Algorithmique du texte

On appelle **texte** une suite finie de caractères (ce que l'on a appelé mot jusqu'à présent). L'algorithmique du texte consiste à résoudre des problèmes sur des textes, qui peuvent en réalité modéliser des informations diverses :

- des textes à proprement parler;
- une séquence ADN;
- de la musique;
- des images...

Par exemple,

- les recherches de similarité, dont notamment :
 - la recherche du plus long sous-mot commun;
 - la recherche du plus long facteur commun;
 - la distance d'édition / alignement;
- la recherche de motif;
- la compression;
- l'encodage par facteurs...

1 Rappels

On fixe Σ un ensemble, appelé **alphabet**, dont les élément sont appelés **caractères**. On définit alors l'ensemble $\Sigma *$ des textes sur Σ et celui des textes non vides Σ^+ par :

$$\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n \qquad \Sigma^+ = \bigcup_{n \in \mathbb{N}^*} \Sigma^n$$

On note ε le texte vide, c'est à dire le seul 0-uplet de Σ^* . On munit alors Σ^* de la **concaténation** définie ainsi :

$$\forall (u = (u_i)_{i \in [\![1,n]\!]}, (v_j)_{j \in [\![1,m]\!]}) \in (\Sigma^*)^2, u.v = u_1 u_2 ... u_{n-1} u_n v_1 v_2 ... v_{m-1} v_m$$

On vérifie alors que $(\Sigma^*,.)$ est un monoïde.

On appelle **sous-texte** d'un texte u de Σ^* toute suite extraite de u. Par ailleurs, on dit que $v \in \Sigma^*$ est un **facteur** de $u = u_1...u_n$ ssi il existe $(i,j) \in [1,n]^2$ tel que $v = u_i...u_j$. Dans le cas où i = 1, on dit que v est un **préfixe** de v. Si v = 1, alors c'est un **suffixe** de v.

2 Plus long facteur commun

2.1 Description

On abgrègera Plus long facteur commun en PLFC.

2.2 Résolution

On pose pour $(i,j) \in [0,n] \times [0,m]$:

$$A_{i,j} = \max\{|s| \mid s \text{ est un suffixe de } u_1...u_i, v_1...v_j\} \le \min(i,j)$$

On a immédiatement, pour tout $(i,j) \in [\![1,n]\!] \times [\![1,m]\!]$:

- i = 0 ou $j = 0 \to A_{i,j} = 0$
- $A_{i,j} = A_{i-1,j-1} + 1$ si $u_i = v_j$, 0 sinon.

D'ou $\mathbf{PLFC}(u,v) = \max_{(i,j) \in [\![0,n]\!] \times [\![0,m]\!]} A_{i,j}$

3 Recherche de motif

3.1 Définitions

Trouve motif | Entrée: $t \in \Sigma^*$ un texte de longueur $n, x \in \Sigma^*$ un motif de longueur m (avec $m \le n$)

Sortie: $\underbrace{\{i \in [\![1,n]\!] \mid (t_{i+k})_{k \in [\![0,m]\![=x]\!]}}_{\text{l'ensemble des indices de début des occurences de } x \text{ dans } t}$

Exercice 1: Proposer un algorithme de résolution naïve pour ce problème.

3.2 Algorithme de