Programmable synthesizer / function generator 0.1 mHz - 2 MHz PM 5191

9445 051 91001

Service manual

9499 455 00111 87 09 01

Industrial & Electro-acoustic Systems

PHILIPS

Programmable synthesizer / function generator 0.1 mHz - 2 MHz PM 5191

9445 051 91001

Service manual

9499 455 00 111 87 09 01

PHILIPS

Please note

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

Bitte beachten

Bei Schriftwechsel über dieses Gerät wird gebeten, die Typennummer und die Gerätenummer anzugeben. Diese befinden sich auf dem Typenschild an der Rückseite des Gerätes.

Noter s. v. p.

Dans votre correspondance et dans vos réclamations se rapportant à cet appareil, veuillez toujours indiquer le numéro de type et le numéro de série qui sont marqués sur la plaquette de caractéristiques.

Important

As the instrument is an electrical apparatus, it may be operated only by trained personnel. Maintenance and repairs may also be carried out only by qualified personnel.

Wichtig

Da das Gerät ein elektrisches Betriebsmittel ist, darf die Bedienung nur durch eingewiesenes Personal erfolgen. Wartung und Reparatur dürfen nur von geschultem, fach- und sachkundigem Personal durchgeführt werden.

Important

Comme l'instrument est un équipement électrique, le service doit être assuré par du personnel qualifié. De même, l'entretien et les réparations sont à confier aux personnes suffisamment qualifiées.

Him

CONTENTS

1.	SAFETY INSTRUCTIONS	1-1
1.1.	Safety precautions	1-1
1.2.	Caution and warning statements	1-1
1.3.	Symbols	1-1
1.4.	Impaired safety-protection	1-1
1.5.	General clauses	1-1
1.6.	Connections	1-2
2.	MAINS VOLTAGE SETTING AND FUSES	2-1
3.	OPERATING PRINCIPLE	3-1
3.1.	General operating principle	3-1
3.2.	Description of the block diagram	3-1
4.	PERFORMANCE CHECK	4-1
4.1.	General information	4-1
4.2.	Power-on selftest	4-1
4.3.	General functional test	4-2
5.	DIAGNOSTIC-PROGRAM PM 5191	5-1
6.	CIRCUIT DESCRIPTIONS	6-1
6.1.	Digital frequency synthesizer/U2	6-1
6.2.	Modulator/U1	6-5
6 <i>.</i> 3.	Pulse generator/U1	6-5
6.4.	Amplifier/U1	6-6
6.5.	CPU/U2	6-10
6.6.	Keyboard display unit/U3	6-13
7.	ACCESS TO PARTS	7 - 1
7.1.	Top and bottom covers (dismantling the instrument)	7 - 1
7.2.	Fuse, mains transformer	7 - 1
7.3.	Unit 1 and unit 2	7 - 1
7.4.	Front-panel edging	7 - 1
7.5.	Text plate	7-2
7.6.	Unit 3 (keyboard and display)	7-3
7.7.	Carrying handle	7-3
7.8.	Handle assembly for rack mounting	7-4
7.9.	View into the open instrument	7-4
8.	CHECKING AND ADJUSTING	8-1
8.1.	General Information	8-1
8.2.	Recommended test equipment	8-1
8.3.	Table of checks and adjustments	8-2
9.	SAFETY INSPECTION AND TESTS AFTER REPAIR	
	AND MAINTENANCE IN THE PRIMARY CIRCUIT	9-1
9.1.	General directives	9-1
9.2.	Safety components	9-1
9.3.	Checking the protective earth connection	9-1
9.4. 9.5.	Checking the insulation resistance Test after repair and maintenance	9-1
J.J.	restarter repair and maintenance	9.1

10.	SPARE PARTS	10-	
10.1.	General	10-	
10.2.	Static sensitive components	10-	
10.3.	Handling MOS devices	10	
10.4.	Soldering techniques	10-	
10.5.	Parts list PM 5191	10	- 2
11.	FIGURES 28 – 47		
Fig. 28	Unit 2, adjusting elements		
Fig. 29	Unit 1, adjusting elements		
Fig. 30	Block diagram		
Fig. 31	Front view		
Fig. 32	Rear view		
Fig. 33	Overall circuit diagram		
Fig. 34	Unit 3, keyboard/display,	component lay-out	
Fig. 35	Unit 3, keyboard/display,	circuit diagram	
Fig. 36	Unit 2, DFS + CPU,	component lay-out	
Fig. 37	Unit 2, DFS (digital frequency sythesizer),	circuit diagram	
Fig. 38	Unit 2, CPU (central processing unit),	circuit diagram	
Fig. 39	Unit 1, component lay-out,	overview	
Fig. 40	Unit 1, power supply,	component lay-out	
Fig. 41	Unit 1, power supply,	circuit diagram	
Fig. 42	Unit 1, pulse generator,	component lay-out	
Fig. 43	Unit 1, pulse generator,	circuit diagram	
Fig. 44	Unit 1, modulator,	component lay-out	
Fig. 45	Unit 1, modulator,	circuit diagram	
Fig. 46	Unit 1, amplifier,	component lay-out	
Fig. 47	Unit 1, amplifier,	circuit diagram	
12.	CODING SYSTEM OF FAILURE REPOR	RTING FOR QUALITY	

13. ADRESSES FOR SALES AND SERVICE

1. SAFETY INSTRUCTIONS

WARNING:

These servicing instructions are for use by qualified personnel only. To reduce the risk of electric shock, do not perform any servicing other than that specified in the Operating Instructions unless you are fully qualified to do so.

Read these pages carefully before installation and use of the instrument.

The following clauses contain information, cautions and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition.

Adjustment, maintenance and repair to the instrument shall be carried out only by qualified personnel.

1.1. SAFETY PRECAUTIONS

For the correct and safe use of this instrument it is essential that both operating and servicing personnel follow generally-accepted safety procedures in addition to the safety precautions specified in this manual. Specific warning and caution statements, where they apply, will be found throughout the manual. Where necessary, the warning and caution statements and/or symbols are marked on the apparatus.

1.2. CAUTION AND WARNING STATEMENTS

CAUTION:

Is used to indicate correct operating or maintenance procedures in order to prevent damage to or destruction of the equipment or other property.

WARNING:

Calls attention to a potential danger that requires correct procedures or practices in order to prevent personal injury.

1.3. SYMBOLS

Protective earth (grounding) terminal

(black symbol on yellow background or impressed, e. g. at the mains connector at the rear)

1.4. IMPAIRED SAFETY-PROTECTION

Whenever it is likely that safety-protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation. The matter should then be referred to qualified technicians.

Safety protection is likely to be impaired if, for example, the instrument fails to perform the intended measurements or shows visible damage.

1.5. GENERAL CLAUSES

WARNING:

The opening of covers or removal of parts, except those to which access can be gaines by hand, is likely to expose live parts and accessible terminals which can be dangerous to live.

The instrument shall be disconnected from all voltage sources before it is opened.

Bear in mind that capacitors inside the instrument can hold their charge even if the instrument has been separated from all voltage sources.

WARNING:

Any interruption of the protective earth conductor inside or outside the instrument, or disconnection of the protective earth terminal, is likely to make the instrument dangerous. Intentional interruption is prohibited.

Components which are important for the safety of the instrument may only be renewed by components obtained through your local Philips organisation (see also chapter 9.).

After repair and maintenance in the primary circuit, safety inspection and tests, as mentioned in chapter 9 have to be performed.

1.6. CONNECTIONS

The circuit earth potential is applied to the external contacts of the BNC sockets and is connected to the cabinet by means of parallel-connected capacitors. By this means hum loops are avoided and a clear HF earthing is obtained.

If the circuit earth potential in a measurement set-up is different from the protective earth potential, it must be noticed,

- that the BNC sockets can be touched and that it must not be live, see the safety regulations on the subject (VDE 0411),
- that all sockets marked with the sign \perp are internally interconnected.

2. MAINS VOLTAGE SETTING AND FUSES

The safety instructions in previous chapters must be followed.

PM 5191:

On delivery from the factory the instrument is set to 220 V-AC.

PM 5191 M (USA):

On delivery from the factory the instrument is set to 120 V-AC.

If the instrument is to be used on a different supply voltage the wiring must be altered; the main fuse should be replaced dependent on the mains voltage. The wiring for the fan must not be altered.

Proceed as follows:

- Loosen 2 cross-slotted screws at the rear side of the instrument (see also chapter 7.1.).
- Remove the top cover.
- Remove the isolating cover of the topside of the mains transformer, remove cable binder before.
- Alter the wiring of the mains transformer according to the connection diagram.
- Refit the isolating cover.
- If necessary, insert the advised fuse into the fuse holder instead of the fuse built-in. In this case change current label of the fuse holder.
- Change the mains voltage label at the rear of the instrument in accordance with the mains voltage selected.
 - The labels for the mains voltage, current and the fuse are enclosed in a plastic bag.
- Close the instrument.

Connection diagram

3. OPERATING PRINCIPLE, Fig. 30 (Block diagram)

3.1. GENERAL OPERATING PRINCIPLE

The basic functional units, performing the generation, processing and conditioning of the generator output signals, are named

DFS, Digital Frequency Synthesizer,
 MODULATOR
 PULSE GENERATOR
 AMPLIFIER
 on unit 1
 on unit 1

These functional units are under control of the CPU (Central Processing Unit), consisting of a micro-processor and its peripheral components on unit 2. Primary control data for the CPU is derived from the front-end KEYBOARD & DISPLAY on unit 3 or from an external controller via the IEEE/IEC bus interface. The output-signal parameters are displayed numerically on a 7-segment-LED display. Key LEDs are provided for operating mode indication. Subsequently a brief description of the over-all block diagram (fig. 30) of the generator is given.

3.2. DESCRIPTION OF THE BLOCK DIAGRAM

DFS

The primary signals — sine, triangular, positive and negative sawtooth waves — are generated by direct digital signal synthesis.

Binary samples of the wave are created in the SIGNAL SYNTHESIZER section and converted to analogue voltages by a fast DAC at the clock rate fc. The output frequency fo is directly related to fc, according to

$$fo = 0.1 \cdot N \cdot 2^{-33} \cdot fc = N \cdot 10^{-4} Hz$$

where N is the decimal equivalent of the binary frequency word, routed to the SIGNAL SYNTHE-SIZER from the CPU via U2-CONTROL BUS. fc is generated by an x-tal oscillator, the 8.59 MHz CLOCK. The AUTOMATIC SWITCH alternatively routes the external clock frequency to the SIGNAL SYNTHESIZER, if this is applied to the CLOCK INPUT. The DAC output signal is smoothed by the 3 MHz LPF, an anti-aliasing low-pass filter.

PULSE GENERATOR

The PULSE GENERATOR basically represents an electronical switching circuitry, creating a TTL signal and a square wave, each signal with a 50 % duty cycle. The instants of the positive and negative edges of these signals are determined by the zero-crossings of the DFS signal, e.g. a sine wave, fed to the ZERO CROSSING DETECTOR as reference.

Only if square wave at the generator output is programmed, the TTL output of the ZERO CROSSING DETECTOR is routed to the SQUARE WAVE CONDITIONER by the CONTROL CIRCUITRY. The TTL OUTPUT STAGE and the SQUARE WAVE CONDITIONER are creating the TTL output voltage of the generator and the primary square wave with accurate amplitude and waveform.

MODULATOR

By the VOLTAGE CONDITIONER the DFS sawtooth wave is halved in amplitude and shifted in dc, resulting in unipolar signals. The sine wave and the triangular wave are routed without change through the VOLTAGE CONDITIONER.

By the SELECTOR I either the output signal of the VOLTAGE CONDITIONER (sine, triangle, saw-tooth) or the square wave of the PULSE GENERATOR is routed directly or through the AMPLITUDE MODULATOR to the AMPLIFIER.

In internal AM mode the modulating signal is derived from the MODULATION OSCILLATOR output. The modulating sine wave is fed to the AMPLITUDE MODULATOR through SELECTOR II. Alternatively — in the external modulation mode — the modulating signal is supplied from the generator MODULATION INPUT.

AMPLIFIER

The vernier setting of the generator output amplitude is performed by the AMPLITUDE CONTROLLER. After amplification by the POWER AMPLIFIER the signal either directly or after 20 dB respectively 40 dB attenuation by the STEP ATTENUATOR is routed to the OUTPUT socket. The DC GENERATOR adds the programmed dc voltage.

CPU

An 8-bit microprocessor (8031) and a 10 MHz clock are the constituents of the PROCESSOR & CLOCK. The PROGRAM MEMORY is a 8 Kbyte EPROM. In an external data memory, the 128 byte RAM, the storage register contents of the generator are stored. By the CONTROL BUS DRIVER the required load capability of the U1- and U2 CONTROL BUS serial data linie (SDA), and the clock line (SCL), is achieved. The device selecting strobe signals STR1...15 — used for CPU components and latching-data-shift registers in the various functional units controlled by the CPU — are derived from 4 ports of the PROCESSOR by the STROBE DECODER.

The IEEE/IEC bus interface of the generator consists of the IEC BUS CONTROLLER, the DEVICE ADDRESS LATCH & SHIFT REGISTER and the 3-STATE GATE & LATCH.

4. PERFORMANCE CHECK

4.1. GENERAL INFORMATION

WARNING:

Before switching on, ensure that the instrument has been installed in accordance with the instructions outlined in Section 2 of the Operating Manual: Installation instructions.

This procedure is intended to:

- check the instrument
- be used for incoming inspection to determine the acceptability of newly-purchased instruments and/or recently-recalibrated instruments.

ATTENTION:

The procedure does not check every detail of the instrument's calibration; rather, it is concerned primarily with those parts of the instrument which are essential to measurement accuracy and correct operation. Removing the instrument covers is not necessary to perform this procedure. All checks are made from the front panel.

If this test is started within a short period after switching on, bear in mind that steps may be out of specification, due to insufficient warming-up time. To avoid this situation, allow the specified warming-up time of 30 min.

4.2. POWER-ON SELFTEST

Immediately after power on a selftest routine is started with which PROM and RAM are tested. If an error is detected one of the following error messages appears:

ERR 1	PROM	checksum error
ERR 2	RAM	(processor) checksum error
ERR 3	RAM	checksum error; operation possible but memory centents is destroyed.

In case of no error in PROMs/RAMs all LEDs and all segments of the displays are then switched on for appr. 3s after the software version has been indicated in the 'LEVEL'-sector of the display. The instrument must then be in the on-state which is indicated by a figure in the sectors of the display according with the last setting before switched off the LED 'Hz' or 'kHz' in the display and the LEDs in the keys according with the last setting.

4.3. GENERAL FUNCTIONAL TEST

The function of the synthesizer can now be checked with the help of the following examples:

amplitude = 5 Vpp; offset = 0 Vdc

terminate the output with 50 Ω and connect an oscilloscope.

Wave form	Frequency	Modulation	defective unit in case of faulty function
triangle 50 kHz		OFF	DFS
sine	2 MHz	INT depth 30 % Freq. 1 kHz	modulator
pos. sawtooth	500 Hz	OFF	DFS / CPU
square	2 MHz	OFF	pulse generator

If one of the functions doesn't work, the diagnostic program can be a help to distinguish whether the defect is in the unit in question or in the CPU with its C-bus drivers/decoders. By selecting TEST 4 (strobe test) it is possible to check the data communication lines and the decoders of the subunits.

In case that all functions are o. k. this test must be continued by checking the output signals:

TTL OUT: This output shows always a square wave voltage with TTL-level and signal-frequency.

INT CLOCK: This output contains the clock-signal of the internal digital frequency synthesizer with

TTL-level and a frequency of 8.58993 MHz.

MODULATION: This output shows a sinewave signal with an amplitude of 0.3 Vrms

5. DIAGNOSTIC-PROGRAM PM 5191

This test program contains 5 submodules:

TEST 1: Display and LED test

TEST 2: Keyboard test
TEST 3: Storage register test

TEST 4: Strobe test (test of the internal interfaces)

TEST 5: Test for the IEEE/IEC-BUS interface

To activate this test program, press the key MODULATION OFF while power is switched on and keep it pressed for about 3 seconds.

The return to the main operating mode is only possible by switching power OFF and ON again.

When the test program is activated, the display shows "TEST x" where 'x' is a number from 1 to 5. This number changes continuously and slowly, and by pressing the key MODULATION OFF at the right moment, the respective test-submodule will be started.

To leave the test submodules, press the key MODULATION OFF for about 2 seconds.

TEST 1: Display and LED test

Step 1: 7-segment-display

All display segments and LEDs are switched on for about 2 seconds.

After this the program starts to switch on one segment after the other for four display positions simultaneously. Finally, the decimal points of these four positions remain lit and the program starts to do the same with the next four display positions.

After the last four digits were tested, the program switches on all segments and LEDs and remain in this state until the key MODULATION OFF was pressed once again.

Step 2: LEDs

All LEDs will be switched on sequentially, one after the other, for approx. 0.5 seconds beginning with the uppermost left one (inside the key sine wave). When the last LED was switched on (key \triangle LEVEL) it remains lit and the indication "End" appears at the display until the key MODULATION OFF was pressed. Then the program returns to the test-menu.

TEST 2: Keyboard test

The display shows the indication: $1 - \emptyset 1 - - -$

Now you must press the first key of the first row: $1 - \emptyset 1 - - -$ (row 1) - (column 1)

Columns

Col

7-

When the right key was pressed, the display shows

for about 1 second and changes then to

$$1 - \emptyset 2 - - - -$$

as a request to press the second key in the first row. In case of a failure, the display would show

Err 1 -
$$\emptyset$$
1 x - xx

where x - xx indicates the wrong code (row and column). This error indication will only be reset by pressing the requested key — in case of a hardware failure at the keyboard unit it would not be possible to get the right code and thus to reset the error message.

When the last key was pressed, the keyboard test is finished and the display indicates "End". To leave this diagnostic submodule and to get back to the test menue, the key MODULATION OFF must be pressed.

TEST 3: Storage register test

Attention:

This memory test damages the register contents. When the instrument is switched on after the storage register test was executed, the display indicates "Err 3" which means that there are now no parameters in the storage register — the complete contents (parameters) are destroyed.

The display indicates

and the program starts to write a test pattern into each location of the memory chip, reads it again, and checks this value for correctness. When no failure was detected, the same will be done with a second pattern. In case that there is no failure, the display shows

and in case of a failure

With MODULATION OFF the program returns to the test menu.

TEST 4: Strobe test

The display indicates

STRO x

where x is a number from 6 to 15. This number changes continuously and slowly. By pressing the key "MODULATION OFF" at the right moment the required strobe line will be selected. The display shows then e.g.:

STRO 08 - 1

which means that the output lines of the shift registers controlled by strobe line 8 show a specific bit-pattern. If MODULATION OFF was pressed once for a short moment all output lines of the shift registers change their state. Now the display shows:

STRO Ø8 - Ø

Each time the MODULATION OFF-key is pressed for a short moment, the states of these output lines will be inverted. If MODULATION OFF is pressed for longer than about 1 second, this subprogram will be left and the display shows again:

STRO x

If the key MODULATION OFF is pressed again for longer than about 1 second, the program will return to the test menu.

This strobe test serves fault finding in the internal C-bus system. Measuring points, positions of ICs and measuring values are given in the following tables.

By strobe lines controlled ICs show the following bit patterns during STROBE-test:

Bit pattern ICs HEF 4094									
Pin no.	4	5	6	7	14	13	12	11	
Strobe 'x' - Ø	Ø	1	Ø	1	Ø	1	Ø	1	
Strobe 'x - 1	1	Ø	1	Ø	1	Ø	1	Ø	

Association of these ICs:

Strobe line	Controlled ICs (Pos. no.)	Location
Strobe 7	307, 308, 309, 310, 311	"DFS", unit 2
Strobe 8	301, 302, 303	"Output Amplifier", unit 1
Strobe 9	302	"Modulator", unit 1
Strobe 11	301	"PLL", unit 1
Strobe 15	311	"IEC-bus, function and address" CPU, unit 2

Bit pattern IC HEF 40373								
Pin no.	2	5	6	9	12	15	16	19
Strobe 'x' − Ø	Ø	1	Ø	1	Ø	1	Ø	1
Strobe 'x' - 1	1	Ø	1	Ø	1	Ø	1	Ø

Association of this IC

Strobe line	Controlled IC (Pos. no.)	Location				
Strobe 14	3Ø8	"IEC-bus out" CPU, unit 2				

Strobe lines 6, 10, 12 and 13 are not used and have no control function.

TEST 5: IEC-bus test

The display shows the indication

IEC BUS

Each character sent from the controller via the IEC (IEEE)-bus will be decoded and displayed with its hexadecimal code, e. g.

ASCII 'A' indication 41 H ASCII '3' indication 33 H etc.

The device address of the PM 5191 is fixed to 20.

With the key MODULATION OFF the program returns to the test menu.

6. CIRCUIT DESCRIPTIONS

6.1. DIGITAL FREQUENCY SYNTHESIZER/U2

Signal Synthesizer

The primary signal of PM 5191 is generated in the digital frequency synthesizer (DFS). At the output of the digital section of the DFS the signal is presented as a sequence of 9-bit binary numbers. The digital samples of the signal are then converted to analogue voltages by means of a fast DAC.

The frequency of the DFS is determined by a 40-bit frequency word which is sent from the CPU to the shift registers 307 – 311. The bit parallel shift register outputs are connected with the phase accumulator inputs. The phase accumulator is clocked by 8.5899 MHz from the clock generator. With each clock pulse the 9-bit phase accumulator output is incremented by the value of the frequency word. The resulting sequence of binary numbers represents a periodic sawtooth wave. By intermittant one's complementing (complementer 1) the signal is converted to a triangular wave. The samples of this signal are used as addresses for reading out a sine table ROM. The output is representing sine wave values for the first quarter period (4). By intermittant one's complementing in complementer 2 this signal is converted to a full sine wave (7).

The phase accumulator is functionally divided into two parts. The upper part consists of the adders 312-319 and the D-registers 322-326 for the frequency range 1 mHz -2.147 MHz. Frequency values for this range are sent in the 1-2-4-8 code. The lower part consists of the adders 320 and 321, the NOR gate 305 and the D-register 326 and covers the range 0.1-1 mHz. For this range the frequency values are applied in the Excess -3 code which generates a 4-bit binary number with decimal value from 0 to 9 (carry at values > 9).

The upper part of the phase accumulator generates a sequence of 33 bit binary numbers from 0 to 2^{33} - 1. With each clock pulse the output is incremented by the value of the input frequency word. When reaching the upper limit the accumulator output resets and continuing incrementing starts again at zero. This results in a cyclic sequence of binary numbers which have a sawtooth wave form character. The frequency is fg = $1/T = 0.1 \cdot N \cdot f_C \cdot 2^{-L}$ where N is the decimal value of the frequency word, f_C the clock frequency (8.5899 MHz $\approx 2^{33}$ mHz) and L the length of the $1 \cdot 2 \cdot 4 \cdot 8$ coded part of the phase accumulator (33 bits). The factor 0.1 results from the lower, excess-3-coded part which represents values of max. 10 (carry at values > 9).

The upper 10 bits of the phase accumulator are used for the subsequent signal processing. It is the actual accumulator output. The samples of the lower 8 bits of them represent a sawtooth wave with the period T/4 (1A). The upper two of the 10-bit accumulator output (signum bit (2), quadrant bit (3)) determine the quadrant in which the vector of the DFS output signal (7) is actually located (3a). In complementer 1 (EXCLUSIVE-OR gates 331, 332) the 8-bit output is inverted during the second and fourth quarter period. The resulting signal (5) is fed to the sine/triangle selector (ICs 336, 337) and parallel to the address lines of the sine-ROM in which the sine wave values for the first quarter period $(0-\pi/2)$ are deposited.

For generating the wave form triangle the output of complementer 1 is fed directly to the sine/triangle selector by-passing the sine ROM. Thus the sawtooth signal (5) applied to complementer 2 results in the wave form (6a).

For sine wave the output data of the sine ROM (4) is picked up by the sine/triangle selector and routed to complementer 2 resulting in wave form (6b). By adding the signum bit (2) as the 9th bit, it results in wave form 7.

When generating positive or negative sawteeth the value of the binary frequency word at the phase accumulator input is halved — thus the sawtooth period at the phase accumulator output is doubled.

For positive going ramps control signal "a" is LOW. Therefore bits $\emptyset - 7$ are routed through complementer 1 without inversion to buffers 333 and 334. After passing sine triangle selector 336/337, the buffer 338/339 and complementer 2 without inversion ("b" = \emptyset) the signal is latched to the output by the D - FFs 342/343. The ninth bit at output 2/342 is directly derived from bit 8 of the phase accumulator through MUX 347 and the buffers 333 and 338 (= signal "c").

For negative going ramps one difference is that control signal "a" is HIGH. Therefore the signal (bit $\emptyset - 7$) is inverted by complementer 1. The second difference is that the ninth output bit (= "c") is inverted by EXCLUSIVE-OR gate 327 (pins 8, 9, 10) at input pin 2 of MUX 347.

With LOW at the reset input the phase accumulator output can be set to zero. After reset is switched back to HIGH, the signal generation startes again in the way as described before.

DAC

The binary signal coming from complementer 2 via buffers 342, 343 is converted to an analog voltage in the DAC (see fig. below and fig. 37).

At the DAC inputs the drivers 344, 345 are located which are controlling the current switching differential transistor stages 403 - 404, 406 - 407 . . . 427 - 428. The DC-currents (each 5.85 mA = I_{\emptyset}) are generated by individual circuits. The MSB (bit 8) -current source for instance includes transistor 427 and one OP of IC 346. The bit 7 - current source includes transistor 424 and the other OP of IC 346. The remaining current sources use also this second OP of IC 346. The individual currents – if switched on – are routed to the corresponding nodes NØ – N8 of the R – 2R ladder shown below. The input impedance of each node is 2R/3, with R = 619 Ω (2R/3 = 412.67 Ω). Therefore each current – if switched on – is building up the same voltage at the corresponding node (I_{\emptyset} * 2R/3 = 2.41 V). The transformation to the output depends on the node position in the ladder. Generally from node n to node n+1 the voltage is divided by two. Thus for instance the voltage at node N3 (bit 3) is transformed to the output node N8 by the factor $2^{-(8-3)}$ = 1/32. The output voltage of the ladder at node N8 is filtered by the anti alias low pass filter 803, 804, 559 – 562. This filter with a passband of about 3 MHz suppresses especially the spectral contents at both sides of the clock frequency (8.5899 MHz). The output signal is buffered by the transistors 430, 431.

For deglitching purposes of the DAC the current switching point of bit 8 can slightly be shifted with the trimpot 689 versus the current switching points of bits $\emptyset - 7$. The latter switching points are set with trimpot 676. By an iterative calibration procedure with both these trimpots the sine wave distortion gets minimized.

6.2. MODULATOR / U1

By the VOLTAGE CONDITIONER (IC 301 and additional components) the positive and negative DFS sawtooth wave are halved in amplitude and shifted in dc, resulting in unipolar signals. The sine wave or the triangular wave is routed through the VOLTAGE CONDITIONER without modification. By the SELECTOR II (relais 810, 811) either the output signal of the VOLTAGE CONDITIONER (sine, triangle, sawtooth) or the square wave of the PULSE GENERATOR (conditioned by transistors 359 and 361) is routed directly or through the AMPLITUDE MODULATOR via relay contacts (813 – 815) to the AMPLIFIER unit.

In internal AM mode the modulation signal is derived from the MODULATION OSCILLATOR (IC 304 and additional components), a 'Wien-bridge' oscillator. The modulation signal, a sine wave of constant frequency (1 kHz) and amplitude (0.3 Vrms), is fed to the AMPLITUDE MODULATOR through SELECTOR II (IC 303). Alternatively, in external modulation mode, the modulation signal is supplied from an external source via the input socket MODULATION.

The AMPLITUDE MODULATOR (IC 305), an analogue four-quadrant multiplier, multiplies the VOLTAGE CONDITIONER output signal or the square wave by the internal or external modulation signal. The modulated signal is fed to the AMPLIFIER unit.

The VOLTAGE CONDITIONER and the AMPLITUDE MODULATOR are controlled by the CPU via shift register (302).

6.3. PULSE GENERATOR / U1

1. Square wave generation

According to fig. 30 (over-all block diagram) and fig. 43 (circuit diagram) the section of the PULSE GENERATOR, which generates the primary square wave, fed to the AMPLIFIER, comprises the following subsections:

- ZERO CROSSING DETECTOR, IC 301,
- CONTROL CIRCUITRY, IC 305, Transistor 351,
- SQUARE WAVE CONDITIONER, Transistors 352 . . . 355.

Zero crossing detector

By resistors 602, 605, 606 a slight hysteresis is implemented for accurate transitions without glitches at the zero crossings of the DFS input signal.

The ZERO CROSSING DETECTOR output signal is ANDed with the PULSE SELECT from transistor 351. Only if square wave is programmed the SQUARE WAVE CONDITIONER will be active. The input signal for the TTL OUTPUT-STAGE is not affected by the PULSE SELECT signal and routed directly from the ZERO CROSSING DETECTOR to the TTL OUTPUT-STAGE.

The SQUARE WAVE CONDITIONER converts the TTL signal of IC 305 / pin 6 to a square wave, accurate in shape and amplitude (about 2.4 Vpp). Trimpots 624 and 627 are adjusted for accurate positive and negative amplitudes at the generator output.

2. TTL output voltage generation

The output voltage of IC 305 / pin 8 is fed to the TTL OUTPUT STAGE with the transistors 356 . . . 358. The TTL OUTPUT is present in all waveform modes and not inhibited by IC 305.

6.4. AMPLIFIER / U 1

As depicted in the over-all block diagram fig. 30, the AMPLIFIER includes the sub-sections

- AMPLITUDE CONTROLLER
- POWER AMPLIFIER
- STEP ATTENUATOR
- DC GENERATOR

1. AMPLITUDE CONTROLLER

As depicted in the figure below, the input amplitude pp of the AMPLITUDE CONTROLLER is fixed to $V_i = 1.90 \text{ V}$ for sine, triangle and square waves or 0.95 V for sawtooth waves. The output amplitude V_A is related to V_i corresponding to $\frac{V_A}{V_i} = g_i \cdot Y_{tot} \cdot R_f$

In the simplified circuit diagram Y_{tot} depends on those resistors of the switched resistor network which are connected to the virtual ground of the current to voltage converter input. The resistors R_1, \ldots, R_9 are in accordance with $^1/Y$, $^2/Y$, $^4/Y$, ..., $^{128}/Y$, $^{45}/Y$, where $^1/Y = 525 \, \mathrm{k}\Omega$.

Thus
$$\frac{V_A}{V_i} = g_i \cdot N \cdot Y \cdot R_f \approx 0.0087 \cdot N$$

N is an integer between 0 and 300 determined by the positions of the switches S_1, \ldots, S_9 . The related weights of the switches are 1, 2, 4, . . . , 128 for S_1 to S_8 and 45 for S_9 .

Example: N = 100

In this case switches S_3 , S_4 , and S_5 are closed. Thus N=4+32+64=100 and $V_A/V_i=0.87$, or $V_A=1.7$ (0.85) Vresp. In the real circuitry R_1^* to R_4^* are not discrete serial resistors but presented by resistor T-sections. E. g.

$$R_1^* = \frac{1}{Y} = R_{611} + \frac{R_{620} (R_{611} + R_{624})}{R_{624}}$$

The serial switches S_1,\ldots,S_9 are realized by the FETs 329, 325, ..., 339. The FETs 322, 324, ..., 338 are adapted for constant load of the input buffer, independently of the programmed amplitude. They are switched on/off inversely to 323, 325 ... 339. In the switch-off state the gates of the serial FETs are biased to about - 10 V by the resistors of the arrays R764 ... 767.

The collector-output currents of the current to voltage converter differential input stage (T340...343) are routed directly respectively via current mirror (T370, 371) to the emitters of the common-base stages T344 and T345. By the emitter-follower T346, 347 the collector-output voltage of T344, 345 is buffered.

2. POWER AMPLIFIER

The AMPLITUDE CONTROLLER output is split by the POWER AMPLIFIER input buffer (T348 - 353) into two pathes with opposite dc voltages, and supplied to the common-emitter stage (T354, 355). The output currents are fed to the emitters of the common-base stage (T356, 357). The collector output currents are routed to the inner 50 Ω resistor, made up by the resistors 721 - 732.

simplified circuit diagram of the POWER AMPLIFIER

Some DC-potentials of the AMPLITUDE CONTROLLER and POWER AMPLIFIER section

AMPLITUDE	CONTROLLER	POWER AMPLIFIER				
measuring point measuring value (Vdc)		measuring point	measuring value (Vdc)			
base of T370/371 base of T344 base of T346	8 4 ~0	base of T348/349 base of T350 base of T352 base of T354 emitter of T354 base of T372 collector of T372 emitter of T372 base of 358 base of 360	~ 0 - 0.7 2.9 3.5 2.9 21.5 19 22 17.6 18.2			

(all voltages measured to ground)

3. STEP ATTENUATOR

The STEP ATTENUATOR includes two resistor pi-sections, each symmetrically matched to 50 Ω . Switching is performed by 'Reed-contact relais' controlled by shift register 303 through drivers 311.

Function table of STEP ATTENUATOR switches

switch att.	K1, K3	K2, K4	K5, K7	K6, K8
0 dB	х	0	×	o
20 dB	х	0	0	×
40 dB	0	×	0	×

x : closed o:open

4. DC GENERATOR

Primary control of the DC GENERATOR is performed by the DAC (IC 307). The DAC is set by shift register 302 to output currents I_0 at pin 4 from 0 to about $\frac{200}{255}$ $I_{ref} = 0.55$ mA proportional to the decimal equivalent 0 - 200 of the binary shift register output ($I_{ref} \approx 0.71$ mA, current into pin 14 of IC 307). If the decimal equivalent is 100, i. e. DC $\stackrel{\circ}{=}$ 0 V, I_0 is compensated by the constant current $I_c \approx \frac{0.55}{2}$ mA via resistors 697, 698. Hence, in this situation no current is drawn from the input (pin 6 of IC 308) of the dc generating circuitry ($I_1 = I_2 = 0$).

For positive output current Iout, i.e. positive dc voltage at the generator output, the following conditions are valid:

shift register output > 100 (decimal)

$$l_0 > l_c \Rightarrow l_1 > 0$$
; $l_2 = 0$

The upper section (transistor 362, IC 309 etc.) of the circuitry is translating I_1 to I_{out} according to:

$$I_{\text{out}} = (I_0 - I_c) \cdot A_1 \cdot A_2$$

wherein
$$A_1 = \frac{I_4}{I_1} \text{ and } A_2 = \frac{I_{out}}{I_4}$$

are the current gain factors of the transistor 362 stage and the IC 309 current translator stage respectively. These gains are

$$A_1 \approx \frac{R699}{R702} + 1 \approx 17,96$$
 ; $A_2 \approx \frac{R701}{R711-713} \approx 41,35$

For negative output current Iout, i. e. negative dc output voltage, the following conditions are valid:

shift register output < 100 (decimal)

$$I_0 < I_c \Rightarrow I_1 = 0$$
 ; $I_2 > 0$

The lower section (transistor 363, IC 310 etc.) of the circuitry is translating I_2 to I_{out} .

The generator output voltage V_{out} is given as the voltage drop by I_{out} at the amplifier output resistanc⊜ Ro (721 - 732).

The schedule shows current and voltage values of the DC GENERATOR in dependence on the shift register output.

shift reg. output pos. 302 (decimal)	l _c	¹ 0	(mA)	U ₇₀₂	U ₇₀₁	U ₇₁₁ _ 713 (V)	1 ₂	U ₇₀₃	U ₇₀₄	U ₇₁₄ — 716 (V)	I _{out}	Gen. output volt. (V)
0	0.27	0	0	0	0	0	0.27	2.9	3.1	3.1	-200	-10
50	0.27	0.14	0	0	0	0	0.14	1.5	1.6	1.6	100	-5
100	0.27	0.27	0	0	0	0	0	0	0	0	0	0
150	0.27	0.41	0.14	1.5	1.6	1.6	0	0	0	0	+ 100	+ 5
200	0.27	0.54	0.27	2.9	3.1	3.1	0	0	0	0	+ 200	+ 10

6.5. CPU / U2

The CPU of the PM 5191 contains the μ -processor 8031 with all drivers, decoders, RAM- and PROM memory, clock generator, IEC-bus interface and the strobe-decoder.

The multiplexed address/data bus (ADØ - AD7) of the processor 318 supplies the address inputs AØ - A7 of the PROM-memory 315 via the address latch 314 (74LS363), the inputs A8 - A13 are supplied directly from the processor (P20 - P25). Data from the PROM is fed from the outputs OØ - O7 via the lines ADØ - AD7 directly to the processor, this transfer is controlled with the output PSEN (program store enable) from the processor driving the input OE of the PROM.

The memory circuit 324 serves the storing of the actual parameter set. Communication with them takes place via the internal serial I^2C bus which consists of a data line SDA and a clock line SCL. The principle of the data transfer between processor and the RAM-memory is shown in the following diagram.

The two lines SDA and SCL of the C-bus serve the communication with the remaining units. The data information of the line SDA is clocked into the shift register of each unit, the according strobe signal following this data sequence latches the data information in the selected shift register and presents the transmitted information in parallel form at the output lines of this circuit. The required strobe signals are generated with the strobe-decoder 312 which is controlled again from the processor via the lines P20 - P23 and the signal \overline{WR} .

Internal communication via I²C- and C-bus

Converting the serial information to a parallel one the parallel output presents the decoded commands.

The clock signals for processor and IEC controller as well as a 100 kHz signal for the internal timer are generated in the 'clock generator' circuitry. This part of the CPU consists of the crystal 801, the inverter 317 and the decimal counter 319. The 10 MHz clock from the inverting buffer is fed to input XTAL 1 of the processor, furthermore divided by 5 with the decimal counter 319 and then fed to the IEC-controller 306. After further dividing by 20 the output 7 of the counter deliveres the 100 kHz signal TØ for the timer.

Remote control of the PM 5191 follows via the IEC-interface which consists of the controller 306, the bus drivers 301 - 304, the buffers 307, 308 and the shift registers 309 - 311. Input data (control commands) from the IEC-bus connector are fed to the data bus $AD\emptyset - AD7$ via the bidirectional bus drivers 303 and 304 and buffer 307. Output data (learn- and identification mode) are accordingly fed to the IEC-bus via buffer 308 and the bus drivers 303 and 304. Data direction and enable of the buffers are controlled by the IEC-bus controller 306 via the output Ota (other talk address) and by the processor with the signal 'strobe 14'.

The listener/talker addresses and the interface parameters necessary for the communication are sent to the IEC-controller in serial form. The microprocessor sends these informations via the C-bus with the help of the signal STR 15 to the shift register 311. The parallel outputs of this circuit supply again the parallel inputs of the shift registers 309 and 310 by means of which addresses and interface parameters are transferred to input ISR (input shift register) of the IEC-bus controller. This transfer action is controlled from the controller circuit, the repetition rate is 125 kHz (= 2 MHz/16).

Each data string for the shift registers 309 and 310 contains the IEC device-address and one bit for SRQ on or off. The data string entered from the IEC controller 306 via input 'ISR' has a length of 11 bits, not required bits at the inputs of ICs 309/310 are fixed to ground. Input GTL of these circuits — pin 15 of IC 309 — is controlled directly from the key LOCAL at the front panel. Pressing this key causes the IEC controller 306 to switch back to the local mode.

6.6. KEYBOARD DISPLAY UNIT / U3

Unit 3 of the synthesizer PM 5191 contains LEDs keys and display elements with their concerning driver/decoder circuits. Data transfer from the CPU to the keyboard/display unit takes place via the C-bus (SDA, SCL, Strobe 1, 3-5), input data from the keyboard are sent as a sequence of 12 pulses from the keyboard encoder 353 via the line SKC to the CPU. The key 'LOCAL' is directly led to the IEEE/IEC interface on unit 2 via line GTL.

Display data are sent in 34 bit data blocks via the C-bus to the according part of the display unit, selection (= addressing) of this part is done with one of the strobe signals STROBE 1 or STROBE 3 — 5. During the data transfer from the CPU to the keyboard/display unit the according strobe line is set and a data block is loaded into the shift register with the clock signal SCL. The last bit at the data input shifts the complete data set into the latch register and therewith to the display elements/LEDs via the buffer stage.

Each of the five strobe lines controls the data transfer to one of the display groups:

STROBE 1 display circuit 408 for amplitude, Vdc, address and the LEDs in the keys 'Vrms' and 'ADDRESS'

STROBE 2 not used

STROBE 3 display circuit 406 for frequency display (right part) and the LED in the key 'FREQ'

STROBE 4 display circuit 405 for frequency display (left part)

STROBE 5 LED driver circuit 352

Voltage supply for the LEDs and displays comes from the + 5 V which is reduced to + 3 V (VL) by means of the transistor 301 and the resistors 602 and 603

the transistor 301 is placed behind the front plate at a spacing piece beside the socket TTL OUT.

Brightness of the LEDs/displays is adjusted with a reference voltage at the inputs BC (brightness control) of the driver circuits. These reference voltages are derived from the \pm 24 V supply by means of the resistors \pm 604 \pm 608 feeding currents into the BC-inputs.

Input from the keyboard takes place with the help of the keyboard encoder IC 353 (SAA 3007) which controls the 8 x 8 keyboard matrix and sends the keycode in serial form from the output REMO via line SKC to the CPU. During the rest condition the sense lines $SEN\emptyset - SEN\emptyset$ are 'high', the drive lines of the matrix $DRV\emptyset - DRV\emptyset$ are 'low', the last drive line is fixed to ground.

When a key is pressed the according sense line is forced to 'low', the internal logic of the encoder starts the scan of the matrix and transmits a sequence of 12 pulses whereby the distance between two pulses means binary "0" or "1".

Each time a key is pressed such a bit sequence must be measurable at line SKC (pin 10 of the CIS connector). The toggle bits of this message are incremented by 1 each time when a key is pressed. Thus it is possible to distinguish between a key being pressed several times or once for a longer time.

The device address is fixed to " $\emptyset\emptyset\emptyset$ " and the last 6 bits show the following pattern by pressing the corresponding key

Key	Connection between	Key code	Key	Connection between	Key code
<i>۲</i> ۷۶	DRVØ – SENØ DRVØ – SEN1 DRVØ – SEN2	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	Vdc Vpp ∆LEVEL	DRV3 — SEN3 DRV3 — SEN4 DRV3 — SEN5	Ø11Ø11 1ØØØ11 1Ø1Ø11
へ □ AC OFF	DRV1 - SENØ DRV1 - SEN1 DRV1 - SEN2	000001 001001 010001	+/- dBm -STEP	DRV4 — SEN3 DRV4 — SEN4 DRV4 — SEN5	Ø11100 100100 101100
FREQ Hz/kHz —STEP	DRV3 - SENØ DRV3 - SEN1 DRV3 - SEN2	ØØØØ11 ØØ1Ø11 Ø1ØØ11	ADDRESS Vrms +STEP	DRV5 - SEN3 DRV5 - SEN4 DRV5 - SEN5	Ø11101 100101 101101
∆FREQ +STEP	DRV4 - SEN1 DRV4 - SEN2	ØØ11ØØ Ø1Ø1ØØ	RUB OUT	DRV4 - SEN7	111100
OFF EXT INT	DRV5 — SENØ DRV6 — SENØ 1 — SENØ	ØØØ1Ø1 ØØØ11Ø ØØØ111	1 2 3 4 5 6 7 8 9 "•"	DRVØ — SEN6 DRV1 — SEN6 DRV2 — SEN6 DRV3 — SEN6 DRV4 — SEN6 DRV5 — SEN6 DRV6 — SEN6 DRV6 — SEN6 DRVØ — SEN7 DRV1 — SEN7 DRV2 — SEN7	110000 110001 110010 110011 110100 110110

The clock for the keyboard encoder is generated with the ceramic resonator 860. During the rest condition — i. e. no key is pressed — there is no signal at input 11 or 12 of the keyboard encoder. When any key — except LOCAL — is pressed, the clock supply will be activated and a signal with a frequency of 455 kHz and an amplitude of 4,5 Vpp can be measured at pin 11 or 12. By pressing a key only once for a short moment the clock will be switched on for approx. 170 ms., pressing a key for longer will keep the clock supply switched on as long as the key is pressed.

The key MOD OFF contains one more switch contact which is commonly connected to line ENK (enable keyboard), to start the diagnostic program (see chapt. 5) during switching on of the instrument.

7. ACCESS TO PARTS

7.1. TOP AND BOTTOM COVERS (DISMANTLING THE INSTRUMENT)

Before opening the instrument unplug mains connector, take note of chapter 1.5..

- Loosen the cross-slotted screws
 (Fig. 7-1) at the rear
- The procedure to remove the bottom cover is the same as above.

7.2. FUSE, MAINS TRANSFORMER

For mains voltage setting and fuses and the assigned safety instructions see chapter 2.

7.3. UNIT 1 AND UNIT 2

For access to the upper side of unit 2 and the bottom side of unit 1 it is only necessary to remove the top cover respectively the bottom cover of the instrument (see chapter 7.1.).

To reach the upper side of unit 1 and the bottom side of unit 2 proceed as follows:

- Unplug the connector (G) (Fig. 7-5) on the right hand side of unit 2.
- Remove 2 screws (A) (Fig. 7-5) at the sides of the instrument.
- Lift the pcb as arrow © shows in Fig. 7-5. (If it is heavy to move the pcb, loosen the screws at the pivot a little bit.).
- Fixing unit 2 in an upright position insert screw (A) in position (H) (Fig. 7-5).
- The other steps shown in fig. 7-5 are not necessary to reach unit 1 + 2.

7.4. FRONT-PANEL EDGING

- Remove covers (chapt. 7.1.).
- Lift the profile ornament (A)
 (Fig. 7-2) with a small screw driver.
- Remove the edging (Fig. 7-2).
- For the bottom side the same procedure applies.

- Remove screws (B) (Fig. 7-3)
- Remove side pieces (A) (Fig. 7-3)

7.5. TEXT PLATE

The text plate (A) (Fig. 7-4) is fixed by three parts of doublesided adhesive tape (B) (Fig. 7-4)

- To remove the text plate insert carefully a screwdriver near the tapes and move the screwdriver as shown in Fig. 7-4.
- Steps described in chapters 7.1 and 7.4. are necessary before.

7.6. UNIT 3 (KEYBOARD AND DISPLAY)

At first steps described in chapters 7.1., 7.4. and 7.5. must be done

- Loosen all screws (F) (Fig. 7-5) at the front of the instrument
- Pull carefully frontplate (E) (Fig. 7-5) forwards, take care of the wires of the BNC-connectors and the main switch
- Remove unit 3 ① (Fig. 7-5)
- The other steps shown in this figure are not necessary to reach unit 3.

7.7. CARRYING HANDLE

- Lift the carrying handle.
- Prise off carefully both plastic profile strips next to the handle in the similar way as the profile ornament of the front-panel edging shown in Figure 7-2.
- Loosen cross-slotted screws of the holder for handle.

7.8. HANDLE ASSEMBLY FOR RACK MOUNTING

- Remove top and bottom covers as described in chapter 7.1.
- Looser screws B (Fig. 7-6).
- Remove side piece
 C
 .
- Fit handle \widehat{A} , refit screws \widehat{B}
- For the right hand side the same procedure applies.
- Close the instrument

7.9. VIEW INTO THE OPEN INSTRUMENT

PM 5191 without top cover

8. CHECKING AND ADJUSTING

8.1. GENERAL INFORMATION

The following information provides the complete check and adjustment procedure for the instrument. As various control functions are interdependent, a certain order of adjustment is often necessary. The procedure is, therefore, presented in a sequence which is best suited to this order, cross-reference being made to any circuit which may affect a particular adjustment.

Before any check, the instrument must attain its normal operating temperature.

- Warm-up time under average conditions is 30 minutes.
- Adjustments should be made after 2 hours
- Ambient temperature (23 ± 1)^o C
- Mains voltage, nominal values ± 10 %
- The cabinet must be closed.*
- Where possible, instrument performance should be checked before an adjustment is made.
- All limits and tolerances given in this chapter are calibration guides, and should not be interpreted
 as instrument specifications unless they are also published in chapter 1.2. of the Operating Manual.
- Tolerances are given for the instrument under test and do not include test equipment error.
- If not explicitely stated otherwise, the voltage potentials refer to the relevant contact measured against measuring earth.

8.2. RECOMMENDED TEST EQUIPMENT

The following instruments are necessary to provide check and adjustment of the PM 5191

- 50 Ω termination resistor PM 9581 (1 W)
- wide band oscilloscope (tr ≤ 3 ns)
- DC-voltmeter: resolution ≤ 100 μV e. g. PM 2534
- counter 50 MHz, intervall-measurements, 8 digits resolution, e. g. PM 6665
- rms voltmeter: resolution 1 μ V, fmax = 2 MHz e. g. Fluke 8920 A; the connection cable together with the termination resistor must have an impedance of exactly 50 Ω
- distortion meter e. g. PM 6309
- modulation meter e. g. Rhode + Schwarz FAM with 20 dB attenuator
- service kit
 consisting of notch filter 100 kHz, low pass filter 5 kHz, adjustment covers and two adapter cables;
 to be ordered from SC Hamburg without service code number
- * For adjustments special covers with holes for the adjusting elements are required. This parts are included in the service kit.

step	objective	a = adjust c = check	operation parameters, settings	adjusting elements	measured value, value to be adjusted	test point, output, measuring instruments	open output/ 50Ωterm.	comment
	POWER SUPPLY ADJUSTMENT							
1	+5 V supply	С	√ /1 kHz/15 Vpp	_	5 ± 0.25 V	T1 pin 6, DC-voltmeter (DVM)	-	
2	± 24V supply	c (a)	\sim /1 kHz/15 Vpp	604, 612, power supply	± 24 ± 0.05 V	T1 pin 4, 5, DC-voltmeter (DVM)	-	
3	+ 20V supply	c (a)	√ /1 kHz/15 Vpp	607, power supply	+ 20 ± 0.05 V	T1 pin 3, DC-voltmeter (DVM)	_	
4	± 10V supply	c (a)	√ /1 kHz/15 Vpp	618, 621, power supply	± 10V ± 0.05 V	T1 pin 1, 2, DC-voltmeter (DVM)	-	
	DFS ADJUSTMENT							
5	frequency adjustment	а	Ⴂ₁ /1 000 kHz/5 Vpp	505, DFS unit 2	1 MHz ± 0.3 Hz	OUTPUT connector, counter	50 Ω	
6	DFS-glitches	а	√ /100 kHz/10 Vpp	676, 689, DFS unit 2	minimum AC level	OUTPUT connector, notch filter	-	the generator frequency must be exactly the same as the frequency of the notch filter (100 kHz)
	DC-ADJUSTMENT							
7	DFS DC-offset	а	√ /1 kHz/15 Vpp	693, DFS unit 1	0 ± 1 mV	T12 unit 1, DC-voltmeter	_	
8	OUTPUT offset	а	√ /1 kHz/15 Vpp	688, amplifier unit 1	0 ± 100 mV	T19 unit 1, DC-voltmeter	_	rough adjustment
9	DC-generator voltage	а	√ /1 kHz/0 Vpp/–10 Vdc/AC OFF	698, amplifier unit 1	- 10 V ± 5 mV	OUTPUT connector, DC-voltmeter	_	
10	DC-generator voltage	а	\sim /1 kHz/0 Vpp/+ 10 Vdc/AC OFF	694, amplifier unit 1	+ 10 V ± 5 mV	OUTPUT connector, DC-voltmeter	_	
11	DC-generator voltage	а	√ /1 kHz/0 Vpp/0 Vdc/AC OFF	698, amplifier unit 1	0 ± 5 mV	OUTPUT connector, DC-voltmeter	-	iterate with steps 9 + 10
12	offset, scaler and ampl. preliminary stage	а	\sim /1 kHz/25 Vpp	691, modulator unit 1	0 ± 1 mV	T15 unit 1, DC-voltmeter	_	
13	offset, amplitude controller	а	\sim /1 kHz/25 Vpp	633, amplifier unit 1	0 ± 1 mV	T14 to ground of T15, DC-voltm.	_	up to ser. no. LO-00789 use series resistor 10 k Ω
14	offset, amplifier	a	√ /1 kHz/30 Vpp	688, amplifier unit 1	0 ± 10 mV	OUTPUT connector, DC-voltmeter	_	to T14

. .

step	objective	a = adjust c = check	operation parameters, settings	adjusting elements	measured value, value to be adjusted	test point, output, measuring instruments	open output/ 50Ωterm	comment
	FREQUENCY RESPONSE							
15	LF-amplitudes difference	а		550, modulator unit 1	0 dB ref.* 0.15 ± 0.01 dB**	OUTPUT connector, rms-voltmeter	50 Ω	* 0 dB are to be adjusted at the voltmeter for reference ** related to reference
	LF-AMPLITUDE, DISTORTION							
16	LF-amplitude	а	\sim /10 kHz/10 Vpp	613, modulator unit 1	1.771 ± 0.001 V	OUTPUT connector, rms-voltmeter	50 Ω	
17	LF-amplitude	С	\sim /10 kHz/1.0 Vpp	_	0.177 ± 0.004 V	OUTPUT connector, rms-voltmeter		
18	LF-amplitude	С	\sim /10 kHz/0.1 Vpp		17.7 ± 0.6 mV	OUTPUT connector, tms-voltmeter		
19	distortion	С		_	< 0.3 % < 0.4 %	OUTPUT connector, distortion- meter	50 Ω	(For measurement with Rhode + Schwarz FAM use 20 dB attenuator)
	SAWTOOTH ADJUSTMENT							
20	offset pos. ramp	а	√1 kHz/10 Vpp	607, modulator unit 1	neg. peak: 0 ± 50 mV	OUTPUT connector, scope	50 Ω	1 50 -
21	offset neg. ramp	а	√ /1 kHz/10 Vpp	602, modulator unit 1	pos. peak: 0 ± 50 mV	OUTPUT connector, scope	50 Ω	± 50 m
22	rms-value	С	1/1 kHz/15 Vpp √/1 kHz/15 Vpp	_	2.165 ± 0.04 V	OUTPUT connector, rms-voltmeter	50 Ω	177
	SQUARE WAVE ADJUSTMENT							
23	half cycle	а	ጊ /1 kHz/20 Vpp	603, pulse gen. unit 1	500 ± 0.2 μs	OUTPUT connector, intervall counter	50 Ω	
24	pos. amplitude	а	☐ /0.05 Hz/20 Vpp	624, pulse gen. unit 1	+ 10 ± 0.04 V	OUTPUT connector, DC-voltmeter	_	
25	neg. amplitude	a	¬ /0.05 Hz/20 Vpp	627, pulse gen. unit 1	-10 ± 0.04 V	OUTPUT connector, DC-voltmeter	_	
26	signalform	a	□ /2 MHz/20 Vpp	505, modulator unit 1	minimum rise time without overshoot	T15, scope (tr ≤ 3 ns)		
27	signalform	а	☐ /2 MHz/20 Vpp	525, amplifier unit 1	tr < 24 ns/tf < 24 ns	OUTPUT connector, scope	50 Ω	repeat alternating until the
28	signalform	а	□ /2 MHz/20 Vpp	627, amplifier unit 1	tr < 24 ns/tf < 24 ns	OUTPUT connector, scope	50 Ω	best square wave and rise/ fall times are reached

•

step	objective	a = adjust c = check	operation parameters, settings	adjusting elements	measured value, value to be adjusted	test point, output, measuring instruments	open output/ 50Ωterm.	comment
29	duty-cycle	c (a)	വ /2 MHz/20 Vpp	(614, pulse gen. unit 1)	50 ± 5 %	OUTPUT connector, scope	50 Ω	
30	rise/fall time	с	Ⴂ」/2 MHz/30 Vpp	-	< 33 ns	OUTPUT connector, scope	50 Ω	
31	rms-value	С	Ⴂ₁/1 kHz/20 Vpp	_	5 ± 0.04 V	OUTPUT connector, rms-voltmeter	50 Ω	if this value isn't correct, repeat steps 27 + 28
32	aberrations	С	Ⴂ₃ /1 kHz/15 Vpp	-	< 2 %	OUTPUT connector, scope	50 Ω	aberrations related to amplitude O-peak
	AM-ADJUSTMENT							
33	modulation frequency	С	~ /10 kHz/INT/15 Vpp	-	1000 ± 30 Hz	MOD OUT connector, counter	_	without termination
34	modulation frequency amplitude (rms)	а	~ /10 kHz/INT/15 Vpp	647, modulator unit 1	0.3 ± 0.006 V	MOD OUT connector, rms-voltm.	-	without termination
35	modulation frequency amplitude (rms)	а	\sim /1 kHz/EXT/20 Vpp	684, modulator unit 1	1.768 ± 0.01 V	OUTPUT connector, rms-voltmeter	50 Ω	
36	modulation depth	a	√ /1 MHz/INT/20 Vpp	686, modulator unit 1	30 ± 1 %	OUTPUT connector, modulation meter	50 Ω	LF-bandwidth 10 Hz — 20 kHz (for FAM use 20 dB attenuator!)
37	distortion	С	\sim /1 MHz/INT/20 $ m Vpp$		< 0.5 %	OUTPUT connector, distortion meter	50 Ω	(for FAM use 20 dB attenuator!)
38	LF-suppression	a	~ /1 MHz/INT/20 Vpp	663, modulator unit 1	minimum level	OUTPUT connector, rms-volt- meter, low-pass filter	-	
39	DC-difference	а		681, modulator unit 1	difference < ± 10 mV between "EXT" and "OFF"	OUTPUT connector, DC-voltmeter	_	value altered by potmeter 681 in mode "EXT"
	MISCELLANEOUS							
40	CLOCK- frequency	С	√ /1 kHz/15 Vpp	_	8.589935 MHz ± 3 Hz	CLOCK OUT, counter	_	
41	CLOCK-level pp	С	\sim /1 kHz/15 Vpp	_	> 3.5 V	CLOCK OUT, scope	-	

step	objective	a = adjust c = check	operation parameters, settings	adjusting elements	measured value, value to be adjusted	test point, output, measuring instruments	open output/ 50Ωterm.	comment
42	frequency (external synchr.)	С	~ /1 MHz/15 Vpp	-	1.164153 MHz ± 1 Hz	OUTPUT-connector, counter	50 Ω	external 10 MHz ± 10 Hz TTL-signal at CLOCK-INPUT
43	TTL OUT- frequency	С	\sim /2 MHz/15 Vpp	_	2 MHz ± 1 Hz	TTL OUT, counter	_	
44	TTL OUT-level	С	\sim /2 MHz/15 Vpp	-	> 3.5 V	TTL OUT, scope	_	
45	mod. depth (ext. mod.)	С	~ /2 MHz/EXT/30 Vpp	_	50 ± 2 %	OUTPUT connector, modulation meter	50 Ω	external mod. signal (~) 1 kHz, 0.5 Vrms at MOD INPUT (for FAM use 20 dB attenuator!)
46	display brightness	a	see component lay-out UNIT3, keyboard/display	R 604, 606, 608	< 10 mA per display segment	pin 11, CIS-connector on UNIT2 (see component lay-out UNIT3, keyboard/display)		only necessary after a replacement of a display

9. SAFETY INSPECTION AND TESTS AFTER REPAIR AND MAINTENANCE IN THE PRIMARY CIRCUIT

9.1. GENERAL DIRECTIVES

- Take care that creepage distances and clearances have not been reduced
- Before soldering, wires:
- should be bent through the holes of solder tags, or wrapped round the tag in the form of an open
 U, or, wiring ridigity shall be maintained by cable clamps or cable lacing.
- Replace all insulating guards and -plates.

9.2. SAFETY COMPONENTS

Components in the primary circuit may only be renewed by components selected by Philips, see also chapter 10.

9.3. CHECKING THE PROTECTIVE EARTH CONNECTION

The correct connection and condition is checked by visual control and by measuring the resistance between the protective-lead connection at the plug and the cabinet/frame. The resistance shall not be more than 0.5 Ω . During measurement the mains cable should be moved. Resistance variations indicate a defect.

9.4. CHECKING THE INSULATION RESISTANCE

Measure the insulation resistance at U = 500 Vdc between the mains connections and the protective lead connections. For this purpose set the mains switch to ON. The insulation resistance shall not be less than 2 $M\Omega$.

Note:

2 M Ω is a minimum requirement at 40° C and 95 % relative humidity. Under normal conditions the insulation resistance should be much higher (10 to 20 M Ω).

9.5. TEST AFTER REPAIR AND MAINTENANCE

This part of the checking — and adjusting procedure represents the final check of the PM 5191. Bottom and top cover of the cabinet must be closed and the instrument must be warmed up for at least 2 hours. The check contains measurements of DC-levels, amplitudes and frequencies on following their specifications and furthermore test of modulation function. The sequence of the measurements is free selectable.

9.5.1. Frequency measurements

Object	Frequency setting	Toleranz	Measurement point
Frequency (carrier)	1 MHz	± 0.8 Hz	ΟυΤΡυΤ (50 Ω)
mod. Frequency	INT (fm 1 kHz fixed)	± 25 Hz	MOD OUT

9.5.2. Checking of the square -wave

Frequency	Amplitude	Measurement
	05.1/	rise/fall time < 35 ns
2 MHz	25 Vpp	aberrations $<$ 3 % \pm 20 mVpp

9.5.3. Modulation measurement

Measurement point: BNC-connector OUTPUT (50 Ω termination)

Frequency	Modulation	Object	Tolerance
2 MHz	INT	mod. depth* (30 % fixed)	28.5 % 31.5 %

^{* (}For measurement with Rhode & Schwarz FAM use 20 dB attenuator)

9.5.4. DC-measurements

Measurement point: BNC-connector OUTPUT

Waveform	Frequency	Modulation	AC	DC	Tolerance of DC-output (open circuit)
AC OFF	1 kHz	OFF	0	0	± 25 mV
ACOFF	1 kHz	OFF	0	-10 V	± 225 mV
AC OFF	1 kHz	OFF	0	- 5 V	± 125 mV
AC OFF	1 kHz	OFF	0	+ 5 V	± 125 mV
ACOFF	1 kHz	OFF	0	+ 10 V	± 225 mV
~	1 kHz	OFF	4, 5,, 30 Vpp	0	setting ± 70 mV
n,	1 kHz	OFF	5,10,,30 Vpp	0	setting ± 100 mV
~	1 kHz	EXT	30 Vpp	0	± 80 mV

		<u> </u>	I			T .
Waveform	Frequency	Modulation	Setting Vpp	$\stackrel{ ext{$\triangle$}}{ ext{$\triangle$}}$ Vrms with 50 Ω termin.	Tolerance	= max / min
~	1 kHz	OFF	0.003	0.530 mV	± 10 %	0.583 / 0.477 mV
~	1 kHz	OFF	0.01	1.768 mV	± 4 %	1.839 / 1.697 mV
~	1 kHz	OFF	0.02	3.536 mV	± 3 %	3.642 / 3.30 mV
~	1 kHz	OFF	0.05	8.839 mV	± 2.5 %	9.060 / 8.618 mV
\sim	1 kHz	OFF	0.1	17.678 mV	± 2.5 %	18.120 /17.236 mV
\sim	1 kHz	OFF	0.2	35.356 mV	± 2.3 %	36.169 /34.543 mV
~	1 kHz	OFF	0.3	53.034 mV	± 2.4 %	54.307 /51.761 mV
\sim	1 kHz	OFF	3.0	0.5303 V	± 1.5 %	0.5383 / 0.5223 V
\sim	1 kHz	OFF	30.0	5.3033 V	± 1.2 %	5.3669 / 5.2397 V
\sim	1 kHz	OFF	2.0	0.3535 V	± 1.5 %	0.3588 / 0.3482 V
\sim	1 kHz	OFF	3.2	0.5657 V	± 1.2 %	0.5725 / 0.5589 V
\sim	1 kHz	OFF	4.0	0.7071 V	± 1.2 %	0.7156 / 0.6986 V
\sim	1 kHz	OFF	6.4	1.1314 V	± 1.2 %	1.1450 / 1.1178 V
\sim	1 kHz	OFF	8.0	1.4142 V	± 1.2 %	1.4312 / 1.3972 V
\sim	1 kHz	OFF	12.8	2.2628 V	± 1.2 %	2.2899 / 2.2356 V
\sim	1 kHz	OFF	16.0	2.8285 V	± 1.2 %	2.8624 / 2.7946 V
\sim	1 kHz	OFF	25.6	4.5255 V	± 1.2 %	4.5798 / 4.4712 V
~	1 kHz	OFF	20.0	2.8867 V	± 1.2 %	2.9213 / 2.8521 V
ū	1 kHz	OFF	20.0	5.0000 V	± 1.5 %	5.0750 / 4.9250 V
1	1 kHz	OFF	10.0	1.4433 V	± 2 %	1.4722 / 1.4144 V
7	1 kHz	OFF	10.0	1.4433 V	± 2 %	1.4722 / 1.4144 V
. √	10 kHz	OFF	30.0	5.3033 V	± 1.2 %	5.397 / 5.2397 V
\sim	200 kHz	OFF	15.0	2.6517 V	± 1.3 %	2.6862 / 2.6172 V
\sim	2.147 MHz	OFF	15.0	2.6517 V	± 4.5 %	2.7710 / 2.5324 V
\sim	2.147 MHz	OFF	1.0	0.1767 V	± 5 %	0.1855 / 0.1679 V
\sim	2.147 MHz	OFF	0.10	17.678 mV	± 6.5 %	18.827 /16.529 mV
\sim	2.147 MHz	OFF	0.01	1.768 mV	± 7.5 %	1.901 / 1.635 mV
\sim	1.8 MHz	OFF	15.0	2.6517 V	± 4.5 %	2.7710 / 2.5324 V
\sim	1 MHz	OFF	15.0	2.6517 V	± 2 %	2.7047 / 2.5987 V
\sim	1 kHz	EXT	30.0	2.6517 V	± 2 %	2.7047 / 2.5987 V
\sim	10 kHz	EXT	30.0	2.6517 V	± 2 %	2.7047 / 2.5987 V

10. SPARE PARTS

10.1. GENERAL

The synthesizer/function generator PM 5191 is repaired on single component level. No complete boards and modules are available at Concern Service Eindhoven.

Loaded PROMs must be ordered directly via Philips Supply Center Hamburg (please note software version)

In case of difficult faults central repair facility of the complete instrument is possible on special request via repair procedure at Supply Center Hamburg.

Conversion of an existing instrument to a different version is not foreseen.

Standard Parts

Electrical and mechanical parts replacement can be obtained through your local Philips organisation or representative. However, many of the standard electronic components can be obtained from other local suppliers. Before purchasing or ordering replacement parts, check the parts list for value, tolerance, rating and description.

NOTE: Physical size and shape of a component may affect instrument performance, particularly at high frequencies. Always use direct-replacement components, unless it is known that a substitute will not degrade instrument performance.

Special Parts

In addition to the standard electronic components, some special components are used:

- Components, manufactured or selected by Philips to meet specific performance requirements.
- Components which are important for the safety of the instrument marked with 'S' in the parts

ATTENTION: Both type of components may only be replaced by components obtained through your local Philips organisation.

10.2. STATIC SENSITIVE COMPONENTS

This instrument contains electrical components that are suspectible to damage from static discharge. Servicing static-sensitive assemblies or components should be performed only at a static-free work station by qualified service personnel.

10.3. HANDLING MOS DEVICES

Though all our MOS integrated circuits incorporate protection against electrostatic discharges, they can nevertheless be damaged by accidental over-voltages. In storing and handling them, the following precautions are recommended.

CAUTION: Testing or handling and mounting call for special attention to personal safety. Personnel handling MOS devices should normally be connected to ground via a resistor.

10.4. SOLDERING TECHNIQUES

Working method:

- Carefully unsolder one after the other the soldering tags of the semi-conductor.
- Remove all superfluous soldering material. Use a sucking iron or sucking litze wire.
- Check that the tags of the replacement part are clean and pre-tinned on the soldering places.
- Locate the replacement semi-conductor exactly on its place, and solder each tag to the relevant printed conductor on the circuit board.

NOTE: Bear in mind that the maximum permissible soldering time is 10 seconds during which the temperature of the tags must not exceed 250° C. The use of solder with a low melting point is therefore recommended.

Take care not to damage the plastic encapsulation of the semi-conductor (softening point of the plastic is 150° C).

ATTENTION: When you are soldering inside the instrument it is essential to use a low-voltage soldering iron, the tip of which must be earthed to ground of the instrument.

Suitable soldering irons should have temperature control and different types of nozzles (pin point tips), e. g. Weller Magnastat WTCP or WECP, Ersa TC 70/24 V.

If a higher wattage-rating soldering iron is used on the etched circuit boards excessive heat can cause the etched circuit wiring to seperate from the board base material.

In general use short-time heating with high tip temperature at a small point, avoid long time heating.

10.5. PARTS LIST PM 5191

10.5.1. Mechanical parts

Cabinet

Item	Quantity	Order number	Description
А	1	5322 447 91368	Top cover
В	1	5322 447 91369	Bottom cover
С	4	5322 462 40756	Plastic foot
D	4	5322 462 44434	Rubber foot, adhesive
E	4	5322 492 64745	Locking clip
F	1	5322 401 10867	Tilting support
G	1	5322 447 91373	Rear panel
Н	2	5322 462 40761	Rear bumper
I	1	5322 447 91372	Front panel
J	1	5322 447 91371	Window for display
K	1	5322 456 90259	Text plate PM 5191
L	1	5322 447 90502	Front plate edging (upper)
M	1	5322 460 60438	Front plate edging (lower)
N	1	5322 460 60433	Profile ornament
0	1	5322 456 90261	Profile ornament with text
Р	2	5322 447 90501	Side piece
P	2	5322 263 70186	Handle assembly (rack), not shown
Ω	1	5322 460 60432	Profile orn. long, perf. (left)
R	1	5322 460 60434	Profile orn. short (right)
R	1	5322 460 60431	Profile orn. short, perf. (right)
S	1	5322 498 50176	Rubber handle
Т	1	5322 462 40759	Steel insert

10.5.2. Miscellaneaous, parts not on units

ltem	Fig.	Quantity	Order number	Description
880	33 (31)	1	5322 276 12029 *S	Mains switch
881, 882	33 (31)	2	5322 267 10004	BNC connector, front
862-865	33 (32)	4	5322 267 10173	BNC connector, rear
002 000	33 (32)	1	5322 321 22352	IEEE connector wired
870	33 (32)	1	5322 267 30416 *S	Mains socket with filter
	10-2	1	5322 321 10388 *S	Mains cable (Europe)
	10-3	1	5322 321 20816 *S	Mains cable (USA)
	10-4	1	5322 321 10123 *S	Mains cable (U. K.)
	32	1	5322 267 30328 *S	Fuse holder
869	33 (32)	1	4822 253 30018 *S	Fuse 630 mAT
869	33 (32)	1	4822 253 30022 *S	Fuse 1.25 AT
869	33 (32)	1	4822 253 30024 *S	Fuse 1.6 AT
868	33	1	5322 361 10451 *S	Fan
751	33	1	5322 146 30604 *S	Transformer
	31	13	5322 414 60037	Knob, large 12.5 x 6.5
	31	7	5322 414 60036	Knob, small 6.5×6.5
	31	17	5322 414 60038	Knob, small with LED
650, 651	33	2	5322 116 21068	Varistor (BNC front)
662-665	33	4	5322 116 21137	Varistor (BNC rear)
850, 851	33	2	5322 526 14034	Damping bead (BNC connector)
892-895		4	5322 526 14034	Damping bead (BNC connector)
	32	1	5322 462 44172	Cap for IC (rear panel)

*S = Safety component, see chapter 10.1.

Mains cables

10.5.3. Electrical Parts

Some parts are listed in chapter 10.5.2.

From LO - 02 691 onwards the instruments are fitted with dustproof potentiometers. Altered values and service code no. see page 10-17.

All metal film resistors not listed are of type MR 25 \pm 1 % 0.4 W (ordering code see end of this list).

^{*1} Please order loaded PROM directly via Philips Supply Center Hamburg (note software version).

Pos. no.	Description			Ordering code	
UNIT 1,	POWER SUPPLY				
INTEGRA	TED CIRCUITS/UN	IT 1, POWER SUP	PLY		
301-306 305	Integr. circuit Integr. circuit	MC1456N Regulator		5322 209 84688 5322 209 71639 (rear wal	
TRANSIS	TORS / UNIT 1, POW	ER SUPPLY			
351, 356 352, 357 353, 358 354	Transistor Transistor Transistor Transistor	BD649 BD646 BC548B BC558B			5322 130 41123 5322 130 41212 4822 130 40937 4822 130 44197
355 359, 360	Transistor Transistor	BD139 BC558B			4822 130 40823 4822 130 44197
DIODES /	UNIT 1, POWER SUF	PPLY			
401 402, 403 404, 406 405, 409 407, 414	Rectifier Rectifier Diode, reference Diode, reference Diode	SKB2/08L BY260-2 BZX79B18 BZX79B18 BZV12	00 3		5322 130 32031 4822 130 32145 (rear wal 4822 130 31024 4822 130 34281 5322 130 34269
408 410 411 412, 415 413	Diode, reference Diode, reference Diode, reference Diode, reference Diode, reference	BZX79B18 BZX79B18 BZX79B2 BZX79B4 BZX79B7	3 7 √7		4822 130 34297 4822 130 31024 4822 130 34379 4822 130 34174 4822 130 30861
416 417	Diode, reference Diode, reference	BZX79B1: BZX75C1			4822 130 34195 4822 130 34047
CAPACIT	ORS/UNIT 1, POWEI	R SUPPLY			
501, 503 502, 504 505, 506 508-510 512	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. foil	220 nF 10 000 μF 1 μF 220 nF 220 nF	10 % 20 % 10 % 10 % 10 %	100 V 63 V 50 V 100 V 100 V	4822 121 40232 5322 124 41278 4822 122 33108 4822 121 40232 4822 121 40232
511, 513 514, 515 517 518 519-529	Cap. foil Cap. electrolyt. Cap. electrolyt. Cap. solid alu. Cap. ceramic	4 700 μF 47 μF 22 000 μF 1 μF 100 nF	50 % 20 % 40 % 10 %	25 V 25 V 16 V 25 V 50 V	5322 124 21459 4822 124 40433 5322 124 70435 4822 124 20944 5322 122 33108
530-533 534, 535	Cap. electrolyt. Cap. ceramic	47 μF 100 nF	50 % 10 %	25 V 50 V	4822 124 40433 5322 122 33108

Pos. no.	Description				Ordering code
DECICEO	DC / LINUT 1 DOWER SI	IDDI V			
KESISTOF	RS / UNIT 1, POWER S	JPPLT			
604, 607 612 618, 621	Potm. trimmer * Potm. trimmer * Potm. trimmer *	470 Ω 470 Ω 470 Ω	CERMET CERMET CERMET	0.5 W 0.5 W 0.5 W	5322 101 14047 5322 101 14047 5322 101 14047
623-630 631-634		2.05 Ω 1.4 Ω	1 % 1 %	0.6 W 0.6 W	4822 116 52984 5322 116 80391
UNIT 1, A	MPLIFIER				
INTEGRA	TED CIRCUITS / UNIT	1, AMPL.			
301-303	Integr. circuit	HEF409	4RP		5322 209 10421
304-306	Integr. circuit	HEF405			5322 209 10576
307	Integr. circuit	DAC-08			5322 209 11254
308 309, 310	Integr. circuit Integr. circuit	MC1458 FPQ2222			4822 209 81349 5322 209 86422
311	Integr. circuit	SN7406	V		5322 209 86327
TRANSIS	TORS / UNIT 1, AMPL.				
320, 346	Transistor	BC558B			4822 130 44197
321, 347	Transistor	BFW16A	1		5322 130 44015
322-339	Transistor	BSV78			5322 130 44093
340, 341 342, 343	Transistor Transistor	BC548C BSX20			4822 130 44196 4822 130 41705
344	Transistor	2N2894	A		5322 130 44127
345, 353	Transistor	BSX20			4822 130 41705
348, 351	Transistor	BC548B			4822 130 40937
349, 350 352	Transistor Transistor	BC558B 2N4035			4822 130 44197 5322 130 44201
332	Transistor	2114000			
354, 357	Transistor	BD139			4822 130 40823
355, 356	Transistor	BD140			4822 130 40824
358	Transistor	2N2905/ 2N2219/			5322 130 40468 5322 130 44034
359 360	Transistor Transistor	BC548B	1		4822 130 40937
361	Transistor	BC558B			4822 130 44197
362, 373	Transistor	BC548C			4822 130 44196
363, 375	Transistor	BC558C BDX46			5322 130 60068 5322 209 82974
364, 366 365, 367	Transistor Transistor	BDX43			5322 209 62974 5322 130 42085
368, 369	Transistor	BC548B			4822 130 40937
370, 371	Transistor	2N4035			5322 130 44201
372 374	Transistor Transistor	BD140 BD139			4822 130 40824 4822 130 40823
3/4	i i diisistui	50139			7022 130 70023

^{* (}see page 10-17)

Pos. no.	Description				Ordering code	
DIODES	UNIT 1, AMPL.					
401 403 405-408 409, 410 411, 412	Diode Diode, reference Diode, reference Diode, reference Diode	BAW62 BZX79B BZX79B BZX79B BAW62	5V1	4822 130 30613 4822 130 34174 4822 130 34233 4822 130 30861 4822 130 30613		
413, 414 415, 416 417-424	Diode, reference Diode, reference Diode	BZV11 BZX79B BAX12A			5322 130 34294 4822 130 30862 5322 130 34605	
CAPACIT	ORS/UNIT 1, AMPL.					
501 502, 505 503 504 506	Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic	10 pF 3.3 pF 6.8 pF 4.7 pF 18 pF	2 % 0.25 pF 0.25 pF 0.25 pF 2 %	100 V 100 V 100 V 100 V 100 V	4822 122 32185 4822 122 31821 4822 122 31049 4822 122 31822 4822 122 31985	
507, 508 509 510, 511 512-515 516, 519	Cap. ceramic Cap. ceramic Cap. electrolyt. Cap. ceramic Cap. solid alu.	1.8 pF 1.5 pF 220 μF 100 nF 22 μF	0.25 pF 0.25 pF 50 % 10 % 20 %	100 V 100 V 16 V 50 V 10 V	5322 122 32162 5322 122 32101 4822 124 40196 5322 122 33108 4822 124 20943	
517 518 520, 521 522, 523 524	Cap. ceramic Cap. ceramic Cap. electrolyt. Cap. electrolyt. Cap. ceramic	470 pF 22 pF 220 μF 100 μF 100 nF	2 % 50 % 10 %	100 V 100 V 16 V 50 V 50 V	4822 122 32062 5322 122 32143 4822 124 40196 4822 124 21348 5322 122 33108	
525 528-530 531 532, 533 536	Cap. trimmer Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic Cap. electrolyt.	20 pF 100 nF 12 pF 100 nF 100 µF	10 % 2 % 10 % 50 %	50 V 100 V 50 V 10 V	4822 125 50045 5322 122 33108 4822 122 31056 5322 122 33108 4822 124 40178	
542, 543 544 545 546, 547 548, 549	Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic	100 nF 10 nF 100 nF 10 nF 220 pF	10 % 80 % 10 % 80 % 2 %	50 V 100 V 50 V 100 V 100 V	5322 122 33108 4822 122 30043 5322 122 33108 4822 122 30043 5322 122 34047	
550-552 553, 554 555 556 557-559	Cap. ceramic Cap. electrolyt. Cap. ceramic Cap. ceramic Cap. ceramic	100 nF 1 μF 15 pF 18 pF 1 pF	10 % 50 % 2 % 2 % 0.25 pF	50 V 63 V 100 V 100 V 100 V	5322 122 33108 4822 124 40242 4822 122 31823 5322 122 34064 4822 122 30104	
560-563 564, 571 565 566 567	Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic	100 nF 22 nF 1.5 nF 120 pF 47 pF	10 % 80 % 10 % 2 % 2 %	50 V 63 V 500 V 100 V 100 V	5322 122 33108 4822 122 30103 4822 122 31169 4822 122 31348 4822 122 31072	
568, 569 572, 574 573 576, 577	Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic	100 nF 22 nF 4.7 nF 100 nF	10 % 80 % 80 % 10 %	50 V 63 V 63 V 50 V	5322 122 33108 4822 122 30103 4822 122 31125 5322 122 33108	

Pos. no.	Description			Ordering code
RESISTOF	RS / UNIT 1, AMPL.			
602	Res. metal film	100 Ω	5 % 1.6 V	
603	Res. metal film	$2.61~\mathrm{k}\Omega$	0.1 % 0.125 V	
604	Res. metal film	1.05 k Ω	0.1 % 0.25 V	V 5322 116 52451
605	Res. metal film	$3.01~\mathrm{k}\Omega$	0.1 % 0.25 V	
606	Res. metal film	$5.9~\mathrm{k}\Omega$	0.1 % 0.125 V	V 5322 116 80323
612	Res. metal film	1.47 k Ω	0.1 % 0.125 V	
613	Res. metal film	7.15 k Ω	0.1 % 0.125 V	
614	Res. metal film	8.66 k Ω	0.1 % 0.125 V	
615	Res. metal film	10.5 k Ω	0.1 % 0.125 V	
627	Potm. trimmer *	220 Ω	CERMET 0.1 V	V 4822 100 10359
628	Res. metal film	332 Ω	1 % 0.6 V	V 5322 116 53329
633	Potm. trimmer *	$47 \mathrm{k}\Omega$	carb. 0.1 V	V 4822 100 10079
655-658	Res. metal film	$2.05\mathrm{k}\Omega$	1 % 0.5 V	
661-668	Res. metal film	68.1 Ω	1 % 0.5 V	V 5322 116 55166
669-672	Res. metal film	33 Ω	6 % 1.6 V	V 4822 116 51167
688	Potm. trimmer *	100 Ω	CERMET 0.5 V	v 5322 101 14011
694	Potm. trimmer *	1 k Ω	CERMET 0.5 V	
698	Potm. trimmer *	$4.7~\mathrm{k}\Omega$	CERMET 0.5 V	
699, 700	Res. metal film	10.5 k Ω	0.1 % 0.125 V	
701, 704	Res. metal film	412 Ω	0.1 % 0.25 V	
702, 703	Res. metal film	619 Ω	0.1 % 0.25 V	V 5322 116 80212
711, 712	Res. metal film	31.6 Ω	0.1 % 0.125 V	
713, 716	Res. metal film	$16.9~\mathrm{k}\Omega$	0.1 % 0.125 V	
714, 715	Res, metal film	31.6 Ω	0.1 % 0.125 V	
733-736	Res. metal film	110 Ω	0.1 % 0.125 V	
737, 742	Res. metal film	95.3 Ω	0.1 % 0.125 V	v 5322 116 80315
739, 749	Res. metal film	274 Ω	0.1 % 0.125 V	
740, 750	Res. metal film	$1.86 \mathrm{k}\Omega$	0.1 % 0.125 V	
741	Res. metal film	162 Ω	0.1 % 0.125 V	
743-746	Res. metal film	110 Ω	0.1 % 0.125 V	
747 ·	Res. metal film	95.3 Ω	0.1 % 0.125 V	V 5322 116 80315
763	Res. metal film	100 Ω	1 % 0.6 V	
764-767	Res. network	$5 \times 100 \text{ k}\Omega$	5 %	5322 111 91096
	Res. metal film	68.1 Ω	1 % 0.5 V	
	Res. metal film	390 Ω	5 % 1.6 V	
COILS / U	INIT 1, AMPL.			
851, 852	Coil	$220 \mu H$		5322 157 53012
854, 885	Coil	10 μΗ		5322 157 53092
855	Coil	220 µH		5322 157 53012
884	Wide band choke			5322 158 10271
RELAIS /	UNIT 1, AMPL.			
RELAIS / 801-808	UNIT 1, AMPL. Reed relais	5 V		5322 280 20281

^{* (}see page 10-17)

Pos. no.	Description				Ordering code				
UNIT 1, I	UNIT 1, MODULATOR								
INTEGRA	ATED CIRCUITS / UNIT 1,	MOD.							
301, 303 302 304 305 306	Integr. circuit Integr. circuit Integr. circuit Integr. circuit Integr. circuit	HEF4053BP HEF4094BP LF355N MC1495L LF356N			5322 209 10576 5322 209 10421 5322 209 86355 5322 209 71638 5322 209 86422				
TRANSIS	TORS / UNIT 1, MOD.								
350, 354 352, 355 359 361 378, 379	Transistor Transistor Transistor Transistor Transistor	BC558B BC548B 2N2894A BSX20 BF450			4822 130 44197 4822 130 40937 5322 130 44127 4822 130 41705 4822 130 44237				
380, 381 382 383	Transistor Transistor Transistor	BF240 BC548B BC558B			4822 130 40902 4822 130 40937 4822 130 44197				
DIODES /	UNIT 1, MOD.								
401, 402 403, 404 407, 408 421 429, 430	Diode, ref. Diode, ref. Diode, ref. Diode, ref. Diode, ref.	BZX79B4V7 BZX79B6V8 BZX79B6V8 BZX79B8V2 BZX79B4V3			4822 130 34174 4822 130 34278 4822 130 34278 4822 130 34382 4822 130 31554				
431, 432 433, 434	Diode, ref. Diode, ref.	BZX79B4 BZX79B4			4822 130 34174 4822 130 31554				
CAPACITO	DRS / UNIT 1, MOD.								
504 505 510 512 513	Cap. ceramic Cap. trimmer Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic	100 nF 10 pF 2.2 nF 18 pF 120 pF	10 % 10 % 2 % 2 %	50 V 100 V 100 V 100 V	5322 122 33108 4822 125 50062 4822 122 30114 4822 122 31061 4822 122 31685				
514, 516 517, 519 521, 522 523-530 531, 532	Cap. ceramic Cap. ceramic Cap. foil Cap. ceramic Cap. ceramic Cap. ceramic	100 nF 68 pF 12 nF 100 nF 100 nF	10 % 2 % 1 % 10 % 10 %	50 V 100 V 63 V 50 V 50 V	5322 122 33108 4822 122 31349 5322 121 54162 5322 122 33108 5322 122 33108				
547 548 549 550 551	Cap. ceramic Cap. ceramic Cap. ceramic Cap. trimmer Cap. ceramic	22 pF 56 pF 8.2 pF 20 pF 220 pF	2 % 0.25 pF 2 %	100 V 100 V 100 V	5322 122 32143 4822 122 32027 4822 122 31052 4822 125 50045 5322 122 34047				

Pos. no.	Description				Ordering code				
RESISTO	RESISTORS / UNIT 1, MOD.								
601 602, 607 604, 606 609, 611 613	Res. metal film Potm. trimmer * Res. metal film Res. metal film Potm. trimmer *	1 kΩ 4.7 kΩ 2 kΩ 2 kΩ 470 Ω	0.1 % CERMET 0.1 % 0.1 % CERMET	0.25 W 0.5 W 0.25 W 0.25 W 0.5 W	5322 116 52384 5322 101 10509 5322 116 51812 5322 116 51812 5322 101 14047				
642 643 647 663, 681 684	Res. N. T. C. Res. N. T. C. Potm. trimmer * Potm. trimmer * Potm. trimmer *	50 kΩ 4.7 kΩ 1 kΩ 10 kΩ 2.2 kΩ	20 % 20 % carb. carb. CERMET	3 mW 0.6 W 0.1 W 0.1 W 0.5 W	5322 116 34026 4822 116 30021 4822 100 10037 4822 100 10035 5322 101 14008 4822 100 10038				
COILS / L	INIT 1, MOD.								
701 751	Choke Choke	220 μH 0.33 μH			5322 157 53012 5322 157 53013				
RELAIS /	UNIT 1, MOD.								
810-815	Reed relais	5 V			5322 280 20281				

^{* (}see page 10-17)

Pos. no.	Description				Ordering code
UNIT 1, F	PULSE GENERATOR				
INTEGRA	TED CIRCUITS / UNIT 1	I, PULSE GEN	J.		
301 305	Integr. circuit Integr. circuit	NE521N N74S00N	ı		5322 209 14441 5322 209 84167
TRANSIS	TORS / UNIT 1, PULSE (GEN.			
351 352, 354 353, 355 356, 357 358	Transistor Transistor Transistor Transistor Transistor	BC548B 2N2894A BSX20 2N2894A 2N5583			4822 130 40937 5322 130 44127 4822 130 41705 5322 130 44127 5322 130 44033
DIODES /	UNIT 1, PULSE GEN.				
401, 402 403 404 405, 408 409, 410	Diode, ref. Diode, ref. Diode, ref. Diode Diode, ref.	BZX79B4 BZV462\ BZX79B6 BA481 BZX75C2	/0 5V2		4822 130 34174 4822 130 31248 4822 130 34167 5322 130 32239 4822 130 34048
411 412, 413 414 415	Diode, ref. Diode Diode, ref. Diode	BZX79B4 BA481 BZX79B3 BAW62		4822 130 34174 5322 130 32239 5322 130 31504 4822 130 30613	
CAPACITO	ORS / UNIT 1, PULSE GE	EN.			
501, 502 503 504, 505 507, 510 508, 509	Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic	10 nF 220 pF 100 nF 10 nF 100 nF	2 % 10 % 10 %	100 V 100 V 50 V 100 V 50 V	4822 122 31414 5322 122 34047 5322 122 33108 4822 122 31414 5322 122 33108
510, 521 512-517 518, 519 520	Cap. ceramic Cap. ceramic Cap. solid alu. Cap. ceramic	10 nF 100 nF 10 µF 100 nF	10 % 20 % 20 %	100 V 50 V 16 V 50 V	4822 122 31414 5322 122 33108 4822 124 21314 5322 122 33108
RESISTOR	RS / UNIT 1, PULSE GEN				
603 614, 624 627 650	Potm. trimmer * Potm. trimmer * Potm. trimmer * Res. metal film	100 kΩ 4.7 kΩ 4.7 kΩ 150 Ω	carb. carb. carb. 5 %	0.1 W 0.1 W 0.1 W 1.6 W	4822 100 10052 4822 100 10036 4822 100 10036 4822 116 51142

^{* (}see page 10-17)

Pos. no.	Description				Ordering code
UNIT 2, 0	CPU				
INTEGRA	TED CIRCUITS / UNIT	2, CPU			
301 - 304 305 306 307 308	Integr. circuit Integr. circuit Integr. circuit Integr. circuit Integr. circuit	MC3441AF HEF4093B HEF4738V HEF40244 HEF40373	P P BP		5322 209 85464 5322 209 14927 5322 209 14509 5322 209 10489 5322 209 10491
309, 310 311 312 314	Integr. circuit Integr. circuit Integr. circuit Integr. circuit	HEF4014B HEF4094B HEF4514B N74LS363I	P P	4822 209 10296 5322 209 10421 5322 209 14051 5322 209 81776	
315*1 317 318 319 320	I. C. P2764 Integr. circuit Integr. circuit Integr. circuit Integr. circuit	(PROM, son PC74HCUC P8031U pro N74LS390I HEF4049B	04P ocessor V	ersion)	5322 209 11323 5322 209 82034 5322 209 86362 4822 209 10306
324	Integr. circuit	PCD8571P			4822 209 83571
DIODES /	UNIT 2, CPU				
401-404	Diode	BAW62			4822 130 30613
CAPACITO	ORS / UNIT 2, CPU				
501 502 503 504 506	Cap. solid alu. Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic	3.3 µF 220 pF 22 pF 27 pF 22 pF	20 % 10 % 2 % 80 %	16 V 100 V 100 V 100 V 63 V	4822 124 20947 4822 122 30094 5322 122 32143 4822 122 30045 4822 122 30103
512 513	Cap. electrolyt. Cap. ceramic	220 μF 22 pF	50 % 80 %	16 V 63 V	4822 124 40196 4822 122 30103
RESISTO	RS / UNIT 2, CPU				
601, 602 604, 605 609	Res. nerwork Res. network Res. network	8 x 4.7 kΩ 8 x 4.7 kΩ 8 x 4.7 kΩ	5 %	0.125 W 0.125 W 0.125 W	5322 116 90132 5322 116 90132 5322 116 90132
CRYSTAL	_ / UNIT 2, CPU				
801	Crystal	10 MHz			5322 242 71724
MISCELL	ANEOUS / UNIT 2, CPI	J			
802	Lithium cell	3V/160mA	h		5322 138 10144

Pos. no.	Description		Ordering code
UNIT 2,	DFS		
INTEGRA	ATED CIRCUITS/UNI	T 2, DFS	
301	Integr. circuit	PC74HCUO4P	5322 209 11323
302, 306 303	Integr. circuit	N74LS132N	5322 209 85201
304, 305	Integr. circuit Integr. circuit	SN74LS109AN N74LS02N	5322 209 85974
307-311	Integr. circuit	HEF4094BP	5322 209 85312 5322 209 10421
312-321	Integr. circuit	N74LS283N	5322 209 86052
322, 323	Integr. circuit	N74LS273N	5322 209 85792
324	Integr. circuit	N74LS174N	5322 209 81632
325, 326	Integr. circuit	N74LS273N	5322 209 85792
327	Integr. circuit	N74LS86N	5322 209 84997
328	Integr. circuit	N74LS153N	5322 209 85488
329	Integr. circuit	SN74LS151N	5322 209 86452
330	Integr. circuit	N74LS00N	5322 209 84823
331, 332 333, 338	Integr. circuit Integr. circuit	N74LS86N N74LS174N	5322 209 84997
	mtegr. circuit	N/4LS1/4N	5322 209 81632
334, 339	Integr. circuit	N74LS175N	5322 209 84999
335	Integr. circuit	N82S115N (sine ROM)	5322 209 82603
336, 337 340, 341	Integr. circuit Integr. circuit	N74LS157N	5322 209 81521
342	Integr. circuit	N74LS86N N74LS273N	5322 209 84997 5322 209 85792
343	Integr. circuit	N74LS175N	
344, 345	Integr. circuit	N74504N	5322 209 84999 5322 209 84475
346	Integr. circuit	MC1458N	4822 209 81349
347	Integr. circuit	SN74LS151N	5322 209 86452
348	Integr. circuit	HEF4050BP	4822 209 10261
TRANSIS	TORS / UNIT 2, DFS		
401	Transistor	BC558B	4822 130 44197
402 403	Transistor Transistor	BC548B	4822 130 40937
404, 407	Transistor	BC558C BC558B	5322 130 60068
405, 406	Transistor	BC558C	4822 130 44197 5322 130 60068
408, 409	Transistor	BC558C	5322 130 60068
410, 413	Transistor	BC558B	4822 130 44197
411, 412	Transistor	BC558C	5322 130 60068
414, 415	Transistor	BC558C	5322 130 60068
416, 419	Transistor	BC558B	4822 130 44197
417, 418	Transistor	BC558C	5322 130 60068
420, 421	Transistor	BC558C	5322 130 60068
422, 425 423, 424	Transistor	BC558B	4822 130 44197
423, 424 426, 427	Transistor Transistor	BC558C	5322 130 60068
120, 721	riansistoi	BC558C	5322 130 60068

BC558B BC558C BC548B

4822 130 44197 5322 130 60068 4822 130 40937

428, 430 Transistor 429 Transistor 431 Transistor

Pos. no.	Description				Ordering code
/					
DIODES /	UNIT 2, DFS				
451-460	Diode	BAW62			4822 130 30613
461, 463	Diode, ref.	BZX79B4	/3		4822 130 31554
		BAW62	V O		4822 130 30613
462, 464	Diode	BZW79B4	1/2		4822 130 31554
465, 467	Diode, ref.		v S		4822 130 30613
466, 468	Diode	BAW62			4822 130 30013
400 471	Diada vaf	BZX79B4	/3		4822 130 31554
469, 471	Diode, ref.	BAW62	V 5		4822 130 30613
470, 472	Diode	BZX79B4\	12		4822 130 31554
473, 475	Diode, ref.		v S		
474, 476	Diode	BAW62	10		4822 130 30613
477	Diode, ref.	BZX79B4	V 3		4822 130 31554
CAPACIT	ORS / UNIT 2, DFS				
501, 507	Cap. ceramic	22 nF +	20/- 90 %	40 V	4822 122 30103
502	Cap. ceramic	22 pF	2 %	100 V	5322 122 32143
503	Cap. ceramic	56 pF	2 %	100 V	4822 122 32027
504	Cap. ceramic	33 pF	2 %	100 V	5322 122 32072
		2.5-27 pF	2 /0	100 V	5322 125 54083
505	Cap. trimmer	2.5°27 pi		100 V	3322 123 3 1003
506	Cap. solid alu.	1 μF		25 V	4822 124 20944
511-517	Cap. ceramic		20/- 90 %	40 V	4822 122 30103
		220 μF	20/ 50 /0	16 V	4822 124 40196
518	Cap. electrolyt.		20/- 90 %	40 V	4822 122 30103
519	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
520, 521	Cap. ceramic	4./ 11	10 %	100 V	4822 122 31123
522	Cap. ceramic	82 pF	2 %	100 V	4822 122 31237
523, 524	Cap. ceramic	33 pF	2 %	100 V	5322 122 32072
525, 524	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
527	Cap. ceramic	82 pF	2 %	100 V	4822 122 31237
528, 532	Cap. ceramic	33 pF	2 %	100 V	5322 122 32072
520, 552	Cap. ceramic	00 pi	2 /0	100 1	0022 122 02072
529, 530	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
531	Cap. ceramic	82 pF	2 %	100 V	4822 122 31237
533, 534		4.7 nF	10 %	100 V	4822 122 31125
535, 539		82 pF	2 %	100 V	4822 122 31237
536, 540	Cap. ceramic	33 pF	2 %	100 V	5322 122 32072
550, 540	Cap. ceramic	35 pi	2 /0	100 0	0022 122 02012
537, 538	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
541, 542	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
543, 547	•	82 pF	2 %	100 V	4822 122 31237
544, 548	Cap. ceramic	33 pF	2 %	100 V	5322 122 32072
545, 546	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
545, 540	Cap. ceranne	7.7 111	10 /0	100 4	4022 122 01120
549	Cap. ceramic	22 nF +	20/- 90 %	40 V	4822 122 30103
550, 551	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
553	Cap. ceramic	82 pF	2 %	100 V	4822 122 31237
	Cap. ceramic		20/- 90 %	40 V	4822 122 30103
554, 558		4.7 nF	10 %	100 V	4822 122 30103
555, 556	Cap. ceramic	7.7 00	10 70	100 V	7022 122 31123
559	Cap. ceramic	22 pF	2 %	100 V	5322 122 32143
		180 pF	2 %	100 V	5322 122 32143
560, 562 561	Cap. ceramic	10 pF	2 %	100 V	4822 122 32185
561 563	Cap. ceramic		2 /0		
563	Cap. solid alu.	6.8 μF		25 V	5322 124 14081
564, 566	Cap. solid alu.	10 μF		16 V	4822 124 21314
EGE EG7	Can caramia	22 nE ±	20/- 90 %	40 V	4822 122 30103
565, 567	Cap. ceramic	22111	20/ - 30 /0	70 V	7024 144 30103

Pos. no.	Description				Ordering code
RESISTO	RS/UNIT 2, DFS				
637 639, 646 642, 649 643, 650 644, 651	Res. metal film Res. metal film Res. metal film Res. metal film Res. metal film	619 Ω 1.87 kΩ 4.64 kΩ 1.69 kΩ 619 Ω	0.1 % 0.1 % 0.1 % 0.1 % 0.1 %	0.25 W 0.25 W 0.25 W 0.25 W 0.25 W	5322 116 80212 5322 116 80215 5322 116 80216 5322 116 80214 5322 116 80212
653, 660 656, 663 657, 664 658, 665 667	Res. metal film Res. metal film Res. metal film Res. metal film Res. metal film	$\begin{array}{c} \text{1.87 k}\Omega\\ \text{4.64 k}\Omega\\ \text{1.69 k}\Omega\\ \text{619} \Omega\\ \text{1.87 k}\Omega \end{array}$	0.1 % 0.1 % 0.1 % 0.1 % 0.1 %	0.25 W 0.25 W 0.25 W 0.25 W 0.25 W	5322 116 80215 5322 116 80216 5322 116 80214 5322 116 80212 5322 116 80215
670 671 672 673 674	Res. metal film Res. metal film Res. metal film Res. metal film Res. metal film	$4.64 \text{ k}\Omega$ $1.69 \text{ k}\Omega$ 619Ω $11.5 \text{ k}\Omega$ $9.53 \text{ k}\Omega$	0.1 % 0.1 % 0.1 % 0.1 % 0.1 %	0.25 W 0.25 W 0.25 W 0.25 W 0.25 W	5322 116 80216 5322 116 80214 5322 116 80212 5322 116 51742 5322 116 80207
676 679 682, 683 684, 685 686	Potm. trimmer * Res. metal film Res. metal film Res. metal film Res. metal film	470 Ω 1.87 kΩ 4.64 kΩ 1.69 kΩ 11.5 kΩ	carb. 0.1 % 0.1 % 0.1 % 0.1 %	0.1 W 0.25 W 0.25 W 0.25 W 0.25 W	4822 100 10038 5322 116 80215 5322 116 80216 5322 116 80214 5322 116 51742
687 689 693	Res. metal film Potm. trimmer * Potm. trimmer *	9.53 kΩ 1 kΩ 4.7 kΩ	0.1 % carb. CERMET	0.25 W 0.1 W 0.5 W	5322 116 80207 4822 100 10037 5322 101 10509
CRYSTAL	./UNIT 2, DFS				
810	Crystal	8.59 MHz			5322 242 72047
COILS / U	NIT 2, DFS				
802 803 804	Wide band choke Choke Choke				5322 158 10271 5322 158 20458 5322 158 20459

^{* (}see page 10-17)

Pos. no.	Description		Ordering code
UNIT 3, I	KEYBOARD DISPLAY		
INTEGRA	TED CIRCUITS / UNIT 3		
351 352 353	Integr. circuit Integr. circuit Integr. circuit	HEF4049BP MM5450N SAA3007	4822 209 10306 4822 209 10199 5322 209 72061
TRANSIS	TOR/UNIT 3		
301	Transistor	BD646	4822 130 41212
DIODES /	UNIT 3		
409, 410	Diode	BAW62	4822 130 30613
LEDs, DIS	SPLAYS/UNIT 3		
401-404 405-408	LED Display	CQY54A LTM86 unt. LO-02 690 SI35035 onw. LO-02 691	4822 130 31128 5322 130 90375 5322 130 90491
CAPACITO	ORS/UNIT 3		
501 502-504 505, 506 508		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4822 124 40196 4822 122 30103 4822 122 31316 4822 122 30103
SWITCHE	S/UNIT 3		
801, 829 802-817 819, 820 827-833 834, 841		M75120001 M75120051 M75120001 M75120051 M75120001	5322 276 14338 5322 276 14418 5322 276 14338 5322 276 14418 5322 276 14338
842 843-858	Key switch Key switch	M75120051 M75120001	5322 276 14418 5322 276 14338
MISCELL	ANEOUS / UNIT 3		
860	Cer. resonator	455 kHz	5322 242 71606

From LO-02 691 onwards

CERMET and carbon potentiometers		replaced by	dustproof pe	otentiometers	
Value		Serv. code no.		Value	Serv. code no.
100 Ω 100 Ω	CERMET carb.	5322 101 14011 4822 100 10075	}	100 Ω	5322 101 10873
$220~\Omega \\ 220~\Omega$	CERMET carb.	4822 100 10359 4822 100 10019	}	250 Ω	5322 101 10874
470 Ω 470 Ω	CERMET carb.	5322 101 14047 4822 100 10038	}	500 Ω	5322 101 10871
1 kΩ 1 kΩ	CERMET carb.	4822 100 10254 4822 100 10037	}	1 kΩ	5322 101 10872
$2.2 \mathrm{k}\Omega$ $2.2 \mathrm{k}\Omega$	CERMET carb.	5322 101 14008 4822 100 10029	}	2.5 k Ω	5322 101 10875
4.7 k Ω 4.7 k Ω	CERMET carb.	5322 101 10509 4822 100 10036	}	5 k Ω	5322 101 10876
10 kΩ	carb.	4822 100 10035		10 k Ω	5322 101 10869
22 k Ω	carb.	4822 100 10051		25 k Ω	5322 101 10877
47 k Ω	carb.	4822 100 10079		see	note
100 k Ω	carb.	4822 100 10052		100 kΩ	10878

Note: Potentiometer used for UNIT 1, AMPLIFIER, pos. no. 633; altered to 25 $\mbox{k}\Omega$

The dustproof potentiometers are mechanical compatible.

For instruments with CERMET and carbon potentiometers spare parts are available on stock too.

LACQUERED METAL FILM RESISTORS MR25

style	resistance range		tol. ±%			temperature coefficient ±ppm/ ^O C		(r.m.s.)	service code no. 5322 116 5		
MR 25	4,99 \$	2 – 301 kΩ	1	E96	50 *		250		followed by		
	1		<u> </u>	· · · · · · · · · · · · · · · · · · ·	1	For res	sistance valu	ues lower	than 49,9 Ω: 1	00 ppm/ ^O C	
4,99	0568	16,5	4109	54,	,9 4	445	182	4493	604	4528	
5,11	4192	16,9	0627	56,	,2 4	446	187	4494	619	4529	
5,23	4113	17,4	4432	57,	,6 4	447	191	4495	634	4531	
5,36	4239	17,8	0418	59		448	196	0676	649	4532	
5,49	4102	18,2	4083	60,	,4 4	449	200	4496	665	4533	
5,62	4128	18,7	0895	61,		451	205	0669	681	4534	
5,76	4413	19,1	4104	63,		375	210	4036	698	4037	
5,90	1064	19,6	0473	64,	•	453	215	0457	715	0571	
6,04	4114	20	1048	66,	-	454	221	4002	732	4535 4536	
6,19	1049	20,5	0678	68,		455	226	4497	750	4537	
6,34	0862	21	4433	69	•	456	232	4498	768 787	4537 4538	
6,49	4112	21,5	0677	71,	•	457	237	0679	806	4539	
6,65	4414	22,1	0983	73		458	243 249	0437 4499	825	4541	
6,81	4013	22,6	0491	75		459	255	4501	845	4542	
6,98	4103	23,2	4434	76	•	494	261	4502	866	4543	
7,15	4415	23,7	4014	78	•	578	267	4502	887	4544	
7,32	4416	24,3	4435	80		461 462	274	4504	909	4545	
7,50	4417	24,9	0903	82		463	280	4505	931	4546	
7,68	4418	25,5	4436	84 86	•	464	287	4506	953	4547	
7,87	4046	26,1	0876		-	465	294	4507	976	4548	
8,06	4419	26,7	4067	88 90	•	466	301	4508	1K	4549	
8,25	4099	27,4	0493 0623	93	•	467	309	4509	1 K02	4551	
8,45	4421	28 28,7	4068	I	•)569	316	4511	1 K05	4552	
8,66 8,87	1051 4101	29,4	4084	1	•	1468	324	4512	1 K07	4553	
		30,1	0904		•	1469	332	4513	1K1	4554	
9,09 9,31	0863 4422	30,1	4437			1471	340	4514	1K13	4555	
9,53	4258	31,6	4034	1		1472	348	4515	1 K 15	0415	
9,76	4423	32,4	4105			1473	357	0603	1 K 18	4556	
10	0452	33,2	0527			1474	365	4516	1 K21	4557	
10,2	4111	34	4438	1	13	4475	374	4517	1 K24	4559	
10,5	4071	34,8	4027			4476	383	4518	1K27	0555	
10,7	4424	35,7	4439	1	18	4477	392	4006	1K3	0526 4561	
11	4059	36,5	0409	1:		4426	402	4519	1 K33	0628	
11,3	4425	37,4	4158	1:	24	4478	412	4521	1		
11,5	0838	38,3	0954	1	27	4479	422	0459	1K4	4562 4563	
11,8	0738	39,2	4087	1	-	4481	432	4522	1K43	0635	
12,1	4069	40,2	0926			4482	442	0592	1K47 1K5	4564	
12,4	4427	41,2	4108	1	37	4483	453	4523	1K54	0586	
12,7	4261	42,2	1052	1	40	4484	464	0536		0622	
13	4082	43,2	0519	1	143	4485	475	4007			
13,3	1047	44,2	0818		147	0766	487	0508			
13,7	4428	45,3	0795	1	150	4486	499	4524 4525			
14	0839	46,4	0492		154	0506	511 523	4525 4526			
14,3	4429	47,5	0952		158	4487	i		1K78		
14,7	0412	48,7	0511	1	162	0417	536	0621			
15	0902	49,9	4441		165	4488	549	0732 4009			
15,4	0925	51,1	4442		169	4489	562 576	4527	1		
15,8	0861	52,3	4443		174	4491 4492	590	0561			
16,2	4431	53,6	4444		178	7734	1 330	0001	ı		

2K	4572	6K65	4604	1 22K1	4003	1 73K2	0666	243K	4733
2K05	0664	6K81	4012	22K6	0481	75K	4686	249K	4734
						i i			4735
2K1	4573	6K98	4605	23K2	4645	76K8	4687	255K	
2K15	0767	7K15	4606	23K7	4646	78K7	0533	261 K	4736
2K21	4574	7K32	4607	24K3	4647	80K6	4688	267K	4737
	1074	7.102	4007	2410	4047	DOING	4000		
2K26	0075	745	4000	0.000	40.40	2011		274K	4738
	0675	7K5	4608	24K9	4648	82K5	4689	1	
2K32	4575	7K68	4609	25K5	4649	84K5	4691	280K	4739
2K37	4576	7K87	0458	26K1	4651	86K6	4692	287K	4741
2K43	4004	8K06	4611	26K1	4652	88K7	4693	294K	4742
						1			4743
2K49	0581	8K25	4558	27K4	0559	90K9	4694	301 K	4/43
211									
2K55	4577	8K45	4612	28K	0667	93K1	4297	316 K	5268
2K61	0671	8K66	4613	28K7	4653	95K3	0567	332 K	1184*
2K67	4578	8K87	4614	29K4	4654	97K6	4695	348 K	5499
2K74		1				1			
	0636	9K09	4615	30K1	4655	100K	4696	365 K	5641
2K8	4579	9K31	4616	30K9	4656	102K	4697	374 K	5457
2K87	0414	9K53	4617	31K6	4657	105K	4698	383 K	5335
2K94	4581	9K76	4618	32K4	4658	107K	4699	402 K	5283
						1			
3K01	0524	10K	4619	33K2	0482	110K	4701	412 K	5424
3K09	4582	10K2	4621	34K	4659	113K	4702	422 K	5247
3K16	0579	10K5	0731	34K8	4661	115K	4279	442 K	5458
						1	,0		
3K24	4583	10K7	4622	35K7	4662	118K	4703	464 K	5207
3K32	4005	11K	4623	36K5	0726	121K	4704	475 K	1275
3K4	4584	11K3	0668	37K4	4663	124K	4705	499 K	5468
3K48	4585	11K5	4624	38K3	0483	127K	4706	511 K	5258
3K57	4586	11K8	4625	39K2	4664	130K	4707	536 K	4758
	1000		1020	33172	4004	1301	4/0/	330 K	4730
3K65	4587	12K1	0572	401/2	4000	12016	4700	500 K	1100
				40K2	4665	133K	4708	562 K	1169
3K74	4588	12K4	4626	41K2	4666	137K	4709	590 K	5567
3K83	4589	12K7	0443	42K2	0474	140K	4259	619 K	5315
3K92	4591	13K	0522	43K2	4667	143K	4711	649 K	5331
4K02	4592	13K3	4627	1		1		1	
41102	4332	1513	4027	44K2	4668	147K	4712	681 K	5284
4V12	4500	1247	4000			4504	4-4-0		
4K12	4593	13K7	4628	45K3	4669	150K	4713	750 K	5532
4K22	0729	14K	4629	46K4	0557	154K	4714	806 K	1369
4K32	4594	14K3	4631	47K5	4671	158K	4715	825 K	1398
4K42	0556	14K7	4632	48K7	0442	162K	4716		
4K53	0631			1				866 K	1395
41/00	0031	15K	4001	49K9	0674	165K	4717	909 K	5533
41404									
4K64	0484	15K4	0479	51K1	0672	169K	4718	953 K	1368
4K75	4008	15K8	4633	52K3	4673	174K	4719	1MAO	5535
4K87	0509	16K2	0593	53K6	4674	178K	4721		
4K99	0523	16K5	4634	54K9	4675	182K			
							4722		
5K11	4595	16K9	4635	56K2	4676	187K	4723		
				1					
5K23	4596	17K4	4636	57K6	4677	191K	4724		
5K36	4597	17K8	4637	59K	4678	196K	4725		
5K49	4598	18K2	4638	60K4	4679	200K	4726		
5K62	4011	18K7	0558	61K9	0872	205K	4727	1	
5K76	459 9	19K1	4639	63K4	4681	210K	4208		
5K9	0583	19K6	4641	64K9	0514	215K	4728		
6K04	4601	20K	4642	66K5	4682	221 K	4038		
6K19	0608	20K5	4643	68K1	4683	226K			
							4729		
6K34	4602	21K	4644	69K8	4684	232K	4731		
6K49	4603	21K5	0451	71K5	4685	237K	4732		
								* 4000 44	

* 4822 116 5....

Figures

CONTENTS OF FIGURES

企业工程 10	
Fig. 28	Unit 2, adjusting elements
Fig. 29	Unit 1, adjusting elements
Fig. 30 *	Block diagram
Fig. 31	Front view
Fig. 32	Rear view
Fig. 33	Overall circuit diagram
Fig. 34.	Unit 3, keyboard/display, component lay-out
Fig. 35	Unit 3, keyboard/display, circuit diagram
Fig. 36	Unit 2, DFS + CPU, component lay-out
Fig. 37	Unit 2, DFS (digital frequency synthesizer), circuit diagram
Fig. 38	Unit 2, CPU (central processing unit), circuit diagram
Fig. 39	Unit 1, component lay-out overview
Fig. 40	Unit 1, power supply, component lay-out
Fig. 41	Unit 1, power supply, circuit diagram
Fig. 42	Unit 1, pulse generator, component lay-out
Fig. 43	Unit 1, pulse generator, circuit diagram
Fig. 44	Unit 1, modulator, component lay-out
Fig. 45	Unit 1, modulator, circuit diagram
Fig. 46	Unit 1, amplifier, component lay-out
Fig A7	Hait 1 amplifier direuit diserses

component side

Fig. 28 Unit 2 adjusting elements

Fig. 30 Block diagram

Fig. 31 Front view

Fig. 33 Overall circuitdiagram

Brightness adjustment of displays 1. Open + 5 V supply of UNIT 3 at CIS-connector, pin 11, and connect an amperemeter. (It is recommended to use the extension cable of the service kit.) 2. Set the display you want to adjust to e. g. digit 1 (two segments) and measure current. 3. Set the display to e. g. 11 (two segments more than before) and measure current again. The difference may not exceed 10 mA per segment, in this case 20 mA; note that the decimal point is a segment too. Adjustment is done by resistor 604, 606 resp. 608. Observe that no further display segments or LEDs are switched on or off, between both measurements.

PM 5191 from LO - 02 691 onwards is equipped with displays type SI 35035, serv. code no. 5322 130 90491

amperemeter

Distinction can easily be done by the space between the digits

- For instruments from LO . . . onwards (see above) you should only build in the type SI 35035.
- For instruments up to above-mentioned LO-no. it is recommended to use still type LTM 86
 If the stock is empty a new display can be built in;
 for this adjustment to the same brightness is necessary for the new one.
- If you want to replace all displays by new ones, you may do so.
 In this case a new adjustment for each display is necessary.

Fig. 34 Unit 3, keyboard/display component lay-out

Fig. 35 Unit 3, keyboard / display

Symbol identification:

Fig. 36 Unit 2, DFS + CPU component lay-out

Fig. 37 Unit 2, DFS (digital frequency synthesizer)

Fig. 38 Unit 2, CPU (central processing unit)

Details see figures 40, 42, 44, 46

Fig. 39 Unit 1, component lay-out (overview) power supply pulse generator modulator amplifier

Fig. 40 Unit 1, power supply component lay-out

Connections to components mounted on the rear plate, see fig. 33, 'Overall circuitdiagram'

Fig. 41 Unit 1, power supply

Fig. 42 Unit 1, pulse generator component lay-out

Fig. 43 Unit 1, pulse generator

Fig. 45 Unit 1, modulator

OUTPUT

Fig. 46 Unit 1, amplifier component lay-out

CODING SYSTEM OF FAILURE REPORTING FOR QUALITY ASSESSMENT OF T & M INSTRUMENTS

(excl. potentiometric recorders)

The information contents of the coded failure description is necessary for our computerized processing of quality data.

Since the reporting of repair and maintenance routines must be complete and exact, we give you an example of a correctly filled-out PHILIPS SERVICE Job sheet.

1	2	3		4)			
Country Day Month Year		Typenumber /Version		Factory/Serial no.			
3 2 1 5 0 4 7 5		0 P M 3 2 6 0 0 2		D O 0 7 8 3			
	CODEL	D FAILURE DESCR	IPTION	6			
(5)							
Nature o	f call Location	Componer	nt/sequence no. (Sategory			
Pre sale r Preventiv maintena Correctiv maintena Other	repair 0 0 2 1	R 0 0 6	6 0 7 6 3 1 0 0 1	Job completed			
	ription of the informati	on to be entered in t	he various boxes:				
2)Day Month	Year 1 5 0 4 7	5 = 15 April 1975					
③Type numb	er/Version O P M	3 2 6 0 0 2 =		M 3260, version 02 (in later his number is placed in front of			
④ Factory/Ser	rial number D O 0	0 7 8 3 = DO 7	83 These data are the instrument	mentioned on the type plate of			
_	all: Enter a cross in the re description	e relevant box					
Location		Component/seque	nce no.	Category			
no or mechan of this part (r LISTS' in the Example: 000 000 007 If units are no	problem area. e of the part fault occurs, e.g. unit ical item no efer to 'PARTS manual).	graticule, of graticule, of graticule, of graticule, of graticule, of etc.) 990003 Probe (on to instrum graticule) 990004 Leads and graticule, of fuse, board, fuse,	component. conent if in the circuit cignation is tters must be com the left) diboxes and e written (in the last digit most box) in boxes. fied in the (Not applicable track (text tellem, grip, rail, etc.) I. dial knob, cap, ly if attached tent) associated plugs alive, transistor, d, etc.) unit (p.w. tunit, etc.) (only those (pe number) tation (manual, etc.)	O Unknown, not applicable (fault not present, intermittent or disappeared) Software error Readjustment Electrical repair (wiring, solder joint, etc.) Mechanical repair (polishing, filing, remachining, etc.) Replacement (of transistor, resistor, etc.) Cleaning and/or lubrication Operator error Missing items (on pre-sale test) Environmental requirements are not met			
		990009 Foreign of 990099 Miscellane	•				

- ① Job completed: Enter a cross when the job has been completed.
- Working time: Enter the total number of working hours spent in connection with the job (excluding travelling, waiting time, etc.), using the last box for tenths of hours.

1 2 = 1,2 working hours (1 h 12 min.)		1	2	=	1,2	working	hours	(1	h	12	min.)
---------------------------------------	--	---	---	---	-----	---------	-------	----	---	----	-------

SALES AND SERVICE ALL OVER THE WORLD

Alger: Bureau de Liaison Philips, 24 bis, Rue Bougainville, El Mouradia, Alger; tel::213-601405

Antilles: see Ned. Antillen

Argentina: Philips Argentina S.A., Vedia 3892, Casilla de Correo 3479, 1430 Buenos Aires; tel.:54-1-5414106/ 54-1-5417141/5422411

Austria: see Oesterreich

Australia: Philips Scientific & Industrial, 25-27 Paul Street, P.O. Box 119, North Ryde/ NSW 2113; tel:. 61-2-8888222 Service Centre: PCS Service, 2 Greenhills Avenue, Moorebank, P.O. Box 269, Liverpool/NSW 2170; tel:. 61-2-6022000

Bangla Desh: Philips Bangla Desh Ltd., 16/17 Kawran Bazar C/A P.O. Box 62; Ramna, N.V. Dhaka; tel: 325081/5, 411976 Service Centre: 50 New Eskaton Road Maghbazar, Dhaka; tel.: 403047

België/Belgique: Philips & MBLE associated S.A., Scientific and Industrial Equipment Division, 80 Rue des Deux Gares, 1070 Bruxelles; tel.: 32-2-5256111

Bolivia: E.P.T.A. Industrias Bolivianas Philips S.A., Calle Mercado no. 1046, Cajón Postal 2964, La Paz, tel.: 341453/350029

Brasil: Philips do Brasil Ltda., Av. Eng. Luiz Carlos Berrini, 3009,Caixa Postal 8681, CEP 04571-28a0 Paulo (S.P.); tel: 55-11-2411611 Service Centre: Sistemas Profissionais, Rua Anton Philips 1, Caixa Postal 7018, 07000 Guarulhos-S.P.; tel: 55-11-2090111

Canada: Philips Electronics Ltd., Test and Measurement Dept., 1001 Ellesmere Road, Scarborough (Ontario) M1P-2W7, tel.: 1-416-292 82000

Chile: Philips Chiléna S.A., Division Professional, Avenida Santa Maria 0670, Casilla 2687, Santiago de Chile; tel.:56-2-770038

Colombia: Industrias Philips de Columbia S.A., Calle 13 no. 51–39, Apartado Aereo 4282 Bogota; tel.: 57–1–2600600

Danmark:Philips Industri og Handels A/S, Prags Boulevard 80, P.O. Box 1919, DK-2300 CøbenhavnS; tel.: 45-1-572222

Deutschland (Bundesrepublik): Philips GmbH, Unternehmensbereich Elektronik für Wissenschaft und Industrie, Miramstrasse 87, Postfach 310 320, 3500 Kassel-Bettenhausen; tel.: 49-561-5010

Ecuador: Philips Ecuador C.A., Páez 118 y Avenida Patria, Casilla 343, Quito; tel.: 593-2-546100/564601

Egypt: Philips Egypt Branch of Philips Midden Oosten N.V., 10, Abdel Rahman El Rafei Street -Dokki-, Cairo; tel.: 20-2-3490922/3490926/3490928/3492237

Eire: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Dublin 14; tel.: 353-1-693355

España: Philips Ibérica S.A.E., Martinez Villergas 2, Apartado 2065, Madrid 28027; Tel.: 34-1-4042200 Service Centre: Euroservice S.A. Calle de Albasanz 75, Madrid 28017; tel.: 34-1-2045940/2047025/2047105

Ethiopia: Philips Ethiopia (Priv. Ltd. Co.), Ras Abebe Areguay Avenua, P.O.B. 2565, Addis Ababa; tel.: 448300/157441

Finland: see Suomi

France: S.A. Philips Industrielle et Commerciale, Division Science et Industrie, 105 Rue de Paris, B-P.62, 93 002 Bobigny Cedex, tel.: 33-1-4830111

Germany: see Deutschland

Hellas (Greece): Philips S.A. Hellénique, 15, 25th March Streel, P.O. Box 3153, Athens 10210; tel.: 30-1-4894911

Hong Kong: Philips Hong Kong Ltd., 29/F Hopewell Centre, 17 Kennedy Road, GP.O. Box 2108, Hong Kong; tel.: 852-5-283298 Ireland: see Eire

India: Peico Electronics & Electricals Ltd., &E Equipment, Shivsagar Estate, Block "A" Dr. Annie Besant Road, P.O.B. 6598, Worli, Bombay 400 018 (WB); tel.: 91–22–4921500

Indonesia: P.T. Philips Development Corporation, Jalan Gatot Subroto Kav. 35/36, P.O. Box 785/KBY, Jakarta 12950; tel.: 62-21-517900/5781977

fran: Philips Iran Ltd., P.O.B. 11365-3891, Tehran; tel.: 98-21-674138/675158

Iraq: Philips Midden Oosten B.V., Baghdad Branch, Hai Al Whida (district), Area No. 902, Street No. 12 Building No. 141/10, P.O. Box 5749, Baghdad; tel: 7187181

Island : Heimilisteaki SF, Saetún 8, Reykjavik; tel.: 24000

Italia: Philips S.p.A., Sezione I&E/T&M, Viale Elvezia 2, 20052 Monza (MI); tel.: 39-39-36351

Japan: see Nippon

Kenya: Philips (Kenya) Ltd., 01 Kalou Road, Industrial Area, P.O.B. 30554, Nairobi; tel.: 254-2-557999

Lebanon: Philips Middle East S.A.R.L., P.O. Box 11-670, Beyrouth; tel.: 392320/1

Malaysia: Philips Malaysia Sendirian Berhad, Wisna Philips, No. 3, Jalan SS15/2A, 47500 Petaling Jaya, Selangor, G.P.O.B. 12163, 50768 Kuala Lumpur, tel.: 60-3-7345511/7554234 Service Centre: Lot 51, Jalan University, Section 13, 46200 Petaling Jaya; tel.: 60-3-7562144

México: Telecommunicaciones y Sistemas Professionales S.A. de C.V., Goldsmith No. 40, Col. Polanco, 11560 México, D.F.; tel.: 52–5-5406875

Morocco: Philips Maroc S.A., 304-Boulevard Mohammed V, B.P. 10896, Bandoeng, Casablanca 05; tel.: 212-302092/303192/308051

Nederland: Philips Nederland B.V. Boschdijk 525, Gebouw VB, 5600 PD Eindhoven; tel.: 31-40-793333

Ned. Antillen: Philips Antillana N.V., Schottegatweg Oost 146, Postbus 3523, Willemstad, Curaçao; tel.: 599-9-615277/612799 (service)

New Zealand: Philips New Zealand Ltd., Scientific and Industrial Equipment Division, 68-86 Jervois Quay, G.P.O. Box 2097, Wellington C1; tel.: 64-4-735735

Nigeria: Associated Electronic Products (Nigeria) Ltd., KM16, Ikorodu Road, Ojota, P.O.B. 1921, Lagos; tel.: 234-1-900160/69

Nippon: NF Trading Co. Ltd., 3-20 Tsunashima Higashi 6 - Chome, Kohoku-ku, Yokohama-Shi

Norge (Norway): Norsk A.S. Phillips, Dept. Industry and Telecommunication, Sandstuveien 70, Postboks 1, Manglerud N 0612, Oslo 6; tel.: 47–2–680200

Oesterreich: Oesterreichische Philips Industrie GmbH, Abteilung Industrie Elektronik, Triesterstrasse 64, Postfach 217, A 1100 Wien; tel: 43-222-645521 Service Centre: Oesterreichische Philips Industrie GmbH Ketzergasse 120-122, A 1232 Wien; tel: 43-222-8662

Pakistan: Philips Electrical Co. of Pakistan Lto., P.O.B. 7101, Karachi 3, tel.: 92-21-725772

Paraguay: Philips del Paraguay S.A., Avenida Artigas 1519, Casilla de Correo 605, Asunción; tel.: 595-21-291924/291934

Péru: Philips Peruana S.A., Av. Alfonso Ugarte 1268, Lima 5, Apartado Aereo 1841, Lima 100; tel.: 51-14-326070

Philippines: Philips Industrial Development Inc., 2246 Pasong Tamo, Makati, Metro Manila; tel.: 63-2-868951/868959

Portugal: Philips Portuguesa S.A.R.L., 1009 Lisboa Codex, Av. Eng. Duarte Pacheco 6, 1000 Lisboa; tel.: 351–1-683121/9 Service Centre: Servicos Técnicos Profissionais, Outorela 7/Carnaxide, 2795 Linda-a-Velha; tel.: 351–1-2180071

Saoudi Arabia: Delegate Office of Philips Industries, P.O. Box 9844, Riyadh 11423; tel.: 966-1-4777808

Schweiz-Suisse-Svizzera: Philips A.G., S&I Equipment, Allmendstrasse 140, Postfach 670, CH-8027 Zürich; tel.: 41-1-4882211

Singapore: Phillips Singapore Private Limited, Lorong 1, Toa Payoh, Singapore 1231, P.O. Box 340 – Toa Payoh Central Post Office, Singapore 9131; tel.: 65–3502000 (N.O.)

South Africa: South African Philips (Pty) Ltd., 2 Herb Street, P.O.B. 7Z03, New Doornfontein, Johannesburg 2000; tel.: 27–11–6179111

South Korea: Philips Electronics (Korea) Ltd., 260-199 Itaewon-dong, Yongsan-ku, Philips House C.P.O. Box 3680, Seoul, Korea 140; tel.: 82-2-794-5011/5

Spain: see España

Suomi: Oy Philips AB, Kaivokatu 8, P.O. Box 255, SF-00101 Helsinki; tel: 358-0-17271 Service Centre: Sinikallionte 1-3, P.O. Box 11, SF-02630 Espoo; tel: 358-0-52571

Sverige (Sweden): Philips Försäijning AB, Div. Industrielektronik, Tegeluddsvägen 1, S 115 84 Stockholm; tel.: 46-8-7821000

Syria: Philips Moyen-Orient S.A.R.L., Rue Fardoss 79, B.P. 2442, Damas; tel.: 218605/221650/228003/221025

Taiwan: Philips Taiwan Ltd., 150, Tun Hua North Road, P.O. Box 22978, Taipei; tel: 886-2-712-0500

Tanzania: Philips (Tanzania) Ltd., T.D.F.L. Building (1St floor), Ohio/Upanga Road P.O. Box 20104, Dar es Salaam; tel.: 29571/4

Thailand: Philips Electrical Co. of Thailand Ltd., 283 Silom Road, P.O. Box 961, Bangkok 10500; tel.: 66-2-233 6330.9/2355 665.8 Service Centre: 29/1 Sanpavud Road, Bangna, Prakanong, Bangkok 10110; tel.: 66-2-396-1639/393 8772-6/66-2-396-1437

Tunisia: S.T.I.E.T., 32 bis, Rue Ben Ghedhahem, Tunis; tel.: 216-1-348666

Türkiye: Türk Philips Ticaret A.S., Inönü Caddesi 78/80, Posta Kutusu 504, 80074 Beyoglu, Istanbul; tel.: 90-1-1435910

United Arab Emirates: Philips Middle East BV., Dubai International Trade Centre, 11th floor, P.O. Box 9269, Dubai; tel.: 971-4-37700

United Kingdom: Pye Unicam Ltd., York Street, Cambridge CB1-2PX; tel.: 44-223-358866 Service Centre: Pye Unicam Ltd., Service Division, Beddington Lane, Croydon CR9-4EN; tel.: 44-1-6843670

Uruguay: Industrias Philips del Uruguay S.A, Avda Uruguay 1287, Casilla de Correo 294, Montevideo: tel: 915641/2/3/4-919009 Service: 387777-387878-388484

U.S.A.:
Philips Test and Measurement Department Inc.,
California: Garden Grove 92645
12882 Valley View Street, Suite 9;
tel.: (213) 594–8741 / (714) 898–5000
California: Mipitas 95035
477 Valley Way:
tel.: (408) 946–6722
Florida: Winter Park 32789
1850 Lee Road, Suite 229;
tel.: (305) 628–1717
Illinois: Itasca 60143
500 Park Blvd., Suite 1170;
tel.: (312) 773–0616
Massachusetts: Woburn 01801
21 Olympia Avenue;
tel.: (617) 935–3972
Minnesota: Minneapolis 55420
7851 Metro Parkway, Suite 302;
tel.: (612) 854–2426
New Jersey: Mahwah 07430
85 McKee Drive;
tel.: 1–201–5293800 (Toll-free 800–631717)

Venezuela: Industrias Venezolanas Philips§, A., Apartado Aereo 1167, Caracas 1010-A; tel.: 58-2-203.7111

Zaire: S.A.M.E./s.a.r.l., 137, Boulevard du 3/juin, B.P. 16636, Kinshasa; tel.: 31887-31888-3182 1

Zambia: Philips Ele€trical Zambia Ltd., Mwembeshi Road, P.O.B. 31878, Lusaka; tel.: 218511/218701/218321

Zimbabwe: Philips Electrical (Pvt) Ltd., 62 Mutare Road, P.O. Box 994, Harare; tel.: 47211/48031

For information on change of address:
Philips Export B.V.,
Industrial & Electro-acoustic Systems Divitor,
Test & Measurement, Building TQ III - 4, Pg_ Box 218,
5600 MD Eindhoven - The Netherlands
Tel. 31-40-788476

TIM/870415