Master Degree in Computer Science
Master Degree in Data Science and Economics

Information Retrieval

Scoring, term weighting and the vector space model

Prof. Alfio Ferrara

Department of Computer Science, Università degli Studi di Milano Room 7012 via Celoria 18, 20133 Milano, Italia alfio.ferrara@unimi.it

Text transformation

In order to process queries and other IR tasks on text, we need to transform it into a model that can be computed by a machine

Such a model should be

- suitable for any kind of text
- capable of modeling interesting properties of text, such as the semantics
- suitable for matching texts and supporting the notion of *text similarity* in a quantitative framework

The vector space model (intuition)

Doc 1

TO REVISE THE CHARTER; Governor Soon to Announce His Choice of Commissioners. [...] The Commissioners declared that [...]

Doc 2

JAMES McCARTNEY DEAD.; The Commissioner of Street Cleaning Passes Away at His Home After a Long Illness.

Doc 3

DENY COLGAN LOST JOB OVER 'AL' SMITH; Hylan

Declares Cry of Politics Shows Attempt to Split Democratic

Party.

Doc	W 1	W2	•••
Doc1	1	2	
Doc 2	0	1	
Doc 3	1 0		

Mapping documents into the vector space

Doc 1

TO REVISE THE CHARTER; Governor Soon to Announce His Choice of Commissioners. [...] The Commissioners declared that [...]

```
TOKENIZE

['TO', 'REVISE', 'THE', 'CHARTER', ';', 'Governor', 'Soon', 'to', 'Announce', 'His', 'Choice', 'of', 'Commissioners', '.', 'The', 'Commissioners', 'declared', 'that']

NORMALIZE

['to', 'revis', 'the', 'charter', ';', 'governor', 'soon', 'to', 'announc', 'hi', 'choic', 'of', 'commission', '.', 'the', 'commission', 'declar', 'that']

WEIGHT

{'to': 2, 'the': 2, 'commission': 2, 'revis': 1, 'charter': 1, ';': 1, 'governor': 1, 'soon': 1, 'announc': 1, 'hi': 1, 'choic': 1, 'of': 1, '.': 1, 'declar': 1, 'that': 1}
```

INDEXING		to	the	commission	revis	charter	•	governor	soon	announc	hi	choic	of	. (declar	that
	Doc1	2	2	2	ī	1	7	1	1	1	1	7	1	1	1	7

Tokenize

REGEX https://www.nltk.org/_modules/nltk/tokenize/regexp.html

CORPUS-BASED https://www.nltk.org/api/nltk.tokenize.html

ML MODELS

RULE-BASED

https://spacy.io/usage/linguistic-features#tokenization*

Normalize

STEMMING

"The Porter stemming algorithm (or 'Porter stemmer') is a process for removing the commoner morphological and inflexional endings from words in English. Its main use is as part of a term normalisation process that is usually done when setting up Information Retrieval systems."

M.F. Porter, 1980, An algorithm for suffix stripping, Program, 14(3) pp 130-137.

DICTIONARY-BASED LEMMATIZATION

WordNet: https://wordnet.princeton.edu

ML-MODELS

https://spacy.io/usage/linguistic-features#lemmatization

WordNet

WordNet® is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical relations.

BOOLEAN 1 if
$$tf_{t,d} > 0$$
, 0 otherwise

AUGMENTED

$$0.5 + \frac{0.5tf_{t,d}}{max_{t'}(tf_{t'd})}$$

NATURAL
$$tf_{t,d} = count(t) \in d$$

LOG AVG

$$\frac{1 + \log(tf_{t,d})}{1 + \log(avg_{t \in d}(tf_{t,d}))}$$

$$\log 1 + \log(tf_{t,d})$$

MAX TF NORM

$$k + (1 - k) \frac{tf_{t,d}}{tf_{max}(d)}$$

Weight: Inverse Document Frequency (IDF)

Besides term frequency, another important measure for weighting terms is the **document frequency**. The document frequency df(t) of a term t is given by the number of documents d_i where $tf_{t,d_i} > 0$.

In many applications, we are interested in terms that are specific of a small subset of documents and, thus, have a low document frequency. To this end, we define the inverse document frequency *idft* as

$$idf_t = \log \frac{N}{df_t}$$

Weight: Inverse Document Frequency (IDF)

$$\log \frac{N}{df_t} = -\log \frac{df_t}{N}$$

$$\max \quad \log \left(\frac{\max_{t' \in d} df_{t'}}{1 + df_t} \right) + 1$$

SMOOTH
$$\log\left(\frac{N}{1+df_t}\right)+1$$
 PROBABILISTIC $\log\frac{N-df_t}{df_t}$

$$\log \frac{N - df_t}{df_t}$$

Weight: Tfldf

By combining term frequency and inverse document frequency we obtain a measure that takes into account the specific relevance of a terms with respect to a document

$$TfIdf(t,d) = tf_{t,d}idf_t = tf_{t,d}\log\frac{N}{df_t}$$

Tfldf is:

- high when t appears in a small number of documents (high discriminating)
- low when t appears a few times in d or when it appears in many documents (irrelevant or generic)

Exploit vectors to measure document distances

Distance	Definition	Interpretation	Distance	Definition	Interpretation		
Cosine Distance	$\frac{\sum_{i=1}^{n} a_{i}b_{i}}{\sqrt{\sum_{i=1}^{n} a_{1}^{2}} \sqrt{\sum_{i=1}^{n} b_{1}^{2}}}$	Cosine of the angle between the vectors	Canberra distance	$\sum_{i=1}^{n} \frac{ a_i - b_i }{ a_i b_i }$	Normalized version of Manhattan distance		
Euclidean Distance	$\sqrt{\sum_{i=1}^{n} a_i - b_i ^2}$	Vector points distance	Bray-Curtis distance	$\frac{\sum_{i=1}^{n} a_i - b_i }{\sum_{i=1}^{n} a_i + b_i }$	Variant of Manhattan distance		
Chebyshev distance	$\max_{i=1}^{n} (\mid a_i - b_i \mid)$	The greatest different along any dimension	Correlation distance	$\frac{\sum_{i=1}^{n} (a_i - avg \ a)(b_i - avg \ b)}{\sqrt{\left \sum_{i=1}^{n} (a_i - avg \ a)\right ^2} \sqrt{\left \sum_{i=1}^{n} (b_i - avg \ b)\right ^2}}$	Equivalent to Cosine Distance of vectors shifted by their means		
Manhattan distance	$\sum_{i=1}^{n} a_i - b_i $	Distance in a grid	Minkowski distance	$\left(\sum_{i=1}^{n} a_i - b_i ^p\right)^{\frac{1}{p}}$	Generalization of Manhattan (p=1) and Euclidean (p=2) distances		