

LOCAL BINARY PATTERNS

Federico Becattini Giovanni Romagnoli

Obiettivi

- Rilevazione di imperfezioni all'interno di textures.
- Definizione del descrittore Local Binary Pattern.
- Parallelizzazione con GPU.

Texture Analysis

Texture

Specifica struttura che si ripete su una superficie ottenuta dalla ripetizione di uno o più elementi particolari.

Texture Analysis

- Numerosi campi applicativi
 - Tessile
 - Biomedico
 - Industriale
- Analisi di immagini
 - Segmentazione
 - Classificazione
 - Sintesi

Texture Analysis

- Descrittori
- Matrici di Co-occorrenza
- Region Covariance Matrix
- Tamura Features
- Filtri di Gabor
- Markov Random Fields

LBP: Local Binary Pattern

- T. Ojala, M. Pietikäinen, and D. Harwood (1994)
- L'operatore LBP è definito su un neighborhood di un determinato pixel di una texture.

_			
(-1,-1)	(0,-1)	(+1,-1)	
(-1,0)	(0,0)	(+1,0)	
(-1,+1)	(0,+1)	(+1,+1)	

• Usa un codice binario per descrivere un pattern della texture locale.

- LBP originale
 - Viene utilizzata una matrice di 3x3 pixel.
 - I pixel del neighborhood vengono confrontati con il valore in scala di grigio del pixel centrale.
 - Il numero binario così ottenuto è utilizzato come descrittore della texture.

- LBP originale
 - Viene utilizzata una matrice di 3x3 pixel.
 - I pixel del neighborhood vengono confrontati con il valore in scala di grigio del pixel centrale.
 - Il numero binario così ottenuto è utilizzato come descrittore della texture.

- LBP originale
 - Viene utilizzata una matrice di 3x3 pixel.
 - I pixel del neighborhood vengono confrontati con il valore in scala di grigio del pixel centrale.
 - Il numero binario così ottenuto è utilizzato come descrittore della texture.

- LBP originale
 - Viene utilizzata una matrice di 3x3 pixel.
 - I pixel del neighborhood vengono confrontati con il valore in scala di grigio del pixel centrale.
 - Il numero binario così ottenuto è utilizzato come descrittore della texture.

- LBP originale
 - Viene utilizzata una matrice di 3x3 pixel.
 - I pixel del neighborhood vengono confrontati con il valore in scala di grigio del pixel centrale.
 - Il numero binario così ottenuto è utilizzato come descrittore della texture.

- LBP originale
 - Viene utilizzata una matrice di 3x3 pixel.
 - I pixel del neighborhood vengono confrontati con il valore in scala di grigio del pixel centrale.
 - Il numero binario così ottenuto è utilizzato come descrittore della texture.

 Binary: 11001011

- Questa versione è invariante rispetto a trasformazioni Gray-Scale ma può essere migliorata per garantire anche l'invarianza rispetto alla rotazione.
- Il descrittore può essere ulteriormente migliorato con facendo riferimento alla nozione di **Pattern Uniformi**.

• Si definisce una texture nell'intorno di un punto come la distribuzione dei livelli di grigio dei P pixel dell'intorno.

$$T = t(g_c, g_0, ..., g_{P-1})$$

• Dove g_c corrisponde al valore di grigio del pixel centrale e g_p al valore del p-esimo pixel dell'intorno.

- Neighborhoods circolari
 - I P pixel del neighborhood si trovano su una circonferenza di raggio R e sono tra loro equispaziati.
 - Se il pixel centrale ha coordinate (0,0) allora il p-esimo punto dell'intorno avrà coordinate:

 $(-Rsin(2\pi p/P), Rcos(2\pi p/P))$

Invarianza Gray-Scale

- L'invarianza alla scala di grigi è ottenuta sottraendo ad ogni pixel il valore di quello centrale.
- Assumendo la distribuzione dei livelli di grigio del pixel centrale indipendente da quella del neighborhood si ottiene:

$$T \approx t(g_c) t(g_0 - g_c, ..., g_{P-1} - g_c)$$

dove la distribuzione $t(g_c)$ rappresenta la luminosità dell'immagine e non è pertanto rilevante ai fini della della texture analysis.

Invarianza Gray-Scale

- Le differenze $(g_p g_c)$ non sono influenzate da variazioni della luminosità dell'immagine.
- L'invarianza Gray-Scale è quindi ottenuta considerando solamente i segni delle differenze.

$$LBP_{P,R} = \sum_{p=0}^{P-1} s(g_p - g_c) 2^p$$
$$s(x) = \begin{cases} 1, x \ge 0 \\ 0, x < 0. \end{cases}$$

- LBP _{P,R} produce 2^p pattern differenti.
- Quando l'immagine viene ruotata i livelli di grigio si spostano lungo la circonferenza, producendo pattern diversi.
- Solo i pattern composti da tutti zeri o uni rimangono invariati.

- LBP _{P,R} produce 2^p pattern differenti.
- Quando l'immagine viene ruotata i livelli di grigio si spostano lungo la circonferenza, producendo pattern diversi.
- Solo i pattern composti da tutti zeri o uni rimangono invariati.
- Come ottenere l'invarianza a rotazione?

• Per ottenere l'invarianza a rotazione si assegna un unico identificatore ad ogni gruppo di pattern.

$$LBP_{P,R}^{ri} = min\{ROR(LBP_{P,R}, i)\}$$
 $i = 0, 1, ..., P-1$

- ROR(x,i) effettua uno shift circolare a destra i volte sul numero x.
- Equivale a ruotare il neighborhood fino ad avere il massimo numero di bit più significativi pari a zero.

• I 36 binary patterns invarianti a rotazioni che possono presentarsi con il descrittore $LBP_{8,R}^{ri}$.

• *LBP*^{ri}_{8,R} ancora non è in grado di descrivere accuratamente una texture.

• Due problemi, quali?

- *LBP*^{ri}_{8,R} ancora non è in grado di descrivere accuratamente una texture.
- Due problemi:
 - La frequenza con cui si presentano i 36 pattern può variare molto.

- *LBP*^{ri}_{8,R} ancora non è in grado di descrivere accuratamente una texture.
- Due problemi:
 - La frequenza con cui si presentano i 2^P pattern può variare molto.
 - La quantizzazione a 45° può risultare troppo approssimativa.

- Alcuni local binary patterns sono proprietà fondamentali delle textures.
- Questi patterns detti **uniformi**, possono rappresentare più del 90% delle texture osservate.
- Presentano una struttura con poche transizioni.

• I pattern numerati sono considerati uniformi. Questi presentano il numero minimo di transizioni

- Per definire formalmente i pattern uniformi si ricorre ad una misura di uniformità.
- U(x) fornisce il numero di transizioni spaziali nel pattern x.

$$U(00000000) = 0$$
 $U(1111111111) = 0$
 $U(00010000) = 2$ $U(011111111) = 2$
 $U(00100100) = 4$ $U(11101110) = 4$
 $U(10110010) = 6$ $U(10101010) = 8$

- Si definisce un pattern uniforme come un patter con al più un valore di uniformità pari a 2.
- È possibile definire un nuovo descrittore:

$$LBP_{P,R}^{riu2} = \begin{cases} \sum_{p=0}^{P-1} s(g_p - g_c) & \text{if } U(LBP_{P,R}) \le 2\\ P+1 & \text{otherwise} \end{cases}$$

$$U(LBP_{P,R}) = |s(g_{P-1} - g_c) - s(g_0 - g_c)| + \sum_{p=1}^{P-1} |s(g_p - g_c) - s(g_{p-1} - g_c)|$$

- Possono presentarsi P+1 pattern uniformi.
- $LBP_{P,R}^{riu2}$ assegna una etichetta ad ogni pattern, corrispondente al numero di bit presenti posti a 1.
- Si passa da 2^P pattern a P+2.

Quantizzazione

- Una quantizzazione di 45° può sembrare troppo approssimativa.
- Conviene aumentare P?
- Fissato R, il numero di pixel appartenenti alla circonferenza è limitato.
- Aumentando P si introducono informazioni ridondanti.

Quantizzazione

- Una quantizzazione di 45° può sembrare troppo approssimativa.
- Conviene aumentare P?
- Aumentare troppo P può portare a costi computazionalmente onerosi.
- Lookup table di 2^P elementi.

Descrivere una texture

- Per descrivere una texture viene fatta scorrere una finestra sopra l'immagine e calcolato LBP.
- L'immagine sarà descritta dall'istogramma delle occorrenze dei local binary patterns trovati.

Multiresolution Analysis

- Per migliorare ulteriormente l'accuratezza del descrittore è possibile effettuare una analisi a risoluzioni differenti.
- L'immagine viene descritta da istogrammi multidimensionali.
- Elevato costo computazionale.

Conclusioni

- Test dimostrano che il metodo presentato riesce in molti casi a superare una accuratezza del 90% in esperimenti di classificazione di textures.
- Il metodo può essere velocizzato.
- Utilizzo di GPU.