POLITECHNIKA WROCŁAWSKA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA

KIERUNEK: INFORMATYKA SPECJALNOŚĆ: DANOLOGIA

KURS: INDUKCYJNE METODY ANALIZY DANYCH

Klasyfikator oparty na twierdzeniu Bayesa przy naiwnym założeniu o wzajemnej niezależności atrybutów

Dokumentacja ćwiczenia nr 1

AUTOR:

Adam Dłubak

PROWADZĄCY:

Dr inż. Paweł Myszkowski

Rozdział 1

Opis algorytmu

Naiwny klasyfikator Bayesa jest to technika klasyfikacji oparta na teorii Bayesa z oszacowaniem niezależności pomiędzy wskaźnikami. Oznacza to, iż naiwny klasyfikator Bayesa zakłada, że obecność każdej poszczególnej cechy w kategorii jest niezwiązana z obecnością żadnej innej cechy. Przykładowo pojazd może być uznany za samochód jeśli ma cztery koła, silnik i kierownicę. Nawet jeśli te cechy zależą od siebie nawzajem albo od istnienia innych cech, wszystkie one niezależnie zwiększają prawdopodobieństwo, że ten pojazd to samochód i to właśnie dlatego w nazwie występuje słowo "naiwny".

Naiwny model Bayesa jest łatwy do zbudowania i szczególnie przydatny dla bardzo dużych zestawów danych. Naiwny Bayes, pomimo swojej prostoty, jest znany z przewyższania nawet bardzo wyrafinowanych metod klasyfikacji.

W języku programowania *Python* w bibliotece *Scikit learn* są trzy typy modeli Naiwnego Bayesa:

- Gaussa jest wykorzystywany w klasyfikacji i zakłada, że cechy wynikają z rozkładu normalnego.
- Wielomianowy używa się go do odrębnych wyliczeń. Przykładowo, jeżeli występuje problem z klasyfikacją tekstu. Tutaj można rozważyć próby Bernoullego, które są jeden krok dalej i zamiast "słowo występujące w tekście", należy "policz jak często słowo występuje w tekście", można pomyśleć o tym jak o "ilość razy gdy liczba wyników x(i) jest zaobserwowana przez n prób".
- **Bernoullego** dwumianowy model przydaje się jeśli cechy wektorów są binarne (np. zera i jedynki). Jedna aplikacja będzie klasyfikacją tekstu z modelem "torbą słów", gdzie jedynki i zera są "słowami występującymi w tekście" i odpowiednio "słowami niewystępującymi w tekście".

Wzór, z którego korzysta nawiny Bayes jest uproszczony, gdyż pomija prawdopodobieństwo wystąpienia obserwacji (mianownik z twierdzenia Bayesa). Wynika to z tego, że przyjmuje się to samo prawdopodobieństwo wystąpienia zdarzenia w klasach. Dzięki temu zabiegowi etap uczenia jest bardzo szybki - proces wymaga tylko zliczania wystąpień.

Rozdział 2

Wykorzystane dane

W ramach realizacji ćwiczenia, badania zostały oparte o 3 zbiory danych testowych, które uwzględniały również dane z wartościami ciągłymi. Wykorzystane zbiory danych to:

Wine dataset

Zbiór danych jest wynikiem analizy chemicznej win uprawianych w tym samym regionie we Włoszech, ale uzyskanych z trzech różnych odmian. W analizie określono 13 składników znalezionych w każdym z trzech rodzajów win.

- Liczba atrybutów: 13.
- Rodzaj atrybutów: wartości typu Integer.
- Liczba instancji: 178.
- Liczba klas: 3, występuje zróżnicowanie w ilości instancji w klasie.

• Glass dataset

Zbiór danych powstał w wyniku motywacji badania dochodzeń kryminologicznych. Poprawne zidentyfikowanie rodzaju szkła znalezionego na miejscu przestępstwa, na postawie jego składu pozwala na użycie go jako dowodu w sprawie.

- Liczba atrybutów: 10.
- Rodzaj atrybutów: realistyczne, ciągłe.
- Liczba instancji: 214.
- Liczba klas: 7, występuje zróżnicowanie w ilości instancji w klasie.

• Diabetes (Pima Indians Diabetes) dataset

Zbiór danych Pima Indian Diabetes przewidywanie wystąpienie cukrzycy w oparciu o badania diagnostyczne. Pochodzi on z *National Institute of Diabetes and Digestive and Kidney Diseases*. Celem jego stworzenia jest przewidywanie, czy pacjent cierpi na cukrzycę w oparciu o badania diagnostyczne.

- Liczba atrybutów: 9.
- Rodzaj atrybutów: realistyczne, ciągłe.
- Liczba instancji: 768.
- Liczba klas: 2.

Rozdział 3

Badania i Analiza Danych

3.1. Kroswalidacja i stratyfikowana kroswalidacja

Rys. 3.1: K-Fold vs Stratified K-Fold for Wine Dataset (Gaussian Classifier)

Tab. 3.1: K-Fold vs Stratified K-Fold for Wine Dataset (Gaussian Classifier

Liczba Foldów	2	5	10	20	30	50
K-Fold	0.350	0.614	0.694	0.747	0.776	0.789
Stratified K-Fold	0.545	0.773	0.813	0.815	0.819	0.790

Przedstawione powyżej dane dokładnie wskazują na przewagę sposobu stratyfikowania danych w foldach. Dzięki temu uzyskiwane wyniki są stanowczo lepsze (szczególnie dla małej liczby foldów), niż w przypadku, gdy dane w nich zostaną rozmieszone losowo. Dopiero w bardzo dużej liczbie foldów (30 i więcej), ta znaczna różnica rozpoczyna się zacierać jednak nadal jest widoczna.

3.2. Dyskretyzacja

Rys. 3.2: Dyskretyzacja zbioru Glass

0.9 0.8 0.7 0.6 0.6 0.3 0.2 0.1 0 Diabetes Glass Wine Iris

3.3. Analiza sposobów dyskretyzacji

■ Equal

Rys. 3.3: Porównanie sposobów dyskretyzacji względem różnych zbiorów danych

■ Frequenty ■ Histogram ■ Multinomial Without Discretization

	Diabetes	Glass	Wine	Iris
Normal	0.730	0.825	0.962	0.961
Equal	0.593	0.622	0.827	0.970
Frequenty	0.563	0.732	0.871	0.957
Histogram	0.572	0.517	0.843	0.972
Multinomial Without Discretization	0.541	0.616	0.826	0.931

Tab. 3.2: Porównanie sposobów dyskretyzacji względem różnych zbiorów danych

W zestawieniu tym porównane zostały wszystkie analizowane 4 zbiory danych oraz 3 sposoby dyskretyzacji. Ponadto został przeprowadzony test wykorzystujący klasyfikator Gaussowski oraz klasyfikator Multinomial na danych, które nie zostały zdyskretyzowane.

Powołując się na treści literatury, z przebadanych danych powinno wynikać, iż klasyfikator oparty o założenie rozkładu normalnego danych powinien radzić sobie z ich kwalifikacją najgorzej, jednakże według przeprowadzonych danych jest wręcz przeciwnie. Zachowuje się on nad wyraz dobrze. Wynikać to może z nie do końca poprawnej implementacji dyskretyzacji danych. Biorąc jednak pod uwagę jedynie sposoby dyskretyzacji danych, widać iż nie ma jednego, najskuteczniejszego sposobu dyskretyzacji danych. W zależności od zbioru na którym prowadzone są badania i rozkładzie jego danych, różnie radzą sobie sposoby dyskretyzacji. W przypadku zbioru Glass zdecydowanie najlepszy okazał się sposób dyskretyzacji z uwzględnieniem równości występować atrybutów w każdym kubełku. Może to wynikać z bliskości rozkładu atrybutów tego zbioru do rozkładu normalnego. W przypadku zbioru Diabetes przykładowo, najlepszy okazał się sposób podziału na X równych kubełków.

Rys. 3.4: Zestawienie uzyskiwanych wyników na zbiorze Wine

Tab. 3.3: Zestawienie uzyskiwanych wyników na zbiorze Wine

	Normal	Equal	Frequenty	Histogram	MN wi-
					thout discr.
Accuracy	0.956	0.815	0.863	0.837	0.858
Precision Macro	0.962	0.827	0.871	0.843	0.876
Recall Macro	0.960	0.810	0.860	0.827	0.856
F1 Macro	0.957	0.809	0.858	0.824	0.855