Probabilistic Interval-based Event Recognition

Periklis Mantenoglou^{1,2} Alexander Artikis^{1,3}

¹National Kapodistrian University of Athens, Greece ²National Research Centre 'Demokritos', Athens, Greece ³University of Piraeus, Athens, Greece

https://cer.iit.demokritos.gr

Complex Event Recognition (Event Pattern Matching)*,†,‡

^{*}Giatrakos et al, Complex event recognition in the Big Data era: A survey, VLDB Journal, 2020.

[†]Artikis et al, Dagstuhl Seminar on the Foundations of Composite Event Recognition. SIGMOD Record, 2020.

[‡]Alevizos et al, Probabilistic Complex Event Recognition: A survey, ACM Computing Surveys, 2017.

Complex Event Recognition (Event Pattern Matching)*,†,‡

https://cer.iit.demokritos.gr (activity recognition)

^{*}Giatrakos et al, Complex event recognition in the Big Data era: A survey, VLDB Journal, 2020.

Artikis et al, Dagstuhl Seminar on the Foundations of Composite Event Recognition. SIGMOD Record, 2020.

[‡]Alevizos et al, Probabilistic Complex Event Recognition: A survey, ACM Computing Surveys, 2017.

Event Calculus*

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.

^{*}Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

Event Calculus*

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.
- Built-in representation of inertia:
 - F = V holds at a particular time-point if F = V has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

^{*}Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

${\sf Event} \,\, {\sf Calculus} \,+\, {\sf ProbLog}$

${\sf Event} \,\, {\sf Calculus} \,+\, {\sf ProbLog}$

Event Calculus + ProbLog

Event Calculus + ProbLog

Event Calculus + ProbLog


```
\begin{aligned} & \textbf{initiatedAt}(moving(P_1, P_2) = \textbf{true}, \ T) \leftarrow \\ & \textbf{happensAt}(walking(P_1), \ T), \\ & \textbf{happensAt}(walking(P_2), \ T), \\ & \textbf{holdsAt}(close(P_1, P_2) = \textbf{true}, \ T), \\ & \textbf{holdsAt}(similarOrientation(P_1, P_2) = \textbf{true}, \ T). \\ & \textbf{terminatedAt}(moving(P_1, P_2) = \textbf{true}, \ T) \leftarrow \\ & \textbf{happensAt}(walking(P_1), \ T), \end{aligned}
```

 $holdsAt(close(P_1, P_2) = false, T).$

0.70 :: happensAt(walking(mike), 1). 0.46 :: happensAt(walking(sarah), 1).


```
initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(similarOrientation(P_1, P_2) = true, T).
```

```
 \begin{split} & \textbf{terminatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ & \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ & \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{false}, \ T). \end{split}
```

```
0.70 :: happensAt(walking(mike), 1).
0.46 :: happensAt(walking(sarah), 1).
0.73 :: happensAt(walking(mike), 2).
0.55 :: happensAt(active(sarah), 2). · · ·
```

holdsAt($close(P_1, P_2) = false, T$).


```
\begin{array}{lll} \textbf{initiatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow & 0.70 :: \mathbf{happensAt}(\textit{walking}(\textit{mike}), \ 1). \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), & 0.46 :: \mathbf{happensAt}(\textit{walking}(\textit{sarah}), \ 1). \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{true}, \ T), & 0.55 :: \mathbf{happensAt}(\textit{walking}(\textit{mike}), \ 2). \\ \textbf{holdsAt}(\textit{similarOrientation}(P_1, P_2) = \mathsf{true}, \ T). & 0.69 :: \mathbf{happensAt}(\textit{walking}(\textit{mike}), \ 2). \\ \textbf{terminatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow & 0.58 :: \mathbf{happensAt}(\textit{walking}(\textit{sarah}), \ 21). \\ \textbf{o.58} :: \mathbf{happensAt}(\textit{walking}(\textit{sa
```



```
initiatedAt(moving(P_1, P_2) = true, T) \leftarrow
                                                     0.70 :: happensAt(walking(mike), 1).
  happensAt(walking(P_1), T),
                                                     0.46 :: happensAt(walking(sarah), 1).
  happensAt(walking(P_2), T),
                                                     0.73 :: happensAt(walking(mike), 2).
  holdsAt(close(P_1, P_2) = true, T),
                                                     0.55 :: happensAt(active(sarah), 2). · · ·
  holdsAt(similarOrientation(P_1, P_2) = true, T).
                                                     0.69 :: happensAt(walking(mike), 21).
                                                     0.58 :: happensAt(walking(sarah), 21). · · ·
terminatedAt(moving(P_1, P_2) = true, T) \leftarrow
                                                     0.82 :: happensAt(inactive(mike), 41).
  happensAt(walking(P_1), T),
                                                     0.79 :: happensAt(walking(sarah), 41). · · ·
  holdsAt(close(P_1, P_2) = false, T).
```

Instantaneous Recognition*

 $^{^*}$ Skarlatidis et al, A Probabilistic Logic Programming Event Calculus. Theory & Practice of Logic Programming, 2015.

Instantaneous Recognition*

Higher accuracy than crisp reasoning in the presence of:

- several initiations and terminations;
- few probabilistic conjuncts.

 $^{^*}$ Skarlatidis et al, A Probabilistic Logic Programming Event Calculus. Theory & Practice of Logic Programming, 2015.

Online Probabilistic Interval-Based Event Calculus

Online Probabilistic Interval-Based Event Calculus

 Interval Probability: average probability of the time-points it contains.

- Interval Probability: average probability of the time-points it contains.
- Probabilistic Maximal Interval:
 - interval probability above a given threshold;
 - no super-interval with probability above the threshold.

- Interval Probability: average probability of the time-points it contains.
- Probabilistic Maximal Interval:
 - interval probability above a given threshold;
 - no super-interval with probability above the threshold.
- Probabilistic maximal interval computation via maximal non-negative sum interval computation.

Interval-based Recognition*

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

^{*}Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2020.

Interval-based Recognition*

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

Complexity

The computation of probabilistic maximal intervals is linear to the dataset size.

^{*}Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2020.

- Windowing.
- Probabilistic maximal interval computation.

- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Caches time-point t iff the probability of an interval starting at t cannot be increased by extending it to the left.

- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Caches time-point t iff the probability of an interval starting at t cannot be increased by extending it to the left.

- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Caches time-point t iff the probability of an interval starting at t cannot be increased by extending it to the left.

- · Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Caches time-point t iff the probability of an interval starting at t cannot be increased by extending it to the left.

Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval given the data seen so far.

Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval given the data seen so far.

Complexity

The computation of probabistic maximal intervals is linear to the window and memory size.

Bounded Online Interval-based Recognition*

 Complex event duration statistics favor more recent potential starting points.

^{*} Mantenoglou et al, Online Probabilistic Interval-Based Event Calculus. ECAI, 2020.

Bounded Online Interval-based Recognition*

 Complex event duration statistics favor more recent potential starting points.

^{*} Mantenoglou et al, Online Probabilistic Interval-Based Event Calculus. ECAI, 2020.

Bounded Online Interval-based Recognition*

 Complex event duration statistics favor more recent potential starting points.

^{*}Mantenoglou et al, Online Probabilistic Interval-Based Event Calculus. ECAI, 2020.

Bounded Online Interval-based Recognition*

- Complex event duration statistics favor more recent potential starting points.
- Comparable accuracy to batch reasoning.

^{*}Mantenoglou et al, Online Probabilistic Interval-Based Event Calculus. ECAI, 2020.

Experimental Setup

- Human Activity Recognition:
 - Input: manually annotated simple activities on individual video frames.
 - Output: maximal intervals of complex activities.
- Maritime Situational Awareness:
 - Input: vessel position signals from the area of Brest, France.
 - Output: maximal intervals of complex vessel activities.
- https://github.com/Periklismant/oPIEC

Experimental Results: Human Activity Recognition

Comparison against ground truth

- Instantaneous Recognition
- Interval-based Recognition
- --Bounded Online Interval-based Recognition

Experimental Results: Maritime Situational Awareness

Performance of bounded online recognition against batch recognition

Summary & Next Steps

Summary:

- Online reasoning over noisy streams.
- Optimal history compression for correct interval computation.
- Reproducible evaluation on benchmark and real data.

Summary & Next Steps

Summary:

- Online reasoning over noisy streams.
- Optimal history compression for correct interval computation.
- Reproducible evaluation on benchmark and real data.

Next Steps:

- Point-based probabilistic inference is required.
 ⇒ Interval-based EC for probabilistic, run-time reasoning.
- Symbolic 'simple events' are required.
 ⇒ Integration into a neuro-symbolic framework.
- Support uncertainty in complex event definitions.

Summary & Next Steps

Summary:

- Online reasoning over noisy streams.
- Optimal history compression for correct interval computation.
- Reproducible evaluation on benchmark and real data.

Next Steps:

- Point-based probabilistic inference is required.
 - \Rightarrow Interval-based EC for probabilistic, run-time reasoning.
- Symbolic 'simple events' are required.
 - ⇒ Integration into a neuro-symbolic framework.
- Support uncertainty in complex event definitions.

Resources

https://github.com/periklismant/oPIEC https://cer.iit.demokritos.gr

Appendix

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1

Tim	e 1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5

Tim	e 1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5

$$\sum_{i=s}^{c} L[i] \geq 0 \Leftrightarrow P([s,e]) \geq \mathcal{T}$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp										-0.9

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp									-0.9	-0.9

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp								-0.9	-0.9	-0.9

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp							-0.9	-0.9	-0.9	-0.9

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp						-0.4	-0.9	-0.9	-0.9	-0.9

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[s, e] = \left\{ egin{array}{ll} dp[e] - prefix[s-1] & ext{if } s > 1 \\ dp[e] & ext{if } s = 1 \end{array}
ight.$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[s, e] = \left\{ egin{array}{ll} dp[e] - prefix[s-1] & ext{if } s > 1 \\ dp[e] & ext{if } s = 1 \end{array}
ight.$$

$$\textit{dprange}[\textit{s}, \textit{e}] \geq \textit{0} \Rightarrow \exists \textit{e}^*: \textit{e}^* \geq \textit{e}, \ \textit{P}([\textit{s}, \textit{e}^*] \geq \mathcal{T})$$

1

	ΛΨ									
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

	ΛΨ									
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[1,1] = \mathit{dp}[1] = 0.1 \geq 0$$

	\uparrow	\Downarrow								
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

	\uparrow	\Downarrow								
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[1,2] = \mathit{dp}[2] = 0.1 \geq 0$$

	\uparrow		\Downarrow							
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1,3] = dp[3] = 0.1 \ge 0$$

	\uparrow			\Downarrow						
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1, 4] = dp[4] = 0.1 \ge 0$$

	\uparrow				\Downarrow					
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[1,5] = \mathit{dp}[5] = 0 \geq 0$$

	\uparrow					\Downarrow				
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[1,6] = \mathit{dp}[6] = -0.4 < 0$$

	\uparrow					\Downarrow				
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[1,6] = \mathit{dp}[6] = -0.4 < 0$$

		\uparrow				\Downarrow				
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[2, 6] = dp[6] - prefix[1] = 0.1 \ge 0$$

		\uparrow					\downarrow			
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[2,7] = \mathit{dp}[7] - \mathit{prefix}[1] = -0.4 < 0$$

		\uparrow					\Downarrow			
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[2,7] = \mathit{dp}[7] - \mathit{prefix}[1] = -0.4 < 0$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

Complexity

The computation of probabilistic maximal intervals is linear to the dataset size.