### Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики



УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

| Группа <u>Р3114</u>         | К работе допущен                    |
|-----------------------------|-------------------------------------|
| Студент Нуруллаев Даниил    | Работа выполнена <u> 14.12.2020</u> |
| Преподаватель Коробков М.П. | Отчет принят                        |

# Рабочий протокол и отчет по лабораторной работе № 1.24V Оборотный маятник Катера

#### Цель работы.

Изучить колебательное движение тела на примере оборотного маятника Определить ускорение свободного падения тел

#### Задачи, решаемые при выполнении работы.

Расчет погрешностей

Построение графиков зависимости периода от расстояния от подвеса до груза (< T1 > (x2), < T2 > (x2))

Интерполяция графиков по двум точкам, чтобы найти координаты пересечения Нахождение координат пересечения двух интерполируемых графиков Расчет "своего" ускорения свободного падения исходя из полученных данных

Расчет погрешностей:

 $\epsilon_g$  – погрешность ускорения свободного падения

 $\Delta g$  — абсолютная погрешность ускорения свободного падения Расчет таких величин как:

< T1 >, < T2 > —средние значения периодов колебаний для каждого x2

#### Объект исследования.

Физический маятник

Зависимость периода от расстояния от подвеса до груза

Динамика движения физического маятника

#### Метод экспериментального исследования.

Многократное измерение одной величины, при разных расстояниях от подвеса до груза. Косвенные многократные измерения

#### Рабочие формулы и исходные данные.

$$T = 2\pi \sqrt{\frac{l_{\text{np}}}{g}}$$

$$g = \frac{4\pi^2 l_{\text{np}}}{T^2}$$

$$\epsilon_g = \frac{\Delta g}{g} = \sqrt{\left(\frac{2\Delta T}{T}\right)^2 + \left(\frac{2\Delta l_{\text{np}}}{l_{\text{np}}}\right)^2}$$

$$\Delta T_{\text{cp}} = K_{\text{CT}} \cdot \sqrt{\frac{\sum_{i=1}^{n=5} (T_i - T_{\text{cp}})^2}{n(n-1)}}$$

Измерительные приборы.

| № n/n | Наименование                                  | Тип прибора                     | Используем<br>ый<br>диапазон | Погрешность<br>прибора |
|-------|-----------------------------------------------|---------------------------------|------------------------------|------------------------|
| 1     | Некоторый виртуальный, электронный секундомер | Точный прибор, измеряющий время | Не задан                     | Доли секунды           |

#### Схема установки



(а) Установка



(в) Электронный секундомер

Оборотный маятник представляет собой стальной стержень 6, на котором неподвижно закреплены точка подвеса 3, а также тяжелые грузы 4 и 5. Маятник подвешивается на кронштейне за один из крепежей. На стойке прибора укреплен фотодатчик 1, который подключен в электронному секундомеру 2

## Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

| Nº | x2, | T1,    | T2,    | <t1>,</t1> | <t2>,</t2> |     | 1 |     | 1724,5 | 1784,4 |          |         |
|----|-----|--------|--------|------------|------------|-----|---|-----|--------|--------|----------|---------|
|    | MM  | С      | С      | С          | С          | 4   | 2 |     | 1725,5 | 1786,6 |          |         |
| 1  |     | 1917,2 | 1811,1 | _          |            |     | 3 | 200 | 1725,5 | 1787,3 | 1725,08  | 1786,84 |
| 2  |     | 1916,5 | 1813,6 |            |            |     | 4 | 200 | 1725,6 | 1787,4 | 1, 20,00 | 1,00,0  |
| 3  | 100 | 1916,9 | 1812,2 | 1916,94    | 1812,04    | 1   |   |     |        |        |          | ŀ       |
| 4  |     | 1916   | 1813,7 | _          |            |     | 5 |     | 1724,3 | 1788,5 |          |         |
| 5  |     | 1918,1 | 1809,6 |            |            | ╛   | 1 |     | 1699,4 | 1781,1 |          |         |
| 1  |     | 1851,6 | 1805,6 |            |            | 1   | 2 |     | 1701,1 | 1779,9 |          |         |
| 2  |     | 1850,6 | 1803,3 | _          |            |     | 3 | 225 | 1701,8 | 1782,3 | 1701,08  | 1781,36 |
| 3  | 125 | 1852,4 | 1803,8 | 1851,74    | 1804,64    | 1   | 4 |     | 1702,4 | 1782   |          |         |
| 4  |     | 1851,7 | 1806,8 |            |            |     | 5 |     | 1700,7 | 1781,5 |          |         |
| 5  |     | 1852,4 | 1803,7 |            |            | ╛   | 1 |     | 1680,1 | 1779,1 |          |         |
| 1  |     | 1799,1 | 1796,6 |            |            |     | 2 |     | 1680,8 | 1777,1 |          |         |
| 2  |     | 1799   | 1797,5 |            |            |     | 3 | 250 | 1682,7 | 1779   | 1682,26  | 1778,66 |
| 3  | 150 | 1798,1 | 1797,8 | 1798,78    | 3 1798,32  | 1   | 4 |     | 1684   | 1779   |          |         |
| 4  |     | 1799,1 | 1799,8 |            |            |     | 5 |     | 1683,7 | 1779,1 |          |         |
| 5  |     | 1798,6 | 1799,9 |            |            | ┚   |   |     |        |        |          |         |
| 1  |     | 1757,7 | 1789,9 |            |            |     | 1 |     | 1671,2 | 1772,8 |          | ŀ       |
| 2  |     | 1757,9 | 1790,7 |            |            |     | 2 |     | 1670,9 | 1773,2 |          |         |
| 3  | 175 | 1756,1 | 1793,4 | 1757,14    | 1791,62    | :   | 3 | 275 | 1670   | 1771,1 | 1670,54  | 1772,54 |
| 4  |     | 1757,5 | 1790,6 |            |            |     | 4 |     | 1668,3 | 1773,4 |          |         |
| 5  |     | 1756,5 | 1793,5 | 1          |            | 5   | 5 |     | 1672,3 | 1772,2 |          |         |
|    |     |        |        |            |            |     |   | •   | •      |        | •        |         |
| 1  |     | 1662,3 | 1770,1 |            |            | - 1 | 1 |     | 1666,7 | 1762,3 |          |         |
| 2  | -   | 1661,5 | 1767,4 |            |            | - 1 | 2 |     | 1667,1 | 1760   | -        |         |
| 3  | 300 | 1661,9 | 1768,4 | 1662,36    | 1769,48    | - 1 | 3 | 400 | 1667,1 | 1760,5 | 1667,4   | 1761,54 |
| 4  |     | 1663,4 | 1770,6 | 2002,00    | 2, 65, .6  | _   | 4 |     | 1668,3 | 1762,8 | 1        | ,       |
| 5  |     | 1662,7 | 1770,9 |            |            |     | 5 |     | 1667,8 | 1762,1 |          |         |
| 1  |     | 1657,6 | 1767,1 |            |            | _ ' | 1 |     | 1674,4 | 1760,6 |          |         |
| 2  |     | 1660,7 | 1768,9 |            |            |     | 2 |     | 1672,6 | 1762,2 | 1        |         |
| 3  | 325 | 1658,2 | 1765,5 | 1658,64    | 1767,5     |     | 3 | 425 | 1673   | 1760,9 | 1673,58  | 1761,08 |
| 4  |     | 1659,3 | 1767,6 |            |            |     | 4 |     | 1673,9 | 1760,3 |          |         |
| 5  |     | 1657,4 | 1768,4 |            |            |     | 5 |     | 1674   | 1761,4 |          |         |
| 1  |     | 1658,4 | 1761,1 |            |            |     | 1 |     | 1683,3 | 1760,3 |          |         |
| 2  |     | 1659,4 | 1762,3 |            |            |     | 2 |     | 1681,7 | 1762,6 | ]        |         |
| 3  | 350 | 1657,7 | 1764,3 | 1658,26    | 1763,3     |     | 3 | 450 | 1682,6 | 1763   | 1682,32  | 1762,14 |
| 4  | ſ   | 1658,1 | 1765   |            |            |     | 4 |     | 1681,4 | 1762,5 |          |         |
| 5  |     | 1657,7 | 1763,8 |            |            |     | 5 |     | 1682,6 | 1762,3 |          |         |
| 1  |     | 1660,2 | 1761,7 |            |            |     | 1 |     | 1693,1 | 1762,8 |          |         |
| 2  | ſ   | 1660,9 | 1762,2 |            |            |     | 2 |     | 1693   | 1764   | ]        |         |
| 3  | 375 | 1663,7 | 1762,2 | 1661,2     | 1762,62    |     | 3 | 475 | 1691,6 | 1764,1 | 1693,4   | 1763,62 |
| 4  |     | 1660,4 | 1764,5 |            |            |     | 4 |     | 1695,5 | 1764,3 | ]        |         |
| 5  |     | 1660,8 | 1762,5 |            |            |     | 5 |     | 1693,8 | 1762,9 |          |         |

| 2 |     | 1705,5 | 1765,5 |         |         |  |
|---|-----|--------|--------|---------|---------|--|
| 2 |     |        | 1705,5 |         |         |  |
|   |     | 1703,5 | 1766,1 |         |         |  |
| 3 | 500 | 1706,6 | 1765,9 | 1705,84 | 1765,86 |  |
| 4 |     | 1707,1 | 1765,4 |         |         |  |
| 5 |     | 1706,5 | 1766,4 |         |         |  |
| 1 |     | 1721,9 | 1769,2 |         |         |  |
| 2 |     | 1721,4 | 1768,4 |         |         |  |
| 3 | 525 | 1720,9 | 1770,2 | 1721,48 | 1769,52 |  |
| 4 |     | 1723,1 | 1768,7 |         |         |  |
| 5 |     | 1720,1 | 1771,1 |         |         |  |
| 1 |     | 1734   | 1774,1 |         |         |  |
| 2 |     | 1734,6 | 1773,7 |         |         |  |
| 3 | 550 | 1733,1 | 1773,7 | 1733,9  | 1773,16 |  |
| 4 |     | 1734,1 | 1772,7 |         |         |  |
| 5 |     | 1733,7 | 1771,6 |         |         |  |
| 1 |     | 1746,4 | 1779,3 |         |         |  |
| 2 |     | 1746,6 | 1777,5 |         |         |  |
| 3 | 575 | 1749,9 | 1779,3 | 1748,12 | 1778,2  |  |
| 4 |     | 1747,6 | 1777,6 |         |         |  |
| 5 |     | 1750,1 | 1777,3 |         |         |  |
| 1 |     | 1763,3 | 1783,3 |         |         |  |
| 2 |     | 1765,6 | 1784,4 |         |         |  |
| 3 | 600 | 1765,9 | 1784,4 | 1764,96 | 1784,3  |  |
| 4 |     | 1764,3 | 1782,9 |         |         |  |
| 5 |     | 1765,7 | 1786,5 |         |         |  |

| 1 |     | 1782,7 | 1791,5 |         |         |
|---|-----|--------|--------|---------|---------|
| 2 |     | 1782   | 1790,4 |         |         |
| 3 | 625 | 1780,7 | 1789,9 | 1781,56 | 1790,66 |
| 4 |     | 1780,7 | 1790,8 |         |         |
| 5 |     | 1781,7 | 1790,7 |         |         |
| 1 |     | 1797,6 | 1798,4 |         |         |
| 2 |     | 1798,6 | 1799,6 |         |         |
| 3 | 650 | 1798,1 | 1799,8 | 1798,4  | 1799,62 |
| 4 |     | 1799,9 | 1800,7 |         |         |
| 5 |     | 1797,8 | 1799,6 |         |         |
| 1 |     | 1817,6 | 1806,6 |         |         |
| 2 |     | 1817,6 | 1808,7 |         |         |
| 3 | 675 | 1817,4 | 1807,7 | 1817,24 | 1807,86 |
| 4 |     | 1815,7 | 1806,8 |         |         |
| 5 |     | 1817,9 | 1809,5 |         |         |
| 1 |     | 1833,1 | 1818,7 |         |         |
| 2 |     | 1835,7 | 1816,1 |         |         |
| 3 | 700 | 1834,1 | 1818,6 | 1834,86 | 1817,5  |
| 4 |     | 1836   | 1816,2 |         |         |
| 5 |     | 1835,4 | 1817,9 |         |         |

$$= \frac{T1.1+T1.2+T1.3+T1.4+T1.5}{5}$$

$$= \frac{T2.1+T2.2+T2.3+T2.4+T2.5}{5}$$

### Расчет результатов косвенных измерений (*таблицы, примеры расчетов*).





Графики зависимости <T1>(x2) и <T2>(x2) Оранжевым отмечен график зависимости <T2>(x2),голубым отмечен <T1>(x2)

Получение уравнений для первого пересечения по двум точкам соответствующих 125мм и 175 мм по оси абсцисс и им соответственным координатам по оси ординат:

$$<$$
T1>(x2) = (-43\*x + 47460)/22.7272727273-оранжевый график (x2)= (-13.05\*x + 91859.5)/50-голубой график



Точка М точка пересечения ,имеет координаты(153,924;1797,01584)  $x=l_{\mathrm{np}}$  ; y=T

Получение уравнений для второго пересечения по двум точкам соответствующих 625мм и 675 мм по оси абсцисс и им соответственным координатам по оси ординат:



Точка М точка пересечения ,имеет координаты(649,621;1799,1297)  $x=l_{\mathrm{np}}$  ; y=T

$$g_1 = \frac{4\pi^2 l_{\text{np}}}{T^2} = \frac{4\pi^2 (649,621 + 153,924)}{\left(\frac{1799,13 + 1797,015}{2}\right)^2} = 9,7811955 \frac{M}{c^2}$$

### Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\epsilon_g = \frac{\Delta g}{g} = \sqrt{\left(\frac{2\Delta T}{T}\right)^2 + \left(\frac{\Delta l_{\rm np}}{l_{\rm np}}\right)^2}$$

$$\frac{g - g_1}{g} = \frac{0.011955}{9.80665} \approx 0.001219083$$

$$\sqrt{\left(\frac{2*0.46}{1794,587028}\right)^2 + \left(\frac{2*0.001}{0.8}\right)^2} \approx 0.002552021$$

$$\Delta T = T2 - T1 = 0.46$$

$$\Delta l_{\rm np} = 0.001$$

$$\Delta T_{\rm cp} = K_{\rm CT} \cdot \sqrt{\frac{\sum_{i=1}^{n=5} (T_i - T_{\rm cp})^2}{n(n-1)}} = 0.92696$$

#### Окончательные результаты.

$$g_1 = 9,7811955 \frac{M}{c^2}$$

$$\Delta g \approx 0,011$$

$$\epsilon_a \approx 0,0025$$

#### Выводы и анализ результатов работы.

Можно сделать вывод: с увеличением длины маятника увеличивается период колебаний и уменьшается частота. Определили ускорение свободного падения, рассчитали погрешности для него. Построили графики зависимости и впоследствии провели интерполяцию. Рассчитали погрешности для прямых измерений