* Corrigé Devoir 02 de Physique-Chimie -2de-2024/2025- Durée: 02 heures *

Exercice 01 : « Tableau périodique » (05 points)

1.	1.							18
	Н	2	13	14	15	16	17	He
	Li	Be	В	С	N	0	F	Ne
	Na	Mg	Αℓ	Si	Р	S	Cl	Ar

- 2. La première période du tableau périodique concerne le remplissage de la sous-couche 1s qui ne peut contenir au maximum que deux électrons. Il n'y a donc que deux éléments.
- 3. Na+: ion sodium; F-: ion fluorure.

Exercice 02 : « Un fluide réfrigérant » (05 points)

 D'après le modèle fourni, la molécule d'ammoniac est constituée d'un atome d'azote N et de trois atomes d'hydrogène H. Sa formule brute est donc NH₃.

Masse d'un atome d'hydrogène H :

$$m(H) = A \times m_{\text{nucl\'eon}} = 1 \times 1,67 \times 10^{-27} \text{ kg} = 1,67 \times 10^{-27} \text{ kg}$$

Masse d'un atome d'azote N:

$$m(N) = A \times m_{\text{nucl\'eon}} = 14 \times 1,67 \times 10^{-27} \,\text{kg} = 2,34 \times 10^{-26} \,\text{kg}$$

Masse d'une molécule d'ammoniac NH3:

$$m(NH_3) = m(N) + 3 \times m(H) = 2,34 \times 10^{-26} \text{ kg} + 3 \times 1,67 \times 10^{-27} \text{ kg}$$

Soit $m(NH_3) = 2,84 \times 10^{-26} \text{ kg}$.

2. Le nombre N de molécules d'ammoniac contenues dans la bouteille est égal à :

$$N = \frac{m}{m(\text{NH}_3)}$$
D'où $N = \frac{44.0 \text{ kg}}{2,83 \times 10^{-26} \text{ kg}}$ soit $N = 1,55 \times 10^{27}$ entités.

3. La quantité de matière n d'ammoniac contenue dans la bouteille est égale à :

$$n = \frac{N}{N_{\Delta}} = \frac{1,55 \times 10^{27}}{6,02 \times 10^{23} \text{ mol}^{-1}} \text{ soit } n = 2,57 \times 10^3 \text{ mol}.$$

Exercice 03: « Vaporisation du dioxygène » (05 points)

- **1.** À la température usuelle de 20 °C, le dioxygène est à l'état gazeux car $T_{\rm \acute{e}bullition}$ < 20 °C.
- **2. a.** La vaporisation du dioxygène est endothermique car $L_{\text{vaporisation}} > 0$.
- **b.** Le dioxygène se vaporisant reçoit donc le transfert thermique du milieu extérieur.

c. Le transfert thermique est :

$$Q = m \cdot L = 0,180 \times 2,1 \times 10^5$$

$$Q = 3.9 \times 10^4 \, \text{J}$$

Exercice 04 : « L'eau de mer, une source d'énergie ? » (05 points)

1. Dans 1 L d'eau de mer, la masse m_0 de deutérium vaut :

$$m_0 = 32.4 \text{ mg} = 3.24 \times 10^{-5} \text{ kg}.$$

Le nombre N_D d'atomes de deutérium est égal à :

$$N_{\rm D} = \frac{m_0}{m_{\rm D}} = \frac{3,24 \times 10^{-5}}{3,24 \times 10^{-27}} = 9,70 \times 10^{21}$$
 atomes de deutérium.

2. L'énergie E libérée par la fusion du deutérium contenue dans 1 L d'eau est :

$$E = N_D \times 2,82 \times 10^{-12}$$

soit $E = 9,70 \times 10^{21} \times 2,82 \times 10^{-12} = 2,74 \times 10^{10} \text{ J}.$

3. L'énergie E' libérée par la combustion de 800 L d'essence est égale à :

$$E' = 800 \times E_{comb} = 800 \times 3,5 \times 10^7 = 2,8 \times 10^{10} \text{ J.}$$

L'affirmation est donc exacte.