STARK HEALTH CLINIC -DIABETES PREDICTION PROJECT

BY: Sesay Isaac Santous

AUGUST 2024

Background and Problem Statement

- Stark Health Clinic is a healthcare provider
- Leverages technology and predictive modelling to enhance its operations
- Integrating machine learning into its systems
- Identifies diseases early, improving patient outcomes and resource allocation.
- Health and financial challenges due to Diabetes
- Current methods for early detection lack precision
- Missed opportunities for timely interventions

Rationale and Objective of the Project

- Accurate prediction of Diabetes through advanced Machine Learning
- Improve patient care, reduce costs, and take a proactive role in combating diabetes
- Aims at developing a robust diabetes prediction model to accurately identify individuals at risk of diabetes.
- To predict the likelihood of diabetes onset

Steps

- Data cleaning
- Import Required Libraries
- Load the data
- Data verification type, features, rows, missing data etc
- Check for missing values
- Perform exploratory Data Analysis (EDA)
- Data pre-processing/feature engineering
- Machine Learning

Categorical Analysis

Analysis

Analysis

Analysis

Target counts

No 91500

Yes 8500

Target Percentage

No 0.915

Yes 0.085

Univariate Analysis

Univariate Analysis

Bivariate Analysis

Bivariate Analysis

Bivariate Analysis

Multivariate Analysis

Multivariate Analysis

Predictive Models

```
# Logistic Regression

logreg = LogisticRegression()

logreg.fit(x_train, y_train)

ly_pred = logreg.predict(x_test)
```

```
print("Logistic Regression")
print("Accuracy:", accuracy_score(y_test, ly_pred))
print("Precision:", precision_score(y_test, ly_pred))
print("Recall:", recall_score(y_test, ly_pred))
print("F1-score:", f1_score(y_test, ly_pred))
print("AUC-ROC:", roc_auc_score(y_test, ly_pred))
```

Logistic Regression

Accuracy: 0.95845

Precision: 0.8783433994823123

Recall: 0.5960187353629977

F1-score: 0.7101499825601674

AUC-ROC: 0.7941552237934602

Predictive Models

```
# Random Forest Classifier

rfc = RandomForestClassifier()
rfc.fit(x_train, y_train)
rfy_pred = rfc.predict(x_test)
print("Logistic Regression")
print("Accuracy:", accuracy_score(y_test, rfy_pred))
print("Precision:", precision_score(y_test, rfy_pred))
print("Recall:", recall_score(y_test, rfy_pred))
print("F1-score:", f1_score(y_test, rfy_pred))
print("AUC-ROC:", roc_auc_score(y_test, rfy_pred))
```

Logistic Regression

Accuracy: 0.9688

Precision: 0.9137404580152672

Recall: 0.7008196721311475

F1-score: 0.7932405566600398

AUC-ROC: 0.8473210540843797

Applied 8 ML Algorithms to the dataset

```
print("Accuracy Score")
sl = pd.DataFrame(acc_list)
sl.head()
Accuracy Score
  XGB Classifier Random Forest K-Nearest Neighbors SGD Classifier
                                                                     SVC Naive Bayes Decision Tree Logistic Regression
0
         97.16%
                        96.95%
                                             95.78%
                                                           95.55% 91.48%
                                                                               90.55%
                                                                                             95.55%
                                                                                                                95.84%
print("Precision")
s2 = pd.DataFrame(precision_list)
s2.head()
Precision
  XGB Classifier Random Forest K-Nearest Neighbors SGD Classifier
                                                                     SVC Naive Bayes Decision Tree Logistic Regression
0
                        91.97%
         96.19%
                                              88.7%
                                                           78.88% 100.0%
                                                                               46.13%
                                                                                             73.56%
                                                                                                                87.83%
print("Recall")
s3 = pd.DataFrame(recall_list)
s3.head()
Recall.
  XGB Classifier Random Forest K-Nearest Neighbors SGD Classifier
                                                                      SVC Naive Bayes Decision Tree Logistic Regression
0
          69.5%
                         70.37%
                                               57.9%
                                                              65.4% 0.23%
                                                                                 63.23%
                                                                                              74.77%
                                                                                                                   59.6%
print("ROC Score")
s4 = pd.DataFrame(roc_list)
s4.head()
ROC Score
  XGB Classifier Random Forest K-Nearest Neighbors SGD Classifier
                                                                       SVC Naive Bayes Decision Tree Logistic Regression
0
         84.62%
                          84.9%
                                                            81.88% 50.12%
                                                                                  78.17%
                                                                                                                   79.42%
                                              78.61%
                                                                                               86.13%
```

Conclusion and Recommendation

- According to the dataset, most patients were female
- Only a small proportion (8.5%) of patients have diabetes
- The disease was more prevalent among the adult (36 yrs above) population
- There was no strong correlation between the patient's smoking history and diabetes
- There was a high level of blood glucose among patients
- The XGB Classifier Model proves to be a better model with an accuracy of 96.12%.
- The most important metrics based on the models executed are accuracy and precision
- However, 551 patients (false negative) were wrongly predicted
- Hence, more attention and further analysis is required on the 551 falsely predicted patients.