## STSCI 5010, Homework 5

Pete Rigas (pbr43 cornell.edu)

November 27, 2020

## 1 Problem: Variable selection procedure

#### 1.1 SAS Code

```
libname HW5 '\\rschfs1x\usercl\pbr43_STSCI5010\Desktop';

title "R2 Output, Question 1";
proc varclus data = HW5.flowers proportion = 0.9 outtree = tree;
var sl sw pl pw;
run;
```

### 1.2 SAS Code Output

• We have SAS output the proportions from the  $1 - R^2$  ratio. Notably, we observe that the clusters that we would predict to see from the flowers data are 2, or 3 because from the cluster analysis plot later in the question, we see that the largest variance is observed through the sl and sw clusters. Other plots will show additional results from the clusters as we plot the PCA.



| 2 Clusters | 2 Clusters |                | R-squared with |                 |  |  |  |
|------------|------------|----------------|----------------|-----------------|--|--|--|
| Cluster    | Variable   | Own<br>Cluster |                | 1-R**2<br>Ratio |  |  |  |
| Cluster 1  | sl         | 0.8675         | 0.0138         | 0.1344          |  |  |  |
|            | pl         | 0.9690         | 0.1836         | 0.0379          |  |  |  |
|            | pw         | 0.9332         | 0.1340         | 0.0771          |  |  |  |
| Cluster 2  | sw         | 1.0000         | 0.1021         | 0.0000          |  |  |  |

| Standardiz | zed Scoring ( | Coefficients |
|------------|---------------|--------------|
| Cluster    | 1             | 2            |
| sl         | 0.33627       | 0.00000      |
| sw         | 0.00000       | 1.00000      |
| pl         | 0.35541       | 0.00000      |
| pw         | 0.34879       | 0.00000      |

| Clu     | ster Struc | ture     |
|---------|------------|----------|
| Cluster | 1          | 2        |
| sl      | 0.93139    | -0.11757 |
| sw      | -0.31951   | 1.00000  |
| pl      | 0.98439    | -0.42844 |
| pw      | 0.96605    | -0.36613 |

| Inter-Cl | uster Cori | relations |
|----------|------------|-----------|
| Cluster  | 1          | 2         |
| 1        | 1.00000    | -0.31951  |
| 2        | -0.31951   | 1.00000   |

(43).png



# 2 Problem: Producing a horizontal tree

### 2.1 SAS Code

```
title "Tree Output, Question 2";
proc print data = tree;
run;
/* We will now use the tree SAS procedure */
proc tree data = tree horizontal;
height _propor_;
run;
```

## 2.2 SAS Code Output

• We have the code below output the tree.



## 3 Problem: PCA Analysis

### 3.1 SAS Code

```
title "Output, Question 3";
title2 "Principal Components";
proc princomp data = HW5.flowers out = flowerpca;
var sl sw pl pw;
run;
/* From the PCAs above, we will now produce
each of the color coded plots, with the code
below. */
title3 "Flowers Data Set PCA";
proc gplot data= flowerpca;
plot prin2*prin1=species;
symbol1 v = square color = red;
symbol2 v = star color = green;
symbol3 v = star color = blue;
run;
quit;
```

## 3.2 SAS Code Output

• The output below demonstrates the correlation matrix which can help our interpretation of how many clusters we expect to see from the data. From the eigenvalues and plots of the 3 clusters from the Flower Set PCA, we observe that the 3 clusters that we have labeled, are visible. From the cluster that is the most to the left, we observe that the cluster associated to these points is quite distinct, and that if we were to assign some point as the center of this cluster, that the points, with respect to a suitably defined metric, would all appear to be the closest to this point only. However, for the remaining 2 clusters that I have plotted, it appears that the points displayed with the green and blue stars most likely appear to be distinct. Again, because we cannot tell which number of clusters that the data is giving is necessarily correct, we would say from this clustering method that the most likely number of clusters is 2 or 3.

# Output, Question 3 Principal Components

# The PRINCOMP Procedure

| Observations | 150 |
|--------------|-----|
| Variables    | 4   |

|      |             | Simple Stat | istics      |             |
|------|-------------|-------------|-------------|-------------|
|      | sl          | sw          | pl          | pw          |
| Mean | 5.843333333 | 3.057333333 | 3.758000000 | 1.199333333 |
| StD  | 0.828066128 | 0.435866285 | 1.765298233 | 0.762237669 |

|    | Cor    | relation | Matrix |        |
|----|--------|----------|--------|--------|
|    | sl     | sw       | pl     | pw     |
| sl | 1.0000 | 1176     | 0.8718 | 0.8179 |
| sw | 1176   | 1.0000   | 4284   | 3661   |
| pl | 0.8718 | 4284     | 1.0000 | 0.9629 |
| pw | 0.8179 | 3661     | 0.9629 | 1.0000 |

|   | Eigenva    | lues of the ( | Correlation M | latrix     |
|---|------------|---------------|---------------|------------|
|   | Eigenvalue | Difference    | Proportion    | Cumulative |
| 1 | 2.91849782 | 2.00446735    | 0.7296        | 0.7296     |
| 2 | 0.91403047 | 0.76727360    | 0.2285        | 0.9581     |
| 3 | 0.14675688 | 0.12604204    | 0.0367        | 0.9948     |
| 4 | 0.02071484 |               | 0.0052        | 1.0000     |

(40).png





## 4 Problem: Standardizing the data set

### 4.1 SAS Code

```
proc stdize data = HW5.flowers method = range out = t;
var sl sw pl pw;
run;
```

## 5 Problem: Average Linkage method

### 5.1 SAS Code

```
title "Clusters, Question 5 output";
title2 "Results from the Average Linkage Method";
proc cluster data = t method = average ccc pseudo outtree = tree_1;
var sl sw pl pw;
copy sl sw pl pw species;
run;
```

### 5.2 SAS Code Output

• For this output, we specified the pseudo method for our output, from which we obtained a cluster analysis plot. The number of clusters that we have given in the plot below coincides with the number of clusters that we give in the Dendogram plot for **6**.

|                                            |                                       |                                        |                  |                                                         | Clusters, (                       |                              |          |                            | od                    |                     |                                 |             |
|--------------------------------------------|---------------------------------------|----------------------------------------|------------------|---------------------------------------------------------|-----------------------------------|------------------------------|----------|----------------------------|-----------------------|---------------------|---------------------------------|-------------|
|                                            |                                       |                                        |                  | А                                                       | The CLU<br>verage Lin             | JSTER Pr<br>kage Clu         |          |                            |                       |                     |                                 |             |
|                                            |                                       |                                        |                  | Eig                                                     | envalues o                        | f the Cov                    | variance | Matrix                     |                       |                     |                                 |             |
|                                            |                                       |                                        |                  | Eigenva                                                 | alue Differ                       | ence Pi                      | roportio | Cumula                     | tive                  |                     |                                 |             |
|                                            |                                       |                                        |                  | 1 0.23245                                               | 0.1999                            | 98505                        | 0.841    | 4 0.8                      | 3414                  |                     |                                 |             |
|                                            |                                       |                                        |                  | 2 0.03246                                               | 820 0.0228                        | 37136                        | 0.117    | 5 0.9                      | 9589                  |                     |                                 |             |
|                                            |                                       |                                        |                  | 3 0.00959                                               |                                   | 33253                        | 0.034    |                            | 9936                  |                     |                                 |             |
|                                            |                                       |                                        |                  | 4 0.00176                                               | 6432                              |                              | 0.006    | 4 1.0                      | 0000                  |                     |                                 |             |
|                                            |                                       |                                        | Ro               | ot-Mean-Squ                                             | are Total-S                       | ample St                     | tandard  | Deviation                  | 0.262813              |                     |                                 |             |
|                                            |                                       |                                        |                  |                                                         |                                   |                              |          |                            |                       |                     |                                 |             |
|                                            |                                       |                                        |                  |                                                         |                                   |                              |          |                            |                       |                     |                                 |             |
|                                            |                                       |                                        | R                | oot-Mean-Squ                                            | ıare Distano                      | ce Betwe                     | een Obse | ervations                  | 0.743347              |                     |                                 |             |
|                                            |                                       |                                        | R                | oot-Mean-Squ                                            |                                   | ce Betwe                     |          | ervations                  | 0.743347              |                     |                                 |             |
| Number<br>of<br>Clusters                   | Clusters                              | s Joined                               |                  | Semipartial                                             | Cli                               | uster Hist<br>Approxi<br>Exp | itory    | Cubic Clustering Criterion | Pseudo F              | Pseudo<br>t-Squared | Norm RMS<br>Distance            | Tie         |
| of                                         |                                       | s Joined<br>OB143                      |                  | Semipartial                                             |                                   | uster Hist<br>Approxi<br>Exp | itory    | Cubic Clustering           | Pseudo F              | Pseudo<br>t-Squared |                                 | Tie         |
| of<br>Clusters                             | OB102                                 |                                        | Freq             | Semipartial<br>R-Square                                 | Clu<br>R-Square                   | uster Hist<br>Approxi<br>Exp | itory    | Cubic Clustering           | Pseudo F              |                     | Distance                        |             |
| of<br>Clusters<br>149                      | OB102                                 | OB143                                  | Freq 2           | Semipartial<br>R-Square                                 | R-Square                          | uster Hist<br>Approxi<br>Exp | itory    | Cubic Clustering           | Pseudo F<br>Statistic | t-Squared           | Distance<br>0                   |             |
| of<br>Clusters<br>149<br>148               | OB102<br>OB8                          | OB143<br>OB40                          | Freq 2           | Semipartial<br>R-Square<br>0.0000                       | R-Square 1.00 1.00                | uster Hist<br>Approxi<br>Exp | itory    | Cubic Clustering           | Pseudo F<br>Statistic | t-Squared           | 0<br>0.0374                     | Т           |
| of<br>Clusters<br>149<br>148<br>147        | OB102<br>OB8<br>OB11<br>OB18          | OB143<br>OB40<br>OB49                  | Freq 2 2 2       | Semipartial R-Square 0.0000 0.0000 0.0000               | R-Square<br>1.00<br>1.00          | uster Hist<br>Approxi<br>Exp | itory    | Cubic Clustering           | Pseudo F<br>Statistic | t-Squared           | 0<br>0.0374<br>0.0374           | T           |
| of<br>Clusters<br>149<br>148<br>147<br>146 | OB102<br>OB8<br>OB11<br>OB18<br>OB128 | OB143<br>OB40<br>OB49<br>OB41          | Freq 2 2 2 2 2   | Semipartial R-Square 0.0000 0.0000 0.0000 0.0000        | R-Square 1.00 1.00 1.00 1.00      | uster Hist<br>Approxi<br>Exp | itory    | Cubic Clustering           | Pseudo F<br>Statistic | t-Squared           | 0<br>0.0374<br>0.0374<br>0.0438 | T<br>T<br>T |
| of Clusters 149 148 147 146 145            | OB102 OB8 OB11 OB18 OB128 OB3         | OB143<br>OB40<br>OB49<br>OB41<br>OB139 | Freq 2 2 2 2 2 2 | Semipartial R-Square 0.0000 0.0000 0.0000 0.0000 0.0000 | R-Square 1.00 1.00 1.00 1.00 1.00 | uster Hist<br>Approxi<br>Exp | itory    | Cubic Clustering           | Pseudo F<br>Statistic | t-Squared           | 0<br>0.0374<br>0.0374<br>0.0438 | T<br>T<br>T |



(36).png







## 6 Problem: Plotting the tree

### 6.1 SAS Code

```
title "Question 6, Tree Output";
proc tree data = tree_1;
run;
```

## 6.2 SAS Code Output: Dendogram

• The Dendogram below shows the number of clusters that have been pasted from the output. I tried specifying the number of clusters in the output but it still gave me several lines in the tree output.

