Sieć ograniczenia

```
In [1]: from matplotlib import pyplot as plt

from main import run_genetic_algorithm, test_genetic_algorithm, plot_results, run_differential_algorithm
from data_reader import parse_sndlib_file

with open("data.txt", "r") as file:
    file_content = file.read()
data = parse_sndlib_file(file_content)
```

Algorytm genetyczny:

Poniżej przedstawiono wyniki uruchomienia algorytmu genetycznego dla 50 generacji. Algorytm dla domyślnych parametrów znajduje minimum lokalne (8250) około 30 generacji.

```
result= run genetic algorithm(
        data,
        n generations=50,
        cross aggregating=True,
        population size=150,
        tournament size=2,
        survivors=10,
        severity of mutation=0.8,
        normal mutation chance=0.9,
        mutation aggregation chance=0.0,
        switch mutation chance=0.0,
print(f"Minimum: {min(result)}")
plt.figure(figsize=(10, 5))
plt.plot(result)
plt.xlabel('Generation')
plt.ylabel('Cost')
```

```
plt.yscale("log")
plt.title('Differential algorithm')
plt.show()
```

Minimum: 8250

Eksperymenty

Następnie przeprowadzono eksperymenty z różnymi parametrami algorytmu genetycznego. Algorytm został wywołany 10 razy dla każdej kombinacji parametrów.

Rozmiar populacji

Algorytm został uruchomiony dla rozmiarów populacji: 100, 150 i 200.

```
In [3]: population_sizes = [100, 150, 200]
    population_medians, population_stds = [], []
    for population_size in population_sizes:
        medians, stds = test_genetic_algorithm(data, population_size=population_size)
        population_medians.append(medians)
        population_stds.append(stds)
In [4]: plot_results('Population size', population_sizes, population_medians, population_stds)
```


Na wykresie przedstawiono wyniki dla różnych rozmiarów populacji. Najlepiej wypadła populacja o rozmiarze 200. W tym przypadku algorytm znalazł minimum (8250) około 45 generacji. W przypadku rozmiaru równego 150, algorytm znalazł minimum lokalne (8250) około 60 generacji. Dla rozmiaru populacji 100, algorytm czasem znajdował minimum.

Rozmiar elity

Algorytm został uruchomiony dla rozmiarów elity: 10, 15 i 20.

```
In [2]: surviors_sizes = [10, 15, 20]
    survior_medians, surviors_std = [], []
    for surviors in surviors_sizes:
        medians, stds = test_genetic_algorithm(data, survivors=surviors)
        survior_medians.append(medians)
        surviors_std.append(stds)
```

In [3]: plot_results('Survivors size', surviors_sizes, survior_medians, surviors_std)

Na wykresie przedstawiono wyniki dla różnych rozmiarów elity. Najlepiej wypadły elita o rozmiarze 10 oraz 20. W tym przypadku algorytm znalazł minimum (8250) około 60 generacji. Dla rozmiaru elity 15, algorytm znalazł minimum dopiero w 80 generacji.

Mutacja

Algorytm został uruchomiony z różnymi mutacjami: normal, aggregation i switch.

```
In [5]: mutations = ["normal", "aggregation", "switch"]
    mutation_medians, mutation_std = [], []
    for mutation in mutations:
        medians, stds = test_genetic_algorithm(data, mutation_type=mutation)
        mutation_medians.append(medians)
        mutation_std.append(stds)
In [6]: plot_results('Mutation type', mutations, mutation_medians, mutation_std)
```


Na wykresie przedstawiono wyniki dla różnych rodzajów mutacji. Najlepiej wypadła mutacja "normal". W tym przypadku algorytm znalazł minimum (8250) około 80 generacji. Dla mutacji "aggregation" i "switch" algorytm nie znalazł minimum.

40

60

80

100

Szansa mutacji

Algorytm został uruchomiony z różnymi szansami mutacji: 0.7, 0.8 i 0.9.

20

```
In [11]: mutation_chances = [0.7, 0.8, 0.9]
    chance_medians, chance_std = [], []
```

Generation

```
for mutation_chance in mutation_chances:
    medians, stds = test_genetic_algorithm(data, mutation_chance=mutation_chance)
    chance_medians.append(medians)
    chance_std.append(stds)
```

In [14]: plot_results('Mutation chance', mutation_chances, chance_medians, chance_std)

Na wykresie przedstawiono wyniki dla różnych wartości szansy mutacji.

Najlepiej sprawdziła się szansa równa 0.9. W tym przypadku algorytm znalazł minimum (8250) około 60 generacji.

Dla wartości 0.7, algorytm zachowywał się mniej przewidywalnie. Algorytm znalazł minimum dopiero około 100 generacji dla szansy równej 0.8.\

Siła mutacji

Algorytm został uruchomiony z różnymi siłami mutacji: 0.7, 0.8 i 0.9.

```
In [12]: severities = [0.7, 0.8, 0.9]
    severity_medians, severity_std = [], []
    for severity_of_mutation in severities:
        medians, stds = test_genetic_algorithm(data, severity_of_mutation=severity_of_mutation)
        severity_medians.append(medians)
        severity_std.append(stds)
In [13]: plot_results('Severity of mutation', severities, severity_medians, severity_std)
```


Na wykresie przedstawiono wyniki dla różnych sił mutacji.

Najlepsza okazała się wartość 0.8. W tym przypadku algorytm znalazł minimum (8250) około 65 generacji.

Dla siły równej 0.7, algorytm znadjdował minimum około 70 generacji.

Algorytm około 75 generacji znalazł minimum dla wartości 0.1.

Krzyżowanie

Algorytm został uruchomiony z krzyżowaniem agregacyjnym i bez.

Genetic Algorithm Results

Na wykresie przedstawiono wyniki dla dwóch przypadków.

W przypadku krzyżowania agregacyjnego, algorytm znalazł minimum (8250) około 50 generacji.

Algorytm bez krzyżowania agregacyjnego nie znalazł minimum.

Algorytm różnicowy:

Poniżej przedstawiono wyniki uruchomienia algorytmu różnicowego dla 250 generacji.

Algorytm dla domyślnych parametrów znajduje minimum lokalne (8250) około 200 generacji.

```
In [7]: result = run_differential_algorithm(data)
    print(f"Minimum: {min(result)}")

    plt.figure(figsize=(10, 5))
    plt.plot(result)
    plt.xlabel('Generation')
    plt.ylabel('Cost')
    plt.yscale("log")
    plt.title('Differential algorithm')
    plt.show()
```

Minimum: 1009534

Generation