特殊方程作业7

地物 2201 班 杨曜堃

2024年3月22日

问题 1 利用行波法求解下列 Cauchy 问题

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, & -\infty < x < +\infty, \ t > 0 \\ u|_{t=0} = \varphi(x) \\ \frac{\partial u}{\partial t}|_{t=0} = -a\varphi'(x) \end{cases}$$

问题 2 利用 D'Alembert 解的计算公式求解 Cauchy 问题

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, & -\infty < x < +\infty, \ t > 0 \\ u|_{t=0} = \varphi(x) \\ \frac{\partial u}{\partial t}|_{t=0} = \phi(x) \end{cases}$$

1.
$$a = 1$$
, $\varphi(x) = 3e^{-x^2}$, $\varphi(x) = 0$

2.
$$a = 3$$
, $\varphi(x) = 0$, $\phi(x) = xe^{-x^2}$

要求: 得到形式解(即 D'Alembert 解)后,图示计算结果。

问题 #1	Grade:
采用自变量的线性组合作为新变量	Faculty Comments
$\begin{cases} \xi = x + at \\ \eta = x - at \end{cases}$	1 1 1 1 1 1 1 1
代入偏微分方程得 $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$	
这意味着 $u(\xi,\eta)$ 可以写成两个连续一元函数的和,即	
$u(\xi, \eta) = F(\xi) + G(\eta)$	1 1 1 1 1

问题 #1	Grade:
进而得到通解	Faculty Comments
u(x,t) = F(x+at) + G(x-at)	
代入初始条件	
$u _{t=0} = F(x) + G(x) = \varphi(x)$	
$\frac{\partial u}{\partial t} _{t=0} = aF'(x) - aG'(x) = -a\varphi'(x)$	
方程两边对 x 在区间	
$[x_0,x]$	
上积分 $\int_{x_0}^x F'(x) dx - \int_{x_0}^x G'(x) dx = -\int_{x_0}^x \varphi'(x) dx$	
计算得到	
$F(x) - G(x) = k(x_0) - \varphi(x)$	
其中 $k(x_0) = F(x_0) - G(x_0) + \varphi(x_0)$,从而联立解出 $F(x)$ 、 $G(x)$	
$F(x) = \frac{1}{2}k(x_0)$	
$G(x) = \varphi(x) - \frac{1}{2}k(x_0)$	
将 x 分别用 $x + at$ 和 $x - at$ 替换可得	
$F(x+at) = \frac{1}{2}k(x_0)$	
$G(x - at) = \varphi(x - at) - \frac{1}{2}k(x_0)$	
得到该 Cauchy 问题的 D'Alembert 解	

问题 #2.1	Grade:
根据 D'Alembert 公式	Faculty Comments
$u(x,t) = \frac{1}{2} [\varphi(x+at) + \varphi(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} \phi(s) ds$	
代入 $a=1$, $\varphi(x)=3e^{-x^2}$, $\phi(x)=0$	

 $u(x,t) = \varphi(x - at)$

特殊方程作业 7 3

问题 #2.1	Grade:
即得到形式解	Faculty Comments
$u(x,t) = \frac{3}{2} \left[e^{-(x+t)^2} + e^{-(x-t)^2} \right]$	
采用 MATLAB 计算代码图示结果。	

 ${\rm test7}_2_1.{\rm m}$

```
% 问题2.1达朗贝尔解图示
1
           clear;
2
3
          x = -4:0.1:4;
          t = 0:0.1:2.5;
5
          [X,T] = meshgrid(x,t);
6
          uxt = 1.5*(exp(-(X+T).^2)+exp(-(X-T).^2));
8
          %绘制图像
9
          figure;
10
          surf(X,T,uxt);
11
          xlabel('x');
^{12}
          ylabel('t');
13
           zlabel('u');
```


图 1: 题 2.1 结果图

问题 #2.2	Grade:
根据 D'Alembert 公式	Faculty Comments
$u(x,t) = \frac{1}{2} [\varphi(x+at) + \varphi(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} \phi(s) ds$	
代入 $a=3$, $\varphi(x)=0$, $\phi(x)=xe^{-x^2}$ 即得到形式解	
$u(x,t) = \frac{1}{6} \int_{x-3t}^{x+3t} s e^{-s^2} ds$ $= -\frac{1}{12} \left[e^{-(x+3t)^2} - e^{-(x-3t)^2} \right]$	
采用 MATLAB 计算代码图示结果。	

$test7_2_2.m$

```
% 问题2.2达朗贝尔解图示
1
          clear;
3
          x = -10:0.5:10;
          t = 0:0.1:2;
5
          [X,T] = meshgrid(x,t);
6
          uxt = -(\exp(-(X+3*T).^2)-\exp(-(X-3*T).^2))/12;
8
          %绘制图像
9
          figure;
10
          surf(X,T,uxt);
11
          xlabel('x');
12
          ylabel('t');
13
          zlabel('u');
14
```


图 2: 题 2.2 结果图