Структурирование многофакторных статистических моделей на основе полиномов Жегалкина с приложением в медицине

Назиров Айдар Зуфарович, гр. 21.Б04-мм

Научный руководитель: кандидат физико-математических наук, доцент Алексеева Нина Петровна

Рецензент: специалист ФГБУ «НМИЦ ПН им. В. М. Бехтерева» Скурат Евгения Петровна

> Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

> > Санкт-Петербург, 2025

Введение

Мотивация: При нынешних объемах медицинских данных потребность в разработке эффективных методов для их анализа и прогнозирования не теряет своей актуальности.

Цель работы: решение многофакторной задачи классификации — построение моделей для прогнозирования исхода по предоставленным данным.

Задачи:

- Исследование, реализация и оценка методов решения многофакторной задачи,
- Анализ полученных результатов и сравнение методов.

Предоставленные данные

Для работы были предоставлены медицинские данные о недоношенных младенцах, которые включают в себя:

- 84 наблюдения (индивида),
- 92 признака (60 категориальных и 32 количественных),
- целевую переменную "исход" (выжил/умер).

N⊵nn	Gestation _Early_Ve ryEarly	Олноплм	пол	АД_масс а_тела_г рам	 Рб_ТС_И ВЛ_дни	Рб_Возраст_ден	Рб_АД_ИСХОД_80_yes_no
17	2	1	0	860	 75	152	0
18	2	NA	0	790	 7	73	0
83	1	1	0	NA	 3	97	0
84	2	2	0	650	 33	NA	NA
76	2	2	0	780	 7	103	0

Figure: Фрагмент исходной таблицы

Метод I: теория

Определение (Информационное разнообразие)

Пусть $X=(x_1,\dots x_n)$ — выборка наблюдений дискретной величины с m градациями, каждая из которых встречается a_i раз, $a_1+\dots+a_m=n$. Тогда информационное разнообразие этой выборки измеряется формулой:

$$I(X) = n \ln n - \sum_{i=1}^{m} a_i \ln a_i.$$

Определение (Информационный выигрыш от объединения)

Пусть $X=(x_1,\dots x_n), Y=(y_1,\dots y_m)$ — две выборки наблюдений. Тогда информационный выигрыш от объединения измеряется формулой:

$$\Delta(X,Y) = I(X,Y) - I(X) - I(Y).$$

Метод I: деревья классификации

Алгоритм построения деревьев:

- Упорядочиваются значения признака, рассматриваются середины интервалов между ними, по каждой середине наблюдения разделяются на 2 группы,
- Вычисляется информационный выигрыш от объединения полученных групп, и выбирается значение признака с наибольшим информационным выигрышем, тем самым получается ветвь дерева разбивающая наблюдения на 2 группы,
- Алгоритм продолжается до тех пор, пока не будет достигнута требуемая точность (90%).

Метод I: результаты

Figure: Дерево 1.1

Данное дерево имеет точность классификации равную 97,1%. Интерпретация: явно представлены признаки и их значения влияющие на прогноз.

Метод I: результаты

Моделью классификации является система деревьев. Прогнозируемое значение целевой переменной — это среднее значение исхода для индивида, полученное по каждому дереву.

Table: Система классифицирующих деревьев

Дерево	Признаки	Наблюдения	Точность, %	
1	4	69	97,1	
2	3	62	93,5	
3	4	57	98,2	
4	3	68	91,1	
5	6	67	95,5	
6	6	83	92,7	
7	7	74	91,8	

Средняя точность классификации по дереву = 94,2%.

Метод I: результаты

Figure: Прогноз по всей выборке

Метод II: теория

Определение (Полином Жегалкина)

Полином Жегалкина — полином с коэффициентами 0 и 1, где в качестве произведения стоит конъюнкция, а в качестве сложения — исключающее ИЛИ. Он имеет следующий вид: $P=a_1\oplus a_2x_1\oplus\ldots\oplus a_{n+1}x_n\oplus a_{n+2}x_1x_2\oplus\ldots\oplus a_mx_1x_2\ldots x_n$

Порядок параметризации симптомов полиномами определяет количество признаков, включаемых в один моном. В работе использованы полиномы степени не выше 3-й, и обусловлено это:

- предоставлением возможности моделирования нелинейных взаимосвязей между факторами,
- экспоненциальным ростом числа полиномов относительно используемых признаков.

Метод II: деревья по симптомам

Алгоритм построения деревьев аналогичен первому методу, однако, вместо простых признаков используются их логические комбинации парметризуемые полиномами (симптомами).

Процесс построения базы симптомов:

- Строим всевозможные полиномы по всем комбинациям 3-х переменных, в качестве которых выступают исходные признаки,
- Определяем наилучший прогнозирующий полином по информационному выигрышу от объединения для каждой комбинации.

Пример дерева классификации II метода

Figure: Дерево 2.1

Данное дерево имеет точность классификации равную 97,1%.

Интерпретация: $P_{121}=z\oplus yz\oplus xyz$ — симптом "угрозы" при значении признака z=0 или значениях признаков x и z=1.

Метод II: результаты

Table: Характеристики деревьев

Дерево	Признаки	Наблюдения	Точность, %	
1	3	76	98,6	
2	4	64	98,4	
3	5	59	100,00	
4	4	64	98,4	
5	4	63	100,00	
6	4	58	100,00	
7	5	72	100,00	

Средняя точность классификации по деревьям получилась равной 99,3%, что оказывается на $\approx 5\%$ выше, чем у деревьев первого метода.

Метод II: результаты

Figure: Прогноз по всей выборке

Кросс-валидация: определение

Определение (Стратифицированная кросс-валидация)

Стратифицированная кросс-валидация — метод оценки производительности модели, при котором в обучающей и тестовой выборках сохраняется одинаковое распределение исследуемой переменной.

Она была выбрана для оценки методов, так как количество наблюдений в разных классах исхода значительно различается.

Для применения кросс-валидации исходная выборка была разделена на обучающую и тестовую в соотношении $\approx 4:1.$

Кросс-валидация: результаты

Figure: Полученные модели по обучающим выборкам. Слева представлена модель по первому методу, справа — по второму.

Сравнение методов между собой

- Первый метод, в отличие от второго работает как с категориальными, так и с количественными переменными,
- Несмотря на меньшую размерность данных, второй метод сохраняет точность.
- Структура деревьев модифицированного метода оказывается проще: среднее число симптомов в деревьях II метода 3,2 против 4,7 признаков в деревьях I метода, но сложнее в интерпритации по причине использования симптомов (комбинаций).

Сравнение с известными методами классификации

Table: Сравнение методов

Метрика	Метод I	Метод II	LR	RF
Accuracy, %	100	100	96,38	100
Sensitivity,%	100	100	88,88	100
Specificity,%	100	100	98,46	100
Интерпрети-	Высокая	Средняя	Высокая	Средняя
руемость				
Данные	Любые	Категори-	Количест-	Любые
		альные*	венные*	
Устойчивость	Высокая	Высокая	Низкая*	Высокая
мультикол-				
линеарности				

Заключение

Полученные результаты:

- Разработана программа для реализации предложенных методов классификации на языке R (код содержит порядка 1500 строк),
- Произведена оценка полученных моделей по обоим методам с помощью кросс-валидации,
- Осуществлено сравнение рассмотренных методов между собой и с уже известными способами решения задач классификации.