Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_tehnologic* Barem de evaluare și de notare

Varianta 2

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3(2-\sqrt{2}) = 6-3\sqrt{2}$ $6-3\sqrt{2}+3\sqrt{2}=6$	2p 3p
		_
۷.	f(0) = -1	2 p
	f(0) = -1 $f(2) = 1$	2p
	$f(0) \cdot f(2) = -1$	1p
3.	$5^{x-2} = 5^2$	2 p
	x = 4	3 p
4.	$10\% \cdot 100 = 10$	2p
	Prețul după scumpire este 110 lei	3p
5.	$AB = \sqrt{(1-1)^2 + (3-1)^2}$	3p
	AB=2	2p
6.	$\cos 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\cos 135^\circ = -\frac{\sqrt{2}}{2}$	2 p
	$\cos 45^\circ + \cos 135^\circ = 0$	1p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$M\left(\frac{1}{2}\right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2p
	$M\left(-\frac{1}{2}\right) = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}$	2p
	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = M(0)$	1p
b)	$\det(M(a)) = \begin{vmatrix} 2a & 0 \\ 0 & 2a \end{vmatrix} = 4a^2$	3p
	$4a^2 = 0 \Leftrightarrow a = 0$	2 p
c)		2 p
	$=3M\left(0\right)=\begin{pmatrix}0&0\\0&0\end{pmatrix}$	3 p
2.a)	$f(1) = 1^3 - 2 \cdot 1^2 + 1 =$	3 p
	=1-2+1=0	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

b	Câtul este X Restul este $-X + 1$	2p 3p
С	$x_1 + x_2 + x_3 = 2$, $x_1 x_2 + x_2 x_3 + x_3 x_1 = 0$	2p
	$x_1^2 + x_2^2 + x_3^2 = 4 - 2 \cdot 0 = 4$	3 p

	$x_1^2 + x_2^2 + x_3^2 = 4 - 2 \cdot 0 = 4$	3p
SUBIECTUL al III-lea (30		
1.a)	$f'(x) = (\sqrt{x})' - 1' = \frac{1}{2\sqrt{x}}$, pentru orice $x \in (0, +\infty)$	3p
	$2\sqrt{x} f'(x) = 2\sqrt{x} \cdot \frac{1}{2\sqrt{x}} = 1$, pentru orice $x \in (0, +\infty)$	2 p
b)	y-f(4)=f'(4)(x-4)	2 p
	$f(4) = 1$, $f'(4) = \frac{1}{4} \Rightarrow$ ecuația tangentei este $y = \frac{1}{4}x$	3р
c)	$f''(x) = -\frac{1}{4x\sqrt{x}}$, pentru orice $x \in (0, +\infty)$	3р
	$f''(x) < 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este concavă pe intervalul $(0, +\infty)$	2 p
2.a)	$\int_{1}^{2} \left(f(x) - \frac{1}{x} \right) dx = \int_{1}^{2} (2x+1) dx =$	2p
	$ = (x^2 + x) \Big _{1}^{2} = (4+2) - (1+1) = 4 $	3р
b)	$F'(x) = (x^2 + x + \ln x)' = 2x + 1 + \frac{1}{x}$	3p
	$F'(x) = f(x)$, pentru orice $x \in (0, +\infty) \Rightarrow F$ este o primitivă a funcției f	2 p
c)	$\mathcal{A} = \int_{1}^{2} f(x) dx = \int_{1}^{2} \left(2x + 1 + \frac{1}{x}\right) dx =$	2p
	$ = \left(x^2 + x + \ln x\right) \Big _{1}^{2} = 4 + 2 + \ln 2 - 1 - 1 - \ln 1 = 4 + \ln 2 $	3р