3

microstructure.

WHAT IS CLAIMED IS:

1	1 1. An alloy carbon steel comprising	g iron and a maximum of 0.35% by			
2	2 weight of carbon, said alloy carbon steel having a triple	weight of carbon, said alloy carbon steel having a triple-phase microstructure comprising			
3	3 ferrite crystals fused with martensite-austenite crystals,	ferrite crystals fused with martensite-austenite crystals, said martensite-austenite crystals			
4	comprising laths of martensite alternating with thin films of austenite.				
1	1 2. An alloy carbon steel in accordan	nce with claim 1 in which said			
2	2 martensite-austenite crystals are devoid of carbide prec	martensite-austenite crystals are devoid of carbide precipitates at interfaces between			
3	3 phases.				
1	1 3. An alloy carbon steel in accordan	nce with claim 1 in which			
2	martensite-austenite crystals constitute from about 5% to about 95% by weight of said				
3	triple-phase microstructure.				
1	1 4. An alloy carbon steel in accordan	nce with claim 1 in which said			
2	2 martensite-austenite crystals constitute from about 15%	martensite-austenite crystals constitute from about 15% to about 60% by weight of said			
3	triple-phase microstructure.				
1	1 5. An alloy carbon steel in accordan	nce with claim 1 in which said			
2	2 martensite-austenite crystals constitute from about 20%	martensite-austenite crystals constitute from about 20% to about 40% by weight of said			
3	triple-phase microstructure.				
1	1 6. An alloy carbon steel in accordan	nce with claim 1 in which said			
2	carbon constitutes from about 0.01% to about 0.35% by weight of said triple-phase				
3	3 microstructure.				
1	1 7. An alloy carbon steel in accordan	nce with claim 1 in which said			
2	carbon constitutes from about 0.03% to about 0.3% by weight of said triple-phase				
3	3 microstructure.				
1	1 8. An alloy carbon steel in accordan	nce with claim 1 in which said			
2	2 carbon constitutes from about 0.05% to about 0.2% by	weight of said triple-phase			

15

1	9.	An alloy carbon steel in accordance with claim 1 further	
2	comprising silicon at a concentration of from about 0.1% to about 3% by weight of said		
3	alloy composition.		
1	10.	An alloy carbon steel in accordance with claim 1 further	
2	comprising silicon at a concentration of from about 1% to about 2.5% by weight of said		
3	alloy composition.		
1	11.	An alloy carbon steel in accordance with claim 1 in which said	
2	carbon constitutes from about 0.03% to about 0.3% by weight of said triple-phase		
3	microstructure, said alloy carbon steel further comprising silicon at a concentration of		
4	from about 0.1% to about 3% by weight of said alloy composition.		
1	12.	An alloy carbon steel in accordance with claim 1 in which said	
2	carbon constitutes from about 0.05% to about 0.2% by weight of said triple-phase		
3	microstructure, said alloy carbon steel further comprising silicon at a concentration of		
4	from about 1% to about 2.5% by weight of said alloy composition, and containing		
5	substantially no carbides.		
. 1	13.	A process for manufacturing a high-strength, corrosion-resistant	
2	2 tough alloy carbon steel, said process comprising:		
3	(a)	forming an alloy composition comprising iron and at least one	
4		alloying element comprising a maximum of about 0.35% by weight	
5		of carbon in proportions selected to provide said alloy composition	
6		with a martensite transition range having a martensite start	
7		temperature of at least about 300°C;	
8	(b)	heating said alloy composition to a temperature sufficiently high to	
9		cause austenitization thereof, under conditions causing said alloy	
10		composition to assume a homogeneous austenite phase with all	
11		alloying elements in solution;	
12	(c)	cooling said homogeneous austenite phase sufficiently to transform	
13		a portion of said austenite phase to ferrite crystals, thereby forming	
14		a two-phase microstructure comprising ferrite crystals fused with	

austenite crystals; and

16	(d)	cooling said two-phase microstructure through said martensite	
17		transition range under conditions causing conversion of said	
18		austenite crystals to a microstructure containing laths of martensite	
19		alternating with films of retained austenite.	
1	14.	A process in accordance with claim 13 in which step (d) comprises	
2	cooling said two-phase microstructure at a rate sufficiently fast to avoid the occurrence		
3	autotempering.		
1	15.	A process in accordance with claim 13 in which step (d) comprises	
2	cooling said two-phase	e microstructure by contact of said two-phase crystal structure with	
3	water.		
1	16.	A process in accordance with claim 13 in which step (c) comprises	
2	cooling said homogeneous austenite phase to a temperature of from about 750°C to about		
3	950°C.		
1	17.	A process in accordance with claim 13 in which step (c) comprises	
2	cooling said homogeneous austenite phase to a temperature of from about 775°C to about		
3	900°C.		
1	18.	A process in accordance with claim 13 in which said carbon	
2	constitutes from about	0.01% to about 0.35% by weight of said alloy composition.	
1	19.	A process in accordance with claim 13 in which said carbon	
2	constitutes from about	0.03% to about 0.3% by weight of said alloy composition.	
1	20.	A process in accordance with claim 13 in which said carbon	
2	constitutes from about	0.05% to about 0.2% by weight of said alloy composition.	
1	21.	A process in accordance with claim 13 in which said alloy	
2	composition further co	emprises silicon at a concentration of from about 0.1% to about 3%	
3	by weight.		
1	22.	A process in accordance with claim 13 in which said alloy	
2	composition further comprises silicon at a concentration of from about 1% to about 2.5%		
3	by weight.		