High Performance Linear System Solvers with Focus on Graph Laplacians

Richard Peng Georgia Tech

Based on work joint with: Serban Stan, Shen Chen Xu, Saurabh Sawlani, John Gilbert, Kevin Deweese, Gary Miller, Hui Han Chin

OUTLINE

- Laplacian solvers and applications
- Combinatorial preconditioning
- Numerics of tree preconditioners

GRAPH LAPLACIAN MATRIX

- Diagonal: weighted degrees
 Off-diagonal: -edge weights

FEW ITERATIONS OF Lx = b

Spring-mass system / elliptic problems / M matrices

- [Tutte `61]: planar embedding / graph drawing,
- [ZGL `03], [ZHS `05] [KRS `15]: learning/inference

Inverse powering: eigenvectors / heat kernel:

- [AM `85] [OSV `12]: clustering
- [SM `01] [KMST `09]: image segmentation

MANY ITERATIONS OF Lx = b

[Karmarkar, Ye, Renegar, Nesterov, Nemirovski ...]: convex optimization via. solving O(m^{1/2}) linear systems

[DS `08][CKMST `11][LS `14][AKPS `19][APS`19][AS `20]: graph problems → Laplacian linear systems

LINEAR SYSTEMS SOLVERS

- Matrix multiplication: O(n^{2.372864...})
- Conjugate gradient: O(nnz k^{1/2})
 where k is condition number

Open: provably faster solver for poly(n) conditioned sparse (O(n) nonzero) systems. [Zhang `18]: structure often don't help

Lx = b in Practice

- Scientific computing: multigrid 'works' for 109 nonzeros
- MATLAB: pcg(L, ichol(L), b, ε) 'works' for 10⁶ nonzeros

Lx = b in Practice

- Scientific computing: multigrid 'works' for 109 nonzeros
- MATLAB: pcg(L, ichol(L), b, ε) 'works' for 10⁶ nonzeros

'works': gradual numerical convergence

NUMERICAL METHODS

Gradual convergence to solutions

Simplest: $\mathbf{x} \leftarrow \mathbf{x} + \theta(\mathbf{A}\mathbf{x} - \mathbf{b})$

Fixed point: Ax = b

Better schemes: conjugate

gradient, accelerated methods

NUMERICAL METHODS

Gradual convergence to solutions

Preconditioned: $\mathbf{x} \leftarrow \mathbf{x} + \theta \mathbf{B}^{-1} (\mathbf{A}\mathbf{x} - \mathbf{b})$

Want: **B** that's close to **A**, but computationally less expensive:

- Jacobi: B = Diag(A)
- Gauss Siedel: B = TriU(A)
- Incomplete Cholesky: drop small entries during sparse elimination

COMBINATORIAL PRECONDITOINING

- [Vaidya `89]: use graph theory to build preconditioners for **L**
- [ST`04]: O(mlog^cnlog(1/ε)) time
- 2004 2014: c halved every 2 years

Most recent: [KS `16] showed randomized incomplete Cholesky provably works for **L**

COMPARE? NEW BENCHMARKS:

Structured graphs

- Grids / cubes
- Cayley graphs
- Graph products

Hard graph problems

- Maxflow problems from DIMACS implementation challenges
- Linear systems arising from secondorder optimization (IPM)

[KRS`15] + DIFFERENT SOLVERS

Disclaimer: this behavior depend heavily on IPM implementation / numerics / termination conditions

README file at https://github.com/sac
hdevasushant/Isotonic
we suggest rerunning the program a few times and / or using a different solver.

Jacobi

SGS

ILU

MST

AMG

OUTLINE

- Laplacian solvers and applications
- Combinatorial preconditioning
- Numerics of tree preconditioners

TREE BASED PRECONDITIONERS

Gradually transform a tree-based solution to a solution on the entire graph

Method	Cycle Toggle	Precondition
Cost / Iter	logn	$m + (m/k)^2$
# Iters	$mlog^{1/2}nlog(1/\epsilon)$	$k^{1/2}log(1/\epsilon)$
Related to	SGD	Grad. descent
Primitives	Data structures	Mat-Vec

MOVING PIECES

- Trees: MST / bottom-up / top-down / adaptive
- Numerics: batched / local, accelerated / CG
- Memory layout, recursive vs. iterative

[DGMPXX CSC`16]: HEAVY PATHS

Pick a Hamiltonian path, weight all other edges so each has stretch 1

[DGMPXX CSC`16]: HEAVY PATHS

Pick a Hamiltonian path, weight all other edges so each has stretch 1

- Bad case for PCG,
- 'easy' for tree data structures

DOING BETTER THAN CG

https://arxiv.org/abs/1609.02957 https://github.com/sxu/cycleToggling

COMPARISONS OF GRAPHS → TREES

https://arxiv.org/abs/1609.02957 https://github.com/sxu/cycleToggling

OUTLINE

- Laplacian solvers and applications
- Combinatorial preconditioning
- Numerics of tree preconditioners

[DPSX CSC'20] NUMERICAL ISSUES

CG with a low-stretch tree as preconditioner

ONE FIX: BATCHED PROCESSING

 Add some edges to a tree to form a `batched' preconditioner

 Use direct methods to factorize preconditioner explicitly

COMPARISON ON 3D CUBE

COMPARISON ON IPM MATRIX

EVALUATING LAPLACIAN SOLVERS

- We have a much better idea of what are the instances to test on now:
 - Instances that are numerically close to paths
 - Weighted grid graphs
 - Inner loops of optimization algorithms
 - [Deweese-Gilbert `18]: evolve instances
- Benchmark incomplete Cholesky?
- Measuring numerical behaviors?
- Benchmark w.r.t. applications: groundtruth instead of residual error?