Name: Aytaç SEKMEN

Student ID: 2575983

QUESTION 1:

- a) G1 represents the language which includes strings in the form 0^m1^m or 1^m0^m such that $m \ge 0$.
- **b)** Yes this grammar is ambigious because for empty string there is actually two different leftmost derivation (which also means 2 different parse trees):

S => A => e

S=>B=>e

Figure 1: Parse tree for given derivation

Figure 2: Parse tree for given derivation

QUESTION 2:

a) To show that this grammar is ambigous, I will use this string: ab. Because for the string ab there exists 2 different left-most derivation(which also means 2 different parse trees):

Derivation 1) S =>AB=>aB=>ab=>ab

Figure 3: Parse tree for given derivation

Derivation 2) S =>AB=>ab

Figure 4: Parse tree for given derivation

b) Lets call the unambigious version of G2 is called G3. And G3 will be like this: G3 = {V, Σ , R, S} where V = {a, b, S, A, B}, Σ = {a, b} and R={ S \rightarrow AB,

 $A \rightarrow aA \mid e$

 $B \rightarrow bB|e$

c)

S =>AB=>aAB=>ab=>abbB=>abbb=>abbb

Figure 5: Parse tree for given derivation

QUESTION 3:

a)

a.1)

- L₁ = {ca^mbⁿ | m ≠ n} U {da^mb^{2m} | m ≥ 0} is deterministic context free language because L₁\$ is accepted by this DPDA:
- For this DPDA, # represents the bottom of stack symbol and \$ represents the end of input symbol.
- States q1, q3, q4, q5, q8 represents the {ca^mbⁿ | m ≠ n} part of the language L₁.

- States q2, q6, q7 represents the $\{da^mb^{2m} \mid m \ge 0\}$ part of the language L₁.
- We should accepts the strings for {ca^mbⁿ | m ≠ n} part of the language L₁, by using two different accepting states. Because either m ≥ n or m ≤ n can be true.
- Q5 accepts the strings that are in this form $\{ca^mb^n \mid m \ge n\}$.
- Q8 accepts the strings that are in this form $\{ca^mb^n \mid m \le n\}$.
- Q7 accepts the strings that are in this form $\{da^mb^{2m} \mid m \ge 0\}$.
- Also it is guarenteed that there is no two transitions that are compatible.
 (I checked each pair of transitions.)

```
K = \{q0,q1,q2,q3,q4,q5,q6,q7,q8\}
\Sigma = \{a,b,c,d,\$\}
\Gamma = \{a,\#\}
S = q0
F = \{q5,q7,q8\}
\Delta = \{((q0,c,e),(q1,\#)), ((q0,d,e),(q2,\#)), ((q1,a,e),(q1,a)), ((q1,b,a),(q3,e)), ((q1,b,\#),(q4,e)), ((q1,\$,a),(q5,e)), ((q3,b,a),(q3,e)), ((q3,b,\#),(q4,e)), ((q4,b,e),(q4,e)), ((q4,\$,e),(q8,e)), ((q3,\$,a),(q5,e)), ((q5,e,a),(q5,e)), ((q2,a,e),(q5,e)), ((q2,a,e),(q6,e)), ((q6,b,a),(q6,e)), ((q6,\$,\#),(q7,e)), ((q5,e,\#),(q5,e))\}
```


Figure 6: DPDA for L₁

a.2)

- L₂ = {a^mcbⁿ | m ≠ n} ∪ {a^mdb^{2m} | m ≥ 0} is deterministic context free language because L₂\$ is accepted by this DPDA:
- For this DPDA, # represents the bottom of stack symbol and \$ represents the end of input symbol.
- In this question since the strings do not start with the identifier symbols as we see on the L₁ like "c" and "d". We should push the bottom of stack symbol before recognizing them.
- States q1, q3, q7 represents the $\{a^m db^{2m} \mid m \ge 0\}$ part of the language L2.
- States q1, q2, q4, q5 q6 represents the {a^mcbⁿ | m ≠ n} part of the language L₂.

- We should accepts the strings for {a^mcbⁿ | m ≠ n} part of the language L₂, by using two different accepting states. Because either m ≥ n or m ≤ n can be true.
- Q4 accepts the strings that are in this form $\{a^m c b^n \mid m \ge n\}$.
- Q6 accepts the strings that are in this form $\{a^m c b^n \mid m \le n\}$.
- Q7 accepts the strings that are in this form $\{a^m db^{2m} \mid m \ge 0\}$.
- Also it is guarenteed that there is no two transitions that are compatible.
 (I checked each pair of transitions.)

```
K = \{q0,q1,q2,q3,q4,q5,q6,q7\}
\Sigma = \{a,b,c,d,\$\}
\Gamma = \{a,\#\}
S = q0
F = \{q4,q6,q7\}
K = \{q0,q1,q2,q3,q4,q5,q6,q7\}
\Delta = \{((q0,e,e),(q1,\#)),((q1,a,e),(q1,aa)),((q1,c,e),(q2,e)),((q1,d,e),(q3,e)),((q2,b,aa),(q2,e)),((q2,\$,aa),(q4,e)),((q4,e,aa),(q4,e)),((q5,\$,e),(q6,e)),((q5,b,e),(q5,e)),((q3,\$,\#),(q7,e)),((q4,e,\#),(q4,e))\}
```


Figure 7: DPDA for L_2

- b)
- 1) Regular
- 2) Context-free
- 3) The class of the complements of context-free languages

4) Deterministic context-free

Figure 8: Venn diagram