

✓ 机器学习流程:

- ❷ 数据获取
- ❷ 特征工程
- ❷ 建立模型
- ❷ 评估与应用

深度学习

❤ 特征工程的作用:

❷ 数据特征决定了模型的上限

预处理和特征提取是最核心的

❤ 特征如何提取:

深度学习

❤ 传统特征提取方法:

[0, 0, ... 0.8, ..., 0.3, ..., 0.5, ...] = coefficients (feature representation)

✓ 为什么需要深度学习:

深度学习

✅ 深度学习应用:

深度学习

www.image-net.org

22K categories and 14M images

- Animals
 - Bird
 - Fish
 - Mammal
 - Invertebrate

- Plants
 - Tree
 - Flower
- Food
- Materials

- Structures
 - Artifact
 - Tools
 - Appliances
 - Structures

- Person
- Scenes
 - Indoor
 - Geological Formation
- Sport Activities

图像分类

❤ 计算机视觉:

❷ 图像分类任务

(假设我们有一系列的标签:狗,猫, 汽车,飞机。。。)

------ 猫

✓ 计算机视觉:

❷ 图像表示: 计算机眼中的图像

例如: 300*100*3

图像分类

❤ 计算机视觉面临的挑战:

❷ 照射角度:

❷ 形状改变:

图像分类

❤ 计算机视觉面临的挑战:

❷ 部分遮蔽:

❷ 背景混入:

✓ 机器学习常规套路:

- ✓ 1.收集数据并给定标签2.训练一个分类器3.测试,评估
- def train(train_images, train_labels):
 # build a model for images -> labels...
 return model

 def predict(model, test_images):
 # predict test_labels using the model...
 return test_labels

Example training set

✓ K近邻算法:

❷ 数据:两类点方块和三角

❷ 绿色的点属于方块还是三角呢?

∅ K=3还是K=5? 结果─样吗?

✓ K近邻计算流程:

- ∅ 1.计算已知类别数据集中的点与当前点的距离
 - 2.按照距离依次排序
 - 3.选取与当前点距离最小的K个点
 - 4.确定前K个点所在类别的出现概率
 - 5.返回前K个点出现频率最高的类别作为当前点预测分类

✓ K近邻分析

- ♂分类器不需要使用训练集进行训练,训练时间复杂度为0。
- ØK值的选择,距离度量和分类决策规则是该算法的三个基本要素

CIFAR-10

airplane

bird

cat

deer

dog

frog

horse

ship

truck

数据库简介:

10类标签

50000个训练数据

10000个测试数据

大小均为32*32

❤ 距离的选择: L1 distance: $d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$

❷ 图像距离计算方式:

test	image
LUST	iiiiago

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences

✅ 测试结果:

❷ 部分结果还可以的

❷ 没有分类对的图像,

问题出在哪里呢?

✓ 参数会对结果有影吗?

❷ 距离的定义: L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

♂ 对于K近邻的K该如何选择?

∅ 如果有的话,其它的超参数该怎么设定呢?

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

✓ 选择最好的参数

∅ 交叉验证: 实践来检验真理

❷ 数据集切分:

train data test data

∅ 用测试集来选择最好的参数吗?

✓ 选择最好的参数

❷ 交叉验证:得到更可靠的验证结果

- ✓ K近邻交叉验证结果
 - ❷ 参数对结果的影响有多大?

图像分类。

- ✓ 为什么K近邻不能用来图像分类?
 - ∅ 背景主导是一个最大的问题,我们关注的却是主体(主要成分)
 - ∅ 如何才能让机器学习到哪些是重要的成分呢?

神经网络基础

❤ 线性函数

∅ 从输入-->输出的映射

(32x32x3)

image parameters $f(\mathbf{x}, \mathbf{W})$

每个类别的得分

神经网络基础

❤ 线性函数

❷ 数学表示

每个类别的得分

神經网络基础

❤ 线性函数

❷ 计算方法

神经网络基础

❤ 线性函数

∅ 多组权重参数构成了决策边界

$$f(x_i, W, b) = Wx_i + b$$

神经网络基础

❤ 损失函数

∅ 如何衡量分类的结果呢?

Н		10	A		
	a		ø	V.	
	歷			8	
à			雴	ø	
8				7	
H				ь.	
100					

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

神經网络基础

extstyle 损失函数 $L_i = \sum_{j eq y_i} \max(0, s_j - s_{y_i} + 1)$

∅ 损失函数其实有很多种,我们来实验一个

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

```
= \max(0, 5.1 - 3.2 + 1)
  +\max(0, -1.7 - 3.2 + 1)
= \max(0, 2.9) + \max(0, -3.9)
= 2.9 + 0
= 2.9
= \max(0, 1.3 - 4.9 + 1)
  +\max(0, 2.0 - 4.9 + 1)
= \max(0, -2.6) + \max(0, -1.9)
= 0 + 0
= 0
= \max(0, 2.2 - (-3.1) + 1)
  +\max(0, 2.5 - (-3.1) + 1)
= \max(0, 5.3) + \max(0, 5.6)
= 5.3 + 5.6
= 10.9
```

神经网络基础

❤ 损失函数

∅ 如何损失函数的值相同,那么意味着两个模型一样吗?

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

模型A:
$$w_1=[1,0,0,0]$$

模型B: $w_2 = [0.25, 0.25, 0.25, 0.25]$

$$w_1^Tx=w_2^Tx=1$$

神经网络基础

❤ 损失函数

∅ 损失函数 = 数据损失 + 正则化惩罚项

正则化惩罚项

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)_j$$

$$\mathscr{O}$$
 正则化惩罚项: $R(W) = \sum_k \sum_l W_{k,l}^2$

(我们总是希望模型不要太复杂,过拟合的模型是没用的)

✓ Softmax分类器

∅ 现在我们得到的是一个输入的得分值,但如果给我一个概率值岂不更好!

❷ 如何把一个得分值转换成一个概率值呢?

$$g(z) = \frac{1}{1 + e^{-z}}$$

✓ Softmax分类器

の 归一化:
$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $s=f(x_i;W)$

 ${\mathscr O}$ 计算损失值: $L_i = -\log P(Y=y_i|X=x_i)$

❤ 前向传播

❷ 如何更新模型呢?这个就交给反向传播了(梯度下降)

✅ 梯度下降

❷ 引入: 当我们得到了一个目标函数后,如何进行求解?
直接求解? (并不一定可解,线性回归可以当做是一个特例)

∅ 如何优化: 一口吃不成个胖子,我们要静悄悄的一步步的完成迭代 (每次优化一点点,累积起来就是个大成绩了)

✅ 梯度下降

Ø目标函数:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

- (1): 找到当前最合适的方向
- (2): 走那么一小步, 走快了该"跌倒"了
- (3):按照方向与步伐去更新我们的参数

◇ 梯度下降,目标函数: $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (y^{i} - h_{\theta}(x^{i}))^{2}$

批量梯度下降:
$$\frac{\partial J(\theta)}{\partial \theta_j} = -\frac{1}{m} \sum_{i=1}^m (y^i - h_\theta(x^i)) x_j^i \quad \theta_j^{'} = \theta_j + \frac{1}{m} \sum_{i=1}^m (y^i - h_\theta(x^i)) x_j^i$$

(容易得到最优解,但是由于每次考虑所有样本,速度很慢)

Ø 随机梯度下降: $\theta_j = \theta_j + (y^i - h_\theta(x^i))x_j^i$

(每次找一个样本, 迭代速度快, 但不一定每次都朝着收敛的方向)

(每次更新选择一小部分数据来算,实用!)

✅ 梯度下降

❷ 学习率(步长):对结果会产生巨大的影响,一般小一些

❷ 如何选择:从小的时候,不行再小

神經网络基础

✅ 反向传播

❷ 简单的栗子:

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

❤ 链式法则

✓ 反向传播

复杂的栗子:
$$f(w,x) = \frac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$
 [local gradient] x [its gradient] x [i

$$egin{aligned} f(x) &= e^x &
ightarrow & rac{df}{dx} &= e^x & f(x) &= rac{1}{x} &
ightarrow & rac{df}{dx} &= -1/x^2 \ & f_a(x) &= ax &
ightarrow & rac{df}{dx} &= a & f_c(x) &= c + x &
ightarrow & rac{df}{dx} &= 1 \end{aligned}$$

❤ 反向传播

❷ 可以一大块一大块的计算吗?

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$
 $\sigma(x)=rac{1}{1+e^{-x}}$ sigmoid function

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \left(1 - \sigma(x)
ight)\sigma(x)$$

✅ 反向传播

∅ 加法门单元:均等分配

MAX门单元: 给最大的

乘法门单元: 互换的感觉

❤ 整体架构

神經网緣

✓ 整体架构

❷ 层次结构

❷ 神经元

② 全连接

❷ 非线性

hidden layer 1 hidden layer 2

神經网緣

❤ 整体架构

Ø 线性方程: f = Wx

🖋 非线性方程: $f = W_2 \max(0, W_1 x)$

♂ 计算结果:

✓ 整体架构

$$arrho$$
 基本机构: $f=W_2\max(0,W_1x)$

arrho 继续堆叠一层: $f=W_3\max(0,W_2\max(0,W_1x))$

∅ 神经网络的强大之处在于,用更多的参数来拟合复杂的数据

(参数多到多少呢?百万级别都是小儿科了,但是参数越多越好吗?)

神經网络

❤ 正则化的作用

❷ 惩罚力度对结果的影响:

❤ 神经元

❷ 参数个数对结果的影响:

❤ 激活函数

♂非常重要的一部分

❷ 常用的激活函数

(Sigmoid,Relu,Tanh 等)

✅ 激活函数对比

Sigmoid:

10

❤ 数据预处理

♂ 不同的预处理结果会使得模型的效果发生很大的差异!

✅ 参数初始化

❷ 参数初始化同样非常重要!

W = 0.01* np.random.randn(D,H)

神經网緣

✓ DROP-OUT (传说中的七伤拳)

♂ 过拟合是神经网络非常头疼的一个大问题!

