3 - Código de Huffman:

1º Passo: Ordenar em ordem crescente de frequência:

Р	R	F	V	S	N	Н	D	М	1	0	E	Α
1	1	2	2	2	3	4	4	6	6	8	10	15

2º Passo: Juntar dois caracteres de menor frequência:

P+R	F	V	S	N	Н	D	М	I	0	E	Α
2	2	2	2	3	4	4	6	6	8	10	15

3º Passo: Juntar outros dois caracteres de menor frequência:

P+R	S	N	F+V	Н	D	М	I	0	E	Α
2	2	3	4	4	4	6	6	8	10	15

N	P+R+S	F+V	Н	D	М	1	0	E	Α
3	4	4	4	4	6	6	8	10	15

5º Passo: Juntar outros dois caracteres de menor frequência:

P+R+S	F+V	D	М	1	N+H	0	E	Α
4	4	4	6	6	7	8	10	15

6º Passo: Juntar um caracter com um conjunto de caracteres de menor frequência:

P+R+S	М	I	N+H	F+V+D	0	E	Α
4	6	6	7	8	8	10	15

7º Passo: Juntar um caracter com um conjunto de caracteres de menor frequência:

I	N+H	F+V+D	0	P+R+S+M	E	Α
6	7	8	8	10	10	15

F+V+D	0	P+R+S+M	Е	N+H+I	Α
8	8	10	10	13	15

9º Passo: Juntar um caracter com um conjunto de caracteres de menor frequência:

P+R+S+M	E	N+H+I	Α	F+V+D+O
10	10	13	15	16

10º Passo: Juntar um caracter com um conjunto de caracteres de menor frequência:

N+H+I	Α	F+V+D+O	P+R+S+M+E
13	15	16	20

F+V+D+O	P+R+S+M+E	N+H+I+A
16	20	28

12º Passo: Juntar um caracter com um conjunto de caracteres de menor frequência:

N+H+I+A	P+R+S+M+E+F+V+D+O
28	36

P+R+S+M+E+F+V+D+O+N+H+I+A
64

A árvore de Huffman está gerada, com ela é possivel codificar a mensagem "aprovafoiadiada":

	Р	R	F	٧	S	N	Н	D	М	1	0	E	Α
Ī	111110	111111	10110	10111	11110	10	0011	1010	1110	000	100	110	01

Codificação da mensagem:

4 – Algoritmo:

Min_Env(p,n)

1. num_min_envolp <- 0,j <- n

2. MergeSort(p,n)

3. para i <- 1 até i<= j faça

4. se (p[i] + p[j] <=1)

5. entao i<- i+1

6. j <- j-1

7. num_min_envolp <- num_min_envolp + 18. devolve num_min_envolp

Consumo de tempo: O(nlgn)

Linhas	Consumo
1	O(1)
2	O(ngln)
3	O(n)
4	O(n)
5	0
6	O(n)
7	O(n)
8	O(1)

Considerando o pior caso que todos os envelopes conterão apenas um livro, todos os livros conterão pesos muito altos, não tornando possível colocá-los junto com outros dentro dos envelopes, portanto, a linha 5 nunca será executada.

<u>Cálculo:</u> 2.O(1) + O(nlgn) + 4.O(n) + 0 = O(nlgn)

A linha 3 garante que todos os pesos dos livros serão verificados e as linhas 5 e 6 garantem que o algoritmo tem parada.

A linha 4 sempre verificará se é possível colocar o livro de peso[i] com o livro de peso[j] no mesmo envelope, de forma que não esceda o peso 1 e obtenha-se o número mínimo de envelopes. A linha 7 contabilizará o número mínimo de envelopes que serão precisos o qual é retornado pela linha 8.

O algoritmo é do tipo guloso, pois ele sempre vai colocar no envelope o livro de pesop[j] junto ao livro de peso[i] caso a soma de seus pesos for menor ou igual a 1. Caso contrário, o livro de p[j] ficará sozinho no envelope e a execução continua comparando-se o peso de p[i] com p[j-1]. Logo, no fim da execução, ele retorna o menor número possível de envelopes.