Problem F. Nearest Black Vertex

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

You are given a simple connected undirected graph with N vertices and M edges (a simple graph contains no self-loop and no multi-edges).

For $i=1,2,\ldots,M$, the *i*-th edge connects vertex u_i and vertex v_i bidirectionally.

Determine whether there is a way to paint each vertex black or white to satisfy both of the following conditions, and show one such way if it exists.

- At least one vertex is painted black.
- For every $i = 1, 2, \dots, K$, the following holds:
 - \circ the minimum distance between vertex p_i and a vertex painted black is exactly d_i .

Here, the distance between vertex u and vertex v is the minimum number of edges in a path connecting u and v.

Constraints

- $1 \le N \le 2000$
- $N-1 \le M \le \min\{N(N-1)/2, 2000\}$
- $1 \leq u_i, v_i \leq N$
- $0 \le K \le N$
- $\bullet \ \ 1 \leq p_1 < p_2 < \dots < p_K \leq N$
- $0 \le d_i \le N$
- The given graph is simple and connected.
- All values in the input are integers.

Input

The input is given from Standard Input in the following format:

```
dots p_K \ d_K
```

Output

If there is no way to paint each vertex black or white to satisfy the conditions, print N_0 .

Otherwise, print $\ _{Yes}$ in the first line, and a string S representing a coloring of the vertices in the second line, as shown below.

Here, S is a string of length N such that, for each $i=1,2,\ldots,N$, the i-th character of S is 1 if vertex i is painted black and 0 if white.

```
oxed{S} Yes
```

If multiple solutions exist, you may print any of them.

Sample 1

Input	Output
5 5	Yes
1 2	10100
2 3	
3 1	
3 4	
4 5	
2	
1 0	
5 2	

One way to satisfy the conditions is to paint vertices 1,3 black and vertices 2,4,5 white. Indeed, for each i=1,2,3,4,5, let A_i denote the minimum distance between vertex i and a vertex painted black, and we have $(A_1,A_2,A_3,A_4,A_5)=(0,1,0,1,2)$, where $A_1=0,A_5=2$.

Sample 2

Input	Output
5 5	No
1 2	
2 3	
3 1	
3 4	
4 5	
5	
1 1	
2 1	
3 1	
4 1	
5 1	

Lista 7 - BFS e Dijkstra May 11, 2023

There is no way to satisfy the conditions by painting each vertex black or white, so you should print $_{\mbox{\scriptsize NO}}$.

Sample 3

Input	Output
1 0 0	Yes 1