題號: 421 科目: 數學

國立臺灣大學97學年度碩士班招生考試試題

題號: 421

共 2 頁之第 |

1一10题为项元题,请依题號将答案项寫於答案卷上。

1.
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} =$$
____(5%)

$$2. \begin{bmatrix} 3 & 1 & 4 \\ 2 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}^{-1} = \underline{\qquad \qquad (5\%)}$$

$$3.\det(2I_n) = (5\%)$$

4. If
$$A \in \mathbb{R}^{8\times7}$$
 and $rank(A) = 3$, then $nullity(A^T) =$ (5%)

5. If
$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$
, then $(I_5 + 2\mathbf{u}\mathbf{u}^T)(I_5 + \mathbf{u}\mathbf{u}^T)^{-1}\mathbf{u} = \underline{\qquad (5\%)}$

6. If
$$\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$$
 and $rank(I_n + \mathbf{u}\mathbf{v}^T) = \begin{cases} n & \text{if } \mathbf{v}^T \mathbf{u} \neq [c] \\ d & \text{if } \mathbf{v}^T \mathbf{u} \neq [c] \end{cases}$

then
$$(c,d) = ___(5\%)$$

7. The set
$$\{ rank(the \ adjo \ int \ of \ A) \mid A \in \mathbb{R}^{7 \times 7} \}$$
 contains _____ integers (5%)

8. If
$$\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$$
 are all the eigenvalues of the matrix

$$\begin{bmatrix} 4 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 3 \end{bmatrix}.$$

Then
$$\lambda^2 + \lambda_2^2 + \lambda_3^2 + \lambda_4^2 + \lambda_5^2 =$$
 (5%)

9. If
$$S = \left\{ \frac{|x+y-z| + |x-y+z| + |x+y+3z|}{|3x+y+4z| + |2x+2y+3z| + |2x+y+3z|} | x, y, z \in \mathbb{R} & x^2 + y^2 + z^2 \neq 0 \right\}$$
,

then the largest number in S is _____(5%)

10. If
$$S = \{ \frac{4x^2 + 2y^2 + 2z^2 + 4xy + 2yz}{x^2 + 2y^2 + 2z^2 + 2xy + 2yz} | x, y, z \in \mathbb{R} \& x^2 + y^2 + z^2 \neq 0 \}$$
, then the

smallest number in S is _____(5%)

國立臺灣大學97學年度碩士班招生考試試題

題號: 421 科目: 數學

題號:421

共 2 頁之第 2 頁

11. Suppose that $(K, \cdot, +)$ is a Boolean algebra. Prove that $\overline{(\overline{a})} = a$ for every $a \in K$, where \overline{a} is the complement of a. (10%)

- 12. Suppose that $(R, +, \cdot)$ is a ring and $S \subset R$ is not empty. Prove that $(S, +, \cdot)$ is a subring of R
 - (a) if for $a, b \in S$, $a + (-b) \in S$ and $a \cdot b \in S$, where -b is the additive inverse of b; (10%)
 - (b) if S is finite and for $a, b \in S$, $a+b \in S$ and $a \cdot b \in S$. (10%)
- 13. For each positive integer $n \ge 2$, define $\phi(n)$ to be the number of positive integers m with gcd(n, m) = 1, where $1 \le m < n$. For example, $\phi(3) = 2$, $\phi(4) = 2$, and $\phi(p) = p 1$ if p is prime. Prove that if $n = p_1^{e_1} \times p_2^{e_2} \times p_3^{e_3}$, where p_1 , p_2 , p_3 are three distinct primes and e_1 , e_2 , $e_3 \ge 1$ are integers, then $\phi(n) = n \times (1 \frac{1}{p_1})(1 \frac{1}{p_2})(1 \frac{1}{p_3})$. (10%)
- 14. Suppose that G = (V, E) is an undirected graph, where $V = \{v_1, v_2, ..., v_n\}$ and $n \ge 2$. For $1 \le i \le n$, let d_i be the degree of v_i . Prove that if $d_i + d_j \ge n 1$ for all $v_i, v_j \in V$ and $v_i \ne v_j$, then G is connected. (10%)