Colle 2 - Thomas AFTALION

MPSI2 Année 2021-2022

28 septembre 2021

Question de cours . Démontrer la formule de Pascal sur les coefficients binomiaux.

Exercice 1. Soit $a \ge 0$. Montrer que pour tout entier naturel n, $(1+a)^n \ge 1+an$.

Exercice 2. Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

1. Calculer

$$S_n(x) = \sum_{k=0}^n x^k.$$

2. En déduire la valeur de

$$T_n(x) = \sum_{k=0}^n kx^k.$$

Exercice 3. Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on note

$$P_n(x) = \prod_{k=1}^n \left(1 + \frac{x}{k}\right).$$

- 1. Que valent $P_n(0)$, $P_n(1)$ et $P_n(-n)$?
- 2. Démontrer que pour tout réel non-nul x, on a

$$P_n(x) = \frac{x+n}{x} P_n(x-1).$$

3. Pour $p \in \mathbb{N}^*$, écrire $P_n(p)$ comme un coefficient binomial.

Exercice 4. Soient n et p deux entiers tels que $n \ge 2$ et $0 \le p \le n$.

1. Démontrer que pour tout entier $k \ge p+1$,

$$\binom{k}{p} = \binom{k+1}{p+1} - \binom{k}{p+1}.$$

2. En déduire la valeur de

$$\sum_{k=p}^{n} \binom{k}{p}.$$

1

MPSI2

Exercice 5. Déterminer toutes les fonctions $f \colon \mathbb{R} \to \mathbb{R}$ telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad f(y - f(x)) = 2 - x - y.$$

Colle 2