Algèbre de base

Pierron Théo

ENS Ker Lann

Table des matières

Ι	Aı	nneaux et modules	1					
0	Rap	Rappels						
	0.1	Relations d'équivalence et quotients	3					
	0.2	Loi internes compatibles	5					
	0.3	Cas des groupes	5					
1	Théorie générale des anneaux et modules							
	1.1	Anneaux	9					
	1.2	Quelques exemples d'anneaux	11					
		1.2.1 Anneaux de polynômes	11					
		1.2.2 Anneaux et matrices	12					
		1.2.3 Produit d'anneaux, anneaux de fonctions	12					
		1.2.4 Espaces \mathcal{L}^p et L^p avec $p \geqslant 1$	13					
	1.3	Idéaux	13					
	1.4	Idéaux des anneaux commutatifs	16					
	1.5	Modules	18					
	1.6	Algèbres	21					
2	Modules libres de type fini 23							
	2.1	Modules libres	23					
	2.2	Modules libres de type fini	24					
	2.3	Calcul matriciel sur A commutatif	25					
3	Anneaux factoriels et principaux 2							
	3.1	Anneaux nœthériens	29					
	3.2	Divisibilité, anneaux factoriels	29					
	3.3	Anneaux principaux et euclidiens	32					
4	Mo	dules sur les anneaux principaux	35					
	4.1	Opérations élémentaires sur les matrices et forme de Smith	35					
	4.2	Modules de type fini sur un anneau principal	37					

	4.3 Application à la réduction des endomorphismes	39				
II	Théorie de Galois	43				
5	Extensions de corps					
6	Clôture algébrique	53				
7	Corps finis 7.1 Dérivation					
8	Extensions normales et séparables					
10	Applications 10.1 Généralités	73 73 75 76				

Première partie Anneaux et modules

Chapitre 0

Rappels

0.1 Relations d'équivalence et quotients

Soit X un ensemble.

<u>Définition 0.1</u> Une relation sur X est une partie \mathcal{R} de $X \times X$ où on écrit $x\mathcal{R}y$ ssi $(x,y) \in \mathcal{R}$. Cette relation est dite :

- réflexive ssi $\forall x \in X, x \mathcal{R} x$
- transitive ssi $\forall x, y, z \in X$, $x \mathcal{R} y$ et $y \mathcal{R} z$ implique $x \mathcal{R} z$
- symétrique ssi $\forall x, y \in X, x\mathcal{R}y \Rightarrow y\mathcal{R}x$
- antisymétrique ssi $\forall x, y \in X, x \mathcal{R} y$ et $y \mathcal{R} x \Rightarrow x = y$

Une relation d'équivalence (resp. d'ordre) est une relation réflexive, transitive et symétrique (resp. antisymétrique).

Lorsque \mathcal{R} est une relation d'équivalence, on note souvent $x \sim y$ pour $x\mathcal{R}y$.

Exemple 0.1 Soit $f: X \to Y$ une application. Notons $x\mathcal{R}x'$ ssi f(x) = f(x'). C'est clairement une relation d'équivalence sur X, qu'on appelle relation associée à f.

Définition 0.2 Si \mathcal{R} est une relation d'équivalence sur X et $x \in X$, on note $\overline{x} = \{y \in X, y \sim x\}$ la classe d'équivalence de x. On note X/\mathcal{R} l'ensemble des classes d'équivalences de X pour \mathcal{R} .

Proposition 0.1 Chaque classe d'équivalence définit une partition de X par les \overline{x} et, réciproquement, toute partition de X définit une relation d'équivalence sur X.

Théorème 0.1 Soit X un ensemble, \mathcal{R} une relation d'équivalence sur X. On note

$$\pi : \begin{cases} X & \to & X/\mathcal{R} \\ x & \mapsto & \overline{x} \end{cases}$$

Alors π est surjectif et la relation d'équivalence qui lui est associée est \mathcal{R} .

De plus, π vérifie la propriété universelle : Pour tout ensemble Y et toute application $f: X \to Y$ telle que si $x \sim x'$, f(x) = f(x'), il existe une unique application $g: X/\mathcal{R} \to Y$ telle que $f = g \circ \pi$.

Figure 1 – Propriété universelle

Démonstration. Il suffit de vérifier que g définie par $g(\overline{x}) = f(x)$ est bien définie.

<u>Définition 0.3</u> On dit que f passe au quotient en une application g, et que g est induite par f par passage au quotient.

Remarque 0.1 À cause de la propriété universelle, l'application $\pi: X \to X/\mathcal{R}$ est déterminée à une unique bijection près.

Plus précisément, si $\pi_1: X \to Y_1$ et $\pi_2: X \to Y_2$ vérifient la propriété universelle, alors il existe une unique bijection $\alpha: Y_1 \to Y_2$ telle que $\pi_2 = \alpha \circ \pi_1$.

Exemple 0.2

- $X = \mathbb{N}, m \sim n \text{ ssi } 2 \mid m n. X/\sim = \{0, 1\}.$
- $X = \mathbb{N}^2$, $(a, b) \sim (c, d)$ ssi a + d = b + c. $X/\sim = \mathbb{Z}$.
- $X = \mathbb{Z} \times \mathbb{N}^*$, $(a, b) \sim (c, d)$ ssi ad = bc. $X/\sim = \mathbb{Q}$.
- $X = \{(\overrightarrow{u}, \overrightarrow{v}) \in E^2 \text{ unitaires}\}$ avec E un plan euclidien, $(\overrightarrow{u}, \overrightarrow{v}) \sim (\overrightarrow{u'}, \overrightarrow{v'})$ ssi il existe une rotation telle que $r(\overrightarrow{u}) = \overrightarrow{u'}$ et $r(\overrightarrow{v}) = \overrightarrow{v'}$. X/\sim est l'ensemble des angles orientés.
- $X = \mathbb{K}^{n+1} \setminus \{0\}$, \mathbb{K} un corps, $v \sim v'$ ssi $\exists \lambda \in k^*$, $v = \lambda v'$. X/\sim est l'espace projectif de dimension $n : \mathbb{P}^n(\mathbb{K})$.
- $X = \mathcal{L}^p$, $f \sim g$ ssi f g est nulle en dehors d'un négligeable. $X/\sim = L^p$.
- $X = \{u \in \mathbb{Q}^{\mathbb{N}}, u \text{ de Cauchy}\}. \ u \sim v \text{ ssi } u v \text{ converge vers } 0. \ X/\sim = \mathbb{R}.$
- $X = \mathbb{R}[T], P \sim Q \operatorname{ssi} T^2 + 1 \mid P Q. X/\sim = \mathbb{C}.$

Remarque 0.2 Si $f: X \to Y$ est une application, l'image f(X) sert à mesurer le défaut de surjectivité de f et X/\mathcal{R} sert à mesurer le défaut d'injectivité de f (avec \mathcal{R} associée à f).

FIGURE 2 – Quotient et bijectivité

0.2 Loi internes compatibles

<u>Définition 0.4</u> Une loi de composition interne sur X est une application :

$$\begin{cases} X \times X & \to & X \\ (x,y) & \mapsto & x * y \end{cases}$$

Proposition 0.2 Soit \mathcal{R} une relation d'équivalence sur X et $\pi: X \to X/\mathcal{R}$ la surjection canonique. Soit * une loi de composition interne sur X. Les conditions suivantes sont équivalentes :

- i Pour tous $(x, x', y, y') \in X^4$, $(x \sim x' \text{ et } y \sim y') \Rightarrow x * y \sim x' * y'$
- ii Om existe une loi de composition $\overline{*}$ sur X/\mathcal{R} telle que pour tous $(x,y) \in X$, on ait, $\overline{x*y} = \overline{x*y}$.

Démonstration.

i
$$\Rightarrow$$
 ii On définit $c\overline{*}d = \overline{x*y}$ avec $c = \overline{x}$ et $d = \overline{y}$.
ii \Rightarrow i Soient $(x, x', y, y') \in X^4$ tel que $x \sim x'$ et $y \sim y'$.
On a $\overline{x*y} = \overline{x*y} = \overline{x'*y'} = \overline{x'*y'}$.

Dans ce cas, on dit que \mathcal{R} et * sont compatibles.

0.3 Cas des groupes

Soit G un ensemble et * une loi sur G.

<u>Définition 0.5</u> On dit que :

- * est associative ssi pour tout $(x, y, z) \in G^3$, (x * y) * z = x * (y * z)
- * est commutative ssi pour tout $(x, y) \in G^2$, x * y = y * x
- $e \in G$ est neutre pour * ssi pour tout $x \in G$, x * e = e * x = x (unicité si existence)
- $x' \in G$ est un symétrique de $x \in G$ ssi x * x' = x' * x = e (unicité si existence)

Proposition 0.3 Soit G muni de * et \mathcal{R} une relation d'équivalence sur G compatible avec *. Soit $\overline{*}$ la loi induite sur G/\mathcal{R} .

Alors si * est associative (resp. commutative, possède un neutre,...) alors $\overline{*}$ aussi.

Définition 0.6 Un groupe est un ensemble G muni d'une loi * associative, possédant un neutre e epour laquelle tout élément possède un symétrique.

Par convention, dans un groupe, la loi est notée multiplicativement : $x * y \to xy$, $e \to 1$ et $x' \to x^{-1}$. Exception notable pour les groupes abéliens, on note la loi additivement : $x * y \to x + y$, $e \to 0$ et $x' \to -x$.

On renvoie au magnifique cours de THGR pour les définitions usuelles sur les groupes.

<u>Définition 0.7</u> Un sous-groupe $H \subset G$ est dit distingué ssi pour tout $h \in H$ et pour tout $g \in G$, $ghg^{-1} \in H$. On note alors $H \triangleleft G$.

Exemple 0.3 Soit G un groupe et H un sous-groupe.

 $x \sim_d y \text{ ssi } xy^{-1} \in H \text{ et } x \sim_g y \text{ ssi } y^{-1}x \in H.$

 \sim_g et \sim_d sont des relations d'équivalence et H est distingué ssi les classes des deux relations sont les mêmes.

Proposition 0.4 Si $f: G \to H$ est un morphisme de groupes, son image Im(f) = f(G) est un sous-groupe (non distingué en général, ex : si $H \not \lhd G$, le morphisme d'inclusion n'a pas une image distinguée) de H et son noyau $\text{Ker}(f) = f^{-1}(1_H)$ est un sous-groue distingué de G.

Tout sous-groupe distingué est noyau d'un morphisme.

THÉORÈME 0.2 Soit G un groupe et $N \triangleleft G$. Il existe un groupe G/N et un morphisme de groupes $\pi: G \to G/N$ surjectif qui vérifie la propriété universelle suivante : pour tout groupe H et tout morphisme $f: G \to H$ tel que $N \subset \operatorname{Ker}(f)$, il existe un unique morphisme $f': G/N \to H$ tel que $f = f' \circ \pi$.

De plus, $N \triangleleft \operatorname{Ker} f$ et $\operatorname{Ker} f' = \operatorname{Ker} f/N$. On a aussi $\operatorname{Im} f = \operatorname{Im} f'$.

Démonstration. On note \sim la relation d'équivalence définie par $x \sim y$ ssi $xy^{-1} \in N$. On note $G/N = G/\sim$.

 \sim est compatible avec la loi de G donc il y a une loi induite sur G/N.

Remarque 0.3 Avec les mêmes notations, si on dispose d'un morphisme surjectif $\rho: G \to Q$ de noyau N, on peut lui appliquer le théorème assure l'existence de ρ' tel que $\rho = \rho' \circ \pi$. On a $\operatorname{Ker}(\rho') = N/N = \{1\}$ et $\operatorname{Im}(\rho') = \operatorname{Im}(\rho) = Q$.

Donc ρ' est bijectif.

Exemple 0.4 $G = GL_n(\mathbb{K})$ et $H = SL_n(\mathbb{K})$. det : $G \to \mathbb{K}^*$ est surjectif de noyau SL_n donc induit une bijection de G/H dans \mathbb{K}^* .

Exemple 0.5 Soit G un groupe, $N \triangleleft G$, $\pi: G \rightarrow G/N$. Si $H \supset N$ est un sous-groupe de G, $\pi(H)$ est un sous-groupe de G/N.

 π est une bijection de l'ensemble des sous-groupes de G contenant N sur l'ensemble des sous-groupes de G/N.

Chapitre 1

Théorie générale des anneaux et modules

1.1 Anneaux

<u>Définition 1.1</u> Un anneau est un triplet $(A, +, \times)$ tel que :

- (A, +) est un groupe commutatif d'élément neutre 0
- ullet x est associative et possède un neutre 1
- × est distributive à gauche et à droite sur $+: \forall x, y, z \in A, x(y+z) = xy + xz$

L'anneau est dit commutatif ssi \times l'est.

Remarque 1.1

- Il existe des notions (intéressantes) d'anneaux non associatifs, ou non unitaires, ou avec 1 = 0.
- $Si \ 1 = 0, \ A = \{0\}.$
- (A, \times) n'est pas un groupe (0 n'a pas d'inverse).

Exemple 1.1

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} sont des anneaux commutatifs.
- $\mathbb{Z}[i]$ est un anneau.
- \mathbb{F}_p est un anneau, de même que les $\mathbb{Z}/n\mathbb{Z}$.
- $\mathfrak{M}_n(\mathbb{K})$ est un anneau.
- La R-algèbre des quaternions H est un anneau.
- Les anneaux de polynômes $\mathbb{K}[X]$, de fonctions A^E (E ensemble, A anneau)

<u>Définition 1.2</u> Soient A et B deux anneaux. Un morphisme d'anneaux f: $A \to B$ est un morphisme de groupe $(A, +) \to (B, +)$ et tel que pour tout $(x, y) \in A^2$, f(xy) = f(x)f(y) et $f(1_A) = 1_B$.

Remarque 1.2 Pour tout anneau A, il existe un unique morphisme d'anneaux $\mathbb{Z} \to A$.

<u>Définition 1.3</u> Un sous-anneau de A est un sous-groupe de A contenant 1_A et stable par \times .

Remarque 1.3

- Si $f: A \to B$ est un morphisme, alors f(A) est un sous-anneau de B. En revanche, le noyau n'est pas un sous-anneau car $f(1) = 1 \neq 0$ donc $1 \notin \operatorname{Ker} f$.
- L'intersection d'une famille quelconques de sous-anneaux est un sousanneau. Par ailleurs, si S est une partie d'un anneau A, l'intersection de tous les sous-anneaux de A qui contiennent S est un sous-anneau de A appelé sous-anneau engendré par S.

Définition 1.4 Soit A un anneau, $S \subset A$. L'ensemble des $x \in A$ qui commutent avec tous les éléments de S est un sous-anneau de S appelé commutant de S. Si S = A, le commutant est appelé centre de S souvent noté S.

Si x est dans le commutant de S, on dit que x centralise S. Si S = A, x est dit central.

Remarque 1.4 Le centre est commutatif.

<u>Définition 1.5</u> Soit A un anneau, $x \in A$.

- x est dit nilpotent ssi il existe $n \neq 0$ tel que $x^n = 0$.
- x est dit inversible à gauche (resp. à droite) ssi il existe $y \in A$ tel que yx = 1 (resp. xy = 1)
- x est dit régulier (ou non-diviseur de 0 ou simplifiable) à gauche (resp. à droite) ssi pour tout $y \in A$, $xy = 0 \Rightarrow y = 0$.
- \bullet x est inversible, régulier, non-diviseur de 0, simplifiable ssi il l'est à gauche et à droite.
- A est une algèbre à division, ou un corps gauche ssi ses éléments non nuls sont inversibles.
- \bullet Si de plus A est commutatif, A est intègre ssi ses éléments non nuls sont non-diviseurs de 0
- Une algèbre à division commutative est un corps.

Remarque 1.5

- Si x possède un inverse à gauche, il est régulier à gauche.
- La définition de régularité à gauche porte sur $\gamma_x : y \mapsto xy$ alors que l'inversibilité à gauche porte sur $\delta_x : y \mapsto yx$.
- L'ensemble des inversibles de A est un groupe pour \times noté A^* ou A^{\times} .

Exemple 1.2 Anneaux intègres :

- \bullet \mathbb{Z}
- $\mathbb{Z}/n\mathbb{Z}$ est intègre ssi n est premier ou n=0.
- $C^0(\mathbb{R},\mathbb{R})$ n'est pas intègre.
- L'ensembles des fonctions holomorphes $\mathcal{H}(U)$ sur un ouvert U non vide et connexe est intègre.
- Si A est intègre, A[X] aussi.

Corps:

- \mathbb{Q} , \mathbb{R} , \mathbb{C} .
- Si \mathbb{K} est un corps, $\mathbb{K}(X) = \operatorname{Frac}(\mathbb{K}[X])$ est aussi un corps. On a $\mathcal{M}(U) = \operatorname{Frac}(\mathcal{H}(U))$ (fonctions méromorphes).

Exemple 1.3 Soit \mathbb{K} un corps, E un \mathbb{K} -ev, $A = \mathcal{L}(E)$. f est régulier à gauche ssi f est injectif ssi f est inversible à gauche.

De même, f est régulier à droite ssi f est surjectif ssi f est inversible à droite.

1.2 Quelques exemples d'anneaux

1.2.1 Anneaux de polynômes

Soit A un anneau non commutatif. On note A[X] l'ensemble des polynômes à coefficients dans A, ie l'ensemble des suites presques nulles, muni de l'addition terme à terme et du produit de Cauchy.

On note X la suite presque nulle $(\delta_{1,n})_{n\in\mathbb{N}}$. X est alors central.

Si $F = (f_n)_n$, on définit le degré

$$\deg(F) = \begin{cases} \max\{n, f_n \neq 0\} & \text{si } \exists n, f_n \neq 0 \\ -\infty & \text{sinon} \end{cases}$$

et le coefficient dominant de F (noté $\operatorname{cd}(F)$) par $f_{\deg(F)}$ si $\deg(F) \neq \infty$ et 0 sinon.

Proposition 1.1 On a $\deg(FG) \leq \deg(F) + \deg(G)$ avec égalité si $\operatorname{cd}(F)$ est régulier à gauche ou si $\operatorname{cd}(G)$ est régulier à droite.

Théorème 1.1 Soient F,G deux polynômes tels que $\mathrm{cd}(G)$ soit inversible. Alors :

- Il existe un unique couple $(Q,R) \in A[X]^2$ tel que F = GQ + R et $\deg(R) < \deg(G)$.
- Il existe un unique couple $(Q', R') \in A[X]^2$ tel que F = Q'G + R' et $\deg(R') < \deg(G)$.

Démonstration. Notons aX^m et bX^n les monômes dominants de F et G.

 \exists : Si m < n, on prend Q = 0 et R = F. Sinon, on fait une récurrence sur m. Le cas précédent l'initialise. Ensuite, on observe que $\mathrm{cd}(Gb^{-1}aX^{m-n}) = aX^m$.

On a $\deg(F - Gb^{-1}aX^{m-n}) < m$ donc par hypothèse de récurrence, il existe un couple (Q^*, R^*) tel que $F - Gb^{-1}aX^{m-n} = GQ^* + R^*$ et $\deg(R^*) < \deg(G)$ donc $F = G(\underbrace{b^{-1}aX^{m-n} + Q^*}_Q) + R^*$.

! : Si on a deux couples (Q_1, R_1) et (Q_2, R_2) qui marchent, alors $G(Q_1 - Q_2) = R_2 - R_1$.

Comme $\operatorname{cd}(G)$ est régulier à gauche, on a $\operatorname{deg}(G) + \operatorname{deg}(Q_1 - Q_2) = \operatorname{deg}(R_2 - R_1) < \operatorname{deg}(G)$ donc $Q_1 = Q_2$ et $R_1 = R_2$.

Exemple 1.4 Soit Z le centre de A. Le centre de A[X] est Z[X].

Soit
$$F \in A[X]$$
 et $\alpha \in A$. Si $F = \sum_{n \geq 0} f_n X^n$, on définit $F_g(\alpha) = \sum_{n \geq 0} \alpha^n f_n$.
Le reste de la division euclidienne à gauche de F par $X - \alpha$ est $F_g(\alpha)$.

Le reste de la division euclidienne à gauche de F par $X-\alpha$ est $F_g(\alpha)$. (En effet, $F-F_g(\alpha)=\sum_{n\geqslant 0}(X^n-\alpha^n)f_n$ et $X-\alpha\mid X^n-\alpha^n$)

Remarque 1.6 Si tous les coefficients de F commutent avec tous les coefficients de G alors Q = Q' et R = R'.

1.2.2 Anneaux et matrices

Soit R un anneau de centre Z et $n \ge 1$. On note $\mathfrak{M}_n(R)$ l'anneau des matrices carrées de taille n muni des lois habituelles.

Cet anneau n'est pas commutatif dès que $n \neq 1$ ou R non commutatif. Son centre est l'ensemble Z Id.

Il y a un isomorphisme canonique entre $\mathfrak{M}_n(R[X])$ et $\mathfrak{M}_n(R)[X]$ via :

$$\left(\sum_{p=0}^{n} m_{i,j}^{(p)} X^{p}\right)_{i,j} \mapsto \sum_{p=0}^{n} m_{p} X^{p}$$

où $m_p = (m_{i,j}^{(p)})_{i,j}$.

1.2.3 Produit d'anneaux, anneaux de fonctions

Soit $(A_i)_{i\in I}$ une famille d'anneaux avec I un ensemble. Le produit des A_i est l'anneau $\prod_{i\in I} A_i$.

Ses éléments sont des familles $(a_i)_{i\in I}$, produit cartésien d'ensembles avec $a_i \in A_i$, muni des lois d'addition et de multiplication coordonnée par coordonnée. Pour chaque $j \in I$, on a une projection $\pi_j : (a_i)_i \to a_j$ qui est un morphisme d'anneau.

Le produit A muni de ses projections vérifie la propriété universelle suivante : Pour tout anneau B et toute famille de morphismes $(f_i)_{i \in I} : B \to A_i$, il existe un unique $f : B \to A$ tel que pour tout $i \in I$, $\pi_i \circ f = f_i$.

FIGURE 1.1 – Factorisation des morphismes dans un produit d'anneaux

Si tous les A_i sont égaux à un même anneau A, leur produit est l'anneau A^I des fonctions de I dans A.

Exemple 1.5 Soit I un ensemble. On a un isomorphisme d'anneaux :

$$\begin{cases} (\mathcal{P}(I), \Delta, \cap) & \to & I^{\mathbb{Z}/2\mathbb{Z}} \\ A & \mapsto & 1_A \end{cases}$$

1.2.4 Espaces \mathcal{L}^p et L^p avec $p \geqslant 1$

Si p=2, l'inégalité de Hölder implique que \mathcal{L}^p et L^p sont des anneaux.

Si p=1 et qu'on se place sur \mathbb{R} , on peut munir L^1 du produit de convolution. On obtient un anneau non unitaire. (Ça marche aussi pour \mathcal{L}^1 .)

1.3 Idéaux

<u>Définition 1.6</u> Soit A un anneau. Un idéal à gauche est un sous groupe I de (A, +) stable par multiplication à gauche par les élements de A.

Un idéal bilatère est un idéal à gauche et à droite. On dit que A est simple ssi il n'a pas d'idéal bilatère différent de $\{0\}$ et A.

Remarque 1.7 Le seul idéal qui est un anneau est A.

<u>Définition 1.7</u> Pour tout $S \subset A$, l'intersection des idéaux de A qui la contiennent est un idéal, c'est le plus petit qui contient S. On l'appelle idéal engendré par S.

Soit $(I_{\lambda})_{\lambda}$ une famille d'idéaux à gauche. On appelle somme des I_{λ} et on note $\sum I_{\lambda}$, l'idéal à gauche engendré par la réunion des I_{λ} .

Soient I_1, \dots, I_n des idéaux bilatères. On appelle produit des I_k l'idéal engendré par les produits $i_1 \dots i_n$.

Exemple 1.6

- Dans \mathbb{Z} , on montre que tout idéal est principal ie est engendré par un seul élément. On a de plus $(a) + (b) = (a \wedge b)$, $(a) \cap (b) = (a \vee b)$ et (a)(b) = (ab).
- Si $B \in A^E$ et $x \in E$, alors $\{f \in B, f(x) = 0\}$ est un idéal bilatère.
- ullet Soit A un anneau et I,J deux idéaux à gauche. Alors

$$(I:J)_A = \{a \in A, aJ \subset I\}$$

Si I=0, on note $\mathrm{Ann}(J)=(0\colon J)=\{a\in A,aJ=\{0\}\}$ l'idéal annulateur de J.

• Soit E un \mathbb{K} -ev, F un sev de E, A = L(E). $\{f \in A, F \subset \operatorname{Ker}(f)\}$ est un idéal à gauche de A et $\{f \in A, \operatorname{Im}(f) \subset F\}$ est un idéal à droite de A.

Proposition 1.2 Soit $f: A \to B$ un morphisme d'anneaux.

La préimage d'un idéal à gauche de B est un idéal à gauche.

Si f est surjectif, l'image d'un idéal à gauche de A est un idéal à gauche.

Démonstration.

- Soit I un idéal à gauche. On pose J=f(I). Soit $x,y\in J$. Par surjectivité, x=f(x') et y=f(y') et on a x+y=f(x'+y') donc $x+y\in J$.
- Soit $x \in J$ et $a \in B$, on a x = f(x') et a = f(a') donc $ax = f(a'x') \in J$
- Soit I un idéal de B. On pose $J = f^{-1}(I)$. Soit $x, y \in J$ et $a \in A$. $f(x + y) = f(x) + f(y) \in I$ donc $x + y \in J$. De plus, $f(ax) = f(a)f(x) \in I$ donc J est un idéal.

Proposition 1.3 Tout idéal bilatère est noyau d'un morphisme de source A (théorème de quotient).

Théorème 1.2 De quotient Soit A un anneau, I un idéal bilatère. Il existe un anneau A/I et un morphisme $\pi:A\to A/I$ tel que pour tout anneau B et tout morphisme $f:A\to B$ dont le noyau contient I, il existe un unique morphisme $f':A/I\to B$ tel que $f=f'\circ\pi$.

Le morphisme π est surjectif de noyau I. On a de plus Im(f) = Im(f') et Ker(f') = Ker(f)/I.

Démonstration. On considère la relation d'équivalence sur A définie par $x \sim y$ ssi $x - y \in I$. On vérifie que cette relation est compatible avec + et \times .

Remarque 1.8 Si $f: A \to B$ est un morphisme surjectif de noyau I. La propriété universelle donne un $f': A/I \to B$ qui est un isomorphisme qui identifie B à A/I.

Exemple 1.7 $A' = A^{E}, I = \{ f \in A', f(x) = 0 \} \text{ où } x \in E \text{ est fixé.}$

Le morphisme d'évaluation en x est surjectif de noyau I, donc induit un isomorphisme de A'/I sur A.

Proposition 1.4 Il y a une bijection entre les idéaux de A qui contiennent I et les idéaux de A/I.

Proposition 1.5 Soit A un anneau et $I \subset J$ deux idéaux bilatères. Il y a un isomorphisme canonique entre (A/I)/(J/I) et A/J.

Démonstration. On applique la propriété universelle de A/I à la projection canonique $f: A \to A/J$, ce qui nous donne $f': A/I \to A/J$.

On applique à f' la propriété universelle de (A/I)/(J/I) et on a le résultat.

Exemple 1.8

- Si $m \mid n$, on a $(\mathbb{Z}/n\mathbb{Z})/(m\mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/m\mathbb{Z}$.
- $A = \mathbb{R}[T], I = (T^2 + 1)$ et

$$f: \begin{cases} \mathbb{R}[T] & \to & \mathbb{C} \\ P & \mapsto & P(i) \end{cases}$$

induit un isomorphisme $f': \mathbb{R}[T]/(T^2+1) \to \mathbb{C}$. f' est surjectif car $a+ib \in \mathbb{C}$ est l'image de $\overline{a+bT}$. f' est injectif car si $P \in \mathrm{Ker}(f), P(i) = 0$ donc $P = (T^2+1)Q+R$ avec $\deg(R) < 2$. On a R(i) = a+bi = 0 donc a = b = 0 donc $T^2+1 \mid P$. Ainsi, $\mathrm{Ker}(f) = I$ donc $\mathrm{Ker}(f') = I/I = \{0\}$.

• A l'anneau des suites de Cauchy de $\mathbb{Q}^{\mathbb{N}}$, I l'idéal de celles qui convergent vers 0. Par complétude de \mathbb{R} , lim est un morphisme surjectif de noyau 0 qui induit donc un isomorphisme $A/I \to \mathbb{R}$.

1.4 Idéaux des anneaux commutatifs

On suppose A commutatif.

<u>Définition 1.8</u> Un idéal $I \subset A$ est dit premier ssi A/I est intègre, ie pour tout $x, y \in A$, $xy \in I \Rightarrow x \in I$ ou $y \in I$.

<u>Définition 1.9</u> Un idéal $I \subset A$ est dit maximal ssi A/I est un corps, ie pour tout $x \in A \setminus I$, il existe $y \in A$ tel que $xy - 1 \in I$. C'est équivalent à dire qu'il n'y a aucun idéal strict J de A tel que $I \subseteq J$.

En effet, si ce n'est pas le cas, A/I a un idéal strict (J/I) donc $J/I = \{0\}$.

Lemme 1.2.1 Zorn

Soit E un ensemble partiellement ordonné. On appelle chaîne de E tout sous-ensemble qui est totalement ordonnée. On dit que E est inductif ssi toute chaîne de E admet une borne supérieure dans E.

Tout ensemble inductif non vide admet des éléments maximaux.

<u>Définition 1.10</u> On appelle bon ordre sur E un ordre tel que toute partie non vide de E admette un plus petit élément.

Proposition 1.6 Tout ensemble peut être muni d'un bon ordre (équivalent à l'axiome du choix).

Théorème 1.3 Krull Tout anneau commutatif possède un idéal maximal.

Démonstration. On va montrer que si $I \subset A$ est un idéal strict, il existe un idéal maximal qui contient I.

Soit E l'ensemble des idéaux stricts de A qui contiennent I. On sait que E est non vide puisqu'il contient I.

De plus, si on munit E de l'ordre partiel défini par l'inclusion, il est inductif : soit $(I_{\lambda})_{\lambda}$ une famille d'idéaux totalement ordonnée, alors l'idéal somme J est une borne supérieure. en effet, il est clair que J est le plus petit idéal de A contenant tous les I_{λ} et I est stricte car si $1 \in I$, il existe λ tel que $1 \in I_{\lambda}$ donc $I_{\lambda} = A$. Contradiction. Le lemme de Zorn assure alors le résultat.

COROLLAIRE 1.1 Tout anneau commutatif possède un morphisme surjectif vers un corps.

Démonstration. Soit I un idéal maximal, la projection canonique $A \to A/I$ répond à la question.

Lemme 1.3.1

Soit A un anneau commutatif. L'ensemble Nil(A) des éléments nilpotents de A est un idéal.

Démonstration. Si $x \in \text{Nil}(A)$ et $a \in A$, il existe n tel que $x^n = 0$. Par commutativité, $(ax)^n = a^n x^n = 0$ donc $ax \in \text{Nil}(A)$.

Si $x, y \in \text{Nil}(A)$, il existe m, n tel que $x^m = y^n = 0$. Par le binôme, on obtient que $(x + y)^{n+m-1} = 0$.

Théorème 1.4 Dans un anneau commutatif A, Nil(A) est l'intersection de tous les idéaux premiers de A.

Démonstration.

- \subset Si $x^n = 0$, pour tout idéal I premier, on a $x^n = 0 \in I$ donc $x \in I$.
- \supset Soit $x \in A$ non nilpotent. La partie $S = \{x^n, x \in \mathbb{N}\}$ ne contient pas 0. Soit E l'ensemble des idéaux de A qui ne rencontrent pas S, ordonné par l'inclusion. E est non vide car contient $\{0\}$. E est inductif car si $(I_{\lambda})_{\lambda}$ est une chaîne de E, leur réunion est un idéal qui ne rencontre pas S.

Il existe donc un élément maximal \mathfrak{p} de E. Montrons que \mathfrak{p} est premier. Soit $\alpha, \beta \in A$ tel que $\alpha \notin \mathfrak{p}$ et $\beta \notin \mathfrak{p}$.

Les idéaux $\mathfrak{p} + (\alpha)$ et $\mathfrak{p} + (\beta)$ contiennent \mathfrak{p} strictement. Comme \mathfrak{p} est maximal parmi les ensembles qui ne rencontrent pas S, $\mathfrak{p} + (\alpha)$ et $\mathfrak{p} + (\beta)$ rencontrent S. Il existe donc $u, v \in \mathfrak{p}$, $e, f \in A$ et $m, n \in \mathbb{N}$ tel que $u + e\alpha = x^m$ et $v + f\beta = x^n$.

On a $uv+uf\beta+ve\alpha+ef\alpha\beta=x^{m+n}\in S$. Or $(uv,uf\beta,ve\alpha)\in\mathfrak{p}^3$. On ne peut pas avoir $\alpha\beta\in\mathfrak{p}$ sinon \mathfrak{p} rencontrerait S. Donc \mathfrak{p} est premier.

COROLLAIRE 1.2 Soit A un anneau commutatif. Alors A est réduit (ie n'a pas d'élément nilpotent non nul) ssi il s'injecte dans un produit de corps.

Remarque 1.9 Ce corollaire est à mettre en parallèle avec A intègre ssi il s'injecte dans un corps.

Démonstration. S'il existe un morphisme injectif $f: A \hookrightarrow \prod_{i \in I} K_i$, et si $a \in A$ est nilpotent, il existe n tel que $a^n = 0$ donc $f(a)^n = 0$. Si $f(a) = (x_i)_i$, on a x_i^n donc comme K_i est un corps, $x_i = 0$ donc a = 0 par injectivité.

Réciproquement, si A est réduit, pour chaque idéal premier $\mathfrak{p} \subset A$, on note $K_{\mathfrak{p}} = \operatorname{Frac}(A/\mathfrak{p})$. On a un morphisme d'anneaux

$$\begin{cases} A & \to & \prod_{\mathfrak{p}} A/\mathfrak{p} = \prod_{\mathfrak{p}} K_{\mathfrak{p}} \\ a & \mapsto & (\pi_{\mathfrak{p}}(a))_{\mathfrak{p}} \end{cases}$$

Ce morphisme est injectif car si l'image de a est 0, cela signifie que $a \in \text{Ker}(\pi_{\mathfrak{p}})$ pour tout \mathfrak{p} . Donc $a \in \text{Nil}(A) = 0$.

1.5 Modules

<u>Définition 1.11</u> Soit A un anneau. Un A-module à gauche est un groupe commutatif M muni d'une application $\cdot : A \times M \to M$ telle que :

- Pour tout $a \in A$, $m, m' \in M$, a(m + m') = am + am'.
- Pour tout $a, b \in A, m \in M, (a+b)m = am + bm$.
- Pour tout $a, b \in A, m \in M, (ab)m = a(bm).$
- Pour tout $m \in M$, 1m = m

Remarque 1.10

- Il y a une notion de module à droite.
- Pour tout anneau A, il existe un anneau A^0 ou A^{opp} appelé anneau opposé de A tel que $A^0 = A$, $+^0 = +$ et $a \times^0 b = ba$.
- Un morphisme d'anneaux $A \to B^0$ est une application $f: A \to B$ additive, qui envoie 1 sur 1 et vérifie f(ab) = f(b)f(a). On appelle $f: A \to B$ un antimorphisme. On a donc une correspondance entre les modules à gauche et à droite.

Exemple 1.9

- Le groupe additif (A, +) d'un anneau A est muni d'une structure de module sur A.
- \bullet Si A est un corps, le module est un espace vectoriel.
- Si $A = \mathbb{Z}$, on a en fait une structure sous-jacente de groupe commutatif.
- Si E est un k-espace vectoriel, tout $u \in L(E)$ définit une structure de k[X] module sur E :

$$\begin{cases} k[X] \times E & \to & E \\ (P, v) & \mapsto & P(u)(v) \end{cases}$$

On note E_u ce module.

- Si A est un anneau et I un ensemble, alors A^I est muni d'une structure de A-module composante par composante.
- Un morphisme d'anneaux $f:A\to B$ munit B d'une structure de A-module via ab=f(a)b.

Définition 1.12

- Un morphisme de A-module entre deux A modules M, N est un morphisme de groupes commutatifs $f: M \to N$ tel que pour tout $x \in M$ et $a \in A$, f(ax) = af(x).
- Le noyau Ker(f) (resp. l'image Im(f)) est le noyau (resp. l'image) du morphisme de groupe f.
- Une application n-multilinéaire (alternée) est une $f: M_1 \times \ldots \times M_n \to N$ tel que pour tout i et $(x_j)_{j\neq i}, f(x_1, \ldots, x_{i-1}, \cdot, x_{i+1}, \ldots, x_n)$ est A-linéaire (et s'annule dès que deux variables sont égales).

Exemple 1.10 Si A est un anneau commutatif, l'ensemble $hom_A(M, N)$ des morphismes de A-modules de M dans N est muni d'une structure naturelle de A-module.

<u>Définition 1.13</u> Un sous-A-module d'un module M est un sous-groupe $N \subset M$ tel que pour tout $a \in A$ et $x \in N$, $ax \in N$.

Exemple 1.11 Les sous-A-modules de A sont ses idéaux.

Proposition 1.7

- Si $f: M \to N$ est un morphisme, $\operatorname{Ker}(f) \subset M$ est un sous-module, de même que $\operatorname{Im}(f) \subset N$.
- Soit M un A-module, $S \subset M$ une partie. L'intersection des sousmodules de M qui contiennent S est un sous-module. C'est le plus petit sous-module de M qui contient S. C'est aussi l'ensemble des sommes finies de termes de la forme as avec $a \in A$ et $s \in S$
- Si M est un A-module et $I \subset A$ un idéal, alors le sous-module engendré par les éléments de la forme ix avec $i \in I$ et $m \in M$ est noté IM. C'est un sous-module de M.
- Soit M un module, N, P des sous-modules. On définit $(P:N)_A = \{a \in A, aN \subset P\}$ qui est un idéal de A et $\mathrm{Ann}(M) = (0:M)$ l'annulateur de M. Par exemple, si $A = \mathbb{Z}, M = \mathbb{Z}/n\mathbb{Z}, \mathrm{Ann}_{\mathbb{Z}}(M) = n\mathbb{Z}$. Si on prend $A = \mathbb{Z}/n\mathbb{Z}, \mathrm{Ann}_{\mathbb{Z}/n\mathbb{Z}}(M) = \{0\}$. De plus, si $n \mid m$, on a $\mathrm{Ann}_{\mathbb{Z}/m\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}) = n\mathbb{Z}/m\mathbb{Z}$.

THÉORÈME 1.5 Soit M un A-module à gauche et $N \subset M$ un sous-A-module. Il existe un A-module M/N est un morphisme surjectif de A-modules $\pi: M \to M/N$ tel que pour tout A-module P et tout morphisme $f: M \to P$ tel que $N \subset \operatorname{Ker}(f)$, il existe un unique morphisme $f': M/N \to P$ tel que $f = f' \circ \pi$.

De plus,
$$\operatorname{Im}(f') = \operatorname{Im}(f)$$
 et $\operatorname{Ker}(f') = \pi(\operatorname{Ker}(f))$.

Remarque 1.11 Par conséquent, tout morphise $f: M \to P$ surjectif de noyau N induit un isomorphisme $f': M/N \to P$.

Soit A un anneau, $(M_i)_i$ une famille de A-modules.

Définition 1.14

- Le produit direct est l'ensemble $M = \prod_{i \in I} M_i$ muni de la structure de A-module définie par la somme terme à terme et la produit par un scalaire terme à terme.
- La somme directe $M' = \bigoplus_{i \in I} M_i$ est le sous-module de $\prod_{i \in I} M_i$ dormé des familles $(x_i)_i$ telles que $x_i = 0$ pour tout i sauf un nombre fini.

Exemple 1.12
$$k[X] = \bigoplus_{n\geqslant 0} k$$
 et $k[X] = \prod_{n\geqslant 0} k$.

Proposition 1.8 Le produit direct est muni de morphismes surjectifs de A-modules

$$\pi_j: \begin{cases} \prod_{i \in I} M_i & \to & M_j \\ (x_i)_i & \mapsto & x_j \end{cases}$$

La somme directe est munie de morphismes injectifs de A-modules

$$\alpha_j : \begin{cases} M_j & \to & M' = \bigoplus_{i \in I} M_i \\ x & \mapsto & (x_i)_i \text{ où } \begin{cases} x_j & = x \\ x_i & = 0 \end{cases} \end{cases}$$

THÉORÈME 1.6 PROPRIÉTÉ UNIVERSELLE DU PRODUIT Pour tout module N sur A et toute famille de morphismes $f_k: N \to M_j$, il existe un unique morphisme $f': N \to M$ tel que $f_j = \pi \circ f'$.

FIGURE 1.2 – Propriété universelle du produit

Théorème 1.7 Propriété universelle de la somme directe Pour tout A-module N et toute famille de morphismes $g_j: M_j \to N$, il existe un unique morphisme $g: M \to N$ tel que $g_j = g \circ \alpha_j$.

FIGURE 1.3 – Propriété universelle de la somme

Remarque 1.12 La somme directe est le sous-module du produit engendré par les $\alpha_i(M_i)$.

1.6 Algèbres

On fixe un anneau commutatif R qui va jouer le rôle d'anneau des scalaires.

Définition 1.15 Une R-algèbre est un anneau (non nécessairement commutatif) A muni d'une structure de R-module telle que la multiplication m: $A \times A \to A$ est R-bilinéaire.

Cela signifie que pour tout $a, b \in A^2$, les applications

$$\gamma_a: \begin{cases} A & \to & A \\ x & \mapsto & ax \end{cases} \text{ et } \delta_b: \begin{cases} A & \to & A \\ x & \mapsto & xb \end{cases}$$

sont linéaires.

Proposition 1.9 Soient R, A deux anneaux avec R commutatif. La donnée d'une structure de R-algèbre sur A est équivalente à la donnée d'un morphisme d'anneaux $f: R \to A$ telle que $f(R) \subset Z(A)$.

Démonstration. Soit A une R-algèbre. On définit $f: R \to A$ par $f(r) = r1_A$. On a $f(R) \subset Z(A)$ car

$$f(r)a = (r1_A)a = r(1a) = r(a1) = a(r1) = af(r)$$

Réciproquement, soit $f: R \to A$ un morphisme d'anneaux tel que $f(R) \subset Z(A)$. On munit A d'une structure de R-module par ra = f(r)a.

On vérifie que ces constructions sont inverses l'une de l'autre.

Remarque 1.13 Si M est une matrice qui n'est pas une homothétie, le morphisme d'inclusion $\mathbb{Z}[M] \subset \mathfrak{M}_n(k)$ ne vérifie pas la propriété sur le centre. De même pour $k[M] \subset \mathfrak{M}_n(k)$.

<u>Définition 1.16</u> On peut définir comme précédemment les morphismes de R-algèbres, les sous-R-algèbres et la R-algèbre engendrée.

Remarque 1.14 Si A est une R-algèbre, tout idéal (de l'anneau) est automatiquement un sous-R-module.

Chapitre 2

Modules libres de type fini

2.1 Modules libres

Définition 2.1 Soit A un anneau, I un ensemble. Le A-module libre (standard) de base E est le module $A^{(I)} = \bigoplus_{i \in I} A$. On note e_i l'élément de $A^{(I)}$ dont la seule composante non nulle est celle d'indice i, qui vaut 1.

Remarque 2.1 On peut voir $A^{(I)}$ comme l'ensemble des applications $I \to A$ à support fini. e_i correspond alors à l'indicatrice de i.

Soit M un A-module et $(x_i)_i$ une famille d'éléments de M. D'après la propriété universelle de la somme directe, il existe un unique morphisme de A-modules $\varphi_x:A^{(I)}\to M$ tel que $\varphi_x(e_i)=x_i$ (appliquer la propriété universelle à $g_i:a\mapsto ax_i$). φ_x envoie $(a_i)_i$ (à support fini) sur $\sum_{finie}a_ix_i$. Son

image est le sous-module de M engendré par les x_i .

<u>Définition 2.2</u> $(x_i)_i$ est une famille génératrice (resp. libre, base) de M ssi φ_x est surjectif (resp. injectif, bijectif).

M est libre ssi il possède une base.

Exemple 2.1 Si k est un corps, k[X] est libre de base $\{1, X, X^2, \ldots\}$ et k[X] est aussi libre (par Zorn, avec un « il existe une base ») mais pas pour la famille $\{1, X, X^2, \ldots\}$.

 $\mathbb{Z}[X]$ est libre comme \mathbb{Z} -module de base $\{X^i, i \in \mathbb{N}\}$, mais $\mathbb{Z}[\![X]\!]$ n'est pas libre sur \mathbb{Z} (pour aucune base).

Pour $A=\mathbb{Z}$, \mathbb{Z} est libre, $\mathbb{Z}/n\mathbb{Z}$ ne l'est pas et \mathbb{Q} non plus. En effet, si $n\in\mathbb{Z}^*$, la multiplication à gauche par n est surjective. Or pour tout A et tout A-module $M\neq 0$ libre, si a est non inversible, le morphisme $x\mapsto ax$ n'est pas surjectif car M possède une base $(e_i)_{i\in I\neq\varnothing}$ et e_i n'est pas de la forme

 $ax = a\sum_{j=1}^{n} a_{j_n} e_{j_n}$ puisque sinon on aurait, par unicité de la décomposition sur une base : $aa_i = 1$.

2.2 Modules libres de type fini

<u>Définition 2.3</u> Soit A un anneau, M un A-module. On dit que M est un A-module de type fini ssi il existe $x_1, \ldots, x_n \in M$ qui engendrent M.

Exemple 2.2

- Si $A = \mathbb{K}$ un corps, type fini est équivalent à dimension finie.
- Si $A = \mathbb{Z}$, \mathbb{Z}^n et $\mathbb{Z}/n\mathbb{Z}$ sont de type fini mais pas \mathbb{Q} .
- A[X] n'est pas un A-module de type fini, mais attention, c'est une A-algèbre de type fini (engendrée par X)
- $A^{(I)}$ est de type fini ssi I est fini.

Remarque 2.2 M est de type fini ssi il existe $n \ge 0$ et un morphisme injectif $\varphi_x : A^n \to M$.

Lemme 2.0.1

Si A est commutatif et M est un A-module libre de type fini, il existe un unique entier positif $r \ge 0$ tel que $M \simeq A^r$.

 $D\acute{e}monstration.$ Si M est libre, $M\simeq A^{(I)}$ par un ensemble I. Comme M est de type fini, I est fini.

Notons $r = \operatorname{Card}(I)$, on a alors $M \simeq A^r$. Par le théorème de Krull, il existe un idéal maximal $\mathfrak{m} \subset A$. On note $k = A/\mathfrak{m}$ le quotient.

L'isomorphisme $A^r \simeq A^s$ passe au quotient et donne un isomorphisme de corps $(A/\mathfrak{m})^r \to (A/\mathfrak{m})^s$. Ce sont des espaces vectoriels de dimensions finies r et s, on a donc r = s.

Remarque 2.3 Pour un anneau non commutatif, A = L(E) pour $\dim(E) = \infty$. On montre que $A \simeq A^2$. On en déduit que $A \simeq A^n$ pour tout n, en appliquant $X \mapsto X \oplus A$.

<u>Définition 2.4</u> Dans le cas commutatif, le r du lemme est appelé rang de M comme A-module.

On va par la suite s'occuper du cas des morphismes entre A-modules libres de type fini avec A commutatif. Soient M, N deux tels modules, de rangs respectifs p et n. Soit f un morphisme $M \to N$. Prenons des bases $B = (e_1, \ldots, e_p)$ et $C = (f_1, \ldots, f_n)$.

Le morphisme f est entièrement caractérisé par les valeurs $f(e_j)$ qu'on peut écrire sur $C: f(e_j) = \sum_{i=1}^n u_{i,j} f_i$. On peut donc écrire la matrice de f entre les bases B et C.

L'application

$$\begin{cases} \hom_A(M, N) & \to & \mathfrak{M}_{n,p}(A) \simeq A^{np} \\ f & \mapsto & \mathcal{M}_{B,C}(f) \end{cases}$$

est un isomorphismes de A-modules qui dépend de B et C.

2.3 Calcul matriciel sur A commutatif

On renomme A en R.

Soit $A \in \mathfrak{M}_n(R)$ une matrice carrée. On définit

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

Lemme 2.0.2

$$\det(A^t) = \det(A)$$

Démonstration.

$$\det(A^t) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i} = \sum_{\tau \in \mathfrak{S}_n} \varepsilon(\tau) \prod_{j=1}^n a_{j,\tau(j)}$$

avec $\tau = \sigma^{-1}$ et $i = \tau(j)$.

<u>Définition 2.5</u> Soit $f: M^n \to N$ une application multilinéaire. On dit que f est alternée ssi pour tout $i, j, (x_i = x_j \Rightarrow f(x_1, \dots, x_n) = 0)$.

Lemme 2.0.3

det définit deux formes linéaires alternées $(A^n)^n \to A$ en les lignes et les colonnes de A.

Démonstration. On regarde le cas des colonnes.

$$\det(A^{1}, \dots, A^{i-1}, \alpha B + \beta C, A^{i+1}, \dots, A^{n})$$

$$= \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) a_{\sigma(1)}^{1} \dots (\alpha b_{\sigma(i)} + \beta c_{\sigma(i)}) \dots a_{\sigma(n)}^{n}$$

$$= \alpha \det(A^{1}, \dots, A^{i-1}, B, \dots, A^{n}) + \beta \det(A^{1}, \dots, A^{i-1}, C, \dots, A^{n})$$

Ce calcul montre que det est R-linéaire en la $i^{\rm e}$ colonne. Soit $\tau=(u\,v)$ une transposition, avec $u\neq v$. On va montrer que $\det(A)=0$ si la $u^{\rm e}$ et la $v^{\rm e}$ ligne sont égales. On écrit $\mathfrak{S}_n=\mathfrak{A}_n\sqcup\mathfrak{A}_n\tau$. On sépare la somme en deux sommes indicées par \mathfrak{A}_n et on remarque que :

$$a_{1,\sigma\tau(1)}\dots a_{n,\sigma\tau(n)}=a_{u,\sigma\tau(u)}a_{v,\sigma\tau(v)}\dots=a_{1,\sigma(1)}\dots a_{n,\sigma(n)}$$

On a done

$$\det(A) = \sum_{\sigma \in \mathfrak{A}_n} a_{1,\sigma(1)} \dots a_{n,\sigma(n)} + \sum_{\sigma \in \mathfrak{A}_n} -a_{1,\sigma(1)} \dots a_{n,\sigma\tau(n)}$$
$$= \sum_{\sigma \in \mathfrak{A}_n} a_{1,\sigma(1)} \dots a_{n,\sigma(n)} - \sum_{\sigma \in \mathfrak{A}_n} a_{1,\sigma(1)} \dots a_{n,\sigma(n)}$$
$$= 0$$

THÉORÈME 2.1 $\det(AB) = \det(BA)$.

Démonstration. Soit F_n l'ensemble des fonctions de [1, n] dans lui même. Si $B \in \mathfrak{M}_n(R)$, $\tau \in F_n$. Notons $B_{\tau} = (b_{\tau(i),j})_{i,j}$.

Si τ n'est pas injective, B_{τ} deux lignes égales donc $\det(B_{\tau}) = 0$. On a alors

$$\det(AB) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n \sum_{k=1}^n a_{i,k} b_{k,\sigma(i)} = \sum_{\sigma \in \mathfrak{S}_n} \sum_{\tau \in F_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\tau(i)} b_{\tau(i),\sigma(i)}$$

$$= \sum_{\tau \in F_n} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\tau(i)} b_{\tau(i),\sigma(i)} = \sum_{\tau \in F_n} \prod_{i=1}^n a_{i,\tau(i)} \sum_{\substack{\sigma \in \mathfrak{S}_n \\ = \det(B_\tau) = 0 \text{ si } \tau \notin \mathfrak{S}_n}} \varepsilon(\sigma) \prod_{i=1}^n \beta_{\tau(i),\sigma(i)}$$

$$= \sum_{\tau \in F_n} \prod_{i=1}^n a_{i,\tau(i)} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n \beta_{\tau(i),\sigma(i)}$$

$$= \sum_{\tau \in F_n} \prod_{i=1}^n a_{i,\tau(i)} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma\tau) \prod_{i=1}^n \beta_{i,\sigma(i)} \qquad (\sigma \leftarrow \sigma\tau^{-1}, i \leftarrow \tau^{-1}(i))$$

$$= \det(A) \det(B)$$

<u>Définition 2.6</u> Soit $A \in \mathfrak{M}_n(R)$. Soient $i, j \in [1, n]^2$. On note $M_{i,j}$ la matrice de taille (n-1, n-1) obtenue en enlevant la i^e ligne et la j^e colonne de A. On appelle

- mineur d'indice (i,j) le déterminant $m_{i,j} = \det(M_{i,j})$
- cofacteur d'indice (i,j) la quantité $\mu_{i,j} = (-1)^{i+j} m_{i,j}$
- comatrice la matrice des cofacteurs $A = (\mu_{i,j})_{i,j}$

Proposition 2.1

• Développement par rapport à la i^e ligne :

$$\det(A) = \sum_{j=1}^{n} a_{i,j} \mu_{i,j}$$

• Développement par rapport à la j^{e} colonne :

$$\det(A) = \sum_{i=1}^{n} a_{i,j} \mu_{i,j}$$

THÉORÈME 2.2 Pour tout $A \in \mathfrak{M}_n(\mathbb{R})$, $A\widetilde{A}^t = \widetilde{A}^t A = \det(A)I_n$.

Démonstration. Découle des formules précédentes.

Corollaire 2.1 A est inversible ssi $det(A) \in R^{\times}$.

Démonstration.

 $\Rightarrow AB = I_n \text{ implique } \det(A) \det(B) = \det(AB) = \det(I_n) = 1.$

 \Leftarrow Si $\det(A) \in R^{\times}$, la formule précédente montre que $(\det(A))^{-1} A^t$ convient.

THÉORÈME 2.3 CAYLEY-HAMILTON Soit $\chi(T) = \det(TI_n - A)$ le polynôme caractéristique de A. Alors $\chi(A) = 0$.

Démonstration. Soit S = R[A] la sous-R-algèbre engendrée par A. C'est l'algèbre des polynômes en A à coefficients dans R. Cette algèbre est commutative car A commute avec tout polynôme en A.

On veut diviser $\chi(T) \in R[T]$ par $T - A \in S[T]$. On va donc considérer $\chi(T)I_n$ au lieu de $\chi(T)$. Le théorème de division euclidienne dans S[T] assure que

$$\chi(T) = (T - A)Q(T) + R(T)$$

avec $\deg(R) < 1$. On a de plus $\chi(T) = (T-A)\widetilde{T-A}^t$. Cette écriture est une division euclidienne de $\chi(T)$ à gauche par T-1 dans $\mathfrak{M}_n(R)[T]$, de même que la formule précédente. On a donc $\widetilde{T-A}^t = Q(T) \in S[T]$ et R(T) = 0.

En particulier, la formule $\chi(T) = (T - A)\widetilde{T - A}^t$ vit dans S[T] qui est commutatif. On dispose alors du morphisme d'anneaux d'évaluation en $A: P(T) \to P(A)$. On applique ce morphisme à cette formule et $\chi(A) = (A - A)\widetilde{A - A}^t = 0$.

Proposition 2.2 Soit $A \in \mathfrak{M}_n(R)$ et $f: R^n \to R^n$ l'endomorphisme R-linéaire associé. Posons $\det(f) = \det(A)$. Alors

CHAPITRE 2. MODULES LIBRES DE TYPE FINI

- 1. f est surjectif ssi $\det(f) \in R^{\times}$ ssi f bijectif.
- 2. f est injectif ssi $\det(f) \nmid 0$.

Remarque 2.4 Il existe des f injectifs non surjectifs. En rang 1, il suffit de prendre $A = (a) \in \mathfrak{M}_1(R)$, $f: x \mapsto ax$.

On a f surjective ssi il existe x tel que ax = 1 ssi $a = \det(f) \in R^{\times}$ et f injectif ssi $a \nmid 0$ par définition.

Chapitre 3

Anneaux factoriels et principaux

À partir de maintenant, tous les anneaux sont commutatifs.

3.1 Anneaux nœthériens

POLY!

3.2 Divisibilité, anneaux factoriels

<u>Définition 3.1</u> On dit que $a \in A$ divise $b \in A$ ssi il existe $c \in A$ tel que b = ac.

On dit que a et b sont associés ssi $a \mid b$ et $b \mid a$. On note $a \sim b$.

Remarque 3.1 La relation | est réflexive et transitive mais pas antisymétrique. \sim est une relation d'équivalence. Dans A/\sim , | induit donc une relation d'ordre compatible à la multiplication.

Si A est intègre et $a \sim b$, alors a = b = 0 ou b = ac avec $c \in A^*$.

 $a \mid b$ peut aussi s'exprimer par $\langle b \rangle \subset \langle a \rangle$. Si $a \sim b$, les deux idéaux sont égaux. Ainsi, A/\sim s'identifie à l'ensemble des idéaux de A monogènes muni de l'ordre \supset .

<u>Définition 3.2</u> Soit $(a_i)_i$ une famille d'éléments de A.

- On dit que les a_i ont un pgcd ssi l'ensemble de leurs diviseurs communs dans A/\sim possède un plus grand élément. On le note $\bigwedge_i a_i \in A/\sim$.
- On dit que les a_i ont un ppcm ssi l'ensemble de leurs diviseurs communs dans A/\sim possède un plus petit élément. On le note $\bigvee_i a_i \in A/\sim$.

• On dit que les a_i sont premiers entre eux dans leur ensemble ssi ils possèdent un pgcd égal à 1.

Par abus, on dit que $d \in A$ est un pgcd des a_i si \overline{d} est le pgcd des $(a_i)_i$.

<u>Définition 3.3</u> Soit $(a, b, p) \in A$.

- On dit que p est irréductible ssi pour tout $a, b \in A$, $p = ab \Rightarrow a$ ou b est inversible.
- p est premier ssi $\langle p \rangle$ l'est.

Remarque 3.2 Si p est premier alors p est irréductible, mais la réciproque n'est pas toujours vraie.

Exemple 3.1 Soit $(a, p) \in A$ avec p irréductible. Alors $a \wedge p$ existe et vaut p si $p \mid a$ et 1 sinon.

<u>Définition 3.4</u> Soit A un anneau commutatif. On dit que A est factoriel ssi

- (I) A est intègre
- (E) Pour tout $A \setminus \{0\}$, il existe $u \in A^*$, p_1, \ldots, p_r irréductibles distincts, $\alpha_1, \ldots, \alpha_r$ entiers supérieurs à 1 tel que $a = up_1^{\alpha_1} \ldots p_r^{\alpha_r}$.
- (U) Toute écriture du point précédent est unique à permutation et association des facteurs près.

Remarque 3.3 Si on choisit un ensemble Σ de représentants des irréductibles (un dans chaque classe) alors dans un anneau factoriel, tout élément $a \in A$ s'écrit de manière unique $a = u \prod_{p \in \Sigma} p^{\alpha_p}$ avec $\alpha_p = 0$ pour presque tout p.

Lemme 3.0.1

Dans un anneau factoriel, toute famille d'éléments non nuls possède un pgcd et un ppcm. En effet, si on écrit $a_i = u_i \prod_{r \in \Sigma} p^{\alpha_p(i)}$ alors

$$\bigwedge_{i=1}^{n} ra_i = \prod_{p \in \Sigma} p^{\min(\alpha_p(1), \dots, \alpha_p(r))}$$

$$\bigvee_{i=1}^{n} ra_i = \prod_{p \in \Sigma} p^{\max(\alpha_p(1), \dots, \alpha_p(r))}$$

Démonstration. Soit $b = v \prod_{p \in \Sigma} p^{\beta_p}$ un élément non nul de A.

On a $b \mid a$ ssi pour tout $p \in \Sigma$, $\beta_p \leqslant \alpha_p$. Ainsi, $b \mid a_i$ pour tout i ssi $\beta_p \leqslant \min(\alpha_p(1), \ldots, \alpha_p(r))$.

Cecie montre que $\prod_{p\in\Sigma}p^{\min(\alpha_p(1),\dots,\alpha_p(r))}$ est un diviseur commun de a_i et c'est clairement le plus grand d'entre eux.

En particulier, si r=2, comme $\min(\alpha,\beta)+\max(\alpha,\beta)=\alpha+\beta$, on a $ab \sim (a \wedge b)(a \vee b)$.

Remarque 3.4 Si A est nœthérien, la propriété d'existence de la décomposition est toujours vérifiée.

Lemme 3.0.2

Soit A intègre et a, b, x des éléments non nuls tels que $ax \wedge bx$ existe. Alors $a \wedge b$ existe et $ax \wedge bx = x(a \wedge b)$.

Démonstration. Soit $d_1 = ax \wedge bx$. Comme x divise ax et bx, il divise d_1 ie il existe $d \neq 0$ tel que $d_1 = dx$. Montrons que d est un pgcd pour a et b.

On a $dx = d_1 \mid ax$ donc $d \mid a$ (intégrité) donc d est un diviseur commun à a et b.

Soit $e \in A \setminus \{0\}$ un diviseur commun de a et b. Alors $ex \mid ax$ et $ex \mid bx$ donc $ex \mid d_1 = dx$ donc $e \mid d$.

Remarque 3.5 Il existe des exemples où a et b ont un pgcd sans que ax et bx en aient un.

Proposition 3.1 Soit A un anneau vérifiant (I) et (E). Les conditions suivantes sont équivalentes :

- 1. A est factoriel.
- 2. Si p est irréductible, $p \mid ab \Rightarrow p \mid a$ ou $p \mid b$.
- 3. Si p est irréductible, p est premier.
- 4. Si $a \mid bc$ et $a \land b = 1$ alors $a \mid c$.
- 5. Deux éléments non nuls de A ont un pgcd.

Démonstration. Comme $3 \Leftrightarrow 2$, on montre $1 \Rightarrow 5 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$.

- $1 \Rightarrow 5$ Voir lemme précédent.
- $5 \Rightarrow 4$ Il existe $u \in A$ tel que bc = au. On a $c = c(a \land b) = ca \land cb = ac \land au = a(c \land u)$. Donc $a \mid c$.
- $4 \Rightarrow 2$ On prend a = p, b = a et c = b dans (4). On trouve que $p \mid ab$ et $p \land a = 1$ implique $p \mid b$ qui est cqfd puisque $p \land a = 1$ ssi $p \nmid a$.
- $2\Rightarrow 1 \ \text{Soit} \ a\in A\setminus\{0\}, \ a=u\prod_{p\in\Sigma}p^{\alpha_p}=v\prod_{p\in\Sigma}p^{\beta_p}.$ On veut montrer que $\alpha=\beta.$ Soit q un irréductible tel que $\alpha_q\geqslant 1.$ $q\mid a$

On veut montrer que $\alpha = \beta$. Soit q un irréductible tel que $\alpha_q \geqslant 1$. $q \mid a$ donc $q \mid \prod_{p \in \Sigma} p^{\beta_p}$.

Par le lemme d'Euclide, on trouve que $q \mid p$ pour $p \in \Sigma$ tel que $\beta_p \geqslant 1$. Alors $q \sim p$ donc q = p.

On a donc
$$\frac{a}{q} = uq^{\alpha_q - 1} \prod_{p \neq q} p^{\alpha_p} = vq^{\beta_q - 1} \prod_{p \neq q} p^{\beta_p}$$
.

On conclut par récurrence sur la longueur des décompositions en irréductibles de a. On introduit $\nu(a)$ le minimum des $\sum_{n\in\Sigma}\alpha_p$ sur l'ensemble

des décompositions de a d'exposants α_p .

Si $\nu(a)=0$, a est inversible et a=a est la seule décomposition. Le raisonnement précédent assure le passage de ν à $\nu+1$.

<u>Définition 3.5</u> Soit A un anneau factoriel et $P \in A[X]$ un polynôme. On appelle contenu de P, noté c(P) le pgcd de ses coefficients.

On dit que P est primitif ssi c(P) = 1.

Remarque 3.6 Pour tout P, P = c(P)P' avec P' primitif.

Lemme 3.0.3

c(PQ) = c(P)c(Q) donc si P et Q sont primitifs, PQ est primitif.

Démonstration. Soient P = c(P)P' et Q = c(Q)Q' avec P', Q' primitifs. Comme $c(\lambda P) = \lambda c(P)$, on se ramène à montrer c(P'Q') = 1.

Or c(P) = 1 ssi pour tout p irréductible, il existe un coefficient de P non divisible par p ssi la classe \overline{P} de P dans (A/p)[X] est non nulle.

Ainsi, P et Q sont primitifs ssi pour tout p irréductible, $\overline{P} \neq 0 \neq \overline{Q}$ ssi pour tout p, $\overline{P} \cdot \overline{Q} \neq 0$ (intégrité) ssi PQ est primitif.

Théorème 3.1 Gauss $Si\ A$ est factoriel, alors A[X] est factoriel.

Plus précisément, les irréductibles de A[X] sont les irréductibles de A (vus comme polynômes constants) et les $P \in A[X]$ primitifs et irréductibles dans $\operatorname{Frac}(A)[X]$.

Exemple 3.2 Si A est un corps, A[X] est factoriel.

3.3 Anneaux principaux et euclidiens

<u>Définition 3.6</u> Un idéal I de A commutatif est dit principal ssi il est engendré par un seul élément. Un anneau est dit principal ssi il est intègre et tous ses idéaux sont principaux.

Exemple 3.3 Les corps et \mathbb{Z} sont principaux, mais pas $\mathbb{Z}/n\mathbb{Z}$ si $n \neq 0$ et n non premier.

Proposition 3.2 Soit A un anneau principal et $a, b \in A$ non nuls. Alors tout générateur de l'idéal engendré par a et b est un pgcd pour a et b. Tout générateur de $(a) \cap (b)$ est un ppcm pour a et b. Enfin, A est factoriel.

Démonstration. Soit d'un générateur de (a, b). Pour tout $e \in A$, on a

$$e \mid a \text{ et } e \mid b \text{ ssi } (a) \subset (e) \supset (b) \text{ ssi } (d) = (a,b) \subset (e) \text{ ssi } e \mid d$$

Ceci montre que d est un pgcd de a et b.

Soit m un générateur de $(a) \cap (b)$. Pour tout $n \in A$, on a

$$a \mid n \text{ et } b \mid n \text{ ssi } (a) \supset (n) \subset (b) \text{ ssi } (n) \subset (m) = (a) \cap (b) \text{ ssi } m \mid n$$

Ceci montre que m est un ppcm de a et b.

(I) est claire par définition, (E) est vraie car tout idéal est engendré par un élément, donc de type fini donc A est nœthérien, donc vérifie (E). De plus, (U) est vraie puisque tout $(a, b) \in A$ non nuls ont un pgcd.

COROLLAIRE 3.1 BÉZOUT Soit A principal et $(a, b) \in A^2$ non nuls. Alors a et b sont premiers entre eux ssi il existe $u, v \in A$ tel que ua + vb = 1.

Plus généralement, $a \wedge b = d$ ssi il existe u, v premiers entre eux tel que ua + vb = d.

Remarque 3.7

- $Si\ d = ua + vb\ alors\ (xu)a + (xv)b = xd\ n'implique\ pas\ que\ a \wedge b = xd$ car $xu\ et\ xv\ ne\ sont\ pas\ premiers\ entre\ eux.$
- Un couple de Bézout n'est jamais unique.

Démonstration du cas d=1. Par la proposition, a et b sont premiers entre eux ssi (a,b)=A ssi $1 \in (a,b)$ ssi il existe u,v tel que ua+vb=1.

<u>Définition 3.7</u> Soit A un anneau commutatif. Un stathme euclidien pour A est une application $\delta: A \to \mathbb{N}$ tel que

- Si $a \mid b$ et $b \neq 0$, $\delta(a) \leqslant \delta(b)$
- Pour tout $a, b \in A^2$, avec $b \neq 0$, il existe un unique couple $(q, r) \in A^2$ tel que a = bq + r et $\delta(r) < \delta(b)$.

On dit que A est euclidien ssi il est intègre et muni d'un stathme.

Remarque 3.8

- Il existe des variantes sur la définition d'un stathme mais elles sont toutes à peu près équivalentes.
- Si δ est un stathme, pour tout $k \in \mathbb{Z}$, $\delta + k$ aussi.

Proposition 3.3 Tout anneau euclidien est principal.

Démonstration. A est intègre par définition. Soit $I \subset A$ un idéal. Si $I = \{0\}$, I est principal, sinon il existe $b \in I$ non nul de stathme minimal parmi les $\delta(b_i)$, $b_i \in I \setminus \{0\}$.

 $(b) \subset I$ et réciproquement, si $a \in I$, on fait la DE de a par b : a = bq + r avec $\delta(r) < \delta(b)$.

On a alors $r \in I$ et $\delta(r) < \delta(b)$ donc par minimalité de b, r = 0. Donc $a = bq \in (b)$.

Exemple 3.4

- $\mathbb{Z}_{(p)} = \{ \frac{a}{b} \in \mathbb{Q}, p \nmid b \}$ est euclidien pour δ la valuation p-adique (l'exposant de p dans la décomposition en facteurs premiers de a.
- k[X] est euclidien pour $\delta\left(\sum_{i=1}^{d} a_i X^i\right) = \min\{n \ge 0, a_n \ne 0\}.$
- $\mathbb{Z}[i]$ est euclidien pour $|\cdot|^2$.
- $\mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$ est principal non euclidien

Théorème 3.2 des restes chinois Soient A un anneau commutatif et I, J deux idéaux tels que I + J = A (on dit que I et J sont étrangers).

Le morphisme d'anneaux canonique $A/IJ \rightarrow A/I \times A/J$ est un isomorphisme.

Démonstration. L'hypothèse signifie que $1 \in I + J$ ie il existe $i \in I$, $j \in J$ tel que 1 = i + j. Montrons l'injectivité.

Soit $a + IJ \in A/IJ$ tel que f(a + IJ) = 0 ie a + I = I et a + J = J. Alors $a \in a + I = I$ et $a \in a + J = J$ donc $a \in I \cap J$.

On en déduit que $a = ai + aj \in IJ$ donc a + IJ = IJ.

La surjectivité : soit $(x+I,y+J) \in A/I \times A/J$. On pose a=xj+yi et on vérifie que a+IJ est un antécédent pour (x+I,y+J). On a a=x(1-i)+yi=x+i(y-x) donc a+I=x+I et de même, a=y+(x-y)j donc a+J=y+J.

Remarque 3.9 On pourrait le démontrer en montrant directement que l'application $(\overline{x}, \widetilde{y}) \mapsto \widehat{xj+yi}$ est bien définie et réciproque de l'énoncé.

Exemple 3.5 $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \simeq \mathbb{Z}/12\mathbb{Z}$ via $(a, b) \mapsto 4a - 3b$.

Proposition 3.4 Soit A un anneau principal et $p \in A$ non nul. Alors les conditions suivantes sont équivalentes :

- (i) p est irréductible
- (ii) (p) est premier
- (iii) (p) est maximal

Démonstration.

- (i) \Leftrightarrow (ii) car A est factoriel.
- $(iii) \Rightarrow (ii)$ car maximal implique premier.
- $(iii) \Leftarrow (ii)$ à lire dans le poly.

Chapitre 4

Modules sur les anneaux principaux

Les modules sur un corps, c'est facile (espace-vectoriel), sur un anneau principal, on a un théorème de structure assez précis, mais sinon, c'est compliqué!

4.1 Opérations élémentaires sur les matrices et forme de Smith

Soit A un anneau principal, $\mathfrak{M}_{n,p}(A)$ le A module des matrices de format $n \times p$. C'est un A-module libre de rang np.

On pose $E_{i,j}$ la matrice élémentaire $(\delta_{u,i}\delta_{v,j})_{u,v}$. On a $E_{i,j}E_{k,l}=\delta_{j,k}E_{i,l}$.

On se limite dans la suite aux matrices carrés de taille n = p. On pose $E_{i,j}(a) = \operatorname{Id} + aE_{i,j}$ si $i \neq j$. On a $\det(E_{i,j}(a)) = 1$ donc $E_{i,j}(a) \in SL_n(A)$.

Lemme 4.0.1

Soit $M \in \mathfrak{M}_n(A)$, L_i sa i^e ligne et C_j sa j^e colonne.

Multiplier M à droite par $E_{i,j}(a)$ revient à ajouter aC_i à C_j : $C_j \leftarrow aC_i + C_j$.

Multiplier M à gauche par $E_{i,j}(a)$ revient à faire $L_i \leftarrow L_i + aL_j$.

<u>Définition 4.1</u> Soient $M, N \in \mathfrak{M}_{n,p}(A)$.

On dit que M et N sont (G-)équivalentes ssi il existe $P \in GL_n(A)$ et $Q \in GL_n(A)$ tel que M = PNQ.

On dit que M et N sont S-équivalentes ssi il existe $P \in SL_n(A)$, $Q \in SL_p(A)$ tel que M = PNQ.

THÉORÈME 4.1 Soit A principal. Toute matrice $M \in \mathfrak{M}_{n,p}(A)$ est S-équivalente à une matrice dite sous forme normale de Smith ie de la forme

 $diag(d_1, ..., d_r, 0, ..., 0)$ avec $d_i \neq 0$ et $d_1 \mid d_2 \mid ... \mid d_r$.

De plus cette forme normale des Smith est unique au sens suivant : si M est S-équivalente (en fait G-équivalente suffit) à diag $(d_1, \ldots, d_r, 0, \ldots, 0)$ et à diag $(d'_1, \ldots, d'_s, 0, \ldots, 0)$, on a r = s et $(d_i) = (d'_i)$ pour tout i. Les d_i sont appelés facteurs invariants de M.

La suite d'idéaux $(d_1) \supset \cdots \supset (d_n)$ est unique est appelée suite des facteurs invariants de M.

Démonstration dans le cas euclidien. Soit δ un stathme sur A. On pose

$$\tau(M) = \max(n, p) \text{ et } \delta(M) = \min_{m_{i,j} \neq 0} \delta(m_{i,j})$$

On va utiliser deux procédures de base :

- celle qui échange deux colonnes en opposant l'une : $(a b) \rightarrow (b a)$ qui correspond à $C_1 \leftarrow C_1 + C_2$, $C_2 \leftarrow C_2 C_1$ et $C_1 \leftarrow C_1 + C_2$.
- si $a \neq 0$, on fait la DE de b par a: b = aq + r, $\delta(r) < \delta(a)$. On a $(ab) \sim (ar)$ via $C_2 \leftarrow C_1 qC_2$

On procède par récurrence sur $\tau(M)+\delta(M)\geqslant 1.$ On peut supposer $M\neq 0.$

Si $\tau(M) = 1$, c'est fini. Si $\tau(M) + \delta(M) \geqslant 2$. Par itération de la première procédure sur les colonnes et sur les lignes, on peut mettre en position (1,1) un coefficient $m_{i,j}$ de M tel que $\delta(M) = \delta(m_{i,j})$. On suppose donc désormais que $\delta(M) = \delta(m_{i,1})$.

S'il existe $j \ge 2$ tel que $m_{1,1} \nmid m_{1,j}$, on applique la deuxième procédure, on a $M \sim M'$ avec $\delta(M') < \delta(M)$. Par hypothèse de récurrence, $M' \sim \text{diag}(d_1, \ldots, d_r, 0, \ldots, 0)$ et on a fini.

S'il existe $i \ge 2$ tel que $m_{1,1} \mid m_{i,1}$, on fait pareil sur les lignes et ça marche.

Sinon, par la deuxième procédure, on a $M \sim \begin{pmatrix} m_{1,1} & 0 \\ 0 & M_1 \end{pmatrix}$ et $\tau(M_1) < \tau(M)$. Par hypothèse de récurrence, il existe $P_1 \in SL_{n-1}(A)$, $Q_1 \in SL_{p-1}(A)$ tel que $M_1 = P_1D_1Q_1$ avec $D_1 = \operatorname{diag}(d_2, \ldots, d_r, 0, \ldots, 0)$ et $d_2 \mid d_3 \mid \ldots \mid d_r$.

tel que $M_1 = P_1 D_1 Q_1$ avec $D_1 = \operatorname{diag}(d_2, \dots, d_r, 0, \dots, 0)$ et $d_2 \mid d_3 \mid \dots \mid d_r$.

Posons $P = \begin{pmatrix} 1 & 0 \\ 0 & P_1 \end{pmatrix}$ et $Q = \begin{pmatrix} 1 & 0 \\ 0 & Q_1 \end{pmatrix}$. Ona alors M = PDQ avec $D = \operatorname{diag}(m_{1,1}, d_2, \dots, d_r, 0, \dots, 0)$. Si $m_{1,1} \mid d_2$, on l'appelle d_1 et c'est fini. Sinon, $\begin{pmatrix} m_{1,1} & 0 \\ 0 & d_2 \end{pmatrix} \sim \begin{pmatrix} m_{1,1} & d_2 \\ 0 & d_2 \end{pmatrix} \sim \begin{pmatrix} m_{1,1} & r \\ 0 & d_2 \end{pmatrix}$ avec $\delta(r) < \delta(m_{1,1})$. L'hypothèse

de récurrence appliquée à la matrice $\begin{pmatrix} m_{1,1} & 0 \\ 0 & D_1 \end{pmatrix} + rE_{1,2}$ conclut. L'unicité est admise.

Exemple 4.1
$$M = \begin{pmatrix} 7 & 11 & 3 \\ 3 & 4 & 2 \end{pmatrix}$$
 sur $A = \mathbb{Z}$. On a
$$M \sim \begin{pmatrix} 3 & 11 & -7 \\ 2 & 4 & -3 \end{pmatrix} \sim \begin{pmatrix} 2 & 4 & -3 \\ -3 & -11 & 7 \end{pmatrix}$$
$$\sim \begin{pmatrix} 2 & 0 & 1 \\ -3 & -5 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 1 & -5 & 3 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 0 \\ 1 & -5 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \end{pmatrix}$$

Remarque 4.1 Il vaudrait mieux commencer par $C_1 \leftarrow C_1 - 2C_3$ pour faire apparaître un 1 dès que possible en haut à gauche. Ce 1 est le pgcd des coefficients de M. Plus généralement, d_1 est le pgcd des $m_{i,j}$ non nuls et $\prod_{i=1}^r d_i$ est le pgcd des mineurs de taille r de M. Sur l'exemple, les mineurs sont 10, 5 et -5 donc $d_1d_2 = 5$. Une fois que ceci est démonté, l'unicité en découle.

4.2 Structure des modules de type fini sur un anneau principal

Lemme 4.1.1

Si A est principal et $n \ge 1$ entier. Alors tout sous-module M de A^n est engendré par moins de n éléments.

Démonstration. Par récurrence sur n. Si n=1, c'est la définition d'un anneau principal. Sinon, notons $A^{n-1} \subset A^n$ le sous-module engendré par (e_1, \ldots, e_{n-1}) les n-1 premiers vecteurs de la base canonique de A^n . Soit $N=M\cap A^{n-1}$, c'est encore un sous-module de A^{n-1} . Par l'hypothèse de récurrence, N est engendré par moins de n-1 éléments x_1, \ldots, x_n avec n-1. On regarde le morphisme :

Donc M/N est isomorphe à un sous-module de A et par le cas n=1, il peut être engendré par un élément $\overline{x_{r+1}} \in M/N$.

Soit $x_{r+1} \in M$ un antécédent de $\overline{x_{r+1}}$. On montre que x_1, \ldots, x_{r+1} engendre M. Si $m \in M$, alors son image dans M/N est de la forme $a\overline{x_{r+1}}$ donc $m - ax_{r+1} \in \text{Ker } \rho$.

Comme Ker $\rho=N$ engendré par $x_1,\ldots,x_r,$ il existe a_1,\ldots,a_r tel que $m=\sum_{i=1}^r a_i x_i + a x_{r+1}.$

M est donc engendré par $r+1 \leq n$ éléments.

Théorème 4.2 de la base adaptée Soit A un anneau principal, L un A-module libre de type fini, de rang l, K un sous-module de L. Alors il existe $k \leq l$, $d_1 \mid d_2 \mid \ldots \mid d_k$ non nuls dans A. et une base f_1, \ldots, f_l de L tels que $d_1 f_1, \ldots, d_k f_k$ soit une base de K.

En particulier, K est libre de rang $k \leq l$ et les idéaux $(d_k) \supset ... \supset (d_1)$ ne dépendent que de L et K (et non des bases), ce sont les facteurs invariants de K dans L.

Démonstration. Par le lemme, K est engendré par un nombre $k \leq l$ d'éléments. Supposons k choisi minimal, ie K ne peut pas être engendré par k-1 éléments. On a une surjection $A^k \to K$ qui envoie e'_i sur x_i avvec (x_1, \ldots, x_k) est un système générateur minimal fixé.

La composée $u: A^k \to K \hookrightarrow L \simeq A^l$ est un morphisme de A-modules entre deux modules libres de rang fini. Si on choisit une base f'_1, \ldots, f'_l de L, la matrice de cette composée dans (e'_i) et (f'_i) est une matrice $M \in \mathfrak{M}_{l,k}(A)$.

D'après la section précédente, il existe $P \in SL_l(A)$ et $Q \in SL_k(A)$ tel que $M = P \operatorname{diag}(d_1, \ldots, d_r, 0, \ldots, 0)Q$.

Il existe donc des bases (e_1, \ldots, e_k) de K et f_1, \ldots, f_l de L qui sont images de précédents par P et Q et telles que $u(e_j) = d_j f_j$ si $j \leq r$ et $u(e_j) = 0$ sinon.

Comme k est choisi minimal, on a en fait r = k. Comme les d_i sont non nuls, donc non diviseurs de 0 (anneau intègre) donc u est injectif. Ceci montre que K est libre et que $(d_i f_i)$ est une base de K.

L'unicité découle de celle de la forme normale de Smith.

Exemple 4.2 Le sous-module de \mathbb{Z}^2 engendré par les vecteurs $x_1 = (1,0)$ et $x_2 = (1,2)$ a pour base adaptée $\{e_1 = x_1, 2e_2 = x_2 - x_1\}$.

Théorème 4.3 de structure des modules de type fini sur un anneau principal, M un A-module de type fini. Alors il existe un entier $n \ge 0$ et des éléments $d_1, \ldots, d_n \in A$ non inversibles tels que $M \simeq A/(d_1) \times \ldots \times A/(d_n)$ et $d_1 \mid \ldots \mid d_n$.

La suite d'idéaux $(d_1) \supset ... \supset (d_n)$ est unique et on l'appelle suite des facteurs invariants de M.

Remarque 4.2 Si on note q le nombre de d_i nuls, ce sont les q derniers. Posons r = n - q, on a alors $M \simeq A/(d_1) \times \ldots \times A/(d_r) \times A^q$ où $d_1 \mid \ldots \mid d_r$ inversibles et non nuls.

La partie $A/(d_1) \times \ldots \times A/(d_r)$ est appelée partie de torsion de M.

Démonstration. Soit (x_1, \ldots, x_n) une famille de générateurs avec n minimal. Soit $\varphi: A^n \to M$ le morphisme surjectif associé à (x_1, \ldots, x_n) et $K = \operatorname{Ker} \varphi$.

Par le théorème de la base adaptée, K est libre de rang r et il existe une base (f_1, \ldots, f_n) de A^n et $d_1 \mid \ldots \mid d_r$ non nuls de A telle que $\{d_1 f_1, \ldots, d_r f_r\}$ soit une base de K. Posons $d_{r+1} = \ldots = d_n = 0$.

On a $K \subset A^n = Ae_1 \oplus \ldots \oplus Ae_n = Af_1 \oplus \ldots \oplus Af_r \oplus Af_{r+1} \oplus \ldots \oplus Af_n = Ad_1f_1 \oplus \ldots \oplus Ad_rf_r \oplus 0.$

Le morphisme φ identifie donc M à $A^n/K \simeq A/d_1A \oplus \ldots \oplus A/d_rA \oplus A^{n-r}$.

COROLLAIRE 4.1 CAS DES GROUPES ABÉLIENS DE TYPE FINI Pour tout groupe abélien de type fini M il existe un unique entier $r \ge 0$ et des uniques entiers $d_1 \mid \ldots \mid d_r \ge 2$ tel que

$$M \simeq \mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_r\mathbb{Z} \times \mathbb{Z}^q$$

Exemple 4.3 $M = \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/45\mathbb{Z}$. Par le théorème des restes chinois, on a

$$M \simeq \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$$
$$\simeq (\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z})$$
$$\simeq \mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/360\mathbb{Z}$$

4.3 Application à la réduction des endomorphismes

Soit k un corps. Décrivons un lien entre k[X]-modules et k espaces vectoriels muni d'un endomorphisme.

Si M est un k[X]-module, l'application $k \times M \to k[X] \times M \to M$ munit M d'une structure de k-ev. Par ailleurs, l'application $u: M \to M$ telle que u(m) = Xm est un endomorphismes k-linéaire de l'ev M. Notons E le k-ev M.

Réciproquement, si E est un k-ev muni d'un endomorphisme k-linéaire $u:E\to E$ alors on peut former un k[X]-module de k-ev sous-jacent M=E avec la loi externe

$$\begin{cases} k[X] \times E & \to & E \\ (P, v) & \mapsto & P(u)(v) \end{cases}$$

On vérifie qu'on a une bijection entre les k[X]-modules de M et les couples (E,u) formés d'un k-ev et d'un endomorphisme k-linéaire. On a un dictionnaire :

(E, u)	M	
$v: E \to E$ qui commute avec u	endomorphisme de $k[X]$ -module	
sous-espace stable sous u	sous $k[X]$ -module	
$x \in E$	morphisme $P \mapsto P(X)x$	
polynôme minimal (en dim finie)	générateur unitaire de $Ann(M)$	

Dans la suite on note E_u le k[X]-module associé à E_u . Dans le tableau, $Ann(E_u) = \{P \in k[X], \forall x \in E_u, Px = 0\}$. C'est un idéal de k[X] donc il est principal, engendré par un unique polynôme unitaire.

<u>Définition 4.2</u> Soit M un k[X]-module. On dit que M est cyclique ssi il existe $P \in k[X]$ non nul tel que $M \simeq k[X]/(P)$.

Lemme 4.3.1

Soit M un k[X]-module et (E, u) l'ev avec endomorphisme qui lui correspond. Alors M est k[X]-cyclique ssi $\dim_k(E) < \infty$ et il existe $x \in E$ tel que $\{x, u(x), \ldots, u^{n-1}(x)\}$ engendre E-pour $n \ge 0$.

Démonstration.

- \Rightarrow On a $M \simeq k[X]/(P)$ pour un certain polynôme $P \neq 0$ de degré n. Par division euclidienne, on voit que les classes $1, \underline{x}, \dots, \underline{x}^{n-1}$ de $1, X, \dots, X^{n-1}$ dans M forment une base de E (liberté car $(P) \setminus \{0\}$ ne contient que des polynômes de degré au moins n, et génératricité par DE). Posons $x = \overline{1}$, on a $u^i(x) = X^i\overline{1} = \overline{X}^u = x^i$. On a donc le résultat
- \Leftarrow Choisissons x tel que n soit minimal. Considérons le morphisme

$$\varphi: \begin{cases} k[X] & \to & E \\ F & \mapsto & F(u)(x) \end{cases}$$

Ce morphisme est surjectif car $\{x, \ldots, u^{n-1}(x)\}$ engendre E. Comme $\dim_k(E) < \infty$, φ n'est pas injectif. Donc $\operatorname{Ker}(\varphi) \neq 0$ est engendré par un unique polynôme non nul unitaire P.

En passant au quotient, on définit un isomorphisme de k[X]/(P) sur M.

Remarque 4.3 Si $M = E_u$ est un k[X]-module cyclique, notons P tel que $M \simeq k[X]/(P)$. Dans la base $\{x, \ldots, u^{n-1}(x)\}$, la matrice de u est la matrice compagnon associée à P.

Théorème 4.4 Réduction de Frobénius Soit E un k-ev de dimension finie et u un endomorphisme de E. Il existe des polynômes non constants unitaires $P_1, \ldots, P_r \in k[X]$ tels que $P_1 \mid \ldots \mid P_r$ et une base de E telle que la matrice de u dans cette base soit diagonales par blocs avec des blocs égaux aux matrices compagnon c_{P_1}, \ldots, c_{P_r} de P_1, \ldots, P_r .

Les P_i sont appelés facteurs invariants de v et ne dépendent pas de la base choisie.

Démonstration. Soit M le k[X]-module associé à (E, u). Comme E est de dimension finie, il possède une base $\{e_1, \ldots, e_n\}$ qui est un système de générateurs comme k-ev, donc a fortiori comme k[X]-module. Donc M est de type fini comme k[X]-module.

Par la théorème de structure des modules de type fini sur A = k[X], il existe une unique suite de $P_1 \mid \ldots \mid P_r$ unitaires non inversibles telle que $E_u \simeq k[X]/(P_1) \times \ldots \times k[X]/(P_r)$.

Comme $\dim_k(E) < \infty$, on a $P_i \neq 0$ pour tout i. Chaque $k[X]/(P_i)$ correspond à un sous-k-ev stable sous $u = E_i$. Par le lemûe et la remarque qui suit E_i est cyclique et possède un une base dans laquelle la matrice de $u|_{E_i}$ et c_{P_i} .

Remarque 4.4 On verra que P_r est le polynôme minimal de u, $P_1 \dots P_r$ est le polynôme caractéristique de u et que la suite des I_i s'obtient en mettant une matrice de $X \operatorname{Id} - u$ sous forme normale de Smith.

Exemple 4.4 Trouver les facteurs invariants de l'endomorphisme défini par

la matrice
$$\begin{pmatrix} 0 & 4 & 2 \\ -1 & -4 & -1 \\ 0 & 0 & -2 \end{pmatrix}$$
. On a

$$X \operatorname{Id} - M = \begin{pmatrix} X & -4 & -2 \\ 1 & X+4 & 1 \\ 0 & 0 & X+2 \end{pmatrix} \sim \begin{pmatrix} 1 & X+4 & 1 \\ -X & 4 & 2 \\ 0 & 0 & X+2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 \\ -X & 4+X(X+4) & X+2 \\ 0 & 0 & X+2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & (X+2)^2 & X+2 \\ 0 & 0 & X+2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & (X+2)^2 & 0 \\ 0 & 0 & X+2 \end{pmatrix}$$

Les facteurs invariants sont X + 2 et $(X + 2)^2$. Le polynôme minimal est donc $(X + 2)^2$ et le polynôme caractéristique est $(X + 2)^3$.

CHAPITRE 4. MODULES SUR LES ANNEAUX PRINCIPAUX

La réduite de Frobénius de M est alors $\begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & -4 \\ 0 & 1 & -4 \end{pmatrix}$.

Deuxième partie
Théorie de Galois

Introduction

On considère l'équation polynômiale $f=a_nX^n+\ldots+a_0=0$ avec $a_i\in k$ le corps de base.

On sait bien résoudre $aX^2 + bX + c \in \mathbb{Q}[X]$ qui a deux racines $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, de même que $X^3 - aX - b$ qui s'écrivent (Tartaglia, 1535)

$$\sqrt[3]{\frac{b}{2} + \sqrt{\frac{b^2}{4} - \frac{a^2}{9}}} + \sqrt[3]{\frac{b}{2} - \sqrt{\frac{b^2}{4} - \frac{a^2}{9}}}$$

on peut aussi faire ça pour le degré 4, mais plus à partir de 5.

Cependant, manipuler des racines n'est pas sympathique, car on a des formules comme (Ramanujan)

$$\sqrt[3]{5} - \sqrt[3]{4} = \frac{\sqrt[3]{2} + \sqrt[3]{20} - \sqrt[3]{25}}{3}$$
$$\sqrt[6]{7\sqrt[3]{20} - 19} = \sqrt[3]{\frac{5}{3}} - \sqrt[3]{\frac{2}{3}}$$

Chapitre 5

Extensions de corps

On se place dans des anneaux commutatifs unitaires.

<u>Définition 5.1</u> Soit k un corps.

- K est une extension du corps k ssi il existe un morphisme (unitaire) $\varphi:k\to K$ (forcément injectif). On note $k\hookrightarrow K$
- Un sous corps de k est un corps $K \subset k$ compatible avec les lois de k.

<u>Définition 5.2</u> Si $k \hookrightarrow K$ alors le degré [K:k] de l'extension est la dimension de K en tant que k-ev.

Exemple 5.1
$$\mathbb{F}_p \hookrightarrow \mathbb{F}_p[X] \hookrightarrow \mathbb{F}_p(X)$$
 et on a $[\mathbb{F}_p(X) : \mathbb{F}_p] = \infty$.

Lemme 5.0.1

Soit K un corps et $(K_i)_{i\in I}$ des sous-corps de K. L'intersection $\bigcap_{i\in I} K_i$ est un sous-corps.

 $D\acute{e}monstration.$ L'intersection d'anneaux reste un anneau. Soit $a\in\bigcap_{i\in I}K_i$

non nul. $a \in K_i$ donc $a^{-1} \in K_i$ donc $a^{-1} \in \bigcap_{i \in I} K_i$, qui en devient un corps.

<u>Définition 5.3</u> Soit k un corps.

- Le corps premier de k est l'intersection de tous les sous-corps de k.
- Pour $(\alpha_1, \ldots, \alpha_n)$ dans une extension K de k, on définit $k(a_1, \ldots, a_n) = \bigcap_{\substack{a_1, \ldots a_n \in K_i \\ k \in K_i}} K_i$ le plus petit sous-corps de K (la plus petite extension de
 - k) qui contient k et (a_1, \ldots, a_n) .

<u>Définition 5.4</u> Soit A un anneau. Le morphisme

$$\varphi: \begin{cases} \mathbb{Z} & \to & A \\ n & \mapsto & n1_A \end{cases}$$

 $\operatorname{Ker}(\varphi)$ est un idéal donc de la forme $n\mathbb{Z}$. On dit que A est de caractéristique n.

Proposition 5.1 Soit K un corps.

- Si la caractéristique de K est 0, son corps premier est \mathbb{Q} .
- Si sa caractéristique est n > 0 alors n est premier et le corps premier est \mathbb{F}_n .
- Si $K_1 \hookrightarrow K_2$ alors K_1 et K_2 ont même caractéristique et même corps premier.

Démonstration.

- φ est injectif donc \mathbb{Z} est inclus dans le corps premier de K donc $\mathbb{Q} = \operatorname{Frac}(\mathbb{Z}) \hookrightarrow K$ et \mathbb{Q} est bien le plus petit sous-corps inclus dans K
- Ker $\varphi = n\mathbb{Z}$. Im $(\varphi) \subset K$ est donc intègre donc $\mathbb{Z}/n\mathbb{Z}$ intègre donc n premier.

De plus $\mathbb{Z}/n\mathbb{Z}$ est un sous-corps de K et c'est bien le plus petit car le plus petit contient 1 donc $n \times 1$ donc \mathbb{F}_n .

• exo

Proposition 5.2 Le cardinal d'un corps fini est une puissance d'un nombre premier.

Démonstration. Si K est corps fini, son corps premier est \mathbb{F}_p (\mathbb{Q} infini). On a alors l'extension $F_p \hookrightarrow K$.

K est donc un \mathbb{F}_p -ev de dimension n (car $\{x, x \in K\}$ est une famille génératrice finie de K) donc $\operatorname{Card}(K) = p^n$.

Remarque 5.1 On a $k \hookrightarrow k[X] \twoheadrightarrow k[X]/(f)$ donc k[X]/(f) est une extension de k, c'est donc un k-ev dont une base est $(1, \overline{X}, \dots, \overline{X}^{\deg f-1})$.

Exemple 5.2 $f = X^5 + 5X + 5 \in \mathbb{Q}[X]$ est irréductible donc tout $g \neq 0$ de degré inférieur à 5 est premier à f donc inversible dans le quotient. Son inverse est donné par son coefficient de Bezout et s'obtient facilement par Euclide.

Proposition 5.3 Soit k un corps, $f \in k[X]$ irréductible. Alors K = k[X]/(f) est un corps et une extension de k.

Exemple 5.3 $f = 2X + 5 \in \mathbb{Q}[X], \overline{X} \to -\frac{5}{2}$. Donc $k[X]/(f) = \mathbb{Q}(-\frac{5}{2}) = \mathbb{Q}$. $f = X^3 - 2$, on peut prendre $K = \mathbb{Q}(a\sqrt[3]{2})$ avec $a \in \{1, j, j^2\}$.

Proposition 5.4 Soit $\varphi: k \hookrightarrow K$ et $b \in K$. On pose $\varphi_{X \to b}(\sum_{i=0}^n a_i X^i) = \sum_{i=0}^n \varphi(a_i) b^i$.

- Ker $(\varphi_{X\to b})$ est de la forme (f). Il existe un unique f unitaire qui vérifie cette relation. On l'appelle polynôme minimal de b sur k.
- tout $g \in k[X]$ qui s'annule en b est divisible par f
- f est irréductible ou nul
- Si Ker $\varphi \neq (0)$, alors $(1, b, \dots, b^{\deg(f)-1})$ est une k-base de $\operatorname{Im}(\varphi_{X \to b})$ noté k[b]. En fait k[b] = k(b).

Démonstration. Les deux premiers points sont faciles (principalité).

On a $k[X]/(f) \sim \operatorname{Im}(\varphi_{X \to b}) \subset K$ donc le quotient est intègre donc (f) est premier donc f irréductible.

<u>Définition 5.5</u> Soit $\varphi: k \to K$ et $b \in K$.

Si $\operatorname{Ker}(\varphi_{X\to b})=(0)$ alors b est dit transcendant sur k. Dans le cas contraire il est dit algébrique.

Proposition 5.5 Soit $k \hookrightarrow K$, $\alpha \in K$ est algébrique sur k ssi il existe $k \hookrightarrow L \hookrightarrow K$ avec $[L:k] < \infty$ et $\alpha \in L$.

Démonstration.

 \Rightarrow Soit α algébrique sur k. On a $k(\alpha) \simeq k[X]/(\mu_{k,\alpha})$ qui admet la base $(1, \overline{X}, \ldots, \overline{X}^{\deg \mu_{\alpha,k}})$.

On a $k \subset k(\alpha) \subset K$ (car $\alpha \in K$). Donc c'est fini

$$\Leftarrow (1, \alpha, \dots, \alpha^n)$$
 avec $n = [L : k]$ est liée sur k donc on a $\sum_{i=0}^n a_i \alpha^i = 0$.

$$\alpha$$
 est donc racine de $\sum_{i=0}^{n} a_i X^i$.

Lemme 5.0.2

Soit $k \hookrightarrow L \hookrightarrow K$. On a

$$[K:k]<\infty\quad\text{ssi}\quad [L:k]<\infty\text{ et }[K:L]<\infty$$

Dans ce cas, on a [K : k] = [K : L][L : k].

Démonstration.

 \Rightarrow (v_1, \ldots, v_n) partie k-génératrice finie de K est aussi une partie L-génératrice de K donc $[K:L] < \infty$.

Si on a une famille k-libre de L, elle est k-libre dans K donc $[L:k] < [K:k] < \infty$.

 \Leftarrow Soit (v_1, \ldots, v_n) une L-base de K et (w_1, \ldots, w_m) une k-base de L.

Tout élément $x \in K$ s'écrit $\sum_{i=1}^{n} \alpha_i v_i$ avec $\alpha_i = \sum_{j=1}^{m} \beta_j, iw_i$ donc $(v_i w_j)_{i,j}$

est une k-base à nm éléments de K. D'où l'égalité des dimensions.

Proposition 5.6 Soit $k \hookrightarrow K$. L'ensemble des éléments de K algébriques sur k forment un corps.

Démonstration. Soient $\alpha, \beta \in K$ algébriques sur k.

On montre que $\alpha - \beta$ et $\alpha \beta^{-1}$ ($\beta \neq 0$) sont algébriques. Pour le premier, c'est clair.

On considère l'extension $k \hookrightarrow k(\alpha) \hookrightarrow k(\alpha)(\beta)$. $\mu_{\beta,k} \in k[X] \subset k(\alpha)[X]$ donc $\mu_{\beta,k(\alpha)} \mid \mu_{\beta,k}$. En notant $n = \deg \mu_{\alpha,k}$ et $m = \deg \mu_{\beta,k}$, on trouve donc que $[k(\alpha)(\beta) : k] \leqslant mn < \infty$.

Exemple 5.4

- $\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$. On a $\mathbb{Q} \hookrightarrow \mathbb{Q}(\sqrt{2}) \hookrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Comme $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$ et $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2}))] \in \{1, 2\}$, on sait que $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] \in \{2, 4\}$.
 - Ça ne peut pas être 2 car sinon $(1, \sqrt{2})$ serait une base et on aurait $\sqrt{3} = a + b\sqrt{2}$. Contradiction.
- Idem avec $\mathbb{Q}(\sqrt{2}+\sqrt{3})$. Ça n'est pas de dimension 1 car $\sqrt{2}+\sqrt{3}\notin\mathbb{Q}$. Si $a_0+a_1(\sqrt{2}+\sqrt{3})+a_2(\sqrt{2}+\sqrt{3})^2=0$ donc $a_1=a_2=a_3=0$ $((1,\sqrt{2},\sqrt{3},\sqrt{6})$ est une base de $\mathbb{Q}(\sqrt{2},\sqrt{3})$). Ce n'est donc pas de dimension 2.

On trouve que $(X^2+1)^2-12X^2$ annule $\sqrt{2}+\sqrt{3}$ et comme il est de degré 4, c'est le polynôme minimal.

Proposition 5.7 Soit $k \hookrightarrow K$, $\alpha \in K$ transcendant sur k. On a alors

$$k(\alpha) \simeq k(X) = \operatorname{Frac}(k[X])$$

Remarque 5.2 Dans le cas algébrique, $k(\alpha) = k[\alpha]$ (puisque α a un polynôme minimal et donc la suite $(1, \alpha, \alpha^2, \ldots)$ est liée)

Démonstration. Notons φ l'injection associée à $k \hookrightarrow K$. Par hypothèse, $\operatorname{Ker}(\varphi_{X \to \alpha}) = (0)$ et $\operatorname{Im}(\varphi_{X \to \alpha}) = k[\alpha]$.

Donc $k[X] \simeq k[\alpha] \subset k(\alpha)$ via $X \to \alpha$. On a de même $k[X] \to k(X) \to k(\alpha)$ via $X \to \alpha$. Ainsi, $k(X) \simeq k(\alpha)$. (On peut étendre tout morphisme de k[X] dans un corps à un morphisme de k(X) dans ce corps, et l'injectivité est conservée.).

<u>Définition 5.6</u> Soit k un corps et $f \in k[X]$, $\deg(f) \ge 1$. un corps de rupture de f est une extension K telle que

- f admet un zéro α dans K
- $K = k(\alpha)$.

Proposition 5.8 Soit k un corps, $f \in k[X]$ irréductible, α un zéro dans une extension K. Il existe un unique isomorphisme $k[X]/(f) \to k(\alpha)$ qui vaut l'identité sur k et qui envoie \overline{X} sur α .

Par conséquent, tout corps de rupture de f sur k est isomorphe au quotient k[X]/(f).

Démonstration. $\varphi_{X\to\alpha}: k[X] \to k(\alpha)$ a pour noyau $(f_{\alpha,k})$. Par irréductibilité, $(f) = (f_{\alpha,k})$.

Ainsi, $k(\alpha) \simeq k[X]/(f)$ (surjectivité car $k(\alpha) = k[\alpha]$ car α racine de f donc algébrique sur k) et envoie \overline{X} sur α et vaut l'identité sur k.

L'unicité est claire car on donne l'image de \overline{X} et de k.

Exemple 5.5 $X^3 - 2 \in \mathbb{Q}[X]$. On a donc $\mathbb{Q}(\varepsilon\sqrt[3]{2})$ isomorphes entre eux $(\varepsilon \in \{1, j, j^2\})$.

Définition 5.7 Soit $k \hookrightarrow K$. Alors deux éléments α et β sont dits conjugués ssi ils ont même polynôme minimal.

<u>Définition 5.8</u> Soit k un corps, $f \in k[X]$. K est un corps de décomposition ssi

- f est scindé sur K
- $K = k(\alpha_1, \ldots, \alpha_n)$.

THÉORÈME 5.1 Soit k un corps, $f \in k[X]$ non constant. Il existe un corps de décomposition K avec $[K:k] \leq \deg(f)!$.

Démonstration. Par récurrence sur deg(f). Si c'est 1, c'est fini.

Supposons que $\deg(f) > 1$ et que l'hypothèse de récurrence est vérifiée pour tout corps et tout polynôme de degré inférieur strictement à n. On écrit $f = h_1 \dots h_m$ et on se place dans le cas non trivial où un des h_i vérifie $\deg(h_i) > 1$ et on peut prendre i = 1.

Il existe donc un corps de rupture $k(\alpha_1)$ de h_1 sur k. Dans $k(\alpha_1)$, $h_1 = (X - \alpha_1)\tilde{h}$ avec $\deg(\tilde{h}) < \deg h_1 - 1$.

On a $\deg(\tilde{h}h_2...h_m) < \deg f$ donc il existe un corps de décomposition $k(\alpha_1)(\alpha_2,...,\alpha_{\deg f-1})$.

On a enfin $[k:k(\alpha)] = \deg h_1 \leqslant \deg f$ et $[k(\alpha_1)(\alpha_2,\ldots,\alpha_{\deg f-1}):k(\alpha_1)] = (\deg f-1)!$ (permutation des $\alpha_i, i > 1$). Donc

$$[k(\alpha_1)(\alpha_2,\ldots,\alpha_{\deg f-1}):k] \leqslant (\deg f)!$$

THÉORÈME 5.2 Soit $\varphi: k_1 \to k_2$ un isomorphisme, $f \in k_1[X]$ irréductible, $k_1 \hookrightarrow K_1, k_2 \hookrightarrow K_2, \alpha$ un zéro de f dans K_1 et α_2 un zéro de $\varphi_{X \to X}(f)$ dans K_2 .

Alors il existe $\overline{\varphi}: k_1(\alpha_1) \to k_2(\alpha)$ isomorphisme qui prolonge.

Démonstration. φ est un isomorphisme donc $\varphi_{X\to X}$ induit une correspondance des idéaux de $k_1[X_n]$ avec ceux de $k_2[X]$. On a alors

Théorème 5.3 Extension des isomorphismes $Soit \varphi : k_1 \to k_2$ isomorphisme. $Soit f \in k_1[X]$.

Soit K_1 un corps de décomposition de f, K_2 un corps de décomposition de $\varphi_{X\to X}(f)$.

Alors il existe $\overline{\varphi}: K_1 \to K_2$ qui étend φ , ie pour tout $a \in k_1$, $\overline{\varphi}(a) = \varphi(a)$.

Démonstration. Notons $n = \deg f$ et m le nombre de racines de f n'appartenant pas à k_1 . On a donc $\alpha_1, \ldots, \alpha_m$ des racines de f n'appartenant pas à k_1 et $\alpha_{m+1}, \ldots, \alpha_n$ racines de f dans k_1 .

On procède par récurrence sur m. Si m = 0 c'est fini car toutes les racines de f sont dans k_1 .

Si $m \geq 1$, α_1 est racine d'un facteur irréductible h de f. On a $f = h_1 h_2 \dots h_l$ et, sur $k_1(\alpha_1)$, $h = (X - \alpha_1)\widetilde{h_1}h_2 \dots h_l$. Par le théorème précédent, on étend φ en $\overline{\varphi}$ à $k_1(\alpha_1) \to k_2(\beta_1)$ avec β_1 zéro de $\varphi_{X \to X}(h)$.

Dans $k_1(\alpha_1)$, $h_1h_2...h_l$ a au plus m-1 racines donc par hypothèse de récurrence, on étend $\overline{\varphi}$ à $\psi: K_1 \to K_2$ et ça marche!

COROLLAIRE 5.1 Soit k un corps, $f \in k[X]$. Deux corps de décomposition de f sur k sont toujours isomorphes.

<u>Définition 5.9</u> $f \in k[X]$ est radical ssi $f = X^n - a$.

Une extension est dire radicale simple ssi $K = k(\alpha)$ avec α un zéros d'un polynôme radical.

Une extension radicate de k est une extension K_n tel que $k = K_0 \subset K_1 \subset \ldots \subset K'_n$ avec $K_{i+1} = K_i(\alpha_i)$ radicale simple.

Chapitre 6

Clôture algébrique

<u>Définition 6.1</u> K est algébriquement clos ssi pour tout $f \in K[X]$ tel que deg $f \ge 1$ possède une racine dans K.

Proposition 6.1 Soit K un corps. Les assertions suivantes sont équivalentes.

- (i) K est algébriquement clos
- (ii) tout $f \in K[X]$ est produit de facteurs de degré 1
- (iii) les irréductibles de K[X] sont de degré 1
- (iv) toute extension algébrique de K est de degré 1.

Théorème 6.1 Pour tout corps k, il existe une extension de corps K/k avec K algébriquement clos.

Démonstration. On peut définir $A[X_I]$ avec I un ensemble quelconque comme une union croissante d'anneaux.

À $f \in k[X]$, on associe $X_f \in A := k[X_f, f \in k[X]]$. Posons I l'idéal $(f(X_f), f \in k[X])$. Montrons que c'est un idéal propre.

Si I = A, alors $1 \in I$ donc il existe g_1, \ldots, g_n tel que

$$g_1(f_1(X_{f_1})) + \cdots + g_n f_n(X_{f_n}) = 1$$

On construit une extension \tilde{k} de k qui contient $(\alpha_1, \ldots, \alpha_n)$ zéros de f_1, \ldots, f_n . En évaluant en $X_1 \to \alpha_1, \ldots, X_n \to \alpha_n$, on obtient 0 = 1. Contradiction.

I est donc propre et il est donc inclus dans un idéal maximal J. $K_1 := A/J$ est un corps dans lequel tout polynôme de k[X] possède une racine. On peut ainsi construire une suite croissante de corps $K_n \subset K_{n+1}$ tel que tout polynôme de $K_n[X]$ ait une racine dans K_{n+1} .

L'union croissante K des K_i est un corps. Montrons qu'il est algébriquement clos.

CHAPITRE 6. CLÔTURE ALGÉBRIQUE

Si $f \in K[X]$, il existe s tel que $f \in K_s[X]$. K_{s+1} contient un zéro de f donc K aussi.

<u>Définition 6.2</u> Une extension algébrique de k qui est algébriquement close est une clôture algébrique. On note une cloture \overline{k} .

Théorème 6.2 \overline{k} existe et est unique à isomorphisme près.

Démonstration. On prend F l'ensemble des nombres algébriques du K du théorème précédént. C'est bien un corps. Il faut montrer que tout $f \in F[x]$ possède une racine dans F. Il existe une racine $\alpha \in K$.

Notons $F = \sum_{i=0}^{n} a_i X^i$. On a $k \hookrightarrow k(a_i) \hookrightarrow k(a_i)(\alpha)$. Ce sont des extensions algébriques donc α est algébrique sur k donc $\alpha \in F$.

Chapitre 7

Corps finis

7.1 Dérivation

<u>Définition 7.1</u> On définit l'opérateur de dérivation par

$$D: \begin{cases} k[X] & \to & k[X] \\ \sum_{i=0}^{n} a_i X^i & \mapsto & \sum_{i=0}^{n} i a_i X^{i-1} \end{cases}$$

Lemme 7.0.1

Soit $f \in k[X]$ tel que f' = 0.

- 1. Si car(k) = 0 alors $f \in k$
- 2. Si car(k) = p alors $f = g(X^p)$ avec $g \in k[X]$.

Lemme 7.0.2

Soit $f \in k[X]$ non nul et $a \in k$.

a est zéro multiple de f ssi f(a) = f'(a) = 0 ssi $(X - a) \mid f \wedge f'$.

Lemme 7.0.3

Si $(X-a)^n \mid f$ alors $f(a)=f'(a)=\ldots=f^{(n-1)}=0$ et la réciproque est vraie si et seulement si $\operatorname{car}(k)=0$

7.2 Groupes cycliques

<u>Définition 7.2</u> L'exposant d'un groupe fini est le ppcm des ordres de ses éléments.

THÉORÈME 7.1 Si A est un groupe abélien fini, il s'écrit $\mathbb{Z}/m_1\mathbb{Z} \times \ldots \times \mathbb{Z}/m_k\mathbb{Z}$ avec $m_i \mid m_{i+1}$.

COROLLAIRE 7.1 Soit A un groupe abélien fini alors A contient un élément d'ordre $\exp A$.

Démonstration. On décompose A en un produit de $\mathbb{Z}/m_i\mathbb{Z}$.

$$(0,\ldots,0,1)$$
 est d'ordre m_k donc $m_k \mid \exp A$. De plus, $m_k(a_1,\ldots,a_k)=0$ pour tout $(a_1,\ldots,a_k)\in A$. Donc $\exp(A)\mid m_k$.

COROLLAIRE 7.2 Soit A abélien fini. S'il existe au plus un sous-groupe d'ordre d dans A pour tout $d \mid n$ alors A est cyclique.

Démonstration. Soit $m = \exp A$, a un élément d'ordre m et $b \in A$. $d := |\langle b \rangle| \mid m$. $a^{\frac{m}{d}}$ est d'ordre d donc $\langle b \rangle = \langle a^{\frac{m}{d}} \rangle \subset \langle a \rangle$ donc $b \in \langle a \rangle$.

7.3 Racines de l'unité

<u>Définition 7.3</u> Soit K un corps, $n \ge 1$, on pose $\mu_n(K) = \{\alpha \in K, \alpha^n = 1\}$ l'ensemble des racines de l'unité.

Les éléments de μ_n , s'ils existent, sont les racines primitives $n^{\rm e}$ de l'unité

Lemme 7.1.1

 μ_n est un sous-groupe de K^* d'ordre au plus n.

Démonstration. C'est clairement un sous-groupe. Les $\alpha \in \mu_n$ sont zéros de $X^n - 1$ qui a au plus n racines donc $|\mu_n| \leq n$.

Théorème 7.2 Soit G un sous-groupe fini d'ordre n de K^* . Alors $G = \mu_n(K)$ et G est cyclique.

Démonstration. Par Lagrange, pour tout $\alpha \in G$, $\alpha^n = 1$ donc α est zéro de $X^n - 1$ donc $\alpha \in \mu_n$.

Soit H un sous-groupe de G d'ordre $d \mid n$. On a $H \subset \mu_d$ qui est d'ordre au plus d. Donc H est unique et G est cyclique. Ainsi, G est d'ordre n donc $G = \mu_n$.

THÉORÈME 7.3 Soit k un corps et $n \in \mathbb{N}$. Il existe une racine primitive n^e de l'unité dans une extension K/k ssi $\operatorname{car}(k) = 0$ ou $\operatorname{car}(k) \nmid n$.

Démonstration.

 $\Leftarrow f := X^n - 1$ ne possède pas de zéros multiples car $f' = nX^{n-1} \neq 0$. Donc f a n zéros distincts (non nuls) $\alpha_1, \ldots, \alpha_n$.

 $\{\alpha_i, i \in [\![1,n]\!]\}$ est un sous-groupe cyclique d'ordre n donc il existe une racine primitive n^e .

 \Rightarrow Si ξ est une racine primitive $n^{\rm e}$, alors les n éléments distincts de $\langle \xi \rangle$ sont racines de X^n-1 donc ses racines sont simples donc car k=0 ou $n \nmid \operatorname{car} k$.

7.4 Corps finis

Proposition 7.1 Soit A un anneau commutatif de caractéristique $p \neq 0$. $x \mapsto x^p$ est un morphisme (dit de Frobénius).

Remarque 7.1 Si A est un corps alors ce morphisme est bijectif.

THÉORÈME 7.4 Soient p premier et $n \ge 1$. Il existe un corps K à p^n éléments isomorphe au corps de décomposition de $X^{p^n} - X \in \mathbb{Z}/p\mathbb{Z}[X]$.

Démonstration. Soit F un corps de décomposition de $f := X^{p^n} - X$.

 $f' = p^n X^{p^n-1} - 1 = -1$ donc f a p^n zéros simples distincts $(\alpha_1, \ldots, \alpha_{p^n})$ dans le corps de décomposition. Ce sont des points fixes du Frobénius donc $\{\alpha_1, \ldots, \alpha_{p^n}\}$ est un sous-corps, c'est donc le corps de décomposition!

Exemple 7.1 $f := X^4 + X + 1 \in \mathbb{Z}/2\mathbb{Z}[X]$ est irréductible. Donc le corps de rupture $\mathbb{Z}/2\mathbb{Z}[X]/f$ est de cardinal 2^4 donc c'est le corps de décomposition de $X^{2^4} - X$ donc $X^4 + X + 1 \mid X^{16} - X$.

Définition 7.4 On appelle \mathbb{F}_{p^n} l'unique corps à p^n éléments dans une clôture algébrique de $\mathbb{Z}/p\mathbb{Z} =: \mathbb{F}_p$.

Lemme 7.4.1

Si p est premier, $m, n \in \mathbb{N}$ tel que $m \mid n$. Alors $X^{p^m} - X \mid X^{p^n} - X$ dans $\mathbb{Z}[X]$.

Démonstration. On a $y^d-1=(y-1)(1+\ldots+y^{d-1})$. Avec $y=p^m$ et $d=\frac{n}{m}$, on obtient que $p^m-1\mid p^n-1$. Avec $y=X^{p^m-1}$ et $d=\frac{p^n-1}{p^m-1}$, on trouve

$$X^{p^m-1} - 1 \mid X^{p^n-1} - 1$$

D'où le résultat.

Lemme 7.4.2

Tout sous-corps de \mathbb{F}_{p^n} est de cardinal p^d avec $d \mid n$ et pour tout $d \mid n$, il existe un sous-corps à p^d éléments.

Exemple 7.2 Quels sont les sous-corps de $\mathbb{F}_{2^{12}}$? Son sous-corps premier est \mathbb{F}_2 donc il sera contenu dans tous les sous-corps. Via le lemme précédent, on trouve le treillis suivant

Démonstration.

- \Leftarrow Si $d \mid n, X^{p^d} X \mid X^{p^n} X$ donc $\mathbb{F}_{p^d} \subset \mathbb{F}_{p^n}$ donc on a un sous-corps d'ordre d.
- \Rightarrow Soit k un sous-corps de $K := \mathbb{F}_{p^n}$. à q éléments. On a $\mathbb{F}_p \subset k \subset K$. Notons m = [K : k].

On a
$$(p^d)^m = q^m = p^n$$
 donc $n = dm$ et $q = p^d$.

COROLLAIRE 7.3 Soit k un corps fini à $q = p^n$ éléments et $m \ge 1$ un entier. Il existe un polynôme $f \in k[X]$ de degré m irréductible.

Démonstration. $\mathbb{F}q^m$ est cyclique. Notons ξ un générateur. On a $\mathbb{F}_{q^m} = \mathbb{F}_p(\xi)$. On a $[\mathbb{F}_{q^m} : \mathbb{F}_p] = mn$ et $\mathbb{F}_{q^m} = \mathbb{F}_p[X]/(\mu_{\xi,\mathbb{F}_p})$. Donc $\deg(f_{\xi,\mathbb{F}_p}) = mn$. Si on considère μ_{ξ,\mathbb{F}_q} , son degré est $[\mathbb{F}_q(\xi) : \mathbb{F}_q] = [\mathbb{F}_{q^m} : \mathbb{F}_q] = m$.

On a donc trouvé un polynôme irréductible de degré m.

COROLLAIRE 7.4 $X^{p^n}-X$ est le produit des irréductibles unitaires de $F_p[X]$ dont le degré divise n.

 $D\acute{e}monstration$. Fixons $\overline{\mathbb{F}_p}$.

- 1. Les polynômes irréductibles de degré $m \mid n$ divisent $X^{p^n} X$. Soit $f \in \mathbb{F}_p[X]$ irréductible de degré m.
 - $\mathbb{F}_p[X]/(f)$ est de cardinal p^m donc il est isomorphe à l'ensemble des zéros de $X^{p^m}-X$, inclus dans \mathbb{F}_{p^n} .
 - f et $X^{p^n}-X$ possèdent un zéro commun dans $\overline{\mathbb{F}_p}$ donc, comme $m\mid n,$ $f\mid X^{p^n}-X.$
- 2. Si f est un facteur irréductible de $X^{p^n} X$, posons $k = \mathbb{F}_p[X]/(f)$ qui a $p^{\deg f}$ éléments. On sait que $k \subset \mathbb{F}_{p^n}$ donc $\deg f \mid n$.
- 3. Il n'y a pas de facteurs multiples car $(X^{p^n} X)' = -1$.

COROLLAIRE 7.5 Soit k un corps fini et $f \in k[X]$ irréductible/ Le corps de rupture k[X]/(f) est aussi $(d\acute{e}j\grave{a})$ le corps de décomposition de f.

Démonstration. On note $k = \mathbb{F}_q$ $(q = p^n)$ et K = k/(f). C'est un corps à $q^{\deg f}$ éléments, donc c'est l'ensemble des zéros de $X^{p^n \deg f} - X$.

f divise $X^{p^{n \deg f}} - X$ dans $\mathbb{F}_q[X]$. K contient les zéros de ce dernier donc de f. C'est donc le corps de décomposition.

7.4. CORPS FINIS

Remarque 7.2 Soit $X^3 - 2 \in \mathbb{Q}[X]$. On a $j\sqrt[3]{2} \notin \mathbb{Q}[\sqrt[3]{2}]$ donc un corps de rupture n'est pas toujours un corps de décomposition quand le corps est infini.

Chapitre 8

Extensions normales et séparables

Définition 8.1 $f \in k[X]$ est séparable ssi tous les zéros de f dans un corps de décomposition de f sont de multiplicité 1.

Un élément $\alpha \in K/k$ est séparable ssi $\mu_{\alpha,k}$ est séparable. K/k est séparable ssi tous les $\alpha \in K$ le sont sur k.

Proposition 8.1 Soit $f \in k[X]$ irréductible. Si $f' \neq 0$ alors f est séparable. En particulier, si car(k) = 0 alors f est séparable et sinon, soit f est séparable, soit $f \in Ker(D)$.

Démonstration. Soit α un zéro de f dans K/k. f est irréductible ie $f = \lambda \mu_{\alpha,k}$. Si $f' \neq 0$ alors deg $f' < \deg f$. Si α est racine multiple, $(X - \alpha) \mid f \wedge f'$. Il existe donc un pgcd non trivial de f et f'.

Donc f n'est pas irréductible. Contradiction. Donc f' = 0.

COROLLAIRE 8.1 Si k est de caractéristique 0 alors K/k est séprable.

<u>Définition 8.2</u> Un corps k est parfait ssi toute extension algébrique de k est séparable.

THÉORÈME 8.1 k est parfait ssi car(k) = 0 ou (car(k) = p et $k^p := \{a^p, a \in k\} = k\}$.

COROLLAIRE 8.2 Un corps fini est parfait.

Démonstration. Le Frobénius est un automorphisme donc on a bien $k^p = k$.

Démonstration du théorème. Le cas de la caractéristique 0 est déjà traité.

Si $\operatorname{car}(k) = p$ et $\alpha \in k$ algébrique inséparable, on a $\mu'_{\alpha,k} = 0$ donc $\mu_{\alpha,k} = \sum_{i=1}^{n} a_i X^{pi} = \sum_{i=1}^{n} (b_i X^i)^p$ (surjectivité du Frobénius par hypothèse).

Donc $\mu_{\alpha,k} = \left(\sum_{i=1}^{n} b_i X^i\right)^p$ n'est pas irréductible. Contradiction et α est

séparable. Donc k est parfait.

Définition 8.3 $k \hookrightarrow K$ est normale ssi tout $f \in k[X]$ irréductible qui possède un zéro dans K est scindé sur K.

Exemple 8.1

- $\mathbb{Q} \hookrightarrow \mathbb{Q}(\sqrt[3]{2})$ n'est pas normale car $X^3 2$ a une racine mais n'est pas scindé dedans.
- Si [K:k]=2 alors K/k est normale car si on a une racine α on est déjà scindé (factorisable par $X - \alpha$).

Théorème 8.2 K/k de degré fini est normale ssi K est un corps de décomposition d'un polynôme $f \in k[X]$.

Démonstration.

- \Rightarrow On écrit $K = k(\alpha_1, \dots, \alpha_n)$. Les $f_{\alpha_i, k}$ sont tous scindés. K est alors le corps de décomposition de $g := \prod_{i \in I} f_{\alpha_i,k}$.
- \Leftarrow Posons K un corps de décomposition de g sur k et $f \in k[X]$ ayant une racine $\alpha \in K$. Soit β une autre racine de f.

Posons L le corps de décomposition de f sur K. On a le diagramme

On a $K(\alpha) = K$ et les relations

$$[K:k] = [K(\alpha):k] = [K(\alpha):k(\alpha)][k(\alpha):k]$$

$$[K(\beta):K][K:k] = [K(\beta):k(\beta)][k(\beta):k]$$

L est aussi le corps de décomposition de f sur $K(\alpha)$ ou $K(\beta)$. $k(\alpha)$ et $k(\beta)$ sont deux corps de rupture donc isomorphes. On peut étendre cet isomorphisme à $\varphi: K(\alpha) \to K(\beta)$ puisque ce sont des corps de décomposition de g sur $k(\alpha)$ et $k(\beta)$ (isomorphes).

Donc

$$[k(\alpha):k] = [k(\beta):k] \text{ et } [K(\alpha):k(\alpha)] = [K(\beta):k(\beta)]$$

Ainsi,
$$[K(\beta):K][K:k] = [K:k]$$
 donc $K(\beta) = K$ et $\beta \in K$.

COROLLAIRE 8.3 Soit K/k une extension normale de degré fini, L tel que $k \subset L \subset K$.

Tout k-morphisme $\varphi: L \to K \ (\varphi|_k = \mathrm{Id}_k)$ s'étend en un morphisme de $K \to K$.

<u>Définition 8.4</u> On note $S_{q,k}$ le corps de décomposition de g sur k.

Démonstration. φ fixe k donc pour un g tel que $K = S_{g,k}$, on a $\varphi(g) = g$ donc $K = S_{\varphi(g),k}$.

On a aussi $S_{g,L} = S_{g,k} = K = S_{\varphi(g),L}$. Donc on étend φ aux corps de décompositions et on obtient l'extension voulue.

COROLLAIRE 8.4 SOit K/k normale de degré fini et $f \in k[X]$ irréductible, α_1, α_2 deux zéros de f dans K. Il existe un k-automorphisme $\varphi : K \to K$ tel que $\varphi(\alpha_1) = \alpha_2$.

Démonstration. Appliquer le théorème avec $L = k(\alpha_1)$.

<u>Définition 8.5</u> On appelle groupe de Galois de K/k et on note G(K/k) l'ensemble des k-automorphismes de K.

Soit G inclus dans l'ensemble des automorphismes de K. Le corps fixe, noté K^G est l'ensemble des éléments de K fixés par tous les éléments de G.

Exemple 8.2 $G(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{\text{Id}\}.$

Proposition 8.2 $G(\mathbb{F}_{p^n}/\mathbb{F}_p)$ est cyclique d'ordre n et engendré par le Frobénius.

 $D\acute{e}monstration.$ $\mathbb{F}_{p^n}=\mathbb{F}_p(\alpha)$ avec α racine $p^n-1^{\rm e}$ de l'unité.

 $\deg(\mu_{\alpha,\mathbb{F}_p}) = n$ donc si σ est un automorphisme, on a n choix pour $\sigma(\alpha)$ donc $\operatorname{Card}(G(\mathbb{F}_{p^n}/\mathbb{F}_p)) \leq n$.

Or le Frobénius f appartient à $G(\mathbb{F}_{p^n}/\mathbb{F}_p)$ donc ses puissances aussi.

Si $i \neq j$ et $f^i = f^j$ donc $f^{j-i} = \operatorname{Id}$ donc $p^{j-i} = p^n$. Or j-i < n. Contradiction. Ainsi, on a trouvé n éléments distincts de $G(\mathbb{F}_{p^n}/\mathbb{F}_p)$ d'où le résultat.

Proposition 8.3 Soit α une racine primitive $n^{\rm e}$ de l'unité (existence si $p \nmid n$). Posons $K = k(\alpha)$. G(K/k) est abélien fini est c'est un sous-groupe de $(\mathbb{Z}/n\mathbb{Z})^*$.

Proposition 8.4 Soit $K = k(\alpha)$ avec α une racine primitive n^e de 1. G(K/k) est isomorphe à un sous-groupe de $(\mathbb{Z}/n\mathbb{Z})^*$, donc abélien.

Démonstration. $k(\alpha)$ contient toutes les racines de X^n-1 c'est un corps de décomposition. Soit $\sigma \in G(K/k)$.

 σ est déterminé par $\sigma(\alpha)$ qui est d'ordre n puisque α l'est. Donc $\sigma(\alpha)=\alpha^i$ avec $i\wedge n=1.$

On appelle σ_i l'élément de G(K/k) qui envoie α sur α^i . On obtient donc une application

$$\psi: \begin{cases} G(K/k) & \to & (\mathbb{Z}/n\mathbb{Z})^* \\ \sigma_i & \mapsto & i \end{cases}$$

qui est (assez clairement) un morphisme de groupes injectif.

Définition 8.6 Une extension algébrique est galoisienne ssi $k = K^{G(K/k)}$.

Aut(K) agit sur K. On considère l'orbite de $\alpha \in K$ sous l'action de G(K/k). Notons $\mu_{\alpha,k} = \sum_{i=0}^n a_i X^i$. Si $\sigma \in G(K/k)$, on a $\sigma(f(\alpha)) = f(\sigma(\alpha))$.

<u>Définition 8.7</u> Soit $\alpha \in K$ algébrique sur k. Alors les conjugués de α sont les éléments de l'orbite de α sous G(K/k). Il y en a un nombre fini par ce qui précède.

Lemme 8.2.1

Soit K/k galoisienne finie et $\alpha \in K$ algébrique sur k. Les conjugués de α sous G(K/k) est un ensemble fini $\{\alpha_1 = \alpha, \dots, \alpha_m\}$ et

$$\mu_{\alpha,K} = \prod_{i=1}^{n} (X - \alpha_i) = \prod_{\sigma} (X - \sigma(\alpha))$$

où le dernier produit est indicé par les représentants des classes à gauche de $\operatorname{Stab}(\alpha)$.

Démonstration. Tous les α_i sont racines de $\mu_{\alpha,k}$. On pose $g = \prod_{i=1}^m \alpha_i$. Ses coefficients sont des fonctions symétriques des racines α_i qui sont donc invariants par permutation des racines donc aussi sous l'action de de G(K/k), donc dans k.

Ainsi,
$$g \in k[X]$$
. Or $\deg(g) = m \leqslant n = \deg(\mu_{\alpha,k})$ donc nécessairement, $m = n$ et $g = \mu_{\alpha,k}$.

COROLLAIRE 8.5 Soit $k \subset K$ galoisienne, $\alpha \in K$ algébrique sur k. $[k(\alpha) : k] = \deg(\mu_{\alpha,k})$ est le nombre de racines de $\mu_{\alpha,k}$ sur K.

<u>Théorème 8.3</u> Soit K/k de degré fini. Les assertions suivantes sont équivalentes :

- (i) K/k est galoisienne
- (ii) K/k est normale séparable
- (iii) K/k est le corps de décomposition d'un polynôme séparable

Démonstration.

- (i) \Rightarrow (ii) K/k est galoisienne et $\alpha \in K$. Alors α est algébrique. $\mu_{\alpha,k} = \prod_{i=1}^{n} (X \alpha_i)$. Donc l'extension est normale. Elle est de plus séparable car les α_i sont distincts.
- (ii) \Rightarrow (iii) On écrit $K = k(\alpha_1, \ldots, \alpha_m)$. $g = \mu_{\alpha_1,k} \ldots \mu_{\alpha_m,k}$ est scindé sur K et toutes les racines de g sont simples (produit de polynômes SARS premiers entre eux). Notons $L = k(\alpha_{1,1}, \ldots, \alpha_{1,n_1}, \ldots, \alpha_{m,1}, \ldots, \alpha_{m,n_m})$ le corps de décomposition de g. On remarque que $K \subset L$ et $L \subset K$ puisque, comme l'extension est normale, tous les $\alpha_{i,j}$ appartiennent à K. Donc K est le corps de décomposition.
- (iii) \Rightarrow (i) K/k est le corps de décompositon d'un polynôme séparable f. Il faut montrer que $K^{G(K/k)} = k$. On procède par récurrence sur [K:k] pour tout corps.

Si [K:k]=1, K=k donc $G(K/k)=\{1\}$ et $K^{\{1\}}=K=k$. On suppose vérifié le resultat pour tout extension de corps $[\widetilde{K}:\widetilde{k}]=\widetilde{m}< n$. Comme [K:k]>1, f possède un facteur irréductible g de degré >1 (sinon f scindé sur k).

Les zéros de g sont zéros de f donc tous distincts. Notons $\{\alpha = \alpha_1, \ldots, \alpha_m\}$ les zéros de g. Les $k(\alpha_i)$ sont isomorphes à $k(\alpha)$ via φ_i : $k(\alpha) \to k(\alpha_i)$. On peut étendre φ_i en un morphisme $\overline{\varphi_i} : K = S_{f,k(\alpha)} \to S_{f,k(\alpha_i)}$.

Par hypothèse de récurrence, $k(\alpha) = K^{G(K/k(\alpha))}$ et on a l'inclusion $G(K/k(\alpha)) \subset G(K/k)$. Donc $F := K^{G(K/k)}$ vérifie $k \subset F \subset k(\alpha)$. Ainsi, $F(\alpha) = k(\alpha)$. Pour montrer que F = k, on compare $\mu_{\alpha,F}$ et $\mu_{\alpha,k}$. On sait que $\mu_{\alpha,F} \mid \mu_{\alpha,k}$. On sait que F est fixe par $\overline{\varphi_i}$ $(K/k(\alpha))$ galoi-

sienne). On écrit $\mu_{\alpha,f} = \sum_{i=0}^{l} b_i X^i$. On a $\overline{\varphi_j} \left(\sum_{i=0}^{l} b_i \alpha^i \right) = 0$ donc $\mu_{\alpha,F}$ a les mêmes zéros que $\mu_{\alpha,k}$ donc $[F(\alpha):F] = [F(\alpha):k]$ donc [F:k] = 1. Le principe de récurrence conclut.

Proposition 8.5 Soit $f \in k[X]$ séparable et $K = S_{f,k}$ avec $\deg(f) = n$ zéros. Alors G(K/k) permute les zéros. On a donc un morphisme $\varphi : G(K/k) \to \mathfrak{S}_n$ injectif.

CHAPITRE 8. EXTENSIONS NORMALES ET SÉPARABLES

Si f est irréductible alors G(K/k) est isomorphe à un sous-groupe transitif de \mathfrak{S}_n (ie qui a une seule orbite : on peut envoyer tout le monde sur tout le monde).

Démonstration. $Ker(\varphi) = \bigcap Stab(\alpha_i) = \{1\}$ donc injectif.

Supposons que l'action n'est pas transitive. On a α racine de f tel que $\{\alpha=\alpha_1,\ldots,\alpha_m\}$ avec $m<\deg f$. $\mu_{\alpha,f}=\prod_i(X-\alpha_i)$ est de degré $<\deg(f)$ donc f n'est pas irréductible.

Chapitre 9

Correspondance de Galois

Définition 9.1 Soit G un groupe et K un corps. Un caractère (linéaire) est un morphisme de groupe $\chi: G \to K^*$.

Exemple 9.1 À $\sigma \in \text{Aut}(K)$, on peut associer un caractère $\chi_{\sigma}: K^* \to K^*$.

<u>Définition 9.2</u> (χ_1, \dots, χ_n) est linéairement indépendant sur K ssi l'égalité $\sum_{i=1}^n a_i \chi_i = 0$ implique $a_i = 0$.

Lemme 9.0.1 Dedekind

Tout ensemble fini de caractères distincts est linéairement indépendant.

Démonstration. Par récurrence sur le nombre de caractères. Si $n=1, a_1\chi=0$ donc $a_1\chi(1)=0$ donc $a_1=0$.

Si l'hypothèse est vraie pour n-1. Si $\sum_{i=1}^{n} a_i \chi_i = 0$ avec a_i non tous nuls, on peut permuter pour avoir $a_1 \neq 0$.

Comme $\chi_1 \neq \chi_n$, il existe $g \in G$ tel que $\chi_1(g) \neq \chi_n(g)$. On a pour tout $h \in G$,

$$\sum_{i=1}^{n} a_i \chi_i(h) = 0$$

Pour $h \leftarrow gh$, on a

$$\sum_{i=1}^{n} a_i \chi_i(g) \chi_i(h) = 0$$

La première formule donne :

$$\sum_{i=1}^{n} a_i \chi_i(h) \chi_n(g) = 0$$

et en faisant la différence, on a

$$\sum_{i=1}^{n-1} a_i (\chi_n(g) - \chi_i(g)) \chi_i(h) = 0$$

donc (HR) pour tout i, $a_i(\chi_n(g), \chi_i(g)) = 0$. Contradiction pour i = 1.

Lemme 9.0.2

Soit K un corps, $\sigma_1, \ldots, \sigma_n$ des automorphismes distincts qui forment un sous-groupe G de $\operatorname{Aut}(K)$.

Alors
$$[K:K^G]=n$$
.

Démonstration. Supposons que $[K:K_G]=r < n, \alpha_1, \ldots, \alpha_r$ une K^G -base. On pose $M=(\sigma_j(\alpha_i))_{i,j}$. L'équation MX=0 a n inconnues et r équations donc il existe une solution non nulle.

Soit $\beta \in K$ un élément, il s'écrit $\sum_{j=1} b_j \alpha_j$. On a

$$\sum_{i=1}^{n} a_i \sigma_i(\beta) = \sum_{i=1}^{n} \sum_{j=1}^{r} a_i b_j \sigma_i(\alpha_j) = \sum_{j=1}^{r} b_j \sum_{i=1}^{n} a_i \sigma_i(\alpha_j) = \sum_{j=1}^{r} b_j \times 0 = 0$$

Contradiction.

Supposons que r > n, on prend $\alpha_1, \ldots, \alpha_{n+1}$ linéairement indépendants. Avec $M = (\sigma_i(\alpha_j))_{i,j}$, l'équation MX = 0 a plus l'inconnues que d'équations donc admet une solution non nulle $(\beta_1, \ldots, \beta_{n+1})$.

Quitte à réordonner, on prend $\sigma_1 = \text{Id. Posons } (\beta_1, \dots, \beta_s = 1, 0, \dots, 0)$ avec un nombre minimal de composantes non nulles. s > 1 car sinon $\beta_1 \alpha_1 = \sigma_1(\beta_1 \alpha_1) = 0$ donc $\beta_1 = 0$. On a donc

$$\beta_1 \sigma_i(\alpha_1) + \ldots + \beta_{s-1} \sigma_i(\alpha_{s-1}) + \sigma_i(\alpha_s) = 0$$

Les β_i ne sont pas tous dans K^G . En effet, si $\beta_i \in K^G$ pour tout o;

$$\sum_{i=1}^{n+1} \beta_i \alpha_i = \sigma_1 \left(\sum_{i=0}^{n+1} \beta_i \alpha_i \right) = \sum_{i=0}^{n+1} \beta_i \sigma_1(\alpha_i) = 0$$

donc pour tout i, $\beta_i = 0$, contradiction. On suppose donc $\beta_1 \in K \setminus K^G$ après renumérotation. Il existe m tel que $\sigma_m(\beta_1) \neq \beta_1$. Pour tout $\sigma_i \in G$, il existe $\sigma_j \in G$ tel que $\sigma_i = \sigma_m \sigma_j$.

En appliquant σ_m , on obtient

$$\sigma_m(\beta_1)\sigma_m\sigma_j(\alpha_1) + \ldots + \sigma_m(\beta_{s-1})\sigma_m\sigma_j(\alpha_{s-1}) + \sigma_m\sigma_j(\alpha_s) = 0$$

Donc

$$\sigma_m(\beta_1)\sigma_i(\alpha_1) + \ldots + \sigma_m(\beta_{s-1})\sigma_i(\alpha_{s-1}) + \sigma_i(\alpha_s) = 0$$

On a aussi

$$\beta_1 \sigma_i(\alpha_1) + \ldots + \beta_{s-1} \sigma_i(\alpha_{s-1}) + \sigma_i(\alpha_s) = 0$$

En faisant la différence,

$$(\beta_1 - \sigma_m(\beta_1))\sigma_1(\alpha_1) + \ldots + (\beta_{s-1} - \sigma_m(\beta_{s-1}))\sigma_i(\alpha_{s-1}) = 0$$

Or s était supposé minimal donc pour tout i, $\beta_i = \sigma_m(\beta_i)$. On obtient une contradiction pour i = 1.

Finalement
$$r = n$$
.

COROLLAIRE 9.1 Soit K/k de degré fini. L'extension K/k est galoisienne ssi |G(K/k)| = [K:k]

COROLLAIRE 9.2 Soit α algébrique sur k. $k(\alpha)/k$ est galoisienne ssi $\mu_{\alpha,k}$ possède $[k(\alpha):k] = \deg(\mu_{\alpha,k})$ zéros dans k.

On a une application entre les sous-corps de K et les sous-groupes de G(K/k) donnée par $L \mapsto G(K/L)$. Cette application est décroissante et on va montrer qu'elle est bijective d'inverse $H \mapsto K^H$.

Corollaire 9.3

- (i) Soit H un sous-groupe fini de $\operatorname{Aut}(K)$ et $L=K^H$. Alors tout $G(K/L)\subset H$.
- (ii) Soient H_1 et H_2 deux sous-groupes distincts de $\operatorname{Aut}(K)$, alors $K^{H_1} \neq K^{H_2}$

Démonstration.

- (i) Notons $n=|H|=[K:K^H]$. S'il existe $\sigma\in \operatorname{Aut}(K)\setminus H$ qui fixe K^H alors $\sigma\in G(K/K^H)$ qui serait d'ordre >|H|. Or $|G(K/K^H)|=[K:K^H]$.
- (ii) Par contraposée, si $K^{H_1} = K^{H_2}$, alors on a deux inclusions qui impliquent chacune $H_1 \subset H_2$ et $H_2 \subset H_1$ par (i). Donc $H_1 = H_2$.

COROLLAIRE 9.4 Soiut $G \subset \operatorname{Aut}(K)$ qui fixe $k \subset K$ et $H \subset G$. Si $L = K^H$ alors pour tout $\sigma \in G$, $\sigma(L) = K^{\sigma H \sigma^{-1}}$.

Démonstration.

- \subset Pour $a \in L$ et $\tau \in H$, on a $\sigma \tau \sigma^{-1}(\sigma(a)) = \sigma(\tau(a)) = \sigma(A) \in \sigma(L)$.
- ⊃ Si pour $b \in K$, on a $\sigma \tau \sigma^{-1}(b) = b$ donc $\tau \sigma^{-1}(b) = \sigma^{-1}(b)$ donc $\sigma^{-1}(b) \in L$ et $b \in \sigma(L)$.

Théorème 9.1 Galois Soit K/k galoisienne de degré fini.

- (i) Les applications $f: L \to G(K/L)$ et $g: H \to K^H$ sont bijectives et inverses l'une de l'autre.
- (ii) [K:L] = |G(K/L)| et [L:k] = (G(K/k):G(K/L))
- (iii) L/k est normale ssi $G(K/L) \triangleleft G(K/k)$. Dans ce cas, on a l'égalité G(L/k) = G(K/k)/G(K/L).

Démonstration.

- (i) Comme K/k est galoisienne, K/L le reste donc $K^{G(K/L)} = L$ donc $g \circ f = \text{Id donc } g$ surjective. On sait que g est injective par un des corollaires précédents donc g est bijective.
- (ii) On a

$$|G(K/k)| = [K:k] = [K:L][L:k] = [K:L][L:k] = |G(K/L)|[L:k]$$

Donc
$$[L:k] = \frac{|G(K/k)|}{|G(K/L)|}$$
.

(iii) Supposons $H=G(K/L)\lhd G(K/k)$. Pour tout $\sigma\in G(K/k),\ \sigma(L)=K^{\sigma H\sigma^{-1}}=K^H=L$. Posons

$$\varphi: \begin{cases} G(K/k) & \to & G(L/k) \\ \sigma & \mapsto & \sigma|_L \end{cases}$$

C'est un morphisme surjectif de noyau G(K/L) donc on a l'isomorphisme G(L/k) = G(K/L)G(L/k).

<u>Définition 9.3</u> Soit K/k algébrique. On dit que K/k est simple s'il existe $\alpha \in K$ tel que $K = k(\alpha)$.

Théorème 9.2 Soit K/k algébrique de degré fini. Il existe un nombre fini de corps intermédiaires $k \subset L \subset K$ ssi l'extension est simple.

Démonstration.

 \Rightarrow Si k est fini alors K aussi et si on note α un générateur de K^* , $K=k(\alpha)$ donc l'extension est simple.

Si k est infini alors on écrit par hypothèse $K = k(\alpha_1, \ldots, \alpha_n)$ (puisque $k \subseteq k(\alpha_1) \subseteq (\alpha_1, \alpha_2) \ldots$ fournit une suite de sous-corps qui est fini).

On démontre le résultat par récurrence sur n, le cas n=1 étant trivial. Pour le cas n, on écrit

$$k(\alpha_1, \dots, \alpha_n) = k(\alpha_1, \dots, \alpha_{n-1})(\alpha_n) = k(\beta)(\alpha_n)$$

par HR.

Si pour tout $a \in k$, les $k(a\beta + \alpha_n)$ sont distincts, on a une contradiction (k infini et il y a une nombre fini de sous-corps). Donc il existe $a' \neq a$ tel que $k(a\beta + \alpha_n) = k(a'\beta + \alpha_n)$.

Donc $a'\beta + \alpha_n \in k(a\beta + \alpha_n)$. On a ainsi

$$\frac{(a'\beta + \alpha_n) - (a\beta + \alpha_n)}{a' - a} = \beta \in k(a\beta + \alpha_n)$$

Donc $k(\beta, \alpha_n) \subset k(a\beta + \alpha_n)$ et l'inclusion réciproque est triviale. Le principe de récurrence conclut.

 \Leftarrow Si $K = k(\alpha)$ et $k \subset L \subset K$, on a $K = L(\alpha)$. On a $[K : L] = \deg(\mu_{\alpha,L})$ avec $\mu_{\alpha,L} \mid \mu_{\alpha,k}$.

On écrit $f_{\alpha,L} = \sum_{i=0}^m b_i X^i$. On va montrer que $F := k(b_0, \dots, b_m) = L$.

On sait déjà $F \subset L$. On montre que [L:F]=1. Or on a BUG

COROLLAIRE 9.5 Toute extension séparable de degré fini est simple.

Démonstration. On écrit $K = k(\alpha_1, \ldots, \alpha_n)$ et g le produit des $\mu_{\alpha_i,k}$. On pose $L = S_{q,k}$.

On a un nombre fini de sous-groupes H tel que $G(L/k) = \{\text{Id}\} \subset H \subset G(K/k)$ donc un nombre fini de corps intermédiaires, donc l'extension est simple.

<u>Définition 9.4</u> Soient E, F deux sous-corps d'un corps K. Le compositum de E et F est le plus petit sous-corps de K qui contient E et F.

Théorème 9.3 Soit K et E sous-corps de F contenant k. Si K/k est galoisienne alors KE/E est galoisienne et $G(KE/E) \simeq G(K/K \cap E)$.

Démonstration. On définit

$$\varphi: \begin{cases} G(KE/E) & \to & G(K/k) \\ \sigma & \mapsto & \sigma|_K \end{cases}$$

 $\operatorname{Ker} \varphi = {\operatorname{Id}} \operatorname{car} \operatorname{si} \sigma|_K = \operatorname{Id}, \text{ on fixe } E \text{ et } K \text{ donc } KE.$

Montrons que $K^{\operatorname{Im}(\varphi)} = K \cap E$. On sait que $K \cap E \subset K^{\operatorname{Im}(\varphi)}$ (les $\sigma \in K^{\operatorname{Im}(\varphi)}$ fxent E).

 $K^{\operatorname{Im}(\varphi)}E$ est dans le corps fixe G(KE/E) donc $K^{\operatorname{Im}(\varphi)}\subset E$.

Donc
$$K^{\operatorname{Im}(\varphi)} = K \cap E$$
.

Chapitre 10

Applications

10.1 Généralités

Lemme 10.0.1

Soit k un corps contenant ξ une racine primitive $n^{\rm e}$ de l'unité et K/k une extension galoisienne de degré fini tel que G(K/k) cyclique $\langle \sigma \rangle$. Il existe $\alpha \in K$ tel que $\sigma(\alpha) = \alpha \xi$.

Démonstration. $\sigma: K \to K$ est k-linéaire. On en cherche un vecteur propre. Comme $\sigma^n - \mathrm{Id} = 0$, $X^n - 1$ s'annule sur σ . Si f tel que $\deg(f) < n$ annule σ , on aurait une combinaison linéaire nulle de puissances < n de σ . Par Dedekind, f = 0 (n = [K:k] car extension galoisienne).

Donc ξ est valeur propre et on a le résultat.

THÉORÈME 10.1 Si k contient ξ , K/k une extension galoisienne tel que G(K/k) soit cyclique d'ordre n. Il existe $\alpha \in K$ tel que $\alpha^n = b \in k$.

Alors $K = k(\alpha)$ donc K est un corps de décomposition de $X^n - b$ qui est irréductible.

Démonstration. Par le lemme $G(K/k) = \langle \sigma \rangle$ avec $\sigma(\alpha) = \xi \alpha$. $\sigma^i \neq \text{Id donc}$ $\sigma^i(\alpha) \neq \alpha$. $k(\alpha)$ est donc le corps fixe de {Id}, ie K. Donc $K = k(\alpha)$.

 α est zéro de $X^n - \alpha^n$ et appartient à K. Comme $\xi \in K$, K est le corps de décomposition de $X^n - \alpha^n$.

<u>Définition 10.1</u> Un groupe fini G est dit résoluble ss'il existe $G = G_0 \triangleright ... \triangleright G_n = \{e\}$ tel que G_i/G_{i+1} soient abéliens.

Théorème 10.2 Si le groupe est fini, la définition est équivalente à celle avec G_i/G_{i+1} cyclique d'ordre premier.

Exemple 10.1 Dans \mathfrak{S}_3 , on a \mathfrak{A}_3 qui est commutatif et distingué donc tout le monde est résoluble.

Dans \mathfrak{S}_4 c'est plus compliqué

Proposition 10.1 Soit G un groupe, H < G et $N \triangleleft G$.

- ullet Si G est résoluble alors H l'est.
- G est résoluble ssi N et G/N le sont.

Proposition 10.2 Soit k un corps de caractéristique 0. $f = X^n - a \in k[X]$ non nul. Soit K le corps de décomposition de f sur k.

Alors G(K/k) est résoluble.

Démonstration. $K = k(\xi, \alpha)$. On a donc la chaîne :

$$G(K/k) \rhd G(K/k(\xi)) \rhd \{ \mathrm{Id} \}$$

Or $G(K/k)/G(K/k(\xi))$ est abélien (proposition d'un des chapitres d'avant sur $k(\xi)/k$.

Il reste à montrer que $G(K/k(\xi))$ est abélien. $\mu_{\alpha,k(\xi)} \mid X^n - a = \prod_{i=0}^{n-1} (X - \xi^i \alpha)$. Les racines de $\mu_{\alpha,k(\xi)}$ sont donc de la forme $\xi^j \alpha$ donc $G(K/k(\xi))$ est constitué des $\alpha \to \xi^j \alpha$ donc c'est un sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ donc abélien.

<u>Définition 10.2</u> On dit qu'un polynôme f est résoluble par radicaux ssi un corps de décomposition K est contenu dans un corps L vérifiant

$$k \subset K_1 = k(\alpha_1) \subset \ldots \subset K_n = K_{n-1}(\alpha_n) = L$$

Proposition 10.3 Dans la situation précédente, il existe $k \subset K'_0 \subset ... \subset K'_s$ avec $K_n \subset K'_s$, K'_i/k galoisienne et K'_i est corps de décomposition d'un $X^{m_i} - b_i \in K'_{i-1}[X]$.

Démonstration. Soit ξ une racine primitive de l'unité dans \overline{k} . On pose $K_1 = k(\xi)$. Posons $f_1 = \prod_{\sigma \in G(K_1/k)} (X^{m_1} - \sigma(b_i))$ et $g_1 = (X^m - 1)f_1$.

Posons K_2' le comps de décomposition de g_1 . En réitérant la construction ça marche.

Théorème 10.3 En caractéristique $0, f \in k[X]$ est résoluble par radicaux ssi G(K/k) l'est pour K corps de décomposition de f.

 $D\acute{e}monstration$. On montre uniquement \Rightarrow .

On écrit la définition de f résoluble par radicaux avec des K'_i . On considère les groupes de Galois associés $G_i = G(K'_s/K'_i)/$

On a $G_s = \{ \text{Id} \}$ et $G_{i-1}/G_i = G(K_i/K_{i-1})$ donc résoluble donc les G_i sont résolubles.

On a $k\subset K\subset K_s'$ donc $G(K/k)\simeq G(K_s'/k)/G(K_s'/K)$ est donc résoluble.

Problème : si $G \subset \mathfrak{S}_n$, est-ce qu'il existe $g \in \mathbb{Q}[X]$ dont c'est le groupe de Galois ?

Exemple 10.2 On considère $f = X^5 - 4X + 2 \in \mathbb{Q}[X]$ irréductible par Eisenstein. En étudiant la fonction, on trouve 3 racines réelles et 2 racines complexes conjuguées.

Soit K le corps de décomposition de f sur \mathbb{Q} . La conjuguaison correspond à une permutation de $G(K/\mathbb{Q})$ et $5 \mid G(K/\mathbb{Q})$ (regarder les Sylow) donc $G(K/\mathbb{Q}) = \mathfrak{S}_5$ qui n'est pas résoluble. Donc pas de fomule pour les polynômes de degré 5.

10.2 Constructions à la règle et au compas

On part de $B_0 = \{0, 1\}$ et on pose $B_{i+1} = B_i \cup \{$ points constructibles à partir de $B_i\}$.

Proposition 10.4 L'ensemble des points constructibles est un corps.

Démonstration. Thalès assure que si a et b sont constructibles, a+b, ab et $\frac{a}{b}$ aussi.

Considérer les intersections de droites et de cercles revient à considérer des extensions de degré 2. Un point est donc constructible ss'il appartient à une tour d'extensions de degré 2 de \mathbb{Q} .

10.2.1 Problèmes classiques

- Duplication du cube : Construire un cube de volume double à celui d'un cube construit, ie construire $\sqrt[3]{2}$.
- Trisection de l'angle : Couper un angle en trois parties égales, ce qui revient à construire des cos et sin.
- Quadrature du cercle : Construire un carré dont l'aire est celle d'un disque donné ie construire $\sqrt{\pi}$.

Remarque 10.1 Attention : si la règle est graduée, on peut trisecter l'angle ! Théorème 10.4 Le polygône régulier à n côtés P_n est constructible à la règle et au compas ssi $n = 2^k p_1 \dots p_s$ où $p_i = 2^{2^{k_i}} + 1$.