Topics:

- Reinforcement Learning Part 3
 - Policy Gradients

CS 4644-DL / 7643-A ZSOLT KIRA

RL: Sequential decision making in an environment with evaluative feedback.

- **Environment** may be unknown, non-linear, stochastic and complex.
- Agent learns a policy to map states of the environments to actions.
 - Seeking to maximize cumulative reward in the long run.

- MDPs: Theoretical framework underlying RL
- lacktriangle An MDP is defined as a tuple $(\mathcal{S},\mathcal{A},\mathcal{R},\mathbb{T},\gamma)$

 ${\cal S}$: Set of possible states

 ${\cal A}\,$: Set of possible actions

 $\mathcal{R}(s,a,s')$: Distribution of reward

 $\mathbb{T}(s,a,s')$: Transition probability distribution, also written as p(s'|s,a)

 γ : Discount factor

- MDPs: Theoretical framework underlying RL
- lacktriangle An MDP is defined as a tuple $(\mathcal{S},\mathcal{A},\mathcal{R},\mathbb{T},\gamma)$

 ${\cal S}$: Set of possible states

 ${\cal A}\,$: Set of possible actions

 $\mathcal{R}(s,a,s')$: Distribution of reward

 $\mathbb{T}(s,a,s')$: Transition probability distribution, also written as p(s'|s,a)

 γ : Discount factor

Interaction trajectory: $\ldots s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2}, \ldots$

What we want

e.g. A policy π State Action

$$\pi^* = rg \max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi
ight]$$

Definition of optimal policy

Some intermediate concepts and terms

A **Value function** (how good is a state?)

$$V: \mathcal{S}
ightarrow \mathbb{R} \quad V^{\pi}(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

A Q-Value function (how good is a state-action pair?)

$$Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R} \quad Q^{\pi}(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]$$

$$Q^*(s,a) = \underset{\sim p(s'|s,a)}{\mathbb{E}} [r(s,a) + \gamma V^*(s')]$$
 (Math in previous lecture)

Equalities relating optimal quantities

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

We can then derive the Bellman Equation

$$Q^*(s, a) = \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma \max_{a} Q^*(s', a') \right]$$

This must hold true for an optimal Q-Value!

-> Leads to dynamic programming algorithm to find it

Q-Learning

• We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - This sample suggests

$$Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$$

- But we want to average over results from (s,a)
- So keep a running average

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a')\right]$$

Q-Learning with linear function approximators

$$Q(s, a; w, b) = w_a^{\top} s + b_a$$

- Has some theoretical guarantees
- Deep Q-Learning: Fit a deep Q-Network $\,Q(s,a; heta)\,$
 - Works well in practice
 - Q-Network can take RGB images

FC-4 (Q-values)

FC-256

32 4x4 conv, stride 2

16 8x8 conv, stride 4

Image Credits: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
                                                                            Experience Replay
   Initialize action-value function Q with random weights
  for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1.T do
                                                                     Epsilon-greedy
            With probability \epsilon select a random action a_t
           otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
           Execute action a_t in emulator and observe reward r_t and image x_{t+1}
           Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
           Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
           Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
                                                                                                   Q Update
           Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
  end for
```


Atari Games

- Objective: Complete the game with the highest score
- State: Raw pixel inputs of the game state
- Action: Game controls e.g. Left, Right, Up, Down
- Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Case study: Playing Atari Games

Atari Games

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Case study: Playing Atari Games

In today's class, we looked at

- Dynamic Programming
 - Value, Q-Value Iteration
- Reinforcement Learning (RL)
 - The challenges of (deep) learning based methods
 - Value-based RL algorithms
 - Deep Q-Learning

Now:

Policy-based RL algorithms (policy gradients)

Policy Gradients, Actor-Critic

Overview

ullet Class of policies defined by parameters heta

$$\pi_{\theta}(a|s): \mathcal{S} \to \mathcal{A}$$

- ullet Eg: heta can be parameters of linear transformation, deep network, etc.
- Want to maximize:

$$J(\pi) = \mathbb{E}\left[\left|\sum_{t=1}^{T} \mathcal{R}(s_t, a_t)\right|\right]$$

In other words,

$$\pi^* = \arg \max_{\pi: \mathcal{S} \to \mathcal{A}} \mathbb{E} \left[\sum_{t=1}^T \mathcal{R}(s_t, a_t) \right] \longrightarrow \theta^* = \arg \max_{\theta} \mathbb{E} \left[\sum_{t=1}^T \mathcal{R}(s_t, a_t) \right]$$

Georgia Tech

Image Source: http://karpathy.github.io/2016/05/31/rl/

Slightly re-writing the notation

Let
$$au = (s_0, a_0, \dots s_T, a_T)$$
 denote a trajectory

$$\pi_{\theta}(\tau) = p_{\theta}(\tau) = p_{\theta}(s_0, a_0, \dots s_T, a_T)$$

$$= p(s_0) \prod_{t=0}^{T} p_{\theta}(a_t \mid s_t) \cdot p(s_{t+1} \mid s_t, a_t)$$

$$\arg\max_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\mathcal{R}(\tau) \right]$$

$$J(heta) = \mathbb{E}_{ au \sim p_{ heta}(au)} \left[\mathcal{R}(au)
ight]$$

$$= \mathbb{E}_{a_t \sim \pi(\cdot|s_t), s_{t+1} \sim p(\cdot|s_t, a_t)} \left[\sum_{t=0}^T \mathcal{R}(s_t, a_t)
ight]$$
 How to gather data?

- How to gather data?
 - We already have a policy: π_{θ}
 - Sample N trajectories $\{\tau_i\}_{i=1}^N$ by acting according to π_{θ}

$$\approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} r(s_t^i, a_t^i)$$

- ullet Sample trajectories $\, au_i = \{s_1, a_1, \dots s_T, a_T\}_i$ by acting according to $\,\pi_{ heta}$
- Compute policy gradient as

$$\nabla_{\theta}J(\theta) \approx$$
 ?

• Update policy parameters: $heta \leftarrow heta + lpha
abla_{ heta} J(heta)$

The REINFORCE Algorithm

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\mathcal{R}(\tau)] \\ &= \nabla_{\theta} \int \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau & \text{Expectation as integral} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau & \text{Exchange integral and gradient} \\ &= \int \nabla_{\theta} \pi_{\theta}(\tau) \cdot \frac{\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} \cdot \mathcal{R}(\tau) d\tau & \\ &= \int \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau & \nabla_{\theta} \log \pi(\tau) = \frac{\nabla_{\theta} \pi(\tau)}{\pi(\tau)} \\ &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau)] \end{split}$$

$$\pi_{\theta}(\tau) = p(s_0) \prod_{t=0}^{T} p_{\theta}(a_t \mid s_t) \cdot p(s_{t+1} \mid s_t, a_t)$$

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{ au \sim p_{ heta}(au)} [
abla_{ heta} \log \pi_{ heta}(au) \mathcal{R}(au)] \
abla_{ heta} \left[rac{\log p(s_0)}{\sum_{t=1}^T \log \pi_{ heta}(a_t|s_t)} + \sum_{t=1}^T rac{\log p(s_{t+1} + s_t, a_t)}{\sum_{t=1}^T \log p(s_{t+1} + s_t, a_t)}
ight] \end{aligned}$$

Doesn't depend on Transition probabilities!

$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot \sum_{t=1}^{T} \mathcal{R}(s_{t}, a_{t}) \right]$$

 $\pi_{ heta}(\mathbf{a}_t|\mathbf{S}_t)$

 \mathbf{a}_t

Continuous Action Space?

Deriving The Policy Gradient

- ullet Sample trajectories $au_i = \{s_1, a_1, \dots s_T, a_T\}_i$ by acting according to $\pi_{oldsymbol{ heta}}$
- Compute policy gradient as

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i}^{N} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \mid s_{t}^{i} \right) \cdot \sum_{t=1}^{T} \mathcal{R} \left(s_{t}^{i} \mid a_{t}^{i} \right) \right]$$

ullet Update policy parameters: $\, heta \leftarrow heta + lpha
abla_{ heta} J(heta)$

Slide credit: Sergey Levine

The REINFORCE Algorithm

Slide credit: Dhruv Batra

Issues with Policy Gradients

- Credit assignment is hard!
 - Which specific action led to increase in reward
 - Suffers from high variance → leading to unstable training

Variance reduction

Gradient estimator:
$$\nabla_{\theta}J(\theta) pprox \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$

First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

$$abla_{ heta} J(heta) pprox \sum_{t \geq 0} \left(\sum_{t' \geq t} r_{t'} \right)
abla_{ heta} \log \pi_{ heta}(a_t | s_t)$$

Variance reduction

Gradient estimator:
$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Second idea: Use discount factor γ to ignore delayed effects

$$abla_{\theta} J(\theta) pprox \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} \right)
abla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

- Credit assignment is hard!
 - Which specific action led to increase in reward
 - Suffers from high variance, leading to unstable training
- How to reduce the variance?
 - Subtract an action independent baseline from the reward

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{t} \mid s_{t} \right) \cdot \sum_{t=1}^{T} \left(\mathcal{R} \left(s_{t}, a_{t} \right) - b(s_{t}) \right) \right]$$

- Why does it work? Normalization constant (expected value doesn't change)
- What is the best choice of b?

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

A: Q-function and value function!

- Learn both policy and Q function
 - Use the "actor" to sample trajectories
 - Use the Q function to "evaluate" or "critic" the policy

- Learn both policy and Q function
 - Use the "actor" to sample trajectories
 - Use the Q function to "evaluate" or "critic" the policy
- REINFORCE: $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \mathcal{R}(s,a) \right]$
- Actor-critic: $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s,a) \right]$

- Learn both policy and Q function
 - Use the "actor" to sample trajectories
 - Use the Q function to "evaluate" or "critic" the policy
- REINFORCE: $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \mathcal{R}(s,a) \right]$
- Actor-critic: $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s,a) \right]$
- Q function is unknown too! Update using $\mathcal{R}(s,a)$

• Initialize s, θ (policy network) and β (Q network)

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$

- Initialize s,θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s,a)$ and next state $s' \sim p(s'|s,a)$

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s,a)$ and next state $s' \sim p(s'|s,a)$
 - evaluate "actor" using "critic" $Q_{\beta}(s,a)$

Actor-Critic

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s,a)$ and next state $s' \sim p(s'|s,a)$
 - evaluate "actor" using "critic" $Q_{\beta}(s,a)$ and update policy:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a \mid s) Q_{\beta}(s, a)$$

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s,a)$ and next state $s' \sim p(s'|s,a)$
 - evaluate "actor" using "critic" $Q_{\beta}(s,a)$ and update policy:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a \mid s) Q_{\beta}(s, a)$$

- Update "critic":MSE Loss := $\left(Q_{new}(s,a) (r + \max_{a} Q_{old}(s',a))\right)^2$
 - Recall Q-learning

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_{\theta}(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s,a)$ and next state $s' \sim p(s'|s,a)$
 - evaluate "actor" using "critic" $Q_{\beta}(s,a)$ and update policy:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a \mid s) Q_{\beta}(s, a)$$

- Update "critic":
 - Recall Q-learning $ext{MSE Loss}:=\left(\dfrac{Q_{new}(s,a)}{a \leftarrow a', s \leftarrow s'} (r + \max_{a} Q_{old}(s',a)) \right)^2$
 - Update eta Accordingly

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a_t in a state s_t if $Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$ is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator:
$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} (Q^{\pi_{\theta}}(s_t, a_t) - V^{\pi_{\theta}}(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Actor-critic

- In general, replacing the policy evaluation or the "critic" leads to different flavors of the actor-critic
 - REINFORCE: $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \mathcal{R}(s,a) \right]$
 - $-\mathsf{Q}$ Actor Critic $\nabla_{\theta}J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}}\left[\nabla_{\theta}\log \pi_{\theta}(a|s)Q^{\pi_{\theta}}(s,a)\right]$
 - Advantage Actor Critic: $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) A^{\pi_{\theta}}(s,a) \right] = Q^{\pi_{\theta}}(s,a) V^{\pi_{\theta}}(s)$

Summary

- Policy Learning:
 - Policy gradients
 - REINFORCE
 - Reducing Variance (Homework!)
- Actor-Critic:
 - Other ways of performing "policy evaluation"
 - Variants of Actor-critic

Summary

- **Policy gradients**: very general but suffer from high variance so requires a lot of samples. **Challenge**: sample-efficiency
- Q-learning: does not always work but when it works, usually more sample-efficient. Challenge: exploration
- Guarantees:
 - **Policy Gradients**: Converges to a local minima of $J(\theta)$, often good enough!
 - Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function approximator

- Sparse long-horizon tasks (Montezuma's revenge)
- Imitation Learning, inverse reinforcement learning
- Sim2Real Simulation to real, domain randomization
- Lifelong Learning
- Safety
- World Models

Playing Go

Rules

- ► Each player puts a stone on the goban, black first
- ▶ Each stone remains on the goban, except:

group w/o degree freedom is killed

a group with two eyes can't be killed

▶ The goal is to control the max. territory

Go is a Difficult Game

Features

- ► Size of the state space 2.10¹⁷⁰
- ▶ Size of the action space 200
- ▶ No good evaluation function
- ► Local and global features (symmetries, freedom, ...)
- ▶ A move might make a difference some dozen plies later

AlphaGo

- Go is a perfect information game
 - See entire board at all times
 - Has an optimal value function!
- Key idea: We cannot unroll search tree to learn a policy/value for a large number of states, instead:
 - Reduce depth of search via **position evaluation**: Replace subtrees with estimated value function v(s)
 - Reduce breadth of search via action sampling: Don't perform unlikely actions
 - Start by predicting expert actions, gives you a probability distribution
- Use Monte Carlo rollouts, with a policy, selecting children with higher values
 - As policy improves this search improves too

Monte-Carlo Tree Search

Rollout (Random Search)

From Wikipedia

