Aula 2 - Slides

JAMES HUNTER, PH.D.

Temas de Hoje

- Continuar com Análise de Dados Exploratória
- Visualização dos Dados
- Limpeza dos Dados

Onde Terminamos Aula 1 – Subsetting

- Tidyverse vs. Base R
- Verbo de tidyverse
 dplyr::filter(pais
 == "Brasil")
- Anotações de Base R:
 [<fileiras>,
 <colunas>] ou \$

Análise Exploratória

- Uso de números de resumo estatístico para entender os dados que tem
- Tendências nos números
- Missing Data (dados faltando), marcados NA
- Dados com valores errados ou improváveis
- Dados com valores extremos

Análise Exploratória - 2

- Visualizações das variáveis
- Univariadas uma variável por vez mostrando distribuição
- Multivariadas relação entre 2 variáveis
- Agrupadas Valores por nível do grupo - e.g., mode nos dados de mobilidade

Como Usarmos a Análise Exploratória

- Tomar decisões sobre quais tipos de limpeza de dados precisamos fazer
- Ver se as unidades e a escala dos dados são adequadas para sua análise
- Tem suficientes valores em todos os subgrupos para ter uma análise útil

Como Usarmos a Análise Exploratória - 2

- Decidir quais tipos de análise são possíveis com os dados no formato que vocè tem
- Paramétricos ou não paramétricos
- Dominar nossos dados
- Entendimento/Compreensão
- Processo muito iterativo

1º Dataset desta Aula – dplyr::starwars

- As personagens dos filmes
- Precisa muita limpeza
- Vamos usar as variáveis demográficas
 - name:species [1:10]

Visão dos Dados Abrangente

- Visão de todos os dados de uma vez
- 1°: olhe na estrutura dos dados com str()
- 2°: Olhe nos dados em si
 - summarytools::dfSummary(x = <df>, graph.col = FALSE)
- Mostra todas as variáveis/colunas em uma serie das tabelas
- Coluna que mostra um gráfico dos valores difícil interpretar; pode omitir

Exercício 5

- Para quem vai usar RStudio Cloud: https://rstudio.cloud/project/1181

 159
- Passo 1: Carregar os pacotes necessários
- tidyverse, summarytools
- Passo 2: Colocar starwars na memoria ativa com o nome sw
- Pode usar base R ou tidyverse para limitar as variáveis aquelas que queremos
- Passo 3: Olhar na estrutura dos dados
- Quais são as classes das variáveis?
- str()
- Passo 4: Use dfSummary() para ver o que são os dados

O Que Diz a str()

```
## tibble [87 x 10] (S3: tbl df/tbl/data.frame)
## $ name : chr [1:87] "Luke Skywalker" "C-3PO" "R2-D2" "Darth
Vader" ...
   $ height : int [1:87] 172 167 96 202 150 178 165 97 183 182 ...
##
   $ mass : num [1:87] 77 75 32 136 49 120 75 32 84 77 ...
   $ hair color: chr [1:87] "blond" NA NA "none" ...
   $ skin color: chr [1:87] "fair" "gold" "white, blue" "white" ...
##
##
   $ eye color : chr [1:87] "blue" "yellow" "red" "yellow" ...
   $ birth year: num [1:87] 19 112 33 41.9 19 52 47 NA 24 57 ...
##
    $ gender : chr [1:87] "male" NA NA "male" ...
##
    $ homeworld : chr [1:87] "Tatooine" "Tatooine" "Naboo" "Tatooine"
##
   $ species : chr [1:87] "Human" "Droid" "Droid" "Human" ...
##
```

Classes das Variáveis em R

- <int> integer (número inteiro)
- <num> number (número real)
- <dbl> double (número real de duplo tamanho)
- <chr>> character (caráter)
- <dttm> date/time (data com tempo)
- <date> date (data)
- <fctr> factor (fator)

Dados Categóricos

- Variáveis de classe chr e fctr são normalmente categóricos
- Usamos elas para agrupar nossos dados
- Criar subsets

Resultado de **dfSummary** para gender – Variável **chr**

Resultado de dfSummary para gender

- gender é uma variável categórica
- Exemplo: queremos saber quantos pesam tem os personagens por gênero
- Criaremos grupos para os gêneros diferentes
- Podemos mudar o tipo da variável para um factor
- Maneira mais eficiente de guardar em memoria
- Esta tela também conta quantos dados missing esta variável tem
- Depois podemos decidir como lidar com os valores faltando

Resultado de **dfSummary** para **mass** – Variável **num**

```
## Data Frame Summary
## SW
## Dimensions: 87 x 1
## Duplicates: 48
##
## No Variable Stats / Values Freqs (% of Valid) Missing
           Mean (sd) : 97.3 (169.5) 38 distinct values
## 1 mass
                                                              28
  [numeric] min < med < max:</pre>
                                                              (32.18\%)
##
##
                 15 < 79 < 1358
                 IQR (CV) : 28.9 (1.7)
##
```

Aqui temos várias medidas sobre a tendência central e distribuição da variável

Exercício 6 - O Que Esse Distribuição Quer Dizer?

- O que é a historia da mass para as personagens de Star Wars?
- O que devemos fazer com o valor super alto (1358)?
- Este número de missings invalida o uso da variável mass?

Exercício 6 - O Que Esse Distribuição Quer Dizer?

- O que é a historia da mass para as personagens de Star Wars?
- O que devemos fazer com o valor super alto (1358)?
- Este número de missings invalida o uso da variável mass?

Exercício 6 - O que é a historia da **mass** para as personagens de Star Wars?

- Mass inclui personagens de species muito diferentes
- Têm características diferentes
- Precisa respeitar isso
- Tratar eles em grupos de species
- O que devemos fazer com o valor super alto (1358)?
- Este número de missings invalida o uso da variável mass?

Exercício 6 - O que devemos fazer com o valor super alto (1358)?

O velho nojento Jabba o Hutt

- Deixe ele fora do data frame? Grupos de species?
- Este número de *missings* invalida o uso da variável mass?
- Uma questão de juizo. Com certeza, em publicações baseadas nos dados, precisa explicitar essa porcentagem (32.2%)

Exercício 6 -Este número de missings invalida o uso da variável mass?

 Uma questão de juizo. Com certeza, em publicações baseadas nos dados, precisa explicitar essa porcentagem (32.2%)

Exploração dos Dados em Mais Detalhe

- Univariada Resumos das variáveis
 - summarytools::descr()
 - Hmisc::describe()
- Multivariada
 - Pode começar de perguntar coisas sobre os dados
 - e.g.: O que é a diferença em mass para os gêneros diferentes?
 - Usar filter(), select() e group_by() para organizar os subsets
 - Usar summarytools::descr()para mostrar o resultado
 - Juntar eles com o pipe

Exemplo: Cor de Cabelo

Para variáveis categóricas, use
 freq() invés de descr()

```
sw %>%
 summarytools::freq(hair color)
## Frequencies
## sw$hair color
## Type: Character
##
##
                 Freq % Valid % Valid Cum. % Total % Total Cum.
##
         auburn 1 1.22
                                 1.22 1.15
                                                   1.15
## auburn, grey 1 1.22
                                2.44 1.15
                                                2.30
      auburn, white 1 1.22
                                3.66 1.15
                                                  3.45
##
##
                    15.85
                               19.51 14.94
          black 13
                                                  18.39
                 3
##
          blond
                      3.66
                                23.17
                                       3.45
                                                  21.84
##
                      1.22
                                24.39
                                                  22.99
                 1
          blonde
                                       1.15
                     21.95
                                46.34 20.69
##
          brown
                 18
                                                  43.68
      brown, grey 1
                                47.56 1.15
##
                    1.22
                                                  44.83
                    1.22
                                 48.78 1.15
                                                 45.98
          grey 1
##
##
                  37
                     45.12
                               93.90 42.53
                                                 88.51
           none
                 1
                    1.22
                                95.12 1.15
##
                                                 89.66
        unknown
                 4
##
                      4.88
                                       4.60
          white
                                100.00
                                                  94.25
##
           <NA>
                                        5.75
                                                 100.00
```

100.00

100.00 100.00

100.00

Total 87

##

sw %>% group by (gender) %>% # dividir dados em 4 grupos summarytools::descr (mass)

Descriptive Statistics

mass by gender

Data Frame: sw

N: 19

#	#

##		female	hermaphrodite	male	none	NA
##						
##	Mean	54.02	1358.00	81.00	140.00	46.33
##	Std.Dev	8.37	NA	28.22	NA	24.83
##	Min	45.00	1358.00	15.00	140.00	32.00
##	Q1	49.00	1358.00	76.00	140.00	32.00
##	Median	52.50	1358.00	80.00	140.00	32.00
##	Q3	56.20	1358.00	87.50	140.00	75.00
##	Max	75.00	1358.00	159.00	140.00	75.00
##	MAD	5.34	0.00	8.15	0.00	0.00
##	IQR	6.65	0.00	10.75	0.00	21.50
##	CV	0.15	NA	0.35	NA	0.54
##	Skewness	1.37	NA	0.03	NA	0.38
##	SE.Skewness	0.69	0.00	0.36	0.00	1.22
##	Kurtosis	1.13	NA	1.15	NA	-2.33
##	N.Valid	10.00	1.00	44.00	1.00	3.00
##	Pct.Valid	52.63	100.00	70.97	50.00	100.00

Exercício 7 -Gênero x Altura

Usando group_by() e
 summarytools, mostre o que é
 o resumo das alturas por os
 gêneros

Visualização – 2º Componente da Análise Exploratória

- Gráficos: ferramentas
 excelentes para identificar
 tendências e coisas estranhas
 nos dados
- Ajuda a gente ver se os dados estão cumprindo expectativas

John Tukey sobre Visualização The simple graph has brought more information to the data analyst's mind than any other device.

O gráfico simples trouxe mais informações à mente do analista dos dados do que qualquer outro dispositivo.

Dados para Visualização

- Conjunto dos dados dentro de R: mpg
- Dados de economia de combustível para 38 modelos diferentes de carro
- Pergunta: O tamanho de motor tem relação com economia nas rodovias
- Tamanho de motor: displ
- Economia nas rodovias: hwy
- O que seria sua expectativa sobre a relação entre essas variáveis?
 - hwy vai aumentar ou diminuir com o aumento no tamanho dos motores?

Variáveis relevantes

- hwy medida em *miles pergallon*
- displ medida em litros
- cyl número de cilindros

Construir um Gráfico com a "Gramática de Gráficos"

- Base do pacote ggplot2
- Um sistema racional
- Assemblar elementos de um gráfico para fazer um inteiro
- Elementos:
 - Linhas
 - Eixos
 - Cores
 - Títulos e etiquetas
 - E muitos outros

Formato de ggplot

```
- ggplot(data = , mapping = aes(x
= , y = )) + geom_(aes, mapping
= aes())
```

- aes = estética
- Os elementos principais do gráfico

Formato de ggplot

```
ggplot(data = <data> , mapping = aes(x = <var>, y
= <var>)) + geom_xxx(mapping = aes(<aes para
geom>))
```

- aes = estética
 - os elementos principais do gráfico

Aplicado ao Nosso Exemplo

```
data = mpg * conjunto dos dados
```

```
• x = displ * eixo x - tamanho do motor
```

• y = hwy * eixo y - economia estradas

O Gráfico Até Agora

ggplot(data = mpg, mapping = aes(x = displ, y = hwy))

Fazer Dele Um DotPlot

```
ggplot(data = mpg, mapping = aes(x = displ,
y = hwy)) +
geom_point()
```


Quero Ver o Efeito do Número de Cilindros na Economia

Fazer o número de cilindros em uma escala de cores

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy,
colour = cyl)) + geom_point()
```


E Voilà, Um Gráfico Útil

Exercício 8

- Fazer um gráfico do efeito de displ sobre a economia nas cidades (cty)
- Mostar no mesmo gráfico a influência de tipo do sistema de tração (drv)
 - 4 = tração de 4 rodas
 - f = frente
 - r = traseira

Exercício 8

Separar Gráficos em Paneis Diferentes

- Nosso gráfico acima é grande; pode pôr cada tipo de veiculo no seu próprio painel
- Em ggplot, chamado facet
- Forma mais simples é facet_wrap()
- Muito flexível com vários opções sobre as escalas das variáveis

facet_wrap(facets = "<var>")

Outro Exemplo de Facets

Vem de meu trabalho sobre COVID-19

Daily Increase in Cases -- Select Western Countries

Texto disponível no arquivo "código_grafico_covid.R"

Licão de Casa 1

- Este é para vocês
- Não faz parte da nota
- Repita o último gráfico, mas mexe com os seguintes elementos:
- Acrescentar um título e títulos dos eixos
- Mude o carater dos pontos
- Acrescentar uma curva smoothing que mostra a tendência dos dados
- VSS: geom_smooth()
- Use o ggplot cheatsheet (site de RStudio) como uma guia

Mais Um Tipo de Gráfico Importante -boxplot

- Mostra claramente a distribuição dos valores de uma variável
- Baseado no resumo de 5 números
- Ajuda entender os outliers -valores longe da maioria que
 - Podem ser valores extremos
 - Podem ser erros de entrada de dados
- Essencial para entender como cada variável pode contribuir à análise

Estrutura de Boxplot

Fonte: W. Chang, R Graphics Cookbook, 2nd Ed., 2020, https://r-graphics.org/

Construindo um Boxplot

- Queremos ver como `cty` (economia na cidade) está distribuída
- Usamos o mesmo processo que usamos com os dotplots
- Só mudamos o tipo do"geometria" para boxplot

Boxplot Básico

ggplot(data = mpg, mapping = aes(y = cty)) +
 geom_boxplot()

Para esta versão simples, não especifica um eixo X

Pode mostrar diferenças em subgrupos dos dados

- Aqui especificar um eixo X como a variável que quer usar para agrupamento
- Vamos usar class tipo de vehiculo

```
ggplot(data = mpg, mapping = aes(x = class, y = cty)) +
  geom_boxplot()
```


Boxplot com Ainda Mais Informação

- Quero ver como os pontos individuais dos dados
- Pode fazer isso com uma nova camada geom_jitter()
- jitter quer dizer mostrar os pontos mas não colocá-los um acima de outro
- Seria como 6 boxplots

Boxplot + Jitter

```
ggplot(data = mpg, mapping = aes(x = class, y =
cty)) +
geom_boxplot() +
geom_jitter()
```

Lição de Casa 2

- Faça um boxplot de
 Petal.Length para todos os 3
 especies (species) de iris no
 conjunto de dados iris
- VSS: iris faz parte de baseR
- Mostre no boxplot a distribuição dos pontos de Petal.Length

Tidy Data

- Dados **tidy** são prontos para analisar
- 3 Regras definam tidy data
 - 1. Todas as colunas devem ser variáveis
 - 2. Todas as linhas devem ser casos
 - 3. Cada "celula" deve conter 1 e somente 1 dado

Hadley Wickham sobre Tidy x Outros Dados Tidy datasets are all alike, but every messy dataset is messy in its own way.

Conjuntos de dados *tidy* parecem iguais, mas todo conjunto de dados confuso é confuso na sua maneira.

Os 10
Mandamentos
das Bases de
Dados Bem
Formatadas

1. Todos seus dados caberá em um dataframe/tibb le único

- Não coloque os dados em dataframes múltiplos.
- Este é um habito que se associe com relational database management
- Não R e não tidyverse

2. Você respeitará um estilo de formatação certo

- A tabela deve ser
 preenchido sem brechas
- Começar na célula para cima a esquerda e descendo sem deixar linhas em branca.

3. Uma Linha

Só tem um caso único

4. Uma Coluna

Só tem uma variável

5. Você não codificará variáveis qualitativas

- Se você tem variáveis para gênero, use
 - homem/mulher,
 - não 1/2

5. Você não codificará variáveis qualitativas

- Se você tem variáveis para gênero, use
 - homem/mulher,
 - não 1/2

5a. Você não codificará variáveis com cores -- JAMAIS

- O R não pode entender cores
- É um artifício preferido dos Excelistas

6. A base de dados deve conter somente dados

- Formatação artística cria dificuldades na importação dos dados de Excel para R
- Siga o princípio KISS.

7. Consistente, você sempre estará

- Não misture nomes
 diferentes para a mesma
 coisa
- Sempre homem
- Não uma vez homem, uma vez rapaz ou masculino

7. Consistente, você sempre estará

- Não misture nomes
 diferentes para a mesma
 coisa
- Sempre homem
- Não uma vez homem, uma vez rapaz ou masculino

8. Você sempre respeitará a qualidade numérica das variáveis numéricas

- Exemplo: idade sempre estará um número ('25')
- Não texto e número ('25 anos')
- Datas sempre na forma aceita internacionalmente YYYY-MM-DD

9. Proteja o anonimato de seus pacientes/resp ondentes/clien tes

- Use números ou outros identificadores para as pessoas
- Guardar a correspondência num lugar seguro

10. Utilize nomes de variáveis compreensíveis pelos seres humanos

- Algum dia no futuro, você ou um outro vai querer entender o que quer dizer o nome de variável `G6`
- Você não vai lembrar que refere a "unidades produzidas em mês 6"

Processo de Limpar Dados

1. Fazer os nomes das variáveis "tidy"

- janitor::clean_names existepara isso.
- Quando você importar
 dados em R, deve ser
 primeira função de limpeza
 que você usa

2. Tipos dos dados corretos?

- Números corretamente formados?
- Caracteres vs Fatores (próximo slide)
- Variáveis lógicas tem TRUE e FALSE correto?

3. Missing Data– NA – Comotratar?

- Tirar o case do conjunto
- Trocar o valor com um valor resumido como a média ou mediana da variável
- Aplicar um algoritmo avançado para criar um valor que não perturbará o resto dos valores e os valores dos resumos
 - MICE MultivariateImputation by ChainedEquations

4. Outliers

- Transformações dos valores
- Erros ou valores corretos?

5. Verificação Final

- O conjunto obedece as 3 regras de tidy data?
- Os 10 Mandamentos?

Para 2 Últimas Aulas

Projeto Individual

- Procure um conjunto de dados que lhe interesse –
 - Pode ser de seu trabalho ou outra parte da sua vida
 - VSS: Boa fonte: pacote e site
 Gapminder sobre indicadores
 sociais e econômicos
 - Tente de trabalhar com 20 até 100 casos e um máximo de 5 variáveis
- Aplique essas técnicas de visualização, exploração dos dados e limpeza dos dados para preparar o conjunto para análise
- Próximas sessões: aprender como tirar conclusões do conjunto. Vai terminar o projeto depois dessas sessões

Projeto em Grupo

- Formar um grupo de um máximo 4 pessoas
- Me avise por email quem fica no grupo
- Identifique um conjunto de dados - Com mais de 100 casos e quantas variáveis que quiser
- Explorar e limpar os dados antes das próximas sessões

Ficar Atualizado durante o Intervalo

- Leia o capítulo sobre
 Recursos na Apostila
 - Siga algumas sessões dos cursos
 - Leia os blogs (esp., R-Bloggers)
 - Download e usar alguns dos livros
- Novo recurso: (Curso gratis)
 Introduction to R
 - https://www.quantargo.com/cours es/course-r-introduction/

Até o Final do Mês!