Math 470 Assignment 30

Arnold Jiadong Yu

April 30, 2018

10.6.6 Suppose that H is nonempty compact subset of X and Y is Euclidean space. a) If $f: H \to Y$ is continuous, prove that

$$||f||_H = \sup_{x \in H} ||f(x)||_Y$$

is finite and there exists an $x_0 \in H$ such that $||f(x_0)||_Y = ||f||_H$.

b) A sequence of functions $f_k: H \to Y$ is said to converge uniformly on H to a function $f: H \to Y$ if and only if given $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$k \geq N$$
 and $x \in H$ imply $||f_k(x) - f(x)|| < \epsilon$

Show that $||f_k - f||_H \to 0$ as $k \to \infty$ if and only if $f_k \to f$ uniformly on H as $k \to \infty$.

c) Prove that a sequence of functions f_k converge uniformly on H if and only if, given $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$k, j \ge N$$
 implies $||f_k - f_j||_H < \epsilon$

proof: a)Since H is compact and f is continuous on H, then f(x) is continuous on the image of a compact set which is compact by Theorem 10.61. Moreover, H is closed and bounded, then f(x) is closed and bounded for all $x \in H$. By Extreme Value Theorem (Theorem 10.63), $||f||_H = \sup_{x \in H} ||f(x)||_Y$ is finite and here exists an $x_0 \in H$ such that $||f(x_0)||_Y = ||f||_H$.

- b) (\Rightarrow)Suppose $||f_k f||_H \to 0$ as $k \to \infty$. Let $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $||f_k f||_H < \epsilon$ for $k \ge N$. Therefore, $\sup_{x \in H} ||f_k(x) f(x)||_Y < \epsilon$ for $k \ge N$ by part a). Thus, $||f_k(x) f(x)||_Y \le \sup_{x \in H} ||f_k(x) f(x)||_Y < \epsilon$ for all $x \in H$ and $k \ge N$. Hence $f_k \to f$ uniformly on H as $k \to \infty$.
- (\Leftarrow) Suppose $f_k \to f$ uniformly on H as $k \to \infty$. Let $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $||f_k(x) f(x)||_Y < \epsilon$ for $k \ge N$ and $x \in H$. Therefore, $\sup_{x \in H} ||f_k(x) f(x)||_Y < \epsilon$. This implies $||f_k f||_H < \epsilon$ for $k \ge N$ by part a). Hence $||f_k f||_H \to 0$ as $k \to \infty$.
- c) (\Rightarrow)Suppose $f_k \to f$ uniformly on H as $k \to \infty$. Let $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$||f_k - f||_H < \frac{\epsilon}{2}$$
 and $||f_j - f||_H < \frac{\epsilon}{2}$ for $k, j \ge N$

Therefore

$$||f_k - f_j||_H \le ||f_k - f||_H + ||f_j - f||_H = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \text{ for } k, j \ge N$$

(\Leftarrow) Let $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that $k, j \geq N$ implies $||f_k - f_j||_H < \epsilon$, then $\sup_{x \in H} ||f_k(x) - f_j(x)|| < \epsilon$. It is Cauchy in Y. Since Y is Euclidean Space, then it converges to some function in H by Cauchy Criterion. This implies $f_k \to \text{some}$ function f in H. It converges uniformly by part b).

Q: Let $X = \{ \text{bounded function from } \mathbb{R} \text{ to } \mathbb{R} \}$

$$d(f,g) = \sup_{t \in \mathbb{R}} |f(t) - g(t)|$$

- a) Show that (X, d) is a metric space.
- b) Show that (X, d) is not separable.

proof: a)(1) If $d(f, g) = \sup_{t \in \mathbb{R}} |f(t) - g(t)| = 0$, then $|f(t) - g(t)| \le 0$. Since $|f(t) - g(t)| \ge 0$, then |f(t) - g(t)| = 0. Therefore, f(t) = g(t) for $t \in \mathbb{R}$

- (2)|f(t)-g(t)|=|g(t)-f(t)| for $t\in\mathbb{R}$. This implies $\sup_{t\in\mathbb{R}}|f(t)-g(t)|=\sup_{t\in\mathbb{R}}|g(t)-f(t)|$. Therefore, d(f,g)=d(g,f).
- (3) Let h(t) be a bounded function from \mathbb{R} to \mathbb{R} . Then

$$|f(t) - g(t)| = |f(t) - h(t) + h(t) - g(t)| \le |f(t) - h(t)| + |h(t) - g(t)|$$
 for every $t \in \mathbb{R}$

Therefore

$$\sup_{t \in \mathbb{R}} |f(t) - g(t)| \le \sup_{t \in \mathbb{R}} |f(t) - h(t)| + \sup_{t \in \mathbb{R}} |h(t) - g(t)|$$
$$\Rightarrow d(f, g) \le d(f, h) + d(h, g)$$

Hence, (X, d) is a metric space by (1), (2), and (3).

b) Suppose (X,d) is separable, let C be an countable dense subset of X. Choose f_k be a sequence of bounded functions in C and $f \in X$, such that $f_k \to f$ as $k \to \infty$. Let $\epsilon > 0$, then $d(f_k, f) = \sup_{t \in \mathbb{R}} |f_k(t) - f(t)| < \epsilon$ as $k \to \infty$. $|f_k|$ is bounded by |f| for all $k, f \notin C$, $f \in \overline{C}$. Since f_k is range in \mathbb{R} and bounded by f. There could be g_k is range in \mathbb{R} and bounded by g. Then we can keeping adding sequences of sequences to the coubtable dense subset of C, where forces C = X. This contradicts that C is an countable dense subset of X. Hense (X, d) is not separable.