ProbLimI: Problem Set V

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set V. The chosen problems are 1,2, and 3.

Question 1.

- 1. Let X_k be i.i.d. r.v.'s with distribution function F_X , and let $M_n = \max_{k \le n} X_k$. Establish that $(M_n a_n)/b_n \Rightarrow M$ with the specified distribution function $F_M(x)$ in the following cases.
 - (a) $F_X(x) = 1 e^{-x}$ for $x \ge 0$, with $a_n = \log n$, $b_n = 1$ and $F_M(x) = \exp(-e^{-x})$ for $x \in \mathbb{R}$.
 - (b) $F_X(x) = 1 x^{-\alpha}$ for $x \ge 1$ and $\alpha > 0$, with $a_n = 0$, $b_n = n^{1/\alpha}$ and $F_M(x) = \exp(-x^{-\alpha})$
 - (c) $F_X(x)=1-|x|^\alpha$ for $-1\leq x\leq 0$ and $\alpha>0$, with $a_n=0$, $b_n=n^{-1/\alpha}$ and $F_M(x)=\exp(-|x|^\alpha)$ for $x\leq 0$.

Solution.

By i.i.d. assumption on $\{X_k\}$,

$$F_{\frac{M_n - a_n}{b_n}}(x) = \mathbb{P}\left(\frac{M_n - a_n}{b_n} \le x\right) = \mathbb{P}(M_n \le a_n + b_n x) = \mathbb{P}\left(\max_{k \le n} X_k \le a_n + b_n x\right)$$

$$= \mathbb{P}\left(\bigcap_{k \le n} X_k \le a_n + b_n x\right) = \prod_{k \le n} \mathbb{P}\left(X_k \le a_n + b_n x\right) = \left(F_X(a_n + b_n x)\right)^n \quad (1)$$

for each $n \ge 1$ and $x \in \mathbb{R}$.

(a) Let $x \in \mathbb{R}$. Substituting the givens to (1),

$$F_{\frac{M_n - a_n}{b_n}}(x) = F_X(a_n + b_n x)^n = (1 - e^{-\log(n) - x})^n = (1 - \frac{-e^x}{n})^n$$

for all sufficiently large $n \in \mathbb{N}$. Taking the limit as $n \to \infty$ gives

$$\lim_{n \to \infty} F_{\frac{M_n - a_n}{b_n}}(x) = \exp(-e^{-x}) = F_M(x).$$

Therefore, $\frac{(M_n - a_n)}{b_n}$ converges in distribution to M.

(b) Let x > 0. Substituting the givens to (1),

$$F_{\frac{M_n-a_n}{b_n}}(x) = F_X(a_n+b_nx)^n = (1-(n^{\frac{1}{\alpha}}x)^{-\alpha})^n = (1-\frac{x^{-\alpha}}{n})^n$$

for all sufficiently large $n \in \mathbb{N}$. Taking the limit as $n \to \infty$ gives

$$\lim_{n \to \infty} F_{\frac{M_n - a_n}{b_n}}(x) = \exp(-x^{-\alpha}) = F_M(x).$$

Let $x \le 0$. Then

$$a_n + b_n x = n^{\frac{1}{\alpha}} x \le 0$$

and hence

$$F_{\frac{M_n-a_n}{b_n}}(x) = (F_X(a_n+b_nx))^n = 0$$

for each $n \ge 1$. Since $F_M(x) = 0$ on for $x \le 0$, we have shown that

$$F_{\frac{(M_n-a_n)}{b_n}}(x) \rightarrow F_M(x)$$

for all $x \in \mathbb{R}$, and hence $\frac{M_n - a_n}{b_n}$ converges in distribution to M.

(c) Let x < 0. Then

$$F_{\frac{M_n - a_n}{b_n}}(x) = (1 - |n^{-\frac{1}{\alpha}}x|^{\alpha})^n = (1 - \frac{|x|^{\alpha}}{n})^n$$

for all sufficiently large $n \in \mathbb{N}$. Taking the limit as $n \to \infty$ gives

$$\lim_{n\to\infty} F_{\frac{M_n-a_n}{b_n}}(x) = \exp(-|x|^{\alpha}) = F_M(x).$$

Let $x \ge 0$. Then,

$$a_n + b_n x = n^{-\frac{1}{\alpha}} x \ge 0$$

and hence

$$F_{\frac{m_n - a_n}{b_n}}(x) = (F_X(n^{-\frac{1}{\alpha}}x))^n = 1$$

for each $n \ge 1$. Since $F_M(x) = 1$ for all $x \ge 0$, we have shown that

$$F_{\frac{(M_n-a_n)}{b_n}}(x) \rightarrow F_M(x)$$

for all $x \in \mathbb{R}$ and hence $\frac{M_n - a_n}{b_n}$ converges in distribution to M.

Question 2.

- 2. (i) Let X_n, Y_n be a pair of independent r.v.'s for each $n \ge 1$, and let X, Y be independent r.v.'s such that $X_n \Rightarrow X$ and $Y_n \Rightarrow Y$. Prove that $X_n + Y_n \Rightarrow X + Y$.
 - (ii) Let X and Y be [0,1]-valued r.v.'s such that $\mathbb{E}[X^n] = \mathbb{E}[Y^n]$ for every integer $n \geq 0$. Show that $\mathbb{E}f(X) = \mathbb{E}f(Y)$ for every continuous function $f:[0,1] \to \mathbb{R}$ and conclude that $X \stackrel{d}{=} Y$. (Hint: use the Weierstrass approximation theorem.)

Solution.

(i) Fix $t \in \mathbb{R}$. By independence,

$$\phi_{X_n+Y_n}(t) = \phi_{X_n}(t)\phi_{Y_n}(t)$$

and

$$\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$$

for each $n \ge 1$. By Levy-continuity theorem,

$$\phi_{X_n}(t) \to \phi_X(t)$$
 and $\phi_{Y_n}(t) \to \phi_Y(t)$

so

$$\lim_{n\to\infty}\phi_{X_n+Y_n}(t) = \lim_{n\to\infty}\phi_{X_n}(t)\phi_{Y_n}(t) = \phi_X(t)\phi_Y(t) = \phi_{X+Y}(t).$$

Therefore, $\{\phi_{X_n+Y_n}\}$ converges pointwise everywhere to ϕ_{X+Y} , so again by Levy-continuity theorem, we have X_n+Y_n converges in distribution to X+Y.

(ii) As X, Y are [0, 1]-value random variables, by a change of variable,

$$\int_0^1 t^n \mu_X(dt) = \mathbb{E}[X^n] = \mathbb{E}[Y^n] = \int_0^1 t^n \mu_Y(dt)$$

for each $n \ge 1$. By linearity of integral,

$$\int_{0}^{1} p(t)\mu_{X}(dt) = \int_{0}^{1} p(t)\mu_{Y}(dt) \quad (1)$$

for any polynomial p defined on [0,1]. Now, fix $\epsilon > 0$, and by Weierstrass approximation theorem, choose a polynomial p_0 such that

$$||f-p_0||_{\text{sup}}<\epsilon.$$

Then, by a change of variable and (1),

$$|\mathbb{E}[f(X)] - \mathbb{E}[f(Y)]| = |\int_{0}^{1} f(t)\mu_{X}(dt) - \int_{0}^{1} f(t)\mu_{Y}(dt)|$$

$$= |\int_{0}^{1} f(t) - p_{0}(t)\mu_{X}(dt) - \int_{0}^{1} f(t) - p_{0}(t)\mu_{Y}(dt)|$$

$$\leq \int_{0}^{1} |f(t) - p_{0}(t)|\mu_{X}(dt) + \int_{0}^{1} |f(t) - p_{0}(t)|\mu_{Y}(dt) < 2\epsilon.$$

Since $\epsilon > 0$ was arbitrary, we have shown that $\mathbb{E}[f(X)] = \mathbb{E}[f(Y)]$ for any f continuous and defined on [0,1]. Since e^{ist} is continuous on [0,1] for any fixed $s \in \mathbb{R}$,

$$\phi_X(s) = \mathbb{E}[e^{isX}] = \int_0^1 e^{ist} \mu_X(dt) = \int_0^1 e^{ist} \mu_Y(dt) = \mathbb{E}[e^{isY}] = \phi_Y(s)$$

for any $s \in \mathbb{R}$. Now, by Fourier Uniqueness, we have that X = Y in distribution.

Question 3.

 $3. \quad \text{(i) Show that if } X \geq 0 \text{ and } Y \geq 0 \text{ satisfy } \mathbb{E} e^{-tX} = \mathbb{E}[e^{-tY}] \text{ for every } t > 0 \text{ then } X \stackrel{d}{=} Y.$

(ii) Suppose $X_n \geq 0$ are such that $g(t) := \lim_{n \to \infty} \mathbb{E}e^{-tX_n}$ exists for every t > 0 and $\lim_{t \downarrow 0} g(t) = 1$. Show that the distribution functions (F_{X_n}) are uniformly tight and that there exists some r.v. $X \geq 0$ such that $X_n \Rightarrow X$ and $g(t) = \mathbb{E}e^{-tX}$ for every t > 0.

(iii) Let $X_n = \frac{1}{n} \sum_{j=1}^n jI_j$ where $I_j \in \{0,1\}$ are independent r.v.'s with $\mathbb{P}(I_j = 1) = 1/j$. Show $X_n \Rightarrow X$ for some $X \geq 0$ with $\mathbb{E}e^{-tX} = \exp\left(\int_0^1 \frac{1}{x}(e^{-xt} - 1)dx\right)$ for every t > 0.

Solution.

(i) Observe that e^{-X} and e^{-Y} are [0,1]-valued random variables. Furthermore,

$$\mathbb{E}[(e^{-X})^n] = \mathbb{E}[e^{-nx}] = \mathbb{E}[e^{-nY}] = \mathbb{E}[(e^{-Y})^n]$$

for each $n \in \mathbb{N}$. Hence, by the problem 2-(ii),

$$e^{-X} = e^{-Y}$$
 in distribution.

It follows that, as e^{-x} is strictly decreasing,

$$\mathbb{P}(X \le t) = \mathbb{P}(e^{-X} \ge e^{-t}) = \mathbb{P}(e^{-Y} \ge e^{-t}) = \mathbb{P}(Y \le t)$$

for any $t \in \mathbb{R}$. Therefore, X = Y in distribution.

(ii) First note that to show a sequence of distribution is uniformly tight, it suffices to show the condition holds for all sufficiently large indices in our case, by the regularity property of a Borel probability measure on a polish space.

Fix $1 > \epsilon > 0$. Choose $t_0(\epsilon) > 0$ and $N(t_0) \in \mathbb{N}$ such that

$$E[e^{-t_0 X_n}] \ge 1 - \frac{\epsilon}{2}$$

for any $n \ge N$. By monotonicity of e^{-x} ,

$$\mathbb{E}[e^{-t_0 X_n}] \leq 1\mathbb{P}(X_n \leq \delta) + e^{-t_0 \delta}\mathbb{P}(X_n > \delta) = \mathbb{P}(X_n \leq \delta) + e^{-t_0 \delta}(1 - \mathbb{P}(X_n \leq \delta))$$
$$= e^{-t_0 \delta} + (1 - e^{-t_0 \delta})\mathbb{P}(X_n \leq \delta)$$

for any $\delta > 0$ and $n \in \mathbb{N}$, and hence

$$\frac{1 - \frac{\epsilon}{2} - e^{-t_0 \delta}}{1 - e^{-t_0 \delta}} \le \mathbb{P}(X_n \le \delta)$$

for any $\delta > 0$ and $n \ge N$. Since the LHS goes to $1 - \frac{\epsilon}{2}$ as $\delta \uparrow \infty$, we can choose $\delta_0 > 0$ large enough such that

$$1 - \epsilon \le \mathbb{P}(X_n \le \delta_0)$$

for each $n \ge N$. Since $1 > \epsilon > 0$ was arbitrary, we have shown that $\{F_{X_n}\}$ are uniformly tight. Hence, there exists a subsequence $\{X_{n_k}\}$ that converges in distribution to some X. By Portmanteau's theorem and the fact that $X_n \ge 0$,

$$\mathbb{P}(X < 0) \le \liminf_{n \to \infty} \mathbb{P}(X_n < 0) = 0.$$

Therefore, we see that X, which is a weak limit of $\{X_{n_k}\}$ is non-negative as well.

To show that the full sequence converges in distribution to X, we use the following lemma: Let $\{X_n\}$ be uniformly tight. If X is the only possible weak limit, i.e. whenver $\{X_{n_k}\}$ converges in distribution to Y, X = Y, then $\{X_n\}$ converges in distribution to X. We supply a proof here. Suppose otherwise. Then, there exists $x \in \mathbb{R}$ $\epsilon > 0$, and a subsequence $\{n_j\}$ such that $\mathbb{P}(X = x) \neq 0$ and

$$|\mathbb{P}(X_{n_i} \le x) - \mathbb{P}(X \le x)| \ge \epsilon$$

for all $j \in \mathbb{N}$. Since $\{X_{n_j}\}$ is tight, we should find a subsequence that converges in distribution, but it is not possible by the above estimate. Therefore, the lemma is proven.

Now, in view of the lemma, suppose $\{X_{n_j}\}$ converges in distribution to Y. Then, by weak convergence,

$$\mathbb{E}[e^{-tX}] = \lim_{k \to \infty} \mathbb{E}[e^{-tX_{n_k}}] = \lim_{j \to \infty} \mathbb{E}[e^{-tX_{n_j}}] = \mathbb{E}[e^{-tY}]$$

for all t > 0. Hence, by (i), it follows that X = Y, and we have shown that $\{X_n\}$ converges in distribution to X. Again, by weak convergence,

$$\mathbb{E}[e^{-tX}] = \lim_{n \to \infty} \mathbb{E}[e^{-tX_n}] = g(t)$$

for all t > 0 as required and we are done.

(iii) Observe that $X_n \ge 0$ for each $n \ge 1$. In view of (ii), it suffices to show that

$$\lim_{n \to \infty} \mathbb{E}[e^{-tX_n}] = \exp(\int_0^1 \frac{1}{x} (e^{-xt} - 1) dx)$$

for any t > 0. Suppose the above limit is established. Observe that

$$\frac{1}{x}(e^{-xt}-1)$$
 converges pointwise a.e to 0 as $t \downarrow 0$ on $[0,1]$

and

$$\left|\frac{1}{x}(e^{-xt}-1)\right| = \frac{1}{x}(1-e^{-xt}) \le \frac{1}{x}(xt) \le t$$

for any t > 0 and $x \in (0, 1]$. Therefore, by DCT,

$$\lim_{t \downarrow 0} g(t) = \lim_{t \downarrow 0} \exp\left(\int_0^1 \frac{1}{x} (e^{-xt} - 1) dx\right) = \exp\left(\lim_{t \downarrow 0} \int_0^1 \frac{1}{x} (e^{-xt} - 1) dx\right)$$
$$= \exp\left(\int_0^1 \lim_{t \downarrow 0} \frac{1}{x} (e^{-xt} - 1) dx\right) = \exp(0) = 1.$$

We now prove the claimed limit. By independence,

$$\mathbb{E}[e^{-tX_n}] = \mathbb{E}[e^{-t\frac{1}{n}\sum_{j=1}^n jI_j}] = \prod_{j=1}^n \mathbb{E}[e^{\frac{-tj}{n}I_j}]$$

$$= \prod_{j=1}^n (e^{-\frac{tj}{n}} \mathbb{P}(I_j = 1) + 1\mathbb{P}(I_j = 0)) = \prod_{j=1}^n (\frac{1}{j} e^{-\frac{tj}{n}} + \frac{j-1}{j})$$

for any t > 0 and $n \in \mathbb{N}$. By Taylor series' approximation of $\log(1-x) \sim -x$,

$$\lim_{n \to \infty} \mathbb{E}[e^{-tX_n}] = \lim_{n \to \infty} \exp(\log(\prod_{j=1}^n \frac{1}{j} e^{-\frac{tj}{n}} + \frac{j-1}{j})) = \exp(\lim_{n \to \infty} \sum_{j=1}^n \log(\frac{1}{j} e^{-\frac{tj}{n}} + \frac{j-1}{j}))$$

$$= \exp(\lim_{n \to \infty} \sum_{j=1}^n \log(1 - (\frac{1}{j} - \frac{1}{j} e^{-\frac{tj}{n}}))) = \exp(\lim_{n \to \infty} \sum_{j=1}^n - (\frac{1}{j} - \frac{1}{j} e^{\frac{-tj}{n}}))$$

$$= \exp(\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n \frac{n}{j} (e^{-\frac{tj}{n}} - 1)) = \exp(\int_0^1 \frac{1}{x} (e^{-xt} - 1) dx).$$

Question 4.

- 4. In what follows, say that $X_n \overset{L^q}{\to} X$ for q > 0 if $X_n, X \in L^q$ and $\mathbb{E}|X_n X|^q \to 0$, where $L^q(\Omega, \mathcal{F}, \mathbb{P})$ is the set of random variables Y on (Ω, \mathcal{F}) such that $\|Y\|_q := (\mathbb{E}[|Y|^q])^{1/q} < \infty$.
 - (i) Establish the following L^2 WLLN: if X_1,\dots,X_n have $\mathbb{E}X_i=\mu$ and $\mathrm{Cov}(X_i,X_j)\leq a_{|i-j|}$

 - (i) Establish the following B willing in A₁,..., A_n have EA_i = μ and Cov(A_i, X_j) ≤ a_[i-j] for all i, j, where (a_k) is a bounded sequence with lim_{k→∞} a_k = 0, then 1/n ∑_{i=1}ⁿ X_i ⊥_{j=1}^j μ.
 (ii) Establish the following WLLN: if X₁,..., X_n are i.i.d. and lim_{k→∞} kP(|X| > k) = 0 then 1/n ∑_{i=1}ⁿ X_i E[X₁1_{|X₁|≤n}] → 0. (Hint: establish a WLLN for the truncated variables X'_i:= X_i1_{|X_i|≤n} using that Var(X'_i)/n → 0, and then compare ∑ X_i to ∑ X'_i.)
 (iii) Let X₁,..., X_n be i.i.d. whose law is given by P(X₁ = (-1)^kk) = 1/(c₀k² log k) for k = 2,3,..., where c₀ is a normalizer. Prove that E|X₁| = ∞ and yet there exists a constant μ < ∞ such that 1/n ∑_{i=1}ⁿ X_i → μ.

Solution.