Sinusoid Response

Setup

```
clear all;
close all;
clc;
```

Scelta della FDT

Scelta della pulsazione della sinusoide e periodo associato

```
w = 0.1

w = 0.1000

f = w / 2 / pi

f = 0.0159

T = 1 / f

T = 62.8319
```

Calcolo della risposta

Funzioni custom

Variabili simboliche

```
syms u(t) U(s)
syms y(t) Y(s)
```

Ingresso

```
u(t) = 10*sin(w*t)
```

$$u(t) = 10\sin\left(\frac{t}{10}\right)$$

$$\frac{1}{s^2 + \frac{1}{100}}$$

Matrici dinamiche

0

ans = 4×1 complex

-10.0000 + 0.0000i

-10.0000 - 0.0000i

-1.0000 + 0.0000i

-1.0000 - 0.0000i

Funzione di trasferimento

$$G(s) =$$

$$\frac{100 \, s^2}{s^4 + 22 \, s^3 + 141 \, s^2 + 220 \, s + 100}$$

Uscita

$$Y(s) = G(s) * U(s)$$

$$Y(s) =$$

$$\frac{100 s^2}{\left(s^2 + \frac{1}{100}\right) (s^4 + 22 s^3 + 141 s^2 + 220 s + 100)}$$

```
0.27 e^{-10.0 t} - 0.3 e^{-1.0 t} + 0.022 \cos(0.1 t) - 0.097 \sin(0.1 t) + 1.2 t e^{-1.0 t} + 1.2 t e^{-10.0 t}
```

Grafico

```
% Creare una nuova figura
figure(Name='Evoluzione forzata')
% Tempo limite per il grafico
TF = 60;
% Numero di campioni da graficare
NS = 10000;
% Intervallo di campionamento
TS = TF / NS;
% Definizione dell'asse temporale
tt = linspace(0, TF, NS);
% Grafico
plot(tt, y(tt));
xlim([tt(1) tt(end)])
xlabel('$$t$$', Interpreter='latex', FontSize=20)
ylabel('$$y(t)$$', Interpreter='latex', FontSize=20)
title(['Response to \$\$u(t)=' latex(u) '\$\$'],...
    Interpreter='latex', FontSize=20)
```


Funzioni built-in di MATLAB

Definizione dell'ingresso

```
% u(t) = sin(0.1t)
[u, time] = gensig("sine", T, TF, TS);
% u(t) = 10sin(0.1t)
u = 10 * u;
```

Definizione dell'uscita

```
figure;
[y, time] = lsim(sys, u, time);
plot(time, y');
xlabel('$$t$$', Interpreter='latex', FontSize=20)
ylabel('$$y(t)$$', Interpreter='latex', FontSize=20)
title(['Response to $$u(t)=' latex(10 * sin(w*t)) '$$'],...
Interpreter='latex', FontSize=20)
```


Modifica del parametro w

```
w = 100

w = 100

f = w / 2 / pi
```

```
f = 15.9155
```

```
T = 1 / f
```

T = 0.0628

```
TF = 5;
TS = TF / NS;
[u, time] = gensig("sine", T, TF, TS);
figure;
[y, time] = lsim(sys, u, time);
plot(time, y');
xlabel('$$t$$', Interpreter='latex', FontSize=20)
ylabel('$$y(t)$$', Interpreter='latex', FontSize=20)
title(['Response to $$u(t)=' latex(sin(w*t)) '$$'],...
Interpreter='latex', FontSize=20)
```


Confronto tra più pulsazioni

Scelta delle pulsazioni

```
ww = [0.1, 1, 5]
```

 $ww = 1 \times 3$

```
0.1000 1.0000 5.0000
```

Grafico

Parametri per lo stile del grafico

```
% FontSize
FS = 15;
% LineWidth
LW = 1.75;
```

Parametri per la simulazione

```
% Tempo di Fine della simulazione
TF = 10; % [s]
% Tempo di campionamento (Sampling)
TS = TF / NS;
```

Grafico delle uscite

```
figure;
legend_names = string(size(ww));
for ii = 1 : length(ww)
    w = ww(ii);
    f = w / 2 / pi;
    T = 1 / f;
    [u, time] = gensig("sine", T, 10, TS);
    [y, time] = lsim(sys, u, time);
    plot(time, y'); hold on;
    xlabel('$$t$$', Interpreter='latex', FontSize=FS)
    ylabel('$$y(t)$$', Interpreter='latex', FontSize=FS)

legend_names(ii) = ['$$\omega = ' num2str(w), '$$'];
    [~, lgd, ~, ~] = legend(legend_names(1:ii), Interpreter='latex',...
    Location='northoutside', Box='off', Orientation='horizontal');
end
```

```
Warning: Calling legend with multiple outputs will not be supported in a future release. Warning: Calling legend with multiple outputs will not be supported in a future release. Warning: Calling legend with multiple outputs will not be supported in a future release.
```

```
set(findall(gcf, Property='FontSize'), FontSize=FS)
set(findall(gcf, Type='Line'), LineWidth=LW)
set(findobj(lgd, Type='Line'), LineWidth=LW)
hold off;
```


Grafico degli ingressi

```
figure;
legend_names = string(size(ww));
for ii = 1 : length(ww)
    w = ww(ii);
    f = w / 2 / pi;
    T = 1 / f;
    [u, time] = gensig("sine", T, 10, TS);
    plot(time, u'); hold on;
    xlabel('$$t$$', Interpreter='latex', FontSize=FS)
    ylabel('$$u(t)$$', Interpreter='latex', FontSize=FS)

legend_names(ii) = ['$$\omega = ' num2str(w), '$$'];
    [~, lgd, ~, ~] = legend(legend_names(1:ii), Interpreter='latex',...
    Location='northoutside', Box='off', Orientation='horizontal');
end
```

```
Warning: Calling legend with multiple outputs will not be supported in a future release.
Warning: Calling legend with multiple outputs will not be supported in a future release.

set(findall(gcf, Property='FontSize'), FontSize=FS)
set(findall(gcf, Type='Line'), LineWidth=LW)
set(findobj(lgd, Type='Line'), LineWidth=LW)
hold off;
```

Warning: Calling legend with multiple outputs will not be supported in a future release.

Risposta all'onda quadra

L'onda quadra può essere vista come una somma periodica di gradini di ampiezza uguale ed opposta

Definizione dell'ingresso

Onda quadra con periodo 10s

Definizione del sistema

Definizione dell'uscita

```
lsim(sys2, u, time)
set(findall(gcf, Property='FontSize'), FontSize=12)
set(findall(gcf, Type='Line'), LineWidth=1.25)
```

