

Description

Features

- 20V, 4A
 - $R_{DS(ON)}$ < 27m Ω @ V_{GS} =4.5V
 - $R_{DS(ON)}$ < 44m Ω @ V_{GS} =2.5V
- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM2302A-S2	VSM2302A	TAPING	SOT-23-3	7inch	3000	180000

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise specified)

Symbol	Parameter	Max.	Units	
V _{DSS}	Drain-Source Voltage		20	V
V _{GSS}	Gate-Source Voltage		±12	V
I _D	Continuos Projector Communit	T _A = 25℃	4	Α
	Continuous Drain Current	T _A = 100℃	2.6	Α
I_{DM}	Pulsed Drain Current note1		16	Α
P _D	Power Dissipation	T _A = 25°C	0.7	W
$R_{\theta JA}$	Thermal Resistance, Junction to Case		179	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$ C

Electrical Characteristics (TJ=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	20	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V,	-	-	1.0	μΑ		
I _{GSS}	Gate to Body Leakage Current	V_{DS} =0V, V_{GS} =±12V	-	-	±100	nA		
On Charac	On Characteristics							
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250µA	0.5	0.85	1.2	V		
В	Static Drain-Source on-Resistance	V _{GS} =4.5V, I _D =4A	-	21	27	mΩ		
$R_{DS(on)}$		V _{GS} =2.5V, I _D =3A	-	29	44			
Dynamic Characteristics								
C _{iss}	Input Capacitance	101/11/01/	-	595	-	pF		
Coss	Output Capacitance	$V_{DS}=10V, V_{GS}=0V,$	-	106	-	pF		
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	59	-	pF		
Qg	Total Gate Charge	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	6.6	-	nC		
Q _{gs}	Gate-Source Charge	V _{DS} =10V, I _D =4A, V _{GS} =4.5V	-	0.9	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS-4.5V	-	1.4	-	nC		
Switching	Switching Characteristics							
t _{d(on)}	Turn-on Delay Time	\/ -40\/	-	13	-	ns		
t _r	Turn-on Rise Time	V _{DS} =10V,	-	55	-	ns		
t _{d(off)}	Turn-off Delay Time	I _D =4A, R _{GEN} =3Ω, V _{GS} =4.5V	-	18	-	ns		
t _f	Turn-off Fall Time	VGS-4.5V	-	10	-	ns		
Drain-Soul	rce Diode Characteristics and Maxim	um Ratings						
Is	Maximum Continuous Drain to Source Diode Forward Current		-	-	4	А		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			_	16	Α		
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S =4A	-	-	1.2	V		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms