

Compétences évaluées

- Paralléliser des opérations de calcul avec Pyspark
- Utiliser les outils du cloud pour manipuler des données dans un environnement Big Data
- Identifier les outils du cloud permettant de mettre en place un environnement Big Data

- I. Contexte
- II. Présentation des données
- III. Pourquoi un environnement Big Data?
- IV. Traitement des images
- V. Conclusion et Recommandations

Problématique + Objectifs

• "Fruits!":

- solution récolte de fruits :

- traitement adapté à chaque espèce de fruits
- Robots cueilleurs intelligents
- application mobile
 - prendre en photo un fruit
 - informations sur ce fruit
 - Classification d'image

- Classification d'image :
 - Preprocessing images
 - Réduction de dimension

Mettre en place un environnement Big Data

Présentation des données

Données

• "Fruit 360" contenant un total de 90 483 images

- Training: 67 692 images

Test: 22 688 images

- Répartition images en 131 dossiers
 - 1 dossier = 1 fruit
 - Fruit représenté selon 3 axes
 - Images de 100X100 pixels au format : JPG RGB

Certains fruits ont plusieurs variétés représentées

Pourquoi un environnement Big Data ?

- Très puissant :
 - Analyse d'un grand nombre de données dans un temps acceptable
 - Analyse de données avec ajout progressif de données -> adaptation au besoin dans le temps
- Adaptation outils et méthodes utilisés pour une application small data
- Enjeux des 3V :

BIG DATA

Vitesse

Volume : stockage données

dépassement capacité RAM + stockage

Exemple pour les données en santé :

Vitesse : rapidité production des données

traitement en temps réel sans paralyser le reste

Exemple pour les données en santé :

1 000 000 000 000 000 000 000 octets soit 1 Zettaoctet d'informations numériques produites par an

Variété : de plus en plus diversifiée

analyses adaptées à chaque type

Exemple pour les données en santé :

Comment?

- Capacité de stockage
 - Cloud : Service Amazon
 - Facilite l'accessibilité, le partage et l'intégration entre les différents services
- Capacité RAM
 - Serveur Cloud : Service Amazon
 - Machine plus puissante qu'en local
 - Calculs infinis
 - faible coût
- Enjeux des 3V
 - Traitement des données par calculs distribués (MapReduce)
 - Outils dédiés au Big Data comme Spark (Pyspark)

résultat mis en cache

Calculs Distribués ?

Chaîne de traitement des images dans le cloud

Plan Général

1. Base de données sur le Cloud

2. Environnement de travail

3. Traitement des images + Extraction Features

4. Réduction de Dimension par ACP

5. CSV des Features sur le Cloud

Etapes 1 et 2

- Base de Données = 1310 images
 - 10 images par fruit + nom dossier : space to "_"
 - Sur le service de stockage illimité S3 d'Amazon

- Machine virtuelle : service de calcul EC2 d'Amazon
- Instance t2.xlarge avec un noyau Ubuntu Server 18.04
- Clés IAM : lien avec S3
- Spark 3.0.1 avec Hadoop 3.2 & Pyspark
- Anaconda (python 3.8 + Jupyter Notebook)
- Java 8, tensorflow

Comment faire l'extraction?

- Read image avec boto3 :
- Traitements:
 - Image au niveau de gris
 - Amélioration contraste
 - Débruitage
 - filtre gaussien
- Recherche de features :
 - Par OpenCV (cv2) avec comme détecteur ORB
 - Features local : contour de l'objet
 - Peu précis : détermine moins de 1 000 features / image
 - Nombreuses étapes = technique lente
 - non adapté à du Big Data
 - De nos jours : CNN (extraction features) = réseau neurone facile à entrainer₁₉

Chargement des images depuis le

S3:

- Configuration Hadoop ("s3a" + clé IAM)
 - spark.read()
 - Forme Binaire
 - Image définie par son url

Récupération nom du fruit associé à chaque image :

- Split url images
- Création colonne catégorie : pandas udf

chargement effectué Nombres d'images : 1310

+	+						++
path					cor	ntent	categorie
s3a://p8-ald/Samp s3a://p8-ald/Samp s3a://p8-ald/Samp s3a://p8-ald/Samp s3a://p8-ald/Samp s3a://p8-ald/Samp s3a://p8-ald/Samp	FF FF FF FF FF FF	D8 D8 D8 D8 D8	FF FF FF FF FF	E0 E0 E0 E0 E0	00 00 00 00 00	1 1 1 1	Raspberry Pineapple Mini Pineapple Mini Raspberry Raspberry Raspberry Raspberry
s3a://p8-ald/Samp	[FF	D8	FF	E0	00	1	Pineapple_Mini

RDD

Traitement des images :

- preprocess input de VGG16
- Conversion images RGB en BGR
- Traitement similaire à la base de données ImageNet

Extraction features des

images:

- Récupération poids d'un modèle
 VGG16 pré-entrainé sur la
 base d'images riches
 (imagenet)
- 4608 features par images dans tableau

Pourquoi vgg16?

Entrainement long sur de grosses bases + facile accès Pourquoi Imagenet ?

Bonne base pour classification fruit

+	·	++
path	categorie	image_features
s3a://p8-ald/Samp		[8.752506, 0.0, 0
s3a://p8-ald/Samp	Raspberry	[0.0, 0.0, 0.0, 0]
s3a://p8-ald/Samp	Pineapple_Mini	[0.0, 0.0, 10.675]
s3a://p8-ald/Samp	Pineapple_Mini	[0.0, 0.0, 26.388]
s3a://p8-ald/Samp	Raspberry	[5.615052, 0.0, 2]
s3a://p8-ald/Samp	Raspberry	[0.0, 0.0, 0.0, 0]
s3a://p8-ald/Samp	Raspberry	[0.0, 0.0, 0.0, 0]
s3a://p8-ald/Samp	Pineapple Mini	[0.0, 0.0, 12.811]
1-2//-0 -1-1/0	B	

Ici utilisation des features pour une ACP alors qu'il aurait été possible de classifier les fruits.

Etape 4: ACP (spark)

Réduction de Dimension :

- PCA : 95% de variance expliquée
- Passage de 4608 features à 585 features par image

Etape 5 : Sauvegarde

Sauvegarde dans le Cloud S3:

- Format CSV
- Chargement possible sous forme de dataframe pandas

	path	categorie	image_features_reduit
0	s3a://p8-ald/Sample/Raspberry/59_100.jpg	Raspberry	[-11.739343823504292,-19.282922837703882,0.536
1	s3a://p8-ald/Sample/Raspberry/17_100.jpg	Raspberry	[-8.932846435115184, -14.729399119040165, -0.140
2	s3a://p8-ald/Sample/Pineapple_Mini/249_100.jpg	Pineapple_Mini	[-19.489664206140713, -33.34627919533664, 1.2217
3	s3a://p8-ald/Sample/Pineapple_Mini/179_100.jpg	Pineapple_Mini	[-15.807275228826104, -27.638582449608528, 0.513
4	s3a://p8-ald/Sample/Raspberry/134_100.jpg	Raspberry	[-8.853180138955645, -17.935757508158666, 0.4905

Conclusion et Recommandations

Conclusion

- Comment mettre en place un environnement Big Data?
 - AWS (EC2 , IAM, S3)
 - Spark
 - Administration serveur linux par SSH
- Concernant les 1310 images ?
 - Extraction des features par CNN VGG16 + Imagenet = 4608 features/image
 - ACP: 585 features/image
- Comment passer à l'échelle ?
 - Stockage fichier sur S3 : car stockage illimité
 - Aucune modification à apporter au script en spark/pyspark : adaptation automatique au volume de données à analyser

Recommandations

- Détermination modèle de transfert learning le mieux adapté
- Eviter Saturation RAM:
 - Augmentation nombre images
 - entraînement modèle pour classification
 - Evolution de l'infrastructure :
 - prendre EC2 de plus grande capacité (RAM) pour pouvoir analyser plus de données jusqu'à la totalité des images
 - Remplacement par un cluster Elastic Map Reduce avec plusieurs instances EC2 (1 maître + n esclaves)
 - Cependant, coût plus important

Fin de la présentation

Merci pour votre attention