离散数学 II Discrete Mathematics II

封筠

fengjun@stdu.edu.cn

20-11

课程回顾

群与子群: 群的定义、群的性质(5个)、群的阶数、子群的定义、子群的性质(3个)

5-5 阿贝尔群和循环群

●学习本节要熟悉如下术语(4个):

阿贝尔群、循环群、生成元、阶

●要求:

掌握3个定理

一、阿贝尔群(Abel群)

1、定义 5-5.1 设 <G,*>为一群,若 * 运算 满足交换律,则称G为交换群或阿贝尔群 (Abel group)。阿贝尔群又称加群,常表示 为<G,+>(这里的 + 不是数加,而泛指 可交换二元运算)。加群的幺元常用0来表 示,元素x的逆元常用-x来表示。

例题1 设S={a,b,c,d}, 在S上定义一个双射函数 f: f(a)=b,f(b)=c,f(c)=d,f(d)=a, 对于任一 $x \in S$,构造复合函数 $f^2(x)=f \circ f(x)=f(f(x))$ $f^3(x)=f \circ f^2(x)=f(f^2(x))$ $f^4(x)=f \circ f^3(x)=f(f^3(x))$

如果用 f^0 表示S上的恒等映射,即 $f^0(x)=x x \in S$ 很明显地有 $f^4(x)=f^0(x)$,记 $f^1=f$,构造集合 $F=\{f^0,f^1,f^2,f^3\}$,那么<F,o>是一个阿贝尔群。

解对于F中任意两个函数的复合,可以由下表给出

О	\mathbf{f}^0	\mathbf{f}^1	\mathbf{f}^2	\mathbf{f}^3	
f ⁰	\mathbf{f}^0	\mathbf{f}^1	f^2	f^3	
f ¹	$\mathbf{f^1}$	\mathbf{f}^2	f^3	\mathbf{f}^0	
\mathbf{f}^2	\mathbf{f}^2	f^3	\mathbf{f}^0	${f f^1}$	
\mathbf{f}^3	f^3	\mathbf{f}^0	\mathbf{f}^1	\mathbf{f}^2	

可见,复合运算o关于F是封闭的,并且是可结合的。f⁰的逆元就是它本身,f¹和f³互为逆元,f²的逆元也是它本身。

由表的对称性,可知复合运算o是可交换的。 因此<F,o>是一个阿贝尔群。

再看5-4节P191例题1

*	0°	60°	120°	180°	240°	300°
0°	0°	60°	120°	180°	240°	300°
60°	60°	120°	180°	240°	300°	$0\degree$
120°	120°	180°	240°	300°	0°	60°
180°	180°	240°	300°	0°	60°	120°
240°	240°	300°	$0\degree$	60°	120°	180°
300°	300°	0°	60°	120°	180°	240°

已经验证了<R,★>是群。 由运算表的对称性知运算★是可交换的, 因此<R,★>是阿贝尔群。

练习 P200(1)

设<G,*>是一个独异点,并且对于G中的每一个x都有x*x=e,其中e是幺元,证明<G,*>是一个阿贝尔群。

证明 x*x=e说明G中的每一个元素x都是自 身的逆元,所以<G,*>是一个群。

任取x, $y \in G$, 则 $x*y \in G$

因为 $x*y=(x*y)^{-1}=y^{-1}*x^{-1}=y*x$

所以<G, *>是一个阿贝尔群。

此题的推论:若群中每个元素的逆元 都是它自己,则该群必是可交换群。 例题2 设G为所有n阶非奇(满秩)矩阵的集合,矩阵乘法运算。作为定义在集合G上的二元运算,则<G,。>是一个不可交换群。

解任意两个n阶非奇矩阵相乘后,仍是一个非奇矩阵,所以运算。是封闭的。矩阵乘法运算。是可结合的。

n阶单位阵E是G中的幺元。

任意一个非奇矩阵A存在唯一的逆阵A-1,使 $A^{-1}oA=AoA^{-1}=E$ 。

但矩阵乘法运算。是不可交换的,因此<G,o>是一个不可交换群。

2、定理 5-5.1 设 $\langle G, * \rangle$ 为一群, $\langle G, * \rangle$ 是阿贝尔群的充要条件是对任意的 $a,b \in G$,有

(a*b) * (a*b) = (a*a) * (b*b)

□ 证明:1) 先证充分性 从条件"(a*b)*(a*b)=(a*a)*(b*b)"出 发,推出"<G,*>是阿贝尔群"的结论: 对于元素**a,b∈G**,有(a*b)*(a*b)=(a*a)*(b*b) 因为 a*(a*b)*b=(a*a)*(b*b)=(a*b)*(a*b)=a*(b*a)*b即 a*(a*b)*b=a*(b*a)*b 由可约性得,用a-1左*上式,再用b-1右*上式, (a*b) = (b*a)2) 再证必要性 从"<G,*>是阿贝尔群"的结论出发,推出 "(a*b)*(a*b)=(a*a)*(b*b)"条件: 略□

二、循环群

1、定义5-5.2 设<G,*>为群,如果在G中存在元素 a,使 G以{a}为生成集,即G的任何元素都可表示为 a 的幂(约定e=a⁰),称<G,*>为循环群(cyclic group),这时a称为循环群G的生成元(generater)。

例如,60°就是群 <{0°,60°,120°,180°,240°,300°}, ★>的生成元, 因此,该群是循环群。

- 2、定理 5-5.2 设任何一个循环群必定是阿贝尔群。
- □ 证明思路:循环群⇒是阿贝尔群
 设 <G,*>是一个循环群, a是该群的生成元,
 则对于任意的x,y∈G, 必有r,s∈I, 使得
 x= a^r 和 y = a^s

而且 x*y=a^r*a^s=a^{r+s}=a^{s+r}=a^s*a^r=y*x 因此,运算*可交换,是阿贝尔群。 □

3、定义5-5.3 设<G,*>为群,a∈G,如果aⁿ= e,且n为满足此式的最小正整数,则称a 的阶(*order*)为n,如果上述n不存在时,则称a 有无限阶.

练习 每个元素的阶是多少?

*	0°	60°	120°	180°	240°	300°
0°	0°	60°	120°	180°	240°	300°
60°	60°	120°	180°	240°	300°	0°
120°	120°	180°	240°	300°	0°	60°
180°	180°	240°	300°	0°	60°	120°
240°	240°	300°	0°	60°	120°	180°
300°	300°	0°	60°	120°	180°	240°

4、定理 5-5.3 设<G.*>为有限循环群,a∈G 是该群的生成元,如果G的阶数是n,即 | **G** |= **n** ,则**a**ⁿ = **e**,且 $G=\{a, a^2, a^3, ..., a^{n-2}, a^{n-1}, a^n=e\}$ 其中, e是群<G,*>的幺元。 n是使aⁿ=e的最小 下整数。

证明思路:先证a的阶为n

设对于某个正整数m,m<n,有 $a^m=e$ 。那么,由于 <G,*>是一个循环群,所以对于<math>G中任意的元素都能 写为 a^k ($k\in I$),而且k=mq+r,其中q是某个整数, $0 \le r < m$,则有

 $a^{k}=a^{mq+r}=(a^{m})^{q}*a^{r}=(e)^{q}*a^{r}=a^{r}$

因此,G中每一元素都可写成 $a'(0 \le r < m)$,G中最多有m个元素。与 |G|=n矛盾。所以 $a^m=e$ 是不可能的。再用反证法证明a, a^2 ,…, a^n 互不相同。

设 $a^i = a^j$,其中 $1 \le i < j \le n$,就有 $a^{j-i} = e$,而且 $1 \le j - i < n$,这已经有上面证明是不可能的。 所以 a , a^2 ,… , a^n 都不相同。

因此G={a, a², a³,..., aⁿ⁻², aⁿ⁻¹, aⁿ=e}

练习 < Zm, +m >生成元是什么?每个元素的阶是多少?

表 5-3.2							
+5	[0]	[1]	[2]	[3]	[4]		
[0]	[0]	[1]	[2]	[8]	[4]		
(1)	[1]	[2]	[3]	[4]	[0]		
[2]	[2]	[3]	[4]	[0]	[1]		
[3]	[3]	[4]	[0]	[1]	[2]		
[4]	[4]	[0]	[1]	[2]	[8]		

例题3 设集合 $G=\{\alpha,\beta,\gamma,\delta\}$,在G上定义二元运算*如下表所示。试说明<G,*>是一个循环群。

*	α	β	γ	δ
α	α	β	γ	δ
β	β	α	δ	γ
γ	γ	δ	β	α
δ	δ	γ	α	β

解 由上表可知运算*是封闭的, α 是幺元。

β, γ 和 δ 的逆元分别是β, δ 和γ。可以验证运算*是可结合的。所以<G, *>是一个群。在这个群中,由于

 $\gamma^* \gamma = \gamma^2 = \beta$, $\gamma^3 = \delta$, $\gamma^4 = \alpha$ 以及 $\delta^* \delta = \delta^2 = \beta$, $\delta^3 = \gamma$, $\delta^4 = \alpha$ 故群< G, $* > 是由<math>\gamma$ 或 δ 生成的,因此< G, * > 是 一个循环群。

从上例可知:一个循环群的生成元可以不是 唯一的。 作业: P200 (2) 只做阿贝尔群证明、(4)还要 给出每个元素的阶

The End