

Grade received 30%

Latest Submission Grade 30%

To pass 80% or higher

Try again

1. In logistic regression given the input \mathbf{x} , and parameters $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$, how do we generate the output \hat{y} ?

1/1 point

- $\sigma(W \mathbf{x} + b)$.
- \cap tanh $(W \mathbf{x} + b)$
- $\bigcirc W \mathbf{x} + b$
- $\int \sigma(W \mathbf{x})$

∠ Z Expand

⊘ Correct

Right, in logistic regression we use a linear function $W\mathbf{x} + b$ followed by the sigmoid function σ , to get an output y, referred to as $\hat{\mathbf{y}}$, such that $0 < \hat{\mathbf{y}} < 1$.

2. Suppose that $\hat{y}=0.5$ and y=0. What is the value of the "Logistic Loss"? Choose the best option.

- 0.693
- 0.5
- \bigcirc $+\infty$
- $\bigcirc \quad \mathcal{L}(\hat{y},y) = -\left(y\,\log\hat{y} + (1-y)\,\log(1-\hat{y})\right)$

3. Suppose x is a (8, 1) array. Which of the following is a valid reshape?

0 / 1 point

- x.reshape(-1, 3)
- x.reshape(2, 4, 4)
- x.reshape(2, 2, 2)
- x.reshape(1, 4, 3)

∠⁷ Expand

 \bigotimes Incorrect

No. This requires x to have at least 32 entries.

4. Consider the following random arrays a and b, and c:

 $a = np.random.randn(3,3) \, \# \, a.shape = (3,3)$

 $b = np.random.randn(2,1) \, \# \, b.shape = (2,1)$

c = a + b

What will be the shape of c?

- The computation cannot happen because it is not possible to broadcast more than one dimension
- c.shape = (2, 1)
- c.shape = (3,3)
- c.shape = (2, 3, 3)

⊗ Incorrect

No. It is not possible to broadcast together a and b. In this case there is no way to generate copies of one of the arrays to match the size of the other.

5. Consider the two following random arrays a and b:

 $a = np.random.randn(4,3) \, \# \, a.shape = (4,3)$

b = np.random.randn(1,3) # b.shape = (1,3)

c = a * b

What will be the shape of c?

c.shape = (4, 3)

The computation cannot happen because it is not possible to broadcast more than one dimension.

c.shape = (1, 3)

The computation cannot happen because the sizes don't match.

∠ Expand

(X) Incorrect

No. The row b is multiplied element-wise with each row of a to create c.

6. Suppose our input batch consists of 8 grayscale images, each of dimension 8x8. We reshape these images into feature column vectors \mathbf{x}^j . Remember that $X = \left[\mathbf{x}^{(1)}\mathbf{x}^{(2)}\cdots\mathbf{x}^{(8)}\right]$. What is the dimension of X?

(512, 1)

(64, 8)

(8, 64)

(8, 8, 8)

0 / 1 point

⊗ Incorrect

No. After converting the 8x8 gray scale images to a column vector we get a vector of size 64, thus X has dimension (64,8).

7. Consider the following array:

$$a=np.array([[2,1],[1,3]])$$

What is the result of a * a?

- The computation cannot happen because the sizes don't match. It's going to be an "Error"!
- $\begin{pmatrix}
 5 & 5 \\
 5 & 10
 \end{pmatrix}$
- ∠⁷ Expand
- **⊘** Correct

Yes, recall that $\mbox{\ensuremath{^{\star}}}$ indicates element-wise multiplication.

8. Consider the following code snippet:

$$a.shape = (4,3)$$

$$b.shape = (4,1)$$

1/1 point

This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)

10. Consider the following computational graph.

What is the output of J?

$$\bigcirc \quad (a-b)*(a-c)$$

$$a^2 + b^2 - c^2$$

$$\bigcirc a^2-b^2$$

$$\bigcirc \quad a^2-c^2$$

$$J = r + s = u * v + w * x = (a + b) * (a - b) + (b + c) * (b - c) = a^{2} - b^{2} + b^{2} - c^{2} = a^{2} - c^{2}$$