Государственное образовательное учреждение высшего профессионального образования

Московский Физико-Технический Институт (Государственный Университет)
Факультет общей и прикладной физики
Кафедра физики и технологии наноструктур

Выпускная квалификационная работа бакалавра

Оптимизация однокубитных и двухкубитных вентилей и считывающих импульсов для сверхпроводниковых кубитов

Выполнил студент: Научный руководитель:

Шульга К.В.

к. ф.-м. н.

Сафронов Е.С. группа 325

Оглавление

1	Вве	едение		3
2	Теоретические сведения			
	1	Эффе	ект Джозефсона	5
		1.1	Уравнения Джозефсона	5
		1.2	RCSJ-модель	6
		1.3	Фазо-потоковое соотношение	7
	2	Теори	я изолированного сверхпроводящего кубита	7
		2.1	Построение гамильтониана	8
		2.2	Зарядовый кубит	9
		2.3	Трансмон	11

Глава 1

Введение

Квантовый компьютер — это устройство, хранящее и обрабатывающее информацию внутри группы квантовых систем, причем обработка информации происходит в результате когерентных взаимодействий систем внутри группы. Каждая квантовая система, как правило, является двухуровневой и носит название "квантовый бит" или "кубит" (англ. "qubit" — quantum bit). Для осуществления квантового расчета необходимо связать кубиты друг с другом, иметь возможность управлять состоянием кубитов и считывать его, сохраняя чистоту соответствующей матрицы плотности, а также обеспечить изоляцию кубитов от влияния окружающей среды. Следовательно, в качестве кубитов могут быть использованы любые достаточно изолированные двухуровневые системы, поддающиеся контролю и способные взаимодействовать друг с другом. В качестве примера можно привести фотоны, оны в ионных ловушках, ядерные спины, атомы в электромагнитных резонаторах, электрические системы и т.п.

Последние являются одними их самых заманчивых кандидатов на эту роль, но только при условии, что их поведение будет именно квантовым, а не классическим. К счастью, явление сверхпроводимости и эффект Джозефсона позволяют наблюдать квантовые эффекты в контурах даже мезоскопического масштаба и создавать на их основе так называемые сверхпроводящие (дэкозефсоновские) кубиты. 11

Джозефсоновские кубиты имеют два значительных недостатка и одно значительное преимущество в сравнении с микроскопическими кубитами. Первый недостаток заключается в значительном взаимодействии с окружающей средой - в силу больших размеров, джозефсоновские кубиты сильнее связываются со средой, что требует дополнительных изысканий в области их изоляции; второй недостаток заключается в том, что в то время как микроскопические кубиты, например, атомы, идентичны друг другу, сверхпроводящие кубиты могут иметь отличия из-за неточностей производства. Для борьбы с этим требуется либо создавать заведомо нечувствительные к дефектам схемы, либо проводить калибровку, в процессе которой параметры цепей измеряются, а затем компенсируются в эксперименте.

Преимущество джозефсоновских кубитов в их гибкости: они могут быть произвольным образом расположены относительно друг друга, а их параметры легко и непрерывно изменяемы в широких пределах. Эта гибкость вместе с некоторыми 4

фундаментальными эффектами¹³ может быть использована для борьбы с первым недостатком, а также предоставляет много вариантов для подстройки параметров, что в значительной степени нивелирует второй недостаток. Далее, накопленный опыт человечества в области изготовления интегральных схем позволит упростить переход к производству реальных квантовых вычислительных устройств, что является еще одним преимуществом в сравнении с другими типами кубитов. Таким образом, скорее всего именно джозефсоновские кубиты и будут применены в первом квантовом компьютере, и именно их следует изучать.

Важно отметить, что сверхпроводящие кубиты могут применяться не только для непосредственного использования в квантовом компьютере, так как по сути являются рукотворными атомами с широко изменяемыми характеристиками, как внутренними, так и касающимися связи с окружением. Они могут быть пригодны для создания метаматериалов, 14 проведения высокоточных измерений полей, 15 использоваться в качестве активной среды, 16 применяться в квантовой криптографии и телепортации 17 и т. п.

Глава 2

Теоретические сведения

В этой главе приведены теоретическое описание некоторых явлений, учитываемых при построении модели сверхпроводящих кубитов. Далее будет кратко рассмотрен эффект Джозефсона, затем произведено рассмотрение теории изолированного сверхпроводящего кубита и его частного случая — *трансмона*, теории его взаимодействия с окружающей средой и, наконец, вопросы измерения и контроля.

1 Эффект Джозефсона

1.1 Уравнения Джозефсона

Эффект Джозефсона²¹ – это макроскопических квантовый эффект в сверхпроводниках. Согласно теории БКШ, сверпроводящее состояние проводника может быть описано параметром порядка, являющимся модулем макроскопической волновой функции куперовских пар:

$$\Psi(\mathbf{r}) = \sqrt{\frac{n_s}{2}} e^{i\theta(\mathbf{r})},\tag{1.1}$$

Torda, эффект Джозефсона заключается в установления одной фазы в двух сверхпроводниках, соединенных через "слабую связь". "Слабые связи" многообразны: это могут быть тонкие слои диэлектрика, сужения, точечные контакты, прослойки из металла в нормальном состоянии или из ферромагнетика. В случае, если фазы не равны, то через слабую связь будет течь бездиссипативный ток, и будет выполнено некоторое ϕ азо-токовое соотношение между током и скачком фазы на переходе. Часто, хотя и не всегда, 22 оно оказывается синусоидальным:

$$I_s = I_c \sin(\theta_2 - \theta_1) = I_c \sin \varphi. \tag{1.2}$$

Из этой формулы видно, что сверхпроводящий ток I_s не может превысить некоторого значения I_c . Это так называемый *критический ток* джозефсоновского перехода, при превышении которого бездиссипативность нарушается, и на переходе устанавливается напряжение V. В этом случае выполнено второе уравнение Джозефсона:

$$\hbar \frac{\partial \varphi}{\partial t} = 2eV, \tag{1.3}$$

и наблюдаются осцилляции разности фаз между сверхпроводниками. Величина критического тока рассчитывается из микроскопической теории, например, для перехода SIS (сверхпроводник - изолятор - сверхпроводник) верна формула Амбегаокара-Баратова:

$$I_c = \frac{\pi \Delta(T)}{2eR_n} \operatorname{th}\left(\frac{\Delta(T)}{2k_b T}\right),\tag{1.4}$$

где через T обозначена температура, а через R_n сопротивление контакта в отсутствие сверхпроводимости, $R_n = \rho \frac{d}{S}$, где ρ – удельное сопротивление I-слоя, а d и S – его толщина и площадь.

1.2 RCSJ-модель

Для упрощения описания динамики джозефсоновского контакта применяется модель RCSJ (Resistively and Capacitively Shunted Junction), работающая для маленьких переходов со слоем изолятора, когда изменения фазы на размере контакта пренебрежимо малы и присутствует ненулевая геометрическая емкость.

Рис. 1.1: Схема RCSJ в виде параллельного соединения идеального джозефсоновского перехода с конденсатором и резистором.

Принципиальная схема изображена на Рис. 1.1. В случае, когда ток через систему не превышает критического I_c , резистор на схеме может быть опущен. В силу параллельности соединения выполнено также соотношение $\frac{\hbar}{2e} \frac{\partial \varphi}{\partial t} = U_C$ между напряжениями на переходе и на конденсаторе, которое устанавливает аналогию между неидеальным переходом и колебательным контуром с нелинейной индуктивностью.

В рамках RCSJ-модели энергия перехода состоит из энергии, запасенной в нелинейной индуктивности идеального перехода, и энергии конденсатора:

$$E = E_{ind} + E_{cap} (1.5)$$

Индуктивная энергия может быть определена посредством интегрирования мощности P=IV по времени от 0 до момента T, когда на контакте установилась разность фаз φ :

$$E_{ind} = \int I_J V_J dt = I_c \frac{\hbar}{2e} \int_0^T \sin(\phi(t)) \frac{d\phi(t)}{dt} dt$$

$$= E_J \int_0^{\varphi} \sin\phi \, d\phi = E_J [1 - \cos\varphi], \tag{1.6}$$

где была введена новая константа E_J – джозефсоновская энергия. Емкостная энергия также может быть вычислена с использованием (1.3):

$$E_{cap} = \frac{1}{2}CU_C^2 = \frac{1}{2}C\left(\frac{\Phi_0}{2\pi}\right)^2 \dot{\varphi}^2 = \frac{\hbar^2}{E_C}\dot{\varphi}^2, \ E_C = \frac{(e)^2}{2C}, \tag{1.7}$$

где E_C – константа, описывающая емкостную энергию перехода.

1.3 Фазо-потоковое соотношение

Рассмотрим замкнутое сверхпроводящее кольцо конечной толщины, быть может, прерванное конечным числом джозефсоновских переходов $\{J_1...J_n\}$. Рассмотрим применительно к данному случаю уравнение (??). Проведем контур C внутри кольца так, чтобы он нигде не приближался к стенкам на расстояние, меньшее глубины проникновения магнитного поля (Рис. 1.2). Тогда сверхток на всей его длине будет равен нулю, и, проинтегрировав по нему (??), мы получим следующее равенство:

$$\oint\limits_{C}\mathbf{A}d\mathbf{l}=\frac{\Phi_{0}}{2\pi}\oint\limits_{C}\nabla\theta d\mathbf{l}.$$

Руководствуясь Рис. 1.2, соображениями однозначности волновой функции (1.1) при обходе вокруг контура и теоремой Стокса для rot **A**, можем написать:

$$\Phi = \frac{\Phi_0}{2\pi} \left(\sum_i \varphi_i + 2\pi k \right) \Rightarrow$$

$$\Rightarrow \sum_i \varphi_i = 2\pi \left(\frac{\Phi}{\Phi_0} - k \right), \ k \in \mathcal{Z}. \tag{1.8}$$

Таким образом, получено фазо-потоковое соотношение. Видно, что в случае отсутствия в кольце джозефсоновских переходов полученное уравнение (1.8) опишет равенство магнитного потока Φ , проходящего через сверхпроводящее кольцо, целому числу k квантов потока Φ_0 , обосновывая определение этой константы в (??).

2 Теория изолированного сверхпроводящего кубита

Сверхпроводящие кубиты были предложен Леггеттом в 1980х, а в 1997м Yasunobu Nakamura году был проведен первый эксперимент, доказавший наличие суперпози-

Рис. 1.2: К выводу фазо-потокового соотношения. Пунктиром обозначен контур интегрирования C. Через φ_i обозначены скачки фаз на джозефсоновских контактах, а точками - место разрешенного накопления фазы при полном обходе вокруг кольца $2\pi k,\ k\in\mathcal{Z}.$

ции состояний в сверхпроводящем кубите. Он исследовал состояния в "ящике куперовских пар" (англ. – "Соорег-раіг box") или иначе, зарядовом кубите. В 1999 году был предложен Flux-кубит, или потоковый трехконтактный сверхпроводящий кубит. Он представляет собой сверхпроводящий контур, прерванный в трех местах джозефсоновскими переходами (??), два из которых одинаковы, а третий отличается по площади в α раз. Наконец, в 2007году был предложен третий отличается по площади в α раз. Наконец, в 2007году был предложен третий отличается одиночным кубит, однако, с существенно подавленными зарядовыми шумами и несколько меньшим ангармонизмом. Под изолированным в данном разделе понимается одиночный кубит, не взаимодействующий с окружением ни диссипативным, ни консервативным образом. Единственным внешним фактором является при таком рассмотрении постоянное магнитное поле, проходящее через контур.

2.1 Построение гамильтониана

Для того, чтобы провести квантово-механическое рассмотрение кубита, требуется записать его гамильтониан. Для этого прежде всего нужно понять, какими независимыми степенями свободы он обладает. Вообще говоря, состояние одиночного джозефсоновского перехода, в силу того, что в параллельном соединении RCSJ-модели $U = \frac{\hbar}{2e} \dot{\varphi}$, целиком описывается своей разностью фаз. Энергия, запасенная шунтирующим конденсатором, может быть записана в виде (1.7), а энергия джозефсоновского контакта в виде (1.5). Таким образом, получаем гамильтониан системы:

$$\hat{H} = E_J \left[1 - \cos \hat{\varphi} \right] + \frac{\hbar^2}{E_C} \dot{\hat{\varphi}}^2 \tag{2.1}$$

Аналогично сопряженной паре операторов \hat{x} и $\hat{p}=-i\hbar\frac{\partial}{\partial x}$ можно определить оператор заряда $\hat{q}=-2ei\frac{\partial}{\partial \varphi}$ и числа куперовских пар $\hat{n}=-i\frac{\partial}{\partial \varphi}$. Кроме того, иногда заряд кубита можно контролировать посредством емкостного гейта C_g с приложенным напряжением V_g . Тогда энергия, запасенная в емкостной части контура может быть записана как $4E_C(\hat{n}-n_g)^2$, где $n_g=\frac{-C_gV_g}{2e}$. Весь гамильтониан:

$$\hat{H} = 4E_C(\hat{n} - n_g)^2 + E_J [1 - \cos\hat{\varphi}]$$
(2.2)

Уровни энергии такого гамильтониана можно найти аналитически:

$$E_m(n_g) = E_C a_{2[n_g + k(m, n_g)]} \left(-\frac{E_J}{2E_C}\right)$$
(2.3)

, где $a_{\nu}(q)$ - функция Матьё, а $k(m,n_g)$ - целочисленная функция, задающая порядок собственных уровней энергии. Однако, для проведения численных расчетов решение в таком виде не является удобным. Рассмотрим гамильтониан 2.2 в зарядовом базисе (базисе собственных состояниях \hat{n}) :

$$\hat{H} = 4E_C (\hat{n} - n_g)^2 - E_J \sum_{n = -\infty}^{\infty} (|n + 1\rangle \langle n| + |n\rangle \langle n + 1|)$$
(2.4)

Приблизим этот оператор конечноразмерным, отбросив состояния с зарядом, большим 2eN по модулю:

$$\hat{H}_{N} = 4E_{C} \sum_{n=-N}^{N} (n - n_{g})^{2} |n\rangle \langle n| - E_{J} \sum_{n=-N}^{N} (|n + 1\rangle \langle n| + |n\rangle \langle n + 1|)$$
 (2.5)

Такой гамильтониан очень удобен для каких-либо численных расчетов.

2.2 Зарядовый кубит

Зарядовый кубит представляет собой ящик для куперовских пар, связанных джозефсоновским контактом с резервуаром заряда и контролируемый приложенным напряжением на гейте. Электростатическая энергия системы...

$$E_C = C_J \frac{V^2}{2} + C_g \frac{(V_g - V)^2}{2} \tag{2.6}$$

$$E_C = \frac{C}{2} \left(V - \frac{C_g}{C} V_g \right)^2, C = C_J + C_g \tag{2.7}$$

Сводится к привычному члену гамильтониана (2.2).

У зарядового кубита $E_J < E_C$. Популярный режим работы зарядового кубита - установка полуцелого заряда на островке $(n_g = 1/2)$ с помощью управляющего напряжения (см рис. 2.2b и 2.3). Преимущество такого режима заключается в том, что эта точка расщепления уровней дает двухуровневую систему с разницей энергии уровней, равной E_j . Так же в этой точке наименьшая чувствительность к зарядовому шуму [ссылка].

(а) Схема зарядового кубита

(b) Электронная фотография зарядового кубита [ссылка]

Рис. 2.1

(b) " sweet spot " – область расщепления уровней, $n_q - 1/2 \in \mathbb{Z}$

Рис. 2.2: Зависимость уровней энергии зарядового кубита от управляющего потенциала в виде n_g . Виден антикроссинг (?) и заметно отличие $\frac{\partial E_m}{\partial n_g}$ от нуля

Рис. 2.3: Собственные состояния зарядового кубита. В "sweet spot" они являются гибридизованными слабо возмущенными зарядовыми состояниями.

2.3 Трансмон

Зарядовый шум. Для уменьшения зарядового шума необходимо увеличивать отношение E_J/E_C . Однако, это приводит к уменьшению *ангармонизма* $\alpha \equiv E_{12} - E_{01}$. Ангармонизм не может быть нулевым, в этом случае у нас не будет изоляции первых двух уровней системы от остальных (в частности, совпадут энергии переходов $|1\rangle \to |0\rangle$ и $|1\rangle \to |2\rangle$). Так же, величина ангармонизма ограничивает скорость операций, производимых с помощью микроволновых импульсов [подробнее в ...]. Спасением является тот факт, что с уменьшием E_C чувствительность к зарядовым

Спасением является тот факт, что с уменьшием E_C чувствительность к зарядовым шумам падает экспоненциально, а ангармонизм всего лишь линейно [ссылка]. Для достаточно больших E_J/E_C зависимость $E_m(n_g)$ можно приблизить косинусом

$$E_m(n_g) = E_m(n_g = 1/4) + \frac{\epsilon_m}{2}\cos 2\pi n_g$$
 (2.8)

, где

$$\epsilon_m = (-1)^m E_C \frac{2^{4m+5}}{m!} \sqrt{\frac{2}{\pi}} \left(\frac{E_J}{2E_C} \right)^{\frac{m}{2} + \frac{3}{4}} \exp\left(-\sqrt{8E_J/E_C} \right)$$
 (2.9)

Для $E_J/E_C=50$ получаем $|\epsilon_0|/E_{01}\lesssim 10^{-8}$. При этом $E_{01}\simeq \sqrt{8E_JE_C}$, а $\alpha\simeq -E_C$. Для таких значений ϵ_m нет нужды в "sweet spot", а значит и механизма управления n_g . При моделировании трансмона можно положить $n_g=0$. Оценим время дефазировки T_2 , возникающей из-за зарядового шума в случае трансмона:

$$T_2 \sim \frac{\hbar}{A} \left| \frac{\partial E_{01}}{\partial n_a} \right|^{-1} \simeq \frac{\hbar}{e\pi |\epsilon_1|}$$
 (2.10)

Используя возможные параметры трансмона $E_J=30, E_C=0.35,$ получаем оценку времени жизни $T_2=400\mu s.$ Для типичного зарядового кубита это время гораздо меньше – $T_2\sim 1\mu s,$ что в частно-

Рис. 2.4: При $E_J/E_C=100~\epsilon_0\sim 10^{-11}$ и зависимостью $E_m(n_q)$ можно пренебречь

сти и обуславливает широкую последующую популярность трансмона как физическую реализацию кубита.

Анализ ????. Рассмотрим собственные состояния трансмона (Рис. 2.5). Для типичного $E_J/E_C=100$ они еще не являются фазовыми состояниями ($|\varphi\rangle=\frac{1}{\sqrt{2\pi}}\sum_n e^{in\varphi}|n\rangle$) и $\langle t|n\rangle$ существенно затухает с ростом n [wtf? как оценить падение $\langle t|n\rangle$??]. Значит, можно использовать конечноразмерный гамильтониан трансмона в форме (2.5).

Рис. 2.5: Собственные состояния трансмона $|t\rangle$ в зарядовом базисе $|n\rangle$

Литература

- 1 Lloyd S. A potentially realizable quantum computer. // Science (New York, N.Y.). 1993. Vol. 261. Р. 1569—1571. (ссылка на стр. [3])
- ² DiVincenzo D. P. Quantum Computation // Science. 1995. Vol. 270, no. 5234. P. 255—261. Access mode: http://www.sciencemag.org/content/270/5234/255. abstract. (ссылка на стр. [3])
- 3 DiVincenzo D.P. Prospects for quantum computing. 2000. Р. 12–15. (ссылка на стр. [3])
- ⁴ Spiller T. P. Quantum information processing: cryptography, computation, and teleportation // Proceedings of the IEEE. —1996. Vol. 84. (ссылка на стр. [3])
- ⁵ Milburn G J. Photons as qubits // Physica Scripta. 2009. Vol. 2009, no. T137. P. 14003. Access mode: http://stacks.iop.org/1402-4896/2009/i= T137/a=014003. (ссылка на стр. [3])
- ⁶ Cirac J. I., Zoller P. Quantum computations with cold trapped ions // Physical review letters. 1995. Vol. 74, no. 20. Р. 4091. (ссылка на стр. [3])
- 7 Kane B. E. A silicon-based nuclear spin quantum computer // Nature. 1998. Vol. 393. Р. 133–137. (ссылка на стр. [3])
- ⁸ Rempe G. Cavity QED with single atomic and photonic qubits // Conference on Quantum Electronics and Laser Science (QELS) Technical Digest Series. 2008. (ссылка на стр. [3])
- 9 Devoret M. H., Martinis J. M. Implementing qubits with superconducting integrated circuits // Experimental Aspects of Quantum Computing. 2005. Р. 163–203. (ссылка на стр. [3])
- ¹⁰ Devoret M. H. Quantum fluctuations in electrical circuits // Les Houches, Session LXIII. 1995. Access mode: http://www.physique.usherb.ca/tremblay/cours/PHY-731/Quantum_circuit_theory-1.pdf. (ссылка на стр. [3])
- ¹¹ Clarke J., Wilhelm F. K. Superconducting quantum bits. // Nature. 2008. Vol. 453, no. 7198. P. 1031–42. Access mode: http://www.ncbi.nlm.nih.gov/pubmed/18563154. (ссылка на стр. [3])

Литература

¹² Superconducting persistent-current qubit / T. Orlando, J. Mooij, Lin Tian et al. // Physical Review B. — 1999. — Vol. 60, no. 22. — P. 15398—15413. — Access mode: http://link.aps.org/doi/10.1103/PhysRevB.60.15398. (ссылка на стр. [8])

- 13 Charge insensitive qubit design derived from the Cooper pair box / J. Koch, T. M. Yu, J. Gambetta et al. 2007. Р. 21. 0703002. (ссылки на стр. [4 и 8])
- ¹⁴ Implementation of a quantum metamaterial using superconducting qubits. / P. Macha, G. Oelsner, J.-M. Reiner et al. // Nature communications. 2014. Vol. 5. P. 5146. Access mode: http://www.ncbi.nlm.nih.gov/pubmed/25312205. (ссылка на стр. [4])
- $^{15}\,\mathrm{Clarke}$ J., Braginski A. I. The SQUID Handbook. 2006. Vol. 2. Р. 1–634. ISBN: 9783527404087. (ссылка на стр. [4])
- 16 Resonance Fluorescence of a Single Artificial Atom / O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov et al. // Science. 2010. Vol. 327, no. 5967. Р. 840–843. (ссылка на стр. [4])
- ¹⁷ Xia K., Vanner M. R., Twamley J. An opto-magneto-mechanical quantum interface between distant superconducting qubits. // Scientific reports. 2014. Vol. 4. P. 5571. arXiv:1407.2324v1. (ссылка на стр. [4])
- 18 Schrieffer J. R., Tinkham M. Superconductivity // Reviews Of Modern Physics. 1999. Vol. 71. P. S313—S317.
- $^{19}\,\rm Ginzburg$ V.L., Landau L.D. On the theory of superconductivity // Zh. Eksp. Teor. Fiz. 20, 1064. 1950.
- $^{20}\,\mathrm{Gorkov}$ L. P. Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity // Sov. Phys. JETP. $-1959.-\mathrm{Vol.}$ 9, no. 6. $-\mathrm{P.}$ 1364–1367.
- 21 Josephson B. Coupled Superconductors // Rev. Mod. Phys. 1964. Vol. 36. P. 216—220. (ссылка на стр. [5])
- ²² Golubov A. A., Kupriyanov M. Y., Il'Ichev E. The current-phase relation in Josephson junctions // Reviews of Modern Physics. 2004. Vol. 76. Р. 411–469. (ссылка на стр. [5])
- ²³ Quantum theory of three-junction flux qubit with non-negligible loop inductance: Towards scalability / T. Robertson, B. Plourde, P. Reichardt et al. // Physical Review B. 2006. Vol. 73, no. 17. P. 174526. Access mode: http://link.aps.org/doi/10.1103/PhysRevB.73.174526.
- ²⁴ Johansson R. Reproduce: Orlando et al., Phys. Rev. B 60, 15398 (1999). Access mode: http://nbviewer.ipython.org/github/jrjohansson/reproduced-papers/blob/master/Reproduce-PRB-60-15398-1999-Orlando.ipynb.
- 25 Nonlinear response of the vacuum Rabi resonance / L. S. Bishop, J. M. Chow, J. Koch et al. // Nature Physics. 2009. Vol. 5, no. 2. P. 105–109.

²⁶ Carmichael H. J. Quantum Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations. — Springer Verlag, 1999.

- 27 Markovian master equations: a critical study / A. Rivas, A. D. K. Plato, S. F. Huelga, M.B. Plenio // New Journal of Physics. $-2010.-{\rm Vol.~12},$ no. $11.-{\rm P.~113032}.$
- ²⁸ Lindblad G. On the generators of quantum dynamical semigroups // Communications in Mathematical Physics. 1976. Vol. 48, no. 2. P. 119–130. Access mode: http://link.springer.com/10.1007/BF01608499.
- ²⁹ Dynamics of the dissipative two-state system / A. J. Leggett, A. T. Dorsey, M. P. A. Fisher et al. // Reviews of Modern Physics. 1987. Vol. 59, no. 1. P. 1.
- $^{30}\,\mathrm{Hsu}$ D., Skinner J. L. General quantum mechanical theory of pure dephasing // Journal of luminescence. $-1987.-\mathrm{Vol.}$ 37, no. 6. $-\mathrm{P.}$ 331–337.
- 31 Jerger M. Experiments on Superconducting Qubits Coupled to Microwave Resonators : PhD Thesis / M. Jerger ; Karlsruhe Institute of Technology. $-\,2013.$
- 32 Bishop L. Circuit Quantum Electrodynamics : Doctoral Thesis / L. Bishop ; Yale Institute. 2010.
- ³³ Bauer D. Theory of intense laser-matter interaction. Max-Planck-Institut für Kernphysik, 2006. P. 106.
- 34 Braak D. Integrability of the Rabi model // Physical review letters. 2011. Vol. 107, no. 10. P. 100401.
- 35 Circuit quantum electrodynamics in the ultrastrong-coupling regime / T. Niemczyk, F. Deppe, H. Huebl et al. // Nature Physics. $-\,2010.$ $-\,$ Vol. 6, no. 10. $-\,$ P. 772–776.
- 36 Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime / P. Forn-Díaz, J. Lisenfeld, D. Marcos et al. // Physical review letters. 2010. Vol. 105, no. 23. P. 237001.
- $^{37}\,\mathrm{Novotny}$ L. Strong coupling, energy splitting, and level crossings: A classical perspective // American Journal of Physics. 2010. Vol. 78, no. 11. P. 1199–1202.
- 38 Beaudoin F., Gambetta J. M., Blais A. Dissipation and ultrastrong coupling in circuit QED // Physical Review A. $-\,2011.-$ Vol. 84, no. 4. $-\,$ P. 043832.
- 39 Decoherence in a superconducting quantum bit circuit / G Ithier, E Collin, P Joyez et al. // Physical Review B. $-\,2005.-$ Vol. 72, no. 13. $-\,$ P. 134519.
- 40 Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation / A. Blais, R.-S. Huang, A. Wallraff et al. $-\,2004.-P.\,14.-\,0402216.$

Литература

 41 Introduction to quantum noise, measurement, and amplification / A. A. Clerk, M. H. Devoret, S. M. Girvin et al. // Reviews of Modern Physics. — 2010. — Vol. 82, no. 2. — P. 1155.

- 42 Gardiner C. W., Collett M. J. Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation // Physical Review A. 1985. Vol. 31, no. 6. P. 3761.
- ⁴³ Broadband sample holder for microwave spectroscopy of superconducting qubits / A. S. Averkin, A. Karpov, K. Shulga et al. // Review of Scientific Instruments. 2014. Vol. 85, no. 10. P. 104702.
- 44 Göppl M. V. Engineering quantum electronic chips : Ph. D. thesis / M. V. Göppl ; Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 18314, 2009. 2009.
- 45 Thuneberg E. Quantum optics in electric circuits. -2013.
- 46 Oliver W. D., Valenzuela S. O. Large-amplitude driving of a superconducting artificial atom // Quantum Information Processing. $-\,2009.$ —Vol. 8, no. 2-3. —P. 261–281.
- ⁴⁷ Johansson J.R., Nation P.D., Nori Franco. QuTiP 2: A Python framework for the dynamics of open quantum systems // Computer Physics Communications. 2013. Vol. 184, no. 4. P. 1234 1240. Access mode: http://www.sciencedirect.com/science/article/pii/S0010465512003955.