2022 fall ADL HW3 Report

R11922A15 張仲喆

Q1: Model

1.Describe the model architecture

T5 是encoder-decoder的架構,並利用span corruption (denoising)作為 pretaining objective,且與BART輸出整句sentence不同,T5是將task設定為預測「被mask/noise」的部分。且T5是將所有task都以Seq2Seq的方式 pretrain,故在fine-tune/實作時只需要在輸入起始點加入「summarize:」便可以進行summarization的任務。

2. Preprocessing

利用mT5自帶的tokenizer,將context tokenize後再padding至max length (1024),並沒有做特別的data cleaning。

Q2: Training

a. Hyperparameter

- Learning rate = 5e-5
- Batch size = 8
- Max source length = 1024
- Max output length = 128
- Optimizer: AdamW
- Loss function: Cross Entropy loss
- Num-Beam = 16

b. Learning curve (15 epoch)

(batch size = 8, beam search w=4)

Q3: Generation Strategies

a. Strategies

- Greedy

- 模型會在每個word預測時,選擇當下機率最高的word作為output,以此逐一輸出整個sentence。

- Beam search

- 模型會保留機率前n個高(beam width) word, 並各自進行下一次的預測, 再次取前n個prediction繼續下一次的預測,最後再選出機率最高的 sentence最為輸出。

- Top-k Sampling

- 取出top-k個probability的word,並修正probability的總和為1後,利用其機率選出每個位置的output word。

- Top-p Sampling

- 與top-k是接近的概念,選出機率前幾大的word,並將其機率加總需大於 hyperparameter p∈(0, 1),再從中依照機率隨機取出output word。

- Temperature

- Temperature是利用在softmax中加入參數τ,使得word的diversity得以調整。
 - higher τ : more uniform, more diversity
 - Lower τ : more spiky, less diversity

$$P(w_t) = \frac{e^{s_w/\tau}}{\sum_{w' \in V} e^{s_{w'}/\tau}}$$

b. Performance (other hyperparams same as Q2) train for 5 epoch

	rouge-1	rouge-2	Rouge-I
Greedy	22.76	8.32	20.58
Beam search w=4	24.90	9.51	21.70
Beam search w=16	24.91	9.68	21.67
top_k = 2	22.19	7.81	20.00
top_k = 8	20.55	6.82	18.30
top_p = 0.5	21.45	7.60	19.26
top_p = 0.9	18.60	6.63	16.50
temperature = 0.3	20.99	7.07	18.79
temperature = 0.8	22.59	8.17	20.33

- Final strategy: Beam search 4

- Good performance & faster inference time than beam16