Cismin herhangi bir noktadaki bileşke hızın büyüklüğü ise

$$\vartheta^2 = \vartheta_x^2 + \vartheta_y^2$$

matematiksel modelinden bulunur. Tablo 1.3, belirli bir yükseklikten yatay $\vec{\vartheta}_0$ ilk hızı ile atılan cismin zamana bağlı değişen hız büyüklüklerini göstermektedir.

Tablo 1.3: ϑ_0 İlk Hızı İle Atılan Cismin Hız Büyüklükleri

Zaman	Yatay Hız	Düşey Hız	Bileşke Hız
0	ϑ_0	0	$\vartheta_{\!\scriptscriptstyle A}=\vartheta_0$
t	ϑ_0	$\vartheta_{y_1} = g \cdot t$	$\vartheta_B = \sqrt{\vartheta_0^2 + \vartheta_{y_1}^2}$
2t	ϑ_0	$\vartheta_{y_2} = g \cdot 2t$	$\vartheta_{\mathcal{C}} = \sqrt{\vartheta_0^2 + \vartheta_{y_2}^2}$
3t	ϑ_0	$\vartheta_{y_3} = g \cdot 3t$	$\vartheta_D = \sqrt{\vartheta_0^2 + \vartheta_{y_3}^2}$

Cismin yatay doğrultuda aldığı yol $x = \theta_0 \cdot t$,

düşey doğrultuda aldığı yol $h = \frac{1}{2} \cdot g \cdot t^2$

matematiksel modelinden hesaplanır.

Tablo 1.4, belirli bir yükseklikten yatay $\vec{\vartheta}_0$ ilk hızı ile atılan cismin yatay ve düşey eksenlerdeki zamana bağlı yer değiştirmesinin büyüklüğünü göstermektedir.

Tablo 1.4: ϑ_0 İlk Hızı İle Atılan Cismin Yatay ve Düşey Eksenlerdeki Yer Değiştirmesi

Zaman	Yatay Eksendeki Yer Değiştirmesi	Düşey Eksendeki Yer Değiştirmesi
0	0	0
t	$\vartheta_0 \cdot t = x$	$h = \frac{1}{2} \cdot g \cdot t^2$
2t	$\vartheta_0 \cdot 2t = 2x$	$4h = \frac{1}{2} \cdot g \cdot (2t)^2$
3 <i>t</i>	$\vartheta_0 \cdot 3t = 3x$	$9h = \frac{1}{2} \cdot g \cdot (3t)^2$

Konu ile ilgili simülasyon için karekodu kullanabilirsiniz.