Algorithmic Aspects of Game Theory

Tomasz Garbus

2019

Contents

- 1 Lecture 1 (27 II 2019)
- 2 Tutorials 1 (28 II 2019)
- B Lecture 2 (6 III 2019)

1 Lecture 1 (27 II 2019)

2 Tutorials 1 (28 II 2019)

Hex, choquet: 2 players.

We say a game is **determined** if either of players has a winning strategy, If σ is a winning strategy of P, then $\forall_{\pi} G(\sigma, \pi) \leftarrow \text{wins } P$.

1. Is the choquet game determined if we replace \mathcal{R} with \mathcal{Q} (and its topology)?

If so, who has a winning strategy?

2. Let's consider a variant of choquet games on topological spaces. We have a property: If X is not a Baire space¹ $\implies E$ has a winning strategy (E means Empty, not Eve!).

Example with rational numbers:

 $G^q \leftarrow \text{set } \mathcal{Q} \setminus q \text{ dense, open.}$

Q is countable.

 $F \subset Q$

 $\cap_{q \in F} G^q = G^F$

 $|F| < \mathfrak{c}$

Our strategy:

- we start with set G^{q_0}
- opponent plays a set, say S_1
- we play a set $S1 \cap G^{q_0} \cap G^{q_1}$
- **3.** If X is complete then NE has w.s.

A complete space is also a Baire space.

4. Consider NIM game.

Setup: n heaps with tokens $h_1, h_2, ..., h_n$.

Move: choose a heap and remove r > 0 tokens.

Win: The last move.

We have two players: E and \forall , Eve move first. Q: Who has a winning strategy? When is the game determined?

 $n = 1 \leftarrow \text{Eve always wins}$

 $n=2 \leftarrow ((1,1) \text{ wins Adam}, (2,1) \text{ wins Eve}, (2,2) \text{ wins Adam})$ $(h_1,h_2) \rightarrow \text{equalise them if possible}$

Eve has a winning strategy iff $h_1 \neq h_2$

General case: Eve wins if the xor of stack heaps is non-zero. Proof: The winning configuration has xor 0. From a situation with xor \neq 0 is always able to produce a situation with xor = 0 and if xor = 0, it's impossible to make a move such that xor = 0 after the move.

- 1 $(0,...,0,h_j,0,...,0)$ is a winning position for Eve.
- 2 if $h_1 \otimes h_2 ... \otimes h_n = 0$ then the position is balanced. Balanced positions are winning positions.
- 3 Show strategy (next tutorials)

3 Lecture 2 (6 III 2019)

Determinacy

1

1

1

If we have a **game of finite duration** with 2 players, we can expand the game in a tree, where a leaf signifies the end of the game. A leaf maps to one of three possible situations:

- existential player (\exists) wins
- \bullet universal player (\forall) wins
- draw

If we map those situations to values accordingly: 1, -1, 0, the existential player aims to maximize (and universal to minimize) the outcome value.

Let's consider **infinite** games now. Suppose we have 2 players and draw is not possible in the game. If the player does not know the winning strategy, it is possible that they may "loop" in a position with winning strategy but never proceed with it.

There exist indeterminate perfect information games.

Infinite XOR game: E and A alternately play words $w_0, w_1, w_2, ... \in \{0, 1\}^+$ which are concatenated to $w_0 w_1 w_2 ...$

Infinite XOR: any function $f:\{0,1\}^{|\mathbb{N}|} \to \{0,1\}$ such that if v,w differ by one bit then $f(v) \neq f(w)$.

 $v \sim w$ iff differ by a finite number of bits.

We can choose set S s.t. $\{0,1\}^{|\mathbb{N}|} \supseteq S$ has $\exists !$ element for each equivalence class (from $Axiom\ of\ Choice$).

Each equivalence class of \sim is countable, thus there is continuum of equivalence classes.

Eve wins iff $f(w_0w_1...) = 0$, Adam otherwise. No player has a winning strategy in this game.

1. Suppose Adam wins. In the first play:

E 0 w_2 w_4 A w_1 w_3

Then in the next game Eve can steal his strategy:

E 1 w_1 w_3 w_5 A w_2 w_4

 $^{^{1}}X$ is Baire if:

 $G_i \leftarrow \text{are dense and open for } i \in \mathcal{N} \text{ then } \cap_{i>0} G_i \neq \emptyset$

2. Suppose Eve wins. In the first play:

Then in the next play:

Game on graph

An arena is a directed graph, consisting of:

- \bullet the set of positions Pos
- the set of moves $Moves \subseteq Pos \times Pos$

 $Pos = Pos_{\exists} \cup Pos_{\forall}, Pos_{\exists} \cup Pos_{\forall} \neq \emptyset.$

A play is a finite or infinite sequence $q_0 \to q_1 \to q_2 \to \dots \to q_k (\to \dots)$

Game equation

$$X = (E \cap \diamond X) \cup (A \cap \Box X) = Eve(X)$$

$$Y = (E \cap \Box Y) \cup (A \cap \diamond Y) = Adam(Y)$$

 $E = Pos_{\exists}, A = Pos_{\forall}, X, Y \in \mathcal{P}(Pos)$

"Modal logic" symbols here:

$$\diamond Z = \{p : (\exists_q) Moves(p,q) \land q \in Z\}^2$$

$$\Box Z = \{ p : (\forall_q)(p \to q) \Rightarrow q \in Z \}$$

Knaster-Tarski Theorem: $\langle L, \leqslant \rangle$ complete lattice³, $f: L \rightarrow$

L monotonic, then there exists a least fixed point

$$\mu x. f(x) = \bigwedge \{d: f(d) \leq d\}$$
 and a greatest fixed point:

$$\gamma y. f(y) = \bigvee \{d : d \leqslant f(d)\}.$$

Proof: We show the proof for the greatest fixed point. Let a =

 $\bigvee A, A = \{z : z \leqslant f(z)\}$

 $Z \subseteq Pos$ is a trap for Adam if $Z \subseteq Eve(Z)$

 $Z \subseteq Pos$ is Garden of Eden for Eve if $Eve(Z) \subseteq Z$

Proposition: Pos can be divided to three disjoint sets: $\mu X.Eve(X)$, $\mu X.Adam(X)$, $(\gamma Y.Eve(Y)) \cap (\gamma Y.Adam(Y))$

Definition: strategy

A strategy (for Eve) is a set of finite plays s.t.:

- if $last(w) \in Pos_{\exists}$ then $\exists ! q \text{ s.t. } last(W) \rightarrow q \text{ and } wq \text{ is in } S$
- if $last(w) \in Pos_{\forall}$ then $\forall (q)(last(w) \rightarrow q) \Rightarrow wq \in S$

 $^{^2}p \rightarrow q$ also denotes Moves(p,q) below. A position p, such that $(\forall_p)p \not\rightarrow q$ is called terminal, which we also write $p \not\rightarrow$.

³A complete lattice is a partially ordered set $\langle L, \leqslant \rangle$, such that each subset $Z \subseteq L$ has the least upper bound $\bigvee Z$, and the greates lower bound $\bigwedge Z$. In particular, $\bigvee \emptyset$ is the least element denoted \bot , and $\bigwedge \emptyset$ is the greatest element denoted \top .