Study the relationship between two or more variables using regression

Example: relationship between advertising expenditures and sales

As advertising expenditures increase

Sales increase

Example: relationship between number of hours practice and errors

As hours of practice increase

Errors decrease

Develop a model to show how the variables are related and to predict

Example: predict sales for a given level of advertising

Dependent Variable – the variable we are trying to predict

y Sales

X

Independent Variable – the variable we use to predict the dependent variable

Advertising Expenditures

Simple Linear Regression:

Simple – one independent variable and one dependent variable Linear – the relationship is approximated using a straight line Multiple Regression – two or more independent variables

Simple Linear Regression Model:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

where:

 β_0 is the y-intercept of the regression line β_1 is the slope of the regression line ε is the error term.

 β_0 and β_1 are the population parameters

 b_0 and b_1 are the sample statistics used to estimate β_0 and β_1

Estimated Simple Linear Regression Equation:

$$\hat{y} = b_0 + b_1 x$$

where:

 \hat{y} is the predicted value of y for a given x value.

 b_0 is the *y* intercept of the line.

 b_1 is the slope of the line.

Calculating the Slope:

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

where:

 x_i = value of independent variable for *i*th observation

 y_i = value of dependent variable for *i*th observation

x = mean value for independent variable

y = mean value for dependent variable

Calculating the y – intercept:

$$b_0 = \bar{y} - b_1 \bar{x}$$

x_i	y _i	$x_i - \bar{x}$	y _i - ÿ	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
2	69	-2.8	-8.8	24.64	7.84
9	98	4.2	20.2	84.84	17.64
5	82	.2	4.2	.84	.04
5	77	.2	8	16	.04
3	71	-1.8	-6.8	12.24	3.24
7	84	2.2	6.2	13.64	4.84
1	55	-3.8	-22.8	86.64	14.44
8	94	3.2	16.2	51.84	10.24
6	84	1.2	6.2	7.44	1.44
2	64	-2.8	-13.8	38.64	7.84
$\Sigma x_i = 48$	$\Sigma y_i = 778$			320.6	67.6
$\bar{x} = 48/10$	$\bar{y} = 778/10$)		$\Sigma(x_i - \overline{x})(y_i - \overline{y})$	$\Sigma(x_i - \overline{x})^2$
= 4.8	= 77.8				

$$b_{1} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}}$$

$$b_{1} = \frac{320.6}{67.6} = 4.74$$

$$b_{1} = \frac{320.6}{67.6} = 4.74$$

$$b_{0} = \bar{y} - b_{1}\bar{x}$$

$$\bar{x} = 48/10 \quad \bar{y} = 778/10 \\
= 4.8 \quad = 77.8$$

$$b_{0} = 77.8 - 4.74(4.8)$$

$$(x_{i} - \bar{x})(y_{i} - \bar{y}) \quad (x_{i} - \bar{x})^{2}$$

$$24.64 \quad 7.84 \quad 17.64 \\
84.84 \quad .04 \quad .04 \\
12.24 \quad 3.24 \quad 13.64 \quad 4.84 \quad 86.64 \quad 14.44 \quad 10.24 \quad 14.44 \quad 14.44 \quad 10.24 \quad 14.44 \quad$$

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_1 = \frac{320.6}{57.6} = 4.74$$

$$b_1 = \frac{320.6}{67.6} = 4.74$$

$$\frac{b_0 = \bar{y} - b_1 \bar{x}}{51.84}$$

$$\frac{\bar{x} = 48/10}{10} = \frac{77.8}{10}$$

$$= 4.8 = 77.8$$

$$\hat{y} = b_0 + b_1 x$$

$$\hat{y} = 55.048 + 4.74 x$$

$$(x_i - \bar{x})(y_i - \bar{y}) \quad (x_i - \bar{x})^2$$

$$24.64 \quad 7.84 \quad 17.64$$

$$84.84 \quad .04 \quad .04$$

$$12.24 \quad 3.24 \quad 13.64 \quad 4.84$$

$$86.64 \quad 14.44 \quad 51.84 \quad 10.24$$

$$7.44 \quad 1.44 \quad 14.44 \quad 14.44$$

$$320.6 \quad 7.84 \quad 14.44$$

$$320.6 \quad 5(x_i - \bar{x})(y_i - \bar{y}) \quad \Sigma(x_i - \bar{x})^2$$

Estimated Regression Line:

$$\hat{y} = 55.048 + 4.74x$$

Use regression line to predict the value of y for a given x

Suppose Number of hours studied = 3

What is the predicted grade on exam?

x=3 what is the predicted value of y?

$$\hat{y} = 55.048 + 4.74 (3)$$

$$\hat{y} = 69.268$$

Coefficient of Determination: How well does the regression line fit the data? $r^2 = \text{SSR}/\text{SST}$ where: $\text{SSR} = \text{sum of squares due to regression} = \sum (\hat{y}_i - \bar{y})^2$ $\text{SST} = \text{total sum of squares} = \sum (y_i - \bar{y})^2$ $\text{SSE} = \text{sum of squares due to error} = \sum (y_i - \hat{y}_i)^2$

SST = SSR

+ SSE

		Predicted Grades	
X_i	y_i	$\widehat{y}_i = 55.048 + 4.74x_i$	
2	69	64.528	
9	98	97.708	
5	82	78.748	
5	77	78.748	
3	71	69.268	
7	84	88.228	
1	55	59.788	
8	94	92.968	
6	84	83.488	
2	64	64.528	

		Predicted Grades	Error	Squared Error	Deviation
X_i	y_i	$\widehat{y}_i = 55.048 + 4.74x_i$	$y_i - \widehat{y}_i$	$(y_i - \widehat{y}_i)^2$	y _i - y
2	69	64.528	4.472	19.9988	-8.8
9	98	97.708	.292	.0852	20.2
5	82	78.748	3.252	10.5755	4.2
5	77	78.748	-1.748	3.0555	8
3	71	69.268	1.732	2.9998	-6.8
7	84	88.228	-4.228	17.8759	6.2
1	55	59.788	-4.788	22.9249	-22.8
8	94	92.968	1.032	1.0650	16.2
6	84	83.488	.512	.2621	6.2
2	64	64.528	528	.2788	-13.8

		Predicted Grades	Error	Squared Error	Deviation	Square Deviatio
x_i	y_i	$\widehat{y}_i = 55.048 + 4.74x_i$	$y_i - \widehat{y}_i$	$(y_i - \widehat{y}_i)^2$	yi - y	$(y_i - \overline{y})^2$
2	69	64.528	4.472	19.9988	-8.8	77.44
9	98	97.708	.292	.0852	20.2	408.04
5	82	78.748	3.252	10.5755	4.2	17.64
5	77	78.748	-1.748	3.0555	8	.64
3	71	69.268	1.732	2.9998	-6.8	46.24
7	84	88.228	-4.228	17.8759	6.2	38.44
1	55	59.788	-4.788	22.9249	-22.8	519.84
8	94	92.968	1.032	1.0650	16.2	262.44
6	84	83.488	.512	.2621	6.2	38.44
2	64	64.528	528	.2788	-13.8	190.44
				SSE =79.1215		

```
Correlation Coefficient: measures the strength of association between x and y Values of Correlation Coefficient, r, are between -1 and +1 r = +1 \text{ means perfect positive linear relationship} r = -1 \text{ means perfect negative linear relationship} r = 0 \text{ means no linear relationship} r_{xy} = (\text{sign of } b_1) \sqrt{\text{Coefficient of Determination}} = (\text{sign of } b_1) \sqrt{r^2} r_{xy} = +\sqrt{.9505} r_{xy} = +.9749 +.9749 \text{ indicates a very strong positive} \text{linear relationship between x and y}
```


Hypothesis Test of Significance, t test:
$$H_0: \beta_1 = 0 \\ H_a: \beta_1 \neq 0$$
 Test Statistic:
$$t = \frac{b_1}{s_{b_1}}$$
 Where:
$$s = \sqrt{\frac{79.1215}{10-2}} = 3.1449$$
 And:
$$s = \sqrt{\frac{SSE}{n-2}}$$

Hypothesis Test of Significance, t test:

$$H_0: \beta_1 = 0$$

$$H_a$$
: $\beta_1 \neq 0$

Test Statistic:
$$t = \frac{4.74}{.3825} = 12.3921$$

Critical Value:

$$\alpha = .01$$
 $\alpha/2 = .005$

Hypothesis Test of Significance, t test: H_0 : $\beta_1 = 0$

$$H_0$$
: $\beta_1 = 0$

$$H_a$$
: $\beta_1 \neq 0$

Test Statistic:
$$t = \frac{4.74}{3825} = 12.3921$$

Critical Value:
$$= 3.355$$

Statistical Conclusion:

Reject H_0 , there is evidence that β_1 is not equal to zero and that a significant relationship exists between grades and number of hours studied.

P value approach:

Test Statistic: = 12.3921

df = n-2 = 8

For a Two-tailed Test: Double the area and compare to lpha

p-value = $.0005 \times 2 = .001$

Rejection Rule:

Reject H_0 if p-value $\leq \alpha$

 $\alpha = .01$

.001 < .01

Reject H_0 , there is evidence that β_1 is not equal to zero and that a significant relationship exists between grades and number of hours studied.