MATH 254: Assignment 3

November 5, 2022

Problem 1

WTS. $\sqrt{3}$ is not rational.

Proof. Suppose that $\sqrt{3} \in \mathbb{Q}$. Note that $\sqrt{3} \neq 0$ since $\sqrt{3} \cdot \sqrt{3} = 3 \neq 0$, and $\sqrt{3} > 0$. Then there exists a factorized form of $\sqrt{3} = a/b$ such that a and b are in \mathbb{N}^+ and have no common divisors other than 1. Now suppose that a = 2m and b = 2n + 1.

$$\frac{2m}{2n+1} = \sqrt{3} \iff 2m = \sqrt{3}(2n+1)$$

$$\iff 4m^2 = 3(4n^2 + 4n + 1)$$
(2)

$$\iff 4m^2 = 3(4n^2 + 4n + 1) \tag{2}$$

$$\iff (m^2 - 3n^2 - 3n) = 3/4 \in \mathbb{Z} \tag{3}$$

Where for the last assertion we used the fact that the integers are closed under addition and multiplication. And this contradiction establishes that a is odd.

To prove the fact that a cannot be odd as well, consider the following, (notice how we relabelled the coefficients), since $\sqrt{3} \neq 0$

$$\frac{2n+1}{2m} = \sqrt{3} \implies \frac{2m}{2n+1} = 1/\sqrt{3}$$

Mutiplying both sides by 3 yields

$$2(3m) = \sqrt{3}(2n+1)$$

Replace m = 3m in (1), and the contradiction finishes the proof. (*)

Remark. In (*), consider the similarities between the above equation and (1), where m, n are arbitrary numbers in \mathbb{N}^+ . Since no m, n in \mathbb{N}^+ can satisfy (1).

WTS. \mathbb{N} is unbounded above.

Proof. Consider $2 \in \mathbb{N}$. So $\mathbb{N} \neq \emptyset$, and suppose by contradiction that

$$2 \leq \sup \mathbb{N} = x < +\infty$$

Then there exists some $y \in \mathbb{N}$

$$x - 1 \le y$$

But since \mathbb{N} is closed under addition,

$$x < y + 2 \in \mathbb{N}$$

But y + 2 > x, and we are done.

WTS. Show that $\mathbb{Q}\sqrt{2}$ and $\mathbb{Q}+\sqrt{2}$ are dense in \mathbb{R} .

Proof. We know that $\mathbb Q$ is dense in $\mathbb R$, then fix any $\varnothing \neq (a,b) \subseteq \mathbb R$, if there exists some $q \in \mathbb Q$

$$\frac{a}{\sqrt{2}} < q < \frac{b}{\sqrt{2}} \implies a < q\sqrt{2} < b$$

Also,

$$a - \sqrt{2} < q < b - \sqrt{2} \implies a < q + \sqrt{2} < b$$

Since addition, subtraction, multiplication, division by $\sqrt{2} > 0$ preserves the order relation for a < b. This finishes the proof.

WTS. We wish to show that $\inf S = -1$ and $\sup S = +1$ for

$$S = \left\{ \frac{1}{m} - \frac{1}{n} : m, n \in \mathbb{N}^+ \right\}$$

We begin with a few important lemmas. For non-empty bounded subsets A, B of \mathbb{R} ,

Lemma 0.1. If A is a non-empty bounded above subset of \mathbb{R} , then $(-1)(\sup A) = \inf(-1)A$.

Proof. Let $s = \sup(A)$, then

$$(-1)A = \{-x : x \in A\}$$

Evidently, for every $x \in A$

$$x \le s \implies -s \le -x \implies -s \le (-1)A$$

Now fix any $\varepsilon > 0$, then there exists an $x \in A$ such that

$$s - \varepsilon \le x \implies (-1)(s - \varepsilon) \ge -x \implies (-x) \le (-s) + \varepsilon$$

Thus establishes $\inf(-1)A = (-1)\sup(A)$.

Corollary 0.1.1. $(-1)\inf(A) = \sup(-1)A$. The proof is trivial just replace A by (-1)A.

Lemma 0.2. If A and B are non-empty bounded above subsets of \mathbb{R} , then $\sup A + \sup B = \sup(A + B)$

Proof. Define $s = \sup A$ and $t = \sup B$, then for every $(a, b) \in A \times B$

$$a \leq s, \; b \leq t \implies a+b \leq s+t \implies A+B \leq s+t$$

Now for every $\varepsilon/2 > 0$, there exists $(a, b) \in A \times B$ such that

$$a \leq s - \varepsilon/2, \; b \leq t - \varepsilon/2 \implies s + t - \varepsilon \leq a + b$$

Therefore $\sup(A + B) = \sup(A) + \sup(B)$.

Lemma 0.3. If A is a non-empty bounded subset of \mathbb{R} , if s and t are upper and lower bounds of A, and if $s \in A$ then $s = \sup A$. Also if $t \in A$, then $t = \inf A$

Proof. Suppose that s and s' are upper bounds of A, then

$$s \in A \implies s < s'$$

So $s = \sup A$, now if t and t' are lower bounds of A, then

$$t \in A \implies t' < t$$

This completes the proof.

Remark. We only require A to be bounded above for the supremum part of the proof, and A to be bounded below for the infimum of the proof. We omit the caveat because it is a needless distraction.

Main Proof of Question 4

Now we are ready to tackle the question of Question 4

Proof. To prove Q4, define $A = \{n^{-1}, n \in \mathbb{N}^+\}$, then inf A = 0 and $\sup A = 1$. Since 0 is a lower bound for A, it suffices to apply the Archimedean property for any $\varepsilon > 0$,

$$\exists n \in \mathbb{N}^+, 0 < \frac{1}{n} < 0 + \varepsilon = \varepsilon$$

Therefore inf A=0. To show sup A=1, notice that

$$n \ge 1 \implies 1/n \le 1$$

But $1 \in A$ so applying Lemma 0.7 tells us that sup A = 1.

We then construct two sets, S_1 and S_2 where $S_1 = S_2 = A$. By applying Lemma 0.1 we get

$$\sup(-S_2) = (-1)\inf(S_2) = 0$$

Now use Lemmas 0.2 (which allows us to add the supremums together) to obtain

$$\sup(S_1 - S_2) = 1 + 0 = 1$$

From here, let us turn our attention to the fact that

$$(-1)(S_1 - S_2) = (S_1 - S_2)$$

Apply Lemma 0.1 once again, then we can obtain

$$-1 = (-1)\sup\{(S_1 - S_2)\} = \inf\{(-1)(S_1 - S_2)\} = \inf\{(S_1 - S_2)\}$$

As a final step, recall that

$$S_1-S_2\coloneqq S=\left\{rac{1}{m}-rac{1}{n}:m,n\in\mathbb{N}^+
ight\}$$

Therefore $\inf S = -1$ and $\sup S = +1$.

WTS. Show that for every $A, B \subseteq \mathbb{Q}^+$,

- (a) $\inf A + \inf B = \inf A + B$
- (b) $\inf A \inf B = \inf AB$

We will make use of two Lemmas proven in previous exercises.

Lemma 0.4. If A and B are non-empty bounded below subsets of \mathbb{R} , then inf $A + \inf B = \inf(A + B)$

Proof. Define $w = \inf A$ and $q = \inf B$, then for every $(a, b) \in A \times B$

$$w \le a, q \le b \implies w + q \le a + b \implies w + q \le A + B$$

Now for every $\varepsilon/2 > 0$, there exists $(a, b) \in A \times B$ such that

$$a \le w + \varepsilon/2, \ b \le q + \varepsilon/2 \implies a + b \le w + q + \varepsilon$$

Therefore $\inf(A + B) = \inf(A) + \inf(B)$.

Lemma 0.5. If A is a non-empty bounded below subset of \mathbb{R} , then for every $c \geq 0$, $c(\inf A) = \inf cA$.

Proof. Let $w = \inf(A)$, then

$$cA = \{cx : x \in A\}$$

Then for every $x \in A$

$$w < x \implies cw < cx \implies cw < cA$$

If c = 0, then the equality is trivial since $cA = \{0\}$, if not, for every $\varepsilon/c > 0$, there exists an $x \in A$ such that

$$x \le w + \frac{\varepsilon}{c} \implies cx \le cw + \varepsilon$$

This establishes Lemma 0.5.

Main Proof for Question 5

Proof. Lemma 0.4 applies for all non-empty, bounded-below subsets of \mathbb{R} , since A and B are bounded below by $0 \in \mathbb{R}$, and we assume in good faith that neither of them are empty, then this establishes (a). If either one of them is empty, then there is nothing to prove as A + B and AB will be empty as well.

Now let us prove (b). Since 0 is a lower bound for A and B,

- $0 \le \inf_{a \in A} a$
- $0 \le \inf_{b \in B} b$
- For every $a \in A$, $0 \le a$
- For every $b \in B$, $0 \le b$

Fix any member $a \in A$ such that $a \ge 0$ by Lemma 0.5

$$a \cdot \inf_{b \in B} b = \inf_{b \in B} ab$$

Taking the infimum with respect to A on both sides (equality of sets \implies equality of inf)

$$\inf_{a \in A} \left(\left\{ a \cdot \inf_{b \in B} b \right\} \right) = \inf_{a \in A} \left(\left\{ \inf_{b \in B} ab \right\} \right)$$

Now since $\inf_{b \in B} b \ge 0$ we can apply Lemma 0.5 to the left member (without loss of generality, the inf commutes)

$$\inf_{b \in B} b \inf_{a \in A} a = \inf_{a \in A} \inf_{b \in B} ab$$

We claim that

$$\inf_{a \in A} \inf_{b \in B} (ab) = \inf_{(a,b) \in A \times B} (ab)$$

Let us take a step back and solve the problem in the abstract for a bit. We want to show that for any $f: X \times Y \to \mathbb{R}$ that is bounded below,

$$\inf_{a \in X} \inf_{b \in Y} f(a, b) = \inf_{(a, b) \in X \times Y} f(a, b)$$

Fix any z = f(x, y), $\inf_{b \in Y} f_x(b) \le f_x(y) = z$ where f_x and f^y denote the x and y sections of f, such that

$$f_x(y) = f(x,y) = f^y(x)$$

Then taking the inf over $a \in X$ gives

$$\inf_{a \in X} \inf_{b \in Y} f_a(b) \le f(x, y), \quad \forall (x, y) \in X \times Y$$

So $\inf_{a\in X}\inf_{b\in Y}f_a(b)$ is a lower bound for f. To show that it is indeed the infimum, for every $\varepsilon/2>0$ we obtain some $x_0\in X$ such that

$$\inf_{a \in X} \left(\left\{ \inf_{b \in Y} f(a, b) \right\} \right) + \varepsilon/2 > \inf_{b \in Y} f_{x_0}(b)$$

Going through the same motion again, but this time for another $\varepsilon/2>0$ gives us some $y_o\in Y$

$$\inf_{b \in Y} f_{x_0}(b) + \varepsilon/2 > f(x_0, y_0)$$

Adding the two estimates together, there exists some $(x_0, y_0) \in X \times Y$ that satisfies, for every $\varepsilon > 0$

$$\inf_{a \in X} \left(\left\{ \inf_{b \in Y} f(a, b) \right\} \right) + \varepsilon > f(x_0, y_0)$$

Now apply $f: A \times B \to \mathbb{R}$ with the mapping $(a,b) \mapsto a \cdot b$ (which is bounded below by 0, as the multiplication of two non-negative numbers is non-negative). This finishes the proof.

WTS. Prove that if a bounded above set $S \subseteq \mathbb{R}$ contains one of its upper bounds u, then $\sup S = u$. And prove it for a bounded below set and its infimum.

I already proved this in earlier questions as a Lemma.

Lemma 0.6. If A is a non-empty bounded subset of \mathbb{R} , if s and t are upper and lower bounds of A, and if $s \in A$ then $s = \sup A$. Also if $t \in A$, then $t = \inf A$

Proof. Suppose that s and s' are upper bounds of A, then

$$s \in A \implies s < s'$$

So $s = \sup A$, now if t and t' are lower bounds of A, then

$$t \in A \implies t' \le t$$

This completes the proof.

Remark. We only require A to be bounded above for the supremum part of the proof, and A to be bounded below for the infimum of the proof. We omit the caveat because it is a needless distraction.

WTS. Prove that every finite subset of \mathbb{R} contains its infimum and supremum.

We need an important Lemma.

Lemma 0.7. If A is a non-empty bounded subset of \mathbb{R} , if s and t are upper and lower bounds of A, and if $s \in A$ then $s = \sup A$. Also if $t \in A$, then $t = \inf A$

Proof. Suppose that s and s' are upper bounds of A, then

$$s \in A \implies s \le s'$$

So $s = \sup A$, now if t and t' are lower bounds of A, then

$$t \in A \implies t' \le t$$

This completes the proof.

Remark. We only require A to be bounded above for the supremum part of the proof, and A to be bounded below for the infimum of the proof. We omit the caveat because it is a needless distraction.

Main Proof for Question 7

Proof. If A is empty then this is a pathological case. If we are working in the extended reals $\overline{\mathbb{R}}$ then by convention

$$\inf \emptyset = +\infty, \quad \sup \emptyset = -\infty$$

Where both inf $A \notin A$ and $\sup A \notin A$. Now, suppose that A is non-empty and finite. Define

$$|A| = \sum_{a \in A} 1$$

Then $1 \le |A| < +\infty$. If |A| = 1, then $A = \{x\}$ for some $x \in \mathbb{R}$, then this x is an upper bound and a lower bound for A. Because

• For every $y \in A$, $y \le x$.

• For every $y \in A$, $x \leq y$.

By Lemma (0.7) since $x \in A$, then $\sup A = \inf A = x$. Now let us show for the general case, where $|A| = N < +\infty$. Because A is a finite non-empty set, there exists a bijection between A and some initial segment of the countable ordinals. Let us agree to call this bijection

$$F: A \rightarrow [0, |A| - 1] \cap \mathbb{N}$$

Denote $a = F^{-1}(0)$. Then $E_1 := \{a\}$ is non-empty and contains its supremum and infimum. Now let us assume for the purposes of induction, that E_n where $1 \le n < |A| - 1$ such that

$$\sup E_n \in E_n$$
, $\inf E_n \in E_n$

Then take $x = F^{-1}(n+1)$, so this $x \notin E_n$, since F^{-1} is also a function. Then we will show that $E_{n+1} = \{x\} \cup E_n$ contains its supremum and infimum.

Since sup $E_n \in E_{n+1}$ and inf $E_n \in E_{n+1}$, if

$$x \le \sup E_n \implies \sup E_n = \sup E_{n+1}$$

Likewise for its infimum

$$\inf E_n \leq x \implies \inf E_n = \inf E_{n+1}$$

Because sup E_n is an upper bound of E_{n+1} that is contained in E_{n+1} (likewise for inf E_n). However, if

$$\sup E_n < x \implies \forall y \in E_n, \ y \le \sup E_n < x$$

Or

$$x < \inf E_{n+1} \implies \forall y \in E_n, \ x < \inf E_{n+1} \le y$$

Then take sup $E_{n+1} = x \in E_{n+1}$ or inf $E_{n+1} = x \in E_{n+1}$. As a final 'step' we note that A can be written as

$$A = E_{|A|-1} \cup \{F^{-1}(|A|-1)\}\$$

This completes the proof.

WTS. Prove the Triangle Inequality with $n \geq 2$.

Lemma 0.8. The Triangle Inequality, for every $a, b \in \mathbb{R}$

$$|a+b| \le |a| + |b|$$

Proof. Notice that for every $a, b \in \mathbb{R}$

- $-|a| \le a \le +|a|$
- $-|b| \le b \le +|b|$

Add two inequalities together, then we get

$$-(|a|+|b|) \le (a+b) \le +(|a|+|b|)$$

Since $|a|+|b|\geq 0$, we get $|a+b|\leq |a|+|b|$ as desired. Because for every $c\geq 0$,

$$c \ge |a| \iff c \ge \max\{-a, +a\}$$

 $\iff c \ge a \text{ and } c \ge -a$
 $\iff c \ge a \text{ and } -c \le a$
 $\iff -c \le a \le +c$

0.1 Main Proof for Q8

Proof. For every x_1 , x_2 in \mathbb{R} ,

$$\left| \sum_{j=1}^{2} x_j \right| \le \sum_{j=1}^{2} |x_j|$$

This proves the non trivial base case, if n = 1 then obviously $|x_1| \le |x_1|$. We now suppose that

$$\left| \sum_{j=1}^{k} x_j \right| \le \sum_{j=1}^{k} |x_j|$$

Then write

$$\left| \sum_{j=1}^{k+1} x_j \right| = \left| \left(\sum_{j=1}^k x_j \right) + (x_{k+1}) \right|$$

Applying the second estimate to the right member gives us

$$\left| \sum_{j=1}^{k+1} x_j \right| \le \left| \sum_{j=1}^k x_j \right| + |x_{k+1}| \le \sum_{j=1}^{k+1} |x_j|$$

This completes the proof.