International Rectifier

SMPS MOSFET

IRF3709PbF IRF3709SPbF IRF3709LPBF

Applications

- High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use
- High Frequency Buck Converters for Server Processor Power Synchronous FET
- Optimized for Synchronous Buck Converters Including Capacitive Induced Turn-on Immunity
- Lead-Free

Benefits

- Ultra-Low Gate Impedance
- Very Low RDS(on) at 4.5V V_{GS}
- Fully Characterized Avalanche Voltage and Current

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	I _D
30V	9.0m $Ω$	90A [©]

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V_{DS}	Drain-Source Voltage	30	V
V _{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	90©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	57	Α
I _{DM}	Pulsed Drain Current①	360	
P _D @T _C = 25°C	Maximum Power Dissipation ^③	120	W
P _D @T _A = 25°C	Maximum Power Dissipation ^⑤	3.1	W
	Linear Derating Factor	0.96	mW/°C
T_J , T_{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.04	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface @	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient⊕		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount) ®		40	

Notes ① through @ are on page 11

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.029		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		6.4	9.0	mΩ	V _{GS} = 10V, I _D = 15A ③
			7.4	10.5	11152	$V_{GS} = 4.5V, I_D = 12A$ ③
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
I _{DSS} D	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 24V, V_{GS} = 0V$
				100	μΛ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-200	11/4	V _{GS} = -16V

Dynamic @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	53			S	V _{DS} = 15V, I _D = 30A
Qg	Total Gate Charge		27	41		I _D = 15A
Q _{gs}	Gate-to-Source Charge		6.7		nC	$V_{DS} = 16V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		9.7			V _{GS} = 5.0V ③
Q _{oss}	Output Gate Charge		22			$V_{GS} = 0V$, $V_{DS} = 10V$
t _{d(on)}	Turn-On Delay Time		11			$V_{DD} = 15V$
t _r	Rise Time		171		ns	$I_D = 30A$
t _{d(off)}	Turn-Off Delay Time		21		113	$R_G = 1.8\Omega$
t _f	Fall Time		9.2			V _{GS} = 4.5V ③
C _{iss}	Input Capacitance		2672			V _{GS} = 0V
Coss	Output Capacitance		1064		pF	V _{DS} = 16V
C _{rss}	Reverse Transfer Capacitance		109			f = 1.0MHz

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		382	mJ
I _{AR}	Avalanche Current①		30	Α

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			906		MOSFET symbol
	(Body Diode)			900	A	showing the
I _{SM}	Pulsed Source Current			000		integral reverse
	(Body Diode) ①			360		p-n junction diode.
V _{SD}	Diode Forward Voltage		0.88	1.3	V	$T_J = 25^{\circ}C$, $I_S = 30A$, $V_{GS} = 0V$ ③
V 2D			0.82			$T_J = 125$ °C, $I_S = 30$ A, $V_{GS} = 0$ V ③
t _{rr}	Reverse Recovery Time		48	72	ns	$T_J = 25$ °C, $I_F = 30$ A, $V_R = 15$ V
Q _{rr}	Reverse Recovery Charge		46	69	nC	di/dt = 100A/µs ③
t _{rr}	Reverse Recovery Time		48	72	ns	$T_J = 125$ °C, $I_F = 30$ A, $V_R = 15$ V
Q _{rr}	Reverse Recovery Charge		52	78	nC	di/dt = 100A/μs ③

International TOR Rectifier

IRF3709/S/LPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International

TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International Rectifier

IRF3709/S/LPbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFET® Power MOSFETs

International

TOR Rectifier

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION : INCH
- $\,\,$ OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

International TOR Rectifier

IRF3709/S/LPbF

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

D²Pak Part Marking Information

International

TOR Rectifier

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\begin{tabular}{ll} \hline @ & Starting T_J = 25^{\circ}C, \ L = 0.85mH \\ R_G = 25\Omega, \ I_{AS} = 30A. \\ \hline \end{tabular}$
- 4 This is only applied to TO-220AB package
- ⑤ This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.

Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web site.

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/