28. Geometrické posloupnosti

Úloha 1. Achilles se snaží dohonit želvu, která má kilometrový náskok, ale poloviční rychlost. Postupuje takto: nejprve doběhne na pozici P_1 , kde želva začínala, a zaznamená si, kolik uběhl. V tu chvíli je už želva na nějaké pozici P_2 , takže Achilles doběhne na P_2 a opět si zaznamená, kolik má celkem uběhnuto, ovšem želva už je na P_3 ; takto pokračuje dál a dál. Určete, kolik km má Achilles uběhnuto ve chvíli, kdy dorazí na pozici P_n .

Úloha 2. Jarmilino heslo do Bakalářů se skládá pouze z malých písmen anglické abecedy (celkem 26 znaků).

- (a) Kolik takových hesel existuje, má-li mít přesně 10 znaků?
- (b) Kolik takových hesel existuje, má-li mít nanejvýš 10 znaků (ale alespoň jeden)?
- (c) Srovnejte výsledky bodů (a) a (b) (jak moc se liší).

Úloha 3. Zákeřný virus má tu vlastnost, že každý člověk je přesně den infekční, přičemž během onoho jednoho dne nakazí v průměru 1,2 dalších (doposud nenakažených) lidí, kteří jsou infekční následující den. Jesliže v první den bylo infekčních 1000 lidí, cca kolik lidí celkem bylo nakažených desátý den?

Úloha 4. Máme následující "rostoucí útvary".

Kolik "uzlových bodů" (tj. těch vyznačených) má n-tý útvar?

Úloha 5. Mějme tabulku 10×10 , kde do políčka na pozici (m,n) umístíme číslo $2^m \cdot 3^n$. Určete součet všech čísel v tabulce.

* Úloha 6 (Kochova vločka). Uvažujme následující posloupnost "vloček" (strana prvního trojúhelníka je 1 a jeho obsah je $S = \frac{\sqrt{3}}{4}$):

Určete

- (a) obvod n-té vločky,
- (b) kolik "trojúhelníčků" má n-tá vločka navíc oproti té předchozí,
- (c) jaký obsah má navíc n-tá vločka oproti té předchozí,
- (d) jaký je obsah n-té vločky.

1. $2-\left(\frac{1}{2}\right)^{n-1}$

2. (a) $26^{10} = 141\,167\,095\,653\,376$ (b) $\frac{26}{25}(26^{10} - 1) = 146\,813\,779\,479\,510$ (c) o moc ne

3. cca 25 959

4. $2 \cdot 3^n - 1$

5. 181 218 312

6. (a) $3 \cdot \left(\frac{4}{3}\right)^{n-1}$ (b) $3 \cdot 4^{n-2}$ (c) $\frac{3}{4} \cdot \left(\frac{4}{9}\right)^{n-2} \cdot S$ (d) $\frac{S}{5} \left(8 - 3\left(\frac{3}{4}\right)^{n-1}\right)$