

IST 687 Introduction to Data Science Analysis of United States Airlines

AMIT NAIK

1. Introduction

The dataset is about a survey of customers flying within the United States. It has 129889 rows with 28 variables which includes data for three months(January, February, March). The main goal of this project is to increase customer satisfaction for the airlines.

The dependent variable in this dataset is the Customer Satisfaction whereas there are 27 independent variables. These are in various subcategories such as personal attributes (age, gender, price sensitivity,...), flight planned status (class, date, Airline, Origin City, ...) and how the flight went (departure delay, flight time,...)

2. Data cleanse/munge/preparation

The cleaning of data started with finding out the NA's available in the dataset. It was found that the NA's were available in three columns: Departure Delay, Arrival Delay and the Flight time. The three steps we followed are:

- Replaced the NA's in departure delay, arrival delay and the flight time with a large value when the flight was canceled. (Flight.cancelled ="Yes"). This means that because we had a larger delay, the flight was cancelled.
- Deleted the 337 rows which had NA's in the departure delay, arrival delay and the flight time when the flight was not cancelled. Because, in a large dataset with 129889 rows, 337 has a percentage of 0.2.
- There are three satisfaction values with a discrepancy which is deleted. Therefore there are 340 rows deleted in total.

```
# ---- clean data ---- #
sw <- read.csv("~/Desktop/Satisfaction\ Survey.csv")
# give these NA data a very big value. (The rows which flights are cancelled)
sw$Departure.Delay.in.Minutes <- ifelse(is.na(sw$Departure.Delay.in.Minutes) & sw$Flight.cancelled == "Yes", 9999, sw$Departure.Delay.in.Minutes)
sw$Arrival.Delay.in.Minutes <- ifelse(is.na(sw$Arrival.Delay.in.Minutes) & sw$Flight.cancelled == "Yes", 9999, sw$Arrival.Delay.in.Minutes)
sw$Arrival.Delay.in.minutes <- ifelse(is.na(sw$Flight.time.in.minutes) & sw$Flight.cancelled == "Yes", 9999, sw$Arrival.Delay.in.Minutes)
# There are still 337 rows we haven't deal with. Since the number is small, we decided to delete them.
# delete the last 337 rows
sw <- na.omit(sw)
# There are 3 different Satisfaction value.
sw$Satisfaction <- as.numeric(as.character(sw$Satisfaction))
# After we use this function, they change to NA data. We need delete these 3 rows.
df<- na.omit(sw)
# try to create new columns, TotalDelayTime & DelayedFlight & df$FlightSpeed, but examined no use in linear model
# df$TotalDelayTime <- df$Departure.Delay.in.Minutes + df$Arrival.Delay.in.Minutes
# df$DelayedFlight <- ifelse(df$TotalDelayTime == 0, "No", "Yes")
# df$FlightSpeed <- df$Flight.Distance / df$Flight.time.in.minutes</pre>
```

Why CheapSeats?

Of all the airlines present in the dataset we choose, Cheapseats as it is one of the airlines with low customer satisfaction. We came to this conclusion by using a word cloud & also finding the ratio of customer satisfaction of the airlines.

Word Cloud

We generated a word cloud to determine which airline has the highest number of customers. We used the customer count as the frequency to generate the word cloud. We found that the

Cheapseats Airline Inc. has the maximum number of customers. Hence, we conduct the analysis on the Cheapseats only.

CODE:

```
install.packages("wordcloud")
library(wordcloud)
createWordCounts<- function(vFtext)</pre>
 words.vec <- VectorSource(vFtext) #create a Corpus, a "Bag of Words"
 words.corpus <- Corpus(words.vec)</pre>
 words.corpus
 words.corpus <- tm_map(words.corpus,content_transformer(tolower))</pre>
 words.corpus <- tm map(words.corpus, removePunctuation)</pre>
 words.corpus <- tm_map(words.corpus, removeNumbers)</pre>
 words.corpus <- tm map(words.corpus, removeWords, stopwords("english"))</pre>
 words.corpus <- tm map(words.corpus, removeWords, c("airlines","inc"))</pre>
 tdm<- TermDocumentMatrix(words.corpus)
 tdm
 m<- as.matrix(tdm)# create a matrix
 wordCounts <- rowSums(m)</pre>
 wordCounts<- sort(wordCounts, decreasing=TRUE)</pre>
 return(wordCounts)
wordCounts<- createWordCounts(cleanedDataset$Airline.Name)</pre>
View(wordCounts)
genWordCloud <- function(wordCounts)</pre>
 cloudFrame <- data.frame( word= names(wordCounts), frequency = wordCounts)</pre>
 wordcloud(names(wordCounts), wordCounts, min.freq = 2, max.words=30, rot.per=0.35,
        colors= brewer.pal(8,"Dark2"))
}
genWordCloud(wordCounts)
happyCust <- cleanedDataset[cleanedDataset$Satisfaction>3,]
```

View(happyCust)
unhappyCust <-cleanedDataset[cleanedDataset\$Satisfaction<=3,]
View(unhappyCust)
wordCounts1<- createWordCounts(happyCust\$Airline.Name)
wordCounts1
genWordCloud(wordCounts1)
wordCounts2<- createWordCounts(unhappyCust\$Airline.Name)
wordCounts2
genWordCloud(wordCounts2)

Table displaying ratio of the cancelled flights

Airline_Name	flight_num	flight_cancelled_ num	Cancellation Ratio
FlyFast Airways Inc	15356	661	4.30%
EnjoyFlying Air Services	8906	319	3.58%
OnlyJets Airline Inc	5382	123	2.29%
FlyHere Airways	2474	51	2.06%
Northwest Business Airlines	13787	248	1.80%
SouthEast Airlines	9555	132	1.38%
Oursin Airlines Inc.	10953	151	1.38%
Paul Smith Airlines Inc.	12207	156	1.28%
Sigma Airlines Inc.	17018	217	1.28%
Cheapseats Airlines Inc.	25985	316	1.22%
FlyToSun Airlines Inc.	3392	20	0.59%
GoingNorth Airlines Inc.	1568	6	0.38%
Cool&Young Airlines Inc.	1281	1	0.08%

From the above table it is quite clear that cheapSeats has the high cancellation ratio.

Net Promoter Score:

The Net Promoter Score(NPS) is used to determine the loyalty of the customers towards its provider. The NPS is based on a simple question i.e how likely is it for the customers to recommend the product or company to others. There are three components of the Net promoter score namely the promoters, passive & detractors.

Promoters(9 or 10):

The promoters are very likely to recommend the company/products to others

Passive (7 or 8):

These customers are satisfied with the service but might not or not enthusiastic about recommending the product/company

Detractors(0 to 6):

These customers are not satisfied and may not recommend the service/company to others.

We used the NPS package to find out the net promoter score for the dataset.

Code:

install.packages("NPS")
library("NPS")
vector1 <- as.numeric(as.character(cleanedDataset\$Satisfaction))
summary(vector1)
ss <-npc(vector1, breaks = list(1:2.5, 3, 3.5:5)) #Based on our customer satisfaction
ss # We get 3 levels: Detractor Passive Promoter
sum(as.numeric(as.character(ss)))#calculate the total number of rows
table(ss)</pre>

Output for detractors:

Cheapseats Airlines Inc. Cool&Young Airlines Inc.

> 5602 222

FlyFast Airways Inc. FlyHere Airways

3327 512

GoingNorth Airlines Inc. Northwest Business Airlines 396

2731

Oursin Airlines Inc. Paul Smith Airlines Inc.

2241 2369

Southeast Airlines Co. West Airways Inc. 1852 272

EnjoyFlying Air Services

1884

FlyToSun Airlines Inc.

608

OnlyJets Airlines Inc.

1183

Sigma Airlines Inc.

3334

As you can see Cheapseats has the highest number of detractors.

From the results of the world cloud, table displaying the cancellation ration & the Net promoter score, we choose to focus on the cheapseats airline for improving its customer satisfaction.

3. Descriptive Statistics & Visualization

USING GGMAPS FOR DISPLAYING AVERAGE DELAY IN MINUTES PER STATE:

We created a map to display the satisfaction of the different states(shades depend on the level of satisfaction). The point on the map determines the average delay in minutes(the larger the dot the greater is the delay).

Code:

```
library(sqldf)
statesDelay<-
                             "Destination.State" as
                                                         "stateName",
                                                                         avg("Arrival.Delay.in.Minutes")
                sqldf('select
"adih",avg("Satisfaction") as "AverageSatisfaction" from dfAir1 group by "Destination.State")
#taking and merging default system data with our dataset
area <- state.area
latlong<- state.center
stateName<- state.name
mergeDf<- data.frame(stateName,latlong,area)
fds<- merge(mergeDf,statesDelay, by='stateName')</pre>
#using lower case for stateName
fds$stateName<-tolower(fds$stateName)</pre>
us <- map_data("state")</pre>
#ggmaps
m.s1<-ggplot(fds , aes(map_id=stateName))</pre>
m.s1<- m.s1 + geom_map(map = us,aes(fill=fds$AverageSatisfaction),color="white")
m.s1 < -m.s1 + expand limits(x = fds$x,y = fds$y)
                 +
                        geom point(data=fds,
                                                 aes(x=fds$x,y=fds$y,size=fds$adih),
          m.s1
scale_size(name="Avg Delay in Minutes")
m.s1<- m.s1 + geom_text( data=fds, hjust=0.5, vjust=-0.5, aes(x=x, y=y, label=toupper(stateName)),
colour="gold", size=2.5)
m.s1<- m.s1 + coord_map() + ggtitle("Map of USA (Average Delay in Minutes for Cheapseats)")+
xlab("Longitude") + ylab("Latitude")
m.s1
```

We have analyzed the first flight distribution and how has it impacted the overall customer satisfaction.

Code:

counts <- table(cleanedDataset\$Price.Sensitivity, cleanedDataset\$Age)</pre>

The following graph depicts the gender based customer satisfaction.

The following graph depicts the frequency of the airline distribution.

The following graph depicts the distribution of Age & Price Sensitivity

Distribution of Age & PriceSensitivty

CORRELATION PLOT:

Code:

install.packages("corrplot")
install.packages("corrgram")
library(corrplot)
library(corrgram)
Cheapseats<- dfAir1</pre>

names(Cheapseats)

Cheapseats<- Cheapseats[,c(1,3,5:8,10:12,22:24,26,27)]

```
names(Cheapseats) <-c("SAT","AGE","Sens",
"YrsFli","NOFLi","FLiother","Loyalty","Shop","EatandDrink","Schedhour","depdel","arrdelay","flimin","dist")
Cheapseats <- na.omit(Cheapseats)
corr_data <- cor(Cheapseats)
corplot1 <- corrplot.mixed (corr_data,lower.col = "red",number.cex = 0.7)</pre>
```

4. BUSINESS QUESTIONS:

- (1) For Cheapseats Airline, which factors have significant impact on customers satisfaction?
- (2) How does flights problems affect satisfaction rating?
- (3) How does person attributes affect satisfaction rating?

5. LINEAR MODELING:

Business Question 1: For Cheapseats Airline, which factors have significant impact on customers satisfaction?

Using the cleaned data, we performed Linear Modelling to determine which factors affect the satisfaction the most. The satisfaction was the dependent variable and all the other factors are independent variables.

We have created a new dataframe consisting of only Cheapseats data for carrying out the linear modelling.

Code for creating Cheapseats datasets:

```
cleanedDataset$Airline.Name <- trim(cleanedDataset$Airline.Name)
CheapseatsAirlineDF <- cleanedDataset[which(cleanedDataset$Airline.Name=="Cheapseats Airlines Inc."),]
View(CheapseatsAirlineDF)</pre>
```

Code for linear modelling:

cheapseats<- CheapseatsAirlineDF[-16:-17]

```
linearModel3 <- lm(formula = as.numeric(Satisfaction) ~ ., data = cheapseats)
linear Model S <- Im(formula = as.numeric(Satisfaction) \sim Airline. Status + Age + Gender + Price. Sensitivity + Age + Gender + 
Year.of.First.Flight
                                                                                          +
                                                                                                                           No.of.Flights.p.a
                                                                                                                                                                                                                                                 Type.of.Travel +
                                                                                                                                                                                                                                                                                                                                                            Shopping.Amount.at.Airport
+Eating.and.Drinking.at.Airport + Class + Scheduled.Departure.Hour + Departure.Delay.in.Minutes +
                                                                                                                                          Flight.cancelled
                                                                                                                                                                                                                                                    Flight.time.in.minutes
                                                                                                                                                                                                                                                                                                                                                                                        Flight.Distance
Arrival.Delay.in.Minutes
                                                                                                         +
Arrival.Delay.greater.5.Mins, data = CheapseatsAirlineDF)
summary(linearModel3)
linearModel3
summary(linearModelS)
linearModelS
```

Using the linear model we found, the following significant variables:

Variables	Coefficient
Airline.StatusGold	0.06
Airline.StatusPlatinum	0.22
Airline.StatusSilver	-0.16
AgeLow	-0.07
GenderMale	0.06
Type.of.TravelMileage tickets	-0.19
Type.of.TravelPersonal Travel	0.29
ClassEco Plus	-0.04
Scheduled.Departure.hourLow	-0.03
Flights.cancelledYes	-0.13
Arrival.Delay.greater.5.minutes	0.17

6. Validation

We used Association Rules and SVM to validate the result from linear regression model.

Association Rules:

Using association rules, we determined which factors would impact the satisfaction for the Cheapseats airlines. The RHS was set to satisfaction to analyze which factors most affect the satisfaction.

Code:

```
library(arules)
library(arulesViz)
ruleDF1
                         data.frame(CheapseatsAirlineDF$Satisfaction,
                                                                               CheapseatsAirlineDF$Airline.Status,
               <-
                                    CheapseatsAirlineDF$Gender,
CheapseatsAirlineDF$Age,
                                                                            CheapseatsAirlineDF$Price.Sensitivity,
CheapseatsAirlineDF$Year.of.First.Flight,
                       CheapseatsAirlineDF$No.of.Flights.p.a, CheapseatsAirlineDF$X..of.Flight.with.other.Airlines,
CheapseatsAirlineDF$Type.of.Travel, CheapseatsAirlineDF$No..of.other.Loyalty.Cards,
                                                                CheapseatsAirlineDF$Shopping.Amount.at.Airport,
CheapseatsAirlineDF$Eating.and.Drinking.at.Airport,
                                                                                       CheapseatsAirlineDF$Class,
CheapseatsAirlineDF$Day.of.Month,
                CheapseatsAirlineDF$Scheduled.Departure.Hour, CheapseatsAirlineDF$Departure.Delay.in.Minutes,
CheapseatsAirlineDF$Arrival.Delay.in.Minutes,
                               CheapseatsAirlineDF$Flight.cancelled, CheapseatsAirlineDF$Flight.time.in.minutes,
CheapseatsAirlineDF$Flight.Distance, CheapseatsAirlineDF$Arrival.Delay.greater.5.Mins)
ruleX <- as(ruleDF1, "transactions")</pre>
ruleX
ruleset <- apriori(ruleX, parameter = list(support=0.30,confidence=0.30,maxtime=10, maxlen=30),appearance =
list(default="lhs", rhs=("CheapseatsAirlineDF.Satisfaction=High")))
ruleset <- sort(ruleset, decreasing = TRUE, by="lift")
inspect(ruleset)
summary(CheapseatsAirlineDF)
                          data.frame(CheapseatsAirlineDF$Satisfaction,
                                                                               CheapseatsAirlineDF$Airline.Status
, Cheap seats Airline DF\$ Age,\ Cheap seats Airline DF\$ Gender,\ Cheap seats Airline DF\$ Price. Sensitivity,
                                                                CheapseatsAirlineDF$Shopping.Amount.at.Airport,
CheapseatsAirlineDF$Eating.and.Drinking.at.Airport,
                                                                                       CheapseatsAirlineDF$Class,
CheapseatsAirlineDF$Day.of.Month,
               CheapseatsAirlineDF$Flight.cancelled, CheapseatsAirlineDF$Arrival.Delay.greater.5.Mins)
ruleX <- as(ruleDF2, "transactions")</pre>
ruleset <- apriori(ruleX, parameter = list(support=0.30,confidence=0.30,maxtime=10, maxlen=30),appearance =
list(default="lhs", rhs=("CheapseatsAirlineDF.Satisfaction=High")))
ruleset <- sort(ruleset, decreasing = TRUE, by="lift")
```

```
inspect(ruleset)
summary(CheapseatsAirlineDF)
```

The following observations were made from the arules:

- For the customers, whose flight delayed and who are low class/status tend to have low satisfaction
- For the customers, whose price sensitivity are low and are male tend to give high satisfaction.

Support Vector Machine:

With the help of SVM, we determined how various factors affect the overall likelihood to recommend. The following snippet shows the code used to run the SVM.

CODE:

```
library(kernlab)
createBucketsSurveya <- function(vec) {</pre>
 vBuckets <- replicate(length(vec), "Average")
 vBuckets[vec >= 3] <- "Happy"
 vBuckets[vec < 3] <- "unHappy"
 return(vBuckets)
dfAir1<- CheapseatsAirlineDF1
dfAir1$SatHuH <- createBucketsSurveya(as.numeric(dfAir1$Satisfaction))
#before bucketing all the fields, add a column SatHuH which indicates the buckets
\# acc to satisfaction taking <3 as Low and >=3 as high
dfAirF <- subset(dfAir1, SatHuH == "Happy" | SatHuH == "unHappy")
dfAirF
table(dfAirF$SatHuH)
dim(dfAirF)
randIndex <- sample(1:dim(dfAirF)[1])</pre>
head(randIndex)
cutPoint2_3 <- floor(2 * dim(dfAirF)[1]/3)</pre>
cutPoint2 3
trainData <- dfAirF[randIndex[1:cutPoint2_3],]</pre>
testData <- dfAirF[randIndex[(cutPoint2_3 + 1):dim(dfAir1)[1]],]
dim(trainData)
dim(testData)
modelKs1<-ksvm(SatHuH~Airline.Status+Age+Gender+Price.Sensitivity+Arrival.Delay.greater.5.Mins+Class+Fligh
t.cancelled,data=trainData, kernel="rbfdot", kpar="automatic", C=5, cross=3, prob.model =TRUE)
```

```
#age,gender, price sens,arrivaldelay>5,class,typeoftr,flight canceleld
summary(modelKs1)
modelKs1
svmPred<-predict(modelKs,testData,type="votes")
head(svmPred)
svmPred1<-predict(modelKs1,testData,type="votes")
compTable<- data.frame(testData$SatHuH,svmPred[2,])
#Confusion Matrix
cm1<-table(compTable)</pre>
```

OUTPUT:

```
# Support Vector Machine object of class "ksvm"
# SV type: C-svc (classification)
# parameter : cost C = 5
# Gaussian Radial Basis kernel function.
# Hyperparameter : sigma = 0.283666711460145
# Number of Support Vectors: 7056
# Objective Function Value: -31257.64
# Training error: 0.1737
# Cross validation error: 0.17751
# Probability model included.
#Confusion Matrix
cm1<-table(compTable)
# svmPred.2...
# testData.SatHuH 0 1
# Happy 6800 0
# unHappy 1 1861
```

From the output is can be observed that the training error is 0.17 i.e(17%). The accuracy is 83% which proves that the model is good and validates the results of the linear modelling

Business Question 2: How does flights problems affect satisfaction rating?

There are 2 types of variables in the key factors we calculated. One is Flights information, the other one is personal Attributes. This business question is talking about the relationship of flights problem and satisfaction.

When it comes flights problem, the biggest impact could be the cancellation of flight.

Flight cancelled	Number of flights	Average of Satisfaction
Yes	2401	3.11

You could easily tell that, cancelled flight have a big impact on average of satisfaction. But, the number of cancelled flights is too little, which will have only a small impact on the whole picture if we prepare solution for these cancelled flights.

So, we begin to focus on the flights which were delayed. There are many variables describe delay information, and we believe that, we only need to focus on the arrival delay which will have a big effect on the passengers' schedule. In the end, we decide to use "Arrival.Delay.greater.5.Mins", which is dummy variable and ignore the delay is less than 5 mins.

Flight delayed	Number of flights	Average of Satisfaction
Yes	44504	3.17
No	85045	3.49

Wow, there are a large number of flights delayed in the whole dataset! And considering the average of satisfaction, we could have a big impact if we work on delay problem. It also seems like flight delay is easier to fix than flight cancel.

The analysis for flight cancel and delay is for the whole dataset. Since we have chose Cheapseats Airlines, we love to find a competitor for Cheapseats. Considering the probability of different city/airport have different delay objective condition. This competitor we have chose is very similar than Cheapseats, which means the mean customer are not differed in states.

The left graph is Cheapseats Airlines, which delayed ratio is 41.54%. The right graph is Paul Smith Airlines, which delayed ratio is 29.59%.

From these two pictures, we could find they have similar customers, but Paul Smith Airlines did better in delay issue.

And what needs to be include is that, Cheapseats have 25985 flights during these data collecting time, while Paul Smith has 12207 flights. Cheapseats needs be careful about this increasing competitor!

Why are we choosing a competitor for Cheapseats? Because we want to make sure the conclusion is actionable. If some airlines can do this thing that good, why Cheapseats can't?

We also investigate whether delay flights can be improved. Finally we find that, only 4.3% delayed flights is caused by extreme weather, large amount of delay issue is caused by late-arriving aircraft, maintenance, crew problems, aircraft cleaning, baggage loading and fueling.

So, Cheapseats needs to improve more on delay issue!

Business Question 3: How does person attributes affect satisfaction rating?

Gender	Number	Average of Satisfaction
Female	14624	3.24

Male	11361	3.51
------	-------	------

Age	Number	Average of Satisfaction
Middle-aged	5475	3.67
Old	9932	3.06
Young	10578	3.48

For this issue, we researched gender and age.

We could easily tell, that age is old and gender is female always gives a lower rating.

For these 2 groups of people, when the cost is limited, Cheapseats Airlines need to give their best choice and service they have, to get a better satisfaction insights from these kind of people.

7. Actionable Insights and conclusions:

- 1. Based on the analysis of these 3 business questions and our analysis, we have found the key factors of satisfaction are Airline.Status, Age, Gender, Type of Travel, Class, Flights.cancelled, Arrival.Delay.greater.5.minutes.
- 2. We research on the flights problem, especially the delay issue. We find a big competitor of Cheapseats, and explain why Cheapseat needs to have some improvement in delay issue, and why this way is actionable, in business question 2.
- 3. We research on the personal problem. For people who are old or female, when the cost is limited, Cheapseats Airlines need to give their best choice and service they have, to get a better satisfaction ratings from these kind of people.

8. Trello board Screenshots

APPENDIX:

#Final Code

#Getting Data
dataset <- read.csv("SatisfactionSurvey.csv")</pre>

#Cleaning Data cleanedDataset <- dataset

```
which(is.na(dataset$Departure.Delay.in.Minutes))
#The Case of replacing with Highest number
cleanedDataset$Departure.Delay.in.Minutes
                                                                   <-
ifelse(is.na(cleanedDataset$Departure.Delay.in.Minutes)
                                                                    &
cleanedDataset$Flight.cancelled
                                                  "Yes",
                                                                9999,
cleanedDataset$Departure.Delay.in.Minutes)
cleanedDataset$Arrival.Delay.in.Minutes
                                                                   <-
ifelse(is.na(cleanedDataset$Arrival.Delay.in.Minutes)
                                                                    &
cleanedDataset$Flight.cancelled
                                                  "Yes",
                                                                9999,
cleanedDataset$Arrival.Delay.in.Minutes)
cleanedDataset$Flight.time.in.minutes
                                                                   <-
ifelse(is.na(cleanedDataset$Flight.time.in.minutes)
                                                                    &
cleanedDataset$Flight.cancelled
                                                  "Yes",
                                                                9999,
cleanedDataset$Flight.time.in.minutes)
cleanedDataset <- na.omit(cleanedDataset)</pre>
summary(cleanedDataset)
str(dataset)
str(cleanedDataset)
which(is.na(cleanedDataset$Departure.Delay.in.Minutes))
cleanedDataset$Satisfaction
                                                                   <-
as.numeric(as.character(cleanedDataset$Satisfaction))
# After we use this function, they change to NA data. We need delete these
3 rows.
cleanedDataset<- na.omit(cleanedDataset)</pre>
str(cleanedDataset$Satisfaction)
NPS
################ Using NPS to find which Airlines to use
############
install.packages("NPS")
library("NPS")
vector1 <- as.numeric(as.character( cleanedDataset$Satisfaction))</pre>
summary(vector1)
```

View(cleanedDataset)

ss <-npc(vector1, breaks = list(1:2.5, 3, 3.5:5)) #Based on our customer satisfaction ss # We get 3 levels: Detractor Passive Promoter sum(as.numeric(as.character(ss)))#calculate the total number of rows table(ss) #Detractor Passive Promoter 26533 36888 53608 #Now find the Airline to chose from a Detractor and a Promoter PromoterAirlines <- cleanedDataset[which(ss=="Promoter"),] #creating a dataset with highest customer satisfaction View(PromoterAirlines) DetractorAirlines <- cleanedDataset[which(ss=="Detractor"),]#creating a dataset with highest customer satisfaction summary(PromoterAirlines\$Airline.Name) # Cheapseats Airlines Inc. Cool&Young Airlines Inc. EnjoyFlying Air Services 10528 581 3577 # FlyFast Airways Inc. FlyHere Airways FlyToSun Airlines Inc. # 6262 1051 1489 GoingNorth Airlines Inc. Northwest Business Airlines Inc. OnlyJets Airlines Inc. # 586 5710 2142 # Oursin Airlines Inc. Paul Smith Airlines Inc. Sigma Airlines Inc. # 4551 5187 7118 # Southeast Airlines Co. West Airways Inc. 787 # 4039 #Thus we select Cheapseats Airline summary(DetractorAirlines\$Airline.Name) # Cheapseats Airlines Inc. Cool&Young Airlines Inc. EnjoyFlying Air Services # 5602 222 1884 FlyFast Airways Inc. FlyHere Airways FlyToSun Airlines Inc. # 3327 512 608 GoingNorth Airlines Inc. Northwest Business Airlines Inc. OnlyJets Airlines Inc. 396 2731 1183

```
Paul Smith Airlines Inc.
#
     Oursin Airlines Inc.
                                                                     Sigma
Airlines Inc.
#
               2241
                                         2369
                                                                   3334
#
  Southeast Airlines Co.
                                     West Airways Inc.
               1852
                                         272
#
# Thus we select Cheapseats Airlines
################Using wordcount to find the airline which has low
satisfation########
install.packages("tm")
library(tm)
install.packages("wordcloud")
library(wordcloud)
createWordCounts<- function(vFtext)</pre>
 words.vec <- VectorSource(vFtext) #create a Corpus, a "Bag of Words"
 words.corpus <- Corpus(words.vec)</pre>
 words.corpus
 words.corpus <- tm map(words.corpus,content transformer(tolower))</pre>
 words.corpus <- tm_map(words.corpus, removePunctuation)</pre>
 words.corpus <- tm_map(words.corpus, removeNumbers)</pre>
                          <-
         words.corpus
                                 tm map(words.corpus,
                                                             removeWords,
stopwords("english"))
 words.corpus <- tm map(words.corpus, removeWords, c("airlines","inc"))
 tdm<- TermDocumentMatrix(words.corpus)</pre>
 tdm
 m<- as.matrix(tdm)# create a matrix
 wordCounts <- rowSums(m)</pre>
 wordCounts<- sort(wordCounts, decreasing=TRUE)</pre>
 return(wordCounts)
}
wordCounts<- createWordCounts(cleanedDataset$Airline.Name)</pre>
View(wordCounts)
genWordCloud <- function(wordCounts)</pre>
{
   cloudFrame <- data.frame( word= names(wordCounts), frequency =</pre>
wordCounts)
```

```
wordcloud(names(wordCounts), wordCounts, min.freq = 2, max.words=30,
rot.per=0.35,
       colors= brewer.pal(8,"Dark2"))
}
genWordCloud(wordCounts)
happyCust <- cleanedDataset[cleanedDataset$Satisfaction>3,]
View(happyCust)
unhappyCust <-cleanedDataset[cleanedDataset$Satisfaction<=3,]
View(unhappyCust)
wordCounts1<- createWordCounts(happyCust$Airline.Name)</pre>
wordCounts1
genWordCloud(wordCounts1)
wordCounts2<- createWordCounts(unhappyCust$Airline.Name)
wordCounts2
genWordCloud(wordCounts2)
####################################
                                               Creating
                                                          Buckets
                                                                     For
#Sattisfaction Grouping: High > 3, Average = 3, Low < 3
createBucketsSurvey <- function(vec) {</pre>
 vBuckets <- replicate(length(vec), "Average")</pre>
 vBuckets[vec > 3] <- "High"
 vBuckets[vec <= 2] <- "Low"
 return(vBuckets)
}
#arbitary selection of quantile to be 40% and 60%
createBuckets <- function(vec) {</pre>
 q \leftarrow quantile(vec, c(0.4, 0.6))
 vBuckets <- replicate(length(vec), "Average")</pre>
 vBuckets[vec <= q[1]] <- "Low"
 vBuckets[vec > q[2]] <- "High"
 return(vBuckets)
}
Bucketing <- function(a){
 Satisfaction <- createBucketsSurvey(a$Satisfaction)
 head(Satisfaction)
 Airline.Status <- a$Airline.Status
```

Age <- createBuckets(a\$Age) head(Age) Gender <- a\$Gender Price.Sensitivity <- createBucketsSurvey(a\$Price.Sensitivity)</pre> head(Price.Sensitivity) Year.of.First.Flight <- createBuckets(a\$Year.of.First.Flight) head(Year.of.First.Flight) No.of.Flights.p.a <- createBuckets(a\$No.of.Flights.p.a.) X..of.Flight.with.other.Airlines <createBuckets(a\$X..of.Flight.with.other.Airlines) Type.of.Travel <- a\$Type.of.Travel No..of.other.Loyalty.Cards <- createBuckets(a\$No..of.other.Loyalty.Cards) Shopping.Amount.at.Airport createBuckets(a\$Shopping.Amount.at.Airport) Eating.and.Drinking.at.Airport <createBuckets(a\$Eating.and.Drinking.at.Airport) Class <- a\$Class Day.of.Month <- createBuckets(a\$Day.of.Month)</pre> # Flight.date, don't know how to examine Flight.date <- a\$Flight.date Airline.Code <- a\$Airline.Code head(Airline.Code) Airline.Name <- a\$Airline.Name # Orgin.City, Origin.State, Destination.City, Destination.State don't know Origin.City <- a\$Orgin.City Origin.State <- a\$Origin.State Destination.State <- a\$Destination.State Destination.City <- a\$Destination.City Scheduled.Departure.Hour <- createBuckets(a\$Scheduled.Departure.Hour) head(Scheduled.Departure.Hour) Departure.Delay.in.Minutes <createBuckets(a\$Departure.Delay.in.Minutes) head(Departure.Delay.in.Minutes) Arrival.Delay.in.Minutes <- createBuckets(a\$Arrival.Delay.in.Minutes) head(Arrival.Delay.in.Minutes) Flight.cancelled <- a\$Flight.cancelled Flight.time.in.minutes <- createBuckets(a\$Flight.time.in.minutes) head(Flight.time.in.minutes)

```
Flight.Distance <- createBuckets(a$Flight.Distance)
 head(Flight.Distance)
 Arrival.Delay.greater.5.Mins <- a$Arrival.Delay.greater.5.Mins
                data.frame(Satisfaction,
                                           Airline.Status,
                                                                   Gender,
                                                            Age,
Price.Sensitivity, Year.of.First.Flight,
                           No.of.Flights.p.a, X..of.Flight.with.other.Airlines,
Type.of.Travel, No..of.other.Loyalty.Cards,
                Shopping.Amount.at.Airport, Eating.and.Drinking.at.Airport,
Class, Flight.date, Day.of.Month,
                     Airline.Code, Airline.Name, Scheduled.Departure.Hour,
Departure. Delay. in. Minutes, Arrival. Delay. in. Minutes,
                    Flight.cancelled, Flight.time.in.minutes, Flight.Distance,
Arrival.Delay.greater.5.Mins,Origin.City,Origin.State,Destination.City,Destina
tion.State)
 #View(df)
 return(df)
}
#########################
                                          Creating
                                                       Subset
                                                                    Dataset
###################
install.packages("qdata")
library(gdata)
#Removing whitespace
cleanedDataset$Airline.Name <- trim(cleanedDataset$Airline.Name)</pre>
CheapseatsAirlineDF
                                                                         <-
cleanedDataset[which(cleanedDataset$Airline.Name=="Cheapseats Airlines
Inc."),]
View(CheapseatsAirlineDF)
CheapseatsAirlineDF1<-CheapseatsAirlineDF
dfAir1<-CheapseatsAirlineDF1
str(CheapseatsAirlineDF)
summary(CheapseatsAirlineDF)
####CheapseatsAirlineDF
```

```
#Verifying the number of rows to be 25,985
table(cleanedDataset$Airline.Name)
CheapseatsAirlineDF <- Bucketing(CheapseatsAirlineDF)
View(CheapseatsAirlineDF)
FullDataset <- Bucketing(cleanedDataset)
View(FullDataset)
CheapSeatsdataset <- Bucketing(CheapseatsAirlineDF)
View(CheapseatsAirlineDF)
############ Linear
                                                   Model
                                                         For
#Find significant Columns
linearModel1 <- lm(formula = as.numeric(Satisfaction) ~ . , data =
FullDataset)
linearModel2 <- Im(formula = as.numeric(Satisfaction) ~ Airline.Status +
Age + Gender + Price. Sensitivity + Year. of. First. Flight + No. of. Flights.p.a +
Type.of.Travel
                                      Shopping.Amount.at.Airport
+Eating.and.Drinking.at.Airport + Class + Scheduled.Departure.Hour +
Departure.Delay.in.Minutes + Arrival.Delay.in.Minutes + Flight.cancelled +
Flight.time.in.minutes + Flight.Distance + Arrival.Delay.greater.5.Mins, data
= FullDataset)
summary(linearModel1)
linearModel1
summary(linearModel2)
linearModel2
Linear Model For
#Find significant Columns
#Removing 2 factor data
cheapseats<- CheapseatsAirlineDF[-16:-17]
```

```
linearModel3 <- lm(formula = as.numeric(Satisfaction) ~ ., data =
cheapseats)
linearModelS <- Im(formula = as.numeric(Satisfaction) ~ Airline.Status +
Age + Gender + Price. Sensitivity + Year. of. First. Flight + No. of. Flights.p.a +
Type.of.Travel
                                             Shopping.Amount.at.Airport
+Eating.and.Drinking.at.Airport + Class + Scheduled.Departure.Hour +
Departure.Delay.in.Minutes + Arrival.Delay.in.Minutes + Flight.cancelled +
Flight.time.in.minutes + Flight.Distance + Arrival.Delay.greater.5.Mins, data
= CheapseatsAirlineDF)
summary(linearModel3)
linearModel3
summary(linearModelS)
linearModelS
##############################
                                            Observation
                                                                Linear
                                                          from
## Following columns play a Significant role in improving Customer
Satisfaction for Cheapseat Airlines.
#CheapseatsAirlineDF$Age
                                  CheapseatsAirlineDF$Gender
CheapseatsAirlineDF$Price.Sensitivity, CheapseatsAirlineDF$Flight.cancelled,
CheapseatsAirlineDF$Departure.Delay.in.Minutes
#1.
11
    <-
         lm(formula
                          as.numeric(Satisfaction)
                      =
                                                              data
                                                       Age,
CheapseatsAirlineDF)
summary(I1)
#p-value: < 2.2e-16 which is less that 0.5
#Thus we reject Null Hypothesis
#Conclusion:
                     affects
                                                Satisfaction
               Age
                              the
                                    Customer
                                                             for
                                                                   the
CheapseatsAirline
lmcs1 <- Im(formula= as.numeric(Satisfaction)~ Age, data = dfAir1)</pre>
summary(lmcs1)
lmcs1
lmcs2 <- Im(formula= as.numeric(Satisfaction)~ Gender, data = dfAir1)</pre>
summary(Imcs2)
Imcs2
```

```
lmcs3 <- lm(formula= as.numeric(Satisfaction)~ Price.Sensitivity, data =</pre>
dfAir1)
summary(Imcs3)
Imcs3
                                                           Im(formula=
Imcs4
                               <-
as.numeric(Satisfaction)~Eating.and.Drinking.at.Airport , data = dfAir1)
summary(lmcs4)
Imcs4 # not significant at all
lmcs6 <- lm(formula= as.numeric(Satisfaction)~Arrival.Delay.greater.5.Mins
, data = dfAir1)
summary(Imcs6)
Imcs6
lmcs7 <- lm(formula= as.numeric(Satisfaction)~Airline.Status , data =</pre>
dfAir1)
summary(Imcs7)
Imcs7
lmcs8 <- Im(formula= as.numeric(Satisfaction)~ Class , data = dfAir1)</pre>
summary(Imcs8)
Imcs8
lmcs9 <- lm(formula= as.numeric(Satisfaction)~ Type.of.Travel , data =</pre>
dfAir1)
summary(Imcs9)
Imcs9
summary(dfAir1)
#####################################
                                                                  KSVM
# any variable starting with dfAir*
library(kernlab)
createBucketsSurveya <- function(vec) {</pre>
 vBuckets <- replicate(length(vec), "Average")</pre>
 vBuckets[vec >= 3] <- "Happy"
 vBuckets[vec < 3] <- "unHappy"
 return(vBuckets)
dfAir1<- CheapseatsAirlineDF1
```

```
dfAir1$SatHuH <- createBucketsSurveya(as.numeric(dfAir1$Satisfaction))
#before bucketing all the fields, add a column SatHuH which indicates the
buckets
# acc to satisfaction taking <3 as Low and >=3 as high
dfAirF <- subset(dfAir1, SatHuH == "Happy" | SatHuH == "unHappy")
dfAirF
table(dfAirF$SatHuH)
dim(dfAirF)
randIndex <- sample(1:dim(dfAirF)[1])</pre>
head(randIndex)
cutPoint2_3 <- floor(2 * dim(dfAirF)[1]/3)
cutPoint2 3
trainData <- dfAirF[randIndex[1:cutPoint2 3],]
testData <- dfAirF[randIndex[(cutPoint2 3 + 1):dim(dfAir1)[1]],]
dim(trainData)
dim(testData)
modelKs<-ksvm(SatHuH
                               ~.,data=trainData,
                                                          kernel="rbfdot",
kpar="automatic", C=5, cross=3, prob.model =TRUE)
modelKs
# Support Vector Machine object of class "ksvm"
# SV type: C-svc (classification)
# parameter : cost C = 5
#
# Gaussian Radial Basis kernel function.
# Hyperparameter : sigma = 0.0304469805112404
#
# Number of Support Vectors: 960
# Objective Function Value : -220.7832
# Training error: 0
```

```
# Cross validation error: 0.00052
# Probability model included.
modelKs1<-ksvm(SatHuH
Airline.Status+Age+Gender+Price.Sensitivity+Arrival.Delay.greater.5.Mins+
Class+Flight.cancelled,data=trainData, kernel="rbfdot", kpar="automatic",
C=5, cross=3, prob.model =TRUE)
#age,gender, price sens,arrivaldelay>5,class,typeoftr,flight canceleld
summary(modelKs1)
modelKs1
# Support Vector Machine object of class "ksvm"
#
# SV type: C-svc (classification)
# parameter : cost C = 5
#
# Gaussian Radial Basis kernel function.
# Hyperparameter : sigma = 0.283666711460145
# Number of Support Vectors: 7056
# Objective Function Value: -31257.64
# Training error: 0.1737
# Cross validation error: 0.17751
# Probability model included.
svmPred<-predict(modelKs,testData,type="votes")</pre>
head(svmPred)
svmPred1<-predict(modelKs1,testData,type="votes")</pre>
compTable<- data.frame(testData$SatHuH,svmPred[2,])</pre>
#Confusion Matrix
cm1<-table(compTable)
#
# symPred.2...
# testData.SatHuH 0
                        1
# Happy 6800
# unHappy
             1 1861
compTable1<- data.frame(testData$SatHuH,svmPred1[2,])</pre>
```

```
#Confusion Matrix
cm2<-table(compTable1)
# testData.SatHuH
                     1
# Happy 6685 115
# unHappy 1399 463
#Confusion Matrix
ES1<- cm1[1,2]+cm1[2,1]
ES2 < -cm2[1,2] + cm2[2,1]
er1<- ES1/sum(cm1)*100
# 0
er2<- ES2/sum(cm2)*100
# 17.55946
Validating
                                                                Our
library(arules)
library(arulesViz)
                           data.frame(CheapseatsAirlineDF$Satisfaction,
ruleDF1
                <-
                                            CheapseatsAirlineDF$Age,
CheapseatsAirlineDF$Airline.Status,
CheapseatsAirlineDF$Gender,
                                 CheapseatsAirlineDF$Price.Sensitivity,
CheapseatsAirlineDF$Year.of.First.Flight,
                                 CheapseatsAirlineDF$No.of.Flights.p.a,
CheapseatsAirlineDF$X..of.Flight.with.other.Airlines,
CheapseatsAirlineDF$Type.of.Travel,
CheapseatsAirlineDF$No..of.other.Loyalty.Cards,
                       CheapseatsAirlineDF$Shopping.Amount.at.Airport,
CheapseatsAirlineDF$Eating.and.Drinking.at.Airport,
CheapseatsAirlineDF$Class, CheapseatsAirlineDF$Day.of.Month,
                        CheapseatsAirlineDF$Scheduled.Departure.Hour,
CheapseatsAirlineDF$Departure.Delay.in.Minutes,
CheapseatsAirlineDF$Arrival.Delay.in.Minutes,
                                  CheapseatsAirlineDF$Flight.cancelled,
CheapseatsAirlineDF$Flight.time.in.minutes,
CheapseatsAirlineDF$Flight.Distance,
CheapseatsAirlineDF$Arrival.Delay.greater.5.Mins)
```

```
ruleX <- as(ruleDF1, "transactions")</pre>
ruleX
ruleset
                              apriori(ruleX,
                                                     parameter
                 <-
list(support=0.30,confidence=0.30,maxtime=10, maxlen=30),appearance =
list(default="lhs", rhs=("CheapseatsAirlineDF.Satisfaction=High")))
ruleset <- sort(ruleset, decreasing = TRUE, by="lift")
inspect(ruleset)
summary(CheapseatsAirlineDF)
ruleDF2
                              data.frame(CheapseatsAirlineDF$Satisfaction,
                  <-
CheapseatsAirlineDF$Airline.Status
                                                 ,CheapseatsAirlineDF$Age,
CheapseatsAirlineDF$Gender, CheapseatsAirlineDF$Price.Sensitivity,
                          CheapseatsAirlineDF$Shopping.Amount.at.Airport,
CheapseatsAirlineDF$Eating.and.Drinking.at.Airport,
CheapseatsAirlineDF$Class, CheapseatsAirlineDF$Day.of.Month,
                                      CheapseatsAirlineDF$Flight.cancelled,
CheapseatsAirlineDF$Arrival.Delay.greater.5.Mins)
ruleX <- as(ruleDF2, "transactions")</pre>
ruleX
ruleset
                              apriori(ruleX,
                 <-
                                                     parameter
list(support=0.30,confidence=0.30,maxtime=10, maxlen=30),appearance =
list(default="lhs", rhs=("CheapseatsAirlineDF.Satisfaction=High")))
ruleset <- sort(ruleset, decreasing = TRUE, by="lift")
inspect(ruleset)
summary(CheapseatsAirlineDF)
#OBSERVATIONS
#For the customers **whose flight delayed and who are low class/status**
tend to give **low satisfaction**
#For the customers **whose price sensitivity are low and Male** tend to
give **high satisfaction**
```

#####qqplot2 for age#######

2

################################

```
## We propose to reduce the delay in arrival of flights at major cities like
Los Angeles, San Jose, Seattle, San Diego, Phoenix, Flint, Norfolk,
Rochester, West Palm Beach/Palm Beach, New York, NY.
# Proposal is made on an analysis of the airline with highest and lowest
average arrival delay time and the major cities being affected in those were
then segregated.
##### Rectify ##### Rectify ##### Rectify #####
Rectify ##### Rectify ##### Rectify ##### Rectify
library(qqplot2)
# g <- ggplot(c) + aes(x= reorder(c$Orgin.City,c$Airline.Code), y=c$count
) + geom col(aes(fill = c$Airline.Code))
\# q \leftarrow q + theme(axis.text.x = element text(angle = 45, hjust = 1))
# q <- q + ggtitle("Average Arrival Delay Count greater than 5 Minutes
across cities")
# q
```

33

PROPOSALS

```
#Using
                       Arules
                                              prove
                                                                    that
Airline.Status=Blue,Class=Eco,Price.Sensitivity=Low,Flight.cancelled=No
together gives a negative impact i.e. gives a lower Satisfaction
ruleDF3
                 <-
                             data.frame(CheapseatsAirlineDF$Satisfaction,
CheapseatsAirlineDF$Airline.Status
                                               ,CheapseatsAirlineDF$Age,
CheapseatsAirlineDF$Gender, CheapseatsAirlineDF$Price.Sensitivity,
                         CheapseatsAirlineDF$Shopping.Amount.at.Airport,
CheapseatsAirlineDF$Eating.and.Drinking.at.Airport,
CheapseatsAirlineDF$Class, CheapseatsAirlineDF$Day.of.Month,
                                     CheapseatsAirlineDF$Flight.cancelled,
CheapseatsAirlineDF$Arrival.Delay.greater.5.Mins)
ruleX <- as(ruleDF3, "transactions")</pre>
ruleX
ruleset
                            apriori(ruleX,
                <-
                                                   parameter
list(support=0.15,confidence=0.20,maxtime=10, maxlen=30),appearance =
list(default="lhs", rhs=("CheapseatsAirlineDF.Satisfaction=Low")))
ruleset <- sort(ruleset, decreasing = TRUE, by="lift")
inspect(ruleset)
summary(CheapseatsAirlineDF)
##### age vs satisfaction ###########
########### GGMAP
#ggmaps code - Avg Delay in Minutes - Average Satisfaction - Displayed on
Map
#for ggmaps
# View(dfAir1)
```

```
#Removing 9999 Values which were introduced for removing Na's
        select count("Arrival.Delay.in.Minutes")
                                                 from
                                                        dfAir1
                                                                where
"Arrival.Delay.in.Minutes" = 9999')
dfAirif<- dfAir1[dfAir1$Arrival.Delay.in.Minutes!=9999,]
dfAir1<- dfAirif
#extracting data form the dataset for destination and average arrival in
delay
library(sqldf)
statesDelay<-
                sqldf('select
                               "Destination.State"
                                                    as
                                                          "stateName",
avg("Arrival.Delay.in.Minutes")
                                 as
                                        "adih",avg("Satisfaction")
                                                                    as
"AverageSatisfaction" from dfAir1 group by "Destination.State")
#taking and merging default system data with our dataset
area <- state.area
latlong<- state.center
stateName<- state.name
mergeDf<- data.frame(stateName,latlong,area)
fds<- merge(mergeDf,statesDelay, by='stateName')
#using lower case for stateName
fds$stateName<-tolower(fds$stateName)</pre>
us <- map data("state")
#ggmaps
m.s1<-ggplot(fds , aes(map_id=stateName))</pre>
m.s1<-
                 m.s1
                                           geom map(map
us,aes(fill=fds$AverageSatisfaction),color="white")
m.s1 <- m.s1 + expand limits(x= fds$x,y=fds$y)
m.s1<- m.s1 + geom point(data=fds, aes(x=fds$x,y=fds$y,size=fds$adih),
color ="green")+ scale_size(name="Avg Delay in Minutes")
label=toupper(stateName)), colour="gold", size=2.5)
```

summary(dfAir1)

```
m.s1<- m.s1 + coord_map() + ggtitle("Map of USA (Average Delay in
Minutes for Cheapseats)")+ xlab("Longitude") + ylab("Latitude")
m.s1
#####BAR CHART######
counts <- table( cleanedDataset$Price.Sensitivity, cleanedDataset$Age)</pre>
counts <- table(cleanedDataset$Year.of.First.Flight)</pre>
barplot(counts, main="First Flight distribution",
             xlab="Year", col=c("RED"))
##### Rectify ##### Rectify ##### Rectify #####
Rectify ##### Rectify ##### Rectify ##### Rectify
### SEVITHA PLEASE RECTIFY THIS CODE
####GGRIDGES#########GGRIDGES########GGRIDGES#
#########GGRIDGES#########GGRIDGES########GG
RIDGES#########GGRIDGES#######
install.packages("ggridges")
library(ggridges)
qqplot(ss1) + qeom density ridges(aes(x = ss1$Satisfaction, y = 
ss1$Type.of.Travel, fill = ss1$Type.of.Travel), scale = 3) +
   scale fill brewer("Status", palette = "Set1")
############Corrolation
Plot#####################Corrolation
Plot#####################Corrolation
install.packages("corrplot")
install.packages("corrgram")
library(corrplot)
library(corrgram)
Cheapseats<- dfAir1
```

```
names(Cheapseats)
Cheapseats<- Cheapseats[,c(1,3,5:8,10:12,22:24,26,27)]
names(Cheapseats)<-c("SAT","AGE","Sens",
"YrsFli","NOFLi","FLiother","Loyalty","Shop","EatandDrink","Schedhour","dep
del","arrdelay","flimin","dist")
Cheapseats<- na.omit(Cheapseats)
corr_data <- cor(Cheapseats)
corplot1 <- corrplot.mixed (corr_data,lower.col = "red",number.cex = 0.7)</pre>
```