Deducción natural en Lean

Lógica proposicional

	Táctica en Lean	Regla de inferencia
Introducción del ∧:	apply and.intro	$\frac{\alpha \beta}{\alpha \wedge \beta} \ [\land I]$
Eliminación del ∧:	apply (and.left/right $hipot$)	$\frac{\alpha \wedge \beta}{\alpha} [\wedge \mathbf{E}_L] \qquad \frac{\alpha \wedge \beta}{\beta} [\wedge \mathbf{E}_R]$
		$\frac{}{\alpha}$ 1
		$ \begin{array}{c} \overline{\alpha} \\ \overline{\beta} \\ \overline{\alpha \rightarrow \beta} \\ \end{array} 1 [\rightarrow I] $
Introducción del \rightarrow :	intro(s)	
Eliminación del \rightarrow :	apply hipot	$\frac{\alpha \to \beta \qquad \alpha}{\beta} [\to E]$
		$\frac{\alpha}{\alpha}$ 1 $\frac{\beta}{\beta}$ 1
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Introducción del \leftrightarrow :	apply iff.intro	
Eliminación del \leftrightarrow :	<pre>apply (iff.elim_left/right hipot)</pre>	$\frac{\alpha \leftrightarrow \beta \alpha}{\beta} [\leftrightarrow \mathbf{E}_L] \qquad \frac{\alpha \leftrightarrow \beta \beta}{\alpha} [\leftrightarrow \mathbf{E}_R]$
Introducción del V:	apply or.inl/inr	$\frac{\alpha}{\alpha \vee \beta} \ [\vee I_L] \qquad \frac{\beta}{\alpha \vee \beta} \ [\vee I_R]$
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Eliminación del V:	apply (or.elim hipot)	$\frac{\alpha \lor \beta \qquad \gamma \qquad \qquad \gamma}{\gamma} \qquad \qquad 1 \ [\lor E]$
		$\frac{\alpha}{\alpha}$ 1 :
		•
Introducción del ¬:	$idem \to (\neg \alpha \equiv \alpha \to false)$	$\frac{false}{\neg \alpha} _{1} [\neg I]$
Eliminación del \neg :	$idem \to (\neg \alpha \equiv \alpha \to false)$	$\frac{\neg \alpha \alpha}{false}$ [¬E]
Introducción del true:	apply true.intro	\overline{true}^{-} [trueI]
Eliminación de false:	apply false.elim	$\frac{false}{\alpha}$ [false E]
		$\frac{\neg \alpha}{}$ 1
Reducción al absurdo:	${\tt by_contradiction}$	$\frac{false}{\alpha} _{1} _{[RAA]}$

Para poder usar la regla de reducción al absurdo hay que agregar los comandos al antes de la prueba:

Lógica de predicados

	Táctica en Lean	Regla de inferencia
Introducción del \forall :	intro $variable$	$\frac{P(y)}{\forall x. P(x)} [\forall \mathbf{I}]$
Eliminación del ∀:	apply (hipot variable)	$\frac{\forall x. P(x)}{P(t)} [\forall E]$
Introducción del ∃:	apply exists.intro witness	$\frac{P(t)}{\exists x. P(x)} \ [\exists \mathbf{I}]$
		P(y) 1
Eliminación del ∃:	apply exists.elim $hipot$, intros w hw	$ \begin{array}{cccc} \exists x. P(x) & \vdots \\ \hline \alpha & & \\ \end{array} $ 1 [∃E]