Diversity in Image Retrieval

P Vidyadhar Rao

IIIT-H

November 3, 2015

Overview

- Image Retrieval System
 - Challenges
- Image Query paradigms
 - SVMs for concept queries
 - Eigen queries
- What constitutes a good retrieval?
 - Diversity in image search results
 - Hashing Hyperplane-point queries
- Locality Senstive Hash functions
 - Conditions on similarity functions
 - Similarity Preserving Hash functions
 - Diversity Preserving Hash functions

Image Retrieval System

- Incomplete query specification.
- Semantic gap: User Interpretation vs similarity of visual concepts
- Scalability for large scale image retrieval

Figure: A general Image Retrieval System

Image Query Specification

Example query	Example query result
Spatial predicate	
Image predicate Amount of "sky">20% and amount of "sand" > 30%	
Group predicate Location = "Africa"	सा
Spatial example	• • • • • • • • • • • • • • • • • • • •
Image example	
Group example neg	

Figure: Users intent is more complex

SVMs for Image Retrieval

- Query by image content
 - point-to-point queries
 - ightharpoonup score $(X_q, X_i) = ||X_q X_i||$
- Query by image concept
 - (SVM)hyperplane-to-point queries
 - \triangleright score(W_a, X_i) = $W_a^T X_i$
- Naive score calculation : O(nd)
- Problem: With large image database, we cannot afford exhaustive linear scan.

Figure: Image retrieval framework with SVM hyperplane queries

Eigen Queries

- From the query logs obtain hyperplanes, $B = \{W_1, \dots, W_m\}$.
 - ▶ Eigen vectors, $V = \{V_1, ..., V_p\}$, correspond to top p eigen values of BB^T .
- Decompose W_q into set of known eigen queries (vectors).
 - $W'_q = \sum_{j=1}^p \alpha_j V_j$; use LSE optimization to solve for α .
 - $score(W_q^{\prime}, X_i) = \sum_{j=1}^{p} \alpha_j V_j X_i = \sum_{j=1}^{p} \alpha_j E_{ji}$
- Eigen score calculation: O(np). (p << d)

Figure: Conceptual view of ranking using Eigen Queries

- Subset Search: Choose top or bottom t scores of sorted list E_j based on whether α_j is positive or negative respectively.
- Reduces the computations to O(tp).

What constitutes a good retrieval?

Categorical Query: Images of typical Australian animals

Figure: Many near duplicates in top ranked images.

Figure: User intends for different animals in Australia.

Diversity in Image Retrieval

- In order to maximize the satisfaction of different search users, it is necessary to diversify search results.
- Goal is to obtain diverse images relevant to the SVM hyperplane query.
- Maximal marginal relevance(MMR) strategy
 - Jointly computing diversity and relevance scores involves hyperplane-point queries.
 - $> score(w_q, x; x_{r_1}, \dots x_{r_{i-1}}) = \gamma w_q^T x (1 \gamma) \arg\max_{j < i} \underline{x_{r_j}^T} x$
 - ► $score(w_q, x; x_{r_1}, ... x_{r_{i-1}}) = arg \max_{j < i} (\gamma w_q^T (1 \gamma) x_{r_j}^T) x$
- score calculations: O(nd)
- Problem: With large image database, we cannot afford exhaustive linear scan.

Hashing Hyperplane-point queries

 For efficient diverse image retrieval, we use hash functions for hyperplane-point queries.

Figure: Hashing Hyperplane-point queries.

Locality Sensitive Hash functions guarantee sub-linear retrieval time.

Locality Sensitive Hash functions

 Originally motivated by the application of eliminating near-duplicates documents.

Definition 1

A locality sensitive hashing scheme is a distribution on family F of hash functions operating on a collection of objects, such that two objects x, y under some similarity function sim(x, y) hold

$$Pr_{h \in F}[h(x) = h(y)] = sim(x, y)$$
(1)

Conditions on similarity functions

Lemma 1

For any similarity function sim(x,y) that admits a locality sensitive hash function families as defined in (1), the distance function 1 - sim(x,y) satisfies triangle inequality.

Lemma 2

Given a locality sensitive hash function family F corresponding to to a similarity function sim(x,y), we can obtain a locality sensitive hash function family F' that maps objects to $\{0,1\}$ and corresponds to the similality function $\frac{1+sim(x,y)}{2}$.

Lemma 3

For any similarity function sim(x,y) that admits a locality sensitive hash function families as defined in (1), the distance function 1 - sim(x,y) is isometrically embeddable in Hamming cube.

Similarity preserving Hash functions

 Preserve the neighbourhood structure between the points in the original feature space.

Connections to rounding procedures used in approx. algorithms

Procedures used for rounding fractional solutions to semi-definite programs can be used to derive similarity preserving hash functions for interesting class of similarity functions.

Example

Random hyperplane rounding technique, to round vector solutions for MAX-CUT problem, naturally gives a family of hash functions F for vectors such that

$$Pr_{h \in F}[h(u) = h(v)] = 1 - \frac{\theta(u, v)}{\pi}$$
 (2)

Diversity preserving Hash functions

Jointly computing similarity and diversity

$$sim(w_q, x; x_{r_1}, \dots x_{r_{i-1}}) = arg \max_{j < i} (\gamma w_q^T - (1 - \gamma) x_{r_j}^T) x$$
 (3)

Quadratic Programming problem

$$\max \sum_{i=1}^{n} \alpha_i w^T x_i - \sum_{ij} \alpha_i \alpha_j x_i^T x_j$$

s.t.
$$\sum_{i=1}^{n} \alpha_i = k; \alpha_i \in \{0, 1\}$$

with some substitutions takes the form of

$$\max_{\alpha} \alpha^{T} Q \alpha + c^{T} \alpha$$
s.t. $\alpha^{T} 1 = k; \alpha \in Z^{n}$ (4)

• Problem: What hash functions preserve diversity in retrieval?

(ロ) (部) (注) (注) 注 の(○)

References I

- Jaime Carbonell and Jade Goldstein, *The use of mmr, diversity-based reranking for reordering documents and producing summaries*, ACM SIGIR, 1998.
- Moses S Charikar, Similarity estimation techniques from rounding algorithms, STOC, 2002.
- Thomas Deselaers, Tobias Gass, Philippe Dreuw, and Hermann Ney, *Jointly optimising relevance and diversity in image retrieval*, ACM CIVR, 2009.
- Prateek Jain, Sudheendra Vijayanarasimhan, and Kristen Gorauman, Hashing hyperplane queries to near points with applications to large-scale active learning, NIPS, 2010.
- Nisarg Raval, Rashmi Vilas Tonge, and CV Jawahar, *Image retrieval using eigen queries*, ACCV, 2013.
- Lei Zhang, Fuzong Lin, and Bo Zhang, Support vector machine learning for image retrieval, ICIP, 2001.