

Machine Learning

2025 (ML-2025) Lecture 2. Linear models

by Alexei Kornaev, Dr. Sc., Assoc. Prof., Robotics and CV, Innopolis University Researcher at the RC for AI, National RC for Oncology n.a. NN Blokhin

Agenda

- I. Linear Regression and its Generalization
- II. Logistic Regressioin and its Generalization
- III. Setting of the models

Linear Regression

Model predicts output h given input x

$$\boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}^{(1)} \\ \dots \\ \boldsymbol{x}^{(m)} \end{bmatrix}, \boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}^{(1)} \\ \dots \\ \boldsymbol{y}^{(m)} \end{bmatrix}, \boldsymbol{\phi} = \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix}.$$

Consider a model $f = [x^{(i)}, \phi]$ parameterized with weights ϕ that maps each i-th input sample $x^{(i)}$ into the output $z^{(i)}$ which then transforms into the hypothesis $h^{(i)}$ that should be close to the label $y^{(i)}$.

$$L(\phi) = \frac{1}{2m} \sum_{i=1}^{m} (h^{(i)} - y^{(i)})^2 \Rightarrow \min.$$

Supervised learning intuition: S. J. Prince. Understanding Deep Learning. MIT Press, 2023. URL http://udlbook.com.

Linear Regression

Model predicts output h given input x

Consider a model $f = [x^{(i)}, \phi]$ parameterized with weights ϕ that maps each i-th input sample $x^{(i)}$ into the output $z^{(i)}$ which then transforms into the hypothesis $h^{(i)}$ that should be close to the label $y^{(i)}$.

$$\boldsymbol{x} = \begin{bmatrix} x^{(1)} \\ \dots \\ x^{(m)} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & x^{(1)} \\ \dots & \dots \\ 1 & x^{(m)} \end{bmatrix}, \boldsymbol{y} = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{bmatrix}, \boldsymbol{\phi} = \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix}.$$

 $L(\phi) = \frac{1}{2m} \sum_{i=1}^{m} (h^{(i)} - y^{(i)})^2 \Rightarrow \min.$

- 1. Initialize the weights ϕ with a random seed
- 2. Calculate the *hypothesis* matrix $h = x\phi$ and the *loss gradient*: $\nabla L = \frac{1}{m}x^T(h-y)$

- $\nabla L = \left[\frac{\partial L}{\partial \phi_j}\right] = \frac{1}{m} x^T (\boldsymbol{h} \boldsymbol{y}).$
- 3. For the given ϕ_j components (annotated with idex 'prev', ϕ_j^{prev}) calculate the newer ones ϕ_j^{next} moving towards the direction, which is opposite to the loss gradient vector, with steps which are proportional to the *learning rate* α :

$$\boldsymbol{\phi}^{next} = \boldsymbol{\phi}^{prev} - \alpha \nabla L$$
, or in the scalar form $\phi_0^{next} = \phi_0^{prev} - \alpha \frac{\partial L}{\partial \phi_0}$, $\phi_1^{next} = \phi_1^{prev} - \alpha \frac{\partial L}{\partial \phi_1}$

- 4. Repeat pp. 2-3 until the minimum of the loss function L is reached, based on the condition of small changes in its value over several neighboring iterations or based on the condition of reaching the maximum number of iterations : $L^{next} L^{prev} < \delta$, #iter. > max # of iter
- 5. Save the trained model (model weights): ϕ .

Linear Regression. Generalization (multiple var., polynomial)

Model predicts output h given input x

Consider a model $f = [x^{(i)}, \phi]$ parameterized with weights ϕ that maps each *i*-th input sample $x^{(i)}$ into the output $z^{(i)}$ which then transforms into the hypothesis $h^{(i)}$ that should be close to the label $y^{(i)}$.

$$L(\phi) = \frac{1}{2m} \sum_{i=1}^{m} (h^{(i)} - y^{(i)})^2 \Rightarrow \min.$$

- 1. Initialize ϕ
- 2. Calculate $h = x\phi$ and $\nabla L = \frac{1}{m}x^T(h-y)$
- 3. Update $\phi^{next} = \phi^{prev} \alpha \nabla L$

- 4. Repeat pp. 2-3 $L^{next} L^{prev} < \delta$, #iter. > max # of iter
- 5. Save the trained model (model weights): ϕ .

Linear Regression. Generalization (multiple var., polynomial)

Model predicts output h given input x

Consider a model $f = [x^{(i)}, \phi]$ parameterized with weights ϕ that maps each i-th input sample $x^{(i)}$ into the output $z^{(i)}$ which then transforms into the hypothesis $h^{(i)}$ that should be close to the label $y^{(i)}$.

$$L(\phi) = \frac{1}{2m} \sum_{i=1}^{m} (h^{(i)} - y^{(i)})^2 \Rightarrow \min.$$

- 1. Initialize ϕ
- 2. Calculate $h = x\phi$ and $\nabla L = \frac{1}{m}x^T(h-y)$
- 3. Update $\boldsymbol{\phi}^{next} = \boldsymbol{\phi}^{prev} \alpha \nabla L$

- 4. Repeat pp. 2-3 $L^{next} L^{prev} < \delta$, #iter. > max # of iter
- 5. Save the trained model (model weights): ϕ .

Agenda

- Linear Regression and its Generalization
- II. Logistic Regressioin and its Generalization
- III. Setting of the models

Logistic Regression

Model predicts output h given input x

Consider a model $f = [x^{(i)}, \phi]$ parameterized with weights ϕ that maps each i-th input sample $x^{(i)}$ into the output $z^{(i)}$ which then transforms into the hypothesis $h^{(i)}$ that should be close to the label $y^{(i)}$.

 $L(\phi) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \ln(h^{(i)}) + (1 - y^{(i)}) (\ln(1 - h^{(i)})) \Rightarrow \min.$

$$\mathbf{x} = \begin{bmatrix} x^{(1)} \\ \dots \\ x^{(m)} \end{bmatrix}; \mathbf{y} = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{bmatrix}; \rightarrow \mathbf{x} = \begin{bmatrix} 1 & x^{(1)} \\ \dots & \dots \\ 1 & x^{(m)} \end{bmatrix}; \boldsymbol{\phi} = \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix}; \mathbf{z} = \boldsymbol{x}\boldsymbol{\phi}; \rightarrow h(z) = \frac{1}{1 + e^{-z(x)}}, \text{ or } \boldsymbol{h} = \sigma(\mathbf{z}).$$

Logistic Regression

Model predicts output h given input x

Consider a model $f = [x^{(i)}, \phi]$ parameterized with weights ϕ that maps each i-th input sample $x^{(i)}$ into the output $z^{(i)}$ which then transforms into the hypothesis $h^{(i)}$ that should be close to the label $y^{(i)}$.

4. Repeat pp. 2-3 $L^{next} - L^{prev} < \delta$, #iter. > max # of

$$L(\phi) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \ln(h^{(i)}) + (1 - y^{(i)}) (\ln(1 - h^{(i)})) \Rightarrow \min.$$

Training algorithm.

- 1. Initialize ϕ
- 2. Calculate $\mathbf{z} = \mathbf{x}\boldsymbol{\phi}$, $\mathbf{h} = \sigma(\mathbf{z})$, then $\nabla L = \frac{1}{m}\mathbf{x}^T(\mathbf{h} \mathbf{y})$ 5. Save the trained model (model weights): $\boldsymbol{\phi}$.

iter

3. Update $\boldsymbol{\phi}^{next} = \boldsymbol{\phi}^{prev} - \alpha \nabla L$

Logistic Regression. Generalization (multiple var., polynomial)

Model predicts output h given input x

Consider a model $f = [x^{(i)}, \phi]$ parameterized with weights ϕ that maps each i-th input sample $x^{(i)}$ into the output $z^{(i)}$ which then transforms into the hypothesis $h^{(i)}$ that should be close to the label $y^{(i)}$.

$$L(\phi) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \ln(h^{(i)}) + (1 - y^{(i)}) (\ln(1 - h^{(i)})) \Rightarrow \min.$$

$$\mathbf{x} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} \\ \dots & \dots \\ x_1^{(m)} & x_2^{(m)} \end{bmatrix}; \mathbf{y} = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{bmatrix}; \quad \rightarrow \quad \mathbf{x} = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ \dots & \dots & \dots \\ 1 & x_1^{(m)} & x_2^{(m)} \end{bmatrix}; \boldsymbol{\phi} = \begin{bmatrix} \phi_0 \\ \phi_1 \\ \phi_2 \end{bmatrix}; \boldsymbol{z} = \boldsymbol{x} \boldsymbol{\phi}; \quad \rightarrow \quad h(z) = \frac{1}{1 + e^{-z(x)}}, \text{ or } \boldsymbol{h} = \sigma(\boldsymbol{z}).$$

- 1. Initialize ϕ
- 2. Calculate $z = x\phi$, $h = \sigma(z)$, then $\nabla L = \frac{1}{m}x^T(h-y)$ 5. Save the trained model (model weights): ϕ .
- 3. Update $\boldsymbol{\phi}^{next} = \boldsymbol{\phi}^{prev} \alpha \nabla L$

Logistic Regression. Generalization (multiple var., polynomial)

Consider a model $f = [x^{(i)}, \phi]$ parameterized with weights ϕ that maps each *i*-th input sample $x^{(i)}$ into the output $z^{(i)}$ which then transforms into the hypothesis $h^{(i)}$ that should be close to the label $v^{(i)}$. $L(\boldsymbol{\phi}) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \ln(h^{(i)}) + (1 - y^{(i)}) (\ln(1 - h^{(i)})) \Rightarrow \min.$

Model predicts output h given input x

$$= \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_n^{(1)} \\ \dots & \dots & \dots \\ x_1^{(m)} & x_2^{(m)} & x_n^{(m)} \end{bmatrix}; \mathbf{y} = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{bmatrix}$$

Gray scale picture of "Nine"

Training algorithm.

1. Initialize ϕ

4. Repeat pp. 2-3 $L^{next} - L^{prev} < \delta$, #iter. > max # of

- 2. Calculate $\mathbf{z} = \mathbf{x}\boldsymbol{\phi}$, $\mathbf{h} = \sigma(\mathbf{z})$, then $\nabla L = \frac{1}{m}\mathbf{x}^T(\mathbf{h} \mathbf{y})$ 5. Save the trained model (model weights): $\boldsymbol{\phi}$.
- 3. Update $\boldsymbol{\phi}^{next} = \boldsymbol{\phi}^{prev} \alpha \nabla L$

Logistic Regression. Generalization (multiple var., polynomial)

4. Repeat pp. 2-3 $L^{next} - L^{prev} < \delta$,

#iter. > max # of iter

Model predicts output h given input x

Consider a model $f = [x^{(i)}, \phi]$ parameterized with weights ϕ that maps each i-th input sample $x^{(i)}$ into the output $z^{(i)}$ which then transforms into the hypothesis $h^{(i)}$ that should be close to the label $y^{(i)}$.

$$L(\phi) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \ln(h^{(i)}) + (1 - y^{(i)}) (\ln(1 - h^{(i)})) \Rightarrow \min.$$

$$\mathbf{x} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} \\ \dots & \dots \\ x_1^{(m)} & x_2^{(m)} \end{bmatrix}; \mathbf{y} = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{bmatrix}; \longrightarrow$$

- 1. Initialize ϕ
- 2. Calculate $\mathbf{z} = \mathbf{x}\boldsymbol{\phi}$, $\mathbf{h} = \sigma(\mathbf{z})$, then $\nabla L = \frac{1}{m}\mathbf{x}^T(\mathbf{h} \mathbf{y})$ 5. Save the trained model (model weights): $\boldsymbol{\phi}$.
- 3. Update $\boldsymbol{\phi}^{next} = \boldsymbol{\phi}^{prev} \alpha \nabla L$

$\exists \mathsf{I}$

Agenda

- Linear Regression and its Generalization
- II. Logistic Regressioin and its Generalization
- III. Setting of the models

ML Settings

Model predicts output h given input x

Model parameters are determined during the solution of the ML problem. For example, in regression problems, the parameters are the components of the matrix of weights ϕ . Hyperparameters are set by the user, usually not in a single way, and their values affect the values of the sought parameters.

1. Feature Scaling

ML Settings

Model predicts output h given input x

- 1. Feature Scaling
- 2. Learning Rate
- 3. Error and # of iterations
- 4. Regularization (L2)

Model parameters are determined during the solution of the ML problem. For example, in regression problems, the parameters are the components of the matrix of weights ϕ . Hyperparameters are set by the user, usually not in a single way, and their values affect the values of the sought parameters.

ML Settings

Model predicts output h given input x

- 1. Feature Scaling
- 2. Learning Rate
- 3. Error and # of iterations
- 4. Regularization (L2)

$$h(x) = \theta_i x^j$$
, $(j = 0, ...d)$

0.14 - d = 14

0.12 - 0.10 - d = 0.08 - d = 0.04 - 0.02 - d = 0.02

60

T, °C

70

Model parameters are determined during the solution of the ML problem. For example, in regression problems, the parameters are the components of the matrix of weights ϕ . Hyperparameters are set by the user, usually not in a single way, and their values affect the values of the sought parameters.

validation

test

$$L = \frac{1}{2m} \left[\sum_{i=1}^{m} (h^{(i)} - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \phi_j^2 \right] \Rightarrow \text{min.}$$

0.00

30

Just think about it

- 1. How can the gradient descent method be improved to find global minima instead of local ones?
- 2. Can the discussed linear regression problems be solved analytically without using the gradient descent method?
- 3. Why is the use of high-degree polynomials generally not recommended when building regression models?

Thank you for your attention!

a.kornaev@innopolis.ru, @avkornaev

ML-2025. Linear Models Notes

