République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université des Frères Mentouri Constantine 1, Faculté des Sciences de la Technologie, Département d'Electronique

Modélisation et commande des Robots de manipulation

TD modèle géométrique directe

Master 2 AII
Automatique et Informatique Industrielle

Exercice: 1

Soit le robot anthropomorphe suivant:

- 1. Placer les repères selon DH
- 2. Etablir la table de DH
- 3. Calculer les matrices de transformations et en déduire la matrice POS.
- Exprimer la position de l'extrémité de l'effecteur en fonction des variables articulaires

04/01/2021

Exercice: 1 (Solution)

1. Placement des repères selon DH

2. Table de DH

Segment	a_i	α_i	d_i	θ_i
1	0	$\pi/2$	0	$ heta_1$
2	l_2	0	0	θ_2
3	l_3	0	0	θ_3

3. Matrices de transformation

$$R_1^0 = \begin{bmatrix} C1 & 0 & S1 & 0 \\ S1 & 0 & -C1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad R_2^1 = \begin{bmatrix} C2 & -S2 & 0 & L_2C2 \\ S2 & C2 & 0 & L_2S2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_3^2 = \begin{bmatrix} C3 & -S3 & 0 & L_3C3 \\ S3 & C3 & 0 & L_3S3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $z_0 \downarrow y_1$

 χ_0

Exercice: 1 (Solution)

1. Placement des repères selon DH

2. Table de DH

Segment	a_i	α_i	d_i	$ heta_i$
1	0	$\pi/2$	0	$ heta_1$
2	l_2	0	0	θ_2
3	l_3	0	0	θ_3

3. Matrices de transformation

$$T = R_1^0. R_2^1. R_3^2$$

$$\mathbf{T} = \begin{bmatrix} C1C23 & -C1S23 & S1 & C1(L_2C2 + L_3C23) \\ S1C23 & -S1S23 & -C1 & S1(L_2C2 + L_3C23) \\ S23 & C23 & 0 & L_2S2 + L_3S23 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} C1(L_2C2 + L_3C23) \\ S1(L_2C2 + L_3C23) \\ L_2S2 + L_3S23 \end{bmatrix}$$

5. Vérification du modèle

Exercice: 2

Soit l'organe terminal de type sphérique représenté par la figure ci-contre.

- 1. Placer les repères selon DH
- 2. Etablir la table de DH
- Calculer les matrices de transformations et en déduire la matrice POS.

04/01/2021

Exercice: 2 (Solution)

1. Placement des repères selon DH

2. Table DH

Segment	a_i	α_i	d_i	θ_i
1	0	$-\pi/2$	0	$ heta_4$
2	0	$\pi/2$	0	$ heta_5$
3	0	0	d	θ_6

$$R_4^3 = \begin{bmatrix} C4 & 0 & -S4 & 0 \\ S4 & 0 & C4 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad R_5^4 = \begin{bmatrix} C5 & 0 & S5 & 0 \\ S5 & 0 & -C5 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
0 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
-S6 & 0 & 0 \\
C6 & 0 & 0
\end{bmatrix}$$

$$R_6^5 = \begin{bmatrix} C6 & -S6 & 0 & 0 \\ S6 & C6 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exercice: 2 (Solution)

1. Placement des repères selon DH

2. Table DH

Segment	a_i	α_i	d_i	θ_i
1	0	$-\pi/2$	0	$ heta_4$
2	0	$\pi/2$	0	$ heta_5$
3	0	0	d	θ_6

$$T = R_4^3 . R_5^4 . R_6^5$$

$$T = \begin{bmatrix} C4C5C6 - S4S6 & -C4C5S6 - S4C6 & C4S5 & C4S5d \\ S4C5C6 + C4S6 & -S4C5S6 + C4C6 & S4S5 & S4S5d \\ -S5S6 & C5S6 & C5 & C5d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exercice: 3

Soit le robot (RR) ci-dessous représenté dans sa position de référence où toutes les coordonnées articulaires sont nulles :

- 1. Compléter sur la figure les axes manquants.
- 2. Donner la table de DH de ce robot.
- 3. Calculer les matrices de transformation homogènes T_0^1 et T_1^2 . En déduire la matrice POS.
- 4. Exprimer la position de l'extrémité de l'effecteur en fonction des variables articulaire.
- 5. Calculer la matrices POS pour $(q_1 = q_2 = 0)$ et $(q_1 = 0, q_2 = \frac{-\pi}{2})$. Vérifier la validité du modèle géométrique sur ces cas particuliers. Pour chaque cas, représenter par une figure la position du robot.

Exercice: 3 (Solution)

1. Axes manquants.

2. Table de DH.

Segment	a_i	α_i	d_i	$ heta_i$
1	0	$-\pi/2$	l_1	$ heta_1$
2	l_2	π	0	$ heta_2$

3. Matrice POS.

$$R_1^0 = \begin{bmatrix} C1 & 0 & -S1 & 0 \\ S1 & 0 & C1 & 0 \\ 0 & -1 & 0 & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R_2^1 = \begin{bmatrix} C2 & S2 & 0 & L_2C2 \\ S2 & -C2 & 0 & L_2S2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$POS = R_1^0. R_2^1 = \begin{bmatrix} C1C2 & C1S2 & S1 & L_2C1C2 \\ S1C2 & S1S2 & -C1 & L_2S1C2 \\ -S2 & C2 & 0 & -L_2S2 + L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exercice: 3 (Solution)

4. Matrice POS pour $(\theta_1, \theta_2) = (0,0)$.

$$POS = \begin{bmatrix} 1 & 0 & 0 & L_2 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Le robot est dans cette position

04/01/2021

Exercice: 3 (Solution)

4. Matrice POS pour $(\theta_1, \ \theta_2) = (0, -\pi/2)$.

$$POS = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & L_1 + L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Le robot est dans cette position

Exercice: 3 (Solution)

. Matrice POS pour $(\theta_1, \theta_2) = (0,0)$.

$$POS = \begin{bmatrix} 1 & 0 & 0 & L_2 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

. Matrice POS pour $(\theta_1, \theta_2) = (0, -\pi/2)$.

$$POS = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & L_1 + L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

