MA226 : Monte-Carlo Simulation Continuous Random Number Generation Assignment 4

Turkhade Hrushikesh Pramod 150123044

09-02-2017

1 Problem 1

We have to generate exponential random variable using Inverse Transform Method.Let, f(x) be the density function of exponential random variable and X be the exponential random variable.

 $X = f^{-1}(U)$ where U is a uniform random variable.

1.1 Source code of solution in C++

```
int arr[100010];
double uniform [100010];
double exponential [100010];
void genUni(ll length, ll seed=7)
           arr[0] = seed;
           11 a=40692;
           ll m=2147483399;
           ll q=m/a;
           11 r=m%a;
           for(int i=1; i \le length; i++)
                      \label{eq:continuous} \text{ll } x \, = \, a \! * \! (\, a \, r \, r \, [\, i \, -1]) \% m \, - \, (\, a \, r \, r \, [\, i \, -1]/q) \! * \! r \, ;
                      \mathbf{i} \mathbf{f} (\mathbf{x} < 0)
                                x=x+m;
                      arr[i]= x;
                      uniform [i]=x*1.0/m;
           }
double fInv(double x)
          return (-5*\log(1-x));
void genExpo(int length)
           for(int i=1; i \le length; i++)
           {
                      exponential [i]=fInv(uniform[i]);
           }
double calMean(int length)
          double total=0;
           for(int i=1;i \le length;++i)
                      total+=exponential[i];
```

```
return total *1.0 / length;
double getMax(int length)
         double maxito=0;
         for(int i=1;i<=length;++i)
                   maxito=max( maxito , exponential [ i ] );
         return maxito;
double getMin(int length)
         double minito=0;
         {\bf for}\,(\,{\bf int}\ i \!=\! 1; i \!<\! = \! l\,e\,n\,g\,t\,h\,; \!+\! +\, i\;)
                   minito=min(minito, exponential[i]);
         return minito;
double calVar(double mean, int length)
         double total=0;
         for (int i=0; i < = length; ++i)
                   total+= (exponential[i]-mean)*(exponential[i]-mean);
         return total/length;
int main()
          11 n=5000;
         genUni(n);
         genExpo(n);
         double mean=calMean(n);
         double var=calVar(mean,n);
         cout << "Mean: \_" << mean << endl;
         cout<<" Var: _"<<var<<endl;
         cout << "Max: \_" << getMax(n) << endl;
         \verb"cout"<<" Minimum: \verb"-"<< \verb"getMin" (n)<< \verb"endl";
```

1.2 Source code of solution in R

```
fInv<- function(x)
{
    return(-5*log(1-x))
```

1.3 Observation

Here, we observe that the histogram of the generated sample is quite similar to the density function of the exponential distribution.

1.4 Histograms for the Generated Distribution

Histogram of sample

Abbildung 1: Histogram for generated exponential distribution.

2 Problem 2

Now, we have to generate random values from Gamma Random variable. As gamma random variable is sum of α independent exponential random variables of parameter λ , for Gamma distribution of parameters (α, λ) .

Let, G be gamma random variable and X_i be the i^{th} exponential random variable.

$$G = X_1 + X_2 + X_3 + X_4 + X_5$$

2.1 Source code for solution in C++

```
int arr[100010];
double uniform [100010];
double gamma_dist[100010];
void genUni(ll length, ll seed=7)
        arr[0] = seed;
        11 a=40692;
        ll m=2147483399;
        ll q=m/a;
        ll r=m%a;
        for(int i=1; i \le length; i++)
                 11 x = a*(arr[i-1])%m - (arr[i-1]/q)*r;
                 if(x<0)
                         x=x+m;
                 arr[i]= x;
                 uniform [i]=x*1.0/m;
        }
double fInv(double x)
        return (-(1/5.0)*\log(1-x));
void genGamma(int length)
        for(int i=1; i \le length; i++)
                 gamma_dist[i]=(fInv(uniform[i])
                         +fInv (uniform [i+5000])+fInv (uniform [i+10000])
                         +fInv(uniform[i+15000])+fInv(uniform[i+20000]));
        }
```

```
double calMean(int length)
        double total=0;
         for(int i=1;i \le length;++i)
                  total+=gamma_dist[i];
        return total *1.0/length;
double getMax(int length)
        double maxito=0;
         for(int i=1;i \le length;++i)
                 maxito=max(maxito,gamma_dist[i]);
        return maxito;
double getMin(int length)
        double minito=0;
         for(int i=1;i<=length;++i)
                 minito=min(minito,gamma_dist[i]);
        return minito;
double calVar(double mean, int length)
        double total=0;
         for(int i=0; i \le length; ++i)
                  total += (gamma_dist[i] - mean) * (gamma_dist[i] - mean);
        return total/length;
int main()
         ll n=5000;
         genUni(n*5);
        genGamma(n);
        double mean=calMean(n);
        double var=calVar(mean,n);
         \verb"cout"<<" Mean: \verb"."<< mean<< endl";
         cout << "Var : \_" << var << endl;
         cout << "Max: \_" << getMax(n) << endl;
         cout << "Minimum: " << get Min(n) << endl;
```

2.2 Source code of solution in R

```
fInv<- function(x)
{
          return(-(1/5.0)*log(1-x))
}
n=5000
sample<-vector(length=n)
cat("Sample_vales_are:")
for (i in 1:5000)
{
          u<-runif(5,0,1)
          sample[i]=sum(fInv(u))
          cat(i,"->-",sample[i],"\n")
}

png("que2_in_R.png")
hist(sample, breaks=50,col="red",plot=TRUE)
cat("\n")
cat("\nMean:-",mean(sample),"\n")
cat("Variance:-",var(sample),"\n")
cat("Max:-",max(sample),"\n")
cat("Max:-",max(sample),"\n")
cat("Min:-",min(sample),"\n")
```

2.3 Observation

Here, we observe that the histogram of the generated sample is quite similar to the density function of the Gamma distribution.

2.4 Histograms for the Generated Distribution

Histogram of sample

Abbildung 2: Histogram for generated Gamma distribution.

3 Problem 3

In this we have to use Acceptance-Rejection method to generate samples of a probability distribution given by f(x).

$$f(x) = 20x(1-x)^3$$

Here, we take g(x) = 1, that is, and c = 2.5. This satisfies the following condition.

$$f(x) < c * g(x) \forall x \in [0, 1]$$

3.1 Source code for solution in C++

```
int arr[100010];
double uniform [1000010];
double sample [1000010];
void genUni(ll length, ll seed=7)
           arr[0] = seed;
           11 a=40692;
           ll m=2147483399;
           ll q=m/a;
           ll r=m‰;
           for(int i=1; i \le length; i++)
                      \label{eq:continuous} \text{ll } x \, = \, a \, * \, (\, a \, r \, r \, [\, i \, -1]) \% m \, - \, \, (\, a \, r \, r \, [\, i \, -1]/q) \, * \, r \, ;
                      if(x<0)
                                 x=x+m;
                      arr[i] = x;
                      uniform [i]=x*1.0/m;
           }
double f (double x)
           return 20*x*(1-x)*(1-x)*(1-x);
void acceptReject(ll n)
           int i=0, index=1;
           \mathbf{while}\,(\,\mathrm{index}<\!\!=\!\!n\,)
                      double u1=uniform[i];
                      double u2=uniform[i+50000];
```

```
double c=2.5;
                 if(c*u2 < f(u1))
                         sample[index++]=u1;
                 i++;
        }
double getMax(int length)
        double maxito=0;
        for(int i=1;i<=length;++i)
                maxito=max(maxito, sample[i]);
        return maxito;
double getMin(int length)
        double minito = 0;
        for(int i=1;i<=length;++i)
                minito=min(minito, sample[i]);
        return minito;
double calVar(double mean, int length)
        double total=0;
        for(int i=0; i \le length; ++i)
                 total += (sample[i]-mean)*(sample[i]-mean);
        return total/length;
double calMean(int length)
        double total=0;
        for (int i=1; i \le length; ++i)
                 total+=sample[i];
        return total *1.0/length;
int main()
        ll n=5000;
        genUni(n*200);
        acceptReject(n);
```

```
double mean=calMean(n);
double var=calVar(mean,n);

cout<<"Mean: _"<<meand!;
cout<<"Var: _"<<var<<endl;

cout<<"Max: _"<<getMax(n)<<endl;
cout<<"Minimum: _"<<getMin(n)<<endl;
}</pre>
```

3.2 Source code of solution in R

```
f < -function(x)
{
                return(20*x*(1-x)*(1-x)*(1-x))
}
n = 10000
sample <- vector (length=n)
{\rm index}\!<\!\!-1
c < -2.5
while (index<n)
                u1 < -runif(1)
                u2<-runif(1)
                 if(c*u2 < f(u1))
                                  sample[index]=u1
                                 \verb"index<-\verb"index+1"
png("que3_in_R.png")
hist (sample, breaks=50, col="red", plot=TRUE)
\begin{array}{l} \operatorname{cat}\left("\operatorname{Mean}\colon \_", \operatorname{mean}\left(\operatorname{sample}\right), "\setminus n"\right) \\ \operatorname{cat}\left("\operatorname{Variance}\colon \_", \operatorname{var}\left(\operatorname{sample}\right), "\setminus n"\right) \end{array}
cat ("Max: _", max(sample), "\n")
cat ("Min: _", min(sample), "\n")
```

3.3 Histograms for the Generated Distribution

Histogram of sample

Abbildung 3: Histogram for generated distribution.