

ข้อสอบวิชาฟิสิกส์

เพื่อคัดเลือกนักเรียนเข้ารับการอบรมค่าย 1 มูลนิธิ สอวน.

รหัสชุดวิชา 0000003	สอบวันอาทิตย์ที่ 27 สิงห	าคม 2560	เวลา 13.00 – 16.00 น.
ชื่อ-สกุล	เลข	ขประจำตัวสอบ	

คำชี้แจง

- ข้อสอบมี 11 หน้า (รวมหน้านี้ด้วย) แบ่งเป็นสองตอน
- ห้ามนำข้อสอบและกระดาษคำตอบออกจากห้องสอบ
- 🗲 ห้ามเผยแพร่ข้อสอบก่อนที่มูลนิธิ สอวน. จะเผยแพร่ทางเว็บไซต์
- ห้ามใช้เครื่องคำนวณ

<u>ตอนที่ 1:</u> ข้อสอบแบบปรนัยชนิดเลือกตอบ 4 ตัวเลือก จำนวน 20 ข้อ รวม 50 คะแนน

- ใช้ปากกาเขียนชื่อ นามสกุล เลขประจำตัวสอบ สถานที่สอบ และ<u>ใช้ดินสอ 2B</u> ระบายลงใน วงกลมให้ตรงกับเลขประจำตัว และ รหัสชุดวิชาที่กรอกในกระดาษคำตอบ
- ใช้ดินสอ 2B ระบายคำตอบข้อที่ถูกต้องที่สุด ลงในกระดาษคำตอบ ถ้าตัวเลือกในข้อสอบไม่ ตรงกับตัวเลือกในกระดาษคำตอบ ให้ถือตามข้อกำหนดข้างล่างนี้

ข้อ
$$B = b = ii = 2 = v$$
.

ข้อ
$$D = d = iv = 4 = 3$$
.

• ให้นักเรียนพิจารณาเลือกคำตอบที่ถูกต้องและเหมาะสมที่สุดเพียงคำตอบเดียว ถ้าข้อใดตอบ มากกว่า 1 ตัวเลือก ข้อนั้นถือเป็นโมฆะ

<u>ตอนที่ 2</u>: ข้อสอบแบบเติมคำตอบ จำนวน 10 ข้อ รวม 50 คะแนน

- ใช้ปากกาเขียนชื่อ นามสกุล เลขประจำตัวสอบ สถานที่สอบ ที่หัวกระดาษสรุปคำตอบ
- <u>ใช้ปากกา</u>เขียนเฉพาะคำตอบลงในที่ว่างที่เว้นให้<u>ในกระดาษสรุปคำตอบ</u> (ถ้าเขียนคำตอบลงใน กระดาษข้อสอบ จะไม่ได้รับการตรวจ)

<u>คำแนะนำ</u>

- ullet สัญลักษณ์ g ในข้อสอบหมายถึงขนาดของความเร่งเนื่องจากแรงโน้มถ่วงของโลก
- ullet ข้อที่คำตอบเป็นสัญลักษณ์ไม่ต้องแทนค่า g แต่ข้อที่เป็นตัวเลขให้ใช้ค่า $g=9.8~\mathrm{m/s^2}$
- $\bullet \quad \sin 37^\circ = \frac{3}{5}$
- ullet เลขอโวกาโดร : $6.02 imes 10^{23}$
- ullet ค่าคงตัวของแก๊ส : $R=8.31~\mathrm{J/mol\cdot K}$
- ullet ความดัน 1 บรรยากาศ $=1.013 imes10^5~\mathrm{N/m^2}$

ตอนที่ 1 ข้อสอบแบบเลือกคำตอบ จำนวน 20 ข้อ (50 คะแนน)

- 1. เมื่อวัตถุเคลื่อนที่ด้วยความเร็วสูงในของไหลจะมีแรงต้านที่มีขนาดดังสมการ $F=kv^2A$ เมื่อ v คือ ขนาดความเร็วของวัตถุ และ A คือพื้นที่หน้าตัดของวัตถุ จากสมการนี้ k ควรจะเป็นปริมาณใด
 - A. ความหนาแน่น

B. ความหนืด

C. มวล

- D. อัตราการไหล
- 2. กระดานลื่นเป็นเครื่องเล่น โดยทั่วไปมักออกแบบให้ช่วงบนของกระดานมีความชั้นมาก แล้วค่อย ๆ ลด ความชั้นลงที่ปลายด้านล่างของกระดาน ขนาดของความเร็วและและขนาดของความเร่งของเด็กขณะที่ เล่นกระดานลื่นจะเป็นอย่างไร
 - A. ขนาดของความเร็วและความเร่งคงที่
 - ขนาดของความเร็วและความเร่งเพิ่มขึ้น
 - C. ขนาดของความเร็วเพิ่มขึ้น ขนาดของความเร่งคงที่
 - D. ขนาดของความเร็วเพิ่มขึ้น ขนาดของความเร่งลดลง
- 3. ลิฟต์ตัวหนึ่งเดิมอยู่นิ่ง จากนั้นเคลื่อนที่ขึ้นด้วยความเร่งคงตัว $2.0~{
 m m/s^2}$ ในทิศขึ้น เมื่อเวลาผ่านไป $2.0~{
 m s}$ หลอดไฟซึ่งอยู่สูงจากพื้นลิฟต์ $2.95~{
 m m}$ เริ่มหลุดจากเพดานลิฟต์ **จงหา**ว่า หลอดไฟจะอยู่ใน อากาศนานกี่วินาที ก่อนที่จะกระทบพื้นลิฟต์
 - A. $\frac{1}{2}$
- B. $\frac{1}{\sqrt{2}}$ C. $\sqrt{2}$
- D. $\frac{3}{\sqrt{2}}$
- 4. ลูกปิงปองมวล m ปริมาตร V ถูกยึดไว้ใต้น้ำด้วยเชือกเส้นหนึ่งที่ก้นภาชนะซึ่งบรรจุด้วยน้ำที่มีความ หนาแน่น ho ถ้าเชือกขาด ลูกปิงปองจะลอยขึ้นมาโดยมีขนาดความเร็วมากขึ้นแต่แรงต้านของน้ำจะมาก ์ ขึ้นตามขนาดของความเร็วไปด้วย จนในที่สุดลูกปิงปองจะมีความเร็วคงตัวค่าหนึ่ง **จงหา**ขนาดของ ความเร็วคงตัวนี้ กำหนดให้ แรงต้านของน้ำต่อการเคลื่อนที่ขึ้นของลูกปิงปองมีขนาดเท่ากับ Cv เมื่อ C เป็นค่าคงที่ และ v เป็นขนาดความเร็วของลูกปิงปองขณะลอยขึ้นมา
 - A. $\frac{\rho Vg}{C}$

- B. $\frac{mg + \rho Vg}{C}$ C. $\frac{mg \rho Vg}{C}$ D. $\frac{\rho Vg mg}{C}$

- 5. ลูกบอลสองลูก มีมวลเท่ากัน ปล่อยจากที่ระดับความสูงเดียวกัน กระทบพื้นด้วยช่วงเวลาที่เท่ากัน แต่ลูก บอลลูกที่ 1 กระดอนขึ้นจากพื้นได้สูงกว่าลูกบอลลูกที่ 2 $\,$ ถ้า $\,F_{_{\! 1}}$ และ $\,F_{_{\! 2}}$ คือขนาดของแรงที่พื้น กระทำต่อลูกบอลลูกที่ 1 และลูกที่ 2 ตามลำดับ จงเปรียบเทียบขนาดของแรงทั้งสอง (ไม่ต้องคำนึงถึง แรงต้านอากาศ)
 - $\label{eq:bounds} \text{A.} \quad F_1 > F_2 \qquad \qquad \text{B.} \quad F_1 < F_2$

 - C. $F_1=F_2$ D. F_1 อาจจะมากกว่าหรือน้อยกว่า F_2 ขึ้นกับขนาดของลูกบอลทั้งสอง
- 6. วัตถุมวล $m=0.20~{
 m kg}$ ความเร็ว $3.0~{
 m m/s}$ เข้าชนทรงกลมมวล $M=1.0~{
 m kg}$ ซึ่งห้อยอยู่นิ่ง ๆ ด้วยเชือกเบา ดังรูป หลังชนวัตถุมวล $\,m\,$ ตกลงตรง ๆ ในแนวดิ่ง **จงหา**ระยะในแนวดิ่งสูงสุดที่ทรงกลม มวล M เคลื่อนที่ขึ้นได้หลังการชน

- A. 0.092 m
- B. 0.013 m
- C. 0.018 m
- D. 0.45 m
- นักยิงธนูค่อย ๆ เหนี่ยวสายธนู โดยดึงลูกธนูมวล $20~{
 m g}$ เข้าหาตัวเป็นระยะ $0.60~{
 m m}$ และให้ธนูนิ่งขณะ เล็งเป้า โดยในขณะที่เขาดึงลูกธนูนั้น เขาต้องค่อยๆ เพิ่มขนาดของแรงดึงขึ้น และเมื่อดึงลูกธนูเป็นระยะ $0.60~{
 m m}$ เขาต้องใช้แรง $120~{
 m N}$ พอดี **จงหา**ขนาดความเร็วของลูกธนูเมื่อปล่อยสายธนู กำหนดให้ ความยืดหยุ่นของคันธนูเป็นไปตามกฎของฮุก และพลังงานทั้งหมดในสายธนูถูกส่งผ่านไปยังลูกธนู
 - A. 19 m/s
- B. 27 m/s
- C. 60 m/s
- D. 85 m/s

8. จากรูป กราฟเส้นประแสดงเส้นทางการเคลื่อนที่แบบโพรเจกไทล์ในกรณีที่ไม่มีแรงต้านอากาศ โดย แกน x แสดงตำแหน่งในแนวระดับ แกน y แสดงตำแหน่งในแนวดิ่ง หากเปลี่ยนเงื่อนไขให้เป็นแบบที่มีแรง ต้านอากาศ กราฟของเส้นทางการเคลื่อนที่จะเป็นดังเส้นใด

A. 1

B. 2

C. 3

D. 4

ปล่อยมวล m ให้ไถลลงจากครึ่งทรงกลมลื่น โดยเริ่มต้นไถลจากหยุดนิ่งที่มุม 37° กับแนวดิ่ง ดังรูป มวล m จะหลุดจากผิวทรงกลมที่มุมใดวัดจากแนวดิ่ง

A. $\arccos\frac{2}{5}$ B. $\arccos\frac{2}{3}$ C. $\arccos\frac{3}{10}$ D. $\arccos\frac{8}{15}$

10. คานสม่ำเสมอ AB ยาว $4.0~{
m m}$ มีน้ำหนัก $200~{
m N}$ ปลายคาน A ตรึงด้วยบานพับลื่นติดกับกำแพง ปลายคาน B มีเชือกผูกโยงไว้กับกำแพงที่จุด C และมีน้ำหนัก 300 N แขวนอยู่ด้วย ดังรูป **จงหา** ขนาดของแรงตึงในเส้นเชือก T

A. 400 N

B. 500 N

C. 667 N

D. 833 N

11. อนุภาคมีประจุสามอนุภาค ได้แก่ $-12\,\mu\mathrm{C}$, $+27\,\mu\mathrm{C}$ และ q วางอยู่บนแกน x โดยที่แต่ละอนุภาค อยู่ในสมดุลภายใต้แรงไฟฟ้า ถ้าอนุภาค $-12\,\mu\mathrm{C}$ อยู่ที่จุดกำเนิด และอนุภาค $+27\,\mu\mathrm{C}$ อยู่ที่ ตำแหน่ง $x=+10~\mathrm{cm}$ จงหาตำแหน่งของประจุ q

A. -20 cm

B. $-10 \, \text{cm}$

 $C. -4 \, \mathrm{cm}$

D. $+20 \, \text{cm}$

12. ประจุ +2Q ถูกตรึงอยู่ที่จุดกำเนิดและประจุ -Q ถูกตรึงอยู่ที่จุด (6, 0) สนามไฟฟ้าลัพธ์เนื่องจาก ประจุทั้งสอง ที่จุด (3, 4) มีทิศทางทำมุมเท่าใดกับแกน +x

A. $\arctan \frac{4}{9}$ B. $\arctan \frac{1}{2}$ C. $\arctan \frac{3}{4}$ D. $\arctan 2$

13. อุปกรณ์ไฟฟ้าอันหนึ่งมีตัวต้านทาน X ซึ่งต่อขนานกับตัวต้านทานอื่น ๆ อีกสามตัว ดังรูป เมื่อใช้โอห์ม มิเตอร์วัดคร่อมจุด a และ b อ่านค่าได้ 2.0 โอห์ม ความต้านทาน X มีค่าเป็นกี่โอห์ม

A. 1.2

B. 3.0

5.0 C.

6.0 D.

14. วงจรหนึ่งประกอบด้วยตัวต้านทานและตัวเก็บประจุ ดังรูป เมื่อต่อแหล่งจ่ายที่มีความต่างศักย์ 12~V เข้ากับวงจรและปล่อยให้ประจุเข้าไปเก็บในตัวเก็บประจุทุกตัวจนเต็ม **จงหา**ค่าของประจุที่สะสมอยู่ในตัว เก็บประจุ $4~\mu {
m F}$ ในหน่วยไมโครคูลอมบ์

- 15. ต่อเส้นลวดตัวนำอันหนึ่งที่มีความต้านทาน R เข้ากับแหล่งจ่ายไฟที่ให้ความต่างศักย์คงตัว หากนำ ลวดนี้มาดึงให้ยืดออกจนมีความยาวเป็น x เท่าของความยาวเดิม โดยที่ปริมาตรของลวดยังเท่าเดิม กำลังไฟฟ้าที่สูญเสียที่ตัวต้านทานนี้จะมีค่าเป็นกี่เท่าของเดิม
 - A. *x*
- B. x^2
- $\mathsf{C.} \quad \frac{1}{x}$
- D. $\frac{1}{x^2}$
- 16. ทรงกลมตันสองอันทำจากวัสดุคนละชนิดกัน มีรัศมี a และ b ตามลำดับ นำทรงกลมทั้งสองไปลอย น้ำ พบว่าทรงกลมอันแรกมีปริมาตรส่วนที่ พ้นน้ำเป็น $\frac{\pi a^3}{3}$ และทรงกลมอีกอันมีปริมาตรของส่วนที่ $\frac{8\pi b^3}{9}$ อัตราส่วนของความหนาแน่นของทรงกลมทั้งสองเป็นเท่าใด
 - A. 9:8
- B. 9:4
- C. 8:3
- D. 4:3

- 17. หลอดแก้วบรรจุปรอทอยู่ปริมาณหนึ่ง เมื่อคว่ำลงในอ่างเปิดที่บรรจุปรอทอยู่ พบว่าผิวปรอทใน หลอดแก้วอยู่สูงกว่าผิวปรอทในอ่างเป็นระยะ 10 มิลลิเมตร จงหาความดันเหนือผิวปรอทใน หลอดแก้วในหน่วยมิลลิเมตรปรอท กำหนดให้ ความดันบรรยากาศขณะนั้นคือ 750 มิลลิเมตรปรอท
 - A. 0
- B. 740
- C. 750
- D. 760
- 18. ภาชนะหุ้มฉนวนความร้อนบรรจุน้ำมันอยู่ภายในจำนวน $0.075~{
 m kg}$ เมื่อใส่น้ำ $0.250~{
 m kg}$ อุณหภูมิ $80^{\circ}{
 m C}$ ลงไปในภาชนะ ปิดฝาให้สนิท แล้วปล่อยให้น้ำและน้ำมันเข้าสู่สมดุลความร้อน พบว่าน้ำมันมี อุณหภูมิในหน่วยองศาเซลเซียสเพิ่มเป็นสามเท่าของอุณหภูมิเดิม **จงหา**อุณหภูมิเริ่มต้นของน้ำมันก่อนที่ จะใส่น้ำลงไปในภาชนะ กำหนดให้ ความร้อนจำเพาะของน้ำมันเป็น $1.4 \times 10^3~{
 m \frac{J}{{
 m kg} \cdot {
 m K}}}$ และความร้อน จำเพาะของน้ำเป็น $4.2 \times 10^3~{
 m \frac{J}{{
 m kg} \cdot {
 m K}}}$
 - A. 18°C
- B. $20^{\circ}C$
- $C. 25^{\circ}C$
- D. 29°C
- 19. ภาชนะขนาด $0.25~\mathrm{m} \times 0.60~\mathrm{m} \times 0.50~\mathrm{m}$ บรรจุแก๊สไนโตรเจนที่อุณหภูมิ $27^{\circ}\mathrm{C}$ และมีความดัน เท่ากับ 0.05 บรรยากาศ จำนวนโมเลกุลของแก๊สไนโตรเจนในภาชนะนี้มีค่าประมาณเท่าใด
 - A. 10^{24}
- B. 10^{23}
- C. 10^{19}
- D. 10^{18}
- 20. นำวัตถุไปวางหน้าเลนส์นูนที่วางอยู่หน้ากระจกนูน โดยเลนส์และกระจกอยู่ห่างกัน $5~{
 m cm}$ เมื่อเลื่อนวัตถุ ไปมาจนได้ภาพที่ตำแหน่งเดียวกับวัตถุ พบว่าวัตถุอยู่ห่างจากเลนส์นูน $30~{
 m cm}$ ถ้ากระจกนูนมีรัศมีความ โค้ง $15~{
 m cm}$ เลนส์นูนจะมีความยาวโฟกัสเท่าใดในหน่วย ${
 m cm}$
 - A. 4.3
- B. 7.5
- C. 12
- D. 20

ตอนที่ 2 ข้อสอบแบบเติมคำตอบ จำนวน 10 ข้อ (50 คะแนน)

- **ข้อที่ 1** ขว้างก้อนหินขึ้นจากพื้นระดับ พบว่าเมื่อก้อนหินขึ้นไปได้สูงครึ่งหนึ่งของระยะสูงสุด ความเร็วของวัตถุ มีทิศทำมุม 60° วัดเทียบกับแนวระดับ จงหามุมที่ก้อนหินถูกขว้างจากพื้นวัดเทียบกับพื้นระดับ
- **ข้อที่ 2** จะต้องออกแรง F ด้วยขนาดอย่างน้อยเท่าไร เพื่อดันมวล M ให้เคลื่อนที่บนพื้นระดับลื่น และมี มวล m ติดอยู่กับมวล M โดยที่มวล m ไม่ไถลลงมา ดังรูป กำหนดให้ ค่าสัมประสิทธิ์ความเสียด ทานสถิตระหว่าง M และ m เท่ากับ 0.50

ข้อที่ 3 ท่อนวัตถุ AB **มวลไม่สม่ำเสมอ** ยาว 3L เมื่อผูกเชือกห้อยปลายทั้งสองข้างให้ท่อนวัตถุอยู่ในสมดุล โดยที่ท่อนวัตถุวางตัวในแนวระดับและเชือกทั้งสองเป็นเส้นตรงแนวดิ่ง พบว่าแรงตึงเชือกที่ปลาย A เท่ากับ T ต่อมาเมื่อนำเชือกปลายด้าน A ออก และนำลิ่มมาค้ำยันท่อนวัตถุที่ระยะห่างจากปลาย A เท่ากับ L พบว่าท่อนวัตถุยังคงอยู่ในสมดุลและวางตัวในแนวระดับและแรงตึงเชือกที่ปลาย B เท่ากับ T จงหาว่าท่อนวัตถุมีน้ำหนักเป็นกี่เท่าของ T

ข้อที่ 4 ปล่อยวัตถุมวล m ลงรางลื่นที่ตำแหน่ง A ซึ่งอยู่ในแนวระดับเดียวกับตำแหน่ง C ดังรูป วัตถุไถลไป ตามรางจนถึงส่วนที่เป็นวงกลม เมื่อถึงตำแหน่ง B ทิศทางความเร็วของวัตถุอยู่ในแนวดิ่งพอดี แรง ลัพธ์ที่กระทำต่อวัตถุมีขนาดเท่าใด ที่ตำแหน่ง B

ข้อที่ 5 วัตถุชิ้นหนึ่งเคลื่อนที่เป็นเส้นตรงในทิศ +x โดยแรงที่กระทำต่อวัตถุมีค่าขึ้นกับตำแหน่งดังแสดงใน กราฟ **จงหา**งานเนื่องจากแรงนี้ที่กระทำต่อวัตถุในช่วง $x=0~\mathrm{m}$ จนถึง $x=5~\mathrm{m}$

ข้อที่ 6 ทรงกลมตัวนำสองอันรัศมี a และ b แต่ละอันมีประจุ +Q หากนำลวดตัวนำยาวมาเชื่อมระหว่าง ทรงกลมทั้งสอง พบว่าสุดท้ายทรงกลมรัศมี a มีประจุ $+\frac{Q}{3}$ **จงหา**อัตราส่วน $\frac{b}{a}$ (ประจุในแต่ละ ทรงกลม มีการกระจายตัวอย่างสม่ำเสมอทั่วผิวทรงกลม ทั้งก่อนและหลังการเชื่อมต่อ)

ข้อที่ 7 จากรูป วงจรไฟฟ้ากระแสตรงประกอบด้วยตัวต้านทาน 3 ตัว และแบตเตอรี่ 3 ตัว โดยมีค่าตามรูป และมีแบตเตอรี่ตัวหนึ่งไม่ได้บอกค่าไว้ ถ้า $I_1=2.0~{
m A}$ จงหาค่าของ I_3

- **ข้อที่ 8** ถังทรงกระบอกรัศมี $1.0~{
 m m}$ เปิดฝา มีน้ำบรรจุอยู่ ถ้าเจาะรูที่ฐานล่างสุดของถัง และพบว่าน้ำใหล ออกจากรูด้วยอัตราการไหลเท่ากับ $\frac{8\pi}{100}~{
 m m}^3/{
 m s}$ **จงหา**อัตราเร็วของผิวน้ำในถังในหน่วย ${
 m cm/s}$
- ข้อที่ 9 ทรงกระบอกตันและทรงกลมตันทำมาจากทองแดง โดยพื้นที่หน้าตัดของทรงกระบอกมีเส้นผ่าน
 ศูนย์กลางเท่ากับเส้นผ่านศูนย์กลางของทรงกลม และทั้งคู่มีปริมาตรเท่ากัน เมื่อนำมาให้ความร้อนใน
 ปริมาณที่เท่ากัน วัตถุทั้งสองเกิดการขยายตัวตามความร้อนโดยมีปริมาตรเพิ่มขึ้นเท่ากัน และแต่ละ
 ชิ้นมีรูปทรงแบบเดิม จงหาอัตราส่วนระหว่างความสูงที่เปลี่ยนไปของทรงกระบอกเทียบกับเส้นผ่าน
 ศูนย์กลางที่เปลี่ยนไปของทรงกลม

ข้อที่ 10 วางวัตถุไว้หน้าเลนส์อันหนึ่ง ทำให้เกิดภาพคมชัดที่ฉากซึ่งอยู่ด้านหลังเลนส์และห่างจากเลนส์เป็น ระยะ $45~{
m cm}$ ถ้าขยับเลนส์ไปไกลจากวัตถุห่างจากตำแหน่งเดิมไปอีก $6~{
m cm}$ จะต้องเลื่อนฉากเข้า มาใกล้เลนส์อีก $3~{
m cm}$ จึงจะได้ภาพคมชัดอีกครั้ง **จงหา**ความยาวโฟกัสของเลนส์อันนี้
