Lecture 10

Michael Brodskiy

Professor: M. Onabajo

October 7, 2024

- Some Important Facts
 - Intrinsic (pure) silicon: number of electrons = number of holes
 - * Equal electron and hold concentrations $(n_i = n_p)$
- Band Gap Energy
 - Band gap energy is the energy required to break a covalent bond and to free an electron
 - * $E_g = .66 [\text{eV}] \text{ germanium}$
 - * $E_g = 1.12 [\text{eV}] \text{ silicon}$
 - * $E_g = 3.36 [\text{eV}]$ gallium nitride, used in LEDs
 - Metals have $E_g = 0$
 - $\ast\,$ Very large number of free electrons \rightarrow high conductance
 - Insulators have $E_g > 5 [\mathrm{eV}]$
 - * Almost NO free electrons \rightarrow zero conductance
- Doping
 - The intentional addition of impurities to a semiconductor to create more free electrons or more holes
 - * Creates extrinsic material
 - n-type material
 - * More electrons than holes (n > p)
 - p-type material
 - * More holes than electrons (p > n)
- *n*-type Silicon

- Elements in column V of the periodic table have 5 valence electrons
- Example: Phosphorus (P) is a popular electron donor
- The phosphorus atom has donated an electron to the semiconductor
 - * Column V atoms are called donors
- The phosphorus is missing one of its electrons, so it has a positive charge $(+1) \rightarrow$ phosphorus ion (P+)
 - * P+ is bound to the silicon \rightarrow this +1 charge can not move
- The extra electron concentration is equal to the concentration of donor atoms (N_d)
- The overall net charge is zero, requiring that:

$$n = p + N_d$$

• p-type Silicon

- Elements in column III of the periodic table have 3 valence electrons
- Example: Boron (B) is a popular electron acceptor
 - * 3 electrons (from the boron) form covalent bonds with the Si
 - * A 4th electron is needed for each boron atom
 - · This 4th electron creates a hole
- The boron atom has accepted an electron from the semiconductor \rightarrow column III atoms are called acceptors
- The boron atom has one extra electron, so that it has a negative charge (-1) \rightarrow boron ion (B-)

• Additional info for doped Si

- The mass-action law hold for both n and p-type Si
 - * After doping, the increased electron concentration makes hole recombination more likely (and vice versa)
 - $* pn = p_i n_i$
 - * $\sin(p_i) = n_i$ in intrinsic Si: $pn = n_i^2$ (at a specific temperature)

• The pn Junction

- At zero bias $(V_D = 0)$, neither electrons not holes can overcome the built-in voltage barrer of $\approx .7[V]$ (for Si), so $I_D = 0$
- As the bias (V_D) increases toward .7[V], the electrons and holes can overcome the built-in voltage barrier $(I_D > 0)$
- As the bias (V_D) becomes negative, the barrier becomes larger

- * Only electrons and holes due to broken bonds in the depletion region contribute to the diode currnt $(I_D = I_s)$
- As V_D becomes very negative, the barrier increases even more
 - * Free electrons and holes (due to broken bonds) in the depletion region are accelerated to high energy $(> E_q)$
 - · Breaking of other covalent bonds
- Junction Capacitance
 - Parasitic (unwanted) junction capacitance: $C \approx \varepsilon A/W$), where:
 - * The depletion layer width (W) depends on the bias voltage
 - * $\varepsilon \approx \varepsilon_r \varepsilon_o \ (= 11.9 \varepsilon_o \text{ for Si})$
 - \cdot ε_r is the relative dielectric constant (permittivity) of a material
 - · Dielectric constant for a vacuum: $\varepsilon_o \approx 8.85 \cdot 10^{-12} [\text{F/m}]$
- Depletion Capacitance

$$C_j = \frac{C_{j0}}{[1 - (V_{DQ}/\Phi_o)]^m}$$

- C_{j0} is the incremental depletion capacitance from zero bias
- $-V_{DQ}$ is the operating point (Q-point) voltage (DC bias voltage)
- -M is the grading coefficient (typically 1/3 to 1/2)
- $-\Phi_o$ is the built-in barrier potential
- C_j models the depletion capacitance with bias dependence
 - * Note: C_j is a small-signal parameter (most accurate for small AC signal changes around a fixed DC Q-point)