Classmate

Date Page

LAB1 - Drawing Basic Circuits

21.07	OM- ETH Zürich - Sping 2020
1	Design a 4-bit Comparator circuit that was two 4-bit
	bigary inputs CA and B) and outputs a logic - 1 if both
	inputs are equal
->	A= A3 A2 A1 A0
	B=B, B, B, Bo
	EQ = 1 when (Ao == Bo) and (A=B,) and (A=B) and (A3==B
	A B FQ 0 0 1 01
	001011
	01 0 => XNOR Gate
	100
	111
	10 - (1
	A Bo
	Bi De FO
	A2 B2
	$A_3 \longrightarrow D_0$

2.	Design a	circuit	that	receives	out	1-bit inputs	A and B,
	and:						

- · Sets its first output (01) to 1 if A7B
- · sets the second output (02) to 1 if A=B
 - · Sets the third output (03) to 1 if AKB

AB	01	02	0.3	ditt	AA-1
00	0	1	0		AB
01	0	0	1 (A = of)	02 =	AOB
10				03 =	AB/
11	0	1	0		

3. Re-draw the schematic of part 2 with only 2-input NANDS

AOB = AB + AB

Applying DeMorgan's theorem,

AOG = AB·AB

reverse: $\overline{AB} \cdot \overline{AB}$

 $\overline{a} + \overline{5} = \overline{a} + \overline{5}$

: AB-AB = AB + AB = AB + AB

X

Hence redraining the circuit using only 2-input NANOS,

