Homework #3

Student name: Fanyi Meng (223015127)

Course: *Advanced Machine Learning (AIR 6002)* – Professor: *Prof Tongxin Li* Due date: *March 31st*, 2024

Answer 1

1. Draw the graph that complies with the model

2. Best guess of the value of **Z**, given that we observe Y = 3

Given Y = 3, substituting into the formula $Z = \frac{Y}{16} + U_Z$ results in $Z = \frac{3}{16} + U_Z$. Since $E(U_Z) = 0$, therefore $E(Z|Y = 3) = \frac{3}{16} + 0 = \frac{3}{16}$.

3. Best guess of the value of **Z**, given that we observe X = 3

Firstly, according to the formula $Y = \frac{X}{3} + U_Y$ and given X = 3, we have $Y = \frac{3}{3} + U_Y = 1 + U_Y$. Then, substituting $Y = 1 + U_Y$ into $Z = \frac{Y}{16} + U_Z$ yields $Z = \frac{(1+U_Y)}{16} + U_Z$. Since the expected values of U_Y and U_Z are 0, $E(Z|X=3) = E\left(\frac{(1+U_Y)}{16} + U_Z\right) = \frac{1}{16} + 0 = \frac{1}{16}$.

4. Best guess of the value of **Z**, given that we observe X = 1 and Y = 3

As X and Y values are known, directly using the formula $Z = \frac{Y}{16} + U_Z$ with Y = 3 results in $Z = \frac{3}{16} + U_Z$. Since $E(U_Z) = 0$, thus $E(Z|X = 1, Y = 3) = \frac{3}{16}$.

Answer 2

1. • $Pr[Send \ 1|b_i = 1] = Pr[First \ coin \ heads] \times 1 + Pr[First \ coin \ tails] \times Pr[Second \ coin \ tails]$

$$= \frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4}$$

• $\Pr[\text{Send } 1|b_i = 0] = \Pr[\text{First coin tails}] \times \Pr[\text{Second coin tails}] = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

The ratio of these probabilities provides the measure of privacy:

$$\frac{\Pr[\text{Send } 1 | b_i = 1]}{\Pr[\text{Send } 1 | b_i = 0]} = \frac{3/4}{1/4} = 3$$

1

Thus, the privacy parameter ϵ is given by:

$$\epsilon = \ln(3)$$

2. Given the aggregate of n such \tilde{b}_i values, the estimator \hat{a} is formed by adjusting for the bias introduced by the random response mechanism:

$$\hat{a} = 2\left(\frac{1}{n}\sum_{i=1}^{n}\tilde{b}_{i} - \frac{1}{4}\right)$$

$$E[\hat{a}] = 2\left(E\left[\frac{1}{n}\sum_{i=1}^{n}\tilde{b}_{i}\right] - \frac{1}{4}\right) = 2\left(\frac{1}{2}a + \frac{1}{4} - \frac{1}{4}\right) = a$$

3. Finally, the standard deviation of \hat{a} is:

$$SD(\hat{a}) = \sqrt{Var(\hat{a})} = \sqrt{\frac{1}{n} \left(\frac{1}{4}b_i + \frac{3}{16}\right)} = O\left(\frac{1}{\sqrt{n}}\right)$$

4. The central model adds Laplace noise to the true mean $a = \frac{1}{n} \sum_{i=1}^{n} b_i$ with scale $\frac{1}{\lambda}$ where $\lambda = n/\ln(3)$ to achieve $\ln(3)$ -differential privacy. The variance of the Laplace distribution is given by:

$$Var(Laplace) = \frac{2}{\lambda^2} = \frac{2 \ln(3)^2}{n^2}$$

So the standard deviation of the estimation error in the central model is:

$$SD(\hat{a}_C) = \sqrt{Var(\hat{a}_C)} = \sqrt{\frac{2\ln(3)^2}{n^2}} = O\left(\frac{1}{n}\right)$$

5. To achieve ϵ -differential privacy, let p be the probability of sending 1 when the true bit $b_i = 1$, and q be the probability of sending 1 when $b_i = 0$. These probabilities should satisfy:

$$\frac{p}{q} \le e^{\epsilon}$$

$$\frac{1-q}{1-p} \le e^{\epsilon}$$

We set:

$$p = \frac{e^{\epsilon}}{1 + e^{\epsilon}}$$
$$q = \frac{1}{1 + e^{\epsilon}}$$

These choices ensure that the privacy guarantee of ϵ -differential privacy is met. The expected value and variance of the randomized response \tilde{b}_i are given by:

$$E[\tilde{b}_i] = p \cdot b_i + q \cdot (1 - b_i)$$

$$Var(\tilde{b}_i) = E[\tilde{b}_i^2] - (E[\tilde{b}_i])^2 = p(1-p) \cdot b_i + q(1-q) \cdot (1-b_i)$$

The estimator \hat{a} for the average a is:

$$\hat{a} = \frac{1}{n} \sum_{i=1}^{n} \tilde{b}_{i}$$

$$\operatorname{Var}(\hat{a}) = \frac{1}{n} (p(1-p) \cdot b_{i} + q(1-q) \cdot (1-b_{i}))$$

$$\operatorname{SD}(\hat{a}) = \sqrt{\operatorname{Var}(\hat{a})} = \sqrt{\frac{1}{n} (p(1-p) + q(1-q))}$$

$$\operatorname{SD}(\hat{a}) = \sqrt{\operatorname{Var}(\hat{a})} = \sqrt{\frac{2e^{\epsilon}}{n(1+e^{\epsilon})^{2}}} = O\left(\frac{1}{\sqrt{n(\frac{1}{e^{\epsilon}} + e^{\epsilon})}}\right)$$

Since $\epsilon > 0$, $\frac{1}{e^{\epsilon}} < 1$ and can be ignored. But it stills differ from the result in Q2. It seems works for $ln(\epsilon) - DP$

Answer 3

- 1. **Demographic Parity:** First, calculate the proportion of each gender predicted as Yes by each algorithm:
 - Proportion of males predicted as Yes by Algorithm 1: 1/4.
 - Proportion of males predicted as Yes by Algorithm 2: 3/4.
 - Proportion of females predicted as Yes by Algorithm 1: 1/4.
 - Proportion of females predicted as Yes by Algorithm 2: 1/4.

Algorithm 1 exhibits demographic parity across genders, whereas Algorithm 2 does not, due to different rates for males and females.

- 2. **Equal Opportunity:** Calculate the proportion of each gender predicted as Yes when the true label is Yes:
 - Proportion of males correctly predicted as Yes by Algorithm 1: 1/3.
 - Proportion of males correctly predicted as Yes by Algorithm 2: 1/3.
 - Proportion of females correctly predicted as Yes by Algorithm 1: 1/3.
 - Proportion of females correctly predicted as Yes by Algorithm 2: 0.

Algorithm 1 satisfies equal opportunity since it predicts Yes for both genders at the same rate when the true label is Yes. Algorithm 2 does not satisfy this criterion, especially failing for females.

- 3. **Equalized Odds:** Consider the accuracy for each gender across both possible true labels:
 - Proportion of males Algorithm 1 correctly predicts Yes: 1/3, No: 1/3.
 - Proportion of males Algorithm 2 correctly predicts Yes: 1/3, No: 1/3.

- Proportion of females Algorithm 1 correctly predicts Yes: 1/3, No: 1/3.
- Proportion of females Algorithm 2 correctly predicts Yes: 0, No: 1/3.

Algorithm 1 meets equalized odds as it correctly predicts both outcomes with equal probabilities across genders. Algorithm 2 does not meet this criterion, showing disparity, especially in predicting positive outcomes for females.

Answer 4

1. Approval Rate for Group A =
$$\frac{200}{600}$$
 = 33.33%

2.

$$\mbox{Approval Rate for Group B} = \frac{50}{400} = 12.5\%$$

3. Difference in approval rates = 33.33% - 12.5% = 20.83% Demographic parity is not achieved.

4. Equalized Odds (Assuming Same TPR and FPR for Group B):

TPR for Group
$$B = 50\%$$
, FPR for Group $B = 20\%$

- 5. New approvals needed for Group B: $0.3333 \times 400 = 133$
 - Total approvals if adjusted: 200(Group A) + 133(Group B) = 333
 - New overall approval rate: $\frac{333}{1000} = 33.3\%$

Adjusting Group B's approvals to 133 to achieve demographic parity increases the total number of approvals to 333, which exceeds the fixed approval rate of 25% (250 approvals). Decreasing the total number of approvals to 250 to maintain the overall rate makes it impossible to achieve demographic parity and equalized odds without one affecting the other.

Answer 5

1. The Shapley value for player *i* is defined as:

$$\phi_i(v) = \sum_{S \subseteq D \setminus \{i\}} \frac{|S|!(d - |S| - 1)!}{d!} (v(S \cup \{i\}) - v(S))$$

Since *i* is a null player:

$$v(S \cup \{i\}) - v(S) = 0$$

for all $S \subseteq D \setminus \{i\}$.

Substituting into the Shapley value formula, we obtain:

$$\phi_i(v) = \sum_{S \subseteq D \setminus \{i\}} \frac{|S|!(d-|S|-1)!}{d!} \cdot 0 = 0$$

Thus, the Shapley value $\phi_i(v)$ for a null player i is 0.

2. Given two cooperative games $u, v : 2^D \to \mathbb{R}$ and a game w defined by w(S) = u(S) + v(S) for all $S \subseteq D$ The Shapley value of player i in game w is calculated as follows:

$$\begin{aligned} \phi_{i}(w) &= \sum_{S \subseteq D \setminus \{i\}} \frac{|S|!(d - |S| - 1)!}{d!} \left(w(S \cup \{i\}) - w(S) \right) \\ &= \sum_{S \subseteq D \setminus \{i\}} \frac{|S|!(d - |S| - 1)!}{d!} \left(\left(u(S \cup \{i\}) + v(S \cup \{i\}) \right) - \left(u(S) + v(S) \right) \right) \\ &= \sum_{S \subseteq D \setminus \{i\}} \frac{|S|!(d - |S| - 1)!}{d!} \left(\left(u(S \cup \{i\}) - u(S) \right) + \left(v(S \cup \{i\}) - v(S) \right) \right) \\ &= \phi_{i}(u) + \phi_{i}(v) \end{aligned}$$

3.

$$\begin{split} \sum_{i=1}^{d} \phi_i(v) &= \sum_{i=1}^{d} \sum_{S \subseteq D \setminus \{i\}} \frac{|S|!(d-|S|-1)!}{d!} \left(v(S \cup \{i\}) - v(S) \right) \\ &= \sum_{S \subseteq D} \sum_{i \in S} \frac{|S|-1|!(d-|S|)!}{d!} \left(v(S) - v(S \setminus \{i\}) \right) \\ &= \sum_{S \subseteq D} \left(v(S) \sum_{i \in S} \frac{|S|-1|!(d-|S|)!}{d!} - v(S \setminus \{i\}) \frac{|S|-1|!(d-|S|)!}{d!} \right) \\ &= \sum_{S \subseteq D} \frac{1}{d} \left(v(S) - v(\emptyset) \right) \\ &= v(D) - v(\emptyset) \end{split}$$

4. **Null Player Axiom:** If player i is a null player, then for any subset S not containing i, $v(S \cup \{i\}) = v(S)$. For such a player,

$$\phi_i(D\setminus\{j\})=\phi_i(D)=0$$

for any $j \neq i$. This satisfies the null player condition, as the player's contribution to any subset and thus the whole game is zero.

Symmetry Axiom: If players i and j are symmetric, i.e., $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \subseteq D \setminus \{i, j\}$, then

$$\phi_i(D) = \phi_j(D)$$
 and $\phi_i(D \setminus \{j\}) = \phi_j(D \setminus \{i\})$

This property directly states their Shapley values are equal, confirming the symmetry axiom.

Linearity Axiom: Given two games u and v and their combination w(S) = u(S) + v(S),

$$\phi_i(w) = \phi_i(u) + \phi_i(v)$$

can be derived from linear combinations of values which follow from the additive property of the Shapley value, as each player's marginal contribution to a coalition in a linear combination of games is the sum of their marginal contributions in each game.

Answer 6

1. • For player 1:

$$\phi_1(v) = \frac{1}{3!}[(2-0) + (5-3) + (6-4) + (8-7)] = \frac{1}{6}[2+2+2+1] = \frac{7}{6}$$

• For player 2:

$$\phi_2(v) = \frac{1}{3!}[(3-0) + (5-2) + (7-4) + (8-6)] = \frac{1}{6}[3+3+3+2] = \frac{11}{6}$$

• For player 3:

$$\phi_3(v) = \frac{1}{3!}[(4-0) + (6-2) + (7-3) + (8-5)] = \frac{1}{6}[4+4+4+3] = \frac{15}{6}$$

- 2. Since the Shapley values for specific user is constant for different games.
 - $\phi_1(v) = \frac{1}{3}(2+2+2) = 2$
 - $\phi_2(v) = \frac{1}{3}(3+3+3) = 3$
 - $\phi_3(v) = \frac{1}{3}(4+4+4) = 4$
- 3. By using the function we calculate the Shapley value table as follows:

Player 1	Player 2	Player 3	Player 4	Player 5
-85.5	-72.5	-79.5	8.0	31.5

Seeing code herePython Code