MGRECON - Class 6 (after class)

GameTheory: Road Map

Simultaneous Games
Dominant Strategies
Dominated Strategies
Nash Equilibrium
Multiple Equilibria
Sequential Games

Are Business Games "Zero-Sum"?

Is Business War?

Yes?

```
"outsmart competition"
"make a killing"
"capture market share"
"beat up suppliers"
"lock up customers"
```

No?

```
"listen to customers"
"work with suppliers"
"form strategic alliances/partnerships"
```

Business games almost always have **both** competition and cooperation: cooperation creates value competition distributes value across parties

The Prisoner's Dilemma Game

Rowina and Colin are caught driving a stolen car and are suspected of having committed a second crime Without further evidence, they can only be convicted of car theft

The cops put them in different rooms and tell each of them:

"You have two choices: confess (to the second crime), or stay silent

if you both stay silent, each of you goes to jail for 1 year (for the car theft)

if you both confess, each gets 5 years (for the car theft and the second crime)

if your partner confesses and you do not, you get 8 years and your partner goes free

if you confess and your partner does not, you go free and your partner gets 8 years

		Colin					
		Confess		Stay Silent			
Rowina	Confess		-5		-8		
		-5		0			
	a Stay Silent		0		-1		
		-8		-1			

A well-defined game must specify: i) players, ii) strategies and iii) payoffs

The Prisoner's Dilemma Game

		Colin Confess Stay Silent				
	Confess		-5		-8	
Rowina		-5		0		
	Stay Silent		0		-1	
~		-8		-1		

Rowina and Colin care only about their own jail time: no loyalty, friendship, fairness, "doing the right" ...

- Q1: What will each player do?
- Q2: Does Rowina's best choice depend on her guess about Colin's choice? Does Colin's?
- Q3: What is the likely outcome? Is it a "good" (i.e. efficient) outcome?
- Q4: Does this game remind you of other real-life situations?

The Prisoner's Dilemma Game: Analysis

Rowina thinks:

if Colin confesses, I am better off confessing (-5 > -8)

if Colin stays silent, I am better off confessing (0 > -1)

and concludes: "I will confess, no matter what Colin does"

Colin thinks:

if Rowina confesses, I am better off confessing (-5 > -8)

if Rowina stays silent, I am better off confessing (0>-1)

and concludes: "I will confess, no matter what Rowina does"

For each player, "Confess" is a dominant strategy

"Dominant" means payoff-maximizing no matter what the opponent does

Note: Selfish behavior here leads to an inefficient outcome

Iterative Elimination of Dominated Strategies (IEDS)

Player 1 thinks:

my best reply to C1 is R3 (4 > 0) my best reply to C2 is R3 (8 > 5 > 0) my best reply to C3 is R2 (10 > 8 > 6)

Player 2 thinks:

my best reply to R1 is C2 (10 > 8 > 6)my best reply to R2 is C1 (8 > 5 > 0)my best reply to R3 is C1 (4 > 0)

IEDS 2

Player 1

C3 is never a best response (all horizontal arrows leave C3)

C3 is a dominated strategy

C3 can be deleted from the game

R1 is never a best response (all vertical arrows leave R1)

R1 is a dominated strategy

R1 can be deleted from the game

IEDS 3

The IEDS procedure relies each player believing that its opponents' are rational

Nash Equilibrium

For Rowina:

R3 is the best response to C1 R2 is the best response to C2 R1 is the best response to C3

For Colin:

C1 is the best response to R1 C2 is the best response to R2 C3 is the best response to R3

The strategy profile (R2,C2) is a Nash Equilibrium

A Nash Equilibrium is a profile of strategies which are *simultaneous best responses*John Nash proved that any finite game has at least one Nash Equilibrium

Multiple Nash Equilibria

Football
Wife
Movie

The Battle of the Sexes
Husband
Football
Movie

0
1
0
1
0
3

A Two-Tiered Tender Offer

A company is owned by 100 shareholders, each owning one share. Each share can be sold today for \$100.

A raider offers to pay

$$\left\{ \begin{array}{ll} P_I = 105 & \quad \text{for each of the first 50 shares;} \\ P_{II} = 90 & \quad \text{for any share beyond the } 50^{th} \end{array} \right.$$

All who tender get the same price: if T shareholders tender, each gets

$$P(T) = \begin{cases} 105 & \text{if } T \leq 50; \\ \frac{50}{T} \cdot 105 + \frac{T - 50}{T} \cdot 90 = 90 + \frac{750}{T} & \text{if } T > 50. \end{cases}$$

What will each shareholder do?

Let t=# shareholders, *other than you*, who decide to tender, so $0 \le t \le 99$

There are 3 cases:

i) t < 50, the takeover fails (whether you tender or not) and your earn:

 $\left\langle\begin{array}{c} \$105, \text{ if you tender} \\\\ \$100 \text{ (the current value), if you do not tender;} \end{array}\right.$

In all 3 cases you earn more by tendering; thus tendering is the *dominant* strategy.

The raider ends up buying all shares at \$97.5 each.

Continuous line = your payoff from tendering,

 ${\sf Dashed\ line} = {\sf your\ payoff\ from\ not\ tendering}$

Sequential Games

In simultaneous games, players move at the same time

In sequential games, some players move before others

Backward Induction

The equilibrium of a sequential game is found by backward induction

If all payoffs in the game are different, the equilibrium of a sequential game is unique.

Simultaneous vs Sequential Games

In the <u>simultaneous</u> game R3 and C3 are **dominated**

Delete R3 and C3, then delete R1 and C1

(R2,C2) is the unique Nash equilibrium

Simultaneous vs Sequential Games cont'd

In the sequential game, R3 is optimal

In equilibrium, first Player 1 chooses R3, then Player 2 chooses C1