Projet Optimisation

La classification non supervisée (clustering)

1 –

Notre Équipe

2. Problème UKP

-

+

L'objectif est de sélectionner un sous-ensemble qui maximise le bénéfice total des objets sélectionnés et dont la somme des poids ne dépasse pas la capacité.

```
\sum_{i=1}^{n} x_i p_i \quad sous \ la \ contrainte \quad \sum_{i=1}^{n} x_i p_i \leq C (p_1, p_2, \dots, p_n) : les \ profits (w_1, w_2, \dots, w_n) : les \ poids \ des \ objets (x_1, x_2, \dots, x_n) : le \ objets
```


3. Problème du clustering

La classification non supervisée (Clustering) vise à découvrir des groupes de données similaires et à les regrouper en clusters

Pourquoi les méta-heuristiques dans le Clustering?

Codage de la solution du problème

4. État de l'art

5. Solution Biogeography-Based Optimisation (BBO)

01

+

Une méthode inspirée de la biogéographie

04

+

Manipule une population composée d'îles

02

Étudie la répartition spatiale des espèces vivantes

+

05

La fitness de chaque île est représentée par son HSI 03

+

Une métaheuristique à base de population

06

Opérations d'immigration et émigration

5. Adaptation du BBO au problème du clustering

11 -

+

Codage de la solution

Caractéristiques du centre du premier cluster dans l'espace des variables

12 -

+

+

Population initiale

+

Chaque habitat est initialisé par les coordonnées des centres des k clusters retournés par K-means suivant l'encodage préalablement décrit. Pour chaque habitat, nous faisons varier les paramètres de k-means pour différencier les solutions.

+

Migration et Emigration

- → Descendants à partir des individus de la population.
- → Le nombre et la destination des migrants est décidé aléatoirement en fonction des taux d'émigration et d'immigration .
- Le taux d'émigration μ représente les départs vers l'extérieur : $\mu = (la \ taille \ de \ la \ population + 1 (indice \ de \ la \ population)) / (la taille \ de \ la \ population + 1)$
- \rightarrow Le taux d'immigration λ représente les arrivées venant de l'extérieur : $\lambda = 1 \mu$

+

14 -

Fonction Objective

Matrice des distances

Distance entre individu 1 et le	Distance entre individu 1 et le	Distance entre individu 1 et le
centre 1	centre 2	centre 3
Distance entre individu 2 et le	Distance entre individu 2 et le	Distance entre individu 2 et le
centre 1	centre 2	centre 3
Distance entre individu 3 et le	Distance entre individu 3 et le	Distance entre individu 3 et le
centre 1	centre 2	centre 3

Matrice distances minimales

Distance entre individu 1 et le centre 1	
Distance entre individu 2 et le centre 3	
Distance entre individu 3 et le centre 2	

HSI= Distance entre individu 1 et le centre 1+Distance entre individu 2 et le centre 3+Distance entre individu 3 et le centre 2

Algorithme BB0

Mutation

insérer des variables aléatoires au niveau des populations

Migration & émigration

Suivant les paramètres lambda et mu de chaque population

Population initiale

À Partir des résultats du kmeans

Evaluation

Évaluer les populations en utilisant la fonction objective HSI

Élitisme

garder les meilleurs population avant d'effectuer remplacement

Mise à jour de la solution

a chaque génération garder la meilleur solution

Présentation des datasets

- Classification des fleurs
- 3 classes
- 4 attributs
- 150 observations

Heart

- Classification des individus pour l'étude de cardiopathie
- 2 classes
- 14 attributs
- 303 individus

Paramètres du BBO

Taille de la population

Nombre d'itérations

-Élitisme

Mutation

Métriques utilisées

La justesse (accuracy)

Indice de Rand

Population initiale

+

- → Première moitiée de la population initialisé par Kmeans avec : Random State = 3 et une faible altération
- → Deuxième moitiée de la population initialisé par Kmeans avec : + Random State variant et une faible altération

Population initiale

+

- → Première moitiée de la population initialisé par Kmeans avec : Random State = 8 et sans altération
- → Deuxième moitiée de la population initialisé par Kmeans avec : + Random State variant et sans altération

+

Dataset Iris

H

	Mal classifié	Accuracy	HSI	Rand Score
Kmeans	16	0.89333	97.204	0.7302
ВВО	10	0.9333	99.823	0.7714

, +

+

Dataset Heart

-

	Mal classifié	Accuracy	HSI	Rand Score
Kmeans	128	0.577	11931.44	0.0205
ВВО	72	0.7623	92878.48	0.2729

, +

Environnement d'exécution

Libraries

Sklearn et Scipy matplotlib

Démonstration

- +
- Vijay Kumar, Jitender Kumar Chhabra, Dinesh Kumar. Initializing Cluster Center for K-Means Using Biogeography Based Optimization, 2011.
- Raju Pal, Mukesh Saraswat. Data clustering using enhanced biogeography-based optimization, 2017.
- Allam Farida et Attab Saida. Hybridation de la méthode des k-means avec le recuit simulé, Université de Mouloud Mammeri, Tizi-Ouzou, 2009.
- Arbia Djamila. Métaheuristiques appliquées à la classification non supervisée de données, Université Mohamed Boudiaf, M'SILA, 2019.
 - 。 +

