18.022 Recitation Quiz (with solutions) 17 November 2014

1. Consider the two parametrizations of the line segment S from (0,0) to (3,3) given by

$$\mathbf{x}_1(t) = (t, t)$$
 $0 \le t \le 3$
 $\mathbf{x}_2(t) = (2t, 2t)$ $0 \le t \le 3/2$.

- (a) Evaluate the line integral $\int_{S} x^2 dx + y dy$ using the parametrization x_1 .
- (b) Evaluate the line integral $\int_S x^2 dx + y dy$ using the parametrization x_2 .

Solution. Using x_1 , we get

$$\int_0^3 t^2 dt + t dt = \left[t^3 / 3 + t^2 / 2 \right]_0^3 = \boxed{27/2}$$

Using x_2 , we get

$$\int_0^{3/2} (2t)^2 2dt + (2t) 2dt = \left[4t^3/3 + t^2\right]_0^{3/2} = \boxed{27/2}.$$

This result is consistent with the parametrization-independence of the line integral.