Note Méthodologique

Cette note méthodologique revient sur les principales étapes nécessaires à la réalisation du modèle statistique conçu pour l'entreprise Prêt à Dépenser. Le modèle sert à détecter les clients de l'entreprise susceptibles de ne pas rembourser leur crédit. Il renvoie un score qui donne la probabilité pour un client de ne pas rembourser son crédit.

Informations Générales

Nom : Modélisation du Défaut de Paiement Client

But : Évaluer la probabilité d'un défaut de paiement pour un client de Prêt à Dépenser

Contributeur : Eloi Le Quilleuc

Date: 24-11-2021

Description: Ce projet Data Science propose un outil d'aide à l'identification les clients susceptibles de ne pas rembourser leur crédit pour l'entreprise Prêt à Dépenser. Ce projet apporte également des outils d'interprétation et de visualisation des résultats.

Code source : https://github.com/EloiLQ/pretadepenser-score

Jeu de Données

Chemin: https://www.kaggle.com/c/home-credit-default-risk/data

Origine: Home Credit

Description: informations bancaires des clients de Home Credit, réparties en sept tables.

Variable cible: TARGET

Description variable cible : variable binaire indiquant si le client a déjà eu un défaut de paiement ou non

Préparation des Données

Contributeur: Ekrem Bayar

Chemin: https://www.kaggle.com/ekrembayar/homecredit-default-risk-step-by-step-1st-

notebook/notebook

Description : cette étape de préparation des données consiste principalement à agréger les sept

tables tout en conservant un maximum d'information.

Filtre des clients : sélection des clients présent dans le fichier principal application_{train|

test}.csv

Filtre des Variables : aucun

Valeurs manquantes : prises en compte

Encodage : One Hot pour les variables catégorielles

Feature Ingineering: moyennes de scores, moyennes, min, max sur des quantités temporelles,

etc

Algorithme d'Apprentissage Machine

Algorithme: LightGBM

Home-page: https://github.com/microsoft/LightGBM

Version: 3.1.0

Type: Arbre de Décision Boosté

Tâche: Classification

Fonction de coût : régression logistique

Hyperparamètres: par défaut / pas d'optimisation

Données pour la Modélisation

Taille du jeu d'entraînement : 285 979 clients

Taille du jeu de test : 21 526 clients

Nombre de variables d'entrée : 37 variables les plus importantes selon LightGBM

Variable cible: TARGET

Résultats

Sortie du modèle : score crédit ou probabilité de défaut de paiement

Score crédit médian : 5 %

Métrique d'évaluation : aire sous la courbe ROC (ROC AUC)

ROC AUC: 0.783

ROC AUC incertitude: [0.771 - 0.794] (intervalle de confiance 95 %), i.e 0.783 ± 1.5 %

Interprétation

Algorithme: Shap

Home-page: http://github.com/slundberg/shap

Version: 0.39.0

Locale : coefficients de Shapley (en pourcentage) pour chaque variable et chaque client.

Globale : moyenne des coefficients de Shapley sur l'ensemble des clients.

Limites et Améliorations

Améliorations : optimisation des hyperparamètres de LightGBM, équilibrage des deux classes à prédire (50 % - 50 %), utilisation du bagging.

Limites: les scores crédit sont relativement difficiles à interpréter, car relativement faibles (< 50 %) même pour les clients qui ne remboursent pas leur crédit (non payeurs). Ceci est dû à la difficulté de séparer les clients payeurs et non payeurs avec notre modèle statistique et à la forte proportion dans la population de clients payeurs (90 %).