

Erwin Schrödinger's Cat (1935)

— sealed box

At "half-life of particle, quantum mechanics says cat is simultaneously dead and alive!

"superposition" $\Psi = | \bullet \rangle | \langle \bullet \rangle \rangle + | \bullet \rangle | \langle \bullet \rangle \rangle$

Analog of quantum superposition

two "states" of a box

•

(a) <u>and</u> (b)

- 1. ambiguity about which state the box is in. Box possesses both properties simultaneously
- 2. quantum measurement: collapse or "projection" into either state (a) or (b)

Fred Alan Wolf, "Taking the Quantum Leap" (Harper & Row, San Francisco, 1981)

Analog of quantum entanglement

"measured" states of boxes are correlated

Erwin Schrödinger's Cat (1935)

at half-life:
$$\Psi = | \bullet \rangle | \otimes \rangle + | \bullet \rangle | \otimes \rangle$$

- state of cat is "entangled" with state of radioactive particle
- measured states are correlated

Schrödinger (1952):

"We never experiment with just one electron or atom or (small) molecule. In thought experiments, we sometimes assume that we do; this invariably entails ridiculous consequences..."

But now we can enter this world!

Need:

- * precise control + isolation from environment
- * simple small systems
 - e.g., single or small groups of particles

The development:

* personal story + the work of many others

Norman Ramsey's group, Harvard, 1966

Ed Uzgiris Andrew Chakulski Tom English Doug Brenner Ashok Kosha

Keith McAdam

Tom Follett

Dave Wineland Norman Pat Gibbons Paul Zitzewitz

Bill Edelstein Roger Hegstrom

Peter Moulton

Bob Hilborn

Peter Valberg

Fraser Code

Frank Winkler

On to Hans Dehmelt's lab: trapped electrons/ions

Hans Dehmelt

signal out

Single electrons

precursor to measurement of $\mu_{electron}$

R. S. Van Dyck, P. Ekstrom, H. Dehmelt, Phys. Rev. Lett. 38, 310 (1977)

D. Wineland, P. Ekstrom, and H. Dehmelt, Phys. Rev. Lett. 31, 1279 (1973).

Single electrons

precursor to measurement of $\mu_{electron}$

R. S. Van Dyck, P. Ekstrom, H. Dehmelt, Phys. Rev. Lett. 38, 310 (1977)

D. Wineland, P. Ekstrom, and H. Dehmelt, Phys. Rev. Lett. 31, 1279 (1973).

and, some ideas about laser cooling

D.J.Wineland and H. Dehmelt, Bulletin, Am. Phys. Soc. 20, 637 (1975)

concurrently,

T. W. Hänsch and A. L. Schawlow, Opt. Comm. 13, 68 (1975)

On to NIST (then NBS, National Bureau of Standards)

Cs beam frequency standard "NBS-6"

Helmut Hellwig

Optical-Sideband Cooling of Visible Atom Cloud Confined in Parabolic Well

W. Neuhauser, M. Hohenstatt, and P. Toschek Institut für Angewandte Physik I der Universität Heidelberg, D-69 Heidelberg, West Germany

and

H. Dehmelt

Department of Physics, University of Washington, Seattle, Washington 98195 (Received 25 April 1978)

An assemblage of < 50 Ba⁺ ions, contained in a parabolic well, has been visually observed and cooled by means of near-resonant laser irradiation.

Peter Toschek

), Number 25

PHYSICAL REVIEW LETTER

Radiation-Pressure Cooling of Bound Resona

D. J. Wineland, R. E. Drullinger, and F. L. Time and Frequency Division National Bureau of Standards, Bo (Received 26 April 1978)

We report the first observation of radiation-pressure cooling of absorbers which are elastically bound to a laboratory fixed appar fined in a Penning electromagnetic trap are cooled to <40 K by ir 8- μ W output of a frequency doubled, single-mode dye laser tuned side of the Doppler profile on the ${}^2S_{1/2} \longrightarrow {}^2P_{3/2}$ ($M_J = +\frac{1}{2} \longrightarrow M_J = +\frac{3}{2}$ transitions. Cooling to approximately 10^{-3} K should be possible.

Individual ions:

single Ba+ ion

W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt, Phys. Rev. A**22**, 1137 (1980).

single ²⁴Mg⁺ ion

D.J. Wineland and W. M. Itano, Phys. Lett. <u>82A</u>, 75-78 (1981).

Single Hg⁺ ion experiments at NIST

Quantum Jumps of a Single Ion

Cooling to the ground state of motion

Cooling to the ground state of motion

Single ions for (optical) clocks: J. C. Bergquist et al., 1981 →

Jim Bergquist

- trapping ⇒ first-order Doppler shift → 0
- trapping + laser cooling \Rightarrow time dilation \rightarrow 0
- trapping in high vacuum at low temp
 - \Rightarrow environmental perturbations (collisions, black body shifts, etc.) \rightarrow 0

Enter quantum information processing

Richard Feynman, David Deutsch, Paul Benioff,...(1980's)

Peter Shor: algorithm for efficient number factoring on a quantum computer (~ 1994)

Artur Ekert: presentation at the 1994 International Conference on Atomic Physics Boulder, Colorado

Atomic Ion Quantum Computation:

(J. I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

SPIN → MOTION MAP

INTERNAL STATE "QUBIT"

Ignacio Cirac

Peter Zoller

MOTION "DATA BUS"

(e.g., center-of-mass mode)

Quantum logic gates?

quantized motion levels

Chris Monroe

Simple example of quantum logic:

"Controlled-NOT" gate between motion and atom's internal state C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 75, 4714 (1995).

Aarhus MIT

Amherst NIST Bejing (Tsinghua) NPL

Berkeley Osaka University

Duke Oxford

ETH (Zürich) Paris (Université Paris)

Freiburg PTB, Braunschweig

Garching (MPQ) Saarland

Georgia Tech Sandia National Lab

Griffiths University Siegen

Hannover Simon Fraser University

Innsbruck Singapore

JQI (U. Maryland) Sussex

Lincoln Labs Sydney

London (Imperial) U. Washington

Mainz Weizmann Institute

C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272, 1131 (1996).

atomic Schrödinger "kitten"

trapped ⁹Be+ ion

"Kitten"...seems needlessly macroscopic as a metaphor for a single trapped atom. How about "Schrödinger's furrball?"

Andrew Ahlgren, U. of Minnesota, Minneapolis, MN

Quantum Information Processing with ions

 gates, simple algorithm implementations many groups including NIST

simulations of other quantum systems (S. Lloyd,...)

♦ e.g., interacting oscillating ion dipoles simulate quantum magnets

C. Monroe et al., U. Maryland

T. Schätz et al., Freiburg;

J. Bollinger et al., NIST

universal (digital) quantum simulator

R. Blatt et al., Innsbruck

Didi Leibfried

John Bollinger

and many more...

- ♦ laser-cooled Mg⁺ keeps Al⁺ cold
- ♦ Mg⁺ used to calibrate ⟨B²⟩ from all sources
- ♦ collisions observed by ions switching places
- **\lambda**

 \Rightarrow systematic uncertainty $\approx 10^{-17}$

James Chou with "portable" Al+ clock

measure gravitational potential red shift

 $\Delta h = 33 \text{ cm}$ predict 36×10^{-18}

measure 41 ± 16 x 10⁻¹⁸

NIST group: collaboration of many people

- plus students, postdocs, visitors (> 100)
- institutional support

Helmut Hellwig, Sam Stein, Don Sullivan, Tom O'Brian, Katharine Gebbie...

And good friends along the way!

C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272, 1131 (1996).

On to Hans Dehmelt's lab: trapped electrons/ions

