Basics

• Single Qubit:
$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

- Bit and Phase information
 - Measurement:
 - formally: projection onto a basis
 - Change
 - Bit-Flip $X(a|0\rangle + b|1\rangle) = b|0\rangle + a|1\rangle$
 - Phase-Flip $Z(a|0\rangle + b|1\rangle) = a|0\rangle b|1\rangle$

Bases

• Computational Basis $= (|0\rangle \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle \equiv \begin{pmatrix} 0 \\ 1 \end{pmatrix})$

$$Z\ket{0}=\ket{0}$$
 , $Z\ket{1}=-\ket{1}$

$$X\ket{0}=\ket{1}$$
 , $X\ket{1}=\ket{0}$

• Hadamard Basis $=\left(|+\rangle\equiv \frac{|0\rangle+|1\rangle}{\sqrt{2}}$, $|-\rangle\equiv \frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$

$$X|+\rangle = |+\rangle$$
 , $X|-\rangle = -|-\rangle$

$$Z|+\rangle = |-\rangle$$
, $Z|-\rangle = |+\rangle$

Conversion

$$H\ket{0}=\ket{+}$$
 , $H\ket{1}=\ket{-}$, $H^2=\mathbb{1}$

Basics

• Bloch Sphere:

$$\rho = |\psi\rangle \langle \psi|$$

$$= \frac{1}{2}(\mathbb{1} + X\cos\phi\sin\theta + Y\sin\phi\sin\theta + Z\cos\theta)$$

$$= \frac{1}{2}(\mathbb{1} + \vec{r}_{\rho} \cdot \vec{\sigma})$$

• Rotations:

$$R_{\hat{n}}(\alpha) = \exp\left(-i\frac{\alpha}{2}\hat{n}\cdot\vec{\sigma}\right)$$

 $R_{\hat{x}}(\pi) = X$, $R_{\hat{z}}(\pi) = Z$ $(R_{\hat{y}}(\pi) = Y)$

Running 2-Qubit Gates & Connectivity

Suppose a device has this layout:

But we want to do this:

Wrong direction! Circumvent it with

Running 2-Qubit Gates & Connectivity

Suppose a device has this layout:

But we want to do this:

No direct connection available! Circumvent it with e.g.

SWAP, CNOT, SWAP

SWAP(q0, q4)

Running 2-Qubit Gates & Connectivity

- → Minimize the cost for given quantum algorithm on a given hardware layout
- Software: Compilation/Transpilation
- Hardware: optimized layout for specific algorithms

Example: ibmqx2, (Yorktown)

→ here: optimized circuit performs better