Matte R2

Mats Bjønnes

Skoleåret 2022/2023

Innhold

1	Følger og rekker		
	1.1	Rekursive Sammenhenger	2
	1.2	Bevis	6
	1.3	Endelige aritmetiske og geometriske rekker	6
	1.4	Flere rekker	6
	1.5	Praktiske anvendelser av rekker	6
2	Integrasjon		7
3	Trigonometri		8
4	Modeller		9
5	Romgeometri		.0

Følger og rekker

1.1 Rekursive Sammenhenger

Følger

Regel 1.1: Tallfølge:

 a_1,a_2,a_3,\dots,a_n er en endeligfølge med nledd. a_1,a_2,a_3,\dots er en uendeligfølge.

Eksempel 1.1: Mønster i følger:

Mønster for fibonacci:

- Hvert ledd er summen av de to foregående

$$a_{n+2} = a_{n+1} + a_n$$
 , $a_1 = a_2 = 1$

Mønster i partallsfølgen:

 $2, 4, 6, 8, \dots$

$$a_{n+1} = a_n + 2$$
 , $a_1 = 2$

Oppgave 1.1

Finn en rekursiv sammenheng for følgen.

- a) $1, -2, 4, -8, 16, \dots$
- b) $1, 3, 7, 15, 31, \dots$
- c) $5, 11, 20, 32, 47, \dots$

Besvarelse 1.1

a)
$$a_{n+1} = -2a_n$$
 , $a_1 = 1$

b)

$$a_1 = 1$$

 $a_2 = 2 = a_1 + 2 = a_1 + 2^1$
 $a_3 = 4 = a_2 + 4 = a_2 + 2^2$
 $a_4 = 8 = a_3 + 8 = a_3 + 2^3$

$$a_{n+1} = a_n + 2^n$$
 , $a_1 = 1$

c)

$$a_1 = 5$$

$$a_2 = 11 = a_1 + 6 = a_1 + 2 \cdot 3$$

$$a_3 = 20 = a_2 + 9 = a_2 + 3 \cdot 3$$

$$a_4 = 32 = a_3 + 12 = a_3 + 4 \cdot 3$$

$$a_{n+1} = a_n + 3(n+1) \quad , \quad a_1 = 5$$

Regel 1.2: Eksplisitt formel

Et ledd i følgen uttrykkes ved nummeret i følgen.

Eks:

Partallene: $a_n = 2n$ Kvadrattallene: $a_n = n^2$

Rekker

NB: Tallrekker vs. tallfølger

 $1, 2, 3, \ldots$ tallfølgen med naturlige tall $1 + 2 + 3 + \ldots$ tallrekken med naturlige tall

Tallrekken til de naturlige tallene:

$$a_n = n$$

$$S_1 = 1$$

$$S_2 = 1 + 2 = 3$$

$$S_3 = 1 + 2 + 3 = 6$$

$$S_n = Trekanttall_n$$

$$S_n = \frac{n \cdot (n+1)}{2}$$

$$S_n = \frac{n^2 + n}{2}$$

$$\sum_{n=1}^{7} n$$

Eksempel 1.2: Rekker

En rekker er gitt ved $a_n = 2n + 3$ Hva er ledd nr.20?

$$a_{20} = 2 \cdot 20 + 3 = 43$$

$$S_n = \sum_{i=1}^{n} (2i + 3)$$

$$S_{20} = \sum_{n=1}^{20} (2n+3) = 480$$

Oppgave 1.13

Ledda i ei rekkje er gitte ved formelen $a_n = 3n - 1$.

- a) Skriv opp dei seks første ledda i rekkja.
- b) Finn S_2 og S_6

Besvarelse 1.13

a)
$$a_{1,6} = 2, 5, 8, 11, 14, 17$$

$$\sum_{n=1}^{2} (3n-1) = 7$$

$$\sum_{n=1}^{6} (3n-1) = 57$$

Oppgave 1.14

Ta for deg rekkja $1 + 7 + 19 + 37 + 61 + \dots$

Besvarelse 1.14

a)
$$S_{1,5} = 1, 8, 27, 64, 125$$

$$S_n = \sum_{i=1}^n i^3$$

Oppgave 1.15

Skriv opp ledda og rekn ut summan utan hjelpemiddel. Kontroller med CAS.

Besvarelse 1.15

a) b)
$$S_5 = (1+3) + (2+3) + (3+3) + (4+3) + (5+3)$$

$$S_4 = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{4}{4}$$

$$= 0.25 + 0.5 + 0.75 + 1$$

$$= 2.5$$

$$S_5 = 30$$

1.2 Bevis Følger og rekker

c) $S_4 = \frac{4}{1} + \frac{4}{2} + \frac{4}{3} + \frac{4}{4}$ = 4 + 2 + 1.33 + 1 $= \frac{25}{3} \approx 8.33$

```
from manim import *
2
3
    class SquareToCircle(Scene):
        def construct(self):
            circle = Circle()
            square = Square()
            square.flip(RIGHT)
            square.rotate(-3 * TAU / 8)
            circle.set_fill(PINK, opacity=0.5)
10
11
            self.play(Create(square))
12
            self.play(Transform(square, circle))
            self.play(FadeOut(square))
14
```

- 1.2 Bevis
- 1.3 Endelige aritmetiske og geometriske rekker
- 1.4 Flere rekker
- 1.5 Praktiske anvendelser av rekker

Integrasjon

Trigonometri

Modeller

Romgeometri