

PV and Storage in Communities: Challenges and Solutions

Prof Luis(Nando) Ochoa

Professor of Smart Grids and Power Systems luis.ochoa@unimelb.edu.au

> iiESI Workshop, Melbourne March, 2017

Outline

- Context: Flexibility
- Challenges in PV-Rich LV Networks (Communities)
 - PV, Battery storage
 - Case Study, Control strategies
 - Effects on the LV Network and Customers
- Future DSOs and Community-Based Flexibility
- Conclusions

Flexibility Vision (UK Regulator)

But before we get there...

Challenges in PV-Rich LV Networks

PV generation happens during the day, when many people are not at home → Problems

Challenges in PV-Rich MV Networks

Wide-spread PV adoption → Challenges to HV networks
How can we address this?

... but people will buy storage.

Surely, this will sort it out (?)

Challenges in PV-Rich LV Networks

- For Distribution Network Operators (DNOs)
 - PV impacts: voltage rise and thermal overload
 - Networks need to be reinforced

- For householders
 - Little or no incentive to export PV power
 - PV export limits are being adopted in some countries (e.g., 70% of PV installed capacity is the limit in Germany)
 - Falling prices for household storage devices makes it more viable

store the surplus during the day to use it later in the night!

Residential PV + Storage Systems

- For householders
 - interested in their own benefits
 - want to save money with the PV + storage system
 - want to use as much low carbon energy as possible
 - do not care about the DNO's technical problems!

For DNOs

- storage creates opportunities to mitigate technical issues and avoid/defer investments
- concerned with less grid dependency, lower revenue

... very different objectives

Storage - Basic Control and Sizing

- Day (generation) → Store the exports until full
- Night (no generation) → Supplies the house load until empty
- Size of battery → Enough to meet the average exports

... Does residential storage help mitigating PV impacts?

LV Network Impacts – Case Study

- Real UK LV Network (NW England)
 - Residential, underground
 - Tx 800 kVA, 11/0.4 kV, 4 feeders
 - 200 single-phase customers
 - Voltage limit of 1.10 pu (253 V)
- Summer, Weeklong
- Storage
 - Similar to Tesla Powerwall
 - 2 kW, 10 kWh, 20 < SoC < 90%
 - Round trip efficiency of 87%

Probabilistic Approach 1/2

- Monte Carlo Analysis
 - To cope with uncertainties (load/PV behaviour, location)
 - Sets of 1,000 residential demand profiles (season/type of day)
 - Sets of 1,000 PV profiles (season)
 - Unbalanced, time-series power flows (OpenDSS)
 - Different PV penetrations and storage control strategies
 - 100 week-long simulations per scenario
- Key Metrics
- Voltage: EN50160 non-compliant customers
- Thermal: Feeder utilisation (1-hour moving avg)
- Effects on Customers: Grid Dependency, Self Consumption

Probabilistic Approach 2/2

Control Strategies

1. Optimal for the Customer

All PV surpluses (negative net demand) are stored

2. Delayed Charging

- Surpluses are stored if the power export limit is reached

3. Store the Excess

Only PV generation beyond the export limit is stored

Mode: Optimal for the Customer

Even small surpluses early morning are stored

→ More energy for the customer

→ Battery is likely to be full before PV impacts

Mode: Delayed Charging

Charging starts closer to peak generation

- → Battery is likely to have room during PV impacts
- → Not necessarily making the most of PV generation for the customer

Mode: Store the Excess

Charging only PV generation beyond the export limit

- → Battery will significantly help reducing PV impacts
- → Does not make the most of PV generation for the customer

Results: Voltage Issues

Optimal for the customers → **Largest network impacts**

Store the excess → Significant mitigation of impacts

Results: Thermal Issues

Optimal for the customers → **Largest network impacts**

Store the excess → No thermal issues

... Do all control strategies benefit customers?

Index of Grid Dependence (IGD)

Effect of using storage on the electricity bill

- 100% household totally grid dependent (normal bill)
- 0% household totally grid independent (no bill)

Grid Dependency

- PV w/o storage → Produces savings but not large
- Optimal for the Customer and Delayed Charging → Greatest benefits, small electricity imports
 - Store the Excess → Almost as not having storage!

... so, it is just a matter of 'smart' storage control ©

... not really

Smart & Low Carbon

Current Control Philosophy (Distribution)

Fully Centralised vs. Coordinated Decentralised

Fully Centralised

- Opportunity for holistic 'optimisation'
- Full flexibility
- Increased reliance on monitoring/comms
- Increased complexity due to scale
- High deployment time

Coordinated Decentralised

- More localised 'optimisation' (static areas)
- Flexibility exists to <u>centrally react</u> to problems
- Less <u>centralised</u> monitoring/comms
- Less complexity due to reduced scale
- Less deployment time

... but there are many other barriers

- Defining **Distribution Markets**
 - Voltage management, congestion management
 - Near or post fault management (enabling islanding/microgrids)

- DSOs should be capable of
 - Quantifying operational needs and constraints
 - → wide-scale observability, forecasting
 - Exchanging data with the TSO and third parties (service providers)

... all this requires advanced management systems, investment, time, training, etc.

Conclusions 1/2

- Residential PV + storage might become more viable
 - Lower capital cost, lower electricity bills → less grid dependent
- However, customer-focused storage control strategies do not reduce PV impacts
 - Storage gets full before critical periods (around midday)
- New storage control strategies can mitigate network impacts from PV without affecting customers
 - Customers can achieve similar levels of grid dependency

Conclusions 2/2

- Complexity will increase with more controllable elements and the need for more flexibility
 - Computational/data complexity shouldn't be an issue in ∼15 years
- Regulators need to define the roles of potential future players and technologies in the provision of flexibility
 - E.g.: aggregators, storage
 - This will prevent new business models being hindered by regulatory barriers
- This transition of DNOs to **DSOs** in the next few years will bring exciting new regulatory environments where the envisioned smart grids are likely to finally emerge ☺

Technical Reports and Publications

Technical Reports (most publicly available):

https://sites.google.com/site/luisfochoa/publications/technical-reports

List of Publications (most publicly available):

Journal Papers

https://sites.google.com/site/luisfochoa/publications/journals

Conference Papers

https://sites.google.com/site/luisfochoa/publications/conferences

Thanks! Questions?

Acknowledgements

- Dr. Tiago Ricciardi
 Post-Doctoral Research Associate
- Mr. Kyriacos Petrou PhD Student
- Dr. Sahban Alnaser
 Lecturer

PV and Storage in Communities: Challenges and Solutions

Prof Luis(Nando) Ochoa

Professor of Smart Grids and Power Systems luis.ochoa@unimelb.edu.au

> iiESI Workshop, Melbourne March, 2017