ISy
E 8803: Special Topics in Modern Mathematical Data Science Homework
 $3\,$

${\bf Extra\text{-}credit}$

Please submit electronically directly to Canvas in a PDF file.

1 Local behavior of f-divergences

In this exercise, you will show that f-divergence with a strictly convex potential f locally behaves as the χ^2 -divergence (which is a specific f-divergence with a particular potential, to be defined later). Let $f: \mathbb{R}_{++} \to \mathbb{R}$, where \mathbb{R}_{++} is the set of all positive reals, satisfy the following assumptions:

- f(1) = 0;
- uniformly bounded third derivative on \mathbb{R}_{++} , that is f''' exists on \mathbb{R}_{++} and $\sup_{r>0} |f'''(r)| < \infty$;
- f is strictly convex (and thus by the previous assumption f''(r) > 0 for any r > 0).

In fact, all common f-divergences, except the TV distance, satisfy these assumptions (including Hellinger, chi-squared, and Kullback-Leibler). Recall that the associated f-divergence between two distributions P, Q on the same space, with densities p, q with respect to a dominating measure μ , is

$$D_f(P||Q) := \mathbb{E}_Q\left[f\left(\frac{dP}{dQ}\right)\right] = \int_{\mathcal{X}} f\left(r(x)\right) q(x) d\mu(x),$$

where $r(x) := \frac{p(x)}{q(x)}$ is the likelihood ratio and \mathcal{X} is the support of μ . Fix P and Q, and consider the segment in-betweenm, that is the family of mixture distributions $P_t := (1-t)Q + tP$ for $t \in [0,1]$.

• Show that as $t \to 0$,

$$D_f(P_t||Q) = (1 + o(1))\frac{f''(1)}{2}\chi^2(P_t||Q)$$

where $o(1) \to 0$ and $\chi^2(P||Q)$ is the chi-square divergence, i.e. $D_h(P||Q)$ with $h(r) = (1-r)^2$.

• Check that $\chi^2(P_t||Q) = t^2\chi^2(P_t||Q)$ and conclude that $D_f(P_t||Q)$ is locally quadratic in t.

Hint: Consider the 3rd-order Taylor expansion of f(r) at r = 1. The 1st-order term must vanish.

2 Local behavior of KL-divergence

Boosting the confidence in binary testing

4 More on quantiles

5	5 Krein-Milman method I: Sharp constant in I	Hoeffding's lemma

6	Krein-Milman	method	II:	Gap	between	the	median	and	mean

7 Sketching a covariance matrix via leverage-scores sampling

8 Dikin walk*