

Course

: 2D Game Programming

Effective Period

: September 2016

People Innovation Excellence

2D Game Programing LAB 02

UNIVERSITY Acknowledgement

These slides have been adapted from:

Pereira, V. (2014). Learning Unity 2D Game Development by Example, Packt Publishing, Inc. San Francisco. ISBN: 9781783559046

Chapter 4

Learning Objectives

LO 1: Create 2D game for PC platform

LO 3: Design 2D game for PC platform

Let's get on with Physics

Apply Unity's 2D physics to our game

Unity's 2D physics engine is very similar to its 3D one. Almost all of the physics components have been integrated into the 2D engine with a slight difference in names (Box Collider 2D, Circle Collider 2D, Rigidbody 2D, and so on...).

It is important to understand that 2D physics components will not interact with 3D physics components if both exist within the same scene. Even though they both share a lot of similarities, 2D physics only occur on the X and Y axis, and rotating an object using physics will only occur on the X axis.

Add rigid body 2D

Let's add Rigidbody 2D component to the player

You will see above panel in the inspector

Rigidbody?

Rigidbody2D component controls the physical behaviour of any game object it is attached to inside the scene. It also defines its physical properties, such as mass, and how gravity should affect an object.

- **Mass**: Mass of the rigid body; the greater the value the greater the force that will be required to move the object.
- **Liner Drag**: This is the amount of friction that a force has to work against to make an object move.
- **Angular Drag**: This is the amount of rotational friction that a force has to work against to make an object rotate.
- **Gravity Scale**: This is the amount of gravity that affects a game object. The greater the value, the stronger the gravitational force.
- **Fixed Angle**: When marked true, the rigid body will continue to respond normally to the physics forces, but without rotating.
- **Is Kinematic**: When marked true, the object will not respond to any physics forces around it. This is typically used when an object needs a special type of physics behavior that can be created by a custom script.

It falls down

Press play and see what happens

Colliders 2D

In order to define the dimension of an object in the scene, we need to add a collider component that defines its shape and that reacts if a rigid body is attached to it.

- Box Collider 2D: This type of collider works better with rectangular objects.
- Circle Collider 2D: As given by its name, this collider works better with circular objects.
- Polygon Collider 2D: Its shape is defined by a freeform edge made by line segments that surround the sprite
- Edge Collider 2D: It is used to define a surface without using a series of other colliders

Box Collider 2D

Let's try to add a box collider to the player & individual floors

You will see above panel in the inspector

BoxCollider 2D

A type of collider that works better with rectangular objects

- **Edit Collider**: This is a button that allows us to manually adjust the shape of the collider. This can also be done in the **Scene** view.
- Material: This is a reference to the 2D physics material that will define the object's behaviour when colliding with other objects.
- **Is Trigger**: When checked, the collider will act as a trigger to fire events from the code.
- Used By Effector: If marked true, this collider will be used by an attached effector to define it. We will see them later in the chapter.
- Offset: This allows us to change the centre or pivot point of the collider.
- **Size**: This allows us to change the size of the collider for each axis.

It stays

Press play and see what happens

So...

We are going to use one of Unity Standard Assets

Since we are going to use the Character Controller inside the Standard Assets, we need to have it in our project. If you haven't downloaded it yet, you can do so by going in the Asset Store: Window | Asset Store or alternatively, Ctrl + 9.

If you have already downloaded them, but not imported them into this project, you can do so by by clicking on Assets | Import Package or again, using the Asset Store.

If you are doing this in the lab class than you should have 2DUnityStandardAssets.unity in your class FTP folder

Remove your old script

Add the unity standard asset script

Add the new PlatformerCharacter 2D and Platform 2D User Control Scripts to the player object

You will see above panel in the inspector

Platform Character 2D

The PlatformerCharacter2D component makes use of the rigid body attached to the object to move the character in a Platformer fashion. It still allows us to use the other physical forces in the scene, making the character even more believable.

- Max Speed: This is the maximum speed that the player can reach when moving along the X axis
- Jump Force: This is the force that will be applied to the player's rigid body when he jumps
- Crouch Speed: This is the player's speed while crouching (crouching is done by pressing Ctrl)
- Air Control: If marked true, the player can also be controlled in air, when he is not being grounded
- What Is Ground: These are the layers that will be treated as the ground.

Do some changes

Let's edit the parameter

Player CeilingCheck GroundCheck

Add detection

adjust their positions

Now we need to define which are the top and bottom ends of the Player object. This is because they are used by the PlatformerCharacter2D component to understand the dimensions of the character. We can easily do this by adding two empty child game objects to the Player and

The problem with box colliders

How to fix it?

Add circle collider!

Edit the collider to look like this (Check the green lines)

Edit rigid body setting

Finally, in the RigidBody2D component, we need to change Constraints > Freeze Rotation > Z to true to True. As a result, our character will not rotate. Also, in the Interpolate variable, choose the Interpolate method in order to smooth the character movement.

Get back to your animator

- Rename the parameter
 PlayerSpeed to Speed. This is the speed of the player.
- Create two Boolean
 parameters and name it
 Ground and Crouch. This is
 an indicator whether the
 player is in the ground or
 crouching.
- Add a new parameter of type float and name it vSpeed.
 This is the vertical speed.

Create a new state

People Innovation Excellence

Create a new empty state and name it "jumpAnimation"

People Innovation

Excellence

Create a new transition

Create transition from AnyState to jumpAnimation. Name it Start Jump and create a Conditions where Ground is false

Another transition

jumpAnimation -> idle 1 AnimatorTransitionBase Transitions Solo Mute jumpAnimation -> idle ፟. Stop Jump jumpAnimation -> idle Has Exit Time Settings Exit Time 0.75 Fixed Duration Transition Duratio 0 Transition Offset 0 Interruption Sourd None Ordered Interrupt Cannot preview transition: source state does not have motion Conditions — Ground true

People Innovation Excellence

Create transition from jumpAnimation to idle. Name it Stop Jump and create a Conditions where Ground is true and set Transition Duration to 0.

The sprite

Grab jump sprite from the kenney's asset folder and put it on our project folder.

Create the jumpAnimation

You only create the state, now time to create the animation.

Open the animator

Pick the jump animation

Create the simple animation

Go back to the animator and update other parameters

Start Walking 1 AnimatorTransitionBase	٥.
Transitions	Solo Mute
Start Walking	
	_
Start Walking	٥,
Start Walking	
Has Exit Time	
Settings	
Exit Time 0.9	
Fixed Duration	
Transition Duratio 0.1	
Transition Offset 0	
Interruption Sourd None	‡]
Ordered Interrupt	
Cannot preview transition: so does not have motion	urce state
Conditions	
= Speed T Greater	0.1

Transitions		Solo Mute	
StopW	/alking		
₹5	StopWalkir	ng	Φ,
	StopWalkin	ıg	
Has Ex	it Time	<u> </u>	
Setting	s		
Exit	Time	0.727272	27
Fixe	d Duration	✓	
Tran	sition Durat	io 0.25	
Tran	sition Offset	t O	
Inte	rruption Sou	ırı None	*)
Orde	ered Interru	pt☑	
):00 , N	1:00	1
	walkAnimat	ion walkAr	imation
		idle	
		luie	
Condi	tions		
		Tal Class	
= Spe	eed	Less	0.1
			+

Press play and tests it out

Following camera?

People Innovation Excellence

Put the main camera as the sub-game object of the player and again... Press play!!

The Platformer 2D User Control

▼ 🕝 🗹 Platformer Character 2D (Script)			
Script	PlatformerCharacter2D	0	
Max Speed	10		
Jump Force	430		
Crouch Speed	0		
Air Control			
What Is Ground	Everything	+	

- Max speed -> The fastest the player can travel in the x axis.
- Jump Force -> Amount of force added when the player jumps.
- Crouch Speed -> Amount of maxSpeed applied to crouching movement. 1 = 100%
- Air Control -> Whether or not a player can steer while jumping
- What is Ground? -> A mask determining what is ground to the character

Scale your platform

Rescale your platform to 1,1,1 and move it directly under your player.

Duplicate and move it as you wanted

Camera Follow

Add Camera 2D Follow to the Main Camera Script

Drag player game object to the target field

Create a reset zone

People

Innovation

Excellence

Create an empty gameobject and name it Reset Zone. Add component Box Collider 2D and Restarter script

Make sure that you tag your Player object as Player

Move it to under the platforms

Boing

Make objects folder in the Visuals project folder and Move springboardDown from kenney's asset to the project folder

People Innovation Excellence Move the springboardDown to the game scene and add box collider 2D component

Open BouncBoc physicsmaterials from standard assets and apply it to the game object (drag and drop).

Make sure the camera follows....

Open "Main Camera" inspector and add Camera 2D Follow Component.

Make sure that the Target is the Player

Create a main menu scene

People Innovation Excellence

Create a new scene, name it Scene00 and open it!!

Create the Background

People Innovation Excellence

Move the springboardDown to the game scene and resize it (7,7,1)

Game Title!

Create new gameobject and name it Game Title and add a text mesh

Any Key Text

Create a game object and name it Any Key

Add text mesh and write "Press Any Key to Continue"

The main menu script

Create "GameStart" script

Add the script to Any Key gameobject

The script

```
2 using System.Collections.Generic;
 3 using UnityEngine;
 4 using UnityEngine.SceneManagement;
 6 public class GameStart : MonoBehaviour {
      // Use this for initialization
      void Start () {
10
11
12
      // Update is called once per frame
13
      void Update () {
14
15
          if (Input.anyKey)
               SceneManager.LoadScene("Scene01");
16
17
18 }
```

1 using System.Collections;

Game Scenes

Build Settings		x
Scenes In Build ✓ Scenes/Scene00 ✓ Scenes/Scene01		0
Platform		Add Open Scenes
PC, Mac & Linux Standalone iOS Android WebGL	PC, Mac & Linux S Target Platform Architecture Copy PDB files Development Build Autoconnect Profiler Script Debugging	Windows \$ x86_64 \$
tv tvOS Tizen Xbox One	Scripts Only Build	
PS Vita Switch Platform Player Settings		Learn about Unity Cloud Build Build And Run

To make sure the game run smoothly you have to add the build to the build settings.

As we are on the build settings...

Why don't we just build it...

Let's run it...

Graphics Input Windowed 1920 x 1080 Screen Graphics quality Ultra Select monitor Display 1

Latihan Configuration

X

Play!

Quit

And play!!

People Innovation

Excellence

Jumping Jacks

Press Any Key to Continue

Tugas Mandiri

Create a crouch animation...

Tugas Mandiri

Create your own game and add an end scene...

Hint... Modify restarter script

Using another key?

References

Freeman, J. (2015). Unity's New 2D Workflow Vidyasagar. (2014. Unity and C#: Game Loop.CodeProject Pereira, V. (2014). Learning Unity 2D Game Development by Example. Packt Publishing, Inc. San Francisco. ISBN: 9781783559046