

EMC TEST REPORT for Intentional Radiator No. 141101651SHA-001

Applicant : Bestway Inflatables & Materials Corp.

No. 3065 Cao An Road, Shanghai, China

Manufacturer : Bestway Inflatables & Materials Corp.

No. 3065 Cao An Road, Shanghai, China

Product Name : Pool+ Portable Bluetooth Speaker

Type/Model: #58309E

Test Result: PASS

SUMMARY

The equipment complies with the requirements according to the following standard(s):

47CFR Part 15 (2014): Radio Frequency Devices

ANSI C63.4 (2009): American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Date of issue: May 5, 2015

Wade zhang

Prepared by: Reviewed by:

Wade Zhang (*Project Engineer*) Daniel Zhao (*Reviewer*)

Daniel . Those

Description of Test Facility

Name: Intertek Testing Services Limited Shanghai

Address: Building 86, No. 1198 Qinzhou Rd., North, Shanghai 200233, P.R. China

FCC Registration Number: 236597

IC Assigned Code: 2042B-1

Name of contact: Jonny Jing

Tel: +86 21 61278271 Fax: +86 21 54262353

Content

	UMMARY	
D	DESCRIPTION OF TEST FACILITY	2
1.	GENERAL INFORMATION	5
	1.1 Applicant Information	5
	1.2 Identification of the EUT.	5
	1.3 Technical specification	
	1.4 Mode of operation during the test / Test peripherals used	
2.		
	2.1 Instrument list	
	2.2 Test Standard	
	2.3 Test Summary	
3	20 DB BANDWIDTH	
٥.	3.1 Limit	
	3.2 Test Configuration	
	3.3 Test Procedure and test setup.	
	3.4 Test Protocol	
4	CARRIER FREQUENCY SEPARATION	
4.	·	
	4.1 Limit	
	4.2 Test Configuration	
	4.3 Test Procedure and test setup	
	4.4 Test Protocol	
5.	MAXIMUM PEAK OUTPUT POWER	
	5.1 Test limit	
	5.2 Test Configuration	
	5.3 Test procedure and test setup	
	5.4 Test protocol	
6.	. RADIATED SPURIOUS EMISSIONS	28
	6.1 Test limit	28
	6.2 Test Configuration	28
	6.3 Test procedure and test setup	29
	6.4 Test protocol	30
7.	BAND EDGE EMISSION	33
	7.1 Limit	33
	7.2 Test Configuration	
	7.3 Test procedure and test setup	
	7.4 Test protocol	
8.	•	
	8.1 Limit	38
	8.2 Test configuration	
	EMI receiver	
	8.3 Test procedure and test set up	
	8.4 Test protocol	
9.	_	
٠.	9.1 Limit	
	9.2 Test Configuration	
	9.3 Test procedure and test setup.	
	7.2 1 000 procedure una test setup	, - T U

9.4 Test protocol	41
10. DWELL TIME	
10.1 Limit	44
10.2 Test Configuration	
10.3 Test procedure and test setup	
10.4 Test protocol	
11. OCCUPIED BANDWIDTH	
11.1 Test limit	49
11.2 Test Configuration	49
11.3 Test procedure and test setup	
11.4 Test protocol	
12. Spurious emission for receiver	
12.1 Test limit	56
12.2 Test Configuration	56
12.3 Test procedure and test setup	
12.4 Test protocol	

1. General Information

1.1 Applicant Information

Applicant : Bestway Inflatables & Materials Corp.

No. 3065 Cao An Road, Shanghai, China

Name of contact : Mi Huang

Tel: +86 021 69133312

Fax : +86 021 69135069

Manufacturer : Bestway Inflatables & Materials Corp.

No. 3065 Cao An Road, Shanghai, China

1.2 Identification of the EUT

Equipment : Pool+ Portable Bluetooth Speaker

Type/model: #58309E

FCC ID : 2ACGN-B58309ER

1.3 Technical specification

Operation Frequency : 2402 - 2480 MHz

Band . 2402 - 2400 WIII2

Protocol : BT 2.1 + EDR

Modulation : GFSK, $\pi/4$ DQPSK, 8DPSK

Gain of Antenna : Internal PCB antenna, 0.0dBi

Rating : Built-in Battery DC 1.5V*8

Description of EUT : The EUT is a Bluetooth audio device.

Channel Number : 79

Channel Description : The channel spacing is 1MHz

Category of EUT : Class B

EUT type : \square Table top \square Floor standing

Sample received date : 2014.11.17

Sample Identification

 $\frac{100}{N_{\odot}}$: 0141117-02-001

Date of test : 2015.04.12~2015.05.04

1.4 Mode of operation during the test / Test peripherals used

While testing transmitting mode of EUT, the internal modulation was applied. Only the mode of built-in battery powered was assessed and the worse test data is listed in the report.

The lowest, middle and highest channel were tested as representatives (2402MHz, 2441MHz and 2480MHz).

Test Peripherals:

PC: HP ProBook 6470b

2. Test Specification

2.1 Instrument list

			I	ı	1
Equipment	Type	Manu.	Internal no.	Cal. Date	Due date
Test Receiver	ESCS 30	R&S	EC 2107	2014-10-20	2015-10-19
Test Receiver	ESIB 26	R&S	EC 3045	2014-10-19	2015-10-18
Test Receiver	ESCI 7	R&S	EC4501	2014-12-24	2015-12-23
Test Receiver	FSP40	R&S	/	2014-10-20	2015-10-19
A.M.N.	ESH2-Z5	R&S	EC 3119	2015-1-8	2016-1-7
Bilog Antenna	CBL 6112D	TESEQ	EC 4206	2015-4-26	2016-4-25
Horn antenna	HF 906	R&S	EC 3049	2015-4-26	2016-4-25
Horn antenna	HAP18-26W		EC 4792-3	2015-4-8	2016-4-7
Pre-amplifier	Tpa0118-40	R&S	EC 4792-2	2015-4-10	2016-4-9
Semi-anechoic chamber	-	Albatross project	EC 3048	2014-5-11	2015-5-10
Therom-Hygrograph	ZJ1-2A	S.M.I.F.	EC 3323	2015-4-13	2016-4-12
Pressure meter	YM3	Shanghai Mengde	EC 3320	2014-6-13	2015-6-12
Multi-meter	179	FLUKE	EC 3226	2014-9-10	2015-9-9
Shielded room	-	Zhongyu	EC 2838	2015-1-10	2016-1-9
High Pass Filter	WHKX 1.0/15G-10SS	Wainwright	EC4297-1	2015-1-7	2016-1-6
High Pass Filter	WHKX 2.8/18G-12SS	Wainwright	EC4297-2	2015-1-7	2016-1-6
High Pass Filter	WHKX 7.0/1.8G-8SS	Wainwright	EC4297-3	2015-1-7	2016-1-6
Band Reject Filter	WRCGV 2400/2483- 2390/2493- 35/10SS	Wainwright	EC4297-4	2015-1-7	2016-1-6
Power sensor / Power meter	N1911A/N192 1A	Agilent	EC4318	2015-4-8	2016-4-7

2.2 Test Standard

- ✓ 47CFR Part 15 Subpart C 15.247;
- ✓ ANSI C63.4:2009

2.3 Test Summary

This report applies to tested sample only. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

<u> </u>			
TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
20 dB Bandwidth	15.247(a)(1)	RSS-210 Issue 8 Annex 8	Tested
Carrier Frequency Separation	15.247(a)(1)	RSS-210 Issue 8 Annex 8	Pass
Output power	15.247(b)(1)	RSS-210 Issue 8 Annex 8	Pass
Radiated Spurious Emissions	15.205 & 15.209	RSS-210 Issue 8 Clause 2	Pass
Band Edge Emission	15.247(d)	RSS-210 Issue 8 Annex 8	Pass
Power line conducted emission	15.207	RSS-Gen Issue 3 Clause 7.2.4	Pass
Number of Hopping Frequencies	15.247(a)(1)(iii)	RSS-210 Issue 8 Annex 8	Pass
Dwell time	15.247(a)(1)(iii)	RSS-210 Issue 8 Annex 8	Pass
Occupied bandwidth	-	RSS-Gen Issue 3 Clause 4.6.1	Tested
Spurious emission for receiver	15B	RSS-310 Issue 3 Clause 3.1	NA

Note: "NA" means "not applied".

2.4 Frequency Hopping System Requirement

Test Requirement: Section 15.247 (a)(1), (g), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs;

i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow:

20 62 46 77 7 64 8 73 16 75 1

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinate with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

3. 20 dB Bandwidth

Test result: Tested

3.1 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB
bandwidth of the hopping channel, whichever is greater, provided the systems operate with
an output power no greater than 125mW.

3.2 Test Configuration

3.3 Test Procedure and test setup

The 20 bandwidth per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span = approximately 2 to 3 times the 20 dB bandwidth, RBW≥1% of the 20 dB bandwidth, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for

Frequency Hopping Spread Spectrum Systems)

3.4 Test Protocol

Temperature : 25°C Relative Humidity : 55 %

Modulation	СН	Bandwidth (kHz)	Two-thirds of Bandwidth (kHz)
	L	1044.0	696.0
GFSK	M	1044.0	696.0
	Н	1002.0	668.0

Date: 3.MAY.2015 13:19:45

Date: 3.MAY.2015 15:18:18

Date: 3.MAY.2015 13:31:49

Modulation	СН	Bandwidth	Two-thirds of Bandwidth
		(kHz)	(kHz)
	L	1374.0	916.0
π /4 DQPSK	M	1374.0	916.0
	Н	1362.0	908.0

Channel L

Date: 3.MAY.2015 13:20:25

Date: 3.MAY.2015 13:27:53

Date: 3.MAY.2015 13:32:53

Modulation	СН	Bandwidth	Two-thirds of Bandwidth
		(kHz)	(kHz)
	L	1356.0	904.0
8DPSK	M	1356.0	904.0
	Н	1356.0	904.0

Date: 3.MAY.2015 13:22:40

Date: 3.MAY.2015 13:29:09

Date: 3.MAY.2015 13:34:31

4. Carrier Frequency Separation

Test result: Pass

4.1 Limit

☐ Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. ☐ Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

4.2 Test Configuration

4.3 Test Procedure and test setup

The Carrier Frequency Separation per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span can capture two adjacent channels, RBW≥1% of the span, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

4.4 Test Protocol

Temperature : 25°C Relative Humidity : 55 %

Mode	СН	Frequency Separation	Limit
Mode	Cn	(kHz)	(kHz)
GFSK	L	1002.00	≥696.00
	М	1002.00	≥696.00
	Н	1002.00	≥668.00

Date: 3.MAY.2015 13:52:35

Date: 3.MAY.2015 13:56:19

Date: 3.MAY.2015 14:03:19

Mode	СН	Frequency Separation (kHz)	Limit (kHz)
- /4	L	1020.00	≥ 916.00
π /4 DQPSK	М	1002.00	≥ 916.00
	Н	1020.00	≥ 908.00

Date: 3.MAY.2015 13:53:41

Date: 3.MAY.2015 14:00:05

Date: 3.MAY.2015 14:06:29

Mode	СН	Frequency Separation (kHz)	Limit (kHz)
	L	1002.00	≥ 904.00
8DPSK	М	1020.00	≥ 904.00
	Н	1020.00	≥ 904.00

Date: 3.MAY.2015 13:54:35

Date: 3.MAY.2015 14:01:35

Date: 3.MAY.2015 14:15:07

5. Maximum peak output power

Test result: Pass

5.1 Test limit

☑ For frequency hopping systems operating in the 2400-2483.5 MHz band employing at
least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-
5850 MHz band: 1 watt
For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts
If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be
reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and
5725-5850 MHz bands: 1 Watt.

5.2 Test Configuration

5.3 Test procedure and test setup

The power output per FCC § 15.247(b) is measured by radiated method, setting the Spectrum Analyzer as RBW = 1MHz, VBW = 3MHz, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The test method is following DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

5.4 Test protocol

Temperature : 25 °C Relative Humidity : 55 %

The test reading of field strength:

Mode	СН	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Detector
	L	Н	2402.0	34.50	98.50	PK
GFSK	M	Н	2441.0	34.60	98.70	PK
	Н	Н	2480.0	34.70	98.60	PK
	L	Н	2402.0	34.50	97.30	PK
π /4 DQPSK	M	Н	2441.0	34.60	97.50	PK
DQIBIL	Н	Н	2480.0	34.70	97.10	PK
8DPSK	L	Н	2402.0	34.50	97.10	PK
	M	Н	2441.0	34.60	96.80	PK
	Н	Н	2480.0	34.70	96.60	PK

Remark: 1. No amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss
- 3. Corrected Reading = Original Receiver Reading + Correct Factor

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 = 32.20dB/m; Corrected Reading = 10dBuV

+32.20dB/m = 42.20dBuV/m

The peak output power is calculated out:

Mode	СН	Field Strength (dBuV/m)	EIRP (dBm)	Antenna Gain (dBi)	Peak Output Power (dBm)	Limit (dBm)
	L	98.50	3.30	0.00	3.30	
GFSK	M	98.70	3.50	0.00	3.50	
	Н	98.60	3.40	0.00	3.40	
	L	97.30	2.10	0.00	2.10	
π /4 DQPSK	M	97.50	2.30	0.00	2.30	≤30.00
DQISIL	Н	97.10	1.90	0.00	1.90	
	L	97.10	1.90	0.00	1.90	
8DPSK	M	96.80	1.60	0.00	1.60	
	Н	96.60	1.40	0.00	1.40	

Remark: 1. EIRP = Field Strength + $20\log(3)$ -104.77 which is derived from the format $P = (E*d)^2 / (30*G)$ which showed in DA 00-705.

2. Peak Output Power = EIRP - Gain of antenna = EIRP - 0.00dBi

Example: Assuming Field Strength = 101.20dBuV/m, then EIRP = 101.20 + 20lg (3) - 104.77 = 6.00dBm; Peak Output Power = 6.00 - 0.00 = 6.00dBm

6. Radiated Spurious Emissions

Test result: PASS

6.1 Test limit

The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)
30 - 88	40.0	3
88 - 216	43.5	3
216 - 960	46.0	3
Above 960	54.0	3

6.2 Test Configuration

6.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna.

The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1meter to 4 meters to find out the maximum emission level.

The radiated emission was measured using the Spectrum Analyzer with the resolutions bandwidth set as:

```
RBW = 100kHz, VBW = 300kHz (30MHz~1GHz)
RBW = 1MHz, VBW = 3MHz (>1GHz for PK);
RBW = 1MHz, VBW = 10Hz (>1GHz for AV);
```

If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor".

6.4 Test protocol

Temperature : 25 °C Relative Humidity : 55 %

GFSK:

СН	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.00	34.50	98.50	Fundamental	/	PK
	V	35.81	18.00	30.60	40.00	9.40	PK
	V	916.42	25.10	33.80	46.00	12.20	PK
	Н	2387.40	34.40	55.40	74.00	18.60	PK
L	Н	2387.40	34.40	33.50	54.00	20.50	AV
	V	3182.70	-8.10	43.30	54.00	10.70	PK
	Н	4804.20	-3.60	58.70	74.00	15.30	PK
	Н	4804.20	-3.60	40.50	54.00	13.50	AV
	Н	9088.20	4.70	47.20	54.00	6.80	PK
	Н	2441.00	34.60	98.70	Fundamental	/	PK
	V	35.81	18.00	30.60	40.00	9.40	PK
	V	916.42	25.10	33.80	46.00	12.20	PK
	Н	2387.60	34.30	55.60	74.00	18.40	PK
M	Н	2387.60	34.30	34.90	54.00	19.10	AV
	Н	3378.30	-7.40	45.30	54.00	8.70	PK
	Н	4883.10	-3.30	61.50	74.00	12.50	PK
	Н	4883.30	-3.30	34.70	54.00	19.30	AV
	Н	9088.10	4.70	45.80	54.00	8.20	PK
	Н	2480.00	34.70	98.60	Fundamental	/	PK
	V	35.81	18.00	30.60	40.00	9.40	PK
	V	916.42	25.10	33.80	46.00	12.20	PK
	Н	2487.40	34.70	56.80	74.00	17.20	PK
Н	Н	2487.40	34.70	35.50	54.00	18.50	AV
п	Н	3294.20	-5.20	43.30	54.00	10.70	PK
	Н	4823.70	-3.50	40.90	54.00	13.10	PK
	Н	4963.20	-3.10	57.70	74.00	16.30	PK
	Н	4960.30	-3.10	37.00	54.00	17.00	AV
	Н	9088.10	4.70	46.50	54.00	7.50	PK

π /4 DQPSK:

СН	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.00	34.50	97.30	Fundamental	/	PK
	V	35.81	18.00	30.60	40.00	9.40	PK
	V	916.42	25.10	33.80	46.00	12.20	PK
	Н	2389.40	34.40	54.20	74.00	18.80	PK
L	Н	2389.40	34.40	33.10	54.00	20.90	AV
	V	3182.70	-8.10	43.30	54.00	10.70	PK
	Н	4804.20	-3.60	58.70	74.00	15.30	PK
	Н	4804.20	-3.60	40.50	54.00	13.50	AV
	Н	9088.20	4.70	47.20	54.00	6.80	PK
	Н	2441.00	34.60	97.50	Fundamental	/	PK
	V	35.81	18.00	30.60	40.00	9.40	PK
	V	916.42	25.10	33.80	46.00	12.20	PK
	Н	2389.60	34.30	52.60	74.00	21.40	PK
M	Н	2389.60	34.30	31.90	54.00	22.10	AV
	Н	3378.30	-7.40	45.30	54.00	8.70	PK
	Н	4883.10	-3.30	61.50	74.00	12.50	PK
	Н	4883.30	-3.30	34.70	54.00	19.30	AV
	Н	9088.10	4.70	45.80	54.00	8.20	PK
	Н	2480.00	34.70	97.10	Fundamental	/	PK
	V	35.81	18.00	30.60	40.00	9.40	PK
	V	916.42	25.10	33.80	46.00	12.20	PK
	Н	2489.50	34.70	52.80	74.00	21.20	PK
Н	Н	2489.50	34.70	31.50	54.00	22.50	AV
П	Н	3294.20	-5.20	43.30	54.00	10.70	PK
	Н	4823.70	-3.50	40.90	54.00	13.10	PK
	Н	4963.20	-3.10	57.80	74.00	16.20	PK
	Н	4963.20	-3.10	37.00	54.00	17.00	AV
	Н	9088.10	4.70	46.60	54.00	7.40	PK

8DPSK:

СН	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.00	34.50	97.10	Fundamental	/	PK
	V	35.81	18.00	30.60	40.00	9.40	PK
	V	916.42	25.10	32.50	46.00	13.50	PK
	Н	2387.40	34.40	51.40	74.00	22.60	PK
L	Н	2387.40	34.40	31.50	54.00	22.50	AV
	V	3182.70	-8.10	43.50	54.00	10.50	PK
	Н	4804.20	-3.60	54.70	74.00	19.30	PK
	Н	4804.20	-3.60	37.50	54.00	16.50	AV
	Н	9088.20	4.70	47.20	54.00	6.80	PK
	Н	2441.00	34.60	96.80	Fundamental	/	PK
	V	35.81	18.00	30.60	40.00	9.40	PK
	V	916.42	25.10	33.80	46.00	12.20	PK
	Н	2387.60	34.30	52.30	74.00	21.70	PK
M	Н	2387.60	34.30	32.70	54.00	21.30	AV
	Н	3378.30	-7.40	45.30	54.00	8.70	PK
	Н	4883.10	-3.30	55.60	74.00	18.40	PK
	Н	4883.30	-3.30	34.20	54.00	19.80	AV
	Н	9088.10	4.70	45.30	54.00	8.70	PK
	Н	2480.00	34.70	96.60	Fundamental	/	PK
	V	35.81	18.00	30.60	40.00	9.40	PK
	V	916.42	25.10	33.80	46.00	12.20	PK
	Н	2487.40	34.70	52.80	74.00	21.20	PK
Н	Н	2487.40	34.70	32.50	54.00	21.50	AV
п	Н	3294.20	-5.20	43.60	54.00	10.40	PK
	Н	4823.70	-3.50	40.50	54.00	13.50	PK
	Н	4963.20	-3.10	56.70	74.00	17.30	PK
	Н	4960.30	-3.10	37.50	54.00	16.50	AV
	Н	9088.10	4.70	46.20	54.00	7.80	PK

Remark: 1. For fundamental emission, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.
- 6. The emission was conducted from 30MHz to 25GHz.
- 7. The Pulse-repetition frequency for frequencies assessed with QP detector is higher than 20Hz.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m

Assuming limit = 54 dBuV/m, Corrected Reading = 10.20 dBuV/m, then Margin = 54 - 10.20 = 43.80 dBuV/m.

7. Band Edge Emission

Test result: PASS

7.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

7.2 Test Configuration

7.3 Test procedure and test setup

The Band Edge Emissions per FCC § 15.247(d) is measured using the Spectrum Analyzer with Span wide enough capturing all spurious from the lowest emission frequency of the EUT up to 10th harmonics, RBW = 100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

7.4 Test protocol

Temperature : 25 °C Relative Humidity : 55 %

Model	СН	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
GFSK	L	0.93	26.01	>20
OLSK	Н	-3.04	33.46	≥20

Channel- L

Date: 3.MAY.2015 14:26:21

Date: 3.MAY.2015 14:32:45

Model	СН	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
π /4	L	-1.40	26.21	>20
DQPSK	Н	-4.14	32.38	≥20

Date: 3.MAY.2015 14:29:28

Date: 3.MAY.2015 14:33:37

Model	СН	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
0DDCN	L	-2.41	23.98	>20
8DPSK	Н	-4.53	30.77	≥20

Date: 3.MAY.2015 14:30:22

Date: 3.MAY.2015 14:34:22

Model	СН	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
Hopping	/	-5.50	27.02	≥20

Date: 3.MAY.2015 14:38:12

Date: 3.MAY.2015 14:36:39

Note: The test was performed from 9 kHz to 26GHz and the worst data is listed here.

8. Power line conducted emission

Test result: NA

8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	QP	AV		
0.15-0.5	66 to 56*	56 to 46 *		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

8.2 Test configuration

 \boxtimes For table top equipment, wooden support is 0.8m height table

For floor standing equipment, wooden support is 0.1m height rack.

8.3 Test procedure and test set up

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a $50\Omega/50uH$ coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a $50\Omega/50uH$ coupling impedance with 50Ω termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement. The bandwidth of the test receiver is set at 9 kHz.

8.4 Test protocol

Frequency	Correct Factor (dB)	Corrected Reading (dBuV)		Limit (dBuV)		Margin (dB)	
		QP	AV	QP	AV	QP	AV
-	-	1	-	-	-	-	1
-	-	-	-	-	-	-	ı
-	-	1	-	-	-	-	1
-	-	-	-	-	-	-	ı
-	-	-	-	-	-	-	- 1
-	-	-	-	-	-	-	-

Remark: 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB).

2. Margin (dB) = Limit - Corrected Reading.

9. Number of Hopping Frequencies

Test result: Pass

9.1 Limit

Number of Hopping Frequencies in the 2400-2483.5 MHz band shall use at least 15 channels.

9.2 Test Configuration

9.3 Test procedure and test setup

The channel number per FCC §15.247(a)(1)(iii) is measured using the Spectrum Analyzer with RBW=1MHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

9.4 Test protocol

Temperature : 25 °C Relative Humidity : 55 %

Channel Number	Limit	
79	≥15	

Date: 19.MAR.2015 09:22:23

Date: 19.MAR.2015 09:25:19

Date: 19.MAR.2015 09:26:24

Date: 19.MAR.2015 09:27:47

10. Dwell Time

Test result: Pass

10.1 Limit

The dwell time on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

10.2 Test Configuration

10.3 Test procedure and test setup

Dwell time per FCC § 15.247(a)(1)(iii) is measured using the Spectrum Analyzer with Span = 0, RBW=1MHz, VBW≥RBW, Sweep can capture the entire dwell time, Detector = peak, Trace = max hold.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

10.4 Test protocol

Temperature : 25 °C Relative Humidity : 55 %

Packet	Occupancy time for single hop (ms)	СН	Real observed period (s)	Hops among Observed period	Dwell time (ms)	Limit
	O		P	I	T	(s)
		L	3.16	32	174.40	
DH1	0.545	M	3.16	32	174.40	
		Н	3.16	32	174.40	
	1.675	L	3.16	16	268.00	
DH3		M	3.16	16	268.00	≤0.4
		Н	3.16	16	268.00	
		L	3.16	11	309.76	
DH5	2.816	M	3.16	11	309.76	
		Н	3.16	11	309.76	

Remark: 1. There are 79 channels in all. So the complete observed period P = 0.4 * 79 = 31.6 s.

2. Average time of occupancy T = O *I * 31.6 / P

Date: 3.MAY.2015 15:06:53

Date: 3.MAY.2015 15:07:47

Date: 3.MAY.2015 15:09:22

Date: 3.MAY.2015 15:10:56

Date: 3.MAY.2015 15:12:36

Date: 3.MAY.2015 15:13:39

11. Occupied Bandwidth

Test Status: Tested

11.1 Test limit

None

11.2 Test Configuration

11.3 Test procedure and test setup

The occupied bandwidth per RSS-Gen Issue 3 Clause 4.6.1 was measured using the Spectrum Analyzer with the RBW close to 1% of the selected span, VBW = 3 * RBW Detector = Sample, Sweep = Auto.

11.4 Test protocol

Temperature : °C Relative Humidity : %

Modulation	Channel	99% Occupied Bandwidth (kHz)
	L	954.00
GFSK	M	966.00
	Н	960.00

Date: 3.MAY.2015 13:19:04

Date: 3.MAY.2015 13:24:34

Date: 3.MAY.2015 13:31:00

Modulation	Channel	99% Occupied Bandwidth (kHz)
	L	1266.00
π /4 DQPSK	М	1314.00
	Н	1290.00

Date: 3.MAY.2015 15:16:51

Date: 3.MAY.2015 15:19:23

Date: 3.MAY.2015 15:20:19

Modulation	Channel	99% Occupied Bandwidth (kHz)
	L	1266.00
8DPSK	M	1272.00
	Н	1284.00

Date: 3.MAY.2015 13:21:44

Date: 3.MAY.2015 13:30:09

Date: 3.MAY.2015 13:34:03

12. Spurious emission for receiver

Test result: NA

12.1 Test limit

The spurious emission shall test through 3 times tuneable or local oscillator frequency whichever is the higher, without exceeding 40 GHz.

If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5nW above 1 GHz.

If a radiated measurement is made, all spurious emissions shall comply with the limits of Table below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)		
30 - 88	40.0	3		
88 - 216	43.5	3		
216 - 960	46.0	3		
Above 960	54.0	3		

12.2 Test Configuration

Please refer to clause 6.2

12.3 Test procedure and test setup

Please refer to clause 6.3.

12.4 Test protocol

Polarization	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = limit Corrected Reading

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 = 32.20dB/m; Corrected Reading = 10dBuV + 32.20dB/m = 42.20dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 42.20dBuV/m, then Margin = 54 -42.20 = 11.80dBuV/m