Music Similarity Analysis

Using the Big Data Framework Spark

Johannes Schoder

1. November 2019

Fakultät für Mathematik und Informatik Friedrich-Schiller-Universität Jena

Idee - Warum Musikempfehlungen + Big Data

- Music Streaming Services Datenmengen wachsen
 - Amazon Prime Music: 2 Millionen
 - Spotify: 35 Millionen
 - Soundcloud+: 150 Millionen

Gibt es das nicht schon?

- "Collaborative Filtering"
 - ...
- Forschung
 - Viele Einzelaspekte separat beleuchtet (Meldodie, Rhythmus oder Klangfarbe)
- Was fehlt?
 - Parametrisierbare Empfehlungen (Schwerpunkte legen)

Datenextraktion Roadmap

Aufgaben

Daten

- Free Music Archive ca. 103.000 Lieder
 - Soundbeispiel
- Private Musiksammlung ca. 8000 Lieder
- 1517 Artists Dataset 3180 Lieder
- Covers80 164 Lieder
- Summe: 1TB ca 114000 verwertbare Songs

Datenextraktion Roadmap

■ Data Aggregation - Check

Feature Extraction Roadmap

- Verschiedene Features parallel auf dem ARA-Cluster aus den Daten extrahieren:
 - Melodie
 - Noten
 - Chromagramm
 - Rhythmus
 - Beat Histogram
 - Rhythm Histrogram
 - Rhythm Pattern
 - Klangfarbe
 - MFCCs

Ideale Features?

■ Melody Extraction

Abbildung: Für Elise [1]

Abbildung: Pitch (Aubio)

Nicht ganz so ideale Features

MIDI Noten aus Pitch vs. Original

Abbildung: Für Elise [1]

Abbildung: Erkannte Melodie (Aubio)

- Play: Original
- Play: Noten
- Play: Erkannt

Klangfarbe

■ E-Gitarre (verzerrt) vs. Klavier

■ Play: Klavier

■ Play: Gitarre

Melodie Bandpass

■ 128 Hz bis 4096 Hz

Abbildung: Tiefpass 128 Hz

Abbildung: Hochpass 4096 Hz

Melodieextraktion

Noten aus Chromagramm (Oberwellen minimieren)

Abbildung: Sia - Chandelier - Chromagramm

Abbildung: Sia - Chandelier - "Noten"

- Noten zu String: [A, A, B, B, B, D, ... , D]
- Strings vergleichen (Levenshtein-Distanz) für Ähnlichkeitsschätzung

Kreuzkorrelation zwischen Chromagrammen

■ Kreuzkorrelation zwischen Matrix X (PxQ Matrix) und Y (MxN Matrix) zu Vektor C

$$C(I) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} X(m,n) Y(m,n-I)$$
 (1)

$$0 \le I \le N - Q \tag{2}$$

■ Ergebnisvektor wird Hochpassgefiltert

Kreuzkorrelation zwischen Chromagrammen

Zwei am Takt ausgerichtete Chromagramme

■ Ergebnisvektor (HP gefiltert; Cover vs. verschiedene Lieder)

Und das waren nur die Melodiefeatures...

■ Rhythmus (z.B. Rhythm Patterns)

■ Klangfarbe/ Timbre (MFCCs)

Feature Extraction Timing

- Feature Extraktion mit MPI4PY
 - ca 5 min für 100 Lieder auf 4 CPU Cores

■ ca. 32,5 min für 102.000 Lieder auf 36 * 18 CPU Cores mit je 10GB RAM/Core

Übersicht

■ Feature Extraction - Check

Ähnlichkeitsmaße

- Melodie
 - Levenshtein-Distanz zwischen zwei Strings
 - Kreuzkorrelation zwischen zwei Chromagrammen
- Klangfarbe
 - Jensen-Shannon Divergenz
 - Kullback-Leibler Divergenz
 - Euklidischer Abstand
- Rhythmus
 - Euklidischer Abstand (RP, RH, BH)

Big Data Framework

Apache Spark Cluster

Ergebnisse

- Ähnlichkeitsschätzung mit Spark
 - 12 sec für 114.000 Lieder

Übersicht

■ Nächster Schritt: Evaluation

Korrelation der verschiedenen Distanzen

Genre Recall Rate

■ Empfehlungen für 10 Classical und 10 Rock/Pop Songs basierend auf Rhythmus- und Timbre-Features (3180 Testsongs)

Ergebnisse

■ Distanzen aller Lieder zu einem Electronic-Song (3180 Testsongs)

Chroma Kreuzkorrelation - Top 6 Empfehlungen

- Song request: 100 Meisterwerke der Klassik Mozart Alla Turca (Allegretto) (private collection)
 - Mozart Collection / CD31 / KV331-3 Alla turca allegretto (private collection)
 - Piano Collection / CD25 Mozart Alla Turca Allegretto (private collection)
 - Piano Perlen / Mozart Türkischer Marsch (private collection)
 - FRITZ STEINEGGER RONDO ALLA TURCA KV 331 (1517-Artists)
 - 136071 (2Kutup We Shall Cuddle Up And Sleep) (FMA dataset)
 - Sean Bennett Variations on the Turkish March (1517-Artists)

Cover Song Recognition Rate - covers80

features	detected covers
chroma	30
chroma + notes	27
chroma + skl	26
chroma + notes + rp	24
chroma + rp	22
chroma + skl + rp	22
chroma + mfcc	19
chroma + js + rp	17
chroma + js	17
notes	17
chroma + mfcc + rp	15
all	15
notes + rp	13
mfcc + notes + rp	7
rp	7
mfcc + js + skl	3

features	detected covers
chroma	33
chroma + notes	31
chroma + notes + rp	30
chroma + skl	29
chroma + rp	29
chroma + skl + rp	26
${\rm chroma}+{\rm mfcc}+{\rm rp}$	24
notes	23
all	23
${\rm chroma}+{\rm mfcc}$	22
chroma + js + rp	22
chroma + js	21
notes + rp	19
rp	15
mfcc + notes + rp	14
mfcc + js + skl	10

Table 5.1: Cover recognition rate - Top 1 $\,$ Table 5.2: Cover recognition rate - Top 5

Demonstration

Song Request

...

Ausblick

- MIREX 2020
 - Paper?
- Standalone Version?
- Bugfixes/ Erweiterungen (skalieren)/ Verbesserungen möglich stehen in der Arbeit

Quellen

"Für elise." [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/a/a9/BH_116_Vergleich.png

Danke für die Aufmerksamkeit

■ Fragen?

...