Exercices d'oraux de la banque CCP 2014-2015 - Corrigés BANQUE PROBABILITÉS

EXERCICE 96

- 1) (a) La variable aléatoire X est régie par une loi binomiale. En effet,
 - 5 expériences identiques et indépendantes (car les tirages se font avec remise) sont effectuées.
 - chaque expérience a deux issues : « la boule tirée est blanche » avec une probabilité $p = \frac{2}{10} = \frac{1}{5}$ et « la boule tirée n'est pas blanche » avec une probabilité $1 - p = \frac{4}{5}$.

La variable aléatoire X est régie par une loi binomiale de paramètres n=5 et $p=\frac{1}{5}$. On sait alors que

$$X\left(\Omega\right)=\left[\!\left[0,5\right]\!\right]\;\mathrm{et}\;\forall k\in\left[\!\left[0,5\right]\!\right],\;p(X=k)=\binom{5}{k}\left(\frac{1}{5}\right)^{k}\left(\frac{4}{5}\right)^{5-k}.$$

Plus explicitement.

•
$$p(X = 0) = \left(\frac{4}{5}\right)^5 = \frac{1024}{3125} = 0,32768.$$

•
$$p(X = 1) = 5 \times \frac{1}{5} \times \left(\frac{4}{5}\right)^4 = \frac{256}{625} = 0,4096.$$

•
$$p(X = 2) = 10 \times \left(\frac{1}{5}\right)^2 \times \left(\frac{4}{5}\right)^3 = \frac{128}{625} = 0,2048.$$

•
$$p(X = 3) = 10 \times \left(\frac{1}{5}\right)^3 \times \left(\frac{4}{5}\right)^2 = \frac{32}{625} = 0,0512.$$

•
$$p(X = 4) = 5 \times \left(\frac{1}{5}\right)^4 \times \frac{4}{5} = \frac{4}{625} = 0,0064.$$

•
$$p(X = 5) = \left(\frac{1}{5}\right)^5 = \frac{1}{3125} = 0,00032.$$

L'espérance de X est $E(X) = np = 5 \times \frac{1}{5} = 1$ et la variance de X est $V(X) = np(1-p) = 5 \times \frac{1}{5} \times \frac{4}{5} = \frac{4}{5} = 0, 8$.

$$\textbf{(b)} \ \ Y = 2X - 3(5 - X) = 5X - 15. \ \ \mathrm{Par} \ \ \mathrm{suite}, \ \ Y(\Omega) = \{5k - 15, \ k \in [\![0,5]\!]\} = \{-15, -10, -5, 0, 5, 10\}. \ \ \mathrm{Ensuite}, \ \ \mathsf{Ensuite}, \ \ \mathsf{Ens$$

$$\forall k \in [0, 5], \ p(Y = 5k - 15) = p(X = k) = {5 \choose k} \left(\frac{1}{5}\right)^k \left(\frac{4}{5}\right)^{5-k}.$$

Ensuite,
$$E(Y) = 5E(X) - 15 = 5 \times 1 - 15 = -10$$
 et $V(Y) = V(5X - 15) = 5^2V(X) = 25 \times \frac{4}{5} = 20$.

2) (a) $X(\Omega) = \{0, 1, 2\}$. La loi de probabilité ne change pas si on suppose les tirages simultanés.

Le nombre de tirages simultanés de 5 boules parmi 10 est $\binom{10}{5}$.

Soit $k \in [0,2]$. Au cours d'un tirage de 5 boules, on obtient k boules blanches si et seulement si on tire k boules parmi les 2 blanches et 5-k boules parmi les 8 noires. Il y a donc $\binom{2}{k} \times \binom{8}{5-k}$ tirages où on obtient k boules blanches. Donc,

$$\forall k \in \llbracket 0, 2 \rrbracket, \ p(X = k) = \frac{\binom{2}{k} \times \binom{8}{5 - k}}{\binom{10}{5}}.$$

Plus explicitement,

•
$$p(X = 0) = \frac{\frac{8 \times 7 \times 6 \times 5 \times 4}{5 \times 4 \times 3 \times 2}}{\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2}} = \frac{5 \times 4}{10 \times 9} = \frac{2}{9}.$$

• $p(X = 1) = \frac{2 \times \frac{8 \times 7 \times 6 \times 5}{5 \times 4 \times 3 \times 2}}{\frac{2 \times \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2}}{10 \times 9 \times 8 \times 7 \times 6}} = \frac{2 \times 5 \times 5}{10 \times 9} = \frac{5}{9}.$

•
$$p(X = 1) = \frac{2 \times \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2}}{\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2}} = \frac{2 \times 5 \times 5}{10 \times 9} = \frac{5}{9}$$

$$\bullet p(X=2) = \frac{\frac{8 \times 7 \times 6}{3 \times 2}}{\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2}} = \frac{5 \times 4}{10 \times 9} = \frac{2}{9}.$$

L'espérance de X est $E(X) = 0 \times \frac{2}{9} + 1 \times \frac{5}{9} + 2 \times \frac{2}{9} = 1$ et la variance de X est

$$V(X) = E(X^2) - (E(X))^2 = 0 \times \frac{2}{9} + 1 \times \frac{5}{9} + 4 \times \frac{2}{9} - 1^2 = \frac{4}{9}.$$

(b) Comme à la question 1), $Y(\Omega) = \{5k - 15, k \in [0, 2]\} = \{-15, -10, -5\}$ et

$$\forall k \in [0,2], \ p(Y = 5k - 15) = p(X = k) = \frac{\binom{2}{k} \times \binom{8}{5 - k}}{\binom{10}{5}}.$$

Ensuite, E(Y) = 5E(X) - 15 = -10 et $V(Y) = 5^2E(X) = \frac{100}{9}$.

EXERCICE 105

- 1) X prend les valeurs 0, 1 ou 2.
- 2) (a) X = 2 est l'événement « toutes les boules vont dans le même compartiment ». Il y a 3^n répartitions possibles des n boules dans les 3 compartiments (pour chacune des n boules, il y a 3 possibilités de compartiment). Parmi ces répartitions, il y en a une et une seule pour laquelle toutes les boules sont dans le compartiment $n^o 1$, une et une seule pour laquelle toutes les boules sont dans le compartiment $n^o 2$ et une et une seule pour laquelle toutes les boules sont dans le compartiment $n^o 3$. Donc

$$p(X=2) = \frac{3}{3^n} = \frac{1}{3^{n-1}}.$$

(b) Soit E l'événement : « le troisième compartiment est vide et les deux premiers ne le sont pas ». On a alors

$$p(X = 1) = 3 \times p(E)$$
.

Soit $k \in [1, n-1]$. Soit E_k l'événement « k boules sont dans le compartiment $n^\circ 1$ et n-k sont dans le compartiment $n^\circ 2$ ». $E = \bigcup_{1 \leqslant k \leqslant n-1} E_k$ et les E_k , $1 \leqslant k \leqslant n-1$, sont deux à deux disjoints. Donc,

$$p(X = 1) = 3p(E) = 3 \sum_{k=1}^{n-1} p(E_k).$$

Soit $k \in [1, n-1]$. Le nombre de répartitions des n boules telles que k d'entre elles soient dans le compartiment n° 1 et n-k soient dans le compartiment n° 2 est encore le nombre de tirages simultanés de k boules parmi les n à savoir $\binom{n}{k}$.

Donc $p(E_k) = \frac{\binom{n}{k}}{3^n}$. Par suite,

$$p(E) = 3 \frac{\sum_{k=1}^{n-1} {n \choose k}}{3^n} = \frac{2^n - 2}{3^{n-1}}.$$

Enfin,

$$p(X=0) = 1 - p(X=1) - p(X=2) = 1 - \frac{2^{n} - 2}{3^{n-1}} - \frac{1}{3^{n-1}} = \frac{3^{n-1} - 2^{n} + 1}{3^{n-1}}.$$

$$p(X=0) = \frac{1}{3^{n-1}}, \ p(X=1) = \frac{2^n - 2}{3^{n-1}} \ \mathrm{et} \ p(X=2) = \frac{3^{n-1} - 2^n + 1}{3^{n-1}}.$$

3) (a)
$$E(X) = 0 \times \frac{3^{n-1} - 2^n - 3}{3^{n-1}} + 1 \times \frac{2^n - 2}{3^{n-1}} + 2 \times \frac{1}{3^{n-1}} = \frac{2^n}{3^{n-1}} = 3\left(\frac{2}{3}\right)^n$$
.

(b) $\lim_{n\to+\infty} E(X) = \lim_{n\to+\infty} 3\left(\frac{2}{3}\right)^n = 0$. Ainsi, s'il y a un grand nombre de boules, il y a peu de chances qu'un compartiment reste vide.

EXERCICE 106

1) Formule de BAYES.

Soit (Ω, P) un espace probabilisé.

Soit $(A_i)_{1 \le i \le n}$ un système complet d'événements de cet espace tel que pour tout $i \in [1, n]$, $P(A_i) \ne 0$. Soit B un événement tel que $P(B) \ne 0$. Alors,

$$\forall i \in [1, n], \ P_{B}(A_{i}) = \frac{P(A_{i}) \times P_{A_{i}}(B)}{\sum_{i=1}^{n} P(A_{j}) \times P_{A_{j}}(B)}$$

Démonstration. Soit $i \in [1, n]$. Puisque $P(B) \neq 0$,

$$P_{B}\left(A_{\mathfrak{i}}\right) = \frac{P\left(A_{\mathfrak{i}} \cap B\right)}{P(B)} = \frac{P\left(A_{\mathfrak{i}}\right) \times P_{A_{\mathfrak{i}}}(B)}{P(B)}.$$

 $\text{Puisque } \left(A_{j} \right)_{1 \leqslant j \leqslant n} \text{ un système complet d'événements de cet espace tel que pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j} \right) \neq 0, \text{ on a le pour tout } j \in \llbracket 1, n \rrbracket, \ P \left(A_{j$

$$P(B) = \sum_{j=1}^{n} P(A_j \cap B) = \sum_{j=1}^{n} P(A_j) \times P_{A_j}(B).$$

Donc,

$$P_{B}(A_{i}) = \frac{P(A_{i}) \times P_{A_{i}}(B)}{\sum_{i=1}^{n} P(A_{j}) \times P_{A_{j}}(B)}.$$

2) (a) Notons A l'événement « le dé est pipé » et B l'événement « on obtient le chiffre 6 ». La probabilité demandée est $P_B(A)$.

 (A, \overline{A}) est un système complet d'événements. On a $P(A) = \frac{25}{100} = \frac{1}{4} \neq 0$ et $P(\overline{A}) = 1 - \frac{1}{4} = \frac{3}{4}$. Ensuite $P_A(B) = \frac{1}{2}$ et $P_{\overline{A}}(B) = \frac{1}{6}$. Donc,

$$P(B) = P(A) \times P_A(B) + P(\overline{A}) \times P_{\overline{A}}(B) = \frac{1}{4} \times \frac{1}{2} + \frac{3}{4} \times \frac{1}{6} = \frac{1}{4} \neq 0.$$

D'après la formule de Bayes,

$$P_{B}(A) = \frac{P(A) \times P_{A}(B)}{P(A) \times P_{A}(B) + P\left(\overline{A}\right) \times P_{\overline{A}}(B)} = \frac{\frac{1}{4} \times \frac{1}{2}}{\frac{1}{4}} = \frac{1}{2}.$$

La probabilité que ce dé soit pipé est $\frac{1}{2}$.

(b) Notons A l'événement « le dé est pipé » et B l'événement « on obtient $\mathfrak n$ fois le chiffre 6 ». La probabilité demandée est $P_B(A)$.

 (A, \overline{A}) est un système complet d'événements. On a toujours $P(A) = \frac{1}{4} \neq 0$ et $P(\overline{A}) = \frac{3}{4}$. Ensuite $P_A(B) = \frac{1}{2^n}$ et $P_{\overline{A}}(B) = \frac{1}{6^n}$. Donc,

$$P(B) = P(A) \times P_A(B) + P\left(\overline{A}\right) \times P_{\overline{A}}(B) = \frac{1}{4} \times \frac{1}{2^n} + \frac{3}{4} \times \frac{1}{6^n} \neq 0.$$

D'après la formule de BAYES,

$$P_B(A) = \frac{P(A) \times P_A(B)}{P(A) \times P_A(B) + P\left(\overline{A}\right) \times P_{\overline{A}}(B)} = \frac{\frac{1}{4} \times \frac{1}{2^n}}{\frac{1}{4} \times \frac{1}{2^n} + \frac{3}{4} \times \frac{1}{6^n}} = \frac{1}{1 + \frac{1}{3^{n-1}}}.$$

La probabilité que ce dé soit pipé est $\frac{1}{1+\frac{1}{3^{n-1}}}$.

(c) $\lim_{n \to +\infty} \frac{1}{3^{n-1}} = 0$ et donc $\lim_{n \to +\infty} p_n = 1$. Ceci signifie que si au bout d'un grand nombre de lancers, on a obtenu à chaque fois le 6, il est quasiment sûr que le dé est pipé.

EXERCICE 108

Pour $n \in \mathbb{N}^*$, notons A_n l'événement « au n-ème tirage, la boule provient de l'urne U_1 » (l'événement $\overline{A_n}$ est donc l'événement « au n-ème tirage, la boule provient de l'urne U_2 »).

1) $(A_1, \overline{A_1})$ est un système complet d'événements et $P(A_1) = P(\overline{A_1}) = \frac{1}{2} \neq 0$. D'après la formule des probabilités totales,

$$p_{1} = P(B_{1}) = P(A_{1}) \times P_{A_{1}}(B_{1}) + P(\overline{A_{1}}) \times P_{\overline{A_{1}}}(B_{1}) = \frac{1}{2} \times \frac{2}{5} + \frac{1}{2} \times \frac{4}{7} = \frac{17}{35}.$$

La probabilité p_1 que la première boule tirée soit blanche est $\frac{17}{35}$.

2) Soit $n \in \mathbb{N}^*$. $(B_n, \overline{B_n})$ est un système complet d'événements. D'après la formule des probabilités totales,

$$\begin{split} P\left(B_{n+1}\right) &= P\left(B_{n}\right) \times P_{B_{n}}\left(B_{n+1}\right) + P\left(\overline{B_{n}}\right) \times P_{\overline{B_{n}}}\left(B_{n+1}\right) \\ &= p_{n} \times \frac{2}{5} + (1 - p_{n}) \times \frac{4}{7} = -\frac{6}{35}p_{n} + \frac{4}{7}. \end{split}$$

3) La suite $(p_n)_{n\in\mathbb{N}^*}$ est arithmético-géométrique.

La fonction affine $x \mapsto -\frac{6}{35}x + \frac{4}{7}$ admet un point fixe et un seul :

$$x = -\frac{6}{35}x + \frac{4}{7} \Leftrightarrow \frac{41}{35}x = \frac{4}{7} \Leftrightarrow x = \frac{20}{41}.$$

On sait alors que pour tout entier naturel non nul n, $p_{n+1} - \frac{20}{41} = -\frac{6}{5} \left(p_n - \frac{20}{41} \right)$ puis que pour tout entier naturel non nul n,

$$p_n - \frac{20}{41} = \left(-\frac{6}{35}\right)^{n-1} \left(p_1 - \frac{20}{41}\right) = \left(-\frac{6}{35}\right)^{n-1} \left(\frac{17}{35} - \frac{20}{41}\right) = -\frac{3}{1435} \times \left(-\frac{6}{35}\right)^{n-1},$$

et donc

$$p_n = \frac{20}{41} - \frac{3}{1435} \times \left(-\frac{6}{35}\right)^{n-1}.$$

Pour tout entier naturel non nul n, $p_n = \frac{20}{41} - \frac{3}{1435} \times \left(-\frac{6}{35}\right)^{n-1}$.

EXERCICE 110

 Ω est l'ensemble des tirages successifs sans remise des n+2 boules ou encore l'ensemble des permutations des n+2 boules. Le nombre de tirages successifs et sans remise des n+2 boules est (n+2)! ou encore card $(\Omega) = (n+2)!$.

- 1) L'urne contient n+2 boules. La première boule blanche peut apparaître au premier, deuxième ou troisième tirage ou encore $X(\Omega) = [1,3]$.
- X = 1 est l'événement : « la première boule tirée est blanche ». On a $\mathfrak n$ possibilités de tirer la première boule parmi les $\mathfrak n$ blanches puis pour chacune de ces $\mathfrak n$ possibilités, on a $(\mathfrak n + 1)!$ possibilités de tirer les $\mathfrak n + 1$ boules restantes. Donc

$$p(X = 1) = \frac{n \times (n+1)!}{(n+2)!} = \frac{n}{n+2}.$$

• X = 3 est l'événement : « les deux premières boules tirées sont noires ». On a 2! = 2 possibilités de tirer les deux premières boules puis pour chacune de ces deux possibilités, on a n! possibilités de tirer les n boules restantes. Donc,

$$p(X = 3) = \frac{2 \times n!}{(n+2)!} = \frac{2}{(n+1)(n+2)}.$$

• Enfin

$$p(X = 2) = 1 - p(X = 1) - p(X = 3) = 1 - \frac{n}{n+2} - \frac{2}{(n+1)(n+2)} = \frac{(n+1)(n+2) - n(n+1) - 2}{(n+1)(n+2)}$$
$$= \frac{2n}{(n+1)(n+2)}.$$

$$X(\Omega) = [1,3] \text{ et } p(X=1) = \frac{n}{n+2}, \ p(X=2) = \frac{2n}{(n+1)(n+2)} \text{ et } p(X=3) = \frac{2}{(n+1)(n+2)}.$$

2) La première boule numérotée 1 peut sortir au premier, deuxième, ..., (n+1)-ème tirage ou encore $Y(\Omega) = [1, n+1]$. Soit $k \in [2, n+1]$. L'événement Y = k est l'événement « les k-1 premières boules ne portent pas le numéro 1 et la k-ème porte le numéro 1 ». Pour les k-1 premières boules, on a $n(n-1) \times \ldots \times (n-k+2) = \frac{n!}{(n-k+1)!}$ tirages possibles puis pour chacun des ces tirages on a 2 possibilités pour la k-ème boule et donc $2 \times \frac{n!}{(n-k+1)!}$ tirages possibles pour les k premières boules. Pour chacun de ces tirages, on a (n+2-k)! tirages possibles des n+2-k boules restantes. Finalement,

$$p(Y = k) = \frac{\frac{n!}{(n-k+1)!} \times 2 \times (n+2-k)!}{(n+2)!} = \frac{2(n+2-k)}{(n+1)(n+2)}.$$

L'événement Y = 1 est l'événement « la première boule porte le numéro 1 ». Il y a 2 tirages possibles pour la première boule puis pour chacun de ces deux tirages, il y a (n + 1)! tirages possibles des n + 1 boules restantes. Donc

$$p(Y=1) = \frac{2 \times (n+1)!}{(n+2)!} = \frac{2(n+1)}{(n+1)(n+2)} = \frac{2(n+2-1)}{(n+1)(n+2)}.$$

Finalement

$$Y(\Omega) = [\![1,n+1]\!] \ \mathrm{et} \ \forall k \in [\![1,n+1]\!], \ p(Y=k) = \frac{2(n+2-k)}{(n+1)(n+2)}.$$

EXERCICE 113

1) 1ère solution. Soit $k \in [0, n]$. Soit A une partie fixée à k éléments. Le nombre de couples (A, B) tels que $A \subseteq B$ est encore le nombre de parties B telles que $A \subseteq B$. Une partie B contenant A est la réunion de A et d'une partie de \overline{A} . Le nombre de parties B contenant A est donc encore le nombre de parties de \overline{A} . Il y en a

$$\operatorname{card}\left(\mathcal{P}\left(\overline{A}\right)\right)=2^{n-k}.$$

Ensuite, il y a $\binom{n}{k}$ parties à k éléments et donc $\binom{n}{k}2^{n-k}$ couples (A,B) tels que $\operatorname{card}(A)=k$ et $A\subset B$. En faisant varier k, on obtient

$$a = \sum_{k=0}^{n} {n \choose k} 2^{n-k} = (2+1)^n = 3^n.$$

2ème solution. Notons F l'ensemble des couples (A, B) tels que $A \subset B$.

 $\begin{array}{lll} \mathrm{Pour}\; (A,B) \in F, \, \mathrm{d\acute{e}finissons} & \phi_{(A,B)} \; : & E & \rightarrow & \{0,1,2\} & . \, \, \phi_{(A,B)} \, \, \mathrm{est} \, \, \mathrm{une} \, \, \mathrm{application} \, \, \mathrm{de} \, \, E \, \, \mathrm{dans} \, \{0,1,2\}. \\ & x & \mapsto & \left\{ \begin{array}{ll} 0 \, \mathrm{si} \, x \in A \\ 1 \, \mathrm{si} \, x \in B \setminus A \\ 2 \, \mathrm{si} \, x \notin B \end{array} \right. \end{array} \right. .$

Soit alors $\varphi: F \to \{0,1,2\}^E$. φ est bien sûr une bijection. Démontrons-le. $(A,B) \mapsto \varphi_{(A,B)}$

- ϕ est une application de F vers $\{0,1,2\}^E$.
- Soit $((A,B),(A',B')) \in F^2$ tel que $\phi_{(A,B)} = \phi_{(A',B')}$. Soit $x \in E$. $x \in A \Leftrightarrow \phi_{(A,B)}(x) = 0 \Leftrightarrow \phi_{(A',B')}(x) = 0 \Leftrightarrow x \in A'$. Donc, A = A'. Soit $x \in E$. $x \in B \setminus A \Leftrightarrow \phi_{(A,B)}(x) = 1 \Leftrightarrow \phi_{(A',B')}(x) = 1 \Leftrightarrow x \in B' \setminus A'$. Donc, $B \setminus A = B' \setminus A'$ puis B = B' car $A \subset B$, $A' \subset B'$ et A = A'. Finalement, (A,B) = (A',B'). On a montré que ϕ est injective.
- Soit $f \in \{0,1,2\}^E$. Soient A l'ensemble des x de E tels que f(x)=0 puis B la réunion de A et de l'ensemble des x de E tels que f(x)=1. Alors $A \subset B$ puis $\phi((A,B))=f$. On a montré que ϕ est surjective et finalement que ϕ est bijective.

Puisque φ est une bijection, card(F) = card($\{0,1,2\}^E$) = 3^n .

$$a=3^n$$
.

2) Le nombre de couples (A, B) tels que $A \cap B = \emptyset$ est encore le nombre de couples $(A, A \cup B)$ tels que $A \cap B = \emptyset$. C'est aussi le nombre de couples (A, B') tels que $A \subset B'$. Il y en a

$$b = a = 3^n$$
.

3) Pour chaque couple (A,B) tels que $A \cap B = \emptyset$, il y a exactement un triplet $(A,B,C) \in (\mathcal{P}(E))^3$ tels que A,B et C soient deux à deux disjoints et vérifient $A \cup B \cup C = E$ à savoir le triplet $(A,B,C_E(A \cup B))$. Réciproquement, chaque triplet $(A,B,C) \in (\mathcal{P}(E))^3$ tels que A,B et C soient deux à deux disjoints et vérifient $A \cup B \cup C = E$ fournit un et un seul couple $(A,B) \in (\mathcal{P}(E))^2$ tel que $A \cap B = \emptyset$. Donc,

$$c = b = a = 3^n.$$