```
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
```

Data Collection and Analysis PIMA Diabetes Dataset

diabetes_dataset = pd.read_csv('/content/dataset.csv')

printing the first 5 rows of the dataset
diabetes_dataset.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
0	6	148	72	35	0	33.6	0.627	50	1	ıl.
1	1	85	66	29	0	26.6	0.351	31	0	
2	8	183	64	0	0	23.3	0.672	32	1	
3	1	89	66	23	94	28.1	0.167	21	0	
4	0	137	40	35	168	43.1	2.288	33	1	

#number of rows and columns in this dataset
diabetes_dataset.shape

(768, 9)

diabetes_dataset['Outcome'].value_counts()

0 5001 268

Name: Outcome, dtype: int64

getting the statistical measures of the data
diabetes_dataset.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Ag
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.00000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.24088
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.76023
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.00000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.00000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.00000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.00000
may (17 000000	100 000000	122 ᲘᲘᲘᲘᲘᲘ	<u>aa nnnnnn</u>	846 000000	67 1 <u>00000</u>	2 420000	£1 ∩∩∩∩∩ ▶

diabetes_dataset.groupby('Outcome').mean()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Ag
Outo	ome							
0	3.298000	109.980000	68.184000	19.664000	68.792000	30.304200	0.429734	31.19000
4	/ QGEG70	1/1 257/62	70 22/627	22 16/170	100 335931	25 1/2527	0.550500	27 06716

0 --> NON Diabetic

1 --> Diabetic

```
# separating the data and labels
X = diabetes_dataset.drop(columns = 'Outcome', axis = 1)
Y = diabetes_dataset['Outcome']
```

print(X)

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
6	148	72	35	0	33.6	
1	85	66	29	0	26.6	
8	183	64	0	0	23.3	
1	89	66	23	94	28.1	
0	137	40	35	168	43.1	
• • •		• • •	• • •			
10	101	76	48	180	32.9	
	6 1 8 1 0	6 148 1 85 8 183 1 89 0 137	6 148 72 1 85 66 8 183 64 1 89 66 0 137 40	6 148 72 35 1 85 66 29 8 183 64 0 1 89 66 23 0 137 40 35	1 85 66 29 0 8 183 64 0 0 1 89 66 23 94 0 137 40 35 168	6 148 72 35 0 33.6 1 85 66 29 0 26.6 8 183 64 0 0 23.3 1 89 66 23 94 28.1 0 137 40 35 168 43.1

standardized_data = scaler.transform(X)

print(standardized data) [0.63994726 0.84832379 0.14964075 ... 0.20401277 0.46849198 1.4259954 [-0.84488505 -1.12339636 -0.16054575 ... -0.68442195 -0.36506078 -0.19067191] -0.10558415] -0.27575966] [-0.84488505 0.1597866 -0.47073225 ... -0.24020459 -0.37110101 1.17073215] -0.87137393]] X = standardized data Y = diabetes dataset['Outcome'] print(X) print(Y) [[0.63994726 0.84832379 0.14964075 ... 0.20401277 0.46849198 1.4259954 [-0.84488505 -1.12339636 -0.16054575 ... -0.68442195 -0.36506078 -0.19067191] -0.10558415] -0.27575966] 1.17073215 -0.87137393]] 0 1 1 2 1 0 3 1 0 763 764 0 765 766 1 767

Name: Outcome, Length: 768, dtype: int64

```
Train Test Split
```

Model Evaluation

SVC(kernel='linear')

Accuracy Score

```
# accuracy score on the training data
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy score of the training data: ',training_data_accuracy)
    Accuracy score of the training data: 0.7866449511400652
```

Making a Predictive System

```
input_data = (4,110,92,0,0,37.6,0.191,30)
#chaning the inpit data to numpy arrray
input_data_as_numpy_array = np.asarray(input_data)

#reshape the array as we are predicting for one
input_data_reshaped = input_data_as_numpy_array_reshape(1.-1)
https://colab.research.google.com/drive/1x1OCU1MHLkXQlvcAEQXDIhmCnSfcgghe#scrollTo=mK-l8Njk8Znj&printMode=true
```

```
Impue_ducu_resnuped Impue_ducu_ds_numpy_drruy.resnupe(is is)
#standarize the input device
std_data = scaler.transform(input_data_reshaped)
print(std_data)
prediction = classifier.predict(std data)
print(prediction)
if(prediction[0] == 0):
  print('The person is not diabetic')
else :
  print('the person is diabetic')
    [[ 0.04601433 -0.34096773 1.18359575 -1.28821221 -0.69289057 0.71168975
       -0.84827977 -0.27575966]]
     [0]
     The person is not diabetic
     /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but StandardScaler was fitted w
       warnings.warn(
```

[0]
The person is not diabetic