```
9 November, 2023
```

2 punkty Niech T_n (n = 0, 1, ...) oznacza n-ty wielomian Czebyszewa.

- (c) Korzystając z faktu, że dla dowolnego x z przedziału [-1,1] n-ty $(n \ge 0)$ wielomian Czebyszewa wyraża się wzorem $T_n(x) = \cos(n \arccos x)$:
 - i. sprawdź, że $|T_n(x)| \le 1 \quad (-1 \le x \le 1; n \ge 0);$
 - ii. wyznacz wszystkie punkty ekstremalne n-tego wielomianu Czebyszewa, tj. rozwiązania równania $|T_n(x)| = 1$;
 - iii. udowodnij, że wielomian Czebyszewa T_{n+1} $(n \ge 0)$ ma n+1 zer rzeczywistych, pojedynczych, leżących w przedziale (-1, 1).

 \square sprawdź, że $|T_n(x)| \le 1 \quad (-1 \le x \le 1; n \ge 0);$

 $T_n(x) = \cos(n \arccos x)$ ZW cosinusa to L1,17

wyznacz wszystkie punkty ekstremalne n-tego wielomianu Czebyszewa, tj. rozwiązania równania $|T_n(x)|=1;$ $T_n(x)=\cos(n\arccos x)$

1005 (x) = f ollo x=k. TT Wieny ze Tn(x)=cus(norccos(x)) czyli many równanie:

 $\cos(x) = \cos(n \operatorname{arccos}(x))$

kIT= narccos(x)

kIT = arccos(x)

 $cos\left(\frac{kII}{n}\right) = cos\left(orccos(x)\right)$

 $X = \cos(\frac{|I|}{n})$ do $|_{L} = 0, 1, 2, 3 \dots$

udowodnij, że wielomian Czebyszewa T_{n+1} $(n \ge 0)$ ma n+1 zer rzeczywistych, pojedynczych, leżących w przedziale (-1,1). $T_n(x) = \cos(n\arccos x)$

Cos ((n+1) precos x)=0, cos x=0 dla x=11+ =, wige:

(N+P) arccos $x = k \overline{1} + \overline{2}$ arccos $x = k \overline{1} + \overline{2}$

 $x = \cos\left(\frac{k\Pi + \frac{\Pi}{2}}{n+1}\right) \text{ of } |Q| = 0, \dots, n$ $x = \cos\left(\frac{k\Pi + \frac{\Pi}{2}}{n+1}\right) \text{ of } |Q| = 0, \dots, n$ $|Q| = 0, \dots, n$