

Neural Network

이원형 교수 Dr. Lee, WonHyong whlee@handong.edu

Introduction to Deep Learning

❖ Tools

- ✓ Python (Numpy, Matplotlib, Pandas, etc.)
- ✓ Jupyter Notebook
- ✓ Colab
- ✓ Keras

- · Rapid Prototyping
- Small Dataset
- Multiple back-end support

TensorFlow is most suitable for:

- · Large Dataset
- High Performance
- Functionality
- Object Detection

PyTorch is most suitable for:

- · Flexibility
- · Short Training Duration
- · Debugging capabilities

INTRODUCTION TO KERAS

Keras

- ✓ Official website
 - https://keras.io/
- ✓ Keras is a high-level neural networks API, written in Python and capable of running on top of <u>TensorFlow</u>, <u>CNTK</u>, or <u>Theano</u>.
 - In our study, it is assumed that we are using Tensorflow (python version).

To test if Keras is successfully installed,

- ✓ Run python
- ✓ Type
 - import tensorflow as tf
 - import keras
 - tf.__version__
 - keras.__version__

INTRODUCTION TO KERAS

- There are two ways to create a network model.
 - ✓ Study
 - https://keras.io/guides/functional_api/
 - https://machinelearningmastery.com/keras-functional-api-deep-learning/
 - Using Sequential API
 - Intuitive, Easy, and it covers most of the existing deep learning models.
 - But, for each layer, it is not available to have multiple previous/next layers.
 - 2. Using Functional API
 - Still easy
 - More flexible: Multiple different input sources, multiple output destinations, and re-using layers are available.
- But! We are just going to follow example codes fist.

***** Basic Neural Network Implementation

- ✓ A question
 - Could Jack(Leonardo DiCaprio) have survived from the Titanic cruise ship?

What do we need?

- ✓ Data: Titanic crew and passenger list with personal profile
 - You can easily get this information from Google search
 - or Download the file "titanic.xls" from HDLMS
- ✓ Pre-processing
 - To collect data only which have full information we want to see.
 - To divide data into a training set and a test(validation) set.
 - Reshape the data format
- ✓ Model selection
 - In this case, we will use a basic neural network which has one hidden layer and outputs one value in a range of 0-1.

COLAB SETTINGS

Data Importation

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline

raw_data = pd.read_excel('titanic.xls')
raw_data.info()
```

Number of siblings or spouse

Number of parant or children

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 14 columns):
             1309 non-null int64
pclass
survived
             1309 non-null int64
             1309 non-null object
name
             1309 non-null object
sex
             1046 non-null float64
age
sibsp
             1309 non-null int64
parch
             1309 non-null int64
ticket
             1309 non-null object
fare
             1308 non-null float64
cabin
             295 non-null object
             1307 non-null object
embarked
             486 non-null object
boat
             121 non-null float64
body
             745 non-null object
home.dest
dtypes: float64(3), int64(4), object(7)
memory usage: 143.2+ KB
```

Data Importation

raw_data.describe()

raw_da	w_data.describe()								
	pclass	survived	age	sibsp	parch	fare	body		
count	1309.000000	1309.000000	1046.000000	1309.000000	1309.000000	1308.000000	121.000000		
mean	2.294882	0.381971	29.881135	0.498854	0.385027	33.295479	160.809917		
std	0.837836	0.486055	14.413500	1.041658	0.865560	51.758668	97.696922		
min	1.000000	0.000000	0.166700	0.000000	0.000000	0.000000	1.000000		
25%	2.000000	0.000000	21.000000	0.000000	0.000000	7.895800	72.000000		
50%	3.000000	0.000000	28.000000	0.000000	0.000000	14.454200	155.000000		
75%	3.000000	1.000000	39.000000	1.000000	0.000000	31.275000	256.000000		
max	3.000000	1.000000	80.000000	8.000000	9.000000	512.329200	328.000000		

Data Visualization

```
f,ax=plt.subplots(1,2,figsize=(12,6))

raw_data['survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.2f%%',ax=ax[0])
ax[0].set_title('Survived')
ax[0].set_ylabel('')

sns.countplot('survived',data=raw_data,ax=ax[1])
ax[1].set_title('Survived')
plt.show()
```


Data Visualization

raw_data['age'].hist(bins=20,figsize=(18,8),grid=False);

Data Visualization

Data Visualization

Pre-processing

- ✓ We are going to use
 - input data: pclass, sex, age, sibsp, parch, fare
 - output data: survived

Pre-processing

- ✓ Set to 1 for the 'female' data in the 'sex' column.
- ✓ Set to 0 for the 'male' data in the 'sex' column.

```
for each in raw_data['sex']:
    if each == 'female':
        tmp.append(1)
    elif each == 'male':
        tmp.append(0)
    else:
        tmp.append(np.nan)
```

Pre-processing

✓ Re-declare the format of some data to 'float' that we are going to use.

```
raw_data['survived'] = raw_data['survived'].astype('float')
raw_data['pclass'] = raw_data['pclass'].astype('float')
raw_data['sex'] = raw_data['sex'].astype('float')
raw_data['sibsp'] = raw_data['sibsp'].astype('float')
raw_data['parch'] = raw_data['parch'].astype('float')
raw_data['fare'] = raw_data['fare'].astype('float')
```

Pre-processing

✓ Remove data which has no information in any of columns that we care.

```
raw_data = raw_data[raw_data['age'].notnull()]
raw_data = raw_data[raw_data['sibsp'].notnull()]
raw_data = raw_data[raw_data['parch'].notnull()]
raw_data = raw_data[raw_data['fare'].notnull()]
```

Pre-processing

raw_data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 14 columns):
pclass
             1309 non-null int64
survived
             1309 non-null int64
name
             1309 non-null object
             1309 non-null object
sex
age
             1046 non-null float64
sibsp
             1309 non-null int64
parch
             1309 non-null int64
ticket
             1309 non-null object
fare
             1308 non-null float64
cabin
             295 non-null object
embarked
             1307 non-null object
boat.
             486 non-null object
body
             121 non-null float64
home.dest
             745 non-null object
dtypes: float64(3), int64(4), object(7)
memory usage: 143.2+ KB
```



```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1045 entries, 0 to 1308
Data columns (total 16 columns):
pclass
             1045 non-null float64
survived
             1045 non-null float64
             1045 non-null object
name
             1045 non-null float64
sex
             1045 non-null float64
age
sibsp
             1045 non-null float64
parch
             1045 non-null float64
ticket
             1045 non-null object
             1045 non-null float64
fare
cabin
             272 non-null object
embarked
             1043 non-null object
             417 non-null object
boat
             119 non-null float64
body
home.dest
             685 non-null object
             1045 non-null category
age cat
title
             1045 non-null object
dtypes: category(1), float64(8), object(7)
memory usage: 131.8+ KB
```


Pre-processing

- ✓ Select input data: pclass, sex, age, sibsp, parch, fare
- ✓ Select output data: survived
- ✓ Save 10% of data for validation (test set)

Data Reshaping

```
X_train = np.asarray(X_train).astype(np.float32)
X_test = np.asarray(X_test).astype(np.float32)
y_train = np.asarray(y_train).astype(np.float32)
y_test = np.asarray(y_test).astype(np.float32)
```

Tensorflow and Keras Importation

```
import tensorflow as tf
import keras
```

Model: "sequential"

Model Structure Creation

```
from keras.models import Sequential
from keras.layers.core import Dense
np.random.seed(7)

model = Sequential()
model.add(Dense(255, input_shape=(6,), activation='relu'))
model.add(Dense((1), activation='sigmoid'))
model.compile(loss='mse', optimizer='Adam', metrics=['accuracy'])
model.summary()
```

Model: Sequential		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 255)	1785
dense_1 (Dense)	(None, 1)	256
Total params: 2,041 Trainable params: 2,041 Non-trainable params: 0		

Training

```
\label{eq:hist_model} hist = model.fit(X\_train, y\_train, validation\_data=(X\_test, y\_test), epochs=500)
```

```
Epoch 1/500
30/30 [==========] - 0s 5ms/step - loss: 0.1192 - accuracy: 0.8426 - val loss: 0.1739 - val accuracy: 0.8190
Epoch 2/500
30/30 [=========] - 0s 4ms/step - loss: 0.1204 - accuracy: 0.8436 - val loss: 0.1546 - val accuracy: 0.8095
Epoch 3/500
30/30 [==========] - 0s 3ms/step - loss: 0.1225 - accuracy: 0.8436 - val loss: 0.1491 - val accuracy: 0.8381
Epoch 4/500
30/30 [==========] - 0s 3ms/step - loss: 0.1194 - accuracy: 0.8447 - val loss: 0.1564 - val accuracy: 0.8095
Epoch 5/500
30/30 [==========] - 0s 2ms/step - loss: 0.1186 - accuracy: 0.8426 - val loss: 0.1534 - val accuracy: 0.8095
Epoch 6/500
30/30 [==========] - 0s 2ms/step - loss: 0.1207 - accuracy: 0.8415 - val loss: 0.1661 - val accuracy: 0.8190
30/30 [=========] - 0s 4ms/step - loss: 0.1242 - accuracy: 0.8362 - val loss: 0.1517 - val accuracy: 0.8095
Epoch 8/500
30/30 [=========] - 0s 3ms/step - loss: 0.1308 - accuracy: 0.8255 - val loss: 0.1505 - val accuracy: 0.8286
Epoch 9/500
30/30 [=========] - 0s 3ms/step - loss: 0.1218 - accuracy: 0.8415 - val loss: 0.1592 - val accuracy: 0.7714
Epoch 10/500
30/30 [=========] - 0s 3ms/step - loss: 0.1223 - accuracy: 0.8351 - val loss: 0.1548 - val accuracy: 0.8190
Epoch 11/500
30/30 [===========] - 0s 2ms/step - loss: 0.1244 - accuracy: 0.8447 - val loss: 0.1510 - val accuracy: 0.8190
```


Result Visualization

Prediction!

```
dicaprio = np.array([3., 0., 19., 0., 0., 5.]).reshape(1,6)
winslet = np.array([1., 1., 17., 1., 2., 100.]).reshape(1,6)

model.predict(dicaprio)
array([[0.14074111]], dtype=float32)

model.predict(winslet)
array([[0.9997488]], dtype=float32)
```


미국 탐색구조특수부대(US SAR TF)에 따르면, 0°C 이하 물에서 생존 기대시간은 15분~45분, 10℃ 미만에서는 최대 3시간으로 잡고 있다.

Apr 28, 2014

hellodd.com https://www.hellodd.com > 뉴스 :

차가운 바다에서 익사보다 무서운 것은? < 뉴스 ... - 헬로디디

Jack and Rose could have both fit on that wooden plank...quite comfortably

