Objectifs

- Résolution de problème par recherche dans un graphe
- Comprendre A*
 - notion d'heuristique
 - propriétés théoriques
- Implémenter et simuler A*

Exemple: trouver chemin dans ville

Trouver un chemin de la 9^e ave & 50^e rue à la 3^e ave et 51^e rue

(Illustration par Henry Kautz, U. of Washington)

Exemple: trouver chemin dans ville

Trouver un chemin de la 9^e ave & 50^e rue à la 3^e ave et 51^e rue

(Illustration par Henry Kautz, U. of Washington)

Exemple: Google Maps

Exemple: livrer des colis

Exemple: livrer des colis

Exemple: navigation d'un robot

(Ratliff, Bagnell et Zinkevich, 2006)

Hugo Larochelle et Froduald Kabanza

Exemple: N-Puzzle

Ouest

Nord

2	8	3
1		4
7	6	5

2		3
1	8	4
7	6	5

Nord

	2	3
1	8	4
7	6	5

2	3	1	2
8	4		8
6	5	7	6

Sud

1	2	,
8		2

Est

Résolution de problèmes

- Étapes intuitives par un humain
 - modéliser la situation actuelle
 - 2. énumérer les solutions possibles
 - 3. évaluer la valeur des solutions
 - 4. retenir la meilleure option possible satisfaisant le but
- Mais comment parcourir efficacement la liste des solutions?
- La résolution de plusieurs problèmes peut être faite par une recherche dans un graphe
 - chaque noeud correspond à un état de l'environnement
 - chaque chemin à travers un graphe représente alors une suite d'actions prises par l'agent
 - pour résoudre notre problème, suffit de chercher le chemin qui satisfait le mieux notre mesure de performance