

生物化學實驗報告

菌落聚合酶鏈鎖反應 Colony PCR

組 別:第14組

主寫人: 陳相瑋 b202110082 組 員: 李品辰 b202110064

王威鈞 b202110089

日 期:2023/12/12

實驗目的:

- 1. 利用 PCR 技術,複製大腸桿菌轉型實驗中的 DNA。
- 2. 觀察並比較轉型成功與未成功的細菌 DNA 電泳結果。

實驗步驟:

實驗器材

- 1. polymerase reagent(20μL)
- 2. primer mixture(20µL)
- 3. 大腸桿菌轉形實驗中含藍、白菌 落的培養基
- 4. 500µL 的 PCR tube x2
- 5. P20
- 6. Eppendorf

- 7. PCR machine
- 8. 電泳儀
- 9. 電源供應器
- 10. Agarose gel
- 11. 電泳 buffer
- 12. Light box
- 13. 離心機

步驟

- 1. 取兩個 $500\mu L$ 的 PCR tube 並用標示 W 和 B,各自加入 $10\mu L$ 的 polymerase reagent 和 $10\mu L$ 的 primer mixture,再 pipetting 得到 PCR sample。
- 2. 用兩個 P200/P20 的 tip 分別沾取培養基中的藍色與白色菌落,再分別加入標示 W 和 B 的 PCR tube,與 PCR sample 均勻混合。(若混合後氣泡過多或液體殘留在管壁,可先離心再進行下一步驟)
- 3. 將標示 W 和 B 的 PCR tube 放到 PCR machine 中反應 40 分鐘。
- 從 W 和 B 兩管各用 pipette 取 10μL 到 eppendorf 的蓋子上,再分別取 2μL 的 loading buffer 與之混合,最後 load 到 agarose gel 裡面,以 140V 電泳 15 分鐘。
- 5. 將跑完的 agarose gel 放到 light box 觀察。

實驗結果及討論:

結果

- 1. 白色菌落 (W 組) 在 3-4kbp 與有明顯亮帶,於 250bp 以下有較模糊的亮帶。
- 2. 藍色菌落 (B組) 僅在250bp 以下有明顯亮帶。

實驗討論

Discussion 1. 電泳結果的意義

- 1. 白色菌落的 colony 有成功 insert, 其 DNA 分子量較大, 電泳時移動速度較慢; 藍色菌落的 colony 未成功 insert, 其 DNA 分子量較小, 電泳時移動速度較快。
- 2. 白色菌落在對藍色菌落的亮帶處也有模糊的亮帶,推測是因為沾取到部分沒有 insert 成功的 colony 造成。
- 3. 藍色與白色菌落的 colony 皆為環狀 DNA ,其分子量都比對應到的 Marker 分子量大。

Discussion 2. Real-time PCR 介紹

目的:除了 PCR 增加目標片段 DNA 作用,利用螢光物質與 DNA 片段結合的效果,藉由偵測濃度,達到定量效果。

目前主要分為 TaqMan 與 SYBR green 兩種

方式	SYBR green	TaqMan
原理	藉由螢光染劑對雙股 DNA 有較高親和力的效果,達成 PCR 過程中螢光強度會隨著 cycle 數目增加的定量方式。	藉由 DNA 探針上兩個螢光基團, 分別為紅綠,當兩基團較接近 時,紅色螢光因為波長較長造 成綠色螢光無法被偵測,而 PCR 過程中,兩基團隨著 DNA 合成 而遠離,綠色螢光基團則可被偵 測,達成定量目的。
優點	較便宜、降低實驗設計的複雜度	較為準確
缺點	比起 TaqMan 方式有較高的誤差	設計 DNA 探針較為複雜、昂貴