Examenul de bacalaureat național 2018 Proba E. c)

Matematică *M_st-nat*

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{3}(\sqrt{3}-1)(\sqrt{3}+1)-\sqrt{12}=0$.
- **5p** 2. Determinați numărul real a, pentru care graficele funcțiilor $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x + 3$ și $g: \mathbb{R} \to \mathbb{R}$, g(x) = x + a se intersectează într-un punct de abscisă x = 1.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+1} = 1 \sqrt{x}$.
- **5p 4.** Determinați câte numere naturale de trei cifre distincte au cifrele elemente ale mulțimii $\{0,1,2,3,4\}$.
- **5p 5.** În reperul cartezian xOy se consideră dreptele d_1 , de ecuație y = ax + 2 și d_2 , de ecuație $y = \frac{x}{4} + 1$. Determinați numărul real a, știind că dreptele d_1 și d_2 sunt paralele.
- **5p** | **6.** Arătați că $\sin(\pi x)\cos(2\pi + x) \sin(2\pi + x)\cos(\pi x) = \sin 2x$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} -3 & -2 \\ 3 & 2 \end{pmatrix}$ și $M(x) = I_2 + xA$, unde x este număr real.
- **5p** a) Arătați că $\det(M(1)) = 0$.
- **5p b**) Demonstrați că M(x) M(2018) = M(-2018) M(-x), pentru orice număr real x.
- **5p** c) Determinați perechea de numere naturale nenule (m,n) pentru care M(m)M(n) = M(mn).
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = 8xy + x + y$.
- **5p** a) Arătați că $x \circ y = 8\left(x + \frac{1}{8}\right)\left(y + \frac{1}{8}\right) \frac{1}{8}$, pentru orice numere reale x și y.
- **5p b**) Determinați numerele reale x, pentru care $x \circ x = 1$.
- **5p** c) Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 8x + 1. Demonstrați că $f(x \circ y \circ z) = f(x) \cdot f(y) \cdot f(z)$, pentru orice numere reale x, y și z.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+1}{x^2+3}$
- **5p** a) Arătați că $f'(x) = \frac{(1-x)(x+3)}{(x^2+3)^2}, x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Demonstrați că $f(\sqrt{2}) > f(\sqrt[3]{3})$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$.
- **5p** a) Arătați că $\int_{0}^{3} \frac{x f(x)}{e^{x}} dx = 9$.
- **5p b)** Demonstrați că orice primitivă a funcției f are un singur punct de inflexiune.
- **5p** c) Determinați numărul natural nenul n, pentru care suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = n are aria egală cu 1.