

MSE6701H Multiscale Materials Modeling and Simulation

Lecture 03

Interatomic Potentials

Lingti Kong (孔令体)
Shanghai Jiao Tong University

Molecular Dynamics Simulation

$$f = ma = m\ddot{r}$$
 $U(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_N)$

$$\vec{f}_{i} = -\frac{\partial U}{\partial \vec{r}_{i}} = -\sum_{j \neq i} \frac{\partial U}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial \vec{r}_{i}}$$

Potential is vital to MD.

Interatomic distance (arb. units)

Bonding in Materials

Material	Primary bonding	Minor bonding	
Metals	Metallic	Covalent; physical	
Ceramics	lonic; covalent	physical	
Polymer	Covalent; physical; hydrogen		
Rare gas	Physical		

Energy of a system

Total energy of N interacting particles:

$$\Phi(\mathbf{r}_{1}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}) = \sum_{i=1}^{N} \phi_{1}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i} \phi_{2}(\mathbf{r}_{i}\mathbf{r}_{j})$$

$$+ \frac{1}{6} \sum_{i=1}^{N} \sum_{j \neq i} \sum_{k \neq i, j} \phi_{3}(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}) + \cdots$$

$$+ \frac{1}{N!} \sum_{i=1}^{N} \sum_{j \neq i} \cdots \sum_{i} \phi_{n}(\mathbf{r}_{i}, \mathbf{r}_{j}, \cdots, \mathbf{r}_{n})$$

Potential Energy:

$$U = \Phi - \Phi_1 = \Phi_2 + \Phi_3 + \Phi_4 + \cdots + \Phi_n$$

Potential vs. Force field

Physics

Used to be a cultural divide

Chemistry

More fundamental approach ambition is to derive

general functional forms (at least it used to be)

Potentials represent

- Metallic bonding
- Covalent bonding
- Ionic bonding
- Dispersion (van-der-Waals interaction)

More pragmatic approach make it work!

Force fields

- Non-reactive and reactive versions
- Non-bonded and bonded interactions

• ...

Pair potential

Lennard-Jones Potential

- Approximate
- Popular model pot.
- Good for rare gas
- Physical interaction

Table 5.1 Values of the Lennard-Jones parameters for the rare gases [32]

	Ne	Ar	Kr	Xe
€ (eV)	0.0031	0.0104	0.0140	0.0200
σ (Å)	2.74	3.40	3.65	3.98

Lennard-Jones Potential

$$U_{LJ}(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Truncation

$$E(r) = \begin{cases} U_{LJ}(r), & \text{if } r < r_c \\ 0, & \text{if } r \ge r_c \end{cases}$$

Shift

$$E(r) = \begin{cases} U_{LJ}(r) - U_{LJ}(r_c), & \text{if } r < r_c \\ 0, & \text{if } r \ge r_c \end{cases}$$

• Tail (polynomial fit)

$$E(r) = \begin{cases} U_{LJ}(r), & \text{if } r < r_c \\ P(r), & \text{if } r_c \le r \le r_c + \Delta r_c \end{cases}$$

$$P(r_c) = U_{LJ}(r_c), P'(r_c) = U'_{LJ}(r_c); P(r_c + \Delta r_c) = 0, P'(r_c + \Delta r_c) = 0.$$

Lennard-Jones Potential

Mixing rules

Geometric

$$\epsilon_{ij} = \sqrt{\epsilon_i \epsilon_j} \ \sigma_{ij} = \sqrt{\sigma_i \sigma_j}$$

Arithmetic

$$egin{aligned} \epsilon_{ij} = & \sqrt{\epsilon_i \epsilon_j} \ \sigma_{ij} = & rac{1}{2} (\sigma_i + \sigma_j) \end{aligned}$$

Sixth-power

$$egin{aligned} \epsilon_{ij} = & rac{2\sqrt{\epsilon_i\epsilon_j}\sigma_i^3\sigma_j^3}{\sigma_i^6+\sigma_j^6} \ \sigma_{ij} = & \left(rac{1}{2}(\sigma_i^6+\sigma_j^6)
ight)^rac{1}{6} \end{aligned}$$

Other pair potentials

• Mie
$$E(r) = \left(\frac{n}{n-m}\right) \left(\frac{n}{m}\right)^{m/(n-m)} \varepsilon \left[\left(\frac{\sigma}{r}\right)^n - \left(\frac{\sigma}{r}\right)^m\right]$$
 $r_{min} = \left(\frac{n}{m}\sigma^{n-m}\right)^{1/(n-m)}$

$$r_{min} = \left(\frac{n}{m}\sigma^{n-m}\right)^{1/(n-m)}$$

Buckingham

$$E = A \exp\left(-\frac{r}{\rho}\right) - \frac{C}{r^6}$$

Born-Mayer-Huggins

$$E = A \exp\left(\frac{\sigma - r}{\rho}\right) - \frac{C}{r^6} + \frac{D}{r^8} \quad r < r_c$$

Morse

$$E = D_0 \Big[e^{-2lpha(r-r_0)} - 2e^{-lpha(r-r_0)} \Big] \qquad r < r_c$$

Central force potential

- Interaction depends on distance only
- Always favors simple structure, e.g., FCC, BCC
- Cauchy relation: $C_{12} = C_{44}$

Material	<i>c</i> ₁₂ / <i>c</i> ₄₄
"LJ"	1.00
Ar	1.12
Мо	1.54
Cu	1.94
Au	4.71
NaCl	0.99
Si	0.77
MgO	0.53
diamond	0.16

Potential for Ionic Materials

Pair + Coulombic

$$E = \sum_{i < j} \phi(r_{ij}) + k \sum_{i < j} \frac{q_i q_j}{r_{ij}}$$

$$E = \sum_{i < j} \phi(r_{ij}) + \sum_{i < j, j < k} \phi'(\theta_{jik}) + k \sum_{i < j} \frac{q_i q_j}{r_{ij}}$$

Problem: polarization

Potential for Metals

Embedded Atom Potential (EAM)

$$E_{\text{total}} = \sum_{i} F_{i}(\rho_{i}) + \frac{1}{2} \sum_{i} \sum_{j \neq i} \phi_{ij}(r_{ij})$$

$$ho_i = \sum_{j \neq i} f_j(r_{ij})$$
 Total electron density at *i*.

 $f_j(r_{ij})$ Electron density contributed by j at i.

 $F_i(\rho_i)$ Embedding energy for atom *i*.

 $\phi_{ij}(r_{ij})$ Pair interaction.

Potential for Metals

Modified EAM (MEAM)

$$E_{\text{total}} = \sum_{i} F_{i}(\rho_{i}) + \frac{1}{2} \sum_{i} \sum_{j \neq i} \phi_{ij}(r_{ij})$$

$$\rho_i = \sum_{j \neq i} f_j(r_{ij}) + \sum_{j \neq i} \sum_{k > j, k \neq i} g(r_{ij}) g(r_{ik}) \psi(\cos \theta_{jik})$$

Using Rose function to construct the embedding function

$$E(a^*) = -E_{coh}f(a^*)$$

$$f(a^*) = (1 + a^*)e^{-a^*}$$

$$a^* = \left(\frac{a}{a_0} - 1\right) \left(\frac{E_{coh}}{9B\Omega}\right)^{-1/2}$$

Potential for polymers

Bond length stretching

Bond angle bending

Dihedral torsion

Partial charges

$$E_{\text{total}} = \sum_{\text{bonds}} \phi_b(r) + \sum_{\text{angles}} \phi_{\theta}(\theta) + \sum_{\text{dihedrals}} \phi_{\psi}(\psi) + \sum_{i < j} U_{LJ}(r_{ij}) + k \sum_{i < j} \frac{q_i q_j}{r_{ij}} + \cdots$$

Potential for polymers

Bond stretch

$$E_{\text{bond}} = \frac{1}{2} \sum_{\text{bonds}} k_b (b - b_0)^2$$

$$E_{\text{bond}} = \sum_{\text{bonds}} K_2 (b - b_0)^2 + K_3 (b - b_0)^3 + K_4 (b - b_0)^4$$

Morse potential, enable breaking at infinite distance

$$E_{\text{bond}} = \sum_{b \text{ and } a} D_b \left[1 - e^{-\alpha(b - b_0)} \right]^2 = \sum_{b \text{ and } a} D_b \left[e^{-2\alpha(b - b_0)} - 2e^{-\alpha(b - b_0)} + 1 \right]$$

Potential for polymers

Bond bending

$$E_{\text{angle}} = \sum_{\text{angles}} \frac{1}{2} H_{\theta} (\theta - \theta_0)^2,$$

$$E_{\text{angle}} = \sum_{\text{angles}} H_2(\theta - \theta_0)^2 + H_3(\theta - \theta_0)^3$$

Bond torsion (Dihedral)

$$E_{\text{torsion}} = V_1(1 + \cos(\phi)) + V_2(1 + \cos(2\phi)) + V_3(1 + \cos(3\phi))$$

Reactive Force Fields

A bond-order/distance relationship

$$E_{bond} = -D_e^\sigma \cdot BO_{ij}^\sigma \cdot f(BO_{ij}^\sigma) - D_e^\pi \cdot BO_{ij}^\pi - D_e^{\pi\pi} \cdot BO_{ij}^{\pi\pi}$$

*Senftle, Thomas, et al. npj Computational Materials 2 (2016).

Potential Fitting

Physical property	Atom-level property	
Crystal structure	Balance of atomic forces.	
Cohesive energy	Potential energy at the equilibrium atom positions	
Elastic constants $c_{ m p\sigma}$	Long-wavelength acoustic vibrations Elastic distortions of unit cell.	
Equation of state $P(V)$	Compression or expansion of material	
Neutron scattering	Phonon $\omega(\mathbf{k})$ in the Brillouin zone.	

$$Error = \sum_{i}^{\text{property configuration}} \sum_{j}^{\text{run atom}} \sum_{k}^{\text{atom}} w_{ijkl} \frac{|p_{ijkl}^{\text{pot}} - p_{ijkl}^{\text{ref}}|^2}{\Delta_i}$$

Machine learning empirical potentials

Force Evaluation (pair potential)

Total energy
$$U = \frac{1}{2} \sum_{i} \sum_{j \neq i} \phi(r_{ij})$$

Distance

$$\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i = x_{ij}\mathbf{x} + y_{ij}\mathbf{y} + z_{ij}\mathbf{z}$$
$$x_{ij} = x_j - x_i$$

Force

$$\mathbf{f_i} = f_{x_i} \cdot \mathbf{x} + f_{y_i} \cdot \mathbf{y} + f_{z_i} \cdot \mathbf{z}$$

$$f_{x_i} = -\frac{\partial U}{\partial x_i} = -\sum_{j \neq i} \left. \frac{\partial \phi}{\partial r} \right|_{r=r_{ij}} \frac{\mathrm{d}r_{ij}}{\mathrm{d}x_i} = -\sum_{j \neq i} \phi'(r_{ij}) \frac{x_{ij}}{r_{ij}}$$

$$\mathbf{f}_{i} = -\sum_{j \neq i} \phi'(r_{ij}) \frac{\mathbf{r}_{ij}}{r_{ij}}$$

Force Evaluation (pair potential)

```
for (i = 0; i < N; ++i) f[i] = 0.;
for (i = 0; i < N-1; ++i)
for (j = i+1; j < N; ++j)
    xij = x[j][0] - x[i][0]; yij = y[j][0] - y[i][0]; zij = z[j][0] - z[i][0];
    Apply_PBC(xij, yij, zij);
   rij = sqrt(xij*xij + yij*yij + zij*zij);
    if (rij < Rcut){
      dp = - partial_phi(rij);
      fij = dp / rij * [xij, yij, zij];
      f[i] += fij; f[j] -= fij;
```

Force Evaluation (angular term)

$$\cos \theta_{ijk} = \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}r_{ik}}$$

LAMMPS cosine/squared angle style

$$E = K(\cos\theta - \cos\theta_0)^2$$

$$\mathbf{f}_i = -\frac{\partial E}{\partial \mathbf{r}_i} = -\frac{\partial E}{\partial \cos \theta} \frac{\mathrm{d} \cos \theta}{\mathrm{d} \mathbf{r}_i}$$

$$\frac{\mathrm{d}\cos\theta_{ijk}}{\mathrm{d}\mathbf{r}_i} = \left[\frac{\cos\theta}{r_{ij}^2} - \frac{1}{r_{ij}r_{ik}}\right]\mathbf{r}_{ij} + \left[\frac{\cos\theta}{r_{ik}^2} - \frac{1}{r_{ij}r_{ik}}\right]\mathbf{r}_{ik}$$

Neighbor list

```
for (i = 0; i < N-1; ++i)
for (j = i+1; j < N; ++j)
                 O(N^2)
for (i = 0; i < N; ++i)
for (jj = 0; jj < num\_nei[i]; ++jj){
   j = neighbor[i][jj];
```


Long range interaction

$$E_{Coulombic}(r) = \frac{kq_iq_j}{r}$$

Ewald sum method

$$U = U^{(r)} + U^{(k)} + U^{(self)} + U^{(dipolar)}$$

$$U^{(r)} = \frac{1}{2} \sum_{i}^{N} \sum_{\mathbf{n} \in \mathbb{Z}^{3}}^{N} q_{i} q_{j} \frac{erfc(\alpha | \mathbf{r}_{ij} + \mathbf{n}L|)}{|\mathbf{r}_{ij} + \mathbf{n}L|}$$

$$U^{(k)} = \frac{1}{2L^3} \sum_{\mathbf{k} \in \mathbb{K}^3, \mathbf{k} \neq 0} \frac{4\pi}{k^2} \exp\left(-k^2/4\alpha^2\right) \sum_{i}^{N} \sum_{j}^{N} q_i q_j \exp\left(-i\mathbf{k} \cdot \mathbf{r}_{ij}\right)$$
Evald summation

Field multipole means

$$U^{(self)} = -\frac{\alpha}{\sqrt{\pi}} \sum_{i}^{N} q_i^2$$

$$U^{(dipolar)} = \frac{2\pi}{(1+2\epsilon')L^3} \left(\sum_{i=1}^{N} q_i r_i\right)^2$$

- Field multipole method
- Particle-Particle/Particle-Mesh
- **Random Batch Ewald**

https://math.sjtu.edu.cn/faculty/xuzl/RBE.pdf

Homework

1 For a three body interaction described by

$$E = K(\cos\theta - \cos\theta_0)^2$$

derive the expression for the force on atom i, j, and k, respectively.

- 2 Extend your previous code on 1D harmonic chain into 3D FCC LJ case.
 - a) Same programming language as last homework;
 - b) 2D array needed to store the positions, velocities, forces, ...

• Due: Oct. 19, 2022

Next Lecture:

Molecular Statics & Temperature/Pressure Control

