This product over many probabilities can be inconvenient for a variety of reasons. For example, it is prone to numerical underflow. To obtain a more convenient but equivalent optimization problem, we observe that taking the logarithm of the likelihood does not change its arg max but does conveniently transform a product into a sum:

$$\boldsymbol{\theta}_{\mathrm{ML}} = \underset{\boldsymbol{\theta}}{\mathrm{arg \, max}} \sum_{i=1}^{m} \log p_{\mathrm{model}}(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}).$$
 (5.58)

Because the arg max does not change when we rescale the cost function, we can divide by m to obtain a version of the criterion that is expressed as an expectation with respect to the empirical distribution \hat{p}_{data} defined by the training data:

$$\boldsymbol{\theta}_{\mathrm{ML}} = \underset{\boldsymbol{\theta}}{\mathrm{arg \, max}} \mathbb{E}_{\mathbf{x} \sim \hat{p}_{\mathrm{data}}} \log p_{\mathrm{model}}(\boldsymbol{x}; \boldsymbol{\theta}).$$
 (5.59)

One way to interpret maximum likelihood estimation is to view it as minimizing the dissimilarity between the empirical distribution \hat{p}_{data} defined by the training set and the model distribution, with the degree of dissimilarity between the two measured by the KL divergence. The KL divergence is given by

$$D_{\text{KL}}\left(\hat{p}_{\text{data}} \| p_{\text{model}}\right) = \mathbb{E}_{\mathbf{x} \sim \hat{p}_{\text{data}}}\left[\log \hat{p}_{\text{data}}(\mathbf{x}) - \log p_{\text{model}}(\mathbf{x})\right]. \tag{5.60}$$

The term on the left is a function only of the data generating process, not the model. This means when we train the model to minimize the KL divergence, we need only minimize

$$-\mathbb{E}_{\mathbf{x} \sim \hat{p}_{\text{data}}} \left[\log p_{\text{model}}(\mathbf{x}) \right] \tag{5.61}$$

which is of course the same as the maximization in equation 5.59.

Minimizing this KL divergence corresponds exactly to minimizing the cross-entropy between the distributions. Many authors use the term "cross-entropy" to identify specifically the negative log-likelihood of a Bernoulli or softmax distribution, but that is a misnomer. Any loss consisting of a negative log-likelihood is a cross-entropy between the empirical distribution defined by the training set and the probability distribution defined by model. For example, mean squared error is the cross-entropy between the empirical distribution and a Gaussian model.

We can thus see maximum likelihood as an attempt to make the model distribution match the empirical distribution \hat{p}_{data} . Ideally, we would like to match the true data generating distribution p_{data} , but we have no direct access to this distribution.

While the optimal θ is the same regardless of whether we are maximizing the likelihood or minimizing the KL divergence, the values of the objective functions