9.23 (a) $f(x) = -\frac{\pi}{2} \log \left(b_i - a_i^T x \right)$. For $x = x_0 + t \Delta x$

 $f(x) = -\sum_{i=1}^{m} \log \left[b_i - a_i \chi_0 - t \cdot (a_i \Delta x) \right] = g(t)$ $= -\sum_{i=1}^{m} \log \left[\alpha_i - t \cdot \beta_i \right]$

We can pre-calculate ox; and \$i, the cost is 2mn.

Then the cost of evaluating g and g' is 3m ~ O(m)

Without pre-computation, the cost is O(m.n).

(b) Very similar to (a), $f(x) = log(\sum_{i=1}^{m} exp(q_{i}^{T} \pi_{0} + b_{i} + t(q_{i}^{T} s_{i})))$ $= log(\sum_{i=1}^{m} exp(\alpha_{i} + t \cdot \beta_{i})) = g(t)$ Pre-computation costs λmn , then evaluating g cost O(m).

Without gre-computation, the cost is O(mn).

(C) $f(x) = [A \times 0] + t(A \times 1) [P_0 + (X_0), P_1 + \dots + (X_0), P_n] [A \times - 6 + t(A \times 1)] + t(P_0 + (A \times 1), P_1 + \dots + (A \times 1), P_n$

Let's look at $P(X) = P(X_0) + t \cdot \sum_{i} (SX)_i P_i = B + t \cdot B$ We know B and $B \in S^m$, : We could decompose $P = LL^T$, and diagonize $B = U \wedge U^T$

 $f(x) = g(t) = (y+tz)^{T} (LL^{T} + t \cdot U \wedge U^{T})^{-1} (y+tz)$ $= (y+tz)^{T} L^{-T} (1+tL^{-1}BL^{-T})^{-1} L^{-1} (y+tz)$

: We should actually directly diagonize $L^{T}BL^{-T} = U\Lambda U^{T}$,

Then $f(x) = g(t) = g(U^{T}L^{T}(y+tz))^{T}(1+t\Lambda)^{T}U^{T}L^{T}(y+tz)$ Redefine $y = U^{T}L^{T}(A\pi_{0}-b)$, $z = U^{T}L^{T}A\Delta X$ Then $f(x) = g(t) = (y+tz)^{T}(1+t\Lambda)^{T}(y+tz) = \sum_{i=1}^{m} \frac{(y_{i}+tz_{i})^{T}}{1+t\Lambda_{i}}$

The complexity of decomposing D and digonizing $L^{-1}BL^{-1}$ the are m^3 computing $D = P(\pi_0)$ cost $m^2(n+1)$, computing $B = \sum_{i=1}^{m} (\Delta T_i)P_i$ cost m^2n . : In total O(m³+m²n) for pre-computation. After $g(t) = \sum_{i=1}^{m} \frac{(y_i + t \ge i)^2}{1 + t \wedge i}$, then it only cost O(m). With out pre-computation, we need 2mn for Ax-b, min for P(x), 1 m3 for P(x) (Ax-b), then im for tinally (Ax-b) P(x) (Ax-b) :. In total 0 (m3+m2n) First of all, (Vf(x))= #\(a_i); \(i - a_i^T \times + \frac{2\lambda_i}{i-\lambda_i}\) 9.30 If we write $A = \begin{pmatrix} a_i^T \\ \vdots \\ a_m^T \end{pmatrix}$, then $\nabla f(x) = \frac{A^T I}{1 + X_i}$ See the attached codes and plots. For Newton's method $(\nabla^2 f(x))_{ij} = \partial_i (\underbrace{\overline{z}}_{k} \frac{(a_k)_i}{1 - (a_k^T x)} + \underbrace{\frac{1}{1 - \chi_i} - \frac{1}{1 + \chi_i}}_{1 - (a_k^T x)^2})$ $= \frac{(a_k)_i (a_k)_j}{(1 - a_k^T x)^2} + \underbrace{\frac{1}{(1 - \chi_i)^2} \delta_{ij} + \frac{1}{(1 + \chi_i)^2} \delta_{ij}}_{1 - (1 + \chi_i)^2}$ See the attached codes and plots. 9.31 See the attached codes.

(0.2 (a) Compare equation $\begin{bmatrix} I & A^T \\ A & J \end{bmatrix} \begin{pmatrix} v \end{pmatrix} = \begin{pmatrix} - \nabla f(\pi) \end{pmatrix} \Rightarrow \begin{cases} v + A^T u + \nabla f(\pi) \\ A V = 0 \end{cases}$ to optimality conditions of $\nabla F(x) + ATv = 0$ Ax = b $x \stackrel{?}{=} V$, b = 0, $V \Rightarrow W$, $pf(x) \Rightarrow pf(x) + V$: $\begin{bmatrix} I & A^T \\ A & 0 \end{bmatrix} \begin{pmatrix} V \\ W \end{pmatrix} = \begin{pmatrix} -\nabla f(x) \\ 0 \end{pmatrix}$ are the optimality conditions of the problem minimize 1/Df(x)+V/1/2 over v subject to Av=0 : i.e., v= argmin || - of(x) - u||_ = 0 xpg As for w, v+ATW=-pf(x) and we know Av=0 i.e., VTATW=0, ATW is perpendicular to v, i.e., ATW has to be the component of Pf(x) in the subspace perpendicular to N(A). i.e., w= argmin | Pf(x)+ATyll2 (b) The reduced problem is: minimize $f(Fz + \hat{x})$ The gradient of this problem is \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ (F3+2). F\$ Since range of F is A(A), here f is still a function of x. For \$ 9(2)= f(F2+x), then $\nabla g = U \nabla f \cdot F \int_{0}^{T} = F^{T} \cdot \nabla f$ The projected gradient D XPg can also be expressed as ating=Fargmin | Of(x) + Fz|, FTF=1 in It's equivalent to DXpg = F. org min || FT (Df(x) + F2 1/2 = Fargmin | FT of(x) + Ell2 $\therefore \Delta \chi_{pg} = -F \nabla g , \text{ where } g(z) = f(Fz + \hat{\chi}).$

(C) For the reduced problem, SX = FDZ, assuming $F^TF = I$: 02 = FTF DAZ = FT AX =- FT F V9 =- 79 i.e., it's a usual gradient descent method on the reduced problem. : Condition: Sublemel set $S = \{x \mid f(x) \leq f(x_0), Ax = b\}$ is closed. For unique optimal solution, $g(z) = f(Fz + \vec{x})$ is strongly convex. A 6.5 (a) First follow the assumption $y_i \leq y_i \leq ... \leq y_m$ $\therefore \alpha \leq \phi' \leq \beta \Rightarrow \alpha \leq \frac{y_{i+1} - y_i}{z_{i+1} - z_i} \leq \beta \qquad \text{(70, ... } y_{i+1} \neq y_i$ $\therefore \text{ Lt's equivalent to } \frac{y_{i+1} - y_i}{z_{i+1} - z_i} \leq \frac{y_{i+1} - y_i}{\alpha}$ $P(V_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-(z_i - a_i^T x)^2 \beta) / 2\sigma^2)$: The log likelihood $((x, 2) = -\frac{1}{2\sigma^2} \sum_{i=1}^{m} (\frac{1}{2} - a_i^7 x)^2 - \frac{m}{2} \log(2\pi\sigma^2)$ i.e., the max-likelihund problem is minimize $\Xi'(Z; -a; X)^T$ subject to $Y_{i+1}-Y_i \in Z_{i+1}-Z_i \in Y_{i+1}-Y_i$ which is convex. (b) See attachments. A 9.5 (a) However Newton Step is given by $\binom{\nabla^2 f}{A} \binom{A^T}{W} = \binom{-\nabla f}{O}$: For the centering problem, they are $/1/x_1^2$ o A^T $V = \begin{pmatrix} -c_1 + 1/x_1 \\ -c_n + 1/x_n \end{pmatrix}$ $A = \begin{pmatrix} -c_1 + 1/x_1 \\ -c_n + 1/x_n \\ -c_n + 1/x_n \end{pmatrix}$

Once w is solved from above, $\Delta \times \text{newton} = X^{-1}(B - A^T w).$ KKT optimality conditions are $\nabla f(x^*) + A^T v^* = 0$ i.e., $v^* = w$ when the iteration is nearly converged.

Remaining of (a), and (b), (c) are attached.

In (c), for phase I, in order to express $A\chi = b$ in terms of $Z = \chi + (t-1)\vec{1}$, notice $A\chi = b \Leftrightarrow AZ = b + A(t-1)\vec{1} \Leftrightarrow AZ - A \cdot t \cdot \vec{1} = b \rightleftharpoons -A \cdot \vec{1}$ $(\Rightarrow) (A, -A \cdot \vec{1}) (\stackrel{?}{t}) = b \rightleftharpoons -A \cdot \vec{1}$ $i.e., A_1 = (A, -A \cdot \vec{1}), Z_1 = (\stackrel{?}{t}), b_1 = b - A \cdot \vec{1}$

9.30

(a)

Different parameters for m, n, alpha and beta.

Same parameters as above, but re-generate a_i vectors.

MATLAB function:

```
function [p, fx_all] = solve_HW6_9_30(m, n, alpha, beta)
% alpha = 0.25;
% beta = 0.5;
% m = 50;
% n = 100;
A = 2*rand(m, n) - ones(m, n);
tol = 1e-5;
n_maxiter = 500;
% initial x
x = zeros(n,1);
fx_all = NaN(1, n_maxiter);
x_all = NaN(n, n_maxiter);
ps = NaN(1, n_maxiter);
p = 1;
for ii = 1:n_maxiter
  fx = - sum(log(1-A*x)) - sum(log(1-x.^2));
  fx_all(ii) = fx;
  x_all(:,ii) = x;
  ps(ii) = p;
  df = A' * (1./(1 - A*x)) - 1./(1+x) + 1./(1-x);
```

```
if norm(df) < tol
     p = fx;
     break;
  end
  if fx < p
     p = fx;
  end
  dx = -df;
  t = 1;
  while (\max(A^*(x + t^*dx)) >= 1) || (\max(abs((x + t^*dx))) >= 1)
     t = t * beta;
  end
  while (- sum(log(1-A^*(x + t^*dx))) - sum(log(1-(x + t^*dx).^2))) > ...
        (fx + alpha * t * df'*dx )
     t = t * beta;
  end
  x = x + t * dx;
end
```

(b)

end

solve the problem for different size:

MATLAB function:

```
function [p, fx_all] = solve_HW6_9_30_b(m, n) % alpha = 0.25; % beta = 0.5;
```

```
% m = 50;
% n = 100;
A = 2*rand(m, n) - ones(m, n);
tol = 1e-5;
n maxiter = 500;
% initial x
x = zeros(n,1);
fx_all = NaN(1, n_maxiter);
x_{all} = NaN(n, n_{axiter});
ps = NaN(1, n_maxiter);
p = 1;
for ii = 1:n_maxiter
  fx = - sum(log(1-A*x)) - sum(log(1-x.^2));
  fx_all(ii) = fx;
  x_{all}(:,ii) = x;
  ps(ii) = p;
  df = A' * (1./(1 - A*x)) - 1./(1+x) + 1./(1-x);
  ddf = A' * diag((1./(1 - A*x)).^2) * A + diag(1./(1+x).^2 + 1./(1-x).^2);
  if sqrt(df'^*(ddf \setminus df)) < tol
     p = fx;
     break;
  end
  if fx < p
     p = fx;
  end
  dx = -ddf df;
  x = x + dx;
end
end
```

9.31

Code for generating the following plot:

```
%% 9.31
% (a)
```

```
A = 2*rand(m*4, n*2) - ones(m*4, n*2);
[p_1, fx_all_1] = solve_HW6_9_31(A, m*4, n*2, 1);
[p_2, fx_all_2] = solve_HW6_9_31(A, m*4, n*2, 2);
[p_5, fx_all_5] = solve_HW6_9_31(A, m*4, n*2, 5);
figure;
semilogy(fx_all_1-p_1)
hold all
semilogy(fx_all_2-p_2)
semilogy(fx_all_5-p_5)
xlabel('iterations')
ylabel('f(x) - p')
title(sprintf('m=%d,n=%d',m*4,n*2))
legend({'Newton', 'N_{reuse}=2', 'N_{reuse}=5'});
%% (b) compare diagonal approx and Newton
A = 2*rand(m*4, n*2) - ones(m*4, n*2);
[p_1, fx_all_newton] = solve_HW6_9_31(A, m*4, n*2, 1);
[p_2, fx_all_diagApprox] = solve_HW6_9_31_b(A, m*4, n*2);
figure;
semilogy(fx_all_newton-p_1)
hold all
semilogy(fx_all_diagApprox-p_2)
xlabel('iterations')
ylabel('f(x) - p')
title(sprintf('m=%d,n=%d',m*4,n*2))
legend({'Newton', 'Diag. approx.'});
```

(a)

MATLAB code:

```
function [p, fx_all] = solve_HW6_9_31(A, m, n, N_use) % alpha = 0.25; beta = 0.5; % m = 50; % n = 100; % A = 2*rand(m, n) - ones(m, n); tol = 1e-5; n_maxiter = 500; % initial x x = zeros(n,1); fx_all = NaN(1, n_maxiter); x_all = NaN(n, n_maxiter); ps = NaN(1, n_maxiter); ps = NaN(1, n_maxiter); p = 1; n_used = 1000;
```

```
for ii = 1:n_maxiter
  fx = - sum(log(1-A*x)) - sum(log(1-x.^2));
  fx_all(ii) = fx;
  x_{all}(:,ii) = x;
  ps(ii) = p;
  df = A' * (1./(1 - A*x)) - 1./(1+x) + 1./(1-x);
  if n_used >= N_use
     ddf = A' * diag((1./(1 - A*x)).^2) * A + diag(1./(1+x).^2 + 1./(1-x).^2);
     n_used = 0;
  end
  if sqrt(df'*(ddf\df)) < tol
     p = fx;
     break;
  end
  if fx < p
     p = fx;
  end
  dx = -ddf df;
  t = 1;
  while (\max(A^*(x + t^*dx)) >= 1) || (\max(abs((x + t^*dx))) >= 1)
     t = t * beta;
  end
  n_used = n_used + 1;
  x = x + t*dx;
end
end
```

(b)

Diagonal approximation converge linearly:

MATLAB code:

```
function [p, fx_all] = solve_HW6_9_31_b(A, m, n)
% alpha = 0.25;
beta = 0.5;
% m = 50;
% n = 100;
% A = 2*rand(m, n) - ones(m, n);
tol = 1e-5;
n_maxiter = 500;
% initial x
x = zeros(n,1);
fx_all = NaN(1, n_maxiter);
x_all = NaN(n, n_maxiter);
ps = NaN(1, n_maxiter);
p = 1;
for ii = 1:n_maxiter
  fx = - sum(log(1-A*x)) - sum(log(1-x.^2));
  fx_all(ii) = fx;
  x_{all}(:,ii) = x;
  ps(ii) = p;
  df = A' * (1./(1 - A*x)) - 1./(1+x) + 1./(1-x);
  ddf = A' * diag((1./(1 - A*x)).^2) * A + diag(1./(1+x).^2 + 1./(1-x).^2);
```

```
ddf = diag(diag(ddf));
  if sqrt(df'*(ddf\df)) < tol
     p = fx;
     break;
  end
  if fx < p
     p = fx;
  end
  dx = -ddf df;
  t = 1;
  while (\max(A^*(x + t^*dx)) >= 1) \mid (\max(abs((x + t^*dx))) >= 1)
     t = t * beta;
  end
  x = x + t*dx;
end
end
```

A6.5

(b)
Resulting x:
x =

0.4819
-0.4657
0.9364

0.9297

Plot of estimated function:

- Blue curve is y-z curve based on max-likelihood
- orange dots are raw data from max-likelihood estimation without the noise.

A9.5

(a)

- Left: different instances generated randomly
- right: same instance with different model parameters alpha and beta. They appear to be exactly the same because the code never enters the two while loop to use the two parameters.

Check KKT condition:

- •
- $df = c 1./x_opt;$
- norm(df + A'*v_opt)

this gives norm(df + A'*v_opt) = 0.0021, which means x_opt and v_opt nearly satisfy the KKT condition.

(b) Plot of the progress:

Comparing with CVX result:

- $disp(norm(x-x_opt)) = 6.4490e-04$
- i.e, the same

(c)

Results:

- for infeasible instance, both methods returns infeasible (for the function I wrote, x_opt = NaN)
- for feasible problem, norm(x-x_opt) is typically <~ 0.01

Code used for comparison:

```
\begin{split} &m=100;\\ &n=500;\\ &\% \text{ this is likely infeasible}\\ &A=2^*\text{rand}(m,\,n)+2^*[\text{diag}(\text{ones}(1,\,m\,)),\,\text{zeros}(m,\,n\text{-m})];\\ &b=\text{rand}(m,1);\\ &c=\text{rand}(n,1); \end{split}
```

% manually generate a feasible instance:

```
A = 2*rand(m, n) + 2*[diag(ones(1, m)), zeros(m, n-m)];
```

```
x0 = rand(n, 1);
b = A*x0;
c = rand(n,1);
%% written solver:
x_opt = solve_HW6_LP_full(A,b,c);
%% cvx:
cvx begin
variable x(n)
minimize(c'*x)
subject to
A*x == b;
x >= 0;
cvx_end
% compare
disp(norm(x-x_opt))
```

MATLAB codes

```
Scripts for generating all results:
%% A9.5
%% different instances
m = 200;
n = 300;
figure;
subplot(121)
for nn = 1:5
% generate data
A = 2*rand(m, n) + 2*[diag(ones(1, m)), zeros(m, n-m)];
x0 = rand(n, 1);
b = A*x0;
c = rand(n,1);
% solving
[x_opt, v_opt, N_steps, lambdasqs] = solve_HW6_LP_CS(A, b, c, x0);
% plotting
semilogy(1:N_steps, lambdasqs); hold all;
xlabel('iterations');
```

```
ylabel('\lambda^2/2');
end
%% try same instance with different alpha and beta
lgds = {};
subplot(122);
alf = 0.1;
beta = 0.5;
[x_opt, v_opt, N_steps, lambdasqs] = solve_HW6_LP_CS(A, b, c, x0, alf, beta);
semilogy(1:N steps, lambdasgs); hold all;
lgds{end+1} = sprintf('\alpha = \%.2f, \beta = \%.2f', alf, beta);
alf = 0.25;
beta = 0.5;
[x_opt, v_opt, N_steps, lambdasqs] = solve_HW6_LP_CS(A, b, c, x0, alf, beta);
semilogy(1:N_steps, lambdasqs); hold all;
lgds{end+1} = sprintf('\alpha = \%.2f, \beta = \%.2f', alf, beta);
alf = 0.25;
beta = 0.2;
[x_opt, v_opt, N_steps, lambdasqs] = solve_HW6_LP_CS(A, b, c, x0, alf, beta);
semilogy(1:N steps, lambdasgs); hold all;
lgds{end+1} = sprintf('\alpha = \%.2f, \beta = \%.2f', alf, beta);
alf = 0.1;
beta = 0.2;
[x_opt, v_opt, N_steps, lambdasqs] = solve_HW6_LP_CS(A, b, c, x0, alf, beta);
semilogy(1:N_steps, lambdasqs); hold all;
lgds{end+1} = sprintf('\alpha = \%.2f, \beta = \%.2f', alf, beta);
xlabel('iterations');
ylabel('\lambda^2/2');
legend(lgds);
% check KKT:
df = c - 1./x \text{ opt};
norm(df + A'*v_opt)
%% (b), barrier
m = 100;
```

```
n = 500;
% generate data
A = 2*rand(m, n) + 2*[diag(ones(1, m)), zeros(m, n-m)];
x0 = rand(n, 1);
b = A*x0;
c = rand(n,1);
% solve
[x_opt, history] = solve_HW6_LP_barrier(A, b, c, x0);
%% plot
figure;
[xx, yy] = stairs(cumsum(history(1,:)),history(2,:));
semilogy(xx,yy);hold all;
lgds = {'\mu=2'};
for mu = [5, 20, 50]
  mu
[x_opt, history] = solve_HW6_LP_barrier(A, b, c, x0, mu);
[xx, yy] = stairs(cumsum(history(1,:)),history(2,:));
semilogy(xx,yy);hold all;
lgds{end+1} = sprintf('\mu=\%d',mu);
end
legend(lgds)
xlabel('Newton iterations');
ylabel('duality gap (= n/t)');
%% check with CVX:
cvx_begin
variable x(n)
minimize(c'*x)
subject to
A*x == b;
x >= 0;
cvx_end
disp(norm(x-x_opt))
%% (c), full LP solver:
m = 100;
n = 500;
% this is likely infeasible
A = 2*rand(m, n) + 2*[diag(ones(1, m)), zeros(m, n-m)];
```

```
b = rand(m,1);
c = rand(n,1);
% manually generate a feasible instance:
A = 2*rand(m, n) + 2*[diag(ones(1, m)), zeros(m, n-m)];
x0 = rand(n, 1);
b = A*x0;
c = rand(n,1);
%% written solver:
x_opt = solve_HW6_LP_full(A,b,c);
%% cvx:
cvx_begin
variable x(n)
minimize(c'*x)
subject to
A*x == b;
x >= 0;
cvx_end
% compare
disp(norm(x-x_opt))
function for (a)
function [x_opt, v_opt, N_steps, lambdasqs] = solve_HW6_LP_CS(A, b, c, x0, alpha, beta)
% Solve LP with centering step
% Example data:
%
m = 200;
% n = 300;
% A = 2*rand(m, n) + 2*[diag(ones(1, m)), zeros(m, n-m)];
% x0 = rand(n, 1);
    b = A*x0;
% c = rand(n,1);
% WTJ, 20180810
```

```
x = x0;
n_iter = 500;
if nargin < 6
beta = 0.5;
end
if nargin < 5
alpha = 0.25;
end
x_opt = NaN;
v_opt = NaN;
lambdasqs = [];
N_{steps} = 0;
tol = 1e-3;
if (min(x0) \le 0 || norm(A*x0 - b) > tol)
  return;
end
for ii = 1:n_iter
% X = diag(1./(x.^2));
  N_steps = ii;
  X_{inv} = diag(x.^2);
  df = c - 1./x;
  B = -df;
  % w from block elimination
  w = (A*X_inv * A') \setminus (A*X_inv*B);
  dx_nt = X_inv * (B - A' * w);
  lambdasq = -dx_nt' * df;
  lambdasqs(ii) = lambdasq/2;
  if lambdasq < tol
     x_opt = x;
     v_opt = w;
     return;
  end
  % line search
  t = 1;
  while min(x+t*dx_nt) \le 0
     t = beta * t;
  end
  while get_fx(x + t*dx_nt) \ge get_fx(x) + alpha * t * (df' * dx_nt)
     t = beta * t;
  end
```

```
x = x + t*dx_nt;
end
function f = get_fx(x)
  f = c'^*x - sum(log(x));
end
end
function for (b)
function [x_opt, history] = solve_HW6_LP_barrier(A, b, c, x0, mu)
% Solving LP with eq constraint using barrier
% WTJ, 20180810
t = 1;
if nargin < 5
mu = 2;
end
n_iter = 500;
x_opt = [];
history = NaN(2, n_iter);
tol_dualgap = 1e-3;
n = length(x0);
for ii = 1:n_iter
  g = n/t;
  [x, v_opt, N_steps, lambdasqs] = solve_HW6_LP_CS(A, b, c*t, x0);
  history(1, ii) = N_steps;
  history(2, ii) = g;
  if g < tol_dualgap
     x_opt = x;
     return
  end
  t = t * mu;
end
end
```

function for (c)

```
function [x_opt] = solve_HW6_LP_full(A,b,c)
% Full LP solver
%
% WTJ, 20180810
[m, n] = size(A);
x_opt = NaN;
%% phase I
isfeasible = false;
x0 = Ab;
x0_min = min(x0);
if x0_min > 0
  isfeasible = true;
else
  t0 = 2 - x0_min;
  z0 = x0 + (t0-1)*ones(n, 1);
  c1 = [zeros(n, 1); 1];
  A1 = [A, -A*ones(n,1)];
  b1 = b - A*ones(n,1);
  z1 = [z0; t0];
  [z_opt] = solve_HW6_LP_barrier(A1, b1, c1, z1);
  if z_{opt}(end) < 1
     isfeasible = true;
  end
end
if ~ isfeasible
  return;
end
%% phase II
t = z_opt(end);
x0 = z_{opt(1:(end-1))} - (t-1)*ones(n,1);
[x\_opt] = solve\_HW6\_LP\_barrier(A, b, c, x0);
end
```