

## PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION

# **PPDM Data Model Implementation Head Start** PPDM Version 3.8 Copyright 2012, PPDM Association. All Rights Reserved



### LEARNING OBJECTIVES

- How to use the PPDM web site to get information
- Review and identify the key architectural principles of the PPDM Data Model
- Identify and analyze some PPDM implementation Guidelines
- Describe the methods needed to extend the data model (i.e. application-centric)

## Using the PPDM Web Site



## PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION

Roadmaps
Data model diagrams
On-line documentation
Wiki documentation
Forum support
Data definition language



## PPDM ROADMAPS

## **Business Associates**

Each box represents a table in PPDM

Reference tables are not shown

Relationships are greatly simplified

Connections between modules are not shown





### PPDM PHYSICAL MODEL DIAGRAMS





## READING THE PPDM DATA DIAGRAMS

In Previous PPDM Version

New Table

New Reference Table





### PPDM ON-LINE DOCUMENTATION





## PPDM ON-LINE DOCUMENTATION (WIKI)





## PPDM ON-LINE DOCUMENTATION (WIKI)





## PPDM ON-LINE DOCUMENTATION (FORUMS)





## DATA DEFINITION LANGUAGE COMPONENTS

## Mandatory Components

- Table and column definitions file extension is .tab
- Constraints (primary, foreign, check) file extension is .con
  - Note that in PPDM 3.7, the use of constraints to the R\_PPDM\_ROW\_QUALITY reference table was not mandatory.
     This rule has been altered in PPDM 3.8, making the use of the foreign key mandatory.



## DATA DEFINITION LANGUAGE COMPONENTS

## **Optional Components**

- Table comments file extension is .tcm
- Column comments file extension is .ccm
- Table synonyms file extension is .syn
- UOM and OUOM constraints file extension is .uom
  - Note that in PPDM 3.7, the use of constraints to the UNIT OF MEASURE support module was not mandatory. This rule has been carried forward
- GUID extensions file extension is .guid
- Spatial extensions created during implementation of the spatial enabling methods



## PPDM MODEL DESIGN OBJECTIVES

#### Main design focus is on <u>business driven</u> requirements

- How does the data represent the business?
  - Based on business requirements collected by workgroups
  - Not IT requirements!
- PPDM is not designed for a specific application

#### Key objectives

- Keep the model as easy to understand as possible
  - Some business knowledge is critical!
- Allow users to implement a subset of the data model
  - Control the spaghetti effect
- Allow users to manage data as the business requires through the life cycle (all the detail)
- Support a few important business variations (not everyone has the same business requirements)



## ARCHITECTURAL PRINCIPLES

- 1.1 Architectural Principles Overview
- 1.2 Architectural Principles Change Summary
- 1.3 Architectural Principles PPDM DDL Components
- 1.4 Architectural Principles Naming and Design Conventions
- 1.5 Architectural Principles Constraints in PPDM
- 1.6 Architectural Principles Design Issues
- 1.7 Architectural Principles Reference Tables
- 1.8 Architectural Principles Domains
- 1.9 Architectural Principles Units of Measure
- 1.10 Architectural Principles Coordinates
- 1.11 Architectural Principles Extensibility and Subsetting
- 1.12 Architectural Principles Meta Tables and Meta Data
- 1.13 Architectural Principles Discussion
- 1.14 Architectural Principles Target Deliverables
- 1.15 Additional Architectural Guidelines and Conventions

For full details, refer to the Architectural Principles document on the PPDM Web site – on the wiki



## PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION

## **Exercise**

Create an International, Multidisciplinary, Cross Functional, Multipurpose Data Model

You have 2 years to do it



## PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION





## PRIMARY KEYS

Natural vs surrogate

Integer vs character

GUID vs random vs concatenated vs license plate...

Should they cascade or not?



## **IMPLEMENT WIAW CONCEPTS**



they do know, using a mechanism that does not require unknowns to be assumed.



## PRODUCTS AND SUBSTANCES





## **DEVIATION FROM SQL\*92 RI**

- PPDM GUID has been very well accepted.
- Use of the PPDM Data Management module is very strong.
- Can we carry these concepts into some of the heavy RI / complicated tables, such as the COMPONENT tables?



## **IMPLEMENTATION SUPPORT**

### Consistency

- Terminology
- Method of implementation
- Normalization vs denormalization

#### Implementation assists

- API?
- More documentation?
- More rigor in compliance?



## PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION

## System / Data Mapping

Any system / data brought in should be documented in the Meta Model



## MAPPINGS AND MAPPING RULES

### Persist mappings in PPDM

Not in a spreadsheet

### Mappings

- Database to database or schema
- Schema to database or schema
- Rule driven
- PPDM mappings will be released in the sample data







### MAPPING LEVELS



Which systems are you mapping?



### MAPPING RULES

- How is this mapping connected with mappings to other columns?
- If a value is created, how is it created?
- What are the min and max values that are acceptable?
- If the condition is expressed procedurally, where is the code that validates?
- If the condition is dependent on the value of another column, which one.
- How are dates formatted?
- What order to I process the rules in?
- What version of the rule is this?
- Is this the preferred rule?
- What rule did I used last time I did a conversion?

#### PPDM MAP RULE





## USE MAPPING TO GENERATE CODE

Create temporary tables to mirror data sets to be loaded

Decide on "delete and insert" or "update"

Create sample statements.

Use code and the mapping tables to generate the actual code.

Test and refine the code.

Now if a format changes then just update the mapping and rerun.

May require a couple of sets of code due to issues.



## REFERENCE VALUES PPDM\_CODE\_VERSION

## Support for sophisticated reference behaviour

- Multiple sources
- Hierarchy and granularity
- Equivalences
- Cross Referencing

Sandbox to prepare reference values for use – PPDM Code Version

- Use reference tables as much as possible.
- To find reference table use the PPDM\_CONSTRAINT tables







## HORIZONTAL AND VERTICAL TABLES

### Horizontal Table

| UWI  | KB Elev | Rig Release |
|------|---------|-------------|
| UWI1 | 100     | 01/10/87    |
| UWI2 | 99      | 09/08/67    |
| UWI3 | 102     | 02/04/92    |
| UWI4 | 87      | 11/23/87    |
| UWI5 | 136     | 09/09/67    |

### **Vertical Table**

| UWI  | Value Type  | Value    |
|------|-------------|----------|
| UWI1 | KB Elev     | 100      |
| UWI1 | Rig Release | 01/10/87 |
| UWI1 | Name<br>    | ABC      |
| UWI2 | KB Elev     | 87       |
| UWI2 | Rig Release | 09/08/67 |



## TABLE DESIGN - HORIZONTAL

Behavior predesigned for all values in the database by modelers

- Units of measure
- Data type
- Precision
- Reference validation

#### **Benefits**

- Higher consistency
- More interoperability

#### Costs

- Harder to program
- Longer learning curve
- May need extensions

| Calumu Nama          | Countries (Defended Table)     | Mullabla | Datatasa | Cina | TD | ED |
|----------------------|--------------------------------|----------|----------|------|----|----|
| Column Name          | Constraints (Referenced Table) |          | Datatype | Size | ™  | ᄪ  |
| #BUSINESS ASSOCIATE  | FOREIGN (BA CONTACT INFO)      | N        | VARCHAR2 | 20   |    |    |
|                      | FOREIGN (BA CONTACT INFO)      |          |          |      |    |    |
|                      | FOREIGN (BA CONTACT INFO)      |          |          |      |    |    |
|                      | FOREIGN (BA CONTACT INFO)      |          |          |      |    |    |
| ACTIVE IND           | CHECK                          | Y        | VARCHAR2 | 1    |    |    |
| BA ABBREVIATION      |                                | Y        | VARCHAR2 | 12   |    |    |
| BA CATEGORY          | FOREIGN (R BA CATEGORY)        | Υ        | VARCHAR2 | 20   |    |    |
| BA CODE              |                                | Y        | VARCHAR2 | 20   |    |    |
| BA NAME              |                                | Υ        | VARCHAR2 | 240  |    |    |
| BA SHORT NAME        |                                | Υ        | VARCHAR2 | 30   |    |    |
| BA TYPE              | FOREIGN (R BA TYPE)            | Υ        | VARCHAR2 | 20   |    |    |
| CREDIT CHECK DATE    |                                | Υ        | DATE     | 7    |    |    |
| CREDIT CHECK IND     | CHECK                          | Υ        | VARCHAR2 | 1    |    |    |
| CREDIT CHECK SOURCE  | FOREIGN (R SOURCE)             | Y        | VARCHAR2 | 20   |    |    |
| CREDIT RATING        |                                | Y        | VARCHAR2 | 20   |    |    |
| CREDIT RATING SOURCE |                                | Υ        | VARCHAR2 | 20   |    |    |
| CURRENT STATUS       | FOREIGN (R BA STATUS)          | Y        | VARCHAR2 | 20   |    |    |
| EFFECTIVE DATE       |                                | Y        | DATE     | 7    |    |    |
| EXPIRY DATE          |                                | Υ        | DATE     | 7    |    |    |
| FIRST NAME           |                                | Υ        | VARCHAR2 | 30   |    |    |
| LAST_NAME            |                                | Υ        | VARCHAR2 | 40   |    |    |
| MAIN EMAIL ADDRESS   | FOREIGN (BA CONTACT INFO)      | Υ        | VARCHAR2 | 20   |    |    |



## TABLE DESIGN - VERTICAL

| Behavior must be       |
|------------------------|
| decided for every kind |
| of value possible,     |
| usually by users.      |

-Units of measure

-Data type

-Precision

-Reference validation

#### **Benefits**

-Works when value types are unknown

-Easier to code

#### Costs

-Less Interoperable

-Lower data quality

| Column Name         | Constraints (Referenced Table)  | Nullable | Datatype  | Size | ΤD | FD |
|---------------------|---------------------------------|----------|-----------|------|----|----|
| #FACILITY ID        | FOREIGN (FACILITY LICENSE)      | N        | VARCHAR2  | 20   |    |    |
| #FACILITY TYPE      | FOREIGN (FACILITY LICENSE)      | N        | VARCHAR2  | 20   |    |    |
| #LICENSE ID         | FOREIGN (FACILITY LICENSE)      | N        | VARCHAR2  | 20   |    |    |
| #CONDITION ID       |                                 | N        | VARCHAR2  | 20   |    |    |
| ACTIVE IND C        | ontrolling                      | Υ        | VARCHAR2  | 1    |    |    |
| CONDITION CODE      | Column <u>ic ыс сома соав</u> ) | Υ        | VARCHAR2  | 20   |    |    |
| CONDITION TYPE      | FOR IGN (R FAC LIC COND)        | Υ        | VARCHAR2  | 20   |    |    |
|                     | POREIGN (R FAC LIC COND CODE)   |          |           |      |    |    |
| CONDITION VALUE     |                                 | Υ        | NUMBER    | 22   | 12 | 2  |
| CONDITION VALUE UOM | FOREIGN (PPDM UNIT OF MEASURE)  | Υ        | VARCHAR2  | 20   |    |    |
| CONTACT BA ID       | FOREIGN (BUSINESS ASSOCIATE)    | Υ        | VARCHAR2  | 20   |    |    |
| DESCRIPTION         |                                 | Υ        | VARCHAR2  | 240  |    |    |
| DUE DATE            |                                 | Υ        | DATE      | 7    |    |    |
| DUE FREQUENCY       |                                 | Υ        | VARCHAR2  | 20   |    |    |
| DUE TERM            |                                 | Υ        | NUMBER    | 22   | 3  | 0  |
| DUE TERM UOM        | FOREIGN (PPDM UNIT OF MEASURE)  | Υ        | VARCHAR2  | 20   |    |    |
| EFFECTIVE DATE      |                                 | Υ        | DATE      | 7    |    |    |
| EXEMPT IND          | CHECK                           | Υ        | VARCHAR2  | 1    |    |    |
| EXPIRY DATE         |                                 | Υ        | DATE      | 7    |    |    |
| FULFILLED BY BA ID  | FOREIGN (BUSINESS ASSOCIATE)    | Υ        | VARCHAR2  | 20   |    |    |
| FULFILLED DATE      |                                 | Υ        | DATE      | 7    |    |    |
| ELITED IND          | augar.                          | v        | MUDALIADA | 4    |    |    |



## THE COST OF (VERTICAL) ABSTRACTION

#### Much more difficult to standardize

Content becomes much more variable

#### Semantics become a problem

What happens when our definitions don't agree?

#### Reference tables drive model design

Reference tables usually highest time and cost for model population projects

#### You can't avoid the work of modeling completely

- Abstraction drives final modeling down to implementation and users
- PPDM 3.8 adds functionality that can help, but it must be supported with code
  - SQL constraints don't support these tools
  - See the PPDM Vertical table control



### HORIZONTAL – VERTICAL PAIR

#### Horizontal Volumes

- BOE
- CO2
- Gas
- NGL
- Nitrogen
- Oil
- Sulphur
- Water

#### **Vertical Volumes**

- By-products
- Specific hydrocarbons

#### Why?

Units of measure standardization down a column



```
PDEN VOL SUMMARY
翻 曲 6 # 3 3 →
# ★ A N PDEN_ID
# * 🗏 A
         ₩ PDEN_TYPE
         PDEN_SOURCE
         VOLUME_METHOD
         ACTIVITY_TYPE
         PERIOD_TYPE
            VOLUME_DATE
         AMENDMENT_SEQ_NO
  0 ■ A
         ACTIVE_IND
         AMEND_REASON
            BOE_CUM_VOLUME
  0
  0
         BOE_VOLUME
         BOE_VOLUME_OU OM
  0
  0
         BOE_YTD_VOLUME
     789
            CO2_CUM_VOLUME
  0
         CO2_VOLUME
  0
         ₩CO2_VOLUME_OUOM
  0
         CO2_YTD_VOLUME
  0
  0
         ₩ DATE_FORMAT_DESC
  0
         EFFECTIVE_DATE
  0
         EXPIRY_DATE
     31
     789
  0
            GAS_CUM_VOLUME
  0
            GAS_QUALITY
  0
         GAS_QUALITY_OUOM
         GAS_VOLUME
  0
  0
         ₩ GAS_VOLUME_OU OM
  0
         GAS_YTD_VOLUME
  0
            INJECTION_CYCLE
  0
            INJECTION_PRESSURE
  0
         INJECTION_PRESSURE_OUOM
  0
            INVENTORY_CLOSE_BALANCE
            INVENTORY OPEN BALANCE
  0
  0
         ₩INVENTORY_PRODUCT
  0
         INVENT_CLOSE_BAL_OUOM
  0
         INVENT_OPEN_BAL_OUOM
            NGL_CUM_VOLUME
```



## MODEL DESIGN OUTCOMES

#### Things that add value

- The model is well positioned to support expansion
  - Start with a small part, and grow as you need to
- Business users can understand the model (with help)
  - It's their data; they should understand it!
- The model is very flexible and powerful
  - \$100 M of Business input!

There are some legacy inconsistencies, often to support regional variations, but sometimes to support commonly agreed performance issues (denormalizations).

 Members are committed to working through these over time

## Things that may be challenges for implementation

- More horizontal tables, fewer vertical tables
- More tables are needed to store information than in most historical systems
  - This is a consequence of business modeling
- Queries can be complicated
  - Community sharing
- It can be difficult to figure out where information should be stored
  - Use the forums and the wiki





## Tips and Hints



Use vertical tables with care. The flexibility of the structure can also create problems with data quality and consistency, data retrieval and performance.

- ✓ The TYPE controlling columns govern the behavior of vertical tables in PPDM 3.8
- ✓ Populate the TYPE column with great care this is the key for success
- ✓ Use the Vertical support tables in PPDM to help manage the contents
- ✓ Add views based on TYPE





## PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION

## **Tables and Columns**

Naming conventions

Class words

Domains

Column Types



### NAMING CONVENTIONS 1

#### Name Length and Characters

- Tables 30 characters
- Columns 30 characters
- The total row length may not exceed 8060 bytes (SQL Server)
- UPPER\_CASE, numbers and '\_' only
- Separate components with "\_"

#### Synonyms

- Each table assigned a SYNONYM
- Used to name constraints
  - (i.e. SYNONYM\_PK)
- Intended to reduce query collisions

#### WELL\_PRESSURE\_AOF

```
#UWI
#SOURCE
#PRESSURE_OBS_NO
#AOF_OBS_NO
```

RESERVOIR\_PRESSURE RESERVOIR\_PRESSURE\_OUOM



#### NAMING CONVENTIONS 2

#### Components

- Subject area context
- General to specific
- Intuitive
- Single parent cross reference
  - %\_XREF
  - Multiple relationships between subjects

#### Usage consistency

- Domains
- Class words

<u>■</u> CONSULTATIONS AND NEGOTIATIONS ■ CONTESTS AND DISPUTES ☐ CONTRACTS AND LEGAL AGREEMENTS E CONT\_ACCOUNT\_PROC CONT\_ALIAS E CONT\_ALLOW\_EXPENSE CONT\_AREA CONT\_BA CONT\_BA\_SERVICE CONT\_EXEMPTION CONT\_EXTENSION CONT\_JURISDICTION CONT\_KEY\_WORD CONT\_MKTG\_ELECT\_SUBST CONT\_OPER\_PROC CONT\_PROVISION CONT\_PROVISION\_TEXT CONT\_PROVISION\_XREF CONTRACT CONTRACT\_COMPONENT CONT\_REMARK CONT\_STATUS CONT\_TYPE CONT\_VOTING\_PROC CONT\_XREF ☐ ☐ COORDINATE SYSTEMS CS\_ALIAS CS\_COORD\_ACQUISITION CS\_COORDINATE\_SYSTEM CS\_COORD\_TRANSFORM CS\_COORD\_TRANS\_PARM CS\_COORD\_TRANS\_VALUE CS\_ELLIPSOID CS\_GEODETIC\_DATUM CS\_PRIME\_MERIDIAN



#### NAMING CONVENTIONS 3

#### Spelling

- Singular
- Present tense
- Consistent abbreviations and terms
- Unambiguous
  - COMP, REC
  - Multiple uses of a FK column (such as business Associate)
- Avoid connectors 'A', 'AN', 'AND', 'OF', 'OR', 'THE'
- Avoid using terms in reserved words lists (use multi component terms)
- Do not take vowels out of names in order to abbreviate
  - This is a new rule; some older tables violate it

#### Deprecation

- Tables to be deprecated are prefixed with Z\_ for one release
- Do not use these tables for new implementations
- Convert old applications (have about 2 years notice)

# AREA ALIAS AREA CONTAIN AREA DESCRIPTION AREA COMPONENT Z\_R\_COUNTY Z\_R\_DISTRICT Z\_R\_GEOGRAPHIC\_REGION Z\_R\_LAND\_DISTRICT

Z\_R\_PROVINCE\_STATE

**Areas** 



#### **COLUMN TYPES**

#### Simple content

- Each column contains one type of information
- Information is not usually concatenated

#### Identifiers

- Could be implemented as natural or surrogate
- Cost / benefit of both approaches

#### Column data types

- Char (Oracle = varchar2)
- Number (includes precision)
- Numeric (no precision)
- Date
- Blob (used twice only)



#### STANDARD PPDM COLUMNS

**ACTIVE IND** 

EFFECTIVE DATE

EXPIRY DATE

PPDM GUID

SOURCE

REMARK

**ROW QUALITY** 

**ROW CREATED BY** 

**ROW CREATED DATE** 

**ROW CHANGED BY** 

**ROW CHANGED DATE** 

Use of a trigger to populate?



#### SAMPLE TRIGGERS

CREATE or REPLACE TRIGGER INS AREA BEFORE INSERT ON AREA for each row BEGIN if (:new.ppdm\_guid is null) then :new.ppdm\_guid := sys\_guid(); end if; :new.row created date := sysdate; if (:new.row\_created\_by is null) then :new.row\_created\_by := user; end if: END;

```
CREATE or REPLACE TRIGGER

UPD_AREA
BEFORE UPDATE ON AREA
for each row

BEGIN

if (:new.ppdm_guid is null) then
    :new.ppdm_guid := sys_guid();
    end if;

:new.row_changed_date := sysdate;
    :new.row_changed_by := user;
END;
```



#### PPDM DOMAIN CONSISTENCY

Manage consistency for common kinds of information across model

There are many

| Depth                | number   | 10,5 |
|----------------------|----------|------|
| Identifier           | varchar2 | 20   |
| Туре                 | varchar2 | 20   |
| Short name           | varchar2 | 30   |
| Indicator (Y or N)   | varchar2 | 1    |
| Seq_no               | number   | 8    |
| Obs_no               | number   | 8    |
| Latitude / Longitude | number   | 14,9 |
| Remark               | varchar2 | 2000 |



#### **CLASS WORD CONSISTENCY**

Used to classify the type of information Usually the last component of the name

| ALIAS     | Alternate name   |
|-----------|------------------|
| DATE      | Date             |
| TEMP      | Temperature      |
| IND       | Y / N flag       |
| LAT       | Latitude         |
| LONG      | Longitude        |
| LONG_NAME | Long names       |
| NUM       | Character string |
| NO        | Number           |



## PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION

# Constraints Primary Keys Foreign Keys **Check Constraints** Arcs Copyright 2012, PPDM Association. All Rights Reserved



#### **CONSTRAINT GUIDELINES**

Platform independent solutions

SQL 92 entry level

Enforceable using native DDL only

Limit need for triggers

Facilitate good data management

Facilitate query / retrieval





#### PRIMARY KEY

An ordered group of columns in a table which defines uniqueness for every new row of data in the table

- May consist of one or more columns
- All values must be known at insert time

Every table in PPDM has a primary key

- Primary Key for WELL is UWI.
- Columns in the PK are mandatory
- Columns from Parent PK cascade down

#### Use natural keys unless

- No natural identifier exists
- Concatenated key is unwieldy

Use surrogate components when necessary

In addition to natural key components

#### PK may not include

- Dates
- Measured Values

Primary key name

SYNONYM\_PK





#### **FOREIGN KEY**

#### Foreign keys create relationships between tables

 value in child table must be matched to the parent table before new data may be inserted or updated

#### Columns

- one or more
- mandatory or optional

#### Examples

- subject hierarchy
- reference tables (R\_%)

#### Foreign key name

- SYN(CHILD)\_SYN(PARENT)\_FK
- If more than 1 FK exists
  - SYN(CHILD)\_SYN(PARENT)\_FK1
  - SYN(CHILD)\_SYN(PARENT)\_FK2 etc





#### SPECIAL FOREIGN KEYS

#### **PPDM 3.2**

#### Recursive

- A table contains a reference to itself
- Create problems for the "load of the rings"
- Query with "connect by" procedure
- Many have been eliminated from PPDM 3.8

#### Reciprocating

- Denormalized constraints
- Removing these as supported by members

#### SOURCE and ROW QUALITY

- Require special load handling
- Insert followed by update

#### Many created for performance







#### COMPLEX FOREIGN KEYS

Rules that define how data is handled by a database or application

#### Defined by work groups

- in the BRD
- some can be enforced by the database
- others require intervention

#### Group discussion

- How many UWI Columns should exist in WELL\_TEST\_PRESS\_MEAS?
- Data Rule: Each well test pressure
  measurement is created during a test on a well,
  and the recorder must be installed on the same
  well, during the same test and in the same
  recording period.





#### EXAMPLE - WELL\_TEST\_PRESS\_MEAS





#### **MULTIPLE CONSTRAINTS / COLUMN**

#### Columns are referenced in more than one constraint

- Unusual from pure data modeling aspect
- Compliant with Architectural Principles
- Protect the user from data corruption by preventing more than one UWI from being referenced

```
UWI NOT NULL WELL TEST PERIOD
WELL TEST RECORDER
WELL TEST
```



#### MULTIPLE COLUMNS / CONSTRAINT

#### Components NULL, NOT NULL

- Part of the constraint is included in the Primary Key, therefore mandatory
- The rest of the constraint reflects the optionality of the relationship

| UWI           | NOT NULL | WELL_TEST_PERIOD |
|---------------|----------|------------------|
| SOURCE        | NOT NULL | WELL TEST PERIOD |
| TEST_TYPE     | NOT NULL | WELL_TEST_PERIOD |
| TEST_NUM      | NOT NULL | WELL_TEST_PERIOD |
| RUN_NUM       | NOT NULL | WELL_TEST_PERIOD |
| PERIOD_TYPE   |          | WELL_TEST_PERIOD |
| PERIOD_OBS_NO |          | WELL_TEST_PERIOD |



#### MULTIPLE COLUMNS / CONSTRAINT - 2

#### User input (using PPDM 3.7)

- **ü** COUNTRY
- **ü** COUNTY
- û PROVINCE
- COUNTY\_FK does not fire



#### Corrupted data can enter the database

- for an optional multi-column constraint
- be careful how you present this to the users!



#### **COMPONENT TABLES**

Handle multiple FK relationships with a business object

Easier to query than many separate tables

Component tables exist in both directions

Populate one consistently

Load the other with procedure

Index with care!

Views may be helpful





#### **CHECK CONSTRAINTS**

Similar function to reference tables

- more restrictive
- control the allowed values

Static values that are known at design time

limited use in PPDM

Embedded in the Oracle DDL

Managed by table owner - not end users

Validate input data

- yes / no flags %\_IND (Y, N, NULL)
- refer to a PPDM table LAND\_RIGHT\_TYPE
   (LAND\_TITLE, LAND\_AGREEMENT, LAND\_UNIT ...)
- Do not change the check constraint values!



LAND

**RIGHT** 

**LAND** 

TITLE



#### PPDM LOAD OF THE RINGS

#### Maintain Data Integrity

 Objective: Load data into PPDM with all foreign and not null constraints enabled

**LOAD OF THE RINGS** 

Benefit: Improved data validation and

verification









#### FROM THE LOTR SPREADSHEET

| TABLE_NAME                     | _<br>_TABLE_R    | ING_LEVEL   |                         |            |        |
|--------------------------------|------------------|-------------|-------------------------|------------|--------|
| APPLICATION                    | RING18           |             |                         |            |        |
| APPLICATION_COMPONENT          | RING24           |             |                         |            |        |
| APPLIC_ALIAS                   | RING20           |             |                         |            |        |
| APPLIC_AREA                    | RING20           |             |                         |            |        |
| APPLIC_ATTACH                  | RING20           |             |                         |            |        |
| APPLIC_BA                      | RING20           |             |                         |            |        |
| APPLIC_DESC                    | RING20           |             |                         |            |        |
| APPLIC_REMARK                  | RING20           | TABLE_NAME  | COLUMN_NAME             | RING_LEVEL | GROUP  |
| AREA<br>AREA ALIAS             | RING06<br>RING10 | APPLICATION | ACTIVE_IND              | RING00     | INSERT |
| AREA_COMPONENT                 | RING24           | APPLICATION | APPLICATION_ID          | RING00     | INSERT |
| AREA_CONTAIN                   | RING08           | APPLICATION | APPLICATION_TYPE        | RING04     | INSERT |
| AREA_DESCRIPTION               | RING18           | APPLICATION | CONTRACT_ID             | RING18     | INSERT |
| BA_ADDRESS                     | RING08           | APPLICATION | CURRENT_STATUS          | RING04     | INSERT |
| BA_ALITHODITY                  | RING10           | APPLICATION | DECISION                | RING04     | INSERT |
| BA_AUTHORITY BA_AUTHORITY_COMP | RING10<br>RING24 | APPLICATION | DECISION_DATE           | RING00     | INSERT |
| BA_COMPONENT                   | RING24           | APPLICATION | EFFECTIVE_DATE          | RING00     | INSERT |
| BA_CONSORTIUM_SERVICE          | RING16           | APPLICATION | EXPIRY_DATE             | RING00     | INSERT |
| BA_CONTACT_INFO                | RING12           | APPLICATION | EXTENSION_ID            | RING18     | INSERT |
| BA_CREW BA_CREW_MEMBER         | RING10<br>RING12 | APPLICATION | FEES_DESC               | RING00     | INSERT |
| BA_DESCRIPTION                 | RING12           | APPLICATION | FEES_PAID_IND           | RING00     | INSERT |
| BA_EMPLOYEE                    | RING06           | APPLICATION | PPDM_GUID               | RING00     | INSERT |
|                                |                  | APPLICATION | PREVIOUS_APPLICATION_ID | RING19     | UPDATE |
|                                |                  | APPLICATION | RATE_SCHEDULE_ID        | RING16     | INSERT |
|                                |                  | APPLICATION | RECEIVED_DATE           | RING00     | INSERT |
|                                |                  | APPLICATION | REFERENCE_NUM           | RING00     | INSERT |







Best practice is to NEVER disable constraints. Loading data with constraints enabled can be tricky. Use the Load of the Rings to load data.

Don't alter check constraints.

Use reciprocating values and denormalized columns ONLY if you need to improve performance! Populate them by procedure from their "home" location.



# PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION





#### INDEX DELIVERABLES

#### PPDM provides a starter set of indexes

- Primary Keys
- Foreign Keys

#### Many indexes for some tables

Some are redundant at high levels

#### PPDM does not provide:

- Tuning indexes
- Indexes on non-Foreign Key columns

Performance and implementation workgroup might change that!



#### INDEX RECOMMENDATIONS

#### Understand the business needs:

- Typical queries
- Concurrent online updates
- Nightly batch updates

#### Add tuning indexes

- To non-FK columns
- Use bit map indexes for reference tables or small tables

#### Don't index everything!

Reference tables benefit from use of Bitmap indexes (save space, faster)



### PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION

# **Multiple Occurrences Version Control** Sequence Control Copyright 2012, PPDM Association. All Rights Reserved



#### **VERSION CONTROL**

Source version
Inherited version
Alias version





#### **SOURCE VERSION**

Different versions of data may be received from different vendors

- Preferred data kept in main business table
- Vendor specific data kept in VERSION table

Source part of the primary key





#### INHERITED VERSION

Source of parent is inherited by the children

 All of the technical data for a core or log MUST come from the SAME source.

Widely used in the well model





#### **ALIAS VERSION**

A business entity may be known by many names, codes or identifiers

- AREA ALIAS
- SEIS\_ALIAS
- BA ALIAS
- WELL\_ALIAS
- LAND\_ALIAS

Names may change over time

Different applications may use different identifiers

- SAP
- Openworks, Geoframe ...

Different BA's may use different identifiers

Alias tables have been harmonized for PPDM 3.8

Can indicate the owner (BA) or application that uses an alias.

Very useful for integrating many applications with PPDM





#### SEQUENCE CONTROL

Chronological sequences
Ordered sequences
Observation sequences









#### CHRONOLOGICAL EVENT SEQUENCES

Need to track both current and history

The version of the data is based on date

- Data Circulation
- Status

Surrogate PK component

Date attribute

- optional
- not part of PK
- date, date/time

| Physical Item | Circ ID | Date     | Who      |
|---------------|---------|----------|----------|
| ABC           | 1       | 94-03-08 | J Doe    |
| ABC           | 2       | 94-06-29 | B Lind   |
| ABC           | 3       | 95-04-19 | J Clarke |
| BCD           | 1       | 94-03-13 | J Doe    |
| CDE           | 1       | 94-03-29 | J Doe    |



#### ORDERED SEQUENCES

# Defines an ordered sequence of events, things or processes:

- Shot point acquisition (tape recorded order)
- shot point spatial sequence

#### **Format**

number 8

#### Class Word

xxx\_seq\_no





#### **OBSERVATION SEQUENCE**

Each instance of the data is determined through a separate observation

Well Core Analysis

Order is not significant, or can be calculated

**Format** 

Number 8

Class Word

xxx\_obs\_no









Columns named %\_SEQ\_NO imply that data order is important.

- ü Re-start numbering at 1 for every new parent
- U Sort the data into the correct order before loading

Columns named %\_OBS\_NO are simply surrogate identifiers.

- **ü** Re-start numbering at 1 for every new parent
- Use a trigger or procedure to increment the OBS\_NO for every new row



#### **EXERCISE**

A sample set of tables has been provided.

#### Use the PPDM Architectural Principles

- Rename the tables and columns.
- If you need to create a new table or relationship, do so

What problems might you find when these tables are integrated with other systems?





# PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION





### **VERTICAL TABLES FUNCTIONS**

Vertical tables store information in the form **Property Type + Property Value.** 

Vertical tables are useful when

- A complete list of data attributes needed cannot be determined at design time
- The list of data attributes may change often, and rapid change response is needed

A vertical table must allow a wide variety of descriptive information (property values) to be stored.

- Dates
- Currencies
- Measured values (with units of measure)
- Values selected from code lists
- Open text
- Value ranges (min and max)
- Combinations of values (a value and a narrative statement)



### **VERTICAL TABLES IN PPDM 3.8**

#### In each vertical table

- number values are stored in columns with NUMBER format
- date values are stored in columns with DATE format
- text values are stored in columns with VARCHAR(2) format.

Each vertical table is controlled by a reference table (property type table).

The property type table can be used to define rules about how each property type should behave

- If the value to be entered is a date, which column should I use?
- How much precision for these measures?
- What unit of measure should a measured value be stored in?
- What reference table should be used to validate a reference code?



### INTRODUCTION TO VERTICAL TABLES

#### **EQUIPMENT\_SPEC**

**UOM** 

#### EQUIPMENT ID 20 VARCHAR2 SPEC ID VARCHAR2 20 SPEC TYPE VARCHAR2 20 ACTIVE IND VARCHAR2 1 AVERAGE\_VALUE NUMBER AVERAGE\_VALUE\_OUOM VARCHAR2 20 AVERAGE VALUE UOM VARCHAR2 20 COST 12 NUMBER **CURRE** CONVERSION NUMBER 10 OUOM VARCHAR2 20 CY UOM VARCHAR2 20 TIVE DATE DATE DATE DATE NUMBER **OUOM** VARCHAR2 20

VARCHAR2

20

• This is a vertical table.

| MIN_DATE             | DATE     |      |   |
|----------------------|----------|------|---|
| MIN_VALUE            | NUMBER   |      |   |
| MIN_VALUE_OUOM       | VARCHAR2 | 20   |   |
| MIN_VALUE_UOM        | VARCHAR2 | 20   |   |
| PPDM_GUID            | VARCHAR2 | 38   |   |
| REFERENCE_VALUE      | NUMBER   |      |   |
| REFERENCE_VALUE_OUOM | VARCHAR2 | 20   |   |
| REFERENCE_VALUE_TYPE | VARCHAR2 | 20   | 1 |
| REFERENCE_VALUE_UOM  | VARCHAR2 | 20   |   |
| REMARK               | VARCHAR2 | 2000 |   |
| SOURCE               | VARCHAR2 | 20   |   |
| SPEC_CODE            | VARCHAR2 | 20   |   |
| SPEC_DESC            | VARCHAR2 | 1024 |   |
| ROW_CHANGED_BY       | VARCHAR2 | 30   |   |
| ROW_CHANGED_DATE     | DATE     |      |   |
| ROW_CREATED_BY       | VARCHAR2 | 30   |   |
| ROW_CREATED_DATE     | DATE     |      |   |
| ROW_QUALITY          | VARCHAR2 | 20   |   |

#### **R\_EQUIP\_SPEC**

| SPEC_TYPE        |
|------------------|
| ABBREVIATION     |
| ACTIVE_IND       |
| EFFECTIVE_DATE   |
| EXPIRY_DATE      |
| LONG_NAME        |
| PPDM_GUID        |
| PROPERTY_SET_ID  |
| REMARK           |
| SHORT_NAME       |
| SOURCE           |
| ROW_CHANGED_BY   |
| ROW_CHANGED_DATE |
| ROW_CREATED_BY   |
| ROW_CREATED_DATE |
| ROW_QUALITY      |
|                  |

This table contains valid property types. It controls the behavior in the vertical table.



# INTRODUCTION TO VERTICAL TABLE CONTROL



This table allows us to control exactly how the vertical table will behave for every column that is used when a particular **Property Type** is used.

Some properties are described with NUMBERIC values – use this table to list which columns in the vertical table should be used, what precision you want to use (how many decimal places), what units of measure to use and so on.

For code values that are derived from a reference table, you can say which reference table to validate the entered value against.



### PPDM PROPERTY COLUMN

**USE COLUMN NAME** and **USE TABLE NAME** identify the name of the vertical table and the column of the vertical table that should be used to store the value for a property.

For some kinds of property types, more than one column may be needed to describe the properties. You can list as many columns as you need to, using one row in this table for each property value you will store in the vertical table.

| PROPERTY_SET_ID        |  |  |  |  |
|------------------------|--|--|--|--|
| PROPERTY_OBS_NO        |  |  |  |  |
| ACTIVE_IND             |  |  |  |  |
| COLUMN_PRECISION       |  |  |  |  |
| COLUMN_SCALE           |  |  |  |  |
| COLUMN_SIZE            |  |  |  |  |
| DATA_TYPE              |  |  |  |  |
| DOMAIN                 |  |  |  |  |
| EFFECTIVE_DATE         |  |  |  |  |
| EXPIRY_DATE            |  |  |  |  |
| PPDM_GUID              |  |  |  |  |
| PREFERRED_CURRENCY_UOM |  |  |  |  |
| PREFERRED_UOM          |  |  |  |  |
| REF_TABLE_NAME         |  |  |  |  |
| REMARK                 |  |  |  |  |
| SOURCE                 |  |  |  |  |
| USE_COLUMN_NAME        |  |  |  |  |
| USE_TABLE_NAME         |  |  |  |  |
| ROW_CHANGED_BY         |  |  |  |  |
| ROW_CHANGED_DATE       |  |  |  |  |
| ROW_CREATED_BY         |  |  |  |  |
| ROW_CREATED_DATE       |  |  |  |  |
| ROW_QUALITY            |  |  |  |  |



### PROPERTY COLUMN

The rest of this table allows you to create an **implicit data model for each column in the vertical table** that will be used for each property type.

You use this table to **characterize** how to describe each value in the reference table (such as mass or color)

**EXAMPLE 1:** for values that describe the MASS of an object, you may want to store values that are

DOMAIN = MASS
DATA TYPE = NUMBER
COLUMN SIZE = 10
COLUMN PRECISION = 2
PREFERRED UOM = kg

**EXAMPLE 2:** to describe the COLOR of an object, you may want to use values listed in the table R\_COLOR

REF TABLE NAME = R COLOR

| PROPERTY_SET_ID        |
|------------------------|
| PROPERTY_OBS_NO        |
| ACTIVE_IND             |
| COLUMN_PRECISION       |
| COLUMN_SCALE           |
| COLUMN_SIZE            |
| DATA_TYPE              |
| DOMAIN                 |
| EFFECTIVE_DATE         |
| EXPIRY_DATE            |
| PPDM_GUID              |
| PREFERRED_CURRENCY_UOM |
| PREFERRED_UOM          |
| REF_TABLE_NAME         |
| REMARK                 |
| SOURCE                 |
| USE_COLUMN_NAME        |
| USE_TABLE_NAME         |
| ROW_CHANGED_BY         |
| ROW_CHANGED_DATE       |
| ROW_CREATED_BY         |
| ROW_CREATED_DATE       |
| ROW_QUALITY            |



### EXAMPLE 1: EQUIPME SPECTYPE = MASS

PROPERTY SET ID = 1

### The mass of my big red truck



| <b>EQUIPMENT</b>      | _SPEC    | ,    |   |
|-----------------------|----------|------|---|
| EQUIPMENT_ID          | VARCHAR2 | 20   |   |
| SPEC_ID               | VARCHAR2 | 20   |   |
| SPEC_TYPE             | VARCHAR2 | 20   |   |
| ACTIVE_IND            | VARCHAR2 | 1    | 7 |
| AVERAGE_VALUE         | NUMBER   |      |   |
| AVERAGE_VALUE_OUOM    | VARCHAR2 | 20   |   |
| AVERAGE_VALUE_UOM     | VARCHAR2 | 20   |   |
| COST                  | NUMBER   | 12   | 2 |
| CURRENC (_CONVERSION  | NUMBER   | 10   | 5 |
| CURRENG _OUOM         | VARCHAR2 | 20   |   |
| CURREN LUOM           | VARCHAR2 | 20   |   |
| EFFECTI DATE          | DATE     |      |   |
| EXPIRY_ E             | DATE     |      |   |
| MAX_DA                | DATE     |      |   |
| MAX_V/                | NUMBER   |      |   |
| MAX_V OUOM            | VARCHAR2 | 20   |   |
| MAX_V UOM             | VARCHAR2 | 20   |   |
| MIN_D                 | DATE     |      |   |
| MIN_V                 | NUMBER   |      |   |
| MIN_Y UOM             | VARCHAR2 | 20   |   |
| MINDM                 | VARCHAR2 | 20   |   |
| PPD                   | VARCHAR2 | 38   |   |
| REF ALUE              | NUMBER   |      |   |
| REF ALUE_OUOM         | VARCHAR2 | 20   |   |
| REI LUE_TYPE          | VARCHAR2 | 20   |   |
| RE LUE_UOM            | VARCHAR2 | 20   |   |
| RE                    | VARCHAR2 | 2000 |   |
| SC                    | VARCHAR2 | 20   |   |
| S<br>S<br>F 4<br>DATE | VARCHAR2 | 20   |   |
| S                     | VARCHAR2 | 1024 |   |
| F 🔼 BY                | VARCHAR2 | 30   |   |
| DATE                  | DATE     |      |   |
| Y                     | VARCHAR2 | 30   |   |
| ATE                   | DATE     |      |   |

COLUDIALNIT CDCO

SPEC TYPE = MASS AVERAGE VALUE = 15000 AVERAGE VALUE UOM = kg

#### R\_EQUIP\_SPF

SPEC TYPE ABBREVIATION ACTIVE IND EFFECTIVE DATE EXPIRY\_DATE LONG\_NAME PPDM GUID PROPERTY\_SET\_ID REMARK SHORT NAME SOURCE ROW\_CHANGED\_BY ROW CHANGED DATE ROW CREATED BY ROW\_CREATED\_DATE ROW QUALITY

#### PPDM PROPERTY SET

PROPERTY SET ID ACTIVE IND EFFECTIVE DATE EXPIRY\_DATE PPDM GUID PROPERTY\_SET\_NAME REMARK SOURCE USE\_TABLE\_NAME ROW C NGED BY ROW GED\_DATE ED BY ROW D DATE

#### PPDM PROPER

USE TABLE NAME = **EQUIPMENT\_SPEC** 

PROPERTY OBS NO ACTIVE IND COLUMN PRECISION COLUMN SCALE COLUMN\_SIZE DATA TYPE DOMAIN EFFECTIVE\_DATE EXPIRY\_DATE PPDM GUID PREFERRED\_CURRENCY\_UQ PREFERRED\_UOM REF TABLE NAME REMARK SOURCE

PROPERTY SET ID

USE COLUMN NAME USE TABLE NAME ROW\_CHANGED\_BY ROW CHANGED DATE ROW CREATED BY ROW\_CREATED\_DATE ROW\_QUALITY

USE TABLE NAME = EQUIPMENT SPEC

USE COLUMN NAME = AVERAGE VALUE

COLUMN PRECISION = 0

COLUMN SIZE = 15

DOMAIN = MASS

PREFERRED UOM = kg



### EXAMPLE 2: EQUIP SPEC TYPE = INSIDE DIAMETER

PROPERTY SET ID = 2

### **EQUIPMENT SPEC**

The inside diameter of my pipeline

| L&OII WILI          | 11_01    |      | _ |
|---------------------|----------|------|---|
| EQUIPMENT_ID        | VARCHAR2 | 20   |   |
| SPEC_ID             | VARCHAR2 | 20   |   |
| SPEC_TYPE           | VARCHAR2 | 20   |   |
| ACTIVE_IND          | VARCHAR2 | 1    |   |
| AVERAGE_VALUE       | NUMBER   |      |   |
| AVERAGE_VALUE_OUOM  | VARCHAR2 | 20   |   |
| AVERAGE_VALUE_UOM   | VARCHAR2 | 20   |   |
| COST                | NUMBER   | 12   | 2 |
| CURRENCY_CONVERSION | NUMBER   | 10   | 5 |
| CURRENCY_OUOM       | VARCHAR2 | 20   |   |
| CURRENCY_UOM        | VARCHAR2 | 20   |   |
| EFFECTIVE_DATE      | DATE     |      |   |
| EXPIRY_DATE         | DATE     |      |   |
| MAX_DATE            | DATE     |      |   |
| MAX_VALUE           | NUMBER   |      |   |
| MAX_VALUE_OUOM      | VARCHAR2 | 20   |   |
| MAX_VALUE_UOM       | VARCHAR2 | 20   |   |
| MIN_DATE            | DATE     |      |   |
| MIN_VALUE           | NUMBER   |      |   |
| MIN_YALUE_OUOM      | VARCHAR2 | 20   |   |
| MINALUE_UOM         | VARCHAR2 | 20   |   |
| PPD GUID            | VARCHAR2 | 38   |   |
| REI ENCE_VALUE      | NUMBER   |      |   |
| RE NCE_VALUE_OUOM   | VARCHAR2 | 20   |   |
| RI NCE_VALUE_TYPE   | VARCHAR2 | 20   |   |
| R VCE_VALUE_UOM     | VARCHAR2 | 20   |   |
| /                   | VARCHAR2 | 2000 |   |
|                     | VARCHAR2 | 20   |   |
| ÞΕ                  | VARCHAR2 | 20   |   |
| C                   | VARCHAR2 | 1024 |   |
| GED_BY              | VARCHAR2 | 30   |   |
| GED_DATE            | DATE     |      |   |
| ED_BY               | VARCHAR2 | 30   |   |
| ED DATE             | DATE     |      |   |
|                     | VARCHAR2 | 20   |   |

SPEC TYPE = INSIDE DIAMETER

MIN VALUE = 12.25

MIN VALUE UOM = m

MAX VALUE = 13.25

MAX VALUE UOM = m



PROPERTY OBS NO ACTIVE IND COLUMN PRECISION COLUMN SCALE COLUMN\_SIZE DATA TYPE DOMAIN EFFECTIVE\_DATE EXPIRY\_DATE PPDM GUID PREFERRED\_CURRENCY\_UOM PREFERRED\_UOM REF TABLE NAME REMARK SOURCE USE COLUMN NAME USE TABLE NAME ROW\_CHANGED\_BY ROW CHANGED DATE ROW CREATED BY ROW\_CREATED\_DATE

PROPERTY SET ID

ROW\_QUALITY

USE TABLE NAME = EQUIPMENT SPEC

USE COLUMN NAME = MIN VALUE COLUMN PRECISION = 2

COLUMN SIZE = 8 DOMAIN = LENGTH

**NOTE: In PPDM** PREFERRED UOM = m **PROPERTY COLUMN** there are 2 rows

USE TABLE NAME = EQUIPMENT SPEC

USE COLUMN NAME = MAX VALUE COLUMN PRECISION = 2

COLUMN SIZE = 8 DOMAIN = LENGTH PREFERRED UOM = m

Copyrig



### EXAMPLE 3: EQUIPME SPEC TYPE = COLOR

PROPERTY SET ID = 3

ROW CHANGED BY

ROW CREATED BY

ROW\_CREATED\_DATE ROW QUALITY

ROW\_CHANGED\_DATE

### The color of my big red truck



#### **EQUIPMENT SPEC**

| EQUIPMENT_I   | D          | VARCHAR2 | 20   |   |
|---------------|------------|----------|------|---|
| SPEC_ID       |            | VARCHAR2 | 20   |   |
| SPEC_TYPE     |            | VARCHAR2 | 20   |   |
| ACTIVE_IND    |            | VARCHAR2 | 1    |   |
| AVERAGE_VA    | LUE        | NUMBER   |      |   |
| AVERAGE_VA    | LUE_OUOM   | VARCHAR2 | 20   |   |
| AVERAGE_VA    | LUE_UOM    | VARCHAR2 | 20   |   |
| COST          |            | NUMBER   | 12   | 2 |
| CURRENCY_C    | ONVERSION  | NUMBER   | 10   | 5 |
| CURRENCY_C    | NOM        | VARCHAR2 | 20   |   |
| CURRENCY_U    | OM         | VARCHAR2 | 20   |   |
| EFFECTIVE_D   | ATE        | DATE     |      |   |
| EXPIRY_DATE   |            | DATE     |      |   |
| MAX_DATE      |            | DATE     |      |   |
| MAX_VALUE     |            | NUMBER   |      |   |
| MAX_VALUE_0   | MOUC       | VARCHAR2 | 20   |   |
| MAX_VALUE_I   | JOM        | VARCHAR2 | 20   |   |
| MIN_DATE      |            | DATE     |      |   |
| MIN_VALUE     |            | NUMBER   |      |   |
| MIN_VALUE_C   | NOUC       | VARCHAR2 | 20   |   |
| MIN_VALUE_L   | IOM        | VARCHAR2 | 20   |   |
| PPDM_GUID     |            | VARCHAR2 | 38   |   |
| REFERENCE_    | VALUE      | NUMBER   |      |   |
| REFERENCE_    | VALUE_OUOM | VARCHAR2 | 20   |   |
| REFERENCE_    | VALUE_TYPE | VARCHAR2 | 20   |   |
| REFERENCE_    | VALUE_UOM  | VARCHAR2 | 20   |   |
| REMARK        |            | VARCHAR2 | 2000 |   |
| SOURCE        |            | VARCHAR2 | 20   |   |
| SPEC_COD      |            | VARCHAR2 | 20   |   |
| SPEC_DE       |            | VARCHAR2 | 1024 |   |
| ROW_CH ED_BY  |            | VARCHAR2 | 30   |   |
| ROW_CH D_DATE |            | DATE     |      |   |
| ROW_C D_BY    |            | VARCHAR2 | 30   |   |
| ROW_G         | D_DATE     | DATE     |      |   |
| ROW_          |            | VARCHAR2 | 20   |   |

SPEC TYPE = COLOR SPEC CODE = RED

R EQUIP SPE SPEC TYPE

PPDM PROPERTY SET ABBREVIATION ACTIVE IND EFFECTIVE DATE PROPERTY SET ID EXPIRY\_DATE ACTIVE IND LONG\_NAME EFFECTIVE DATE PPDM GUID EXPIRY\_DATE PROPERTY\_SET\_ID PPDM GUID REMARK PROPERTY\_SET\_NAME SHORT NAME REMARK SOURCE SOURCE ROW\_CHANGED\_BY USE\_TABLE\_NAME ROW CHANGED DATE

PPDM PROPERTY CO

USE TABLE NAME = EQUIPMENT\_SPEC

ACTIVE IND COLUMN PRECISION COLUMN SCALE COLUMN\_SIZE DATA TYPE DOMAIN EFFECTIVE\_DATE EXPIRY\_DATE PPDM GUID PREFERRED\_CURRENCY\_UOM PREFERRED\_UOM REF TABLE NAME REMARK SOURCE USE COLUMN NAME USE TABLE NAME ROW\_CHANGED\_BY ROW CHANGED DATE

ROW CREATED BY

ROW QUALITY

ROW CREATED DATE

PROPERTY SET ID

PROPERTY OBS NO

ROW CREATED BY ROW\_CREATED\_DATE

ROW\_QUALITY

USE TABLE NAME = EQUIPMENT SPEC

USE COLUMN NAME = SPEC CODE

REF TABLE NAME = R COLOR



### EXAMPLE 4: WELL LOG CURVE





# PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION





### REFERENCE VALUES

### Table names

- R\_%
- Reference-like subjects (Areas, BA's...)

### Decide what to use in PK values



- Natural values names or other natural value can reduce joins
- GUID uniqueness more likely
- Integers may speed up query and retrieval
- Never force your users to memorize or refer to lists of codes!

# Create some business rules and deploy them consistently

How, who, when, where...



### VALIDITY CHECKING

### All R\_% values

- What happens if the value is not known at load time?
- What happens if the necessary value is not in the table? Who can add or change, what are rules?
- Meaning of NULL data
  - Not received yet
  - Did not look for value
  - Could not determine value
  - Has not happened yet
  - Not relevant here

### Valid data ranges

- upper and lower limits
- rule based

Possible to use PPDM\_QUALITY\_CONTROL or AUDIT



### REFERENCE TABLES

Not all Reference tables are R\_%

Use online documentation or constraints to check

FIELD, POOL

AREA

**PRODUCT** 

**BUSINESS ASSOCIATE** 

STRAT\_UNIT

. . .



# PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION





### DATE PROBLEMS

### Date may be imprecise or unknown

- 1Q93, spring 1983 .....
- year only
- year and month

### **Architectural Principles**

DATE should not be part of the PK

### Decide how to handle technical issues

- handling NULL dates during loads or queries
- search between dates





### DATE SOLUTIONS

#### Imprecise Dates

- VARCHAR2 (8) date description %\_DATE\_DESC
  - YYYY year precision
  - YYYYMM month precision
  - YYYYQQ quarter precision
  - YYYYMMDD day precision
- Use DATE format with dummy values
  - Oracle defaults DAY to 01
  - Oracle defaults MONTH to current

#### Search between Dates

- Leave expiry data NULL and set ACTIVE\_IND = 'Y'
- Set to high value (Dec 01, 4712)\* (Ensor and Stevenson, 1997)

### Don't synthesize false data

user trust affected

#### Base site rules on user needs

- loading
- query and retrieval
- future dates such as expiry date





Use the ACTIVE\_IND to show what data is currently active. Make sure this column is always accurately populated by using a trigger on EXPIRY\_DATE.

If the data has not expired, leave EXPIRY\_DATE null.



# PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION





### UNITS OF MEASURE PROBLEMS

### Scalability

- retrieval ('all wells that penetrate to 1500 meters')
- calculation ('average seismic line length')

### Multiple UOM received

- different countries, jurisdictions
- production volume depends on substance

### Volume regimes

Volume measure based on temperature and pressure regimes

#### Currencies

- Conversion rate varies over time
- Different banks use different conversion rates
- Different transactions use different conversion rates



# UNIT OF MEASURE ARCHITECTURAL PRINCIPLE

### Storing UOM

- Standard UOM for every column
  - Meta model
- Original UOM for each row / column
  - Subject tables



- Values whose UOM cannot be standardized
  - Example: Production volume UOM depends on the type of product
  - Example: Vertical tables





### **UOM EXAMPLE**

### WELL

| UWI      | DRILL_TD | DRILL_TD_OUOM |
|----------|----------|---------------|
| SMITH12F | 1250     | FEET          |
| JONES44  | 1560     | METERS        |
| 12345    | 1400     | FEET          |

### PPDM\_COLUMN

| TABLE_<br>NAME | COLUMN_<br>NAME | UOM_ COLUMN       | OUOM_ COLUMN       | DEFAULT _ UOM_ SYMBOL |
|----------------|-----------------|-------------------|--------------------|-----------------------|
| WELL           | UWI             |                   |                    |                       |
| WELL           | DRILL_TD        |                   | DRILL_TD_OUOM      | M                     |
| WELL           | DRILL_TD_OUOM   |                   |                    |                       |
| WELL_CEMENT    | CEMENT_AMOUNT   | CEMENT_AMOUNT_UOM | CEMENT_AMOUNT_OUOM |                       |





### Tips and Hints



The **PPDM Meta Model** does not store data values - only information about the structure of the data model.

The default Unit of Measure for a measured value is stored in the meta model.

The original Unit of Measure is stored in the business table. This value is only used to restore values back to the original (usually for regulatory reporting).

Use the Meta Model to convert units from one system to another.



### **CURRENCIES IN PPDM**

### Currency values should be stored as %\_COST

- Currency domain (NUMBER 12,2).
- CURRENCY\_OUOM is the currency in which the funds were originally received by the payee.

### CURRENCY\_CONVERSION with each currency

- Currency conversion domain (NUMBER 10,5)
- "CURRENCY CONVERSION RATE: the rate applied to convert the currency to its original monetary UOM from the stored UOM. This value is valid for this row in this table only. When this value is multiplied by the STORED currency value, the original value of the transaction in the original currency is obtained."





### Tips and Hints



Use the same stored currency unit of measure for the entire implementation or at least regionally.

Be aware that different banks use different exchange values for different transaction types. Usually it's best to use the conversion rate captured in your financial system.



## PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION





### COORDINATE SYSTEM PROBLEMS

### Scalability

retrieval ('all wells that fall within my area')

### Bad or incomplete data

- original reference system unknown
- reference system was captured incorrectly
- conversions not done correctly

### Multiple sets of coordinates

- original, revised
- datum dependant



### CS ARCHITECTURAL PRINCIPLE

### Store geographic coordinates by default

- Latitude, longitude
- In some cases, other reference systems are allowed
  - Local referenced systems are important for some business functions

### Preferred coordinates all referenced to same CS

At least regionally, globally if practical

# Support multiple coordinate systems in %\_VERSION table

- UTM, polyconic
- Other coordinate systems
- Store the preferred version in this table also



### SPATIAL INFORMATION = GIS?

GIS does not handle sub-surface

- Depths ranges
- Zones
- Pools, reservoirs are not polygons
   Spatial locations version over time
- Historical
- Predictive

Attribute information may be related

May need huge amounts of structured information



Not all uses of spatial information are GIS related Can you embed spatial objects in a complex database? Can you include spatial objects in a SQL Query?



### **COORDINATE SYSTEM EXAMPLE**

### WELL\_NODE

| NODE_ID | LATITUDE | LONGITUDE | COORDINATE<br>_SYSTEM_ID | UWI      |
|---------|----------|-----------|--------------------------|----------|
| 12345   | 45.3456  | 49.1584   | NAD83                    | 12345    |
| 23456   | 46.2347  | 56.3628   | NAD83                    | SMITH12F |

### WELL\_NODE\_VERSION

| NODE_ID | SRC  | OBS_NO | UTM_X  | UTM_Y   | COORDINATE _SYSTEM_ID |
|---------|------|--------|--------|---------|-----------------------|
| 12345   | PPDM | 1      | 200654 | 4956258 | WGS83                 |
| 12345   | PPDM | 2      | 200538 | 4956283 | NAD27                 |





**NEVER** store coordinate information without a Coordinate Reference. Don't assume you know what it is – check it out before you load!

Although you can store **Transformation** parameters in PPDM, the data model should not be used for transformations. Use a valid geodetic program to convert between coordinate systems

The Coordinate System Module stores lots of information that can be useful to you

- ✓ Datum and ellipsoid details
- ✓ Coordinate system transformations
- ✓ Mapping system transformations
- ✓ Acquisition method
- ✓ Alternate names or identifiers



# PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION





### UNDERSTAND THE SEMANTICS

### Value to be migrated = 1,000,000

- Are the units of measure stored or inferred?
- What are the semantics in the column name?
- What are the semantics in the table name?
- What other columns give meaning to this value?

### When you load into PPDM

- What other columns can you populate to fully describe the semantics?
- Try not to leave any information inferred if you can avoid it.
- Use ACTIVE\_IND, dates, quality columns



## PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION

# **Extending PPDM** Guidelines Recommendations Copyright 2012, PPDM Association. All Rights Reserved



### **EXTENSIBILITY DO'S**

Meet your business needs

Add tables

table name prefix AB\_

Add columns to the end of the table

column name prefix AB\_

Add constraints when needed

Apply Architectural Principles

PPDM Change Management





### **EXTENSIBILITY DON'TS**

Modify the Primary Key

Mis-use columns and tables

Avoid adding tables that duplicate PPDM tables

Make PPDM null-able columns mandatory

Conflict with other vendors

Change data types or lengths on existing columns





### SUBSETTING DO'S

### Remove tables you do not require

- Define a footprint
- Remove constraints to tables you have removed

### Ultimate goal is interoperability

- Readily exchange data between partners and regulatory agencies
- Plug and play applications





### SUBSETTING DON'TS

Remove a parent table for a structure in your footprint
Remove or alter Primary key components
Remove columns from PPDM tables
Remove constraints to tables in your footprint
Change the optionality of columns





### PPDM IS DENORMALIZED - BEWARE!

### Three places for STORE\_ID

Each meets specific user need

### Primary location

- PHYSICAL\_ITEM\_STORE
- populate other columns only if needed
- use triggers and stored procedures to keep in synch





### DATA UPDATES

### Change Optional Foreign Keys (FK)

- Child FK to NULL
- Parent to new value
- Update child tables

### Change Primary Key (PK)

Drop and re-create child rows



CHANGE UWI
3. RECREATE
CHILD
ROWS



### DATA DELETES

### Can define ON DELETE CASCADE in DDL

 not discriminatory, will delete all children

### Manage procedurally

- Start delete at bottom level of children
- Delete parent last

Understand the business rules for every affected group of users

 It's not always appropriate to delete the children!









# PPDM grows through the Change Management Process.

People who use it have an influence on the model.

www.ppdm.org/forums/



# PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION

