Computing in carbon

Neuroelectronics

- > membranes
- > ion channels
- > wiring

Simplified neuron models

Neuronal geometry

Dendrites and dendritic computing

Equivalent circuit model

RC circuits

- Across a wire, the potential is the same
- ➤ The charge flowing into one element must equal the charge flowing out
- At a junction of wires, the total current is zero: Kirchhoff's law
- The potential changes by a fixed amount across a battery symbol
- The potential changes by a variable amount across a resistor symbol:

Ohm's law: V = IR or I = Vg

Membrane patch

The passive membrane

Kirchhoff: $I_R + I_C + I_{\text{ext}} = 0$

Ohm's law: $V = I_R R$

Capacitor: C = Q/V $I_C = C \frac{dV}{dt}$

$$C\frac{dV}{dt} = -\frac{V}{R} + I_{\text{ext}}$$

The cell has a battery

The cell's battery: the equilibrium potential

The cell has a battery

$$C\frac{dV}{dt} = -\frac{(V - V_{\text{rest}})}{R} + I_{\text{ext}}$$

How does such a membrane behave?

Each ion type is independent and has its own battery

Different ion channels have associated conductances.

A given conductance tends to move the membrane potential toward the equilibrium potential for that ion

But what makes a neuron *compute*?

