CS6190: Probabilistic Modeling Homework 0

Gopal Menon

13 January, 2018

1. Let X and Y be continuous real-valued random variables. Prove the following:

(a)
$$E[E[X|Y]] = E[X]$$

$$\begin{split} E\left[E\left[X|Y\right]\right] &= \int_{-\infty}^{\infty} E\left[X|Y=y\right] p_Y(y) dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \; p_{X|Y=y}(x) dx \; p_Y(y) dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \; p_{X|Y=y}(x) p_Y(y) dx dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \; p_{XY}(x,y) dx dy \\ &= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} p_{XY}(x,y) dy \; dx \\ &= \int_{-\infty}^{\infty} x \; p_X(x) dx \\ &= E\left[X\right] \end{split}$$

Here $p_X(x)$, $p_Y(y)$ and $p_{X|Y=y}(x)$ are the probability density functions for X, Y, and the conditional probability of X given the value of Y. $p_{XY}(x,y)$ is the joint probability distribution function of X and Y. I needed to look up the proof [1] as I was not aware that the first step shown above could be done and due to this, I was getting an extra y in the final result. The result I got before I looked up the proff was yE[X].

(b)
$$Var(X) = E\left[Var(X|Y)\right] + Var(E\left[X|Y\right])$$

$$\begin{split} E\left[Var(X|Y)\right] + Var(E\left[X|Y\right]) &= E\left[E\left[X^2|Y\right] - E\left[X|Y\right]E\left[X|Y\right]\right] \\ &+ E\left[E\left[X|Y\right]E\left[X|Y\right]\right] - E\left[E\left[X|Y\right]\right]E\left[E\left[X|Y\right]\right] \\ &= a \end{split}$$

2.

References

[1] Conditional Expectation, www.statlect.com/fundamentals-of-probability/conditional-expectation.