MACHINE LEARNING FOR DATA MINING LECTURE 7: Decision Tree
DECISION TREE CLASSIFICATION
Siamak Sarmady (UUT, UU) Viktor Lavrenko (Uni. Of Edinburgh) Alexandre Ihler (UCI)

Concept		

Decision Tree Classifier

- ☐ These classifiers go back to decades (used in Rule Based Expert systems as well as other applications) and they are very popular.
- □ They are extremely robust.
- □ They have interesting decision boundaries and can do non-linear classification.
- ☐ They are intuitive. You can look at the results and understand how the model has been built and works.
- □ Trick
 - □ Just like SVM that uses Kernel trick to do non-linear classification using linear boundaries, decision trees use linear decision boundaries (many of them) to build a non-linear decision boundary.

Decision Trees - Example

- John likes to windsurf. But to do that he needs wind and he likes the weather to be sunny when he windsurfs.
- We take his surrfing log, find the weather status on each day and put the data points on a graph.
- Question: Is this data linearly separable?
 - No, you cannot find a line to separate these classes.

Decision Trees - Example

- Decision trees allow you to ask multiple linear questions one after another:
- □ Is it windy?
- We can find some kind of threshhold that can build a partial boundary for the classes.
- This is equal to answering the following question. In fact the question represents a linear and (partial) class boundary (being windy or not)

Decision Trees - Example

- One of the two branches (No Branch) does not contain any positive (green) data. If it's not windy, all the data points are negative.
- □ In the case of "Yes branch" we need to ask a further question.

□ The algorithm takes the data, finds suitable thresholds and builds a tree like the above.

Decision Trees - Example

- □ The algorithm takes the data, finds suitable thresholds and builds a tree.
- □ After the decision tree (and the threshhold for each branch) is known, the tree can be used to classify data.

Decision Trees – Example 2

- Let's consider a complicated example.
- Which x_{th} is the best threshold for the horizontal axis?
 - X=3 can build a partial class boundary.
 - However it cuts both classes into two.
- We need more boundaries to do a proper classification.
- Every straight line matches a binary question...
- Note: we selected X as the first attribute that the space is divided on it... This decision should be done in a more formal and robust way

Decision Tree using Scikit Learn

Using SkLearn – Program 1 (Data from Array)

```
import numpy as np

features_train = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3,3]])
labels_train = np.array([[1, 1, 1, 2, 2, 2])
features_test = np.array([[-2, -2], [-2, -3], [2, 3], [1, 2]])
labels_test = np.array([1, 1, 1, 2])

from sklearn import tree

clf = tree.DecisionTreeClassifier()
clf.fit(features_train, labels_train)
pred = clf.predict(features_test)

print "Test labels: ", labels_test
print "Predicted labels: ", pred

from sklearn.metrics import accuracy_score
print "Accuracy: ", accuracy_score(pred, labels_test)

print "\nPredicted label for ", [-0.8, -1]," is ", (clf.predict([[-0.8, -1]]))
```

Decision Tree – The boundary

- ☐ The figure visualizes the class boundaries a DT classifier has built.
- As you see the DT algorithm has been able to build a non-linear boundary using linear boundaries.
- ☐ The graph shows the test data. Training data points are NOT shown.
- The boundary has shortcomings. The narrow areas are the result of overfitting to the training data
- The narrow blue areas have been learned from blue points in the training data (and the narrow red areas from red data points)

Decision Tree - Overfitting

- The over-fitting has happened because the algorithm has built a tree that is too deep (i.e. builds more sub-regions)
- ☐ If we want to generalize better and avoid over-fitting, we should limit the depth that the algorithm gets into (i.e. build a tree with limited levels).

Using SkLearn – Program 1 (Data from Array)

☐ The function we used from sklearn provides several adjustable parameters:

class sklearn.tree.DecisionTreeClassifier(criterion='gini',
splitter='best', max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=None, random_state=None, max_leaf_nodes=None,
class_weight=None, presort=False)

- Most of the above parameters will affect over fitting and accuracy. We test a few. Mostly we want to control how far the splitting happens in different branches.
 - max_depth: determines the maximum depth of the tree
 - min_samples_split: determines when the algorithm should stop splitting an area (using new rules)
 - If we set it to 6, which branch will not be split anymore?

Decision Tree — Overfitting Guess which one of the following graphs has used a larger min_samples_split parameter? (i.e. minimum samples to allow split) One is using 50, the other uses 2 as the min_samples_split.

Entropy How the decision boundaries are determined

Entropy

- □ The decision tree algorithm uses a concept called Entropy to decide on what attributes and where (what threshold) it should split the data.
- □ **Entropy:** measure of impurity in a bunch of data (training data)
 - It measures the opposite of purity...

Entropy

- □ If we are supposed to make a decision tree by either splitting speed limit attribute range into two or the bumpiness level into two, which one would cause more impurity (entropy)?
- □ Splitting the <u>speed limit</u> attribute would <u>give lower entropy</u> (in the <u>right hand side box</u>) and therefore is better. We <u>recursively</u> select <u>splits</u> that are as <u>pure</u> as possible.

Entropy

□ The mathematical formula of entropy is as follows:

$$Entropy = \sum_{i} -P_{i} \log_{2}(P_{i})$$

- $lue{}$ P_i is the fraction of consistent examples in a given class i.
- We sum up the number over all classes (labels) and get the total entropy
- In each split:
 - All of the same class → Entropy=0
 - Data are 50-50 of two different classes \rightarrow Entropy=1 (maximum)

Information Gain

- □ After we have done splits, the entropy decreases in the splits.
- ☐ If we calculate the weighted average of entropy in the split data, we can find how much the entropy has decreased.
- □ **Information Gain:** decrease of entropy means more organized understanding of the structure of the data and we call it information gain

Information Gain = Entropy(parent) - [weighted average]Entropy(Child splits)

Decision tree checks different splits in each step and performs the one which gives higher information gain.

Entropy - Example

□ Assume we have the following data:

Slope	Bumpiness	Speed-Limit (activated)	Speed (Classes)
Steep	Bumpy	Yes	Slow
Steep	Smooth	Yes	Slow
Flat	Витру	No	Fast
Steep	Smooth	No	Fast

SSFF

- □ What is the initial entropy in all classes before we do any split, i.e. in an unsplit area there are 2 series of data with 50-50 distribution (i.e. a measure of how we understand the data):
- entropy slow = $\left(-\frac{2}{4}\log_2\frac{2}{4}\right)$ entropy fast = $\left(-\frac{2}{4}\log_2\frac{2}{4}\right)$ entropy = $\sum_i -P_i\log_2(P_i) = \left(-\frac{2}{4}.-1\right) + \left(-\frac{2}{4}.-1\right) = 1.0$ (i.e. very bad)

Entropy - Example

□ Now if we split data into two groups based on the attribute "Slope" what is the entropy:

Slope	Bumpiness	Speed-Limit (activated)	Speed (Classes)
Steep	Витру	Yes	Slow
Steep	Smooth	Yes	Slow
Flat	Bumpy	No	Fast
Steep	Smooth	No	Fast

What is the entropy and information gain if we split the data based on "slope" attribute. entropy slow = $(-\frac{2}{3}\log_2\frac{2}{3})$ entropy fast = $(-\frac{1}{3}\log_2\frac{1}{3})$ entropy of steep branch = $\sum_i -P_i\log_2(P_i) = (-\frac{2}{3}.-0.584) + (-\frac{1}{3}.-1.584) = 0.9182$ entropy of flat branch = $\sum_i -P_i\log_2(P_i) = (-1.0) = 0$

Entropy - Example

 $\hfill \square$ So entropies are (weights are the ratio of data in each branch):

[weighted average]Entropy(Child splits) =
$$\left(\frac{3}{4} \ 0.9184\right) + \left(\frac{1}{4} \ 0.0\right) = 0.6888$$

Entropy(Parent) = 1.0 (it was a 50-50 split between classes)

□ Information gain:

$$Information \ Gain = 1 - 0.6888 = 0.3112$$