Grado en Ingeniería Informática y Doble grado en Ing. Informática y Matemáticas – Curso 2016/2017 Circuitos electrónicos – 2ª Prueba Intermedia – 24 de noviembre de 2016

Apellidos	Nombre

Grupo____

- 1.- (4 puntos) Se desea convertir una señal que varía entre -5 V y 5 V en otra que varíe entre 0 y 10 V. Para ello se propone el circuito de la figura adjunta.
 - a) Obtener el valor de la tensión de salida v_o en función de la tensión de entrada v_i , de la tensión de referencia V_{ref} y de las resistencias R_1 , R_2 , R_3 , R_4 y R_5 .
 - b) Si todas las resistencias son iguales, ¿cuál debe ser el valor de la tensión de referencia V_{ref} para que el circuito realice la función deseada?

Como fon A.O. ideales se ample $i_{+}=i_{-}=0$. Además henen realimentación mega fira, peto por lo que $U_{+}=U_{-}$. O.S. Por último, como U_{+} está a tierra en ambos $U_{+}=U_{-}=0$. O.S. a) ① $i_{1}+i_{2}-i_{3}=0$ $U_{1}+V_{ref}$ — $V_{01}=0$ $V_{01}=-R_{3}$ ($U_{1}+V_{ref}$) $V_{01}=0$

b)
$$Q_i = Q_2$$
 $V_0 = \frac{R^2}{2^2} [V_i + V_{ref}] =) [V_0 = V_i + V_{ref}] = 0.5$

Grado en Ingeniería Informática y Doble grado en Ing. Informática y Matemáticas - Curso 2016/2017 Circuitos electrónicos – 2ª Prueba Intermedia – 24 de noviembre de 2016

2.- (4 puntos) Para el circuito de la figura calcular

- La función de transferencia $H(j\omega)$, su módulo y su fase.
- Representar el diagrama de Bode del módulo, suponiendo que $R=10~{\rm k}\Omega$, $C=2.5~\mu{\rm F}~{\rm y}~R_f=3R_i$

Reem pla rams) la rua vayade por su equivalente

ri Ztic Rf

Como es diriger de Ideal >> i+=i-=0 2. Negation => U+= U-

 $i_{+}=0 \Rightarrow 0$ $U_{-}=U_{+}=U_{-} \Rightarrow 0$ $U_{-}=U_{-}U_{-}$

if=i; => U--50 = U- => [Vo = Ref+Ri J-] (También se puede ver que es div. de tensión => V== Riso)

Por la fauto: Vo= Rfthi R Vi= Rfthi Rt Jisc

Fare 0.2 Módulo

[Av]= Rf+Ri wer

Ri VI+(wce)2 0 = II - arctg (wcr) b) Eprenuos modulo en db | larlds = 20 log (Rf+Ri) CR] + 20 log W - 20 log V (Two) donde we = = 40 md/s 1 Av lds = 20 log (3 Ri+Ri) a) + 20 log (1 - 20 log (1+ (2))2 = 20 log (Ps) + 20 log w - 20 log / (+(w)²)
[= -20 + 20 log w - 20 log / (+(w)²)]
[20 log w] 20 609 W 10 10

Grado en Ingeniería Informática y Doble grado en Ing. Informática y Matemáticas – Curso 2016/2017 Circuitos electrónicos – 2ª Prueba Intermedia – 24 de noviembre de 2016

- 3.- (2 puntos) En el circuito de la figura $R_2=1~{\rm k}\Omega$, el valor de R_1 no se conoce y $V_{\gamma}=0.7~{\rm V}$.
 - a) Dibujar los cuatro circuitos que resultan de sustituir los diodos por sus correspondientes modelos lineales en las cuatro situaciones siguientes: 1) no conduce ningún diodo; 2) conducen los dos; 3) conduce D1 y no conduce D2; 4) conduce D2 y no conduce D1.
 - b) ¿Puede D1 conducir y D2 estar en corte?
 - c) Determinar el valor mínimo de R_1 que hace que D1 y D2 conduzcan.

c) Significado el procedimiento auterior, pero para el circuito de la figure 4)

Se debe aumplir
lov Ti Right J3 3V => 1,>0; I3>0 Se debe amplir ID, >0; ID2>0 i) lov-I, R, - Vr-Vp=0/ ii) 3-Vr-Vp=0/ =2.3V L.K.M.

10V-J,R,-0.7-2.3=0=) []====>0 por todo R, En el modo Vp: 13+1,=12 => 13= Vp - 17V 0:9