Topological Data Analysis

2022-2023

Lecture 13

Persistence Descriptors

19 December 2022

Descriptors

A **persistence descriptor** is a numerical summary or a vectorized summary from persistence diagrams.

Numerical summaries

- Average life
- Average midlife
- Entropy
- Complex polynomials

Vectorized summaries

- Betti curves
- Landscapes
- Persistence images

Numerical Summaries

Average life:
$$\frac{1}{n} \sum_{i=1}^{n} (d_i - b_i)$$

Average midlife:
$$\frac{1}{n} \sum_{i=1}^{n} \frac{b_i + d_i}{2}$$

Entropy:

$$-\sum_{i=1}^n \frac{d_i - b_i}{L} \log_2 \left(\frac{d_i - b_i}{L}\right), \quad \text{where} \quad L = \sum_{i=1}^n (d_i - b_i).$$

The **entropy** of a random variable is the average level of uncertainty inherent in its outcomes (Shannon, 1948).

Numerical Summaries

Complex polynomials

Let

$$p(x) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$$

be a monic polynomial with coefficients in \mathbb{C} whose roots are the points (b, d) in a given persistence diagram. Then the collection a_1, \ldots, a_n of coefficients of p(x), or a subset of this collection, can be used as a persistence descriptor.

It is convenient to first transform the points as follows:

$$T(b,d) = \frac{d-b}{2} (\cos \alpha - \sin \alpha + i (\cos \alpha + \sin \alpha)),$$

where
$$\alpha = \sqrt{b^2 + d^2}$$
.

Numerical Summaries

This transformation T brings close to the origin the points (b, d) that are close to the diagonal in the persistence diagram, at an angle proportional to their distance to the origin:

Vectorized Summaries

Betti curves

For each $k \geq 0$, let $\beta_k \colon \mathbb{R} \to \mathbb{R}$ be defined as

$$\beta_k(t) = \#\{(b,d) \mid b \le t \le d\},$$

where (b, d) ranges over the points in a given persistence diagram for homological dimension k.

Vectorized Summaries

Persistence images

For a given persistence diagram, consider a function

$$\Phi(s,t) = \sum_{i=1}^{n} w_i G_i(s,t)$$

for (s, t) in a square, where each w_i is a weight and G_i is a 2-dimensional Gaussian function centered at (b_i, d_i) .

This yields a smoothing of the persistence diagram called a **persistence surface.**

A **persistence image** is a discretization of Φ on a grid overlay.

Vectorized Summaries

Generate a surface by centering 2D Gaussian distributions at each point, and generate a **persistence image** by summing the volume under the Gaussian distributions over the area of each pixel.

References

- B. T. Fasy, Y. Qin, B. Summa, C. Wenk, Comparing distance metrics on vectorized persistence summaries, Topological Data Analysis and Beyond, 34th Conference on Neural Information Processing Systems (NeurIPS 2020)
- **B. Di Fabio, M. Ferri,** Comparing persistence diagrams through complex vectors, Image Analysis and Processing (ICIAP 2015), Lecture Notes in Computer Science, vol. 9279, Springer, 2015
- X. Arnal, R. Ballester, C. Casacuberta, C. Corneanu, S. Escalera, M. Madadi, Towards explaining the generalization gap in neural networks using topological data analysis (2021)

Let X be any set. A **kernel** is a function $K: X \times X \to \mathbb{R}$ which is

- **symmetric:** K(x,y) = K(y,x) for all $x,y \in X$, and
- positive definite:

$$\sum_{i,j=1}^n c_i c_j \, K(x_i,x_j) \geq 0$$

for all n and $c_1, \ldots, c_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in X$, and moreover equality holds if and only if $c_i = 0$ for all i.

Example: The **linear kernel** in \mathbb{R}^d is given by

$$K(x,y) = x^T y.$$

In this case $\sum_{i,j} c_i c_j K(x_i, x_j) = K\left(\sum_i c_i x_i, \sum_i c_i x_i\right)$ by bilinearity.

Alternative definitions

- ▶ A function $K: X \times X \to \mathbb{R}$ is a kernel if and only if for each finite ordered subset $\{x_1, \ldots, x_n\}$ of X the matrix $(K(x_i, x_j))$ is symmetric and positive definite.
- ▶ A function $K: X \times X \to \mathbb{R}$ is a kernel if and only if there exist a Hilbert space H and a map $\Phi: X \to H$ such that

$$K(x, y) = \langle \Phi(x), \Phi(y) \rangle$$

for all x, y. The Hilbert space H is called **feature space** and the map Φ is called **feature map**.

Further examples

The following are kernels in Euclidean space \mathbb{R}^d :

- **Polynomial:** $K(x,y) = (1 + x^T y)^n$ with $n \ge 1$.
- ► Gaussian: $K(x,y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$ with $\sigma > 0$.
- ► Laplacian: $K(x, y) = \exp(-\alpha ||x y||)$ with $\alpha > 0$.

A **radial basis function** (RBF) is a real-valued function whose value depends only on the distance between the input and some fixed point. The Gaussian kernel is also called **RBF kernel**.

The **heat kernel**

$$K_t(x,y) = \frac{1}{(4\pi t)^{d/2}} e^{-\|x-y\|^2/4t}$$

solves the heat equation

$$\frac{\partial K_t}{\partial t}(x,y) = \Delta_x K_t(x,y)$$

for t > 0 and $x, y \in \mathbb{R}^d$, with the initial condition

$$\lim_{t\to 0} K_t(x,y) = \delta_x(y),$$

where δ_x is a Dirac delta distribution centered at x.

Every kernel $K: X \times X \to \mathbb{R}$ induces a **pseudometric** on X corresponding to the norm distance on the feature space:

$$d_K(x,y) = \sqrt{K(x,x) - 2K(x,y) + K(y,y)} = \|\Phi(x) - \Phi(y)\|.$$

Here it is possible that $d_K(x, y) = 0$ with $x \neq y$ since the feature map Φ need not be injective.

For a set X, a Hilbert space H of functions $f: X \to \mathbb{R}$ is a **reproducing kernel Hilbert space (RKHS)** if the evaluation map $H \to \mathbb{R}$ given by $f \mapsto f(x)$ is continuous for all $x \in X$, i.e., if ||f - g|| is small then |f(x) - g(x)| is small for all x.

Every RKHS determines a unique kernel $K: X \times X \to \mathbb{R}$ with

- $ightharpoonup K(x,-) \in H \text{ for all } x \in X;$
- $ightharpoonup \langle f, K(x, -) \rangle = f(x)$ for all $x \in X$ and all $f \in H$.

This is called a **reproducing kernel**.

Conversely, every kernel K determines a unique RKHS inducing K as its reproducing kernel.

Scale-space kernel (Reininghaus et al., 2015)

 $K \colon \mathcal{D} \times \mathcal{D} \to \mathbb{R}$ where \mathcal{D} is the set of all persistence diagrams.

It is defined via a feature map $\Phi \colon \mathcal{D} \to L^2(\Omega)$, where $\Omega = \{(x,y) \in \mathbb{R}^2 \mid y \geq x\}$ is the half plane above the diagonal.

To each persistence diagram $D \in \mathcal{D}$ we could assign the sum $\sum_{p \in D} \delta_p$ of Dirac delta distributions. Here δ_p is viewed as a functional that evaluates each smooth function at p = (b, d).

However, the induced metric on $\mathcal D$ does not take into account the distance to the diagonal and hence it is not robust against noise.

Instead, take the sum of Dirac deltas as initial condition for a heat diffusion problem with a boundary condition on the diagonal.

Find a solution $u \colon \Omega \times \mathbb{R}_+ \to \mathbb{R}$ of the Dirichlet problem

$$\Delta_x u = \partial_t u \ \text{ in } \Omega \times \mathbb{R}_+, \qquad u = 0 \ \text{ on } \partial\Omega \times \mathbb{R}_+,$$
 $u = \sum_{p \in D} \delta_p \ \text{ on } \Omega \times \{0\}.$

Then define $\Phi_{\sigma}(D) = u|_{t=\sigma}$ for each $D \in \mathcal{D}$ and each scale parameter $\sigma > 0$. Thus,

$$K_{\sigma}(D_1, D_2) = \langle \Phi_{\sigma}(D_1), \Phi_{\sigma}(D_2) \rangle.$$

In this case the feature map Φ_{σ} is injective, so K_{σ} yields a metric.

Explicitly, one obtains that

$$u(x,t) = \frac{1}{4\pi t} \sum_{\rho \in D} e^{-\|x-\rho\|^2/4t} - e^{-\|x-\bar{\rho}\|^2/4t}$$

where $\bar{p} = (d, b)$ if p = (b, d). Therefore

$$\mathcal{K}_{\sigma}(D_1,D_2) = \frac{1}{8\pi\sigma} \sum_{p \in D_1, \, q \in D_2} e^{-\|p-q\|^2/8\sigma} - e^{-\|p-\bar{q}\|^2/8\sigma}$$

Stability

This kernel is stable with respect to the 1-Wasserstein distance:

$$\|\Phi_{\sigma}(D_1)-\Phi_{\sigma}(D_2)\|\leq \frac{1}{\sigma\sqrt{8\pi}}\ W_1(D_1,D_2),$$

but not with respect to p-Wasserstein distances with p > 1.

Landscape kernel

Landscapes represent persistence diagrams as functions in $L^p(\mathbb{N} \times \mathbb{R})$ for any p. For p=2, we can use the Hilbert space structure of $L^2(\mathbb{N} \times \mathbb{R})$ to define a kernel K^L with feature map

$$\Phi^L\colon \mathcal{D}\longrightarrow L^2(\mathbb{N}\times\mathbb{R}),$$

and a corresponding distance d^{L} .

This kernel is stable with respect to a weighted version of the 2-Wasserstein distance.

Classification performance

The following percentages were obtained over a range of 10 time parameters t_i using the kernels K^L and K_σ with an SVM classifier (support vector machine) on SHREC 2014:

HKS t_i	k^L	k_{σ}	Δ
t_1	68.0 ± 3.2	94.7 ± 5.1	+26.7
<i>t</i> ₂	88.3 ± 3.3	99.3 ± 0.9	+11.0
<i>t</i> ₃	61.7 ± 3.1	96.3 ± 2.2	+34.7
<i>t</i> ₄	81.0 ± 6.5	97.3 ± 1.9	+16.3
<i>t</i> ₅	84.7 ± 1.8	96.3 ± 2.5	+11.7
<i>t</i> ₆	70.0 ± 7.0	93.7 ± 3.2	+23.7
<i>t</i> 7	73.0 ± 9.5	88.0 ± 4.5	+15.0
<i>t</i> ₈	81.0 ± 3.8	88.3 ± 6.0	+7.3
<i>t</i> 9	67.3 ± 7.4	88.0 ± 5.8	+20.7
t ₁₀	55.3 ± 3.6	91.0 ± 4.0	+35.7

Source: Reininghaus et al. (2015)

Other kernels

Source: U. Fugacci, CNR-IMATI, Genova

Reference

J. Reininghaus, S. Huber, U. Bauer, R. Kwitt,

A stable multi-scale kernel for topological machine learning, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 4741–4748