2017-MA- 14-26

EE24BTECH11021 - Eshan Ray

- 14) For $n \in \mathbb{Z}$, define $c_n = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{i(n-i)x} dx$, where $i^2 = -1$. Then $\sum_{n \in \mathbb{Z}} |c_n|^2$ equals
 - a) $\cosh(\pi)$
 - b) $sinh(\pi)$
 - c) $\cosh(2\pi)$
 - d) $sinh(2\pi)$
- 15) If the fourth order divided difference of $f(x) = \alpha x^4 + 5x^3 + 3x + 2$, $\alpha \in R$, at the points 0.1, 0.2, 0.3, 0.4, 0.5 is 5, then α equals ...
- 16) If the quadrature rule $\int_0^2 f(x) dx \approx c_1 f(0) + 3f(c_2)$, where $c_1, c_2 \in R$, is exact for all polynomials of degree ≤ 1 , then $c_1 + 3c_2$ equals ... 17) If u(x,y) = 1 + x + y + f(xy), where $f: \mathbb{R}^2 \to \mathbb{R}$ is a differential function, then u
- satisfies
 - a) $x \frac{\partial u}{\partial x} y \frac{\partial u}{\partial y} = x^2 y^2$ b) $x \frac{\partial u}{\partial x} y \frac{\partial u}{\partial y} = 0$ c) $x \frac{\partial u}{\partial x} y \frac{\partial u}{\partial y} = x y$ d) $y \frac{\partial u}{\partial x} x \frac{\partial u}{\partial y} = x y$
- 18) The partial differential equation $x \frac{\partial^2 u}{\partial x^2} + (x y) \frac{\partial^2 u}{\partial x \partial y} y \frac{\partial^2 u}{\partial y^2} + \frac{1}{4} \left(\frac{\partial u}{\partial y} \frac{\partial u}{\partial x} \right) = 0$ is
 - a) hyperbolic along the line x + y = 0
 - b) elliptic along the line x y = 0
 - c) elliptic along the line x + y = 0
 - d) parabolic along the line x + y = 0
- 19) Let X and Y be topological spaces and let $f: X \to Y$ be a continuous surjective function. Which one of the following statements is TRUE?
 - a) If X is separable, then Y is separable
 - b) If X is first countable, then Y is first countable
 - c) If X is Hausdorff, then Y is Hausdorff
 - d) If X is regular, then Y is regular
- 20) Consider the topology $\mathcal{T} = \{U \subseteq Z : Z \setminus U \text{ is finite or } 0 \neq U\}$ on Z. Then, the topological space (Z, \mathcal{T}) is
 - a) compact but NOT connected
 - b) connected but NOT compact
 - c) both compact and connected
 - d) neither compact nor connected
- 21) Let F(x) be the distribution function of a random variable X. Consider the functions

$$G_1(x) = (F(x))^3, x \in R$$

 $G_2(x) = 1 - (1 - F(x))^5, x \in R$

Which of the above functions are distribution functions?

- a) Neither G_1 nor G_2
- b) Only G_1
- c) Only G_2
- d) Both G_1 and G_2
- 22) Let X_1, X_2, \dots, X_n $(n \ge 2)$ be independent and identically distributed random variables with finite variance σ^2 and let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Then the covariance between \bar{X} and $X_1 - \bar{X}$ IS
 - a) 0
 - b) $-\sigma^2$
 - c) $\frac{-\sigma^2}{n}$ d) $\frac{\sigma^2}{n}$
- 23) Let X_1, X_2, \ldots, X_n $(n \ge 2)$ be a random sample from a $N(\mu, \sigma^2)$ population, where $\sigma^2 = 144$. The smallest n such that the length of the shortest 95% confidence interval for μ will not exceed 10 is ...
- 24) Consider the linear programming problem (LPP): Maximize $4x_1 + 6x_2$ subject to $x_1 + x_2 \le 8$, $2x_1 + 3x_2 \ge 18$,

 $x_1 \ge 6$, x_2 is unrestricted in sign.

Then the LPP has

- a) no optimal solution
- b) only one basic feasible solution and that is optimal
- c) more than one basic feasible solution and a unique optimal solution
- d) infinitely many optimal solutions
- 25) For a linear programming problem (LPP) and its dual, which one of the following is NOT TRUE?
 - a) The dual of the dual is primal
 - b) If the primal LPP has an unbounded objective function, then the dual LPP is infeasible
 - c) If the primal LPP is infeasible, then the dual LPP has an unbounded objective function
 - d) If the primal LPP has a finite optimal solution, then the dual LPP also has a finite optimal solution
- 26) If U and V are the null spaces of $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & 1 & 2 & 1 \end{pmatrix}$, respectively, then the dimension of the subspace $\dot{U} + V$ equals ...