$$\frac{\text{Notes, } 10(b)}{\text{ECE } 606}$$

The Karp reduction

Given two decision problems A, B, suppose the set of all instances of problem A is denoted I_A and the set of all instances of problem B is denoted I_B . We say that A Karp-reduces to B, written $A \leq_k B$ if and only if:

there exists a polynomial-time computable function $m:I_A\to I_B$ such that $i\in I_A$ is a true instance of problem A if and only if $m(i)\in I_B$ is a true instance of problem B.

<u>Note</u>: in the portions of your textbook that I have taken from CLRS, \leq_k is written as \leq_p .

Claim 1. HAMPATHSTARTEND \leq_k HAMPATH.

HAMPATH: given as input a non-empty undirected graph G, is there a simple path in G of all its vertices?

HAMPATHSTARTEND: given as input a non-empty undirected graph G and two distinct vertices in it, a, b, is there a simple path $a \leadsto b$ in G of all its vertices?

Our algorithm to show \leq_c turns out to be a mapping that works.

$$H_{SE}(G = \langle V, E \rangle, a, b)$$

1 if $a = b$ or $|V| = 1$ then return false

2 Let $V' \leftarrow V \cup \{x, y\}$, where $x, y \notin V$

3 Let $E' \leftarrow E \cup \{\langle x, a \rangle, \langle b, y \rangle\}$

4 return $H(\langle V', E' \rangle)$

Claim 2. HAMPATH \leq_k HAMPATHSTARTEND.

For this direction, the algorithm we used to show \leq_c does not work. We have to get a bit more creative.

```
\begin{split} H(G = \langle V, E \rangle) \\ & \text{1 if } |V| = 1 \text{ then return true} \\ & \text{2 for each } u \in V \text{ do} \\ & \text{3 for each } v \in V \setminus \{u\} \text{ do} \\ & \text{4 if } H_{SE}(G, u, v) = \text{true then return true} \\ & \text{5 return false} \end{split}
```

A mapping: introduce two new vertices, x, y. For every vertex u in the original graph, introduce edges $\langle x, u \rangle$ and $\langle y, u \rangle$. Let this new graph be G'. Output from the mapping: $\langle G', x, y \rangle$.

If $A \leq_k B$, then to construct an algorithm for A given an algorithm for B:

Compare to $A \leq_c B$:

Claim 3. $A \leq_k B \implies A \leq_c B$.

Claim 4. NP is closed under \leq_k . That is: if $A \leq_k B$ and $B \in NP$, then $A \in NP$.

Now that we have a notion of a reduction to compare the computational hardness of two problems, we move on to comparing the hardness of a problem relative to an entire complexity class.

Definition: Given a complexity class C, we say that a decision problem p is C-hard under a reduction \leq if: for all $q \in C$, $q \leq p$.

Definition: Given a complexity class \mathcal{C} , we say that a decision problem p is \mathcal{C} -complete under a reduction \leq if: (i) p is \mathcal{C} -hard under \leq , and, (ii) $p \in \mathcal{C}$.

We can instantiate \leq with \leq_k , \leq_c or any other notion of a reducion we think is meaningful.

In the context of **NP**, we usually adopt \leq_k .

\overline{NP} -hard

A decision problem p is **NP**-hard if for all $q \in \mathbf{NP}, q \leq_k p$.

$\mathbf{NP}\text{-}\mathrm{complete}$

A decision problem p is **NP**-complete if: (i) p is **NP**-hard under \leq_k , and, (ii) $p \in \mathbf{NP}$.

Claim 5. If $p \in NP$ -hard and $p \leq_k q$, then $q \in NP$ -hard.

Claim 6. If $q \in NP$ -complete and $q \in P$, then P = NP.

So: if $\mathbf{P} \neq \mathbf{NP}$ and $q \in \mathbf{NP}$ -complete, then $q \notin \mathbf{P}$.