Week 5

Differentiation

5.1 Vector Calculus Operations

4/27:

- Announcements.
 - No class this Friday, next Monday.
 - Midterm next Friday.
 - Up through Chapter 2.
 - The exam will likely be computationally heavy.
 - Compute d, pullbacks, interior products, Lie derivatives, etc.
 - Emphasis on Chapter 2 as opposed to Chapter 1 even though it all builds on itself.
 - He'll probably cook up a few problems too.
 - There is a recorded lecture for us.
 - On Chapter 3 content.
 - We'll cover Chapter 3 in kind of an impressionistic way as it is.
 - There are also some notes on the physics stuff.
- Vector calculus operations.
 - In one dimension, you have functions, and you take derivatives.
 - The derivative operation does essentially map $\Omega^0 \to \Omega^1$ or $C^\infty(\mathbb{R}) \to C^\infty(\mathbb{R})$.
 - In two dimensions, ...
 - \blacksquare d² = 0 reflects the fact that gradient vector fields are curl-free.
 - If you want to understand the 2D-curl business...
 - \blacksquare curl $(v): \mathbb{R}^2 \to \mathbb{R}$ is intuitively about balls spinning around in a vector field.
 - There's also a nice formula to compute it.
 - And then there's a connection with $d: \Omega^1 \to \Omega^2$.
 - In 3D, you can take top-dimensional forms (which are just functions) and bottom-dimensional forms (which are by definition functions) and you can work out an identification between them.
 - Note that curl: $\mathfrak{X}(\mathbb{R}^2) \to C^{\infty}(\mathbb{R}^2)$, where $\mathfrak{X}(\mathbb{R}^2)$ is the space of vector fields.
- The musical operator \sharp identifies forms with vector fields, i.e., $\sharp:\Omega^1\to\mathfrak{X}(\mathbb{R}^2)$.
- Properties of exterior derivatives $d: \Omega^k(U) \to \Omega^{k+1}(U)$.
 - 1. $d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2$ and $d(\lambda \omega) = \lambda d\omega$.
 - 2. Product rule $d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^k \omega_1 \wedge d\omega_2$.

– Special case $k = \ell = 0$. Then

$$d(fg) = g df + f dg$$

which is the usual product rule for gradient.

- Claim:

$$d\left(\sum_{I} f_{I} dx_{I}\right) = \sum_{I} df_{I} \wedge dx_{I}$$

■ Let $\omega_1 \in \Omega^k$ and $\omega_2 \in \Omega^\ell$ be defined by

$$\omega_1 = \sum_I f_I \, \mathrm{d}x_I \qquad \qquad \omega_2 = \sum_I g_J \, \mathrm{d}x_J$$

where we're summing over all I such that |I| = k and all J such that $|J| = \ell$. Then

$$\omega_1 \wedge \omega_2 = \sum_{I,J} f_I g_J \, \mathrm{d} x_I \wedge \mathrm{d} x_J \, \mathrm{d} (\omega_1 \wedge \omega_2) \qquad = \sum_{I,J} \mathrm{d} (f_I g_J) \wedge \mathrm{d} x_I \wedge \mathrm{d} x_J$$

■ Note that

$$d(f_I g_J) = g_J df_I + f_I dg_J$$

and

$$\mathrm{d}g_J \wedge \mathrm{d}x_I = (-1)^k \, \mathrm{d}x_I \wedge \mathrm{d}g_J$$

■ These identities allow us to take the previous equation to

$$d(\omega_1 \wedge \omega_2) = \sum_{I,J} g_J \, df_I \wedge dx_I \wedge dx_J + (-1)^k f_I \, dx_I \wedge dg_J \wedge dx_J$$
$$= \sum_{I,J} (df_I \wedge dx_I) \wedge (g_J \, dx_J) + \sum_{I,J} (f_I \, dx_I) \wedge (ddg_J \wedge dx_J)$$
$$= d\omega_1 \wedge \omega_2 + (-1)^k \omega_1 \, d\omega_2$$

3.
$$d^2 = 0$$
.

- Let $\omega = \sum_{I} f_{I} dx_{I}$.

- Then

$$d^{2}(\omega) = d(d\omega)$$

$$= d\left(\sum_{I} df_{I} \wedge dx_{I}\right)$$

$$= \sum_{I} d(df_{I} \wedge dx_{I}) \qquad \text{Property 1}$$

$$= \sum_{I} d(df_{I}) \wedge dx_{I} \qquad \text{Property 2}$$

so it suffices to just show that $d^2f = 0$ for all $f \in \Omega^0$.

– We know that $df = \sum_{i=1}^{n} \partial f / \partial x_i dx_i$. Thus,

$$d(df) = \sum_{i} d\left(\frac{\partial f}{\partial x_{i}}\right) \wedge dx_{i}$$
$$= \sum_{i,j} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} dx_{j} \wedge dx_{i}$$
$$= 0$$

- The last equality holds because of commuting partial derivatives for smooth f, and the fact that changing order introduces a negative sign by some property.
- In fact, if we fix $d^0: \Omega^0(U) \to \Omega^1(U)$ to be the "gradient," then these properties characterize the function d on its domain and codomain. In particular, d is the unique function on its domain and codomain that satisfies these properties.
 - We define it by

$$d\left(\sum_{I} f_{I} dx_{I}\right) = \sum_{I} df_{I} \wedge dx_{I}$$

- The above properties characterize it axiomatically.
- We can prove this uniqueness theorem.
- Closed (form): A form $\omega \in \Omega^k(U)$ such that $d\omega = 0$.
- Exact (form): A form $\omega \in \Omega^k(U)$ such that $\omega = d\eta$ for some $\eta \in \Omega^{k-1}(U)$.
- $d^2 = 0$ implies closed and exact implies closed.
- Poincaré lemma: Locally closed forms are exact.