Report for Assignment 2

Assignment Task 1

Identifying Generative or Discriminative Models with justification

Neural Networks:

They are Discriminative.

Neural Networks take single input and produce single output
They work on Optimizing only 1 single objective function

They don't learn the underlying distribution of the data

Naive Bayes Classifier:

It is Generative.

It models the full joint distribution P(X,Y)

Logistic Regression:

It is Discriminative.

It models only the conditional distribution,

 $P(Y \mid X)$ and not the full joint distribution P(X,Y)

Gaussian Mixture Model:

It is Generative.

We know that an HMM is a generative Model.

Each and every unit of an HMM is a GMM,

i.e., GMM can be thought of as a single unit HMM,

so, they try to learn the distribution.

GANs:

They are Generative.

They try to learn the true distribution

So that they can generate New and Novel Data Points by sampling

LDA(Latent Dirichlet Allocation):

It is Generative.

It is used for more than 1 task such as

Classification and Dimensionality Reduction

This is possible only if it learns the underlying distribution

SVM:

It is Discriminative.

They try to learn the boundary for each class instead of the distribution

They try to optimize a single objective function such as loss function for classification

Decision Tree:

It is Discriminative.

They try to learn the boundary for each class instead of the distribution

They try to optimize a single objective function such as loss function for classification

Note:

In General,

Generative Models have a single Input and Multiple Outputs which can be used for other purposes such as classification and Dimensionality Reduction, etc.

While,

Discriminative Models have a single input and single output and work on specific problems like classification.

Assignment Task 2

Built the Probabilities from the Frequencies with Additive / Laplacian Smoothing implemented for Emission and Transition Probabilities with k = 0.001

Test Sentences are the final 10 Sentences

Accuracy of the HMM Model with the Viterbi Algorithm: 0.9386653882119602

Confusion Matrix:

avg

precision recall f1-score support

	0.943	1.000	0.971	33	
Χ	0.250	0.667	0.36	4 3	
ADJ	0.938	0.83	3 0.8	82 18	3
ADP	1.000	0.96	3 0.9	981 2	7
ADV	0.800	0.88	9 0.8	342 9)
VERB	0.941	0.9	14 0.	928	35
DET	1.000	1.00	0 1.0	000 3	3
CONJ	0.875	5 1.00	00 0.	933	7
NOUN	0.97	8 0.8	63 0	.917	51
PRON	1.000	0.1	00 1	.000	12
PRT	0.917	1.00	0.9	57 1	1
NUM	0.000	0.00	0.0	000	0
/ total	0.950	0.9	33 0.	939 2	39

Assignment Task 3

The Cooked-Up Features:

- 'bias': 1.0,
- 'word': word,
- 'is_first': i == 0,
- 'is_last': i == len(sent) 1,
- 'is_capitalized': sent[i][0].upper() == sent[i][0],
- 'is_all_caps': word.upper() == word,
- 'prefix-1': word[0],
- 'prefix-2': word[:2],
- 'prefix-3': word[:3],
- 'suffix-1': word[-1],
- 'suffix-2': word[-2:],
- 'suffix-3': word[-3:],
- 'prev_word': pword(i,sent),
- 'next_word': nword(i,len(sent),sent),
- 'prev_tag': ptag(i,sent),
- 'next_tag': ntag(i,len(sent),sent),
- 'has_hyphen': '-' in word,
- 'is_numeric': word.isdigit(),
- 'capitals_inside': word[1:].lower() != word[1:]

Accuracy of the CRF Model:

0.9831842310598059

Confusion Matrix:

precision recall f1-score support

	1.000 1	.000	1.000	33
Χ	1.000	1.000	1.000	3
ADJ	1.000	0.944	0.971	18
ADP	0.963	0.963	0.963	27
ADV	0.900	1.000	0.947	9
VERB	1.000	1.000	1.000	35
DET	0.971	1.000	0.985	33
CONJ	1.000	0.857	0.923	7
NOUN	l 1.000	1.000	1.000	51
PRON	I 1.000	0.917	0.957	12
PRT	0.917	1.000	0.957	11
NUM	0.000	0.000	0.000	0
avg / total	0.984	0.983	0.983	239

Justification for considering features of CRF

While plotting Histogram of frequencies of features with respect to Tags, if we get Skewed Distributions, It implies that the particular feature is a very good discriminator with respect to tags. The more skewed the distribution is, the better it is.

Justification for has-hyphen parameter

Justification for is_numeric parameter

Justification for the inclusion of Prefix and Suffix Features

- # the 2-letter suffix is a great indicator of past-tense verbs, ending in "-ed".
- # the 3-letter suffix helps recognize the present participle ending in "-ing".
- # Such Similar Patterns exist in prefix too

Justification for capitals_inside parameter

Justification for is_capitalized / is_all_caps parameter

Justification for the inclusion of Previous and Next Word:

Most obvious choices for features are: the word itself, the word before and the word after.

Justification for the inclusion of Previous and Next Tag:

- # This choice of features was inspired from the HMM Model where Hidden States are the Tags
- # And the transitions occur between the Tags (i.e. the Hidden States)

Justification for is_last parameter

Justification for is_first parameter

This distribution isn't as skewed as the ones we saw above, but still the inclusion of this feature leads to increase in accuracy slightly, this might be because this feature in tandem with other features is a better discriminator rather than the features separately.