东华大学 2020~2021 学年一元微积分(A 上) 试卷 (A 卷)

踏实学习, 弘扬正气; 诚信做人,诚实考试; 作弊可耻,后果自负

课程名称 一元微积分(A上) 使用专业 全校 20 级

题号	_	1 1	=	四	五	六	总分
ΔΗ Λ\							
得分							

- 一、填空题(每题4分,共40分)
- 1. $\lim_{n\to\infty}\frac{n-\sin n}{n+\sin n} = \underline{\hspace{1cm}};$
- 2. $\lim_{x \to 0} \frac{3\sin x + x^2 \cos \frac{1}{x}}{(1 + \cos x)\ln(1 + x)} = \underline{\hspace{1cm}};$
- 3. 设f(u)可导,且 $f\left(\frac{1}{x}\right) = \frac{x}{x+1}$,则 $f'\left(\frac{1}{x}\right) =$;

- 6. $\lim_{x \to \infty} x \left(\frac{\pi}{4} \arctan \frac{x}{x+1} \right) = \underline{\hspace{1cm}};$
- 8. 曲线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ 在点 $\left(\frac{\sqrt{2}}{4}a, \frac{\sqrt{2}}{4}a\right)$ 处的切线方程为 ______;
- 9. $\lim_{x \to 0} \frac{1 \cos x \sin x + \ln(1 + x)}{x \sin^2 x} = \underline{\hspace{1cm}};$
- 10. 设 $y = \frac{1-x}{1+x}$,则 $y^{(n)} =$ ______.

- 二、单项选择题(每题4分,共12分).
- 1. 设函数 $f(x) = \frac{x^3 x}{\sin \pi x}$, 则 ();
- A. 有无穷多个第一类间断点 B. 有一个可去间断点
- C. 有两个可去间断点
- D. 有三个可去间断点
- 2. 设 f(x), g(x) 在点 x_0 处二阶可导,且 $f(x_0) = g(x_0) = 0$, $f'(x_0)g'(x_0) < 0$,则();
- A. 点 x_0 不是f(x)g(x)的驻点
- B. 点 x_0 是 f(x)g(x) 的驻点, 但不是极值点
- C. 点 x_0 是 f(x)g(x) 的驻点, 且是它的极小值点
- D. 点 x_0 是 f(x)g(x) 的驻点, 且是它的极大值点
- 3. 当 $x \to 0$ 时, x^{α} 与 $1 e^{2x} \cos x \cos 2x$ 是同阶无穷小,则();
 - A. $\alpha = 1$
- B. $\alpha = 2$
- C. $\alpha = 3$
- D. $\alpha = 4$
- 三、解下列各题(每题6分,共24分)
- 1. 己知点(1,3) 是曲线 $y = ax^3 + bx^2$ 的一个拐点,试求a,b 的值及曲线的凹凸区间.

2. 设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = t - \ln(1+t) \\ y = t^3 + t^2 \end{cases}$$
 所确定,求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

3. 设
$$y = y(x)$$
 是由方程 $x^2 + y^2 = 2xy^3$ 所确定的隐函数,求 $y'(1)$, $y''(1)$.

4. 求极限
$$\lim_{x\to 0} \frac{(1+x)^{\frac{2}{x}}-e^2}{\ln(1+x)}$$
.

四、(10 分) 设函数 $f(x) = \begin{cases} \frac{1}{3^x} & x < 1, \text{ 问常数 } a,b$ 分别取何值时,函数 f(x) 在 ax + b $x \ge 1$,

点 x=1 处可导?

五、(10 分)在一个底圆半径为 R,高为 H 的正圆锥体中作内接正圆柱,圆柱的一个底面位于锥体的底面上,求圆柱体的最大体积.

六、(4 分) 设函数 f(x) 在 [a,b] 上连续,在 (a,b) 上可导 (a>0) . 证明:存在 $\xi,\eta\in(a,b)$,使得 $abf'(\xi)=\eta^2f'(\eta)$. .