Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_0^{#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\sigma_{0}^{#1} = 0$	$\partial_{\beta}\sigma^{\alpha\beta}{}_{\alpha}==0$	1
$t_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#1}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}+$	8
	$2 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} - \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} +$	
	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	е
$\sigma_{1}^{\#1}{}^{\alpha} := \sigma_{1}^{\#2}{}^{\alpha}$	$\partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} + \partial_{\chi} \partial^{\chi} \sigma^{\alpha \beta}_{\beta} = 0$	м
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha} t^{\beta\chi} + \partial_{\chi}\partial^{\beta} t^{\chi\alpha} + \partial_{\chi}\partial^{\chi} t^{\alpha\beta} +$	3
1		
	$\partial_{\chi}\partial^{\alpha}\iota^{\chi\beta} + \partial_{\chi}\partial^{\beta}\iota^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}t^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik \ \sigma_{2+}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 - i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi}_{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} t^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} t^{\beta\alpha} +$	
	$4\ i\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\epsilon}_{\ \ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6ik^{\chi}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\delta\beta}+$	
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\lambda}$	
	$4 \bar{i} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ige generators:	20

												:
	+ ""	+ 0 *	$f_{\alpha'}$	تα/ -	_	α, -	+ (,,		$\omega_{I}\theta\alpha$	αβι_		:
	$\alpha^{\theta} \partial_{\alpha} f^{\theta}$	$f^{\alpha\prime}\partial_{\theta}f_{\omega}$	$\omega_{i\theta\alpha}\partial^{i}$	$_{\alpha}f_{\theta_{I}}\partial^{\theta_{I}}$	$^{\theta}g^{\theta}f^{\alpha\prime}$	$\partial f_{\prime lpha} \partial^{ heta} f$	+ 2 3 ₉ f ^c	ر _α ر) +	+ 4 r ₂ 0 _β	$\alpha_{\alpha\beta'}\partial^{\theta}\omega$	'x dit	!
	$-4t_1 \omega$	$x^{-2}t_1\partial_1$	$\alpha' + 4t_2$	$^{x\prime}$ - 4 t_1 6	$-t_2 \partial_i f_{\alpha}$	$+2t_1\partial_0$	$(\omega^{\alpha\prime\theta})$	$-t_2) \partial^{\theta} f$	$\partial^{\theta}\omega^{\alpha\beta_{l}}$ -	$2 r_2 \partial_{\theta} u$	d z d y d	
	$\beta \chi $ $\sigma_{\alpha \beta \chi}$	$4t_1\ \omega_{,\theta}^{\theta}\ \partial' f^{\alpha}_{\ \alpha} - 2t_1\partial_i f^{\theta}_{\ \theta}\partial' f^{\alpha}_{\ \alpha} - 2t_1\partial_i f^{\alpha i}\partial_{\theta} f^{\alpha}_{\ \alpha} +$	$4t_1\partial' f^\alpha_{\alpha}\partial_\theta f_{\prime}^{\theta} + 4t_1\omega_{\prime\theta\alpha}\partial^\theta f^{\alpha\prime} + 4t_2\omega_{\prime\theta\alpha}\partial^\theta f^{\alpha\prime} -$	$4t_1\partial_\alpha f_{,\theta}\partial^\theta f^{\alpha\prime} + 2t_2\partial_\alpha f_{,\theta}\partial^\theta f^{\alpha\prime} - 4t_1\partial_\alpha f_{\theta\prime}\partial^\theta f^{\alpha\prime} -$	$t_2 \partial_\alpha f_{\theta_i} \partial^\theta f^{\alpha \prime} + 2 t_1 \partial_{\imath} f_{\alpha \theta} \partial^\theta f^{\alpha \prime} - t_2 \partial_{\imath} f_{\alpha \theta} \partial^\theta f^{\alpha \prime} +$	$4t_1\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} + t_2\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} + 2t_1\partial_\theta f_{\prime\alpha}\partial^\theta f^{\alpha\prime} -$	$t_2\partial_\theta f_{\scriptscriptstyle I\alpha}\partial^\theta f^{\alpha\prime} + 2(t_1 + t_2)\omega_{\alpha\prime\theta}(\omega^{\alpha\prime\theta} + 2\partial^\theta f^{\alpha\prime}) + \\$	$2 \omega_{\alpha\theta_{1}} ((t_{1}-2t_{2}) \omega^{\alpha_{1}\theta} + 2(2t_{1}-t_{2}) \partial^{\theta}f^{\alpha_{1}}) +$	$8r_2\partial_\beta\omega_{\alpha\prime\theta}\partial^\theta\omega^{\alpha\beta\prime} - 4r_2\partial_\beta\omega_{\alpha\theta\prime}\partial^\theta\omega^{\alpha\beta\prime} + 4r_2\partial_\beta\omega_{\iota\theta\alpha}$	$\partial^{\theta}\omega^{\alpha\beta\prime} - 2r_2\partial_{,}\omega_{\alpha\beta\theta}\partial^{\theta}\omega^{\alpha\beta\prime} + 2r_2\partial_{\theta}\omega_{\alpha\beta\prime}\partial^{\theta}\omega^{\alpha\beta\prime} -$	$4 r_2 \partial_\theta \omega_{\alpha i \beta} \partial^\theta \omega^{\alpha \beta i}))[t, x, y, z] dz dy dx dt$:
	+6 ω ^α	$-2t_1\partial_i f$	$+4t_1 \alpha$	$+2t_2\partial_c$	$2t_1\partial_i f_c$	$+t_2\partial_{\theta}f$	$2(t_1+t_2)$	$_{2}) \omega^{\alpha \prime \theta}$	$^{\alpha\beta_l}$ - 4 r_2	$^{\prime}\omega_{lphaeta heta}\partial^{\prime}$	$^{\alpha eta _{}}))[t,\ angle$	Ţ
	$f^{\alpha\beta}$ $\tau_{\alpha\beta}$	$\theta \partial' f^{\alpha}$	$^{\prime}_{\alpha}\partial_{\theta}f_{\theta}^{}$	$^{1}\theta g^{\theta }f^{\alpha \prime }$	$\theta^{\theta}f^{\alpha\prime}$ +	$^{\alpha}\partial^{\theta}f^{\alpha}$	$\theta^{\theta}f^{\alpha\prime}$ +	$(t_1-2t_2$	$\omega^{\theta} \omega^{\theta}$	31 - 2 r_2 \hat{o}	$^{\alpha_{I}eta}\partial^{ heta}\omega^{}_{}$	
	$9 + \frac{\theta}{\theta}'$	$4t_1\omega_{,}^{ heta}$	$4 t_1 \partial' f^c$	$4 t_1 \partial_{\alpha} f$	$t_2 \partial_{\alpha} f_{ heta_I}$	$4 t_1 \partial_{\theta} f_{\theta}$	$t_2 \partial_{\theta} f_{I\alpha}$	$2 \omega_{\alpha\theta}$	$8 r_2 \partial_{\beta} \omega$	$\partial^{ heta}\omega^{lpha l}$	$4 r_2 \partial_{\theta} \omega$	(
action	$\omega^{\alpha\prime}_{\alpha}$				~		~					
c (free)	$(\frac{1}{6}(2t_1)$											
Quadratic (free) action	$S == \iiint (\frac{1}{6} (2t_1 \ \omega^{\alpha \prime} \ \omega^{\theta}_{\prime} + 6 \ f^{\alpha \beta} \ t_{\alpha \beta} + 6 \ \omega^{\alpha \beta \chi} \ \sigma_{\alpha \beta \chi} - 4 \ t_1 \ \omega^{\theta}_{\alpha \ \theta} \ \partial_{\prime} f^{\alpha \prime} +$											
0	ν											

 $\sqrt{2} kt_1$

0

0 $\frac{2k^2t_1}{3}$

 $-\frac{1}{3}i\sqrt{2}$

0

 $\sigma_{0^{+}}^{#1} \dagger \boxed{0} \boxed{0}$

0

 $\sigma_0^{\#1} + 0 0 0$

 $\tau_{0}^{\#1}$ †

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

0

 $\sigma_{2^{+}\,\alpha\beta}^{\#1}$

 $\frac{2}{(1+2k^2)^2t_1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\tau_2^{\#1} \dagger^{\alpha\beta}$

 $au_2^{\#1}{}_{lphaeta}$

 $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{4k^2}{(1+2k^2)^2t_1}$

0

 $\omega_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + f_{$

0

0

0

0 0

0

 $f_{1}^{#2}$

 $f_{1^-}^{\#1}$

 $\omega_{1}^{\#2}{}_{lpha}$

 $\omega_{1}^{\#1}{}_{\alpha}$

0

0

0

 $\sigma_{1}^{\#2} +^{\alpha}$

 $\sigma_{1}^{\#_{1}} \dagger^{\alpha}$

0

0

0

0

0

0

0

 $\omega_1^{#2}\alpha\beta$

 $\frac{1}{6}(t_1+4t_2)$

0

0

0

0

0

0

0

0

 $-\frac{1}{3}\,\bar{l}\,k\,(t_1+t_2)$

0

9 17

0

0

 $\omega_{1}^{\#_{1}} +^{\alpha}$

 $\begin{array}{c} t_1 \\ 3\sqrt{2} \\ \frac{t_1}{3} \end{array}$

0 0

0

0

	Fundai	$\partial_{\beta}\partial_{\alpha} \tau^{\alpha \beta}$	$\partial_{eta}\partial_{lpha} au_{lpha}$	$\partial_{eta}\sigma^{lphaeta}$	$\partial_\chi \partial_\beta \partial^\alpha \iota$	2 ($\partial_{\chi}\partial_{\beta}\partial^{\alpha}$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta}$	$\partial_\chi \partial^\alpha \tau^{\beta\chi}$	2 6	$\partial_{\chi}\partial^{\alpha}$	$\partial_{\chi} \omega$	-į (4 ∂ ₆		ge gene	u	$\theta + \frac{\theta}{\theta} + \theta$	$4t_1\omega$	$4t_1 \partial' f$	$4t_1\partial_{\alpha}f$	$t_2 \partial_{\alpha} f_{ heta}$	$4t_1\partial_{\theta}f$	$t_2 \partial_{ heta} f_{_{1G}}$	3	$8 r_2 \partial_{\beta} c$
	Source constraints SO(3) irreps	$\tau_{0}^{\#2} = 0$	$ \tau_{0}^{#1} == 0 $	$\sigma_{0}^{\#1} == 0$	$\tau_1^{\#2}\alpha + 2ik \ \sigma_1^{\#1}\alpha == 0$		$\tau_{1}^{\#1}\alpha == 0$	$\sigma_1^{\#1}{}^{\alpha} == \sigma_1^{\#2}{}^{\alpha}$	$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$				$\tau_{2}^{\#1}\alpha\beta$ - 2 jk $\sigma_{2}^{\#1}\alpha\beta$ == 0		Total constraints/gauge	Quadratic (free) action	$S == \iiint \left(\frac{1}{6} \left(2 t_1 \ \omega^{\alpha'} \ c \right) \right)$								
Ма	ssiv	e a	nd ı	nas	ssle	ss spe	ectr	a																	

?	Massive particle										
	Pole residue: $-\frac{1}{r_2} > 0$										
	Polarisations:	1									
	Square mass:	$-\frac{t_2}{r_2} > 0$									
	Spin:	0									
	Parity:	Odd									

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$