제 15 장 도수분석

제1절 독립성검정 (Test of Independence)

관찰자료를 두 가지 분류기준으로 나누었을 때 분류기준이 된 변수들이 서로 독립적인 가를 알아보기 위해 χ^2 검정을 이용한다.

[표 15-1] 세 도시에 사는 사람들이 선호하는 월간지 종류 - Contingency Table

도시	월간지A	월간지B	월간지C	합계
서울	150	115	135	400
부산	80	75	145	300
광주	60	140	100	300
합계	290	330	380	1,000

[표 15-2] 기대도수 $(f_e)_{ij} = \frac{(i 번째 \ \, otal)(j 번째 \ \, gtal)}{{\hbox{\simet}}}$

도시	월간지A	월간지B	월간지C	합계
서울	116	132	152	400
부산	87	99	114	300
광주	87	99	114	300
합계	290	330	380	1,000

[표 15-3] 관찰도수 f_o 와 기대도수 f_e

도시	월간지A		월간지B		월간지C	
1-/\	f_o	f_e	f_o	${f}_{e}$	f_o	${f}_{e}$
서울	150	116	115	132	135	152
부산	80	87	75	99	145	114
광주	60	87	140	99	100	114

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

$$(f_o - f_e)^2 / f_e$$
 Table

9.97	2.19	1.90
0.56	5.82	8.43
8.38	16.98	1.72

① H₀: 월간지 구독은 도시 종류와 독립적이다.

 H_A : 월간지 구독은 도시 종류와 독립적이 아니다.

② Test Statistic:
$$\chi^2_{(r-1)(c-1)} = \sum \frac{(f_o - f_e)^2}{f_e}$$

③ For
$$\alpha$$
, Rejection Region: $\chi^2 > \chi^2_{\alpha, (r-1)(c-1)}$

$$\alpha = 0.05, \ \chi^2_{0.05, (3-1)(3-1)} = \chi^2_{0.05, 4} = 9.4877$$

Test Statistic의 값이 55.95이므로, H_0 를 기각한다.

Yates Correction (예츠수정)

 2×2 분할표인 경우, χ^2 의 자유도가 1이 된다. \rightarrow 오차가 상당히 커진다.

$$\chi^2 = \sum \frac{\left(\mid f_o - f_e \mid -\frac{1}{2} \right)^2}{f_e}$$

제2절 적합도검정 (Goodness-of-Fit Test)

가정한 확률분포가 타당한 지의 여부를 검정

- 1. 포아송분포에 대한 적합도검정
- ① H_0 : 병원에 오는 환자의 확률분포는 $\lambda = 0.8$ 인 포아송분포이다. H_4 : 병원에 오는 환자의 확률분포는 $\lambda = 0.8$ 인 포아송분포가 아니다.

여기서 k: 계급의 수,

m : 모수 추정 위해 사용된 표본 추정치의 수

(m=1)

③ For α , Rejection Region: $\chi^2 > \chi^2_{\alpha, k-2}$

환자 수 <i>X</i>	관찰도수 f_o	포아송확률	기대도수 f_e	$\frac{(f_o - f_e)^2}{f_e}$
0	36	0.4493	44.93	1.78
1	40	0.3595	35.95	0.46
2	19	0.1438	14.38	1.49
3 이상	5	0.0474	4.74	0.01
합계	100	1.0000	100.00	3.73

- 예) $k=4,~\alpha=0.05,~\chi^2_{0.05,~2}=5.9915,~\chi^2=3.73으로~\chi^2_{0.05,~2}$ 보다 작다. 환자의 확률분포가 포아송분포가 아니라고 기각할 수 없다.
- 2. 정규분포에 대한 적합도검정
- ① H_0 : 점수는 정규분포이다. H_4 : 점수는 정규분포가 아니다.

여기서 k: 계급의 수,

m : 모수 추정 위해 사용된 표본 추정치의 수(평균과 분산을 추정하므로 m=2)

③ For
$$\alpha$$
, Rejection Region: $\chi^2 > \chi^2_{\alpha, k-3}$

점수	관찰도수	P(X)	f_e	${\rm adj}\ f_e$	$\frac{(f_o - f_e)^2}{f_e}$
20~30	2	0.0089	0.89		
30~40	3	0.0403	4.03		
40~50	10	0.1251	12.51	17.43	0.34
50~60	23	0.2379	23.79	23.79	0.03
60~70	36	0.2770	27.70	27.70	2.49
70~80	14	0.1975	19.75	19.75	1.67
80~90	9	0.0862	8.62	10.92	0.11
90~100	3	0.0230	2.30		
합계	100				4.63

예) k=5 (기대도수가 5 미만인 계급은 합한 결과, 계급의 수가 8에서 5로 축소되었음), $\alpha=0.05$

 $\chi^2_{0.05, 2}$ = 5.9915, χ^2 = 4.63으로 $\chi^2_{0.05, 2}$ 보다 작다.

점수 확률분포는 정규분포가 아니라고 기각할 수 없다.

제3절 동일성검정

자동차	남자	여자	합계
A	50	60	110
В	46	54	100
С	25	29	54
합계	121	143	264

$$H_0$$
: $\pi_M = \pi_F$ (자동차 A)

$$\pi_M = \pi_F \; (자동차 \; \mathbf{B})$$

$$\pi_M = \pi_F$$
 (자동차 C)

 H_1 : 위의 모든 등식이 반드시 성립하지는 않는다.

자동차	남자		여자	
754	f_o	f_c	f_o	f_c
A	50	55	60	55
В	46	50	54	50
С	25	27	29	27

Test Statistic: $\chi^2_{(r-1)(c-1)}$

Rejection Region:
$$\chi^2 > \chi^2_{\alpha,(r-1)(c-1)} = \chi^2_{0.05, 2} = 5.99$$

The value of the Test Statistic:

$$\begin{split} \chi^2 &= \sum \frac{(f_o - f_e)^2}{f_e} \\ &= \frac{(50 - 55)^2}{55} + \frac{(60 - 55)^2}{55} \; + \; \frac{(46 - 50)^2}{50} + \frac{(54 - 50)^2}{50} \; + \; \frac{(25 - 27)^2}{27} + \frac{(29 - 27)^2}{27} \\ &= 1.845 \end{split}$$

Conclusion: Do not reject H_0 .