Introduction to programming for Geoscientists

Revision Lecture 2

Christian Jacobs

c. jacobs 10@imperial.ac.uk

Classes and Objects Definitions

- Class: a programming construct used to encapsulate data (attributes) and functions (behaviour) in a single package.
 - They make programs more managable.
 - They allow information hiding.
- Object: a specific instance of a class.
- Instantiation: the process of creating an object from a class.

- A class is like a blueprint/template from which objects can be created/instantiated.
- Cake analogy: A cake (object) is created using a recipe (class).

Classes and Objects Terminology

- Variables belonging to a class are known as attributes.
- Functions belonging to a class are known as methods.
- It is good practice to change attributes via get/set methods, not directly.

Classes and Objects Example

General example of a class definition in Python:

```
class ClassName:
     def __init__(self, input1, input2):
         self.a = input1
         self.b = input2
     def method1(self, input1):
         print "Hello %s!" % input1
     def method2(self):
         print "a = %d, b = %d" % (self.a, self.b)
  A = ClassName(5, 10)
  A.method1("world") \rightarrow "Hello world!"
  A.method2() \rightarrow 5, 10

    self distinguishes the attributes belonging to a particular object from
```

other variables.__init__ is a special method used to initialise/setup objects.

Classes and Objects Cake

print A.type \rightarrow "Chocolate" print B.type \rightarrow "Lemon"

B.eat_slice() \rightarrow "9 slices remaining."

 The following example describes cake: class Cake: def __init__(self, cake_type): self.type = cake_type self.number of slices = 10 def eat_slice(self): self.number of slices = self.number of slices - 1 print "%d slices remaining." % self.number_of_slices A = Cake("Chocolate") B = Cake("Lemon")

NumPy Arrays Definition

- Arrays: data structures which comprise a finite number of elements/items/values.
- Similar to lists (or lists of lists), but are of a fixed size.
- Arrays are generally faster than lists because array elements are stored in contiguous areas of memory.

NumPy Arrays

linspace and zeros

- Two useful functions for creating arrays:
 - linspace(start, end, n): creates an array of n uniformly distributed points in the interval [start, end].
 - zeros(n): creates an array of n elements that are all initialised to zero.
- Or...simply define as a list of lists and cast/convert to an array:

• Remember to include from numpy import * in your program.

NumPy Arrays

Referencing/accessing elements

- Referencing/accessing elements in an array is the same as referencing list elements.
- a[i][j] accesses the element at row i and column j.
- Row fiRst, Column seCond.

NumPy Arrays Vectorised functions

- A vectorised function can accept an array as its input...
- ...and for each element of that array, compute the result...
- ...and output all results in a new array.
 from numpy import *
 a = linspace(0, 1, 10)
 result = sin(a) # Result is an array here.
- This is like doing:
 from numpy import *
 a = linspace(0, 1, 10)
 result = zeros(10)
 for i in range(0, 10):
 result[i] = sin(a[i])
- But with vectorised functions, this for loop is implicit.

Files Reading

- Open a file (for reading) using f = open("file_name_here.txt", "r").
- A file can be thought of as a list of strings, with each string being a single line of the file.
- We can select one line at a time using f.readline(), ...
- ...or select all the lines in the file using f.readlines().
- It is good practice to close the file (once it is no longer needed) with f.close()

Files Writing

- Open a file (for writing) using f = open("file_name_here.txt", "w").
- Write a string to the file using f.write(string_to_write_here).
- Once again, remember to close the file after use.

Dictionaries Definition

- Dictionary: a data structure whose elements are key-value pairs.
- The key does not have to be an integer.
- Example: d = {"Barcelona":11.0, "Lleida":6.0,
 "Tarragona":8.0 }
- $\bullet \ d.keys() \to \hbox{\tt ["Barcelona", "Lleida", "Tarragona"]}$
- d.values() \rightarrow [11.0, 6.0, 8.0]
- Items can be added using b[new_key_here] = value_here.
- ...or existing items can be accessed using the key: print b["Barcelona"].

Strings Definition

- String: a sequence of characters, terminated by an end-of-line marker.
- Each character
 in a string can be accessed in the same way as elements of a list or array:
 s = "hello"
 print s[0] → "h"
 print s[2] → "l"
- split breaks up strings wherever a user-defined delimiter is encountered.
- For example, if the delimiter is a comma:
 s = "hello world, Python is really awesome."
 print s.split(",") → ["hello world", "Python is really awesome"]
- Remember: Strings are immutable/constant data structures. They cannot be modified once defined.