KU LEUVEN

Semi-Autonomous Mobile Robot Navigation in Populated Environments

Mid-term Master Thesis Presentation

Kevin Denis

Supervisor : Prof. dr. ir. E. Demeester Supervisor : Prof. dr. ir. H. Bruyninckx

Mentor: Dr. J. Philips

Introduction

Goals and Objectives

Approach

Introduction

Goals and Objectives

Approach

Introduction: Wheelchair Navigation Assistance

Semi-Autonomous

Populated Environments

Introduction

Goals and Objectives

Approach

Goal

Tackle the path planning problem in dynamic environments, using a socially compliant motion planner for semi-autonomous navigation.

Starting point

Objectives

Find a more complex geometric form, that will form the basis for local paths.

The socially compliant path planner should be able to:

- Asses the moving obstacles around the wheelchair
- Take into account the dynamics of the wheelchair
- Fast enough so that the user doesn't feel the latency

Introduction

Goals and Objectives

Approach

Approach

Use a more complex geometric form as motion primitive.

Work by Pivtoraiko and Kelly (2005) describe a novel approach, "State Lattice" Path Planning.

State Lattice Path Planner

State Lattice Path Planner

State Lattice Motion Primitive

Motion primitives should be more complex than circular arcs. Based on cubic Bézier Curves :

- Start, end pose derived from placement of control points
- "DOF" left to influence a desired objective function

Quadratic vs cubic Bézier Curves

COP: motion primitives

$$\underset{x,y}{\text{minimize}} \quad f(x,y) = \int_0^1 \kappa(t)^2 dt \tag{1a}$$

subject to
$$[x_1, y_1] = [x_1, y_1],$$
 (1b)

$$y_2 = \tan(\theta_1)(x_2 - x_1) + y_1, \tag{1c}$$

$$[x_{end}, y_{end}] = [xend, yend], \tag{1d}$$

$$y_{end-1} = \tan(\theta_{end})(x_{end-1} - x_{end}) + y_{end},$$
 (1e)

$$\kappa(t)^2 \leqslant \kappa_{max}^2,\tag{1f}$$

$$lb_x \leqslant x \leqslant ub_x,$$
 (1g)

$$lb_y \leqslant y \leqslant ub_y.$$
 (1h)

With:

 $t=0:\Delta t:1$, dimensionless parameter for the construction of the Bézier Curve

$$B(t) = BezierCurve(x, y, t)$$

$$\kappa(t) = \frac{B'(t) \times B''(t)}{\|B'(t)\|^3}, \text{ curvature}$$

State Lattice: Example fixed position

State Lattice : Generation of possible motion primitives

State Lattice : Generation of possible motion primitives

State Lattice : Generation of possible motion primitives

Motion Primitives are unique

State Lattice Path Planner

Introduction

Goals and Objectives

Approach

Work for 2nd semester

Path Planning (uncertainty)

Multi-resolution grid

Context based navigation and templates for certain tasks

End of the presentation

Thank you for your kind attention