論理と計算

第13回

高次推論:帰納推論の発展

担当:尾崎 知伸

ozaki.tomonobu@nihon-u.ac.jp

講義予定 ※一部変更(前倒し)になる可能性があります

09/22	01. オリエンテーション と 論理を用いた問題解決の概要
09/29	02. 命題論理:構文・意味・解釈
10/06	03. 命題論理:推論
10/13	04. 命題論理: 充足可能性問題
10/20	05. 命題論理:振り返りと演習 (課題学習)
10/27	06. 述語論理:構文・意味・解釈
11/03	07. 述語論理:推論 ※文化の日,文理学部授業日
11/10	08. 述語論理:論理プログラムの基礎
11/17	09. 述語論理:論理プログラムの発展
11/24	10. 述語論理:振り返りと演習 (課題学習)
12/01	11. 高次推論: 発想推論
12/08	12. 高次推論:帰納推論の基礎
12/15	13. 高次推論:帰納推論の発展
12/22	14. 高次推論:振り返りと演習 (課題学習)
01/19	15. まとめと発展的話題

目次:今回の授業の内容

- 標準論理プログラムを対象とした帰納推論
 - 概要
 - ・いくつかの問題設定
 - Cautious Induction / Brave Induction / Induction of Stable Models
- ILASP (Inductive Learning of Answer Set Programs)
 - 問題設定(learning from Answer Sets)
 - 学習アルゴリズム
- II ASPシステム
 - 問題設定の拡張
 - ・ 問題の与え方 (言語バイアス)
 - 例題

標準論理プログラムの帰納推論

準備:標準論理プログラムの伴意と帰納推論の問題設定

- 標準論理プログラムPは、複数の安定モデル(解集合)を持つ。
 - AS(P): プログラムPの安定モデル (解集合) の全体集合
- 基礎原子式(基礎アトム)e に対する2種類の伴意関係
 - Cautious Entailment: すべての解集合 (安定モデル) がeを含む

$$P \models_{c} e \iff \forall A \in AP(P)[e \in A]$$

Brave Entailment: eを含む解集合 (安定モデル) が存在する

$$P \models_{b} e \Leftrightarrow \exists A \in AP(P)[e \in A]$$

- 標準倫理プログラムの帰納推論に関する問題設定(論理設定)の例
 - Cautious Induction
 - Brave Induction
 - Induction of Stable Models
 - Learning from Answer Sets
- 帰納推論実現に必要なこと
 - 問題の形式的な表現:BKは標準論理,正事例・負事例は?
 - 被覆(仮説によって事例が説明されるか否か)のチェック
 - パターンの生成:今回は明示的に与えます
 - パターンの評価:仮説長(基数制約の扱いに注意)など

```
例:

P = \{ 1 \{ p; q \} 2 :- r., r., r., :- not p, r. \}

AS(P) = \{ \{r,p\}, \{r, p, q\} \}

P \vDash_{c} r

P \vDash_{c} p

P \vDash_{b} q
```

Cautious Induction • Brave Induction

Cautious Inductionの論理設定

入力:

• B:背景知識, S_M :仮説空間(ルール集合)

• E+: 正例集合(基礎アトム), E-: 負例集合(基礎アトム)

・出力:以下の条件を満たす仮説H

• $H \subseteq S_M$

… Hはルール集合

• *AS*(*B* ∪ *H*) ≠ {} ... Bと併せたときに解集合を持つ

• $\forall A \in AP(B \cup H)[E^+ \subseteq A, E^- \cap A = \{\}]$

... すべての解集合は正例集合を含み、負例を含まない

• Brave Inductionの論理設定

入力: Cautious Inductionと同じ

・出力:以下の条件を満たす仮説H

• $H \subseteq S_M$

... Hは仮説集合の部分集合

• $\exists A \in AP(B \cup H)[E^+ \subseteq A, E^- \cap A = \{\}]$

Cautiousでは解集合の全部が条件を満たす Braveでは解集合の一つが条件を満たす

Cautious Induction:条件が厳しすぎる場合がある Brave Induction:制約が学習できない場合がある

> 背景知識, 仮説はNLP 事例は基礎アトム

事前に与えた仮説空間から 条件に合う部分集合を獲得

※仮説はルールの集合

解集合に含まれる=被覆される(説明される)

... 正例集合を含み、負例を含まない解集合が存在する

C. Sakama and K. Inoue: Brave induction: a logical framework for learning from incomplete information, Machine Learning 76(1):3–35, 2009

```
B = \{
         bird(X):- penguin(X).
                                     bird(X):=sparrow(X).
         penguin (penguin).
                                     sparrow(sparrow).}
E+=\{ flies(sparrow) \}
E- = { flies( penguin) }
SM = \{
                                              基本:
  h1 ... flies(X):-bird(X).
                                                事例に現れる述語を頭部に,
  h2 ... flies(X):-bird(X), not penguin(X).
                                                背景知識に現れる述語を本体部に
  h3 .. 0{ flies(X) }1 :- bird(X).
                                                持つルールを考える
  h4 .. 0\{ flies(X) \}1 := bird(X), not penguin(X).
```

{ h1, h2, h3, h4 }の部分集合が仮説の候補 以下では, 4候補のみを示す


```
A = { bird(penguin), bird(sparrow), penguin(penguin), sparrow(sparrow) } AS(B) = { A } 仮説 {h1}: AS(B∪{h1}) = { { flies(penguin), flies(sparrow) } ∪ A } → × (解ではない) 仮説{h2}: AS(B∪{h2}) = { { flies(sparrow) } ∪ A } → { cautious, brave } inductionの解 仮説{h3}: AS(B∪{h3}) = { A, { flies(sparrow) } ∪ A}, { flies(penguin) } ∪ A } → brave inductionの解 仮説{h4}: AS(B∪{h4}) = { A, { flies(sparrow) } ∪ A } → brave inductionの解
```

Induction of stable models

• 部分解釈 $e = \langle e^{inc}, e^{exc} \rangle$ | 背景知識,仮説はNLP

解釈:プログラムを真にするアトムの集合

 e^{inc} :解釈に含まれるべきアトムの集合

 e^{exc} :解釈に含まれるべきではないアトムの集合

Induction of stable modelの論理設定

入力:

• B:背景知識, S_M :仮説空間(ルール集合)

E:部分解釈の集合

出力:以下の条件を満たす仮説H

• $H \subseteq S_M$ … Hはルール集合

★Brave Induction は.

 $E = \{e\}, \quad e = \langle e^{inc} = E^+, e^{exc} = E^- \rangle$ とする Induction of stable models の特殊なケース

Induction of stable models は Brave Inductionの一般化 しかし、制約の学習ができない場合も、

• $\forall \langle e^{inc}, e^{exc} \rangle \in E$, $\exists A \in AP(B \cup H) [e^{inc} \subseteq A, e^{exc} \cap A = \{\}]$

... 事例である各部分解釈に対し、それぞれ、それを拡大する (ぁぇ) 解集合が存在する

- Brave Inductionとの違いに注意
 - Brave Induction:ある一つの解集合が、すべての事例を説明する(ヨ∀)
 - Induction of stable models:事例毎に、それを拡張する解集合は異なっても良い(∀∃)

R. P. Otero: Induction of stable models,

Proc. of the 11th International Conference on Inductive Logic Programming, pp.193–205, 2001.

```
B = { } #背景知識なし
E = {
e1 = <{p}, {q} >, #pはモデルに含まれる, qはモデルに含まれない
e2 = <{q}, {p} > #qはモデルに含まれる, pはモデルに含まれない
}
SM = {
h1..p:-not q.
h2..q:-not p.
}
```

{ h1, h2 }の部分集合が仮説の候補


```
AS(B \cup \{h1\}) = \{ \{ p \} \} \rightarrow \times (\{ p \} \text{ extends e1, but not e2})
AS(B \cup \{h2\}) = \{ \{ q \} \} \rightarrow \times (\{ q \} \text{ extends e2, but not e1})
AS(B \cup \{h1,h2\}) = \{ \{ p \}, \{ q \} \} \rightarrow \bigcirc (\{ p \} \text{ extends e1, and } \{ q \} \text{ extends e2})
```


解は, {h1,h2} = { p:- not q., q:- not p. }

Inductive Learning of Answer Set Programs

Learning from Answer Sets

Learning from Answer Setsの論理設定

Induction of Stable Models に 負事例を追加

- 入力:
 - B:背景知識, S_M :仮説空間(ルール集合), $_{1}$ 背景知識,仮説は $_{1}$ 仮説は $_{2}$ の以上
 - E^+ : 部分解釈の集合, E^- : 部分解釈の集合

| 背景知識,仮説はNLP | 事例は部分解釈

- 出力:以下の条件を満たす仮説H
 - $H \subseteq S_M$ … Hはルール集合
 - $\forall \langle e^{inc}, e^{exc} \rangle \in E^+$, $\exists A \in AP(B \cup H) \big[e^{inc} \subseteq A, e^{exc} \cap A = \{ \} \big]$ … 各正事例 (部分解釈) に対し,それぞれそれを拡大する解集合が存在する
 - $\forall \langle e^{inc}, e^{exc} \rangle \in E^-$, $\not\exists A \in AP(B \cup H)[e^{inc} \subseteq A, e^{exc} \cap A = \{\}]$ … 各負事例 (部分解釈) に対し,それを拡大する解集合が存在しない
- - 正事例は,bravely entailed
 - 負事例は、その否定がcautiously entailed

```
B = \{ p : -r. \}

E+=\{

e1 = < \{p\}, \{q\} >, #pはモデルに含まれる, gはモデルに含まれない

e2 = < \{q\}, \{p\} > #qはモデルに含まれる, pはモデルに含まれない

}

E-=\{

e3 = < \{ \}, \{ p,q \} >,

e4 = < \{ p,q \}, \{ \} >

}

SM = \{

h1 ... q : - not r.

h2 ... r : - not q.

}
```

{ h1, h2 }の部分集合が仮説の候補


```
AS(B \cup {h1}) = { { q } } \rightarrow × ( { q } extends e2, but not e2, e3, e4 )

AS(B \cup {h2}) = { { r, p } } \rightarrow × ( { r, p } extends e1, but not e1, e3, e4 )

AS(B \cup {h1,h2}) = { { r, p }, {q} } \rightarrow \bigcirc ( { r, p } extends e1, but not e2, e3, e4 | { q } extends e2, but not e2, e3, e4 )
```


解は、 $\{h1,h2\} = \{q : -not r., r : -not q.\}$

仮説の評価

- 条件を満たす仮説 (ルール集合) は複数考えられる
 - 何らかの順位付けが必要
 - → 記述長最小原理 (Minimum Description Length Principle) ≒ 短い方が良い
- Inductive Learning of Answer Set Programs における仮説長
 - 仮説 (=ルール集合) を構成するリテラル数=各ルールを構成するリテラル数の総和
 - ・ 仮説 { q:- not r., r:- not q.}の仮説長 → 2+2=4

q:- not r. \rightarrow 2 r:- not q. \rightarrow 2

- 注意:チョイスルール(基数制約)の扱い
 - 展開してからリテラル数を数える
 - 1 {p; q} 1. \rightarrow (p \land not q) \lor (not p \land q) \rightarrow 4
 - 0 {p; q} 2. \rightarrow (p \land q) \lor (p \land not q) \lor (not p \land q) \lor (not p \land not q) \rightarrow 8

仮説の導出

- Positive Solution:背景知識と共に各正事例を説明する仮説 (ルール集合)
 - 条件 $\forall \langle e^{inc}, e^{exc} \rangle \in E^+$, $\exists A \in AP(B \cup H) [e^{inc} \subseteq A, e^{exc} \cap A = \{\}]$ を満たすH
- Violating Solution: Positive Solutionのうち,負事例も説明してしまう仮説(ルール集合)
 - ・ 条件 $\forall \langle e^{inc}, e^{exc} \rangle \in E^+$, $\exists A \in AP(B \cup H) [e^{inc} \subseteq A, e^{exc} \cap A = \{\}]$ $\land \exists \langle e^{inc}, e^{exc} \rangle \in E^-$, $\exists A \in AP(B \cup H) [e^{inc} \subseteq A, e^{exc} \cap A = \{\}]$ を満たすH
- $g \times g \times g = \langle g, g_M, E^+, E^- \rangle$ に対し、

Positive Solutionの集合を pos_sol(T), Violating Solutionの集合をvio_sol(T)と表記

- ・ 求めるべき仮説H*は、 pos_sol(T) \ vio_sol(T) の中で記述長が最小のもの
- ナイーブな方法:仮説空間(ルール集合) S_M のべき集合を一つずつ調べる
 - べき集合のサイズは $2^{|S_M|}$ なので、非現実的
- ILASPのアプローチ
 - 帰納推論の問題を、解集合プログラムへ変換する(clingoに解いてもらう!)
 - ・ 背景知識, 仮説, 事例のそれぞれを解集合プログラムへ変換 次ページ参照 ・ メタなアプローチ
 - 仮説長を指定し,条件に合うルール集合を獲得(指定する仮説長を徐々に長くする)
 - Cf: Cover-set Algorithm (separate and conquer)は、一つずつルールを導出する

解集合プログラムへの変換

 $B = \{ q :- r. \}$ $E+ = \{ < \{p, q\}, \{r, s \} >, < \{q\}, \{ \} > \}$ $E- = \{ < \{ p \}, \{q, t \} > \}$ $SM = \{ p., q :- r, not s. \}$

- B, S_M, E^+, E^- をそれぞれ変換する(meta変換)
- $T = \langle B, S_M, E^+, E^- \rangle$ に対し、変換で得られるルール集合を T^n_{meta} と表記する.
- 背景知識の変換
 - 各ルールに対し, ルール中の各アトムAを e(A,X) に置き換え, 本体部にex(X) を追加した ルールを生成
 - 変換後:e(q, X):-e(r, X), ex(X).
- 仮説空間の変換
 - 識別子 id を持つルールに対し、
 ルール中の各アトムAを e(A,X) に置き換え、
 本体部にactive(id) 及び ex(X) を追加したルールを生成
 - 識別子 id を持つルールRに対し、その長さ | R | を表すファクト | length (id, | R |) を生成
 - 変換後: { e(p, X):- active(h1), ex(X)., length(h1, 1).,
 e(q, X):- e(r, X), not e(s, X), active(h2), ex(X)., length(h2, 3). }
- 仮説長をnに限定するための補助ルールを生成
 n #sum { active(R) = X : length(R, X) } n.
 ※ASP実行時にnを指定する

※それぞれの変換の意味・意図・正当性を考えてみよう

$B = \{ q :- r. \}$ $E+= \{ < \{p, q\}, \{r, s \} >, < \{q\}, \{ \} > \}$ $E-= \{ < \{ p \}, \{q, t \} > \}$ $SM = \{ p., q :- r, not s. \}$

• 正事例の変換

- 識別子がidである各正事例(e^{inc}, e^{exc})に対し、
 以下の3ルールを生成
- ルール1: ex(id)
- ・ ルール2: :- not covered(id).
- ルール3:頭部はcovered(id),本体部は e^{inc} 中の各アトムAに対するe(A,id)と e^{exc} 中の各アトムBに対する $not\ e(B,id)$ の連言
- 変換後: { ex(pos1).,
 :- not covered(pos1).,
 covered(pos1):- e(p, pos1), e(q, pos1), not e(r, pos1), not e(s, pos1).,
 ex(pos2).,
 :- not covered(pos2).,
 covered(pos2):- e(q, pos2). }

負事例の変換

- 各負事例(e^{inc}, e^{exc})に対し、以下の1ルールを生成
- ルール1:頭部はvoilating,本体部は e^{inc} 中の各アトムAに対するe(A,neg)と e^{exc} 中の各アトムBに対するnot e(B,neg)の連言(※事例の識別子ではなくすべてneg)
- 変換後: { violating :- e(**p**, neg), not e(**q**, neg), not e(**t**, neg). }

※それぞれの変換の意味・意図・正当性を考えてみよう

アルゴリズム ILASP

- タスク $T = \langle B, S_M, E^+, E^- \rangle$ に対し,
 - Positive Solutionの集合を pos_sol(T), Violating Solutionの集合をvio_sol(T)と表記
 - ・ 求めるべき仮説H*は、 pos_sol(T) \ vio_sol(T) の中で記述長が最小のもの
- まず仮説長nのvio_sol(T)を算出: $T_{meta}^n \cup \{:-not\ violating.,\ ex(neg).\}$ の解集合を計算
 - その解集合を制約として、 pos_sol(T) \ vio_sol(T)を計算
 - 制約:"各"解集合 $\{ active(h_1^i), \dots, active(h_n^i) \}$ に対して,

制約:- active (h_1^i) ,…,active (h_n^i) . を準備

・ Tⁿ_{meta} と制約から得られる解集合がpos_sol(T) \ vio_sol(T)

 $%T^n_{meta}$ は、各B, S_M , E^+ , E^- の変換の集合(連言)

ILASPシステム

ILASP: Inductive Learning of Answer Set Programs

- http://www.ilasp.com/
- 種々の応用:一般ゲーム/文法学習/強化学習
- 論理設定の拡張
 - 各事例に対する背景知識
 - ノイズの許容(事例に対するpenalty)
 - 弱い制約の学習(選好学習)と順序事例 など

 e^{inc} , e^{exc} : アトム集合の対 e^{ctx} : 解集合プログラム

- 各事例に対する背景知識
 - (e^{inc}, e^{exc}) を $(e^{inc}, e^{exc}, e^{ctx})$ に拡張。 e^{ctx} は、弱い制約を含まない解集合プログラム
 - 背景知識Bだけでなく, e^{ctx} と併せたときの解集合を考える
 - $\forall \langle e^{inc}, e^{exc}, e^{ctx} \rangle \in E^+, \exists A \in AP(B \cup H \cup e^{ctx}) [e^{inc} \subseteq A, e^{exc} \cap A = \{\}]$
 - $\forall \langle e^{inc}, e^{exc}, e^{ctx} \rangle \in E^-, \not\exists A \in AP(B \cup H \cup e^{ctx}) [e^{inc} \subseteq A, e^{exc} \cap A = \{\}]$
- ノイズの許容(事例に対するpenalty)
 - 各事例に対して、ペナルティ値を設定
 - 「仮説長 + コスト」を最小化する仮説の導出
 - コスト=条件を満たさない事例に付与されたペナルティの総和
- ・※余力があったら、これらを考慮した場合のmeta変換(ASPへの変換)を考えてみよう

背景知識・事例の与え方

- 背景知識:ASPの形式で与える
- 正事例 $\langle e^{inc}, e^{exc}, e^{ctx} \rangle$: $\#pos(e^{inc}, e^{exc}, e^{ctx})$.
- 負事例 $\langle e^{inc}, e^{exc}, e^{ctx} \rangle$: $\# neg(e^{inc}, e^{exc}, e^{ctx})$.
 - $e^{inc} \, e^{exc} \, \mathsf{t}$, {要素1,要素2,…,要素n} ※各要素をカンマで区切り, {}で囲む
 - e^{ctx} は、 $\{ \mathcal{I}^{ctx} \cup \mathcal{I}^{ctx} \}$ の中にプログラムを書く

```
数字1..4を使ったミニ数独の例
cell((1..4,1..4)).
block((X, Y), tl) :- cell((X, Y)), X < 3, Y < 3.
block((X, Y), tr) := cell((X, Y)), X > 2, Y < 3.
block((X, Y), bl) :- cell((X, Y)), X < 3, Y > 2.
block((X, Y), br) :- cell((X, Y)), X > 2, Y > 2.
                                                                     背景知識
same row((X1,Y),(X2,Y)) :- X1 != X2, cell((X1,Y)), cell((X2,Y)).
same col((X,Y1),(X,Y2)) :- Y1 != Y2, cell((X,Y1)), cell((X,Y2)).
same block(C1,C2) := block(C1, B), block(C2, B), C1 != C2.
#pos({
 value((1, 1), 1),
                               % This positive examples says that there should be at
                               % least one answer set of B union H which represents a
 value((1, 2), 2),
                               % board extending the partial board:
 value((1, 3), 3),
 value((1, 4), 4),
 value((2, 3), 2)
                                                            such that the first cell
 value ((1, 1), 2),
 value((1, 1), 3),
                                                            does not also contain a
 value((1, 1), 4)
                                                           value other than 1.
}, {
}).
\# neg(\{ value((1, 1), 1), value((1, 3), 1) \}, \{ \}, \{ \}).
\# neg(\{ value((1, 1), 1), value((3, 1), 1) \}, \{ \}, \{ \}).
                                                          -負事例
\# neg(\{ value((1, 1), 1), value((2, 2), 1) \}, \{ \}, \{ \}).
```

ハミルトン閉路を持つか否か? 背景知識はグラフそのもの e^inc, e^exc は空集合

```
\# neg(\{\}, \{\}, \{node(1..3).
         edge (1,1). edge (1,3). edge (2,2). edge (2,3). edge (3,1).
         }).
\# neq(\{\}, \{\}, \{node(1..3).
         edge (1,1). edge (1,2). edge (3,1). edge (3,2). edge (3,3).
         }).
\# neq(\{\}, \{\}, \{node(1..3).
         edge (1,1). edge (1,2). edge (1,3). edge (2,2). edge (2,3).
        }).
\# neg({},{},{},{node(1..4).}
         edge(1,1). edge(1,2). edge(2,1). edge(2,2). edge(2,4). edge(3,2).
         edge (3,3). edge (3,4). edge (4,1). edge (4,4).
         }).
\# neg(\{\}, \{\}, \{node(1...3).
         edge (2,3). edge (3,1). edge (3,2).
         }).
\#pos({},{},{},node(1..3).
         edge (1,1). edge (1,2). edge (1,3). edge (2,1). edge (3,1). edge (3,2).
         }).
\#pos({},{},{},node(1..2).
         edge (1,2). edge (2,1). edge (2,2).
         }).
\#pos({},{},{},node(1..4).
         edge (1,3). edge (1,4). edge (2,1). edge (2,3). edge (3,1). edge (3,2).
         edge (3,3). edge (4,1). edge (4,2).
        }).
\#pos({},{},{},node(1..3).
         edge (1,1). edge (1,3). edge (2,1). edge (2,2). edge (2,3). edge (3,2).
        }).
\#pos({},{},{},node(1..4).
         edge (1,2). edge (2,1). edge (2,3). edge (2,4). edge (3,2). edge (3,4).
         edge (4,1). edge (4,2). edge (4,4).
         }).
```

仮説空間・言語バイアスの指定:方法1

- 形式「Length ~ 仮説.」の形式で、候補となる仮説を列挙する.
 - 1 ~ :- edge(V0, V0).
 - 1 ~ :- edge(V0, V1).
 - $1 \sim :- in(1,V0)$.
 - $1 \sim :- in(V0,V1)$.
 - $1 \sim :- \operatorname{reach}(V0)$.
 - $2 \sim \text{reach}(V0) := \text{in}(1,V0)$.
 - $2 \sim \text{reach}(V0) := \text{in}(V0,V1)$.
 - $2 \sim \text{reach}(V1) := \text{in}(V0,V1)$.
 - 3 ~ 0 {in(V0,V0) } 1 :- edge(V0, V0).
 - 3 ~ 0 {in(V0,V0) } 1 :- edge(V0, V1).
 - $3 \sim \text{reach}(V2) := \text{in}(V0,V1), \text{in}(V0,V2).$
 - $3 \sim \text{reach}(V2) := \text{in}(V0,V1), \text{in}(V1,V2).$

仮説空間・言語バイアスの指定:方法2

- 頭部リテラル: #modeh(*literal*(arg1, …, argn)).
- 本体部リテラル: #modeb(*literal*(arg1, …, argn)).
- 集約頭部リテラル(チョイスルール):#modeha(literal(arg1, …, argn)).
 - #minhl(Min):頭部リテラルの最小数をMinにする
 - #maxhl(Max):頭部リテラルの最大数をMaxにする
- 一貫性制約の本体部リテラル:#modec(*literal*(arg1, …, argn)).
- argN = var(type) | const(type)
- ※モード宣言は,第一引数にrecall数(各ルールにおける出現数上限)を取ることもある
- ※モード宣言は、第三引数にオプションを取ることもある
 - オプションの例1: (positive)を指定すると, not literal(..) は生成されない
 - オプションの例2:引数2の述語に対したのみ有効. (anti_reflexive)を指定すると, 同じ引数を取ることはなくなる
- type宣言(constant宣言): #constant(type, 值).
- 頭部に複数の変数が現れることを許さない. #disallow_multiple_head_variables.

```
#modeha(value(var(cell),const(number))).
#modeb(2, value(var(cell), var(val))).
#modeb(1,same row(var(cell), var(cell)), (anti reflexive)).
#modeb(1,same block(var(cell), var(cell)), (anti reflexive)).
#modeb(1,same col(var(cell), var(cell)), (anti reflexive)).
#modeb(1,cell(var(cell))).
#constant(number, 1).
#constant(number, 2).
#constant(number, 3).
#constant(number, 4).
\#minhl(4).
|\#maxhl(4).
#disallow multiple head variables.
```


得られる仮説 ※本体部の":"は、論理的には"."の意味

```
:- same_block(V1,V2); value(V1,V3); value(V2,V3).
:- same_row(V1,V2); value(V1,V3); value(V2,V3).
:- same_col(V1,V2); value(V1,V3); value(V2,V3).
1 {value(V1,1); value(V1,2); value(V1,3); value(V1,4) } 1 :- same_row(V2,V1).
```

ILASPの実行

- 基本: % ilasp --version=4 ファイル1, .., ファイルn
 - 実行例 1: % ilasp --version=4 sudoku.las
 - 実行例 2 : % ilasp --version=4 hamiltonX.las hamiltonY.las
- 仮説空間の確認: %ilasp -sファイル1, .., ファイルn
 - 仮説空間が表示されます。流れてしまうので、 less などで受けましょう
 - 学習前に, (wc コマンドで) 仮説空間の大きさを確認しよう (大きいと終わりません!)
- 実行時オプション
 - 詳細は ilasp --helpで確認(こちらも流れてしまうので、lessなどで受けましょう)
 - -nc :探索空間からの制約の排除
 - -na: 探索空間からのチョイスの排除
 - -ml=[integer]:各節の本体部リテラル数上限(default 3)
 - --max-rule-length=[integer]:各節に含まれるリテラル数の上限(default 5)
 - 実行例 3 : %ilasp --version=4 -nc animalB.las
- 例題を確認してみよう
 - ハミルトン閉路:hamiltonX.las, hamiltonY.las
 - 数独:sudoku.las
 - 動物分類: animalB.las

参考:動物分類の元データ

	授乳	船		足	恒温	産卵	住処	カテゴリ
dog	yes	no	hair	4	yes	no	land	mammal
dolphin	yes	no	none	0	yes	no	water	mammal
platypus	yes	no	hair	2	yes	yes	water	mammal
bat	yes	no	hair	2	yes	no	air	mammal
trout	no	yes	scale	0	no	yes	water	fish
herring	no	yes	scale	0	no	yes	water	fish
shark	no	yes	none	0	no	yes	water	fish
eel	no	yes	none	0	no	yes	water	fish
lizard	no	no	scale	4	no	yes	land	reptile
crocodile	no	no	scale	4	no	yes	water	reptile
t_rex	no	no	scale	4	no	yes	land	reptile
turtle	no	no	scale	4	no	yes	water	reptile
snake	no	no	scale	0	no	yes	land	reptile
eagle	no	no	feathers	2	yes	yes	air	bird
ostrich	no	no	feathers	2	yes	yes	land	bird
penguin	no	no	feathers	2	yes	yes	water	bird