第九章 欧几里得空间

张彪

天津师范大学 zhang@tjnu.edu.cn

Outline

- 1 欧氏空间
- 2 标准正交基的定义与求法
- 3 欧氏空间的同构
- 4 正交变换
- 5 正交子空间

- 前面主要介绍了向量的线性运算,向量组的线性相关与线性无关性, 并讨论了向量空间中的基、维数以及向量的坐标等概念.
- 但在向量空间中还没有涉及度量性质,即还没有考虑向量空间中的 向量的大小、向量间的夹角等问题.
- 本章将在向量空间中引入内积的概念,并赋予相应的度量性质.

• 在几何空间中两个向量 a, b 的内积 (数量积) 定义为:

$$a \cdot b = |a| \cdot |b| \cos \theta$$

其中 |a|, |b| 是向量 a, b 的长度, θ 是向量 a, b 的夹角.

• 在建立空间直角坐标系后,有了向量的坐标表示,即

$$a = (a_1, a_2, a_3), b = (b_1, b_2, b_3)$$

相应地,内积的计算公式为 $a \cdot b = \sum_{i=1}^{3} a_i b_i$

■ 下面仿照该计算公式,在空间 ℝ"引入中的内积概念.

§1 欧氏空间

定义

设 V 是实数域 \mathbb{R} 上的线性空间,对 V 中任意两个向量 α, β 定义一个二元实函数,记作 (α, β) ,它具有满足以下性质

- ① $(\alpha, \beta) = (\beta, \alpha)$ (对称性)
- ② $(k\alpha, \beta) = k(\alpha, \beta)$ (左数乘性)
- ③ $(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$ (左可加性)
- $(\alpha, \alpha) \ge 0$, 当且仅当 $\alpha = 0$ 时 $(\alpha, \alpha) = 0$. (正定性)

这里 α, β, γ 是 V 中任意的向量,k 是任意实数, 则称 (α, β) 为 α 和 β 的内积,并称这种定义了内积的实数域 R 上的线性空间 V 为欧几里得空间,简称 欧氏空间.

例 1

在 \mathbb{R}^n 中,对于向量 $\alpha=(a_1,a_2,\cdots,a_n)$, $\beta=(b_1,b_2,\cdots,b_n)$ 定义

$$(\alpha,\beta)=a_1b_1+a_2b_2+\cdots+a_nb_n$$

验证 (α, β) 满足定义中的 4 个性质.

- **2** $(k\alpha, \beta) = \sum_{i=1}^{n} (ka_i) b_i = \sum_{i=1}^{n} k(a_i b_i) = k(\alpha, \beta)$
- ③ 如果 $\gamma = (c_1, c_2, \dots, c_n), \alpha + \beta = (a_1 + b_1 \ a_2 + b_2, \dots, a_n + b_n),$ 则 $(\alpha + \beta, \gamma) = \sum_{i=1}^n (a_i + b_i) c_i = \sum_{i=1}^n a_i c_i + \sum_{i=1}^n b_i c_i = (\alpha, \gamma) + (\beta, \gamma)$
- 4 $(\alpha, \alpha) = \sum_{i=1}^{n} a_i a_i = \sum_{i=1}^{n} a_i^2 \ge 0$ 当且仅当 $a_i = 0 (i = 1, 2, \dots, n)$ 时, $(\alpha, \alpha) = 0$

因此, \mathbb{R}^n 对于内积 (α, β) 就成为一个欧氏空间.

例 2

C(a,b) 为闭区间 [a,b] 上的所有实连续函数所成线性空间,对于函数 f(x),g(x), 定义

$$(f,g) = \int_{a}^{b} f(x)g(x)dx$$

则 C(a,b) 作成一个欧氏空间.

性质

设 V 为欧氏空间, $\forall \alpha, \beta, \gamma \in V$, $\forall k \in \mathbb{R}$

- $(\alpha, \beta + \gamma) = (\alpha, \beta) + (\alpha, \gamma)$
- **3** $(\mathbf{0}, \beta) = 0$

注

- 在欧几里得空间的定义中,对它作为线性空间的维数并无要求,可以是有限维的,也可以是无限维的.
- 内积满足齐次性、可加性,这两条性质合在一起称为内积的双线性性.即内积是实线性空间中的一个正定对称双线性函数.

二、欧氏空间中向量的长度

- 1. 引入长度概念的可能性
- 1) 在 R^3 向量 α 的长度模

$$|\alpha| = \sqrt{\alpha \cdot \alpha}$$

- 2) 欧氏空间 V 中, $\forall \alpha \in V$, $(\alpha, \alpha) \geq 0$ 使得 $\sqrt{\alpha \cdot \alpha}$ 有意义.
- 2. 向量长度的定义

定义

在欧氏空间 V 中,对任意向量 $\alpha \in V$, 称

$$|\alpha| = \sqrt{(\alpha, \alpha)}$$

为向量 α 的长度. 特别地, 当 $|\alpha| = 1$ 时, 称 α 为单位向量.

向量长度的简单性质

性质

- $|\alpha| \ge 0; \qquad |\alpha| = 0 \Leftrightarrow \alpha = \mathbf{0}$
- $|k\alpha| = |k||\alpha|$
- 3 如果 $\alpha \neq 0$, 则 $\frac{1}{|\alpha|}\alpha$ 是一个单位向量.

通常称此过程为把 α 单位化.

三、欧氏空间中向量的角度

- 1. 引入夹角概念的可能性与困难
- 1) 在 \mathbb{R}^3 中向量 α 与 β 的夹角

$$<\alpha,\beta> = \arccos\frac{\alpha \cdot \beta}{|\alpha||\beta|}$$

2) 在一般欧氏空间中推广上面形式,首先应证明不等式:

$$\left| \frac{(\alpha, \beta)}{|\alpha||\beta|} \right| \le 1$$

柯西-布涅柯夫斯基不等式 (又称"柯西-施瓦兹不等式")

性质

对欧氏空间 V 中任意两个向量 $\alpha, \beta,$ 有

$$|(\alpha, \beta)| \le |\alpha| \cdot |\beta|$$

当且仅当 α, β 线性相关时等号成立.

1) 对于欧氏空间 ℝ"

$$|a_1b_1 + a_2b_2 + \cdots + a_nb_n| \le \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2} \sqrt{b_1^2 + b_2^2 + \cdots + b_n^2}$$

2) 对于欧氏空间 C[a,b]

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leq \sqrt{\int_{a}^{b} f^{2}(x)dx} \cdot \sqrt{\int_{a}^{b} g^{2}(x)dx}$$

$$|(\alpha, \beta)| \le |\alpha| \cdot |\beta|$$

证明 当 $\beta = \mathbf{0}$ 时 , $(\alpha, \mathbf{0}) = 0$, $|\beta| = 0$ 因此 , $(\alpha, \beta) = |\alpha| |\beta| = 0$. 结论成立 . 当 $\beta \neq \mathbf{0}$ 时,作向量 $\gamma = \alpha + t\beta$, $t \in \mathbb{R}$ 由内积的正定性,对 $\forall t \in \mathbb{R}$, 皆有

$$(\gamma, \gamma) = (\alpha + t\beta, \alpha + t\beta) = (\alpha, \alpha) + 2(\alpha, \beta)t + (\beta, \beta)t^2 \ge 0$$

取 $t = -\frac{(\alpha,\beta)}{(\beta,\beta)}$ 代入上式, 得

$$(\alpha, \alpha) - 2(\alpha, \beta) \frac{(\alpha, \beta)}{(\beta, \beta)} + (\beta, \beta) \frac{(\alpha, \beta)^2}{(\beta, \beta)^2} \ge 0$$

即
$$(\alpha, \beta)^2 \le (\alpha, \alpha)(\beta, \beta)$$
 两边开方,

即得
$$|(\alpha, \beta)| \le |\alpha||\beta|$$

当 α , β 线性相关时,不妨设 $\alpha = k\beta$ 于是,

$$|(\alpha, \beta)| = |(\mathbf{k}\beta, \beta)| = |\mathbf{k}(\beta, \beta)| = |\mathbf{k}\|\beta|^2$$
$$|\alpha\|\beta| = |\mathbf{k}\beta\|\beta| = |\mathbf{k}\|\beta|^2$$

因此 $|(\alpha,\beta)|=|\alpha||\beta|$. 等号成立. 反之,若等号成立,由以上证明过程知或者 $\beta=0$,或者 $\alpha-\frac{(\alpha,\beta)}{(\beta,\beta)}\beta=0$ 也即 α,β 线性相关.

推论

对欧氏空间中的任意两个向量 α, β , 有

$$|\alpha + \beta| \le |\alpha| + |\beta|$$

证明

$$|\alpha + \beta|^2 = (\alpha + \beta, \alpha + \beta)$$

$$= (\alpha, \alpha) + 2(\alpha, \beta) + (\beta, \beta)$$

$$\leq |\alpha|^2 + 2|\alpha||\beta| + |\beta|^2 = (|\alpha| + |\beta|)^2$$

两边开方,证毕.

定义

设 V 为欧氏空间, α, β 为 V 中任意两非零向量, α, β 的夹角定义为

$$\langle \alpha, \beta \rangle = \arccos \frac{(\alpha, \beta)}{|\alpha||\beta|}, \quad (0 \le \langle \alpha, \beta \rangle \le \pi)$$

定义

设 α, β 为欧氏空间中两个向量,若内积 $(\alpha, \beta) = 0$ 则称 α 与 β 正交或 互相垂直,记作 $\alpha \perp \beta$.

注

- 零向量与任意向量正交.
- $\alpha \perp \beta \iff \langle \alpha, \beta \rangle = \frac{\pi}{2}$, $\mathbb{P} \cos \langle \alpha, \beta \rangle = 0$.

(3) 勾股定理: 设 V 为欧氏空间, $\forall \alpha, \beta \in V$

$$\alpha \perp \beta \iff |\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2$$

证明 因为

$$|\alpha + \beta|^2 = (\alpha + \beta, \alpha + \beta)$$
$$= (\alpha, \alpha) + 2(\alpha, \beta) + (\beta, \beta)$$

所以
$$|\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2 \iff (\alpha, \beta) = 0 \iff \alpha \perp \beta$$

推广 若欧氏空间 V 中向量 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 两两正交, 即 $(\alpha_i, \alpha_j) = \mathbf{0}, \quad i \neq j, \quad i, j = 1, 2, \cdots, m,$ 有

$$|\alpha_1 + \alpha_2 + \dots + \alpha_m|^2 = |\alpha_1|^2 + |\alpha_2|^2 + \dots + |\alpha_m|^2$$

例 3

己知 $\alpha = (2,1,3,2), \quad \beta = (1,2,-2,1)$ 在通常的内积定义下, 求 $|\alpha|, (\alpha,\beta), \langle \alpha,\beta \rangle, |\alpha-\beta|.$

例 3

己知
$$\alpha=(2,1,3,2),\quad \beta=(1,2,-2,1)$$
 在通常的内积定义下, 求 $|\alpha|,(\alpha,\beta),\langle\alpha,\beta\rangle,|\alpha-\beta|.$

$$\mathbf{M} \quad |\alpha| = \sqrt{(\alpha, \alpha)} = \sqrt{2^2 + 1^2 + 3^2 + 2^2} = \sqrt{18} = 3\sqrt{2}$$

因为
$$(\alpha, \beta) = 2 \times 1 + 1 \times 2 + 3 \times (-2) + 2 \times 1 = 0.$$

所以,
$$\langle \alpha, \beta \rangle = \frac{\pi}{2}$$
.

又因为
$$\alpha - \beta = (1, -1, 5, 1)$$

所以
$$|\alpha - \beta| = \sqrt{1^2 + (-1)^2 + 5^2 + 1^2} = \sqrt{28} = 2\sqrt{7}$$

通常称 $|\alpha - \beta|$ 为 α 与 β 的距离,记作 $d(\alpha, \beta)$.

练习 (课后习题第3题)

证明

$$d(\alpha, \gamma) \leqslant d(a, \beta) + d(\beta, \gamma)$$

四、n 维欧氏空间中内积的矩阵表示

设 V 为欧氏空间,
$$\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$$
 为 V 的一组基,对 V 中任意两个向量 $\alpha = x_1\varepsilon_1 + x_2\varepsilon_2 + \dots + x_n\varepsilon_n$, $\beta = y_1\varepsilon_1 + y_2\varepsilon_2 + \dots + y_n\varepsilon_n$

$$(\alpha, \beta) = \left(\sum_{i=1}^{n} x_i \varepsilon_i, \sum_{j=1}^{n} y_j \varepsilon_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} (\varepsilon_i, \varepsilon_j) x_i y_j$$

令
$$a_{ij} = (\varepsilon_i, \varepsilon_j)$$
, $i, j = 1, 2, \cdots n$,
令 $A = (a_{ij})_{n \times n}$, $X = (x_1, x_2, \dots, x_n)'$, $Y = (y_1, y_2, \dots, y_n)'$,
于是, $(\alpha, \beta) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j = X' A Y$

定义

称

$$A = \begin{pmatrix} (\varepsilon_{1}, \varepsilon_{1}) & (\varepsilon_{1}, \varepsilon_{2}) & \cdots & (\varepsilon_{1}, \varepsilon_{n}) \\ (\varepsilon_{2}, \varepsilon_{1}) & (\varepsilon_{2}, \varepsilon_{2}) & \cdots & (\varepsilon_{2}, \varepsilon_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ (\varepsilon_{n}, \varepsilon_{1}) & (\varepsilon_{n}, \varepsilon_{2}) & \cdots & (\varepsilon_{n}, \varepsilon_{n}) \end{pmatrix}$$

为基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 的度量矩阵.

$$A = \begin{pmatrix} (\varepsilon_1, \varepsilon_1) & (\varepsilon_1, \varepsilon_2) & \cdots & (\varepsilon_1, \varepsilon_n) \\ (\varepsilon_2, \varepsilon_1) & (\varepsilon_2, \varepsilon_2) & \cdots & (\varepsilon_2, \varepsilon_n) \\ \vdots & \vdots & \ddots & \vdots \\ (\varepsilon_n, \varepsilon_1) & (\varepsilon_n, \varepsilon_2) & \cdots & (\varepsilon_n, \varepsilon_n) \end{pmatrix}$$

注

- 度量矩阵 A 是实对称矩阵.
- 由内积的正定性,度量矩阵 *A* 还是正定矩阵. 事实上,对 $\forall \alpha \in V, \alpha \neq \mathbf{0}$,即 $X \neq 0$ 有 $(\alpha, \alpha) = X'AX > 0$. 因此,*A* 为正定矩阵.
- 在基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 下,向量的内积由度量矩阵 A 完全确定.

注

对同一内积而言,不同基的度量矩阵是合同的.

证明 设 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n; \eta_1, \eta_2, \dots, \eta_n$ 为欧氏空间 V 的两组基,它们的度量矩阵分别为 A、B,且

 $(\eta_1, \eta_2, \cdots, \eta_n) = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) C$

其中
$$C = (c_{ij})_{n \times n} = (C_1, C_2, \dots, C_n)$$

于是, $\eta_i = \sum_{k=1}^n c_{ki} \varepsilon_k, i = 1, 2, \dots, n$
因此, $(\eta_i, \eta_j) = \left(\sum_{k=1}^n c_{ki} \varepsilon_k, \sum_{l=1}^n c_{lj} \varepsilon_l\right) = \sum_{k=1}^n \sum_{l=1}^n (\varepsilon_k, \varepsilon_l) c_{ki} c_{lj}$
 $= \sum_{k=1}^n \sum_{l=1}^n a_{kl} c_{ki} c_{lj} = C'_i A C_j$
所以 $B = ((\eta_i, \eta_j)) = (C'_i A C_j) = \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C' \end{pmatrix} A (C_1, C_2, \dots, C_n) = C' A C$

§2 标准正交基的定义与求法

定义 (正交向量组)

设 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 是一组非零向量, 如果它们两两正交, 则称为正交向量组.

性质

正交向量组是线性无关的.

证明 设正交向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 有一线性关系

$$k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=\mathbf{0}$$

用 α_i 与等式两边作内积,即得 $k_i(\alpha_i, \alpha_i) = 0$ 由 $\alpha_i \neq \mathbf{0}$,有 $(\alpha_i, \alpha_i) > 0$,从而 $k_i = 0 (i = 1, 2, \dots, m)$. 这就证明了 $\alpha_1, \alpha_2, \dots, \alpha_m$ 是线性无关的.

推论

n 维欧氏空间 V 中,两两正交的非零向量的个数不会超过 n.

这个事实的几何意义是清楚的. 例如, 在平面上找不到三个两两垂直的非零向量; 在空间中, 找不到四个两两垂直的非零向量.

定义 (正交基)

在 n 维欧氏空间中, 由 n 个两两正交的非零向量构成的向量组称为 正交基. 由单位向量组成的正交基称为 标准正交基.

性质

• 向量组 $\alpha_1,\alpha_2,\ldots,\alpha_s$ 是一个标准正交向量组 \Longleftrightarrow

$$(\alpha_i, \alpha_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

一组基是标准正交基 ←⇒ 它的度量矩阵是单位矩阵.

性质

设 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 是 n 维欧氏空间 V 的一组标准正交基, 对 $\alpha, \beta \in V$, 设 向量 α, β 的坐标分别是 $X = (x_1, x_2, \dots, x_n)', Y = (y_1, y_2, \dots, y_n)', 则$

- $x_i = (\alpha, \alpha_i)$ i = 1, 2, ..., n
- $(\alpha, \beta) = X'Y = x_1y_1 + x_2y_2 + \ldots + x_ny_n$

证明 由题设可以

$$\alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n$$

用 ε_i 与等式两边作内积, 即得

$$x_i = (\varepsilon_i, \alpha) \quad (i = 1, 2, \cdots, n)$$

因为

$$\alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n$$

$$\beta = y_1 \varepsilon_1 + y_2 \varepsilon_2 + \dots + y_n \varepsilon_n$$

所以

$$(\alpha, \beta) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = X' Y$$

三. 求标准正交基的办法-Schmidt 正交化方法

定理 1

n 维欧氏空间中任一个正交向量组都能扩充成一组正交基.

证明 设 $\alpha_1, \alpha_2, \dots, \alpha_m$ 是一正交向量组, 我们对 n-m 作数学归纳法.

- 假设 n-m=k 时定理成立,也就是说,可以找到向量 β_1 β_2 , · · · · , β_k , 使得

$$\alpha_1, \alpha_2, \cdots, \alpha_m, \beta_1, \beta_2, \cdots, \beta_k$$

成为一组正交基.

• 现在来看 n-m=k+1 的情形. 因为 m < n, 所以一定有向量不能被 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性表出, 作向量

$$\alpha_{m+1} = \beta - k_1 \alpha_1 - k_2 \alpha_2 - \dots - k_m \alpha_m$$

这里 k_1, k_2, \cdots, k_m 是待定的系数.

用 α_i 与 α_{m+1} 作内积, 得

$$(\alpha_i, \alpha_{m+1}) = (\beta, \alpha_i) - k_i (\alpha_i, \alpha_i) \quad (i = 1, 2, \dots, m)$$

取

$$k_i = \frac{(\beta, \alpha_i)}{(\alpha_i, \alpha_i)}$$
 $(i = 1, 2, \dots, m)$

有

$$(a_i, \alpha_{m+1}) = 0 \quad (i = 1, 2, \cdots, m)$$

由 β 的选择可知, $\alpha_{m+1} \neq \mathbf{0}$. 因此 $\alpha_1, \alpha_2, \cdots, \alpha_m, \alpha_{m+1}$ 是一正交向量组,根据归纳法假定, $\alpha_1, \mathbf{w}_2, \cdots, \alpha_m, \alpha_{m+1}$ 可以扩充成一正交基. 于是定理得证.

在求欧氏空间的正交基时,常常是已经有了空间的一组基. 对于这种情形,有下面的结果:

定理 2

对于 n 维欧氏空间中任意一组基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$,都可以找到一组标准正 交基 $\eta_1, \eta_2, \cdots, \eta_n$,使

$$L(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_i) = L(\eta_1, \eta_2, \cdots, \eta_i), i = 1, 2, \cdots, n$$

证明 设 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 是一组基, 我们来逐个地求出向量 $\eta_1, \eta_2, \dots, \eta_n$.

- 首先, 可取 $\eta_1 = \frac{1}{|\varepsilon_1|} \varepsilon_1$.
- 一般地, 假定已经求出 $\eta_1, \eta_2, \cdots \eta_m$, 它们是单位正交的, 具有性质

$$L(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_i) = L(\eta_1, \eta_2, \cdots, \eta_i), i = 1, 2, \cdots, m$$

• 下一步求 η_{m+1} . 因为 $L(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_m) = L(\eta_1, \eta_2, \dots, \eta_m)$, 所以 ε_{m+1} 不能被 $\eta_1, \eta_2, \dots, \eta_m$ 线性表出.

按定理1证明中的方法,作向量

$$\xi_{m+1} = \varepsilon_{m+1} - \sum_{i=1}^{m} (\varepsilon_{m+1}, \eta_i) \, \eta_i$$

显然

$$\xi_{m+1} \neq 0, \ \exists \ (\xi_{m+1}, \eta_i) = 0, i = 1, 2, \cdots, m$$

令

$$\eta_{m+1} = \frac{\xi_{m+1}}{|\xi_{m+1}|}$$

 $\eta_1, \eta_2, \cdots, \eta_m, \eta_{m+1}$ 就是一单位正交向量组. 同时

$$L(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_{m+1}) = L(\eta_1, \eta_2, \cdots, \eta_{m+1})$$

由归纳法原理, 定理得证.

注

• 定理中的要求

$$L(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_i) = L(\eta_1, \eta_2, \cdots, \eta_i), i = 1, 2, \cdots, n$$

就相当于由基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 到基 $\eta_i, \eta_2, \cdots, \eta_n$ 的过渡矩陈是上三角 矩阵.

施密特 (Schmidt) 正交化过程

- n 维欧氏空间 V 必存在正交基与标准正交基.
- 对 n 维欧氏空间 V 的任一组基 $\alpha_1, \alpha_2 ..., \alpha_n$,都可以用<mark>施密特 (Schmidt) 正交化过程</mark>化为正交基 $\beta_1, \beta_2, \cdots, \beta_n$.

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{(\alpha_{2}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1}$$

$$\dots$$

$$\beta_{n} = \alpha_{n} - \frac{(\alpha_{n}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} - \frac{(\alpha_{n}, \beta_{2})_{\beta}}{(\beta_{2}, \beta_{2})} \dots - \frac{(\alpha_{n}, \beta_{n-1})}{(\beta_{n-1}, \beta_{n-1})} \beta_{n-1}$$

• 如果再把每个 β_i 单位化,即得到 V 的一组标准正交基

设 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 与 $\eta_1, \eta_2, \cdots, \eta_n$ 是欧氏空间 V 中的两组标准正交基,它们之间的过渡矩阵显 $A = (a_{ij})$,即

$$(\eta_1, \eta_2, \cdots, \eta_n) = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

因为 $\eta_1, \eta_2, \cdots, \eta_n$ 是标准正交基, 所以

$$(\eta_i, \eta_j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

矩阵 A 的各列就是 $\eta_1, \eta_2, \dots, \eta_n$ 在标准正交基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 下的坐标. 上式可以表示为

$$a_{1i}a_{1j} + a_{2i}a_{2j} + \dots + a_{ji}a_{nj} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

相当于一个矩阵的等式

$$A'A = E$$

或者

$$A^{-1} = A'$$

我们引入:

定义

n 级实数矩阵 A 称为正交矩阵, 如果 A'A = E

因此, 以上分析表明,

- 由标准正交基到标准正交基的过渡矩阵是正交矩阵;
- 如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基。

注

根据逆矩阵的性质,由

$$A'A = E$$

即得

$$AA' = E$$

写出来就是 A 的各行满足

$$a_{i1}a_{j1}+a_{i2}a_{j2}+\cdots+a_{in}a_{jn}=\delta_{ij},$$

其中

$$\delta_{ij} = \begin{cases} 1, & \exists i = j \\ 0, & \exists i \neq j \end{cases}$$

正交矩阵之等价定义

实矩阵
$$A = (a_{ij})_{nn}$$
 为正交矩阵

$$\Leftrightarrow \sum_{k=1}^{n} a_{ki} a_{kj} = \delta_{ij}$$

$$\Leftrightarrow A^{-1} = A'$$

$$\Leftrightarrow AA' = E$$

$$\Leftrightarrow \sum_{k=1}^{n} a_{ik} a_{jk} = \delta_{ij}$$

 \Leftrightarrow A 的行(列)向量组是 R n 的一组标准正交基

正交矩阵之性质

- 如果 A 是正交矩阵, 则 | A| = ±1
- 如果 A 是正交矩阵, 则 A', A^{-1} , A^* , A^k 均是正交矩阵; 而 A 是正交矩阵的充分必要条件是 $I = \pm 1$
- 如果 A, B 是 n 级正交矩阵, 则 AB 也是正交矩阵
- n 级实矩阵 A 是正交矩阵的充分必要条件是,A 的 n 个列 (或行) 向量是两两正交的单位向量

标准正交基的有关结果总结如下:

设 $V \in n$ 维欧氏空间 $, \varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n \in V$ 的一组标准正交基, 则

- 1) 标准正交基的度量矩阵是单位矩阵
- 2) 设 $\alpha, \beta \in V$, 且 α, β 在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的坐标分别为

$$x = (x_1, x_2, \dots, x_n)', \quad y = (y_1, y_2, \dots, y_n)'$$

则

$$(\alpha,\beta)=x_1y_1+x_2y_2+\cdots+x_ny_n=x'y$$

3) V 中任一元素 α 在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的坐标为

$$((\alpha, \varepsilon_1), (\alpha, \varepsilon_2), \cdots, (\alpha, \varepsilon_n))'$$

4) 由标准正交基到标准正交基的过渡矩阵是正交矩阵 (即满足 A'A = E 的 n 级实矩阵). 又若两组基之间的过渡矩阵是正交矩阵, 且其中一组基是标准正交基, 则另一组基也是标准正交基.

§3 欧氏空间的同构

我们来建立欧氏空间同构的概念.

定义

实数域 \mathbb{R} 上欧氏空间 V_1 与 V_2 称为同构的, 如果由 V_1 到 V_2 有一个双 射 σ , 满足

- $\bullet \quad \sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$
- $(\sigma(\alpha), \sigma(\beta)) = (\alpha, \beta)$

这里 $\alpha, \beta \in V_1, k \in \mathbf{R}$, 这样的映射 σ 称为 V_1 到 V_2 的同构映射.

由定义可知,如果 σ 是欧氏空间 V_1 到 V_2 的一个同构映射, 那么 σ 也是 V_1 到 V_2 作为线性空间的同构映射. 因此,同构的欧氏空间必有相同的维数.

设 V_1 是一个 n 维欧氏空间, 在 V_1 中取一组标准正交基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 在这组基下, V_1 的每个向量 α 都可表成

$$\alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n$$

$$\sigma(a)=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$$

这是 V 到 \mathbb{R}^n 的一个双射, 并且适合定义中条件 1), 2).

上一节可知, σ 也适合定义中条件 3).

因而 σ 是 V 到 \mathbb{R}^n 的一个同构映射.

由此可知,每个 n 维的欧氏空间都与 \mathbb{R}^n 同构.

下面来证明, 同构作为欧氏空间之间的关系具有反身性、对称性与传递性.

- 首先,每个欧氏空间到自身的恒等映射显然是一同构映射.这就是 说,同构关系是反身的.
- 其次, 设 σ 是 V_1 到 V_2 的一同构映射,我们知道,逆映射 σ^{-1} 也 适合定义中 1)与 2),而且对于 $\alpha, \beta \in V_2$,有

$$(\alpha, \beta) = (\sigma(\sigma^{-1}(\alpha)), \sigma(\sigma^{-1}(\beta)))$$
$$= (\sigma^{-1}(\alpha), \sigma^{-1}(\beta))$$

这就是说, σ^{-1} 是 V' 到 V的一同构映射, 因而同构关系是对称的.

• 第三, 设 σ , τ 分别是 V_1 到 V_2 , V_2 到 V_3 的同构映射. 不难证明 $\tau\sigma$ 是 V_1 到 V_3 的同构映射,因而同构关系是传递的.

既然每个 n 维欧氏空间都与 \mathbb{R}^n 同构, 按对称性与传递性即得, 任意两个 n 维欧氏空间都同构. 综上所述. 就有

定理 3

两个有限维欧氏空间同构 ⇔ 它们的维数相同.

这个定理说明, 抽象的观点看, 欧氏空间的结构完全被它的维数决定.

§4 正交变换

在解析几何中, 我们有正交变换的概念. 正交变换就是保持点之间的距离不变的变换. 在一般的欧氏空间中, 我们有

定义

欧氏空间 V 的线性变换 \mathscr{A} 称为正交变换, 如果它保持向量的内积不变, 即对于任意的 $\alpha, \beta \in V$ 都有

$$(\mathscr{A}\alpha, \mathscr{A}\beta) = (\alpha, \beta)$$

正交变换可以从几个不同的方面来加以刻画.

定理 4

设 \mathscr{A} 是 n 维欧邸空间 V 的一个线性变换, 于是下面四个命题是相互等价的:

- ① ∅ 是正交变换
- ② \mathscr{A} 保持向量的长度不变, 即对于 $\alpha \in V$, $|\mathscr{A}\alpha| = |\alpha|$
- 3 如果 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 是标准正交基, 那么 $\mathcal{A}\varepsilon_1, \mathcal{A}\varepsilon_2, \cdots, \mathcal{A}\varepsilon_n$ 也是标准正交基

因为正交矩阵是可逆的, 所以正交变换是可逆的.

由定义不难看出,正交变换实际上就是一个欧氏空间到它自身的同构映射,因而

性质

正交变换的乘积与正交变换的逆变换还是正交变换.

在标准正交基下, 正交变换与正交矩阵对应, 因此,

性质

正交矩阵的乘积与正交矩阵的逆矩阵也是正交矩阵.

如果 A 是正交矩阵, 那么由 AA' = E 可知 $|A|^2 = 1$ 或者 $|A| = \pm 1$ 因此,

性质

正交变换的行列式等于 +1 或者 -1.

- 行列式等于 +1 的正交变换通常称为旋转,或者称为第一类的;
- 行列式等于 -1 的正交变换称为第二类的.

例如,在欧氏空间中任取一组标准正交基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$, 定义线性变换 $\mathscr A$ 为:

$$\mathscr{A}\varepsilon_1 = -\varepsilon_1, \mathscr{A}\varepsilon_i = \varepsilon_i, i = 2, \cdots, n$$

那么, 《 就是一个第二类的正交变换. 从几何上看,这是一个镜面反射 (参看本章习题 15).

§5 正交子空间

我们来讨论欧氏空间中子空间的正交关系.

定义

设 V_1 , V_2 是欧氏空间 V 中两个子空间. 如果对于任意的 $\alpha \in V_1, \beta \in V_2$, 恒有

$$(\alpha,\beta)=0$$

则称 V_1, V_2 为正交的, 记为 $V_1 \perp V_2$. 一个向量 α , 如果对于任意的 $\beta \in V_1$, 恒有

$$(\alpha,\beta)=0$$

则称 α 与子空间 V_1 正交, 记为 $\alpha \perp V_1$

因为只有零向量与它自身正交, 所以由 $V_1 \perp V_2$ 可知 $V_1 \cap V_2 = \{0\}$; 由 $\alpha \perp V_1, \alpha \in V_1$ 可知 $\alpha = 0$ 关于正交的子空间, 我们有:

定理 5

如果子空间 V_1, V_2, \cdots, V_s 两两正交, 那么和 $V_1 + V_2 + \cdots + V_r$ 是直和.

证明 设 $\alpha_i \in V_i$, $i = 1, 2, \dots, s$, 且

$$\alpha_1 + \alpha_2 + \dots + \alpha_s = \mathbf{0}$$

我们来证明 $\alpha_i = \mathbf{0}$. 事实上, 用 α_i 与等式两边作内积, 利用正交性,得

$$(\alpha_i, \alpha_i) = 0$$

从而 $\alpha_i = \mathbf{0} (i = 1, 2, \dots, s)$. 这就是说,和

$$V_1 + V_2 + \cdots + V_s$$

是直和.

定义

子空间 V_2 称为子空间 V_1 的一个正交补, 如果 $V_1 \perp V_2$, 并且 $V_1 + V_2 = V$

显然,如果 V_2 是 V_1 的正交补,那么 V_1 也是 V_2 的正交补.

定理 6

n 维欧氏空间 V 的每一个子空间 V_1 都有唯一的正交补.

证明 如果 $V_1 = \{0\}$,那么它的正交补就是 V,唯一性是显然的. 设 $V_1 \neq \{0\}$. 欧氏空间的子空间在所定义的内积之下也显下个欧氏空间. 在 V_1 中取一组正交基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_m$,由定理 1,它可以扑充成 V 的一组正交基

$$\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_m, \varepsilon_{m+1}, \cdots, \varepsilon_n$$

子空间 L $(\varepsilon_{m+1}, \dots, \varepsilon_n)$ 就是 V_1 的正交补.

再来证唯一性. 设 V_2, V_3 都是 V_1 的正交补, 于是

$$V = V_1 \oplus V_2$$
$$V = V_1 \oplus V_3$$

令 $\alpha \in V_2$, 由第二式即有

$$\alpha = \alpha_1 + \alpha_3$$

其中 $\alpha_1 \in V_1, \alpha_3 \in V_3$. 因为 $\alpha \perp \alpha_1$ 所以

$$(\alpha, \alpha_1) = (\alpha_1 + \alpha_3, \alpha_1) = (\alpha_1, \mathbf{a}_1) + (\alpha_3, \alpha_1)$$
$$= (\alpha_1, \alpha_1) = 0$$

即 $\alpha_1 = \mathbf{0}$. 由此得知 $\alpha \in V_3$, 即 $V_2 \subset V_3$ 同理可证 $V_3 \subset V_2$. 因此 $V_2 = V_3$, 唯一性得证.

注

- V₁ 的正交补记为 V¼.
- 由定义可知

$$dim(V_1) + dim(V_1^{\perp}) = n$$

- V_1^{\perp} 恰由所有与 V_1 正交的向量组成.
- 由分解式

$$V = V_1 \oplus V_1^{\perp}$$

可知,V 中任一向量 α 都可以唯一地分解成

$$\alpha = \alpha_1 + \alpha_2$$

其中 $\alpha_1 \in V_1, \alpha_2 \in V_1^{\perp}$.

我们称 α_1 为向量 α 在子空间 V_1 上的内射影.

ξ 6 实对称知阵的惊准形

- 在第五章我们得到,任意一个对称矩阵都合同于一个对角矩阵,换句话说,都有一个可逆矩阵 C 使 *CAC* 成对角形. 现在利用欧氏空间的理论,第五章中关于实对称矩阵的结果可以加强.
- 这一节的主要结果:对于任意一个 n 级实对称矩阵 A,都存在一个 n 级正交矩陈 T,使

$$T'AT = T^{-1}AT$$

成对角形.

先讨论对称矩阵的一些性质,它们本身在今后也是非常有用的.我们把它们归纳成下面几个引理.

设 A 是实对称矩阵, 则 A 的特征值皆为实数.

证明 设 λ_0 是 **A** 的特征值,于是有非零向量 $\xi = (x_1, x_2, \dots, x_n)'$ 满足 $A\xi = \lambda_0 \xi$, 令 $\xi = (x_1, x_2, \dots, x_n)'$ 其中 \bar{x}_i 是 x_i 的共轭复数,则 $\overline{A\xi} = \bar{\lambda}_0 \bar{\xi}$ 考察等式

$$\bar{\xi}'(A\xi) = \bar{\xi}'A'\xi = (A\bar{\xi})'\xi = (\overline{A\xi})'\xi$$

其左边为 $\lambda_0 \bar{\xi}' \xi$, 右边为 $\bar{\lambda}_0 \bar{\xi}' \xi$. 故

$$\lambda_0 \bar{\xi}' \xi = \bar{\lambda}_0 \bar{\xi}' \xi$$

又因 ξ 是非零向量,

$$\bar{\xi}'\xi = \bar{x}_1x_1 + \bar{x}_2x_2 + \dots + \bar{x}_nx_n \neq 0$$

故 $\lambda_0 = \bar{\lambda}_0$, 即 λ_0 是一个实数.

对应于实对称矩阵 A,在 n 维欧氏空间 \mathbb{R}^n 上定义一个线性变换 \mathscr{A} 如下:

$$\mathscr{A} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \tag{1}$$

于是,《 在标准正交基

$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \cdots, \varepsilon_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

下的矩阵就是 A.

设 A 是实对称矩阵, 公的定义如上, 则对任意 $\alpha, \beta \in \mathbf{R}^n$, 有

$$(\mathscr{A}\mathbf{a},\beta) = (\alpha,\mathscr{A}\beta) \tag{2}$$

或

$$\beta'(A\alpha) = \alpha' A\beta$$

证明 只要证明后一等式就行了. 实际上

$$\beta'(A\alpha) = \beta'A'\alpha = (A\beta)'\alpha = \alpha'(A\beta).$$

等式(2)把实对称矩阵的特性反映到线性变换上. 我们引入

定义

欧氏空间中满足等式 $(\mathscr{A}\mathbf{a},\beta)=(\alpha,\mathscr{A}\beta)$ 的线性变换称为对称变换.

对称变换在标准正交基下的矩阵是实对称矩阵. 用对称变换来反映实对称矩阵,一些性质可以看得更清楚.

设 \mathscr{A} 是对称变换, V_1 是 \mathscr{A} -子空间,则 V_1 也是 \mathscr{A} -子空间.

证明 设 $a \in V_1^{\perp}$, 要证 $\mathscr{A} \alpha \in V_1^{\perp}$, 即 $\mathscr{A} \alpha \perp V_1$. 任取 $\beta \in V_1$, 都有 $\mathscr{A} \beta \in V_1$. 因 $\alpha \perp V_1$, 故 $(\alpha, \mathscr{A} \beta) = 0$ 因此

$$(\mathscr{A}\mathsf{a},\beta)=(\alpha,\mathscr{A}\beta)=0$$

即 $\mathscr{A}\alpha \perp V_1, \mathscr{A}\alpha \in V_1^{\perp}, V_1^{\perp}$ 也是 \mathscr{A} – 子空间.

设 ৶ 是实对称短阵,则 ℝ"中属于 ৶ 的不同特征值的特征向量必正交.

证明 设 λ, μ 是矩阵 A 的两个不同的特征值, α, β 分别是属于 λ, μ 的特征向量 $A\alpha = \lambda \alpha, A\beta = \mu \beta$. 定义 \mathbb{R}^n 上的线性变换 \mathscr{A} 如下:

$$\mathscr{A}X = AX$$
,

其中 $X \in \mathbb{R}^n$. 于是, $\mathscr{A}\alpha = \lambda \alpha, \mathscr{A}\beta = \mu \beta$. 由 $(\mathscr{A}\alpha, \beta) = (\alpha, \mathscr{A}\beta)$, 有

$$\lambda(\alpha,\beta) = \mu(\alpha,\beta).$$

因为 $\lambda \neq \mu$, 所以 $(\alpha, \beta) = 0$, 即 α, β 正交.

现在来证明主要定理.

定理 7

对于任意一个 n 级实对称矩阵 A, 都存在一个 n 级正交矩阵 T, 使 $T'AT = T^{-1}AT$ 成对角形.

证明 由于实对称矩阵和对称变换的关系, 只要证明对称变换 \mathcal{A} 有 n 个特征向量做成标准正交基就行了. 我们对空间的维数 n 作归纳法.

- n=1, 显然定理的结论成立.
- 设 *n* − 1 时定理的结论成立.
- 对 n 维欧氏空间 \mathbb{R}^n , 线性变换 \mathscr{A} 有一特征向量 α_1 , 其特征值为实数 λ_1 . 把 α_1 单位化, 还用 α_1 代表它. 作 $L(\alpha_1)$ 的正交补, 设为 V_1 .

由引理 3, V_1 是 \mathscr{A} 的不变子空间, 其维数为 n-1. 因为

$$(\mathscr{A}|_{V_1}\alpha,\beta)=(\mathscr{A}\alpha,\beta)=(\alpha,\mathscr{A}\beta)=(\alpha,\mathscr{A}|_{V_1}\beta),$$

其中 $\alpha, \beta \in V_1$, 所以 $\mathscr{A}|_{V_1}$ 仍是对称变换.

据归纳法假设, $\mathscr{A}|_{V_1}$, 有 n-1 个特征向量 $\alpha_2, \dots, \alpha_n$ 作成 V_1 的标准正交基. 从而 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 \mathbb{R}^n 的标准正交基, 又是 \mathscr{A} 有 n 个特征向量. 定理得证.

- 下面来看看在给定了一个实对称矩阵 Ø 之后,按什么办法求正交矩阵 T 使 T'AT 成对角形.
- 在定理的证明中我们看到, 矩阵 A 在 R" 中定义了一个线性变换.
- 求正交矩阵 T 的问题就相当于在 \mathbb{R}^n 中求一组由 A 的特征向量构成的标准正交基.

事实上,设

$$\eta_1 = \left(egin{array}{c} t_{11} \\ t_{21} \\ \vdots \\ t_{n1} \end{array}
ight), \eta_2 = \left(egin{array}{c} t_{12} \\ t_{22} \\ \vdots \\ t_{n2} \end{array}
ight), \cdots, \eta_n = \left(egin{array}{c} t_{1n} \\ t_{2n} \\ \vdots \\ t_{nn} \end{array}
ight)$$

是 \mathbb{R}^n 的一组标准正交基, 它们都是 A 的特征向量. 显然,由 ε_1 $\varepsilon_2, \cdots, \varepsilon_n$ 到 $\eta_1, \eta_2, \cdots, \eta_n$ 的过渡矩阵就是

$$T = \begin{pmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ t_{21} & t_{22} & \cdots & t_{2n} \\ \vdots & \vdots & & \vdots \\ t_{n1} & t_{n2} & \cdots & t_{nn} \end{pmatrix}$$

T 是一个正交矩阵,而

$$T^{-1}AT = T'AT$$

就是对角形.

正交矩阵 T 的求法可以按以下步骤进行:

- ① 求出 A 的特征值. 设 $\lambda_1, \dots, \lambda$, 是 A 的全部不同的特征值.
- ② 对于每个 λ_i ,解齐次线性方程组 $(\lambda_i E A) X = \mathbf{0}$ 求出一个基础解系,这就是 A 的特征子空间 V_{λ_i} 的一组基. 由这组基出发, 按定理 2 的方法求出 V_{λ_i} 的一组标准正交基 $\eta_{i1}, \dots, \eta_{ik}$
- ③ 因为 $\lambda_1, \dots, \lambda_r$ 两两不同, 所以根据这一节引理 4, 向量组 $\eta_{11}, \dots, \eta_{1k_1}, \dots, \eta_{rl}, \dots, \eta_{rr}$ 还是两两正交的. 又根据定理 7 以及 第七章 $\S 5$ 的讨论,它们的个数就等于空间的维数. 因此,它们就构成 \mathbb{R}^n 的一组标准正交基, 并且也都是 A 的特征向量. 这样, 正交矩 阵 T 也就求出了.

如果线性替换

$$\begin{cases} x_1 = c_{11}y_1 + c_{12}y_2 + \dots + c_{1n}y_n \\ x_2 = c_{21}y_1 + c_{22}y_2 + \dots + c_{2n}y_n \\ \dots \\ x_n = c_{n1}y_1 + c_{n2}y_2 + \dots + c_{nn}y_n \end{cases}$$

的矩阵 $C = (c_{ij})$ 是正交的,那么它就称为正交的线性替换。正交的线性替换当然是非退化的。

用二次型的语言, 定理 7 可以叙述为:

定理 8

任意一个实二次型

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j, \quad a_{ij} = a_{ji}$$

都可以经过正交的线性替换变成平方和

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

其中平方项的系数 $\lambda_1, \lambda_2, \dots, \lambda_n$ 就是矩阵 A 的特征多项式全部的根.