Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$.

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$ Y $u(x), v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$ Y $u(x), v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$. Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

 $Y \ u(x), v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

Que se ha obtenido a partir de las siguientes divisiones:

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

Que se ha obtenido a partir de las siguientes divisiones:

$$x^4 + 3x^2 + 2x + 3 = (2x^3 + 2x^2 + 6x + 5) \cdot (4x + 3) + x^2 + 6x + 2$$

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

Que se ha obtenido a partir de las siguientes divisiones:

$$x^4 + 3x^2 + 2x + 3 = (2x^3 + 2x^2 + 6x + 5) \cdot (4x + 3) + x^2 + 6x + 2$$

 $2x^3 + 2x^2 + 6x + 5 = (x^2 + 6x + 2) \cdot (2x + 4) + 6x + 4$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$ Y $u(x), v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

Que se ha obtenido a partir de las siguientes divisiones:

$$x^{4} + 3x^{2} + 2x + 3 = (2x^{3} + 2x^{2} + 6x + 5) \cdot (4x + 3) + x^{2} + 6x + 2$$

$$2x^{3} + 2x^{2} + 6x + 5 = (x^{2} + 6x + 2) \cdot (2x + 4) + 6x + 4$$

$$x^{2} + 6x + 2 = (6x + 4) \cdot (6x + 4) + 0$$

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

El último resto distinto de cero es 6x + 4.

Por tanto, 6x + 4 es un máximo común divisor de p(x) y q(x).

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

El último resto distinto de cero es 6x + 4.

Por tanto, 6x + 4 es un máximo común divisor de p(x) y q(x).

Pero dicho polinomio no es mónico. Calculamos el inverso del coeficiente líder.

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

El último resto distinto de cero es 6x + 4.

Por tanto, 6x + 4 es un máximo común divisor de p(x) y q(x).

Pero dicho polinomio no es mónico. Calculamos el inverso del coeficiente líder.

 $6^{-1} \mod 7 = 6$.

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y
$$u(x)$$
, $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

El último resto distinto de cero es 6x + 4.

Por tanto, 6x + 4 es un máximo común divisor de p(x) y q(x).

Pero dicho polinomio no es mónico. Calculamos el inverso del coeficiente líder.

 $6^{-1} \mod 7 = 6.$

Multiplicamos el último resto no nulo por 6.

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$.

Vamos a calcular d(x) = mcd(p(x), q(x))

Y
$$u(x)$$
, $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

El último resto distinto de cero es 6x + 4.

Por tanto, 6x + 4 es un máximo común divisor de p(x) y q(x).

Pero dicho polinomio no es mónico. Calculamos el inverso del coeficiente líder.

$$6^{-1} \mod 7 = 6$$
.

Multiplicamos el último resto no nulo por 6.

$$6 \cdot (6x + 4) = x + 3.$$

Curso 2014/2015

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$. Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4
x + 3	

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)
$x^4 + 3x^2 + 2x + 3$	
$2x^3 + 2x^2 + 6x + 5$	
$x^2 + 6x + 2$	4x + 3
6x + 4	2x + 4
x + 3	

Tenemos entonces que mcd(p(x), q(x)) = x + 3. Calculamos ahora u(x) y v(x).

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	<i>u</i> (<i>x</i>)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3		
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3. Calculamos ahora u(x) y v(x).

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	<i>u</i> (<i>x</i>)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3		
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Calculamos ahora u(x) y v(x).

1

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3		
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$1 - (4x + 3)$$

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	<i>u</i> (<i>x</i>)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3		
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$1 - (4x + 3) \cdot 0$$

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3		
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$1 - (4x + 3) \cdot 0 = 1$$

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$1 - (4x + 3) \cdot 0 = 1$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	<i>u</i> (<i>x</i>)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$1 - (4x + 3) \cdot 0 = 1$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	<i>u</i> (<i>x</i>)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$1 - (4x + 3) \cdot 0 = 1$$

$$0 - (4x + 3)$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$1 - (4x + 3) \cdot 0 = 1$$

$$0 - (4x + 3) \cdot 1$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y
$$u(x)$$
, $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Calculamos ahora u(x) y v(x).

$$1 - (4x + 3) \cdot 0 = 1$$

$$0 - (4x + 3) \cdot 1 = 3x + 4$$
.

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	<i>u</i> (<i>x</i>)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$1 - (4x + 3) \cdot 0 = 1$$

$$0 - (4x + 3) \cdot 1 = 3x + 4$$
.

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Calculamos ahora u(x) y v(x).

0

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	<i>u</i> (<i>x</i>)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$0 - (2x + 4)$$

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$0 - (2x + 4) \cdot 1$$

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	<i>u</i> (<i>x</i>)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4		
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$0 - (2x + 4) \cdot 1 = 5x + 3.$$

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$0 - (2x + 4) \cdot 1 = 5x + 3.$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	<i>u</i> (<i>x</i>)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Calculamos ahora u(x) y v(x).

$$0 - (2x + 4) \cdot 1 = 5x + 3.$$

1

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	<i>u</i> (<i>x</i>)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$0 - (2x + 4) \cdot 1 = 5x + 3$$
.

$$1 - (2x + 4)$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$0 - (2x + 4) \cdot 1 = 5x + 3$$
.

$$1 - (2x + 4) \cdot (3x + 4)$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$0 - (2x + 4) \cdot 1 = 5x + 3.$$

$$1 - (2x + 4) \cdot (3x + 4) = 1 + (5x + 3) \cdot (3x + 4)$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$0 - (2x + 4) \cdot 1 = 5x + 3$$
.

$$1 - (2x + 4) \cdot (3x + 4) = 1 + (5x + 3) \cdot (3x + 4) = 1 + x^2 + 6x + 2x + 5$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y
$$u(x)$$
, $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$0 - (2x + 4) \cdot 1 = 5x + 3$$
.

$$1 - (2x + 4) \cdot (3x + 4) = 1 + (5x + 3) \cdot (3x + 4) = 1 + x^2 + 6x + 2x + 5 = x^2 + x + 6.$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y
$$u(x)$$
, $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	$x^2 + x + 6$
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

$$0 - (2x + 4) \cdot 1 = 5x + 3$$
.

$$1 - (2x + 4) \cdot (3x + 4) = 1 + (5x + 3) \cdot (3x + 4) = 1 + x^2 + 6x + 2x + 5 = x^2 + x + 6.$$

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	$x^2 + x + 6$
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Calculamos ahora u(x) y v(x).

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	$x^2 + x + 6$
x + 3			

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Calculamos ahora u(x) y v(x).

$$6 \cdot (5x + 3) = 2x + 4.$$

Sean $p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$ y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular d(x) = mcd(p(x), q(x))

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	$x^2 + x + 6$
x + 3		2x + 4	

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Calculamos ahora u(x) y v(x).

$$6 \cdot (5x + 3) = 2x + 4.$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y
$$u(x)$$
, $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	<i>v</i> (<i>x</i>)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	$x^2 + x + 6$
x + 3		2x + 4	

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Calculamos ahora u(x) y v(x).

Multiplicamos ahora también por 6.

$$6 \cdot (5x + 3) = 2x + 4.$$

$$6 \cdot (x^2 + x + 6) = 6x^2 + 6x + 1.$$

1 / 1

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$

Y u(x), $v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Aplicamos el algoritmo de Euclides, y obtenemos la siguiente tabla:

r(x)	c(x)	u(x)	v(x)
$x^4 + 3x^2 + 2x + 3$		1	0
$2x^3 + 2x^2 + 6x + 5$		0	1
$x^2 + 6x + 2$	4x + 3	1	3x + 4
6x + 4	2x + 4	5x + 3	$x^2 + x + 6$
x + 3		2x + 4	$6x^2 + 6x + 1$

Tenemos entonces que mcd(p(x), q(x)) = x + 3.

Calculamos ahora u(x) y v(x).

$$6 \cdot (5x + 3) = 2x + 4.$$

$$6 \cdot (x^2 + x + 6) = 6x^2 + 6x + 1.$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$ Y $u(x), v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$ Y $u(x), v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

$$\mathbf{d}(\mathbf{x}) = \mathbf{x} + \mathbf{3}$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$ Y $u(x), v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

$$\mathbf{d}(\mathbf{x}) = \mathbf{x} + \mathbf{3}$$

$$\mathbf{u}(\mathbf{x}) = 2\mathbf{x} + \mathbf{4}$$

Sean
$$p(x) = x^4 + 3x^2 + 2x + 3 \in \mathbb{Z}_7[x]$$
 y $q(x) = 2x^3 + 2x^2 + 6x + 5 \in \mathbb{Z}_7[x]$. Vamos a calcular $d(x) = mcd(p(x), q(x))$ Y $u(x), v(x) \in \mathbb{Z}_7[x]$ tales que $d(x) = p(x) \cdot u(x) + q(x) \cdot v(x)$.

$$\mathbf{d}(\mathbf{x}) = \mathbf{x} + \mathbf{3}$$

$$\mathbf{u}(\mathbf{x}) = 2\mathbf{x} + \mathbf{4}$$

$$\mathbf{v}(\mathbf{x}) = 6\mathbf{x}^2 + 6\mathbf{x} + 1$$

