

EKSAMEN

Emnekode:	Emne:				
ITF30307	Databaseadministrasjon og databasesystemer				
Dato: 10.12.12	Eksamenstid: 09.00 - 12.00.				
Hjelpemidler: ingen		Faglærer:			
		Edgar Bostrøm / Per O. Bisseberg			
Oppgavesettet består av 2 sider. Vedlegget består av 1 side.					
På mange av oppgavene kan det lønne seg å svare punktvis. I noen tilfeller holder det med en setning eller tre, i andre tilfeller bør det gjøres en beskrivelse/kommentar/drøfting på hvert av disse punktene.					
Tidsangivelsen pr. oppgave gir indikasjon på hvor mye man bør svare. Hver deloppgave teller likt.					
Sensurdato: 7. januar 2013					
Karakterene er tilgjengelige for studenter på studentweb senest dagen etter oppgitt sensurfrist.					

Oppgave 1. Tid: 45 minutter.

Denne oppgaven tar for seg oppgaver knyttet til drift av ett eller flere DBMS, oppgave a og b baserer seg på kunnskap dere har tilegnet dere i administrasjon av ulike DBMS.

- a) Backup
 - Hvilke ulike backup-metoder har en DBA til rådighet?
 - Drøft fordeler og ulemper ved disse backup-metodene.
- b) Hvilke metoder for spesifisering av brukertilgang/rettigheter er tilgjengelig for en DBA?
- c) DDBMS:
 - Hva er et DDBMS og hva karakteriserer et slikt system?
 - Lag en illustrasjon som viser en tenkt DDBMS arkitektur.

Oppgave 2. Tid: 45 minutter.

Velg 3 av disse 4:

- a) Bill Inmon definerte begrepet datavarehus som: "A subject-oriented, integrated, timevariant, and non-volatile collection of data in support of management's decision-making process". Forklar hva som ligger i dette.
- b) Hva ligger i begrepet Data Staging Area (DSA)?
- c) Hva ligger i begrepet MOLAP (Multidimentional OLAP)?
- d) Inmon står i utgangspunktet for en tanke om et felles datavarehus for en hel virksomhet. Finnes det alternative arkitekturer til dette? (Det er en fordel om du har med begrep, personnavn o.l. i forklaringen).

¹ Ikke-flyktig.

Oppgave 3. Tid: 45 minutter.

I deloppgave a) og b) tar vi for oss samme relasjoner som i undervisningen. Syntaks for den delen av relasjonsalgebra som vi har brukt finnes i vedlegget.

Prosjekt Ansatt

Prosjektnr Prosjektnavn Budsjett Ansattnr Etternavn Fornavn Avdnr

ProsjektAnsatt

Prosjektnr Ansattnr Timetall

- a) Lag utsagn i relasjonsalgebra for:
 - Ansattnr, etternavn, fornavn og avdnr på ansatte som har jobbet i prosjektet med prosjektnavn 'Forskningsparken'. Ikke bruk semijoin.
 - Som over, men med bruk av semijoin.
- b) Lag utsagn i relasjonsalgebra for:
 - Prosjekter som ikke er kommet ordentlig i gang, i betydningen at de ikke har noen tilsvarende tupler i ProsjektAnsatt. Prosjektnr og prosjektnavn skal være med.
 - Eventuelle prosjekter som har involvert alle ansatte. Alt fra relasjonen Prosjekt skal være med.
- c) Forklar sammenhengen mellom relasjonsalgebra og optimalisering.

Tips for del a) og b): Se syntaks i vedlegget.

Oppgave 4. Tid: 45 minutter.

a) Du har følgende tabell(ANSATT) i en relasjonsdatabase. Skriv tilsvarende datasett som et XML-dokument.

Ansatt_id	Fornavn	Etternavn	Tlf_nr	Avd_id
ANS001	Per	Biffeberg	62916299	AVD007
ANS007	Edvald	Boastrøm Hagen	62616123	AVD001
ANS123	Hugo	Boss	62312234	AVD001

- b) Ved å benytte XQuery skal du hente ut all informasjon om ansatte som jobber i AVD001 fra XML-dokumentet du laget i oppgave a.
- c) XQuery benytter både XPath og FLWOR.
 - a. Hva er XPath og FLWOR
 - b. Hva skiller disse?
- d) Hvilke fordeler kan datalagring i XML tilby?

Relasjonsalgebra - vanlige operasjoner.

Mengdeoperasjoner:	Notasjon, variant 1	Notasjon, variant -2
Union	$R \cup S$	R union S
Snitt	$R \cap S$	R intersect S
Mengdedifferanse	R - S	R difference S
	$R \setminus S$	R minus S
Mengdeprodukt,	$R \times S$	R product S
kartesisk produkt ("alle mot alle")		R times S
Spesielt for relasjoner:		
Horisontalt utvalg	$\sigma_{\text{}}(R)$	R where <bet.> R where <bet.></bet.></bet.>
Vertikalt utvalg	$\pi_{< \text{feltliste}>}(R)$	R[<feltliste>]</feltliste>
Mengdedivisjon. (Gitt R[c,d] og S[d]. c er med i mengden	$R \div S$	R divideby S
R dividert med S	R/S	
hvis c i R forekommer sammen		
med alle d-er som finnes i S.)		
Spesialiteter av produkt:		
θ-join (produkt med en eller annen betingelse på kompatible	$R \bowtie_{< bet.>} S$	R join _{<betingelse></betingelse>} S
attributter, f.eks. >, <, og kombinasjoner		(R join S) where
Equi-join (θ -operasjonen er =)	som over	som over
Natural join (Equi-join hvor felles attributt kommer bare en gang) ** den mest vanlige jointypen **	som over	som over
Varianter for produkt:		
Outer join, normalt venstre.	$R > \triangleleft S$	R left join _{<bet.></bet.>} S
(alle i R, samt alle fra S som		
oppfyller koblingsbetingelsen)		
Full join (alle i R, alle i S, samt	$R > \subset S$	R full join _{<bet.></bet.>} S
alle som oppfyller koblingsbet.)		
Semijoin (de i R som tilfredsstiller	$R \triangleright_{< bet.>} S$	R semijoin _{<bet.></bet.>} S
R join _{<betingelse></betingelse>} S)		

Legg merke til at operasjonene her er på mengder, slik at evt. duplikater tas bort – tilsvarende select distinct i SQL.

Dersom betingelsen er på entydige primær/fremmednøkkelkombinasjoner, droppes ofte
bet>.