Example: COVID-2019 data for Hubei, China

Table of Contents

Initialisation	1
Fitting of the generalized SEIR model to the real data	
Simulate the epidemy outbreak based on the fitted parameters	
Comparison of the fitted and real data	
Companion of the fitted and real data	

I am taking some data from John Hopkins university [1]

[1] https://github.com/CSSEGISandData/COVID-19

Important notice:

The fitting is here more challenging than in Example 1 because the term "Confirmed patient" used in the database does not precise whether they have been quarantined or not. In a previous version of the submision (version <1.5), the infectious cases were erroneously used instead of the quarantined cases.

Initialisation

The parameters are here taken as constant except the death rate and the cure rate.

```
clearvars;close all;clc;
% Download the data from ref [1] and read them with the function getDataCOVID
[tableConfirmed,tableDeaths,tableRecovered,time] = getDataCOVID();
% time = time(1:end-1);
fprintf(['Most recent update: ',datestr(time(end)),'\n'])
```

```
Most recent update: 13-Apr-2020
```

```
Location = 'Hubei';

try
    indR = find(contains(tableRecovered.ProvinceState,Location)==1);
    indC = find(contains(tableConfirmed.ProvinceState,Location)==1);
    indD = find(contains(tableDeaths.ProvinceState,Location)==1);

catch exception
    searchLoc = strfind(tableRecovered.ProvinceState,Location);
    indR = find(~cellfun(@isempty,searchLoc)) ;

    searchLoc = strfind(tableConfirmed.ProvinceState,Location);
    indC = find(~cellfun(@isempty,searchLoc)) ;

    searchLoc = strfind(tableDeaths.ProvinceState,Location);
    indD = find(~cellfun(@isempty,searchLoc)) ;
end

disp(tableRecovered(indR,1:2))
```

ProvinceState CountryRegion

```
"Hubei"
                     "China"
disp(tableConfirmed(indC,1:2))
   ProvinceState
                  CountryRegion
      "Hubei"
                     "China"
disp(tableDeaths(indD,1:2))
   ProvinceState
                  CountryRegion
      "Hubei"
                     "China"
indR = indR(1);
indD = indD(1);
indC = indC(1);
Recovered = table2array(tableRecovered(indR,5:end));
Deaths = table2array(tableDeaths(indD,5:end));
Confirmed = table2array(tableConfirmed(indC,5:end));
% If the number of confirmed cases is small, it is difficult to know whether
% the quarantine has been rigorously applied or not. In addition, this
% suggests that the number of infectious is much larger than the number of
% confirmed cases
minNum= round(0.3*max(Confirmed));
Recovered(Confirmed<=minNum)=[];</pre>
Deaths(Confirmed<=minNum)=[];</pre>
time(Confirmed<=minNum)= [];</pre>
Confirmed(Confirmed<=minNum)=[];</pre>
if isempty(Confirmed)
```

Fitting of the generalized SEIR model to the real data

return

Npop= 14e6; % population

end

```
% Definition of the first estimates for the parameters
alpha_guess = 0.06; % protection rate
beta_guess = 0.9; % Infection rate
LT_guess = 5; % latent time in days
Q_guess = 0.1; % rate at which infectious people enter in quarantine
lambda_guess = [0.1,0.05]; % recovery rate
kappa_guess = [0.08,0.03]; % death rate
```

warning('"Confirmed" is an empty array. Check the value of "minNum". Computation at

```
guess = [alpha_guess,...
    beta_guess,...
    1/LT_guess,...
    Q_guess,...
    lambda_guess,...
    kappa_guess];
% Initial conditions
E0 = Confirmed(1); % Initial number of exposed cases. Unknown but unlikely to be zero.
IO = Confirmed(1); % Initial number of infectious cases. Unknown but unlikely to be zer
Q0 = Confirmed(1)-Recovered(1)-Deaths(1);
R0 = Recovered(1);
D0 = Deaths(1);
% Active cases
Active = Confirmed-Recovered-Deaths;
Active(Active<0) = 0; % No negative number possible
% Parameter estimation with the lsqcurvefit function
[alpha1,beta1,gamma1,delta1,Lambda1,Kappa1] = ...
    fit_SEIQRDP(Active, Recovered, Deaths, Npop, E0, I0, time, guess, 'Display', 'off');
```

Simulate the epidemy outbreak based on the fitted parameters

```
dt = 1/24; % time step
time1 = datetime(time(1)):dt:datetime(datestr(floor(datenum(now))+datenum(10)));
N = numel(time1);
t = [0:N-1].*dt;
[S,E,I,Q,R,D,P] = SEIQRDP(alpha1,beta1,gamma1,delta1,Lambda1,Kappa1,Npop,E0,I0,Q0,R0,D0
```

Comparison of the fitted and real data

Active cases = Confirmed-Deaths-Recovered (database) = Quarantined (SEIQRDP model)

