

Phrase structure vs dependencies

- In languages with free word order, phrase structure (constituency) grammars don't make as much sense.
 - ▶ E.g., we would need both $S \to NP$ VP and $S \to VP$ NP, etc. Not very informative about what's really going on.

Phrase structure vs dependencies

- In languages with free word order, phrase structure (constituency) grammars don't make as much sense.
 - E.g., we would need both S → NP VP and S → VP NP, etc. Not very informative about what's really going on.
- In contrast, the dependency relations stay constant:

Phrase structure vs dependencies

Even more obvious if we just look at the trees without word order:

Pros and cons

- Sensible framework for free word order languages.
- ▶ Identifies syntactic relations directly. (using CFG, how would you identify the subject of a sentence?)
- Dependency pairs/chains can make good features in classifiers, for information extraction, etc.
- ▶ Parsers can be very fast (coming up...)

But

► The assumption of asymmetric binary relations isn't always right... e.g., how to parse dogs and cats?

How do we annotate dependencies?

Two options:

- 1. Annotate dependencies directly.
- Convert phrase structure annotations to dependencies. (Convenient if we already have a phrase structure treebank.)

Next slides show how to convert, assuming we have head-finding rules for our phrase structure trees.

Lexicalized Constituency Parse

... remove the phrasal categories...

... remove the (duplicated) terminals...

...and collapse chains of duplicates...

...and collapse chains of duplicates...

...and collapse chains of duplicates...

... and collapse chains of duplicates...

... and collapse chains of duplicates...

...done!

Constituency Tree → Dependency Tree

We saw how the **lexical head** of the phrase can be used to collapse down to a dependency tree:

▶ But how can we find each phrase's head in the first place?

The standard solution is to use **head rules**: for every non-unary (P)CFG production, designate one RHS nonterminal as containing the head. S \rightarrow NP $\underline{\text{VP}}$, VP \rightarrow $\underline{\text{VP}}$ PP, PP \rightarrow P $\underline{\text{NP}}$ (content head), etc.

► Heuristics to scale this to large grammars: e.g., within an NP, last immediate N child is the head

Projectivity

If we convert constituency parses to dependencies, all the resulting trees will be **projective**.

- Every subtree (node and all its descendants) occupies a contiguous span of the sentence.
- = the parse can be drawn over the sentence w/ no crossing edges.

Nonprojectivity

But some sentences are **nonprojective**.

- ▶ We'll only get these annotations right if we directly annotate the sentences (or correct the converted parses).
- Nonprojectivity is rare in English, but common in many languages.
- Nonprojectivity presents problems for parsing algorithms.

Dependency Parsing

Some of the algorithms you have seen for PCFGs can be adapted to dependency parsing.

- **CKY** can be adapted, though efficiency is a concern: obvious approach is $O(Gn^5)$; Eisner algorithm brings it down to $O(Gn^3)$
 - N. Smith's slides explaining the Eisner algorithm: http://courses.cs.washington.edu/courses/cse517/ 16wi/slides/an-dep-slides.pdf
- ▶ **Shift-reduce**: more efficient, doesn't even require a grammar!

Recall: shift-reduce parser with CFG

•	Same example	Step 0	Op.	Stack	Input the dog bit
	grammar and	1	S	the	dog bit
	sentence.	2	R	DT	dog bit
	Operations:	3	S	DT dog	bit
	► Reduce (R)	4	R	DT V	bit
	► Shift (S)	5	R	DT VP	bit
	Backtrack to	6	S	DT VP bit	
	step n (B n)	7	R	DT VP V	
		8	R	DT VP VP	
	Note that at 9 and	9	B6	DT VP bit	
	11 we skipped over	10	R	DT VP NN	
	• • • • • • • • • • • • • • • • • • • •	11	B4	DT V	bit
	backtracking to 7	12	S	DT V bit	
	and 5 respectively	13	R	DT V V	
	as there were	14	R	DT V VP	
	actually no choices	15	B3	DT dog	bit
	•	16	R	DT NN	bit
	to be made at those	17	R	NP	bit
	points.				

Transition-based Dependency Parsing

The **arc-standard** approach parses input sentence $w_1 \dots w_N$ using two types of **reduce** actions (three actions altogether):

- **Shift:** Read next word w_i from input and push onto the stack.
- ▶ **LeftArc:** Assign head-dependent relation $s_2 \leftarrow s_1$; pop s_2
- ▶ **RightArc:** Assign head-dependent relation $s_2 \rightarrow s_1$; pop s_1

where s_1 and s_2 are the top and second item on the stack, respectively. (So, s_2 preceded s_1 in the input sentence.)

Example

Parsing Kim saw Sandy:

Step	\leftarrow bot. Stacktop \rightarrow	Word List	Action	Relations
0	[root]	[Kim,saw,Sandy]	Shift	
1	[root,Kim]	[saw,Sandy]	Shift	
2	[root,Kim,saw]	[Sandy]	LeftArc	Kim←saw
3	[root,saw]	[Sandy]	Shift	
4	[root,saw,Sandy]		RightArc	saw→Sandy
5	[root,saw]		RightArc	root→saw
6	[root]		(done)	

► Here, top two words on stack are also always adjacent in sentence. Not true in general! (See longer example in JM3.)

Labelled dependency parsing

- ▶ These parsing actions produce **unlabelled** dependencies (left).
- ► For **labelled** dependencies (right), just use more actions: LeftArc(NSUBJ), RightArc(NSUBJ), LeftArc(DOBJ), . . .

Differences to constituency parsing

- Shift-reduce parser for CFG: not all sequences of actions lead to valid parses. Choose incorrect action → may need to backtrack.
- ▶ Here, all valid action sequences lead to valid parses.
 - Invalid actions: can't apply LeftArc with root as dependent; can't apply RightArc with root as head unless input is empty.
 - Other actions may lead to incorrect parses, but still valid.
- So, parser doesn't backtrack. Instead, tries to greedily predict the correct action at each step.
 - ▶ Therefore, dependency parsers can be very fast (linear time).
 - But need a good way to predict correct actions (next lecture).

Notions of validity

- ▶ In constituency parsing, valid parse = grammatical parse.
 - ► That is, we first define a grammar, then use it for parsing.
- ▶ In dependency parsing, we don't normally define a grammar.
 - ▶ Valid parses are those with the properties on slide 4.

Summary: Transition-based Parsing

- arc-standard approach is based on simple shift-reduce idea.
- Can do labelled or unlabelled parsing, but need to train a classifier to predict next action, as we'll see next time.
- Greedy algorithm means time complexity is linear in sentence length.
- Only finds projective trees (without special extensions)
- ▶ Pioneering system: Nivre's MALTPARSER.

Alternative: Graph-based Parsing

- ► Global algorithm: From the fully connected directed graph of all possible edges, choose the best ones that form a tree.
- **Edge-factored** models: Classifier assigns a nonnegative score to each possible edge; maximum spanning tree algorithm finds the spanning tree with highest total score in $O(n^2)$ time.
- ▶ Pioneering work: McDonald's MSTPARSER
- ► Can be formulated as constraint-satisfaction with integer linear programming (Martins's TURBOPARSER)
- ▶ Details in JM3, Ch 16.5 (optional).

Graph-based vs. Transition-based vs. Conversion-based

- ► TB: Features in scoring function can look at any part of the stack; no optimality guarantees for search; linear-time; (classically) projective only
- GB: Features in scoring function limited by factorization; optimal search within that model; quadratic-time; no projectivity constraint
- CB: In terms of accuracy, sometimes best to first constituency-parse, then convert to dependencies (e.g., STANFORD PARSER). Slower than direct methods.

Choosing a Parser: Criteria

- ► Target representation: constituency or dependency?
- ▶ Efficiency? In practice, both runtime and memory use.
- ► Incrementality: parse the whole sentence at once, or obtain partial left-to-right analyses/expectations?
- Retrainable system?
- Accuracy?

Summary

- Constituency syntax: hierarchically nested phrases with categories like NP.
- ▶ Dependency syntax: trees whose edges connect words in the sentence. Edges often labeled with relations like nsubj.
- Can convert constituency to dependency parse using head rules.
- ► For projective trees, transition-based parsing is very fast and can be very accurate.
- Google "online dependency parser".
 Try out the Stanford parser and SEMAFOR!

Content

- Grammars and syntax parsing
- Parsing with context free grammars
- Parsing with probabilistic context free grammars
- Dependency parsing
- Parsing with neural networks

Parsing with neural networks

- Danqi Chen and Christopher Manning, A Fast and Accurate Dependency Parser using Neural Networks, EMNLP2014 (transition-based dependency parser)
- Timothy Dozat, Peng Qi, and Chris Manning. Stanford's Graph-based Neural Dependency Parser at the CoNLL 2017 Shared Task. In CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, 2017.

(graph-based dependency parser)

Parsing with neural networks

- Danqi Chen and Christopher Manning, A Fast and Accurate Dependency Parser using Neural Networks, EMNLP2014 (transition-based dependency parser)
- Timothy Dozat, Peng Qi, and Chris Manning. Stanford's Graph-based Neural Dependency Parser at the CoNLL 2017 Shared Task. In CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, 2017.

(graph-based dependency parser)

(Nivre et al, 2004)

Greedy Transition-based Parsing

Greedy Transition-based Parsing

A configuration = a stack, a buffer and some dependency arcs

Greedy Transition-based Parsing

• A configuration = a stack, a buffer and some dependency arcs

Greedy Transition-based Parsing

• A configuration = a stack, a buffer and some dependency arcs

• We employ the arc-standard system.

LEFT-ARC (I)

RIGHT-ARC (I)

Greedy Transition-based Parsing

Traditional Features

binary, sparse dim = $10^6 \sim 10^7$

Feature templates: usually a combination of **1 ~ 3** elements from the configuration.

Traditional Features

binary, sparse dim = $10^6 \sim 10^7$

Indicator features

$$\begin{split} s_2.w &= \text{has} \land s_2.t = \text{VBZ} \\ s_1.w &= \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control} \\ lc(s_2).t &= \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ} \\ lc(s_2).w &= \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has} \end{split}$$

Traditional Features

binary, sparse dim =10⁶ ~ 10⁷

$$(s_2)w = \text{has } \land s_2.t = \text{VBZ}$$

$$(s_1)w = \text{good } \land s_1.t = \text{JJ} \land (b_1)w = \text{control}$$

Indicator features

$$lc(s_2).t = PRP \land s_2.t = VBZ \land s_1.t = JJ$$

 $lc(s_2).w = He \land lc(s_2).l = nsubj \land s_2.w = has$

Traditional Features

Danqi Chen and Christopher Manning, A Fast and Accurate Dependency Parser using Neural Networks (Slides)

Indicator

features