คณิตศาสตร์ดีสครีตสำหรับการเขียนโปรแกรม (Discrete Mathematics for Programming)

Phaphontee Yamchote

Contents

Basio	Programming by Python	1
Func	lamental of Problem Solving	3
1.1	Problem Solving คืออะไร	3
1.2	การแก้ปัญหาเชิงการคำนวณ	5
	1.2.1 การแบ่งย่อยปัญหา (decomposition)	5
	1.2.2 การเข้าใจรูปแบบ (pattern recognition)	6
Basic	Python Syntax	7
Basi	c Mathematical Reasoning and Proving	9
Math	nematics as a Language	11
Basic	Objects in Mathematics	15
Logic	c, Reasoning and Proof	17
5.1	ตรรกศาสตร์คืออะไร	18
5.2	การให้เหตุผลทางคณิตศาสตร์ และการพิสูจน์	18
5.3	การเขียนพิสูจน์	18
Recu	rsion and Mathematical Induction	19
	Basic Basic Logic 5.1 5.2 5.3	1.2 การแก้ปัญหาเชิงการคำนวณ 1.2.1 การแบ่งย่อยปัญหา (decomposition) 1.2.2 การเข้าใจรูปแบบ (pattern recognition) Basic Python Syntax Basic Mathematical Reasoning and Proving Mathematics as a Language Basic Objects in Mathematics Logic, Reasoning and Proof 5.1 5.1 ตรรกศาสตร์คืออะไร 5.2 การให้เหตุผลทางคณิตศาสตร์ และการพิสูจน์

ii *CONTENTS*

Ш	Disc	crete Ma	athematics with Programming	21
7	Set T	heory: wi	ith more implementation	23
8	Num	ber Theo	ry	25
	8.1	การหารส	ลงตัว	26
	8.2	ขั้นตอนวิ	ชีการหาร: Division Algorithm	29
	8.3	Theory	Exercise	32
	8.4	program 8.4.1	nming: การหารลงตัวที่เขียนกันเองด้วยนิยาม	33 35
		8.4.2	พิจารณาแค่จำนวนบวกก็พอ	35
		8.4.3	เปลี่ยนจากปัญหาการคุณเป็นปัญหาการบวก	36
		8.4.4	เขียนแบบฟังก์ชันเวียนเกิด	37
	8.5	program	nming: ตรวจสอบการเป็นจำนวนเฉพาะ	39
		8.5.1	- วิธีเบื้องต้น	39
		8.5.2	วิธีที่ไม่ใช้ลิสต์ หรือการจำตัวประกอบทั้งหมดของ $n = \dots \dots$	41
		8.5.3	ลดจำนวนครั้งการคำนวณได้มากกว่านี้อีก	42
	8.6	program	nming: แยกตัวประกอบในรูปผลคูณจำนวนเฉพาะ	43
		8.6.1	วิธีวนซ้ำตามจำนวนเฉพาะ	44
		8.6.2	วิธีเวียนเกิด	47
	8.7	program	nming: ขั้นตอนวิธีการหารหาเศษและผลหาร	48
	8.8	Program	nming Exercise	49
9	Com	binations		51
	9.1	หลักการ	บวกและหลักการคูณ	51
		9.1.1	หลักการบวก	51
		9.1.2	หลักการคูณ	53
	9.2	การเรียง	สับเปลี่ยน	57
		9.2.1	การเรียงสับเปลี่ยนเชิงเส้นแบบของไม่ซ้ำ	57
		9.2.2	การเรียงสับเปลี่ยนแบบวงกลม	59
		9.2.3	การเรียงสับเปลี่ยนเชิงเส้นแบบของซ้ำ	61
	9.3	การจัดกล	គ្នុំររ	62

CONTENTS	iii

	9.4	สัมประสิท	ธิ์ทวินาม	64
		9.4.1	ทฤษฎีบททวินาม	64
		9.4.2	การใช้ทฤษฎีบททวินามในการพิสูจน์เอกลักษณ์เชิงการจัด	65
		9.4.3	โจทย์ปัญหาเพิ่มเติมเกี่ยวกับการจัดกลุ่ม	65
	9.5	หลักการน์	ำเข้า-ตัดออก	66
	9.6	Programn	ming about Combinatorics	67
10	Recuri	rence Rela	ation	69
1 1	Dague	منده ۱۸	the an approach to functional programming	71
11	Recurs	sive Algor	ithm - an approach to functional programming	71
12	Graph	Theory		73

iv CONTENTS

Part I

Basic Programming by Python

Fundamental of Problem Solving

เราจะเริ่มบทแรกของหนังสือเล่มนี้ด้วยทักษะที่สำคัญที่สุดไม่ว่าจะในการเรียนคณิตศาสตร์ หรือจะคอมพิวเตอร์ ก็ตาม นั่นคือทักษะการแก้ปัญหา (problem solving) เพราะแก่นแท้ของตัววิชาเหล่านี้นั้นคือการนำความรู้ ไปใช้ในการแก้ปัญหาต่าง ๆ ไม่ว่าจะปัญหาในตัววิชาเองในรูปแบบปัญหาเชิงการคำนวณ (computational problem) หรือปัญหาในโลกจริง กล่าวคือ ปัญหาคือสิ่งที่เราจะต้องพบเจอเป็นเรื่องปกติในการเรียนวิชานี้

ในบทนี้เราจะเริ่มจากมาดูกันก่อนว่าปัญหาคืออะไร และการแก้ปัญหาคืออะไร เพราะก่อนจะลงมือแก้ ปัญหา เราก็ต้องเข้าใจก่อนว่าสิ่งเหล่านี้คืออะไร หลังจากที่เข้าใจเกี่ยวกับสิ่งที่เรียกว่าปัญหาแล้ว เราจะมาต่อ กันว่าทักษะหรือแนวคิดอะไรบ้างที่สำคัญในการแก้ปัญหา โดยจะไม่กล่าวถึงรายละเอียดปลีกย่อยของเทคนิค การแก้ปัญหา เพราะในแต่ละรูปแบบปัญหาที่ต่างกัน ก็จะมีรายละเอียดในเรื่องวิธีการแก้ปัญหาหรือเทคนิค การแก้ปัญหาที่แตกต่างกันออกไป เหมือนการทำโจทย์คณิตศาสตร์ที่รูปแบบโจทย์ที่แตกต่างกันก็อาจจะมี เทคนิคที่แตกต่างกัน แต่ว่าสิ่งที่จะทำให้เรารู้ว่าต้องใช้เทคนิคหรือวิธีการอะไรในการแก้ปัญหาที่ต้องการแก้ก็ คือประสบการณ์ที่เราจะได้ฝึกกันในแต่ละบท ๆ ต่อจากนี้นั่นเอง

1.1 Problem Solving คืออะไร

ก่อนจะถามว่าการแก้ปัญหาคืออะไร ก็คงไม่เสียเวลาอะไรนักถ้าเราจะมาพูดคุยตกลงกันให้เข้าใจก่อนว่า อะไร คือ**ปัญหา** ซึ่งถ้าเราเปิดดูความหมายตามราชบัณฑิต คำนี้จะมีความหมายว่า

น. ข้อสงสัย, ข้อขัดข้อง, เช่น ทำได้โดยไม่มีปัญหา, คำถาม, ข้อที่ควรถาม, เช่น ตอบปัญหา, ข้อที่ต้องพิจารณา แก้ไข เช่น ปัญหาเฉพาะหน้า ปัญหาทางการเมือง.

ซึ่งบางความหมาย อาจจะรู้สึกว่าปัญหาก็คืออะไรที่รู้สึกว่าไม่ดี เพราะจะทำให้สิ่งต่าง ๆ ดำเนินไปไม่เป็นไปตาม

ที่ควรจะเป็น เช่นข้อขัดข้อง หรือข้อที่ต้องพิจารณาแก้ไข ทว่ายังมีความหมายอีกกลุ่มหนึ่งที่ดูน่าสนใจคือ ข้อ สงสัย ข้อควรถาม ที่เรามักพูดกันว่า "ตอบปัญหา"

ในหนังสือเล่มนี้ (และในคณิตศาสตร์ รวมไปถึงการเขียนโปรแกรมคอมพิวเตอร์) เราจะให้ความหมายของ ปัญหา คือ โจทย์ที่ถามหรือกล่าวขึ้นมาพื่อต้องการคำตอบโดยอาจจะมีเงื่อนไขบางอย่างหรือไม่มีก็ได้ โดยจะ เป็นการกล่าวถึงสถานการณ์ที่มีสิ่งตั้งต้นอะไรสักอย่าง แล้วสุดท้าย(หลังจากผ่านกระบวนการอะไรสักอย่าง)จะได้สิ่งที่ต้องการออกมา

ตัวอย่างเช่น "บริษัทจัดสรรแม่บ้านทำความสะอาดตามสั่งแห่งหนึ่งได้รับการจองคิวใช้บริการแม่บ้านเข้า มาจำนวนหนึ่งจากลูกค้าหลายราย โดยที่ลูกค้าแต่ละคนก็มีจำนวนวันที่ต้องการใช้บริการแม่บ้านไม่เหมือนกัน ทางบริษัทเลยอยากรู้ว่าต้องเตรียมแม่บ้านไว้กี่คน" ซึ่งเราจะพบว่าปัญหานี้เราต้องการรู้ว่าต้องเตรียมแม่บ้าน ไว้กี่คน โดยเรามีรายการการจองคิวเป็นตัวตั้งของการตอบปัญหานี้

จากตัวอย่างที่กล่าวมา จะเรียกสิ่งตั้งต้น (เช่นรายการการจองคิวที่บริษัทได้รับ) ว่า**ข้อมูลขาเข้า** (input) และเราจะเรียกสิ่งที่ได้ออกมา (เช่นจำนวนแม่บ้านที่ต้องเตรียมไว้) ว่า**ข้อมูลขาออก** (output) ดังนั้น เราอาจ จะกล่าวได้อีกแบบหนึ่งว่าปัญหาก็คือการมีข้อมูลขาเข้า และข้อมูลขาออกที่ต้องการ และสิ่งที่เราต้องลงแรงหา ก็คือ วิธีการที่จะแปลเปลี่ยนข้อมูลขาเข้าดังกล่าวให้ได้ข้อมูลขาออกตามที่ต้องการ ซึ่งเราจะเรียกกระบวนการ การหาวิธีการดังกล่าวว่า**การแก้ปัญหา** (problem solving) และจะเห็นว่าสิ่งสำคัญอันดับแรกสุดไม่ว่าเราจะ แก้ปัญหาอะไรก็ตามคือการทำความเข้าใจภาพรวมของโจทย์ (problem statement) ว่าตัวปัญหาคืออะไร และระบุให้ได้ว่าอะไรคือข้อมูลขาเข้า และข้อมูลขาออก โดยถ้าเทียบกับตัวอย่างบริษัทแม่บ้านทำความสะอาด ก่อนหน้า จะมีรายละเอียดดังนี้

- โจทย์: หาวิธีการในการคำนวณจำนวนแม่บ้านที่ต้องเตรียมไว้เมื่อได้รับรายการการจองคิวใช้บริการ จากลูกค้า
- ข้อมูลขาเข้า: รายการการจองคิวใช้บริการ
- ข้อมูลขาออก: จำนวนแม่บ้านที่ต้องเตรียมไว้

ทั้งนี้ ตัวปัญหาเองก็อาจจะถูกแบ่งกลุ่มออกเป็นประเภทต่าง ๆ ได้หลายประเภท แต่ปัญหาที่เราจะสนใจ กันในหนังสือเล่มนี้นั้นจะเป็นปัญหาในกลุ่ม**ปัญหาเชิงการคำนวณ** (computational problem) หรือหนังสือ บางเล่มจะเรียกว่าปัญหาเชิงการประมวลผล ซึ่งคำว่าคำนวณในที่นี่ไม่ได้หมายถึงเพียงแค่การบวก ลบ คูณ หาร หรือการทำโจทย์คณิตศาสตร์ (calculation) แต่ยังรวมไปถึงการวางแผนเชิงกระบวนการ เชิงตรรกะ เชิง เหตุผล หรือรวมไปถึงการคิดเชิงสัญลักษณ์เองก็ด้วย ไม่จำเป็นว่าจะต้องเป็นปัญหาที่เกี่ยวกับตัวเลขเพียง เท่านั้น ซึ่งกระบวนการการแก้ปัญหาเชิงการคำนวณถือว่าเป็นทักษะที่สำคัญที่สุดในการเขียนโปรแกรม รวม ไปถึงการศึกษาคณิตศาสตร์ และวิทยาการคอมพิวเตอร์ โดยเราจะได้กล่าวถึงรายละเอียดของกระบวนการดัง กล่าวในหัวข้อถัดไป

1.2 การแก้ปัญหาเชิงการคำนวณ

จากหัวข้อที่แล้ว เราอาจกล่าวโดยสรุปได้ว่าปัญหาเชิงการคำนวณก็คือปัญหาที่จะสามารถแก้ได้ด้วยคอมพิวเตอร์ โดยการออกแบบอัลกอริทึมที่เหมาะสม และในการแก้ปัญหาเชิงการคำนวณนั้น จะมีทักษะที่สำคัญที่จะช่วย ให้เราแก้ปัญหาเชิงการคำนวณได้อย่างมีประสิทธิภาพอยู่ 4 ทักษะได้แก่

- 1. การแบ่งย่อยปัญหา (decomposition)
- 2. การเข้าใจรูปแบบ (pattern recognition)
- 3. การคิดเชิงนามธรรม (abstraction)
- 4. การออกแบบขั้นตอนวิธี (algorithm design)

1.2.1 การแบ่งย่อยปัญหา (decomposition)

ในการแก้ปัญหาหนึ่งที่เราได้รับมานั้น อาจเป็นการยากถ้าเราจะหาวิธีที่แปลงข้อมูลขาเข้าให้กลายเป็นข้อมูลขา ออกได้ภายในขั้นเดียว อาจจะเนื่องมาจากการแก้ปัญหาดังกล่าวต้องการขั้นตอนย่อย ๆ หรือเครื่องมือย่อย ๆ ในการแก้ปัญหานั้น ดังนั้นเราจึงควรย่อยปัญหาใหญ่ให้ออกเป็นปัญหาย่อย ๆ ที่จะสามารถแก้ได้ง่าย ๆ ไม่ซับ ซ้อนก่อน

ตัวอย่างเช่นเราอยากจะต่อจิกซอว์สักรูปหนึ่ง คงเป็นการยากถ้าเราจะเทจิกซอว์ทั้งหมดลงมาในแผ่นเดียว แล้วต่อขึ้นมาด้วยการมองภาพทั้งภาพในเวลาเดียวกัน แต่คงจะดีขึ้นถ้าเรารู้ว่าในภาพมืองค์ประกอบย่อย ๆ ที่ เห็นความแตกต่างเรื่องสีอย่างชัดเจน เช่นมีบริเวณหนึ่งที่มีแต่สีแดง และมีอีกบริเวณหนึ่งที่มีแต่สีเขียว หรืออีก บริเวณหนึ่งเป็นลายผ้าสีเหลืองลายจุดสีส้ม เราก็เลยจะแบ่งปัญหาการต่อจิกซอว์ทั้งผืนเป็นปัญหาการต่อจิก ซอว์กลุ่มย่อย ๆ ที่เป็นสีแดง, ปัญหาการต่อจิกซอว์กลุ่มย่อย ๆ ที่เป็นสีเหลืองลายจุดสีส้ม ซึ่งจะทำให้เกิดปัญหาที่เล็กลงและอาจจะซับซ้อนน้อยลงเพราะเรากำจัดตัว เลือกจิกซอว์ที่ไม่เกี่ยวข้องกับบริเวณดังกล่าวออกไปได้เยอะ

ขออีกสักตัวอย่างที่ดูเป็นปัญหาเชิงการคิดเลขมากขึ้น เช่นปัญหาการแก้สมการจำนวนเต็ม x+y+12z=30 โดยที่ x,y และ z เป็นจำนวนเต็มบวกสามจำนวนที่ต่างกัน โดยโจทย์ต้องการว่ามีผลเฉลย (x,y,z) ดังกล่าวทั้งหมดกี่ครูปแบบ ซึ่งแน่นอนว่าถ้าเราไล่ไปเรื่อย ๆ ก็อาจจะเสร็จได้ไม่ได้ยากมาก เพราะ เลขเราต้องการผลบอกแค่ 30 ถ้าต้องไล่ 0 ถึง 30 ก็มีอยู่ไม่เกิน $31\times31\times31=29791$ รูปแบบ ซึ่งถ้า ให้คอมพิวเตอร์ช่วยรันให้ก็คงใช้เวลาไม่นาน แต่ถ้าใช้คนก็อาจจะเหนื่อยก่อนและมีคิดผิดบ้างได้ แต่เราจะเห็น ว่าการเพิ่มขึ้นของค่า z นั้นกลับมีประโยชน์อย่างมาก เพราะเพิ่มขึ้น 1 ค่าในด้านซ้ายจะเพิ่มขึ้นไปถึง 12 ดัง นั้นเราจึงอาจจะสังเกตได้ไม่ยากว่าแยกพิจารณาตามค่า z ไปเลยก็ได้ โดยที่ z=0,1,2 (เพราะถ้ามากกว่า นี้ ผลบวกจะเกิน 30) กล่าวคือ เราจะแยกปัญหาหลักเราออกเป็นปัญหาย่อย 3 ปัญหาย่อยคือ

- 1. เมื่อ z=0: แก้สมการ x+y=30
- 2. เมื่อ z=1: แก้สมการ x+y=18
- 3. เมื่อ z=2: แก้สมการ x+y=6

ซึ่งแต่ละปัญหาย่อย จะสามารถแก้ได้ด้วยการนับง่าย ๆ

ในการแยกปัญหาย่อยนั้น อาจจะได้ปัญหาย่อยมาในรูปแบบที่แยกกันทำ ต่างคนต่างอิสระจากกัน ทำ เสร็จแล้วค่อยนำคำตอบของแต่ละปัญหามาผนวกรวมร่างกันให้กลายเป็นปัญหาใหญ่ เช่นตัวอย่างสมการข้าง ต้นที่เราสามารถแก้ปัญหาไหนก่อนก็ได้ไม่มีผลต่อกัน หรือเราอาจจะได้ปัญหาย่อยที่มาในรูปแบบที่ต้องทำงาน ต่อเนื่องกันโดยที่เมื่อทำปัญหาย่อยที่ 1 เสร็จให้นำผลของปัญหาย่อยที่ 1 ไปใช้ต่อเป็นข้อมูลขาเข้าของปัญหาย่อยที่ 2 ก็ได้ ทั้งนี้ ไม่มีกฎตายตัวในการตั้งปัญหาย่อย ขึ้นอยู่กับมุมมองต่อปัญหาตรงหน้าของเรา ณ เวลานั้น

1.2.2 การเข้าใจรูปแบบ (pattern recognition)

ใน

- 1.2.3 การคิดเชิงนามธรรม (abstraction)
- 1.2.4 การออกแบบขั้นตอนวิธี (algorithm design)

Basic Python Syntax

Part II

Basic Mathematical Reasoning and Proving

Mathematics as a Language

บทนี้จะเป็นบทสั้น ๆ เน้นที่การเล่าให้เห็นภาพรวมของคณิตศาสตร์ในรูปแบบการเรียนเพื่อหาเหตุผล เป้า หมายของบทนี้เพียงเพื่อต้องการเปลี่ยนทัศนคติของผู้อ่านบางท่านเกี่ยวกับคณิตศาสตร์ ก่อนที่เราจะลงลึกไปสู่ คณิตศาสตร์จริง ๆ ในบทถัด ๆ ไป อย่างน้อยก็อยากให้หลังจากที่อ่านบทนี้จบ ผู้อ่านจะมองว่าคณิตศาสตร์คือ วิชาของการอธิบายสิ่งต่าง ๆ ในโลก และการให้เหตุผลของความเป็นไปในสิ่งต่าง ๆ ไม่ใช่แค่การคิดเลข

หลายท่าน (รวมถึงเด็ก ๆ จากประสบการณ์การสอนพิเศษมาหลายปีของผู้เขียน) อาจจะจำความรู้สึกมา จากตอนเรียนระดับมัธยมต้นว่าวิชาคณิตศาสตร์เป็นวิชาที่เกี่ยวกับการคิดเลข จำสูตรไปแทนค่าหาคำตอบ ขอ แค่จำสูตรได้เยอะ ๆ อ่านโจทย์แล้วรู้ว่าใช้สูตรไหน คิดเลขให้ไว ๆ ก็น่าจะทำข้อสอบได้คะแนนดีกันแล้ว และ บอกคนอื่นได้ว่าเราเรียนคณิตศาสตร์รู้เรื่อง แต่ทว่า พอขึ้นมาเรียนในระดับมัธยมปลาย กลับพบว่าคณิตศาสตร์ เปลี่ยนไปอย่างมาก เราได้เรียนเรื่องเซต เรื่องตรรกศาสตร์ ความสัมพันธ์และฟังก์ชันในระดับชั้นมัธยมศึกษาปี ที่ 4 กันเป็นเรื่องแรก ๆ ที่ตัวเนื้อหาตามหนังสือเรียนนั้น แทบไม่ใช่การคิดเลขเลย แต่เป็นเรื่องของการเรียนรู้ การใช้สัญลักษณ์ เรียนรู้การให้เหตุผล เพื่อใช้สื่อสารกันในโลกของคณิตศาสตร์ ซึ่งอาจจะต้องโทษวิธีการสอน ของครูมัธยมไทยหลาย ๆ ท่านที่ทำให้เนื้อหาพวกนี้หนีไม่พ้นสอนการคิดเลขเหมือนเดิม เช่นจัดรูปอย่างง่าย ของประพจน์ หาผลอูเนียน หาผลอินเตอร์เซคชัน หรือแม้กระทั่งหาผลค่าความจริงในวิชาตรรกศาสตร์

ในบทนี้จะขอยกบทเรียนที่เป็นตัวละครสำคัญที่ทำให้เรามองคณิตศาสตร์เป็นเรื่องของภาษา แทนที่จะ มองว่าเป็นเครื่องมือในการคิดเลขได้แก่ (1) เซต (2) ตรรกศาสตร์ (3) ความสัมพันธ์ และ (4) ฟังก์ชัน

เซต อย่างเช่นเรื่องเซต เป้าหมายของบทนี้คือการต้องการใช้คณิตศาสตร์อธิบายความเป็นกลุ่ม ความเป็น สมาชิกของสิ่งใดสิ่งหนึ่ง เช่นเราบอกว่านาย "a เป็นนักเรียน" เราก็จะมองในรูปแบบคณิตศาสตร์ว่าเรามีเซต ของนักเรียน ในที่นี้สมมติให้เป็น S ที่ใครก็ตามที่อยู่ในเซต S จะเป็นนักเรียน และนาย a ก็เป็นสมาชิกในเซต นักเรียน จึงเขียนเป็นสัญลักษณ์แทนประโยคดังกล่าวได้ว่า $a \in S$

หรือในทำนองเดียวกัน ถ้าเรากล่าวว่านักเรียนก็เป็นบุคลากรของโรงเรียน ก็เปรียบเสมือนเรามีเซตที่เป็นกลุ่มของบุคลากรของโรงเรียน สมมติให้เป็น X และมีเซตของนักเรียนเป็นกลุ่มย่อยในนั้น หรือกล่าวว่า เซตของ นักเรียนเป็นเซตย่อยของเซตบุคลากร โดยเขียนเป็นสัญลักษณ์ว่า $S \subset X$

อีกทั้ง ถ้าเรานำนิยามทางคณิตศาสตร์ของการเป็นเพตย่อยมาจับกับประโยคทั้งสอง

นิยาม 3.0.1: เซตย่อย

ให้ A และ B เป็นเซต เราจะกล่าวว่า A เป็นเซตย่อยของ B หรือเขียนว่า $A\subseteq B$ ก็ต่อเมื่อ สำหรับ ทุก x ถ้า $x\in A$ แล้ว $x\in B$

ซึ่งเรามีประโยค (1) a $\in S$ และ (2) $S\subseteq X$ จากนิยามของเซตย่อย 3.0.1 เราจะเห็นความสอดคล้อง ระหว่างสิ่งที่เรามีกับเครื่องมือที่เรารู้ดังนี้

- ullet S เปรียบเสมือน A ในนิยาม และ X เปรียบเสมือน B ในนิยาม
- \bullet a $\in S$ สอดคล้องกับประโยค $x \in A$
- ullet $S\subseteq X$ สอดคล้องกับประโยค $A\subseteq B$

จากนิยามดังกล่าวทำให้เราสรุปได้ว่า $x\in B$ (ในนิยาม) ซึ่งสอดคล้องกับประโยค a $\in X$ หรือกล่าวคือ a เป็นบุคลากรของโรงเรียนเช่นกัน

ซึ่งเราจะเห็นว่าคำศัพท์ต่าง ๆ ที่เกี่ยวกับเซตนั้น ก็เกิดมาเพื่อใช้ในการอธิบายปรากฏการณ์ที่เกี่ยวข้องกับ การเป็นสมาชิกในกลุ่มนั่นเอง ทว่าสิ่งที่อธิบายในเรื่องของวิธีการสรุปผลในข้างต้นนั้นก็ไม่ใช่บทบาทหน้าที่ของ เรื่องเซต เพราะเซตเป็นเพียงการบอกว่ามีใครเป็นสมาชิกบ้าง แต่การสรุปผลต่างๆ เป็นบทบาทหน้าที่ของสิ่งที่ เรียกว่า "ตรรกศาสตร์"

ตรรกศาสตร์ หรืออย่างในเรื่องตรรกศาสตร์เอง ก็เป็นการเรียนรู้โครงสร้างประโยคในภาษาคณิตศาสตร์ รวมไปถึงการเชื่อมโยงระดับประโยค พร้อมทั้งมีการพิจารณาความเป็นจริงหรือไม่จริงหรือที่เรียกกันว่า ค่า ความจริง เป็นเบื้องหลังของการนิยามอยู่ เพราะตรรกศาสตร์ก็เกิดมาเพื่อต้องการใช้คณิตศาสตร์ในการ ทำความเข้าใจระบบความคิดของมนุษย์ในรูปแบบที่มาตรฐานขึ้น เลยถูกสร้างเลียนแบบการสื่อสารของมนุษย์ นำภาษามนุษย์มาทำให้เป็นรูปแบบเชิงสัญลักษณ์ พร้อมกับมีการนำไปใช้เพื่อวิเคราะห์ความเป็นเหตุเป็นผล เชิงค่าความจริง

¹จริง ๆ แล้วยังมีการศึกษาตรรกศาสตร์ในรูปแบบที่เราไม่สนใจเรื่องค่าความจริงด้วย แต่จะสนใจในเรื่องของความถูกต้องของ รูปแบบโครงสร้างการเขียน และสรุปผลด้วยโครงสร้างของประโยค ซึ่งเรียกว่าตรรกศาสตร์เชิงวากยสัมพันธ์

ไม่เพียงแค่พิจารณาค่าความจริงของตัวประโยคเท่านั้น การศึกษาเชิงตรรกศาสตร์เองก็ยังรวมไปถึงการ สร้างประโยคเพื่ออธิบายความเป็นตัวตนของสิ่งของในคณิตศาสตร์เช่นกัน เช่น ประโยค "x เป็นนักเรียน" (สมมติแทนด้วยสัญลักษณ์ P(x)) จะถูกใช้เพื่อการอธิบายการเป็นนักเรียนของสิ่งของที่เราสนใจอยู่ 2 ซึ่ง แน่นอนว่าเราไม่สามารถที่จะบอกค่าความจริงของตัวประโยคนี้ด้วยตัวมันเองได้ เพราะเราไม่รู้ว่าเราหมายถึง x คนไหน (หรืออาจจะไม่ใช่คนตั้งแต่แรกเสียด้วยซ้ำ)

²ในเรื่องเซตจะเรียกเซตที่ระบุขอบเขตของสิ่งของที่เราสนใจว่า "เอกภพสัมพัทธ์"

Basic Objects in Mathematics

Logic, Reasoning and Proof

หลังจากที่ผู้เขียนได้เกริ่นนำบทบาทหน้าที่ของตรรกศาสตร์ในแง่ของเครื่องมือในการสร้างประโยคและการให้ เหตุผลไปในบทที่ 3 แบบคร่าว ๆ ไปแล้ว คราวนี้ ถึงเวลาที่ผู้อ่านจะได้ลงสู่รายละเอียดของตรรกศาสตร์กันบ้าง ตามชื่อบท ผู้อ่านจะพบว่ามีคำ 3 อยู่ในชื่อบท ได้แก่ (1) Logic (ตรรกศาสตร์) (2) Reasoning (การให้เหตุผล) (3) Proof (การเขียนพิสูจน์) ซึ่งจะเป็น 3 ส่วนหลักที่จะอธิบายในบทนี้ ซึ่ง 3 สิ่งนี้เป็นสิ่งที่แยกขาดออกจาก กันไม่ได้ เพราะเมื่อเราอยากจะเขียนพิสูจน์อะไรสักอย่าง (เหมือนเขียนรายงานเพื่อโน้มน้าวผู้อ่าน) เราก็ต้อง ผ่านขั้นตอนการหาเหตุผลเพื่อสรุปผลในสิ่งที่อยากพิสูจน์ ซึ่งเหตุผลที่ใช้ก็ต้องเป็นเหตุผลที่ถูกต้องตามหลัก คณิตศาสตร์ และใช้ตรรกศาสตร์เป็นความรู้พื้นฐานประกอบการให้เหตุผลให้สมเหตุสมผลในเชิงคณิตศาสตร์ นั่นเอง

จากที่กล่าวไป จะเห็นว่าตรรกศาสตร์เปรียบเสมือนเป็นชุดความรู้ (knowledge) เพื่อนำมาฝึกทักษะ (skill) การให้เหตุผล และเมื่อให้เหตุผลแล้ว เราต้องมีระเบียบวิธีขั้นตอน (methodology) ที่จะสามารถสื่อสาร กระบวนการดังกล่าวให้ผู้อื่นเข้าใจด้วยการเขียนพิสูจน์นั่นเอง

ทั้งนี้ สำหรับผู้อ่านท่านใดที่เคยผ่านวิชาที่เกี่ยวกับการเขียนพิสูจน์มาแล้ว อาจจะข้ามบทนี้ไปก็ได้ เพราะ บทนี้เป็นการปูพื้นฐานการให้เหตุผลเชิงคณิตศาสตร์สำหรับผู้ที่ยังไม่เคยเรียนคณิตศาสตร์แนวนี้มาก่อน แต่ สำหรับผู้อ่านที่ยังไม่มีประสบการณ์ในการให้เหตุผลเชิงคณิตศาสตร์ ขอให้อยู่กับบทนี้มากพอก่อนที่จะเริ่มบท ถัดไป เพราะเป้าหมายหลักของหนังสือนี้คือฝึกทักษะการให้เหตุผลเชิงคณิตศาสตร์และพิสูจน์เชิงคณิตศาสตร์ ไม่ใช่หนังสือเตรียมสอบวิชาคณิตศาสตร์ และไม่ใช่หนังสือที่รวมเอาเนื้อหาของแต่ละบทมานำเสนอให้ท่องจำ (เช่นอ่านบทตรรกศาสตร์ของหนังสือเล่มนี้เข้าใจก็ไม่ได้หมายความว่าจะทำข้อสอบบทตรรกศาสตร์ของวิชา ม.4 ได้ 1) แต่เป็นหนังสือที่จะพาผู้อ่านคิดไปด้วยกันทีละขั้นตอน ว่ากำลังจะเกิดอะไรขึ้น แล้วเกิดอะไรขึ้นมา แล้ว จะไปต่อยังไง และควรไปทางไหนต่อดี

¹ผู้เขียนยังทำข้อสอบเรื่องตรรกศาสตร์ในข้อสอบสอบเข้ามหาวิทยาลัยไม่ค่อยได้เช่นกันครับ

5.1 ตรรกศาสตร์คืออะไร

ตรรกศาสตร์ ถ้าแปลตามตัวคำจะแปลว่า ศาสตร์แห่งการศึกษาตรรกะ กล่าวคือ การศึกษาเกี่ยวกับข้อความ ค่าความจริง และการให้เหตุผล

5.2 การให้เหตุผลทางคณิตศาสตร์ และการพิสูจน์

5.3 การเขียนพิสูจน์

Recursion and Mathematical Induction

Part III

Discrete Mathematics with Programming

Set Theory: with more implementation

Number Theory

THEORY PART

ทฤษฎีจำนวนเป็นหัวข้อที่จะได้ศึกษาเกี่ยวกับคุณสมบัติของจำนวนเต็มที่เกี่ยวข้องกับการหารลงตัวและตัวประกอบ โดยจะเริ่มศึกษาจากการหารลงตัวก่อน แล้วจึงนำไปนิยามจำนวนประกอบและจำนวนเฉพาะ และนำไปสู่ ทฤษฎีสำคัญที่เรียกว่า Fundamental Theorem of Arithmetic ซึ่งพูดถึงการแยกตัวประกอบของจำนวน ประกอบด้วยจำนวนเฉพาะซึ่งเป็นทฤษฎีสำคัญที่ทำให้เราสามารถศึกษาคุณสมบัติต่าง ๆ ของจำนวนประกอบ ได้ เช่นจำนวนของตัวประกอบ และการตรวจสอบการเป็นจำนวนเฉพาะ

และหลังจากที่ศึกษาเกี่ยวกับคุณสมบัติของจำนวน เราจะพูดถึงความสัมพันธ์ของสองจำนวน โดยเริ่มที่ การนิยามการหารของจำนวนเต็ม แล้วนำไปสู่เรื่องตัวหารร่วมมากและตัวคูณร่วมน้อยเพื่อศึกษาการมีตัวประกอบ ร่วมกันของจำนวนตั้งแต่สองจำนวนเป็นต้นไป และจบด้วยเรื่องการสมภาคที่เกี่ยวข้องกับระบบของเศษเหลือ รวมไปถึงการนำไปประยุกต์ใช้ในวิทยาการการเข้ารหัส (cryptography)

โดยทั่วไปแล้ว หัวข้อนี้มักจะถูกใช้เป็นหัวข้อเพื่อฝึกเขียนพิสูจน์ทางคณิตศาสตร์ในรายวิชาที่เรียนเกี่ยว กับพื้นฐานการเขียนพิสูจน์หรือการให้เหตุผลทางคณิตศาสตร์ เพราะเป็นหัวข้อที่ทำความเข้าใจนิยามหรือ คุณสมบัติได้ง่าย อีกทั้งเป็นสิ่งที่ผู้เรียนคุ้นเคยกันมาตั้งแต่สมัยเด็ก (อย่างน้อยทุกคนที่เปิดอ่านหนังสือเล่มนี้ น่าจะเคยเรียนวิธีการตั้งหารยาวเพื่อหาผลหารและเศษมาก่อน) เลยทำให้ผู้เรียนสามารถมุ่งความสนใจไปที่วิธี การให้เหตุผลทางคณิตศาสตร์ได้มากกว่า แทนที่จะต้องมาทั้งทำความเข้าใจนิยามที่บางครั้งก็ชับซ้อน และต้อง ฝึกให้เหตุผลไปพร้อมกัน จึงเป็นการดีที่ผู้อ่านที่ยังไม่คุ้นเคยการให้เหตุผลทางคณิตศาสตร์ จะใช้บทนี้เป็นแบบ ฝึกหัดในการเขียนพิสูจน์

¹เช่นเด็กหลักสูตรคณิตศาสตร์จะมีเรียนวิชา Principle of Mathematics หรือเด็กหลักสูตรวิทยาการคอมพิวเตอร์ก็จะมีวิชา Discrete Mathematics เป็นรายวิชาดังกล่าว

8.1 การหารลงตัว

เราจะเริ่มจากแนวคิดพื้นฐานที่สุดของทฤษฎีจำนวนซึ่งคือ **การหารลงตัว** ซึ่งถ้าย้อนกลับไปในวัยเด็ก เราจะเริ่ม จากการเรียนรู้การหารจำนวนเต็มโดยจดจำวิธีการตั้งหารทั้งวิธีหารสั้นและหารยาวเพื่อให้เราหาผลหารและ เศษการหารกันได้เป็น โดยที่เราไม่ได้สนใจว่าจริง ๆ แล้วการหารคืออะไรกันแน่ เพียงแต่มองในมุมมองเชิงการ คำนวณว่าคือการแบ่งของ

ทั้งนี้ ถ้าจะต้องการศึกษาเกี่ยวกับการหารลงตัวในรูปแบบทางคณิตศาสตร์ ก็คงไม่สะดวกนักถ้าจะบอกว่า เราหารลงตัวถ้าตั้งหารยาวหรือหารสั้นออกมาแล้วได้เศษเป็น 0 เราจึงจำเป็นที่จะต้องนิยามการหารลงตัวใน รูปแบบที่สามารถนำไปใช้พิสูจน์คุณสมบัติต่าง ๆ ต่อได้ง่าย โดยเราจะเห็นว่าเพียงแค่มองมุมกลับกัน จากการ ถามว่ามีส้ม 10 ผล แบ่งให้คน 5 คนจะได้คนละกี่ผล (มองแบบการหาร) เป็นการมองว่า ถ้าเรามีคน 5 คน และแต่ละคนได้รับส้มไป x ผล แล้วต้องใช้ส้ม 10 ผล ซึ่งเราเปลี่ยนรูปแบบประโยคได้เป็น 5x=10 ซึ่งถ้า มีจำนวนส้ม x ผลดังกล่าวที่ทำให้เราสามารถแบ่งส้มกันได้ลงตัวพอดี เราก็จะกล่าวว่า 10 หารด้วย 5 ลงตัว นั่นเอง ทั้งนี้ จะพบว่าหลักสำคัญของการพิจารณาการหารลงตัวก็คือการหา x ดังกล่าวนั่นเอง

ในทำนองเดียวกัน เพียงแต่พิจารณาในกรณีทั่วไป เราจะนิยามการหารลงตัวได้ดังนี้

นิยาม 8.1.1: Divisibility

กำหนดให้ m และ n เป็นจำนวนเต็ม เราจะกล่าวว่า m หารด้วย n ลงตัวก็ต่อเมื่อมีจำนวนเต็ม k ที่ ทำให้ m=nk และเขียนแทนด้วยสัญลักษณ์ n|m

จากตัวอย่างด้านบน เราจะกล่าวได้ว่า 5|10 เพราะเราสามารถให้ส้มคนละ 2 ผลได้ เพื่อแบ่งส้ม 10 ผลให้ 5 คนได้พอดี นั่นคือ k=2 นั่นเองที่ทำให้ $10=5\times 2$

คำเตือน

ในครั้งนี้จะยังคงขอเตือนเรื่องตัวบ่งปริมาณการมีอีกสักรอบ ว่าการที่เราทราบว่า n|m นั้น เราเพียงแค่ ทราบว่าเรามี k สักตัวหนึ่งที่ทำให้สมการ m=nk เป็นจริง เพียงแต่ในการเขียนพิสูจน์ที่หลาย ๆ อย่างเป็นตัวแปรไม่ทราบค่า เราจะไม่สามารถระบุค่าของตัวแปร k ที่เกิดขึ้นมาจากการอ้างเหตุผลของ การหารลงตัวได้ เราทราบเพียงแค่ว่า m=nk (หรือทดไว้ในหัวเท่านั้นว่าจริง ๆ มันก็คือ $\frac{m}{n}$ แต่เขียน ไม่ได้ในทฤษฎีจำนวน) แล้วนำค่า k นี้ไปใช้งานต่อในส่วนอื่น ๆ ของบทพิสูจน์ ในทางกลับกัน แต่ถ้าจะต้องการให้เหตุผลเพื่อสรุปการหารลงตัว สิ่งที่เราต้องทำคือการทดหาจำนวนเต็ม สักตัวหนึ่ง (อาจจะเป็นตัวเลขหรือกลุ่มของตัวแปรก็ได้) ที่เมื่อนำมาแทนที่ไว้ในตำแหน่งของ k เพื่อคูณ กับ n แล้วได้ผลคูณออกมาเป็น m

8.1. การหารลงตัว 27

Example 8.1.2. จงพิสูจน์ว่า 25|300

Solution. จากนิยาม จะเห็นว่าสิ่งที่เราต้องการคือจำนวนเต็มสักจำนวนหนึ่งที่เมื่อนำไปคูณกับ 25 แล้วได้ 300 ซึ่งสามารถคำนวณได้โดยง่ายด้วยการทดเลขแบบเด็ก ๆ 300/25=12 นั่นคือเราทราบแล้วว่าจำนวน ดังกล่าวคือ 25 จะเหลือเพียงแค่นำไปเขียนพิสูจน์

บทพิสูจน์. เพราะ $300=25\times12$ จึงได้ว่า 25|300 \square

Example 8.1.3. จงพิสูจน์ว่า $25 \nmid 310$

Solution. ในทำนองเดียวกัน เราต้องหาจำนวนเต็มสักจำนวนหนึ่งที่เมื่อนำไปคูณกับ 25 แล้วได้ 310 ซึ่งถ้า ลองทดเลขคำนวณดูจะพบว่า 310/25=12.4 ซึ่งไม่ใช่จำนวนนับ ดังนั้นเราก็พอจะเดาได้(ถึงแม้จะชัด)ว่า ควรที่จะหารไม่ลงตัว ทว่าเหตุผลการหารแล้วไม่เป็นจำนวนเต็มนี้ใช้ในการเขียนพิสูจน์ไม่ได้ เพราะการเขียน พิสูจน์ว่าหารไม่ลงตัว ต้องแสดงว่าไม่ว่าหยิบจำนวนเต็มใดมาคูณกับตัวหารจะไม่ได้ตัวตั้ง

บทพิสูจน์. สมมติให้มีจำนวนเต็ม n ที่ทำให้ 310=25n (เรากำลังจะพิสูจน์ด้วยการหาข้อขัดแย้ง) ซึ่งเราจะเห็นว่า $310=25\times 12+10$ ดังนั้นจึงได้ว่า

$$25n = 25 \times 12 + 10$$
$$25n - 25 \times 12 = 10$$
$$25(n - 12) = 10$$

จากข้อสังเกตว่าถ้า x เป็นจำนวนเต็มที่ $0 \le 25x < 25$ จะได้ว่า x=0 และเพราะ $0 \le 10 = 25(n-12) < 25$ จึงได้ว่า n-12=0 ดังนั้น จะได้ว่า $10 = 25(n-12) = 25 \times 0 = 0$ ซึ่งเป็นข้อขัดแย้ง จึงได้ข้อสรุปว่า ไม่มีจำนวนเต็ม n ที่ทำให้ 310 = 25n

หลังจากที่เรานิยามการหารลงตัวให้สามารถนำไปใช้ในการให้เหตุผลและเขียนพิสูจน์ได้แล้วนั้น(แทนที่จะบอก วิธีการหาผลหารและเศษแบบตั้งหารแล้วดูว่าเศษเป็นศูนย์หรือไม่) เราจะมาเริ่มศึกษาคุณสมบัติต่าง ๆ ของ การหารลงตัวกันบ้าง ซึ่งการหารลงตัวเป็นความสัมพันธ์บนจำนวนเต็ม ดังนั้นเราจะเริ่มจากพิจารณากันก่อนว่า คุณสมบัติใดของความสัมพันธ์ที่ความสัมพันธ์การหารลงตัวสอดคล้องบ้าง

Exercise 8.1.4. จงเขียนประโยคที่กล่าวถึงคุณสมบัติเชิงความสัมพันธ์ของการหารลงตัวตารางนี้ และพิจารณา ว่าจริงหรือไม่ ถ้าจริงจงพิสูจน์ (ดูเฉลยได้ใน Proof Part) แต่ถ้าไม่จริงจงยกตัวอย่างค้าน

คุณสมบัติ	นิยาม	เขียนโดยใช้การหารลงตัว	จริง	ไม่จริง
สะท้อน	$\forall x, xRx$			
ถ่ายทอด	$\forall x \forall y \forall z, xRy \land yRz \rightarrow xRz$			
สมมาตร	$\forall x \forall y, xRy \to yRx$			
อสมมาตร	$\forall x \forall y, xRy \to \neg yRx$			
ปฏิสมมาตร	$\forall x \forall y, xRy \land yRx \rightarrow x = y$			

Solution. ...

นอกจากนั้น เรายังได้คุณสมบัติต่าง ๆ ดังต่อไปนี้

คุณสมบัติ 8.1.5: คุณสมบัติการหารลงตัว

กำหนดให้ m,n,p เป็นจำนวนเต็มใด ๆ จะได้ว่า

- 1. 1|m และ m|m
- 2. ถ้า $m \neq 0$ แล้ว m|0
- 3. ถ้า m|n แล้ว m|np
- 4. ถ้า $p \neq 0$ และ m|n แล้ว pm|pn
- 5. ถ้า m|n และ m|p แล้ว m|(n+p)
- 6. ถ้า m|n และ m|p แล้ว m|(xn+yp) สำหรับทุก ๆ จำนวนเต็ม x,y
- 7. ถ้า m|n แล้ว $|m| \leq |n|$

แนวคิดของทฤษฎีและแนวคิดการเขียนพิสูจน์:

- 1. ในข้อนี้ค่อนข้างตรงไปตรงมาเหมือนที่เคยท่องกันตอนเด็ก ๆ ว่า 1 หารทุกจำนวนลงตัว เพราะ 1 คูณ อะไรก็ได้ตัวมันเอง กล่าวแบบรัดกุมคือ $1\cdot n=n$ สำหรับทุก ๆ จำนวนเต็ม n
- 2. และในทำนองเดียวกัน เมื่อเราใช้ 0 เป็นตัวตั้ง เราน่าจะตอบกันได้ทันทีว่า 0 คุณอะไรก็ได้ 0

²ไม่ใช่การเขียนพิสูจน์ เป็นแค่แนวคิด

- 3. ในข้อนี้นั้น แนวคิดตั้งต้นมาจากการที่เปรียบเสมือนเรามีเศษส่วนที่ตัดกันได้หมดอยู่แล้ว $(\frac{n}{m})$ ตัดกันได้ หมด) ต่อให้เราคูณตัวตั้งเพิ่มเข้าไปด้วยอะไร (p) ก็ตาม เราก็ควรที่จะยังคงตัดได้ $\frac{np}{m}$ ลงตัวเช่นเดิมด้วย การตัดคู่เดิม ซึ่งถ้าเรามองในแง่การเขียนพิสูจน์ เปรียบเสมือนเรามีจำนวนหนึ่งที่คูณตัวหารได้ตัวตั้งอยู่ แล้ว ถ้าสนใจกับตัวตั้งที่เพิ่มขึ้น p เท่า ผลหารก็ควรจะเพิ่มขึ้น p เท่าเช่นกัน ซึ่งเรากล่าวในอีกนัยหนึ่ง ได้ว่าการหารลงตัวถูกรักษาไว้ภายใต้การคูณตัวตั้ง (divisibility is preserved under numerator multiplication)
- 4. เหมือนการคูณทั้งเศษและส่วนของเศษส่วนที่ยังคงให้ค่าผลหารเท่าเดิมอยู่ $\frac{n}{m}=\frac{pn}{pm}$
- 5. เปรียบเสมือน $\frac{n+p}{m}=\frac{n}{m}+\frac{p}{m}$ โดยความหมายของคุณสมบัตินี้คือการหารลงตัวยังคงถูกรักษาไว้ ภายใต้การบวกของตัวตั้ง
- 6. เราเรียกพจน์ xn+yp ว่าผลรวมเชิงเส้น (linear combination) ซึ่งเป็นผลขยายมาจากข้อ 3 และ ข้อ 5

สิ่งที่อธิบายในแต่ละข้อ เป็นเพียงแนวคิดเชิงที่มา(การตั้งข้อสังเกต) และแนวคิดเชิงการให้เหตุผล(แนวทางการ เขียนพิสูจน์) ไม่ใช่การเขียนพิสูจน์ โดยประเด็นสำคัญที่สุดคือในการเขียนพิสูจน์เราไม่สามารถใช้เศษส่วนในแง่ การคำนวณได้ (เช่น $\frac{n}{m}=\frac{pn}{pm}$ เป็นต้น)

8.2 ขั้นตอนวิธีการหาร: Division Algorithm

หัวข้อที่แล้ว เราได้ศึกษาเกี่ยวกับการหารลงตัว หรือการเป็นตัวประกอบของจำนวนเต็มไป แต่ก็จะพบว่าใน บางครั้งเราอยากจะอธิบายการหารได้กับทุกคู่ของจำนวนเต็ม กล่าวคือ เราอยากขยายไอเดียการหารให้ทั่วไป มากขึ้น ไม่ได้สนใจเพียงแค่การหารลงตัวหรือไม่ลงตัวที่เป็นคุณสมบัติที่ขึ้นกับจำนวนเต็มที่เป็นตัวตั้งเท่านั้น

และถ้านึกย้อนไปในวัยเด็ก (อีกครั้ง) หลายคนน่าจะจำกันได้ดีว่าพวกเราเริ่มเรียนการหารกันด้วยการตอบ ผลหารและเศษเหลือจากการหาร แต่สิ่งที่พวกเราได้เรียนกันในวัยเด็ก เป็นเพียงแค่วิธีการเขียนเพื่อให้เราในวัย เด็กที่ยังไม่มีแนวคิดแบบนามธรรมสามารถทำตามได้ กล่าวคือเราถูกคาดหวังเพียงแค่หาคำตอบที่ถูกต้องให้ได้ ก่อน แต่ไม่ได้เรียนว่าทำไมทำแบบนั้นถึงทำได้ หรืออะไรคือที่มาของแนวคิด

นอกจากนั้น จะสังเกตว่าวิธีการที่พวกเราได้เรียนโดนจำกัดอยู่แค่จำนวนเต็มบวก กล่าวคือ ถ้าตัวตั้งหรือ ตัวหารเป็นจำนวนเต็มลบ เราจะยังคำนวณหาผลหารและเศษกันไม่เป็นอยู่ดี (ตัวอย่างเช่นจงหาผลหารของ -21 หารด้วย 5) ในครั้งนี้ เราจึงจะนำแนวคิดเรื่องผลหารและเศษเหลือที่คำนวณกันได้เก่งมากกับจำนวนบวก มาเขียนนิยามกันในรูปแบบคณิตศาสตร์ เพื่อให้เราสามารถศึกษาประเด็นที่เกี่ยวกับผลหารและเศษเหลือได้ ทั่วไปและเป็นคณิตศาสตร์มากขึ้น

แต่โชคดี! ที่อย่างน้อย พวกเราก็ได้เรียนสิ่งที่เรียกว่าการตรวจสอบผลหารด้วยวิธีการ

ตัวตั้ง
$$=$$
 ตัวหาร $imes$ ผลหาร $+$ เศษ

ซึ่งจริง ๆ แล้ว สิ่งนี้ก็คือนิยามของการหารที่ทำให้พวกเราสามารถนิยามการหารของจำนวนเต็มได้ทั่วไป มากขึ้นด้วยการหาผลหาร และเศษเหลือมาเติมในสมการ แต่ทั้งนี้ ก่อนนิยามสิ่งใด ๆ ก็ตามในคณิตศาสตร์ (เช่นในที่นี้เรากำลังจะนิยามสิ่งที่เรียกว่า ผลหาร และเศษเหลือ) สิ่งหนึ่งที่เราต้องพิจารณากันก่อนก็คือการมีค่า ได้จริง (ไม่ใช่พูดได้บ้างไม่ได้บ้าง) กับการมีเพียงหนึ่งเดียว (เพราะกำลังจะตั้งชื่อ: well-defined)

บทตั้ง 8.2.1: การมีผลหารและเศษเหลือ

กำหนดให้ m และ n เป็นจำนวนเต็มใด ๆ โดยที่ $n \neq 0$ จะมีจำนวนเต็ม q และ r เพียงคู่เดียว เท่านั้นที่ทำให้ m = nq + r โดยที่ $0 \leq r < |n|$

นิยาม 8.2.2: Division Algorithm

กำหนดให้ m และ n เป็นจำนวนเต็มใด ๆ โดยที่ $n \neq 0$ แล้ว q และ r จากบทตั้ง 8.2.1 ว่าผลหาร (quotient) และเศษเหลือ (remainder) ตามลำดับ

PROOF PART

บทพิสูจน์ของ Exercise 8.1.4
บทพิสูจน์. content 🗆
บทพิสูจน์ของคุณสมบัติ 8.1.5
บทพิสูจน์. content 🗆

บทพิสูจน์ของบทตั้ง 8.2.1

บทพิสูจน์. เราจะพิสูจน์การมี q และ r ด้วยการทำอุปนัยบนตั้วแปรจำนวนเต็ม $m \geq 0$ และ n > 0 (ทำไม?:แบบฝึกหัด 1) และหลังจากที่พิสูจน์การมีแล้ว เราจะพิสูจน์การมีหนึ่งเดียวในลำดับต่อไป

พิสูจน์การมี เมื่อกำหนดให้ m=0 (ขั้นฐานของ m) ซึ่งกรณีนี้เป็นกรณีที่ง่ายสำหรับทุก ๆ n เพราะ $0=n\times 0+0$ นั่นคือเราสามารถพิสจน์ขั้นธานของ m ได้แล้ว ต่อไปเราจะพิสจน์ขั้นอุปนัยของ m กัน

พิจารณากรณีที่ m>0 สมมติให้สิ่งที่เราพิจารณากันอยู่ เป็นจริงสำหรับ m กล่าวคือสำหรับทุก ๆ n>0 จะมีจำนวนเต็ม q และ r โดยที่ $0\leq r< n$ ที่ทำให้ m=nq+r และเรากำลังจะพิสูจน์สำหรับ กรณี m+1 โดยที่เราจะแยกพิจารณาตามเศษการหารเป็น 2 กรณี n ดังนี้ (1) ถ้า n0 n1 และ (2) ถ้า n2 และ

กรณีที่ 1) $0 \leq r \leq n-2$: จะได้ว่า m+1=nq+r+1=nq+(r+1) โดยที่ $0 < 0+1 \leq r+1 \leq n-2+1=n-1$ กล่าวคือ มีผลหาร q เดิม และมี r+1 เป็นเศษการหาร กรณีที่ 2) r=n-1: จะได้ว่า m+1=nq+r+1=nq+n-1+1=nq+n=n(q+1)+0 กล่าวคือ มี q+1 เป็นผลหาร และเหลือเศษการหารเป็น 0 ซึ่งสอดคล้องเงื่อนไขการหาร แน่นอน

โดยอุปนัยเชิงคณิตศาสตร์ จึงสรุปได้ว่าสำหรับจำนวนนับ m ใด ๆ และสำหรับจำนวนเต็มบวก n ใด ๆ จะมี q และ r ที่ทำให้ m=nq+r โดยที่ $0\leq r< n$ และในลำดับถัดไป เราจะพิสูจน์การมีหนึ่งเดียวกัน

พิสูจน์การมีเพียงหนึ่งเดียว กำหนดให้มีจำนวนเต็ม q' และ r' อีกชุดที่ทำให้ m=nq'+r' โดยที่ $0 \le r' < n$ กล่าวคือ nq+r=nq'+r' ซึ่งจะได้ว่า n(q-q')=r'-r แต่เนื่องจาก $r,r' \in \{0,1,\ldots,n-1\}$ จะได้ว่า $0 \le |r'-r| < n$ ทำให้ได้ว่า $0 \le n|q'-q| < n$ จึงสรุปได้ ว่า |q'-q|=0 กล่าวคือ q=q' และยังทำให้ได้ตามมาว่า $r'-r=n(q-q')=n\times 0=0$ จึง ได้ว่า r=r'

 $^{^3}$ เพราะการบวก 1 เพิ่มให้ m กลายเป็น m+1 จะกระทบกับเศษ n-1 ที่จะกลายเป็น n ซึ่งเป็นเศษการหารของตัวหาร n ไม่ได้

8.3 Theory Exercise

- 1. (คำถามต่อเนื่องจากพิสูจน์ของบทตั้ง 8.2.1) สำหรับจำนวนเต็ม $m \geq 0$ และ n > 0 ซึ่ง m = nq + r โดยที่ $0 \leq r < |n|$ จงพิสูจน์ว่าจะมีจำนวนเต็ม q' และ r' โดยที่ $0 \leq r' < |n|$ ที่ ทำให้ -m = nq' + r' (และพิสูจน์ในทำนองเดียวกันกับ m = (-n)q' + r' และ -m = (-n)q' + r')
- 2. จงพิสูจน์บทตั้ง 8.2.1 ส่วนการมีโดยใช้หลักการการจัดอันดับดี

PROGRAMMING PART

8.4 programming: การหารลงตัวที่เขียนกันเองด้วยนิยาม

Figure 8.1: ภาพใหญ่ของปัญหาซึ่ง input คือจำนวนนับ m,n และ output คือบอกว่าหารลงตัวหรือไม่

เราจะเริ่มจากนิยามแรกสุดของทฤษฎีจำนวน นั่นคือการหารลงตัวของจำนวนเต็ม ซึ่งจริง ๆ แล้วนั้นเรา สามารถตรวจสอบว่าจำนวน 2 จำนวนเช่น m และ n ที่ให้มานั้นหารลงตัวกันหรือไม่ได้โดยง่ายผ่านตัวดำเนิน การ "%" ซึ่งเป็นตัวดำเนินการ built-in ของ Python เพื่อหาเศษเหลือจากการหาร โดยตรวจสอบว่าเศษ เหลือเป็น 0 หรือไม่ด้วย code ดังนี้

$$m\%n == 0$$

โดยที่ code ดังกล่าวจะคืนค่า True ถ้าหารลงตัว และคืนค่า False ถ้าหารไม่ลงตัว

แต่ในที่นี้เราจะเริ่มเขียนฟังก์ชันเพื่อตรวจสอบการหารลงตัวกันด้วยตัวเองก่อนโดยอาศัยนิยามในการ ออกแบบ โดยสมมติว่าเราจะให้พารามิเตอร์แรกเป็นตัวตั้งและพารามิเตอร์ตัวที่สองเป็นตัวหาร และชื่อฟังก์ชัน คือ isDivisible แต่ก่อนจะเริ่มลงมือเขียน code เราจะมาทบทวนนิยามของการหารลงตัวกันอีกรอบ

ทบทวนนิยามการหารลงตัว

ให้ m และ n เป็นจำนวนเต็ม เราจะกล่าวว่า m หารด้วย n ลงตัว ถ้ามีจำนวนเต็ม k ที่ทำให้ m=nk

จากนิยาม จะ เห็น ว่า เป้าหมาย หลักของ ฟังก์ชัน หลัง จาก ที่ รับ m และ n เข้ามาแล้ว คือ ต้องหาว่า มี จำนวนเต็ม k ที่ เป็นผลหาร ดังกล่าว หรือไม่ โดยถ้าดู ตามนิยามแล้ว จะ ดู เหมือน ว่า เรา ต้อง ตรวจ สอบ หาผล หาร k ไปเรื่อย ๆ จนกว่าจะพบ k ที่ทำให้ m=nk ดังนี้

Not complete divisibility checking

```
k = 1
while m != n*k:
    k += 1
# after exiting from while-loop, k should be an integer such
    that m = nk,
# i.e. n is a factor of m
```

ทว่า วิธีดังกล่าวจะทำงานไม่รู้จบถ้าค่าที่ได้รับเข้ามาเป็นคู่ที่หารกันไม่ลงตัว เพราะเหตุผลของการหารไม่ลงตัว คือ

$$m \nmid n \Longleftrightarrow$$
 ทุก $k \in \mathbb{Z}$ จะได้ว่า $m \neq nk$

กล่าวคือ เราต้องตรวจสอบทุกจำนวนเต็ม k ซึ่งเป็นไปไม่ได้ในการเขียนโปรแกรม อีกทั้ง ถึงแม้ว่าจะหารลงตัว ก็ตาม ก็ยังคงมีคำถามว่าแล้วเราจะเริ่มหา k จากไหนและไปทางไหน เพราะถ้าหาผิดทางอาจจะทำงานไม่รู้จบ ได้เหมือนกัน ตัวอย่างเช่นเราอยากตรวจสอบว่า -10 หารด้วย 5 หรือไม่ ถ้าเราใช้ loop เริ่มจาก k=1 และ บวก 1 ไปเรื่อย ๆ ดังตัวอย่างข้างบน จะพบว่าโปรแกรมจะทำงานไม่รู้จบเพราะ k ตัวที่ต้องการคือ k=-2 ซึ่งไม่อยู่นี้ขอบเขตการหาที่กำหนดไว้

แต่ว่าเรามีคุณสมบัติหนึ่งที่เกี่ยวกับการหารลงตัวที่สามารถจำกัดขอบเขตการหาผลหาร k ได้ ซึ่งกล่าวว่า

คุณสมบัติเพื่อจำกัดขอบเขตของการหารลงตัว

ให้ m และ n เป็นจำนวนเต็ม ถ้า m|n แล้ว |n| < |m|

ซึ่งในทำนองเดียวกัน เราสามารถมองผลหาร เป็นตัวประกอบ อีกตัว หนึ่งของ m ได้ เช่น เดียวกัน จึงได้ ว่า $|k| \leq |m|$ กล่าวคือถ้าจะมีผลหารของการหารลงตัวได้นั้น ผลหารดังกล่าวก็จะอยู่ได้แค่ในกลุ่ม $k \in \{-m,-m+1,\ldots,-1,0,1,\ldots,m-1,m\}$ เพราะฉะนั้น เราจึงจำกัดขอบเขตการหาผลหาร k ได้ไม่ว่าจะหารลงตัวหรือหารไม่ลงตัวก็ตาม กล่าวคือ

$$m|n \Longleftrightarrow$$
 มี $k \in \{-m, -m+1, \ldots, m-1, m\}$ ที่ทำให้ $m=nk$

8.4.1 วิสีเบื้องต้น

จากนิยามที่ได้กล่าวมานั้น เราสามารถเขียนโปรแกรมเพื่อตรวจสอบการหารลงตัวได้ด้วยการตรวจสอบว่าเจอ ผลหารหรือไม่ด้วยโปรแกรมดังนี้

Check divisibility

```
def isDivisible_ver1(m,n):
    qoutList = range(-m,m+1)
    for k in qoutList:
        if m = n*k:
            return True
    return False
```

ซึ่งโปรแกรมดังกล่าวจะรันลูปไปเรื่อย ๆ และเมื่อไหร่ก็ตามที่เจอผลหาร ฟังก์ชัน isDivisible จะคืนค่า True มาให้ แต่ถ้ารันจนครบลูปแล้วแต่ไม่เจอผลหาร จะคืนค่า False มาให้ เพราะไม่มีตัวประกอบ

ลองทำดู

8.4.2 พิจารณาแค่จำนวนบวกก็พอ

ถ้าลองสังเกตนิยามการหารลงตัวดีๆ จะพบว่าการเป็นจำนวนเต็มบวกหรือจำนวนเต็มลบของตัวตั้งและตัว หารไม่ส่งผลต่อการคิด เพราะเราสามารถเปลี่ยนรูปแบบปัญหาให้พิจารณาแค่กรณีที่ทั้งตัวตั้งและตัวหารเป็น จำนวนเต็มบวกอย่างเดียวได้ เนื่องจากถ้า m=nk แล้วจะได้ว่า

$$(-m) = nk \iff m = n(-k)$$
$$m = (-n)k \iff m = n(-k)$$
$$(-m) = (-n)k \iff m = nk$$

กล่าวคือ เราทราบการเป็นบวกหรือลบของผลหาร k ได้โดยพิจารณาก่อนว่าตัวตั้งและตัวหารมีเครื่องเหมือน กันหรือแตกต่างกัน และใช้การตรวจสอบการหารลงตัวโดยอาศัยแค่ค่าบวกของ m และ n ที่เป็นตัวตั้งและตัว หาร

แต่ เนื่องจาก เราต้องการผลลัพธ์ในแง่การหารลงตัว ว่าหารลงตัว หรือไม่ ไม่ได้ต้องการค่าผลหาร จึงไม่ จำเป็นต้องแบ่งกรณีการคำนวณของโปรแกรมออกตามความเหมือนหรือความต่างของเครื่องหมายของตัวตั้ง และตัวหาร กล่าวคือ เราสามารถพิจารณาแค่ค่าบวกของทั้งคู่และตัดขอบเขตการหาผลลัพธ์การหารเป็นแค่ $k\in\{1,2,\ldots,m-1,m\}$ ซึ่งจะได้โปรแกรมดังนี้

Check divisibility by positive

```
def isDivisible_ver2(m,n):
    if m < 0:
        m = -m
    if n < 0:
        n = -n
    qoutList = range(1,m+1)
    for k in qoutList:
        if m = n*k:
            return True
    return False</pre>
```

และโปรแกรมสำหรับการตรวจสอบการหารลงตัวที่จะพัฒนาต่อจากนี้จะขอสมมติว่าเรารับแค่จำนวนเต็ม บวกมาตรวจสอบ ซึ่งถ้าจะทำให้รับจำนวนเต็มใด ๆ สามารถทำได้ในทำนองเดียวกันกับ isDivisible ver2

8.4.3 เปลี่ยนจากปัญหาการคูณเป็นปัญหาการบวก

จากนิยามการคูณที่กล่าวว่า $k\cdot n:=n+n+\cdots+n$ (k พจน์) จะพบว่าเราสามารถเปลี่ยนจากปัญหาการหาผลหาร k เป็นการลองลูปเพื่อเพิ่มพจน์การบวก n ไปเรื่อย ๆ จนกว่าจะมากกว่าหรือเท่ากับ m โดยถ้า สามารถเท่ากับ m ได้จะได้ว่าหารลงตัว แต่ถ้าเกิน m เมื่อไหร่จะได้ว่าหารไม่ลงตัว

Check divisibility addition version

```
def isDivisible_ver3(m,n):
    product = 0
```

```
while product < m:
    product += n
if product == m:
    return True
else:
    return False</pre>
```

เราสามารถทำได้ในทางกลับกันคือการลบตัวหารออกด้วย n ไปเรื่อยๆ จนกว่าจะได้เศษการหาร (ซึ่งนำ ไปประยุกต์ใช้ในการหาเศษการหารได้ด้วย)

Check divisibility subtraction version

```
def isDivisible_ver4(m,n):
    while m >= n:
        m -= n
    if m == 0:
        return True
    else:
        return False
```

8.4.4 เขียนแบบฟังก์ชันเวียนเกิด

จาก $isDivisible_ver4$ จะเห็นแนวคิดของการทำปัญหาเดิมซ้ำกัน โดยถ้าเริ่มจากตัวตั้ง m และตัว หาร n เมื่อทำเสร็จไป 1 รอบของลูป จะได้ว่าตัวตั้งจะเปลี่ยนกลายเป็น m-n โดยที่ตัวหารยังคง n เหมือน เดิม ซึ่งจะเห็นว่าแนวคิดดังกล่าวสามารถเขียนเป็นฟังก์ชันเวียนเกิดเป็น

```
isDivisible_recur(m,n) = isDivisible_recur(m - n,n)
```

และตามรูปแบบการเขียนอัลกอริทึมเวียนเกิด สิ่งสำคัญคือต้องเขียนขั้นฐานของการคำนวณ ซึ่งคือขั้นที่เรา สามารถกำหนดการคำนวณได้ง่าย ๆ โดยจะพบว่า ขั้นฐานของการคำนวณคือขั้นตอนหลังจากหลุดออกจาก while-loop ของ $isDivisible_ver4$ กล่าวคือ เมื่อตัวตั้ง m ไม่ค่าน้อยกว่าตัวหาร n โดยที่ถ้าตัวตั้ง มีค่าเท่ากับ 0 จะหมายความว่าเราสามารถลดค่าตัวตั้งมาเรื่อย ๆ จนหมดได้พอดี หรือก็คือมีเศษเหลือเป็น 0 นั่นคือการหารลงตัว ในทางกลับกัน ถ้าตัวตั้งมีค่ามากกว่า 0 จะหมายถึงการหารไม่ลงตัว ซึ่งสามารถเขียนเป็น

เงื่อนไขขั้นฐานได้ดังนี้

$${\tt isDivisible_recur(m,n)} = \begin{cases} {\tt True} & \text{if } m = 0 \\ {\tt False} & \text{if } 0 < m < n \end{cases}$$

ซึ่งสามารถเขียนเป็นโปรแกรมได้ดังนี้

Check divisibility recursion

```
def isDivisible_recur(m,n):
    if m < n:
        if m == 0:
            return True
        else:
            return False
    else:
        return isDivisible_recur(m-n,n)</pre>
```

8.5 programming: ตรวจสอบการเป็นจำนวนเฉพาะ

8.5.1 วิธีเบื้องต้น

ในหัวข้อที่แล้ว เราได้เขียนฟังก์ชันเพื่อตรวจสอบการหารลงตัวไป ในหัวข้อนี้เราจะใช้ประโยชน์จากฟังก์ชันดัง กล่าวนำมาตรวจสอบการเป็นจำนวนเฉพาะกันบ้าง โดยลักษณะของปัญหายังคงตรงไปตรงมาคือรับจำนวนนับ n เข้ามาแล้วคืนค่าว่าเป็นจำนวนเฉพาะหรือไม่ดังแผนภาพใน Figure $\ref{eq:continuous}$?

Figure 8.2: ภาพใหญ่ของปัญหาซึ่ง input คือจำนวนนับ n และ output คือบอกว่าเป็นจำนวนเฉพาะหรือไม่

เริ่มจากทบทวนนิยามของจำนวนเฉพาะ ซึ่งคือ

<mark>ทบทวนนิยามจำนวนเฉพาะ</mark>

จำนวนนับ n จะเป็นจำนวนเฉพาะ ถ้ามีเพียงแค่ 1 และ n เท่านั้นที่หาร n ลงตัว

ซึ่งจากนิยามจะพบว่าเราสามารถตรวจสอบการเป็นจำนวนเฉพาะได้จากการตรวจสอบการหารลงตัวว่าในช่วง ตั้งแต่ 1 ถึงจำนวนดังกล่าวมีเพียงแค่ 1 และตัวมันเองเท่านั้นที่หารจำนวนดังกล่าวลงตัว กล่าวคือถ้าเราหา ตัวประกอบทั้งหมดของ n ได้ แล้วทำการตรวจสอบว่าเป็นจำนวนเฉพาะหรือไม่ก็จะสามารถตรวจสอบการ เป็นจำนวนเฉพาะของ n ได้ทันทีตามแผนภาพใน Figure n ซึ่งถ้าเรามีลิสต์ของตัวประกอบของ n แล้วเราจะ

Figure 8.3: text

สามารถเขียนโค้ดเพื่อตรวจสอบการเป็นจำนวนเฉพาะได้ดังนี้

Check if it is prime

```
# assume we have a list `factorList` which is a list of all \hookrightarrow factors of n factorList == [1,n]
```

ซึ่งโค้ดดังกล่าวจะให้ค่า True ออกมาถ้า n มีตัวประกอบเพียงแค่ 2 ตัวคือ 1 และ n กล่าวคือ n เป็น จำนวนเฉพาะ แต่ในทางกลับกัน ถ้ามีตัวประกอบอื่นหลงอยู่ในลิสต์ดังกล่าวซึ่งก็คือ n ไม่เป็นจำนวนเฉพาะนั้น จะได้ False ออกมาเป็นผลลัพธ์

Figure 8.4: text

ในตอนนี้เราจะเหลือเพียงแค่ปัญหาของการสร้างลิสต์ของตัวประกอบของ n ซึ่งทำได้โดยง่าย (ใน Python) โดยการรันลูปตั้งแต่ 1 ถึง n และตรวจสอบการเป็นตัวประกอบของ n เพื่อนำไปเก็บใน factorList ทีละ ตัว ซึ่งทำได้ดังนี้

Create factorList

```
factorList = []
for m in range(1,n+1):
    if isDivisible(n,m):
        factorList.append(m)
```

เมื่อนำโค้ดทั้งสองส่วนมารวมกันและเขียนเป็นฟังก์ชันของ n จะได้

Check prime

```
def isPrime(n):
    factorList = []
    for m in range(1,n+1):
        if isDivisible(n,m):
            factorList.append(m)

    prime = (factorList == [1,n])
    return prime
```

ทั้งนี้ ยังคงมีคำถามชวนคิดเกี่ยวกับโปรแกรมเช็คจำนวนเฉพาะที่เขียนขึ้นมาว่า

คำถาม

เพราะเหตุใดเราจึงเขียนลูปแค่บน 1 ถึง n ก็เพียงพอที่จะเช็คการเป็นจำนวนเฉพาะของ n ได้

จากโปรแกรมที่เขียนมา จะเห็นว่าเราใช้พลังของการมี memory กล่าวคือเราเก็บไว้ก่อนว่ามีใครบ้างเป็น ตัวประกอบ แล้วสุดท้ายนำมาตรวจสอบอีกที่ว่ามีแค่ 1 และตัวมันเองเท่านั้นที่เป็นตัวประกอบ ซึ่งเราทำการ เก็บตัวประกอบไว้ในลิสต์ ซึ่งเป็นเรื่องที่โชคดีที่ลิสต์เป็น built-in data structure ของ Python จึงทำให้เรา สามารถ implement วิธีนี้ได้โดยง่าย ทว่า ในบางภาษานั้นกลับไม่มีลิสต์ให้ใช้ และการตรวจสอบเรื่องการ มีใครเป็นสมาชิกบ้างก็ไม่ใช่เรื่องง่ายกับ array ที่เป็นโครงสร้างข้อมูลพื้นฐานในหลาย ๆ ภาษา ดังนั้น จะแก้ ปัญหาอย่างไรถ้าเราอยาก implement โจทย์นี้ในภาษาอื่น ๆ หรือแม้กระทั่งในวิชา Python เองแต่ยังเรียนไม่ ถึงการใช้ลิสต์

8.5.2 วิธีที่ไม่ใช้ลิสต์ หรือการจำตัวประกอบทั้งหมดของ n

ก่อนอื่น เราจะต้องเปลี่ยนรูปแบบปัญหาให้เป็นปัญหาทางตรรกศาสตร์กันก่อน โดยเริ่มจากนิยามกัน

$$n>1$$
 เป็นจำนวนเฉพาะ \iff มีเพียงแค่ 1 และ n ที่เป็นตัวประกอบของ n \iff ถ้า $k\notin\{1,n\}$ แล้ว k จะไม่เป็นตัวประกอบของ n \iff ทุก $k=2,...,n-1$ จะได้ว่า k ไม่เป็นตัวประกอบของ n

หรือในทำนองเดียวกัน เพียงแต่ใช้ความสมมูลเชิงนิเสธ จะได้ว่า

$$n>1$$
 ไม่เป็นจำนวนเฉพาะ \Longleftrightarrow มี $k=2,...,n-1$ ที่ k เป็นตัวประกอบของ n

กล่าวคือ ถ้าเราจะตรวจสอบว่า n ไม่เป็นจำนวนเฉพาะ เราสามารถทำได้ โดยลูปตั้งแต่ 2 ถึง n-1 และ เมื่อใดก็ตามที่เจอตัวประกอบเพียงสักตัว เราก็จะสามารถหยุดลูปและบอกได้ทันทีว่า n ไม่เป็นจำนวนเฉพาะ (มาจากการให้เหตุผลว่าประพจน์ $\exists x, P(x)$ เป็นจริง) ซึ่งทำให้เราสามารถเขียนโค้ดได้ดังนี้

Check prime version2

```
def isPrime_ver2(n):
    prime = True  #set as default to be prime
```

```
แบบฝึกหัดเพิ่ม
```

ลองเขียน isPrime ver3 โดยใช้ while-loop

8.5.3 ลดจำนวนครั้งการคำนวณได้มากกว่านี้อีก

จากโปรแกรมที่ได้ทำมาแล้วนั้น เราจะพบว่า isPrime มีความซับซ้อนเชิงคำนวณอยู่ที่ O(n) และ $isPrime_ver2$ มีความซับซ้อนเชิงการคำนวณไม่เกิน O(n) ซึ่งกรณีแย่ที่สุดคือ n ที่เป็นจำนวนเฉพาะ เพราะต้องตรวจสอบทุกจำนวนตั้งแต่ 2 ถึง n-1 ว่าเป็นตัวประกอบหรือไม่

ทว่า เราสามารถอาศัยทฤษฎีบทเกี่ยวกับจำนวนเฉพาะที่กล่าวว่า

การตรวจสอบการเป็นจำนวนเฉพาะโดยตรวจสอบไม่เกิน \sqrt{n} ครั้ง

ให้ n เป็นจำนวนนับ ถ้า p ไม่เป็นตัวประกอบของ n สำหรับทุก ๆ จำนวนเฉพาะ $p \leq \sqrt{n}$ แล้ว n จะเป็นจำนวนเฉพาะ

ถึงแม้ทฤษฎีบทจะบอกว่าเพียงพอที่จะตรวจสอบแค่ตัวประกอบที่เป็นจำนวนเฉพาะที่มีค่าไม่เกิน \sqrt{n} แต่ว่า ในการพิจารณากับแค่จำนวน n เพียงจำนวนเดียว เราจะยังคงไม่มีข้อมูลเก่าว่าจำนวนใดบ้างที่เป็นจำนวน เฉพาะ ดังนั้นวิธีที่ง่ายที่สุดคือตรวจสอบกับทุกจำนวนตั้งแต่ 2 ถึง $\lfloor \sqrt{n} \rfloor$ ว่ามีใครบ้างที่เป็นตัวประกอบของ n ซึ่งทำให้เราสามารถแก้โค้ด <code>isPrime_ver2</code> ให้ตรวจสอบน้อยลงได้ดังนี้

Check prime version2.1

8.6 programming: แยกตัวประกอบในรูปผลคูณจำนวนเฉพาะ

หนึ่งในทฤษฎีบทสำคัญของการแยกตัวประกอบของจำนวนเต็มคือ Fundamental Theorem of Arithmetic ซึ่งกล่าวว่า

```
Fundamental Theorem of Arithmetic p_1 < p_2 < \cdots < p_n และ จำนวนเต็ม บวก a_1, a_2, \ldots, a_n เพียงชุดเดียวเท่านั้นที่ทำให้ n = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}
```

ซึ่งเราได้ศึกษาและพิสูจน์ไปแล้วในหัวข้อ ??

ในหัวข้อนี้ เราจะเขียนโปรแกรมเพื่อหารูปแบบนี้กัน โดยสมมติว่าเราอยากให้โปรแกรมคืนค่าออกมาเป็น dictionary ที่มี keys ระบุจำนวนเฉพาะ และ values ระบุเลขชี้กำลัง ตัวอย่างเช่น $1400=2^3\times 5^2\times 7$ จะให้ผลลัพธ์ออกมาเป็น $\{2\!:\!3,\;5\!:\!2,\;7\!:\!1\}$

Figure 8.5: ภาพใหญ่ของปัญหาซึ่ง input คือจำนวนนับ n และ output คือการแยกตัวประกอบจำนวน เฉพาะที่คืนค่าออกมาเป็น dictionary

8.6.1 วิธีวนซ้ำตามจำนวนเฉพาะ

ขั้นตอนทำความเข้าใจปัญหา

จากรูปแบบปัญหา จะเห็นได้โดยง่ายว่าวิธีที่พื้นฐานที่สุดที่ทำได้คือการวนซ้ำไปตามตัวประกอบจำนวนเฉพาะ เพื่อหาว่าจะสามารถแยกตัวประกอบจำนวนเฉพาะนั้นออกมาได้กี่รอบ กล่าวคือเราสามารถแยกย่อยปัญหาดัง กล่าวออกมาเป็นปัญหาย่อยของทีละจำนวนเฉพาะที่เป็นตัวประกอบ โดยเป็นโจทย์ย่อยว่า

กำหนดจำนวนนับ n และจำนวนเฉพาะ p เขียนโปรแกรมเพื่อหาว่าสามารถแยกตัวประกอบ p นั้นออกมาได้กี่ตัว พูดอีกนัยหนึ่งคือ จงหาจำนวนนับ k ที่ทำให้ $n=p^k\cdot A$ โดยที่ $p\nmid A$

และเขียนแผนภาพการแก้ปัญหาได้แบบแแผนภาพ 8.6

Figure 8.6: ...

ทว่า จะพบว่ายังเหลือปัญหาย่อย ที่ว่ามีจำนวนเฉพาะใดบ้างที่เป็นตัวประกอบของ n เพื่อที่จะระบุขอบเขตการแก้ปัญหาย่อย p_1,\ldots,p_n ดังนั้นก่อนที่จะแก้ปัญหาย่อยการแยกตัวประกอบจำนวนเฉพาะ ที่กำหนดตัวประกอบจำนวนเฉพาะมาแล้วนั้น เราจะต้องแก้ปัญหาการหาตัวประกอบที่เป็นจำนวนเฉพาะ ทั้งหมดของ n ก่อน จึงได้แผนภาพการแก้ปัญหาดังแผนภาพ 8.7

Figure 8.7: ...

ซึ่งปัญหาย่อยของการแยกตัวประกอบของแต่ละตัวประกอบเฉพาะนั้น เราสามารถใช้ for-loop เพื่อลู ปการแก้ปัญหาตามตัวประกอบเฉพาะทั้งหมดที่หามาได้และเก็บผลลัพธ์มาสะสมไว้ ซึ่งจะได้ดังแผนภาพ 8.8

ทั้งนี้ โจทย์ปัญหาของการหาตัวประกอบที่เป็นจำนวนเฉพาะทั้งหมดของ n จะทิ้งไว้ให้ผู้อ่านทำเป็นแบบ ฝึกหัดในแบบฝึกหัด 6 แต่เราจะมาแก้ปัญหาเรื่องจำนวนครั้งการเป็นตัวประกอบของตัวประกอบเฉพาะที่ กำหนดมาให้กัน

แก้ปัญหาย่อยจำนวนครั้งการหารลงตัว

ก่อนลงรายละเอียด จะขอทบทวนปัญหาอีกสักครั้ง

กำหนดจำนวนนับ n และจำนวนเฉพาะ p เขียนโปรแกรมเพื่อหาว่าสามารถแยกตัวประกอบ p นั้นออกมาได้กี่ตัว พูดอีกนัยหนึ่งคือ จงหาจำนวนนับ k ที่ทำให้ $n=p^k\cdot A$ โดยที่ $p\nmid A$

Figure 8.9: ภาพใหญ่ของปัญหาย่อยซึ่ง input คือจำนวนนับ n และจำนวนเฉพาะ p และ output คือจำนวน ครั้งการหาร p ลงตัวของ p

ปัญหานี้เป็นปัญหาที่ค่อนข้างง่าย เราสามารถทำได้ด้วยการวนลูปหารซ้ำไปเรื่อย ๆ ด้วยเงื่อนไขว่า "ตราบใด ที่ยังหารลงตัวอยู่ (n%p == 0) ให้หารต่อ" และทุกครั้งการหารเราจะมีตัวแปรเพื่อเก็บจำนวนครั้งการหาร ไว้ (counter += 1) และอัพเดตตัวตั้งการหารเป็นผลหารล่าสุด n = n//p ซึ่งสามารถเขียนเป็นโค้ดได้ ดังนี้

factorization of given prime p

```
def countFactor(n,p):
    count = 0
    while n%p == 0:
        count += 1
        n = n//p
    return count
```

รวบรวมวิธีแก้ปัญหาย่อยเพื่อแก้ปัญหาหลัก

ตอนนี้เรามีฟังก์ชัน countFactor เพื่อช่วยในการนับจำนวนตัวประกอบเฉพาะ p ของ n และ(สมมติ)มี ฟังก์ชัน findAllPrimeFactor เพื่อช่วยในการหาตัวประกอบเฉพาะทั้งหมดของ n หรือพูดอีกนัยหนึ่ง คือ เราสามารถหาได้แล้วว่าเมื่อทำการแยกตัวประกอบเฉพาะของ n จะมีจำนวนเฉพาะใดคูณกันอยู่บ้าง และ แต่ละจำนวนเฉพาะดังกล่าวมีเลขชี้กำลังเป็นอะไร ตอนนี้เหลือเพียงแค่นำ 2 ฟังก์ชันดังกล่าวมาทำงานร่วมกัน ตามแผนที่วางไว้ในแผนภาพ 8.8 ซึ่งเราจะสามารถเขียนโค้ดได้ดังนี้

Prime Factorization

```
def primeFactorize(n):
    primeList = findAllPrimeFactor(n)
    resultDict = {}
    for p in primeList:
        resultDict[p] = countFactor(n,p)
```

return resultDict

8.6.2 วิธีเวียนเกิด

ถ้าลองสังเกตวิธีคำนวณของฟังก์ชัน countFactor ดี ๆ จะพบว่ามีแนวคิดของการเรียกฟังก์ชันแบบเวียน เกิดที่สำคัญอยู่อย่างหนึ่ง ซึ่งคือการที่เราไม่ได้พิจารณาตัวตั้งของการหารว่ามีค่า n ที่รับมาตลอดเวลา แต่ n ในการพิจารณารอบถัดไปก็เกิดจากการที่เราตัดทอนตัวประกอบที่หาพบมาแล้วหนึ่งตัว (n/p) ซึ่งถึงแม้ว่า ในฟังก์ชันดังกล่าวจะทำอยู่กับแค่ p ตัวเดียว แต่เราก็สามารถขยายแนวคิดนี้มาสู่กรณีใด ๆ ที่ไม่ได้กำหนด ตัวประกอบเฉพาะตายตัวไว้ได้เช่นกัน

จากประเด็นดังกล่าว จึงนำมาสู่แนวคิดการออกแบบในรูปแบบเวียนเกิดว่า เราให้ฟังก์ชันนั้นหยิบตัวประกอบ เฉพาะที่เล็กที่สุดออกมาก่อนหนึ่งตัว (p_1) แล้วปล่อยให้ฟังก์ชันเดิมคำนวณกับกรณี n/p_1 จนกว่าจะได้ว่าหาร แล้วเหลือแค่ 1 ซึ่งมาจากแนวคิด

$$n = \underbrace{p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}}_{\text{algor(n)}} = p_1 \times \underbrace{(p_1^{a_1 - 1} p_2^{a_2} \cdots p_n^{a_n})}_{\text{algor(n/p_1)}} = p_1 \times (n/p_1)$$

ทว่า สิ่งที่เราต้องการทำคือการเก็บจำนวนครั้งการหารลงตัวไว้ใน dictionary ดังนั้นเราจึงต้องให้อัลกอริ ทึมที่เรากำลังจะสร้างคืนค่าเป็น dictionary ของจำนวนครั้งการหารลงตัวของ n/p_1 และทำการอัพเดต p_1 เพิ่มเข้าไปอีก 1 ครั้ง ซึ่งสามารถทำได้ง่ายผ่านคำสั่ง $\operatorname{dict}[\ker] = \operatorname{dict.get}(\ker, 0) + 1$ (ถ้า ไม่มี \ker นั้นให้คืนค่า 0 แล้วเพิ่มไป 1 จึงได้ 1 แต่ถ้ามี \ker นั้นอยู่แล้วให้คืนค่าเดิมออกมาก่อนแล้วบวกเพิ่ม ไปอีก 1 แล้วบันทึกกับลงไปใน \ker เดิม)

นอกจากนั้น ยังพบว่าเครื่องมืออีกชิ้นที่สำคัญของแนวคิดนี้คือการหาตัวประกอบเฉพาะที่มีค่าน้อยที่สุด ก่อน ซึ่งสามารถปรับปรุงจากฟังก์ชันที่เขียนเป็นแบบฝึกหัดข้อ 6 โดยให้คำนวณจากน้อยไปมาก และเมื่อเจอ ตัวประกอบเฉพาะตัวแรกก็ให้คืนค่าทันที โดยในที่นี้ขอสมมติชื่อฟังก์ชันเป็น minPrimeFactor

สุดท้าย จะสามารถเขียนโค้ดได้ดังนี้

Recursive Prime Factorization

```
def primeFactorize_recur(n):
    if n == 1:
        return {}
    else:
```

8.7 programming: ขั้นตอนวิธีการหารหาเศษและผลหาร

8.8 Programming Exercise

- 1. จงวิเคราะห์ความซับซ้อนของอัลกอริทึมต่าง ๆ ในการตรวจสอบการหารลงตัว ทั้งรูปแบบเชิงทฤษฎี และเชิงการทดลองเพื่อเปรียบเทียบ โดยที่สมมติว่าทุก operation (บวก ลบ คูณ การเปรียบเทียบ) มี ต้นทุนเท่ากับ 1 หน่วย
- 2. โปรแกรม isDivisible_recur ที่ให้เป็นตัวอย่างในหัวข้อ 8.4.4 ยังคงอยู่ภายใต้เงื่อนไขว่า ใส่ได้แค่จำนวนเต็มบวก จงพิจารณาว่าเราสามารถแก้ไขให้รับกับจำนวนเต็มใด ๆ ด้วยวิธีเดียวกับ isDivisible_ver2 ได้หรือไม่เพราะเหตุใด ถ้าไม่ได้จงหาวิธีแก้ไขวิธีอื่น
- 3. จงเขียนโปรแกรมเพื่อหาผลหารและเศษเหลือจากขั้นตอนวิธีการหาร
- 4. จงเขียนโปรแกรมตรวจสอบการเป็นจำนวนเฉพาะโดยใช้รูปแบบเวียนเกิด
- 5. จงเขียนโปรแกรมที่รับจำนวนนับ n และคืนค่าลิสต์ของทุกจำนวนเฉพาะตั้งแต่ 1 ถึง n โดยที่แย่ที่สุด ไม่เกิน $O(n^{\frac{3}{2}})$ (เราสามารถทำได้ง่ายที่สุดคือ $O(n^2)$ ด้วยการตรวจสอบทีละจำนวนว่าเป็นจำนวนเฉพาะหรือไม่ด้วย วิธี ver2 และ print เมื่อเป็นจำนวนเฉพาะ)
- 6. จงเขียนโปรแกรมที่รับจำนวนนับ n และคืนค่าเป็นลิสต์ของจำนวนเฉพาะที่เป็นตัวประกอบของ n
- 7. จงเขียนฟังก์ชันนับจำนวนครั้งการหาร n ด้วย p ลงตัว (ฟังก์ชัน countFactor) แบบเวียนเกิด
- 8. จงเขียนโปรแกรมที่รับจำนวนนับ n และคืนค่าจำนวนของตัวประกอบที่เป็นบวกทั้งหมดของ n
- 9. จงเขียนฟังก์ชันที่รับจำนวนนับ n และคืนค่าออกมาเป็น dictionary ของการแยกตัวประกอบเฉพาะ ของ n! (caution: จะพบว่าเราสามารถแก้ปัญหาโดยอาศัยฟังก์ชัน primeFactorize ในหัวข้อ 8.6 ได้โดยง่าย แต่ว่าจะมีปัญหาเมื่อ n มีค่าใหญ่ ๆ จนทำให้การเก็บ n! ใช้หน่วยความจำเกิน)
- 10. อาศัยฟังก์ชันที่เขียนขึ้นมาในแบบฝึกหัดข้อ 9 เพื่อเขียนฟังก์ชันที่รับจำนวนนับ n แล้วคืนค่าเป็น จำนวนของเลข 0 ที่ลงท้ายของผลลัพธ์ของ n!

Combinations

THEORY PART

ในบทนี้จะกล่าวถึงเทคนิคต่าง ๆ เกี่ยวกับการนับจำนวนเหตุการณ์ โดยเริ่มจากเทคนิคเบื้องต้นที่สุดซึ่งคือ หลักการบวกและหลักการคูณที่เป็นพื้นฐานของสูตรการนับอื่น ๆ ที่จะกล่าวถึงต่อไปในบทนี้ กล่าวคือถึงแม้ เราจะไม่รู้สูตรในการคำนวณการนับแบบยาก ๆ แต่ถ้าเราใช้ทักษะด้านการวางแผนช่วยในการนับ ทุกปัญหา จะสามารถถูกแก้ปัญหาได้โดยใช้เพียงแค่หลักการบวกและหลักการคูณได้ หลังจากทำความคุ้นเคยกับการ วางแผนการนับเหตุการณ์เบื้องต้นด้วยหลักการบวกและหลักการคูณแล้ว จะเริ่มกล่าวถึงสูตรของรูปแบบการ นับต่าง ๆ ที่เฉพาะเจาะจงมากขึ้น ได้แก่ การเรียงสับเปลี่ยน และการจัดกลุ่ม ทั้งในรูปแบบไม่มีของซ้ำกันและ มีของซ้ำกันหรือเลือกซ้ำได้

9.1 หลักการบวกและหลักการคูณ

อย่างที่ได้กล่าวไปตอนต้นว่าทุกสูตรที่จะถูกกล่าวถึงในบทนี้นั้นมีแนวคิดตั้งต้นมาจากหลักการบวกและ หลักการคูณทั้งสิ้น เพียงแต่ต้องอาศัยทักษะในการวางแผนการนับให้เป็นขั้นเป็นตอน ดังนั้นจุดประสงค์ของ หัวข้อนี้คือการทำความคุ้นเคยกับการวางแผนการนับผ่านโจทย์ที่อยู่ในระดับง่ายถึงปานกลาง โดยที่เครื่องมือ การนับในเวลานี้มีเพียงแค่หลักการบวกและหลักการคูณ

9.1.1 หลักการบวก

หลักการบวก

ในการทำงานอย่างหนึ่งมีทางเลือกการทำอยู่ 2 ทางเลือก โดยที่ทางเลือกแรกมีวิธีทำได้ p วิธีแตกต่าง กัน และทางเลือกที่สองมีวิธีทำได้ q วิธีแตกต่างกัน โดยที่ทางเลือกทั้งสองไม่มีวิธีการทำร่วมกัน และ เลือกทำได้แค่ทางเลือกใดทางเลือกหนึ่งเท่านั้น ถ้าต้องการเลือกวิธีการทำงานชิ้นนี้จะสามารถเลือกทำได้ p+q วิธีที่แตกต่างกัน

สิ่งแรกที่ต้องนึกถึงเมื่อจะเลือกใช้หลักการบวกคือกระบวนการนับของเราเป็นการแยกกรณี กล่าวคือเป็น ทางเลือกให้ทำเพียงอย่างใดอย่างหนึ่ง โดยที่ไม่ว่าจะเลือกทำทางไหนก็ถือว่าจบกระบวนการทำงานชิ้นนั้น และอย่างที่สองที่ต้องระวังคือทางเลือกที่แยกออกไปต้องไม่มีวิธีการที่ซ้ำกัน กล่าวคือไม่มีการนับซ้ำเกิดขึ้นใน กระบวนการนับ

ในส่วนของโจทย์ด้านล่างนั้น ผู้อ่านคงทราบดีว่าเราต้องใช้หลักการบวกในการนับเพราะเป็นโจทย์ในหัวข้อ หลักการบวก แต่สิ่งที่ผมอยากให้ผู้อ่านนึกหลังจากอ่านโจทย์เสร็จคืออะไรเป็นคีย์เวิร์ดสำคัญที่บอกเราว่าขั้น ตอนนี้ต้องใช้หลักการบวก

Example 9.1.1. มหาวิทยาลัยแห่งหนึ่งมีนิสิตวิชาเอกคณิตศาสตร์ 33 คน และมีนิสิตวิชาเอกวิทยาการ คอมพิวเตอร์ 40 คน ถ้าต้องการเลือกนักศึกษาหนึ่งคนเพื่อเป็นคณะกรรมการของสโมสรนิสิต จะมีวิธีเลือก นิสิตดังกล่าวได้แตกต่างกับกี่วิธี

Solution.

Example 9.1.2. ให้เซต $A=\{a,b,c,d\}$ และ $B=\{\alpha,\beta,\gamma\}$ ถ้าต้องการเลือกตัวอักษรหนึ่งตัวจาก เซต A หรือเซต B จะมีวิธีเลือกได้กี่วิธี

Solution. ...

นอกจากที่เรากล่าวถึงหลักการบวกในแง่เปรียบเทียบกับการเลือกวิธีการทำงานในรูปแบบภาษามนุษย์ แล้วนั้น จากตัวอย่างที่ 9.1.2 เราจะพบว่าเราสามารถนิยามหลักการบวกได้โดยใช้เซตเข้ามาช่วยในการพูดให้ เป็นภาษาคณิตศาสตร์มากขึ้นได้ดังนี้

หลักการบวกแบบภาษาเซต

กำหนดให้ A และ B เป็นเซตที่มีสมาชิกแตกต่างกัน กล่าวคือ $A\cap B=\emptyset$ จะได้ว่า

$$|A \cup B| = |A| + |B|$$

และ นอกจากที่ เรานิยามหลักการ บวกโดยใช้ แค่ 2 ทางเลือก เรายังสามารถขยาย แนวคิด ออกไปให้มี มากกว่า 2 ทางเลือกได้ในทำนองเดียวกันคือ

หลักการบวกกรณีทั่วไป

ถ้ามีทางเลือก m ทางเลือก ซึ่งไม่มีทางเลือกใดที่มีวิธีการซ้ำกับทางเลือกอื่น ๆ สมมติว่าทางเลือกที่หนึ่ง มีวิธีทำได้ r_1 วิธี ทางเลือกที่สองมีวิธีทำได้ r_2 วิธี ... และทางเลือกที่ m มีวิธีทำได้ r_m วิธี ดังนั้น จะมีวิธีเลือกทำงานชิ้นนี้เพียงอย่างใดอย่างหนึ่งได้แตกต่างกัน $r_1+r_2+\cdots+r_m$ วิธี หรือกล่าวแบบภาษาเซตคือ ถ้า A_1,\ldots,A_m เป็นเซตที่ไม่มีสองเซตใด ๆ ที่มีสมาชิกร่วมกัน กล่าวคือ $A_i\cap A_j=\emptyset$ สำหรับทุก ๆ $i\neq j$ จะได้ว่า

$$|A_1 \cup \dots \cup A_m| = |A_1| + \dots + |A_m|$$

Example 9.1.3.
$$\{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \le 4\}$$

Solution. ..

9.1.2 หลักการคูณ

หลักการคูณ

กระบวนการทำงานอย่างหนึ่งประกอบด้วยขั้นตอนย่อยๆ สองขั้นตอน โดยขั้นตอนแรกมีวิธีทำได้แตกต่าง กัน p วิธี และไม่ว่าจะเลือกวิธีใดก็ตามในขั้นตอนแรกจะสามารถทำขั้นตอนที่สองได้แตกต่างกัน q วิธี และขั้นตอนทั้งสองนี้ไม่สามารถทำงานร่วมกันได้ ดังนั้นจะมีวิธีทำงานชิ้นนี้ได้แตกต่างกัน pq วิธี

ประเด็นสำคัญของหลักการคูณคือการที่งานชิ้นนั้นมีความเป็นขั้นตอนทำอย่างต่อเนื่องกัน และต้องทำทุก ขั้นตอนถึงจะเสร็จงานชิ้นนั้น ถ้าในการวางแผนการนับมีการแบ่งการนับออกเป็นขั้นและมั่นใจว่าเมื่อทำจบทุก ขั้นแล้วจะได้ผลลัพธ์ของการจัดเรียงออกมาตามที่เราต้องการก็เป็นการยืนยันได้ในระดับหนึ่งว่าเราจะต้องใช้ หลักการคูณเข้ามานับ นอกจากนั้น ข้อระวังของกฏการคูณที่ต้องพึงระวังไว้เสมอคือจำนวนวิธีการเลือกทำใน ขั้นตอนถัดไปจะต้องเท่ากันทั้งหมดไม่ว่าจะเลือกทำวิธีการใดในขั้นตอนปัจจุบันก็ตาม กล่าวเทียบกับนิยามด้าน บนคือ ไม่ว่าเราจะเลือกวิธีใดใน p วิธีข้งหมด

คำถาม

จริง ๆ แล้วเราสามารถมองหลักการคูณจากมุมมองของหลักการบวกได้ ซึ่งจะพบเหตุผลว่าทำไมเงื่อนไข ของการที่จำนวนวิธีที่เลือกทำได้ในขั้นตอนถัดไปต้องเท่ากันไม่ว่าเลือกทำวิธีใดมาเป็นเงื่อนไขที่สำคัญ จง พิจารณาหลักการคูณโดยใช้การอธิบายในรูปแบบของหลักการบวก

Example 9.1.4. มหาวิทยาลัยแห่งหนึ่งมีนิสิตวิชาเอกคณิตศาสตร์ 33 คน และมีนิสิตวิชาเอกวิทยาการ คอมพิวเตอร์ 40 คน ถ้าต้องการเลือกนักศึกษาสองคนจากวิชาเอกละหนึ่งคนเพื่อเป็นคณะกรรมการของสโมสร นักศึกษา จะมีวิธีเลือกนักศึกษาได้แตกต่างกันกี่วิธี

Solution. ...

Example 9.1.5. ให้เซต $A=\{a,b,c,d\}$ และ $B=\{\alpha,\beta,\gamma\}$ ถ้าต้องการเลือกตัวอักษร 2 ตัวจาก เซต A และเซต B เซตละหนึ่งตัว จะมีวิธีเลือกที่แตกต่างกันกี่วิธี

Solution. ...

ในทำนองเดียวกัน หลักการคูณก็สามารถเขียนได้ในรูปแบบของเซตดังนี้

หลักการคูณแบบภาษาเซต

กำหนดให้ A และ B เป็นเซต และ $A \times B = \{(a,b) \colon a \in A, b \in B\}$ แล้วจะได้ว่า

$$|A \times B| = |A| \times |B|$$

Example 9.1.6. จำนวนเต็มคี่ที่อยู่ระหว่าง 1000 และ 10000 ซึ่งมีเลขในแต่ละหลักแตกต่างกันมีทั้งหมดกี่ จำนวน

Solution. ...

หลักการคูณกรณีทั่วไป

ถ้างานชิ้นหนึ่งประกอบด้วย m ขั้นตอน สมมติว่าขั้นตอนที่หนึ่งมีวิธีทำได้ r_1 วิธี ขั้นตอนที่สองมี วิธีทำได้ r_2 วิธีไม่ว่าจะเลือกวิธีการใดในขั้นตอนที่หนึ่งก็ตาม . . . และขั้นตอนที่ m มีวิธีทำได้ r_m วิธีไม่ว่าจะเลือกวิธีการใดในขั้นตอนก่อนหน้าก็ตาม ดังนั้นจะมีวิธีเลือกทำงานชิ้นนี้ได้แตกต่างกัน $r_1 \times r_2 \times \cdots \times r_m$ วิธี

หรือกล่าวแบบภาษาเซตคือ ถ้า A_1,\ldots,A_m เป็นเซตใด ๆ แล้วจะได้ว่า

$$|A_1 \times \cdots \times A_m| = |A_1| \times \cdots \times |A_m|$$

Example 9.1.7. จำนวนเต็มคู่ที่อยู่ระหว่าง 1000 และ 10000 ซึ่งมีเลขในแต่ละหลักแตกต่างกันมีทั้งหมดกี่ จำนวน

Solution. ...

Example 9.1.8. จงแสดงว่าเซตที่มีสมาชิก n ตัวมีเซตย่อย 2^n เซต

Solution. ...

Example 9.1.9. มีคู่สามีภรรยา 15 คู่ในงานปาร์ตีแห่งหนึ่ง จงหาจำนวนวิธีการเลือกผู้หญิงหนึ่งคนและผู้ชาย อีกหนึ่งคนโดยที่ (1) ต้องเป็นคู่สามีภรรยากัน (2) ต้องไม่เป็นคู่สามีภรรยากัน

Solution. ...

Example 9.1.10. พาสเวิร์ดของระบบความปลอดภัยแห่งหนึ่งเป็นตัวอักษรภาษาอังกฤษยาว 3 หรือ 4 ตำแหน่ง จงหา (1) จำนวนของพาสเวิร์ดที่เป็นไปได้ทั้งหมดที่ ใช้ตัวอักษรไม่ซ้ำกับ

Solution. ...

Example 9.1.11. จงหาจำนวนของตัวประกอบที่เป็นจำนวนเต็มบวกของ $441,000 (= 2^3 \times 3^2 \times 5^3 \times 7^2)$

Solution. ...

Example 9.1.12. จงหาจำนวนวิธีในการเขียน 441,000 ในรูปผลคูณของจำนวนเต็มบวก 2 จำนวนที่เป็น จำนวนเฉพาะสัมพัทธ์กัน (เช่น $1\times441,000$ หรือ 441×1000)

Solution. ...

Example 9.1.13. กำหนดให้ $X = \{1,2,3,\dots,10\}$ และ $S = \{(a,b,c)\colon a,b,c\in X,a< b$ และ $a < c\}$ จงหาจำนวนสมาชิกทั้งหมดของ S

Solution. ...

9.2. การเรียงสับเปลี่ยน 57

9.2 การเรียงสับเปลี่ยน

9.2.1 การเรียงสับเปลี่ยนเชิงเส้นแบบของไม่ซ้ำ

กำหนดให้ $A=\{a_1,a_2,\dots,a_n\}$ เป็นเซตของ n สิ่งของที่แตกต่างกัน และให้ $0\leq r\leq n$ แล้ว การ เรียงสับเปลี่ยน r ขึ้นของเซต A (r-permutation) คือรูปแบบในการจัดเรียงลำดับเป็นแถวตรงของสมาชิก r ตัวใดๆ จากเซต A และเขียนแทนจำนวนของรูปแบบดังกล่าวที่เป็นไปได้ทั้งหมดด้วย P(n,r)

Example 9.2.1. ให้ $A=\{a,b,c,d\}$ จงเขียนรูปแบบการเรียงสับเปลี่ยนของ 3 ชิ้นจากเซต A ทั้งหมด

Solution. ...

ในกรณีที่ n มีค่าน้อย ๆ ก็เป็นการง่ายที่จะไล่ทุกรูปแบบเพื่อนับ แต่ในกรณีที่ n มีค่ามาก ๆ คงไม่เป็นเรื่องง่าย ที่จะเขียนไล่ให้ครบแน่ ๆ จึงต้องมาพิจารณากันว่าแล้วเราจะคำนวณหาค่า P(n,r) กันอย่างไร

อย่างที่ได้กล่าวไปหลายรอบแล้วว่าเบื้องหลังของสูตรการนับต่าง ๆ นั้นมีพื้นฐานมาจากหลักการบวกและ หลักการคูณทั้งสิ้น เพียงแค่ต้องวางแผนขั้นตอนการนับให้ถูกต้อง ดังนั้น สิ่งแรกที่ต้องทำคือวางแผนว่าเราจะ วางขั้นตอนของการเรียงสับเปลี่ยน r ชิ้นจากของ n ชิ้นอย่างไร

แนวคิดหนึ่งที่น่าจะเป็นแนวคิดที่ผู้อ่านทุกคนคิดถึงเป็นอย่างแรกคือ **เลือกของจากกองตัวเลือกที่มีมาใส่** ทีละตำแหน่งไล่ไปตั้งแต่ตำแหน่งแรกจนถึงตำแหน่งสุดท้าย

จำนวนวิธีในการเรียงสับเปลี่ยน

P(n,r) คือ จำนวน สมาชิก ของ เซต $\{(x_1,x_2,\ldots,x_r)|x_i\in\{a_1,\ldots,a_n\}$ และ $x_i
eq x_j$ สำหรับทุกๆ $i
eq j\}$ และ จะ ได้ว่า

$$P(n,r) = \frac{n!}{(n-r)!}$$

Note

$$P(n,0) = 1$$
 และ $P(n,1) = n$ และ $P(n,n) = n!$

คำเตือน

การเรียงสับเปลี่ยนเป็นเพียงแค่เครื่องมือหนึ่งในการนับ ไม่ใช่รูปแบบของโจทย์ อาจมีการใช้พร้อมกับหลัก การบวก และหลักการคูณ และการเรียงสับเปลี่ยนอาจเป็นเพียงการนับในขั้นตอนใดขั้นตอนหนึ่งของหลัก การคูณก็ได้

Example 9.2.2. จงหาจำนวนคำซึ่งมีความยาว 4 ตัวอักษร โดยที่ตัวอักษรทั้ง 4 ตัวมาจากเซต $\{a,b,c,d,e\}$

Solution. ...

Example 9.2.3. จัดคน 6 คนเข้านั่งเรียงในแนวเส้นตรงได้กี่วิธี

Solution. ...

Example 9.2.4. จัดสามีภรรยา 3 คู่เข้านั่งเรียงแถวได้กี่วิธีถ้า (1) หัวแถวและท้ายแถวต้องเป็นผู้ชาย (2) ภรรยาต้องนั่งติดกับสามี

Solution. ...

Example 9.2.5. จงหาจำนวนของจำนวนเต็มซึ่งมีความยาว 7 หลัก แต่ละหลักแตกต่างกันและไม่เป็น 0 โดยที่เลข 5 และเลข 6 ต้องไม่ปรากฏในตำแหน่งติดกัน

9.2. การเรียงสับเปลี่ยน 59

Solution. ...

Example 9.2.6. จงอธิบายเหตุผลเชิงการจัดเรียงว่า

$$P(n,n) = P(n,k) \times P(n-k,n-k)$$

Solution. ...

Note

เรียกการพิสูจน์แบบตัวอย่างที่ 9.2.6 ว่า combinatorial proof หรือเรียกว่า **เทคนิค double** counting

Example 9.2.7. จำนวนเต็มคู่ที่อยู่ระหว่าง 20000 และ 70000 ซึ่งมีเลขในแต่ละหลักแตกต่างกันทั้งหมดมีกี่ จำนวน

Solution. ...

Example 9.2.8. กำหนดให้ S เป็นเซตของจำนวนนับที่สร้างมาจากเลขโดด $\{1,3,5,7\}$ ที่เลขในแต่ละ หลักแตกต่างกันทั้งหมด จงหา

- 1. |S|
- 2. $\sum_{n \in S} n$

Solution. ...

9.2.2 การเรียงสับเปลี่ยนแบบวงกลม

• มีข้อ แตก ต่าง จาก การ เรียง สับ เปลี่ยน เชิง เส้น อย่างไร (มอง ว่า สอง รูป แบบ การ จัด เรียง แตก ต่าง กัน อย่างไร)

• ออกแบบกระบวนการนับอย่างไร

Example 9.2.9. จงเขียนรูปแบบการจัดเรียงเชิงเส้น 4 สิ่งจากเซต $A = \{a,b,c,d\}$ ซึ่งมี 4! = 24 แบบ และจงเขียนแยกว่าแบบใดบ้างที่เมื่อนำมาเรียงสับเปลี่ยนเป็นวงกลมจะได้รูปแบบเดียวกัน (และสังเกตรูปแบบ เพื่อนับ)

Solution. ...

การเรียงสับเปลี่ยนแบบวงกลม

การเรียงสับเปลี่ยนแบบวงกลม คือ รูปแบบการจัดเรียงที่นำรูปแบบการจัดเรียงเชิงเส้นมาล้อมเป็น วงกลม ซึ่งจะได้ว่าสองรูปแบบการจัดเรียงเชิงเส้นที่ต่างกันที่เมื่อนำมาล้อมเป็นวงกลมแล้วจะมองว่าเป็น รูปแบบเดียวกันเกิดจาก

และจะได้ว่าจำนวนวิธีการจัดเรียงสับเปลี่ยนแบบวงกลมของสิ่งของ n สิ่งทั้งหมดเท่ากับ

Example 9.2.10. นำเด็กผู้ชาย 5 คนและเด็กผู้หญิง 3 คนมานั่งล้อมโต๊ะกลม จะนั่งได้กี่วิธีถ้า

- 1. ไม่มีเงื่อนไขเพิ่มเติม
- 2. เด็กชาย B_1 และเด็กหญิง G_1 ไม่นั่งติดกัน
- 3. ไม่มีเด็กผู้หญิงสองคนใด ๆ นั่งติดกัน

9.2. การเรียงสับเปลี่ยน 61

Solution. ...

Example 9.2.11. จงหาจำนวนวิธีการนั่งที่แตกต่างกันของคู่สามีภรรยา n คู่รอบโต๊ะวงกลม โดยที่

- 1. ผู้ชายและผู้หญิงนั่งสลับกัน
- 2. คู่สามีภรรยาต้องนั่งติดกัน

Solution. ...

Example 9.2.12. จากตัวอย่างที่ 9.3.1 ที่เราได้เขียนรูปแบบการจัดเรียงเชิงเส้น 3 สิ่งจากเซต $A=\{a,b,c,d\}$ ซึ่งมี P(4,3)=24 แบบ จงเขียนแยกว่าแบบใดบ้างที่เมื่อนำมาเรียงสับเปลี่ยนเป็นวงกลมจะ ได้รูปแบบเดียวกัน (และสังเกตรูปแบบเพื่อนับ)

Solution. ...

การเรียงสับเปลี่ยนแบบวงกลมแบบทั่วไป

ถ้ามีของ n สิ่งแตกต่างกัน จะนำมาจัดเรียงเป็นวงกลม r สิ่งได้แตกต่างกัน Q(n,r) วิธี โดยที่

$$Q(n,r) = \frac{P(n,r)}{r}$$

9.2.3 การเรียงสับเปลี่ยนเชิงเส้นแบบของซ้ำ

การเรียงสับเปลี่ยนเชิงเส้นแบบของซ้ำ

ถ้ามีของ n สิ่ง ซึ่งแบ่งออกเป็น k ประเภท โดยของในประเภทเดียวกันจะมองเป็นสิ่งเดียวกัน โดยที่ มีของประเภทที่หนึ่งอยู่ n_1 ชิ้น ของประเภทที่สองมีอยู่ n_2 ชิ้น ... ของประเภทที่ k มีอยู่ n_k ชิ้น โดยที่ $n_1+n_2+\cdots+n_k=n$ แล้วจะได้ว่าจำนวนวิธีการจัดเรียงสับเปลี่ยนเชิงเส้นของสิ่งของ n สิ่งนี้เท่ากับ

$$P(n; n_1, n_2, \dots, n_k) =$$

Example 9.2.13. จงหาจำนวนวิธีการจัดเรียงคำว่า MISSISSIPPI ที่แตกต่างกันทั้งหมด

Solution. ...

9.3 การจัดกลุ่ม

กำหนดให้ $A=\{a_1,a_2,\dots,a_n\}$ เป็นเชตของ n สิ่งของที่แตกต่างกัน และให้ $0\leq r\leq n$ แล้ว **การจัด** กลุ่ม r ขึ้นของเซต A (r-combination) คือรูปแบบในการจัดสมาชิก r ตัวใดๆ จากเซต A เข้ากลุ่มเดียวกัน โดยที่ในกลุ่มเราไม่สนใจลำดับของสมาชิก แต่สนใจเพียงแค่มีใครอยู่บ้าง และเขียนแทนจำนวนของรูปแบบดัง กล่าวที่เป็นไปได้ทั้งหมดด้วย C(n,r) หรือ $\binom{n}{r}$

Example 9.3.1. ให้ $A=\{a,b,c,d\}$ จงเขียนรูปแบบการเรียงจัดกลุ่มของ 3 ชิ้นจากเซต A ทั้งหมด

Solution. ...

9.3. การจัดกลุ่ม 63

 $\overline{C(n,r)}$ คือจำนวนเซตย่อยที่มีสมาชิก r ตัวของเซตที่มีสมาชิก n ตัว กล่าวคือ

$$C(n,r)$$
 คือจำนวนเซตย่อยที่มีสมาชิก r ตัวของเซตที่มีสมาชิก n ตัว กล่าวคือ
$$C(n,r)=\{\{x_1,x_2,\ldots,x_r\}|x_i\in\{a_1,\ldots,a_n\}\$$
และ $x_i\neq x_j$ สำหรับทุกๆ $i\neq j\}$

$$C(n,r) =$$

Example 9.3.2. จงหาจำนวนทั้งหมดของบิตสตริงโดยมีความยาวเท่ากับ 9 ซึ่งมีเลขโดด 1 อยู่สี่ตำแหน่ง

Solution.

Example 9.3.3. จงหาจำนวนวิธีการจัดเรียงคำว่า MISSISSIPPI ที่แตกต่างกันทั้งหมด (โจทย์เดิม แต่ใช้ เทคนิคการจัดกลุ่มมาช่วยนับ)

Solution. ...

Example 9.3.4. จงหาจำนวนวิธีทั้งหมดในการจัดแบ่งนักเรียน 7 คน ออกเป็นสามกลุ่ม โดยให้มีกลุ่มละ สาม คน 1 กลุ่ม และกลุ่มละสองคน 2 กลุ่ม

Solution.

Example 9.3.5. จงหาจำนวนวิธีทั้งหมดในการที่สุขใจเชิญเพื่อนเพียง 6 คนจากเพื่อนสนิททั้งหมด 10 คนมา รับประทานอาหารเย็นด้วยกัน ซึ่งใน 10 คนนี้มี 2 คนเป็นพี่น้องกัน ถ้าจะเชิญมาต้องเชิญทั้ง พี่และน้องมาด้วย

Solution.

Example 9.3.6. จงใช้เหตุผลเชิงการนับเพื่อพิสูจน์ว่า

$$\binom{n}{r} = \binom{n}{n-r}$$

Solution. ...

Example 9.3.7. จงใช้เหตุผลเชิงการนับเพื่อพิสูจน์ว่า

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

Solution. ...

9.4 สัมประสิทธิ์ทวินาม

ในหัวข้อที่ผ่านมานั้น เราได้นิยามจำนวน $\binom{n}{r}$ หรือ C(n,r) ไปแล้วด้วยปัญหาของการสร้างเซตย่อยขนาด r สมาชิกจากเซตที่มี n สมาชิก แต่ทั้งนี้ เรายังสามารถนิยามเพิ่มเติมในกรณีของ r<0 หรือกรณี r>n ได้ เป็น

$$\binom{n}{r}=egin{cases} rac{n!}{r!(n-r)!} & ext{ ถ้า } 0\leq r\leq n \ 0 & ext{ ถ้า } r>n$$
 หรือ $r<0$

และเรายังสามารถพิสูจน์เอกลักษณ์ต่างๆ ของค่าเชิงการจัดกลุ่มได้โดยใช้หลักการนับเข้ามาช่วย

แต่ว่าเรายังสามารถนิยามค่าของสัญลักษณ์ $\binom{n}{r}$ ได้ในอีกรูปแบบหนึ่งผ่านการพิจารณารูปแบบการกระ จายของพหหุนามทวินาม $(x+y)^n$ โดยเราจะพบว่าค่าเชิงการจัดกลุ่ม $\binom{n}{r}$ นั้นจะเป็นส่วนของค่าสัมประ สิทธ์ของพหุนามที่ได้มาจากการกระจายพหุนามทวินามดังกล่าว ทำให้บ่อยครั้งสัญลักษณ์เชิงการจัดกลุ่มดัง กล่าวอาจจะถูกเรียกว่า **สัมประสิทธิ์ทวินาม** (binomial coefficient)

9.4.1 ทฤษฎีบททวินาม

ทฤษฎีบททวินาม

สำหรับจำนวนเต็มบวก n ใดๆ จะได้ว่า

$$(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^n$$

9.4. สัมประสิทธิ์ทวินาม 65

พิสูจน์โดยใช้หลักการนับ!

Example 9.4.1. (easy exercise)

- 1. จงหาสัมประสิทธิ์ของ x^2y^6 ที่ได้จากการกระจาย $(2x+y^2)^5$
- 2. จงใช้ทฤษฎีบททวินามหา $\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}$

Solution. ...

9.4.2 การใช้ทฤษฎีบททวินามในการพิสูจน์เอกลักษณ์เชิงการจัด

Example 9.4.2. จงแสดงว่า

1.
$$\sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0$$

2.
$$\binom{n}{0} + \binom{n}{2} + \cdots + \binom{n}{2k} + \cdots = \binom{n}{1} + \binom{n}{3} + \cdots + \binom{n}{2k+1} + \cdots = 2^{n-1}$$

3.
$$\sum_{r=1}^{n} r\binom{n}{r} = n \cdot 2^{n-1}$$

4. ***
$$\sum_{i=0}^{r} {m \choose i} {n \choose r-i} = {m+n \choose r}$$

Solution. ...

9.4.3 โจทย์ปัญหาเพิ่มเติมเกี่ยวกับการจัดกลุ่ม

Example 9.4.3. 1. มีกี่วิธีในการเดินตามจุดพิกัดจำนวนเต็มจากจุด (0,0) ไปจุด (11,5) ใดๆ โดยที่ เดินได้แค่ทิศขึ้นและทางขวาเท่านั้น

- 2. จากโจทย์ข้อที่ 1 ถ้าเพิ่มเงื่อนไขว่าต้องผ่านจุด (4,3) ก่อน จะเดินได้กี่วิธี
- 3. จากโจทย์ข้อที่ 1 ถ้าเพิ่มเงื่อนไขว่าต้องผ่านเส้นที่เชื่อมระหว่างจุด (2,3) และ (3,3) ก่อน จะเดินได้ กี่วิธี

Solution. ...

9.5 หลักการนำเข้า-ตัดออก

PROGRAMMING PART

9.6 Programming about Combinatorics

Recurrence Relation

Recursive Algorithm - an approach to functional programming

Graph Theory

Index

additive rule, 52

binomial coefficient, 64

combination, 62

multiplicative rule, 54

permutation, 57

การจัดกลุ่ม, 62

การเรียงสับเปลี่ยน, 57

จัดกลุ่ม, 62

สัมประสิทธิ์ทวินาม, 64

หลักการคูณ, 54

หลักการบวก, 52

เรียงสับเปลี่ยน, 57