

AD-A113 974

NAVAL RESEARCH LAB WASHINGTON DC
INTEGER RESONANCES IN THE MODIFIED BETATRON. (U)
APR 82 D CHERNIN, P SPRANGLE

F/G 20/7

UNCLASSIFIED

NRL-MR-4691

NL

for 1
AP 8
1-4974

END
DATE FILMED
105-19-2
DTIC

AD A113074

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NRL Memorandum Report 4691	2. GOVT ACCESSION NO. <i>1D A113972</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) INTEGER RESONANCES IN THE MODIFIED BETATRON	5. TYPE OF REPORT & PERIOD COVERED Interim report on continuing problem.	
7. AUTHOR(s) D. P. Chernin* and P. Sprangle	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Research Laboratory Washington, D.C. 20375	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 47-0899-0-2 P.E. 61153N 11 Project RR011-09-41	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Arlington, VA 22209	12. REPORT DATE April 8, 1982	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	13. NUMBER OF PAGES 23	
	15. SECURITY CLASS. (of this report) Unclassified	
	16. DECLASSIFICATION/DOWNGRADING SCHEDULE	
17. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
18. SUPPLEMENTARY NOTES *Berkeley Research Associates, Springfield, VA 22150		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Field errors Integer resonances Fourier components Temperature effect Stationary phase		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The integer resonances affecting beam motion in the presence of external field imperfections in the modified betatron are studied. An upper bound is obtained on the magnitude of field error that may be tolerated. A numerical example shows that for practical parameters the resulting bound is very restrictive. The effect of longitudinal temperature and other possible stabilizing effects are discussed.		

CONTENTS

I.	INTRODUCTION	1
II.	ORBITAL RESONANCES FOR A BEAM	1
III.	EFFECT OF FINITE BEAM TEMPERATURE ON RESONANCES	6
IV.	CONCLUSIONS	8
V.	ACKNOWLEDGMENTS	8
REFERENCES		9

INTEGER RESONANCES IN THE MODIFIED BETATRON

I. INTRODUCTION

In a conventional betatron, low order resonances between particle motion and field imperfections can be avoided by restricting the beam current so that the tune shift¹ remains sufficiently small. In a modified betatron, the addition of a strong toroidal magnetic field may allow large currents to be accelerated^{2,3} but resonances become much more difficult to avoid, especially if one contemplates removing the toroidal field before the beam is extracted. This paper examines the problem of integer resonances in the modified betatron⁴ and obtains a condition bounding the rate of change of the fields; when the condition is satisfied the resonances are passed through with sufficient speed so that the beam is not significantly disturbed. We consider here only errors in the fields themselves, not in field gradients, so we discuss only the integer, not the half integer resonances.

In what follows we will first consider a "cold" beam, that is, one in which there is no spread in longitudinal energy or, therefore, in circulation frequency about the machine. The effect of orbital resonances on such a cold beam will be seen to place rather severe limits on the magnitude of the tolerable field imperfections. When the effects of temperature are taken into account however a numerical example below will illustrate a reduction of the effect of the resonance on the motion of the beam center of mass. An explanation of this temperature effect will be given.

II. ORBITAL RESONANCES FOR A COLD BEAM

We consider a beam of circular cross section and uniform density and current profiles as shown in Fig. 1. The torus has a major radius r_0 and minor radius a ; the chamber is assumed to be perfectly

Manuscript submitted February 5, 1982.

CHERNIN AND SPRANGLE

conducting as far as the rapidly varying part of the self fields is concerned. The beam radius is r_b with center located at $r = r_0 + \Delta r$, $z = \Delta z$ as shown in the figure. If we define the displacement of a particle from the design orbit $r = r_0$, $z = 0$ as $r_1 = \Delta r + \delta r$, $z_1 = \Delta z + \delta z$ then the equations of motion for r_1 and z_1 are, to first order in the displacement from the design orbit:

$$\ddot{r}_1 + \frac{\dot{\gamma}_0}{\gamma_0} \dot{r}_1 + \Omega_{z0}^2(1 - n - n_s)r_1 = \frac{e\dot{B}_{z0}}{2m\gamma_0 c} z_1 + \Omega_{z0}\dot{z}_1 - \frac{\omega_b^2}{2\gamma_0^2} \left(1 - \frac{r_b^2}{a^2}\right) \Delta r - \frac{e}{m\gamma_0} [\tilde{E}_r + \beta_0 \tilde{B}_z + \Omega_{z0} \int_0^t dt' \tilde{E}_u(t')] \quad (1a)$$

$$\ddot{z}_1 + \frac{\dot{\gamma}_0}{\gamma_0} \dot{z}_1 + \Omega_{z0}^2(n - n_s)z_1 = - \frac{e\dot{B}_{z0}}{2m\gamma_0 c} r_1 - \Omega_{z0}\dot{r}_1 - \frac{\omega_b^2}{2\gamma_0^2} \left(1 - \frac{r_b^2}{a^2}\right) \Delta z - \frac{e}{m\gamma_0} [\tilde{E}_z - \beta_0 \tilde{B}_r] \quad (1b)$$

where

γ_0 = energy of particle on "ideal" design orbit (in units of mc^2)

$\Omega_{z0} = eB_{z0}/m\gamma_0 c$

$\Omega_{z0} = eB_{z0}/m\gamma_0 c$

B_{z0} = vertical magnetic field at design orbit

B_{z0} = toroidal magnetic field

n = betatron field index (assumed constant here)

n_s = self field index = $\omega_b^2/(2\gamma_0^2\Omega_{z0}^2)$

ω_b = beam plasma frequency = $(4\pi n_0 e^2/m\gamma_0)^{1/2}$

e, m = magnitude of electron charge, rest mass

and where field components with a "wiggle" on the right hand sides of (1a, b) denote the value of the field imperfection which in general will depend on the value of θ , the azimuthal position of the particle. When deriving (1a, b) we have allowed all fields to depend on time; we have therefore included the inductive poloidal electric field (\dot{B}_{z0} terms). Also included are the effect of wall image charges and currents (r_b^2/a^2 terms), present when the beam is displaced from the center of the chamber.

NRL MEMORANDUM REPORT 4691

We desire to have equations which describe only the motion of the beam center, $\Delta r(\theta, t)$, $\Delta z(\theta, t)$. To this end we define a distribution function f as

$$f(r, \theta, z, v_r, v_\theta, v_z, t) \equiv \sum_{r^{(0)}, v^{(0)}} g(r^{(0)}, v^{(0)}) \delta(r - \hat{r}) \frac{\delta(\theta - \hat{\theta})}{r} \delta(z - \hat{z}) \delta^{(3)}(v - \hat{v}) \quad (2)$$

where $r^{(0)}$ and $v^{(0)}$ are particle initial conditions, \hat{r} , $\hat{\theta}$, \hat{z} , and \hat{v} are the solutions for the particle trajectories as functions of initial position, velocity, and time, and where $g(r^{(0)}, v^{(0)})$ is a weighting function.

We then have that

$$\begin{aligned} \Delta r(\theta, t) &= \frac{\int r dr dz dv (r - r_0) f}{\int r dr dz dv f} = \frac{\Sigma g(r^{(0)}, v^{(0)}) (\hat{r} - r_0) \delta(\theta - \hat{\theta})}{\Sigma g(r^{(0)}, v^{(0)}) \delta(\theta - \hat{\theta})} \\ &\equiv \langle r_1 \rangle. \end{aligned} \quad (3)$$

A similar expression holds for $\Delta z(\theta, t)$. It may be similarly shown that, for a cold beam,

$$\langle \dot{r}_1 \rangle = \left(\frac{\partial}{\partial t} + \Omega_{z0} \frac{\partial}{\partial \theta} \right) \Delta r \quad (4)$$

$$\langle \ddot{r}_1 \rangle = \left(\frac{\partial}{\partial t} + \Omega_{z0} \frac{\partial}{\partial \theta} \right)^2 \Delta r \quad (5)$$

where, of course, analogous expressions hold for $\langle z_1 \rangle$, $\langle \dot{z}_1 \rangle$ and $\langle \ddot{z}_1 \rangle$. In Eqs. (4) and (5) we have assumed that all particles circulate the machine with $\dot{\theta} = \Omega_{z0}$. This assumption will be relaxed in the next section where the effects of finite longitudinal temperature are considered.

Using this averaging procedure on (1a, b) one obtains equations for the beam center motion. Though these may be solved in general, the special choice $n = 1/2$ (which is consistent with our assumption of a circular beam) simplifies the analysis

With $n = 1/2$ and defining

$$\Delta \psi = \Delta r + i \Delta z \approx \sum_{l=-\infty}^{\infty} \overline{\Delta \psi_l} e^{il\theta}, \quad (6)$$

the equation for $\overline{\Delta \psi_l}$ is

$$\begin{aligned} \frac{\partial^2}{\partial t^2} \overline{\Delta \psi_l} + & \left[\frac{\gamma_0}{\gamma_0} + i \Omega_{z0} + 2i\Omega_{z0} \right] \frac{\partial \overline{\Delta \psi_l}}{\partial t} \\ & + \left[\Omega_{z0}^2 \left(\frac{1}{2} - \frac{r_s^2}{a^2} n_l - l^2 \right) + il\Omega_{z0} \frac{\dot{\gamma}_0}{\gamma_0} + i \frac{eB_{z0}}{2m\gamma_0} \right. \\ & \left. - \omega_0 + il\dot{\Omega}_{z0} \right] \overline{\Delta \psi_l} = F_l \end{aligned} \quad (7)$$

CHERNIN AND SPRANGLE

where F_l is the l -th Fourier component of

$$-\frac{e}{m\gamma_0} \left[\tilde{E}_r + \beta_0 \tilde{B}_z + i(\tilde{E}_z - \beta_0 \tilde{B}_r) + \Omega_{z0} \left\langle \int_0^t dt' \tilde{E}_n(t') \right\rangle \right].$$

Equation (7) may be solved, assuming the functions multiplying derivatives of $\overline{\Delta\psi}_l$ are slowly varying over the period of a betatron oscillation:

$$\overline{\Delta\psi}_l \approx (\gamma_0 \omega_0)^{-1/2} \int_t^t dt' e^{-i \int_{t'}^t dt'' \left(\frac{1}{2} \Omega_{n0} + \Omega_{z0} \right)} \left[\frac{\gamma_0(t')}{\omega_0(t')} \right]^{1/2} \sin \left[\int_{t'}^t dt'' \omega_0 \right] F_l(t') \quad (8)$$

where

$$\omega_0(t) \equiv \left[\Omega_{z0}^2 \left(\frac{1}{2} - \frac{r_b^2}{a^2} n_s \right) + \frac{1}{4} \Omega_{n0}^2 \right]^{1/2}. \quad (9)$$

For long times (many betatron periods) the integral in (8) may be evaluated by the method of stationary phase. The points of stationary phase (resonance points) occur when

$$\Omega_l^\pm \equiv -\frac{1}{2} \Omega_{n0} - l\Omega_{z0} \pm \omega_0 = 0 \quad (10)$$

for a given l . This is just the condition that the betatron frequency be l times the fundamental cyclotron frequency, Ω_{z0} . Condition (10) may also be written

$$B_{n0} = -\frac{1}{l} \left(l^2 + \frac{r_b^2}{a^2} n_s - \frac{1}{2} \right) B_{z0}. \quad (11)$$

For positive B_{n0} and B_{z0} (11) may be satisfied only by negative l and for such l (10) may be satisfied only for the lower sign (fast mode resonance). Evaluating (8) then gives

$$\overline{\Delta\psi}_l \sim i \left(\frac{\pi}{2} \right)^{1/2} \left[\frac{\gamma_0(t_-)}{\gamma_0(t) \omega_0(t) \omega_0(t_-)} \right]^{1/2} \frac{F_l(t_-)}{|\dot{\Omega}_l^-(t_-)|^{1/2}} e^{i \int_{t_-}^t \Omega_l^- dt'' \pm i\pi/4} \quad (12)$$

where t_- is the time at which $\dot{\Omega}_l^- = 0$ and where the $+$ or $-$ sign is used in the exponent according as $\dot{\Omega}_l^-(t_-) > 0$ or < 0 respectively.

If we neglect the possibility of cancellation due to different phases as we pass through different resonances and if we interpret F_l generically as $\left[-\frac{e}{m\gamma_0} \delta f_l \right]$ where δf_l is the l -th Fourier component of any field error, we may obtain a lower bound on $|\dot{\Omega}_l^-|$ by requiring

NRL MEMORANDUM REPORT 4691

$$|\overline{\Delta\psi}_l| \ll a \quad (13)$$

which gives

$$|\dot{\Omega}_l^-| \gg \frac{\pi}{2} \left[\frac{e\delta f_l}{m\gamma_0\omega_0 a} \right]^2 \quad (14)$$

which is our basic result. For γ_0 large enough that we may neglect $\dot{\Omega}_{z0}$ compared to $\dot{\Omega}_{n0}$ and $r_b^2 n_s/a^2$ compared to 1/2, this constraint may be rewritten, using the relations

$$\dot{\Omega}_l^- = -\frac{l^2}{l^2 + 1/2} \dot{\Omega}_{n0} \quad (15)$$

and

$$\omega_0 = \frac{l^2 + 1/2}{2|l|} \Omega_{z0}, \quad (16)$$

as

$$|\dot{\Omega}_{n0}| \gg \frac{2\pi}{l^2 + 1/2} \left[\frac{\delta f_l}{B_{z0}} \frac{c}{a} \right]^2. \quad (17)$$

As an example we consider the problem of passing through the $l = -1$ resonance. We consider a hypothetical experiment ($r_0 = 1$ m, $a = 10$ cm, $r_b = 1$ cm) in which γ_0 is increased linearly in time from an initial (injection) value of 7 to a final value ($t_{\text{final}} = 1$ millisecond) of 100 while simultaneously B_{n0} is decreased from 1.5 kg to 0. The $l = -1$ resonance will occur at $t = 627 \mu\text{s}$ at which time $B_{z0} = 1120$ g, $B_{n0} = 560$ g, and $\gamma_0 = 65.3$. At resonance, $\dot{\Omega}_{n0} = -6.2 \times 10^{11} \text{ sec}^{-2}$. Substituting in the expression (17) we obtain an upper bound on the allowable field error

$$\frac{\delta f_{-1}}{B_{z0}} \ll 1.3 \times 10^{-4},$$

a rather severe requirement.

We conclude that, at least for the case of a cold beam, it may not be desirable to remove the toroidal field and pass through these resonances. Perhaps the toroidal field may be reduced somewhat from its initial value, assuming the high l resonances are not too important and can be easily passed through. It may then be possible, by the use of an intentionally introduced field perturbation to use a low l resonance in a controlled way to extract the beam before B_n is completely removed.

CHERNIN AND SPRANGLE

It should be noted that it is possible, at least in principle, to avoid the integer resonances altogether by raising both B_{z0} and $B_{\theta0}$ proportionately and in such a way that condition (11) is never satisfied for any l . At the end of such an acceleration cycle however one will have a very large toroidal magnetic field in the device, possibly complicating the extraction process.

The above results apply to a beam all of whose particles are traveling to lowest order at the same azimuthal angular velocity. All particles are then in resonance at precisely the same moment and receive the same periodic perturbations to their orbits. In the next section we relax this assumption and examine the behavior of a beam, the particles of which possess a spread in energy.

III. EFFECT OF FINITE BEAM TEMPERATURE ON RESONANCES

To calculate the effect of beam temperature on beam behavior near a resonance we consider an ensemble of beams, each cold and each consisting of particles traveling with a zero order angular frequency $\dot{\theta}_0$ given by

$$\dot{\theta}_0 = \Omega_{z0} - kP \quad (18)$$

where P is the canonical angular momentum of a particle which is related to the difference in energy between the particle under consideration and the (reference) particle maintained at the design orbit $r = r_0, z = 0$ by

$$P = \frac{\Delta\gamma mc^2}{\Omega_{z0}}, \quad (19)$$

and where, in (18),

$$-k \equiv \left(\frac{1}{\gamma_0^2} - \frac{1}{1/2 - n_i} \right) / \gamma_0 m r_0^2. \quad (20)$$

For each cold beam, relations (4) and (5) are then modified by the replacement

$$\Omega_{z0} \rightarrow \Omega_{z0} - kP \quad (21)$$

and therefore we may obtain the solution for each cold beam by making the replacement, in Eq. (8),

$$l\Omega_{z0} \rightarrow l(\Omega_{z0} - kP). \quad (22)$$

The behavior of the actual warm beam will then be given by

$$\overline{\Delta\psi}_1 \approx \left\langle (\gamma_0\omega_0)^{-1/2} \int' dt' e^{-i \int'_t dt'' \left(\frac{1}{2}\Omega_{z0} + i(\Omega_{z0} - kP) \right)} \left[\frac{\gamma_0(t')}{\omega_0(t')} \right]^{1/2} \sin \left[\int' dt'' \omega_0 \right] F_t(t') \right\rangle_p \quad (23)$$

where the average is defined over some normalized distribution function in P , i.e.

$$\langle \dots \rangle_p = \int_{-\infty}^{\infty} dP G(P) \dots \quad (24)$$

In Eq. (23) we can immediately anticipate the effect of temperature on the behavior of the beam: the entire effect is included in the phase factor, in the term kP . Such a term when averaged over any reasonable momentum distribution will give a reduction in amplitude of the average as the "width" of $G(P)$ is increased. Physically this means that the various particles of different energies within the beam receive, when passing through resonance, displacements in slightly different directions. The net effect on the motion of the beam center is therefore reduced. (Though our linearized treatment here necessarily includes a fixed beam size, it may in fact be the case that a warm beam will just expand slightly while passing through resonance while the motion of the beam center remains relatively undisturbed.)

As an example we consider a beam made up of particles having the energy distribution

$$G_E(\Delta\gamma) = \begin{cases} 1/T_L & |\Delta\gamma| < T_L/2 \\ 0 & |\Delta\gamma| > T_L/2 \end{cases} \quad (25)$$

where T_L is a measure of the longitudinal temperature and where $\Delta\gamma$ is related to P by Eq. (19). We consider again the hypothetical experiment described in the preceding section. For $\delta f_{-1}/B_{z0} = 5 \times 10^{-3}$ the results of a numerical evaluation of Eq. (23) are shown in Figs. 2-5 which correspond to $T_L = (0., 0.5, 1.0, 2.0)$. In each figure the real part of $\overline{\Delta\psi}_1$ is plotted, in centimeters, versus time, in seconds. The resonance condition, Eq. (11), is satisfied at the center of the time axis. Total elapsed time is 2.1 μ s. The chamber diameter, $2a = 20$ cm is indicated by solid horizontal lines on each plot. We observe that for this example, $T_L = 1.0$, or a 0.5 MeV energy spread, is adequate to smooth out the effect of the resonance. This is the same order of magnitude of spread needed to damp the negative mass/kink instability in this device⁵.

IV. CONCLUSIONS

We have obtained a bound on the magnitude of field errors that can be tolerated in a modified betatron in order that certain integer resonances may be safely passed through. We have found that for practical parameters the bound is extremely restrictive. The basic difficulty stems from the fact that unless the external parameters of the system are changed very quickly the orbits remain in or near resonance for many betatron oscillations, allowing the displacements to grow to large levels. Such a result suggests that nonlinear effects may play an important role in beam behavior near a resonance. For example, one may ask whether the radial dependence of B_n would be sufficient to "detune" the resonance as the beam moves a finite but small distance from its equilibrium position. This possibility is receiving further study.

We have also shown that a finite longitudinal beam temperature acts to reduce the effect of the resonance on the motion of the center of the beam. The temperature spread required appears to be comparable, in a specific example, to that needed to stabilize certain micro instabilities. However, it remains unresolved in this analysis whether the beam expands when passing through a resonance. Such behavior, of course, if severe, could be as unacceptable as large, whole beam displacement.

Should it be possible to achieve significantly lower field errors than those used in our example (0.5%) or if it is possible experimentally to detect and correct by some feedback mechanism the sudden, resonant displacement of the beam then perhaps lower toroidal fields may be employed initially and be removed either during or following acceleration. The effects of passage through the low / resonances may thereby be reduced to a tolerably small level.

V. ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research.

REFERENCES

1. L.J. Laslett in "Proc. of the 1963 Summer Study on Storage Rings, Accelerators and Experimentation at Super-High Energies" BNL-7534.
2. P. Sprangle and C.A. Kapetanakos, J. Appl. Phys. **49**, 1 (1978).
3. N. Rostoker, Bull. APS. **25**, 854 (1980).
4. Laslett (ERAN-51, Jan 1970 (unpublished)) has discussed certain aspects of the resonance problem in the ERA with a toroidal field. He has derived explicit expressions for ν .
5. P. Sprangle and J.L. Vomvoridis, NRL Memorandum Report 4688 (to be published).

Fig. 1 — Minor cross section of modified betatron showing beam center and particle coordinates.
The major radius of the device is r_0 .

Fig. 2 — $\text{Re } (\overline{\Delta\psi_{-1}})$ vs. time for $T_L = 0$.

Fig. 3 — $\text{Re } (\Delta\psi_{-1})$ vs. time for $T_L = 0.5$.

Fig. 4 — $\text{Re } (\overline{\Delta\psi_{-1}})$ vs. time for $T_L = 1.0$.

Fig. 5 — $\text{Re } (\overline{\Delta\psi_{-1}})$ vs. time for $T_L = 2.0$.

DISTRIBUTION LIST*

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Washington, D.C. 20375

Attn: Code 1000 - CAPT. E. E. Henifin
1001 - Dr. A. Berman
4700 - Dr. S. Ossakow (26 copies)
4701 - Mr. J. Brown
4740 - Dr. V. L. Granatstein (20 copies)
4740 - Dr. K. R. Chu
4740 - Dr. C. W. Roberson
4790 - Dr. P. Sprangle (100 copies)
4790 - Dr. C. M. Tang
4790 - Dr. M. Lampe
4790 - Dr. W. M. Manheimer
6603S - Dr. W. W. Zachary
6650 - Dr. L. Cohen
6656 - Dr. N. Seeman
6850 - Dr. L. R. Whicker
6805 - Dr. S. Y. Ahn
6805 - Dr. R. K. Parker (20 copies)
6875 - Dr. R. Wagner

On Site Contractors:

Code 4740 - Dr. L. Barnett (B-K Dynamics)
4740 - Dr. D. Dialetis (SAI)
4740 - Dr. Y. Y. Lau (SAI)
4790 - Dr. A. T. Drobot (SAI)
4790 - Dr. J. Vomvoridis (JAYCOR)
4790 - Dr. H. Freund (SAI)

* Every name listed on distribution gets one copy except for those where extra copies are noted.

Dr. Tony Armstrong
SAI, Inc.
P. O. Box 2351
La Jolla, CA 92038

Dr. Robert Behringer
ONR
1030 E. Green
Pasadena, CA 91106

Dr. G. Bekefi (5 copies)
Massachusetts Institute of Technology
Bldg. 26
Cambridge, MA 02139

Dr. Arden Bement (2 copies)
Deputy Under Secretary of Defense
for R&AT
Room 3E114, The Pentagon
Washington, D.C. 20301

Lt Col Rettig P. Benedict Jr., USAF
DARPA/STO
1400 Wilson Boulevard
Arlington, VA 22209

Dr. T. Berlincourt
Code 420
Office of Naval Research
Arlington, VA 22217

Dr. I. B. Bernstein (2 copies)
Yale University
Mason Laboratory
400 Temple Street
New Haven, CT 06520

Dr. Charles Brau (2 copies)
Applied Photochemistry Division
Los Alamos National Scientific
Laboratory
P. O. Box 1663, M.S. - 817
Los Alamos, NM 87545

Dr. R. Briggs (L-71)
Lawrence Livermore National Lab.
P. O. Box 808
Livermore, CA 94550

Dr. Fred Burskirk
Physics Department
Naval Postgraduate School
Monterey, CA 93940

Dr. K. J. Button
Massachusetts Institute of Technology
Francis Bitter National Magnet Lab.
Cambridge, MA 02139

Dr. Gregory Canavan
Director, Office of Inertial Fusion
U. S. Department of Energy
M.S. C404
Washington, D.C. 20545

Prof. C. D. Cantrell
Center for Quantum Electronics
& Applications
The University of Texas at Dallas
P. O. Box 688
Richardson, TX 75080

Dr. Maria Caponi
TRW, Building R-1, Room 1070
One Space Park
Redondo Beach, CA 90278

Dr. J. Cary
Los Alamos National Scientific
Laboratory
MS 608
Los Alamos, NM 87545

Dr. Weng Chow
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. Peter Clark
TRW, Building R-1, Room 1096
One Space Park
Redondo Beach, CA 90278

Dr. Robert Clark
P. O. Box 1925
Washington, D.C. 20013

Dr. William Colson
Quantum Institute
Univ. of California at Santa Barbara
Santa Barbara, CA 93106

Dr. William Condell
Code 421
Office of Naval Research
Arlington, VA 22217

Dr. Richard Cooper
Los Alamos National Scientific
Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Cmdr. Robert Cronin
NFOIO Detachment, Suitland
4301 Suitland Road
Washington, D.C. 20390

Dr. R. Davidson (5 copies)
Plasma Fusion Center
Massachusetts Institute of
Technology
Cambridge, MA 02139

Dr. John Dawson (2 copies)
Physics Department
University of California
Los Angeles, CA 90024

Dr. David Deacon
Physics Department
Stanford University
Stanford, CA 94305

Defense Technical Information
Center (12 copies)
Cameron Station
5010 Duke Street
Alexandria, VA 22313

Dr. Francesco De Martini
Instituto de Fisica
G. Marconi" Univ.
Piazzo delle Science, 5
ROMA00185 ITALY

Prof. P. Diament
Columbia University
Dept. of Electrical Engineering
New York, NY 10027

Prof. J. J. Doucet (5 copies)
Ecole Polytechnique
91128 Palaiseau
Paris, France

Dr. John Elgin (2 copies)
Imperial College
Dept. of Physics (Optics)
London SW7, England

Dr. Luis R. Elias (2 copies)
Quantum Institute
University of California
Santa Barbara, CA 93106

Dr. David D. Elliott
SRI International
33 Ravenswood Avenue
Menlo Park, CA 94025

Dr. Jim Elliot (2 copies)
X-Division, M.S. 531
Los Alamos National Scientific
Laboratory
Los Alamos, NM 87545

Director (2 copies)
National Security Agency
Fort Meade, MD 20755
ATTN: Mr. Richard Foss, A42

Dr. Robert Fossum, Director
(2 copies)
DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Edward A. Frieman
Director, Office of Energy Research
U. S. Department of Energy
M.S. 6E084
Washington, D.C. 20585

Dr. Leo Young (3 copies)
OUSDRE (R&AT)
Room 3D1067, The Pentagon
Washington, D.C. 20301

Dr. Richard L. Garwin
IBM, T. J. Watson Research Center
P. O. Box 218
Yorktown Heights, NY 10598

Dr. Edward T. Gerry, President
W. J. Schafer Associates, Inc.
1901 N. Fort Myer Drive
Arlington, VA 22209

Dr. Avraham Gover
Tel Aviv University
Fac. of Engineering
Tel Aviv, ISRAEL

Mr. Donald L. Haas, Director
DARPA/STO
1400 Wilson Boulevard
Arlington, VA 22209

Dr. P. Hammerling
La Jolla Institute
P. O. Box 1434
La Jolla, CA 92038

Director
National Security Agency
Fort Meade, MD 20755
ATTN: Mr. Thomas Handel, A243

Dr. William Happer
560 Riverside Drive
New York City, NY 10027

Dr. Robert J. Hermann
Assistant Secretary of the
Air Force (RD&L)
Room 4E856, The Pentagon
Washington, D.C. 20330

Dr. Rod Hiddleston
KMS Fusion
Ann Arbor, MI 48106

Dr. J. L. Hirshfield (2 copies)
Yale University
Mason Laboratory
400 Temple Street
New Haven, CT 06520

Dr. R. Hofland
Aerospace Corp.
P. O. Box 92057
Los Angeles, CA 90009

Dr. Fred Hopf
University of Arizona
Tucson, AZ 85721

Dr. Benjamin Huberman
Associate Director, OSTP
Room 476, Old Executive Office Bldg.
Washington, D.C. 20506

Dr. S. F. Jacobs
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Mr. Eugene Kopf
Principal Deputy Assistant
Secretary of the Air Force (RD&L)
Room 4E964, The Pentagon
Washington, D.C. 20330

Prof. N. M Kroll
La Jolla Institute
P. O. Box 1434
La Jolla, CA 92038

Dr. Tom Kuper
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. Thomas Kwan
Los Alamos National Scientific
Laboratory
MS608
Los Alamos, NM 87545

Dr. Willis Lamb
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Mr. Mike Lavan
BMDATC-O
ATTN: ATC-O
P. O. Box 1500
Huntsville, AL 35807

Dr. John D. Lawson (2 copies)
Rutherford High Energy Lab.
Chilton
Didcot, Oxon OX11 0OX
ENGLAND

Mr. Ray Leadabrand
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Mr. Barry Leven
NISC/Code 20
4301 Suitland Road
Washington, D.C. 20390

Dr. Donald M. LeVine (3 copies)
SRI International
1611 N. Kent Street
Arlington, VA 22209

Dr. Anthony T. Lin
University of California
Los Angeles, CA 90024

Director (2 copies)
National Security Agency
Fort Meade, MD 20755
ATTN: Mr. Robert Madden, R/SA

Dr. John Madey
Physics Department
Stanford University
Stanford, CA 94305

Dr. Joseph Mangano
DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Dr. S. A. Mani
W. J. Schafer Associates, Inc.
10 Lakeside Office Park
Wakefield, MA 01880

Dr. Mike Mann
Hughes Aircraft Co.
Laser Systems Division
Culver City, CA 90230

Dr. T. C. Marshall
Applied Physics Department
Columbia University
New York, NY 10027

Mr. John Meson
DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Pierre Meystre
Projektgruppe fur Laserforschung
Max Planck Gesellschaft
Garching, MUNICH WEST GERMANY

Dr. Gerald T. Moore
Optical Sciences Center
University of Arizona
Tucson, Az 85721

Dr. Philip Morton
Stanford Linear Accelerator Center
P. O. Box 4349
Stanford, CA 94305

Dr. Jesper Munch
TRW
One Space Park
Redondo Beach, CA 90278

Dr. George Neil
TRW
One Space Park
Redondo Beach, CA 90278

Dr. Kelvin Neil
Lawrence Livermore National Lab.
Code L-321, P. O. Box 808
Livermore, CA 94550

Dr. Brian Newnam
MS 564
Los Alamos National Scientific
Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. Milton L. Noble (2 copies)
General Electric Company
G. E. Electric Park
Syracuse, NY 13201

Prof. E. Ott (2 copies)
University of Maryland
Dept. of Physics
College Park, MD 20742

Dr. Richard H. Pantell
Stanford University
Stanford, CA 94305

Dr. Claudio Parazzoli
Highes Aircraft Company
Building 6, MS/C-129
Centinela & Teale Streets
Culver City, CA 90230

Dr. Richard M. Patrick
AVCO Everett Research Lab., Inc.
2385 Revere Beach Parkway
Everett, MA 02149

Dr. Claudio Pellegrini
Brookhaven National Laboratory
Associated Universities, Inc.
Upton, L.I., NY 11973

The Honorable William Perry
Under Secretary of Defense (R&E)
Office of the Secretary of Defense
Room 3E1006, The Pentagon
Washington, D.C. 20301

Dr. Alan Pike
DARPA/STO
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Hersch Piloff
Code 421
Office of Naval Research
Arlington, VA 22217

Dr. Charles Planner
Rutherford High Energy Lab.
Chilton
Didcot, Oxon, OX11, 0OX
ENGLAND

Dr. Michal Poole
Daresbury Nuclear Physics Lab.
Daresbury, Warrington
Cheshire WA4 4AD
ENGLAND

Dr. Don Prosnitz
Lawrence Livermore National Lab.
Livermore, CA 94550

Dr. D. A. Reilly
AVCO Everett Research Lab.
Everett, MA 02149

Dr. James P. Reilly
W. J. Schafer Associates, Inc.
10 Lakeside Office Park
Wakefield, MA 01880

Dr. A. Renieri
C.N.E.N.
Div. Nuove Attività
Dentro di Frascati
Frascati, Rome
ITALY

Dr. Daniel N. Rogovin
SAI
P. O. Box 2351
La Jolla, CA 92038

Dr. Michael Rosenbluh
MIT - Magnet Laboratory
Cambridge, MA 02139

Dr. Marshall N. Rosenbluth
Institute for Advanced Study
Princeton, NJ 08540

Dr. Eugene Ruane (2 copies)
P. O. Box 1925
Washington, D.C. 20013

Dr. Antonio Sanchez
MIT/Lincoln Laboratory
Room B231
P. O. Box 73
Lexington, MA 02173

Dr. Aleksandr N. Sandalov
Department of Physics
Moscow University
MGU, Lenin Hills
Moscow, 117234, USSR

Prof. S. P. Schlesinger
Columbia University
Dept. of Electrical Engineering
New York, NY 10027

Dr. Howard Schlossberg
AFOSR
Bolling AFB
Washington, D.C. 20332

Dr. Stanley Schneider
Rotodyne Corporation
26628 Fond Du Lac Road
Palos Verdes Peninsula, CA 90274

Dr. Marlan O. Scully
Optical Science Center
University of Arizona
Tucson, AZ 85721

Dr. Steven Segel
KMS Fusion
3621 S. State Street
P. O. Box 1567
Ann Arbor, MI 48106

Dr. Robert Sepucha
DARPA/STO
1400 Wilson Boulevard
Arlington, VA 22209

Dr. A. M. Sessler
Lawrence Berkeley Laboratory
University of California
1 Cyclotron Road
Berkeley, CA 94720

Dr. Earl D. Shaw
Bell Labs
600 Mountain Avenue
Murray Hill, NJ 07974

Dr. Chan-Chin Shih
R&D Associates
P. O. Box 9695
Marina Del Rey, CA 92091

Dr. Jack Slater
Mathematical Sciences, NW
P. O. Box 1887
Bellevue, WA 98009

Dr. Kenneth Smith
Physical Dynamics, Inc.
P. O. Box 556
La Jolla, CA 92038

Mr. Todd Smith
Hansen Labs
Stanford University
Stanford, CA 94305

Dr. Joel A. Snow
Senior Technical Advisor
Office of Energy Research
U. S. Department of Energy, M.S. E084
Washington, D.C. 20585

Dr. Richard Spitzer
Stanford Linear Accelerator Center
P. O. Box 4347
Stanford, CA 94305

Mrs. Alma Spring
DARPA/Administration
1400 Wilson Boulevard
Arlington, VA 22209

DRI/MP Reports Area G037 (2 copies)
333 Ravenswood Avenue
Menlo Park, CA 94025
ATTN: D. Leitner

Dr. Abraham Szoke
Lawrence Livermore National Lab.
MS/L-470, P. O. Box 808
Livermore, CA 94550

Dr. Milan Tekula
AVCO Everett Research Lab.
2385 Revere Beach Parkway
Everett, MA 02149

Dr. John E. Walsh
Department of Physics
Dartmouth College
Hanover, NH 03755

Dr. Wasneski (2 copies)
Naval Air Systems Command
Department of the Navy
Washington, D.C. 20350

Ms. Bettie Wilcox
Lawrence Livermore National Lab.
ATTN: Tech. Info. Dept. L-3
P. O. Box 808
Livermore, CA 94550

Dr. A. Yariv
California Institute of Tech.
Pasadena, CA 91125

