

# Unidad 3: BBDD Relacionales

BBDD01, Sesión 6: Modelo Relacional

Ignacio Olmeda
Josefa Gómez
Daniel Rodríguez García
Iván González Diego
Dept. Ciencias de la Computación
Universidad de Alcalá



# **INDICE**

- Estructura BD relacionales
- Elementos de las BD relacionales:
  - Claves
  - Integridad referencial
- Diagrama de esquema relacional
- Reducción de un esquema Entidad/Relación al Modelo relacional.

Referencias: Silberschatz 4<sup>a</sup> Ed. pp 53-82





- Cada fila ⇒ una relación entre un conjunto de valores
- Concepto relacionado: tabla ⇔ conjunto relaciones

#### Estructura básica

- Tabla ⇒ conjunto de columnas ⇒ atributos
- Dominio ⇒ conjunto de valores permitidos
- Ejemplo: relación cuenta

#### Tareas:

- Insertar
- Borrar
- Modificar
- Consultar

| número-cuenta | nombre-sucursal | saldo |
|---------------|-----------------|-------|
| C-101         | Centro          | 500   |
| C-102         | Navacerrada     | 400   |
| C-201         | Galapagar       | 900   |
| C-215         | Becerril        | 700   |
| C-217         | Galapagar       | 750   |
| C-222         | Moralzarzal     | 700   |
| C-305         | Collado Mediano | 350   |





La tabla, en cada momento, es un subconjunto de

$$D_1 \times D_2 \times \dots D_n$$

Las tablas son relaciones (estructura matemática)

Las filas son tuplas: (v<sub>1</sub>,v<sub>2</sub>,...,v<sub>n</sub>)

■ Variable tupla ⇒ una variable que representa una tupla

■ La relación cuenta, del ejemplo, tiene 7 tuplas

Variable tupla t que referencia a la primera tupla:

t[numero\_cuenta] (representa primer atributo), valor: C-101

t∈r ⇒la tupla t está en la relación r

| número-cuenta | nombre-sucursal | saldo |
|---------------|-----------------|-------|
| C-101         | Centro          | 500   |
| C-102         | Navacerrada     | 400   |
| C-201         | Galapagar       | 900   |
| C-215         | Becerril        | 700   |
| C-217         | Galapagar       | 750   |
| C-222         | Moralzarzal     | 700   |
| C-305         | Collado Mediano | 350   |





Hay modelos de BD que permiten que no sean atómicos

Varios atributos pueden tomar valores del mismo dominio

Valor nulo ⇒ puede ser miembro de todos los dominios ⇒ no existe ó desconocido (Conviene evitar).

#### Esquema de la BD

- Esquema de la BD ⇒ diseño lógico
- Ejemplar de la BD ⇒ instantánea de los datos en un momento
- Relación ⇒ variable
- Esquema de relación ⇒ tipos de datos y sus restricciones
- Definición esquema relación:
  - Esquema-cuenta = (número-cuenta, nombre-sucursal, saldo)





- Cuenta es un ejemplar de Esquema\_cuenta:
- cuenta (Esquema-cuenta)
- Se suele decir simplemente «relación» cuando realmente se quiere decir «ejemplar de la relación»
- Relación sucursal:
  - Esquema-sucursal = (nombre-sucursal, ciudad-sucursal, activos)
  - Atributo común a Esquema\_cuenta ⇒ relacionar tuplas
  - Saldo de todas las cuentas de Arganzuela

#### cuenta

#### sucursal

| número-cuenta | nombre-sucursal | saldo |
|---------------|-----------------|-------|
| C-101         | Centro          | 500   |
| C-102         | Navacerrada     | 400   |
| C-201         | Galapagar       | 900   |
| C-215         | Becerril        | 700   |
| C-217         | Galapagar       | 750   |
| C-222         | Moralzarzal     | 700   |
| C-305         | Collado Mediano | 350   |

| nombre de la sucursal | ciudad de la sucursal | activos   |
|-----------------------|-----------------------|-----------|
| Galapagar             | Arganzuela            | 7.500     |
| Centro                | Arganzuela            | 9.000.000 |
| Becerril              | Aluche                | 2.000     |
| Segovia               | Cerceda               | 3.700.000 |
| Navacerrada           | Aluche                | 1.700.000 |
| Navas de la Asunción  | Alcalá de Henares     | 1.500     |
| Moralzarzal           | La Granja             | 2.500     |
| Collado Mediano       | Aluche                | 8.000.000 |



- ¿Mejor más o menos esquemas de relación en la BD?
- Ejemplo:
  - 2 esquemas:
    - Esquema-cliente = (nombre-cliente, calle-cliente, ciudad-cliente)
    - Esquema-impositor = (nombre-cliente, número-cuenta)
  - 1 esquema:
    - (nombre-sucursal, ciudad-sucursal, activos, nombre-cliente, calle-cliente, ciudad-cliente, número-cuenta, saldo)
  - Ventajas de 1: Sencillez. Lo bueno, si breve...
  - Desventajas:
    - Si un cliente tiene varias cuentas ⇒ información duplicada
    - Si un cliente puede no tener cuenta ⇒ valores nulos
- En el límite: esquema de BD=conjunto de tablas con 2 atributos (inadecuado)





• Ejemplo: {(nombre\_sucursal)} de Esquema-sucursal

Formalmente: sea R esquema de relación, K es superclave de R si:

•  $t_1$  y  $t_2$  están en r(R) y  $t_1 \neq t_2$ , entonces  $t_1[K] \neq t_2[K]$ 

Los atributos que forman clave primaria de un esquema de relación se listan antes que el resto, subrayados



# Integridad referencial

- Las tablas de una base de datos pueden estar relacionadas a través del valor de sus atributos
  - R₁ es la relación referenciante
  - R<sub>2</sub> es la relación referenciada
  - Ejemplo:
    - R2: Esquema-cliente = (nombre, calle-cliente, ciudad-cliente)
    - R1: Esquema-impositor = (nombre-cliente, número-cuenta)
- Asegurar que el valor para un conjunto de atributos, que aparece en una tabla, está en la relación a la que hace referencia (en todo instante)⇒ Integridad referencial
  - Tupla colgante ⇒ no se reúne con una tupla de la otra relación
  - Deseables o no ⇒ Depende de las restricciones del mundo real al que representa
  - Sean R₁ y R₂ con PK K₁ y K₂, se dice que un subconjunto α de R₂ es una clave externa, que hace referencia a K₁ si se exige que para cada tupla t₂(R₂) exista una t₁(R₁) tal que t₁[K₁]=t₂[α] ⇒ Restricción de integridad = dependencia de subconjunto



Diagrama de esquema: esquema de base de datos + claves primarias + claves externas



- La flecha sale de la clave externa, hacia la primaria (si compuesta, poned llave)
- No tiene que tener el mismo nombre



## El esquema relacional se puede derivar del diagrama E-R





- La BD en modelo relacional se representa por un conjunto de tablas. Conversión esquema E-R ⇒ conjuntos tablas:
- Cada conjunto de entidades ⇒ tabla
- Cada conjunto de relaciones ⇒ tabla
- Atributos multivalorados ⇒ clave primaria de la tabla a la que pertenece + atributo del que se guarda el valor
  - Ejemplo: número de teléfono de cliente.



#### Representación tabular de las entidades fuertes

Conjunto de entidades E con atributos a1,a2,..,an ⇒ tabla E con

n columnas (cada atributo)

Cada fila será una entidad

| número-préstamo | importe |
|-----------------|---------|
| P-11            | 900     |
| P-14            | 1.500   |
| P-15            | 1.500   |
| P-16            | 1.300   |
| P-17            | 1.000   |
| P-23            | 2.000   |
| P-93            | 500     |

La tabla préstamo.

### **Atributos compuestos**

Una columna separada para cada componente. No hay columna para el atributo compuesto.

#### **Atributos calculados**

- En general no se almacena el atributo. Se programa calcularlo
- Si se consulta >> que modifica y tiempo calculo elevado, se almacena pero no se introduce, se calcula.



### Representación tabular de las entidades débiles

 $A \Rightarrow$  entidad débil con (a1,a2,..,an)

 $B \Rightarrow$  entidades fuerte del que A depende, con clave primaria (b1,b2,...,bm)

Tabla A con columnas {a1, a2,...,am} U {b1, b2,...,bm}

| número-préstamo | número-pago | fecha-pago    | importe-pago |
|-----------------|-------------|---------------|--------------|
| P-11            | 53          | 7 junio 2001  | 125          |
| P-14            | 69          | 28 mayo 2001  | 500          |
| P-15            | 22          | 23 mayo 2001  | 300          |
| P-16            | 58          | 18 junio 2001 | 135          |
| P-17            | 5           | 10 mayo 2001  | 50           |
| P-17            | 6           | 7 junio 2001  | 50           |
| P-17            | 7           | 17 junio 2001 | 100          |
| P-23            | 11          | 17 mayo 2001  | 75           |
| P-93            | 103         | 3 junio 2001  | 900          |
| P-93            | 104         | 13 junio 2001 | 200          |





- R ⇒ a<sub>1</sub>, a<sub>2</sub>,...,a<sub>m</sub> conjunto de atributos que forman la unión de las claves primarias de las entidades que participan en R y b<sub>1</sub>,b<sub>2</sub>,..,b<sub>n</sub> los atributos descriptivos de R
- Una tabla R con m+n columnas  $\{a_1, a_2, ..., a_m\}$  U  $\{b_1, b_2, ..., b_n\}$

| id-cliente | número-préstamo |
|------------|-----------------|
| 01.928.374 | P-11            |
| 01.928.374 | P-23            |
| 24.466.880 | P-93            |
| 32.112.312 | P-17            |
| 33.557.799 | P-16            |
| 55.555.555 | P-14            |
| 67.789.901 | P-15            |
| 96.396.396 | P-17            |

La tabla prestatario.





- Entidades fuertes ⇒ la clave primaria de la entidad
- Entidades débiles identificación⇒ clave primaria entidad fuerte + discriminante de la entidad débil
- Entidad débil existencia: la clave de la entidad débil
- Tabla de multivaluados: Clave primaria de la entidad + valor
- Relaciones ⇒ La unión de las claves primarias de las entidades relacionadas es una superclave. La clave primaria depende de la cardinalidad:
  - varios a uno (A,B), K de R: K de la entidad con varios (A)
  - uno a uno puede ser la de A o la de B.
  - varios a varios entre A y B es la combinación de la clave de ambas.



#### Redundancia de tablas

- La tabla para el conjunto de relaciones que une un conjunto de entidades débiles con su correspondiente conjunto de entidades fuertes es redundante⇒ no necesaria
- Es varios a uno y sin atributos
- Si se representase: pago\_prestamo
   (numero\_prestamo,,numero\_pago) ⇒ redundante.





#### Combinación de tablas

Relación varios a uno AB entre A y B ⇒ tres tablas A, B y AB

Si participación total de A ⇒ combinar A, AB en una tabla



- Si la participación es parcial se puede unir, pero genera nulos
- Relaciones uno a uno.
- En general: ¿unir las tablas con igual clave?



#### Representación tabular de la generalización

Dos maneras:

- Si la especialización no es completa o no es disjunta: Tabla para entidad de nivel más alto. Tabla para cada entidad de nivel más bajo con sus atributos + clave primaria del conjunto de nivel más alto.
  - Ejemplo: persona, empleado, cliente.
- Si la especialización es disjunta y completa. No se crea tabla para la entidad de nivel más alto. Tabla para cada entidad de nivel más bajo con sus atributos + atributos de entidad nivel superior
  - Ejemplo: universidad, universidad\_pública, universidad\_privada.



### Representación tabular de la agregación

La tabla para el conjunto de relaciones *dirige* entre la agregación de *trabaja-en* y el conjunto de entidades *director*. Incluye la clave primaria del conjunto de entidades *director* y del conjunto de relaciones *trabaja-en*.

- También incluiría una columna para cada atributo descriptivos si los hubiera, del conjunto de relaciones *dirige*.
- Se transforman los conjuntos de relaciones y los conjuntos de entidades dentro de la entidad agregada.

