Тема 9

2 (базовый уровень, время – 3 мин)

Тема: Построение и анализ таблиц истинности логических выражений.

Про обозначения

К сожалению, обозначения логических операций И, ИЛИ и НЕ, принятые в «серьезной» математической логике (Л, V,¬), неудобны, интуитивно непонятны и никак не проявляют аналогии с обычной алгеброй. Автор, к своему стыду, до сих пор иногда путает Ли V. Поэтому на его уроках операция «НЕ» обозначается чертой сверху, «И» — знаком умножения (поскольку это все же логическое умножение), а «ИЛИ» — знаком «+» (логическое сложение). В разных учебниках используют разные обозначения. К счастью, в начале задания ЕГЭ приводится расшифровка закорючек (Л, V,¬), что еще раз подчеркивает проблему.

Что нужно знать:

• условные обозначения логических операций

¬ A , \overline{A} не A (отрицание, инверсия) **A ∧ B ,** $A \cdot B$ А и В (логическое умножение, конъюнкция) **A ∨ B ,** A + B А или В (логическое сложение, дизъюнкция) **A → B** импликация (следование) **A ≡ B** эквивалентность (равносильность)

• операцию «импликация» можно выразить через «ИЛИ» и «НЕ»:

$$A \rightarrow B = \neg A \lor B$$
 или в других обозначениях $A \rightarrow B = \overline{A} + B$

• иногда для упрощения выражений полезны формулы де Моргана:

$$\neg (A \land B) = \neg A \lor \neg B$$
 $\overline{A \cdot B} = \overline{A} + \overline{B}$
 $\neg (A \lor B) = \neg A \land \neg B$ $\overline{A + B} = \overline{A} \cdot \overline{B}$

- если в выражении нет скобок, сначала выполняются все операции «НЕ», затем «И», затем «ИЛИ», «импликация», и самая последняя «эквивалентность»
- таблица истинности выражения определяет его значения при всех возможных комбинациях исходных данных
- если известна только часть таблицы истинности, соответствующее логическое выражение однозначно определить нельзя, поскольку частичной таблице могут соответствовать несколько разных логических выражений (не совпадающих для других вариантов входных данных);
- количество разных логических выражений, удовлетворяющих неполной таблице истинности, равно 2^k , где k число *отсутствующих* строк; например, полная таблица истинности выражения с тремя переменными содержит 2^3 =8 строчек, если заданы только 6 из них, то можно найти 2^8 -6= 2^2 =4 разных логических выражения, удовлетворяющие этим 6 строчкам (но отличающиеся в двух оставшихся)
- логическая сумма A + B + C + ... равна 0 (выражение ложно) тогда и только тогда, когда все слагаемые одновременно равны нулю, а в остальных случаях равна 1 (выражение истинно)
- логическое произведение А · В · С · ... равно 1 (выражение истинно) тогда и только тогда, когда все сомножители одновременно равны единице, а в остальных случаях равно 0 (выражение ложно)
- логическое следование (импликация) А→В равна 0 тогда и только тогда, когда А (посылка) истинна, а В (следствие) ложно
- эквивалентность А≡В равна 1 тогда и только тогда, когда оба значения одновременно равны 0 или одновременно равны 1

1

Пример задания:

Р-18. Логическая функция F задаётся выражением $(x \lor y) \to (y \equiv z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

Тема 9

?	?	?	F
0	0		0
0			0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение:

- 1) запишем выражение в более понятной форме: $F = (x + y) \rightarrow (y \equiv z)$
- 2) для решения этой задачи используем свойство операции «импликация»: $a \to b = 0$ тогда и только тогда. когда a = 1 и b = 0
- 3) в обеих строках приведённой части таблицы функция равна 0, поэтому везде
 - хотя бы одна из величин, x или y равна 1, что даёт (x + y) = 1;
 - v и z различны, что даёт ($v \equiv z$) = 0
- 4) поскольку значения в первых двух столбцах в первой строке равны 0, один из этих столбцов это х
- 5) предположим, что х это первый столбец:

	x	?	?	F
1	0	0		0
2	0			0

тогда в обеих строках получаем $F=(0+y) \to (y\equiv z)=0$, откуда сразу следует, что есть единственная пара остальных переменных, удовлетворяющих условию задачи: y=1, z=0, и вторая строка олжна быть копией первой (второй подходящей пары y , z нет!), что противоречит условию

6) это значит, что x – это не первый, а второй столбец:

	?	x	?	F
1	0	0		0
2	0			0

- 7) если при этом предположить, что первый столбец это у, то в первой строке получаем $F = (0+0) \to (0\equiv z) = 1$ (при любом z!), что противоречит условию; поэтому первый столбец это z, а третий y
- 8) на всякий случай проверяем первую строку: $F = (0 + y) \rightarrow (y \equiv 0) = 0$ справедливо при y = 1
- 9) во второй строке условие $F = (x + y) \rightarrow (y \equiv 0) = 0$ справедливо при x = 1 и y = 1 (что отличается от варианта в первой строке значением x)
- 10) Ответ: <mark>zxy</mark>.

Ещё пример задания:

Р-17. Логическая функция F задаётся выражением $\neg x \lor y \lor (\neg z \land w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

? ? ? ? F	?	?	?	?	?	F
-----------	---	---	---	---	---	---

2

0	0	0	1	0
0	1	0	1	0
0	1	1	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение

- 1) запишем выражение в более понятной форме: $F = \bar{x} + v + \bar{z} \cdot w$
- 2) анализ формулы $F = \overline{x} + y + \overline{z} \cdot w$ показывает, что для того, чтобы функция F была ложна, необходимо, чтобы x всегдабыл равен 1, а y всегдабыл равен 0; поэтому x это последний столбец в таблице, а y первый:

У	?	?	ж	F
0	0	0	1	0
0	1	0	1	0
0	1	1	1	0

- 3) остается разобраться с двумя средними столбцами; обратим внимание на вторую строчку таблицы, в которой одна из оставшихся переменных равна 1, а вторая 0; так как функция равна 0, то $\bar{z} \cdot w = 0$, откуда следует, что z = 1 и w = 0 (иначе произведение будет равно 1)
- 4) Ответ: <mark>vzwx</mark>.

Решение (2 способ, инверсия выражения):

- 1) запишем выражение в более понятной форме: $F = \overline{x} + y + \overline{z} \cdot w$
- 2) попытаемся свести задачу к уже известной задаче; если при каком-то наборе аргументов функция F ложна, то обратная её функция, \overline{F} , истинна
- 3) построим обратную функцию, используя законы де Моргана:

$$\overline{F} = \overline{\overline{x} + y + \overline{z} \cdot w} = x \cdot \overline{y} \cdot (z + \overline{w})$$

4) тогда при тех же значениях аргументов функция \overline{F} истинна

?	?	?	?	\overline{F}
0	0	0	1	1
0	1	0	1	1
0	1	1	1	1

5) анализ формулы $\overline{F} = x \cdot \overline{y} \cdot (z + \overline{w})$ показывает, что для истинности функции \overline{F} необходимо, чтобы x всегдабыл равен 1, а y всегдабыл равен 0; поэтому x – это последний столбец в таблице, а y – первый:

У	?	?	x	\overline{F}
0	0	0	1	1
0	1	0	1	1
0	1	1	1	1

- 6) остается разобраться с двумя средними столбцами; обратим внимание на вторую строчку таблицы, в которой одна из оставшихся переменных равна 1, а вторая 0; так как функция равна 1, то $z+\overline{w}=1$, откуда следует, что z=1 и w=0 (иначе сумма будет равна 0)
- 7) Ответ: <mark>vzwx</mark>.

Ещё пример задания:

P-16. Логическая функция F задаётся выражением $(x \to y) \land (y \to z)$. Ниже приведён фрагмент таблицы истинности. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z?

?	?	?	F
1	0	1	1
0	0	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

Решение:

- Выражение представляет собой логическое произведение имплкаций. Поэтому для его истинности обе импликации должны быть истинны.
- 9) Расмотрим верхнюю строчку таблицы, где функция принимает значение 1. Здесь одна из переменных равна 0, а две другие равны 1.
- 10) Нулю в этой строке может быть равна только переменная x, так как при y=0 получаем $(1 \to 0) \land (0 \to 1) = 0 \land 1 = 0$ а при z=0 имеем $(1 \to 1) \land (1 \to 0) = 1 \land 0 = 0$, то есть эти два варианта не подходят. Таким образом, второй стоблец x.
- 11) Теперь рассматриваем вторую строку, где мы должны получить 0. Мы уже знаем, что второй столбец x, поэтому во второй строке x = 0, и $(0 \to y) \land (y \to z) = 0$.
- 12) Первая импликация $0 \to y = 1$ независимо от значения y. Поэтому для того, чтобы все выражение было равно 0, нужно обеспечить $y \to z = 0$.
- 13) Это условие сразу даёт y = 1 и z = 0. Поэтому третий столбец y, а первый z.
- 14) Ответ: <mark>zxy</mark>.

Ещё пример задания (М.В. Кузнецова):

Р-15. Логическая функция F задаётся выражением $(x \lor \neg y \lor \neg z) \land (\neg x \lor y)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z?

?	?	?	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1
	0	0 0 0 0 0 1 0 1 1 0 1 1 1 1	0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая 1-му столбцу; затем — буква, соответствующая 2-му столбцу; затем — буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение (М.В. Кузнецова, через СКНФ и сопоставление таблиц истинности):

1) Запишем заданное выражение в более простых обозначениях:

$$F = (x + \overline{y} + \overline{z}) \cdot (\vec{x} + y)$$

2) Функция $F=(x+\bar{y}+\bar{z})\cdot(\bar{x}+y)$ задана в виде КНФ (конъюнктивной нормальной формы), которую можно привести к СКНФ, используя известные тождества алгебры логики: a+0=a, $a\cdot \bar{a}=0$ и распределительный закон для операции «И» $a+b\cdot c=(a+b)\cdot (a+c)$.

Вторую дизъюнкцию дополним недостающей переменной z:

$$F = (x + \overline{y} + \overline{z}) \cdot (\vec{x} + y) = (x + \overline{y} + \overline{z}) \cdot (\vec{x} + y + z \cdot \overline{z}) = (x + \overline{y} + \overline{z}) \cdot (\vec{x} + y + z) \cdot (\vec{x} + y + \overline{z})$$
 CKH Φ :

Каждая дизъюнкция в СКНФ соответствует строке таблицы истинности, в которой F=0.
 Используя полученную СДНФ, делаем вывод: в таблице истинности имеется 3 строки, где F=0, заполним их:

	x	У	z	F
$x + \overline{y} + \overline{z}$	0	1	1	0
$\overline{x} + y + z$	1	0	0	0
$\bar{x} + y + \bar{z}$	1	0	1	0

4) В таблице, приведенной в задании, рассмотрим строки, где F=0:

?	?	?	F
0	0	1	0
1	0	1	0
1	1	0	0

- 5) Сравнивая столбцы этих таблиц, делаем выводы:
 - а. во втором (синем) столбце таблицы задания находится y (одна единица),
 - b. в первом (жёлтом) столбце таблицы задания находится z (в двух строках z=y),
 - с. в последнем (зелёном) столбце таблицы задания находится x (где z=y, там $x=\neg y$).
- 6) Ответ: *zyx*.

Решение (Л.Л. Воловикова, через уравнение):

1) Так как между скобками стоит операция И, решим уравнение:

$$(x+\overline{y}+\overline{z})\cdot(\overline{x}+y)=1$$

- 2) Чтобы функция была равна 1, нужно чтобы каждая скобка была равна 1.
- 3) Уравнение $\bar{x} + v = 1$ имеет 3 решения:

x	ν
0	0
0	1
1	1

4) Подставим найденные решения в первую скобку и найдем полный набор решений уравнения:

	х	у	z	F
1	0	0	0	1
2	0	0	1	1
3	0	1	0	1
4	1	1	0	1
5	1	1	1	1

5) Сопоставляем найденное решение со строками исходной таблицы, в которых функция F=1:

	?	?	?	F
1	0	0	0	1
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	1	1	1

5

Тема 9

6) Есть одна строка, где две переменных равна 1, а одна — нулю, это строка 3 в последней таблице и строка 4 в предпоследней, поэтому первый столбец соответствует z

7) Далее видим, что в столбце y в предпоследней таблице три единицы, а в последней таблице три единицы только во втором столбце, поэтому второй столбец – y, а третий – x.

8) Ответ: *zvx*.

Ещё пример задания:

Р-14. Логическая функция F задаётся выражением (¬z) \wedge $x \vee x \wedge y$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z?

?	?	?	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая 1-му столбцу; затем — буква, соответствующая 2-му столбцу; затем — буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение (через полную таблицу):

9) запишем заданное выражение в более простых обозначениях:

$$F = \bar{z} \cdot x + x \cdot y$$

- общий ход действий можно описать так: подставляем в эту формулу какое-нибудь значение (0 или 1) одной из переменных, и пытаемся определить, в каком столбце записана эта переменная;
- 11) например, подставим x=0, при этом сразу получаем F=0; видим, что переменная x не может быть ни в первом, ни во втором столбце (противоречие во 2-й строке):

?	?	?	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

а в третьем – может:

?	ж	F
0	0	0
0	1	1
1	0	0
1	1	1
0	0	0
0	1	0
	0 0 1 1 0	0 0 0 0 0 1 1 0 1 1 0 0 0

1	1	0	0
1	1	1	1

- 12) подставим x=1, тогда $F=\bar{z}+y$; логическая сумма равна 0 тогда и только тогда, когда все слагаемые равны 0, это значит, что F = 0 только в одном случае – при z = 1 и y = 0;
- 13) ищем такую строчку, где x=1 и F=0 :

?	х	F
0	0	0
0	1	1
1	0	0
1	1	1
0	0	0
0	1	0
1	0	0
1	1	1
	0 1 1 0 0	0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0

- 14) как мы видели, в этой строке таблицы должно быть обязательно z=1 и y=0; поэтому z-в первом столбце, а у – во втором
- 15) Ответ: *zvx*.

Решение (преобразование логического выражения, Дегтярева Е.В.):

1) Используя законы алгебры логики, а именно распределительный для операции «ИЛИ» (см. учебник 10 кл. 1 часть, стр. 185), запишем заданное выражение:

$$F = \overline{z} \cdot x + x \cdot y = x \cdot (\overline{z} + y);$$

- 2) Поскольку добиться логической единицы в произведении сложнее, чем в сумме рассмотрим строки таблицы, где произведение равно 1(это 2-я, 4-я и 8-я строки);
- 3) Во 2-й строке X обязательно должно быть равно 1. Поэтому X может быть только в третьем столбце, в первых двух могут быть и Y, и Z.

?	?	×	F
0	0	1	1

4) Анализируя 4 строку приходим к выводу, что в первом столбце таблицы может быть только Z, во втором – Y.

z	y	×	F
0	1	1	1

5) В 8-й строке убеждаемся в верности своих рассуждений:

z	y	×	F
1	1	1	1

Т.о., немного упростив выражение, уменьшили количество рассматриваемых строк.

Ответ: <u>zvx</u>.

Решение (преобразование логического выражения, СДНФ, В.Н. Воронков):

1) Рассмотрим строки таблицы, где функция равна 1

а	b	C	F	
0	0	1	1	$\overline{a} \cdot \overline{b} \cdot c$
0	1	1	1	$\overline{a} \cdot b \cdot c$
1	1	1	1	$a \cdot b \cdot c$

и построим логическое выражение для заданной функции, обозначив переменные через а, b и с (см. § 22 из учебника для 10 класса):

$$F = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot b \cdot c + a \cdot b \cdot c$$

Тема 9

2) Упрощаем это выражение, используя законы алгебры логики:

$$F = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot b \cdot c + a \cdot b \cdot c = \overline{a} \cdot \overline{b} \cdot c + (\overline{a} + a) \cdot b \cdot c = \overline{a} \cdot \overline{b} \cdot c + b \cdot c =$$

$$= (\overline{a} \cdot \overline{b} + b) \cdot c = (\overline{a} + b) \cdot (\overline{b} + b) \cdot c = (\overline{a} + b) \cdot c = \overline{a} \cdot c + b \cdot c$$

- 3) Сравнивая полученное выражение с заданным $F = \overline{z} \cdot x + x \cdot y$, находим, что a = z, b = y и
- 4) Ответ: *zyx*.

Решение (сопоставление таблиц истинности, М.С. Коротков):

1) Рассмотрим строки таблицы, где функция равна 1, обозначив переменные через а, b и с

а	b	С	F
0	0	1	1
0	1	1	1
1	1	1	1

и сопоставим эти строки с теми строками таблицы истинности заданной функции

$$F = \overline{z} \cdot x + x \cdot y$$
, где $F = 1$:

x	У	z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- 2) Сравнивая столбцы интересующих нас строк, определяем, что c=x (все три единицы в зеленых ячейках), b=y (один ноль и две единицы) и a=z (два ноля и единица).
- 3) Ответ: *zvx*.

Решение (М.В. Кузнецова, через приведение к СДНФ):

1) Функция $F = \bar{z} \cdot x + x \cdot y$ задана в виде ДНФ (дизъюнктивной нормальной формы), которую не сложно привести к СДНФ, используя известные тождества алгебры логики: $a \cdot 1 = a \text{ in } a + a = 1.$

Каждую конъюнкцию дополним недостающей переменной:

$$F=x\cdot \bar{z}\cdot (y+\bar{y})+x\cdot y\cdot (z+\bar{z})=x\cdot y\cdot \bar{z}+x\cdot \bar{y}\cdot \bar{z}+x\cdot y\cdot z+x\cdot y\cdot \bar{z}$$
 СДНФ:

$$F = x \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + x \cdot y \cdot z$$

2) Каждая конъюнкция в СДНФ соответствует строке таблицы истинности, в которой F=1. Используя полученную СДНФ, делаем вывод: в таблице истинности имеется 3 строки, где F=1, заполним их:

	x	У	z	F
$x \cdot y \cdot \overline{z}$	1	1	0	1
$x \cdot \overline{y} \cdot \overline{z}$	1	0	0	1
$x \cdot y \cdot z$	1	1	1	1

3) В таблице, приведенной в задании, рассмотрим строки, где F=1:

?	?	?	F
0	0	1	1

0	1	1	1
1	1	1	1

- 4) Сравнивая столбцы этих таблиц, делаем выводы:
 - а. в первом (жёлтом) столбце таблицы задания находится z (одна единица),
 - b. во втором (синем) столбце таблицы задания находится v (две единицы),
 - с. в последнем (зелёном) столбце таблицы задания находится x (все единицы).
- 5) Ответ: *zyx*.

Ещё пример задания:

P-13. Каждое логическое выражение A и B зависит от одного и того же набора из 5 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения $A \lor \neg B$?

Решение:

- 1) полная таблица истинности каждого выражения с пятью переменными содержит $2^5 = 32$ строки
- 2) в каждой таблице по 4 единицы и по 28 (= 32 4) нуля
- 3) выражение $A \lor \neg B$ равно нулю тогда и только тогда, когда A = 0 и B = 1
- 4) минимальное количество единиц в таблице истинности выражения A \vee \neg B будет тогда, когда там будет наибольшее число нулей, то есть в наибольшем количество строк одновременно A = 0 и B = 1
- 5) по условию A = 0 в 28 строках, и B = 1 в 4 строках, поэтому выражение A $\vee \neg$ B может быть равно нулю не более чем в 4 строках, оставшиеся 32 4 = 28 могут быть равны 1
- 6) Ответ: 28.

Ещё пример задания:

Р-12. Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	x5	F
0	0	1	0	0	0
1	0	1	0	1	1
0	1	1	1	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x1 не совпадает с F.

Решение:

- 1) полная таблица истинности выражения с пятью переменными содержит $2^5 = 32$ строки
- в приведённой части таблицы в двух строках значение x1 совпадает с F, а в одной не совпадает
- 3) во всех оставшихся (неизвестных) 32 3 = 29 строках значения x1 и F могут не совпадать
- 4) всего несовпадающих строк может быть 1 + 29 = 30.
- 5) Ответ: <mark>30</mark>.

Ещё пример задания:

P-11. Александра заполняла таблицу истинности для выражения F. Она успела заполнить лишь небольшой фрагмент таблицы:

x1	x2	х3	х4	х5	х6	х7	х8	F
	0						1	0
1			0					1

9

Тема 9

		1		1	1

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$

Решение:

- 1) перепишем выражения в более простой форме, заменив «И» (л) на умножение и «ИЛИ» (v) на сложение:
 - 1) $x_1 \cdot \overline{x}_2 \cdot x_3 \cdot \overline{x}_4 \cdot x_5 \cdot x_6 \cdot \overline{x}_7 \cdot \overline{x}_8$
 - 2) $x_1 + x_2 + x_3 + \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_8$
 - 3) $\overline{x}_1 \cdot x_2 \cdot \overline{x}_2 \cdot x_4 \cdot x_5 \cdot \overline{x}_6 \cdot \overline{x}_7 \cdot \overline{x}_8$
 - 4) $x_1 + \overline{x}_2 + x_2 + \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_9$
- в последнем столбце таблицы истинности видим две единицы, откуда сразу следует, что это не может быть цепочка операций «И» (конъюнкций), которая даёт только одну единицу; поэтому ответы 1 и 3 заведомо неверные
- 3) анализируем первую строку таблицы истинности; мы знаем в ней только два значения $x_2=0$ и $x_2=1$
- 4) для того, чтобы в результате в первой строке получить 0, необходимо, чтобы переменная $x_{\rm g}$ входила в сумму с инверсией (тогда из 1 получится 0!), это условие выполняется для обоих оставшихся вариантов. 2 и 4
- 5) кроме того, переменная x_2 должна входить в выражение без инверсии (иначе соответствующее слагаемое в первой строке равно 1, и это даст в результате 1); этому условию не удовлетворяет выражение 4; остается один возможный вариант выражение 2
- 6) Ответ: <mark>2</mark>.

Ещё пример задания:

P-10. Александра заполняла таблицу истинности для выражения F. Она успела заполнить лишь небольшой фрагмент таблицы:

x1	x2	х3	x4	x5	х6	x7	x8	F
	0						1	1
1			0				_	0
			1				1	0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 3) $x1 \land \neg x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land x8$
- 4) x1 v ¬x2 v x3 v ¬x4 v ¬x5 v ¬x6 v ¬x7 v ¬x8
- 1) перепишем выражения в более простой форме, заменив «И» (л) на умножение и «ИЛИ» (v) на сложение:
 - 1) $x_1 \cdot \overline{x}_2 \cdot x_3 \cdot \overline{x}_4 \cdot x_5 \cdot x_6 \cdot \overline{x}_7 \cdot \overline{x}_8$
 - 2) $x_1 + x_2 + x_3 + \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_8$
 - 3) $x_1 \cdot \overline{x}_2 \cdot \overline{x}_3 \cdot x_4 \cdot x_5 \cdot \overline{x}_6 \cdot \overline{x}_7 \cdot x_8$

- в последнем столбце в таблице видим одну единицу и два нуля, поэтому это не может быть дизъюнкция, которая даёт ноль только при одном наборе значений переменных; таким образом, варианты 2 и 4 заведомо неверные, нужно сделать выбор между ответами 1 и 3
- 3) рассматриваем «особую» строчку таблице, в которой функция равна 1;
- 4) поскольку мы говорим о конъюнкции, переменная x_2 должна входить в неё с инверсией (это выполняется для обоих оставшихся вариантов), а переменная x_8 без инверсии; последнее из этих двух условий верно только для варианта 3, это и есть правильный ответ.
- 5) Ответ: <mark>3</mark>.

Ещё пример задания:

P-09. Александра заполняла таблицу истинности для выражения F. Она успела заполнить лишь небольшой фрагмент таблицы:

x1	x2	х3	х4	х5	х6	х7	х8	F
	0						1	1
1			0					0
			1				1	0

Каким выражением может быть F?

- 1) $\neg x1 \land x2 \lor x2 \land \neg x3 \land \neg x4 \lor x2 \land \neg x5 \lor x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $(x1 \land \neg x2 \lor \neg x3 \lor x4) \land (x5 \lor x6 \lor \neg x7 \lor x8)$
- 3) $x1 \land \neg x8 \lor \neg x3 \land x4 \land x5 \lor \neg x6 \land \neg x7 \land x8$
- 4) $x1 \land \neg x4 \lor x2 \land x3 \land \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$

Решение:

- 1) перепишем выражения в более простой форме, заменив «И» (л) на умножение и «ИЛИ» (v)
 - 1) $\bar{x}_1 \cdot x_2 + x_2 \cdot \bar{x}_3 \cdot \bar{x}_4 + x_2 \cdot \bar{x}_5 + x_5 \cdot x_6 \cdot \bar{x}_7 \cdot \bar{x}_8$
 - 2) $(x_1 \cdot \overline{x}_2 + \overline{x}_3 + x_4) \cdot (x_5 + x_6 + \overline{x}_7 + x_8)$
 - 3) $x_1 \cdot \overline{x}_8 + \overline{x}_3 \cdot x_4 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7 \cdot x_8$
 - 4) $x_1 \cdot \overline{x}_4 + x_2 \cdot x_3 \cdot \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_8$
- среди заданных вариантов ответа нет «чистых» конъюнкций и дизъюнкций, поэтому мы должны проверить возможные значения всех выражений для каждой строки таблицы
- 3) подставим в эти выражения известные значения переменных из первой строчке таблицы, $x_2 = 0$ и $x_2 = 1$:
 - 1) $\bar{x}_1 \cdot 0 + 0 \cdot x_3 \cdot \bar{x}_4 + 0 \cdot \bar{x}_5 + x_5 \cdot x_6 \cdot \bar{x}_7 \cdot 0 = 0$
 - 2) $(x_1 \cdot 1 + \overline{x}_3 + x_4) \cdot (x_5 + x_6 + \overline{x}_7 + 1) = x_1 + \overline{x}_3 + x_4$
 - 3) $x_1 \cdot 0 + \overline{x}_3 \cdot x_4 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7 \cdot 1 = \overline{x}_3 \cdot x_4 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7$
 - 4) $x_1 \cdot \overline{x}_4 + 0 \cdot x_3 \cdot \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + 0 = x_1 \cdot \overline{x}_4 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7$
- 4) видим, что первое выражение при $x_2=0$ и $x_8=1$ всегда равно нулю, поэтому вариант 1 не подходит; остальные выражения вычислимы, то есть, могут быть равны как 0, так и 1
- 5) подставляем в оставшиеся три выражения известные данные из второй строчки таблицы, $x_{\rm i}=1$ и $x_{\rm d}=0$:
 - 2) $(1 \cdot \bar{x}_2 + \bar{x}_3 + 0) \cdot (x_5 + x_6 + \bar{x}_7 + x_8) = (\bar{x}_2 + \bar{x}_3) \cdot (x_5 + x_6 + \bar{x}_7 + x_8)$

- 3) $1 \cdot \overline{x}_8 + \overline{x}_3 \cdot 0 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7 \cdot x_8 = \overline{x}_8 + \overline{x}_6 \cdot \overline{x}_7 \cdot x_8$
- 4) $1 \cdot 1 + x_2 \cdot x_3 \cdot 1 + \overline{x}_5 + \overline{x}_6 + \overline{x}_7 + \overline{x}_8 = 1$
- видим, что выражение 4 при этих данных всегда равно 1, поэтому получить F=0, как задано в таблице, невозможно; этот вариант не подходит

Тема 9

- 7) остаются выражения 2 и 3; подставляем в них известные данные из третьей строчки таблицы, $x_* = 1$ и $x_* = 1$:
 - 2) $(x_1 \cdot \overline{x}_2 + \overline{x}_3 + 1) \cdot (x_5 + x_6 + \overline{x}_7 + 1) = 1$
 - 3) $x_1 \cdot 0 + \overline{x}_3 \cdot 1 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7 \cdot 1 = \overline{x}_3 \cdot x_5 + \overline{x}_6 \cdot \overline{x}_7$
- 8) Выражение 2 в этом случае всегда равно 1, поэтому оно не подходит (по таблице истинности оно должно быть равно 0); выражение 3 вычислимо, это и есть правильный ответ
- 9) Ответ: <mark>3</mark>.

Ещё пример задания:

Р-08. Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	х8	F
1	0	1	0	1	1	1	0	0
0	1	0	1	1	0	0	1	0
0	1	1	0	1	0	1	0	1

Какое выражение соответствует F?

- 1) $(x2 \rightarrow x1) \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7 \land x8$
- 2) $(x2 \rightarrow x1) \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor x8$
- 3) $\neg (x2 \rightarrow x1) \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7 \land \neg x8$
- 4) $(x2 \rightarrow x1) \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7 \lor \neg x8$

Решение:

 перепишем выражение в более простой форме, заменив «И» (л) на умножение и «ИЛИ» (v) на сложение:

$$(x_2 \rightarrow x_1) \cdot \overline{x}_3 \cdot x_4 \cdot \overline{x}_5 \cdot x_6 \cdot \overline{x}_7 \cdot x_8$$

$$(x_2 \rightarrow x_1) + \overline{x}_3 + x_4 + \overline{x}_5 + x_6 + \overline{x}_7 + x_8$$

$$(x_2 \rightarrow x_1) \cdot x_3 \cdot \overline{x}_4 \cdot x_5 \cdot \overline{x}_6 \cdot x_7 \cdot \overline{x}_8$$

$$(x_2 \rightarrow x_1) + x_3 + \overline{x}_4 + x_5 + \overline{x}_6 + x_7 + \overline{x}_8$$

- в этом задании среди значений функции только одна единица, как у операции «И», это намекает на то, что нужно искать правильный ответ среди вариантов, содержащих «И», «НЕ» и импликацию (это варианты 1 и 3)
- 3) действительно, вариант 2 исключён, потому что при x_4 =1 во второй строке получаем 1, а не 0
- 4) аналогично, вариант 4 исключён, потому что при x_5 =1 в первой строке получаем 1, а не 0
- 5) итак, остаются варианты 1 и 3; вариант 1 не подходит, потому что при $x_6 = 0$ в третьей строке получаем 0, а не 1
- 6) проверяем подробно вариант 3, он подходит во всех строчках
- 7) Ответ: 3.

Ещё пример задания:

Р-07. Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	F
0	1	0	0	1	1	0

Тема	9
------	---

0	0	1	0	0	1	0
0	1	0	1	0	1	0

Какое выражение соответствует F?

- 1) $(x1 \land x2) \lor (x3 \land x4) \lor (x5 \land x6)$
- 2) $(x1 \land x3) \lor (x3 \land x5) \lor (x5 \land x1)$
- 3) $(x2 \wedge x4) \vee (x4 \wedge x6) \vee (x6 \wedge x2)$
- 4) $(x1 \land x4) \lor (x2 \land x5) \lor (x3 \land x6)$

Решение:

- 1) во-первых, обратим внимание, что в столбце F все нули, то есть, при всех рассмотренных наборах x1, ..., x6 функция ложна
- 2) перепишем предложенные варианты в более простых обозначениях:

 $x_1 \cdot x_2 + x_3 \cdot x_4 + x_5 \cdot x_6$

 $x_1 \cdot x_3 + x_3 \cdot x_5 + x_5 \cdot x_1$

 $x_2 \cdot x_4 + x_4 \cdot x_5 + x_6 \cdot x_2$

 $x_1 \cdot x_4 + x_2 \cdot x_5 + x_3 \cdot x_6$

- это суммы произведений, поэтому для того, чтобы функция была равна 0, необходимо, чтобы все произведения были равны 0
- 4) по таблице смотрим, какие произведения равны 1:

1-я строка: $x_2 \cdot x_5$, $x_2 \cdot x_6$ и $x_5 \cdot x_6$

2-я строка: x3-x6

3-я строка: $x_2 \cdot x_4$, $x_2 \cdot x_6$ и $x_4 \cdot x_6$

5) таким образом, нужно выбрать функцию, где эти произведения не встречаются; отметим их:

 $x_1 \cdot x_2 + x_3 \cdot x_4 + x_5 \cdot x_6$

 $x_1 \cdot x_3 + x_3 \cdot x_5 + x_5 \cdot x_1$

 $x_2 \cdot x_4 + x_4 \cdot x_5 + x_6 \cdot x_2$

 $x_1 \cdot x_4 + x_2 \cdot x_5 + x_3 \cdot x_6$

- 6) единственная функция, где нет ни одного «запрещённого» произведения это функция 2
- **7)** Ответ: <mark>2</mark>.

Ещё пример задания:

P-06. (http://ege.yandex.ru) Дан фрагмент таблицы истинности выражения F.

X1	<i>X</i> ₂	X3	X4	X5	F
1	1	1	0	0	1
1	1	0	1	1	0
0	0	1	1	1	1

Одно из приведенных ниже выражений истинно при любых значениях переменных x1, x2, x3, x4,

- x5. Укажите это выражение.
 - 1) $F(x1,x2,x3,x4,x5) \rightarrow x1$
 - 2) $F(x1,x2,x3,x4,x5) \rightarrow x2$
 - 3) $F(x1,x2,x3,x4,x5) \rightarrow x3$
 - 4) $F(x1,x2,x3,x4,x5) \rightarrow x4$

Решение:

 во всех заданных вариантах ответа записана импликация, она ложна только тогда, когда левая часть (значение функции F) истинна, а правая – ложна.

13

....

Тема 9

2) выражение 1 ложно для набора переменных в третьей строке таблицы истинности, где F(...) = 1 и $x_1 = 0$, оно не подходит

- 3) выражение 2 ложно для набора переменных в третьей строке таблицы истинности, где F(...)=1 и $x_2=0$, оно не подходит
- 4) выражение 3 истинно для всех наборов переменных, заданных в таблице истинности
- 5) выражение 4 ложно для набора переменных в первой строке таблицы истинности, где $F(\ldots)=1$ и $~x_4=0$, оно не подходит
- 6) ответ: <mark>3</mark>.

Ещё пример задания:

Р-05. Дано логическое выражение, зависящее от 5 логических переменных:

Сколько существует различных наборов значений переменных, при которых выражение ложно?

Решение:

1) перепишем выражение, используя другие обозначения:

$$z_1 \cdot \overline{z}_2 + \overline{z}_3 \cdot \overline{z}_4 \cdot z_5$$

это выражение с пятью переменными, которые могут принимать 2⁵ = 32 различных комбинаций значений

- 2) сначала определим число K комбинаций переменных, для которых выражение истинно; тогда число комбинаций, при которых оно ложно, вычислится как 32 K
- 3) заданное выражение истинно только тогда, когда истинно любое из двух слагаемых: $z_1\cdot \bar{z}_2$, $\bar{z}_3\cdot \bar{z}_4\cdot z_5$ или оба они истинны одновременно
- 4) выражение $z_1 \cdot \bar{z}_2$ истинно только при $z_1 = 1$ и $z_2 = 0$, при этом остальные 3 переменных могут быть любыми, то есть, получаем всего $8 = 2^3$ вариантов
- 5) выражение $\bar{z}_3 \cdot \bar{z}_4 \cdot z_5$ истинно только при $z_3 = z_4 = 0$ и $z_5 = 1$, при этом остальные 2 переменных могут быть любыми, то есть, получаем всего $\frac{4}{3} = 2^2$ варианта
- 6) заметим, что один случай, а именно $z_1=z_5=1$, $z_2=z_3=z_4=0$ обеспечивает истинность обоих слагаемых в исходном выражении, то есть, входит в обе группы (пп. 3 и 4), поэтому исходное выражение истинно для 11=8+4-1 наборов значений переменных, а ложно для 32-11=21 набора.
- 7) ответ: <mark>21</mark>.

Ещё пример задания:

P-04. Дан фрагмент таблицы истинности выражения F. Какое выражение coomветствует F?

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X4	X ₅	<i>X</i> ₆	<i>X</i> ₇	F
0	1	0	1	1	1	0	0
1	1	0	1	0	1	0	1
0	1	0	1	1	0	1	0

- 1) $(x1 \lor x2) \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7$
- 2) $(x1 \land x2) \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor x7$
- 3) $(x1 \land \neg x2) \land x3 \land \neg x4 \land \neg x5 \land x6 \land \neg x7$
- 4) $(\neg x1 \land \neg x2) \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7$

Решение:

- 1) в последнем столбце таблицы всего одна единица, поэтому стоит попробовать использовать функцию, состоящую из цепочки операций «И» (ответы 1, 3 или 4):
- 2) для этой «единичной» строчки получаем, что инверсия (операция «НЕ») должна быть применена к переменным х₂ х₅ и х₇, которые равны нулю:

X 1	X2	<i>X</i> ₃	X4	X 5	X ₆	X7	F
1	1	0	1	0	1	0	1

таким образом, остается только вариант ответа 1 (в ответах 3 и 4 переменная х₃ указана без

- 3) проверяем скобку ($x1 \lor x2$): в данном случае она равна 1, что соответствует условию
- 4) ответ: <mark>1</mark>.

Ещё пример задания:

Р-03. Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F. Какое выражение соответствует F?

Χ	Υ	Ζ	F
1	0	0	1
0	0	0	1
1	1	1	0

1)
$$\neg X \land \neg Y \land \neg Z$$
 2) $X \land Y \land Z$

4)
$$\neg X \lor \neg Y \lor \neg Z$$

Решение (основной вариант):

- 1) нужно для каждой строчки подставить заданные значения X, Y и Z во все функции, заданные в ответах, и сравнить результаты с соответствующими значениями F для этих данных
- 2) если для какой-нибудь комбинации X, Y и Z результат не совпадает с соответствующим значением F, оставшиеся строчки можно не рассматривать, поскольку для правильного ответа все три результата должны совпасть со значениями функции F
- 3) перепишем ответы в других обозначениях:

1)
$$\overline{X} \cdot \overline{Y} \cdot \overline{Z}$$
 2) $X \cdot Y \cdot Z$ 3) $X + Y + Z$ 4) $\overline{X} + \overline{Y} + \overline{Z}$

- 4) первое выражение, $\overline{X}\cdot\overline{Y}\cdot\overline{Z}$, равно 1 только при X=Y=Z=0 , поэтому это неверный ответ (первая строка таблицы не подходит)
- 5) второе выражение, $X \cdot Y \cdot Z$, равно 1 только при X = Y = Z = 1 , поэтому это неверный ответ (первая и вторая строки таблицы не подходят)
- 6) третье выражение, X+Y+Z , равно нулю при X=Y=Z=0 , поэтому это неверный ответ (вторая строка таблицы не подходит)
- 7) наконец, четвертое выражение, $\overline{X} + \overline{Y} + \overline{Z}$ равно нулю только тогда, когда X = Y = Z = 1, а в остальных случаях равно 1, что совпадает с приведенной частью таблицы истинности
- 8) таким образом, правильный ответ 4; частичная таблица истинности для всех выражений имеет следующий вид:

Χ	Υ	Ζ	F	$\overline{X} \cdot \overline{Y} \cdot \overline{Z}$	$X \cdot Y \cdot Z$	X + Y + Z	$\overline{X} + \overline{Y} + \overline{Z}$
1	0	0	1	0 ×	0 ×	1	1
0	0	0	1	-	_	0 ×	1
1	1	1	0	Ī	-	-	0

(красный крестик показывает, что значение функции не совпадает с F, а знак «-» означает, что вычислять оставшиеся значения не обязательно).

15

Тема 9

Возможные ловушки и проблемы:

- серьезные сложности представляет применяемая в заданиях ЕГЭ форма записи догических выражений с «закорючками», поэтому рекомендуется сначала *внимательно* перевести их в «удобоваримый» вид:
- расчет на то, что ученик перепутает значки \wedge и \vee (неверный ответ 1)
- в некоторых случаях заданные выражения-ответы лучше сначала упростить, особенно если они содержат импликацию или инверсию сложных выражений (как упрощать – см. разбор задачи А10)

Решение (вариант 2):

- 1) часто правильный ответ это самая простая функция, удовлетворяющая частичной таблице истинности, то есть, имеющая единственный нуль или единственную единицу в полной таблице истинности
- 2) в этом случае можно найти такую функцию и проверить, есть ли она среди данных ответов
- 3) в приведенной задаче в столбце F есть единственный нуль для комбинации X=Y=Z=1
- 4) выражение, которое имеет единственный нуль для этой комбинации, это $\overline{X} + \overline{Y} + \overline{Z}$, оно есть среди приведенных ответов (ответ 4)
- 5) таким образом, правильный ответ 4

Возможные проблемы:

• метод применим не всегда, то есть, найденная в п. 4 функция может отсутствовать среди ответов

Еще пример задания:

Р-02. Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F:

X	Υ	Ζ	F	
1	0	0	1	
0	0	0	0	
1	1	1	0	

Какое выражение соответствует F?

1) $\neg X \land \neg Y \land \neg Z$ 2) $X \land Y \land Z$

Решение (вариант 2):

1) перепишем ответы в других обозначениях:

1)
$$\overline{Y} \cdot \overline{Y} \cdot \overline{Z}$$

1)
$$\overline{X} \cdot \overline{Y} \cdot \overline{Z}$$
 2) $X \cdot Y \cdot Z$ 3) $X \cdot \overline{Y} \cdot \overline{Z}$ 4) $X + \overline{Y} + \overline{Z}$

- 2) в столбце F есть единственная единица для комбинации X=1, Y=Z=0, простейшая функция, истинная (только) для этого случая, имеет вид $X \cdot \overline{Y} \cdot \overline{Z}$, она есть среди приведенных ответов (ответ 3)
- 3) таким образом, правильный ответ 3.

Еще пример задания:

Р-01. Дано логическое выражение, зависящее от 5 логических переменных:

$$X_1 \wedge \neg X_2 \wedge X_3 \wedge \neg X_4 \wedge X_5$$

Сколько существует различных наборов значений переменных, при которых выражение ложно?

1) 1

2) 2

3) 31

4) 32

Решение (вариант 2):

16

Тема 9

1) перепишем выражение в других обозначениях:

$$X_1 \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} \cdot X_5$$

- таблица истинности для выражения с пятью переменными содержит 2⁵ = 32 строки (различные комбинации значений этих переменных)
- логическое произведение истинно в том и только в том случае, когда все сомножители равны
 1, поэтому только один из этих вариантов даст истинное значение выражения, а остальные
 32 1 = 31 вариант дают ложное значение.
- 4) таким образом, правильный ответ <mark>3</mark>.

17

Тема 9

Ещё пример задания:

Р-00. Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	х7	F
1	1	0	1	1	1	1	0
1	0	1	0	1	1	0	0
0	1	0	1	1	0	0	1

Какое выражение соответствует F?

- 1) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7$
- 2) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7$
- 3) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7$
- 4) x1 v ¬x2 v x3 v ¬x4 v ¬x5 v x6 v ¬x7

Решение (вариант 2):

1) перепишем выражения 1-4 в других обозначениях:

1.
$$\overline{x}_1 \cdot x_2 \cdot \overline{x}_3 \cdot x_4 \cdot x_5 \cdot \overline{x}_6 \cdot \overline{x}_7$$

2.
$$\bar{x}_1 + x_2 + \bar{x}_3 + x_4 + \bar{x}_5 + \bar{x}_6 + x_7$$

3.
$$x_1 \cdot \overline{x}_2 \cdot x_3 \cdot \overline{x}_4 \cdot x_5 \cdot x_6 \cdot \overline{x}_7$$

4.
$$x_1 + \overline{x}_2 + x_3 + \overline{x}_4 + \overline{x}_5 + x_6 + \overline{x}_7$$

 поскольку в столбце F есть два нуля, это не может быть выражение, включающее только операции «ИЛИ» (логическое сложение), потому что в этом случае в таблице был бы только один ноль, поэтому варианты 2 и 4 отпадают:

1.
$$\overline{x}_1 \cdot x_2 \cdot \overline{x}_3 \cdot x_4 \cdot x_5 \cdot \overline{x}_6 \cdot \overline{x}_7$$

3.
$$x_1 \cdot \overline{x}_2 \cdot x_3 \cdot \overline{x}_4 \cdot x_5 \cdot x_6 \cdot \overline{x}_7$$

аналогично, если бы в таблице был один ноль и две единицы, это не могла бы быть цепочка операций «И», которая всегда дает только одну единицу;

- 3) для того, чтобы в последней строке таблицы получилась единица, нужно применить операцию «НЕ» (инверсию) к переменным, значения которых в этой строке равны нулю, то есть к x_1, x_3, x_6 и x_7 ; остальные переменные инвертировать не нужно, так как они равны 1; видим, что эти условия в точности совпадают с выражением 1, это и есть правильный ответ
- 4) Ответ: <mark>1.</mark>

Тема	1

0 1 0 0

1 0 1

1 0 1

Z F

0 0 1

Y Z F

0 0 1 0

0 1 0 0

0 0 0 1

0 0 1 0

0 1 0 1

A B

0 0

0 1 1

1 0 1 1 1 0 $Y \mid Z \mid F$

0 0 0

1 1 0 1

1 0 0 1

Задачи для тренировки¹:

1)	Символом F обозначено одно из указанных ниже логических выражений от трех
	аргументов: Х, Y, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу
	справа). Какое выражение соответствует F?

1)	Х	V	¬Υ	٧	z
----	---	---	----	---	---

2)	X	۸	Y	٨	z
----	---	---	---	---	---

$$4)\,\neg X\,\vee\,Y\,\vee\,\neg Z$$

2)	Символом F обозначено одно из указанных ниже логических выражений от тре
	аргументов: Х, Y, Z. Дан фрагмент таблицы истинности выражения F (см. таблиц
	справа). Какое выражение соответствует F?

1) ¬x	V	Y	٧	$\neg 2$
-------	---	---	---	----------

$$\mathbf{Z}$$
 2) $\mathbf{X} \wedge \mathbf{Y} \wedge \neg \mathbf{Z}$ 3) $\neg \mathbf{X} \wedge \neg \mathbf{Y} \wedge \mathbf{Z}$

2)
$$\neg X \land \neg Y \land Z$$
 3) $X \land Y \land \neg Z$

4)
$$\neg X \land \neg Y \land \neg Z$$

 $4) \times \times \times \times Z$

4) Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Y, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1)
$$\neg X \land \neg Y \land Z$$
 2) $\neg X \lor \neg Y \lor Z$ 3) $X \lor Y \lor \neg Z$

5) Символом F обозначена логическая функция от двух аргументов (А и В), заданная таблицей истинности. Какое выражение соответствует F?

1)
$$A \rightarrow (\neg A \lor \neg B)$$
 2) $A \land B$

3)
$$\neg A \rightarrow B$$

6) Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: Х, Y, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1) X A Y A	1)	X	۸	Y	Λ	
------------	----	---	---	---	---	--

2)
$$\neg X \lor Y \lor \neg Z$$
 3) $X \land (Y \lor Z)$

3)
$$X \wedge (Y \vee Z)$$

Χ	Υ	Ζ	F
0	0	0	1
0	0	1	1
0	1	0	1

							1 ел	иа 9
7)	Символом F обозначено	о одно из указа	нных ниже логически	х выражений от трех ар	огуме	енто	в: Х,	Υ,
	Z. Дан фрагмент таблиц соответствует F?	ы истинности ві	ыражения F (см. табл	ицу справа). Какое выр	ажен	ние		
	1) X V Y A Z 2) X V Y V Z	3) $X \wedge Y \vee Z$	$4) \neg X \lor \neg Y \land \neg Z$				
8)	Символом F обозначено	о одно из указаі	нных ниже логически	х выражений от трех	Χ	Υ	Ζ	F
,	аргументов: Х, Ү, Z. Дан				0	0	0	1
	справа). Какое выражен	• •		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	0	1	1
	1)¬(X∧Y)∧Z 2	,		2 4) (X∨Y) ∧Z	0	1	0	1
9)	Символом F обозначено	о одно из указан	нных ниже логически	х выражений от	Χ	Υ	Ζ	F
	трех аргументов: Х, Ү, Z.	Дан фрагмент	таблицы истинности в	выражения F (см.	0	0	0	0
	таблицу справа). Какое	выражение соо	тветствует F?		1	0	1	1
	1) X ^ Y ^ Z 2) ¬X ∨ Y ∨ ¬Z	3) X ∧ Y ∨ Z	4) X ∨ Y ∧ ¬Z	0	1	0	1
10)	Символом F обозначена	а логическая фу	нкция от двух аргуме	нтов (А и В), заданная	Γ.	Α	В	F
	таблицей истинности. К	акое выражени	е соответствует F?			0	0	0
	1) $A \rightarrow (\neg (A \land \neg B))$	2) A ^ B	3) $\neg A \rightarrow B$	4) ¬A ∧ B		0	1	1
	• •					1	0	1
							_	1
11)	Символом F обозначено	о одно из указан	нных ниже логически	х выражений от трех				
	аргументов: Х, Ү, Z. Дан	фрагмент табли	ицы истинности вырах	жения F (см.	Χ	Υ	Ζ	F
	таблицу справа). Какое	выражение соо	тветствует F?		1	1	1	1
	1) X ^ Y ^ Z 2) ¬X ∨ ¬Y ∨ Z	3) X ∨ Y ∨ Z	4) X ∧ Y ∧ ¬Z	1	1	0	1
					1	0	1	1
12)	Символом F обозначено	о одно из указан	нных ниже логически	х выражений от	_			
	трех аргументов: Х, Ү, Z.	Дан фрагмент	таблицы истинности в	выражения F (см.	Χ	Υ	Ζ	F
	таблицу справа). Какое	выражение соо	тветствует F?		1	0	0	0
	1) ¬x ∨ y ∨ z 2) X ^ Y ^ ¬Z	3) ¬X ∧ ¬Y ∧ Z	4) X ∨ ¬Y ∨¬ Z	0	0	0	1
					1	0	1	1
13)	Символом F обозначено	о одно из указан	нных ниже логически	х выражений от	_			
	трех аргументов: Х, Ү, Z.	Дан фрагмент	таблицы истинности в	выражения F (см.	Χ	Υ	Ζ	F
	таблицу справа). Какое	выражение соо	тветствует F?		0	1	1	1
	1) ¬x ∨ y ∨ ¬z 2) ¬X ∧ Y ∧ Z	3) X ∧ ¬Y ∧ ¬Z	$4) \neg X \lor \neg Y \lor Z$	0	1	0	0
					1	0	1	0
14)	Символом F обозначено	о одно из указан	нных ниже логически	х выражений от				
	трех аргументов: Х, Ү, Z.	Дан фрагмент	таблицы истинности в	выражения F (см.	Χ	Υ	Ζ	F
	таблицу справа). Какое	выражение соо	тветствует F?		1	0	0	0
	1) ¬X∧Y∧Z 2) X ^ ¬Y ^ ¬Z	3) X ∨ ¬Y ∨ ¬Z	$4) \neg X \lor Y \lor Z$	0	0	1	1
	•	,	•	,	0	0	0	1
15)	Дан фрагмент таблицы і	истинности выр	ажения F (см. таблиц	у справа). Какое				
	выражение соответству	ет F?			Χ	Υ	Ζ	F
	1) X A Y A Z 2) ¬X ∨ ¬Y ∨ Z	3) X ∨ Y ∨ Z	4) X ∧ Y ∧ ¬Z	1	1	1	1
					1	1	0	1
					1	0	1	1
16)	Дан фрагмент таблицы і	истинности выр	ажения F (см. таблиц	у справа). Какое			_	
·	выражение соответству	ет F?		•	Χ	Υ	Ζ	F
) ¬X ∨ ¬Y ∨ ¬Z	3) (X ∨ Y) ∧¬Z	4) $(x \vee y) \rightarrow z$	0	0	0	1
	·	-	20		1	1	0	0
					0	1	1	1

¹ Источники заданий:

^{1.} Демонстрационные варианты ЕГЭ 2004-2016 гг.

^{2.} Тренировочные и диагностические работы МИОО.

^{3.} Гусева И.Ю. ЕГЭ. Информатика: раздаточный материал тренировочных тестов. — СПб: Тригон, 2009.

^{4.} Якушкин П.А., Лещинер В.Р., Кириенко Д.П. ЕГЭ 2010. Информатика. Типовые тестовые задания. — М.: Экзамен, 2010, 2011.

^{5.} Якушкин П.А., Ушаков Д.М. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010. Информатика. — М.: Астрель, 2009.

^{6.} Абрамян М.Э., Михалкович С.С., Русанова Я.М., Чердынцева М.И. Информатика. ЕГЭ шаг за шагом. — М.: НИИ школьных технологий, 2010.

^{7.} Чуркина Т.Е. ЕГЭ 2011. Информатика. Тематические тренировочные задания. — М.: Эксмо, 2010.

^{8.} Самылкина Н.Н., Островская Е.М. ЕГЭ 2011. Информатика. Тематические тренировочные задания. — М.:

^{9.} Крылов С.С., Ушаков Д.М. ЕГЭ 2015. Информатика. Тематические тестовые задания. — М.: Экзамен. 2015.

^{10.} Ушаков Д.М. ЕГЭ-2015. Информатика. 20 типовых вариантов экзаменационных работ для подготовки к ЕГЭ. — М.: Астрель, 2014.

¹⁹

17)	Дан фрагмент таблиц	ы истинности вы	ражения F (см. таблицу	справа). Какое				
,	выражение соответст		,	,	Χ	Υ	Ζ	F
	1) $(\mathbf{X} \vee \neg \mathbf{Y}) \rightarrow \mathbf{Z}$	2) $(\mathbf{x} \vee \mathbf{y}) \rightarrow \neg \mathbf{z}$	3) $\mathbf{x} \vee (\neg \mathbf{y} \rightarrow \mathbf{z})$	4) X ∨ Y ∧ ¬Z	0	0	0	0
					0	1	1	1
					1	0	0	1
18)	Дан фрагмент таблиц	ы истинности вы	ражения F (см. таблицу	справа). Какое	·			
	выражение соответст	вует F?			X	Υ	Ζ	F
	1) $X \wedge Y \vee Z$	2) $(x \lor y) \rightarrow \neg z$	3) (¬x∨y)∧z	4) $x \rightarrow \neg y \vee z$	1	1	0	1
					1	0	1	0
					0	0	1	1
19)			ражения F (см. таблицу	справа). Какое	Х	Υ	Ζ	F
	выражение соответст	•			0	1	0	1
	1) $(x \rightarrow y) \rightarrow z$	2) $\mathbf{x} \rightarrow (\mathbf{y} \rightarrow \mathbf{z})$	3) $\neg x \lor y \to z$	4) X ∨ Y ∧ ¬Z	1	1	1	1
					1	1	0	0
			-, -			-	Ü	_
20)			ражения F (см. таблицу	справа). какое	Χ	Υ	Ζ	F
	выражение соответст		2\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4) X ^ (Y V Z)	0	0	1	1
	1)(¬X ∨ ¬1) ∧ 2	2) X X I V Z	3) $(X \rightarrow Y) \land Z$	4) X A (1 V Z)	1	0	1	0
					1	1	1	1
21)	Дан фрагмент таблиц	ы истинности вы	ражения F (см. таблицу	справа). Какое				
,	выражение соответст		, , , , , , , , , , , , , , , , , , , ,		Χ	Υ	Ζ	F
	1) $(X \rightarrow Z) \wedge Y$	•	3) X V Y V Z	4) $X \wedge (Y \rightarrow Z)$	0	1	1	0
	,, ,,,,	,		,,	1	0	0	1
					1	1	0	0
22)	Дан фрагмент таблиц	ы истинности вы	ражения F (см. таблицу	справа). Какое	Х	Υ	Ζ	F
	выражение соответст	вует F?			1	1	0	1
	1) $X \wedge Y \vee Z$	2) $(x \lor y) \rightarrow \neg z$	3) (¬X∨Y)∧Z	4) $X \rightarrow (\neg Y \lor Z)$	1	0	1	0
					0	0	1	1
23)			ражения F (см. таблицу	справа). Какое	Х	Υ	Ζ	F
	выражение соответст	•			0	0	0	0
	1) $(X \lor \neg Y) \rightarrow Z$	$2) (X \vee Y) \rightarrow \neg Z$	3) $X \vee (\neg Y \rightarrow Z)$	4) X ∨ Y ∧ ¬Z	0	1	1	1
					1	0	0	1
٦4١	n 1			\ //	Χ	Υ	Ζ	F
24)	выражение соответст		ражения F (см. таблицу	справа). Какое	1	0	0	1
	1) ¬X ∧ Y ∧ Z	•	3) X ∨ ¬Y ∨ ¬Z	4) ¬X ∨ Y ∨ Z	0	1	1	0
	1) 7	2) 🖈 🗎 🗎 🗎 🗸	3) A V 71 V 72	4) 7 1 1 2	0	0	0	1
							J	
25)	Дан фрагмент таблиц	ы истинности вы	ражения F (см. таблицу	справа). Какое	Х	Υ	Ζ	F
,	выражение соответст			. ,	1	0	0	0
					0	0	1	1
			21		Λ	Λ	0	_

26) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	Χ	Υ	Ζ	F
выражение соответствует F?	0	1	1	1
1) $\neg X \land Y \land Z$ 2) $\neg X \lor Y \lor \neg Z$ 3) $X \land \neg Y \land \neg Z$ 4) $\neg X \lor \neg Y \lor Z$	0	1	0	0
	1	0	1	0
27) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	Χ	Υ	Ζ	F
выражение соответствует F?	0	1	1	0
1) $X \land \neg Y \land \neg Z$ 2) $\neg X \land \neg Y \land Z$ 3) $\neg X \lor \neg Y \lor Z$ 4) $X \lor \neg Y \lor \neg Z$	1	1	1	1
	0	0	1	1
28) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	Χ	Υ	Ζ	F
выражение соответствует F?	1	1	1	1
1) $X \lor \neg Y \lor Z$ 2) $X \land Y \land Z$ 3) $X \land Y \land \neg Z$ 4) $\neg X \lor Y \lor \neg Z$	1	1	0	1
	1	0	1	1
			_	l =
29) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	X	Υ	Z	F
выражение соответствует F?	0	1	0	0
1) $(\mathbf{X} \sim \mathbf{Z}) \wedge (\neg \mathbf{X} \rightarrow \mathbf{Y})$ 2) $(\neg \mathbf{X} \sim \mathbf{Z}) \wedge (\neg \mathbf{X} \rightarrow \mathbf{Y})$	1	1	1	0
3) (${\bf X} \sim \neg {\bf Z}$) $\wedge (\neg {\bf X} \to {\bf Y})$ 4) (${\bf X} \sim {\bf Z}$) $\wedge \neg ({\bf Y} \to {\bf Z})$ Знак \sim означает «эквивалентность», то есть « ${\bf X} \sim {\bf Z}$ » значит «значения ${\bf X}$ и ${\bf Z}$ совпа,	ш			U
Shah " Osharaci "Shahaaleninocia", 10 ecia "A " 2" Sharui "Sharenin A ii 2 Cobiia,	цают	<i>"</i> .		
30) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	Χ	Υ	Ζ	F
выражение соответствует F?	0	0	1	0
1) $\neg X \lor \neg Y \lor \neg Z$ 2) $\neg X \land \neg Y \land Z$ 3) $X \land (Y \lor \neg Z)$	1	1	1	0
4) (X ∧ ¬Y) ∨ ¬Z	1	0	0	1
31) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	Α	В	С	F
выражение соответствует F?	0	1	0	1
1) A A B V ¬A A C 2) A A C V A A ¬B 3) A A C V ¬A A ¬C	0	0	0	1
$4) A \wedge (C \vee \neg B) \wedge \neg C$	1	1	0	0
22) Tour Anarray Takan was unagan a mayaya E (ay Takan a maga) Yayaa	Α	В	С	F
32) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?	1	0	0	0
1) $A \rightarrow \neg B \land \neg C$ 2) $A \rightarrow B \land C$ 3) $\neg A \rightarrow B \land C$	1	1	1	1
4) (A \rightarrow B) \rightarrow C	1	0	1	0
,, , , , , ,				
33) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое	Χ	Υ	Ζ	F
выражение соответствует F?	1	0	0	1
1) $(X \lor Y) \land \neg Z$ 2) $\neg X \lor Y \lor Z$ 3) $X \land Y \land \neg Z$ 4) $X \lor \neg Y \land Z$	1	0	1	0
	1	1	1	0
22	0	1	0	1

1) $X \wedge Y \wedge \neg Z$ 2) $\neg X \wedge \neg Y \wedge Z$ 3) $\neg X \vee \neg Y \vee Z$ 4) $X \vee Y \vee \neg Z$

34) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1) $x \vee y \rightarrow z$

2)
$$\neg x \lor y \to z$$
 3) $\neg x \land z \to y$

35) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1) $(A \rightarrow \neg B) \lor C$ 2) $(\neg A \lor B) \land C$ 3) $(A \land B) \rightarrow C$ 4) $(A \lor B) \rightarrow C$

36) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1) $X \rightarrow Z \wedge Y$

2)
$$\neg z \rightarrow (x \rightarrow y)$$

2)
$$\neg z \rightarrow (x \rightarrow y)$$
 3) $\neg (x \lor y) \land z$ 4) $\neg x \lor \neg (y \land z)$

37) Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

1) $\neg X \rightarrow Z \land Y$ 2) $Z \rightarrow X \lor Y$ 3) $(\neg X \lor Y) \land Z$

4)
$$X \vee Y \rightarrow \neg$$

4)
$$X \vee Y \rightarrow \neg Z$$

4) $X \vee \neg Z \rightarrow Y$

38) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
0	1	0	1	1	1	1	1
1	0	1	0	1	1	0	0
0	1	0	1	1	0	1	1

Какое выражение соответствует F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7$
- 2) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land x6 \land x7$
- 4) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$

39) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
0	1	0	1	1	1	1	1
1	0	1	0	1	1	1	0
0	1	0	1	1	0	1	1

23

Какое выражение соответствует F?

- 1) $\neg x1 \land \neg x2 \land x3 \land x4 \land x5 \land x6 \land \neg x7$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor x7$
- 3) $x1 \land x2 \land \neg x3 \land \neg x4 \land x5 \land x6 \land x7$
- 4) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$

Χ	Υ	Ζ	F
0	0	0	1
0	0	1	0
0	1	0	1

Α	В	С	F
0	1	1	1
1	0	0	0
1	0	1	1

Χ	Υ	Ζ	F
1	0	0	0
0	1	1	1
1	0	1	1

Χ	Υ	Ζ	F
0	1	0	1
1	0	1	0
1	0	0	1

2) 2

выражение ложно? 1) 1

выражение истинно?

выражение истинно?

1) 1

1) 1

Сколько существует различных наборов значений переменных, при которых

40) (http://ege.yandex.ru) Дан фрагмент таблицы истинности выражения F.

41) Дано логическое выражение, зависящее от 6 логических переменных:

42) Дано логическое выражение, зависящее от 6 логических переменных:

43) Дано логическое выражение, зависящее от 7 логических переменных:

2) 2

2) 2

Сколько существует различных наборов значений переменных, при которых

Сколько существует различных наборов значений переменных, при которых

Какое выражение может соответствовать F? 1) $\times 1 \vee \times 2 \vee \times 3 \vee \neg \times 4 \vee \neg \times 5$ $2) \neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5$

3) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5$

 $4) \neg x1 \land x2 \land x3 \land x4 \land \neg x5$

x1 | x2 | x3 | x4 | x5 | F

0 1 1 1 0 1

 $X_1 \wedge \neg X_2 \wedge X_3 \wedge \neg X_4 \wedge X_5 \wedge X_6$

3) 63

3) 63

 $X_1 \lor \neg X_2 \lor X_3 \lor \neg X_4 \lor \neg X_5 \lor \neg X_6 \lor \neg X_7$

3) 127

 $X_1 \lor \neg X_2 \lor X_3 \lor \neg X_4 \lor X_5 \lor X_6$

0 1 1 0

1

1

1

4) 128

4) 64

4) 64

44) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	<i>x</i> 7	F
0	1	0	1	1	1	0	0
1	0	1	1	0	0	1	0
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) $x1 \rightarrow (x2 \land x3 \lor x4 \land x5 \lor x6 \land x7)$
- 2) $x2 \rightarrow (x1 \land x3 \lor x4 \land x5 \lor x6 \land x7)$
- 3) $x3 \rightarrow (x1 \land x2 \lor x4 \land x5 \lor x6 \land x7)$
- 4) $x4 \rightarrow (x1 \land x2 \lor x3 \land x5 \lor x6 \land x7)$
- 45) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	<i>x</i> 7	F
0	1	0	1	1	1	0	0
1	1	0	1	0	0	1	0
0	1	0	1	0	1	1	0

Какое выражение соответствует F?

- 1) $(x2 \land x3 \lor x4 \land x5 \lor x6 \land x7) \rightarrow x1$
- 2) $(x1 \land x3 \lor x4 \land x5 \lor x6 \land x7) \rightarrow x2$
- 3) $(x1 \land x2 \lor x4 \land x5 \lor x6 \land x7) \rightarrow x3$
- 4) $(x1 \land x2 \lor x3 \land x5 \lor x6 \land x7) \rightarrow x4$
- 46) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	F
1	0	0	0	0	1	0
0	1	1	0	0	1	0
0	0	0	0	1	1	0

Какое выражение соответствует Е?

- 1) x1 \ x5 \ x2 \ x4 \ x6 \ x3
- 2) x1 \ x3 \ x2 \ x5 \ x6 \ x4
- 3) $x1 \land x4 \lor x3 \land x5 \lor x6 \land x2$
- 4) x1 \ x2 \ x3 \ x4 \ x6 \ x5
- 47) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	F
1	1	0	0	0	1	0
1	0	1	0	0	1	0
1	1	0	1	0	0	0

Какое выражение соответствует F?

- 1) $x1 \land x2 \lor x3 \land x4 \lor x5 \land x6$
- 2) x1 \ x3 \ x4 \ x5 \ x6 \ x2
- 3) x1 \ x4 \ x2 \ x5 \ x6 \ x3
- 4) $x1 \wedge x5 \vee x2 \wedge x3 \vee x6 \wedge x4$
- 48) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	<i>x</i> 7	F			
1	1	0	1	1	1	1	1			
1	0	1	0	1	1	0	0			
0	1	0	1	1	0	1	0			

Какое выражение соответствует F?

- 1) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 2) x1 \ ¬x2 \ x3 \ ¬x4 \ x5 \ x6 \ ¬x7
- 3) x1 \ x2 \ ¬x3 \ x4 \ x5 \ x6 \ x7
- 4) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 49) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
1	1	0	1	1	1	1	0
1	0	1	0	1	1	0	1
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7$
- 2) x1 v ¬x2 v x3 v ¬x4 v ¬x5 v x6 v ¬x7
- 3) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7$

- 4) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7$
- 50) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	<i>x</i> 7	F
1	1	0	1	1	1	1	1
1	0	1	0	1	1	0	1
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7$
- 2) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7$
- 4) x1 v ¬x2 v x3 v ¬x4 v ¬x5 v x6 v ¬x7
- 51) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	x7	F
0	1	0	1	1	1	0	0
1	1	0	1	0	1	0	1
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) $x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 2) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor x7$
- 3) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7$
- 4) x1 \ x2 \ \ \ x3 \ \ x4 \ \ \ \ x5 \ \ x6 \ \ \ \ x7
- 52) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	х7	F
0	1	0	1	1	1	0	0
0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) x1 \ x2 \ \ \ x3 \ \ \ x4 \ \ x5 \ \ x6 \ \ \ x7
- 2) $x1 \lor x2 \lor \neg x3 \lor \neg x4 \lor x5 \lor x6 \lor \neg x7$
- 3) $\neg x1 \land \neg x2 \land x3 \land x4 \land \neg x5 \land \neg x6 \land x7$
- 4) $\neg x1 \lor \neg x2 \lor x3 \lor x4 \lor \neg x5 \lor \neg x6 \lor x7$
- 53) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	x7	F
0	1	0	1	1	1	0	1
1	0	1	1	0	0	1	1
1	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) $x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7$
- 2) $x1 \lor x2 \lor \neg x3 \lor x4 \lor x5 \lor \neg x6 \lor x7$
- 3) $\neg x1 \land \neg x2 \land x3 \land \neg x4 \land \neg x5 \land x6 \land \neg x7$
- 4) $\neg x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 54) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	F
0	1	0	1	1	1	0	1
1	0	1	1	0	0	1	1
0	1	0	1	0	1	0	0

Какое выражение соответствует Е?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7$
- 2) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7$
- 4) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 55) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	х7	х8	х9	x10	F
0	1	0	1	1	1	0	1	1	1	1
1	0	1	1	0	0	1	1	1	0	1
0	1	0	1	0	1	0	0	1	0	0

Какое выражение соответствует F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7 \land x8 \land \neg x9 \land x10$
- 2) $\neg x1 \land x2 \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7 \land \neg x8 \land x9 \land \neg x10$
- 3) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7 \lor x8 \lor \neg x9 \lor x10$
- 4) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor \neg x8 \lor x9 \lor \neg x10$
- 56) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	х8	х9	x10	F
0	1	0	1	1	1	0	1	1	1	0
1	0	1	1	0	0	1	1	1	0	0
0	1	0	1	0	1	0	0	1	0	1

Какое выражение соответствует F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7 \land x8 \land \neg x9 \land x10$
- 2) $\neg x1 \land x2 \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7 \land \neg x8 \land x9 \land \neg x10$
- 3) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7 \lor x8 \lor \neg x9 \lor x10$
- 4) $\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor \neg x8 \lor x9 \lor \neg x10$
- 57) (http://ege.yandex.ru) Дано логическое выражение, зависящее от 6 логических переменных:

Сколько существует различных наборов значений переменных, при которых выражение истинно?

- 1) 1
- 2) 2
- 3) 61
- 4) 63
- 58) (http://ege.yandex.ru) Дано логическое выражение, зависящее от 5 логических

$$(\neg x1 \lor \neg x2 \lor \neg x3 \lor x4 \lor x5) \land (x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5)$$

3) 31

Сколько существует различных наборов значений переменных, при которых выражение истинно?

- 1) 0
- 2) 30

4) 32

59) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	x7	F
0	1	0	1	1	1	0	0
0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	0

Какое выражение соответствует Е?

- 1) $x1 \land x2 \land \neg x3 \land \neg x4 \land x5 \land (x6 \lor \neg x7)$
- 2) $x1 \lor x2 \lor \neg x3 \lor \neg x4 \lor x5 \lor (x6 \land \neg x7)$
- 3) $\neg x1 \lor \neg x2 \lor x3 \lor x4 \lor \neg x5 \lor (\neg x6 \land x7)$
- 4) $\neg x1 \land \neg x2 \land x3 \land x4 \land \neg x5 \land (\neg x6 \lor x7)$
- 60) (http://ege.yandex.ru) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	x4	x5	х6	F
1	1	0	0	0	1	0
1	0	1	0	0	1	0
1	1	0	1	0	0	0

Какое выражение соответствует F?

- 1) $(x1 \land x2) \lor (x3 \land x4) \lor (x5 \land x6)$
- 2) $(x1 \land x3) \lor (x4 \land x5) \lor (x6 \land x2)$
- 3) $(x1 \land x4) \lor (x2 \land x5) \lor (x6 \land x3)$
- 4) $(x1 \land x5) \lor (x2 \land x3) \lor (x6 \land x4)$
- 61) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	х7	х8	F
1	0	1	0	1	1	1	0	1
0	1	0	1	1	0	0	1	1
1	0	1	0	1	0	1	0	0

Какое выражение соответствует F?

- 1) $(x1 \rightarrow x2) \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7 \land x8$
- 2) $(x1 \rightarrow x2) \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor x8$
- 3) $\neg (x1 \rightarrow x2) \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor x7 \lor \neg x8$
- 4) $\neg (x1 \rightarrow x2) \land x3 \land \neg x4 \land \neg x5 \land \neg x6 \land x7 \land \neg x8$
- 62) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	x7	х8	F
1	0	1	0	1	1	1	0	0
0	1	0	1	1	0	0	1	0
1	0	1	0	1	0	1	0	1

Какое выражение соответствует F?

- 1) $(x1 \rightarrow x2) \land \neg x3 \land x4 \land x5 \land x6 \land \neg x7 \land x8$
- 2) $(x1 \rightarrow x2) \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor x8$
- 3) $\neg (x1 \rightarrow x2) \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7 \lor \neg x8$
- 4) $\neg (x1 \rightarrow x2) \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7 \land \neg x8$
- 63) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	х7	х8	х9	x10	F
0	1	0	1	1	1	0	1	1	1	1
1	0	1	1	0	0	1	1	1	0	1
0	1	0	1	0	1	0	0	1	0	0

Какое выражение соответствует F?

- 1) $(x1 \lor \neg x2) \land (x3 \lor \neg x4) \land x5 \land \neg x6 \land x7 \land x8 \land \neg x9 \land x10$
- 2) $(x1 \land \neg x2) \lor (x3 \land \neg x4) \lor x5 \lor \neg x6 \lor x7 \lor x8 \lor \neg x9 \lor x10$
- 3) $(\neg x1 \land x2) \lor (\neg x3 \land x4) \lor \neg x5 \lor x6 \lor \neg x7 \lor \neg x8 \lor x9 \lor \neg x10$
- 4) $(\neg x1 \lor x2) \land (\neg x3 \lor x4) \land \neg x5 \land x6 \land \neg x7 \land \neg x8 \land x9 \land \neg x10$
- 64) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	х7	х8	х9	x10	F
0	1	1	0	1	1	0	1	1	1	1
1	0	1	1	0	0	1	1	1	0	0
1	0	0	0	1	1	0	0	1	0	1

Какое выражение соответствует F?

- 1) $(x1 \lor \neg x2) \land (x3 \lor \neg x4) \land x5 \land \neg x6 \land x7 \land x8 \land \neg x9 \land x10$
- 2) $(x1 \land \neg x2) \lor (x3 \land \neg x4) \lor \neg x5 \lor \neg x6 \lor x7 \lor x8 \lor \neg x9 \lor x10$
- 3) $(\neg x1 \land x2) \lor (\neg x3 \land x4) \lor x5 \lor x6 \lor \neg x7 \lor \neg x8 \lor \neg x9 \lor x10$
- 4) $(\neg x1 \lor x2) \land (\neg x3 \lor x4) \land \neg x5 \land x6 \land \neg x7 \land \neg x8 \land x9 \land \neg x10$
- 65) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	F
1	1	0	0	0	0	0
1	0	1	0	0	1	0
1	0	0	1	0	0	0

Какое выражение соответствует F?

- 1) $(x1 \land x2) \lor (x3 \land x4) \lor (x5 \land x6)$
- 2) $(x1 \land x3) \lor (x3 \land x5) \lor (x5 \land x1)$
- 3) $(x2 \land x4) \lor (x4 \land x6) \lor (x6 \land x2)$
- 4) $(x1 \land x4) \lor (x2 \land x5) \lor (x3 \land x6)$
- 66) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	х5	х6	<i>x</i> 7	х8	F
1	0	1	0	1	1	1	0	0
0	1	0	1	1	0	0	1	0
1	0	0	1	0	1	0	1	1

Какое выражение соответствует F?

- 1) $(x2 \rightarrow x1) \land \neg x3 \land x4 \land \neg x5 \land x6 \land \neg x7 \land x8$
- 2) $(x2 \rightarrow x1) \lor \neg x3 \lor x4 \lor \neg x5 \lor x6 \lor \neg x7 \lor x8$
- 3) $\neg (x2 \rightarrow x1) \lor x3 \lor \neg x4 \lor x5 \lor \neg x6 \lor x7 \lor \neg x8$
- 4) $(x2 \rightarrow x1) \land x3 \land \neg x4 \land x5 \land \neg x6 \land x7 \land \neg x8$
- 67) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	х8	F
		1				1		0
1					1			1
			1				1	1

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 68) Дан фрагмент таблицы истинности для выражения F:

	x1	x2	х3	х4	x5	х6	х7	х8	F
--	----	----	----	----	----	----	----	----	---

		1			1		0
1				1			1
			1			1	0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 3) $x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) x1 \ ¬x2 \ ¬x3 \ ¬x4 \ ¬x5 \ ¬x6 \ ¬x7 \ ¬x8
- 69) Дан фрагмент таблицы истинности для выражения F:

x1	x2	<i>x3</i>	x4	x5	х6	x7	х8	F
		0				1		1
1					1			1
			1				0	0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 70) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	x5	х6	х7	х8	F
		0				1		0
1					0			0
		0				1		1

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor x7 \lor x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7 \land \neg x8$
- 4) x1 \ \-\-x2 \ \-\-x3 \ \-\-x4 \ \-\-x5 \ \-\-x6 \ \-x7 \ \-\-x8
- 71) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	х8	F
		0				1		1
1		0			1			0
			1				0	1

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $\neg x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $\neg x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 72) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	<i>x</i> 7	х8	F
		0				1		0
1		0			1			1
			1				0	0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land \neg x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $\neg x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor x8$
- 3) $x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $\neg x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 73) Дан фрагмент таблицы истинности для выражения F:

 x1
 x2
 x3
 x4
 x5
 x6
 x7
 F

 1
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 0
 1
 1
 1
 0
 0
 1
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

Каким выражением может быть F?

- 1) x1 \ ¬x2 \ ¬x3 \ ¬x4 \ x5 \ x6 \ ¬x7
- 2) $\neg x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$
- 3) $x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7$
- 4) $x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$
- 74) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	x5	х6	<i>x</i> 7	F
			1		0		0
			0			1	1
0			1				0

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land \neg x3 \land \neg x4 \land x5 \land x6 \land x7$
- 2) $\neg x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$
- 3) $x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7$
- 4) $x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7$
- 75) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	x5	х6	F
0	0	1	0	0	0	0
1	0	1	0	1	1	1
0	1	1	1	0	0	1

Укажите минимально возможное число различных строк полной таблицы истинности этого выражения. в которых значение x1 совпадает с F.

76) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	F
0	0	1	1	0	0	1
0	0	0	0	1	1	1
1	0	1	0	1	1	1
0	1	1	1	0	1	0

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x3 не совпадает с F.

77) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	F
0	0	1	1	0	0	0
0	1	0	0	1	1	1
0	0	0	0	1	1	1
1	0	1	0	1	1	1
0	1	1	1	0	1	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x4 не совпадает с F.

78) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	x7	F
0	0	1	1	0	0	1	0
0	1	0	0	1	1	0	1
0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	1
0	1	1	1	0	1	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x4 не совпадает с F.

79) Дан фрагмент таблицы истинности для выражения F:

х1	x2	х3	х4	х5	х6	х7	F
0	0	1	1	0	0	1	0
0	1	0	0	1	1	0	1
0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	1
0	1	1	1	0	1	0	1

Укажите минимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x5 совпадает с F.

80) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	х8	F
0	0	1	1	0	0	1	0	0
0	1	0	0	1	1	0	1	1
0	0	0	0	1	1	1	1	1
1	0	1	0	1	1	0	1	1
0	1	1	1	0	1	0	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x6 не совпадает с F.

81) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	<i>x</i> 7	х8	F
0	0	1	1	0	0	1	0	0
0	1	0	0	1	1	0	1	1
0	0	0	0	1	1	1	1	1
1	0	1	0	1	1	0	1	1
0	1	1	1	0	1	0	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x7 не совпадает с F.

82) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	x5	х6	F
0	0	1	1	0	0	1
0	0	0	0	1	1	1
1	0	1	0	1	1	1
0	1	1	1	0	1	0

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение выражения $x3 \wedge x4$ не совпадает с F.

83) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	x5	х6	F
0	0	0	1	0	0	0
0	1	0	0	1	1	1
0	0	1	1	1	1	1
1	0	1	0	1	1	1
0	1	1	1	0	1	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение $x2 \lor x4$ не совпадает с F.

84) Дан фрагмент таблицы истинности для выражения F:

ſ	x1	x2	х3	х4	х5	х6	х7	F
ľ	0	0	1	1	0	0	1	0
Г	0	1	0	0	1	1	0	1
Г	0	0	0	0	1	1	1	1
Γ	1	0	1	0	1	1	0	1
Г	0	1	1	1	0	1	1	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение $x4 \land \neg x7$ не совпадает с F.

85) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	x5	х6	х7	F
0	0	1	1	0	0	1	0
0	1	0	0	1	1	0	1
0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	1
0	1	1	1	0	1	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение $-x5 \lor x1$ совпадает с F.

86) Дан фрагмент таблицы истинности для выражения F:

	x1	x2	х3	х4	х5	х6	х7	х8	F
Ī	0	0	1	1	0	0	1	0	0
	0	1	0	0	1	0	0	1	1
Ī	0	0	0	0	1	1	1	1	1
	1	1	1	0	1	1	0	1	1
Ī	0	1	1	1	0	1	0	0	1
Ī	1	0	0	1	1	1	1	1	0

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения. В которых значение $x6 \land \neg x2$ совпадает с F.

87) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	х7	х8	F
0	0	1	1	0	0	1	0	0
0	1	0	0	1	1	0	1	1
0	0	0	0	1	1	1	1	1
1	0	1	0	1	1	0	1	1
0	1	1	1	0	1	0	0	1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение \neg x7 \lor \neg x5 не совпадает с F.

- 88) Каждое логическое выражение А и В зависит от одного и того же набора из 6 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения А ∨ В?
- 89) Каждое логическое выражение А и В зависит от одного и того же набора из 7 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения А ∨ В?
- 90) Каждое логическое выражение А и В зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 5 единиц. Каково минимально возможное число нулей в столбце значений таблицы истинности выражения А ∧ В?
- 91) Каждое логическое выражение A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 6 единиц. Каково максимально возможное число нулей в столбце значений таблицы истинности выражения $A \wedge B$?
- 92) Каждое из логических выражений А и В зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений нет ни одной совпадающей строки. Сколько единиц будет содержаться в столбце значений таблицы истинности выражения А ∧ В?

- 93) Каждое из логических выражений A и B зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений нет ни одной совпадающей строки. Сколько единиц будет содержаться в столбце значений таблицы истинности выражения A ∨ B?
- 94) Каждое из логических выражений A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности обоих выражений нет ни одной совпадающей строки. Каково максимально возможное число нулей в столбце значений таблицы истинности выражения ¬А ∨ В?
- 95) (М.В. Малышев, г. Кострома) Каждое из логических выражений А и В зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 5 единиц в каждой таблице. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения А ∨ ¬В?
- 96) (М.В. Малышев, г. Кострома) Каждое из логических выражений А и В зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 4 единицы в каждой таблице. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения ¬А ∧ В?
- 97) (М.В. Малышев, г. Кострома) Каждое из логических выражений А и В зависит от одного и того же набора из 7 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 8 единиц в каждой таблице. Каково минимально возможное число нулей в столбце значений таблицы истинности выражения ¬А ∧ В?
- 98) (М.В. Малышев, г. Кострома) Каждое из логических выражений А и В зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 4 единицы в каждой таблице. Каково минимально возможное число нулей в столбце значений таблицы истинности выражения А ∨ ¬В?
- 99) (М.В. Малышев, г. Кострома) Каждое из логических выражений А и В зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 5 единиц в каждой таблице. Каково максимально возможное число нулей в столбце значений таблицы истинности выражения А ∨ ¬В?
- 100) (М.В. Малышев, г. Кострома) Каждое из логических выражений А и В зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 4 единицы в каждой таблице. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения ¬А ∨ В?
- 101) Каждое из логических выражений А и В зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 18 единиц в каждой таблице. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения ¬А ∧ В?
- 102) Каждое из логических выражений А и В зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 25 единиц в каждой таблице. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения ¬А ∧¬В?
- 103) (М.В. Малышев, г. Кострома) Каждое из логических выражений А и В зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 8 единиц в каждой таблице. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения ¬А ∧ ¬В?
- 104) (М.В. Малышев, г. Кострома) Каждое из логических выражений А и В зависит от одного и того же набора из 8 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 8 единиц в каждой таблице. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения ¬ (А ∧ В)?

- 105) Каждое из логических выражений A и B зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений в столбцах значений стоит ровно по 17 единиц в каждой таблице. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения \neg (A \wedge B)?
- 106) Каждое из логических выражений F и G содержит 7 переменных. В таблицах истинности выражений F и G есть ровно 8 одинаковых строк, причем ровно в 5 из них в столбце значений стоит 1. Сколько строк таблицы истинности для выражения F ∨ G содержит 1 в столбце значений?
- 107) Каждое из логических выражений F и G содержит 6 переменных. В таблицах истинности выражений F и G есть ровно 10 одинаковых строк, причем ровно в 3 из них в столбце значений стоит 1. Сколько строк таблицы истинности для выражения F ∨ G содержит 1 в столбце значений?
- 108) Каждое из логических выражений F и G содержит 8 переменных. В таблицах истинности выражений F и G есть ровно 7 одинаковых строк, причем ровно в 3 из них в столбце значений стоит 1. Сколько строк таблицы истинности для выражения F ∧ G содержит 0 в столбце значений?
- 109) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	x4	x5	х6	F
1	0					1
		1	1			0
				0	0	0

Каким выражением может быть F?

- 1) $\neg x1 \land \neg x2 \land x3 \land \neg x4 \land \neg x5 \land x6$
- 2) x1 v x2 v x3 v x4 v ¬x5 v ¬x6
- 3) x1 \ \¬x2 \ \¬x3 \ \ x4 \ \¬x5 \ \¬x6
- 4) x1 v x2 v ¬x3 v ¬x4 v x5 v ¬x6
- 110) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	x5	х6	F
0	1					1
		1	1			1
				0	0	0

Каким выражением может быть F?

- 1) $\neg x1 \land \neg x2 \land x3 \land \neg x4 \land \neg x5 \land x6$
- 2) $x1 \lor x2 \lor x3 \lor x4 \lor \neg x5 \lor \neg x6$
- 3) x1 \ ¬x2 \ ¬x3 \ x4 \ ¬x5 \ ¬x6
- 4) $x1 \lor x2 \lor \neg x3 \lor \neg x4 \lor x5 \lor x6$
- 111) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	х4	х5	х6	x7	F
			0		1		1
			0			0	0
0			1				0

Каким выражением может быть F?

- 1) $x1 \land (x2 \rightarrow x3) \land \neg x4 \land x5 \land x6 \land \neg x7$
- 2) $x1 \lor (\neg x2 \rightarrow x3) \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 3) $\neg x1 \land (x2 \rightarrow \neg x3) \land x4 \land \neg x5 \land x6 \land x7$
- 4) $\times 1 \vee (\times 2 \rightarrow \neg \times 3) \vee \neg \times 4 \vee \times 5 \vee \neg \times 6 \wedge \times 7$
- 112) Дан фрагмент таблицы истинности для выражения F:
 - x1
 x2
 x3
 x4
 x5
 x6
 x7
 F

 0
 0
 0
 0
 0
 0

 1
 1
 1
 1
 1

Каким выражением может быть F?

- 1) $x1 \land (x2 \rightarrow x3) \land \neg x4 \land x5 \land x6 \land \neg x7$
- 2) $x1 \lor (\neg x2 \rightarrow x3) \lor \neg x4 \lor \neg x5 \lor x6 \lor \neg x7$
- 3) $\neg x1 \land (x2 \rightarrow \neg x3) \land x4 \land \neg x5 \land x6 \land x7$
- 4) $\neg x1 \lor (x2 \rightarrow \neg x3) \lor x4 \lor x5 \lor x6 \land x7$
- 113) Логическая функция F задаётся выражением $\neg a \lor (b \land \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

В ответе напишите буквы a,b,c в том порядке, в котором идут соответствующие им столбцы.

114) Логическая функция F задаётся выражением $\neg a \lor (b \land \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

В ответе напишите буквы a,b,c в том порядке, в котором идут соответствующие им столбцы.

115) Логическая функция F задаётся выражением $(a \wedge b) \vee (a \wedge \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

116) Логическая функция F задаётся выражением $(a \wedge b) \vee (a \wedge \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0

1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

В ответе напишите буквы a,b,c в том порядке, в котором идут соответствующие им столбцы.

117) Логическая функция F задаётся выражением $(a \wedge \neg c) \vee (\neg b \wedge \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	F
0	0	1
0	1	0
1	0	0
1	1	0
0	0	1
0	1	0
1	0	1
1	1	0
	0 0 1 1 0	? ?

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

118) Логическая функция F задаётся выражением $(a \wedge \neg c) \vee (\neg b \wedge \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F	
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	0	
1				

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

119) Логическая функция F задаётся выражением $(a \wedge \neg c) \vee (\neg a \wedge b \wedge c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

В ответе напишите буквы a,b,c в том порядке, в котором идут соответствующие им столбцы.

120) Логическая функция F задаётся выражением $(a \land \neg c) \lor (\neg a \land b \land c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

В ответе напишите буквы а, b, c в том порядке, в котором идут соответствующие им столбцы.

121) Логическая функция F задаётся выражением $(\neg x \land y \land z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land \neg y \land \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы** а**ргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	1
1	0	0	1
1	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

122) Логическая функция F задаётся выражением $(\neg x \land y \land z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land \neg y \land \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	1
1	0	0	1
1	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

123) **(М.В. Кузнецова)** Логическая функция F задаётся выражением

 $(\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor z) \land (x \lor \neg y \lor \neg z)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных

?	?	?	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

124) **(М.В. Кузнецова)** Логическая функция F задаётся выражением

 $(x\vee y\vee \neg z)\wedge (\neg x\vee y\vee \neg z)\wedge (\neg x\vee \neg y\vee z).$ Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных

?	?	?	F
0	0	0	1
0	0	1	1

0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

125) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(x \lor y) \land (\neg x \lor y \lor \neg z)$.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных

.,				
	?	?	?	F
	0	0	0	0
	0	0	1	0
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

126) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(a \lor \neg c) \land (\neg a \lor b \lor c)$.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

127) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(a \lor \neg c) \land (b \lor c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

128) (М.В. Кузнецова) Логическая функция F задаётся выражением $(\neg a \lor b \lor \neg c) \land (b \lor \neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

129) (М.В. Кузнецова) Логическая функция F задаётся выражением $(a \wedge b) \vee (c \wedge (\neg a \vee b))$.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

В ответе напишите буквы a,b,c в том порядке, в котором идут соответствующие им столбцы.

130) Логическая функция F задаётся выражением $(a \land c) \lor (\neg a \land (b \lor \neg c))$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

В ответе напишите буквы a, \overline{b} , \overline{c} в том порядке, в котором идут соответствующие им столбцы.

131) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(a \to b) \land ((a \land b) \to \neg c)$.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1

1	1	1	0

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

132) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(a o b) o (\neg a \land c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

	'''		
?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0
. —			

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

133) Логическая функция F задаётся выражением ($\neg x \land y \land z$) \lor ($\neg x \land \neg z$). На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	1
1	0	0	1
1	1	0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

134) Логическая функция F задаётся выражением ($\neg x \land z$) $\lor (\neg x \land \neg y \land \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	1
0	0	1	1
1	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

135) Логическая функция F задаётся выражением $\neg y \land x \land (\neg z \lor w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	0	0	1
1	1	0	0	1
1	1	1	0	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

136) Логическая функция F задаётся выражением $\neg w \wedge (x \wedge \neg z \vee \neg x \wedge \neg y \wedge z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, v, z, w.

 , , ,					
?	?	?	?	F	
0	0	0	1	1	

 0
 0
 1
 1
 1

 1
 0
 0
 0
 1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

137) Логическая функция F задаётся выражением $x \wedge \neg w \wedge (y \vee \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	1
0	1	0	1	1
0	1	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы,

138) Логическая функция F задаётся выражением $x \wedge (\neg y \wedge z \wedge w \vee y \wedge \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1

В ответе напишите буквы x,y,z,w в том порядке, в котором идут соответствующие им столбцы.

139) Логическая функция F задаётся выражением $x \wedge (\neg y \wedge z \wedge \neg w \vee y \wedge \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	0	1	1
0	1	1	0	1
1	1	0	1	1

В ответе напишите буквы x,y,z,w в том порядке, в котором идут соответствующие им столбцы. 140) Логическая функция F задаётся выражением $(\neg x \land y \land z \lor x \land \neg z) \land \neg w$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x,y,z,w.

?	?	?	?	F
0	0	1	1	1
1	0	0	0	1
1	0	0	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

141) Логическая функция F задаётся выражением $(\neg x \land y \land \neg z \lor x \land \neg y) \land \neg w$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	1
1	0	0	0	1
1	1	0	0	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

142) Логическая функция F задаётся выражением $\neg x \land y \land z \lor x \land \neg y \land \neg w$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	1
1	0	0	1	1
1	0	1	0	1
1	1	1	0	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

143) Логическая функция F задаётся выражением $x \wedge (y \wedge z \vee z \wedge w \vee y \wedge \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	1	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

144) Логическая функция F задаётся выражением $x \wedge (z \wedge \neg w \vee y \wedge \neg w \vee y \wedge \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

•				
?	?	?	?	F
0	1	1	0	1
1	0	1	0	1
1	0	1	1	1
1	1	1	0	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

145) Логическая функция F задаётся выражением $x \wedge (y \wedge z \vee y \wedge \neg w \vee \neg z \wedge \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	1
1	0	0	1	1
1	0	1	1	1
1	1	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

146) Логическая функция F задаётся выражением $(x \to y) \land (y \to z)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x,y,z.

?	?	?	F
1	0	0	0
1	0	1	1

43

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

147) Логическая функция F задаётся выражением $(x o y) \land (y o z)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x,y,z.

?	?	?	F
1	0	0	1
1	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

148) Логическая функция F задаётся выражением $(y \to z) \wedge (x \to y)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	0	0	1
1	0	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

149) Логическая функция F задаётся выражением $(y o x) \wedge (z o y)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x,y,z.

?	?	?	F
1	0	1	0
0	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

150) Логическая функция F задаётся выражением $(x \to z) \wedge (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	0	0	0
1	1	0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

151) Логическая функция F задаётся выражением $(x \to z) \wedge (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	0	0	1
1	1	0	1

В ответе напишите буквы х, у, z в том порядке, в котором идут соответствующие им столбцы.

152) Логическая функция F задаётся выражением $(x \to z) \wedge (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x,y,z.

?	?	?	F
1	0	1	1
0	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

153) Логическая функция F задаётся выражением $(x \to \overline{z}) \land (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

•				
	?	?	?	F

1	0	1	1
0	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

154) Логическая функция F задаётся выражением $(x \to \overline{z}) \land (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	1	0	1
0	1	0	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

155) Логическая функция F задаётся выражением $(x \to \overline{z}) \wedge (\overline{y} \to x)$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	1	0	0
1	1	0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

156) Логическая функция F задаётся выражением $(x \to \overline{z}) \wedge (\overline{y} \to \overline{x})$. На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
1	1	0	0
0	1	0	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

157) Логическая функция F задаётся выражением $x \wedge \neg y \wedge (\neg z \vee w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	0	0	1
1	0	1	0	1
1	0	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

158) Логическая функция F задаётся выражением $\neg x \land y \land (w \to z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	0	0	1
1	0	1	0	1
1	0	1	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

159) Логическая функция F задаётся выражением $\neg w \land z \land (y \to x)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
	•	•	•	-

1	0	0	0	1
1	0	1	0	1
1	0	1	1	1

В ответе напишите буквы х, у, z, w в том порядке, в котором идут соответствующие им столбцы.

160) Логическая функция F задаётся выражением ($x \lor \neg y \lor \neg z$) \land ($x \lor \neg y \lor z$) \land ($x \lor y \lor z$). На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F			
0	0	0	0			
1	0	0	0			
1	0	1	0			

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

161) Логическая функция F задаётся выражением $(x \vee \neg y \vee \neg z) \wedge (x \vee y \vee \neg z) \wedge (x \vee y \vee z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	0
1	0	0	0
1	0	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

162) Логическая функция F задаётся выражением $(\neg x \lor y \lor z) \land (\neg x \lor \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	1	0
0	1	1	0
1	1	1	0

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

163) Логическая функция F задаётся выражением $(\neg x \lor z) \land (\neg x \lor \neg y \lor \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	1	0	0
1	1	0	0
1	1	1	0

В ответе напишите буквы х, у, z в том порядке, в котором идут соответствующие им столбцы.

164) Логическая функция F задаётся выражением $\neg y \lor x \lor (\neg z \land w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	0
0	0	1	1	0

1 0 1 1 0

В ответе напишите буквы х, у, z, w в том порядке, в котором идут соответствующие им столбцы.

165) Логическая функция F задаётся выражением $\neg w \lor (x \lor \neg z) \land (\neg x \lor \neg y \lor z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, v, z, w.

	?	?	?	?	F
ſ	0	1	1	1	0
ĺ	1	1	0	0	0
	1	1	1	0	0

В ответе напишите буквы х, у, z, w в том порядке, в котором идут соответствующие им столбцы.

166) Логическая функция F задаётся выражением $x \vee \neg w \vee (y \wedge \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

	?	?	?	?	F
ſ	1	0	0	0	0
ſ	1	0	1	0	0
	1	1	1	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

167) Логическая функция F задаётся выражением $x \vee (\neg y \vee z \vee w) \wedge (y \vee \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

	?	?	?	?	F
ſ	0	1	0	0	0
ſ	0	1	1	0	0
	1	0	0	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

168) Логическая функция F задаётся выражением $x \vee (\neg y \vee z \vee \neg w) \wedge (y \vee \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	1	0	0
1	0	0	1	0
1	0	1	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

169) Логическая функция F задаётся выражением $(\neg x \lor y \lor z) \land (x \lor \neg z \lor \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	1	0	0	0

47

В ответе напишите буквы x. y. z. w в том порядке, в котором идут соответствующие им столбцы.

170) Логическая функция F задаётся выражением $(\neg x \lor y \lor \neg z) \land (x \lor \neg y) \lor \neg w$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	1	1	0
0	1	1	1	0
1	1	1	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

171) Логическая функция F задаётся выражением $(\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы аргументов**, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	1	0
0	1	0	1	0
0	1	1	0	0
1	1	1	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

172) Логическая функция F задаётся выражением $\neg (x \wedge (y \vee z) \wedge (z \vee w) \wedge (y \vee \neg w))$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
1	0	1	1	0
1	1	0	0	0
1	1	1	0	0
1	1	1	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

173) Логическая функция F задаётся выражением $x \vee (z \wedge \neg w) \vee (y \wedge \neg w) \vee (y \wedge \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	0	0	0
0	0	0	1	0
0	1	0	1	0
1	1	0	1	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

174) Логическая функция F задаётся выражением $\neg x \lor (y \land z) \lor (y \land \neg w) \lor (\neg z \land \neg w)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	0	1	1	0
0	1	0	1	0

0	1	1	1	0
1	1	0	1	0

Тема 9

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

175) Логическая функция F задаётся выражением $(z \lor y) \to (x \equiv z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0		0	0
		0	0

В ответе напишите буквы *x, y, z, w* в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. (уzx)

176) Логическая функция F задаётся выражением $(x \vee y) \to (y \equiv z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
		0	0
	0	0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. (zxy)

177) Логическая функция F задаётся выражением $(x \lor y) \to (x \equiv z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
	0		0
	0	0	0

В ответе напишите буквы *x*, *y*, *z*, *w* в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. (xzy)

178) Логическая функция F задаётся выражением ($\neg z \lor \neg y$) $\rightarrow (x \equiv z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x,y,z.

?	?	?	F
1	1		0
	1		0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. (ухz)

179) Логическая функция F задаётся выражением ($\neg x \lor \neg z$) $\rightarrow (x \equiv y)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x,y,z.

?	?	?	F
1		1	0
		1	0

49

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. (zxy)

Тема 9