Математическая статистика Лекция 2

Точечные оценки

Рассмотрим случайную выборку $X_1,...,X_n$ - (независимые одинаково распределенные случайные величины)

 $X_1,...,Xn \sim F(X,\theta)$ -семейство распределений

Опр. Оценкой неизвестного параметра θ (статистикой) называется функция от элементов случайной выборки $\hat{\theta}n = T(X_1, X_2, ..., X_n)$

- 1. Состоятельность. $\hat{\theta}_n \xrightarrow{p} \theta$
- 2. Несмещенность. $E(\hat{\theta}_n) = \theta$
- 3. Асимптотическая несмещенность $E(\widehat{\theta}_n) \xrightarrow[n \to \infty]{} \theta$
- **4.** Асимптотическая нормальность $\sqrt{n}(\widehat{\theta}_n \theta) \xrightarrow[n \to \infty]{d} N(0, \sigma^2(\theta))$ или $\frac{\theta_n \theta}{\sigma(\theta)/\sqrt{n}} \xrightarrow[n \to \infty]{d} N(0, 1)$

Свойства оценок. Эффективность

- 5. <u>Эффективность.</u> Оценка $\hat{\theta}_n$ называется эффективной в классе несмещенных оценок, если
- $D(\hat{\theta}_n) \le D(\tilde{\theta}_n)$, для всех возможных значений θ , где $\tilde{\theta}_n$ любая другая оценка из класса несмещенных, и хотя бы при одном θ это неравенство строгое

Свойства оценок. Эффективность

• Опр. Оценка $\hat{\theta}_n$ называется эффективной в классе оценок K, если $E(\hat{\theta}_n - \theta)^2 \le E(\tilde{\theta}_n - \theta)^2$, для всех возможных значений θ , где $\tilde{\theta}_n$ - любая другая оценка из класса K, и хотя бы при одном θ это неравенство строгое

Несмещенность. Примеры

Пример 1.

$$ar{X} = rac{1}{n} \sum_{i=1}^n X_i$$
 — несмещенная оценка для E(X)= μ

Пример 2.

$$S^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{X}_i - \bar{\mathbf{X}})^2 - \text{смещенная оценка } D(X) = \sigma^2 \text{ , так как}$$

$$E\left(\frac{1}{n} \sum_{i=1}^n (\mathbf{X}_i - \bar{X})^2\right) = \frac{n-1}{n} \sigma^2$$

$$S_0^2 = \frac{1}{n-1} \sum_{i=1}^n (\mathbf{X}_i - \bar{X})^2 - \text{несмещенная оценка } D(X) = \sigma^2$$

Доказательство (см. лекцию)

Несмещенность. Примеры

Пример 3. Рассмотрим оценки для математического ожидания

$$\hat{\theta}_1 = X_1$$
 $\hat{\theta}_2 = X_1 + 4X_2 - 3X_3$
 $\hat{\theta}_3 = (X_1 + X_2 + X_3)/3$

Проверить на несмещенность.

E(
$$\hat{\theta}_1$$
)= μ
E($\hat{\theta}_2$)= 2μ≠ μ
E($\hat{\theta}_3$)= μ

Несмещенность. Примеры

- <u>Пример 4 . X₁, X₂, X₃</u>независимые одинаково распределенные, $E(X_1) = \mu$, $D(X_1) = \sigma^2$
- Даны оценки а) для математического ожидания $2X_1-6X_2+\beta X_3$ б) для дисперсии $\beta(X_1+X_2-2X_3)^2$

Найти eta так, чтобы оценки были несмещенными

- a) β -?
- 6) $E(\beta(X_1 + X_2 2X_3)^2) = 6 \beta \sigma^2$
- β -?

Состоятельность

2) Состоятельность. $\widehat{\theta}_n \stackrel{p}{\to} \theta$ при $n \to \infty$

T.e. $\forall \epsilon > 0$ имеет место равенство

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| \ge \varepsilon) = 0$$

 ${\hbox{\footnotesize Teopema.}}$ Несмещенная оценка $\widehat{ heta}_n$ является состоятельной, если $\lim_{n o \infty} D \big(\widehat{ heta}_n \big) = 0$

<u>Пример</u>. $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ состоятельная.

$$D(\overline{X}) = D(\frac{1}{n} \sum_{i=1}^{n} X_i) = \frac{\sigma^2}{n}$$

Эффективность. Примеры

Пример 1.
$$\hat{\theta}_1 = X_1$$

$$\hat{\theta}_2 = X_1 + 4X_2 - 3X_3$$

$$\hat{\theta}_3 = (X_1 + X_2 + X_3)/3$$

- $D(\hat{\theta}_1) = \sigma^2$
- $D(\hat{\theta}_3) = \sigma^2/3$
- MSE($\hat{\theta}_2$)=E(X₁+4X₂-3X₃- μ)²= D(X₁+4X₂-3X₃- μ) + E²(X₁+4X₂-3X₃- μ) = 8 σ ²+ μ ²

Асимптотическая нормальность. Примеры

• 1)
$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \xrightarrow{2} z \sim N(0,1)$$

• 2)
$$\frac{S^2 - \sigma^2}{\sqrt{D(S^2)}} \stackrel{d}{\longrightarrow} z \sim N(0,1)$$
,

• 2)
$$\frac{S^2 - \sigma^2}{\sqrt{D(S^2)}} \xrightarrow{d} z \sim N(0,1),$$

• 3) $\frac{S_0^2 - \sigma^2}{\sqrt{D(S_0^2)}} \xrightarrow{d} z \sim N(0,1)$

• 4)
$$\frac{\hat{F}_n(x) - F(x)}{\sqrt{\frac{1}{n}F(x)(1 - F(x))}} \stackrel{d}{\to} z \sim N(0,1)$$

Методы построения статистических оценок

- 1) Метод моментов (Пирсон, 1894 г.).
- 2) Метод максимального правдоподобия (Р. Фишер между 1912 и 1922 годами, но ранее он был использован Гауссом, Лапласом и другими).

1. Метод моментов (ММ)

Пусть X_1, \ldots, X_n —выборка объёма n из параметрического семейства распределений \mathcal{F}_{θ} , где $\theta \in \Theta \subseteq \mathbb{R}$. Выберем некоторую функцию $g(y) : \mathbb{R} \to \mathbb{R}$ так, чтобы существовал момент

$$\mathsf{E}g(X_1) = h(\theta)$$

и функция h была обратима в области Θ .

Решим уравнение относительно θ , беря вместо истинного момента выборочный момент

$$\frac{1}{n}\sum_{i=1}^{n}g(X_{i})=h(\hat{\theta}_{n}),$$

$$\hat{\theta}_n = h^{-1}\left(\overline{g(X)}\right) = h^{-1}\left(\frac{1}{n}\sum_{i=1}^n g(X_i)\right).$$

Чаще всего в качестве функции g(y) берут $g(y) = y^k$. В этом случае

$$\mathsf{E} X_1^k = h(\theta), \quad \theta = h^{-1}\left(\mathsf{E} X_1^k\right), \quad \hat{\theta} = h^{-1}\left(\overline{X^k}\right) = h^{-1}\left(\frac{1}{n}\sum_{i=1}^n X_i^k\right),$$

если, конечно, функция h обратима в области Θ .

Свойства ОММ

Теорема Пусть $\hat{\theta} = h^{-1}(\overline{g(X)})$ — оценка параметра θ , полученная по методу моментов, причём функция h^{-1} непрерывна. Тогда оценка $\hat{\theta}$ состоятельна.

Примеры

• 1) Биномиальное распределение B(m,p)

$$P(X = k) = C_m^k p^k (1-p)^{m-k}$$

- Оценим параметр θ для $B(m,\theta)$,
- Известно $E(X) = m\theta$,
- \overline{X} оценка момента E(X),
- Получим уравнение $\mathbf{m} \cdot \hat{\theta}_n$ = \overline{X} , т.е. $\hat{\theta}_n = \frac{1}{\mathbf{m} \cdot n} \sum_{i=1}^n X_i$

2. Метод максимального правдоподобия (ММП),(ML)

Известен закон распределения случайных величин, зависящий от набора параметров. Оценки этих параметров подбираются таким образом, чтобы вероятность получить имеющийся набор данных была максимальной.

$$P_{\theta}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) \rightarrow max$$
 (дискретный случай)

$$f_{\theta}(x_1, x_2, \dots, x_n) \to max$$
 (абс. непрер. случай)

Метод максимального правдоподобия(ММП),(ML)

Дискретный случай

Функция правдоподобия

$$L(x_1, x_2, ..., x_n, \theta) = \prod_{i=1}^{n} P_{\theta} (X_i = x_i)$$

Логарифмическая функция правдоподобия

$$\ln(L(x_1, x_2, \dots, x_n, \theta)) = \sum_{i=1}^{n} \ln(P_{\theta}(X_i = x_i))$$

Абсолютно непрерывный случай

Функция правдоподобия

$$L(x_1, x_2, \dots, x_n, \theta) = \prod_{i=1}^n f_{\theta}(x_i)$$

Логарифмическая функция правдоподобия $\ln(L(x_1,$

$$\ln(L(x_1, x_2, \dots, x_n, \theta)) = \sum_{i=1}^{N} \ln(f_{\theta}(x_i))$$

Оценка максимального правдоподобия (ОМП)

$$\hat{\theta} = \arg(\max_{\theta} L(x_1, x_2, \dots, x_n, \theta)) = \arg(\max_{\theta} \ln L(x_1, x_2, \dots, x_n, \theta))$$

Свойства ОМП

Оценки максимального правдоподобия, вообще говоря, могут быть смещёнными, но являются состоятельными, асимптотически эффективными и асимптотически нормальными оценками.

Примеры

• 1) Биномиальное распределение В(т,р)

$$L(x_1, x_2, \dots, x_n, \theta) = \prod_{i=1}^n P(X_i = x_i) = \prod_{i=1}^n C_m^{x_i} \theta^{x_i} (1 - \theta)^{m - x_i}$$

$$\ln(L(x_1, x_2, \dots, x_n, \theta)) = \sum_{i=1}^{n} \left(\ln C_m^{x_i} + x_i \ln \theta + (m - x_i) \ln(1 - \theta)\right)$$
$$\frac{\partial(\ln L)}{\partial \theta} = \sum_{i=1}^{n} \left(\frac{x_i}{\theta} - \frac{(m - x_i)}{1 - \theta}\right) = 0$$

$$\widehat{\theta_n} = \frac{1}{\mathbf{m} \cdot n} \sum_{i=1}^n X_i$$