Construção de Compiladores Período Especial Aula 7: Expressões

Bruno Müller Junior

Departamento de Informática UFPR

2020

- Objetivos
- Análise semântica
 - Tradução Dirigida pela Sintaxe
 - Atributos Sintetizados
 - Atributos Sintetizados
 - Atributos Sintetizados
 - Atributos Sintetizados
 - Atributos Herdados
- Expressões Boolenas
 - Implementação
- Projeto

Objetivos

 Após a aula de hoje, o compilador desenvolvido pelos alunos deverá ser capaz de receber o código da esquerda como entrada e detectar erros semânticos.

```
program varsGlobais (input, output);
var a, b: integer;
   k1, temp : integer;
begin
   a:=a>0;
end.
```

•0

Analisador sintático e semântico

- Como já foi discutido, a análise semântica ocorre na execução dos "vértices"ou "nós"semânticos;
- Assim, os nós semânticos são executados durante a construção da árvore sintática;
- Didaticamente, é mais fácil explicar considerando que o analisador sintático constrói toda a árvore (incluíndo os vértices semânticos) e passa a árvore toda para analisador semântico;
- Este, por sua vez caminha inorder pela árvore e executa os vértices semânticos quando aparecerem.

Tradução Dirigida pela Sintaxe

```
G4 = { E ::= E+T {printf ("+");} | T
T ::= T*F {printf ("*");} | F
F ::= a {printf ("A"); }
}
```

- TDS para geração de código;
- como usar para verificar tipos?

$$a_1 + a_2 * a_3 - a_4 \Rightarrow A_1 A_2 A_3 * + A_4 -$$

- como usar para verificar tipos?
- lembre do caminhamento inorder!
- onde "descobre" o tipo do ident?
- onde "compara" os tipos dos idents?

$$a + b * b - a$$

- atributos sintetizados:
- sobem dos filhos para os pais;
- caso simples;

0000000

- atributos sintetizados:
- sobem dos filhos para os pais;
- A notação confunde os "T";

a + b * b - a

Atributos Sintetizados

```
Ea + Tb F {...} a4
```

tipo b

Expressões Boolenas

Atributos Sintetizados

- TDSs é uma abstração (algoritmo).
- Como utilizar atributos sintetizados no nosso compilador?
- Várias possibilidades.
- Destaco duas:
 - atributos posicionais do bison;
 - pilhas;

Atributos Sintetizados: bison

- O bison contém mecanismo para referenciar os elementos de uma produção usando os símbolos \$\$, \$1, \$2, ..., conhecidos como pseudo-variáveis.
- O número indica a posição. Na produção E ::= E + T, temos:

```
$$ == E (o da esquerda, antes do ::=)
```

$$$1 == E (o da direita, após do ::=)$$

$$\$3 == T$$

- Exemplo: E ::= E + T {\$\$=\$1+\$2}
- Qual o tipo de \$?

Atributos Sintetizados: pilha

 Uma alternativa que deixa o código mais legível é utilizar uma ou mais pilhas.

Atributos Herdados

- informação passada do pai para os filhos;
- "desce" na árvore:
- exemplo: contar número de identificadores;
- gramática:

```
G4 = { E'::= {nv:=0} E {imprime(nv)}

E ::= E+T | T

T ::= T*F | F

F ::= a {nv++} | b {nv++}

}
```

qual o erro em:

```
G4 = { E::= {nv:=0} E+T {imprime(nv)} | T
T ::= T*F | F
F ::= a {nv++} | b {nv++}
```


Atributos Sintetizados: pilha

- Como utilizar atributos herdados no nosso compilador?
- Variáveis globais;

Expressões Boolenas

- Instruções que geram ou lidam com booleanos.
- M[s-1]:=(M[s-1] op M[s]); s:=s-1; i:=i+1
- true == 1 e false == 0

Instrução	Ação		Exemplo de Tradução	
CMIG	M[s-1] := (M[s-1] == M[s])	Compara	Expressão	Código MEPA
	s:=s-1; i:=i+1	Igual		equivalente
CMMA	M[s-1]:= (M[s-1]>M[s])	Compara		CRVL a
	s:=s-1; i:=i+1	Maior		CRVL b
CMME			1	CMMA
CMDG			a>b and b=c	CRVL b
			İ	CRVL C
CONJ	M[s-1]:=(M[s-1] and M[s])	AND	İ	CMIG
	s:=s-1; i:=i+1			CONJ

ō

Implementação

- A regra que aplica as construções relacionais é:
 - 25. <expressão> ::= <expressão simples> [<relação> <expressão simples>]
 - 26. <relação> ::= = | <> | < | <= | > | >=

Projeto

- Implemente as regras de declaração de declaração de variáveis utilizando atributos herdados para saber o "k" de AMEM k.
- Implemente as regras relacionadas com expressões (regras 25 até 30) utilizanado atributos sintetizados para verificar tipos.
- Dica: a regra 30 é a única que acessa a tabela de símbolos.
 Nas demais, usa-se as construções (como pilha ou \$\$).

Projeto ○●○

Página para anotações

Licença

- Slides desenvolvidos somente com software livre:
 - LATEX usando beamer;
 - Inkscape.
- Licença:
 - Creative Commons Atribuição-Uso Não-Comercial-Vedada a Criação de Obras Derivadas 2.5 Brasil License. http://creativecommons.org/licenses/by-nc-nd/2.5/br/