Luna Likes Love

Problem name	Luna Likes Love		
Input file	standard input		
Output file	standard output		
Time limit	1.5 seconds		
Memory limit	256 megabytes		

Луне пришла в голову забавная идея. Она выстроила 2n своих друзей в ряд вдоль длинной прямой и выдала каждому из них число от 1 до n, включительно. Каждое число было выдано ровно двум друзьям. Два друга, которые получили одинаковое число, образуют пару.

Луна хочет отправить каждую из n пар на прогулку. Но все не так просто. Чтобы пара могла пойти на прогулку, двое друзей, которые формируют эту пару, должны стоять подряд в ряду, то есть между ними не должно быть других друзей Луны.

Луна может выполнять два действия:

- Она может обменять местами двух друзей, которые стоят подряд в ряду.
- Если друзья, образующие пару, стоят подряд в ряду, Луна может отправить их на прогулку. В этом случае они уходят из ряда, а оставшиеся в ряду друзья, не меняя порядка, перемещаются, так что промежутка не образуется.

Луна может выполнять эти действия сколько угодно раз в любом порядке. Например, она может сделать несколько обменов, потом отправить некоторые пары на прогулку, потом продолжить выполнять обмены, и так далее.

Выясните, какое минимальное количество действий необходимо выполнить, чтобы все пары отправились на прогулку.

Input

Первая строка ввода содержит целое число n.

Вторая строка ввода содержит 2n целых чисел a_i ($1 \le a_i \le n$) – последовательность чисел, которые Луна выдала друзьям, в том порядке, в котором они стоят в ряду.

Output

Выведите единственное число - минимальное количество действий, которое Луна должна выполнить, чтобы отправить все пары на прогулку.

Scoring

Подзадача 1 (7 баллов): Для каждой пары между двумя образующими ее друзьями никого нет, $1 \le n \le 100$.

Подзадача 2 (8 баллов): Для каждой пары между двумя образующими ее друзьями стоит не более одного человека $1 \le n \le 100$.

Подзадача 3 (11 баллов): Первые n друзей в ряду получили числа от 1 до n, каждое ровно по одному разу, не обязательно по порядку. $1 \le n \le 3\,000$.

Подзадача 4 (16 баллов): Первые n друзей в ряду получили числа от 1 до n, каждое ровно по одному разу, не обязательно по порядку. Кроме того, $1 \le n \le 500\,000$.

Подзадача 5 (22 балла): $1 \le n \le 3\,000$.

Подзадача 6 (36 баллов): $1 \le n \le 500\,000$.

Examples

стандартный ввод	стандартный вывод
3 3 1 2 1 2 3	4
5 5 1 2 3 2 3 1 4 5 4	7

Note

В первом примере Луна должна сначала поменять местами третьего и четвертого друга. После этого порядок друзей в ряду следующий: 3 1 1 2 2 3.

Затем она может отправтиь на прогулку пару друзей с числом 1, а также пару друзей с числом 2 (эти пары можно отправить на прогулку в любом порядке). После того, как она это сделает, пара друзей с числом 3 также будет стоять подряд в ряду, и она может отправить их на прогулку.

Всего понадобилось выполнить 4 действия: 1 обмен и 3 раза отправить пару на прогулку.