

5. Numerische Integration

A Practical Course in Numerical Methods for Engineers

Barbara Wirthl, M.Sc.
Technische Universität München

Technische Oniversität Munichen

Lehrstuhl für Numerische Mechanik

Ergebnis FD-Konvergenzplot $x_0 = 0.6$

$$f(x) = \left(\frac{x}{1+x}\right)^5 \text{ mit } x_0 = 0.6$$

Differentiation

•0000000

▶ logspace statt linspace

Numerische Differentiation: Finite-Differenzen

Zweipunkte-Formel:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

Dreipunkte-Endpunkt-Formel:

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi)$$

Dreipunkte-Mittelpunkt-Formel:

$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f^{(3)}(\xi)$$

Fünfpunkte-Mittelpunkt-Formel:

$$f'(x_0) = \frac{1}{12h} \left[f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^4}{30} f^{(5)}(\xi)$$

Herleitung: Faires, J. D., & Burden, R. L. (1994). Numerische Methoden. Näherungsverfahren und ihre praktische Anwendung. Heidelberg, Berlin, Oxford: Spektrum Akademischer Verlag, Kapitel 4.9

h zu groß:

 10^{-2}

10⁻⁸

Diskrehsierungsfehler $f(x) = \left(\frac{x}{1+x}\right)^5 \text{ mit } x_0 = 0.6$ 10⁰ $|f'(x = x_0) - f'_{\text{approx}}(x = x_0)|$ (2) h zu klein Rundungsfehler Zweipunkte-Formel Dreipunkte-Endpunkt-Formel Dreipunkte-Mittelpunkt-Formel Fünfpunkte-Mittelpunkt-Formel

10⁻⁶

h

 10^{-4}

10⁰

Ergebnis FD-Konvergenzplot $x_0 = 0.6$

 $\textbf{ 1)} \ \, \text{Peak} \longrightarrow \infty \text{ in Fünfpunkte-Mittelpunkt-Formel:}$

 $x_0 = 06$ and h = 08

Auswertung in $x = x_0 - 2h = -1$ \longrightarrow Polstelle

(2) Peak \longrightarrow 0 in Dreipunkte-Mittelpunkt-Formel:

$$\frac{f(x_0+h)-f(x_0-h)}{2h} = \frac{5x_0^4}{(x_0+1)^6}$$

h ≈ 0.27147. -> exakt

Pingo

Finite Differenzen für $f(x) = \left(\frac{x}{1+x}\right)^5$ mit $x_0 = 2.0$

Was ändert sich im Konvergenzplot für die Stelle $x_0 = 2.0$ im Vergleich zu $x_0 = 0.6$?

- Nichts.
- ▶ Die Peaks.
- ► Eine Konvergenzordnung. ✓

Ergebnis FD-Konvergenzplot $X_0 = 2.0$

$$f(x) = \left(\frac{x}{1+x}\right)^5 \text{ mit } x_0 = 2.0$$

Differentiation

00000000

Ergebnis FD-Konvergenzplot $x_0 = 2.0$

Konvergenz der Zweipunkte-Formel mit h^2 ?

Taylor-Entwicklung am Punkt $x_0 + h$:

Differentiation 00000000

$$f(x_0 + h) = f(x_0) + hf(x_0) + \frac{h}{h^2}f_n(x_0) + \frac{h}{h^3}f_n(x_0) + O(h_q)$$

$$f(x_0 + h) = f(x_0) + hf(x_0) + \frac{h}{h^2}f_n(x_0) + \frac{h}{h^3}f_n(x_0) + O(h_q)$$

$$f''(x) = \frac{d^2}{dx^2} \left[\left(\frac{x}{x+1} \right)^5 \right] = -\frac{10(x-2)x^3}{(1+x)^7}$$

$$\rightarrow$$
 Nullstelle in $x=2 \rightarrow f''(x_0=2)=0$

 \rightarrow Konvergenzordnung h^2

Aufgabenblatt 5

Aufgabe 1: Einfache Quadraturverfahren und 1D Gauß-Quadratur

Approximieren Sie das Integral der Funktion $f(x) = \left(\frac{x}{1+x}\right)^5$ auf dem Intervall [a,b] = [0,4]. Die Berechnung soll mit folgenden Quadraturverfahren erfolgen:

- Mittelpunktregel
- Trapezregel

Erstellen Sie die Funktionen Fkt. III & Fkt. IV zur Berechnung der Positionen und Gewichte und wenden Sie sie auf die folgenden drei Beispiele an:

- Gauß-Quadratur mit einer Stützstelle
- Gauß-Quadratur mit zwei Stützstellen
- Gauß-Quadratur mit drei Stützstellen

Vergleichen Sie das Ergebnis mit dem Wert der exakten Integration I = 0.556543771162832

Einfache Quadraturverfahren: Mittelpunktregel

$$\int_{a}^{b} f(x) dx = (b - a) f\left(\frac{a + b}{2}\right) + \frac{(b - a)^{3}}{24} f''(\xi)$$

Einfache Quadraturverfahren: Trapezregel

$$\int_{a}^{b} f(x) dx = (b - a) \frac{f(a) + f(b)}{2} + \frac{(b - a)^{3}}{12} f''(\xi)$$

Mehrdimensional

Gauß-Quadratur

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} w_{i} f(x_{i}) + C_{n}(b-a)^{2n+1} f^{(2n)}(\xi)$$

Gauß-Quadratur: Tipps zur Implementierung

Für n = 1, 2, 3 und [a, b] = [-1, 1]:

n

$$x_i$$
 w_i

 1
 $x_1 = 0$
 $w_1 = 2$

 2
 $x_1 = -\frac{1}{\sqrt{3}}, x_2 = \frac{1}{\sqrt{3}}$
 $w_1 = w_2 = 1$

 3
 $x_1 = -\sqrt{3/5}, x_2 = 0, x_3 = \sqrt{3/5}$
 $w_1 = \frac{5}{9}, w_2 = \frac{8}{9}, w_3 = \frac{5}{9}$

- Fkt. III: function gaussx = gx(n) [n ... Anz. der Integrationspunkte]
 Rückgabewert: Positionen x_i für die 1D-Gauß-Integration als Zeilenvektor
- ► **Fkt. IV**: function gaussw = gw(n) [n ... Anz. der Integrationspunkte]

 Rückgabewert: Gewichte w_i für die 1D-Gauß-Integration als Zeilenvektor

Gauß-Quadratur auf beliebigem Intervall

Für $[a, b] \neq [-1, 1]$:

Transformations be ziehung
$$x(\xi) = \frac{b-a}{2} \xi + \frac{a+b}{2}$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{4} f(x(\xi)) \frac{dx(\xi)}{d\xi} d\xi$$

Aufgabenblatt 5

Aufgabe 2: Mehrdimensionale Gauß-Quadratur

Approximieren Sie das Integral

$$m_{12} = \int_{\Omega^e} \overline{N}^1(\boldsymbol{x}) \cdot \overline{N}^2(\boldsymbol{x}) d\Omega^e$$

mit der Gauß-Quadratur für n=1,2 sowie 3 Gauß'sche Integrationspunkte in jeder Koordinatenrichtung. $\overline{N}^i(\mathbf{x})$ sind die transformierten Ansatzfunktionen im (x,y)-Koordinatensystem $\overline{N}^i(\mathbf{x}) = \overline{N}^i(\mathbf{x}(\xi)) = N^i(\xi)$.

Mehrdimensionale Gauß-Quadratur

Auf dem Referenzelement $\Omega^{ref} = [-1.0, 1.0] \times [-1.0, 1.0]$:

$$\int_{\Omega^{ref}} f(x,y) dx dy \approx \int_{y_{z-1}}^{1} \sum_{i=1}^{n^{x}} \omega_{i}^{x} f(x_{i},y) dy$$

$$= \sum_{i=1}^{n^{x}} \sum_{j=1}^{n^{y}} \omega_{i}^{x} \omega_{j}^{y} f(x_{i},y_{i})$$

$$= \sum_{k=1}^{n} \omega_{k} f(x_{k},y_{k})$$

mit
$$n = n^x n^y$$
, $w_k = w_i^x w_j^y$, $[x_k, y_k] = [x_i, y_j]$

Mehrdimensionale Gauß-Quadratur: Tipps zur Implementierung

Erstellen Sie für das Gebiet $\Omega^{ref} = \{(\xi, \eta) | -1 \le \xi \le 1, -1 \le \eta \le 1\}$ und n < 4 die folgenden Funktionen:

- Fkt. V: function gaussx = gx2dref(n)

 [n ... Anzahl der Integrationspunkte in einer Richtung]
 - Rückgabewert: Positionen ξ_i für die 2D-Gauß-Integration auf dem Gebiet Ω^{ref} (Zeile: Integrationspunkt i; Spalte: ξ , η)
- ► **Fkt. VI**: function gaussw = gw2dref(n)
 - [n ... Anzahl der Integrationspunkte in einer Richtung]
 - Rückgabewert: Gewichte w_i für die 2D-Gauß-Integration auf dem Gebiet Ω^{ref} als Zeilenvektor

Mehrdimensionale Gauß-Quadratur auf beliebigem Element

Referenzkonfiguration im lokalen ξ -Koordinatensystem $\xi = (\xi, \eta)$:

Ansatzfunktionen: $\overline{N}^{i}(\mathbf{x}) = \overline{N}^{i}(\mathbf{x}(\xi)) = N^{i}(\xi)$

Verzerrter Zustand im globalen **x**-Koordinatensystem $\mathbf{x} = (x, y)$:

Mehrdimensionale Gauß-Quadratur auf beliebigem Element

Transformation einer Position (ξ , η) im Referenzelement ins (x, y)-Koordinatensystem:

$$x(\xi, \eta) = \sum_{i=1}^{4} N^{i}(\xi, \eta) \times Knoten$$

-> isoporametrische Transformation

Reminder Lagrange-Polynom in 2D:
$$P(\xi, \eta) = \sum_{i=1}^{4} N^{i}(\xi, \eta) f^{i}$$

Transformation des Integrals auf das Referenzelement:

$$\begin{split} m_{12} &= \int_{\Omega^{e}} \overline{N}^{1}(\mathbf{x}) \cdot \overline{N}^{2}(\mathbf{x}) d\Omega^{e} \\ &= \int_{\Omega^{\text{ref}}} \overline{N}^{1}(\underline{\mathbf{x}}(\xi, \eta)) \cdot \overline{N}^{2}(\underline{\mathbf{x}}(\xi, \eta)) det(\underline{J}(\xi, \eta)) d\Omega^{\text{ref}} \\ &= \int_{\Omega^{\text{ref}}} N^{1}(\xi, \eta) \cdot N^{2}(\xi, \eta) det(\underline{J}(\xi, \eta)) d\Omega^{\text{ref}} \\ &= mit \quad \underline{J}(\xi, \eta) = \left(\frac{\partial \underline{\mathbf{x}}}{\partial \xi}, \frac{\partial \underline{\mathbf{x}}}{\partial \eta}\right) \end{split}$$

→ Verwendung der Standard-Gauß-Punkte und -Gewichte möglich

Mehrdimensionale Gauß-Quadratur: Tipps zur Implementierung

Für folgende Funktionen ist der Inputparameter 'nodes' eine Matrix mit den Positionen der Ecken des Elements: (Zeile: Knoten i, Spalte: *x*,*y*)

- ► **Fkt. VII**: function x = getxPos(nodes, xi, eta) Rückgabewert: Position im (x, y)-Koordinatensystem
- ► Fkt. VIII: function [J,detJ,invJ] = getJacobian(nodes, xi, eta)

 Rückgabewert: [Jacobi-Matrix, Determinante der Jacobi-Matrix, Inverse der Jacobi-Matrix]

Und los...

Nächste Tutorsprechstunden:

Montag 21.11. 10:00 – 12:15 Uhr MW1264 Mittwoch 23.11. 15:30 – 17:45 Uhr MW1264

Nächstes Aufgabenblatt:

Donnerstag 24.11. 17:00 - 17:45 Uhr MW2050 + Zoom