BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI K. K. BIRLA Goa Campus

First Semester 2014-2015

CS F342 Computer Organization and Architecture Lab – 2, 21th August 2014

Design and implement the following using Verilog HDL in **ModelSim software** with the following specifications.

Operations table:

Opcode	ALU operation	Shifter Operation
000	ZERO	NO SHIFT
001	ADD	Arithmetic shift right
010	SUB	Logical shift right
011	AND	Circular shift right
100	OR	Logical shift left
101	NEGATE[rs]	Circular shift left

Modules:

```
2. module mux2to1(input [2:0] in0, input [2:0] in1, input sel, output reg [2:0] muxOut);
3. module mux8to1(input in0, input in1, input in2, input in3, input in4, input in5, input [2:0] sel, output
   reg muxOut);
4. module shifter8bits(input [7:0] rs, input [2:0] opCode, input [2:0] shiftAmt, output [7:0] shiftOut);
5. module signExtender(input [7:0] shiftOut, output reg [31:0] signExtOut);
6. module zeroExtender(input [7:0] shiftOut, output reg [31:0] zeroExtOut);
7. module mux4to1(input [31:0] zeroInput, input [31:0] ALUOut, input [31:0] signExtOut, input [31:0]
   zeroExtOut,input [1:0] selOut, output reg [31:0] finalOut);
8. module shifterAndAlu(input [31:0] rs, input [31:0] rt, input [2:0] opCode, input [1:0] selOut, output
   [31:0] finalOut):
9. module testBench();
  //inputs
  reg [31:0] rs, rt;
  reg [2:0] opCode;
  reg [1:0] selOut;
  //outputs
  wire [31:0] finalOut;
  shifterAndAlu uut( rs, rt, opCode, selOut, finalOut);
  initial
  begin rs=32'd17; rt=32'd3; opCode=3'd1; selOut=2'd0;
   monitor("rs = \%d, rt = \%d, opCode = \%d, selOut = \%d, finalOut = \%d", rs,rt,opCode,selOut,finalOut);
   #10 selOut=2'd1;
        selOut=2'd1; opCode=3'd2;
  #10
   #10
        selOut=2'd1; opCode=3'd3;
  #10 selOut=2'd1; opCode=3'd4;
        selOut=2'd1; opCode=3'd5;
  #10
  #10
        selOut=2'd2; opCode=3'd1;
        selOut=2'd2; opCode=3'd2;
  #10
        selOut=2'd2; opCode=3'd3;
  #10
  #10
        selOut=2'd2; opCode=3'd4;
  #10
        selOut=2'd2; opCode=3'd5;
  #10
        selOut=2'd3; opCode=3'd1;
        selOut=2'd3; opCode=3'd2;
  #10
  #10
        selOut=2'd3; opCode=3'd3;
        selOut=2'd3; opCode=3'd4;
  #10
  #10 selOut=2'd3; opCode=3'd5;
  #10 $finish;
  end
```

1. module alu(input [31:0] rs, input [31:0] rt, input [2:0] opCode, output reg [31:0] aluOut);

endmodule

