МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Алгоритмической математики

ОТЧЕТ

по лабораторной работе 1

по дисциплине «Статистический анализ»

Тема: Генерация выборок из заданного распределения. Изучение свойств выборочных характеристик.

Студент гр. 8374	 Пихтовников К.С
Преподаватель	Чирина А.В.

Санкт-Петербург 2020

Задание:

Сгенерировать 1000 независимых выборок объема N с заданным распределением. Взять последовательно значения N, равные 50, 200 и 1000. Выборки объема 200 и 1000 не выводить (после команды генерации поставить точку с запятой).

Дальше задания выполнять для каждого N.

- 1. Для ПЕРВОЙ выборки (т.е. для первого столбца из 1000) построить график эмпирической функции распределения, гистограмму и полигон частот (шаг гистограммы выбрать самостоятельно, выбор объяснить).
- 2. Для КАЖДОЙ выборки построить выборочное среднее, сформировав строчку. Для этой строчки построить гистограмму и эмпирическую функцию распределения, найти среднее и выборочную дисперсию.
- 3. То же задание для выборочной медианы.
- 4. То же задание для выборочного максимума.
- 5. То же задание для выборочного минимума.

Вариант 15:

- 1. Равномерное распределение a=1, b=7
- 2. Пуассоновское распределение

 $\lambda = 0.8$

Выполнение работы:

1. Равномерное распределение (a=1, b=7).

Сгенерировал 1000 независимых выборок объема N с заданным распределением. Взял последовательно значения N, равные 50, 200 и 1000.

N=50

1. График эмпирической функции распределения для первой выборки:

Гистограмма плотности вероятности

Для того, чтобы выбрать шаг гистограммы воспользуемся правилом Стерджесса, которое позволяет определить оптимальное количество интервалов, на которые разбивается наблюдаемый диапазон изменения случайной величины при построении гистограммы плотности её распределения:

Количество интервалов определяется как:

$$n = 1 + log_2 N$$

, где N-общее число наблюдений.

Тогда,

$$n = 1 + log_2 50 = 1 + 5.644 = 6.644 = 7$$

Шаг гистограммы из рисунка равен 1.

Гистограмма частоты встречаемости и Полигон частот для первой выборки

2. Выборочное среднее для каждой выборки

unifo unifo	rm_distributio	on.R × sample		
\Leftrightarrow		ter	984	3.804574
_	V1 ÷		985	3.977913
1	4.244565			
2	3.874260		986	3.568501
3	4.141529		987	3.827606
4	3.863648		988	3.919449
5	4.462937		900	5.919449
6	4.125015		989	3.750492
7	4.020966		990	3.605480
8	3.929737			
9	4.300049		991	4.002305
10	3.606648		992	4.074456
11	3.728696		993	3.832892
12	3.816471		333	3.032032
13	4.861956		994	3.939954
14	4.072971		995	4.212468
15	4.092487		996	3.979467
16	3.762305		330	3.373407
17	4.163290		997	3.987491
18	4.077757		998	3.877995
19	3.875126			
20	4.068147		999	4.542194
21	3.731598		1000	3.764866
22	3.621124			

Гистограмма плотности вероятности для выборочного среднего

По правилу Стерджесса:

$$n = 1 + log_2N = 1 + log_21000 = 1 + 9.966 = 11$$

Количество столбцов должно быть 11.Шаг гистограммы равен 0.2

График эмпирической функции распределения для выборочного среднего

Среднее значение для строки из выборочных средних

Выборочная дисперсия для строки из выборочных средних

3. Выборочная медиана для каждой выборки

				m_distributions	aumpre_m
	rm_distribution.R ×	sample_median_matrix ×	gi pois (
				V1 ‡	
^	V1 0		980	3.478057	
1	4.482749		981	3.760555	
2	3.654633		982	4.098470	
3	4.336971		983	4.342364	
4	4.048864		984	4.447798	
5	4.890267		985	3.860156	
6	4.283167		986	3.647798	
7	3.499524		987	4.841076	
8	3.812909		988	3.555993	
9	4.344883		989	4.027324	
10	3.372957		990	4.304629	
11	3.600630		991	4.083885	
12	3.998836		992	4.461549	
13	5.161592		993	4.366077	
14	3.693374		994	4.223283	
15	4.303799		995	3.690946	
16	3.435364		996	4.764268	
17	4.076090		997	4.074439	
18	4.395108		998	4.183732	
19	3.871352		999	3.762968	
20	4.078099		1000	4.235666	

Гистограмма плотности вероятности для выборочной медианы

Количество столбцов также должно быть 11, тк N =1000. Шаг гистограммы равен 0.2

График эмпирической функции распределения для выборочной медианы

Среднее значение для строки из выборочных медиан

Выборочная дисперсия для строки из выборочных медиан

4. Выборочный максимум для каждой выборки

Гистограмма плотности вероятности для выборочного максимума

Количество столбцов также должно быть 11, тк N =1000. Шаг гистограммы равен 0.1

График эмпирической функции распределения для выборочного максимума

Среднее значение для строки из выборочных максимумов

Выборочная дисперсия для строки из выборочных максимумов

5. Выборочный минимум для каждой выборки

Гистограмма плотности вероятности для выборочного минимума

Количество столбцов также должно быть 11, тк N = 1000.Шаг гистограммы равен 0.05.

График эмпирической функции распределения для выборочного минимума

Среднее значение для строки из выборочных минимумов

Выборочная дисперсия для строки из выборочных минимумов

N=200

1. График эмпирической функции распределения для первой выборки:

Гистограмма плотности вероятности

Для того, чтобы выбрать шаг гистограммы воспользуемся правилом **Стерджесса**, которое позволяет определить оптимальное количество интервалов, на которые разбивается наблюдаемый диапазон изменения случайной величины при построении гистограммы плотности её распределения:

Количество интервалов определяется как:

$$n = 1 + log_2 N$$

, где N-общее число наблюдений.

Тогда,

$$n = 1 + log_2 200 = 1 + 7.644 = 8.644 = 9$$

Шаг гистограммы из рисунка равен 0.5.

Гистограмма частоты встречаемости и Полигон частот для первой выборки

2. Выборочное среднее для каждой выборки

- A]			æ ₹ Fil	ter
	rm_distributio		sample	_	V1 ‡	
		ter		980	3.924521	
•	V1 ‡			981	4.140867	
1	4.211923			982	3.978078	
2	3.984854			983	3.902306	
3	3.863053			984	3.887420	
4	4.007059			985	3.913325	
5	4.059714			986	3.999328	
6	3.856683			987	3.885626	
7	4.087503			988	4.069071	
8	4.136429					
9	3.990455			989	4.042817	
10	4.052742			990	3.850970	
11	3.923429			991	4.081099	
12	3.986426			992	4.066786	
13	3.933621			993	4.182504	
14	4.067387			994	3.983532	
15	4.023612			995	3.882597	
16	4.135192			996	3.919483	
17	4.169688			997	3.851508	
18	4.171669			998	4.042740	
19	3.878762			999	3.746662	
20	4.017677			1000	4.069468	
20						

Гистограмма плотности вероятности для выборочного среднего

По правилу Стерджесса:

$$n = 1 + log_2 N = 1 + log_2 1000 = 1 + 9.966 = 11$$

Количество столбцов должно быть 11.Шаг гистограммы равен 0.1

График эмпирической функции распределения для выборочного среднего

Среднее значение для строки из выборочных средних

Выборочная дисперсия для строки из выборочных средних

3. Выборочная медиана для каждой выборки

unifo	rm_distributio	× sample	e_median_ma		
	Ø ₹ Filt			•	V1 ‡
•	V1 ‡			980	3.742118
1	4.314092			981	4.174118
2	3.808190			982	3.905272
3	3.763902			983	3.867893
4	4.008911			984	3.930374
5	3.986367			985	4.101317
6	3.657678			986	4.078359
7	4.334823			987	3.637000
8	4.281153			988	3.997476
9	4.058963			989	4.189381
10	3.911108			990	3.743831
11	3.865307			991	4.217758
12	3.957302			992	4.059693
13	3.748870			993	4.241843
14	4.076872			994	3.949857
15	4.077562			995	3.762986
				996	4.088850
16	4.228519			997	3.885702
17	4.174190			998	4.013280
18	4.161291			999	3.510790
19	3.935384			1000	4.026560
20	4.252137				

Гистограмма плотности вероятности для выборочной медианы

Количество столбцов также должно быть 11, тк N=1000.Шаг гистограммы равен 0.1

График эмпирической функции распределения для выборочной медианы

Среднее значение для строки из выборочных медиан

Выборочная дисперсия для строки из выборочных медиан

4. Выборочный максимум для каждой выборки

Гистограмма плотности вероятности для выборочного максимума

Количество столбцов также должно быть 11, тк N=1000.Шаг гистограммы равен 0.02

График эмпирической функции распределения для выборочного максимума

Среднее значение для строки из выборочных максимумов

Выборочная дисперсия для строки из выборочных максимумов

5. Выборочный минимум для каждой выборки

Гистограмма плотности вероятности для выборочного минимума

Количество столбцов также должно быть 11, тк N = 1000. Шаг гистограммы равен 0.025.

График эмпирической функции распределения для выборочного минимума

Среднее значение для строки из выборочных минимумов

Выборочная дисперсия для строки из выборочных минимумов

N=1000

1. График эмпирической функции распределения для первой выборки:

Гистограмма плотности вероятности

Для того, чтобы выбрать шаг гистограммы воспользуемся правилом Стерджесса, которое позволяет определить оптимальное количество интервалов, на которые разбивается наблюдаемый диапазон изменения случайной величины при построении гистограммы плотности её распределения:

Количество интервалов определяется как:

$$n = 1 + log_2 N$$

, где N-общее число наблюдений.

Тогда,

$$n = 1 + log_2 1000 = 1 + 7.644 = 9.966 = 11$$

Шаг гистограммы из рисунка равен 0.5.

Гистограмма частоты встречаемости и Полигон частот для первой выборки

2. Выборочное среднее для каждой выборки

unifor	rm_distributio	n.R* ×	_	V1 ‡
(++) I	a ₹ Fil	ter	980	3.994258
	V1 ‡		981	4.006585
1	4.026224		982	4.005050
2	3.968380		983	4.063357
3			984	4.034650
_	4.066839		985	3.919955
4	3.952890		986	4.116443
5	4.019894		987	4.032667
6	4.059025		988	4.051987
7	3.889765		989	4.035939
8	4.002820		990	4.054296
9	4.062822		991	4.087441
10	4.073033		992	3.990767
11	4.082729		993	4.008094
12	4.038966		994	3.940428
13	3.907414		995	4.028795
14	4.010492		996	4.090316
15	4.028057		997	4.061827
16	4.057184		998	3.984945
			999	4.014694
17	4.034893		1000	3.974333
18	3.999915			

Гистограмма плотности вероятности для выборочного среднего

По правилу Стерджесса:

$$n = 1 + log_2 N = 1 + log_2 1000 = 1 + 9.966 = 11$$

Количество столбцов должно быть 11.Шаг гистограммы равен 0.05

График эмпирической функции распределения для выборочного среднего

Среднее значение для строки из выборочных средних

Выборочная дисперсия для строки из выборочных средних

3. Выборочная медиана для каждой выборки

•	V1 ‡
1	4.040694
2	3.866831
3	4.043618
4	4.057743
5	4.094854
6	4.122385
7	3.735839
8	4.009732
9	4.039155
10	4.120877
11	4.210820
2	4.094273
3	3.928920
4	4.001182
5	4.058385
16	4.126641
۱7	4.138515
18	4.026329
19	3.886194
20	3.967903
21	3.985785

Гистограмма плотности вероятности для выборочной медианы

Количество столбцов также должно быть 11, тк N =1000. Шаг гистограммы равен 0.05

График эмпирической функции распределения для выборочной медианы

Среднее значение для строки из выборочных медиан

Выборочная дисперсия для строки из выборочных медиан

4. Выборочный максимум для каждой выборки

Гистограмма плотности вероятности для выборочного максимума

Количество столбцов также должно быть 11, тк N = 1000. Шаг гистограммы равен 0.005.

График эмпирической функции распределения для выборочного максимума

Среднее значение для строки из выборочных максимумов

Выборочная дисперсия для строки из выборочных максимумов

5. Выборочный минимум для каждой выборки

Гистограмма плотности вероятности для выборочного минимума

Количество столбцов также должно быть 11, тк N=1000.Шаг гистограммы равен 0.05.

График эмпирической функции распределения для выборочного минимума

Среднее значение для строки из выборочных минимумов

Выборочная дисперсия для строки из выборочных минимумов

2. Пуассоновское распределение (λ=0.8)

Сгенерировал 1000 независимых выборок объема N с заданным распределением. Взял последовательно значения N, равные 50, 200 и 1000.

N=50

1. График эмпирической функции распределения для первой выборки:

Гистограмма плотности вероятности

Для того, чтобы выбрать шаг гистограммы воспользуемся правилом Стерджесса, которое позволяет определить оптимальное количество интервалов, на которые разбивается наблюдаемый диапазон изменения случайной величины при построении гистограммы плотности её распределения:

Количество интервалов определяется как:

$$n = 1 + log_2 N$$

, где N-общее число наблюдений.

Тогда,

$$n = 1 + log_2 50 = 1 + 5.644 = 6.644 = 7$$

Шаг гистограммы из рисунка равен 0.5.

Гистограмма частоты встречаемости и Полигон частот для первой выборки

2. Выборочное среднее для каждой выборки

unifo	rm_distribut	tion.R ×	^	V1 ‡
♦ ₽	20 TI	Filter	980	0.74
	V1 ‡		981	0.56
1	0.94		982	0.74
2	0.70		983	0.80
3	0.82		984	0.74
4	0.88		985	0.66
5	0.74		986	0.82
6	0.78		987	0.82
7	0.76		988	0.70
8	0.88		989	0.64
9	0.86		990	0.82
	0.88		991	0.70
11	0.78		992	0.68
	0.84		993	0.64
	0.74		994	0.56
14	0.72		995	0.82
16	0.84		996	0.88
	0.76		997	1.28
18	1.16		998	0.62
19	0.88		999	0.76
	0.78		1000	0.80

Гистограмма плотности вероятности для выборочного среднего

По правилу Стерджесса:

$$n = 1 + log_2 N = 1 + log_2 1000 = 1 + 9.966 = 11$$

Количество столбцов должно быть 11.Шаг гистограммы равен 0.1.

График эмпирической функции распределения для выборочного среднего

Среднее значение для строки из выборочных средних

Выборочная дисперсия для строки из выборочных средних

3. Выборочная медиана для каждой выборки

Гистограмма плотности вероятности для выборочной медианы

Количество столбцов также должно быть 11, тк N = 1000.Шаг гистограммы равен 0.1.

График эмпирической функции распределения для выборочной медианы

Среднее значение для строки из выборочных медиан

Выборочная дисперсия для строки из выборочных медиан

4. Выборочный максимум для каждой выборки

Гистограмма плотности вероятности для выборочного максимума

Количество столбцов также должно быть 11, тк N =1000. Шаг гистограммы равен 0.5

График эмпирической функции распределения для выборочного максимума

Среднее значение для строки из выборочных максимумов

Выборочная дисперсия для строки из выборочных максимумов

5. Выборочный минимум для каждой выборки

Гистограмма плотности вероятности для выборочного минимума

График эмпирической функции распределения для выборочного минимума

Среднее значение для строки из выборочных минимумов

Выборочная дисперсия для строки из выборочных минимумов

N=200

1. График эмпирической функции распределения для первой выборки:

Гистограмма плотности вероятности

Для того, чтобы выбрать шаг гистограммы воспользуемся правилом Стерджесса, которое позволяет определить оптимальное количество интервалов, на которые разбивается наблюдаемый диапазон изменения случайной величины при построении гистограммы плотности её распределения:

Количество интервалов определяется как:

$$n = 1 + log_2 N$$

, где N-общее число наблюдений.

Тогда,

$$n = 1 + log_2 200 = 1 + 7.644 = 8.644 = 9$$

Шаг гистограммы из рисунка равен 0.5.

Гистограмма частоты встречаемости и Полигон частот для первой выборки

2. Выборочное среднее для каждой выборки

unifo	rm_distribut	tion	*	V1	÷
	20 Y	ilte	980	0.790	
^	V1 ‡		981	0.870	
1	0.790		982	0.740	
2	0.750		983	0.745	
3	0.730		984	0.805	
4	0.750		985	0.875	
5	0.920		986	0.845	
6	0.855		987	0.785	
7	0.780		988	0.645	
8	0.790		989	0.770	
9	0.870		990	0.735	
	0.775		991	0.770	
	0.740		992	0.860	
	0.880		993	0.840	
13	0.925		994	0.795	
	0.855		995	0.845	
	0.850		996	0.870	
	0.685		997	0.735	
17	0.850		998	0.765	
	0.755		999	0.780	
			1000	0.765	
20	0.930				

Гистограмма плотности вероятности для выборочного среднего

По правилу Стерджесса:

$$n = 1 + log_2 N = 1 + log_2 1000 = 1 + 9.966 = 11$$

Количество столбцов должно быть 11.Шаг гистограммы равен 0.05.

График эмпирической функции распределения для выборочного среднего

Среднее значение для строки из выборочных средних

Выборочная дисперсия для строки из выборочных средних

3. Выборочная медиана для каждой выборки

	V1 ‡	•	V1 ‡
		980	1.0
1		981	1.0
2	1.0	982	1.0
3	1.0	983	1.0
4	1.0	984	1.0
5	1.0	985	1.0
6	1.0	986	1.0
7	1.0	987	1.0
8	1.0	988	0.0
9	1.0	989	1.0
10	1.0	990	1.0
11	1.0	991	1.0
12	1.0	992	1.0
13	1.0	993	1.0
14	1.0	994	1.0
15	1.0	995	1.0
16	0.0	996	1.0
17	1.0	997	0.0
18	1.0	998	1.0
	1.0	999	1.0
20	1.0	1000	1.0
20	1.0		

Гистограмма плотности вероятности для выборочной медианы

Количество столбцов также должно быть 11, тк N =1000. Шаг гистограммы равен 0.1.

График эмпирической функции распределения для выборочной медианы

Среднее значение для строки из выборочных медиан

Выборочная дисперсия для строки из выборочных медиан

4. Выборочный максимум для каждой выборки

Гистограмма плотности вероятности для выборочного максимума

Количество столбцов также должно быть 11, тк N=1000.Шаг гистограммы равен 0.25

График эмпирической функции распределения для выборочного максимума

Среднее значение для строки из выборочных максимумов

Выборочная дисперсия для строки из выборочных максимумов

5. Выборочный минимум для каждой выборки

Гистограмма плотности вероятности для выборочного минимума

График эмпирической функции распределения для выборочного минимума

Среднее значение для строки из выборочных минимумов

Выборочная дисперсия для строки из выборочных минимумов

N=1000

1. График эмпирической функции распределения для первой выборки:

Гистограмма плотности вероятности

Для того, чтобы выбрать шаг гистограммы воспользуемся правилом Стерджесса, которое позволяет определить оптимальное количество интервалов, на которые разбивается наблюдаемый диапазон изменения случайной величины при построении гистограммы плотности её распределения:

Количество интервалов определяется как:

$$n = 1 + log_2 N$$

, где N-общее число наблюдений.

Тогда,

$$n = 1 + log_2 1000 = 1 + 9.966 = 10.966 = 11$$

Шаг гистограммы из рисунка равен 1.

Гистограмма частоты встречаемости и Полигон частот для первой выборки

2. Выборочное среднее для каждой выборки

uniform_distribution.R			_	V1 ‡
\Leftrightarrow	20 T	Filter	980	
*	V1 ‡			0.727
1	0.796			
2	0.815			0.821
3	0.815			0.824
4	0.769		984	0.864
5	0.783		985	0.845
6	0.769		986	0.840
	0.817		987	0.835
			988	0.825
	0.771		989	0.822
	0.795		990	0.784
	0.796		991	0.793
11	0.795			0.831
12	0.788			
13	0.780			0.830
14	0.779			0.813
15	0.806		995	0.780
16	0.824		996	0.777
17	0.809		997	0.796
18	0.822		998	0.806
19	0.743		999	0.807
20	0.772		1000	0.826

Гистограмма плотности вероятности для выборочного среднего

По правилу Стерджесса:

$$n = 1 + log_2 N = 1 + log_2 1000 = 1 + 9.966 = 11$$

Количество столбцов должно быть 11.Шаг гистограммы равен 0.02.

График эмпирической функции распределения для выборочного среднего

Среднее значение для строки из выборочных средних

Выборочная дисперсия для строки из выборочных средних

3. Выборочная медиана для каждой выборки

Гистограмма плотности вероятности для выборочной медианы

Количество столбцов также должно быть 11, тк N = 1000. Шаг гистограммы равен 0.1.

График эмпирической функции распределения для выборочной медианы

Среднее значение для строки из выборочных медиан

Выборочная дисперсия для строки из выборочных медиан

4. Выборочный максимум для каждой выборки

uniform_distributio				
	20 TE	981	4	
_	V1 ‡	982	6	
1	8	983	6	
2	5	984	6	
3	5	985	4	
4	5	986	6	
5	5	987	5	
6	5	988	4	
	5	989	4	
8	4	990	5	
9	4	991	5	
	6	992		
11	5	993		
13	6			
14		994		
	6	995	5	
	5	996	5	
16	5	997	5	
17	6	998	5	
	6	999	6	
19	5	1000	5	
20	5	_000	- 1	

Гистограмма плотности вероятности для выборочного максимума

Количество столбцов также должно быть 11, тк N =1000. Шаг гистограммы равен 0.5

График эмпирической функции распределения для выборочного максимума

Среднее значение для строки из выборочных максимумов

Выборочная дисперсия для строки из выборочных максимумов

5. Выборочный минимум для каждой выборки

Гистограмма плотности вероятности для выборочного минимума

График эмпирической функции распределения для выборочного минимума

Среднее значение для строки из выборочных минимумов

Выборочная дисперсия для строки из выборочных минимумов

Вывод:

лабораторной работе данной В соответствии C графическим представлением результатов хорошо прослеживается следующая закономерность как для равномерного, так и для пуассоновского распределения: с ростом объема выборки распределение выборочных средних приближается к нормальному и происходит концентрация псевдослучайных величин вокруг выборочного среднего, а выборочное среднее приближается к математическому В ожиданию исходного распределения. соответствии cданными представленными на картинках, также подтверждается закономерность, выявленная на графиках – с ростом объема выборки, значения дисперсий снижаются, что указывает на более плотную концентрацию псевдослучайных величин вокруг выборочных средних.

Таким образом, все выше перечисленные наблюдения иллюстрируют и подтверждают основные законы центральной предельной теоремы.