(* الموافقات-الأعداد الأولية *)

\mathbb{Z} الموافقات في

 \mathbb{Z} نقول أن العددين الصحيحين b ، a متوافقان بترديد a-b (طبيعي) إذا وفقط إذا كان a-b من مضاعفات a في a تعريف a=b و يقرأ a يوافق b بترديد a .

- $a\equiv cig[n]$ إذا كان: $a\equiv big[n]$ و $a\equiv big[n]$ فإن
- $a \times c \equiv b \times d[n]$ يَذَا كَانَ: $a \pm c \equiv b \pm d[n]$ فَإِن: a = b[n] يَذَا كَانَ: $a \times c \equiv b \times d[n]$
- $k \in \mathbb{Z}$ يذا كان: $a = b \times b$ فإن: a = b + k و $a = b \times b$ إذا كان: a = b
 - . $p \in \mathbb{N}$ جيث $a^p \equiv b^p ig[n ig]$ اِذَا كَان: $a \equiv b ig[n ig]$ جيث $a \equiv b ig[n ig]$
 - . $a \equiv b + k \, n \big[n \big]$ يذا كان: $a \equiv b + k \, n \big[n \big]$ يؤنا كان $a \equiv b \big[n \big]$ يذا كان
- . n وَ أُولِي مع $a\equiv 0$ $a\equiv 0$ فإن: $a\equiv 0$ فإن: $a\equiv 0$ فإن: $a\equiv 0$ أذا كان: $a\equiv 0$
 - ي إذا كان: $a imes b \equiv 0$ فإن: a imes 0 أوa imes 0 مع a imes a عدد أولي.

② القاسم المشترك الأكبر PGCD و المضاعف المشترك الأصغر

- . b على $a \ge b$ على $a \ge b$ على PGCD(a;b) = PGCD(b;r)
 - $k \in \mathbb{Z}^*$ حيث: $PGCD(k \ a; k \ b) = k \times PGCD(b; r)$
 - $PGCD(a;b) \times PPCM(a;b) = a \times b$
- $PGCD\left(a';b'\right)=1$ مع $\begin{cases} a=d\ a' \\ b=d\ b' \end{cases}$ مع $\begin{cases} a=d\ a' \\ b=d\ b' \end{cases}$ إذا كان: $PGCD\left(a;b\right)=d$ فإن: $PGCD\left(a;b\right)=d$

حواص

- $k \in \mathbb{Z}^*$ مح $PGCD(k \ a; k \ b) = |k| PGCD(a; b)$
- $n\in\mathbb{N}^*$ اِذا كان: $PGCDig(a;b^nig)=1$ فإنPGCDig(a;b)=1 مع
- $n \in \mathbb{N}^*$ اِذَا كَانَ: $PGCD\left(a^n;b^n
 ight) = 1$ فإن: $PGCD\left(a;b
 ight) = 1$ إذا كان
- . PGCD(a;bc) = 1 فإن: PGCD(a;c) = 1 و PGCD(a;c) = 1

③ مبرهنة بيزو

 $a\,x+b\,y=1$ يكون العددان الطبيعيان غير المعدومين a وَ b أوليين فيما بينهما إذا و فقط إذا وجد عددان صحيحان غير المعدومين والمعدومين عنه أوليين فيما بينهما إذا و

4 مبرهنة غوص

. c وَ كان a أولياً مع a ، فإن معدومة ، إذا كان a يقسم الجداء b و كان a أولياً مع a ، فإن معدومة ، إذا كان a يقسم a

المبرهنة الصغيرة لفيرما

 $(a^{p-1}-1)$ إذا كان p عدداً أولياً و a عدداً طبيعياً لا يقبل القسمة على p فإن p يقسم العدد