BUAN 6337.5U1

Predictive Analytics Using SAS

Summer 2019

Research Question

How do vehicle attributes affect its price?

Mentored By

Dr. Sourav Chatterjee

Prepared By

Pavan Sai Krishna Gorantla

Himaja Barla

Nirlep Shah

Ashley Creek

Siril Sai Alpuri

Contents

1.	Abstr	act	. 3
2.	Data	Description	. 3
	2.1.	Outliers and Missing Values	. 4
	2.2.	Exploratory Data Analysis	. 6
	2.3.	Correlations among Predictors	10
3.	Regre	ession Models	13
	3.1.	Pricing Model with Fuel, Transmission and Title	13
	3.2.	Pricing Model with Manufacturer	14
	3.3.	Pricing Model Condition, Cylinders and Drive	15
	3.4.	Pricing Model with Type and Color	16
4.	Conc	clusion	16
5.	Арре	endix	17
	5.1.	SAS Code	17
	5.2.	SAS Output	21

1. Abstract

Craigslist is a popular platform used for buying and selling new and used goods by either private individuals or businesses. A dataset has been scraped from this website containing information about vehicles that are posted for sale on craigslist. The data has information on the sale price and other attributes of the vehicle. In this study, we focus on how the price depends on the attributes of vehicle and which attribute has significant effects on its sale price. Since most of the variables are categorical in nature, we run generalized linear regression models and interpret the effect shown on price. We aim to find best combination of attributes that can fetch highest price.

2. Data Description

We have cross-sectional dataset for 1,723,065 individual vehicles posted over several years span. Following below are variable descriptions and the green highlighted ones are vehicle attributes. We will be using only the highlighted variables and will be ignoring the rest of all other variables.

Variable	Definition
url	Website URL containing the vehicle details (unique identifier)
city	City in which the vehicle is available
price	Sale price of the vehicle
year	Year in which the vehicle was manufactured
manufacturer	Manufacturer name
make	Detailed description of make and model
condition	Describes vehicle condition (new, excellent, good, fair, like new, salvage)
cylinders	Number of cylinders in the vehicle (3, 4, 5, 6, 8, 10, 12, other)
fuel	Fuel type of the vehicle (diesel, electric, gas, hybrid, other)
odometer	Current odometer reading of the vehicle
title_status	Title about past history (clean, lien, missing, parts only, rebuilt, salvage)
transmission	Transmission Type of the vehicle (automatic, manual, other)
vin	Vehicle Identification Number
drive	Drive type (front wheel drive, rear wheel drive, four wheel drive)
size	Vehicle size (compact, full-size, mid-size, sub-compact)
type	Vehicle type (suv, bus, convertible, coupe, hatchback, mini-van, offroad,
ιγρε	pickup, sedan, truck, van, wagon, other)
paint_color	Vehicle color (black, blue, brown, green, grey, orange, purple, red, silver,
paint_color	white, yellow, custom)
image_url	URL containing the vehicle's image
lat	Latitude of the location where the vehicle is available
long	Longitude of location where the vehicle is available
county_fips	Federal Information Processing Standard codes for the county
county_name	Name of the county
state_fips	Federal Information Processing Standard codes for the state
state_code	Two letter state code
state_name	Name of the state
weather	Weather code of the state

2.1. Outliers and Missing Values

To remove illogical values, we filtered rows with *price* between 100 and 70,000 and *odometer* between 500 and 500,000 and *year* more than 1950. The *odometer* has 32.74% missing values. And we converted year into *age* by subtracting it from 2020 and new distribution is as follows:

Since, all graphs are right-skewed, its better to normalize the data by taking the natural logarithm.

Among non-numerical variables, *make* is very long descriptive text and we will be ignoring that. Below are other variables frequency distributions using which we can find missing values share.

fuel	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	9915	0.61	9915	0.61
diesel	114241	6.98	124156	7.59
electric	2181	0.13	126337	7.72
gas	1456237	89.00	1582574	96.72
hybrid	10553	0.64	1593127	97.37
other	43100	2.63	1636227	100.00

condition	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	666626	40.74	666626	40.74
excellent	422244	25.81	1088870	66.55
fair	69834	4.27	1158704	70.82
good	360895	22.06	1519599	92.87
like new	105124	6.42	1624723	99.30
new	6271	0.38	1630994	99.68
salvage	5233	0.32	1636227	100.00

title_status	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	2515	0.15	2515	0.15
clean	1523614	93.12	1526129	93.27
lien	20845	1.27	1546974	94.55
missing	8870	0.54	1555844	95.09
parts onl	3558	0.22	1559402	95.30
rebuilt	46617	2.85	1606019	98.15
salvage	30208	1.85	1636227	100.00

cylinders	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	654185	39.98	654185	39.98
10 cylinders	4383	0.27	658568	40.25
12 cylinders	651	0.04	659219	40.29
3 cylinders	1700	0.10	660919	40.39
4 cylinders	281654	17.21	942573	57.61
5 cylinders	10025	0.61	952598	58.22
6 cylinders	346366	21.17	1298964	79.39
8 cylinders	303249	18.53	1602213	97.92
other	34014	2.08	1636227	100.00

transmission	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	8736	0.53	8736	0.53
automatic	1411711	86.28	1420447	86.81
manual	185549	11.34	1605996	98.15
other	30231	1.85	1636227	100.00

drive	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	620627	37.93	620627	37.93
4wd	429128	26.23	1049755	64.16
fwd	358030	21.88	1407785	86.04
rwd	228442	13.96	1636227	100.00

paint_color	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	652376	39.87	652376	39.87
black	191832	11.72	844208	51.59
blue	111105	6.79	955313	58.39
brown	25803	1.58	981116	59.96
custom	23860	1.46	1004976	61.42
green	40712	2.49	1045688	63.91
grey	96722	5.91	1142410	69.82
orange	6658	0.41	1149068	70.23
purple	3627	0.22	1152695	70.45
red	110222	6.74	1262917	77.18
silver	142611	8.72	1405528	85.90
white	220399	13.47	1625927	99.37
yellow	10300	0.63	1636227	100.00

type	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	658700	40.26	658700	40.26
SUV	237461	14.51	896161	54.77
bus	1952	0.12	898113	54.89
converti	29267	1.79	927380	56.68
coupe	67229	4.11	994609	60.79
hatchbac	37066	2.27	1031675	63.05
mini-van	24108	1.47	1055783	64.53
offroad	4712	0.29	1060495	64.81
other	21141	1.29	1081636	66.11
pickup	118086	7.22	1199722	73.32
sedan	260127	15.90	1459849	89.22
truck	127399	7.79	1587248	97.01
van	24427	1.49	1611675	98.50
wagon	24552	1.50	1636227	100.00

size	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	1066052	65.15	1066052	65.15
compact	89148	5.45	1155200	70.60
full-size	305165	18.65	1460365	89.25
mid-size	164189	10.03	1624554	99.29
sub-compact	11673	0.71	1636227	100.00

Frequency	Percent	Cumulative Frequency	Cumulative Percent
120818	7.38	120818	7.38
17416	1.06	138234	8.45
73	0.00	138307	8.45
130	0.01	138437	8.46
33	0.00	138470	8.46
	120818 17416 73	120818 7.38 17416 1.06 73 0.00 130 0.01	Frequency Percent Frequency 120818 7.38 120818 17416 1.06 138234 73 0.00 138307 130 0.01 138437

The *manufacturer* has 7% missing values but *size* has 65% missing values. As two-thirds of this variable is empty, we are ignoring the *size* variable. Also, *odometer*, *condition*, *cylinders*, *drive*, *type*, *paint_color* have 30-40% missing data. Hence, they are separated from other variables into a new dataset with smaller number of rows, upon deleting the missing rows mentioned as below:

Dataset	Variables	Rows	Rows %
With 4 category variables (4cat)	price, age, log_price, log_age, fuel, title_status, transmission, manufacturer	1493278	86.66 %
With 9 category variables (9cat)	price, age, odometer, log_price, log_age, log_odometer, fuel, title_status, transmission, manufacturer, condition, cylinders, drive, type, paint_color	441328	25.61 %

We will be using first table while using *fuel*, *title_status*, *transmission*, *manufacturer* as predictors and the second table while using *condition*, *cylinders*, *drive*, *type*, *paint_color* as the predictors.

2.2. Exploratory Data Analysis

After removing the missing value rows, log_price and log_age (in 4cat) are normally distributed.

4cat Dataset - Distribution of log_price

4cat Dataset - Distribution of log_age

After removing the missing value rows, log_price and log_age (in 9cat) are normally distributed.

9cat Dataset - Distribution of log_price

9cat Dataset - Distribution of log_age

Below are the vehicles frequency distributions plots of all major categorical variables in the data

Most vehicles have automatic transmission

Top vehicles brands are ford and chevrolet

Most vehicles are in excellent or good condition

Most vehicles have either 4, 6 or 8 cylinders

Top vehicles types are sedan, suv, truck, prickup

Most used vehicle colors are black, white, silver

Below are distribution plots of *log_price* split by some category variables like *fuel*, *transmission*

4cat Dataset - Variance of log_price is more when fuel is gas

4cat Dataset - log_price is more left skewed when transmission type is neither automatic nor manual

Below are the histogram distribution plots of *log_price* split by the category variable *condition*

left-top-excellent, left-down-fair, middle-top-good, middle-down-like new, right-top-new, right-down-salvage

As we expect, mean of *price* is higher when *condition* is excellent, like new or new. For salvage, the *price* is scattered all over with high variance as people are skeptical about salvaged vehicles.

2.3. Correlations among predictors

As we have continuous and categorical variables, we need to use Pearson linear correlation for continuous, chi-square test and Cramer for categorical, anova test for continuous and categorical. Pearson correlation coefficients between *price* and *age* in *4cat*, *price*, *age* and *odometer* in *9cat*

2 Varia	bles: log_price lo	g_age	3 Variables	s: log_price	log_age lo	g_odometer
	ation Coefficients	*	Pearson Co Pro	rrelation Co ob > r und		
Prob :	> r under H0: Rh	10=0		log_price	log_age	log_odometer
	log_price	log_age	log_price	1.00000	-0.60279	-0.51291
log price	1.00000	-0.57035			<.0001	<.0001
- Iog_prioc		<.0001	log_age	-0.60279 <.0001	1.00000	0.55334 <.0001
log_age	-0.57035 <.0001	1.00000	log_odometer	-0.51291 <.0001	0.55334 <.0001	1.00000

Mantel-Haenszel chi-square test and cramer's v score between categorical variables in *4cat* table

Statistics for Table of fuel by title_status

Statistics for Table of fuel by transmission

Statistic	DF	Value	Prob	Statistic	DF	Value	Prob
Chi-Square	20	5781.8500	<.0001	Chi-Square	8	13178.6336	<.0001
Likelihood Ratio Chi-Square	20	6632.9706	<.0001	Likelihood Ratio Chi-Square	8	8073.7620	<.0001
Mantel-Haenszel Chi-Square	1	26.4642	<.0001	Mantel-Haenszel Chi-Square	1	355.8534	<.0001
Phi Coefficient		0.0622		Phi Coefficient		0.0939	
Contingency Coefficient		0.0621		Contingency Coefficient		0.0935	
Cramer's V		0.0311		Cramer's V		0.0664	

Statistics for Table of fuel by manufacturer

Statistics for Table of title_status by transmission

Statistic	DF	Value	Prob	Statistic	DF	Value	Prob
Chi-Square	132	200966	<.0001	Chi-Square	10	11082.7679	<.0001
Likelihood Ratio Chi-Square	132	165398	<.0001	Likelihood Ratio Chi-Square	10	6420.7090	<.0001
Mantel-Haenszel Chi-Square	1	12.59120	0.0004	Mantel-Haenszel Chi-Square	1	25.8547	<.0001
Phi Coefficient		0.36685		Phi Coefficient		0.0861	
Contingency Coefficient		0.34441		Contingency Coefficient		0.0858	
Cramer's V		0.18343		Cramer's V		0.0609	

Statistics for Table of title_status by manufacturer

Statistics for Table of transmission by manufacturer

Statistic	DF	Value	Prob	Statistic	DF	Value	Prob
Chi-Square	165	12775.3827	<.0001	Chi-Square	66	76708.8443	<.0001
Likelihood Ratio Chi-Square	165	11944.4375	<.0001	Likelihood Ratio Chi-Square	66	68250.3476	<.0001
Mantel-Haenszel Chi-Square	1	155.8603	<.0001	Mantel-Haenszel Chi-Square	1	4326.6619	<.0001
Phi Coefficient		0.0925		Phi Coefficient		0.2266	
Contingency Coefficient		0.0921		Contingency Coefficient		0.2210	
Cramer's V		0.0414		Cramer's V		0.1603	

Mantel-Haenszel chi-square test and Cramer's V score between categorical variables in *9cat* table Statistics for Table of condition by cylinders Statistics for Table of condition by drive

Statistic	DF	Value	Prob	Statistic	DF	Value	Prob
Chi-Square	35	16092.8445	<.0001	Chi-Square	10	1283.1305	<.0001
Likelihood Ratio Chi-Square	35	18192.1653	<.0001	Likelihood Ratio Chi-Square	10	1273.3594	<.0001
Mantel-Haenszel Chi-Square	1	1298.1592	<.0001	Mantel-Haenszel Chi-Square	1	238.2943	<.0001
Phi Coefficient		0.1910		Phi Coefficient		0.0539	
Contingency Coefficient		0.1876		Contingency Coefficient		0.0538	
Cramer's V		0.0854		Cramer's V		0.0381	

Statistics for Table of condition by type

Statistics for Table of condition by paint_color

Statistic	DF	Value	Prob	Statistic	DF	Value	Prob
Chi-Square	60	5529.9988	<.0001	Chi-Square	55	7070.8815	<.0001
Likelihood Ratio Chi-Square	60	5534.1236	<.0001	Likelihood Ratio Chi-Square	55	6807.0878	<.0001
Mantel-Haenszel Chi-Square	1	238.2314	<.0001	Mantel-Haenszel Chi-Square	1	0.3827	0.5362
Phi Coefficient		0.1119		Phi Coefficient		0.1266	
Contingency Coefficient		0.1112		Contingency Coefficient		0.1256	
Cramer's V		0.0501		Cramer's V		0.0566	

Statistics for Table of cylinders by drive

Statistics for Table of cylinders by type

Statistic	DF	Value	Prob	Statistic	DF	Value	Prob
Chi-Square	14	135371	<.0001	Chi-Square	84	191688	<.0001
Likelihood Ratio Chi-Square	14	154404	<.0001	Likelihood Ratio Chi-Square	84	189312	<.0001
Mantel-Haenszel Chi-Square	1	1189	<.0001	Mantel-Haenszel Chi-Square	1	85.97904	<.0001
Phi Coefficient		0.55384		Phi Coefficient		0.65905	
Contingency Coefficient		0.48449		Contingency Coefficient		0.55029	
Cramer's V		0.39162		Cramer's V		0.24910	

Statistics for Table of cylinders by paint_color

Statistics for Table of drive by type

Statistic	DF	Value	Prob	Statistic	DF	Value	Prob
Chi-Square	77	13034.0112	<.0001 Chi-Square		24	266314	<.0001
Likelihood Ratio Chi-Square	77	13515.4863	<.0001	Likelihood Ratio Chi-Square	24	290685	<.0001
Mantel-Haenszel Chi-Square	1	163.9275	<.0001	Mantel-Haenszel Chi-Square	1	9507	<.0001
Phi Coefficient		0.1719		Phi Coefficient		0.77681	
Contingency Coefficient		0.1694		Contingency Coefficient		0.61347	
Cramer's V		0.0650		Cramer's V		0.54929	

Statistics for Table of drive by paint_color

Statistics for Table of type by paint_color

Statistic	DF	Value	Prob	Statistic	DF	Value	Prob
Chi-Square	22	10150.7946	<.0001	Chi-Square	132	36600.8363	<.0001
Likelihood Ratio Chi-Square	22	9928.4219	<.0001	Likelihood Ratio Chi-Square	132	33884.4508	<.0001
Mantel-Haenszel Chi-Square	1	871.7726	<.0001	Mantel-Haenszel Chi-Square	1	1231.0941	<.0001
Phi Coefficient		0.1517		Phi Coefficient		0.2880	
Contingency Coefficient		0.1499		Contingency Coefficient		0.2767	
Cramer's V		0.1072		Cramer's V		0.0868	

Anova between log_age, log_odometer and other categorical variables in 4cat and 9cat datasets

		D	ependent Va	riable: log_ag	е		Dependent Variable: log_age Dependent Variable: log_age													
Source	DF		Type I SS	Mean Square	F Value	Pr > F	Source	D	F	Type I SS	Mean Square	F Value	Pr > F							
fuel	4	52	39.610384	1309.902596	3048.54	<.0001	title_status	8	5 1	12562.24688	2512.44938	5914.73	<.0001							
Source	DF	Т	ype III SS	Mean Square	F Value	Pr > F	Source	D	F	Type III SS	Mean Square	F Value	Pr > F							
fuel	4	52	39.610384	1309.902596	3048.54	<.0001	title_status	3	5 1	2562.24688	2512.44938	5914.73	<.0001							
			Dependent V	ariable: log_ag	e					Dependent	⊣ Variable: log_ag	je								
Source		DI	F Type IS	S Mean Squa	re F Value	Pr > F	Source		DF	Type I S	S Mean Square	F Value	Pr > F							
transmis	sior	1	2 34783.621	35 17391.8109	92 42429.7	<.0001	manufactu	ırer	33	32668.8609	989.96548	3 2406.79	<.0001							
Source	DI	E Tune III 6	S Mean Squa	re F Value	Pr>F	Source		DF	Type III 6	S Moon Square	F Value	Pr > F								
												<.0001								
Dependent Variable: log_age Dependent Variable: log_odometer Source DF Type I SS Mean Square F Value Pr > F Source DF Type I SS Mean Square F Value Pr > F Source DF Type I SS Mean Square F Value Pr > F Source																				
Source				· ·		_		_			-		Pr > F							
condition	on	5	29575.3017	5915.0603	4 20421.4	<.0001	condition	1	5 4	1734.70179	8346.94036	17889.3	<.0001							
Source		DF	Type III S	Mean Squar	e F Value	Pr>F	Source	D	F	Type III SS	Mean Square	F Value	Pr > F							
condition	on	5	29575.3017	5915.0603	4 20421.4	<.0001	condition	1	5 4	1734.70179	8346.94036	17889.3	<.0001							
Dependent Variable: log_age																				
Source	D	F	Type I SS	Mean Square	F Value	Pr > F	Source	DI	F	Type I SS	Mean Square	F Value	Pr>							
cylinders	3	7 9	055.787797	1293.683971	3848.57	<.0001	cylinders	1	7 4	004.745567	572.106510	1036.27	<.000							
Source	D	F	Type III SS	Mean Square	F Value	Pr > F	Source	DI	F	Type III SS	Mean Square	F Value	Pr>I							
cylinders	3	7 9	055.787797	1293.683971	3848.57	<.0001	cylinders		7 4	004.745567	572.106510									
-			Dependent	Variable: log_	age			-)ере	endent Vari	able: log_odon	neter								
Source	DF	:	Type I SS	Mean Square	F Value	Pr > F	Source	DF	_			F Value	Pr > F							
drive	2	2 85	556.166704	4278.083352	12684.3	<.0001	drive	2	10	76.209379	538.104689	963.11	<.0001							
							-													
Source	DF		Type III SS	Mean Square	F Value	Pr > F	Source	DF	T	ype III SS	Mean Square	F Value	Pr > F							
drive	2	85	556.166704	4278.083352	12684.3	<.0001	drive	2	10	76.209379	538.104689	963.11	<.0001							
			Dependent	Variable: log_	age				Dep	endent Var	iable: log_odor	neter								
Source	e D	F	Type I SS	Mean Squar	e F Value	Pr > F	Source	DF		Type I SS	Mean Square	F Value	Pr > F							
type	1	2 (6407.875171	533.98959	8 1560.69	<.0001	type	12	515	51.924153	429.327013	781.32	<.0001							
Source	e D)F	Type III SS	Mean Squar	e F Value	Pr>F	Source	DF	т	ype III SS	Mean Square	F Value	Pr > F							
type	-	-	6407.875171	533.98959	_			12		51.924153	429.327013		<.0001							
31-				/ariable: log_a			, ,				iable: log odon									
Source		DF		S Mean Squar		e Pr>F	Source		DF	-	S Mean Square		Pr > F							
paint_co	olor	11		·				\rightarrow	11	2433.77367	· ·									
Source		DF	Type III S	S Mean Squar	re F Value	e Pr>F	Source		DF	Type III S	S Mean Square	F Value	Pr > F							
	olor	11		-					11	2433.77367	-									
panit_cc	paint_color 11 7961.516914 723.774265 2137.36 <.0001 paint_color 11 24				2433.11301	221.232132	330.19	\.UUU1												

3. Regression Models

We are building the following 4 regression models listed below using the GLM procedure in SAS.

Model 1 - log_price as the dependent and fuel, transmission, title_status as predictors on 4cat

Model 2 - log price as the dependent and manufacturer as predictors on 4cat

Model 3 - log price as the dependent and condition, cylinders, drive as predictors on 9cat

Model 4 - log_price as the dependent and type, paint_color as predictors on 9cat

3.1. Pricing Model with Fuel, Transmission, Title

			De	ependent \	/ariable:	log_price				Parameter	Estimate		Standard Error	t Value	Pr > ItI
Sou	rce		DF	Sum of	Squares	Mean Sq	uare I	F Value	Pr > F	Intercept	9.612392773	В	0.01664976	577.33	<.0001
Mod	lel		12	615	985.178	51332	2.098 7	7749.1	<.0001	log age	-0.898533306	F	0.00105250	-853.72	< 0001
Erro	r	1	1.49E6	985	894.560	C	0.660					_			
Corr	ected To	otal 1	1.49E6	1601	879.738					fuel diesel	0.641082792	В	0.00498403	128.63	<.0001
										fuel electric	-0.316091499	В	0.02366759	-13.36	<.0001
		R-Squ	uare	Coeff Var	Root MS	E log_p	rice Me	an		fuel gas	-0.244395652	В	0.00429852	-56.86	<.0001
		0.384	1539	9.197130	0.81254	14	8.8347	55		fuel hybrid	-0.252637438	В	0.00912867	-27.68	<.0001
	Source		DF	Type I	SS Mea	n Square	F Valu	ie Pr	> F	fuel other	0.000000000	В			
	log_age	,	1	521096.79	80 521	21096.7980 7		69 <.00	001	title_status clean	1.652348549	В	0.01556788	106.14	<.0001
	fuel		4	74424.03	06 18	606.0076	28181	.2 <.00	001	title_status lien	1.934548839	В	0.01663475	116.30	<.0001
	title_sta	atus	5	17138.06	37 3	427.6127	5191.	56 <.00	001	title_status missing	0.977651556	В	0.01834601	53.29	<.0001
	transmi	ission	2	3326.28	356 1	663.1428	2519.0	05 <.00	001	title_status rebuilt	1.481138926	В	0.01604784	92.30	<.0001
	Source		DF	Type III	SS Mea	n Square	F Valu	ie Pr	> F	title_status salvage	1.255873236	В	0.01630047	77.05	<.0001
	log age		1	481193.79	59 481	193.7959	7288		001	title_status parts onl	0.000000000	В		-	
	fuel		4	71929.72		982.4316		-		transmission automatic	-0.052636951	В	0.00528566	-9.96	<.0001
	title_sta	atus	5	17401.77	23 3	480.3545	5271.4	45 <.00	001	transmission manual	0.103643411	В	0.00567423	18.27	<.0001
	transmi	ission	2	3326.28	356 1	663.1428	2519.0	05 <.00	001	transmission other	0.000000000	В			

All estimates are found to be significant at 1% and \mathbb{R}^2 is 38%. From the above, we can interpret:

When the age of the vehicle increases by 10% then the sale price of the vehicle decreases by 9%. If the vehicle fuel type is diesel, then price is more by 64% when compared to "other" fuel type. If the vehicle fuel type is electric, then price is less by 31% when compared to "other" fuel type. If the vehicle fuel type is gas, then price is less by 24% when compared to the "other" fuel type. If the vehicle fuel type is hybrid, then price is less by 25% when compared with "other" fuel type. If the vehicle title status is clean, then price is more by 165% when compared to "parts only" title. If the vehicle title status is lien, then price is less by 193% when compared to "parts only" title. If the vehicle title status is rebuilt, then price is less by 148% when compared to "parts only" title. If the vehicle title status is salvage then price is less by 125% when compared to "parts only" title. If the vehicle transmission is automatic, price is less by 5% when compared to "other" transmission. If vehicle transmission is manual, price is more by 10% when compared to "other" transmission.

3.2. Pricing Model with Manufacturer

Dependent Variable: log_price											manufacturer dodge	-0.78151840	В	0.01933049	-40.43	<.0001	
Source			DF	Sum of Squares		e M	Mean Square		F Val	lue Dr	> F	manufacturer fiat	-0.94782378	В	0.02682164	-35.34	<.0001
Model			34					_			001	manufacturer ford	-0.49559572	В	0.01915195	-25.88	<.0001
		4	49E6 982848					0.658		1.0 <.0	001	manufacturer gmc	-0.28737663	В	0.01934987	-14.85	<.0001
	Error Corrected Total						0.036					manufacturer honda	-0.94177631	В	0.01929223	-48.82	<.0001
Corr	ected 10	otal 1.	1.49E6 1601679.730			30						manufacturer hyundai	-1.04862674	В	0.01964236	-53.39	<.0001
	R-Squ		are	Coeff Var	f Var Root MSE		log_price N		ean			manufacturer infiniti	-0.57187957	В	0.02048624	-27.92	<.0001
	0.386		140	9.182980 0.8		11294		8.834755				manufacturer jaguar	-0.49632065	В	0.02303129	-21.55	<.0001
												manufacturer jeep	-0.43443853	В	0.01933194	-22.47	<.0001
	Source			Type	Type I SS Mea		n Square F \		lue	Pr > F		manufacturer kia	-1.05157563	В	0.01982138	-53.05	<.0001
	log_age	;	1	1 521096.79		52109	6.7980	791703		<.0001	1	manufacturer lexus	-0.39497382	В	0.01996102	-19.79	<.0001
	manufacturer		33	97933.9858		296	7.6965	4508.82		<.0001		manufacturer lincoln	-0.68051203	В	0.02044438	-33.29	<.0001
			DF	T 111	Type III SS Mean		Square F Value		l	Pr > F		manufacturer mazda	-0.95731289	В	0.01984601	-48.24	<.0001
	Source log_age manufacturer			-71			Square	385 775795				manufacturer mercedes	-0.32901687	В	0.01966647	-16.73	<.0001
			1		10626.1385 510626 97933.9858 2967					<.0001		manufacturer mercury	-1.10232235	В	0.02078932	-53.02	<.0001
			33	97933.9			7.6965 4508.82 <		<.0001		manufacturer mini	-0.70779579	В	0.02171974	-32.59	<.0001	
							Stand	dard				manufacturer mitsubishi	-1.07686045	В	0.02069795	-52.03	<.0001
Para	Parameter				stimate	•	E	rror	t Val	ue Pr>	> t	manufacturer nissan	-0.94655933	В	0.01932818	-48.97	<.0001
Inte	rcept			11.67	11.67998703 B		0.01934005 603		603.	93 <.00	001	manufacturer pontiac	-0.92643823	В	0.01987464	-46.61	<.0001
log	_age			-0.91	-0.91179136		0.00103519 -880		-880.	79 <.00	001	manufacturer ram	-0.03984956	В	0.01941631	-2.05	0.0401
man	nufacture	er acur	а	-0.86	-0.86742663 B		0.02006	2006342 -43.		23 <.00	001	manufacturer rover	-0.13645735	В	0.02223451	-6.14	<.0001
man	manufacturer audi				-0.55984240 B		0.02026	26168 -27.		63 <.00	001	manufacturer saturn	-1.41639493	В	0.02092782	-67.68	<.0001
manufacturer bmw				-0.46	-0.46365622 B		0.01950	1950542 -23		77 <.00	001	manufacturer subaru	-0.72266733	В	0.01970657	-36.67	<.0001
man	nufacture	er buic	k	-0.89	-0.89020379 B		0.01986936 -		-44.	80 <.00	001	manufacturer toyota	-0.61944080	В	0.01924773	-32.18	<.0001
man	nufacture	er cadil	llac	-0.47	-0.47306003 B		0.01979686 -2		-23.	90 <.00	001	manufacturer volkswagen	-0.81911298	В	0.01956001	-41.88	<.0001
man	nufacture	er chev	rolet	t -0.47	-0.47596619 B 0		0.01915	01915690 -24.8		85 <.00	001	manufacturer volvo	-0.91483996	В	0.02067453	-44.25	<.0001
man	nufacture	er chry	sler	-1.02	-1.02437091 B 0.01965		864	-52.	11 <.00	001	manufacturer other	0.00000000	В			-	

The conclusions about relation between price and age still hold valid in this regression model too. All estimates are found to be significant at 5% and \mathbb{R}^2 is 38%. From the above, we can interpret:

Except Ram, all estimates are significant at 1%. Cheapest one is Saturn and costliest one is Ram. Other cheap vehicles include manufacturers like Mercury, Mitsubishi, Kia, Hyundai, and Chrysler. Other costly vehicles include manufacturers like Rover, GMC, Mercedes, Lexus, Jeep and BMW.

3.3. Pricing Model with Condition, Cylinders and Drive

		D	ependent	Variable:	log_price					_			Standard		
Source		D	E Cum of	Squares	es Mean Square F			F Value Pr >		Parameter	Estimate		Error	t Value	Pr > t
				•						Intercept	12.82102336	В	0.02155361	594.84	<.0001
Model	Model		6 2533	396.0195	15837.2	2512 47	263.2	<.0001	1	log_age	-0.70050183		0.00193574	-361.88	<.0001
Error	Error		1 1478	147877.4001		3351				log_odometer	-0.27698836		0.00147297	-188.05	<.0001
Corrected T	Corrected Total 4		7 4012	401273.4197						condition excellent	1.46748612	В	0.01405023	104.45	<.0001
	D Co	quare Coeff Var Root MSE log_price Mean							condition fair	0.39144406	В	0.01441897	27.15	<.0001	
	0.631		6.518141	0.57886	- 0_	8.88085				condition good	1.16247241	В	0.01404423	82.77	<.0001
	0.03	1400	0.510141	0.000033		condition like new	1.44691340	В	0.01427400	101.37	<.0001				
Source		DF	Type I	Type ISS Mean S		F Value	Pr	> F		condition new	1.12326102	В	0.01975394	56.86	<.0001
log_ag	log_age		145804.0	439 145	804.0439	435123	3 <.00	001		condition salvage	0.00000000	В			
log_od	log odometer		18605.6	277 18	605.6277	55524.8	5524.8 <.00			cylinders 10 cylinders	0.31015242	В	0.01329205	23.33	<.0001
conditi	condition		32753.2	641 6	550.6528	19549.1	.1 <.00	001		cylinders 12 cylinders	0.38009359	В	0.03495810	10.87	<.0001
cylinde	rs	7	40269.5	719 5	752.7960	17168.1	168.1 <.00	001		cylinders 3 cylinders	-0.61063134	В	0.02568106	-23.78	<.0001
drive		2	15963.5120 798		981.7560	23820.0) <.00	001		cylinders 4 cylinders	-0.32594400	В	0.00540527	-60.30	<.0001
										cylinders 5 cylinders	-0.26402011	В	0.01001218	-26.37	<.0001
Source		DF	Type III	SS Mea	n Square	F Value	Pr	> F		cylinders 6 cylinders	-0.18016605	В	0.00533035	-33.80	<.0001
log_ag	е	1	43881.38	498 438	81.38498	130955	<.00	001		cylinders 8 cylinders	0.15128080	В	0.00544797	27.77	<.0001
log_od	omete	er 1	11849.27	691 118	49.27691	35361.8	<.00	001		cylinders other	0.00000000	В			
conditi	on	5	29544.41	793 59	08.88359	17633.9	<.00	001		drive fwd	-0.49930729	В	0.00229314	-217.74	<.0001
cylinde	rs	7	11866.83	760 16	95.26251	5059.18	<.00	001		drive rwd	-0.13494144	В	0.00238495	-56.58	<.0001
drive	drive		15963.51	200 79	81.75600	23820.0	<.00	001		drive 4wd	0.00000000	В			

All estimates are found to be significant at 1% and \mathbb{R}^2 is 63%. From the above, we can interpret:

When the age of the vehicle increases by 10% then the sale price of the vehicle decreases by 7%. When odometer reading increases by 10% then the sale price of the vehicle decreases by 2.77%. If the vehicle condition is excellent, price is more by 146% when compared to a salvaged vehicle. If the vehicle condition is fair, then price is more by 39% when compare with a salvaged vehicle. If the vehicle condition is good, then price is more by 116% when compared to salvaged vehicle. If the vehicle condition is like new, price is more by 144% when compared with a salvaged vehicle. If the vehicle condition is new, then price is more by 112% when compared with salvaged vehicle. If the vehicle has 3 cylinders, then price is less by 61% when compared to "other" cylinders count. If the vehicle has 4 cylinders, then price is less by 32% when compared to "other" cylinders count. If the vehicle has 5 cylinders, then price is less by 26% when compared to "other" cylinders count. If the vehicle has 6 cylinders, then price is less by 18% when compared to "other" cylinders count. If vehicle has 8 cylinders, then price is more by 15% when compared to "other" cylinders count. If vehicle has 10 cylinders, then price is more by 31% when compared to "other" cylinders count. If vehicle has 12 cylinders, then price is more by 38% when compared to "other" cylinders count. If vehicle has front wheel drive, price is less by 50% when compared to four wheel drive vehicle. If vehicle has rear wheel drive, price is less by 13% when compared to a four wheel drive vehicle. As number of cylinders goes up, vehicle gets costly. Front wheel drive vehicles are more cheaper.

3.4. Price Model with Type and Color

		De	ependent V	ariable	: log_price	log_odometer	-0.33074449		0.00165238	-200.16	<.0001			
Source		DF	Sum of S	Sum of Squares		uare	F Value	Pr > F	type SUV	-0.01912623	В	0.01131892	-1.69	0.0911
Model		25	210097.4023		-		19399.2		type bus	0.37551053	В	0.03102759	12.10	<.0001
Error		141302				4332		4.0001	type converti	0.26779246	В	0.01251803	21.39	<.0001
						1332			type coupe	-0.03582146	В	0.01171610	-3.06	0.0022
Corrected To	otal 4	141327	401273.4		197				type hatchbac	-0.43384369	В	0.01218340	-35.61	<.0001
	R-Sar		quare Coeff Var Ro		ot MSE log pr		ean		type mini-van	-0.37052350	В	0.01257901	-29.46	<.0001
-	0.523	3577	7.411293			8.880	855		type offroad	0.37621092	В	0.01742038	21.60	<.0001
									type pickup	0.33788954	В	0.01153014	29.30	<.0001
Source		DF	DF Type I SS		ean Square	F Va	lue Pr	> F	type sedan	-0.42728121	В	0.01129058	-37.84	<.0001
log_age	9	1 145804.043		39 1	45804.0439	336567 <		001	type truck	0.40331506	В	0.01142219	35.31	<.0001
log_ode	omete	r 1	18605.6277		18605.6277	4294	8.4 <.0	001	type van	-0.10845854	В	0.01273539	-8.52	<.0001
type		12	43969.8856 36		3664.1571	664.1571 8458.		001	type wagon	-0.29423580	В	0.01300717	-22.62	<.0001
paint c	olor	11	1717.8451 1		156.1677	360	.49 <.0	001	type other	0.00000000	В			
pame		1		-					paint_color black	0.00435113	В	0.00681937	0.64	0.5234
Source		DF	Type III 9	SS M	ean Square	F Va	lue Pr	> F	paint_color blue	-0.11978805	В	0.00703158	-17.04	<.0001
log_age		1	56460.50868 56		6460.50868	1303	331 <.00	001	paint_color brown	-0.13654849	В	0.00856618	-15.94	<.0001
log_ode	omete	r 1	17356.608	17356.60834 1735		4006	5.2 <.0	001	paint_color green	-0.24409450	В	0.00799297	-30.54	<.0001
type		12	42323.638	50	3526.96987	8141	.50 <.0	001	paint_color grey	-0.04522703	В	0.00706922	-6.40	<.0001
paint c	olor	11	1717.845	10	156.16774	360	.49 <.0	001	paint_color orange	0.00812714	В	0.01430908	0.57	0.5701
punico	0101	1	17 17.040		100.10774	500	.10	301	paint_color purple	-0.23734662	В	0.01707889	-13.90	<.0001
					Standard				paint_color red	-0.12058141	В	0.00704129	-17.12	<.0001
Paramet	er		Estima		Erro			> [t]	paint_color silver	-0.08364177	В	0.00689901	-12.12	<.0001
Intercep	t		14.689131	03 B	0.0204225	6 719	9.26 <.0	0001	paint_color white	-0.02182426	В	0.00677128	-3.22	0.0013
log_age			-0.771237	60	0.0021363	1 -36	1.01 <.0	0001	paint_color yellow	0.08264198	В	0.01258758	6.57	<.0001
log_odo	meter		-0.330744	49	0.0016523	3 -200	0.16 <.0	0001	paint_color custom	0.00000000	В			

All the estimates except SUV type, Black and Orange colors, are significant at 1% and \mathbb{R}^2 is 52%.

When the age of the vehicle increases by 10% then the sale price of the vehicle decreases by 8%. When odometer reading increases by 10% then the sale price of the vehicle decreases by 3.31%. If vehicle type is Bus, Covertible, Offroad, Pickup, Truck then sale price is more than "other" type. If vehicle is SUV, Coupe, Hatchback, Mini-Van, Sedan, Van, Wagon, price is less than "other" type. All the above vehicle colors except for Yellow color have prices less than Custom colored vehicles. Purple and Green color vehicles have least sale price when compared to Custom colored vehicles.

4. Conclusion

According to our regression results, a vehicle with below attributes fetches best possible price:

A Pickup, Truck or Offroad type vehicle that is in New or Excellent condition with Diesel fuel type and Clean title status, having Manual transmission, more than 6 cylinders and Four wheel drive, manufactured by Ram, Rover, GMC, Mercedes, Lexus, Jeep or BMW will get the highest sale price.