Programare logică

Substituţii. Unificare

F. Baader, T. Nipkow,

Terms Rewriting and All That,

Cambridge University Press, 1998.

Substituţie

 (S,Σ) signatură multisortată, X şi Y mulţimi de variabile O substituţie a variabilelor din X cu termeni din $T_{\Sigma}(Y)$ este o funcţie $\nu:X\to T_{\Sigma}(Y)$.

Substituţia ν se extinde la o funcţie $\tilde{\nu}: T_{\Sigma}(X) \to T_{\Sigma}(Y)$ după cum urmează:

- $\tilde{\nu}_s(x) := \nu(x) \text{ or. } x \in X_s,$
- $ullet ilde
 u_s(\sigma) := \sigma \text{ or. } \sigma : o s,$
- $\tilde{\nu}_s(\sigma(t_1,\ldots,t_n)):=\sigma(\tilde{\nu}_{s_1}(t_1),\ldots,\tilde{\nu}_{s_n}(t_n)) \text{ or. }$ $\sigma:s_1\ldots s_n\to s \text{, or. } t_1\in T_\Sigma(X)_{s_1},\ldots,t_n\in T_\Sigma(X)_{s_n}.$

Observaţie: $\tilde{\nu}: T_{\Sigma}(X) \to T_{\Sigma}(Y)$ morfism de (S, Σ) -algebre.

Substituţie

X, Y și Z mulțimi de variabile

- ■Dacă $\nu: X \to T_\Sigma(Y)$, $\mu: X \to T_\Sigma(Y)$ atunci $\nu = \mu \Leftrightarrow \tilde{\nu} = \tilde{\mu}$.
 - vom identifica frecvent $\tilde{\nu}$ cu ν
- $\{x_1 \leftarrow t_1, \cdots, x_n \leftarrow t_n\}$ e notaţie pt. $\sigma: X \to T_{\Sigma}(X)$, $\sigma(x_i) := t_i$ or. $i = 1, \dots, n$ şi $\sigma(x) := x$ pt. $x \neq x_i$
- **c**ompunerea substituţiilor $\nu: X \to T_{\Sigma}(Y)$, $\mu: Y \to T_{\Sigma}(Z)$ $\nu; \mu: X \to T_{\Sigma}(Z)$, $(\nu; \mu)_s(x) := \nu; \tilde{\mu}$
- compunerea substituţiilor este asociativă,
- compunerea substituţiilor nu este în general comutativă,

Exemple

$$S = \{s\}, \ \Sigma = \{a : \rightarrow s, p : sssss \rightarrow s, f : s \rightarrow s, g : s \rightarrow s\},\ X = \{x, y, z, u, v\}$$

$$t = p(u, v, x, y, z)$$

$$\nu = \{x \leftarrow f(y), y \leftarrow f(a), z \leftarrow u\}$$

$$\mu = \{y \leftarrow g(a), u \leftarrow z, v \leftarrow f(f(a))\}$$

$$\nu(t) = p(u, v, f(y), f(a), u)$$

$$\nu; \mu = \{x \leftarrow f(g(a)), y \leftarrow f(a), u \leftarrow z, v \leftarrow f(f(a))\}$$

$$(\nu; \mu)(t) = p(z, f(f(a)), f(g(a)), f(a), z)$$

Unificare. Cazul monosortat.

 $(S = \{s\}, \Sigma)$ signatură, X mulţime de variabile

■O ecuaţie este o pereche de termeni $\langle t, t' \rangle$, unde $t, t' \in T_{\Sigma}(X)$.

Ecuaţia $\langle t, t' \rangle$ o vom nota $t \doteq t'$.

≐ egalitate formală, = egalitate efectivă

■O problemă de unificare este o mulţime finită de ecuaţii

$$U = \{t_1 \doteq t_1', \dots, t_n \doteq t_n'\}$$

Unificare. Cazul monosortat.

 $(S = \{s\}, \Sigma)$ signatură, X mulţime de variabile $U = \{t_1 \doteq t'_1, \dots, t_n \doteq t'_n\}$ problemă de unificare

- ■Un unificator (o soluţie) pentru U este o substituţie $\nu: X \to T_{\Sigma}(X)$ a.î. $\nu(t_i) = \nu(t_i')$ or. $i = 1, \ldots, n$. Notăm cu Unif(U) mulţimea unificatorilor lui U.
- ■Un unificator $\nu \in Unif(U)$ este un cel mai general unificator (cgu, mgu) dacă or. $\nu' \in Unif(U)$ ex. τ substituţie a.î. $\nu' = \nu; \tau$.
- Algoritmul de unificare va determina cgu pentru problema de unificare sau va răspunde ca problema nu admite unificatori.

Exemplu

$$S = \{s\}, \ \Sigma = \{0 : \to s, + : ss \to s, * : ss \to s\}, \ X = \{x, y, z\}$$

$$t = x + (y * y) = +(x, *(y, y)),$$

$$u = x + (y * x) = +(x, *(y, x))$$

- $\mathbf{v}(x) := y, \, \nu(y) := y, \, \nu(z) := z,$
- $\mathbf{v}'(x) := 0, \ \nu'(y) := 0, \ \nu'(z) := z, \ \nu' = \nu; \{y \leftarrow 0\}$
- $\mathbf{v}''(x) := z + 0, \ \nu''(y) := z + 0, \ \nu''(z) := z,$ $\nu'' = \nu; \{y \leftarrow z + 0\}$
- $\mu(x) := z, \, \mu(y) := z, \, \mu(z) := z, \, \mu = \nu; \{y \leftarrow z\}$
- \mathbf{v} şi μ sunt cgu cgu nu este unic

Unificare

 $(S = \{*\}, \Sigma)$ signatură, X mulţime de variabile

Spunem că problema de unificare

$$R = \{x_1 \stackrel{.}{=} t_1, \dots, x_n \stackrel{.}{=} t_n\}$$
 este rezolvată dacă

- $\blacksquare x_i \in X$, $x_1 \neq x_j$ or. $i \neq j$
- $\blacksquare x_i \not\in \bigcup_{i=1}^n Var(t_i) \text{ or. } i=1,\ldots,n.$
- O problemă rezolvată R defineşte o substituţie ν_R astfel:
- ■Propoziţie. ν_R este cgu idempotent pentru R, i.e.

$$u_R \in Unif(R), \ \nu' = \nu_R; \nu' \text{ or. } \nu' \in Unif(R),$$
 $u_R; \nu_R = \nu_R.$