22.38 PROBABILITY AND ITS APPLICATIONS TO RELIABILITY, QUALITY CONTROL AND RISK ASSESSMENT

Fall 2004

EXAMPLES

Consider two sets of valves tested to failure.

Set 1, $m_1 = 15$	Set 2, $m_2 = 10$
T _{fail} (months)	T _{fail} (months)
49.7	59.7
51.4	68.6
55.0	69.0
62.0	69.8
62.1	77.2
65.4	78.1
65.5	80.2
65.8	86.0
66.2	87.7
72.0	98.6
73.3	$\bar{x}_2 = 77.49 \text{ mo}$
73.7	$s_2 = 11.34 \text{ mo}^2$
75.8	
76.7	
79.7	
$\overline{x}_1 = 66.29 \mathrm{mo}$	
$s_1 = 9.17 \mathrm{m}\hat{\sigma}$	
$\frac{\left(\overline{x}_{1} - \overline{x}_{2}\right)}{\underbrace{s_{P} \frac{1}{m_{1}} + \frac{1}{m_{2}}}_{4.11}} = \frac{66.29 - 77.49}{10.07 \left(\frac{1}{5} + \frac{1}{1}\right)^{\frac{1}{2}}} = -2.724$	
$s_{P} = \frac{(m_{1} - 1)s_{1}^{2} + (m_{2} - 1)s_{2}^{2}}{(m_{1} + m_{2} - 2)} = \frac{(15 - 1)9.17^{2} + (10 - 1)11.34^{2}}{15 + 10 - 2}$	$\frac{1/2}{10.07}$ = 10.07 mo

For value test data:

$$n = 15 = df = 14, \sqrt{14} = 3.74$$

$$x_n = 66.3 \text{ mo}, s_n^2 = 83.6 \text{ mo}^2, s_n = 9.14$$

$$P x_n - t_{(n-1)(1-2)} \frac{s_n}{\sqrt{n}} < \mu < \overline{x} + t_{(n-1)} \frac{s_n}{\sqrt{n}} = 1 - \frac{s_n}{\sqrt{n}}$$

Now, test whether $\mu_1=\mu_2$, at 95% confidence level (=0.05). $t_{0.025}=-2.069$ for df - 23.

$$\Pr{ob} \left\{ \begin{array}{ll} t_{1/2} & s_P & \frac{1}{m_1} + \frac{1}{m_1} \end{array} \right. - \left(\overline{x}_1 - \overline{x}_2 \right) < \left(\mu - \mu_2 \right) < t_{(1-1/2)} s_P \frac{1}{m_1} + \frac{1}{m_1} \end{array} \right. - \left(\overline{x}_1 - \overline{x}_2 \right) \right\}$$

$$= 1 -$$

or,
$$\Pr{ob} \left\{ \left[-2.069 \left(4.11 \right) - 11.2 \right] < \left(\mu - \mu_2 \right) < \left[2.069 \left(4.11 \right) - 11.2 \right] \right\} = 0.95$$
 or,
$$\Pr{ob} \left[-22.39 < \left(\mu - \mu_2 \right) < -2.69 \right] = 0.95$$

It is unlikely that $\mu_1 = \mu_2$.

For 15 elements in valve testing data set 1, obtain result:

or,

$${}^{2} = \frac{(n-1)s_{n}^{2}}{2}$$

$$\bar{x} = 66.29 \text{ mo} \qquad s_{n}^{2} = 83.6 \text{ mo}^{2}$$

$$P \quad {}^{2} \quad \frac{(n-1)s_{n}^{2}}{2} = 1 -$$

$$P \quad {}^{2} \quad \frac{(n-1)s_{n}^{2}}{2} = 1 - .$$

2

Here n = 15 = df = (n - 1) = 14.

	2	$\frac{(n-1)s_n^2}{2}$	$\sqrt{\frac{(n-1)s_n^2}{2}} >$	$\frac{\text{max}}{\overline{X}}$
0.05	6.57	177.8	13.3	0.20
0.01	4.66	250.8	15.8	0.24