

SUBFIELDS OF AMPLE FIELDS I. RATIONAL MAPS AND DEFINABILITY

ARNO FEHM

ABSTRACT. Pop proved that a smooth curve C over an ample field K with $C(K) \neq \emptyset$ has $|K|$ many rational points. We strengthen this result by showing that there are $|K|$ many rational points that do not lie in a given proper subfield, even after applying a rational map. As a consequence we gain insight into the structure of existentially definable subsets of ample fields. In particular, we prove that a perfect ample field has no existentially definable proper infinite subfields.

INTRODUCTION

Recall that a field K is called *ample* (or *large* after [Pop96]) if every smooth curve C defined over K with a K -rational point has infinitely many of them. The class of ample fields subsumes several seemingly unrelated classes of fields – separably closed fields and pseudo algebraically closed fields, real closed fields, and Henselian valued fields.

By introducing ample fields, Pop was able to reprove and generalise a couple of deep results on a certain important Galois theoretic conjecture of Dèbes and Deschamps (a vast generalization of the classical inverse Galois problem, see [DD99, §2.1.2]). Furthermore, all fields for which this conjecture has been proven so far turned out to be ample. Therefore, the class of ample fields now plays a decisive role in the study of general Galois theory. Moreover, in recent years ample fields drew attention in several other branches of mathematics – for example in the study of rationally connected varieties and torsors, see [Kol99], [MB01], in the study of Abelian varieties, see [Kob06], [LR08], [FP08], and in the study of definability in fields, see [Koe02], [PP07], [JK08]. We refer the reader to the introduction of [Pop08] for a more extensive survey of ample fields.

Harbater and Stevenson called a field K *very large* if every smooth curve C defined over K with a K -rational point has $|K|$ many such points. They proved that the absolute Galois group of a function field of one variable over a very large field K is a so-called quasi-free group, and they asked if the same holds for every ample field K (see [HS05]). Pop gave a positive answer to this question, by showing that every ample field is actually very large, cf. [Har06, Proposition 3.3].

In this work, we considerably strengthen this result by proving that in the situation above, C has $|K|$ many rational points *with respect to any proper subfield* of K . That is:

Theorem 1. *Let K be an ample field, C a curve defined over K with a simple K -rational point and $\varphi : C \rightarrow C'$ a separable dominant K -rational map to an affine curve $C' \subseteq \mathbb{A}^n$ defined over K . Then for every proper subfield K_0 of K ,*

$$|\varphi(C(K)) \setminus \mathbb{A}^n(K_0)| = |K|.$$

The proof of Theorem 1 is carried out in Section 1. It is based on a careful analysis of the trick of Koenigsmann that is used in Pop's proof.

Section 2 gives a model theoretic reinterpretation of Theorem 1: Motivated by what is known about definable subsets of some well-studied 'classical' ample fields, we apply Theorem 1 to investigate the structure of existentially definable (i.e. diophantine) subsets of ample fields. For example we prove that a perfect ample field has no existentially definable proper infinite subfields, and we point out connections with the recent work [JK08].

NOTATION

All varieties are geometrically irreducible and geometrically reduced. For any set X , the cardinality of X is denoted by $|X|$. The algebraic closure of a field K is denoted by \tilde{K} . Formulas are first order formulas in the language of rings.

1. VARIETIES OVER SUBFIELDS OF AMPLE FIELDS

We start with a well known lemma from linear algebra:

Lemma 2. *Let V be a vector space over an infinite field K . Suppose $V = \bigcup_{i \in I} W_i$ is a union of proper linear subspaces W_i of V with $\sup_{i \in I} \dim_K(W_i) < \infty$. Then $|I| \geq |K|$.*

Proof. If $\dim_K(V) = \infty$, replace V by any subspace $V' \subseteq V$ with $\sup_{i \in I} \dim_K(W_i) < \dim_K(V') < \infty$, and W_i by $W_i \cap V'$ to assume without loss of generality that $\dim_K(V) < \infty$. Then proceed by induction on $\dim_K(V)$:

The case $\dim_K(V) = 1$ clearly cannot occur. If $\dim_K(V) > 1$ and $|I| < |K|$, then there is a subspace W of V of codimension 1 such that $W \neq W_i$ for all i . But then $W = \bigcup_{i \in I} (W_i \cap W)$ and each $W_i \cap W$ is a proper subspace of W , contradicting the induction hypothesis. \square

The next lemma is a refinement of the method used in [Koe02].

Lemma 3. *Let K be an ample field, $f \in K[X, Y]$ an absolutely irreducible polynomial, and $y_0 \in K$ such that $f(0, y_0) = 0$ and $\frac{\partial f}{\partial Y}(0, y_0) \neq$*

0. Denote by C the affine curve $f(x, y) = 0$, and by π the projection $(x, y) \mapsto x$. Then for every proper infinite subfield K_0 of K ,

$$|\pi(C(K)) \setminus K_0| \geq |K_0|.$$

Proof. Let $c \in K$. Define $x'_1 = ct, x'_2 = t \in K((t))$ and $g_i(Y) = f(x'_i, Y) \in K[[t]][Y]$, $i = 1, 2$. Then g_i modulo t has the simple zero y_0 . By Hensel's lemma, there are $y'_1, y'_2 \in K((t))$ such that $f(x'_1, y'_1) = f(x'_2, y'_2) = 0$. Since K is ample, it is existentially closed in $K((t))$, cf. [Pop96, Proposition 1.1]. Therefore we can find $x_1, x_2, y_1, y_2 \in K$ such that $f(x_1, y_1) = f(x_2, y_2) = 0$, $x_2 \neq 0$, and $c = x_1/x_2$. Since c was arbitrary, we have shown:

$$K = \left\{ \frac{x_1}{x_2} : (x_1, y_1), (x_2, y_2) \in C(K), x_2 \neq 0 \right\}.$$

For simplicity, write $A = \{P \in C(K) : \pi P \in K_0\}$, $B = \{P \in C(K) : \pi P \notin K_0\}$, $A' = A \setminus \pi^{-1}(0)$. Then $C(K) = A \cup B$ and $C(K) \setminus \pi^{-1}(0) = A' \cup B$, so

$$\begin{aligned} K &= \bigcup_{\substack{P \in C(K) \\ Q \in C(K) \setminus \pi^{-1}(0)}} \left\{ \frac{\pi P}{\pi Q} \right\} \\ &= \bigcup_{\substack{P \in A \\ Q \in A'}} \left\{ \frac{\pi P}{\pi Q} \right\} \cup \bigcup_{\substack{P \in A \\ Q \in B}} \left\{ \frac{\pi P}{\pi Q} \right\} \cup \bigcup_{\substack{P \in B \\ Q \in A'}} \left\{ \frac{\pi P}{\pi Q} \right\} \cup \bigcup_{\substack{P \in B \\ Q \in B}} \left\{ \frac{\pi P}{\pi Q} \right\} \\ &\subseteq K_0 \cup \bigcup_{Q \in B} K_0 \cdot \frac{1}{\pi Q} \cup \bigcup_{P \in B} K_0 \cdot \pi P \cup \bigcup_{\substack{P \in B \\ Q \in B}} K_0 \cdot \frac{\pi P}{\pi Q} \end{aligned}$$

Thus, K is covered by at most $1 + 2 \cdot |B| + |B|^2$ K_0 -subspaces of dimension 1. Since $[K : K_0] \geq 2$, these are proper subspaces and Lemma 2 implies that $1 + 2 \cdot |B| + |B|^2 \geq |K_0|$, so $|B| \geq |K_0|$. Since the fibers of $\pi|_C$ are finite, this implies $|\pi(C(K)) \setminus K_0| = |B| \geq |K_0|$. \square

Proof of Theorem 1. The characterization of separating elements in separable function fields of one variable shows that we can replace φ by one of its coordinate functions and assume that $C' = \mathbb{A}^1$, i.e. φ is a separable rational function on C . Then it suffices to prove that $|\varphi(C(K)) \setminus K_0| = |K|$.

Since K is ample and C has a simple K -rational point, $C(K)$ is infinite. If K_0 is finite and K algebraic over K_0 , then, since φ has finite fibers, $|\varphi(C(K)) \setminus K_0| = \aleph_0 = |K|$. So assume without loss of generality that $|K_0| = \aleph_0 = |K|$ or K is transcendental over K_0 . Since a purely transcendental extension of a field is never ample, we may adjoin a transcendental basis of $K|K_0$ to K_0 and assume that $|K_0| = |K|$.

Since φ is separable, there is a plane affine curve $D \subseteq \mathbb{A}^2$ defined by an absolutely irreducible polynomial $f \in K[X, Y]$, separable in Y , and

a K -birational map $\eta : C \rightarrow D$ such that, with π the projection on the first coordinate, $\pi \circ \eta = \varphi$. Since η is birational, there are cofinite subsets C_0 of C and D_0 of D such that φ is defined on C_0 and η maps C_0 bijectively onto D_0 with inverse η^{-1} . In particular, $\eta(C_0(K)) = D_0(K)$ and $\varphi(C_0(K)) = \pi(D_0(K))$.

Since $C(K)$ is infinite, also $D(K)$ is infinite. Choose $P_1 = (x_1, y_1) \in D(K)$ with $\frac{\partial f}{\partial Y}(x_1, y_1) \neq 0$ and denote the curve defined by $f_1(X, Y) = f(X + x_1, Y) \in K[X, Y]$ by D_1 . By Lemma 3 applied to f_1 , y_1 , K_0 we get that $|\pi(D_1(K)) \setminus K_0| \geq |K_0| = |K|$. Thus in particular $|\pi(D(K))| = |\pi(D_1(K))| = |K|$.

Assume that $|\pi(D(K)) \setminus K_0| < |K|$. Then there are infinitely many $P = (x, y) \in D(K)$ with $x = \pi P \in K_0$. Choose $P_2 = (x_2, y_2) \in D(K)$ with $x_2 = \pi P_2 \in K_0$ and $\frac{\partial f}{\partial Y}(x_2, y_2) \neq 0$ and denote the curve defined by $f_2(X, Y) = f(X + x_2, Y) \in K[X, Y]$ by D_2 . By Lemma 3 applied to f_2 , y_2 , K_0 we get that $|\pi(D_2(K)) \setminus K_0| \geq |K_0| = |K|$. But $x_2 \in K_0$ implies $|\pi(D_2(K)) \setminus K_0| = |\pi(D(K)) \setminus K_0| < |K|$, a contradiction.

Thus $|\pi(D(K)) \setminus K_0| = |K|$. But then also $|\varphi(C(K)) \setminus K_0| = |K|$, as was to be shown. \square

We now give two immediate consequences of Theorem 1.

Corollary 4. *Let K be an ample field and V a positive dimensional variety defined over a subfield K' of K with a simple K' -rational point. Then for every proper subfield $K_0 \supseteq K'$ of K , $|V(K) \setminus V(K_0)| = |K|$. In particular, $K = K'(V(K))$ and $|V(K)| = |K|$.*

Proof. Choose an affine curve C on V defined over K' which has a simple K' -rational point (see [KA79]). By Theorem 1, $|C(K) \setminus C(K_0)| = |K|$, so $|V(K) \setminus V(K_0)| = |K|$. If $K_1 = K'(V(K))$ is a proper subfield of K , then $|V(K) \setminus V(K_1)| = |K|$, contradicting $V(K) = V(K_1)$. \square

The very last statement of this corollary is the result of Pop mentioned in the introduction. A weak consequence of Corollary 4 is used in [FP08] to study the rank of Abelian varieties over ample fields.

Corollary 5. *If E is ample and $K \subseteq E$ is a subfield with $\text{tr.deg}(E|K) \geq 1$, then for every function field of one variable $F|K$ with a rational place, there is a K -embedding of F into E .*

Proof. Let $K_0 = \tilde{K} \cap E$ and let C be a model of $F|K$ with a simple K -rational point. By Theorem 1, $|C(E) \setminus C(K_0)| = |K|$. Every point $\mathbf{x} \in C(E) \setminus C(K_0)$ is a generic point of C over K , so $F \cong_K K(C) \cong_K K(\mathbf{x}) \subseteq E$. \square

From Corollary 5 and the Riemann-Hurwitz theorem it follows immediately that function fields are non-ample and one can deduce many examples of non-ample infinite algebraic extensions of function fields. With a higher dimensional generalization of Lemma 3, one can prove

a higher dimensional analogue of Corollary 5. We will deal with these aspects in the forthcoming note [Feh08].

2. DEFINABILITY IN AMPLE FIELDS

For many of the 'classical' ample fields K , a lot is known about definable infinite subsets $X \subseteq K$. For example, if K is algebraically closed, then X is cofinite. If K is real closed then X is a finite union of intervals. If K is p -adically closed, then X contains a non-empty open subset¹. In particular, in each of these cases K has no definable proper infinite subfields. The same is true for perfect PAC fields², and a recent result in [JK08] shows that it is also true in the case that K is Henselian of characteristic zero. We now show that for the huge class of perfect ample fields, there are at least no *existentially* definable proper infinite subfields.

Note that it is *not true* that an ample field of characteristic zero has no definable proper subfields (see Example 9 below), so our result on *existentially* definable subfields is in some sense the best we can expect for the class of ample fields. Furthermore note that the corresponding statement for *non-ample* fields is *not true* in general: If $F|K$ is a function field and K is algebraically closed, say, then K is existentially definable in F (see [Dur86], [Koe02]).

Lemma 6. *Let K be a perfect ample field and $K_0 \subseteq K$ a subfield. Let $X \subseteq K$ be existentially K_0 -definable such that $X \not\subseteq \tilde{K}_0$. Then $|X \setminus K_1| = |K|$ for every proper subfield K_1 of K .*

Proof. Let $\varphi(x_0)$ be an existential formula that defines X . Without loss of generality assume that $\varphi(x_0)$ is of the form

$$(\exists x_1, \dots, x_n)(\bigwedge_{i=1}^k f_i(x_0, x_1, \dots, x_n) = 0),$$

where $f_1, \dots, f_k \in K_0[X_0, \dots, X_n]$.

Since $X \not\subseteq \tilde{K}_0$, there are $x_0 \in X$ and $x_1, \dots, x_n \in K$ such that with $\mathbf{x} = (x_0, \dots, x_n)$, $\bigwedge_{i=1}^k f_i(\mathbf{x}) = 0$ and $\text{tr.deg}(K_0(x_0)|K_0) = 1$. Let $F = K_0(\mathbf{x})$ and adjoin a transcendence base of $F|K_0(x_0)$ to K_0 to assume without loss of generality that $\text{tr.deg}(F|K_0) = 1$. Then replace K_0 by $\tilde{K}_0 \cap K$, so that K_0 is perfect and $F|K_0$ is a separable function field of one variable.

If $\text{char}(K) = p > 0$, let F' be the separable closure of $K_0(x_0)$ in F . Then $F' = F'^r K_0 = K_0(x_0, x_1^{p^r}, \dots, x_n^{p^r})$ for some $r \geq 0$. Define $f'_i(X_0, \dots, X_n) = f_i^{p^r}(X_0, X_1^{p^{-r}}, \dots, X_n^{p^{-r}}) \in K_0[X_0, \dots, X_n]$, $\varphi'(x_0)$ as $(\exists x_1, \dots, x_n)(\bigwedge_{i=1}^k f'_i(x_0, x_1, \dots, x_n) = 0)$, and $\mathbf{x}' = (x_0, x_1^{p^r}, \dots, x_n^{p^r})$. Then $\bigwedge_{i=1}^k f'_i(\mathbf{x}') = 0$ and $K_0(\mathbf{x}') = F'$. Since K is perfect, the subset

¹see [Mac76]

²as follows from [CvdDM92, Proposition 5.3]

defined by φ' is exactly X . Thus replace φ by φ' , \mathbf{x} by \mathbf{x}' and F by F' to assume without loss of generality that $F|K_0(x_0)$ is separable.

Let C be the locus of \mathbf{x} over K_0 . That is, $C \subseteq \mathbb{A}^{n+1}$ is an affine curve defined over K_0 with $F \cong_{K_0} K_0(C)$, and \mathbf{x} is a simple F -rational point of C . If $\mathbf{y} \in C(K)$ is another point of C , then there is a K_0 -specialization $\eta_{\mathbf{y}} : K_0[\mathbf{x}] \rightarrow_{K_0} K_0[\mathbf{y}]$. In particular, $0 = \eta_{\mathbf{y}}(f_i(\mathbf{x})) = f_i(\mathbf{y})$ for all i , i.e. $y_0 \in X$. This means that if $\pi : \mathbb{A}^{n+1} \rightarrow \mathbb{A}^1$ is the projection on the first coordinate, then $\pi(C(K)) \subseteq X$.

But $\pi|_C$ is separable since $F|K_0(x_0)$ is separable, so $|\pi(C(K)) \setminus K_1| = |K|$ by Theorem 1. Thus $|X \setminus K_1| \geq |\pi(C(K)) \setminus K_1| = |K|$. \square

Corollary 7. *Let K be a perfect ample field and let $X \subseteq K$ be existentially K -definable and infinite. Then $|X \setminus K_1| = |K|$ for every proper subfield K_1 of K .*

Proof. Let φ be an existential formula that defines X , and let $K_0 \subseteq K$ be the field generated by the parameters used in φ . Let $K^* \supseteq K$ be an \aleph_1 -saturated ultrapower of K . Then the subset $X^* \subseteq K^*$ defined by φ in K^* is uncountable. Since K_0 is finitely generated, $X^* \not\subseteq \tilde{K}_0$. Thus by Lemma 6, $|X^* \setminus K_1^*| = |K^*|$ for every proper subfield K_1^* of K^* .

Let K_1 be any proper subfield of K . Then the corresponding ultrapower K_1^* is a proper subfield of K^* , thus $|X^* \setminus K_1^*| = |K^*|$, which implies $|X \setminus K_1| = \infty$. So if K is countable, $|X \setminus K_1| = \aleph_0 = |K|$ as was to be shown. If K is uncountable, then $\tilde{K}_0 \cap K$ is a proper subfield of K , so $|X \setminus (\tilde{K}_0 \cap K)| = \infty$. In particular $X \not\subseteq \tilde{K}_0$. Thus by Lemma 6, $|X \setminus K_1| = |K|$. \square

Corollary 8. *A perfect ample field K has no existentially K -definable proper infinite subfields.* \square

The following example shows that Corollary 8 does not hold for arbitrary K -definable subfields (rather than existentially K -definable subfields):

Example 9. *The prime field \mathbb{Q} is a \emptyset -definable proper subfield of the ample field $\mathbb{Q}((X, Y))$.*

Proof. As noted in [Pop08], $K((X, Y))$ is ample for any field K . But the ring $K[[X, Y]]$ is definable in $K((X, Y))$, see [JL89, Theorem 3.34], and if $\text{char}(K) = 0$, then \mathbb{N} is definable in $K[[X, Y]]$, see [Del81, Théorème 2.1]. \square

Note that the results of this section are closely related to [JK08]. There, a field K is called *very slim*, if in all fields elementary equivalent to K , 'the model theoretic algebraic closure in K coincides with the relative field theoretic algebraic closure', cf. [JK08, Definition 1.1].

Since a very slim field has no definable proper infinite subfields, see [JK08, Proposition 4.1], Example 9 gives a positive answer to (1) of [JK08, Question 8]: Perfect ample fields that are not very slim do

exist. In particular, [JK08, Theorem 5.5], which states that Henselian fields of characteristic zero are very slim, does not generalise to the class of ample fields of characteristic zero.

Since a model complete field is perfect and all its definable subsets are existentially definable, Lemma 6 immediately gives a new proof for [JK08, Theorem 5.4]: Every model complete ample field is very slim.

ACKNOWLEDGEMENTS

The author would like to thank Lior Bary-Soroker and Moshe Jarden for helpful comments and encouragement, and Elad Paran for contributing to the introduction. This work was supported by the European Commission under contract MRTN-CT-2006-035495.

REFERENCES

- [CvdDM92] Zoé Chatzidakis, Lou van den Dries, and Angus Macintyre. Definable sets over finite fields. *Journal für die reine und angewandte Mathematik*, 427:107–135, 1992.
- [DD99] Pierre Dèbes and Bruno Deschamps. The regular inverse galois problem over large fields. *Geometric Galois actions, London Math. Soc., Lec. Note Ser.*, 2(8):119–138, 1999.
- [Del81] Françoise Delon. Indécidabilité de la théorie des anneaux de séries formelles à plusieurs indéterminées. *Fundamenta Mathematicae*, 112:215–229, 1981.
- [Dur86] Jean-Louis Duret. Sur la théorie élémentaire des corps de fonctions. *Journal of Symbolic Logic*, 51(4):948–956, 1986.
- [Feh08] Arno Fehm. Subfields of ample fields II. Embeddings into ample fields. 2008. Manuscript.
- [FP08] Arno Fehm and Sebastian Petersen. On the rank of abelian varieties over ample fields. Manuscript, 2008.
- [Har06] David Harbater. On function fields with free absolute galois groups. 2006. arXiv:math/0608584v1 [math.AG].
- [HS05] David Harbater and Katherine F. Stevenson. Local galois theory in dimension two. *Advances in Mathematics*, 198:623–653, 2005.
- [JK08] Markus Junker and Jochen Koenigsmann. Schlanke Körper (Slim Fields). Manuscript, 2008.
- [JL89] Christian U. Jensen and Helmut Lenzing. *Model Theoretic Algebra*. Algebra, Logic and Applications 2. Gordon and Breach, 1989.
- [KA79] Steven L. Kleiman and Allen B. Altman. Bertini theorems for hypersurfaces sections containing a subscheme. *Communications in Algebra*, 7(8):775–790, 1979.
- [Kob06] Emi Kobayashi. A remark on the Mordell-Weil rank of elliptic curves over the maximal abelian extension of the rational number field. *Tokyo Journal of Mathematics*, 29(2):295–300, 2006.
- [Koe02] Jochen Koenigsmann. Defining transcendentals in function fields. *Journal of Symbolic Logic*, 67(3):947–956, 2002.
- [Kol99] János Kollár. Rationally connected varieties over local fields. *Annals of Mathematics*, 150:357–367, 1999.
- [LR08] Álvaro Lozano-Robledo. Ranks of abelian varieties over infinite extensions of the rationals. to appear in *Manuscripta Mathematica*, 2008.

- [Mac76] Angus Macintyre. On definable subsets of p -adic fields. *Journal of Symbolic Logic*, 41(3):605–610, 1976.
- [MB01] Laurent Moret-Bailly. R-équivalence simultanée de torseurs: un complément à l'article de P. Gille. *Journal of Number Theory*, 91(2):293–296, 2001.
- [Pop96] Florian Pop. Embedding problems over large fields. *Annals of Mathematics*, 144:1–34, 1996.
- [Pop08] Florian Pop. Henselian implies large. Manuscript, 2008.
- [PP07] Bjorn Poonen and Florian Pop. First-order definitions in function fields over anti-mordellic fields. In Chatzidakis, Macpherson, Pillay, and Wilkie, editors, *Model Theory with applications to algebra and analysis*. Cambridge University Press, 2007.