TEMA 4
El tipo conjunto

PROGRAMACIÓN Y ESTRUCTURAS DE DATOS

Tipo conjunto

- 1. Definiciones generales
- 2. Diccionario
 - 2.1. Tabla de dispersión
- 3. Cola de prioridad
 - 3.1. Montículo
 - 3.2. Cola de prioridad doble
 - 3.2.1. Montículo doble

Tema 4. El tipo conju

1. Tipo Conjunto

DEFINICIONES

- Un conjunto es una colección de elementos, cada uno de los cuales puede ser un conjunto, o un elemento primitivo que recibe el nombre de átomo
- Todos los miembros del conjunto son distintos
- El grden de los elementos no es importante (distinto de las listas)

Notación de Conjuntos

Se representa encerrando sus miembros entre llaves $\{1,2,5\}$ Relación fundamental, la de pertenencia: $\{x \mid x \in \text{Naturales}\}$, $\{x \mid x < 8\}$ Existe un conjunto especial sin elementos: \emptyset

B si todo elemento de A también lo es de B

unto Universal: formado por todos los posibles elementos que puede contener

3

Tema 4. El tipo conji

1. Tipo Conjunto

SINTAXIS

MODULO GENERICO ModuloConjunto MODULO Conjunto USA Boolean, Natural SINTAXIS

Crear () → Conjunto
Insertar(Conjunto, Ítem) → Conjunto
Eliminar(Conjunto, Ítem) → Conjunto
Pertenece(Conjunto, Ítem) → Boolean
Es VacíoConjunto(Conjunto) → Boolean
Cardinalidad(Conjunto) → Natural
Unión(Conjunto, Conjunto) → Conjunto
Intersección(Conjunto, Conjunto) → Conjunto
Diferencia(Conjunto, Conjunto) → Conjunto

VAR

C, D: Conjunto; x, y: Ítem;

1. Tipo Conjunto

SEMÁNTICA (I)

```
EsVacíoConjunto( Crear ) ←→ Cierto
EsVacíoConjunto( Insertar( C, x ) ) \leftarrow \rightarrow Falso
Insertar( C, x ), y ) \leftarrow \rightarrow
          \mathbf{si} ( x == y ) entonces Insertar( C, x ) //no se permiten elementos repetidos
          sino Insertar( C, y ), x )
                                                        //da igual el orden de inserción de los elem.
Eliminar( Crear, x ) \leftarrow \rightarrow Crear
Eliminar(Insertar(C, x), y) \leftarrow \rightarrow
          \mathbf{si} ( x == y ) entonces C
                                                        // ¿y si permitieran elementos repetidos?
          sino Insertar(Eliminar(C, y), x)
Pertenece( Crear, x ) \leftarrow \rightarrow Falso
Pertenece( Insertar( C, x ), y ) \leftarrow \rightarrow
          \mathbf{\hat{s}i} ( \mathbf{x} == \mathbf{y} ) entonces Cierto
          sino Pertenece( C, y )
Cardinalidad( Crear ) ← → 0
Cardinalidad(Insertar(C,x)) \longleftrightarrow 1+Cardinalidad(C)
Union Crear, C) ←→ C
Union Insertar(C,x), D) \leftarrow \rightarrow
          si (Pertenece(D, x)) entonces Unión(C, D)
          sino Insertar( Unión( C, D ), x )
```

Tipo Conjunto SEMÁNTICA (II) Diferencia(Crear, C) $\leftarrow \rightarrow$ Crear Diferencia(Insertar(C, x), D) $\leftarrow \rightarrow$ si (Pertenece(D, x)) entonces Diferencia(C, D), x) Intersección(Crear, D) $\leftarrow \rightarrow$ Crear Intersección(Insertar(C, x), D) $\leftarrow \rightarrow$ si (Pertenece(D, x)) entonces Insertar(Intersección(C, D), x) sino Intersección(C, D)

0 1 2 3 4 5

Tema 4. El tipo conju

1. Tipo Conjunto IMPLEMENTACIÓN

- Mediante un vector
 - -Vector de bits/enteros (cada componente corresponde a un elemento del conjunto universal) 1 0 0 0 1 0
 - -Vector de elementos

19042

Almacenar los elementos conforme se inserten (mediante listas, árboles, ...):

Espacio proporcional al conjunto representado

1. Tipo Conjunto

Rellenar la siguiente tabla de complejidades (peor caso):

m=elem. conjto.	Vector de Bits	Lista	Lista
n=elem. conjto. Univ.		ordenada	desordenada
Búsqueda			
Inserción			
44.121010101010			
Unión			
	Ph.		

2. DICCIONARIO

IMPLEMENTACIÓN

Implementaciones sencillas:

Mediante listas o vectores
 Búsqueda, Inserción y Borrado:

Listas: O (n)
Vector Bits: O (1)
Vector Elementos: O (n)

• Mediante TAD Tabla de Dispersión (HASHING)

Tema 4. El tipo conjunto

2.1. TABLA DE DISPERSIÓN (HASHING)

DEFINICIÓN

HASHING: Utilizaremos la información del elemento a almacenar para buscar su posición dentro de la estructura

Operaciones:

♯Búsqueda. O(1)

#Inserción. O(1)

#Borrado. O(1)

11

Tema 4. El tipo conjunto

2.1. TABLA DE DISPERSIÓN (HASHING)

- # Dividir el conjunto en un número finito "B" de clases
- ♯ Se usa función de dispersión H, tal que H(x) será un valor entre 0 y B-1

Formas de dispersión:

Abierta: No impone tamaño límite al conjunto

Cerrada: usa un tamaño fijo de almacenamiento (limita el tamaño)

2.1. Tabla Hash. Dispersión Cerrada

DEFINICIÓN

- # Los elementos se almacenan en tabla de tamaño fijo (TABLA DE DISPERSIÓN)
- # La tabla se divide en B clases, y cada una podrá almacenar S elementos
- # La Función de dispersión se implementa mediante una función aritmética

$$H(x) = x MOD B$$

13

Tema 4 El tipo conjunto

2.1. Tabla Hash. Dispersión Cerrada

INSERCIÓN

Caso COLISIÓN: x1, x2 (SINÓNIMOS/ H(x1) = H(x2))

ESTRATEGIA DE REDISPERSION:

• Elegir sucesión de localidades alternas dentro de la tabla, hasta encontrar una vacía

H(x), h1(x), h2(x), h3(x), ...

• Si ninguna está vacía: no es posible insertar

2.1. Tabla Hash. Dispersión Cerrada

INSERCIÓN. EJEMPLO

Ejemplo. Insertar en una tabla de dispersión cerrada de tamaño B=7, con función de dispersión H(x)=x MOD B, y con estrategia de redispersión la siguiente posición de la tabla, los siguientes elementos: 23, 14, 9, 6, 30, 12, 18, 25

Tema 4 El tipo conjunto

2.1. Tabla Hash. Dispersión Cerrada

BÚSQUEDA. BORRADO

BÚSQUEDA DE ELEMENTOS

Buscar en sucesión de localidades alternas dentro de la tabla, hasta encontrar una vacía:

H(x), h1(x), h2(x), h3(x), ...

BORRADO DE ELEMENTOS

Hay que distinguir durante la búsqueda:

- Casillas vacías
- Casillas suprimidas

Durante la <u>inserción</u> las casillas suprimidas se tratarán como espacio disponible.

2.1. Tabla Hash. Dispersión Cerrada

ANÁLISIS (I)

ESTRATEGIA DE REDISPERSIÓN LINEAL ("siguiente posición"):

- No eficiente. Larga secuencia de intentos

$$h_i(x) = (H(x) + 1 \cdot i) \text{ MOD B}/$$
 $c=1$ $h_i(x) = (h_{i-1}(x) + 1) \text{ MOD B}$

ESTRATEGIA DE REDISPERSIÓN ALEATORIA:

Sigue produciendo AMONTONAMIENTO: siguiente intento sólo en función del anterior

c y B no deben tener factores primos comunes mayores que 1

♯ E.R. CON 2ª FUNCION DE HASH:

$$k(x) = (x \text{ MOD (B-1)}) + 1$$

$$h_i(x) = (h_{i-1}(x) + k(x)) \text{ MOD B}$$

$$h_i(x) = (h_{i-1}(x) + k(x)) \text{ MOD B}$$

B debe ser primo

17

Tema 4 El tipo conjunto

2.1. Tabla Hash. Dispersión Cerrada

ANÁLISIS (II)

LA MEJOR FUNCIÓN DE DISPERSIÓN:

- Que sea fácil de calcular
- Que minimice el nº de colisiones
- Que distribuya los elementos de forma azarosa
- Debe hacer uso de toda la información asociada a las etiquetas

2.1. Tabla Hash. Dispersión Cerrada

ANÁLISIS (III)

- Estrategia de redispersión aleatoria
 - c y B no deben tener factores primos comunes mayores que 1 para que busque en todas las posiciones de la tabla
 - Ejemplo \rightarrow c=4; B=6

$$h_i(x) = (H(x) + c \cdot i) \text{ MOD B} = (h_{i-1}(x) + c) \text{ MOD B}$$

 $H(10)=10 \text{ MOD } 6=4$

X X X X 0 1 2 3 4 5

h₁(10)=(4+4 •1) MOD 6=(4+4) MOD 6=2 h₂(10)=(4+4 •2) MOD 6=(2+4) MOD 6=0 h₃(10)=(0+4) MOD 6=4; h₄(10)=(4+4) MOD 6=2

• Ujemplo→ ¿c=6; B=9? ¿c=2; B=9?

Estrategia de redispersión con 2ª función hash

🖪 B debe ser primo para que busque en todas las posiciones de la tabla

 $= c = k(x) \rightarrow 1...B-1$

// k (x) = (x MOD (B-1)) + 1

 $h(x) = (H(x) + k(x) \cdot i) \text{ MOD } B = (h_{i-1}(x) + k(x)) \text{ MOD } B$

B=7; k(x)=1...6

B=11:k(x)=1...10

19

Tema 4 El tipo conjunto

2.1. Tabla Hash. Dispersión Cerrada

EJERCICIOS

1) Insertar en una tabla de dispersión cerrada de tamaño B=7, con función de dispersión H(x)=x MOD B, y con estrategia de redispersión segunda función hash, los siguientes elementos: 23, 14, 9, 6, 30, 12, 18

2.1. Tabla Hash. Dispersión Abierta

DEFINICIÓN

- Elimina el problema del CLUSTERING SECUNDARIO (colisiones entre claves no sinónimas)
- Las colisiones se resuelven utilizando una lista enlazada

21

2.1. Tabla Hash

Tema 4. El tipo conjunto

FACTOR DE CARGA (I)

$$\alpha = \frac{n}{|B|}$$

n=n° elem. de la tabla. B= tamaño de la tabla

HASH CERRADO: $0 \le \alpha \le 1$

HASH ABIERTO: $\alpha \ge 0$ (No hay límite en el nº de elementos en cada casilla).

2.1. Tabla Hash

FACTOR DE CARGA (II)

E: Nº Esperado de Intentos. c.éx: con éxito. s.éx: sin éxito.

α	H.C.L.		H.C.Aleat.		H.Abierto	
	E c.éx	E s.éx.	E c.éx	E s.éx.	E c.éx	E s.éx.
0.1	1.06					
0.25	1.17					
0.5	1.50					
0.75	2.50	8.5	1.9	4.0	1.8	2.0
0,9	5.50	50.5	2.6	10.0	1.9	2.0
0.95	10.50					

23

2.1. Tabla Hash

Tema 4. El tipo conjunto

COMPARACIÓN HASH ABIERTO Y CERRADO

- $\bullet~$ H.A. es más eficiente y con menor degradación (cuanto más lleno funciona mejor que el H.C.)
- H.A. requiere espacio para los elementos de la lista, por lo que H.C. es más eficiente espacialmente
 - Reestructuración de las tablas de dispersión:
 - $n \ge 0.9 B (H.C.)$
 - $n \ge 2 B (H.A.)$
 - → Nueva tabla con el doble de posiciones

3. COLA DE PRIORIDAD

DEFINICION (I)

• Conjunto de elementos ordenados con las operaciones:

Crear () -> ColaPrioridad

EsVacio () -> Boolean

Insertar (ColaPrioridad, Item) -> ColaPrioridad

BorrarMínimo (ColaPrioridad) -> ColaPrioridad

BorrarMáximo (ColaPrioridad) -> ColaPrioridad

Búsqueda (ColaPrioridad, Item) -> Boolean

Gardinalidad (ColaPrioridad) -> Natural

Contar (ColaPrioridad) -> ColaPrioridad

Mana (ColaPrioridad) -> Item

(ColaPrioridad) -> Item

25

Tema 4. El tipo conju

3. COLA DE PRIORIDAD

DEFINICION (II)

• Árbol Mínimo (Máximo):

Árbol en el que la etiqueta de cada nodo es menor (mayor) que la de los hijos.

3. COLA DE PRIORIDAD

DEFINICION (III)

• Heap Mínimo (Máximo):

Árbol binario completo en que además es ARBOL MINIMO o MAXIMO.

Tema 4. El tipo conjunto

3. COLA DE PRIORIDAD

DEFINICION (IV)

- Implementación Cola Prioridad:
 - LISTA DESORDENADA:

INSERCION: O(1) BORRADO: O(n)

- LISTA ORDENADA: ascendente o descendentemente.

INSERCION: O(n) BORRADO: O(1)

A BOL BINARIO DE BUSQUEDA:

INSERCION: O(n) BORRADO: O(n)

3.1. HEAP MAXIMO (MINIMO) INSERCION • METODO: 1.- Insertar en la posición correspondiente para que siga siendo un árbol completo. 2.- Reorganizar para que cumpla las condiciones del HEAP: • Comparar con el nodo padre: si no cumple las condiciones del árbol mínimo/máximo, entonces intercambiar ambos.

3.1. HEAP MAXIMO (MINIMO)

INSERCION. EJEMPLO

• Insertar: 2, 10, 14, 15, 20 y 21 en un heap máximo inicialmente vacío

31

Tema 4. El tipo conju

3.1. HEAP MAXIMO (MINIMO)

BORRADO.

• METODO:

- Se sustituye la raíz con el elemento más a la derecha en el nivel de las hojas
- Mientras no sea un HEAP se hunde ese elemento sustituyéndolo con el más pequeño (montículo mínimo) o el mayor (montículo máximo) de sus hijos

3.1. HEAP MAXIMO (MINIMO)

INSERCIÓN. EJEMPLO II

• Sobre el resultado anterior, realiza las inserciones: 60, 36

Tema 4. El tipo conjunto

3.1. HEAP MAXIMO (MINIMO)

REPRESENTACIÓN

- ENLAZADA: problema en inserción al necesitar realizar recorridos ascendentes.
- SECUENCIAL (en un vector):
 Hijos de p[i] son p[2•i] y p[2•i+1]. Padre de p[i] es p[i DIV 2] con DIV la división entera

3.1. HEAP MAXIMO (MINIMO)

APLICACIÓN HEAPSORT

- Algoritmo de ordenación de un vector de elementos
- METODO:
 - 1) Insertar los elementos en un HEAP
 - 2) Realizar borrados de la raíz del HEAP
- IMPLEMENTACIÓN (UN SÓLO VECTOR):
 - 1) Dejar parte izquierda del vector para el HEAP, y parte derecha para os como la como
 - orrar la raíz del HEAP llevándola a la parte derecha del vector.

COMPLETIDAD:

Ø (n log n)

3.1. HEAP MAXIMO (MINIMO)

HEAPSORT. EJERCICIO

• Ordenar el vector 9 5 7 4 8 6 2 1 usando un heap mínimo

Tema 4. El tipo conjunto

3.2. COLA DE PRIORIDAD DOBLE (DEAP) DEFINICIÓN (I)

- Cola de Prioridad doble: cola de prioridad en la que se soporta la operación de borrado de la clave máxima y mínima.
- DEAP: Es un Heap que soporta las operaciones de cola de prioridad doble.

DEFINICION: es un árbol binario completo el cual o es vacío o satisface las siguientes propiedades:

- 1) La raíz no contiene elementos
- 2) El subárbol izquierdo es un HEAP mínimo
- subárbol derecho es un HEAP máximo
- i el subárbol derecho no es vacío:
 - Sea "i" cualquier nodo del subárbol izquierdo.
- Sea "j" el nodo correspondiente en el subárbol derecho. Si "j"

tonces: clave (i) < clave (j)

3.2. COLA DE PRIORIDAD DOBLE (DEAP)

IMPLEMENTACIÓN

Igual que en un HEAP, sólo que la primera posición no se utilizará.

$$j=i+2^{(\log 2\ i)-1}$$
 () parte entera
$${\bf Si}\ j>n\ {\bf Entonces}\ j=j\ {\bf DIV}\ 2$$

Ejemplo: simetrico de i1 (j=8). j=8+2 $(\log_2 8)-1=8+2^2=\underline{12}$ simetrico de i2 (i=9). j=9+2 $(\log_2 9)-1=9+2^2=13$. como j>n-->j=13 DIV $2=\underline{6}$

3.2. COLA DE PRIORIDAD DOBLE (DEAP)

INSERCIÓN

- 1) Se inserta el elemento en el siguiente índice del árbol completo
- 2) Se compara el nodo insertado con el nodo simétrico correspondiente, realizando el intercambio en caso que no se cumpla la condición 4 de la definición del DEAP:

$$i = n - 2^{(\log 2 n) - 1}$$
 () parte entera

3) Actualizar el HEAP mediante el proceso de "ascensión" del elemento insertado.

Ejemplo: simetrico de j1 (j=12). $i = 12 - 2 (\log_2 12) - 1 = 12 - 2^2 = 8$

3.2. COLA DE PRIORIDAD DOBLE (DEAP)
BORRADO

1) Intercambiar la raíz a borrar del HEAP con el elemento más a la derecha del último nivel del árbol, y borrar éste.

- 2) Actualizar el HEAP, "hundiendo" la clave intercambiada.
- 3) Comprobar que la clave intercambiada no incumpla la condición del DEAP con su correspondiente nodo simétrico
 - 4) Actualizar el montículo en el que quede la clave intercambiada

