Extremos locais

 Tal como acontece nas funções reais a uma variável, também é possível analisar a existência de extremos locais em funções reais a várias variáveis.

- Seja f(x) uma função real a várias variáveis e x

 ₀ um ponto interior do seu domínio.
 - i) A função $f(\vec{x})$ tem um *máximo local em* \vec{x}_0 , se e só se:

$$f(\vec{x}_0) \ge f(\vec{x})$$
, para todo o \vec{x} numa vizinhança de \vec{x}_0 .

ii) A função $f(\vec{x})$ tem um *mínimo local em* \vec{x}_0 , se e só se:

$$f(\vec{x}_0) \le f(\vec{x})$$
, para todo o \vec{x} numa vizinhança de \vec{x}_0 .

Os máximos locais e os mínimos locais da função $f(\vec{x})$ constituem os extremos locais da função.

 Se uma função real a uma variável, f(x), possui um extremo local em x₀, então:

$$f'(x_0) = 0$$
 ou $f'(x_0)$ não existe.

 O teorema seguinte estabelece a relação entre o gradiente e a existência de extremos locais para uma função real a várias variáveis.

Teorema 13: Se a função real a várias variáveis $f(\vec{x})$ possui um *extremo local em* \vec{x}_0 , então:

$$\nabla f(\vec{x}_0) = \vec{0}$$
 ou $\nabla f(\vec{x}_0)$ não existe.

• Os pontos no interior do domínio de $f(\vec{x})$ onde o gradiente é nulo ou o gradiente não existe chamam-se *pontos críticos*. Estes são os únicos pontos onde poderão existir *extremos locais* (teorema 13).

- Os pontos críticos onde o gradiente é nulo designam-se por pontos estacionários. Os pontos estacionários onde não existem extremos locais (máximos ou mínimos locais) são designados por pontos de sela.
- No caso presente limitar-se-á a análise a funções reais a duas variáveis, f(x,y). De um modo geral, o estudo deste problema em funções reais a mais de duas variáveis é demasiado complexo em termos do cálculo envolvido.
- Seja a função real a duas variáveis, f(x,y), definida num conjunto aberto conexo, U, e continuamente diferenciável em U. O gráfico da função é a superfície z = f(x,y).

Nos pontos onde f(x,y) possui um máximo local ou um mínimo local, o gradiente, $\nabla f(x,y)$, é nulo e, portanto, o plano tangente à superfície é horizontal.

 Convém referir que o anulamento do gradiente num ponto apenas assinala a possibilidade da existência de um extremo local nesse ponto; no entanto, não o garante.

Exemplo 52: Seja a função real a duas variáveis

$$f(x,y) = -\frac{x^2}{a^2} + \frac{y^2}{b^2}$$
, tal que $\nabla f(x,y) = \left(-\frac{2x}{a^2}, \frac{2y}{b^2}\right)$

O gráfico da função é o paraboloide hiperbólico:

$$z = -\frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Na origem o plano tangente à superfície é horizontal e, portanto, o gradiente é nulo, $\nabla f(0,0) = \vec{0}$.

Contudo, não é possível concluir que existe um máximo local ou um mínimo local neste ponto (trata-se de um *ponto de sela*).

Com efeito, considerando o comportamento da função ao longo do eixo dos xx, verifica-se que existe um máximo local na origem. Por outro lado, considerando o comportamento da função ao longo do eixo dos yy, verifica-se que existe um mínimo local na origem.

Exemplo 53: Seja a função:

$$f(x,y) = 1 + \sqrt{x^2 + y^2}$$

O gráfico da função é a folha superior do cone circular que tem o seu vértice no ponto (0,0,1):

$$z = 1 + \sqrt{x^2 + y^2}$$

Analisando a figura é óbvio que o valor f(0,0) = 1 é um *mínimo local* da função.

Uma vez que as derivadas parciais

$$\frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$$
 e $\frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}}$

não estão definidas em (0,0), conclui-se que $\nabla f(0,0)$ não existe. Assim, o ponto (0,0) é um ponto crítico da função f(x,y), mas não é um ponto estacionário.

No ponto (0,0,1) o plano tangente à superfície não está definido.

Relembremos o teste da segunda derivada para uma função real a uma variável, f(x). Assim, a função f(x) possui um mínimo local em x₀, se f"(x₀) > 0; por outro lado, a função f(x) possui um máximo local em x₀, se f"(x₀) < 0.

 O teorema seguinte estabelece um teste similar para funções reais a duas variáveis, f(x,y), que é designado por teste das derivadas parciais de segunda ordem.

Teorema 14: Admita-se que f(x,y) tem derivadas parciais de segunda ordem contínuas numa vizinhança de (x_0,y_0) e que $\nabla f(x_0,y_0) = \vec{0}$. Sejam:

$$A = \frac{\partial^2 f}{\partial x^2}(x_0, y_0) , \quad B = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \quad e \quad C = \frac{\partial^2 f}{\partial y^2}(x_0, y_0)$$

Considerando o discriminante $D = AC - B^2$:

- i) Se D < 0, então (x_0, y_0) é um ponto de sela;
- ii) Se D > 0 e A > 0, então f(x, y) possui um *mínimo local* em (x_0, y_0) ;
- iii) Se D > 0 e A < 0, então f(x, y) possui um *máximo local* em (x_0, y_0) .
- No exemplo seguinte faz-se uma interpretação geométrica do teste das derivadas parciais de segunda ordem.

Exemplo 54: Seja a função real a duas variáveis:

$$f(x,y) = \frac{a}{2}x^2 + \frac{c}{2}y^2$$
, com $a \neq 0 \land c \neq 0$

O gráfico de f(x, y) é um paraboloide:

$$z = \frac{a}{2}x^2 + \frac{c}{2}y^2 \tag{14}$$

Notando que

$$\nabla f(x,y) = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} = (ax)\vec{i} + (cy)\vec{j}$$

conclui-se que o gradiente é nulo na origem, $\nabla f(0,0) = \vec{0}$. Sabendo que

$$A = \frac{\partial^2 f}{\partial x^2}(0,0) = a$$
, $B = \frac{\partial^2 f}{\partial y \partial x}(0,0) = 0$ e $C = \frac{\partial^2 f}{\partial y^2}(0,0) = c$

obtém-se o seguinte valor para o discriminante:

$$D = AC - B^2 = ac$$

Se D < 0, então a e c possuem sinais opostos; neste caso (14) descreve um paraboloide hiperbólico; neste caso, (0,0) é um ponto de sela.

Se D > 0 e a > 0, então c > 0; neste caso (14) descreve um *paraboloide elíptico* definido no semieixo positivo do eixo dos *zz*; a função f(x,y) possui um *mínimo local* em (0,0).

Se D > 0 e a < 0, então c < 0; neste caso (14) descreve um paraboloide elíptico definido no semieixo negativo do eixo dos zz; a função f(x,y) possui um máximo local em (0,0).

Exemplo 55: Determine os pontos críticos e os extremos locais da função:

$$f(x,y) = -xye^{-(x^2+y^2)/2}$$

Solução:

As derivadas parciais são:

$$\frac{\partial f}{\partial x}(x,y) = -ye^{-(x^2+y^2)/2} + x^2ye^{-(x^2+y^2)/2} = y(x^2-1)e^{-(x^2+y^2)/2}$$

$$\frac{\partial f}{\partial y}(x,y) = -xe^{-(x^2+y^2)/2} + xy^2e^{-(x^2+y^2)/2} = x(y^2-1)e^{-(x^2+y^2)/2}$$

O gradiente da função f(x, y)

$$\nabla f(x,y) = e^{-(x^2+y^2)/2} \left[y(x^2-1)\vec{i} + x(y^2-1)\vec{j} \right]$$

está definido em todos os pontos do seu domínio, pelo que, neste caso, os pontos críticos são pontos estacionários (pontos onde o gradiente é nulo). Uma vez que

$$e^{-(x^2+y^2)/2} \neq 0$$

então $\nabla f(x,y) = \vec{0}$, se e só se:

$$y(x^2-1)=0$$
 e $x(y^2-1)=0$

As soluções destas equações são

$$x = 0$$
 , $y = 0$, $x = \pm 1$, $y = \pm 1$

a que correspondem os pontos estacionários:

$$(0,0)$$
, $(1,1)$, $(1,-1)$, $(-1,1)$, $(-1,-1)$

As derivadas parciais de segunda ordem são:

$$A = \frac{\partial^2 f}{\partial x^2}(x, y) = xy(3 - x^2)e^{-(x^2 + y^2)/2}$$

$$B = \frac{\partial^2 f}{\partial y \partial x}(x, y) = (x^2 - 1)(1 - y^2)e^{-(x^2 + y^2)/2}$$

$$C = \frac{\partial^2 f}{\partial y^2}(x, y) = xy(3 - y^2)e^{-(x^2 + y^2)/2}$$

A tabela seguinte apresenta os resultados obtidos para cada um dos pontos estacionários:

Ponto	Α	В	С	D	Classificação	Extremo
(0,0)	0	-1	0	-1	ponto de sela	
(1,1)	2e ⁻¹	0	2e ⁻¹	4e ⁻²	mínimo local	-e ⁻¹
(1,-1)	-2e ⁻¹	0	-2e ⁻¹	4e ⁻²	máximo local	e ⁻¹
(-1,1)	-2e ⁻¹	0	-2e ⁻¹	4e ⁻²	máximo local	e ⁻¹
(-1,-1)	2e ⁻¹	0	2e ⁻¹	4e ⁻²	mínimo local	-e ⁻¹

• No caso de uma função real a uma variável, f(x), o teste da segunda derivada só pode ser aplicado num ponto x_0 onde $f'(x_0) = 0$ e $f''(x_0) \neq 0$; se $f''(x_0) = 0$, o teste nada permite concluir.

Uma situação semelhante ocorre quando se está em presença de uma função real a duas variáveis, f(x,y). A aplicação do teste das derivadas parciais de segunda ordem só é possível em pontos (x₀,y₀) onde ∇f(x₀,y₀) = 0 e o discriminante D = AC - B² ≠ 0. Se D = 0, o teste nada permite concluir.

Exemplo 53: Sejam as funções

$$f(x,y) = x^4 + y^4$$
, $g(x,y) = -(x^4 + y^4)$ e $h(x,y) = x^4 - y^4$

No ponto (0,0), cada uma das funções possui gradiente nulo, enquanto o discriminante é D=0; nestas condições o teste das derivadas parciais de segunda ordem é inconclusivo.

No entanto, analisando o comportamento de cada uma das funções na vizinhança do ponto (0,0), verifica-se:

- i) A função f(x,y) possui um *mínimo local* em (0,0);
- ii) A função g(x,y) possui um máximo local em (0,0);
- iii) A função h(x,y) possui um ponto de sela em (0,0).

Enquanto as conclusões apontadas em i) e ii) são óbvias, o mesmo já não acontece em iii).

Para confirmar iii), note-se que h(0,0) = 0, ao passo que em pontos situados na vizinhança de (0,0) a função assume valores positivos e negativos:

$$h(x,0) > 0$$
, se $x \neq 0$

$$h(0, y) < 0$$
, se $y \neq 0$

Extremos absolutos

- Enquanto a existência de extremos locais num ponto interior, \$\vec{x}_0\$, do domínio de uma função real a várias variáveis depende do comportamento da função numa vizinhança de \$\vec{x}_0\$, os extremos absolutos dependem do comportamento da função em todo o seu domínio.
- Seja $f(\vec{x})$ uma função real a várias variáveis:
 - i) A função $f(\vec{x})$ tem um *máximo absoluto em* \vec{x}_0 , se e só se:

 $f(\vec{x}_{\cap}) \ge f(\vec{x})$, para todo o \vec{x} no domínio de $f(\vec{x})$.

ii) A função $f(\vec{x})$ tem um *mínimo absoluto em* \vec{x}_0 , se e só se:

 $f(\vec{x}_0) \le f(\vec{x})$, para todo o \vec{x} no domínio de $f(\vec{x})$.

Reconstrução da função a partir do seu gradiente

• O teorema seguinte estabelece as condições para que um *campo* vectorial seja gradiente.

Teorema 15: Seja

$$\vec{f}(x, y, z) = P(x, y, z)\vec{i} + Q(x, y, z)\vec{j} + R(x, y, z)\vec{k}$$

um campo vectorial continuamente diferenciável num conjunto aberto conexo $D \subseteq \mathbb{R}^3$. O campo vectorial é gradiente,

$$\vec{f}(x,y,z) = \nabla \varphi(x,y,z)$$

se e só se:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
, $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$ e $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$

No caso de

$$\vec{f}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$$

e $D \subseteq \mathbb{R}^2$, as condições anteriores reduzem-se a:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Exemplo 57: Verifique que o campo vectorial

$$\vec{f}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j} = \left(\sqrt{y} - \frac{y}{2\sqrt{x}} + 2x\right)\vec{i} + \left(\frac{x}{2\sqrt{y}} - \sqrt{x} + 1\right)\vec{j}$$

é gradiente e determine o campo escalar $\varphi(x,y)$, tal que $\vec{f}(x,y) = \nabla \varphi(x,y)$.

Solução:

Sabendo que

$$\frac{\partial P}{\partial y} = \frac{1}{2\sqrt{y}} - \frac{1}{2\sqrt{x}} = \frac{\partial Q}{\partial x}$$

conclui-se que o campo vetorial $\vec{f}(x,y)$ é gradiente; então, existe um campo escalar $\varphi(x,y)$, tal que $\vec{f}(x,y) = \nabla \varphi(x,y)$. Notando que

$$\frac{\partial \varphi}{\partial x}(x,y) = P(x,y) = \sqrt{y} - \frac{y}{2\sqrt{x}} + 2x$$

$$\frac{\partial \varphi}{\partial y}(x,y) = Q(x,y) = \frac{x}{2\sqrt{y}} - \sqrt{x} + 1$$

recorrendo ao integral indefinido, resulta:

$$\varphi(x,y) = \int P(x,y)dx = x\sqrt{y} - y\sqrt{x} + x^2 + \phi_1(y) + k_1$$
 (15)

$$\varphi(x,y) = \int Q(x,y)dy = x\sqrt{y} - y\sqrt{x} + y + \phi_2(x) + k_2$$
 (16)

Compatibilizando (15) e (16), obtém-se:

$$\varphi(x,y) = x\sqrt{y} - y\sqrt{x} + x^2 + y + k$$

Exemplo 58: Verifique que é gradiente o campo vectorial:

$$\vec{f}(x,y,z) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k} =$$

$$= (x+y+1)\vec{i} + (x-z)\vec{j} + (-y+e^z)\vec{k}$$

Obtenha o campo escalar $\varphi(x,y,z)$, tal que $\vec{f}(x,y,z) = \nabla \varphi(x,y,z)$.

Solução:

Sabendo que

$$\frac{\partial P}{\partial y} = 1 = \frac{\partial Q}{\partial x}$$
, $\frac{\partial P}{\partial z} = 0 = \frac{\partial R}{\partial x}$ e $\frac{\partial Q}{\partial z} = -1 = \frac{\partial R}{\partial y}$

conclui-se que o campo vetorial $\vec{f}(x,y,z)$ é gradiente; então, existe um campo escalar $\varphi(x,y,z)$, tal que $\vec{f}(x,y,z) = \nabla \varphi(x,y,z)$. Notando que

$$\frac{\partial \varphi}{\partial x}(x, y, z) = P(x, y, z) = x + y + 1$$
$$\frac{\partial \varphi}{\partial y}(x, y, z) = Q(x, y, z) = x - z$$
$$\frac{\partial \varphi}{\partial z}(x, y, z) = R(x, y, z) = -y + e^{z}$$

recorrendo ao integral indefinido, resulta:

$$\varphi(x,y,z) = \int P(x,y,z)dx = \frac{x^2}{2} + xy + x + \phi_1(y,z) + k_1$$
 (17)

$$\varphi(x, y, z) = \int Q(x, y, z) dy = xy - zy + \phi_2(x, z) + k_2$$
 (18)

$$\varphi(x, y, z) = \int R(x, y, z) dz = -yz + e^{z} + \phi_{3}(x, y) + k_{3}$$
 (19)

Compatibilizando (17), (18) e (19), obtém-se:

$$\varphi(x, y, z) = \frac{x^2}{2} + x + xy - yz + e^z + k$$