

LAST TIME:

- Chain Rule: $\frac{df}{dt_i} = \frac{\partial f}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_i} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_i}$
- Implicit Function Theorem: If F is differentiable on an open disk $\frac{\partial F}{\partial x_n} \neq 0$, $F(p) = 0$, then $\frac{\partial x_n}{\partial x_i} = -\frac{\partial F}{\partial x_i} / \frac{\partial F}{\partial x_n}$ for all p in the disk
(and $x_n = x_n(x_1, \dots, x_{n-1})$ is a function locally at p).
 - * It doesn't really need to be $x_n = x_n(x_1, \dots, x_{n-1})$. It could be any of the others as long as the conditions are met.

Proof $x_n = f(x_1, x_2, \dots, x_{n-1})$

Apply the Chain Rule to compute $\frac{\partial F}{\partial x_i} = 0 = \frac{\partial f}{\partial x_1} \cdot \frac{\partial x_1}{\partial x_i} + \dots + \frac{\partial f}{\partial x_n} \cdot \frac{\partial x_n}{\partial x_i}$ (using $F(x_1, \dots, x_n) = 0$)

Unless $i=k$ or $i=n$, $\frac{\partial x_n}{\partial x_i} = 0$, so we see $0 = \frac{\partial f}{\partial x_i} \cdot \frac{\partial x_i}{\partial x_i} + \frac{\partial f}{\partial x_n} \cdot \frac{\partial x_n}{\partial x_i}$.

$\therefore \frac{\partial x_i}{\partial x_i} = 1$, so $\frac{\partial f}{\partial x_i} = -\frac{\partial F}{\partial x_i}/\frac{\partial F}{\partial x_n}$ (subtracting $\frac{\partial F}{\partial x_i}$ and dividing by $\frac{\partial F}{\partial x_n}$)

Ex#1: Compute for $x^3 + y^3 + z^3 = 6xyz + 1$, $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$x^3 + y^3 + z^3 = 6xyz + 1 \text{ iff } x^3 + y^3 + z^3 - 6xyz - 1 = 0$$

$$\text{Use } F(x, y, z) = x^3 + y^3 + z^3 - 6xyz - 1$$

$$\frac{\partial F}{\partial x} = 3x^2 - 6yz$$

$$\frac{\partial F}{\partial y} = 3y^2 - 6xz$$

$$\frac{\partial F}{\partial z} = 3z^2 - 6xy$$

$$\therefore \text{By IFT: } \frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} = -\frac{3x^2 - 6yz}{3z^2 - 6xy} \text{ and } \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} = -\frac{3y^2 - 6xz}{3z^2 - 6xy}$$

GRADIENT AND OPTIMIZATION

GOAL: Extend optimization tricks to functions of several variables.

- The gradient of a function $f(x_1, x_2, \dots, x_n)$ is $\nabla f = \langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \rangle$.

- It can be used to restate lots of our favorite propositions, like:

- i. The Chain Rule: $\frac{df}{dt_i} = \nabla f \cdot \frac{\partial \vec{x}}{\partial t_i}$ with $\vec{x} = \langle x_1(t_0, \dots, t_k), \dots, x_n(t_0, \dots, t_k) \rangle$.

That's because $\frac{df}{dt_i} = \frac{\partial f}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_i} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_i} = \langle \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \rangle \cdot \langle \frac{\partial x_1}{\partial t_i}, \dots, \frac{\partial x_n}{\partial t_i} \rangle = \nabla f \cdot \frac{\partial \vec{x}}{\partial t_i}$.

2. Directional Derivatives: $D_{\vec{u}} f(\vec{p}) = \nabla f(\vec{p}) \cdot \vec{u}$

That's because if we let \vec{u} be a unit vector and f be a function w/ $\vec{p} \in \text{dom}(f)$, $D_{\vec{u}} f(\vec{p}) = \lim_{h \rightarrow 0^+} \frac{f(\vec{p} + h\vec{u}) - f(\vec{p})}{h}$.

Consider $g(h) = f(\vec{p} + h\vec{u})$. Now, $g(0) = f(\vec{p})$.

Thus, $D_{\vec{u}} f(\vec{p}) = \lim_{h \rightarrow 0^+} \frac{g(h) - g(0)}{h} = g'(0)$.

On the other hand, we recognize g as a composition: $g(h) = f(p_1 + hu_1, p_2 + hu_2, \dots, p_n + hu_n)$.

(w/ Chain Rule) $\frac{dg}{dh} = \nabla f \cdot \frac{\partial \vec{x}}{\partial h} = \nabla f \cdot \langle \frac{d}{dh}[p_1 + hu_1], \frac{d}{dh}[p_2 + hu_2], \dots, \frac{d}{dh}[p_n + hu_n] \rangle = \nabla f \cdot \langle u_1, \dots, u_n \rangle = \nabla f \cdot \vec{u}$

Ex: Compute $D_{\vec{u}} f(\vec{p})$ for $f(x, y) = 4y\sqrt{x}$, $\vec{p} = \langle 4, 1 \rangle$, $\vec{u} = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$.

$$\nabla f = \langle 2x^{1/2}y, 4x^{1/2} \rangle, \quad \nabla f(\vec{p}) = \langle 2 \cdot \frac{1}{\sqrt{2}} \cdot 1, 4 \cdot 2 \rangle = \langle 1, 8 \rangle$$

$$\therefore D_{\vec{u}} f(\vec{p}) = \nabla f(\vec{p}) \cdot \vec{u} = \langle 1, 8 \rangle \cdot \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle = \frac{1}{\sqrt{2}} - \frac{8}{\sqrt{2}} = -\frac{7}{\sqrt{2}}$$

Ex: Compute ∇f for $f(x, y, z) = \frac{xy}{y+z} = xz(y+z)^{-1}$.

$$\frac{\partial f}{\partial x} = \frac{z}{y+z}, \quad \frac{\partial f}{\partial y} = -\frac{xz}{(y+z)^2}, \quad \frac{\partial f}{\partial z} = \frac{(y+z)\frac{\partial}{\partial z}[xz] - xz\frac{\partial}{\partial z}[y+z]}{(y+z)^2} = \frac{x(y+z) - xz}{(y+z)^2} = \frac{xy}{(y+z)^2}$$

$$\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle = \left\langle \frac{z}{y+z}, -\frac{xz}{(y+z)^2}, \frac{xy}{(y+z)^2} \right\rangle$$

Claim: Gradient optimizes directional derivative, i.e. $\nabla f(\vec{p})$'s direction $\vec{u} = \frac{\nabla f(\vec{p})}{\|\nabla f(\vec{p})\|}$ realizes maximum $D_{\vec{u}} f(\vec{p})$.
(geometric interpretation of · product)

Why? $D_{\vec{u}} f(\vec{p}) = \nabla f(\vec{p}) \cdot \vec{u} = \|\nabla f(\vec{p})\| \|\vec{u}\| \cos \theta = \|\nabla f(\vec{p})\| \cos \theta$ since \vec{u} is a unit vector

To maximize $D_{\vec{u}} f(\vec{p})$, we want to maximize $\cos(\theta) \leq 1$.

The max is attained at $\theta=0$, so \vec{u} points in the same direction as $\nabla f(\vec{p})$.

Moreover, the max directional derivative is $\|\nabla f(\vec{p})\|$.

Ex: In which direction does $f(x,y,z) = \frac{x^3}{y+z}$ attain its max directional derivative at $\vec{p} = \langle 1, 1, -2 \rangle$? What is the max?

$D_{\vec{u}} f(\vec{p})$ is maximized in the direction of $\nabla f(\vec{p})$.

We saw $\nabla f = \left\langle \frac{z}{y+z}, -\frac{xz}{(y+z)^2}, \frac{xy}{(y+z)^2} \right\rangle$, so $\nabla f(1,1,-2) = \left\langle \frac{-2}{1-2}, -\frac{1(-2)}{(1-2)^2}, \frac{1 \cdot 1}{(1-2)^2} \right\rangle = \langle 2, 2, 1 \rangle$.

$\therefore D_{\vec{u}} f(\vec{p})$ is max'd at direction $\vec{u} = \frac{1}{3} \langle 2, 2, 1 \rangle$ with max $|\nabla f(\vec{p})| = 3$.

- Let f be a function. f has:

1. A local maximum value at \vec{p} when $f(\vec{p}) \geq f(\vec{x})$ for all \vec{x} nearby to \vec{p} .

2. A global maximum value at \vec{p} when $f(\vec{p}) \geq f(\vec{x})$ for all $\vec{x} \in \text{dom}(f)$.

* We say for either that \vec{p} is a (local/global) maximum point of f .

3. A (local/global) minimum value defined similarly with just the inequality signs flipped.

Recall: $f(x)=x$ has neither local nor global extrema (maxima/minima). We want to guarantee extrema (if possible).

- A critical point of function f is a point $\vec{p} \in \text{dom}(f)$ s.t. either $\nabla f(\vec{p})$ does not exist or $\nabla f(\vec{p}) = \vec{0}$.

- PROP (Fermat's Extremum Theorem): If f attains a local extremum at \vec{p} , then \vec{p} is a critical point of f .