FCC Test Report

Report No.: AGC01765151101FE03

FCC ID 2ABFHVTC6110TX

APPLICATION PURPOSE Original Equipment

PRODUCT DESIGNATION iBall Wireless Trailer Hitch Camera System

BRAND NAME iBall Wireless Trailer Hitch Camera / VDT

MODEL NAME VT-C6110, iBall-M 5.8Ghz, VT-6110

CLIENT VIDEOTEK COMPANY LIMITED

DATE OF ISSUE Nov.30, 2015

STANDARD(S)

FCC Part 15 Rules **TEST PROCEDURE(S)**

REPORT VERSION V1.0

> Attestation of Global Com <u>iance (Shenzhen) Co., Ltd</u>

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 34

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Nov.30, 2015	Valid	Original Report

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1. PRODUCT DESCRIPTION	5
3. MEASUREMENT UNCERTAINTY	6
4. DESCRIPTION OF TEST MODES	6
5. SYSTEM TEST CONFIGURATION	7
5.1. CONFIGURATION OF EUT SYSTEM	7
5.2. EQUIPMENT USED IN EUT SYSTEM	7
5.3. SUMMARY OF TEST RESULTS	7
6. TEST FACILITY	8
7. RADIATED EMISSION	9
7.1TEST LIMIT	g
7.2. MEASUREMENT PROCEDURE	10
7.3. TEST SETUP	12
7.4. TEST RESULT	14
8. BAND EDGE EMISSION	17
8.1. MEASUREMENT PROCEDURE	17
8.2 TEST SETUP	17
8.3 RADIATED TEST RESULT	18
9. 20DB BANDWIDTH	22
9.1. MEASUREMENT PROCEDURE	22
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3. MEASUREMENT RESULTS	22
10. LINE CONDUCTED EMISSION TEST	24
10.1. LIMITS OF LINE CONDUCTED EMISSION TEST	24
10.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	24
10.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	25
10.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	25
10.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	26
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	28
APPENDIX B: PHOTOGRAPHS OF EUT	30

Page 4 of 34

1. VERIFICATION OF CONFORMITY

Applicant	VIDEOTEK COMPANY LIMITED	
Address	Bldg, 12, Section B, Baosheng Industrial Area, Bainikeng, Pinghu town, Shenzhen, CN	
Manufacturer	VIDEOTEK COMPANY LIMITED	
Address	Bldg, 12, Section B, Baosheng Industrial Area, Bainikeng, Pinghu town, Shenzhen, CN	
Product Designation	iBall Wireless Trailer Hitch Camera System	
Brand Name	iBall Wireless Trailer Hitch Camera / VDT	
Test Model	VT-C6110	
Series Model iBall-M 5.8Ghz, VT-6110		
Difference description All the same except for the model name.		
Date of test Nov.20, 2015 to Nov.24, 2015		
Deviation	None	
Condition of Test Sample	Normal	
Report Template	AGCRT-US-BR/RF	

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2009) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.249.

Reviewed by

Rock Huang(Huang Dinglue)

Solger Zhang(Zhang Hongyi)

Authorized Officer

Nov.30, 2015

Nov.30, 2015

Page 5 of 34

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

A major technical description of EUT is described as following

Operation Frequency	5.805GHz	
Maximum field strength	88.28dBuV/m@3m(AV)	
Modulation	FM	
Number of channels	1	
Antenna Gain	2.5dBi	
Antenna Designation	Integrated Antenna (Met 15.203 Antenna requirement)	
Hardware Version	V5.0	
Software Version	V1.0	
Power Supply	DC 3.7V by battery or DC5V by battery	
Note: The USB port is only for charging.		

Page 6 of 34

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±3.18dB
2	All emissions,radiated	±3.91dB
3	Temperature	±0.5°C
4	Humidity	±2%

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	TX in FM modulation
N. L	·

Note:

- 1. All the test modes can be supply by battery, only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

Page 7 of 34

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configure:

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	iBall Wireless Trailer Hitch	N/A	VT-C6110	EUT
2	Adapter	N/A	KX2000	Support

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.249	Radiated Emission	Compliant
§15.249	Band Edges	Compliant
§15.215	20dB bandwidth	Compliant
§15.207	Line Conducted Emission	Compliant

Page 8 of 34

6. TEST FACILITY

Site Dongguan Precise Testing Service Co., Ltd.		
Location Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China.		
FCC Registration No. 371540		
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2009.	

ALL TEST EQUIPMENT LIST

Radiated Emission Test Site					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 4, 2015	July 3, 2016
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 4, 2015	July 3, 2016
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 4, 2015	July 3, 2016
RF Cable	SCHWARZBECK	AK9515E	96221	July 4, 2015	July 3, 2016
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 6, 2015	June 5, 2016
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 6, 2015	June 5, 2016
Spectrum analyzer	Agilent	E4407B	MY46185649	June 6, 2015	June 5, 2016
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	June 6, 2015	June 5, 2016
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 6, 2015	June 5, 2016

Conducted Emission Test Site					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 4, 2015	July 3, 2016
Artificial Mains Network	Narda	L2-16B	000WX31025	July 8, 2015	July 7, 2016
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 8, 2015	July 7, 2016
RF Cable	SCHWARZBECK	AK9515E	96222	July 4, 2015	July 3, 2016
Shielded Room	CHENGYU	843	PTS-002	June 6,2015	June 5,2016

Page 9 of 34

7. RADIATED EMISSION

7.1TEST LIMIT

Standard FCC15.249

Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics	
	(millivolts/meter)	(microvolts/meter)	
900-928MHz	50	500	
2400-2483.5MHz	50	500	
5725-5875MHz	50	500	
24.0-24.25GHz	250	2500	

Standard FCC 15.209

Frequency	Distance	Field Strengths Limit			
(MHz)	Meters	μ V/m	dB(μV)/m		
0.009 ~ 0.490	300	2400/F(kHz)			
0.490 ~ 1.705	30	24000/F(kHz)			
1.705 ~ 30	30	30			
30 ~ 88	3	100	40.0		
88 ~ 216	3	150	43.5		
216 ~ 960	3	200	46.0		
960 ~ 1000	3	500	54.0		
Above 1000	3	Other:74.0 dB(μV)/m (Peak) 54.0 dB(μV)/m (Average)			

Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Page 10 of 34

7.2. MEASUREMENT PROCEDURE

1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Page 11 of 34

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting		
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP		
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP		
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP		
Start ~Stop Frequency	1GHz~26.5GHz 1MHz/1MHz for Peak, 1MHz/10Hz for Average		

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

Page 12 of 34

7.3. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

Page 13 of 34

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 14 of 34

7.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION 30MHz-1GHZ

IFUI :	iBall Wireless Trailer Hitch Camera System	Model Name. :	VT-C6110
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Horizontal

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBu√/m	Over Limit dB	Remark
1.	202.100	2.78	10.42	44.22	30.63	26.79	43.50	-16.71	Peak
2.	230.099	2.90	11.25	42.72	30.68	26.19	46.00	-19.81	Peak
3.	323.320	3.21	13.72	50.28	30.80	36.41	46.00	-9.59	Peak
4.	368.112	3.33	14.59	50.97	30.84	38.05	46.00	-7.95	Peak
5.	417.641	3.44	15.66	42.64	30.89	30.85	46.00	-15.15	Peak
6.	467.235	3.54	16.65	37.02	30.93	26.28	46.00	-19.72	Peak

RESULT: PASS

Page 15 of 34

HUI:	iBall Wireless Trailer Hitch Camera System	Model Name. :	VT-C6110
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Vertical

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBu√/m	Over Limit dB	Remark
1.	162.611	2.59	13.73	41.92	30.56	27.68	43.50	-15.82	Peak
2.	187.753	2.72	11.39	43.51	30.61	27.01	43.50	-16.49	Peak
3.	203.523	2.79	10.45	45.63	30.64	28.23	43.50	-15.27	Peak
4.	283.979	3.09	12.89	42.49	30.75	27.72	46.00	-18.28	Peak
5.	317.701	3.19	13.60	42.86	30.79	28.86	46.00	-17.14	Peak
6.	368.112	3.33	14.59	43.96	30.84	31.04	46.00	-14.96	Peak

RESULT: PASS

Note:

Factor=Antenna Factor + Cable loss, Margin=Result-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Page 16 of 34

RADIATED EMISSION ABOVE 1GHZ

IPUI.	iBall Wireless Trailer Hitch Camera System	Model Name. :	VT-C6110
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
5805.013	93.21	5.64	98.85	114	-15.15	peak	
5805.013	82.64	5.64	88.28	94	-5.72	AVG	
11610.026	42.54	9.62	52.16	74	-21.84	peak	
11610.026	31.85	9.62	41.47	54	-12.53	AVG	
17415.039	17415.039 40.18 10.75 50.93 74 -23.07 peak						
17415.039 29.44 10.75 40.19 54 -13.81 AVG							
Remark:							
Factor = Ante	enna Factor + C	able Loss – P	re-amplifier.				

 -	iBall Wireless Trailer Hitch Camera System	Model Name. :	VT-C6110
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type		
5805.013	90.85	5.64	96.49	114	-17.51	peak		
5805.013	80.05	5.64	85.69	94	-8.31	AVG		
11610.026	41.85	9.62	51.47	74	-22.53	peak		
11610.026	31.06	9.62	40.68	54	-13.32	AVG		
17415.039	17415.039 42.08 10.75 52.83 74 -21.17 peak							
17415.039	17415.039 31.17 10.75 41.92 54 -12.08 AVG							
Remark:								
Factor = Ante	enna Factor + Ca	able Loss – P	re-amplifier.					

Note: Other emission from 1G to 40 GHz are considered as ambient noise. No recording in the test report. Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Page 17 of 34

8. BAND EDGE EMISSION

8.1. MEASUREMENT PROCEDURE

1The EUT operates at hopping-off test mode. The lowest or highest channels are tested to verify the largest transmission and spurious emissions power at the continuous transmission mode.

2Max hold the trace of the setp 1,and the EUT operates at hopping-on test mode to verify the largest spurious emissions power.

3Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz; VBW=1/on time(1KHz) / Sweep=AUTO

8.2 TEST SETUP

RADIATED EMISSION TEST SETUP

CONDUCTED TEST SETUP

Page 18 of 34

8.3 RADIATED TEST RESULT

EUI.	iBall Wireless Trailer Hitch Camera System	Model Name. :	VT-C6110
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Horizontal

PΚ

AV

Report No.: AGC01765151101FE03 Page 19 of 34

IPUI.	iBall Wireless Trailer Hitch Camera System	Model Name. :	VT-C6110
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Vertical

PΚ

ΑV

Page 20 of 34

IEUI :	iBall Wireless Trailer Hitch Camera System	Model Name. :	VT-C6110
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Horizontal

PΚ

AV

Page 21 of 34

 -	iBall Wireless Trailer Hitch Camera System	Model Name. :	VT-C6110
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Vertical

PΚ

AV

Note:

Factor=Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

The PK emission level are less than AV limit, so the AV emission level are not recorded.

Page 22 of 34

9. 20DB BANDWIDTH

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

9.3. MEASUREMENT RESULTS

TEST ITEM	20DB BANDWIDTH
TEST MODE	Mode1

Test Data (MHz)	Criteria	
Operate Channel	6.497	PASS

Page 23 of 34

TEST PLOT OF BANDWIDTH

Page 24 of 34

10. LINE CONDUCTED EMISSION TEST

10.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Francis	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

10.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

Page 25 of 34

10.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter which received 120V/60Hzpower by a LISN...
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

10.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

Report No.: AGC01765151101FE03 Page 26 of 34

10.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

No.	Freq MHz	Cable Loss dB	Clamp Factor dB	Receiver Reading dBpW	Level dBpW	Limit dBpW	Over Limit dB	Remark
1.	0.431	10.64	0.60	6.96	18.20	47.24	-29.04	Average
2.	0.431	10.64	0.60	19.96	31.20	57.24	-26.04	Peak
3.	0.573	10.66	0.60	6.38	17.64	46.00	-28.36	Average
4.	0.573	10.66	0.60	19.38	30.64	56.00	-25.36	Peak
5.	0.651	10.66	0.60	9.21	20.47	46.00	-25.53	Average
6.	0.651	10.66	0.60	21.21	32.47	56.00	-23.53	Peak
7.	0.914	10.67	0.60	4.29	15.56	46.00	-30.44	Average
8.	0.914	10.67	0.60	18.29	29.56	56.00	-26.44	Peak
9.	1.160	10.68	0.60	3.57	14.85	46.00	-31.15	Average
10.	1.160	10.68	0.60	19.57	30.85	56.00	-25.15	Peak
11.	8.637	10.75	0.60	-0.29	11.06	50.00	-38.94	Average
12.	8.637	10.75	0.60	16.71	28.06	60.00	-31.94	Peak

Line Conducted Emission Test Line 2-N

No.	Freq MHz	Cable Loss dB	Clamp Factor dB	Receiver Reading dBpW	Emission Level dBpW	Limit dBpW	Over Limit dB	Remark
1.	0.417	10.64	0.60	12.55	23.79	47.51	-23.72	Average
2.	0.417	10.64	0.60	19.55	30.79	57.51	-26.72	Peak -
3.	0.549	10.65	0.60	10.55	21.80	46.00	-24.20	Average
4.	0.549	10.65	0.60	19.55	30.80	56.00	-25.20	Peak -
5.	0.661	10.66	0.60	13.48	24.74	46.00	-21.26	Average
6.	0.661	10.66	0.60	22.48	33.74	56.00	-22.26	Peak
7.	0.894	10.67	0.60	8.22	19.49	46.00	-26.51	Average
8.	0.894	10.67	0.60	17.22	28.49	56.00	-27.51	Peak
9.	1.141	10.68	0.60	9.66	20.94	46.00	-25.06	Average
10.	1.141	10.68	0.60	16.66	27.94	56.00	-28.06	Peak
11.	1.317	10.68	0.60	8.36	19.64	46.00	-26.36	Average
12.	1.317	10.68	0.60	17.36	28.64	56.00	-27.36	Peak

RESULT: PASS

Page 28 of 34

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHz

RADIATED EMISSION TEST SETUP ABOVE 1GHz

Page 29 of 34

CONDUCTED EMISSION TEST SETUP

Page 30 of 34

APPENDIX B: PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

Page 31 of 34

FRONT VIEW OF EUT

BACK VIEW OF EUT

Page 32 of 34

LEFT VIEW OF EUT

RIGHT VIEW OF EUT

Report No.: AGC01765151101FE03 Page 33 of 34

OPEN VIEW OF EUT

INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2

INTERNAL VIEW OF EUT-3

----END OF REPORT----