原根

Primitive Root

阶 Order

定义

若 (a,m)=1,称使得 $a^l\equiv 1\pmod m$ 成立的**最小的** l 为 $a\not\equiv m$ 的阶,记作: $\mathrm{ord}_m a$. 换句话说,定义 $a\not\equiv m$ 的阶是 $a^x\equiv 1\pmod m$ 的**最小正整数解**。

理解:根据欧拉定理, $a^{\varphi(m)}\equiv 1\pmod{m}$,所以 $\{a^1,a^2,\cdots\}$ 这个数列在模 m 下有一个长度为 $\varphi(m)$ 的循环节,但是这不一定是最小循环节,最小循环节长度是 $\mathrm{ord}_m a$.

性质

性质1:

$$\operatorname{ord}_m a \mid \varphi(m)$$

由上述理解易知。

性质2:

$$a^n \equiv 1 \pmod{m} \implies \operatorname{ord}_m a \mid n$$

 $a^n\equiv 1\pmod{m}$ 说明 $\{a^1,a^2,\cdots,a^n\}$ 是一个循环节,长度自然是最小循环节的整数倍。

性质3: 设 $m \in \mathbb{N}^*$, $a,b \in \mathbb{Z}$, $\gcd(a,m) = \gcd(b,m) = 1$, 则:

$$\operatorname{ord}_m(ab) = \operatorname{ord}_m a \cdot \operatorname{ord}_m b \iff \gcd(\operatorname{ord}_m a, \operatorname{ord}_m b) = 1$$

证:必要性:由 $a^{\operatorname{ord}_m a} \equiv 1 \pmod{m}$ 和 $b^{\operatorname{ord}_m b} \equiv 1 \pmod{m}$ 可知:

$$(ab)^{\operatorname{lcm}(\operatorname{ord}_m a, \operatorname{ord}_m b)} \equiv 1 \pmod m$$

根据前述性质可得:

$$\operatorname{ord}_m(ab) \mid \operatorname{lcm}(\operatorname{ord}_m a, \operatorname{ord}_m b)$$

又有条件: $\operatorname{ord}_m(ab) = \operatorname{ord}_m a \cdot \operatorname{ord}_m b$, 于是:

$$\operatorname{ord}_m a \cdot \operatorname{ord}_m b \mid \operatorname{lcm}(\operatorname{ord}_m a, \operatorname{ord}_m b)$$

即得: $gcd(ord_m a, ord_m b) = 1$.

充分性: 由 $(ab)^{\operatorname{ord}_m(ab)} \equiv 1 \pmod{m}$ 可知:

$$(ab)^{\operatorname{ord}_m(ab)\cdot\operatorname{ord}_m b}\equiv a^{\operatorname{ord}_m(ab)\cdot\operatorname{ord}_m b}\equiv 1\pmod m$$

根据前述性质可得: $\operatorname{ord}_m a \mid \operatorname{ord}_m(ab) \cdot \operatorname{ord}_m b$, 又有条件: $\operatorname{gcd}(\operatorname{ord}_m a, \operatorname{ord}_m b) = 1$, 所以:

$$\operatorname{ord}_m a \mid \operatorname{ord}_m(ab)$$

同理,

$$\operatorname{ord}_m b \mid \operatorname{ord}_m(ab)$$

因为 $gcd(ord_m a, ord_m b) = 1$, 所以:

$$\operatorname{ord}_m a \cdot \operatorname{ord}_m b \mid \operatorname{ord}_m(ab)$$

另一方面,

$$(ab)^{\operatorname{ord}_m a \cdot \operatorname{ord}_m b} \equiv 1 \pmod m$$

根据前述性质可得:

$$\operatorname{ord}_m(ab) \mid \operatorname{ord}_m a \cdot \operatorname{ord}_m b$$

综上,

$$\operatorname{ord}_m(ab) = \operatorname{ord}_m a \cdot \operatorname{ord}_m b$$

证毕。

性质4: 设 $k \in \mathbb{N}, m \in \mathbb{N}^*, a \in \mathbb{Z}, \gcd(a,m) = 1,$ 则:

$$\operatorname{ord}_m\left(a^k
ight) = rac{\operatorname{ord}_m a}{\gcd(\operatorname{ord}_m a, k)}$$

证:由于

$$\left(a^k
ight)^{\operatorname{ord}_m\left(a^k
ight)}\equiv a^{k\cdot\operatorname{ord}_m\left(a^k
ight)}\equiv 1\pmod m$$

根据前述性质可得:

$$\operatorname{ord}_m a \mid k \cdot \operatorname{ord}_m \left(a^k \right)$$

于是:

$$rac{\operatorname{ord}_m a}{\gcd(\operatorname{ord}_m a,k)}\mid\operatorname{ord}_m\left(a^k
ight)$$

另一方面,

$$\left(a^k
ight)^{rac{\operatorname{ord}_m a}{\gcd(\operatorname{ord}_m a,k)}} \equiv \left(a^{\operatorname{ord}_m a}
ight)^{rac{k}{\gcd(\operatorname{ord}_m a,k)}} \equiv 1 \pmod m$$

根据前述性质可得:

$$\operatorname{ord}_m\left(a^k\right)\mid \dfrac{\operatorname{ord}_m a}{\gcd(\operatorname{ord}_m a,k)}$$

综上,

$$\operatorname{ord}_m\left(a^k
ight) = rac{\operatorname{ord}_m a}{\gcd(\operatorname{ord}_m a, k)}$$

证毕。

原根 Primitive Root

设 (g,m)=1,若 $\operatorname{ord}_m g=\varphi(m)$,则称 g 为 m 的一个原根。

换句话说,g 是 m 的一个原根当且仅当 $g^1, g^2, \cdots, g^{\varphi(m)}$ 互不相同,也即 $\{g^1, g^2, \cdots, g^{\varphi(m)}\}$ 是 m 的一个缩剩余系。

存在性

不是每个数都有原根, 我们有定理:

若 m 有原根,则 m 必为以下几种形式之一: $1,2,4,p^{\alpha},2p^{\alpha}$,其中 p 是奇质数。

实现:一个数是否有原根可以在线性筛的同时运用 **Eratosthenes** 筛的思想预处理。

数量

设 $a \neq m$ 的一个原根,那么对于任意 $\leq \varphi(m)$ 且和 $\varphi(m)$ 互质的正整数 s, a^s 也是 m 的原根。它们是 m 的所有原根。

证明:由于 $\{s, 2s, \dots, \varphi(m)s\}$ 在模 m 下互不相同,所以 $\{a^s, a^{2s}, \dots, a^{\varphi(m)s}\}$ 在模 m 下互不相同,故 a^s 是 m 的一个原根。"它们是所有原根"待证。

m 的原根的数量就是 s 的数量,即 $\varphi(\varphi(m))$.

求出最小原根

已经证明了,若数 m 存在原根,则最小原根是 $O(m^{0.25})$ 级别的。这意味着,我们可以直接暴力枚举,判断枚举的数是否是原根。

如何判断呢?设枚举的数为 g,根据阶与原根的性质(循环节性质),如果存在一个 $j \mid \varphi(m), j < \varphi(m)$ 使得 $g^j \equiv 1 \pmod m$,则 g 不是原根。于是我们有了一个 $O(d(\varphi(m)))$ 的判断方法,其中 d 是约数个数函数,大概是 $d(n) = O(n^{1.066/\ln \ln n})$ 。

这个过程还可以优化,设 $\varphi(m)=\prod p_i^{a_i}$,那么如果存在一个 $\varphi(m)/p_i$ 使得 $g^{\varphi(m)/p_i}\equiv 1\pmod{m}$,则 g 不是原根。这是因为,如果 g 不是原根,那么一定存在一个 $d\mid \varphi(m),\,d<\varphi(m)$ 使得 $g^d\equiv 1\pmod{m}$ 。又这个 d 显然是某一个 $\varphi(m)/p_i$ 的因子,设 $\varphi(m)/p_i=d\cdot k$,于是有:

$$g^{rac{arphi(m)}{p_i}} \equiv g^{d \cdot k} \equiv 1^k \equiv 1 \pmod{m}$$

所以判断 $\varphi(m)/p_i$ 就够了。这样我们判断的复杂度是 $O(\omega(\varphi(m)))$,其中 ω 是不计算重数的素因子个数函数,假装是 $\omega(n)=O(\lg n)$ 好了。

综上, 我们可以在 $O(m^{0.25} \lg \varphi(m) \lg m + \sqrt{\varphi(m)})$ 内找到 m 的最小原根。

求出所有原根

找到最小原根 g 后,找到所有 $\leq \varphi(m)$ 与 $\varphi(m)$ 互质的正整数 s, g^s 也是一个原根。

Code

```
int phi[N], pList[N], pID;
bool notP[N];
bool existRoot[N];

void Euler(int n){
    notP[0] = notP[1] = 1, phi[1] = 1;
    existRoot[1] = existRoot[2] = existRoot[4] = true;

for(int i = 1; i <= n; i++){
    if(notP[i] == 0){</pre>
```

```
9
                pList[++pID] = i, phi[i] = i - 1;
                if(i != 2){
10
                    for(long long j = i; j \le n; j \ne i){
11
12
                         existRoot[j] = true;
13
                         if(j * 2 \le n) = existRoot[j*2] = true;
14
                     }
                }
15
            }
16
            for(int j = 1; j \le pID; j++){
17
                if(1ll * i * pList[j] > n) break;
18
                notP[i * pList[j]] = 1;
19
20
                if(i % pList[j] == 0){
                     phi[i * pList[j]] = phi[i] * pList[j];
21
22
                     break;
23
                }
24
                else
                         phi[i * pList[j]] = phi[i] * (pList[j] - 1);
            }
25
        }
26
    }
27
28
    inline int fpow(int bs, int idx, int m){
29
30
        int res = 1;
        while(idx){
31
            if(idx & 1) res = 1ll * res * bs % m;
32
            bs = 111 * bs * bs % m;
33
            idx >>= 1;
34
35
        }
36
        return res;
37
    }
38
39
    vector<int> getPrimitiveRoot(int m){
40
        vector<int> res;
        if(!existRoot[m]) return res;
41
42
        vector<int> factors; // get PRIME factors of phi(m)
43
        int phim = phi[m];
44
        for(int i = 2; i * i <= phim; i++){
45
46
            if(phim % i) continue;
47
            factors.emplace_back(i);
            while(phim % i == 0)     phim /= i;
48
        } if(phim > 1) factors.emplace_back(phim);
49
50
        int g = 0; // smallest primitive root
51
52
        for (g = 2; g \le m; g++) {
53
            if(gcd(g, m) != 1) continue;
            bool ok = true;
54
            for(auto &factor : factors){
55
```

```
if(fpow(g, phi[m] / factor, m) == 1){
56
                    ok = false; break;
57
58
                }
59
            }
            if(ok) break;
60
61
        for(int s = 1, cur = 1; s <= phi[m]; s++){
62
            cur = 1ll * cur * g % m;
63
            if(gcd(s, phi[m]) == 1)
64
65
                res.emplace_back(cur);
66
        }
        sort(res.begin(), res.end());
67
68
        return res;
69 }
```