CSE 474 Pattern Recognition Sessional

Lab# 2: Implementation of Perceptron and its variants

Lab Objective

- Implement 2-class classifiers using
 - Basic perceptron algorithm
 - Reward and punishment (RP) algorithm
 - Pocket algorithm

Training Data

• Assume the following training set

- 2 classes
- 3 features

What to do

• Assume the following training set

- All numerical data
- Features are real numbers
- Classes are integers

F1	F2	F2	Class
9.4512	7.3199	6.4664	1
10.7276	9.6067	5.9398	2
10.1960	9.3145	8.3873	1
15.7777	1.5879	11.4440	1
15.8685	2.7902	11.2532	1
14.9448	0.7798	12.7481	2

What to do

• Use the training set to learn a perceptron for each of the 3 variants (e.g., basic, RP and Pocket)

Perceptron

Training Set

F1	F2	F2	Class
9.4512	7.3199	6.4664	1
10.7276	9.6067	5.9398	2
10.1960	9.3145	8.3873	1
15.7777	1.5879	11.4440	1
15.8685	2.7902	11.2532	1
14.9448	0.7798	12.7481	2

What to do

• Given an unknown sample,

$$[x_1, x_2, x_3] = [10.1960 \quad 9.3145 \quad 8.3873]$$

Predict its class!

Training Files

- 2 Training Files
 - trainLinearlyNonSeparable.txt for pocket algorithm
 - trainLinearlySeparable.txt
 for other 2 algorithms
 - File format:
 - first line contains 3 integers d m n. d= no. of features, m= no. of classes, n=no. of samples
 - Each of next *n* lines contains *d*+1 numbers: *d* feature values followed by its class in integer

Testing Files

- 2 Testing files
 - testLinearlyNonSeparable.txt
 for pocket algorithm
 testLinearlySeparable.txt
 for other 2 algorithms
 - Format is identical but the first line is removed

Output

- For each of the 3 algorithms
 - Learn the perceptron using corresponding training file
 - Use the corresponding testing file to identify all misclassified samples and report as follows

sample no. feature values actual class predicted class

- % of accuracy

Other information

- Your program must be able to handle variable no. of features. Hard coded feature representation will NOT be accepted.
- Submission deadline is 26/09/2020 at 9 am
- Sample training and testing files are available in the moodle
- Follow the algorithms and notations of your text book (e.g., *Pattern Recognition* by S. Theodoridis)
- You can use your own data to judge your code
- Different files will be used during evaluation