QCM 1

jeudi 10 septembre 2015

Question 11

La partie réelle de $(1-i)^2$ est

- a. 2
- b. -1

- d. 1
- e. rien de ce qui précède

Question 12

Soit $z = \frac{4-i}{1+2i}$. Alors, on a

a.
$$z = \frac{2}{5} - \frac{9}{5}i$$

b.
$$z = \frac{6}{5} + \frac{7}{5}i$$

c.
$$z = -\frac{2}{3} + 3i$$

d. rien de ce qui précède

Question 13

Un argument de $z = -2\sqrt{2}i + 2\sqrt{2}$ est

- a. $\frac{3\pi}{4}$
- b. $-\frac{3\pi}{4}$
- $c.-\frac{\pi}{4}$
 - d. $\frac{\pi}{4}$
 - e. rien de ce qui précède

Question 14

Soit $z\in\mathbb{C}$ tel que |z|=2 et $\arg(\overline{z})=\frac{4\pi}{3}[2\pi].$ Alors, la forme algébrique de z est $-i\sqrt{3}+1$

- a. vrai
- b. faux

Question 15

Soit z=1+i. Alors, $\sqrt{2}z^9$ est égal à

- a. $32e^{-i\frac{\pi}{4}}$
- b. $16e^{-i\frac{7\pi}{4}}$
- c. $32e^{-i\frac{3\pi}{4}}$
- d. $16\sqrt{2}$
- e. rien de ce qui précède

Question 16

La forme exponentielle de $\frac{\cos(\frac{\pi}{3})+i\sin(\frac{\pi}{3})}{\cos(\frac{\pi}{4})-i\sin(\frac{\pi}{4})}$ est $e^{i\frac{\pi}{12}}$

- a. vrai
- b. faux

Question 17

Le module et un argument de $\frac{\sqrt{3}-i}{1+i}$ sont respectivement

- a. $\sqrt{2} \text{ et } -\frac{\pi}{12}$
- b. $\sqrt{2}$ et $-\frac{5\pi}{12}$
 - c. $2\sqrt{2} \text{ et } -\frac{\pi}{12}$
 - d. $2\sqrt{2}$ et $-\frac{5\pi}{12}$
 - e. rien de ce qui précède

Question 18

Soit $z \in \mathbb{C}$ tel que $z^2 - 6\cos\left(\frac{\pi}{5}\right)z + 9 = 0$. Alors, le module de z vaut

- a. 1
- b. 2
- c. 9
- d. 6

e. rien de ce qui précède

Question 19

Soit $z = \frac{3+i}{i}$. Parmi les affirmations suivantes, lesquelles sont vraies?

a.
$$|e^{iz}| = 1$$

b.
$$|e^{iz}| = e^3$$

c.
$$Re(z) = cos(3)$$

d.
$$Im(z) = e\sin(3)$$

e. Toutes les affirmations sont fausses

Question 20

Le nombre complexe i^{2015} est égal à -i

- a. vrai
- b. faux