

Simulaciones del modelo microscópico

A lo largo de este capítulo describiremos en detalle las simulaciones realizadas sobre el modelo descrito en la Sección 3.2, en el que hemos realizado algunas simplificaciones para facilitar la exposición. En concreto, estudiaremos el comportamiento individual de cada célula y describiremos el resultado global de las decisiones individuales de cada una de ellas. Como ya se ha comentado en el capítulo anterior, es posible ajustar los parámetros del modelo de manera que se pongan de manifiesto distintos comportamientos poblacionales. Concretamente se presentarán situaciones de tolerancia al patógeno, correspondientes a patógenos cuya población crece lentamente y consigue engañar a nuestras células T, situaciones de intolerancia, aquellas en las que conseguimos ganarle la batalla al patógeno. Se discutirá también qué ocurre cuando poblaciones de células T con distinta afinidad a un patógeno se enfrentan a el.

Con ayuda de un pseudocódigo veremos algunos detalles sobre de la implementación de las simulaciones. El código, realizado en Matlab puede verse en el Apéndice A.

4.1. Modelo simplificado

Para las simulaciones hemos optado por una versión simplificada del modelo propuesto en la Sección 3.2, de tal manera que el número de parámetros sea suficiente para no perder la esencia del argumento pero no muy elevado para evitar distraer al lector con notación engorrosa. Siguiendo con la notación de 3.2, asumiremos k=2. Es decir, suponemos que hay dos tipos de receptores: p (de proliferación) y d (de muerte) que controlan la evolución de los inhibidores de ciclo (Rb) y apoptosis (Bcl-2), respectivamente.

Para las células T efectoras que no forman parte de las células T de memoria (veremos ecuaciones específicas para esta población) asumimos que los receptores de proliferación (p) se expresan a partir de las señales que reciben gracias a su TCR y que, simultáneamente, autorregulan su expresión induciendo la producción de receptores tipo muerte (d). En este

caso, las ecuaciones 3.1 y 3.2 pueden escribirse como:

$$\begin{cases}
\dot{c}(t) = -\mu_{pc}p(t) \\
\dot{a}(t) = -\mu_{da}d(t) \\
\dot{p}(t) = \lambda_{Tp}r_{T}(t) - \lambda_{pp}p(t) \\
\dot{d}(t) = \lambda_{pd}p(t)
\end{cases}$$

$$c(0) = c_{0} \\
a(0) = a_{0} \\
p(0) = p_{0} \\
d(0) = d_{0}$$
(4.1)

Así mismo, hemos simulado este Sistema 4.1 y la Ecuación 3.3 para el caso de las células T de memoria. La dinámica de estas células viene dada por el mismo Sistema 4.1, en el que se ha tenido en cuenta que d=0, puesto que nos centramos solamente en el inhibidor del ciclo celular (recordemos que las células T de memoria no mueren durante la contracción clonal). Así las cosas, las ecuaciones que rigen el algoritmo de decisión para células T de memoria viene dado por:

$$\begin{cases}
\dot{c}(t) = -\mu_{pc}p(t) \\
\dot{p}(t) = \lambda_{Tp}r_{T}(t) - \lambda_{pp}p(t)
\end{cases}$$

$$c(0) = c_{0}$$

$$p(0) = p_{0}$$

$$(4.2)$$

Ahora que ya tenemos las ecuaciones del modelo estamos casi listos para la simulación, hay que elegir valores concretos para los parámetros. Esta no es una tarea sencilla, puesto que se desconoce el valor que toman. En la Tabla 4.1 tenemos los parámetros elegidos para la primera simulación (Sección 4.3.1). En base a esta elección y a las variantes que se exponen a lo largo de esa sección, obtenemos unos resultados que nos permiten identificar distintos tipos de respuesta inmune, sin necesidad de invocar ningún mecanismo distinto a las hipótesis detalladas en la Sección 3.1. A continuación se presentan los detalles básicos de la implementación.

4.2. Pseudocódigo

Con ánimo de aclarar algunos aspectos técnicos, se desarrollan, paso por paso, las instrucciones seguidas para la realización de las simulaciones. El Algoritmo 1 contiene un pseudocódigo muy sencillo con los detalles claves y prácticamente independientes del lenguaje de programación que se utilice. El código completo, realizado en Matlab, puede verse en el Apéndice A.

Veamos, paso por paso, cómo se simula el modelo:

- 1. Comenzamos la simulación en un tiempo inicial t = 0 y acabamos en un tiempo final T_{final} que se establecerá una vez las células T efectoras han desaparecido.
- 2. Para cada tiempo t, se calcula la cantidad de patógeno disponible, Y.
- 3. En función de Y, y para cada célula T de la población, se calcula la cantidad de patógeno que está a su alcance y se resuelve el sistema de ecuaciones correspondiente para conocer la cantidad de Rb (c) y Bcl-2 (a) activa en ese instante. En función de esto se desencadenará la división celular, si c=0, o el suicidio de la célula, si a=0.

4.2. Pseudocódigo

4. Si la célula va a dividirse se generan dos células hijas con los parámetros correspondientes al TCR, recordemos que la cantidad de receptores de la célula madre se divide entre las dos hijas de manera asimétrica, y los parámetros iniciales, para que pueda comenzar su fase de decisión. Se sigue en el paso 6.

- 5. Si por el contrario la célula comete suicidio, se eliminará de la población.
- 6. Se contempla la siguiente célula de la población y se vuelve a 3.
- 7. Se actualiza el tiempo para la siguiente iteración y se vuelve a 1.

Algorithm 1 Algoritmo de la decisión. Células T.

```
1: Inicialización de parámetros según 4.1
                                              ⊳ t será el tiempo por el que vamos simulando
 2: t = 0:
   while t < T_{final} do
       Y = Y_{init} * e^{t*(\alpha - N*\beta)};
                                             ▶ Calculamos Y con la solución explícita de 3.3
       for nCell; nCell + +; N do
                                                        ▶ Para cada célula T de la población
 5:
           r_T = \rho * Y;
                                                                                ⊳ Ecuación 3.4
 6:
           if efectora(nCell) then
                                                                 ⊳ Si es una célula T efectora
 7:
               Se resuelve 4.1
 8:
9:
               if a \leq 0 then
                  La célula nCell se elimina de la población
10:
               else if c \leq 0 then
11:
                  La célula nCell se divide
12:
                  Las condiciones iniciales de las células hijas vienen determinadas por
13:
   a_0, c_0 \text{ y } 3.6
           else if memoria(nCell) then
                                                             ⊳ Si es una célula T de memoria
14:
               Se resuelve 4.2
15:
              if c \leq 0 then
16:
                  La célula nCell se divide siguiendo el mismo procedimiento que la divi-
17:
   sión de una célula T efectora.
       Se actualiza el número de células de la población.
18:
19:
       t = t + t_{next};
```

En este pseudocódigo se ha detallado cuáles son las ecuaciones involucradas en cada paso. A continuación, exponemos algunas particularidades de la simulación: hemos omitido que cuando las condiciones son a>0 y c>0, en el caso de las células T efectoras y c>0, en el caso de las células T de memoria, la célula permanece en la fase de decisión pero actualiza sus condiciones para la siguiente iteración según los resultados que ha obtenido en la iteración actual. También hay que tener en cuenta que la división celular y el proceso de apoptosis no se llevan a cabo de manera inmediata, conllevan un tiempo t_{cycle} y t_{apo} , respectivamente, por lo que el número total de células en la población debe actualizarse una vez que estos procesos hayan finalizado y no instantáneamente, como pueden sugerir las líneas 10, 12 y 17. Otro aspecto que hemos supuesto es que el parámetro γ que aparecía en la Ecuación 3.4 es $\gamma=1$. Es decir, suponemos que todo encuentro del TCR de la célula T con el antígeno va a desencadenar una activación. El parámetro ρ debe ser calculado de tal manera que todas las células T tengan las mismas posibilidades a la hora de obtener su parte de patógeno, en la implementación real se usó un vector de números aleatorios entre 0 y 1 normalizado por el número total de células T. Buena parte de la notación usada en el

Algoritmo 1 ya ha sido introducida a lo largo de este trabajo, pero volvemos a insistir en que Y representa el número de moléculas del pat'ogeno, mientras que N la cantidad total de células T, incluyendo las efectoras y las de memoria. Sin embargo, en la implementación real, en la línea 4 del pseudocódigo, el N utilizado es solamente el número total de células T efectoras, sin contar las de memoria 1 .

4.3. Resultados y análisis

En esta sección expondremos los resultados de algunas simulaciones. Empezaremos por las dos situaciones básicas que se pueden dar en una infección: que logremos vencer al atacante o que, por el contrario, seamos vencidos, y acabaremos mostrando el resultado de diversas simulaciones cuando la afinidad por el *patógeno* de las células T va variando.

4.3.1. Intolerancia al patógeno

La primera de nuestras simulaciones puede verse en la Figura 4.1. Se muestra en ella el caso correspondiente a la elección de parámetros que se recoge en la Tabla 4.1. Estamos ante un caso de intolerancia al patógeno, puesto que las células T son capaces de eliminarlo por completo. Veámoslo con más detalle: el patógeno, representado con un línea roja, crece rápidamente, debido a la elección de una tasa de crecimiento, α , elevada. Una vez que las células T son conscientes de la rápida proliferación de un agente no deseado, su número comienza a crecer. Sin embargo, como ya habíamos comentado anteriormente, esto se produce con cierto retraso tras la aparición del patógeno. Lo que estamos describiendo es la conocida expansión clonal. Este crecimiento de células T provoca que el término que acompaña a β en la Ecuación 3.3 comience a ser más grande que el acompañado por α en esta misma ecuación, provocando así que la derivada de y se haga negativa y, por tanto, el número de moléculas del patógeno comience a decrecer. Debemos mencionar que el número de células T necesarias para eliminar el patógeno viene regulado por el parámetro β , si este fuera más grande, es decir, las células T fueran más dañinas con el patógeno, veríamos una curva azul con un máximo mas pequeño que el de la Figura 4.1. (EN REALIDAD EN ESTA FIGURA LA GRÁFICA ESTÁ NORMALIZADA, SERÍA MEJOR PONER LA OTRA SIN NORMALIZAR?)

Prestemos atención ahora al comportamiento de las células T de memoria: por la sección anterior, ya sabíamos que las células T efectoras y las de memoria iban a constituir poblaciones distintas, puesto que las ecuaciones que rigen sus dinámicas son distintas. La principal diferencia es que las células T de memoria no se suicidan una vez el patógeno ha desaparecido, sabemos que permanecen con la información necesaria para atacar al patógeno más rápidamente en caso de reaparición. Vemos cómo estas células de memoria aumentan su población tras la aparición del patógeno, aunque no vemos un crecimiento tan grande. Su población queda reducida a un 5-10% de la población de células T.

4.3.2. Tolerancia al patógeno

Hemos visto una simulación de intolerancia al *patógeno*. Esto es, las células inmunes consiguen controlar la infección y erradicar por completo al agente infeccioso. Sin embargo,

¹Esto se ha hecho así porque el proceso que siguen las células T de memoria es más complejo que lo que se recoge en el modelo. Estas células al cabo de un tiempo se desactivan y para que tengan un efecto sobre el patógeno deben volver a activarse. Para intentar hacer el modelo lo más sencillo posible se ha optado por hacer que las únicas células que combaten al patógeno sean las T efectoras.

Variables	$t_{cycle} = 0.15$	Duración de la fase de ciclo.		
	$t_{apo} = 0, 2$	Duración de la fase de apoptosis.		
	$t_{next} = 0, 3$	Duración del paso en la simulación.		
	$a_0 = 0, 3$	Cantidad inicial de Bcl-2 para células T		
		efectoras.		
	$c_0 = 0,08$	Cantidad inicial de Rb para células T efec-		
		toras.		
	$c_0^{mem} = 0,04$	Cantidad inicial de Rb para células T de		
		memoria.		
	$N_{ini} = 25$	Número inicial de células T naïve.		
	$Y_{ini} = 5$	Número inicial de moléculas del patógeno.		
	$r_p, r_d = 0$	Número inicial de receptores de membrana		
		p y d.		
Patógeno	$\alpha = 6$	Tasa de proliferación.		
	$\beta = 0,04$	Tasa de muerte por linfocito.		
Células T efectoras	$\lambda_{pd} = 0,05$	Tasa de cambio del receptor R_d por cada		
		señal R_p .		
	$\lambda_{Tp} = 6 * 10^{-5}$	Tasa de cambio del receptor R_p por cada		
		señal del TCR.		
	$\lambda_{pp} = 0.5 * 10^{-4}$	Tasa de cambio del receptor R_p por cada		
		señal R_p .		
	$\mu_{pc} = 15$	Tasa de cambio de Rb por cada señal del		
		TCR.		
	$\mu_{da} = 10$	Tasa de cambio de Bcl-2 por cada señal del		
		TCR.		
Células T de memoria	$\lambda_{Tp}^{mem} = 10^{-5}$	Igual que λ_{Tp} , para células T de memoria.		
	$\lambda_{pp}^{mem} = 2 * 10^{-2}$	Igual que λ_{pp} , para células T de memoria.		
	$\mu_{pc}^{mem} = 13$	Igual que μ_{pc} , para células T de memoria.		

Tabla 4.1: Tabla de variables y parámetros.

esto no es siempre así. Existen virus como PONER EJEMPLO SI SE SABE que han desarrollado una estrategia que consiste en crecer a un ritmo muy lento (Leggett et al., 2017), de esta manera *sigilosa* engañan a las células T, haciéndolas creer que ha sido eliminado y provocando que estas células inmunes se suiciden. La Figura 4.2 ilustra esta situación.

Como vemos, las células T comienzan la expansión clonal como respuesta a la presencia de patógeno. Este aumento de población inmune hace que la población del patógeno se vea afectada rápidamente (recordemos que su factor de crecimiento, α , es pequeño en este caso). Las células inmunes perciben que el patógeno ha sido eliminado con éxito, puesto que el número de células del mismo es muy pequeño, y comienzan la contracción clonal, haciendo que su población baje hasta desaparecer. Sin embargo, en este caso el patógeno no ha sido erradicado por completo y, ahora que no hay atacantes, el patógeno puede reproducirse sin problema. Es por esto que su población crece de manera exponencial. En poco tiempo estos patógenos astutos pueden tomar el control del organismo.

En cuanto a las células T de memoria, vemos como crecen con la presencia del *patógeno* y se estabilizan cuando la población de células T efectoras llega a cero. Esto es así puesto

Figura 4.1: Simulación: caso de intolerancia al *patógeno*. Los parámetros son los mismos que se exponen en la Tabla 4.1.

que las células T de memoria no continúan reproduciéndose en ausencia de células T efectoras, a pesar de la presencia de patógeno. PREGUNTAR RAZÓN

4.3.3. Simulaciones con distintas poblaciones de células T

En esta sección veremos cómo se comportan distintas poblaciones de células T efectoras frente a un mismo *patógeno*. Estas poblaciones están diseñadas para que tengan afinidades distintas con el *patógeno*. Un caso interesante es ver qué ocurre cuando alguna de estas poblaciones desaparece.

Comencemos mirando la Figura 4.3. En esta simulación hemos considerado tres poblaciones con distinta afinidad, λ_{Tp} , al patógeno. Tenemos el clon 0 con la afinidad más alta y el clon 2 con la más baja. La diferencia en cuanto a expansión es considerable, la población más afín al patógeno es la que se reproduce a mayor velocidad y se denomina población inmunodominante. Este hecho es consecuencia de las ecuaciones del Sistema 4.1: la ecuación $\dot{p}(t) = \lambda_{Tp}r_T(t) - \lambda_{pp}p(t)$ propicia un mayor crecimiento cuanto más alto es el valor λ_{Tp} , puesto que provoca que la derivada de c se haga más negativa y se llegue antes al límite c = 0 que desencadena la división celular.

Pero... ¿qué pasaría si esta población inmunodominante desapareciera? Una posible explicación nos la da la Figura 4.4. En ella, podemos ver que el modelo sugiere que las poblaciones subdominantes se expanden más que antes para suplir la ausencia de la inmunodominante y controlar la infección. No debemos olvidar que la afinidad que tienen estas poblaciones al patógeno es menor y esto hace que pueda crecer más en el mismo periodo de tiempo.

Para finalizar veamos el comportamiento del clon 2 cuando el resto de clones han desaparecido. Como es de esperar, ocurre algo similar a lo que veíamos en la Figura 4.4. En este caso el clon 2 debe hacer un esfuerzo mayor (reproducirse más) para mantener la infección controlada. Comportamiento ilustrado en la Figura 4.5.

Estas simulaciones ponen de manifiesto la importancia de las células T de memoria. En una situación donde las células T efectoras no presentan una afinidad al patógeno

Figura 4.2: Simulación: caso de tolerancia al patógeno. Los parámetros son los mismos que se exponen en la Tabla 4.1, excepto: $\alpha=1,\,\beta=0.01,\,\mu_{pc}=3,\,\mu_{da}=2,\,\mu_{pc}^{mem}=2.$

muy elevada las consecuencias pueden ser muy graves, pues la infección se alarga y las células T no son suficientemente dañinas para el agente externo. Sin embargo, si contamos con células T de memoria que guardan información relevante para combatir a ese agente, nuestro organismo se encontrará en una situación más segura, ya que se podrá actuar más rápidamente con células que disponen de alta afinidad con el *patógeno* y desencadenarán, por tanto, un ataque mucho más efectivo.

Figura 4.3: Simulación: distintas poblaciones de células T con distintas afinidades al patógeno. Los parámetros son los mismos que se exponen en la Tabla 4.1, excepto: $\lambda_{Tp}^{clon_0} = 2*10^{-4}, \, \lambda_{Tp}^{clon_1} = 6*10^{-5}, \, \lambda_{Tp}^{clon_2} = 10^{-5}.$

Figura 4.4: Simulación: distintas poblaciones de células T con distintas afinidades al patógeno. Clones subdominantes. Los parámetros son los mismos que se exponen en la Tabla 4.1, excepto: $\lambda_{Tp}^{clon_1} = 6*10^{-5}$, $\lambda_{Tp}^{clon_2} = 10^{-5}$.

Figura 4.5: Simulación: distintas poblaciones de células T con distintas afinidades al patógeno. Clon subdominante. Los parámetros son los mismos que se exponen en la Tabla 4.1, excepto: $\lambda_{Tp}^{clon_2}=10^{-5}$.