Help

Probability

Probability Basics

- About the tutorial
- What is probability?
- Sets and subsets
- Statistical experiment

Probability Problems

- Rules of probability
- Counting data points
- Probability problems
- Venn diagrams

Bayes theorem

Poker Probability

- ,
- Probability in stud poker

Probability of straight

- Probability of flush
- Cards of equal rank

Probability of no pair

Random Variables

- What is a random variable?
- Mean and variance
- Probability distributions
- Discrete vs continuous

Discrete Distributions

- Binomial distribution
- Hypergeometric
- Multinomial
- Negative binomial
- Poisson

Continuous Distributions

- Normal distribution
- Standard normal
- ----
- T Distribution
- Chi-square
- F distribution

Multinomial Distribution

A multinomial distribution is the probability distribution of the outcomes from a multinomial experiment.

Multinomial Experiment

A multinomial experiment is a statistical experiment that has the following properties:

On any given trial, the probability that a particular outcome will occur is constant.

- The experiment consists of n repeated trials.
- Each trial has a discrete number of possible outcomes.
- The trials are independent; that is, the outcome on one trial does not affect the outcome on other trials.

Consider the following statistical experiment. You toss two dice three times, and record the outcome on each toss. This is a multinomial experiment because:

- The experiment consists of repeated trials. We toss the dice three times.
- Each trial can result in a discrete number of outcomes 2 through 12.
- The probability of any outcome is constant; it does not change from one toss to the next.
- The trials are independent; that is, getting a particular outcome on one trial does not affect the outcome on other trials.

Note: A binomial experiment is a special case of a multinomial experiment. Here is the main difference. With a binomial experiment, each trial can result in two - and only two - possible outcomes. With a multinomial experiment, each trial can have two *or more* possible outcomes.

Multinomial Distribution

A multinomial distribution is the probability distribution of the outcomes from a multinomial experiment. The multinomial formula defines the probability of any outcome from a multinomial experiment.

Multinomial Formula. Suppose a multinomial experiment consists of n trials, and each trial can result in any of k possible outcomes: E_1, E_2, \ldots, E_k . Suppose, further, that each possible outcome can occur with probabilities p_1, p_2, \ldots , p_k . Then, the probability (P) that E_1 occurs n_1 times, E_2 occurs n_2 times, \ldots , and E_k occurs n_k times is:

$$P = [n! / (n_1! * n_2! * ... * n_k!)] * (p_1^{n_1} * p_2^{n_2} * ... * p_k^{n_k})$$

where $n = n_1 + n_2 + ... + n_k$.

The examples below illustrate how to use the multinomial formula to compute the probability of an outcome from a multinomial experiment.

Test Your Understanding

Problem 1

Suppose a card is drawn randomly from an ordinary deck of playing cards, and then put back in the deck. This exercise is repeated five times. What is the probability of drawing 1 spade, 1 heart, 1 diamond, and 2 clubs?

Solution: To solve this problem, we apply the multinomial formula. We know the following:

- The experiment consists of 5 trials, so n = 5.
- The 5 trials produce 1 spade, 1 heart, 1 diamond, and 2 clubs; so $n_1 = 1$, $n_2 = 1$, $n_3 = 1$, and $n_4 = 2$.
- On any particular trial, the probability of drawing a spade, heart, diamond, or club is 0.25, 0.25, 0.25, and 0.25, respectively. Thus, p₁ = 0.25, p₂ = 0.25, p₃ = 0.25, and p₄ = 0.25.

We plug these inputs into the multinomial formula, as shown below:

$$P = [n!/(n_1! * n_2! * ... * n_k!)] * (p_1^{n_1} * p_2^{n_2} * ... * p_k^{n_k})$$

$$P = [5!/(1! * 1! * 1! * 2!)] * [(0.25)^1 * (0.25)^1 * (0.25)^1 * (0.25)^2]$$

P = 0.05859

Thus, if we draw five cards with replacement from an ordinary deck of playing cards, the probability of drawing 1 spade, 1 heart, 1 diamond, and 2 clubs is 0.05859.

Multinomial Calculator

The multinomial formula requires many time-consuming computations. The Multinomial Calculator can do this work for you - quickly, easily, and error-free. Use the Multinomial Calculator to compute the probability of outcomes from multinomial experiments. The calculator is free. It can found in the Stat Trek main menu under the Stat Tools tab. Or you can tap the button below.

Multinomial Calculator

Problem 2

Suppose we have a bowl with 10 marbles - 2 red marbles, 3 green marbles, and 5 blue marbles. We randomly select 4 marbles from the bowl, with replacement. What is the probability of selecting 2 green marbles and 2 blue marbles?

Solution: To solve this problem, we apply the multinomial formula. We know the following:

- The experiment consists of 4 trials, so n = 4.
- The 4 trials produce 0 red marbles, 2 green marbles, and 2 blue marbles; so n_{red} = 0, n_{green} = 2, and n_{blue} = 2.
 On any particular trial, the probability of drawing a red, green, or blue marble is 0.2, 0.3, and 0.5, respectively. Thus, p_{red}
- = 0.2, p_{green} = 0.3, and p_{blue} = 0.5

We plug these inputs into the multinomial formula, as shown below: $P = [n!/(n_1! * n_2! * ... n_k!)] * (p_1^{n_1} * p_2^{n_2} * ... * p_k^{n_k})$

$$P = [\ 4!\ /\ (\ 0!\ ^*\ 2!\ ^*\ 2!\)\]\ ^*\ [\ (0.2)^0\ ^*\ (0.3)^2\ ^*\ (0.5)^2\]$$

$$P = 0.135$$
 Thus, if we draw 4 marbles with replacement from the bowl, the probability of drawing 0 red marbles, 2 green marbles, and 2

blue marbles is 0.135.

Last lesson

Next lesson

About us

Contact us

Privacy policy

Terms of use