ADS8688EVM-PDK Evaluation Module

Data Acquisition Products

ABSTRACT

ADS8688EVM-PDK

This user's guide describes the operation and use of the ADS8688 evaluation module (EVM). The ADS8688 is a 16-bit, 500ksps, 8 channel multiplexed, single-supply, SAR ADC with bipolar input ranges. Operating on a single 5V the integrated analog front end can support ±10.24V input ranges with a ±20V over-voltage protection. The performance demonstration kit (PDK) eases EVM evaluation with additional hardware and software for computer connectivity through a universal serial bus (USB). The ADS8688EVM-PDK includes the ADS8688EVM as a daughter card, Precision Host Adaptor (PHI) digital controller, and a A-to-B USB cable. This user's guide covers circuit description, schematic diagram, and bill of materials for the ADS8688EVM daughter card.

Table 1-1. Related Documentation

Literature Number
SBAS582
SBOS513
SBVS204

Table of Contents

1 Trademarks	2
2 ADS8688EVM-PDK Overview	3
3 EVM Analog Interface	
3.1 ADC Analog Input Connections and Filter	
3.2 Voltage Reference, Aux Input, and Supply Decoupling	
4 Digital Interface	
4.1 Serial Interface (SPI)	6
4.2 I2C Bus for Onboard EEPROM	6
5 Power Supplies	<mark>7</mark>
6 ADS8688 Initial Setup	
6.1 Software Installation	

Trademarks www.ti.com

7 EVM Operation	11
7.1 Connecting the Hardware	
7.2 EVM GUI Global Settings for ADC Control	
7.3 Time Domain Display	
7.4 Frequency Domain Display.	
7.5 Histogram Display	
8 Bill of Materials, Schematics, and Layout	
8.1 Bill of Materials	
8.2 Board Layouts	
8.3 Schematic	20
9 Revision History	24
List of Figures	
Figure 2-1. System Connection for Evaluation	
Figure 3-1. ADC Analog Input Connections and Filter	
Figure 3-2. Voltage Reference, Aux Input, and Supply Decoupling	
Figure 4-1. EEPROM for EVM ID	
Figure 5-1. Power Supplies, Regulators, and Indicators	
Figure 6-1. ADS8688 Software Installation Prompts	
Figure 6-2. Device Driver Installation Wizard Prompts	
Figure 6-3. LabVIEW Run-Time Engine Installation	
Figure 6-4. ADS8688EVM GUI Folder Post-InstallationFigure 7-1. ADS8688EVM Hardware Setup and LED Indicators	
Figure 7-1. ADS0000EVM Hardware Setup and LED Indicators	
Figure 7-3. EVM GUI Global Input Controls	
Figure 7-4. Time Domain Display Tool Options	
Figure 7-5. Spectral Analysis Tool	
Figure 7-6. Histogram Analysis Tool	
Figure 8-1. ADS8688EVM PCB: Top Layer (L1)	
Figure 8-2. ADS8688EVM PCB: Bottom Layer	
Figure 8-3. Input Filer	
Figure 8-4. ADC and Digital Interface	22
Figure 8-5. Power and EEPROM	23
liet of Tables	
List of Tables	4
Table 1-1. Related Documentation	
Table 0-1. AD00000E VIVI DIII OI IVIALEITAIS	17

1 Trademarks

All other trademarks are the property of their respective owners.

www.ti.com ADS8688EVM-PDK Overview

2 ADS8688EVM-PDK Overview

Table 1-1 lists the related documents that are available for download from Texas Instruments at

ADS8688EVM Features

- Hardware and software required for diagnostic testing as well as accurate performance evaluation of the ADS8688 ADC
- USB powered—no external power supply is required
- The PHI controller that provides a convenient communication interface to the ADS8688 ADC over USB 2.0 (or higher) for power delivery as well as digital input and output
- Easy-to-use evaluation software for 64-bit Microsoft Windows ™7, Windows 8, and Windows 10 operating systems
- The software suite includes graphical tools for data capture, histogram analysis, and spectral analysis. This suite also has a provision for exporting data to a text file for post-processing. Fig
- Integrated 4.096-V voltage reference.
- Bipolar (±10.24 V, ±5,12 V, ±2.56 V) or unipolar (0 V to 10.24 V, 0 V to 5.12 V) input ranges for each channel.
- Onboard, second-order, Butterworth, low-pass filters for four channels.
- Onboard regulator for generating a ±15-V bipolar supply for second-order, Butterworth, low-pass filters.
- Capable of accepting a ±100-mV signal on the negative analog inputs (AIN_xGND).

Figure 2-1. System Connection for Evaluation

ADS8688EVM Features:

- Eight input channels connected to external single ended signals source applied to SMA connectors or header
- Serial interface connects to the PHI controller via 60 pin connector (J3).
- Serial interface connects to the PHI controller via 60 pin connector (J2).
- All power for device from USB via PHI controller.
- Onboard ultra-low noise low-dropout (LDO) regulator generates 5.0V AVDD supply. Input to LDO from PHI controller.
- DVDD (3.3V) powered by PHI controller.

EVM Analog Interface www.ti.com

3 EVM Analog Interface

The ADS8688EVM is an evaluation module built to the TI Modular EVM system specifications. The EVM by itself has no microprocessor and cannot run software. Thus, the EVM is available as part of the ADS8688EVM-PDK kit that combines the ADS8688EVM as a daughter board with PHI controller using software as a graphical user interface (GUI).

3.1 ADC Analog Input Connections and Filter

The circuit shown in Figure 3-1 shows a typical analog input connection for the ADS8688 ADC. This circuit is reapeated eight times for all eight input channels. The resistor R01 can be used for input float detection but is not populated in the default configuration. The TVS diode D01, can be used for input protection, but is not populated. Refer to Video Series on Electrical Overstress. C01, R03, and R04 form the 79.5kHz low pass input the input filter for the ADC. R05 connects the negative input to ground. R05 can be removed and the negative input can be accessed in the header J6.

Figure 3-1. ADC Analog Input Connections and Filter

www.ti.com EVM Analog Interface

3.2 Voltage Reference, Aux Input, and Supply Decoupling

The circuit shown in illustrates the decoupling on AVDD, DVDD, and the reference IO. It is possible on the ADS8688 to use an external voltage reference, but typically the integrated internal reference is sufficient. In cases where you need to use an enthral voltage reference it can be connected via the REF test point. The capacitors for decoupling match the recomendations in the ADS8688 data sheet. The layout (see Figure 8-1) uses the shortest possible connections to the decouplign capacitors and connections the ground end to the GND plane using vias. The AUX input is a standard SAR input and does not have an analog front end. Thus, this input cannot accept high voltage input signals (Vin Full Scale = VREF = 4.096V). Furthermore, this input requires an external buffer amplifier U4 to achieve good settling.

Figure 3-2. Voltage Reference, Aux Input, and Supply Decoupling

Digital Interface www.ti.com

4 Digital Interface

As noted in Section 2, the EVM interfaces with the PHI and communicates with the computer over the USB. There are two devices on the EVM with which the PHI communicates: the ADS8688 ADC (over SPI) and the EEPROM (over I2C). The EEPROM comes pre-programmed with the information required to configure and initialize the ADS8688 platform. When the hardware is initialized, the EEPROM is no longer used.

4.1 Serial Interface (SPI)

As noted in Section 2, the EVM interfaces with the PHI and communicates with the computer over the USB. There are two devices on the EVM with which the PHI communicates: the ADS8688 ADC (over SPI) and the EEPROM (over I2C). The EEPROM comes pre-programmed with the information required to configure and initialize the ADS8688 platform. When the hardware is initialized, the EEPROM is no longer used.

4.2 I2C Bus for Onboard EEPROM

The circuit shown in Figure 4-1 is used with our EVM controller (PHI), for EVM identification. This circuit is not required by the ADS8688 for operation. The switch (S2) is a write protect and does not need to be changed for EVM operation.

Figure 4-1. EEPROM for EVM ID

www.ti.com Power Supplies

5 Power Supplies

The PHI provides multiple power-supply options for the EVM, derived from the USB supply of the computer. The EEPROM on the ADS8688EVM uses a 3.3-V power supply generated directly by the PHI. The EVM_REG_5V5 is a 5.5V supply from the PHI and is applied to the input of a low dropout regulator (LDO) to generate AVDD on the EVM. The analog supply of the ADC (AVDD = 5.0V) is powered by the TPS7A4700RGWR (U3). The ADC Digital supply (DVDD = 3.3V), is generated by the PHI. Two LEDs are connected to the AVDD, and DVDD supplies. These LEDs will illuminate after the software GUI loads and the PHI turns on its output power supplies.

Figure 5-1. Power Supplies, Regulators, and Indicators

ADS8688 Initial Setup www.ti.com

6 ADS8688 Initial Setup

This section explains the initial hardware and software setup procedure that must be completed for properly operating the ADS8688EVM.

6.1 Software Installation

Download the latest version of the EVM GUI installer from the Tools and Software folder of the ADS8688EVM and run the GUI installer to install the EVM GUI software on your computer.

CAUTION

Manually disable any antivirus software running on the computer before downloading the EVM GUI installer onto the local hard disk. Depending on the antivirus settings, an error message may appear or the installer. The exe file can be deleted.

Accept the license agreements and follow the on-screen instructions shown in Figure 6-1 to complete the installation.

Figure 6-1. ADS8688 Software Installation Prompts

www.ti.com ADS8688 Initial Setup

As a part of the ADS8688EVM GUI installation, a prompt with a Device Driver Installation (as shown in Figure 6-2) appears on the screen. Click Next to proceed.

Figure 6-2. Device Driver Installation Wizard Prompts

The ADS8688EVM requires the LabVIEW™ run-time engine and may prompt for the installation of this software, as shown in Figure 6-3, if not already installed.

Figure 6-3. LabVIEW Run-Time Engine Installation

ADS8688 Initial Setup www.ti.com

Verify that C:\Program Files (x86)\Texas Instruments\ADS8688EVM is as shown in Figure 6-4 after these installations.

Figure 6-4. ADS8688EVM GUI Folder Post-Installation

www.ti.com EVM Operation

7 EVM Operation

The following instructions are a step-by-step guide to connecting the ADS8688EVM to the computer and evaluating the performance of the ADS8688:

7.1 Connecting the Hardware

After installing the software connect the EVM as shown in Figure 7-1

- 1. Physically connect P2 of the PHI to J2 of the ADS8688EVM. Install the screws to assure a robust connection
- 2. Connect USB on PHI to the computer first
 - LED D5 on the PHI lights up, indicating that the PHI is powered up
 - LEDs D1 and D2 on the PHI start blinking to indicate that the PHI is booted up and communicating with the PC; Figure 7-1 shows the resulting LED indicators
- 3. Start the software GUI as shown in Figure 7-2. You will notice that the LEDs blink slowly as the FPGA firmware is loaded on the PHI. This will take a few seconds then the AVDD and DVDD power supplies will turn on.
- 4. Connect the signal generators to SMA inputs or headers (8 channels available). The input range is ±10.25V.

Figure 7-1. ADS8688EVM Hardware Setup and LED Indicators

Figure 7-2. Launch the EVM GUI Software

EVM Operation www.ti.com

7.2 EVM GUI Global Settings for ADC Control

Section 7.2 shows that the EVM Global controls are located on the right hand side of the GUI. These controls choose the page display, SPI Mode, SCLK frequency, and sampling frequency.

Figure 7-3. EVM GUI Global Input Controls

www.ti.com EVM Operation

7.3 Time Domain Display

The time domain display tool allows visualization of the ADC response to a given input signal. This tool is useful for both studying the behavior and debugging any gross problems with the ADC or drive circuits. The user can trigger a capture of the data of the selected number of samples from the ADS8688EVM, as per the current interface mode settings indicated in Figure 7-4 by using the Capture button. The sample indices are on the x-axis and there are two y-axes showing the corresponding output codes as well as the equivalent analog voltages based on the specified reference voltage. Switching pages to any of the Analysis tools described in the subsequent sections causes calculations to be performed on the same set of data.

Figure 7-4. Time Domain Display Tool Options

EVM Operation www.ti.com

7.4 Frequency Domain Display

The spectral analysis tool, shown in Figure 7-5, is intended to evaluate the dynamic performance (SNR, THD, SFDR, SINAD, and ENOB) of the ADS8688 ADC through single-tone sinusoidal signal FFT analysis using the 7-term Blackman-Harris window setting. The FFT tool includes windowing options that are required to mitigate the effects of non-coherent sampling (this discussion is beyond the scope of this document). The 7-Term Blackman Harris window is the default option and has sufficient dynamic range to resolve the frequency components of up to a 24-bit ADC. The None option corresponds to not using a window (or using a rectangular window) and is not recommended.

Figure 7-5. Spectral Analysis Tool

www.ti.com EVM Operation

7.5 Histogram Display

Noise degrades ADC resolution and the histogram tool can be used to estimate effective resolution, which is an indicator of the number of bits of ADC resolution losses resulting from noise generated by the various sources connected to the ADC when measuring a DC signal. The cumulative effect of noise coupling to the ADC output from sources such as the input drive circuits, the reference drive circuit, the ADC power supply, and the ADC itself is reflected in the standard deviation of the ADC output code histogram that is obtained by performing multiple conversions of a DC input applied to a given channel. As shown in Figure 7-6, the histogram corresponding to a DC input is displayed on clicking the Capture button.

Figure 7-6. Histogram Analysis Tool

8 Bill of Materials, Schematics, and Layout

Schematics for the ADS8688EVM are appended to this user's guide. The bill of materials is provided in Table 8-1. Section 8.2 shows the PCB layouts for the ADS8688EVM.

8.1 Bill of Materials

Note

All components are compliant with the European Union Restriction on Use of Hazardous Substances (RoHS) Directive. Some part numbers may be either leaded or RoHS. Verify that purchased components are RoHS-compliant. (For more information about TI's position on RoHS compliance, see www.ti.com.)

Table 8-1. ADS8688EVM Bill of Materials

Item #	Designator	Quantity	Value	Part Number	Manufacturer	Description	Package Reference
1	!PCB1	1		ADS8688EVM	Any	Printed Circuit Board	
2	C1, C9	2	22uF	GRM32ER71E226KE15L	MuRata	CAP, CERM, 22 uF, 25 V, +/- 10%, X7R, 1210	1210
3	C01, C11, C12, C21, C31, C41, C51, C61, C71	9	1000pF	GRM1885C1H102FA01J	MuRata	CAP, CERM, 1000 pF, 50 V, +/- 1%, C0G/NP0, 0603	0603
4	C2, C5, C7	3	10uF	CL21A106KAFN3NE	Samsung Electro- Mechanics	CAP, CERM, 10 uF, 25 V, +/- 10%, X5R, 0805	0805
5	C3, C4, C6, C8	4	1uF	C0603C105K3RACTU	Kemet	CAP, CERM, 1 uF, 25 V, +/- 10%, X7R, 0603	0603
6	C10, C13	2	0.1uF	GRM188R71H104KA93D	MuRata	CAP, CERM, 0.1 uF, 50 V, +/- 10%, X7R, 0603	0603
7	D1, D2	2	Green	APT2012LZGCK	Kingbright	LED, Green, SMD	LED_0805
8	H1, H2	2		RM3X4MM 2701	APM HEXSEAL	Machine Screw Pan PHILLIPS M3	
9	H3, H4, H5, H6	4		SJ-5303 (CLEAR)	3M	Bumpon, Hemisphere, 0.44 X 0.20, Clear	Transparent Bumpon
10	H7, H8	2		9774050360R	Wurth Elektronik	ROUND STANDOFF M3 STEEL 5MM	ROUND STANDOFF M3 STEEL 5MM
11	J00, J01, J02, J03, J04, J05, J06, J07, J09	9		5-1814832-1	TE Connectivity	SMA Straight PCB Socket Die Cast, 50 Ohm, TH	SMA Straight PCB Socket Die Cast, TH
12	J2, J5, J6, J7	4		TSW-104-07-G-D	Samtec	Header, 100mil, 4x2, Gold, TH	4x2 Header
13	J3	1		QTH-030-01-L-D-A-K-TR	Samtec	Header(Shrouded), 19.7mil, 30x2, Gold, SMT	Header (Shrouded), 19.7mil, 30x2, SMT
14	J4	1		TSW-108-07-G-D	Samtec	Header, 100mil, 8x2, Gold, TH	8x2 Header
15	R1	1	100k	CRCW0603100KFKEA	Vishay-Dale	RES, 100 k, 1%, 0.1 W, AEC- Q200 Grade 0, 0603	0603
16	R2, R3	2	6.65k	CRCW04026K65FKED	Vishay-Dale	RES, 6.65 k, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	0402
17	R02, R12, R22, R32, R42, R52, R62, R72	8	0	ERJ-8GEY0R00V	Panasonic	RES, 0, 5%, 0.25 W, AEC-Q200 Grade 0, 1206	1206

Table 8-1. ADS8688EVM Bill of Materials (continued)

Item #	Designator	Quantity	Value	Part Number	Manufacturer	Description	Package Reference
18	R03, R04, R13, R14, R23, R24, R33, R34, R43, R44, R53, R54, R63, R64, R73, R74	16	1.00k	RG1608P-102-B-T5	Susumu Co Ltd	RES, 1.00 k, 0.1%, 0.1 W, 0603	0603
19	R4, R5	2	0	RC0402JR-070RL	Yageo America	RES, 0, 5%, 0.063 W, 0402	0402
20	R05, R15, R18, R25, R35, R45, R55, R65, R75	9	0	CRCW06030000Z0EA	Vishay-Dale	RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603
21	R6, R7, R8, R9, R10	5	49.9	CRCW040249R9FKED	Vishay-Dale	RES, 49.9, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	0402
22	R16, R17, R19	3	47.0k	RC0402FR-0747KL	Yageo America	RES, 47.0 k, 1%, 0.0625 W, 0402	0402
23	R20	1	10.0k	RC0603FR-0710KL	Yageo	RES, 10.0 k, 1%, 0.1 W, 0603	0603
24	R26, R27	2	49.9	RC0603FR-0749R9L	Yageo	RES, 49.9, 1%, 0.1 W, 0603	0603
25	S1	1		CAS-120TA	Copal Electronics	Switch, Slide, SPDT 100mA, SMT	Switch, 5.4x2.5x2.5mm
26	TP1, TP2, TP3, TP4	4		5001	Keystone	Test Point, Miniature, Black, TH	Black Miniature Testpoint
27	U1	1		ADS8688IDBT	Texas Instruments	16-Bit, 500-kSPS, 8-Channel, Single-Supply, SAR ADCs with Bipolar Input Ranges, DBT0038A (TSSOP-38)	DBT0038A
28	U2	1		BR24G32FVT-3AGE2	Rohm	I2C BUS EEPROM (2-Wire), TSSOP-B8	TSSOP-8
29	U3	1		TPS7A4700RGWR	Texas Instruments	36V, 1A, 4.17μVRMS, RF Low- Dropout (LDO) Voltage Regulator, RGW0020A (VQFN-20)	RGW0020A
30	U4	1		OPA320AIDBVR	Texas Instruments	Precision, 20 MHz, 0.9 pA lb, RRIO, CMOS Operational Amplifier, 1.8 to 5.5 V, -40 to 125 degC, 5-pin SOT23 (DBV5), Green (RoHS & no Sb/Br)	DBV0005A
31	D01, D11, D21, D31, D41, D51, D61, D71	0	14V	SMBJ14CA	Littelfuse	Diode, TVS, Bi, 14 V, SMB	SMB
32	FID1, FID2, FID3	0		N/A	N/A	Fiducial mark. There is nothing to buy or mount.	N/A
33	R01, R11, R21, R31, R41, R51, R61, R71	0	49.9k	CRCW060349K9FKEA	Vishay-Dale	RES, 49.9 k, 1%, 0.1 W, AEC- Q200 Grade 0, 0603	0603

8.2 Board Layouts

Figure 8-1 through show the PCB layouts for the ADS8688EVM.

Note

Board layouts are not to scale. These figures are intended to show how the board is laid out; these figures are not intended to be used for manufacturing ADS8688EVM PCBs.

Figure 8-1. ADS8688EVM PCB: Top Layer (L1)

Figure 8-2. ADS8688EVM PCB: Bottom Layer

8.3 Schematic

Figure 8-3 shows the input filter, terminal block, and SMA connections.

Figure 8-3. Input Filer

Figure 8-4 shows the input filter, terminal block, and SMA connections.

Figure 8-4. ADC and Digital Interface

Figure 8-5 shows power and EEPROM connections.

Figure 8-5. Power and EEPROM

Revision History www.ti.com

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision A (December 2014) to Revision B (September 2020)	Page
•	Updated the numbering format for tables, figures and cross-references throughout the document	3
•	Every section in this document has significantly changed as the hardware and software went through marevisions.	,

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated