Probability

Derek Li

Contents

1	Review		
	1.1	Sequence	2
		Series	
		Set	
		Number System and Euclidean Space	
	1.5	Function	
	1.6	Inverse Image	
	1.7	Indicator Function and Indicator Map	6
2	Probability Space		7
3	Ran	ndom Variables	8
	3.1	Fundamental Theorem of Applied Probability	Ć

1 Review

1.1 Sequence

Theorem 1.1. $\sup(-x_n) = -\inf(x_n)$ and $\inf(-x_n) = \sup(x_n)$.

Proof. We know $\forall x_n \in \{x_n\}, \exists x \text{ s.t. } x \leqslant x_n \Rightarrow -x \geqslant -x_n, \text{ i.e., } -x \text{ is the upper bound for } \{-x_n\} \text{ and } x \text{ is the lower bound for } \{x_n\}.$

Besides, $\exists y \text{ s.t. } y = \sup(-x_n), \text{ i.e., } -x_n \leq y \leq -x \Rightarrow x \leq -y \leq x_n. \text{ Hence, } -y = -\sup(-x_n) \text{ is the greatest lower bound for } \{x_n\} \text{ and wherefore}$

$$-\sup(-x_n) = \inf(x_n) \Rightarrow \sup(-x_n) = -\inf(x_n).$$

Similarly, we can show that $\inf(-x_n) = \sup(x_n)$.

Theorem 1.2. $\inf_{k \geqslant m} x_k \leqslant \sup_{k \geqslant n} x_k, \forall m, n.$

Proof. We have

$$\inf_{k \geqslant n} x_k \leqslant x_n \leqslant \sup_{k \geqslant n} x_k.$$

Assume $m \leq n$, we have

$$\inf_{k \geqslant m} x_k \leqslant \inf_{k \geqslant n} x_k \leqslant x_n \leqslant \sup_{k \geqslant n} x_k.$$

Assume $m \ge n$, we have

$$\inf_{k\geqslant m}x_k\leqslant x_n\leqslant \sup_{k\geqslant m}x_k\leqslant \sup_{k\geqslant n}x_k.$$

Wherefore,

$$\inf_{k\geqslant m}x_k\leqslant \sup_{k\geqslant n}x_k, \forall m,n.$$

Definition 1.1 (Upper Limit). We define upper limit $\lim_{n\to\infty} x_n$ as

$$\lim_{n \to \infty} \sup_{i \geqslant n} x_i = \inf_{n=1}^{\infty} \sup_{i=n}^{\infty} x_i.$$

Definition 1.2 (Lower Limit). We define lower limit $\underline{\lim} x_n = \liminf_{n \to \infty} x_n$ as

$$\lim_{n \to \infty} \inf_{j \ge n} x_j = \sup_{n=1}^{\infty} \inf_{j=n}^{\infty} x_j.$$

Theorem 1.3. $\underline{\lim} x_n \leqslant \overline{\lim} x_n$.

Proof. Since $\inf_{k \geqslant n} x_k \leqslant \sup_{k \geqslant n} x_k$,

$$\underline{\lim} x_n = \lim_{n \to \infty} \inf_{k \geqslant n} x_k \leqslant \lim_{n \to \infty} \sup_{k \geqslant n} x_k = \overline{\lim} x_n.$$

Theorem 1.4. $\sup_{k \ge n} x_k - \inf_{k \ge n} x_k = \sup_{i,j \ge n} |x_i - x_j|.$

Proof. We have

$$\sup_{i \geqslant n} x_i - x_j = \sup_{i \geqslant n} (x_i - x_j),$$

for any fixed j.

Wherefore

$$\sup_{i \geqslant n} x_i - \inf_{j \geqslant n} x_j = \sup_{i \geqslant n} x_i + \sup_{j \geqslant n} (-x_j) = \sup_{j \geqslant n} \sup_{i \geqslant n} (x_i - x_j)$$
$$= \sup_{j \geqslant n} \sup_{i \geqslant n} |x_i - x_j| = \sup_{i,j \geqslant n} |x_i - x_j|.$$

Definition 1.3 (Cauchy). x_n is Cauchy iff

$$\sup_{i,j\geqslant n}|x_i-x_j|\to 0,$$

as $n \to \infty$.

Theorem 1.5. If a sequence converges, it must be Cauchy.

Proof. Suppose $\lim_{n\to\infty} x_n = x$, then

$$\forall \varepsilon > 0, \exists N \text{ s.t. } n \geqslant N \Rightarrow |x_n - x| < \frac{\varepsilon}{2}.$$

Therefore, $\forall i, j \geq N$, we have

$$|x_i - x_j| = |x_i - x + (x_j - x)| \le |x_i - x| + |x_j - x| < \varepsilon,$$

i.e., the sequence is Cauchy.

Theorem 1.6. $x = \overline{\lim} x_n = \underline{\lim} x_n \Leftrightarrow x_n \to x$.

Proof. (\Rightarrow) We have $\inf_{k \ge n} x_k \le x_n \le \sup_{k \ge n} x_k$.

Since $x = \overline{\lim} x_n = \underline{\lim} x_n$, then

$$\inf_{k \geqslant n} x_k \leqslant \lim_{n \to \infty} \inf_{k \geqslant n} x_k = x = \lim_{n \to \infty} \sup_{k \geqslant n} x_k \leqslant \sup_{k \geqslant n} x_k.$$

As a consequence,

$$|x_n - x| \le \sup_{k \ge n} x_k - \inf_{k \ge n} x_k \to 0, \text{ as } n \to \infty,$$

i.e., $x_n \to x$.

 (\Leftarrow) Since $x_n \to x$, then the sequence is Cauchy, i.e.,

$$\sup_{i,j\geqslant n}|x_i-x_j|=\sup_{k\geqslant n}x_k-\inf_{k\geqslant n}x_k\to 0\text{ as }n\to\infty.$$

Therefore,

$$\overline{\lim} x_n = \underline{\lim} x_n = x.$$

3

1.2 Series

Recall that when |a| < 1,

$$\sum_{i=0}^{\infty} a^i := \lim_{n \to \infty} \sum_{i=0}^n a^i = \lim_{n \to \infty} \frac{1 - a^{n+1}}{1 - a} = \frac{1}{1 - a}.$$

1.3 Set

Definition 1.4 (Power Set). For a given set Ω , the power set is the set of all of its subsets

$$\mathcal{P}(\Omega) = \{A | A \subset \Omega\}.$$

The power set is closed w.r.t. all the usual set-theoretic operations.

Definition 1.5 (Symmetric Difference). For any two sets A and B,

$$A\Delta B = (A - B) + (B - A) = A \cup B - AB.$$

Definition 1.6 (Arbitrary Unions). Let $\omega \in \Omega$, $A_n \subset \Omega$, $n \in \mathbb{N}$.

$$\omega \in \bigcup_{n=1}^{\infty} A_n \text{ iff } \exists n \text{ s.t. } \omega \in A_n$$

Definition 1.7 (Arbitrary Intersections). Let $\omega \in \Omega$, $A_n \subset \Omega$, $n \in \mathbb{N}$.

$$\omega \in \bigcap_{n=1}^{\infty} A_n \text{ iff } \forall n, \omega \in A_n.$$

Hence, we have

$$P(\omega \in A_n, \exists n) = P\left(\omega \in \bigcup_{n=1}^{\infty} A_n\right) \text{ and } P(\omega \in A_n, \forall n) = P\left(\omega \in \bigcap_{n=1}^{\infty} A_n\right).$$

Definition 1.8 (Infinitely Often). Let $\omega \in \Omega$, $A_n \subset \Omega$, $n, N \in \mathbb{N}$.

$$\omega \in \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} A_n \text{ iff } \forall N, \exists n \geqslant N \text{ s.t. } \omega \in \bigcup_{n=N}^{\infty} A_n.$$

Definition 1.9 (Convergence of Set). $A_n \to A$ iff $I(A_n) \to I(A)$.

Note. By the theorem, we have

$$A_{n} \to A \Leftrightarrow \overline{\lim} I(A_{n}) = \underline{\lim} I(A_{n}) = I(A)$$

$$\Leftrightarrow \inf_{n=1} \sup_{k \geqslant n} I(A_{k}) = \sup_{n=1} \inf_{k \geqslant n} I(A_{k}) = I(A)$$

$$\Leftrightarrow I\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}\right) = I\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}\right) = I(A)$$

$$\Leftrightarrow \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} = A.$$

1.4 Number System and Euclidean Space

With the notation of set, one way to consider whole number could be: $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{0, 1\}, \dots$, and thus

$$n + 1 = n \cup \{n\}$$

$$= \{0, 1, \dots, n - 1\} \cup \{n\}$$

$$= \{0, 1, \dots, n\}.$$

We can also define number systems with set:

$$\mathbb{N} = \{1, 2, \dots\}, \mathbb{W} = \mathbb{N} \cup \{0\}, \mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}, \mathbb{Q} = \left\{\frac{n}{m} \middle| n \in \mathbb{Z}, m \in \mathbb{N}\right\},$$

$$\mathbb{R} = \left\{x = \lim_{n \to \infty} r_n \middle| r_n \in \mathbb{Q}, n \in \mathbb{N}\right\}, \mathbb{C} = \{z = x + iy \middle| x, y \in \mathbb{R}\}.$$

In multi-variable calculus, we define

$$\mathbb{R}^n = \{ \mathbf{x} | x_i \in \mathbb{R}. i = 1, \cdots, n \},\$$

where $\mathbf{x} = (x_i, i = 1, \dots, n)$ and

$$\mathbb{R}^{\infty} = \{ \mathbf{x} = (x_i, i = 1, 2, \cdots) | x_i \in \mathbb{R}, i \in \mathbb{N} \}.$$

1.5 Function

Before we define a function, we look at the product $A \times B$ of any two sets A and B, which is defined as the set of all ordered pairs that may be formed of the elements of the first set A, with the second set B:

$$A \times B = \{(a, b) | a \in A, b \in B\}.$$

Definition 1.10 (Ordered Pairs). An ordered pair is $(a, b) = \{\{a\}, \{a, b\}\}.$

Definition 1.11 (Function). A function f with domain A and range B, denoted by $f: A \to B$, is any $f \subset A \times B$ s.t. $\forall a \in A, \exists ! b \in B$ with $(a, b) \in f$.

From the definition, b is uniquely determined by a and we may write b = f(a).

The collection of all functions from a particular domain A to a certain B is denoted by

$$B^A = \{ f \subset A \times B | f : A \to B \}.$$

1.6 Inverse Image

Definition 1.12 (Inverse Image). For any function say $X : \Omega \to \mathcal{X}$, the inverse image of any $A \subset \mathcal{X}$ is defined as

$$X^{-1}(A) := \{ \omega \in \Omega | X(\omega) \in A \}.$$

1.7 Indicator Function and Indicator Map

Definition 1.13 (Indicator Function). For any $A \subset \Omega$, we define $I_A \in 2^{\Omega}$ by

$$I_A(\omega) := \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}.$$

Indicator function defines a bijective correspondence between subsets of Ω and their indicator functions, that is referred to as the indicator map

$$I: \mathcal{P}(\Omega) \stackrel{\cong}{\to} 2^{\Omega}$$

 $A \mapsto I_A.$

Theorem 1.7. The indicator map is bijective.

Proof. We want to show the indicator map is both injective and surjective.

(Injection) Let $I_A = I_B$, then $I_A(\omega) = I_B(\omega), \forall \omega$.

We have

$$\omega \in A \Leftrightarrow I_A(\omega) = 1 = I_B(\omega) \Leftrightarrow \omega \in B$$
,

i.e., A = B.

(Surjection) Want to show $\forall f \in 2^{\Omega}, \exists A \in \mathcal{P}(\Omega) \text{ s.t. } I(A) = I_A = f.$

Take any $f \in 2^{\Omega}$ and let $A = {\omega | f(\omega) = 1}$. We have

$$\omega \in A \Leftrightarrow \begin{cases} f(\omega) = 1 \\ I_A(\omega) = 1 \end{cases} \Rightarrow f(\omega) = I_A(\omega), \forall \omega.$$

Hence, $f = I_A$.

From the proof, we also have

$$A = f^{-1}(1) = I_A^{-1}(1).$$

Note that

$$I_{\bigcap_{n=1}^{\infty} A_n}(\omega) = \inf_{n=1}^{\infty} I_{A_n}(\omega) \text{ and } I_{\bigcup_{n=1}^{\infty} A_n}(\omega) = \sup_{n=1}^{\infty} I_{A_n}(\omega).$$

Also,

$$\sum_{n=1}^{\infty} I_{A_n}(\omega) \in \mathbb{W} \cup \{\infty\}.$$

Example 1.1. If $A_n \to A, B_n \to B, C_n \to C$. Show that $A_n(B_n - C_n) \to A(B - C)$.

Proof.

2 Probability Space

Definition 2.1 (σ -algebra). Let Ω be a set, then $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is called a σ -algebra s.t.

- $\mathcal{F} \neq \emptyset$;
- if $A \in \mathcal{F}$, then $A^C \in \mathcal{F}$, i.e., \mathcal{F} is closed under complements;
- if $A_i \in \mathcal{F}, i \in \mathbb{N}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$, i.e, \mathcal{F} is closed under countable unions.

Note. From the second and third condition above we know that $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$ since $\bigcap_{n=1}^{\infty} A_i = \left(\bigcup_{n=1}^{\infty} A_i^C\right)^C$. We can also show that $\Omega, \emptyset \in \mathcal{F}$.

Definition 2.2 (Probability Measure). The probability measure $P: \mathcal{F} \to [0,1]$ is a function s.t.

- σ -additivity: $P\left(\sum_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$ provided $A_i A_j = \emptyset, \forall i \neq j$.
- non-negativity: $P(A) \ge 0, \forall A \in \mathcal{F}$;
- normalization: $P(\Omega) = 1$.

Definition 2.3 (Probability Space). A probability space is a mathematical triplet (Ω, \mathcal{F}, P) , where the sample space Ω is the set of all possible outcomes, the σ -algebra \mathcal{F} is a collection of all the events, and the probability measure P is a function returning an event's probability.

Theorem 2.1 (Sequential Continuity). $A_n \to A \Rightarrow P(A_n) \to P(A)$.

3 Random Variables

Definition 3.1 (Equality in Distribution). $X \stackrel{d}{=} Y$ on sample space \mathcal{X} iff

$$\mathbb{E}[g(X)] = \mathbb{E}[g(Y)], \forall g : \mathcal{X} \to \mathbb{R}.$$

Example 3.1. If $X \stackrel{d}{=} Y$, then let $g = I_A, A \subset \mathcal{X}$, then

$$P(x \in A) = \mathbb{E}[I_A(X)] = \mathbb{E}[I_A(Y)] = P(Y \in A).$$

Theorem 3.1. If $X \stackrel{d}{=} Y$, then $\phi(X) \stackrel{d}{=} \phi(Y), \forall \phi : \mathcal{X} \to \mathcal{Y}$.

Proof. Since $X \stackrel{d}{=} Y$, then $\mathbb{E}[g(X)] = \mathbb{E}[g(Y)], \forall g : \mathcal{X} \to \mathbb{R}$.

Let $g = h\phi, \forall h : \mathcal{Y} \to \mathbb{R}$, then we have

$$\mathbb{E}[h\phi(X)] = \mathbb{E}[h\phi(Y)], \forall h : \mathcal{Y} \to \mathbb{R},$$

i.e.,
$$\phi(X) \stackrel{d}{=} \phi(Y), \forall \phi : \mathcal{X} \to \mathcal{Y}.$$

Note that $\mathbb{E}: \mathcal{R} \to \mathbb{R}^* \cup \{*\}$ defined on $\mathcal{R} = \{X : \text{Real valued random variable}\}.$

Definition 3.2 (Finite Discrete Uniform Distribution). $U \sim \text{unif}(\Omega)$ with ${}^{\#}\Omega < {}^{\#}\mathbb{N}$ iff

$$P(U = \omega) = \frac{1}{\Omega} \Leftrightarrow P(U \in A) = \frac{\#A}{\#\Omega}.$$

Example 3.2. $U \sim \text{unif}\{1, \dots, n\} \text{ iff } P(U = i) = \frac{1}{n}, i = 1, \dots, n.$

Example 3.3. Let $U \sim \text{unif}\{1, \dots, n\}$, then $-U \sim \text{unif}\{-n, \dots, -1\}$ and $n+1-U \sim \text{unif}\{1, \dots, n\}$. Hence we say $n+1-U \stackrel{\text{d}}{=} U$ and thus

$$n+1-\mathbb{E}[U]=\mathbb{E}[U]\Rightarrow \mathbb{E}[U]=\frac{n+1}{2}=\frac{1+\cdots+n}{n}.$$

Example 3.4. Let $U \sim \text{unif}\{1, \dots, n\}$, then $U^k \sim \text{unif}\{1^k, \dots, n^k\}$, and thus we have

$$\mathbb{E}\left[U^{k}\right] = \frac{1^{k} + 2^{k} + \dots + n^{k}}{n} \text{ and } \mathbb{E}\left[(U - 1)^{k}\right] = \frac{0^{k} + 1^{k} + \dots + (n - 1)^{k}}{n},$$

and thus

$$\mathbb{E}\left[U^k\right] - \mathbb{E}\left[(U-1)^k\right] = n^{k-1}.$$

Recall that

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Therefore,

$$\mathbb{E}\left[U^{3}\right] - \mathbb{E}\left[(U-1)^{3}\right] = n^{2} = \mathbb{E}\left[U^{3}\right] - (\mathbb{E}\left[U^{3}\right] - 3\mathbb{E}\left[U^{2}\right] + 3\mathbb{E}\left[U\right] - 1),$$

i.e.,

$$3\mathbb{E}\left[U^{2}\right] = n^{2} + 3\mathbb{E}\left[U\right] - 1 = n^{2} + \frac{3(n+1)}{2} - 1 = \frac{(n+1)(2n+1)}{2}.$$

Thus,

$$\mathbb{E}\left[U^{2}\right] = \frac{(n+1)(2n+1)}{6} = \frac{1^{2} + 2^{2} + \dots + n^{2}}{n}.$$

Property 3.1. Let $U \sim \text{unif}\{1, \dots, n\}$, then $\text{Var}[U] = \frac{n^2 - 1}{12}$. *Proof.* By definition,

$$Var[U] = \mathbb{E}\left[U^2\right] - \left(\mathbb{E}[U]\right)^2 = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} = \frac{n^2 - 1}{12}.$$

Here is another way to express $Z \sim \text{unif}\{0, 1, \dots, p-1\}$.

Definition 3.3 (Standard Uniform). $Z \sim \text{unif}(p)$, where $p = \{0, 1, \dots, p-1\}$, iff

$$P(Z=i) = \frac{1}{p}, \forall i \in p.$$

 $U \sim \text{unif}[0, 1] \text{ iff}$

$$P(U \le u) = u, \forall 0 \le u \le 1.$$

3.1 Fundamental Theorem of Applied Probability

For any $p \in \mathbb{N}$ with $p \ge 2$ we define the p-adic series

$$U = \sum_{i=1}^{\infty} Z_i p^{-i}.$$

Example 3.5. $Z: z_{11}, z_{12}, \cdots, z_{1n}, \cdots; z_{21}, z_{22}, \cdots, z_{2n}$ and $U = .z_{11}z_{12}z_{13}\cdots, .z_{21}z_{22}z_{23}\cdots$.

If
$$Z \sim \text{unif}(10)$$
, then $z_1 z_2 \cdots z_n \cdots = \sum_{i=1}^{\infty} z_i 10^{-i}$.

Lemma 3.1. Let $\dot{p}^{\infty} = \{\mathbf{z} = (z_i, i \in \mathbb{N}) | z_i \in p, i \in \mathbb{N}, z_i < p-1 \text{ io}(i)\}$. Then $u = \sum_{i=1}^{\infty} z_i p^{-i}$ defines a bijective function $\Phi : \dot{p}^{\infty} \stackrel{\cong}{\to} [0, 1)$.

Note. The range cannot include 1, because it is not allowed to end in p-1 repeated and

$$\sum_{i=1}^{\infty} p^{-i}(p-1) = \frac{p-1}{p} \sum_{i=0}^{\infty} p^{-i} = \frac{p-1}{p} = 1.$$

Proof. We know $0 \le u < \frac{p-1}{p} \sum_{i=0}^{\infty} p^{-i} = 1$.

Besides,

$$u = \sum_{i=1}^{\infty} z_i p^{-i}$$

$$\Leftrightarrow 0 \le u - \sum_{i=1}^{n} z_i p^{-i} = \sum_{i=n+1}^{\infty} z_i p^{-i} < \sum_{i=n+1}^{\infty} p^{-i} (p-1) = p^{-(n+1)} \frac{p-1}{1-1/p} = p^{-n}.$$

$$\Leftrightarrow z_n p^{-n} \le u - \sum_{i=1}^{n-1} z_i p^{-i} < p^{-n} + z_n p^{-n} = (z_n + 1) p^{-n}.$$

$$\Leftrightarrow z_n \le p^n \left(u - \sum_{i=1}^{n-1} z_i p^{-i} \right) < z_n + 1.$$

Recall that [x] = m iff $m \le x < m + 1$ uniquely determines m as the greatest integer less than or equal to x. Therefore,

$$z_n = \left[p^n \left(u - \sum_{i=1}^{n-1} z_i p^{-i} \right) \right], n \geqslant 2,$$

and $z_1 = [pu]$.

Lemma 3.2. $\sum_{i=0}^{n} a_i p^i = 0$, where $|a_i| < p, \forall i \Leftrightarrow a_i = 0, \forall i$.

Proof. (\Rightarrow) Assume $\sum_{i=0}^{n} a_i p^i = 0$.

- (1) When $n = 1 : |a_1|p = |a_0| .$
- (2) Suppose it holds for all n, then

$$\sum_{i=1}^{n+1} a_i p^i = \sum_{i=1}^n a_i p^i + a_{n+1} p^{n+1} = a_{n+1} p^{n+1} = 0 \text{ and } a_0 = \dots = a_n = 0.$$

Therefore,

$$|a_{n+1}p^{n+1}| = |a_np^n| < p^{n+1} \Rightarrow |a_{n+1}| < 1 \Rightarrow a_{n+1} = 0.$$

Wherefore, by induction, it holds for all i.

$$(\Leftarrow)$$
 Suppose $a_i = 0, \forall i$, then $\sum_{i=1}^n a_i p^i = 0$, where $|a_i| < p, \forall i$.

Lemma 3.3. For $u = \sum_{i=1}^{\infty} z_i p^{-i}$, $\mathbf{z} \in \dot{p}^{\infty}$, we have

$$z_1 = b_1, \dots, z_n = b_n \Leftrightarrow u \in \left[\sum_{i=1}^n b_i p^{-i}, \sum_{i=1}^n b_i p^{-i} + p^{-n} \right].$$

Proof. (\Leftarrow) We have

$$\sum_{i=1}^{n} b_{i} p^{-i} \leq u < \sum_{i=1}^{n} b_{i} p^{-i} + p^{-n} \Rightarrow \sum_{i=1}^{n} b_{i} p^{-i} \leq \sum_{i=1}^{n} z_{i} p^{-i} + \sum_{i=n+1}^{\infty} z_{i} p^{-i} < \sum_{i=1}^{n} b_{i} p^{-i} + p^{-n}$$
$$\Rightarrow 0 \leq \sum_{i=1}^{n} (z_{i} - b_{i}) p^{-i} + \sum_{i=n+1}^{\infty} z_{i} p^{-i} < p^{-n}.$$

Besides,

$$0 \leqslant \sum_{i=n+1}^{\infty} z_i p^{-i} < (p-1) \sum_{i=n+1}^{\infty} p^{-i} = p^{-n},$$

then

$$-p^{-n} < -\sum_{i=n+1}^{\infty} z_i p^{-i} \le 0.$$

Therefore,

$$-p^{-n} < \sum_{i=1}^{n} (z_i - b_i) p^{-i} < p^{-n} \Rightarrow \left| \sum_{i=1}^{n} (z_i - b_i) p^{-i} \right| < p^{-n} \Rightarrow \left| \sum_{i=1}^{n} (z_i - b_i) p^{n-i} \right| < 1,$$

where $|z_i - b_i| < p$. Since $\sum_{i=1}^n (z_i - b_i) p^{n-i} \in \mathbb{Z}$, then $\sum_{i=1}^n (z_i - b_i) p^{n-i} = 0$. By lemma, $z_i = b_i$.

 (\Rightarrow) Suppose $z_i = b_i, \forall i$, then

$$0 \leqslant \sum_{i=1}^{n} (z_i - b_i) p^{-i} + \sum_{i=n+1}^{\infty} z_i p^{-i} < 0 + (p-1) \sum_{i=n+1}^{\infty} p^{-i} = p^{-n},$$

i.e.,

$$\sum_{i=1}^{n} b_i p^{-i} \leqslant \sum_{i=1}^{\infty} z_i p^{-i} < \sum_{i=1}^{n} b_i p^{-i} + p^{-n}.$$

Theorem 3.2 (Fundamental Theorem of Applied Probability). For $U = \sum_{i=1}^{\infty} Z_i p^{-i}$, $p \ge 2$, we have

$$U \sim \text{unif}[0,1] \Leftrightarrow Z_i \stackrel{\text{i.i.d.}}{\sim} \text{unif}(p).$$

_