Лекция 1. Множества и отношения

1 Множества

Понятие множества является исходным не определяемым строго понятием. Основные предпосылки наивной теории множеств:

- множество может состоять из любых различимых объектов;
- множество однозначно определяется набором составляющих его объектов;
- любое свойство определяет множество объектов, которые этим свойством обладают.

Чаще всего множества мы будем обозначать большими буквами латинского алфавита, а их элементы – малыми.

Принадлежность элемента a к множеству A записывается в виде

$$a \in A$$
.

Так как множество полностью определяется набором входящих в него элементов, для того чтобы задать конкретное множество можно перечислить его элементы в фигурных скобках, при этом важно понимать что порядок, в котором перечисляются его элементы не имеет значения, а записи $\{0,1,2\}, \{1,2,0\}, \{1,0,2\}$ и т.д. задают одно и то же множество.

Задание множества с помощью непосредственного перечисления элементов не всегда бывает удобным, поэтому часто используют более общий способ – указание некоторого коллективизирующего свойства, которым обладают все элементы описываемого множества и только они.

Для записи этого свойства необходимо ввести понятия предиката и универсального множества.

Определение 1: Предикат

Предикатом в теории множеств называется высказывание P(x), зависящее от некоторого параметра x, принадлежащего некоторому множеству X.

Определение 2: Универсальное множество

Универсальным называют множество U, состоящее из всех возможных элементов, обладающих некоторым признаком.

Пусть переменное x задано на некотором универсальном множестве U, предполагая, что рассматриваются такие множества, элементы которого являются и элементами множества U. В таком случае свойство, которым обладают все элементы множества A может быть выражено посредством предиката P(x), выполняющегося тогда и только тогда, когда переменное x принимает произвольное значение из множества A.

$$A = \{x : P(x)\}.$$

Предикат, задающий коллективизирующее свойство может быть тождественно ложным, в этом случае описываемое множество не будет иметь ни одного элемента. Такое множество называется пустым и обозначается как \varnothing .

Определим некоторые операции над множествами:

1. Объединение множеств $A \cup B$ двух множеств A и B состоит из элементов, которые принадлежат хотя бы одному из множеств A и B.

$$A \cup B = \{x : x \in A \lor x \in B\}.$$

2. Пересечение $A \cap B$ двух множеств A и B состоит из элементов, которые принадлежат обоим множествам A и B.

$$A \cap B = \{x : x \in A \land x \in B\}.$$

3. Разность $A \setminus B$ двух множеств A и B состоит из элементов, которые принадлежат множеству A и не принадлежат множеству B.

$$A \setminus B = \{x : x \in A \land x \notin B\}.$$

4. Симметрическая разность $A \triangle B$ двух множеств A и B состоит из элементов, которые принадлежат ровно одному из множеств A и B.

$$A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

5. Для фиксированного универсального множества U можно определить дополнение \overline{A} множества A следующим образом

$$\overline{A} = U \setminus A$$
.

Рис. 1: Диаграммы Эйлера-Венна

Ещё одним важным понятием является понятие подмножества.

Определение 3: Подмножество

Говорят, что B является подмножеством множества A, если всякий элемент B является элементом A. Для обозначения этого факта используется запись

$$B \subseteq A$$
,

где ⊆ – символ включения.

Множества A и B называют равными, если они содержат одни и те же элементы.

$$A = B \Leftrightarrow ((A \subseteq B) \land (B \subseteq A)).$$

Определение 4: Собственное подмножество

Если $B \subseteq A$, но $B \neq A$, то пишут $B \subset A$ и B называют строгим подмножеством (собственным подмножеством) множества A, а символ \subset – символом строгого включения.

Определение 5: Булеан множества

Для всякого множества A может быть образовано множество всех подмножеств множества A, которое называется булеаном множества A и обозначается как

$$2^A = \{X : X \subseteq A\}.$$

Например, булеан множества $\{a,b\}$ состоит из четырёх множеств \emptyset , $\{a\}$, $\{b\}$, $\{a,b\}$, а значит

$$2^{\{a,b\}} = \{\varnothing, \{a\}, \{b\}, \{a,b\}\} \,.$$

2 Кортежи

Определение 6: Неупорядоченная пара

Пусть A и B – произвольные множества, тогда неупорядоченной парой на множествах A и B называют любое множество вида $\{a,b\}$, где $a\in A$ и $b\in B$ или $a\in B$ и $b\in A$. Если A=B, то говорят о неупорядоченной паре на множестве A.

Определение 7: Упорядоченная пара

Упорядоченной парой на множествах A и B называется пара вида (a,b), где $a \in A$ и $b \in B$. В отличие от неупорядоченной пары, она определяется не только самими элементами a и b, но и порядком, в котором они расположены.

Рассмотрим некоторое обобщение понятия упорядоченной пары на случай n элементов.

Определение 8: Кортеж

Упорядоченный набор из n-элементов (a_1, a_2, \ldots, a_n) на множествах A_1, A_2, \ldots, A_n , таких что $a_1 \in A_1, \ldots, a_n \in A_n$, называется кортежем. При этом число n называется длиной (размерностью) кортежа.

Также можно определить равенство кортежей, которое похоже на понятие равенства множеств с учётом порядка элементов.

Определение 9: Равенство кортежей

Два кортежа (a_1, \ldots, a_n) и (b_1, \ldots, b_n) на множествах A_1, \ldots, A_n называют равными, если $a_i = b_i$ при $i = \overline{1, n}$.

Определение 10: Прямое произведение

Множество всех кортежей длины n на множествах A_1, \ldots, A_n называют декартовым (прямым) произведением множеств A_1, \ldots, A_n и обозначают

$$A_1 \times \ldots \times A_n$$
.

Запишем несколько свойств прямого произведения:

• $A \times (B \cup C) = (A \times B) \cup (A \times C)$;

Рассмотрим доказательство этого свойства методом двух включений.

- 1. Если $(x,y) \in A \times (B \cup C)$, то $x \in A$ и $y \in B \cup C$.
- 2. Если $y \in B$, то $(x,y) \in A \times B$, а если $y \in C$, то $(x,y) \in A \times C$.
- 3. Тогда $(x,y) \in (A \times B) \cup (A \times C)$.
- $A \times (B \cap C) = (A \times B) \cap (A \times C)$;

Доказательство аналогично предыдущему.

• $A \times \emptyset = \emptyset \times A = \emptyset$.

Для любого множества A множество $A \times \varnothing$ образовано парами (x,y), такими, что $x \in A$ и $y \in \varnothing$. Но таких элементов y, что $y \in \varnothing$, не существует, а значит не существует и упорядоченных пар (x,y) принадлежащих рассматриваемому множеству $A \times \varnothing$, т. е. $A \times \varnothing = \varnothing$.

Определение 11: Декартова степень множества

Если все множества $A_i, i = \overline{1, n}$ декартова произведения $A_1 \times \ldots \times A_n$ равны между собой, то указанное произведение называют n-й декартовой степенью множества A и обозначают A^n .

В данном определении полагают, что первая декартова степень множества A есть само множество A, т. е. $A^1=A$.

3 Соответствия и бинарные отношения

Определение 12: Отображение, образ и прообраз элемента

Говорят, что задано отображение $f: A \to B$ из множества A в множество B, если каждому элементу $x \in A$ сопоставлен единственный элемент $y \in B$.

При этом элемент $y \in B$, который отображением f сопоставляется элементу $x \in A$, называется образом элемента x при отображении f и обозначается как f(x).

Множество всех элементов $x \in A$, для которых $f(x) = y_0$, называют прообразом элемента $y_0 \in B$ при отображении f.

Определение 13: График отображения

Каждое отображение однозначно определяется множеством упорядоченных пар $\{(x,y):x\in A,y=f(x)\}$, которое является подмножеством прямого произведения $A\times B$ множества A на множество B и называется графиком отображения f.

Рис. 2: График отображения

Определение 14: Инъекция

Отображение $f:A\to B$ называют инъективным, если каждый элемент из области значений имеет единственный прообраз, т.е. из $f(x_1)=f(x_2)$ следует $x_1=x_2$.

Определение 15: Сюръекция

Отображение $f:A\to B$ называют сюръективным, если область значений совпадает со всем множеством B. В этом случае говорят об отображении множества A на множество B.

Рис. 3: Инъекция и сюръекция

Определение 16: Биекция

Отображение $f:A\to B$ называют биективным, если оно одновременно инъективно и сюръективно. В этом случае говорят о взаимно однозначном соответствии между множествами A и B. Биекцию множества A на себя называют автоморфизмом множества A.

Определение 17: Соответствие

Обобщением понятия отображения является соответствие, в этом случае полагают, что элементу $x \in A$ сопоставлен не один, а множество образов в множестве B. В этом случае говорят, что задано соответствие $\rho(x)$ из множества A в множество B.

Определение 18: График соответствия

Множество C_{ρ} упорядоченных пар (x,y), таких, что $x\in A,y\in B$ и элементы (x,y) связаны соответствием ρ , т.е. $y\in \rho(x)$, называется графиком соответствия ρ из множества A в множество B. При этом указанное множество C_{ρ} является подмножеством декартова произведения $A\times B$.

Определение 19: Бинарное отношение

Соответствие $\rho \subseteq A \times A$ из множества A в себя называют бинарным отношением на множестве A.

Часто бинарное отношение обозначают большой буквой латинского алфавита, при этом для краткости для элементов x и y, связанных бинарным отношением R, вместо $(x,y) \in R$ пишут xRy.

В качестве примера можно рассмотреть отношение нестрогого неравенства \leq на множестве действительных чисел \mathbb{R} . Каждому $x \in \mathbb{R}$ поставлены в соответствие такие $y \in \mathbb{R}$, для которых справедливо $x \leq y$. При этом вместо записи $(x,y) \in \leq$ используется краткая форма.

Пример 1

Пусть на множестве $A = \{1, 2, 3, 4\}$ задано бинарное отношение $x \leq y$, тогда

$$\rho = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}.$$

График этого отношения показан на рисунке 4.

Рис. 4: График бинарного отношения

Пример 2

Пусть на множестве действительных чисел \mathbb{R} задано бинарное отношение, состоящие из всех упорядоченных пар (x,y), таких, что $y=\pm\sqrt{1-x^2}$.

График бинарного отношения показан на рисунке 5.

4 Композиция соответствий

Так как соответствия можно считать множествами, для них справедливы все операции над множествами, такие как: объединение, пересечение, разность, дополнение и др. При этом следует отметить, что говоря о дополнении соответствия из A в B, имеется ввиду дополнение до универсального соответствия из A в B, т.е. до декартова произведения $A \times B$.

Рис. 5: График бинарного отношения

Определение 20: Композиция соответствий

Композицией (произведением) соответствий $\rho \subseteq A \times B$ и $\sigma \subseteq B \times C$ называют соответствие

$$\rho \circ \sigma = \{(x, y) : (\exists z \in B) ((x, z) \in \rho) \land ((z, y) \in \sigma)\}.$$

Так как бинарное отношение является частным случаем соответствия, для двух бинарных отношений ρ и σ заданных на множестве A, можно говорить о композиции бинарных отношений на множестве A.

Зададим на множестве $A = \{1, 2, 3, 4\}$ бинарные отношения $\rho = \{(x, y) : x + 1 < y\}$ и $\sigma = \{(x, y) : x - y = 2\}$ и построим композицию отношений $\rho \circ \sigma$.

- 1. Запишем $\rho(1) = \{3, 4\}, \ \sigma(3) = \{1\} \ и \ \sigma(4) = \{2\}.$
- 2. Тогда $(\rho \circ \sigma)(1) = \sigma(3) \cup \sigma(4) = \{1, 2\}.$
- 3. Аналогично $(\rho \circ \sigma)(2) = \{2\}, (\rho \circ \sigma)(3) = \emptyset$ и $(\rho \circ \sigma)(4) = \emptyset$.
- 4. Тогда $\rho \circ \sigma = \{(1,1), (1,2), (2,2)\}.$

Определение 21: Матрица бинарного отношения

Матрицей M_{ρ} бинарного отношения ρ на множестве $A = \{a_1, \ldots, a_n\}$ называется квадратная матрица размерности $n \times n$, такая, что элемент m_{ij} определяется как

$$m_{ij} = \begin{cases} 1, & a_i \rho a_j, \\ 0, & \text{иначе.} \end{cases}$$

В качестве пояснения запишем матрицу бинарных отношений ρ и σ из предыдущего примера.

$$M_{\rho} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad M_{\sigma} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Тогда матрицу композиции отношений ho и σ можно найти с помощью булева произведения матриц

Рис. 6: Композиция бинарных отношений

Рассмотрим подробнее построение этой матрицы на примере элемента $M_{1,2}^{\rho\circ\sigma}$, находящегося в первой строке и во втором столбце этой матрицы. Согласно правилам булева произведения матриц имеем

$$\begin{split} M_{1,2}^{\rho\circ\sigma} &= \left(M_{1,1}^{\rho} \wedge M_{1,1}^{\sigma} \right) \vee \left(M_{1,2}^{\rho} \wedge M_{2,1}^{\sigma} \right) \vee \left(M_{1,3}^{\rho} \wedge M_{3,1}^{\sigma} \right) \vee \left(M_{1,4}^{\rho} \wedge M_{4,1}^{\sigma} \right) = \\ &= \left(a_{1}\rho a_{1} \wedge a_{1}\sigma a_{1} \right) \vee \left(a_{1}\rho a_{2} \wedge a_{2}\sigma a_{1} \right) \vee \left(a_{1}\rho a_{3} \wedge a_{3}\sigma a_{1} \right) \vee \left(a_{1}\rho a_{4} \wedge a_{4}\sigma a_{1} \right) = \\ &= \left(0 \wedge 0 \right) \vee \left(0 \wedge 0 \right) \vee \left(1 \wedge 1 \right) \vee \left(1 \wedge 0 \right) = 0 \vee 0 \vee 1 \vee 0 = 1. \end{split}$$

Определение 22: Рефлексивно-транзитивное замыкание бинарного отношения

Для любого бинарного отношения $\rho \subseteq A^2$ можно построить отношение ρ^* следующим образом: $x\rho y$ тогда и только тогда, когда x=y или существует последовательность $x_0, x_1, \ldots, x_n, n>1$, такая, что $x_0=x, x_n=y$ и для каждого $i=\overline{0,n-1}$ выполняется $x_i\rho x_{i+1}$.

Такое отношение ρ^* называется рефлексивно-транзитивным замыканием бинарного отношения ρ на соответствующем множестве.

При этом $\rho^0 = \mathrm{id}_A, \, \rho^1 = \rho, \, \rho^n = \rho \circ \rho^{n-1}, \, n > 1$ и

$$\rho^* = \bigcup_{i=0}^{\infty} \rho^i.$$

В качестве примера рассмотрим отношение ρ заданное на множестве людей A, такое что $x\rho y$, если x является родителем для y.

Тогда отношение $\rho^2 = \rho \circ \rho$ будет связывать y с бабушками/дедушками, отношение $\rho^3 = \rho \circ \rho \circ \rho - c$ прабабушками/прадедушками, а отношение $x\rho^*y$ будет свидетельствовать, что x является предком для y.

Однако надо заметить, что в данном примере всплывает вопрос является ли человек предком сам себе. Для того чтобы более корректно описывать такие детали вводят понятие транзитивного замыкания ρ^+ бинарного отношения ρ . Такое замыкание строится по аналогии с рефлексивно-транзитивным замыканием с той лишь разницей, что в него не входит диагональ множества, т. е. ρ^0 .

5 Специальные свойства бинарных отношений

Определение 23: Диагональ множества

Бинарное отношение на множестве A состоящее из всех пар (x, x), т.е. пар с совпадающими компонентами, называется диагональю множества A и обозначается id_A .

Для множества $A = \{1, 2, 3, 4\}$ диагональ состоит из упорядоченных пар

$$id_A = \{(1,1), (2,2), (3,3), (4,4)\}.$$

График диагонали id_A показана на рисунке 7.

Рис. 7: Диагональ множества id_A

- Бинарное отношение ρ на множестве A называют рефлексивным, если диагональ множества A содержится в ρ : $\mathrm{id}_A \subseteq \rho$, т.е. $x \rho x$ для любого $x \in A$.
- Бинарное отношение ρ на множестве A называют иррефлексивным, если $\mathrm{id}_A \cap \rho = \varnothing$.

Графики рефлексивного, иррефлексивного и нерефлексивного отношений показаны на рисунке 8.

- Бинарное отношение ρ на множестве A называют симметричным, если для любых $x,y \in A$ из $x\rho y$ следует $y\rho x$.
- Бинарное отношение ρ на множестве A называют антисимметричным, если для любых $x,y \in A$ из одновременной справедливости $x\rho y$ и $y\rho x$ следует x=y.

Графики симметричного, антисимметричного и несимметричного отношений показаны на рисунке 9.

• Бинарное отношение ρ на множестве A называют транзитивным, если для любых $x, y, z \in A$ из $x \rho y$ и $y \rho z$ следует $x \rho z$.

Бинарное отношение на некотором множестве называют:

- 1. эквивалентностью, если оно рефлексивно, симметрично и транзитивно;
- 2. толерантностью, если оно рефлексивно и симметрично;

Рис. 8: Графики рефлексивного, иррефлексивного и нерефлексивного отношений

Рис. 9: Графики симметричного, антисимметричного и несимметричного отношений

- 3. частичным порядком, если оно рефлексивно, антисимметрично и транзитивно;
- 4. предпорядком (квазипорядком), если оно рефлексивно и транзитивно;
- 5. строгим порядком, если оно иррефлексивно, антисимметрично и транзитивно.
- 6. строгим предпорядком, если оно иррефлексивно и транзитивно.

Определение 24: Разбиение множества

Пусть A – произвольное множество. Семейство $(B_i)_{i\in I}$ непустых и попарно не пересекающихся множеств называют разбиением множества A, если объединение множеств семейства $(B_i)_{i\in I}$ равно A, т.е.

$$\bigcup_{i\in I} B_i = A.$$

В этом случае сами множества B_i называются элементами разбиения.

Определение 25: Класс эквивалентности

Пусть ρ – эквивалентность, заданная на множестве A и $x \in A$, тогда множество всех y, находящихся в отношении ρ к x, т. е. $\{y:y\rho x\}$ называют классом эквивалентности по отношению ρ и обозначают $[x]_{\rho}$.

Теорема 1: О классах эквивалентности

Для любого отношения эквивалентности на множестве A множество классов эквивалентности образует разбиение множества A. Обратно, любое разбиение множества A задаёт на нём отношение эквивалентности, для которого классы эквивалентности совпадают с элементами разбиения.

Доказательство

Необходимость:

- 1. Заметим, что в силу рефлексивности для любого элемента $x \in A$ класс эквивалентности не пуст, так как $x \in [x]_{\rho}$.
- 2. Убедимся, что любые два класса эквивалентности по отношению ρ либо не пересекаются, либо совпадают.
 - Пусть два класса эквивалентности $[x]_{\rho}$ и $[y]_{\rho}$ имеют общий элемент $z=[x]_{\rho}\cap [y]_{\rho}$. Тогда $z\rho x$ и $z\rho y$.
 - В силу симметричности из $z\rho x$ имеем $x\rho z$.
 - В силу транзитивности из $x\rho z$ и $z\rho y$ имеем $x\rho y$.
 - Пусть $h \in [x]_{\rho}$, тогда $h\rho x$, а в силу $x\rho y$ имеем $h\rho y$ и, следовательно, $h \in [y]_{\rho}$.
 - Если $h \in [y]_{\rho}$, тогда $h\rho y$.
 - В силу симметричности имеем $y\rho x$.

В силу транзитивности получим $h\rho x$ и, следовательно, $h \in [x]_{\rho}$.

Таким образом $[x]_{\rho} = [y]_{\rho}$.

Достаточность:

- Пусть $(B_i)_{i \in I}$ некоторое разбиение множества A.
- Рассмотрим отношение ρ , такое, что $x\rho y$ имеет место только тогда, когда x и y принадлежат одному и тому же элементу B_i данного разбиения, т. е.

$$x \rho y \Leftrightarrow (\exists i \in I)(x \in B_i) \land (y \in B_i).$$

Рефлексивность и симметричность введённого отношения очевидна.

• Если для любых x, y и z имеет место $x\rho y$ и $y\rho z$, то x, y и z в силу определения отношения ρ принадлежат одному и тому же элементу B_i разбиения.

Следовательно, $x\rho z$ и отношение ρ транзитивно.

Таким образом ρ – эквивалентность на A.