A comparison of the ARMv8 and RISC-V Instruction Set Architectures

1st Michael Schneider

Faculity of Computer Science and Mathematics
OTH Regensburg
Regensburg, Germany
michael4.schneider@st.oth-regensburg.de

2nd Florian Henneke
Faculity of Computer Science and Mathematics
OTH Regensburg
Regensburg, Germany
florian.henneke@st.oth-regensburg.de

3rd Alexander Schmid

Faculity of Computer Science and Mathematics

OTH Regensburg

Regensburg, Germany

alexander2.schmid@st.oth-regensburg.de

Abstract—text
Index Terms—keyword1, keyowrd2

I. Introduction

- A. Overview
- B. Motivation
- C. Goal

II. BACKGROUND

- A. Instruction Set Architectures
- B. RISC
- C. ARM

text

D. RISC-V

text

III. CONCEPT AND METHODS

A. Business Models

Who develops the CPU cores, how can you get access to them? Who supports chip manufacturers in designing a chip with that CPU core?

B. Complexity

How many instructions are there? How complex does that make the implementation of a core?

C. Performance

What are the differences in code size? Can we accurately compare the execution speed of both ISAs?

D. Extensibility

What instruction set extensions are there for both ISAs? Who can develop new extensions?

E. Ecosystem

Which compilers support ARM and RISC-V? Which operating systems and libraries?

IV. DISCUSSION

A. ARM

What are the advantages of ARM compared to RISC-V?

B. RISC-V

What are the advantages of RISC-V compared to ARM?

C. Future directions and challenges

How can we more accurately measure performance differences between ARM and RISC-V and how do ISA extensions affect performance?

V. CONCLUSION AND OUTLOOK

- A. Summary of results
- B. Accuracy of results
- C. Future directions

VI. OVERVIEW OF LITERATURE

Alexander Schmid [1] [2] [3] Florian Henneke [4] [5] [6] Michael Schneider [7] [8] [9]

REFERENCES

- A. Akram, "A Study on the Impact of Instruction Set Architectures on Processor's Performance," Master's thesis, Western Michigan University, 08 2017.
- [2] Heui Lee, P. Beckett, and B. Appelbe, "High-performance extendable instruction set computing," in *Proceedings 6th Australasian Computer* Systems Architecture Conference. ACSAC 2001, 2001, pp. 89–94.
- [3] M. Perotti, P. D. Schiavone, G. Tagliavini, D. Rossi, T. Kurd, M. Hill, L. Yingying, and L. Benini, "HW/SW Approaches for RISC-V Code Size Reduction," in Workshop on Computer Architecture Research with RISC-V. CARRV 2020, 2020.
- [4] A. S. Waterman, "Design of the RISC-V Instruction Set Architecture," Ph.D. dissertation, University of California, Berkeley, 2016.

- [5] K. Asanović and D. A. Patterson, "Instruction Sets Should Be Free: The Case For RISC-V," University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146, 2014.
- [6] S. Furber, ARM System-on-Chip Architecture. Addison Wesley Longman Limited, 2000, no. a.
- [7] D. Patterson, "50 years of computer architecture: From the mainframe cpu to the domain-specific tpu and the open risc-v instruction set," in 2018 IEEE International Solid State Circuits Conference (ISSCC), 2018, pp. 27–31.
- [8] J. Hennessy, Computer architecture: a quantitative approach. Waltham, MA: Morgan Kaufmann, 2012.
- [9] M. D. H. of Wisconsin-Madison; Dave Christie; David Patterson; Joshua J. Yi; Derek Chiou; Resit Sendag, "Proprietary versus open instruction sets," *IEEE Micro*, 2016.