

G.PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY: KURNOOL DEPARTMENT OF HUMANITIES AND SCIENCES

B. Tech I YEAR COURSE DESCRIPTION

COURSE TITLE	ENGINEERING PHYSICS
COURSE CODE	15A56101
REGULATION	R15-JNTUA
	LECTURES TUTORIALS PRACTICALS CREDITS
COURSE STRUCTURE	3 1
COURSE COORDINATOR	B.SUNEETHA
TEAM OF INSTRUCTORS	S.LOKA RAGHAVENDRA, B.LAVANYA

I. Course Overview:

There has been an exponential growth of knowledge in the recent past opening up new areas and challenges in the understanding of basic laws of nature. This helped to the discovery of new phenomena in macro, micro and nano scale device technologies. The laws of physics play a key role in the development of science, engineering and technology. Sound knowledge of physical principles is of paramount importance in understanding new discoveries, recent trends and latest developments in the field of engineering. To keep in pace with the recent scientific advancements in the areas of emerging technologies, the syllabi of engineering physics has been thoroughly revised keeping in view of the basic needs of all engineering branches by including the topics like optics, crystallography, quantum mechanics, free electron theory. Also new phenomenon, properties and device applications of semiconducting, magnetic, superconducting and nano materials along with their modern device applications have been introduced.

II. Prerequisite(s):

Level	Credits	Periods / Week	Prerequisites
UG	3	3	Thorough knowledge of Basic sciences

III. Marks Distribution:

Sessional Marks	University End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists of subjective test and objective test. The subjective test is for 30 marks containing 5 questions of which student has to answer 3 questions of equal weightage 10 marks which is to be condensed to 20 marks, any fraction rounded off to the next higher mark. Objective test is set for 20 bits for 10 marks. First midterm examination shall be conducted for the first two units of syllabus and second midterm examination shall be conducted for the next three units. Final internal marks shall be arrived at by considering the marks secured by the students in both the mid examinations with 80% weightage to the better mid exam and 20% to the other.	70	100

IV. Evaluation Scheme:

S. No.	Component	Duration	Mar ks
1	I Mid Examination	1hr 50 min	30
2	II Mid Examination	1hr 50 min	30
3	External Examination	3	70

V. Course Objectives:

- To evoke interest on applications of superposition effects like interference and diffraction, the
 mechanisms of emission of light, achieving amplification of electromagnetic radiation through
 stimulated emission, study of propagation of light through transparent dielectric waveguides along with
 engineering applications.
- ii) To enlighten the periodic arrangement of atoms in crystals, direction of Bragg planes, crystal structure determination by X-rays and non-destructive evaluation using ultrasonic techniques.
- iii) To get an insight into the microscopic meaning of conductivity, classical and quantum free electron model, the effect of periodic potential on electron motion, evolution of band theory to distinguish materials and to understand electron transport mechanism in solids.
- iv) To open new avenues of knowledge and understanding semiconductor based electronic devices, basic concepts and applications of semiconductors and magnetic materials have been introduced which find potential in the emerging micro device applications.
- v) To give an impetus on the subtle mechanism of superconductors in terms of conduction of electron pairs using BCS theory, different properties exhibited by them and their fascinating applications. Considering the significance of microminiaturization of electronic devices and significance of low dimensional materials, the basic concepts of nanomaterials, their synthesis, properties and applications in emerging technologies are elicited.

VI. Course Outcomes:

Upon successful completion of this course, the student will be able to:

- CO-1: a)Understand the different realms of physics and their applications in both scientific and technological systems through the study of physical optics, lasers and fibre optics.
- CO-2: b) Describe different types of x-ray diffraction techniques and analyze the crystal structure
- CO-3: c) Understand the concept of piezoelectric effect in the production of ultrasonics and apply it in non-destructive testing of materials
- CO-4: d) Estimate the energy of the particles using Schrödinger's wave equation and interpret the electrical properties of solids on the basis of origin of energy bands.
- CO-5: e) Classify different types of semiconductors and magnetic materials.
- CO-6: f) Elucidate the important properties of Superconducting materials and nano materials along with their engineering applications.

VII. How Course Outcomes are assessed:

	Program Outcomes	Level	Proficiency assessed by
PO-I	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.	Н	Assignments, Exercises
PO-2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	S	Exercises
PO-3	Design / development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	S	Discussions
PO-4	Conduct investigations of complex problems: use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	N	
PO-5	Modern tool usage: create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.	N	
PO-6	The engineer and society: apply reasoning informed by the contextual knowledge to assess Societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	N	

PO-7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of and need for sustainable development. Ethics: Apply ethical principles and commit to professional	N	
PO-8	ethics and responsibilities and norms of the engineering practice.	S	Exams Discussions
PO-9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	S	Seminars Discussions
PO-10	Communications: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give receive clear instructions.	N	
PO-11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	N	
PO-12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	S	Seminars Discussions

N = None S = Supportive H = Highly Related

VIII. Syllabus:

UNIT - I

PHYSICAL OPTICS, LASERS AND FIBRE OPTICS

Physical Optics: Interference (Review) – Interference in thin film by reflection –Newton's rings –Diffraction (Review) - Fraunhofer diffraction due to single slit, double slit and diffraction grating.

Lasers: Characteristics of laser – Spontaneous and stimulated emission of radiation – Einstein's coefficients — Population inversion – Excitation mechanism and optical resonator – Nd:YAG laser - He-Ne laser – Semiconductor Diode laser - Applications of lasers

Fiber optics: Introduction - construction and working principle of optical fiber –Numerical aperture and acceptance angle – Types of optical fibers – Attenuation and losses in Optical fibers –Block diagram of Optical fiber communication system – Applications of optical fibers

UNIT - II

CRYSTALLOGRAPHY AND ULTRASONICS

Crystallography: Introduction – Space lattice –Unit cell – Lattice parameters –Bravias lattice – Crystal systems – Packing fractions of SC, BCC and FCC - Directions and planes in crystals – Miller indices – Interplanar spacing in cubic crystals – X-ray diffraction - Bragg's law – Powder method.

Ultrasonics: Introduction – Production of ultrasonics by piezoelectric method – Properties and detection – Applications in non-destructive testing.

UNIT - III

QUANTUM MECHANICS AND ELECTRON THEORY

Quantum Mechanics: Matter waves – de'Broglie hypothesis and properties - Schrodinger's time dependent and independent wave equations – Physical significance of wave function - Particle in one dimensional infinite potential well. Electron theory: Classical free electron theory – Equation for electrical conductivity - Quantum free electron theory – Fermi-Dirac distribution – Source of electrical resistance – Kronig-Penny model (qualitative treatment) – Origin of bands in solids – Classification of solids into conductors, semiconductors and insulators.

UNIT - IV

SEMICONDUCTORS AND MAGNETIC MATERIALS

Semiconductors: Intrinsic and extrinsic semiconductors (Qualitative treatment) – Drift & diffusion currents and Einstein's equation – Hall effect - Direct and indirect band gap semiconductors – Formation of p-n junction.

Magnetic materials: Introduction and basic definitions – Origin of magnetic moments – Bohr magnetron – Classification of magnetic materials into dia, para, ferro, antiferro and ferri magnetic materials (Qualitative treatment) – Hysteresis - Soft and hard magnetic materials, applications of magnetic materials.

UNIT - V

SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS

Superconductivity: Introduction - Effect of magnetic field - Meissner effect - Type I and Type II superconductors - Flux quantization - Penetration depth - BCS theory (qualitative treatment) — Josephson effects - Applications of superconductors.

Physics of Nanomaterials: Introduction - Significance of nanoscale and types of nanomaterials - Physical properties: optical, thermal, mechanical and magnetic properties - Synthesis of nanomaterials by Top down and bottom up approaches: ball mill, chemical vapour deposition, and sol gel - Applications of nanomaterials.

IX. List of Text Books / References / Websites / Journals / Others

Text Books:

- Engineering Physics K.Thyagarajan, 5th Edition, MacGraw Hill Publishers,
 NewDelhi, 2014.
- 2. Engineering Physics –P. K.Palaniswamy, , Second Edition, Scitech., Publications
- 3. Physics for Engineers N.K Verma, 1st Edition, PHI Learning Private Limited, New Delhi,2014.

References:

- **1.** Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, 10th Edition, S.Chand and Company, New Delhi, 2014.
- Engineering Physics D K Pandey, S. Chaturvedi, 2nd Edition, Cengage Learning, New Delhi, 2013.
- 3. Engineering Physics D.K Bhattacharya, Poonam Tandon, 1nd Edition, Oxford University Press, New Delhi, 2015.

X. Course Plan:

Lecture No.	Learning Objective	Topics to be covered	Reference	
	UNIT-I			
1-2	To understand the concept of interference	Introduction, Interference	T1,T2	
3-4	To understand how colors are formed in thin films	Interference in thin films by reflection	T1,T2	
5-6	To understand how to find out the radius of curvature of plano convex lens and fringe width	Newton's rings	T1,T2	
7	To understand the concept of diffraction	Diffraction	T1,T2	
8-9	To understand how the diffraction occurs due to single slit	Fraunhofer diffraction at a single slit	T1,T2	
10	To understand how the diffraction occurs due to double slit	Fraunhofer diffraction at a double slit	T1,T2	
11	Able to understand how to find out the wavelength by using diffraction grating	Diffraction grating	T1,T2	
12	To study the nature of laser	Introduction – Characteristics of laser	T2,R1	
13	To study the interaction of EM waves with matter	Spontaneous and stimulated emission of radiation	T2	
14	To understand the relation between the co-efficients of absorption and emission	Einstein's coefficients	Т1	
15	To understand population inversion	Population inversion	T2,R1	
16-17	To understand how to achieve the population inversion and working mechanism of Laser	Excitation mechanisms and optical resonator	T2,R1	
18	To understand the construction and working of Ruby laser	Nd-YAG Laser	T2,R1	
19	To understand the construction and working of He-Ne Laser	He-Ne Laser	T2,R1	
20	To understand the applications of Lasers in Industry, Scientific and Medical fields.	Applications of Lasers	T2,R1	
21	To understand the importance of an optical fiber	Introduction	T2,R1	
22	To understand the basic principle of an optical fiber(Total internal reflection)	Construction and working Principle of optical fiber	T2,R1	
23-24	To understand the light gathering capacity of an optical fiber and at which angle the light has to be launched in an optical fiber	Numerical aperture and acceptance angle	T2,R1	

	Ploneering Innov	ative Education		
25-26	To understand the different types of optical fibers	Types of Optical fibers and refractive index profiles	T2,R1	
27-28	To understand which type of losses occur when the light propagates through an optical fiber	Attenuation and losses in fibers	T2,R6	
29	To understand how the communication reaches from one end to other end through an optical fiber	Optical fiber communication systems	T2,R1	
30	To understand the applications of optical fibers in communication, sensors and medicine	Application of optical fibers in communication, sensors and medicine.	T2,R1	
	·	INIT-II	L	
31	Able to understand the basics of crystal structures	Introduction	T1,T2	
32	Able to understand the basics of crystal structures	Space lattice - Basis	T1,T2	
33	Able to understand the basics of crystal structures	Unit cell - Lattice parameters	T1,T2	
34-	Able to understand various crystal structures	Bravais lattices	Т1,Т2	
35	Able to understand various crystal structures	Crystal systems	T1,T2	
36-37	To understand the various structures of crystals	Structure of Simple cubic - Body Centered Cubic - Face Centered Cubic crystals	T1,T2	
38	To understand the directions of various of planes in crystals	Miller indices of planes and directions in crystals	T1,T2,R6	
39	To identify the location of planes in crystals and able to determine the inter planar spacing between the planes	Separation between successive (h k l) planes	T1,T2	
40	To understand the basic principles of diffraction	X-ray diffraction by crystal planes - Bragg's law	T1,T2	
41	To analyze the crystal structure	Powder methods.	T1,T2	
42	To understand the production of ultrasonics	Introduction- production of ultrasonics by piezo electric method	T1,T2	
43	To understand the properties of ultrasonics and detection of ultrasonics by various methods	properties and detection	T1,T2	
44	To understand the applications of ultrasonics in non-destructive testing	applications in non-destructive testing	T1,T2	
	UNIT-III			
45	To introduce the concept of matter waves	Introduction to matter waves	T1,T2	
46	To understand the dual nature of matter waves	de- Broglie's hypothesis and properties of matter waves	T1,T2	

Introduction of Schrödinger's wave equation and its significance of wave function To understand the application of Schrödinger's equation of Schrödinger's equation of Schrödinger's equation of Schrödinger's equation To understand the application of Schrödinger's equation of Schrödinger's equation To introduce the classical free electron theory electron theory Able to understand how the resistance arise in solids equation for electrical resistance arise in solids equation for electrical conductivity To understand the motion of an electron in aperiodic potential To understand the formation of bands in solids and differences between them To understand the basics of To understand the concept of drift and diffusion To understand the abasics of To understand the relation between mobility and diffusion efficient To understand the relation between mobility and diffusion coefficient To understand the basic soft To understand the band gap semiconductors To understand the differences between magnetism and the differences between magnetism and the differences between magnetism and the differences between magnetic materials To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the concept of zero resistivity To understand the concept of zero in the difference b		Plonexiting Innov	aBve Education	,
Ti,T2 To introduce the classical free electron theory electron theory electron theory Able to understand how the resistance arises in solids To introduce the classical free electron theory electron theory Ti,T2 Able to understand how the resistance arises in solids To understand the distribution of quantum free electron theory electron in different energy levels To understand the motion of an electron in a periodic potential To understand the formation of bands in solids and differences between them TUNT-IV To understand the training of semiconductors To understand the concept of drift and diffusion currents To understand the relation between mobility and diffusion coefficient To understand the felation between mobility and diffusion coefficient To understand the formation of parmiton of parmiton diffusion coefficient To understand the felation between mobility and diffusion coefficient To understand the formation of parmiton diffusion currents To understand the felation between mobility and diffusion coefficient To understand the formation of parmiton diffusion coefficient To understand the felation between mobility and diffusion coefficient To understand the formation of parmiton diffusion coefficient To understand the differences between magnetic materials To understand the differences between magnetic materials on the magnetic materials. To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the concept of zero resistivity To understand the concept of zero resistivity To understand the concept of zero resistivity	47-48	=	time dependent equation-significance	T1,T2
Able to understand how the resistance arises in solids equation for electrical resistance — equation for electrical conductivity To introduce the concepts of quantum free electron theory To understand the distribution of electrons in different energy levels To understand the motion of an electron in a periodic potential To understand the function of bands in solids and differences between them UNIT-IV To understand the basics of semiconductors To understand the basics of semiconductors with and diffusion To understand the relation between mobility and diffusion coefficient To understand the band gap semiconductors To understand the band gap semiconductors To understand the band gap semiconductors To understand the basic concepts of magnetic materials. To study and analyze the nature of the magnetic materials To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the differences between magnetic materials based on the Hysteresis UNIT-V Introduction of super conductors Ta,72 Classification of super conductors Ta,72 Classification of super conductors Ta,72 Introduction of super conductors Ta,72 To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the concept of zero resistivity Introduction of super conductors Ta,72 To understand the differences between magnetic materials based on the Hysteresis Ta,72 To understand the concept of zero resistivity Introduction of super conductors Ta,72 To understand the concept of zero resistivity Introduction of super conductors Ta,72 To understand the concept of zero resistivity Introduction of super conductors Ta,72 To understand the concept of zero resistivity Introduction of super conductors Ta,72 To understand the concept of zero resistivity Introduction of super conductors Ta,72 Ta,73 To understand the concept of zero resistivity Introduction of super conduct	49			T1,T2
To introduce the concepts of quantum free electron theory quantum free electron theory T1,T2 To introduce the concepts of quantum free electron theory quantum free electron theory T1,T2 To understand the distribution of electrons in different energy levels To understand the motion of an electron in a periodic potential treatment only) To understand the formation of bands in solids and differences between them UNIT-IV To understand the basics of semiconductors To understand the concept of drift and diffusion To understand the relation between mobility and diffusion coefficient To understand the Hall effect To understand the band gap semiconductors To understand the formation of p-n junction To understand the formation of p-n junction diode T1,T2 To understand the differences between magnetic materials To buderstand the differences between magnetic materials between angnetic materials applications of magnetic materials. To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the concept of zero lintroduction of super conductors T1,T2 To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the concept of zero lintroduction of super conductors T1,T2 To understand the differences between magnetic materials based on the Hysteresis UNIT-V	50		Classical free electron theory	T1,T2
To understand the motion of electron in a periodic potential of bands in solids and differences between them To understand the formation of semiconductors semiconductors and diffusion of semiconductors and the relation between them To understand the relation between for understand the relation between them To understand the concept of drift and diffusion of semiconductors and diffusion of the understand the relation between for understand the band gap semiconductors. To understand the relation between for understand the band gap semiconductors are semiconductors. To understand the band gap semiconductors are semiconductors. To understand the band gap semiconductors. To understand the differences between magnetic materials. To study and analyze the nature of the magnetic materials. To understand the differences between magnetic materials based on the Hysteresis. To understand the differences between magnetic materials based on the Hysteresis. To understand the differences between magnetic materials based on the Hysteresis. To understand the concept of zero resistivity. Introduction of super conductors. To understand the differences between magnetic materials applications of magnetic materials. To understand the concept of zero lintroduction of super conductors. To understand the concept of zero lintroduction of super conductors. To understand the concept of zero lintroduction of super conductors. To understand the concept of zero lintroduction of super conductors. To understand the concept of zero lintroduction of super conductors. To understand the concept of	51			T1,T2
S3 electrons in different energy levels Fermi-Dirac distribution T1,12	52	-	Quantum free electron theory	T1,T2
S4 electron in a periodic potential treatment only	53		Fermi-Dirac distribution	T1,T2
Digin of Energy Bands – conductors, semi-conductors & insulators. T1,T2	54			T1,T2
To understand the basics of semiconductors To understand the concept of drift and diffusion To understand the relation between mobility and diffusion coefficient To understand the Hall effect To understand the band gap semiconductors To understand the basic concepts of magnetic materials To Study and analyze the nature of the magnetism To understand the differences between magnetic materials To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the concept of zero resistivity Introduction and basic definitions T1,T2	55-56	bands in solids and differences		T1,T2
S7-58 semiconductors semiconductors T1,T2		U	NIT-IV	
To understand the concept of drift and diffusion To understand the relation between mobility and diffusion coefficient To understand the Hall effect To understand the Hall effect Hall effect To understand the band gap semiconductors To understand the band gap semiconductors To understand the formation of p-n junction diode To understand the basic concepts of magnetic materials To understand the basic concepts of the magnetism To Study and analyze the nature of the magnetism To understand the differences between magnetic materials To understand the Hysteresis To understand the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the concept of zero Introduction of super conductors T1,T2 T1,T2 To understand the concept of zero Introduction of super conductors T1,T2 T1,T2 T1,T2 T1,T2 T1,T2 T1,T2 T1,T2	57-58			T1,T2
mobility and diffusion coefficient 11,12 1 To understand the Hall effect 1 To understand the Hall effect 1 To understand the band gap semiconductors 1 To understand the formation of p-n junction diode 1 To understand the basic concepts of magnetic materials 1 To Study and analyze the nature of the magnetism 1 To understand the differences between magnetic materials 1 To understand the Hysteresis 1 To understand the differences between magnetic materials based on the Hysteresis 1 To understand the differences between magnetic materials based on the Hysteresis 1 To understand the differences between magnetic materials based on the Hysteresis 1 To understand the differences between magnetic materials based on the Hysteresis 1 To understand the concept of zero resistivity 1 Introduction and basic definitions 1 To Origin of magnetic moments-Bohr magnetic materials - Dia, Para, Ferro, anti-Ferro and Ferri magnetic materials. (Qualitative treatment) 1 To understand the differences between magnetic materials based on the Hysteresis 1 To UNIT-V 1 To understand the concept of zero Introduction of super conductors 1 To understand the concept of zero Introduction of super conductors 1 To understand the concept of zero Introduction of super conductors	59	To understand the concept of drift		T1,T2
To understand the Hall effect To understand the band gap semiconductors To understand the band gap semiconductors To understand the formation of p-n junction diode To understand the basic concepts of magnetic materials To Study and analyze the nature of the magnetism To understand the differences between magnetic materials To understand the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on resistivity Hall effect Formation of p-n junction diode To understand the basic concepts of Introduction and basic definitions To understand the magnetic organization of magnetic moments-Bohr magneton Classification of magnetic materials - Dia, Para , Ferro, anti-Ferro and Ferri magnetic materials. (Qualitative treatment) To understand the differences between magnetic materials based on the Hysteresis To understand the concept of zero resistivity Introduction of super conductors T1,T2	60		Einstein's equation	T1,T2
semiconductors To understand the formation of p-n junction To understand the basic concepts of magnetic materials To Study and analyze the nature of the magnetism To understand the differences between magnetic materials To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on resistivity semiconductors Formation of p-n junction diode To understand the basic concepts of Introduction and basic definitions To resistivity To grigin of magnetic moments-Bohr magnetic materials - Dia, Para , Ferro, anti-Ferro and Ferri magnetic materials. (Qualitative treatment) To understand the Hysteresis To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the concept of zero resistivity Introduction of super conductors T1,T2	61	To understand the Hall effect		T1,T2
p-n junction To understand the basic concepts of magnetic materials To Study and analyze the nature of the magnetism To understand the differences between magnetic materials To understand the Hysteresis To understand the differences between magnetic materials hetween magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the concept of zero resistivity Formation of p-n junction diode T1,T2 Introduction and basic definitions T1,T2 To Study and analyze the nature of Origin of magnetic moments-Bohr magnetic materials - Dia, Para , Ferro, anti-Ferro and Ferri magnetic materials. (Qualitative treatment) T1,T2 T1,T2 To understand the differences between magnetic materials applications of magnetic materials. T1,T2 To understand the concept of zero Introduction of super conductors T1,T2	62	semiconductors		T1,T2
magnetic materials To Study and analyze the nature of the magnetism To understand the differences between magnetic materials To understand the Hysteresis To understand the differences between magnetic materials To understand the differences between magnetic materials To understand the Hysteresis To understand the differences between magnetic materials based on the Hysteresis To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the concept of zero resistivity Introduction and basic definitions T1,T2 T1,T2 T1,T2 T1,T2 T1,T2 T1,T2 T1,T2	63		Formation of p-n junction diode	T1,T2
the magnetism magneton Classification of magnetic materials - Dia, Para , Ferro, anti-Ferro and Ferri magnetic materials. (Qualitative treatment) To understand the Hysteresis Hysteresis To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the concept of zero resistivity Introduction of super conductors T1,12 T1,12 T1,12 T1,12 T1,12	64		Introduction and basic definitions	T1,T2
To understand the differences between magnetic materials To understand the Hysteresis To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the concept of zero resistivity Dia, Para , Ferro, anti-Ferro and Ferri magnetic materials. (Qualitative treatment) To understand the differences Soft and hard magnetic materials applications of magnetic materials. T1,T2 To understand the concept of zero resistivity Introduction of super conductors T1,T2	65		_	T1,T2
To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the differences applications of magnetic materials. UNIT-V To understand the concept of zero resistivity Introduction of super conductors T1,T2	66-68		Dia, Para , Ferro, anti-Ferro and Ferri magnetic materials.(Qualitative	T1,T2
To understand the differences between magnetic materials based on the Hysteresis UNIT-V To understand the differences applications of magnetic materials. UNIT-V To understand the concept of zero resistivity Introduction of super conductors T1,T2	69	To understand the Hysteresis	Hysteresis	T1,T2
71 To understand the concept of zero resistivity Introduction of super conductors T1,T2	70	To understand the differences between magnetic materials based on	Soft and hard magnetic materials-	
71 To understand the concept of zero resistivity Introduction of super conductors T1,T2	UNIT-V			
	71	To understand the concept of zero		T1,T2
	72		Meissner effect	T1,T2

	on superconductors.		
73	To understand the exponential decrease of magnetic field inside a super conductor	London Penetration depth	T1,T2
74	To understand the differences between the superconductors	Type I and Type II superconductors	T1,T2
75	To understand the quantization of flux in a super conductor	Flux quantization	T1,T2
76	To study the flow of current between the two super conductors	Ac and dc Josephson effects	T1,T2
77	To understand the cooper pair and the applications of super conductors	BCS theory and applications of superconductors	T1,T2
78	To study the basic principles of nanomaterials	Introduction-significance of nano scale- surface area and quantum confinement	T2,R10
79	To understand the properties of nano materials	Physical properties: optical, thermal, mechanical and magnetic properties	T2,R10
80	To understand the Top-down & Bottom-up fabrication methods	Ball milling – Chemical vapour deposition method & sol-gel methods and applications of nanomaterials	T2,R10

Prepared By : B.SUNEETHA Date : 07-01-2016