Прикладные модели оптимизации

Доцент, к.ф.-м.н., доцент кафедры № 43 Фаттахова Мария Владимировна mvfa @yandex.ru

Тема 4. Введение в нелинейное программирование

Лекция 9

Постановка задачи нелинейного программирования

Задачей нелинейного программирования (ЗНЛП) называется задача нахождения максимума (минимума) нелинейной функции многих переменных, когда на переменные имеются (не имеются) ограничения типа равенств или неравенств.

Выпуклые множества. Выпуклые и вогнутые функции

Сведения из математического анализа

Выпуклое множество

Множество $M \subset R^n$ называется выпуклым множеством, если оно обладает свойством: для любых двух точек X_1 и X_2 из M все точки отрезка, соединяющего X_1 и X_2 , также принадлежат M.

Если множество $M \subset R^n$ не удовлетворяет определению выпуклого множества, оно называется **невыпуклым множеством**.

Выпуклое множество (матем.)

Множество $M \subset R^n$ называется выпуклым множеством, если оно обладает свойством: для любых двух точек $X_1 \in M$, $X_2 \in M$ и любого числа $\lambda \in [0,1]$ следует, что $\lambda X_1 + (1-\lambda)X_2 \in M$

Свойство выпуклых множеств

Пересечение выпуклых множеств **всегда** является множеством *выпуклым*.

Объединение двух выпуклых множеств **не обязательно** будет выпуклым множеством.

Выпуклая функция

Функция $f(X), X \in M$, заданная на выпуклом множестве, называется выпуклой функцией, если она обладает свойством: для любых двух точек $X_1 \in M$, $X_2 \in M$ и любого числа $\lambda \in [0,1]$ имеет место неравенство

$$f[\lambda X_1 + (1 - \lambda)X_2] \le \lambda f(X_1) + (1 - \lambda)f(X_2)$$

Строго выпуклая функция

Если функция $f(X), X \in M$, является выпуклой функцией на выпуклом множестве $M \subset R^n$, и при этом неравенство выполняется как строгое (<) для любых двух точек $X_1 \in M$, $X_2 \in M$ и любого числа $\lambda \in [0,1]$, то такая функция называется **строго выпуклой**.

Вогнутая функция

Функция $f(X), X \in M$, называется вогнутой **функцией**, если функция [-f(X)] является выпуклой.

Другими словами, вогнутая функция обладает свойством: для любых двух точек $X_1 \in M$, $X_2 \in M$ и любого числа λ ∈ [0,1] имеет место неравенство $f[\lambda X_1 + (1 - \lambda)X_2] \ge \lambda f(X_1) + (1 - \lambda)f(X_2).$

Если при этом неравенство выполняется как строгое

(>), то такая функция называется **строго вогнутой**.

Линейная функция

Функция $f(X), X \in M$, называется линейной функцией, если обладает свойством: для любых двух точек $X_1 \in M$, $X_2 \in M$ и любого числа $\lambda \in [0,1]$ имеет место равенство

$$f[\lambda X_1 + (1 - \lambda)X_2] = \lambda f(X_1) + (1 - \lambda)f(X_2).$$

Линейные функции – единственный класс функций, которые являются одновременно и выпуклыми, и вогнутыми (но не строго).

Свойство выпуклых функций

Утверждение.

Пусть $g(X), X = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, – выпуклая функция. Тогда множество решений неравенства $g(X) \leq 0$

будет всегда выпуклым множеством.

Свойство выпуклых функций

Следствие.

Пусть $g(X), X = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, – вогнутая функция. Тогда множество решений неравенства $g(X) \geq 0$

будет всегда выпуклым множеством.

Характеризация выпуклых функций

Матрицей Гессе $H(X) = \{h_{ij}\}, i, j = 1, ..., n, X = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, функции f(X) называют квадратную матрицу порядка n вторых частных производных функции, т.е.

$$H(X) = \{h_{ij}(X)\}: \quad h_{ij}(X) = \frac{\partial^2 f(X)}{\partial x_i \partial x_j}$$

$$i = 1, 2, ..., n; j = 1, 2, ..., n$$

Матрица Гессе

$$H(X) = \begin{pmatrix} \frac{\partial^{2} f(X)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(X)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(X)}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(X)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(X)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(X)}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial^{2} f(X)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(X)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(X)}{\partial x_{2}^{2}} \end{pmatrix}$$

Миноры квадратной матрицы

Главными минорами квадратной матрицы $H(X) = \{h_{ij}(X)\}$ порядка n называются определители, полученные путем вычеркивания из матрицы строк и столбцов с одинаковыми номерами.

Миноры квадратной матрицы

Ведущими главными минорами (k-угловыми минорами) квадратной матрицы $H(X) = \{h_{ij}(X)\}$ называются определители вида:

$$\Delta_{k} = \begin{vmatrix} h_{11} & h_{12} & \cdots & h_{1k} \\ h_{21} & h_{22} & \cdots & h_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ h_{k1} & h_{k2} & \cdots & h_{kk} \end{vmatrix}, \quad k = 1, 2, ..., n$$

Положительная определённость матрицы Гессе (критерий Сильвестра)

Теорема 1.

Матрица Гессе будет положительно определена, если все ведущие главные миноры матрицы (k-угловые миноры) будут положительны.

Матрица Гессе будет положительно полуопределена, если все главные миноры матрицы будут неотрицательны.

Отрицательная определённость матрицы Гессе (критерий Сильвестра)

Теорема 2.

Матрица Гессе будет отрицательно определена, если все ведущие главные миноры матрицы (k-угловые миноры) отличны от нуля и имеют знак $(-1)^k$.

Матрица Гессе будет отрицательно полуопределена, если все отличные от нуля главные миноры матрицы будут иметь знак $(-1)^k$.

Признак выпуклой функции

Теорема 3.

Функция f(X): М $\to R$ будет строго выпуклой функцией (выпуклой функцией), если матрица Гессе будет положительно определена (положительно полуопределена) для всех $X \in M$.

Признак вогнутой функции

Теорема 4.

Функция f(X): М $\to R$ будет строго вогнутой функцией (вогнутой функцией), если матрица Гессе будет отрицательно определена (отрицательно полуопределена) для всех $X \in M$.

Пример 1

Организация реализует автомобили двумя способами: через розничную и оптовую торговлю. При реализации x_1 автомобилей в розницу расходы на реализацию равны $4x_1 + x_1^2$ руб., а при продаже оптом расходы составляют x_2^2 руб. Найти оптимальный способ реализации автомобилей, минимизирующий суммарные расходы, если общее число предназначенных для продажи автомобилей составляет 200 шт.