

SEM Workshop: Overview

University of Zurich

→ lavaan

→ Sample Size

Fitting SEM

University of Zurich Reliability of Both Latent Variables 6/19/2025 7

Fit these models to data you simulated

fit SEM
my_fit <- sem(model, data)
summary(my_fit)</pre>

Be aware:

change the model syntax compared to

simulation

Check the

implied

covariance

structure

fitted(my_fit)

Try fitting different models to the same data

Vary the sample size used to simulate

University of Zurich

data

Evaluating SEM Fit

Model test

Model Fit Indices

Standardize $\mathsf{F}_{\mathsf{min}}$ to make it interpretable

Goodness of Fit Indices

> Absolute Fit: How far off is

RMSEA < .08

good:

RMSEA < .05

my model from a perfect fit?

Interpretation acceptable:

 $RMSEA = \sqrt{\frac{\widetilde{\lambda_Z}}{df}}$

Root Mean

Square Error of

Approximation (RMSEA)

> complex models → Parsimoniy is rewarded

Penalizes more

sample size planning

Can be used for

fitMeasures(my fit)

good:

X4

0

0

0

Fit:

Exercise: Choose simulated data from one model

Fit all four models to the data set

Evaluate fit of every model on its own

Does the correct model win?

Compare the models to each other

Evaluating

SEM

Model Fit Indices

Evaluating

SEM

Exercise:
Choose
simulated
data from
one model

Fit all four models to the data set

Evaluate fit of every model on its own

Does the correct model win?

he data set

Compare the models to each other

For winning model: check if parameters are significant

Evaluating

SEM

Fit

