

TAGON

Temporal Attention
Graph Optimized
Networks for Sequential
Recommendation

Pathak Siddhant (U2023715K)

Supervisor: Assoc Prof Ke Yiping, Kelly

Examiner: Dr. Huang Shell Ying

Introduction – Sequential Recommendation (SR)

- Personalized recommendations by considering past actions and recent behavior
- SR emphasize interaction order and timing; capture immediate and short-term user interest besides global trend
- Traditional recommendation treat all historical interactions with equal relevance; provides static suggestions based on overall data

Problem Formulation for Sequential Recommendation

Given a user u and their sequence of interactions with items $S = [(i_1 \ t_1), (i_2 \ t_2), \dots (i_n \ t_n)]$, such systems aim to maximize the probability $\mathbb{P}(i|(u,S))$ of recommending the next item i that the user is most likely to engage with:

$$\operatorname{argmax}_{i \in I} \mathbb{P}(i|(u,S))$$

Introduction – Sequential Recommendation (SR) - Example

Problem Statement

Problem

Traditional recommendation systems often neglect the temporal dynamics of user-item interactions, leading to outdated or irrelevant suggestions.

Claim

TAGON address this by integrating temporal dynamics, improving recommendation relevance and timeliness, combining best of graph-based and attention-based learning mechanisms.

- Introduces temporal dynamics into recommendation systems
- Graph Neural Networks enhanced with a temporal attention mechanism
- Adapts dynamically to both sequential and temporal user interactions
- Promises enhanced user engagement through intelligent, context-aware suggestions

Inspiration behind TAGON - TGSRec

- Developed by Fan et al., 2021
- Introduced a way to fuse different modes of information interactions + temporal data
- Models time as an encoding mechanism instead of node feature
- Blends together Graph Neural Networks with Attention-based Learning
- Leverages only cross-attention for item and user embedding based refinement
- Does not focus on the relative ordering of items per interaction sequence explicitly

Building Blocks – Graph Neural Networks (GNNs)

- Models connections between nodes in graph-based data
- Uses message passing for information propagation across nodes
- Learns complex patterns and global graph properties
- Enhances node representations through iterative aggregation and update functions

Building Blocks – Transformers and Attention

- Consists of encoder and decoder with multiple layers
- Utilizes positional encodings to maintain sequence order awareness
- Applies dot-product attention for dynamic weighting of sequence

Transformer architecture [4]

- Computes weights to emphasize relevant parts of data
- Allows models to focus dynamically during processing
- Utilized in networks to enhance feature aggregation

Building Blocks – Sequential Time Data

- Encode time intervals between interactions into vectors
- Utilize a time-encoding function to map timestamps
- Used as an alternative to the traditional positional encoding for attention mechanisms

Bochner's Theorem for Timestamp-based Encoding

For a user u and interactions $(i_1 \ t_1)$ and $(i_2 \ t_2)$, the time impact is defined as a function of the elapsed time between these events. Formally, it is expressed as:

$$\psi(\mathsf{t}_2 - \mathsf{t}_1) = \phi(\mathsf{t}_2) \cdot \phi(\mathsf{t}_1)$$

where $\phi(t)$ is further defined using the Bochner's Theorem, and will be used as the temporal encoding for time t.

Proposed Architecture of TAGON

Continuous Time Bipartite Graph (CTBG)

$$\begin{bmatrix} 0.223 & \cdots & -0.124 \\ \vdots & \ddots & \vdots \\ 0.552 & \cdots & -0.312 \\ 0.231 & -0.222 & 0.112 \end{bmatrix}$$

User embeddings

$$\begin{bmatrix} 0.583 & \cdots & -0.941 \\ \vdots & \ddots & \vdots \\ -0.552 & \cdots & -0.322 \\ 0.539 & 0.232 & 0.012 \end{bmatrix}$$

Item embeddings

Experiment Design – Research Questions (RQs)

Research Question 1 (RQ1)

Does the proposed architecture enhance the quality of recommendations?

Research Question 2 (RQ2)

What impact does the introduction of our transformer layer have on our model's performance?

Research Question 3 (RQ3)

In what ways do various encoding techniques influence our model's effectiveness?

Research Question 4 (RQ4)

Is the performance of our model augmented by the implementation of a unifying attention mechanism?

Research Question 5 (RQ5)

How robust is our model to varying hyperparameter settings?

Experiment Design – Datasets, metrics chosen

Datasets

- **Amazon Review Datasets**
 - Baby
 - Toys and Games
 - Tools and Home Improvement
 - Digital Music
- Movielens (100K variant)

Dataset	aset Toys		Tools	Music	ML-100K	
# Users	17,946	17,739	15,920	4,652	943	
# Items	11,639	6,876	10,043	3,051	1,682	
# Edges	154,793	146,775	127,784	54,932	48,569	
# Train	134,632	128,833	107,684	51,765	80,003	
# Validation	11,283	10,191	10,847	2,183	1,516	
# Test	8,878	7,751	9,523	984	1,344	
Sparsity	99.93%	99.88%	99.92%	99.62%	93.70%	

Metrics for Evaluation

$$Recall@K = \frac{\# relevant items in K}{Total \# of relevant items}$$

$$MRR = \frac{1}{U} \sum_{u=1}^{U} rank_i$$

Loss Function

$$\mathcal{L} = \sum_{\substack{(u,i,j,t) \in \mathcal{O}_T}} -\log(\sigma \big(r(u,i,t) - r(u,j,t) \big) + \lambda \|\Theta\|^2$$
 Bayesian Pairwise Ranking Loss L_2 regularization

Experiment Design – Baseline Models chosen

Results – Performance Evaluation (RQ1)

Tovs

Research Question 1

Does the proposed architecture enhance the quality of recommendations?

	Madal	10,0		Daby		WIGOIO		1 0010		IVIE TOOK	
Model		R@10	MRR	R@10	MRR	R@10	MRR	R@10	MRR	R@10	MRR
Traditional SR	BPR	0.0021	0.0024	0.0028	0.0019	0.0122	0.0057	0.0023	0.0026	0.0461	0.0213
	GRU4Rec	0.0274	<u>0.0201</u>	0.0036	0.0028	0.0495	0.0540	0.0048	0.0051	<u>0.0554</u>	0.0938
Time Information $-$	Caser	0.0302	0.0082	0.0077	0.0071	0.0183	0.0106	0.0077	0.0068	0.0246	0.0147
	CDTNE	0.0016	0.0025	0.0218	<u>0.0157</u>	0.0071	0.0037	<u>0.0186</u>	<u>0.0191</u>	0.0350	0.0162
Graph Based -	LightGCN	0.0016	0.0018	0.0036	0.0024	0.0142	0.0064	0.0021	0.0023	0.0565	0.0252
	SR-GNN	0.0020	0.0018	0.0030	0.0024	0.0051	0.0028	0.0051	0.0028	0.0045	0.0012
	My Model	0.0310	0.0204	0.0248	0.0167	0.0522	0.0617	0.0192	0.0202	0.0691	0.0982
	Improvement (%)	2.53%	1.49%	11.99%	5.93%	5.24%	12.42%	3.31%	5.35%	18.25%	4.49%

Baby

Music

Tools

ML-100K

TGSRec was not benchmarked due to lack of time and resources

Results – Ablation Study (RQ2)

Research Question 2

What impact does the introduction of our transformer layer have on our model's performance?

Results – Ablation Study (RQ3)

Research Question 3

In what ways do various encoding techniques influence our model's effectiveness?

Results – Ablation Study (RQ4)

Research Question 4

Is the performance of our model augmented by the implementation of a unifying attention mechanism?

Results – Hyperparameter Tuning (RQ5)

Conclusion and Future Works

Limitations

- Lacks explainability, transparency
- Separation of long, short-term interests
- Long training and evaluation time periods
- Not capturing local patterns efficiently

Future Work

- Explore attention weights from model output
- Extract information using subgraphs
- New sampling distribution for embeddings
- Explore use of Pointwise CNNs as FFNs

Conclusion

- Introduced a novel framework to capture and leverage complex user-item interactions
- Infused time as source of information for nodes, to account for dynamic nature of users, items
- Utilized user-item graphs, with attention mechanism to prioritize relevant interactions, ensuring context relevance
- Conducted meticulous experimentation against six models from new and old domains of SR
- Demonstrated significant improvements in both accuracy and relevance of recommendation

Code is publicly available at www.github.com/siddhantpathakk/tagon

Demonstration for TAGON

Please view video here: https://shorturl.at/glzF3

References

- 1. Ziwei Fan et al. "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer". en. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Virtual Event Queensland Australia: ACM, Oct. 2021, pp. 433–442.
- 2. Leskovec, J. Graph neural networks. CS422W: Machine Learning with Graphs (Stanford University).
- 3. Leskovec, J. How expressive are GNNs? CS422W: Machine Learning with Graphs (Stanford University).
- 4. Amer, H. (n.d.). What are attention mechanisms in the context of neural networks, especially transformers? Quora. https://www.quora.com/How-do-neural-networks-learn-What-are-attention-mechanisms-in-the-context-of-neural-networks-especially-transformers