Elliptic curve factoring

David, transcribed by Soham

July 2016

Let N be a large (but not huge) number. Goal: find the factorization of N into primes on a classical computer.

- 1. Bogofactor.
- 2. Simulate Shor's algorithm.
- 3. Trial division upto n-1.
- 4. Trial division upto \sqrt{n} .
- 5. Fermat method: try writing $N = x^2 y^2$ nontrivially.
- 6. Generalize Fermat to p-th powers.
- 7. Generalize Fermat by looking at x, y with

$$x^2 - y^2 \equiv 0 \pmod{n}$$

8. Take $x > \sqrt{N}$. If c only has small prime factors, we can assemble a "difference of squares" factorization from such c. As an example, consider (?)

1 Pollard p-1 algorithm

N = pq. Suppose that p-1 is B-smooth, but q-1 is not. For any $a \not\equiv 0 \pmod{p}$ or \pmod{q} , define

$$M = \prod_{p \le B} p^{\lfloor \log_p B \rfloor} = \operatorname{lcm}(1, \dots, B)$$

Now choose a randomly and compute $a^M \equiv 1 \pmod{p}$. Usually, we also have $a^M \not\equiv 1 \pmod{q}$. Then $\gcd(a^M - 1, N)$ will often be a factor of N.

2 Day 2

2.1 Elliptic curves

A set of points in the plane defines an elliptic curve if $y^2 = x^3 + ax^2 + bx + c$. This is called Weierstrass form, and it exists in characteristic not equal to 2. In characteristic not 3, we can change variables further to get $y^2 = x^3 + ax + b$.

How many points does an arbitrary line intersect an elliptic curve E in? Morally, of course, it should be 3, by Bézout's theorem. Nic fixed this in his colloquium by:

- ullet working over $\mathbb C$
- using projective coordinates
- counting points with multiplicity

We will, instead, prefer to use a group law on the elliptic curve to fix the first one, because we want to work over finite fields.

Claim: If a line intersects E in two points (with multiplicity), then it intersects in a third point.

This is only true if we are working in some projective space, though. Suppose $y^2 = x^3 + ax^2 + bx + c$. Given $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, consider the line $y = \lambda x + \nu$ through them.

We get, after using the formula $x_1 + x_2 + x_3 = \lambda^2 - a$, the expression

$$x_3 = \lambda^2 - a - x_1 - x_2$$

where

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}.$$

This breaks down for $x_2 = x_1$. The line we use in such cases is:

• If $P_1 = P_2$, we just use the tangent line:

$$\lambda = \frac{3x_1^2 + 2a + b}{2y_1}.$$

• For "vertical" lines, we use a point \mathcal{O} at infinity.

2.2 Projectivization

Consider $y^2z = x^3 + ax^2z + bxz^2 + cz^3$. This is homegeneous upto rescaling, and solutions [x:y:z] come up to rescaling. When $z \neq 0$, we can rescale to [x:y:1]. When [x=0], $x^3=0=x$ so we can rescale to [0:1:0], which we will use as the identity for the group law.

2.3 The group law

Let P * Q be the third point of intersection of the line through P and Q with E. Then the reflection of P * Q across the x-axis is called P + Q.

Theorem 1. This gives us an abelian group structure on the points of the elliptic curve (including \mathcal{O}).

Associativity can be brute-forced, or one can look at the (moduli?) space of elliptic curves and use dimension arguments arising from the different expressions

 $\mathcal{O}, P, Q, R, P * Q, P * R, Q * R, (P+Q) * R, P * (Q+R) C_1, C_2, C_3$ cubics, C_1, C_2 intersect in 9 points, if C_3 passes through 8 of those points, then it passes through the 9th one too.

3 Day 2

Question 1. If E is an elliptic curve, how many elements does $E(\mathbb{F}_p)$ have?

 $y^2 = x^3 + bx + c$. Heuristically, as x varies, $x^3 + bx + c$ is a square in \mathbb{F}_p half of the time, so we expect p + 1 points.

Theorem 2 (Hasse). $|p+1-\#E(\mathbb{F}_p)| \leq 2\sqrt{p}$.

Theorem 3 (Sato-Tate). The distribution of the number of points on non-CM elliptic curves varies with a probability distribution that looks like a semicircle.

Definition 1.

$$L_n[a,c] := O(e^{(c+o(1))(\log n)^a(\log\log n)^{1-a}}).$$

In particular, for a = 0, we get $(\log n)^{c+o(1)}$, and for a = 1, we get $n^{c+o(1)}$.

4 Day 3

Given a curve E, find $\#E(\mathbb{F}_p)$.

- 1. For each x, determine whether $x^3 + ax + b$ is a square mod p. Each nonzero square contributes 2 points.
- 2. Pick a random point P on the curve and compute $P, 2P, \cdots$ until you reach \mathcal{O} .
- 3. "Baby step giant step". Pick a point P and compute

$$P, 2P, 3P, \cdots$$

Let Q = -BP. Now compute

$$Q, 2Q, 3Q, \cdots$$

There is a point that is on both lists. We get that

$$iP = -jQ = -jBP$$
,

so

$$(i + Bj)$$

is a multiple of the order of the group.

4. Let $a = p + 1 - \#E(\mathbb{F}_p)$. We will find $a \pmod{l}$ for lots of small primes l. Once $\pi l > 4\sqrt{l}$, we can use the Chinese remainder theorem to recover a.

Warmup: Find $a \pmod 2$. 2 divides $\#E(\mathbb{F}_p) \iff x^3 + Ax + B$ has a root α in \mathbb{F}_p . We know that any such α has to satisfy $x^p - x$ as well.

So a root exists iff $gcd(x^p - x, x^3 + Ax + B) = gcd(x^p \pmod{x^3 + Ax + B} - x, x^3 + Ax + B) \neq 1$. Modular exponentiation is fast!

Let us generalize to $p \neq 2$.

Definition 2. The *n*-torsion E[n] of E is defined as

$$E \supset E[n] := \{ P \in E(\overline{\mathbb{F}_p}) : nP = \mathcal{O} \}.$$

We can try to find $a \pmod{l}$ by studying E[l]. In particular, if $E[l](\mathbb{F}_p) \neq 0$ then $l \mid \#E(\mathbb{F}_p)$.