Lecture 3

Tuesday 4th November, 2014

Contents

1	Lim	its & Continuity	4
	1.1	Continuity	4
		Continuity	
		Cauchy's Definition	

1 Limits & Continuity

1.1 Continuity

If $x \to a$ then $f(x) \to L$, we say that L is the limit of f(x) at x = a.

$$\lim_{x \to a} f(x) = L$$

We say that f(x) is continuous at x = a, iff

$$\lim_{x \to a} f(x) = L = f(a)$$

1.2 Continuity

If $x \to a^+$ then $f(x) \to L_2$, and if $x \to a^-$ then $f(x) \to L_1$. We say that $\exists \lim_{x \to a} f(x)$ iff $L_1 = L_2$

1.3 Cauchy's Definition

Let f(x) be defined on an open interval about a, except possibly at a itself. A number L is called the limit of f(x) at a if

$$\forall \epsilon > 0 \exists \delta > 0 : 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon \tag{1}$$