# Soutenance Projet 8



Déployez un modèle dans le cloud



Michel Blazevic 09/2022

**DENCLASSROOMS** - Formation Data Scientist

# Ordre du jour

- 1. Introduction
  - 1. Problématique
  - 2. Présentation base de données
  - 3. Passer à l'échelle Big Data
- 2. Architecture Cloud choisie
  - 1. Stockage des données AWS: S3
  - 2. Service PaaS AWS: EMR
  - 3. Contrôle d'accès AWS: IAM
- 3. Travail effectué
  - 1. Calcul distribué: PySpark
  - 2. Pipeline transformation
  - 3. Résultat
- 4. Conclusion & Aller plus loin

# 1. Introduction

- 1. Problématique
- 2. Présentation base de données
- 3. Passer à l'échelle Big Data

# Problématique



# Fruits!

## Problématique:

- **Fruits!**: Start-up de l'AgriTech voulant proposer solution innovantes pour la récoltes des fruits/légumes
- 1<sup>er</sup> avancée: créer une application mobile permettant au grand public d'avoir un moteur de classification d'images de fruits/légumes
  - ⇒ Construire une première version de l'architecture Big Data

## Mission:



- ⇒ Développer première chaîne de traitement dans un environnement Big Data
  - ⇒ Sélection services pour utilisation du cloud
  - ⇒ Utilisation PySpark pour calcul distribué et effectuer réduction de dimension sur un échantillon d'images

## Présentation bases de données





https://www.kaggle.com/datasets/moltean/fruits

- 90483 images
- Chaque image 100x100 pixels
- 131 labels différents (fruits et légumes)
- Photos prises avec rotation 3 axes sur 360°
- Image des fruits extrait de l'arrière plan (luminosité..)



# Passer à l'échelle Big Data



- <u>Volume</u>: le stockage est amené à être repenser lorsqu'il y a une augmentation des quantités
- <u>Vélocité</u>: L'augmentation de la quantité de données demande une rapidité de calcul accrue
- <u>Variété</u>: les données peuvent être sous différents formats et structuré ou non structurées (images, textes, csv, json...)

### Le cloud



- ⇒ Environnement virtuel composé d'un ensemble de matériel et service accessible partout pouvant répondre à une problématique Big Data
- ⇒ Plusieurs types de cloud:



Software as a Service

Plateform as a Service

Infrastructure as a Service

⇒ Différents fournisseur d'accès au cloud:



Choix AWS





# 2. Architecture Cloud choisie

- 1. Stockage des données AWS: S3
- 2. Service PaaS AWS: EMR
- 3. Contrôle d'accès AWS: IAM

# Stockage des données AWS: S3



- → S3: Simple Storage Service -> Stockage/hébergeur des fichiers dans le cloud
- → Avantages:
  - Configuration des droits d'accès
  - Versioning et configuration d'une date d'expiration
  - Chiffrer et réplications des fichiers
  - Pas de limites de place et moins cher que stockage sur serveur
  - Différentes types d'archivage à des prix différents
  - Accès avec API (boto3)









## Service PaaS AWS: EMR

- ⇒ Amazon Elastic MapReduce
  - Plateform de cluster gérée et simplifiant les framework de Big Data
  - Permet de traiter et analyser grand volume de données





Ec2: Amazon Elastic Compute Cloud

- Service virtuel scalable d'accès à des serveurs
- Configuration processeur, mémoire et stockage



| Choix: | MASTER<br>Master - 1 | m5.xlarge<br>4 vCore, 16 GiB memory, EBS only storage<br>EBS Storage: 64 GiB |
|--------|----------------------|------------------------------------------------------------------------------|
|        | CORE<br>Core - 2     | m5.xlarge<br>4 vCore, 16 GiB memory, EBS only storage<br>EBS Storage: 64 GiB |

#### Détail de configuration

- FMR-6.7.0
- Hadoop Amazon 3.2.1
- JupyterEnterpriseGateway 2.1.0,
- TensorFlow 2.4.1
- Livy 0.7.1
- Spark 3.2.1

#### Avec Bootstrapping:

- Pandas
- Numpy
- Pillow
- matplotlib

q

## Contrôle d'accès AWS: IAM

→ Clefs pour répartir les droits d'accès selon les utilisateurs, les rôles et la politique des services





#### Accès console:

url = <a href="https://michblaz-aws-94.signin.aws.amazon.com/console">https://michblaz-aws-94.signin.aws.amazon.com/console</a>
Login= Examinateur

Mdp= Examinateur\_iam\_092022



# Architecture globale Cloud





# 3. Travail effectué

- 1. Calcul distribué: PySpark
- 2. Pipeline transformation
- 3. Résultat

# Calcul distribué: PySpark



- ⇒ Partitionner les données sur plusieurs serveurs pour effectuer des calculs distribués
- ⇒ Cluster d'une application Spark:
  - Driver: gère et organise les étapes du cluster
  - Manager: alloue/distribue les ressources
  - Worker: les esclaves qui stock les données et exécute les tâches/calculs



# Pipeline transformation

Rappel objectif: créer première chaîne de traitement d'image



# Résultat





# Conclusion et aller plus loin

## **Conclusion**:

- Découverte Big Data et Environnement Cloud
- Utilisation services AWS pour stockage (s3) et traitement de données (EMR)
- Faire des calculs distribués avec PySpark Apache
- Première chaîne de traitement pour Fruits!
   (Features extraction, Scaling, PCA)

## Aller plus loin/mise à l'échelle:

- Suivre les applications Spark depuis Spark UI
- Voir les choix de configurations du cluster (types d'instances, nb workers nodes...)
- Améliorer extraction de features (preprocessing images, autres CNN ...)



# Merci! Des questions?

- Différence Big Data / Cloud:
  - -> Le big Data est un espace virtuel composé de données massives/volumineuses ne pouvant être traitées par une machine ou par un être humain.
  - -> Le Cloud est l'environnement virtuel avec un ensemble d'éléments matériels accessibles partout

Différence: — Le cloud (outil) donne accès et stock les données et le big data est la possession et l'exploitation des données massives

- Différence hadoop/spark
  - Deux frameworks big data
  - Hadoop infrastructure de données distribuées (plusieur nœuds d'un cluster)
  - Spark sait travailler sur les données distribuées mais ne gère pas le stockage distribué. Il s'appuie sur un système de stockage distribué
  - Hadoop utilise la composante de stockage HDFS et le traitement avec MapReduce
  - Spark peut fonctionner sans hadoop mais nécessite un autre système de gestion de fichier.
  - Spark à la différence de mapreduce va effectuer toutes les opérations d'analyses nécessaie
  - Il y a la redondance d'écriture des données sur le cluster avant de lancer létape suivante
  - Gestion des pannes: Hadoop et Spark gèrent la résilience au panne mais spark donne accès à des RDD (resilient distributed data) réparti sur le cluster de données. Qui peuvent êter récupérér complêtement après une panne ou défaillance

#### HADOOP VERSUS SPARK

| HADOOP                                                                                                                                                                      | SPARK                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Hadoop is an Apache open<br>source framework that allows<br>distributed processing of<br>large data sets across clusters<br>of computers using simple<br>programming models | An open-source distributed<br>general-purpose cluster-<br>computing framework                             |
| Not as fast                                                                                                                                                                 | Faster                                                                                                    |
| Uses replication of data in<br>multiple copies to achieve<br>fault tolerance                                                                                                | Uses Resilient Distributed<br>Dataset (RDD) for fault<br>tolerance                                        |
| Used to boost the Hadoop computational process                                                                                                                              | Used to manage data storing<br>and processing of big data<br>applications running in<br>clustered systems |

- Type de service cloud
  - laas: accès à des serveurs définis: problème technique : pas notre problème mais si volonté de changer la puissance on doit demander
  - Paas: Accès a des serveurs mais on gère pour nous le nombre de machines et des fonctionnalités
  - Saas: accès à un loficiel comme un service donc seulement à une utilité définie



- Récapitulons les points à vérifier pour optimiser une application :
  - Stockez en cache les données quand c'est nécessaire
  - Utilisez les bonnes structures de données
  - Ajustez le nombre de partitions