

MASTER DE MATHÉMATIQUES DE L'INFORMATION ET DE LA DÉCISION

Modélisation du système manguiers – cécidomyies des fleurs pour une évaluation de modes de gestion du ravageur et de ses dégâts

Bastien Reyné

Encadré par : Isabelle Grechi (Cirad, UPR HortSys)

Frédéric Boudon (Cirad, UMR AGAP)

Résumé

Résumé en français

Remerciements

Merci!

Table des matières

\mathbf{R}	Remerciements	iii
Ta	able des matières	iv
1	Introduction	1
2		3
	2.1 Les manguiers	3
	2.2 Les cécidomyies des fleurs	4
3	Expérimentation réalisée et données disponibles	7
	3.1 Dispositif	7
	3.2 Données	
4		11
	4.1 Hypothèses	11
	4.2 Formalisme	
5	Calibration du modèle	13
	5.1 Fonction de coût	13
	5.2 Analyse de sensibilité	
	5.3 Algorithme d'optimisation	
	5.4 Exploration de l'ensemble des solutions	
6	Résultats	15
7	Conclusion	17
B	Sibliographie	19

1 Introduction

Le Cirad — où j'ai effectué mon stage — est un organisme de recherche spécialisé dans l'agronomie des régions tropicales et subtropicales, et l'un de ses objectif principal est le développement durable desdites régions. Cependant la notion de développement durable vient avec quelques contraintes. Notamment, la durabilité implique la limitation des pesticides; et le développement induit la nécessité d'une production agricole efficiente, capable de nourrir dix milliards de personnes d'ici 2050.

Ainsi, il est naturel que le sixième fruit le plus produit au monde, à savoir la mangue ¹, soit un sujet de recherche. C'est d'autant plus vrai que la culture des manguiers (*Mangifera indica L.*) n'est pas toujours facile. En effet, les manguiers présentent de forts asynchronismes phénologiques, que ce soit à l'intérieur d'une même parcelle entre les différents arbres ou à l'intérieur même d'un arbre entre les différentes branches. Cela entraîne une floraison et une fructification étalée dans le temps, rendant la gestion des vergers plus difficile. Ce phénomène entraîne aussi, pour les différents organes du manguier, une fenêtre d'exposition prolongée aux ravageurs, ce qui favorise leur prolifération. Et ils sont légion. On peut citer la cécidomyie des feuilles, la mouche des fruits ou encore le charançon du noyau.

Parmi les ravageurs se trouve également la cécidomyie des fleurs (*Procontarinia mangi-ferae*). Cette dernière pond ses œufs dans les inflorescences, ce qui provoque des dommages potentiellement importants voire la mort des inflorescences. Et qui dit pas d'inflorescences, dit pas de mangues!

Pour limiter les dégâts de la cécidomyie des fleurs sans utiliser de pesticides, deux pistes sont envisagées. La première serait la synchronisation de la floraison, grâce à l'élagage, ce qui réduirait la fenêtre d'exposition aux ravageurs et limiterait par conséquent leur nombre. La seconde repose sur le fait que les œufs pondus dans les inflorescences se transforment en larves qui vont ensuite s'enfouir dans le sol. Restreindre l'accès au sol (avec un enherbement haut par exemple, qui augmente le trajet des larves pour atteindre la terre et favorise la présence de prédateurs) ou l'empêcher (e.g. en utilisant une bâche) devrait a priori permettre de réduire la présence de ces ravageurs. Afin de pouvoir vérifier cette hypothèse, une expérimentation sur un verger a été conduite en 2017; une parcelle a été divisée en trois pour tester trois modalités de couverture du sol différentes : un enherbement ras,

^{1.} La sixième production fruitière mondiale est en réalité le groupement des mangues, mangoustans et goyaves [Food and Agriculture Organization, 2017]

un paillage synthétique et un enherbement haut. De cette expérimentation, des données ont été récoltées. L'objectif est d'utliser les données pour modéliser les intéractions entre les cécidomyies et les inflorescences. Une première version du modèle a été réalisée lors du stage de Saint-Criq [2018], mon stage en est la suite et a pour objectif d'améliorer le modèle existant puis de tester des modes de conduites des vergers *in silico* pour pouvoir répondre à la question :

La modalité de couverture du sol et la synchronisation de la floraison permettent-elles de limiter l'infestation du verger par les cécidomyies des fleurs?

[BALANCER LE PLAN]

2

Connaissances biologiques

On s'intéresse dans ce chapitre aux manguiers et aux cécidomyies des fleurs. On s'intéresse en particulier à leurs descriptions d'un point de vue biologique, leurs développements et leurs interactions. Autrement dit, on recense ici les connaissances biologiques nécessaires à la compréhension de notre sujet.

2.1 Les manguiers

Le manguier est un arbre qui a une croissance végétative rythmique. Cela signifie que sa croissance est entrecoupée par des périodes de repos. Durant les périodes de croissance, les branches sont prolongées par des tiges qui ont des feuilles. Ces tiges sont appelées unités de croissance. Si une unité de croissance prolonge la branche dans l'axe, alors elle est dite apicale; si elle la prolonge sur le côté, elle sera qualifiée de latérale. Au fil du temps, les unités de croissance perdent leurs feuilles, durcissent et grossissent jusqu'à faire partie intégrante de la branche. On peut alors voir le manguier comme un empilement d'unités de croissance; la base du tronc étant l'unité de croissance la plus ancienne et celles qui portent des feuilles les plus récentes [Normand, 2009]. Des unités de croissance sont visibles sur la figure 2.1.

Et ce sont ces unités de croissance qui portent les *inflorescences*. Les inflorescences désignent des groupements de bourgeons. Ces bourgeons deviennent des fleurs qui ellesmême deviennent des fruits, si elles sont fécondées. En théorie. En pratique, les bourgeons ne survivent que rarement jusqu'au stade de fruit, ils meurent bien souvent avant. S'ils meurent parfois à cause des conditions climatiques, la principale raison de leurs morts reste les attaques des ravageurs.

La forte présence des ravageurs s'explique en grande partie par le cycle phénologique du manguier. On désigne par cycle phénologique les phénomènes périodiques qui rythment le monde vivant en fonction des variations climatiques. Et il y a chez le manguier, en sus des conditions climatiques, d'autres facteurs qui influent sur la phénologie tels que la position de l'unité de croissance ou la charge en fruit de l'année précédente [Magne, 2004; Normand et al., 2009]. Il en résulte que le cycle phénologique est très variable d'un manguier à l'autre. On observe même des différences au niveau phénologique entre les différentes unités de croissance d'un même arbre. Cela implique aussi que le cycle phénologique peut être modifié (dans une certaine mesure) grâce à des opérations techniques, comme la taille

FIGURE 2.1 – Photographie d'une branche portant des unités de croissance. Les flèches rouges montrent des unités de croissances. Les flèches bleues montrent les délimitations des unités de croissance antérieures; la portion de la branche entre deux flèches bleues correspond à une ancienne unité de croissance qui a perdue ses feuilles, grossie et durcie et qui fait désormais partie intégrante de la branche.

par exemple. Mais il subsiste toujours une phénologie étalée dans le temps à l'échelle d'un verger. Cet étalement implique une disponibilité en ressources présente sur de larges périodes pour les ravageurs, ce qui explique leur forte présence.

Du cycle phénologique viennent les stades phénologiques des inflorescences. Ils caractérisent le niveau de développement des inflorescences. On considère ici les stades phénologiques allant de C à F. Le stade C correspond au débourrement (l'éclosion des bourgeons) de l'inflorescence. Le stade F s'étend entre l'apparition de la première fleur jusqu'à la disparition de la dernière. Et les stades D et E représentent les étapes intermédiaires du développement qui mènent du débourrement à la floraison. Les durées des stades phénologiques sont les suivantes :

Les inflorescences ont ainsi une durée de vie théorique de 50 jours [Saint-Criq, 2018]. Cette durée théorique peut être réduite en cas d'attaque de cécidomyies des fleurs, surtout lorsque l'inflorescence se fait attaquer lors des premiers stades, moment où l'inflorescence est la plus vulnérable.

Les inflorescences commencent à apparaître en juillet, les premiers fruits apparaissent à la mi-septembre. La récolte a lieu de décembre à janvier.

2.2 Les cécidomyies des fleurs

Les cécidomyies des fleurs sont des diptères (des sortes de moucherons) dont le manguier est la seule plante-hôte. À la Réunion, les cécidomyies sont présentes toute l'année et se reproduisent sur les inflorescences et les jeunes feuilles [Amouroux, 2013]. Le nombre maximal est atteint pendant la période de floraison.

FIGURE 2.2 – Représentation du cycle de développement de la cécidomyie des fleurs du manguier par Amouroux *et al.* [2009].

Le cycle de développement de la cécidomyie des fleurs est schématisé sur la figure 2.2. Les femelles présentes dans le verger au jour t peuvent pondre jusqu'à 150 œufs dans les inflorescences. Les œufs laissent place à des larves. Au bout de sept à douze jours après la ponte, une fois le troisième stade de développement larvaire atteint, les larves s'éjectent des inflorescences en direction du sol. (Et c'est cette sortie des larves qui provoquent des dégâts sur les inflorescences.) Une fois au sol, les larves s'enfouissent dans le sol. Elles peuvent alors entrer en phase de pupaison, qui correspond à la transformation de la larve en cécidomyie. Cette phase dure quatre à six jours, et une fois finie les cécidomyies émergent du sol et infestent le verger — perpétuant ainsi le cycle. Leur durée de vie n'excède pas 72 heures.

Alternativement à la pupaison, les larves peuvent aussi rentrer en *diapause*. La diapause peut être vue comme une sorte d'hibernation, où le cycle est mis en pause un an ou deux avant l'émergence de la cécidomyie.

Les individus qui sortent de diapause permettent notamment le lancement de la dynamique d'infestation pendant la période de floraison. La sortie est dû à une baisse de température qui coïncide avec le début de la floraison [Amouroux et al., 2014].

3

Expérimentation réalisée et données disponibles

CE chapitre explique l'expérimentation qui a été mené en 2017 sur deux vergers dans la commune de Saint-Paul (à la Réunion). On reviendra sur le dispositif de l'expérience et les données qui en ont étés tirées. Le but de cette expérience était de déterminer quel est l'impact de la modalité de couverture du sol dans le degré d'infestation d'un verger.

3.1 Dispositif

Le verger expérimental (que l'on apellera aussi parcelle par la suite) est séparé en trois parts égales de trente arbres. Sur chacune des trois sous-parcelle, une modalité de couverture du sol différente est mise en place. Sur un côté il y avait un enherbement entretenu de sorte qu'il reste court, la modalité enherbement ras (ER) fera référence à ce traitement dans la suite du document. La sous-parcelle du milieu fut baché, afin que les cécidomyies ne puissent ni entrer dans le sol ni en sortir; cette modalité correspond au paillage synthétique (PS). La dernière partie fut laissée telle quelle, sans entretien particulier, donnant ainsi un enherbement haut (EH). À côté de ce verger, il y en avait un autre. Le rôle de cet autre verger était de fournir le verger expérimental en cécidomyies pour voir quelle était la préférence de ces dernières. Tout cela est schématisé sur la figure 3.1.

Sur ces deux vergers expérimentaux, deux types d'observations furent effectués entre juin et octobre 2017. Le premier porte sur les inflorescences. Huit unités de croissance furent sélectionnées sur chacun des vingt-cinq arbres tirés aléatoirement. Et c'est ainsi qu'entre le 26 juin et le 3 octobre 2017 furent notés les dates de débourrements des inflorescences présentes sur les deux cents unités de croissance suivies. À partir du 6 septembre furent aussi notés les dates de morts des inflorescences. Les données de ce relevé seront rassemblées en un jeu de données que l'on nommera dataset 1.

La seconde catégorie d'observations porte sur la capture des larves de cécidomyies. Dans chacune des trois sous-parcelles, dix arbres furent sélectionnés. Sous chacun de ces arbres furent placés deux pièges en dessous des inflorescences présentes. Les pièges sont des bidons plastiques carrés de douze centimètres de côté. (À noter que les pièges furent déplacés au cours du temps pour qu'ils soient en-dessous du maximum d'inflorescences

Verger expérimental					
Enherbement	Paillage	Enherbement			
ras	synthétique	haut			

Autre verger de manguiers (source d'infestation)

FIGURE 3.1 – Schéma de l'expérimentation menée. Le verger sur lequel ont été testées les trois modalités de couvertures du sol était situé à côté d'un autre verger, qui servait de source d'infestation. Cela fut fait pour garantir la présence de cécidomyies dans le verger expérimental.

possibles.) Et c'est ainsi qu'entre le 18 juillet et le 6 octobre 2017 furent notés le nombre de larves piégées, le nombre d'inflorescences vivantes au-dessus du piège et le nombre d'inflorescences vivantes dans l'arbre. Les données de ce relevé seront rassemblées en un jeu de données que l'on nommera dataset 2.

3.2 Données

Après mise en forme des données ¹, on peut extraire les dynamiques qui nous intéressent. Il faut cependant noter que les deux jeux de données n'ont pas la même échelle. On choisira de tout mettre à l'échelle de la sous-parcelle.

Inflorescences vivantes

On peut avoir les dynamiques d'inflorescences vivantes grâce aux deux jeux de données. Pour le *dataset 2*, c'est facile. On possède le nombre d'inflorescences vivantes dans les arbres suivis aux différentes dates; il suffit alors de mettre à l'échelle comme suit :

$$I_t^2 = \frac{N}{n} \sum_{j=1}^n I_{j,t}^2,$$

avec N représentant le nombre d'arbre dans la sous-parcelle, n le nombre d'arbre suivis et $I_{i,t}^2$ le nombre d'inflorescences sur l'arbre j à la date t.

Pour le dataset 1, il faut récupérer le nombre de débourrements journalier B_t et le nombre de morts journalier D_t ; et le nombre d'inflorescences vivantes au jour t s'écrit alors

$$I_t^1 = \alpha \left(\sum_{j=1}^t B_j - \sum_{j=1}^t D_j \right),\,$$

où α représente le coefficient de mise à l'échelle. Il faut cependant apporter une correction cette dynamique. En effet, l'observation des inflorescences mortes n'a été faite qu'à partir

^{1.} Tous les scripts utilisés sont disponibles à l'adresse https://github.com/bastienreyne/cecidomyie

du 6 septembre. De ce fait, sur ce jeu de données la distinction entre inflorescences vivantes et mortes n'est possible qu'à partir du 6 septembre. Il en résulte un écart non-négligeable entre le 5 et le 6 septembre (voir figure 3.2). Cet écart correspond au nombre de mort qu'il y a eu avant le 6 septembre, qu'il faut donc répartir sur la période concernée. N'ayant aucune indication de comment la répartir, on utilisera la dynamique d'inflorescences vivantes du dataset 2 afin que la dynamique du dataset 1 y ressemble le plus possible — et on en profitera au passage pour estimer le coefficient de mise à l'échelle α . Plus précisément, on attribuera un poids (à calibrer numériquement) pour tous les jours entre le jour 1 et le 5 septembre, et le nombre de morts chaque jour sera donné par la formule

$$D_t^c = \frac{p_t \times m}{\sum_j p_j},$$

où D_t^c désigne le nombre de mort à la date t, m le nombre de mort total déterminé par la différence d'inflorescences entre le 5 et 6 septembre et p_t le poids assigné au jour t. Les poids p_t et le coefficient de mise à l'échelle α seront déterminés numériquement afin de résoudre le problème

$$\arg\max_{\alpha,p_t} \sum_{t} \left| I_t^2 - I_t^{1,c} \right|,$$

où $I_t^{1,c}$ représente les inflorescences vivantes du dataset 1 mises à l'échelle et corrigées; cette dynamique est determinée par la formule

$$I_t^{1,c} = \begin{cases} I_t^1 - D_t^c & \text{si } t \le 6 \text{ septembre,} \\ I_t^1 & \text{sinon.} \end{cases}$$

Les différentes dynamiques d'inflorescences sont visibles sur la figure 3.2. On remarque des dynamiques très différentes pour la modalité «enherbement haut», et ce même après correction de la dynamique issue du premier dataset. On peut expliquer ce phénomène par la grande variabilité de la phénologie chez le manguier; ainsi un échantillonage peut produire des dynamiques très différentes. Les deux autres modalités ont en revanche des dynamiques similaires (après correction).

Larves

Le dataset 2 permet aussi de récupérer la dynamique de larves, à partir des larves piégées. En effet, on connait le nombre de larves par piège, le nombre d'inflorescences vivantes situées au-dessus des pièges et le nombre d'inflorescences vivantes dans les arbres suivis. De là, on peut estimer le nombre de larves qui s'éjecte des inflorescences à l'échelle d'un arbre, puis à l'échelle de la sous-parcelle. Les différentes dynamiques de larves sont visibles sur la figure 3.3. Les relevés des pièges n'étant pas quotidien, le nombre de larves piégées a été reparti uniformément entre deux relevés, ce qui explique les «plateaux» visibles sur le graphique.

FIGURE 3.2 – Comparaison des différentes dynamiques d'inflorescences vivantes du verger n°1 en fonction du *dataset* utilisé. Si après correction les dynamiques des deux *datasets* sont similaires pour les deux premières modalités, la modalité «enherbement haut» présente des différences significatives entre les deux dynamiques. Cela peut s'expliquer par un échantillonage différent d'un phénomène présentant une grande variabilité.

FIGURE 3.3 – Dynamiques de larves s'éjectant des manguiers chaque jour dans le verger n°1 pour chacune des trois sous-parcelles. En gris sont visibles les dynamiques d'inflorescences vivantes.

Le modèle

- 4.1 Hypothèses
- 4.2 Formalisme

Calibration du modèle

- 5.1 Fonction de coût
- 5.2 Analyse de sensibilité
- 5.3 Algorithme d'optimisation
- 5.4 Exploration de l'ensemble des solutions

Résultats

Conclusion

Bibliographie

- P. Amouroux. Bio-écologie et dynamique des populations de cécidomyie des fleurs (Procontarinia mangiferae), un ravageur inféodé au manguier (Mangifera indica), en vue de développer une lutte intégrée. PhD thesis, La Réunion, 2013.
- P. Amouroux, F. Normand, and D. Vincenot. Guide de production intégrée de mangues à la Réunion, chapitre VII, 2009.
- P. Amouroux, F. Normand, H. Delatte, A. Roques, and S. Nibouche. Diapause incidence and duration in the pest mango blossom gall midge, procontarinia mangiferae (felt), on reunion island. *Bulletin of entomological research*, 104(5):661–670, 2014.
- Food and Agriculture Organization. http://www.fao.org/faostat/fr/#data/QC, 2017. ONU. Site internet visité le 25 juin 2019.
- C. Magne. Effet de la charge en fruits sur la croissance végétative de plusieurs variétés de manguier à l'île de la Réunion. Master's thesis, Université Blaise Pascal, 2004.
- F. Normand. Guide de production intégrée de mangues à la Réunion, chapitre IV, 2009.
- F. Normand, A. K. P. Bello, C. Trottier, and P.-E. Lauri. Is axis position within tree architecture a determinant of axis morphology, branching, flowering and fruiting? an essay in mango. *Annals of botany*, 103(8):1325–1336, 2009.
- L. Saint-Criq. Modélisation du système manguier-cécidomyie des fleurs pour une évaluation de modes de gestion du ravageur et de ses dégâts. Master's thesis, Université Paul Sabatier, 2018.