DATA SOCIETY®

Interactive visualization with R - Part 1

One should look for what is and not what he thinks should be.
-Albert Einstein.

Rising Data Science Interest

- With the rise of COVID-19, the need for fast visualizations to put data into perspective has also risen
- Have a look at this Visualization article while we wait to start class to get a peek at what's ahead.

Recap

- In the last module, we:
 - Transformed data using tidyverse
 - Plotted the transformed and tidy data to produce complex visualizations
- In this module, we will create plots using the highcharter package

Module completion checklist

Objective	Complete
Introduce using the highcharter package to build interactive visualizations	
Use highcharter with tidy data to create a scatterplot	
Visualize a correlation plot with hchart	
Build a column plot with hchart	
Create a boxplot with hchart	
Save interactive plots with htmlwidgets	

Directory settings

- In order to maximize the efficiency of your workflow, you may want to encode your directory structure into variables
- Let the main dir be the variable corresponding to your skillsoft folder

```
# Set `main_dir` to the location of your `skillsoft` folder (for Mac/Linux).
main_dir = "~/Desktop/skillsoft"
# Set `main_dir` to the location of your `skillsoft` folder (for Windows).
main_dir = "C:/Users/[username]/Desktop/skillsoft"
# Make `data_dir` from the `main_dir` and remainder of the path to data directory.
data_dir = paste0(main_dir, "/data")
# Make `plots_dir` from the `main_dir` and remainder of the path to plots directory.
plot_dir = paste0(main_dir, "/plots")
# Set directory to data_dir.
setwd(data_dir)
```

Interactive visualizations with highcharter

- Similar to ggplot2 and other plotting libraries (including base R itself), highcharter allows us to build complex, customized, and meaningful visualizations with the help of layers of graphical elements
- Highcharter is an R wrapper that allows R users to tap into one of the most comprehensive data visualization JavaScript-based libraries: Highcharts
- Highcharts is free for individual research and non-profit purposes, but there are cases and restrictions to its use and you may need to obtain a license if you decide to integrate it into software or company-wide products

```
> library(highcharter)
Highcharts (www.highcharts.com) is a Highsoft software product which is
not free for commercial and Governmental use
> |
```

Interactive visualizations: highcharter

Let's install the package and check its documentation

```
# Install `highcharter` package.
install.packages("highcharter")

# Load the library.
library(highcharter)

# View documentation.
library(help = "highcharter")
```


Highcharter main function: highchart

?highchart

- Similar to ggplot2, in order to create a plot, we need to call the main plotting function ggplot()
- In highcharter it is highchart()
- The function doesn't need any required arguments, and all of the graphic parameters and plotting options can be specified within layers themselves

Highcharter: `hchart` vs `highchart`

hchart is a shorthand version of the highchart function, which takes a few key arguments to plot:

- 1. Data to use
- 2. Type of plot to create (e.g., scatter, bar, column, line, etc.)
- 3. hcaes (i.e., highcharts aesthetics) mapping of variables (works exactly the same way as with ggplot2!)

Layers in Highcharts: series

- Just like ggplot2, the highcharter library has its own vocabulary
- Each new data / graphic layer in highcharter is called a series
- Each series can be of different type. Here are some widely used ones:

Highcharter series type	Plot type
scatter	scatterplot
line	line graph
boxplot	boxplot
column	bar plot
bar	horizontal bar plot
histogram	histogram
area	density

Module completion checklist

Objective	Complete
Introduce using the highcharter package to build interactive visualizations	✓
Use highcharter with tidy data to create a scatterplot	
Visualize a correlation plot with hchart	
Build a column plot with hchart	
Create a boxplot with hchart	
Save interactive plots with htmlwidgets	

Set up: load & prepare data

 Let's load the CMP_subset dataset from our data_dir into R's environment

Now, tidy the data as before and transform it from wide to long for easy visualization

```
# Prep data for univariate plots
CMP subset long = CMP subset %>%
  \overline{gather}(\overline{key} = \overline{"variable"},
         value = "value")
# Make names of processes and materials more user
friendly and readable.
CMP subset long = CMP subset long %>%
     mutate(variable =
             str replace (variable,
                            "Biological", "Bio ")) %>%
     mutate(variable =
             str replace (variable,
                            "Manufacturing", "Man. "))
응>응
     mutate(variable =
             str replace (variable,
    group by (variable) %>%
                                           #<- normalize
    mutate(norm\ value =
            value/max(value, na.rm = TRUE))
```

Set up: prepare data

hchart: scatterplot

To construct a scatterplot with highcharter, we use the hchart () function and pass the data, plot type (scatter), and aesthetics to it as arguments

• In R, interactive charts appear in the Viewer pane, right next to the Help tab

hchart: scatterplot (cont'd)

Scatterplot: selecting categories

- In highcharts every plotted category seen in the legend is called a series
- Highcharts auto-colors series when it detects more than 1 category
- We can interactively select and de-select which series to display by clicking on the series names in the legend

Scatterplot: `pipe` and customize

- In highcharts every new option or layer can be added using the already familiar pipe operator (as opposed to the + operator in ggplot2)
- The hc_chart function is responsible for global chart options like zoom, size, and theme
- Let's set a zoom for our plot by passing the zoomType argument to hc_chart
- xy zoom allows to zoom across both x and y axes

```
# Pipe chart options to original chart.
scatter_interactive = scatter_interactive %>%
  # Use chart options to specify zoom.
hc_chart(zoomType = "xy")
scatter_interactive
```


Scatterplot: add title

A title can be added to highcharter plots using the hc_title() function

```
# Pipe chart options to original chart.
scatter_interactive = scatter_interactive %>%
  # Add title to the plot.
hc_title(text = "CMP data: Yield vs. other variables")
scatter_interactive
```

Module completion checklist

Objective	Complete
Introduce using the highcharter package to build interactive visualizations	✓
Use highcharter with tidy data to create a scatterplot	✓
Visualize a correlation plot with hchart	
Build a column plot with hchart	
Create a boxplot with hchart	
Save interactive plots with htmlwidgets	

hchart: correlation matrix

- hchart recognizes the type of data being given to it
- If we pass a correlation matrix, it will create a correlation plot
- No other arguments are necessary to create a basic plot!

```
# Compute a correlation matrix for the first
# 4 variables in our data.
cor_matrix = cor(CMP_subset[, 1:4])

# Construct a correlation plot by
# simply giving the plotting function
# a correlation matrix.
correlation_interactive = hchart(cor_matrix) %>%
# Add title to the plot.
hc_title(text = "CMP data: correlation")
```

hchart: correlation matrix (cont'd)

correlation_interactive

Knowledge check 1

Exercise 1

Module completion checklist

Objective	Complete
Introduce using the highcharter package to build interactive visualizations	✓
Use highcharter with tidy data to create a scatterplot	✓
Visualize a correlation plot with hchart	✓
Build a column plot with hchart	
Create a boxplot with hchart	
Save interactive plots with htmlwidgets	

hchart: column plot

Let's now create an interactive plot to visualize the summary of our data

 To do that, we first need to get the summary statistics and save them as a dataframe

```
# Create data summary.
CMP_summary = summary(CMP_subset)

# Save it as a data frame.
CMP_summary = as.data.frame(CMP_summary)

# Inspect the data.
head(CMP_summary)
```

```
Var1 Var2 Freq
1 Yield Min. :35.25
2 Yield 1st Qu.:38.75
3 Yield Median :39.97
4 Yield Mean :40.18
5 Yield 3rd Qu.:41.48
6 Yield Max. :46.34
```

```
Variable Summary

1 Yield Min. :35.25

2 Yield 1st Qu.:38.75

3 Yield Median :39.97

4 Yield Mean :40.18

5 Yield 3rd Qu.:41.48

6 Yield Max. :46.34
```

Column plot: prepare data

- Let's separate the summary values from the summary statistics
- We can utilize the separate function in tidyr

```
Variable Statistic Value

1 Yield Min. 35.25

2 Yield 1st Qu. 38.75

3 Yield Median 39.97

4 Yield Mean 40.18

5 Yield 3rd Qu. 41.48

6 Yield Max. 46.34
```

```
# Inspect total number of rows in data including NAs. nrow(CMP_summary)
```

[1] 49

Column plot: create plot

```
# Inspect `Value` column for `NAs`.
which(is.na(CMP summary$Value) == TRUE)
[1] 7 14 21 28
# Subset only rows where `Value` is not NAs.
CMP summary = subset(CMP summary, !is.na(Value))
# Now the number of rows should be 4 less.
nrow(CMP summary)
[1] 45
# Construct the summary chart.
CMP summary interactive =
```

group = Variable)) #<- group columns by `Variable`

Column plot: display plot

Column plot: customize tooltip

- Since we are comparing variables' summary statistics, it would be convenient for the tooltip to contain information about the group rather than the individual columns within the group
- We can control different tooltip options of the chart using the hc_tooltip option
- The shared option is often used to share a tooltip between members of a group

Column plot: customize tooltip (cont'd)

Module completion checklist

Objective	Complete
Introduce using the highcharter package to build interactive visualizations	
Use highcharter with tidy data to create a scatterplot	✓
Visualize a correlation plot with hchart	✓
Build a column plot with hchart	✓
Create a boxplot with hchart	
Save interactive plots with htmlwidgets	

Highcharts boxplot: hcboxplot

hcboxplot allows us to create an interactive boxplot. It needs two arguments:

- x requires the numeric data to be plotted along the x-axis (boxplot in highcharts is horizontal by default)
- var requires categorical data to be plotted along the y-axis

Highcharts boxplot: hcboxplot (cont'd)

0.2

0.6

0.8

1.2

Yield

-0.2

Highcharts plotOptions

- To control individual layer/series options for various plot types, we use the hc_plotOptions function
- It can be **piped** to the original chart to enhance our base plot
- Each series type represented in the chart can be given a unique set of options
- Every set of options is a list of micro-level adjustments

 The full list of plot options can be found in Highcharts API documentation

https://api.highcharts.com/highcharts/plotOptions

hcboxplot: customize with `hc_plotOptions`

Now we will use the hc_plotOptions() function to customize color for our boxplot

Interactive visualization with R - Part 1

1.2

0.2

0.6

-0.2

Module completion checklist

Objective	Complete
Introduce using the highcharter package to build interactive visualizations	✓
Use highcharter with tidy data to create a scatterplot	✓
Visualize a correlation plot with hchart	✓
Build a column plot with hchart	✓
Create a boxplot with hchart	✓
Save interactive plots with htmlwidgets	

Save interactive plots: htmlwidgets

- The htmlwidgets package lets us use JavaScript visualization libraries in R console
- We can embed widgets in R markdown and Shiny web applications
- Explore htmlwidgets here

```
# Install `htmlwidgets` package.
install.packages("htmlwidgets")

# Load the library.
library(htmlwidgets)

# View documentation.
library(help = "htmlwidgets")
```


Save interactive plots: htmlwidgets (cont'd)

Knowledge check 2

Exercise 2

Module completion checklist

Objective	Complete
Introduce using the highcharter package to build interactive visualizations	✓
Use highcharter with tidy data to create a scatterplot	✓
Visualize a correlation plot with hchart	✓
Build a column plot with hchart	V
Create a boxplot with hchart	✓
Save interactive plots with htmlwidgets	

Summary

In this module, we:

- Outlined the highcharter package for creating interactive visualizations
- Built an interactive scatterplot, column plot, and boxplot using the hchart() function of highcharter
- Customized plots using various highchart options and parameters
- Learned to save interactive plots using htmlwidgets so that they can be embedded in R
 markdown and R shiny applications

In the next module, we will:

- Introduce how to build an interactive map with a json file
- Discuss best practices for highcharter

This completes our module

Congratulations!

