Практические задания №4. Григорьев И.С. 6304

Задание №1

Дан набор данных:

Tid	Itemset
1	ACD
2	BCD
3	AC
4	ABD
5	ABCD
6	BCD

Найдите все минимальные генераторы для минимального уровня поддержки = 1.

sup	itemsets
5	C, D
4	A, B, BD, CD
3	AC, AD, BC, BCD
2	AB, ABD, ACD
1	ABC, ABCD

Множество является минимальным генератором, когда оно не имеет подмножеств с тем же уровнем поддержки.

ς: A, B, C, D, AB, AC, AD, BC, CD, ABC, ACD

Задание №2

Дана решетка наборов и их частоты.

1. Выпишите список всех закрытых наборов (closed itemsets).

Множество является замкнутым, когда оно не имеет надмножеств с тем же уровнем поддержки.

C: ABCD, ABC, ABD, ACD, AB, AC, AD, A

2. Является ли набор BCD выводимым? Является ли набор ABCD выводимым? Какие границы их поддержки?

sup (BCD)	≥ 0	Y = BCD
	$\leq \sup(BC) = 3$	Y = BC
	$\leq \sup(BD) = 2$	Y = BD
	$\leq \sup(CD) = 2$	Y = CD
	$\geq \sup(BC) + \sup(BD) - \sup(B) = 0$	Y = B
	$\geq \sup(BC) + \sup(CD) - \sup(C) = 1$	Y = C
	$\geq \sup(BD) + \sup(CD) - \sup(D) = 1$	Y = D
	$\leq \sup(BC) + \sup(BD)$	$Y = \emptyset$
	+ sup(CD)	
	$-\sup(B) - \sup(C) - \sup(D) + \sup(\emptyset)$	
	= 1	

$LB(BCD)=\{0,1\}, UB(BCD)=\{1,2,3\}$ $\max\{LB(BCD)\}=1, \min\{UB(BCD)\}=1=>$ набор выводим

sup (ABCD)	≥ 0	Y = ABCD
	$\leq \sup(ABC) = 3$	Y = ABC
	$\leq \sup(ABD) = 2$	Y = ABD
	$\leq \sup(ACD) = 2$	Y = ACD
	$\leq \sup(BCD) = 1$	Y = BCD
	$\geq \sup(ABC) + \sup(ABD) - \sup(AB) = 0$	Y = AB
	$\geq \sup(ABC) + \sup(ACD) - \sup(AC) = 1$	Y = AC
	$\geq \sup(ABD) + \sup(ACD) - \sup(AD) = 1$	Y = AD
	$\geq \sup(ABC) + \sup(BCD) - \sup(BC) = 1$	Y = BC
	$\geq \sup(ABD) + \sup(BCD) - \sup(BD) = 1$	Y = BD
	$\geq \sup(ACD) + \sup(BCD) - \sup(CD) = 1$	Y = CD
	$\leq \sup(ABC) + \sup(ABD) + \sup(ACD)$	Y = A
	$-\sup(AB)-\sup(AC)-\sup(AD)$	
	$+ \sup(A) = 1$	
	$\leq \sup(ABC) + \sup(ABD) + \sup(BCD)$	Y = B
	$-\sup(AB)-\sup(BC)-\sup(BD)$	
	$+ \sup(B) = 1$	
	$\leq \sup(ABC) + \sup(ACD) + \sup(BCD)$	Y = C
	$-\sup(AC)-\sup(BC)-\sup(CD)$	
	$+ \sup(C) = 1$	
	$\leq \sup(ABD) + \sup(ACD) + \sup(BCD)$	Y = D
	$-\sup(AD)-\sup(BD)-\sup(CD)$	
	$+ \sup(D) = 1$	

$$\leq \sup(ABC) + \sup(ABD) + \sup(ACD) + \sup(BCD) \qquad Y = \emptyset$$

$$- \sup(AB) - \sup(AC) - \sup(AC)$$

$$- \sup(BC) - \sup(BC)$$

$$- \sup(BD) - \sup(CD) + \sup(A)$$

$$+ \sup(B) + \sup(C) + \sup(D) - \sup(\emptyset)$$

$$= 1$$

$$LB(ABCD) = \{0,1\}, UB(ABCD) = \{1,2,3\}$$
 $\max\{LB(ABCD)\} = 1, \min\{UB(ABCD)\} = 1 =>$ набор выводим

Задание №3Даны последовательности

Id	Sequence
\mathbf{s}_1	AATACAAGAAC
\mathbf{s}_2	GTATGGTGAT
s ₃	AACATGGCCAA
S 4	AAGCGTGGTCAA

Найдите все подпоследовательности в минимальным уровнем поддержки = 4. Для алфавита $\{A,C,G,T\}$ посчитайте, сколько всего может быть разных последовательностей длины k.

Всего может быть 4^k разных последовательностей.

Задание №4

Дан набор графов. Разделите их на изоморфные группы.

 G_2 и G_5 изоморфны

 ${\it G}_1$ изоморфен подграфу ${\it G}_2, {\it G}_5$

 G_3 изоморфен подграфу G_2 , G_5 , G_7

 ${\it G}_4$ изоморфен подграфу ${\it G}_2, {\it G}_5$

 ${\it G}_{6}$ изоморфен подграфу ${\it G}_{2}, {\it G}_{5}$