I started my analysis by selecting the cases where the variable 'cocnumber' st arted with the string 'IL' to produce a second dataset, IllinoisOnly, with only the data from the state of Illinois.

Frequency Comparisons

[IllinoisOnly] /Users/dabneylyles/Documents/Dabney Lyles_Practice for HARC Lab .sav

I compared two variables, Total PIT Homeless (in Illinois) and Total PIT Chronic Homeless. There range of entries for the PIT counts was vast. The Total PIT Homeless ranged from 80 to 7952, with a mode of 160. The PIT Chronic Homeless ranged from 0 to 1377, with a mode of 0. I chose to include the modes in the statistics table for comparison with the means on the histograms because of the amount of skew in the data.

Statistics

		Total PIT Homeless	PIT Chronic Homeless
N	Valid	152	152
	Missing	0	0
Mode		160	0
Minimum		80	0
Maximum		7952	1377

My second comparison was between the number of houses with an eviction judgeme nt and the HUD occupancy rate (%). There was skew in the data on eviction judg

ements but the HUD occupancy rate data was more normally distributed

Frequencies

[IllinoisOnly] /Users/dabneylyles/Documents/Dabney Lyles_Practice for HARC Lab

Statistics

		Eviction Count	HUD Occupancy Rate (%)
N	Valid	152	152
	Missing	0	0
Mean		1679.13	91.5709492
Mode		0	91.000000 ^a
Minimum		0	80.0000000
Maximum		16570	99.0000000
Percentiles	25	542.50	89.0605602
	50	964.00	91.7814713
	75	1438.50	94.0000000

a. Multiple modes exist. The smallest value is shown

Histogram

I computed the number of available HUD units in order to compare this number w ith the number of eviction judgements. My conclusion is that there are more

units available than addresses with evictions. Of course, not all people who need HUD housing are evicted. The notoriously long wait times for HUD housing make me wonder how the HUD system's stringent requirements for housing could be changed. I also wonder whether people see figures like 91% occupancy and don't realize there may be thousands of empty units available at that occupancy rate.

COMPUTE AvailableUnits ((100-hou_pol_occhudunit_psh_hud/100)*hou_pol_hudunit_psh_hud. EXECUTE.

Statistics

		Eviction Count	Available Units (HUD)
N	Valid	152	152
	Missing	0	0
Sum		255227	15985084.5