DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, UTTAR PRADESH, LUCKNOW

EVALUATION SCHEME & SYLLABUS Second Year

FOR

MASTER OF COMPUTER APPLICATIONS (MCA)

(Two Year Course)

Based On

NEP 2020

[Effective from the Session: 2025-26]

MCA SECOND YEAR, 2025-26

SEMESTER-III

S. No.	Subject	Subject Name	Periods		Periods		Sessional		ESE	Total	Credit
	Code		L	T	P	CT	TA	Total			
1.	BMC301	Python Programming	3	0	0	20	10	30	70	100	3
2.	BMC302	Software Engineering	4	0	0	20	10	30	70	100	4
3.	BMC303	Computer Network	3	1	0	20	10	30	70	100	4
4.		Elective – 1	3	0	0	20	10	30	70	100	3
5.		Elective – 2	3	1	0	20	10	30	70	100	3
6.	BMC351	Python Programming Lab	0	0	3	30	20	50	50	100	2
7.	BMC352	Software Engineering Lab	0	0	3	30	20	50	50	100	2
8.	BMC353	Mini Project**	0	0	4	30	20	50	50	100	2
		Total			•					800	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

SEMESTER-IV

S. No.	Subject	Subject Name	Per	Periods Sessional		nal	ESE	Total	Credit		
	Code		L	T	P	CT	TA	Total			
1.		Elective – 3	3	0	0	20	10	30	70	100	3
2.		Elective – 4	3	0	0	20	10	30	70	100	3
3.		Elective – 5	3	0	0	20	10	30	70	100	3
4.	BMC451	Startup and Entrepreneurial Activity Assessment ##	0	0	4	-	100	100	-	100	2
5.	BMC452	Project	-	-	-	-	200	200	400	600	12
		Total								1000	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

Note: **The Mini Project or internship (5-6 weeks) conducted during summer break after II Semester will be assessed during III Semester.

##The Startup and Entrepreneurial Activity Assessment will be done in the IV semester, under which a student will have to undergo a startup/entrepreneurship activity of at least 60 hours till the III semester.

Elective-1	BMC011	Cryptography & Network Security
	BMC012	Data Warehousing & Data Mining
	BMC013	Software Project Management
	BMC014	Cloud Computing
	BMC015	Compiler Design

Elective-2	BMC021	Artificial Intelligence
	BMC022	Big Data
	BMC023	Simulation & Modeling
	BMC024	Software Testing & Quality Assurance
	BMC025	Digital Image Processing

Elective-3	BMC031	Privacy & Security in Online Social Media
	BMC032	Soft Computing
	BMC033	Pattern Recognition
	BMC034	Data Analytics
	BMC035	Software Quality Engineering

Elective-4	BMC041	Blockchain Architecture
	BMC042	Neural Network
	BMC043	Internet of Things
	BMC044	Modern Application Development
	BMC045	Distributed Database Systems

Elective-5	BMC051	Mobile Computing
	BMC052	Computer Graphics and Animation
	BMC053	Natural Language Processing
	BMC054	Machine Learning
	BMC055	Quantum Computing

SECOND YEAR SYLLABUS SEMESTER-III

	BMC301: Python Programming	
	Course Outcome (CO) Bloom's Knowledge Level (KI	(1)
	At the end of course, the student will be able to	
CO 1	Interpret the fundamental Python syntax and semantics and be fluent in the use of Python control flow statements.	$\mathbf{K}_1, \mathbf{K}_2$
CO 2	Express proficiency in the handling of strings and functions	K_1, K_2
CO 3	Determine the methods to create and manipulate Python programs by utilizing	K ₃
	the data structures like lists, dictionaries, tuples and sets.	
CO 4	Use OO concepts while programming in Python	K_1, K_2
CO 5	Work with Python using GUI.	K_4
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
Ι	Introduction to Python: Introduction and Basics; Setting up path Python Data Variables & Operators: Data Variables and its types, id() and type() functions, Coding Standards, Input-Output: Printing on screen, Reading data from keyboard; Control Structures: if-else, elif, Nested if, Iteration Control structures, Break, Continue & Pass.	08
П	String Manipulation: Accessing Strings, Basic Operations, String slices, Function and Methods. Lists: Introduction, Accessing list, Operations, Working with lists, Function and Methods. Tuple: Introduction, accessing tuples, Operations, Working, Functions and Methods.	08
Ш	Dictionaries: Introduction, accessing values in dictionaries, Working with dictionaries, Properties, Functions. Functions: Defining & Calling a function, Passing arguments to functions – Mutable & Immutable Data Types, Different types of arguments, Recursion, Scope of variables;	08
IV	Modules and Packages: User-defined modules and Standard Library: random, numpy, scipy, sys, Math Module, String Module, List Module, Date & Time Module, Regular Expressions: match, search, replace; File Handling: Introduction, File Types, Creating, Opening, Closing, Renaming, Accessing and deleting files, File pointers, File Modes, Binary files.	08
V	Exception Handling: Exception, Exception Handling, Except clause, Try? finally clause, User Defined Exceptions. Basics of Python for Data Analysis, Introduction to series and dataframes.	08

- 1. Basin H., "Python for Beginners", New Age International Publishers.
- 2. Ramalho L., "Fluent Python", SPD.
- 3. Severance C., "Python for Everybody", SPD.
- 4. Brown M. C., "The Complete Reference", Mc Graw Hill.
- 5. Kanetkar Y. and Kanetkar A., "Let Us Python", Bpb.
- 6. Lutz M., "Learning Python", SPD.

	BMC302: Software Engineering	
	Course Outcome (CO) Bloom's Knowledge 1	Level (KL)
	At the end of course, the student will be able to understand	
CO 1	Explain various software characteristics and analyze different software Development Models.	K ₁ , K ₂
CO 2	Demonstrate the contents of a SRS and apply basic software quality assurance practices to ensure that design, development meet or exceed applicable standards.	K_1, K_2
CO 3	Compare and contrast various methods for software design.	K_2, K_3
CO 4	Formulate testing strategy for software systems, employ techniques such as unit testing, Test driven development and functional testing.	K_3
CO 5	Manage software development process independently as well as in teams and make use of various software management tools for development, maintenance and analysis.	K ₅
T T 24	DETAILED SYLLABUS	3-1-0
Unit	Topic	Proposed Lecture
I	Introduction: Introduction to Software Engineering, Software Components, Software Characteristics, Software Crisis, Software Engineering Processes, Similarity and Differences from Conventional Engineering Processes, Software Quality Attributes. Software Development Life Cycle (SDLC) Models: Water Fall Model, Prototype Model, Spiral Model, Evolutionary Development Models, Iterative Enhancement Models.	08
II	Software Requirement Specifications (SRS): Requirement Engineering Process: Elicitation, Analysis, Documentation, Review and Management of User Needs, Feasibility Study, Information Modelling, Data Flow Diagrams, Entity Relationship Diagrams, Decision Tables, SRS Document, IEEE Standards for SRS. Software Quality Assurance (SQA): Verification and Validation, SQA Plans, Software Quality Frameworks, ISO 9000 Models, SEI-CMM Model.	08
Ш	Software Design: Basic Concept of Software Design, Architectural Design, Low Level Design: Modularization, Design Structure Charts, Pseudo Codes, Flow Charts, Coupling and Cohesion Measures, Design Strategies: Function Oriented Design, Object Oriented Design, Top-Down and Bottom-Up Design. Software Measurement and Metrics: Various Size Oriented Measures: Halestead's Software Science, Function Point (FP) Based Measures, Cyclomatic Complexity Measures: Control Flow Graphs.	08

IV	Software Testing: Testing Objectives, Unit Testing, Integration Testing,	08				
	Acceptance Testing, Regression Testing, Testing for Functionality and					
	Testing for Performance, Top Down and Bottom- Up Testing Strategies:					
	Test Drivers and Test Stubs, Structural Testing (White Box Testing),					
	Functional Testing (Black Box Testing), Test Data					
	Suit Preparation, Alpha and Beta Testing of Products. Static Testing					
	Strategies: Formal Technical Reviews (Peer Reviews), Walk Through,					
	Code Inspection, Compliance with Design and Coding Standards.					
V	Software Maintenance and Software Project Management: Software	08				
	as an Evolutionary Entity, Need for Maintenance, Categories of					
	Maintenance: Preventive, Corrective and Perfective Maintenance, Cost of					
	Maintenance, Software Re-Engineering, Reverse Engineering. Software					
	Configuration Management Activities, Change Control Process,					
	Software Version Control, An Overview of CASE Tools. Estimation					
	of Various Parameters such as Cost, Efforts, Schedule/Duration,					
	Constructive Cost Models (COCOMO), Resource Allocation Models,					
	Software Risk Analysis and Management.					

- 1. R S Pressman, "Software Engineering: A Practitioners Approach", McGraw Hill.
- 2. Pankaj Jalote, "Software Engineering", Wiley
- 3. Rajib Mall, "Fundamentals of Software Engineering", PHI Publication.
- 4. K K Aggarwal and Yogesh Singh, "Software Engineering", New Age International Publishers.
- 5. Ghezzi, M. Jarayeri, D. Manodrioli, "Fundamentals of Software Engineering", PHI Publication.
- 6. Ian Sommerville, "Software Engineering", Addison Wesley.
- 7. Kassem Saleh, "Software Engineering", Cengage Learning
- 8. Pfleeger, "Software Engineering", Macmillan Publication

	BMC303: Computer Networks	
	Course Outcome (CO) Bloom's Knowledge Level (F	KL)
	At the end of course, the student will be able to understand	
CO 1	Describe communication models TCP/IP, ISO-OSI model, network topologies along with communicating devices and connecting media.	K2
CO 2	Apply knowledge of error detection, correction and learn concepts of flow control along with error control.	К3
CO 3	Classify various IP addressing techniques, subnetting along with network routing protocols and algorithms.	K4
CO 4	Understand various transport layer protocols and their design considerations along with congestion control to maintain Quality of Service.	K2
CO 5	Understand applications-layer protocols and elementary standards of	K2
	cryptography and network security.	
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Data Communications: Introduction: Data communication Components and characteristics, Data representation and Data flow. Networks: LAN, WAN, MAN, Topologies. Protocols and Standards: ISO-OSI model and TCP-IP Model. Network Connecting Devices: HUB, Bridge, Switch, Router and Gateways. Transmission Media: Guided and unguided Media Classification and Arrangement: Wired LANs and Wireless LANs	08
П	Data Link Layer: Error Detection and Error Correction: Types of errors, LRC, VRC, Checksum, CRC, and Hamming Code. Flow Control and Error Control: Stop and Wait Protocol, Sliding Window, Go-back-N-ARQ Protocol and Selective-Repeat ARQ Protocol. Channel Allocation Protocols: Random Access, Controlled and Channelization techniques such as ALOHA, CSMA, CSMA/CD, CDMA/CA, TDMA, FDMA, Token Passing, etc.	08
III	Network Layer: Switching Techniques: Circuit Switching, Packet Switching, and Message Switching. Logical addressing: IPv4 and IPv6 Address schemes, Classes and subnetting Network Layer Protocols: ARP, RARP, BOOTP and DHCP Routing Techniques: Interdomain and Intradomain routing with examples.	08
IV	Transport Layer: Introduction to Transport Layer: Process-to-Process Delivery:	08

	Reliable and unreliable Connection, Port and Socket Addressing	
	Transport Layer Protocols with packet formats: User Datagram	
	Protocol (UDP), Transmission Control Protocol (TCP), Stream Control	
	Transmission Protocol (SCTP).	
	Congestion Control: Techniques for handling the Congestion Control.	
	Quality of Service (QoS): Flow Characteristics and techniques to	
	improve QoS.	
	Application Layer:	
	Basic Concept of Application Layer: Domain Name System, World	
	Wide Web, Hyper Text Transfer Protocol, Electronic mail, File Transfer	
\mathbf{V}	Protocol, Remote login.	08
	Introduction to Cryptography: Definition, Goal, Applications, Attacks,	
	Encryption, decryption, public-key and private key cryptography.	

- 1. Behrouz Forouzan, "Data Communication and Networking", McGraw Hill
- 2. Andrew Tanenbaum "Computer Networks", Prentice Hall.
- 3. William Stallings, "Data and Computer Communication", Pearson.
- 4. Kurose and Ross, "Computer Networking- A Top-Down Approach", Pearson.
- 5. Peterson and Davie, "Computer Networks: A Systems Approach", Morgan Kaufmann
- 6. W. A. Shay, "Understanding Communications and Networks", Cengage Learning.
- 7. D. Comer, "Computer Networks and Internets", Pearson.
- 8. Behrouz Forouzan, "TCP/IP Protocol Suite", McGraw Hill.

ELECTIVE-1

	BMC011: Cryptography & Network Security		
	Course Outcome (CO) Bloom's Knowledge Level (Kl	L)	
	At the end of course, the student will be able to understand	<u>, </u>	
CO 1	Understand various security attacks and their protection mechanism.	K_2	
CO 2	Apply and analyze various encryption algorithms.	K ₃ , K ₄	
CO 3	Understand functions and algorithms to authenticate messages and study and	K_1, K_2, K_3	
	apply different digital signature techniques.		
CO 4	Analyze different types of key distributions.	K_4	
CO 5	Study and appraise different IP and system security mechanism.	K ₁ , K ₅	
	DETAILED SYLLABUS	3-0-0	
Unit	Торіс	Proposed Lecture	
I	Introduction to security attacks, Services and mechanism, Classical encryption techniques substitution ciphers and transposition ciphers, Cryptanalysis, Steganography, Stream and block ciphers. Modern Block Ciphers: Block ciphers principles, Shannon's theory of confusion and diffusion, Feistel structure, Data encryption standard(DES), Strength of DES, Idea of differential cryptanalysis, Block cipher modes of operations, Triple DES	08	
П	Introduction to group, field, finite field of the form GF(p), Modular arithmetic, Prime and relative prime numbers, Extended Euclidean Algorithm, Advanced Encryption Standard (AES). Fermat's and Euler's theorem, Primality testing, Chinese Remainder theorem, Discrete Logarithmic Problem, Principals of public key crypto systems, RSA algorithm, Security of RSA	08	
III	Message Authentication Codes: Authentication requirements, Authentication functions, Message authentication code, Hash functions, Birthday attacks, Security of hash functions, Secure hash algorithm (SHA). Digital Signatures: Digital Signatures, Elgamal Digital Signature Techniques, Digital signature standards (DSS), Proof of digital signature algorithm.	08	
IV	Key Management and distribution: Symmetric key distribution, Diffie-Hellman Key Exchange, Public key distribution, X.509 Certificates, Public key Infrastructure. Authentication Applications: Kerberos Electronic mail security: pretty good privacy (PGP), S/MIME.	08	
V	IP Security: Architecture, Authentication header, Encapsulating security payloads, Combining security associations, Key management. Introduction to Secure Socket Layer, Secure electronic transaction (SET). System Security: Introductory idea of Intrusion, Intrusion detection, Viruses and related threats, firewalls.	08	

- 1. Stallings W., "Cryptography and Network Security: Principals and Practice", Pearson Education.
- 2. Frouzan B. A., "Cryptography and Network Security", McGraw Hill.
- 3. Kahate A., "Cryptography and Network Security", Tata McGraw Hill.

	BMC012: Data Warehousing & Data Mining	
	Course Outcome (CO) Bloom's Knowledge Level (K	(1)
	At the end of course, the student will be able to understand	L)
CO1	Demonstrate knowledge of Data Warehouse and its components.	K_1, K_2
CO2	Discuss the process of Warehouse Planning and Implementation.	K_1, K_2 K_1, K_2
CO3	Discuss and implement various supervised and Non supervised learning	K ₆
CO3	algorithms on data.	110
CO4	Explain the various process of Data Mining and decide best according to type of data.	K ₂ , K ₅
CO5	Explain process of knowledge discovery in database (KDD). Design Data Mining model.	K ₂ , K ₅
	DETAILED SYLLABUS	4-0-0
Unit	Topic	Proposed
	Topic	Lecture
I	Data Warehousing: Overview, Definition, Data Warehousing	
	Components, Building a Data Warehouse, Warehouse Database, Mapping	08
	the Data Warehouse to a Multiprocessor Architecture, Difference between	
	Database System and Data Warehouse, Multi Dimensional Data Model,	
	Data Cubes, Stars, Snow Flakes, Fact Constellations, Concept.	
II	Data Warehouse Process and Technology: Warehousing Strategy,	
	Warehouse /management and Support Processes, Warehouse Planning and	
	Implementation, Hardware and Operating Systems for Data Warehousing,	08
	Client/Server Computing Model & Data Warehousing. Parallel Processors	
	& Cluster Systems, Distributed DBMS implementations, Warehousing	
	Software, Warehouse Schema Design	
III	Data Mining : Overview, Motivation, Definition & Functionalities, Data	
	Processing, Form of Data Pre-processing, Data Cleaning: Missing Values,	
	Noisy Data, (Binning, Clustering, Regression, Computer and Human	08
	inspection), Inconsistent Data, Data Integration and Transformation. Data	
	Reduction:-Data Cube Aggregation, Dimensionality reduction, Data	
	Compression, Numerosity Reduction, Discretization and Concept hierarchy	
	generation, Decision Tree	
IV	Classification: Definition, Data Generalization, Analytical	
	Characterization, Analysis of attribute relevance, Mining Class	
	comparisons, Statistical measures in large Databases, Statistical-Based	
	Algorithms, Distance-Based Algorithms, Decision Tree-Based Algorithms.	
	Clustering: Introduction, Similarity and Distance Measures, Hierarchical	08
	and Partitional Algorithms. Hierarchical Clustering- CURE and	
	Chameleon. Density Based Methods DBSCAN, OPTICS. Grid Based	
	Methods- STING, CLIQUE. Model Based Method – Statistical Approach,	
	Association rules: Introduction, Large Item sets, Basic Algorithms, Parallel	
	and Distributed Algorithms, Neural Network approach.	
V	Data Visualization and Overall Perspective : Aggregation, Historical	
•	information, Query Facility, OLAP function and Tools. OLAP Servers,	
	ROLAP, MOLAP, HOLAP, Data Mining interface, Security, Backup and	
	KOLAI, MOLAI, HOLAI, Data Milling Interface, Security, Dackup and	

	Recovery, Tuning Data Warehouse, Testing Data Warehouse. Warehousing applications and Recent Trends: Types of Warehousing Applications, Web Mining, Spatial Mining and Temporal Mining.	
--	---	--

- 1. Alex Berson, Stephen J. Smith "Data Warehousing, Data-Mining & OLAP", TMH.
- 2. Mark Humphries, Michael W. Hawkins, Michelle C. Dy, "Data Warehousing: Architecture and Implementation", Pearson.
- 3. I.Singh, "Data Mining and Warehousing", Khanna Publishing House.
- 4. Margaret H. Dunham, S. Sridhar, "Data Mining:Introductory and Advanced Topics" Pearson Education 5. Arun K. Pujari, "Data Mining Techniques" Universities Press.
- 5. Pieter Adriaans, Dolf Zantinge, "Data-Mining", Pearson Education

	BMC013: Software Project Management	
	Course Outcome (CO) Bloom's Knowledge Level (KL)	
	At the end of course, the student will be able to understand	
CO 1	Identify project planning objectives, along with various cost/effort estimation models.	K ₃
CO 2	Organize & schedule project activities to compute critical path for risk analysis	K ₃
CO 3	Monitor and control project activities.	K ₄ , K ₅
CO 4	Formulate testing objectives and test plan to ensure good software quality under SEI-CMM	K ₆
CO 5	Configure changes and manage risks using project management tools.	K ₂ , K ₄
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Project Evaluation and Project Planning: Importance of Software Project Management – Activities – Methodologies – Categorization of Software Projects – Setting objectives – Management Principles – Management Control – Project portfolio Management – Cost-benefit evaluation technology – Risk evaluation – Strategic program Management – Stepwise Project Planning.	08
П	Project Life Cycle and Effort Estimation: Software process and Process Models – Choice of Process models – Rapid Application development – Agile methods – Dynamic System Development Method – Extreme Programming– Managing interactive processes – Basics of Software estimation – Effort and Cost estimation techniques – COSMIC Full function points – COCOMO II – a Parametric Productivity Model.	08
Ш	Activity Planning and Risk Management: Objectives of Activity planning – Project schedules – Activities – Sequencing and scheduling – Network Planning models – Formulating Network Model – Forward Pass & Backward Pass techniques – Critical path (CRM) method – Risk identification – Assessment – Risk Planning –Risk Management – PERT technique – Monte Carlo simulation – Resource Allocation – Creation of Critical paths – Cost schedules.	08
IV	Project Management and Control: Framework for Management and control – Collection of data – Visualizing progress – Costmonitoring – Earned Value Analysis – Prioritizing Monitoring – Project tracking – Change control Software Configuration Management – Managing contracts – Contract Management.	08
V	Staffing in Software Projects: Managing people – Organizational behavior – Best methods of staff selection – Motivation – The Oldham – Hackman job characteristic model – Stress – Health and Safety – Ethical and Professional concerns – Working in teams – Decision making – Organizational structures – Dispersed and Virtual teams – Communications genres – Communication plans – Leadership.	08

- 1. Bob Hughes, Mike Cotterell and Rajib Mall: "Software Project Management" Fifth Edition, McGraw Hill, New Delhi, 2012.
- 2. Robert K. Wysocki "Effective Software Project Management" Wiley Publication, 2011.
- 3. Walker Royce: "Software Project Management" Addison-Wesley, 1998.
- 4. Gopalaswamy Ramesh, "Managing Global Software Projects" McGraw Hill Education (India), FourteenthReprint 2013.
- 5. Koontz Harold & Weihrich Heinz, "Essentials of Management", McGraw Hill 5th Edition 2008.
- 6. Robbins and Coulter, "Management", Prentice Hall of India, 9th edition.
- 7. James A. F., Stoner, "Management", Pearson Education Delhi.
- 8. P. D. Chaturvedi, "Business Communication", Pearson Education.

BMC014: Cloud Computing		
Course Outcome (CO) Bloom's Knowledge Level (KL)		
	At the end of course, the student will be able to understand	
CO 1	Understand the concepts of Cloud Computing, key technologies,	K_1, K_2
	strengths and limitations of cloud computing.	
CO 2	Develop the ability to understand and use the architecture to compute	K_{1}, K_{3}
	and storage cloud, service and models.	
CO 3	Understand the application in cloud computing.	K_{4} , K_{5}
CO 4	Learn the key and enabling technologies that help in the development of	K_{3}, K_{4}
	cloud.	
CO 5	Explain the core issues of cloud computing such as resource	K_2, K_6
	management and security.	
	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
I	Introduction: Cloud Computing – Definition of Cloud – Evolution of	08
	Cloud Computing – Underlying Principles of Parallel and Distributed,	
	History of Cloud Computing - Cloud Architecture - Types of Clouds -	
	Business models around Clouds – Major Players in Cloud Computing-	
	issues in Clouds - Eucalyptus - Nimbus - Open Nebula, CloudSim.	
II	Cloud Services: Types of Cloud services: Software as a Service-	08
	Platform as a Service – Infrastructure as a Service - Database as a Service	
	- Monitoring as a Service – Communication as services. Service providers-	
	Google, Amazon, Microsoft Azure, IBM, Sales force.	
III	Collaborating Using Cloud Services: Email Communication over the	08
	Cloud - CRM Management – Project Management-Event Management -	
	Task Management – Calendar - Schedules - Word Processing –	
	Presentation – Spreadsheet - Databases – Desktop - Social Networks and	
	Groupware.	
IV	Virtualization for Cloud: Need for Virtualization – Pros and cons of	08
	Virtualization – Types of Virtualization –System VM, Process VM,	
	Virtual Machine monitor – Virtual machine properties - Interpretation	
	and binary translation, HLL VM - supervisors – Xen, KVM, VMware,	
T 7	Virtual Box, Hyper-V.	
V	Security, Standards and Applications: Security in Clouds: Cloud	08
	security challenges – Software as a Service Security, Common Standards:	
	The Open Cloud Consortium – The Distributed management Task Force	
	- Standards for application Developers - Standards for Messaging -	
	Standards for Security, End user access to cloud computing, Mobile	
	Internet devices and the cloud.	
	Hadoop – MapReduce – Virtual Box — Google App Engine –	
	Programming Environment for Google App Engine	

- 1. David E.Y. Sarna, "Implementing and Developing Cloud Application", CRC press 2011.
- 2. Lee Badger, Tim Grance, Robert Patt-Corner, Jeff Voas, NIST, Draft cloud computing synopsis and recommendation, May 2011.
- 3. Anthony T Velte, Toby J Velte, Robert Elsenpeter, "Cloud Computing : A Practical Approach", Tata McGraw-Hill 2010.
- 4. Haley Beard, "Best Practices for Managing and Measuring Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.
- 5. G. J. Popek, R.P. Goldberg, "Formal requirements for virtualizable third generation Architectures, Communications of the ACM", No.7 Vol.17, July 1974

	BMC015 : Compiler Design	
	Course Outcome (CO) Bloom's Knowledge Le	vel (KL)
At the end	of course , the student will be able to:	
CO 1	Acquire knowledge of different phases and passes of the compiler and also able to use the compiler tools like LEX, YACC, etc. Students will also be able to design different types of compiler tools to meet the requirements of the realistic constraints of compilers.	K ₃ , K ₆
CO 2	Understand the parser and its types i.e. Top-Down and Bottom-up parsers and construction of LL, SLR, CLR, and LALR parsing table.	K_2, K_6
CO 3	Implement the compiler using syntax-directed translation method and get knowledge about the synthesized and inherited attributes.	K ₄ , K ₅
CO 4	Acquire knowledge about run time data structure like symbol table organization and different techniques used in that.	K_2, K_3
CO 5	Understand the target machine's run time environment, its instruction set for code generation and techniques used for code optimization.	K_2, K_4
	DETAILED SYLLABUS	3-0-0
Unit	Topic	Propose d Lecture
I	Introduction to Compiler : Phases and passes, Bootstrapping, Finite state machines and regular expressions and their applications to lexical analysis, Optimization of DFA-Based Pattern Matchers implementation of lexical analyzers, lexical-analyzer generator, LEX compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC. The syntactic specification of programming languages: Context free grammars, derivation and parse trees, capabilities of CFG.	08
п	Basic Parsing Techniques: Parsers, Shift reduce parsing, operator precedence parsing, top down parsing, predictive parsers Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items, constructing SLR parsing tables, constructing Canonical LR parsing tables, Constructing LALR parsing tables, using ambiguous grammars, an automatic parser generator, implementation of LR parsing tables.	08
Ш	Syntax-directed Translation: Syntax-directed Translation schemes, Implementation of Syntax-directed Translators, Intermediate code, postfix notation, Parse trees & syntax trees, three address code, quadruple & triples, translation of assignment statements, Boolean expressions, statements that alter the flow of control, postfix translation, translation with a top down parser. More about translation: Array references in arithmetic expressions, procedures call, declarations and case statements.	08
IV	Symbol Tables : Data structure for symbols tables, representing scope information. Run-Time Administration: Implementation of simple stack allocation scheme, storage allocation in block structured language. Error Detection & Recovery: Lexical Phase errors, syntactic phase errors semantic errors.	08
V	Code Generation: Design Issues, the Target Language. Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, Code Generator. Code optimization: Machine-Independent Optimizations, Loop optimization, DAG representation of basic blocks, value numbers and algebraic laws, Global Data-Flow analysis.	08

Text books:

- 1. K. Muneeswaran, Compiler Design, First Edition, Oxford University Press.
- 2. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, Tata McGraw-Hill, 2003.
- 3. Henk Alblas and Albert Nymeyer, "Practice and Principles of Compiler Building with C", PHI, 2001.
- 4. Aho, Sethi & Ullman, "Compilers: Principles, Techniques and Tools", Pearson Education
- 5. V Raghvan, "Principles of Compiler Design", TMH
- 6. Kenneth Louden," Compiler Construction", Cengage Learning.
- 7. Charles Fischer and Ricard LeBlanc," Crafting a Compiler with C", Pearson Education

ELECTIVE-2

	BMC021: A	rtificial Intelligence	
	Course Outcome (CO)	Bloom's Knowledge Level (KI	٦)
	At the end of course, the student will be able to understand		
CO 1	Define the meaning of intelligence and	d study various intelligent agents.	K_1
CO 2	Understand, analyze and apply AI so domains.	earching algorithms in different problem	K_2 , K_3 , K_4
CO 3	Study and analyze various models for	knowledge representation.	K_1, K_3
CO 4	Understand the basic concepts of mac widely used learning methods and alg	chine learning to analyze and implement gorithms.	K_2, K_4, K_6
CO 5	Understand the concept of patte classification and clustering technique	es	K_2, K_5
	DETAILED SY	YLLABUS	3-0-0
Unit	ר	Горіс	Proposed Lecture
I	development and foundation areas	on to artificial intelligence, Historical s of artificial intelligence, Tasks and ence. Introduction, types and structure of Natural language processing.	08
II	for solutions, Uniformed searching te	, Problem solving by searching, Searching echniques, Informed searching techniques, search methods, Search techniques used	08
III	Knowledge Representation and R logic, First order logic, Inference in Resolution. Chaining-concept, forward	easoning: Propositional logic, Predicate first order logic, Clause form conversion, rd chaining and backward chaining, Utility idden Markov model, Bayesian networks.	08
IV		pes and application areas, Decision trees, g with complete data - concept and Naïve data- concept and EM algorithm,	08
V	recognition, Parameter estimation me	and design principles, Statistical pattern ethods - Principle component analysis and fication techniques - Nearest neighbor rule ing, Support vector machine.	08

- 1. Russell S. and Norvig P., "Artificial Intelligence A Modern Approach", Pearson Education.
- 2. Rich E. and Knight K., "Artificial Intelligence", McGraw Hill Publications.
- 3. Charnik E. and McDermott D., "Introduction to Artificial Intelligence", Pearson Education.
- 4. Patterson D. W., "Artificial Intelligence and Expert Systems", Prentice Hall of India Publications.
- 5. Khemani D., "A First Course in Artificial Intelligence", McGraw Hill.
- 6. Winston P. H., "Artificial Intelligence", Pearson Education.
- 7. Thornton C. and Boulay B.," Artificial Intelligence- Strategies, Applications and Models through Search", New Age International Publishers.

	BMC022: Big Data	
	Course Outcome (CO) Bloom's Knowledge Level (KL)	
	At the end of course, the student will be able to understand	
CO1	Demonstrate knowledge of Big Data Analytics concepts and its applications in business.	K_1, K_2
CO2	Demonstrate functions and components of Map Reduce Framework and HDFS.	K_1, K_2
CO3	Develop queries in NoSQL environment.	K_6
CO4	Explain process of developing Map Reduce based distributed processing applications.	K_2, K_5
CO5	Explain process of developing applications using HBASE, Hive, Pig etc.	K_2,K_5
	DETAILED SYLLABUS	4-0-0
Unit	Topic	Proposed Lecture
I	Introduction to Big Data : Types of digital data, history of Big Data innovation, introduction to Big Data platform, drivers for Big Data, Big Data architecture and characteristics, 5 Vs of Big Data, Big Data technology components, Big Data importance and applications, Big Data features – security, compliance, auditing and protection, Big Data privacy and ethics, Big Data Analytics, Challenges of conventional systems, intelligent data analysis, nature of data, analytic processes and tools, analysis vs reporting, modern data analytic tools.	08
П	Hadoop: History of Hadoop, Apache Hadoop, the Hadoop Distributed File System, components of Hadoop, data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, Hadoop Echo System. Map-Reduce: Map-Reduce framework and basics, how Map Reduce works, developing a Map Reduce application, unit tests with MR unit, test data and local tests, anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task execution, Map Reduce types, input formats, output formats, Map Reduce features, Real-world Map Reduce	08
Ш	HDFS (Hadoop Distributed File System): Design of HDFS, HDFS concepts, benefits and challenges, file sizes, block sizes and block abstraction in HDFS, data replication, how does HDFS store, read, and write files, Java interfaces to HDFS, command line interface, Hadoop file system interfaces, data flow, data ingest with Flume and Scoop, Hadoop archives, Hadoop I/O: Compression, serialization, Avro and file-based data structures. Hadoop Environment: Setting up a Hadoop cluster, cluster specification, cluster setup and installation, Hadoop configuration, security in Hadoop, administering Hadoop, HDFS monitoring & maintenance, Hadoop benchmarks, Hadoop in the cloud	08
IV	Hadoop Eco System and YARN: Hadoop ecosystem components, schedulers, fair and capacity, Hadoop 2.0 New Features – Name Node high availability, HDFS federation, MRv2, YARN, Running MRv1 in YARN. NoSQL Databases: Introduction to NoSQL MongoDB: Introduction, data types, creating, updating and deleing documents, querying, introduction to indexing, capped collections Spark: Installing spark, spark applications, jobs, stages and tasks, Resilient Distributed Databases, anatomy of a Spark job run, Spark on YARN SCALA: Introduction, classes and objects, basic types and operators, built-in control structures, functions and closures, inheritance.	08

${f V}$	Hadoop Eco System Frameworks: Applications on Big Data using Pig, Hive and	08
	HBase	
	Pig: Introduction to PIG, Execution Modes of Pig, Comparison of Pig with	
	Databases, Grunt, Pig Latin, User Defined Functions, Data Processing operators,	
	Hive - Apache Hive architecture and installation, Hive shell, Hive services, Hive	
	metastore, comparison with traditional databases, HiveQL, tables, querying data and	
	user defined functions, sorting and aggregating, Map Reduce scripts, joins &	
	subqueries.	
	HBase – Hbase concepts, clients, example, Hbase vs RDBMS, advanced usage,	
	schema design, advance indexing, Zookeeper – how it helps in monitoring a cluster,	
	how to build applications with Zookeeper. IBM Big Data strategy, introduction to	

Suggested Readings:

- 1. Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley.
- 2. Big-Data Black Book, DT Editorial Services, Wiley.
- 3. Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch, "Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming Data", McGrawHill.
- 4. Thomas Erl, Wajid Khattak, Paul Buhler, "Big Data Fundamentals: Concepts, Drivers and Techniques", Prentice Hall.
- 5. Bart Baesens "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications (WILEY Big Data Series)", John Wiley & Sons
- 6. Arshdeep Bahga, Vijay Madisetti, "Big Data Science & Analytics: A Hands On Approach", VPT
- 7. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", CUP

Infosphere, BigInsights and Big Sheets, introduction to Big SQL.

- 8. Tom White, "Hadoop: The Definitive Guide", O'Reilly.
- 9. Eric Sammer, "Hadoop Operations", O'Reilly.
- 10. Chuck Lam, "Hadoop in Action", MANNING Publishers
- 11. Deepak Vohra, "Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools", Apress
- 12. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilly
- 13. Lars George, "HBase: The Definitive Guide", O'Reilly.
- 14. Alan Gates, "Programming Pig", O'Reilly.
- 15. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer.
- 16. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & sons.
- 17. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons
- 18. Pete Warden, "Big Data Glossary", O'Reilly

	BMC023 : Simulation and Modelling		
	Course Outcome (CO) Bloom's Knowledge Level (K	(L)	
	At the end of course , the student will be able to understand		
CO 1	Study the concept of system, its components and types.	\mathbf{K}_1	
CO 2	Understand and analyze nature and techniques of major simulation models.	K ₂ , K ₄	
CO 3	Study and analyze the idea of continuous and discrete system simulation.	K ₁ , K ₄	
CO 4	Understand the notion of system dynamics and system dynamics diagrams.	K ₂	
CO 5	Finding critical path computation and understanding PERT networks	K_1, K_4	
	DETAILED SYLLABUS	3-1-0	
Unit	Торіс	Proposed Lecture	
Ι	System definition and components, stochastic activities, continuous and discrete systems, System modeling, Types of models, static and dynamic physical models, static and dynamic mathematical models, full corporate model, types of system study.	08	
П	System simulation, Need of simulation, Basic nature of simulation, techniques of simulation, comparison of simulation and analytical methods, types of system Simulation, real time simulation, hybrid simulation, simulation of pursuit problem, single-server queuing system and an inventory problem, Monte-Carlo simulation, Distributed Lag	08	
III	model, Cobweb model. Simulation of continuous Systems, analog vs digital simulation, simulation of water reservoir system, simulation of a servo system, simulation of an auto-pilot. Discrete system simulation, fixed time step vs. event-to-event model, generation of random numbers, test of randomness, Monte-Carlo computation vs. stochastic simulation.	08	
IV	System dynamics, exponential growth models, exponential decay models, logistic curves, system dynamics diagrams, world model.	08	
V Sugar	Simulation of PERT networks, critical path computation, uncertainties in activity duration, resource allocation and consideration, Simulation languages, object oriented simulation	08	

- 1. Geoffrey Gordon, "System Simulation", PHI
- 2. Narsingh Deo, "System Simulation with digital computer", PHI.
- 3. Averill M. Law and W. David Kelton, "Simulation Modelling and Analysis", TMH.

	BMC024: Software Testing & Quality Assurance	`\
	Course Outcome (CO) Bloom's Knowledge Level (KI	<i>م)</i>
	At the end of course, the student will be able to understand	
CO 1	Test the software by applying testing techniques to deliver a product free from	\mathbf{K}_3
CO 2	bugs.	17 17
CO 2	Investigate the scenario and select the proper testing technique.	K_1, K_4
CO 3	Explore the test automation concepts and tools and estimation of cost, schedule	K_2, K_4
GO 4	based on standard metrics.	77 77
CO 4	Understand how to detect, classify, prevent and remove defects.	K_1, K_2
CO 5	Choose appropriate quality assurance models and develop quality. Ability to	K_3, K_4
	conduct formal inspections, record and evaluate results of inspections.	2.0.0
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed
		Lecture
I	Software Testing Basics: Testing as an engineering activity, Role of process in	08
	software quality, Testing as a process, Basic definitions, Software testing	
	principles, The tester's role in a software development organization, Origins of	
	defects, Defect classes, The defect repository and test design, Defect examples,	
	Developer / Tester support for developing a defect repository.	
II	Testing Techniques and Levels of Testing: Using White Box Approach to	08
	Test design—Static Testing Vs. Structural Testing, Code Functional Testing,	
	Coverage and Control Flow Graphs, Using Black Box Approaches to Test Case	
	Design, Random Testing, Requirements based testing, Decision tables, State-	
	based testing, Cause-effect graphing, Error guessing, Compatibility testing,	
	Levels of Testing -Unit Testing, Integration Testing, Defect Bash Elimination.	
	System Testing - Usability and Accessibility Testing,	
	Configuration Testing, Compatibility Testing.	
III	Software Test Automation And Quality Metrics: Software Test Automation,	08
	Skills needed for Automation, Scope of Automation, Design and Architecture	
	for Automation, Requirements for a Test Tool, Challenges in Automation	
	Tracking the Bug, Debugging. Testing Software System Security - Six-Sigma,	
	TQM - Complexity Metrics and Models, Quality Management Metrics,	
	Availability Metrics, Defect Removal Effectiveness, FMEA, Quality Function	
	Deployment, Taguchi Quality Loss Function, Cost of Quality.	
IV	Fundamentals of Software Quality Assurance: SQA basics, Components of	08
	the Software Quality Assurance System, software quality in business context,	
	planning for software quality assurance, product quality and process quality,	
	software process models, 7 QC Tools and Modern Tools.	
V	Software Assurance Models: Models for Quality Assurance, ISO-9000 series,	08
	CMM, CMMI, Test Maturity Models, SPICE, Malcolm Baldrige Model- P-	
	CMM.	
	Software Quality Assurance Trends: Software Process- PSP and TSP, OO	
	Methodology, Clean room software engineering, Defect Injection and	
	prevention, Internal Auditing and Assessments, Inspections & Walkthroughs,	
	Case Tools and their affect on Software Quality.	

- 1. Srinivasan Desikan, Gopalaswamy Ramesh, "Software Testing: Principles and Practices", Pearson.
- 2. Daniel Galin, "Software Quality Assurance: From Theory to Implementation", Pearson

Addison Wesley.

- 3. Aditya P. Mathur, "Foundations of Software Testing", Pearson.
- 4. Paul Ammann, Jeff Offutt, "Introduction to Software Testing", Cambridge University Press.
- 5. Paul C. Jorgensen, "Software Testing: A Craftsman's Approach", Auerbach Publications.
- 6. William Perry, "Effective Methods of Software Testing", Wiley Publishing, Third Edition.
- 7. Renu Rajani, Pradeep Oak, "Software Testing Effective Methods, Tools and Techniques", Tata McGraw Hill.
- 8. Stephen Kan, "Metrics and Models in Software Quality", Addison Wesley, Second Edition.
- 9. S. A. Kelkar, "Software quality and Testing", PHI Learning Pvt, Ltd.
- 10. Watts S Humphrey, "Managing the Software Process", Pearson Education Inc.

BMC025: Digital Image Processing		
Course Outcome (CO) Bloom's Knowledge Level (KL)		vel (KL)
	At the end of course, the student will be able to understand	
CO 1	Explain the basic concepts of two-dimensional signal acquisition, sampling, quantization and color model.	K_1, K_2
CO 2	Apply image processing techniques for image enhancement in both the spatial and frequency domains.	K_2, K_3
CO 3	Apply and compare image restoration techniques in both spatial and frequency domain.	K_2, K_3
CO 4	Compare edge based and region based segmentation algorithms for ROI extraction.	K ₃ , K ₄
CO 5	Explain compression techniques and descriptors for image processing.	K_2, K_3
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Digital Image Fundamentals: Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels – Color image fundamentals – RGB, HSI models, Two-dimensional mathematical preliminaries, 2D transforms – DFT, DCT.	08
П	Image Enhancement: Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering–Smoothing and Sharpening Spatial Filtering, Frequency Domain: Introduction to Fourier Transform– Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Homomorphic filtering, Color image enhancement.	08
III	Image Restoration: Image Restoration – degradation model, Properties, Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering	08
IV	Image Segmentation: Edge detection, Edge linking via Hough transform – Thresholding – Region based segmentation – Region growing – Region splitting and merging – Morphological processing- erosion and dilation, Segmentation by morphological watersheds – basic concepts – Dam construction – Watershed segmentation algorithm.	08
V	Image Compression and Recognition: Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional Descriptors – Topological feature, Texture – Patterns and Pattern classes – Recognition based on matching.	08

- 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson, Third Edition, 2010.
- 2. Anil K. Jain, "Fundamentals of Digital Image Processing", Pearson, 2002.
- 3. Kenneth R. Castleman, "Digital Image Processing" Pearson, 2006.
- 4. D, E. Dudgeon and R M. Mersereau, "Multidimensional Digital Signal Processing", Prentice Hall Professional Technical Reference, 1990.
- 5. William K. Pratt, "Digital Image Processing" John Wiley, New York, 2002.
- 6. Milan Sonka et al, "Image processing, analysis and machine vision Brookes/Cole", Vikas Publishing House, 2nd edition,1999.

	BMC351: Python Programming Lab			
	Course Outcome (CO) Bloom's Knowledge Level (KL			
At the end of course, the student will be able to understand				
CO 1	Interpret the fundamental Python syntax and semantics and be fluent in the u	se K1, K2		
	of Python control flow statements.			
CO 2	Express proficiency in the handling of strings and functions	K1, K2		
CO3	Determine the methods to create and manipulate Python programs by utilizing	g K3		
	the data structures like lists, dictionaries, tuples and sets.			
CO 4	Use OO concepts while programming in Python	K1, K2		
CO 5	Work with Python using GUI.	K4		

Programs based on the concepts of:

- 1. Building Python Modules
- 2. Obtaining user Data
- 3. Printing desired output

Programs based on the concepts of:

- 1. Conditional if statements
- 2. Nested if statements
- 3. Using else if and elif

Programs based on the concepts of Iteration using different kinds of loops Usage of Data Structures:

- 1. Strings
- 2. Lists
- 3. Tuples
- 4. Sets
- 5. Dictionary

Program based on the concepts of User-defined modules and Standard Library (random, numpy, scipy, sys, Math Module, String Module, List Module).

Program based on Input Output.

Program based on exception Handling.

Program based on Simple Data Analysis

Program based on Pandas.

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner.

BMC352: Software Engineering Lab				
Course Outcome (CO) Bloom's Knowledge Level (KL)			٦)	
	At the end of course, the student will be able to understand			
CO 1	Identify ambiguities, inconsistencies specification and state functional and	and incompleteness from a requirements non-functional requirement.	K_2, K_4	
CO 2		cases from a given problem statement associate use cases with different types of	K ₃ , K ₅	
CO 3	Draw a class diagram after identifying	g classes and association among them.	K ₄ , K ₅	
CO 4		diagrams and associations among them activities undergoing in a system, and	K ₄ , K ₅	
CO 5	Able to use modern engineering tools and testing.	for specification, design, implementation	K ₃ , K ₄	
DETAILED SVLLARUS				

DETAILED SYLLABUS

For any given case/ problem statement do the following;

- 1. Prepare a SRS document in line with the IEEE recommended standards.
- 2. Draw the use case diagram and specify the role of each of the actors.
- 3. Prepare state the precondition, post condition and function of each use case.
- 4. Draw the activity diagram.
- 5. Identify the classes. Classify them as weak and strong classes and draw the class diagram.
- 6. Draw the sequence diagram for any two scenarios.
- 7. Draw the collaboration diagram.
- 8. Draw the state chart diagram.
- 9. Draw the component diagram.
- 10. Draw the deployment diagram.

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner.

SECOND YEAR SYLLABUS SEMESTER-IV

ELECTIVE-3

	BMC031: Privacy and Security in Online Social Media		
Course Outcome (CO) Bloom's Knowledge Le			
At the	end of course, the student will be able to:		
CO 1	CO 1 Understand working of online social networks		
CO 2	O 2 Describe privacy policies of online social media		
CO 3	Analyse countermeasures to control information sharing in Online social networks.	К3	
CO 4			
CO 5			
	DETAILED SYLLABUS	3-1-0	
Unit	Торіс		
I	Introduction to Online Social Networks: Introduction to Social Networks, From offline to Online Communities, Online Social Networks, Evolution of Online Social Networks, Analysis and Properties, Security Issues in Online Social Networks, Trust Management in Online Social Networks, Controlled Information Sharing in Online Social Networks, Identity Management in Online Social Networks, data collection from social networks, challenges, opportunities, and pitfalls in online social networks, APIs; Collecting data from Online Social Media.		
П	Trust Management in Online Social Networks: Trust and Policies, Trust and Reputation Systems, Trust in Online Social, Trust Properties, Trust Components, Social Trust and Social Capital, Trust Evaluation Models, Trust, credibility, and reputations in social systems; Online social media and Policing, Information privacy disclosure, revelation, and its effects in OSM and online social networks; Phishing in OSM & Identifying fraudulent entities in online social networks		
Ш	Controlled Information Sharing in Online Social Networks: Access Control Models, Access Control in Online Social Networks, Relationship-Based Access Control, Privacy Settings in Commercial Online Social Networks, Existing Access Control Approaches		
IV	Identity Management in Online Social Networks: Identity Management, Digital Identity, Identity Management Models: From Identity 1.0 to Identity 2.0, Identity Management in Online Social Networks, Identity as Self-Presentation, Identity thefts, Open Security Issues in Online Social Networks		
V	Case Study: Privacy and security issues associated with various social media such as Facebook, Instagram, Twitter, LinkedIn etc.	08	

Textbooks:

- 1. Security and Privacy-Preserving in Social Networks, Editors: Chbeir, Richard, Al Bouna, Bechara (Eds.), Spinger, 2013.
- 2. Security and Trust in Online Social Networks, Barbara Carminati, Elena Ferrari, Marco Viviani, Morgan & Claypool publications.
- 3. Security and Privacy in Social Networks, Editors: Altshuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A. (Eds.), Springer, 2013
- 4. Security and privacy preserving in social networks, Elie Raad & Richard Chbeir, Richard Chbeir& Bechara Al Bouna, 2013
- 5. Social Media Security: Leveraging Social Networking While Mitigating Risk, Michael Cross, 2013

BMC032: Soft Computing			
	Course Outcome (CO) Bloom's Knowledge Level (KL		۵)
	At the end of course, the student will be able to understand		
CO 1	Recognize the need of soft computing of soft computing.	g and study basic concepts and techniques	K ₁ , K ₂
CO 2	1 0	tificial neural network to analyze widely	K ₂ , K ₄
CO 3	Apply fuzzy logic to handle uncertain	ty in various real-world problems.	K ₃
CO 4	Study various paradigms of evolutional algorithm in solving optimization pro-	onary computing and evaluate genetic blems.	K_1, K_5
CO 5			\mathbf{K}_3
DETAILED SYLLABUS			3-0-0
Unit	7	Горіс	Proposed Lecture
I	computing, Concept of learning and a Applications of soft computing. Artificial Neural Networks: Basic c Biological neural network, History of	Introduction, Comparison with hard adaptation, Constituents of soft computing, concepts of neural networks, Human brain, f artificial neural networks, Basic building eural network architectures, Activation on of neural networks.	08
П	Artificial Neural Networks: Learni Reinforcement, Hebbian, Gradient de Major classes of neural networks: P	ing methods - Supervised, Unsupervised, scent, Competitive, Stochastic. Perceptron networks, Multilayer perceptron Radial basis function network, Recurrent	08
III	Fuzzy Logic: Introduction to Fuzz Properties of classical sets, Operations Operations on fuzzy sets, Classical rel of fuzzy membership functions, Fuzzy Fuzzy Systems: Crisp logic, Predica	te logic, Fuzzy logic, Fuzzy propositions, e systems- Fuzzification, Inference,	08
V	Evolutionary Computing: Introduce evolutionary process, Paradigms of evand Genetic programming, Evolutional Genetic Algorithm: Introduction,	etion, Evolutionary algorithm, Biological volutionary computing – Genetic algorithm ary strategies, Evolutionary programming. Traditional optimization and search ional algorithms, Operations- Encoding,	08
V	systems, Neuro-fuzzy hybrid system genetic hybrid systems.	es: Introduction, Classification of hybrid as, Neuro-genetic hybrid systems, Fuzzy- ues: Tabu Search, Ant colony based	08

optimization, Swarm Intelligence.

- 1. Sivanandam S.N. and Deepa S.N., "Principles of Soft Computing", Wiley-India.
- 2. Rajasekaran S. and Vijayalakshmi Pai G.A., "Neural Networks, Fuzzy Logic and Genetic Algorithms- Synthesis and Applications", PHI Learning.
- 3. Chakraverty S., Sahoo D.M. and Mahato N. R., "Concepts of Soft Computing- Fuzzy and ANN with Programming", Springer.
- 4. Kaushik S. and Tiwari S., "Soft Computing Fundamentals, Techniques and Applications', McGrawHill Education.
- 5. Jang J.-S.R., Sun C.-T. and Mizutani E., "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India.
- 6. Karray F. O. and Silva C. D., "Soft Computing and Intelligent Systems Design Theory, Tools and Applications", Pearson Education.
- 7. Freeman J. A. and Skapura D. M., "Neural Networks: Algorithms, Applications and Programming Techniques", Pearson.
- 8. Siman H., "Neural Netowrks", Prentice Hall of India.

	BMC033: F	Pattern Recognition	
Course Outcome (CO) Bloom's Knowledge Level (KL)			۲)
	At the end of course, the	student will be able to understand	
CO 1	Study of basics of Pattern recognition. Understand the designing principles and		K_1, K_2
	Mathematical foundation used in pattern recognition.		
CO 2	Analysis the Statistical Patten Recogn	ition.	K_{3} , K_{4}
CO 3	Understanding the different Parameter	r estimation methods.	K_1, K_2
CO 4	Understanding the different Nonparan	netric Techniques.	$K_1, K_{2,}$
CO 5	Understand and Make use of unsupervised learning and Clustering in Pattern recognition.		K ₂ K ₃ , K ₄
	DETAILED SY	YLLABUS	3-0-0
Unit			Proposed
			Lecture
I	Introduction: Basics of pattern re	ecognition, Design principles of pattern	08
		laptation, Pattern recognition approaches,	
		algebra, Probability Theory, Expectation,	
		oution, multivariate normal densities, Chi	
	squared test.	,	
II	Statistical Patten Recognition: B	ayesian Decision Theory, Classifiers,	08
	Normal density and discriminant fund		
III	Parameter estimation methods: M	aximum-Likelihood estimation, Bayesian	08
		duction methods - Principal Component	
		ninant analysis, Expectation- maximization	
	(EM), Hidden Markov Models (H		
	models.	, ·	
IV	Nonparametric Techniques: Dens	sity Estimation, Parzen Windows, K-	08
	Nearest Neighbor Estimation, Neares	t Neighbor Rule, Fuzzy classification.	
V		ring: Criterion functions for clustering,	08
	Clustering Techniques: Iterative square	re - error partitional clustering – K means,	
	agglomerative hierarchical clustering,	Cluster validation.	
C	ted Deadings		

- 1. Duda R. O., Hart P. E. and Stork D. G., "Pattern Classification", John Wiley.
- 2. Bishop C. M., "Neural Network for Pattern Recognition", Oxford University Press.
- 3. Singhal R., "Pattern Recognition: Technologies & Applications", Oxford University Press.
- 4. Theodoridis S. and Koutroumbas K., "Pattern Recognition", Academic Press.

	BMC034: Data Analytics			
	Course Outcome (CO) Bloom's Knowledge Level (KL)			
	At the end of course, the student will be able to understand			
CO1	Describe the life cycle phases of Data Analytics through discovery, planning and	K_1, K_2		
	building.			
CO2	Understand and apply Data Analysis Techniques.	K_2, K_3		
CO3	Implement various Data streams.	K ₃		
CO4	Understand item sets, Clustering, frame works & Visualizations.			
CO5	Apply R tool for developing and evaluating real time applications.			
	DETAILED SYLLABUS			
Unit	Торіс	Proposed Lecture		
I	Introduction to Data Analytics: Sources and nature of data, classification of data	08		
	(structured, semi-structured, unstructured), characteristics of data, introduction to			
	Big Data platform, need of data analytics, evolution of analytic scalability, analytic			
	process and tools, analysis vs reporting, modern data analytic tools, applications			
	of data analytics.			
	Data Analytics Lifecycle: Need, key roles for successful analytic projects,			
	various phases of data analytics lifecycle – discovery, data preparation, model			
	planning, model building, communicating results, operationalization	08		
II	Data Analysis: Regression modeling, multivariate analysis, Bayesian modeling,			
	inference and Bayesian networks, support vector and kernel methods, analysis of			
	time series: linear systems analysis & nonlinear dynamics, rule induction, Neural			
	Networks: Learning and generalisation, competitive learning, principal component			
	analysis and neural networks, fuzzy logic: extracting fuzzy models			
III	from data, fuzzy decision trees, stochastic search methods. Mining Data Streemer Introduction to streems generate streem data model and	08		
111	Mining Data Streams: Introduction to streams concepts, stream data model and architecture, stream computing, sampling data in a stream, filtering streams,	08		
	counting distinct elements in a stream, estimating moments, counting oneness in a			
	window, decaying window, Real-time Analytics Platform (RTAP) applications,			
	Case studies – Real time sentiment analysis, stock market			
	predictions.			
IV	Frequent Itemsets and Clustering: Mining frequent itemsets, market based	08		
•	modelling, Apriori algorithm, handling large data sets in main memory, limited			
	pass algorithm, counting frequent itemsets in a stream, Clustering techniques:			
	hierarchical, K-means, clustering high dimensional data, CLIQUE and ProCLUS,			
	frequent pattern based clustering methods, clustering in non-euclidean			
	space, clustering for streams and parallelism.			
V	Frame Works and Visualization: MapReduce, Hadoop, Pig, Hive, HBase,	08		
	MapR, Sharding, NoSQL Databases, S3, Hadoop Distributed File Systems,			
	Visualization: visual data analysis techniques, interaction techniques, systems and			
	applications.			
	Introduction to R - R graphical user interfaces, data import and export, attribute			
	and data types, descriptive statistics, exploratory data analysis, visualization before			
	analysis, analytics for unstructured data.			
<u> </u>				

- 1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer.
- 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press.
- 3. Bill Franks, "Taming the Big Data Tidal wave: Finding Opportunities in Huge Data Streams

- with Advanced Analytics", John Wiley & Sons.
- 4. John Garrett, "Data Analytics for IT Networks : Developing Innovative Use Cases", Pearson Education.
- 5. Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley.
- 6. David Dietrich, Barry Heller, Beibei Yang, "Data Science and Big Data Analytics", EMC Education Series, John Wiley.
- 7. Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series.
- 8. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier.
- 9. Michael Berthold, David J. Hand," Intelligent Data Analysis", Springer.
- 10. Paul Zikopoulos, Chris Eaton, Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGraw Hill.
- 11. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Springer.
- 12. Mark Gardner, "Beginning R: The Statistical Programming Language", Wrox Publication.
- 13. Pete Warden, "Big Data Glossary", O'Reilly.
- 14. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons.
- 15. Peter Bühlmann, Petros Drineas, Michael Kane, Mark van der Laan, "Handbook of Big Data", CRC Press.
- 16. Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", Second Edition, Elsevier.

BMC035: Software Quality Engineering			
	Course Outcome (CO) Bloom's Knowledge Le		
At the	end of course, the student will be able to:		
CO 1	Understand basic concepts of Software Quality along with its documents and process	K2	
CO 2		К3	
CO 3	Compare the various reliability models for different scenarios	K4	
CO 4	Illustrate the software Quality Planning and Assurance	K2	
CO 5	Make use of various testing techniques in software implementation	K3	
	DETAILED SYLLABUS	3-1-0	
Unit	Торіс	Proposed Lecture	
I	Software Quality : Definition, Software Quality Attributes and Specification, Cost of Quality, Defects, Faults, Failures, Defect Rate and Reliability, Defect Prevention, Reduction, and Containment, Overview of Different Types of Software Review, Introduction to Measurement and Inspection Process, Documents and Metrics.	08	
п	Software Quality Metrics Product Quality Metrics: Defect Density, Customer Problems Metric, Customer Satisfaction Metrics, Function Points, In-Process Quality Metrics: Defect Arrival Pattern, Phase-Based Defect Removal Pattern, Defect Removal Effectiveness, Metrics for Software Maintenance: Backlog Management Index, Fix Response Time, Fix Quality, Software Quality Indicators.		
III	Software Quality Management and Models: Modeling Process, Software Reliability Models: The Rayleigh Model, Exponential Distribution and Software Reliability Growth Models, Software Reliability Allocation Models, Criteria for Model Evaluation, Software Quality Assessment Models: Hierarchical Model of Software Quality Assessment.		
IV	Software Quality Assurance : Quality Planning and Control, Quality Improvement Process, Evolution of Software Quality Assurance (SQA), Major SQA Activities, Major SQA Issues, Zero Defect Software, SQA Techniques, Statistical Quality Assurance, Total Quality Management, Quality Standards and Processes.		
V	Software Verification, Validation & Testing: Verification and Validation, Evolutionary Nature of Verification and Validation, Impracticality of Testing all Data and Paths, Proof of Correctness, Software Testing, Functional, Structural and Error-Oriented Analysis & Testing, Static and Dynamic Testing Tools, Characteristics of Modern Testing Tools.		

- 1. Jeff Tian, Software Quality Engineering (SQE), Wiley-Interscience, 2005; ISBN 0-471-71345-7
- 2. Metrics and Models in Software Quality Engineering, Stephen H. Kan, AddisonWesley (2002), ISBN: 0201729156
- 3. Norman E. Fenton and Shari Lawrence Pfleeger, "Software Metrics" Thomson, 2003
- 4. Mordechai Ben Menachem and Garry S.Marliss, "Software Quality", Thomson Asia Pte Ltd, 2003.

ELECTIVE-4

	BMC041: Blockchain Architecture	
	Course Outcome (CO) Bloom's Knowledge Level (KL)	
	At the end of course, the student will be able to understand	
CO1	Study and understand basic concepts of blockchain architecture.	K_1, K_2
CO2	Analyze various requirements for consensus protocols.	K_4
CO3	Apply and evaluate the consensus process.	K_3, K_5
CO4	Understand the concepts of Hyperledger fabric.	K_1
CO5	Analyze and evaluate various use cases in financial software and supply chain.	K ₄ , K ₅
	DETAILED SYLLABUS	4-0-0
Unit	Topic	Proposed
		Lecture
I	Introduction to Blockchain: Digital Money to Distributed Ledgers, Design	08
	Primitives: Protocols, Security, Consensus, Permissions, Privacy.	
	Blockchain Architecture and Design: Basic crypto primitives: Hash, Signature,	
	Hashchain to Blockchain, Bitcoin Basic, Basic consensus mechanisms.	
II	Consensus: Requirements for the consensus protocols, Proof of Work (PoW),	08
	Scalability aspects of Blockchain consensus protocols, distributed consensus, consensus in Bitcoin.	
	Permissioned Blockchains: Design goals, Consensus protocols for Permissioned	
	Blockchains	
III	Hyperledger Fabric: Decomposing the consensus process, Hyperledger fabric	08
	components.	00
	Chaincode Design and Implementation Hyperledger Fabric: Beyond	
	Chaincode: fabric SDK and Front End, Hyperledger composer tool.	
IV	Use case 1: Blockchain in Financial Software and Systems (FSS): (i)	08
	Settlements, (ii) KYC, (iii) Capital markets, (iv) Insurance.	
	Use case 2: Blockchain in trade/supply chain: (i) Provenance of goods, visibility,	
	trade/supply chain finance, invoice management discounting, etc.	
V	Use case 3: Blockchain for Government: (i) Digital identity, land records and	08
	other kinds of record keeping between government entities, (ii) public	
	distribution system social welfare systems, Blockchain Cryptography, Privacy	
	and Security on Blockchain	

- 1. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies", O'Reilly
- 2. Melanie Swa, "Blockchain", O'Reilly
- 3. "Hyperledger Fabric", https://www.hyperledger.org/projects/fabric
- 4. Bob Dill, David Smits, "Zero to Blockchain An IBM Redbooks course", https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html

	BMC042: Neural Networks	
	Course Outcome (CO) Bloom's Knowledge Level (KL)	<u> </u>
	At the end of course, the student will be able to understand	
CO 1	Study of basic concepts of Neuro Computing, Neuroscience and ANN. Understand the different supervised and unsupervised and neural networks performance.	K_1, K_2
CO 2	Study of basic Models of neural network. Understand the Perception network. and Compare neural networks and their algorithm.	K ₂ , K ₃
CO 3	Study and Demonstrate different types of neural network. Make use of neural networks for specified problem domain.	K ₂ K ₃ , K ₄
CO 4	Understand and Identify basic design requirements of recurrent network and Self- organizing feature map.	K_1, K_2
CO 5	Able to understand the some special network. Able to understand the concept of Soft computing.	K_1 , K_2 K_3
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Neurocomputing and Neuroscience: The human brain, biological neurons, neural processing, biological neural network. Artificial Neural Networks: Introduction, historical notes, neuron model, knowledge representation, comparison with biological neural network, applications. Learning process: Supervised learning, unsupervised learning, error correction learning, competitive learning, adaptation learning, Statistical nature of the learning process.	08
Ш	Basic Models: McCulloch-Pitts neuron model, Hebb net, activation functions, aggregation functions. Perceptron networks: Perceptron learning, single layer perceptron networks, multilayer perceptron networks. Least mean square algorithm, gradient descent rule, nonlinearly separable problems and bench mark problems in NN.	08
Ш	Multilayer neural network: Introduction, comparison with single layer networks. Back propagation network: Architecture, back propagation algorithm, local minima and global minima, heuristics for making back propagation algorithm performs better, applications. Radial basis function network: Architecture, training algorithm, approximation properties of RBF networks, comparison of radial basis function network and back propagation networks.	08
IV	Recurrent network: Introduction, architecture and types. Self-organizing feature map: Introduction, determining winner, Kohonen Self Organizing feature maps (SOM) architecture, SOM algorithm, properties of feature map; Learning vector quantization-architecture and algorithm. Principal component and independent component analysis.	08
V	Special networks: Cognitron, Support vector machines. Complex valued NN and complex valued BP. Soft computing: Introduction, Overview of techniques, Hybrid soft computing techniques.	08

- 1. Kumar S., "Neural Networks- A Classroom Approach", McGraw Hill.
- 2. Haykin S., "Neural Networks A Comprehensive Foundation", Pearson Education.
- 3. Yegnanarayana B. "Artificial Neural Networks", Prentice Hall of India.
- 4. Freeman J. A., "Neural Networks", Pearson Education.
- 5. James F., "Neural Networks Algorithms, Applications and Programming Techniques", Pearson Education.

BMC043: Internet of Things		
Course Outcome (CO) Bloom's Knowledge Le		
	At the end of course, the student will be able to understand	
CO 1	CO 1 Demonstrate basic concepts, principles and challenges in IoT.	
CO 2	Illustrate functioning of hardware devices and sensors used for IoT.	K2
CO 3	Analyze network communication aspects and protocols used in IoT.	K4
CO 4	Apply IoT for developing real life applications using Ardunio programming.	К3
CP 5	To develop IoT infrastructure for popular applications	K_{2}, K_{3}
	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
I	Internet of Things (IoT): Vision, Definition, Conceptual Framework, Architectural view, technology behind IoT, Sources of the IoT, M2M Communication, IoT Examples. Design Principles for Connected Devices: IoT/M2M systems layers and design standardization, communication technologies, data enrichment and consolidation, ease of designing and affordability	08
П	Hardware for IoT: Sensors, Digital sensors, actuators, radio frequency identification (RFID) technology, wireless sensor networks, participatory sensing technology. Embedded Platforms for IoT: Embedded computing basics, Overview of IOT supported Hardware platforms such as Arduino, NetArduino, Raspberry pi, Beagle Bone, Intel Galileo boards and ARM cortex.	08
Ш	Network & Communication aspects in IoT: Wireless Medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination	08
IV	Programming the Ardunio: Ardunio Platform Boards Anatomy, Ardunio IDE, coding, using emulator, using libraries, additions in ardunio, programming the ardunio for IoT.	08
V	Challenges in IoT Design challenges: Development Challenges, Security Challenges, Other challenges IoT Applications: Smart Metering, E-health, City Automation, Automotive Applications, home automation, smart cards, communicating data with H/W units, mobiles, tablets, Designing of smart street lights in smart city.	08

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi "The Internet of Things key applications and protocols", willey
- 2. Jeeva Jose, Internet of Things, Khanna Publishing House
- 3. Michael Miller "The Internet of Things" by Pearson
- 4. Raj Kamal "INTERNET OF THINGS", McGraw-Hill, 1ST Edition, 2016
- 5. ArshdeepBahga, Vijay Madisetti "Internet of Things (A hands on approach)" 1ST edition, VPI publications, 2014
- 6. Adrian McEwen, Hakin Cassimally "Designing the Internet of Things" Wiley India

${\bf MASTER~OF~COMPUTER~APPLICATION~(MCA)}$

BMC044: Modern Application Development		
Course Outcome (CO) Bloom's Knowledge Lev		
At the	end of course , the student will be able to:	
CO 1	Understand the fundamental of Kotlin Programing for Android Application Development.	K2
CO 2	Describe the UI Layout and architecture of Android Operating System.	K3
CO 3	Designing android application using Jetpack Library based on MVVM Architecture.	K6
CO 4	Developing android application based on REST API using Volley and Retrofi Library.	
CO 5	Ability to debug the Performance and Security of Android Applications.	K5
	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
I	Kotlin Fundamental: Introduction to Kotlin, Basic Syntax, Idioms, Codin Conventions, Basics, Basic Types, Packages, Control Flow, Returns and Jumps Classes and Objects, Classes and Inheritance, Properties and Fields, Interfaces Visibility Modifiers, Extensions, Data Classes, Generics, Nested Classes, Enur Classes, Objects, Delegation, Delegated Properties, Functions and Lambdas Functions, Lambdas, Inline Functions, Higher-Order Functions, Scope Function Collections, Ranges, Type Checks and Casts, This expressions, Equality, Operato overloading, Null Safety, Exceptions, Annotations, Reflection.	6, 6, m 6, 08
п	Android Fundamental: Android Architecture: Introduction to Android, Layouts, Views and Resources, Activities and Intents, Activity Lifecycle and Saving State, Implicit or Explicit Intents. User Interaction and Intuitive Navigation: Material Design, Theme, Style an Attributes, Input Controls, Menus, Widgets, Screen Navigation, Recycler View ListView, Adapters, Drawables, Notifications.	
ш	Storing, Sharing and Retrieving Data in Android Applications: Overview to storing data, shared preferences, App settings, Store and query data in Android's SQLite database, Content Providers, Content Resolver, Loading data using loaders. Jetpack Components: Fragments, Jetpack Navigation, Lifecycle, Lifecycle Observer, Lifecycle Owner, View Model, View Model Factory, View Model Provider, LiveData, Room API, Data Binding, View Binding, MVVM Architecture Basics	08
IV	Asynchronous Data Handling, Networking and Files: Asynchronous Task, Coroutines, API Handling, JSON Parsing, Volley Library, Retrofit Library, File Handling, HTML and XML Parsing, Broadcast receivers, Services	08

V	Permissions, Performance and Security: Firebase, AdMob, APK Singing, Publish App, Packaging and deployment, Google Maps, GPS and Wi-Fi, Download Manager, Work Manager, Alarms, Location, Map and Sensors, APK Singing, Publish App	08

- 1. Meier R., "Professionai Android 2 Application Development", Wiley.
- 2. Hashimi S., KomatineniS. and MacLeanD., "Pro Android 2", Apress.
- 3. Murphy M., "Beginning Android 2", Apress.
- 4. Delessio C. and Darcey L., "Android Application Development", Pearson Education.
- 5. DiMarzio J.F., "Android a Programming Guide", Tata McGraw Hill.

	BMC045: Distributed Database Systems		
	Course Outcome (CO) Bloom's Knowledge Le		
At the end of course, the student will be able to:			
CO 1	Understand theoretical and practical aspects of distributed	d database systems.	K2
CO 2	Study and identify various issues related to the dev database system	velopment of distributed	К3
CO 3	Understand the design aspects of object-oriented datable development	pase system and related	K4
CO 4	Equip students with principles and knowledge of distribut	ted reliability.	К3
CO 5	Equip students with principles and knowledge of para databases.	llel and object-oriented	K5
	DETAILED SYLLABUS		4-0-0
Unit	Торіс		Proposed Lecture
I	Introduction: Distributed Data Processing, Distributed Dof DDBSs, Problem areas. Distributed DBMS Architecture for Distributed DBMS, DDMBS Architecture. Distributed Database Design: Alternative Design Strategies, Distributed Database Design. Allocation.	ure: Architectural Models ed	08
П	Query processing and decomposition: Query characterization of query processors, layers of q decomposition, localization of distributed data. Distributed optimization, centralized query optimization optimization algorithms.	uery processing, query uted query Optimization:	08
III	Transaction Management: Definition, properties of transactions, distributed concurrency control: Serializab mechanisms & algorithms, time - stamped & optimi Algorithms, deadlock Management.	ility, concurrency control	08
IV	Distributed DBMS Reliability: Reliability concepts and in distributed systems, failures in Distributed DBMS, locaprotocols, site failures and network partitioning. Par Parallel database system architectures, parallel data place query processing, load balancing, database clusters.	al & distributed reliability rallel Database Systems:	08
V	Distributed object Database Management System concepts and models, object distributed design, are management, distributed object storage, object query Pro Object Oriented Data Model: Inheritance, object programming languages, persistence of objects, com ORDBMS	chitectural issues, object beessing. ect identity, persistent	08

Text books:

M. Tamer OZSU and Patuck Valduriez: Principles of Distributed Database Systems, Pearson Edn. Asia, 2001. 2. Stefano Ceri and Giuseppe Pelagatti: Distributed Databases, McGraw Hill. REFERENCE BOOKS: 1. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom: "Database Systems: The Complete Book", Second Edition, Pearson International Edition

ELECTIVE-5

BMC051: Mobile Computing			
	Course Outcome (CO) Bloom's Knowledge Level (KL		
At the end of course, the student will be able to understand			
CO 1	Study and aware fundamentals of mobile computing.	K_1, K_2	
CO 2	Study and analyze wireless networking protocols, applications and environment.	K _{1,} K ₄	
CO 3	Understand various data management issues in mobile computing.	K_2	
CO 4	Analyze different type of security issues in mobile computing environment.	K ₄	
CO 5	Study, analyze, and evaluate various routing protocols used in mobile computing.	K ₁ , K ₄ , K ₅	
	DETAILED SYLLABUS	3-0-0	
Unit	Торіс	Proposed Lecture	
I	Introduction, Issues in mobile computing, Overview of wireless telephony, Cellular concept, GSM- air interface, channel structure; Location management- HLR-VLR, hierarchical, handoffs; Channel allocation in cellular systems, CDMA, GPRS, MAC for cellular system.		
II	Wireless Networking, Wireless LAN Overview- MAC issues, IEEE 802.11, Blue Tooth, Wireless multiple access protocols, TCP over wireless, Wireless applications, Data broadcasting, Mobile IP, WAP-architecture, protocol stack, application environment, applications.		
III	Data management issues in mobile computing, data replication for mobile computers, adaptive clustering for mobile wireless networks, File system, Disconnected operations.	08	
IV	Mobile Agents computing, Security and fault tolerance, Transaction processing in mobile computing environment.	08	
V	Adhoc networks, Localization, MAC issues, Routing protocols, Global state routing (GSR), Destination sequenced distance vector routing (DSDV), Dynamic source routing (DSR), Adhoc on demand distance vector routing (AODV), Temporary ordered routing algorithm (TORA), QoS in Adhoc Networks, applications	08	

- 1. Schiller J., "Mobile Communications", Pearson
- 2. Upadhyaya S. and Chaudhury A., "Mobile Computing", Springer
- 3. Kamal R., "Mobile Computing", Oxford University Press.
- 4. Talukder A. K. and Ahmed H., "Mobile Computing Technology, Applications and Service Creation", McGraw Hill Education
- 5. Garg K., "Mobile Computing Theory and Practice", Pearson.
- 6. Kumar S., "Wireless and Mobile Communication", New Age International Publishers
- 7. Manvi S. S. and Kakkasageri M. S., "Wireless and Mobile Networks- Concepts and Protocols", Wiley India Pvt. Ltd.

	BMC052: Computer Graphics and Animation	
	Course Outcome (CO) Bloom's Knowledge Level (KL)	
	At the end of course, the student will be able to understand	
CO 1	Understand the graphics hardware used in field of computer graphics.	K_2
CO 2	Understand the concept of graphics primitives such as lines and circle based on	K ₂ , K ₄
	different algorithms.	
CO 3	Apply the 2D graphics transformations, composite transformation and Clipping	K_4
	concepts.	
CO 4	Apply the concepts and techniques used in 3D computer graphics, including	K_2, K_3
	viewing transformations, projections, curve and hidden surfaces.	
CO 5	Perform the concept of multimedia and animation in real life.	K ₂ , K ₃
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed
		Lecture
I	Introduction and Line Generation: Types of computer graphics, Graphic	08
	Displays- Random scan displays, Raster scan displays, Frame buffer and video	
	controller, Points and lines, Line drawing algorithms, Circle generating	
	algorithms, Mid-point circle generating algorithm, and parallel version of these algorithms.	
П	Transformations: Basic transformation, Matrix representations and	08
11	homogenous coordinates, Composite transformations, Reflections and shearing.	00
	Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D	
	Clipping algorithms- Line clipping algorithms such as Cohen Sutherland line	
	clipping algorithm, Liang Barsky algorithm, Line clipping against non	
	rectangular clip windows; Polygon clipping – Sutherland Hodgeman polygon	
	clipping, Weiler and Atherton polygon clipping, Curve clipping, Text clipping.	
III	Three Dimensional: 3-D Geometric Primitives, 3-D Object representation, 3-	08
	D Transformation, 3-D viewing, projections, 3-D Clipping.	
	Curves and Surfaces: Quadric surfaces, Spheres, Ellipsoid, Blobby objects,	
***	Introductory concepts of Spline, Bspline and Bezier curves and surfaces.	00
IV	Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer	08
	method, A- buffer method, Scan line method, basic illumination models—Ambient light, Diffuse reflection, Specular reflection and Phong model,	
	Combined approach, Warn model, Intensity Attenuation, Color consideration,	
	Transparency and Shadows.	
V	Multimedia Systems: Design Fundamentals, Back ground of Art, Color theory	08
,	overview, Sketching & illustration, Storyboarding, different tools for animation.	00
	Animation: Principles of Animations, Elements of animation and their use,	
	Power of Motion, Animation Techniques, Animation File Format, Making	
	animation for Rolling Ball, making animation for a Bouncing Ball, Animation	
	for the web, GIF, Plugins and Players, Animation tools for World Wide Web.	
	-	
C	ted Deadings	

- 1. Hearn D. and Baker M. P., "Computer Graphics C Version", Pearson Education
- 2. Foley, Vandam, Feiner, Hughes, "Computer Graphics principle", Pearson Education.
- 3. Rogers, "Procedural Elements of Computer Graphics", McGraw Hill
- 4. Newman W. M., Sproull R. F., "Principles of Interactive computer Graphics", McGraw Hill.
- 5. Sinha A. N. and Udai A. D.," Computer Graphics", McGraw Hill.
- 6. Mukherjee, "Fundamentals of Computer graphics & Multimedia", PHI Learning Private Limited.
- 7. Vaughan T., "Multimedia, Making IT Work", Tata McGraw Hill.

	Course Outcome (CO) Dlagaria Vinguilia I	J (IZI)
	Course Outcome (CO) Bloom's Knowledge Leve	el (KL)
GO 1	At the end of course, the student will be able to understand	C 17 17
CO 1	Study and understand basic concepts, background and representations of	f K_1, K_2
CO 2	natural language.	V
CO 2	Analyze various real-world applications of NLP.	K ₄
CO 3	Apply different parsing techniques in NLP.	K ₃
CO 4	Understand grammatical concepts and apply them in NLP.	K_2, K_3
CO 5	Apply various statistical and probabilistic grammar methods to handle a	K_3, K_5
	evaluate ambiguity.	200
T T 4:	DETAILED SYLLABUS	3-0-0
Unit	Topic	Proposed
		Lecture
Ι	Introduction to Natural Language Understanding: The study of Langu	
	Applications of NLP, Evaluating Language Understanding Systems, Diffe	
	levels of Language Analysis, Representations and Understanding, Organiza	
	of Natural language Understanding Systems, Linguistic Background:	An
	outline of English syntax.	
II	Introduction to semantics and knowledge representation, some applications	like 08
	machine translation, database interface.	
III	Grammars and Parsing: Grammars and sentence Structure, Top-Down	
	Bottom-Up Parsers, Transition Network Grammars, Top- Down Chart Pars	
	Feature Systems and Augmented Grammars: Basic Feature system for Engl	
	Morphological Analysis and the Lexicon, Parsing with Features, Augmen	ted
	Transition Networks.	
IV	Grammars for Natural Language: Auxiliary Verbs and Verb Phra	
	Movement Phenomenon in Language, Handling questions in Context-	
	Grammars. Human preferences in Parsing, Encoding uncertainty, Determin	istic
	Parser.	
V	Ambiguity Resolution: Statistical Methods, Probabilistic Language Process	ing, 08
	Estimating Probabilities, Part-of Speech tagging, Obtaining Lex	cical
	Probabilities, Probabilistic Context-Free Grammars, Best First Pars	ing.
	Semantics and Logical Form, Word senses and Ambiguity, Encod	ing
	Schlandes and Logical Politi, word senses and Amorganty, Lincod	1115

- 1. Akshar Bharti, Vineet Chaitanya and Rajeev Sangal, "NLP: A Paninian Perspective", Prentice Hall, New Delhi.
- 2. James Allen, "Natural Language Understanding", Pearson Education.
- 3. D. Jurafsky, J. H. Martin, "Speech and Language Processing", Pearson Education.
- 4. L. M. Ivansca, S. C. Shapiro, "Natural Language Processing and Language Representation", AAAI Press, 2000.
- 5. T. Winograd, Language as a Cognitive Process, Addison-Wesley.

	BMC054: Machine Learning	
	Course Outcome (CO) Bloom's F	Knowledge Level (KL)
At the	end of course , the student will be able:	
CO 1	To understand the need for machine learning for various problem solving	K_1, K_2
CO 2	To understand a wide variety of learning algorithms and how to evaluate models generated from data	K_1 , K_3
CO 3		K_2 , K_3
CO 4	To design appropriate machine learning algorithms and apply the algorithms to	K ₄ , K ₆
CO 5	To optimize the models learned and report on the expected accuracy that can	K ₄ , K ₅
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	INTRODUCTION – Learning, Types of Learning, Well defined learning problems, Designing a Learning System, History of ML, Introduction of Machine Learning Approaches – (Artificial Neural Network, Clustering, Reinforcement Learning, Decision Tree Learning, Bayesian networks, Support Vector Machine Genetic Algorithm), Issues in Machine Learning and Data Science Vs Machine Learning;	e 08 08
п	REGRESSION: Linear Regression and Logistic Regression BAYESIAN LEARNING - Bayes theorem, Concept learning, Bayes Optima Classifier, Naïve Bayes classifier, Bayesian belief networks, EM algorithm. SUPPORT VECTOR MACHINE: Introduction, Types of support vector kerne – (Linear kernel, polynomial kernel, and Gaussiankernel), Hyperplane – (Decision	08
III	surface), Properties of SVM, and Issues in SVM. DECISION TREE LEARNING - Decision tree learning algorithm, Inductive bias, Inductive inference with decision trees, Entropy and information theory. Information gain, ID-3 Algorithm, Issues in Decision tree learning. INSTANCE-BASED LEARNING - k-Nearest Neighbour Learning, Locall Weighted Regression, Radial basis function networks, Case-based learning.	08
IV	ARTIFICIAL NEURAL NETWORKS – Perceptron's, Multilayer perceptron Gradient descent and the Delta rule, Multilayer networks, Derivation of Backpropagation Algorithm, Generalization, Unsupervised Learning – SON Algorithm and its variant; DEEP LEARNING - Introduction, concept of convolutional neural network, Types of layers – (Convolutional Layers, Activation function, pooling, fully connected), Concept of Convolution (1D and 2D) layers, Training of network, Case study of CNN for eg on Diabetic Retinopathy, Building a smart speaker, Self-deriving car etc. REINFORCEMENT LEARNING—Introduction to Reinforcement Learning	of M 08
V	Learning Task,Example of Reinforcement Learning in Practice, Learning Mode for Reinforcement – (Markov Decision process, Q Learning - Q Learning function Q Learning Algorithm), Application of Reinforcement Learning,Introduction to Deep Q Learning.	n, 08

GENETIC ALGORITHMS: Introduction, Components, GA cycle of reproduction, Crossover, Mutation, Genetic Programming, Models of Evolution and Learning, Applications.

- 1. Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 2013.
- 2. Ethem Alpaydin, —Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press 2004.
- 3. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.
- 4. Bishop, C., Pattern Recognition and Machine Learning. Berlin: Springer-Verlag.
- 5. M. Gopal, "Applied Machine Learning", McGraw Hill Education

	BMC055: Quantum Computing		
Course Outcome (CO) Bloom's Knowledge Le		edge Level (KL)	
At the end of course , the student will be able to understand			
CO 1	Distinguish problems of different computational complexity and explain why ce problems are rendered tractable by quantum computation with reference to the releconcepts in quantum theory.	vant	
CO 2	Demonstrate an understanding of a quantum computing algorithm by simulating it classical computer, and state some of the practical challenges in building a quant computer.		
CO 3	Contribute to a medium-scale application program as part of a co-operative team, mak use of appropriate collaborative development tools (such as version control systems).	ing K_2, K_3	
CO 4	Produce code and documentation that is comprehensible to a group of diffe programmers and present the theoretical background and results of a project in written verbal form.	and	
CO 5	Apply knowledge, skills, and understanding in executing a defined project of resear development, or investigation and in identifying and implementing relevant outcomes.		
	DETAILED SYLLABUS	3-0-0	
Unit	Торіс	Proposed Lecture	
I	Fundamental Concepts: Global Perspectives, Quantum Bits, Quantum Computat Quantum Algorithms, Quantum Information, Postulates of Quantum Mechanisms.	ion, 08	
II	Quantum Computation : Quantum Circuits — Quantum algorithms, Single operations, Control Operations, Measurement, Universal Quantum Gates, Simulation Quantum Systems, Quantum Fourier transform, Phase estimation, Applications, Quantum search algorithms — Quantum counting — Speeding up the solution of NP — comparablems — Quantum Search for an unstructured database.	n of ntum 08	
Ш	Quantum Computers: Guiding Principles, Conditions for Quantum Computa Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer – Opcavity Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance		
IV	Quantum Information: Quantum noise and Quantum Operations – Classical Noise a Markov Processes, Quantum Operations, Examples of Quantum noise and Quan Operations – Applications of Quantum operations, Limitations of the Quantum operat formalism, Distance Measures for Quantum information.	tum	
v	Quantum Error Correction: Introduction, Shor code, Theory of Quantum Error Correction, Constructing Quantum Codes, Stabilizer codes, Fault – Tolerant Quantum Computation, Entropy and information – Shannon Entropy, Basic properties of Entropy Neumann, Strong Sub Additivity, Data Compression, Entanglement as a physic resource.	opy, 08	

- 1. Micheal A. Nielsen. &Issac L. Chiang, "Quantum Computation and Quantum Information", Cambridge University Press, Fint South Asian edition, 2002.
- $2.\ Eleanor\ G.\ Rieffel\ ,\ Wolfgang\ H.\ Polak\ ,\ "Quantum\ Computing\ -\ A\ Gentle\ Introduction"\ (Scientific\ and\ Engineering\ Computation)\ Paperback\ -\ Import,$
- 3 Oct 2014
- 3. Computing since Democritus by Scott Aaronson
- 4. Computer Science: An Introduction by N. DavidMermin 5. Yanofsky's and Mannucci, Quantum Computing for Computer Scientists.