

Shell weight

age

Viscera weight

Out[]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
	Sex								
	Î	0.427746	0.326494	0.107996	0.431363	0.191035	0.092010	0.128182	9.390462
	M	0.561391	0.439287	0.151381	0.991459	0.432946	0.215545	0.281969	12,205497
	F	0.579093	0.454732	0.158011	1.046532	0.446188	0.230689	0.302010	12.629304

BIVARIATE ANALYSIS, MULTIVARIATE ANALYSIS

Shucked weight

4. Descriptive statistics

In []: df.describe()

age	Shell weight	Viscera weight	Shucked weight	Whole weight	Height	Diameter	Length	
4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177,000000	count
11.433684	0.238831	0.180594	0.359367	0.828742	0.139516	0.407881	0.523992	mean
3.224169	0.139203	0.109614	0.221963	0.490389	0.041827	0.099240	0.120093	std
2,500000	0.001500	0.000500	0.001000	0.002000	0.000000	0.055000	0.075000	min
9.500000	0.130000	0.093500	0.186000	0.441500	0.115000	0.350000	0.450000	25%
10.500000	0.234000	0.171000	0.336000	0.799500	0.140000	0.425000	0.545000	50%
12.500000	0.329000	0.253000	0.502000	1.153000	0.165000	0,480000	0.615000	75%
30.500000	1.005000	0.760000	1.488000	2.825500	1.130000	0.650000	0.815000	max

5.Check for Missing Values


```
In []: # outliers removal
    df.drop(df[(df['Viscera weight']> 0.5) & (df['age'] < 20)].index, inplace=True)
    df.drop(df[(df['Viscera weight']< 0.5) & (df['age'] > 25)].index, inplace=True)

In []:
    var = 'Shell weight'
    plt.scatter(x = df[var], y = df['age'],)
    plt.grid(True)
    #outliers removal
    df.drop(df[(df['Shell weight']> 0.6) & (df['age'] < 25)].index, inplace=True)
    df.drop(df[(df['Shell weight']< 0.8) & (df['age'] > 25)].index, inplace=True)
```



```
In [ ]:
    var = 'Shucked weight'
    plt.scatter(x = df[var], y = df['age'],)
    plt.grid(True)

#Outlier removal
    df.drop(df[(df['Shucked weight']>= 1) & (df['age'] < 20)].index, inplace=True)
    df.drop(df[(df['Shucked weight']<1) & (df['age'] > 20)].index, inplace=True)
```


7.Categorical columns

```
In [ ]: categorical_features
Out[ ]: Index([], dtype='object')
           ENCODING
In [ ]:
    from sklearn.preprocessing import LabelEncoder
    le=LabelEncoder()
    print(df.Length.value_counts())
           0.575
                     93
           0.575 93
0.625 91
0.580 89
0.550 89
0.620 83
                      ..
2
1
           0.220
           0.150
           0.755
0.135
                       1
           0.760
           Name: Length, Length: 126, dtype: int64
           8.Split the dependent and independent variables
In [ ]: x=df.iloc[:,:5]
            x
```

Out[]:		Length	Diameter	Height	Whole weight	Shucked weight
	0	0.455	0.365	0.095	0.5140	0,2245
	1	0.350	0.265	0.090	0.2255	0.0995
	2	0.530	0.420	0,135	0.6770	0.2565
	3	0.440	0.365	0.125	0.5160	0,2155
	4	0.330	0.255	0.080	0.2050	0.0895
		500			***	
	4172	0.565	0.450	0,165	0.8870	0.3700
	4173	0.590	0.440	0.135	0,9660	0.4390
	4174	0.600	0.475	0.205	1.1760	0.5255
	4175	0.625	0.485	0.150	1.0945	0.5310
	4176	0.710	0.555	0,195	1.9485	0.9455

3995 rows × 5 columns

In []: y=df.iloc[:,5:]

Out[]:		Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
	0	0.1010	0.1500	16.5	0	0	1
	1	0.0485	0,0700	8.5	0	0	1
	2	0.1415	0.2100	10.5	- 1	0	0
	3	0.1140	0.1550	11,5	0	0	1
	4	0.0395	0.0550	8,5	.0	1	0
			-	-	***		
	4172	0.2390	0.2490	12.5	1	0	0
	4173	0.2145	0.2605	11.5	0	0	1
	4174	0.2875	0.3080	10.5	0	0	1
	4175	0.2610	0.2960	11.5	1	0	0
	4176	0.3765	0.4950	13,5	0	0	1

3995 rows × 6 columns

10, Train , Test , Split

In []:
 from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

from sklearn.linear_model import LinearRegression
mlr=LinearRegression()
mlr.fit(x_train,y_train)

Out[]: LinearRegression()

12, 13 Train and Test the model

In []: x_test[0:5]

Out[]:		Length	Diameter	Height	Whole weight	Shucked weight
ATTOM AT	345	0.490	0.390	0.140		0.2795
	3320	0.535	0.425	0.155	0.7765	0.3020
	46	0.470	0.370	0.120	0.5795	0.2930
	2002	0.360	0.270	0.085	0.1960	0.0905
	3645	0.475	0.335	0.100	0.4425	0.1895

In []) y_test[0:5]

	345	0.2185	0.180	14.5	0	0	1
	3320	0.1565	0.250	17.5	1	0	0
	46	0.2270	0.140	10.5	0	0	1
	2002	0.0340	0.053	8.5	0	1	0
	3645	0.0860	0,135	10.5	0	1	0
:	ss=Standar	arn.preproce rdScaler() s.fit_transf	(5.370) (0.002) (4))		andaro	dScaler	
1:	mlrpred=mlr.predict(x_test[0:9])						
j:	: mlrpred						

Out[]: Viscera weight Shell weight age Sex_F Sex_I Sex_M

14. Measure the performance using metrics

```
In [ ]: from sklearn.metrics import r2_score
    r2_score(mlr.predict(x_test),y_test)
```

Out[]: -3.029128134716346