Deep Q-Learning

Janot George, Maurice Borries

Hochschule für Technik und Wirtschaft Berlin Studiengang Wirtschaftsmathematik (Bachelor) Seminar

02.12.2021

Inhaltsübersicht

Konzept

2 Bestandteile

3 Abbildungs- und Quellenverzeichnis

Was ist (Deep) Q-Learning

- Algorithmus trainiert eine KI
- Zuckerbrot-und-Peitschen-Prinzip
- KI startet ohne Daten

- Konzept: Daten erzeugen und Funktionen live optimieren
- Ziel: Annäherung an optimale Lösung des Problems

Markov-Entscheidungsprozess

Definitionen:

- Zustand der Umgebung zum Zeitpunkt t: st
- Aktion der KI (des Agenten) zum Zeitpunkt t: at
- Belohnung der Aktion a_t: r_{t+1}

Exploration versus Exploitation

Exploration	Exploitation
 Erkundung des Umfeldes 	 Ausnutzung gesammelter Daten
 zufällige Aktionen ausführen 	Daten überprüfen
neue Daten sammeln	Daten aktualisieren

Optimale Anwendung der Erkundungsrate ϵ erfordert:

- ε_{max}: Erkundungsrate zu Beginn
- \bullet ϵ_{red} : Reduktionswert der Erkundungsrate
- \bullet ϵ_{min} : Minimale Erkundungsrate

$$\epsilon = \epsilon_{\min} + \frac{\epsilon_{\max} - \epsilon_{\min}}{\mathbf{e}^{\epsilon_{\mathrm{red}} \cdot \mathrm{Episodennummer}}}$$

Bellman-Glechung

Aktionsbewertungsfunktion

$$Q(s_t, a_t) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}\right]$$

Bellman-Glechung

$$Q^*(s_t, a_t) = \mathbb{E}\left[r_{t+1} + \gamma \max_{a'} \left[Q^*(s_{t+1}, a')\right]\right]$$

Annäherung mit Lernrate α :

$$Q^{\#}(s_t, a_t) = (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a'} \left[Q^*(s_{t+1}, a') \right] \right]$$

Inhaltsübersicht Abbildungs- und Quellenverzeichnis Borries, George (HTW Berlin) Deep Q-Learning 02.12.2021 9/11

Abbildungsverzeichnis

- Algorithmus: https://www.allaboutlean.com/employee-motivation-1/carrot-andstick/; Zuletzt aufgerufen: 23.11.2021
- KI: https://de.cleanpng.com/png-b1ndvx/; Zuletzt aufgerufen: 22.11.2021
- Hintergrund:
 https://it-talents.de/it-wissen/machine-learning-accuracy-und-precision/; Zuletzt aufgerufen: 7.11.2021

Quellenverzeichnis

- Richter, S. (2019) Statistisches und maschinelles Lernen, Berlin, Springer.
- K.-L. Du and M. N. S. Swamy, Neural Networks and Statistical Learning.
- Ilyas, Agakishiev: METIS: Reinforcement Learning, Humboldt-Universität zu Berlin, IRTG1792, HU-Berlin, de
- https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-pythonopenai-gym/, Satwik Kansal, Brendan Martin, zuletzt abgerufen: 7.12.2021
- https://ichi.pro/de/einfuhrung-in-das-reinforcement-learning-markoventscheidungsprozess-75613770348762 ,ICHI.PRO, Laurenz Wuttke, zuletzt abgerufen: 7.12.2021
- https://hci.iwr.uni-heidelberg.de/system/files/private/downloads/541645681/ dammann-reinfocement-learning-report.pdf ,Patrick Dammann, zuletzt abgerufen: 7.12.2021
- http://www.informatik.uni-ulm.de/ni/Lehre/SS05/RL/vorlesung/rl03.pdf, F. Schwenker, zuletzt abgerufen: 7.12.2021
- https://deeplizard.com/, Chris and Mandy, zuletzt abgerufen: 7.12.2021
- https://datasolut.com/neuronale-netzwerke-einfuehrung/ ,Laurenz Wuttke, zuletzt abgerufen: 7.12.2021
- https://www.samyzaf.com/ML/rl/qmaze.html, zuletzt abgerufen: 7.12.2021