- (c) ¿Qué punto de la superficie dada por z = $x^2 - y^2$ tiene un plano tangente paralelo al plano determinado en el apartado (b)?
- **11.** Sea $f(x,y) = (1 x^2 y^2)^{1/2}$. Demostrar que el plano tangente a la gráfica de f en $(x_0, y_0, f(x_0, y_0))$ es ortogonal al vector $(x_0, y_0, f(x_0, y_0))$. Proporcionar una interpretación geométrica.
- **12.** Sean F(u,v) y u = h(x,y,z), v = k(x,y,z)funciones con valores reales dadas (diferenciables) y sea f(x, y, z) definida por f(x, y, z) =F(h(x,y,z), k(x,y,z)). Escribir una fórmula para el gradiente de f en función de las derivadas parciales de $F, h \vee k$.
- 13. Hallar una ecuación para el plano tangente de la gráfica de f en el punto $(x_0, y_0, f(x_0, y_0))$ para:
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x y + 2, (x_0, y_0) =$
 - (b) $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 + 4y^2, (x_0, y_0) = (2, -1)$
 - (c) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto xy, (x_0, y_0) = (-1, -1)$
 - (d) $f(x,y) = \log(x+y) + x\cos y + \arctan(x+y)$ y), $(x_0, y_0) = (1, 0)$
 - (e) $f(x,y) = \sqrt{x^2 + y^2}, (x_0, y_0) = (1,1)$
 - (f) $f(x,y) = xy, (x_0, y_0) = (2,1)$
- **14.** Calcular una ecuación para los planos tangente de las siguientes superficies en los puntos indicados.
 - (a) $x^2 + y^2 + z^2 = 3$,
 - (b) $x^3 2y^3 + z^3 = 0$. (1, 1, 1)
 - (c) $(\cos x)(\cos y)e^z = 0$, $(\pi/2, 1, 0)$
 - (d) $e^{xyz} = 1$, (1, 1, 0)
- 15. Dibujar algunas curvas de nivel para las siguientes funciones:
 - (a) f(x, y) = 1/xy
 - (b) $f(x,y) = x^2 xy y^2$
- **16.** Considérese la función de temperatura T(x,y) = $x \operatorname{sen} y$. Dibujar algunas curvas de nivel. Calcular ∇T y explicar su significado.
- 17. Hallar los siguientes límites si existen:

 - (a) $\lim_{(x,y)\to(0,0)} \frac{\cos xy 1}{x}$ (b) $\lim_{(x,y)\to(0,0)} \sqrt{|(x+y)/(x-y)|}, x \neq y$

- 18. Calcular la primera derivada parcial y el gradiente de las siguientes funciones:
 - (a) $f(x, y, z) = xe^z + y \cos x$
 - (b) $f(x, y, z) = (x + y + z)^{10}$
 - (c) $f(x, y, z) = (x^2 + y)/z$
- **19.** Calcular $\frac{\partial}{\partial x}[x\exp{(1+x^2+y^2)}].$
- **20.** Sean $f: \mathbb{R}^2 \to \mathbb{R}^4$ y $g: \mathbb{R}^2 \to \mathbb{R}^2$ funciones dadas por $f(x,z) = (x^2 y^2, 0, \operatorname{sen}(xy), 1)$ y $g(x,y) = (ye^{x^2}, xe^{y^2})$. Calcular $D(f \circ g)(1,2)$.
- **21.** Sea $f(x,y) = (x^2 + y^2)e^{-(x^2+y^2+10)}$. Hallar la tasa de variación de f en (2,1) según la dirección que apunta hacia el origen.
- **22.** Sea y(x) una función diferenciable definida implícitamente por F(x,y(x)) = 0. Por el Ejercicio 19(a) de la Sección 2.5, sabemos que

$$\frac{dy}{dx} = -\frac{\partial F/\partial x}{\partial F/\partial y}.$$

Se considera la superficie z = F(x, y) y se supone que F es creciente como función de x y como función de y; es decir, $\partial F/\partial x > 0$ y $\partial F/\partial y > 0$. Considerando la gráfica y el plano z = 0, demostrar que fijado z = 0, y debe decrecer cuando x aumenta y x debe decrecer cuando y aumenta. ¿Concuerda esto con el signo menos de la fórmula para dy/dx?

- **23.** (a) Considérese la gráfica de una función f(x,y)[Figura 2.R.1(a)]. Sea (x_0, y_0) un punto sobre la curva de nivel C, de modo que $\nabla f(x_0, y_0)$ es perpendicular a esta curva. Demostrar que el plano tangente de la gráfica es el plano que (i) contiene la recta perpendicular a $\nabla f(x_0, y_0)$ y que descansa sobre el plano horizontal $z = f(x_0, y_0)$, y (ii) tiene pendiente $\|\nabla f(x_0, y_0)\|$ respecto del plano xy. (Por pendiente de un plano P respecto del plano xy entendemos la tangente del ángulo $\theta, 0 < \theta < \pi$, entre **p**, la normal a P hacia arriba v el vector unitario \mathbf{k} .)
 - (b) Utilizar este método para demostrar que el plano tangente a la gráfica de f(x,y) = $(x+\cos y)x^2$ en (1,0,2) es como el mostrado en la Figura 2.R.1(b).
- **24.** Hallar el plano tangente a la superficie z= $x^2 + y^2$ en el punto (1, -2, 5). Para esta superficie, explicar el significado geométrico del gradiente de $f(x,y) = x^2 + y^2$ (véase el Ejercicio