Stability of stationary solutions

Chapter 10 Thierry Cazenave, Alain Haraux, Yvan Martel - An intoduction to semilinear evolution equations.([2])

Poo Ramos Ramón¹

¹Instituto de Matemáticas UNAM

Presentation, November 13, 2023

Table of Contents

- Introduction
- 2 Liapunov Stability Theorem
- From ODEs to PDEs
- 4 A Simple general result
- 5 Exponentially stable systems governed by PDE

Table of Contents

- Introduction
- 2 Liapunov Stability Theorem
- From ODEs to PDEs
- 4 A Simple general result
- 5 Exponentially stable systems governed by PDE

Introduction

The main goal of this chapter is to extend Liapunov linearization method of ODEs to establish the (local or global) asymptotic stability of equilibria for somme PDEs.

Figure: Ocilador harmónico, ejemplo de estabilidad.

Table of Contents

- Introduction
- 2 Liapunov Stability Theorem
- From ODEs to PDEs
- 4 A Simple general result
- 5 Exponentially stable systems governed by PDE

Let (X, d) be a complete metric space.

Let (X, d) be a complete metric space.

Definition(9.1.1)

A dinamical system on X is a family $\left\{S_{t}\right\}_{t\geq0}$ of mappings on X such that

- ② $S_0 = I$,
- the function $t \mapsto S_t x$ is in $C[0,\infty)$ for all $x \in X$.

Let (X, d) be a complete metric space.

Definition(9.1.1)

A dinamical system on X is a family $\{S_t\}_{t\geq 0}$ of mappings on X such that

- **2** $S_0 = I$,
- the function $t \mapsto S_t x$ is in $C[0,\infty)$ for all $x \in X$.

Definition(10.1.1)

A trajectory $v(t) = S_t a$ of the dinamical system $\{S_t\}_{t \geq 0}$. Is called positively stable in the sense of Liapunov if

$$\forall \varepsilon > 0, \exists \delta > 0$$
 such that

$$x \in X$$
 and $d(x, a) \le \delta \Rightarrow \forall t \ge 0$, $d(S_t x, v(t)) \le \varepsilon$.

Definition(10.1.1)

A trajectory $v(t) = S_t a$ of the dinamical system $\{S_t\}_{t \geq 0}$. Is called asymptotically stable in the sense of Liapunov if it is stable in the sense of Liapunov and

$$\exists \delta_1 \geq 0, \quad \text{such that} \quad x \in X, d(x,a) \leq \delta_1 \Rightarrow \lim_{t \to \infty} d(S_t x, v(t)) = 0.$$

Theorem (10.1.3) (Liapunov)

Let X be a finite dimentional normes space and $f \in C^1(X,X)$ a vector field on X. Let $a \in X$ be such that f(a) = 0 and assume that all eigenvalues s_j , $1 \le j \le k$ of Df(a) have negative real parts. Then a is asymptotically Liapunov stable equilibrium solution of the equation

$$u'(t) = f(u(t)), \quad t \ge 0, \tag{1}$$

in the following sense: for each $\delta < \nu = \min_{1 \leq j \leq k} \{-Re(s_j)\}$, there exists $\rho = \rho(\delta) > 0$ and $M(\delta) \geq 1$ such that. if $\|x - a\| \leq \rho(\delta)$, the solution u of (1) such that u(0) = x is global with

$$\forall t \geq 0, \|u(t) - a\| \leq M(\delta) \|x - a\| e^{-\delta t}.$$

Proposition (10.1.4)

Let X be a finite dimentional normed space and $f \in C^1(X,X)$ a vector field on X. Let $a \in X$ be such that f(a) = 0 and assume that all eigenvalues s_j , $1 \le j \le k$ of Df(a) have positive real parts. Then a is a completely unstable equilibrium solution of the equation

$$u'(t) = f(u(t)), \quad t \ge 0,$$
 (2)

in the following sense: there is a neighbourhood ω of a such that, for each $b \in X$, $b \neq a$, the unique solution of (1) with initial condition b leaves ω for $t \geq T$ large enough.

Table of Contents

- Introduction
- 2 Liapunov Stability Theorem
- From ODEs to PDEs
- A Simple general result
- 5 Exponentially stable systems governed by PDE

General dissipative operators

Definition 2.1.1

A linear unbounded operator in a normed space X is a pair (D, A), where D is a linear subspace of X and $A: D \to X$ is a linear mapping. Such that

$$\sup_{\{x \in D \mid ||x|| = 1\}} ||Au|| = \infty.$$
 (3)

Definition2.2.1

An operator A in X is dissipative if

$$||u - \lambda Au|| \ge ||u||, \tag{4}$$

for all $u \in D(A)$ and all $\lambda > 0$.

Definition 2.2.2

An operator A in X is m-dissipative if

- A is dissipative;
- ② for all $\lambda > 0$ and all $f \in X$, there exists $u \in D(A)$ such that $u \lambda A u = f$.

Definition 2.2.4

Observe that for a m-dissipative operator the equation $u-\lambda Au=f$ has a unique solution. Therefore the following notation has sense.

 $J_{\lambda}f:=(I-\lambda A)^{-1}f$. Observe that $\|J_{\lambda}\|\leq 1$ since $\|u\|\leq \|f\|$. We also define $A_{\lambda}:=AJ_{\lambda}$ and we have that $\|A_{\lambda}\|_{\mathcal{L}(X)}\leq \frac{2}{\lambda}$.

Proposition 2.2.12

If A is m-dissipative and if $\overline{D(A)} = X$, then $A_{\lambda}u \to Au$ for all $u \in D(A)$.

Proposition 2.4.2

Suppose X is now a Hilbert space then an operator A with dense domain is disipative if and only if $\langle Au,u\rangle\leq 0$ for all $u\in D(A)$. In adition A is m-dissipative if and only if A^* (Hilbert adjoint) is dissipative and the graph of A is closed.

The heat equation

Let Ω be any open subset of \mathbb{R}^n , and let $Y = L^2(\Omega)$. Consider the operator B in Y given by

$$\begin{cases}
D(B) = \left\{ u \in H_0^1(\Omega); \Delta u \in L^2(\Omega) \right\} \\
Bu = \Delta u, \quad \forall u \in D(B).
\end{cases}$$
(5)

Proposition 2.6.1

B is m-dissipative with dense domain. More presisely, B is self adjoint and $B \leq 0$.

...to be continued

The semigroup generated by an m-dissipaative operator

Let X be a Banach space and A an m-dissipative operator in X. For $\lambda>0$ consider the operators J_λ and A_λ defined as before. $T_\lambda(t)=e^{tA_\lambda}$, for $t\geq 0$.

Theorem 3.1.1

For all $x \in X$, the sequence $u_{\lambda}(t) = T_{\lambda}(t)x$ converges uniformly on bounded intervales of [0, T] to a function $u \in C([0, \infty), X)$, as $\lambda \to 0^+$. We set T(t)x =: u(x), for all $x \in X$ and $t \ge 0$. Then

- ② T(0) = I;
- $T(s+t) = T(t)T(s), \forall s, t \geq 0.$

In addition, for all $x \in D(A)$, u(t) = T(t)x is the unique solution of the problem

$$\begin{cases} u \in C([0,\infty), D(A)) \cap C^1((0,\infty), X); \\ u'(t) = Au(t), & \forall t \ge 0; \\ u(0) = x. \end{cases}$$

Such family $\{T(t)\}_{t\geq 0}$ is nown as a contraction semigroup in X and A is it's generator.

Theorem 3.4.4 (The Hille-Yosida-Phillips Theorem)

A linear operator A is the generator of a contraction semigroup in X if and only if A is m-dissipative with densse domain.

Proposition 3.4.5

Let A be an m-dissipative operator with densse domain. Assume that A is the generator of a contraction semigroup $(S(t))_{t\geq 0}$. Then $(S(t))_{t\geq 0}$ is the semigroup corresponding to A given by (Theorem 3.1.1.)

... the heat equation

Proposition 3.5.2

Let $\phi \in L^2(\Omega)$ and let $u(t) = S(t)\phi$ for $t \ge 0$. Then u is the unique solution of the problem

$$\begin{cases} u \in C([0,\infty), L^2(\Omega)) \cap u \in C^1((0,\infty), L^2(\Omega)), \Delta u \in C((0,\infty, L^2(\Omega))); \\ u'(t) = \Delta u(t), \forall t \geq 0; \\ u(0) = \phi. \end{cases}$$

Proposition 3.5.5

Let
$$\lambda=\inf\left\{\frac{\|\nabla u\|_{L^2(\Omega)}}{\|u\|_{L^2(\Omega)}}\mid u\in H^1_0(\Omega), u\neq 0\right\}$$
. Then
$$\|S(t)\|_{\mathcal{L}(L^2)}\leq e^{-\lambda t}.$$

Semilinear heat eqution

Given $\varphi \in X = C_0(\Omega)$ we look for T > 0 and u solving the problem

$$\begin{cases}
 u \in C([0,T],X) \cap C((0,T],H_0^1(\Omega))) \cap C^1((0,T],L^2(\Omega)); \\
 \Delta u \in C((0,T],L^2(\Omega)); \\
 u_t - \Delta u = F(u), \quad \forall t \in (0,T]; \\
 u(0) = \varphi.
\end{cases}$$
(6)

Theorem 5.2.1

For all $\varphi \in X$, there exists a unique function u, defined on a maximal interval $[0, T(\varphi))$, wich is a solution of (6).

idea of the prove

Solving (6) is equivalent to solving

$$u(t) = \mathcal{T}(t)\varphi + \int_0^t \mathcal{T}(t-s)F(u(s))ds, \quad \forall t \in [0,T],$$

wich is solved by a Banach fixed point argument.

Table of Contents

- Introduction
- 2 Liapunov Stability Theorem
- From ODEs to PDEs
- 4 A Simple general result
- 5 Exponentially stable systems governed by PDE

Let X be a real Banach space , let $\mathcal{T}(t)=e^{ct}S(t)$ with $c\in\mathbb{R}$, and let $(S(t))_{t\geq 0}$ be a contraction semigroup on X, and $F:X\to X$ locally Lipschitz continous on bounded subsets. For any $x\in X$, we consider the unique maximal solution $u\in C\left([0,\tau(x)),X\right)$ of the equation

$$u(t) = \mathcal{T}(t)x + \int_0^t \mathcal{T}(t-s)F(u(s))ds, \quad \forall t \in [0,\tau(x)). \tag{7}$$

By a stationary solution of (7), we mean a constant vector $a \in X$ such that

$$a = \mathcal{T}(t)a + \int_0^t \mathcal{T}(t-s)F(a)ds, \quad \forall t \geq 0.$$

Theorem(10.2.2)

Assume that, for some constants $\delta > 0, M \ge 1$, we have

$$\forall t \geq 0, \|\mathcal{T}(t)\| \leq Me^{-\delta t}.$$

Let $a \in X$ a stationary solution of (7) such that

$$\exists R_0 > 0, \exists \nu > 0: \quad \|F(u) - F(a)\| \le \nu \|u - a\| \text{ for } \|u - a\| \le R_0,$$

with $\nu < \frac{\delta}{M}$.

. . .

Then for all $x \in X$ such that

$$||x-a|| \leq R_1 = \frac{R_0}{M},$$

The solution u of (7) is global and satisfies

$$\forall t \ge 0, \quad ||u(t) - a|| \le M ||x - a|| e^{-\gamma t},$$
 (8)

with $\gamma = \delta - \nu M > 0$.

Table of Contents

- Introduction
- 2 Liapunov Stability Theorem
- From ODEs to PDEs
- 4 A Simple general result
- 5 Exponentially stable systems governed by PDE

Stability for the heat equation

We first consider the semilinear heat equation

$$\begin{cases} u_t - \Delta u + f(u) = 0 & \text{in } \mathbb{R}^+ \times \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
 (9)

where Ω is a bounded domain in \mathbb{R}^N . And f is a function of class $C^1: \mathbb{R} \to \mathbb{R}$ such that

$$f(0) = 0 \text{ and } f'(0) > -\lambda_1,$$
 (10)

where $\lambda_1 = \lambda_1(\Omega)$ is the smallest eigenvalue of $(-\Delta)$ in $H_0^1(\Omega)$.

Proposition(10.3.1)

Under above hypotheses, the stationary solution $u\equiv 0$ of (9) is exponentially stable in $X=C_0(\Omega)$ in the following sense: for each $\gamma\in(0,\lambda_1+f'(0))$, there exists $R=R(\gamma)$ such that for all $x\in X$ with $\|x\|\leq R$, the solution u of (9) such that u(0)=x exists and is global, and satisfies

$$\forall t \geq 0, \quad \|u(t)\| \leq M \|x\| e^{-\gamma t},$$

with M independent of γ and x.

Another situation, this time we assume some conditions which are in a sense opposite to (10) is when we have that

$$f$$
 is strictly convex on $[0,\infty), f(0)=0$ and $,f_d'(0)<-\lambda_1(\Omega).$

Here the solution 0 is unstable and we have the following

Theorem(10.3.2)

① There exists one and only one positive solution φ of the problem:

$$\phi \in X \cap H_0^1(\Omega), \quad -\Delta \phi + f(\varphi) = 0. \tag{11}$$

② For each $u_0 \in X$, $u_0 \ge 0$ and not identically 0, the solution u of the semilienar heat equation such that $u(0) = u_0$ tends to φ as $t \to \infty$. Morover, we have

$$\forall t \geq 0, \|u(t,\cdot) - \varphi(\cdot)\|_{L^{\infty}(\Omega)} \leq C(u_0)e^{-\gamma t},$$

where $\gamma > 0$ is independent of u_0 .

Remarks 10.3.5

The main result of Theorem (10.3.2) can be viewed as a property of *global exponential stability* of the positive stationary solution in the metric space $Z \setminus \{0\} = \{u \in C_0(\Omega) \mid u \geq 0, u \neq 0\}$. The following remarks are in order

- **1** The constant $C(u_0)$ does not remain bounded with $||u_0||_{L^{\infty}}$.
- ② Theorem 10.3.2 is applicable, as a tipical case to the nonlinearity

$$f(u) = c |u|^{\alpha} u - \lambda u$$

for some positive constants c, α and λ .

Stability for the wave equation

We consider the semilinear wave equation

$$u_{tt} - \Delta u - f(u) + \lambda u_t = 0 \text{ in } \mathbb{R}^+ \times \Omega \quad u = 0 \text{ on } \mathbb{R}^+ \times \partial \Omega,$$
 (12)

where Ω is a bounded domain in \mathbb{R}^N , f is a $C^1 : \mathbb{R} \to \mathbb{R}$ function such that

$$f(0) = 0 \text{ and } f'(0) > \lambda_1,$$

and satisfies the growth condition

$$|f(u)| \leq C(1+|u|^r)$$
, on \mathbb{R} ,

 $r \geq 0$ arbitrary if N = 1, 2 and $0 \leq r \leq \frac{N}{N-2}$ if $N \geq 3$.

Proposition 10.3.6

Under above hypotheses, the stationary solution $(u,v)\equiv 0$ of (12) is exponentially stable in $X=H^1_0(\Omega)\times L^2(\Omega)$ in the following sense: there exist $\delta<0$ and $R:=R(\delta)$ such that, for all $x\in X$ with $\|x\|\leq R$, the solution u of (12) such that u(0)=x is global and satisfies

$$\forall t \geq 0, \quad ||x|| \leq M(\delta) \, ||x|| \, e^{-\delta t}.$$

Stability and positivity

Consider the one dimentional heat equation

$$\begin{cases} u_t - u_{xx} + f(u) = 0 \text{ in } \mathbb{R}^+ \times (0, L), \\ u(t, 0) = u(t, L) = 0, \text{ on } \mathbb{R}^+, \end{cases}$$
 (13)

where f is a $C^1: \mathbb{R} \to \mathbb{R}$ function. Any solution u of this problem wich is global and uniformly bounded on $\mathbb{R}^+ \times (0, T)$ converges to a solution ϕ of the elliptic problem

$$\phi \in H^1_0(0,L), \quad -\varphi_{xx} + f(\phi) = 0.$$

Proposition 10.4.1

If φ is a stable solution of (13), then φ has constant sign on (0, L).

Limits of the theory

In higher dimentions relationship between stability and the absence of zeroes seems much more intricate. For instance, in the case of Neumann boundary conditions, a result of Casten and Holland ([1]) asseerts that if Ω is star shaped, any non constant solution is unstable. Counter examples of stable solutions changing sign in Ω for both Dirichlet and Neumann boundary conditions in nonconvex domains. On the other hand, even for Ω convex there is no general instability result for solutions chainging sign in the case of Dirichlet boundary conditions.

Proposition 10.4.3

Let φ be a solution of (11) in a rectangle $\Omega=(0,a)\times(0,b)$ and assume that there is a sub-rectangle $R=(a,\frac{a}{p})\times(0,\frac{b}{q})$ with $p,q\geq 1$ and $\max(p,q)>1$ such that φ has constant sign in R and $\varphi=0$ on ∂R . Then φ is unstable.

Proposition 10.4.4

If Ω is a ball in \mathbb{R}^N , $N \geq 2$, and φ is a Liapunov-stable solution of (9), we have either $\phi = 0$, or ϕ is spherically symmetric with constant sign in Ω .

R. J. Casten and C. J. Holland.

Instability results for reaction diffusion equations with neumann boundary conditions.

J. Diff. Eq., 27:266-273, 1978.

A. Haraux and T. Cazenave.

An Introduction to Semilinear evolution equations.

Oxford University Press, Great Clarendon Street, Oxford 012 6DP, 1998.

Thanks!

