REMARKS/ARGUMENTS

Claims 1-23 and 25-26 are pending. Claims 1, 4 and 5 have been amended for clarity. Claim 11 has been amended to correct a typographical error in the last formula. Accordingly, the Applicants believe that no new matter has been introduced.

Rejection—35 U.S.C. 112, second paragraph

Claim 11 was rejected under 35 U.S.C. 112, second paragraph, as being indefinite.

The Applicants thank Examiner Keys for detecting this typographical error, which has now been corrected.

Rejection—35 U.S.C. 103

Claims 1-10 and 12-26 were rejected under 35 U.S.C. 103(a) as being unpatentable over Murata, J. Am. Chem. Soc. 120:7117, in view of Bierschenk et al., U.S. Patent 5,093,432. The present invention is not disclosed or suggested by the cited prior art for the following reasons.

The Official Action assumes that compounds having a vic-dichloro structure (CH₂ClCHCl-) can be fluorinated in the same manner as other types of chlorinated hydrocarbons. The Applicants disagree for the following reasons.

The fluorination reactions of <u>Bierschenk et al.</u> involve fluorination of compounds where the chlorine atom is attached to a <u>primary</u> carbon atom. <u>Bierschenk et al.</u> disclose fluorination of chlorinated compounds in Examples 16-19, 43-47, 48 (col. 31, line 54-col. 32, line 1), 51, 62 and 64. However, all these examples involve fluorination of compounds having a chlorine atom attached to a <u>primary</u> carbon atom (e.g., $-CH_2Cl \rightarrow CF_2Cl$).

Therefore, there is no suggestion or reasonable expectation of success provided by the cited

art which would have motivated one of ordinary skill in the art to practice the present invention, which involves the formation in a good yield of a compound of formula (II) having a vic-dichloro structure (CF₂ClCF<u>Cl</u>-) where the chlorine atom is attached to a <u>secondary</u> or tertiary carbon atom (the underlined chlorine atom in the above formula).

It is well-known to those skilled in the art that a chlorine atom attached to a <u>primary</u> carbon atom is relatively stable during fluorination, but that a chlorinated atom attached to a <u>secondary</u> or <u>tertiary</u> carbon atom is vulnerable to rearrangement or elimination during fluorination, see <u>Adcock et al.</u>, J. Org. Chem. 49:2719-2733 (1984)(attached), page 2720, col. 1, lines 6-et seq. below Table 1. These rearrangements result in production of products that do not correspond to the original unfluorinated compound, because the chlorine atoms are rearranged.

Similarly, there is no reasonable expectation of success in <u>Bierschenk</u> for the present inventionas directed to fluorination of a chlorine atom attached to a tertiary carbon atom as in CHCl=CCl- (see R^{H1} in Claim 1). Such a chlorine atom attached to a tertiary carbon atom is also vulnerable to rearrangement during fluorination, as disclosed by <u>Adcock et al.</u>, J. Org. Chem. 49:2719-2733 (1984). Moreover, <u>Bierschenk et al.</u> do not disclose fluorination of any compounds having a chlorine atom attached to a <u>tertiary</u> carbon atom. Therefore, this document cannot suggest or provide a reasonable expectation of success for the present invention where a compound (I) where R^{H1} is CClX₄=CCl- can be fluorinated without rearrangement of the chlorine atom attached to the tertiary carbon atom.

Furthermore, with respect to claim 2, a compound (I) having a molecular weight higher than a certain level is not likely to undergo a decomposition reaction in a gas phase during fluorination. When a compound (I) has a certain level of fluorine content, the compound (I) dissolves well in the liquid phase, and therefore, formation of a heterogeneous reaction system and consequential decomposition of the compound (I) through the heat

* Application No. 10/084,506

Reply to Office Action of March 4, 2004

generated by the heterogeneous reaction can be prevented. As the prior art does not suggest nor provide a reasonable expectation of success for the present invention, the Applicants respectfully request that this rejection be withdrawn.

CONCLUSION

In view of the above amendments and remarks, the Applicants respectfully submit that this application is now in condition for allowance. Early notification to that effect is earnestly solicited.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND,

MAIER & NEUSTADT, P.C.

Norman F. Oblon
Thomas Cumingle

Customer Number

22850

Tel: (703) 413-3000 Fax: (703) 413 -2220

NFO/TMC/cja

Thomas Cunningham Registration No. 45,394

10

04- 6-28; 2:39PM:T S INTERNATIONAL CORPORATION US OBLON, SPIVAK, MA:0332581398

4/ 8

3

NU. ZIJO1

J. Org. Chem. 1984, 49, 2719-2723

2719

Aerosol Direct Fluorination: Alkyl Halides, 2. Chlorine Shifts and the Stability of Radicals

James L. Adcock* and William D. Evans

Department of Chamistry, University of Tennessee, Knowille, Tennessee, 37996-1600

Received November 1, 1983

Unlike alkyl bromides and indides, alkyl chlorides are shown to be stable to direct fluorination, even under ultraviolet irradiation, at temperatures of 30 °C and below. Although less reactive than the bromides and iodides, F-alkyl chlorides may be derivatized, presenting another example of direct fluorination-survivable functionality. High (63%) to moderate (32%) isolated yields of the analogous perfluoroalkyl chlorides can be synthesized by aerosol direct fluorination of 1-chloropropana, 1-chlorobutane, 1-chloro-2-methylpropane, 1-chloro-3-methylbutane, 1-chloro-2-methylbutane, and chlorocyclopentane with generally less than 20 % C-C bond cleavage. Tartiary alkyl chlorides generally undergo intramolecular 1,2 chloride shifts in the carliest stages of teaction in a manner anyl chlorides generally undergo intramolectuar 1,2-caloride shifts in the earliest stages of teachon in a manner characteristic of β-chloro radicals forming principally primary F-alkyl chlorides. Thus 2-chloro-2-methylpropane produces 1-chloro-F-2-methylpropane (47%), and 2-chloro-2-methylputane produces a 16:6.3:1 ratio of 1-chloro-F-2-methylputane, 1-chloro-F-3-methylputane, and 2-chloro-F-3-methylputane, respectively, in 32% combined yield. Secondary alkyl chlorides undergo a similar but incomplete rearrangement producing mixtures of primary and secondary F-alkyl chlorides. Thus 2-chloropropane produces a 2:1 mixture of 2-chloro-F-propane and 1-chloro-F-propane in 50% combined yield; 2-chlorobutane produces a 1:1.5 mixture of 2-chloro-F-butane and 3-chloro-F-butane in 24% combined yield; 2-chlorobutane produces a 2:1.5 mixture of 2-chloro-F-butane and 3-chloro-F-butane and 3-chloro-F-1-chloro-F-butane in 84% combined yield, and 3-chloropentane produces a 2:3:1 mixture of 3-chloro-F-pentane, 2-chloro F-pentane, and 1-chloro F-pentane, respectively, in a combined yield of 30%. Because secondary alkyl chlorides partially rearrange but primary alkyl chlorides do not rearrange at all on fluorination, doubt is cast on the postulate that the intermediate radicals are equilibrating.

The fluorination of compounds with survivable functionality permits the preparation of fluorinated compounds with preselected sites for further reaction. The survivability of acyl fluorides. 12 ethers, 8.4 ketals, 4 and, to a lesser extent, esters' and amines's to elemental fluorine attack are well documented in the literatura. More recently re-liable ketone direct fluorinations have been documented? although isolated cases of direct fluorination syntheses of ketones, albeit in poor yields, have been noted previously.8 The stability of perfluoroketones to photochemically finished aerosol direct fluorination is remarkable given their known photolability.9

Perhaps the most useful monovalent substituent groups on perfluorocarbons are the iodides. Perfluoroalkyl bromides are less reactive and are rarely used if the fodides are available. However neither of these substituents will survive attack by elemental fluorine. Until the recent aerosol direct fluorination of peopentyl chloride the useful survivability of a chloro group was in doubt.11 Many previous attempts to direct fluorinate alkyl chlorides resulted in extensive fragmentation, chlorine loss, and significant free radical chlorination competing with fluori-nation. 12-49 For example, the reaction of elemental fluoring

with 1,2-dichloropropane at 100-200 °C gave large amounts of CF4, C2F4, and C4F4 as well as small amounts of 1,2dichloro-F-propane, 1,3-dichloro-F-propane, and materials containing three or more chlorines.²⁰ The case with which the C-Cl bond was cleaved and the degree of free radical chlorination giving rise to polychlorinated products were in retrospect obviously a result of the high temperatures involved. In contrast to the above works this work demonstrates the exceptional stability of a number of chloroalkanes toward fission of the C-Cl bond by photochemically finished aerosol direct fluorination. The predictable occurrence of 1,2-chloride shifts giving rearranged products in some instances has been studied systematically as well

Results and Discussion

A previous contribution in the area of aerosol direct fluorination of alkyl balides showed that alkyl chlorides underwent exclusively free radical attack by elemental fluorine.11 This is in contrast to the carbocation generation which occurred, at least initially, when alkyl bromides were subjected to aerosol direct fluorination. The extremely low degree of C-Cl bond fission occurring in the aerosol fluorination of neopentyl chloride prompted us to look more extensively into the aerosol direct fluorination of other alkyl chlorides as a means by which preselected survivable sites for subsequent reaction could be incorporated into organic molecules prior to their fluorination.

The aerosol direct fluorination process has been described in detail elsewhere 47 The process is a steady-state flow process in which a hydrocarbon vapor is condensed onto a sodium fluoride preserosol and then subjected to. attack by a 50-100% excess over the stoichiometric amount of elemental fluorine at low (2-5%) concentration in helium at low (-70 to 0 °C) temperatures in the dark.

Adcock, J. L.; Lagow, R. J. J. Am. Chem. Soc. 1974, 96, 7588,
 Adcock, J. L.; Beh, R. A.; Lagow, R. J. J. Org. Chem. 1975, 40, 3271.
 Adcock, J. L.; Lagow, R. J. J. Org. Chem. 1974, 38, 3617.
 Adcock, J. L.; Horita, K., Reak, E. B. J. Am. Chem. Soc. 1981, 103,

⁶⁹³⁷

<sup>6937.
(5)</sup> Adcock, J. L.; Catsikis, B. D.; Thompson, J. W.; Lagow, R. J. J. Fluorins Chem. 1976, 7, 197.
(6) Bishop, B. C.; Hynes, J. B.; Bigelow, L. A. J. Am. Chem. Soc. 1964, 38, 1927.
(7) Adcock, J. L.; Robin, M. L. J. Org. Chem. 1983, 48, 2437.
(8) Holub, F. F.; Bigelow, L. A. J. Am. Chem. Soc. 1950, 72, 4879.
(9) Giacometti, G.; Okabe, H.; Price, S. J.; Steacle, E. W. R. Can. J. Chem. 1969, 39, 104.
(10) Banks, R. E. "Phuorocarbons and Their Derivatives", 2nd ed.; Macdonald: London, 1970; p 79, 102.
(11) Adcock, J. L.; Evans, W. D.; Heller-Grossman, L. J. Org. Chem. 1988, 49, 4953-4967.
(12) Müller, W. T.; Koch, S. D. J. Am. Chem. Soc. 1957, 79, 3084.
(13) Rull, O.; Keim, R. Z. Anorg. Allg. Chem. 1931, 201, 245.
(14) Bockmuller, W. Justus Liebigs Ann. Chem. 1933, 506, 20.
(15) Miller, W. T.; Calfee, J. D.; Bigalow, L. A. J. Am. Chem. Soc. 1937, 59, 198.

^{(18) (}a) Calfee, J. D.; Bigelow, L. A. J. Am. Chem. Soc. 1937, 59, 2072.
(b) Young, D. S.; Fukuhara, N.; Bigelow, L. A. Ibid. 1940, 62, 1171.
(17) Calfee, J. D.; Fukuhara, N.; Young, D. S.; Bigelow, L. A. J. Am. Chem. Soc. 1940, 62, 267.
(18) Hadley, E. H.; Bigelow, L. A. J. Am. Chem. Soc. 1940, 62, 2302.
(19) Miller, W. T. J. Am. Chem. Soc. 1940, 62, 341.
(20) Schmeisser, M.; Ehlero, K. P.; Sartori, P. Angew. Chem., Int. Ed. 1957, 6 27.

^{1967. 6. 627.}

04- 6-28; 2:39PM;T S INTERNATIONAL CORPORATION US OBLON, SPIVAK, MA:0332561398

NU. 2135

Adcock and Evans

starting compd	product 1	effluent conon, %	yield,° %	product 2	effluent	yield, K	product 9	offluent conen, %	yield,
1-chloro- propane	1-chloro-F- propane	85	63	•					
1-chlorobutane	1-chloro-F-butane	60,2	42.4	F-butane		ь	hydryl-1-chloro-P-butanes		ь
1-chloro-2- mcthyl- propane	1-chloro-F-2- methylpropane	76.4	41	F-2-methyl- propane	15.6		Ly ary year and the Parishes		0
I-chloro-3- methyl- butane	1-chloro-F-3- methylbutans	67	32	F-2-methyl- butane	19				
l-chloro-2- methyl- butane	1-chloro-F-2- methylbutano	66	39	F-2-methyl- butane	19				
2-chlore-2- methyl- propane	1-chloro-F-2- methylpropens	80.4	47						
2-chlore-2- methyl- butane	l-chlore-F-2- methylbutane	49.1	¢	1-chloro-F-3- methylbutane	17.0	e	2-chloro-F-3-methylbutane	2.7	Ç
-chloro- propane	2-chloro-F- propane	52	ď	1-chloro-F- propane	28	d			
-chlorobutana	2-chloro-F-butane	80	€	1-chloro-F-	48	e			
-chloro- pentane	3-chloro-F- pentane	30	f	2-chloro-F-	45	F	1-chloro-F-	15	f
hlorocyclo- pentane	chloro-F-cyclo- pentane	49.5	40,2	F-cyclopentane	12.5		F-pentane	12.5	

*Yields are based on total starting compound injected that are not corrected for recovered unreacted starting material collected at the close of the reaction. *Combined yield 6.9%. *Combined yield 31.8%. *Combined yield 50%. *Combined yield 50%. *Combined yield 30%. *Three isomeric chloro-F-pentanes make up 15.5% of effluent.

The partially (50-70%) fluorinated hydrocarbons are then subjected to ultraviolet irradiation at ambient fluorine concentrations to remove residual hydrogen atoms. Partial fluorination runs are conducted under precise stoichiometric control usually without photochemical finishing.

2720 J. Org. Chem., Vol. 49, No. 15, 1984

Primary alkyl chlorides such as n-propyl chloride, nbutyl chloride, and isobutyl chloride show exceptional stability to both elemental and photochemically generated atomic fluorine (Table I). In contrast, the aerosol direct fluorination of tertiary alkyl chlorides results in a 1,2chloride shift giving primary perfluoroalkyl chlorides (Table I). For example in the seroeol fluorination of tert-butyl chloride, complete conversion to F-isobutyl chloride is observed. No fluorinated tertiary chlorine products were observed. A second reaction with only 6 mmol/h of fluorine with 8 mmol/h tert-butyl chloride and without photofinishing gave unreacted tert-butyl chloride (30%), 1-chloro-2-fluoro-2-methylpropane (30%), 1chloro-2,3-difluoro-2-methylpropane (20%), and 1chloro-1,2-difluoro-2-methylpropane (2%) plus more highly fluorinated material (15%). The only tertiary chloride that was observed occurred on unreacted starting material. No free chlorine was observed, nor were any products found to contain more than one chlorine. This reaction shows that the chloride shift occurs on radical formation early in the fluorination. Chlorine fission due to photolysis or fluorine displacement apparently does not occur with observable significance.

In the aerosol fluorination of tert-amyl chloride (2chloro-2-methylbutane, Table I) three rearranged perfluoroalkyl chlorides were collected. The relative, near statistical, proportions of 1-chloro-F-2-methylbutane (43.1%) and 1-chloro-F-3-methylbutane (17.0%), while only a trace of 2-chloro-F-8-methylbutane (2.7%) was collected, shows that multiple 1,2-chloride shifts occur readily during perfluorination. Perfluoro-tert-amyl chlo-

ride was not produced.

Secondary alkyl chlorides show intermediate stability when fluorinated giving both primary and secondary perfluoroalkyl chlorides (Table I). Evidence for multiple 1,2-chloride shifts are seen again in the perfluorination of 3-chloropentane.

These results are for the most part supported by literature accounts of rearrangements associated with free radical reactions. For example, Skell, Allen, and Gilmour observed that chlorination of 2-bromopropane and 2brome-2-methylpropane produced 1-brome-2-chlorepropane and 1-bromo-2-chloro-2-methylpropane, respec-tively.²¹ These findings indicated complete rearrange-These findings indicated complete rearrangement. An initial hydrogen abstraction from one of the methyl groups leading to a primary radical was immediately followed by a 1,2-bromide migration to form a more stable tertiary radical that then added chlorine to form the rearranged products. Juneja and Hodnett observed the same 1,2-bromide shift in the chlorination of 2-bromo-2methylpropane as did Skall et al.22 They also observed that no rearrangement occurred in the chlorination of 1-bromo-2-methylpropanc. The latter rearrangement would not be expected to occur as it would involve forming a primary radical from a tertiary radical. Formation of a tertiary radical is also statistically unfavorable.

Wiley et al noted the isomerization of 1-chloropropane to 2-chloropropane during radiolysis but not the reverse reaction.²³ This seeming contradiction was reinvestigated by Benson and Willard, who observed that this reaction was catalyzed by hydrogen chloride and that the hydrogen stom exchanges, not the chlorine atom.24 Mayo postulated that an equilibrium between secondary and primary radicals could explain this rearrangement. If the reactions of these radicals require little or no activation energy, the

⁽²¹⁾ Skell, P. S.; Allen, R. G.; Gilmour, N. D. J. Am. Chem. Soc. 1961,

⁽²⁵⁾ Mayo, F. R. J. Am. Chem. Soc. 1962, 84, 3964-6.

04- 6-28; 2:39PM;T S INTERNATIONAL CORPORATION US OBLON, SPIVAK, MA:0332561398

Aerosol Direct Fluorination

J. Org. Chem., Vol. 49, No. 15, 1984 2721

products will conform to the more stable radical. However, if the reactions of these radicals require a large activation energy and are therefore relatively difficult, then the products will conform to those derived from the minor proportions of the less stable, but more reactive radical. In this way the seeming contradiction is resolved; i.e., only the more reactive radicals formed by radiolysis, C-H band fission, will react with HCl to produce the observed product because of the relatively high activation energy

The above postulate would also explain why products derived from the interactions of intermediate free radicals with fluorine molecules, a low activation energy process, should predominately correspond to those derived from the more stable radicals. Other free radical rearrangements involving 1,2-chloride shifts have been reviewed by Freidina.26

When a 1:2 molar ratio of tert-butyl chloride to fluorine aerosol fluorination was carried out, 1-chloro-2-fluoro-2methylpropane was the major product observed. This suggests a mechanism (Scheme I) similar to that observed by Skell et al. in which initial H abstraction from a methyl group results in a rapid 1,2-chloride shift to produce a more stable tertiary radical.²¹ This could occur by the formation of a bridged radical intermediate (I) that would open

preferentially to the more stable tertiary radical.27 If Mayo's postulate is general, the concentration of the tertiary radical would far exceed that of the primary radical giving the observed primary F-alkyl chloride. This postulate also explains the lack of rearrangements encountered during the fluorination of primary alkyl chlorides having a tertiary hydrogens.

In the analogous fluorination of test-amyl chloride, the tertiary chlorine can rearrange from a primary to a tertiary radical by a 1,2-chloride shift giving the primary F-alkyl chloride. However, the tertiary chloride can also rearrange by a 1,2-chloride shift giving a secondary chloride if the initial radical is formed by H abstraction at the methylene group. The secondary chloride can subsequently rearrange by a second 1,2-chloride shift giving the other possible primary alkyl chloride, 1-chloro-F-3-methylbutane, if a subsequent hydrogen abstraction by fluorine occurs on the 3-methyl group adjacent to the methylene group (Scheme This final shift would occur, however, only if the 3-methyl group has not been previously fluorinated.

The partial rearrangement of secondary alkyl chlorides during fluorination can also be rationalized by Mayo's postulate.16 However in the case of equilibrium between primary and secondary alkyl radicals, the concentration of secondary radical would not be so predominant nor

would their reactivity differ as much. The more similar concentrations would therefore result in a mixture of products representing both rearranged and unrearranged products. The problem with Mayo's rationalization is that it should work in reverse; i.e., when primary alkyl chlorides are fluorinated, some secondary alkyl chloride should be isolated. Since this does not occur, there must be kinetic and/or other effects operating. This observation certainly casts some doubt on Mayo's postulation and a more careful look at the problem is indicated.

Experimental Section

The basic aerosol fluorinator design and a basic description of the process are presented elsewhere. 41 Detailed parameters for reactor variables are given in Table II. Workup of products following removal of the hydrogen fluoride formed during the fluorination consisted of vacuum line fractionation, infrared assay of fractions, and gas chromatographic separation of components using either a 7 m × 5/s in. 13% Fluorosilicone QF-1 (Analabs) stationary phase on 60-80 mesh, acid-washed, Chromosorb p conditioned at 225 °C (12 h) or a 4 m × 2/s in. 10% SE-52 phenyl-methyl silicono rubber on 60-80 mesh, acid-washed, Chromosorb p conditioned at 250 °C (12 h). Following gas chromatographic separation (Bendix Model 2300, subambient multicontroller) all products of "significance" were collected, transferred to the vacuum line, assayed, and characterized by vapor-phase infrared spectrophotometry, PEI330, electron impact (70 eV) and chemical ionization (CH, plasma) mass spectrometry (Hewlett-Peckard GC/MS, 5710A GC, 5980 A MS, 5934A Computer), and ¹H and ¹F nuclear magnetic resonance (JEOU FX90Q, omniprobe) in CDCl, with 1% CFCl₂ internal standard.

Aerosol Fluoringtion of a Propyl Chloride. 1-Chloro-propane (Matheeon) has a vapor pressure at -45 °C such that a helium flow of 75 mL/min produces a throughput of 0.24 g/h (3.0 mmol/h). A 2-h run produced 0.909 g of crude material after fractionation. Separation isothermally at -20 °C on the SE-52 column gives 1-chloro-F-propane (85%) at retention time of 6 min ($\ell_R=6$ min). This corresponds to a 63% yield based on theoretical throughput. The IR spectrum matches that published.²⁸

Acrosol Fluorination of Isopropyl Chloride. 2-Chloropropane (Eastman) has a vapor pressure at -45 °C such that a helium flow of 75 mL/min produces a throughput of 0.31 g/h (4.0 mmol/h). A 2.5-h run produced 1.2393 g of crude product after fractionation. Separation isothermally at -20 °C on the SE-52 column gives an unresolved peak (80%) (tg = 6 min). A second separation on the QF-1 column a broad peak (80%) (tR = 18 min). This mixture corresponds to 48.5% of the calculated yield. The IR spectrum shows a 1:2 mixture of 1-chloro-F-propane and 2-

Scheme II

⁽²⁶⁾ Freidling, R. Kh. Adv. Free Radical Chem. 1965, 1, 211-278.
(27) Kochi, J. K., Ed. 'Free Radicals'; Wiley: New York, 1973; Vol. 2. Chapter 26, pp 829-852.

⁽²⁸⁾ Hauptschein, M.; Nodiff, E. A.; Grosse, A. V. J. Am. Chem. Soc. 1952, 74, 1347.

Typical Aerosch Pluccinsilon Resciton Parameters

Table Sf.

7/

Adcock and Evans

2722 J. Org. Chem., Vol. 49, No. 15, 1984

					ವ	Le U LEE	dillar	ž				, and	budrocarhan	meralle	R,		photograph	
	ĕ	흴	Fow, R	2		8	5		reectio	er Lemp	ភ	Hilling at	throughput.	sted chi-	Confe	_	affluent	nroducts
			ğ	Eod.			mod.	Pog.		mod,	E Oct	carrier,	d/locan	ometry,	Pag.	43	P IDGG	yield
starting compd	ž	ğ		7	2	5]	_	67	reactor	_	~	w[r/m]n	(he carrier)	hc:F	3 8 7 8 8	time,* s	collectd	% theor
n-propyl chloride	32	91			8	8			01-	<u>چ</u>	9	0001	3.0 (76)	1:25	22	83	3	3
isopropyl chloride	z	욻			8	æ			ş	-80 -8	٩	줖	4.0 (75)	1:25	9.9	12	8 ~	3
a butyl chloride	8	8	8		8	8	2		ş	8	2	1600	3,1 (48)	1:43	7	8	60,2	42,2
tsobutyl chloride	g	2			8	8			7	ş	2	1000	<u>8</u>	1:54	8	88	76.4	41.3
sec-butyl attoride	<u>6</u>	9	æ		¥	36	2		ę	Ŗ	2	1000	2.4 (83)	136	9	6 1	72.8	32.8 ₄
tert-butyl chlarids	8	ឧ	20		٤	29	2		f	8	\$	5	3.0 (13)	1:46	47	83	80.4	46.6
terf-buly! chlarids	55				٤				¥	ş	9	8	3.0 (13)	젚	6.3	8		-E
1-chloro-3-methylbutane	8	2	2		8	2	2		ę	\$	•	1000	3.0 (12)	1:40	45	62	2	25
1-chlore-2-methylbutens	뭐	20	8		3	2	\$		ş	ş	•	1000	3.0 (12)	1:40	4.5	62	99	33
3-chloropealane	뭐	2	8		a	2	2		ş	ŕ	2	8	1.2 (20)	1172	4.6	62	8	31,
ters-amys chloride	2	8			22	23			9	2	2	8	2.5 (53)	1:46	4.5	75	62.8	31.8
cyclopentyl chloride 20 20 20 80 80 40 40 50 10 1600 2.0 [135] 1.73 4 87 49,5 40,2	Ħ	8	ឧ		2	\$	\$		우	F	9	1000	20 (136)	1:73	•	22	49.5	40,2
CO. and A and of day of	1	•	1	4	1	1	7		4		6			ţ	-			

*Sre ref 4 and 7 for algnificance, measing of postmeters (mod. = module). *1.0 mL/min Sy delivers 2.44 mmol/h of Fz. *Reactor volume 1.356 L. *All isomera. *19 % Frapropyl chloride plus 33% F-kropropyl chloride. *13% F-ratyl thioride plus 196% F-rechuyl chloride. *F-Isobutyl chloride. *mirture, noophotochemically finiahad, UV nonperfluorinated products. 10.3% 3-chlow-Prentans, 15.6% 2-chlow-Prentans, and 6.2% 1-chlow-Frentans.

chloro-F-propane matching those published. 28.20 Aerosol Pluorination of z-Butyl Chloride. 1-Chlorobutane (Fisher Scientific) was used as received. Its vapor pressure at -10 °C is such that a flow of 58 mL/min of helium through -50 mL of the material contained in a sparge tube syaporator produces a throughput of 0.29 g/h (3.15 mmol/h). For a 2-h photochemically finished run, 1.1676 g of crude product was collected after vacuum line fractionation. Purification of the products on the GC SE-52 column (0 °C/5 min; 10 °C/min to 30 °C; 25 °C/min to 180 °C/10 min) produced 6.9% F-n-butane ($t_{\rm R}=3$ min) and 60.2% 1-chloro-F-butane (compound 1) (cg = 6 min). The yield of compound I based on the calculated throughput was 43.8%. 1: IR (cm⁻¹) 1351 (m), 1285 (sb), 1240 (vs), 1213 (vs), 1160 (w), 1: IK (cm⁻¹) 1351 (m), 1285 (eb), 1240 (vs), 1213 (vs), 1160 (w), 148 (e), 1110 (s), 1020 (sh), 997 (m), 866 (m), 848 (eh), 802 (s), 745 (sh), 782 (s), 694 (m); ¹⁵F NMR (1% CFCL₂/CDCl₂) (multiplicity, relative area) $CF_2^ACF_2^BCF_3^CCF_3^DCl$, $\phi_A - 81.7$ (ct. 3), $\phi_B - 126.1$ (m. 2), $\phi_C - 121.6$ (qm. 2), $\phi_D - 68.9$ (cq. 2). $J_{AB} = J_{AD} = 1.1$ Hz, $J_{AC} = 9.89$ Hz, $J_{BD} = 12.64$ Hz, $J_{CB} = 1.46$ Hz, major mass extions [m/4 (int, formula)], [EI] 237 (25.4. $C_4F_4^{BC}$ Cl), 235 (77.6, $C_4F_4^{BC}$ Cl), 219 (100, C_4F_3), 149 (5.2. $C_2F_4^{TC}$ Cl), 147 (17.5, $C_3F_4^{EC}$ Cl), 63 (27. CF₃), 119 (12.2, C_2F_3), 87 (4.4, CF_2^{TC} Cl), 85 (15.2, CF_3^{EC} Cl), 69 (27. CF₃).

Aerosol Fluorination of Isobutyl Chloride. 1-Chloro-2methylpropane (Eastman) has a vapor pressure at -10 °C such methylpropane (Eastman) has a vapor pressure at -10 °C such that a helium flow of 25 mL/min produces a throughput of 0.18 g/h (1.4 mmol/h). A 2 h-run produced 0.3861 g of crude material after fractionation. Separation on the SE-52 column (0 °C/5 mln; 15 °C/min; 25 °C/min to 200 °C/10 mln) gave 15.6% F-isobutans ($t_{\rm R}=3$ min), and 76.4% F-isobutyl chlorida (compound 2) ($t_{\rm R}=6$ min). This corresponds to a 41.6% yield for compound 2: IR (cm⁻¹) 1300 (sh), 1250 (vs), 1195 (s), 1162 (s), 1070 (w), 1042 (m), 938 (s), 916 (m), 863 (s), 751 (m), 722 (ms); ¹⁵F NMR (1% CFCl₃/CDCl₃) (CF₅³/₂CF²CT₂CCl $\phi_{\rm A}$ -73.0 (td, 6), $\phi_{\rm B}$ -178.5 (hept 2), $J_{\rm AB}$ = 10.74 Hz, $J_{\rm AC}=J_{\rm BC}$ = 5.88 Hz; major mass cations [m/e (int, formula)] 237 (24.2, $C_{\rm A}F_{\rm B}^{\rm TC}$ Cl), 236 (77.1, $C_{\rm A}F_{\rm B}^{\rm EC}$ Cl), 219 (100, $C_{\rm A}F_{\rm A}$), 197 (28.8, $C_{\rm A}F_{\rm A}^{\rm SC}$ Cl), 131 (5.1, $C_{\rm B}F_{\rm A}$), 37, $C_{\rm B}F_{\rm B}^{\rm EC}$ Cl), 86 (11.8, $C_{\rm B}F_{\rm A}^{\rm EC}$ Cl). Aerosol Fluorination of sec-Butyl Chloride. 2-Chloro

Acrosol Fluorination of sec-Butyl Chloride. 2-Chlorobutane (Eastman) has a vapor pressure at -10 °C such that a helium flow of 33 mL/min produces a throughput of 0.26 g/h (2.8 mmol/h). A 3-h run produces 0.9708 g of crude product after fractionation. Separation on the SE-52 column with the same program as for F-n-butyl chloride gives two overlapping peaks (tg = 5.5-6 min) consisting of (30%) 2-chloro-F-butane (compound 3) and (43%) 1-chlore-F-butane (compound 1). The calculated 3) and (43%) 1-chloro-r-burane (compound 1). The calculater yield of compound 1 was 19.5%. The yield of compound 3 was 13.69%: ¹⁹F NMR (1% CFCl₂/CDCl₃) CF₂^ACF²ClCF₃^CCF₃^D ϕ_A -78.1 (qt, 3), ϕ_B -139.2 (tq, 1), ϕ_C -121.1 (qq, 2), ϕ_D -79.6 (qd, 3), J_{AC} = 10.99 Hz, J_{BD} = 9.77 Hz, J_{AD} = 3.66 Hz; major mass eations [m/e (int, formula)] 237 (23.1, C,F₃³⁷Cl), 225 (75.3, C,F₃³⁸Cl), 219 (100, C,F₃), 185 (1.6, C₃F₆⁵⁵Cl), 189 (8.4, C₃F₂), 181 (6.1, C₃F₆), 119 (7.9, C,F₃), 69 (4.18, CF₃).

Aerosol Fluorination of tert-Butyl Chloride. 2-Chloro-2-methylpropane (Eastman) has a vapor pressure at -10 °C such z-menyipropene (Rearman) has a vapor pressure at -10 °C such that a helium flow of 13 mL/min produces a throughput of 0.28 g/h (3.0 mmol/h). A 2-h run produced 0.8884 g of crude material after fractionation. Separation of the fraction on the SE-52 column with the isobutyl chloride program gave 79.49% F-isobutyl chloride (compound 2) (t_R = 6 min) a 46.8% yield of the calculated throughput. No products were found that matched published IR and ¹⁵F NMR spectra of F-text-butyl chloride. A second 2-b run with the same throughput and only 8.0 mmol/h fluorine flow and no photochemical finishing gave 0.513 g of partially fluorinated materials. Identifiable compounds produced were 30% unxeacted starting material, 30% 1-chlore-2-fluoro-2-methyl-propane, 20% 3-chlore-1,2-difluore-2-methylpropane (compound 4), and 2% 1-chloro-1,2-difluoro-2-methylpropane (compound 5). The yield of compound 4 is 13%: ¹⁶F NMR (1% CFCl₂/CDCl₂): (F^CH₂⁻⁵)CF³(CH₂⁻²Cl)(CH₂⁻⁵) ϕ_A -244 (mt, 1), ϕ_B -1.85 (m, 1), ϕ_B = 9 Hz; ¹H NMR (0.2% CHCl₂/CDCl₂) δ_c 4.45 (dd, 2), δ_D 3.55 (dd, 2), δ_D 4.65 (dd, 2), δ_D 3.65 (dd, 2), δ $(dm, 2), \phi_B$ 1.45 $(dd, 3), J_{AC} = 47 Hz, J_{BC} = J_{BD} = J_{BB} = 19 Hz$

⁽²⁹⁾ Hauptschein, M.; Breid, M. J. Am. Chem. Soc. 1961, 83, 2383. (80) Burror, H.; Pawelke, G. Spectrochim. Acta, Part A 1979, 35A.

⁽²¹⁾ Olch, G. A.; Bolinger, J. M. J. Am. Chem. Soc. 1988, 90, 947.

04- 8-28; 2:39PM;T S INTERNATIONAL CORPORATION US OBLON, SPIVAK, MA:0332561398

8/ 8

Aerosol Direct Fluorination

J. Org. Chem., Vol. 49, No. 15, 1984 2728

 $J_{AD} = J_{AB} = 2$ Hz. The yield of compound 5 is 1.3%: ¹⁹F NMR (1% CFCl₂/CDCl₃) CF^AH^CClCF⁸(CH₂P)₉ ϕ_A –144 (md. 1), ϕ_B –187 (m. 1), $J_{AD} = 9$ Hz; ¹H NMR (0.2% CHCl₃/CDCl₃) $\delta_C = 5.95$ (dd. 1), ϕ_D 1.45 (md, 6), $J_{AC} = 56$ Hz, $J_{BD} = 19$ Hz, $J_{BC} = 9$ Hz, $J_{AD} = 2$ Hz.

Ì

Aerosol Fluorination of 1-Chloro-3-methylbutane. 1-Chloro-3-methylbutane has a vapor pressure at 22 °C such that a helium flow of 12 mL/min produces a throughput of 0.42 g/h (3.0 mmol/h). A 3-h run produced 1.323 g of crude product. Separation on the SE-52 column (15 °C/5 min; 10 °C/min to 75 °C/0 min; 50 °C/min to 160 °C/10 min) gave 19% F-isopentane and 67% 1-chloro-F-3-methylbutane (compound 6) ($t_{\rm R}=7$ min). The yield of compound 6 is 32%: IR (cm⁻¹) 1300 (sh), 1260 (vs), 1250 (vs), 1250 (vs), 1180 (s), 1145 (m), 1100 (s), 975 (s), 740 (m), 710 (m); ¹⁹F NMR (1% CFCl₄/CDCl₅) (CF₃^A)₂CF^BCF₃^CCF₂^CCI $\phi_{\rm A}$ ~72.8 (m, 6), $\phi_{\rm B}$ ~185.7 (m, 1), $\phi_{\rm C}$ ~113.2 (m, 2), $\phi_{\rm B}$ ~68.3 (m, 2); major mass cations [m/e (int formula)] 287 (10.3, C₅F₁₀^mCl), 285 (321, C₅F₁₀³Cl), 259 (634, C₅F₁₁), 137 (5.8, C₅F₄^mCl), 135 (18.7, C₅F₄⁶Cl), 131 (19.2, C₅F₅), 119 (20.9, C₅F₃), 100 (11.4, C₅F₄), 87 (18.5, CF₁^mCl), 85 (56.7, CF₁³⁶Cl), 69 (100, CF₆).

Aerosol Fluorination of 1-Chloro-2-methylbutane, 1-Chloro-2-methylbutane, 1

Aerosol Fluorination of 1-Chloro-2-methylbutame, 1-Chloro-2-methylbutane was reacted under the same conditions as for 1-chloro-3-methylbutane and produced 1.629 g of crude product after fractionation. GC separation gave 19% F-isopentane and 66% 1-chloro-F-2-methylbutane (compound 7). The yield of compound 7 is 39%: IR (cm⁻¹) 1330 (m), 1270 (sb), 1240 (vs), 1200 (s), 1170 (m), 1140 (m), 1090 (m), 1020 (m), 950 (m), 952 (m), 900 (m), 870 (m), 835 (m), 795 (m), 740 (m), 720 (m); 12 F NMR (1% CFCl₀/CDCl₂) (CF₂*Cl)(CF₃*B)CF*CF₂*DCF₃*B ϕ_A -60.6 (m, 2), ϕ_B -71.4 (m, 3), ϕ_C -177.0 (m, 1), ϕ_D -117.5 (m, 2), ϕ_B -80.8 (m, 3); major mass catious [m/s (int, formula)] 287 (15.6, C_0 F₁₀*TCl), 285 (49.1, C_0 F₁₀*Cl), 285 (52.0, C_0 F₁₁), 181 (14.5, C_0 F₁₀*F₁), 17 (2.7, C_2 F₄*TCl), 135 (8.5, C_2 F₄*Cl), 131 (22.1, C_3 F₆), 119 (42.0, C_3 F₆), 87 (20.7, CF₂**Cl), 85 (61.2, CF₁₀*Cl), 69 (100, CF₃).

Aerosol Fluorination of 3-Chloropentane. 3-Chloropentane was prepared by the method of Darzens from 3-pentanol by

Aerosol Fluorination of 3-Chloropentane. 3-Chloropentane was prepared by the method of Darzens from 3-pentanol by reaction with SOCl₂/pyridine. 2-S-Chloropentane has a vapor pressure at 28 °C such that a helium flow of 20 mL/min produces a throughput of 0.18 g/b (1,2 mmol/b). A 1.5-h run produced 0.1913 g of crude material after fractionation. Separation on tha SE-52 column (15 °C/5 min; 10 °C/min to 75 °C/0 min; 25 °C/min to 180 °C/10 min) gave a mixture of 3-chloro-F-pentane (compound 8) (30%), 2-chloro-F-pentane (compound 10) (15%, t_B = 6 min) and 1-chloro-F-pentane (compound 10) (15%, t_B = 7 min). The combined calculated yield is 31%. The R spectrum of compound 10 matched that published. The ¹⁵F NMR spectra

(1% CFC₄/CDC_b): compound 8 CF₃*CF₂*BCF*ClCF₂CF₃ ϕ_A -79.0 (d, 3), ϕ_B -120.1 (a, 2), ϕ_C -137.0 (m, 1), J_{AC} = 9.2 Hz, compound 9 CF₃*CF*BCICF₂*CF₂*PCF₃*E ϕ_A -77.5 (dt, 3), ϕ_B -138.7 (m, 1), ϕ_C -117.6 (m, 2), ϕ_D -124.3 (m, 2), ϕ_B -81.3 (t, 3), J_{AC} = 9.2 Hz, J_{AB} = 12.2 Hz, J_{CB} = 4.5 Hz, compound 10 CF₂*ClCF₂*BCF₂*CF₂*DCF₃*E ϕ_A -68.6 (t, 2), ϕ_B -120.8 (m, 2), ϕ_C -122.6 (m, 2), ϕ_D -126.7 (m, 2), ϕ_B -81.2 (t, 3), J_{AC} = 12.2 Hz, J_{CB} = 12.2 Hz. Aerosal Fluorination of text-Amyl Chloride. 2-Chloro-2-methylbutane (Eastman) has a vapor pressure at 0 °C such that a holium flow of 53 mL/min produces a throughput of 0.27 g/h

Aerosal Fluorination of test-Amyl Chloride. 2-Chloro-2-methylbutane (Eastman) has a vapor pressure at 0 °C such that a holium flow of 53 mL/min produces a throughput of 0.27 g/h (2.5 mmol/h). A 2.5-h run produced 0.9626 g of crude material after fractionation. Separation on the SE-52 column (15 °C/5 min; 10 °C/min to 75 °C; 50 °C/min to 180 °C/10 min) gives 6.2% F-isobutane, ($\epsilon_R = 3$ min), 22.1% F-isopentane ($\epsilon_R = 3.5$ min), and 62.8% of an unresolved mixture (16:5.5:1) ($\epsilon_R = 7$ min), of 1-chloro-F-2-methylbutane (compound 7), 1-chloro-F-3-methylbutane (compound 1). No 2-chloro-F-2-methylbutane was observed. The ¹⁵F NMR spectrum of compound 1 (is (1% CFCl_k/CDCl₂): (CF_k^A)₂CF^BCFCClCF₃^B ϕ_A -70.7 (m, 6), ϕ_B -176.0 (m, 1), ϕ_C -135.3 (m, 1). ϕ_D -77.8 (m, 3).

(m, 1), ϕ_D -77.8 (m, 3). Aerosol Fluorination of Chlorocyclopentane. Chlorocyclopentane (Aldrich) has a vapor pressure at -10 °C such that a helium flow of 125 mL/min produces a throughput of 0.21 g/h a helium flow of 125 mL/min produces a throughput of 0.21 g/h (2.0 mmol/h). A 3-h run produces 1.30 g of crude product after fractionation. Separation on the QF-1 column (10 °C/13 min; 10 °C/min to 60 °C/5 min; 50 °C/min to 180 °C/5 min) gives 2.6% F-butane (t_R = 5 min), 12.5% F-cyclopentane (t_R = 12 min), 5% C_sF_{10} Cl (compounds 1 and 3) (t_R = 15 min), 12.5% F-pentane (t_R = 18 min), 49.5% 1-chloro-F-cyclopentane (compound 12) (t_R = 22 min), and 15.5% unresolved C_sF_{10} Cl isomere (compounds 8-10) (t_R = 25-25 min). The yield of compound 12 is 40.2%: IR (cm⁻¹) 1310 (s), 1275 (m), 1240 (s), 1220 (ws), 1120 (m), 1065 (vw), 1020 (m), 970 (s), 920 (w), 870 (s), 740 (w); ¹⁹F NMR (1% C_sF_{10} Cl) C_sF_{10} Cl) C_sF_{10} Cl) C_sF_{10} Cl) (AB pattern, 3.4 and 5'.4'. $J_{20}' = J_{40}' = 253.3$ Hz, 4); major mass cations [m/e (int, formula)] 199 (31, $C_sF_s^{30}$ Cl), 197 (100, $C_sF_s^{30}$ Cl), 149 (40, $C_sF_s^{40}$ Cl), 131 (56, C_sF_s), 100 (22, C_sF_s).

Acknowledgment. This work was supported in part by the Office of Naval Research whose support is gratefully acknowledged. Earlier support by the Research Corp. Cottrell Research Fund is also acknowledged.

Registry No. 1-Chloropropane, 540-54-5; 1-chlorobutane, 109-69-3; 1-chloro-2-methylpropane, 513-36-0; 1-chloro-3-methylbutane, 107-84-6; 1-chloro-2-methylbutane, 616-13-7; 2-chloro-2-methylpropane, 507-20-0; 2-chloro-2-methylbutane, 594-36-5; 2-chloropropane, 75-29-6; 2-chlorobutana, 78-86-4; 3-chloropentane, 616-20-6; chlorocyclopentane, 930-28-9.

 ⁽³²⁾ Darzens, G. C. R. Hebd. Seances Acad. Sci. 1911, 152, 1314.
 (33) Hauptschein, M.; Kinsman, R. L.; Grosse, A. V. J. Am. Chem. Soc. 1952, 74, 849.