

គិន្យាស្ថានខាតិពេធ្យូខច្ឆេននេត្ត ទេធាតិន្យាល់យ អេឡិចត្រូនិត

555555 HUMAN POSE DETECTION

សាស្ត្រាចារ្យជីតនាំ៖ ឃឹម សៅគុណ

រៀបរៀលជាយ៖ អ្រុមនីយ

សមាទិន៖ សារិ ពុន្ធិពណ្ណរាយ, ឈឿន រំណា, ញ៉ៅ ទ្រេននៃបិន

មាត៌កា

01 សេចគ្គីណែនាំ

04 ដំណើរភារពិសោធន៍

02 គោលចំណ១

05 អារសឆ្ជិញ្ហាន

03 ទ្រឹស្ដីពាអ់ព័ន្ធ

សេខគ្គីលែនា

Human Pose Detection គឺជា Computer Visionដែលតំណាងឱ្យការតំរង់ ទិរបស់មនុស្សក្នុងទម្រង់ក្រាហ្វិក។បច្ចេកទេសនេះត្រូវបានអនុវត្តយ៉ាងទូលំ ទូលាយដើម្បីទស្សន៍ទាយផ្នែករាងកាយ ឬទីតាំងរួមគ្នារបស់មនុស្ស។ វាគឺជាផ្នែក មួយដែលគួរឱ្យរំភើបបំផុតនៃការស្រាវជ្រាវនៅក្នុងចក្ខុវិស័យកុំព្យូទ័រដែលបាន ទទួលការទាក់ទាញជាច្រើនដោយសារតែកម្មវិធីដ៏សម្បូរបែបរបស់វាដែលអាច ទទួលបានអត្ថប្រយោជន៍ពីបច្ចេកវិទ្យាបែបនេះ។

គោលចំណាច

សារៈ ទ្រមេរាខស៊ូម៉ែនកម្រោច៖

- ការប៉ានស្មានសកម្មភាពមនុស្ស
- ការផ្ទេរចលនា និងការពិតដែលកើតឡើង
- ការចាប់យកចលនាសម្រាប់ការបណ្តុះបណ្តាលមនុស្សយន្ត
- ការតាមដាចលនាសម្រាប់កុងសូល
- ការរកឃើញការដួលរលំរបស់មនុស្ស
- ស្វែងយល់ពីរបបគំហើយថ្មីៗ

គោលចំណច់នៃការសិត្យាគម្រោច៖

- ការតំរង់ទិរបស់មនុស្សក្នុងទម្រង់ក្រាហ្វិក
- បង្កើតនូវបច្ចេកវិទ្យាដែលមានសមត្ថភាព ក្នុងការទស្សន៍ទាយផ្នែករាងកាយ ឬទី តាំងរួមគ្នារបស់មនុស្ស
- ❖ សិក្សា ស្វេងយល់ពី Human Pose Detection

Pose estimation ហៅផងដែរថា keypoint detection គឺជាបច្ចេកទេសនៃការមើលឃើញតាម កុំព្យូទ័រដែលកំណត់ចំនុចសំខាន់ៗនៃរាងកាយរបស់មនុស្សនៅក្នុងរូបភាព និងវីដេអូ ដើម្បីយល់ពីទី

តាំងរបស់វា។

ការប៉ាន់ប្រមាណទីតាំងរបស់មនុស្សគឺជាកិច្ចការមួយនៅក្នុងចក្ខុវិស័យកុំព្យូទ័រដែលពាក់ព័ន្ធនឹង ការរកឃើញ និងការប៉ាន់ប្រមាណទីតាំងនៃផ្នែកផ្សេងៗនៃរាងកាយនៅក្នុងរូបភាព ឬវីដេអូរបស់មនុ

ស្ស។

បណ្តាញសរសៃប្រសាទ គឺជាវិធីសាស្ត្រមួយនៅក្នុងបញ្ញាសិប្បនិមិត្តដែលបង្រៀនកុំព្យូទ័រឱ្យ ដំណើរការទិន្នន័យតាមរបៀបដែលត្រូវបានបំផុសគំនិតដោយខួរក្បាលមនុស្ស។

ជាដំបូង យើងនឹងឃើញពីរបៀបដែល neural network ទាក់ទងជាមួយ Machine Learning។ models នៃ Machine Learning អាចត្រូវបានអនុវត្តក្នុងទម្រង់ផ្សេងៗ។ The neural network គឺជា ផ្នែកមួយនៃពួកគេ។ បង្ហាញពីទំនាក់ទំនងរវាង Machine Learning និងបណ្តាញ neural network ។

Learning Rule

| Neural Network | Output |

MediaPipe គឺជា Library មួយដែលមានតួនាទីក្នុងការអនុវត្តនូវបច្ចេកវិទ្យា AI និង Machine Learning យ៉ាងរហ័យក្នុងកម្មវិធីរបស់ពួកយើង។

ដំណើរតារពិតោធន៍

Pose Landmark Detection

- O. nose
- . right eye inner
- 2. right eye
- 3. right eye outer
- 4. left eye inner
- 5. left eye
- 6. left eye outer
- 7. right ear
- 8. left ear
- 9. mouth right
- 10. mouth left
- 11. right shoulder
- 12. left shoulder
- 13. right elbow
- 14. left elbow
- 15. right wrist
- 16. left wrist

- 17. right pinky knuckle #1
- 18. left pinky knuckle #1
- right index knuclke #1
- 20. left index knuckle #1
- 21. right thumb knuckle #2
- 22. left thumb knuckle #2
- 23. right hip
- 24. left hip
- 25. right knee
- 26. left knee
- 27. right ankle
- 28. left ankle
- 9. right heel
- 30. left heel
- 31. right foot index
- 32. left foot index

ដីលើរតារពិតេរានទ័

Demo

Pose Landmark Detection

```
1. # VIDEO FEED
2. cap = cv2.VideoCapture(0)
 3. while cap.isOpened():
       ret, frame = cap.read()
4.
5. cv2.imshow('Mediapipe
Feed', frame)
6.
7. if cv2.waitKey(10) & 0xFF
== ord('q'):
           break
8.
9.
10. cap.release()
11. cv2.destroyAllWindows()
```

```
File Edit View Run Kernel Settings Help
                                                                                                                                                   Python 3 (ipykernel)
           requirement aireauy sacistieu, pycparser in c. (users (ponar
                                                                                                                                              7->matplotlib->mediapip
          Requirement already satisfied: six>=1.5 in c:\users\ponar\
          e) (1.16.0)
          [notice] A new release of pip is available: 23.3.1 -> 24.0
          [notice] To update, run: python.exe -m pip install --upgra
     [3]: import cv2
          import mediapipe as mp
          import numpy as np
          mp_drawing = mp.solutions.drawing_utils
          mp pose = mp.solutions.pose
    [*]: # VIDEO FEED
          cap = cv2.VideoCapture(0)
          while cap.isOpened():
              ret, frame = cap.read()
              cv2.imshow('Mediapipe Feed', frame)
              if cv2.waitKey(10) & 0xFF == ord('q'):
                  break
          cap.release()
          cv2.destroyAllWindows()
```

ដំណើរតារពិតេរានទំ

Pose Detect

បន្ទាប់មកពួកយើងចាប់ផ្ដើមធ្វើការចាប់យក Lib របស់ MediaPipe មកប្រើប្រាស់ដោយពួក យើងនិងប្រើប្រាស់ Lib មួយដែលមានឈ្មោះថា Pose Landmark Detection។

ដំណើរតារពិតេរានទំ

លន្ធនល

បន្ទាប់ពីពួកយើងបានសិក្សាស្រាវជ្រាវកន្លងមកយើងបានមើលឃើញថា កម្រិតនៃការចាប់ យកនៃការសកម្មភាពរបស់ AI របស់យើងមានភាពច្បាស់និងមានភាពលំអៀង រហូតទៅដល់ 0.93% ឬស្មើទៅនឹង 93%។

ដំណើរតារពិតេរជន៍

សេខអ្នីសត្តិដ្ឋាន

ជាចុងក្រោយយើងមើលឃើញថា Human Pose Detection របស់ពួកយើងពិតជាបានដំណើរទៅ តាមអ្វីដែលយើងចង់បានពិតមែន។ អ្វីដែលសំខាន់ពួកយើងទទួលបានចំណេះដឹងបន្ថែមក្នុងការប្រើ ប្រាស់ Lib ថ្មីបន្ថែមទៀតផងដែរ។

Thank you