Определение значения неатомарной бескванторной формулы.

- (1) Пусть A есть $\neg B$. Тогла значение формулы A есть U, если и только если значение формулы B при данных значениях переменных есть \mathcal{J} .
- (2) Пусть A есть (B&C). Тогда значение формулы A есть U, если и только если значения каждой из формул B, C при данных значениях переменных есть U.
- (3) Пусть A есть $(B \lor C)$. Тогда значение формулы A есть U, если и только если значение хотя бы одной из формул B или C при данных значениях переменных есть U.
- (4) Пусть A есть $(B \to C)$. Тогда значение формулы A есть \mathcal{J} , если и только если при заданных значениях переменных значение формулы B есть \mathcal{U} , а значение формулы C есть \mathcal{I} .

Для записи в языке исследователя значений произвольного терма tи произвольной формулы A можно использовать обозначения val(t) и val(A) соответственно (от английского слова value — значение, оценка, ценость).

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Пусть сигнатура $\sigma := \{c_0, c_1, f_1^1, f_2^2, f_3^2, P_1^2, P_2^1\}, A$ — алгебраическая система, $\mathcal{A} := \langle \mathbb{Z}, \sigma \rangle$, у которой c_0 есть имя числа 0, c_1 есть имя числа 1, и для всяких $m_1, m_2 \in \mathbb{Z}$ выполнено:

$$f_1^1(m_1) = -m_1, \quad f_2^2(m_1,m_2) = m_1 + m_2, \quad f_3^2(m_1,m_2) = m_1 \cdot m_2,$$
 $P_1^2(m_1,m_2) = \mathcal{U}, \; \text{если и только если} \; m_1 < m_2 \,.$

 $P_2^1(m) = H$, если и только если m — четное число.

- 1.1. Найдите значения следующих формул при значении переменной x_0 равном 5:
 - (a) $\neg P_1^2 x_0 f_2^2 f_2^2 c_1 c_1 f_2^2 c_1 c_1;$ (6) $(P_1^2 x_0 c_0 \lor P_1^2 c_1 x_0);$

 - (B) $(\neg P_2^1 x_0 \& P_1^2 c_0 x_0);$ (F) $(P_1^2 f_1^1 x_0 c_0 \to P_1^2 f_1^1 x_0 x_0);$

 - (д) $\neg (P_2^1 x_0 \to P_1^2 x_0 f_2 x_0 c_1);$ (e) $(\neg P_1^2 c_0 f_2^2 x_0 c_1 \to P_2^1 f_1^1 x_0).$
- 1.2. Для каждой формулы укажите, если это возможно, пример значений переменных, при которых значение формулы есть H, и при которых оно есть Π :

- (a) $(P_1^2 x_0 x_1 \& \neg P_2^1 x_0);$ (6) $(\neg P_2^1 x_0 \lor P_1^2 x_0 c_0);$ (B) $= f_2^2 x_0 x_1 f_3^2 x_1 x_0;$ (c) $(\neg P_2^1 x_0 \to P_2^1 f_2^2 x_0 c_1).$

- 1.3. Найдите все значения предметных переменных, при которых следующая формула принимает значение H:
 - (a) $(= f_1^1 x_0 x_0 \& = f_2^2 x_0 x_1 f_2 c_1 c_1);$ (6) $(= f_3^2 x_0 x_0 c_1 \lor P_1^2 c_0 x_0);$

- (B) $(\cong f_2^2 x_0 x_0 x_0 \to P_2^1 x_0);$ (F) $(\cong x_1 f_2^2 x_0 f_2^2 c_1 c_1 \to \neg P_2^1 x_1).$
- 1.4. Найдите все значения предметных переменных, при которых следующая формула принимает значение Π :

 - (a) $(P_1^2c_0x_0 \& P_1^2c_0x_1);$ (b) $(= f_3^2x_0x_0c_1 \lor = f_2^2x_0x_1x_0);$

 - (B) $(= f_2^2 x_0 x_0 x_1 \to P_1^2 x_0 x_1);$ (C) $((P_1^2 x_0 x_1 \& P_1^2 x_1 x_2) \to P_1^2 x_0 x_2).$
 - 1.5*. Приведите пример формулы, состоящей из символов $f_2^2, P_2^1, \cong, x_0, x_1, \to$

которая принимает значение H в рассматриваемой интерпретации при любых значениях предметных переменных.

2. Пусть интерпретация сигнатуры $\{c_0, c_1, f_1^1, f_2^1, P_1^1, P_2^2, P_3^2\}$ в множестве $M := \{0, 1, 2, 3, 4, 5, \}$ такова, что c_0 и c_1 есть имена чисел 0и 1 соответственно.

$$f_1^1(m) := \begin{cases} 6-m, \text{ если } m>0,\\ 0, \text{ если } m=0, \end{cases} \qquad f_2^1(m) := \begin{cases} m+1, \text{ если } m<5,\\ 0, \text{ если } m=5, \end{cases}$$

$$P_1^1(m)=H\Leftrightarrow m$$
 — четное, $P_2^2(m_1,m_2)=H\Leftrightarrow m_1$ делится на $m_2,$ $P_3^2(m_1,m_2)=H\Leftrightarrow m_1>m_2$

для всяких m, m_1, m_2 из M.

- 2.1. Найдите значения формул:
- (a) $(P_2^2 f_1^1 x_0 x_0 \vee P_3^2 x_0 f_1^1 x_0)$ при значении x_0 , равном 4;
- (б) $(P_2^2 f_1^1 x_0 c_1 \rightarrow = f_1^1 c_1 x_0)$ при значении x_0 , равном 1;
- (в) ($= f_1^1 x_0 f_1^1 x_1 \to P_3^2 x_1 x_0$) при значениях x_0 и x_1 , равных 1 и 4 соответственно.
- 2.2. При каких значениях переменных следующая формула принимает значение M: (a) $(P_2^1 f_1^1 x_0 \& \neg = x_0 c_0)$; (б) $(P_2^2 x_0 x_1 \& P_3^2 x_1 x_0)$;
 - (B) $(P_1^1x_0 \to P_2^2f_2^1f_2^1c_1x_0)$?
- 2.3*. Напишите формулу, в которая содержит вхождения лишь одной из предметных переменных — переменной x_0 . В интерпретации, данной в условии задачи, эта формула должна принимать значение И, если и только если значение переменной x_0 принадлежит множеству $\{1, 2\}$.