Data Management

Laboratory 01

Students: Romain Claret & Simon Martinez

• Professor: Dr. Fatemeh Borran

• Assistant: Gary Marigliano

• Due-date: Monday 15 October 2018

Understanding the Lucene API

- 1. Yes, the demo uses the default stopword removal
 - QueryParser takes as argument a StandardAnalyzer() which is built by default with a default list of stopwords STOP WORDS SET
 - Proof: "frame" and "the frame" is giving the same output
- 2. No, the demo is not using any form of stemming
 - StandardAnalyzer doesn't provide a stemming by default
 - We couldn't find any stemming library into demo code
 - We didn't find any custom/manual stemming in the demo code
 - Proof: "frame" and "frames" doesn't give the same output
- 3. Yes, the demo is case insensitive
 - StandarAnalyzer use LowerCaseFilter which normalizes tokens text into lower case format.
 - o Proof: "test" and "TEST" give the same output
- 4. Yes, it does matter
 - In case of Normalisation: taking the words "been" and "being" as example, the normalization
 of those words is "be", which is part of the STOP_WORDS_SET. We could lose information if
 the stemming is done before the normalization.
 - Depends: If the stopwords are stemmed then we should stem first then apply the stopwords filter. Otherwise, we would do the inverse.

Indexing

Based on the FieldType documentation

- fieldType.setStoreTermVectorOffsets(true);
- Store token character offsets into the term vector for this field.
- fieldType.setStoreTermVectorPayloads(true);
- Store token payloads into the term vector for this field.
- fieldType.setStoreTermVectorPositions(true);

- Store token positions into the term vector for this field.
- fieldType.setStoreTermVectors(true);
- Store the indexed form into term vectors for this field.

Using different Analyzers

StandardAnalyzer

Number of documents: 3203 Number of terms: 27099

				p				
Name		Terr	n count	*	-		Decoder	
summ	цгу		19.972	7	3,7 %			string utf8
Rank		•	Field		Text			
1	96	ì1	title		alge	orithm		
		_						

Rank	Freq 🔻	Field	Text
1	961	title	algorithm
2	657	summary	which
3	389	summary	system
4	378	summary	paper
5	375	summary	computer
6	352	summary	can
7	327	summary	described
8	323	summary	given
9	316	summary	presented
10	309	summary	time

Total real size of files in selected commits (or all): 2423 kB

Indexing time: 1294ms

WhitespaceAnalyzer

0

Number of documents: 3203 Number of terms: 34827

Name	Term count	% -	Decoder
summary	26.821	77,01 %	string utf8

Rank	Freq +	Field	Text
1	1492	summary	of
2	1471	summary	the
3	1298	summary	is
4	1270	summary	a
5	1260	summary	and
6	1199	summary	to
7	1093	title	of
8	1077	summary	In
9	1042	summary	for
10	938	summary	The

Total real size of files in selected commits (or all): 2870 kB

o Indexing time: 1453ms

• EnglishAnalyzer

Number of documents: 3203 Number of terms: 23010

Name	Term count	% +	Decoder
summary	16.724	72,68 %	string utf6

Rank	Freq 🔻	Fleid	Text	
1	1008	title	algorithm	ŀ
2	676	summary	US	
3	657	summary	which	
4	554	summary	comput	:
5	529	summary	program	
6	511	summary	system	
7	428	summary	present	
8	414	summary	describ	_
9	392	title	comput	
10	384	summary	paper	

Total real size of files in selected commits (or all): 2319 kB

• Indexing time: 1386ms

ShingleAnalyzerWrapper (shingle size 2)

Number of documents: 3203 Number of terms: 103070

Name	Term count	% ~	Decoder		
summary	85.610	83,06 %	string utf8		

	-		•
Rank	Freq +	Field	Text
1	961	title	algorithm
2	657	summary	which
3	389	summary	system
4	378	summary	paper
5	375	summary	computer
6	352	summary	can
7	337	summary	_ paper
8	327	summary	described
9	323	summary	given
10	316	summary	presented

Total real size of files in selected commits (or all): 5380 kB

o Indexing time: 2181ms

• ShingleAnalyzerWrapper (shingle size 3)

Number of documents: 3203 Number of terms: 221842

Name	Term count	* -	Decoder
summary	191.471	86,31 ×	string utf8

Rank	Freq +	Fleki	Text
1	961	title	algorithm
2	657	summary	which
3	389	summary	system
4	378	summary	paper
5	375	summary	computer
6	352	summary	çan
7	337	summary	_ paper
8	327	summary	described
9	323	summary	given
10	316	summary	presented
	000		

Total real size of files in selected commits (or all): 9563 kB

o Indexing time: 2863ms

StopAnalyzer

Number of documents: 3203

Number of terms: 24663

Name	Term count	% ~	Decoder
summary	18.342	74,37 %	string utf8

	<u> </u>		
Rank	Freq +	Fleid	Text
1	963	title	algorithm
2	396	summary	system
3	383	summary	computer
4	381	summary	paper
5	334	summary	presented
6	314	summary	time
7	280	summary	method
8	277	summary	program
9	276	summary	data
10	260	title	computer
	0-0		11

Total real size of files in selected commits (or all): 2213 kB

Indexing time: 1188ms

1. What is the author with the highest number of publications? How many publications does he/she have?

```
Top ranking terms for field [authors] are: 38 Thacher Jr., H. C. 19 Naur, P. 16 Hill, I. D.
```

2. List the top 10 terms in the title field with their frequency.

```
Top ranking terms for field [title] are:
963 algorithm
260 computer
172 system
154 programming
125 method
110 data
108 systems
99 language
93 program
78 time
```

Searching

- the term "Information Retrieval"
 - Searching for [Information Retrieval]
 - o Total Results: 188
 - 1456: Data Manipulation and Programming Problemsin Automatic Information Retrieval (8,651913)
 - 890 : Everyman's Information Retrieval System (8,181953)
 - 1698: Experimental Evaluation of InformationRetrieval Through a Teletypewriter (7,574708)
 - 2306 : Dynamic Document Processing (7,358763)
 - 3133: The Use of Normal Multiplication Tablesfor Information Storage and Retrieval (7,355752)
 - 1031: Theoretical Considerations in Information Retrieval Systems (7,312654)
 - 1934 : Randomized Binary Search Technique (7,106321)
 - 1680 : Easy English,a Language for InformationRetrieval Through a Remote Typewriter Console (6,702070)
 - o 2989 : Effective Information Retrieval Using Term Accuracy (6,702070)
 - 2518: On the Problem of Communicating Complex Information (6,249776)
- both "Information" and "Retrieval"

- Searching for [Information AND Retrieval]
- Total Results: 23
- 1456: Data Manipulation and Programming Problemsin Automatic Information Retrieval (8,651913)
- 890 : Everyman's Information Retrieval System (8,181953)
- 1698: Experimental Evaluation of InformationRetrieval Through a Teletypewriter (7,574708)
- 2306: Dynamic Document Processing (7,358763)
- 3133: The Use of Normal Multiplication Tablesfor Information Storage and Retrieval (7,355752)
- 1031 : Theoretical Considerations in Information Retrieval Systems (7,312654)
- 1934 : Randomized Binary Search Technique (7,106321)
- 1680 : Easy English,a Language for InformationRetrieval Through a Remote Typewriter Console (6,702070)
- 2989 : Effective Information Retrieval Using Term Accuracy (6,702070)
- 2518: On the Problem of Communicating Complex Information (6,249776)
- at least the term "Retrieval" and, possibly "Information" but not "Database"
 - Searching for [+Retrieval Information -Database]
 - o Total Results: 54
 - 1456: Data Manipulation and Programming Problemsin Automatic Information Retrieval (8,651913)
 - 890 : Everyman's Information Retrieval System (8,181953)
 - 1698: Experimental Evaluation of InformationRetrieval Through a Teletypewriter (7,574708)
 - 2306 : Dynamic Document Processing (7,358763)
 - 3133: The Use of Normal Multiplication Tablesfor Information Storage and Retrieval (7,355752)
 - 1031: Theoretical Considerations in Information Retrieval Systems (7,312654)
 - 1934 : Randomized Binary Search Technique (7,106321)
 - 1680: Easy English,a Language for InformationRetrieval Through a Remote Typewriter Console (6,702070)
 - 2989 : Effective Information Retrieval Using Term Accuracy (6,702070)
 - 2518: On the Problem of Communicating Complex Information (6,249776)
- starting with "Info"
 - Searching for [Info*]
 - Total Results: 193
 - 221 : Coding Isomorphisms (1,000000)
 - 271: A Storage Allocation Scheme for ALGOL 60 (1,000000)
 - 395 : Automation of Program Debugging (1,000000)
 - 396: A Card Format for Reference Files in Information Processing (1,000000)
 - 408 : CL-1, An Environment for a Compiler (1,000000)
 - 439 : Record Linkage (1,000000)
 - 482: On the Nonexistence of a Phrase Structure Grammar for ALGOL 60 (1,000000)
 - 615 : An Information Algebra Phase I Report-LanguageStructure Group of the CODASYL Development Committee (1,000000)
 - 643: A String Language for Symbol Manipulation Based on ALGOL 60 (1,000000)
 - 654 : COMIT as an IR Language (1,000000)
 - Searching for [Information Retrieval~5]

- Total Results: 191
- 1456: Data Manipulation and Programming Problemsin Automatic Information Retrieval (7,194777)
- 890 : Everyman's Information Retrieval System (6,724819)
- 2831 : Faster Retrieval from Context Trees (Corrigendum) (6,458653)
- 3133: The Use of Normal Multiplication Tablesfor Information Storage and Retrieval (6,334777)
- 1698: Experimental Evaluation of InformationRetrieval Through a Teletypewriter (6,215545)
- 2306 : Dynamic Document Processing (6,202866)
- 1031: Theoretical Considerations in Information Retrieval Systems (6,081074)
- 1934 : Randomized Binary Search Technique (5,909492)
- 2159 : Canonical Structure in Attribute Based File Organization (5,628992)
- 2518 : On the Problem of Communicating Complex Information (5,344692)

```
System.out.println("Searching for [" + q +"]");
ComplexPhraseQueryParser parser = new ComplexPhraseQueryParser("summary",this.analy
zer);
try {
   Query query = parser.parse(q);
   try {
              TopDocs search = this.indexSearcher.search(query, 10);
              System.out.printf("Total Results : %d\n", search.totalHits);
              for (int i=0; i < 10; i++){
                  System.out.printf("%s: %s (%f)\n", search.scoreDocs[i].doc, this.i
ndexReader.document(search.scoreDocs[i].doc).get("title"),search.scoreDocs[i].score
);
              }
   catch (IOException ex search){
      System.out.println(ex_search);
}
catch (ParseException ex parse){
   System.out.println(ex parse);
}
```

Tuning the Lucene Score

ClassicSimilarity

```
Searching for [compiler program]
Total Results : 578
3188 : An Algebraic Compiler for the FORTRAN Assembly Program (1,036766)
1458 : Requirements for Real-Time Languages (0,942752)
2651 : Reduction of Compilation Costs Through Language Contraction (0,937798)
1182 : A Note on the Use of a Digital Computerfor Doing Tedious Algebra and Programming (0,879980)
1464 : Program Translation Viewed as a General Data Processing Problem (0,829413)
1987 : A Formalism for Translator Interactions (0,829413)
1646 : WATFOR-The University of Waterloo FORTRAN IV Compiler (0,808241)
1236 : Conversion of Decision Tables To Computer Programs (0,754201)
2943 : Shifting Garbage Collection Overhead to Compile Time (0,754201)
636 : A NELIAC-Generated 7090-1401 Compiler (0,743363)
```

MySimilarity

```
Searching for [compiler program]
Total Results : 578
2533 : Design and Implementation of a Diagnostic Compiler for PL/I (9,992505)
636 : A NELIAC-Generated 7090-1401 Compiler (9,239830)
2922 : High-Level Data Flow Analysis (8,913862)
2651 : Reduction of Compilation Costs Through Language Contraction (8,752361)
1646 : WATFOR-The University of Waterloo FORTRAN IV Compiler (8,554615)
1464 : Program Translation Viewed as a General Data Processing Problem (7,781996)
1987 : A Formalism for Translator Interactions (7,781996)
3188 : An Algebraic Compiler for the FORTRAN Assembly Program (7,781996)
1134 : A General Business-Oriented Language Based on Decision Expressions* (6,901810)
1236 : Conversion of Decision Tables To Computer Programs (6,901810)
```

Describe the effect of using the new parameters.

Plot:

The effect comes from the different between the $tf=(freq)^1/2$ from ClassicSimilarity and our custom tf=log(freq)+1.

The graph shows that MySimilarity is normilizing the documents frequency based on the overall term frequency. While the ClassicSimilarity is favorising documents with higher term frequency.

```
//tf : 1+log(freq)
@Override
public float tf(float freq){
    return (float) (1 + Math.log(freq));
}

//idf : log(numDocs/docFreq+1)+1
@Override
public float idf(long docFreq, long numDocs){
    return (float) (Math.log(numDocs / (docFreq + 1)) + 1);
}

//lengthNorm : 1
@Override
```

```
public float lengthNorm(FieldInvertState fieldInvertState) {
    return (float) 1;
}

//coord : squart(overlap/maxOverlap)
@Override
public float coord(int overlap, int maxOverlap){
    return (float) Math.sqrt(overlap / maxOverlap);
}
```