计算物理第2题

PB18000039 徐祺云

一 作业题目

用16807产生器测试随机数序列中满足关系 $X_{n-1} < X_{n+1} < X_n$ 的比重。讨论Fibonacci延迟产生器中出现这种关系的比重。

二 算法及主要公式

对于连续产生的三个相互独立的随机数,根据概率论的知识,他们之间满足 $X_{n-1} < X_{n+1} < X_n$ 关系的概率对应三维空间内一四棱锥的体积,即为 $\frac{1}{6} \approx 0.166667$;

使用作业1里的16807随机数产生器,取N分别为 10^4 , 10^6 , 10^8 ,将产生的随机数计入数组A[i]中,再遍历A[i],若满足上述关系式,则计数器加一,最后得到比重 pro_1 ;

然后使用Fibonacci延迟产生器,这里采用整数对 [p,q] = [250,103]表示延迟(R250既满足条件 $p^2 + q^2 + 1 = prime$,又相对比较大,产生的随机数较好),先使用同余法得到前250个数据作为初始值表,再递推:

$$I_n = I_{n-p} \otimes I_{n-q} \mod m$$

其中⊗可以是:加、减、乘、XOR.

这里我取 \otimes = +的随机数计入数组B[i], \otimes = \wedge 的随机数计入数组C[i],分别遍历,若满足上述关系式,则计数器加一,最后得到比重 pro_2, pro_3 。

三 计算结果与分析

取 $N = 10^4, 10^6, 10^8$, 得到数据如下:

表 1: 16807产生器

N	实测比重	偏差
10^{4}	0.158032	-0.008635
10^{6}	0.166769	0.000102
10^{8}	0.166684	0.000017

表 2: Fibonacci延迟产生器(+)

•		_,,
N	实测比重	偏差
10^{4}	0.163833	-0.002834
10^{6}	0.167046	0.000379
10^{8}	0.166652	-0.000015

表 3: Fibonacci延迟产生器(XOR)

•	, ,	
N	实测比重	偏差
10^{4}	0.165133	-0.001534
10^{6}	0.166784	0.000117
10^{8}	0.166706	0.000039

可见, N较小时, 16807产生器的偏差比Fibonacci延迟产生器的偏差更大; N较大时, 两种产生器的差异不大, 在重复多次随机数产生后, 认为fibonacci延迟产生器(+)偏差稍大于16807产生器, 而fibonacci延迟产生器(XOR)偏差的方差较大, 得到的随机数比重时好时坏。

四 结论

- N较小时,16807产生器的偏差比Fibonacci延迟产生器的偏差大
- N较大时,16807产生器的偏差与Fibonacci延迟产生器的偏差差别不大,重复多次实验后,得到的结果是fibonacci延迟产生器(XOR)偏差的方差较大,不稳定;fibonacci延迟产生器(+)偏差稍大于16807产生器。