

ECE 383 - Embedded Computer Systems II Lecture 4 - <u>Sequential</u>

UNITED STATES

AIR FORCE ACADEMY

Element / versus Combinational?

Using Unsigned and Decimal Numbers

Convert Decimal number to Unsigned Vector (7 downto 0)

to_unsigned(17, 8)

- First argument is the decimal number
- Second argument is the number of bits

Conditional with unsigned number

```
LED_Trigger <= '1' when (Binary_Input = to_unsigned(17, 8) ) else '0';
```


Lesson Outline

- 1. Sequential Elements
- 2. Mod 10 Counter Example
 - Truth Table
 - Timing Diagram
 - Circuit Diagram
 - VHDL
- 3. General VHDL Rules
- 4. Adding Signals to Vivado

Homework #4

Sequential Elements

Sequential Elements

- Goals:
 - basic <u>sequential</u> process and <u>sensitivity</u> list
 - register, counter in VHDL
 - Combination of sequential and combinational logic (counters)
 - Translate between schematic, truth table, and VHDL code

(1) Edge? Jann

2 Synch or asynch?

3 Priority?

Mod 10 Counter Example

Truth Table

		IN		DUI!	100
clk	reset	ctrl	D	Q	
0,1,falling	X	XX	x	Q	
rising	0	XX	x	0	
rising	1	00	x	Q	
rising	1	01	x	(Q+1) mod 10	
rising	1	10	D	D	
rising	1	11	X	0	

4 Why 2 resets?

Missing? -

8

Handout:

Complete the Q trace in the following timing diagram based on the state table for the mod-10 counter.

Timing Diagram

Mod 10 Counter - Timing Diagram

Mod 10 Counter - Timing Diagram

Mod 10 Counter - Timing Diagram

Circuit Diagram

Circuit Diagram

- After completing the timing diagram, see if you can figure out how to construct the counter using the arrangement of devices show in the picture below.
 - You may assume that all these inputs are able to handle 4-bit values - to indicate this, draw a hash through the signal lines with a "4" next to it.
 - You should not draw additional lines in this picture. Instead, label the wires with names and use these names to create logical connections between signals with the same name.
 - Draw a border around your circuit. The only signals that should cross the boundary are those which are part of the entity description.

Circuit Diagram

Build the Architecture for the Mod 10 Counter

If Dryork says use a mod-10 counter BBB to make a circuit on a GR...

VHDL

2.

3.

Mod 10 Counter – VHDL Code Entity

```
entity lec4 is
    Port( clk: in STD_LOGIC;
        reset: in STD LOGIC;
        ctrl: in std_logic_vector(1 downto 0);
        D: in unsigned (3 downto 0);
        Q: out unsigned (3 downto 0));
end lec4;
architecture behavior of lec4 is
    signal rollSynch, rollCombo: STD_LOGIC;
    signal processQ: unsigned (3 downto 0);
begin
```

Mod 10 Counter – VHDL Code Architecture

```
process(clk)
                                        Always
    begin
6.
         if (rising_edge(clk)) then
7.
              if (reset = '0') then ^{(3)}
8.
                   processQ <= (others => '0');
9.
                   rollSynch <= '0';
10.
              elsif ((processQ < 9) and (ctrl = "01")) then
11.
                   processQ <= processQ + 1;</pre>
12.
                   rollSynch <= '0';</pre>
13.
              elsif ((processQ = 9) and (ctrl = "01")) then
14.
                   processQ <= (others => '0');
15.
                   rollSynch <= '1';
16.
              elsif (ctrl = "10") then
17.
                   processQ <= D;
18.
              elsif (ctrl = "11") then
19.
                   processQ <= (others => '0');
20.
              end if:
21.
         end if;
22.
    end process;
23.
    rollCombo <= '1' when (processQ = 9) else '0';</pre>
24.
    Q <= processQ;
26. end behavior;
```

Roll Issne (Bug) with RollCombo Q - 7 8 9 9 0 1 2 Crtl 01 01 00 01 01 01 Roll combo fixed Roll ambol If 2 Coscaded I deal QQ 07 08 09 09 10 11 12 Synch Counters Actual QQ 070809_ LSB MSB

"Ol" count up "Oo" hold

General VHDL Rules

General VHDL Rules

- Introduce the following rules for designing in VHDL in order to write code that can be **synthesized**.
 - Never use processes for combinational logic.
- Only the clk should appear in the sensitivity list
- The outermost structure should be "if (rising_edge(clk)) then"
- Inside this structure should be "if (reset = '0') then" to reinitialize the state element used by the process
 - The else clause of the reset element (the body) should consist of a set of **exclusive** signal conditions in an if/then case structure.
 - Any signal on the left-hand side of an assignment statement (in the body) may not be put on the left-hand side of any assignment statement outside the process.

Adding Signals in Vivado

Adding Signals in Vivado

- Sometimes it is necessary to examine signals not directly visible in a design. In the Instances and Process subwindow, reveal the instances inside the lec4_tb by clicking on the arrow to the left lec4_tb.
 - 1. Reveal the signals inside the lec4 instance (called uut) by clicking on the label "uut".
 - 2. In the Objects subwindow select the signal that you want to observe on the timing diagram. In our case the ctrl signal.
 - 3. Drag and drop the signal into the timing diagram.
 - 4. In most cases you will have to restart the simulation to get a complete trace of the newly added signal.
 - 5. And the rerun it for the needed amount of time.

ISim> # restart

Adding Signals in Vivado Simulator

go to HW4.pd6

- power suitch USB cobbe

 - Driver not installed