The group G is isomorphic to the group labelled by [48, 32] in the Small Groups library. Ordinary character table of $G \cong C2 \times SL(2,3)$:

Trivial source character table of $G \cong C2 \times SL(2,3)$ at p = 3:

Normalisars N.

Normalisers N_i	N_1 P_1						N_2 P_2			
p-subgroups of G up to conjugacy in G										
Representatives $n_j \in N_i$	1a	2a	4a	2b	4b	2c	1 <i>a</i>	2b	2a	2c
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	3	3	3	3	3	3	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	3	-3	3	3	-3	-3	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	6	-6	0	-6	0	6	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} $	6	6	0	-6	0	-6	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14}$	3	-3	-1	3	1	-3	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} $	3	3	-1	3	-1	3	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	1	1	1	1	1	1	1	1	1	1
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} $	4	4	0	-4	0	-4	1	-1	1	-1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	1	-1	1	1	-1	-1	1	1	-1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	4	-4	0	-4	0	4	1	-1	-1	1

 $P_2 = Group([(1,3,11)(2,7,18)(4,13,39)(5,28,25)(6,14,27)(8,20,43)(9,35,32)(10,21,34)(12,26,15)(16,30,47)(17,42,40)(19,33,22)(23,37,48)(24,46,44)(29,41,31)(36,45,38)]) \cong \mathbf{C3}$

 $N_1 = Group([(1,2)(3,7)(4,8)(5,9)(6,10)(11,28)(23,37,48)(24,46,44)(29,41,31)(36,45,38)(11,26,27,41)(12,28,29,42)(11,25,27,40)(13,42,30,28)(13,44,48)(12,46)(47,48)(13,44)(29,41,31)(36,45,38)(11,26,27,41)(12,28,29,42)(13,39)(5,28,25)(6,14,27)(8,20,33)(27,34)(28,35)(29,36)(30,37)(31,38)(39,43)(40,44)(41,45)(42,46)(47,48)(13,39)(5,28,25)(6,14,27)(8,20,43)(9,35,32)(10,21,34)(12,26,15)(16,30,47)(17,42,40)(19,33,22)(23,37,48)(24,46,44)(29,41,31)(36,45,38)(11,26,27,41)(12,28,29,42)(13,39)(5,28,25)(6,14,27)(8,20,33)(27,34)(28,35)(29,36)(30,37)(31,38)(39,43)(40,44)(41,45)(42,46)(47,48)(13,39)(5,28,25)(6,14,27)(8,29,42)(13,39)$

 χ_3 | 1 -1 $E(3)^2$ 1 1 $-E(3)^2$ -1 -1 E(3) $E(3)^2$ -E(3) $-E(3)^2$ E(3) - E(3)

 $\begin{vmatrix} \chi_5 & 1 & 1 & E(3)^2 & 1 & 1 & E(3)^2 & 1 & 1 & E(3) & E(3)^2 & E(3) & E(3)^2 & E(3) & E(3) \\ \chi_6 & 1 & 1 & E(3) & 1 & 1 & E(3) & 1 & 1 & E(3)^2 & E(3) & E(3)^2 & E(3) & E(3)^2 & E(3)^2 \end{vmatrix}$

 $\begin{vmatrix} \chi_9 & 2 & -2 & -E(3) & 0 & -2 & E(3) & 0 & 2 & -E(3)^2 & E(3) & E(3)^2 & -E(3) & E(3)^2 & -E(3)^2 \\ \chi_{10} & 2 & -2 & -E(3)^2 & 0 & -2 & E(3)^2 & 0 & 2 & -E(3) & E(3)^2 & E(3) & -E(3)^2 & E(3) & -E(3)^2 \\ \chi_{11} & 2 & 2 & -E(3) & 0 & -2 & -E(3) & 0 & -2 & -E(3)^2 & E(3) & -E(3)^2 & E(3) & E(3)^2 & E(3)^2 \\ \chi_{12} & 2 & 2 & -E(3)^2 & 0 & -2 & -E(3)^2 & 0 & -2 & -E(3) & E(3)^2 & -E(3) & E(3)^2 & E(3) & E(3)^2 \\ \chi_{13} & 3 & -3 & 0 & -1 & 3 & 0 & 1 & -3 & 0 & 0 & 0 & 0 & 0 \\ \chi_{14} & 3 & 3 & 0 & -1 & 3 & 0 & -1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{vmatrix}$