158$$

109

110

112

115

116

117

118

119

120

121

122

using the factored form and subsequently applying the quadratic formula, the inequality is valid if $\gamma - t^2 + 1 \le k \le \frac{1}{2}\sqrt{9\gamma^2 + 18\gamma - 8\gamma t^2 - 8t^2 + 9} + \frac{1}{2}\left(3\gamma - 2t^2 + 3\right)$.

159

160 161

162

163

164

165

168

169

170

171

172

173

174

176

178

179

181

182

183

184

185

186

187

190

191

192

193

194

195

196

197

199

200

201

202

203

204

205

207

208

209

210

211

212

213

214

Let X be a random variable and $\bar{Y} = \frac{1}{k}(Y_1 + \cdots + Y_k)$ be the average of k independent, identically distributed copies of X. Applying the variance operation gives: $\operatorname{Var}(\bar{Y}) = \operatorname{Var}\left(\frac{1}{k}(Y_1 + \cdots + Y_k)\right) = \frac{1}{k^2}(\operatorname{Var}(Y_1) + \cdots + \operatorname{Var}(Y_k)) = \frac{1}{k^2}(k\sigma^2) = \frac{\sigma^2}{k}$, since the variance operation is a linear operator for independent variables, and the variance of a scaled random variable is the square of the scale times the variance of the variable, i.e., $\operatorname{Var}(cX) = E[(cX - E[cX])^2] = E[(cX - cE[X])^2] = E[(cX - cE[X])^2] = E[c^2(X - E[X])^2] = c^2\operatorname{Var}(X)$. Thus, the standard deviation of the hl_k kernel distribution, asymptotically, is $\frac{\sigma}{\sqrt{k}}$. By utilizing the asymptotic bias bound of any quantile for any continuous distribution with a finite second central moment, σ^2 ,(6), a conservative asymptotic bias bound of $\gamma m \operatorname{oM}_{k,b=\frac{\pi}{L}}$ can be estab-

lished as $\gamma moM_{k,b=\frac{n}{k}} - \mu \leq \sqrt{\frac{\frac{\gamma}{1+\gamma}}{1-\frac{\gamma}{1+\gamma}}} \sigma_{hl_k} = \sqrt{\frac{\gamma}{k}} \sigma$. That implies in Theorem .3, $t < \sqrt{\gamma}$, so when $\gamma = 1$, the upper bound of k, subject to the monotonic decreasing constraint, is $2 + \sqrt{5} < \frac{1}{2}\sqrt{9+18-8t^2-8t^2+9}+\frac{1}{2}\left(3-2t^2+3\right) \leq 6$, the lower bound is $1 < 2-t^2 \leq 2$. These analyses elucidate a surprising result: although the conservative asymptotic bound of $\mathrm{MoM}_{k,b=\frac{n}{k}}$ is monotonic with respect to k, its concentration bound is optimal when $k \in (2+\sqrt{5},6]$.

Then consider the structure within each individual hl_k kernel distribution. The sorted sequence S_k , when k = n - 1, has n elements and the corresponding hl_k kernel distribution can be seen as a location-scale transformation of the original distribution, so the corresponding hl_k kernel distribution is ν th γ -ordered if and only if the original distribution is ν th γ -ordered according to Theorem ??. Analytically proving other cases is challenging. For example, $f'_{hl_2}(x) = 4f(2x)f(0) + \int_0^{2x} 4f(t)f'(2x-t)dt$, the strict negative of $f'_{hl_2}(x)$ is not guaranteed if just assuming f'(x) < 0, so, even if the original distribution is monotonic decreasing, the hl_2 kernel distribution might be non-monotonic. Also, unlike the pairwise difference distribution, if the original distribution is unimodal, the pairwise mean distribution might be non-unimodal, as demonstrated by a counterexample given by Chung in 1953 and mentioned by Hodges and Lehmann in 1954 (7, 8). Theorem ?? implies that the violation of ν th γ -orderliness within the hl_k kernel distribution is also bounded, and the bound monotonically shrinks as k increases because the bound is in unit of the standard deviation of the hl_k kernel distribution. If all hl_k kernel distributions are ν th γ -ordered and the distribution itself is ν th γ -ordered and γ -Uordered, then the distribution is called ν th γ -U-ordered. The following theorems highlight the significance of $\gamma\text{-symmetric}$ distributions.

Theorem .5. Any γ -symmetric distribution is ν th γ -U-ordered, provided that the γ is the same.

The succeeding theorem shows that the whl_k kernel distribution is invariably a location-scale distribution if the original distribution belongs to a location-scale family with the same location and scale parameters.

Theorem .6. $whl_k (x_1 = \lambda x_1 + \mu, \dots, x_k = \lambda x_k + \mu) = \lambda whl_k (x_1, \dots, x_k) + \mu.$

$$\begin{array}{lll} Proof. \ \ whl_k \left(x_1 = \lambda x_1 + \mu, \cdots, x_k = \lambda x_k + \mu \right) & = & \text{217} \\ \frac{\sum_{i=1}^k (\lambda x_i + \mu) w_i}{\sum_{i=1}^k w_i} & = & \frac{\sum_{i=1}^k \lambda x_i w_i + \sum_{i=1}^k \mu w_i}{\sum_{i=1}^k w_i} = \lambda \frac{\sum_{i=1}^k x_i w_i}{\sum_{i=1}^k w_i} + & \text{218} \\ \frac{\sum_{i=1}^k \mu w_i}{\sum_{i=1}^k w_i} & = \lambda \frac{\sum_{i=1}^k x_i w_i}{\sum_{i=1}^k w_i} + \mu = \lambda whl_k \left(x_1, \cdots, x_k \right) + \mu. \end{array}$$

221

222

223

224

225

229

232

233

234

235

236

237

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

265

269

270

272

273

According to Theorem .6, the γ -weighted inequality for a right-skewed distribution can be modified as $\forall 0 \leq \epsilon_{0_1} \leq \epsilon_{0_2} \leq$ $\frac{1}{1+\gamma}, \text{WLM}_{k,\epsilon=1-\left(1-\epsilon_{0_1}\right)^{\frac{1}{k}},\gamma} \geq \text{WLM}_{k,\epsilon=1-\left(1-\epsilon_{0_2}\right)^{\frac{1}{k}},\gamma}, \text{ which holds the same rationale as the } \gamma\text{-weighted inequality defined}$ in the last section. If the ν th γ -orderliness is valid for the whl_k kernel distribution, then all results in the last section can be directly implemented. From that, the binomial H-L mean (set the WA as BM) can be constructed (Figure ??), while its maximum breakdown point is ≈ 0.065 if $\nu = 3$. A comparis on of the biases of $\mathrm{BM}_{\nu=3,\epsilon=\frac{1}{8}},\;\mathrm{SQM}_{\epsilon=\frac{1}{8}},\;\mathrm{THLM}_{k=2,\epsilon=\frac{1}{8}},$ $\begin{array}{lll} \text{WHLM}_{k=2,\epsilon=\frac{1}{8}}, & \text{MHHLM}_{k=\frac{2\ln(2)-\ln(3)}{3\ln(2)-\ln(7)},\epsilon=\frac{1}{8}} & \text{(midhinge }\\ \text{H-L mean)}, & m\text{HLM}_{k=\frac{\ln(2)}{3\ln(2)-\ln(7)},\epsilon=\frac{1}{8}}, & \text{THLM}_{k=5,\epsilon=\frac{1}{8}},\\ \text{and} & \text{WHLM}_{k=5,\epsilon=\frac{1}{8}} & \text{is appropriate (Figure ??, SI} \\ \end{array}$ Dataset S1), given their same breakdown points, with $m{\rm HLM}_{k=\frac{\ln(2)}{3\ln(2)-\ln(7)},\epsilon=\frac{1}{8}}$ exhibiting the smallest biases. Another comparison among the H-L estimator, the trimmed mean, and the Winsorized mean, all with the same breakdown point, yields the same result that the H-L estimator has the smallest biases (SI Dataset S1). This aligns with Devroye et al.(2016)'s seminal work that MoM is nearly optimal with regards to concentration bounds for heavy-tailed distributions (9).

In 1958, Richtmyer introduced the concept of quasi-Monte Carlo simulation that utilizes low-discrepancy sequences, resulting in a significant reduction in computational expenses for large sample simulation (10). Among various low-discrepancy sequences, Sobol sequences are often favored in quasi-Monte Carlo methods (11). Building upon this principle, in 1991, Do and Hall extended it to bootstrap and found that the quasi-random approach resulted in lower variance compared to other bootstrap Monte Carlo procedures (12). By using a deterministic approach, the variance of $m{\rm HLM}_{k,n}$ is much lower than that of $MoM_{k,b=\frac{n}{k}}$ (SI Dataset S1), when k is small. This highlights the superiority of the median Hodges-Lehmann mean over the median of means, as it not only can provide an accurate estimate for moderate sample sizes, but also allows the use of quasi-bootstrap, where the bootstrap size can be adjusted as needed.

Data Availability. Data for Figure ?? are given in SI Dataset S1. All codes have been deposited in GitHub.

ACKNOWLEDGMENTS. I sincerely acknowledge the insightful comments from the editor which considerably elevated the lucidity and merit of this paper.

- J Hodges Jr, E Lehmann, Estimates of location based on rank tests. The Annals Math. Stat. 34, 598–611 (1963).
- PK Sen, On the estimation of relative potency in dilution (-direct) assays by distribution-free methods. *Biometrics* pp. 532–552 (1963).
- M Ghosh, MJ Schell, PK Sen, A conversation with pranab kumar sen. Stat. Sci. pp. 548–564 (2008).
- 4. RJ Serfling, Generalized I-, m-, and r-statistics. The Annals Stat. 12, 76-86 (1984).
- A Ehsanes Saleh, Hodges-lehmann estimate of the location parameter in censored samples. Annals Inst. Stat. Math. 28, 235–247 (1976).
- L Li, H Shao, R Wang, J Yang, Worst-case range value-at-risk with partial information. SIAM J. on Financial Math. 9, 190–218 (2018).

- 7. J Hodges, E Lehmann, Matching in paired comparisons. *The Annals Math. Stat.* **25**, 787–791
- J Hodges, E Lemmann, Malaning and J Hodges, Compared to the Compa
- L Devroye, M Lerasle, G Lugosi, RI Oliveira, Sub-gaussian mean estimators. The Annals Stat. 44, 2695–2725 (2016).
 RD Richtmyer, A non-random sampling method, based on congruences, for" monte carlo" problems, (New York Univ., New York. Atomic Energy Commission Computing and Applied ...),
- problems, (New York UTIIX, New York, Albumo Energy Communications).

 Technical report (1958).

 11. IM Sobol', On the distribution of points in a cube and the approximate evaluation of integrals.

 Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 7, 784–802 (1967).

12. KA Do, P Hall, Quasi-random resampling for the bootstrap. Stat. Comput. 1, 13–22 (1991).

