Latihan/Kuis - 5 menit

- Tentukan apakah aktivitas-aktivitas berikut adalah termasuk dalam lingkup Datamining
 - Membagi pegawai suatu perusahaan berdasarkan gender
 - Memprediksi harga barang pada bulan selanjutnya berdasarkan data historis (bulan-bulan sebelumnya)
 - Memonitor detak jantung pasien untuk mendeteksi kondisi abnormal
 - Menghitung total penjualan suatu perusahaan
 - Mengkarakterisasi pelanggan setia suatu produk

0 2/12/2018

"getting familiar with your data"

Data dan Eksplorasi Data

Kuliah 2

2/12/2018

Outline

- Data dan Tipe data
- Kualitas data
- Statistika ringkasan
- Visualisasi
- Ukuran kemiripan dan ketidakmiripan
- Catatan: semua slide diambil dari
 - Tan P., Michael S., & Vipin K. 2006. *Introduction to Datα mining*. Pearson Education, Inc.
 - Han J & Kamber M. 2006. Data mining Concept and Techniques. Morgan-Kauffman, San Diego

2 2/12/2018

Pertanyaan-pertanyaan yang akan dijawab pada kuliah hari ini

- Apa saja tipe atribut yang menyusun data?
- Apa jenis nilai dari atribut?
- Mana atribut yang diskrit, mana yang kontinu?
- ▶ Bagaimana distribusi nilainya?
- Dapatkah kita mendapatkan info tentang pencilan?
- Apakah ada cara memvisualisasikannya?
- Dapatkan kita mengukur similaritas antar objek?

2/12/2018

Jawaban

- Apa saja tipe atribut yang menyusun data?
 - > Penjelasan mengenai berbagai tipe atribut
- Apa jenis nilai dari atribut? Mana atribut yang diskrit, mana yang kontinu? Bagaimana distribusi nilainya? Dapatkah kita mendapatkan info tentang pencilan?
 - > Penjelasan mengenai dasar-dasar statistika

"Mengetahui dasar-dasar statistika yang sesuai dengan masing-masing atribut akan membuat lebih mudah melakukan **pengisian** *missing values*, **menghaluskan nilai nilai noise**, dan **menunjukkan outliers** selama praproses data

"Mengetahui atribut dan nilai atributnya akan membantu dalam memperbaiki inkonsistensi yang terjadi selama integrasi data

4 2/12/2018

Jawaban

- Apakah ada cara memvisualisasikannya?
 - Distribution plots, quantile plots, histograms, scatter plots, dll

"Memplot kecenderungan (tendency) dari distribusi data akan menunjukkan apakah data tersebut bersifat simetris atau skewed (condong/tidak simetris)

"Visualisasi dalam bentuk grafik dapat membantu mengidentifikasi hubungan antar data, tren, dan bias yang tersembunyi dalam dataset yang tidak terstruktur"

Contoh

Quantile plots

Jika dua dataset memiliki distribusi yang similar, titik-titik pada Q-Q plot akan mendekati garis y = x.

Jika distribusinya memiliki hubungan yang linier titik-titik pada Q-Q plot akan terletak pada suatu garis tapi tidak harus pada garis y = x.

6 2/12/2018

Grafik lainnya

Penjelasn rinci di slide-slide selanjutnya

Jawaban

- Dapatkan kita mengukur similaritas antar objek?
 - Ada banyak ukuran untuk mendapatkan nilai similaritas dan disimilaritas. Pada umumnya, beberapa ukuran merujuk pada ukuran kedekatan
 - ▶ Kedekatan dua objek dapat diukur menggunakan fungsi jarak antara atribut-atributnya atau dapat dihitung dengan probabilitas

8 2/12/2018

- Data dan Tipe data
- Kualitas data
- Statistika ringkasan
- Visualisasi
- Ukuran kemiripan dan ketidakmiripan

2/12/2018

Apakah Data itu?

- Koleksi objek data dan atributnya
- Sebuah atribut adalah suatu sifat instriksik atau karakteristik dari suatu objek data
 - contoh: warna mata seseorang, temperatur, dll.
 - Atribut bisa disebut juga sebagai variabel, field, karakteristik, atau fitur
- Kumpulan atribut mendeskripsikan suatu objek
 - Objek dikenal juga sebagai record, titik (point), kasus, sampel, entitas, atau instan

Attribute values (Nilai dari atribut)

- Nilai dari suatu atribut dapat berupa numbers (angka) atau simbol (karakter, string) yang diberikan ke suatu atribut
 - Contoh nilai atribut (attribute value):
 - ▶ G6543123 (untuk NRP)
 - ▶ 36.5 (untuk temperatur)
 - Yes/no (untuk status pernikahan)

11

Hal Penting tentang Atribut dan Nilai Atribut

- Atribut yang sama dapat dipetakan pada nilai atribut yang berbeda
 - > Contoh: tinggi dapat diukur dalam feet atau meter
- Atribut yang berbeda dapat dipetakan ke dalam himpunan nilai yang sama
 - Contoh: nilai atribut untuk ID dan umur adalah bertipe integer
 - Namun karakteristik nilai atributnya berbeda
 - □ ID tidak memiliki batasan
 - ☐ Umur punya batas minimum dan maksimum

Pembagian Atribut berdasarkan Tipenya

- ▶ Tipe Atribut Katagorikal (Kualitatif)
 - Nominal
 - Ordinal
- Tipe Atribut Numerik
 - Interval
 - ▶ Rasio

Tipe Atribut : Katagorikal (Kualitatif)

 Tipe Atribut	Deskripsi	Contoh	Operasi
Nominal	Nilai dari atribut nominal hanya berupa nama-nama yang berbeda. Atribut nominal hanya menyediakan informasi yang cukup untuk membedakan suatu objek dengan objek yang lain (=, ≠)	Kode pos, ID pegawai, warna mata, gender: {pria, wanita}	modus, entropy, contingency correlation, χ² test
 Ordinal	Nilai atribut ordinal menyediakan informasi yang cukup untuk MENGURUTKAN objek (<, >)	Tingkat kekerasan material {good, better, best}, rangking, nomor jalan	median, percentiles, rank correlation, run tests, sign tests

Tipe Atribut: Numerik (Kuantitatif)

Tipe Atribut	Deskripsi	Contoh	Operasi
Interval	Pada tipe atribut	dates	mean,
	interval perbedaan	(penanggalan),	standard
	antar nilai-nilainya	temperatur dalam	deviation,
	memiliki makna. Untuk	Celsius atau	Pearson's
	pengukuran, misal:	Fahrenheit	correlation, t
	celcius atau fahrenheit,		and F tests
	(+, -)		
Ratio	Untuk tipe atribut rasio,	Temperatur dalam	geometric
	Perbedaan nilai dan	Kelvin, monetary	mean,
	rasio dari nilai-nilai	quantities, counts,	harmonic
	atributnya memiliki	age, mass,	mean, percent
	makna (*, /)	panjang, arus listrik	variation

2/12/2018

Contoh

Tipe atribut interval

- ▶ Perbedaan panas antara temperatur pada 90° C dan 100° C sama dengan perbedaan temperatur 80° C dan 90° C
- ▶ Tapi panas pada temperatur 100° C tidak berarti dua kali dari panas temperatur 50° C
- o° C tidak berarti tidak ada panas
- Tipe atribut rasio
 - panas pada temperatur 100° K berarti dua kali dari panas temperatur 50° K
 - ▶ o° K berarti memang tidak ada panas

16 2/12/2018

Untuk atribut di bawah ini, tipe atributnya apa?

- > PH (untuk mengukur tingkat keasaman)
- ▶ Berat badan
- Fenotipe (warna mata, warna kulit, dll)
- ▶ Tingkat rasa sakit
- ▶ IPK
- Nilai mata kuliah
- Musim

Pembagian Atribut berdasarkan Kataktistik Datanya

- Atribut Diskrit
- Atribut Kontinu

18 2/12/2018

Atribut diskrit dan kontinu

- Atribut Diskrit
 - Hanya memiliki himpunan nilai yang terbatas
 - Contoh: kode pos, counts, atau sekumpulan kata pada suatu koleksi dokumen
 - > Biasanya direpresentasikan sebagai variabel integer
 - Catatan: atribut biner (binary attributes) adalah kasus khusus dari atribut diskrit
- Atribut Kontinu
 - Nilai atributnya berupa bilangan riil
 - ▶ Contoh: temperatur, tinggi, atau berat.
 - Pada praktiknya, bilangan riil hanya dapat diukur dan direpresentaikan menggunakan sejumlah terbatas digit
 - Biasanya direpresentasikan sebagai variabel float (floating-point variables).

19

Termasuk apakah atribut di bawah ini? Atribut Diskrit atau Atribut Kontinu?

- > PH (untuk mengukur tingkat keasaman)
- ▶ Berat badan
- Fenotipe (warna mata, warna kulit, dll)
- ▶ Tingkat rasa sakit
- ▶ IPK
- Nilai mata kuliah
- Musim

20 2/12/2018

Tipe-tipe Dataset

- Record
 - Data Matriks
 - Data Dokumen
 - Data Transaksi
- **▶** Graph
 - ▶ World Wide Web, Twitter, dll
 - > Stuktut Molekul, Interaksi-interaksi Protein
- Ordered (yang bisa diurutkan)
 - Data spasial
 - Data temporal
 - Data Sekuensial
 - Data sekuens DNA/genetik

21

Record Data

▶ Data yang terdiri atas kumpulan record, di mana masing-masing memiliki himpunan atribut

Data Transaksi

- ▶ Tipe khusus dari record data, di mana
 - Tiap record atau (transaksi) melibatkan sekumpulan item
 - Contoh, toko grosir berikut. Tabel di bawah menunjukkan satu set produk yang dibeli oleh Pembeli dalam satu kali pembelian.

Satu set pembelian tersebut dinamakan TRANSAKSI, adapun masing-masing produk disebut item

TID	Items			
1	Bread, Tea, Milk			
2	Coffee, Bread			
3	Coffee, Tea, Sugar, Milk			
4	Coffee, Bread, Sugar, Milk			
5	Tea, Sugar, Milk			

Ordered Data (Data yang dapat diurutkan) Data temporal adalah data

Data temporal

- Data temporal adalah datayang objeknya memiliki atribut yang mereprensentasikan pengukuran yang dilakukan dari waktu ke waktu
- Contoh, data kebakaran hutan yang memberikan informasi terjadinya perambatan kebakaran dari hari ke hari
- Suatu time series adalah suatu sekuen (barisan) pengukuran dari beberapa atribut

24

Time series data - hotspot data

Ordered Data

Sekuen Transaksi

Data masih mengandung suatu set transaksi dan item, namun atribut waktu dan ID pembeli telah diasosiasikan terhadap masing-masing transaksi

26

sekuens

- Data dan Tipe data
- Kualitas data
- Statistika ringkasan
- Visualisasi
- Ukuran kemiripan dan ketidakmiripan

Kualitas Data

Isu yang penting terkait Kualitas Data:

- Problem apa yang muncul terkait dengan kualitas data?
- ▶ Bagaimana kita mendeteksi problem tersebut?
- > Apa yang bisa kita lakukan untuk mengatasinya?
- ▶ Contoh problem yang terkait dengan Kualitas Data:
 - ► Gangguan (Noise) dan pencilan (outliers)
 - Nilai yang hilang (missing values)
 - Duplikasi data

28

Noise

- Noise terkait dengan berubahnya nilai atribut yang asli (original)
- Contoh: distorsi suara manusia ketika berbicara di tengah keramaian, atau pada telepon yang jelek, atau ada suara berisik dari televisi

Two Sine Waves

Two Sine Waves + Noise

29

Pencilan (Outliers)

 Outliers adalah objek data yang memiliki karakteristik yang sangat berbeda dengan objek data pada umumnya pada suatu dataset

Dari pertemuan 1

Outlier: objek data yang tidak mengikuti perilaku umum dari data

Dapat dipandang sebagai *noise* atau eksepsi tetapi berguna dalam *fraud* detection, rare events analysis

30

Missing Values

- Sebab-sebab missing values
 - Informasi tersebut tidak diperoleh (tidak terkumpul) (contoh, orang menolak memberikan info umur dan berat badan)
 - Atribut tidak dapat diterapkan pada semua kasus (e.g., atribut pendapatan tahunan tidak bisa dijawab/tidak cocok dengan anak-anak)
- Penanganan missing values
 - Mengeliminasi Objek Data
 - Mengestimasi Missing Values, dengan melakukan interpolasi menggunakan nilai-nilai yang ada pada atribut tersebut
 - Mengabaikan Missing Value selama tahap analisis
 - misal, objek-2 data akan diklusterkan dan perlu menghitung similaritas antar pasangan objek data
 - Similaritas ini dapat dihitung dengan hanya menggunakan nilai data yang ada

31

Duplikasi Data

- Dataset mungkin mengandung objek-2 data yang sama (duplikat) atau hampir serupa
 - ▶ Terjadi jika melakukan merge (penggabungan) dari berbagai sumber data
 - ▶ Contoh: orang yang sama dengan banyak alamat email
- Perhatian perlu diberikan untuk menhindari mengkombinasikan objek yang similar tapi tidak duplikat
- Data cleaning (Pembersihan Data)
 - Proses yang terkait dengan isu duplikasi data
 - Menghilangkan noise dan data yang tidak konsisten

32

- Data dan Tipe data
- Kualitas data
- Statistika ringkasan
- Visualisasi
- Ukuran kemiripan dan ketidakmiripan

2/12/2018

Summary Statistics (Statistika Ringkasan)

- Statistika ringkasan adalah angka yang men-summarykan (meringkas) properti (karakteristik) data
 - Peringkasan properti/karakteristik (Summarized properties)
 meliputi frekuensi, lokasi (location), dan penyebaran (spread)
 - Examples: lokasi mean, median penyebaran standard deviation
 - Sebagian besar statistika ringkasan dapat dihitung langsung dari data

Frequency and Mode (Frekuensi dan Modus)

- Frekuensi dari suatu nilai atribut adalah persentase kemunculan nilai tersebut di dalam dataset
 - Contoh, diberikan atribut 'gender' dan suatu representasi populasi dari manusia, kemunculan gender 'female' adalah 50% selama periode waktu tersebut
- Modus adalah nilai atribut yang memiliki frekuensi paling tinggi (yang paling sering muncul)
- Frekuensi biasanya digunakan pada data katagorikal

Ukuran lokasi: Mean and Median (Rata-rata dan Nilai tengah)

- Mean adalah ukuran yang paling umum dari lokasi suatu himpunan titik
- Namun, mean sangat sensitif terhadap outlier
- Maka, median atau α trimmed meαn juga umum digunakan

$$\operatorname{mean}(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\operatorname{median}(x) = \left\{ \begin{array}{ll} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r+1 \\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{array} \right.$$

Measures of Spread (Ukuran penyebaran): Range and Variance (Jangkauan dan Ragam)

- ▶ Jangkauan adalah perbedaan antara nilai maksimum dan minimum dari data
- Ragam (variance) atau simpangan baku (standard deviation) adalah ukuran paling umum untuk penyebaran dari suatu himpunan titik

variance
$$(x) = s_x^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \overline{x})^2$$

Namun, ragam juga sensitif terhadap outliers, maka ukuran yang sering digunakan adalah:

$$\mathrm{AAD}(x) = \frac{1}{m} \sum_{i=1}^m |x_i - \overline{x}|$$

$$\mathrm{AAD}(x) = median \left(\{|x_1 - \overline{x}|, \dots, |x_m - \overline{x}|\} \right)$$

$$\mathrm{IQR: interquartile \ range}(x) = x_{75\%} - x_{25\%}$$

$$\mathrm{AAD: absolute \ average \ deviation}$$

$$\mathrm{IQR: interquartile \ range}(x) = x_{75\%} - x_{25\%}$$

- Data dan Tipe data
- Kualitas data
- Statistika ringkasan
- Visualisasi
- Ukuran kemiripan dan ketidakmiripan

38 2/12/2018

Visualisasi

Visualisasi adalah konversi data ke dalam format visual atau tabular sehingga karakteristik data dan keterhubungan antar item data atau atribut dapat dianalisis

- Visualisasi data adalah salah satu teknik yang powerful dan menarik untuk melakukan eksplorasi data
 - Dapat mendeteksi pola umum dan tren
 - Dapat mendeteksi outlier dan pola yang tidak umum

Contoh: Temperatur permukaan laut

- ► Gambar berikut memperlihatkan temperatur permukaan laut (Sea Surface Temperature/SST) bulan Juli 1982
 - Puluhan ribu titik data divisualisasikan dalam satu gambar

Representasi

- Representasi adalah pemetaan informasi ke dalam format visual
- Objek data, atribut-atributnya, dan keterhubungan antar objek data diterjemahkan ke dalam bentuk elemen grafik, seperti titik, garis, bentuk (shapes) dan warna
- Contoh:
 - > Objek data sering direpresentasikan sebagai titik
 - Atribut-atributnya dapat direpresentasikan sebagai posisi dari titik atau karakteristik dari titik, seperti: warna, ukuran, dan bentuk
 - Jika representasi posisi yang digunakan, maka keterhubungan antar titik, misal apakah titik-titik tersebut membentuk kelompok (cluser) atau membentuk outlier, menjadi mudah untuk dilihat

Arrangement (Pengaturan)

- ▶ Pengaturan adalah penempatan elemen-elemen visual dalam suatu tampilan (display)
- Dapat membuat perbedaan yang signifikan dalam bagaimana membaca/memahami data
- ▶ Contoh:

	1	2	3	4	5	6
1	0	1	0	1	1	0
$\frac{2}{3}$	1	0	1	0	0	1
3	0	1	0	1	1	0
4	1	0	1	0	0	1
5	0	1	0	1	1	0
6	1	0	1	0	0	1
7	0	1	0	1	1	0
8	1	0	1	0	0	1
9	0	1	0	1	1	0

	6	1	3	2	5	4
4	1	1	1	0	0	0
2	1	1	1	0	0	0
6	1	1	1	0	0	0
8	1	1	1	0	0	0
5	0	0	0	1	1	1
3	0	0	0	1	1	1
9	0	0	0	1	1	1
1	0	0	0	1	1	1
7	0	0	0	1	1	1

Teknik visualisasi: Histograms

- Histogram
 - > Biasanya memperlihatkan distribusi nilai dari suatu variabel
 - Membagi nilai-nilai ke dalam bin dan memperlihatkan plot dalam bentuk bar dari sejumlah objek pada masing-masing bin
 - ▶ Tinggi bar menunjukkan jumlah objek
 - > Bentuk histogram tergantung dari jumlah bin
- ► Contoh: lebar Petal (pada kelopak bunga) (10 dan 20 bins)

2-DHistograms

- Memperlihatkan joint distribution dari nilai-nilai dua atribut
- ▶ Contoh: lebar petal dan panjang petal

Teknik visualisasi: Box Plots

Contoh Box Plots

 Box plots dapat digunakan untuk membandingkan atribut-atribut

Teknik Visualisasi: Scatter Plots

- Scatter plots
 - Nilai atribut-atribut menentukan posisi
 - Umumnya 2-D scatter plots, tapi dapat juga digambarkan dalam 3-D scatter plots
 - Sering kali atribut-atribut tambahan dapat ditampilkan menggunakan ukuran, bentuk, dan warna dari penanda (marker) yang merepresentasikan objek
 - Penting untuk memiliki array dari scatter plots yang dapat meringkas beberapa pasangan atribut
 - Lihat contoh di slide selanjutnya

Scatter Plot Array of Iris Attributes

- Data dan Tipe data
- Kualitas data
- Statistika ringkasan
- Visualisasi
- Ukuran kemiripan dan ketidakmiripan

,_Q 2/12/2018

Kemiripan (Similarity) dan Ketidakmiripan (Dissimilarity)

- Kemiripan (Similarity)
 - Ukuran numerik dari seberapa mirip dua buah objek data
 - Semakin tinggi kemiripan antar dua objek, semakin tinggi nilai kemiripannya
 - Nilai kemiripan biasanya berada pada range [0,1]
- Ketidakmiripan (Dissimilarity)
 - Ukuran numerik yang menggambarkan seberapa berbeda dua buah objek data
 - Semakin tinggi kemiripan antar dua objek, semakin rendah nilai ketidakmiripannya (disimilaritasny)
 - Nilai minimum dari disimilaritas adalah o
 - ▶ Batas atasnya bervariasiUpper limit varies
- ▶ Kedekatan (Proximity) mengacu pada kemiripan atau
- ketidakmiripan

Kemiripan/Ketidakmiripan untuk atribut sederhana

p dan q nilai atribut untuk dua buah objek data

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p-q	$s = -d, s = \frac{1}{1+d}$ or
		$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d - min_d}{max_d - min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

26

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

di mana n jumlah dimensi (atribut) dan p_k dan q_k berturut-turut adalah nilai atribut ke-k dari objek data p dan q.

Jika skalanya berbeda, standarisasi diperlukan

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

Minkowski Distance adalah bentuk umum dari Euclidean
 Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Di mana r adalah suatu parameter, n adalah jumlah dimensi (attributes); p_k dan q_k adalah atribut ke-k dari objek data p dan q

Mahalanobis Distance

mahalanobis
$$(p,q) = (p-q)\sum^{-1}(p-q)^T$$

 Σ adalah matriks kovarian data masukan X

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

Karakteristik umum jarak (Distance)

- Jarak, seperti misalnya Euclidean distance, memiliki karakteristik berikut:
 - 1. $d(p, q) \ge o$ untuk semua p dan q dan d(p, q) = o hanya jika $p = q \Rightarrow$ Positive definiteness
 - 2. d(p, q) = d(q, p) untuk semua p dan $q \rightarrow$ Symmetri
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ untuk semua titik $p, q, dan r \rightarrow$ Triangle Inequality

di mana d(p, q) adalah jarak (ketidakmiripan/dissimilarity) antara titik-titik (objek data), p dan q.

 Suatu jarak yang memenuhi karakteristik di atas adalah suatu metrik (metric)

Karakteristik Umum Kemiripan (Similarity)

- Kemiripan (Similarities), memiliki beberapa karakteristik:
 - 1. s(p, q) = 1 atau kemiripan maksimal (maximum similarity) hanya jika p = q.
 - 2. s(p, q) = s(q, p) untuk semua p dan $q \rightarrow$ Simetri di mana s(p, q) adalah similaritas antara titik-titik (objek data) p dan q.

Kemiripan (Similarity) antara vektor biner (Binary Vectors)

- Situasi yang umum adalah objek p dan q hanya memiliki atribut biner
- Hitung kemiripan dengan menggunakan ketentuan berikut: M₀₁ = jumlah atribut di mana p bernilai o dan q bernilai 1 M₁₀ = jumlah atribut di mana p bernilai 1 dan q bernilai o M₀₀ = jumlah atribut di mana p bernilai o dan q bernilai o M₁₁ = jumlah atribut di mana p bernilai 1 dan q bernilai 1
- Simple Matching dan Koefisien Jaccard SMC = jumlah yang matches / jumlah atribut = (M₁₁ + M₀₀) / (M₀₁ + M₁₀ + M₁₁ + M₀₀)

J = jumlah atribut 11 matches (both matches)/jumlah nilai atribut yang not-both-zero

 $= (M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Contoh

p = 1000000000 q = 0000001001

 $M_{01} = 2$ (jumlah atribut di mana p bernilai o dan q bernilai 1) $M_{10} = 1$ (jumlah atribut di mana p bernilai 1 dan q bernilai 0) $M_{00} = 7$ (jumlah atribut di mana p bernilai o dan q bernilai 0) $M_{11} = 0$ (jumlah atribut di mana p bernilai 1 dan q bernilai 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7)/(2+1+0+7) = 0.7$$

$$J = (M_{11})/(M_{01} + M_{10} + M_{11}) = 0/(2+1+0) = 0$$

Ringkasan Materi

- Data dan Tipe data
- Kualitas data
- Statistika ringkasan
- Visualisasi
- Ukuran kemiripan dan ketidakmiripan

Ringkasan Materi hari ini!

- Data dan Tipe data
- - Pembagian Atribut Berdasarkan Tipenya: katagorikal (kualitatif) nominal ordinal, numerik (kuantitatif) – interval, rasio

2/12/2018

- > Pembagian Atribut Berdasarkan Karakteristik Datanya: diskrit, kontinu
- ▶ Tipe-tipe Dataset: record, graph, ordered data
- Kualitas data
 - Noise
 - Outlier
 - Duplikasi Data
 - Missing Value
- Statistika ringkasan
 - ▶ Frekuensi model
 - ▶ Lokasi mean, median
 - ▶ Sebaran Standard deviasi
- Visualisasi
- Ukuran kemiripan dan ketidakmiripan 60

Exercises

 Classify the following attributes as binary, discrete, or continuous, qualitative (nominal or ordinal) or quantitative (interval or ratio)

Attribute	Binary	Discrete	Continuous	qualitative	quantitative
Distance to nearest hospital					
Temperature of human body					
Temperature of human body By human judgments					
Exam grade					
Predicate of graduation					

Materi selanjutnya:

Praproses data