Midterm review

- Read instructions on blackboard (Page 1) of exam ahead of time.
- Scan the exam end to end first and plan your time before you begin answering the questions. . Short answer, true/false, algorithm interpretation/problem solving, complexity analysis, proofs, code interpretation questions.
- Id check:
 - Wait outside the exam hall at 2:15pm for id check (192 students enrolled).
 - 1 double-sided (8x11) cheat sheet allowed. Staff will check ids and cheat sheet.
- Closed book exam. No books or electronic devices of any kind allowed.
- Look at list of exam rules already posted on blackboard. This is Page 1
 of your exam. You have to sign the AIB agreement.
- You should plan to stay in the exam hall until you hand in your answer sheet.

Midterm review

Material:

- Lecture notes including all of Lecture 12 (including today's material) and associated text book readings.
- You have to read the textbook.
- Code used in lectures is from the textbook look it up and study it!
- Slides I emphasized during lecture.
- Assignments.
- Blackboard FAQS.
- Try out some text book questions

Note

- This is a 300-level course. Prepare as you would should for an advanced level course
 - Dig deep: Invest the appropriate amount of time digging into the details.
 - For each topic, know the why, what, complexity analysis, strengths, weaknesses.
 - Enjoy the process.
- Special emphasis to examples/topics/slides I asked you to pay special attention to during lectures.
- The following slides are just a high-level guide to help you organize information you should know. You are still expected to learn the details.

C++

- Topics:
 - Initialization list, explicit constructor, Constant member function ((3 ways to use)
 - Pointers
 - L-Values, R-Values, References: Why, What, How?
 - 4 ways to pass parameters: call by -value/-constant-reference/reference/r-value reference examples and usage (Lecture 1, 2 and 4)
 - Return passing:return by -value/-constant-reference/reference examples and usage
 - Copy vs move, Std:swap, std::move: deep copy vs shallow copy
 - Big Five
- IntCell() class, FindMax() example all aspects discussed
- Function template, Comparable, Function objects
- Matrices: all aspects discussed, operator[]
- Make a list of STL concepts you have learned for future reference.

Complexity

- Relative rate of function growth.
- Useful rules of Big-O.
- Determine complexity for problems similar in scope to examples discussed in class:
 - Factorial, Fibonnacci, MaxSubSequence (various ways and runtime analysis of each), binary search etc.
- Limitations
- Try out some textbook questions

Lists, Stacks, Queues

- What? Why? How to implement? For each topic below
 - Vectors vs Lists
 - Begin(), end(), erase
 - Iterators, const_iterators

Trees

- In general, What are they? Why are they needed? How is it implemented?
- Where does it fail (this should motivate the next topic discussed in the Trees -related lecture?
 - Build on the summary slides and make sure you connect the thread between topics for yourself as I did in class.
- Expression trees, Binary Trees, Binary Search trees, AVL trees, Splay trees, B-trees, M-ary tree, Intro to Sets and Maps etc.
 - Average case analysis of BST
 - Contains, FindMin, FindMax, insert, remove, Pair function
 - Amortized cost computation
 - Complexity/Running time schemes for various operations (insert, delete, find, , ordering operations where appropriate) discussed in lectures

Hashing

- Hash functions
- Separate Chaining (details and analysis)
- Linear probing, Quadratic Probing, Double Hashing
- Hashing Topics not covered in class on 10-17-22 will not be on the test

Examples of Analysis and Proofs

The following are only examples. Any analysis or proofs discussed in any of the 12 lectures is fair game for the exam.

Examples:

- Lecture 4 and 5: Analysis
- Lecture 12: Theorems and Proofs.