

Yukie Nagai, Osaka University

ShanghAl Lecture, Osaka, October 20, 2011

How Do Caregivers Teach Actions?

[Rohlfing et al., 2006; Nagai & Rohlfing, 2007-2009]

• Caregivers exaggerate their actions when interacting with *infants* vs. *adults* (i.e., motionese) [Brand et al., 2002].

How Do People Teach Actions?

http://cnr.ams.eng.osaka-u.ac.jp/~yukie/Video/SocialRobot_02_subject.mpg

[Muhl & Nagai, 2007; Nagai et al., 2008]

People tend to exaggerate actions directed to robots.

Take Home Message

I. Teachers guide infants'/robots' learning.

e.g.) Exaggeration of motion, social signals, etc.

Both a teacher and a learner mutually shape interaction.

2. Infants/robots elicit teachers' scaffolding.

To Be UNpublished...

Inspired by ...

From Attention to Learning

 Young infants learn based on bottom-up attention.

[Frank et al., 2009; Golinkoff and Hirsh-Pasek, 2006]

- Saliency-based attention [Itti et al., 1998; 2003]
 - Saliency = difference from surroundings (e.g., color, edge, motion)
 - No task or context knowledge
 - Similar to young infants

Where Model Attends?

Experiment [Nagai & Rohlfing, 2009]

Question:

- When and what caregivers emphasize?
- Where the saliency model attends?

Method:

- Comparing attended locations in:
 - Infant-directed action
 - Adult-directed action

Subjects:

15 parents of 8- to 11-month-old infants

Result I: Attention to Objects

- Highlight initial and final states (i.e., goal) of cups
 - Take long pause before and after task
 - Underline where cups are located

Result 2: Attention to Parent's Face

- Frequent social signals indicating significant events
 - Pause cup-handling movement
 - Talk to and smile at infants

Summary of Part I

How teachers guide infants'/robots' learning

 Highlight important information in the actions (e.g., goal and sub-goals)

 Guide bottom-up attention to the important information

Factors Inducing Motionese

- Infant's age
 - 6-8 m > 11-13 m > Adult [Brand et al., 2002]
- His/her appearance
 - Simulation of baby-like face
 [Muhl & Nagai, 2007; Nagai et al., 2008]
 - Baby-like face > infant > adult[Vollmer et al., 2009]
- → What about feedback from a learner (e.g., gaze, gesture)?

Experiment [Nagai et al., EpiRob2010]

Question:

 How the visual attention of a robot influences teachers' action?

Method:

- Comparing actions directed to a robot with:
 - Bottom-up attention
 - Top-down attention

Subjects:

• 16 university students

- 45 cm of tall
- A camera attached to the head

Two Conditions

- Saliency model [Itti et al., 2003]
 - Look at the most conspicuous location
 - Don't know the goal
 - Younger infants (8-11M)

- Wizard of Oz
 - Anticipate the goal and the next action
 - Know the goal
 - Older infants (12-24M)

Result 1: Spatial Action Modifications

Result 2: Temporal Action Modifications

Wizard of Oz

Summary of Part 2

- How infants/robots elicit teachers' scaffolding
 - Respond with immature attention
 - Exhibit undifferentiated (or no)categories of actions
 - Induce teachers to exaggerate actions

Take Home Message

I. Teachers' exaggeration of actions guides infants'/robots' attention and thus learning.

Both a teacher and a learner mutually shape interaction.

2. Immature attention of infants/robots elicitors teachers' exaggeration of actions.

The Power of Scaffolding!

http://cnr.ams.eng.osaka-u.ac.jp/~yukie/Video/Scaffolding.mov

Achieve the goal with appropriate scaffolding ©

Puzzled by inappropriate scaffolding \otimes

(Videos adapted from YouTube)

Thank you!

yukie@ams.eng.osaka-u.ac.jp http://cnr.ams.eng.osaka-u.ac.jp/~yukie/

To be UNpublished...

Selected References

- Y. Nagai and K. J. Rohlfing, "Computational Analysis of Motionese Toward Scaffolding Robot Action Learning," *IEEE Transactions on Autonomous Mental Development*, vol. 1, no. 1, pp. 44-54, 2009.
- Y. Nagai, A. Nakatani, and M. Asada, "How a robot's attention shapes the way people teach," in Proc. of the 10th International Conference on Epigenetic Robotics, pp. 81-88, 2010.
- Y. Nagai, C. Muhl, and K. J. Rohlfing, "Toward Designing a Robot that Learns Actions from Parental Demonstrations," in Proc. of the 2008 IEEE International Conference on Robotics and Automation, pp. 3545-3550, 2008.
- A. Vollmer, K. S. Lohan, K. Fischer, Y. Nagai, K. Pitsch, J. Fritsch, K. J. Rohlfing, and B. Wrede, "People Modify Their Tutoring Behavior in Robot-Directed Interaction for Action Learning," in Proc. of the 8th IEEE International Conference on Development and Learning, 2009.
- R. J. Brand, D.A. Baldwin, and L.A. Ashburn, "Evidence for 'motionese': Modifications in mothers' infant-directed action," *Developmental Science*, vol. 5, no. 1, pp. 72–83, 2002.
- K. J. Rohlfing, J. Fritsch, B. Wrede, and T. Jungmann, "How can multimodal cues from child-directed interaction reduce learning complexity in robots?," *Adv. Robot.*, vol. 20, no. 10, pp. 1183–1199, 2006.

L. Itti, C.Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 20, no. 11, pp. 1254–1259, 1998.