eigenvalue decomposition summarized

• If Q^{-1} exists, then we can write

$$A = QDQ^{-1}$$
 eigenvalue decomposition

$$Q^{-1}AQ = D$$
 diagonalization of A

- Under what condition would Q^{-1} exist?
 - ightharpoonup If the columns of Q are linearly independent
 - \blacktriangleright i.e. if A has n linearly independent eigenvectors
 - \blacktriangleright i.e. if A has n distinct eigenvalues

eigenvalue decomposition summarized

• If Q^{-1} exists, then we can write

$$A = QDQ^{-1}$$
 eigenvalue decomposition

$$Q^{-1}AQ = D$$
 diagonalization of A

- Under what condition would Q^{-1} exist?
 - \blacktriangleright If the columns of Q are linearly independent
 - \blacktriangleright i.e. if A has n linearly independent eigenvectors
 - \blacktriangleright i.e. if A has n distinct eigenvalues
- ullet If A is symmetric, we get an even more convenient situation
 - ► The eigenvalues are orthogonal

