| Московский Государственный Университет им. М.В. Ломоносов: | a |
|------------------------------------------------------------|---|
| Факультет Вычислительной Математики и Кибернетики          |   |
| Кафедра Суперкомпьютеров и Квантовой Информатики           |   |

Параллельное программирование для высокопроизводительных вычислительных систем

Анализ влияния кэша на операцию блочного матричного умножения. РАРІ

Работу выполнил

М.А.Осипов

## Постановка задачи и формат данных

Задача: реализовать последовательный алгоритм блочного матричного умножения и оценить влияние кэша на время выполнения программы. Дополнить отчёт результатами сбора информации с аппаратных счётчиков, используя систему PAPI.

**Формат командной строки:** <имя файла матрицы A> <имя файла матрицы B> <имя файла матрицы C> <режим, порядок индексов (размер блока) > <флаг, доступ к счетчикам>

**Режимы:** 0 -ijk, 1- ikj, 2-ikj(оптимальный размер блока)

Флаг: 0 – «рабочие циклы», «L1 – промахи», «L2 -промахи»; 1 – «реальное время работы», «производительность»

Формат файла матрицы: Матрица представляется в виде бинарного файла следующего формата:

| Тип                 | Значение              | Описание                 |
|---------------------|-----------------------|--------------------------|
| Число типа char     | T-f(float)            | Тип элементов            |
| Число типа size_t   | N- натуральное число  | Число строк матрицы      |
| Число типа size_t   | М – натуральное число | Число столбцов матриц    |
| Массив чисел типа Т | N*M элементов         | Массив элементов матрицы |

Элементы матрицы хранятся построчно.

## Описание алгоритма

С целью повышения эффективности использования кэш-памяти CPU существует алгоритм блочного умножения матриц в котором результирующая матрица формируется поблочно с использованием известной формулы:  $C_{ij} = \sum_k (a_{ik} + b_{kj})$ .

Верификация: для проверки корректности работы программы использовались тестовые данные.

## Основные функции:

- 1. Разбор командной строки. В рамках этой функции осуществляется анализ и разбор командной строки.
- 2. Чтение файлов матриц. В рамках этой функции осуществляется чтение и обработка входных матриц.
- 3. Перемножение матриц. В рамках этой функции осуществляется перемножение матриц в соответствии с выбранным порядком индексов суммирования или размера блока.
- 4. Генерация матриц. В рамках этой функции производилась генерация и запись матриц для последующих тестов.
- 5. Вывод матриц на экран. В рамках этой функции проводился вывод матриц на экран.

## Результаты выполнения



Зависимость промахов кэша L1: для размера блока 32x32 и порядка индексов ijk; для размера блока 32x32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.



Зависимость промахов кэша L2: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.



Зависимость FLOP: для размера блока 32x32 и порядка индексов ijk; для размера блока 32x32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.



Зависимость процессорных тактов: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.



Зависимость времени выполнения рабочих циклов: для размера блока 32x32 и порядка индексов ijk; для размера блока 32x32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.