

Service Manual

Solid State In-dash Type Cassette Car Stereo Player with LW/MW/FM/FM Stereo Radio

MODEL RG-5800H/RG-5800E

"In the interests of user-safety the set should be restored to its original condition and only parts identical to those specified be used."

SPECIFICATIONS

GENERAL
Type Solid State In-dash Type 4-Track 2-
channel Full Auto Stop/Auto Eject
Cassette Car Stereo Player with
built-in LW/MW/FM/FM STEREO 3-
band Radio
Power source 12 V (for negative earthing car only)
Output impedance 4 ohms/channel
Semiconductors 18-transistor (1-FET), 14 diode (1-
LED) and 5-IC (integrated circuit)
Output power 8 + 8 W (maximum power)
5 W + 5 W (at 10% distortion)
S/N 54 dB
Dimensions 178 (W) x 130 (D) x 44 (H) mm
Weight 1.3 kg
TAPE PLAYER SECTION

Playback system ... 4-track, 2-channel Stereo

Using tape Philips standard compact cassiffe tape
Tape speed 4.75 cm/sec.
Wow and flutter 0.3% (DIN 45511)
Frequency response . 50Hz ~ 10kHz/-6dB
Fast forward/Rewind
time 120 seconds (@ C-60 cassette tape)
Motor D.C. motor with mechanical to vernor
RADIO SECTION
Frequency range LW 150 ~ 285kHz
MW 520 ~ 1,620kHz
FM 87.6 ∼ 108MHz
IF LW/MW 452kHz
FM 10.7MHz
Sensitivity LW $400\mu V/20dB$
MW $40\mu\text{V}/20\text{dB}$
FM $2.5\mu V$

SHARP CORPORATION OSAKA, JAPAN

PARTS LAYOUT

Figure 1 FRONT PARTS LAYOUT

Figure 2 REAR PARTS LAYOUT

BLOCK DIAGRAM

GENERAL ALIGNMENT INSTRUCTIONS

Should it become necessary at any time to check the alignment of this receiver, proceed as follows;

- 1) Connect an output meter across the speaker voice coil lugs.
- 2) Set the volume control at maximum.
- 3) Attenuate the signals from the generator enough to swing the most sensitive range of the output meter.
- 4) Use a non-metallic alignment tool.
- 5) Repeat adjustments to insure good results.

LW/MW ALIGNMENT CHART

Set the band selector switch at "MW" or "LW" position.

-			switch at "MW" or	IERATOR	RECE	IVER	A D ILICTAMENT			
ГЕР	BAND	TEST STAGE	CONNECTION TO RECEIVER	INPUT SIGNAL FREQUENCY	DIAL SETTING	REMARKS	ADJUSTMENT			
1	MW	IF	Connect signal genera- tor through a dummy to the antenna socket. Ground lead to the receiver chassis. (Refer to Figure 4)	Exactly 452kHz (400Hz, 30%, AM modulated)	High end of dial (minimum inductance)	Adjust for maximum output on speaker voice coil lugs.	T103 T104			
2	MW	IF	Repeat until no further	improvement can be	made.	C se stop 1	Adjust the MW oscillato			
	111.		Same as step 1.	Exactly 515kHz (400Hz, 30%, AM modulated)	Low end of dial (maximum inductance)	Same as step 1.	coil L106.			
3	MW	Band Coverage	Same as step 1.	Exactly 1650kHz (400Hz, 30%, AM modulated)	High end of dial (minimum inductance)	Same as step 1.	Adjust the MW oscillato trimmer TC104.			
4	MW	Tracking	Same as step 1.	Exactly 1400kHz (400Hz, 30%, AM modulated)	1400kHz.	Same as step 1.	Adjust the MW antenna trimmer TC102, and then adjust the MW RF trimmer TC103.			
	1		Repeat steps 3 and 4	until no further impre	ovement can be made					
5	MW		Same as step 1.	Exactly 145kHz (400Hz, 30%, AM modulated)	Low end of dial (maximum inductance)	Same as step 1.	Adjust the LW oscillate coil L108			
6	LW	Band Coverage			1		Exactly 310kHz (400Hz, 30%, AM modulated)	High end of dial (minimum inductance)	Same as step 1.	Adjust the LW oscillate trimmer TC105
			Same as step 1.	Exactly 160kHz (400Hz, 30%, AM modulated)	160kHz.	Same as step 1.	Adjust the LW antenn trimmer TC101.			
7	LW	Tracking	Same as step 1.	Exactly 260kHz (400Hz, 30%, AM modulated)	260kHz.	Same as step 1.	Adjust the LW antenn coil L102, and then adjust the LW RF coil L104.			
-	R LV	v	Repeat steps 6 and	7 until no further imp	rovement can be mad	le.				

FM ALIGNMENT CHART

Set the band selector switch at "FM" position.

STEP	7507	SIGNAL GENER	REC			
	TEST STAGE	CONNECTION TO RECEIVER	INPUT SIGNAL FREQUENCY	DIAL SETTING	REMARKS	ADJUSTMENT
1	Connect signal generator through a .022MFD capacitor to antenna socket (SO101). Connect generator ground lead to the receiver chassis.		Exactly 10.7MHz (400Hz, 30%, FM modulated)	Low end of dial. (maximum inductance)	Connect VTVM between test point TP102 and chassis ground.	Detune T102. Tune T1, and T101.
2	Ratio Detector	Same as step 1.	Exactly 10.7MHz (unmodulated)	Same as step 1. See NOTE A.		See NOTE A.
3	Repeat step	os 1 until no further improvement	can be made.			
4	Band Coverage	Connect signal generator through a dummy including output impedance of signal generator to the car antenna socket (SO101) Ground lead of generator connected to the receiver chassis. (Refer to Figure 5)	Exactly 87.2MHz (400Hz, 30%, FM modulated)	Same as step 1.	Adjust for maximum output at speaker voice coil.	Oscillator trimmer TC2 .
5	Tracking	Same as step 4.	Exactly 88MHz (400Hz, 30%, FM modulated)	88MHz	Same as step 4.	RF trimmer TC1.
6	Repeat step	os 4 and 5 until no further improve	ement can be made.			

NOTE A

- 1) Connect VTVM (0.1 volt range D.C. Scale between test point TP102 and chassis ground.l.
- 2) Adjust T102 for 0 volt on VTVM.
- 3) Change signal generator frequency 10.7MHz + 100kHz and -100kHz approximately.
- 4) Adjust T101 for balanced peaks. Peak separation should be approximately 200kHz.

Z=OUTPUT IMPEDANCE OF SIGNAL GENERATOR

Figure 5 FM DUMMY

NOTE B

Five kinds of ceramic filter (CF101, CF-202) are available for this set. The difference of central frequency from each other can be known by the color indication. The table below shows such a difference of IF and S curve, depending upon the color indications of the ceramic filter (CF101, CF102).

	D	Black	10.64MHz ± 30kHz
0 . 1	В	Blue	10.67MHz ± 30kHz
Central	A	Red	10.70MHz ± 30kHz
- Frequency	С	Orange	10.73MHz ± 30kHz
	Е	White	10.76MHz ± 30kHz

Figure 6

For their employment, it is required to use two ceramic filters of same type.

FM STEREO ALIGNMENT

Set the band selector switch at "FM" position and Stereo/mono Selector switch at "STEREO" position.

STEP	SIGNAL GEN	ERATOR		RECEIVER	METER	ADJUST- MENT
	CONNECTION TO RECEIVER	INPUT SIGNAL FREQUENCY	DIAL SETTING	REMARKS	CONNECTION	
1			98MHz	Adjust so that the frequency becomes 19.0kHz. (In case an oscilloscope is connected to the test point TP101, adjust the signals to be 19kHz by using Lissajou's wave-form).	Connect the frequency counter (or oscilloscope) through a 100K ohm resistor to TP101 (12 pin of IC103).	VR102

If without the frequency counter, proceed with the alignment as follows. While receiving a FM stereo signal, turn the VR102 until the P.L.L. will be locked (when it is locked, the stereo indicator will be lit). Then, reversely turn the VR102 halfway and fix it.

ANSS ADJUSTMENT

(Pins 1, 6 and 15 described below are of IC102.)

- 1. Set the band selector switch at "FM" position.
- 2. Apply a 19 kHz signal of 30 mV to pin 1.
- 3. Connect a VTVM and/or an oscilloscope to pin 6.
- 4. Adjust L110 for minimum output at pin 6.
- 5. Then, apply a 1 kHz signal of 100 mV to pin 1.
- 6. Make sure that there is no output at pin 6, applying a 100 kHz signal of 50 mV further to pin 15.
- 7. Next, make sure that a 1 kHz signal of 100 mV appears at pin 6, connecting pin 15 to earthe.

THE INSTRUCTION OF FREQUENCY ADJUSTMENT

In order to comply with Pfg. Nr. 358/1970, please fix the low end of dial frequency (87.5 MHz) and the high end of dal frequency (107.9 MHz) on FM band, by adjusting oscillation trimmer (TC2) and oscillation coil (L4), respectively, as illustrated in Figure 7.

HEAD AZIMUTH ADJUSTMENT (Refer to Figure 7)

Standard Test Tape to be applied: Philips HU-71512 or the equivalent (TEAC MTT-113, VICTOR VTT-601).

- (1) Set the Player Unit on.
- (2) Turn the azimuth adjusting screw until the output of the test tape (6.3kHz) is boosted up to the maximum. Caution: After completion of the adjustment, be sure to lock the adjusting screw in place, using glyptal or glue.

L4 HEAD AZIMUTH **ADJUSTING SCREW** L104 L102 TC101 T103 T101 **VR102** T102 L106 L108 TC105 T104 TC2 TC1 TC104 T1 TC103 SO101

Figure 7 ALIGNMENT POINTS

SUMMARY

Electrical interferences generated by combustion engines used in motor-cars are necessary to be suppressed to make listening to FM broadcastings possible. An effective way to suppress interferences produced by its own car and those of others received via the antenna is to apply a kind of noise gating for the output signal of the FM

demodulator. Since the mentioned interferences have a frequency spectrum upto several hundreds of kHz being easily reproduced by the FM demodulator there is sufficient signal available beyond 53kHz to drive this gating circuit. Based upon these principles the ANSS has been devoloped.

INTRODUCTION

In the FM car radio, pulse noise received via the antenna becomes unpleasant noise that interferes with the happy FM listening, passing the circuits between the antenna and the speaker. The ANSS is a device that can automatically remove such pulse noises from the incoming signals, so only the desired signals will be obtained. Being detected at the FM detector, both the desired signal and pulse noise, caught by the antenna, are superposed each other as shown in Figure 8. Then they are applied to the ANSS circuit where only the desired signal is developed since the noisy one is removed.

The bandwidth of the ANSS, necessary for a good stereo signal, has to be about:

38 kHz + 15 kHz = 53kHz. (stereo subcarrier) (Upper side band channel)

For stereo signal reception, the arriving signals are applied to the gate circuit of the ANSS, in order to prevent the pilot signal from undergoing amplitude modulation (which causes noisy sound through the succeeding circuits), this pilot signal is first supplied to the 19 kHz trap filter, located prior to the gate circuit, where it is removed and only the audio signal can appear at the ANSS circuit then to be applied to the stereo multiplex circuit.

In addition, before being supplied to the 19kHz trap filter, a part of the stereo pilot signal is also applied to the VCO circuit, a part of the stereo multiplex circuit. Since the VCO circuit is of PLL system, if the pilot signal enter the VCO circuit, the PLL becomes completely locked so as to eliminate any possibility of noise occurrence in the stereo multiplex circuit due to the noise entered together with the pilot signal. In this way pulse noise caught by the antenna is eliminated.

Another feature of this system is that in FM stereo reception, the signal to noise ratio is improved, because

Figure 8

the stereo pilot signal has no possibility of mixing in the audio signal produced, being removed by the 19 kHz trap filter.

Figure 9

BLOCK DIAGRAM

The block diagram is shown in Fig. 10.

Figure 10

Explanation of the block diagram

noise are appeared at the pin 2 via the buffer amplifier. to the gate circuit of the ANSS, which will be turned off. Then, they are divided into the two, one to be applied to Also, the ANSS is equipped with the gain control circuit the high-pass filter side and another to the low-pass filter that will control the input signal of the Schmitt trigger, if side.

In the high-pass filter, only pulse noise is picked out from prevent the gate circuit from turning off. the incoming signal, and this noise is amplified by the pulse amplifier. The noise thus amplified is transferred to the pulse converter where the negative pulse is converted to positive one to be supplied to the pulse amplifier where it is formed a strong signal enough to activate the Schmitt trigger.

Input signals at the pin 1, both the desired signal and pulse Coming out of the Schmitt trigger, the signal is coupled a great amount of the continual pulse noises arrived, and

> Meanwhile, in the low-pass filter side, the arriving signal is first applied to the 19 kHz trap filter where the stereo pilot signal is removed, and the remaining signal is coupled to the low-pass filter. The signal coming out of the low-pass filter, which nas frequencies lower than 53 kHz, is then applied to the gate circuit. In this gate circuit, pulse noise,

if being included in the imput signal, will be got rid of and so only the desired signal will be developed.

However, being turned off, the gate circuit has no output. To prevent this, the ANSS is equipped with such a circuit that maintains output at the level just before the gate circuit is turned off. For this reason, there will be no secondary noise appearance caused by switching of the gate

It is noted that a part of the stereo pilot signal is, without entering the 19 kHz trap filter, coupled to the VCO circuit (of the stereo multiplex circuit) to drive.

DESCRIPTION OF THE CIRCUIT

Input stage

The input stage consists of a simple emitter follower, see Fig. 11.

This stage has been added to the circuit in order to avoid an influence of the input impedance of the L.P. and H.P. filters on the output of the FM detector and reversed. To be sure that the circuit works correctly, the DC voltage at pin 1 needs to be $0.4 \times V_9$ - V_{16} (0.4 x supply voltage). The input impedance at 1 kHz: |Zi| ≥ 70 K ohms.

Figure 11

The low-pass filter (delay line)

To be sure of a good signal handling of the desired signal this filter has to meet next requirements.

- a) the delay time has to be at least 3 μ sec.
- b) the amplitude characteristic has to be as flat as possible in the pass-band.
- c) the phase behaviour has to be linear.
- d) the distortion of the desired information at the output must be as low as possible.

In order to meet these requirements use is made of a 4th order Butterworth filter realised by an active RC circuit. (see Fig. 12).

Figure 12

Gate circuit and output amplifier

The circuit is give in Fig. 13.

The point, indicated with P, is connected to the positive output of the Schmitt-trigger.

If there is a positive pulse at P then Qc becomes conducting and takes away the driving current for Qb. At the same time the base voltage of Qe will be kept constant by the RC circuit connected to pin 5.

Figure 13

High pass filter

In order to detect the interferences out of the input signal a high pass filter is used.

In practice one wants to suppress as much interferences as possible in order to get a "clean" output signal.

The theorical curve of the HP filter has been given in

The theorical curve of the H.P. filter has been given in Fig. 15.

Figure 15

A practical approximation of this curve can be achieved by a 4th order Chebyshev filter at which for car radio applications -3dB can be chosen at 91kHz.

To get a steep slope an extra R and C are added circuit.

19 kHz filter

During suppression but without this filter the 19kHz signal will look like Fig. 14.

To be sure of no audible low-frequency component, the voltage during suppression needs to be zero. (See gap Fig. 14) However this happens only very sporadic so that filtering out of the undesired low frequency component is necessary, otherwise this low frequency component breaks through to the audio part via the MW-channel. Thus a 19kHz filter is added to the circuit.

Figure 14

Gain control

The circuit is give in Fig. 16.

To be sure of an audible signal during a too high repetition rate of the interference pulses and/or a too intensive noise it is necessary to reduce the repetition rate of the suppression.

From the Schmitt-trigger the negative output pulse are fed to the integrating network connected to pin 12. If V_C " which is V9-12 becomes $\geq V_{BEQ8}$ then the

gain of the pulse amplifier will be reduced.

In case of noise, at which normally the "interference spikes" are very close to each other, it is better to build-up the voltage across C" directly, because during one suppression time there are a lot of noise spikes.

This information for the gain control is lost if the megative output of Schmitt-trigger is used.

Figure 16

Figure 18

Schmitt-trigger

The circuit is shown in Fig. 17.

The positive output is used for driving the gate circuit while the negative output is fed to the gain control.

The pulse width of the pulses delivered by the Schmitt-trigger can be controlled by an RC network at pin 11 of Fig. 17.

The pulse width as function of the value of the C° connected at pin 11 while the R° is kept constant at 6.8K, is given in Fig. 18.

For measurements the pulse at the input of the ANSS (pin 1) has a pulse width of $10 \, \mu \text{sec.}$, a rise time of 6 nsec. and a pulse hight of $0.1 \, \text{V}$.

To ensure proper operation of the Schmitt trigger for various $R^{\circ}C^{\circ}$ combinations it is advised to measure the pulse at pin 1 and pin 10.

The depicted signals should have a shape as shown in Fig. 19.

Figure 17

Figure 19

MECHANICAL ADJUSTMENT

FLYWHEEL THRUST CLEARANCE ADJUSTMENT (Refer to Figure 20)

Slowly tighten the screw for adjusting the flywheel thrust clearance until the thrust clearance becomes 0 (zero) and loosen the screw by $1/2 \sim 1$ turn from this point. Since screw's pitch is $0.5 \,\mathrm{mm}$, thrust clearance of $0.1 \sim 0.3 \,\mathrm{mm}$ is produced.

Figure 20

TIMING ADJUSTMENT OF RADIO/TAPE SELECTOR SWITCH (Refer to Figure 21)

At the moment the radio/tape selector switch turns to the tape position (and the motor starts to rotate), the gap between the pinch roller and the capstan shaft should be $0 \sim 0.2$ mm. If the value is not satisfied, adjust the pushing arm by changing the setting position and/or bending.

Figure 21

PINCH ROLLER PRESSURE ADJUSTMENT (Refer to Figure 22)

- 1. With power supply turned on, push the point (A) with a tension gauge to make the pinch roller apart from the capstan shaft. Then, gradually release the tension gauge and read its value when the pressure roller starts to rotate.
- It is normal that the tension gauge reads 320 ~ 380g. If the above value is not satisfied, change the setting position of Pinch Roller Spring.

Figure 22

TORQUE CHECK (Refer to Figure 23)

- 1. Set the torque measuring reel to the turntable (the take-up side at play or fast forward mode and the supply side at rewind mode).
- 2. Then, rotate the reel in the same direction as for turntable and read the torque value when the pointer is stabilized.

	Torque Value				
Play	35 – 55 gr.cm				
Fast Forward	More than 70 gr.cm				
Rewind	More than 70 gr.cm				

Figure 23

Figure 24 MECHANISM EXPLODED VIEW (UPPER SIDE)

Figure 25 MECHANISM EXPLODED VIEW (LOWER SIDE)

Figure 26 CABINET EXPLODED VIEW

Figure 27 SCHEMATIC DIAGRAM (RG-5800H)

Figure 28 WIRING CONNECTIONS (RG-5800H)

Figure 29 SCHEMATIC DIAGRAM (RG-5800E)

Figure 30 WIRING CONNECTIONS (RG-5800E)

Figure 31 DIAL CORD STRINGING

Figure 32 EQUIVALENT CIRCUIT OF IC101

Figure 33 EQUIVALENT CIRCUIT OF IC103

Figure 34 EQUIVALENT CIRCUIT OF IC102

Figure 35 EQUIVALENT CIRCUIT OF IC104 and IC105

REPLACEMENT PARTS LIST

"HOW TO ORDER REPLACEMENT PARTS"

To have your order filled promptly and correctly, please furnish the following informations.

- 1. MODEL NUMBER 2. REF. NO.
- 3. PART NO.
- 4. DESCRIPTION

REF. NO.	PART NO.	DESCRIPTION	CODE	REF. NO.	PART NO.	DESCRIPTION	CODE
				L102	RCILA0301AFZZ	LW Antenna	AB
	INTEGR	ATED CIRCUITS		L103	RCILC0051AFZZ	Noise Filter	AC
				L104	RCILA0301AFZZ	LW RF	AB
IC101	RH-IX0932AFZZ	FM IF Amp. (BA402)	AM	L105	RCILC0065AFZZ	MW Oscillation	AC
IC102	RH-IX1110AFZZ	ANSS (HA11219)	AM	L106	RCILB0322AFZZ	MW Oscillation	AD
IC103	RH-IX1109AFZZ	PLL FM Stereo Demodulator	AM	L107	RCILC0060AFZZ	LW Oscillation	AC
	D	(BA1330)		L108	RCILB0307AFZZ	LW Oscillation	AD
IC104	RH-IX1107AFZZ	Audio Power Amp.	AN	L109	RCILC0051AFZZ	Power Filter	AC
10105	DILLIVATOR 5 7 7	(μPC1181H)		L110	RCILZ0061AFZZ	19kHz Trap	AE
IC105	RH-IX1108AFZZ	Audio Power Amp. (µPC1182H)	AN	L111	RCILF0067AFZZ	Power Filter	AD
					TRAN	SFORMERS	
	TRA	ANSISTORS					
				T101	RCILI0185AFZZ	FM Discriminator	AE
Q101	VS2SC460-B/-1	FM IF Amp. (2SC460B)	AC	T102	RCILI0182AFZZ	FM Discriminator	AE
Q102	VS2SC460-B/-1	FM IF Amp. (2SC460B)	AC	T103	RCILI0238AFZZ	AM IF	AD
Q103	VS2SC460-B/-1	AM RF Amp. (2SC460B)	AC	T104	RCILI0170AFZZ	AM IF	AD
Q104	VS2SC460-B/-1	AM Converter (2SC460B)	AC				
Q105	VS2SC460-C/-1	AM IF Amp. (2SC460C)	AC		-	II TEDO	
Q106	VS2SC2060R/-1	Voltage Regulator (2SC2060R)			r	ILTERS	
Q107 Q108	VS2SC2021 LNS1	Tape Pre Amp. (2SC2021 LNS)	AC	CE101	DEU 50000 4 577	0 1 10 7141 51115	
Q109	VS2SC2021 LNS1 VS2SC2021 E21 F	Tape Pre Amp. (2SC2021 LNS) Tape Pre Amp. (2SC2021 E2)	AC AB	CF101 CF102	RFILF0009AFZZ	Ceramic, 10.7MHz, FM IF	AE
Q1109	VS2SC2021E21F	Tape Pre Amp. (2SC2021E2)	AB	CF102	RFILFO009AFZZ	Ceramic, 10.7MHz, FM IF	AE
Q201	VS2SC1740R/-1	Solenoid Control (2SC1740R)	AC	CF 103	RFILA0059AFZZ	Ceramic, 452kHz, AM IF	AD
Q202	VS2SA786-R/-1	Solenoid Control (2SC774011)	AC				
Q202	VS2SC2021E11F	Solenoid Control (2SC2021E1)			PACKA	GED CIRCUIT	
Q204	VS2SA934-R/-1	Solenoid Drive (2SA934R)	AD		FACKA	GED CIRCUIT	
Q205 ·	VS2SC373-G/-1	Solenoid Control (2SC373GR)	AC	M101	RMPTA0105AFZZ	6.8K ohm x 2 + 220PF x 3	1
,9200	10200070-07:1	301cHold Collif of (23c373G117	1	M102	RMPTA0108AFZZ	470 ohm + .01MFD x 2	AC
				M103	RMPTA0107AFZZ	4.7K ohm x 4 + 68PF + 680PF	AC AG
				141100	1111111777122	x 2 + 1200PF	AG
			1 1	M104	RMPTA0106AFZZ	2K ohm x 2 + 2.7K ohm + 22K	AF
					***** *********************************	ohm + 91K ohm + 330PF x 3	
	. 1	DIODES				5 5 5 5.5017 X 3	
D101	VHD1S2076//-1	Protector (1S2076)	AG		co	NTROLS	
D102	VHD1S2076//-1	Protector (1S2076)	AG	=			
D103	VHD1N34A///-1	AM Overload (1N34A)	AC	VR101		Volume/Tone/Balance Control	AU
D104	VHD1S2076//-1	Stabilizer (1S2076)	AG	(A~E),	RVR-B0164AFZZ	and Power Switch	
D105	VHD1N34A///-1	AM Detector (1N34A)	AC	SW103	_		
D106 D107	VHD1S2076//-1	Noise Limiter (1S2076)	AG	VR102	RVR-M0003SGZZ	5K ohm (B), VCO Frequency	AC
D107	VHD1S2076//-1 VHD1N60////-3	Noise Limiter (1S2076)	AG	TC101	DTO 440044577	Adjustment	
D109	VHD1N60////-3	FM Detector (1N60P) FM Detector (1N60P)	AH	TC101	RTO-A1004AFZZ	Trimmer, LW Antenna	AH
D109	VHDS5277B//-1	Protector (S5277B)	AH AB	TC102 TC103	RTO-A1053AFZZ	Trimmer, MW Antenna	AD
D111	VHERD9.1ED/-1	Zener (Voltage Regulator)	AC		RTO-A1052AFZZ	Trimmer, MW RF	AD
5.11	VIIE1109.100/-1	(RD9.1E)	~~	TC104 TC105	RTO-A1052AFZZ	Trimmer, MW Oscillation	AD
D112	VHPGL-5PR5/1F	FM Stereo Indicator	AD	10105	RTO-A1004AFZZ	Trimmer, LW Oscillation	АН
5112	VIII G E-31 110/11	(GL-5PR5)	72				
D201	VHDS5277B//-1	Protector (S5277B)	АВ		CAP	ACITORS	
				C101	VCOVVIII	0011150 501/ 1001/ 10	
		COILS		C101	VCQYKU1HM102M	.001MFD, 50V, ±20%, Mylar	AB
		00.20		C102 C103	VCTYPU1EX223K	.022MFD, 25V, ±10%, Ceramic	AB
L101	RCILCO065AFZZ	Choke	AC	C103	VCTYPU1EX223M VCTYPU1EX103M	.022MFD, 25V, ±20%, Ceramic .01MFD, 25V, ±20%, Ceramic	AA AA
					· · · · · · · · · · · · · · · · · · ·	JULION D. ZOV. 42076. LEGATUR I	~~ .

PARTS LIST

	REF.			1				
	NO.	PART NO.	DESCRIPTION	CODE	REF. NO.	PART NO.	DESCRIPTION	CODE
	C105	VCTYPU1EX103M	.01 MFD, 25V, ±20%, Ceramic	AA	C159	VCQSMU1HS681J	680PF, 50V, ±5%, Styrol	АВ
	C106	VCTYPU1EX103M	.01MFD, 25V, ±20%, Ceramic	AA	C160	VCAAKU1AA105M	1MFD, 10V, ±20%, Electrolytic	
	C107	VCTYPU1EX103M	.01MFD, 25V, ±20%, Ceramic	AA	C161	VCAAAU1AB224M	.22MFD, 10V, ±20%, Electrolyt	ic AC
	C108	VCTYPU1EX223K	.022MFD, 25V, ±10%, Ceramic	AB	C162	VCEAAU1HW105A	1MFD, 50V, +75 -10%,	AB
	C109	VCQYKU1HM103M		AB			Electrolytic	
	C110	VCRYPU1HB221J	220PF, 50V, ±5%, Ceramic	AB	C163	VCTYPU1EX123K	.012MFD, 25V, ±10%, Ceramic	АВ
	C111	VCTYPU1EX103M	.01MFD, 25V, ±20%, Ceramic	AA	C164	VCTYPU1EX123K	.012MFD, 25V, ±10%, Ceramic	AB
	C112	VCTYPU1EX223K	.022MFD, 25V, ±10%, Ceramic	AB	C165	VCTYPU1EX102K	.001 MFD, 25V, ±10%, Ceramic	AA
	C113	VCEAAU1EW475A	4.7MFD, 25V, +75 -10%,	AB	C166	VCTYPU1EX102K	.001 MFD, 25V, ±10%, Ceramic	AA
	C114	1/04 4 41/4 4 54 644	Electrolytic		C167	VCKZPU1HF104Z	.1MFD, 50V, +80 -20%,	AC
	C114	VCAAAU1AB104M	.1MFD, 10V, ±20%,	AC			Ceramic	
	C115	\/CD\/D\ \d\	Electrolytic		C168	RC-EZ1075AFZZ	1500MFD, 16V, +50 -10%,	AE
		VCRYPU1HB221J	220PF, 50V, ±5%, Ceramic	AB			Electrolytic	
	C116	VCEAAU1EW475A	4.5MFD, 25V, +75 –10%,	AB	C169	RC-EZS107AF1A	100MFD, 10V, +50 -10%,	AB
	C120	V00>4414144	Electrolytic				Electrolytic	
	C120	VCQYKU1HM152J	.0015MFD, 50V, ±5%, Mylar	AC	C170	RC-EZS107AF1A	100MFD, 10V, +50 -10%,	АВ
	C121	VCRYPU1HB221J	220PF, 50V, ±5%, Ceramic	AB			Electrolytic	
	C122	VCCSPU1HL220J	22PF, 50V, ±5%, Ceramic	AA	C171	VCAAKU1AA105M	1MFD, 10V, ±20%, Electrolytic	AD
	C123	VCTYPU1EX103M	.01MFD, 25V, ±20%, Ceramic	AA	C172	VCAAAU1AB105M	1MFD, 10V, ±20%, Electrolytic	AD
	C124	VCQYKU1HM222M	.0022MFD, 50V, ±20%, Mylar	AB	C173	RC-EZS107AF1A	100MFD, 10V, +50 -10%,	AB
	C125	-VCQYKU1HM103M	.01MFD, 50V, ±20%, Mylar	AB			Electrolytic	AB
	C126	VCTYPU1EX333M	.033MFD, 25V, ±20%,	AB	C174	VCTYPU1EX333M	.033MFD, 25V, ±20%, Ceramic	40
			Ceramic		C175	VCTYPU1EX122K	.0012MFD, 25V, ±20%, Ceramic	AB
	C127	VCTYPU1EX223M	.022MFD, 25V, ±20%,	AA		VOI II OTEXTZER	Ceramic	AA
			Ceramic	701	C176	VCTYPU1EX122K		
	C128	VCQYKU1HM222J	.0022MFD, 50V, ±5%, Mylar	AB	0,70	VOLITOTEXTEER	.0012MFD, 25V, ±10%,	AA
	C129	VCRYPU1HB101J	100PF, 50V, ±5%, Ceramic	AA	C177	VCAAKU1AA224M	Ceramic	
	C130	VCRYPU1HB101J	100PF, 50V, ±5%, Ceramic	AA	0177	V CAARO TAAZZ4IVI	.22MFD, 10V, ±20%,	AC
	C131	VCTYPU1EX222M	.0022MFD, 25V, ±20%,	AA	C178	VCAAKIII AAGGAAA	Electrolytic	
			Ceramic	~~	C176	VCAAKU1AA224M	.22MFD, 10V, ±20%,	AC
	C132	VCTYPU1EX103M	.01MFD, 25V, ±20%, Ceramic	АА	C179	VCK VAT1 LIBOO1 K	Electrolytic	
	C133	VCQYKU1HM103M	.01MFD, 50V, ±20%, Mylar	AB	C180	VCKYAT1HB821K	820PF, 50V, ±10%, Ceramic	AA
	C134	VCCTPU1HH181J	180PF (TH), 50V, ±5%,			VCKYAT1HB821K	820PF, 50V, ±10%, Ceramic	AA
			Ceramic	AB	C181 C182	VCAAKU1AA105M	1MFD, 10V, ±20%, Electrolytic	AD
	C135	VCRYPU1HB221J	220PF, 50V, ±5%, Ceramic	40		VCAAKU1AA105M	1MFD, 10V, ±20%, Electrolytic	AD
	C136	VCQYKU1HM102K	.001MFD, 50V, ±10%, Mylar	AB	C183	VCTYPU1EX223K	.022MFD, 25V, ±10%,	AB
	C137	VCQYKU1HM103M	.01 MFD, 50V, ±20%, Mylar	AB	C104	MOTMORISTME	Ceramic	1
	C138	VCQYKU1HM153M	.015MFD, 50V, ±20%, Mylar	AB	C184	VCTYPU1EX223K	.022MFD, 25V, ±10%,	AB
	C139	VCCSPU1HL1R0C	1PF, 50V, ±25PF, Ceramic	AB	04.05		Ceramic	-
	C140	VCQYKU1HM333M		AA	C185	VCAAAU1AB104M	.1MFD, 10V, ±20%,	AC
	C141	VCTYPU1EX223K	.033MFD, 50V, ±20%, Mylar	AB		. 1.2.1.4	Electrolytic	
	0,4,	VCTTFOTEX223N	.022MFD, 25V, ±10%,	AB	C186	VCAAAU1AB104M	.1MFD, 10V, ±20%,	AC
	C142	VCEAAU1CW106Y	Ceramic				Electrolytic	
	C142	V CEAAUT CW 106 Y	10MFD, 16V, +50 –10%,	AB	C187	VCRYPU1HB101J	100PF, 50V, ±5%, Ceramic	AA
	C145	VCTVDUITCVATORA	Electrolytic		C189	VCTYPU1EX122K	.0012MFD, 25V, ±10%,	AA
•	5145	VCTYPU1EX473M	.047MFD, 25V, ±20%,	AB			Ceramic	
,	C146	VCDVDU4UD0041	Ceramic		C190	VCTYPU1EX122K	.0012MFD, 25V, ±10%,	AA
		VCRYPU1HB331J	330PF, 50V, ±5%, Ceramic	AB			Ceramic	
	C147	VCCSPU1HL5R0C	5PF, 50V, ±25PF, Ceramic	AA	C191	RC-EZS107AF1A	100MFD, 10V, +50 -10%,	АВ
	C148	VCTYAT1EX822N	.0082MFD, 25V, ±30%,	AA			Electrolytic	
	24.40		Ceramic		C192	RC-EZS107AF1A	100MFD, 10V, +50 -10%,	АВ
(C149	VCEAAU1EW475A	4.7MFD, 25V, +7510%,	AB			Electrolytic	7.0
			Electrolytic		C193	VCEAAU1AW476Y	47MFD, 10V, +50 -10%,	АВ
	2150	VCKYAT1HB821K	820PF, 50V, ±10%, Ceramic	AA			Electrolytic	70
(C151	VCEALU1HC224M	.22MFD, 50V, ±20%,	AB	C194	VCEAAU1AW476Y	4714ED 4014 4004	АВ
			Electrolytic				Electrolytic	AB
(152	VCTYAT1EX103N	.01MFD, 25V, ±30%, Ceramic	AA	C195	RC-EZS477AF1A	470MED 40M	
C	153	VCTYAT1EX472N	.0047MFD, 25V, ±30%,	AA			Electrolytic	AC
			Ceramic		C196	RC-EZS477AF1A		
C	154	VCTYAT1EX103N	.01 MFD, 25V, ±30%, Ceramic	AA				AC
C	155	VCTYAT1EX472N	.0047MFD, 25V, ±30%,	AA	C197	VCQYKU1HM104M	Electrolytic	
			Ceramic	. " ,	C198	VCQYKU1HM104M	.1MFD, 50V, ±20%, Mylar	AC
C	156	VCTYPU1EX103M	.01MFD, 25V, ±20%, Ceramic	AA	C199	VCEAAU1HW105A	.1MFD, 50V, ±20%, Mylar	AC
C	158	VCEAAU1EW475A	4.7MFD, 25V, +75 –10%,	AB	5,00	A OF WALL DAY	1MFD, 50V, +75 –10%,	AB
			Electrolytic	75	C200	VCEAAU1HW105A	Electrolytic	
					3230	A CEUVO I UM I 1024	1MFD, 50V, +75 –10%,	AB
			,	1			Electrolytic	1

PARTS LIST

PARTS LIST

	REF. NO.	PART NO.	DESCRIPTION	CODE	REF. NO.	PART NO.	DESCRIPTION	CODE
	C201	VCEAAU1CW106Y	10MFD, 16V, +50 -10%,	АВ	06	LCHSM0298AFZZ	Chassis, Sliding	
			Electrolytic		07 .	LCHSS0133AFZZ	Head Base	
	C202	VCEAAU1EW475A	4.7MFD, 25V, +75 –10%,	AB	08	MLEVF0818AFZZ	Lever, Fast Forward/Rewind	AB
			Electrolytic		09	MLEVF0819AFZZ	Lever, Fast Forward/Rewind	AA
	C203	VCTYPU1EX103M	.01 MFD, 25V, ±20%, Ceramic	AA	10	MI EVE0000 A EZZ	Lock	
	C204	VCCSPU1HL330J	33PF, 50V, ±5%, Ceramic	AA	10	MLEVF0820AFZZ	Lever, Fast Forward/Rewind	AA
	C205	VCTYPU1EX103M	.01MFD, 25V, ±20%, Ceramic	AA	11	MLEVF0821AFZZ	Lever, Play Lock	AA
	C206	RC-EZS476AF1C	47MFD, 16V, +50 –10%,	AB	12	MLEVF0822AFZZ	Lever, Eject	AA
			Electrolytic		13	MLEVF0823AFZZ	Lever, Fast Forward Return Lever, Rewind Return	AB
					14 15	MLEVF0824AFFW	Lever, Eject Prevent	AB
		D.	ESISTORS		16	MLEVF0825AFZZ MLEVP0116AFZZ	Lever, Cassette Ejector (L)	AA
	Unless		tors are 1/4W, ±5%, Carbon type.	,	17	MLEVP0117AFZZ	Lever, Cassette Ejector (E)	
	R102	VRD-SU2BY332J	3.3K ohm, 1/8W, ±5%, Carbon	AA	18	MSPRC0168AFFJ	Spring, Flywheel Thrust	AA
	R103	VRD-SU2B Y681J	680 ohm, 1/8W, ±5%, Carbon	AA	,,,	WISHTCOTOOMITTO	Adjust	~~
	R105	VRD-SU2BY331J	330 ohm, 1/8W, ±5%, Carbon	AA	19	MSPRD0193AFFJ	Spring, Sliding Chassis Return	АВ
	R106	VRD-SU2BY561J	560 ohm, 1/8W, ±5%, Carbon	AA	, 0	141011111111111111111111111111111111111	(L)	
	R107	VRD-SU2BY561J	560 ohm, 1/8W, ±5%, Carbon	AA	20	MSPRD0194AFFJ	Spring, Fast Forward/Rewind	AA
	R108	VRD-SU2BY561J	560 ohm, 1/8W, 5%, Carbon	AA		11101 112010 1111 1	Lock Lever	
	R110	VRD-SU2BY102J	1K ohm, 1/8W, ±5%, Carbon	AA	21	MSPRD0195AFFJ	Spring, Eject Prevent Lever	AA
	R111	VRD-SU2BY104J	100K ohm, 1/8W, ±5%,	AA	22	MSPRP0189AFFJ	Spring, Head Base Pressure	AB
			Carbon		23	MSPRP0190AFFJ	Spring, Head Azimuth Adjust	AB
	R113	VRD-SU2BY821J	820 ohm, 1/8W, ±5%, Carbon	AA	24	MSPRT0538AFFJ	Spring, Head Base	AA
	R114	VRD-SU2BY821J	820 ohm, 1/8W, ±5%, Carbon	AA	25	MSPRT0539AFFJ	Spring, Pinch Roller	AB
	R115	VRD-ST2EE105J	1 Meg ohm	AA	26	MSPRT0540AFFJ	Spring, Rewind Gear	AA
	R131	VRD-SU2BY331J	330 ohm, 1/8W, ±5%, Carbon	AA	27	MSPRT0541AFFJ	Spring, Fast Forward Roller	AA
	R142	VRD-ST2EE474J	470K ohm	AA	28	MSPRT0542AFFJ	Spring, Cassette Ejector Lever	AA
	R144	VRD-ST2EE183J	18K ohm	AA	29	MSPRT0543AFFJ	Spring, Sliding Chassis Return	AB
ы.	R157	VRD-ST2EE332J	3.3K ohm	AA			(R)	
	R166	VRD-ST2EE330J	33 ohm	AA	30	MSPRT0544AFFJ	Spring, Fast Forward/Rewind	AA
	R171	VRD-SU2EE475J	4.7 Meg ohm	AA			Lever	
	R172	VRD-SU2EE475J	4.7 Meg ohm	AA	31	MSPRT0545AFFJ	Spring, Eject Lever	AA
	R177	VRD-ST2EE225J	2.2 Meg ohm	AA	32	NBLTK0127AFZZ	Belt, Flywheel Drive	AC
	R178	VRD-ST2EE225J	2.2 Meg ohm	AA	33	NBLTK0108AFZZ	Belt, Rewind Gear	AC
	R187	VRD-ST2EE822J	8.2K ohm	AA	34	NDAIR0130AFZZ	Turntable, Take-up	AF
	R201	VRD-SU2BY333K	33K ohm, 1/8W, ±10%,	AA	35	NDAIR0131AFZZ	Turntable, Supply	AF
			Carbon		36	NFLYC0070AFZZ	Flywheel	AG
	R202	VRD-SU2BY822K	8.2K ohm, 1/8W, ±10%,	AA	37	NPLYR0062AFZZ	Ring Magnet	AE
			Carbon	and the second	. 38	NROLP0057AFZZ	Gear, Play	AB
	R203	VRD-SU2BY152K	1.5K ohm, 1/8W, ±10%,	AA	39	NROLV0010AFZZ	Roller Assembly, Fast Forward	AF
			Carbon		40	NROLX0010AFZZ	Gear Assembly, Rewind	AE
	R204	VRD-SU2BY682K	6.8K ohm, 1/8W, ±10%,	AA	41	NRO LY0017AFZZ	Pinch Roller Assembly	AE
			Carbon		42	PGIDM0065AFZZ	Cassette Guide (L)	AB
	R205	VRD-SU2BY152K	1.5K ohm, 1/8W, ±10%,	AA	43	PGIDM0066AFZZ	Cassette Guide (R)	AB
			Carbon		44	PGUMM0111AF00	Cushion Rubber	AB
	R206	VRD-SU2BY153K	15K ohm, 1/8W, ±10%,	AA	45	RHEDF0054AFZZ	Head, Playback	AR
			Carbon		46	RM07M0080AFZZ	Motor	AV
	R207	VRD-SU2BY152K	1.5K ohm, 1/8W, ±10%,	AA	47	RPLU-0076AFZZ	Solenoid	AL
			Carbon		48	LX-WZ5012AGZZ	Washer	AA
	R208	VRD-ST2BY154K	150K ohm, 1/8W, ±10%,	AA	49	LX-WZ5018AGZZ	Washer	AA
			Carbon		50	LX-WZ5020AGZZ	Washer	AA
	R209	VRD-ST2EE681J	680 ohm	AA	51	LX-WZ9057AFZZ	Spacer, Flywheel	AA
	R210	VRD-ST2EE474J	470K ohm	AA	52	LX-WZ9058AFZZ	Washer, Lock	AA
					53	QHWS-3206AGFN	Lug	AA
		1450/141	WOAL DADTO		54	QPWBF0747AFZZ	Printed Wiring Board,	-
		MECHAI	NICAL PARTS			00405505504555	Mechanism Control	
	01	1 AND E04074 F77	Product Elizaberi	\ A.D.	55	QPWBF0756AFZZ	Printed Wiring Board, Lead	-
	01	LANGF0437AFZZ	Bracket, Flywheel	AB	EG	LULDW0050 A 577	Switch	
	02	LANGF0438AFZZ	Pushing Arm, Radio/Tape.	AB	56	LHLDW3056AFZZ	Wire Holder	AA
-2	03	1 ANG E0490 4 E22	Selector Switch	, _				
	03	LANGF0439AFZZ	Bracket, Mechanism Mounting (L)	AC		MICOT	LLANEOUS	
	04	LANGF0440AFZZ	Bracket, Mechanism Mounting	AC		INIIOCE	LLANEOUS	
	J-7	DANGE UNNUMFEL	(R)	~	101	(GCABA3476AFFW	Cabinet, Rear (RG-5800H)	\.
	05	LCHSM0297AFZZ	Chassis, Fixed		.51	GCABA3476AFFW	Cabinet, Rear (RG-5800H) Cabinet, Rear (RG-5800E)	AH
		EU IONIOZS/AI ZZ	J. 1200107 1 17100	1		(DOME GOODMIT W	Causillet, Freat (FIG-5000E)	1

REF. NO.	PART NO.	DESCRIPTION	CODE	REF. NO.	PART NO.	DESCRIPTION	CODE
102	GCABB3476AFFW	Cabinet, Front	AE	*****	LANGT0071AFFW	Suspension Metal	АВ
103	GCABC3476AFFW	Cabinet, Bottom	AE		LANGZ0003AFFW	Bracket, Mounting	AB
104	GCABD3476AFFW	Cabinet, Top	AE		LHLDW1075AFZZ	Nylon Band	AA
105	GFTAC1081AFSA	Cassette Door	AE		LX-BZ0223AFFD	Screw (For Transport	
106	GWAKP1073AFSA	Nose Piece	AF			Protection)	
107	HDALP0391AFSA	Dial Scale	AD		LX-BZ0236AFFE	Bolt with Spring and Flat	AA
108	HDAP-0174AF00	Dial Back Plate	AC			Washers, $\phi 5 \times 14$ mm	
109	HINDP0127AFSA	Indication Plate	AF		LX-BZ0260AFFE	Bolt with Spring and Flat	AB
110	HPNLC1242AFSA	Panel	AG			Washers, ϕ 5 × 8 mm	
111	HSSND0242AFSA	Dial Pointer	AB		XNESD50-45000	Nut, φ5	AA
112	JKNBK0167AFSA	Knob, Tone Control and Band Selector	AD	CNP1	XWHSD50-05000 QCNCM0503SGZZ	Washer, φ5 Connector, 5 Pin	AA AD
113	JKNBM0262AFSA	Knob, FM Stereo/Mono Selector	АВ	CNP2	QCNCM217FAFZZ	Connector, 6 Pin (RG-5800H Only)	AC
114	JKNBN0363AFSA	Knob, Power Switch/Volume/	AD	CNP3	QCNCM136CAFZZ	Connecotr, 3 Pin	AB
115	JKNBP0066AFSA	Balance and Tuning Control Knob, Eject and FF/REW	AC	CNS1	QCNW-0325AFZZ	Wiring Wires with Connector (5 Pin)	AF
116	LANGQ0606AFFW	Arm, Band Selector Switch	AB	CNS2	Not Available	Wiring Wires with Connector	N.A.
117	LB0SH0058AFFW	Boss, Band Selector Lever (A)	AB			(6 Pin) (Part of SO103)	
118	LB0SH0059AFFW	Boss, Band Selector Lever (B)	АВ	CNS3	QCNW-0320AFZZ	Shield Wire with Connector	AE
119	MLEVF0831AFFW	Band Selector Lever (A)	AC		QCNW-0321AFZZ	Speaker Cord, 5 m	AP
120	MLEVF0832AFFW	Band Selector Lever (B)	AC			(RG-5800H)	S 10
121	MSPRD0180AFFJ	Spring, Cassette Door	AA		QCNW-0342AFZZ	Speaker Cord, 3.5 m	AN
122	MSPRT0321AFFJ	Spring, Dial Cord	AA			(RG-5800E)	
123	NPLYC0103AFFW	Dial Cord Guide	AB		QCNW-0322AFZZ	Earth Cord	AC
124	NPLYD0050AF00	Dial Cord Guide	AB		QFS-A232BAFNH	Fuse	AC
125	NPLYD0051AF00	Dial Cord Guide	AB		QFSHJ1058AFZZ	Fuse Holder with Coil	AM
126	NSFTZ0065AFZZ	Shaft, Tuning Control/Band	AK	SW101	QSW-S0180AFZZ	Switch, Band Selector	AK
		Selector		SW102	QSW-P0174AFZZ	Switch, FM Stereo/Mono	AF
127	PC0VU3111AFFW	Lamp Cover	AB	CIMOOA	004/501004577	Selector	
128	PCOVZ8055AFZZ	Lamp Cover, Green	AA	SW201	QSW-F0126AFZZ	Switch, Radio/Tape Selector	AE
129	PCUSSOO96AFZZ	Cushion	AA	SW202	QSW-F0127AFZZ	Switch, Tape Eject	AD
130	PRDAR0167AFFW	Heat Sink	AA AD	SW203 PL101	QSW-L0054AFZZ	Switch, Tape Stop Detect	AE
131	PRDAR0175AFFW	Heat Sink	AD	SO101	RLMPM0069AFZZ QS0CZ0015AFZZ	Lamp, Dial Antenna Socket	AD
132	PSPAZ0074AFZZ PZETF0133AFZZ	Spacer, Plastic Insulation Plate	AC	SO101	QCNW-0324AFZZ	DIN Socket (6 Pole)	AG
133 134	QLUGL0150AFZZ	Ground Terminal	AB	SO102	QCNW-0323AFZZ	DIN Socket (7 Pole) with	AH
135	QPLGD0401AFZZ	Shorting Plug (RG-5800H	AC			Connector	
136	QPLGD0402AFZZ	Only) Shorting Plug (RG-5800H	AC	SO104	QSOCD0271AFZZ QSOCD0272AFZZ	Speaker Socket Speaker Socket (Replacement	AG
		Only)				Only)	
137	RTUNC0124AFZZ	Tuner Unit	BA		SPAKA0520AFZZ	Packing Add.	1 1
138	LX-NZ0058AFFD	Nut, φ9	AA		SPAKC1149AFZZ	Packing Case	
139	PSPAF0052AFFW	Spacer, Metal	AA		TINSZ0120AFZZ	Operation Manual (RG-5800H)	
140	XWHSD92-05140	Washer, φ9.2	AA		TTAGH0039AFZZ	Tag (RG-5800H Only)	
141	LX-NZ0008SGFD	Nut, ø3	AA		SPAKX0189AFZZ	Packing Add.	
142	LX-HZ0001SGFD	Screw with Washer			SSAKH0097AFZZ	Polyethylene Bag, Set	
143	LX-HZ0051AFFD	Screw with Washer			TTAG-0066AFZZ	Tag, ANSS	
144	QPRBF0080AFZZ	Printed Wiring Board (Printed Resistors)			TINSE0561AFZZ	Operation Manual (RG-5800E)	
145	TLABZ0125AFZZ	Label (RG-5800H Only)					
146	PREFL0066AFZZ	Reflection Paper	' '				1 1