Nafraleen

opmerking: a-selectiviteit

-> 2 op 5 vormen berat nog een aromaat

Moragesubstitueeral

		13
	Sulfarering	
	50gH	1
	+ H2504 80°C> 1 + H20	
	kineti-che Controle	
	Chrolie	4
	Hermodyn I SO3H CONTrole	
	controle	1
		P
		V
		,
		-
		<u></u>
		Aleman (2
		1
		1
N.		9

-	
•	5-græpen
*	CH3CH25-SCH2CH3 - RCH3CH2SH reduction
-	CH3CH, SH HNO3, CH3CH2 SO3H oxidation
*	Hud Sulfonic zour
•	
_	
~	
Ĵ	
_	
46	
-	
_	
-	
_	

Aminer Synthese * NH3 $\xrightarrow{\text{CH}_3\text{I}}$ (...) $\xrightarrow{\text{CH}_3\text{I}}$ (CH3)4N⁺ I⁻ $\xrightarrow{\text{K}_2\text{CO}_3}$ CH3PA+ = overalkylering * Gabriel phthalimide synthese NH J. OH 2. CH3CH2Br N-CH2CH3 H3O+ D COOH + CH3CH2NH3 * CH3CH2Br N3 > CH3CH2N=N+=N- H2> CH3CH2NH2 azide NOCEN HZ CH3CH2NH2 * R- C-NH2 - LUALHY R- CHANHA amide

 $+R-\overset{\circ}{\mathbb{C}}\overset{\circ}{\mathbb{R}'}+\overset{\circ}{\mathbb{N}}\overset{\circ}{\mathbb{N}}\overset{\circ}{\mathbb{R}}\overset{\circ}{\mathbb{C}}-\overset{\circ}{\mathbb{R}'}\overset{\circ}{\mathbb{N}}\overset{\mathbb{N}}\overset{\overset}{\mathbb{N}}\overset{\overset}{\mathbb{N}}\overset{\overset}{\mathbb{N}}\overset{\overset}{\mathbb{N}}\overset{\overset}{\mathbb{N}}\overset{\mathbb{N}}\overset{\mathbb$

* RNO2 + H2 POICS RNH2

Alkylering CH3CH2Br + CH3NH2 -> CH3CH2 NH2CH3 = EFNHME oppelet 7 overalkylering Michael additie CH3C = CHCH + CH3NHCH3 - CH3C- CH3CH

KOL V Solvent in Sul - Sul competitie Dielektriciteitsete le solvent = hoe goed tegenoestelde lading v elkaar geisological kunnen worden door het solvent -> wood by polaire solventen Protisch solvent bevolt H-atoom gebonden aar Od N. -> H-brog donor Aprotisch schent benat geen H-atoom -> warner solvent een sterk dipaal bezit = dipolair aprotisch solvent A Effect opsnelheid → shelleidsbep. stap. Als lading reagentia groter is als lading ud transitietoestand dan zal een polair solvent de reagentia meer stabiliseren als -> suplheid is ash v. DG = GR - GTS EN CHEXP xal stijgen met toenemende polariteit - aframe reactionalheid. 1 urije evergie DG. ran-polair solvent polair solvent

reactieverloop

Als lading reagentia < lading TS day xal polair solvent TS meer stabiliseren -> alrame DG+ -> toerame reacties welkeid. 1 urije energie non/minder polair solvent DG: polair solikit reactieverloop (B) SNY shelheid = k. [alkyl halide] met het alkyl halide als vrij neutrale molecule met een licht dipool moment. De sielheidsbepalende stap is het breken ual C-x binding. Er ontstaat een TS die sterker gelader is als de reagentia. Dis toeroegen ve polair solvent zal TS meer stabiliseren. - aframe DG+ -> to evame reacties well eight (C) 5W2 snelheid = R [alkyl halide][NV]

-

* Negaties geladen No NU-+ ", C-X - NO-C - X - NU-C - X -Polair solvent zal No meer stabiliseren als Ts thier is negatiene lading verspreid over 2 atomer.) -> DG + stight -> reacties welkeig daalt + Neutraal gelawer No NO + 111 C-X - [8+ -]= 8-] + NO-C + X Polair solvent zal TS meer stabiliseren. -> aframe DG+ -> stigen reacties nelleid. Eliminatie vanuit cyclische moleculen Q EL H -> moeter trans staan on anti-periplanaire 1 geometrie te verkrijgen. (= aan versch tyckn) The axiaal om periplanaire geometrie (= in I vlak) te verkrijgen. ub. chlorocyclohexaan: meest stabiele structur ran geen Er ondergaan want a sta dan equatoriaal

Dit conformeer bepaalt de reactie suelleid agh v zigh stoubiliteit. a equatoriaal -> stabiel anti-periplanair - minder 10 EL -> sucheioscte = R'keq -> reactie good sheller als keg groot is Keg = [minder stable conformeer] -> klein [stabiel conformer] -> orroot Keg = [stabiel conformeer] - groot [minder stabiel conjameer] -> klein woor reactie waarbij stabiel conformeer El ordergaat) ub reomentual chloride -> andergaat Er hoox sheller als menthyl duboriale want vanuit meest stabiel conformeer axiaal + stabiel CH3 CH3 minder stabiel CH3CH,0-

ub. methyl chloride. CH, CH3
CH CH3 CH3 CH3 storbiel axiaal + minder stabiel CH, CH, OT + CH3CH2OH+CL opmerking: Taitser wordt hier niet gendloot (H ROMT UD B-C) maar dit is de erige H die axiaal sta met cl vb. trans-1-chloro-2-methylcyclohexaan CH3 + axidal minuder stabiel staniel (2) E-1 Geen peroncentreerde eliminatie dus equatoriaal Randok Navorming carbokation, verlies B-H adu C met minste H-atomen (Kaitsev udgen) - apletter voor omlegginger

 $\Delta G^{\circ} = -RT \ln \text{ Keg} \text{ met } T = \text{temp.}(K)$ R = gascte = 1,986.103 Real = 8,344. -103 kg/mak 16° = 110 - TA5° met · OH° = Egebroken bindingen - Egenormole Enthalpie H = warmte die opgenomen of ajopopeuen wordt tijdens de reactie → by - DH° = exotherm + DH= > endotherm · Do = bewegingsvrjheid reactieproducten bewegingsvrijheid reagentia Entropie S = maat v. woncrote of bewegingsurjheid -> by -DS => Indeculer tot 1 + Aso > splitsing v. 1 malecule -> wordt vaak verwaarloosol Gebruik bindingsolissociatie-enthalpien om enthalpie te bepalen Opm. reactie in de gasjase -> in opt most je rekening havolen met soluatatie By polair reagers - extra H voor breken val dipool-olipool interacties tussen solvent en reagens. By polair reactieproduct -> extra H voor vorming vol dipod-dipod interacties + inclosed of bewegingsvrijheid. Kinetiek -> beschrijft snelheid ud reactie Evergieborrière = virge activeringsenergie (DG*) -> hae hager, hae trader reactie Vrije activeringsenergie = verschil in vrije E val. transitietoestanol en vrije E vol reagentia $\Delta G^* = \Delta H^{\ddagger} - T \Delta S^{\ddagger}$

0	Supply sid in social	
	suched ud reactie	
		gen die gebeuten met volabende
	evergie	ger one general men warehole
		ex die gebeuren met geschikte
<u></u>	oriëlutatie	se sile gessionie
	· corc volreagenti	
	· temp.	
	4º orde reactie	le orde reactie
	$A \rightarrow B$	A+B -> C+D
	V = Ry [A]	V = R2 [A] [B]
1	-> reacties relies	decte R = maat om te zien
-0	koe makkelijk	je aler de E-barrière geraakt
		c, alk valtemp)
	Arrhenius verg:	
		R = Ae RT met A = grequentie-
		factor set prices
	evergie	severgie Ea + Vrije activerings-
		$BT \iff DG^{\ddagger} = DH^{\ddagger} - TDS^{\ddagger}$

Rol v. solvent in competitie Jussen sut en suz	
Dielektri	7
	-
	7
	- 9
	-
	_
	1
	7
	7
	1
	1

BC = N + 2H2 Parc RCH2NH2 DRNO, + H. POIC RNH.

