

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Carthage

École Nationale des Sciences et Technologies Avancées à Borj

Classe(s): 2 ^{ème} année	Nom:	Prénom :	N°Ins.:
TA			
Date: 04 / 01 /2023	Session:	Documents:	Nbr. de pages : 2
Durée : 01H30	Examen	■ non autorisés □ autorisés	
		Calculatrice :	
		☐ non autorisés ⊠autorisés	
Matière : Recheche (
Enseignant(es): L			
_			

×-----

Exercice 1:

On donne le programme linéaire (P) suivant :

Maximiser $40x_1 + 50x_2$

Sous les contraintes :

$$5x_1 + 4x_2 \le 80$$

$$x_1 + 2x_2 \le 24$$

$$3x_1 + 2x_2 \le 36$$

$$x_1, x_2 \ge 0$$

Question 1. Donner le programme dual (D) de ce primal (P)

Question 2. Résoudre le programme primal (P) par la méthode simplexe

Question 3. A partir de la solution optimale du programme primal (P), déduire la solution optimale du Dual (D).

Exercice 2:

Un fabricant produit 2 variétés de biscuit, l'une à la noix de coco et l'autre au chocolat, selon le schéma suivant :

Biscuit	Ingrédient			Prix de
Discuit	Farine	Chocolat	Noix de coco	vente (DT)
A	1	0	3	6
В	1	5	0	5
Stock disponible	8	22	12	

- **Question 1.** Formuler le problème comme un PL et trouver un plan de fabrication qui maximise le profit (utilisation de la méthode simplexe);
- Question 2. Déterminer le dual PL* de ce primal PL
- **Question 3.** On annonce une pénurie de chocolat ; déterminer la quantité minimale de chocolat nécessaire en stock, pour que ce plan de fabrication ne soit pas compromis ;
- **Question 4.** On étudie la production d'un nouveau biscuit à la noix de coco et au chocolat à raison de 1/3 de noix de coco et 2/3 de chocolat (sans utilisation de farine). Ce nouveau produit sera vendu à 8 DT. Quel est le schéma de production optimal (PL1)?
- **Question 5.** Résoudre le programme primal (PL1) par la méthode simplexe et déduire la solution optimale du son dual, si elle existe.