Figure 1 (SEQ ID NO: 1)

3 (SEQ ID NO: 2)

Tsp45 I

tgctto late a orange that can again the against a description of the against an against a description of the against a description

(SED ID NO: 3)

The state of the s

130 140
1 130 EEGYQDYEPEA
130 EEGYQDYEPEA
130 EEGYQDYEPEA
124 QEEYQEYEPEA
133 EEEYQDYEPEA
140 - - - - - - - - - - - - - - ETGK

90 101	98	
> > >	> >	- 90
A A A A	A A	
ଜ୍ଜ	G G	
< C C	נה נה	
< < <	< <	
ズズズ	X X	
000	00	
\Box	00	_
E P	3 3 5 5	-8
G A P	3 3	
וסו	1 1	
m z u	റമ	
H I K	i I i I	
א m ב	m m	
យល់យ	त्य त्य	
00 8	0 0	
<pre>< T < > C > C > C </pre>	Y P	
BOO	00	
a + ·	I F	
ス I :	i i	_ =
ວຄຣ ⊣ຄ>	ດດ	0
日ほう	нн	
Ю : E	1 1	
ם: ם סייפי	1 1	
5 - L	<u> </u>	
< z H	rn rn	
ជឌ២	ם	
. G .	1 1	
> > v	33	
1 > C	ס ס	
m < 3	< <	
7 P	ם ק ס	- 2
шСш	SO	0
। य ೧	s z	
	त्व व्य	
- X X	~ ~ ~ ~	
	ता ता	
: ≰ ⊞	3 3	
י שט	YEMPS	
ני ניי	ດ ດ	
(3)	3 3 3 -	
37 1 2 2 2	; 3	
EEQF Contained	າລະນາຣ norvei	
E E Q P Contraurus E M P P Contrains canada Tomorto californios	ിച്ചു sapions ചെല്ലട norvegicus	
촻흆	ji S	
23	S	

51	40	6	40	6		
VGT	V G S	V G S	v G s	VGS	-	3
⊼ ∃	R -}	ス 니	ㅈ 구	ㅈ :]		
ы Б	K E G	K E G	K E G	K E O		
V V 0	VVH	4 V Q	HAAA	HAAA	_	50
NAS	GVT	ଦେଏ	GV	ด \$		_
T <	4	A'S V	TTV	F <	,	
T E X	A E K	A E K	A E K	A E X		
T K	TKE	TKE	TKE	TKE	-	60
OAN	о <	O P	OVI	CVT		
٧ ٧	N N	J H S	Z Z	Z		
GGA	GGA	GGA	GGA	GGA		
VVA	VVT	V P S	VVT	VVT	-	70
G V	G V	G A	G V	0 V		
Z -] <	TAV	G	TAV	TAV		
A S K	A Q K	t 1	AQK	A O K	_	80
TVE	TVE	1 1	TVE	TVE		_
G	S	; ;	G	G		
VENVA	AGNIA	- NIA The laurus	SNIA	AGSIA		
		1353	1 024			
Tomordo californica	Cortains Canaria	โลบาบธ	AGNIA Comis norvegicus	saplens		

1 MDV	MDV	1 M D 1	MD	1 X D 1	
/LKKG	/ Y M K G	VFMKG	VFMKG	VFMKG	
FSFA	LSKA	LSMA	LSKA	LSKA	- †
KEGVV	KEGVV	KEGVV	KEGVV	KEGVV	
AAAE	AAAE		AAAE		- 8
X 11 X Q	XIXQ	X H X Q	K T K Q	X II X Q	
GVQDA	GVAEA	GVTEA	VAE	GVAEA	
AEKT	AGKT	AEKT	AGKT	ΑG	<u>-</u> 30
x o o v	1 1 1	:	1 1 1 1	1 1 1	
QDAA	1	1 1	: 1 1	1 1	
EXTKE	X E	X T	K I	X E	
GVMY	EGVLY	EGVLY	EGVLY	EGVLY	
Tamado californica	G V L Y Sorinus canada	GVLY Postaurus	G V L Y Damis norvegicus	G V L Y Como sapiens	

Figure 4

alpha-SYN exons 1-2 (SEQ ID NO: 14)

	10	20	30	40
GTGTGAGG CTCCCCAA AGGCCCTG	CACCTCCCG AGGGATAGGC ACCCA	GCGCTGCCTG TETGCCCTTG(GGNCGACTCT)	TCTCGGCGGT TCTCCTCCAG GTGGTCGACC GACGAGGGGT AAGGCNGGGA	CAG 80 CTC 120 AGG 160
	210	220	230	240
GAAGGGA AGCCCAA CTAAACT CCGCCTT	GGGGAAGGGG CCGCTCCCA TAACGTGAGG ANNCCAGGCA	AAAGAGGAAG. TCTCCACAAG. CGCAAAAGCGI GGCGGCTGGAI	AGGCATCATC AGTGCTCGTG CCCCAACCTT GTTGATGGCT GAGATAGGGA	CCT 240 ACC 280 TTC 320 CAC 360
	410	420	430	440
GGAGCAC GCGGGCA GCCGAGG ACGGCGA	GCTGCAGGGA GAAGCGCTGA AGAAGGAGAA CGACCAGAAG	AAGCAGCGAGI CAAATCAGCGI GGAGGAGGAC GGGCCCAAGAI	CGCCGGGAGAI GTGGGGGGGGG TAGGAGGAGG GAGGGGGGGGGG	GGG 440 AGA 480 AGG 520 GCG 560
•	610	620	630	640
GCGCAGA CGCTCCC CCCTCGT GGTTAGC	CCCGGCCCG TCACGCCTTG GAGCGGAGAA GGGTTTGCCT	GCCCCTCCTG. CCTTCAAGCC CTGGGAGTGG CCCACTCCCC	AGAGCGTCCT TTCTGCCTTT CCATTCGACG CAGCCTCGCG CAGCCTCCCC	GGG 640 CCA 680 ACA 720 TCG 760
	810	820	830	840
GTGCCCC TTTCCTA TTTTAAA GAGAAGC	TCCGCCCTTC TTAAATATTA AAAAGAGAGA AGAGGGACTC	CTGTGCGCTC TTTGGGAATT GGCGNGGAGG AGGTAAGTAC	CTTTTCCTTC GTTTAAATTT AGTCGGAGTT CTGTGGATCT GCCGGATGGA	TTC 840 TTT 880 GTG 920 AAA 960
بدلينين	1010	1020	1030	1040
GAATGGT GGACCGC TITGGGG CCTGCTT	CGTGGGNACC TGGGCCAGGT AGCCTAAGGA	GGGAGGGGGT CTCTGGGAGG AAGAGACTTG CTTCTCCACA	GGTGCTGCCA TGAGTACTTG ACCIGGCTTI AGGGCTGAGA	TGA 1040 TCC 1080 CGT 1120

alpha-SYN exon 3 (SEQ ID NO: 15)

10	20	30	40
			البييا
CTTAAAAGAGTCTCA	CACTTTGGAG	GGTTTCTCA	TGATTT 40
TTCAGTGTTTTTTGT	TTATTTTCC	CCGAAAGTT	OB TTADTO
CAAAGTGTATTTAT	GTTTTCCAGT	GTGGTGTAA	AGAAAT 120
TCATTAGCCATGGAT	GTATTCATGA.	AAGGACTTT	CAAAGG 160
CCAAGGAGGGAGTTG	TGGCTGCTGC	TGAGAAAACI	CAAACA 200
210	220		
qual maland		230	240
GGGTGTGGCAGAAGC	ACCACCAAAC	1 C	COTOTT OUG
CTCTATGTAGGTAGG	TAAACCCCAA	ACAMAMGAGI ATOTOAOTT	GGTGTT 240
TTGTTCATGAGTGAT	GGGTTAGCAT	AIGICAGII	IGGTGC 280
GCTGGTAGTTCTCTC	TOTTGATTOA:	TTTTTOC	CTAAAT 320
TIGTCAAAAAGGTGG	ACTGAGTCAG	I I I I I GCATO NGCTATOTO	CATIGE 360
			IAGGTA 400
410	420	430	440
CCTCAATCTCAACCTC		 	Liver L
GCCACTCTTTCCTTT	GIGIAINTGAG	SCTAATAGTA	AAAAT 440
GCGACTGTTTGCTTT	LAGATITITA	ATTTTGCCT	TAATAT 480
NTATGACTINTTAAAA CTATNTCAGAGACAGI	C ESO	IGIACTACA	TAATT 520
C IN THI CHUAGAGACAG	230		

alpha-SYN exch 4 (SEQ ID NO:16)

-	0	20	30	40
سيبليب				11 10
CTGCAGGTC.	AACGGATCT	GICICIAGIG	CIGIACTITI	OP AA
AGCTTCTAC.	AGTTCTGAA'	TTCAAAATTA	TCTTCTCACT	GG 80
GCCCCGGTG	TTATCTCAT	TCTTTTTCT	CCTCTGTAAG	TT 120
GACATGTGA	TGTGGGAAC.	AAAGGGGATA.	AAGTCATTAT	TT 160
TGTGCTAAA	ATCGTAATT	GGAGAGGACC	TCCTGTTAGC	TG 200
2	10	220	230	240
سيطيين	ببيلينا	<u> بىلىيىلى</u>	<u>ىيىلىيىلى</u>	
GGCTTTCTT	CTATNTATT	GTGGTGGTTA	GGAGTTCCTT	CT 240
TCTAGTTIT	AGGATATAT	TTTATATATA	TTTTCTTTCC	CT 280
			AGATTGAGAT	
			ATCAGCAATT	
			TIGITITIGT	
Ц	10	420	430	440
<u> </u>	11111111	<u> </u>		
GCTCCAAAA	CCAAGGAGG	GAGTGGTGCA	TGGTGTGGCA	AC 440
			GATGATATNT	
			TCAAGATTCC	
TGAAATTGT	AAAACAATC	ACTGAGCATC	TAAGAACATA	TC 560
			AGTATTTTTA	
	310	620	630	640
		120 111111111		<u> </u>
TACCTAAAT			TATACTTGCC	· AA 640
TAGGTAAA		AAA I AAAAA	CIMINCIIGCO	7AA 040
GAATAATGA	46 620			

alpha-SYN exon 5 (SEQ ID No: 17)

10	20	30	40
<u>ىلىرىلىيىلىيى</u>	<u> دا دیدالیت</u>	 	<u> </u>
ATATCTTAGCCAAGAT	TCAATGTTTG	GTTGAACCA	ACACTC 40
ACTIGACATETIGGIG	GCTTTTGTTT	CTTCTGAC	CACTCA 80
GTTATCTATGGCATGT	GTAGATACAG	GTGTATGG	AANCGA 120
TGGCTAGTGGAAGTGG	SAATGATTTA	AGTCACTG	TTATIC 160
TACCACCCTTTAATCT	GTTGTTGCTC	TTTATTTG	TACCAG 200
210	220	230	240
<u> دا د د د د د د د د د د د د د د د د د د</u>	بليبيليي	Lilia.	<u> </u>
TGGCTGAGAGACCAA	AGAGCAAGTG	ACAAATGTT	GGAGG 240
AGCAGTGGTGACGGGT	GTGACAGCAG	TAGCCCAGA	AGACA 280
GTGGAGGGAGCAGGGA	GCATTGCAGC	AGCCACTGO	SCTTTG 320
TCAAAAAGGACCAGTT	GGGCAAGGTA	TGGCTGTGT	ACGTT 360
TTGTGTTACATTTATA	AGCTGGTGAG	ATTACGGTT	CATTT 400
410	420	430	440
	بالبيسليدي	تبتيلين	
TCATGTGAAGCCTGGA	GGCAGGAGCA	AGATACTTA	CTGTG 440
GGGAACGGCTACCTGA			
CCTTIATATTGGTCTT			

alpha-SYN exon 6 (SEQ ID NO: 18)

10	20	30	40
AAAAGTTTACATA CAATGTTTCCCCG TAGTAATATTAAG ACATCCCTATATG TTTTTAAAAGTGA	DDIDITION OF STATE OF	ATAACCCATGT GAGTTTAGAAT ICAAGATCCGT CAAAACATGGT	GCCAG 00 GGCCA 120 TCTGA 160 TTTTT 200 240
GTGCTTCTTACTT ACAGGAAGGAATT AATGAGGCTTATC CTGAATCTTTCTA GTCACATTTCTC	TAAATATTAGA TCTGGAAGATAT GAAATGCCTTCT AACAAGACAGTA TTTCATTAGTGC 420	ATGAAGAAGGA GCCTGTGGATC GAGGTAGGAGT CCAAAAACCTC TTAGTGAGAAT	GCCCC 240 CTGAC 280 CCAAG 320 GTCATT 360 CATTT 400 440
GCTCTCTACATG GAATAGTTTTTA AGGAGGAGGAAG GAAATCATATGT TTGACCCTTTAC	CTCATTACGTGG CATTTTTAAAGG ATGAAGAAGAGG AGTCCACATAGG	ACAACTTGCAA GTCCTTAAAA GAAGAAAGGATI CTTAATATACN	AGTTAA 440 AAAAAG 480 GTAAAA 520 TACTAC 560
GAGAATATATTT AGTGTAAAGTGG CAGTGCTGATGC GCTGTCT 727	GGAGCCATTTC	CATTGATTGTA	GCTGTC 680

alpha-SYN exon 7 (SEQ ID NO: 19)

10	20	30	40
AGASOS SECURIOS DE LA COMPANSION DE LA CASA DA COMPANSION DE LA CASA DEL CASA DE LA CASA DEL CASA DE LA CASA D	ATTAGGAAGGG AATATCTTTGG CTCCATCTT	ADAADTATE TTDADDDDTE DTDAADATE	CTACG 40 TCTTG 80 CTCAG 120
210	220	230	240
CTGTACCTGCCCCCAC ACTGAAGTGAATACAT GGATTTTGTGGCTTCA AAACACCTAAGTGACT ATTTTTTTTTT	TCAGCATTICO GODACOATOO GOTACCATO ACCACTTATT	GGTGCTTCC TCTTTGTGT TTAAAACAA TCTAAATCC	CTITC 240 GCIGT 280 ATTAA 320 TCACT 360
CTATCATATATTATNA ACTGTCTAAGAATAAT TATATNATACTTAAAA CTATAATACTAAATAT TTTTATTCACTTGTGT	GATTTTTAGG GACGTATTGT ATATGTGAGC GAAATTTTAC TTGTATATNA	TGTCTTTTA GAAATTTGT ATGAAACTA CATTTTGCG ATGGTGAGA	ATGAT 440 TAATA 480 TGCAC 520 ATGTG 560 ATTAA 600
610			
AATAAAACGITATETC CCCATCTCACTTTAAT CATGAATTAAGAACTG TATTAATAGCCATTTG TAGAGAAAATGGAACA	AATAAAAATCA ACACAAAGGAG AAGAAGGAGGA	ATGCTTATA CAAAAATAT AATTTTAGA	AGCAA 680 AAAGT 720 AGAGG 760
810	820 	830 	840
GAAGCAACACTGCCAG TCCTTAAGTGGCTGTG GAAGACCCCAACTACT TTCAATCCTGTCAATG TGTTGTTTGATGTGTA	AAGTGTGTTTT ATTAATTATTC ATTGTAGAGTC TTTGCTTTACC TGTGTTTATAA 1020	GGTATGCA GAAAGTGGG GGTCTATTT GTATTTTGG ATTGTTATA 1030	CTGGT 840 GTGTT 880 CTCCC 920 GGAAC 960 CATTT 1000
TTAATTGAGCCTTTTA TCGAAATAATTTTTTA TGGTGTGAATGCTGTA GACCATGAATAAAAAA CTAAGCAGTGTAGAAG	TATAACATATA. ATTAAAATTTA. ADAATTTTTDD. TAAAAAAAAAA	TTGTTATTT ATTTTGTCT AATAAATAA IGGGTTCCC	GATAT 1080 TATNC 1120 GGGAA 1160

alpha-SYN exon 7

1210 	1220		1240
GAGAGCCATAAGACAC GGCTCTGAGAGAATGT			
TCCTCACTTTTTTTT	TTAATCATCA	GAAATTCTCTC	TCT 1320
CTCTCTCTTTTTCTCT TTTTACAGGAAATGCC			
		1430	
	بالمستناب	 	<u> </u>
GAGTCACCTTAAAGGG AAAAATTTCATGGGCC	AGNATCAATTO TCCTTTAAAA	TCTAGGACTO	GAT 1440 TAT 1480
GAGTCACCTTAAAGGG	AGNATCAATTO TCCTTTAAAA TTTTCCNTAGO	TCTAGGACTO TGTTGCCCAAA GGGGAAGGGTT	GGAT 1440 ATAT 1480

(SEQ ID NO: 1)

Figure 1

3 (SEQ 1 NO: 2)

getaalcogcaalttaaggetagettgagaettatgtettgoatttgttlltgtagGCICCAAAACCAAGGAGGGGAGTGGTGCATGGTGTGTGAACAAGAAGACAALtg Gly Ser Lys Thr Lys Glu Gly Val Val His Gly Val (Thr) Thr

tgettalateaaagatgataintaaagtatelagtgattagigtggeecagiateaagaiteelaigaaatigtaaaacaaleaetgageatetangnaeataie

(SEQ ID NO: 3)

PE JOSE STENI & THE COL STENI

140mo sapiens Rathus norvegicus Ros taurus Sorinus canaria Torpedo californica	Momo saplens Rathis norvegicus Ros taurus Sodnus canaria Torpedo callfornica	Homo sapiens Rattus norvegicus Ros taurus Sorinus canaria Tomendo californica	Homo sapiens (SEA I Pallus norvegicus (SEA IPNN Sorinus canaria (SEA Torpedo califomica (SEA
10 SKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYSMAKEGVVAAAEKTKQGVAEAAGKTKEGVLYSMAKEGVVAAAEKTKQGVAEAAGKTKEGVLYSKAKEGVVAAAEKTKQGVQDAAEKTKQGVQDAAEKTKEGVMY	50 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 100 100 100 100 100 100 100	140 1
M M D V F M K G L M M D V F M K G L M M D V F M K G L M M D V F M K G L	**** **** **** **** **** **** **** **** ****	90 AATGFVK AATGFVK AATGLVK AATGLVK	

Formo sapiens (SEA ID NO:1)
Partus norvegicus (SEA ID NO:1)
Bos trurus (SEA ID NO: 6)
Sertrus canaria (SEA ID NO:7)
Torpedo californica (SEA ID NO:3)

alpha-SYN exons 1-2 (SEQ ID NO: 14)

1(-	20 	30	40
GTGTGAGCCA CTCCCCAAGG AGGCCCTCGN	SATGCGAGG ACCTCCGG GGATAGGCT NTCTCCCAG	GCAAAGCGCT CGCTGCCTGT CTGCCCTTGG GNCGACTCTG	CTCGGCGGTG CTCCTCCAGC GTGGTCGACCC ACGAGGGGTA	CG 40 AG 80 TC 120 AGG 160
21		220	230	240
GAAGGGAGGG AGCCCAACCG CTAAACTTAA CCGCCTTGNN	GGAAGGGGA GCTCCCGAT ACGTGAGGC NCCAGGCAG	AAGAGGAAGA CTCCACAAGA GCAAAAGCGC GCGGCTGGAG	AGGCATCATCO AGTGCTCGTGA CCCCAACCTTT ATTGATGGCTC AGGATAGGGAC	CT 240 CC 280 TC 320 AC 360
		420 	430	440
GGAGCACGCT GCGGGCAGAA GCCGAGGAGA ACGGCGACGA	TGCAGGGAA. AGCGCTGAC. AAGGAGAAG ACCAGAAGG	AGCAGCGAGC AAATCAGCGG GAGGAGGACT GGCCCAAGAG	GCCGGGAGAG TGGGGGGGAGA AGGAGGAGGA AGGGGGGGAG AGGGGGG	GG 440 GG 480 GG 520 GG 560
		620	630	640
GCGCAGACCO CGCTCCCTCA CCCTCGTGAO GGTTAGCGGO	CCGGCCCGG ACGCCTTGC GCGGAGAAC GTTTGCCTC	CCCCTCCTGA CTTCAAGCCT TGGGAGTGGC CCACTCCCC	AGAGCGTCCTG TCTGCCTTTC CCATTCGACGA CAGCCTCGCGT CAGTCCCCCC	GGG 640 CCA 680 CCA 720 CCG 760
		820	830	840
GTGCCCCTCC TTTCCTATTA TTTTAAAAA GAGAAGCAG	CGCCCTTCC AAATATTAT AAGAGAGAG AGGGACTCA	TGTGCGCTCC TTGGGAATTC GCGNGGAGGA GGTAAGTACC	CTTTTCCTTCT GTTTAAATTTT AGTCGGAGTTC CTGTGGATCTA GCCGGATGGAC	TC 840 TT 880 GTG 920 AAA 960
		1020	1030	1040
GAATGGTCG GGACCGCTG TTTGGGGAG	TGGGNACCG GGCCAGGTC CCTAAGGAA GATATTCCC	GGAGGGGGTO TCTGGGAGG AGAGACTTGA TTCTCCACAA	GGTGCTGCCAT TGAGTACTTGT ACCTGGCTTT(AGGGCTGAGAG	TGA 1040 TCC 1080 CGT 1120

alpha-SYN exon 3 (SEQ ID NO: 15)

10	20	30	40
CTTAAAAGAGTCTCAC	ACTTTGGAG	GGTTTCTCAT	GATTT 40
TICAGIGITITITIGIT	TATITITCC	CCGAAAGTTC	TCATT 80
CAAAGTGTATTTTATG	TITTCCAGT	GTGGTGTAAA	GAAAT 120
TCATTAGCCATGGATG	TATTCATGA	AAGGACTTTC	AAAGG 160
CCAAGGAGGGAGTIGT	GGCTGCTGC	TGAGAAAACC	AAACA 200
210	220	230	240
	Litteri	<u> </u>	البيب
GGGTGTGGCAGAAGCA	GCAGGAAAG	ACAAAAGAGG	SIGIT 240
CTCTATGTAGGTAGGT	AAACCCCAA	ATGTCAGTTT	GTGC 280
TTGTTCATGAGTGATG	GGTTAGGAT.	AACAATACTCI	TAAAT 320
GCTGGTAGTTCTCTCT	CTTGATTCA	TTTTTGCATCA	ATTGC 360
TTGTCAAAAAGGTGGA	CTGAGTCAG.	AGGTATGTGTA	AGGTA 400
410	420	430	440
			
GGTGAATGTGAACGTG	TGTATNTGA	GCTAATAGTAA	AAAT 440
GCGACTGTTTGCTTTT	CAGATTTTT	AATTTTGCCTA	ATAT URO
NTATGACTINTTAAAA	TGAATGTTT(CTGTACTACAT	AATT 520
CTATNTCAGAGACAGT	536		

alpha-SYN exon 4 (SEQ ID NO:16)

10		20	30	40
بلسيبيين		حبليبيا		
CTGCAGGTCAA	CGGATCT	STCTCTAGT	GCTGTACTTT	AA 40
AGCTTCTACAG	STICTGAA	TTCAAAATT	ATCTTCTCACT	rgg 80
GCCCCGGTGTT	TATCTCAT	TCTTTTTC	TCCTCTGTAAC	STT 120
GACATGTGATO	STGGGAACA	AAAGGGGAT.	AAAGTCATTAT	TTT 160
TGTGCTAAAAT	TCGTAATT	GGAGAGGAC	CTCCTGTTAGG	CTG 200
210		220	230	240
ليبييابيين	<u> </u>	<u> </u>	<u> </u>	
GGCTTTCTTC	TATNTATT	GTGGTGGTT	AGGAGTTCCT	rct 240
TCTAGTTTTAG	GGATATAT.	TTATATAT	TTTTTCTTTC	CCT 280
GAAGATATAA	TATATAT	ATACTTCTG	AAGATTGAGA	TTT 320
TTAAATTAGT	TGTATTGA	AAACTAGCT	AATCAGCAAT'	TTA 360
AGGCTAGCTT	GAGACTTA	TGTCTTGAA	TTTGTTTTTG	TAG 400
410	0	420	430	440
لتتتلبينا		<u> بىلىيىرىل</u>	 	
GCTCCAAAAC	CAAGGAGG	GAGTGGTGC	ATGGTGTGGC	AAC 440
			AGATGATATN	
AGTATCTAGT	GATTAGTG	TGGCCCAGT	ATCAAGATTC	CTA 520
TGAAATTGTA	AAACAATC	ACTGAGCAT	CTAAGAACAT	ATC 560
AGTCTTATTG	AAACTGAA	TTCTTTATA	AAGTATTTT	AAA 600
61	Ω	620	630	640
	1			ــــــــــــــــــــــــــــــــــــــ
TAGGTAAATA	TTGATTAT	AAATAAAA	ATATACTTGC	CAA 640
GAATAATGAG				· · · · ·
GAATAATGAG	650			

alpha-SYN exon 5 (SEQ ID No: 17)

10	20	30	40
	حبيليينايي	uluulu	
ATATOTTAGCCAAGATTO	CAATGTTTGGT	TGAACCACA	CTC 40
ACTTGACATCTTGGTGGC	CTTTTGTTTCT	TTCTGACCAC'	TCA 80
GTTATCTATGGCATGTGT	TAGATACAGGT	IGTATGGAAN	CGA 120
TGGCTAGTGGAAGTGGAA	ATGATTTTAAC	GTCACTGTTA	TTC 160
TACCACCCTTTAATCTGT	TTGTTGCTCTT	TATTTGTAC	CAG 200
210	220	230	240
	ببيلينياب	بيليبيلي	ш
TGGCTGAGAAGACCAAAG	SAGCAAGTGAC	CAAATGTTGGA	AGG 240
AGCAGTGGTGACGGGTGT	GACAGCAGTA	GCCCAGAAGA	ACA 280
GTGGAGGGAGCAGGGAGC	CATTGCAGCAG	CCACTGGCT	TG 320
TCAAAAAGGACCAGTTGG	GCAAGGTATG	GCTGTGTAC	GTT 360
TTGTGTTACATTTATAAG	SCTGGTGAGAT	TACGGTTCAT	TT 400
410	420	430	440
arabanah jadan	بير ليرييلب		<u> </u>
TCATGTGAAGCCTGGAGG	CAGGAGCAAG	SATACTTACTO	STG 440
GGGAACGCTACCTGACC			
CCTTTATATTGGTCTTGC	TTGTTT 504		

alpha-SYN exon 6 (SEC ID NO: 18)

10	20 لىرىلىرى	30	40
AAAAGTTTACATACT CAATGTTTCCCCGGA TAGTAATATTAAGGT ACATCCCTATATGTA TTTTTAAAAGTGAAA	TTGAGGTTGA GGCATTGTGG GTGCCATTTT	GAGTTTAGAAT CAAGATCCGT GAAAACATGGT	GGCCA 120 TCTGA 160
			
GTGCTTCTTACTTTA ACAGGAAGGAATTCT AATGAGGCTTATGAA CTGAATCTTTCTAAC GTCACATTTCTCTTT	GGAAGATAT(ATGCCTTCT(AAGACAGTA(GCCTGTGGATG GAGGTAGGAG CCAAAAACCT(CCTGAC 280 CCCAAG 320 GTCATT 360
410	420	430	440
GCTCTCTACATGCTC GAATAGTTTTTACAT AGGAGGAGGAAGATC GAAATCATATGTAGTTGACCCTTTACAG	CATTACGTGG TTTTTAAAGG GAAGAAGAGG TCCACATAGC	ACAACTTGCA GTCCTTAAAA AAGAAAGGAT TTAATATACN ACTAACCCCT	AGTTAA 440 AAAAAG 480 GTAAAA 520 TACTAC 560 GCATTA 600
610	620	630 	640
GAGAATATATTTT AGTGTAAAGTGGGG CAGTGCTGATGCGT GCTGTCT 727	AGCCATTTCC	TATCTCATTG	GCTGTC 680

alpha-SYN exon 7 (SEQ ID No: 19)

10	20	30 	40
TTTIGATTTTTCTAAT AACCTGAAGCCTAAGA AGATCTGCTGACAGAT TTCCAATGTGCCCAGT AGTGTATCTCGAAGTC	AAATATCTTTG TGTTCCATCCT TCATGACATTT	CTCCCAGTTT GTACAAGTGC CTCAAAGTTT	CTTG 80 TCAG 120 TTAC 160
·			
CTGTACCTGCCCCCAC ACTGAAGTGAATACAT GGATTTTGTGGCTTCA AAACACCTAAGTGACT ATTTTTTTGTTGCTGT	CTCAGCATTTC TGGTAGCAGGG AATCTACGATG TACCACTTATT TTGTTCAGAAG 420	GGTGCTTCCC TCTTTGTGTG TTAAAACAAA TCTAAATCCT TTGTTAGTGA 430	TITC 240 CIGT 280 TIAA 320 CACT 360 TITG 400
CTATCATATATATA			
CTATCATATATTATNA ACTGTCTAAGAATAA TATATNATACTTAAAA CTATAATACTAAATAT TTTTATTCACTTGTG	TGACGTATTGT(AATATGTGAGC/ TGAAATTTTAC(GAAATTTGTT ATGAAACTAT CATTTTGCGA	AATA 480 GCAC 520 TGTG 560
610	620	630	640
AATAAAACGTTATCTC CCCATCTCACTTTAAT CATGAATTAAGAACTC TATTAATAGCCATTTC TAGAGAAAATGGAACA 810	CATTGCAAAAA TAATAAAAATCA GACACAAAGGA GAAGAAGGAGGA ATTAACCCTACA 820	TATTTTATTT ATGCTTATAA CAAAAATATA AATTTTAGAA ACTCGGAATT 830	TTAT 640 GCAA 680 AAGT 720 GAGG 760 CCCT 800 840
GAAGCAACACTGCCAG TCCTTAAGTGGCTGTG GAAGACCCCAACTACT TTCAATCCTGTCAATG TGTTGTTTGATGTGTA 1010	GAAGTGTGTTTT GATTAATTATTC FATTGTAGAGTC GTTTGCTTTACC ATGTGTTTATAA 1020	GAAAGTGGGG GAAAGTGGGG GGTCTATTTC GTATTTTGGG ATTGTTATAC 1030	TGGT 840 TGTT 880 TCCC 920 GAAC 960 ATTT 1000
TTAATTGAGCCTTTTA TCGAAATAATTTTTTA TGGTGTGAATGCTGTA GACCATGAATAAAAAA CTAAGCAGTGTAGAA(ATTAACATATA AGTTAAAATCTA ACCTTTCTGACA AAAAAAAAAA	TTGTTATTTT ATTTTGTCTG, AATAAATAAT, IGGGTTCCCG	TGTC 1040 ATAT 1080 ATNC 1120 GGAA 1160

alpha-SYN exon 7

1210	1220	1230	1240
GAGAGCCATAAGA GGCTCTGAGAGAA TCCTCACTTTTT CTCTCTCTTTTTC TTTTACAGGAAAT	CACATTAGCACA TGTGGTTAACTT TTTTTAATCATC TCTCGCTCTCTT	TATTAGCACA TGTTTAACTO AGAAATTCTO TTTTTTTT	ATTCAA 1240 CAGCAT 1280 CTCTCT 1320 CTTTTT 1360
1410	1420	1430	1440

