Úloha **1** Hotovo Počet bodů z 1,00

Pro zobrazení $f: R^n o R^n$ definované jako $f(\mathbf{x}) = \mathbf{U}\mathbf{x}$, kde \mathbf{U} je ortogonální matice, platí:

- Ozachovává normu, skalární součin obrazů se může od od skalárního součinu vzorů lišit znaménkem
- Ozachovává skalární součin, ale nemusí to být izometrie
- Onemusí to být lineární zobrazení
- \odot zachovává skalární součin i normu, je to rotace nebo rotace složená se zrcadlením podle nějaké nadroviny v R^n
- je to vždy zobrazení rotace

Nechť ${f U}$ obsahuje ve sloupcích ortonormální bázi nějakého podprostoru v R^n .

Vzdálenost vektoru ${f x}$ od podprostoru ${f rng}{f U}$ je

$$\|\mathbf{x} - \mathbf{U}^T \mathbf{x}\|$$

$$\| (\mathbf{I} - \mathbf{U}\mathbf{U}^T)\mathbf{x} \|$$

- $\|\mathbf{U}\|$, t.j. Frobeniova norma matice \mathbf{U}
- $\|\mathbf{U}^T\mathbf{x}\|$
- Oz uvedených dat nelze požadovanou vzdálenost určit

Nechť $\mathbf{U}=[\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k]$ obsahuje ve sloupcích ortonormální bázi nějakého podprostoru v R^n .

Nechť dále $\mathbf{u} \in \mathrm{rng} \mathbf{U}$. Označíme-li $\mathbf{u} = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 + \cdots + x_k \mathbf{u}_k$, pak

$$\mathbf{Q}\mathbf{u}_i = \mathbf{U}^T\mathbf{x}$$

$$\mathbf{v} = [x_1 x_2 \dots x_k]^T = \mathbf{U} \mathbf{U}^T \mathbf{u}$$

$$\mathbf{o} x_i = \mathbf{u}_i^T \mathbf{u} = \mathbf{u}^T \mathbf{u}_i$$

igcirc koeficienty x_i nejsou určeny jednoznačně nebo nemusí existovat

$$igcip x_i = \mathbf{u} \mathbf{U}^T$$

Nechť $\mathbf{A} \in R^{m imes n}$.

Pak kolmý projektor libovolného vektoru $\mathbf{x} \in R^n$ na podprostor $\mathrm{rng}\mathbf{A}$ je

- ullet matice $\mathbf{A}\mathbf{A}^T$ vždy, není nutný dodatečný předpoklad
- ullet matice $\mathbf{A}\mathbf{A}^T$ za předpokladu, že matice \mathbf{A} má ortonormální sloupce
- jiná matice, žádná z ostatních uvedených odpovědí není správná
- igcirc matice $\mathbf{A}\mathbf{A}^T$ za předpokladu, že matice má ortogonální sloupce, ne nutně ortonormální
- ullet libovolná matice ${f P}$ taková, že ${f P}^2={f P}={f P}^T$

Je dána matice

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Zkuste si v Matlabu (nebo v jiném softwaru) spočítat QR rozklad matice $\bf A$ (při nejhorším to zkuste na papíře $\bf e$. Označíme-li $\bf q_1$, $\bf q_2$ a $\bf q_3$ sloupce výsledné matice $\bf Q$, pak prostřední sloupec matice $\bf A$ lze zapsat jako

$$\mathbf{a}_2 = 0,86\mathbf{q}_1 - 0,12\mathbf{q}_2 - 0,49\mathbf{q}_3$$

$$\mathbf{a}_2 = 2,41\mathbf{q}_1 + 1,48\mathbf{q}_2$$

$$\mathbf{a}_2 = 1,48\mathbf{q}_1 + 1.97\mathbf{q}_2$$

$$\mathbf{a}_2 = 1,48\mathbf{q}_2 + 1.97\mathbf{q}_3$$

$$\mathbf{a}_2 = 2,41\mathbf{q}_1 + 1,97\mathbf{q}_2$$

Poznámky: koeficienty v odpovědích jsou uvedeny jen s přesností jen na 2 desetinná místa.