Annomuments: CA office hows; Monday is a holiday; conse feedback survey.

* Set theory interlude:

Recall: a map of sets $f: S \to T$ is

- · <u>injective</u> if Va, b∈S, f(a) = f(b) => a=b. (or: a + b => f(a) + f(b)). Write f:SC>T
- · smjective if VCET BaES of f(a) = c. Write f: S ->> T.
- · a lijetion fis= T if both hold.
- * Say two sets S, T have he same cardinally if I bijection f: S→T, and write |S|=|T|. If there exists an injection $f:S \subset T$ then write $|S| \leq |T|$. This notation is legit thanks to the Schröder-Benstein Meanen;

If there exist injecture maps f: S Cs T and g: T Cs S then |S| = 171.

(see Halmos Naive set theory p.88 for a proof; build a bijedion S=37 by using f on a subset of S and gi on the rest).

Ex: N, Z, Q all have the same cardiality, there are called countably infinite eg. combrut a bijection 1N-12 by setting $f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd}. \end{cases}$ for Q, first understand how to enumerate INXIN = pairs of integers.

* On the other hand, IR is uncomtable, using Cambor's dragonal argument:

No map f: N - 1 R can be sujective, because:

write decimal or binary expansion of $f(0) = a_{00}a_{01}a_{02}a_{03}...$

 $f(1) = a_{10} - a_{11} a_{12} a_{13} \cdots$

 $f(2) = a_{20} \cdot a_{21} a_{22} a_{23} \cdot \cdots$

then let y = bo. b, b2 b3 ... where we chook by # ajj for each j. Looking at the jth light, y & f(j) for all jEN, so f can't be sujective.

* The same argument shows there are arbitrarily large cardinals;

girm a set S, let P(S) = {subsets of S} ("power set of S") $\uparrow^{2} \qquad \qquad \uparrow^{-1}(1) \qquad A \mapsto \left(1_{A} \times \mapsto \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}\right) \\
\{0,1\}^{S} = \{\text{maps } f: S \to \{0,1\}\} \}$

If S is Rnite, |S|=n, then $|P(S)|=2^n$. What if S is infinite?

This is just the diagonal argument again or (0.1) as is just the diagonal argument again or (0.1) as a constant of the diagonal argument again. PF; (Cantor); given $f: S \rightarrow P(S)$, let $A = \{z \in S \mid z \notin f(x)\}$. Assume A = f(a) for some $a \in S$.

Then $a \in A$ iff $a \notin f(a) = A$, contradiction. So $A \notin f(S)$, \nexists sujection. \square

 $Deg^n: A group G = a set with an operation <math>G \times G \longrightarrow G$ such that $(a,b) \mapsto a.b$

- (1) identity: $\exists e \in G$ st. $\forall a \in G$, ae = ea = a. (2) inverse: $\forall a \in G$ $\exists b (=a^{-1}) \in G$ st. ab = ba = e. (3) associativity: $\forall a, b, c \in G$, (ab) c = a(bc).

Examples: number, mahices, permetations, ...

We don't have time to downs: Products of groups:

- · given two groups G, H, the product group is $G \times H = \{(g,h) \mid g \in G, h \in H\}$ with composition law $(g,h) \cdot (g',h') = (gg',hh')$
- . If G, H are finite, of order m= |G| and n= |H|, then GaH is a finite group of order mr.
- · Similarly for product of n groups:

 $\underline{E_{X}}$, $Z^{n} = \{(a_{1},...,a_{n}) \mid a_{i} \in \mathbb{Z}^{3}, (a_{i},...,a_{n}) + (b_{i},...,b_{n}) = (a_{i} + b_{i},...,a_{n} + b_{n})\}$ (similarly Qn, Rn, Ch with componentwise addition)

· Gren infinitely many groups G1, G2, G3, ... here are two different notions:

I the dist product $\prod_{i=1}^{\infty} G_i = \{(a_1, a_2, a_3, ...) | a_i \in G_i\}$

I the dirt sum $\bigoplus_{i=1}^{\infty} G_i = \{(a_1, a_2, a_3, ...) | a_i \in G_i, all but finitely many are \}$

Ex: consider $G_0 = G_1 = ... = (PR, +)$, denote $(a_0, a_1, a_2, ...)$ by $\sum a_1 x^i$. then IT R = R[[x]] formal power seils = a; x' (w/ ald hom) BR = R[21] polynomials [a; zi.

Subgroups:

Del: A subgroup H of a group G is a v subset HCG which is closed under composition (a, b $\in H \Rightarrow ab \in H$) and inversion (a $\in H \Rightarrow a' \in H$). These conditions imply $e \in H$. So H (with same operation) is also a group.

Say H is a proper subgroup if H&G

 \underline{E} xamples: $(\mathbb{Z},+) \subset (\mathbb{R},+) \subset (\mathbb{R},+) \subset (\mathbb{C},+)$ • $(\mathbb{Q}^*, \times) \subset (\mathbb{R}^*, \times) \subset (\mathbb{C}^*, \times) \supset (S^*, \times)$ · {e} < G trivial subgroup

- · H; CG; => H, x ... x H, CG, x ... x G,
- . ⊕ G; C TT G;

Prop! All nonthivial subgroups of (Z,+) are of this form.

Proof. this follows from the Euclidean algorithm. Given a nontrivial subgroup (0) + HCZ, there exists a EH such that a>0. Let as he the smallest positive element of H. given any b∈H, b= qa+r for some q∈Z and 0≤r<ao (remainder). Since bEH and 990 EH, rEH. Since read, by defind 90, r must be zero. Hence be Zao; so HCZao, and convexely ZaoCH, so H=Zao. []

So . every subgroup of Z is generated by a single element 90, in the following sense.

Observe: if H, H'CG are two subgraps, then HnH' is also a subgrap.

Pf: • e ∈ H ∩ H' so non-empty • if a, b ∈ H ∩ H' Men ab ∈ H and ab ∈ H', so ab ∈ H ∩ H'.

· likewix for inverses.

Similarly for more than two subgroups.

Now; given a subset SCG (nonempty), what is the smallest subgroup of G which contains S? This is denoted <S> and called the subgroup generated by S.

Answer: look at all subgraps of G which contain S (there's at least G itself!) and take their intersection, <S> = () H.

SCH = G

subgroup

More useful answer; $\langle S \rangle$ must contain all products of elements of S and their inverses, and these form a subgroup of G, so $\langle S \rangle = \{a_1 ... a_k \mid a_i \in S \cup S^{-1} \ \forall 1 \leq i \leq k\}$

Def: A group is cyclic if it is generated by a single element.

(ex. Z, Z/n. There one in fact the only cyclic groups up to isomorphism).

 \underline{Ex} : $SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a,b,c,d \in \mathbb{Z} \text{ and } ad-bc=1 \right\}$ can be generated by two elements!

[exercise! fairly hard without hint].

Homomorphisms:

Def: Given his groups G, H, a homomorphism φ: G→H is a map which respects the composition law: $\forall a,b \in G$, $\varphi(ab) = \varphi(a) \varphi(b)$. (This implies $\varphi(e_G) = e_H$, and $\varphi(\bar{a}^I) = \varphi(a)^{-1}$.).

Rmk: A pedantic way to state $\varphi(ab) = \varphi(a) \varphi(b)$ is by a commutative diagram GXG \(\frac{\psi \psi}{\psi \psi \psi}\) HXH 'Commutative diapam" means \(GXG \)

MG \(\frac{\psi \psi}{\psi}\) HXH it doesn't matter if we multiply first or apply \(\psi\) first it doesn't make if we multiply first or apply of first. * an isomorphism is a bijective homomorphism (two isomorphic grys are "secretly the same")

* an automorphism is an isomorphism $G \rightarrow G$.

Examples:

all groups of order 2 are isomorphic! $S_2 = (\{id, (12)\}, o\} \cong (\{\pm 1\}, \times) \cong (\mathbb{Z}_2 +)$ because the table is always $m \in \mathbb{Z}$ isomorphisms) $(R, +) \xrightarrow{exp} (R_+, \times) \quad (R/\mathbb{Z}_2 +) \xrightarrow{exp(2\pi it)} (S^1, \times)$ • $S_3 \cong \text{ symmetries of } \bigwedge (\text{permutation of })$

Example: $\mathbb{Z} \gg \mathbb{Z}/n$, $a \mapsto a \mod n$ (remainder of Euclidean division by n).

• if $n \mid m$, $\mathbb{Z}/m \Rightarrow \mathbb{Z}/n$ similarly (eg. $\mathbb{Z}/100 \Rightarrow \mathbb{Z}/100$)

• determinant: $GL_n(\mathbb{R}) \to (\mathbb{R}^k, \times)$ (det (AB) = det (A) det (B)).

Definition: The kernel of a group homomorphism $\varphi: G \to H$ is $\ker(\varphi) = \{ a \in G \mid \varphi(a) = e_H \}.$ This is a subgroup of G. (check it contains e_G , products, inverses)

or ψ is injective iff $\ker(\varphi) = \{e_G\}$. (using: $\varphi(a) = \varphi(b) \Leftrightarrow a^{-1}b \in \ker(\varphi)$.

Definition: | • The image of a group homomorphism $\varphi: G \to H$ is $Im(\psi) = \varphi(G) = \{b \in H \mid \exists a \in G \text{ st. } \varphi(a) = b\}$ • This is a subgrap of H. φ is sujective iff $Im(\varphi) = H$.

Remark: if φ is injective, then G is isomorphic to the subgroup $\operatorname{Im}(\varphi) \subset H$.

(the isomorphism is given by the map $G \to \operatorname{Im}(\varphi)$, $a \mapsto \varphi(a)$).

Example: Let $a \in G$ be any element in a group G, then the map $\psi: \mathbb{Z} \longrightarrow G$, $n \mapsto a^n$ is a homomorphism, with image $\langle a \rangle$ the subgrap generated by a.

is a homorophism, with image $\langle a \rangle$ the subgrap generated by a.

Def: the order of a \in G = smallest possible k such that \triangle do not confine order of a \in G with order of G (= |G|). $a^k = e$, if it exists. Else say a has infinite order.

Though, order(a) = $|\langle a \rangle|$

If a has infinite order then power of a one all diffict, $\varphi: n \mapsto a^n$ is injective, and $\langle a \rangle$ is isomorphic to \mathbb{Z} . If a has finite order k then $ker(\varphi) = \mathbb{Z}k$, and $\langle a \rangle = \{a^n \mid n = 0, ..., k-1\}$ is isomorphic to \mathbb{Z}/k .

(This completes the classification of cyclic garys, by the way).

Example: $\mathbb{Z}/6 \xrightarrow{\sim} \mathbb{Z}/2 \times \mathbb{Z}/3$ (observe: $(1,1) \in \mathbb{Z}/2 \times \mathbb{Z}/3$ has order 6, so generates). $a \longmapsto (a \mod 2, a \mod 3)$ Similarly, $gcd(m,n)=1 \Rightarrow \mathbb{Z}/m \times \mathbb{Z}/n = \mathbb{Z}/mn$. But $\mathbb{Z}/2 \times \mathbb{Z}/2 \not= \mathbb{Z}/4$

 $x+x=0 \ \forall x \ vs. \ 1+1\neq 0$.