以下の設問1から5に答えよ.

- 1. (1) $\frac{\log(1+x+y)}{1+x}$ の (0,0) におけるテイラー展開の, x^2y の項を決定 せよ.
 - (2) $x^2 + 4xy$ を, (-2,1) においてテイラー展開せよ.
- 2. 1変数関数 $\varphi(x)$ は,

$$\begin{cases} \sin(2\varphi(x) + x - 1) + 3\sin(\varphi(x)) - 2\tan(\varphi(x)) = 0\\ 0 < \varphi(1) < \pi \end{cases}$$

を満たす C^1 級関数とする. このとき, $\varphi(1)$ と $\varphi'(1)$ の値をそれぞれ求めよ.

- 3. (基本問題が出題されます.)
- **4.** $f(x,y) = (e^{x^2} e^4)(xy + 2)$ とする.
 - **(1)** f(x,y) の停留点 $\mathbf{a} = (a,b)$ で,a > 0 を満たすものを求め,極小点,極大点,鞍点,それらのどれでもない,のいずれであるかを判定せよ.
 - (2) 点 a を (1) で求めた点とする. $\mathbf{h} = (1,1)$ 及び $\mathbf{k} = (1,-1)$ とし,

$$P(t) = f(\mathbf{a} + t\mathbf{h}), \qquad Q(t) = f(\mathbf{a} + t\mathbf{k})$$

によって 1 変数関数 P(t), Q(t) を定める. このとき, t=0 が極小点, 極大点, それらのどれでもない, のいずれであるかを P と Q のそれぞれに対して判定せよ.

- 5. $\varphi(x,y) = x^2 6xy + 13y^2 2 = 0$ を満たしながら (x,y) が動くとき, $f(x,y) = x^2 + 7y^2$ の最大値と最小値を ラグランジュの乗数法を用いて求めよ.
 - (注. 過去問と異なり、最大値、最小値を与える (x,y) を求める必要はない。)

略解

- 1. (1) $3x^2y$. (2) $-4 8(y-1) + (x+2)^2 + 4(x+2)(y-1)$.
- 2. (1) $\varphi(1) = \frac{\pi}{3}$. (2) $\varphi'(1) = -\frac{1}{15}$. 4. (1) $\mathbf{a} = (2, -1)$ は f の鞍点.
- (2) t=0 は Pの極小点, t=0 は Qの極大点. 5. $A=\{(x,y)\mid \varphi(x,y)=0\}$ が 有界閉集合 であることを示さなければならない. 最大値は $5+3\sqrt{2}$,最小値は $5-3\sqrt{2}$.