Engineering Optics Lecture 18

25/04/2023

Debolina Misra

Assistant Professor Department of Physics IIITDM Kancheepuram, Chennai, India

Production of linearly polarized light

Fig. 1. The crystal structure of herapathite. Iodine atoms are purple spheres. The absorbing axis is vertical. Solvent molecules and sulfate ions have been removed for clarity. See also figs. S2 and S3.

$$\Theta = \Theta_p = \tan^{-1} \left(\frac{n_2}{n_1} \right)$$

Brewster's law

Problem:1

What will be the Brewster angle for a glass slab immersed in water?

Answer:

The expression for the Brewster's angle is,

$$\theta_p = \tan^{-1} \left(\frac{n_2}{n_1} \right)$$

Substitute $\frac{4}{3}$ for n_1 and 1.5 for n_2 .

$$\theta_p = \tan^{-1} \left(\frac{1.5}{\left(\frac{4}{3} \right)} \right)$$
$$= \tan^{-1} \left(1.125 \right)$$
$$= 48.4^{\circ}$$

Hence, the Brewster's angle is 48.4°

Polarization of light

Malus' Law

Fig. 22.15 An unpolarized light beam gets *x*-polarized after passing through the polaroid P_1 , the pass axis of the second polaroid P_2 makes an angle θ with the *x* axis. The intensity of the emerging beam will vary as $\cos^2 \theta$.

Amplitude

 $E = E_0 \cos\theta$

Intensity

$$I = I_0 \cos^2 \theta$$

Malus' Law

Optics, Ghatak

Problem:2

The electric field of a 1000 W/m² linearly polarized lightbeam oscillates at $+10.0^{\circ}$ from the vertical in the first and third quadrants. The beam passes perpendicularly through two consecutive ideal linear polarizers. The transmission axis of the first is at -80.0° from the vertical in the second and fourth quadrants. And that of the second is at $+55.0^{\circ}$ from the vertical in the first and third quadrants. (a) How much light emerges from the second polarizer? (b) Now interchange the two polarizers without altering their orientations and determine the amount of light that emerges. Explain your answers.

Answer:

(a) The incident light (at $+10^{\circ}$) is perpendicular to the transmission axis of the first polarizer (at -80°) and so no light leaves it and no light leaves the second polarizer. (b) With the polarizers interchanged, the light now oscillates at 45.0° to the transmission axis of the first polarizer, which, via Malus's Law, passes (I_1) where

$$I(\theta) = I(0)\cos^2\theta$$

and so here

$$I_1 = (1000 \text{ W/m}^2)\cos^2 45.0^\circ$$

Hence

$$I_1 = 500 \text{ W/m}^2$$

This light, oscillating at $+55.0^{\circ}$, makes an angle of 45.0° with the transmission axis of the new second polarizer. Therefore the irradiance emerging from it (I_2) is

$$I_2 = (500 \text{ W/m}^2) \cos^2 45.0^\circ$$

$$I_2 = 250 \text{ W/m}^2$$

Thank You