Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

EC3ET06 Metaheuristic Techniques

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. The optimization problem involves:

 (a) Short computations (b) Zero
 - (b) Zero computations
 - (c) Long computations
- (d) Span computations
- ii. Optimization can be defined as-

1

1

- (a) Finding the conditions that give the maximum or minimum value of a function
- (b) Finding the conditions that give the only maximum value of a function
- (c) Finding the conditions that give the only minimum value of a function
- (d) None of these
- iii. Genetic Algorithm are a part of-

1

- (a) Evolutionary Computing
 - (b) Inspired by Darwin's theory about evolution "survival of the fittest"
 - (c) Are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetics
 - (d) All of these
- iv. Concept of Elitism is-

1

- (a) The children replace two randomly chosen individuals in the population
- (b) A weaker parent is replaced by a strong child
- (c) The current fittest member of the population is always propagated to the next generation
- (d) The new population of children completely replaces the parent selection

P.T.O.

Γ	7	1
L	4	1

v.	Biologically inspired computation is not appropriate for-	1
	(a) Optimization (b) Modelling	
	(c) Safety critical systems (d) Simulation	
vi.	Ant Colony Algorithms is-	1
	(a) Based on the behaviour of ants seeking a path between	
	their colonies.	
	(b) Initially proposed by Marco Dorigo in 1992.	
	(c) Constitutes some metaheuristic optimizations.	
	(d) All of these	
vii.	Particle Swarm Optimization (PSO) is-	1
	(a) The PSO algorithm maintains multiple potential solutions at one	
	time	
	(b) During each iteration of algorithm, each solution is evaluated by	
	an objective function to determine its fitness.	
	(c) Each solution is represented by a particle in the fitness ape	
	(search space).	
	(d) All of these	
viii.	Particle Swarm Optimization (PSO)-	1
	(a) Does not use the gradient of the problem being optimized.	
	(b) Do not guarantee an optimal solution is ever found.	
	(c) Does not require that the optimization problem be differentiable	
	as is required by classic optimization methods.	
	(d) All of these	
ix.	Bacterial Foraging Optimization Algorithm-	1
	(a) Is not a multi-optimal function optimization.	
	(b) Is to allow cells to stochastically and collectively swarm toward	
	optima.	
	(c) Individual bacterium can't communicate with others by sending	
	signals.	
	(d) All of these	
х.	Bacterial Foraging optimization theory is explained by following	1
	steps:	
	(a) Chemotaxis-Swarming–Reproduction-Dispersal-Eliminational	
	(b) Swarming—Chemotaxis-Reproduction-Eliminational-Dispersal	
	(c) Chemotaxis-Swarming–Reproduction-Eliminational-Dispersal	
	(d) Chemotaxis–Reproduction-Swarming -Dispersal-Eliminational	
i.	What is no free lunch theorem?	3
1. ii	Explain Multi-objective and Multi-model optimization	<i>3</i>

Q.2

OR	iii.	What do you mean by optimization? Classify optimization algorithms in detail.	7
Q.3	i. ii.	Explain the working principle of Genetic Algorithm. What is fitness function? Explain the process of parent selection.	3 7
OR	iii.	What is mutation? Explain the process of survivor selection.	7
Q.4	i. ii.	What is double bridge problem? Explain Ant Colony Optimization in detail.	3 7
OR	iii.	Differentiate Honey Bee Algorithm and Virtual Bee Algorithm.	7
Q.5	i. ii.	Explain the basic principle of Particle Swarm Optimization (PSO). Explain various variations of PSO in detail.	4 6
OR	iii.	Discriminate accelerated PSO and multimodal PSO.	6

[3]

Explain BFOA with suitable example /application in detailed.

Explain the concept of Chemotaxis and Swarming.

Differentiate fuzzy BFO and Adaptive BFO.

Q.6

i.

Attempt any two:

Marking Scheme

EC3ET06 / EI3ET06 Metaheuristic Techniques

Q.1	i.	c) Long computations		1
	ii. iii.	a) finding the conditions that give the maximus functiond) All of the above	um or minimum value of a	1 1
	iv.	c) The current fittest member of the population is generation	always propagated to the next	1
	v.	c) Safety critical systems		1
	vi.	d) all of the above.		1
	vii.	d) all of the above.		1
	viii.	d) all of the above.		1
	ix.	b) Is to allow cells to stochastically and collectively swarm toward optima.		
	х.	c) Chemotaxis-Swarming-Reproduction-Elimina	tional-Dispersal	1
Q.2	i.	No free lunch theorem	(As per explanation)	
OR	ii.	Multi-objective	3.5 Marks	
	•••	Multi-model optimization	3.5 Marks	
	iii.	Optimization Optimization algorithms in detailed.	3.5 Marks 3.5 Marks	
Q.3	i.	Working principle of genetic algorithm	(As per explanation)	
	ii.	Fitness function	3.5 Marks	
ΩD	:::	Process of parent selection. Mutation	3.5 Marks 2 Marks	
OR	iii.	Process of survivor selection.	5 Marks	
Q.4	i.	Double bridge problem	(As per explanation)	
	ii.	Ant colony optimization in detailed	(As per explanation)	
OR	iii.	Honey bee algorithm	3.5 Marks	
		virtual bee algorithm.	3.5 Marks	
Q.5	i.	Principle of Particle Swarm Optimization (PSO)	(1 Mark*4)	
	ii.	Various variation of PSO in detailed.	(As per explanation)	
OR	iii.	Accelerated PSO	3 Marks	
		Multimodal PSO.	3 Marks	
Q.6		Attempt any two:		
	i.	Concept of Chemotaxis	2.5 Marks	

	Concept of Swarming.	2.5 Marks
ii.	Differentiate fuzzy BFO	2.5 Marks
	Adaptive BFO.	2.5 Marks
iii.	BFOA with suitable example	2.5 Marks
	Application in detailed.	2.5 Marks
