Lista de Atividades

Prof: Fernando Tosini

Exercícios básicos

- **B.1** Verifique se é ou não progressão aritmética cada uma das seguintes seqüências:
 - a) $(a_1, a_2, a_3, ..., a_6)$ tal que $a_n = 5n + 1$, $\forall n, n \in \mathbb{N}^*$ e $n \le 6$;
 - b) $(a_1, a_2, a_3, ..., a_9)$ tal que $a_n = n^2$, $\forall n, n \in \mathbb{N}^*$ e $n \le 9$;
 - c) $(a_1, a_2, a_3, \dots a_8)$ tal que $a_n = \frac{n}{3} + 1, \forall n, n \in \mathbb{N}^*$ e $n \le 8$.
- **B.2** Quais das sequências são progressões aritméticas?
 - a) $(a_1, a_2, a_3, a_4, a_5)$ tal que $a_n = 1 3n$, $\forall n, n \in \mathbb{N}^*$ e $n \le 5$.
 - b) $(a_1, a_2, a_3, ..., a_7)$ tal que $a_n = \frac{n+1}{n}$, $\forall n, n \in \mathbb{N}^* e n \le 7$.
 - c) $(a_1, a_2, a_3, \dots a_6)$ tal que $\begin{cases} a_1 = 6 \\ a_{n+1} = \frac{3+a_n}{3}, \ \forall n, n \in \mathbb{N}^* \ e \ n \le 6. \end{cases}$
- **B.3** A seqüência (a_n) , dada por $a_n = 4n + 1$ para todo $n \in \mathbb{N}^*$, é progressão aritmética? Justifique sua resposta. (Sugestão: como, neste caso, a variável n deve assumir infinitos valores, a melhor maneira de se verificar se é, ou não, P.A., consiste em calcular a diferença $a_{n+1} a_n$; se tal diferença for constante, então a seqüência é P.A.; caso contrário, não é.)
- **B.4** Verifique se é, ou não, progressão aritmética a seqüência (a_n) tal que $a_n = n^2 + 1$, para todo $n \in \mathbb{N}^*$.
- **B.5** Calcule a razão da P.A. $(a_n)_{n \in \mathbb{N}^*}$, sabendo que $a_{15} = \frac{2}{3}$ e $a_{16} = \frac{2}{5}$.
- **B.6** Qual é a razão da P.A. $(a_n)_{n \in \mathbb{N}^*}$ cuja lei de formação é $a_n = 5n 1$?
- B.7 Classifique como crescente, decrescente ou constante cada uma das seguintes progressões aritméticas:
 - a) $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_n = 8 3n$.
 - b) $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_n = 2n + 1$.
- e) $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_n = \frac{n^2 + 4n + 4}{(n+2)^2}$.
- c) $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_n = \frac{n^2 9}{n + 3} n$.
- f) $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_n = \frac{7}{3} + \frac{n}{2}$.
- d) $(a_n)_{n \in \mathbb{N}^*}$ tal que $\begin{cases} a_1 = 10 \\ a_{n+1} = a_n + 8. \end{cases}$
- **B.8** Determine o 51º termo da P.A. (5, 9, 13, 17, ...).
- **B.9** Qual é o 62º termo da P.A. (98, 93, 88, ...)?
- **B.10** Obtenha o 25° termo da P.A. $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_1 = \frac{2}{3}$ e $a_2 = \frac{11}{8}$.
- **B.11** Encontre a razão da P.A. $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_1 = 14$ e $a_{16} = 45$.
- **B.12** Calcule a razão da P.A. $(a_1, a_2, a_3, ...)$ tal que $a_1 = \sqrt{2}$ e $a_{10} = \frac{\sqrt{2}}{2}$.
- **B.13** Quantos termos possui a P.A. (12, 18, 24, ..., 222)?
- **B.14** Determine o número de termos da P.A. cujo último termo é $\frac{103}{6}$, o primeiro é $\frac{1}{2}$ e a razão é $\frac{1}{3}$.

- **B.15** Calcule o número de múltiplos de 7 existentes entre 10 e 200.
- **B.16** Quantos números inteiros divisíveis por 13 existem entre 100 e 1000?
- **B.17** Determine a razão da P.A. $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_1 + a_9 = 15$ e $a_3 + a_6 = 18$.
- **B.18** Obtenha o primeiro termo da P.A. $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_1 + a_7 = 10$ e $a_3 + a_4 = 5$.

Respostas

B.1 a) $(6, 11, 16, 21, 26, 31) \notin P.A.$; b) (1, 4, 9, 16, 25, 36, 49, 64, 81) não $\notin P.A.$; c) $\left(\frac{4}{3}, \frac{5}{3}, 2, \frac{7}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{11}{3}\right) \notin P.A.$ **B.2** a) $(-2, -5, -8, -11, -14) \notin P.A.$; b) $\left(2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \frac{7}{6}, \frac{8}{7}\right)$ não $\notin P.A.$; c) $\left(6, 3, 2, \frac{5}{3}, \frac{14}{9}, \frac{41}{27}\right)$ não $\notin P.A.$ **B.3** $a_{n+1} - a_n = 4(n+1) + 1 - (4n+1) = 4n+4+1-4n-1 = 4$; logo, a seqüência $\notin P.A.$ de razão # 4. **B.4** Não # 4 P.A. **B.5** $\# 7 = -\frac{4}{15}$. **B.6** # 7 = 5. **B.7** a) decrescente; b) crescente; c) constante; d) crescente; e) constante; f) crescente. **B.8** $\# a_{51} = 205.$ **B.9** $\# a_{62} = -207$. **B.10** $\# a_{25} = \frac{53}{3}$. **B.11** $\# 7 = \frac{31}{15}$. **B.12** $\# 7 = -\frac{\sqrt{2}}{18}$. **B.13** # 7 = 3. **B.14** # 7 = 10.

Exercícios básicos

- **B.1** Calcule a soma dos oitenta primeiros termos da P.A. (6, 9, 12, 15, 18, ...).
- **B.2** Obtenha a soma dos 51 primeiros termos da P.A. (-15, -11, -7, -3, 1, ...).
- **B.3** Determine a soma dos termos da P.A. finita (6, 10, 14, ..., 134).
- **B.4** Qual é a soma dos termos da P.A. finita (-30, -21, -12, ..., 213).
- **B.5** A P.A. $(a_1, a_2, a_3, ...)$ é tal que $a_4 + a_5 = 89$ e $a_2 + a_6 = 78$. Qual é a soma dos seus vinte primeiros termos?
- **B.6** Calcule a soma dos múltiplos de 7 compreendidos entre 100 e 300.
- **B.7** Encontre a soma dos múltiplos de 11 compreendidos entre 200 e 500.
- B.8 Calcule o número de termos da P.A. cujo primeiro termo é 1, o último termo é 157 e a soma de seus termos é 3160.
- **B.9** Sendo S_n a soma dos termos da P.A. $(a_1, a_2, a_3, ..., a_n)$ de razão r = 4 e com $a_1 = 6$, determine n de modo que $S_n = 1456$.
- **B.10** A soma dos n primeiros termos de uma P.A. é dada por $S_n = 2n^2$. Determine o primeiro termo e a razão da P.A.
- **B.11** Determine o quinto termo da P.A. cuja soma dos n primeiros termos é dada por $S_n = 2n^2 + 6n$.

Respostas

B.1 9960. **B.2** 4335. **B.3** 2310. **B.4** 2562. **B.5** 2210. **B.6** 5586. **B.7** 9504. **B.8** 40. **B.9** 26. **B.10** $a_1 = 2 e r = 4$. **B.11** 24.

Exercícios básicos

- Quais das sequências a seguir são progressões geométricas?
 - a) $(a_1, a_2, a_3, a_4, a_5)$ tal que $a_n = 3 \cdot 2^n$, $\forall n, n \in \mathbb{N}^*$ e $n \le 5$.
 - b) $(a_1, a_2, a_3, a_4, a_5, a_6)$ tal que $a_n = 3n$, $\forall n, n \in \mathbb{N}^*$ e $n \le 6$.
 - c) (a_1, a_2, a_3, a_4) tal que $a_n = 5^{-n}$, $\forall n, n \in \mathbb{N}^*$ e $n \le 4$.

d)
$$(a_1, a_2, a_3, a_4, a_5)$$
 tal que
$$\begin{cases} a_1 = \frac{4}{3} \\ a_{n+1} = 6a_n, \ \forall n, \ n \in \mathbb{N}^* \ \text{e} \ n \leq 5. \end{cases}$$

- e) (a_1, a_2, a_3, a_4) tal que $a_n = n^{n+1}, \ \forall n, n \in \mathbb{N}^*$ e $n \le 4$.
- f) (a_1, a_2, a_3) tal que $a_n = 2^{1-n}, \ \forall n, n \in \mathbb{N}^* \ \text{e } n \le 3.$
- **B.2** Verifique se é ou não progressão geométrica a sequência (a_n) dada por: $a_n = 5^{n+4}$, $\forall n, n \in \mathbb{N}^*$.
- **B.3** Verifique se é ou não progressão geométrica a sequência (a_n) dada por: $a_n = 4 \cdot 3^n$, $\forall n, n \in \mathbb{N}^*$.
- **B.4** Determine a razão da P.G. $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_{38} = 15$ e $a_{39} = 5$.
- **B.5** Calcule a razão da P.G. $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_{20} = 18$ e $a_{19} = 6$
- Qual é a razão da P.G. (a_n) cuja lei de formação é: $a_n = \frac{3^n}{2^{n+1}}, \ \forall n, n \in \mathbb{N}^*$? **B.6**
- **B.7** Classifique cada uma das progressões geométricas como crescente, decrescente, constante, oscilante ou quase nula:

c)
$$\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right)$$
 e) $(-1, 2, -4, 8, -16)$

b)
$$\left(-1, -\frac{1}{2}, -\frac{1}{4}, -\frac{1}{8}, \ldots\right)$$
 d) $(-8, 0, 0, 0, \ldots)$ f) $(0, 0, 0, 0, 0, \ldots)$

$$d)(-8, 0, 0, 0, ...)$$

- Classifique cada uma das seguintes progressões geométricas como crescente, decrescente, constante, **B.8** oscilante ou quase nula.
 - a) (a_n) tal que $a_n = 3 \cdot 2^{3-n}$, $\forall n, n \in \mathbb{N}^*$.
 - b) (a_n) tal que $a_n = \frac{2^{n+3} + 2^n}{2^n}$, $\forall n, n \in \mathbb{N}^*$.
 - c) (a_n) tal que $a_n = 5(-1)^n$, $\forall n, n \in \mathbb{N}^*$.
- Para que valores reais de x a P.G. $\left(x, \frac{x}{3}, \frac{x}{9}, \frac{x}{27}, \dots\right)$ é crescente?
- Sabendo que a P.G. $\left(x, \frac{x}{3}, \frac{x}{9}, \frac{x}{27}, \dots\right)$ é decrescente, determine os possíveis valores reais de x.
- Determine o décimo termo da P.G. (3, 6, 12, ...).
- Obtenha o 11° termo da P.G. $\left(\frac{1}{27}, \frac{1}{9}, \frac{1}{3}, \dots\right)$.
- Calcule a razão da P.G. $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_1 = 4$ e $a_6 = 128$.
- Encontre a razão da P.G. $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_1 = 2$ e $a_5 = 162$.
- Qual é o número de termos da P.G. $(512, 256, 128, ..., \frac{1}{1024})$?
- Determine o número de termos da P.G. $\left(\frac{1}{243}, \frac{1}{81}, \frac{1}{27}, \dots, 243\right)$.
- Obtenha o primeiro termo da P.G. $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_1 + a_4 = 28$ e $a_2 + a_5 = 84$.
- **B.18** Qual é a razão da P.G. $(a_n)_{n \in \mathbb{N}^*}$ tal que $a_1 + a_4 = 27$ e $a_3 + a_6 = 108$?

Respostas

B.1 a)
$$(6, 12, 24, 48, 96)$$
 é P.G., $q = 2$; b) $(3, 6, 9, 12, 15, 18)$ não é P.G.; c) $\left(\frac{1}{5}, \frac{1}{25}, \frac{1}{125}, \frac{1}{625}\right)$ é P.G., $q = \frac{1}{5}$; d) $\left(\frac{4}{3}, 8, 48, 288, 1728\right)$ é P.G., $q = 6$; e) $(1, 8, 81, 1024)$ não é P.G.; f) $\left(1, \frac{1}{2}, \frac{1}{4}\right)$ é P.G., $q = \frac{1}{2}$. **B.2** É P.G. **B.3** É P.G. **B.4** $q = \frac{1}{3}$. **B.5** $q = 3$. **B.6** $q = \frac{3}{2}$. **B.7** a) constante; b) crescente; c) decrescente; d) quase nula; e) oscilante; f) constante. **B.8** a) decrescente; b) constante; c) oscilante. **B.9** $\forall x, x \in \mathbb{R} \mid x < 0$. **B.10** $\forall x, x \in \mathbb{R} \mid x > 0$. **B.11** $a_{10} = 1536$. **B.12** $a_{11} = 2187$. **B.13** $q = 2$. **B.14** $q = 3$ ou $q = -3$. **B.15** $n = 20$. **B.16** $n = 11$. **B.17** $a_1 = 1$. **B.18** $q = 2$ ou $q = -2$.

Exercícios básicos

- **B.1** Calcule a soma dos onze primeiros termos da P.G. (2, 4, 8, ...).
- **B.2** Determine a soma dos dez primeiros termos da P.G. $\left(1, \frac{1}{2}, \frac{1}{4}, \dots\right)$.
- **B.3** Qual é a soma dos dez primeiros termos da P.G. (2, -4, 8, -16, ...)?
- **B.4** Obtenha a soma dos trinta primeiros termos da P.G. (2, -2, 2, -2, ...).
- **B.5** A soma dos n primeiros termos de uma P.G. é 5115. Determine n, sabendo que $a_1 = 5$ e q = 2.
- **B.6** Na P.G. $(a_1, a_2, a_3, ...)$ de razão q = 2, sabe-se que a soma dos oito primeiros termos é 765. Determine o valor de a_1 .
- **B.7** Calcule o produto dos dezoito primeiros termos da P.G. $\left(\frac{1}{256}, \frac{1}{128}, \frac{1}{64}, \dots\right)$.
- **B.8** Obtenha o produto dos dez primeiros termos da P.G. $\left(\frac{32}{243}, \frac{16}{81}, \frac{8}{27}, \dots\right)$.
- **B.9** Determine o produto dos onze primeiros termos da P.G. $\left(\frac{1}{5^{10}}, \frac{1}{5^8}, \frac{1}{5^6}, \dots\right)$.
- **B.10** Qual é a razão da P.G. $(a_1, a_2, a_3, ...)$, em que $a_1 = 1$ e o produto dos sete primeiros termos é 5?
- **B.11** Encontre o primeiro termo da P.G. $(a_1, a_2, a_3, ...)$, de razão q = 2, tal que o produto dos seus dez primeiros termos é 32.

Respostas

B.1
$$S_{11} = 4094$$
. **B.2** $S_{10} = \frac{1023}{512}$. **B.3** $S_{10} = -682$. **B.4** $S_{30} = 0$. **B.5** $n = 10$. **B.6** $a_1 = 3$. **B.7** $P_{18} = 512$. **B.8** $P_{10} = \frac{32}{243}$. **B.9** $P_{11} = 1$. **B.10** $q = \sqrt[21]{5}$. **B.11** $a_1 = \pm \frac{1}{16}$.

Exercícios básicos

- **B.1** Calcule a soma dos infinitos termos da P.G. (45, 15, 5, ...).
- B.2 Qual é a soma dos infinitos termos da P.G. (32, 8, 2, ...)?
- **B.3** A soma dos infinitos termos da P.G. $\left(x, \frac{x}{2}, \frac{x}{4}, \dots\right)$ é 5. Determine x.
- **B.4** A soma dos infinitos termos da P.G. $\left(\frac{x}{2}, \frac{x^2}{4}, \frac{x^3}{8}, \dots\right) \notin \frac{1}{10}$. Determine x.
- **B.5** Determine a geratriz da dízima periódica D = 1,323232...
- **B.6** Obtenha a geratriz da dízima periódica D = 2,83333...
- **B.7** A soma dos infinitos termos da P.G. $(a_1, a_2, a_3, ...) \in \frac{9}{2}$. Determine a razão dessa P.G. sabendo que $a_1 = 3$.
- **B.8** A soma dos infinitos termos da P.G. $(a_1, a_2, a_3, a_4, ...)$ é $\frac{27}{4}$. Determine a_1 , sabendo que a razão dessa P.G. é $q = \frac{2}{3}$.

Respostas

$$\mathbf{B.1} \ S_{\infty} = \frac{135}{2}. \ \mathbf{B.2} \ S_{\infty} = \frac{128}{3}. \ \mathbf{B.3} \ x = \frac{5}{2}. \ \mathbf{B.4} \ x = \frac{2}{11}. \ \mathbf{B.5} \ D = \frac{131}{99}. \ \mathbf{B.6} \ D = \frac{17}{6}. \ \mathbf{B.7} \ q = \frac{1}{3}. \ \mathbf{B.8} \ a_1 = \frac{9}{4}.$$