C1165 / C1205 Single Chip Optical Mouse Sensor Data Sheet

1. Features:

- Optical Navigation Technology
- No Mechanical Parts
- Accurate Motion Up to 14"/sec
- Accurate navigation over a wide variety on surfaces
- 5V Power Supply
- Power Saving During No Motion
- On Chip LED Drive with Regulated Current
- IEC 60825-1 eye safe under single fault conditions
- 6MHz Resonator used for low EMI radiation concern.
- Compliant USB Rev2.0 Specification
- Compliant USB HID Rev1.1 Specification
- Compliant with IBM[®] mouse specification
- Auto detection protocol interface (USB or PS/2)
- Support 3 buttons and mechanical wheel encoding with 16Pin Package (C1165)
- Additional keys (4th and 5th buttons) with 20Pin Package (C1205)

The C1165/C1205 is an real single chip optical mouse sensor with one die internal package and it supports output format USB or PS/2 protocol while port plug in auto detection. This device meets USB 2.0 specification and Compliants with IBM® PS/2 mouse specification.

A complete mouse can be builtin with the addition of PC board; switches and mechanical wheel; plastic case and cable. Few external electrical components are needed for Optical Mouse function both USB and PS/2 mode.

There are 2 major Mouse function to provide by pinout package selectable as listing:

- 16pin package (**C1165**): Three buttons and one Z wheel for Microsoft® IntelliMouse® mode. Resolution is default by manufacture (400 or 800 CPI)
- 20pin package (**C1205**): Five buttons (with additional keys; 4th and 5th button) available and one Z wheel for Microsoft[®] IntelliEye[®] protocol.

Resolution is default by manufacture (400 / 600 / 800 CPI) or strap pin selectable. See $\frac{1}{2}$

Figure 15

2. Pin Description:

16 Pin C1165	20 Pin C1205	Pin Name	Туре	Description
1	2	SWL	- 1	Left button input
2	3	SWM	I	Middle button input
3	4	SWR	I	Right button input
4	8	DM_DA	I/O	USB D- or PS/2 data
5	7	DP_CK	I/O	USB D+ or PS/2 clock
6	8	VDD	Р	+5 volt power supply
7	9	VC3B	Р	Internal 3.3 voltage regulator power output
8	10	VC3A	Р	USB 3.3 voltage power input
9	11	R_LED	-	LED current resistor
10	12	VSSA	Р	Analog Ground
11	13	XY_LED	0	LED control (sink current)
12	14	GND	Р	System ground
13	16	OSCI	1	Oscillator intput
14	17	osco	0	Oscillator output
15	18	ZA	1	Z axis input A
16	19	ZB	I	Z axis input B
	20	4 th button	1	4th Key while IntelliEye® mode.
	1	5 th button	I	5th Key while IntelliEye® mode.
	5	Key_Mode	I	Buttons support for IntelliMouse® or IntelliEye® mode. 3 buttons (IntelliMouse®) = GND 5 buttons (IntelliEye®) = VCC
	15	DPI_SW	I	Motion Resolution strap 800CPI = NC 600CPI = VCC 400CPI = GND

3. Pin Assignment:

Figure 1: C1165 Top View Pinout Figure 2: C1205 Top View Pinout Figure 3: Top View of Mouse

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units	Notes
Supply Voltage	VDD	-0.5	5.5	V	
Operating Temperature	T _A	-15	55		
Storage temperature	Ts	-40	85		
Lead Solder temp			260		
ESD			2	KV	All pins, human body model
Input Voltage	V_{IN}	-0.5	5.5	V	

4.2 Recommend Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
O	VDD	4.5	5.0	5.5	V	PS/2 interface
Supply Voltage	VDD	4.25	5.0	5.25	V	USB interface
Operating Temperature	T _A	0		40		
Clock Source Frequency	f _{CLK}		6.0		MHz	VDD=5V
Power Cousumption	IDD		30		mA	VDD=5.5V
USB Mode Suspend Current	ISUSP			400	uA	VDD=5.25V
Low Voltage Detect	VLVDZ		3.6		V	
Low Voltage Reset	VLVRZ		3.0		V	

4.3 Optical Navigation Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Distance From lens reference plane to surface	Z	2.3	2.4	2.5	mm	
Speed	S	0		14	In/sec	
Acceleration	Α			0.15	G	
Light level onto IC	IRR _{INC}	40		20000	MW/m ²	=639 nm
Frame Rate	FR		1800		Frames/s	
XY_LED Current	I _{LED}	Typ-15%	560/R_LED	Typ+15%	mA	

4.4 DC Electrical Specifications (VDD = 5.0V, Temperature = 25°C)

Mnemonic	Description	Item	Min.	Тур.	Max.	Unit	Condition
XI, XO	Oscillation Cell	F	-	6	-	MHz	
VC	3.3 V regulator output	Vo	3.0	3.3	3.6	V	VDD=5V
DP_CK	Input Voltage High	V_{IH}	2.0			V	
	Input Voltage Low	V_{IL}			0.8	V	
	Output Voltage High	V_{OH}	2.8		3.6	V	
	Output Voltage Low	V_{OL}	0		0.3	V	
	PS/2 mode Pull-up	R _{PPU}	3.5	5.0	6.5	ΚΩ	V _{IN} = VSS
DM_DA	Input Voltage High	V_{IH}	2.0			V	
	Input Voltage Low	V_{IL}			0.8	V	
	Output Voltage High	V_{OH}	2.8		3.6	V	
	Output Voltage Low	V_{OL}	0		0.3	V	
	USB mode Pull-up	R_{PU}	1.20	1.50	1.80	$K\Omega$	
	PS/2 mode Pull-up	R_{MPU}	3.5	5.0	6.5	ΚΩ	
PA5:0	Input Voltage High	V_{IH}	2.0			V	
PB1:0	Input Voltage Low	V_{IL}			0.8	V	
PC0	Output Voltage High	V_{OH}	2.4			V	Source current = 8 mA
	Output Voltage Low	V_{OL}			0.5	V	Sink current is 20mA for
							PB[1:0]; 8 mA for others
	Pull down Resistor	R_{PD}	35	50	65	$K\Omega$	$V_{IN} = VDD$
	Pull up Resistor	R_{PU}	10.5	15	19.5	ΚΩ	V _{IN} = VSS
All	I/O Port Hi-Z Leakage	Iz	-	-	10	μΑ	R _P inactive

^{*} The frequency defined in this item is based on the CPU frequency. It is one-half of the oscillation frequency.

4.5 AC Electrical Specifications (VDD = 5.0V, Temperature = 25°C)

Characteristics	Item	Min.	Тур.	Max.	Unit	Condition
Internal Ring oscillator frequency	F _{ROSC}	1.75	3.5	5.25	KHz	
Sleep mode delay from no motion to low power	T _{SLEEP}		1000		ms	
Wakeup delay from sleep mode due to motion	T _{WUPP}		50	100	ms	
Devent on delay				50	ms	From VDD reach 4.25V
Power up delay	T_{PUP}			50		until spec's met
Flashing frequency of LED	F _{LED}		125		Hz	
Debounce delay on button input	T _{DBB}	5	9	15	ms	
Z Wheel sampling period	T_{ZW}	120	200	300	us	
Input Capacitance (OSC pins)	T _{ZON}		15		pF	OSCI, OSCO to GND

C1165 / C1205

Single Chip Optical Mouse Sensor Data Sheet

4.6 USB Electrical Specifications (VDD = 5.0V, Temperature = 25°C)

+10 COB Electrical opcomodit	, , , , , , , , , , , , , , , , , , , 		· .,	1	
Characteristics	Item	Min.	Max.	Unit	Condition
Output Signal Crossover Voltage	V_{CRS}	1.3	2.0	V	C _L = 200pF ~ 600pF
Input Signal Crossover Voltage	V _{ICRS}	1.2	2.1	V	C _L = 200pF ~ 600pF
Differential Input Sensitivity	V_{DI}	0.2		V	(D+) - (D-) See Figure 6
Differential Input Common Mode Range	V_{CM}	0.8	2.5	V	Include V _{DI} , See Figure 6
Single Ended Receiver Threshold	V_{SE}	0.8	2.0	V	
Transceiver Input Capacitance	C_{IN}		20	pF	D+ to VBUS, D- to VBUS
Output High	Сон	2.8	3.6	V	with 15k to GND and 3.3V internal regulator through 1.5K to D-, See Figure 5
Output Low	Сон	0	0.3	V	with 15k to GND and 3.3V internal regulator through 1.5K to D-, See Figure 5
Single Ended Output	V_{SED}		0.8	V	
Input High (Driven)	V_{IH}		2.0	V	
Input High (Folting)	V_{IHZ}	2.7	3.6	V	
Input Low	V_{IL}		0.5	V	

4.7 USB Timing Specifications (VDD = 5.0V, Temperature = 25°C)

THE OOD THINING OPCOMODITION	(100	- 5.0 4,	remperar	uic = 20	, 0,
Characteristics	Item	Min.	Max.	Unit	Condition
USB Low-Speed Rise Time / Fall Time	T_{LR}/T_{LF}	75	300	ns	C _L = 200pF ~ 600pF, See Figure 4
Rise and Fall time matching	V_{LRFM}	80	125	%	T_R/T_F ; $C_L = 200pF$; Excluding the first transition from the idle time
USB reset time	T _{RESET}	8.6	10	us	
Data Rate	t _{LDRATE}	1.4775	1.5225	Mb/s	Average bit rate, 1.5Mb/s +/-1/5%
Receiver Jitter Tolerance	t _{DJR1}	-75	75	ns	To next transition, see Figure 7
Receiver Jitter Tolerance	t _{DJR2}	-45	45	ns	For paired transition, see Figure 7
Differential to EOP Transition Skew	t _{LDEOP}	-40	100	ns	See Figure 8
EOP Width at Receiver	t _{LEOPR}	670		ns	Accepts EOP, see Figure 8
Source EOP Width	t _{LEOPT}	1.25	1.5	us	
Width of SE0 interval during differential	t _{LST}		210	ns	
Transition					
Differential Output Jitter	t _{UDJ1}	-95	95	ns	To next transition, see Figure 9
Differential Output Jitter	t _{UDJ2}	-150	150	ns	For paired transition, see Figure 9

Figure 4: Data Signal Rise and Fall Times

Figure 5: Data Signal Voltage Levels

Figure 6: Differential Receiver Input Sensitivity vs. Common Mode Input Range

Figure 7: Receiver Jitter Tolerance

Figure 8: Differential to EOP Transition Skew and EOP Width

Figure 9: Differential Output Jitter

5. PS/2 Output WaveForms

5.1 Timing Charts (Host Sending Data)

The following describes the typical sequence of events when the Host is sending data to the (C1165/C1205) Mouse Device.

- 1. The Host checks for a (C1165/C1205) Mouse Device transmission in process. If a transmission is in process and beyond the 10th clock, the Host must receive the data.
- 2. The (C1165/C1205) Mouse Device checks the DATA line. If the line is inactive (low), an I/O operation is not allowed.
- 3. The (C1165/C1205) Mouse Device checks the DATA line. If the line is inactive (low), the Host has data to transmit. The DATA line is set inactive (low) when the start bit (always 0) is placed on the DATA line.
- 4. The (C1165/C1205) Mouse Device sets the CLK line inactive (low). The Host then places the first bit on the DATA line. Each time the (C1165/C1205) Mouse Device sets the CLK line inactive (after falling edge), the Host places the next bit on the DATA line until all bits are transmitted.
- 5. The (C1165/1205) Mouse Device samples the DATA line for each bit while the CLK line is active (high). Data must be stable within 1 micosecond after the rising edge of the CLK line.
- 6. The (C1165/C1205) Mouse Device checks for a positive-level stop bit after the 10th clock. If the DATA line is inactive (low), the (C1165/C1205) Mouse Device continues to clock until the DATA line become active (high). Then the (C1165/C1205) Mouse Device clocks the line-control bit and, at the next opportunity, sends a Resend command to the Host.
- 7. The (C1165/C1205) Mouse Device pulls the DATA line inactive (low), producing the line-control bit.
- 8. The Host can pull the CLK line inactive (low), inhibiting the (C1165/C1205) Mouse Device.

Figure 10: (C1165/C1205) Receiving Data Timings

Receiving Data Timings

Necelving Bata Tillings							
Description	Timing	Value	Units	Specification			
End of mouse inhibit to 1st CLK low	T6	200 ~ 600	us	30us ~ 1ms			
Duration of CLK low (PC -> Mouse)	T7	35 ~ 46	us	33 ~ 50us			
Duration of CLK high (PC -> Mouse)	T8	35 ~ 42	us	33 ~ 50us			
From CLK high to DATA sample	Т9	20 +/-5%	us	IBM Spec: 5 ~ 25us			
From Line control falling edge to 11 CLK Falling edge	T10	5	us				
From Line control rising edge to 11 CLK rising edge	T11	5 ~ 25	us				

5.2 Timing Charts (Host Receiving Data)

The following describes the typical sequence of events when the Host is receiving data from the (C1165/C1205) Mouse Device.

- 1. The (C1165/C1205) Mouse Device checks the CLK line. If the line is inactive (low), output from (C1165/C1205) Mouse Device is not allowed.
- 2. The (C1165/C1205) Mouse Device checks the DATA line, If the line is inactive (low), the (C1165/1205) Mouse Device receives data from the Host.
- 3. The (C1165/C1205) Mouse Device checks the CLK line periodically during the transmission at intervals not exceeding 100 microseconds. If the (C1165/C1205) Mouse Device finds that the Host is holding the CLK line inactive (low), the byte transmission is terminated. The Host can terminated transmission anytime suring the first 10 clock cycles.
- 4. A final check for terminated transmission is performed at least 5 microseconds after clock ten.
- 5. The Host can hold the CLK line inactive (low) to inhibit the next transmission.
- 6. The Host can set the DATA line inactive (low) if it has a byte to transmit to the The (C1165/C1205) Mouse Device. The DATA line is set inactive (low) when the start bit (always 0) is placed on the DATA line.
- 7. The Host raises the CLK line to allow the next transmission.

Figure 11: (C1165/C1205) Sending Data Timings

Sending Data Timings

Description	Timing	Value	Units	Specification
DATA transition to CLK low	T1	14 +/-10%	us	5 ~ 25us
Time from DATA transition to falling edge of CLK2-11	T1A	5 ~ 25	us	5 ~ 25us
CLK high to DATA transition	T2	19 +/-10%	us	5 ~ (T4-5us)
Duration of CLK low (Mouse -> PC)	T3	35-46	us	33 – 50us
Duration of CLK high (Mouse -> PC)	T4	40 +/- 5%	us	33 – 50us
Time to Mouse inhibit after 11 to ensure the	T5	0 ~ 50	us	0 ~ 50us
Mouse does not start another transmission				

6. PS/2 Mouse Standard Commands

NOTE 1: The 4th ,5th buttons both are no function when not in IntelliEye mode.

NOTE 2: The F4 (Enable) command is effective (i.e. sending XY reports) only after 50ms.

PS/2 Mou	use Standard Command	ls (in grey: not in	nplemented commands	s)
Host			Mouse answer	
Command	Format	Meaning	(in case of multiple bytes cmd,	Remark
Communa			answer FA for each)	
FF		Reset	FA AA 00	
FE		Resend	resend last packet (not FA)	
F6		Set Default	FA	
F5		Disable	FA	
F4		Enable (after 20ms)	FA	
F3 RR	RR = report rate	Set Sampling Rate	FA	
	(0A, 14, 28, 3C, 50, 64, C8)			
F2		Read Device Type	FA ID	C1165/C1205 not support
F0		Set Remote Mode	FA	
EE		Set Wrap Mode	EE	
EC		Reset Wrap Mode	FA	
EB		Read Data	FA HD XX YY	HD: b7=Yovf, b6=Xovf,
			(this is also the standard	b5=Ysign, b4=Xsign,
			mouse report format,	b3=SrcTag=1, b2=Mstat,
			without the FA "ACK" byte)	b1=Rstat, b0=Lstat
				XX = X data, YY = Y data
EA		Set Stream Mode	FA	
E9		Status Request	FA S1 S2 S3	S1: b7=rsv=0, b6=remote,
				b5=enable, b4=scale2,
				b3=rsv=0, b2=Lpress,
				b1=Mpress, b0=Rpress
				S2: same format as for E8 cmd
				S3: same format as for F3 cmd
E8 RS	RS = resolution = 0,1,2,3	Set Resolution (1)	FA	
	Reported motion =		(parameter is ignored,	
	Motion * (1 SHL RS) / 8		effective resolution is set to	
			maximum, that is to say 3)	
E7		Set Scaling to 2:1	FA	
			(cmd has no effect)	
E6		Reset Scaling to 1:1	FA	

7. USB - PS/2 Detection

7.1 detection Features

At power-on, C1165/C1205 is able to detect the correct protocol when connected to either PS/2 or USB. This also includes hot plug in both PS/2 and USB port.

7.2 PS/2 and USB wire connection

As the same 4-wire cable will be used for USB and PS/2 (with passive adapter for PS/2), the mapping between USB and PS/2 is the following:

USB	PS/2
Vbus	Vcc
GND	GND
D+	CLOCK
D-	DATA

7.3 PS/2 connection

With a PS/2 connection, the lines state is not well defined. C1165/C1205 ends its protocol detection algorithm in PS/2 mode when the following states are found on the lines:

- request to send (CLOCK =1, DATA=0)
- PS/2 idle (CLOCK =1, DATA=1)

7.4 USB connection

C1165/C1205 ends its protocol detection algorithm in USB mode when the following state is found on the lines:

• Both lines pulled-down by USB 15K ohm resistor.

If lines are forced low, floating or generally speaking do not match one of the cases defined in §7.3 or §7.4.3, the detection algorithm waits until one of the defined cases is found.

8. Function Block Description:

Figure 12: Block Diagram

9. Function Description Register

Address	Register	RW	Reset value	Functional Description
0x00	Product ID	RO	0x02	Product ID, it can be used to verify that the serial communication link is ok
0x01	Revision ID	RO	0x00	Revision ID
0x02	Motion	RO	0x00	Detail is described in following table.
0x03	Delta_X	RO	0x00	X movement is counts since last report. Reading clears the register. Eight bit 2's complement number.
0x04	Delta_Y	RO	0x00	Y movement is counts since last report. Reading clears the register. Eight bit 2's complement number.
0x05	Quality	RO	0x00	Quality is a measure of the number of features visible by the sensor in the current frame. To obtain an accurate value, the LED needs to be turned on by changing the sleep mode of the configuration register 0x0a to always awake.
0x06	Average_Pixel	RO	0x00	Average pixel value in current frame.
0x07	Maximum_Pixel	RO	0x00	Maximum pixel value in current frame.
0x08	Sleep_Delay	R/W	0x70	Time delay from no motion until IC enters sleep mode. Units are frame cycles.
0x09	Sleep_Time	R/W	0x0B	Time delay from entering sleep mode until wakeup to check for motion Units are frame cycles.
0x0a	Configuration_bits	R/W	0x00	Detail is described in following table.
0x0c	Pixel_ Data	RO	0x00	To obtain an accurate value, the LED needs to be
0x0d	Pixel_Address	R/W	0x00	turned on. Detail method is described in dump pixels algorithm. Detail is described in the section of the CMOS sensor pixels dumping flow.
0x0e	Shutter	RO	0x10	The shutter is adjusted to keep the average and maximum pixel values within normal operating ranges. The shutter value can be adjusted to a new value on every frame. Unit is 5.64uSec.
0x0f	Gain	RO	0x0f	The gain is adjusted to keep the average and maximum pixel values within normal operating ranges. The gain value can be adjusted to a new value on every frame.

0x02 Motion					
Bit Name	Bit	RW	Dft	Function Description	
MOT	7	RO	0	Motion since last report or PD	
				0 = No motion	
				1 = Motion occurred, data ready fo reading in Delta_X and Delta_Y	
				registers	
Reserved	6		0	Reserved for future	
Reserved	5		0	Reserved for future	
OVFY	4	RO	0	Motion overflow Y, delta Y buffer has overflowed since last report	
				0 = No overflow	
				1 = Overflow has occurred	
OVFX	3	RO	0	Motion overflow X, delta X buffer has overflowed since last report	
				0 = No overflow	
				1 = Overflow has occurred	
Reserved	2		0	Reserved for future	
Reserved	1		0	Reserved for future	
RES	0	RO	0	Resolution in counts per inch	
				0 = 400	
				1 = 800	

0x0A Configuration_bits					
Bit Name	Bit	RW	Dft	Function Description	
RESET	7	R/W	0	Power up defaults (bit always reads 0)	
				0 = No effect	
				1 = Reset registers and bits to power up default settings	
LED_MODE	6	R/W	0	LED Shutter Mode	
				0 = Shutter mode off (LED always on)	
				1 = Shutter mode on (LED only on when the electronic shutter is open)	
Reserved	5		0	Reserved for future	
RES	4	R/W	0	Resolution in counts per inch (CPI)	
				0 = 400	
				1 = 800	
PIX_DUMP	3	R/W	0	Dump the pixel array through Pixel_Data according Pixel_address	
				0 = disabled	
				1 = dump pixel array	
600 CPI	2		0	Resolution 600 CPI	
				1 = Enable	
				0 = Disable	
Reserved	1		0	Reserved for future	
SLEEP	0	R/W	0	Sleep Mode	
				0 = Normal, fall asleep after one second of no movement	
				1 = Always awake	

0x1C Navigation XY Direction Control				
Bit Name	Bit	RW	Dft	Function Description
X_Y change	7	R/W	0	Change X, Y axis
SIGN_X_REV	6	R/W	0	Reverse X axis
SIGN_Y_REV	5	R/W	0	Reverse Y axis
Reserved	4	RO	0	Reserved for future
Reserved	3	RO	0	Reserved for future
Reserved	2	RO	0	Reserved for future
Reserved	1	RO	0	Reserved for future
Reserved	0	RO	0	Reserved for future

10. The Sensor Array Pixels Mapping:

PIXEL ADDRESS MAP

(Looking through the lens)

LAST PIXEL FE FD FC FA F8 EE ED EC EB EΑ E9 E8 E6 E4 E3 E2 E1 ΕO DD DC DB DA D9 D8 D7 D6 D5 D4 D3 D2 D1 DO DE CD CE BD AD AC Α1 9E 9D 9A 98 90 8D 8C 81 8B 8A 89 88 87 84 83 82 80 8E 86 7E 7D 78 6E 6D 6C 68 5D 50 4E 4D 4A 48 3E 3D 3С 3B зА 39 38 37 36 35 34 33 32 31 30 2E 2D 1D 17 13 1E 1A 18 12 11 OD 03 0E 80 02 01

FIRST PIXEL

Directions are for a complete mouse, with the Lens.

Figure 13: Sensor Pixels Array and XY Direction Mapping

11. Application Circuit Example for C1165 / C1205:

Figure 14: Application Schematic with C1165 16pins (3 buttons Optical Mouse with Z-Wheel)

Figure 15: Application Schematic with C1205 20pins (5 buttons Optical Mouse with Z-Wheel)

12. Package Dimension:

12.1 C1165 16Pin Package

12.2 C1205 20Pin Package

