同调论期末试题 (回忆版)

考试时间: 2019 年 1 月 17 日 18:30-20:30

1. $(20 \ \mathcal{G})$ 设 X 是正六边形 $(20 \ \mathcal{G})$ 按照如图所示将边界粘合所得到的空间. 给出 X 的一个胞腔剖分,写出对应的胞腔链复形和上链复形, 计算 X 的同调群和上同调群, 并对每个 (L) 同调群具体地用 (L) 链群中的元素写出一组生成元.

- 2. (10 分) 设 X 是拓扑空间. 求证: 对任意 $p, H_p(X \times S^n) \cong H_p(X) \oplus H_{p-n}(X)$.
- 3. (10 分) 设 X 是 CW 复形, X^n 是 X 的 n 维骨架. 求证: 对任意 $p \le n$, $H^p(X, X^n) = 0$.
- 4. (15 分) 设拓扑空间 X 可以写成 n 个开集 A_1, A_2, \cdots, A_n 的并, 并且任意多个 A_i 的交为空集或可缩. 求证: 对任意 $p \geq n-1$, $\widetilde{H}_p(X)=0$.
 - 5. (15 分) 设 A 是拓扑空间 X 的收缩核, \mathcal{H} 是一个广义同调理论. 求证: $\mathcal{H}_*(X) \cong \mathcal{H}_*(A) \oplus \mathcal{H}_*(X,A)$.
 - 6. (15 分) 设 M 是三维闭流形, $\beta_1(M) = n$. 求证:
 - (1) 若 M 可定向, 则 $H_2(M) \cong \mathbb{Z}^n$;
 - (2) 若 M 不可定向, 则 $H_2(M) \cong \mathbb{Z}^{n-1} \oplus \mathbb{Z}_2$.
 - 7. $(15 \, \mathcal{H})$ 设 M 是闭胞腔流形, 且 M 和 $S^m \times S^n$ 的每一维同调群都同构.
 - (1) 求证: 若 $m \neq n$, 则 M 和 $S^m \times S^n$ 的上同调环也同构;
 - (2) 举例说明: 若 m = n, 则第 (1) 问的结论不一定成立, 并说明理由.