

planetmath.org

Math for the people, by the people.

proof of monotonicity criterion

Canonical name ProofOfMonotonicityCriterion

Date of creation 2013-03-22 13:45:14 Last modified on 2013-03-22 13:45:14

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 6

Author paolini (1187)

Entry type Proof

Classification msc 26A06

Let us start from the implications " \Rightarrow ".

Suppose that $f'(x) \geq 0$ for all $x \in (a,b)$. We want to prove that therefore f is increasing. So take $x_1, x_2 \in [a,b]$ with $x_1 < x_2$. Applying the mean-value Theorem on the interval $[x_1, x_2]$ we know that there exists a point $x \in (x_1, x_2)$ such that

$$f(x_2) - f(x_1) = f'(x)(x_2 - x_1)$$

and being $f'(x) \ge 0$ we conclude that $f(x_2) \ge f(x_1)$.

This proves the first claim. The other three cases can be achieved with minor modifications: replace all " \geq " respectively with \leq , > and <.

Let us now prove the implication " \Leftarrow " for the first and second statement. Given $x \in (a, b)$ consider the ratio

$$\frac{f(x+h)-f(x)}{h}.$$

If f is increasing the numerator of this ratio is ≥ 0 when h > 0 and is ≤ 0 when h < 0. Anyway the ratio is ≥ 0 since the denominator has the same sign of the numerator. Since we know by hypothesis that the function f is differentiable in x we can pass to the limit to conclude that

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \ge 0.$$

If f is decreasing the ratio considered turns out to be ≤ 0 hence the conclusion $f'(x) \leq 0$.

Notice that if we suppose that f is strictly increasing we obtain the this ratio is > 0, but passing to the limit as $h \to 0$ we cannot conclude that f'(x) > 0 but only (again) $f'(x) \ge 0$.