Turing Machines

The Language Hierarchy

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 WW^{R}

Regular Languages

*a**

a*b*

A Turing Machine

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each transition (time step):

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

Time 1

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

States & Transitions

Example:

Time 1

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_1
\end{array}$$

Time 1

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

Example:

Example:

Determinism

Turing Machines are deterministic

Allowed

Not Allowed

No lambda transitions allowed

Partial Transition Function

Example:

Allowed:

No transition for input symbol c

Halting

The machine *halts* in a state if there is no transition to follow

Halting Example 1:

No transition from q_1 HALT!!!

Halting Example 2:

Accepting States

- Accepting states have no outgoing transitions
- The machine halts and accepts

Acceptance

Accept Input string

If machine halts in an accept state

Reject Input string

If machine halts in a non-accept state or

If machine enters an infinite loop

Turing Machine Example

Input alphabet
$$\Sigma = \{a, b\}$$

Accepts the language: a^*

$$a \to a, R$$

$$\downarrow q_0 \qquad \Diamond \to \Diamond, L$$

$$\downarrow q_1$$

Time 1

Time 2

Time 4

Rejection Example

Time 1

No possible Transition Halt & Reject

Infinite Loop Example

A Turing machine for language $a^*+b(a+b)^*$

$$b \rightarrow b, L$$

$$a \rightarrow a, R$$

$$Q_0 \qquad \Diamond \rightarrow \Diamond, L$$

$$Q_1 \qquad Q_1$$

Time 0

Time 1

Time 2

Because of the infinite loop:

• The accepting state cannot be reached

The machine never halts

The input string is rejected

Another Turing Machine Example

Turing machine for the language

$$\{a^nb^n\}$$
 $n \ge 1$

Basic Idea:

Match a's with b's:

Repeat:

replace leftmost a with x
find leftmost b and replace it with y
Until there are no more a's or b's

If there is a remaining a or b reject

Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

Time 7

Time 9

Time 11

Time 12

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_1
\end{array}$$

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Turing Machine:

Configuration

 $q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation:
$$q_2 xayb \succ xxy q_1 b$$

Input string

The Accepted Language

For any Turing Machine M

If a language L is accepted by a Turing machine M then we say that Lis:

Turing Recognizable

Other names used:

- Turing Acceptable
- Recursively Enumerable

Computing Functions with Turing Machines

A function

f(w)

has:

Result Region: SDomain: D f(w) $f(w) \in S$ $w \in D$

A function may have many parameters:

Example: Addition function

$$f(x, y) = x + y$$

Integer Domain

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation:

easier to manipulate with Turing machines

Definition:

A function f is computable if there is a Turing Machine M such that:

Initial configuration

Final configuration

For all $w \in D$ Domain

In other words:

A function f is computable if there is a Turing Machine M such that:

$$q_0 \ w \ \succ \ q_f \ f(w)$$
 Initial Final Configuration Configuration

For all $w \in D$ Domain

Example

The function
$$f(x, y) = x + y$$
 is computable

x, y are integers

11011

11110

Turing Machine:

Input string: x0y unary

Output string: xy0 unary

The 0 is the delimiter that separates the two numbers

The 0 here helps when we use the result for other operations

Turing machine for function f(x, y) = x + y

Execution Example:

Time 0

$$x = 11$$
 (=2)

$$y = 11$$
 (=2)

Final Result

Time 0 \Diamond 1 1 0 1 1 \Diamond q_0

Another Example

$$f(x) = 2x$$
 is computable

$$\mathcal{X}$$

is integer

Turing Machine:

Input string:

 \mathcal{X}

unary

Output string:

 $\chi\chi$

unary

Start

Furing Machine Pseudocode for f(x) = 2x

| |

- Replace every 1 with \$
 - Repeat:
 - Find rightmost \$, replace it with 1

Go to right end, insert 1

Until no more \$ remain

$$f(x) = 2x$$

Start Example

Finish

Another Example

The function
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 401... & \text{if } x \leq y \end{cases}$$
 is computable

Input:
$$x0y$$

Output: 1 or 0

Turing Machine Pseudocode:

Repeat

```
Match a 1 from x with a 1 from y
```

Until all of x or y is matched

• If a 1 from x is not matched erase tape, write 1 (x > y) else erase tape, write 0 $(x \le y)$

Combining Turing Machines

Block Diagram

Example:

$$f(x,y) = \begin{cases} x+y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

