Nowcasting Hospital Admissions on a Fixed Reporting Cycle

Summer 2024, Nowcasting & Natural History

The Data

- Lab-confirmed flu, COVID,
 RSV hospital admissions
- Counties in 12-14 states, accounting for ~10% of US pop
- Use this to estimate how many individuals admitted to these hospitals each day for each pathogen, accounting for administrative reporting delays

The Problem

(Fake) example data:

Admit Dt	Age	Race	County	State	Sex	Onset Dt	Case ID
10/05/2023	70	4	SANTA FE	NM	1		XXXXXXX
10/02/2023	74	4	MULTNOMAH	OR	1	09/25/23	XXXXXXX
10/06/2023	5	NA	SALT LAKE	UT	1		XXXXXXX
10/03/2023	66	99	DENVER	СО	2	10/01/23	XXXXXXX

- Admission dates = given
- Report dates = ?
 - Set report date = day we receive the data: once per week on Tuesday
- Currently NNH aggregates admit dates to weekly scale and performs weekly nowcast

Project Goals

- Explore and compare impact of reporting structure, testing several techniques to handle the fixed cycle
 - Can we perform daily nowcasts at all with these data? How well?
- Build functionality to explicitly handle a fixed reporting cycle and implement it into epinowcast

	Daily/Daily	Daily/Weekly	Weekly/Weekly
Admission times	Daily resolution	Daily resolution	Weekly resolution
Report times	Daily resolution	Weekly resolution	Weekly resolution
epinowcast functionality	V	?	✓

Project Breakdown

- Methods for handling the weekly reporting cycle:
 - 1. Day-of-week reporting effect
 - 2. Hardcode the reporting hazard
 - 3. Aggregate reporting probabilities (X)
- Apply these to simulated data (compartmental model) and FluSurv-NET data
 - So far: one simulated scenario and one influenza hospital admission dataset

1. Day-of-Week Reporting Effect

epinowcast parameterizes reporting delay probabilities with a discrete-time hazard model:

logit(hzd) = [baseline hzd] + [linear combo of covariates]

2. Hardcode the Hazard

epinowcast parameterizes reporting delay probabilities with a discrete-time hazard model:

logit(hzd) = [baseline hzd] + [linear combo of covariates]

Simulated Dataset

Models with Daily/Weekly data perform comparably to Daily/Daily!

Daily Nowcasts Aggregated to Weekly

Models with Daily/Weekly data perform comparably to Weekly/Weekly (kind of)

Real Data (FluSurv-NET)

Daily/Weekly, DOW Model

Real Data (FluSurv-NET)

Summary

- Nowcasting with daily resolution seems possible with the reporting cycle data
 - Possibly even good!?
 - Caveat: model run on one simulated dataset, and on one flu set
- Why does this matter?
 - During key periods in an outbreak, decision-makers may want finer resolution than weekly
 - Daily nowcasts useful for things like monthly summaries
 - If the Daily/Weekly models aggregated to weekly nowcasts do better, there's a clear benefit

Next Steps

- Basic scoring of nowcasts
- Run nowcasts on large number of dates to test generalizability
- Finish implementing the probability aggregation method into epinowcast

Thank you!

Special thanks to:
Katie Gostic,
Sam Abbott,
The NNH team

Appendix: Aggregate Reporting Probabilities

Reporting hazard is ultimately converted back to reporting probability to be used in the likelihood

M	Т	W	Th	F	Sa	Su
			$p_{t,0}$	$p_{t,1}$	$p_{t,2}$	$p_{t,3}$
$p_{t,4}$	$p_{t,5}$	$p_{t,6}$	$p_{t,7}$	$p_{t,8}$	$p_{t,9}$	$p_{t,10}$
$p_{t,11}$	$p_{t,12}$	$p_{t,13}$	$p_{t,14}$			

Appendix: Aggregate Reporting Probabilities

Reporting hazard is ultimately converted back to reporting probability to be used in the likelihood

M	Т	W	Th	F	Sa	Su
			0	0	0	0
0	$\sum_{i=0}^4 p_{t,i}$	0	0	0	0	0
0	$\sum_{i=5}^{11} p_{t,i}$	0	0			
	$\sum_{i=12}^{14} p_{t,i}$					