CLAIM AMENDMENTS

Please amend claims 1, 16, 18, 19, 21, 22, 23, 24, and 34, and cancel claims 20 and 25, as set out hereinafter.

There follows a full set of claims with status identifiers and with current amendments identified.

- 1. (currently amended) A method of bleaching and brightness stabilization of a lignocellulosic material pulp comprising:
- <u>i)</u> bleaching the lignocellulosic material pulp, in an aqueous medium with a water-soluble phosphine or phosphonium compound of formula (A):

$$\begin{bmatrix} Y_1 & R_4 \\ R_1 & P & R_5 & P \\ R_2 & Y_2 & T \end{bmatrix}_{y}^{n+1} R_3$$
(A)

wherein t is zero or 1;

when t = 0, $R_4R_5PY_2$ is absent and R_3 is bonded to the P of the $R_1R_2PY_1$ group;

when t = 1, R_5 is absent such that there is a P-P bond, or R_5 is an alkylene group $(CH_2)_s$ (s = 1 to 12) interrupted by 0 to 6 oxygen (O) atoms or secondary amino (NR') groups, and/or substituted by a zero to 2s number of a hydroxyl, alkyl, aryl, thio, thioether, amino, ester, amide, carboxyl and/or carboxylate groups, or a phenylene group substituted by a zero to 4 number of a hydroxyl, alkyl, aryl, thio, thioether, amino, ester, amide, carboxyl, carboxylate, and/or sulfonate groups; or preferably R_5 is an alkylene group $(CH_2)_s$ (s = 1 to 4) where the earbon chain is optionally interrupted by one or two oxygen (O) atom(s);

m is an integer of 0 to 5 and y is an integer of 1 or more, and n and z are integers of 0 or more such that yn = zm;

when y = 1, and n = z = m = 0, then X is absent;

 R_1 , R_2 and R_3 , or R_1 , R_2 , R_3 , R_4 and R_5 groups are collectively selected such that said compound of formula (A) has an overall solubility of at least 0.01 g/L;

 R_1 , R_2 and R_3 , or R_1 , R_2 , R_3 and R_4 are independently selected from hydrogen, optionally substituted linear or branched alkyl groups, or optionally substituted aryl groups, the optional substitution being the presence of substituents selected from ether, amino, hydroxy, ester, thioether, amide, carbonyl, carboxyl, and carboxylate moieties; and Y_1 and Y_2 are independently absent or a carboxylate moiety, or when X is present, X is an inorganic or organic anion, and the value of m is ≤ 5 ; the total charge of $y_1 = z_1$, and

Y₁ is a hydroxymethyl group (CH₂OH); R₁, R₂ and R₃, or R₁, R₂, R₃, R₄ and Y₂ are independently selected from hydrogen, boron trifluoride (BF₃), optionally substituted linear or branched alkyl groups, or optionally substituted aryl groups, the optional substitution being the presence of substituents selected from ether, amino, hydroxy, ester, thioether, amide, carboxyl, carboxyl, and carboxylate moieties; and

- <u>ii)</u> stabilizing the brightness in the resulting bleached lignocellulosic material <u>pulp</u> with said compound of formula A <u>of said bleaching in step i</u>).
- 2. (original) A method according to claim 1 wherein Y_1 and Y_2 are both absent, R_1 , R_2 and R_3 , or R_1 , R_2 , R_3 and R_4 are independently hydrogen, an alkyl group (R) or an ether group (OR) with R being (CH₂)_qH (q = 1 to 12) interrupted by 0 to 6 oxygen (O) atoms or secondary amino (NR') groups, and/or substituted by a zero to (2q + 1) number of a hydroxyl, thio, thioether, amino, ester, amide, carboxyl and/or carboxylate groups. R' is either hydrogen or an optionally substituted linear or branched alkyl group or optionally substituted aryl group; whereun optional substitution refers to the presence of one or more substituents selected from ether, amino, hydroxy, ester, thioether, amide, carbonyl, carboxyl, and carboxylate moieties.
- 3. (original) A method according to claim 1, wherein Y_1 and Y_2 are both absent, R_1 , R_2 and R_3 , or R_1 , R_2 , R_3 and R_4 are independently hydrogen, an alkyl group (R) or an ether group (OR) with R being $CH_2(CH_2)_qH$ (q=0 to 5) interrupted by 0 to 3 oxygen (O) atoms or secondary amino (NR') groups, and/or substituted by a zero to (2q+1) number of a hydroxyl, thio, thioether, amino, ester, amide, carboxyl and/or carboxylate groups.

- 4. (original) A method according to claim 1, wherein Y_1 and Y_2 are both absent, at least one of R_1 and R_2 is the same as R_3 in the molecule with R_3 being a hydroxymethyl (CH₂OH) group.
- 5. (original) A method according to claim 1, wherein Y_1 and Y_2 are both absent, R_1 , R_2 and R_3 , or R_1 , R_2 , R_3 and R_4 are all hydroxymethyl (CH₂OH) groups.
- 6. (previously presented) A method according to claim 1, wherein Y_1 is a hydroxymethyl group (CH₂OH), R_1 , R_2 and R_3 , or R_1 , R_2 , R_3 , R_4 and Y_2 are independently hydrogen, boron trifluoride (BF₃), an alkyl group (R) or an ether group (OR) with R being (CH₂)_qH (q = 1 to 12) interrupted by 0 to 6 oxygen (O) atoms or secondary amino (NR') groups, and/or substituted by a zero to (2q + 1) number of a hydroxyl, thio, thioether, amino, ester, amide, carboxyl and/or carboxylate groups, R' is either hydrogen or an optionally substituted linear or branched alkyl group or optionally substituted aryl group; wherein optional substitution refers to the presence of substituents selected from ether, amino, hydroxy, ester, thioether, amide, carboxyl, carboxyl, and carboxylate moieties.
- 7. (previously presented) A method according to claim 1, wherein Y_1 is a hydroxymethyl group (CH₂OH), R_1 , R_2 and R_3 , or R_1 , R_2 , R_3 , R_4 and Y_2 are independently hydrogen, boron trifluoride (BF₃), an alkyl group (R) or an ether group (OR) with R being CH₂(CH₂)_qH (q = 0 to 5) interrupted by 0 to 3 oxygen (O) atoms or secondary amino (NR') groups, and/or substituted by a zero to (2q + 1) number of a hydroxyl, thio, thioether, amino, ester, amide, carboxyl and/or carboxylate groups.
- 8. (original) A method according to claim 1, wherein X is selected from chloride, sulfate, hydroxide, hydroxulfite, phosphate, carbonate, bicarbonate, bisulfate, alkoxide, formate, acetate, citrate, oxalate, ascorbate, ethylenediaminetetraacetate or diethylenetriaminepentaacetate.
- 9. (previously presented) A method according to claim 1, wherein Y_1 is a hydroxymethyl group (CH₂OH), and at least one of R_3 , R_4 and Y_2 is a hydroxymethyl (CH₂OH) group.
- 10. (original) A method according to claim 1 wherein said compound is the phosphine

tris(hydroxymethyl)phosphine (THP), P(CH₂OH)₃.

- 11. (original) A method according to claim 1 wherein said compound is the phosphine tris(hydroxypropyl)phosphine (THPP), P(CH₂CH₂CH₂OH)₃.
- 12. (original) A method according to claim 1 wherein said compound is the phosphine bis[bis(hydroxymethyl)phosphino]ethane, (HOCH₂)₂PCH₂CH₂P(CH₂OH)₂.
- 13. (original) A method according to claim 1 wherein said compound is the phosphonium compound tetrakis(hydroxymethyl)phosphonium chloride (THPC), [P(CH₂OH)₄]Cl.
- 14. (original) A method according to claim 1 wherein said compound is the phosphonium compound tetrakis(hydroxymethyl)phosphonium sulfate (THPS), [P(CH₂OH)₄]₂SO₄.
- 15. (original) A method according to claim 1 wherein said compound is the phosphonium compound 3-[tris(hydroxymethyl)phosphonium]propionate, (CH₂OH)₃P⁺-CH₂CH₂COO⁻.
- 16. (currently amended) A method according to claim 1 wherein said lignocellulosic-material pulp is a mechanical wood pulp.
- 17. (original) A method according to claim 16 wherein said lignocellulosic mechanical wood pulp is spuce TMP or aspen CTMP.
- 18. (currently amended) A method according to claim 1 wherein the said lignocellulosic material <u>pulp</u> is a mechanical wood pulp that has been partially or fully bleached with alkaline hydrogen peroxide and/or sodium dithionite.
- 19. (currently amended) A method according to claim 1 wherein the said lignocellulosic material pulp is a chemical wood pulp partially or fully delignified and/or bleached with oxygen and/or chlorine dioxide.
- 20. (cancelled)

- 21. (currently amended) A method according to claim 1 wherein the bleaching and brightness stabilization are conducted in an said aqueous medium at a pH of 2.0 12.0, a temperature of 20 170 °C and a consistency of 0.01 99% for 5 minutes to 30 days with a charge of the phosphorus compound being 0.01 to 6.0%, by weight, based on the oven-dry (OD) weight of the lignocellulosic material pulp.
- 22. (currently amended) A method according to claim 1 wherein the bleaching and brightness stabilization are conducted at a temperature of 20 170 °C and a consistency of 40 99% for 5 minutes to 30 days with a charge of the phosphorus compound being 0.01 to 6.0%, by weight, based on the oven-dry (OD) weight of the lignocellulosic material pulp.
- 23. (currently amended) A method according to claim 1 wherein the bleaching and brightness stabilization are carried out in a single-stage or multi-stage in one or more than one bleach tower, pulp mixer, a storage vessel, an agitated tank or any other stock preparation vessels of a paper machine, or any other vessels suitable for performing the bleaching and brightness stabilization of the lignocellulosic material pulp.
- 24. (currently amended) A method according to claim 1, wherein the material <u>pulp</u> is also treated with: (a) a benzotriazole, benzophenone or titanium dioxide ultraviolet absorber (UVA), or a hindered hydroxyamine radical scavenger (RS), (b) a poly(ethylene glycol) or poly(vinyl pyrrolidone) yellowing inhibitor, and/or (c) a metal chelating agent.
- 25. (cancelled)
- 26. (cancelled)
- 27. (cancelled)
- 28. (cancelled)
- 29. (cancelled)
- 30. (cancelled)

Serial No. 10/770,474

- 31. (cancelled)
- 32. (cancelled)
- 33. (cancelled)
- 34. (currently amended) A process according to claim 1, wherein the lignocellulosic material pulp is additionally bleached with sodium dithionite.