CURS 13: ELEMENTE PRIME ŞI IREDUCTIBILE. CORPURI FINITE

SAI

1. Elemente prime și ireductibile

Peste tot, R este un domeniu de integritate (inel comutativ fără divizori ai lui zero nenuli).

Definiția 1. (i) $p \in R$ se numește prim dacă $p \neq 0$, $p \notin U(R)$ și $\forall a, b \in R$ astfel încât $p \mid ab$ rezultă $p \mid a$ sau $p \mid b$.

(ii) $q \in R$ se numeşte ireductibil dacă $q \neq 0$, $q \notin U(R)$ şi $\forall a, b \in R$ astfel încât q = ab rezultă $a \in U(R)$ sau $b \in U(R)$ (echivalent: $q \sim a$ sau $q \sim b$).

Observația 2. Orice element prim p este ireductibil.

Într-adevăr, dacă p = ab atunci $p \mid ab$, deci $p \mid a$ sau $p \mid b$. Dacă $p \mid a$, scriem a = pa' cu $a' \in R$, şi obținem p = pa'b, adică a'b = 1. Rezultă $b \in U(R)$. Analog, dacă $p \mid b$ atunci $a \in U(R)$.

Există domenii de integritate R ce conțin elemente ireductibile ce nu sunt prime, deci reciproc nu este adevărat.

Propoziția 3. Dacă în R există c.m.m.d.c. pentru orice două elemente atunci orice element ireductibil din R este prim.

Demonstrație: Fie $q \in R$ un element ireductibil și $a,b \in R$ a.î. $q \mid ab$. Atunci $(ab,q)=q\neq 1$ și, deci, nu putem avea simultan (a,q)=1 și (b,q)=1. Dacă $(a,q)=d\neq 1$, scriem $a=da',\ q=dq'$ cu (a',q')=1. Cum q este ireductibil iar $d\neq 1$ implică $d\notin U(R)$ (c.m.m.d.c. este unic până la o asociere în divizibilitate), deducem $q'\in U(R)$ și $d\sim q$. Deci $q\sim d\mid a$, adică $q\mid a$. Analog, dacă $(q,b)\neq 1$ atunci $q\mid b$.

Reamintim că în \mathbb{Z} şi K[X] există c.m.m.d.c.-ul oricăror două elemente, deci în \mathbb{Z} şi K[X] noțiunile de element prim şi ireductibil coincid.

Exemplul 4. (i) Elementele prime şi ireductibile în \mathbb{Z} coincid cu numerele prime.

- (ii) Elementele prime şi ireductibile în K[X], K corp comutativ, coincid cu polinoamele ireductibile. Mai mult, în K[X]
 - polinoamele de grad 1 sunt ireductibile,
 - un polinom ireductibil de grad ≥ 2 nu are rădăcini în K,

2 SAI

- un polinom de grad 2 sau 3 este ireductibil dacă și numai dacă nu are rădăcini în K;

(iii) 1 + i şi 3 sunt elemente prime în $\mathbb{Z}[i]$, dar 5 = (1 + 2i)(1 - 2i) nu este ireductibil (şi, deci, nici prim).

Este imdediat că $U(\mathbb{Z}) = \{\pm 1\}$ iar $U(K[X]) = K^{\times} := K \setminus \{0\}$.

Theorem 5. Fie $R \in \{\mathbb{Z}, K[X]\}$. Atunci orice element din R nenul şi neinversabil se scrie în mod unic ca un produs de elemente prime \equiv ireductibile.

Demonstrație: Fie $\varphi: R^{\times} \to \mathbb{N}$ funcția modul dacă $R = \mathbb{Z}$, respectiv funcția grad dacă R = K[X].

Presupunem prin absurd că

 $X := \{ \varphi(a) \mid a \notin U(R) \cup \{0\}, a$ nu se scrie ca un produs de ireductibile } este nevidă. Cum \mathbb{N} este bine ordonată, $\exists x \in X$ un prim element, adică un $a \notin U(R) \cup \{0\}$ ce nu se scrie ca un produs de ireductibile a.î $x = \varphi(a)$ este mai mic decât orice alt element din X.

Clar, a nu este ireductibil, deci există $b, c \notin U(R[X]) \cup \{0\}$ a.î a = bc. Din definiția lui φ , $\varphi(b)$, $\varphi(c) < \varphi(a) = x$, deci b, c se scriu ca produs de ireductibile și, deci, a = bc se scrie ca un produs de ireductibile, contradicție!

Fie $a = p_1^{\alpha_1} \cdots p_n^{\alpha_n} = q_1^{\beta_1} \cdots q_m^{\beta_m}$ două descompuneri ale lui $a \notin U(R) \cup \{0\}$ în produs de elemente ireductibile \equiv prime distincte.

Prin inducție după $M = \alpha_1 + \cdots + \alpha_n \in \mathbb{N}$ arătăm că n = m şi, eventual după o renumerotare, $p_i \sim q_i$ şi $\alpha_i = \beta_i \ \forall i$.

Dacă M=1 atunci $a=p_1=q_1^{\beta_1}\cdots q_m^{\beta_m}$ cu p_1,q_1,\cdots,q_m ireductibile. Clar $m=1,\ \beta_1=1$ şi $p_1=q_1$.

Dacă M > 1, din $p_n \mid a$ şi p_n prim rezultă că $p_n \mid q_t$; putem presupune $p_n \mid q_m$. Cum p_n, q_m sunt ireductibile, este imdediat că $p_n \sim q_m$, deci

$$p_1^{\alpha_1}\cdots p_{n-1}^{\alpha_{n-1}}p_n^{\alpha_n-1}=q_1^{\beta_1}\cdots q_{m-1}^{\beta_{m-1}}q_m^{\beta_m-1}.$$

Din ipoteza de inducție rezultă concluzia dorită.

2. Corpuri finite

Un corp K se numește finit dacă mulțimea elementelor sale este finită.

Theorem 6. Fie K un corp comutativ și K^{\times} grupul multiplicativ al elementelor sale nenule. Atunci:

- (i) Orice subgrup finit $G \leq K^{\times}$ este ciclic.
- (ii) Dacă K este corp finit atunci K^{\times} este grup ciclic finit, deci izomorf cu \mathbb{Z}_{q-1} , unde q = |K|.

Un rezultat celebru în teoria corpurilor afirmă că orice corp finit este comutativ; pentru demonstrație se poate consulta [2].

Teorema lui Wedderburn. Orice corp finit este comutativ.

Din cele două teoreme prezentate mai sus obținem:

urmare, G este ciclic generat de y.

Theorem 7. Dacă K este corp finit atunci K^{\times} este ciclic. În particular, există $x \in K$ astfel încât $K = \{\widetilde{f}(x) \mid f \in P[X]\}$, unde $P \cong \mathbb{Z}_p$ este subcorpul prim al lui K.

Demonstrație: K este corp finit comutativ, deci K^{\times} este grup ciclic. Dacă x generează pe K^{\times} , atunci orice $a \in K^{\times}$ este de forma x^t pentru un $0 \le t \le |K^{\times}| -1$. Deci $a = \widetilde{X}^t(x)$; incluziunea inversă este imediată.

Observația 8. \mathbb{Z}_p^{\times} este grup ciclic, izomorf cu \mathbb{Z}_{p-1} . Însă nu se cunoaște un algoritm care să furnizeze generatorul lui \mathbb{Z}_{p-1} , pentru orice p prim.

Fie K un corp finit (deci și comutativ) și $P \cong \mathbb{Z}_p$ subcorpul său prim (p este număr prim). Atunci K admite o structură de $P \cong \mathbb{Z}_p$ -spațiu vectorial; cum este finit, este de dimensiune finită, să zicem n. Rezultă că $K \cong P^n$ ca P-spacții vectoriale, deci

Theorem 9. Dacă K este corp finit de caracteristică p (p prim) atunci $|K| = p^n$, pentru un anumit $n \in \mathbb{N}^*$.

4 SAI

Vom demonstra că pentru orice p prim şi $n \in \mathbb{N}^*$ există un corp cu p^n elemente. Peste tot de acum înainte corpurile considerate sunt comutative.

Propoziția 10. (Kronecker) Fie $f \in K[X]$ de grad $n \geq 1$. Există un corp F astfel încât $K \subseteq F$ și f are toate rădăcinile în F.

Demonstrație: Inducție după n > 1.

Dacă n = 1, $f = aX + b \in K[X]$ cu $a \neq 0$. Atunci $x = -a^{-1}b$ este unica rădăcină a lui f și $x \in K$; iau F = K.

Dacă n > 1, sunt două posibilități:

- (1) f este ireductibil. Iau inelul factor $L:=\frac{K[X]}{(f)}$ şi arăt că este un corp. Într-adevăr, dacă $\hat{0} \neq \hat{g} \in L$ atunci f nu divide g şi cum f este ireductibil \equiv prim rezultă că (f,g)=1. Există $u,v\in K[X]$ a.î. uf+vg=1, deci $\hat{v}\hat{g}=\hat{1}$, adică \hat{g} este inversabil în L cu inversul \hat{v} . Dacă $x=\hat{X}\in L$ atunci $\tilde{f}(x)=\hat{f}=\hat{0}$, deci x este rădăcină a lui f în L. Mai mult, cum orice morfism de corpuri este injectiv, K se poate identifica cu un subgrup al lui L via compunerea de morfisme $K\stackrel{i}{\to} K[X]\stackrel{p}{\to} L=\frac{K[X]}{(f)}$. Pe scurt, există $K\subseteq L$ şi $x\in L$ rădăcină a lui f în L. Scriem f=(X-x)g cu $g\in L[X]$ de grad n-1. Aplic ipoteza de inducție şi găsesc $L\subseteq F$ în care g are toate rădăcinile, deci și f.
- (2) f este reductibil, $f = f_1 f_2$ cu $f_1, f_2 \in K[X]$ de grad < n. Aplic ipoteza de inducție pentru f_1 și găsesc $K \subseteq F_1$ a.î. f_1 are toate rădăcinile în F_1 . Privesc $f_2 \in K[X] \subseteq F_1[X]$ și aplic din nou ipoteza de inducție: există $F_1 \subseteq F$ în care f_2 are toate rădăcinile. Rezultă că f are toate rădăcinile în F.

Definiția 11. $Dacă f = \sum_{i=1}^{n} a_i X^i \in K[X]$, $derivata lui f este polinomul <math>f' = \sum_{i=1}^{n} i a_i X^{i-1} \in K[Y]$.

Lemma 12. Fie $f \in K[X]$ de grad ≥ 1 şi $K \subseteq F$ corp în care f are toate rădăcinile. Atunci f nu are rădăcini multiple dacă şi numai dacă (f, f') = 1 în K[X].

Demonstrație: Dacă f are o rădăcină multiplă α putem să scriem $f = (X - \alpha)^2 g$ cu $g \in F[X]$. Cum $f' = 2(X - \alpha)g + (X - \alpha)^2 g'$ rezultă că $X - \alpha \mid (f, f') \neq 1$ în [4], deci și în [4] (algoritmul lui Euclid este același, din cauza unicității scrierii în teorema împărțirii cu rest). Deci (f, f') = 1 implică f nu are rădăcini multiple.

Reciproc, dacă $X - \alpha \mid f, f'$ atunci $f = (X - \alpha)g$ şi $f' = (X - \alpha)h$ cu $g, h \in F[X]$. Rezultă $g + (X - \alpha)g' = (X - \alpha)h$, deci $X - \alpha \mid g$ şi, deci, $(X - \alpha)^2 \mid f$. Prin urmare, dacă f nu are rădăcini multiple atunci (f, f') = 1.

Theorem 13. (Galois) Pentru orice p prim $si n \in \mathbb{N}^*$ există un corp cu p^n elemente.

Demonstrație: Fie $q=p^n$ și $f=X^q-X\in\mathbb{Z}_p[X]$. Există $F\supseteq\mathbb{Z}_p$ corp în care f are toate rădăcinile. Clar, F este de caracteristică p (conține pe \mathbb{Z}_p , corp prim, ca subcorp). Fie \mathbb{F}_q mulțimea rădăcinilor lui f în F. Cum f este de grad q, $|\mathbb{F}_q| \le q$. Dar $f' = qX^{q-1} - 1 = -1$, fiindcă $q=p^n$ și p este caracteristica lui \mathbb{Z}_p , deci (f,f')=1. Astfel, f nu are rădăcini multiple și $|\mathbb{F}_q|=q$.

Că \mathbb{F}_q este corp rezultă din $\varphi: F \ni x \mapsto x^p \in F$ este morfism de corpuri, deci şi $\varphi^n: F \ni x \mapsto x^{p^n} = x^q \in F$. Mai exact, dacă $a,b \in \mathbb{F}_q \subseteq F$ atunci $(a-b)^q = a^q - b^q = a - b$, $(ab)^q = a^q b^q = ab$ şi $(c^{-1})^q = c^{-q} = c^{-1}$, pentru orice $a,b,c \in \mathbb{F}_q$ cu $c \neq 0$. Prin urmare, \mathbb{F}_q este subcorp al lui F, deci un corp cu p^n elemente.

Unicitatea corpurilor finite de cardinal $q=p^n$ a fost demonstrată 60 de ani (1893) mai târziu de către E. H. Moore.

Theorem 14. Orice două corpuri finite cu p^n elemente sunt izomorfe.

Demonstrație (schiță): Fie K un corp cu $q=p^n$ elemente. Cum K^\times are q-1 elemente din Lagrange obținem $x^{q-1}=1, \ \forall \ x\in K^\times$, deci $x^q=x, \ \forall \ x\in K$. Deci K este un corp ce conține toate rădăcinile polinomului $f=X^q-X\in P[X], \ P\cong \mathbb{Z}_p$ fiind subcorpul prim al lui K. De aici (unicitatea corpului de descompunere=cea mai mică extensie în care un polinom are toate rădăcinile) rezultă $K\cong \mathbb{F}_q$, ca și corpuri.

Exemplul 15. (1) $f = X^2 + X + 1 \in \mathbb{Z}_2[X]$ este ireductibil (nu are rădăcini). Atunci $\mathbb{F}_4 = \frac{\mathbb{Z}_2[X]}{(f)} = \{a + b\zeta \mid a, b \in \mathbb{Z}_2\}$ cu $\zeta^2 = -\zeta - 1 = \zeta + 1$; $\zeta := \hat{X} \in \mathbb{F}_4$.

- (2) $f_1 = X^2 + 1$, $f_2 = X^2 + X 1$ şi $f_3 = X^2 X 1$ sunt polinoame ireductibile în $\mathbb{Z}_3[X]$ şi ele produc (via un izomorfism) pe $\mathbb{F}_9 \colon \mathbb{F}_9 \cong \frac{\mathbb{Z}_3[X]}{(f_i)}$. $\forall i = 1, 2, 3$.
- (3) $g_1 = X^3 X + 1$, $g_2 = X^3 + X^2 X + 1$, $g_3 = X^3 X^2 X 1$ sunt polinoame ireductibile în $\mathbb{Z}_3[X]$ și ele produc (via un izomorfism) pe \mathbb{F}_{27} : $\mathbb{F}_{27} \cong \frac{\mathbb{Z}_3[X]}{(g_i)}$. $\forall i = 1, 2, 3$.

6 SAI

Bibliografie

- T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
 I. D. Ion, N. Radu, Algebra, Ed. Universității din București, 1981.
- [3] C. Năstăsescu, C. Niță, C. Vraciu, Bazele algebrei, Ed. Academiei, București, 1986.