Noise prediction for serrated trailing-edges

Benshuai Lyu ¹ Mahdi Azarpeyvand ² Samuel Sinayoko ³

¹Department of Engineering, University of Cambridge

²Department of Mechanical Engineering, University of Bristol

 3 Institute of Sound and Vibration Research, University of Southampton

June 22, 2015

Outline

Motivation

Why is TE noise important?

Introduction to TE noise generation and contro

TE noise generation

TE noise control

Inaccurate existing model

Analytical formulation

The mathematical model

Fourier transformation and iterative-solving procedure

Far-field sound

Results

FEM validation

Model results

Comparison with Howe's mode

Noise reduction mechanisms

Conclusion

Figure 1: Applications where TE noise is important

¹Fig(a): sites.google.com/site/flightdeckathome/liveatc

 $^{^2 \}mathsf{Fig}(\mathsf{b}) \colon \mathsf{blog.journals.cambridge.org} / 2013 / 01 / \mathsf{wind\text{-}turbine\text{-}syndrome\text{-}fact\text{-}or\text{-}fiction}$

³Fig(c): www.aliexpress.com/promotion/electronic_computer-fan-noise-promotion.html ▶ ∢ ₹ ▶ ∢ ₹ ▶ ₹ ♥ ℚ №

► TE noise of an approaching aircraft

(a) An approaching aircraft

Figure 1: Applications where TE noise is important

¹Fig(a): sites.google.com/site/flightdeckathome/liveatc

 $^{^2\}mathsf{Fig}(\mathsf{b}): \ \mathsf{blog.journals.cambridge.org}/2013/01/\mathsf{wind\text{-}turbine\text{-}syndrome\text{-}fact\text{-}or\text{-}fiction}$

 $^{^3}$ Fig(c): www.aliexpress.com/promotion/electronic_computer-fan-noise-promotion.html \rightarrow 4 \ge \rightarrow 4 \ge \rightarrow 9 \bigcirc 9

- ▶ TE noise of an approaching aircraft
- ▶ TE noise of wind turbines

Figure 1: Applications where TE noise is important

¹Fig(a): sites.google.com/site/flightdeckathome/liveatc

 $^{^2\}mathsf{Fig}(\mathsf{b}): \ \mathsf{blog.journals.cambridge.org}/2013/01/\mathsf{wind\text{-}turbine\text{-}syndrome\text{-}fact\text{-}or\text{-}fiction}$

- ► TE noise of an approaching aircraft
- ▶ TE noise of wind turbines
- ► TE noise of rotating fans

Figure 1: Applications where TE noise is important

¹Fig(a): sites.google.com/site/flightdeckathome/liveatc

 $^{^2\}mathsf{Fig}(\mathsf{b}): \ \mathsf{blog.journals.cambridge.org}/2013/01/\mathsf{wind\text{-}turbine\text{-}syndrome\text{-}fact\text{-}or\text{-}fiction}$

³Fig(c): www.aliexpress.com/promotion/electronic_computer-fan-noise-promotion.html ▶ ∢ ₹ ▶ ∢ ₹ ▶ ₹ ♥ ℚ №

Outline

Motivation

Why is TE noise important?

Introduction to TE noise generation and control

TE noise generation
TE noise control
Inaccurate existing model

Analytical formulation

The mathematical model
Fourier transformation and iterative-solving procedure
Far-field sound

Results

Model results
Comparison with Howe's mode
Noise reduction mechanisms

Conclusion

TE noise generation

Focus on the turbulent-boundary-layer TE noise, which will be referred to as TE noise.

TE noise generation

Focus on the turbulent-boundary-layer TE noise, which will be referred to as TE noise.

When the turbulent boundary layer convects past the TE, the non-radiating pressure fluctuation is scattered into sound capable of propagating to the far-field.

Figure 2: TE noise generation by edge-scattering

Figure 3: TE noise reduction techniques

⁴Fig(a): T.Geyer et al 2010

⁵Fig(b): Michaela Herr et al 2005

⁶Fig(c): Gruber's PhD thesis 2012

Porous airfoil

(a) Porous airfoil

Figure 3: TE noise reduction techniques

⁴Fig(a): T.Geyer et al 2010

⁵Fig(b): Michaela Herr et al 2005

⁶Fig(c): Gruber's PhD thesis 2012

⁷Theory: (a) and (b) Jaworski and Peake 2013, Lorlna Ayton (c) Howe 1991 □ ▶ ◀ 吾 ▶ ◀ 臺 ▶ ◀ 臺 ▶ ■ 臺 ◆ 久 ҈

- Porous airfoil
- Brush-type TE

Figure 3: TE noise reduction techniques

⁴Fig(a): T.Geyer et al 2010

⁵Fig(b): Michaela Herr et al 2005

⁶Fig(c): Gruber's PhD thesis 2012

⁷Theory: (a) and (b) Jaworski and Peake 2013, Lorlna Ayton (c) Howe 1991 □ ▶ ◀ 🗗 ▶ ◀ 👼 ▶ ◀ 👼 ▶ 💆

- Porous airfoil
- Brush-type TE
- Serrated TEs

Figure 3: TE noise reduction techniques

⁴Fig(a): T.Geyer et al 2010

⁵Fig(b): Michaela Herr et al 2005

⁶Fig(c): Gruber's PhD thesis 2012

⁷Theory: (a) and (b) Jaworski and Peake 2013, Lorlna Ayton (c) Howe 1991 🗆 ト 🔞 ト 🔞 ト 🔞 ト 🐧 💆 🗸 🔾

Howe's model

Howe's model significantly overpredictes the noise reduction capability of serrated TEs.

Figure 4: Comparison of experiment and Howe's model

Howe's model

Howe's model significantly overpredictes the noise reduction capability of serrated TEs.

Figure 4: Comparison of experiment and Howe's model

Outline

Motivation

Why is TE noise important?

Introduction to TE noise generation and control

TE noise generation
TE noise control
Inaccurate existing model

Analytical formulation

The mathematical model Fourier transformation and iterative-solving procedure Far-field sound

Results

Model results
Comparison with Howe's model
Noise reduction mechanisms

Conclusion

The mathematical model

Figure 5: The schematic of a flat plate with a serrated TE

The following wave equation needs to be solved (Roger and Moreau 2013)

$$\left(\beta^{2} + H'^{2}(y)\right) \frac{\partial^{2} P}{\partial x^{2}} + \frac{\partial^{2} P}{\partial y^{2}} + \frac{\partial^{2} P}{\partial z^{2}} - 2H'(y) \frac{\partial^{2} P}{\partial x \partial y} + \left(2iM_{0}k - H''(y)\right) \frac{\partial P}{\partial x} + k^{2}P = 0,$$

$$(1)$$

Fourier transformation

Making use of Fourier transformation

$$P(x,y,z) = \sum_{-\infty}^{\infty} P_n(x,z)e^{ik_{2n}y},$$
(2)

where, $k_{2n}=k_2+2n\pi/\lambda$,

Fourier transformation

Making use of Fourier transformation

$$P(x,y,z) = \sum_{-\infty}^{\infty} P_n(x,z)e^{ik_{2n}y},$$
(2)

where, $k_{2n}=k_2+2n\pi/\lambda$, the wave equation reduces to

$$\mathcal{D}\mathbf{P} = \mathbf{A}\mathbf{P} + \mathbf{B}\frac{\partial \mathbf{P}}{\partial x},\tag{3}$$

where,

$$\mathcal{D} = \left\{ \left(\beta^2 + \sigma^2 \right) \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2} + 2ikM_0 \frac{\partial}{\partial x} \right\}. \tag{4}$$

 $\mathbf{P}^{(0)}$ is obtained by solving

$$\mathcal{D}\mathbf{P} = \mathbf{A}\mathbf{P}.\tag{5}$$

 ${f P}^{(0)}$ is obtained by solving

$$\mathcal{D}\mathbf{P} = \mathbf{A}\mathbf{P}.\tag{5}$$

Then $\mathbf{P}^{(1)}$ is evaluated by solving

$$\mathcal{D}\mathbf{P} = \mathbf{A}\mathbf{P} + \mathbf{B}\frac{\partial \mathbf{P}^{(0)}}{\partial x}.$$
 (6)

 ${f P}^{(0)}$ is obtained by solving

$$\mathcal{D}\mathbf{P} = \mathbf{A}\mathbf{P}.\tag{5}$$

Then $\mathbf{P}^{(1)}$ is evaluated by solving

$$\mathcal{D}\mathbf{P} = \mathbf{A}\mathbf{P} + \mathbf{B}\frac{\partial \mathbf{P}^{(0)}}{\partial x}.$$
 (6)

Continuing this process, $\mathbf{P}^{(2)}$ is found by solving

$$\mathcal{D}\mathbf{P} = \mathbf{A}\mathbf{P} + \mathbf{B}\frac{\partial \mathbf{P}^{(1)}}{\partial x}.$$
 (7)

 ${f P}^{(0)}$ is obtained by solving

$$\mathcal{D}\mathbf{P} = \mathbf{A}\mathbf{P}.\tag{5}$$

Then $\mathbf{P}^{(1)}$ is evaluated by solving

$$\mathcal{D}\mathbf{P} = \mathbf{A}\mathbf{P} + \mathbf{B}\frac{\partial \mathbf{P}^{(0)}}{\partial x}.$$
 (6)

Continuing this process, $\mathbf{P}^{(2)}$ is found by solving

$$\mathcal{D}\mathbf{P} = \mathbf{A}\mathbf{P} + \mathbf{B}\frac{\partial \mathbf{P}^{(1)}}{\partial x}.$$
 (7)

A solution sequence

$$\mathbf{P}^{(0)}, \mathbf{P}^{(1)}, \mathbf{P}^{(2)}, \mathbf{P}^{(3)} \cdots$$

Far-field sound

The far-field sound is obtained by evaluating the surface integral based on the theories of Kirchoff and Curle.

$$p_f(\mathbf{x}, \omega) = \frac{-i\omega x_3}{4\pi c_0 S_0^2} \iint_s \Delta P(x', y') e^{-ikR} \mathrm{d} \, x' \mathrm{d} \, y', \tag{8}$$

where $S_0^2=x_1^2+\beta^2(x_2^2+x_3^2)$, and R takes the following form:

$$R = \frac{M_0(x_1 - x') - S_0}{\beta^2} + \frac{x_1 x' + x_2 y' \beta^2}{\beta^2 S_0},$$
 (9)

where, ΔP denotes the pressure jump across the flat plate.

Outline

Motivation

Why is TE noise important?

Introduction to TE noise generation and contro

TE noise generation
TE noise control
Inaccurate existing model

Analytical formulation

The mathematical model
Fourier transformation and iterative-solving procedure
Far-field sound

Results

FEM validation Model results Comparison with Howe's model Noise reduction mechanisms

Conclusion

FEM validation

For wide serrations

Figure 6: SPL at 90° above the trailing-edge in the mid-span plane with $x_3=1$ due to a wall pressure gust of frequency ω with $k_2=0$, parameters of the serrations are $\lambda/h=6, h/c=0.025$.

FEM validation cont.

For narrow serrations,

Figure 7: SPL at 90° above the trailing-edge in the mid-span plane with $x_3=1$ due to a wall pressure gust of frequency ω with $k_2=0$, parameters of the serrations are h/c=0.05 with $M_0=0.1$.

Model results

For wide serrations,

Figure 8: The normalized spectrum for straight and serrated trailing-edges, $h/c=0.025, M_0=0.1$, the observer is at 90° above the trailing-edge in the mid-span plane with $x_3=1\lambda/h=8, \ \lambda/h=4$.

Model results cont.

For narrow serrations,

Figure 9: The normalized spectrum for straight and serrated trailing-edges, $h/c=0.05, M_0=0.1$, the observer is at 90° above the trailing-edge in the mid-span plane with $x_3=1$.

Comparison with Howe's model

Figure 10: The normalized spectrum of Howe's model and the new model, $h/c=0.05, M_0=0.1$, the observer is at 90° above the trailing-edge in the mid-span plane with $x_3=1$. (a) $\lambda/h=0.4$, $h/c=0.05, M_0=0.1$ (b) $\lambda/h=0.2, h/c=0.05, M_0=0.1$

Noise reduction mechanism

$$\sigma = 5$$

Outline

Motivation

Why is TE noise important?

Introduction to TE noise generation and contro

TE noise generation

TE noise control

Inaccurate existing model

Analytical formulation

The mathematical model

Fourier transformation and iterative-solving procedure

Far-field sound

Results

FEM validation

Model results

Comparison with Howe's mode

Noise reduction mechanisms

Conclusion

Conclusion

- Compared to Howe's model, the presented model includes the convection effect of the mean flow, and can better agrees with experiments.
- 2. It is found that the destructive interference of the scattered pressure is the cause of sound reduction.
- 3. The approach used in this model can be used for other serrations. Future work on optimizing the serration profiles can be done.

Thank You!