Learning from Data

Supervised Learning

data = board state label = next move label = winner

Assignment 1

1 In Neural Networks, the input and the output is a vector.

Express the following data as a vector.

- 2 There are different ways to do this.

 Describe at least two different possibilities.
- 3 How can you use the trained network? (simplest ideas)

Post on Teams

Problem 1 garbage in -> garbage out

Problem 1 garbage in -> garbage out

Problem 1 garbage in -> garbage out

? copy bad behavior?

ideal route

ideal route network

ideal route network

quantity quality diversity

Assignment 2

Post on Teams

Describe a scenario where it makes no sense to train a value-function out from the given data.

Reduce Branching

Reduce Branching

Reduce Branching

- according to probability
- only top 3 choices
- new upper confidence bound formula
 balance: score function + probability + confidence

