Algunos Tests

Test de Rachas

Si tenemos observaciones positivas y negativas ordenadas secuencialmente según el tiempo, podríamos preguntarnos si tienen algún patrón particular o si se presentan en forma aleatoria.

Por ejemplo: si tuviéramos la sucesión de residuos siguiente:

con $n_1 = 8$ residuos positivos, $n_2 = 6$ residuos positivos, n = 14 residuos en total y u = 7 rachas, ¿hemos observado algo muy poco probable bajo el supuesto de aleatoriedad? ¿Podría haber alguna variable oculta que justifique esto?

Vamos a analizar un caso más sencillo con solo 6 residuos: 2+ y 4-.

Un número bajo de rachas hará pensar en una correlación positiva, mientras que un número alto haría sospechar una correlación negativa.

Si $n_1 > 10$ y $n_2 > 10$ puede usarse una aproximación normal para el estadístico del test. Si $n_1 \le n_2 \le 10$ se usan las tablas exactas de Sweed y Hasenhart (1943).

El test aproximado resulta de calcular:

						rachas.		7			
+	+	-	-	-	-	2					
+	-	+	-	-	-	4					
+ .	-	-	+	-	-	4	11 = (cantido	ed d	1 sac	leas.
4 -	• 5	-	-	+	-	4					
+ -	-	-	-	_	+	3	u	2.	3	4	5
- 4		+	-	-	-	3	+	2	4	6	3
- +		-	+	-	-	. 5	breb	0.135	0.4	0.8	1
- 4		-	-	.+	_	5	com.	0.00			
- +		-	-		+	4					
	•	+	+	-		3	=5	P(u	95) =	0.2	
		+	-	+	-	5					
	8	+	-	-	+	4		Plu	= 2)	- 0./33	3
		-	+	+	-	3					
	3 34	-	+	-	+	4					
		-	-	+	+	2	5.4				

$$Z = \frac{u - \mu \pm 1/2}{\sigma}$$

$$\mu = \frac{2n_1n_2}{n_1 + n_2} + 1$$

$$\sigma = \frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}$$

(Para muchas chances usar el factor de corrección -1/2 y para muy pocas 1/2)

Veamos un ejemplo

Consideremos el caso en que examinamos 27 residuos de los cuales 15 son de un signo y 12 son de otro y ordenados secuencialmente de acuerdo con el tiempo presentan 7 rachas. ¿Hay muy pocas rachas?

Supongamos que hubiera $n_1 = 15$ residuos positivos, $n_2 = 12$ residuos positivos, entonces n = 27 residuos en total y u = 7 rachas, ¿Hay pocas rachas?

$$\mu = \frac{43}{3}$$

$$\sigma = \frac{740}{117}$$

$$Z = \frac{7 - 43/3 + 1/2}{\sqrt{\frac{740}{117}}} = -2,713$$

Usando la aproximación normal tenemos:

$$P(Z \le -2.713) \cong 0.0033$$

por lo tanto bajo el supuesto de aleatoriedad estaríamos observando un número inusualmente bajo de rachas, por lo tanto rechazaríamos la hipótesis de que las rachas de signos han ocurrido simplemente por azar a los niveles habituales.

Test de Durbin-Watson

Es un test muy conocido que es útil para detectar cierto tipo de correlación en una serie. Supongamos que postulamos el modelo:

$$y_i = \beta_o + \beta_1 x_{i1} + ... + \beta_{p-1} x_{ip-1} + \epsilon_i$$

donde $\epsilon_i \sim N(0, \sigma^2)$ independientes.

En este caso, tenemos que $\rho_s = Corr(y_i, y_{i-s}) = 0 \quad \forall s$.

Supongamos que $\epsilon_i \sim N(0, \sigma^2)$, pero en realidad hay cierta estructura en los errores:

$$\epsilon_i = \rho \epsilon_{i-1} + u_i$$
 Modelo Autorregresivo

donde ρ representa la correlación y u_i las innovaciones, que son independientes de todo el pasado.

Si $\epsilon_i = \rho \epsilon_{i-1} + u_i$ entonces

$$Cov(\epsilon_{i}, \epsilon_{i-1}) = Cov(\rho\epsilon_{i-1} + u_{i}, \epsilon_{i-1})$$

 $= \rho\sigma^{2}$
 \Downarrow
 $Corr(\epsilon_{i}, \epsilon_{i-1}) = \rho$

¿Cuánto vale $Corr(\epsilon_i, \epsilon_{i-s})$? Veamos que $Corr(\epsilon_i, \epsilon_{i-s}) = \rho^s$

Nuestro objetivo es testear:

$$H_0: \rho_s = 0$$
 v. $H_0: \rho_s = \rho^s$

para $\rho \neq 0$, $|\rho| < -1$. Esta alternativa surge del modelo $\epsilon_i = \rho \epsilon_{i-1} + u_i$, donde $u_i \sim N(0, \sigma^2)$ e independientes de $\epsilon_{i-1}, \epsilon_{i-1}, \ldots$ y de u_{i-1}, u_{i-1}, \ldots Se asume además que la media y la varianza de las ϵ_i son constantes, más aún: $\epsilon_i \sim N(0, \sigma^2/(1-\rho^2))$

El estadístico del test está basado en los residuos e_1, \ldots, e_n :

$$d = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

¿Cuál es la zona de rechazo? Las tablas de Durbin-Watson proveen para $\alpha=0.05,0.0025y0.01$ valores d_L y d_U para distintos valores de n y de p (cantidad de covariables). Pueden encontrarse las tablas que usaremos en:

http://www.imm.bwl.uni-muenchen.de/dateien/3_lehre/market_analysis/durbin_watson_tables.pdf

Test de una cola contra alternativas $\rho > 0$ de nivel α :

- si $d < d_L \Rightarrow d$ es significativo
- si $d > d_U \Rightarrow d$ no es significativo
- si $d_L \le d \le d_U \Rightarrow d$ no hay conclusión

Test de una cola contra alternativas $\rho < 0$ de nivel α :

■ idem usando 4 - d

Test de una cola contra alternativas $\rho \neq 0$ de nivel 2α :

- si $d < d_L$ o $4 d < d_L \Rightarrow d$ es significativo
- si $d > d_U$ y $4 d > d_U \Rightarrow d$ no es significativo
- en otro caso no hay conclusión

Veamos un ejemplo extraído de Draper y Smith (1980):

Una compañía de gaseosas quiere predecir la venta regional a partir de los gastos mensuales regionales realizados en propagandas. Se dispone de datos de 20 años.

Data for Soft Drink Concentrate Sales Example

		(1) Annual Regional Concentrate	(2) Annual	(3)	(4)	(5)
	l	Sales y, (units)	Advertising Expenditures x_i (\$×1000)	Least Squares Residuals e ₁	e_t^2	$(e_t - e_{t-1})^2$
1960		3083	75	-32.330	1045.2289	
1961	2	3149	78	-26.603	11111	20
1962	3	3218	80	2.215	707.7196	32.7985
1963	4	3239	82	-16.967	4.9062	830.4771
1964	5	3295	84	-1.148	287.8791	367.9491
1965	6	3374	88	-2.512	1.3179	250.2408
1966	7	3475	93	-1.967	6.3101	1.8605
1967	8	3569	97	11.669	3.8691	0.2970
1968	9	3597	99	-0.513	136.1656	185.9405
1969	10	3725	104	27.032	0.2632	148.4011
1970	11	3794	109	-4.422	730.7290	758.7270
1971	12	3959	115	40.032	19.5541	989.3541
1972	13	4043	120	23.577	1602.5610	1976.1581
1973	14	4194	127	33.940	555.8749	270.7670
1974	15	4318	135	-2.787	1151.9236	107.3918
1975	16	4493	144	-8.606	7.7674	1348.8725
1976	17	4683	153	0.575	74.0632	33.8608
1977	18	4850	161	6.848	0.3306	84.2908
978	19	5005	170	-18.971	46.8951	39.3505
979	20	5236	182		359.8988	666,6208
		2	20	-29.063 20	844.6580	101.8485
			$\sum_{i=1}^{n} e_i^2 = 7587.9154$		$(1)^2 = 8195.20$	65

Summary Statistics for the Least Squares Model

Parameter	Estimate	Standard Error	1-Statistic
β_0 β_1	1608.508 20.091	17.0223 .1428	94,49 140.71
n=20	$R^2 = .9991$	100	$MS_E = 421.5485$

Figure 9.1 Residuals e_i versus time, Example 9.1.

$$H_0: \rho = 0$$

 $H_1: \rho > 0$

$$d = \frac{\sum_{t=2}^{20} (e_t - e_{t-1})^2}{\sum_{t=1}^{20} e_t^2} = \frac{8195.2065}{7587.9154} = 1.08$$

Table A.6 Critical Values of the Durbin-Watson Statistic

		k = Number of Regressors (Excluding the Intercept)									
	Probability	1		2		3		4		5	
Sample Size	in Lower Tail (Significance Level=α)	d _L	d_U	d _L	dv	dL	d_{ψ}	dL	du	dL	du
	.01	.81	1.07	.70	1.25	.59	1.46	.49	1.70	.39	1.96
15	.025	.95	1.23	.83	1.40	.71	1.61	.59	1.84	.48	2.09
150	.05	1.08	1.36	.95	1.54	.82	1.75	.69	1.97	.56	2.21
	.01	95	1.15	.86	1.27	.77	1.41	.63	1.57	.60	1.74
20	.025	1.08	1.28	.99	1.41	.89	1.55	.79	1.70	.70	1.87
de sa	.05	1.20	1.41	1.10	1.54	1.00	1.68	.90	1.83	.79	1.99
	.01	1.05	1.21	.98	1.30	.90	1.41	.83	1.52	.75	1.65
25	.025	1.13	1.34	1.10	1.43	1.02	1.54	.94	1.65	.86	1,77
	.05	1.20	1.45	1.21	1.55	1.12	1.66	1.04	1.77	.95	1.89
	.01	1.13	1.26	1.07	1.34	1.01	1.42	.94	1.51	.88	1.61
30	.025	1.25	1.38	1.18	1.46	1.12	1.54	1.05	1.63	.98	1.7.
(0.90)	.05	1.35	1.49	1.28	1.57	1.21	1.65	1.14	1.74	1.07	1.83
	.01	1.25	1.34	1.20	1.40	1.15	1.46	1.10	1.52	1.05	1.58
40	.025	1.35	1.45	1.30	1.51	1.25	1.57	1.20	1.63	1.15	1.6
-	.05	1.44	1.54	1.39	1.60	1.34	1.66	1.29	1.72	1.23	1.79
	.01	1.32	1.40	1.28	1.45	1.24	1.49	1.20	1.54		1.5
50	025	1.42	1.50	1.38	1.54	1.34	1.59	1.30	1.64		1.6
1500	.05	1.50	1.59	1.46	1.63	1.42	1.67	1.38	1.72	1.34	1.7
	.01	1.38	1.45	1,35	1.48	1.32	1.52	1.28		1.25	1.6
60	.025	1,47	1.54	1.44	1.57	1.40	1.61	1.37		1.33	
	.05	1.55	1.62	1.51	1.65	1.48	1.69	1.44		1.41	1.7
	.01	1.47	1.52	1.44	1.54	1.42	1.57	1.39	0.000	1.36	1.6
80	.025	1.54		1.52	1.62	1.49	1.65	1.47		1.44	
12500	.05	1.61	1.66	1.59	1.69	1.56	1.72	1.53		1.51	1.7
	.01	1.52	1.56	1.50	1.58	1.48	1.60	1.45		1.44	
100	.025	1.59		1.57	1.65	1.55	1.67	1.53		1.51	
100	.05	1.65		1.63	1.72	1.61	1.74	1.59	1.76	1.57	1.3

Source: Adapted from "Testing for Serial Correlation in Least Squares Regression II," by J. Durbin and G. S. Watson, *Biometrika*, Vol. 38, 1951, with permission of the publisher.

Test de Normalidad de Shapiro-Wilk

Dada una distribución G_o , sea \mathcal{F} la familia de diferencias que se obtiene por cambios de posición o escala a partir de G-o. Asumiremos que G-o está estandarizada.

Sea X_1, X_2, \ldots, X_n una m.a. con distribución en \mathcal{F} , tal que $E(x_i) = \mu$ y $V(x_i) = \sigma^2$.

Consideremos los estadísticos de orden de la muestra:

$$\mathbf{X}_{o} = (X_{(1)}, X_{(2)}, \dots, X_{(n)})$$

Por otro lado, sea

$$\mathbf{Z}_o = (Z_{(1)}, Z_{(2)}, \dots, Z_{(n)})$$

una muestra ordenada de G_o , $\mathbf{m} = (m_1, \dots, m_n)'$ y $V = v_{ij}$, el vector de medias y la matriz de covarianzas de \mathbf{Z}_o :

$$m_i = E(Z_{(i)})$$
 $v_{ij} = Cov(Z_{(i)}, Z_{(j)})$

Por lo tanto, para $i=1,\ldots,n$: $X_{(i)}\simeq \mu+\sigma Z_{(i)}$

En consecuencia, el plot de $(X_{(1)}, X_{(2)}, \ldots, X_{(n)})$ vs. (m_1, m_2, \ldots, m_n) debería ser aproximadamente lineal.

Una manera de chequear esto es mediante el coeficiente de correlación lineal en este gráfico.

El estadístico del test de Shapiro-Wilk W corresponde a la correlación entre $\mathbf{V}^{-1}\mathbf{m}$ y \mathbf{X}_o para el caso de la familia Normal.

La zona de rechazo es: $W < k_{\alpha}$

En R la instrucción shapiro. Lest ejecuta este test devolviendo el p-valor y el estadístico W.

biomasa<- read.table("C:\\Users\\Ana\\ModeloLineal\\doctex\\biomasa.txt",header=T)
attach(biomasa)
salida<- lm(formula = BIO ~ K + PH)</pre>

salida\$res

1	2	3	4	5	6	7	8	9
-174.95788	-301.36355	390.63567	71.08915	-517.69012	-517.70400	-44.40357	-35.84008	-204.90345
10	11	12	13	14	15	16	17	18
-271.47716	71.29876	726.37064	618.06946	831.79843	267.83356	-121.24039	-271.03566	-312.78027
19	20	21	22	23	24	25	26	27
-239.67658	-333.85551	-179.22424	-325.37695	-290.55431	-253.49593	-206.01746	273.70705	-31.03141
28	29	30	31	32	33	34	35	36
-223.97267	-679.25157	-27.23251	-211.33982	243.45516	782.95205	1135.79900	565.85631	-473.63371
37	38	39	40	41	42	43	44	45
-241.24364	-55.82630	-95.44412	-102.26077	306.69000	-84.42299	17.49883	264.75622	259.44632

shapiro.test(salida\$res)

Shapiro-Wilk normality test

data: salida\$res

W = 0.9217, p-value = 0.004813