a)
$$P(c \cap 500k\bar{c}) = \frac{1}{60}$$
 b) $P(500k\bar{c}|c) = \frac{1}{18}$ c) $P(c|500k\bar{c}) = \frac{1}{10}$

of)
$$X$$
 doba céléni na SOOKE voucher $\sim Exp(\frac{1}{2}), f$:

$$f(x) = \frac{1}{2}e^{-\frac{x}{2}} \quad a \quad F(x) = 1 - e^{-\frac{x}{2}} \quad pro \quad x > 0$$

$$= 0 \qquad \qquad = 0 \qquad pro \quad x \leq 0$$

$$P(X \geq 4) = 1 - P(X \leq 4) = 1 - F(4) = 1 - (1 - e^{-\frac{x}{2}}) = e^{-\frac{x}{2}}$$

$$= \int_{4}^{2} \frac{1}{2}e^{-\frac{x}{2}} \, dx = \left[-e^{-\frac{x}{2}} \right]_{4}^{\infty} = 0 - (-e^{-\frac{x}{2}}) = e^{-\frac{x}{2}}$$

NEBO .

4 pood upletninjeh 500kë voucheri za 4 dny
$$\nu$$
 Po(2),
 t_j . $P(Y=k) = \frac{2k}{k!}e^{-2}$ pro $k=0,1,...$
 $P(Y=0) = \frac{2}{0!}e^{-2} = e^{-2}$

e) X. poud voucheri upletningch v selt. A nebo C prèd pronom v B Xr Geom (0,2), tj. P(X=k)=0,8 & 0,2 pro k=0,1,...

THERE
$$P(X \ge 4) = 1 - P(X \le 3) = 1 - \frac{3}{2} 98^{4}02 = 1 - (92 \cdot \frac{1 - 08^{4}}{1 - 98}) = 98^{4}$$

TNETSO:

Y poul voucheris uplatningch v sekt B mezi punimi Elizmi bouchery a Binom (4,0,2), to P(7=6)=(1)0,260,8 pro 6=0,1, 4

P(Y=0)=(4)0,20,84=0,84

β)
$$X$$
 pool concluse a hodness while nebosicolic uple laining ch in deep $Y = -11$
 $X \sim Po(2,5)$, $f_1 \sim P(X=L) = \frac{2.5}{L_1} e^{-2.5}$
 $Y \sim Po(0.5)$, $f_2 \sim P(Y=L) = \frac{0.5L}{L_1} e^{-2.5}$
 $Y \sim Po(0.5)$, $f_3 \sim P(Y=L) = \frac{0.5L}{L_1} e^{-2.5}$
 $P(X \leq 2, Y=0) = P(X \leq 2) \sim P(Y=0) = (\frac{2.5}{0.1} e^{-2.5} + \frac{2.5}{1.1} e^{-2.5} + \frac{2.5}{2.1} e^{-2.5}) \cdot \frac{9.5}{0.0} e^{-9.5}$

(3) X pool vouchers uple twin in $U \sim SUU \sim B$ musically $X \sim B$ moon $(10, 92)$, $f_3 \sim P(X=L) = (\frac{10}{0.0}) \cdot 0.2^{1.5} \cdot 0.2^{1.5} \cdot 0.2^{1.5}$
 $P(X \geq 3) = 1 - P(X \leq 2) - 1 - \left(\frac{10}{0.0} \cdot 0.2^{1.5} \cdot 0.2^$

d)
$$X \sim N(2,0,16)$$

 $P(X > 1,8) = P(\frac{X-2}{10,16} > \frac{1,8-2}{100}) = P(2 > \frac{1}{2}) = 1 - P(2 \le -\frac{1}{2}) = 1 - \phi(-\frac{1}{2}) = \frac{1}{2} \sim N(0,1)$
 $P(X > 1,8) = P(\frac{X-2}{1000} > \frac{1,8-2}{1000}) = P(2 > \frac{1}{2}) = 1 - P(2 \le -\frac{1}{2}) = 1 - \phi(-\frac{1}{2}) = \frac{1}{2} \sim N(0,1)$

Skenováno pomocí C

vino a) $H_0: p_m = p_{\bar{z}} = \frac{1}{2}$, kde p_m , resp $p_{\bar{z}}$, je $p_{\bar{z}}$, \bar{z} objectné muò, resp \bar{z} ene Ha: pm + pz Ad(x). husto te Ky rozolelem' $\frac{2 = 5\%}{2}$ $\chi^{2} = \frac{(60 - 50)^{2}}{27} + \frac{(40 - 50)^{2}}{577} = 4$ R1,095 = 3,84 =) Ho zamiléne ve prospich Ha no kladini 5% b) Ho: typ alko-nópoje a pohlar json mezáneli Ha: _ 11 ___ rejson _ 11 ___ L = 1% $\mathcal{N}^{2} = \frac{(40 - \frac{60.60}{100})^{2}}{(\frac{60.60}{100})^{1}} + \frac{(10 - 12)^{2}}{12} + \frac{(10 - 12)^{2}}{12} + \frac{(20 - 24)^{2}}{24} + \frac{(10 - 8)^{2}}{8} + \frac{(10 - 8)^{2}}{8} = \frac{(10 - 8)^{2}}{8} = \frac{(10 - 8)^{2}}{8} = \frac{(10 - 8)^{2}}{100} = \frac{(10 - 8)^{$ $=\frac{16}{26}+2.\frac{4}{12}+\frac{16}{29}+2.\frac{4}{8}=\frac{4}{9}+\frac{2}{3}+\frac{2}{3}+1=27$ of f(x). hustole to

=) Ho nesamitéme ve prospèch & ho hladini 1%

C)
$$A = \int_{B} \int_{A} \int_{A} \int_{B} \int_{A} \int_{$$

Skenováno pomocí C