

AKADEMIA GÓRNICZO-HUTNICZA KATEDRA INFORMATYKI STOSOWANEJ I MODELOWANIA

METODY OPTYMALIZACJI

Optymalizacja wielokryterialna

1. Cel ćwiczenia.

Celem ćwiczenia jest zapoznanie się z problematyką optymalizacji wielokryterialnej i wyznaczenie rozwiązań minimalnych w sensie Pareto.

2. Testowa funkcje celu.

Funkcje celu dane są wzorami:

$$f_1(x_1, x_2) = a((x_1 - 5)^2 + (x_2 - 5)^2)$$

$$f_2(x_1, x_2) = \frac{1}{a}((x_1 + 5)^2 + (x_2 + 5)^2)$$

gdzie: a jest parametrem, którego wartość należy przyjąć równą:

- a = 1,
- a = 10,
- a = 100.

Punkt startowy powinien należeć do przedziału $x_1^{(0)} \in [-10, 10], x_2^{(0)} \in [-10, 10].$

3. Problem rzeczywisty.

Belka o długości / i przekroju kołowym o średnicy d jest obciążona siłą P.

Ugięcie belki pod wpływem działania siły wynosi:

$$u = \frac{64 \cdot P \cdot l^3}{3 \cdot E \cdot \pi \cdot d^4}$$

występujące naprężenie wynosi:

$$\sigma = \frac{32 \cdot P \cdot l}{\pi \cdot d^3}$$

gdzie:

P = 1 kN - działająca siła,

E = 207 GPa - moduł Young,

Pierwszym kryterium optymalizacji jest masa belki (f_1), drugim jej ugięcie (f_2). Gęstość materiału z którego wykonana jest belka wynosi $\rho=7800~{
m kg/m^3}$. Jako zmienne optymalizacji należy przyjąć

zmienne l oraz d ($l \in [200 \text{ mm}, 1000 \text{ mm}], d \in [10 \text{ mm}, 50 \text{ mm}]$). Dodatkowymi ograniczeniami są maksymalne ugięcie belki równe $u_{max} = 5 \text{ mm}$ oraz maksymalne naprężanie $\sigma_{max} = 300 \text{ MPa}$.

4. Algorytmy optymalizacji.

Problem wielokryterialny należy zamienić na problem jednokryterialny stosując metodę kryterium ważonego, tj. przyjąć:

$$f(\mathbf{x}) = w \cdot f_1(\mathbf{x}) + (1 - w) \cdot f_2(\mathbf{x})$$

gdzie: $w \in [0,1]$.

Do wyznaczenia minimum funkcji celu należy zastosować metodę Powella. Minimalizację na kierunku należy przeprowadzić metodą złotego podziału, a dodatkowe ograniczenia występujące w problemie rzeczywistym (maksymalne ugięcie belki oraz maksymalne naprężenie) należy uwzględnić stosując zewnętrzną funkcję kary.

5. Zadanie do samodzielnego wykonania.

a. Testowa funkcja celu.

Zadanie polega na przeprowadzeniu 101 optymalizacji (dla $w = \{0, 0.01, 0.02, ..., 1\}$) dla każdej wartości parametru a startując z losowego punktu początkowego. Wyniki należy zestawić w pliku xlsx w tabeli 1. Dla każdej wartości parametru a należy narysować wykres przedstawiający rozwiązania minimalne w sensie Pareto.

b. Problem rzeczywisty.

Zadanie polega na przeprowadzeniu 101 optymalizacji (dla $w = \{0, 0.01, 0.02, ..., 1\}$) startując z losowego punktu początkowego. Wyniki należy zestawić w pliku xlsx w tabeli 2. Dodatkowo, należy narysować wykres przedstawiający rozwiązania minimalne w sensie Pareto.

6. Sprawozdanie.

Sprawozdanie powinno zostać przygotowane w formacie docx (lub doc) albo pdf i powinno zawierać parametry poszczególnych algorytmów, dyskusję wyników oraz wnioski. Dodatkowo, w sprawozdaniu należy umieścić kod zaimplementowanych metod oraz funkcje main i fit_fun. Wyniki optymalizacji należy przygotować w formacie xlsx (lub xls).