2018~2019学年北京海淀区中国人民大学附属中学高一上学期期中化学试卷

一、选择题

- 朱自清先生在《荷塘月色》中写道:"薄薄的青雾浮起在荷塘里…月光是隔了树照过来的,高处丛生的灌木,落下参差的斑驳的黑影…"月光穿过薄雾所形成的种种美景的本质原因是()
 - A. 雾是一种胶体
 - B. 光是一种胶体
 - C. 空气中的小水滴颗粒大小约为 10^{-9} m 10^{-7} m
 - D. 发生丁达尔效应
- 2. 日常生活中如果不小心在食用油中混入部分水,请你选用下列最简便的方法对油水混合物进行分

- 3. 下列说法中正确的是()
 - A. 铜、石墨均导电,所以它们是电解质
 - B. NH_3 、 CO_2 的水溶液均能导电,所以 NH_3 、 CO_2 均是电解质
 - C. 蔗糖、酒精在液态或水溶液里均不导电, 所以它们是非电解质
 - D. 液态 HCl、固态 AgCl 均不导电,所以 HCl、AgCl 是非电解质

- 某同学在实验报告中做如下记录,其中正确的是() A. 用 100 mL 量筒量取 12.5 mL 盐酸 B. 配制稀硫酸时, 先向烧杯中注入浓硫酸, 再加水稀释 C. 称量 NaOH 固体时, NaOH 直接放在托盘上的称量纸上 D. 需用 220 mL 1 mol·L⁻¹ CuSO₄ 溶液,配制时需称 62.5 g 的 CuSO₄·5H₂O 晶体 5. 用 98% 浓硫酸配制 200 mL $0.50 \text{ mol} \cdot \text{L}^{-1}$ 的硫酸溶液,一定需要使用的玻璃仪器是(①玻璃棒;②烧杯;③烧瓶;④量筒;⑤容量瓶 A. 1234 B. 1245 C. 2345 D. 1345 下列氧化还原反应方程式,所标电子转移方向与数目错误的是(Α. 失去2e⁻ $Fe + 2HCl = FeCl_2 + H_2 \uparrow$ $KClO_3 + 6HCl = 3Cl_2 \uparrow + 3H_2O + KCl$ 失去6e⁻ C. D. 得到2e⁻ $2Cl_2 + Ca(OH)_2 = CaCl_2 + Ca(ClO)_2 + 2H_2O$ 失去2e 7. 下列溶液中,溶质的物质的量浓度为 $1 \mod \cdot L^{-1}$ 的是 () A. 将 40 g NaOH 溶解于 1 L 水中 B. 将 0.25 mol NaOH 溶水配成 250 mL 溶液 C. 将 $1 L 10 \text{ mol} \cdot L^{-1}$ 的浓盐酸与 9 L 水混合 D. 将 22.4 L 氯化氢气体溶于水配成 1 L 溶液 下列溶液与 $5 \text{ mL } 1 \text{ mol} \cdot \text{L}^{-1} \text{ NaNO}_3$ 溶液中 NO_3^- 物质的量浓度相等的是 () A. 10 mL 0.5 mol·L⁻¹ Mg(NO₃)₂ 溶液 B. 25 mL 0.8 mol·L⁻¹ Al(NO₃)₃ 溶液 C. 50 mL 2 mol·L⁻¹ AgNO₃ 溶液 D. 100 mL 1.0 mol·L⁻¹ Cu(NO₃)₂ 溶液
- 9. 已知 KNO_3 、 K_2SO_4 、 K_3PO_4 在溶液中完全解离,物质的量浓度相同的 KNO_3 、 K_2SO_4 、 K_3PO_43 种溶液中,若要使 K^+ 的物质的量相等,则这 3 种溶液的体积比为 ()

- 10. 某无色透明的酸性溶液中能大量共存的一组离子是()
 - A. NH_4^+ , CO_3^{2-} , Al^{3+} , Cl^{-}
 - B. Na^+ , HCO_3^- , K^+ , SO_4^{2-}
 - C. MnO_4^- , K^+ , SO_4^{2-} , Na^+
 - D. $\mathrm{Mg^{2+}}$, $\mathrm{Na^{+}}$, $\mathrm{SO_{4}^{2-}}$, $\mathrm{NO_{3}^{-}}$
- 11. 某溶液中存在以下五种离子: $0.2 \text{ mol} \cdot \text{L}^{-1} \text{ Cl}^-$ 、 $0.4 \text{ mol} \cdot \text{L}^{-1} \text{ SO}_4^{2-}$ 、 $0.1 \text{ mol} \cdot \text{L}^{-1} \text{ Al}^{3+}$ 、

 $0.3 \text{ mol} \cdot L^{-1} \text{ H}^+$ 、M,则 M 及其物质的量浓度可能为 ()

- A. K^+ 0.3 mol·L⁻¹
- B. $\mathbb{Z}n^{2+}$ 0.2 $mol \cdot L^{-1}$
- C. CO_3^{2-} $0.2 \ mol \cdot L^{-1}$
- D. Ba^{2+} $0.1 \text{ mol} \cdot L^{-1}$
- 12. 下列反应的离子方程式中,书写正确的是()
 - A. 硝酸银溶液跟铜反应: $Cu + Ag^+ = Cu^{2+} + Ag$
 - B. 铁粉跟稀盐酸反应: $2Fe + 6H^{+} = 2Fe^{3+} + 3H_{2}$ ↑
 - C. 用小苏打治疗胃酸过多: $HCO_3^- + H^+ = CO_2 \uparrow + H_2O$
 - D. 硫酸和氢氧化钡反应: $H^+ + SO_4^{2-} + Ba^{2+} + OH^- = H_2O + BaSO_4 \downarrow$
- 13. 在标准状况下,下列四种气体的有关量排列顺序正确的是()

① 6.72 L CH_4 ; ② 3.01×10^{23} 个 HCl 分子; ③ $13.6 \text{ g H}_2\text{S}$; ④ 0.2 mol NH_3

- a. 体积: ②>3>1>4
- b.密度:②>③>④>①
- c. 质量: ②>①>③>④
- d. 氢原子个数: ①>3>4>2
- A. abc B. bcd C. abd D. acd
- **14.** 某 KCl 样品中含有少量 K_2CO_3 、 K_2SO_4 和不溶于水的杂质。为了提纯 KCl ,先将样品溶于适量水中,搅拌、过滤,再将滤液按下图所示步骤进行提纯。下列说法正确的是(

A. 步骤③④的操作均是过滤

B. 试剂 I 为 BaCl₂ 溶液

	C. 试剂 II 为 Na ₂ CO ₃ 溶液	D. 步骤③目的是除去]	Ba^{2+}	
15 .	设 $N_{\rm A}$ 为阿伏加德罗常数的数值,下列说法正确的是 ()			
	A. $23 \mathrm{g} \mathrm{Na}$ 与足量水反应完全后可生成 N_{A} 个	H ₂ 分子(已知:2Na + 2	$ m H_2O=2NaOH+H_2\uparrow$	
)			
	B. $18 \mathrm{g H_3O^+}$ 和 $18 \mathrm{g H_2O}$ 中含有的质子数均为 $10 N_{A}$			
	C. 标准状况下, $22.4~\mathrm{L}~\mathrm{N_2}$ 和 $\mathrm{H_2}$ 的混合气中含 N_A 个原子			
	D. 密闭容器中 $2 \mod NO$ 与 $1 \mod O_2$ 充分反应	ī,产物的分子数小于2N	7▲ (已知反应:	
	$2\text{NO} + \text{O}_2 = 2\text{NO}_2 \ , \ 2\text{NO}_2 \rightleftharpoons \text{N}_2\text{O}_4 \)$			
16.	氯化铝广泛用于电子、陶瓷等工业领域。在一	定条件下,AIN可通过反	应如下方法合成:	
	$Al_2O_3+N_2+3C$ $\stackrel{\overline{\mathbb{R}}_{\perp}}{===}$ $2AlN+3CO$ 。对该反应,下列叙述正确的是()			
	A. AlN 的摩尔质量为 41 g			
	B. N_2 是还原剂, Al_2O_3 是氧化剂			
	C. AIN 中氮元素的化合价为 +3			
	D. 每生成 1 mol AlN 需转移 3 mol 电子			
17.	. 下列氧化还原反应中,实际参加反应的氧化剂与还原剂的物质的量之比正确的是()			
	①KClO ₃ + 6HCl (浓) = KCl + 3Cl ₂ ↑ +3H ₂ O ; 1:6			
	②Fe ₂ O ₃ + 2Al === Al ₂ O ₃ + 2Fe ;1:2			
	③SiO ₂ + 3C === SiC(硅为 +4 价)+2CO↑; 1:2			
	$(43NO_2 + H_2O = 2HNO_3 + NO ; 2:1$			
	A. ①③ B. ②③	C. 24	D. ①④	
18.	将 SO_2 气体与足量 $Fe_2(SO_4)_3$ 溶液完全反应后	,再加入 $K_2Cr_2O_7$ 溶液	,发生如下两个化学反	
	÷ . GO	4 7 7 + .		

18. 将 SO_2 气体与足量 $Fe_2(SO_4)_3$ 溶液完全反应后,再加入 $K_2Cr_2O_7$ 溶液,发生如下两个化学反应: $SO_2+2Fe^{3+}+2H_2O=SO_4^{2-}+2Fe^{2+}+4H^+$; $Cr_2O_7^{2-}+6Fe^{2+}+14H^+=2Cr^{3+}+6Fe^{3+}+7H_2O$,则()

- A. 还原性 $Cr^{3+} > Fe^{2+} > SO_2$
- B. 氧气性 $Cr_2O_7^{2-} > SO_2 > Fe^{3+}$
- C. Cr₂O₇²⁻ 能将 Na₂SO₃ 氧化成 Na₂SO₄
- D. 两个反应中 $Fe_2(SO_4)_3$ 均作还原剂

19. 在两份相同的 $Ba(OH)_2$ 溶液中,分别滴入物质的量浓度相等的 H_2SO_4 、 $NaHSO_4$ 溶液,其导电能力随滴入溶液体积变化的曲线如图所示。
下列分析不正确的是()

- A. ① 代表滴加 H₂SO₄ 溶液的变化曲线
- B. b点,溶液中大量存在的离子是 Na+、OH-
- C. c 点 , 两溶液中含有相同量的 OH^-
- D. a、d 两点对应的溶液均显中性
- 20. 已知, $2Fe^{2+}+Br_2=2Fe^{3+}+2Br^-$,向 100~mL 的 $FeBr_2$ 溶液中通入标准状况下的 Cl_2 3.36 L,充分反应后测得溶液中 Cl^- 和 Br^- 的物质的量浓度相等,则原 $FeBr_2$ 溶液的物质的量浓度为()
 - A. $2 \text{ mol} \cdot L^{-1}$

B. $1 \text{ mol} \cdot L^{-1}$

C. $0.4 \text{ mol} \cdot \text{L}^{-1}$

D. $0.2 \text{ mol} \cdot \text{L}^{-1}$

二、非选择题

21. 海洋植物如海带、海藻中含有丰富的碘元素,碘元素以碘离子的形式存在,实验室里从海洋植物中提取碘的流程如下:

已知:②中发生反应的化学方程式: $Cl_2 + 2KI = 2KCl + I_2$ 。

- (1)写出提取流程中①③实验操作的名称:①_____,③____。
- (2)四氯化碳是无色、密度比水大的液体。F中下层液体的颜色为 ______ 色,上层液体中溶质的主要成分为 _____。
- (3)从**F**中得到碘单质还需进行的操作是。
- 22. 回答下列问题:
 - (1)下列如图所示是实验中常见的几种仪器:

24. 某兴趣小组研究硝酸钠,查阅下列资料,根据信息回答下列问题。

	药品	NaNO ₂ (亚硝酸钠)
	性质	1 . 在酸性溶液中有较强氧化性,能将 ${ m Fe}^{2+}$ 氧化成 ${ m Fe}^{3+}$;
		2. AgNO ₂ 是一种难溶于水、易溶于酸的盐。

26. 高铁酸钾(K_2FeO_4)是一种新型、高效、多功能绿色水处理剂,比 Cl_2 、 O_2 、 ClO_2 、 $KMnO_4$ 氧化性更强,无二次污染,工业上是先制得高铁酸钠,然后在低温下,向高铁酸钠溶液中加入 KOH 至饱和,使高铁酸钾析出。

成标准状况下 CO₂ _____L。

(1)) 干法制备高铁酸钠的主要反应为:
		$2 FeSO_4 + 6 Na_2O_2 = 2 Na_2 FeO_4 + 2 Na_2O + 2 Na_2SO_4 + O_2 \uparrow$, Na_2O_2 中 O 的化合价
		为,上述反应中氧化剂是(填化学式)。
(2))湿法制备高铁酸钾(K_2FeO_4)的反应体系中有六种数粒: $Fe(OH)_3$ 、 ClO^- 、 OH^- 、
		${ m FeO_4^{2-}}$ 、 ${ m Cl^-}$ 、 ${ m H_2O_\circ}$
		① 碱性条件下,氧化剂和还原剂的物质的量的比为3:2发生反应,写出并配平湿法制高
		铁酸钾反应的离子方程式。
		② 每生成 $1 \mod \text{FeO}_4^{2-}$ 转移 $\mod \text{e}$ 子,若反应过程中转移了 $0.3 \mod \text{e}$ 子,则还
		原产物的物质的量为 mol。