universität freiburg

Measure theory for probabilists

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024WS_measure_theory.html

https://www.stochastik.uni-freiburg.de/

Tutorial 9 - \mathcal{L}^p -spaces

Exercise 1 (4 Points).

For f in $\mathcal{L}^1[a,b]$, define $||f|| = \int_a^b x^2 |f(x)| dx$. Show that this is a norm on $\mathcal{L}^1[a,b]$.

Exercise 2 (4 Points).

For E a measurable set, and functions f in $\mathcal{L}^p(E)$, g in $\mathcal{L}^q(E)$ such that $\frac{1}{p} + \frac{1}{q} = 1$, define

$$||f||_p = \left[\int_E |f|^p\right]^{\frac{1}{p}}.$$

Show that if Hölder's Inequality is true for normalized functions, it is true in general.

Exercise 3 (4 Points).

Let $f: \Omega \to \mathbb{R}$ be measurable. Show that the following hold.

- If $\int |f|^p d\mu < \infty$ for some $p \in (0,\infty)$, then $||f||_p \xrightarrow{p \to \infty} ||f||_\infty$
- The integrability condition in (i) cannot be waived.

Exercise 4 (4 Points).

Let $p \in (1,\infty)$, $f \in \mathcal{L}^p(\lambda)$, where λ is the Lebesgue measure on \mathbb{R} . Let $T : \mathbb{R} \to \mathbb{R}$, $x \mapsto x + 1$. Show that

$$\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k \xrightarrow{n \to \infty} 0 \text{ in } \mathcal{L}^p(\lambda).$$