EXERCISES

In Exercises 1-6, find the indicated projection.

- 1. The projection of [2, 1] on sp([3, 4]) in \mathbb{R}^2
- 2. The projection of [3, 4] on sp([2, 1]) in \mathbb{R}^2
- 3. The projection of [1, 2, 1] on each of the unit coordinate vectors in \mathbb{R}^3
- 4. The projection of [1, 2, 1] on the line with parametric equations x = 3t, y = t, z = 2t in \mathbb{R}^3
- The projection of [-1, 2, 0, 1] on sp([2, -3, 1, 2]) in R⁴
- 6. The projection of [2, -1, 3, -5] on the line sp([1, 0, -1, 2]) in \mathbb{R}^4

In Exercises 7–12, find the orthogonal complement of the given subspace.

- 7. The subspace sp([1, 2, -1]) in \mathbb{R}^3
- 8. The line sp([2, -1, 0, -3]) in \mathbb{R}^4
- 9. The subspace sp([1, 3, 0], [2, 1, 4]) in \mathbb{R}^3
- 10. The plane 2x + y + 3z = 0 in \mathbb{R}^3
- 11. The subspace sp([2, 1, 3, 4], [1, 0, -2, 1]) in \mathbb{R}^4
- 12. The subspace (hyperplane) $ax_1 + bx_2 + cx_3 + dx_4 = 0$ in \mathbb{R}^4 [Hint: See Illustration 3.]
- Find a nonzero vector in R³ perpendicular to [1, 1, 2] and [2, 3, 1] by
 - a. the methods of this section,
 - b. computing a determinant.
- 14. Find a nonzero vector in \mathbb{R}^4 perpendicular to [1, 0, -1, 1], [0, 0, -1, 1], and [2, -1, 2, 0] by
 - a. the methods of this section,
 - b. computing a determinant.

In Exercises 15-22, find the indicated projection.

- 15. The projection of [1, 2, 1] on the subspace sp([3, 1, 2], [1, 0, 1]) in \mathbb{R}^3
- 16. The projection of [1, 2, 1] on the plane x + y + z = 0 in \mathbb{R}^3
- The projection of [1, 0, 0] on the subspace sp([2, 1, 1], [1, 0, 2]) in R³

- 18. The projection of [-1, 0, 1] on the plane x + y = 0 in \mathbb{R}^3
- 19. The projection of [0, 0, 1] on the plane 2x y z = 0 in \mathbb{R}^3
- 20. The projection in \mathbb{R}^4 of [-2, 1, 3, -5] on
 - a. the subspace sp(e₃)
 - **b.** the subspace $sp(e_1, e_4)$
 - c. the subspace $sp(e_1, e_3, e_4)$
 - d. ℝ⁴
- The projection of [1, 0, -1, 1] on the subspace sp([1, 0, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]) in R⁴
- 22. The projection of [0, 1, -1, 0] on the subspace (hyperplane) $x_1 x_2 + x_3 + x_4 = 0$ in \mathbb{R}^4 [HINT: See Example 5.]
- 23. Assume that a, b, and c are vectors in \mathbb{R}^n and that W is a subspace of \mathbb{R}^n . Mark each of the following True or False.
- ___ a. The projection of b on sp(a) is a scalar multiple of b.
- b. The projection of b on sp(a) is a scalar multiple of a.
- c. The set of all vectors in \mathbb{R}^n orthogonal to every vector in W is a subspace of \mathbb{R}^n .
- ___ d. The vector $\mathbf{w} \subseteq W$ that minimizes $\|\mathbf{c} \mathbf{w}\|$ is \mathbf{c}_{W} .
- e. If the projection of **b** on W is **b** itself, then **b** is orthogonal to every vector in W.
- f. If the projection of **b** on W is **b** itself, then **b** is in W.
- g. The vector **b** is orthogonal to every vector in W if and only if $\mathbf{b}_W = \mathbf{0}$.
- ___ h. The intersection of W and W^{\perp} is empty.
- i. If b and c have the same projection on W, then b = c.
- i/If b and c have the same projection on every subspace of \mathbb{R}^n , then $\mathbf{b} = \mathbf{c}$.
- 24. Let a and b be nonzero vectors in \mathbb{R}^n , and let θ be the angle between a and b. The scalar $\|\mathbf{b}\|$ cos θ is called the scalar component of b along a. Interpret this scalar graphically (see Figures 6.1 and 6.2), and give a formula for it in terms of the dot product.
- 25. Let W be a subspace of \mathbb{R}^n and let \mathbf{b} be a vector in \mathbb{R}^n . Prove that there is one and only one vector \mathbf{p} in W such that $\mathbf{b} \mathbf{p}$ is

perpendicular to every vector in W. [HINT: Suppose that \mathbf{p}_1 and \mathbf{p}_2 are two such vectors, and show that $\mathbf{p}_1 - \mathbf{p}_2$ is in W^1 .]

- 26. Let A be an $m \times n$ matrix.
 - a. Prove that the set W of row vectors x in \mathbb{R}^m such that xA = 0 is a subspace of \mathbb{R}^m .
 - b. Prove that the subspace W in part (a) and the column space of A are orthogonal complements.
- 27. Subspaces U and W of \mathbb{R}^n are orthogonal if $\mathbf{u} \cdot \mathbf{w} = 0$ for all \mathbf{u} in U and all \mathbf{w} in W. Let U and W be orthogonal subspaces of \mathbb{R}^n , and let $\dim(U) = n \dim(W)$. Prove that each subspace is the orthogonal complement of the other.
- 28. Let W be a subspace of \mathbb{R}^n with orthogonal complement W^{\perp} . Writing $\mathbf{a} = \mathbf{a}_W + \mathbf{a}_{W^{\perp}}$, as in Theorem 6.1, prove that

$$||\mathbf{a}|| = \sqrt{||\mathbf{a}_{w}||^2 + ||\mathbf{a}_{w^{\perp}}||^2}.$$

[Hint: Use the formula $||\mathbf{a}||^2 = \mathbf{a} \cdot \mathbf{a}$.]

29. (Distance from a point to a subspace) Let W be a subspace of Rⁿ. Figure 6.5 suggests that the distance from the tip of a in Rⁿ to the subspace W is equal to the magnitude of the projection of the vector a on the orthogonal complement of W. Find the distance from the point (1, 2, 3) in R³ to the subspace (plane) sp([2, 2, 1], [1, 2, 1]).

FIGURE 6.5 The distance from a to W is $\|\mathbf{a}_{\mathbf{w}^{\perp}}\|$.

30. Find the distance from the point (2, 1, 3, 1) in R⁴ to the plane sp([1, 0, 1, 0], [1, -1, 1, 1]). [HINT: See Exercise 29.]

In Exercises 31–36, use the idea in Exercise 29 to find the distance from the tip of a to the given one-dimensional subspace (line). [Note: To calculate $\|\mathbf{a}_{w}\|$, first calculate $\|\mathbf{a}_{w}\|$ and then use Exercise 28.]

31.
$$\mathbf{a} = [1, 2, 1],$$

 $W = \operatorname{sp}([2, 1, 0]) \text{ in } \mathbb{R}^3$

32.
$$a = [2, -1, 3],$$

 $W = sp([1, 2, 4]) \text{ in } \mathbb{R}^3$

33.
$$\mathbf{a} = [1, 2, -1, 0],$$

 $W = \operatorname{sp}([3, 1, 4, -1]) \text{ in } \mathbb{R}^4$

34.
$$\mathbf{a} = [2, 1, 1, 2],$$

 $W = \operatorname{sp}([1, 2, 1, 3]) \text{ in } \mathbb{R}^4$

35.
$$\mathbf{a} = [1, 2, 3, 4, 5],$$

 $W = \operatorname{sp}([1, 1, 1, 1, 1]) \text{ in } \mathbb{R}^5$

36.
$$\mathbf{a} = [1, 0, 1, 0, 1, 0, 1],$$

 $W = \operatorname{sp}([1, 2, 3, 4, 3, 2, 1]) \text{ in } \mathbb{R}^7$

Exercises 37-39 involve inner-product spaces discussed in optional Section 3.5.

- 37. Referring to Example 6, find the projection of f(x) = 1 on sp(x) in P_2 .
- 38. Referring to Example 6, find the projection of f(x) = x on sp(1 + x).
- 39. Let S and T be nonempty subsets of an inner-product space V with the property that every vector in S is orthogonal to every vector in T. Prove that the span of S and the span of T are orthogonal subspaces of V.

