EE5609 Assignment 17

Abhishek Thakur

Abstract—This document solves problem based on Matrix Theory.

Download all solutions from

https://github.com/abhishekt711/EE5609/tree/ master/Assignment _17

1 Problem

Usig the result of Exercise 8 to proove that, If A and B are $n \times n$ matrices over the field F, then AB and BA have precisely the same characteristic values.

2 SOLUTION

Given	A and B are $n \times n$ matrices over the field F. In Exercise 8, If $(I - AB)$ is invertible then $(I - BA)$ is invertible.
To prove	AB and BA have precisely the same characteristic values.
Proof	Let suppose c is the characteristic value of AB . Then, $ cI - AB = 0$
	Here, I , A and B are $n \times n$ matrix. $\implies c^n I - \frac{1}{c}AB = 0$
	Using the result of Exercise 8, $(I - \frac{1}{c}AB)$ is non-invertible $\implies (I - \frac{1}{c}BA)$ is also non-invertible.
	$\implies c^n I - \frac{1}{c}BA = 0$
	$\implies cI - BA = 0$
	Hence, AB and BA have precisely the same characteristic value.

Alternative Way,

Given	A and B are $n \times n$ matrices over the field F.
	In Exercise 8, If $(I - AB)$ is invertible then $(I - BA)$ is invertible.
To prove	AB and BA have precisely the same characteristic values.
Observation	We have to show that if c is a characteristic value for AB then c is a characteristic value for BA. Conversely, This is equivalent to the statement if c is not a characteristic value for AB then it is not a characteristic value for BA.
Proof	Suppose that c is not a characteristic value for BA , this means that $ cI - AB \neq 0$. $\implies c^n I - \frac{1}{c}AB \neq 0$
	$\implies C I - \frac{1}{c}AD \neq 0$
	$\therefore (I - \frac{1}{c}AB) \text{ is invertible} \implies (I - \frac{1}{c}BA) \text{ is invertible.}$ $\implies I - \frac{1}{c}AB \neq 0$
	$\implies c^n I - \frac{1}{c}AB = c^n I - \frac{1}{c}AB \neq 0$
	Hence, If c is not a characteristic value for AB then it is not a characteristic value for BA .
	Hence, AB and BA have precisely the same characteristic value.