Possibile svolgimento della prova del 15 settembre 2025 – modulo A

1) Si fattorizza $z^7 + 4z^3 = z^3(z^4 + 4)$. Ne segue z = 0 (con molteplicità 3) oppure $z^4 = -4$. Poiché $-4 = 4e^{i\pi}$ si ottengono le radici quarte

$$z = 4^{1/4} e^{i(\pi + 2k\pi)/4} = \sqrt{2} e^{i(\pi/4 + k\pi/2)}, \qquad k = 0, 1, 2, 3,$$

che in forma cartesiana sono 1+i, -1+i, -1-i, 1-i.

2) Per $a_n = (-1)^n + \frac{1}{n}$ si considerano le sottosuccessioni di indici pari e di indici dispari:

$$a_{2k} = 1 + \frac{1}{2k}, \qquad a_{2k-1} = -1 + \frac{1}{2k-1}$$

che sono entrambe strettamente decrescenti. Il massimo è quindi realizzato al primo termine pari: $a_2 = 1 + \frac{1}{2} = \frac{3}{2}$. Pertanto sup $a_n = \frac{3}{2}$ ed è assunto per n = 2 (massimo globale). L'estremo inferiore è -1, verso cui tendono i termini dispari, ma non è mai raggiunto; dunque non esiste minimo.

3) Per il dominio di $f(x) = \log(\frac{x+2}{x-1})$, si impone $\frac{x+2}{x-1} > 0$ e $x \neq 1$, da cui

$$dom(f) = (-\infty, -2) \cup (1, +\infty).$$

Ai bordi del dominio si ha $\lim_{x\to 1^+} f(x) = +\infty$ (dato che $\lim_{x\to 1^+} \frac{x+2}{x-1} = \frac{3}{0^+} = +\infty$) e $\lim_{x\to -2^-} f(x) = -\infty$, per cui x=1 (da destra) e x=-2 (da sinistra) sono asintoti verticali. Per $x\to\pm\infty$,

$$\frac{x+2}{x-1} \to 1 \quad \Rightarrow \quad f(x) = \log\left(\frac{x+2}{x-1}\right) \longrightarrow 0,$$

quindi y=0 è asintoto orizzontale sia per $x\to +\infty$ che per $x\to -\infty$. La derivata

$$f'(x) = \frac{-3}{(x-1)(x+2)}$$

è negativa su ciascun intervallo del dominio, per cui f è strettamente decrescente sia su $(-\infty, -2)$ sia su $(1, +\infty)$ e non presenta estremi interni. Nel punto x = 2 si ha $f(2) = \log 4$ e $f'(2) = -\frac{3}{4}$, dunque la tangente è $y = \log 4 - \frac{3}{4}(x-2)$.

4) La media integrale su $[e, e^9]$ di $f(x) = \frac{1}{x(\log x)^{3/2}}$ è

$$\frac{1}{e^9 - e} \int_e^{e^9} \frac{1}{x(\log x)^{3/2}} \, \mathrm{d}x.$$

Ponendo $u = (\log x)^{-1/2}$ si ha d $u = -\frac{1}{2}(\log x)^{-3/2} \frac{\mathrm{d}x}{x}$ e quindi

$$\int \frac{1}{x(\log x)^{3/2}} \, \mathrm{d}x = -2u + C = -\frac{2}{\sqrt{\log x}} + C.$$

Valutando agli estremi si ottiene

$$\frac{1}{e^9 - e} \left[-\frac{2}{\sqrt{\log x}} \right]_e^{e^9} = \frac{1}{e^9 - e} \left(2 - \frac{2}{3} \right) = \frac{4}{3(e^9 - e)}.$$

5) Si richiama la formula di Taylor d'ordine 2 con resto di Peano:

Sia f definita in un intorno di $x_0 \in \mathbb{R}$, derivabile in un intorno di x_0 e tale che esista la derivata seconda in x_0 . Allora vale la formula di Taylor d'ordine 2 con resto di Peano:

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + o(h^2), \quad \text{per } h \to 0.$$

Per una dimostrazione si veda il manuale consigliato.

Applicazione al limite richiesto: Sappiamo che

$$e^x = 1 + x + \frac{x^2}{2} + o(x^2)$$
 per $x \to 0$,

quindi sostituendo -x a x otteniamo (sostituzione lecita dato che per $x \to 0, -x \to 0$):

$$e^{-x} = 1 - x + \frac{x^2}{2} + o(x^2)$$
 per $x \to 0$,

e dunque

$$1 - x - e^{-x} = -\frac{x^2}{2} + o(x^2)$$
 per $x \to 0$.

Pertanto

$$\lim_{x \to 0} \frac{1 - x - e^x}{x^2} = \lim_{x \to 0} \frac{-x^2/2 + o(x^2)}{x^2} = -\frac{1}{2} + 0 = -\frac{1}{2}.$$