GSERM 2020Regression for Publishing

June 16, 2020 (second session)

Why Transform?

- Linearity
- Additivity
- Normality (of *u_i*s)
- Interpretation

Examples

This:

$$Y_i = \beta_0 X_i^{\beta_1} u_i$$

becomes this:

$$ln(Y_i) = ln(\beta_0) + \beta_1 X_i + ln(u_i)$$

And this:

$$\exp(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

becomes this:

$$Y_i = \ln(\beta_0) + \beta_1 \ln(X_i) + \ln(u_i)$$

Monotonic Transformations

The "Ladder of Powers":

Transformation	р	f(X)	Fox's $f(X)$
Cube	3	X^3	$\frac{X^3-1}{3}$
Square	2	X^2	$\frac{X^2-1}{2}$
(None/Identity)	(1)	(X)	(\bar{X})
Square Root	$\frac{1}{2}$	\sqrt{X}	$2(\sqrt{X}-1)$
Cube Root	$\frac{1}{2}$ $\frac{1}{3}$	$\sqrt[3]{X}$	$3(\sqrt[3]{X}-1)$
Log	0 (sort of)	ln(X)	ln(X)
Inverse Cube Root	$-\frac{1}{3}$	$\frac{1}{\sqrt[3]{X}}$	$\frac{\left(\frac{1}{\sqrt[3]{X}}-1\right)}{-\frac{1}{3}}$
Inverse Square Root	$-\frac{1}{2}$	$\frac{1}{\sqrt{X}}$	$\frac{\left(\frac{1}{\sqrt{X}}-1\right)}{-\frac{1}{2}}$
Inverse	-1	$\frac{1}{X}$	$\frac{\left(\frac{1}{X}-1\right)}{-1}$
Inverse Square	-2	$\frac{1}{X^2}$	$\frac{\left(\frac{1}{X^2}-1\right)}{-2}$
Inverse Cube	-3	$\frac{1}{X^3}$	$\frac{\left(\frac{1}{X^3}-1\right)}{-3}$

A General Rule

Using higher-order power transformations (e.g., squares, cubes, etc.) "inflates" large values and "compresses" small ones; conversely, using lower-order power transformations (logs, etc.) "compresses" large values and "inflates" (or "expands") smaller ones.

Power Transformations: Two Issues

1. X must be positive; so:

$$X^* = X + (|X_I| + \epsilon)$$

with (CZ's Rule of Thumb):

$$\epsilon = \frac{X_{l+1} - X_l}{2}$$

2. Power transformations generally require that:

$$\frac{X_h}{X_l} > 5$$
 (or so)

A Note On Logarithms

Note that:

$$ln(X|X \le 0)$$
 is undefined.

For X = 0, we might:

- 1. exclude observations.
- 2. add some arbitrary amount (perhaps 1.0) to all observations
- 3. add some arbitrary amount (perhaps 1.0) to observations where X=0
- 4. add some arbitrary amount (perhaps 1.0) to *observations where* X=0, and include a variable D_i in your regression, where:

$$D_i = \begin{cases} 1 \text{ if } X_i = 0 \\ 0 \text{ otherwise} \end{cases}$$

The short answer: **Do #4.** Find out more at this poster.

A Note On Logarithms (continued)

For X < 0, we should think about how we expect X and Y to covary when X < 0:

- 1. a "shift", where the logarithmic form starts at values of X less than zero,
- 2. a "V-curve," where E(Y|X=k)=E(Y|X=-k), or
- 3. an "S-curve," where the X-Y relationship for X<0 "mirrors" that for X>0 [so E(Y|X=k)=-E(Y|X=-k)]

Which is correct? It depends on your theory. Again: find out more at this poster.

Which Transformation?

Mosteller and Tukey's "Bulging Rule":

Nonmonotonicity

Simple solution: Polynomials...

• Second-order / quadratic:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$

• Third-order / cubic:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}^{2} + \beta_{3}X_{i}^{3} + u_{i}$$

• pth-order:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \dots + \beta_p X_i^p + u_i$$

Transformed Xs: Interpretation

For:

$$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i,$$

then:

$$\mathsf{E}(Y) = \exp(\beta_0 + \beta_1 X_i)$$

and so:

$$\frac{\partial \mathsf{E}(Y)}{\partial X} = \exp(\beta_1).$$

Transformed Xs: Interpretation

Similarly, for:

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

we have:

$$\frac{\partial \mathsf{E}(Y)}{\partial \ln(X)} = \beta_1.$$

So doubling X (say, from X_{ℓ} to $2X_{\ell}$):

$$\Delta E(Y) = E(Y|X = 2X_{\ell}) - E(Y|X = X_{\ell})$$

$$= [\beta_{0} + \beta_{1} \ln(2X_{\ell})] - [\beta_{0} + \beta_{1} \ln(X_{\ell})]$$

$$= \beta_{1}[\ln(2X_{\ell}) - \ln(X_{\ell})]$$

$$= \beta_{1} \ln(2)$$

Log-Log Regressions

Specifying:

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + ... + u_i$$

means:

Elasticity
$$_{YX}\equiv \frac{\%\Delta Y}{\%\Delta X}=\beta_1.$$

IOW, a one-percent change in X leads to a $\hat{\beta}_1$ -percent change in Y.

An Example: Military Spending and GDP

Data are from Fordham and Walker...

```
> with(Data, summary(milgdp))
  Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
  0.000  0.238  0.749  2.115  2.104 136.900  4327

> with(Data, summary(gdp))
  Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
  0.0001  0.0033  0.0047  0.0534  0.0153  8.3010  2690
```

"Ladder of Powers": GDP

"Ladder of Powers": Military Spending

Scatterplots

Untransformed:

Logging *X*:

Logging Y:

Logging X and Y:

(Slightly) Prettier Table...

Table 1: OLS Models of Military Spending

	Linea	Linear Y		Logged Y	
	Linear-Linear	Linear-Log	Log-Linear	Log-Log	
	(1)	(2)	(3)	(4)	
(Constant)	2.05***	4.60***	-0.46***	1.64***	
	(0.05)	(0.14)	(0.02)	(0.04)	
GDP	1.00***		0.76***		
	(0.15)		(0.05)		
log(GDP)	, ,	0.52***		0.43***	
		(0.03)		(0.01)	
Observations	10,172	10,172	10,172	10,172	
R ²	0.004	0.03	0.02	0.19	
Adjusted R ²	0.004	0.03	0.02	0.19	
Residual Std. Error (df = 10170)	4.76	4.69	1.65	1.50	
F Statistic (df = 1; 10170)	42.49***	356.20***	201.20***	2,377.00**	

Note: *p<0.1; **p<0.05; ***p<0.01

Density Plots of \hat{u}_i s

Transformation Tips

- Theory is valuable.
- Try different things.
- · Look at plots.
- It takes practice.