

# Bradford Hull

# Lifespan Analysis of Worms

Consultation: September 12<sup>th</sup>, 2024 STAT688 | Huashi Li, Alex Salce (Taryn Laird)



# Background

#### Client: Bradford Hull

- 5<sup>th</sup> year PhD student in MCB
- Studying aging in worms

**Experimental** 

**Units** 

| 0 <u>1 m</u> m | eggs | 0° L4       |
|----------------|------|-------------|
| ~ (            | L1   | young adult |
|                | L2   | adult       |
| ~              | L3   | adult male  |

|                         | Number Dead                |                   | Percent Alive         |                   |                         | Number Dead           |                   | Percent Alive         |                   |
|-------------------------|----------------------------|-------------------|-----------------------|-------------------|-------------------------|-----------------------|-------------------|-----------------------|-------------------|
| Time (Days<br>from Egg) | Wild Type<br>(N = 58)      | daf-2<br>(N = 41) | Wild Type<br>(N = 58) | daf-2<br>(N = 41) | Time (Days<br>from Egg) | Wild Type<br>(N = 58) | daf-2<br>(N = 41) | Wild Type<br>(N = 58) | daf-2<br>(N = 41) |
| 0                       | 0                          | 0                 | 100                   | 100               | 31                      |                       | 0                 |                       | 88                |
| 9                       | 2                          | 0                 | 97                    | 100               | 32                      |                       | 5                 |                       | 76                |
| 13                      | 0<br>2<br>5<br>2           | 0                 | 88                    | 100               | 33                      |                       | 4                 |                       | 66                |
| 14                      | 2                          | 1                 | 84                    | 98                | 34                      |                       | 4                 |                       | 56                |
| 15                      | 4                          | 0                 | 78                    | 98                | 35                      |                       | 1                 |                       | 54                |
| 16                      | 1                          | 0                 | 76                    | 98                | 36                      |                       | 0                 |                       | 54                |
| 17                      | 12                         | 2                 | 55                    | 93                | 37                      |                       | 1                 |                       | 51                |
| 18                      | 2                          | 0                 | 52                    | 93                | 39                      |                       | 6                 |                       | 37                |
| 19                      | 4                          | 1                 | 45                    | 90                | 40                      |                       | 0                 |                       | 37                |
| 20                      | 3                          | 0                 | 40                    | 90                | 43                      |                       | 2                 |                       | 32                |
| 21                      | 2                          | 0                 | 36                    | 90                | 45                      |                       | 2                 |                       | 27                |
| 22                      | 2                          | 0                 | 33                    | 90                | 47                      |                       | 2                 |                       | 22                |
| 23                      | 2                          | 0                 | 29                    | 90                | 49                      |                       | 2                 |                       | 17                |
| 24                      | 5                          | 0                 | 21                    | 90                | 51                      |                       | 0                 |                       | 17                |
| 25                      | 3<br>2<br>2<br>2<br>5<br>2 | 0                 | 17                    | 90                | 53                      |                       | 1                 |                       | 15                |
| 26                      | 2                          | 0                 | 14                    | 90                | 55                      |                       | 2                 |                       |                   |
| 27                      | 1                          | 0                 | 12                    | 90                | 58                      |                       | 1                 |                       | 10<br>7<br>5<br>0 |
| 28                      | 2                          | 0                 | 9                     | 90                | 61                      |                       | 7                 |                       | 5                 |
| 29                      | 2                          | 0                 | 5                     | 90                | 62                      |                       | 2                 |                       | 0                 |
| 30                      | 3                          | 1                 | 0                     | 88                |                         |                       |                   |                       |                   |



#### Lifespan data & K-M curve from provided example paper

Sutphin GL, Kaeberlein M. Measuring Caenorhabditis elegans life span on solid media. J Vis Exp. 2009 May 12;(27):1152. doi: 10.3791/1152. PMID: 19488025; PMCID: PMC2794294.

## Summary of the Problem

- Bradford wants to compare lifespans of worms that are all drawn from the same batch of eggs placed in different media
  - Agar culture (individual plates)
    - ~40 worms per plate
  - Liquid culture (reservoir)
    - ~5000 worms per reservoir
- Treatments are "stressors" added to each media, and he wants to evaluate the effects of stressors in each media on worm lifespans
- He has collected data and wants to perform statistical analyses of the effects of treatments both within media as well as between media to determine if different.

- There were differences between how he was able to capture lifespan data between the liquid and agar media due to some measurement challenges.
- His primary concerns were whether the experimental procedures were adequate to carry out his intended analyses.
  - Prefers Kaplan-Meier if feasible with the data he captured





## Experiment

- Experimental units were made using eggs from the same batch/population, started at same time
- Data is recorded every **two days** for all experimental units
  - **Agar** raw **number of alive remaining** are recorded
  - Liquid ~150mL sampled from each and number of alive/dead recorded (sample is discarded, i.e. sampling without replacement.
    - Three replicates are performed per experimental unit per timestep (matches number Agar replicates)

## Additional Information

N~40

N~40

N~40

N~40

N~40

N~40

OF ARIZONA

- Number of worms per experimental unit & number of replicates determined by a power analysis in MCB for this type of experiment.
- The R package 'survival' was used for analysis of Agar data







Agar treatment comparisons have already been performed

## Consultant Next Steps

- Determine if data that has been captured can be applied to the Kaplan-Meier statistical analysis framework to perform these comparisons
- Can we recommend K-M, and if we cannot then what is our recommendation?
- Based on our analysis of the provided data and experimental procedure details
  - Agar media data are suitable for K-M
  - Liquid media data are not suitable for K-M

#### Next steps

- Determine if/how there is an adequate statistical approach to analyze liquid lifespan data
- If so, can we do all of desired comparisons?

