CHIMICA GENERALE

Corso A Anno Accademico 2024-2025

Docente: Prof. Francesco Pineider

Email: francesco.pineider@unipi.it

Indirizzo: Dipartimento di Chimica e Chimica Industriale
Via Moruzzi 13

Equilibri Acido-Base

Capitolo 16

Acidi e basi secondo Arrhenius

Un acido di Arrhenius è una sostanza che in acqua libera ioni H⁺ (H₃O⁺)

Una base di Arrhenius è una sostanza che in acqua libera ioni OH-

Acidi e basi secondo Brønsted

Un acido di Brønsted è un donatore di protoni Una base di Brønsted è un accettore di protoni

Le Proprietà Acido-Base dell'Acqua

Autoionizzazione

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$$

autoionizzazione dell'acqua

Le Proprietà Acido-Base dell'Acqua

Prodotto ionico dell'acqua

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$$

$$K_c = \frac{[H^+][OH^-]}{[H_2O]} \qquad [H_2O] = costante$$

$$K_c[H_2O] = K_w = [H^+][OH^-]$$

La costante (K_w) è il prodotto ionico dell'acqua: prodotto delle concentrazioni molari degli ioni H^+ e OH^- ad una determinata temperatura

$A 25 \,^{\circ}C$ $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

 $[H^+] = [OH^-]$ neutra $[H^+] > [OH^-]$ acida $[H^+] < [OH^-]$ basica

N.B.: Le concentrazioni di H⁺ e OH⁻ sono legate attraverso la costante K_w, quindi conoscendo una si può determinare l'altra

ESEMPIO:

Qual'è la concentrazione degli ioni OH- in una soluzione di HCl la cui concentrazione di ioni idrogeno sia 1.3 M?

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$$

$$[H^+] = 1.3 M$$

$$[OH^{-}] = \frac{K_w}{[H^{+}]} = \frac{1 \times 10^{-14}}{1.3} = 7.7 \times 10^{-15} M$$

II pH

pH: misura dell'acidità di una soluzione

$$pH = -log[H^+]$$

La soluzione è
$$At 25^{\circ}C$$

neutra $[H^{+}] = [OH^{-}]$ $[H^{+}] = 1 \times 10^{-7}$ $pH = 7$

acida $[H^{+}] > [OH^{-}]$ $[H^{+}] > 1 \times 10^{-7}$ $pH < 7$

basica $[H^{+}] < [OH^{-}]$ $[H^{+}] < 1 \times 10^{-7}$ $pH > 7$

II pOH

$$pOH = -log [OH^{-}]$$

$$[H^+][OH^-] = K_w = 1.0 \times 10^{-14}$$

$$-\log [H^+] - \log [OH^-] = 14.00$$

$$pH + pOH = 14.00$$

TABELLA 15.1

II pH di alcuni liquidi comuni

Campione	valore pH
Succo gastrico nello stomaco	1.0 – 2.0
Succo di limone	2.4
Aceto	3.0
Succo di pompelmo	3.2
Succo di arancia	3.5
Urina	4.8 - 7.5
Acqua esposta all'aria*	5.5
Saliva	6.4 - 6.9
Latte	6.5
Acqua pura	7.0
Sangue	7.35 - 7.45
Lacrime	7.4
Latte di magnesia	10.6
Ammoniaca per uso domestico	11.5

^{*} L'acqua esposta all'aria per un lungo periodo di tempo assorbe CO₂ dall'atmosfera, formando acido carbonico (H₂CO₃).

Il pH dell'acqua piovana raccolta in una certa regione del nord est dell'Italia in un determinato giorno è 4.82. Qual'è la concentrazione di ioni H⁺ dell'acqua piovana?

$$pH = -log [H^+]$$

 $[H^+] = 10^{-pH} = 10^{-4.82} = 1.5 \times 10^{-5} M$

La concentrazione di ioni OH⁻ di un campione di sangue è 2.5 x 10⁻⁷ M. Qual'è il pH del sangue?

$$pH + pOH = 14.00$$

 $pOH = -log [OH^{-}] = -log (2.5 \times 10^{-7}) = 6.60$
 $pH = 14.00 - pOH = 14.00 - 6.60 = 7.40$

Elettroliti forti e deboli

Elettrolita forte – completamente dissociato

$$NaCl(s) \xrightarrow{H_2O} Na^+(aq) + Cl^-(aq)$$

Elettrolita debole – non completamente dissociato

$$CH_3COOH \longrightarrow CH_3COO^- (aq) + H^+ (aq)$$

Elettroliti forti e deboli

Gli Acidi Forti sono elettroliti forti

$$HCI(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + CI^-(aq)$$
 $HNO_3(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + NO_3^-(aq)$
 $HCIO_4(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + CIO_4^-(aq)$
 $H_2SO_4(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + HSO_4^-(aq)$

Gli Acidi Deboli sono elettroliti deboli

$$HF (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + F^- (aq)$$
 $HNO_2 (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NO_2^- (aq)$
 $HSO_4^- (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + SO_4^{2-} (aq)$
 $H_2O (I) + H_2O (I) \longrightarrow H_3O^+ (aq) + OH^- (aq)$

Gli Acidi Deboli

Acido Forte

Before Ionization HCl H+ Cl-

Acido Debole

Le Basi Deboli

Le Basi Forti sono elettroliti forti

NaOH (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + OH⁻ (aq)
KOH (s) $\xrightarrow{H_2O}$ K⁺ (aq) + OH⁻ (aq)
Ba(OH)₂ (s) $\xrightarrow{H_2O}$ Ba²⁺ (aq) + 2OH⁻ (aq)

Le Basi Deboli sono elettroliti deboli

$$F^{-}(aq) + H_{2}O(I) \longrightarrow OH^{-}(aq) + HF(aq)$$

 $NO_{2}^{-}(aq) + H_{2}O(I) \longrightarrow OH^{-}(aq) + HNO_{2}(aq)$

N.B.: Reazioni inverse delle reazioni di dissociazione dell'acido

TABELLA 15.2 Forze relative di coppie coniugate acido-base

		Acido	Base coniugata	
		HClO ₄ (acido perclorico)	ClO ₄ (ione perclorato)	
	ţį	HI (acido iodidrico)	I ⁻ (ione ioduro)	
	i for	HBr (acido bromidrico)	Br ⁻ (ione bromuro)	
	Acidi forti	HCl (acido cloridrico)	Cl ⁻ (ione cloruro)	
	7	H ₂ SO ₄ (acido solforico)	HSO ₄ (ione idrogenosolfato)	
•	(HNO ₃ (acido nitrico)	NO ₃ (ione nitrato)	ø
cente		H ₃ O ⁺ (ione idronio)	H ₂ O (acqua)	scent
cres		HSO ₄ (ione idrogenosolfato)	SO ₄ ²⁻ (ione solfato)	o cre
Potere acido crescente		HF (acido fluoridrico)	F ⁻ (ione fluoruro)	Potere basico crescente
otere		HNO ₂ (acido nitroso)	NO ₂ (ione nitrito)	otere
Ь	oli	HCOOH (acido formico)	HCOO ⁻ (ione formiato)	P
	Acidi deboli	CH ₃ COOH (acido acetico)	CH ₃ COO ⁻ (ione acetato)	
	Acio	NH ₄ ⁺ (ione ammonio)	NH ₃ (ammoniaca)	
		HCN (acido cianidrico)	CN ⁻ (ione cianuro)	
		H ₂ O (acqua)	OH ⁻ (ione ossidrile)	
		NH ₃ (ammoniaca)	NH ₂ (ione ammide)	,

Le Coppie Coniugate Acido-Base

- La base coniugata di un acido forte non ha una forza misurabile (base molto debole)
- H_3O^+ è l'acido più forte che possa esistere in soluzione acquosa

Gli acidi più forti di H_3O^+ reagiscono con H_2O a dare H_3O^+ e la loro base coniugata (acidi forti)

Gli acidi più deboli di H_3O^+ reagiscono con H_2O in maniera minore a dare H_3O^+ e la loro base coniugata instaurando un equilibrio di dissociazione (acidi deboli)

• Lo ione OH⁻ è la base più forte che possa esistere in soluzione acquosa

Le basi più forti di OH⁻ reagiscono con H₂O a dare OH⁻ e il loro acido coniugato (basi forti)

Le basi più deboli di OH^- reagiscono con H_2O in maniera minore a dare OH^- e il loro acido coniugato instaurando un equilibrio di dissociazione (basi deboli)

Gli Acidi e le Basi Forti

Esempi

Qual'è il pH di una soluzione $2 \times 10^{-3} \text{ M}$ di HNO₃? HNO₃ è un acido forte – 100% di dissociazione 0.002 M $0.0\,M$ $0.0\,M$ Inizio $HNO_3(aq) + H_2O(l) \longrightarrow$ $H_3O^+(aq) + NO_3^-(aq)$ 0.002 M Fine $0.0\,M$ 0.002 M $pH = -log[H^+] = -log[H_3O^+] = -log(0.002) = 2.7$ Qual'è il pH di una soluzione $1.8 \times 10^{-2} \,\mathrm{M}$ di Ba(OH)₂? Ba(OH)₂ è una base forte – 100% di dissociazione Inizio 0.018 M $0.0\,\mathrm{M}$ $0.0\,\mathrm{M}$ $Ba(OH)_{2}(s)$ $Ba^{2+}(aq) + 2OH^{-}(aq)$ Fine $0.0\,M$ 0.018 M 0.036 M

pH = 14.00 - pOH = 14.00 + log(0.036) = 12.6

Costante di ionizzazione acida

$$HA (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + A^- (aq)$$

$$HA (aq) \longrightarrow H^+ (aq) + A^- (aq)$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

 K_a è la costante di ionizzazione acida

$$pK_a = -log(K_a)$$

Tanto maggiore è il valore di pK_a tanto più debole è l'acido

TABELLA 15.3	Costanti di	ionizzazione di alcuni aci	di deboli e lo	ro basi coniugate	a 25 °C
Nome dell'acido	Formula	Struttura	$K_{\rm a}$	Base coniugata	K_b
Acido fluoridrico	HF	H—F	7.1×10^{-4}	F-	1.4×10^{-11}
Acido nitroso	HNO_2	0=N-O-H	4.5×10^{-4}	NO ₂	2.2×10^{-11}
Acido acetilsalicilico (aspirina)	$\mathrm{C_9H_8O_4}$	O-C-CH ₃	3.0×10^{-4}	C ₉ H ₇ O ₄	3.3×10^{-11}
Acido formico	НСООН	O H—C—O—H	1.7×10^{-4}	HCOO-	5.9×10^{-11}
Acido ascorbico*	C ₆ H ₈ O ₆	$H \longrightarrow OH$ $C \longrightarrow C$ $C \longrightarrow C$ $C \longrightarrow OH$ $C \longrightarrow C$ $C \longrightarrow OH$ $C \longrightarrow C$ $C \longrightarrow C$ $C \longrightarrow C$ $C \longrightarrow C$	8.0×10^{-5}	C ₆ H ₇ O ₆	1.3 × 10 ⁻¹⁰
Acido benzoico	C ₆ H ₅ COOH	С-о-н	6.5×10^{-5}	C ₆ H ₅ COO-	1.5×10^{-10}
Acido acetico	CH₃COOH	О СН ₃ —С—О—Н	1.8×10^{-5}	CH₃COO⁻	5.6×10^{-10}
Acido cianidrico	HCN	H—C≡N	4.9×10^{-10}	CN-	2.0×10^{-5}
Fenolo	C ₆ H ₅ OH	—O—H	1.3×10^{-10}	C ₆ H ₅ O−	7.7×10^{-5}

^{*} La costante di ionizzazione dell'acido ascorbico è associata al gruppo ossidrilico in alto a destra.

Gli Acidi Deboli

Calcolo del pH

ESEMPIO:

Qual è il pH di una soluzione $0.50 \,\mathrm{M}$ di HF (a $25\,^{\circ}\mathrm{C}$)?

$$HF(aq) \longrightarrow H^{+}(aq) + F^{-}(aq)$$
 $K_{a} = \frac{[H^{+}][F^{-}]}{[HF]} = 7.1 \times 10^{-10}$
 $HF(aq) \longrightarrow H^{+}(aq) + F^{-}(aq)$

Iniziale (M)

0.50

0.00

0.00

Cambiamento (M)

-X

+X

+X

Equilibrio (M)

0.50 - x

X

X

$$K_a = \frac{x^2}{0.50 - x} = 7.1 \times 10^{-4}$$

 $K_a << 1$ $0.50 - x \approx 0.50$

Approssimazione

$$K_a \approx \frac{x^2}{0.50} = 7.1 \times 10^{-4}$$

$$x^2 = 3.5 \times 10^{-4}$$

$$x = 0.019 M$$

$$[H^+] = [F^-] = 0.019 M$$

$$pH = -log[H^+] = 1.7$$

Controllo

[HF] = 0.50 - x = 0.48 M

Gli Acidi Deboli

Calcolo del pH

Quando posso usare le approssimazioni? $K_a \ll 1$ 0.50 – $x \approx 0.50$

$$K_a \ll 1$$

$$0.50 - x \approx 0.50$$

Quando x è minore del 5% del valore del termine da cui è sottratta

$$x = 0.019$$

$$\frac{0.019 \text{ M}}{0.50 \text{ M}} \times 100 = 3.8\%$$

Meno del 5%

l'approssimazione è corretta

Qual'è il pH di una soluzione $0.05 \,\mathrm{M}$ di HF (a $25^{\circ}\mathrm{C}$)?

$$K_a \approx \frac{x^2}{0.05} = 7.1 \times 10^{-4} \qquad x = 0.006 \text{ M}$$

$$\frac{0.006 \, M}{0.05 \, M} \times 100\% = 12\%$$

Più del 5%

l'approssimazione non è corretta

x si deve calcolare in maniera esatta usando l'equazione quadratica

Gli Acidi Deboli) Calcolo del pH

Riassunto: Risoluzione dei problemi sulla ionizzazione di acidi deboli

- 1. Identifica le specie che possono avere effetto sul pH
 - Nella maggior parte dei casi, si può trascurare l'autoionizzazione dell'acqua
 - Trascura [OH⁻] perchè è determinato da [H⁺]
- Usa ICE per esprimere le concentrazioni all'equilibrio in funzione della singola incognita x.
- 3. Scrivi la K_a in funzione delle concentrazioni all'equilibrio. Trova la x con il metodo delle approssimazioni non sono valide, trova la x esattamente.
- 4. Calcola le concentrazioni di tutte le specie e/o il pH della soluzione.

Gli Acidi Deboli

Calcolo del pH

ESEMPIO:

Qual'è il pH di un acido monoprotico $0.122\,\mathrm{M}$ la cui K_a è $5.7\,\mathrm{x}$ 10^{-4} ?

Iniziale (M) 0.122 0.00 0.00

Cambiamento (M) -x +x +x

Equilibrio (M) 0.122 - x
$$x$$
 x

$$K_a = \frac{x^2}{0.122 - x} = 5.7 \times 10^{-4} \qquad K_a << 1 \qquad 0.122 - x \approx 0.122$$

$$K_a \approx \frac{x^2}{0.122} = 5.7 \times 10^{-4} \qquad x^2 = 6.95 \times 10^{-5} \qquad x = 0.0083 \, \text{M}$$

$$\frac{0.0083 \text{ M}}{0.122 \text{ M}} \times 100\% = 6.8\%$$

Più del 5% l'approssimazione non è valida.

Gli Acidi Deboli

Calcolo del pH

$$K_{a} = \frac{x^{2}}{0.122 - x} = 5.7 \times 10^{-4} \qquad x^{2} + 0.00057x - 6.95 \times 10^{-5} = 0$$

$$ax^{2} + bx + c = 0 \qquad x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = 0.0081 \qquad x = -0.0081$$

$$HA(aq) \longrightarrow H^{+}(aq) + A^{-}(aq)$$

Iniziale (M)

0.122

0.00

0.00

Cambiamento (M)

-X

+X

+X

Equilibrio (M)

0.122 - x

X

X

$$[H^+] = x = 0.0081 M$$

$$pH = -log[H^+] = 2.1$$

Percentuale di ionizzazione

Percentuale di ionizzazione = Concentrazione di acido ionizzato all'equilibrio x 100

Concentrazione iniziale di acido

Per un acido monoprotico HA

percentuale di ionizzazione =
$$\frac{[H^+]}{[HA]_0} \times 100$$

 $[HA]_0$ = concentrazione iniziale

Figura 15.4

La dipendenza della
percentuale di ionizzazione
dalla concentrazione iniziale di
acido. Nota che a
concentrazioni molto basse,
tutti gli acidi (deboli o forti),
sono praticamente
completamente ionizzati.

Costante di ionizzazione basica

$$NH_3(aq) + H_2O(I) \longrightarrow NH_4^+(aq) + OH^-(aq)$$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

 K_b è la costante di ionizzazione basica

$$pK_b$$
 forza
$$della\ base$$

$$debole$$

Risolvi i problemi relativi alle basi deboli con lo stesso procedimento di quelli degli acidi, ma in funzione di $[OH^-]$ invece che di $[H^+]$

Tabella 15.5 Costanti di ionizzazione di alcune basi e i loro rispettivi acidi coniugati a 25 °C

Nome della base	Formula	Struttura	K_{b}^{*}	Acido coniugato	K_{a}
Etilammina	C ₂ H ₅ NH ₂	CH ₃ —CH ₂ —N—H H	5.6×10^{-4}	$C_2H_5\overset{+}{N}H_3$	1.8×10^{-11}
Metilammina	CH ₃ NH ₂	CH ₃ —N—H H	4.4×10^{-4}	CH ₃ NH ₃	2.3×10^{-11}
Ammoniaca	NH ₃	H—N—H 	1.8×10^{-5}	NH [‡]	5.6×10^{-10}
Piridina	C ₅ H ₅ N	N:	1.7×10^{-9}	C ₅ H ₅ Ṅ́H	5.9×10^{-6}
Anilina	C ₆ H ₅ NH ₂	—————————————————————————————————————	3.8×10^{-10}	$C_6H_5\mathring{N}H_3$	2.6×10^{-5}
Caffeina	$\mathrm{C_8H_{10}N_4O_2}$	O C C C C C C C C C C C C C C C C C C C	5.3×10^{-14}	C ₈ H ₁₁ N ₄ O ₂	0.19
Urea	(NH ₂) ₂ CO	O H—N—C—N—H H H	1.5×10^{-14}	H ₂ NCONH ₃	0.67

Acido Debole e la sua Base Coniugata

$$HA(aq) \longrightarrow H^{+}(aq) + A(aq)$$

$$K(aq) + H_{2}O(I) \longrightarrow OH^{-}(aq) + HA(aq)$$

$$K_{2}O(I) \longrightarrow H^{+}(aq) + OH^{-}(aq)$$

$$K_{3}K_{6} = K_{w}$$

$$K_{4}K_{5} = K_{4}K_{5} = K_{4}K_{5}$$

La Struttura Molecolare e la Forza di un Acido

TABELLA 15.6	Entalpie di legame per alogenuri di idrogeno
	e forza acida di acidi alogenidrici

Legame	Entalpia di legame (kJ/mol)	Forza dell'acido
H—F	568.2	debole
H—C1	431.9	forte
H—Br	366.1	forte
H—I	298.3	forte

HF << HCl < HBr < HI

La Struttura Molecolare e la Forza di un Acido

Andamenti

$$\sum_{i} Z \longrightarrow O \longrightarrow H \longrightarrow Z \longrightarrow O^{-} + H^{+}$$

Il legame O-H sarà più polare e più facile da rompere se:

- Z è molto elettronegativo
- Zè in un alto stato di ossidazione

Figura 15.5 Strutture di Lewis di alcuni ossiacidi comuni. Per chiarezza le cariche formali sono state

omesse.

1. Ossoacidi che hanno atomi centrali (Z) differenti ma che siano dello stesso gruppo e abbiano il medesimo numero di ossidazione:

La forza di un acido aumenta all'aumentare dell'elettronegatività di Z

Cl è più elettronegativo di Br

 $HCIO_3 > HBrO_3$

2. Ossoacidi che hanno il medesimo atomo centrale (Z), ma differenti quantità di gruppi (O) legati

La forza dell'acido aumenta all'aumentare del numero di ossidazione di Z

 $HClO_4 > HClO_3 > HClO_2 > HClO$

Le Proprietà Acido-Base dei Sali

IDROLISI SALINA: reazione di un anione o di un catione (o di entrambi) di un sale con l'acqua

Si originano soluzioni:

- Neutre
- Basiche
- Acide

Soluzioni Neutre:

I sali che contengono uno ione di un metallo alcalino o alcalino terroso (tranne Be^{2+}) e la base coniugata di un acido forte (Cl^- , Br^- , e NO_3^-).

$$NaCl(s) \xrightarrow{H_2O} Na^+(aq) + Cl^-(aq)$$

Le Proprietà Acido-Base dei Sali

Soluzioni Basiche:

Sali derivati da una base forte e un acido debole

$$CH_{3}COONa (s) \xrightarrow{H_{2}O} Na^{+} (aq) + CH_{3}COO^{-} (aq)$$

$$CH_{3}COO^{-} (aq) + H_{2}O (I) \xrightarrow{CH_{3}COOH} (aq) + OH^{-} (aq)$$

Soluzioni Acide:

I sali derivati da un acido forte e una base debole

$$NH_4CI(s) \xrightarrow{H_2O} NH_4^+(aq) + CI^-(aq)$$

$$NH_4^+(aq) \xrightarrow{} NH_3(aq) \xrightarrow{} H^+(aq)$$

I sali con cationi metallici piccoli e altamente carichi (e.g. Al³+, Cr³+, Be²+) e la base coniugata di un acido forte

$$[AI(H_2O)_6 (aq)]^{3+} \longrightarrow [AI(OH)(H_2O)_5]^{2+} (aq) + H^+ (aq)$$

Le Proprietà Acido-Base dei Sali

Soluzioni in cui si idrolizzano sia il catione che l'anione:

- K_b dell'anione > K_a del catione, la soluzione sarà basica
- K_b dell'anione K_a del catione, la soluzione sarà acida
- K_b dell'anione $\approx K_a$ del catione, la soluzione sarà neutra

TABELLA 15.7 Proprietà acido-bas	e dei sali		
Tipo di sale	Esempio	Ione che subisce idrolisi	pH della soluzione
Catione da base forte; anione da acido forte	NaCl, KI, KNO $_3$, RbBr, BaCl $_2$	Nessuno	≈ 7
Catione da base forte; anione da acido debole	$\mathrm{CH_{3}COONa}$, KNO_{2}	Anione	> 7
Catione da base debole; anione da acido forte	NH ₄ Cl, NH ₄ NO ₃	Catione	< 7
Catione da base debole; anione da acido debole	NH ₄ NO ₂ , CH ₃ COONH ₄ , NH ₄ CN	Anione e catione	$<$ 7 se $K_{\rm b}$ $\le K_{\rm a}$
			$\approx 7 \text{ se } K_{\rm b} \approx K_{\rm a}$
			$>$ 7 se $K_{\rm b}$ $>$ $K_{\rm a}$
Cationi piccoli e altamente carichi	AlCl ₃ , Fe(NO ₃) ₃	Catione idrato	< 7

Le Proprietà Acido-Base degli Ossidi

Gli ossidi possono reagire con l'acqua per dare ossoacidi (acidi) o idrossidi (basici)

Proprietà acido-base degli ossidi degli elementi rappresentativi nei loro stati di ossidazione più alti

1 1A				Ossido	Ossido basico												18 8A
	2 2A			Ossido	Ossido acido (anidride)							13 3A	14 4A	15 5A	16 6A	17 7A	
Li ₂ O	BeO			Ossido	Ossido anfotero							B_2O_3	CO ₂	N ₂ O ₅		OF ₂	
Na ₂ O	MgO	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO ₃	Cl ₂ O ₇	
K ₂ O	CaO											Ga ₂ O ₃	GeO ₂	As ₂ O ₅	SeO ₃	Br ₂ O ₇	
Rb ₂ O	SrO											In ₂ O ₃	SnO ₂	Sb ₂ O ₅	TeO ₃	I ₂ O ₇	
Cs ₂ O	BaO											Tl ₂ O ₃	PbO ₂	Bi ₂ O ₅	PoO ₃	At ₂ O ₇	

$$CO_2(g) + H_2O(I) \longrightarrow H_2CO_3(aq)$$

$$N_2O_5(g) + H_2O(I) \longrightarrow 2HNO_3(aq)$$

Le Proprietà Acido-Base degli Amminoacidi

ISTIDINA: forma neutra

$$pH = pK_a + Log\left(\frac{[A^-]}{[HA]}\right) \qquad pOH = pK_b + Log\left(\frac{[HB^+]}{[B]}\right)$$

$$pK_a = -\log(K_a) = 1.82$$

$$pK_b = -\log(K_b) = 4.83$$

A pH fisiologico (vicino a 7) il gruppo carbossilico perde un protone mentre quello amminico aquista un protone: si dice che l'amminoacido istidina si trova in forma zwitterionica

Le Proprietà Acido-Base degli Amminoacidi

Istidina: amminoacido con un gruppo funzionale imidazolico che presenta tre gruppi acidi che hanno rispettivamente valori di p K_a di 1.82 (relativo al gruppo carbossilico), 6.04 (relativo al gruppo imidazolico) e 9.17 (relativo al gruppo amminico)

A seconda del pH l'istidina può presentarsi in quattro forme:

- a valori di pH minori di 1.82 si presenta in forma biprotonata con carica netta +2
- a pH maggiori, e più precisamente per valori di pH compresi tra
 1.82 e 6.04, il protone più acido ovvero quello appartenente al
 gruppo –COOH viene allontanato e quindi la carica netta è +1
- a valori di pH compresi tra 6.04 e 9.17 si deprotona l'azoto dell'anello imidazolico e quindi la carica netta è 0
- a valori di pH maggiori di 9.17 la carica netta è -1

Individua le coppie coniugate acido-base nella reazione tra ammoniaca e acido fluoridrico in soluzione acquosa:

$$NH_3(aq) + HF(aq) \Longrightarrow NH_4^+(aq) + F^-(aq)$$

Problema di verifica Individua le coppie coniugate acido-base per la reazione:

$$CN^- + H_2O \Longrightarrow HCN + OH^-$$

La concentrazione di OH⁻ in una soluzione di ammoniaca per l'igiene domestica è 0.0025 *M*. Calcolare la concentrazione di ioni H⁺.

Problema di verifica Calcolare la concentrazione di ioni OH⁻ in una soluzione di HCl la cui concentrazione di ioni idrogeno è 1.3 *M*.

La concentrazione di ioni H⁺ in una bottiglia di vino da tavola era 3.2×10^{-4} M subito dopo la rimozione del tappo. Solo la metà del vino è stata consumata. L'altra metà, dopo essere stata lasciata aperta all'aria per un mese, ha evidenziato una concentrazione di ioni idrogeno uguale a 1.0×10^{-3} M. Calcolare il pH del vino nelle due situazioni.

Problema di verifica L'acido nitrico (HNO₃) è usato nella produzione di fertilizzanti, coloranti, medicine ed esplosivi. Calcola il pH di una soluzione di HNO₃ avente una concentrazione di ione idrogeno di 0.76 *M*.

Il pH dell'acqua piovana raccolta in una certa regione del nord est dell'Italia in un certo giorno era 4.82. Calcola la concentrazione di ioni H⁺ dell'acqua piovana.

Problema di verifica Il pH di un succo di arancia è 3.3. Calcola la concentrazione di ioni H⁺.

In una soluzione di NaOH [OH $^-$] è 2.9 imes 10 $^{-4}$ M. Calcola il pH della soluzione.

Problema di verifica La concentrazione di ioni OH $^-$ di un campione di sangue è 2.5 \times 10 $^{-7}$ M. Qual è il pH del sangue?

Calcola il pH di (a) una soluzione $1.0 \times 10^{-3} M$ di HCl e (b) di una soluzione 0.020 M di Ba(OH)₂.

Problema di verifica Calcola il pH di una soluzione $1.8 \times 10^{-2} M$ di Ba(OH)₂.

Prevedi la direzione della seguente reazione in soluzione acquosa:

$$HNO_2(aq) + CN^-(aq) \Longrightarrow HCN(aq) + NO_2^-(aq)$$

Problema di verifica Prevedi se la costante di equilibrio della seguente reazione è più grande o più piccola di 1.

$$CH_3COOH(aq) + HCOO^-(aq) \Longrightarrow CH_3COO^-(aq) + HCOOH(aq)$$

Calcola il pH di una soluzione 0.036 M di acido nitroso (HNO₂):

$$HNO_2(aq) \rightleftharpoons H^+(aq) + NO_2^-(aq)$$

Problema di verifica Qual è il pH di un acido monoprotico 0.122 M la cui K_a è 5.7×10^{-4} ?

Il pH di una soluzione 0.10 M di acido formico (HCOOH) è 2.39. Qual è la $K_{\rm a}$ dell'acido?

Problema di verifica Il pH di una soluzione 0.060 M di un acido debole monoprotico è 3.44. Calcola la K_a dell'acido.

L'acido ossalico ($H_2C_2O_4$) è una sostanza velenosa usata principalmente come sbiancante e agente detergente (per esempio, per rimuovere gli aloni nella vasca da bagno). Calcola le concentrazioni di tutte le specie presenti all'equilibrio in una soluzione 0.10 M.

Problema di verifica Calcola le concentrazioni di $H_2C_2O_4$ e degli ioni $HC_2O_4^-$, $C_2O_4^{2-}$ e H^+ in una soluzione 0.20 M di acido ossalico.

Qual è il pH di una soluzione 0.40 M di ammoniaca?

Problema di verifica Calcola il pH di una soluzione 0.26 *M* di metilammina (vedi Tabella 15.5).

Prevedi le forze relative degli ossoacidi in ciascuno dei seguenti gruppi: (a) HClO, HBrO e HIO; (b) HNO₃ e HNO₂.

Problema di verifica Quale dei seguenti acidi è meno forte: HClO₃ o HClO₂?

Calcola il pH di una soluzione $0.15\ M$ di acetato di sodio (CH₃COONa). Qual è la percentuale di idrolisi?

Problema di verifica Calcola il pH di una soluzione di 0.24 *M* di formiato di sodio (HCOONa).

Prevedi se le seguenti soluzioni saranno acide, basiche o circa neutre: (a) NH₄I, (b) NaNO₂, (c) FeCl₃, (d) NH₄F.

Problema di verifica Prevedi se le seguenti soluzioni saranno acide, basiche o quasi neutre: (a) LiClO₄, (b) Na₃PO₄, (c) Bi(NO₃)₂, (d) NH₄CN.

Ripasso

Concetti fondamentali e parole chiave

- Acido e base di Bronsted
- Proprietà acido-base dell'acqua
- Prodotto ionico dell'acqua
- pH e pOH
- Acidi forti e deboli, Basi forti e deboli
- Costante di ionizzazione acida e basica
- Calcolo del pH di una soluzione di acido debole e base debole, metodo esatto e approssimato
- Percentuale di ionizzazione
- Costanti di Ionizzazione di Coppie Coniugate Acido-Base
- Struttura molecolare e forza di un acido
- Idrolisi salina
- Gli amminoacidi

Ripasso

Domande ed esercizi utili

Eserciziario Chang, Overby capitolo 16

Domande	Esercizi
16.1-16.2	16.3-16.8
16.9-16.14	16.15-16.24
16.25-16.28	16.29-16.36
16.37-16.40	16.41-16.48
16.49-16.50	16.51-16.52
16.53-16.54	16.55-16.58
16.59-16.60	16.61-16.64
16.65-16.70	16.71-16.76
16.79-16.82	16.79-16.82
	16.83; 16.85-16.86
	16.96; 16.99-16.100
	16.102, 16.108-16.109
	16.115, 16.116