Wireless LAN Security - IEEE802.11i

Review

- IEEE802.11b
 - CCK
- IEEE 802.11g
 - OFDM at 5GHz

Introduction

- 802.11 standard specifies the operating parameters of wireless local area networks (WLAN)
 - History: 802.11, b, a, g, i
- Minimal security in early versions
- Original architecture not well suited for modern security needs
- 802.11i attempts to address security issues with WLANs

WEP in 802.11b

- Wired Equivalent Privacy (WEP)
 - Confidentiality
 - » Encryption
 - 40-bit keys small keys
 - Based on RC4 algorithm too simple
 - Access Control
 - » Shared key authentication weak
 - » + Encryption poor
 - Data Integrity
 - » Integrity checksum computed for all messages prone to attacks

WEP Mechanism

- WEP Encryption uses RC4 stream cipher
 - Each frame can have a new IV, or IV can be reused for a limited time.

Pad

(6 bits)

Key ID

(2 bits)

If integrity check fails then frame is ACKed but discarded.

Init. Vector

(3)

How does WEP "work"?

WEP Weakness

Several major problems in WEP security

- The IV used to produce the RC4 stream is only 24-bit long
 - » The short IV field means that the same RC4 stream will be used to encrypt different texts – IV collision
 - » Statistical attacks can be used to recover the plaintexts due to IV collision
- The CRC-32 checksum can be easily manipulated to produce a valid integrity check value (ICV) for a false message

Attack types:

 Collision attacks, weak key(key discovery) attacks, replay attacks and forgery attacks.

Collision attacks

• WEP expands each RC4 key into 2^{24} per-packet keys \Rightarrow data can be recovered if IV is ever repeated with same key \Rightarrow RC4 key must be changed at least every 2^{24} packets or data is exposed through IV collisions!

Some implemented IV selection strategies:

- Random: Collision probability P_n two packets will share same IV after n packets is $P_2 = 1/2^{24}$ for n = 2 and $P_n = P_{n-1} + (n-1)(1-P_{n-1})/2^{24}$ for n > 2.
 - □ 50% chance of a collision exists already after only 4823 packets!!!
- Increment from 0: Collision probability = 100% after *two* devices transmit

Weak key attacks

- Class of RC4 weak keys exists where patterns in the 1st 3 bytes of key causes corresponding patterns in 1st few bytes of the generated RC4 key stream.
- For each packet, use IV and exposed key stream to identify potential weak keys
- Iterate over potential weak keys from a sequence of packets until the RC4 base key is found

Replay attacks

Good guy STA

Forgery attacks

- Sample Attack 1:
 - ☐ Recv-Addr, Src-Addr, Dest-Addr are all unprotected
 - ☐ On packets from a STA to the AP, corrupt the Dest-Addr
 - ☐ The AP will decrypt data and send it to the forged destination

- Sample Attack 2:
 - ☐ create a blank message with same number of data bytes
 - ☐ Flip some bits and compute the ICV
 - ☐ XOR resulting bit-flipped message + ICV into captured message

What Can IEEE 802.11i Do?

- Provide security through WEP (wired equivalent privacy)
 - Original Key size was too small (40 bit)
 - Heavy Reuse of keys
 - No Key Management within protocol
 - Not Effective Authentication protocol
- Main areas of improvement in IEEE 802.11i are -
 - Authentication
 - Key management
 - Data transfer
- Implemented in WPA and WPA2 (Wi-Fi Protected Access)

802.11i Authentication -1

Authentication Overview

802.11i Authentication -2

Authentication

- Mutual authentication
- The AS and station derive a Master Key (MK)
- A Pairwise Master Key (PMK) is derived from MK
- The AS distributed PMK to the AP
- In PSK authentication, the authentication phase is skipped
 - » PMK = PSK

Key management and establishment

- PMK is sent to AP by AS
- Key management is performed between AP and the peer four-way handshake
 - » The four-way handshake can also be used for mutual authentication between AP and the peer in PSK mode
- A set of keys are derived from PMK to protect group key exchange and data
- Group key exchange allows AP to distribute group key (for multicast) to the peer
 14

802.11i Encryption

Summary

	$\underline{\text{WEP}}$	TKIP	<u>CCMP</u>
Cipher	RC4	RC4	AES
Key Size	40 or 104 bits	128 bits	128 bits
		encryption,	
		64 bit auth	
Key Life	24-bit IV, wrap	48-bit IV	48-bit IV
Packet Key	Concat.	Mixing Fnc	Not Needed
Integrity			
Data	CRC-32	Michael	CCM
Header	None	Michael	CCM
Replay	None	Use IV	Use IV
Key Mgmt.	None	EAP-based	EAP-based

- Optional IEEE802.11i protocol for data confidentiality and integrity
 - TKIP is designed explicitly for implementation on WEP legacy hardware
- TKIP three new features:
 - A cryptographic message integrity code (MIC)
 - A new IV sequencing discipline
 - » The transmitter increments the sequence number with each packet it sends
 - A per-packet key mixing function

TKIP frame processing

17

- Defeating weak key attacks: key mixing
 - Transforms a temporal key and packet sequence number into a per packet key and IV
 - The key mixing function operates in two phases
 - » Phase 1: Different keys used by different links
 - Phase 1 needs to be recomputed only once every 2¹⁶ frames
 - » Phase 2: Different WEP key and IV per packet
 - Phases 1 and 2 can be pre-computed

18

- Defeating replays: IV sequence enforcement
 - TKIP uses the IV field as a packet sequence number
 - The transmitter increments the sequence number with each packet it send
 - A packet will be discarded if it arrives out of order
 - » A packet is out-of-order if its IV is the same or smaller than a previous correctly received packet
- Defeating forgeries: New MIC (Michael)
 - MIC key is 64-bits
 - » security level of 20 bits

- **Both encryption and MIC use AES**
 - Uses counter Mode (CTR) to encrypt the payload and MIC
 - Uses CBC-MAC to compute a MIC on the plaintext header and the payload
 - Both encryption and authentication use the same key

 CCMP data processing Packet #. Temporal Key Plaintext frame d MAC header Data A2 **CCMP Additional** Create authentication header nonce data **CCM** encryption CCMP MAC MIC FC\$ **Data** header header

- Each message block has the size of 16 octets
 - » For CTR encryption, A_i has the following format (*i* is the value of the counter field):

» For the CBC-MAC authentication, B_0 has the following format (length := size of the payload):

CCM encryption

Whats New in WPA

Authentication

- Use TKIP (Temporal Key Integrity Protocol), to dynamically change keys
- Can also be used in a less secure PSK (pre-shared key) mode

Encryption

- Use RC4 with large key size (128 bit) and IV (48 bit)
- Defeats the well-known key recovery attacks on WEP

Data Integrity

- More secure MIC (Message Integrity Code) named "Michael" is used
- Includes a frame counter, which prevents replay attacks

Extra Countermeasures

 Special mechanism detects an attempt to break TKIP and temporarily blocks communications with the attacker

Features in WPA2

Authentication & Integrity

- Key management and message integrity is handled by a single component built around AES
- Using a CBC-MAC (Cipher Block Chaining Message Authentication Code)

Encryption

- Uses CTR (Counter mode) AES (128 bit)
- Computationally expensive and adds a significant amount of overhead

Summary

- Implements the mandatory elements of 802.11i
- Use CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol) instead of TKIP

802.11i – Potential Weaknesses

- Hardware requirements
 - Hardware upgrade needed for AES support
 - » Strength of TKIP and Wrap questionable in the long term
 - Authentication server needed for 2-way authentication
- Complexity
 - The more complex a system is, the more likely it may contain an undetected backdoor. e.g. WPS – turn it off!
- Patchwork nature of "fixing" 802.11b

Attacking programms are available on the internet!

Further Security over WLAN

Often you want to connect to a wireless LAN over which you have no control

• Options:

- If you can, connect securely (WPA/WAP2, MAC address filtering, etc.)
- If unsecured, connect to your secure systems securely:
 - » VPN Virtual Private Network
 - » SSL connections to secure systems
- Be careful not to expose passwords
- Watch for direct attacks on untrusted networks

Class Quiz

- What are the weak points in convetional WLAN security?
- What is WPA?
- What is WPA2?