Problemas da Geodesia

1. Considerações:

- a) Uma das finalidades da Geodesia é a determinação das coordenadas de pontos à superfície terrestre num dado sistema de referência, por exemplo, o geodésico elipsoidal (ϕ,λ,h) ;
- b) Com as posições determinadas é possível calcular vectores de posição (distância e azimute) entre quaisquer dois pontos não ligados por medições directas;
- c) Em espaços bidimensionais (elipsóide e plano cartográfico) as "observações" transformadas para valores à superfície da Terra, devem ser sujeitas não só a correcções (por ex. a refracção) mas também a correcções de redução inversa;

Geodesia e Aplicações- Aula 3 FCUL-EG

Problemas da Geodesia

- 2. Problemas da Geodesia sobre o elipsóide:
 - .: <u>Problema Directo</u> com as observações de distância elipsoidal e azimute geodésico ou ângulo azimutal (relação de posição entre pontos) <u>determinar posições</u> (posicionamento relativo, ou transporte de coordenadas);
 - .: <u>Problema Inverso</u> com as posições (coordenadas geodésicas) <u>determinar as "observações"</u> de distância elipsoidal e azimute geodésico (relação de posição entre pontos).

Problemas da Geodesia

2. Problemas da Geodesia sobre o elipsóide:

$$\therefore \ \, \underline{\mathbf{Problema\ Directo}} - \quad \left\{ \begin{array}{l} \phi_2 = f_1(\phi_1,\lambda_1,\alpha_{12},s) \\ \lambda_2 = f_2(\phi_1,\lambda_1,\alpha_{12},s) \\ \alpha_{21} = f_3(\phi_1,\lambda_1,\alpha_{12},s) \end{array} \right.$$

$$\therefore \ \, \underline{\textbf{Problema Inverso}} - \quad \left\{ \begin{array}{l} s \ = \ f_{_{4}} \left(\, \varphi_{_{1}} \, , \, \lambda_{_{1}} \, , \, \varphi_{_{2}} \, , \, \lambda_{_{2}} \, \right) \\ \alpha_{_{12}} \ = \ f_{_{5}} \left(\, \varphi_{_{1}} \, , \, \lambda_{_{1}} \, , \, \varphi_{_{2}} \, , \, \lambda_{_{2}} \, \right) \\ \alpha_{_{21}} \ = \ f_{_{6}} \left(\, \varphi_{_{1}} \, , \, \lambda_{_{1}} \, , \, \varphi_{_{2}} \, , \, \lambda_{_{2}} \, \right) \end{array} \right.$$

Geodesia e Aplicações— Aula 3 FCUL-EG

Problemas da Geodesia

- **3.**1 Problema Directo sobre o elipsóide:
 - a) Determinar as coordenadas (ϕ,λ) de um ponto P_2 e do azimute inverso $(\alpha_{21}),$ a partir das coordenadas de um ponto $P_1,$ da sua distância geodésica ao ponto P_2 e do azimute directo $(\alpha_{12});$
 - b) Conhecidas as coordenadas de um ponto P_1 e as relações de posição entre os pontos P_1 e P_2 , determinar a posição do ponto P_2 ;
 - c) Também designado por problema de transporte de coordenadas;
 - d) Existem várias soluções para este problema;
 - e) As soluções do problema podem dividir-se em **três famílias**, de acordo com a curva que utilizam: **geodésica**, **secção normal do elipsóide**, ou **secção normal da esfera** local osculadora ao elipsóide;

Problemas da Geodesia

3.1 Problema Directo sobre o elipsóide:

f) A base de todas as soluções é o triângulo polar elipsoidal, composto por geodésicas que unem: o Pólo, o ponto P_1 e o ponto P_2 ;

Geodesia e Aplicações- Aula 3

FCUL-EG

Problemas de Geodesia

3.2 Soluções do Problema Directo

- a) As soluções mais precisa são as designadas por *fórmulas* para as grandes geodésica, que recorrem à resolução de um integral elíptico;
- b) De entre vários, destacam-se os métodos de **Bessel** (Jordan and Eggert, 1962), **Rainsford** (1955) e **Sodano** (1965) ;
- c) Entre os métodos de **Bessel** e **Rainsford**, a única diferença é o factor de cálculo que usam, o primeiro usa o quadrado da excentricidade (e^2) e o segundo o achatamento (f);
- d) O método de **Sodano** tem a vantagem de ambos os problemas (directo e inverso) serem resolvidos de forma directa, **não iterativa**;

Geodesia e Aplicações- Aula 3

Problemas de Geodesia

3.2 Soluções do Problema Directo

- e) As restantes famílias de soluções usam fórmulas aproximadas e, por essa razão, não devem ser usadas para linhas longas (apenas para curtas distâncias <100 Km);
- f) As que usam a <u>esfera local aproximada ao elipsóide</u> são conhecidas por fórmulas para linhas curtas (Bomford, 1983);
- g) A mais conhecida destas é a **fórmula de Puissant** que dá uma exactidão de 1 ppm para linhas de 100 Km (40ppm para 250Km);

Geodesia e Aplicações- Aula 3 FCUL-EG

Problemas de Geodesia

3.3 Resumo

- ∴ Grandes geodésica (≥150Km): cálculo integral elíptico
 - 1- Métodos de Bessel (e^2) e de Rainsford (f) Iterativos
 - 2- Método de Sodano Directo (ambos os problemas)
- ∴ <u>Médias e pequenas geodésica</u> (≤150Km): fórmulas aproximadas
 - 1- Método de Robins: secção normal sobre o elipsóide
 - 2- Método de Puissant: esfera local
- Método de **Legendre-Delambre**: usa o desenvolvimento em série de potências de "s" sobre a superfície do elipsóide, usando arcos de geodésicas.

Problema Directo

- 4. Fórmulas de Legendre-Delambre
 - a) Se uma geodésica se definir apenas em função da distância "s", as suas equações paramétricas são dadas: \(\lambda \text{Meridiano} \)

$$\begin{cases} \phi = \phi(s) \\ \lambda = \lambda(s) \\ \alpha = \alpha(s) \end{cases}$$

b) Os desenvolvimentos em série de Legendre-Delambre permitem expressar ϕ , λ e α em funções de potências crescentes de "s":

$$\phi_{2} = \phi_{1} + d \phi = \phi_{1} + \left(\frac{d \phi}{ds}\right)_{1} \cdot s + \left(\frac{d^{2} \phi}{ds^{2}}\right)_{1} \cdot \frac{s^{2}}{2} + \cdots$$

$$\lambda_{2} = \lambda_{1} + d \lambda = \lambda_{1} + \left(\frac{d \lambda}{ds}\right)_{1} \cdot s + \left(\frac{d^{2} \lambda}{ds^{2}}\right)_{1} \cdot \frac{s^{2}}{2} + \cdots$$

Geodesia e Aplicações – Aula 3
$$\boldsymbol{\alpha}_{2l} = \boldsymbol{\alpha}_{12} + 180^{-s} + d \boldsymbol{\alpha} = \boldsymbol{\alpha}_{12} + 180^{-s} + \left(\frac{d \boldsymbol{\alpha}}{ds}\right)_{l} \cdot s + \left(\frac{d^{2} \boldsymbol{\alpha}}{ds^{2}}\right)_{l} \cdot \frac{s^{2}}{2} + \cdots$$

FCUL-EG

Geodésica P₂ (φ,λ

Problema Directo

- 4. Fórmulas de Legendre-Delambre
 - c) A resolução destas fórmulas passa pela utilização dos dados ϕ_1 , λ_1 , α_{12} e s_{12} e pela resolução das derivadas do desenvolvimento em série;
 - d) Triângulo infinitesimal sobre de elipsóide de revolução:

Geodesia e Aplicações- Aula 3

Problema Directo

4.1 Primeiras derivadas

d) Do triângulo infinitesimal sobre o elipsóide de revolução extrai-se as relações que dão origem às duas primeiras derivadas: $\frac{\int N \cos \phi \, d\lambda}{\sqrt{N} \cos \phi \, d\lambda}$

$$ds \cdot \cos \alpha = \rho \cdot d\phi \Rightarrow \frac{d\phi}{ds} = \frac{\cos \alpha}{\rho}$$
$$ds \cdot sen \alpha = N \cdot \cos \phi \cdot d\lambda \Rightarrow \frac{d\lambda}{ds} = \frac{sen \alpha}{N \cos \phi}$$

e) Da derivação da <u>equação de Clairaut</u> (p.sen α =K) e do triângulo infinitesimal sobre o meridiano de P₁, sai a outra derivada $\frac{d\alpha}{ds} = \frac{sen\alpha \cdot tg\phi}{N}$

Geodesia e Aplicações- Aula 3

Problema Directo

4.2 Segundas derivadas

d) Diferenciando as primeiras derivadas na forma:

$$\frac{d\phi}{ds} = \frac{V^3}{c} \cdot \cos\alpha \; ; \quad \frac{d\lambda}{ds} = \frac{V \cdot sen\alpha}{c \cdot cos\phi} \; ; \quad \frac{d\alpha}{ds} = \frac{V}{c} \cdot sen\alpha \cdot tg\phi$$

em que $ho = \frac{c}{V^3}$ e $N = \frac{c}{V}$ com $V = \sqrt{1 + e^{r^2} \cdot \cos^2 \phi}$ e $c = \frac{a^2}{b}$ obtém-se, após algum cálculo, as expressões das 2^a s derivadas:

$$\frac{d^{2}\phi}{ds^{2}} = \frac{-V^{4}}{c^{2}} \cdot \left(sen^{2}\alpha \cdot tg \phi + 3 \cos^{2}\alpha \cdot \eta^{2} \cdot tg \phi \right)$$

$$\frac{d^{2}\lambda}{ds^{2}} = \frac{2V^{2}}{c^{2} \cos \phi} \cdot sen \alpha \cdot \cos \alpha \cdot tg \phi$$

$$\frac{d^{2}\alpha}{ds^{2}} = \frac{V^{2}}{c^{2}} \cdot sen \alpha \cdot \cos \alpha \cdot \left(I + 2 tg^{2}\phi + \eta^{2} \right)$$
COM $\eta^{2} = e^{t^{2}} \cdot \cos^{2}\phi$

Geodesia e Aplicações- Aula 3

Problema Directo

4.3 Fórmula de Legendre-Delambre até à ordem 2

$$\begin{split} \phi_2 &= \phi_1 + d\phi = \phi_1 + \frac{V^3}{c} \cdot \cos \alpha \cdot s + \frac{-V^4}{c^2} \cdot \left(sen^2 \alpha \cdot tg \phi + 3\cos^2 \alpha \cdot \eta^2 \cdot tg \phi \right) \cdot \frac{s^2}{2} + \dots \\ \lambda_2 &= \lambda_1 + d\lambda = \lambda_1 + \frac{V \cdot sen \alpha}{c \cdot \cos \phi} \cdot s + \frac{2V^2}{c^2 \cos \phi} \cdot sen \alpha \cdot \cos \alpha \cdot tg \phi \cdot \frac{s^2}{2} + \dots \\ \alpha_{21} &= \alpha_{12} + 180^\circ + \frac{V}{c} \cdot sen \alpha \cdot tg \phi \cdot s + \frac{V^2}{c^2} \cdot sen \alpha \cdot \cos \alpha \cdot \left(1 + 2tg^2 \phi + \eta^2 \right) \cdot \frac{s^2}{2} + \dots \end{split}$$

- a) Desenvolvimentos de ordens superiores podem ser obtidos com derivações sucessivas, encontram-se até à 5ª ordem em Rapp (1984);
- b) Este desenvolvimento de segunda ordem é suficiente para curtas e médias geodésicas;

Geodesia e Aplicações- Aula 3 FCUL-EG

Problema Directo

4.4 Considerações finais sobre o problema directo

- a) É um problema importante da Geodesia, é ele que permite o transporte de coordenadas geodésicas ao longo de uma rede, com início no ponto origem do Datum;
- b) No ajustamento de uma rede, são necessários valores iniciais das coordenadas dos vértices, com os quais se calculam os coeficientes das equações de observação de comprimentos, de ângulos e de azimutes sobre o elipsóide;
- c) O cálculo das coordenadas iniciais (brutas ou não ajustadas) dos vértices da rede, pela aplicação destas fórmulas, é a primeira etapa do cálculo de uma rede geodésica – encadeamento geodésico;
- d) Tal como numa poligonal em Topografia, antes de se compensar tem que se "transportar" as coordenadas com as quais se determinam os erros de fecho.

Problemas Inverso

5.1 Problema Inverso sobre o Elipsóide

- a) A solução deste problema através de desenvolvimentos em série de potências de "s" (Legendre-Delambre) é do tipo iterativo;
- b) Dispondo as fórmulas da solução do problema directo sob a forma: V^3

 $\Delta \phi = \phi_2 - \phi_1 = \frac{V_1^3}{c} \cdot \cos \alpha_{12} \cdot s + \Delta_1$ $\Delta \lambda = \lambda_2 - \lambda_1 = \frac{V_1}{c} \cdot \frac{sen \alpha_{12}}{\cos \phi_1} \cdot s + \Delta_2$

c) As grandezas Δ_1 e Δ_2 representam os restantes termos da série e são as variáveis que permitem a iteração iniciando-se com valor igual a zero.

Geodesia e Aplicações- Aula 3 FCUL-EG

Problemas Inverso

5.1 Problema Inverso sobre o Elipsóide

d) Modificando as expressões anteriores para:

$$\frac{V_1^3}{c} \cdot \cos \alpha_{12} \cdot s = \Delta \phi - \Delta_1$$

$$\frac{V_1}{c} \cdot \frac{sen \alpha_{12}}{\cos \phi_1} \cdot s = \Delta \lambda - \Delta_2$$

e) Dividindo agora as equações membro a membro e alterando a segunda expressão, obtém-se:

$$\begin{split} tg\alpha_{12} &= V_1^2 \cdot cos \, \phi_1 \cdot \left(\frac{\Delta \lambda - \Delta_2}{\Delta \phi - \Delta_1} \right) \\ s &= \frac{c \cdot \left(\Delta \phi - \Delta_1 \right)}{V_1^3 \cdot cos \, \alpha_{12}} \end{split}$$

Geodesia e Aplicações- Aula 3

Problemas Inverso

6.2 Processo iterativo

a) Valores iniciais (com Δ_1 e Δ_2 =0):

$$\left(\alpha_{_{12}}\right)_{\!_{1}} = \text{arctg} \!\!\left[\left. V_{\!_{1}}^{2} \cdot \cos \phi_{1} \cdot \!\!\left(\frac{\Delta \lambda}{\Delta \varphi} \right) \right]; \quad \left(s\right)_{\!_{1}} = \frac{c \cdot \!\!\left(\Delta \varphi \right)}{V_{\!_{1}}^{3} \cdot \cos \alpha_{_{12}}} \label{eq:alpha_lambda}$$

b) Valores iterados de $(\Delta_1)_i$ e $(\Delta_2)_i$:

$$\begin{split} &\left(\Delta_{_{1}}\right)_{_{i}}=\frac{-V^{4}}{c^{2}}\cdot\left(\text{sen}^{2}\alpha\cdot\text{tg}\varphi+3\cos^{2}\alpha\cdot\eta^{2}\cdot\text{tg}\varphi\right)\cdot\frac{s^{2}}{2}\,;\\ &\left(\Delta_{_{2}}\right)_{_{i}}=\frac{2V^{2}}{c^{2}\cos\varphi}\cdot\text{sen}\alpha\cdot\cos\alpha\cdot\text{tg}\varphi\cdot\frac{s^{2}}{2} \end{split}$$

c) Valores iterados de $(\alpha_{12})_i$ e $(s)_i$:

$$\left(\alpha_{12}\right)_{2} = \text{arctg} \left[V_{1}^{2} \cdot \cos \varphi_{1} \cdot \left(\frac{\Delta \lambda - \Delta_{1i}}{\Delta \varphi - \Delta_{2i}}\right)\right]; \quad \left(s\right)_{2} = \frac{c \cdot \left(\Delta \varphi - \Delta_{1i}\right)}{V_{1}^{3} \cdot \left(\cos \alpha_{12}\right)_{i-1}}$$
 Geodesia e Aplicações- Aula 3

FCUL-EG

Problemas Inverso

6.3 Aplicações

- a) As distâncias elipsoidais e azimutes geodésicos são necessários no ajustamento bidimensional das redes geodésicas – cálculo dos coeficientes do sistema de equações.
- Nesse processo só são observados alguns comprimentos (bases geodésicas) e azimutes, todos os restantes valores necessários são calculados pelo problema inverso ou através da resolução de triângulos;

Geodesia e Aplicações- Aula 3

Problemas Inverso

6.3 Aplicações

- b) Os valores de distâncias elipsoidais e azimutes geodésicos calculados pelo problema inverso da geodesia são necessários no posicionamento vertical nivelamento trigonométrico.
- Nesse processo só são observadas distâncias zenitais, todos os restantes valores, comprimentos, azimutes e desvios da vertical, são calculados;

Geodesia e Aplicações- Aula 3

Problemas Inverso

6.3 Aplicações

- c) A transformação de coordenadas geodésicas (ϕ, λ) pode ser feito com o recurso aos problemas inverso e directo da geodesia.
- É determinada a média das diferenças em azimute e em escala (distâncias) entre os dois sistemas de coordenadas, em torno do ponto a transformar, estas diferenças são adicionadas aos valores do primeiro sistema para se proceder a um simples transporte de coordenadas no segundo sistema com o problema directo.

Geodesia e Aplicações- Aula 3

FCUL-EG