HALOGEN

FREE

Vishay Siliconix

Dual N-Channel 30 V (D-S) MOSFET with Schottky Diode

PRODUCT SUMMARY		
	CHANNEL-1	CHANNEL-2
V _{DS} (V)	30	30
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 10 \text{ V}$	0.00450	0.00190
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 4.5 \text{ V}$	0.00750	0.00260
Q _g typ. (nC)	6.9	19.4
I _D (A) ^a	83	143
Configuration	Du	ıal

FEATURES

- TrenchFET® Gen IV power MOSFET
- SkyFET® low side MOSFET with integrated Schottky
- 100 % R_g and UIS tested
- Double cooled feature provides additional avenue for thermal transfer
- Internally connected half-bridge configuration in 3.3 mm-by-3.3 mm footprint
- Material categorization: for definitions compliance please see www.vishav.com/doc?99912

APPLICATIONS

- CPU core power
- · Computer / server peripherals
- · Synchronous buck converter
- Telecom DC/DC

GND/S₂

N-Channel 2 MOSFET

ORDERING INFORMATION	
Package	PowerPAIR 3 x 3FDC
Lead (Pb)-free and halogen-free	SiZF360DT-T1-GE3

PARAMETER	SYMBOL	CHANNEL-1	CHANNEL-2	UNIT	
Drain-source voltage		V_{DS}	30	30	V
Gate-source voltage		V_{GS}	+20, -16	+16, -12	V
	T _C = 25 °C		83	143	
Continuous drain surrent /T 150 °C)	T _C = 70 °C	1 , [66	114	
Continuous drain current (T _J = 150 °C)	T _A = 25 °C	I _D	23 b, c	34 ^{b, c}	
	T _A = 70 °C		18 ^{b, c}	27 b, c	А
Pulsed drain current (t = 100 µs)		I _{DM}	150	200	_ A
Continuous accuracy during displacement	T _C = 25 °C		47	111	
Continuous source-drain diode current	T _A = 25 °C	I _S	3.4 ^{b, c}	6.2 ^{b, c}	
Single pulse avalanche current	. 0.1!!	I _{AS}	14	16	
Single pulse avalanche energy	L = 0.1 mH	E _{AS}	9.8	12.8	mJ
	T _C = 25 °C		52	78	
NAC TO CONTRACT OF THE CONTRAC	T _C = 70 °C		33	50	14/
Maximum power dissipation	T _A = 25 °C	P _D	3.8 b, c	4.3 b, c	W
	T _A = 70 °C	1	2.4 b, c	2.8 b, c	
Operating junction and storage temperatu	T _J , T _{stq}	-55 to	+150	00	
Soldering recommendations (peak tempe	5 0.9	26	60	°C	

THERMAL RESISTANCE RATINGS								
PARAMETER		SYMBOL	CHAN	NEL-1	CHAN	NEL-2	UNIT	
PARAMETER		STINIBUL	TYP.	MAX.	TYP.	MAX.	UNII	
Maximum junction-to-ambient b, f	t ≤ 10 s	R _{thJA}	26	33	23	29		
Maximum junction-to-case (drain)	Steady state	R _{thJC}	1.8	2.4	0.76	1	°C/W	
Maximum junction-to-case (source)	Steady state	R_{thJC}	2.6	3.4	1.2	1.6		

Notes

- a. $T_C = 25 \, ^{\circ}\text{C}$ b. Surface mounted on 1" x 1" FR4 board
- See solder profile (www.vishay.com/doc?73257). The PowerPAIR 3 x 3FDC is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- Maximum under steady state conditions is 66 °C/W for channel-1 and 67 °C/W for channel-2

Vishay Siliconix

Drain-source breakdown voltage V _{GS} V _{GS} = 0 V, I _D = 250 μA Ch1 1 30 0 - Ch2 30 Ch2 Ch	PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Drain-source breakdown voltage Vos		01502	1201 001121110110				1017 0 41	0
Company Com		.,	V 0V 1 050 A	Ch-1	30	_	_	
Gate-source threshold voltage V _{OS} = V _{OS} = 0, V	Drain-source breakdown voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30	-	-	١,,
Caste-source leakage Igos Vos = 0V, Vos = +20V, -16V Ch-1 ± 100 NA	O-t		V V I 050 A	Ch-1	1.1	-	2.2	V
Variety Var	Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	Ch-2	1.0	-	2.2	
Vos = 0 V, Vos = 16 V, -12 V Ch-2	Gate-source leakage	lana	$V_{DS} = 0 \text{ V}, V_{GS} = +20 \text{ V}, -16 \text{ V}$	Ch-1	-	-		nΔ
Zero Gate voltage drain current Incompto Vos = 30 V, Vos = 0 V Ch-2 - 30 350 Mag	Gate-Source leakage	GSS	$V_{DS} = 0 \text{ V}, V_{GS} = +16 \text{ V}, -12 \text{ V}$	Ch-2	-	=.	± 100	11/4
Loss Vos = 30 V, Vos = 0 V, T _J = 55 °C Ch-1 5 0 0 0 0 0			$V_{DS} = 30 \text{ V}. V_{GS} = 0 \text{ V}$		-	-		
Vos = 30 V, Vos = 0 V, T _J = 55° C Ch-1	Zero Gate voltage drain current	I _{DSS}	50					μΑ
On-state drain current b I _{O(m)} V _{DS} ≥ 5 V, V _{GS} = 10 V Ch-1 (Ch-2) (10	-		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$				-	
On-state drain current b Injunit Vision 2 b, Vision 2 b, Vision 2 b, Vision 3 b, Vi						150	3000	
Prain-source on-state resistance Property Proper	On-state drain current ^b	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$				_	Α
Prain-source on-state resistance Property Proper			Vcc = 10 V In = 10 A			0.00330	0.00450	
Property of the property of								1
Forward transconductance Part	Drain-source on-state resistance b	R _{DS(on)}			-			Ω
Forward transconductance Part				Ch-2	-			
Post	Farmer distance h			Ch-1	-	60	-	
Comput capacitance Comput	Forward transconductance	9 _{fs}		Ch-2		90	-	5
	Dynamic ^a							
Channel-1 VDS = 15 V, VGS = 0 V, f = 1 MHz Ch-1 - 530 - 1	Input capacitance	Ciaa			-	1100	-	
$ \begin{array}{c} \text{Output capacitance} \\ \text{Reverse transfer capacitance} \\ \text{Reverse transfer capacitance} \\ \text{Reverse transfer capacitance} \\ \text{C}_{rss} \\ \text$	mpat dapaoitando	OISS	Channel-1		-		-	
$ \begin{array}{c} \text{Reverse transfer capacitance} & C_{rss} \\ \text{Channel-2} \\ \text{V}_{DS} = 15 \text{ V, V}_{GS} = 0 \text{ V, f} = 1 \text{ MHz} \\ \text{Ch-1} & - & 40 & - \\ \hline \text{Ch-2} & - & 170 & - \\ \hline \text{Ch-1} & - & 0.036 & 0.072 \\ \hline \text{Ch-2} & - & 0.054 & 0.108 \\ \hline \text{Ch-2} & - & 41 & 62 \\ \hline \text{Ch-2} & - & 41 & 62 \\ \hline \text{Ch-2} & - & 41 & 62 \\ \hline \text{Ch-2} & - & 41 & 62 \\ \hline \text{Ch-2} & - & 41 & 62 \\ \hline \text{Ch-2} & - & 41 & 62 \\ \hline \text{Ch-2} & - & 41 & 62 \\ \hline \text{Ch-2} & - & 19.4 & 29 \\ \hline \text{Ch-1} & - & 6.9 & 10.5 \\ \hline \text{Ch-2} & - & 19.4 & 29 \\ \hline \text{Ch-1} & - & 3.1 & - \\ \hline \text{Ch-2} & - & 7.1 & - \\ \hline \text{Ch-2} & - & 7.1 & - \\ \hline \text{Ch-2} & - & 7.1 & - \\ \hline \text{Ch-2} & - & 3.8 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-2} & - & 3.8 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-2} & - & 3.8 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-2} & - & 3.8 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-2} & - & 3.8 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-2} & - & 3.8 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-2} & - & 3.8 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-2} & - & 3.8 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-2} & - & 3.8 & - \\ \hline \text{Ch-2} & - & 3.8 & - \\ \hline \text{Ch-1} & - & 1.5 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 40 & - \\ \hline \text{Ch-2} & - & 2.5 & 50 \\ \hline \text{Ch-2} & - & 2.5 & 50 \\ \hline \text{Ch-2} & - & 2.5 & 50 \\ \hline \text{Ch-2} & - & 2.5 & 50 \\ \hline \text{Ch-2} & - & 2.5 & 50 \\ \hline \text{Ch-1} & - & 2.3 & 45 \\ \hline \text{Ch-2} & - & 12 & 25 \\ \hline \text{Ch-1} & - & 2.3 & 45 \\ \hline \text{Ch-2} & - & 12 & 25 \\ \hline \text{Ch-1} & - & 11 & 20 \\ \hline \text{Ch-2} & - & 12 & 25 \\ \hline \text{Ch-1} & - & 2.3 & 45 \\ \hline \text{Ch-2} & - & 12 & 25 \\ \hline \text{Ch-1} & - & 2.3 & 45 \\ \hline \text{Ch-2} & - & 12 & 25 \\ \hline \text{Ch-1} & - & 2.3 & 45 \\ \hline \text{Ch-2} & - & 12 & 25 \\ \hline \text{Ch-1} & - & 2.3 & 45 \\ \hline \text{Ch-2} & - & 12 & 25 \\ \hline \text{Ch-1} & - & 2.3 & 45 \\ \hline \text{Ch-2} & - & 12 & 25 \\ \hline \text{Ch-1} & - & 2.3 & 45 \\ \hline Ch-2$	Output capacitance	Coss			-		-	pF
$ \begin{array}{c} \text{Reverse transfer capacitance} \\ C_{rss}/C_{liss} \text{ ratio} \\ \\ C_{rss}/C_{liss} \text{ ratio} \\ \\ C_{rss}/C_{liss} \text{ ratio} \\ \\ \\ C_{rss}/C_{liss} \text{ ratio} \\ \\ C_{rss}/C_{liss} \text{ ratio} \\ \\ \\ C_{rss}/C_{liss} \text{ ratio} \\ \\ C_{rss}/C_{liss}/C_{liss} \text{ ratio} \\ \\ \\ C_{rss}/C_{liss}/C_{lis$		- 033					-	, ,
$ \begin{array}{c} C_{rss}/C_{iss} ratio \\ \hline \\ C_{rss}/C_{iss}/$	Reverse transfer capacitance	C _{rss}	Channel-2		-		-	
	<u> </u>			_	-		0.072	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	C _{rss} /C _{iss} ratio				-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$					1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total gate charge	Q_g						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Osta sauras abarras	0	VDS = 13 V, VGS = 4.3 V, ID = 10 A	Ch-1	-	3.1	-	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-source charge	Q_{gs}	<u>.</u>	Ch-2	ı	7.1	-	nC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-drain charge	0 .		Ch-1	1	1.5	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-drain Charge	Gga	V _{DS} = 13 V, V _{GS} = 4.3 V, I _D = 10 A	Ch-2	-	3.8	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output charge	Qoss	$V_{DS} = 15 \text{ V}. V_{GS} = 0 \text{ V}$		-		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		055	103 11, 103 11				-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate resistance	Ra	f = 1 MHz					Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on delay time	t _{d(on)}	Channel-1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise time	t _r	$I_D \cong 5 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$			_		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I urn-off delay time	t _{d(off)}			-			•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall time				-	7	15	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	raii uitie	ξf	Channel 1		-	12	25	nc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on delay time	† _{4/} \			-			119
Rise time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tani on dolay timo	^L d(on)			-			
Turn-off delay time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise time	t,	$I_D \cong 5 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$					
Turn-off delay time $ \begin{array}{c ccccc} t_{d(off)} & Channel-2 & Ch-2 & - & 32 & 65 \\ V_{DD} = 15 \text{ V}, \text{ R}_L = 3 \Omega & Ch-1 & - & 5 & 10 \\ \hline Fall time & t_c & I_D \cong 5 \text{ A}, V_{GEN} = 10 \text{ V}, R_0 = 1 \Omega \\ \end{array} $	-	=1						
$V_{DD} = 15 \text{ V}, R_L = 3 \Omega$ $V_{DD} = 5 \text{ A}, V_{GEN} = 10 \text{ V}, R_0 = 1 \Omega$ Fall time t, $V_{DD} = 5 \text{ A}, V_{GEN} = 10 \text{ V}, R_0 = 1 \Omega$	Turn-off delay time	t _{d(off)}	Channel-2					
Fall time $t_c = \int A \cdot V_{CEN} = 10 \text{ V}$, $R_0 = 1 \Omega = \frac{Cn^{-1}}{2} = \frac{5}{2} = \frac{10}{2}$		2(0)	V 15 V B 3 O					
	Fall time	t _f		Ch-1 Ch-2	-	5 6	10 15	-

www.vishay.com

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C	, unless ot	herwise noted)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT		
Drain-Source Body Diode Characteristics									
Continuous source-drain diode current	l _s	T _C = 25 °C	Ch-1	1	-	47			
Continuous source-drain diode current	IS	1C = 25 O	Ch-2	ı	ı	111	Δ		
Pulse diode forward current a	L		Ch-1	1	-	150	V ns nC ns		
ruise diode forward current ~	I _{SM}		Ch-2	1	-	200			
Body diode voltage	V_{SD}	$I_S = 5 A, V_{GS} = 0 V$	Ch-1	-	0.75	1.1	V ns		
Body diode voltage	V _{SD}	$I_S = 5 A, V_{GS} = 0 V$	$I_S = 5 \text{ A}, V_{GS} = 0 \text{ V}$ Ch-2 - 0		0.44	0.7	\ \ \		
Body diode reverse recovery time			Ch-1	1	36	75	200		
Body diode reverse recovery time	t _{rr}	Channel-1	Ch-2	-	46	90	115		
Pody diada rayaraa raaayary aharaa	Q _{rr}	I _F = 10 A, di/dt = 100 A/μs, T _{.I} = 25 °C	Ch-1	-	26	55	nC		
Body diode reverse recovery charge		1,1 - 20 0	Ch-2	-	40	80			
Poverse receivery fall time	+	Observat O	Ch-1	-	16	-			
Reverse recovery fall time	ι _a		Ch-2	-	18	-	20		
Poverse recovery rise time	t _a Channel-2 Ch-2 - I _F = 10 A, di/dt = 100 A/μs, T ₁ = 25 °C Ch-1 -	20		IIS					
Reverse recovery rise time	t _b			-	28	-			

Notes

- a. Guaranteed by design, not subject to production testing
- b. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Output Characteristics

On-Resistance vs. Drain Current

Transfer Characteristics

Capacitance

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Power, Junction-to-Case

Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case (Drain)

Normalized Thermal Transient Impedance, Junction-to-Case (Source)

Output Characteristics

On-Resistance vs. Drain Current

Transfer Characteristics

Capacitance

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Reverse Current (Schottky)

Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Power, Junction-to-Case

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case (Source)

Normalized Thermal Transient Impedance, Junction-to-Case (Drain)

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?77233.

PowerPAIR® 3 x 3F Case Outline

DIM		MILLIMETERS		INCHES				
DIM.	MIN.	NOM.	MAX.	MIN. NOM. M				
А	0.70	0.75	0.80	0.028	0.030	0.032		
A1	0.00	0.02	0.05	0.000	0.001	0.002		
b	0.25	0.30	0.35	0.010	0.012	0.014		
С	0.20 ref. 0.008 ref.							
D	3.20	3.30	3.40	0.126	0.130	0.134		
D1	2.15	2.20	2.25	0.085	0.087	0.089		
D2	2.45	2.50	2.55	0.096	0.098	0.100		
D3	0.65	0.70	0.75	0.026	0.028	0.030		
D4	1.75	1.80	1.85	0.069	0.071	0.073		
Е	3.20	3.30	3.40	0.126	0.130	0.134		
E1	0.69	0.74	0.79	0.027	0.029	0.031		
E2	1.73	1.78	1.93	0.068	0.070	0.072		
E3	0.92	0.97	1.02	0.036	0.038	0.040		
E4	0.76	0.81	0.86	0.030	0.032	0.034		
е		0.80 BSC			0.031 BSC			
K1		0.40 ref.			0.016 ref.			
K2		0.50 ref.			0.020 ref.			
K3	0.35 ref.				0.014 ref.			
K4	0.25 ref.			0.010 ref.				
H1		0.30 ref.		0.012 ref.				
H2		0.25 ref.			0.010 ref.			
H3	0.15 ref.				0.006 ref.			
L	0.35	0.40	0.45	0.014	0.016	0.018		
L1	0.80	0.85	0.90	0.031	0.033	0.035		

T18-0135-Rev. A, 02-Apr-18 DWG: 6065

Notes

- (1) Use millimeters as the primary measurement
- (2) Dimensioning and tolerances conform to ASME Y14.5M 1994
- (3) N is the number of terminals; Nd is the numer of terminals in X-direction; Ne is the number of terminals in Y-direction
- (4) Dimension b applies to plated terminal and is measured between 0.20 mm and 0.25 mm from terminal tip
- ⁵⁾ The pin # 1 identifier must be existed on the top surface of the package by using identation mark or other feature of package body
- (6) Exact shape and size of this features is optional
- (7) Package warpage max. 0.08 mm
- 8) Applied only for terminals

Revision: 02-Apr-18

Document Number: 76603

Recommended Land Pattern for PowerPAIR® 3.3 x 3.3F BWL

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.