Sections 9.1 and 9.2

Warm-up

- 1. In 2000, 15 billion pounds of avocados were consumed. In 2014, 37 billion pounds were consumed. Find the rate of change in avocado consumption over this period.
- 2. Let *A* be the annual U.S. consumption in billions of pounds of avocados at *t* years since 2000. Which variable is explanatory? Which is response?
- 3. Use the variables and the following information to find a linear model to represent the situation.

Year	Avocado Consumption
2000	15
2005	19
2010	28
2014	37
2015	40
2016	43.2
2017	45.36

- 4. Carefully make a scatterplot of the data set.
- 5. Carefully make sketch your linear model on the scatterplot.
- 6. Where does model breakdown occur? Why might that be?
- 7. Use two other points to find a different linear model. Write which points you use. Why do you think this model is better or worse?

A few notes

Recall y = mx + b is the equation for a line where m is the slope and b is the y-intercept. How can we find the equation for a line if we know the slope and some other point?

Example 1. Find the equation of a line that has a slope of 3 and goes through the point (4,-5). *Graph: too long and tedious. Algebraically*

How can we find the equation for a line if we know two points?

Example 2. Find the equation for a line that passes through the points (2,3) and (4,7).

Some more practice

Example 3. Find the equation for the line that passes through the points (1, 2) and (3, 8).

A little discussion

How does this process differ from the opening example? Thinking about what we learned today in class so far, how can we generalize this process to a scatterplot?

Practicing our techniques

Example 4. The percentages of births (p) outside of marriage in the United States at t years since 1990 is given in the following table

Year	Percentage of Births Outside Marriage
1990	28.0
1995	32.2
2000	33.2
2005	36.9
2010	40.8
2013	40.6

- 1. Construct a scatterplot
- 2. Describe the 4 characteristics of the association, including r.
- 3. Find an equation of a linear model
- 4. Graph the line on the scatter plot and verify that the points you chose the line goes through.
- 5. When you calculated *r*, the graphing calculator also came up with a value for *a* and *b*. Discuss with your table what these values could be.