Molecular Quantum Tunneling Devices for Nanoscale Attonewton Force Sensing

Ben Safvati

Manoharan Lab, Stanford University

Electron-Mediated Casimir Forces

PRL 85, 2981 (2000)

- Observed long-range (~1/d²) oscillatory interaction with period λ_c/2.
- Adatom separation statistics, no local information.

PRL 101, 226601 (2008)

- Nanoscale resonator to study surface state confinement, control impurity diffusion.
- Long (~19 h) measurement times, averaged data.

Impurities Within an Electron Gas

- CO on Cu(111).
- Impurities are "walls" that set wavefunction boundary conditions.
- 2DEG influences formation of defects on the surface.

Atomic Manipulation with STM

Quantum Force Sensors

Quantum Force Sensors

$$F = \frac{\Delta E}{\Delta d} \approx -\log\left(\frac{t_1}{t_2}\right)$$

Quantum Force Sensors

Fermionic Casimir Forces: Point Source

Wall Source

Circular Source

 True 1D case is line-to-line, collapsing source to a point maps conformally to circular source.

Non-Local Effects from Background Particle Fields

Non-Local Effects from Background Particle Fields

Increasing Force Sensitivity

- For 30 minute acquisitions we reach <1 fN sensitivity.
- Sensing resolution increased with faster switching rates, larger sampling time.
 - Driving sensor into excited state.
 - Molecular engineering of switching molecule.

Conclusions

