Penman's Equation

$$PET = \frac{A H_n + E_a \gamma}{A + \gamma}$$

PET = daily potential evapotranspiration in mm per day

A = slope of the saturation vapour pressure vs temperature of mean air temperature, in mm of mercury per °C (Table 3)

 H_n = net radiation in mm of evaporable water per day

 E_a = parameter including wind velocity and saturation deficit

 γ = psychrometric constant = 0.49 mm of mercury/ °C

Penman's Equation

$$H_n = H_a (1 - r) \left(a + b \frac{n}{N} \right) - \sigma T_a^4 (0.56 - 0.092 \sqrt{e_a}) \left(0.10 + 0.90 \frac{n}{N} \right) (3.14)$$

 H_a = incident solar radiation outside the atmosphere on a horizontal surface, expressed in mm of evaporable water per day (it is a function of the latitude and period of the year as indicated in Table 3.4).

a = a constant depending upon the latitude ϕ and is given by $a = 0.29 \cos \phi$

b = a constant with an average value of 0.52

n =actual duration of bright sunshine in hours

N = maximum possible hours of bright sunshine (it is a function of latitude as indicated in Table 3.5)

r = reflection coefficient (albedo). Usual ranges of values of r are given

 $\sigma = \text{Stefan-Boltzman constant} = 2.01 \times 10^{-9} \,\text{mm/day}$

 T_a = mean air temperature in degrees kelvin = 273 + °C

 e_a = actual mean vapour pressure in the air in mm of mercury

Surface	range of r values
Close ground corps	0.15—0.25
Bare lands	0.05—0.45
Water surface	0.05
Snow	0.45—0.95

The parameter E_a is estimated as

$$E_a = 0.35 \left(1 + \frac{u_2}{160} \right) (e_w - e_a)$$

in which

 u_2 = mean wind speed at 2 m above ground in km/day

 e_w = saturation vapour pressure at mean air temperatur (Table 3.3)

 e_a = actual vapour pressure, defined earlier

Saturation Vapour Pressure Vs Temperature curve

FAO Penman-Monteith

$$ET_{o} = \frac{0.408\Delta(R_{n} - G) + \gamma \frac{900}{T + 273}u_{2}(e_{s} - e_{a})}{\Delta + \gamma(1 + 0.34u_{2})}$$

```
ET_{\circ}
         reference evapotranspiration [mm day-1],
          net radiation at the crop surface [MJ m<sup>-2</sup> day<sup>-1</sup>],
\mathbb{R}_{\mathbf{n}}
          soil heat flux density [MJ m<sup>-2</sup> day<sup>-1</sup>],
G
          mean daily air temperature at 2 m height [°C],
T
          wind speed at 2 m height [m s<sup>-1</sup>],
112
          saturation vapour pressure [kPa],
e_{s}
          actual vapour pressure [kPa],
e_a
          saturation vapour pressure deficit [kPa],
es-ea
          slope vapour pressure curve [kPa °C-1],
Λ
         psychrometric constant [kPa °C<sup>-1</sup>].
γ
```

Evapotranspiration of other crops can be related using crop factor

Separation of Evaporation from Evapotranspiration

$$E_P = PET.\exp(-b.LAI)$$

$$T_P = PET - E_P$$

Interception Loss

 It is that portion of precipitation, which while falling, is intercepted by aerial potion of vegetation, buildings and other objects above the surface of earth and evaporates back to the atmosphere

Not Interception Loss

- Stem flow red arrows
- Canopy drip purple arrows
- Through fall yellow dashed lines

Interception loss

Light Rain

Heavy rain

Factors affecting interception

Meteorological factors

- precipitation intensity
- precipitation duration
- wind speed
- type of rainfall: rain versus snow
- precipitation frequency

Vegetation characteristics

- growth form: trees, shrubs, grasses, forbs
- plant density

16/02/2018 plant structure: number, size, flexibility, strength

Amount of water intercepted in a given area is difficult to measure.

Depends on 1) Species composition of vegetation

- 2) its density, and also
- 3) Storm characteristics.

It is estimated that during a plant growing period the interception loss could be 10-20% of rainfall.

If frequent rainfall occurs, the annual interception losses over forest regions could be high, \geq 25% of the annual precipitation.

Depression storage

The volume of water stored in depressions is called depression storage.

Depression storage

Factors influencing depression storage :

- i. The type of the soil
- ii. The condition of the surface reflecting the amount and nature of depression.
- iii. The slope of the catchment
- iv. The antecedent precipitation.

Qualitatively found that antecedent precipitation has a very pronounced effect on decreasing the loss to runoff in a storm due to depression.

During intensive storm 0.5 cm depression storage in sandy soil,

0.4 cm in loam,

0.25 cm in clay.

Factors Affecting Depression Storage

- Soil characteristics
- Surface condition
- Land use pattern
- Topography
- Antecedent precipitation

Effective rain = Rainfall – Interception loss