Distributed Systems

COMP90015 2018 Semester 2 Tutorial 05 Q1. Briefly explain the difference between a client-server architecture and a peer-to-peer architecture.

Client-server

Peer-to-Peer

Q2. Briefly explain each of the following distributed system architecture variations, giving also a reason or a benefit for its use:

- Services provided by multiple servers
- Proxy servers and caches
- Mobile code and Mobile Agents
- Network computers
- Thin clients
- Tiered Architecture

Services provided by multiple servers

Services provided by multiple servers

- Services may be implemented as several server processes in separate host computers interacting as necessary to provide a service to client processes
- Servers may
 - Partition the set of objects on which the service is based and distribute those objects between themselves
 - Maintain replicated copies of them on several hosts
- Improve performance and reliability

Proxy servers and caches

Proxy servers and caches

- Cache
 - A store of recently used data objects that is closer to the client
 - They may be co-located with each client or they may be located in a proxy server that can be shared by several clients
- Increase the availability and performance of the service by reducing the load on the wide area network and web servers
- Proxy servers can take on other roles --- better reliability
- Improved security
- Access restriction
- Privacy protection

Single server distribution

CDN scheme of distribution

Mobile code and Mobile Agents

Mobile code and Mobile Agents

Mobile code

- Mobile Code is down loaded to the client and is executed on the client (e.g. applet).
- Good interactive response
- Security threat

Mobile agents

- Mobile agents are running programs that includes both code and data that travels from one computer to another.
- They process data at the data source, rather than fetching it remotely
 - Less communication overhead by replacing remote invocations with local ones
- Security threat

a) client request results in the downloading of applet code

b) client interacts with the applet

Network computers and thin clients

Network computers and thin clients

Network Computers

Download their operating system and application software from a remote file system.
Applications are run locally.

Thin clients

- Move complexity away from the end-user device
- Local user interface, remote services or applications
- Few assumptions or demands on the client device

Tiered Architecture

Tiered Architecture

- Tiered architectures are complementary to layering, which deals with horizontal organization of services.
- Layering deals with vertical organization of services

Fundamental Models

Q3. Briefly explain the purpose of the following fundamental models and explain two important considerations for each:

- Interaction Model.
- Failure Model.
- Security Model.

Interaction Model

Interaction Model

Models the interaction between processes of a distributed system - e.g. interaction between clients and servers or peers.

- Performance of communication channels.
 - Latency
 - Bandwidth
 - Jitter
- Computer clocks and timing events
 - Why the timestamps between two processes can vary?
 - Initial time setting being different
 - Differences in clock drift rates

Failure Model

Failure Model

Classifies the failures of processes and communication channels in a distributed system

- Omission failures
 - Omission failures refers to cases where a process or a communication channel fails to perform what is expected to do
- Arbitrary failures
 - Refers to any type of failure that can occur in a system
- Timing failures
 - These failures occur when time limits set on process execution time, message delivery time and clock rate drift.
 - More relevant to synchronous systems

Security Model

Security Model

Identifies the possible threats to processes and communication channels, as well as protecting encapsulated objects against unauthorized access.

- Encryption.
- Authentication.
- Secure Channel.

Security Model - How to Perform Encryption

- Secret Key.
- Public/Private key pair.
- Establishing a secure channel (SSL).

Asynchronous Protocol vs Synchronous Protocol

Q4. Explain the difference between a synchronous protocol and an asynchronous protocol.

Asynchronous Protocol vs Synchronous Protocol

Q4. Explain the difference between a synchronous protocol and an asynchronous protocol.

- Synchronous communication blocks on both send and receive operations.
 - When a send is issued the sending process is blocked until the receive is issued.
 - Whenever the receive is issued the process blocks until a message arrives.
- In Asynchronous communication the send is nonblocking.
 - The sending process returns as soon as the message is copied to a local buffer and the transmission of the message proceeds in parallel.
 - Receive operation can be blocking or non-blocking (non-blocking receives are not normally supported in today's systems).

Questions?