

Index

- Problem Statement
- My Solution
- Dataset overview
- Data Cleaning steps
- EDA
- Data Preprocessing
- Baseline Modelling
- Future steps

My solution: RentWise

I aim to leverage my skills as a Data Scientist to develop a robust predictive model that can accurately estimate these rental prices, offering some insights for:

- renters
- landlords
- the ever-evolving real estate industry

Dataset Introduction

- Source: Kaggle (<u>www.kaggle.com</u>)
- No. of rows: 384,977
- Each row depicting a unique data entry (rental property).
- No Duplicated rows
- No. of columns: 22
- Different types of datatypes: int64, float64 and objects.
- Had a lot of missing values in:
 - **1.** 'laundry_options': More than 20% (79,026)
 - **2.** 'parking_options': More than 36.5% (140,687)
 - **3.** 'lat': 4.9% (1,918)
 - **4.** '**long**': 4.9% (1,918)

Attributes:

- **Id**: Listing id
- url: Listing URL
- **region**: Craigslist region
- region_url: Craigslist region URL
- price: Rent per month (Target Column)
- type: Housing type
- **sqfeet**: Total square footage
- **beds**:Number of Beds
- baths:Number of Bathrooms
- cats_allowed: Cats allowed boolean (1 = yes, 0 = no)
- dogs_allowed: Dogs allowed boolean (1 = yes, 0 = no)
- **smoking_allowed**: Smoking allowed boolean (1 = yes, 0 = no)
- wheelchair_access: Has wheelchair access boolean (1 = yes, 0 = no)
- electric_vehicle_charge: Has electric vehicle charger boolean (1 = yes, 0 = no)
- **comes_furnished**: Comes with furniture boolean (1 = yes, 0 = no)
- laundry_options: Laundry options available
- parking_options: Parking options available
- image_url: URL of the image
- description: Description by poster
- lat: Latitude
- **long**: Longitude
- state: State of listing

Data Cleaning Steps

Dealing with Missing values

Looked at Value counts of column

- · 'laundry options'
- · 'parking options'

Calculated mode on both

 Most frequently appeared value.

Replaced all the missing values

Dropping columns

- 1. 'lat' and 'long': Because they have such low percentage of missing values, we could safely drop them.
- 2. 'id': was a unique identifier for each data point, providing no real value.
- 3. 'url', 'region_url' and 'image_url': They all included image links, but a lot of them were similar, so we dropped them.

 Checked and make sure

Exploratory Data Analysis (EDA)

With Outliers

Distribution of 'price'

min value: 0

Max value: 2,768,307,249.00

Mean: 8,897.79

Distribution of 'sqfeet'

Min value: 0

Max value: 8,388,607.00

Mean: 1,062.35

Without Outliers

Redistribution of 'price'

Min value: 100

Max value: 5000

Mean: 1177.46

Redistribution of 'sqfeet'

Min value: 120

Max value: 4000

Mean: 989.75

Data Preprocessing

1. Understanding Categorical Columns:

- Explored and analyzed categorical features in the dataset.
- 'region', type', 'laundry_options', 'parking_options', and 'state'

2. One-Hot Encoding:

 Applied one-hot encoding to transform categorical variables into a numerical format.

3. Column Removal:

 Dropped the original categorical columns post onehot encoding to enhance model readiness.

4. Numerical Data Integration:

 Combined all numerical columns in a consolidated dataset named 'df encoded.'.

5. Train-Test Split:

 Segregated the dataset into training (80%) and testing (20%) subsets for model development and evaluation.

Columns	Unique Values	
'region'	404	
'type'	12	
'laundry_options'	5	
'parking_options'	7	
'state'	51	

Baseline Modelling

#	Model	Pre-scaled MSE	Pre-scaled R2	Post-scaled MSE	Post-scaled R2
1	Linear Regression	92791.81	0.68597	1.3829799815103887e+27	-4.680388697633008e+21
2	Ridge Regression	92753.07	0.68610	92791.69	0.68597
3	Lasso Regression	122860.26	0.58421	93697.69	0.68290
4	Decision Tree	72476.77	0.75472	72573.85	0.75439
5	Random Forest	46174.07	0.84373	46015.52	0.84427
6	Neural Network Regressor	73906.96	0.74988	63736.79	0.78430

Top 3 models:

- Random Forest
- 2. Neural Network Regressor
- 3. Decision Tree

Next steps

- Best model selection: My next steps involve choosing the best model.
- Hyperparameter Tuning: Utilizing techniques like grid search, cross-validation and Principal Component Analysis to find the best hyperparameter values and optimize my model's performance.

Thank you !!!