DE1484

REMARKS

This Supplemental Preliminary Amendment is being filed in order to subsitute a newly amended section of page 2 for the section of page 2 previously submitted with the Preliminary Amendment filed on August 11, 2003. This is necessary because of a typographical error in paragraph (b) of that page wherein the symbol \in was typed in the place of the symbol ε .

It is respectfully requested that the application should now proceed to prosecution.

Respectfully submitted,

Dated: September 9, 2003

Eugene Lieberstein

Associate Attorney for Applicants

Registration No. 24,645

Anderson, Kill & Olick, P.C. 1251 Avenue of the Americas New York, New York 10020-1182 (212) 278-1000 **DE1484**

APPLICANT:

Myungsun KIM, et.al.

SERIAL NO.:

10/600,560

FILED:

June 19, 2003

FOR

METHOD FOR IDENTIFICATION BASED ON BILINEAR DIFFIE-

HELLMAN PROBLEM

EXAMINER:

to be assigned

GROUP:

to be assigned

CERTIFICATE OF MAILING

I hereby certify that a *SUPPLEMENTAL PRELIMINARY AMENDMENT* is being deposited with the United States Postal Service as First Class Mail in an envelope addressed to: Mail Stop: Initial Patent Examination Division, US Patent & Trademark Office, POB 1450, Alexandria, VA 22313-1450 on September 11, 2003.

Audrey De Souza

DE1484

Newly Amended Section of Page 2 Corresponding to the Last Paragraph

The procedure of the Fiat-Shamir scheme can be expounded as follows. A reliable system administrator selects a sufficiently large number n. Then, A prover selects his own private key a that is relatively prime with n, and calculates $b = a^2 \mod n$. The prover discloses b. Then, the following protocol is repeated for a number of times:

- (a) The prover selects a random integer $r \Box Z_n^*$ $r \in Z_n^*$, where Z_n^* is a multiplicative group of order n, calculates $x = r^2$, and sends x to the verifier;
- (b) The verifier selects a random number $\Box \Box \{0,1\}$ $\underline{\varepsilon} \subseteq \{0,1\}$, and sends $\Box \varepsilon$ to the prover;
- (c) On receiving $\oplus \underline{\varepsilon}$, the prover calculates $y = r \oplus a^{\oplus} \underline{y} = r \cdot \underline{a}^{\varepsilon} \mod n$ and sends y to the verifier; and
- (d) The verifier examines whether $y^2 = x \Box b^{\Box} y^2 = x \cdot b^{\varepsilon} \mod n$ is established. If true, then the verifier accepts the prover as a legitimate user and, otherwise, stops the protocol.