Homomorfismos de Anéis

um resumo

Guilherme Philippi

14 de março de 2021

Esse texto pretende ser uma introdução aos conceitos fundamentais entorno de homomorfismos de anéis. Tudo que aqui se apresenta fora extraído de [1, 2, 3], principalmente de [3].

1 Grupos

Definição 1.1 (Grupo). Um grupo (G, *) é um conjunto G onde uma lei de composição * é dada sobre G tal que os seguintes axiomas são satisfeitos:

1. (Associatividade). Para todo $a, b, c \in G$, tem-se

$$(a * b) * c = a * (b * c)$$
:

2. (Existência da identidade). Existe um elemento $\vec{1} \in G$ tal que, para todo $a \in G$,

$$\vec{1} * a = a * \vec{1} = a$$
;

3. (Existência do inverso). Para todo $a \in G$ existe um elemento $a' \in G$ tal que

$$a * a' = a' * a = \vec{1}$$
.

Observação 1.1 (Notação). É comum abusar da notação e chamar um grupo (G, *) e o conjunto de seus elementos G pelo mesmo simbolo, omitindo a lei de composição, na falta de ambiguidade. Também, quando não houver ambiguidade, suprimiremos o simbolo da lei, fazendo a * b = ab.

Definição 1.2 (Grupo abeliano). Um grupo abeliano é um grupo G com uma lei de composição comutativa, isto é, ab = ba, para todo $a, b \in G$.

Proposição 1.1 (Lei do cancelamento). Seja a, b, c elementos de um grupo G. Se ab = ac, então b = c.

2 Anéis

Definição 2.1 (Anel). Um *anel* $(R, +, \cdot)$ é um conjunto R acompanhado de duas operações binárias + e · definidas sobre R tais que os seguintes axiomas são satisfeitos:

- 1. (R, +) é um grupo abeliano.
- 2. A operação · é associativa.
- 3. Para todo $a, b, c \in R$ vale a lei da distributividade à esquerda e a lei de distributividade à direita, respectivamente,

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 e $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$.

Exemplo 2.1. Todo subconjunto dos números complexos que é fechado para a adição e multiplicação usual dos complexos é um anel. Por exemplo, $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ e $(\mathbb{C}, +, \cdot)$ são todos anéis.

Observação 2.1 (Notação). Da mesma forma que com os grupos, costuma-se denotar o anel $(R, +, \cdot)$ apenas por seu conjunto R. Também, para um anel $(R, +, \cdot)$, chama-se sua primeira operação + de $adição\ do\ anel$ e sua segunda operação · de $multiplicação\ do\ anel$.

Proposição 2.1. Se R é um anel com identidade aditiva $\vec{0}$, então, $\forall a \in R$,

$$\vec{0} \cdot a = a \cdot \vec{0} = \vec{0}$$
.

Demonstração. Como (R, +) é um grupo abeliano, tem-se que

$$a\vec{0} + a\vec{0} = a(\vec{0} + \vec{0}) = a\vec{0} = \vec{0} + a\vec{0}.$$

E, pela lei de cancelamento do grupo,

$$a\vec{0} + a\vec{0} = \vec{0} + a\vec{0} \implies a\vec{0} = \vec{0}.$$

De forma semelhante,

$$\vec{0}a + \vec{0}a = (\vec{0} + \vec{0})a = \vec{0}a = \vec{0} + \vec{0}a \implies \vec{0}a = \vec{0}.$$

Daí, segue que $a\vec{0} = \vec{0}a = \vec{0}$.

Proposição 2.2. Se R é um anel, então, para todo $a, b \in R$ vale

1.
$$a(-b) = (-a)b = -(ab) e$$

2.
$$(-a)(-b) = ab$$
.

3 Homomorfismos de anéis

Definição 3.1 (Homomorfismo de anéis). Sejam dois anéis $(R, +, \cdot)$ e $(R', +', \cdot')$. Um mapa $\phi: R \longrightarrow R'$ é um homomorfismo se a propriedade de homomorfismo vale para ambas as operações, isso é, se, para todo $a, b \in R$,

$$\phi(a+b) = \phi(a) + \phi(b)$$
 e $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$.

Exemplo 3.1 (Homomorfismo trivial). Sejam os anéis R, R' e o elemento neutro $\vec{0}$ da adição do anel R'. A aplicação $\phi: R \longrightarrow R'$ definida por $\phi(a) = \vec{0}$, para todo $a \in R$, é um homomorfismo de anéis porque

$$\phi(a+b) = \vec{0} = \vec{0} + '\vec{0} = f(a) + 'f(b)$$
 e $f(a \cdot b) = \vec{0} = \vec{0} \cdot '\vec{0} = f(a) \cdot 'f(b)$.

A essa aplicação dá-se o nome homomorfismo trivial de anéis.

Definição 3.2 (Homomorfismo injetivo e sobrejetivo). Chama-se de *homomorfismo injetivo* e *homomorfismo sobrejetivo* um homomorfismo de anéis definido, respectivamente, por uma função injetiva ou uma função sobrejetiva.

Exemplo 3.2. Seja o homomorfismo de anéis $\phi : \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ tal que $\phi(n) = (n,0)$, para todo $n \in \mathbb{Z}$. Perceba que, para cada $(n,0) \in \mathbb{Z} \times \mathbb{Z}$ tem-se um único $n \in \mathbb{Z}$ tal que $\phi(n) = (n,0)$, daí, ϕ é injetiva e esse é um homomorfismo injetivo. Também, seja $\mu : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ o homomorfismo tal que $\mu(n,m) = n$ para todo $(n,m) \in \mathbb{Z} \times \mathbb{Z}$. É fácil perceber que para todo $z \in \mathbb{Z}$, existirá $(z,0) \in \mathbb{Z} \times \mathbb{Z}$, donde μ é um homomorfismo sobrejetivo.

Proposição 3.1. Se $\phi: R \longrightarrow R'$ é um homomorfismo de anéis, então, para todo $a, b \in A$,

- $\phi(0_R) = 0_{R'}$
- $\phi(-a) = -\phi(a) e$
- $\phi(a-b) = \phi(a) \phi(b)$.

Demonstração. Como $\phi(a) = \phi(a + 0_R) = \phi(a) + \phi(0_R)$, pela propriedade de homomorfismo, então,

$$\phi(a) = \phi(a) + \phi(0_R) \implies -\phi(a) + \phi(a) = -\phi(a) + \phi(a) + \phi(0_R),$$

isto é, $0_{R'} = \phi(0_R)$.

Daí segue que,

$$0_{R'} = \phi(0_R) = \phi(a-a) = \phi(a) + \phi(-a),$$

e como $0_{R'} = \phi(a) + \phi(-a)$,

$$\phi(-a) = -\phi(a).$$

Fica evidente que

$$\phi(a-b) = \phi(a) + \phi(-b) = \phi(a) - \phi(b).$$

Proposição 3.2. Seja $\phi: R \longleftarrow R'$ um homomorfismo de anéis onde $1_R \in R$ é identidade do produto de R. Então

- R' possui identidade multiplicativa $1_{R'}$ e $\phi(1_R) = 1_{R'}$;
- se $a \in R$ possui inversa multiplicativa a^{-1} , então $\phi(a)^{-1} = \phi(a^{-1})$.

Definição 3.3 (subanel).

Proposição 3.3. Se $\phi: R \longrightarrow R'$ é um homomorfismo de anéis e $S \leq R$

Referências

- [1] John B Fraleigh. A First Course in Abstract Algebra. Pearson, 2014.
- [2] Michael Artin. Algebra. A Simon and Schuster Company, 1991.
- [3] GELSON IEZZI and Hygino H DOMINGUES. Álgebra moderna. São Paulo: Atual Editora, 2003.