NETWORK LAB PROJECT

NAME: BRIJ MOHAN SINGH ADMISSION NUMBER: 21JE0251

PROJECT: SIMULATION OF DEMODULATION OF CARRIER WAVE USING ACTIVE LOW PASS FILTER

SIMULATION SOFTWARE USED: 1) PROTEUS (FOR OSCILLOSCOPE)

- 2) ALTIUM CIRCUIT MAKER (PCB FABRICATION)
- 3) TINA (FOR FREQUENCY DOMAIN ANALYSIS)

PROTEUS SIMULATION:

COMPONENTS

R1 = 10 KOhm IC741 – Op Amp X 3

R2 = 10 Ohm C1 = 1uF

R3 = 10 Ohm

R4 = 50 Ohm

R5 = 10 KOhm

R6 = 10 KOhm

R7 = 1 KOhm

R8 = 1 KOhm

R9 = 500 Ohm

OSCILLOSCOPE:

YELLOW SIGNAL = (Blue + Pink) Signal = Modulated Wave

BLUE SIGNAL = Carrier wave

PINK SIGNAL = Original Signal

GREEN SIGNAL = Demodulated Signal (After filtering)

TINA (FREQUENCY DOMAIN ANALYSIS)

PLOT

CUT OFF FREQUENCY = 1.59k (At -3dB Value)

PCB Printed Board Design in ALTIUM CIRCUIT MAKER

THEORY:

Demodulation is defined as **extracting the original information-carrying signal from a modulated carrier wave**. A demodulator is an electronic circuit that is mainly used to recover the information content from the modulated carrier wave. There are different types of modulation, and so are demodulators.

USES:

- 1) TO REMOVE HIGH FREQUENCY NOISE
- 2) FOR DEMODULATION PURPOSE

ADDITIONAL CIRCUITS (MADE ON TINA)

SECOND ORDER BAND PASS

SECOND ORDER BAND REJECT

