Locally Ringed Space Morphism の合成について

七条 彰紀

2017年10月11日

写像の合成は $- \forall g \circ f$ の様に書かず、gf と書く.

定義 0.1

X,Y を locally ringed space とする. X,Y の間の map $f:X\to Y$ が locally ringed space morphism である とは、任意の点 $x\in X$ について、 $f^\#:\mathcal{O}_Y\to f_*\mathcal{O}_X$ の f(x) における stalk $(f^\#)_{f(x)}:\mathcal{O}_{Y,f(x)}\to (f_*\mathcal{O}_X)_{f(x)}$ と、direct system の包含関係から誘導される写像 $\iota_{f,x}:(f_*\mathcal{O}_X)_{f(x)}\to\mathcal{O}_{X,x}$ の合成

$$f_x^{\#}: \mathcal{O}_{Y,f(x)} \to (f_*\mathcal{O}_X)_{f(x)} \to \mathcal{O}_{X,x}$$

が、local ring homomorphism であるということである.

X,Y,X :: locally ringed space, $f:X\to Y,g:Y\to Z$:: locally ringed space morphism とする. $gf:X\to Z$ は locally ringed space morphism になることはどのように示すべきだろうか.

(証明). $x \in X$ を任意にとり、固定する.

斜めに伸びている $(g^{\#})_{gf(x)}$ などの射は stalk を取ることで得られる射であり, $g^{\#}_{f(x)}$, $f^{\#}_x$ はそれに direct system の包含関係から誘導される射 $(g_*\mathcal{O}_Y)_{gf(x)} \to \mathcal{O}_{Y,f(x)}$, $(f_*\mathcal{O}_X)_{f(x)} \to \mathcal{O}_{X,x}$ を合成したものである. (p.72 終わりから p.73 始めに記述がある.)したがって,この図式において,下の二つの三角形が可換であることは $g^{\#}_{f(x)}$, $f^{\#}_x$ の定義である.同様に $(gf)^{\#}_x$ は $\mathcal{O}_{Z,gf(x)} \to (g_*f_*\mathcal{O}_X)_{gf(x)} \to \mathcal{O}_{X,x}$ である.(三つの相似 な三角形が見えると思う.)

 $g_{f(x)}^{\#},f_x^{\#}$ は l.r.homo (local ring homomorphism) であり、その合成もまた l.r.homo である.示したいことは $(gf)_x^{\#}$ が l.r.homo であることだから、図式中心にあるの平行四辺形が可換であることを示せば良い.

問題の平行四辺形の頂点は、それぞれ次の4つの direct system の direct limit である.

したがって問題の平行四辺形は direct system のレベルで可換.