CSE 311 HW5

Rohan Mukherjee

February 8, 2023

1. Let $P(n) = 5 | 9^n - 4^n$.

Base case: $9^2 - 4^2 = 81 - 16 = 65 = 5 \cdot 13$, so clearly $5 \mid 9^2 - 4^2$, which is P(2) so the base case holds.

- 2. (a) Given any arbitrary integer n > 3, I claim that the n 3 satisfies the conditions on b. First we have to show that $1 \le n 3 \le n$. As n is an integer strictly greater than 3, we know that $n \ge 4$, and from here we can subtract 3 from both sides to get $n 3 \ge 1$. Similarly, as $-3 \le 0$, we can add n to both sides to get that $n 3 \le n$, which shows that n is in the right bounds. Now, given any $a \in \mathbb{Z}$, we wish to show that $a + 3 + (n 3) \equiv a \pmod{n}$. This statement is equivalent to showing that $n \mid (a + 3 + (n 3) a)$, and as $n \cdot 1 = (a + 3 + (n 3) a) = (3 + n 3) = n$, so we see that this statement holds true. As n was arbitrary, we have concluded that for any integer n > 3, there exists a b so that b undoes 3 \pmod{n} .
 - (b) Let the domain of discourse be integers. The statement in predicate logic is $\forall n \forall b \forall b' ((\mathsf{Greater}(n,3) \land \mathsf{Undoes}3(b,n) \land \mathsf{Undoes}3(b',n)) \to b \equiv b' \pmod{n}).$ Given any arbitrary integer n > 3, and any arbitrary $b, b' \in \mathbb{Z}$, suppose that b and b' undo 3 for \pmod{n} addition. Note that given any $a \in \mathbb{Z}$, we know that $n \mid (a+3+b-a) \iff n \mid 3+b$ by the definition of undoing 3 for \pmod{n} addition. Then 3+b=kn for some $k \in \mathbb{Z}$. Similarly, given any $c \in \mathbb{Z}$, we know that $n \mid (c+3+b'-c) \iff n \mid 3+b',$ so 3+b'=ln for some $l \in \mathbb{Z}$. Then b-b'=3+b-(3+b')=3k-3l=3(k-l), by plugging in what we learned above. As k-l is an integer, this statement says that $3\mid b-b'$, so we have concluded that $b \equiv b' \pmod{n}$. Finally, as b,b', and n were arbitrary, we have proven our statement.

- 3. (a) No. If we take x = y = z = 2, we see that $x \mid y$, as $2 \mid 2$, and that $y \mid z$, as again $2 \mid 2$. But clearly as xy = 4, z = 2, and as $4 \nmid 2$, we see that $xy \nmid z$. So we have disproven this claim by finding a counterexample.
 - (b) Yes. We prove this by using the definition of divides. As $x \mid y$, we can say that y = kx for some $k \in \mathbb{Z}$. As $y \mid z$, we can say that z = ly for some $l \in \mathbb{Z}$. Plugging in the value for y, we see that z = lkx, and as lk is the product of integers, it too is an integer, so this statement says that $x \mid z$.

- **EC.** (a) Note: because $\gcd(\mathfrak{a},\mathfrak{n})=1$, there exists integers $\mathfrak{s},\mathfrak{t}\in\mathbb{Z}$ so that $\mathfrak{b}\mathfrak{a}+\mathfrak{t}\mathfrak{n}=1$, which tells us that $\mathfrak{b}=\mathfrak{a}^{-1}\pmod{\mathfrak{n}}$. So clearly now $\mathfrak{r}=\mathfrak{a}^{-1}\mathfrak{a}\mathfrak{r}\pmod{\mathfrak{n}}$, which gives us the first inclusion. Second, given any $\mathfrak{a}\mathfrak{x}\in\mathfrak{a}\mathfrak{R}$, first simply reduce $\mathfrak{a}\mathfrak{x}$ to be between $\mathfrak{0}$ and $\mathfrak{n}-1$. It suffices to show that $\gcd(\mathfrak{a}\mathfrak{x},\mathfrak{n})=1$. We know that there exists $\mathfrak{u},\mathfrak{v}$ so that $\mathfrak{u}\mathfrak{x}+\mathfrak{v}\mathfrak{n}=1$. Note that $\mathfrak{1}=\mathfrak{1}\cdot\mathfrak{1}=(\mathfrak{u}\mathfrak{x}+\mathfrak{v}\mathfrak{n})(\mathfrak{b}\mathfrak{a}+\mathfrak{t}\mathfrak{n})=\mathfrak{u}\mathfrak{x}\mathfrak{b}\mathfrak{a}+\mathfrak{u}\mathfrak{x}\mathfrak{n}+\mathfrak{v}\mathfrak{n}\mathfrak{b}\mathfrak{a}+\mathfrak{v}\mathfrak{n}\mathfrak{n}=(\mathfrak{u}\mathfrak{b})\mathfrak{x}\mathfrak{a}+\mathfrak{n}(\mathfrak{u}\mathfrak{x}\mathfrak{t}+\mathfrak{v}\mathfrak{b}\mathfrak{a}+\mathfrak{v}\mathfrak{t}\mathfrak{n})$, so $\mathfrak{x}\mathfrak{a}$ also has an inverse mod \mathfrak{n} . By letting $\mathfrak{d}=\gcd(\mathfrak{a}\mathfrak{x},\mathfrak{n})$, we see that $\mathfrak{d}\mid\mathfrak{1}$, which means that $\mathfrak{d}=\mathfrak{1}$, which gives the reverse inclusion.
 - (b) As the elements are the same, if we list the elements of R as $\{r_1,\cdots,r_{\phi(n)}\}$, we can say that

$$r_1 \cdots r_{\varphi(n)} = \alpha r_1 \cdots \alpha r_{\varphi(n)}$$

Now, as each element of r has an inverse mod n, we can cancel all the r_i 's, and we see that $a^{\phi(n)} \equiv 1 \pmod{n}$.

- (c) By the division algorithm, we see that there exists q so that $b = q\phi(n) + b\%\phi(n)$. Then, as exponents work the same in \mathbb{Z}/n , we see that $a^b = a^{q\phi(n) + b\%\phi(n)} = a^{q\phi(n)} \cdot a^{b\%\phi(n)} = 1^q \cdot a^{b\%\phi(n)} = a^{b\%\phi(n)}$ (where equality is in \mathbb{Z}/n).
- (d) What is known is that $ed \equiv 1 \pmod{\phi(n)}$. Next, as $(a^b)^c = a^{bc}$ in \mathbb{Z}/n , we see that $y^d \equiv x^{ed} \equiv x^1 \equiv x \pmod{n}$, as the power is reduced mod $\phi(n)$.
- (e) For the first part, we see that for any n, gcd(n, 1) = 1, as the largest divisor of 1 is 1. For any prime p, and given any $1 \le n \le p-1$, we see that $n \nmid p$, as p is prime, as well as $p \nmid n$, as n < p. These facts together show that p is not a common divisor of n and p, and as p only has two positive divisors, where we know that p isn't a common divisor, the greatest common divisor between n and p must be 1. So $\varphi(\mathfrak{p}) = \mathfrak{p} - 1$. Note that (\mathfrak{a}) , (\mathfrak{b}) are comaximal ideals of the ring \mathbb{Z} , as there exists s, t so that as + bt = 1, which means that the sum would contain every multiple of 1-the entire ring. Also, $(a) \cap (b) = (ab)$, as the elements of the left set are multiples of both a and b. By the chinese remainder theroem for rings, we see that $\mathbb{Z}/(\mathfrak{a}) \times \mathbb{Z}/(\mathfrak{b}) \cong \mathbb{Z}/(\mathfrak{a}) \cap (\mathfrak{b}) \cong \mathbb{Z}/(\mathfrak{a}\mathfrak{b})$. It suffices to show that the group of units of the RHS is indeed $(\mathbb{Z}/a)^{\times} \times (\mathbb{Z}/b)^{\times}$. If (a, b) is a unit, then there exists (s, t) so that $(c,d)\cdot(s,t)=(cs,dt)=(1,1)$. This shows that c is a unit in \mathbb{Z}/c , and that d is a unit in \mathbb{Z}/d . The reverse inclusion is trivial. Finally note that $|(\mathbb{Z}/n)^{\times}| = \varphi(n)$, because the only numbers with an inverse mod n are going to be those that have gcd 1 with n (else, you could show its a zero divisor by multiplying with $n/\gcd(a,n) < n$ if $gcd(\mathfrak{a},\mathfrak{n}) \neq 1$. As the rings are isomorphic, their groups of units are isomorphic, which finally tells us that there is a bijection between their group of units, which tells us that their group of units have the same order—which tells us that $\varphi(ab) = \varphi(a)\varphi(b)$. Maybe this is a little overkill, but I think its cool. Here is a diagram of what's going

on:

Where the arrows here are ring homomorphisms.

4. Let $P(n) = 4 \mid (9^n - 1)$. Our proof is by induction on n.

Base case: $0 \cdot 4 = 0 = 1 - 1 = 9^0 - 1$, so $4 \mid 9^0 - 1$, and therefore P(0) is true.

Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer $k \ge 0$.

Inductive step: Notice that $9^{k+1} - 1 = 9^{k+1} - 9 + 9 - 1 = 9(9^k - 1) + 8$, where I added a smart 0 and then factored out a 9. By the inductive hypothesis, $9^k - 1 = 4l$ for some $l \in \mathbb{Z}$, so $9(9^k - 1) + 8 = 9 \cdot 4l + 8$. Factoring out the 4, we see that $9 \cdot 4l + 8 = 4(9l + 2)$, and as 9l + 2 is an integer, this statement shows that $4 \mid 9^{k+1} - 1$, which was P(k + 1).

So P(n) is true for all integer $n \ge 0$ by the principle of induction.

5. Let $P(n) = Mystery(n) = 21 \cdot 2^n + 9 \cdot (-1)^n$. We proceed by strong induction on n.

Base cases: n=0, n=1 We see that Mystery(0)=30, as it would go into the second if statement, and clearly $30=21\cdot 2^0+9\cdot (-1)^0=21+9=30$, which shows P(0). We also see that Mystery(1)=33, as it would go into the third if statement, and clearly $33=21\cdot 2^1+9\cdot (-1)^1=42-9=33$, which shows P(1).

Inductive Hypothesis: Suppose $P(0) \wedge P(1) \wedge \cdots \wedge P(k)$ for an arbitrary integer $k \ge 1$.

Inductive Step: Looking at the definition of Mystery(k+1), we see that as $k+1 \ge 2$, it is in particular not 0 or 1, so we will be in the last return statement and Mystery $(k+1) = Mystery(k) + 2 \cdot Mystery(k-1)$. By our inductive hypothesis, we know that the RHS is equal to $21 \cdot 2^k + 9 \cdot (-1)^k + 2 \cdot (21 \cdot 2^{k-1} + 9 \cdot (-1)^{k-1})$. Now,

$$21 \cdot 2^{k} + 9 \cdot (-1)^{k} + 2 \cdot \left(21 \cdot 2^{k-1} + 9 \cdot (-1)^{k-1}\right) = 21 \cdot 2^{k} + 9 \cdot (-1)^{k} + 21 \cdot 2^{k} + 9 \cdot 2 \cdot (-1)^{k-1}$$
$$= 21 \cdot 2^{k+1} + 9((-1)^{k} + 2 \cdot (-1)^{k-1})$$

For the final equal sign, I combined the two $21 \cdot 2^k$'s, and I factored a 9 out of the other two terms. Therefore, it suffices to show that $(-1)^k + 2 \cdot (-1)^{k-1} = (-1)^{k+1}$. This requires a simple trick, i.e. multiplying by 1:

$$(-1)^{k} + 2 \cdot (-1)^{k-1} = (-1)^{k} + 2 \cdot (-1)^{k-1} \cdot \frac{-1}{-1}$$
$$= (-1)^{k} - 2 \cdot (-1)^{k}$$
$$= -(-1)^{k}$$
$$= (-1)^{k+1}$$

Where on the second line we have brought one of the -1's to the front of the two, and the second one we added to the power of the $(-1)^{k-1}$. So using this result, we see that

$$21 \cdot 2^{k+1} + 9((-1)^k + 2 \cdot (-1)^{k-1}) = 21 \cdot 2^{k+1} + 9(-1)^{k+1}$$

Which is precisely what P(k+1) asserts. By the principle of strong induction, we may conclude that P(n) holds for all $n \ge 0$.

6. This assignment took me around 1.5 hours to complete, and around 1.5 hours to review. I knew a lot of the number theory coming into the course, so it didn't take long to figure out the problems. The longest problem was 5, as I would say it is the most challenging on this homework assignment, utilizing at least two tricks. I do not have any other feedback.