| Kaplan-Meier Method                                                                                                                  |   |
|--------------------------------------------------------------------------------------------------------------------------------------|---|
| Introduction                                                                                                                         |   |
| introduction                                                                                                                         |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      | ] |
| Introduction                                                                                                                         | - |
| Survival function                                                                                                                    |   |
| – The survival function $S(t)$ gives probability of                                                                                  |   |
| surviving at least to time <i>t</i> .  • Our goal: to develop a <i>nonparametric</i>                                                 |   |
| estimator for $S(t)$ .                                                                                                               |   |
| Nonparametric estimation means no need to                                                                                            |   |
| specify a distribution for survival times.                                                                                           |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      | 1 |
| Introduction                                                                                                                         |   |
| <ul> <li>Kaplan-Meier(KM) estimator is the most widely used</li> </ul>                                                               |   |
| method for estimating survival functions.                                                                                            |   |
| <ul><li>It is also known as the product-limit estimator.</li><li>First proposed in</li></ul>                                         |   |
| Kaplan, E. L.; Meier, P. (1958). "Nonparametric estimation from incomplete observations". J. Amer. Statist. Assn. 53 (282): 457-481. |   |
| <ul> <li>Meier and Kaplan had each submitted similar paper to<br/>the Journal of the American Statistical Association.</li> </ul>    |   |
| <ul> <li>The editor then convinced them to combine their work<br/>into one paper.</li> </ul>                                         |   |
| 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                      |   |

## Background

- Edward Kaplan (1920-2006)
  - Got interested in lifetime of vacuum tubes while working at Bell laboratory
  - Was also a professor in Mathematics at Oregon State University (1961-1981)
- Paul Meier (1924-2011)
  - A professor at University of Chicago
  - Got interested in cancer patient survival
  - Made major contributions in randomized clinical trials

# Background

• One of the most cited statistical papers.

| Paper                           | <b>Total Citation</b> | Citation per year |
|---------------------------------|-----------------------|-------------------|
| Kaplan-Meier (1958)             | 46443                 | 800               |
| Cox model (1972)                | 40310                 | 916               |
| EM (Dempster 1977)              | 43524                 | 1116              |
| Bootstrap (Efron 1979)          | 12674                 | 342               |
| FDR (Benjamini & Hockberg 1995) | 30345                 | 1445              |

# Kaplan-Meier estimator : a toy example

A toy example: suppose we have five patients

- Patient dropped out after 5 months.
- Patient B survived for the whole year long study
- Patient C died at 8 month
- Patient D survived for the whole year long study
- Patient E died at 4 month

Data {5+, 12+, 8, 12+, 4}

+: censoring

### Uncensored data

• If no censoring, use empirical survival function

$$\hat{S}(t) = \frac{\#\{i \colon t_i > t \}}{n}$$

If we have data {5, 12, 8, 12, 4}, then

$$\widehat{S}(5) = 3/5$$
, and  $\widehat{S}(6.5) = 3/5$ 

- The resulting  $\hat{s}(t)$  is a step-wise function, and decreases at event times.
- · For censored observations, we don't know whether  $t_i > t$  or not.





# Right censored data

• Key idea of KM estimator

$$\hat{S}(t) = \hat{S}(t^{-})\hat{p}(T > t|T \ge t)$$

- -S(t): probability surviving time t
- $-S(t^-)$ : probability surviving a time just before t
- $-p(T > t | T \ge t)$ : probability surviving time t given still alive before t
- · Conditional probability estimate:
  - $-\hat{p}(T>t|T\geq t)$ =1 if no failure at t
  - $-\hat{p}(T>t|T\geq t)=1-\frac{d(t)}{n(t)} \text{ if any failure at t} \\ -d(t)\text{: } \# \text{ failures at t}; n(t)\text{: } \# \text{ still alive just before t}.$

# Kaplan-Meier estimator

KM estimator

$$\hat{S}(t) = \hat{S}(t^{-})\hat{p}(T > t|T \ge t)$$

$$-\,\hat{p}(T>t|T\geq t)$$
=1 if no failure at t

$$-\hat{p}(T>t|T\geq t)$$
=1  $-\frac{d(t)}{n(t)}$  if any failure at t

- KM estimator only decreases at event times
- · KM estimator does not change
  - Between events
  - At censoring times

### Definition

- Suppose the events (not censored) occur at D distinct times
  - $t_1 < t_2 < \cdots < t_D \quad (\mathsf{D} {\leq} \mathsf{n})$
- At each event time  $t_i$ , define
  - $-d_i$ : number of events at  $t_i$
  - $n_i$ : number of individuals at risk just before  $t_i$
  - $\frac{d_i}{n_i}$ : conditional prob. of failure at  $t_i$  given alive before  $t_i$ .
  - $-1 \frac{d_i}{n_i}$  : conditional prob. of surviving  $t_i$  given alive before  $t_i$ .
- At event time  $t_i$ , the K-M estimator is calculated recursively by

$$\hat{S}(t_i) = \hat{S}(t_{i-1})(1 - \frac{d_i}{n_i}).$$

#### K-M estimator

Then the Kaplan-Meier (Product-limit) estimator of S(t) is

$$\hat{S}(t) = \begin{cases} 1 & \text{if } t < t_1 \\ \prod_{t_i \le t} \left[ 1 - \frac{d_i}{n_i} \right] & \text{if } t \ge t_1 \end{cases}$$

## An example

- Recall data {5+, 12+, 8, 12+, 4}.
- $\hat{S}(4)$  at event times:

$$- \hat{S}(4) = 1 \frac{d_1}{n_1} = 1 - \frac{1}{5} = \frac{4}{5}$$

$$-\hat{S}(8) = \hat{S}(4) \times \left(1 - \frac{d_2}{n_2}\right) = \frac{4}{5} \times \left(1 - \frac{1}{3}\right) = \frac{8}{15}$$



# Summary

- K-M estimator: a nonparametric method for estimating survival function.
- The K-M estimator changes value only at event times.
- The size of change depends not only on the number of event observed at event time  $t_i$ , but also number of censored observations prior to  $t_i$ .
- If there is no censoring, K-M estimator is simply the empirical survival function.
- Another important property of the K-M estimator is that it is also the nonparametric MLE of S(t).