

CS 329P: Practical Machine Learning (2021 Fall)

5.4 Stacking

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Stacking

- Combine multiple base learners to reduce variance
 - Base learners can be different model types
 - Linearly combine base learners outputs by learned parameters
- Widely used in competitions
- bagging VS boosting
 - Bagging: bootstrap samples to get diversity
 - Boosting: different types of models extract different features

Stacking Results

Evaluate on house sales data, compare to bagging and GBDT we implemented before

	Test Error
GBDT	0.259
RandomForest	0.243
Stacking (AutoGluon)	0.229

	model	score_test	score_val	pred_time_test
0	WeightedEnsemble_L2	-0.229626	-0.222406	3.953961
1	ExtraTrees	-0.232468	-0.232027	1.831407
2	CatBoost	-0.238690	-0.230338	0.016279
3	LightGBM	-0.239441	-0.226900	0.203499
4	NeuralNetMXNet	-0.241847	-0.246979	4.397190
5	RandomForest	-0.242904	-0.234931	1.750319
6	XGBoost	-0.249837	-0.240684	0.086715
7	KNeighbors	-0.457131	-0.443591	0.107212

from autogluon.tabular import TabularPredictor

predictor = TabularPredictor(label=label).fit(train)

Multi-layer Stacking

- Stacking base learners in multiple levels to reduce bias
 - Can use a different set of base learners at each level
- Upper levels (e.g. L2) are trained on the outputs of the level below (e.g. L1)
 - Concatenating original inputs helps

Overfitting in Multi-layer Stacking

- Train leaners from different levels on different data to alleviate overfitting
 - Split training data into A and B, train L1 learners on A,
 run inference on B to generate training data for L2 learners
- Repeated k-fold bagging:
 - Train k models as in k-fold cross validation
 - Combine predictions of each model on out-of-fold data
 - Repeat step 1,2 by n times, average the n predictions of each example for the next level training

Multi-layer Stacking Results

- Use 1 additional staked level, with 5-fold repeated bagging
 - Error: $0.229 \rightarrow 0.227$
 - Training time: 39 sec \rightarrow 207 sec (5x)

from autogluon.tabular import TabularPredictor

```
predictor = TabularPredictor(label=label).fit(
 train, num_stack_levels=1, num_bag_folds=5)
```


	model	score_test	score_val
0	NeuralNetMXNet_BAG_L2	-0.225332	-0.219718
1	WeightedEnsemble_L3	-0.226921	-0.216254
2	CatBoost_BAG_L2	-0.227525	-0.217471
3	WeightedEnsemble_L2	-0.228386	-0.218298
4	LightGBM_BAG_L2	-0.228400	-0.218374
5	XGBoost_BAG_L2	-0.228660	-0.218824
6	ExtraTrees_BAG_L2	-0.228751	-0.217563
7	ExtraTrees_BAG_L1	-0.233527	-0.224974
8	RandomForest_BAG_L2	-0.234270	-0.220346
9	CatBoost_BAG_L1	-0.237356	-0.227126
10	LightGBM_BAG_L1	-0.238102	-0.225848
11	NeuralNetMXNet_BAG_L1	-0.238413	-0.238786
12	XGBoost_BAG_L1	-0.241698	-0.235570
13	RandomForest_BAG_L1	-0.242029	-0.227800
14	KNeighbors_BAG_L1	-0.457909	-0.447980

Model Combination Summary

The goal is to reduce bias and variance

Reduce	Bias	Variance	Computation Cost	Parallelizati on
Bagging	Υ		n	n
Boosting		Y	n	1
Stacking	Υ		n	n
K-fold multi- level stacking		Υ	nxlxk	nxk

n: number of learners, l: number of levels, k: k-fold