Forecast reconciliation: Methodological issues and applications

Chapter 3 - Forecast combination-based forecast reconciliation: Insights and extensions¹

Online appendix

Candidate:	Daniele Girolimetto
------------	---------------------

Supervisors: Prof. Tommaso Di Fonzo, Prof. George Athanasopoulos

and Prof. Rob J Hyndman

Contents

A	The Australian Tourism Demand (Visitor Nights) dataset	2
В	Forecasting accuracy of the reconciliation approaches considered by Hollyman et al. (2021)	7
C	Level Conditional Coherent reconciliation using two different base forecasts	15
D	Multiple Comparison with the Best for Optimal combination, LCC, and CCC reconciliation approaches	19

¹Di Fonzo, T. and Girolimetto, D. (2022c) Forecast combination-based forecast rec- onciliation: Insights and extensions. International Journal of Forecasting doi:10.1016j.ijforecast.2022.07.001

A The Australian Tourism Demand (Visitor Nights) dataset

Table A.1: Geographic divisions of Australia. The zones with a single region are written in italic font.

Level Series	Name	Label	Series	Name	Label
L1: Total			Continu	ed L4: Regions	
1	Australia	Total	49	Gippsland	BCB
L2: States			50	Phillip Island	BCC
2	New South Wales (NSW)	A	51	Central Murray	BDA
3	Victoria (VIC)	В	52	Goulburn	BDB
4	Queensland (QLD)	С	53	High Country	BDC
5	South Australia (SA)	D	54	Melbourne East	BDD
6	Western Australia (WA)	E	55	Upper Yarra	BDE
7	Tasmania (TAS)	F	56	MurrayEast	BDF
8	Northern Territory (NT)	G	57	Mallee	BEA
L3: Zones	TVOITHEITI TEITHOLY (TVT)		58	Wimmera	BEB
9	Metro NSW	AA	59		BEC
				Western Grampians	
10	Nth Coast NSW	AB	60	Bendigo Loddon	BED
4.4	Sth Coast NSW	AC	61	Macedon	BEE
11	Sth NSW	AD	62	Spa Country	BEF
12	Nth NSW	AE	63	Ballarat	BEG
	Australian Capital Territory	AF	64	Central Highlands	BEG
13	Metro VIC	BA	65	Gold Coast	CAA
	West Coast VIC	BB	66	Brisbane	CAB
14	East Coast VIC	BC	67	Sunshine Coast	CAC
15	Nth East VIC	BD	68	Central Queensland	CBA
16	Nth West VIC	BE	69	Bundaberg	CBB
17	Metro QLD	CA	70	Fraser Coast	CBC
18	Central Coast QLD	CB	71	Mackay	CBD
19	Nth Coast QLD	CC	72	Whitsundays	CCA
20	Inland QLD	CD	73	Northern	CCB
21	Metro SA	DA	74	Tropical North Queensland	CCC
22	Sth Coast SA	DB	75	Darling Downs	CDA
23	Inland SA	DC	76	Outback	CDB
24	West Coast SA	DD	77	Adelaide	DAA
25	West CoastWA	EA	78	Barossa	DAB
23	Nth WA	EB	79	Adelaide Hills	DAC
	SthWA	EC	80	Limestone Coast	DBA
2.	Sth TAS	FA	81	Fleurieu Peninsula	DBB
26	Nth East TAS	FB	82	Kangaroo Island	DBC
27	Nth West TAS	FC	83	Murraylands	DCA
28	Nth Coast NT	GA	84	Riverland	DCB
29	Central NT	GB	85	Clare Valley	DCC
L4: Regions			86	Flinders Range and Outback	DCD
30	Sydney	AAA	87	Eyre Peninsula	DDA
31	Central Coast	AAB	88	Yorke Peninsula	DDB
32	Hunter	ABA	89	Australia's Coral Coast	EAA
33	North Coast NSW	ABB	90	Experience Perth	EAB
34	South Coast	ACA	91	Australia's SouthWest	EAC
35	Snowy Mountains	ADA	92	Australia's North West	EBA
36	Capital Country	ADB	93	Australia's Golden Outback	ECA
37	The Murray	ADC	94	Hobart and the South	FAA
38	Riverina	ADD	95	East Coast	FBA
39	Central NSW	AEA	96	Launceston, Tamar and the North	FBB
40	New England North West	AEB	97	North West	FCA
40	Outback NSW		98		FCA FCB
		AEC		WildernessWest	
42	Blue Mountains	AED	99	Darwin	GAA
43	Canberra	AFA	100	Kakadu Arnhem	GAB
44	Melbourne	BAA	101	Katherine Daly	GAC
45	Peninsula	BAB	102	Barkly	GBA
46	Geelong	BAC	103	Lasseter	GBB
47	Western	BBA	104	Alice Springs	GBC
48	Lakes	BCA	105	MacDonnell	GBD

Source: Wickramasuriya et al. (2019)

Figure A.1: *Map of Australia by Regions*

Figure A.2: Map of Australia by States and Zones

Table A.2: *Series' name and id in the VN525 dataset. The duplicated series are written in italic font.*

id	Series	id	Series	id	Series	id	Series	id	Series
Level	1	104	GBC	202	EAHol	302	BCCHol	415	DABVis
1	Total	105	GBD	203	EAVis	303	BCCVis	416	DABBus
Level	2	Level	5	204	EABus	304	BCCBus	417	DABOth
2	A	106	Hol	205	EAOth	305	BCCOth	418	DACHol
3	В	107	Vis		EBHol	306	BDAHol	419	DACVis
4	C	108	Bus		<i>EBVis</i>	307	BDAVis	420	DACBus
5	D	109	Oth		EBBus	308	BDABus	421	DACOth
6	E	Level	6		EBOth	309	BDAOth	422	DBAHol
7	F	110	AHol		<i>ECHol</i>	310	BDBHol	423	DBAVis
8	G	111	AVis		<i>ECVis</i>	311	BDBVis	424	DBABus
Level	3	112	ABus		ECBus	312	BDBBus	425	DBAOth
9	AA	113	AOth		ECOth	313	BDBOth	426	DBBHol
10	AB	114	BHol		FAHol	314	BDCHol	427	DBBVis
	AC	115	BVis		<i>FAVis</i>	315	BDCVis	428	DBBBus
11	AD	116	BBus		FABus	316	BDCBus	429	DBBOth
12	AE	117	BOth		FAOth	317	BDCOth	430	DBCHol
	AF	118	CHol	206	FBHol	318	BDDHol	431	DBCVis
13	BA	119	CVis	207	FBVis	319	BDDVis	432	DBCBus
	BB	120	CBus	208	FBBus	320	BDDBus	433	DBCOth
14	BC	121	COth	209	FBOth	321	BDDOth	434	DCAHol
15	BD	122	DHol	210	FCHol	322	BDEHol	435	DCAVis
16	BE	123	DVis	211	FCVis	323	BDEVis	436	DCABus
17	CA	124	DBus	212	FCBus	324	BDEBus	437	DCAOth
18	CB	125	DOth	213	FCOth	325	BDEOth	438	DCBHol
19	CC	126	EHol	214	GAHol	326	BDFHol	439	DCBVis
20	CD	127	EVis	215	GAVis	327	BDFVis	440	DCBBus
21	DA	128	EBus	216	GABus	328	BDFBus	441	DCBOth
22	DB	129	EOth	217	GAOth	329	BDFOth	442	DCCHol
23	DC	130	FHol	218	GBHol	330	BEAHol	443	DCCVis
24	DD	131	FVis	219	GBVis	331	BEAVis	444	DCCBus
25	EA	132	FBus	220	GBBus	332	BEABus	445	DCCOth
	EB	133	FOth	221	GBOth	333	BEAOth	446	DCDHol
	EC	134	GHol	222	AAAHol	334	BEBHol	447	DCDVis
	FA	135	GVis	223	AAAVis	335	BEBVis	448	DCDBus
26	FB	136	GBus	Level	8	336	BEBBus	449	DCDOth
27	FC	137	GOth	224	AAABus	337	BEBOth	450	DDAHol
28	GA	Level		225	AAAOth	338	BECHol	451	DDAVis
29	GB	138	AAHol	226	AABHol	339	BECVis	452	DDABus
Level	4	139	AAVis	227	AABVis	340	BECBus	453	DDAOth
30	AAA	140	AABus	228	AABBus	341	BECOth	454	DDBHol
31	AAB	141	AAOth	229	AABOth	342	BEDHol	455	DDBVis
32	ABA	142	ABHol	230	ABAHol	343	BEDVis	456	DDBBus
33	ABB	143	ABVis	231	ABAVis	344	BEDBus	457	DDBOth

Table A.2: Series' name and id in the VN525 dataset VN525 (continued)

id	Series	id	Series	id	Series	id	Series	id	Series
34	ACA	144	ABBus	232	ABABus	345	BEDOth	458	EAAHol
35	ADA	145	ABOth	233	ABAOth	346	BEEHol	459	EAAVis
36	ADB		ACHol	234	ABBHol	347	BEEVis	460	EAABus
37	ADC		ACVis	235	ABBVis	348	BEEBus	461	EAAOth
38	ADD		ACBus	236	ABBBus	349	BEEOth	462	EABHol
39	AEA		ACOth	237	ABBOth	350	BEFHol	463	EABVis
40	AEB	146	ADHol	238	ACAHol	351	BEFVis	464	EABBus
41	AEC	147	ADVis	239	ACAVis	352	BEFBus	465	EABOth
42	AED	148	ADBus	240	ACABus	353	BEFOth	466	EACHol
43	AFA	149	ADOth	241	ACAOth	354	BEGHol	467	EACVis
44	BAA	150	AEHol	242	ADAHol	355	BEGVis	468	EACBus
45	BAB	151	AEVis	243	ADAVis	356	BEGBus	469	EACOth
46	BAC	152	AEBus	244	ADABus	357	BEGOth	470	EBAHol
47	BBA	153	AEOth	245	ADAOth	358	BEHHol	471	EBAVis
48	BCA		AFHol	246	ADBHol	359	BEHVis	472	EBABus
49	BCB		AFVis	247	ADBVis	360	BEHBus	473	EBAOth
50	BCC		AFBus	248	ADBBus	361	BEHOth	474	ECAHol
51	BDA		AFOth	249	ADBOth	362	CAAHol	475	ECAVis
52	BDB	154	BAHol	250	ADCHol	363	CAAVis	476	ECABus
53	BDC	155	BAVis	251	ADCVis	364	CAABus	477	ECAOth
54	BDD	156	BABus	252	ADCBus	365	CAAOth	478	FAAHol
55	BDE	157	BAOth	253	ADCOth	366	CABHol	479	FAAVis
56	BDF		BBHol	254	ADDHol	367	CABVis	480	FAABus
57	BEA		BBVis	255	ADDVis	368	CABBus	481	FAAOth
58	BEB		BBBus	256	ADDBus	369	CABOth	482	FBAHol
59	BEC		BBOth	257	ADDOth	370	CACHol	483	FBAVis
60	BED	158	BCHol	258	AEAHol	371	CACVis	484	FBABus
61	BEE	159	BCVis	259	AEAVis	372	CACBus	485	FBAOth
62	BEF	160	BCBus	260	AEABus	373	CACOth	486	FBBHol
63	BEG	161	BCOth	261	AEAOth	374	CBAHol	487	FBBVis
64	BEH	162	BDHol	262	AEBHol	375	CBAVis	488	FBBBus
65	CAA	163	BDVis	263	AEBVis	376	CBABus	489	FBBOth
66	CAB	164	BDBus	264	AEBBus	377	CBAOth	490	FCAHol
67	CAC	165	BDOth	265	AEBOth	378	CBBHol	491	FCAVis
68	CBA	166	BEHol	266	AECHol	379	CBBVis	492	FCABus
69	CBB	167	BEVis	267	AECVis	380	CBBBus	493	FCAOth
70	CBC	168	BEBus	268	AECBus	381	CBBOth	494	FCBHol
71	CBD	169	BEOth	269	AECOth	382	CBCHol	495	FCBVis
72	CCA	170	CAHol	270	AEDHol	383	CBCVis	496	FCBBus
73	CCB	171	CAVis	271	AEDVis	384	CBCBus	497	FCBOth
74 	CCC	172	CABus	272	AEDBus	385	CBCOth	498	GAAHol
75 75	CDA	173	CAOth	273	AEDOth	386	CBDHol	499	GAAVis
76	CDB	174	CBHol	274	AFAHol	387	CBDVis	500	GAABus

Table A.2: Series' name and id in the VN525 dataset VN525 (continued)

id	Series	id	Series	id	Series	id	Series	id	Series
77	DAA	175	CBVis	275	AFAVis	388	CBDBus	501	GAAOth
78	DAB	176	CBBus	276	AFABus	389	CBDOth	502	GABHol
79	DAC	177	CBOth	277	AFAOth	390	CCAHol	503	GABVis
80	DBA	178	CCHol	278	BAAHol	391	CCAVis	504	GABBus
81	DBB	179	CCVis	279	BAAVis	392	CCABus	505	GABOth
82	DBC	180	CCBus	280	BAABus	393	CCAOth	506	GACHol
83	DCA	181	CCOth	281	BAAOth	394	CCBHol	507	GACVis
84	DCB	182	CDHol	282	BABHol	395	CCBVis	508	GACBus
85	DCC	183	CDVis	283	BABVis	396	CCBBus	509	GACOth
86	DCD	184	CDBus	284	BABBus	397	CCBOth	510	GBAHol
87	DDA	185	CDOth	285	BABOth	398	CCCHol	511	GBAVis
88	DDB	186	DAHol	286	BACHol	399	CCCVis	512	GBABus
89	EAA	187	DAVis	287	BACVis	400	CCCBus	513	GBAOth
90	EAB	188	DABus	288	BACBus	401	CCCOth	514	GBBHol
91	EAC	189	DAOth	289	BACOth	402	CDAHol	515	GBBVis
92	EBA	190	DBHol	290	BBAHol	403	CDAVis	516	GBBBus
93	ECA	191	DBVis	291	BBAVis	404	CDABus	517	GBBOth
94	FAA	192	DBBus	292	BBABus	405	CDAOth	518	GBCHol
95	FBA	193	DBOth	293	BBAOth	406	CDBHol	519	GBCVis
96	FBB	194	DCHol	294	BCAHol	407	CDBVis	520	GBCBus
97	FCA	195	DCVis	295	BCAVis	408	CDBBus	521	GBCOth
98	FCB	196	DCBus	296	BCABus	409	CDBOth	522	GBDHol
99	GAA	197	DCOth	297	BCAOth	410	DAAHol	523	GBDVis
100	GAB	198	DDHol	298	BCBHol	411	DAAVis	524	GBDBus
101	GAC	199	DDVis	299	BCBVis	412	DAABus	525	GBDOth
102	GBA	200	DDBus	300	BCBBus	413	DAAOth		
103	GBB	201	DDOth	301	BCBOth	414	DABHol		

B Forecasting accuracy of the reconciliation approaches considered by Hollyman et al. (2021)

Table B.3: Monthly forecasts reconciliation in the forecasting experiment on the Australian tourism dataset: **AvgRelMAE** of the approaches considered by Hollyman et al. (2021). Approach TDHP apart, some reconciled forecasts are negative (see Tables 4 and 5 in the main paper). Bold entries identify the best performing approaches. Red entries identify the approaches worsening the automatic ETS base forecasts' accuracy.

			Fore	cast hor	rizon		
Approach	1	2	3	6	12	1:6	1:12
		C	ıll (525 s	eries)			
BU	0.9990	0.9971	0.9973	0.9991	0.9998	0.9982	0.9987
L_1CC	1.0024	1.0006	0.9994	0.9967	0.9865	0.9988	0.9949
TDHP	1.0010	0.9995	0.9984	0.9951	0.9837	0.9975	0.9930
OLS	1.0697	1.0660	1.0685	1.0644	1.0630	1.0673	1.0651
wls	0.9909	0.9903	0.9901	0.9903	0.9908	0.9904	0.9906
shr	0.9878	0.9875	0.9872	0.9870	0.9869	0.9874	0.9872
CCC_H	0.9846	0.9844	0.9835	0.9824	0.9796	0.9832	0.9822
		upper ti	me series	s (221 ser	ries)		
BU	0.9976	0.9931	0.9935	0.9978	0.9994	0.9956	0.9970
L_1CC	0.9936	0.9913	0.9906	0.9886	0.9762	0.9899	0.9857
TDHP	0.9935	0.9910	0.9906	0.9878	0.9737	0.9895	0.9844
OLS	1.0141	1.0093	1.0115	1.0081	1.0074	1.0104	1.0090
wls	0.9798	0.9780	0.9783	0.9795	0.9824	0.9789	0.9799
shr	0.9767	0.9751	0.9751	0.9758	0.9780	0.9757	0.9761
CCC_H	0.9718	0.9707	0.9701	0.9707	0.9695	0.9703	0.9701
		bottom t	ime serie	s (304 se	ries)		
BU	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
L_1CC	1.0088	1.0074	1.0058	1.0027	0.9941	1.0053	1.0017
TDHP	1.0065	1.0057	1.0041	1.0005	0.9910	1.0034	0.9993
OLS	1.1120	1.1092	1.1120	1.073	1.1053	1.1107	1.1079
wls	0.9989	0.9993	0.9987	0.9982	0.9969	0.9988	0.9985
shr	0.9960	0.9966	0.9960	0.9953	0.9934	0.9959	0.9954
CCC_H	0.9939	0.9944	0.9933	0.9911	0.9871	0.9928	0.9911

Figure B.3: AvgRelMAE of the reconciliation approaches considered by Hollyman et al. (2021). (a) forecast horizon h = 1, (b) forecast horizon h = 1:12 (values from the second and last column of Tables B.3, respectively). Approach TDHP apart, some reconciled forecasts are negative (see Tables 4 and 5 in the main paper).

Table B.4: Monthly forecasts reconciliation in the forecasting experiment on the Australian tourism dataset: AvgRelMSE of the approaches considered by Hollyman et al. (2021). Approach TDHP apart, some reconciled forecasts are negative (see Tables 4 and 5 in the main paper). Bold entries identify the best performing approaches. Red entries identify the approaches worsening the automatic ETS base forecasts' accuracy.

			Forecast horizon												
A	Approach			Al	ll purpo	ses					Ву ри	rpose of	travel		
		1	2	3	6	12	1:6	7:12	1	2	3	6	12	1:6	7:12
	BU	1.2277	1.1095	1.0783	1.1010	1.1402	1.1166	1.1256	1.2011	1.1319	1.1152	1.1231	1.1300	1.1338	1.1270
	L_1CC	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.2916	1.2767	1.2644	1.2206	1.1140	1.2559	1.2017
lia	TDHP	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.3932	1.3798	1.3585	1.2957	1.1409	1.3451	1.2689
Australia	OLS	0.9731	0.9707	0.9685	0.9854	1.0107	0.9745	0.9848	1.0324	1.0255	1.0236	1.0146	1.0050	1.0237	1.0177
Αn	wls	1.0334	0.9835	0.9736	1.0098	1.0597	0.9956	1.0138	1.0683	1.0410	1.0364	1.0352	1.0536	1.0392	1.0393
	shr	0.9937	0.9622	0.9489	0.9760	1.0249	0.9670	0.9812	1.0362	1.0201	1.0147	1.0141	1.0339	1.0168	1.0177
	CCC_H	1.0226	0.9800	0.9713	1.0071	1.0559	0.9916	1.0101	1.1138	1.0918	1.0832	1.0734	1.0588	1.0838	1.0706
	BU	1.0458	1.0239	1.0246	1.0708	1.0454	1.0393	1.0539	1.0085	0.9947	0.9826	0.9947	0.9629	0.9930	0.9886
	L_1CC	0.9956	1.0176	1.0249	1.0382	0.9924	1.0199	1.0197	1.0205	1.0126	1.0010	1.0037	0.9319	1.0051	0.9863
"	TDHP	1.0130	1.0379	1.0432	1.0455	0.9889	1.0348	1.0270	1.0343	1.0271	1.0133	1.0120	0.9327	1.0165	0.9937
States	OLS	0.9662	0.9815	0.9813	0.9848	0.9724	0.9783	0.9769	1.0122	1.0027	1.0106	1.0036	0.9953	1.0072	1.0005
St	wls	0.9602	0.9650	0.9735	0.9927	0.9936	0.9722	0.9817	0.9617	0.9578	0.9511	0.9519	0.9255	0.9540	0.9475
	shr	0.9469	0.9553	0.9620	0.9759	0.9792	0.9597	0.9670	0.9517	0.9496	0.9431	0.9438	0.9191	0.9458	0.9394
	CCC_H	0.9456	0.9549	0.9621	0.9842	0.9823	0.9617	0.9724	0.9570	0.9524	0.9430	0.9483	0.9061	0.9469	0.9375
	BU	0.9955	0.9988	0.9884	1.0056	1.0076	0.9991	1.0075	0.9914	0.9886	0.9827	0.9889	1.0098	0.9883	0.9960
	L_1CC	0.9405	0.9568	0.9576	0.9504	0.9279	0.9542	0.9492	0.9886	0.9927	0.9912	0.9908	0.9762	0.9899	0.9859
"	TDHP	0.9319	0.9489	0.9504	0.9409	0.9188	0.9459	0.9400	0.9896	0.9938	0.9924	0.9908	0.9731	0.9906	0.9852
Zones	OLS	0.9693	0.9777	0.9786	0.9694	0.9664	0.9762	0.9735	1.0188	1.0199	1.0295	1.0254	1.0686	1.0240	1.0311
Ν	wls	0.9546	0.9604	0.9595	0.9623	0.9646	0.9615	0.9644	0.9689	0.9701	0.9702	0.9708	0.9812	0.9703	0.9734
	shr	0.9465	0.9546	0.9519	0.9526	0.9543	0.9539	0.9548	0.9631	0.9663	0.9660	0.9665	0.9769	0.9659	0.9686
	CCC_H	0.9298	0.9392	0.9383	0.9387	0.9395	0.9389	0.9410	0.9598	0.9626	0.9615	0.9632	0.9621	0.9613	0.9616
	BU	0.9738	0.9653	0.9681	0.9827	0.9957	0.9744	0.9838	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	L_1CC	0.9429	0.9412	0.9442	0.9384	0.9359	0.9411	0.9385	1.0227	1.0227	1.0217	1.0124	0.9982	1.0181	1.0105
S	TDHP	0.9434	0.9417	0.9450	0.9386	0.9352	0.9417	0.9385	1.0244	1.0251	1.0240	1.0138	0.9976	1.0201	1.0115
Regions	OLS	0.9845	0.9798	0.9784	0.9765	0.9809	0.9792	0.9794	1.1315	1.1339	1.1366	1.1306	1.1653	1.1343	1.1390
Re	wls	0.9489	0.9436	0.9457	0.9506	0.9616	0.9476	0.9517	0.9948	0.9960	0.9966	0.9956	0.9955	0.9957	0.9955
	shr	0.9420	0.9390	0.9400	0.9433	0.9548	0.9416	0.9451	0.9899	0.9923	0.9927	0.9909	0.9912	0.9914	0.9910
	CCC_H	0.9271	0.9238	0.9270	0.9255	0.9325	0.9255	0.9266	0.9978	0.9981	0.9974	0.9905	0.9821	0.9946	0.9896

Table B.5: Monthly forecasts reconciliation in the forecasting experiment on the Australian tourism dataset: *AvgRelMAE* of the approaches considered by Hollyman et al. (2021). Approach TDHP apart, some reconciled forecasts are negative (see Tables 4 and 5 in the main paper). Bold entries identify the best performing approaches. Red entries identify the approaches worsening the automatic ETS base forecasts' accuracy.

	For							orecast	horizo	n					
A	Approach			Al	ll purpo	ses					Ву ри	rpose of	travel		
		1	2	3	6	12	1:6	7:12	1	2	3	6	12	1:6	7:12
	BU	1.1244	1.0832	1.0552	1.0557	1.0930	1.0769	1.0840	1.1114	1.0695	1.0685	1.0651	1.0602	1.0687	1.0648
	L_1CC	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.1194	1.1131	1.1094	1.0978	1.0516	1.1018	1.0849
lia	TDHP	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.1630	1.1555	1.1483	1.1257	1.0597	1.1380	1.1112
Australia	OLS	0.9877	0.9907	0.9903	0.9899	1.0052	0.9905	0.9944	1.0242	1.0075	1.0126	1.0090	1.0047	1.0119	1.0096
Au	wls	1.0161	1.0130	0.9974	1.0032	1.0418	1.0075	1.0184	1.0377	1.0178	1.0185	1.0094	1.0221	1.0153	1.0169
	shr	0.9969	1.0018	0.9847	0.9865	1.0203	0.9939	1.0011	1.0212	1.0051	1.0031	0.9954	1.0063	1.0019	1.0026
	CCC_H	1.0099	1.0089	0.9942	0.9999	1.0377	1.0041	1.0150	1.0481	1.0352	1.0326	1.0224	1.0209	1.0282	1.0248
	BU	1.0427	1.0191	1.0310	1.0404	1.0396	1.0332	1.0377	1.0091	0.9997	0.9974	1.0044	0.9927	1.0035	1.0005
	L_1CC	1.0133	1.0143	1.0246	1.0233	1.0007	1.0192	1.0168	1.0162	1.0108	1.0046	1.0054	0.9737	1.0080	0.9978
10	TDHP	1.0281	1.0267	1.0367	1.0290	0.9944	1.0299	1.0213	1.0205	1.0138	1.0082	1.0085	0.9747	1.0110	1.0002
States	OLS	0.9932	0.9978	1.0066	1.0043	0.9850	1.0001	0.9972	1.0222	1.0156	1.0193	1.0134	1.0101	1.0183	1.0144
St	wls	0.9906	0.9837	0.9915	0.9991	1.0025	0.9910	0.9956	0.9844	0.9779	0.9745	0.9775	0.9731	0.9793	0.9766
	shr	0.9868	0.9803	0.9864	0.9923	0.9926	0.9861	0.9887	0.9792	0.9736	0.9704	0.9742	0.9693	0.9750	0.9724
	CCC_H	0.9816	0.9760	0.9837	0.9914	0.9951	0.9827	0.9880	0.9776	0.9739	0.9679	0.9709	0.9578	0.9723	0.9678
	BU	1.0139	1.0080	0.9996	1.0137	1.0143	1.0088	1.0103	0.9930	0.9924	0.9925	0.9963	1.0019	0.9938	0.9961
	L_1CC	0.9887	0.9877	0.9832	0.9801	0.9695	0.9843	0.9795	0.9988	0.9974	0.9964	0.9975	0.9863	0.9965	0.9932
"	TDHP	0.9820	0.9820	0.9772	0.9718	0.9606	0.9774	0.9715	0.9969	0.9951	0.9948	0.9958	0.9827	0.9945	0.9906
Zones	OLS	0.9976	0.9946	0.9925	0.9895	0.9857	0.9936	0.9910	1.0339	1.0276	1.0327	1.0293	1.0339	1.0307	1.0302
Ŋ	wls	0.9819	0.9807	0.9777	0.9817	0.9859	0.9807	0.9830	0.9818	0.9821	0.9838	0.9841	0.9886	0.9831	0.9844
	shr	0.9784	0.9768	0.9733	0.9761	0.9794	0.9763	0.9772	0.9800	0.9804	0.9818	0.9822	0.9859	0.9814	0.9822
	CCC_H	0.9721	0.9710	0.9670	0.9689	0.9722	0.9695	0.9704	0.9764	0.9773	0.9775	0.9790	0.9774	0.9772	0.9773
	BU	0.9830	0.9799	0.9837	0.9848	0.9872	0.9831	0.9849	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	L_1CC	0.9730	0.9705	0.9723	0.9666	0.9616	0.9694	0.9668	1.0088	1.0074	1.0058	1.0027	0.9941	1.0053	1.0017
2	TDHP	0.9719	0.9696	0.9715	0.9655	0.9607	0.9685	0.9658	1.0065	1.0057	1.0041	1.0005	0.9910	1.0034	0.9993
Regions	OLS	0.9960	0.9926	0.9916	0.9890	0.9860	0.9914	0.9901	1.1120	1.1092	1.1120	1.1073	1.1053	1.1107	1.1079
Re	wls	0.9711	0.9699	0.9704	0.9710	0.9734	0.9702	0.9715	0.9989	0.9993	0.9987	0.9982	0.9969	0.9988	0.9985
	shr	0.9682	0.9669	0.9674	0.9665	0.9689	0.9669	0.9676	0.9960	0.9966	0.9960	0.9953	0.9934	0.9959	0.9954
	CCC_H	0.9595	0.9579	0.9591	0.9570	0.9586	0.9576	0.9579	0.9939	0.9944	0.9933	0.9911	0.9871	0.9928	0.9911

L1: Australia; L2: States; L3: Zones; L4: Regions; L5: Australia by PoT; L6: States by PoT; L7: Zones by PoT; L8: Regions by PoT.

Figure B.4: AvgRelMSE of the reconciliation approaches considered by Hollyman et al. (2021). PoT: Purpose of Travel. (a) forecast horizon h = 1, (b) forecast horizon h = 1:12. Approach TDHP apart, some reconciled forecasts are negative (see Tables 4 and 5 in the main paper).

L1: Australia; L2: States; L3: Zones; L4: Regions; L5: Australia by PoT; L6: States by PoT; L7: Zones by PoT; L8: Regions by PoT.

Figure B.5: AvgRelMAE of the reconciliation approaches considered by Hollyman et al. (2021). PoT: Purpose of Travel. (a) forecast horizon h = 1, (b) forecast horizon h = 1:12. Approach TDHP apart, some reconciled forecasts are negative (see Tables 4 and 5 in the main paper).

Table B.6: Non-negative monthly forecasts reconciliation in the forecasting experiment on the Australian Tourism Demand dataset: **AvgRelMSE** of the approaches considered by Hollyman et al. (2021). Bold entries identify the best performing approaches. Red entries identify the approaches worsening the automatic ETS base forecasts' accuracy.

	Forecast horizon											
Approach	1	2	3	6	12	1:6	1:12					
		C	ıll (525 s	eries)								
BU	0.9972	0.9940	0.9923	0.9974	1.0008	0.9955	0.9983					
L_1CC	1.0025	1.0035	1.0026	0.9962	0.9791	0.9998	0.9930					
TDHP	1.0055	1.0070	1.0059	0.9980	0.9785	1.0027	0.9944					
OLS	1.0537	1.0523	1.0559	1.0475	1.0585	1.0522	1.0499					
wls	0.9801	0.9801	0.9802	0.9806	0.9816	0.9802	0.9806					
shr	0.9739	0.9757	0.9754	0.9748	0.9768	0.9750	0.9752					
CCC_H	0.9757	0.9759	0.9753	0.9721	0.9659	0.9737	0.9708					
		upper ti	me series	s (221 sei	ries)							
BU	0.9937	0.9861	0.9819	0.9941	1.0021	0.9894	0.9963					
L_1CC	0.9761	0.9783	0.9775	0.9749	0.9540	0.9758	0.9699					
TDHPs	0.9801	0.9826	0.9815	0.9768	0.9529	0.9792	0.9714					
OLS	0.9948	0.9938	0.9975	0.9937	1.0030	0.9950	0.9951					
wls	0.9612	0.9595	0.9595	0.9629	0.9687	0.9610	0.9636					
shr	0.9532	0.9541	0.9533	0.9554	0.9626	0.9544	0.9566					
CCC_H	0.9473	0.9473	0.9467	0.9484	0.9449	0.9468	0.9466					
		bottom t	ime serie	s (304 se	ries)							
BU	0.9998	0.9998	0.9998	0.9999	0.9998	0.9998	0.9998					
L_1CC	1.0221	1.0223	1.0212	1.0120	0.9977	1.0177	1.0101					
TDHP	1.0244	1.0251	1.0240	1.0138	0.9976	1.0201	1.0115					
OLS	1.0987	1.0969	1.1004	1.0884	1.1008	1.0958	1.0917					
wls	0.9941	0.9953	0.9956	0.9937	0.9911	0.9945	0.9931					
shr	0.9892	0.9917	0.9917	0.9890	0.9873	0.9903	0.9889					
CCC_H	0.9969	0.9972	0.9965	0.9897	0.9814	0.9938	0.9887					

Table B.7: Non-negative monthly forecasts reconciliation in the forecasting experiment on the Australian Tourism Demand dataset: **AvgRelMAE** of the approaches considered by Hollyman et al. (2021). Bold entries identify the best performing approaches. Red entries identify the approaches worsening the automatic ETS base forecasts' accuracy.

			Fore	cast hor	izon		
Approach	1	2	3	6	12	1:6	1:12
		a	ıll (525 s	eries)			
BU	0.9988	0.9969	0.9971	0.9989	0.9994	0.9980	0.9985
L_1CC	1.0006	0.9991	0.9980	0.9955	0.9851	0.9974	0.9936
TDHP	1.0010	0.9995	0.9984	0.9951	0.9837	0.9975	0.9930
OLS	1.0433	1.0388	1.0415	1.0361	1.0294	1.0396	1.0354
wls	0.9900	0.9894	0.9892	0.9894	0.9893	0.9895	0.9896
shr	0.9870	0.9867	0.9865	0.9863	0.9859	0.9866	0.9864
CCC_H	0.9842	0.9841	0.9832	0.9822	0.9795	0.9830	0.9819
		upper ti	me series	s (221 ser	ries)		
BU	0.9976	0.9931	0.9935	0.9977	0.9992	0.9956	0.9969
L_1CC	0.9928	0.9906	0.9901	0.9883	0.9756	0.9893	0.9852
TDHP	0.9935	0.9910	0.9906	0.9878	0.9737	0.9895	0.9844
OLS	1.0096	1.0048	1.0068	1.0039	1.0010	1.0058	1.0038
wls	0.9797	0.9780	0.9783	0.9796	0.9824	0.9788	0.9799
shr	0.9765	0.9751	0.9751	0.9758	0.9785	0.9756	0.9762
CCC_H	0.9717	0.9705	0.9700	0.9706	0.9695	0.9702	0.9700
		bottom t	ime serie	s (304 se	ries)		
BU	0.9996	0.9997	0.9997	0.9997	0.9996	0.9997	0.9997
L_1CC	1.0063	1.0053	1.0037	1.0008	0.9921	1.0032	0.9997
TDHP	1.0065	1.0057	1.0041	1.0005	0.9910	1.0034	0.9993
OLS	1.0686	1.0642	1.0675	1.0601	1.0505	1.0648	1.0589
wls	0.9975	0.9979	0.9972	0.9966	0.9944	0.9973	0.9967
shr	0.9948	0.9953	0.9948	0.9939	0.9913	0.9946	0.9939
CCC_H	0.9934	0.9940	0.9929	0.9907	0.9868	0.9923	0.9907

C Level Conditional Coherent reconciliation using two different base forecasts

Table C.8: AvgReIMAE of LCC and CCC monthly forecast reconciliation approaches in the forecasting experiment on the Australian Tourism Demand dataset. **Seasonal averages** of the training sets are used as base forecasts. BU identifies the bottom-up approach. Bold entries identify the best performing approaches. Red entries identify the approaches worsening the automatic ETS base forecasts' accuracy.

			Fore	cast hor	izon		
Approach	1	2	3	6	12	1:6	1:12
		C	all (525 s	eries)			
ВИ	1.0120	1.0090	1.0072	1.0059	0.9961	1.0074	1.0039
L_1CC	1.0006	0.9991	0.9980	0.9955	0.9851	0.9974	0.9936
L_2CC	0.9981	0.9962	0.9945	0.9913	0.9834	0.9941	0.9905
L_3CC	1.0015	1.0019	1.0010	0.9994	0.9933	1.0003	0.9980
L_4CC	1.0112	1.0135	1.0113	1.0124	1.0067	1.0122	1.0108
L_5CC	0.9985	0.9964	0.9950	0.9936	0.9861	0.9951	0.9923
L_6CC	0.9998	0.9988	0.9990	0.9980	0.9968	0.9983	0.9977
L_7CC	1.0059	1.0034	1.0033	1.0016	0.9996	1.0034	1.0024
LCC	0.9892	0.9892	0.9880	0.9868	0.9827	0.9877	0.9862
CCC	0.9898	0.9895	0.9883	0.9873	0.9831	0.9881	0.9867
		u	its (221 s	series)			
BU	1.0177	1.0140	1.0120	1.0111	0.9973	1.0121	1.0076
L_1CC	0.9928	0.9906	0.9901	0.9883	0.9756	0.9893	0.9852
L_2CC	0.9892	0.9861	0.9844	0.9811	0.9738	0.9841	0.9803
L_3CC	0.9952	0.9942	0.9940	0.9947	0.9891	0.9936	0.9920
L_4CC	1.0052	1.0060	1.0041	1.0082	1.0027	1.0060	1.0053
L_5CC	0.9852	0.9827	0.9816	0.9821	0.9743	0.9821	0.9798
L_6CC	0.9875	0.9859	0.9870	0.9875	0.9905	0.9864	0.9874
L_7CC	0.9966	0.9919	0.9927	0.9924	0.9917	0.9933	0.9931
LCC	0.9747	0.9740	0.9733	0.9737	0.9711	0.9733	0.9726
CCC	0.9763	0.9754	0.9745	0.9753	0.9723	0.9747	0.9740
		ŀ	ts (304 s	eries)			
BU	1.0079	1.0053	1.0038	1.0021	0.9953	1.0040	1.0013
L_1CC	1.0063	1.0053	1.0037	1.0008	0.9921	1.0032	0.9997
L_2CC	1.0047	1.0036	1.0018	0.9987	0.9904	1.0014	0.9979
L_3CC	1.0061	1.0076	1.0061	1.0028	0.9964	1.0051	1.0023
L_4CC	1.0157	1.0190	1.0166	1.0154	1.0097	1.0168	1.0149
L_5CC	1.0083	1.0064	1.0049	1.0021	0.9948	1.0046	1.0015
L_6CC	1.0088	1.0083	1.0077	1.0057	1.0014	1.0070	1.0052
L_7CC	1.0127	1.0118	1.0111	1.0084	1.0054	1.0107	1.0091
LCC	0.9999	1.0003	0.9989	0.9965	0.9913	0.9984	0.9963
CCC	0.9997	0.9998	0.9984	0.9962	0.9911	0.9980	0.9960

Table C.9: AvgRelMAE of LCC and CCC monthly forecast reconciliation approaches in the forecasting experiment on the Australian Tourism Demand dataset. Automatic ETS are used as base forecasts. BU identifies the bottom-up approach. Bold entries identify the best performing approaches. Red entries identify the approaches worsening the automatic ETS base forecasts' accuracy.

	Forecast horizon										
Approach	1			6	12	1:6	1:12				
all (525 series)											
ВИ	0.9988	0.9969	0.9971	0.9989	0.9994	0.9980	0.9985				
L_1CC	0.9993	0.9949	0.9952	0.9956	0.9934	0.9960	0.9950				
L_2CC	0.9972	0.9926	0.9926	0.9924	0.9918	0.9934	0.9925				
L_3CC	0.9984	0.9968	0.9970	0.9966	0.9956	0.9969	0.9965				
L_4CC	1.0073	1.0071	1.0067	1.0078	1.0061	1.0076	1.0076				
L_5CC	0.9950	0.9923	0.9919	0.9928	0.9920	0.9928	0.9925				
L_6CC	0.9986	0.9983	0.9993	0.9999	1.0013	0.9988	0.9996				
L_7CC	1.0015	0.9993	0.9997	0.9988	0.9968	0.9998	0.9991				
LCC	0.9893	0.9872	0.9873	0.9878	0.9873	0.9877	0.9876				
CCC	0.9898	0.9877	0.9878	0.9885	0.9881	0.9883	0.9883				
uts (221 series)											
ВИ	0.9976	0.9931	0.9935	0.9977	0.9992	0.9956	0.9969				
L_1CC	0.9947	0.9893	0.9906	0.9925	0.9914	0.9918	0.9914				
L_2CC	0.9920	0.9865	0.9869	0.9875	0.9893	0.9881	0.9879				
L_3CC	0.9940	0.9912	0.9923	0.9936	0.9941	0.9925	0.9929				
L_4CC	1.0030	1.0017	1.0016	1.0043	1.0041	1.0031	1.0035				
L_5CC	0.9879	0.9843	0.9842	0.9878	0.9888	0.9861	0.9870				
L_6CC	0.9924	0.9918	0.9935	0.9957	1.0009	0.9931	0.9954				
L_7CC	0.9972	0.9930	0.9939	0.9946	0.9941	0.9948	0.9950				
LCC	0.9796	0.9766	0.9773	0.9794	0.9813	0.9781	0.9790				
CCC	0.9806	0.9775	0.9781	0.9805	0.9826	0.9791	0.9802				
		1236121:61:12 all (525 $series$).99880.99690.99710.99890.99940.99800.9985 all (99230.99490.99500.99560.99340.99600.9950 all (99720.99260.99260.99240.99180.99340.9925 all (99840.99680.99700.99660.99560.99690.9965 all (99500.99230.99190.99280.99200.99280.9925 all (99860.99830.99930.99991.00130.99880.9996 all (99880.99830.99970.99880.99680.99980.9991 all (99880.99870.99870.99880.99880.99870.9876 all (99740.99310.99350.99770.99920.99560.9969 all (99470.98930.99690.99750.99910.99140.99180.9914 all (99480.99310.99350.99360.99410.99150.9879 all (99400.99120.99230.99360.99410.99250.9929 all (1003)1.00171.00161.00431.00411.00311.0035 all (1003)1.00171.00161.00431.00411.00311.095 all (1004)0.99180.99350.99410.99480.9950 all (1004)0.99360.99410.99480.9950 all (1004)0.99480.9959 </td									
ВИ	0.9996	0.9997	0.9997	0.9997	0.9996	0.9997	0.9997				
L_1CC	1.0027	0.9990	0.9985	0.9978	0.9949	0.9991	0.9976				
L_2CC	1.0010	0.9971	0.9968	0.9959	0.9935	0.9972	0.9959				
L_3CC	1.0016	1.0008	1.0004	0.9988	0.9967	1.0001	0.9992				
L_4CC	1.0105	1.0110	1.0104	1.0103	1.0075	1.0109	1.0105				
L_5CC	1.0002	0.9981	0.9975	0.9965	0.9943	0.9976	0.9965				
L_6CC	1.0031	1.0031	1.0035	1.0030	1.0016	1.0029	1.0026				
L_7CC	1.0047	1.0039	1.0040	1.0019	0.9987	1.0034	1.0022				
LCC	0.9964	0.9950	0.9946	0.9940	0.9916	0.9948	0.9939				
CCC	0.9965	0.9952	0.9949	0.9943	0.9922	0.9950	0.9943				

Table C.10: AvgRelMAE of monthly reconciled forecasts in the forecasting experiment on the Australian Tourism Demand dataset. Optimal combination, LCC, and CCC reconciliation approaches, using seasonal averages and/or automatic ETS as bts base forecasts. Bold entries identify the best performing approaches. Italic entries identify averaging approaches improving the forecast accuracy of both single approaches. Red entries identify the approaches worsening the automatic ETS base forecasts' accuracy.

	Base forecasts*				Forecast horizon				
Approach**	uts	bts	1	2	3	6	12	1:6	1:12
			а	ll (525 ser	ries)				
SA	SA	SA	1.0120	1.0090	1.0072	1.0059	0.9961	1.0074	1.003
wls_{SA}	ETS	SA	0.9918	0.9919	0.9912	0.9904	0.9883	0.9910	0.990
shr_{SA}	ETS	SA	0.9921	0.9920	0.9911	0.9895	0.9862	0.9908	0.989
CCC_{SA}	ETS	SA	0.9898	0.9895	0.9883	0.9873	0.9831	0.9881	0.986
LCC_{SA}	ETS	SA	0.9892	0.9892	0.9880	0.9868	0.9827	0.9877	0.986
wls_{ETS}	ETS	ETS	0.9900	0.9894	0.9892	0.9894	0.9893	0.9895	0.989
shr_{ETS}	ETS	ETS	0.9870	0.9867	0.9865	0.9863	0.9859	0.9866	0.986
CCC_{ETS}	ETS	ETS	0.9898	0.9877	0.9878	0.9885	0.9881	0.9883	0.988
LCC_{ETS}	ETS	ETS	0.9893	0.9872	0.9873	0.9878	0.9873	0.9877	0.987
\overline{wls}	ETS	SA & ETS	0.9838	0.9838	0.9835	0.9832	0.9829	0.9834	0.983
\overline{shr}	ETS	SA & ETS	0.9851	0.9849	0.9844	0.9835	0.9819	0.9842	0.983
CCC_H	ETS	SA & ETS	0.9842	0.9841	0.9832	0.9822	0.9795	0.9830	0.981
\overline{CCC}	ETS	SA & ETS	0.9784	0.9775	0.9772	0.9771	0.9761	0.9772	0.976
\overline{LCC}	ETS	SA & ETS	0.9784	0.9778	0.9774	0.9770	0.9759	0.9773	0.976
			и	ts (221 sei	ries)				
SA	SA	SA	1.0177	1.0140	1.0120	1.0111	0.9973	1.0121	1.007
wls_{SA}	ETS	SA	0.9773	0.9770	0.9768	0.9779	0.9780	0.9769	0.977
shr_{SA}	ETS	SA	0.9761	0.9754	0.9747	0.9748	0.9735	0.9749	0.974
CCC_{SA}	ETS	SA	0.9763	0.9754	0.9745	0.9753	0.9723	0.9747	0.974
LCC_{SA}	ETS	SA	0.9747	0.9740	0.9733	0.9737	0.9711	0.9733	0.972
wls_{ETS}	ETS	ETS	0.9797	0.9780	0.9783	0.9796	0.9824	0.9788	0.979
shr_{ETS}	ETS	ETS	0.9765	0.9751	0.9751	0.9758	0.9785	0.9756	0.976
CCC_{ETS}	ETS	ETS	0.9806	0.9775	0.9781	0.9805	0.9826	0.9791	0.980
LCC_{ETS}	ETS	ETS	0.9796	0.9766	0.9773	0.9794	0.9813	0.9781	0.979
\overline{wls}	ETS	SA & ETS	0.9755	0.9746	0.9746	0.9757	0.9777	0.9749	0.975
\overline{shr}	ETS	SA & ETS	0.9742	0.9731	0.9730	0.9733	0.9742	0.9732	0.973
CCC_H	ETS	SA & ETS	0.9717	0.9705	0.9700	0.9706	0.9695	0.9702	0.970
\overline{CCC}	ETS	SA & ETS	0.9694	0.9678	0.9677	0.9691	0.9700	0.9682	0.968
\overline{LCC}	ETS	SA & ETS	0.9691	0.9675	0.9675	0.9686	0.9694	0.9679	0.968
			b	ts (304 sei	ries)				
SA	SA	SA	1.0079	1.0053	1.0038	1.0021	0.9953	1.0040	1.001
wls_{SA}	ETS	SA	1.0025	1.0029	1.0019	0.9995	0.9959	1.0014	0.999
shr_{SA}	ETS	SA	1.0040	1.0043	1.0032	1.0003	0.9956	1.0025	1.000
CCC_{SA}	ETS	SA	0.9997	0.9998	0.9984	0.9962	0.9911	0.9980	0.996
LCC_{SA}	ETS	SA	0.9999	1.0003	0.9989	0.9965	0.9913	0.9984	0.996
wls_{ETS}	ETS	ETS	0.9975	0.9979	0.9972	0.9966	0.9944	0.9973	0.996
shr_{ETS}	ETS	ETS	0.9948	0.9953	0.9948	0.9939	0.9913	0.9946	0.993
CCC_{ETS}	ETS	ETS	0.9965	0.9952	0.9949	0.9943	0.9922	0.9950	0.994
LCC_{ETS}	ETS	ETS	0.9964	0.9950	0.9946	0.9940	0.9916	0.9948	0.993
\overline{wls}	ETS	SA & ETS	0.9899	0.9906	0.9900	0.9887	0.9866	0.9897	0.988
\overline{shr}	ETS	SA & ETS	0.9931	0.9935	0.9928	0.9910	0.9876	0.9923	0.991
CCC_H	ETS	SA & ETS	0.9934	0.9940	0.9929	0.9907	0.9868	0.9923	0.990
$\frac{\overline{CCC}}{CCC}$	ETS	SA & ETS	0.9849	0.9847	0.9841	0.9830	0.9805	0.9838	0.982
\overline{LCC}	ETS	SA & ETS	0.9853	0.9853	0.9846	0.9832	0.9806	0.9842	0.983

^{*} SA: seasonal averages; ETS: automatic ETS forecasts.
** CCC_H : base forecasts as in Hollyman et al. (2021).

Figure C.6: AvgRelMAE of Optimal combination, LCC, and CCC reconciliation approaches, using seasonal averages and/or automatic ETS as bts base forecasts. (a) forecast horizon h = 1, (b) forecast horizon h = 1:12 (values from the fourth and last column of Table C.10, respectively)

D Multiple Comparison with the Best for Optimal combination, *LCC*, and *CCC* reconciliation approaches

Figure D.7: Multiple Comparison with the Best using **AvgRelMSE** (forecast horizon h = 1). Optimal combination, LCC, and CCC reconciliation approaches, using seasonal averages and/or automatic ETS as base forecasts: (a) all (b) upper (c) bottom time series.

Figure D.8: Multiple Comparison with the Best using AvgRelMAE (forecast horizon h = 1). Optimal combination, LCC, and CCC reconciliation approaches, using seasonal averages and/or automatic ETS as base forecasts: (a) all (b) upper (c) bottom time series.

Figure D.9: Multiple Comparison with the Best using **AvgRelMSE** (forecast horizon h = 1:12). Optimal combination, LCC, and CCC reconciliation approaches, using seasonal averages and/or automatic ETS as base forecasts: (a) all (b) upper (c) bottom time series.

Figure D.10: Multiple Comparison with the Best using **AvgRelMAE** (forecast horizon h = 1:12). Optimal combination, LCC, and CCC reconciliation approaches, using seasonal averages and/or automatic ETS as base forecasts: (a) all (b) upper (c) bottom time series.

References

Hollyman, R., Petropoulos, F. & Tipping, M. E. (2021), 'Understanding Forecast Reconciliation', *European Journal of Operational Research* in press.

Wickramasuriya, S. L., Athanasopoulos, G. & Hyndman, R. J. (2019), 'Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization', *Journal of the American Statistical Association* **114**(526), 804–819.