In the Claims:

Claim 1 (currently amended) \underline{A} process for the preparation of a compound of the general formula $(III)_1$

$$R^{1-N}$$
 N
 R^{4}
 N
 N
 R^{4}

or of a compound of the general formula (III)2

$$R^{1-N}$$
 N
 R^{4}
 R^{1}
 N
 R^{4}
 R^{4}

in which:

wherein W represents a is sulphur sulfur atom in general in formula (III)₁ and an oxygen atom in general in formula (III)₂,

R¹ represents a <u>is selected from the group consisting of</u> hydrogen, atom or an alkyl, alkoxyalkyl, cycloalkyl, -(CH₂)-X-Y, -(CH₂)-Z-NR⁵R⁶ radical or a <u>and</u> -CHR³⁵R³⁶ radical in which R³⁵ and R³⁶ form together with the carbon atom which carries them an indanyl or tetralinyl radical, or also R³⁵ and R³⁶ form together with the carbon atom which carries them a saturated heterocycle containing of 5 to 7 ring members and 1 to 2 heteroatoms chosen from

selected from the group consisting of O, N and S, the nitrogen atoms of said heterocycle being optionally substituted by radicals chosen from the alkyl radicals and the or benzyl radical, R1 also being able, when W represents is O, to represent moreover a be carbocyclic aryl radical optionally substituted 1 to 3 times by substituents ehosen independently from a selected from the group consisting of halogen, atom and an alkyl, haloalkyl or and alkoxy radical. X representing is a saturated carbon-containing cyclic system containing of 1 to 3 condensed rings ehosen selected independently from rings with 3 to 7 ring members, or Y representing a is saturated heterocycle containing 1 to 2 heteroatoms ehosen independently from selected from the group consisting of O, N and S and attached to the X radical by an N or CH member, said saturated heterocycle containing moreover 2 to 6 additional members ehosen independently selected from the group consisting of from -CHR⁷-, -CO-, -NR⁸-, -O- and -S-, R⁷ representing a is hydrogen atom or an alkyl radical and R⁸ representing a is selected from the group consisting of hydrogen atom or an alkyl or and aralkyl radical, or also Y representing a is carbocyclic or heterocyclic aryl radical optionally substituted 1 to 3 times by substituents ehosen independently from the group constituted by a selected from the group consisting of halogen atom, an alkyl radical, a halaoalkyl radical, an alkoxy radical, a haloalkoxy radical, a hydroxy radical, a nitro radical, a cyano radical, the phenyl radical, an SO₂NHR⁹ radical and an and -NR¹⁰R¹¹ radical, R⁹ representing a is selected from the group consisting of hydrogen, atom or an alkyl or and phenyl radical, and R¹⁰ and R¹¹ are independently representing alkyl radicals,

Z representing is a bond or a linear or branched alkylene radical containing of 1 to 5 carbon atoms,

R⁵ and R⁶ being chosen are independently selected from the group consisting of from a hydrogen atom, an alkyl, aralkyl of and -(CH₂)_n-OH radical in which n represents is an integer from 1 to 6,

or R⁵ representing an is selected from the group consisting of alkoxycarbonyl, haloalkoxycarbonyl or and aralkoxycarbonyl radical and R⁶ representing a is hydrogen atom or a methyl radical,

or also R⁵ and R⁶ forming form together with the nitrogen atom a heterocycle with 4 to 7 <u>ring</u> members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being ehosen independently <u>selected from the group consisting of from the -CR¹²R¹³-, -O-, -S- and -NR¹⁴- radicals, R¹² and R¹³ independently representing <u>are</u> each time that they occur a hydrogen atom or an alkyl radical, and R¹⁴ representing a is selected from the group consisting of hydrogen, atom or an alkyl or and aralkyl radical, or also R¹⁴ representing a is phenyl radical optionally substituted 1 to 3 times by substituents ehosen independently <u>selected from the group consisting of from a halogen, atom and an alkyl and alkoxy radical</u>,</u>

R² representing a is selected from the group consisting of hydrogen, atom or an alkyl or and aralkyl radical;

or also R¹ and R² forming form together with the nitrogen atom a heterocycle with 4 to 8 ring members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being ehosen independently selected from the group consisting of from the -CR¹⁵R¹⁶-, -O-, -S- and -NR¹⁷- radicals, R¹⁵ and R¹⁶ independently representing are each time that they occur a hydrogen atom or an alkyl radical, and R¹⁷ representing a is selected from the group consisting of hydrogen, atom or an alkyl radical; and

R⁴ represents an <u>is selected from the group consisting of</u> alkyl, cycloalkyl, cycloalky

representing a is phenyl radical possessing two substituents which form together a methylenedioxy or ethylenedioxy radical,

R¹⁸ representing a is hydrogen atom or an alkyl radical,

R¹⁹ representing a is selected from the group consisting of hydrogen, atom, an alkyl radical or an aralkyl, and radical the aryl group of which is optionally substituted 1 to 3 times by substituents chosen independently from the group constituted by a selected from the group consisting of halogen atom, an alkyl radical, a haloalkyl radical, an alkoxy radical, a haloalkoxy radical, a hydroxy radical, a nitro radical, a cyano radical, the phenyl radical, an - SO₂NHR²³ radical and an -NR²⁴R²⁵ radical, R²³ representing a is selected from the group consisting of hydrogen, atom or an alkyl or and phenyl radical, and R²⁴ and R²⁵ independently representing are alkyl radicals,

R²⁰ representing a is hydrogen atom or an alkyl radical,

or also R¹⁹ and R²⁰ forming form together with the nitrogen atom a heterocycle with 4 to 7 ring members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being ehosen independently selected from the group consisting of from the -CR²⁶R²⁷-, -O-, -S- and -NR²⁸- radicals, R²⁶ and R²⁷ independently representing are each time that they occur a hydrogen atom or an alkyl radical, and R²⁸ representing a is selected from the group consisting of hydrogen, atom or an alkyl or and aralkyl radical, or also R²⁸ representing a is phenyl radical optionally substituted 1 to 3 times by substituents chosen independently selected from the group consisting of from a halogen, atom and an alkyl or and alkoxy radical,

R²¹ representing a is selected from the group consisting of hydrogen, atom, an alkyl and radical or an aralkyl, radical the aryl group of which is optionally substituted 1 to 3 times by substituents ehosen independently from the group constituted by a selected from the group consisting of halogen atom, an alkyl radical, a haloalkyl radical, an alkoxy radical, a haloalkoxy radical, a hydroxy radical, a nitro radical, a cyano radical, the phenyl radical, an -SO₂NHR²⁹

radical and an -NR³⁰R³¹ radical, R²⁹ representing a <u>is selected from the group consisting of</u>
hydrogen, atom or an alkyl or <u>and</u> phenyl radical, and R³⁰ and R³¹ independently representing
are alkyl radicals,

R²² representing a is hydrogen atom or an alkyl radical,

or also R²¹ and R²² forming form together with the nitrogen atom a heterocycle with 4 to 7 ring members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being ehosen independently selected from the group consisting of from the -CR³²R³³-, -O-, -Sand -NR³⁴- radicals, R³² and R³³ independently representing are each time that they occur a hydrogen atom or an alkyl radical, and R³⁴ representing a is selected from the group consisting of hydrogen, atom, an alkyl or and aralkyl radical, or also R³⁴ representing a is phenyl radical optionally substituted 1 to 3 times by substituents ehosen independently selected from the group consisting of from a halogen, atom and an alkyl or and alkoxy radical, R³⁷ and R³⁸ being chosen independently from a hydrogen atom, atom and an or alkyl radical or R³⁷ and R³⁸ forming form together with the nitrogen atom a heterocycle with 4 to 7 ring members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being ehosen independently selected from the group consisting of from the -CR³⁹R⁴⁰-, -O-, -Sand -NR⁴¹- radicals, R³⁹ and R⁴⁰ independently representing are each time that they occur a hydrogen atom or an alkyl radical, and R⁴¹ representing a is hydrogen atom or an alkyl radical, or also R⁴ represents a is -CH₂-Ar radical in which Ar represents an aryl radical optionally substituted 1 to 4 times (and in particular 1 to 3 times) by substituents ehosen independently selected from the group consisting of from a halogen, atom and an alkyl, haloalkyl, alkoxy, haloalkoxy or and -NR⁴²R⁴³ radical, or also R⁴ represents a is biphenyl radical, R⁴² and R⁴³ being chosen independently from a hydrogen atom, atom and an <u>or</u> alkyl radical or R⁴² and R⁴³ forming form together with the nitrogen atom a heterocycle with 4 to 7 ring members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle

being ehosen independently selected from the group consisting of from the -CR⁴⁴R⁴⁵-, -O-, -S- and -NR⁴⁶- radicals, R⁴⁴ and R⁴⁵ independently representing are each time that they occur a hydrogen atom or an alkyl radical, and R⁴⁶ representing a is hydrogen atom or an alkyl radical;

said process being characterized in that the comprising reacting a compound of general the formula (A)

MeO
$$\downarrow N$$
 $\downarrow N$ $\downarrow N$

in which wherein W represents a is sulphur atom sulfur or an oxygen atom and R^4 has the same meaning as in general formula (III)₁ or (III)₂ is reacted with an amine of general the formula R^1R^2NH in a protic solvent.

Claim 2 (currently amended)

The process according to of claim 1, characterized in that the compound of general formula (III)₄ or (III)₂ is such that; wherein

- R¹ represents a is -(CH₂)-Z-NR⁵R⁶ radical;
- . R² represents a is hydrogen atom; and
- phenyl, pyridyl, thienyl or and furanyl radical optionally substituted by 1 to 4 (preferably 1 to 3) halogen atoms or by an NR³⁷R³⁸ radical, or also R⁴ represents a is -CH₂-Ar radical in which Ar represents a is phenyl or naphthyl radical optionally substituted 1 to 4 times (and preferably

1 to 3 times) by substituents ehosen independently selected from the group consisting of from a halogen, atom and an alkyl, haloalkyl, alkoxy or and haloalkoxy radical.

Claim 3 (currently amended)

The process for the preparation of a compound of the general formula (III)₃

$$\begin{array}{c|c}
 & O \\
 & N \\
 & N \\
 & R^4
\end{array}$$
(III)₃

or of a compound of the general formula (III)4

$$\begin{array}{c|c}
 & O \\
 & N \\
 & N \\
 & R^4
\end{array}$$
(III)₄

in which: wherein:

W represents a is sulphur atom in general sulfur in formula (III)₃ and an oxygen atom in general formula (III)₄,

R¹ represents a <u>is selected from the group consisting of</u> hydrogen, atom or an alkyl, alkylthioalkyl, cycloalkyl, -(CH₂)-X-Y, -(CH₂)-Z-NR⁵R⁶ radical and -CHR³⁵R³⁶ radical in which R³⁵ and R³⁶ form together with the carbon atom which carries them

an indanyl or tetralinyl radical, or also R³⁵ and R³⁶ form together with the carbon atom which carries them a saturated heterocycle containing 5 to 7 ring members and 1 to 2 heteroatoms ehosen from selected from the group consisting of O, N and S, the nitrogen atoms of said heterocycle being optionally susbstituted by radicals chosen from the alkyl radicals and the or benzyl radical,

R¹ also being able, when W represents is O, to represent moreover a be carbocyclic aryl radical optionally substituted 1 to 3 time by substituents ehosen independently from a halogen, atom and an alkyl, haloalkyl or and alkoxy radical,

X representing is a saturated carbon-containing cyclic system containing 1 to 3 condensed rings ehosen independently selected from rings with 3 to 7 members, or Y representing is a saturated heterocycle containing 1 to 2 heteroatoms ehosen independently selected from the group consisting of from O, N and S and attached to the X radical by an N or _CH member, said saturated heterocycle containing moreover 2 to 6 additional members ehosen independently selected from the group consisting of from _CHR^7_-, _CO_-, _NR^8_-, _O_- and _S_-, _R^7_ representing a is hydrogen atom or an alkyl radical and R⁸_ representing a is hydrogen atom or an alkyl or aralkyl radical, or also Y representing a is carbocyclic or heterocyclic aryl radical optionally substituted 1 to 3 times by substituents ehosen independently selected from the group consisting of from the group consisting of from the group consisting of from the group constituted by a halogen atom, an alkyl radical, a haloalkyl radical, an alkoxy radical, a haloalkoxy radical, a hydroxy radical, a nitro radical, a cyano radical, the phenyl radical, an _SO2NHR⁹ radical and an _NR¹⁰R¹¹ radical, R⁹ representing a is selected from the group consisting of hydrogen, atom or an alkyl or and phenyl radical and R¹⁰ and R¹¹ independently representing are alkyl radicals,

Z representing is a bond or a linear or branched alkylene radical containing of 1 to 5 carbon atoms,

R⁵ and R⁶ being chosen independently <u>selected from the group consisting of from a hydrogen</u> atom, an alkyl, aralkyl of and -(CH₂)_n-OH radical in which n represents is an integer from 1 to 6,

or R⁵ representing an is selected from the group consisting of alkoxycarbonyl,

haloalkoxycarbonyl $\frac{1}{6}$ and aralkoxycarbonyl $\frac{1}{6}$ and $\frac{1}{6}$ representing a $\frac{1}{6}$ hydrogen $\frac{1}{6}$ atom or a methyl $\frac{1}{6}$ methyl $\frac{1}{$

or also R⁵ and R⁶ forming form together with the nitrogen atom a heterocycle with 4 to 7 ring members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being ehosen independently selected from the group consisting of from the -CR¹²R¹³-, -O-, -S- and -NR¹⁴- radicals, R¹² and R¹³ independently representing are each time that they occur a hydrogen atom or an alkyl radical, and R¹⁴ representing a is selected from the group consisting of hydrogen, atom or an alkyl or and aralkyl radical, or also R¹⁴ representing a is phenyl radical optionally substituted 1 to 3 times by substituents ehosen independently selected from the group consisting of from a halogen, atom and an alkyl or and alkoxy radical,

R² representing a is selected from the group consisting of hydrogen, atom or an alkyl, or and aralkyl radical;

or also R¹ and R² forming form together with the nitrogen atom a heterocycle with 4 to 8 ring members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being ehosen independently selected from the group consisting of from the -CR¹⁵R¹⁶-, -O-, -S- and -NR¹⁷- radicals, R¹⁵ and R¹⁶ independently representing are each time that they occur a hydrogen atom or an alkyl radical, and R¹⁷ representing a is selected from the group consisting of hydrogen, atom or an alkyl or and aralkyl radical; and

R⁴ represents an is selected from the group consisting of alkyl, cycloalkyl, cycloalkylalkyl, cyano, amino, -CH₂-COOR¹⁸, -CH₂-CO-NR¹⁹R²⁰ or and -CH₂-NR²¹R²² radical, or R⁴ represents a is carbocyclic or heterocyclic aryl radical optionally substituted 1 to 4 times by substituents

ehosen independently selected from the group consisting of from a halogen, atom and an alkyl, haloalkyl, alkoxy, haloalkoxy of and _NR³⁷R³⁸ radical, or also R⁴ represents a is phenyl radical possessing two substituents which form together a- methylenedioxy or ethylenedioxy radical, R¹⁸ representing a is hydrogen atom or an alkyl radical,

R¹⁹ representing a is selected from the group consisting of hydrogen atom, an alkyl radical or an aralkyl radical, the aryl group of which is optionally substituted 1 to 3 times by substituents chosen independently from the group constituted by a selected from the group consisting of halogen, atom, an alkyl radical, a haloalkyl radical, an alkoxy radical, a haloalkoxy radical, a hydroxy radical, a nitro radical, a cyano radical, the phenyl radical, an -SO₂NHR²³ radical and an -NR²⁴R²⁵ radical, R²³ representing a is selected from the group consisting of hydrogen, atom or an alkyl or and phenyl radical, and R²⁴ and R²⁵ independently representing are alkyl radicals,

R²⁰ representing a is hydrogen atom or an alkyl radical,

or also R¹⁹ and R²⁰ forming form together with the nitrogen atom a heterocycle with 4 to 7 ring members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being ehosen independently selected from the group consisting of from the -CR²⁶R²⁷-, -O-, -S- and -NR²⁸- radicals, R²⁶ and R²⁷ independently representing are each time that they occur a hydrogen atom or an alkyl radical, and R²⁸ representing a is selected from the group consisting of hydrogen, atom or an alkyl or and aralkyl radical, or also R²⁸ representing a is phenyl radical optionally substituted 1 to 3 times by substituents ehosen independently from a halogen, atom and an alkyl or alkoxy radical,

R²¹ representing a is selected from the group consisting of hydrogen atom, an alkyl radical or an and aralkyl radical, the aryl group of which is optionally substituted 1 to 3 times by substituents chosen independently from the group constituted by a selected from the group

consisting of halogen, atom, an alkyl radical, a haloalkyl radical, an alkoxy radical, a haloalkoxy radical, a hydroxy radical, a nitro radical, a cyano radical, the phenyl radical, an -SO₂NHR²⁹ radical and an -NR³⁰R³¹ radical, R²⁹ representing a is selected from the group consisting of hydrogen, atom or an alkyl or and phenyl radical, and R³⁰ and R³¹ independently representing are alkyl radicals,

R²² representing a is hydrogen atom or an alkyl radical,

or also R²¹ and R²² forming form together with the nitrogen atom a heterocycle with 4 to 7 ring members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being ehosen independently selected from the group consisting of from the -CR³²R³³-, -O-, -S- and -NR³⁴- radicals, R³² and R³³ independently representing are each time that they occur a hydrogen atom or an alkyl radical, and R³⁴ representing a is selected from the group consisting of hydrogen atom, an alkyl or and aralkyl radical, or also R³⁴ representing a is phenyl radical optionally substituted 1 to 3 times by substituents ehosen selected from the group consisting of independently from a halogen, atom and an alkyl or and alkoxy radical,

R³⁷ and R³⁸ being chosen are independently from a hydrogen atom and an or alkyl radical or R³⁷ and R³⁸ forming form together with the nitrogen atom a heterocycle with 4 to 7 ring members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being chosen independently selected from the group consisting of from the -CR³⁹R⁴⁰-, -O-, -S- and -NR⁴¹- radicals, R³⁹ and R⁴⁰ independently representing are each time that they occur a hydrogen atom or an alkyl radical, and R⁴¹ representing a is hydrogen atom or an alkyl radical; or also R⁴ represents a is -CH₂-Ar radical in which Ar represents an is aryl radical optionally substituted 1 to 4 times (and in particular 1 to 3 times) by substituents chosen selected from the group consisting of from a halogen, atom and an alkyl, haloalkyl, alkoxy, haloalkoxy or and -NR⁴²R⁴³ radical, or also R⁴ represents a is biphenyl radical,

R⁴² and R⁴³ forming form together with the nitrogen atom a heterocycle with 4 to 7 <u>ring</u> members comprising 1 to 2 heteroatoms, the members necessary to complete the heterocycle being ehosen independently <u>selected from the group consisting of from the -CR⁴⁴R⁴⁵-, -O-, -S- and -NR⁴⁶- radicals, R⁴⁴ and R⁴⁵ independently representing <u>are</u> each time that they occur a hydrogen, atom or an alkyl radical, and R⁴⁶ representing a <u>is</u> hydrogen atom or an alkyl radical;</u>

said process being characterized in that the comprising reacting a compound of general the formula (K)

MeO
$$\stackrel{\circ}{\bigvee}$$
 $\stackrel{\circ}{\bigvee}$ $\stackrel{\circ}{\bigvee}$

in which wherein W represents a is sulphur atom sulfur or an oxygen atom and R^4 has the same meaning as in general formula (III)₃ or (III)₄ is reacted with an amine of general the formula R^1R^2NH in a protic solvent.

Claim 4 (currently amended)

The process according to of claim 3, characterized in that the compound of general formula (III)₃ or (III)₄ is such that: wherein

- R¹ represents a is -(CH₂)-Z-NR⁵R⁶ radical;
- . R² represents a is hydrogen atom; and
- R⁴ represents an <u>is selected from the group consisting of alkyl</u>, radical or also a phenyl, pyridyl, thienyl or <u>and</u> furanyl radical optionally substituted by 1 to 4 (preferably 1 to

3) halogen atoms or by an NR³⁷R³⁸ radical or also R⁴ represents a <u>is</u> -CH₂-Ar radical in which Ar represents a <u>is</u> phenyl or naphthyl radical optionally substituted 1 to 4 times (and preferably 1 to 3 times) by substituents ehosen independently <u>selected from the group consisting of from a halogen, atom and an</u> alkyl, haloalkyl, alkoxy or <u>and</u> haloalkoxy radical.

Claim 5 (currently amended)

A compound corresponding to one of the general formulae (III)₁, (III)₂, (III)₃ and (III)₄ as defined in claims 1 and 3, characterized in that it is chosen from the following compounds selected from the group consisting of:

- 2-(2,6-difluorophenyl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 2-(2,5-dichlorothien-3-yl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 2-(2,5-dichlorothien-3-yl)-5-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzothiazole-4,7-dione;
- 5-{[2-(dimethylamino)ethyl]amino}-2-(4-fluorophenyl)-1,3-benzothiazole-4,7-dione;
- 2-(4-fluorophenyl)-5-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzothiazole-4,7-dione;
- 2-(2-chloro-6-fluorophenyl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 2-(2-chloro-6-fluorophenyl)-5-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzothiazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-(4-fluorophenyl)-1,3-benzothiazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-(1-naphthyl)-1,3-benzothiazole-4,7-dione;
- 2-(1,1'-biphenyl-4-yl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 2-(4-butylphenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 2-(2-chloro-6-fluorophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-(2-naphthyl)-1,3-benzothiazole-4,7-dione;

- 2-(2,5-difluorophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 2-(2,5-difluorophenyl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(2-bromophenyl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(3-bromophenyl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 5-{[2-(dimethylamino)ethyl]amino}-2-(4-fluorophenyl)-1,3-benzoxazole-4,7-dione;
- 2-(3,5-difluorophenyl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(2,3-difluorophenyl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 5-{[2-(dimethylamino)ethyl]amino}-2-(3,4,5-trifluorophenyl)-1,3-benzoxazole-4,7-dione;
- 5-{[2-(dimethylamino)ethyl]amino}-2-(4-ethylphenyl)-1,3-benzoxazole-4,7-dione;
- 2-benzyl-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(3-bromophenyl)-5-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 2-(3,5-difluorophenyl)-5-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 5-[(2-pyrrolidin-1-ylethyl)amino]-2-(3,4,5-trifluorophenyl)-1,3-benzoxazole-4,7-dione;
- 2-(2,5-difluorophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(2-bromophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(3-bromophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(3-chlorophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(4-bromophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(3,5-dibromophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-(4-fluorophenyl)-1,3-benzoxazole-4,7-dione;
- 2-(3,5-difluorophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;

- 2-(2,3-difluorophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-(3,4,5-trifluorophenyl)-1,3-benzoxazole-4,7-dione;
- 2-(4-bromo-3-methylphenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-(4-ethylphenyl)-1,3-benzoxazole-4,7-dione;
- 2-(4-bromo-2-chlorophenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-(3,4,5-trimethoxyphenyl)-1,3-benzoxazole-4,7-dione;
- 2-(3,4-dimethoxyphenyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(2,6-dichlorobenzyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 2-(2-chloro-6-fluorobenzyl)-6-{[2-(dimethylamino)ethyl]amino}-1,3-benzoxazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-(1-naphthylmethyl)-1,3-benzoxazole-4,7-dione;
- 2-(2-bromophenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 2-(3-bromophenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 2-(3-chlorophenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 2-(4-bromophenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 2-(3,5-dibromophenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 2-(4-fluorophenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 2-(3,5-difluorophenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 6-[(2-pyrrolidin-1-ylethyl)amino]-2-(3,4,5-trifluorophenyl)-1,3-benzoxazole-4,7-dione;
- 2-(4-bromo-3-methylphenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 2-(4-ethylphenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;

- 2-(4-bromo-2-chlorophenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 6-[(2-pyrrolidin-1-ylethyl)amino]-2-(3,4,5-trimethoxyphenyl)-1,3-benzoxazole-4,7-dione;
- 2-(3,4-dimethoxyphenyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 2-(2-chloro-6-fluorobenzyl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 2-(1,3-benzodioxol-5-yl)-6-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzoxazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-hexyl-1,3-benzothiazole-4,7-dione; or and a pharmaceutical salt of one of the latter thereof.

Claim 6 (currently amended)

A compound according to of claim 5,

characterized in that it is chosen from the following compounds selected from the group

consisting of:

- 2-(2-chloro-6-fluorophenyl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-(2-naphthyl)-1,3-benzothiazole-4,7-dione;
- 6-{[2-(dimethylamino)ethyl]amino}-2-(4-ethylphenyl)-1,3-benzoxazole-4,7-dione; or- and a pharmaceutical salt of one of these compounds thereof.

Claim 7 (currently amended)

A compound of general formula (III)_L as defined to claim 1, characterized in that it is chosen from the following compounds selected from the group consisting of:

- 2-(2,6-difluorophenyl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 2-(2,5-dichlorothien-3-yl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 2-(2,5-dichlorothien-3-yl)-5-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzothiazole-4,7-dione;
- 5-{[2-(dimethylamino)ethyl]amino}-2-(4-fluorophenyl)-1,3-benzothiazole-4,7-dione;
- 2-(4-fluorophenyl)-5-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzothiazole-4,7-dione;
- 2-(2-chloro-6-fluorophenyl)-5-{[2-(dimethylamino)ethyl]amino}-1,3-benzothiazole-4,7-dione;
- 2-(2-chloro-6-fluorophenyl)-5-[(2-pyrrolidin-1-ylethyl)amino]-1,3-benzothiazole-4,7-dione;
- or and a pharmaceutical salt of one of the latter thereof.

Cancel Claims 8 to 12 and add the following claims:

Claim 13 (new) A composition for the treatment of cancer comprising an effective amount of a compound of claim 5 sufficient to treat cancer and an inert pharmaceutical carrier.

Claim 14 (new) A method of treating a cancer selected from the group consisting of breast cancer, lymphomas, cancers of the neck and head, lung cancer, cancer of the colon, prostate cancer and cancer of the pancreas in warm-blooded animals comprising administering to warm-blooded animals in need thereof an amount of a compound of claim 5 sufficient to treat the cancer.

Claim 15 (new) A compound of the formulae

wherein W is oxygen or sulfur and R⁴ is defined in claim 1 with the proviso that if W in formula A is sulfur, R⁴ is not methyl and if W in formula K is sulfur, R⁴ is not phenyl and a pharmaceutical thereof.