Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

Liaisons équivalentes

Exercice 1: 3 glissières orthogonales

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

On ne reconnaît pas de liaison normalisée :

- On peut prendre n'importe quel point de l'espace : Notons le P
- Compte tenu des axes des glissières, on choisit la base : \mathfrak{B}_0

Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

Liaison	Torseur canonique	Changement de pt	En P dans ${\mathfrak B}$
{T ₄₃ }	$\begin{cases} 0 & L_{43} \\ Y_{43} & M_{43} \\ Z_{43} & N_{43} \end{cases}_P^{\mathfrak{B}_0}$	RAS	$ \begin{pmatrix} 0 & L_{43} \\ Y_{43} & M_{43} \\ Z_{43} & N_{43} \end{pmatrix}_{p}^{\mathfrak{B}_{0}} $
{T ₃₂ }		RAS	$ \begin{cases} X_{32} & L_{32} \\ Y_{32} & M_{32} \\ 0 & N_{32} \end{cases}_{P}^{\mathfrak{B}_{0}} $
{T ₂₁ }	$ \begin{cases} X_{21} & L_{21} \\ 0 & M_{21} \\ Z_{21} & N_{21} \end{cases}_P^{\mathfrak{B}_0} $	RAS	$ \begin{pmatrix} X_{21} & L_{21} \\ 0 & M_{21} \\ Z_{21} & N_{21} \end{pmatrix}_{P}^{\mathfrak{B}_{0}} $

$$\begin{cases} X_{41} & L_{41} \\ Y_{41} & M_{41} \\ Z_{41} & N_{41} \end{cases}_P^{\mathfrak{B}_0} = \begin{cases} 0 & L_{43} \\ Y_{43} & M_{43} \\ Z_{43} & N_{43} \end{cases}_P^{\mathfrak{B}_0} = \begin{cases} X_{32} & L_{32} \\ Y_{32} & M_{32} \\ 0 & N_{32} \end{cases}_P^{\mathfrak{B}_0} = \begin{cases} X_{21} & L_{21} \\ 0 & M_{21} \\ Z_{21} & N_{21} \end{cases}_P^{\mathfrak{B}_0}$$

$$\begin{cases} X_{41} = 0 = X_{32} = X_{21} \\ Y_{41} = Y_{43} = Y_{32} = 0 \\ Z_{41} = Z_{43} = 0 = Z_{21} \\ L_{41} = L_{43} = L_{32} = L_{21} \\ M_{41} = M_{43} = M_{32} = M_{21} \\ N_{41} = N_{43} = N_{32} = N_{21} \end{cases}$$

$$\{T_{41}\} = \begin{cases} 0 & L_{41} \\ 0 & M_{41} \\ 0 & N_{41} \end{cases}_{p}^{\mathfrak{B}_{0}}$$

Les 3 inconnues L_{41} , M_{41} et N_{41} sont indépendantes

Question 5: Combien d'inconnues possède cette liaison équivalente ?

$$I_{s} = 3$$

Question 6: La liaison est-elle une liaison normalisée ?

Non

Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

Exercice 2: Pompe hydraulique à pistons axiaux

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

Soit on reconnaît une liaison ponctuelle en A de normale $(A, \overrightarrow{x_1})$: on va se placer en A dans la base 1

- On choisit le point de contact : A
- On choisit la base contenant la normale : \mathfrak{B}_1

Sinon:

- La liaison appui plan est valable partout dans l'espace
- La liaison rotule est valable en A: il est donc judicieux de se placer en A
- On voit que la liaison appui plan est définie par le vecteur $\overrightarrow{x_1}$, le torseur de la rotule est aussi simple dans toute base de l'espace, on choisit donc la base 1

Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

$$\{T_{20}\}=\{T_{21}\}=\{T_{10}\}$$

$$\{T_{20}\} = \begin{cases} X_{20} & L_{20} \\ Y_{20} & M_{20} \\ Z_{20} & N_{20} \end{cases}_{4}^{\mathfrak{B}_{1}}$$

Liaison	Torseur canonique	Changement de pt	En P dans 🏵
{ <i>T</i> ₂₁ }	$ \begin{pmatrix} X_{21} & 0 \\ Y_{21} & 0 \\ Z_{21} & 0 \end{pmatrix}_A^{\mathfrak{B}_1} $	RAS	$ \begin{pmatrix} X_{21} & 0 \\ Y_{21} & 0 \\ Z_{21} & 0 \end{pmatrix}_{A}^{\mathfrak{B}_{1}} $
$\{T_{10}\}$	${ \begin{pmatrix} X_{10} & 0 \\ 0 & M_{10} \\ 0 & N_{10} \end{pmatrix}_A^{\mathfrak{B}_1} }$	RAS	$ \begin{cases} X_{10} & 0 \\ 0 & M_{10} \\ 0 & N_{10} \end{cases}_{A}^{\mathfrak{B}_{1}} $

$$\begin{cases} X_{20} & L_{20} \\ Y_{20} & M_{20} \\ Z_{20} & N_{20} \end{cases}_A^{\mathfrak{B}_1} = \begin{cases} X_{21} & 0 \\ Y_{21} & 0 \\ Z_{21} & 0 \end{cases}_A^{\mathfrak{B}_1} = \begin{cases} X_{10} & 0 \\ 0 & M_{10} \\ 0 & N_{10} \end{cases}_A^{\mathfrak{B}_1}$$

$$\begin{cases} X_{20} = X_{21} = X_{10} \\ Y_{20} = Y_{21} = 0 \\ Z_{20} = Z_{21} = 0 \\ L_{20} = 0 = 0 \\ M_{20} = 0 = M_{10} \\ N_{20} = 0 = N_{10} \end{cases}$$

$$\{T_{41}\} = \begin{cases} X_{20} & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_A^{\mathfrak{B}_1}$$

Une seule inconnue, pas de problèmes d'indépendance.

Question 5: Combien d'inconnues possède cette liaison équivalente ?

$$I_s = 1$$

Question 6: La liaison est-elle une liaison normalisée ?

$$Pctl(A, \overrightarrow{x_1})$$

Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

Exercice 3: Guidage en rotation

On s'intéresse à la liaison équivalente 1/0.

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Parallèle - Statique - Somme

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

Soit on reconnaît une liaison pivot d'axe $(A, \overrightarrow{x_1})$

- On choisit un point de l'axe : A
- On choisit la base contenant l'axe : \mathfrak{B}_1

Soit:

- On voit deux rotules qui sont uniquement valables en leur centre, ce qui nous conduit à choisir soit A, soit B
- Si on ne se place pas dans la base 1, on aura un déplacement de point d'un des deux torseurs qui fera apparaître deux termes au lieu d'un, on choisit donc la base 1

Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

$${T_{10}} = {T_{10}^1} + {T_{10}^2}$$

$$\left\{ T_{1/0} \right\} = \left\{ \begin{matrix} X_{10} & L_{10} \\ Y_{10} & M_{10} \\ Z_{10} & N_{10} \end{matrix} \right\}_{A}^{\mathfrak{B}_{1}}$$

Liaison	Torseur canonique	Changement de pt	En P dans ${\mathfrak B}$
$\{T_{10}^1\}$	$\begin{bmatrix} X_{10}^1 & 0 \\ Y_{10}^1 & 0 \\ Z_{10}^1 & 0 \end{bmatrix}_A^{\mathfrak{B}_1}$	RAS	$\begin{cases} X_{10}^1 & 0 \\ Y_{10}^1 & 0 \\ Z_{10}^1 & 0 \end{cases}_A^{\mathfrak{B}_1}$
$\{T_{10}^2\}$	$ \begin{cases} X_{10}^2 & 0 \\ Y_{10}^2 & 0 \\ Z_{10}^2 & 0 \\ \end{bmatrix}_{B}^{\mathfrak{B}_{1}} $	$\overrightarrow{M_A^2} \left(\overrightarrow{R_{10}^2} \right) = M_B^2 \left(\overrightarrow{R_{10}^2} \right) + \overrightarrow{AB} \wedge \overrightarrow{R_{10}^2}$ $= \begin{pmatrix} L_1 \\ 0 \\ 0 \end{pmatrix}^{\mathfrak{B}_1} \wedge \begin{pmatrix} X_{10}^2 \\ Y_{10}^2 \\ Z_{10}^2 \end{pmatrix}^{\mathfrak{B}_1} = \begin{pmatrix} 0 \\ -L_1 Z_{10}^2 \\ L_1 Y_{10}^2 \end{pmatrix}^{\mathfrak{B}_1}$	$ \begin{pmatrix} X_{10}^2 & 0 \\ Y_{10}^2 & -L_1 Z_{10}^2 \\ Z_{10}^2 & L_1 Y_{10}^2 \end{pmatrix}_A^{\mathfrak{B}_1} $

$$\begin{pmatrix} X_{10} & L_{10} \\ Y_{10} & M_{10} \\ Z_{10} & N_{10} \end{pmatrix}_A^{\mathfrak{B}_1} = \begin{pmatrix} X_{10}^1 & 0 \\ Y_{10}^1 & 0 \\ Z_{10}^1 & 0 \end{pmatrix}_A^{\mathfrak{B}_1} + \begin{pmatrix} X_{10}^2 & 0 \\ Y_{10}^2 & -L_1 Z_{10}^2 \\ Z_{10}^2 & L_1 Y_{10}^2 \end{pmatrix}_A^{\mathfrak{B}_1}$$

$$\{T_{10}\} = \begin{cases} X_{10}^1 + X_{10}^2 & 0 \\ Y_{10}^1 + Y_{10}^2 & -L_1 Z_{10}^2 \\ Z_{10}^1 + Z_{10}^2 & L_1 Y_{10}^2 \end{cases}_A^{\mathfrak{B}_1} = \begin{cases} X_{10} & 0 \\ Y_{10} & M_{10} \\ Z_{10} & N_{10} \end{cases}_A^{\mathfrak{B}_1}$$

Les 5 inconnues X_{10} , Y_{10} , Z_{10} , L_{10} et M_{10} sont indépendantes

Question 5: Combien d'inconnues possède cette liaison équivalente ?

$$I_{\rm s} = 5$$

Question 6: La liaison est-elle une liaison normalisée ?

$$P(A, \overrightarrow{x_1})$$

Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

Exercice 4: Guidage en translation

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

Soit on reconnaît une liaison glissière d'axe $\overrightarrow{x_0}$

- On peut prendre tout point de l'espace mais le travail sera plus simple sur l'un des deux axes $(P_1, \overrightarrow{x_0})$ ou $(P_2, \overrightarrow{x_0})$ puisque deux des 4 torseurs y sont définis. Choix : P_1
- On prend la base : \mathfrak{B}_0

Soit:

- On choisit un des points des deux axes $(P_1, \overrightarrow{x_0})$ ou $(P_2, \overrightarrow{x_0})$ puisque deux des 4 torseurs y sont définis. Choix : P_1
- On choisit la base 0 commune aux 4 torseurs : \mathfrak{B}_0

Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

$$\begin{split} \{T_{10}\} &= \{T_{10}^1\} + \{T_{10}^2\} + \{T_{10}^3\} + \{T_{10}^4\} \\ \{T_{10}\} &= \begin{cases} X_{10} & L_{10} \\ Y_{10} & M_{10} \\ Z_{10} & N_{10} \end{cases}_{p}^{\mathfrak{B}_0} \end{split}$$

$$\begin{cases} T_{10}^{1} \} & \begin{cases} 0 & 0 \\ Y_{10}^{1} & M_{10}^{1} \\ Z_{10}^{1} & N_{10}^{10} \end{pmatrix}_{P_{1}} \\ \begin{cases} T_{10}^{1} \} & \begin{cases} 0 & 0 \\ Y_{10}^{1} & M_{10}^{1} \\ Z_{10}^{1} & N_{10}^{10} \end{pmatrix}_{P_{1}} \\ \end{cases} & RAS \end{cases} \qquad \begin{cases} \begin{cases} 0 & 0 \\ Y_{10}^{1} & M_{10}^{1} \\ Z_{10}^{1} & N_{10}^{10} \end{pmatrix}_{P_{1}} \\ \end{cases} & RAS \end{cases} \qquad \begin{cases} \begin{cases} 0 & 0 \\ Y_{10}^{2} & M_{10}^{2} \\ Z_{10}^{2} & N_{10}^{20} \end{pmatrix}_{P_{1}} \\ \end{cases} & RAS \end{cases} \qquad \begin{cases} \begin{cases} 0 & 0 \\ Y_{10}^{2} & M_{10}^{2} \\ Z_{10}^{2} & N_{10}^{20} \end{pmatrix}_{P_{1}} \\ \end{cases} & \begin{cases} 0 & 0 \\ Y_{10}^{2} & M_{10}^{2} \\ Z_{10}^{2} & N_{10}^{20} \end{pmatrix}_{P_{1}} \\ \end{cases} & = \begin{pmatrix} 0 & 0 \\ M_{10}^{3} & M_{10}^{3} \\ N_{10}^{3} & N_{10}^{3} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ T_{10}^{3} & M_{10}^{3} \\ T_{10}^{3} & M_{10}^{3} \end{pmatrix}_{P_{2}} \\ \end{cases} & = \begin{pmatrix} 0 & 0 \\ M_{10}^{3} & N_{10}^{3} \\ N_{10}^{3} & N_{10}^{3} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ T_{10}^{3} & M_{10}^{3} \\ T_{10}^{3} & M_{10}^{3} \\ T_{10}^{3} & M_{10}^{3} \end{pmatrix}_{P_{1}} \\ \end{cases} & = \begin{pmatrix} 0 & 0 \\ M_{10}^{3} & N_{10}^{3} \\ N_{10}^{3} & N_{10}^{3} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ T_{10}^{3} & M_{10}^{3} \\ T_{10}^{3} & M_{1$$

$$\begin{cases} X_{10} & L_{10} \\ Y_{10} & M_{10} \\ Z_{10} & N_{10} \end{cases}^{\mathfrak{B}_{0}} = \begin{cases} 0 & 0 \\ Y_{10}^{1} & M_{10}^{1} \\ Z_{10}^{1} & N_{10}^{1} \end{cases}^{\mathfrak{B}_{0}} + \begin{cases} 0 & 0 \\ Y_{10}^{2} & M_{10}^{2} \\ Z_{10}^{2} & N_{10}^{2} \end{cases}^{\mathfrak{B}_{0}} + \begin{cases} 0 & -aZ_{10}^{3} \\ Y_{10}^{3} & M_{10}^{3} \\ Z_{10}^{3} & N_{10}^{3} \end{cases}^{\mathfrak{B}_{0}} + \begin{cases} 0 & -aZ_{10}^{4} \\ Y_{10}^{4} & M_{10}^{4} \\ Z_{10}^{4} & N_{10}^{4} \end{cases}^{\mathfrak{B}_{0}}$$

$$\begin{cases} X_{10} & L_{10} \\ Y_{10} & M_{10} \\ Z_{10} & N_{10} \end{cases}^{\mathfrak{B}_{0}} = \begin{cases} 0 & -aZ_{10}^{3} - aZ_{10}^{4} \\ Y_{10}^{1} + Y_{10}^{2} + Y_{10}^{3} + Y_{10}^{4} & M_{10}^{1} + M_{10}^{2} + M_{10}^{3} + M_{10}^{4} \\ Z_{10}^{1} + Z_{10}^{2} + Z_{10}^{3} + Z_{10}^{4} & N_{10}^{1} + N_{10}^{2} + N_{10}^{3} + N_{10}^{4} \end{cases}^{\mathfrak{B}_{0}}$$

$$\begin{cases} T_{10} \} = \begin{cases} 0 & L_{10} \\ Y_{10} & M_{10} \\ Z_{10} & N_{10} \end{cases}^{\mathfrak{B}_{0}} \end{cases}$$

Les 5 inconnues Y_{10} , Z_{10} , L_{10} , M_{10} et N_{10} sont indépendantes.

Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

Question 5: Combien d'inconnues possède cette liaison équivalente ?

$$I_{\rm s} = 5$$

Question 6: La liaison est-elle une liaison normalisée ?

$$Gl(\overrightarrow{x_0})$$

Question 7: Quelle liaison est réalisée si a = 0?

$$\{T_{10}\} = \begin{cases} X_{10} & L_{10} \\ Y_{10} & M_{10} \\ Z_{10} & N_{10} \end{cases}_{P_{1}}^{\mathfrak{B}_{0}} = \begin{cases} 0 & 0 & 0 \\ Y_{10}^{1} + Y_{10}^{2} + Y_{10}^{3} + Y_{10}^{4} & M_{10}^{1} + M_{10}^{2} + M_{10}^{3} + M_{10}^{4} \\ Z_{10}^{1} + Z_{10}^{2} + Z_{10}^{3} + Z_{10}^{4} & N_{10}^{1} + N_{10}^{2} + N_{10}^{3} + N_{10}^{4} \end{cases}_{P_{1}}^{\mathfrak{B}_{0}}$$

$$\{T_{1/0}\} = \begin{cases} 0 & 0 \\ Y_{10} & M_{10} \\ Z_{10} & N_{10} \end{cases}_{P_{1}}^{\mathfrak{B}_{1}}$$

$$I_{s} = 4$$

$$PG(P_{1}, \overrightarrow{X_{0}})$$

Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

Exercice 5: Liaison complexe

Soit le schéma cinématique suivant :

On s'intéresse à la liaison équivalente 2/1.

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

On ne reconnaît pas de liaison usuelle :

- Il existe un point commun aux lieux de définition des deux torseurs : Point $\mathcal C$
- La ponctuelle est définie dans la base 1 et la linéaire rectiligne est définie dans la base 2. On choisit la base : \mathfrak{B}_1

Dernière mise à jour	TD	Denis DEFAUCHY
28/04/2020	Statique	TD5 - Correction

$${T_{21}} = {T_{21}^1} + {T_{21}^2}$$

$$\{T_{21}\} = \begin{cases} X_{21} & L_{21} \\ Y_{21} & M_{21} \\ Z_{21} & N_{21} \end{cases}_{C}^{\mathfrak{B}_{1}}$$

Liaison	Torseur canonique	Changement de pt	En P dans 🏵
$\{T_{21}^1\}$	$\begin{cases} 0 & 0 \\ Y_{21}^1 & 0 \\ 0 & 0 \end{cases}_C^{\mathfrak{B}_1}$	RAS	$\begin{cases} 0 & 0 \\ Y_{21}^1 & 0 \\ 0 & 0 \end{cases}_{\mathcal{C}}^{\mathfrak{B}_1}$
$\{T_{21}^2\}$	$ \begin{pmatrix} 0 & 0 \\ 0 & M_{21}^2 \\ Z_{21}^2 & 0 \end{pmatrix}_C^{\mathfrak{B}_2} $	RAS	$ \left\{ $

$$\begin{cases} X_{21} & L_{21} \\ Y_{21} & M_{21} \\ Z_{21} & N_{21} \end{cases}_{C}^{\mathfrak{B}_{1}} = \begin{cases} 0 & 0 \\ Y_{21}^{1} & 0 \\ 0 & 0 \end{cases}_{C}^{\mathfrak{B}_{1}} + \begin{cases} 0 & -M_{21}^{2} \sin \theta_{21} \\ 0 & M_{21}^{2} \cos \theta_{21} \\ Z_{2/1}^{2} & 0 \end{cases}_{C}^{\mathfrak{B}_{1}}$$

$$\begin{cases} X_{21} & L_{21} \\ Y_{21} & M_{21} \\ Z_{21} & N_{21} \end{cases}_{C}^{\mathfrak{B}_{1}} = \begin{cases} 0 & -M_{21}^{2} \sin \theta_{21} \\ Y_{21}^{1} & M_{21}^{2} \cos \theta_{21} \\ Z_{21}^{2} & 0 \end{cases}_{C}^{\mathfrak{B}_{1}}$$

$$\{ T_{21} \} = \begin{cases} 0 & L_{21} \\ Y_{21} & M_{21} \\ Z_{21} & 0 \end{cases}_{C}^{\mathfrak{B}_{1}}$$

$$\frac{L_{21}}{M_{21}} = \frac{-M_{21}^{2} \sin \theta_{21}}{M_{21}^{2} \cos \theta_{21}} = -\tan \theta_{21} \iff L_{21} = -\tan \theta_{21} M_{21} \\ Y_{21} & M_{21} \\ Z_{21} & 0 \end{cases}_{C}^{\mathfrak{B}_{1}}$$

$$\{ T_{21} \} = \begin{cases} 0 & -\tan \theta_{21} M_{21} \\ Y_{21} & M_{21} \\ Z_{21} & 0 \end{cases}_{C}^{\mathfrak{B}_{1}}$$

On ne peut reconnaître une liaison usuelle car :

- Il y a dépendance entre inconnues
- La forme ne ressemble à aucun torseur connu

Question 5: Combien d'inconnues possède cette liaison équivalente ?

$$I_{s} = 3$$

Question 6: La liaison est-elle une liaison normalisée ?

Non