ONLY GOD

2022

Neural Network & Deep Learning

Recurrent NN

CSE & IT Department
School of ECE
Shiraz University

RNN with Hidden Layer

Sequential Data

- When reading text of a book, ideas you form and train of thoughts depend on what you have understood and retained up to a given point in book
- This persistence or ability to have some memory and pay attention helps to develop understanding of concepts, to think, to use knowledge, to solve problems and to innovate
- There is an inherent notion of progress with steps, with passage of time, for sequential data (datastream)
- Sequential memory is a mechanism that makes it easier for brain to recognize sequence patterns

Why Recurrent NNs (RNNs)?

- How would a feed-forward NN (FFNN) read a sentence and pass on previously gathered information in order to completely understand and relate sequence of incoming data?
- FFNNs, despite how good being, lack this intuitive innate tendency for persistence, as their training for weights is not same as persistence of information for next step
 - RNNs address this drawback with a simple yet elegant mechanism and are great at modeling sequential data

RNN vs FFNN

 A FFNN has input coming in, to hidden layer, which results in output

 An RNN feeds its output to itself at next time-step, forming a loop, passing down much needed information

RNN Features

- Biological nervous systems show high levels of recurrency
- Hidden units have task of mapping both an external input and previous internal state to some desired output
- Can maintain a state vector (memory) that contains information about history of all past elements of sequence
- RNNs can do temporal processing and learn sequential data
 - speech recognition, handwritten recognition, language modeling, translation, image captioning

RNN Architectures

- A FFNN + added loops
- Nonlinear mapping capabilities of FFNN + some form of memory
- A fully RNN: a FFNN with hidden unit activations feeding back into net along with inputs
- A uniform structure
 (every neuron connected
 to all others + stochastic
 activation functions)

Elman Network

- A layer of context units (as internal states) + a FFNN
- States of hidden units could be fed-back into hidden units during next stage of input
- Designed to learn sequential or timevarying patterns
- Can recognize and predict learned series of values or events

Jordan Network

- Has connections that feed-back from output to input layer
- Also, some input layer units feed-back to themselves
- Has a form of short-term memory (STM)
- Useful for tasks that are dependent on sequence of successive states
- Can be trained by back-propagation

Eorward Pass of RNN

 Activations at hidden layer arrive from both current external input and hidden layer activations from previous time step:

$$h_{in_{J}}(t) = \sum_{i=1}^{n} w_{iJ}^{\text{IH}} x_{i}(t) + \sum_{j=1}^{p} w_{jJ}^{\text{HH}} h_{j}(t-1)$$

• Initial values of $h_j(0)$ are set to zero

Nonlinear and differentiable activation functions, $f^{H}(.)$, are then applied: $h_{J}(t) = f^{H}(h_{-}in_{J}(t))$

So,
$$\vec{h}(t) = f^{H}(W^{IH} \vec{x}(t) + W^{HH} \vec{h}(t-1))$$

Eorward Pass of RNN

- Complete sequence of hidden activations can be calculated by starting at t=1 and incrementing t at each step
- Inputs to output units can be calculated at the same time as hidden activations: $y_i n_K(t) = \sum_{j=1}^p w_{jK}^{HO} h_j(t)$
- Using output activation function, $f^{0}(.)$, output of net is computed: $y_{K}(t) = f^{0}(y_{i}n_{K}(t))$
- So, $\vec{y}(t) = f^{0}(W^{HO} \vec{h}(t))$
- For sequence classification tasks, $f^{O}(.)$ uses sigmoid for two-class, and softmax for multi-class problems

Universal Approximation Theore

 Any nonlinear dynamical system can be approximated to any accuracy by an RNN, provided that network has enough sigmoidal hidden units

How to approximate? Learning from a set of training data

Unfolding over Time

 RNN encodes incoming sequential data first before being utilized to determine the intent/action via another FFNN for decision

Unfolding over Time

 To better understand flow, in unrolled version of RNN, each RNN has different input (of sequence) and output at each time-step

NN A takes in input at each time step while giving output h and passing information to itself for next incoming input t+1 step

Memory in RNN

- Humans tend to retrieve information from memory, short or long, use current information and derive next action
- As output of a recurrent neuron in RNN, at time step t, is function of previous input with accumulated information till time step t-1, this mechanism is a form of memory
- Any part of NN which has notion of preserving state across time steps is a memory-cell \hat{v}^{t-1}

Decision in RNN

- How RNN analyzes sentence "what time is it?"
- we try to break the sequence and color code it

What time is it?

Decision in RNN

Unfolding over Time

 An RNN can be converted into a FFNN by unfolding over time

Unfolding over Time

So, all earlier theory about FFNN learning follows through

Unfolded Elman Network

Truncating unfolded network to just one time step reduces it to a simple RNN as Elman network

RNN Learning

- For simple architectures and deterministic activation functions, learning can be achieved using similar gradient descent procedures to those leading to back-propagation algorithm
- For stochastic activations functions, simulated annealing approaches may be more appropriate

- 1. Continuous training: network state is never reset during training
- R. Epochwise training: network state reset at each epoch

Back-propagation Through Time

- BPTT learning algorithm is a natural extension of standard back-propagation that performs gradient descent on a complete unfolded network
- If training sequence starts at time t_s and ends at time t_f , total cost function is sum over time of error, $E_{ins}(.)$, at each time-step while reusing same weights:

$$E_{\text{tot}}(t_s, t_f) = \sum_{t=t_s}^{t_f} E_{\text{ins}}(t)$$

Gradient descent weight updates have contributions from each time-step:

$$w_{ij} = -\eta \frac{\partial E_{\text{tot}}(t_s, t_f)}{\partial w_{ij}} = -\eta \sum_{t=t_s}^{t_f} \frac{\partial E_{\text{ins}}(t)}{\partial w_{ij}} \text{ for } w_{ij} \in \{W^{\text{IH}}, W^{\text{HH}}\}$$

Backward Pass of BPTT

Like standard back-propagation, BPTT consists of a repeated application of chain rule (for $t=t_f,\ldots,t_s$)

$$\begin{split} \Delta w_{jK}^{\text{HO}}(t) &= -\eta \; \delta_{K}^{\text{O}}(t) \; h_{j}(t) \; , \\ \delta_{K}^{\text{O}}(t) &= f^{\text{O}'} \big(y_{_} i n_{K}(t) \big) \{ -(d_{K} - y_{K}(t)) \} \\ \Delta w_{jf}^{\text{HH}}(t) &= -\eta \; \delta_{J}^{\text{H}}(t) \; h_{j}(t-1) \; \; , \\ \delta_{f}^{\text{H}}(t) &= f^{\text{H}'} (h_{_} i n_{J}(t)) \{ \sum_{k=1}^{m} \delta_{k}^{\text{O}}(t) w_{Jk}^{\text{HO}} + \sum_{j=1}^{p} \delta_{j}^{\text{H}}(t+1) w_{Jj}^{\text{HH}} \} \end{split}$$

$$\Delta w_{iJ}^{\rm IH}(t) = -\eta \, \delta_J^{\rm I}(t) \, x_i(t) \, ,$$

Practical Considerations for BPT

- Unfolded network is quite complex because of need to keep track of all components at different time-steps
- Typically, weight updates are made in an online fashion (at each time-step)
- This requires history of inputs and past network states to be stored
- To be computationally feasible, truncation at a certain number of time-steps (e.g., ~30) is required
- Earlier information being ignored since contributions to weight updates are smaller

Practical Considerations for BPT

- In a stable network, contributions to weight updates should become smaller the further back in time they come from
- This is because they depend on higher powers of small feedback strengths (corresponding to sigmoid derivatives multiplied by feedback weights)
- In Elman network, each set of weights appears only once, so standard back-propagation rather than full BPTT can be used
 - Error signal will not get propagated back very far

Bidirectional RNN (BRNN)

- It is beneficial to have access to future as well as past context
- Since standard RNNs process sequences in temporal order, they ignore future context
- Solution: present each training sequence forwards and backwards to two separate recurrent hidden layers, both of which are connected to the same output layer
- Provides output layer with complete past and future context for every point in input sequence

Unfolded BRNN

Eorward Pass of BRNN

- Input sequence is presented in opposite directions to two hidden layers
- Output layer is not updated until both hidden layers have processed entire input sequence:

for $t = t_s$ to t_f do

Forward pass for forward hidden layer, storing activations at each time-step

for $t = t_f$ to t_s do

Forward pass for backward hidden layer, storing activations at each time-step

for all t, in any order, do

Forward pass for output layer, using stored activations from both hidden layers

Backward Pass of BRNN

• All output layer δ terms are calculated first, then fed back to two hidden layers in opposite directions

for all *t*, in any order, **do**

Backward pass for output layer, storing δ terms at each timestep

for $t = t_f$ to t_s do

BPTT backward pass for forward hidden layer, using stored δ terms from output layer

for $t = t_s$ to t_f do

BPTT backward pass for backward hidden layer, using stored δ terms from output layer