Complex Numbers

Basics

Def: $z = a + bi \Leftrightarrow \Re(z) = a, Im(z) = b$ **Def**: $z = a + bi \Leftrightarrow \bar{z} = a - bi \Leftrightarrow r \cdot e^{2\pi - \phi}$ **Def**: $z = r \cdot cos(\phi) + i \cdot sin(\phi)$ **Def**: $|z| = r = \sqrt{x^2 + y^2} = \sqrt{z \cdot \bar{z}}$

 $\mathbf{Def:} \quad \phi = \begin{cases} arctan\frac{y}{x} & \mathbf{1. \ Q} \\ arctan\frac{y}{x} + \pi & \mathbf{2./3. \ Q} \\ arctan\frac{y}{x} + 2pi & \mathbf{4. \ Q} \end{cases}$

Operations

Def: $z_1 \pm z_2 : (x_1 + x_2) \pm i(y_1 + y_2)$

 $\begin{array}{ll} -1 & z_1 \cdot z_2 : (x_1 + i \cdot y_1) + (x_2 + i \cdot y_2) = r_1 \cdot r_2 e^{i(\phi_1 + \phi_2)} \\ \mathbf{Def} : & \frac{z_1}{z_2} : \frac{r_1}{r_2} e^{i(\phi_1 - \phi_2)} = \frac{z_1 \cdot z_2}{|z_2|^2} \end{array}$

 $\begin{array}{ll} \mathbf{Def:} & \sqrt[n]{a} \Leftrightarrow a = z^n \Leftrightarrow |a| \cdot e^{i\phi} = r^n \cdot e^{i\omega n} \Leftrightarrow r = \\ \sqrt[n]{|a|}, \omega = \frac{\phi + 2k\pi}{n} \end{array}$

Polynomials

The roots of a complex polynomial are pairwise conjugated. Def : $z = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$ **Def:** $az^n + c = 0 \Leftrightarrow z = \sqrt[n]{-\frac{c}{a}}$

SLE

Gauss Algorithm

Compability Conditions: $b_{r+1} = ... = bm = 0$ S 1.1: Ax = b hat min eine Lösung $\Leftrightarrow r = m$ oder r < m + VB dann: $r = n \Leftrightarrow 1$ Lösung, $r < n \Leftrightarrow \infty$ Lösungen

Cor 1.7: For a quadratic SLE with nequations and n variables we have the following set of equivalence, of wich ONLY one of them can be true; So, EITHER

i Rank(A) = n (A is regular)

ii for every b there exist at least one solution

iii for every b there exists exactly one solution

iv the corresponding homogeneous system has only the trivial solution

OR the following equivalences hold

 $\mathbf{v} \; Rank(A) < n \; (\mathbf{A} \; \mathbf{is} \; \mathbf{singular})$

vi for some b there exits no solution

vii for no b a unique solution exists

viii for some b infinity many solution exists

ix the corresponding homogeneous system has non-trivial solutions

Matrices and Vectors

Definitions

A $m \times n$ matrix hat m row (Zeilen) \downarrow and n columns (Spalten)→

, in which the i,j element gets noted by $a_{i,j}$ or $(A)_{i,i}$

Def nullmatrix: Has in every entry 0 Def diagonalmatrix: Has in every entry 0 except for the diagonal: $(D)_{ij} = 0$ for $i \neq j$ one can write $Diag(d_{11}, \cdots, d_{nn})$

Def identity: The identity is written as $I_n = Diag(1, \dots, 1)$ It holds that AI = IA = ADef upper triangular matrix: We have $(R)_{ij} = 0$ for i > j (Rechtsdreiecksmatrix) Def lower triangular matrix: We have $(R)_{ij} = 0$ for i < j (Linksdreiecksmatrix) Def Matrix-set: The set of $m \times n$ -matrices is written as: $\mathbb{E}^{m \times n}$ For vectors we have: \mathbb{E}^n , where $\mathbb E$ is $\mathbb R$ or $\mathbb C$

Def matrix multiplication: If C = AB then one can write

 $C_{ij} = (AB)_{ij} = \sum_{k=1}^{n} (A)_{ik}(B)_{kj} = \sum_{k=1}^{n} a_{ik} b_{kj}$

• $(\alpha\beta)A = \alpha(\beta A)$

• (A+B)+C=A+(B+C)

• $(\alpha A)B = \alpha(AB)$

• $(AB) \cdot C = A \cdot (BC)$

• $(\alpha + \beta)A = \alpha A + \beta A$

 \bullet $(A+B) \cdot C = AC + BC$

 \bullet $A \cdot (B+C) = AB + AC$ $\bullet \ \alpha(A+B) = \alpha A + \alpha B$

 $\bullet \quad A + B = B + A$

S 2.20: Let A and B be unitary(orthogonal). It holds:

• A is regular and $A^{-1} = A^H(A^T)$

• $AA^H(AA^T) = I$

• A^{-1} is unitary (orthogonal)

• AB is unitary (orthogonal)

Def Zerodiviser: If $AB = 0 \Leftrightarrow A,B$ Zerodiviser, Nullteiler

Def transposes: $(A^T)_{ij} = A_{ji}$

Def conjugate transposed: $A^H = (\overline{A})^T = \overline{A^T}$

Def symmetric: $A^{T} = A \Leftrightarrow A$ symmetric Def skew-symmetric: $A^T = -\hat{A} \Leftrightarrow \mathbf{A}$

skew-symmetric

Def hermitian: $A^H = A \Leftrightarrow \mathbf{A}$ hermitian S 2.6: Also accounts for A^T instead of A^H . $\overline{\alpha}$ simplifies to α

• $(A^H)^H = A$

• $(\alpha A)^H = \overline{\alpha} A^H$

 $\bullet (A+B)^H = A^H + B^H$

 $\bullet (AB)^{H'} = B^{H}A^{H}$

S 2.7: For symmetric matrices A and B it holds that: $AB = BA \Leftrightarrow AB$ is symmetric It holds for arbitrary matrix C that: C^TC and CC^T are symmetric. The same holds for the hermitian case

Scalar product and Norm

Def euclidian scalarproduct:

 $\langle x, y \rangle = x^T y = \sum_{k=1}^n \overline{x_k} \cdot y_k \xrightarrow{\text{in}} \sum_{k=1}^n x_k \cdot y_k$

S1 $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ (linear in 2nd

S1 $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$ (linear in 2nd factor)

S2 for $\mathbb{E} = \mathbb{R}$:

 $\langle x, y \rangle = \langle y, x \rangle$ (symmetric)

S2' for $\mathbb{E} = \mathbb{C}$:

 $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (hermitian)

S3 $\langle x, x \rangle > 0, \langle x, x \rangle = 0 \Leftrightarrow x = 0$ (positiv definite)

Cor 2.10:

S4 for $\mathbb{E} = \mathbb{R}$: linear in 1st factor $\langle w + x, y \rangle = \langle w, y \rangle + \langle x, y \rangle$

 $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ S4' for $\mathbb{E} = \mathbb{C}$: conjugate-linear in 1st factor

 $\langle w + x, y \rangle = \langle w, y \rangle + \langle x, y \rangle$ $\langle \alpha x, y \rangle = \overline{\alpha} \langle x, y \rangle$

Def norm: $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x^T x} =$

 $\sqrt{\sum_{k=1}^{n} (|x_k|)^2} \xrightarrow{in} \sqrt{\sum_{k=1}^{n} x_k^2}$

S 2.11: $|\langle x,y\rangle|^2 \le \|x\| \cdot \|y\|$ (Cauchy-Schwarz inequality, "=" holds when y is a multiple of x or vice verca)

Def CBS: CBS is a property of the scalar product: CBS squared yields:

 $|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$

S 2.12: For the euclidian norm holds:

N1 ||x|| > 0, $||x|| = 0 \Leftrightarrow x = 0$ (positiv definit)

N2 $\|\alpha x\| = \alpha \|x\|$ (homogeneous)

N3 $||x \pm y|| \le ||x|| + ||y||$ (Triangle-inequality)

Def: Angle $\overline{\phi}$ between x, y:

 $,\phi = \arccos \frac{\operatorname{Re}(\langle x,y \rangle)}{\|x\|\cdot\|y\|} \xrightarrow[\mathbb{R}]{in} \arccos \frac{\langle x,y \rangle}{\|x\|\cdot\|y\|}$

 $\begin{array}{ll} \mathbf{Def:} & x,y \ \mathbf{are \ orthogonal:} \ \langle x,y \rangle = 0 \Leftrightarrow x \perp y \\ \mathbf{S} \ \mathbf{2.13:} & \|x \pm y\|^2 = \|x\|^2 + \|y\|^2 \Leftrightarrow x \perp y \end{array}$ (Pythagoras) Def p-norm:

 $||x||_{p} = (|x_{1}|^{p} \cdots |x_{n}|^{p})^{\frac{1}{p}}$

Outer Product and Projections

Def outer product: m-vector x and n-vector

S 2.14: A $m \times n$ -matrix has rank 1 if it is the outer product of an m-vector $\neq 0$ and n-vector

S 2.15: The orthogonal projection $P_y x$ of the

n-vector x onto y is defined as: $P_y x = \frac{1}{\|y\|^2} \cdot y y^H x = u u^H = P_u$ where $u = \frac{y}{\|y\|}$ Def projections matrix: $P_y = \frac{1}{\|y\|^2} \cdot yy^H$ It has

the properties: $P_y^H = P_y$

(hermitian/symmetric) and $P_y^2 = P_y$ (idempotent)

Inverse

Def invertible: $\exists A^{-1} \Leftrightarrow A^{-1} \cdot A = A \cdot A^{-1} = I$ **S 2.17:** A is invertible $\Leftrightarrow \exists X : AX = I \Leftrightarrow X$ is unique $\Leftrightarrow A$ is regular

S 2.18: If A, B are regular:

• A^{-1} is regular and $A^{-1-1} = A$

• AB is regular and $(AB)^{-1} = B^{-1}A^{-1}$

• A^H is regular and $(A^H)^{-1} = (A^{-1})^H$

S 2.19: If A is regular das LGS Ax = b has the unique solution $x = A^{-1}b$ Finding an inverse $[A|I] \xrightarrow{row} [I|A^{-1}]$ if

 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $det(A) \neq 0 \Leftrightarrow \mathbf{A}$ is invertible

 $\Leftrightarrow A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

 $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \Leftrightarrow A^{-1} \begin{bmatrix} a_{11}^{-1} & a_{12}^{-1} \\ a_{21}^{-1} & a_{22}^{-1} \end{bmatrix}$

Orthogonal and unitary matrices

Def unitary/orthogonal: $AA^H = I, AA^T = I \Leftrightarrow$ A is unitary/orthogonal $\Leftrightarrow det(A) = \pm 1$

S 2.20: A,B are unitary/orthonormal:

• A is regular and $A^{-1} = A^H$

• $AA^{H} = I_{n}$ • A^{-1} is unitary/orthogonal

• AB is unitary/orthogonal

• columns are orthonormal S 2.21: Images from unitary/orthonormal matrices are conformal (längen-winkeltreu)

Def 2d rotation: $R(\phi) = \begin{pmatrix} cos\phi & sin\phi \\ -sin\phi & cos\phi \end{pmatrix}$

Def 3d rotation:

$$R_x(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{pmatrix}, R_y(\phi) = \\ \begin{pmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{pmatrix}, R_z(\phi) = \\ \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

LU-Decomposition

The LU-decomposition is useful when multiple SLE have the same A

- Find PA = LR
- solve Lc = Pb
- solve Rx = c

Vectorspaces

Def: A vectorspace V over \mathbb{K} is a non-empty set, on which vectoraddition and scalarmultiplication is defined

Def Axioms:

```
V1 : x + y = y + x
V2: (x+y) + z = x + (y+z)
```

$$\mathbf{V3} : \exists 0 \in V : x + 0 = x$$

V4:
$$\forall x \exists -x : x + (-x) = 0$$

V5: $\alpha(x+y) = \alpha \cdot x + \alpha \cdot y$

V6 :
$$(\alpha + \beta)x = \alpha x + \beta x$$

V7 : $(\alpha\beta)x = \alpha(\beta x)$

$$\mathbf{V8} \; : \; 1 \cdot x = x$$

i :
$$0 \cdot x = 0$$

ii :
$$\cdot 0 = 0$$

iii : $\alpha \cdot x = 0 \rightarrow x = 0 \lor \alpha = 0$

iv :
$$(-\alpha)x = \alpha(-x) = -(\alpha \cdot x)$$

Def polynomial space: \mathcal{P}_n is defined as all polynomials of degree n. Further: $\mathcal{P} = \bigcup_{n=0}^{\infty} \mathcal{P}_n$ S 4.1: I a vectorspace the following holds for a scalar α and $x \in V$:

- 0x = 0
- $0\alpha = 0$
- $\alpha x = 0 \Rightarrow \alpha = 0$ or x = 0
- $(-\alpha)x = \alpha(-x) = -(\alpha x)$

S 4.12: $\{b_1, \dots, b_n\} \subset V$ is a basis of $V \Leftrightarrow$ every vector $x \in V$ can be uniquely represented **as:** $x = \sum_{k=1}^{n} \xi_k b_k$

S 4.2: $\forall x \in V, \forall y \in V \exists z \in V : x + z = y \text{ where } z$ is unique and z = y + (-x)

Subspace

Def: A subspace (unterraum) U is a non-empty subset of V. It is closed under vector addition and scalar multiplication. U contains the zero-vector

S 4.3: Every subspace is a vectorspace Def spanning set: The vectors v_1, \dots, v_n are a spanning set (erzeugendes System) of V, if $\forall w \in span\{v_1, \cdots, v_n\}$

Linear dependency, basis, dimensions

are linearly dependent $\Leftrightarrow \sum_{k=1}^{n} \alpha_k \cdot v_k = 0 \to \alpha_1 = \dots = \alpha_n = 0$ Def dimension: the dimension of V is $dimV = |spanV| (dim\{0\} = 0)$

Def linear dependency: Vectors v_1, \dots, v_n

Lem 4.8: Every set $\{v_1, \dots, v_m\} \subset V$ with $|\mathbb{B}_v| < m$ is linear dependant Cor 4.10: in an finite vectorspace, a set with n independent vectors is basis of V if Def: The coefficients ξ_k are coordinates of x

with respect to a basis $\mathbb{B} \xi = (\xi_1, \dots, \xi_n)^T$ is a coordinate vector Def: Two subspaces $U, U' \subset V$ are complementary if every $v \in V$ has a unique

representation in U and U'. Namely, $v = u \in U + u' \in U'$. $\rightarrow V = U \bigoplus U'$

Linear Maps

Definitions

Def linearity: $F: V \to W$ is linear:

- F(v + w) = F(v) + F(w)
- $\alpha F(v) = F(\alpha v)$

Def injective: $\forall x, x' \in X : f(x) = f(x') \Leftrightarrow x = x'$ **Def surjective:** $\forall y \subset Y, \exists x \subset X, f(x) = y$ Def bijective: surjective and injective $\Leftrightarrow f^{-1}$ exists

Matrix representation

Let F be a linear map $X \to Y$. One can write $F(b_i) \in Y$ as a linear combination of the basis of Y: $F(b_i) = \sum_{k=1}^{m} a_{k,l} \cdot c_k$ Def: The matrix $A^{m \times n}$ with the elements $a_{k,l}$ is a matrix (Abbildungsmatrix) with respect X, Y $F(x) = y \Leftrightarrow A\xi = \eta$ [H]

Def isomorphism: F is bijective \Leftrightarrow F is an isomorphism

Def automorphism: F is isomorphism and $X = Y \Leftrightarrow \mathbf{F}$ is an automorphism

S 5.1: F is isomorphism $\Leftrightarrow F^{-1}$ exists and is an isomorphism and linear

Kernel, Image and Rank

Def Kern: $kerF = \{x \in X | F(x) = 0\}$ **S** 5.6: **F** injective $\Leftrightarrow kerF = \{0\}$ **Def Image:** $ImF = \{F(x)|x \in X\}$ S 5.6: F surjective $\Leftrightarrow imF = Y$ is the solution set of Ax = 0. Im(A)set of all b, such that Ax = b is solvable S 5.7: dimX - dim(kerF) = dim(imF) = Rank(F)Def: The rank F is equal to dim(im(F))Cor 5.8:

- $F: X \mapsto Y$ injective \Leftrightarrow Rank $F = \dim X$

- $F: X \mapsto Y$ bijective (isomorphism) \Leftrightarrow Rank $F = \dim X = \dim Y$
- $F: X \mapsto Y$ bijective (automorphism) \Leftrightarrow

Rank $F = \dim X$, ker $F = \{0\}$

- $Rank(G \circ F) \leq min(RankF, RankG)$
- G is injective $Rank(G \circ F) = RankF$
- G is surjective $Rank(G \circ F) = RankG$

Matrices as linear mapping

Def columnspace: The columnspace (Spaltenraum) of A is the subspace

$$\Re(A) = im(A) = span\{a_1, \dots, a_n\}$$

Def nullspace: The nullspace (Nullraum) of A is a subspace $\mathcal{N}(A) = ker A = L_0(Ax = 0)$

Def: # free variables = dim N(A)S 5.12: Rank A =r: and L_0 Solution of

 $Ax = 0 \Rightarrow dimL_0 = dimN(A) = dim(KerA) = n - r$ S 5.13: Rank $A \in M^{m \times n}$:

- pivots in Row-echelon-form
- dim(im(A)) of $A: \mathbb{E}^n \to \mathbb{E}^m$ • dimension of the linear independent columns/rows

Cor 5.14: $RankA^T = RankA^H = RankA$ S 5.16: for $A \in \mathbb{E}^{m \times n}$ and $Bin\mathbb{E}^{p \times m}$:

- $RankBA \leq min(RankA, RankB)$
- $\bullet \ RankB = m \leq p \Rightarrow RankBA = RankA$
- $RankA = m \leq n \Rightarrow RankBA = RankB$

Cor 5.17: From \overline{S} .5.16 it follows for quadratic matrices. $A \in \mathbb{E}^{m \times m}$ and $Bin\mathbb{E}^{m \times m}$

- RankBA < min(RankA, RankB)
- $RankB = m \Rightarrow RankBA = RankA$
- $RankA = m \Rightarrow RankBA = RankB$

S 5.18: For quadratic matrix $\mathbb{E}^{n\times n}$ the following statements are equivalent:

- A is regular
- RankA = n
- Columns are linearly independent
- Rows are linearly independent
- $ker A = N(A) = \{0\}$
- A is invertible
- $Im A = \Re(A) = \mathbb{E}^n$

S 5.19: For $Ax = b, b \neq 0$ with the solution x_0 and L_0 the solutionset is defined by $L_b = x_0 + L_0$ and is called affine subspace (not a real subspace since $0 \notin L_b$) dim(Im(A)) = n - dim(ker(A)) = n - (n - r) = r

RC Find Basis of Im $A = \mathcal{R}(A)$:

- 1 bring into row echelon form
- 2 mark rows with pivots
- 3 marked columns in the normal form are a Basis

 $\xrightarrow{(2)}$

• $F: X \mapsto Y$ surjective \Leftrightarrow Rank $\mathbf{F} = \dim \mathbf{Y} \mid \mathbf{RC}$ Find Basis of ker $\mathbf{A} = \mathcal{N}(A), A \in E^{m \times n}$:

- 1 bring into row echelon form
- 2 create a vector for every row, which does not have a pivot. The dimensions of the vectors are $E^{1\times n}$ [3]Solve SLE Ax = 0 with the yielded vectors.
- 4 Write the solution as vector

```
\mathbf{ex}_{-1}\\_3
        -4 7
 (1)
  -1 -4 7 3
                                             x_3 = \beta
                                      x_2 = \frac{5\beta + 3\alpha}{}
       \begin{array}{cccc}
0 & \uparrow & \uparrow \\
0 & 0 & 0
\end{array} (3)
  0
 (4)
```

Def Maps: Let X, Y be vector spaces with dim X = n, dim Y = m

- $F: X \mapsto Y$ a linear map
- $A: \mathbb{E}^n \mapsto \mathbb{E}^{m'}, \xi \mapsto \eta *$ $B: \mathbb{E}^n \mapsto \mathbb{E}^m, \xi' \mapsto \eta' *$
- $T: \mathbb{E}^n \to \mathbb{E}^{n'}, \xi \mapsto \xi' **$
- $S: \mathbb{E}^m \mapsto \mathbb{E}^{m'}, \eta \mapsto \eta'^{**}$
- *Abbildungsmatrix
- **Transformationsmatrix

S 5.20: RankF = r has the mappingmatrix*

Vector spaces with scalar products

Definitions

Def Norm: A norm is a function

 $|\cdot|:V\to\mathbb{R},x\to\|x\|$ in a vector space which satisfies:

- N1 ||x|| > 0, $||x|| = 0 \Leftrightarrow x = 0$ (positiv definit)
- N2 $\|\alpha x\| = \alpha \|x\|$ (homogenous)

N3 $||x \pm y|| \le ||x|| + ||y||$ (Triangle-inequality) A normed vector space

has a norm Def scalar product: is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{E}, x, y \mapsto \langle x, y \rangle$, which satisfies: S1 $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ (linear in 2nd

- S1 $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$ (linear in 2nd factor)
- S2 $\langle x, y \rangle = \overline{\langle x, y \rangle}$ (symmetric, hermitian) S3 $\langle x, x \rangle > 0, \langle x, x \rangle = 0 \Leftrightarrow x = 0$ (positiv

definite))

Def unitsphere: the set $\{x \in V | ||x|| = 1\}$ Def induced norm: The length of a vector is **defined as:** $\|\cdot\|: V \mapsto \mathbb{R}, \|x\| \mapsto \sqrt{\langle x, x \rangle}$

Def angle ϕ : $\phi = \sphericalangle(x,y), 0 \le \phi \le \pi$ is defined by: $\phi = \frac{\langle x, x \rangle}{\|x\| \cdot \|y\|} = \frac{\Re \langle x, y \rangle}{\|x\| \cdot \|y\|}$ Def orthogonal vectors: two vectors x, y are

orthogonal $\Leftrightarrow \langle x, y \rangle = 0$ Def orthogonal sets: two sets X, Y are

orthogonal $\Leftrightarrow \forall x \in X, \forall y \in Y \langle x, y \rangle = 0$

 $|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle = ||x||^2 \cdot ||y||^2$ (Cauchy Schwarz Inequality)

 $||x \pm y||^2 = ||x||^2 + ||y||^2 \Leftrightarrow x \perp y$ (Pythagoras) Def orthogonal basis:

 $\Leftrightarrow \forall i, \forall j, i \neq j : \langle b_i, b_j \rangle = 0$ Def orthonormal basis: \Leftrightarrow orthogonal basis with vectors of length 1

S 6.3: A set M of pairwise orthogonal vectors are linearly independent if $0 \notin M$

S 6.4: Let $\{b_1, \dots, n\}$ a orthonormal basis, $x \in V$: $x = \sum_{k=1}^{n} \langle b_k, x \rangle b_k \to \xi_k = \langle b_l, x \rangle$ S 6.5: from $\xi_k = \langle b_l, x \rangle_v$, $\eta_k = \langle b_l, x \rangle_v$ follows $\langle x,y\rangle_v = \sum_{k=1}^n \frac{1}{\xi_n} \eta_k = \xi^H \eta = \langle \xi,\eta\rangle_{\mathbb{R}^n} \text{ Which implies that if a basis in } V \text{ is orthonormal the}$ scalar product is valid in VFrom that follows:

$$||x||_v = ||\xi||_{\mathbb{E}^n}, \langle (x,y)_v = \langle (\xi,\eta)_{\mathbb{E}^n}, x \perp y \Leftrightarrow \xi \perp \eta$$

RC Gram-Schmidt:

- \bullet $b_1 = \frac{a_1}{\|a_1\|_v}$
- $\widetilde{b_k} = a_k \sum_{j=1}^{k-1} \langle b_j, a_k \rangle_{i} \cdot b_j$
- $b_k = \frac{\hat{b_k}}{\|\hat{b_k}\|_v}$

 $A = {\begin{smallmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{smallmatrix}} \xrightarrow{} a_1 = {\begin{smallmatrix} 2 \\ 2 \\ 1 \end{smallmatrix}} / \left\| {\begin{smallmatrix} 2 \\ 2 \\ 1 \end{smallmatrix}} \right\| = {\begin{smallmatrix} 2/3 \\ 2/3 \\ 1/3 \end{smallmatrix}}, \widetilde{a_2} = {\begin{smallmatrix} 3 \\ 4 \\ 1 \end{smallmatrix}} \left\langle \begin{array}{c} 2/3 & 3 \\ 2/3 & 4 \\ 1/3 & 1 \end{array} \right\rangle = \left. \begin{array}{c} -1/3 \\ 2/3 & a_2 \\ -2/3 & -2/3 \end{array} \right| \left. \begin{array}{c} -1/3 \\ 2/3 \\ -2/3 & -2/3 \end{array} \right| \left. \begin{array}{c} -1/3 \\ 2/3 \\ -2/3 & -2/3 \end{array} \right| = \left. \begin{array}{c} -1/3 \\ 2/3 \\ -2/3 & -2/3 \end{array} \right| \mapsto$ $A = 2/3 \ 2/3$

S 6.6: After k-steps the set $\{b_1, \dots, b_k\}$ is pairwise orthonormal. $\{b_1, \dots, b_k\}$ is a basis \Leftrightarrow $\{a_1, \dots, a_k\}$ is a basis Every vectorspace $(\neq \infty)$ has a orthonormal basis

Cor 6.7: To a vector space with scalar product with finite or countably infinite many dimensions a orthonormal basis exists. Def orthogonal complement: U^{\perp} is the orthogonal complement of a subspace U. $U \bigoplus U^{\perp} = V$

S 6.9: For a complex matrix with rankA = r it

- $N(A) = \Re(A^H)^{\perp} \subset \mathbb{E}^n$
- $N(A^H) = \Re(A)^{\perp} \subset \mathbb{E}^m$
- $N(A) \bigoplus \Re(A^H) = \mathbb{E}^n$
- $N(A^H) \bigoplus \Re(A) = \mathbb{E}^m$
- $dim\Re(A) = r$
- $dim\Re(A^H) = r$
- dim N(A) = n r
- $dimN(A^H) = m r$

Those are the fundamental subspaces

Change of Basis

 $\mathcal{B}, \mathcal{B}'$ are orthonormalbasis. Hence: $b'_k = \sum_{n=1}^{j=1} \mathcal{T}_{jk} b_j$ Matrix for change of basis T: $T^{-1} = T^H$ since both basis are orthonormal. Therfore it holds that:

- $\xi = T\xi'$
 - $\xi' = T^{-1}\xi$
 - $\mathcal{B} = \mathcal{B}'T$
 - $\mathcal{B}' = \mathcal{B}T^H$

S 4.13: Let $\xi = (\xi_1 \cdots \xi_n)^T$ be a coordinate vector of an arbitrary vector $v \in V$ with respect to the old basis

. Let $\xi' = (\xi'_1 \cdots \xi'_n)^T$ be the new representation of a vector x with respect to the new basis. $x = \sum_{i=1}^{n} \xi_i b_i = \sum_{k=1}^{n} \hat{\xi}'_k b'_k$

All matrices are unitary/orthogonal Cor 6.12: $\langle x,y\rangle_v=\xi^H\eta=\langle \xi,\eta\rangle_v=\langle \xi',\eta'\rangle_v=\xi'^H\eta'\Rightarrow T$ is conformal (längen-winkeltreu) Note Convention: A representation of a vector with respect of the basis \mathcal{B}_1 is written as $[v]_{\mathcal{B}_1}$

Therefore: $[v]_{\mathcal{B}_2} = Mat(\mathcal{B}_1)_{\mathcal{B}_2}[v]_{\mathcal{B}_1}$ and $[v]_{\mathcal{B}_1} = Mat(\mathcal{B}_2)_{\mathcal{B}_1}[v]_{\mathcal{B}_2}$ where $Mat(\mathcal{B}_2)_{\mathcal{B}_1}$ is the matrix of change ob basis from \mathcal{B}_1 to \mathcal{B}_1 Hence: $Mat(\mathcal{B}_1)_{\mathcal{B}_2} = ([b_1]_{\mathcal{B}_2} \quad | \cdots | \quad [b_n]_{\mathcal{B}_2})$

RC Calculating the matrix of F with respect to Basis \mathcal{B} : We have a function $F: X \mapsto X$ and the basis of X := B:

- 1 calculate for all $\forall a \in \mathcal{B}$: $F(b_a)$
- 2 solve for all $F(b_a) = \alpha_a b_1 + \beta_a b_2 \cdots \gamma_a b_n$
- 3 write coordinate vectors as: ξ_a = $(\alpha_a \beta_a \cdots \gamma_a)^T$
- 4 write matrix as $F_{[B]} = \xi_1 | \cdots | \xi_n$

RC Compute Basistransformationsmatrix from \mathcal{B} to \mathcal{S} : Since S is a standardbasis we have:

- 1 $\mathcal{S} \to \mathcal{B}$ is given by $B = (s_1|s_2|\cdots|s_n)$ (Columns of B are the basis vectors of
- 2 Compute inverse of B to get $\mathcal{B} \to \mathcal{S}$

RC Basistransformationsmatrix from 2×2 matrices with respect to the standard basis: The standard basis of 2×2 matrices is given $\mathbf{by:} \ \mathcal{S} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ and the new Basis is defined by: B = $\left\{\begin{pmatrix} a & b \\ c & e \end{pmatrix}, \begin{pmatrix} e & f \\ g & h \end{pmatrix}, \begin{pmatrix} i & j \\ k & l \end{pmatrix}, \begin{pmatrix} m & n \\ o & p \end{pmatrix}\right\}$ the matrix (Abbildungsmatrix) is defined by

$$F = \begin{pmatrix} a & e & i & m \\ b & f & j & n \\ c & g & k & o \\ d & h & l & p \end{pmatrix}$$

RC Prove that \mathcal{B} is Basis: \mathcal{S} denotes the standard basis.

- 1 compute for all $\forall a \in \mathcal{B}$: $b_a = \alpha s_1 +$
- 2 Since $span(\mathcal{B}) = span(\mathcal{S})$, \mathcal{B} has to be ba-

RC Prove that F is a bijective mapping

- $F: X \mapsto Y$ with the basis \mathcal{X} for X and \mathcal{V} for Y:
 - 1 calculate for all $\forall a \in \mathcal{X}$: $F(x_a)$
 - 2 solve for all $F(x_a) = \alpha_a y_1 + \beta_a y_2 \cdots \gamma_a y_n$
 - 3 write coordinate vectors as: ξ_a = $(\alpha_a \beta_a \cdots \gamma_a)^T$
 - 4 write matrix as $F_{[\mathcal{X}]} = \xi_1 \mid \cdots \mid \xi_n$
 - 5 As $F_{[X]}$ is quadratic and has full rank we have that $dim(\mathcal{X}) = dim(\mathcal{Y})$ and thus by Cor.5.8 that F is bijective

unitary/orthogonal mapping

Def unitary: A linear mapping $F: X \mapsto Y$ is unitary/orthogonal if $\langle F(v), F(w) \rangle_{u} = \langle v, w \rangle_{x}$

- 1 F is isometric (längentreu): $\|F(v)\|_u = \|v\|_X$
 - 2 F is conformal (winkeltreu):
 - $v \perp w \Leftrightarrow F(v) \perp F(w)$ 3 $kerF = \{0\}$, F is injective

- if $n = dim X = dim Y < \infty$
- 4 F is isomorphism
- 5 $\{b_1, \dots, b_n\}$ is orthonormal basis of X $\Leftrightarrow \{F(b_1), \cdots, F(b_n)\}$ is a orthonormal basis of Y
- 6 F^{-1} is unitary/orthogonal
- 7 The mapping matrix (Abbildungsmatrix) A is unitary/orthogonal

Least Squares

Let Ax = b a overdetermined SLE (Equations). Variables). No exact solution exists. $\rightarrow x^* = argmin_{x \in \mathbb{E}^n} \|Ax - b\|_2^2 \Rightarrow (Ax - b) \perp \Re(A)$

Def Pseudoinverse: If Rank A = n: $A^{+} = (A^{H}A)^{-1}A^{H} \Rightarrow A^{+}A = I$

Def normalequations: $(A^T A)x = A^T y$

RC Least Square Method for functions: We assume that $ker(A) = \{0\}$ and $A^H A$ is reg-

- 0 bring problem in a form where everything is numerically determined except the coefficients
- 1 calculate $A^T y$
- 2 calculate $A^T A$
- 3 solve the equation $(A^T A)x = A^T y$
- 4 calculate error r = y Ax

The equation is given $y(t) = x_1t + x_2t^2$ We have $t_n(1,2,3,4)$ and $y(t)_n = (13.0,35.5,68.0,110.5) \rightarrow$

RC Least Square Method for 2D-points:

- 0 Write X- / Y-coordinate alternately in the form (x,0), (0,y) in A for every point. Write X- / Y-coordinate alternately in v.
- 1 Rest as usually

The points $P = \{(-1,1), (1,1), (1,-1), (-1,-1)\}$ should be transformed with respect to the squared distance to the points P' = $\{(0,2),(1,3),(0,-2),(-1,-3)\}$. The transformation is defined as $T(P) = T\begin{pmatrix} p_x \\ p_y \end{pmatrix} = \begin{pmatrix} s_x \cdot p_x \\ s_y \cdot p_y \end{pmatrix}$

$$Ax = y \Rightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & -1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} s_x \\ s_y \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 3 \\ 0 \\ -2 \\ -1 \\ -3 \end{pmatrix}$$

RC Least Squares with QR-decomposition: We have the normal equations $A^HAx = A^Tb \Rightarrow (QR)^H(QR)x = (QR)^Hb \Rightarrow R^HQ^HQRx =$ $R^H Q^H \Rightarrow R^H R x = R^T Q^T b \Rightarrow R x = Q^H b$ There-1 compute QR-decomposition of A

- 2 solve $Rx = Q^T b$

RC Least Squares with SVD:

$$||Ax - b||_2^2 = \left\| \sum_y \underbrace{V_x^H}_c - \underbrace{U_c^H}_b \right\|_2^2 = \|\sum_y - c\|_2^2; x^* = 0$$

 $V\Sigma^+U^Hb \Rightarrow \infty$ solutions, here: smallest 2-norm $(y^*=\Sigma^+U^Hb)$ Where Σ^+ is the pseudoinverse of Σ , hence it holds

Determinants

$$det (a_{11}) = a_{11}, det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21},$$

$$det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11}a_{22}a_{33} & +a_{21}a_{32}a_{13} \\ +a_{31}a_{12}a_{23} & -a_{13}a_{22}a_{31} \\ -a_{12}a_{21}a_{33} & -a_{11}a_{23}a_{32} \end{pmatrix}$$

$$\mathbf{S 8.12:} \quad det(A) = \sum_{i=1}^{n} a_{ki}\mathcal{K}_{ki} = \sum_{i=1}^{n} a_{il}\mathcal{K}_{il} \text{ for }$$

a fixed k and l. Def cofactor \mathcal{K}_{ki} : $\mathcal{K}_{ki} = (-1)^{k+i} det(A_{[k,i]})$

 $Def A_{[k,i]}$: Is defined as the matrix A without the k-th row and i-th column

Def: $det A = 0 \Leftrightarrow A$ is singular

Def: $det A \neq 0 \Leftrightarrow A$ is regular S 8.3:

i det(A) is linear in every row

ii swapping two rows changes the sign of

iii det(I) = 1S 8.4:

iv if A has a row with $0 \Rightarrow det(A) = 0$ $\mathbf{v} \ \det(\gamma A) = \gamma^n \det(A)$

vi if A has to equal rows $\Rightarrow det(A) = 0$

vii adding a multiple of a row to another row doesnt affect the det

viii is A a diagonal matrix: $det(A) = \prod_{i=1}^n a_{ii}$ iv is A a triangular matrix: $det(A) = \prod_{i=1}^{n} a_{ii}$ Cor 8.10: Every statement of Satz 8.3 and 8.4 also holds for columns instead of rows

S 8.5: Using Gauss on A results in: $det(A) = (-1)^v \prod_{k=1}^n r_{kk}$ where v is # swappings of rows and r_{kk} are the

diagonal elements of the row echelon form S **8.7:** $det(AB) = det(A) \cdot det(B)$

Cor 8.8: if A is regular $\Rightarrow det(A^{-1}) = \frac{1}{det(A)}$ **S** 8.9: $det(A^T) = det(A)$ and $det(A^H) = \overline{det(A)}$

Def_det of block matrices:

$$det \begin{bmatrix} A & C \\ \hline 0 & B \end{bmatrix} = det(A) \cdot det(B)$$

Def det of unitary matrices: Let A be unitary/orthogonal $|det(A)| = \pm 1$ proof: $det(U^T U) = det(I) = (det(U))^2 = 1 \Rightarrow det(U) = \pm 1$

Eigenvalues and -vectors

Def eigenvector: A number $\lambda \in \mathbb{E}^n$ is called eigenwert of a linear mapping: F: X if $\exists v \in V, v \neq 0$ such that $F(v) = \lambda v$. v is an eigenvector. The set of all eingenvectors, which corespond to λ form a subspace $E_{\lambda} = \{ v \in V | F(v) = \lambda v \}$

Def spectrum: The set of all eigenvalues of F is called spectrum

Def: $\xi \in \mathbb{E}^n$ is a eigenvector of $\lambda \Leftrightarrow A\xi = \lambda \xi$ Lem 9.1: A linear map F and its matrix representation have the same eigenvalues and the eigenvectors are connected by the coordinate representation k_v Lem 9.2: λ is eigenvalue $\Leftrightarrow ker(A - \lambda I)$ is

singular $(E_{\lambda} = ker(A - \lambda I))$ Def multiplicity: The geometric multiplicity

of $\lambda = dim(E_{\lambda})$

Def characteristic polynomial: It is defined by $\mathcal{X}_A(\lambda) = det(A - \lambda I) = 0$ Def Trace: $tr(A) = \sum_{k=1}^{n} a_{kk}$ S 9.5: $\lambda \in \mathbb{E}$ is eigenvalue of $\mathbf{A} \Leftrightarrow \mathcal{X}_A(\lambda) = 0$ $\mathcal{X}_A(\lambda) = (-1)^n \cdot \lambda^n (-1)^{n-1} \cdot tr(A) \cdot \lambda^{n-1} +$

 $\cdots \det(A)\lambda^0 = a_n \cdot (a_{n-1} \cdot \lambda^{n-1} + \cdots \det(A))$ Lem 9.6: A (quadratic) matrix is singular if and only if it has 0 as an eigenvalue Def algebraic multiplicity: is the multiplicity of an eigenvalue in the char. polynomial. S 9.13: geometric multiplicity < algebraic multiplicity

RC Find Eigenvalues and -vectors:

- 1 find char. polynomial $\mathcal{X}_A(\lambda) = det(A -$
- 2 find roots of \mathcal{X}_A
- 3 for every λ_k find the solution for (A - $(\lambda \iota I)x = 0$

S 9.7: for similar matrices $C = T^{-1}AT$ (C and A are similar) holds that

 $tr(A) = tr(C), det(A) = det(C), \mathcal{X}_A = \mathcal{X}_C$ and they have the same eigenvalues

S 9.11: Eigenvectors for different Eigenvalues are linearly independent \Rightarrow max dimV different Eigenvalues

Def: λ is eigenvalue for $A \Rightarrow \lambda^q$ is eigenvalue of A^q Note Trace: trace(A) is equal to the sum of all eigenvalues of $A:trace(A) = \lambda_1 + \cdots + \lambda_n$ Note Trace: det(A) is equal to the producct of all eigenvalues of $A:det(A) = \lambda_1 \cdot \cdots \cdot \lambda_n$

Decompositions

Spectral-/Eigenvaluedecomposition

Def: $A = V\Lambda V^{-1}$ (A and Λ are similar) Precondition for diagonalisation : S 9.14: $A \in \mathbb{C}^{n \times n}$ is diagonalisible $\Leftrightarrow \forall$ Eigenvalues (geom. mult. = alg. mult.) S 9.15: If $A \in \mathbb{C}^{n \times n}$ is unitary $(A^H = A)$ it holds that:

- i all eigenvalues are real
- ii the eigenvectors are pairwise orthogonal
- iii an orthonormal basis U exists, which
- consists of all the eigenvectors
- iv for the unitary matrix U holds that $U^H A U = \Lambda$

Cor 9.16: The previous statements is also valid for real-symmetric matrices

RC Eigenvaluedecomposition:

- 1 find the eigenvalues of A λ_k and write $\Lambda = diag(\lambda_1 \cdots \lambda_n)$
- 2 find the according eigenvectors v_k of λ_k write them as $V = (v_1 | \cdots | v_n)$ (sorted according to Λ)
- 3 find inverse V^{-1}

Cor 9.10: If A is diagonisable it can be composed as a sum of 1-rank-matrices : $A = \sum_{k=1}^{n} V_k \lambda_k w_k^T$ with $V = (V_1 \cdots V_n)$ and $V^{-1} = \begin{bmatrix} & & \\ & & \end{bmatrix}$ from that follows: $Av_k = v_k \lambda_k$ and $w_k^T A = \lambda_k w_k^T$: w^T is a left eigenvector

RC Eigenvaluedecomposition with SVD:

- The SVD is given by $A = U\Sigma V^H$ 1 Expand $U\Sigma V^H \Rightarrow UI\Sigma V^H \Rightarrow UI_1I_2\Sigma V^H$
 - where $UI_1 = V$ and $I_1I_2 = I$
 - 2 Calculate $(UI_1)(I_2\Sigma)V^H$

RC Composition of 1-rank- matrices:

- 1 write $A = V\Lambda V^{-1}$
- 2 rewrite $A = \sum_{k=1}^{n} V_k \lambda_k w_k^T V_k = row (\downarrow)$ of $V, w_k^T = column (\rightarrow)$ of V^{-1}

RC Powers of A:

- 1 write $A = V\Lambda V^{-1}$
- 2 calculate $A^m = V\Lambda^m V^{-1}$
- **note:** $\Lambda^m = diag(a_{11}^m, \cdots, a_{nn}^m)$

Singular value decomposition

Def SVD for A^HA : Spectral-decomposition exists for every matrix $A^{H}A$. Since $A^{H}A$ is hermetian (hermetisch) and positive semidefinite. $\rightarrow A^H A$ has real, non-negative eigenvalues $\lambda \in \mathbb{R}$ and $\lambda \geq 0$ Therefore one can rewrite: $A^{H}AV_{r} = V\Lambda \xrightarrow{\lambda = \sigma^{2}} A^{H}AV_{r} = V_{r}\Sigma_{r}^{2} \Rightarrow V_{r}^{H}A^{H}AV_{r} = \Sigma_{r}^{2} \Rightarrow \underbrace{(\Sigma_{r}^{-1}V_{r}^{H}A^{H})(AV_{r}\Sigma_{r}^{-1})}_{I} = I$

$$V_r^H A^H A V_r = \Sigma_r^2 \Rightarrow \underbrace{(\Sigma_r^{-1} V_r^H A^H)}_{=U_r^{-1}} \underbrace{(A V_r \Sigma_r^{-1})}_{=U_r} = I$$

Def SVD: SVD exists for every matrix, such that U, V are unitary and Σ is diagonal and positive. $A = U\Sigma V^H$ it follows $AA^H = U\Sigma_m^2 U^H, A^H A = V\Sigma_n^2 V^H, A^H = V\Sigma^T U^H$ Def A invertible: If A is invertible $A^{-1} = V \Sigma^{-1} U^H$

S 11.11f: For Rank r it holds that:

- $\{u_1,\ldots,u_1\}$: Basis of $Im(A)=\mathcal{R}(A)$
- $\{u_{r+1}, ..., u_m\}$: Basis of $Ker(A^H) = \mathcal{N}(A^H)$
- $\{v_1, \ldots, v_1\}$: Basis of $Im(A^H) = \mathcal{R}(A^H)$
- $\{v_{r+1},\ldots,v_m\}$: Basis of $Ker(A)=\mathcal{N}(A)$

Def Automorphism: In a self-image (Selbstabbildung) it holds that

$$A = U\Sigma V^{H} = V\underbrace{V^{H}U}_{R}\Sigma V^{H} = \underbrace{V}_{1}\underbrace{R}_{2}\underbrace{\Sigma}_{3}\underbrace{V^{H}}_{4}$$

- 1,4 Change to orthonormal basis
 - 2 rotation, mirroring
 - 3 scaling of unit-axes

Def singular values: singular values: $\sigma_i = \sqrt{\lambda_i}$ sorted in descending order $\sigma_a \leq \sigma_b \cdots \sigma_r \leq 0 \cdots$ Def Eigenbasis: V is the orthonormal eigenbasis of $A^H A$ such that: $AA^H = U \Sigma_{-}^2 U^H$. Similar for U as eigenbasis of AA^H : $A^H A = V \Sigma^2 V^H$

RC SVD of $A \in \mathbb{E}^{m \times n}$ with $A^H A$:

- 1 Calculate $(A^H A) \in \mathbb{E}^{n \times n}$
- 2 find eigenvalue of $A^H A$
- 3 write $\Sigma_r = diag(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n}) \in \mathbb{E}^{n \times n}$ 4 rewrite: $\Sigma \in \mathbb{E}^{m \times n}$: $\Sigma = \sum_{n=0}^{\infty} {0 \atop n = 0}$
- 5 find eigenvectors of $A^H A \Rightarrow v_1, \cdots, v_r$
- 6 norm eigenvectors and compute V = $\left(\frac{v_1}{\|v_1\|}\big|\cdots\big|\frac{v_n}{\|v_n\|}\right) \in \mathbb{R}^{n \times n}$
- 7 solve for $U = AV\Sigma^{-1}$
- 8 if $U_r \neq U$: $U_r \xrightarrow{schmidt} U \in \mathbb{E}^{m \times m}$
- $\mathbf{9} \ \mathbf{write} \ A = U \Sigma V^H$

RC SVD of $A \in \mathbb{E}^{m \times n}$ with AA^H :

- 1 Calculate $(AA^H) \in \mathbb{E}^{m \times m}$
- 2 find eigenvalue of AA^H
- 3 write $\Sigma_r = diag(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n}) \in \mathbb{E}^{m \times m}$
- 4 rewrite: $\Sigma \in \mathbb{E}^{m \times n}$: $\Sigma = \frac{\Sigma_r}{0} \frac{0}{0}$
- 5 find eigenvectors of $AA^H \Rightarrow v_1, \cdots, v_r$
- 6 norm eigenvectors and compute V = $\left(\frac{v_1}{\|v_1\|}\big|\cdots\big|\frac{v_n}{\|v_n\|}\right)\in\mathbb{R}^{n\times n}$
- 7 solve for $U = AV\Sigma^{-1}$
- 8 if $U_r \neq U$: $U_r \xrightarrow{schmidt} U \in \mathbb{E}^{m \times m}$
- 9 write $A = U\Sigma V^{H}$

Cor 11.4: If $A \in \mathbb{E}^{m \times n}$ and rank(A) = r then: eiganvalues of $A^H A \in \mathbb{E}^{m \times m}$ and $AA^H \in \mathbb{E}^{n \times n}$ are the same but the mulitplicity of the eigenvalue 0 is n-r or m-rDef spectral norm: It is defined as: $||A||_2 = \sigma_1$

QR-Decomposition

Def QR-Decomposition: A matrix A can be composed as A = QR where Q is ortohogonal and R is an upper triangular matrix. The decomposition is unique if $m \le n$ and Rank(A) = n

RC QR-Decomposition:

- 1 Gram Schmidt on the rows (\downarrow) of $A \rightarrow Q$
- 2 solve $R = Q^T A \to R$

Definitions

Def nullmatrix: Has in every entry 0 • $\forall A(A+0=0+A=A)$ (S.2.2)

Def diagonalmatrix: Has in every entry 0 except for the diagonal: $(D)_{ij} = 0$ for $i \neq j$ one can write

 $Diag(d_{11}, \cdots, d_{nn})$ • is symmetric

- $det(A) = A_{11} \cdot \cdots \cdot A_{nn}(S.8.4)$
- $A^{-1} = diag(\frac{1}{A_{11}} \cdots \frac{1}{A_{nn}})$

• $A^m = diag(a_{11}^m, \cdots a_{nn}^m)$ Def identity: The identity is written as

- $I_n = Diag(1, \dots, 1)$ AI = IA = A• $A^{-1} = I$
- Def upper triangular matrix: $(R)_{ij} = 0$ for i > j
 - is nilpotent

Def lower triangular matrix: $(R)_{ij} = 0$ for i < j• is nilpotent

Def Zerodiviser: If $AB = 0 \Leftrightarrow A,B$ Zerodiviser,

Def symmetric: $A^T = A \Leftrightarrow A$ symmetric

- A and B symmetric $\Rightarrow AB = BA \Leftrightarrow AB$ is symmetric (S.2.7)
- if positiv definit ⇒ regular (L3.7)

Def skew-symmetric: $A^T = -A \Leftrightarrow A$ skew-symmetric

- tra(A) = 0• if A has odd order
 - det(A) = 0
 - do inverse exists
 - A is singular

if A has even order

- · inverse is skew-symmetric if it exists
- Def hermitian: $A^H = A \Leftrightarrow A$ hermitian • if positiv definit ⇒ regular (L.3.7)

Def unitary/orthogonal: $A^H A = I \Leftrightarrow A$ is unitary/orthogonal

- A is regular (S.2.20)
- $A^{-1} = A^H(S.2.20)$
 - A^{-1} is unitary (S.2.20) A and B is unitary $\Rightarrow AB$ is unitary (S.2.20)

Multiple Choice

General

- C If the solutions of an SLE are
 - $x_1=0,\,x_2=0,\,x_3=1$ the system has infinite many solutions
- C Let A be a real 2×4 matrix with rank 2. Then
- the SLE Ax=b has a non-trivial solution W If A is invertible it holds: $ABA^{-1}=B$ C $\mathbb{E}^{n\times n}\to \mathbb{E}, A\mapsto trace(A)$ is linear
- \mathbf{W} $\mathbb{E}^{n \times n} \to \mathbb{E}, A \mapsto det(A)$ is linear C Let $D \in \mathbb{E}^{2 \times 2}$, dim(KerD) = 2 only if $D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- C If A^2 is invertible, so is A^3
 - $det(A^2) \neq = 0 \Rightarrow det(A) \neq 0 \Rightarrow det(A^3) \neq 0$
- C If A is regular and $A^2 = A$, then A = IFor linear dependant x, y, z it holds $x = \alpha y + \beta z$ Only x, y can be dependent
- C If A and $A^2 \in \mathbb{E}^{n \times n}$ and A^2 is regular, A^3 is invertible
- C $\forall x \in \mathbb{R}^n$, $||Ax||_2 \le ||A||_2 ||x||_2$ W Let $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) := ||Ax||_2$ The function f is a $\mathbf{norm} \,\, \mathbf{in} \,\, \mathbb{R}^n$
- $\mathbf{W} \|AB\|_2 \le \|A\|_2$

Given are the orthogonal matrices A and B with the same dimension. Which of the following properties is

- The matrix product AB is orthogonal, but BA is not orthogonal
- The matrix product BA is orthogonal, but AB is not orthogonal. The matrix product AB and the matrix product
- BA are orthogonal The matrix product AB and the matrix product BA are not orthogonal It holds that $A^T = A^{-1}$ $BT=B^{-1}$ and further $(AB)^T=B^TA^T=B^{-1}A^{-1}=(AB)^{-1}$ and also vice versa $(BA)^T=(BA)^{-1}$

We have \mathbb{R}^n with the standard scalar product $\langle\,\cdot\,,\,\cdot\,\rangle$ and 2-norm. Let A be a real $n \times n$ matrix. Which statements are correct

- $\mathbf{C} \ \forall x, y \in \mathbb{R}^n \ \text{it holds that} \ \left\langle x, A^T y \right\rangle = \left\langle Ax, y \right\rangle$
- $C A^T = A^{-1} \Rightarrow \forall x, y \in \mathbb{R}^n \langle Ax, Ay \rangle = \langle x, y \rangle$
- C $A^T = A^{-1} \Rightarrow \forall x, y \in \mathbb{R}^n \ (Ax, Ay) = 0$ C $A^T = A^{-1} \Rightarrow \forall x \in \mathbb{R}^n \ \|Ax\| = \|x\|$ C Let B be another real $n \times n$ matrix. $A^T = A^{-1}$ and $B^T = B^{-1} \Rightarrow$ the inverse of AB exists and it is: $(AB)^{-1}$

Given are orthogonal matrices $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$. Which of the following statements are correct?

- C The matrix A^T is orthogonal
- W The matrix A + B is orthogonal W The matrix $A + A^{T}$ is orthogonal
- C The matrix AB^{-1} is orthogonal

Given is a lower triangular matrix $A \in \mathbb{R}^{3 \times 3}$ whose entries are non-negative integers and whose entries either occur only once or are equal to zero. Which of the following options are possible for the value of the

- C 35 A is triangular $\Rightarrow det(A) = a_{1,1}a_{2,2}a_{3,3} \Rightarrow so$

det(A) = 0 or $det(A) = a_{1,1}a_{2,2}a_{3,3}$ The dimensions of the subspace of all skew-symmetric real 3 × 3 matrices is:

Let $A \in \mathbb{R}^{2 \times 3}$ and $b \in \mathbb{R}^2$. Assume a solution for

- Ax = b exists C Ax = b has always ∞ solutions min 1 free
 - variable W The set of the solution (Lösungsmenge) of Ax = b forms a line in 3D could also be a plance,
 - 1 or 2 free variables C Geometrically Ax = b coresponds to an intersection of two planes in 3D

- W Let $B \in \mathbb{E}^{3 \times 1}$ and $C \in \mathbb{E}^{1 \times 3}$: BC can have rank 3.
- Vectorspaces

- W Let V be a vector space over \mathbb{R} with scalar product $\langle\,\cdot\,,\,\cdot\,\rangle$ and let $F:\,V\,\mapsto\,V$ be a linear map. If it holds that $\forall v \in V, \langle v, F(v) \rangle = 0$, then F is necessarily the null map, i.e., F(v) = 0 for all
- W Given a vector space V with a norm | | · ||. For all $u, v \in V$, we have $||v|| \le ||v + u||$.
- counterexample: $u = -v = (1, 1)^T$ C Let $S \subset V$ and W be a subspace of V:
- $S \subset W \Rightarrow span(S) \subset W$
- C In a vector space of finite dimension with scalar product, one can complete any set of orthonormal vectors to form an orthonormal
- C A vector space of finite dimension with scalar product has an orthonormal basis. Corollary 6.7 Consider the vector space \mathbb{R}^n with the Euclidean
- scalar product. The scalar product of two unit vectors can be arbitrarily large. Cauchy
- Schwarz, S 6.1: $\langle v, w \rangle^2 \leq \langle v, v \rangle \langle w, w \rangle = 1 \cdot 1 = 1$ W We again consider \mathbb{R}^n with the Euclidean scalar product. Can we find any number of pairwise orthogonal unit vectors in this vector space?

Let V the standard vector space of all 2×2 matrices. Which of the following are subspaces of \mathcal{V} ? ($B = \frac{1}{2} \frac{2}{4}$)

- $\mathbf{W} \{ A \in \mathcal{V} | A \text{ is invertible} \}$
- $\mathbf{W} \left\{ A \in \mathcal{V} | A^2 = 0 \right\}$
- $C \{A \in \mathcal{V} | A^T = A\}$
- $C \left\{ A \in \mathcal{V} | A^T B = BA \right\}$

Consider the vector space F of functions of $\mathbb{R} \to \mathbb{R}$ with the operations addition (f+g)(x)=f(x)+g(x) and scalar multiplication $(\lambda f)(x)=\lambda f(x)$. This includes the subspace $P2 = \{a_0 + a_1x + a_2x^2 | a_i \in \mathbb{R}\}$ of polynomials of degree \le 2. Which of the following statements are

- C $Span\{x+1, x1, x^2+1, x^21\}$ is equal to \mathbb{P}_2 .
- W $x+1, x1, x^2+1, x^21 \in \mathbb{F}_2$ are linearly independent
- \mathbf{W} $x+1,x1,x^2+1,x^21\in\mathbb{P}_2$ form a generating set (spanning set) of F.
- C $x+1, x1, x^2+1, x^21 \in \mathbb{P}_2$ form a generating set (spanning set) of \mathbb{P}_2 .
- W The polynomials $x+1, x1, x^2+1, x^21 \in \mathbb{P}_2$ form a

Let V, W be finite dimensional vector spaces over a

space K. Let $F: V \mapsto W$ be a linear mapping and (v_1, \cdots, v_n) a basis of V . Then it holds that:

- \mathbf{W} $F(v_1), \cdots, F(v_n)$ are linearly independent if \mathbf{F} is surjective
- C $F(v_1), \cdots, F(v_n)$ are linearly independent if F is injective
- \mathbf{C} $F(v_1), \cdots, F(v_n)$ form a generating end system if F is surjective
- \mathbf{W} $F(v_1),\cdots,F(v_n)$ form a generating end system if F is injective
- \mathbf{C} $F(v_1), \cdots, F(v_n)$ form a basis if and only if \mathbf{F} is an isomorphism

Let V, W be two real vector spaces with scalar products, let \mathcal{B} be an orthonormal basis of V and let $F:V\mapsto W$ be an orthogonal mapping. Which of the following statements is true?

- W F is an isomorphism. F is only an isomorphism if $dim V = dim \hat{W} < \infty$
- if $dimV = dimW < \infty$ $\|F(v)\|_W = \|v\|_V$ for all $v \in V$. Follows directly from the definition of the scalar product induced norm and the orthogonality of F
- W If dimV, $dimW < \infty$, it is possible that dimV > dimW With dimV > dimW there is no orthogonal mapping $F: V \mapsto W$.
- W F is not injective.
- C is angle-preserving, i.e., for all $v, w \in V$ it holds that $\sphericalangle(F(v), F(w)) = \sphericalangle(v, w)$.
- C F is an isomorphism to the image of F. F is injective as shown before and obviously surjective to its image. Since the inverses of linear mappings are also linear, F is therefore an isomorphism
- W The set of images $F(\mathcal{B})$ is an orthonormal basis of W. Since F is not necessarily an isomorphism the image space can be smaller than W.
- C The set of images F(B) is an orthonormal basis of Im(F)This follows from the isomorphism property of F from the question above
- C If it exists, $F^{-1}: Im(F) \mapsto V$ is orthogonal. It exists as seen above. The orthogonality of the inverse follows directly from the definition of orthogonal mappings.
- W Let Q be unitary and $A \in \mathbb{E}^{n \times n}$, $det(QA) = det(A) |detQ| = \pm 1$

C if $A, B, P \in \mathbb{E}^{n \times n}$ and P is invertible with $A = PBP^{-1}$ then: det(A) = det(B)

Given is a matrix $A \in \mathbb{R}^{n \times n}$ with entries $a_{i,i} = ij$ and n > 1. Which statement is correct?

- \mathbf{W} det(A) = 1
- C det(A) = 0
- \mathbf{W} $det(A) = (-1)^n$
- \mathbf{W} $det(A) = (-2)^n$

Which of the following statements are not correct for arbitrary $n \times n$ -matrices A and B?

- $C \det(A + B) = \det(A) + \det(B)$
- $\mathbf{W} \quad det(AB) = det(BA)$
- W If A is singular then AB is also singular
- $\mathbf{W} \ \det(AA^TA) = (\det(A))^3$
- Let $A, B \in \mathbb{R}^{n \times n}$ with AB = -BA
 - \mathbf{C} det(AB) = det(-BA)
 - W det(A)det(B) = -det(A)det(B) n has to be even
 - Either A or B has a zero-determinant
 - W A and B have to be singular
 - ABx = 0 has more than one solution (Lösungsschar)
 - ABx = c can have no, one and ∞ many solutions, if $c \in \mathbb{R}^2$, $c \neq 0$

 - W It has to be A = 0 or B = 0

Which of the following statements are correct for an arbitrary $n \times n$ -matrix A and for arbitrary n?

- \mathbf{W} det(2A) = 2det(A) $\mathbf{W} \quad det(-A) = det(A)$
- $C \det(A^4) = \det(A)^4$
- W Let A be a triangular matrix with the property $a_{i,j} = 0$ for i+j > n+1 (so there are zeros at the bottom right). The determinant can be calculated using the formula $det(A) = a_{1,n} \cdot a_{2,n1} \cdot \cdot \cdot a_{n,1}.$

Let $A, P, Q \in \mathbb{R}^{n \times n}$ where P is permutation matrix and Q is a unitary matrix.

- \mathbf{W} det(PA) = det(A)
- $C \det(PAP) = \det(A)$ $\mathbf{W} \det(QA) = \det(A)$

Eigenvalue/Eigenvectors

- C with $\mathcal{X}_A(\lambda) = (\lambda 1)^3 + 3$ is $A \in \mathbb{E}^{3 \times 3}$ invertible $0 \text{ isn't eigenvalue} \Rightarrow A \text{ is regular}$
- Let v_1 and v_2 be eigenvectors of A, so is $v_1 + v_2$ an eigenvector
- C If $A \in \mathbb{E}^{n \times n}$ and $\mathcal{X}_A(\lambda) = (\lambda 1)^n + 2$, A is invertible
- Similar matrices have the same eigenvalues
- Similar matrices have the same eigenvectors
- Every $n \times n$ matrix has linear independent eigenvectors
- Eigenvectors, which correspond to the same eigenvalue are always linear dependant
- If a real matrix has a eigenvector, it follows that the matrix has infinity many eigenvectors
- C Every rotation in \mathbb{R}^3 has the eigenvalue $\lambda = 1$ If λ_1 with v and λ_2 with w, so is $(\lambda_1 + \lambda_2)$ a
- eigenvalue with eigenvector v + w
- Let $A \in \mathbb{R}^{3 \times 3}$ with eigenvalues $\lambda_1, \lambda_2, \lambda_3$
- A is diagonisable if all eigenvalues are different if A is diagonisable, all eigenvalues have to be different
- A is diagonisable if it has 3 eigenvectors They have to bo linearly independent
- C If $\lambda_1=2, \lambda_2=-2, \lambda_3=1$ and $B=A^3-3A^3$ then is B diagonisable
- If AP = PD and D is a diagonal matrix then the columns of P are eigenvectors of A Only if the eigenvalues of A are on the diagonal of D

Let $A \in \mathbb{R}^{n \times n}$ be positiv definite and symmetric. Further, let $\lambda_1, \cdots, \lambda_n$ be the eigenvalues to the eigenvectors v_1, \dots, v_n

- \mathbf{W} A^2 has at least one eigenvalue with a strictly positive imaginary part
- C it holds that $\lambda_j > 0$ for all $j = 1, \dots, n$
- W A hast at least one eigenvalue which satisfies: aeom.mult. < ala.mult
- W The eigenvalues are pairwise distinct: $\lambda_i \neq \lambda_i$, if
- C There exist positiv real numbers $\alpha > 0$ such that $v^T A v > v^T v$ for all $v \in \mathbb{R}^n$

Let $A \in \mathbb{E}^{2 \times 2}$ with Rank(A) = 1 and Trace(A) = 5. What are the eigenvalues

- W 1 is an eigenvalue
- C 0 is an eigenvalue
- W 2 is an eigenvalue W -5 is an eigenvalue

C 5 is an eigenvalue Since det(A) = 0 and $trace(A) = 5 \Rightarrow 0 = \lambda_1 \cdot \lambda_2$ and $5 = \lambda_1 + \lambda_2$

Decompositions

C A matrix $A \in \mathbb{R}^{n \times n}$ with n eigenvalues has 2^n normed spectral decompositions since the sign can be changed n-times

Let $A \in \mathbb{R}^{m \times n} m \geq n$ be a matrix with rank k. Denote the QR-decomposition of A as A = QR, where

 $Q \in \mathbb{R}^{m imes k}$ has orthonormal columns, and $R \in \mathbb{R}^{k imes n}$ is an upper (right) triangular matrix. Which one of the following statements is always true?

- W Rank A < Rank R
- W If A has linearly independent columns, we have Rank R = m
- C If A has linearly independant columns, we have Rank R = n

Let $A \in \mathbb{R}^{m \times n}$ with linearly independent columns and $A = Q_1 R_1 = Q_2 R_2$, two QR-Decompositions of A

- f C $Q_1^TQ_2$ is orthogonal
- C $Q_1^{\frac{1}{T}}Q_2^{-}$ is a upper and lower triangular matrix and therefore a diagonal matrix
- $\mathbf{W} \quad Q_1^T Q_2 = I$
- $\mathbf{W} = Rank(R_1) = m$
- $C \quad Rank(R_1) = n$
- $\mathbf{W} \quad Rank(R_2) = m$ $C \quad Rank(R_2) = n$
- \mathbf{C} $Q_1^T Q_2$ is regular
- Let $A, B \in \mathbb{R}^{n \times m}, B$ is regular and B = QR
- \mathbf{W} $f: \mathbb{R}^n \to \mathbb{R}, x \mapsto \|Ax\|_2$, is a norm in \mathbb{R}^n
- C If βk , such that A^k is invertible, so is A not
- $V_x \in \mathbb{R}^n, \|Ax\|_2 \le \|A\|_2 \cdot \|x\|_2$
- \mathbf{W} det(B) = det(R)
- $\begin{array}{ll} \text{det}(B) = \text{det}(B) \\ \mathbb{C} \quad \|B\|_2 = \|R\|_2 \\ \mathbb{C} \quad g: \mathbb{R}^n \mapsto \mathbb{R}, x \mapsto \|Qx\|_2 \text{, is a norm in } \mathbb{R}^n \\ \text{W} \quad AB \text{ is regular, but } BA \text{ is not necessarily} \end{array}$
- $\|AB\|_2 \le \|A\|_2$

${\bf Basis}$

- The transformation matrix of a basis transformation between orthonormal bases is the identity matrix. The transformation matrix of base transformation between orthonormal bases is orthogonal, the identity matrix is only
- one possibility. C The inverse of the transformation matrix of a base transformation between orthonormal bases is its Hermitian transpose.
- \mathbf{C} $A \in \mathbb{R}^{n \times n}$ is an orthogonal matrix if and only if its columns form an orthonormal basis of R with respect to the Euclidean scalar product.
- The change of basis matrix is unitary (if $\mathbb{E} = \mathbb{C}$) or orthonormal (if $\mathbb{E} = \mathbb{R}$) if both bases are orthonormal.

Procedures

- W The Gram-Schmidt orthogonalization method can be used to compute an equally large set of linearly independent vectors from a set of
- linearly dependent vectors. W Let $v_1, \dots, v_n \subset \mathbb{R}^n$ be a set of n vectors. Using the Gram-Schmidt process, we can always produce n unit-length and pairwise orthogonal vectors. Gram Schmidts needs linear independent vectors

Let $A \in \mathbb{R}^{n \times n}$, m < n. Let Ax = b be a system of linear equations and let x be a solution in the least squares sense. Which statement is always correct?

- W The vector (bAx) is orthogonal to the row space
- C The vector (bAx) is orthogonal to the column space of $A. \Rightarrow$ normal equations
- \mathbf{W} x is in the null space of \hat{A} . W The solution x does not always exist

Kernel/Image

W If the nullspace of an 8×7 matrix is 5-dimensional, the rowspace has dimension 3 n - dim(Ker(A)) = 7 - 5 = 2 = dim(Im(A))

- Let $A \in \mathbb{R}^{m \times n}$ be such that Ax = 0 has only the trivial solution. Then it holds that:
 - $C \ dimIm(A) = n$ $\mathbf{W} \quad dim Im(A) = 1$
- $C \ dim Ker(A) = 0$

 \mathbf{W} dimKer(A) = 1 The kernel of A is exactly the solution set of the system of equations Ax = 0. Since Ax = 0 has only the trivial solution. dimKer(A) = 0. Furthermore, it holds that dim Ker(A) + dim Im(A) = n. Therefore dimIm(A) = n.

Which of the following statements with $A \in \mathbb{R}^{n \times n}$ is generally true

- C ker(A))ker(2A)
- \mathbf{W} $im(A) = im(A^2)$
- \mathbf{W} im(A) = im(A + I)
- \mathbf{W} $im(A) = im(A^T)$
- \mathbf{W} $ker(A))ker(A^2)$
- W ker(A))ker(A+I) \mathbf{W} $ker(A))ker(A^T)$

to be singular

Proofs

1) Prove that $A^H A$ and AA^H have the same eigenvalues We have that $A^H A$ and AA^H are similar with T=A and $T^{-1}=A^H$

Therefore by Satz 9.7 they have the same eigenvalues (and also the same trace and det)

2) Let $Q \in \mathbb{E}^{n \times n}$ be an orthogonal matrix. Prove that, if n is odd, that at least one of the matrices (Q+I) and

Let $\mathcal{K}_{Q}(x)$ be the characteristic polynomial of Q. λ is an eigenvalue of $Q \Leftrightarrow \lambda$ is a root of $\mathcal{K}_{Q}(x)$

Q is orthogonal $\Rightarrow |\lambda| = 1$ By Lemma 9.2 we have: λ is eigenvalue $\Rightarrow (A - \lambda I)$ is singular therefore with $\lambda = \pm 1$ at least one of them has

3) Prove that for an orthogonal matrix Q it holds that $||Qx||_2 = ||x||_2$

$$\begin{array}{c} \|Qx\|_2 \stackrel{1}{=} \sqrt{\langle Qx,Qx\rangle} \stackrel{2}{=} \sqrt{\langle Qx)^TQx} \stackrel{\text{S.2.6}}{=} \\ \sqrt{x^TQT_{Qx}} \stackrel{\text{S.2.20}}{=} \sqrt{x^TIx} \stackrel{2}{=} \sqrt{\langle x,x\rangle} \stackrel{1}{=} \|x\|_2 \\ 1 = \det \text{ of norm, 2 def of scalar product} \end{array}$$

4) Prove that, if λ is an eigenvalue of orthogonal Q then

 $\begin{array}{l} Qv = \lambda v(1) \Leftrightarrow \|Qv\| = \|\lambda v\| \stackrel{2}{\Leftrightarrow} \|v\| = \|\lambda v\| \stackrel{N2}{\Leftrightarrow} \\ \|v\| = |\lambda| \, \|v\| \Leftrightarrow |\lambda| = 1 \\ 1 = \text{def eigenvalue, 2} = \text{as proven before, N2} = \end{array}$

norm is homogeneous 5) Prove that for a arbitrary matrix A with its

eigenvalue λ it holds that $(A - \lambda I)$ is singular Let v be the eigenvector to the coresponding λ

> $(A - \lambda I)v = (Av - \lambda Iv) = Av - \lambda v \stackrel{1}{=} \lambda v - \lambda v = 0v$ As v is eigenvector we have

 $v \neq 0(2) \Rightarrow \lambda = 0 \overset{\text{L.9.6}}{\Leftrightarrow} (A - \lambda I)$ is singular 1 = as v is eigenvalue, 2 = def eigenvalue 6) Let $A \in \mathbb{R}^{n \times n}$ be a real matrix and $x \in \mathbb{R}^n$ be a vactor. Prove that: $||Ax||_2 \ge \sigma_{min} ||x||_2$. Where σ_{min} is the smallest singular value of A

Let $A = U\Sigma V^T$ be the SVD of A

$$\begin{split} \|Ax\|_2 &= \left\|U\Sigma V^Tx\right\|_2 \stackrel{1}{=} \left\|\Sigma V^Tx\right\|_2 \stackrel{2}{\geq} \\ \left\|\Sigma_{min}V^Tx\right\|_2 &= \left\|\sigma_{min}IV^Tx\right\|_2 \stackrel{\mathrm{N2}}{=} \\ |\sigma_{min}| \left\|IV^Tx\right\|_2 &= \left\|V^Tx\right\|_2 \stackrel{3}{=} |\sigma_{min}| \left\|x\right\|_2 \\ 1 &= U \text{ is orthogonal and } \operatorname{proof } 3, \ 2 &= \\ \Sigma_{min} &= \operatorname{diag}(\sigma_{min} \cdots), \ 3 &= V^T \text{ is orthogonal} \end{split}$$

and proof 3 7) Prove that for a regular matrix A the two SLE

$$Ax = b$$
 and $A^TAx = A^Tb$ yield the same solution
$$A^TAx = A^Tb \stackrel{1}{\Rightarrow} A^{-T}A^TAx = A^{-T}A^Tb \Rightarrow Ax = b$$
 1 = Since A is regular

 $det(A) \neq 0 \stackrel{\text{S.8.9}}{\Rightarrow} det(A^T) \neq 0$, hence A^T is regular

8) For $A \in \mathbb{R}^{n \times n}$ holds that $A = A^T$. Prove that all

eigenvalues of $A^{2k}k \in \mathbb{N}$ are not negative. Lets define the SVD as follows: $A = V\Sigma V^{-1}$

Further we know A is orthogonal $A = V\Sigma V^{-1} \overset{\mathrm{S.2.20}}{\Rightarrow} A = V\Sigma V^T$ One has to prove inductively that $A^n = V\Sigma^n V^T$

B.C for n = 1 it holds that: $A = V \Sigma^{1} V^{T}$ I.H Assume it holds for any $k \in \mathbb{N}$

I.S $k \mapsto k+1$: $A^{k+1} = AA^k \stackrel{\text{I.H}}{=} AV\Sigma^k V^T \stackrel{\text{n=1}}{=} 1$ $V\Sigma V^T V\Sigma^k V^T \stackrel{\text{S.2.20}}{=} V\Sigma \Sigma^k V^T = V\Sigma^{k+1} V^T$

 \mathbf{C} im(A) = im(2A)

The eigenvalue for A^n can be found in the diagonal of Σ^n . With σ_q as the original eigenvalues of A, one can write: $\Sigma^2 k = diag(\sigma_1^{2k} \cdots \sigma_n^{2k})$ Therefore no eigenvalue can be negative.

9) Prove that $\boldsymbol{A}^{H}\boldsymbol{A}\boldsymbol{x}=\boldsymbol{A}^{H}\boldsymbol{b}$ has infinitely many solutions.

solutions.
$$A^{H}Ax = A^{H}b \Rightarrow A^{H}(Ax - b) = 0 \Rightarrow$$

$$A^{H}(Ax - (b_{\perp} + b_{\parallel})) = A^{H}((Ax - b_{\perp}) - b_{\parallel}) \stackrel{1}{=}$$

$$A^{H}(-b_{\perp}) \Rightarrow -(A^{H}b_{\perp}) \stackrel{2}{=} 0$$
 1 as $b_{\perp} \in \mathcal{R}(A)$ it follows: $Ax - b_{\perp} = 0$ 2 $b \in \mathcal{N}(A^{H})$

Therefore at least one solution exists. Since $rank(A) < n \Leftrightarrow dim(\mathcal{N}(A)) > 0$ and as every solution of

the system is in $S_p+\alpha S_h$ for any $\alpha.$ Where S_p is a arbitrary particular solution and S_h is the homogeneous solution.

9) Prove Satz 9.7. Namely, proof for any two similar matrices that the characteristict polynomial and det is equal

Assume A and C are similar. Therefore we have that $C=T^{\,-1}AT.$

Characterstic Polynomial:
$$\mathcal{X}_C(\lambda) \stackrel{1}{=} (C - \lambda I) \stackrel{2}{=} det(T^{-1}(AT - \lambda T)) \stackrel{\text{S.8.7}}{=} det(T^{-1}) det(AT - \lambda T) = det(AT - \lambda T) det(T^{-1}) \stackrel{\text{S.8.7}}{=} det((AT - \lambda T)T^{-1}) = det(ATT^{-1} - \lambda TT^{-1}) = det(A - \lambda I) \stackrel{1}{=} \mathcal{X}_A(\lambda)$$

$$1 = \text{def of characteristic polynomial}$$

2 = since $C = T^{-1}AT$

Det: $det(C) \stackrel{1}{=} det(T^{-1}AT) \stackrel{\text{S.8.7}}{=} t$ $det(T^{-1}) \cdot det(A) \cdot det(T) = t$

 $det(T^{-1}) \cdot det(T) \cdot det(A) \stackrel{\text{C.8.8}}{=} 1 \cdot det(A) = det(A)$ $1 = \text{def of } C = T^{-1}AT$

10) let V and W be two vectors spaces. Let $\phi:V\mapsto W$ be a linear mapping. Show, that $Im(\phi)$ is a subspace of W

1 $im(\phi)$ isn't empty: $0=\phi(0)$ since ϕ is linear 2 For $x,y\in Im(\phi)$ holds that $x+y\in im(\phi)\colon\exists a,\exists b$ such that $\phi(a)=x$ and $\phi(b)=y$ Therefore, $x+y=\phi(a)+\phi(b)=\phi(a+b)\in Im(\phi)$ since ϕ is linear

3 For $x\in Im()$ and $\alpha\in\mathbb{R}$ holds that $\alpha x\in Im()$: $\exists a,$ such that $\phi(a)=x$ Therefore,

 $\alpha x = \alpha \phi(a) = \phi(\alpha a) \in Im(\phi) \text{ since } \phi \text{ is linear}$ 11) Let $B = (1, x, x^2)$ and $B' = (x+1, x-1, x^2)$. The columns (spalten) of T are the elements of B' in the basis B Then $T_{B' \to B} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ by inverting $T_{B \to B'} \text{ we get } T_{B' \to B} = \begin{pmatrix} 0.5 & 0.5 & 0 \\ -0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ The mapping matrix D' is then given by $D' = T_{B \to B'} DT_{B' \to B} = \begin{pmatrix} 0.5 & 0.5 & 1 \\ -0.5 & -0.5 & 1 \\ 0 & 0 & 0 \end{pmatrix}$