Universidade Federal de São Carlos

Bacharelado em Ciência da Computação Introdução a Programação

PROF. TIAGO A. ALMEIDA <talmeida@ufscar.br> PROFA.

TIEMI C. SAKATA < tiemi@ufscar.br>

LISTA 05 REDEFINIÇÃO DE TIPOS, CONSTANTES, REGISTROS, ENUMERAÇÃO

• Prazo para entrega: 20/05/2018 - 23:55:00

• Atenção:

- 1. **Arquivo:** o nome do arquivo referente ao código-fonte deverá seguir o seguinte padrão: <número do RA>_L<número da lista>**EX**<número do exercício>.c. Exemplo: 123456_L05EX01.c;
- 2. E/S: tanto a entrada quanto a saída de dados devem ser "secas", ou seja, não devem apresentar frases explicativas. Siga o modelo fornecido e apenas complete as partes informadas.
- 3. Identificadores de variáveis: escolha nomes apropriados;
- 4. Documentação: inclua comentários e indentação no programa.

• Exercícios

- 1. Seu amigo Astheobaldo precisa de ajuda com operações de números complexos, então ele pediu para você ajudá-lo conferindo os resultados das operações. Você, cansado de programar uma calculadora normal, tem a brilhante ideia de fazer um programa em C que será sua versão da calculadora de números complexos.
 - Seu programa receberá dois números complexos, cada número é composto por uma parte real (**float**) e uma parte imaginária(**float**), e depois a opção correspondente a cada operação. Após o resultado ser impresso na tela, você deverá receber a opção novamente (até que a opção seja 0). As opções são enumeradas do seguinte modo:
 - 0. sair do programa;
 - 1. soma dos dois números;
 - 2. subtração do primeiro pelo segundo;
 - 3. subtração do segundo pelo primeiro;
 - 4. multiplicação dos dois números;
 - 5. divisão do primeiro pelo segundo;

- 6. divisão do segundo pelo primeiro;
- 7. Módulo do primeiro número;
- 8. Módulo do segundo número;

As fórmulas abaixo ajudarão nas operações:

Considere c1 = a + bi e c2 = c + di, em que "i" indica a parte imaginária.

$$c1 + c2 = (a + c) + (b + d)i$$

$$c1 - c2 = (a - c) + (b - d)i$$

$$c1 * c2 = (ac - bd) + (ad + bc)$$

$$\frac{c1}{c2} = \frac{(ac + bd)}{c^2 + d^2} + \frac{(bc - ad)i}{c^2 + d^2}$$

$$|c1| = \sqrt{a^2 + b^2}$$

Detalles

- (a) Imprima o resultado com duas casas decimais, tanto para a parte real quanto para a parte imaginária.
- (b) Utilize a mensagem pré definida quando a opção for inválida.
- (c) Utilize a mensagem pré definida quando houver divisão por zero.
- (d) Se o resultado for zero tanto na parte imaginária quanto na real, imprima 0.00.
- (e) Se a parte real for zero, imprima somente a imaginária.
- (f) Se a parte imaginária for zero, imprima somente a real.
- (g) Há um espaço entre a parte real e a imaginária.
- (h) Imprima um "i" após imprimir a parte imaginária.

Complete o arquivo L05EX01.c

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entrada	Saída
3 5 (Primeiro número)	
4 -7 (Segundo número)	
1 (opção de soma)	
	7.00_{\sqcup} - 2.00 i (resultado da soma)
2 (opção de subtração)	
	-1.00 $_{□}$ +12.00i (resultado da divisão)
4 (opção de multiplicação)	
	47.001.00i (resultado da potência)
0 (sair do programa)	
3 5 (Primeiro número)	
0 0 (Segundo número)	
15 (Opção de inválida!)	
	Opção Inválida!
5 (Opção de divisão)	
	Divisão por zero
7 (opção de módulo)	
	5.83 (resultado do módulo)
0 ((sair do programa))	
5 10 (Primeiro número)	
-5 -7 (Segundo número)	
1 (opção de soma)	
	3.00i (resultado da soma)
0 (sair do programa)	

Dicas

- (a) https://www.infoescola.com/matematica/numeros-complexos/;
- (b) https://www.todamateria.com.br/numeros-complexos/
- (c) http://pt.symbolab.com/solver/complex-numbers-calculator
- 2. Um amigo curioso para saber de seu próprio desempenho pediu para você, caro programador, que implemente um programa que irá receber a nota de dois alunos em duas matérias (Teoria dos Grafos e Banco de Dados) e imprima quem teve a maior média e qual o valor desta, em cada uma das matérias.

Seu programa receberá primeiro os dados do aluno 1 (RA (int), notas (float) na disciplina de Grafos e notas (float) na disciplina de Banco de Dados, nesta ordem) e depois repetir o mesmo com o aluno 2.

- A média final de Grafos é a média aritmética das provas (são três provas).
- A média final de Banco de Dados é composta por nota da prova (NP) e nota de

trabalho (NT) e a média é calculada da seguinte forma:

$$MF(BD) = \begin{cases} 0.5 * NP + 0.5 * NT, & \text{se NP} >= 6.0\\ 0.6 * NP + 0.4 * NT, & \text{se NP} < 6.0 \end{cases}$$

Por fim, seu programa deve imprimir o aluno com maior média ou se as médias são iguais para cada matéria (de acordo com o exemplo abaixo).

Complete o arquivo LO5EX01.c

Você deve apenas completar as operações nos lugares indicados e não deve realizar nenhuma alteração nas partes fornecidas. Inclusive, se houverem comandos de entrada (scanf) e saída (printf) definidos, estes não poderão ser alterados.

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

	Saída
(RA 1)	
(notas Grafos)	
(notas BD)	
(RA 2)	
(notas Grafos)	
(notas BD)	
	Teoria dos Grafos
	A maior média é do Aluno com RA 751399: 9.00
	Banco de Dados
	A maior média é do Aluno com RA 751365: 7.50
	Saída
(RA 1)	
(notas Grafos)	
(notas BD)	
(RA 2)	
(notas Grafos)	
(notas BD)	
	Teoria dos Grafos
	A maior média é do Aluno com RA 726460: 8.42
	Banco de Dados
	As médias são iguais (5.60)
	(notas Grafos) (notas BD) (RA 2) (notas Grafos) (notas BD) (RA 1) (notas Grafos) (notas BD) (RA 2) (notas Grafos)

Detalles

- (a) As saídas devem seguir o padrão acima, utilize as contantes no arquivo.
- (b) A impressão das notas deve ser realizada com a precisão de duas casas decimais.

- (c) Os casos de teste não exigem validação das entradas
- 3. Você sabia que existe um jeito de calcular qual dia da semana caiu ou cairá uma data qualquer entre 1 de Janeiro de 1900 até 2399? Dado uma data com Dia/Mês/Ano, são necessários cinco passos:

Passo 1: Calcule quantos anos se passaram desde 1900 até o ano da data. Chamaremos este resultado de ${\bf A}$

Passo 2: Calcule quantos 29 de Fevereiro existiram depois de 1900. Para isso, basta dividir por 4 o valor de A, sem considerar o resto da divisão. Chamaremos o resultado de B. Caso o ano da data seja bissexto e a data for anterior ou igual a 29 de Fevereiro, considere então B-1.

Passo 3: Considerando o mês da data, obtenha o número associado a ele (que chamaremos de C), presente na seguinte tabela:

Janeiro	0	Fevereiro	3
Março	3	Abril	6
Maio	1	Junho	4
Julho	6	Agosto	2
Setembro	5	Outubro	0
Novembro	3	Dezembro	5

Passo 4: Considere o dia da data x. Calcule x-1, chamaremos essa quantidade de D.

Passo 5: Some os quatro valores anotados A, B (ou B-1), C e D e então divida o resultado por 7 e verifique o resto dessa divisão. Agora, basta conferir o dia da semana associado à esse resto:

Segunda-feira	0
Terça-feira	1
Quarta-feira	2
Quinta-feira	3
Sexta-feira	4
Sábado	5
Domingo	6

Vejamos como exemplo a data 17/07/1986

A = 86 (1986-1900)

B = 21 (86 dividido por 4 é igual à 21 e possui resto 2, e 1986 não foi bissexto)

C = 6 (Julho)

D = 16 (17-1)

A+B+C+D = 129

129 / 7 = 18, com resto 3

Conferindo na tabela da semana vemos que 3 está associado à Quinta-Feira!

Faça um programa que primeiro receberá um número N ($1 \le N \le 100$), e depois receberá N datas no formato dd/mm/aaaa (com $01 \le Dia \le 31$, $01 \le Mes \le 12$ e $1900 \le Ano \le 2399$).

Para cada data, seu programa deve primeiro verificar se é uma data válida (uma data inválida é um dia 31 de um mês que possui 30 dias, o dia 30 ou 31 de fevereiro e o dia 29 de fevereiro de um ano não bissexto). Para cada data inválida, exibir a mensagem de erro "Data invalida". Caso seja uma data válida, exibir o dia da semana correspondente a tal data.

Complete o arquivo L05EX02.c

Você deve apenas completar as operações nos lugares indicados e não deve realizar nenhuma alteração nas partes fornecidas. Inclusive, se houverem comandos de entrada (scanf) e saída (printf) definidos, estes não poderão ser alterados.

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entrada		Saída	
4 (Qtde de	datas)		
17/07/1986	(Data 1)		
		Quinta-feira	(Data 1)
31/04/2012	(Data 2)		
		Data invalida	(Data 2)
29/02/2016	(Data 3)		
		Segunda-feira	(Data 3)
29/02/2015	(Data 4)		
		Data invalida	(Data 4)

Detalles

- (a) Cada saída deve estar em uma linha, seguidas por quebra de linha (\n)
- (b) A struct, a enumeração e as mensagens de saída já definidas presente no código base devem ser utilizadas
- 4. Você está começando a ficar preocupado com a disciplina GAAL, então você resolveu criar um programa que realize operações com vetores euclidianos de três componentes (x, y e z). O programa deve receber os valores das componentes do vetor que será usado nas operações e receberá os resultados dessas operações. As seguintes operações serão realizadas com o vetor euclidianos: somar vetor (1), subtrair vetor (2), multiplicar por escalar (3) e imprimir módulo (4). Informações sobre vetores euclidianos podem ser encontradas neste link: https://pt.wikipedia.org/wiki/Vetor_(matem%C3%A1tica).

Primeiramente, o programa receberá três valores (float) x, y e z, do vetor principal. Em seguida, o programa receberá o número da instrução a ser realizada. Se a instrução for de

soma ou subtração, o programa receberá os três valores das componentes do segundo vetor. Caso a instrução seja de multiplicação por escalar, deve-se receber um escalar (float). O programa é finalizado quando o número da instrução recebido for inválido. Para cada instrução, deve-se imprimir os valores dos componentes do vetor principal (instruções 1, 2 e 3) ou o que se pede na instrução (instrução 4).

Complete o arquivo LO5EXO3.c

Você deve apenas completar as operações nos lugares indicados e não deve realizar nenhuma alteração nas partes fornecidas. Inclusive, se houverem comandos de entrada (scanf) e saída (printf) definidos, estes não poderão ser alterados.

Entrada	Saída
8.4 -2.9 7.5 (valores iniciais)	
1 1.0 1.0 1.0 (instrução)	
	9.4 -1.9 8.5 (resultado)
3 -1.0 (instrução)	
	-9.4 1.9 -8.5 (resultado)
2 -3.0 1.9 4.0 (instrução)	
	-6.4 0.0 -12.5 (resultado)
4 (instrução)	
	14.0 (resultado)
0 (fim do programa)	

Detalles

- (a) Utilize a biblioteca math.h para realizar raízes quadradas. Talvez seja necessário compilar o código com o parâmetro -lm (link math) no gcc.
- 5. Implemente um algoritmo que dado um inteiro 5 < n < 4000 exiba-o em algarismos romanos, juntamente com os três maiores primos menores que ele. A entrada consiste apenas de n. A saída deve ser dada em quatro linhas, a primeira contendo n e as três seguintes os três primos, do maior para o menor; todas as saídas utilizando algarismos romanos. O programa deve executar até que um valor inválido seja recebido para n.

Complete o arquivo LO5EX06.c

Você deve apenas completar as operações nos lugares indicados e não deve realizar nenhuma alteração nas partes fornecidas. Inclusive, se houverem comandos de entrada (scanf) e saída (printf) definidos, estes não poderão ser alterados.

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entrada	Saída	
7 (n)		
	VII (7	- n em algs. romanos)
	V (5	- maior primo)
	III (3	<pre>- segundo maior primo)</pre>
	II (2	- terceiro maior primo)
20 (n)		
	XX (20 - n em algs. romanos)
	XIX (19 - maior primo)
	XVII (17 - segundo maior primo)
	XIII (13 - terceiro maior primo)
0 (n inv	álido)	

Detalles

- (a) Sobre representação em algarismos romanos consulte http://www.infoescola.com/matematica/numeros-romanos
- (b) A utilização das funções presentes na biblioteca math.h é permitida. Índex para funções da biblioteca: http://www.cplusplus.com/reference/cmath
- (c) Utilize uma estrutura para armazenar os números primos a serem exibidos.

• Cuidados

- 1. Erros de compilação: nota zero no exercício
- 2. Tentativa de fraude: nota zero na média para todos os envolvidos.