Midterm review questions

Questions with stars (\star) are a slightly outside of the scope of the midterm, they are simply here for your own general knowledge.

- 1. Let $A, B \in \mathbb{R}^{n \times m}$. For each one of the subsets of \mathbb{R}^n below say whether it is a subspace of \mathbb{R}^n and justify your answer.
 - (a) $E_1 = \{ x \in \mathbb{R}^n \, | \, Ax = 0 \}$
 - (b) $E_2 = \{ x \in \mathbb{R}^n \, | \, Ax = Bx \}$
 - (c) $E_3 = \{x \in \mathbb{R}^n \mid Ax = e_1\}$
 - (d) $E_4 = \{ x \in \mathbb{R}^n \, | \, Ax \in \text{Span}(e_1) \}$
- 2. **True or False**: There exists matrices $M \in \mathbb{R}^{2\times 3}$ such that $\dim(\operatorname{Ker}(M)) = 1$ and $\operatorname{rank}(M) = 2$.
- 3. Let n > m and let $A \in \mathbb{R}^{n \times m}$. Assume that A has "full rank", meaning that $\operatorname{rank}(A) = \min(n, m) = m$.
 - (a) Does Ax = b has a solution for all $b \in \mathbb{R}^n$? (Prove or give a counter example).
 - (b) Can there exist a vector $b \in \mathbb{R}^n$ for which there exists two distinct solutions $x \neq x'$ such that Ax = Ax' = b? (Give an example of A,b for which it happens, or prove that it cannot happen).
- 4. Let now n < m and let $A \in \mathbb{R}^{n \times m}$. Assume that A has "full rank", meaning that $\operatorname{rank}(A) = \min(n, m) = n$.
 - (a) Does Ax = b has a solution for all $b \in \mathbb{R}^n$? (Prove or give a counter example).
 - (b) Can there exist a vector $b \in \mathbb{R}^n$ for which there exists two distinct solutions $x \neq x'$ such that Ax = Ax' = b? (Give an example of A,b for which it happens, or prove that it cannot happen).
- 5. **True or False:** There can exist a set of *n* non-zero orthogonal vectors in \mathbb{R}^m for n > m.
- 6. Let $A \in \mathbb{R}^{m \times n}$.
 - (a) Prove that $Ker(A^T)$ and Im(A) are orthogonal to each other, i.e. for all $x \in Ker(A^T)$ and all $y \in Im(A)$, we have $x \perp y$.

- (b) Prove that $Ker(A^T) = Im(A)^{\perp}$.
- 7. **True or False**: The matrix of an orthogonal projection is symmetric.
- 8. **True or False**: The matrix of an orthogonal projection is orthogonal.
- 9. Let *S* be a subspace of \mathbb{R}^n and let P_S be the orthogonal projection onto *S*. Show that $\dim(S) = \operatorname{Tr}(P_S)$.
- 10. **True or False**: Let $A, B \in \mathbb{R}^{n \times n}$. If v is an eigenvector of A and B, then v is an eigenvector of A + B. Is v an eigenvector of AB?
- 11. Let $A \in \mathbb{R}^{n \times n}$. Let $v_1, v_2 \in \mathbb{R}^n$ be two eigenvectors of A associated with the same eigenvalue λ . Show that any non-zero vector in $\mathrm{Span}(v_1, v_2)$ is an eigenvector of A associated with λ .
- 12. Let $x \in \mathbb{R}^n$ be a vector not equal to zero. Show that $M = xx^T$ is symmetric. What is the rank of M? What are the eigenvalues of M and their multiplicity?
- 13. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Let (u_1, \ldots, u_n) be an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A and let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues $(Au_i = \lambda_i u_i \text{ for all } i)$. Give orthonormal basis of Ker(A) and Im(A) in terms of the vectors u_1, \ldots, u_n .
- 14. (*) For any matrix $A \in \mathbb{R}^{m \times n}$, give an expression for $P_{Im(A)}$ in terms of QR factorization of A.
- 15. (*) True or False: Every matrix $A \in \mathbb{R}^{n \times n}$ can be written as A=LU where L is a lower triangular matrix and U is an upper triangular matrix