10.	图论:	树	(10-trees)
-----	-----	---	------------

姓名: 魏恒峰	学号: hfwei@nju.edu.cn
评分:	评阅:
2021	年5月13日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

作业(必做部分) 1

题目 1 ([4 分] **)

设 T 是树且每个顶点的度数要么为 1, 要么为 k。请证明 ① ② :

 $n(T) = \ell(k-1) + 2, \quad \ell \in \mathbb{N}.$

- ① 我们经常使用 n(G) 表示 G 的顶点
- ② 提示: 关于顶点度数, 我们有什么定 理可用?

证明:

题目 2 ([4 分] * * *)

给定无向图 G。请证明: G 是树当且仅当 G 没有 loop 且 G 有唯一的生成树。

证明:

题目 3 ([4 分] * * *)

给定无向连通图 G 与 G 中的某条边 e。请证明: e 是桥 (bridge $^{\textcircled{3}}$) 当且仅当 e 属于 $^{\textcircled{3}}$ bridge 也称为 cut-edge (割边)。 G 的每个生成树。

证明:

题目 $4([4 = 2 + 2 \, \beta] \star \star)$

请分别使用 Kruskal 算法与 Prim 算法 (从顶点 1 开始) 给出下图的最小生成树 ④ 要求给出顶点添加的顺序(在有多种选择时,优先选择编号较小的顶点)。

④ 以后你会明白, Kruskal 算法与 Prim 算法的难度不在算法本身, 而在于搞清楚 哪个是哪个。

证明:

题目 5 ([4 分] * * **)

设 G 是无向连通带权图, T 是 G 的一个最小生成树。 请证明: $T \in G$ 的唯一最小生成树当且仅当对于不在 T 中的每一条边 e, e 的权重大 于 T+e 所产生的圈中其它每条边的权重。

证明:

题目 6 ([-10 分])

订正 2

反馈 3

你可以写(也可以发邮件或者使用"教学立方")

- 对课程及教师的建议与意见
- 教材中不理解的内容
- 希望深入了解的内容