UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE ELECTROMECÁNICA

TRANSFORMADAS E INTEGRALES Apuntes de clase

Docente:

Ing. Marco Antonio Vallejo Camacho.

Índice general

1.	Seri	es de <i>Fourier</i>	5
	1.1.	Funciones periódicas	5
	1.2.	Propiedades de la funciones periódicas	5
		1.2.1. Funciones seno y coseno	S
		1.2.2. Propiedades ortogonales del seno y el coseno	10
	1.3.	Series de Fourier	12
		1.3.1. Condiciones de <i>Dirichlet</i>	13
	1.4.	Evaluación de los coeficientes de Fourier	14
	1.5.	Formulas para las series de <i>Fourier</i>	15
2.	Aná	lisis de formas de onda periódica	17
	2.1.	Funciones pares e impares	17
		2.1.1. Propiedades de las funciones pares e impares	18
		2.1.2. Evaluación de coeficientes de <i>Fourier</i>	21
	2.2.	Simetría de media onda (S.M.O.)	22
		2.2.1. Evaluación de coeficientes de <i>Fourier</i>	23
	2.3.	Simetría de cuarto de onda (S.C.O.)	25
		2.3.1. Simetría de cuarto de onda par	25
		2.3.2. Simetría de cuarto de onda impar	26
		2.3.3. Evaluación de coeficientes de <i>Fourier</i>	26
	2.4.	Expansión periódica de funciones definidas en intervalos finitos	28
3.	Seri	e compleja de <i>Fourier</i> y espectros discretos de frecuencia	30
	3.1.	Números complejos	30
		3.1.1. Formas complejas del seno y coseno	31
		3.1.2. Conjugado	31

Transformadas e Integrales

	3.2.	Serie compleja de <i>Fourier</i>	. 32
		3.2.1. Evaluación del coeficiente complejo de Fourier	. 33
		3.2.2. Relación entre el coeficiente complejo y los coeficientes trigonométricos	. 33
	3.3.	Ondas senoidales rectificadas	. 33
		3.3.1. Rectificación de media onda	. 33
		3.3.2. Rectificación de onda completa	. 34
	3.4.	Función escalón unitario	. 34
	3.5.	La función impulso	. 36
		3.5.1. Propiedades de la función impulso	. 38
	3.6.	Derivada de la función impulso	. 40
	3.7.	Derivada de la función escalón unitario	. 41
	3.8.	Derivada de una función con discontinuidades de salto	. 42
	3.9.	Series de <i>Fourier</i> por el método de diferenciación	. 43
	3.10	0. Espectros de frecuencia discreta	. 43
	3.11	1.Teorema de la multiplicación	. 44
	3.12	2.Teorema de <i>Parseval</i>	. 44
1.	Tran	nsformada de <i>Fourier</i>	46
1.		nsformada de <i>Fourier</i> Integrales de <i>Fourier</i>	46
1.	4.1.		46
1.	4.1. 4.2.	Integrales de Fourier	46 . 46 . 47
1.	4.1.4.2.4.3.	Integrales de <i>Fourier</i>	46 . 46 . 47 . 48
1.	4.1.4.2.4.3.	Integrales de Fourier	46 . 46 . 47 . 48 . 49
4.	4.1.4.2.4.3.	Integrales de Fourier	46 . 46 . 47 . 48 . 49
4.	4.1.4.2.4.3.	Integrales de Fourier	46 . 46 . 47 . 48 . 49 . 49
4.	4.1.4.2.4.3.	Integrales de Fourier	46 . 46 . 47 . 48 . 49 . 49 . 50
1.	4.1.4.2.4.3.	Integrales de Fourier	46 . 46 . 47 . 48 . 49 . 49 . 50 . 50
1.	4.1.4.2.4.3.	Integrales de Fourier	46 . 46 . 47 . 48 . 49 . 49 . 50 . 50
1.	4.1.4.2.4.3.	Integrales de Fourier	46 . 46 . 47 . 48 . 49 . 49 . 50 . 51 . 51
4.	4.1. 4.2. 4.3. 4.4.	Integrales de Fourier Transformada de Fourier Espectros continuos de frecuencia Propiedades de la transformada de Fourier 4.4.1. Linealidad 4.4.2. Cambio de escala 4.4.3. Desplazamiento en ω 4.4.4. Desplazamiento en t 4.4.5. Simetría 4.4.6. Multiplicación por t	46 . 46 . 47 . 48 . 49 . 50 . 50 . 51 . 51
1.	4.1. 4.2. 4.3. 4.4.	Integrales de Fourier Transformada de Fourier Espectros continuos de frecuencia Propiedades de la transformada de Fourier 4.4.1. Linealidad 4.4.2. Cambio de escala 4.4.3. Desplazamiento en ω 4.4.4. Desplazamiento en t 4.4.5. Simetría 4.4.6. Multiplicación por t 4.4.7. Transformada de Fourier de una derivada	46 . 46 . 47 . 48 . 49 . 49 . 50 . 51 . 51 . 53 . 53
1.	4.1. 4.2. 4.3. 4.4.	Integrales de Fourier Transformada de Fourier Espectros continuos de frecuencia Propiedades de la transformada de Fourier 4.4.1. Linealidad 4.4.2. Cambio de escala 4.4.3. Desplazamiento en ω 4.4.4. Desplazamiento en t 4.4.5. Simetría 4.4.6. Multiplicación por t 4.4.7. Transformada de Fourier de una derivada Transformadas de Fourier especiales	46 . 46 . 47 . 48 . 49 . 50 . 51 . 51 . 53 . 53

Transformadas e Integrales

	4.5.4. $\delta(t-t_0)$	55
	4.5.5. e^{jat}	55
	4.5.6. sen(at)	55
	4.5.7. $\cos(at)$	56
	4.5.8. $u(t)$	56
4.6.	La función signo	57
	4.6.1. Transformada de <i>Fourier</i> de $ t $	58
	4.6.2. Transformada de Fourier de $1/t$	58
47	Tabla de transformadas de <i>Fourier</i> conocidas	60

Bibliografía recomendada

- [1] Hwei Hsu. Análisis de Fourier.
- [2] Serie Schaum. Transformada de Laplace.
- [3] Eduardo Espinoza. Transformada de Laplace.
- [4] Álvaro Hernando Carrasco Calvo. Transformadas e integrales.

Capítulo 1

Series de Fourier

1.1. Funciones periódicas

Figura 1.1: Función periódica

Una función periódica es aquella cuya gráfica se repite infinitas veces, cada cierto intervalo (**Figura 1.1**).

El menor intervalo de repetición se llama periodo(T).

Matemáticamente una función periódica es aquella que verifica:

$$f(t) = f(t + nT); n \in \mathbb{Z}$$
(1.1)

Donde T es el periodo (la menor constante que verifica la igualdad).

1.2. Propiedades de la funciones periódicas

Si:
$$f(t) = f(t + nT)$$

Propiedad 1

$$\int_{a}^{b} f(t) dt = \int_{a+nT}^{b+nT} f(t) dt \quad n \in \mathbb{Z}$$
 (1.2)

Prueba:

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(t + nT) dt$$

Cambiando la variable:

$$\tau = t + nT$$

$$d\tau = dt$$

$$\int_{a}^{b} f(t) dt = \int_{a+nT}^{b+nT} f(\tau) d\tau$$

$$= \int_{a+nT}^{b+nT} f(t) dt$$

Puede verse gráficamente en la Figura 1.2.

Figura 1.2: Demostración gráfica

Propiedad 2

$$\int_{a-T/2}^{a+T/2} f(t) dt = \int_{-T/2}^{T/2} f(t) dt$$
 (1.3)

Prueba:

$$\int_{a-T/2}^{a+T/2} f(t) dt = \int_{a-T/2}^{T/2} f(t) dt + \int_{T/2}^{a+T/2} f(t) dt$$

$$= \int_{a-T/2}^{T/2} f(t) dt + \int_{T/2-T}^{a+T/2-T} f(t) dt$$

$$= \int_{a-T/2}^{T/2} f(t) dt + \int_{-T/2}^{a-T/2} f(t) dt$$

$$= \int_{-T/2}^{T/2} f(t) dt$$

Puede verse gráficamente en la Figura 1.3.

Figura 1.3: Demostración gráfica

Propiedad 3

$$\int_0^T f(t) dt = \int_{-T/2}^{T/2} f(t) dt$$
 (1.4)

Prueba:

Si en la ecuación (1.3) a = T/2:

$$\int_{-T/2}^{T/2} f(t) dt = \int_{a-T/2}^{a+T/2} f(t) dt$$
$$= \int_{T/2-T/2}^{T/2+T/2} f(t) dt$$
$$= \int_{0}^{T} f(t) dt$$

Puede verse gráficamente en la Figura 1.4.

Figura 1.4: Demostración gráfica

Propiedad 4

Si
$$b - a = T$$
:
$$\int_0^T f(t) dt = \int_a^b f(t) dt$$
 (1.5)

Prueba:

$$\int_{a}^{b} f(t) dt = \int_{a}^{a+T} f(t) dt$$

$$= \int_{a}^{T} f(t) dt + \int_{T}^{a+T} f(t) dt$$

$$= \int_{a}^{T} f(t) dt + \int_{T-T}^{a+T-T} f(t) dt$$

$$= \int_{a}^{T} f(t) dt + \int_{0}^{a} f(t) dt$$

$$= \int_{0}^{T} f(t) dt$$

Puede verse gráficamente en la Figura 1.5.

Figura 1.5: Demostración gráfica

1.2.1. Funciones seno y coseno

$$f(t) = A \operatorname{sen}(\omega_0 t)$$
$$f(t) = A \operatorname{cos}(\omega_0 t)$$

Donde:

A: Amplitud.

 ω_0 : Frecuencia angular.

 $T=2\pi/\omega_0$: Periodo.

Ejemplo: Hallar el periodo de la siguiente función:

$$f(t) = sen(4t) + sen(3t/2) + sen(10t)$$

El periodo buscado debe contener un numero entero de veces a los 3 periodos hallados:

$$T = \begin{cases} a T_1; & a \in \mathbb{N} \\ b T_2; & b \in \mathbb{N} \\ c T_3; & c \in \mathbb{N} \end{cases}$$

$$a T_1 = b T_2 = c T_3$$

$$a \frac{2\pi}{4} = b \frac{2\pi}{3/2} = c \frac{2\pi}{10}$$

$$a \frac{\pi}{2} = b \frac{4\pi}{3} = c \frac{\pi}{5}; x30$$

$$15a = 40b = 6c$$

$$M.C.M.(15, 40, 6) = 120$$

$$120 = 15a \to a = 8$$

$$120 = 40b \to b = 3$$

$$120 = 6c \to c = 20$$

$$= 15a + a = 8$$

$$= 120 = 40b \to b = 3$$

$$= 120 = 40b \to b = 3$$

Puede verse gráficamente en la Figura 1.6.

Figura 1.6: Periodo de la función

1.2.2. Propiedades ortogonales del seno y el coseno

Propiedad 1

$$\int_0^T \operatorname{sen}(n\omega_0 t) \, dt = 0 \quad n \in \mathbb{Z}$$
 (1.6)

Prueba:

$$\int_0^T \sin(n\omega_0 t) dt = -\frac{\cos(n\omega_0 t)}{n\omega_0} \Big|_0^T$$

$$= -\frac{\cos(n\omega_0 T)}{n\omega_0} + \frac{\cos(0)}{n\omega_0}$$

$$= -\frac{\cos(n2\pi)}{n\omega_0} + \frac{\cos(0)}{n\omega_0}$$

$$= -\frac{1}{n\omega_0} + \frac{1}{n\omega_0}$$

$$= 0$$

$$\int_{0}^{T} \cos(n\omega_{0}t) dt = 0 \quad n \in \mathbb{Z}$$
(1.7)

Prueba:

$$\int_0^T \cos(n\omega_0 t) dt = \frac{\sin(n\omega_0 t)}{n\omega_0} \Big|_0^T$$

$$= \frac{\sin(n\omega_0 T)}{n\omega_0} - \frac{\sin(0)}{n\omega_0}$$

$$= \frac{\sin(n2\pi)}{n\omega_0} - \frac{\sin(0)}{n\omega_0}$$

$$= \frac{0}{n\omega_0} - \frac{0}{n\omega_0}$$

$$= 0$$

Propiedad 2

$$\int_{0}^{T} \operatorname{sen}(m\omega_{0}t) \operatorname{sen}(n\omega_{0}t) dt = 0 \quad m, n \in \mathbb{Z} \quad m \neq n$$
(1.8)

Prueba:

$$\int_0^T \operatorname{sen}(m\omega_0 t) \operatorname{sen}(n\omega_0 t) dt = \int_0^T \frac{1}{2} (\cos((m-n)\omega_0 t) - \cos((m+n)\omega_0 t)) dt$$

$$= \frac{1}{2} \left(\int_0^T \cos((m-n)\omega_0 t) dt - \int_0^T \cos((m+n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} (0-0)$$

$$= 0$$

$$\int_0^T \cos(m\omega_0 t) \cos(n\omega_0 t) dt = 0 \quad m, n \in \mathbb{Z} \quad m \neq n$$
 (1.9)

Prueba:

$$\int_{0}^{T} \cos(m\omega_{0}t) \cos(n\omega_{0}t) dt = \int_{0}^{T} \frac{1}{2} (\cos((m-n)\omega_{0}t) + \cos((m+n)\omega_{0}t)) dt$$

$$= \frac{1}{2} \left(\int_{0}^{T} \cos((m-n)\omega_{0}t) dt + \int_{0}^{T} \cos((m+n)\omega_{0}t) dt \right)$$

$$= \frac{1}{2} (0+0)$$

$$= 0$$

$$\int_{0}^{T} \sin(m\omega_{0}t) \cos(n\omega_{0}t) dt = 0 \quad m, n \in \mathbb{Z}$$
(1.10)

Prueba:

$$\int_0^T \operatorname{sen}(m\omega_0 t) \cos(n\omega_0 t) dt = \int_0^T \frac{1}{2} (\operatorname{sen}((m-n)\omega_0 t) + \operatorname{sen}((m+n)\omega_0 t)) dt$$

$$= \frac{1}{2} \left(\int_0^T \operatorname{sen}((m-n)\omega_0 t) dt + \int_0^T \cos((m+n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} (0+0)$$

$$= 0$$

Propiedad 3

$$\int_0^T \sin^2(n\omega_0 t) dt = \frac{T}{2} \quad n \in \mathbb{Z}$$
 (1.11)

Prueba:

$$\int_{0}^{T} \operatorname{sen}^{2}(n\omega_{0}t) dt = \int_{0}^{T} \operatorname{sen}(n\omega_{0}t) \operatorname{sen}(n\omega_{0}t) dt
= \frac{1}{2} \left(\int_{0}^{T} \cos((n-n)\omega_{0}t) dt - \int_{0}^{T} \cos((n+n)\omega_{0}t) dt \right)
= \frac{1}{2} \left(\int_{0}^{T} \cos(0) dt - \int_{0}^{T} \cos((2n)\omega_{0}t) dt \right)
= \frac{1}{2} \left(\int_{0}^{T} dt - \int_{0}^{T} \cos(2n\omega_{0}t) dt \right)
= \frac{1}{2} (t \Big|_{0}^{T} - 0)
= \frac{T}{2}
\int_{0}^{T} \cos^{2}(n\omega_{0}t) dt = \frac{T}{2} \quad n \in \mathbb{Z}$$
(1.12)

Prueba:

$$\int_0^T \cos^2(n\omega_0 t) dt = \int_0^T \cos(n\omega_0 t) \cos(n\omega_0 t) dt$$

$$= \frac{1}{2} \left(\int_0^T \cos((n-n)\omega_0 t) dt + \int_0^T \cos((n+n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} \left(\int_0^T \cos(0) dt + \int_0^T \cos((2n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} \left(\int_0^T dt + \int_0^T \cos(2n\omega_0 t) dt \right)$$

$$= \frac{1}{2} (t \Big|_0^T + 0)$$

$$= \frac{T}{2}$$

1.3. Series de Fourier

Una función periódica que cumple ciertas condiciones puede desarrollarse mediante la serie:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)]$$
 (1.13)

Donde:

 $\omega_0 = 2\pi/T$: Frecuencia angular de f(t).

T: Periodo de f(t).

 $a_0; a_n; b_n$: Coeficientes de *Fourier*.

 $a_0/2$: Termino constante.

 $a_n\cos(n\omega_0t)$; $b_n\sin(n\omega_0t)$: Armónicos, términos seno y coseno con frecuencias angulares múltiples de ω_0

```
a_1\cos(\omega_0 t) + b_1\sin(\omega_0 t): Primer armónico. a_2\cos(2\omega_0 t) + b_2\sin(2\omega_0 t): Segundo armónico. a_3\cos(3\omega_0 t) + b_3\sin(2\omega_0 t): Tercer armónico.
```

1.3.1. Condiciones de Dirichlet

Para que una función periódica $f(t)=f(t+nT); n\in\mathbb{Z}$, se desarrolle como una serie de Fourier debe cumplir:

• f(t) debe ser continua por tramos en 1 periodo.

- Debe existir un numero finito de discontinuidades (en 1 periodo).
- Debe existir un numero finito de extremos relativos (en 1 periodo).
- \blacksquare La integral $\int_0^T |f(t)|\,dt < \infty$ debe ser finita.

Ejemplo:

$$f(t) = \tan(t); \quad 0 < t < \pi; \quad T = \pi$$

$$\int_0^{\pi} |\tan t| \, dt \to \infty$$
$$t = \frac{\pi}{2} : |\tan(t)| \to \infty$$

: Esta función no tiene serie de Fourier.

1.4. Evaluación de los coeficientes de Fourier

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)]$$

Integrando ambas partes:

$$\int_{0}^{T} f(t) dt = \int_{0}^{T} \frac{a_{0}}{2} dt + \sum_{n=1}^{\infty} \left[\int_{0}^{T} a_{n} \cos(n\omega_{0}t) dt + \int_{0}^{T} b_{n} \sin(n\omega_{0}t) dt \right]$$

$$= \frac{a_{0}}{2} t \Big|_{0}^{T}$$

$$= \frac{a_{0}}{2} T$$

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$
(1.14)

Para calcular " a_n " multiplicamos por $\cos(m\omega_0 t)$; $m \in \mathbb{N}$ e integramos en 1 periodo.

$$\int_0^T f(t)\cos(m\omega_0 t) dt = \int_0^T \frac{a_0}{2}\cos(m\omega_0 t) dt$$

$$+ \sum_{n=1}^\infty \left[\int_0^T a_n \cos(n\omega_0 t) \cos(m\omega_0 t) dt + \int_0^T b_n \sin(n\omega_0 t) \cos(m\omega_0 t) dt \right]$$

$$= 0 + \sum_{n=1}^\infty \left[\int_0^T a_n \cos(n\omega_0 t) \cos(m\omega_0 t) dt + 0 \right]$$

Para $n \neq m$ todos los elementos de la sumatoria serán igual a 0. Por tanto:

$$\int_0^T f(t)\cos(n\omega_0 t) dt = \int_0^T a_n \cos^2(n\omega_0 t) dt$$

$$= a_n \frac{T}{2}$$

$$a_n = \frac{2}{T} \int_0^T f(t)\cos(n\omega_0 t) dt$$
(1.15)

Para calcular " b_n " multiplicamos por $\operatorname{sen}(m\omega_0 t); m \in \mathbb{N}$ e integramos en 1 periodo.

$$\int_0^T f(t) \operatorname{sen}(m\omega_0 t) dt = \int_0^T \frac{a_0}{2} \operatorname{sen}(m\omega_0 t) dt$$

$$+ \sum_{n=1}^\infty \left[\int_0^T a_n \cos(n\omega_0 t) \operatorname{sen}(m\omega_0 t) dt + \int_0^T b_n \operatorname{sen}(n\omega_0 t) \operatorname{sen}(m\omega_0 t) dt \right]$$

$$= 0 + \sum_{n=1}^\infty \left[0 + \int_0^T b_n \operatorname{sen}(n\omega_0 t) \operatorname{sen}(m\omega_0 t) dt \right]$$

Para $n \neq m$ todos los elementos de la sumatoria serán igual a 0. Por tanto:

$$\int_0^T f(t) \operatorname{sen}(n\omega_0 t) dt = \int_0^T b_n \operatorname{sen}^2(n\omega_0 t) dt$$

$$= b_n \frac{T}{2}$$

$$b_n = \frac{2}{T} \int_0^T f(t) \operatorname{sen}(n\omega_0 t) dt$$
(1.16)

1.5. Formulas para las series de Fourier

$$sen(\pi n) = 0; \quad n \in \mathbb{N}$$
$$cos(\pi n) = (-1)^n; \quad n \in \mathbb{N}$$
$$sen(2\pi n) = 0; \quad n \in \mathbb{N}$$

$$\cos(2\pi n) = 1; \quad n \in \mathbb{N}$$

$$\int \operatorname{sen}(at) \, dt = -\frac{\cos(at)}{a}$$

$$\int \cos(at) \, dt = \frac{\operatorname{sen}(at)}{a}$$

$$\int t \operatorname{sen}(at) \, dt = -\frac{t}{a} \cos(at) + \frac{1}{a^2} \operatorname{sen}(at)$$

$$\int t \cos(at) \, dt = \frac{t}{a} \operatorname{sen}(at) + \frac{1}{a^2} \cos(at)$$

$$\int e^{at} \, dt = \frac{1}{a} e^{at}$$

$$\int t \, e^{at} \, dt = \frac{t}{a} e^{at} - \frac{1}{a^2} e^{at}$$

Capítulo 2

Análisis de formas de onda periódica

2.1. Funciones pares e impares

Una función es par si:

Figura 2.1: La gráfica se refleja respecto al eje central.

Ejemplo 1:

$$f(t) = t^2$$

 $f(-t) = (-t)^2 = t^2 = f(t)$

Ejemplo 2:

$$f(t) = \cos(t)$$

$$f(t) = \cos(-t) = \cos(t) = f(t)$$

Una función es impar si:

$$f(-t) = -f(t) \tag{2.2}$$

(2.1)

Figura 2.2: La gráfica se refleja 1ro respecto al eje central 2do respecto al eje horizontal.

Ejemplo 3:

$$f(t) = t^3$$

 $f(-t) = (-t)^3 = -t^3 = -f(t)$

Ejemplo 4:

$$f(t) = \operatorname{sen}(t)$$

$$f(t) = \operatorname{sen}(-t) = -\operatorname{sen}(t) = -f(t)$$

Ejemplo 5:

$$f(t) = \begin{cases} e^t & t < 0 \\ e^{-t} & t > 0 \end{cases}$$

$$f(-t) = \begin{cases} e^{-t} & -t < 0 \to t > 0 \\ e^t & -t > 0 \to t < 0 \end{cases} = f(t)$$

$$f(t)$$

2.1.1. Propiedades de las funciones pares e impares

Propiedad 1

Si f(t) es par y g(t) es par, entonces h(t) = f(t)g(t) es par.

Transformadas e Integrales

Prueba:

$$\begin{cases} f(-t) = f(t) \\ g(-t) = g(t) \end{cases}$$
$$h(-t) = f(-t)g(-t)$$
$$= f(t)g(t)$$
$$= h(t)$$

Propiedad 2

Si f(t) es impar y g(t) es impar, entonces h(t) = f(t)g(t) es par.

Prueba:

$$\begin{cases} f(-t) = -f(t) \\ g(-t) = -g(t) \end{cases}$$

Propiedad 3

Si f(t) es par y g(t) es impar, entonces h(t) = f(t)g(t) es impar.

Prueba:

$$\begin{cases} f(-t) = f(t) \\ g(-t) = -g(t) \end{cases}$$

$$h(-t) = f(-t)g(-t)$$

$$= f(t)(-g(t))$$

$$= -f(t)g(t)$$

$$= -h(t)$$

Propiedad 4

Si f(t) es **par**, entonces:

$$\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$$
 (2.3)

Prueba:

$$\int_{-a}^{a} f(t) dt = \int_{-a}^{0} f(t) dt + \int_{0}^{a} f(t) dt$$

$$= \int_{-a}^{0} f(-t) dt + \int_{0}^{a} f(t) dt$$

$$\tau = -t$$

$$d\tau = -dt$$

$$\int_{-a}^{a} f(t) dt = \int_{a}^{0} f(\tau) (-d\tau) + \int_{0}^{a} f(t) dt$$

$$= \int_{0}^{a} f(\tau) d\tau + \int_{0}^{a} f(t) dt$$

$$= 2 \int_{0}^{a} f(t) dt$$

Propiedad 5

Si f(t) es **impar**, entonces:

Prueba:

$$\int_{-a}^{a} f(t) dt = \int_{-a}^{0} f(t) dt + \int_{0}^{a} f(t) dt$$

$$= \int_{-a}^{0} -f(-t) dt + \int_{0}^{a} f(t) dt$$

$$\tau = -t$$

$$d\tau = -dt$$

$$\int_{-a}^{a} f(t) dt = -\int_{a}^{0} f(\tau) (-d\tau) + \int_{0}^{a} f(t) dt$$

$$= -\int_{0}^{a} f(\tau) d\tau + \int_{0}^{a} f(t) dt$$

$$= 0$$

2.1.2. Evaluación de coeficientes de Fourier

Simetría par

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$

$$= \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt$$

$$= \frac{2}{T} \left(2 \int_{0}^{T/2} f(t) dt \right)$$

$$= \frac{4}{T} \int_{0}^{T/2} f(t) dt$$

$$a_{0} = \frac{4}{T} \int_{0}^{T/2} f(t) dt$$

$$a_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_{0}t) dt$$

$$= \frac{2}{T} \left(2 \int_{0}^{T/2} f(t) \cos(n\omega_{0}t) dt \right)$$

$$= \frac{4}{T} \int_{0}^{T/2} f(t) \cos(n\omega_{0}t) dt$$

$$a_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \cos(n\omega_{0}t) dt$$

$$(2.6)$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \operatorname{sen}(n\omega_0 t) dt$$

$$= 0$$

$$b_n = 0$$
(2.7)

Simetría impar

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$

$$= \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt$$

$$= 0$$

$$a_{0} = 0 \qquad (2.8)$$

$$a_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_{0}t) dt$$

$$= 0$$

$$a_{n} = 0 \qquad (2.9)$$

$$b_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega_{0}t) dt$$

$$= \frac{2}{T} \left(2 \int_{0}^{T/2} f(t) \sin(n\omega_{0}t) dt \right)$$

$$= \frac{4}{T} \int_{0}^{T/2} f(t) \sin(n\omega_{0}t) dt$$

$$b_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \sin(n\omega_{0}t) dt \qquad (2.10)$$

2.2. Simetría de media onda (S.M.O.)

f(t) tiene simetría de media onda si:

$$f(t) = -f(t \pm \frac{T}{2})$$

Figura 2.3: La gráfica se desplaza 1/2 periodo y se refleja respecto a t.

2.2.1. Evaluación de coeficientes de Fourier

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt + \int_{T/2}^{T} f(t) dt \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt - \int_{t=T/2}^{t=T} f(t - \frac{T}{2}) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$a_{0} = \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt - \int_{\tau=T/2-T/2}^{\tau=T-T/2} f(\tau) d\tau \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt - \int_{0}^{T/2} f(\tau) d\tau \right]$$

$$a_{0} = 0$$

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) \cos(n\omega_{0}t) dt$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) \cos(n\omega_{0}t) dt + \int_{T/2}^{T} f(t) \cos(n\omega_{0}t) dt \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) \cos(n\omega_{0}t) dt - \int_{T/2}^{T} f(t - \frac{T}{2}) \cos(n\omega_{0}t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$a_n = \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \int_{\tau = T/2 - T/2}^{\tau = T/2 - T/2} f(\tau) \cos(n\omega_0 (\tau + \frac{T}{2})) d\tau \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \int_0^{T/2} f(\tau) \cos(n\omega_0 (\tau + \frac{T}{2})) d\tau \right]$$

$$n\omega_0 (\tau + T/2) = n\omega_0 \tau + n\omega_0 \frac{T}{2}$$

$$= n\omega_0 \tau + n^2 \frac{T}{T} \frac{T}{2}$$

$$= n\omega_0 \tau + n\pi$$

$$\cos(n\omega_0 \tau + n\pi) = \cos(n\omega_0 \tau) \cos(n\pi) - \sin(n\pi) \sin(n\omega_0 \tau)$$

$$= \cos(n\omega_0 \tau) \cos(n\pi)$$

$$a_n = \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \int_0^{T/2} f(\tau) \cos(n\omega_0 \tau) \cos(n\pi) d\tau \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \cos(n\pi) \int_0^{T/2} f(\tau) \cos(n\omega_0 \tau) d\tau \right]$$

$$= \frac{2}{T} (1 - \cos(\pi n)) \left(\int_0^{T/2} f(t) \cos(n\omega_0 t) dt \right)$$

$$\cos(\pi n) = \begin{cases} 1 & n : \text{par} \\ -1 & n : \text{impar} \end{cases}$$

$$\begin{cases} n : \text{par} \quad a_n = 0 \\ n : \text{impar} \quad a_n = \frac{1}{T} \int_0^{T/2} f(t) \cos(n\omega_0 t) dt \end{cases}$$

$$b_n = \frac{2}{T} \left[\int_0^{T/2} f(t) \sin(n\omega_0 t) dt + \int_{T/2}^T f(t) \sin(n\omega_0 t) dt \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \sin(n\omega_0 t) dt - \int_{T/2}^T f(t - \frac{T}{2}) \sin(n\omega_0 t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$b_n = \frac{2}{T} \left[\int_0^{T/2} f(t) \sin(n\omega_0 t) dt - \int_{\tau - T/2 - T/2}^{T/2} f(\tau) \sin(n\omega_0 \tau + \frac{T}{2}) d\tau \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \sin(n\omega_0 t) dt - \int_{\tau - T/2 - T/2}^{T/2} f(\tau) \sin(n\omega_0 \tau + \frac{T}{2}) d\tau \right]$$

$$n\omega_{0}(\tau + T/2) = n\omega_{0}\tau + n\omega_{0}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\frac{2\pi}{T}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\pi$$

$$\operatorname{sen}(n\omega_{0}\tau + n\pi) = \operatorname{sen}(n\omega_{0}\tau) \operatorname{cos}(n\pi) + \operatorname{sen}(n\pi) \operatorname{cos}(n\omega_{0}\tau)$$

$$= \operatorname{sen}(n\omega_{0}\tau) \operatorname{cos}(n\pi)$$

$$b_{n} = \frac{2}{T} \left[\int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt - \int_{0}^{T/2} f(\tau) \operatorname{sen}(n\omega_{0}\tau) \operatorname{cos}(n\pi) d\tau \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt - \operatorname{cos}(n\pi) \int_{0}^{T/2} f(\tau) \operatorname{sen}(n\omega_{0}\tau) d\tau \right]$$

$$= \frac{2}{T} (1 - \operatorname{cos}(\pi n)) \left(\int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt \right)$$

$$\operatorname{cos}(\pi n) = \begin{cases} 1 & n : \operatorname{par} \\ -1 & n : \operatorname{impar} \end{cases}$$

$$\begin{cases} n : \operatorname{par} & b_{n} = 0 \\ n : \operatorname{impar} & b_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt \end{cases}$$

$$(2.13)$$

2.3. Simetría de cuarto de onda (S.C.O.)

2.3.1. Simetría de cuarto de onda par

Una función f(t) tiene simetría de cuarto de onda **par** cuando:

- f(t) es par.
- f(t) tiene simetría de media onda.

2.3.2. Simetría de cuarto de onda impar

Una función f(t) tiene simetría de cuarto de onda **impar** cuando:

- f(t) es impar.
- f(t) tiene simetría de media onda.

2.3.3. Evaluación de coeficientes de Fourier

Simetría de cuarto de onda par

Como la función f(t) tiene simetría de media onda:

$$a_0 = 0$$
 (2.14)

Como la función f(t) es una función par:

$$b_n = 0 ag{2.15}$$

Como la función f(t) tiene simetría de media onda: $a_n=0$ cuando n es par.

Para n impar:

$$a_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \cos(n\omega_{0}t) dt$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \cos(n\omega_{0}t) dt + \int_{T/4}^{T/2} f(t) \cos(n\omega_{0}t) dt \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \cos(n\omega_{0}t) dt - \int_{T/4}^{T/2} f(t - \frac{T}{2}) \cos(n\omega_{0}t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$a_{n} = \frac{4}{T} \left[\int_{0}^{T/4} f(t) \cos(n\omega_{0}t) dt - \int_{\tau=T/4-T/2}^{\tau=T/2-T/2} f(\tau) \cos(n\omega_{0}(\tau + \frac{T}{2})) d\tau \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \cos(n\omega_{0}t) dt - \int_{-T/4}^{0} f(\tau) \cos(n\omega_{0}(\tau + \frac{T}{2})) d\tau \right]$$

$$n\omega_{0}(\tau + T/2) = n\omega_{0}\tau + n\omega_{0} \frac{T}{2}$$

$$= n\omega_{0}\tau + n\pi \frac{2\pi T}{T} \frac{T}{2}$$

$$= n\omega_{0}\tau + n\pi$$

$$\cos(n\omega_{0}\tau + n\pi) = \cos(n\omega_{0}\tau) \cos(n\pi) - \sin(n\pi) \sin(n\omega_{0}\tau)$$

$$= \cos(n\omega_{0}\tau) \cos(n\pi)$$

$$= -\cos(n\omega_{0}\tau)$$

$$a_{n} = \frac{4}{T} \left[\int_{0}^{T/4} f(t) \cos(n\omega_{0}t) dt + \int_{-T/4}^{0} f(\tau) \cos(n\omega_{0}\tau) d\tau \right]$$

$$= \frac{4}{T} \left[\int_{-T/4}^{T/4} f(t) \cos(n\omega_{0}t) dt \right]$$

$$= \frac{4}{T} \left[2 \int_{0}^{T/4} f(t) \cos(n\omega_{0}t) dt \right]$$

$$= \frac{8}{T} \int_{0}^{T/4} f(t) \cos(n\omega_{0}t) dt$$

$$\begin{cases} n : \text{par} & a_{n} = 0 \\ n : \text{impar} & a_{n} = \frac{8}{T} \int_{0}^{T/4} f(t) \cos(n\omega_{0}t) dt \end{cases}$$
(2.16)

Simetría de cuarto de onda impar

Como la función f(t) tiene simetría de media onda:

$$a_0 = 0$$
 (2.17)

Como la función f(t) es una función impar:

$$a_n = 0 ag{2.18}$$

Como la función f(t) tiene simetría de media onda: $b_n = 0$ cuando n es par.

Para n impar:

$$b_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt + \int_{T/4}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt - \int_{T/4}^{T/2} f(t - \frac{T}{2}) \operatorname{sen}(n\omega_{0}t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$b_{n} = \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt - \int_{\tau=T/4-T/2}^{\tau=T/2-T/2} f(\tau) \operatorname{sen}(n\omega_{0}(\tau + \frac{T}{2})) d\tau \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt - \int_{-T/4}^{0} f(\tau) \operatorname{sen}(n\omega_{0}(\tau + \frac{T}{2})) d\tau \right]$$

$$n\omega_{0}(\tau + T/2) = n\omega_{0}\tau + n\omega_{0}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\frac{T}{T}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\pi$$

$$\operatorname{sen}(n\omega_{0}\tau + n\pi) = \operatorname{sen}(n\omega_{0}\tau) \cos(n\pi) + \operatorname{sen}(n\pi) \cos(n\omega_{0}\tau)$$

$$= \operatorname{sen}(n\omega_{0}\tau) \cos(n\pi)$$

$$= - \operatorname{sen}(n\omega_{0}\tau)$$

$$b_{n} = \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt + \int_{-T/4}^{0} f(\tau) \operatorname{sen}(n\omega_{0}\tau) d\tau \right]$$

$$= \frac{4}{T} \left[\int_{-T/4}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt \right]$$

$$= \frac{8}{T} \int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt$$

$$\begin{cases} n : \operatorname{par} & b_{n} = 0 \\ n : \operatorname{impar} & b_{n} = \frac{8}{T} \int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt \end{cases}$$

$$(2.19)$$

2.4. Expansión periódica de funciones definidas en intervalos finitos

Sea f(t) una función no periódica:

f(t) se convierte en periódica al repetirla un intervalo $T \geq M$.

f(t) puede expandirse periódicamente asignando alguna simetría conocida.

Capítulo 3

Serie compleja de *Fourier* y espectros discretos de frecuencia

3.1. Números complejos

Unidad imaginaria: $i=j=\sqrt{-1}$ Forma rectangular: z=a+jbMódulo: $|z|=\sqrt{a^2+b^2}$ Argumento: $\theta=\arctan(\frac{b}{a})$

Forma polar:

$$z = |z|\cos(\theta) + j|z|\sin(\theta) = |z|(\cos(\theta) + j\sin(\theta))$$

Formula de Euler:

$$e^{j\theta} = \cos(\theta) + j\sin(\theta) \tag{3.1}$$

Por tanto:

$$z=|z|e^{j\theta}$$

Forma exponencial o fasorial:

$$z = |z| \angle \theta$$

3.1.1. Formas complejas del seno y coseno

$$e^{j\theta} = \cos(\theta) + j\sin(\theta) \tag{3.2}$$

$$e^{-j\theta} = \cos(\theta) - j\sin(\theta)$$
 (3.3)

Sumando las ecuaciones 3.2 y 3.3:

$$e^{j\theta} + e^{-j\theta} = 2\cos(\theta)$$

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
(3.4)

Restando las ecuaciones 3.2 y 3.3:

$$e^{j\theta} - e^{-j\theta} = 2j \operatorname{sen}(\theta)$$

$$\operatorname{sen}(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$
(3.5)

3.1.2. Conjugado

$$z = a + jb = |z| \angle \theta$$
$$z* = a - jb = |z| \angle - \theta$$
$$(z)(z*) = |z|^{2}$$

3.2. Serie compleja de Fourier

Partiendo de la serie trigonométrica de Fourier:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) + b_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2j} \right) \right]$$

$$\frac{1}{j} = -j$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) - jb_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) \right]$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} + \left(\frac{a_n + jb_n}{2} \right) e^{-jn\omega_0 t} \right]$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} \right] + \sum_{n=1}^{\infty} \left[\left(\frac{a_n + jb_n}{2} \right) e^{-jn\omega_0 t} \right]$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} \right] + \sum_{n=1}^{\infty} \left[\left(\frac{a_n + jb_n}{2} \right) e^{jn\omega_0 t} \right]$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} \right] + \sum_{n=-1}^{\infty} \left[\left(\frac{a_n + jb_n}{2} \right) e^{jn\omega_0 t} \right]$$

Sean los coeficientes complejos de Fourier:

$$c_n = \frac{a_n - jb_n}{2}$$
$$c_0 = \frac{a_0}{2}$$

Entonces:

$$f(t) = c_0 + \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} c_n e^{jn\omega_0 t}$$

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_0 t}$$
(3.6)

3.2.1. Evaluación del coeficiente complejo de Fourier

$$c_n = \frac{a_n - jb_n}{2}$$

$$= \frac{1}{2} \left[\frac{2}{T} \int_0^T f(t) \cos(n\omega_0 t) dt - j\frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt \right]$$

$$= \frac{1}{T} \int_0^T f(t) \left[\cos(n\omega_0 t) - j \sin(n\omega_0 t) \right] dt$$

$$= \frac{1}{T} \int_0^T f(t) e^{-jn\omega_0 t} dt$$

$$c_n = \frac{1}{T} \int_0^T f(t) e^{-jn\omega_0 t} dt$$
 (3.7)

En particular:

$$c_0 = \frac{1}{T} \int_0^T f(t) \, dt \tag{3.8}$$

3.2.2. Relación entre el coeficiente complejo y los coeficientes trigonométricos

$$c_{n} = \frac{a_{n} - jbn}{2} = \frac{a_{n}}{2} + j\frac{-b_{n}}{2}$$

$$\frac{a_{n}}{2} = \mathbb{R}e\{c_{n}\}$$

$$a_{n} = 2\mathbb{R}e\{c_{n}\}$$

$$-\frac{b_{n}}{2} = \mathbb{I}m\{c_{n}\}$$

$$b_{n} = -2\mathbb{I}m\{c_{n}\}$$
(3.10)

3.3. Ondas senoidales rectificadas

3.3.1. Rectificación de media onda

$$f(t) = \begin{cases} A \operatorname{sen}(\omega_0 t) & 0 < t < T/2 \\ 0 & T/2 < t < T \end{cases}$$

$$T = \frac{2\pi}{\omega_0}$$

El periodo de la onda rectificada es el mismo que de la onda original.

3.3.2. Rectificación de onda completa

El periodo de la onda rectificada es la mitad del periodo de la onda original.

3.4. Función escalón unitario

Una variante es:

$$u(-t) = \begin{cases} 1 & t < 0 \\ 0 & t > 0 \end{cases}$$

De manera general:

Si: $\phi(t)$ es una función de prueba:

$$\phi(t)u(t-t_0) = \begin{cases} 0 & t < t_0 \\ \phi(t) & t > t_0 \end{cases}$$
 (3.13)

$$\phi(t)(u(t-t_1)-u(t-t_2)) = \begin{cases} 0 & t \notin [t_1, t_2] \\ \phi(t) & t \in [t_1, t_2] \end{cases}$$

3.5. La función impulso

Pulso rectangular de área igual a 1.

Si $\xi \to 0$, entonces $\frac{1}{2\xi} \to \infty$.

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases}$$

Tal que:

$$\int_{-\xi}^{\xi} \delta(t) \, dt = 1$$

Por tanto:

$$k\delta(t) = \begin{cases} 0 & t \neq 0 \\ \pm \infty & t = 0 \end{cases}$$
 (3.14)

Si: $\phi(t)$ es una función de prueba:

$$\phi(t)\delta(t-t_0) = \phi(t_0)\delta(t-t_0) \tag{3.15}$$

Para $t \neq 0$

$$\phi(t)\delta(t-t_0)=0$$

Para t=0

$$\phi(t)\delta(t-t_0) = \phi(t_0)\delta(t-t_0)$$

3.5.1. Propiedades de la función impulso

Propiedad 1

$$\int_{a}^{b} \delta(t - t_{0}) dt = \begin{cases} 1 & t_{0} \in [a, b] \\ 0 & t_{0} \notin [a, b] \end{cases}$$

En general:

$$\int_{-\infty}^{\infty} \delta(t - t_0) dt = 1 \tag{3.16}$$

Propiedad 2

$$\int_{a}^{b} \phi(t) \, \delta(t - t_0) \, dt = \begin{cases} \phi(t_0) & t_0 \in [a, b] \\ 0 & t_0 \notin [a, b] \end{cases}$$

En general:

$$\int_{-\infty}^{\infty} \phi(t_0) \, \delta(t - t_0) \, dt = \phi(t_0) \tag{3.17}$$

Prueba:

$$\int_{-\infty}^{\infty} \phi(t)\delta(t - t_0) dt = \int_{-\infty}^{\infty} \phi(t_0)\delta(t - t_0) dt$$
$$= \phi(t_0) \int_{-\infty}^{\infty} \delta(t - t_0) dt$$
$$= \phi(t_0)$$

Propiedad 3

$$\int_{-\infty}^{\infty} \phi(t) \, \delta(at) \, dt = \frac{1}{|a|} \int_{-\infty}^{\infty} \phi\left(\frac{t}{a}\right) \delta(t) \, dt = \frac{\phi(0)}{|a|}; a \neq 0 \tag{3.18}$$

Prueba:

Realizando un cambio de variable:

$$\tau = at$$

$$d\tau = a dt$$

Para a > 0:

$$\int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) \frac{d\tau}{a} = \frac{1}{a} \int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) d\tau$$

Para a < 0:

$$\int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) \, \frac{d\tau}{a} = -\frac{1}{a} \int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) d\tau$$

Como:

$$|a| = \begin{cases} -a & a < 0 \\ a & a > 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \phi(t) \, \delta(at) \, dt = \frac{1}{|a|} \int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) \, d\tau$$

$$= \frac{1}{|a|} \phi\left(\frac{0}{a}\right)$$

$$= \frac{\phi(0)}{|a|}$$

Propiedad 4

$$\delta(at) = \frac{1}{|a|}\delta(t) \tag{3.19}$$

En particular:

$$\delta(-t) = \delta(t) \tag{3.20}$$

Por tanto $\delta(t)$ es una función **par**.

Prueba:

$$\begin{split} \int_{-\infty}^{\infty} \phi(t) \, \delta(at) \, dt &= \frac{1}{|a|} \phi(0) \\ &= \frac{1}{|a|} \int_{-\infty}^{\infty} \phi(t) \, \delta(t) \, dt \\ \phi(t) \, \delta(at) &= \frac{1}{|a|} \phi(t) \, \delta(t) \\ \delta(at) &= \frac{1}{|a|} \, \delta(t) \end{split}$$

Para a = -1:

$$\delta(-t) = \frac{1}{|-1|} \, \delta(t) = \delta(t)$$

Propiedad 5

$$t\,\delta(t)=0$$

$$t^n\,\delta(t)=0; n\in\mathbb{N} \tag{3.21}$$

Prueba:

$$\int_{-\infty}^{\infty} t^n \, \delta(t) \, dt = 0^n = 0$$

Derivando ambos miembros:

$$t^n \, \delta(t) \, dt = 0$$

3.6. Derivada de la función impulso

$$\delta'(t) = \frac{d}{dt}(\delta(t))$$

$$\int_{-\infty}^{\infty} \phi(t)\delta'(t) dt = -\int_{-\infty}^{\infty} \phi'(t)\delta(t) dt = -\phi'(0)$$
(3.22)

Prueba:

Realizando la integración por partes:

$$u = \phi(t)$$

$$du = \phi'(t) dt$$

$$dv = \delta'(t - t_0) dt$$

$$v = \delta(t - t_0)$$

$$\int_{-\infty}^{\infty} \phi(t)\delta'(t - t_0) dt = (\phi(t)\delta(t - t_0)\Big|_{-\infty}^{\infty}) - \int_{-\infty}^{\infty} \delta(t - t_0)\phi'(t) dt$$

$$= 0 - \int_{-\infty}^{\infty} \delta(t - t_0)\phi'(t) dt$$

$$= -\phi'(t_0)$$

Derivadas de orden superior

$$\int_{-\infty}^{\infty} \phi(t)\delta''(t) dt = \int_{-\infty}^{\infty} \phi(t)(\delta'(t))' dt$$
$$= -\int_{-\infty}^{\infty} \phi'(t)\delta'(t) dt$$
$$= \int_{-\infty}^{\infty} \phi''(t)\delta(t) dt$$
$$= \phi''(0)$$

De igual manera:

$$\int_{-\infty}^{\infty} \phi(t)\delta'''(t-t_0) dt = -\phi'''(t_0)$$

En general:

$$\int_{-\infty}^{\infty} \phi(t)\delta^{(n)}(t-t_0) dt = (-1)^n \phi^{(n)}(t_0)$$
(3.23)

3.7. Derivada de la función escalón unitario

$$u'(t - t_0) = \delta(t - t_0) \tag{3.24}$$

Prueba:

$$\int_{-\infty}^{\infty} u'(t)\phi(t)\,dt$$

Realizando la integración por partes:

$$u = \phi(t)$$
$$du = \phi'(t) dt$$
$$dv = u'(t) dt$$

$$v = u(t)$$

$$\int_{-\infty}^{\infty} \phi(t)u'(t) dt = (\phi(t)u(t)\Big|_{-\infty}^{\infty}) - \int_{-\infty}^{\infty} u(t)\phi'(t) dt$$

$$= -\int_{-\infty}^{\infty} u(t)\phi'(t) dt$$

$$= -\int_{0}^{\infty} 1 \phi'(t) dt$$

$$= -\phi(t)\Big|_{0}^{\infty}$$

$$= -\phi(\infty) + \phi(0)$$

Asumiendo que $\phi(\pm \infty) = 0$:

$$\int_{-\infty}^{\infty} \phi(t)u'(t) dt = \phi(0)$$

Sabiendo que:

$$\int_{-\infty}^{\infty} \phi(t)\delta(t) dt = \phi(0)$$

Por tanto:

$$\int_{-\infty}^{\infty} \phi(t)u'(t) dt = \int_{-\infty}^{\infty} \phi(t)\delta(t) dt$$
$$\phi(t)u'(t) = \phi(t)\delta(t)$$
$$u'(t) = \delta(t)$$

3.8. Derivada de una función con discontinuidades de salto

Las derivadas de los saltos de subida y bajada, van a originar impulsos hacia arriba y hacia abajo, respectivamente.

3.9. Series de Fourier por el método de diferenciación

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_0 t}$$

$$c_n = \frac{1}{T} \int_0^T f(t) e^{-jn\omega_0 t} dt$$

$$f'(t) = \sum_{n = -\infty}^{\infty} jn\omega_0 c_n e^{jn\omega_0 t}$$

$$f''(t) = \sum_{n = -\infty}^{\infty} (jn\omega_0)^2 c_n e^{jn\omega_0 t}$$

$$\gamma'_n = \frac{1}{T} \int_0^T f'(t) e^{-jn\omega_0 t} dt$$

$$\gamma''_n = \frac{1}{T} \int_0^T f''(t) e^{-jn\omega_0 t} dt$$

$$f^{(k)}(t) = \sum_{n = -\infty}^{\infty} (jn\omega_0)^k c_n e^{jn\omega_0 t}$$

$$\gamma''_n = \frac{1}{T} \int_0^T f''(t) e^{-jn\omega_0 t} dt$$

- \blacksquare Se deriva f(t) hasta anularla y calcular para cada derivada: $\gamma_n^{(k)}$
- lacktriangle Las derivadas de f(t) solo van a tomar en cuenta los impulsos obtenidos de los saltos previos.
- El coeficiente complejo c_n se obtendrá de la forma:

$$c_n = c'_n + c''_n + \dots + c_n^{(k)}$$
 (3.25)

Donde:

$$c_n' = \frac{\gamma_n'}{jn\omega_0} \tag{3.26}$$

$$c_n'' = \frac{\gamma_n''}{(jn\omega_0)^2} \tag{3.27}$$

$$c_n^{(k)} = \frac{\gamma_n^{(k)}}{(jn\omega_0)^k}$$
 (3.28)

3.10. Espectros de frecuencia discreta

Los espectros de frecuencia serán gráficas discretas de modulo y argumento del coeficiente complejo de *Fourier* en función de múltiplos de la frecuencia: ω_0 .

$$f(t) = \sum_{n=-\infty}^{\infty} c_n \, e^{jn\omega_0 t}$$

$$c_n = A_n + jB_n$$

$$|c_n| = \sqrt{A_n^2 + B_n^2}$$

$$\theta_n = \arctan\left(\frac{B_n}{A_n}\right)$$
 funciones discretas de $n\omega_0 \quad n \in \mathbb{Z}$

Espectro de amplitud o módulo

Espectro de fase o argumento

3.11. Teorema de la multiplicación

Dadas dos funciones periódicas con el mismo periodo T: $f_1(t)$ y $f_2(t)$.

Donde: c_1n y c_2n , son los respectivos coeficientes complejos de *Fourier*.

$$\frac{1}{T} \int_0^T f_1(t) f_2(t) dt = \sum_{n = -\infty}^\infty c_{1(n)} c_{2(-n)} = \sum_{n = -\infty}^\infty c_{1(-n)} c_{2(n)}$$
(3.29)

Prueba:

$$\frac{1}{T} \int_0^T f_1(t) f_2(t) dt = \frac{1}{T} \int_0^T \left[\sum_{n = -\infty}^\infty c_{1(n)} e^{jn\omega_0 t} \right] f_2(t) dt$$

$$= \sum_{n = -\infty}^\infty c_{1(n)} \frac{1}{T} \int_0^T f_2(t) e^{jn\omega_0 t} dt$$

$$= \sum_{n = -\infty}^\infty c_{1(n)} c_{2(-n)}$$

3.12. Teorema de Parseval

Sea: $f_1(t) = f_2(t) = f(t)$, con coeficientes de Fourier: $c_1(n) = c_2(n) = c_n$:

Partiendo del teorema de multiplicación:

$$\frac{1}{T} \int_{0}^{T} f^{2}(t) dt = \sum_{n=-\infty}^{\infty} c_{(n)} c_{(-n)}$$

$$= \sum_{n=-\infty}^{\infty} c_{(n)} c_{(n)}^{*}$$

$$= \sum_{n=-\infty}^{\infty} |c_{n}|^{2}$$

$$= c_{0}^{2} + \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} |c_{n}|^{2}$$

$$c_{n} = \frac{a_{n} - jb_{n}}{2}$$

$$|c_{n}|^{2} = \frac{a_{n}^{2} + jb_{n}^{2}}{4}$$

$$\frac{1}{T} \int_{0}^{T} f^{2}(t) dt = c_{0}^{2} + \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \frac{a_{n}^{2} + jb_{n}^{2}}{4}$$

$$= c_{0}^{2} + \frac{1}{4} \sum_{n=-\infty}^{\infty} (a_{n}^{2} + jb_{n}^{2}) + \frac{1}{4} \sum_{n=-\infty}^{\infty} (a_{n}^{2} + jb_{n}^{2})$$

Cambiando n por -n:

$$\frac{1}{T} \int_0^T f^2(t) \, dt = c_0^2 + \frac{1}{4} \sum_{n=1}^{\infty} (a_n^2 + j b_n^2) + \frac{1}{4} \sum_{-n=-1}^{-\infty} (a_{(-n)}^2 + j b_{(-n)}^2)$$

Sabiendo que:

$$a_n^2 = a_{(-n)}^2$$

$$(-b_n)^2 = b_n^2$$

$$\frac{1}{T} \int_0^T f^2(t) dt = c_0^2 + \frac{1}{4} \sum_{n=1}^\infty (a_n^2 + jb_n^2) + \frac{1}{4} \sum_{n=1}^\infty (a_n^2 + jb_n^2)$$

$$= c_0^2 + \frac{1}{2} \sum_{n=1}^\infty (a_n^2 + jb_n^2)$$

$$\frac{1}{T} \int_0^T f^2(t) dt = c_0^2 + \frac{1}{2} \sum_{n=1}^\infty (a_n^2 + jb_n^2)$$
(3.30)

Capítulo 4

Transformada de *Fourier*

4.1. Integrales de Fourier

Cuando f(t) es periódica tiene la siguiente representación (forma compleja):

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_0 t}$$

Donde:

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\omega_0 t} dt$$

Si $T \to \infty$, entonces $\omega_0 \to 0$, y la función deja de ser periódica.

$$f(t) = \sum_{n = -\infty}^{\infty} \left[\frac{1}{T} \int_{-T/2}^{T/2} f(\tau) e^{-jn\omega_0 \tau} d\tau \right] e^{jn\omega_0 t}$$

$$1 \quad \omega_0$$

$$\frac{1}{T} = \frac{\omega_0}{2\pi}$$

$$f(t) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[\int_{-T/2}^{T/2} f(\tau) e^{-jn\omega_0 \tau} d\tau \right] e^{jn\omega_0 t} \omega_0$$

$$\omega_0 = d\omega$$

$$n\omega_0 = \omega$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau) e^{-j\omega\tau} d\tau \right] e^{j\omega t} d\omega$$
(4.1)

Se define como transformada de Fourier:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$
 (4.2)

Se define como transformada inversa de Fourier:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$
 (4.3)

4.2. Transformada de Fourier

Dada una función f(t) se define la transformada de *Fourier*:

$$\mathcal{F}\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$
 (4.4)

Donde: f(t) es una función no periódica.

La transformada de *Fourier* convierte una función del dominio del tiempo (t) al dominio de la frecuencia (ω) la cual será una variable continua.

Para $f(t) \in \mathbb{R}$:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} f(t) [\cos(\omega t) - j \sin(\omega t)] dt$$

$$= \int_{-\infty}^{\infty} f(t) \cos(\omega t) dt - j \int_{-\infty}^{\infty} f(t) \sin(\omega t) dt$$

$$= R(\omega) + jX(\omega)$$

$$R(\omega) = \int_{-\infty}^{\infty} f(t) \cos(\omega t) dt$$

$$X(\omega) = -\int_{-\infty}^{\infty} f(t) \sin(\omega t) dt$$

La parte real $R(\omega)$ es una función par:

$$R(-\omega) = R(\omega)$$

La parte imaginaria $X(\omega)$ es una función impar:

$$X(-\omega) = -X(\omega)$$

Por tanto:

Si f(t) es par, entonces $X(\omega) = 0$.

Si f(t) es impar, entonces $R(\omega) = 0$.

4.3. Espectros continuos de frecuencia

$$F(\omega) = R(\omega) + jX(\omega)$$

Modulo:

$$|F(\omega)| = \sqrt{R^2(\omega) + X^2(\omega)}$$

Argumento:

$$\theta(\omega) = \arctan\left(\frac{X(\omega)}{R(\omega)}\right)$$

Ejemplo 1: Hallar $F(\omega)$ de la función y graficar los espectros.

$$f(t) = u(t+a) - u(t-a)$$

$$F(\omega) = \int_{-a}^{a} 1 e^{-j\omega t} dt$$

$$= \frac{e^{-j\omega t}}{-j\omega} \Big|_{-a}^{a}$$

$$= \frac{e^{-ja\omega} - e^{ja\omega}}{-j\omega}$$

$$= \frac{-2j \operatorname{sen}(a\omega)}{-j\omega}$$

$$= \frac{2 \operatorname{sen}(a\omega)}{\omega}$$

$$\mathcal{F}\{u(t+a) - u(t-a)\} = \frac{2\operatorname{sen}(a\omega)}{\omega}$$

$$|F(\omega)| = |\frac{2\operatorname{sen}(a\omega)}{\omega}|$$
(4.5)

Para $\omega = 0$, existe una discontinuidad:

$$\lim_{\omega \to 0} \left(\frac{2 \operatorname{sen}(a\omega)}{\omega} \right) = 2a$$

Transformadas e Integrales

4.4. Propiedades de la transformada de Fourier

4.4.1. Linealidad

$$\mathcal{F}\{a_1 f_1(t) + a_2 f_2(t)\} = a_1 F_1(\omega) + a_2 F_2(\omega) \tag{4.6}$$

Donde:

$$F_1(\omega) = \mathcal{F}\{f_1(t)\}$$

$$F_2(\omega) = \mathcal{F}\{f_2(t)\}\$$

4.4.2. Cambio de escala

Si:
$$\mathcal{F}\{f(t)\}=F(\omega)$$
:
$$\mathcal{F}\{f(at)\}=\frac{1}{|a|}F\left(\frac{\omega}{a}\right) \tag{4.7}$$

Prueba:

$$\mathcal{F}\{f(at)\} = \int_{-\infty}^{\infty} f(at) e^{-j\omega t} dt$$

Realizando un cambio de variable:

$$\tau = at$$

$$d\tau = a dt$$

Para a > 0:

$$\mathcal{F}\{f(at)\} = \int_{-\infty}^{\infty} f(\tau) e^{-j\omega \frac{\tau}{a}} \frac{d\tau}{a}$$
$$= \frac{1}{a} \int_{-\infty}^{\infty} f(\tau) e^{-j\omega \frac{\tau}{a}} d\tau$$
$$= \frac{1}{a} F\left(\frac{\omega}{a}\right)$$

Para a < 0:

$$\mathcal{F}\{f(at)\} = \int_{-\infty}^{\infty} f(\tau) e^{-j\omega\frac{\tau}{a}} \frac{d\tau}{a}$$
$$= -\frac{1}{a} \int_{-\infty}^{\infty} f(\tau) e^{-j\omega\frac{\tau}{a}} d\tau$$
$$= -\frac{1}{a} F\left(\frac{\omega}{a}\right)$$

4.4.3. Desplazamiento en ω

Si:
$$\mathcal{F}\{f(t)\} = F(\omega)$$
:
$$\mathcal{F}\{f(t) e^{jat}\} = F(\omega - a) \tag{4.8}$$

Prueba:

$$\mathcal{F}\{f(t) e^{jat}\} = \int_{-\infty}^{\infty} f(t) e^{jat} e^{-j\omega t} dt$$
$$= \int_{-\infty}^{\infty} f(t) e^{-j(\omega - a)t} dt$$
$$= F(\omega - a)$$

4.4.4. Desplazamiento en t

Si:
$$\mathcal{F}\{f(t)\} = F(\omega)$$
:
$$\mathcal{F}\{f(t-a)\} = F(\omega) \, e^{-ja\omega} \tag{4.9}$$

Prueba:

$$\mathcal{F}\{f(t-a)\} = \int_{-\infty}^{\infty} f(t-a) e^{-j\omega t} dt$$

Realizando un cambio de variable:

$$\tau = t - a$$
$$d\tau = dt$$

$$\mathcal{F}\{f(t-a)\} = \int_{-\infty}^{\infty} f(\tau) e^{-j\omega(\tau+a)} dt$$
$$= e^{-ja\omega} \int_{-\infty}^{\infty} f(\tau) e^{-j\omega\tau} d\tau$$
$$= e^{-ja\omega} F(\omega)$$

4.4.5. Simetría

Si:
$$\mathcal{F}\{f(t)\} = F(\omega)$$
:
$$\mathcal{F}\{F(t)\} = 2\pi f(-\omega) \tag{4.10}$$

Prueba:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Reemplazando:

$$t \to -\omega$$
$$\omega \to t$$

$$f(-\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(t) e^{jt(-\omega)} dt$$
$$= \frac{1}{2\pi} \mathcal{F}\{F(t)\}$$
$$2\pi f(-\omega) = \mathcal{F}\{F(t)\}$$

Ejemplo 2: Hallar $\mathcal{F}\{\frac{\operatorname{sen}(at)}{t}\}$ Sabiendo que:

$$\mathcal{F}\{u(t+a) - u(t-a)\} = \frac{2\operatorname{sen}(a\omega)}{\omega}$$

$$\mathcal{F}\{\frac{2\operatorname{sen}(at)}{t}\} = 2\pi(u(t+a) - u(t-a))$$

$$\mathcal{F}\{\frac{\operatorname{sen}(at)}{t}\} = \pi(u(t+a) - u(t-a))$$
(4.11)

4.4.6. Multiplicación por t

Si:
$$\mathcal{F}\{f(t)\} = F(\omega)$$
:

$$\mathcal{F}\{t\,f(t)\} = j\frac{dF(\omega)}{d\omega}$$

En general:

$$\mathcal{F}\{t^n f(t)\} = j^n \frac{d^{(n)} F(\omega)}{d\omega^n}; \quad n \in \mathbb{N}$$
 (4.12)

Prueba:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

$$\frac{dF(\omega)}{d\omega} = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} (-jt) dt$$

$$= -j \int_{-\infty}^{\infty} t f(t) e^{-j\omega t} dt$$

$$= -j \mathcal{F}\{t f(t)\}$$

$$j \frac{dF(\omega)}{d\omega} = \mathcal{F}\{t f(t)\}$$

$$\mathcal{F}\{t^2 f(t)\} = \mathcal{F}\{t t f(t)\}$$

$$= j \frac{d}{d\omega} \left(\mathcal{F}\{t f(t)\}\right)$$

$$= j \frac{d}{d\omega} \left(j \frac{dF(\omega)}{d\omega}\right)$$

$$= j^2 \frac{d^2 F(\omega)}{d\omega^2}$$

$$\mathcal{F}\{t^n f(t)\} = j^n \frac{d^n F(\omega)}{d\omega^n}$$

Ejemplo 3: Hallar $\mathcal{F}\{t^ne^{-at}u(t)\}; n \in \mathbb{N}$

Para n=1:

$$\mathcal{F}\{t e^{-at}u(t)\} = j\frac{d}{d\omega} \left(\frac{1}{a+j\omega}\right)$$
$$= (j)(-1)(a+j\omega)^{-2}(j)$$
$$= \frac{1}{(a+j\omega)^2}$$

Para n=2:

$$\begin{split} \mathcal{F}\{t^2 \, e^{-at} u(t)\} &= j \frac{d}{d\omega} \left(\frac{1}{(a+j\omega)^2} \right) \\ &= (j)(-2)(a+j\omega)^{-3}(j) \\ &= \frac{2}{(a+j\omega)^3} \end{split}$$

Para n=3:

$$\mathcal{F}\lbrace t^3 e^{-at} u(t) \rbrace = j \frac{d}{d\omega} \left(\frac{2}{(a+j\omega)^3} \right)$$
$$= (j)(2)(-3)(a+j\omega)^{-4}(j)$$
$$= \frac{6}{(a+j\omega)^4}$$

Por tanto:

$$\mathcal{F}\{t^n e^{-at} u(t)\} = \frac{n!}{(a+j\omega)^{n+1}}$$
(4.13)

4.4.7. Transformada de Fourier de una derivada

Si:
$$\mathcal{F}{f(t)} = F(\omega)$$
:

$$\mathcal{F}\{f'(t)\} = j\omega F(\omega)$$

En general:

$$\mathcal{F}\{f^{(n)}(t)\} = (j\omega)^n F(\omega) \quad n \in \mathbb{N}$$
(4.14)

Prueba:

$$\mathcal{F}\{f'(t)\} = \int_{-\infty}^{\infty} f'(t) e^{-j\omega t} dt$$

Realizando la integración por partes:

$$u = e^{-j\omega t}$$

$$du = -j\omega e^{-j\omega t} dt$$

$$dv = f'(t) dt$$

$$v = f(t)$$

$$\mathcal{F}\{f'(t)\} = \left(f(t) e^{-j\omega t} \middle|_{-\infty}^{\infty}\right) - \int_{-\infty}^{\infty} f(t) (-j\omega e^{-j\omega t}) dt$$

Asumiendo $f(\pm \infty) = 0$:

$$\mathcal{F}\{f'(t)\} = j\omega \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$
$$= j\omega F(\omega)$$

Para la segunda derivada:

$$\mathcal{F}\{f''(t)\} = \mathcal{F}\{(f'(t))'\}$$
$$= j\omega \,\mathcal{F}\{f'(t)\}$$
$$= j\omega(j\omega \,F(\omega))$$
$$= (j\omega)^2 \,F(\omega)$$

Por tanto:

$$\mathcal{F}\{f^{(n)}(t)\} = (j\omega)^n F(\omega)$$

4.5. Transformadas de Fourier especiales

4.5.1.
$$e^{-at} u(t); \quad a > 0$$

$$\mathcal{F}\{e^{-at}\,u(t)\}; a>0$$

$$\mathcal{F}\lbrace e^{-at} u(t) \rbrace = \int_0^\infty e^{-at} e^{-j\omega t} dt$$

$$= \int_0^\infty e^{-(a+j\omega)t} dt$$

$$= \frac{e^{-(a+j\omega)t}}{-(a+j\omega)} \Big|_0^\infty$$

$$= \frac{0-1}{-(a+j\omega)}$$

$$= \frac{1}{a+j\omega}$$

$$\mathcal{F}\lbrace e^{-at} u(t) \rbrace = \frac{1}{a+j\omega}$$
(4.15)

4.5.2. $e^{at} u(-t); \quad a > 0$

$$\mathcal{F}\lbrace e^{at} u(-t)\rbrace; a > 0$$

$$\mathcal{F}\lbrace e^{at} u(t)\rbrace = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt$$

$$= \int_{-\infty}^{0} e^{(a-j\omega)t} dt$$

$$= \frac{e^{(a-j\omega)t}}{a-j\omega} \Big|_{-\infty}^{0}$$

$$= \frac{1}{a-j\omega}$$

$$\mathcal{F}\lbrace e^{at} u(-t)\rbrace = \frac{1}{a-j\omega}$$
(4.16)

4.5.3. $e^{-a|t|}$

$$\mathcal{F}\lbrace e^{-a|t|}\rbrace$$

$$\mathcal{F}\lbrace e^{-a|t|}\rbrace = \mathcal{F}\lbrace e^{at}u(-t) + e^{-at}u(t)\rbrace$$

$$= \frac{1}{a - j\omega} + \frac{1}{a + j\omega}$$

$$= \frac{a + j\omega + a - j\omega}{(a - j\omega)(a + j\omega)}$$

$$= \frac{2a}{a^2 + \omega^2}$$

$$\mathcal{F}\lbrace e^{-a|t|}\rbrace = \frac{2a}{a^2 + \omega^2}$$
(4.17)

4.5.4. $\delta(t-t_0)$

$$\mathcal{F}\{\delta(t-t_0)\}$$

$$\mathcal{F}\{\delta(t-t_0)\} = \int_{-\infty}^{0} \delta(t-t_0) e^{-j\omega t} dt$$

$$= e^{-j\omega t_0}$$

$$\mathcal{F}\{\delta(t-t_0)\} = e^{-j\omega t_0}$$
(4.18)

En particular:

$$\mathcal{F}\{\delta(t)\} = 1$$

4.5.5. e^{jat}

Sabiendo:

$$\mathcal{F}\{\delta(t-a)\} = e^{-ja\omega}$$

Aplicando la propiedad de simetría:

$$\mathcal{F}\{e^{-jat}\} = 2\pi\delta(-\omega - a)$$

$$\mathcal{F}\{e^{jat}\} = 2\pi\delta(-\omega + a)$$

$$= 2\pi\delta(-(\omega - a))$$

$$= 2\pi\delta(\omega - a)$$

$$\mathcal{F}\{e^{jat}\} = 2\pi\delta(\omega - a)$$
(4.19)

En particular:

$$\mathcal{F}\{1\} = 2\pi\delta(\omega)$$
$$\mathcal{F}\{k\} = 2\pi k\delta(\omega)$$

4.5.6. sen(at)

$$\mathcal{F}\{\operatorname{sen}(at)\} = \mathcal{F}\{\frac{e^{jat} - e^{-jat}}{2j}\}$$

$$= \frac{1}{2j} (2\pi\delta(\omega - a) - 2\pi\delta(\omega + a))$$

$$= -j\pi(\delta(\omega - a) - \delta(\omega + a))$$

$$\mathcal{F}\{\operatorname{sen}(at)\} = j\pi(\delta(\omega + a) + \delta(\omega - a))$$
(4.20)

4.5.7. $\cos(at)$

$$\mathcal{F}\{\cos(at)\} = \mathcal{F}\left\{\frac{e^{jat} + e^{-jat}}{2}\right\}$$

$$= \frac{1}{2} \left(2\pi\delta(\omega - a) + 2\pi\delta(\omega + a)\right)$$

$$= \pi(\delta(\omega + a) + \delta(\omega - a))$$

$$\mathcal{F}\{\cos(at)\} = \pi(\delta(\omega + a) + \delta(\omega - a))$$
(4.21)

4.5.8. u(t)

$$u(t) + u(-t) = 1$$

$$\mathcal{F}\{u(t) + u(-t)\} = \mathcal{F}\{1\}$$

Considerando:

$$\mathcal{F}\{u(t)\} = F(\omega)$$
$$\mathcal{F}\{u(-t)\} = F(-\omega)$$

Por tanto:

$$F(\omega) + F(-\omega) = 2\pi\delta(\omega)$$

Se asume que la transformada de *Fourier* de la función escalón tendrá un termino impulsivo:

$$F(\omega) = \beta(\omega) + k\delta(\omega)$$
$$F(-\omega) = \beta(-\omega) + k\delta(\omega)$$
$$F(\omega) + F(-\omega) = \beta(\omega) + \beta(-\omega) + 2k\delta(\omega)$$

Reemplazando:

$$\beta(\omega) + \beta(-\omega) + 2k\delta(\omega) = 2\pi\delta(\omega)$$

Por tanto:

$$k = \pi$$

Resultando:

$$F(\omega) = \beta(\omega) + \pi \delta(\omega)$$

Por otro lado, se sabe que:

$$u'(t) = \delta(t)$$

$$\mathcal{F}\{u'(t)\} = \mathcal{F}\{\delta(t)\}$$

$$j\omega\mathcal{F}\{u(t)\} = 1$$

$$j\omega(\beta(\omega) + \pi\delta(\omega)) = 1$$

$$j\omega\beta(\omega) + j\pi\omega\delta(\omega) = 1$$

$$j\omega\beta(\omega) = 1$$

$$\beta(\omega) = \frac{1}{j\omega}$$

$$\mathcal{F}\{u(t)\} = \frac{1}{j\omega} + \pi\delta(\omega)$$
 (4.22)

4.6. La función signo

Esta función puede representarse también como:

$$sgn(t) = \frac{|t|}{t}$$
$$sgn(t) = -1 + 2u(t)$$

A partir de la definición de la función de valor absoluto:

$$|t| = \begin{cases} -t & t < 0 \\ t & t > 0 \end{cases}$$

Es posible calcular la derivada del valor absoluto:

$$|t|' = \begin{cases} -1 & t < 0\\ 1 & t > 0 \end{cases}$$

Por tanto:

$$|t|' = sgn(t) \tag{4.24}$$

Cuya derivada es:

$$sgn'(t) = 2\delta(t) \tag{4.25}$$

Calculando su transformada de Fourier:

$$\mathcal{F}\{sgn(t)\} = \mathcal{F}\{-1 + 2u(t)\}$$

$$= -2\pi\delta(\omega) + 2\left(\frac{1}{j\omega} + \pi\delta(\omega)\right)$$

$$= -2\pi\delta(\omega) + 2\left(\frac{1}{j\omega}\right) + 2\pi\delta(\omega)$$

$$= \frac{2}{j\omega}$$

$$\mathcal{F}\{sgn(t)\} = \frac{2}{j\omega}$$
(4.26)

4.6.1. Transformada de *Fourier* de |t|

$$\mathcal{F}\{|t|'\} = \mathcal{F}\{sgn(t)\}$$

$$j\omega\mathcal{F}\{|t|\} = \frac{2}{j\omega}$$

$$\mathcal{F}\{|t|\} = -\frac{2}{j\omega^2}$$
 (4.27)

4.6.2. Transformada de *Fourier* de 1/t

$$\mathcal{F}\{sgn(t)\} = \frac{2}{j\omega}$$

Por simetría:

$$\mathcal{F}\left\{\frac{2}{jt}\right\} = 2\pi \, sgn(-\omega)$$

$$\mathcal{F}\left\{\frac{1}{t}\right\} = -j\pi \, sgn(-\omega)$$
 (4.28)

Calculando la segunda derivada:

$$\left(\frac{1}{t}\right)' = -\frac{1}{t^2}$$

$$\mathcal{F}\{-\frac{1}{t^2}\} = j\omega(-j\pi \, sgn(\omega))$$

$$\mathcal{F}\{-\frac{1}{t^2}\} = j^2\pi\omega \, sgn(\omega)$$

Calculando la derivada n-ésima:

$$\left(\frac{1}{t}\right)'' = \frac{2}{t^3}$$

$$\left(\frac{1}{t}\right)''' = -\frac{6}{t^4}$$

$$\left(\frac{1}{t}\right)^{(n)} = (-1)^k \frac{k!}{t^{k+1}}$$

$$\mathcal{F}\{f^{(k)}(t)\} = (-1)^k k! \,\mathcal{F}\{\frac{1}{t^{k+1}}\}$$

$$(j\omega)^k (-j\pi \, sgn(\omega)) = (-1)^k \, k! \,\mathcal{F}\{\frac{1}{t^{k+1}}\}$$

$$-j^{k+1}\pi\omega^k \, sgn(\omega) = (-1)^k \, k! \,\mathcal{F}\{\frac{1}{t^{k+1}}\}$$

$$-j^n\pi\omega^{n-1} \, sgn(\omega) = (-1)^{n-1} \, (n-1)! \,\mathcal{F}\{\frac{1}{t^n}\}$$

$$-j^n\pi\omega^{n-1} \, sgn(\omega) = (-1)^n (-1)^{-1} (n-1)! \,\mathcal{F}\{\frac{1}{t^n}\}$$

$$\mathcal{F}\{\frac{1}{t^n}\} = \frac{j^n\pi\omega^{n-1} \, sgn(\omega)}{(-1)^n (n-1)!}$$
(4.29)

4.7. Tabla de transformadas de *Fourier* conocidas

	f(t)	$F(\omega) = \mathcal{F}\{f(t)\}$
1	u(t+a) - u(t-a)	$\frac{2\operatorname{sen}(a\omega)}{\omega}$
2	$\frac{\operatorname{sen}(at)}{t}$	$\pi[u(\omega+a)-u(\omega-a)]$
3	$e^{-at}u(t)$ $a>0$	$\frac{1}{a+j\omega}$
4	$e^{at} u(-t) a > 0$	
5	$e^{-a t } a > 0$	$\frac{\overline{a-j\omega}}{\frac{2a}{a^2+\omega^2}}$
6	$\frac{1}{t^2 + a^2}$	$\frac{\pi}{a}e^{-a \omega }$
7	$\delta(t-a)$	$e^{-ja\omega}$
8	e^{jat}	$2\pi\delta(\omega-a)$
9	k	$2\pi k\delta(\omega)$
10	sen(at)	$j\omega[\delta(\omega+a)-\delta(\omega-a)]$
11	$\cos(at)$	$\pi[\delta(\omega+a)+\delta(\omega-a)]$
12	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}} n \in \mathbb{N}$ $\frac{1}{j\omega} + \pi\delta(\omega)$
13	u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$
14	sgn(t)	$\frac{2}{j\omega}_2$
15	t	$-\frac{2}{\omega^2}$
16	$\frac{1}{t}$	$-j\pisgn(\omega)$
17	$\frac{1}{t}$ $\frac{1}{t^n}$	$\frac{j^n\pi\omega^{n-1}sgn(\omega)}{(-1)^n(n-1)!}$