Homework 4 – Written Exercises

1. Show that the Fourier Transform is linear (use the Fourier Transform integral):

It needs to shown that $\mathcal{F}(ag + bh) = aF(g) + bF(h)$, where $F(some_function)$ is the Fourier Transform for functions g and h, and a and b are constants. Therefore:

$$\mathcal{H}(ag(t)+bh(t)) = \int ag(t) \ e^{-i2\pi u t} \ dt + \int bh(t) \ e^{-i2\pi u t} \ dt \quad // \ I \ am \ replacing \ \mathcal{H}(f(t)) \ with \ \mathcal{H}(g(t)+h(t))$$

$$= a \int g(t) \ e^{-i2\pi u t} \ dt + b \int bh(t) \ e^{-i2\pi u t} \ dt \quad // \ move \ the \ constants \ outside \ of \ the \ integrals$$

$$= a \left(\int g(t) \ e^{-i2\pi u t} \ dt \right) + b \left(\int bh(t) \ e^{-i2\pi u t} \ dt \right) \quad // \ notice \ the \ similarity \ to \ normal \ Fourier$$
 transforms inside parentheses

= aG(f(t)) + bH(f(t)), where G and H are the Fourier Transforms

2. Compute by hand the DFT of the signal f = [1, 1, 1, 1] (show your work):

$$f = [1, 1, 1, 1]$$

 $M = 4$

 $u = 0 \rightarrow F(0)$

	1 (0)	1		ı	1
X	f(x)	cos(2pi0x/M)	sin(2pi0x/M)	f(x)cos(2pi0x/M)	f(x)sin(2pi0x/M)
0	1	1	0	1	0
1	1	1	0	1	0
2	1	1	0	1	0
3	1	1	0	1	0
sum				4 (real part)	0 (imaginary part)

$$1/4(4 + 0j) = 1 + 0j$$

 $u = 1 \rightarrow F(1)$

X	f(x)	cos(2pi1x/M)	sin(2pi1x/M)	f(x)cos(2pi1x/M)	f(x)sin(2pi1x/M)
0	1	1	0	1	0
1	1	0	1	0	1
2	1	-1	0	-1	0
3	1	1	-1	0	-1
sum				0 (real part)	0 (imaginary part)

$$1/4(0 + 0i) = 0 + 0i$$

 $u = 2 \rightarrow F(2)$

X	f(x)	cos(2pi2x/M)	sin(2pi2x/M)	f(x)cos(2pi2x/M)	f(x)sin(2pi2x/M)
0	1	1	0	1	0
1	1	-1	0	-1	0
2	1	1	0	1	0
3	1	-1	0	-1	0
sum				0 (real part)	0 (imaginary part)

1/4(0 + 0j) = 0 + 0j

 $u = 3 \rightarrow F(3)$

	u 5 1(5)						
X	f(x)	cos(2pi3x/M)	sin(2pi3x/M)	f(x)cos(2pi3x/M)	f(x)sin(2pi3x/M)		
0	1	1	0	1	0		
1	1	0	-1	0	-1		
2	1	-1	0	-1	0		
3	1	0	1	0	1		
sum				0 (real part)	0 (imaginary part)		

1/4(0+0j) = 0+0j

DFT of f = [1, 0, 0, 0]