MATHEMATICAL REASONING Chapter 16

3th
SECONDA
RY

SERIES I

DEFINICIÓN

Es la adición indicada de los términos de una sucesión. Es decir, sea la sucesión:

$$t_1$$
; t_2 ; t_3 ; t_4 ; ...; t_n

Entonces:

$$t_1 + t_2 + t_3 + t_4 + \dots + t_n = S$$

$$SERIE \qquad VALOR DE$$

$$LA SERIE$$

Donde,

$$t_k$$
: Forma General de los Sumandos

CLASIFICACIÓN

SERIE ARTIMÉTICA

Es la adición indicada de los términos de una Sucesión Aritmética.

Por Ejemplo

Calcule el valor de la serie

$$1^{\circ}$$
 2° 3° ... 9° 10° $S = 5 + 8 + 11 + \dots + 29 + 32$

Calculamos el valor de la serie así:

$$S = 5 + 8 + 11 + \dots + 29 + 32$$

$$S = 32 + 29 + 26 + \dots + 8 + 5$$

$$2S = 37 + 37 + 37 + \dots + 37 + 37$$

$$\Rightarrow S = \frac{(5 + 32) \times}{2} = \underline{185}$$

ENGENERAL

$$S.A. = \left(\frac{t_1 + t_n}{2}\right)n$$

Donde, t_1 : Primer sumando

 t_n : Último sumando

n: Cantidad de sumandos

Calcule el valor de la serie.

$$I^{\circ}$$
 Z° J° ... J° 10°
 $S = 5 + 8 + 11 + \dots + 29 + 32$

$$S = \left(\frac{5+32}{2}\right)^{\frac{5}{10}}$$

$$S = (37)5$$

$$S = 185$$

SERIES NOTABLES

Dentro de las Series más comunes podemos mencionar a las siguientes:

SERIEDELOS PRIMEROS NÚMEROS NATURALES

$$S = 1 + 2 + 3 + \dots + (n - 1) + n$$
 \longrightarrow $S = \frac{n(n+1)}{2}$

SERIE DE LOS PRIMEROS NÚMEROS PARES

$$S = 2 + 4 + 6 + 8 + \dots + 2n$$

$$\longrightarrow S = n(n+1)$$

SERIE DE LOS PRIMEROS NÚMEROS IMPARES

$$S = 1 + 3 + 5 + 7 + \dots + (2n - 1)$$

$$S = n^2$$

SERIE DE LOS PRIMEROS NÚMEROS CUADRADOS

$$S = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2$$
 \longrightarrow $S = \frac{n(n+1)(2n+1)}{6}$

$$S = \frac{n(n+1)(2n+1)}{6}$$

☐ SERIEDELOS PRIMEROS NÚMEROS CÚBICOS

$$S = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3$$
 \longrightarrow $S = \left(\frac{n(n+1)}{2}\right)^2$

$$S = \left(\frac{n(n+1)}{2}\right)^2$$

Marcia es una comerciante de un mercado que presta dinero a sus socios y anota lo que presta en una libreta. Si después de 40 días decide sacar la cuenta de cuánto ha prestado a sus socios llegando a anotar la siguiente sumatoria en su libreta:

$$S = 3 + 8 + 13 + 18 + \cdots$$
40 sumandos

¿Cuánto fue lo que prestó?

Resolución:

$$40 \text{ sumandos}$$
 $-2 3 + 8 + 13 + 18 + \cdots$
 $+5 + 5 + 5 + 5 + 5$

$$t_n = 5n - 2$$

$$t_{40} = 5(40) - 2$$

$$t_{40} = 198$$

$$S = \left(\frac{3 + 198}{2}\right)^{46}$$

$$S = (201)20$$

$$S = 4020$$

.. Prestó: 4020

Calcule la suma de los 20 primeros números enteros positivos que son múltiplos de 9.

Recordemos:

$$S = \frac{n(n+1)}{2}$$

Halle el valor de la serie:

$$12 + 18 + 24 + 30 + \cdots + 186$$

Recordemos:

$$S.A. = \left(\frac{t_1 + t_n}{2}\right)n$$

Resolución:

$$t_n = 6n + 6$$

 $186 = 6n + 6$

$$186 = 6n + 6$$

$$180 = 6n$$

$$30 = n$$

$$S = \left(\frac{12 + 186}{2}\right)^{30}$$

$$S = (198)15$$

$$S = 2970$$

HELICO | PRACTICE

PROBLEMA 4

Geovani es el papá de Ronald quien es profesor de Literatura. Geovani le propone a su hijo ir al cine pero le pone como condición un reto matemático que consiste en resolver el siguiente problema:

Efectúe:

$$2 + 4 + 6 + 8 + \cdots + 80$$

¿Cuál fue su respuesta?

Recordemos:

$$S = n(n+1)$$

Resolución: 1° 2° 3° 4° ... n° 2 + 4 + 6 + 8 + ... + 80 +2 + 2 + 2 + 2

$$t_n = 2n$$

 $80 = 2n$
 $40 = n$
 $S = \left(\frac{2 + 80}{2}\right)$
 $S = (82)20$

Otra forma:

$$S = 2 + 4 + 6 + 8 + \dots + 80 \rightarrow n = 40$$

 $S = 40(41)$
 $S = 1640$
 $\therefore 1640$

S = 1640

Ricardo se había comprado el álbum del mundial Rusia 2018 y para completarlo, decidió comprar figuritas de la siguiente manera: El primer día compró 1, el segundo día compro 3, el tercer día compró 5, el cuarto día compró 7 y así sucesivamente hasta que el último día compró 8 veces de lo que compró el tercer día, aumentado en 19. Podría usted decir, ¿cuántas figuritas compró en total Ricardo?

Recordemos:

$$S = n^2$$

Resolución:

Otra forma:

$$S = 1 + 3 + 5 + 7 + \dots + 59 \rightarrow n = 30$$

 $S = (30)^2$
 $S = 900$ \therefore 900

HELICO | PRACTICE

PROBLEMA 6

El alumno Víctor al estar desarrollando su tarea semanal se confundió al resolver el siguiente problema:

Halle el valor de la serie:

$$H = 1^2 + 2^2 + 3^2 + 4^2 + \dots + 20^2$$

Si la respuesta de Víctor fue de 10 unidades más que la correcta.

¿Cuál fue la respuesta de Víctor?

Resolución:

$$H = 1^2 + 2^2 + 3^2 + 4^2 + \dots + 20^2$$

$$\rightarrow n = 20$$

Recordemos:

$$S = \frac{n(n+1)(2n+1)}{6}$$

Reemplazando:

$$H = \frac{{10 \choose 20(21)(41)}}{{8 \choose 2}}$$

$$H = 70(41)$$

$$\rightarrow H = 2870$$

Respuesta de Víctor:

Halle el valor de la serie:

$$N = 1^3 + 2^3 + 3^3 + 4^3 + \dots + 10^3$$

Resolución:

$$N = 1^3 + 2^3 + 3^3 + 4^3 + \dots + 10^3$$

$\rightarrow n = 10$

Recordemos:

$$S = \left(\frac{n(n+1)}{2}\right)^2$$

Reemplazando:

$$N = \left(\frac{15(11)}{2}\right)^2$$

$$N = (55)^2 \rightarrow N = 3025$$

En una dinámica del aula del 1er año se ordenan 210 vasos en forma conveniente logrando formar un triángulo equilátero. ¿Cuántos vasos deben ubicarse en la base?

Recordemos:

$$S = \frac{n(n+1)}{2}$$

Resolución:

$$\frac{n(n+1)}{2} = 210$$

$$n(n+1) = 420$$

$$n = 20$$

