Macroeconomics II

Chapter 7: Real Business Cycles

S. Aguey, PhD

African School Of Economics

Aims of this lecture

 To extend the Ramsey model by endogenizing the labour supply decision of households

To turn the model into an RBC model by assuming stochastic technology shocks

- theory of fluctuations at business cycle frequencies
- impulse response functions
- matching real world data [calibration]
- evaluation of the RBC approach

The Lucas Research Program

- •Key idea: macroeconomists should build so-called structural models,i.e. Models that Are based on microeconomic foundations [maximizing households and firms,flexible prices/wages,market clearing, etcetera]
- •The Lucas Research Program(LRP) is the logical outcome of the Rational Expectations Revolution of the 1970s.
- •Kydland&Prescott accepted the challenge posed by Lucas: they built the first Real Business Cycle(RBC) model. •Outline of the RBC methodology:
- -construct a discrete-time stochastic model of the economy populated by maximizing households and firms

- –typically the source of the stochastic fluctuations is the level of general Productivity [our Z in the production function]. Since Z_t is unknown agents must Form expectations about it. They adopt the REH to do so.
- -calibrate the model in a realistic fashion
- -find the stochastic equilibrium process for the macroeconomic variables[output, employment,consumption,investment,the capital stock,and factor prices]
- -compute basic statistics [correlations, and standard deviations] for the different Variables both for the artificial economy and for the actual economy. Compare How well the model economy matches the actual economy's characteristics

Building an RBC model

- •We have most of the ingredients allready. Only things to do:
 - -reformulate model in discrete time [rather than continuous time]
 - -introduce stochastic productivity shock
 - -rederive firm and household behaviour

•Firms

-Technology:

$$Y_{\tau} = F(Z_{\tau}, K_{\tau}, L_{\tau}) \equiv Z_{\tau} L_{\tau}^{L} K_{\tau}^{1-L}, \quad 0 < L < 1$$

Where Z_{τ} is the index of general technology.

-Firms rent factors of production from the household sector. The marginal Productivity conditions are:

$$F_{L}(Z_{\tau},K_{\tau},L_{\tau}) = W_{\tau}$$

$$F_{K}(Z_{\tau},K_{\tau},L_{\tau}) = R_{\tau}^{K}$$

Where R_K is the rental charge on capital.

Households

-Preferences [expected life time utility]:

$$E_t \Lambda_t \equiv E_t \sum_{\tau=t}^{\infty} \left(\frac{1}{1+\rho} \right)^{\tau-t} \left[\epsilon_C \log C_\tau + (1-\epsilon_C) \log[1-L_\tau] \right]$$

Where E_t is the expectations operator [i.e.information dated up to and including Period t is used]

- Budget identity :
$$C_{\tau} + I_{\tau} = W_{\tau} L_{\tau} + R_{\tau}^{K} K_{\tau} - T_{\tau}$$

-Capital accumulation:
$$K_{\tau+1} = I_{\tau} + (1-\delta) K_{\tau}$$

The first-order conditions [for the planning period t] are:

$$W_t = \left(\frac{1 - \epsilon_C}{1 - L_t}\right) / \left(\frac{\epsilon_C}{C_t}\right) \tag{a}$$

$$\left(\frac{\epsilon_C}{C_t}\right) = E_t \left(\frac{1 + r_{t+1}}{1 + \rho}\right) \left(\frac{\epsilon_C}{C_{t+1}}\right) \tag{b}$$

$$r_{t+1} \equiv R_{t+1}^K - \delta \tag{c}$$

- (a) [static] The MRS between consumption and leisure should be equated to the Wage rate
- (b) [dynamic] The stochastic consumption Euler equation: the MU of consumption In the planning period (C_t) should be equated to the expected weighted MU of Consumption one period later (C_{t+1}).
- (c) [definition] The real interest rate is the rental rate minus the depreciation rate
- •The full model is given in log-linearized form in Table 1.

Table1. The log-linearized stochastic model

$$\tilde{K}_{t+1} - \tilde{K}_t = \delta \left[\tilde{I}_t - \tilde{K}_t \right]$$

$$E_t \tilde{C}_{t+1} - \tilde{C}_t = \left(\frac{\rho}{1+\rho} \right) E_t \tilde{r}_{t+1}$$

$$\tilde{G}_t = \tilde{T}_t$$

$$\tilde{W}_t = \tilde{Y}_t - \tilde{L}_t$$

$$\rho \tilde{r}_t = (\rho + \delta) \left[\tilde{Y}_t - \tilde{K}_t \right]$$

$$\tilde{Y}_t = \omega_C \tilde{C}_t + \omega_I \tilde{I}_t + \omega_G \tilde{G}_t$$

$$\tilde{L}_t = \omega_{LL} \left[\tilde{W}_t - \tilde{C}_t \right]$$

$$\tilde{Y}_t = \tilde{Z}_t + \epsilon_L \tilde{L}_t + (1 - \epsilon_L) \tilde{K}_t$$

$$(T4.1)$$

$$\tilde{Y}_t = \tilde{Z}_t + \epsilon_L \tilde{L}_t + (1 - \epsilon_L) \tilde{K}_t$$

$$(T4.2)$$

- a part from the fact that the model is now in discrete time, it looks virtually identical to the deterministic model.
- because general technology is stochastic, so is the future interest rate. For that Reason, $E_t r_{t+1}$ Appears in the log-linearized Euler equation. Recall:

$$r_{t+1} = F_K \left[\underbrace{Z_{t+1}}_{(a)}, \underbrace{K_{t+1}}_{(b)}, \underbrace{L_{t+1}}_{(c)} \right] - \delta$$

- (a) future general technology; unknown in period t [but maybe partially forecastable If the shock is persistent (seebelow)]
- (b) future capital stock; known in period t As it depends only on present accumulation decisions
- (c) future labour supply; unknown in period t as it depends on W_{t+1} and C_{t+1} and thus on Z_{t+1}

 The specification of the model is completed once the stochastic process for general productivity is specified. The commonly used specifications is first-order autoregressive:

$$\log Z_t = \alpha_Z + \rho_Z \log Z_{t-1} + \epsilon_t^Z, \qquad 0 < \rho_Z < 1, \qquad \Longrightarrow$$

$$\tilde{Z}_t = \rho_Z \tilde{Z}_{t-1} + \epsilon_t^Z$$

where $ilde{Z}_t \equiv \log[Z_t/Z]$ and:

- ρ_Z is the degree of persistence of the shock [special cases: $\rho_Z=0$ purely transitory shock; $\rho_Z=1$ permanent shock]
- ϵ^Z_t is the stochastic *innovation term* [identically and independently distributed with mean zero and variance σ^2_Z]
- if ρ_Z is nonzero, general productivity in the next period is partially forecastable. Under REH the agents best forecast is:

$$E_t \tilde{Z}_{t+1} = \rho_Z \tilde{Z}_t$$

$$(\operatorname{since} E_t \epsilon_{t+1}^Z = 0)$$

- •The loglinearized model in Table1 can be solved under the REH. We can use two methods. The easiest of these looks directly at so-called impulse-response Functions for the different variables. Key idea:
 - assume that the system is initially in steady state and trace the effect of a single innovation at time t=0: $\epsilon_0^Z>0$ and $\epsilon_t^Z=0$ for t=1,2,.... We call ϵ_0^Z the impulse hitting the economic system.
 - compute the implied response of the different variables to the impulse.
 - in the text we derive the general case for which $0<\rho_Z<1$. To understand the general result it pays to look at the special cases.

- •A purely temporary shock: ρ_Z =0 .The impulse-response functions for this type of shock Are given in Figure 2. Salient features:
 - -no long-run effect on general productivity and thus no long-run effect on any variable
 - -productivity only higher than normal in period t=0
 - –agents are a little richer and thus $C_0 \uparrow$, and $I_0 \uparrow$ [agents spread gain over present and Future consumption]
 - -strong incentive to work when productivity is high: $W_0 \uparrow$, $(1-L_0)\downarrow$, $L_0\uparrow$, $Y_0\uparrow$ (See Figure 1)
 - for t=1,2,3... general productivity back to normal. Agent gradually runs down extra Savings by consuming more than normal: $C_t \downarrow$, $K_t \downarrow$, Y_t , L_t , and I_t Almost back to Normal
 - –NOTE: output response looks virtually identical to impulse [lack of internal propagation]

Figure 1: A Shock to Technology and the Labour Market

Figure 2 Purely Transitory Productivity Shock

Figure 2 Purely Transitory Productivity Shock (continued)

- A purely permanent shock: ρ_Z =1 .The impulse-response functions for this type of shock Are given in Figure 3. Salient features:
 - there is a long-run effect on productivity and thus on most macro variables: the great ratios explain that Y_{∞} \uparrow , C_{∞} \uparrow , K_{∞} \uparrow , I_{∞} \uparrow , and L_{∞} \downarrow (if $\omega_G > 0$ So that IE effect Dominates SE in labour supply)
 - agents are a lot richer and thus $\,C_0\uparrow$, and $\,I_0\uparrow$ [agents spread gain over present and Future consumption]
 - even though W0 \uparrow and SE says $L_0\uparrow$, There is a smaller upward jump in employment (than for temporary shock) because IE says $L_0\downarrow$
 - for t=1,2,3... general productivity stays high. Agent gradually keep accumulating Capital and consumption continues to rise: $C_t \uparrow$, $K_t \uparrow$, $L_t \downarrow$, and $I_t \downarrow$
 - –NOTE: output response again looks virtually identical to impulse [lack of internal propagation]

Figure 3. Permanent Productivity Shock

Figure 3. Permanent Productivity Shock (continued)

- •What would a **realistic shock** look like? The seminal work by Solow(1957) has been used to estimate the nature of technological change. Solow residual: compute how much of output growth can be explained by growth in inputs. The remainder is Now called the Solow residual.
 - In our model the Solow residual is equal to the general productivity index Z_t :

$$\log SR_t \equiv \log Y_t - \epsilon_L \log L_t - (1 - \epsilon_L) \log K_t = \log Z_t.$$

We can obtain estimates for α_Z , ρ_Z , and σ_Z^2 [the variance of ϵ_t^Z] by regressing:

$$\log SR_t = \alpha_Z + \rho_Z \log SR_{t-1} + \epsilon_t^Z$$

– For the US one finds:

$$\hat{\rho}_Z = 0.979$$

which means that the technology shocks are not permanent but nevertheless display a very high degree of persistence.

- –In Figures 4- 10 we show the different impulse-response functions for a whole range of ρ_Z Values (including the realistic one). The key thing to note is the highly nonlinear behaviour of the IR functions for values of ρ_Z Near unity.
- •Although the impulse-response functions display a lot of information about the Model, most RBC modellers judge the performance of their model by looking at the Match between model-generated and actual statistics. In Table 2 we show an Example of this approach. The standard model yields the results in panel (b) whilst Actual statistics for the US economy are found in panel (a). Salient features:
 - -model captures that $\sigma(I_t)$ higher $\sigma(Y_t)$, $\sigma(C_t) < \sigma(Y_t)$
 - model more or less matches ρ (C_t , Y_t), ρ (I_t , Y_t), ρ (K_t , Y_t), and ρ (L_t , Y_t), but Overstates ρ (Y_t / L_t , Y_t).
 - given the simple structure of the model, the fit is quite impressive
 - -....but recall the lack of propagation [explanation is almost entirely exogenous]

Figure 4:Capital stock

Figure 5: Consumption

Figure 6: Output

Figure 7: Employment

Figure 8: Wage

Figure 9: Interest Rate

Figure 10: Investment

Table 2.The unit-elastic RBC model

	(a)US economy		(b)Model economy I		(c)Model economy II	
X_t :	$\sigma(x_t)$	$\rho(x_t, Y_t)$	$\sigma(x t)$	$\rho(x_t, Y_t)$	$\sigma(x t)$	$\rho(x_t, Y_t)$
Y_t	1.76		1.35		1.76	
C_t	1.29	0.85	0.42	0.89	0.51	0.87
I_t	8.60	0.92	4.24	0.99	5.71	0.99
K_t	0.63	0.04	0.36	0.06	0.47	0.05
L_t	1.66	0.76	0.70	0.98	1.35	0.98
Y_t/L_t	1.18	0.42	0.68	0.98	0.50	0.87

- •A number of puzzles remain. Solving these puzzles is at the forefront of current Research in the area:
 - (A) employment variability puzzle
 - (B) pro-cyclical real wage
 - (C) productivity puzzle
 - (D) unemployment
 - (E) monetary aspects

(A) Employment variability puzzle

- Key idea: In reality $\sigma(Y_t)$ Close to $\sigma(L_t)$, employment strongly pro-cyclical $[\rho(L_t, Y_t)]$ near unity, and wages a-cyclical or mildly pro-cyclical $[\rho(W_t, Y_t)]$ near Zero]. In the model:
 - With productivity shocks: ϵ_t^Z shifts labour demand, given upward sloping labour supply both W_t and L_t should be pro-cyclical.
 - With low labour supply elasticity [micro-evidence] $\sigma(L_t)$ should be low and $\sigma(W_t)$ should be high
 - Hence, model under- predicts $\sigma(L_t)$ By quite a margin!
 - -see Figures A and B to visualize correlations

Figure A: TheGood, theBad, and the Average

Figure B: Visualizing Contemporaneous Correlations

- •Solution to the puzzle: we need a high substitution elasticity of labour supply [near Horizontal labour supply curve] despite micro-evidence to the contrary. Indivisible Labour model:
 - -you either work 8 hours per day or 0 hours per day.
 - lottery determines which is which each period
 - firm provides full insurance to the worker, and aggregate outcome is as if the
 Representative agent has an infinite intertemporal substitution elasticity of labour
 Supply
 - -see Figureb C
 - –In Table2 panel (c), we observe that the lottery [or indivisible labour] model does better than the unit elastic model at matching $\sigma(L_t)$

Figure C: Contemporaneous Correlations in the Lottery Model

(B) Pro-cyclical real wage

- Key idea: the unit-elastic model predicts too high correlation between labour Productivity [the wage] and output, $\rho(Y_t/L_t, Y_t) = 0.98$ In Hansen model we have $\rho(Y_t/L_t, Y_t) = 0.78$ In reality this correlation is much lower (0.42 For US).
- Solution(s) of the puzzle:
 - –introduce shift factors in the labour supply function [both $L^{\it D}$ and $L^{\it S}$ Shift out]
 - -see FigureD
 - –use any of the theories explaining real wage rigidity [efficiency wages, union model, etcetera]

Figure D: Contemporaneous Correlations and Shift Factors

(C) Productivity puzzle

- Key idea: if productivity shocks are predominant then L^D Shifts explain high $\rho\left(Y_t/L_t,L_t\right)$ and $\rho\left(Y_t/L_t,Y_t\right)$. In reality $\rho\left(Y_t/L_t,L_t\right)\approx 0$ and $\rho\left(Y_t/L_t,Y_t\right)$ is Weaker than predicted.
- •Solution(s) of the puzzle:
 - introduce shift factors in the labour supply function [both $L^{\it D}$ and $L^{\it S}$ Shift out]
 - nominal wage contracts and money supply shocks (nominal innovation shifts effective labour supply)
 - labour hoarding by firms
 - non-market sector also subject to technology shocks
 - preference shocks affecting labour supply
 - shocks to government spending

(D) Unemployment

- Key idea: the standard RBC models assume market clearing in the labour market. Hence all variation in employment is due to adjustment in hours worked. In reality 2/3 is explained by the extensive margin [in/out of employment] and 1/3 by the Intensive margin [over time etcetera].
- Solution(s) to the puzzle: introduce unemployment model in the RBC framework, such as:
 - search-theoretic approach
 - efficiency wage theory, union models

Evaluation of the RBC approach

- •The standard RBC model has a hard time matching data for real economies
- It is difficult to believe that the productivity shocks explain all fluctuations in the economy: "if They are so important then why don't we read about them in the Wall Street Journal"
- Link between micro-data and calibration values not strong
- Most important contribution of the approach is a methodological one:
 - approach is flexible
 - -micro-foundations for macro are important and can be improved [alternative market structures,heterogeneous households, etcetera]
 - -other shocks can be introduced [government spending shocks, tax shocks, changes in The real exchange rate, etcetera]
- Hence, the RBC approach is worth pursuing!!