

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2023/24

Paula Reichert, Siddhant Das

Lineare Algebra (Informatik) Übungsblatt 6

Aufgabe 1 (Rechenregeln auf Ringen)

Sei $(R, +, \cdot)$ ein Ring und seien $a, b, c \in R$. Zeigen Sie, dass folgende Rechenregeln gelten:

- (i) $(-a) \cdot (-b) = a \cdot b$
- (ii) Falls ein Einselement $1 \in R$ existiert, dann gilt:

$$-a = (-1) \cdot a = 1 \cdot (-a)$$

(iii) Falls R nullteilerfrei ist, also falls $\forall a, b \in R : a \cdot b = 0 \Rightarrow a = 0 \lor b = 0$, dann gilt:

$$(c \neq 0 \land a \cdot c = b \cdot c) \Rightarrow a = b \quad \text{und} \quad (c \neq 0 \land c \cdot a = c \cdot b) \Rightarrow a = b$$

Aufgabe 2 (Komplexe Zahlen)

Betrachten Sie die komplexe Zahlenebene.

- (i) Seien $z_1, z_2, z \in \mathbb{C}$. Veranschaulichen Sie sich anhand einer Skizze die Addition bzw. Subtraktion zweier komplexer Zahlen $(z_1, z_2) \to z_1 \pm z_2$ sowie die komplexe Konjugation $z \to \bar{z}$.
- (ii) Betrachten Sie nun die Funktion

$$f(z) = \frac{1}{z}, \quad z \in \mathbb{C} \setminus \{0\}.$$

Auf welche Kurven bildet f Kreise mit Mittelpunkt im Ursprung, auf welche Geraden durch den Ursprung ab? Wie verändert sich der Winkel zwischen zwei Ursprungsgeraden, wie der Winkel zwischen zwei beliebigen Geraden?

Hinweis: Nutzen Sie die Polardarstellung komplexer Zahlen.

Aufgabe 3 (Quaternionen)

Der Schiefkörper der Quaternionen \mathbb{H} wird wie folgt konstruiert. Quaternionen, d.h. Elemente von \mathbb{H} , sind Ausdrücke der Form

$$h = h_0 + \mathrm{i}h_1 + \mathrm{j}h_2 + \mathrm{k}h_3$$

mit $h_0, h_1, h_2, h_3 \in \mathbb{R}$ und den drei imaginären Einheiten i, j und k. Die Addition auf \mathbb{H} ist komponentenweise definiert, d.h. für $h, h' \in \mathbb{H}$ ist

$$h + h' := (h_0 + h'_0) + i(h_1 + h'_1) + j(h_2 + h'_2) + k(h_3 + h'_3).$$

Für die Multiplikation auf H gilt Folgendes:

- Für reelle Zahlen r und r' (mit r = r + i0 + j0 + k0) ist die Multiplikation auf \mathbb{H} die übliche Multiplikation auf \mathbb{R} .
- $i^2 = j^2 = k^2 = -1$ und ij = k, jk = i, ki = j.

- Die imaginären Einheiten vertauschen mit jeder reellen Zahl r, d.h. ir = ri, jr = rj, kr = rk.
- Für i, j, k und jede reelle Zahl r gilt das Assoziativgesetz, d.h. i(ik) = (ii)k, j(ki) = (jk)i, r(jk) = (rj)k, usw.

Weiter gelten die Distributivgesetze (h + h')g = hg + h'g und h(g + g') = hg + hg'. Man kann nun zeigen, dass \mathbb{H} mit dieser Addition und Mulptiplikation ein Schiefkörper ist, d.h. dass alle Körperaxiome mit Ausnahme der Kommutativität der Multiplikation erfüllt sind.

- (i) Zeigen Sie, dass die Multiplikation auf \mathbb{H} nicht kommutativ ist und dass insbesondere gilt: ij = -ji, kj = -jk und ik = -ki.
- (ii) Geben Sie die allgemeine Formel für die Multiplikation zweier Quaternionen h und h' an. Begründen Sie, dass das Assoziativgesetz der Multiplikation für Quaternionen gilt.
- (ii) Geben Sie das neutrale Element der Multiplikation und das inverse Element der Multiplikation zu einer Quaternion $h \in \mathbb{H}$ an.

Hinweis: Definieren Sie sich die konjugierte Quaternion als $\bar{h} := h_0 - ih_1 - jh_2 - kh_3$

Aufgabe 4 (Fixpunktfreie Permutationen)

In dieser Aufgabe soll die Anzahl der fixpunktfreien Permutationen einer endlichen Menge bestimmt werden. Eine Permutation $\sigma: \{1, ..., n\} \to \{1, ..., n\}$ heißt fixpunktfrei, wenn für alle $k \in \{1, ..., n\}$ gilt, dass $\sigma(k) \neq k$. Die Anzahl der fixpunktfreien Permutationen in S_n wird im folgenden mit d_n bezeichnet

- (i) Zeigen Sie, dass es in S_1 keine und in S_2 genau eine fixpunktfreie Permutation gibt.
- (ii) Sei $j \neq 1$ beliebig, aber fest. Finden Sie eine Bijektion zwischen folgenden Mengen:
 - (a) $\{\sigma \in S_n : \sigma(1) = j \land \sigma(j) = 1 \land \sigma \text{ hat keinen Fixpunkt}\}\$ und $\{\sigma \in S_{n-2} : \sigma \text{ hat keinen Fixpunkt}\}\$
 - (b) $\{\sigma \in S_n : \sigma(1) = j \land \sigma(j) \neq 1 \land \sigma \text{ hat keinen Fixpunkt}\}\$ und $\{\sigma \in S_{n-1} : \sigma \text{ hat keinen Fixpunkt}\}\$
- (iii) Folgern Sie, dass $d_n = (n-1)(d_{n-1} + d_{n-2})$ und daher $d_n n \cdot d_{n-1} = (-1)^n$.
- (iv) Beweisen Sie mit Induktion unter Verwendung von (iii), dass $d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$