Section 3.9 - Linear Approximation and the Derivative

1. Show that $\frac{1}{\sqrt{x+1}} \approx 1 - \frac{x}{2}$ near x = 0.

Near
$$x=0$$
,
 $f(x) = f(0) + f'(0) \times$
 $= 1 + -\frac{1}{2}(0+1)^{-3/2} \times$
 $= 1 - \frac{1}{2} \times$

2. (a) Show that 1 + kx is the local linearization of $(1 + x)^k$ at x = 0.

Near
$$x=0$$
,
 $L(x)=(1+0)^{k}+k(1+0)^{k-1}x$
 $=(+kx)^{k}$

(b) Someone claims that the square root of 1.1 is about 1.05. Without using a calculator, do you think this estimate is about right? **Hint:** Use the linearization you calculated in part (a).

Using (a),
$$k = \frac{1}{2}$$
, $x = 0.1$. So $L(0.1) = 1 + \frac{1}{2}0.1$ = 1.05.