1.		listinct real numbers p		+pr=0 and
	$x^2 + rx + pq = 0$ have a common root, then the value of $p + q + r$ is			
2	(a) 0	(b) 1	(c) -1	(d) 2
2.		$e^2 - 1 = 0$ will have roots o		
	(a) $a \in (-\infty, \infty)$		(b) $a \in [-1, 1]$	
	(c) $a \in (-\infty, -1) \cup (1, \infty)$		(d) None of these	
3.	If 8, 2 are the roots of x	$a^{2} + ax + \beta = 0$, and 3, 3 and	re the roots of $x^2 + \alpha x + b$	b = 0 then the
	roots of $x^2 + ax + b = 0$	are:		
	(a) $8, -1$	(b) $-9, 2$	(c) $-8, -2$	(d) 9, 1
4.	If α, β, γ are	the roots of x^3	-px-q=0, then	the value
	$(2\alpha + \beta + \gamma)(2\beta + \gamma + \alpha)$	$(2\gamma + \alpha + \beta)$ is		
	(a) q	(b) − <i>q</i>	(c) p	(d) $-p$
5.	The integral value of a f	or which $ax^2 + ax + a = 2x$	$x^2 - 3x - 6$ has equal root	ts is
	(a) 3	(b) 2	(c) -3	(d) -2
6.	If $x^2 + 3x + 5 = 0$ and	$ax^2 + bx + c = 0$ have a	common root and a, i	$b, c \in \mathbb{N}$ then
	minimum value of $a+b$	+c is equal to:		
	(a) 3	(b) 9	(c) 6	(d) 12
7.	The value of λ for whi	$ch 2x^2 - 2(2\lambda + 1)x + \lambda(\lambda + 1)$	$(\lambda + 1) = 0$ may have one	root less than
	λ and other root greater	than λ are given by		
	(a) $1 > \lambda > 0$	(b) $-1 < \lambda < 0$	(c) $\lambda \ge 0$	(d) $\lambda > 0$ or
0	$\lambda < -1$	$\frac{2}{2} + 2 x + 2 = 0$ and		
8.	Real roots of equation x		() 4 4	(1) NI C
	(a) $-1, -4$	(b) 1, 4	(c) -4, 4	(d) None of
9.	these If $\alpha + \beta = 3$ and $\alpha^3 + \beta^3 = 7$, then α and β are the roots of			
<i>)</i> .		(b) $9x^2 - 27x + 20 = 0$		(d) None of
	these	$(0) \ \mathcal{I} \mathcal{X} \mathcal{Z} \mathcal{I} \mathcal{X} + \mathcal{Z} \mathcal{U} = 0$	(c) $2x = 0x + 13 = 0$	(d) None of
10. If a, b, c are odd integers and $ax^2 + bx + c = 0$, has real roots then:				
	(a) Both roots are ration	al	(b) Both roots are irra	ntional
	(c) Both roots are positive		(d) Roots are of opposite signs	
11.	The least integer k which	h makes the roots of the ed	$quation x^2 + 5x + k = 0 in$	maginary is
	(a) 4	(b) 5	(c) 6	(d) 7
12.	If the difference between is same and $a \neq b$, then	If the difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ as same and $a \ne b$, then		
	(a) $a+b+4=0$	(b) $a+b-4=0$	(c) $a-b-4=0$	(d)
	a-b+4=0			
13.	3. If α , β are roots of $x^2 - 3x + a = 0$ and γ , δ be those of $x^2 - 12x + b = 0$ and number α , β , γ , δ (in order) from an increasing G. P. then			

	(a) $a = 3, b = 12$ a = 4, b = 16	(b) $a = 12, b = 3$	(c) $a = 2, b = 32$	(d)
14.	Let $r = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$	$\alpha = r + r^2 + r^4, \ \beta = r^3 + r^4$	$r^5 + r^6$. Then α and β	are the roots
	of the equation:			
	(a) $x^2 - x + 4 = 0$ $x^2 + x - 2 = 0$	(b) $x^2 - x + 2 = 0$	(c) $x^2 + x + 2 = 0$	(d)
15.	Solution of the equation	$x + \frac{x}{x - 1} = 1 + \frac{x}{x - 1}$ are		
	(a) 0, 1 these	(b) 0	(c) 1	(d) None of
16.	Let α and β be the ro α^{19} , β^7 is	ots of the equation $x^2 + x +$	1 = 0. The equation when $1 = 0$.	nose roots are
	(a) $x^2 - x - 1 = 0$ $x^2 + x + 1 = 0$	(b) $x^2 - x + 1 = 0$	(c) $x^2 + x - 1 = 0$	(d)
17.	If α , β are the roots of the equation $x^2 + 2x + 4 = 0$, then $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is equal to			
	(a) $\frac{1}{4}$	(b) 4	(c) 32	(d) $\frac{1}{32}$
18.	If the roots of the equation $x^3 - 12x^2 + 39x - 28 = 0$ are in A.P., then their common difference is			heir common
	(a) ± 1	(b) ±2	(c) ±3	$(d) \pm 4$
19.	If the equation $x^2 + px$. Then	+q=0 has roots u and v	, where p, q are non-z	zero constant.
	(a) $qx^2 + px + 1 = 0$ has	roots $\frac{1}{u}$ and $\frac{1}{v}$	(b) $(x-p)(x+q) = 0$	has roots
	u+v and uv			
	(c) $x^2 + p^2x + q^2 = 0$ has	proofs u^2 and v^2	(d) $x^2 + qx + p = 0$ ha	as roots $\frac{u}{v}$ and
	$\frac{v}{u}$			
20.	0. If α, β are the roots of $x^2 + px + 1 = 0$ and γ, δ be those of $x^2 + qx + 1 = 0$ then the value of $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta)$ is equal to			
	(a) $p^2 - q^2$	(b) $q^2 - p^2$	(c) p^2	(d) q^2
21.	If 2 lies between the roo	ts of quadratic equation x^2	-ax + a = 0, then:	
	(a) $0 < a < 4$	(b) $a < 4$	(c) $a > 4$	(d) None
22.	The value of k for which the equation $x^3 + x^2 - 4x - k = 0$ and $x^2 + x - 2 = 0$ have a common root is			
	(a) 2	(b) 4	(c) -4	(d) 6
23.	If the equation $x^3 + ax^2$ is	+bx-4=0 has two roots e	equal to 2, then the orde	red pair (a, b)

Quadratic equation dpp (back log course)

a ' are :

(a) 0 < a < 1/4

	(a) $(-5, 8)$	(b) $(5,-8)$	(c) $(1, 1)$	(d) $(2, 2)$
24.	The number of roots of	the equation $\log (-2x) = 2$	$\log(x+1)$ is	
	(a) 0 than two	(b) One	(c) Two	(d) More
25.	The value of ' a ' for wh	ich the roots of the equatio	on $x^2 + x + a = 0$ are real	al and exceed '

(b) a < 1/4

-2 < a < 0)			
1. (a)	2. (a)	3. (d)	4. (a)	5. (a)
6. (b)	7. (d)	8. (d)	9. (b)	10. (b)
11. (d)	12. (a)	13. (c)	14. (c)	15. (d)
16. (d)	17. (a)	18. (c)	19. (a)	20. (b)
21. (c)	22. (b)	23. (a)	24. (b)	25. (c)

(c) a < -2

(d)