Modelo INIFAP-CECH para el cálculo de Horas Frío. ACTIVIDAD 6

Montiel Ramírez B. Karytza

Grupo01 - Marzo 2019

0.1. Introducción

En la anterior actividad se procedió al cálculo de las horas de frío en un campo de uva, utilizando el modelo de Utah. Este no se adapta a zonas de inviernos débiles como sucede en las zonas agrícolas del Estado de Sonora. Por ello, el Instituto de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), desarrollo su propio modelo para nuestra región.

En la presente actividad, se hará lo mismo con la diferencia que se utilizará otro modelo: El modelo de INIFAP-CECH.

Se inician los cálculos desde principios de noviembre, cuando las temperaturas mínimas sean menores a 10°C. Y se termina a finales de febrero. Se contará sólo cuando las Horas de Frío Efectivas sea positiva.

0.2. Aplicando el nuevo método

En primera instancia se importan las librerias que se van a utilizar y posteriormente se lee el archivo a utilizar.

Al ser un archivo bastante extenso se eliminar las columnas que no se van a utilizar, solo dejamos los de interes:

"TIMESTAMP" y "AirTC_Avg"

Posteriormente, modificamos la fecha y se extraen el día, mes y hora. A continuación se toman los datos mayores al primero de Noviembre del 2018.

Reacomodando los datos obtenemos una tabla con las temperaturas máxima y mínima, por consiguiente podemos calcular el HF de acuerdo al modelo de INIFAP-CECH (esto mediante uso de arreglos). Después, se calcula el HF de acuerdo al modelo de INIFAP-CECH. Finalmente, obtenemos la comparación de ambos índices.

0.3. Comparación entre el modelo de Utah y el modelo de INIFAP-CECH

	AÑO	MES	DIA	HORA	TEMPROM	TMAX	TMIN	UF24	HF	нс
0	2018	11	1	0	8.7	29.6	6.1	-0.5	8	6
1	2018	11	1	1	8.5	29.6	6.1	-0.5	8	6
2	2018	11	1	2	8.7	29.6	6.1	-0.5	8	6
3	2018	11	1	3	8.8	29.6	6.1	-0.5	8	6
4	2018	11	1	4	7.4	29.6	6.1	-0.5	8	6
5	2018	11	1	5	7.3	29.6	6.1	-0.5	8	6
6	2018	11	1	6	6.8	29.6	6.1	-0.5	8	6
7	2018	11	1	7	8.1	29.6	6.1	-0.5	8	6
8	2018	11	1	8	15.0	29.6	6.1	-0.5	8	6
9	2018	11	1	9	19.7	29.6	6.1	-0.5	8	6
10	2018	11	1	10	22.4	29.6	6.1	-0.5	8	6
11	2018	11	1	11	23.9	29.6	6.1	-0.5	8	6
12	2018	11	1	12	25.1	29.6	6.1	-0.5	8	6
13	2018	11	1	13	26.5	29.6	6.1	-0.5	8	6
14	2018	11	1	14	27.4	29.6	6.1	-0.5	8	6
15	2018	11	1	15	28.2	29.6	6.1	-0.5	8	6
16	2018	11	1	16	28.6	29.6	6.1	-0.5	8	6
17	2018	11	1	17	27.4	29.6	6.1	-0.5	8	6
18	2018	11	1	18	16.9	29.6	6.1	-0.5	8	6
19	2018	11	1	19	14.7	29.6	6.1	-0.5	8	6
20	2018	11	1	20	14.1	29.6	6.1	-0.5	8	6
21	2018	11	1	21	13.0	29.6	6.1	-0.5	8	6
22	2018	11	1	22	12.3	29.6	6.1	-0.5	8	6
23	2018	11	1	23	11.0	29.6	6.1	-0.5	8	6
24	2018	11	2	0	10.6	31.4	10.0	-9.0	0	8

En la tabla se presentan los resultados finales de la actividad, la cual muestra el año, mes, dia hora, temperaturas promedio, máximas y mínimas, así como el UF24, HF Y HC.

0.4. Conclusión

Se pudo concluir con la opinión de que el modelo utilizado en esta ocasión en contraste con el que se utilizó en la evaluación 1 es más sencillo claro está. Fue una práctica muy interesante y llena de conocimientos.