

8. Motion control – Centralized control Kim Mathiassen



#### Lecture overview

- Centralized control joint control
  - PD control with gravity compensation
  - Inverse dynamics control
- Centralized operational space control
  - PD control with gravity compensation
  - Inverse dynamics control

#### **Motivation**

- When large operational speeds are required or when direct drive is emplyed nonlinear couplings strongly influence the system performance
- A manipulator is not a set of n decoupled systems, but a multivariate system with n inputs and n outputs
- Finding nonlinear multivariable control laws u to track trajectories

$$\tau = u = K_r K_t G_i v_c \tag{8.17}$$

### 8.5.1 PD control with gravity compensation

- Using Lyapunov direct method to determine the control input
- System state is  $[\widetilde{\boldsymbol{q}}^T \quad \dot{\boldsymbol{q}}^T]^T$ 
  - where  $\widetilde{m{q}} = m{q}_d m{q}$
- Lyapunov function candidate

$$V(\dot{\boldsymbol{q}}, \widetilde{\boldsymbol{q}}) = \frac{1}{2} \dot{\boldsymbol{q}}^T \boldsymbol{B}(\boldsymbol{q}) \dot{\boldsymbol{q}} + \frac{1}{2} \widetilde{\boldsymbol{q}}^T \boldsymbol{K}_P \widetilde{\boldsymbol{q}} > 0 \qquad \forall \dot{\boldsymbol{q}}, \widetilde{\boldsymbol{q}} \neq \boldsymbol{0}$$

$$- \text{Potential energy}$$

$$\text{Kinetic energy}$$

Differentiating the Lyapunov candidate function yields

Need to select u so last term becomes negative semi-definit

Intuitive approach

$$\boldsymbol{u} = \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{K}_P \widetilde{\boldsymbol{q}}, \tag{8.50}$$

• Yields negative semi-definite  $\dot{V}$  since

$$\dot{V} = 0$$
  $\dot{q} = 0, \forall \tilde{q}.$ 

Using

$$u = g(q) + K_P \widetilde{q} - K_D \dot{q}, \qquad (8.51)$$

Yields

$$\dot{V} = -\dot{\boldsymbol{q}}^T (\boldsymbol{F} + \boldsymbol{K}_D) \dot{\boldsymbol{q}}, \tag{8.52}$$

- This corresponds to nonlinear compensation action of gravitational terms with a linear PD controller
- K\_D increases the system response time

#### Remarks

- The derivative term is crucial for direct-drive manipulators, as mechanical viscous damping (F) is practically null
- The control law requires online computation of g(q)
- The system reaches an equilibrium posture

$$\dot{V} \equiv 0$$
 only if  $\dot{q} \equiv 0$ .

Given the system dynamics

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F\dot{q} + g(q) = g(q) + K_P\tilde{q} - K_D\dot{q}.$$
 (8.53)

• Inserting  $\dot{q} \equiv 0$ ,  $\ddot{q} \equiv 0$  to find the equilibrium posture yields

$$K_P\widetilde{q}=0$$
  $\widetilde{q}=q_d-q\equiv 0$ 

# Block diagram of PD controller with gravity compensation



### 8.5.2 Inverse dynamics control

- The PD controller with gravity compensation has only joint position as input
- Now we consider tracking a joint space trajectory
- Rewriting the dynamic equation as

$$B(q)\ddot{q} + n(q, \dot{q}) = u, \tag{8.55}$$

where

$$n(q, \dot{q}) = C(q, \dot{q})\dot{q} + F\dot{q} + g(q). \tag{8.56}$$

### **Exact linearization of the system dynamics**

- The idea is to find u which makes the system a linear system
- B(q) has full rank and can be inverted for any manipulator configuration
- Selecting u as

$$u = B(q)y + n(q, \dot{q}), \tag{8.57}$$

- Yields  $\ddot{q}=y$
- y represents a new input vector

### **Exact linearization**



#### Remarks

- The nonlinear control law (8.57) is termed inverse dynamics control, as it it based on the inverse dynamics of the manipulator
- The new system is linear and decoupled with respect to y

### Control law for decoupled system

Choosing the control law

$$y = -K_P q - K_D \dot{q} + r \tag{8.58}$$

Yields a system of second order equations

$$\ddot{q} + K_D \dot{q} + K_P q = r \tag{8.59}$$

Choosing K\_D and K\_P as

$$\mathbf{K}_P = \operatorname{diag}\{\omega_{n1}^2, \dots, \omega_{nn}^2\}$$
  $\mathbf{K}_D = \operatorname{diag}\{2\zeta_1\omega_{n1}, \dots, 2\zeta_n\omega_{nn}\},$ 

This gives a decoupled asymptotically stable system

### Tracking the trajectory

Tracking of the trajectory q\_td(t) is ensured by choosing

$$r = \ddot{q}_d + K_D \dot{q}_d + K_P q_d. \tag{8.60}$$

This yields the error dynamics

$$\ddot{\tilde{q}} + K_D \dot{\tilde{q}} + K_P \tilde{q} = 0 \tag{8.61}$$

Error only occures because of initial conditions

### **Block diagram**



#### Remarks

- Outer control loop design is simplified as it operates on a linear time-invariant system
- Must compute B(q) and n(q,qd) online
- Controller based on the assumtion of perfect cancelation
- All model must be perfectly known
- Sampling time must be in the order of milliseconds to ensure that operation assumption of continuous time domain
- May calculate the dominating terms to address real-time issues

#### 8.5.3 Robust control

 Address the issues with the previous controller, i.e. the model may be imperfect, expressed by

$$\boldsymbol{u} = \widehat{\boldsymbol{B}}(\boldsymbol{q})\boldsymbol{y} + \widehat{\boldsymbol{n}}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \tag{8.62}$$

The error in the estimates (i.e. uncertainty) is represented by

$$\widetilde{\boldsymbol{B}} = \widehat{\boldsymbol{B}} - \boldsymbol{B} \qquad \qquad \widetilde{\boldsymbol{n}} = \widehat{\boldsymbol{n}} - \boldsymbol{n}$$
 (8.63)

This yields the dynamic system

$$\mathbf{B}\ddot{\mathbf{q}} + \mathbf{n} = \widehat{\mathbf{B}}\mathbf{y} + \widehat{\mathbf{n}} \tag{8.64}$$

### **Error dynamics**

Rearraanging the equiation yields

$$\ddot{q} = y + (B^{-1}\hat{B} - I)y + B^{-1}\tilde{n} = y - \eta$$
 (8.65)

where

$$\boldsymbol{\eta} = (\boldsymbol{I} - \boldsymbol{B}^{-1}\widehat{\boldsymbol{B}})\boldsymbol{y} - \boldsymbol{B}^{-1}\widetilde{\boldsymbol{n}}. \tag{8.66}$$

Using similar control as in inverse dynamics control

$$y = \ddot{q}_d + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q),$$

Leads to

$$\ddot{\tilde{q}} + K_D \dot{\tilde{q}} + K_P \tilde{q} = \eta. \tag{8.67}$$

#### Remarks

$$\ddot{\tilde{q}} + K_D \dot{\tilde{q}} + K_P \tilde{q} = \eta. \tag{8.67}$$

- The system is coupled and nonlinear, since η is a nonlinear funtion of the errors (position and velocity)
- A linear PD controller is no longer sufficient for tracking a trajectory given uncertainties
- It is possible to add a robustness term to compensate for some of the errors

### 8.6 Operational space control



#### **Motivation**

- Joint space approaches requires calculation of inverse kinematics and inverse first and second order differential kinematics
- Industrial robots often calculate the joint positions through inverse kinematics, and then perform numerical differentiation to compute velocities and acceleration
- A different approach is to have a control scheme that is developed directly in the operational space
- Joint space control suffice only for motion in free space, and the following scheme will constitute the premise for the force/position control of the next chapter

$$\dot{m{x}}_e = m{J}_A(m{q})\dot{m{q}}$$

#### Jacobian inverse control

$$K \Delta q = \tau$$

- Intuitively behaves like a mechanical system with a generalized n-dimentional spring in joint space, whose stiffness is determined by the feedback matrix gain
- $\Delta x$  can also be viewed as a velocity which controls the system to minimize the error



$$oldsymbol{ au} = oldsymbol{J}^T(oldsymbol{q}) oldsymbol{\gamma}_e$$

### Jacobian transpose control

$$K \Delta x = \gamma_e$$

- The output of the matrix gain block can be viewed as a force generated by a spring in the operational space
- The operational space force is then transformes to jointspace forces



### 8.6.2 PD control with gravity compensation

 Given a constant end effector pose, we would like a control law that tends the error asymptocically to zero

$$\widetilde{\boldsymbol{x}} = \boldsymbol{x}_d - \boldsymbol{x}_e \tag{8.106}$$

Choosing the following Lyapunov function candidate

$$V(\dot{\boldsymbol{q}}, \widetilde{\boldsymbol{x}}) = \frac{1}{2} \dot{\boldsymbol{q}}^T \boldsymbol{B}(\boldsymbol{q}) \dot{\boldsymbol{q}} + \frac{1}{2} \widetilde{\boldsymbol{x}}^T \boldsymbol{K}_P \widetilde{\boldsymbol{x}} > 0 \qquad \forall \dot{\boldsymbol{q}}, \widetilde{\boldsymbol{x}} \neq \boldsymbol{0},$$
(8.107)

Time differentiating

$$\dot{V} = \dot{\boldsymbol{q}}^T \boldsymbol{B}(\boldsymbol{q}) \ddot{\boldsymbol{q}} + \frac{1}{2} \dot{\boldsymbol{q}}^T \dot{\boldsymbol{B}}(\boldsymbol{q}) \dot{\boldsymbol{q}} + \dot{\widetilde{\boldsymbol{x}}}^T \boldsymbol{K}_P \widetilde{\boldsymbol{x}}.$$

### **Deriving control law**

• Since  $\dot{x}_d = \mathbf{0}$ ,

$$\dot{\widetilde{m{x}}} = -m{J}_A(m{q})\dot{m{q}}$$

Then

$$\dot{V} = \dot{\boldsymbol{q}}^T \boldsymbol{B}(\boldsymbol{q}) \ddot{\boldsymbol{q}} + \frac{1}{2} \dot{\boldsymbol{q}}^T \dot{\boldsymbol{B}}(\boldsymbol{q}) \dot{\boldsymbol{q}} - \dot{\boldsymbol{q}}^T \boldsymbol{J}_A^T(\boldsymbol{q}) \boldsymbol{K}_P \widetilde{\boldsymbol{x}}.$$
 (8.108)

By recalling

$$B(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + F\dot{\mathbf{q}} + g(\mathbf{q}) = \mathbf{u}$$

$$N(\mathbf{q}, \dot{\mathbf{q}}) = \dot{B}(\mathbf{q}) - 2C(\mathbf{q}, \dot{\mathbf{q}})$$

$$\dot{\mathbf{q}}^T N(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} = 0;$$

$$(8.7)$$

$$(7.47)$$

yields

$$\dot{V} = -\dot{\boldsymbol{q}}^T \boldsymbol{F} \dot{\boldsymbol{q}} + \dot{\boldsymbol{q}}^T (\boldsymbol{u} - \boldsymbol{g}(\boldsymbol{q}) - \boldsymbol{J}_A^T (\boldsymbol{q}) \boldsymbol{K}_P \widetilde{\boldsymbol{x}}). \tag{8.109}$$

Choosing the control law

$$\boldsymbol{u} = \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{J}_{A}^{T}(\boldsymbol{q})\boldsymbol{K}_{P}\widetilde{\boldsymbol{x}} - \boldsymbol{J}_{A}^{T}(\boldsymbol{q})\boldsymbol{K}_{D}\boldsymbol{J}_{A}(\boldsymbol{q})\dot{\boldsymbol{q}}$$
(8.110)

Yields

$$\dot{V} = -\dot{\boldsymbol{q}}^T \boldsymbol{F} \dot{\boldsymbol{q}} - \dot{\boldsymbol{q}}^T \boldsymbol{J}_A^T (\boldsymbol{q}) \boldsymbol{K}_D \boldsymbol{J}_A (\boldsymbol{q}) \dot{\boldsymbol{q}}. \tag{8.111}$$

• This gives the equilibrium posture

$$\boldsymbol{J}_{A}^{T}(\boldsymbol{q})\boldsymbol{K}_{P}\widetilde{\boldsymbol{x}} = \boldsymbol{0}. \tag{8.112}$$

Under the assumption of full rank Jacobian

$$\widetilde{x} = x_d - x_e = 0,$$

### **Block diagram**

$$\boldsymbol{u} = \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{J}_{A}^{T}(\boldsymbol{q})\boldsymbol{K}_{P}\widetilde{\boldsymbol{x}} - \boldsymbol{J}_{A}^{T}(\boldsymbol{q})\boldsymbol{K}_{D}\boldsymbol{J}_{A}(\boldsymbol{q})\dot{\boldsymbol{q}}$$
(8.110)



### 8.6.3 Inverse dynamics control

- Now we consider following a operational space trajectory
- Recall that

$$B(q)\ddot{q} + n(q,\dot{q}) = u,$$

$$u = B(q)y + n(q, \dot{q})$$

Transformed the system to a system of two double integrators

$$\ddot{q} = y. \tag{8.113}$$

• Now we will design a new control input  ${m y}$  which will track the trajectory  ${m x}_d(t)$ 

We start by using the second order differential equation

$$\ddot{x}_e = \boldsymbol{J}_A(\boldsymbol{q})\ddot{\boldsymbol{q}} + \dot{\boldsymbol{J}}_A(\boldsymbol{q},\dot{\boldsymbol{q}})\dot{\boldsymbol{q}}$$

Choosing the control law

$$y = J_A^{-1}(q) (\ddot{x}_d + K_D \dot{\tilde{x}} + K_P \tilde{x} - \dot{J}_A(q, \dot{q}) \dot{q})$$
(8.114)

• This yields the error dynamics in operational space

$$\ddot{\tilde{x}} + K_D \dot{\tilde{x}} + K_P \tilde{x} = 0 \tag{8.115}$$

#### **UiO** • Department of Technology Systems

University of Oslo

$$y = J_A^{-1}(q) (\ddot{x}_d + K_D \dot{\tilde{x}} + K_P \tilde{x} - \dot{J}_A(q, \dot{q}) \dot{q})$$
(8.114)

### **Block diagram**



### Remarks for operational space control

- Operational space control always require computation of Jacobian
- This means that controlling in operational space is more complex that joint space because of singularities and redundancy
- The Jacobian transpose scheme might get stuck because of singularities
- For the Jacobian inverse scheme a singular Jacobian leads to infinite control input
- Redundancy handling must be incorporated into the control loop

### **Summary**

|                     | Joint space                          | Operational space                                                 |
|---------------------|--------------------------------------|-------------------------------------------------------------------|
| Setpoint controller | PD control with gravity compensation | PD control with gravity compensation (Jacobian transpose control) |
| Trajectory tracking | Inverse dynamics control             | Inverse dynamics control (Jacobian inverse control)               |

#### **Exercises**

- 1. Prove (8.111) based on (8.107)
- 2. Prove (8.115)