Exame Elementos de Engenharia de Sistemas 2016/17 1 de Fevereiro de 2017

Sem consulta. Duração: 3h00m.

RESPONDA ÀS QUESTÕE DE CADA PARTE EM FOLHAS SEPARADAS

PARTE I

1.

A empresa "FotoMoldes" é especializada na produção de molduras para fixação/exposição de fotografías. Na secção de montagem entram 3 tipos de componentes, nomeadamente:

- Aros da moldura (intervalo de chegada segue uma distribuição exponencial negativa com 1 minuto de média);
- **Tampos traseiros** (intervalo de chegada segue uma distribuição de Poisson com 1 minuto de média);
- **Parafusos** (intervalo de chegada segue uma distribuição uniforme com mínimo de 20 segundos e máximo de 30 segundos).

Nesta secção são usados **4 parafusos** para juntar o tampo traseiro ao aro da moldura, pelo que uma moldura completa é composta pelo aro da moldura, um tampo traseiro e 4 parafusos. Esta operação é efetuada por **2 operários com o auxílio de 1 berbequim**. Após a montagem, as molduras completas seguem para o armazém. Informação adicional: (A = Entrada de aros de moldura); (B = Entrada de tampos traseiros); (C = Entrada de parafusos); (M1 – batch size = 4); (M3 – batch size = 3); (D – Seize/Delay/Release).

1.1 Diga, **justificando** sucintamente, qual/quais dos modelos lógicos apresentados na seguinte figura representam o cenário descrito.

- **1.2** Qual/quais as opções que estão corretas no que respeita à informação, relativa ao intervalo de chegada, contida nos módulos A, B e C?
 - a) A = EXPO(-1); B = POIS(1); C = UNIF(20,30);
 - b) A = -EXPO (1); B = POIS(1); C = SCHEDULE(UNIF(20,30));
 - c) A = -1; B = VALUE(POIS(1)); C = VALUE(UNIF(20.30));
 - d) A = CONST(1); B = SCHEDULE(POIS(1)); C = NORM(20,30);
 - e) A = EXPO(1); B = POIS(1); C = UNIF(20,30);
 - f) A = GET(EXPO(-1)); B = GET(POIS(1)); C = GET(UNIF(20,30));

1.3 A figura seguinte representa alguns resultados do Arena. Com base na informação disponível responda às seguintes questões:

Instantaneous Utilization	Average	Half Width	Minimum Average	Maximum Average	Minimum Value	Maximum Value
Berbequim	0.02928989	,001	0.02484172	0.03114030	0.00	0.1167
Operario	0.05021123	,002	0.04258580	0.05338338	0.00	0.2000
Number Busy	Average	Half Width	Minimum Average	Maximum Average	Minimum Value	Maximum Value
Berbequim	1.7574	,063	1.4905	1.8684	0.00	7.0000
Operario	3.5148	,127	2.9810	3.7368	0.00	14.0000
Number Scheduled	Average	Half Width	Minimum Average	Maximum Average	Minimum Value	Maximum Value
Berbequim	60.0000	,000	60.0000	60.0000	60.0000	60.0000
Operario	70.0000	,000	70.0000	70.0000	70.0000	70.0000

- a) Quantos recursos de cada tipo foram definidos para a simulação?
- b) Qual a média percentual de utilização individual de cada recurso?
- c) Qual o número adequado de recursos para a secção de montagem?
- d) Para cada tipo de recurso, qual o intervalo de confiança de 95% que define o número médio de recursos utilizados?

2.

Sabendo que, no Arena, o eixo das ordenadas (vertical) de um "Schedule" do tipo "Arrival" representa o número médio de entidades por hora que entram num sistema, quantas entidades, em média, entram na primeira hora do "Schedule 1" (Time Slot Duration = 1 hora) e do "Schedule 2" (Time Slot Duration = 15 min)?

3.

A Matilde foi ao shopping. Dirigiu-se a um terminal ATM para levantar dinheiro. De seguida foi imprimir uns documentos numa impressora automática. Depois lembrou-se e foi fazer umas compras no hipermercado. Levou um carrinho de compras, recolheu as compras, fez o pagamento, deixou o carrinho, e foi embora. Atente ao diagrama seguinte. Complete o diagrama com as letras da lista abaixo, de forma a simular o dia da Matilde. Se necessário, pode repetir a utilização de letras.

A: Create; B: Dispose; C: Delay; D: Separate (Duplicate Original); E: Batch (Batch Size = 2);

F: Process (Delay Release); G: Process (Hold Wait Free); H: Process (Seize Delay Release)

<u>I</u>: Match; <u>J</u>: Signal; <u>K</u>: Wait; <u>L</u>: Move; <u>M</u>: Process (Seize Delay); <u>N</u>: Assign; <u>O</u>: Variable

4.

A imagem seguinte representa um sistema simples. As entidades entram, no "Process 1" o colaborador trabalha as entidades, uma a uma, enviando-as para a secção seguinte.

- **4.1** Quanto tempo demoram as entidades a chegar à "Station 2" desde a "Station 1"? Selecione a opção (ou opções) correta/as.
- a) Aproximadamente 7 vezes mais do que o tempo entre a "Station 2" e o "Process 1";
- b) Depende do intervalo entre chegadas do "Create 1";
- c) Impossível responder, pois depende da velocidade relativa da entidade;
- d) Pelo modelo apresentado, a movimentação é instantânea, pelo que o tempo é zero;
- e) Pelo modelo apresentado, depende do tipo de transportador disponível no sistema;
- f) Nenhuma das anteriores;
- **4.2** Sabendo que o tempo da operação no "Process 1" segue uma distribuição exponencial negativa com média de 7 minutos, selecione a opção (ou opções) correta/as relativamente aos parâmetros do "Process 1":
- a) Logic Action: Seize Delay | Delay Time: Expo (7);
- b) <u>Logic Action</u>: Hold Work | <u>Delay Time</u>: Expo (-7);
- c) <u>Logic Action</u>: Assign Job | <u>Delay Time</u>: Get(Expo (-7));
- d) Logic Action: Seize Delay Release | Delay Time: Expo (7);
- e) Logic Action: Seize Delay Release | Delay Time: 7;
- f) Nenhuma das anteriores;
- **4.3** Se se pretendesse fazer a animação da movimentação entre a "Station 1" e a "Station 2", que módulo (que não implica uso de recursos de transporte) seria suficiente incluir no modelo lógico apresentado? Justifique sucintamente.
- **4.4** Assuma que a **Variável Global** "<u>nextSection</u>" contabiliza o número de entidades que transitam para a secção seguinte. Indique qual das seguintes opções representa a correta programação dessa funcionalidade no modelo?
- a) Módulo **Assign**; Expressão: Variable nextSection = nextSection + 1;
- b) Módulo **Batch**; Expressão: BatchSize = nextSection + 1;
- c) Módulo **Separate**; Expressão: #Duplicates = nextSection +1;
- d) Módulo **Forward**; Expressão: GoNext = nextSection + 1;
- e) Módulo **Assign**; Expressão: Attribute nextSection = nextSection + 1;
- f) Nenhuma das anteriores;

5.

Atente à imagem do "Create 1".

- **5.1** Quantas entidades, no máximo, entram no sistema com o "Create 1"? Justifique sucintamente.
- 5.2 Suponha que a simulação do sistema inicia às 07h00, e que o "Create 1" é o único "Create" do sistema. A que horas entra a primeira entidade? E a última? Justifique sucintamente.

PARTE II

Um pequeno aeroporto da cidade "A" tem atualmente duas pistas, uma com uso exclusivo para aterragens e outra com uso exclusivo para decolagens dos aviões. A execução de cada uma destas operações não interfere com a realização da outra, isto é, em qualquer instante pode haver um avião a aterrar e outro a descolar simultaneamente. Cada aterragem ocupa a respetiva pista durante um período médio de 2 minutos.

Supondo que em média abordam o aeroporto para aterrar 4 aviões a cada 15 minutos e que o tempo médio de espera admissível não deve ultrapassar os 12 minutos.

Considere que o pressuposto de se tratar de um sistema de filas de espera de Markov é aceitável.

Utilizando como unidade de tempo a hora determine:

- a) O número médio de aviões à espera para aterrar.
- b) A probabilidade de estarem mais do que três aviões à espera para aterrar.
- c) A probabilidade de um avião ter de esperar menos do que 8 minutos para aterrar.
- d) Daqui a quantos anos será de prever que o aeroporto deixe de cumprir o tempo médio de espera admissível, sabendo que a procura está a aumentar a um ritmo de 10% ao ano devido, essencialmente, ao desenvolvimento de serviços aéreos *low cost*.

O aeroporto da cidade "B" próxima da cidade "A" tem 4 pistas, duas exclusivas para aterragens e duas exclusivas para decolagens. Tal como no aeroporto da cidade "A" cada aterragem ocupa a respetiva pista durante um período de 2 minutos. No entanto, abordam o aeroporto para aterrar 34 aviões por hora.

Considere que o pressuposto de se tratar de um sistema de filas de espera de Markov é aceitável. Compare o número médio de aviões à espera para aterrar na cidade "B" com o número médio de aviões à espera para aterrar na cidade "A"

Formulário

$$\begin{split} & \mathcal{M}/\mathcal{M}/1 & \mathcal{M}/\mathcal{M}/s \\ & \pi_0 = 1 - \rho \\ & \pi_n = \rho^n \pi_0 = \rho^n (1 - \rho), n \geq 1 \end{split} \qquad \pi_0 = \begin{bmatrix} \sum_{n=0}^{s-1} \frac{(s\rho)^n}{n!} + \frac{(s\rho)^s}{s!(1 - \rho)} \end{bmatrix}^{-1} \\ & L_q = \frac{\rho^2}{1 - \rho} \\ & L_s = \rho \\ & L = \frac{\rho}{1 - \rho} \\ & W_q = \frac{\rho}{\mu(1 - \rho)} \\ & W_s = 1/\mu \\ & W = \frac{1}{\mu(1 - \rho)} \\ & W_q(t) = \begin{cases} \rho, \text{ para } t = 0 \\ \rho e^{-\mu(1 - \rho)t}, \text{ para } t \geq 0 \end{cases} \end{aligned} \qquad \begin{aligned} & \mathcal{M}/\mathcal{M}/s \\ & \pi_0 = \begin{bmatrix} \sum_{n=0}^{s-1} \frac{(s\rho)^n}{n!} + \frac{(s\rho)^s}{s!(1 - \rho)} \end{bmatrix}^{-1} \\ & \pi_n = \begin{bmatrix} \frac{s^n}{s} - \frac{s^n}{n!}, \text{ para } 1 \leq n \leq s \\ \frac{s^n}{n!}, \text{ para } 1 \leq n \leq s \\ \frac{s^n}{n!}, \text{ para } n \geq s \end{aligned}$$

PARTE III

1 (50%)

Considere a rede da figura, em que os valores juntos aos arcos correspondem a distâncias.

- a) Apresente um modelo de programação inteira que lhe permita determinar o caminho mais curto entre os nodos 1 e 6.
- b) Obtenha o caminho mais curto entre 1 e 6 por inspecção.
- c) Na resolução do modelo com o *solver* do *excel* construiu-se a folha de cálculo e abriu-se a caixa de diálogo reproduzidas abaixo.

A	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N
1														
2		1	5	7	3	9	6	4	2	1				
3														
4		1	1	1									=	1
5		-1			1	1							=	0
6			-1		-1		1						=	0
7							-1	1	1				=	0
8				-1				-1		1			=	0
9						-1			-1	-1			=	-1
10														
11														

Se <u>t</u> Ob	ojective:				
To:	○ <u>M</u> ax	Min	○ <u>V</u> alue Of:	0	
By Ch:	anging Variable C	'allar			
Dy Crie	anging variable C	elis:			
1					

Indique:

- 1) A fórmula a inserir na célula 9L;
- 2) A fórmula a inserir na célula 2L;
- 3) O que colocar em "Set Objective";
- 4) O que colocar em "By Changing Variable Cells";
- 5) O que colocar em "Subject to the Constraints".
- 6) O valor da célula 11D depois da optimização com o solver.
- 7) O valor da célula 2L depois da optimização com o solver.
- 8) O valor da célula 4L depois da optimização com o solver.
- **d)** Suponha que existe um arco adicional de 2 para 5. Quais as alterações a efectuar na folha de cálculo?
- e) Apresente um modelo de programação inteira para o problema de determinar o segundo caminho mais curto.

2 (20%)

Utilizando um algoritmo adequado, obtenha a árvore de caminhos mais curtos com raiz em 1 na rede da questão 1.

3 (30%)

Considere o problema do caixeiro viajante representado na figura.

- a) Obtenha uma solução aplicando a heurística do vizinho mais próximo começando no nodo 1.
- b) Obtenha uma solução aplicando a heurística da aresta de menor custo.
- c) A dado momento da aplicação da heurística de inserção do vértice mais próximo, o subcircuito actual é 1-3-4-5-1. Qual o nodo seguinte a inserir nesse subcircuito? Qual a variação de custo do actual para o novo subcircuito?

