DAFTAR ISI

DAFTAR ISI	i
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Tujuan Khusus Riset	2
1.3 Manfaat Riset	2
1.4 Urgensi Riset	2
1.5 Temuan yang Ditargetkan	2
1.6 Konstribusi Riset	2
1.7 Luaran Riset	3
BAB 2 TINJAUAN PUSTAKA	3
2.1 Biodetergen	3
2.2 Surfaktan	3
2.3 Daun Kembang Sepatu	4
2.4 Palmitoil Monoetanolamina (Palmitoyl-MEA)	4
2.5 Enzim Lipase	5
BAB 3 METODE RISET	5
3.1 Waktu dan Tempat Pelaksaan Riset	
3.2 Bahan dan Alat	5
3.3 Variabel Riset	5
3.4 Tahapan Riset	5
3.5 Prosedur Riset	6
3.6 Luaran dan Capaian Indikator	7
3.7 Analisis Data	7
3.8 Cara Penafsiran Data	8
3.9 Penyimpulan Hasil Riset	
BAB 4 BIAYA DAN JADWAL KEGIATAN	
4.1 Anggaran Biaya	8
4.2 Jadwal Kegiatan	8
DAFTAR PUSTAKA	9
LAMPIRAN	
Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping	
Lampiran 2. Justifikasi Anggaran	
Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	
Lampiran 4. Surat Pernyataan Ketua Pelaksana	23

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Detergen telah banyak dipakai oleh berbagai kalangan masyarakat untuk keperluan mencuci pakaian, barang-barang rumah tangga, dan bahan-bahan lainnya (Rachmawaty dkk., 2018). Konsumsi detergen dari tahun ke tahun sebanding dengan pertumbuhan jumlah penduduk. Penggunaan rata-rata detergen perkapitanya mencapai 8,22 kg pertahun (Hidayat, 2016). Data dari Badan Pusat Statistik mencatat di pertengahan 2021 jumlah penduduk di Indonesia sudah mencapai 272,2 juta jiwa yang artinya dapat diasumsikan bahwa penggunaan detergen di Indonesia bisa mencapai 2,4 juta ton di tahun 2021.

Detergen umumnya mengandung bahan aktif seperti surfaktan ABS (*Alkyl Benzene Sulfonate*) atau LAS (*Linear Alkylbenzene Sulfonate*) yang merupakan produk olahan dari minyak bumi yang dapat menimbulkan efek negatif terhadap lingkungan dan organisme karena sulit diurai oleh mikroorganisme dan mencemari lingkungan. Solusi dari permasalahan tersebut adalah dengan menggunakan surfaktan yang terbuat dari bahan-bahan alami. Contoh bahan alami yang dapat dijadikan sebagai alternatif surfaktan adalah senyawa saponin. Senyawa saponin dapat menghasilkan busa dan dapat digunakan sebagai alternatif surfaktan alami pada produk detergen (Maranggi dkk., 2020).

Saponin adalah senyawa penghasil busa alami yang dapat digunakan dalam industri detergen, sabun dan sampo. Salah satu tanaman yang mengandung saponin adalah daun kembang sepatu (*Hibiscus rosasinensis L.*) (Maranggi dkk., 2020). Daun kembang sepatu dapat dengan mudah ditemukan dan sering digunakan sebagai tanaman hias dan pagar hidup. Saponin yang terdapat pada daun kembang sepatu dapat digunakan sebagai alternatif pengganti surfaktan (Febriani dan Andiani, 2020).

Tetapi saponin memiliki kinerja yang kurang maksimal dibanding surfaktan komersial lainnya sehingga perlu ditambah surfaktan hijau. Surfaktan hijau adalah surfaktan yang disintesis dari sumber nabati seperti produk turunan oleokimia (Arora, 2021). Surfaktan hijau dianggap sebagai surfaktan industri generasi berikutnya, karena senyawa ini memenuhi sebagian besar persyaratan untuk proyek industri dan memiliki dampak lingkungan yang rendah. Salah satu contoh surfaktan hijau adalah palmitoil monoetanolamina (Palmitoyl-MEA) yang merupakan hasil reaksi dari asam palmitat dengan monoetanolamina (Farias dkk., 2021).

Enzim berperan penting dalam pembuatan biodetergen sebagai zat additif untuk meningkatkan kualitas biodetergen namun tetap ramah lingkungan. Salah satu enzim yang umum digunakan adalah enzim lipase. Enzim ini menghidrolisis lemak dan minyak membentuk gliserol dan asam lemak dengan bantuan air. Karena kemampuannya dalam menghidrolisis lemak, lipase umum digunakan sebagai bahan additif untuk industri *laundry* dan detergen rumah tangga. Penggunaan lipase sebagai detergen memiliki banyak keuntungan dari segi ekonomi dan lingkungan. Selain itu, penggunaan detergen berbahan dasar lipase juga dapat mengurangi

dampak pencemaran terhadap lingkungan karena mudah terurai secara alami di lingkungan, tidak beracun, dan tidak menghasilkan zat sisa yang berbahaya (Layly dan Wiguna, 2016).

Berdasarkan latar belakang masalah yang telah dipaparkan, riset ini dilakukan dengan tujuan untuk melakukan pembuatan biodetergen dengan mengkombinasikan saponin dari ekstrak daun kembang sepatu dengan palmitoil monoetanolamina (Palmitoyl-MEA), dengan penambahan enzim lipase dan mengetahui pengaruh kombinasi bahan-bahan tersebut terhadap kualitas biodetergen yang dihasilkan. Biodetergen yang dihasilkan dari riset ini diharapkan dapat menjadi alternatif dari permasalahan lingkungan yang ditimbulkan oleh detergen namun dengan kualitas yang mampu mendekati produk detergen yang beredar di pasaran.

1.2 Tujuan Khusus Riset

Tujuan khusus yang diharapkan adalah dapat menghasilkan dan mengkaji efektifitas dan kualitas dari biodetergen yang dihasilkan melalui kombinasi biosurfaktan dari ekstrak daun kembang sepatu (*Hibiscus rosa-sinensis L.*) dan surfaktan hijau palmitoyl-MEA dengan penambahan enzim lipase serta menganalisis limbah cemaran yang diperoleh.

1.3 Manfaat Riset

Hasil riset ini diharapkan akan memberikan manfaat dan sumbangan pemikiran dan ilmu pengetahuan bagi pemerintah, maupun masyarakat dalam upaya mengembangkan biodetergen berbasis kombinasi biosurfaktan dari bahan alami yaitu daun kembang sepatu (*Hibiscus rosa-sinensis L.*) dan surfaktan hijau yang lebih ramah lingkungan.

1.4 Urgensi Riset

Riset ini dilakukan atas dasar urgensi untuk mengatasi masalah pencemaran lingkungan yang dihasilkan dari detergen komersial dengan beralih ke produk biodetergen yang lebih ramah lingkungan dengan kualitas yang setara dengan detergen komersil memanfaatkan bahan alam seperti daun kembang sepatu (*Hibiscus rosa-sinensis L.*) dalam biosurfaktannya.

1.5 Temuan yang Ditargetkan

Melalui riset ini ditargetkan dapat dihasilkan biodetergen berbasis kombinasi biosurfaktan dari ekstrak daun bunga kembang sepatu (*Hibiscus rosasinensis L.*) dan palmitoyl-MEA yang memiliki kualitas yang baik dan lebih ramah lingkungan.

1.6 Kontribusi Riset

Hasil dari riset ini diharapkan dapat berkontribusi untuk bangsa Indonesia dalam menambah ilmu pengetahuan khususnya di bidang pembersih dan surfaktan ramah lingkungan yang membahas mengenai potensi biodetergen dari bahan alami berupa biosurfaktan daun bunga kembang sepatu (*Hibiscus rosa-sinensis L.*) dan palmitoyl-MEA sebagai salah satu solusi untuk mengatasi pencemaran lingkungan akibat detergen.

1.7 Luaran Riset

Luaran yang diharapkan dari pelaksanaan PKM-RE ini adalah laporan kemajuan dan laporan akhir tentang pembuatan biodetergen, produk dari program, serta memperoleh publikasi artikel ilmiah yang akan dipublikasi pada jurnal nasional terakeditasi sehingga dapat menjadi sumber referensi bagi masyarakat luas.

BAB 2. TINJAUAN PUSTAKA

2.1 Biodetergen

Detergen adalah produk pembersih yang banyak digunakan untuk membersihkan pakaian. Kualitas produk detergen di Indonesia diatur pada SNI 06-4075-1996 (Maranggi dkk., 2020).

Detergen dalam prosesnya mempunyai kemampuan untuk menghilangkan kotoran, baik yang bersifat dapat larut dalam air ataupun yang tidak dapat larut dalam air. Salah satu komponen penyusun detergen adalah surfaktan. Surfaktan adalah molekul amfoter yang memiliki gugus polar dan nonpolar yang dapat menurunkan tengangan permukaan sehingga memaksimalkan proses pencucian (Maranggi, 2019). Namun, penggunaan detergen selain membantu proses pencucian juga dapat mencemari lingkungan (Widayati dkk., 2018).

Biodetergen atau detergen alami adalah penghilang noda yang diproduksi dari bahan alami yang dapat terdegradasi mudah di lingkungan. Biodetergen merupakan pembersih yang terbuat dari bahan-bahan alami yang tidak berdampak buruk bagi organisme dan lingkungan, serta dapat menjadi alternatif pengganti detergen sintetik (Maranggi, 2019).

Beberapa biodetergen yang telah diteliti menggunakan bahan-bahan alami dapat diamati pada Tabel 2.1.

	Tuest 2:1 Bunun Bunun Bredeteigen jung terun Breent					
Jenis Bahan	Zat Digunakan	Keterangan	Sumber			
Getah Biduri	Saponin dan	Bahan baku sulit didapat	Setyana dkk.			
	Protoase	dan pembuatannya yang	(2015)			
		rumit namun memiliki				
		kualitas yang baik.				
Biji Alpukat	Saponin	Bahan baku terbatas dan	Damayanti dkk.			
		produk biodetergen	(2015)			
		memiliki warna yang				
		tidak sesuai.				
Daun Sengon	Saponin dan	Bahan baku sulit didapat	Widayati dkk.			
dan Getah	Protoase	namun memiliki kualitas	(2018)			
Pepaya		produk yang cukup baik.				

Tabel 2.1 Bahan-Bahan Biodetergen yang telah Diteliti

2.2 Surfaktan

Surfaktan anionik adalah surfaktan yang paling banyak digunakan dalam detergen karena murah dan mudah dibuat. Surfaktan anionik yang paling umum

digunakan adalah alkil benzena sulfonat (ABS) dan alkil benzena sulfonat linier (LAS). ABS dikenal sebagai deterjen karena tahan terhadap biodegradasi, sehingga dikenal sebagai polutan yang bersifat racun bagi biota perairan. Penggunaannya kemudian digantikan oleh LAS pada tahun 1965 (Apriyani, 2017).

Namun, LAS memiliki proses penguraian yang sangat kompleks sebelum dapat dibuang dan ketika dicampur dengan air bersih. Selain itu, jika surfaktan LAS masuk ke dalam air akan memengaruhi kehidupan biota air didalamnya (Rachmah, 2020).

Penggunaan bahan bersurfaktan di rumah tangga khususnya sebagai pembersih, selalu mengalami peningkatan dari tahun ke tahun. Data impor surfaktan di Indonesia pada tahun 2018 mencapai 17.575.932 kg/tahun, tahun 2019 mencapai 18.223.045 kg/tahun dan jumlah ini terus meningkat hingga tahun 2020 mencapai 21.180.762 kg/tahun (Qurrota'ayun dan Rachmawati, 2021). Indonesia sendiri memproduksi limbah detergen mencapai 380.000 ton/tahun ke dalam lingkungan. Fakta ini dapat membahayakan lingkungan perairan tempat tinggal dan mahluk hidup yang hidup di dalamnya (Wulansari dan Ardiansyah, 2013).

Seiring dengan meningkatnya kesadaran atas efek buruk pencemaran lingkungan dan pemeliharaan kesehatan, permintaan akan surfaktan *biodegradable* berbasis sumber nabati semakin diminati oleh masyarakat. Surfaktan yang diproduksi memiliki keunggulan antara lain dapat diperbaharui dan lebih ramah lingkungan dibandingkan dengan bahan baku petrokimia (Ginting dkk., 2017).

2.3 Daun Kembang Sepatu

Kembang sepatu (*Hibiscus rosa-sinensis L.*) adalah tanaman dalam keluarga Malvaceae, berasal dari Asia Timur. Kembang sepatu merupakan tanaman yang subur dan banyak ditemukan di Indonesia, tanaman ini sering dijadikan sebagai tanaman hias dan pagar hidup. Daunnya mengandung saponin dan polifenol (Febriani dan Andiani, 2020).

Pada penelitian oleh Maranggi (2020), saponin pada daun bunga kembang sepatu mencapai 5,89%. Saponin adalah senyawa penghasil busa alami yang dapat digunakan dalam industri detergen, sabun dan sampo. Penelitian sebelumnya menyatakan bahwa detergen cair dengan tambahan ekstrak daun kembang sepatu mempunyai daya pembusaan yang stabil dan dapat mengurangi penggunaan surfaktan yang berbahaya bagi lingkungan (Febriani dan Andiani, 2020).

2.4 Palmitoil Monoetanolamina (*Palmitoyl-MEA*)

Palmitoyl-MEA merupakan hasil reaksi dari asam palmitat dengan monoetanolamina (Farias dkk., 2021). Palmitoyl-MEA dapat bekerja sebagai surfaktan dan berpotensi digunakan sebagai bahan baku untuk detergen ditandai dengan adanya gugus surfaktan pada uji hasil FTIR (*Fourier Transform Infrared*), nilai tegangan permukaan sebesar 32,61 dyne/cm, dan nilai HLB (*Hydrophilic-Lipophilic Balance*) sebesar 12,857 yang didapatkan dari pengujian (Masyithah dkk., 2018).

2.5 Enzim Lipase

Lipase adalah enzim dengan aplikasi di berbagai industri dan produk rumah tangga, termasuk detergen, tekstil, kosmetik, makanan, biodiesel, farmasi, dan industri agrokimia. Kemampuan lipase untuk menghidrolisis lemak dan minyak membuat lipase menjadi alternatif andalan untuk digunakan sebagai zat aditif detergen. Penambahan lipase ke detergen dapat membuat detergen menjadi ramah lingkungan karena terurai secara hayati tetapi tetap dapat menghilangkan endapan lemak pada suhu rendah selama pencucian dengan mudah. Penggunaan lipase sebagai detergen dapat berkerja dengan baik dan stabil pada suhu rendah dan lingkungan dengan kondisi basa (Wahyuni, 2016).

BAB 3. METODE RISET

3.1 Waktu dan Tempat Pelaksanaan Riset

Riset ini akan dilaksanakan selama 4 bulan di Laboratorium Kimia Fisika Departemen Teknik Kimia dan Laboratorium Kimia Organik Departemen Kimia FMIPA, Universitas Sumatera Utara, Medan.

3.2 Bahan dan Alat

Bahan yang akan digunakan pada kegiatan riset ini adalah daun kembang sepatu, etanol 96%, HCl 37%, asam palmitat, monoetanolamina (MEA), heksana, isopropil alkohol, katalis kalsium oksida, indikator metil merah, parfum detergen, akuades, dan Na₂SO₄. Sedangkan alat yang akan digunakan pada riset ini adalah *beaker glass*, erlenmeyer, corong, piknometer, gelas ukur, corong pisah, batang pengaduk, termometer, kertas saring, neraca analitik, *hotplate* dan *magnetic stirrer*, ph meter, *chopper*, dan *rotary evaporator*.

3.3 Variabel Riset

Variabel independen dalam riset ini berupa kosentrasi dari biosurfaktan dimana komposisi antara biosurfaktan dan akuades pada larutan A memiliki perbandingan variasi yaitu, 35%:30%; 40%:25%; dan 45%:20%. Variabel dependen dalam riset ini berupa uji organoleptik, pH, densitas, dan daya detergensi dari produk biodetergen serta karakteristik limbah cemaran yang dihasilkan berupa pH, COD (*Chemical Oxygen Demand*), BOD (*Biological Oxygen Demand*), dan TSS (*Total Suspended Solid*).

3.4 Tahapan Riset

Gambar 3.1 Tahapan Riset Pembuatan Biodetergen

3.5 Prosedur Riset

3.5.1 Pembuatan Palmitoyl-MEA

Sebanyak 25gram asam palmitat dimasukkan ke dalam *beaker glass* yang pertama. Kemudian pada *beaker glass* kedua, dimasukkan monoetanolamina sebanyak 100 gram. Lalu, ditambahkan pelarut campuran isopropil alkohol:heksana (1:1) (b/b) sebanyak 375 gram ke *beaker glass* yang kedua. Katalis kalsium oksida (CaO) sebanyak 1,25gram dimasukkan ke dalam *beaker glass* kedua. Campuran *beaker glass* kedua lalu dicampurkan ke *beaker glass* pertama. Campuran ini dipanaskan pada tangki berpengaduk pada suhu 55 °C dan direaksikan selama 3 jam dengan kecepatan pengadukan sebesar 250 rpm.

Campuran direaksikan dengan asam palmitat 10% sebanyak 5 mL untuk mengendapkan katalis. Endapan yang diperoleh disaring dan pelarutnya diuapkan pada suhu 90 °C. Campuran dicuci dengan aseton sebanyak 2 kali volume campuran. Endapan dipisahkan dengan filtrasi dan dipisahkan menggunakan corong pisah. Lapisan atas merupakan produk dan diuapkan untuk menghilangkan pelarut aseton pada produk.

3.5.2 Pembuatan Biosurfaktan dari Ekstrak Daun Kembang Sepatu

Daun bunga kembang sepatu dihaluskan dengan menggunakan *chopper*. Lalu dilakukan ekstraksi dengan perbandingan daun kembang sepatu dan etanol 96% sebesar 1:9 (b/b). Kemudian larutan disaring dan dikentalkan dengan *rotary evaporator* pada suhu 40 °C. Ekstrak lalu didiamkan secara tertutup pada suhu ruang selama 24 jam hingga terdapat endapan. Lalu, dilakukan proses penyaringan untuk diperoleh maserat kental. Maserat kental lalu diencerkan dengan penambahan akuades sebanyak volume tertentu. Sebanyak 50 mL ekstrak yang sudah diencerkan ditambahkan 3 tetes indikator metil merah dan dilakukan titrasi dengan HCl dengan konsentrasi 1% hingga berubah warna.

3.5.3 Pembuatan Biodetergen

Pembuatan biodetergen dimulai dari pembuatan larutan A dengan cara homogenisasi biosurfaktan dengan akuades dengan variabel perbandingan konsentrasi (35%:30%; 40%:25%; dan 45%:20%) dari volume biodetergen. Larutan B dibuat dari campuran palmitoyl-MEA sebanyak 20%, Na₂SO₄ sebanyak 8%, dan enzim lipase sebanyak 5% dari volume biodetergen. Selanjutnya campuran A dan B dilarutkan dan ditambahkan zat aditif yaitu parfum sebanyak 1%. Selanjutnya campuran dipanaskan dan diaduk pada suhu 50 °C dan kecepatan pengadukan 250 rpm selama 1 jam lalu didiamkan selama 12 jam di suhu ruang.

3.5.4 Uji Daya Detergensi

Pengujian daya detergensi diuji dengan melarutkan sampel sebanyak 1 mL ke dalam 99 mL air. Nilai kekeruhan larutan detergen 1% ini ditulis sebagai T_o . Selanjutnya, kain putih berbentuk persegi berukuran 20 cm² direndam di dalam larutan pencucian selama 30 menit. Setelah dilakukan perendaman dengan kain bersih, diukur nilai kekeruhannya dan ditulis sebagai T_1 . Nilai T_1 ini lalu dikurangi dengan T_0 untuk memperoleh nilai OD (*Original Dirt*). Selanjutnya, kain putih

yang sama diberi zat pengotor berupa kecap manis dengan konsentrasi 10% dan direndam selama 30 menit. Lalu ditiriskan ke dalam larutan pencucian selama 30 menit. Nilai kekeruhan setelah proses ini dituliskan sebagai nilai T_2 . Selanjutnya, daya detergensi dapat dihitung dengan mengurangi nilai T_2 dengan T_1 dan OD.

3.6 Luaran dan Capaian Indikator

Tabel 3.1. Luaran dan Capaian Indikator Riset

No.	Kegiatan	Luaran	Indikator
1.	Studi literatur	Jurnal riset	Didapatkan jurnal riset yang
			benar dan sesuai
2.	Izin riset	Surat izin riset	Didapatkan surat izin riset di
			Laboratorium Kimia Fisika
			FT USU dan Laboratorium
			Kimia Organik FMIPA USU
3.	Penyiapan alat	Alat dan bahan	Didapatkan alat dan bahan
	dan bahan		yang dibutuhkan
4.	Pengambilan	Data hasil pengujian	Didapatkan data hasil uji
	data	produk biodetergen.	organoleptis, pH, densitas,
		Didapatkan juga data	dan daya detergensi.
		hasil cemaran	Untuk cemaran yang
		lingkungan yang	dihasilkan didapatkan data
		dihasilkan.	uji pH, BOD, COD, dan TSS
			dari limbah yang dianalisis.
5.	Pembuatan	Laporan kemajuan	Laporan kemajuan
	Laporan		didapatkan
	Kemajuan		
6.	Pengolahan data	Analisis data	Didapatkan data yang sesuai
7.	Pembuatan	Laporan akhir	Laporan akhir dididapatkan
	laporan akhir		
8.	Hak Kekayaan	Hak paten	Didapatkan hak paten secara
	Intelektual		elektronik
	(HKI)		
9.	Pembuatan	Artikel ilmiah mengenai	Artikel ilmiah dimuat pada
	artikel ilmiah	hasil riset	jurnal.

3.7 Analisis Data

Biodetergen yang dihasilkan selanjutnya dilakukan uji organoleptik, pH, densitas, dan daya detergensinya melalui pengukuran nilai kekeruhan rendaman yang dianalisis. Uji organoleptik bertujuan untuk mengetahui bentuk fisika kimia, berupa bentuk, warna, dan bau dari biodetergen. Analisis pH dan densitas mengetahui karakteristik biodetergen. Analisis daya detergensi juga dilakukan untuk mengetahui kemampuan biodetergen dalam menghilangkan kotoran dalam kain. Selanjutnya dilakukan analisis limbah cemaran bekas biodetergen meliputi

pH, kadar BOD, COD, dan TSS untuk mengetahui apakah limbah cemaran yang dihasilkan aman untuk lingkungan.

3.8 Cara Penafsiran Data

Penafsiran data yang diperoleh dilakukan dengan membandingkan data pengujian yang diperoleh. Pengujian biodetergen akan dibandingkan dengan standar SNI 06-4075-1996 tentang Syarat Mutu Kualitas Detergen Cair. Hasil cemaran biodetergen akan dibandingkan dengan standar dari Peraturan Menteri Lingkungan Hidup Dan Kehutanan Republik Indonesia Nomor P.68/Menlhk/Setjen/Kum.1/8/2016 Tentang Baku Mutu Air Limbah Domestik.

3.9 Penyimpulan Hasil Riset

Kesimpulan dari hasil riset "Pembuatan Biodetergen pada Kombinasi Surfaktan Palmitoyl-MEA dan Saponin dari Ekstrak Daun Kembang Sepatu (*Hibiscus rosa-sinensis L.*) dengan Penambahan Enzim Lipase" diambil berdasarkan data-data dari hasil pengujian dan analisa. Penarikan kesimpulan diambil dari data penafsiran dan perbandingan hasil pengujian.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 4.1. Rekapitulasi Rencana Anggaran Biaya

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana
			(Rp.)
1	Dahan hahis nakai dan alat	Belmawa	4.300.000
1	Bahan habis pakai dan alat	Perguruan Tinggi	500.000
2	Sewa dan Jasa	Belmawa	700.000
2	Sewa dan Jasa	Perguruan Tinggi	500.000
3	Transportasi local	Belmawa	800.000
3		Perguruan Tinggi	-
4	Lain-lain	Belmawa	1.200.000
4		Perguruan Tinggi	-
	Jumlah		8.000.000
		7.000.000	
	Rekap Sumber Dana	Perguruan Tinggi	1.000.000
		Jumlah	8.000.000

4.2 Jadwal Kegiatan

Tabel 4.2. Jadwal Kegiatan

No.	Jenis Kegiatan		Bulan			PenanggungJawab
1,0,		1 2 3 4 Tenanggungsav		1 changgangou was		
1.	Penyiapan Alat dan Bahan					Muhammad Rafli
						Derriansyah

2.	Pembuatan Palmitoyl-			Farhan Abraar
	MEA			
3.	Pembuatan Biosurfaktan			Cut Fadira Soraya
	dari Ekstrak Daun Bunga			
	Kembang Sepatu.			
4.	Pembuatan Produk			Roza Dhya Fauziah
	Biodetergen			
5.	Pengujian Produk			Muhammad
	Biodetergen			Ibadurrahman
6.	Pengujian Cemaran			Muhammad Rafli
	Produk Biodetergen			Derriansyah
7.	Analisis Data			Farhan Abraar
8.	Penulisan Laporan			Cut Fadira Soraya
	Kemajuan			
9.	Penulisan Laporan Akhir			Roza Dhya Fauziah
10.	Pembuatan Artikel Ilmiah			Muhammad
				Ibadurrahman

DAFTAR PUSTAKA

- Apriyani, N. 2017. Penurunan Kadar Surfaktan Dan Sulfat Dalam Limbah Laundry. *Media Ilmiah Teknik Lingkungan (MITL)*, 2(1), pp.37-44.
- Arora, Pinklesh. 2021. Green Surfactants: Technological Innovations and Path Forward. *Research Journal of Chemistry and Environment*. 25. 238.
- Badan Pusat Statistik. 2021. Jumlah Penduduk Pertengahan Tahun (Ribuan Jiwa) 1960-2021. Jakarta: BPS.
- Damayanti, H.M., Praditia, N.A., Murti, R.W., Ahmad, M. dan Widyaningrum, N. 2017. Ekstrak Biji Alpukat Sebagai Pembusa Deterjen: "Pemanfaatan Potensi Bahan Alam Dan Menekan Biaya Produksi". *Jurnal Ilmu Farmasi dan Farmasi Klinik*, pp.92-98.
- Farias, C.B.B., Almeida, F.C., Silva, I.A., Souza, T.C., Meira, H.M., Rita de Cássia, F., Luna, J.M., Santos, V.A., Converti, A., Banat, I.M. dan Sarubbo, L.A. 2021. Production of Green Surfactants: Market prospects. *Electronic Journal of Biotechnology*, 51, pp.28-39.
- Febriani, A., dan Andiani, D. 2020. Formulasi Detergen Cair yang Mengandung Ekstrak Daun Kembang Sepatu (Hibiscus rosa-sinensis L.). *Sainstech Farma* 13 (2): 107-112.
- Ginting, H.A., Masyithah, Z., Herawan, T. dan Silaen, D.S. 2017. Optimasi Sintesis Biosurfaktan Karbohidrat Ester Dari Asam Palmitat Dan Fruktosa Menggunakan Enzim Lipase Terimobilisasi. *Jurnal Teknik Kimia USU*, 6(2), pp.48-54.

- Hidayat, Y. M. 2016. Model Kematian Biota Air Sebagai Fungsi Waktu Kontak Pada Air Limbah Deterjen dan Gagasan Sederhana Pengendaliannya. *Jurnal Sumber Daya Air* Vol. 11 No. 2: 131-146.
- Layly, I., dan Wiguna, N. 2016. Studi Potensi Lipase Alcaligenes Faecalis Untuk Aplikasi Biodetergen. *Jurnal Bioteknologi dan Biosains Indonesia* 3 (2): 66-71.
- Maranggi, I.U. 2019. Sintesis Biosurfaktan Ditinjau Dari Keragaman Konsentrasi Ekstrak (Daun Sengon Dan Kulit Pepaya). *Skripsi*. Politeknik Negeri Sriwijaya, Palembang
- Maranggi, I., Rahmasari, B., dan Meidinariasty. 2020. Aplikasi Biosurfaktan Dari Daun Sengon (Albizia Falcataria) Dan Kulit Buah Pepaya (Carica Papaya L.) Sebagai Detergen Ramah Lingkungan. *Prosiding Seminar Mahasiswa Teknik Kimia* 1 (1): 11-19.
- Masyithah, Z., Ashari, M., dan Ginting, A. 2018. Synthesis Of Palmitoyl-Ethanolamide from Palmitic Acid and Monoethanolamine: Analysis of Variance And Surfactant Characteristics. *ARPN Journal of Engineering and Applied Sciences* 13 (24): 9352-9358.
- Qurrota'ayun, F.L. dan Rachmawati, U.S. 2021. Pra Rancangan Pabrik Metil Ester Sulfonat (MES) Berbahan Baku Fatty Acid Methyl Ester (FAME) dengan Kapasitas 35.000 Ton/tahun. *Skripsi*. Institut Teknologi Kalimantan, Balikpapan.
- Rachmah, Y.N. 2020. Uji Toksisitas Akut Linear Alkylbenzene Sulfonate (Las) Dan Timbal (Pb) Terhadap Ikan Mas (Cyprinus Carpio L). *Skripsi*. Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Ampel, Surabaya.
- Rachmawaty, P., Novita, D., dan Prastika, R. 2018. Biodegradable Detergen Dari Saponin Daun Waru Dan Ekstraksi Bunga Tanjung. *Indonesian Chemistry and Application Journal* 2 (2): 1-4.
- Setyana, D. 2015. BIO-NANO SURF: Aplikasi Deterjen Berbasis Nanoteknologi dari Ekstrak Getah Biduri (Calotropis gigantea) Sebagai Alternatif Deterjen Ramah Lingkungan. *Skripsi*. Fakultas Teknologi Pertanian Universitas Brawijaya, Malang.
- Wahyuni, G. 2016. Pemurnian Dan Karakterisasi Lipase Dari Yeast M2 Sebagai Biodetergen. *Tesis*. Institut Pertanian Bogor, Bogor.
- Widayati, T. W., Yudisai, H., dan Devara, I. 2018. Sintesis Bio-nanosurfaktan sebagai Detergen Ramah Lingkungan dari Kombinasi Ekstrak Getah Pepaya (Carica papaya L) dan Daun Sengon (Paraserianthes falcataria L. Nielsen). Prosiding Seminar Nasional Teknik Kimia "Kejuangan" Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia 2. 12 April 2018, Yogyakarta, Indonesia. Pp.1-6.
- Wulansari, F.D. dan Ardiansyah, A., 2013. Pengaruh Detergen Terhadap Mortalitas Benih Ikan Patin Sebagai Bahan Pembelajaran Kimia Lingkungan. *Edu Sains: Jurnal Pendidikan Sains dan Matematika*, 1(2).wula

LAMPIRAN

Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping

Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Roza Dhya Fauziah
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Kimia
4	NIM	190405032
5	Tempat dan Tanggal Lahir	Medan, 30 Januari 2002
6	Alamat E-mail	rozadhyaf@gmail.com
7	Nomor Telepon/HP	081275823469

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Gantari Engineering Research Club	Wakil Ketua Divisi Informasi dan Komunikasi	2021 USU
2	Covalen Study Group	Ketua Divisi Pengembangan Literatur dan Akademik	2021 USU
3	Waterynation	Staff Bidang Riset	2020 Medan

C. Penghargaan yang Pernah Diterima

No Jenis Penghargaan		rgaan Pihak Pemberi Penghargaan	
1	_	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 11-3-2022

Ketua

(Roza Dhya Fauziah)

A. Identitas Diri

1	Nama Lengkap	Farhan Abraar
2	Jenis Kelamin	Laki-Laki
3	Program Studi	Teknik Kimia
4	NIM	190405038
5	Tempat dan Tanggal Lahir	Medan, 02 Oktober 2001
6	Alamat E-mail	farhanabraar01@gmail.com
7	Nomor Telepon/HP	082272323527

B. Kegiatan Kemahasiswaan yang Sedang/Pemah Diikuti

No	Jenis Kegiatan	Status dalam Kegiata	n Waktu dan Tempat
1	Pemuda Pelajar Merdeka	Wakil Divi Publikasi da Dokumentasi	si 2021 Medan un
2	Covalen Study Group	Anggota Divi Pengembangan	si 2021 USU
		Literatur da Akademik	in .
3	Arunika Simetrikal	Anggota	2020 USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1		-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 11-3-2022 Anggota Tim

(Farhan Abraar)

A. Identitas Diri

1	Nama Lengkap	Muhammad Rafli Derriansyah
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Kimia
4	NIM	190405100
5	Tempat dan Tanggal Lahir	Medan, 14 April 2001
6	Alamat E-mail	mhdrafliderriansyah@gmail.com
7	Nomor Telepon/HP	082164903580

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Society of Renewable	Asisten Penelitian	2022 Medan
	Energy Indonesia	Kuantiatif	
2	Gantari Engineering	Ketua Umum	2021 USU
	Research Club		
3	Badan Koordinasi	Staff Bidang Riset dan	2021 USU
	Kegiatan Mahasiswa	Teknologi	
	Teknik Kimia Daerah 7		
4.	Himpunan Mahasiswa	Wakil Kepala Bidang	2021 USU
	Teknik Kimia Fakultas	Penelitian dan	
	Teknik USU	Pengembangan	

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 Lomba Karya Tulis	PPI Tokodai Tokyo Institute	2021
	Ilmiah Mahasiswa Tokyo	of Technology	
	Innovation and		
	Commitment Award		
2.	Juara 3 Lomba Karya Tulis	Universitas Syiah Kuala	2021
	Ilmiah Nasional Chemical		
	Engineering in Action		
	(CHAIN) VII		
3.	Mahasiswa Berprestasi I	Universitas Sumatera Utara	2021
	Fakultas Teknik		
	Universitas Sumatera Utara		
4.	Mahasiswa Berprestasi	Universitas Sumatera Utara	2021
	Sarjana Utama Harapan II		
	Universitas Sumatera Utara		
5.	Penerima Pendanaan	Kementrian Pendidikan,	2021
	Proposal Program	Kebudayaan, Riset dan	
		Teknologi	

	Kreativitas Mahasiswa Bidang Karsa Cipta	Teknologi	
6.	Gold Medalist in Life Science Category World Youth Invention and Innovation Award (WYIIA) 2021	Universitas Negeri Yogyakarta	2021
7.	Silver Medalist in Life Science Category of World Youth Invention and Innovation Award (WYIIA) 2021	Universitas Negeri Yogyakarta	2021
8.	Medali Perunggu Pekan Ilmiah Mahasiswa Nasional Bidang PKM- Kewirausahaan Ke-33 Universitas Gadjah Mada	Kementrian Pendidikan, Kebudayaan, Riset dan Teknologi	2020
9.	Penerima Pendanaan Proposal Program Kreativitas Mahasiswa Bidang Kewirausahaan	Kementrian Pendidikan, Kebudayaan, Riset dan Teknologi	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 11-3-2022

Anggota Tim

(Muhammad RaflI Derriansyah)

A. Identitas Diri

1	Nama Lengkap	Cut Fadira Soraya	
2	Jenis Kelamin	Perempuan	
3	Program Studi	Teknik Kimia	
4	NIM	200405058	
5	Tempat dan Tanggal Lahir	Medan, 02 Juni 2002	
6	Alamat E-mail	cutfsorayaa@gmail.com	
7	Nomor Telepon/HP	081395646332	

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	CV. Artsari	Staff Produksi	2021 USU
	Himpunan Mahasiswa Teknik Kimia Bidang Pengabdian Masyarakat	•••	2022 USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 11-3-2022 Anggota Tim

(Cut Fadira Soraya)

A. Identitas Diri

1	Nama Lengkap	Muhammad Ibadurrahman
2	Jenis Kelamin	Laki-Laki
3	Program Studi	Kimia
4	NIM	200802085
5	Tempat dan Tanggal Lahir	Medan, 20 Agustus 2002
6	E-mail	m.ibadurrahmaan@gmail.com
7	Nomot Telepon/HP	0895 2405 7688

B. Kegiatan yang sedang/pernah diikuti

No	Jenis Kegiatan	Status dalam kegiatan	Waktu dan Tempat
1	Forum Komunitas Peneliti Muda Medan (FKPM Medan)		2022 Medan
2.	Beasiswa Pembinaan Rumah Cendikiawan Melayu Indonesia	Penerima Beasiswa	2021 Medan

C. Penghargaan yang pernah diraih

No.	Jenis Penghargaan	Pihak Pemberi	Tahun
1	Juara 1 Lomba Esai Regional Medan	FKPM Medan	2021
2	Juara 3 Lomba Esai Nasional	HIMKI Universitas Jambi	2021
3	Juara 3 Percobaan Kimia Sederhana	UIN Raden Fatah Palembang	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 11-3-2022 Anggota Tim

(Muhammad Ibadurrahman)

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Ir. Erni Misran, S.T., M.T., Ph.D
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Kimia
4	NIP/NIDN	197309132000032001 / 0013097301
5	Tempat dan Tanggal Lahir	Medan, 13 September 1973
6	Alamat E-mail	erni_misran@yahoo.com;
		erni2@usu.ac.id
7	Nomor Telepon/HP	0813-7097-7471

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (S1)	Teknik	USU	1997
1		Kimia		
2	Magister (S2)	Teknik	ITB	2001
		Kimia		
3	Doktor (S3)	Teknik	Universiti	2014
		Kimia	Kebangsaan	
			Malaysia	
4	Profesi	Teknik	USU	2019
	Insinyur	Kimia		

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No.	Nama Mata Kuliah	Wajib/Pilihan	sks
Semes	ster Ganjil		
1.	Azas Teknik Kimia 1	Wajib	2
2.	Proses Pemisahan 1: Distilasi, Absorpsi,	Wajib	3
	Humidifikasi		
3.	Teknik Kesehatan dan Keselamatan Kerja	Wajib	2
4.	Energi Berkelanjutan (S3)	Pilihan	3
Semes	ster Genap		
1.	Azas Teknik Kimia 2	Wajib	3
2.	Komputasi Proses	Wajib	3
3.	Proses Pemisahan 2: Ekstraksi, Leaching,	Wajib	3
	Adsorpsi, Membran		
4.	Elektrokimia	Pilihan	2
5.	Perancangan Proses Lanjut (S2)	Wajib	3
6.	Bioenergi (S2)	Pilihan	3

Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun
1.	Pemanfaatan Karbon Aktif Dari Limbah	Penelitian	
	Biomassa Dalam Pembuatan Membran	Fundamental	2016
	Hibrida Nafion/Karbon Aktif Untuk Proton	rungamentai	

3. II 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Exchange Membran Fuel Cell (PEMFC) – Ketua Pra Studi Potensi Sampah TPA Terjun untuk Dikonversi Menjadi Listrik – Anggota Hidrolisis Tandan Kosong Kelapa Sawit dengan Iradiasi Microwave - Anggota Sterilisasi Buah Kelapa Sawit Menggunakan Iradiasi Microwave Secara Sinambung untuk Pembuatan Crude Palm Oil - Anggota Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi Methylene Blue: Isoterm, Kinetika, Termodinamika,	Dinas Kebersihan Kota Medan BPPTN 2016 Penelitian Produk Terapan Dana DRPM	2016 2016 2017
2. II	Pra Studi Potensi Sampah TPA Terjun untuk Dikonversi Menjadi Listrik – Anggota Hidrolisis Tandan Kosong Kelapa Sawit dengan Iradiasi <i>Microwave</i> - Anggota Sterilisasi Buah Kelapa Sawit Menggunakan Iradiasi <i>Microwave</i> Secara Sinambung untuk Pembuatan <i>Crude Palm Oil</i> - Anggota Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi <i>Methylene</i> Blue: Isoterm, Kinetika, Termodinamika,	Kota Medan BPPTN 2016 Penelitian Produk Terapan Dana	2016
3. II 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Anggota Hidrolisis Tandan Kosong Kelapa Sawit dengan Iradiasi <i>Microwave</i> - Anggota Sterilisasi Buah Kelapa Sawit Menggunakan Iradiasi <i>Microwave</i> Secara Sinambung untuk Pembuatan <i>Crude Palm</i> Oil - Anggota Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi <i>Methylene</i> Blue: Isoterm, Kinetika, Termodinamika,	Kota Medan BPPTN 2016 Penelitian Produk Terapan Dana	2016
3. II 4. S 5. II	Anggota Hidrolisis Tandan Kosong Kelapa Sawit dengan Iradiasi <i>Microwave</i> - Anggota Sterilisasi Buah Kelapa Sawit Menggunakan Iradiasi <i>Microwave</i> Secara Sinambung untuk Pembuatan <i>Crude Palm</i> Oil - Anggota Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi <i>Methylene</i> Blue: Isoterm, Kinetika, Termodinamika,	BPPTN 2016 Penelitian Produk Terapan Dana	2016
3. I c c c c c c c c c c c c c c c c c c	Hidrolisis Tandan Kosong Kelapa Sawit dengan Iradiasi <i>Microwave</i> - Anggota Sterilisasi Buah Kelapa Sawit Menggunakan Iradiasi <i>Microwave</i> Secara Sinambung untuk Pembuatan <i>Crude Palm</i> Oil - Anggota Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi <i>Methylene</i> Blue: Isoterm, Kinetika, Termodinamika,	Penelitian Produk Terapan Dana	
4. S	dengan Iradiasi <i>Microwave</i> - Anggota Sterilisasi Buah Kelapa Sawit Menggunakan Iradiasi <i>Microwave</i> Secara Sinambung untuk Pembuatan <i>Crude Palm</i> Oil - Anggota Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi <i>Methylene</i> Blue: Isoterm, Kinetika, Termodinamika,	Penelitian Produk Terapan Dana	
4. S S S S S S S S S S S S S S S S S S S	Sterilisasi Buah Kelapa Sawit Menggunakan Iradiasi <i>Microwave</i> Secara Sinambung untuk Pembuatan <i>Crude Palm</i> Oil - Anggota Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi <i>Methylene</i> Blue: Isoterm, Kinetika, Termodinamika,	Terapan Dana	2017
5. I	Menggunakan Iradiasi <i>Microwave</i> Secara Sinambung untuk Pembuatan <i>Crude Palm Oil</i> - Anggota Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi <i>Methylene Blue</i> : Isoterm, Kinetika, Termodinamika,	Terapan Dana	2017
5. I	Sinambung untuk Pembuatan Crude Palm Oil - Anggota Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi Methylene Blue: Isoterm, Kinetika, Termodinamika,		2017
5. I	Oil - Anggota Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi Methylene Blue: Isoterm, Kinetika, Termodinamika,	DRPM	
5. I	Pemanfaatan Karbon Aktif dari Batang Pisang dalam Proses Adsorpsi <i>Methylene</i> Blue: Isoterm, Kinetika, Termodinamika,		
I	Pisang dalam Proses Adsorpsi <i>Methylene Blue</i> : Isoterm, Kinetika, Termodinamika,		
	Blue: Isoterm, Kinetika, Termodinamika,		
		Non-PNBP USU	2017
	zerninganan Massa dan Kedenerasi -		2017
	Perpindahan Massa, dan Regenerasi - Ketua		
	Pembuatan Biogas dari Sampah Organik		
	Perkotaan Menggunakan Sistem	Non-PNBP USU	2017
	Bioreaktor Anaerobik Berpenyekat	TON TIVEL COC	2017
	Pemanfaatan Limbah Fly Ash Sebagai		
	Adsorben Untuk Penyisihan CO ₂ dari	Non-PNBP USU	2018
	Biogas – Ketua	Tron TryBr ese	2010
	embuatan Membran untuk <i>Proton</i>		
-	xchange Membrane Fuel Cell (PEMFC)		
	engan Memanfaatkan Limbah Biomassa	Penelitian Dasar	2018
	ebagai Sumber Karbon Aktif dan Limbah	DRPM	2010
	lastik Polietilen - Ketua		
	Ekstraksi Pektin dari Kulit Buah Kakao	USU - Penelitian	
	Melalui Iradiasi Gelombang Mikro –	Terapan	2018
	Anggota	1	
	Produksi Ultrafiltrasi Membran Serat		
	Nanoselulosa dari Tandan Kosong	Penelitian Dasar	• • • •
1	Sawit/Polivinil Alkohol (PVA) dengan	DRPM	2019
	Metode Elektrospinning - Tahun 1 - Ketua		
	Pemanfaatan Biji Durian sebagai Perekat		
	pada Pembuatan Briket Bio-Arang dari)	2010
1 1 -	Pelepah Kelapa Sawit untuk Menghasilkan	Non-PNBP USU	2019
	Energi Terbarukan - Anggota		
	Produksi Ultrafiltrasi Membran Serat	Penelitian Dasar	
	Nanoselulosa dari Tandan Kosong	DRPM	2020

	Sawit/Polivinil Alkohol (PVA) dengan		
	Metode Elektrospinning - Tahun 2 - Ketua		
13.	Pengaruh Variabel Ekstraksi	USU - Penelitan	
	Menggunakan Gelombang Mikro	Tesis Magister	
	Terhadap Proses Regenerasi Spent		2020
	Bleaching Earth Pada Proses Pemucatan		
	Minyak Kelapa Sawit – Anggota		
14.	Pembuatan minyak atsiri dengan metode	USU - Penelitian	2020
	microwave hydro-distillation - Anggota	Terapan	2020
15.	Perbandingan Karakteristik Asap Cair Dari	USU - Penelitian	
	Pirolisis Pelepah Kelapa Sawit Melalui	Terapan	2020
	Proses Adsorpsi - Distilasi Dan Distilasi –		2020
	Adsorpsi - Anggota		
16.	Produksi Ultrafiltrasi Membran Serat		
	Nanoselulosa dari Tandan Kosong	Penelitian Dasar	2021
	Sawit/Polivinil Alkohol (PVA) dengan	DRPM	2021
	Metode Elektrospinning - Tahun 3 - Ketua		
17.	Aplikasi Karbon Aktif Batang Pisang	Penelitian Dasar	
	Sebagai <i>Counter Electrode</i> dan Ekstrak	Unggulan PT -	
	Antosianin Ketan Hitam Sebagai Zat	DRPM	2021
	Warna pada Pembuatan Dye Sensitized		
	Solar Cell (DSSC) – Ketua		
18.	Penggunaan Ultrasonik untuk Intensifikasi	WCU USU	
	Proses Adsorpsi Methylene Blue		2021
	Menggunakan Low Cost Nano-Biosorbent		4041
	Berbasis Kalsium Karbonat - Ketua		

Pengabdian kepada Masyarakat

No.	Judul Pengabdian	Penyandang Dana	Tahun	
1.	IbM Kelompok Petani Karet di Kab.	BOPTN USU	2015	
1.	Labuhan Batu Utara	DOI IN USU	2013	
	Sosialisasi Bahaya Bahan Kimia Pada			
2.	Peralatan Memasak Untuk Anggota	Mandiri	2016	
	Perispindo I BICT			
	Pemanfaatan Asap Cair Hasil Pirolisis			
	Limbah Pelepah Kelapa Sawit untuk			
3.	Peningkatan Kualitas Bahan Olah Karet	BOPTN USU	2016	
	(Bokar) Kelompok Petani Karet Di Desa			
	Sekoci, Kabupaten Langkat			
4.	Proses Pengolahan Tanaman Obat (Herba)	Mandiri	2017	
7.	untuk Terapi Kesehatan Alternatif	IVIAIIUII I	2017	

5.	Pengaruh Zat Kimia dan Parasit dalam Makanan terhadap Kesehatan dan Cara Identifikasinya	Mandiri	2017
6.	Pengoperasian Bioreaktor Berpengaduk Ribbon untuk Pembuatan Pupuk Organik	BOPTN USU	2017
7.	Sosialisasi Penyakit Menular untuk Anggota Aisyiyah Cabang Medan Johor	Mandiri	2018
8.	Sosialisasi tentang Gaya Hidup Sehat untuk Badan Pengurus Pusat Perispindo I	Mandiri	2018
9.	Aplikasi Teknologi Pencampuran dan Pengemasan untuk Pengembangan Usaha Rumah Tangga Pembuatan Sabun Mandi Cair	BOPTN USU	2019
10.	Peningkatan Mutu dan Efisiensi Produksi serta Pengembangan Usaha Pengolahan Bawang Hitam pada UMKM Gempar Tunggal (Anggota)	Non PNBP USU - Program Pengembangan Produk Unggulan Daerah (PPPUD)	2020
11.	Pemberdayaan Ibu Rumah Tangga di Lingkungan LKP Girly Mode melalui Keterampilan Tenun Ikat Shibori serta Peningkatan Pengetahuan Terkait Zat Warna dan Buangannya (Ketua)	Non PNBP USU - Kemitraan Mono Tahun Reguler	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 16-3-2022 Dosen Pendamping

(Erni Misran)

Lampiran 2. Justifikasi Anggaran Kegiatan

No	Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Total (Rp)
1.	Belanja Bahan		(Rp)	
1.	Akuades	20 L	10.000	200.000
	Etanol 96%	2 L	45.000	90.000
	Aseton	2 L	50.000	100.000
	HCl 37%	50 mL	95.000	95.000
	Asam palmitat	50 gr	9.500	475.000
	Monoetanolamina 99%	300 mL	160.000	480.000
	Heksana	100 mL	90.000	90.000
	Isopropil Alkohol	100 mL	30.000	30.000
	Katalis kalsium oksida	50 gr	7.000	350.000
	Indikator metil merah	10 mL	29.000	29.000
	Parfum	50 mL	43.000	43.000
	Na ₂ SO ₄	250 gr	235.000	235.000
	Enzim lipase	100 gr	450.000	450.000
	Kertas saring	1 Pack	180.000	180.000
	pH meter	1 buah	55.000	55.000
	Chopper	1 buah	475.000	475.000
	Aluminium foil	1 gulung	27.000	27.000
	Tisu	6 gulung	12.000	72.000
	Kain putih	1m ²	30.000	30.000
	Kecap manis	275 ml	20.000	20.000
	Wadah uji sampel 50mL	20 buah	15.000	300.000
	Hotplate Magnetic Stirrer	1 unit	974.000	974.000
	SUB TOTAL	1 61110	<i>37</i> 11000	4.800.000
2.	Belanja Sewa			1.000.000
``	Sewa Lab Kimia Fisika	3 bulan	200.000	600.000
	Sewa Lab Kimia Organik	3 bulan	200.000	600.000
	SUB TOTAL	0 001011		1.200.000
3.	Perjalanan Lokal			1.200.000
	Biaya transportasi pembelian	3 bulan	150.000	450.000
	bahan dan peralatan			
	Keperluan uji coba	2 bulan	175.000	350.000
	SUB TOTAL			800.000
4.	Lain- lain			
	Kouta internet	4 bulan	100.000	400.000
	Masker	2 kotak	25.000	50.000
	Sarung Tangan	2 kotak	50.000	100.000
	Hand Sanitizer 500mL	1 botol	50.000	50.000
	Uji COD,BOD dan TSS	3 sampel	200.000	600.000
	SUB TOTAL	1		1.200.000
	GRAND TOTAL			8.000.000
GRA	AND TOTAL (Terbilang Delapan	Juta Ribu R	Rupiah)	

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No.	Nama/ Nim	Program	Bidang	Alokasi	Uraian Tugas
		Studi	Ilmu	Waktu	
				(jam/minggu)	
1	Roza Dhya	Teknik	Teknik	10	Pembuatan
	Fauziah/190405032	Kimia			biodetergen
					dan penulisan
					laporan akhir.
2	Farhan	Teknik	Teknik	9	Pembuatan
	Abraar/190405038	Kimia			surfaktan
					palmitoyl-
					MEA dan
					analisis data.
3	Muhammad Rafli	Teknik	Teknik	9	Persiapan alat
	Derriansyah/19040	Kimia			bahan dan
	5100				pengujian
					cemaran
					limbah
					biodetergen.
4	Cut Fadira	Teknik	Teknik	9	Pembuatan
	Soraya/200405058	Kimia			biosurfaktan
					dari ekstrak
					daun bunga
					kembang
					sepatu dan
					penulisan
					laporan
					kemajuan.
5	Muhammad	Kimia	Matematik	9	Pengujian
	Ibadurrahman/2008		a dan Ilmu		kualitas
	02085		Pengetahua		produk
			n Alam		biodetergen
					dan
					pembuatan
					artikel ilmiah.

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertandatangan di bawah ini:

Nama Ketua Tim	:	Roza Dhya Fauziah
Nomor Induk Mahasiswa	:	190405032
Program Studi	:	Teknik Kimia
Nama Dosen Pendamping	:	Ir. Erni Misran, S.T., M.T., Ph.D
Perguruan Tinggi	:	Universitas Sumatera Utara

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul Pembuatan Biodetergen pada Kombinasi Surfaktan Palmitoyl-MEA dan Saponin dari Ekstrak Daun Kembang Sepatu (*Hibiscus rosa-sinensis L.*) dengan Penambahan Enzim Lipase yang diusulkan untuk tahun anggaran 2022 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana dikemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Medan, 11-3-2022 Yang menyatakan,

(Roza Dhya Fauziah) NIM. 190405032