Digital Electronic Circuits Section 1 (EE, IE)

Lecture 21

Class Test 2:

29-10-2020 (THU): 8:00 – 8:55 AM **Syllabus:** Logic families (not covered in CT1) and primarily post CT1, shall include concept dealt in pre-CT1 part which forms the pre-requisite.

Characteristic Equation: SR

S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	N.A.
1	1	1	N.A.

$\setminus SR$	•			
Q_n	0 0	0 1	1 1	1 0
0	0	0	×	1
1	1	0	×	1

$$Q_{n+1} = S + \overline{R} \ Q_n$$

<i>S</i>	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	N.A.

Characteristic Equation: JK

J	K	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$\searrow JK$				
Q_n	0 0	0 1	1 1	1 0
0	0	0	1	1
1	1	0	0	1

$$Q_{n+1} = J \, \overline{Q}_n + \overline{K} \, Q_n$$

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	Q_n'

Characteristic Equation: *D* and *T*

D	Q_n	Q_{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

T	Q_n	Q_{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

$$Q_{n+1} = T \, \overline{Q}_n + \overline{T} \, Q_n$$

Excitation Table: SR

- It presents what input should be placed to cause a specific transition of the Flip-Flop when clock triggers.
- It can be obtained from Flip-Flop Truth Table.

5	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	N.A.

Consider
$$SR$$
 Flip-Flop with $Q_n = 0$
If $SR = 00$, $Q_{n+1} = 0$
If $SR = 01$, $Q_{n+1} = 0$
i.e. if $SR = 0X$, $Q_{n+1} = 0$
Therefor for SR FF,
If $Q_n \rightarrow Q_{n+1} = 0 \rightarrow 0$
then its input SR before clock trigger $SR = 00$ or 01 i.e. $0X$

Q_n -	$\rightarrow Q_{n+1}$	S	R
0	0 1	0 1	$\overset{\times}{0}$
1 1	0 1	0 ×	1

Excitation Table of *SR* **Flip-Flop**

Excitation Table: JK, D and T

$Q_n \rightarrow Q_{n+1}$	J	K
$ \begin{array}{cccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ \end{array} $	0 1 ×	× × 1

Q_n -	$\rightarrow Q_{n+1}$	D
0	0	0
0	1	1
1	0	0
1	1	1

Q_n -	T		
0	0	0	
0	1	1	
1	0	1	
1	1	0	

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	Q_n'

D	Q_{n+1}
0	0
1	1

T	Q_{n+1}
0	Q_n
1	Q_n'

State Transition Diagram

It can be directly obtained from excitation table.

An Example

 To analyse the circuit and find how states change with the input clock and how output is generated.

Note that,

- for the basic logic gate part of the circuit, output will be considered as immediately available when input is presented and
- for the flip-flop / memory element part of the circuit, its output change as per Truth Table / Characteristic Eqn. waits till the clock trigger.
- Basic gate delay is negligible compared to clock time period. Effect of those delay will be considered later.

Defining Flip-Flop Inputs and Output

For Flip-Flop A,

$$S_A = A_n'$$

 $R_A = A_n$

For Output,

$$X = A_n.B_n$$

For Flip-Flop B,

$$S_B = A_n.B_n'$$

 $R_B = A_n.B_n$

State Analysis Table

	Curren	t State	Cui	rrent Flip	-Flop Inp	ut	Next	State	Output
CLK	B_n	A_n	S_B	R_B	S _A	R_A	B_{n+1}	A_{n+1}	X
0	0	0	0	0	1	0	0	1	0
1	0	1	1	0	0	1	1	0	0
2	1	0	0	0	1	0	1	1	0
3	1	1	0	1	0	1	0	0	1
4	0	0	0	0	1	0	0	1	0
5	0	1			•••				

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	N.A.

$$S_A = A_n'$$

 $R_A = A_n$ $X = A_n.B_n$

$$S_B = A_n.B_n'$$

 $R_B = A_n.B_n$

- Clock 0: The initial state is assumed to be 0 for each flip-flop.
- Clock n: Next state of clock (n-1) is the present state at clock n and the circuit evolves.
- State transition as per Flip-Flop Truth Table for the input present.

Analysis Result

The circuit generates an **output = 1** at **every 4**th **clock** trigger when it reaches the state BA = 11 and repeats the state transition $00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \rightarrow ...$

References:

☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &

Applications 8e, McGraw Hill