Set Identities

Equivalence	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity Laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination Laws
$A \cup A = A$ $A \cap A = A$	Idempotent Laws
$\overline{(\overline{A})} = A$	Complementation laws
$A \cap B = B \cap A$ $A \cup B = B \cup A$	Commutative Laws
$(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$	Associative Laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive Laws
$\frac{\overline{(A \cap B)}}{\overline{(A \cup B)}} = \overline{A} \cup \overline{B}$	De Morgan's Laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption Laws
$A \cap \overline{A} = \emptyset$ $A \cup \overline{A} = U$	Complement Laws