Effective Pest Treament That Protects Pollinators

https://github.com/shivanikuckreja/CitrolaKuckrejaSaltman_ENV872_E DA_FinalProject/tree/main/Project

Sam Saltman, Shivani Kuckreja, Jessica Citrola

Contents

1	Rationale and Research Questions	5
2	Dataset Information	6
3	Exploratory Analysis	7
4	Analysis 4.1 Question 1: Is there an exposure type that is more likely to cause mortality for bees vs. non-bee insects?	141418
5	Summary and Conclusions	21
6	References	22

T	ict	α f	T_{2}	\mathbf{h}	les
	ロラし	OT.			

9	Species List	r
_	Species List	

List of Figures

1	Bee Mortality by Exposure Type	10
2	Non-bee Mortality by Exposure Type	11
3	Bee Mortality by Chemical	12
4	Non-bee Mortality by Chemical	13

1 Rationale and Research Questions

Pollination is a critical component of agriculture. Bees are important pollinators. Our research looks to see if there are exposure methods and chemicals that do not cause significant harm to bees while eliminating pests. The goal of our research is to determine potential treatment methods that reduce pests while having little to no impact on bees.

Questions:

- 1. Is there an exposure type that is more likely to cause mortality for bees vs. non-bee insects?
- 2. Are there chemicals that are more likely to cause mortality for bees vs. non-bee insects?

2 Dataset Information

Data Source: The dataset was pulled from a repository created for Environmental Data Analytics at Duke University in 2020. The data collected is from several EPA studies on neonicotinoids and their effects on insects. The data we will be analyzing is the type of chemical administered, how it was administered, and how both of these variables impact insects.

In the wrangling process, we selected the relevant information to our topic. This includes the chemical type, chemical number, insect species, lifestage and age of the species, exposure type, the effect of the exposure and the measurement of the exposure. An example of an exposure type is giving food to a bee. An example of an effect is mortality, and the measurement is a more detailed analysis of the effect.

We converted all these selected categorical variables to factors to prep for analysis. In the next step, we processed two data frames – oall bee species and all non-bee species. The split resulted in 2529 non-bee observations and 1407 bee observations. Lastly we added a mortality column using an ifelse statement. We did this to run a binomial glm in our analysis. We coded mortality as 1 and everything else as 0.

Detail	Description
Data Source	EPA ECOTOX Knowledgebase
Retrieved From	https://cfpub.epa.gov/ecotox/help.cfm
Variables Used	Chemical Number, Chemical Name, Species Common Name, Organism Lifestage, Organism Age, Exposure Type, Effect, Effect Measurement
Date Range	1982-2019

3 Exploratory Analysis

Summary of all species in study

Table 2: Species List

	X
Honey Bee	667
Parasitic Wasp	285
Buff Tailed Bumblebee	183
Carniolan Honey Bee	152
Bumble Bee	140
Italian Honeybee	113
Japanese Beetle	94
Asian Lady Beetle	76
Euonymus Scale	75
Wireworm	69
European Dark Bee	66
Minute Pirate Bug	62
Asian Citrus Psyllid	60
Parastic Wasp	58
Colorado Potato Beetle	57
Parasitoid Wasp	51
Erythrina Gall Wasp	49
Beetle Order	47
Snout Beetle Family, Weevil	47
Sevenspotted Lady Beetle	46
True Bug Order	45
Buff-tailed Bumblebee	39
Aphid Family	38
Cabbage Looper	38
Sweetpotato Whitefly	37
Braconid Wasp	33
Cotton Aphid	33
Predatory Mite	33
Ladybird Beetle Family	30
Parasitoid	30
Scarab Beetle	29
Spring Tiphia	29
Thrip Order	29
Ground Beetle Family	27
Rove Beetle Family	27
Tobacco Aphid	27
Chalcid Wasp	25
Convergent Lady Beetle	25

	X
Stingless Bee	25
Spider/Mite Class	24
Tobacco Flea Beetle	24
Citrus Leafminer	23
Ladybird Beetle	23
Mason Bee	22
Mosquito	22
Argentine Ant	21
Beetle	21
Flatheaded Appletree Borer	20
Horned Oak Gall Wasp	20
Leaf Beetle Family	20
Potato Leafhopper	20
Tooth-necked Fungus Beetle	20
Codling Moth	19
Black-spotted Lady Beetle	18
Calico Scale	18
Fairyfly Parasitoid	18
Lady Beetle	18
Minute Parasitic Wasps	18
Mirid Bug	18
Mulberry Pyralid	18
Silkworm	18
Vedalia Beetle	18
Araneoid Spider Order	17
Bee Order	17
Egg Parasitoid	17
Insect Class	17
Moth And Butterfly Order	17
Oystershell Scale Parasitoid	17
Hemlock Woolly Adelgid Lady Beetle	16
Hemlock Wooly Adelgid	16
Mite	16
Onion Thrip	16
Western Flower Thrips	15
Corn Earworm	14
Green Peach Aphid	14
House Fly	14
Ox Beetle	14
Red Scale Parasite	14
Spined Soldier Bug	14
Armoured Scale Family	13
Diamondback Moth	13

	X
Eulophid Wasp	13
Monarch Butterfly	13
Predatory Bug	13
Yellow Fever Mosquito	13
Braconid Parasitoid	12
Common Thrip	12
Eastern Subterranean Termite	12
Jassid	12
Mite Order	12
Pea Aphid	12
Pond Wolf Spider	12
Spotless Ladybird Beetle	11
Glasshouse Potato Wasp	10
Lacewing	10
Southern House Mosquito	10
Two Spotted Lady Beetle	10
Ant Family	9
Apple Maggot	9
(Other)	670

Bar chart comparing exposure type to mortality count of bees. It initially looked like bees are more likely to die when chemical exposure comes from consuming food. The other exposure types do not look particularly significant

Figure 1: Bee Mortality by Exposure Type

Bar chart comparing exposure type to mortality count of non-bees. Exposure from an environmental source appears more lethal to non-bees species.

Figure 2: Non-bee Mortality by Exposure Type

The next area of exploration was looking into how many bee and non-bee samples died from exposure to certain chemical compounds. We used the chemical number as the chemical names are complex.

This bar chart looking at bees suggests that three types of chemical compounds in this dataset are toxic to bees.

Figure 3: Bee Mortality by Chemical

This bar chart looking at bees suggests that three types of chemical compounds in this dataset are toxic to non-bees.

Figure 4: Non-bee Mortality by Chemical

Next we analyze to see if there is any statistical significance supporting these observations.

4 Analysis

4.1 Question 1: Is there an exposure type that is more likely to cause mortality for bees vs. non-bee insects?

```
#Which exposure types have a significant effect (mortality) on bee species?
BeeMortalityExposureType$Mortality <- ifelse(BeeMortalityExposureType$Effect=="Mortality
#Making new column categorical
BeeMortalityExposureType$Mortality <- as.factor(BeeMortalityExposureType$Mortality)</pre>
logit <- glm(Mortality ~ Exposure.Type, data = BeeMortalityExposureType, family = "binom")</pre>
summary(logit)
##
## Call:
## glm(formula = Mortality ~ Exposure.Type, family = "binomial",
       data = BeeMortalityExposureType)
##
## Deviance Residuals:
       Min
                 10
                      Median
                                    3Q
                                            Max
## -1.4620 -0.7742 -0.7742
                                1.1774
                                         1.9728
##
## Coefficients:
##
                                                             Estimate Std. Error
## (Intercept)
                                                               -0.5306
                                                                           0.3985
## Exposure.TypeDermal
                                                              -0.8747
                                                                           0.5046
## Exposure.TypeDiet, unspecified
                                                               0.5306
                                                                           0.5836
## Exposure.TypeDirect application
                                                             -16.0354 1696.7344
## Exposure.TypeDrinking water
                                                               17.0967 2399.5448
## Exposure.TypeDropwise
                                                              17.0967 2399.5448
## Exposure.TypeEnvironmental, unspecified
                                                               0.1252
                                                                           0.4343
## Exposure.TypeFood
                                                              -0.5208
                                                                           0.4052
## Exposure.TypeGround granular
                                                             -16.0354 1073.1091
## Exposure.TypeHand spray
                                                             -16.0354 1199.7724
## Exposure.TypeMultiple routes between application groups
                                                              -1.2611
                                                                           1.1513
## Exposure.TypeOral via capsule
                                                               17.0967
                                                                         550.4935
## Exposure.TypeSpray
                                                               0.2587
                                                                           0.5186
## Exposure.TypeTopical, general
                                                               1.1787
                                                                           0.4512
                                                            z value Pr(>|z|)
## (Intercept)
                                                             -1.331
                                                                        0.183
## Exposure.TypeDermal
                                                                        0.083 .
                                                             -1.734
## Exposure.TypeDiet, unspecified
                                                                        0.363
                                                              0.909
## Exposure.TypeDirect application
                                                             -0.009
                                                                        0.992
```

```
## Exposure.TypeDropwise
                                                                      0.994
                                                             0.007
## Exposure.TypeEnvironmental, unspecified
                                                             0.288
                                                                      0.773
## Exposure.TypeFood
                                                            -1.285
                                                                      0.199
## Exposure.TypeGround granular
                                                            -0.015
                                                                      0.988
## Exposure.TypeHand spray
                                                            -0.013
                                                                      0.989
## Exposure.TypeMultiple routes between application groups
                                                            -1.095
                                                                      0.273
## Exposure.TypeOral via capsule
                                                                      0.975
                                                             0.031
## Exposure.TypeSpray
                                                             0.499
                                                                      0.618
## Exposure.TypeTopical, general
                                                             2.612
                                                                      0.009 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1757.6 on 1406 degrees of freedom
## Residual deviance: 1621.4 on 1393 degrees of freedom
## AIC: 1649.4
##
## Number of Fisher Scoring iterations: 15
#For every one unit change in Topical, the odds of mortality increase by 1.1787. The F
#Significance: Total topical samples 99 - mortality - 65
#Additional data collection is needed on: Exposure through soil contact, drinking
#Pseudo R2
pR2(logit)
## fitting null model for pseudo-r2
##
             11h
                       llhNull
                                          G2
                                                  McFadden
                                                                    r2ML
## -810.68616225 -878.77992574 136.18752697
                                                0.07748671
                                                              0.09225597
##
            r2CU
##
      0.12934540
#Which exposure types have a significant effect (mortality) on non bee species?
NonBeeMortalityExposure$Mortality <- ifelse(NonBeeMortalityExposure$Effect=="Mortality",
#Making new column categorical
NonBeeMortalityExposure$Mortality <- as.factor(NonBeeMortalityExposure$Mortality)
logit2 <- glm(Mortality ~ Exposure.Type, data = NonBeeMortalityExposure, family = "binom")</pre>
summary(logit2)
##
## Call:
```

0.007

0.994

Exposure.TypeDrinking water

```
## glm(formula = Mortality ~ Exposure.Type, family = "binomial",
       data = NonBeeMortalityExposure)
##
## Deviance Residuals:
       Min
                 10
                      Median
                                   3Q
                                            Max
## -2.2581 -1.0150 -0.1775
                               1.2435
                                        2.9497
##
## Coefficients:
##
                                                                 Estimate
## (Intercept)
                                                                   1.1896
## Exposure.TypeDiet, unspecified
                                                                  -0.4964
## Exposure.TypeDipped or soaked
                                                                  -1.3921
## Exposure. TypeDirect application
                                                                  -1.9780
## Exposure.TypeDrinking water
                                                                  -1.3437
## Exposure.TypeEnvironmental, unspecified
                                                                  -1.5843
## Exposure.TypeFilmcoating
                                                                 -18.7557
## Exposure.TypeFoliar spray
                                                                  -5.5269
## Exposure.TypeFood
                                                                  -0.4814
## Exposure.TypeGround granular
                                                                 -18.7557
## Exposure.TypeGround spray
                                                                  -5.3327
## Exposure.TypeHand spray
                                                                  -2.8824
## Exposure.TypeImmersion
                                                                  16.3765
## Exposure.TypeMisted
                                                                 -18.7557
## Exposure.TypeMultiple routes within environmental exposures
                                                                 -18.7557
## Exposure.TypePresent in soil
                                                                 -18.7557
## Exposure.TypeSpray
                                                                  -2.5710
## Exposure.TypeTopical, general
                                                                   1.2785
## Exposure.TypeWatered
                                                                 -18.7557
##
                                                                Std. Error z value
## (Intercept)
                                                                    0.4317
                                                                             2.756
## Exposure.TypeDiet, unspecified
                                                                    0.9676 - 0.513
## Exposure.TypeDipped or soaked
                                                                    0.4727 - 2.945
                                                                    0.4774 - 4.144
## Exposure.TypeDirect application
## Exposure.TypeDrinking water
                                                                    0.5840 - 2.301
## Exposure.TypeEnvironmental, unspecified
                                                                    0.4358 -3.635
## Exposure.TypeFilmcoating
                                                                 3956.1804 -0.005
## Exposure.TypeFoliar spray
                                                                    0.8324 -6.640
## Exposure.TypeFood
                                                                    0.4812 - 1.000
## Exposure.TypeGround granular
                                                                  273.0027 -0.069
## Exposure.TypeGround spray
                                                                    1.0965 -4.864
## Exposure.TypeHand spray
                                                                    0.4877 - 5.911
## Exposure.TypeImmersion
                                                                 3956.1804
                                                                            0.004
## Exposure.TypeMisted
                                                                 1398.7210 -0.013
## Exposure.TypeMultiple routes within environmental exposures
                                                                 2797.4420 -0.007
## Exposure.TypePresent in soil
                                                                 2284.1018 -0.008
```

```
## Exposure.TypeSpray
                                                                    0.4592 - 5.599
## Exposure.TypeTopical, general
                                                                    0.5430
                                                                             2.355
## Exposure.TypeWatered
                                                                 1142.0510 -0.016
##
                                                                Pr(>|z|)
## (Intercept)
                                                                0.005855 **
## Exposure.TypeDiet, unspecified
                                                                0.607926
## Exposure.TypeDipped or soaked
                                                                0.003227 **
## Exposure.TypeDirect application
                                                                3.42e-05 ***
## Exposure.TypeDrinking water
                                                                0.021404 *
## Exposure.TypeEnvironmental, unspecified
                                                                0.000278 ***
## Exposure.TypeFilmcoating
                                                                0.996217
## Exposure.TypeFoliar spray
                                                                3.14e-11 ***
## Exposure.TypeFood
                                                                0.317121
## Exposure.TypeGround granular
                                                                0.945227
## Exposure.TypeGround spray
                                                                1.15e-06 ***
## Exposure. TypeHand spray
                                                                3.41e-09 ***
## Exposure.TypeImmersion
                                                                0.996697
## Exposure.TypeMisted
                                                                0.989301
## Exposure.TypeMultiple routes within environmental exposures 0.994651
## Exposure.TypePresent in soil
                                                                0.993448
## Exposure.TypeSpray
                                                                2.16e-08 ***
## Exposure.TypeTopical, general
                                                                0.018538 *
## Exposure.TypeWatered
                                                                0.986897
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 3233.2
##
                              on 2528 degrees of freedom
## Residual deviance: 2540.4 on 2510 degrees of freedom
## AIC: 2578.4
##
## Number of Fisher Scoring iterations: 16
#Dipped or soaked, Direct application, Environmental-unspecified, Foliar spray, Groun
#Plenty of samples for non-bees - correlations
#Conclusion: Spray could be an effective anthropogenic exposure technique to eliminate
#Pseudo R2
pR2(logit2)
## fitting null model for pseudo-r2
##
             11h
                       llhNull
                                          G2
                                                  McFadden
                                                                     r2ML
## -1270.1751454 -1616.5870098
                                 692.8237287
                                                 0.2142859
                                                                0.2396312
```

r2CU

##

0.3321160

4.2 Question 2: Are there chemicals that are more likely to cause mortality for bees vs. non-bee insects?

```
#Which chemical types have a significant effect (mortality) on bee species?
logit3 <- glm(Mortality ~ CAS.Number, data = BeeMortalityExposureType, family = "binomia
summary(logit3)
##
## Call:
## glm(formula = Mortality ~ CAS.Number, family = "binomial", data = BeeMortalityExposur
## Deviance Residuals:
      Min
                1Q
                     Median
                                  3Q
                                          Max
## -1.5453 -0.7585 -0.7585
                              1.2286
                                       1.7080
##
## Coefficients:
##
                      Estimate Std. Error z value Pr(>|z|)
                                            2.199 0.027885 *
## (Intercept)
                        0.8329
                                   0.3788
## CAS.Number135410207 -2.0268
                                   0.4568 -4.437 9.10e-06 ***
## CAS.Number138261413 -1.9315
                                   0.3879 -4.979 6.39e-07 ***
## CAS.Number150824478 11.7332
                                 324.7439 0.036 0.971178
## CAS.Number153719234 -0.9526
                                   0.3993 -2.385 0.017062 *
## CAS.Number165252700 -1.4276
                                   0.4904 -2.911 0.003599 **
## CAS.Number210880925 -1.5066
                                   0.4035 -3.734 0.000189 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1757.6 on 1406 degrees of freedom
## Residual deviance: 1689.6 on 1400 degrees of freedom
## AIC: 1703.6
##
## Number of Fisher Scoring iterations: 11
#Need more data on 58842209 105843365 and 58842209, 150824478
 # Every other chemical is statistically significant - 111988499 135410207 138261413
#Pseudo R2
pR2(logit3)
```

fitting null model for pseudo-r2

```
##
            llh
                      llhNull
                                          G2
                                                 McFadden
                                                                    r2ML
## -844.79573614 -878.77992574
                                67.96837921
                                               0.03867201
                                                              0.04715907
           r2CU
##
##
     0.06611832
#Which exposure types have a significant effect (mortality) on non bee species?
logit4 <- glm(Mortality ~ CAS.Number, data = NonBeeMortalityExposure, family = "binomial
summary(logit4)
##
## Call:
## glm(formula = Mortality ~ CAS.Number, family = "binomial", data = NonBeeMortalityExpo
##
## Deviance Residuals:
                     Median
                                   3Q
      Min
                 1Q
                                          Max
## -1.5928 -0.8379 -0.8379
                              1.2907
                                       1.9027
##
## Coefficients:
##
                        Estimate Std. Error z value Pr(>|z|)
                                                       0.973
                       1.557e+01 4.602e+02
                                              0.034
## (Intercept)
## CAS.Number105843365 1.448e-09 6.509e+02
                                              0.000
                                                       1.000
## CAS.Number111988499 -1.507e+01 4.602e+02 -0.033
                                                       0.974
## CAS.Number135410207 -1.583e+01 4.602e+02 -0.034
                                                       0.973
## CAS.Number138261413 -1.643e+01 4.602e+02 -0.036
                                                      0.972
## CAS.Number150824478 -1.463e+01 4.602e+02 -0.032
                                                      0.975
## CAS.Number153719234 -1.615e+01 4.602e+02 -0.035
                                                       0.972
## CAS.Number165252700 -1.580e+01 4.602e+02 -0.034
                                                       0.973
## CAS.Number210880925 -1.720e+01 4.602e+02 -0.037
                                                       0.970
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 3233.2 on 2528
                                      degrees of freedom
## Residual deviance: 3091.8 on 2520 degrees of freedom
## AIC: 3109.8
##
## Number of Fisher Scoring iterations: 14
#There is no chemical that is effective at eliminating all non-bee species.
#Conclusion - exposure mechanism of chemical is a more reliable factor at understanding
#Pseudo R2
pR2(logit4)
## fitting null model for pseudo-r2
```

G2

McFadden

r2ML

11h

##

llhNull

-1.545888e+03 -1.616587e+03 1.413983e+02 4.373360e-02 5.437649e-02 ## r2CU ## 7.536291e-02 5 Summary and Conclusions

6 References

< add references here if relevant, otherwise delete this section>