

# Лекция 4

## Линейные подпространства

#### Содержание лекции:

В настоящей лекции мы поговорим о подструктурах линейного пространства - линейных подпрострастранствах. Чаще всего приходится иметь дело именно с ними. Подпространства и линейные многообразия играют важную роль в геометрических приложениях линейной алгебры, а также, как будет указано, в теории систем линейных алгебраических уравнений.

#### Ключевые слова:

Линейное подпространство, линейная оболочка, линейное многообразие, размерность линейного многообразия.

#### Авторы курса:

Трифанов А. И.

Москаленко М. А.

#### Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

## 4.1 Подпространства

Подмножество  $L \subset X$  линейного пространства X(K) называется линейным подпространством пространства X(K), если оно само является линейным простанством над полем K относительно операций, определенных в X.

**Теорема 4.1.** (Критерий линейного подпространства) Для того, чтобы непустое подмножество L линейного пространства X(K) являлось подпространством, необходимо и достаточно выполнение следующих условий:

- 1.  $\forall x_1, x_2 \in L \quad x_1 + x_2 \in L;$
- 2.  $\forall \alpha \in K, \quad \forall x \in L \quad \alpha x \in L.$

 $\Rightarrow$  Пусть L - подпространство линейного пространства X(K), тогда условия (1) и (2) содержатся в его определении.

 $\Leftarrow$  Пусть выполняются условия (1) и (2), тогда L - подпространство линейного пространства X(K). Действительно, данное утверждение следует из того, что X(K) само является линейным пространством, а L является его подмножеством, замкнутым относительно операций, индуцированных из X(K).

4

#### Пример 4.1. Примеры подпространств:

- 1. Само X и  $\{0\}$  примеры тривиальных (несобственных) подпространств;
- 2. Прямая и плоскость, содержащие начало координат подпространства  $E_3$ ;
- 3. Множество симметричных  $2 \times 2$  матриц подпространство  $\mathbb{C}_2^2$ ;
- 4. Множество четных полиномов подпространство  $\mathcal{P}_n$ ;

**Лемма 4.1.** Пусть L - подпространство X(K), тогда

$$\dim L \leq \dim X$$
.

Так как L является подмножеством X(K), то любой набор элементов L также содержится и в X. Лемму доказывает выбор базиса L в качестве такого набора.

Лемма 4.2. Имеет место:

$$L = X \Leftrightarrow \dim L = \dim X.$$

▶

⇒ Утверждение очевидно.

← Было показано, что для любых двух линейных пространств имеется критерий

$$\dim_K X = \dim_K L \quad \Leftrightarrow \quad X \simeq L,$$

и так как  $L \subseteq X$ , то отсюда следует, что L = X.

•

**Лемма 4.3.** Любой базис подпространства L может быть дополнен до базиса всего пространства X(K).

**>** 

Пусть  $\{f_i\}_{i=1}^k$  базис L. Применим процедуру прореживания к системе

$$\{f_1, f_2, \ldots, f_k; e_1, e_2, \ldots, e_n\},\$$

где  $\{e_j\}_{j=1}^n$  - базис X. В результате получим новый базис пространства X, содержащий в качестве поднабора  $\{f_i\}_{i=1}^k$ .

•

**Лемма 4.4.** Из произвольного базиса пространства X, вообще говоря, нельзя выбрать базис его подпространства L.

**>** 

Лемму доказывает контрпример:

$$X = \mathcal{L}\{e_1, e_2\}$$
  $L = \mathcal{L}\{e_1 + e_2\}.$ 

4

## 4.2 Линейная оболочка

**Линейной оболочкой** системы векторов  $x_1, x_2, \dots, x_k$  называется множество  $\mathcal{L}\{x_1, x_2, \dots, x_k\}$  всех линейных комбинаций этих векторов:

$$\mathcal{L} = \left\{ x \in X : \quad x = \sum_{i=1}^{k} \alpha^{i} x_{i} \right\}.$$

**Лемма 4.5.** Линейная оболочка векторов  $\{x_1, x_2, \dots, x_k\}$  - подпространство X:

$$\forall y, y_1, y_2 \in \mathcal{L} \{x_1, x_2, \dots, x_k\}, \quad \forall \lambda \in K \quad \Rightarrow \quad y_1 + y_2 \in \mathcal{L}, \quad \lambda y \in \mathcal{L}.$$

Так как  $y, y_1, y_2 \in \mathcal{L}$ , то

$$y = \sum_{i=1}^{k} x_i \alpha^i, \quad y_1 = \sum_{i=1}^{k} x_i \alpha_1^i, \quad y_2 = \sum_{i=1}^{k} x_i \alpha_2^i,$$

и осталось только проверить существование соответствующих линейных комбинаций:

$$y_1 + y_2 = \sum_{i=1}^k x_i \alpha_1^i + \sum_{i=1}^k x_i \alpha_2^i = \sum_{i=1}^k x_i \left(\alpha_1^i + \alpha_2^i\right) \in \mathcal{L},$$
$$y\lambda = \sum_{i=1}^k x_i \alpha^i \cdot \lambda = \sum_{i=1}^k x_i \alpha^i \lambda \in \mathcal{L}.$$

**Лемма 4.6.** (минимальность) Линейная оболочка векторов  $\{x_1, x_2, \dots, x_k\}$  является наименьшим подпространством X, содержащим эти векторы.

Всякое линейное пространство, содержащее векторы  $\{x_1, x_2, \dots, x_k\}$  также должно содержать и все их линейные комбинации, а значит - линейная оболочка  $\{x_1, x_2, \dots, x_k\}$  - наименьшее из таких подпространств.

Линейная оболочка векторов  $\{x_1, x_2, \dots, x_k\}$  называется подпространством, натянутым на данные векторы.

#### 4.3 Линейное многообразие

**Линейным многообразием** M, параллельным подпространству L линейного пространства X(K) называется множество

$$M = \{ y \in X : y = x_0 + x, x_0 \in X, x \in L \}.$$

**Nota bene** Линейное подпространство L называется также несущим подпространством для многообразия M.

Теорема 4.2. Следующие утверждения эквивалентны:

(1) 
$$x_0 + L = y_0 + L \Leftrightarrow (2) \quad y_0 \in x_0 + L \Leftrightarrow (3) \quad y_0 - x_0 \in L.$$

На протяжении всего доказательства положим  $z, z' \in L$ . Импликация  $(1) \Rightarrow (2)$ :

$$x_0 + L = y_0 + L \implies x_0 + z = y_0 + z' \implies y_0 = x_0 + (z - z') \in x_0 + L.$$

Импликация  $(2) \Rightarrow (3)$ :

$$y_0 \in x_0 + L \quad \Rightarrow \quad y_0 = x_0 + z \quad \Rightarrow \quad y_0 - x_0 = z \in L.$$

Импликация  $(3) \Rightarrow (1)$ :

$$y_0 - x_0 \in L \quad \Rightarrow \quad y_0 = x_0 + z.$$

Пусть  $x \in x_0 + L$ , тогда  $x = x_0 + z'$ ,  $z' \in L$  и

$$x = x_0 + z' = y_0 + (z' - z)$$
  $\Rightarrow$   $x_0 + L \subseteq y_0 + L$ .

аналогично для  $y \in y_0 + L$ .

◂

 $Nota\ bene$  Многообразие M порождается любым своим представителем.

**Nota bene** Для того, чтобы линейное многообразие M было подпространством необходимо и достаточно, чтобы  $x_0 \in L$ , то есть, чтобы  $M \equiv L$ .

**Лемма 4.7.** Несущее подпространство линейного многообразия определяется единственным образом:

$$\forall x_0, y_0 \in X, \quad \forall L, L' \subset X, \quad x_0 + L = y_0 + L' \quad \Rightarrow \quad L = L'$$

▶

Из предыдущей теоремы следует:

$$x_0 + L = y_0 + L' \implies x_0 + L = x_0 + L' \implies$$

$$\forall x \in L \quad \exists y \in L' : \quad x_0 + x = x_0 + y \implies x = y \implies L \subseteq L',$$

$$\forall y \in L' \quad \exists x \in L : \quad x_0 + x = x_0 + y \implies y = x \implies L' \subseteq L.$$

4

Определяют размерность многобразия M, параллельного подпространству L

$$\dim M = \dim L$$
.

Многообразие M, параллельное L называется:

- прямой, если  $\dim L = 1$ ;
- плоскостью, если dim L=2;
- k-мерной плоскостью, если  $\dim L = k$ ;
- гиперплоскостью  $\dim L = \dim X 1$ .