## M02: Basic Programming for TM4C123

# 2.1. Timer & Interrupt Prof. Rosa Zheng

Ref: www.geeksforgeeks.org

TI, TivaWare C workshop slides

J. Valvano, Embedded Systems: Shape the World.

#### **Project 2 Contents**

- Part 2.1: Tiva C workshop lab 4
  - Import/export projects
  - Interrupts and timers
  - PWM (Pulse Width Modulation)
- Part 2.2: Tiva C workshop lab 5
  - Analog to Digital Converter (ADC)
    - -Nyquist Sampling Theorem & Quantization
- Part 2.3: Tiva C workshop lab 9
  - Floating-Point Processor Unit (FPU)

### Interrupts

- Interrupts vs Polling
- Interrupts vs. Exceptions
- TM4C Nested Vectored Interrupt Controller (NVIC)
  - Handles exceptions and interrupts
  - 8 programmable priority levels, priority grouping
  - 7 exceptions and 71 Interrupts
  - Automatic state saving and restoring
  - Automatic reading of the vector table entry
  - Pre-emptive/Nested Interrupts
  - Tail-chaining
  - Deterministic: always 12 cycles or 6 with tail-chaining

#### The Stack

- Stack is last-in-first-out (LIFO) storage
  - 32-bit data
- Stack pointer, SP or R13, points to top element of stack
- Stack pointer decremented as data placed on stack
- PUSH and POP instructions used to load and retrieve data



## **Interrupt Latency - Tail Chaining**



### Interrupt Latency – Pre-emption



#### **Interrupt Latency – Late Arrival**



#### Interrupt Latency – Normal Case



- Interrupt handling is automatic. No instruction overhead.
- Entry: Automatically pushes registers R0–R3, R12, LR, PSR, and PC onto the stack. In parallel, ISR is pre-fetched on the instruction bus. ISR ready to start executing as soon as stack PUSH complete
- **Exit:** Processor state is automatically restored from the stack. In parallel, interrupted instruction is pre-fetched ready for execution upon completion of stack POP

## Cortex-M4® Vector Table

- After reset, vector table is located at address 0
- Each entry contains the address of the function to be executed
- The value in address 0x00 is used as starting address of the Main Stack Pointer (MSP)
- Vector table can be relocated by writing to the VTABLE register (must be aligned on a 1KB boundary)
- Open startup\_ccs.c to see vector table coding

| Exception number |                                     | IRQ number                      | Offset                                                             | Vector                                                                              |
|------------------|-------------------------------------|---------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                  | 154                                 | 138                             | 0x0268                                                             | IRQ131                                                                              |
| :<br>he          | 18<br>17<br>16<br>15                | 2<br>1<br>0<br>-1               | 0x0268<br>0x004C<br>0x0048<br>0x0044<br>0x0040<br>0x003C           | IRQ2 IRQ1 IRQ0 Systick PendSV                                                       |
|                  | 13<br>12<br>11<br>10<br>9<br>8<br>7 | -5                              | 0x0038                                                             | Reserved Reserved for Debug SVCall Reserved                                         |
| )                | 6<br>5<br>4<br>3<br>2               | -10<br>-11<br>-12<br>-13<br>-14 | 0x0018<br>0x0014<br>0x0010<br>0x000C<br>0x0008<br>0x0004<br>0x0000 | Usage fault Bus fault Memory management fault Hard fault NMI Reset Initial SP value |

#### **General Purpose Timer Module**

- Six 16/32-bit and Six 32/64-bit general purpose (wide) timers
- Twelve 16/32-bit and Twelve 32/64-bit capture / compare / PWM pins
- Timer modes:
  - One-shot or Periodic
  - Input edge count or time capture with 16-bit prescaler
  - PWM generation (separated only)
  - Real-Time Clock (concatenated only)
- Count up or down
- Simple PWM (no deadband generation)
- Support for timer synchronization, daisy-chains, and stalling during debugging
- May trigger ADC samples or DMA transfers

#### **Pulse Width Modulation**



#### ADC ~ PAM



- Tiva TM4C MCUs feature two ADC modules (ADC0 and ADC1) that can be used to convert continuous analog voltages to discrete digital values
- Each ADC module has 12-bit resolution
- Each ADC module operates independently and can:
  - Execute different sample sequences
  - Sample any of the shared analog input channels
  - Generate interrupts & triggers

