1

CLAIMS

What is claimed is:

1	1. A cordless communication system capable of providing voice and data			
2	service, comprising:			
3	a first device; and			
4	a second device capable of wireless communication with said first device via an air			
5	interface;			
6	wherein the air interface employs a frame structure suitable for communication of			
7	asynchronous information using a HomeRF SWAP protocol and			
8	isochronous information using a WDCT protocol.			
1	2. The cordless communication system of claim 1, wherein the frame structure			
2	includes at least one WDCT time slot suitable for communicating the isochronous			
3	information if voice service is requested.			
1	3. The cordless communication system of claim 2, wherein the air interface			
2	utilizes a WDCT carrier frequency, bandwidth and bit duration while the at least one			
3	WDCT time slot is transmitted.			
1	4. The cordless communication system of claim 2, wherein the at least one			
2	WDCT time slot comprises a WDCT transmit slot and a WDCT receive slot, the WDCT			
3	receive slot directly following the WDCT transmit slot in the frame structure.			
1	5. The cordless communication system of claim 2, wherein the at least one			
2	WDCT time slot comprises a WDCT transmit slot and a WDCT receive slot, the WDCT			

6. The cordless communication system of claim 1, wherein the frame structure includes a WDCT control channel suitable for controlling devices of the cordless

transmit slot being followed by the WDCT receive slot after approximately 5 ms.

- 3 communication using voice service when no voice service is requested.
- 7. The cordless communication system of claim 6, wherein the air interface utilizes a WDCT carrier frequency, bandwidth and bit duration while the WDCT carrier channel is transmitted.
 - 8. The cordless communication system of claim 1, wherein, if no isochronous information is to be transmitted within the frame structure, the frame structure is formatted to include in order a hop command, a beacon, a SWAP period suitable for transmission of asynchronous information, and a WDCT control channel suitable for controlling devices of the cordless communication system using voice service.
 - 9. The cordless communication system of claim 1, wherein, if isochronous information is to be transmitted within the frame structure, the frame structure is formatted to include in order a hop command, a first WDCT transmit slot, a beacon, a first SWAP period, a first WDCT receive slot, a second SWAP period, a second WDCT transmit slot, a third SWAP period, a second WDCT receive slot, and a fourth SWAP period, the SWAP periods being suitable for transmission of asynchronous information using a CSMA/CA access mechanism according to the HomeRF SWAP protocol and the WDCT transmit and receive slots being suitable for transmission of isochronous information using a TDMA access mechanism according to the WDCT protocol.
 - 10. The cordless communication system of claim 9, wherein the first WDCT transmit slot precedes the first WDCT receive slot by approximately 5 ms, the second WDCT transmit slot precedes the second WDCT receive slot by approximately 5 ms, and the first WDCT transmit slot precedes the second WDCT transmit slot by approximately 10 ms.
 - 11. The cordless communication system of claim 1, wherein, if isochronous information is to be transmitted within the frame structure, the frame structure is formatted to include in order a hop command, a first WDCT transmit slot, a first WDCT receive slot,

- 4 a beacon, a first SWAP period, a second WDCT transmit slot, a second WDCT receive slot,
- 5 and a second SWAP period, the SWAP periods being suitable for transmission of
- 6 asynchronous information using a CSMA/CA access mechanism according to the HomeRF
- 7 SWAP protocol and the WDCT transmit and receive slots being suitable for transmission
- 8 of isochronous information using a TDMA access mechanism according to the WDCT
- 9 protocol.

1 2

3

1	12. A cordless communication system capable of providing voice and data		
2	service, comprising:		
3	a first device; and		
4	a second device capable of wireless communication with said first device via an a		
5	interface employing a frame structure suitable for transmission of		
6	asynchronous information utilizing a HomeRF SWAP protocol;		
7	wherein, if voice service is provided between said first device and said secon-		
8	device, the frame structure further includes at least one time slot suitable for		
9	communicating isochronous information utilizing a WDCT protocol; and		
10	wherein, if voice service is not provided between said first device and said second		
11	device, the frame structure further includes a WDCT control channel		
12	suitable for controlling devices of the cordless communication system		
13	requiring voice service.		
1	13. The cordless communication system of claim 12, wherein the WDCT		
2	control channel is disposed at the end of the frame structure.		
1	14. The cordless communication system of claim 12, wherein the air interface		
2	utilizes a WDCT carrier frequency, bandwidth and bit duration while the at least or		
3	WDCT time slot and the WDCT control channel are transmitted.		
1	15. The cordless communication system of claim 12, wherein the at least one		
2	WDCT time slot comprises a WDCT transmit slot and a WDCT receive slot, the WDCT		
3	receive slot directly following the WDCT transmit slot in the frame structure.		

The cordless communication system of claim 12, wherein the at least one 16. WDCT time slot comprises a WDCT transmit slot and a WDCT receive slot, the WDCT transmit slot being followed by the WDCT receive slot after approximately 5 ms.

1	17.	A method of providing voice and data service for communication of	
2	information in a cordless communication system, comprising:		
3	determining if voice service is required; and		
4	communicating at least one frame of the information being communicated, the at		
5		least one frame having a frame structure suitable for transmission of	
6		asynchronous information using a HomeRF SWAP protocol and	
7		isochronous information using a WDCT protocol;	
8	wherein, if no voice service is required, the frame structure includes a WDCT		
9		control channel suitable for controlling devices of the cordless	
10		communication system requiring voice service; and	
l 1	wherein, if voice service is required, the frame structure includes at least one		
12		WDCT time slot suitable for communicating isochronous information.	
1	18.	The method as claimed in claim 17, further comprising altering the carrier	
2	frequency of the air interface from a SWAP carrier frequency to a WDCT carrier frequency		
3	when at least	one of a WDCT control channel and a WDCT time slot are transmitted.	
1	19.	The method as claimed in claim 17, further comprising altering the	
2	bandwidth of	the air interface from a SWAP bandwidth to a WDCT bandwidth when at	
3	least one of a WDCT control channel and a WDCT time slot are transmitted.		
1	20.	The method as claimed in claim 17, further comprising altering the bit rate	
2	of the air interface from a SWAP bit rate to a WDCT bit rate when at least one of a WDCT		
3	control chann	el and a WDCT time slot are transmitted.	
1	21	The method as eleimed in claim 17, wherein transmitting at least one frame	
1	21.	The method as claimed in claim 17, wherein transmitting at least one frame	
2	suitable for containing data information further comprises transmitting the WDCT control		
3	cnannel at the	end of each frame.	
1	22.	The method as claimed in claim 21, wherein transmitting the WDCT	

dummy bearer at the end of the SWAP frame structure comprises transmitting the WDCT

- 3 control channel approximately every 20 ms.
- 1 23. The method as claimed in claim 17, wherein the at least one WDCT time
- 2 slot comprises a WDCT transmit slot and a WDCT receive slot, the WDCT receive slot
- 3 directly following the WDCT transmit slot in the frame structure.
- 1 24. The method as claimed in claim 17, wherein the at least one WDCT time
- 2 slot comprises a WDCT transmit slot and a WDCT receive slot, the WDCT transmit slot
- 3 being followed by the WDCT receive slot after approximately 5 ms.