	Ex 1. Derive Bayes' rule:
	$\frac{b(x)}{b(x)} = \frac{b(x)}{b(x)}$
	= P(X H;)P(H;) by P3 P(X)
	= p(XIH:) p(H:) by rule of marginal prob. \[\sum_{\mu} p(\text{Hu}) p(\text{Hu}) \]
	Ex 2: Show FIG IH >> p(FIH,G)= p(FIH)
(1)	p(F,G H) = p(F H)p(G H) by definition but also
(#)	p(F,G H) = p(F G,H)p(G H) by P3 matching up (t) & (tt): $p(F G,H)p(G H) = p(F H)p(G H)$
	Support set of valves a r.v. can
	x~binomial (n, θ) x ∈ §0,,n}

	Exercise: identify the kernel
	gamma kernel: xx-1 e-8x
	Exercise. $\int_{0}^{\infty} x^{\kappa-1} e^{-\beta x} dx = ?$
	Γ(α)
	B*
-	
	Law of total expectation
	$= \int \left[\int x b(x) \theta \right] dx b(\theta) d\theta$
	$= \int x \int \rho(x \theta) \rho(\theta) dx$ $= \int x \int \rho(x \theta) \rho(\theta) dx$
	= \int x p(x) dx by rule of marginal prob. = EX []
	E P V C C

Defin exchangeable (subscripts don't motter)
Let $p(y_1,,y_n)$ be the joint density of Y,, Yn. If $p(y_1,,y_n) = p(y_n,,y_{n-1}, for$ all permutations π of $\{1,,n\}$ then Y,, Yn ore exchangeable.
Ex1: Un with 2 red, 1 areen $p(Y_1 = red, Y_2 = green) = p(Y_1 = red) \cdot p(Y_2 = green) Y_1 = red$ $= \frac{2}{3} \cdot \frac{1}{2}$ $= \frac{2}{6} = \frac{1}{3}$
p(Y,= green, Y2= red) = p(Y,= green) . P(Y2= red 1Y,= gree = 1/3 .
 Y, Y2 are exchangeable even though noterindependent.
Ex2. coin 1 is a fair (vin coin 2 is double sided (heads only)
$Pr(Y_2 = H) = 1$ $Q(Q_1) = 0.5$
$p(1,0) = 0$ $y_1, y_2 = are not exchange able -$

-	Claim:
	1f & ~ p(8) and Y Yn are conditionally iid given & then marginally (unconditional on 8) Y Yn are exchangeable.
	Proof:
	p(y,,yn) = [p(y,,yn10) p(0) d0 by rule of marginal prob.
	= Str p(y:10) p(0)dd by cond! iid
	= \{\frac{17}{17} p(yn, 10)\} p(0) do products commute
	$= p(y_{\pi_1}, \dots, y_{\pi_n})$
	de Finetti's +hm:
	exchangeable Y,, Y, 4 n
	=> Y_1 , $Y_n \mid \theta$ iid (for some parameter θ) and prior distribution $p(\theta)$.
	· very cool because exchangeability is common! Y, , Y, -> from repeatable experiment -> samples we replacement -> oo populato replacement