2020 Full States EV and EC of One Check

This is the example vignette for function: **snw_evuvw20_jaeemk** from the **PrjOptiSNW Package.** 2020 integrated over VU and VW. Average C or V given unemployment probabilities.

Test SNW EVUVW20 JAEEMK Defaults

Call the function with defaults.

```
clear all;
st_solu_type = 'bisec_vec';
% Solve the VFI Problem and get Value Function
mp_params = snw_mp_param('default_docdense');
mp_controls = snw_mp_control('default_test');
% set Unemployment Related Variables
xi=0.5; % Proportional reduction in income due to unemployment (xi=0 refers to 0 labor income;
b=0; % Unemployment insurance replacement rate (b=0 refers to no UI benefits; b=1 refers to 100
TR=100/58056; % Value of a welfare check (can receive multiple checks). TO DO: Update with alte
mp_params('xi') = xi;
mp_params('b') = b;
mp params('TR') = TR;
% Solve for Unemployment Values
mp controls('bl print vfi') = false;
mp_controls('bl_print_ds') = false;
mp_controls('bl_print_ds_verbose') = false;
mp_controls('bl_print_precompute') = false;
mp_controls('bl_print_precompute_verbose') = false;
mp_controls('bl_print_a4chk') = false;
mp_controls('bl_print_a4chk_verbose') = false;
mp_controls('bl_print_evuvw20_jaeemk') = false;
mp_controls('bl_print_evuvw20_jaeemk_verbose') = false;
```

Solve the model:

```
%% A. Solve VFI
% 2. Solve VFI and Distributon
% Solve the Model to get V working and unemployed
% solved with calibrated regular a2
[V_ss,ap_ss,cons_ss,mp_valpol_more_ss] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
```

Completed SNW_VFI_MAIN_BISEC_VEC; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time=517.3877

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	-									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-1.5339e+08	-3.5101	26.119	-7.441
ap_VFI	2	2	6	4.37e+07	83	5.265e+05	1.4159e+09	32.402	36.798	1.1357
cons_VFI	3	3	6	4.37e+07	83	5.265e+05	2.1402e+08	4.8975	8.3294	1.7007

	c1		c2	x c3	c4	c	5 c5	26496	c526	497 c52	6498 c	526499	c520
r1	-346	 51	-346.12	-343.63	227	96 32	8.51 2	1.702) 21	852 22	.003	22.154	22
				-343.63	-337								22
r2	-334				-325			1.724				22.163	
r3	-322		-322.06	-319.6	-314			1.745				22.171	22
r4	-310			-307.99	-302			1.767				22.182	22
r5	-299			-297.46	-292			1.775			.042	22.18	22
r79	-9.94	137	-9.9325	-9.8557	-9.6	597 -9.	3232 2	.5394	1 2.5	501 2.	5602	2.5696	2.
r80	-8.96	923	-8.8911	-8.8143	-8.6	183 -8.	2818 2	.3039	2.3	121 2.	3198	2.327	2.
r81	-7.63	363	-7.6251	-7.5484	-7.3	524 -7.	0159 2	.0068	3 2.0	124 2.	0176	2.0226	2.
r82	-5.96			-5.8793	-5.6			.5958				1.6046	1.
r83	-3.58			-3.5012	-3.3			97904				.98185	0.9
TABLE:	ap VF	[xxxx	xxxxxxxxxx	xx									
	c1	c2	с3	c4		c 5	c52649	6	c526497	c526498	c5264	99 c	526500
	_	_						-					
r1	0	0	0.0005656			0.022901			120.41	126.27	132.3		138.8
r2	0	0	0.00051498	0.00653	334	0.021549			120.53	126.41	132.5	4 1	38.95
r3	0	0	0.00051498	0.00492	294	0.019875	114.97		120.65	126.56	132.	7 1	39.12
r4	0	0	0.00051498		937	0.019672			121.42	127.34	133.5		39.92
r5	0	0	0.00048517			0.019484			122.21	128.15	134.3		40.74
r79	0	0	0.00040317		0	0.015404			85.68	90.335	94.37		8.419
r80	0	0	0		0	0			80.563	84.304	88.0		1.693
	0	0	0		0								
r81						0			71.534	74.475	77.83		81.11
r82 r83	0 0	0 0	0		0 0	0			53.467	56.953 0	58.74	5 61 2	0.587 0
	c:	L 	c2		_	c4	c5 ———	_	526496	c526497	c526498 ———		6499
r1	0.036	5717	0.037251	0.040426		0.04363	0.048012	9.	6491	9.817	9.9649	10.	973
r2	0.036	5717	0.037251	0.040477		0.04461	0.049364	9.	8118	9.9685	10.101	10.	191
r3	0.036	5717	0.037251	0.040477	0	.046214	0.051039	9.	9779	10.12	10.234	10.	302
r4	0.038	3144	0.038678	0.041903	0	.047776	0.052666	16	0.131	10.258	10.354	10.	405
r5	0.039	9534	0.040068	0.043323		0.04929	0.054241		272	10.384	10.463		0.5
r79		2179	0.21844	0.22216		0.23228	0.25197		5.858	37.092	38.455	40.	
r80		2179	0.21844	0.22216		0.23228	0.25197		253	42.183	44.459	46.	
r81		2179	0.21844	0.22216		0.23228	0.25197		3.587	51.19	54.266	57.	
							0.25197						
r82		2179	0.21844 0.21844	0.22216		0.23228			5.755	69.238	71.77	76. 124	
r83	0.4	2179	v.21844	0.22216		0.23228	0.25197	11	L6.87	122.69	128.71	134	.92
2020 V (mp_p % ma V_ss cons se % ch % so % a2	s('a2 and arams na fr _2020 _ss_2 ange lving _covi	2_cov: C sar s('a2_com ho) = V 2020 : xi ar g for dyr :	e cons_ss; nd b to fo employed > a2, we i ve for bot	and cons == mp_pa r people but 2020 ncreased	with	if tax t s('a2')) hout uner results in 2020	the same nployment to pay f	: sho	ock	nd other			

```
[V_ss_2020,~,cons_ss_2020,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
    mp_params('xi') = xi;
    mp_params('b') = b;
end

% Solve unemployment, with three input parameters, auto will use a2_covidyr
% as tax, similar for employed call above
[V_unemp_2020,~,cons_unemp_2020] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
```

 $\label{lem:completed_SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM = default_docdense; SNW_MP_CONTROL = default_test; times the state of the state$

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	_									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-1.7805e+08	-4.0743	27.116	-6.6554
ap_VFI	2	2	6	4.37e+07	83	5.265e+05	1.3789e+09	31.553	36.673	1.1622
cons_VFI	3	3	6	4.37e+07	83	5.265e+05	2.1097e+08	4.8277	8.3289	1.7252

xxx TABLE:V_VFI xxxxxxxxxxxxxxxxx

	_ c1	c2	c 3	c4	c 5	c526496	c526497	c526498	c526499	c52656
r1	-372.97	-371.47	-362.94	-349.52	-336.96	21.573	21.728	21.882	22.036	22.19
r2	-360.84	-359.34	-350.81	-337.39	-324.98	21.595	21.745	21.894	22.044	22.19
r3	-348.91	-347.41	-338.88	-325.46	-313.34	21.617	21.762	21.906	22.052	22.20
r4	-336.09	-334.7	-326.73	-314.01	-302.44	21.633	21.772	21.913	22.056	22.20
r5	-324.48	-323.18	-315.72	-303.62	-292.54	21.634	21.77	21.907	22.046	22.18
r79	-9.9437	-9.9325	-9.8557	-9.6597	-9.3232	2.5374	2.5482	2.5584	2.568	2.57
r80	-8.9023	-8.8911	-8.8143	-8.6183	-8.2818	2.3024	2.3107	2.3185	2.3259	2.332
r81	-7.6363	-7.6251	-7.5484	-7.3524	-7.0159	2.0057	2.0114	2.0168	2.0218	2.026
r82	-5.9673	-5.9561	-5.8793	-5.6833	-5.3468	1.5952	1.5984	1.6014	1.6042	1.606
r83	-3.5892	-3.578	-3.5012	-3.3052	-2.9687	0.97886	0.97987	0.98082	0.98171	0.9825

xxx TABLE:ap_VFI xxxxxxxxxxxxxxxxxx

	c1	c2	с3	c4	c5	c526496	c526497	c526498	c526499	c526500
			_	_						
r1	0	0	0	0	0.0092181	110.06	115.71	121.55	127.62	133.93
r2	0	0	0	0	0.008238	110.03	115.68	121.54	127.62	133.95
r3	0	0	0	0	0.0066341	109.99	115.65	121.53	127.63	133.97
r4	0	0	0	0	0.0058019	110.28	115.95	121.84	127.96	134.33
r5	0	0	0	0	0.004998	110.58	116.27	122.17	128.31	134.69
r79	0	0	0	0	0	81.091	85.229	89.297	93.341	97.382
r80	0	0	0	0	0	75.865	79.539	83.28	87.016	90.669
r81	0	0	0	0	0	67.781	70.521	73.462	76.819	81.091
r82	0	0	0	0	0	50.126	53.467	56.108	57.742	60.587
r83	0	0	0	0	0	0	0	0	0	0

xxx TABLE:cons_VFI xxxxxxxxxxxxxxxxxx

	_ c1	c2	c 3	c4	c5	c526496	c526497	c526498	c526499
r1	0.018623	0.019158	0.022901	0.033062	0.04363	9.4708	9.6491	9.817	9.9649
r2	0.018623	0.019158	0.022901	0.033062	0.04461	9.6414	9.8118	9.9685	10.101
r3	0.018623	0.019158	0.022901	0.033062	0.046214	9.8179	9.9779	10.12	10.234
r4	0.019354	0.019888	0.023632	0.033792	0.047776	9.9825	10.131	10.258	10.354
r5	0.020066	0.020601	0.024344	0.034504	0.04929	10.135	10.272	10.384	10.463
r79	0.2179	0.21844	0.22216	0.23228	0.25197	34.82	36.506	38.455	40.627
r80	0.2179	0.21844	0.22216	0.23228	0.25197	40.033	42.183	44.459	46.938
r81	0.2179	0.21844	0.22216	0.23228	0.25197	48.106	51.19	54.266	57.123

```
r82
        0.2179
                   0.21844
                               0.22216
                                           0.23228
                                                      0.25197
                                                                 65.751
                                                                            68.234
                                                                                       71.611
                                                                                                  76.192
                                                                                       127.71
r83
        0.2179
                               0.22216
                                                                                                  133.93
                   0.21844
                                           0.23228
                                                      0.25197
                                                                 115.87
                                                                            121.69
```

```
%% B. Solve Dist
[Phi_true] = snw_ds_main_vec(mp_params, mp_controls, ap_ss, cons_ss);
```

 ${\tt Completed SNW_DS_MAIN_VEC; SNW_MP_PARAM = default_docdense; SNW_MP_CONTROL = default_test; time = 876.6781}$

Previous code

```
% % Solve the Model to get V working and unemployed
% [V_ss,ap_ss,cons_ss,mp_valpol_more_ss] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
% % Solve unemployment
% [V_unemp,~,cons_unemp,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
% [Phi_true] = snw_ds_main(mp_params, mp_controls, ap_ss, cons_ss, mp_valpol_more_ss);
```

Precompute

```
inc_VFI = mp_valpol_more_ss('inc_VFI');
spouse_inc_VFI = mp_valpol_more_ss('spouse_inc_VFI');
total_inc_VFI = inc_VFI + spouse_inc_VFI;
% Get Matrixes
cl_st_precompute_list = {'a', ...
    'inc', 'inc_unemp', 'spouse_inc', 'spouse_inc_unemp', 'ref_earn_wageind_grid'};
mp_controls('bl_print_precompute_verbose') = false;
[mp_precompute_res] = snw_hh_precompute(mp_params, mp_controls, cl_st_precompute_list, ap_ss, False);
```

Wage quintile cutoffs=0.4645 0.71528 1.0335 1.5632 Completed SNW_HH_PRECOMPUTE; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time cost=318.8898

Solve for 2020 Evuvw With 0 and 2 Checks

```
% Call Function
welf_checks = 0;
[ev20_jaeemk_check0, ec20_jaeemk_check0] = snw_evuvw20_jaeemk(...
    welf_checks, st_solu_type, mp_params, mp_controls, ...
    V_ss_2020, cons_ss_2020, V_unemp_2020, cons_unemp_2020, mp_precompute_res);
```

```
% Call Function
welf_checks = 2;
[ev20_jaeemk_check2, ec20_jaeemk_check2] = snw_evuvw20_jaeemk(...
    welf_checks, st_solu_type, mp_params, mp_controls, ...
    V_ss_2020, cons_ss_2020, V_unemp_2020, cons_unemp_2020, mp_precompute_res);
```

Differences between Checks in Expected Value and Expected Consumption

```
mn_V_U_gain_check = ev20_jaeemk_check2 - ev20_jaeemk_check0;
```

Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age grid = 18:100;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n jgrid,n agrid,n etagrid,n educgrid,n marriedgrid,n kidsgrid);
cl mp datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN_V_GAIN_CHECK(A,Z))

0.00051498

0.0041199

0.013905

1

2

3

4

Tabulate value and policies along savings and shocks:

1.1134

1.098

0.88037

0.63865

0.88994

0.8792

0.72635

0.54384

0.79581

0.78685

0.65728

0.49875

0.71183

0.70433

0.59416

0.45643

0.63701

0.63073

0.53692

0.41724

0.

0.

0

0.

0.99534

0.98245

0.80097

0.59083

_	0 000000	0 44004		0 2004	0 2625	0 22502		
5	0.032959	0.44836	0.42078	0.3921	0.3635	0.33593	0.30995	0.
6	0.064373	0.32067	0.304	0.28585	0.26716	0.24873	0.23105	0.

% Consumption

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 4, 1, cl_mp_data

XXX	group	N_MPC_U_GAIN_ savings	_CHECK(A,Z)), we. mean_eta_1	elf_checks=2, mean_eta_2		mean_eta_4	mean_eta_5	mean_eta_6	mean_
	1	0	0.99528	0.99037	0.98518	0.98297	0.98267	0.98334	0.98
	2	0.00051498	0.99442	0.9886	0.98246	0.97995	0.97977	0.98071	0.98
	3	0.0041199	0.87952	0.87675	0.87503	0.87358	0.87283	0.87252	0.87
	4	0.013905	0.79582	0.78989	0.7857	0.78365	0.78356	0.78456	0.78
	5	0.032959	0.70405	0.69975	0.69839	0.69882	0.69984	0.7011	0.70
	6	0.064373	0.63337	0.6334	0.63405	0.63503	0.63635	0.63811	0.6

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR='
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' nump_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Marginal Value and MPC over Y(a,eta), Conditional On Kids, Marry, Age, Education

Income is generated by savings and shocks, what are the income levels generated by all the shock and savings points conditional on kids, marital status, age and educational levels. Plot on the Y axis MPC, and plot on the X axis income levels, use colors to first distinguish between different a levels, then use colors to distinguish between different eta levels.

Set Up date, Select Age 38, unmarried, no kids, lower education:

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
% 38 year old, unmarried, no kids, lower educated
% Only Household Head Shock Matters so select up to 'n_eta_H_grid'
mn_total_inc_jemk = total_inc_VFI(20,:,1:mp_params('n_eta_H_grid'),1,1,1);
mn_V_W_gain_check_use = ev20_jaeemk_check2 - ev20_jaeemk_check0;
mn_C_W_gain_check_use = ec20_jaeemk_check2 - ec20_jaeemk_check0;
```

Select Age, Education, Marital, Kids Count:s

```
% Selections
it_age = 21; % +18
it_marital = 1; % 1 = unmarried
it_kids = 1; % 1 = kids is zero
it_educ = 1; % 1 = lower education
% Select: NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
mn_C_W_gain_check_jemk = mn_C_W_gain_check_use(it_age, :, 1:mp_params('n_eta_H_grid'), it_educ,mn_V_W_gain_check_jemk = mn_V_W_gain_check_use(it_age, :, 1:mp_params('n_eta_H_grid'), it_educ,% Reshape, so shock is the first dim, a is the second
mt_total_inc_jemk = permute(mn_total_inc_jemk,[3,2,1]);
mt_C_W_gain_check_jemk = permute(mn_C_W_gain_check_jemk,[3,2,1]);
mt_C_W_gain_check_jemk(mt_C_W_gain_check_jemk<=1e-10) = 1e-10;
mt_V_W_gain_check_jemk(mt_V_W_gain_check_jemk<=1e-10) = 1e-10;</pre>
```

```
% Generate meshed a and shock grid
[mt_eta_H, mt_a] = ndgrid(eta_H_grid(1:mp_params('n_eta_H_grid')), agrid);
```

Marginal Value Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_V\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```



```
figure();
scatter((mt_total_inc_jemk(:)), log(mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
```

```
'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
xlim([0,7]);
grid on;
grid minor;
```


Marginal Consumption Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_C_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_C\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```



```
figure();
scatter(log(mt_total_inc_jemk(:)), log(mt_C_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
```

```
'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('log of income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
grid on;
grid minor;
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
```

st_title = ['MEAN(MN_V_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_V_U_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesc

group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_2
1	1	0	0.033245	0.031982	0.030513	0.027957	0.025823	0.024029
2	2	0	0.045318	0.043648	0.041624	0.038035	0.035028	0.032489
3	3	0	0.052753	0.051115	0.049022	0.044815	0.041294	0.038324
4	4	0	0.059779	0.058053	0.055771	0.051	0.047008	0.04364
5	5	0	0.065493	0.063784	0.061427	0.056219	0.051865	0.048197
6	1	1	0.0098334	0.0093632	0.008915	0.008078	0.0073763	0.0067827
7	2	1	0.013114	0.012489	0.01189	0.010765	0.0098179	0.0090221
8	3	1	0.015745	0.015027	0.01433	0.012975	0.011838	0.010879
9	4	1	0.018816	0.017992	0.017173	0.015564	0.014209	0.013064
10	5	1	0.022802	0.021889	0.020957	0.019021	0.017394	0.016019

% Consumption Function

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MEAN(MN_MPC_U_	_GAIN_CHEC	CK(KM,J)), welf_	_checks=2, TR=0.	.0017225 xxxxx	xxxxxxxxxxxxx	«xxxxx	
group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.054527	0.058931	0.069975	0.068541	0.066643	0.065914
2	2	0	0.061679	0.066745	0.079243	0.077437	0.076495	0.074679
3	3	0	0.069419	0.075436	0.090313	0.087902	0.086963	0.084214
4	4	0	0.073241	0.080862	0.095495	0.092897	0.09086	0.088896
5	5	0	0.078577	0.086033	0.10041	0.09783	0.095009	0.092812
6	1	1	0.084627	0.088189	0.090609	0.089711	0.088925	0.088472
7	2	1	0.086884	0.08995	0.093211	0.092146	0.090954	0.090142
8	3	1	0.090166	0.09473	0.099076	0.097712	0.096798	0.096232
9	4	1	0.092841	0.096367	0.10103	0.10024	0.099267	0.097844
10	5	1	0.097558	0.10223	0.1097	0.10567	0.10418	0.10352

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

Tabulate value and policies:

```
% Set
% NaN(n jgrid,n agrid,n etagrid,n educgrid,n marriedgrid,n kidsgrid);
ar_permute = [2,3,6,1,4,5];
% Value Function
st_title = ['MEAN(MN_V_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_v_u_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdeso
mean_age_23
   group
         edu
               marry
                      mean_age_18
                                 mean_age_19
                                             mean_age_20
                                                         mean_age_21
                                                                    mean_age_22
                       0.053096
                                  0.051807
                                              0.050213
                                                         0.047392
                                                                     0.044883
                                                                                 0.042648
    1
          0
                0
    2
          1
                0
                       0.049539
                                  0.047626
                                              0.04513
                                                         0.039818
                                                                     0.035524
                                                                                 0.032023
    3
          0
                1
                        0.0171
                                  0.016386
                                              0.01569
                                                         0.014562
                                                                     0.01357
                                                                                 0.012706
    4
          1
                1
                       0.015024
                                  0.014318
                                              0.013616
                                                         0.011999
                                                                     0.010684
                                                                                 0.0096012
% Consumption
st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_date
edu
               marry
                      mean_age_18
                                 mean_age_19
   group
                                             mean_age_20
                                                         mean_age_21
                                                                    mean_age_22
                                                                                mean_age_23
```

Graph Mean Values:

1

2

3

4

0

1

0

0

1

1

0.06081

0.074167

0.083761

0.097069

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```

0.073095

0.10108

0.088972

0.10848

0.072607

0.097236

0.089128

0.10507

0.072694

0.093694

0.088901

0.10315

0.071887

0.090718

0.088933

0.10155

0.064362

0.082841

0.086559

0.10202

Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


