https://github.com/physicell-training/ws2022

Session 12: Intracellular with libRoadrunner

Furkan Kurtoglu

@FKurtogluSysBio

PhysiCell Project

July 27, 2022

What we have learned so far

- PhysiCell folder structure
- PhysiCell model domain
 - Different dts (diffusion dt, mechanic dt, phenotype dt)
- Using PMB to create config file (XML)
- PhysiCell C++ functions
- And much more!

What we will learn

- Basics of Kinetic Modeling (ODE Model)
- How to integrate kinetic models to ABM
- How to control phenotype based on intracellular model
- Kinetic ODE solver (libRR) related functions
- How to save intracellular data
- How to change intracellular_dt

What we will see

- An example of how to create spheroid
- Main file addings
- How to iterate all over cells in C++

Coloring Function

Agenda:

- First Session
 - PhysiCell Intracellular Class
 - **©**Kinetic SBML
 - PhysiCell Integration
 - Model Design
 - Results
 - Convergence Tests
 - **O**libRR Add-on
 - Functions
 - Phenotypic Changes
 - Sample Model
 - Description
 - Basic Domain Creation (If we can)

PhysiCell Intracellular Class

- PhysiCell 1.9.0 = Intracellular Integrations
 - Released: 12 July 2021
- Major new features
 - Includes three intracellular modeling approaches
 - ♦ Boolean Network => PhysiBoSS
 - ♦ Kinetic Modeling (ODEs) => libroadrunner
 - ♦ Flux Balance Analysis => PhysidFBA
 - New Intracellular Object in Phenotype
 - ♦ All intracellular packages basic generic functions with same syntax
 - » Start(), Update(), get_parameter(), set_parameter(), ...
 - ♦ Some special functions specific to packages
 - » get_boolean_variable_value(PhysiBoSS) validate_SBML_species (ODE), ...

3 Sample Projects

- PhysiBoSS
 - physiboss-cell-lines-sample

- Libroadrunner
 - ode-sample-project
- PhysidFBA
 - cancer-metabolism

Solvers & Installation

- Each add-on requires related solver
 - PhysiBoSS MaBoSS
 - PhysidFBA coin-clp
 - Libroadrunner Libroadrunner (no surprise!)
- To install related solver, you need to populate sample-project, first
 - make ode-energy-sample
- Then, compile once.
 - make

PhysiBoSS

- Boolean Network
 - MaBoSS
- SysBioCurie & BSC

- https://github.com/gletort/PhysiBoSS
 - Fully integrated as "add-on" to PhysiCell
- Session 10-11:
 - Please visit <u>agenda</u> for slides and video

PhysidFBA

- Aims to couple ABM and FBA.
- Miguel Ponce de Leon
- Approach will be explained in future slides.
- https://github.com/migp11/PhysiCelldFBA
 - Added alpha version as "add-on" to PhysiCell.

Heirendt et al, 2017

Libroadrunner

- Integrating intracellular kinetic models to individual agents.
- Individual phenotype changes according to molecular simulations
 - Intracellular values (Molecular Concentrations, Signal Transductions, i.e.)
 - ♦ Intracellular oxygen deficiency in cell leads to change necrosis rate.
 - ♦ Intracellular amino acids levels define the cellular growth / cycle rate.
- Opens new opportunities for PhysiCell syntax
 - Users can utilize SBML to model phenotypic behaviors.
 - Since molecular values can edit phenotypic parameters in SBML, PhysiCell interface is getting changed.
- LibRR is developed by
 - Herbert Sauro and Andy Somogyi
 - C++ API

SBML

- Systems Biology Mark-up Language
- Reaction Stoichiometry
- Kinetic Pseudo Steady State
 - Kinetic Ordinary Differential Equations
 - Pseudo Steady State Optimization (Flux Balance Analysis)
- Hard to read for Human (xml file)
- Parsed according to some rules.

```
<species metaid="heme"</pre>
     id="heme"
     compartment="Comp01"
     initialConcentration="0">
   <annotation>
     <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
              xmlns:bqbiol="http://biomodels.net/biology-qualifiers/">
       <rdf:Description rdf:about="#heme">
         <br/>
<br/>
bqbiol:hasPart>
              <rdf:li rdf:resource="urn:miriam:uniprot:P69905"/>
              <rdf:li rdf:resource="urn:miriam:uniprot:P68871"/>
              <rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI%3A17627"/>
            </rdf:Bag>
         </bdbiol:hasPart>
       </rdf:Description>
  </annotation>
</species>
```

SBML

- Compartments
 - Volumetric Entities
- Species
 - Chemicals
- Reactions
 - Stoichiometric Relations
 - Boundaries (Lower and Upper) (FBA)
- Global Quantities
 - Parameters
 - Constants

COPASI

✓ Model

▼ Biochemical

Compartments [1]

Intracellular

✓ Species [4]

Energy

Glucose

Lactate

Lactate

Oxygen

Reactions [3]

Aerobic

Anaerobic

Energy_Usage

Global Quantities [3]

k_aer

k_ane

k_usage

#	Name	Reaction	Rate Law	Flux [mmol/min]	Noise Expression
1	Aerobic	Glucose + 6 * Oxygen -> 38 * Energy	Mass action (irreversible)	nan	
2	Anaerobic	Glucose -> 2 * Energy + Lactate	Mass action (irreversible)	nan	
3	Energy_Usage	Energy ->	Mass action (irreversible)	nan	
	New Reaction				

Kinetic Modeling

#	Name	Reaction
1	Aerobic	Glucose + 6 * Oxygen -> 38 * Energy
2	Anaerobic	Glucose -> 2 * Energy + Lactate
3	Energy_Usage	Energy ->
	New Reaction	

$\frac{d([Glucose] \cdot V_{Intracellular})}{dt} = -V_{Intracel}$	ular '(k_aer ·[Glucose] ·[Oxygen] ·[Oxygen] ·[Oxygen] ·[Oxygen] ·[Oxygen] ·[Oxygen])
- [/] Intracel	ular '(k_ane '[Glucose])
$\frac{d([Oxygen] \cdot V_{Intracellular})}{dt} = -6 \cdot V_{Intracellular}$	rellular '(k_aer ·[Glucose] ·[Oxygen] ·[Oxygen] ·[Oxygen] ·[Oxygen] ·[Oxygen] ·[Oxygen])
$\frac{d([Energy] \cdot V_{Intracellular})}{dt} = +38 \cdot V_{Intracellular}$	acellular '(k_aer '[Glucose] '[Oxygen] '[Oxygen] '[Oxygen] '[Oxygen] '[Oxygen] '[Oxygen])
+2·V _{Intra}	cellular *(k_ane *[Glucose])
	ular ·(k_usage ·[Energy])
$\frac{d([Lactate] \cdot V_{Intracellular})}{dt} = +V_{Tabancellular}$	

SBML

- General SBMLs have more than one compartment
 - Extracellular
 - Intracellular
 - Mitochondria (Sometimes)
 - Nucleus (?)
- And have two or more species for one substrate
 - Glucose[e] => extracellular
 - Glucose[i] => intracellular
- Transfer reaction between compartments
 - Glucose[e] = Glucose[i]

Assumptions

- But ...
- PhysiCell has transfer reactions through
 - BioFVM
- So, we can support specific type of SBMLs
 - Only Intracellular (might have more than one compartment Mitochondria, Nucleus)
- Well-Structured SBMLs
 - Not all SBMLs are supported!!!
 - **♦ No External Compartment and Transfer Reactions in SBML!**
 - ◆ Mapping is needed between SBML & PhysiCell
 - Works on each diffusion_dt (0.01 min)
 - ♦ (as default for best convergence/can be changed)

PhysiCell Project
PhysiCell.org
PhysiCell

How about intracellular dt

- Default 0.01 min but...
- We can change intracellular dt
- As we are working with rate, you don't have to change the parameters
- · Time units will match

 We can change intracellular_dt but updating less can produce some convergence errors.

Time (minute)

How it looks

Config File

```
<cell definitions>
    <cell definition name="default" ID="0">
        <phenotype>
            <cycle code="5" name="live">
                <!-- using higher than normal significant digits to match divisions in default code -->
                <transition rates units="1/min">
                    <rate start index="0" end index="0" fixed duration="false">0.0</rate>
                </transition rates>
            </cvcle>
            <death>
            <volume>
            <motility>
                <speed units="micron/min">0.0</speed>
                <persistence time units="min">0.1</persistence time>
                <migration bias units="dimensionless">.9</migration bias>
                <options>
                    <enabled>true</enabled>
                    <use 2D>true</use 2D>
                    <chemotaxis>
                        <enabled>false</enabled>
                        <substrate>oxygen</substrate>
                        <direction>1</direction>
                    </chemotaxis>
                </options>
            </motility>
            <secretion>
            <intracellular type="roadrunner">
                <sbml filename>./config/Toy oxy mms tr 01.xml</sbml filename>
                <map PC substrate="oxygen" sbml species="Oxy"></map >
                <map PC custom data="PC Test CD" sbml species="death rate"></map>
                     PC phenotype="ctr00" sbml species="transition rate 0 1"></map>
                <map PC phenotype="mms" sbml species="migration speed"></map>
                <map PC phenotype="da" sbml species="death rate"></map>
                <map PC phenotype="ssr1" sbml species="secretion rate Lactate"></map>
                <map PC phenotype="test" sbml species="test"></map>
            </intracellular>
        </phenotype>
```

SBML-Phenotypic Parameters

			·
PhysiCell Phenotype Parameter	First letter	phenotype_token	example
Phase Transition Rate	С	ctr_*_*	ctr_ <mark>0_1</mark>
Death Rate	d	da,dn	da,dn
Persistence Time	m	mpt	mpt
Migration Speed	m	mms	mms
Migration Bias	m	mmb	mmb
Uptake rate	S	sur_*	sur_oxygen
Secretion rate	S	ssr_*	ssr_glucose
Saturation density	S	ssd_*	ssd_oxygen
Export rate	S	ser_*	ser_lactate
Target solid cytoplasmic	V	vtsc	vtsc
Target solid nuclear	V	vtsn	vtsn
Target fluid fraction	V	vff	vff

Some Results

Model 0 - SBML Model

- 4 Species
 - Oxygen
 - Glucose
 - Lactate
 - Energy
- 3 Internal Reactions
 - ♦ Aerobic reaction
 - » Glucose + Oxygen -> Energy
 - ♦ Anaerobic reaction
 - » Glucose -> Energy + Lactate
 - ◆ Energy Usage
 - » Energy ->

Model 0

- Very Simple SBML toy model
- Both simulated in PhysiCell and Copasi
- No Transfer Reaction in SBML
- No Uptake Rate
- Only solving SBML

Model 1

- Uptake glucose, oxygen
- Produces Energy internally.

SBML Events

Cycle Rate

- If Energy level is smaller than 50 a.u.
 - Equals to zero 1/min
- If Energy level is greater than 50 a.u.
 - Equals to 0.01 1/min

Model 2

- Phenotypic changes according to SBML species
- Organoid (2D) seeding.
- Lactate Secretion Rate increases
 - Lactate Concentration
- If oxygen level is less than threshold
 - Cells increase their migration speed
- If Energy level is less than threshold
 - Cells go apoptosis

Lactate Secretion

Current time: 0 days, 0 hours, and 0.00 minutes, z = 0.00 μm 144 agents

Intracellular

Libroadrunner Addon

- Same format for intracellular addons. (PhysiFBA, PhysiBoSS)
- Libroadrunner
 - start() = start intracellular in cell (it should be used after seeding and is called after proliferation)
 - Initialize_SBML() = to read SBML (users will not use)
 - get_values() = to get value from SBML
 - set_values() = to set value in SBML
 - update() = to simulate SBML
 - get_state() = to get the name of SBML
 - update_phenotypic_parameters() = to update phenotype according to given tokens
 - validate tokens() = to validate given token
 - validate_species() = to validate SBML species

SBML-Phenotypic Parameters

PhysiCell Phenotype Parameter	First letter	phenotype_token	example		
Phase Transition Rate	С	ctr_*_*	ctr_ <mark>0_1</mark>		
Death Rate	d	da,dn	da,dn		
Persistence Time	m	mpt	mpt		
Migration Speed	m	mms	mms		
Migration Bias	m	mmb	mmb		
Uptake rate	S	sur_*	sur_oxygen		
Secretion rate	S	ssr_*	ssr_glucose		
Saturation density	S	ssd_*	ssd_oxygen		
Export rate	S	ser_*	ser_lactate		
Target solid cytoplasmic	V	vtsc	vtsc		
Target solid nuclear	V	vtsn	vtsn		
Target fluid fraction	V	vff	vff		

Migration Speed

Cell Definition

```
Current time: 0 days, 0 hours, and 0.00 minutes, z = 0.00 \mu m
                                                                 200 µm
 0 days, 0 hours, 0 minutes, and 0.0056 seconds
```

Lactate Distribution

Cell Definition

```
<secretion_rate units="1/min">0</secretion_rate>
  <secretion_target units="substrate density">10</secretion_target>
  <uptake_rate units="1/min">0.0</uptake_rate>
  <net_export_rate units="total substrate/min">0</net_export_rate>
  </substrate>
```

```
<intracellular type="roadrunner">
    <sbml_filename>./config/Toy_oxy_mms_tr_01.xml</sbml_filename>
    <map PC_substrate="oxygen" sbml_species="oxy"></map >
    <map PC_phenotype="ssr1" sbml_species="secretion_rate_Lactate"></map>
</intracellular>
```


Wrong Tokens

```
ERROR: There is no specified token parameters in the name of "mtr1" at motility parameters. Please take a look token specifications.
PS C:\Users\Furkan\Documents\GitHub\PhysiCell-SBML-trials\PhysiCell_intracellular_Phenotype>
```

ERROR: There is no specified token parameters in the name of "WRONG_TOKEN" at phenotypic parameters. Please take a look token specifications.

Code walk

Let's do code walk together...

PhysidFBA

Flux Balance Analysis

Heirendt et al, 2017

Integration Design

LibRoadRunner Interactive Demo

Model

- Three Substrates
 - Oxygen, Glucose, Lactate
 - Energy is created with two reactions
 - ♦ Glucose + Oxygen -> 38 * Energy (Aerobic)
 - ♦ Glucose -> 4 * Energy + Lactate (Anaerobic)
 - Energy consumes
 - ♦ Energy -> (Energy_Usage)
- Phenotypic Tokens
 - migration speed, apoptosis_rate, lac_Secretion_Rate, Transition_Rate

Model Rules

- Initial Energy = 450
- If Energy > 445
 - Cycle
- If Energy < 445
 - Don't Cycle
- If Energy < 440
 - Move
- If Energy < 430
 - Die

Populate together

- PhysiCell folder
- make clean
- make data-cleanup
- make reset
- make list-projects
- make ode-energy-sample
- make

The Roadmap

- First, we will create the modal domain in the PMB
 - Config Basics
 - Microenvironment
 - Cells
- Create SBML on Copasi
- Integrate SBML to PhysiCell model

Config Basics

- Domain size
 - X=[-500,500]
 - Y=[-500,500]
 - Z=[-10,10]
 - dx,dy,dz = 20
 - Use_2D = true
- Max-time = 1440 min
- Thread = your choice
- Save data : SVG = 30 min,

Full = 30 min

- Microenvironment Tab
- Let's add "oxygen", "glucose", "lactate"

- Oxygen
- Diffusion Coefficient = 100.0 micron 2/min
- Decay Rate = 0.0 1/min
- Initial condition = 38.0 mmHg
- Dirichlet = OFF
- Track in agents = ON

- Glucose
- Diffusion Coefficient = 300.0 micron^2/min
- Decay Rate = 0.0 1/min
- Initial condition = 50.0 a.u
- Dirichlet = OFF
- Track in agents = ON

- Lactate
- Diffusion Coefficient = 300.0 micron^2/min
- Decay Rate = 0.0 1/min
- Initial condition = 0.0 mmHg
- Dirichlet = OFF
- Track in agents = ON

- Only one type of cell in the name of "default"
- Cycle
 - Live Cells
 - Transition rate(s)
 - **0.0**

No Death

No change in the Volume and Mechanics Tab

- Motility
- Speed = 0.0
- Persistence Time = 0.1
- Migration Bias = 0.9
- Enable-motility
- 2D = Yes

Cell Type: Secretion

- Oxygen Tab
- Uptake rate = 0.005

Cell Type: Secretion

- Glucose Tab
- Uptake rate = 0.001

Cell Type: Secretion

- Lactate Tab
- Secretion Target = 10.0

No Interactions

Cell Custom Data

We need to create intracellular

data to save the data

- intra_oxy = 0.0
- intra_glu = 0.0
- intra lac = 0.0
- intra energy = 0.0

User Params

_	U.S.				allis				
PhysiCell Mo	del Builder: C:\Users\Furkan\Documents\GitHub\PhysiCell-	model-bu	iilde	er\data\tem	plate.xml			_	
File									
Config Basics	Microenvironment Cell Types User Params								
Append 10 more rows		Clear selected rows							
	Name	Туре			Value		Units		
initial_int	ernal_oxygen	double	•	0.8			mmHg		
Descriptio	n:								
initial_int	ernal_glucose	double	•	15			a.u		
Descriptio	n: initial number of cells (for each cell type)								
initial_int	ernal_lactate	double	•	0.0			a.u		
Descriptio	n:								
initial_en	ergy	double	•	450			a.u		
Descriptio	n:								
		double	•						
Descriptio	n:								
		double	•						
Descriptio	n:								
		double	•						
Descriptio	n:								
		double	+						
		GOGDIC					FIIVSIC	HIRT	П

Save

• Let's check is it right

Let's Simulate

- But First
- Let's get rid of the all-intracellular related part
 - In the custom module
 - Browse through the setup tissue() function
 - Remove the inner code of the for loop
 - ◆ Starting with Line #166 to #183 (except assigning)
 - Remove the inner part of update_intracellular() function
 - ♦ Starting with Line #192 to #263
 - That's all
 - CHECKPOINT 1

Funding Acknowledgements

- Breast Cancer Research Foundation
- · Jayne Koskinas Ted Giovanis Foundation for Health and Policy
- National Cancer Institute (U01CA232137)
- National Science Foundation (1720625, 1818187)

Training Materials:

Administrative supplement to NCI U01CA232137 (Year 4)

Other Funding:

- NCI / DOE / Frederick National Lab for Cancer Research (21X126F)
- DOD / Defense Threat Reduction Agency (HDTRA12110015)
- NIH Common Fund (3OT2OD026671-01S4)

