

Express Mail EL715381415US

SEQUENCE LISTING

<110> BACHMANN, Heinrich  
BRUGGER, Roland  
FRIEDELIN, Arno M  
WIRTZ, Gabriele M  
WOGGON, Wolf-Dietrich  
WYSS, Adrian  
WYSS, Markus

<120> BETA, BETA-CAROTENE 15,15'-MONOOXYGENASES, NUCLEIC ACID  
SEQUENCES CODING THEREFOR AND THEIR USE

<130> B,B-CAROTENE 15,15'-MONOOXYGENASES, . . .

<140>  
<141>

<150> 103382.0  
<151> 1999-02-22

<160> 10

<170> PatentIn Ver. 2.1

<210> 1  
<211> 526  
<212> PRT  
<213> CHICKEN

<400> 1

Met Glu Thr Ile Phe Asn Arg Asn Lys Glu Glu His Pro Glu Pro Ile  
1 5 10 15

Lys Ala Glu Val Gln Gly Gln Leu Pro Thr Trp Leu Gln Gly Val Leu  
20 25 30

Leu Arg Asn Gly Pro Gly Met His Thr Ile Gly Asp Thr Lys Tyr Asn  
35 40 45

His Trp Phe Asp Gly Leu Ala Leu Leu His Ser Phe Thr Phe Lys Asn  
50 55 60

Gly Glu Val Tyr Tyr Arg Ser Lys Tyr Leu Arg Ser Asp Thr Tyr Asn  
65 70 75 80

Cys Asn Ile Glu Ala Asn Arg Ile Val Val Ser Glu Phe Gly Thr Met  
85 90 95

Ala Tyr Pro Asp Pro Cys Lys Asn Ile Phe Ala Lys Ala Phe Ser Tyr  
100 105 110

Leu Ser His Thr Ile Pro Glu Phe Thr Asp Asn Cys Leu Ile Asn Ile  
115 120 125

Met Lys Thr Gly Asp Asp Tyr Tyr Ala Thr Ser Glu Thr Asn Phe Ile  
130 135 140

Arg Lys Ile Asp Pro Gln Thr Leu Glu Thr Leu Asp Lys Val Asp Tyr  
145 150 155 160

Ser Lys Tyr Val Ala Val Asn Leu Ala Thr Ser His Pro His Tyr Asp  
165 170 175

Ser Ala Gly Asn Ile Leu Asn Met Gly Thr Ser Ile Val Asp Lys Gly  
180 185 190

Arg Thr Lys Tyr Val Leu Phe Lys Ile Pro Ser Ser Val Pro Glu Lys  
195 200 205

Glu Lys Lys Lys Ser Cys Phe Lys His Leu Glu Val Val Cys Ser Ile  
210 215 220

Pro Ser Arg Ser Leu Leu Gln Pro Ser Tyr Tyr His Ser Phe Gly Ile  
225 230 235 240

Thr Glu Asn Tyr Ile Val Phe Ile Glu Gln Pro Phe Lys Leu Asp Ile  
245 250 255

Val Lys Leu Ala Thr Ala Tyr Ile Arg Gly Val Asn Trp Ala Ser Cys  
260 265 270

Leu Ser Phe His Lys Glu Asp Lys Thr Trp Phe His Phe Val Asp Arg  
275 280 285

Lys Thr Lys Lys Glu Val Ser Thr Lys Phe Tyr Thr Asp Ala Leu Val  
290 295 300

Leu Tyr His His Ile Asn Ala Tyr Glu Glu Asp Gly His Val Val Phe  
305 310 315 320

Asp Ile Val Ala Tyr Arg Asp Asn Ser Leu Tyr Asp Met Phe Tyr Leu  
325 330 335

Lys Lys Leu Asp Lys Asp Phe Glu Val Asn Asn Lys Leu Thr Ser Ile  
340 345 350

Pro Thr Cys Lys Arg Phe Val Val Pro Leu Gln Tyr Asp Lys Asp Ala  
355 360 365

Glu Val Gly Ser Asn Leu Val Lys Leu Pro Thr Ser Ala Thr Ala Val  
370 375 380

Lys Glu Lys Asp Gly Ser Ile Tyr Cys Gln Pro Glu Ile Leu Cys Glu  
385 390 395 400

Gly Ile Glu Leu Pro Arg Val Asn Tyr Asp Tyr Asn Gly Lys Lys Tyr  
405 410 415

Lys Tyr Val Tyr Ala Thr Glu Val Gln Trp Ser Pro Val Pro Thr Lys  
420 425 430

Ile Ala Lys Leu Asn Val Gln Thr Lys Glu Val Leu His Trp Gly Glu  
435 440 445

Asp His Cys Trp Pro Ser Glu Pro Ile Phe Val Pro Ser Pro Asp Ala  
450 455 460

Arg Glu Glu Asp Glu Gly Val Val Leu Thr Cys Val Val Val Ser Glu  
465 470 475 480

Pro Asn Lys Ala Pro Phe Leu Leu Ile Leu Asp Ala Lys Thr Phe Lys  
485 490 495

Glu Leu Gly Arg Ala Thr Val Asn Val Glu Met His Leu Asp Leu His  
500 505 510

Gly Met Phe Ile Pro Gln Asn Asp Leu Gly Ala Glu Thr Glu  
515 520 525

<210> 2

<211> 3111

<212> DNA

<213> CHICKEN

<400> 2

cggatccact agtaacggcc gccagtggtgg tggatatccat ctttatgtt aacaggaaag 60  
agctgttctt agccagaga ggagggcacc gtacgcctgc aggagcagct gggtagagga 120  
cacaggagag cgatggagac aatatttaac agaaacaaag aagagcatcc agagcccata 180  
aaagctgagg tgcaaggtca gttgccact tggttgcaag ggttacttct ccgaaatggc 240  
ccagggatgc acacaatagg ggacactaaa tacaaccact gttttagtgg ctggctctg 300  
ctgcacagct tcacgtttaa aaatggtcaa gtttactaca gaagtaagta cctccgaagt 360  
gacacataca actgcaatata agaagcaaac cgaatcggtgg tgtctgagtt tggaaaccatg 420  
gcttatccgg atccatgcaa aaacatattt gccaaggcat tctcataactt atctcacacc 480  
attcctgagt tcacggacaa ctgcctgatc aacattatga aaactgggaa tgattattat 540

gctaccagt agactaactt catcagaaaa attgatccac agactctgga gacactagat 600  
aaggtagact acagcaaata tgtagctgta aacttggcaa ctttcaccc acactatgac 660  
agtgcgtgaa atattctcaa catgggtact tcaattgtt ataaaggag aacaaaatat 720  
gttctcttta agatcccttc ctctgtacca gaaaaagaaa agaagaaatc ttgtttaaa 780  
cacctggaag tagtatgctc catcccttct cgctccctgc tccaaccaag ctactaccac 840  
agctttggaa tcacagaaaa ttatattgtt ttcatalogc agccattaa actggatatt 900  
gtcaaactgg caactgccta catccgaggt gtgaactggg cttcctgcct ttcctttcat 960  
aaggaggata agacgtggtt tcactttgta gacagaaaga cgaaaaaaga agtatccacc 1020  
aagttttaca ctgatgctt ggtgctttat caccacataa atgcttacga agaagatggc 1080  
cacgttgtt ttgatatcgt tgcctacaga gacaatagct tgtacgatat gtttactta 1140  
aaaaaaactgg acaaagactt tgaagtgaac aacaagctt cctccatccc aacctgcaag 1200  
cgctttgtt tgcctctgca gtatgacaag gatgcagaag tagttctaa tttagtcaaa 1260  
cttccaactt ccgcaactgc tgtaaaagaa aaagatggca gcatctattt tcaacctgaa 1320  
atattatgtt aaggataga actgcctcgt gtcaactatg actacaatgg caaaaaatac 1380  
aagtatgtct atgcaacaga agtccagtgg agcccagttc ctacaaagat tgcaaaaactg 1440  
aatgtccaaa caaaggaagt actgcactgg ggagaagacc actgctggcc ctcagagccc 1500  
atctttgttc ccagccccga tgcaagagaa gaggatgaag gtgttgttt gacctgtgtt 1560  
gtggtgtctg agccaaataa agcacccttc ctactcatct tggatgctaa aacattcaaa 1620  
gaattgggcc gagccacagt taacgttagaa atgcacatgg acctgcacatgg gatgttata 1680  
ccacagaatg atttgggggc tgagacggaa taaaacgcta ttgatccgac tacacaaact 1740  
gagacaactt tctactgaac atgagttat atccctttt ccattcaaga acaaccat 1800  
aacgacacaa aatgactatg tataatctct taaataatag atataatcct tttaaggcac 1860  
agcgatgagt tttactacag gtaacgatat gcacaactgg catataacta ttccaaaaga 1920  
agaagaacga tcagtgtttt agaagtgcta atgttgcata taacggcggc agagggaaaca 1980  
ggagagaaag gtaacggaa tatttaatag aatatagatt tctgagcaaa tgaagtgcag 2040  
tatttatggt gtgatgcata gcatgagtca cataggtctg cagctcatgt atctttttaga 2100

gatcgttca agattgcagc ttgtgatgca agtttctcc agccagaaaa cctcattta 2160  
aaccatctgc tactggtaat tcataccaat gcatttcctt ggtgctcgat ttacactata 2220  
accaaagtta agtattacat tcaggtgcta caacttcta atttacaacc gaaacaaaca 2280  
agcaaacagc acttgcttg ctaataaccc catggtgtat tttccttt tatgatgaca 2340  
aaaccaagta catatggttt tatgttagcat tcaattatac ttcaagtgcta ttccatccta 2400  
atgttataag caatttgtat ttaaatcagt ttccctttag aatatctgac ataacatttt 2460  
gtgtaatgag atgactatgt tgtctaaaga tgaacaggaa tgtatcttt attagtattg 2520  
ttaattgtgt tactaatact atgcatatga atgagagcaa tgtatttcta ggagaactca 2580  
gatatacatt caacaatttc tgttaggtgaa aatgcattta ctgatgaaag ttgaatcggt 2640  
aatgagggag aaaactgggt atccatccat ccaactatgt taggtgttca cctggtctgt 2700  
atgtgacacc acgctgttg ggtatctctc actttcacat acctgttctc atggttctg 2760  
ctactcactg tattttgcag gagagaaaca aaatgaaatc actgtcactt actatcgccc 2820  
catcacataa gaacaatggg gctttggta cttgttcatg attacataag atgttgcag 2880  
cagagcagca atagaaccaa caccatccac agttcttgct tgctctgtt tgactccctt 2940  
tgctgtctt atggtttgcata tgtatgaaga atacactgcc taattctaatt gttaaaaagt 3000  
cactggggtc agatcttagag cttaagtaag cagtctgggg tttcaaatg ttttatatgtt 3060  
ccataaaatg gaaataaaca cctccataat aaaaaaaaaa aaaaaaaaaa a 3111

<210> 3  
<211> 8  
<212> PRT  
<213> CHICKEN

<400> 3  
Ala Glu Val Gln Gly Gln Leu Pro  
1 5

<210> 4  
<211> 506  
<212> PRT  
<213> CHICKEN

<400> 4

Glu Glu His Pro Glu Pro Ile Lys Ala Glu Val Gln Gly Gln Leu Pro  
1 5 10 15

Thr Trp Leu Gln Gly Val Leu Leu Arg Asn Gly Pro Gly Met His Thr  
20 25 30

Ile Gly Asp Thr Lys Tyr Asn His Trp Phe Asp Gly Leu Ala Leu Leu  
35 40 45

His Ser Phe Thr Phe Lys Asn Gly Glu Val Tyr Tyr Arg Ser Lys Tyr  
50 55 60

Leu Arg Ser Asp Thr Tyr Asn Cys Asn Ile Glu Ala Asn Arg Ile Val  
65 70 75 80

Val Ser Glu Phe Gly Thr Met Ala Tyr Pro Asp Pro Cys Lys Asn Ile  
85 90 95

Phe Ala Lys Ala Phe Ser Tyr Leu Ser His Thr Ile Pro Glu Phe Thr  
100 105 110

Asp Asn Cys Leu Ile Asn Ile Met Lys Thr Gly Asp Asp Tyr Tyr Ala  
115 120 125

Thr Ser Glu Thr Asn Phe Ile Arg Lys Ile Asp Pro Gln Thr Leu Glu  
130 135 140

Thr Leu Asp Lys Val Asp Tyr Ser Lys Tyr Val Ala Val Asn Leu Ala  
145 150 155 160

Thr Ser His Pro His Tyr Asp Ser Ala Gly Asn Ile Leu Asn Met Gly  
165 170 175

Thr Ser Ile Val Asp Lys Gly Arg Thr Lys Tyr Val Leu Phe Lys Ile  
180 185 190

Pro Ser Ser Val Pro Glu Lys Glu Lys Lys Ser Cys Phe Lys His  
195 200 205

Leu Glu Val Val Cys Ser Ile Pro Ser Arg Ser Leu Leu Gln Pro Ser  
210 215 220

Tyr Tyr His Ser Phe Gly Ile Thr Glu Asn Tyr Ile Val Phe Ile Glu  
225 230 235 240

Gln Pro Phe Lys Leu Asp Ile Val Lys Leu Ala Thr Ala Tyr Ile Arg  
245 250 255

Gly Val Asn Trp Ala Ser Cys Leu Ser Phe His Lys Glu Asp Lys Thr  
260 265 270

Trp Phe His Phe Val Asp Arg Lys Thr Lys Lys Glu Val Ser Thr Lys

275

280

285

Phe Tyr Thr Asp Ala Leu Val Leu Tyr His His Ile Asn Ala Tyr Glu  
290 295 300

Glu Asp Gly His Val Val Phe Asp Ile Val Ala Tyr Arg Asp Asn Ser  
305 310 315 320

Leu Tyr Asp Met Phe Tyr Leu Lys Lys Leu Asp Lys Asp Phe Glu Val  
325 330 335

Asn Asn Lys Leu Thr Ser Ile Pro Thr Cys Lys Arg Phe Val Val Pro  
340 345 350

Leu Gln Tyr Asp Lys Asp Ala Glu Val Gly Ser Asn Leu Val Lys Leu  
355 360 365

Pro Thr Ser Ala Thr Ala Val Lys Glu Lys Asp Gly Ser Ile Tyr Cys  
370 375 380

Gln Pro Glu Ile Leu Cys Glu Gly Ile Glu Leu Pro Arg Val Asn Tyr  
385 390 395 400

Asp Tyr Asn Gly Lys Lys Tyr Lys Tyr Val Tyr Ala Thr Glu Val Gln  
405 410 415

Trp Ser Pro Val Pro Thr Lys Ile Ala Lys Leu Asn Val Gln Thr Lys  
420 425 430

Glu Val Leu His Trp Gly Glu Asp His Cys Trp Pro Ser Glu Pro Ile  
435 440 445

Phe Val Pro Ser Pro Asp Ala Arg Glu Glu Asp Glu Gly Val Val Leu  
450 455 460

Thr Cys Val Val Val Ser Glu Pro Asn Lys Ala Pro Phe Leu Leu Ile  
465 470 475 480

Leu Asp Ala Lys Thr Phe Lys Glu Leu Gly Arg Ala Thr Val Asn Val  
485 490 495

Glu Met His Leu Asp Leu His Gly Met Phe  
500 505

<210> 5

<211> 529

<212> PRT

<213> BOVINE

<400> 5

Glu Glu Leu Ser Ser Pro Leu Thr Ala His Val Thr Gly Arg Ile Pro

1 5 10 15

Leu Trp Leu Thr Gly Ser Leu Leu Arg Cys Phe Thr Gly Pro Gly Leu  
20 25 30

Phe Glu Val Gly Ser Glu Pro Phe Tyr His Leu Phe Asp Gly Gln Ala  
35 40 45

Leu Leu His Lys Phe Asp Phe Lys Glu Gly His Val Thr Tyr His Arg  
50 55 60

Arg Phe Ile Arg Thr Asp Ala Tyr Val Arg Ala Met Thr Glu Lys Arg  
65 70 75 80

Ile Val Ile Thr Glu Phe Gly Phe Thr Thr Cys Ala Phe Pro Asp Pro  
85 90 95

Cys Lys Asn Ile Phe Ser Arg Phe Phe Ser Tyr Phe Arg Gly Val Glu  
100 105 110

Val Thr Asp Asn Ala Leu Val Asn Val Tyr Pro Val Gly Glu Asp Tyr  
115 120 125

Tyr Ala Cys Thr Glu Thr Asn Phe Ile Thr Lys Ile Asn Pro Glu Thr  
130 135 140

Leu Glu Thr Ile Phe Thr Lys Gln Val Asp Leu Cys Asn Tyr Val Ser  
145 150 155 160

Val Asn Gly Ala Thr Ala His Pro His Ile Glu Asn Asp Gly Thr Val  
165 170 175

Tyr Asn Ile Gly Asn Cys Phe Gly Lys Asn Phe Ser Ile Ala Tyr Asn  
180 185 190

Ile Val Lys Ile Pro Pro Leu Gln Ala Asp Lys Glu Asp Pro Ile Ser  
195 200 205

Lys Phe Thr Ser Glu Ile Val Val Gln Phe Pro Cys Ser Asp Arg Phe  
210 215 220

Lys Pro Ser Tyr Val His Ser Phe Gly Leu Thr Pro Asn Tyr Ile Val  
225 230 235 240

Phe Val Glu Thr Pro Val Lys Ile Asn Leu Phe Lys Phe Leu Ser Ser  
245 250 255

Trp Ser Leu Trp Gly Ala Asn Tyr Met Asp Cys Phe Glu Ser Phe Thr  
260 265 270

Asn Glu Thr Met Gly Val Trp Leu His Ile Ala Asp Lys Lys Arg Lys  
275 280 285

Lys Tyr Leu Asn Asn Lys Tyr Arg Thr Ser Pro Phe Asn Leu Phe His  
290 295 300

His Ile Asn Thr Tyr Glu Asp Asn Gly Phe Leu Ile Val Asp Leu Cys  
305 310 315 320

Cys Trp Lys Gly Phe Glu Phe Val Tyr Asn Tyr Phe Thr Leu Tyr Leu  
325 330 335

Ala Asn Leu Arg Glu Asn Trp Glu Glu Val Lys Lys Asn Ala Arg Lys  
340 345 350

Ala Pro Gln Pro Glu Val Arg Arg Tyr Val Leu Pro Leu Asn Ile Asp  
355 360 365

Lys Ala Asp Thr Gly Lys Asn Leu Val Thr Leu Pro Asn Thr Thr Ala  
370 375 380

Thr Ala Ile Leu Cys Ser Asp Glu Phe Thr Thr Ile Trp Leu Glu Pro  
385 390 395 400

Glu Val Leu Phe Ser Gly Pro Arg Gln Ala Phe Glu Phe Pro Gln Ile  
405 410 415

Asn Tyr Gln Lys Tyr Cys Gly Lys Pro Tyr Thr Tyr Ala Tyr Gly Leu  
420 425 430

Gly Leu Asn His Phe Val Pro Asp Arg Leu Cys Lys Leu Asn Val Lys  
435 440 445

Thr Lys Glu Thr Trp Phe Thr Val Trp Gln Glu Pro Asp Ser Tyr Pro  
450 455 460

Ser Glu Pro Ile Phe Val Ser His Pro Asp Ala Leu Glu Glu Asp Asp  
465 470 475 480

Gly Val Val Leu Ser Val Val Ser Pro Gly Ala Gly Gln Lys Pro  
485 490 495

Ala Tyr Leu Leu Ile Leu Asn Ala Lys Asp Leu Ser Glu Val Ala Arg  
500 505 510

Ala Glu Phe Thr Val Glu Ile Asn Ile Pro Val Thr Phe His Gly Leu  
515 520 525

Phe

<210> 6  
<211> 18

<212> PRT  
<213> CHICKEN

<400> 6  
Asn Lys Glu Glu His Pro Glu Pro Ile Lys Ala Glu Val Gln Gly Gln  
1 5 10 15

Leu Pro

<210> 7  
<211> 18  
<212> PRT  
<213> CHICKEN

<400> 7  
Asn Lys Glu Glu His Pro Glu Pro Ile Lys Ala Glu Val Gln Gly Gln  
1 5 10 15

Leu Pro

<210> 8  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Primer

<220>  
<221> modified\_base  
<222> (18)  
<223> i

<400> 8  
aacaargarg ascayccnga 20

<210> 9  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Primer

<220>  
<221> modified\_base

<222> (7)  
<223> i  
  
<220>  
<221> modified\_base  
<222> (13)  
<223> i  
  
<400> 9  
sagctgnccc tgnacytcsg c

21

<210> 10  
<211> 25  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence: Primer  
  
<400> 10  
tctgaattcc ggagccata aaagc

25