实分析 (H) 作业

林晓烁 2024 春

https://xiaoshuo-lin.github.io

习题 1 设 $f: \mathbb{R} \to \mathbb{R}$, 记 $f_1(x) = f(x)$, $f_n(x) = f(f_{n-1}(x))$ $(n = 2, 3, \cdots)$. 若存在 n_0 , 使得 $f_{n_0}(x) = x$, 则 $f \in \mathbb{R}$ 到 $f(\mathbb{R})$ 上的——映射.

证明 设 $x_1, x_2 \in \mathbb{R}$ 满足 $f(x_1) = f(x_2)$, 则 $x_1 = f_{n_0}(x_1) = f_{n_0}(x_2) = x_2$. 故 $f: \mathbb{R} \to f(\mathbb{R})$ 是单射.

习题 2 不存在 ℝ 上的连续函数 f, 它在 ℝ \ ℚ 上是一一映射, 而在 ℚ 上则不是一一映射.

证明 设 \mathbb{R} 上的连续函数 f 在 $\mathbb{R} \setminus \mathbb{Q}$ 上是一一映射, 欲证 f 在 \mathbb{Q} 上亦为一一映射, 由 $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$, 只需证 $f: \mathbb{R} \to \mathbb{R}$ 为双射.

- (*f* **是单射**) 若存在 $x_1 < x_2$ 使得 $f(x_1) = f(x_2)$,则 f 在 $[x_1, x_2]$ 上非常值函数. 由闭区间上连续函数的性质, f 必在 (x_1, x_2) 上取到它在 $[x_1, x_2]$ 上的最值,不妨设 $x_0 \in (x_1, x_2)$ 为最大值点. 由介值定理,对任意 $y \in (\mathbb{R} \setminus \mathbb{Q}) \cap (f(x_1), f(x_0))$,其原像集至少含有两个元素,且其中至多有一个无理数,进而至少有一个有理数,现任意取定其一. 注意到不同的无理数对应不同的有理数,由此即得单射 $(\mathbb{R} \setminus \mathbb{Q}) \cap (f(x_1), f(x_0)) \to \mathbb{Q}$,但这与 $(f(x_1), f(x_0))$ 上无理数不可数矛盾.
- (*f* **是满射**) 对任意 $y \in \mathbb{R}$, 取 $y_1, y_2 \in \mathbb{R} \setminus \mathbb{Q}$ 使得 $y_1 < y < y_2$, 则存在 x_1, x_2 使得 $f(x_1) = y_1, f(x_2) = y_2$. 由介值定理, 存在 x_1 与 x_2 之间的数 x_0 使得 $f(x_0) = y$, 因此 f 是满射.
- **习题 3** $f: X \to Y$ 是满射当且仅当对任意 $B \subseteq Y$, 有 $f(f^{-1}(B)) = B$.

证明 若 X 是独点集,结论显然成立.下设 X 至少含有两个元素.

(⇒) 对任意 $y \in Y$, 存在 $x_y \in X$ 使得 $f(x_y) = y$, 于是 $\bigcup_{y \in B} \{x_y\} \subset f^{-1}(B)$, 从而

$$B\supset f\big(f^{-1}(B)\big)\supset f\left(\bigcup_{y\in B}\{x_y\}\right)=\bigcup_{y\in B}\{f(x_y)\}=B\implies f\big(f^{-1}(B)\big)=B.$$

- (全) 对任意 $y \in Y$, 考虑 $\{y\} \subsetneq Y$, 则对任意 $x \in f^{-1}(\{y\})$, 有 f(x) = y. 故 $f: X \to Y$ 是满射.
- **习题 4** 设 $f: X \to Y, A \subset X, B \subset Y$, 试问: 下列等式成立吗?
 - (1) $f^{-1}(Y \setminus B) = f^{-1}(Y) \setminus f^{-1}(B)$.
 - (2) $f(X \setminus A) = f(X) \setminus f(A)$.
- 解答 (1) 成立. 由 $Y = B \sqcup (Y \setminus B)$ 得 $f^{-1}(Y) = f^{-1}(B) \sqcup f^{-1}(Y \setminus B)$, 因此 $f^{-1}(Y \setminus B) = f^{-1}(Y) \setminus f^{-1}(B)$.
 - (2) 一般不成立. 如取 $X = Y = \mathbb{R}$, $A = B = \{0\}$, $f \equiv 0$, 则 $f(X \setminus A) = \{0\} \neq \emptyset = f(X) \setminus f(A)$.
- **习题 5** 设 $E \subset \mathbb{R}$ 是非空完全集, 试证明对任意的 $x \in E$, 存在 $y \in E$, 使得 x y 为无理数.

证明 往证 E 是不可数集, 从而对任意 $x \in E$, 集合 $\{x - y : y \in E\}$ 不可数, 结合 \mathbb{Q} 可数即知, 存在 $y \in E$ 使得 $x - y \notin \mathbb{Q}$.

- ◇ 若 E 为有限集,则 E 中每一点均为孤立点,与 E = E' 矛盾.
- ◇ 若 E 为可数集, $E = \{x_n\}_{n=1}^{\infty}$. 假设 E 不含孤立点. 任取 $y_1 \in E$ 满足 $y_1 \neq x_1$, 再取 $\delta_1 \in (0,1)$ 使得 $x_1 \notin \overline{\mathbb{B}(y_1, \delta_1)}$. 由 y_1 为 E 的极限点, 存在 $y_2 \neq x_2$ 满足 $y_2 \in \mathbb{B}(y_1, \delta_1) \cap E$. 取 $\delta_2 \in (0, \frac{1}{2})$, 使得

 $\mathbb{B}(y_2, \delta_2) \subset \mathbb{B}(y_1, \delta_1)$, 且 $x_2 \notin \overline{\mathbb{B}(y_2, \delta_2)}$. 由 y_2 为 E 的极限点, 存在 $y_3 \neq x_3$ 满足 $y_3 \in \mathbb{B}(y_2, \delta_2) \cap E$. 如此继续得到 $\{y_n\}, \{\delta_n\}$ 满足

$$\delta_n \in \left(0, \frac{1}{n}\right), \quad \mathbb{B}(y_n, \delta_n) \subset \mathbb{B}(y_{n-1}, \delta_{n-1}),$$
$$x_n \notin \overline{\mathbb{B}(y_n, \delta_n)}, \quad y_{n+1} \in \mathbb{B}(y_n, \delta_n) \cap E, \quad y_{n+1} \neq x_{n+1}, \quad \forall n \geqslant 2.$$

由闭球套定理, 存在唯一 $y\in\bigcap_{n=1}^{\infty}\overline{\mathbb{B}(y_n,\delta_n)}$. 由 E 为闭集, $y=\lim_{n\to\infty}y_n\in E$. 但由上述构造, $y\neq x_n, \forall n\in\mathbb{N}$, 即 $y\notin E$, 矛盾. 故 E 是可数集得证.

习题 6 试证明 $x = \frac{1}{4}, \frac{1}{13}$ 属于 Cantor 集.

证明 由

$$\frac{1}{4} = \frac{2}{9} \cdot \frac{1}{1 - \frac{1}{9}} = \sum_{n=1}^{\infty} \frac{2}{3^{2n}} = 0.0202 \cdot \cdot \cdot (3),$$
$$\frac{1}{13} = \frac{2}{27} \cdot \frac{1}{1 - \frac{1}{27}} = \sum_{n=1}^{\infty} \frac{2}{3^{3n}} = 0.002002 \cdot \cdot \cdot (3)$$

即知它们均属于 Cantor 集.

习题 7 考虑单位区间 [0,1], 固定实数 $\xi \in (0,1)$. 先挖去 [0,1] 中央长度为 ξ 的开区间, 再分别挖去余下两个区间中央相对长度为 ξ 的开区间, 如此继续. 记 C_{ξ} 为上述操作余下点集的极限. (Cantor 集 C 即 $\xi = \frac{1}{3}$ 的情形.)

- (1) 证明: C_{ε} 在 [0,1] 中的补集是总长度为 1 的开区间的并集.
- (2) 直接说明 $m^*(C_{\xi}) = 0$.

证明 (1) 第 n 次操作挖去 2^{n-1} 个长度为 $\xi \left(\frac{1-\xi}{2}\right)^{n-1}$ 的区间. 因此, C_{ξ} 在 [0,1] 中的补集的总长度为

$$\sum_{n=1}^{\infty} 2^{n-1} \xi \left(\frac{1-\xi}{2} \right)^{n-1} = \xi \sum_{n=0}^{\infty} (1-\xi)^n = 1.$$

(2) 记第 n 次操作后余下集合为 \mathcal{C}_n . 由 $|\mathcal{C}_n| = 2^n \left(\frac{1-\xi}{2}\right)^n = (1-\xi)^n \xrightarrow{n\to\infty} 0$ 及 $\mathcal{C}_\xi \subset \mathcal{C}_n$ ($\forall n$) 即知

$$0\leqslant m^*(\mathcal{C}_\xi)=\inf\left\{\sum_{j=1}^\infty |Q_j|:\mathcal{C}_\xi\subset\bigcup_{j=1}^\infty Q_j,\ Q_j\ \text{为闭区间}\right\}\leqslant \inf_{n\geqslant 1}\{|\mathcal{C}_n|\}=0\implies m^*(\mathcal{C}_\xi)=0.$$

习题 8 构造闭集 $\hat{\mathcal{C}}$, 在构造的第 k 步中, 挖去 2^{k-1} 个居于各区间中央的长度为 ℓ_k 的开区间, 且满足

$$\ell_1 + 2\ell_2 + \dots + 2^{k-1}\ell_k < 1.$$

- (1) 选取充分小的 ℓ_j 使得 $\sum_{k=1}^{\infty} 2^{k-1} \ell_k < 1$. 证明 $m(\hat{\mathcal{C}}) > 0$, 具体言之, $m(\hat{\mathcal{C}}) = 1 \sum_{k=1}^{\infty} 2^{k-1} \ell_k$.
- (2) 证明: 若 $x \in \hat{\mathcal{C}}$, 则存在点列 $\{x_n\}_{n=1}^{\infty}$ 满足 $x_n \notin \hat{\mathcal{C}}$, 但 $x_n \to x$ 且 $x_n \in I_n$, 这里 I_n 是 $\hat{\mathcal{C}}$ 的余集的子 区间且 $|I_n| \to 0$.

- (3) 证明 \hat{C} 是完全集, 且不含开区间.
- (4) 证明 \hat{C} 是不可数集.

证明 (1) 记第 n 次操作后余下集合为 C_n ,则

$$m([0,1] \setminus \mathcal{C}_n) = \sum_{k=1}^n 2^{k-1} \ell_k \implies m(\mathcal{C}_n) = 1 - \sum_{k=1}^n 2^{n-1} 2^{k-1} \ell_k.$$

由于 $C_n \downarrow \hat{C}$, 我们有

$$m(\hat{\mathcal{C}}) = \lim_{n \to \infty} m(\mathcal{C}_n) = 1 - \sum_{k=1}^{\infty} 2^{k-1} \ell_k > 0.$$

- (2) 对取定的 $x \in \hat{C}$, 用 J_n 表示第 n 次操作后余下集合中包含 x 的闭区间. 令 I_n 为第 n 次操作中 J_{n-1} 挖去的开区间, 并记其中点为 x_n , 则 $x_n \notin \hat{C}$ 且 $|x_n x| \leq |J_{n-1}| \to 0$. 因此 $x_n \to x$ 且 $|I_n| \to 0$.
- ① 由于闭集对任意交封闭, \hat{C} 是闭集, 因此为证 \hat{C} 是完全集, 只需证 \hat{C} 无孤立点. 沿用 (2) 中记号 J_n 与 I_n , 并令 x_n 为 I_n 的一个端点, 则 $x_n \in \hat{C}$ 且 $|x_n x| \leq |J_{n-1}| \to 0$, 因此 $x_n \to x$, 这说明 x 不是孤立点. 故 \hat{C} 是完全集.
 - ② 假设 $\hat{\mathcal{C}}$ 含开区间 I, 则对任意 $x \in I \subset \hat{\mathcal{C}}$, 存在包含 x 的闭区间 $J \subset I$, 此时 $d(x,\hat{\mathcal{C}}^c) \geqslant d(\hat{\mathcal{C}}^c,J) \geqslant d(I^c,J) > 0$, 因此不存在满足 (2) 中性质的点列, 矛盾. 故 $\hat{\mathcal{C}}$ 不含开区间.
- (4) 习题 5 已证 ℝ 中非空完全集为不可数集.

习题 9 试证明全体超越数 (即不是整系数方程 $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$ 的根) 的基数是 c.

证明 由于 $\operatorname{card}(\mathbb{C}) = \operatorname{card}(\mathbb{R}^2) = \mathfrak{c}$,由 Cantor 连续统假设, 只需证 \mathbb{C} 中超越数全体不可数. 记 \mathbb{C} 中代数数全体为 $\mathcal{O}_{\mathbb{C}}$,则由 $\pi \notin \mathcal{O}_{\mathbb{C}}$ 知 $\pi + \mathcal{O}_{\mathbb{C}}$ 中元素均为超越数, 因此 $\operatorname{card}(\mathbb{C} \setminus \mathcal{O}_{\mathbb{C}}) \geqslant \operatorname{card}(\mathcal{O}_{\mathbb{C}})$. 又若超越数全体可数, 则 $\mathbb{C} = \mathcal{O}_{\mathbb{C}} \sqcup (\mathbb{C} \setminus \mathcal{O}_{\mathbb{C}})$ 亦可数, 矛盾. 故 $\operatorname{card}(\mathbb{C} \setminus \mathcal{O}_{\mathbb{C}}) = \mathfrak{c}$.

习题 10 设 $\{f_n(x)\}$ 是闭集 $F \subset \mathbb{R}$ 上的连续函数列, 则 $f_n(x)$ 在 F 上的收敛点集是 $F_{\sigma\delta}$ 集.

证明 由 Cauchy 收敛原理, $x_0 \in F$ 是函数列 $\{f_n(x)\}$ 的收敛点当且仅当对任意 $k \ge 1$, 存在 $m \in \mathbb{N}$, 使得对任意的 $n \ge m$, 均有 $|f_n(x_0) - f_m(x_0)| \le \frac{1}{k}$, 也即

$$\left\{x_0 \in F: \lim_{n \to \infty} f_n(x_0) \not = \Phi\right\} = \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \left\{x \in F: |f_n(x) - f_m(x)| \leqslant \frac{1}{k}\right\}.$$

由 $f_n(x) \in \mathcal{C}(F)$ 知 $|f_n(x) - f_m(x)| \in \mathcal{C}(F)$, 进而

$$\bigcap_{n=m}^{\infty} \left\{ x \in F : |f_n(x) - f_m(x)| \leqslant \frac{1}{k} \right\}$$

是可列个闭集之交, 仍为闭集, 进而 $f_n(x)$ 在 F 上的收敛点集是 $F_{\sigma\delta}$ 集.

习题 11 设 f(x) 在 \mathbb{R} 上具有介值性. 若对任意的 $r \in \mathbb{Q}$, 点集 $\{x \in \mathbb{R} : f(x) = r\}$ 为闭集, 试证明 $f \in \mathcal{C}(\mathbb{R})$.

证明 用反证法, 设 $x_0 \in \mathbb{R}$ 是 f(x) 的不连续点, 则存在 $\varepsilon > 0$ 使得对任意 $n \in \mathbb{N}$, 均存在 $x_n \in \mathbb{B}(x_0, \frac{1}{n})$ 满足 $|f(x_n) - f(x_0)| \ge \varepsilon$. 现取定此 ε 与数列 $\{x_n\}$, 并选取

$$r_{+} \in (f(x_0), f(x_0) + \varepsilon) \cap \mathbb{Q}, \quad r_{-} \in (f(x_0) - \varepsilon, f(x_0)) \cap \mathbb{Q}.$$

由 f(x) 的介值性, 存在 x_n 与 x 之间的数 y_n , 使得 $f(y_n) = r_+$ 或 r_- . 不妨设有无穷个 y_n 使得 $f(y_n) = r_+$, 则 $\{y_n\}$ 中有含于 $f^{-1}(r_+)$ 的子列. 由 $\lim_{n\to\infty} x_n = x_0$ 可得 $\lim_{n\to\infty} y_n = x_0$, 而 $f^{-1}(r_+)$ 为闭集, 因此 $x_0 \in f^{-1}(r_+)$, 但这与 $f(x_0) < r_+$ 矛盾. 故 $f \in \mathcal{C}(\mathbb{R})$.

习题 12 设 f(x) 是定义在 \mathbb{R} 上的可微函数, 且对任意的 $t \in \mathbb{R}$, 点集 $\{x \in \mathbb{R} : f'(x) = t\}$ 是闭集, 试证明 f'(x) 是 \mathbb{R} 上的连续函数.

证明 由 Darboux 定理, f'(x) 在 \mathbb{R} 上具有介值性. 由习题 11 即知 $f'(x) \in \mathcal{C}(\mathbb{R})$.

习题 13 设 $E \subset \mathbb{R}$, 且存在 $q \in (0,1)$, 使得对任一区间 (a,b), 都有开区间列 $\{I_n\}$:

$$E \cap (a,b) \subset \bigcup_{n=1}^{\infty} I_n, \quad \sum_{n=1}^{\infty} m(I_k) < (b-a)q,$$

试证明 m(E) = 0.

证明 由已知条件, $m^*(E\cap(a,b))\leqslant \sum_{n=1}^\infty |I_n|<(b-a)q$. 设 $\left\{\widetilde{I}_n\right\}_{n=1}^\infty$ 是 E 的一个开区间覆盖, 则

$$m^*(E) \leqslant \sum_{n=1}^{\infty} m^* \Big(E \cap \widetilde{I}_n \Big) \leqslant q \sum_{n=1}^{\infty} \Big| \widetilde{I}_n \Big|,$$

进而由外测度定义知

$$m^*(E) \leqslant qm^*(E)$$
.

再由 $q \in (0,1)$ 即得 $m^*(E) = 0$. 因此对任意 $A \subset \mathbb{R}$, $m^*(A \cap E) = 0$ 且 $m^*(A \cap E^c) \leqslant m^*(A)$, 从而

$$m^*(A) \geqslant m^*(A \cap E) + m^*(A \cap E^c),$$

即满足 Carathéodory 条件 (另一半不等式由外测度的 σ -次可加性可得), 故 E 可测, 进而 m(E) = 0. \square

习题 14 设 $A_1, A_2 \subset \mathbb{R}^n$, $A_1 \subset A_2$, A_1 是可测集, 且 $m(A_1) = m^*(A_2) < +\infty$, 试证明 A_2 是可测集.

证明 由于 A₁ 是可测集, 由 Carathéodory 条件,

$$m^*(A_2) = m^*(A_2 \cap A_1) + m^*(A_2 \cap A_1^c) = m^*(A_1) + m^*(A_2 \setminus A_1).$$

而 $m(A_1) = m^*(A_2) < +\infty$, 因此 $m^*(A_2 \setminus A_1) = 0$, 同习题 13 最后的讨论即知 $m(A_2 \setminus A_1) = 0$. 于是 $A_2 = A_1 \cup (A_2 \setminus A_1)$ 亦可测.

习题 15 设 $\{E_k\}$ 是 \mathbb{R}^n 中的可测集列, 若 $m\left(\bigcup_{k=1}^{\infty} E_k\right) < +\infty$, 试证明

$$m\left(\limsup_{k\to\infty} E_k\right) \geqslant \limsup_{k\to\infty} m(E_k).$$

证明 由于 $\limsup_{k\to\infty} E_k = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_j$,而 $\bigcup_{j=k}^{\infty} E_j$ 关于 k 构成递减的可测集列,因此由递减可测集列的测度

与极限换序得

$$m\left(\limsup_{k\to\infty}E_k\right)=\lim_{k\to\infty}m\left(\bigcup_{j=k}^\infty E_j\right)\geqslant \lim_{k\to\infty}\sup_{j\geqslant k}m(E_j)=\limsup_{k\to\infty}m(E_k).$$

习题 16 设 $\{E_k\}$ 是 [0,1] 中的可测集列, $m(E_k) = 1$ $(k = 1, 2, \cdots)$, 试证明

$$m\left(\bigcap_{k=1}^{\infty} E_k\right) = 1.$$

证明 由 $m(E_k) = 1$ 得 $m([0,1] \setminus E_k) = 0$. 因此由测度的 σ -次可加性,

$$1 \geqslant m \left(\bigcap_{k=1}^{\infty} E_k \right) = 1 - m \left(\bigcup_{k=1}^{\infty} ([0,1] \setminus E_k) \right) \geqslant 1 - \sum_{k=1}^{\infty} m([0,1] \setminus E_k) = 1,$$

得所欲证.

习题 17 设 $E \subset [0,1]$. 若 m(E) = 1, 试证明 $\overline{E} = [0,1]$; 若 m(E) = 0, 试证明 $E^{\circ} = \emptyset$.

证明 由 $E \subset [0,1]$ 可知 $\overline{E} \subset [0,1]$. 若 m(E) = 1, 假设 $\overline{E} \neq [0,1]$, 则存在 $x_0 \in (0,1) \setminus \overline{E}$, 而后者为开集, 从而存在 $\delta > 0$, 使得 $\mathbb{B}(x_0,\delta) \subset (0,1) \setminus \overline{E}$. 于是 $m(E) \leq m(\overline{E}) \leq 1 - m(\mathbb{B}(x_0,\delta)) = 1 - 2\delta < 1$, 矛盾. 若 m(E) = 0, 则 $m(E^c) = 1 - m(E) = 1$, 由前述知 $\overline{E^c} = [0,1]$, 进而 $E^o = (\overline{E^c})^c = \emptyset$.

习题 18 设 $\{A_n\}$ 是互不相交的可测集列, $B_n \subset A_n$ $(n = 1, 2, \dots)$, 试证明

$$m^* \left(\bigcup_{n=1}^{\infty} B_n \right) = \sum_{n=1}^{\infty} m^* (B_n).$$

证明 由外测度的 σ -次可加性, 只需证 LHS \geqslant RHS. 由于

$$m^*\left(\bigcup_{n=1}^\infty B_n\right) \frac{A_1 \, \text{ fi} }{\text{Carath\'eodory } \$ \pitchfork} \, m^*(B_1) + m^*\left(\bigcup_{n=2}^\infty B_n\right) = \cdots$$

$$\frac{A_k \, \text{ fi} }{\text{Carath\'eodory } \$ \pitchfork} \, \sum_{n=1}^k m^*(B_n) + m^*\left(\bigcup_{n=k+1}^\infty B_n\right) \geqslant \sum_{n=1}^k m^*(B_n),$$

♦ k → ∞ 即得 LHS ≥ RHS, 进而结论得证.

习题 19 设 $E \subset \mathbb{R}$, 且 $0 < \alpha < m(E)$, 试证明存在 E 中的有界闭集 F, 使得 $m(F) = \alpha$.

证明 考虑函数

$$f: [0, +\infty] \to [0, +\infty], \quad x \mapsto m(E \cap [-x, x]).$$

对 $0 \le x_1 < x_2 < +\infty$, 有 $|f(x_2) - f(x_1)| \le 2|x_2 - x_1|$, 即 f(x) 在 \mathbb{R} 上 Lipschitz 连续. 再由递增可测集 列的测度与极限换序可知 f(x) 在 $x = +\infty$ 处也连续, 因此 f(x) 是 $[0, +\infty]$ 上的连续函数, 它将连通集 $[0, +\infty]$ 映为连通集. 由于 f(0) = 0, $f(+\infty) = m(E)$, 必存在 $x_0 \in [0, +\infty]$ (进一步地, $x_0 \in [0, +\infty)$), 使得 $f(x_0) = \alpha$, 此时 $F := E \cap [-x_0, x_0]$ 为 E 中的有界闭集且 $m(F) = \alpha$, 即为所求.

习题 20 设
$$E_1, E_2, \dots, E_k$$
 是 $[0,1]$ 中的可测集, 且有 $\sum_{i=1}^k m(E_i) > k-1$, 试证明 $m\left(\bigcap_{i=1}^k E_i\right) > 0$.

证明 由

$$m\left(\left(\bigcap_{i=1}^{k} E_{i}\right)^{c}\right) = m\left(\bigcup_{i=1}^{k} E_{i}^{c}\right) \leqslant \sum_{i=1}^{k} m(E_{i}^{c}) = k - \sum_{i=1}^{k} m(E_{i}) < k - (k-1) = 1$$

即得
$$m\left(\bigcap_{i=1}^{k} E_i\right) = 1 - m\left(\left(\bigcap_{i=1}^{k} E_i\right)^{c}\right) > 0.$$

习题 21 设 $A \in \mathcal{M}, B \subset \mathbb{R}^n$, 试证明

$$m^*(A \cup B) + m^*(A \cap B) = m^*(A) + m^*(B).$$

证明 由欲证形式可不妨设 $m(A) < +\infty$ 且 $m^*(B) < +\infty$. 由于 A 可测, 由 Carathéodory 条件,

$$m^*(B) = m^*(B \cap A) + m^*(B \cap A^c),$$

$$m^*(A \cup B) = m^*((A \cup B) \cap A) + m^*((A \cup B) \cap A^c) = m(A) + m^*(B \cap A^c).$$

由于上面出现的(外)测度均有限,将两式作差后移项即得证.

习题 22 设 $\{B_k\}$ 是 \mathbb{R}^n 中递减可测集列, $m^*(A) < +\infty$. 令 $E_k = A \cap B_k$ $(k = 1, 2, \cdots)$, $E = \bigcap_{k=1}^{\infty} E_k$, 试证明

$$\lim_{k \to \infty} m^*(E_k) = m^*(E).$$

证明 由于 B_k 可测, 由 Carathéodory 条件,

$$m^*(A) = m^*(E_k) + m^*(A \cap B_k^c).$$

注意到 $\{A \cap B_k^c\}$ 为递增集合列,由于递增集合列的外测度与极限可换序,在上式中令 $k \to \infty$ 就得到

$$m^*(A) = \lim_{k \to \infty} m^*(E_k) + m^* \left(A \cap \left(\lim_{k \to \infty} B_k \right)^{c} \right).$$

由于 $\lim_{k\to\infty} B_k = \bigcap_{k=1}^{\infty} B_k$ 可测, 由 Carathéodory 条件,

$$m^*(A) = m^* \left(A \cap \lim_{k \to \infty} B_k \right) + m^* \left(A \cap \left(\lim_{k \to \infty} B_k \right)^{\mathsf{c}} \right).$$

由于 $m^* \left(A \cap \left(\lim_{k \to \infty} B_k \right)^c \right) \leq m^*(A) < +\infty$, 联立以上两式即得

$$\lim_{k \to \infty} m^*(E_k) = m^* \left(A \cap \lim_{k \to \infty} B_k \right) = m^*(E).$$

习题 23 设 $E \subset \mathbb{R}^n$, $H \supset E$ 且 H 是可测集. 若 $H \setminus E$ 的任一可测子集皆为零测集, 试问 H 是 E 的等测句吗?

解答 $m(H) = m^*(E)$, 但可能无法取成 G_δ 型等测包.

- (1) 设 G 为 E 的等测包, 由于 $(H \setminus G) \subset (H \setminus E)$ 且 $H \setminus G$ 可测, 由题设即得 $m(H \setminus G) = 0$, 于是 $m^*(E) \leqslant m(H) \leqslant m(H \cup G) = m(G) + m(H \setminus G) = m(G) = m^*(E) \implies m(H) = m^*(E).$
- (2) (一个反例) 记 $\mathcal{N} = \{Z \in \mathcal{M} : Z \subset [0,1] \; \exists \; m(Z) = 0\}$. 注意到

$$2^{\mathfrak{c}}=\text{card}\big(2^{\mathcal{C}}\big)\leqslant \text{card}\big(\mathfrak{N})\leqslant \text{card}\Big(2^{[0,1]}\Big)=2^{\mathfrak{c}}\quad (\mathcal{C}\;\text{\&$\vec{\pi}$ Cantor \pounds}),$$

由 Cantor-Bernstein 定理即得 $card(\mathcal{N}) = 2^{\mathfrak{c}}$. 又

$$\operatorname{card}(\{[0,1] \text{ 中的 } G_{\delta} \text{ 集}\}) \leq \operatorname{card}(\mathfrak{B}(\mathbb{R})) = \mathfrak{c},$$

因此存在非 G_{δ} 集 $Z \in \mathbb{N}$. 令 E = [2,3], $H = E \sqcup Z$, 则由 Lebesgue 测度的完备性, $H \setminus E = Z$ 的任一子集皆为零测集. 下证 H 不是 G_{δ} 集. 用反证法, 假设 $H = \bigcap_{k=1}^{\infty} G_k$, 其中 G_k 为开集, 则 $G_k \setminus E$ 亦为开集, 且

$$\bigcap_{k=1}^{\infty} (G_k \setminus E) = \left(\bigcap_{k=1}^{\infty} G_k\right) \setminus E = H \setminus E = Z,$$

但这与 Z 不是 G_δ 集矛盾. 故 H 不是 E 的 G_δ 型等测包.

习题 24 点集 E 可测 \iff 对任意 $\varepsilon > 0$, 存在开集 $G_1, G_2 : G_1 \supset E, G_2 \supset E^c$, 使得 $m(G_1 \cap G_2) < \varepsilon$.

证明 (\Rightarrow) 若 E 可测,则对任意 $\varepsilon > 0$,存在开集 $G_1 \supset E$ 与闭集 $F \subset E$,使得

$$m(G_1 \setminus E) < \frac{\varepsilon}{2}, \quad m(E \setminus F) < \frac{\varepsilon}{2},$$

从而

$$m(G_1 \setminus F) = m((G_1 \setminus E) \cup (E \setminus F)) \leq m(G_1 \setminus E) + m(E \setminus F) < \varepsilon.$$

取 $G_2 = F^c$ 为开集, 则 $G_2 \supset E^c$, 且 $m(G_1 \cap G_2) = m(G_1 \setminus F) < \varepsilon$.

(秦) 若对任意 $\varepsilon > 0$, 存在开集 $G_1 \supset E$, $G_2 \supset E^c$, 使得 $m(G_1 \cap G_2) < \varepsilon$, 令 $F = G_2^c$, 则 $F \subset (E^c)^c = E$, 且 $m(G_1 \setminus F) = m(G_1 \cap G_2) < \varepsilon$, 进而 $m^*(G_1 \setminus E) \leq m(G_1 \setminus F) < \varepsilon$, 即 E 可测.

习题 25 设 f(x) 定义在可测集 $E \subset \mathbb{R}^n$ 上. 若 $f^2(x)$ 在 E 上可测, 且 $\{x \in E : f(x) > 0\}$ 是可测集, 证明 f(x) 在 E 上可测.

证明 往证对任意 $a \in \mathbb{R}$, 右半开直线 $(a, +\infty)$ 的原像可测.

(1) 若 $a \ge 0$, 则

$$f^{-1}((a, +\infty)) = (f^2)^{-1}((a^2, +\infty)) \cap f^{-1}((0, +\infty))$$

为 E 中可测集之交, 故 $f^{-1}((a, +\infty))$ 可测.

(2) 若 a < 0, 则

$$f^{-1}((a,+\infty)) = f^{-1}((a,0]) \cup f^{-1}((0,+\infty)) = \left(\left(f^2 \right)^{-1} \left([0,a^2) \right) \cap f^{-1}((-\infty,0]) \right) \cup f^{-1}((0,+\infty))$$

由 $f^{-1}((-\infty,0]) = E \setminus f^{-1}((0,+\infty))$ 知上式 RHS 可测, 即 $f^{-1}((a,+\infty))$ 可测.

习题 26 设 $f \in \mathcal{C}([a,b])$. 若有定义在 [a,b] 上的函数 g(x):g(x)=f(x), a.e. $x \in [a,b]$, 试问: g(x) 在 [a,b] 上必是几乎处处连续的吗?

解答 不一定, 考虑 [a,b] 上的 Dirichlet 函数 $\mathbb{1}_{\mathbb{Q}\cap[a,b]}$, 有 $\mathbb{1}_{\mathbb{Q}\cap[a,b]}$ $\stackrel{\text{a.e.}}{=}$ 0, 但 $\mathbb{1}_{\mathbb{Q}\cap[a,b]}$ 无处连续.

习题 27 设 z = f(x,y) 是 \mathbb{R}^2 上的连续函数, $g_1(x), g_2(x)$ 是 $[a,b] \subset \mathbb{R}$ 上的实值可测函数, 试证明 $F(x) = f(g_1(x), g_2(x))$ 是 [a,b] 上的可测函数.

证明 记 $G(x) = (g_1(x), g_2(x))$,则 $G^{-1}([a_1, b_1) \times [a_2, b_2)) = g_1^{-1}([a_1, b_1)) \cap g_2^{-1}([a_2, b_2))$ 可测,而 $f \in \mathcal{C}(\mathbb{R}^2)$,因此 \mathbb{R}^2 中任意开集关于 $F = f \circ G$ 的原像均可测,即 F 是可测函数.

习题 28 设 f(x) 在 [a,b) 上存在右导数, 试证明右导函数 $f'_{+}(x)$ 是 [a,b) 上的可测函数.

证明 对任意 $x \in [a,b)$, $f'_{+}(x) = \lim_{n \to \infty} \frac{f\left(x + \frac{1}{n}\right) - f(x)}{\frac{1}{n}} = n\left[f\left(x + \frac{1}{n}\right) - f(x)\right]$. 由右导数存在可知 f(x) 在 [a,b) 上右连续, 下证 f(x) 在 [a,b) 上的不连续点集可数. 对正整数 n, 定义

$$E_n = \{x \in [a,b) :$$
存在 $\delta > 0$, 使得只要 $x_1, x_2 \in \mathbb{B}(x,\delta)$, 就有 $|f(x_1) - f(x_2)| < \frac{1}{n}\}$.

则 $\bigcap_{n=1}^{\infty} E_n$ 为 f(x) 的连续点集, 从而只需证 f(x) 的不连续点集 $\bigcup_{n=1}^{\infty} E_n^c$ 可数, 即证每个 E_n^c 可数. 对取定的 n, 任取 $x \in E_n^c$, 由于 f(x) 在 x 处右连续, 存在 $\delta > 0$, 使得

$$|f(y) - f(x^+)| < \frac{1}{2n}, \quad \forall y \in (x, x + \delta).$$

进而

$$|f(x_1) - f(x_2)| \le |f(x_1) - f(x^+)| + |f(x_2) - f(x^+)| < \frac{1}{n}, \quad \forall x_1, x_2 \in (x, x + \delta),$$

即 $(x, x + \delta) \subset E_n$. 这说明对任意 $x \in E_n^c$, 均存在以 x 为左端点开区间 $I_x \subset E_n$, 于是存在 E_n^c 到 $\mathbb Q$ 的单射, 从而 E_n^c 可数. 故 f(x) 与 $f(x + \frac{1}{n})$ 几乎处处连续, 从而二者均可测, $n[f(x) + f(\frac{1}{n})]$ 可测, 再由可测函数列的极限仍可测即得 f'_+ 可测.

习题 29 设在可测集 $E \subset \mathbb{R}$ 上, $f_n(x) \xrightarrow{\text{a.e.}} f(x)$, 且 $f_n(x) \xrightarrow{\text{m}} g(x)$, 试问:是否有关系式

$$q(x) = f(x)$$
, a.e. $x \in E$?

解答 由于 $f_n(x) \xrightarrow{\mathbf{m}} g(x)$, 根据 Riesz 定理, 存在子列 $f_{n_k}(x) \xrightarrow{\mathbf{a.e.}} g(x)$, 设除去零测集 Z_1 后 $f_{n_k}(x) \to g(x)$. 又 $f_{n_k}(x) \xrightarrow{\mathbf{a.e.}} f(x)$, 设除去零测集 Z_2 后 $f_{n_k}(x) \to f(x)$. 于是在 $E \setminus (Z_1 \cup Z_2)$ 上有 f(x) = g(x), 而 $m(Z_1 \cup Z_2) = 0$, 故 $f(x) \stackrel{\mathbf{a.e.}}{==} g(x)$, $x \in E$.

习题 30 试问: $f_n(x) = \cos^n x$ $(n = 1, 2, \dots)$ 是 $[0, \pi]$ 上依测度收敛列吗?

解答 对任意 $\varepsilon \in (0,1)$, $\{x \in [0,\pi] : |\cos^n x| \geqslant \varepsilon\} = [0,\arccos\sqrt[n]{\varepsilon}) \cup (\pi - \arccos\sqrt[n]{\varepsilon},\pi]$, 其测度为 $2\arccos\sqrt[n]{\varepsilon} \xrightarrow{n \to \infty} 0$. 故 $f_n(x) \xrightarrow{m} 0$.

习题 31 设在 $E \perp f_k(x) \xrightarrow{m} 0, g_k(x) \xrightarrow{m} 0$, 证明 $f_k(x)g_k(x) \xrightarrow{m} 0$.

证明 对任意 $\varepsilon > 0$, 记 $F_k(\varepsilon) = \{x \in E : |f_k(x)| \geqslant \varepsilon\}$, $G_k(\varepsilon) = \{x \in E : |g_k(x)| \geqslant \varepsilon\}$, 则

$$\lim_{k\to\infty} m\big(F_k(\sqrt{\varepsilon})\big) = \lim_{k\to\infty} m\big(G_k(\sqrt{\varepsilon})\big) = 0.$$

再记 $H_k(\varepsilon) = \{x \in E : |f_k(x)g_k(x)| \ge \varepsilon\}$, 注意到 $H_k(\varepsilon) \subset (F_k(\sqrt{\varepsilon}) \cup G_k(\sqrt{\varepsilon}))$, 因此

$$m(H_k(\varepsilon)) \le m(F_k(\sqrt{\varepsilon})) + m(G_k(\sqrt{\varepsilon})) \to 0, \quad k \to \infty.$$

故 $\lim_{k\to\infty} m(H_k(\varepsilon)) = 0$, 即 $f_k(x)g_k(x) \stackrel{\mathsf{m}}{\longrightarrow} 0$.

习题 32 设 f(x) 是 \mathbb{R} 上几乎处处连续的函数, 试问是否存在 $g \in \mathcal{C}(\mathbb{R})$, 使得

$$g(x) = f(x)$$
, a.e. $x \in \mathbb{R}$?

解答 不一定存在, 考虑 $f(x) = \mathbb{1}_{[0,+\infty)}$, 则 f(x) 仅在 x = 0 处不连续, 但不存在 $g \in \mathcal{C}(\mathbb{R})$ 使得 $g(x) \stackrel{\text{a.e.}}{=} f(x)$. 这是因为, 若存在这样的 g, 由 $g \in \mathcal{C}(\mathbb{R})$,

◇ 若 $g(0) \neq 0$, 则存在 $\delta > 0$, 使得在 $(-\delta, 0]$ 上 $g(x) \neq 0$, 与 $g(x) \stackrel{\text{a.e.}}{=\!=\!=} f(x)$ 矛盾.

◇ 若
$$f(0) \neq 1$$
, 则存在 $\delta > 0$, 使得在 $[0,\delta)$ 上 $g(x) \neq 1$, 与 $g(x) \stackrel{\text{a.e.}}{=\!=\!=} f(x)$ 矛盾.

习题 33 若 $f_n(x)$ $(n=1,2,\cdots)$ 在 $E\subset\mathbb{R}$ 上依测度收敛于 $f(x)\equiv 0$, 试问:是否有

$$\lim_{n \to \infty} m(\{x \in E : |f_n(x)| > 0\}) = 0?$$

解答 否. 取 $f_n(x) = \frac{1}{n}$, 则对任意 $\varepsilon > 0$, 当 $n > \lfloor \frac{1}{\varepsilon} \rfloor + 1$ 时, $m([|f_k - f| \geqslant \varepsilon]) = m(\emptyset) = 0$, 即 $f_n \xrightarrow{\mathbf{m}} f$. 但对每个 n, 均有 $m(\{x \in E : |f_n(x)| > 0\}) = m(\mathbb{R}) = +\infty$.

习题 34 设 $E \subset \mathbb{R}$ 上的可测函数列 $\{f_k(x)\}$ 满足

$$f_k(x) \geqslant f_{k+1}(x) \quad (k = 1, 2, \cdots).$$

若 $f_k(x)$ 在 E 上依测度收敛到 0, 试问: $f_k(x)$ 在 E 上是否几乎处处收敛到 0?

解答 是. 由 Riesz 定理, 可取定子列 $f_{k_n}(x) \stackrel{\text{a.e.}}{\longrightarrow} 0$. 对于充分大的正整数 i, 总存在唯一正整数 n 使得 $k_n \leq i < k_{n+1}$, 从而 $f_{k_n}(x) \geq f_i(x) \geq f_{k_{n+1}}(x)$. 由于所选的 n 随 i 单调递增, 夹逼即得 $f_i(x) \stackrel{\text{a.e.}}{\longrightarrow} 0$.

习题 35 设 f(x) 是 \mathbb{R} 上的实值可测函数, 试问: 是否存在 $g \in \mathcal{C}(\mathbb{R})$, 使得

$$m({x \in \mathbb{R} : |f(x) - g(x)| > 0}) = 0?$$

解答 否. 习题 32 的阶梯函数 $f(x) = \mathbb{1}_{[0,+\infty)}$ 即为反例.

习题 36 设 f(x) 在 [a,b] 上可测, 试证明存在多项式列 $\{P_n(x)\}$, 使得

$$\lim_{n \to \infty} P_n(x) = f(x), \quad \text{a.e. } x \in [a, b].$$

证明 记 E = [a,b]. 由于 $f \in \mathcal{L}(E,\mathbb{R})$, 由 Lusin 定理, 存在闭集 $F_1 \subset E$, 使得 $m(E \setminus F_1) < 1$ 且 $f \in \mathcal{C}(F_1)$. 再由 $f \in \mathcal{L}(E \setminus F_1,\mathbb{R})$, 存在闭集 $\widetilde{F}_2 \subset E \setminus F_1$, 使得 $m\Big((E \setminus F_1) \setminus \widetilde{F}_2\Big) < \frac{1}{2}$ 且 $f \in \mathcal{C}\Big(\widetilde{F}_2\Big)$, 从 而闭集 $F_2 \coloneqq F_1 \cup \widetilde{F}_2$ 使得 $m(E \setminus F_2) < \frac{1}{2}$ 且 $f \in \mathcal{C}(F_2)$. 重复此步骤即可构造 E 中递增闭集列 $\{F_n\}$, 使得 $m(E \setminus F_n) < \frac{1}{n}$ 且 $f \in \mathcal{C}(F_n)$. 由 Tietze 扩张定理, 存在 $g \in \mathcal{C}(E)$ 使得在 F_n 上有 g(x) = f(x). 由

Weierstrass 逼近定理, 存在多项式列 $\{P_n(x)\}$, 使得

$$|g(x) - P_n(x)| < \frac{1}{n}, \quad x \in E,$$

从而

$$|f(x) - P_n(x)| < \frac{1}{n}, \quad x \in F_n.$$

令 $F = \bigcup_{n=1}^{\infty} F_n$, 则 $m(E \setminus F) = 0$. 对任意 $x_0 \in F$, 存在正整数 N, 当 n > N 时, $x_0 \in F_n$, 从而

$$|f(x_0) - P_n(x_0)| < \frac{1}{n}, \quad \forall n > N \implies \lim_{n \to \infty} P_n(x_0) = f(x_0).$$

故在 $F \perp P_n(x) \rightarrow f(x)$, 即

$$\lim_{n \to \infty} P_n(x) = f(x), \quad \text{a.e. } x \in [a, b].$$

习题 37 设 f(x) 是 $E \subset \mathbb{R}^n$ 上几乎处处大于零的可测函数, 且满足 $\int_E f(x) \, \mathrm{d}x = 0$, 试证明 m(E) = 0.

证明 记 $E_n = \left\{ x \in E : f(x) \geqslant \frac{1}{n} \right\}$, 则 $E = Z \cup \bigcup_{n=1}^{\infty} E_n$, 其中 $Z = \left\{ x \in E : f(x) = 0 \right\}$ 为零测集. 由于

$$0 = \int_{E_n} f(x) \, \mathrm{d}x \geqslant \frac{1}{n} m(E_n) \implies m(E_n) = 0, \quad \forall n \geqslant 1,$$

由测度的 σ -次可加性即得 $m(E) \leq 0$, 从而 m(E) = 0.

习题 38 设 $\{f_k(x)\}$ 是 E 上的非负可测函数列. 若有

$$\lim_{k \to \infty} f_k(x) = f(x), \quad f_k(x) \leqslant f(x) \quad (x \in E; k = 1, 2, \cdots),$$

则对 E 的任一可测子集 e, 有

$$\lim_{k \to \infty} \int_{e} f_k(x) \, \mathrm{d}x = \int_{e} f(x) \, \mathrm{d}x.$$

证明 对 $\{f_k(x)\}$ 运用 Fatou 引理可得

$$\liminf_{k \to \infty} \int_{e} f_k(x) \, \mathrm{d}x \geqslant \int_{e} f(x) \, \mathrm{d}x,$$

对 $\{f(x) - f_k(x)\}$ 运用 Fatou 引理可得

$$\liminf_{k\to\infty}\int_e [f(x)-f_k(x)]\,\mathrm{d}x\geqslant 0 \implies \int_e f(x)\,\mathrm{d}x\geqslant \limsup_{k\to\infty}\int_e f_k(x)\,\mathrm{d}x.$$

因此

$$\liminf_{k\to\infty}\int_e f_k(x)\,\mathrm{d}x\geqslant \int_e f(x)\,\mathrm{d}x\geqslant \limsup_{k\to\infty}\int_e f_k(x)\,\mathrm{d}x\geqslant \liminf_{k\to\infty}\int_e f_k(x)\,\mathrm{d}x,$$

每个不等号只能为等号,得所欲证.

习题 39 若 $f \in \mathcal{L}^1(E)$,则

$$m(\lbrace x \in E : |f(x)| > k \rbrace) = O\left(\frac{1}{k}\right) \quad (k \to \infty).$$

证明 由 $|f| \in \mathcal{L}^1(E)$ 即知

$$km(\{x \in E : |f(x)| > k\}) = \int_E k \mathbb{1}_{\{x \in E : |f(x)| > k\}} dx \leqslant \int_E |f(x)| dx < +\infty.$$

习题 40 设 $f \in \mathcal{L}^1(E)$, 记 $E_k = \{x \in E : |f(x)| < \frac{1}{k}\}$, 试证明

$$\lim_{k \to \infty} \int_{E_k} |f(x)| \, \mathrm{d}x = 0.$$

证明 记 $g_k(x) = |f(x)| \mathbb{1}_{E_k}$, 则 $g_k(x)$ 可测, $g_k(x) \to 0$, 且 $|g_k(x)| \leq |f(x)| \in \mathcal{L}^1(E)$. 由 Lebesgue 控制收敛定理即得

$$\lim_{k \to \infty} \int_{E_k} |f(x)| \, \mathrm{d}x = \lim_{k \to \infty} \int_E g_k(x) \, \mathrm{d}x = \int_E \lim_{k \to \infty} g_k(x) \, \mathrm{d}x = 0.$$

习题 41 设 f(x) 是 [0,1] 上的递增函数, 试证明对 $E \subset [0,1]$, m(E) = t, 有 $\int_{[0,t]} f(x) \, \mathrm{d}x \leqslant \int_{E} f(x) \, \mathrm{d}x$.

证明 由于

$$[0,t] = ([0,t] \setminus E) \sqcup ([0,t] \cap E), \quad E = ([0,t] \cap E) \sqcup ([t,1] \cap E),$$

其中 $m([0,t] \setminus E) = m([t,1] \cap E)$, 且

$$f(a) \leqslant f(b), \quad \forall a \in [0, t] \setminus E, \forall b \in [t, 1] \cap E.$$

因此由 f(x) 在 [0,1] 上递增可得

$$\int_{[0,t]\setminus E} f(x) \, \mathrm{d}x \leqslant f(t) \cdot m([0,t]\setminus E) = f(t) \cdot m([t,1]\cap E) \leqslant \int_{[t,1]\cap E} f(x) \, \mathrm{d}x.$$

故

$$\int_{[0,t]} f(x) \, \mathrm{d}x = \int_{[0,t] \setminus E} f(x) \, \mathrm{d}x + \int_{[0,t] \cap E} f(x) \, \mathrm{d}x \leqslant \int_{[t,1] \cap E} f(x) \, \mathrm{d}x + \int_{[0,t] \cap E} f(x) \, \mathrm{d}x = \int_{E} f(x) \, \mathrm{d}x.$$

习题 42 设 $f \in \mathcal{L}^1((0,+\infty))$, 试证明函数 $g(x) = \int_{[0,+\infty)} \frac{f(t)}{x+t} dt$ 在 $(0,+\infty)$ 上连续.

证明 对任意 $x \in (0, +\infty)$ 与 $h \in \mathbb{B}(x, \frac{x}{2})$,

$$|g(x) - g(x+h)| = \left| \int_{[0,+\infty)} \frac{hf(t)}{(x+t)(x+h+t)} dt \right| \le \int_{[0,+\infty)} \frac{|h| \cdot |f(t)|}{x \cdot \frac{x}{2}} dt$$

$$= \frac{2|h|}{x^2} \int_{[0,+\infty)} |f(t)| dt \to 0, \quad h \to 0,$$

故
$$g(x) \in \mathcal{C}((0,+\infty))$$
.

习题 43 设 $f_k \in \mathcal{L}^1(E)$ $(k = 1, 2, \dots)$, 且 $f_k(x)$ 在 E 上一致收敛于 f(x). 若 $m(E) < +\infty$, 试证明

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x.$$

证明 由于 $f_k(x) \rightrightarrows f(x)$, 对任意 $\varepsilon > 0$, 存在正整数 N, 当 k > N 时, $|f_k(x) - f(x)| < \varepsilon, \forall x \in E$. 此时

$$\left| \int_{E} [f_k(x) - f(x)] \, \mathrm{d}x \right| \leqslant \int_{E} |f_k(x) - f(x)| \, \mathrm{d}x \leqslant \varepsilon m(E),$$

得所欲证.

习题 44 设 $f \in \mathcal{L}^1(()\mathbb{R}^n)$, $E \subset \mathbb{R}^n$ 是紧集, 试证明 $\lim_{|y| \to +\infty} \int_{E+\{y\}} |f(x)| \, \mathrm{d}x = 0$.

证明 设 $d = \operatorname{diam} E$, 则当 |y| 充分大时, $E + \{y\} \subset \mathbb{R}^n \setminus \mathbb{B}(\mathbf{0}, |y| - d)$, 此时

$$\int_{E+\{y\}} |f(x)| \, \mathrm{d}x \leqslant \int_{\mathbb{R}^n \setminus \mathbb{B}(\mathbf{0},|y|-d)} |f(x)| \, \mathrm{d}x = \int_{\mathbb{R}^n} |f(x)| \mathbb{1}_{\mathbb{R}^n \setminus \mathbb{B}(\mathbf{0},|y|-d)} \, \mathrm{d}x.$$

由于 $\lim_{|y|\to+\infty}|f(x)|\mathbb{1}_{\mathbb{R}^n\setminus\mathbb{B}(\mathbf{0},|y|-d)}=0$, $|f(x)|\mathbb{1}_{\mathbb{R}^n\setminus\mathbb{B}(\mathbf{0},|y|-d)}\leqslant|f(x)|\in\mathcal{L}^1(()\mathbb{R}^n)$, 由 Lebesgue 控制收敛定理,

$$\lim_{|y|\to +\infty} \int_{\mathbb{R}^n} |f(x)| \mathbb{1}_{\mathbb{R}^n\backslash \mathbb{B}(\mathbf{0},|y|-d)} \,\mathrm{d}x = \int_{\mathbb{R}^n} \lim_{|y|\to +\infty} |f(x)| \mathbb{1}_{\mathbb{R}^n\backslash \mathbb{B}(\mathbf{0},|y|-d)} \,\mathrm{d}x = 0,$$

得所欲证.

习题 45 设 $f \in \mathcal{L}^1(R)$, a > 0, 试证明级数 $\sum_{n=-\infty}^{+\infty} f\left(\frac{x}{a} + n\right)$ 在 \mathbb{R} 上几乎处处绝对收敛, 其和函数 S(x) 以 a 为周期, 且 $S \in \mathcal{L}^1([0,a])$.

证明 由于 $f\left(\frac{x}{a}+n\right)\in\mathcal{L}^1(R), \forall n$, 由 Levi 单调收敛定理,

$$\sum_{n=-\infty}^{+\infty} \int_{[0,a]} \left| f\left(\frac{x}{a} + n\right) \right| \mathrm{d}x = \lim_{k \to \infty} \int_{[0,a]} \sum_{n=-k}^{k} \left| f\left(\frac{x}{a} + n\right) \right| \mathrm{d}x = \int_{[0,a]} \sum_{n=-\infty}^{+\infty} \left| f\left(\frac{x}{a} + n\right) \right| \mathrm{d}x.$$

而由非负可积函数积分关于积分限的 σ-可加性,

$$\sum_{n=-\infty}^{+\infty} \int_{[0,a]} \left| f\left(\frac{x}{a} + n\right) \right| \mathrm{d}x = a \sum_{n=-\infty}^{+\infty} \int_{[n,n+1]} \left| f(x) \right| \mathrm{d}x = a \int_{\mathbb{R}} \left| f(x) \right| \mathrm{d}x,$$

因此

$$\int_{[0,a]} \sum_{n=-\infty}^{+\infty} \left| f\left(\frac{x}{a} + n\right) \right| \mathrm{d}x = a \int_{\mathbb{R}} |f(x)| \, \mathrm{d}x < +\infty,$$

从而 $\sum_{n=-\infty}^{+\infty} |f(\frac{x}{a}+n)|$ 几乎处处有限, 也即 $S(x) \coloneqq \sum_{n=-\infty}^{+\infty} f(\frac{x}{a}+n)$ 在 \mathbb{R} 上几乎处处绝对收敛, 且以 a 为周期. 又 a $\sum_{n=-\infty}^{+\infty} \int_{[n,n+1]} |f(x)| \, \mathrm{d}x < +\infty$, 由逐项积分定理,

$$\int_{[0,a]} S(x) \, \mathrm{d}x = \int_{[0,a]} \sum_{n=-\infty}^{+\infty} f\left(\frac{x}{a} + n\right) \, \mathrm{d}x = \sum_{n=-\infty}^{+\infty} \int_{[0,a]} f\left(\frac{x}{a} + n\right) \, \mathrm{d}x = a \sum_{n=-\infty}^{+\infty} \int_{\mathbb{R}} f(x) \mathbb{1}_{[n,n+1]} \, \mathrm{d}x$$

$$=a\lim_{k\to\infty}\sum_{n=-k}^k\int_{\mathbb{R}}f(x)\mathbb{1}_{[n,n+1]}\,\mathrm{d}x=a\lim_{k\to\infty}\int_{\mathbb{R}}f(x)\mathbb{1}_{[-k,k+1]}\,\mathrm{d}x,$$

而 $f(x)\mathbb{1}_{[-k,k+1]} \to f(x)$, $|f(x)\mathbb{1}_{[-k,k+1]}| \leq |f(x)| \in \mathcal{L}^1(R)$, 由 Lebesgue 控制收敛定理,

$$\int_{[0,a]} S(x) \, \mathrm{d}x = a \int_{\mathbb{R}} \lim_{k \to \infty} f(x) \mathbb{1}_{[-k,k+1]} \, \mathrm{d}x = a \int_{\mathbb{R}} f(x) \, \mathrm{d}x,$$

故 $S(x) \in \mathcal{L}^1([0,a])$.

习题 46 设 $f \in \mathcal{L}^1(R), p > 0$, 试证明

$$\lim_{n \to \infty} n^{-p} f(nx) = 0, \quad \text{a.e. } x \in \mathbb{R}.$$

证明 记 $S(x) = \sum_{n=1}^{\infty} |n^{-p} f(nx)|$, 则由非负可测函数的逐项积分定理,

$$\int_{\mathbb{R}} S(x) \, \mathrm{d}x = \sum_{n=1}^{\infty} \int_{\mathbb{R}} |n^{-p} f(nx)| \, \mathrm{d}x = \sum_{n=1}^{\infty} n^{-p} \int_{\mathbb{R}} |f(nx)| \, \mathrm{d}x = \sum_{n=1}^{\infty} n^{-p-1} \int_{\mathbb{R}} |f(x)| \, \mathrm{d}x < +\infty,$$

由此可知 $S(x) \in \mathcal{L}^1(R)$, 从而 S(x) 几乎处处有限, $|n^{-p}f(nx)| \xrightarrow{\text{a.e.}} 0$, 明所欲证.

习题 47 设 $x^s f(x), x^t f(x)$ 在 $(0, +\infty)$ 上可积, 其中 s < t, 试证明积分

$$\int_{[0,+\infty)} x^u f(x) \, \mathrm{d}x, \quad u \in (s,t)$$

存在且是 $u \in (s,t)$ 的连续函数.

证明 记 $g(x) = |x^s f(x)| \mathbb{1}_{[0,1]}, h(x) = |x^t f(x)| \mathbb{1}_{(1,+\infty)},$ 则 $g(x), h(x) \in \mathcal{L}^1([0,+\infty)),$ 从而 $g(x) + h(x) \in \mathcal{L}^1([0,+\infty)).$ 对于 $x \in [0,+\infty),$ 有 $|x^u f(x)| \leq g(x) + h(x),$ 因此 $|x^u f(x)| \in \mathcal{L}^1([0,+\infty))$ 即 $x^u f(x) \in \mathcal{L}^1([0,+\infty)).$ 对任意固定的 $x \in (0,+\infty), x^u f(x) \in \mathcal{C}((s,t)),$ 因此 $\int_{[0,+\infty)} x^u f(x) \, \mathrm{d}x \in \mathcal{C}((s,t)).$

习题 48 设 f(x) 是 (0,1) 上的正值可测函数. 若存在常数 c, 使得

$$\int_{[0,1]} [f(x)]^n dx = c \quad (n = 1, 2, \dots),$$

试证明存在可测集 $E \subset (0,1)$, 使得 $f(x) \stackrel{\text{a.e.}}{=\!=\!=\!=} 1_E(x)$. 再问: 若 f(x) 不是非负的又如何?

证明 (1) 由 f 正值且可测, 只需证 m([f > 1]) = m([0 < f < 1]) = 0.

①
$$i \exists A_k = \left[f \geqslant 1 + \frac{1}{k} \right] (k \geqslant 1),$$
 则

$$c = \int_{[0,1]} [f(x)]^n dx \geqslant \int_{A_k} [f(x)]^n dx \geqslant \left(1 + \frac{1}{k}\right)^n m(A_k),$$

其中
$$\lim_{n\to\infty} \left(1+\frac{1}{k}\right)^n = +\infty$$
,因此只能有 $m(A_k) = 0$,进而 $m([f>1]) = m\left(\bigcup_{k=1}^\infty A_k\right) = 0$.

② 在 $[0 < f \le 1]$ 上,由 $|f|^n \le 1$,运用 Lebesgue 控制收敛定理即得

$$c = \lim_{n \to \infty} \int_{[0,1]} [f(x)]^n \, \mathrm{d}x \stackrel{\text{①}}{=\!=\!=} \lim_{n \to \infty} \int_{[0 < f \leqslant 1]} [f(x)]^n \, \mathrm{d}x = \int_{[0 < f \leqslant 1]} \lim_{n \to \infty} [f(x)]^n \, \mathrm{d}x = m([f=1]).$$

因此

$$c = \int_{[0,1]} f(x) \, \mathrm{d}x = m([f=1]) + \int_{[0 < f < 1]} f(x) \, \mathrm{d}x \implies \int_{[0 < f < 1]} f(x) \, \mathrm{d}x = 0,$$

由习题 37 即得 m([0 < f < 1]) = 0.

(2) 若 f(x) 不是非负的, 由于 $f^2(x)$ 非负可测, 且满足

$$\int_{[0,1]} [f^2(x)]^n dx = c \quad (n = 1, 2, \dots),$$

与 (1) 同样处理可知存在可测集 $E \subset (0,1)$, 使得 $f^2(x) \stackrel{\text{a.e.}}{=\!=\!=\!=} \mathbb{1}_E(x)$. 于是

$$0 = \int_{[0,1]} f(x)[f(x) - 1] dx = \int_{E} f(x)[f(x) - 1] dx = \int_{[f=-1]} f(x)[f(x) - 1] dx = 2m([f = -1]),$$

因此仍有
$$f(x) = \mathbb{1}_E(x)$$
.

习题 49 设 $f \in \mathcal{L}^1([0,1])$, 试证明

$$\lim_{n \to \infty} \int_{[0,1]} n \ln \left(1 + \frac{|f(x)|^2}{n^2} \right) dx = 0.$$

证明 设 $g(x) = \ln(1+x^2) - x$, 由 $g'(x) = -\frac{(x-1)^2}{1+x^2} \le 0$ 及 g(0) = 0 知对 $x \in [0,1]$ 有 $g(x) \le 0$ 即 $\ln(1+x^2) \le x$. 因此 $\left| n \ln\left(1+\frac{|f(x)|^2}{n^2}\right) \right| \le |f(x)| \in \mathcal{L}^1([0,1])$. 由 Lebesgue 控制收敛定理,

$$\lim_{n \to \infty} \int_{[0,1]} n \ln \biggl(1 + \frac{|f(x)|^2}{n^2} \biggr) \, \mathrm{d}x = \int_{[0,1]} \lim_{n \to \infty} n \ln \biggl(1 + \frac{|f(x)|^2}{n^2} \biggr) \, \mathrm{d}x.$$

由熟知的不等式 $ln(1+t) \leq t$ 可得

$$0\leqslant n\ln\!\left(1+\frac{|f(x)|^2}{n^2}\right)\leqslant \frac{|f(x)|^2}{n},$$

而 $f \in \mathcal{L}^1([0,1]), f(x)$ 几乎处处有限, 因此由上式可得

$$n \ln \left(1 + \frac{|f(x)|^2}{n^2}\right) \xrightarrow{\text{a.e.}} 0, \quad x \in [0, 1].$$

由于零测集上积分值为0,

$$\int_{[0,1]} \lim_{n \to \infty} n \ln \left(1 + \frac{|f(x)|^2}{n^2} \right) dx = \int_{[0,1]} 0 dx = 0,$$

习题 50 设 $E_1 \supset E_2 \supset \cdots \supset E_k \supset \cdots$, $E = \bigcap_{k=1}^{\infty} E_k$, $f \in \mathcal{L}^1(E_k)$ $(k = 1, 2, \cdots)$, 试证明

$$\lim_{k \to \infty} \int_{E_k} f(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x.$$

证明 由于 $f(x)\mathbb{1}_{E_k}(x) \downarrow f(x)\mathbb{1}_{E}(x)$, 且 $(f(x)\mathbb{1}_{E_1}(x))^+ = f^+(x)\mathbb{1}_{E_1}(x) \in \mathcal{L}^+(E_1) \cap \mathcal{L}^1(E_1)$, 由推广的 Levi 单调收敛定理,

$$\lim_{k\to\infty}\int_{E_k}f(x)\,\mathrm{d}x=\lim_{k\to\infty}\int_{E_1}f(x)\mathbbm{1}_{E_k}(x)\,\mathrm{d}x=\int_{E_1}f(x)\mathbbm{1}_{E}(x)\,\mathrm{d}x=\int_{E}f(x)\,\mathrm{d}x.$$

习题 51 设 $f \in \mathcal{L}^1(E)$, 且 f(x) > 0 $(x \in E)$, 试证明 $\lim_{k \to \infty} \int_E [f(x)]^{\frac{1}{k}} dx = m(E)$.

证明 不妨设 f 只取有限值. 设 $g_k(x) = [f(x)]^k \mathbb{1}_{[f < 1]}, h_k(x) = [f(x)]^k \mathbb{1}_{[f \geqslant 1]}, 则 [f(x)]^k = g_k(x) + h_k(x),$ 且 $g_k \uparrow \mathbb{1}_{[f < 1]}, h_k \downarrow \mathbb{1}_{[f \geqslant 1]}, |h_k| \leqslant |f| \in \mathcal{L}^1(E)$, 由 Levi 单调收敛定理及 Lebesgue 控制收敛定理,

$$\lim_{k\to\infty}\int_E [f(x)]^{\frac{1}{k}}\,\mathrm{d}x = \lim_{k\to\infty}\int_E g_k(x)\,\mathrm{d}x + \lim_{k\to\infty}\int_E h_k(x)\,\mathrm{d}x = \int_E \mathbbm{1}_{[f<1]}\,\mathrm{d}x + \int_E \mathbbm{1}_{[f\geqslant 1]}\,\mathrm{d}x = m(E). \quad \ \, \Box$$

习题 52 设 $f(x), f_n(x)$ $(n \in \mathbb{N})$ 是 [0,1] 上的非负可积函数. 若 $f_n(x) \stackrel{\mathsf{m}}{\longrightarrow} f(x)$, 且

$$\lim_{n \to \infty} \int_{[0,1]} f_n(x) \, \mathrm{d}x = \int_{[0,1]} f(x) \, \mathrm{d}x,$$

试证明对 [0,1] 的任一可测子集 E, 有

$$\lim_{n \to \infty} \int_E f_n(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x.$$

证明 用反证法, 假设结论不成立, 则存在可测子集 $E \subset [0,1]$, $\{f_n(x)\}$ 的子列 $\{f_{n_k}(x)\}$ 与 $\varepsilon > 0$, 使得

$$\left| \int_{E} f_{n_{k}}(x) - \int_{E} f(x) \, \mathrm{d}x \right| \geqslant \varepsilon, \quad \forall k.$$

由于 $f_{n_k}(x) \xrightarrow{\mathrm{m}} f(x)$, 由 Riesz 定理, 存在子列 $\Big\{ f_{n_{k_j}}(x) \Big\}$, 使得 $f_{n_{k_j}}(x) \xrightarrow{\mathrm{a.e.}} f(x)$, 又

$$\lim_{j \to \infty} \int_{[0,1]} f_{n_{k_j}}(x) \, \mathrm{d}x = \int_{[0,1]} f(x) \, \mathrm{d}x,$$

由交换次序的充要条件即得 $\left\{f_{n_{k_j}}(x)\right\}$ 在 [0,1] 上一致可积, 从而在 E 上一致可积, 因此又有

$$\lim_{j \to \infty} \int_E f_{n_{k_j}}(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x,$$

但这与 $\{f_{n_k}(x)\}$ 的选取矛盾. 故原命题得证.

习题 53 设 $f_k(x)$ 是 E 上的非负可积函数列, 且 $f_k(x)$ 在 E 上几乎处处收敛于 $f(x) \equiv 0$. 若有

$$\int_{E} \max\{f_{1}(x), f_{2}(x), \cdots, f_{k}(x)\} dx \leq M \quad (k = 1, 2, \cdots),$$

试证明

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = 0.$$

证明 记 $g_k(x)=\max\{f_1(x),\cdots,f_k(x)\}$, 则 $0\leqslant g_k(x)\uparrow\lim_{k\to\infty}g_k(x)=:g(x)$. 由 Levi 单调收敛定理,

$$\int_{E} g(x) \, \mathrm{d}x = \lim_{k \to \infty} \int_{E} g_k(x) \, \mathrm{d}x \leqslant M \implies g(x) \in \mathcal{L}^1(E).$$

而 $f_k(x) \stackrel{\text{a.e.}}{\longrightarrow} 0$ 且 $|f_k(x)| \leqslant g(x)$, 由 Lebesgue 控制收敛定理即得

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = 0.$$

П

习题 54 设 $\{f_k(x)\}$ 是 E 上依测度收敛于 f(x) 的非负可测函数列, 试证明

$$\int_E f(x) \, \mathrm{d}x \leqslant \liminf_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x.$$

证明 不妨设 m(E)>0. 由积分的绝对连续性, 对任意 $\varepsilon>0$, 存在 $\delta>0$, 使得对任意可测集 $A\subset E$, 只要 $m(A)<\delta$, 就有 $\int_A f(x)\,\mathrm{d}x<\varepsilon$. 记 $E_k=\left[|f_k-f|\geqslant \frac{\varepsilon}{m(E)}\right]$, 由 $f_k\stackrel{\mathrm{m}}{\longrightarrow} f$ 知存在 $N\in\mathbb{N}$, 当 k>N 时 $m(E_k)<\delta$, 此时

$$\int_{E} f(x) dx = \int_{E_{k}} f(x) dx + \int_{E \setminus E_{k}} f(x) dx < \varepsilon + \int_{E \setminus E_{k}} \left(f_{k}(x) + \frac{\varepsilon}{m(E)} \right) dx$$

$$\leq 2\varepsilon + \int_{E} f_{k}(x) dx.$$

$$\int_{E} f(x) \, \mathrm{d}x \leqslant 2\varepsilon + \liminf_{k \to \infty} \int_{E} f_k(x) \, \mathrm{d}x,$$

由 $\varepsilon > 0$ 的任意性即得欲证.

习题 55 设 $E \subset \mathbb{R}^n$, $f(x) \in \mathcal{L}^+(E)$. 若存在 $E_k \subset E$, $m(E \setminus E_k) < \frac{1}{k}$ $(k = 1, 2, \cdots)$, 使得极限 $\lim_{k \to \infty} \int_{E_k} f(x) \, \mathrm{d}x$ 存在, 试证明 $f(x) \in \mathcal{L}^1(E)$.

证明 取 $\{E_k\}$ 的子列 $\{E_{k_n}\}$, 使得 $m(E\setminus E_{k_n})<\frac{1}{2^n}$. 由 Borel-Cantelli 引理, $\limsup_{n\to\infty}(E\setminus E_{k_n})$ 为零测集, 即 $\lim_{n\to\infty}\mathbb{1}_{E_{k_n}}\stackrel{\text{a.e.}}{=}\mathbb{1}_E$. 由 Fatou 引理,

$$\int_E f(x) \, \mathrm{d}x = \int_E \lim_{n \to \infty} \mathbb{1}_{E_{k_n}}(x) f(x) \, \mathrm{d}x \leqslant \liminf_{n \to \infty} \int_{E_{k_n}} f(x) \, \mathrm{d}x = \lim_{k \to \infty} \int_{E_k} f(x) \, \mathrm{d}x < +\infty,$$

$$\square \quad \exists f \in \mathcal{L}^1(E).$$

习题 56 设 f(x) 是 \mathbb{R} 上的非负可积函数, 今

$$F(x) = \int_{(-\infty,x]} f(t) dt, \quad x \in \mathbb{R}.$$

若 $F \in \mathcal{L}^1(\mathbb{R})$, 试证明 $\int_{\mathbb{R}} f(x) \, \mathrm{d}x = 0$.

证明 $F(x) = \int_{\mathbb{R}} f(t) \mathbb{1}_{(-\infty,x]}(t) \, dt$, 其中 $f(t) \mathbb{1}_{(-\infty,x]}(t) \to f(t) = |f(t)| \in \mathcal{L}^1(\mathbb{R})$, 由连续版本的 Lebesgue 控制收敛定理, $\lim_{x \to \infty} F(x) = \int_{\mathbb{R}} f(t) \, dt$. 假设 $\int_{\mathbb{R}} f(t) \, dt \neq 0$ (即 > 0), 则存在 N, 当 x > N 时 $F(x) > \frac{1}{2} \int_{\mathbb{R}} f(t) \, dt$, 从而

$$\int_{\mathbb{R}} F(x) \, \mathrm{d}x = \int_{-\infty}^{N} F(x) \, \mathrm{d}x + \int_{N}^{+\infty} F(x) \, \mathrm{d}x \geqslant \int_{-\infty}^{N} F(x) \, \mathrm{d}x + \frac{M-N}{2} \int_{\mathbb{R}} f(t) \, \mathrm{d}t, \quad \forall M > N.$$

令
$$M \to +\infty$$
即得 $\int_{\mathbb{R}} F(x) dx = +\infty$,与 $F \in \mathcal{L}^1(\mathbb{R})$ 矛盾.故 $\int_{\mathbb{R}} f(x) dx = 0$.

习题 57 设 $f_k(x)$ $(k=1,2,\cdots)$ 是 \mathbb{R}^n 上的非负可积函数列. 若对任一可测集 $E\subset\mathbb{R}^n$, 都有

$$\int_{E} f_k(x) \, \mathrm{d}x \leqslant \int_{E} f_{k+1}(x) \, \mathrm{d}x,$$

试证明

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \int_E \lim_{k \to \infty} f_k(x) \, \mathrm{d}x.$$

证明 设 $F_k = [f_k(x) > f_{k+1}(x)]$, 则由

$$\int_{F_k} f_k(x) \, \mathrm{d}x \leqslant \int_{F_k} f_{k+1}(x) \, \mathrm{d}x$$

可知 $m(F_k)=0$. 令 $F=\bigcup_{k=1}^{\infty}F_k$, 则 m(F)=0. 在 $E\setminus F$ 上运用 Levi 单调收敛定理即得

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \lim_{k \to \infty} \int_{E \setminus F} f_k(x) \, \mathrm{d}x = \int_{E \setminus F} \lim_{k \to \infty} f_k(x) \, \mathrm{d}x = \int_E \lim_{k \to \infty} f_k(x) \, \mathrm{d}x.$$

习题 58 设 $\{E_k\}$ 是 \mathbb{R}^n 中测度有限的可测集列,且有

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} |\mathbb{1}_{E_k}(x) - f(x)| \, \mathrm{d}x = 0,$$

试证明存在可测集 E, 使得 $f(x) = \mathbb{1}_E(x)$, a.e. $x \in \mathbb{R}^n$.

证明 由 $\mathbb{1}_{E_k} \xrightarrow{L^1} f$ 即知 $\mathbb{1}_{E_k} \xrightarrow{\mathrm{m}} f$, 由 Riesz 定理, 存在子列 $\mathbb{1}_{E_{k_j}} \xrightarrow{\mathrm{a.e.}} f$, 而特征函数仅取值 0,1, 其极限函数的仍仅取值 0,1, 因此也是一个特征函数, 即存在可测集 E, 使得 $f(x) \stackrel{\mathrm{a.e.}}{\Longrightarrow} \mathbb{1}_E(x)$.

习题 59 设 $f(x,y) \in \mathcal{L}^1([0,1] \times [0,1])$, 试证明

$$\int_0^1 \left(\int_0^x f(x,y) \, \mathrm{d}y \right) \mathrm{d}x = \int_0^1 \left(\int_y^1 f(x,y) \, \mathrm{d}x \right) \mathrm{d}y.$$

证明 令 $E=\{(x,y):0\leqslant y\leqslant x\leqslant 1\}$,则 $f\mathbb{1}_E\in\mathcal{L}\left(\mathbb{R}^2\right)$,由 Fubini 定理,欲证 LHS $=\int_{\mathbb{R}^2}f\mathbb{1}_E\,\mathrm{d}x\,\mathrm{d}y=$ RHS.

习题 60 设 $A, B \in \mathbb{R}^n$ 中的可测集, 试证明

$$\int_{\mathbb{R}^n} m((A - \{x\}) \cap B) \, \mathrm{d}x = m(A) \cdot m(B).$$

证明 由于 $\mathbb{1}_{A-\{x\}}(y)\mathbb{1}_B(y) \in \mathcal{L}^1(\mathbb{R}^n \times \mathbb{R}^n)$, 由 Fubini 定理,

$$\begin{split} \mathrm{LHS} &= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \mathbbm{1}_{A - \{x\}}(y) \mathbbm{1}_B(y) \, \mathrm{d}y \right) \mathrm{d}x = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \mathbbm{1}_{A - \{x\}}(y) \mathbbm{1}_B(y) \, \mathrm{d}x \right) \mathrm{d}y \\ &= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \mathbbm{1}_{A - \{x\}}(y) \, \mathrm{d}x \right) \mathbbm{1}_B(y) \, \mathrm{d}y \stackrel{\star}{=} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \mathbbm{1}_{A - \{y\}}(x) \, \mathrm{d}x \right) \mathbbm{1}_B(y) \, \mathrm{d}y = m(A) \cdot m(B), \end{split}$$

其中 * 处用到了 $y \in A - \{x\} \iff x + y \in A \iff x \in A - \{y\}.$

习题 61 设 f(x), g(x) 是 $E \subset \mathbb{R}$ 上的可测函数且 $m(E) < +\infty$, 若 $f(x) + g(y) \in \mathcal{L}^1(E \times E)$, 试证明 $f(x), g(x) \in \mathcal{L}^1(E)$.

- 证明 (1) 先说明 $m(\{y \in E : |f(y)| = +\infty\}) = 0$. 若否, 设 $A = \{x \in E : |g(x)| < +\infty\}$, 则 m(A) > 0, 令 $B = A \times \{y \in E : |f(y)| = +\infty\}$, 则 $m(B) = m(A) \times m(\{y \in E : |f(y)| = +\infty\}) > 0$, 而在 $B \perp |f(x) + g(y)| = +\infty$, 这与 $f(x) + g(y) \in \mathcal{L}^1(E \times E)$ 几乎处处有限矛盾.
 - (2) 由于 $f(x) + g(y) \in \mathcal{L}^1(E \times E)$, 由 Fubini 定理, 对几乎处处的 $y \in E$, $f(x) + g(y) \in \mathcal{L}^1(E)$. 而 $m(E) < +\infty$, 且由 (1) 可不妨设 $|g(y)| < +\infty$, 因此 g(y) 对 x 在 E 上可积, 从而 $f(x) = [f(x) + g(y)] g(y) \in \mathcal{L}^1(E)$. 同理可得 $g(x) \in \mathcal{L}^1(E)$.

习题 62 计算下列积分:

(1)
$$\int_{x>0} \int_{y>0} \frac{\mathrm{d}x \,\mathrm{d}y}{(1+y)(1+x^2y)}.$$

(2)
$$\int_{0}^{+\infty} \frac{\ln x}{x^2 - 1} dx$$
.

解答 (1) 由 Fubini 定理,

$$\begin{split} & \int_0^{+\infty} \int_0^{+\infty} \frac{\mathrm{d} x \, \mathrm{d} y}{(1+y)(1+x^2y)} = \int_0^{+\infty} \left(\int_0^{+\infty} \frac{\mathrm{d} x}{1+x^2y} \right) \frac{\mathrm{d} y}{1+y} \\ & = \int_0^{+\infty} \frac{1}{1+y} \cdot \frac{1}{\sqrt{y}} \arctan(\sqrt{y}x) \Big|_0^{+\infty} \, \mathrm{d} y = \frac{\pi}{2} \int_0^{+\infty} \frac{1}{(1+y)\sqrt{y}} \, \mathrm{d} y \stackrel{y=t^2}{=\!\!=\!\!=\!\!=} \pi \int_0^{+\infty} \frac{\mathrm{d} t}{1+t^2} = \frac{\pi^2}{2}. \end{split}$$

(2) 由 Fubini 定理,

$$\begin{split} & \int_0^{+\infty} \int_0^{+\infty} \frac{\mathrm{d} x \, \mathrm{d} y}{(1+y)(1+x^2y)} = \int_0^{+\infty} \left(\int_0^{+\infty} \frac{\mathrm{d} y}{(1+y)(1+x^2y)} \right) \mathrm{d} x \\ & = \int_0^{+\infty} \frac{1}{1-x^2} \int_0^{+\infty} \left(\frac{1}{1+y} - \frac{x^2}{1+x^2y} \right) \mathrm{d} y \, \mathrm{d} x = \int_0^{+\infty} \frac{1}{1-x^2} \ln \frac{1+y}{1+x^2y} \bigg|_{y=0}^{y=+\infty} \, \mathrm{d} x \\ & = \int_0^{+\infty} \frac{\ln \frac{1}{x^2}}{1-x^2} \, \mathrm{d} x = 2 \int_0^{+\infty} \frac{\ln x}{x^2-1} \, \mathrm{d} x, \end{split}$$

再由 (1) 知所求积分为 $\frac{\pi^2}{4}$

习题 63 设 $E \subset \mathbb{R}$, m(E) > 0, $f(x) \in \mathcal{L}^+(\mathbb{R})$. 若函数 $F(x) = \int_E f(x-t) \, \mathrm{d}t \in \mathcal{L}^1(\mathbb{R})$, 试证明 $f \in \mathcal{L}^1(\mathbb{R})$. 证明 由 Fubini 定理,

$$+\infty > \int_{\mathbb{R}} F(x) \, \mathrm{d}x = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \mathbb{1}_E(t) f(x-t) \, \mathrm{d}t \right) \mathrm{d}x = \int_{\mathbb{R}} \mathbb{1}_E(t) \left(\int_{\mathbb{R}} f(x-t) \, \mathrm{d}x \right) \mathrm{d}t = m(E) \int_{\mathbb{R}} f(x) \, \mathrm{d}x,$$

而
$$m(E) > 0$$
, 因此 $\int_{\mathbb{R}} f(x) \, \mathrm{d}x < +\infty$. 由于 $f(x) \in \mathcal{L}^+(\mathbb{R})$, 因此 $f(x) \in \mathcal{L}^1(\mathbb{R})$.

习题 64 设 f(x) 在 $[0, +\infty)$ 上非负可积, $E \subset (0, +\infty)$, $\int_E f(x) \, \mathrm{d}x = 1$. 试证明 $\int_E f(x) \cos x \, \mathrm{d}x \neq 1$.

证明 用反证法,假设 $\int_E f(x) \cos x \, dx = 1$,则 $\int_E f(x)(1 - \cos x) \, dx = 0$,但 $f(x)(1 - \cos x) \ge 0$,因此在 $E \perp f(x)(1 - \cos x) \stackrel{\text{a.e.}}{=\!=\!=} 0$,而 $m(\{x > 0 : \cos x = 0\}) = 0$,因此在 $E \perp f(x) \stackrel{\text{a.e.}}{=\!=\!=} 0$,与 $\int_E f(x) \, dx = 1$ 矛盾.

习题 65 设 $f \in \mathcal{L}^1(\mathbb{R})$, $f_n \in \mathcal{L}^1(\mathbb{R})$ $(n = 1, 2, \cdots)$, 且

$$\int_{\mathbb{R}} |f_n(x) - f(x)| \, \mathrm{d}x \leqslant \frac{1}{n^2} \quad (n = 1, 2, \dots),$$

试证明 $f_n(x) \xrightarrow{\text{a.e.}} f(x)$.

证明 记 $S(x) = \sum_{n=1}^{\infty} |f_n(x) - f(x)|$. 由逐项积分定理,

$$+\infty > \sum_{n=1}^{\infty} \frac{1}{n^2} \geqslant \sum_{n=1}^{\infty} \int_{\mathbb{R}} |f_n(x) - f(x)| \, \mathrm{d}x = \int_{\mathbb{R}} S(x) \, \mathrm{d}x,$$

因此 $S(x) \in \mathcal{L}^1(\mathbb{R})$, 从而 S(x) 几乎处处有限, 余项 $|f_n(x) - f(x)| \xrightarrow{\text{a.e.}} 0$, 即 $f_n(x) \xrightarrow{\text{a.e.}} f(x)$.

习题 66 设数列 $\{a_n\}$ 满足 $|a_n| < \ln n \ (n = 2, 3, \cdots)$, 试证明

$$\int_{[2,+\infty)} \sum_{n=2}^{\infty} a_n n^{-x} \, \mathrm{d}x = \sum_{n=2}^{\infty} \frac{a_n}{\ln n} n^{-2}.$$

证明 设 $f(x) = \sum_{n=2}^{\infty} n^{-x} \ln n \in \mathcal{L}^+([2,+\infty))$, 由 Levi 单调收敛定理,

$$\int_{2}^{+\infty} f(x) \, \mathrm{d}x = \sum_{n=2}^{\infty} \int_{2}^{+\infty} n^{-x} \ln n \, \mathrm{d}x = -\sum_{n=2}^{\infty} n^{-x} \Big|_{2}^{+\infty} = \sum_{n=2}^{\infty} \frac{1}{n^{2}} < +\infty,$$

因此 $f(x) \in \mathcal{L}^1([2, +\infty))$. 由 $|a_n| < \ln n$ 可知 $\sum_{n=2}^{\infty} a_n n^{-x} < f(x)$, 由 Lebesgue 控制收敛定理,

$$\int_{[2,+\infty)} \sum_{n=2}^{\infty} a_n n^{-x} dx = \sum_{n=2}^{\infty} a_n \int_{[2,+\infty)} n^{-x} dx = \sum_{n=2}^{\infty} \frac{a_n}{\ln n} n^{-2}.$$

习题 67 设定义在 $E \times \mathbb{R}^n$ 上的函数 f(x,y) 满足:

- (1) 对每一个 $y \in \mathbb{R}^n$, $f(x,y) \in \mathcal{L}(E)$.
- (2) 对每一个 $x \in E$, $f(x, y) \in \mathfrak{C}(\mathbb{R}^n)$.

若存在 $g \in \mathcal{L}^1(E)$, 使得 $|f(x,y)| \leq g(x)$, a.e. $x \in E$, 则函数 $F(y) = \int_E f(x,y) \, \mathrm{d}x \in \mathfrak{C}(\mathbb{R}^n)$.

证明 对任意点列 $y_k \to y_0 \in \mathbb{R}^n$, 由于 $|f(x,y_k)| \leq g(x) \in \mathcal{L}^1(E)$, 由 Lebesgue 控制收敛定理,

$$\lim_{k \to \infty} \int_E f(x, y_k) \, \mathrm{d}x = \int_E \lim_{k \to \infty} f(x, y_k) \, \mathrm{d}x = \int_E f(x, y_0) \, \mathrm{d}x.$$

再由 Heine 归结原理即知 $F(y) \in \mathcal{C}(\mathbb{R}^n)$.

习题 68 设 $f \in \mathcal{L}^1(\mathbb{R})$, 且 $xf(x) \in \mathcal{L}^1(\mathbb{R})$, 令 $F(x) = \int_{-\infty}^x f(t) \, \mathrm{d}t$. 若 $\int_{\mathbb{R}} f(x) \, \mathrm{d}x = 0$, 试证明 $F \in \mathcal{L}^1(\mathbb{R})$.

证明 由 $\int_{\mathbb{R}} f(x) dx = 0$ 可知, 当 $x \ge 0$ 时,

$$|F(x)| = \left| \int_{-\infty}^x f(t) \, \mathrm{d}t \right| = \left| \int_x^{+\infty} f(t) \, \mathrm{d}t \right| = \left| \int_0^{+\infty} f(t) \mathbb{1}_{[x,+\infty)}(t) \, \mathrm{d}t \right| \leqslant \int_0^{+\infty} |f(t)| \mathbb{1}_{[x,+\infty)}(t) \, \mathrm{d}t,$$

因此

$$\begin{split} \int_0^{+\infty} |F(x)| \, \mathrm{d}x & \leqslant \int_0^{+\infty} \int_0^{+\infty} |f(t)| \mathbbm{1}_{[x,+\infty)}(t) \, \mathrm{d}t \, \mathrm{d}x = \int_0^{+\infty} \int_0^{+\infty} |f(t)| \mathbbm{1}_{[0,t]}(x) \, \mathrm{d}x \, \mathrm{d}t \\ & = \int_0^{+\infty} \int_0^t |f(t)| \, \mathrm{d}x \, \mathrm{d}t = \int_0^{+\infty} t |f(t)| \, \mathrm{d}t < +\infty. \end{split}$$

而当 x < 0 时,

$$|F(x)| = \left| \int_{-\infty}^{x} f(t) \, \mathrm{d}t \right| \leqslant \int_{-\infty}^{0} |f(t)| \mathbb{1}_{(-\infty, x]}(t) \, \mathrm{d}t,$$

因此

$$\begin{split} \int_{-\infty}^{0} |F(x)| \, \mathrm{d}x & \leqslant \int_{-\infty}^{0} \int_{-\infty}^{0} |f(t)| \mathbb{1}_{(-\infty,x]}(t) \, \mathrm{d}t \, \mathrm{d}x = \int_{-\infty}^{0} \int_{-\infty}^{0} |f(t)| \mathbb{1}_{[t,+\infty)}(x) \, \mathrm{d}x \, \mathrm{d}t \\ & = \int_{-\infty}^{0} \int_{t}^{0} |f(t)| \, \mathrm{d}x \, \mathrm{d}t = \int_{-\infty}^{0} |tf(t)| \, \mathrm{d}t < +\infty, \end{split}$$

故
$$\int_{\mathbb{R}} |F(x)| \, \mathrm{d}x < +\infty$$
, 即 $F \in \mathcal{L}^1(\mathbb{R})$.

习题 69 求 $\lim_{n\to\infty}\int_0^{\frac{\pi}{2}}\cos x \arctan(nx) dx$ 的值.

解答 由于 $|\cos x| \leqslant 1$, $|\arctan(nx)| \leqslant \frac{\pi}{2}$, 且当 x > 0 时, $\cos x \arctan(nx) \to \frac{\pi}{2} \cos x$, 由 Lebesgue 控制 收敛定理, $\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \cos x \arctan(nx) \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \frac{\pi}{2} \cos x \, \mathrm{d}x = \frac{\pi}{2}$.

习题 70 设 $f \in \mathcal{L}^1((0,a))$, $g(x) = \int_x^a \frac{f(t)}{t} dt$ (0 < x < a), 试证明 $g \in \mathcal{L}^1((0,a))$, 且

$$\int_0^a g(x) \, \mathrm{d}x = \int_0^a f(x) \, \mathrm{d}x.$$

证明 通过正负部分解, 可不妨设 $f(x) \ge 0$. 由 Fubini 定理,

$$\begin{split} \int_0^a g(x) \, \mathrm{d}x &= \int_0^a \int_x^a \frac{f(t)}{t} \, \mathrm{d}t \, \mathrm{d}x = \int_0^a \int_0^a \frac{f(t)}{t} \mathbbm{1}_{[x,a]}(t) \, \mathrm{d}t \, \mathrm{d}x \\ &= \int_0^a \int_0^t \frac{f(t)}{t} \, \mathrm{d}x \, \mathrm{d}t = \int_0^a f(t) \, \mathrm{d}t < +\infty \implies g \in \mathcal{L}^1((0,a)). \end{split}$$

习题 71 试证明: $\int_{[0,+\infty)} e^{-x^2} \cos(2xt) dx = \frac{\sqrt{\pi}}{2} e^{-t^2}$.

证明 记 $f(t) = \int_{[0,+\infty)} e^{-x^2} \cos(2xt) dx$, 则

$$\begin{split} f(t) &= \int_0^{+\infty} \left\{ \left(\int_p^t -2x \sin(2xs) \mathrm{e}^{-x^2} \, \mathrm{d}s \right) + \cos(2px) \mathrm{e}^{-x^2} \right\} \mathrm{d}x \\ &= \int_p^t \int_0^{+\infty} -2x \sin(2xs) \mathrm{e}^{-x^2} \, \mathrm{d}x \, \mathrm{d}s + \int_0^{+\infty} \cos(2px) \mathrm{e}^{-x^2} \, \mathrm{d}x \\ &\frac{p \to -\infty}{\text{Riemann-Lebesgue } \exists \exists \exists} \int_{-\infty}^t \left\{ \int_0^{+\infty} \left(\mathrm{e}^{-x^2} \sin(2xs) \right)' \, \mathrm{d}x - 2s \int_0^{+\infty} \mathrm{e}^{-x^2} \cos(2xs) \, \mathrm{d}x \right\} \mathrm{d}s \\ &= \int_{-\infty}^t -2s f(s) \, \mathrm{d}s, \end{split}$$

两边求导即得 f'(t) = -2t f(t), 结合 $f(0) = \int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ 解得 $f(t) = \frac{\sqrt{\pi}}{2} e^{-t^2}$.

习题 72 设 $f \in \mathcal{L}^1(\mathbb{R}^n)$, $f_k \in \mathcal{L}^1(\mathbb{R}^n)$ $(k = 1, 2, \cdots)$, 且对于任一可测集 $E \subset \mathbb{R}^n$, 有

$$\int_{E} f_{k}(x) \, \mathrm{d}x \leqslant \int_{E} f_{k+1}(x) \, \mathrm{d}x \quad (k = 1, 2, \cdots),$$
$$\lim_{k \to \infty} \int_{E} f_{k}(x) \, \mathrm{d}x = \int_{E} f(x) \, \mathrm{d}x,$$

试证明 $f_k(x) \xrightarrow{\text{a.e.}} f(x)$.

证明 由题设, 存在零测集 $Z \subset \mathbb{R}^n$, 使得在 $\mathbb{R}^n \setminus Z \perp \{f_k(x)\}$ 为单调递增函数列, 设 $f_k(x) \xrightarrow{\text{a.e.}} g(x)$. 由推广的 Levi 单调收敛定理,

$$\int_{E} f(x) dx = \lim_{k \to \infty} \int_{E} f_{k}(x) dx = \int_{E} g(x) dx,$$

由可测集 E 的任意性, m([f < g]) = m([f > g]) = 0, 即 $f(x) \stackrel{\text{a.e.}}{=\!\!\!=\!\!\!=} g(x)$. 故 $f_k(x) \stackrel{\text{a.e.}}{\longrightarrow} f(x)$.

习题 73 设 $\{f_k(x)\}, \{g_k(x)\}$ 是 $E \subset \mathbb{R}^n$ 上的两个可测函数列, 且有 $|f_k(x)| \leq g_k(x), x \in E$. 若

$$\lim_{k \to \infty} f_k(x) = f(x), \quad \lim_{k \to \infty} g_k(x) = g(x),$$
$$\lim_{k \to \infty} \int_E g_k(x) \, \mathrm{d}x = \int_E g(x) \, \mathrm{d}x < +\infty,$$

试证明 $\lim_{k\to\infty}\int_E f_k(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x.$

证明 由 $|f_k(x)| \leq g_k(x)$ 取极限即得 $|f(x)| \leq g(x)$, 从而 $|f_k(x) - f(x)| \leq |f_k(x)| + |f(x)| \leq g_k(x) + g(x)$. 由 Fatou 引理,

$$\int_E \liminf_{k \to \infty} [g_k(x) + g(x) - |f_k(x) - f(x)|] \, \mathrm{d}x \leqslant \liminf_{k \to \infty} \int_E [g_k(x) + g(x) - |f_k(x) - f(x)|] \, \mathrm{d}x,$$

也即

$$2\int_E g(x)\,\mathrm{d}x \leqslant 2\int_E g(x)\,\mathrm{d}x - \limsup_{k\to\infty} \int_E |f_k(x)-f(x)|\,\mathrm{d}x \implies \limsup_{k\to\infty} \int_E |f_k(x)-f(x)|\,\mathrm{d}x \leqslant 0,$$

因此 $f_k(x) \xrightarrow{L^1} f(x)$, 从而

$$\limsup_{k\to\infty} \left| \int_E f_k(x) \, \mathrm{d}x - \int_E f(x) \, \mathrm{d}x \right| \leqslant \limsup_{k\to\infty} \int_E |f_k(x) - f(x)| \, \mathrm{d}x = 0,$$

即

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x.$$

习题 74 设 f(x) 是 [a,b] 上的有界函数, 其不连续点集记为 D. 若 D 只有可列个极限点, 试证明 $f(x) \in \Re([a,b])$.

证明 由于 D 是 F_{σ} -集 (见 PPT 5), 可设 $D = \bigcup_{k=1}^{\infty} F_k$, 其中 $F_k \subset [a,b]$ 为闭集. 为证 m(D) = 0, 只需证 $m(F_k) = 0$, $\forall k$. 若不然, 不妨设 $m(F_1) > 0$, 由于 $F_1 \subset D$ 只有可列个极限点, $m(F_1') = 0$, 从而 $m(F_1 \setminus F_1') > 0$, 但这与 F_1 的孤立点集 $F_1 \setminus F_1'$ 为可数集矛盾. 故 m(D) = 0, 结合 f(x) 在 [a,b] 上有界即得 $f(x) \in \mathfrak{R}([a,b])$.

习题 75 设 f(x) 是 \mathbb{R} 上的有界函数. 若对于任意 $x \in \mathbb{R}$, 极限 $\lim_{h \to 0} f(x+h)$ 存在, 试证明 f(x) 在任一区 间 [a,b] 上是 Riemann 可积的.

证明 记 f(x) 的不连续点集为 D, 由题设知 D 中的点均为可去间断点, 从而 m(D) = 0. 结合 f(x) 在 [a,b] 上有界即知 $f(x) \in \Re([a,b])$.

习题 76 设 $E \subset [0,1]$, 试证明 $\mathbb{1}_E(x) \in \mathcal{R}([0,1]) \iff m(\overline{E} \setminus E^{\circ}) = 0$.

证明 由定义知 $\mathbb{1}_E$ 的不连续点集恰为 $\partial E = \overline{E} \setminus E^\circ$, 而 $\mathbb{1}_E(x)$ 有界, 因此结论得证.

习题 77 设 f(x) 是定义在 [a,b] 上的非负函数. 若 $f \notin \mathcal{L}^1([a,b])$, 试问: f(x) 在 [a,b] 上有原函数吗?

解答 假设 f(x) 在 [a,b] 上有原函数 F(x), 则由 F'=f 非负知 F 在 [a,b] 上单调递增, 由 Lebesgue 定理, $F\in \mathcal{W}^{1,1}([a,b])$ 且 $\int_a^b |f(x)|\,\mathrm{d}x\leqslant F(b)-F(a)<+\infty$, 这与 $f\notin \mathcal{L}^1([a,b])$ 矛盾. 故 f(x) 在 [a,b] 上无原函数.

习题 78 设 g(x) 在 [a,b] 上有原函数 G(x), F(x) 在 [a,b] 上可微, 且 $F'(x) \ge 0$ ($a \le x \le b$), 试证明 h(x) = F(x)g(x) 在 [a,b] 上有原函数.

$$\frac{H(x+h)-H(x)}{h} = \frac{F(x+h)G(x+h)-F(x)G(x)}{h} - \frac{1}{h} \int_{x}^{x+h} G(t)F'(t) dt$$

$$= \frac{F(x+h)[G(x+h) - G(x)] + G(x)[F(x+h) - F(x)]}{h} - \frac{1}{h} \int_{x}^{x+h} G(t)F'(t) dt$$

$$= F(x+h) \cdot \frac{G(x+h) - G(x)}{h} - \frac{1}{h} \int_{x}^{x+h} [G(t) - G(x)] \cdot F'(t) dt,$$

而

$$\lim_{h \to 0} F(x+h) \cdot \frac{G(x+h) - G(x)}{h} = F(x)g(x),$$

且由 G(x) 在 [a,b] 上一致连续可知, 对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $|h| < \delta$ 时, $|G(t) - G(x)| < \varepsilon, \forall t \in [x,x+h]$, 因此由 $F'(t) \ge 0$ 可得

$$\left|\frac{1}{h}\int_{x}^{x+h}[G(t)-G(x)]\cdot F'(t)\,\mathrm{d}t\right|\leqslant \left|\frac{1}{h}\int_{x}^{x+h}\varepsilon F'(t)\,\mathrm{d}t\right|\leqslant \varepsilon\left|\frac{F(x+h)-F(x)}{h}\right|\xrightarrow{h\to 0}\varepsilon F'(x),$$

由 $\varepsilon > 0$ 的任意性即知当 $h \to 0$ 时上式 $\to 0$. 故 $H'(x) = F(x)g(x), x \in [a, b]$.

习题 79 设 $\{x_n\} \subset [a,b]$, 试作 [a,b] 上的递增函数, 其不连续点恰为 $\{x_n\}$.

解答
$$f(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mathbb{1}_{[x_n,b]}(x)$$
 在 $[a,b]$ 上递增, 且在 x_n 处左右极限相差 $\frac{1}{2^n}$.

习题 80 设 f(x) 是 [a,b] 上的递增函数, $E \subset (a,b)$. 若对任意 $\varepsilon > 0$, 存在 $(a_i,b_i) \subset (a,b)$ $(i=1,2,\cdots)$, 使得

$$\bigcup_{i} (a_i, b_i) \supset E, \quad \sum_{i} [f(b_i) - f(a_i)] < \varepsilon,$$

试证明 f'(x) = 0, a.e. $x \in E$.

证明 由于 f(x) 在 [a,b] 上单调递增,由 Lebesgue 微分定理, f'(x) 在 [a,b] 上几乎处处存在且有限,从而 $f' \stackrel{\text{a.e.}}{\geqslant} 0$. 由 Lebesgue 定理,

$$0 \leqslant \int_E f'(x) \, \mathrm{d}x \leqslant \int_{\bigcup_i (a_i, b_i)} f'(x) \, \mathrm{d}x \leqslant \sum_i \int_{a_i}^{b_i} f'(x) \, \mathrm{d}x \leqslant \sum_i [f(b_i) - f(a_i)] < \varepsilon,$$

由 $\varepsilon > 0$ 的任意性即知 $\int_E f'(x) \, \mathrm{d}x = 0$, 故 $f'(x) \stackrel{\text{a.e.}}{=\!=\!=} 0$.

习题 81 若 $f(x) \in AC([a,b])$, 且有

$$|f'(x)| \leqslant M$$
, a.e. $x \in [a, b]$,

则

$$|f(x) - f(y)| \leqslant M|x - y|, \quad x, y \in [a, b].$$

证明
$$|f(x) - f(y)| = \left| \int_x^y f'(t) \, \mathrm{d}t \right| \le \left| \int_x^y |f'(t)| \, \mathrm{d}t \right| \le M|x - y|.$$

习题 82 设 $f_n(x)$ $(n = 1, 2, \cdots)$ 是 [a, b] 上递增的绝对连续函数列. 若 $\sum_{n=1}^{\infty} f_n(x)$ 在 [a, b] 上收敛,则其和函数在 [a, b] 上绝对连续.

证明 对任意 $\varepsilon > 0$, 由于 $\sum_{n=1}^{\infty} f_n(x)$ 在 [a,b] 上收敛, 存在正整数 N 使得

$$\left| \sum_{n=N+1}^{\infty} f_n(a) \right| < \frac{\varepsilon}{3}, \quad \left| \sum_{n=N+1}^{\infty} f_n(b) \right| < \frac{\varepsilon}{3}.$$

由于 $f_n(x) \in AC([a,b])$, 存在 $\delta_n > 0$, 使得只要 [a,b] 中的不交区间列 $\{(a_i,b_i)\}$ 满足 $\sum_i (b_i - a_i) < \delta_n$, 就

$$\sum_{i} |f(b_i) - f(a_i)| = \sum_{i} [f(b_i) - f(a_i)] < \frac{\varepsilon}{3N}.$$

取 $\delta = \min\{\delta_1, \dots, \delta_N\}$, 则只要 [a, b] 中的不交区间列 $\{(a_i, b_i)\}$ 满足 $\sum_i (b_i - a_i) < \delta$, 就有

$$\sum_{i} \left| \sum_{n=1}^{\infty} f_n(b_i) - \sum_{n=1}^{\infty} f_n(a_i) \right| = \sum_{i} \left[\sum_{n=1}^{\infty} f_n(b_i) - \sum_{n=1}^{\infty} f_n(a_i) \right]$$

$$= \sum_{i} \left(\sum_{n=1}^{N} [f_n(b_i) - f_n(a_i)] + \sum_{n=N+1}^{\infty} [f_n(b_i) - f_n(a_i)] \right)$$

$$= \sum_{n=1}^{N} \sum_{i} [f_n(b_i) - f_n(a_i)] + \sum_{n=N+1}^{\infty} [f_n(b_i) - f_n(a_i)]$$

$$\leqslant N \cdot \frac{\varepsilon}{3N} + \sum_{n=N+1}^{\infty} [f_n(b) - f_n(a)]$$

$$\leqslant \frac{\varepsilon}{3} + \left| \sum_{n=N+1}^{\infty} f_n(a) \right| + \left| \sum_{n=N+1}^{\infty} f_n(b) \right|$$

$$< \varepsilon.$$

故
$$\sum_{i=1}^{\infty} f_n(x) \in AC([a,b]).$$

习题 83 试证明 $f \in BV([a,b])$ 当且仅当存在 [a,b] 上的递增函数 F(x), 使得

$$|f(x') - f(x'')| \le F(x'') - F(x') \quad (a \le x' < x'' \le b).$$

证明 (⇒) 若 $f \in BV([a,b])$, 则存在 [a,b] 上的递增函数 $f_1(x), f_2(x)$ 使 $f(x) = f_1(x) - f_2(x)$. 令 $F(x) = f_1(x) + f_2(x)$, 则 F(x) 为 [a,b] 上的递增函数, 且对 $a \leqslant x' < x'' \leqslant b$, 有

$$|f(x') - f(x'')| = |f_1(x') - f_1(x'') - [f_2(x') - f_2(x'')]| \le |f_1(x') - f_1(x'')| + |f_2(x') - f_2(x'')|$$

= $F(x'') - F(x')$.

(全) 对任意分点 $a = x_0 < x_1 < \cdot < x_n = b$, 有

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \leqslant \sum_{i=1}^{n} [F(x_i) - F(x_{i-1})] = F(b) - F(a) < +\infty \implies f \in BV([a, b]).$$

习题 84 设 $f \in BV([a,b])$. 若有 $\bigvee_{a}^{b} f = f(b) - f(a)$, 试证明 f(x) 在 [a,b] 上递增.

证明 对任意分点 $a \leq x_1 < x_2 \leq b$, 有

$$f(b) - f(a) = \bigvee_{a}^{b} f \geqslant |f(b) - f(x_2)| + |f(x_2) - f(x_1)| + |f(x_1) - f(a)|$$

$$\geqslant [f(b) - f(x_2) + f(x_1) - f(a)] + |f(x_2) - f(x_1)|$$

$$= f(b) - f(a) + |f(x_2) - f(x_1)| + [f(x_1) - f(x_2)]$$

$$\geqslant f(b) - f(a).$$

因此上面每一步均取等,从而

$$f(b) - f(a) + |f(x_2) - f(x_1)| + [f(x_1) - f(x_2)] = f(b) - f(a) \iff f(x_2) - f(x_1) = |f(x_1) - f(x_2)|,$$

即 f(x) 在 [a,b] 上递增.

习题 85 设 $E \subset [0,1]$. 若存在 $l \in (0,1)$, 使得对 [0,1] 中的任一子区间 [a,b], 均有 $m(E \cap [a,b]) \geqslant l(b-a)$, 试证明 m(E) = 1.

证明 任取 $a \in (0,1)$, 由题设知, 对任意 $x \in [0,1] \setminus \{a\}$,

$$\frac{1}{x-a} \int_{a}^{x} \mathbb{1}_{E}(t) \, \mathrm{d}t \geqslant l.$$

而由微积分基本定理, $\frac{\mathrm{d}}{\mathrm{d}x}\int_a^x\mathbbm{1}_E(t)\,\mathrm{d}t\stackrel{\mathrm{a.e.}}{=\!=\!=} \mathbbm{1}_E(x)$, 因此在上式中令 $x\to a^+$ 就有 $\mathbbm{1}_E(x)\geqslant l>0$, a.e. $x\in E$, 也即 $\mathbbm{1}_E(x)\stackrel{\mathrm{a.e.}}{=\!=\!=} 1$, 故 m(E)=1.

习题 86 对于 [0,1] 上的 Dirichlet 函数 $\mathbb{1}_{\mathbb{Q}}(x)$, 试问: [0,1] 中的 Lebesgue 点是什么?

解答 由于

$$\lim_{h\to 0}\frac{1}{h}\int_x^{x+h}|\mathbb{1}_{\mathbb{Q}}(t)-\mathbb{1}_{\mathbb{Q}}(x)|\,\mathrm{d}t = \begin{cases} \lim_{h\to 0}\frac{m([x,x+h]\setminus\mathbb{Q})}{h} = 1, & x\in[0,1]\cap\mathbb{Q},\\ \lim_{h\to 0}\frac{m([x,x+h]\cap\mathbb{Q})}{h} = 0, & x\in[0,1]\setminus\mathbb{Q}. \end{cases}$$

即 $\mathbb{1}_{\mathbb{Q}}(x)$ 在有理点的平均消没振荡为 1, 在无理点的平均消没振荡为 0, 因此 [0,1] 中的 Lebesgue 点为 $\mathbb{R}\setminus\mathbb{Q}$.

习题 87 设 f(x) 定义在 [a,b] 上. 若有

$$|f(y) - f(x)| \leqslant M|y - x|, \quad x, y \in [a, b],$$

则

$$|f'(x)| \le M$$
, a.e. $x \in [a, b]$.

证明 由条件, 只需证 f'(x) 在 [a,b] 上几乎处处存在, 这得自 $\mathrm{Lip}([a,b])\subset\mathrm{AC}([a,b])\subset \mathcal{W}^{1,1}([a,b]).$

习题 88 设 $f \in BV([0,1])$. 若对任意 $\varepsilon > 0$, $f(x) \in AC([\varepsilon,1])$, 且 f(x) 在 x = 0 处连续, 则 $f(x) \in AC([0,1])$.

证明 取点列 $\varepsilon_n \downarrow 0$, 由微积分基本定理,

$$\int_0^x f'(t) dt = \lim_{n \to \infty} \int_{\varepsilon_n}^x f'(t) dt = \lim_{n \to \infty} [f(x) - f(\varepsilon_n)] = f(x) - f(0),$$

因此 $f'(x) \in \mathcal{L}^1([0,1])$, 从而 $f(x) \in AC([0,1])$.

习题 89 设 $f(x) \in BV([0,a])$, 试证明函数

$$F(x) = \frac{1}{x} \int_0^x f(t) dt$$
, $F(0) = 0$

是 [0, a] 上的有界变差函数.

证明 由于 $f(x) \in BV([0,a])$, 存在 [0,a] 上的递增函数 $f_1(x)$, $f_2(x)$, 使得 $f(x) = f_1(x) - f_2(x)$. 令

$$F_1(x) = \frac{1}{x} \int_0^x f_1(t) dt, \quad F_2(x) = \frac{1}{x} \int_0^x f_2(t) dt,$$

则对 $0 < x < y \le a$,有

$$F_1(y) - F_1(x) = \frac{1}{y} \int_x^y f_1(t) dt + \left(\frac{1}{y} - \frac{1}{x}\right) \int_0^x f_1(t) dt$$

$$\geqslant \frac{(y - x)f_1(x)}{y} + xf_1(x) \left(\frac{1}{y} - \frac{1}{x}\right) = 0,$$

即 $F_1(x)$ 是 [0,a] 上的递增函数. 同理可证 $F_2(x)$ 是 [0,a] 上的递增函数. 故 $F(x) = F_1(x) - F_2(x) \in BV([0,a])$.

习题 90 设 $\{f_k(x)\}$ 是 [a,b] 上的有界变差函数列,且有

$$\bigvee_{a}^{b} f_{k} \leqslant M \quad (k = 1, 2, \cdots),$$

$$\lim_{k \to \infty} f_{k}(x) = f(x), \quad x \in [a, b],$$

试证明 $f \in BV([a,b])$, 且满足 $\bigvee_{a}^{b} f \leqslant M$.

证明 任取 [a,b] 的分划 $a = x_0 < x_1 < \cdots < x_n = b$, 有

$$\sum_{i=1}^{n} |f_k(x_i) - f_k(x_{i-1})| \le \bigvee_{i=1}^{b} f_k \le M,$$

在上式中令 $k \to \infty$, 就得到

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \le M,$$

因此
$$\bigvee_{a}^{b} f \leqslant M, f \in \mathrm{BV}([a,b]).$$

习题 91 设 $f \in BV([a,b])$, 且点 $x_0 \in [a,b]$ 是 f(x) 的连续点, 试证明 $\bigvee_{x}^{x} f$ 在点 x_0 处连续.

证明 由于 f(x) 在 x_0 处连续, 对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得

$$|f(x) - f(x_0)| < \frac{\varepsilon}{2}, \quad \forall x \in [x_0, x_0 + \delta) \subset [a, b].$$

由全变差的定义, 存在 $[x_0, x_0 + \delta]$ 的分划 $x_0 < x_1 < \cdots < x_n = x_0 + \delta$, 使得

$$\bigvee_{x_0}^{x_0+\delta} f < \sum_{i=1}^n |f(x_i) - f(x_{i-1})| + \frac{\varepsilon}{2}.$$

于是

$$\bigvee_{x_0}^{x_1} f = \bigvee_{x_0}^{x_0 + \delta} f - \bigvee_{x_1}^{x_0 + \delta} f \leqslant \sum_{i=1}^n |f(x_i) - f(x_{i-1})| + \frac{\varepsilon}{2} - \sum_{i=2}^n |f(x_i) - f(x_{i-1})|$$
$$= |f(x_1) - f(x_0)| + \frac{\varepsilon}{2} < \varepsilon.$$

因此

$$\bigvee_{x_0}^x f \leqslant \bigvee_{x_0}^{x_1} f < \varepsilon, \quad x_0 \leqslant x \leqslant x_1,$$

即 \bigvee_{a}^{x} 在 x_0 处右连续,同理可证它在 x_0 处左连续. 故 $\bigvee_{a}^{x} f$ 在点 x_0 处连续.

习题 92 设 $m(E) < +\infty$, $f(x) \in \mathcal{L}(E)$, $0 < p_0 < +\infty$, 则

$$\lim_{p \uparrow p_0} \int_E |f(x)|^p \, \mathrm{d}x = \int_E |f(x)|^{p_0} \, \mathrm{d}x.$$

证明 由 Levi 单调收敛定理及 Lebesgue 控制收敛定理,

习题 93 设 $f(x), g(x) \in \mathcal{L}(E)$, 且有

$$\frac{1}{p}+\frac{1}{q}=\frac{1}{r},\quad 1\leqslant p<+\infty,$$

试证明 $||fg||_r \leq ||f||_p \cdot ||g||_q$.

证明 此时 $\frac{p}{r}$ 与 $\frac{q}{r}$ 为共轭指数, 由 Hölder 不等式,

$$|||f|^r|g|^r||_1 \leqslant |||f|^r||_{\frac{p}{r}} |||g|^r||_{\frac{q}{r}} \implies ||fg||_r^r \leqslant ||f||_p^r \cdot ||g||_q^r \xrightarrow{r \geqslant 1} ||fg||_r \leqslant ||f||_p \cdot ||g||_q.$$

习题 94 设 $f \in \mathcal{L}^{\infty}(E)$, w(x) > 0, 且 $\int_{E} w(x) dx = 1$, 试证明

$$\lim_{p \to \infty} \left(\int_E |f(x)|^p w(x) \, \mathrm{d}x \right)^{\frac{1}{p}} = \|f\|_{\infty}.$$

证明 一方面,

$$\left(\int_E |f(x)|^p w(x) \,\mathrm{d}x\right)^{\frac{1}{p}} \leqslant \left(\int_E \|f\|_\infty^p w(x) \,\mathrm{d}x\right)^{\frac{1}{p}} = \|f\|_\infty,$$

令 $p \to \infty$ 即知 LHS \leq RHS. 另一方面, 由本性上确界的定义, 对任意 $\varepsilon > 0$, 存在正测度子集 $F \subset E$, 使得

$$|f(x)| > ||f||_{\infty} - \varepsilon, \quad \forall x \in F.$$

于是

$$\mathrm{LHS} \geqslant \left(\int_F |f(x)|^p w(x) \, \mathrm{d}x \right)^{\frac{1}{p}} \geqslant (\|f\|_{\infty} - \varepsilon) \left(\int_F w(x) \, \mathrm{d}x \right)^{\frac{1}{p}} \stackrel{p \geqslant 1}{\geqslant} \|f\|_{\infty} - \varepsilon,$$

令 $p \to \infty$, 再令 $\varepsilon \to 0^+$ 即得 LHS \geq RHS. 故结论得证.

习题 95 设 $E \subset \mathbb{R}^n$, $g(x) \in \mathcal{L}(E)$. 若对任意的 $f \in \mathcal{L}^2(E)$, 有 $||gf||_2 \leq M||f||_2$, 试证明 $|g(x)| \leq M$, a.e. $x \in E$.

证明 不妨设 M>0. 令 $F_k=\left\{x\in E:|g(x)|>M+\frac{1}{k}\right\}$ $(k\geqslant 1)$, 取 $f_k(x)=\mathbb{1}_{F_k}(x)\in\mathcal{L}^2(E)$, 若 $M(F_k)>0$, 则

$$||gf_k||_2^2 = \int_{F_k} |g(x)|^2 dx \ge (M + \frac{1}{k})^2 m(F_k) > (M||f_k||_2)^2,$$

与题设矛盾. 故 $m(F_k) = 0 \ (\forall k \ge 1)$, 从而

$$m(\lbrace x \in E : |g(x)| > M \rbrace) = m\left(\bigcup_{k=1}^{\infty} F_k\right) = 0.$$

习题 96 设 $f \in \mathcal{L}^2([0,1])$, 令

$$g(x) = \int_0^1 \frac{f(t)}{|x - t|^{\frac{1}{2}}} dt, \quad 0 < x < 1,$$

试证明

$$\left(\int_0^1 g^2(x) \, \mathrm{d}x\right)^{\frac{1}{2}} \leqslant 2\sqrt{2} \left(\int_0^1 f^2(x) \, \mathrm{d}x\right)^{\frac{1}{2}}.$$

证明 注意到

$$\int_0^1 \frac{1}{|x-t|^{\frac{1}{2}}} \, \mathrm{d}t = \int_0^x \frac{1}{|x-t|^{\frac{1}{2}}} \, \mathrm{d}t + \int_x^1 \frac{1}{|x-t|^{\frac{1}{2}}} \, \mathrm{d}t = \int_0^x \frac{1}{\sqrt{t}} \, \mathrm{d}t + \int_0^{1-x} \frac{1}{\sqrt{t}} \, \mathrm{d}t = 2 \left(\sqrt{x} + \sqrt{1-x} \right) \stackrel{\star}{\leqslant} 2 \sqrt{2},$$

这里 \star 处用到了凸函数 \sqrt{x} 的 Jensen 不等式. 由 Cauchy-Schwarz 不等式,

$$g^2(x) = \left(\int_0^1 \frac{f(t)}{|x-t|^{\frac{1}{2}}} \, \mathrm{d}t\right)^2 \leqslant \int_0^1 \left(\frac{1}{|x-t|^{\frac{1}{4}}}\right)^2 \, \mathrm{d}t \int_0^1 \left(\frac{f(t)}{|x-t|^{\frac{1}{4}}}\right)^2 \, \mathrm{d}t \leqslant 2\sqrt{2} \int_0^1 \left(\frac{f(t)}{|x-t|^{\frac{1}{4}}}\right)^2 \, \mathrm{d}t,$$

进而

$$\int_0^1 g^2(x) \, \mathrm{d}x \leqslant 2\sqrt{2} \int_0^1 \left(\int_0^1 \frac{f^2(t)}{|t-x|^{\frac{1}{2}}} \, \mathrm{d}t \right) \mathrm{d}x = 2\sqrt{2} \int_0^1 \left(\int_0^1 \frac{\mathrm{d}x}{|x-t|^{\frac{1}{2}}} \, \mathrm{d}x \right) f^2(t) \, \mathrm{d}t \leqslant \left(2\sqrt{2}\right)^2 \int_0^1 f^2(t) \, \mathrm{d}t,$$
 欲证已明.

习题 97 试证明下列两个不等式是不能同时成立的:

(1)
$$\int_0^{\pi} [f(x) - \sin x]^2 \, \mathrm{d}x \leqslant \frac{4}{9}.$$

(2)
$$\int_0^{\pi} [f(x) - \cos x]^2 dx \le \frac{1}{9}$$
.

证明 用反证法, 假设上述两个不等式均成立, 由 Minkowski 不等式,

$$\sqrt{\pi} = \left(\int_0^\pi (1 - \sin 2x) \, \mathrm{d}x \right)^{\frac{1}{2}} = \|\sin x - \cos x\|_2 \leqslant \|f(x) - \sin x\|_2 + \|f(x) - \cos x\|_2 \leqslant \frac{2}{3} + \frac{1}{3} = 1,$$
 矛盾.

习题 98 设 $f, g \in \mathcal{L}^3(E)$, 且有

$$||f||_3 = ||g||_3 = \int_E f^2(x)g(x) \, \mathrm{d}x = 1,$$

试证明 g(x) = |f(x)|, a.e. $x \in E$.

证明 由 Hölder 不等式,

$$1 = \int_{E} f^{2}(x)g(x) \, \mathrm{d}x \leqslant \|f^{2}g\|_{1} \leqslant \|f^{2}\|_{\frac{3}{2}} \cdot \|g\|_{3} = \|f\|_{3}^{2} \cdot \|g\|_{3} = 1,$$

由于此时不等号均取等,且由条件知 g(x) 不几乎处处为 0,因此存在常数 $\lambda \geq 0$,使得

$$\left[f^2(x)\right]^{\frac{3}{2}} \stackrel{\text{a.e.}}{=\!\!\!=\!\!\!=} \lambda |g(x)|^3 \quad \mathbb{H} \quad |f(x)|^3 \stackrel{\text{a.e.}}{=\!\!\!=\!\!\!=} \lambda |g(x)|^3,$$

由 $\|f\|_3 = \|g\|_3$ 即知 $\lambda = 1$, 进而 $|f(x)| \stackrel{\text{a.e.}}{=\!=\!=\!=} |g(x)|$. 由于

$$\int_E f^2(x)[|g(x)| - g(x)] \, \mathrm{d}x = \int_E f^2(x)|g(x)| \, \mathrm{d}x - \int_E f^2(x)g(x) \, \mathrm{d}x = \int_E |f(x)|^3 \, \mathrm{d}x - 1 = 0,$$

其中被积函数在 E 上非负,因此 $f^2(x)[|g(x)|-g(x)] \stackrel{\text{a.e.}}{=\!\!=\!\!=} 0$ 即 $g^2(x)[|g(x)|-g(x)] \stackrel{\text{a.e.}}{=\!\!=\!\!=} 0$. 由此可见 $|g(x)| \stackrel{\text{a.e.}}{=\!\!=\!\!=} g(x)$,进而 $g(x) \stackrel{\text{a.e.}}{=\!\!=\!\!=} |f(x)|$.

习题 99 设 $\{\varphi_k\}\subset \mathcal{L}^2(E)$ 是完全标准正交系, 试证明对 $f,g\in\mathcal{L}^2(E)$, 有

$$\langle f, g \rangle = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle \langle g, \varphi_k \rangle.$$

 $\|S_n-f\|_2<\varepsilon.$ 由 $\langle S_n-f,g\rangle\leqslant \|S_n-f\|_2\cdot\|g\|_2\leqslant \varepsilon\|g\|_2$ 可知 $\lim_{n\to\infty}\langle S_n-f,g\rangle=0$, 即

$$\langle f, g \rangle = \left\langle \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle \varphi_k, g \right\rangle = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle \langle \varphi_k, g \rangle.$$

练习 1 设 $E \subset \mathbb{R}^n$ 是可测集, 则 $\lim_{h\to 0} m(E\cap (h+E)) = m(E)$.

证明 (1) 若 $m(E) < +\infty$, 则 $\mathbb{1}_E \in \mathcal{L}(\mathbb{R}^n)$, 从而

$$\begin{split} |m(E\cap(h+E))-m(E)| &= \left| \int_{\mathbb{R}^n} \mathbb{1}_{E\cap(h+E)} \, \mathrm{d} m - \int_{\mathbb{R}^n} \mathbb{1}_E \, \mathrm{d} m \right| \leqslant \int_{\mathbb{R}^n} |\mathbb{1}_E \mathbb{1}_{h+E} - \mathbb{1}_E \mathbb{1}_E | \, \mathrm{d} m \\ &\leqslant \|\mathbb{1}_{h+E} - \mathbb{1}_E\|_{\mathcal{L}^1(\mathbb{R}^n)} \xrightarrow{h \to 0} 0. \end{split}$$

(2) 若 $m(E) = +\infty$, 令 $E_k = E \cap \mathbb{B}(0, k)$, 则 $E_k \uparrow E$, 由测度的从下方连续性即知 $\lim_{k \to \infty} m(E_k) = m(E)$. 由 (1) 有

$$\liminf_{h\to 0} m(E\cap (h+E))\geqslant \liminf_{h\to 0} m(E_k\cap (h+E_k))=m(E_k)\xrightarrow{k\to \infty} m(E)=+\infty,$$

因此
$$\lim_{h\to 0} m(E\cap (h+E)) = +\infty = m(E)$$
.

练习 2 设 $\mathbb{R} \ni \lambda_n \to +\infty$, $A = \left\{ x \in \mathbb{R} : \lim_{n \to \infty} \sin \lambda_n x$ 存在且有限 $\right\}$. 证明: m(A) = 0.

证明 由习题 10 可知 A 可测. 将极限函数零扩充为 \mathbb{R} 上函数 $f(x) = \lim_{n \to \infty} \mathbb{1}_A(x) \sin \lambda_n x$. 对任意有界可测集 E, 由于 $|f(x)| \leq \mathbb{1}_E(x) \in \mathcal{L}^1(E)$, 由 Lebesgue 控制收敛定理,

$$\int_E f(x)\,\mathrm{d}x = \lim_{n o\infty}\int_E \mathbb{1}_A(x)\sin\lambda_n x\,\mathrm{d}x \stackrel{ ext{Riemann-Lebesgue}\ \exists |\mathbb{H}|}{=\!=\!=\!=} 0.$$

由 Lebesgue 点定理 (PPT 25) 可得

$$f(x) \stackrel{\text{a.e.}}{=\!\!\!=\!\!\!=} \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt = 0.$$

对任意有界可测集 E, 再次运用 Lebesgue 控制收敛定理与 Riemann-Lebesgue 引理, 有

$$0 = \int_E f^2(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_{E \cap A} \sin^2 \lambda_n x \, \mathrm{d}x = \frac{1}{2} \lim_{n \to \infty} \int_{E \cap A} [1 - \cos(2\lambda_n x)] \, \mathrm{d}x = \frac{1}{2} m(E \cap A).$$

于是

$$m(A) = m\left(A \cap \bigcup_{n=1}^{\infty} [-n, n]\right) = 0.$$

练习 3 设 $f_k, f \in \mathcal{L}^1(E), f_k \xrightarrow{\text{a.e.}} f$,则 $f_k \xrightarrow{L^1} f$ 当且仅当 $||f_k||_{\mathcal{L}^1(E)} \to ||f||_{\mathcal{L}^1(E)}$.

证明 (⇒) 由 $|||f_k||_{\mathcal{L}^1(E)} - ||f||_{\mathcal{L}^1(E)}| \le ||f_k - f||_{\mathcal{L}^1(E)}$ 即得.

(\leftarrow) 由于 $f \in \mathcal{L}^1(E)$, 对任意 $\varepsilon > 0$, 存在 $A \subset E 与 \delta > 0$, 使得

$$m(A) < +\infty, \quad \int_{A^c} |f(x)| \, \mathrm{d}x < rac{arepsilon}{2}, \quad \int_C |f(x)| \, \mathrm{d}x < rac{arepsilon}{2}, \ orall C \subset E: m(C) < \delta.$$

由 Egorov 定理, 在 $A \perp f_k \xrightarrow{\text{a.un.}} f$, 即存在 $B_0 \subset A$, 使得 $m(A \setminus B_0) < \delta$, 且在 $B_0 \perp f_k \Rightarrow f$. 于是

$$\int_E |f(x)| \, \mathrm{d}x = \int_{A^c} |f(x)| \, \mathrm{d}x + \int_{A \setminus B_0} |f(x)| \, \mathrm{d}x + \int_{B_0} |f(x)| \, \mathrm{d}x < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \int_{B_0} |f(x)| \, \mathrm{d}x,$$

结合 $f_k \xrightarrow{\text{a.e.}} f$, 由 Fatou 引理,

$$\begin{split} \int_E |f(x)| \, \mathrm{d}x &< \varepsilon + \int_{B_0} |f(x)| \, \mathrm{d}x \leqslant \varepsilon + \liminf_{k \to \infty} \int_{B_0} |f_k(x)| \, \mathrm{d}x \\ &= \varepsilon + \liminf_{k \to \infty} \left(\int_E |f_k(x)| \, \mathrm{d}x - \int_{E \backslash B_0} |f_k(x)| \, \mathrm{d}x \right) \\ &= \varepsilon + \int_E |f(x)| \, \mathrm{d}x - \limsup_{k \to \infty} \int_{E \backslash B_0} |f_k(x)| \, \mathrm{d}x. \end{split}$$

由此可得

$$\limsup_{k\to\infty}\int_{E\backslash B_0}|f_k(x)|\,\mathrm{d} x<\varepsilon.$$

故

$$\begin{split} \|f_k - f\|_{\mathcal{L}^1(E)} & \leq \int_{E \setminus B_0} |f_k(x)| \, \mathrm{d}x + \int_{E \setminus B_0} |f(x)| \, \mathrm{d}x + \int_{B_0} |f_k(x) - f(x)| \, \mathrm{d}x \\ & = \int_{E \setminus B_0} |f_k(x)| \, \mathrm{d}x + \underbrace{\int_{A^c} |f(x)| \, \mathrm{d}x}_{<\frac{\varepsilon}{2}} + \underbrace{\int_{A \setminus B_0} |f(x)| \, \mathrm{d}x}_{<\frac{\varepsilon}{2}} + \int_{B_0} |f_k(x) - f(x)| \, \mathrm{d}x, \end{split}$$

两边同取上极限得

$$\limsup_{k \to \infty} \|f_k - f\|_{\mathcal{L}^1(E)} \leqslant \varepsilon + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + 0 = 2\varepsilon,$$

因此
$$||f_k - f||_{\mathcal{L}^1(E)} \to 0$$
 即 $f_k \xrightarrow{L^1} f$.

练习 4 设 $a_n > 0$, $\sum_{n=1}^{\infty} \frac{1}{a_n} < +\infty$, $f \in \mathcal{L}^1(\mathbb{R})$, 则 $\lim_{n \to \infty} f(a_n x) \stackrel{\text{a.e.}}{=\!=\!=} 0$.

证明 注意到

$$\sum_{n=1}^{\infty} \int_{\mathbb{R}} |f(a_n x)| \, \mathrm{d}x = \sum_{n=1}^{\infty} \frac{1}{a_n} \int_{\mathbb{R}} |f(x)| \, \mathrm{d}x < +\infty,$$

由逐项积分定理, $\sum_{n=1}^{\infty} |f(a_n x)| \in \mathcal{L}^1(\mathbb{R})$, 进而 $\lim_{n \to \infty} f(a_n x) \stackrel{\text{a.e.}}{=\!=\!=} 0$.

练习 5 设 $E \subset \mathbb{R}^n$, $m(E) < +\infty$, $f_n \in \mathcal{L}^1(E)$, $f_n \Rightarrow f$, 则 $f \in \mathcal{L}^1(E)$ 且 $\int_E f_n(x) \, \mathrm{d}x \to \int_E f(x) \, \mathrm{d}x$. 若 $m(E) = +\infty$, 结论是否成立?

证明 由于 $f_n \Rightarrow f$, 不妨设 $|f_1(x) - f(x)| < 1, \forall x \in E$, 则 $|f(x)| < |f_1(x)| + 1 \in \mathcal{L}^1(E)$, 由 Lebesgue 控

制收敛定理知 $f \in \mathcal{L}^1(E)$. 对任意 $\varepsilon > 0$, 存在正整数 N, 当 n > N 时, $|f_n(x) - f(x)| < \frac{\varepsilon}{m(E)}$, $\forall x \in E$, 因此

$$\left| \int_{E} [f(x) - f_n(x)] \, \mathrm{d}x \right| \le \int_{E} |f(x) - f_n(x)| \, \mathrm{d}x < \varepsilon, \quad \forall n > N,$$

因此
$$\int_{E} f_n(x) dx \to \int_{E} f(x) dx$$
. 若 $m(E) = +\infty$, 有反例 $f_n(x) = \frac{1}{2^n} \mathbb{1}_{(0,2^n]}(x)$.

练习 6 设 $f\in\mathcal{L}^+(E)$, $\varphi:[0,+\infty)\to\mathbb{R}$ 单调递增且内闭绝对连续, $\varphi(0)=0$, 则

$$\int_{E} \varphi(f(x)) \, \mathrm{d}x = \int_{0}^{+\infty} m(\{x \in E : f(x) > t\}) \varphi'(t) \, \mathrm{d}t.$$

证明 先说明 RHS 中被积函数可积: m([f(x) > t]) 关于 t 单调递减, 是有界变差函数; $\varphi(t)$ 是单调递增函数, 也是有界变差函数. 有界变差函数在 Sobolev 空间中, 因此 $m([f(x) > t])\varphi'(t) \in \mathcal{L}^+(E)$, 其积分有意义 (可能为 $+\infty$).

由于 $\varphi(x)$ 在 $[0,+\infty)$ 上内闭绝对连续, 由微积分基本定理,

$$\varphi(a) = \int_0^a \varphi'(t) \, \mathrm{d}t, \quad \forall a \in [0, +\infty).$$

因此

$$\varphi(f(x)) = \int_0^{f(x)} \varphi'(t) \, \mathrm{d}t = \int_{\mathbb{R}_+} \mathbb{1}_{[0,f(x)]}(t) \varphi'(t) \, \mathrm{d}t.$$

由非负可测函数的 Fubini 定理

$$\int_{E} \varphi(f(x)) = \int_{\mathbb{R}} \mathbb{1}_{E}(x) \left(\int_{\mathbb{R}_{+}} \mathbb{1}_{[0,f(x)]}(t) \varphi'(t) \, \mathrm{d}t \right) \mathrm{d}x = \int_{\mathbb{R}_{+}} \varphi'(t) \left(\int_{\mathbb{R}} \mathbb{1}_{E}(x) \mathbb{1}_{[f(x)>t]} \, \mathrm{d}x \right) \mathrm{d}t$$
$$= \int_{0}^{+\infty} m(\{x \in E : f(x) > t\}) \varphi'(t) \, \mathrm{d}t.$$

练习 7 设 $E \subset [a,b]$, $f:[a,b] \to \mathbb{R}$ 在 $E \perp \mathbb{T}$ 中导, $|f'(x)| \leq M, \forall x \in E$, 则 $m^*(f(E)) \leq Mm^*(E)$.

证明 固定 $\varepsilon > 0$, 考虑集合

$$E_n = \left\{ x \in E : |f(y) - f(x)| \le (M + \varepsilon)|y - x|, \forall y \in [a, b] \cap \mathbb{B}(x, \frac{1}{n}) \right\},$$

则 $E_n \uparrow E$, 因此 $\lim_{n \to \infty} m^*(E_n) = m^*(E)$. 利用边长一致有界的开矩体构造的外测度 (PPT 6), 可设

$$E_n \setminus \{a,b\} \subset \bigcup_{k=1}^n I_{n,k}, \quad \text{{\it H}} \boxtimes \text{{\it in}} \ I_{n,k} \subset (a,b),$$

其中

$$\sum_{k=1}^{\infty} m(I_{n,k}) < m^*(E_n) + \varepsilon, \quad m(I_{n,k}) < \frac{1}{n}, \quad \forall k \in \mathbb{N}.$$

对任意 $s, t \in E_n \cap I_{n,k}$, 有

$$|f(s) - f(t)| \leq (M + \varepsilon)|s - t| \leq (M + \varepsilon)m(I_{n,k}).$$

因此

$$\begin{split} m^*(f(E_n)) &= m^* \left(f \left(E_n \cap \bigcup_{k=1}^n I_{n,k} \right) \right) \leqslant \sum_{k=1}^\infty m^*(f(E_n \cap I_{n,k})) \leqslant \sum_{k=1}^\infty \operatorname{diam}(f(E_n \cap I_{n,k})) \\ &\leqslant (M+\varepsilon) \sum_{k=1}^\infty m(I_{n,k}) \leqslant (M+\varepsilon) [m^*(E_n) + \varepsilon], \end{split}$$

$$m(f(E)) \leq (M+\varepsilon)[m(E)+\varepsilon],$$

再今 $\varepsilon \to 0^+$ 即完成证明.

练习 8 设 $f \in \mathcal{L}([a,b]), E \subset [a,b]$ 可测, f 在 E 上可导, 则 $m^*(f(E)) \leqslant \int_E |f'(x)| dx$.

证明 固定 $\varepsilon > 0$, 考虑集合

$$E_n = \{ x \in E : (n-1)\varepsilon \leqslant |f'(x)| < n\varepsilon \},\$$

则 E_n 是可测集, 由练习 7 结论 (导数是伸缩率),

$$m^*(f(E_n)) \leqslant n\varepsilon m^*(E_n) = (n-1)\varepsilon m^*(E_n) + \varepsilon m^*(E_n) \leqslant \int_{E_n} |f'(x)| \, \mathrm{d}x + \varepsilon m^*(E_n).$$

由

$$f(E) = f\left(\bigsqcup_{n=1}^{\infty} E_n\right) = \bigcup_{n=1}^{\infty} f(E_n)$$

可得

$$m^*(f(E)) \leqslant \sum_{n=1}^{\infty} m^*(f(E_n)) = \int_E |f'(x)| \, \mathrm{d}x + \varepsilon m(E),$$

注意到 $m(E) \leq |b-a| < +\infty$, 令 $\varepsilon \to 0^+$ 即完成证明.

练习 9 设 $f \in \mathcal{C}([a,b]) \cap \mathcal{W}^{1,1}([a,b])$, 除了一个至多可数集外 f' 存在且有限, 则 $f \in AC([a,b])$. 若仅要求 A 是零测集结论是否成立?

证明 令 $A = \{x \in [a,b] : f'(x)$ 不存在},则 A 为至多可数集. 对任意 $(\alpha,\beta) \subset [a,b]$, 由连续函数的保连通性质 (介值定理) 及练习 8 结论,

$$|f(\beta) - f(\alpha)| \leq m(f([\alpha, \beta])) = m(f((\alpha, \beta))) \xrightarrow{A \le \beta = 2} m(f((\alpha, \beta) \setminus A))$$
$$\leq \int_{(\alpha, \beta) \setminus A} |f'(x)| \, \mathrm{d}x = \int_{(\alpha, \beta)} |f'(x)| \, \mathrm{d}x.$$

由于 $f \in W^{1,1}([a,b])$, 由积分的绝对连续性, 对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 只要 $m\left(\bigsqcup_{i=1}^{n}(a_i,b_i)\right) < \delta$, 就有

$$\int_{\bigsqcup (a_i,b_i)} |f'(x)| \, \mathrm{d}x < \varepsilon \implies \sum_{i=1}^n |f(b_i) - f(a_i)| < \varepsilon.$$

这说明 $f \in AC([a,b])$. 若仅要求 A 是零测集, Cantor 函数即为反例, 它是单调递增的连续函数, 但不是绝

对连续函数(因为微积分基本定理不成立).

练习 10 设 f 在 [a,b] 上可导, $f' \in \mathcal{L}^1([a,b])$, 则微积分基本定理成立:

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt.$$

证明 注意到 f 满足练习 9 中的条件, 因此 $f \in AC([a,b])$, 微积分基本定理成立.

练习 11 设 $f, g \in AC([a, b])$,则分部积分公式成立:

$$\int_{a}^{b} f(x)g'(x) \, \mathrm{d}x = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, \mathrm{d}x.$$

证明 由于 $f,g \in AC([a,b]) \subset C([a,b])$, 可设 $|f(x)|, |g(x)| \leq M, \forall x \in [a,b]$. 因此对任意 $x,y \in [a,b]$, 有

$$|f(x)g(x) - f(y)g(y)| \le |f(x)[g(x) - g(y)]| + |g(y)[f(x) - f(y)]| \le M(|g(x) - g(y)| + |f(x) - f(y)|),$$

进而由 $f,g \in AC([a,b])$ 可知 $fg \in AC([a,b])$. 又 $f \in AC([a,b]) \subset W^{1,1}([a,b])$, 因此 $f' \in \mathcal{L}^1([a,b])$, 结合 g 在 [a,b] 上有界可知 $f'g \in \mathcal{L}^1([a,b])$. 同理 $fg' \in \mathcal{L}^1([a,b])$. 余下来自绝对连续函数的微积分基本定理. \square

练习 12 设 $f \in \mathcal{C}([a,b]), g \in \mathcal{L}^1([a,b]) \cap \mathcal{L}^+([a,b]),$ 则存在 $\xi \in [a,b]$, 使得

$$\int_a^b f(x)g(x) \, \mathrm{d}x = f(\xi) \int_a^b g(x) \, \mathrm{d}x.$$

证明 设 f 在 [a,b] 上的最大值为 M, 最小值为 m, 由 $g(x) \ge 0$ 可得

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x), \quad \forall x \in [a, b],$$

进而

$$m \int_a^b g(x) \, \mathrm{d}x \leqslant \int_a^b f(x) g(x) \, \mathrm{d}x \leqslant M \int_a^b g(x) \, \mathrm{d}x.$$

若 $\int_a^b g(x) dx = 0$, 则上式中不等号均取等, 结论成立. 若 $\int_a^b g(x) dx > 0$, 则

$$m \leqslant \frac{\int_a^b f(x)g(x) \, \mathrm{d}x}{\int_a^b g(x) \, \mathrm{d}x} \leqslant M,$$

由连续函数的介值定理, 存在 $\xi \in [a,b]$, 使得

$$f(\xi) = \frac{\int_a^b f(x)g(x) \, \mathrm{d}x}{\int_a^b g(x) \, \mathrm{d}x} \implies \int_a^b f(x)g(x) \, \mathrm{d}x = f(\xi) \int_a^b g(x) \, \mathrm{d}x.$$

练习 13 设 $f \in AC([a,b])$, 则对任意零测集 $Z \subset [a,b]$, 有 m(f(Z)) = 0.

证明 由于 $Z \subset [a,b]$ 为零测集, 对任意 $\delta > 0$, 存在开集 G, 使得

$$Z \setminus \{a,b\} \subset G \subset (a,b), \quad m(G) < \delta.$$

由一维开集结构定理, 可设 $G=\bigsqcup_{i=1}^{\infty}(a_i,b_i)$. 对每个 i, 由于 $f\in \mathcal{C}([a_i,b_i])$, 存在 $c_i,d_i\in[a_i,b_i]$, 使得 $f([a_i,b_i])=[f(c_i),f(d_i)]$. 于是

$$m^{*}(f(Z)) = m^{*}(f(Z \setminus \{a, b\})) \leqslant m^{*}\left(f\left(\bigsqcup_{i=1}^{\infty} (a_{i}, b_{i})\right)\right) \leqslant \sum_{i=1}^{\infty} m^{*}(f([a_{i}, b_{i}]))$$

$$= \sum_{i=1}^{\infty} m^{*}([f(c_{i}), f(d_{i})]) = \sum_{i=1}^{\infty} |f(d_{i}) - f(c_{i})| = \sum_{i=1}^{\infty} \left|\int_{c_{i}}^{d_{i}} f'(x) \, dx\right|$$

$$\leqslant \sum_{i=1}^{\infty} \int_{c_{i}}^{d_{i}} |f'(x)| \, dx \leqslant \sum_{i=1}^{\infty} \int_{a_{i}}^{b_{i}} |f'(x)| \, dx = \int_{G} |f'(x)| \, dx.$$

由积分的绝对连续性, 对任意 $\varepsilon>0$, 当 δ 充分小时, 由于 $m(G)<\delta$, 有

$$m^*(f(Z)) \leqslant \int_G |f'(x)| \, \mathrm{d}x < \varepsilon.$$

由 $\varepsilon > 0$ 的任意性即得 m(f(Z)) = 0.

PPT 索引

PPT 2

- ♦ Zorn 引理.
- ◇ 集合的势.

PPT 3

- ♦ Cantor-Bernstein 定理.
- ◇ 无最大势定理.
- ◇ 几个势运算结论.
- ◇ (a,b) 上的凸函数除去一个可数集外可微.
- ◊ 存在不可测集.
- ◇ 任意正测集包含不可测子集.

PPT 4

- ♦ 三等分 Cantor 集.
- ◇ Cantor 函数.
- ♦ 推广的 Cantor 集.

- ♦ Baire 纲定理.
- ♦ Borel σ -代数的势.
- ♦ Lebesgue σ -代数的势.
- ◇ 全体 Lebesgue 不可测集的势.
- ◇ 函数连续点的结构.
- ◇ 连续函数可微点的结构.
- ♦ 有理数集不是 $G_δ$ -集.
- ◇ 下半连续函数在某个非空开集上有上界.

- ◇ Lebesgue 外测度的定义.
- ◇ 抽象外测度的定义.
- ◇ 抽象测度的定义.
- ◇ Carathéodory 测度扩张定理.
- ◇ 由边长一致有界开矩体构造的外测度.
- ◇ 距离外测度.
- ◇ Lindelöf 可数覆盖定理.
- ◇ Borel 集是 Lebesgue 可测集.

PPT 7

- ◇ 抽象测度的性质 (积分观点).
- ♦ Borel-Cantelli 引理.
- ◇ Lebesgue 测度的正则性.
- ◇ 等测核和等测包 (完备化定理).
- ◊ 测度空间完备化.
- ◇ Lebesgue 可测集的唯一刻画.

- ◇ Lebesgue 可测集与开集、闭集的关系.
- ◊ 测度的平移不变性.
- ◊ 外测度等测包.
- ◇ 外测度的性质 (由外测度等测包导出).
- ◇ 密度定理.
- ♦ Steinhaus 定理.
- $\diamond \ \mathcal{C} \mathcal{C} = [-1, 1].$

- ◇ [0,1] 同胚但可测集的原像不可测.
- ◇ 零测的非 Borel 集.
- ◇ 函数可测性关于代数、极限运算封闭.
- ◇ 广义实值可测函数类关于几乎处处收敛封闭.
- ◇ 可测性是局部性质.
- ◇ 绝对可测但不可测.
- ◇ 可测函数关于不可数取上确界不封闭.
- ◇ 可测函数的复合不可测.

PPT 10

- ◇ 非负可测函数结构.
- ◊ 可测函数结构.
- ◇ 简单函数一致逼近非负有界可测函数.
- ◇ 三种收敛及其等价刻画.
- ♦ Egorov 定理.
- ⋄ Riesz 定理.
- ◊ 依测度收敛当且仅当存在子列几乎一致收敛.
- ◇ 依测度收敛但不几乎处处收敛.

- ◇ 依测度 Cauchy 等价于依测度收敛.
- ◇ Lusin 定理 (四步走).
- ◇ 可测函数 = 连续函数在几乎处处意义下的极限.

- ◊ 积分的良定性.
- ◇ 积分的等价定义.

PPT 13

- ◇ 零测集不影响积分存在性、可积性、积分值.
- ◇ 可积函数几乎处处有限.
- ◇ Levi 单调收敛定理 (正反向).
- ♦ Fatou 引理.
- ◇ Lebesgue 控制收敛定理.

PPT 14

- ◊ 逐项积分定理.
- ♦ 关于积分限的 σ -可加性.
- ◇ 含参变量积分连续性.
- ◇ 含参变量积分可导性.
- ◇ 连续版本的 Lebesgue 控制收敛定理.
- ♦ Borel-Cantelli 引理新视角.

- \diamond 推广的 Levi 单调收敛定理 (递降): $f_1^+ \in \mathcal{L}^+(E) \cap \mathcal{L}^1(E)$.
- ♦ 推广的 Fatou 引理 (下极限): $\left(\inf_n f_n\right)^- \in \mathcal{L}^+(E) \cap \mathcal{L}^1(E)$ (要用到推广的 Levi 单调收敛定理).
- \diamond 推广的 Fatou 引理 (上极限): $\left(\sup_{n}f_{n}\right)^{-}\in\mathcal{L}^{+}(E)\cap\mathcal{L}^{1}(E).$
- \diamond (一定条件下) L^1 收敛与交换积分次序的等价性 (用 Fatou 引理的不等式产生等式).
- \diamond 推广的 Lebesgue 控制收敛定理: $f_n \stackrel{\text{m}}{\to} f$.
- ♦ 控制条件下依测度收敛蕴含 L^1 收敛 (反证法, 结合 Riesz 定理与 DCT).
- ◇ 利用函数列控制的 Lebesgue 控制收敛定理 (比较判别法).

- ◇ 在 ∞ 的充分小邻域上积分值亦充分小.
- ♦ 在充分小测度集上积分值亦充分小 (常用其 ε - δ 语言) (反证法 + Borel-Cantelli 引理).
- ♦ Chebyshev 不等式.
- ◇ 一致可积的定义及其等价定义 (总在有限测度集上谈论).
- ◇ 控制可积蕴含一致可积.
- ◇ 具有一致可积条件的推广的 Fatou 引理.
- \diamond 推广的 Lebesgue 控制收敛定理: L^1 收敛当且仅当依测度收敛且一致可积 (用 Chebyshev 不等式证明 L^1 收敛蕴含依测度收敛).
- ♦ Vitali 收敛定理.

PPT 17

- ◇ Radon 测度/正则 Borel 测度.
- ◇ Lusin 定理与 Egorov 定理.
- \diamond Dirac 测度的积分: $\int_X f \, \mathrm{d}\delta_x = f(x), \forall f \in \mathcal{L}(X).$

- ◇ 测度的绝对连续性的定义与判别法.
- ◇ Radon-Nikodym 定理.
- ◊ 加权计数测度.
- ◇ 凸函数积分刻画与 Jensen 不等式.
- ♦ 函数蛋糕表示 $f(x) = \int_0^{+\infty} \mathbb{1}_{f^{-1}(t,+\infty)} \, \mathrm{d}t$ 及其与积分蛋糕表示的关系.
- ◇ 非负可测函数的重整: 将函数蛋糕表示中的特征函数 (集合) 进行对称重整.
- ◇ 函数重整的单调性 (源自集合重整特性)、保序性、保范性 (Fubini 定理)、距离不增性.

- ◇ 函数的 Hahn-Jordan 分解.
- ◊ 符号测度.

$$\diamond$$
 全变差测度: $|\nu|(E) = \sup \left\{ \sum_{k=1}^{n} |\nu(E_k)| : E = \bigsqcup_{k=1}^{n} E_k \right\}.$

- $\diamond \nu$ 是符号测度, m 是正测度, 则 $\nu \ll m \iff |\nu| \ll m$.
- ◇ 复测度、复测度的全变差测度.
- ◇ 奇异测度, 例子: Lebesgue 测度 ⊥ Dirac 测度.
- \diamond 测度 ν 关于测度 m 的 Radon-Nikodym 导数 $h = \frac{d\nu}{dm}$.
- ♦ Lebesgue 分解定理.
- ⋄ σ -有限测度的分解.

PPT 20

- \diamond 紧支光滑函数在 $\mathcal{L}^1(\mathbb{R}^n)$ 中稠密 \iff 若 $f\in\mathcal{L}^1(\mathbb{R}^n)$, 则存在紧支光滑函数列 $f_k\xrightarrow[a.e.]{L^1}f$.
- $♦ L^1$ 可积函数的"好+小"分解.
- \diamond 积分的平均连续性: 设 $f \in \mathcal{L}^1(\mathbb{R}^n)$, 则 $\lim_{h \to 0} \|f(x+h) f(x)\|_{\mathcal{L}^1(\mathbb{R}^n)} = 0$ (利用 "好 + 小" 分解).
- ♦ 紧支阶梯函数在 $\mathcal{L}^1(\mathbb{R}^n)$ 中稠密.
- ◇ Riemann-Lebesgue 引理 (利用阶梯函数 + "小").
- ◇ Lebesgue 积分是 Riemann 积分的推广.
- ◇ 绝对收敛的广义 Riemann 积分可视为 Lebesgue 积分: 设 $f \in \Re([0,b]), \forall b > 0$, 则

$$f \in \mathcal{L}^1([0,+\infty)) \iff |f| \in \mathcal{R}([0,+\infty)) \iff \begin{cases} f \in \mathcal{R}([0,+\infty)), \\ |f| \in \mathcal{R}([0,+\infty)) \end{cases}.$$

◇ 广义 Riemann 可积但不 Lebesgue 可积的例子 (条件收敛但不绝对收敛级数).

- ◇ Fubini-Tonelli 定理.
- ◇ Tonelli 定理验证可积性, Fubini 定理计算积分值.

PPT 22

- ◇ 抽象积分的 Fubini-Tonelli 定理.
- ♦ 乘积测度空间: $\Gamma_{X\times Y}$ 是 $\Gamma_X \times \Gamma_Y$ 生成的最小 σ -代数.
- ◊ 抽象积分是高维测度.
- ♦ Vitali 覆盖定理.

PPT 23

- \diamond 分布函数的积分表示: $f_*(t) = \int_E \mathbb{1}_{U(f)}(x,t) \, \mathrm{d}x$, 其中 U(f) 表示 |f| 的图形下方.
- $\diamond\ L^p$ 积分的蛋糕表示: $\int_E |f(x)|^p\,\mathrm{d}x = \int_0^{+\infty} pt^{p-1}f_*(t)\,\mathrm{d}t.$
- ◇ Lebesgue 微分定理: 单调函数几乎处处可导.
- ◇ Lebesgue 定理 (微积分基本定理变成不等式).

- ♦ Fubini 逐项微分定理:每个 f_n 都是增函数.
- ◇ 严格单调递增但导函数几乎处处为 0 的例子.
- ◇ 有界变差函数类.
- ♦ $AC([a,b]) \subseteq BV([a,b]) \subseteq W^{1,1}([a,b])$ 的证明及例子.
- ◇ 单调递增函数的全变差.

$$\diamond \bigvee_{a}^{b} f = \bigvee_{a}^{c} f + \bigvee_{c}^{b} f, \forall c \in (a, b).$$

- ◇ 有界变差函数的 Jordan 分解定理.
- \diamond 设 $f \in \mathfrak{C}([a,b])$, 则 $\bigvee_{a}^{b} f = \bigvee_{a}^{b} |f|$.
- ♦ Stieltjes 测度.
- ◇ 经过规则化的有界变差函数可视为测度: $\mathcal{C}([0,1])^* = BV_0([a,b])$.

- ♦ Lebesgue 积分框架下微积分基本定理 (重点: $0 \mapsto 0$ 情形的证明).
- ◇ Lebesgue 点定理 (freezing 技巧).
- ♦ 设 $f \in \mathcal{L}^1([a,b])$ 与任意多项式正交,则 $f \stackrel{\text{a.e.}}{=\!=\!=} 0$.

PPT 26

- \diamond $\mathcal{L}^{\infty}([a,b])$ 框架下的微积分基本定理 (注意 $\mathrm{Lip}([a,b]) \subset \mathrm{AC}([a,b]) \subset \mathcal{W}^{1,1}([a,b])$).
- $\diamond x^{\alpha} \sin \frac{1}{x^{\beta}}$ 系列.
- ◇"绝对连续函数。连续可微函数≠绝对连续函数"的例子.
- ◇ Lipscitz 函数 绝对连续函数 = 绝对连续函数.
- ◊ 逐项微分 Fuibini 定理 (3 个条件).

PPT 27

◇ 若干习题.

PPT 28

♦ L^{∞} 空间的范数是本性上确界:

$$\begin{split} \|f\|_{\mathcal{L}^{\infty}(E)} &= \inf_{m(Z)=0} \sup_{x \in E \backslash Z} |f(x)| = \inf \bigg\{ M > 0 : |f(x)| \stackrel{\text{a.e.}}{\leqslant} M \bigg\} \\ &= \sup \{ M > 0 : m \{ x \in E : |f(x)| > M \} > 0 \}. \end{split}$$

- ♦ Hölder 不等式.
- ♦ Minkowski 不等式.
- ♦ Chebyshev 不等式.
- ◇ 四种收敛.
- ♦ L^p 空间 $(p \in [1,\infty])$ 是完备赋范线性空间 (Banach 空间).
- ◇ 另一个 Minikowski 不等式.
- ◇ 几个不等式例题.

- ♦ L^p 空间 $(p \in [1, \infty))$ 的可分性 (有可数稠密子集).
- $⋄ L^{∞}$ 空间不可分.
- \diamond 设 $E\subset\mathbb{R}^n$ 可测, 则 $\mathcal{L}^2(E)$ 是 Hilbert 空间.
- ⋄ Fourier 分析.
- ◊ 对偶空间.