Einführung in die Grundlagen der Numerik (WS 22/23)

Manuel Hinz

13. Oktober 2022

# Inhaltsverzeichnis

| 1        | Orthogonalität                            | 3 |
|----------|-------------------------------------------|---|
|          | 1.1 Grundlegende Definitionen             | 3 |
|          | 1.2 Bestapproximationseigenschaft         | 4 |
|          | 1.3 Orthonormalbasen                      | 5 |
| <b>2</b> | Das lineare Ausgleichsproblem             | 7 |
|          | 2.1 Problemstellung und Normalengleichung | 7 |
|          | 2.2 Methode der Orthogonalisierung        | q |

#### Vorwort

Diese Mitschrift von der Vorlesung Einführung in die Grundlagen der Numerik (Dölz,WS 2022/2023) wird von mir neben der Vorlesung geschrieben und ist dementsprechend Fehleranfällig. Fehler gerne an mh@mssh.dev!

## Kapitel 1

# Orthogonalität

#### 1.1 Grundlegende Definitionen

**Definition 1.1.** Sei X ein  $\mathbb{R}$  Vektorraum und  $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$  eine Abbildung.  $\langle \cdot, \cdot \rangle$  heißt **Skalarprodukt** oder inneres Produkt, falls

$$\forall f \in X \setminus 0 : \langle f, f \rangle > 0 \tag{Positiviät}$$

$$\forall f, g \in X : \langle f, g \rangle = \langle g, f \rangle$$
 (Symmetrie)

$$\forall \alpha, \beta \in \mathbb{R}, f, g, h \in X : \langle \alpha f + \beta g, h \rangle = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$$
 (Linearität im ersten Argument)

**Bemerkung 1.2.** Symmetrie und Linearität im ersten Argument implizieren, dass  $\langle \cdot, \cdot \rangle$  eine bilineare Abbildung ist.

**Definition 1.3.** Sei X ein  $\mathbb{R}$ -Vektorraum mit Skalarprodukt  $\langle \cdot, \cdot \rangle$ . Wir bezeichnen die zugehörige **Norm** (in Abhänigkeit von einem Vektor  $f \in X$ ) mit

$$||f|| = \sqrt{\langle f, f \rangle}.$$

**Lemma 1.4.** Sei X ein  $\mathbb{R}$ -Vektorraum mit Skalarprodukt  $\langle \cdot, \cdot \rangle$ . Dann gil die Cauchy-Schwarz-Ungleichung:

$$\forall f, g \in X : \langle f, g \rangle \le ||f|| \cdot ||g|| \tag{C.S.}$$

mit Gleichheit genau dann, wenn f und g linear abhängig sind.

Beweis. O.B.d.A.  $f, g \neq 0$ , da sonst offensichtlich Gleichheit gilt. Sei  $\alpha \neq 0$ , dann gilt mit  $f, g \in X$  und  $\alpha \in \mathbb{R}$ :

$$0 \le \|f - \alpha g\|^2 = \langle f - \alpha g, f - \alpha g \rangle = \|f\|^2 - 2\alpha \langle f, g \rangle + \alpha^2 \|g\|^2$$

Wählen wir jetzt  $\alpha = \frac{\langle f, g \rangle}{\|g\|^2}$  folgt:

$$0 \le ||f||^2 - \frac{2\langle f, g \rangle^2}{||g||^2} + \frac{\langle f, g \rangle^2}{||g||^2}$$
$$\implies \langle f, g \rangle^2 \le ||f||^2 \cdot ||g||^2.$$

Eingefügte Bemerkung. Rechnung zur Begründung von  $\langle f - \alpha g, f - \alpha g \rangle = ||f||^2 - 2||\alpha \langle f, g \rangle + \alpha^2 ||g||^2$ :

$$\langle f - \alpha g, f - \alpha g \rangle$$

$$= \langle f, f - \alpha g \rangle - \alpha \langle g, f - \alpha g \rangle$$

$$= \langle f, f \rangle - \alpha \langle f, g \rangle - \alpha \langle g, f \rangle + \alpha^2 \langle g, g \rangle$$

$$= ||f||^2 - 2||\alpha \langle f, g \rangle + \alpha^2||g||^2$$

**Beispiel 1.5.** 1.  $X = \mathbb{R}^n$  und  $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$  (Euklidisches Skalarprodukt)

2.  $X = \mathbb{R}^n$ ,  $\langle x, y \rangle = x^{\perp}Ay$ , wobei A positiv definit und symmetrisch ist

3.  $I = [a, b], w : I \to \mathbb{R}$  beschränkt und strikt positiv:

$$X = \left\{ f: I \to \mathbb{R}: \int_a^b f(x)^2 w(t) dt < \infty \right\} = L^2(I, w)$$

mit

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t)w(t)dt$$

**Eingefügte Bemerkung.** Die Definition von  $L^2(I, w)$  ist hier nicht ganz richtig, man müsste natürlich noch Äquivalenzklassen, bzgl. Gleichheit bis auf Nullmengen, bilden. Dies wird hier, da Analysis 3 / Wtheo. nicht nicht vorrausgesetzt wird, ignoriert.

**Definition 1.6.** Sei X ein  $\mathbb{R}$ -VR mit Skalarprodukt  $\langle \cdot, \cdot \rangle$ .  $f, g \in X$  heißen **orthogonal**, falls  $\langle f, g \rangle = 0$ .

Bemerkung 1.7. Im  $\mathbb{R}^n$  mit dem euklidischen Skalarprodukt stimmt Definition 1.6, wegen

$$\langle x, y \rangle = ||x|| ||y|| \cos(\theta), \theta = \angle(x, y),$$

mit unserem bisherigen Verständnis überein.

### 1.2 Bestapproximationseigenschaft

**Definition 1.8.** Sei V ein  $\mathbb{R}$ -VR mit Skalarprodukt  $\langle \cdot, \cdot \rangle$  und U ein Unterraum.

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0, \forall u \in U \}$$

 $hei\beta t \ das \ orthogonale \ Komplement \ von \ U.$ 

**Satz 1.9.** Unter den Annahmen von Definition 1.8 und der zusätzlichen Annahme, dass U endlich dimensional ist, gilt folgendes für  $v \in V$ :

$$\|v-u\|=\min_{w\in U}\|v-w\|$$

genau dann, wenn  $v - u \in U^{\perp}$ .

**Beispiel 1.10.**  $V = \mathbb{R}^2$ ,  $U = span\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$  mit euklidischem Skalarprodukt  $\langle \cdot, \cdot \rangle$ . Dann ist  $U^{\perp} = span\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ .



Abbildung 1.1: U und  $U^{\perp}$ 

Beweis von Satz 1.9. Sei  $v \in V$  und seien  $u, w \in U$ . Dann gilt:

$$||v - w||^2 = \langle v - w, v - w \rangle = \langle (v - u) + (u - w), (v - u) + (u - w) \rangle$$
$$= ||v - u||^2 + 2\langle v - u, \underbrace{u - w}_{\in U} \rangle + ||u - w||^2 \ge ||v - u||^2$$

mit Gleichheit genau dann, wenn w - u = 0 (da dann der ||u - w|| Term verschwindet).

**Bemerkung 1.11.** Der Satz sagt, dass es zu jedem  $v \in V$  ein eindeutiges, bestmögliches  $u \in U$  gibt.

**Definition 1.12.** Die Lösung aus Satz 1.9 heißt **orthogonale Projektion** von v auf U. Die Abbildung

$$P: V \rightarrow U, v \mapsto P(v)$$
 mit  $||v - Pv|| = \min_{w \in U} ||v - w||$ 

ist linear und wird orthogonale Projektion genannt.

Eingefügte Bemerkung (Beweis der Linearität). Für  $v_1, v_2 \in V$  und  $\alpha \in \mathbb{R}$  gilt:

$$v_1 - Pv_1 \in U^{\perp}$$
$$v_2 - Pv_2 \in U^{\perp}$$

Daher

$$\alpha(v_1 - Pv_1) + (v_2 - Pv_2) = (\alpha v_1 + v_2) - (\alpha Pv_1 + Pv_2) \in U^{\perp}.$$

Aber dann muss  $\alpha Pv_1 + Pv_2$  schon, wegen der Eindeutigkeit,  $P(\alpha v_1 + v_2)$  sein.

**Bemerkung 1.13.** Satz 1.9 gilt auch, wenn U durch  $W = w_0 + U$  ersetzt wird. Die orthogonale Projektion ist analog definiert.

Frage: Die Orthogonale Projektion hat offenbar gute Eigenschaften. Aber: wie berechnen wir sie? Wie wählen wir  $\overline{U}$ ?

- Berechnung ist leicht
- U wählen schwierig

#### 1.3 Orthonormalbasen

**Definition 1.14.** Sei X ein  $\mathbb{R}$ -VR mit Skalarprodukt  $\langle \cdot, \cdot \rangle$  und  $X_n \subset X$  ein endlich dimensionaler Teilraum mit Basis  $\{\varphi_1, \ldots, \varphi_n\}$ . Die Basis heißt **Orthogonalbasis**, falls

$$\forall i \neq j : \langle \varphi_i, \varphi_i \rangle = 0$$

gilt und Orthonormalbasis (ONB), falls zusätzlich  $\|\varphi_i\| = 1$  gilt. Das impliziert:

$$\langle \varphi_i, \varphi_j \rangle = \delta_{i,j}.$$

**Beispiel 1.15.** 1.  $\mathbb{R}^n$  mit euklidischem Skalarprodukt und kanonischer Basis

2.  $X = L^2(I, 1)$  mit entsprechendem Skalarprodukt und  $X_n$  der Raum der trigonometrischen Polynome bis Grad n. Dann ist folgendes eine ONB:

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\sin(x)}{\sqrt{\pi}}, \frac{\cos(x)}{\sqrt{\pi}}, \dots, \frac{\sin(nx)}{\sqrt{\pi}}, \frac{\cos(nx)}{\sqrt{\pi}}\right\}$$

Eingefügte Bemerkung. Trigonometrische Polynome sind Funktionen der Form

$$f(t) = \sum_{k=1}^{n} a_k \cos(kx) + b_k \sin(kx).$$

Die größte Faktor vor dem x ist der Grad eine trigonometrischen Polynoms.

**Satz 1.16.** Sei  $\{\varphi_1, \ldots, \varphi_n\}$  eine ONB von  $X_n \subset X$ . Dann gilt

1. 
$$f = \sum_{i=1}^{n} \langle \varphi_i, f \rangle \varphi_i$$

2. 
$$||f||^2 = \sum_{i=1}^n \langle \varphi_i, f \rangle^2$$

3. Die orthogonale Projektion  $f_n$  von  $f \in X \setminus X_n$  ist gegeben durch

$$f_n = \sum_{i=1}^n \langle \varphi_i, f \rangle \varphi_i$$

4. im Fall von 3.:

$$||f_n||^2 = \sum_{i=1}^n \langle \varphi_i, f \rangle^2 \le ||f||$$

Beweis. 1.:

$$f \in X_n \implies \exists \alpha_i \in \mathbb{R} : f = \sum_{i=1}^n \alpha_i \varphi_i$$
$$\implies \langle \varphi_i, f \rangle = \langle \varphi_i, \sum_{j=1}^n \alpha_j \varphi_j \rangle = \sum_{j=1}^n \alpha_j \langle \varphi_i, \varphi_j \rangle = \alpha_i$$

2.:

$$||f||^2 = \langle f, f \rangle$$

$$= \langle \sum_{i=1}^n \alpha_i \varphi_i, \sum_{j=1}^n \alpha_j \varphi_j \rangle = \sum_{i,j=1}^n \alpha_i \alpha_j \delta_{i,j} = \sum_{i=1}^n \alpha_i^2$$

3.:

$$f \in X \setminus X_n$$
:

$$\|f - \underbrace{\tilde{f}_n}_{\in X_n}\| = \langle f - \sum_{i=1}^n \tilde{\alpha}_i \varphi_i, f - \sum_{i=1}^n \tilde{\alpha}_i \varphi_i \rangle$$

$$= \|f\|^2 - 2 \sum_{i=1}^n \tilde{\alpha}_i \underbrace{\langle \varphi_i, f \rangle}_{=:\alpha_i} + \sum_{i,j=1}^n \alpha_i \alpha_j \langle \varphi_i, \varphi_j \rangle$$

$$= \|f\|^2 - \sum_{i=1}^n \tilde{\alpha}_i \alpha_i + \sum_{i=1}^n \tilde{\alpha}_i^2 \xrightarrow{\text{Quadratische Ergänzung}}_{=:\alpha_i} \|f\|^2 - \sum_{i=1}^n \alpha_i^2 + \sum_{i=1}^n \underbrace{(\alpha_i - \tilde{\alpha}_i)^2}_{>0}$$

$$(1.1)$$

Dies wird minimiert, wenn  $\tilde{\alpha}_i = \alpha_i$  ist.

4.:

 $f \in X_n$  wurde in 2. gezeigt. Sonst:

$$f \notin x_n \implies \min \alpha_i = \tilde{\alpha}_i \text{ in } (1.1):$$

$$0 \le ||f - f_n||^2 = ||f||^2 - \sum_{i=1}^n \underbrace{\alpha_i^2}_{\langle \varphi_i, f \rangle^2}$$

Es folgt die Behauptung.

#### Vorteile von Orthogonalität:

- Bestapproximation
- Einfache Basisdarstellung

Ende von Vorlesung 01 am 11.10.2022

## Kapitel 2

# Das lineare Ausgleichsproblem

### 2.1 Problemstellung und Normalengleichung

Gegeben seien Punkte  $(t_i, b_i) \in \mathbb{R}^2$  mit i = 1, ..., m. Wir nehmen an, dass es eine Gestzmäßigkeit im Sinne eines parameterabhängigen Modelles

$$b_i = b(t_i) = b(t_i; \underbrace{x_1, \dots, x_n}_{\text{Parameter}}),$$

wobei die Parameter  $x_1, \ldots, x_n$  unbekannt seien, gibt. In der Praxis sind die Messungen zusätzlich mit Fehlern behaftet und das Modell gilt nur approximativ. Zusätzlich gibt es oft mehr Messungen als Parameter, d.h. m > n. Frage: Gegeben die Messungen, können wir zugehörige Parameter bestimmen?

Annahme: b ist linear in den Parametern, d.h. es gibt Funktionen

$$a_i: \mathbb{R} \to \mathbb{R}$$

s.d.

$$b(t; x_1, \dots, x_n) = a_1(t)x_1 + \dots + a_n(t)x_n.$$

Idee: Formuliere ein lineares Gleichungssystem:

$$b_i \approx b(t_i; x_1, \dots, x_n) = a_1(t_i)x_1 + \dots + a_n(t_i)x_n, i = 1, \dots, m$$

kurz  $Ax \approx b$  mit  $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m$ .

**Problem:** Durch Modell- und Messfehler gilt das Gleichungssystem nur ungefähr, und wir mehr Gleichungen als Unbekannte ("das Gleichungssystem ist überbestimmt"). Wir können unser Gleichungssystem also im Allgemeinen nicht lösen.



Abbildung 2.1: Datenpunkte und approximierte Gerade

#### Beispiel 2.1.

<u>Idee:</u> Finde Parameter, sodass das Modell "bestmöglich" mit den Messpunkten übereinstimmt, d.h. finde  $(x_1, \ldots, x_n)^t = x \in \mathbb{R}^n$  s.d.:

$$||Ax - b|| = \min_{y \in \mathbb{R}} ||Ay - b|| \tag{2.1}$$

**Definition 2.2.** Die Gleichung (2.1) heißt **lineares Ausgleichsproblem**. Der Term Ax - b heißt **Residuum**.

Bemerke: 
$$V = \mathbb{R}^m, U = \text{Bild}(A) \subset V, \dim(\text{Bild}(A)) \underbrace{\leq n \leq m}_{\text{Grundannahme}}$$

Statte V mit euklidischem Skalar<br/>produkt aus.

 $\stackrel{Satz1.9}{\Longrightarrow}$  Es gibt genau ein  $Ax \in Bild(A)$  so, dass

$$||Ax - b|| = \min_{w \in U} ||w - b||$$

gilt.

**Aber:** Wie berechnen wir x?

**Satz 2.3.** Sei  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $m \ge n$ ,  $x \in \mathbb{R}^n$  ist genau dann eine Lösung von (2.1) bezüglich der euklidischen Norm, falls

$$A^t A x = A^t b. (2.2)$$

Insbesondere ist das lineare Ausgleichproblem genau dann lösbar, falls rang(A) = n.

Beweis.

$$||Ax - b|| = \min_{y \in \mathbb{R}^n} ||Ay - b||$$

$$\stackrel{\text{Satz (1.9)}}{\iff} Ax - b \in U^{\perp} = \text{Bild}(A)^{\perp}$$

$$\iff \forall y \in \mathbb{R}^n : \langle Ax - b, Ay \rangle = 0$$

$$\iff \forall y \in \mathbb{R}^n : \langle A^t Ax - A^t b, y \rangle = 0$$

$$\iff A^t Ax = A^t b$$

Die letzte Gleichung ist genau dann invertierbar, wenn  $A^tA$  vollen Rang hat, also wenn A vollen Rang (n) hat.  $\square$ 

**Bemerkung 2.4.** Im beweis verwenden wir, dass Ax - b orthogonal zu U = Bild(A),



Abbildung 2.2: Hyperebene und Projektion

d.h. eine Normale zur Hyperebene Bild(A) im  $R^m$ , ist. Deshalb heißt (2.2) auch Normalengleichung.

**Bemerkung 2.5.** Für m = n und rang(A) = n ist die Lösung des linearen Ausgleichproblems exakt (im mathematischen Sinne).

**Satz 2.6.** Für  $A \in \mathbb{R}^{m \times n}$  ist  $A^t A$  symmetrisch und positiv semidefinit. Falls  $m \ge n$  ist  $A^t A$  genau dann positiv definit, wenn rang(A) = n.

Beweis. • Symmetrisch: klar

• positiv semidefinit:

$$\forall x \in \mathbb{R}^n : x^t(A^t A)x = (Ax^t)(Ax) = ||Ax||_2^2 \ge 0$$

• positiv definit:  $\operatorname{rang}(A) = n \implies Ax = 0 \iff x = 0 \implies \|Ax\|_2 = 0 \iff x = 0 \implies \text{Behauptung}.$ 

Einfachste Möglichkeit zur Lösung von (2.2): Berechne  $A^tA$ ,  $A^tb$ , löse LGS mittels Cholesky. Kosten sind ungefähr:

$$\frac{n^2m}{2} + m \cdot n + \frac{n^3}{6} + \frac{n^2}{2} + \frac{n^2}{2} \approx \frac{mn^2}{2}$$
 für  $m \gg n$ .

Eingefügte Bemerkung. Anmerkung vom Donzent:  $A^tA$  eig. immer schlecht zu berechnen.

**Aber:** Dieser Vorgang ist schlechter konditioniert als das lineare Ausgleichsproblem:

#### Eingeschobene Definition / Wiederholung

$$\operatorname{cond}(A) = ||A|| ||A^{-1}||$$
$$||A|| = \max_{||x||=1} ||Ax||$$

Falls  $A \in \mathbb{R}^{n \times n}$  spd (symmetrisch, positiv definit) gilt  $\operatorname{cond}_2((A^t A)) = \operatorname{cond}_2(A)^2$ . Für  $A \in \mathbb{R}^{m \times n}$  gelten ähnliche Überlegungen, siehe Deuflhard & Hohmann.

Beispiel 2.7. Sei 
$$A = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$$
 mit  $\epsilon > \underbrace{eps}_{Maschienengenauigkeit}$ ,  $\epsilon^2 < eps$ .

$$\implies A^t A = \begin{bmatrix} 1 + \epsilon^2 & 1 \\ 1 & 1 + \epsilon^2 \end{bmatrix} \stackrel{im\ Computer}{=} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

 $\implies A^t A$  ist im Computer singulär, obwohl A vollen Rang hat!

Idee / Wunsch: Gebe einen Algorithmus an, der das lineare Ausgleichsproblem löst und nur auf A arbeitet.

### 2.2 Methode der Orthogonalisierung

**Definition 2.8.** Eine Matrix  $Q \in \mathbb{R}^{n \times n}$  heißt **orthogonal**, wenn  $Q^tQ = I$ , d.h. falls die Spalten von Q eine ONB bzgl. des euklidischen Skalarprodukts bilden. Schreibe  $Q \in O(n)$ .

**Notation:**  $\langle \cdot, \cdot \rangle_2, \| \cdot \|_2$  für das euklidische Skalarprodukt / die euklidische Norm.

Lemma 2.9. Für alle  $Q \in O(n)$  gilt

- 1.  $||Qx||_2 = ||x||_2$  (Invarianz der Norm bzgl. orthogonaler Projektionen)
- 2.  $cond_2(Q) = 1$

Beweis. 1.: 
$$||Qx||_2^2 = \langle Qx, Qx \rangle_2 = \langle Q^tQx, x \rangle_2 = \langle x, x \rangle_2 = ||x||_2^2$$
  
2.:  $||Q||_2 = \max_{||x||_2 = 1} ||Qx|| = 1$  und auch  $||Q^-1||_2 = 1 \implies$  Behauptung.

**Satz 2.10.**  $A \in \mathbb{R}^{m \times n}, m \geq n, rang(A) = n$ . Dann hat A eine QR-Zerlegung:

$$A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$$

wobei  $Q \in O(m), R \in \mathbb{R}^{n \times n}$  eine obere Dreiecksmatrix ist.

 $Beweis. \ {\it Schreibe} \ {\it das} \ {\it Gram-Schmidt-Orthogonalisierungsverfahren} \ {\it in} \ {\it Matrix form:}$ 

$$Q = \underbrace{\begin{bmatrix} A_n & \dots & A_2 & A_1 \end{bmatrix}}_{A_n & \dots & A_2 & A_1} \underbrace{\begin{bmatrix} 1 & \dots & \dots & \frac{-\langle A_n, A_1 \rangle_2}{\|A_1\|_2^2} \\ & \ddots & \dots & & \vdots \\ & & 1 & \frac{-\langle A_3, A_2 \rangle_2}{\|A_2\|_2^2} & \frac{-\langle A_3, A_1 \rangle_2}{\|A_1\|_2^2} \\ & & & 1 & \frac{-\langle A_2, A_1 \rangle_2}{\|A_1\|_2^2} \end{bmatrix}}_{R'} \underbrace{\begin{bmatrix} \frac{1}{\|B_1\|_2} & & 0 \\ & & \ddots & \\ 0 & & \frac{1}{\|B_n\|_2} \end{bmatrix}}_{R''}$$

- $\implies Q \in R^{m \times n}, R'R''$ ist obere Dreiecksmatrix mit nicht-null Diagonale<br/>inträgen
- $\implies$  invertierbar:  $R = (R'R'')^{-1}$
- $\implies QR = A,$ wenn wir Qzu einer ONB von  $R^m$ erweitern.