李 本:

学 号: 装订线内不要

箚

复旦大学数学科学学院 2014~2015 学年第二学期期末考试试卷 A 卷

课程名称: ____高等数学 A (下) 课程代码: __ MATH120002_

开课院系: ____数学科学学院_________考试形式: __闭卷__

题 号	1	2	3	4	5	6	7	总 分
得 分								

1. (本题共48分,每小题6分)计算下列各题

(1) $\mbox{if } z = (x^2 + y^2) \ln(x^2 + y^2), \ \ \mbox{if } z_{xy}''$

(2)解方程 $xy' - y = x^2$ 。

(3) 求函数 u = xy + zx + yz 在点 (1, 1, 1) 处沿方向 l = (1, -2, 2) 的方向导数。

(4) 求函数 $u = x^2 + y^2 + z^2$ 在条件 x + 2y + 3z = 14 $(x, y, z \ge 0)$ 下的极值。

(5) 计算
$$\iint\limits_{D}(x+y)dxdy \;,\;\; 其中 \;D: x^2+y^2 \leq 2y \;.$$

(6) 讨论级数
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2 + 1}$$
 的收敛性。

(7) 计算
$$\iint_{\Sigma} (x+y^2) dydz + 2yzdzdx + zdxdy$$
, 其中 Σ 为曲面 $z = x^2 + y^2$ (0 $\leq z \leq 1$) 的下侧。

(8) 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n} x^n$ 的收敛半径与收敛区间。。

2. (本题共 8 分) 设 f 可微,证明曲面 Σ : $f(\frac{z}{y},\frac{x}{z},\frac{y}{x})=0$ 上任意一点处的切平面过某个定点。

3. (本题共 8 分) 求 $\int_{\Gamma} (x+3y^2)ds$, 其中 Γ : $\begin{cases} x^2+y^2+z^2=a^2\\ x+y+z=0 \end{cases}$ (a>0) 。

4. (本题共 10 分)设 $\Sigma: \frac{x^2}{2} + \frac{y^2}{2} + z^2 = 1 (z \ge 0)$, 点 $P(x, y, z) \in \Sigma$, Π 是 Σ 在点 P处的切平面,d(x, y, z)为原点到 Π 的距离,求 $\iint_{\Sigma} \frac{z}{d(x, y, z)} dS$ 。

- 5. (本题共 10 分)设 f(x)在 $(0,+\infty)$ 上有连续导数,且 $f(1) = \frac{1}{2}$,曲线积分 $\int_{L} (yf^{2}(x) + 2x)dx + (xf(x) + y^{2})dy$ 在右半平面 (x > 0)与路径无关。
- (1) 求 f(x) 的表达式; (2) 设在右半平面的有向曲线 L 的起点为(1,0),终点为(2,3),试计算上述曲线积分。

6. (本题共 8 分)设 $f(x) = \begin{cases} 1, & x \in [-\pi, 0) \\ x, & x \in [0, \pi) \end{cases}$,求其 Fourier 级数及 Fourier 级数的和函数 S(x),并计算 $S(4\pi)$ 。

- 7. (本题共 8 分)设 $\{a_n\}$ 为正数列 $\{a_n>0, n=1,2,\cdots\}$, $\sum_{n=1}^{\infty}a_n$ 发散,记 $S_n=\sum_{k=1}^{n}a_k$,
- 证明: (1) $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 发散; (2) $\sum_{n=1}^{\infty} \frac{a_n}{S_n^p}$ 收敛(p > 1)。