Licence MIASHS, Année 2019/2020

Stage "Application des chaînes de Markov en imagerie". Petites questions, petits exercices...

L'algorithme de Metropolis pour le modèle d'Ising.

- 1. On sélectionne un site au hasard (loi uniforme).
- 2. On inverse le spin de ce site.
- 3. Si l'énergie de la nouvelle configuration est inférieure, c'est-à-dire si $\Delta U < 0$, on accepte le changement.
- 4. Si l'énergie de la nouvelle configuration est supérieure, c'est-à-dire si $\Delta U \geq 0$, on accepte le changement avec probabilité $\exp(-\Delta U)$ (et on ne change pas le spin avec probabilité $1 \exp(-\Delta U)$).

Exercice 1. Vérifier que pour l'algorithme de Gibbs et celui de Metropolis, la **probabilité invariante** de la chaîne de Markov simulée est bien la mesure de Gibbs correspondante.

Exercice 2.

- 1. Pour un tout petit nombre de sites, calculer les énergies de toutes les configurations du modèle d'Ising.
- 2. Que se passe-t-il si on simule un processus de la façon suivante;
 - 1. On sélectionne un site au hasard (loi uniforme).
 - 2. On inverse le spin de ce site.
 - 3. On accepte le changement si et seulement si l'énergie de la nouvelle configuration est inférieure, c'est à dire si et seulement si $\Delta U < 0$.

Simuler une loi de Bernoulli X de paramètre p. Rien de plus simple, il suffit de générer une loi uniforme sur $Z \sim]0,1[$. Si $Z \leq p$, alors on pose X=1, et sinon on pose X=0.

Exercice 3. Réécrire l'algorithme de Gibbs pour le modèle d'Ising.