信号与系统课程笔记: Lecture 16 理想低通滤波器 (Ideal Lowpass Filter)

授课教师:秦雨潇 笔记记录:曹时成

2023年11月8日(第十周,周三)

1 复习

 $e^{j\omega_0t}\longrightarrow \boxed{H(\omega)}\longrightarrow H(\omega_0)e^{j\omega_0t}$ 输出的频率和振幅取决于输入的 ω_0

根据 LTI 系统:

$$f(t)*h(t) = y(t) \Leftarrow \delta(t)*h(t) = h(t)$$

$$\tfrac{1}{2\pi} \int_{\mathbb{R}} F(\omega) e^{j\omega t} d\omega \Longleftrightarrow \tfrac{1}{2\pi} \int_{\mathbb{R}} F(\omega) H(\omega) e^{j\omega t} d\omega$$

$$y(t) = \mathscr{F}^{-1}\{F(\omega)H(\omega)\}$$

结论: $H(\omega)$ 反应了 y(t) 输出的幅度和初始相位的变化。

2 $H(\omega)$

 $H(\omega)$: 頻率响应函数 (Frequency Response Function/转移函数 (Transformation Function)

h(t): "冲激响应" (Impulse Response Function, IRF)

Question: How to get $H(\omega)$?

$$(1) \ H(\omega) = \mathscr{F}^{-1}\{h(t)\}\$$

(2)
$$F(\omega)H(\omega) = Y(\omega) \implies H(\omega) = \frac{Y(\omega)}{F(\omega)}$$

(3) 定义:
$$H(\omega) = |H(\omega)|e^{j \angle H(\omega)}$$

 $|H(\omega)|$ 为频幅响应, $e^{j \angle H(\omega)}$ 为相频响应。

2.1 例 1: ODE \rightarrow linear

题:
$$y'(t) + 2y(t) = f(t)$$
, $f(t) = e^{-t}u(t)$, 求 $y(t)$

解: 根据时域微分性质
$$f^n(t) = (jw)^n F(w)$$

$$(jw+2)Y(w) = f(w)$$

$$H(w) = \frac{Y(\omega)}{F(\omega)} = (jw+2)$$

$$Y(\omega) = H(\omega)F(\omega) = \frac{1}{jw+2} \frac{1}{jw+1} = \frac{1}{jw+1} - \frac{1}{jw+2}$$
 故: $y(t) = e^{-t}u(t) - e^{-2t}u(t)$

2.2 例 2: PDE \rightarrow ODE \rightarrow linear

题: 傅里叶热传导方程求解 $\frac{\partial u(x,t)}{\partial t} = \alpha^2 \frac{\partial^2 u(x,t)}{\partial x^2}$

解:

令:
$$\mathscr{F}\{u(x,t)\} = \hat{u}(w,t)$$

根据时域微分性质有: $\alpha^2 \frac{\partial^2(x,t)}{\partial x^2} = (jw)^2 \hat{u}(w,t) = -\alpha^2 w^2 \hat{u}(w,t)$
此外: $\mathscr{F}\{\frac{\partial u(x,t)}{\partial t}\} = \frac{\partial}{\partial t} \hat{u}(w,t)$
令: $y(t) = \hat{u}(w,t)\hat{u}(w,0)$ 其中: $\hat{u}(w,t) = e^{-\alpha^2 w^2 t} \hat{u}(w,0)$
有: $y'(t) = -\alpha^2 w^2 y(t)$
 $y(t) = e^{-\alpha^2 w^2 t}$
 $y(t) = \hat{u}(w,t) = \mathscr{F}\{u(x,t)\} = e^{-\alpha^2 w^2 t}$ 是正态分布函数

由于正态分布函数的傅里叶变换也是正态分布函数且 $\hat{u}(w,t) = e^{-\alpha^2 w^2 t} \hat{u}(w,0)$

故:
$$u(x,t) = \mathscr{F}^{-1}\{y(t)\} * u(x,0)$$

3 无失真传输

3.1 无失真系统

定义:输入和输出相比,只有幅度大小和出现时间的先后不同这两种"变化",而没有波形的变化。

图 1: 无失真传输系统在频域的表示。(a) 幅频; (b) 相频。

数学表示:

 $f(t) \longrightarrow kf(t-t_d)$, 根据时移性质有:

 $F(w) \longrightarrow kF(w)e^{-jwt_d}$

 $H(\omega) = rac{Y(\omega)}{F(\omega)} = ke^{-jwt_d} \equiv$ 无失真传输系统

结论 1: 无失真系统在物理层面不存在

3.2 理想低通滤波器(Ideal Lowpass Filter (LPF)

无失真系统 $\xrightarrow{\mathbb{B}^{n} \times \mathbb{J} \times \mathbb{J}}$ Ideal LPF

定义:在"有限带宽" $[-w_c,w_c]$ 范围内,幅频是常数,相频是线性即可。 w_c 为截止频

图 2: 理想低通滤波器在频域的表示。(a) 幅频; (b) 相频。

率(cut-off frequency),一般 w_c 的值为信号第一次衰减为 0 时对应的频率或者信号衰减为 3dB 时对应的频率。

结论 2: Ideal LPF 也不存在

3.3 例题

对于一个信号 f(t) 通过下图所示的 Ideal LPF, 信号是否失真?

图 3: 一个理想低通滤波器在频域的表示。(a) 幅频; (b) 相频。

(1) f(t) = cost + cos8t 失真

(2) f(t) = sin2t + sin4t 无失真

(3) f(t) = sin2tsin4t 失真

(4) $f(t) = cos^2 4t \Rightarrow 1 + 2cos 8t$ 失真

3.4 卷积只能算零状态响应

对于 $H(\omega)F(\omega)=Y(\omega)\Leftrightarrow f(t)*h(t)=y(t)$ 来说,卷积算的是零状态响应。