You got this!

Conditional Expectations and Random Sum

- $\mathbb{P}[X = x] = \sum_{i} \mathbb{P}[X = x | Y = i] \mathbb{P}[Y = i]$
- $f_X(x) = \sum_i f_{X|N}(x|n) \mathbb{P}[N=n]$
 - $\mathbb{E}[X] = \sum_{i} \mathbb{E}[X|Y] \mathbb{P}[Y = i]$
 - $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]]$
 - $Var[X] = Var[\mathbb{E}[X|Y]] + \mathbb{E}[Var[X|Y]]$
- $\mathbb{P}[\bigcup_i A_i] \leq \sum_i \mathbb{P}[A_i]$
- Let $S = \sum_{i=1}^{N} X_i$ where N, X_i independent, then $\mathbb{E}[S] = \mathbb{E}[N]\mathbb{E}[X_i]$
 - If X, Y independent and Z = X + Y, then $f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$

Random Walk

- [Stirling] $n! \sim n^n e^{-n} \sqrt{2\pi n}$
- $[\mathbb{Z}^1] P_{0,0}^{(2n)} = {2n \choose n} p^n q^n \sim \frac{(4pq)^n}{\sqrt{\pi n}}$ Only recurrent when p = q =
- $[\mathbb{Z}^2] P_{0,0}^{(2n)} = {2n \choose n} p^n q^n \sim \frac{(4pq)^n}{\sqrt{\pi n}}$ Only recurrent when symmetric
- $[\mathbb{Z}^3]$ All transient

Gambler's Ruin

- $[p = q = \frac{1}{2}] \mathbb{P}[X_T = 0 | X_0 = k] = \frac{N-k}{N}$
- $\mathbb{E}[T|X_0 = k] = k(N k)$
- $[p \neq \frac{1}{2}] \mathbb{P}[X_T = 0 | X_0 = i] = \left(\frac{q}{p}\right)^k \frac{1 \left(\frac{q}{p}\right)^{N-k}}{1 \left(\frac{q}{p}\right)^N}$

Final Checks and Last Resorts

- Check you modelled the problem correctly
- Return what the problem asked for
- First-step and previous-step analysis
- Understand dynamics of MC first
- Method of differences
- GFs: go back to first principle
- If have time, rigorously prove MC with limits

Branching Process and Generating Functions

- $X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}$ with $X_0 = 1$
- $\mathbb{E}[X_{n+1}] = \mu \mathbb{E}[X_n]$ where $\mu = \mathbb{E}[\xi]$
- $\mathbb{E}[X_n] = \mu^n$
- $Var[X_{n+1}] = \sigma^{2} \mathbb{E}[X_{n}] + \mu^{2} Var[X_{n}]$ $Var[X_{n}] = \begin{cases} \sigma^{2}n, \ \mu = 1 \\ \sigma^{2}\mu^{n-1} \frac{1-\mu^{n}}{1-\mu}, \ \mu \neq 1 \end{cases}$
- [Time of Extinction] $N = \min\{n|X_n = 0\}$
- [Extinction Probability] $u_n = \mathbb{P}[N \le n] =$ $\mathbb{P}[X_n = 0]$ i.e. $u_0 = 0$, $u_1 = p_0$
- $0 \le u_n \le u_{n+1} \le 1 \ \forall n \ (monotonicity)$
- $u_n = \sum_{k=0}^{\infty} p_k (u_{n-1})^k = \phi_{\xi}(u_{n-1})$
- u_{∞} is the smallest solution to $u=\phi_{\xi}(u)$
- $\phi_{X_{n+1}}(s) = \phi_{X_n} \left(\phi_{\xi}(s) \right)$
- If $\phi_{X_0}(s) = s$, $\phi_{X_n}(s) = \phi_{\xi}^n(s)$
- [Pure Death Process] $\phi_{\xi}(s) = (1-p) +$ $ps; \phi_{X_n}(s) = 1 - p^n + p^n s$
- [Time of extinction] $\mathbb{P}[T = n | X_0 = k] =$ $\mathbb{P}[X_n = 0 | X_0 = k] - \mathbb{P}[X_{n-1} = 0 | X_0 = k] =$ $\phi_{X_n}(0) - \phi_{X_{n-1}}(0)$

Case	Result	Remarks
$\mu < 1$	$u_{\infty}=1$	1 is sole fixed point
$\mu = 1$, $\sigma^2 = 0$	$u_{\infty}=0$	Self-regeneration
$\mu = 1, \sigma^2 > 0$	$u_{\infty}=1$	$\phi_{\xi}^{\prime\prime}(1) > 0$
$\mu > 1$	$u_{\infty} < 1$	$\phi'_{\xi}(1) = \mu > 1$

- $\phi_X(s) = \mathbb{E}[s^X] = \sum_{x=0}^{\infty} s^x \mathbb{P}[X = x]; s \in [0,1]$
- $\phi_X(0) = \mathbb{P}[X = 0], \, \phi_X(1) = 1$
- $\mathbb{P}[X = k] = \frac{1}{k!} \phi_X^{(k)}(0)$
- If $X = \xi_1 + \dots + \xi_n$ and ξ_i are independent, then $\phi_X(s) = \prod_{i=1}^n \phi_{\xi_i}(s)$
- $\phi_X'(1) = \mathbb{E}[X]$
- $\phi_X^{"}(1) = \mathbb{E}[X^2] \mathbb{E}[X]$
- $Var[X] = \phi_X''(1) + \phi_X'(1) (\phi_X'(1))^2$
- If $X = \sum_{i=1}^{N} \xi_i$, then $\phi_X(s) = \phi_N(\phi_{\xi}(s))$
- One-to-one correspondence with PMF

Markov Chain (Definitions)

- [Regularity] P regular if $\exists n$ s.t. $P_{i,j}^n > 0 \ \forall i,j$
- [Stationary Distribution] π s.t. $\pi P = \pi$
- [Limiting Distribution] $\lim \tau P^n = \pi \ \forall \tau$
- [Accessible] $i \rightarrow j \Rightarrow \exists n > 0 \text{ s.t. } P_{i,i}^{(n)} > 0$

Markov Chain (Theorems)

- Period and recurrence/transience are class properties i.e. $i \leftrightarrow j \Rightarrow d(i) = d(j)$
- $\exists N \text{ s.t. } \forall n > N, P_{ii}^{(nd(i))} > 0$

- [Communicate] $i \leftrightarrow j \Leftrightarrow i \to j, j \to i$
- [Irreducible] $\forall i, j \in S, \exists n \text{ s.t. } P_{i,j}^{(n)} > 0$
- [Period] $d(i) = \gcd\{n|P_{ii}^{(n)} > 0\}$
 - $\quad \text{o} \quad \text{If } P_{ii}^{(n)} = 0 \; \forall n \text{, define } d(i) = 0.$
 - o [Aperiodic] d(i) = 1
- [Probability of return in n steps $f_{i,i}^{(n)}$] $f_{i,i}^{(n)} \coloneqq \mathbb{P}[X_n = i, X_{n-1} \neq i, \dots, X_1 \neq i | X_0 = i]$
- [Probability of return $f_{i,i}$]

$$f_{i,i} = \sum_{k=0}^{\infty} f_{i,i}^{(k)}$$

- [Recurrent] State i recurrent $\Leftrightarrow f_{i,i} = 1$
 - $\circ \iff \mathbb{P}[R_i < \infty | X_0 = i] = 1$
 - $\circ \iff \sum_{m=0}^{\infty} P_{i,i}^{(m)} = \infty$
 - $0 \iff \lim_{m \to \infty} \prod_{j=0}^{m} \left(1 P_{i,i}^{(j)} \right) = 0$
- [Transient] State i transient $\Leftrightarrow f_{i,i} < 1$
 - $\circ \iff \mathbb{P}[R_i < \infty | X_0 = i] < 1$
 - $\circ \iff \sum_{m=0}^{\infty} P_{i,i}^{(m)} < \infty$
 - $\circ \iff \lim_{m \to \infty} \prod_{j=0}^{m} \left(1 P_{i,i}^{(j)} \right) > 0$
- $R_i = \min\{n > 0 | X_n = i\}$
- $m_i = \mathbb{E}[R_i|X_0 = i]$
- [Positive Recurrent] $m_i < \infty$
- [Null Recurrent] $m_i = \infty$
- M_i is number of visits to state i
- $M_i = \sum_{k=1}^{\infty} \mathbb{1}\{X_k = i\}$
- $\mathbb{E}[M_i|X_0=i] = \sum_{k=1}^{\infty} \left(f_{i,i}\right)^k$

- [Finite] Regular finite MC have unique limiting distribution.
- [Infinite/Mean Return Time] Let $(X_n)_{n\geq 0}$ be an irreducible aperiodic recurrent MC, then $\lim_{n\to\infty}P_{ii}^{(n)}=\frac{1}{m_i}$ and $\lim_{n\to\infty}P_{ji}^{(n)}=\frac{1}{m_i}$
- [Infinite/Limiting] In an irreducible, aperiodic, positive recurrent MC, \exists unique limiting distribution π (satisfying $\pi P = \pi$)
- [Infinite/Positive] In a positive recurrent aperiodic class, $\lim_{n\to\infty}P_{jj}^{(n)}=\pi_j=\sum_{i=0}^\infty\pi_iP_{ij}$ and π is uniquely determined by the equations $\pi_i\geq 0$, $\sum_{i=0}^\infty\pi_i=1$ and $\pi_j=\sum_{i=0}^\infty\pi_iP_{ij}$
- [Infinite/Transient] In an irreducible, aperiodic, transient MC, $\lim_{n\to\infty} \mathbb{P}[X_n = j | X_0 = i] = 0 \ \forall i,j$
- [Infinite/Null] In an irreducible, aperiodic, null recurrent MC, $\lim_{n\to\infty} \mathbb{P}[X_n = j | X_0 = i] = 0 \ \forall i,j$
- [Infinite/Periodic] In an irreducible, periodic MC with period d, $P^m_{i,i}=0$ if $d\nmid m$. Else, $\lim_{n\to\infty}P^{nd}_{i,i}=\frac{d}{m_i}$