Théorie des Groupes et Algèbre Lie

Classe sino-française, USTC

Responsables du cours :

Prof. Adrien Boyer et Prof. Jiaogen ZHANG D'après un polycopié de Xiao LI

Avril 2022 - Juin 2022

Référence:

- 1. Introduction à la théorie des Groupes de Lie classiques, Rached Mneimne Frédéric Testard
- 2. Lie Groups beyond an Introduction, Anthony W. Knapp

Table des matières

1	Aut	sour de $GL_n(k)$	3		
	1.1	Analyse et géométrie sur $GL_n(k)$	4		
2	Action des Groupes et Groupes topologiques				
	2.1	Rappels sur les actions de groupes	7		
	2.2	Action de groupes topologiques	7		
	2.3	Topologie quotient	8		
	2.4	Propriétés des groupes topologiques	9		
	2.5	Théorème d'homéomorphismes	10		
3	Représentations adjointes et l'application exponentielle				
	3.1	Représentations Adjointes	12		
	3.2	L'application exponentielle	14		
4	Variété 1				
	4.1	Variétés et sous-variétés	17		
	4.2	Sous-variété(réelles)	18		
	4.3	Théorème du rang constant	19		
	4.4	Espaces tangents, Champs de vecteurs, Dérivation	20		
5	Groupe de Lie				
	5.1	Champs de vecteurs et plan tangents	25		
	5.2	Cas de $GL_n(\mathbb{R})$	28		
	5.3	L'exponentielle	29		
	5.4	Action adjointe	33		
	5.5	Sous-groupes de Lie	37		
	5.6	Théorème de Cartan - Von Neumann	38		

6	Revêtement de groupes de Lie		
	6.1	Rappels sur les revêtements	43
	6.2	Revêtement de groupes de Lie	45
	6.3	Application aux représentations	50
7	Thé	eorie des représentations des algèbres de Lie	53
	7.1	Rappels sur les représentations	53
	7.2	Irréductibilité	55
	7.3	Représentations de $\mathrm{Lie}(SL_2(\mathbb{C}))$	56
	7.4	L'algèbre $\mathfrak{sl}_2(\mathbb{C})$	61
8	Structure des algèbres de Lie		
	8.1	Rappels sur les idéaux de ${\mathfrak g}$ une algèbre de Li $\ \ldots \ \ldots \ \ldots \ \ldots$	63
	8.2	Algèbre de Lie résoluble	65
	8.3	Définition du radical	67
	8.4	Algèbre de Lie nilpotente	67
9	Alg	èbre de Lie semi-simples, Forme de Killing	7 5
	9.1	Algèbre de Lie simple et semi-simple	75
	9.2	Forme de Killing	77
	9.3	Extension et restriction aux scalaires	81
	9.4	Forme réelle	82
10	Éléi	ment semi-simple et sous-algèbre torales	84

1 Autour de $GL_n(k)$

Dans cette section, on considère seulement des cas où $k=\mathbb{R}$ ou $k=\mathbb{C}.$

1.1 Analyse et géométrie sur $GL_n(k)$

Définition 1.1. Munissons l'espace vectoriel de dimension finie $M_n(k)$ d'une norme $||\cdot||$, alors $(M_n(k), ||\cdot||)$ est un espace normé, donc topologique.

Proposition 1.2. $GL_n(k) = \{A \in M_n(k) \text{ inversibles}\} \subset M_n(k) \text{ est un ouvert de } M_n(k).$

Démonstration. $A \in GL_n(k) \Leftrightarrow \det A = 0$, ainsi $GL_n(k)$ est l'image de réciproque par le det de $K \setminus \{0\}$. On a donc $A \mapsto \det A$ est continue car

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} = \text{polynôme en les coefficients } (a_{i,j})_{i,j}$$

Proposition 1.3. Les applications suivantes sont continues.

1.
$$(A, B) \in GL_n(k) \times GL_n(k) \mapsto AB \in GL_n(k)$$

2.
$$A \in GL_n(k) \mapsto A^{-1} \in GL_n(k)$$

 $D\acute{e}monstration$. Prenons $(A_n, B_m) \xrightarrow{n,m \to \infty} (A, B)$ et choisissons la norme sur $M_n(k)$ vérifie $||AB|| \le ||A|| ||B||$. On a

$$||AB - A_n B_m|| = ||AB - A_n B + A_n B - A_n B_m|| \le ||(A - A_n)B|| + ||A_n (B - B_m)||$$

$$\le ||(A - A_n)|| \cdot ||B|| + ||A_n|| \cdot ||(B - B_m)|| \to 0$$

Pour la continuité de l'application $A \mapsto A^{-1}$, on a

$${}^{t}Com(A) \cdot A = \det(A) \cdot I$$

Ainsi $A \mapsto A^{-1} = \frac{{}^{t}Com(A)}{\det(A)}$ est continue.

Remarque 1.4. On dit que $(GL_n(k),\cdot)$ est un groupe topologique.

Proposition 1.5. $GL_n(k)$ est dense dans $M_n(k)$.

 $D\acute{e}monstration.$ $A \in M_n(k)$ mais pas dans $GL_n(k)$. Considérons ses valeurs propres non nulles : $\lambda_1 \cdots, \lambda_p \ (p \leq n)$.

5

Soit λ_{i_0} telle que $|\lambda_{i_0}| = \min_{i \in \{1, 2, \dots, p\}} |\lambda_i| > 0$. Considérons alors $A_n = A - \frac{1}{n}Id$, si n assez grand, on a $\det(A_n - \frac{1}{n}Id) \neq 0$ et $A - \frac{1}{n}Id \xrightarrow{n \to +\infty} A$.

Remarque 1.6. La densité de $GL_n(k)$ dans $M_n(k)$ est varie pour des corps k bien plus généreux (topologie de Zariski).

Application 1.7. Montrons que le polynôme caractéristique de AB est le même que celui de BA, pour $A, B \in M_n(k)$.

1. Si $A \in GL_n(k)$, on a

$$\chi_{AB}(\lambda) = \det(AB - \lambda Id) = \det(ABAA^{-1} - \lambda AA^{-1}) = \det(A)\chi_{BA}(\lambda)\det(A^{-1}) = \chi_{BA}(\lambda).$$

2. Si $A \in M_n(k)$. Pour B fixé dans $M_n(k)$, on a

$$\chi_{A_nB}(\lambda) = \chi_{BA_n}(\lambda) \quad \forall A_n \in GL_n(k).$$

Or pour B et $\lambda \in k$ étant fixé dans l'application

$$A \mapsto \chi_{AB}(\lambda) - \chi_{BA}(\lambda)$$

est continue et est nulle sur un sous ensemble dense $GL_n(k)$. Donc elle est nulle sur $M_n(k)$.

On en déduit que Spectre(AB) = Spectre(BA) : ensemble des valeurs propres.

Proposition 1.8. Centre de $GL_n(k)$, $Z(GL_n(k)) := \{A \in GL_n(k) | AB = BA \ \forall B \in GL_n(k)\} = k^*$.

Démonstration. On fait dans le cas $k = \mathbb{R}$.

Si $A \in GL_n(\mathbb{R})$ diagonale et que AB = BA pour tout $B \in GL_n(\mathbb{R})$, ainsi $A = \lambda Id$ pour un certain λ .

Si $A \in GL_n(\mathbb{R})$ générale. D'une part, si $A = \lambda$ id, alors A commute avec tout $B \in GL_n(k)$. D'autre part, on a

$$A \cdot (I_n + E_{i,j}) = (I + E_{i,j}) \cdot A$$

donc ceci conclut que A est une matrice diagonale dont tous les coefficients diagonaux sont égaux. Ainsi que $A = \lambda I$ pour un certain λ .

Théorème 1.9 (Décomposition Polaire). Etant donnée $M \in GL_n(\mathbb{R})$, il existe un unique couple $(O, S) \in O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R})$ tel que M = OS.

De plus

$$O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R}) \xrightarrow{\sim} GL_n(\mathbb{R})$$

est homéomorphisme .

$$O\dot{u}\ O_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) | {}^tAA = I_n\} \ et\ S_n^{++}(\mathbb{R}) = \{A \in S_n(\mathbb{R}), {}^txAx > 0 \ \forall x \in \mathbb{R}^n\}$$

Proposition 1.10. $O_n(\mathbb{R})$ est un compact de $M_n(\mathbb{R})$.

Démonstration. Choisir une norme adéquate à la situation $||A||_2 := \sqrt{\text{Tr}({}^tAA)}$. C'est une norme et si $A \in O_n(\mathbb{R})$, $||A||_2 = n$. Donc $O_n(\mathbb{R}) \subset M_n(\mathbb{R})$ est borné. De plus $O_n(\mathbb{R})$ est fermé, ainsi compact.

Démonstration du théorème 1.9. Existence de la décomposition polaire. Soit $M \in GL_n(\mathbb{R})$, alors ${}^tMM = PDP^t$ où $D = \mathrm{Diag}(\mu_1, \cdots, \mu_n)$ et $\mu_i \in \mathbb{R}_+^*$.

Donc on peut définir $\Delta = \text{Diag}(\sqrt{\mu_1}, \cdots, \sqrt{\mu_n})$. Alors

$$^tMM = PDP^t = P\Delta \cdot \Delta P^t = P\Delta P^t \cdot P\Delta P^t =: S \cdot S = S^2$$

Posons $O = MS^{-1}$ et donc ${}^tOO = S^{-1}MMS^{-1} = S^{-1}S^2S^{-1} = I_n, O \in O_n(\mathbb{R}).$

Ainsi M = OS et O est orthogonale et S est définitivement positive.

Unicités: Supposons $M=O_1S_1=O_2S_2$. On a ${}^tMM=S_1^2$ et ${}^tMM=S_2^2$ ainsi que $S_1^2=S_2^2$.

Idée : Si on montre que S_2 commute à S_1 alors S_2 et S_1 sont simultanément diagonalisable.

Donc il existe $Q \in O_n(\mathbb{R})$ telle $S_2 = QDQ^t$ et $S_1 = QD'Q^t$, et donc D = D'.

But : Montrons que S_2 commute à S_1 . En fait on va montrer que $S_2 = R(S_1)$ où $R \in \mathbb{R}[X]$. ${}^t MM = PDiag(\mu_1, \dots, \mu_n)P^t = PDP^t.$

Considérer polynôme d'interpolation de Lagrange de telle sorte que $R(\mu_i) = \sqrt{\mu_i}$.

$$S_1 = PR(D)^t P = R(PD^t P) = R(S_2^2)$$

Alors S_1 et S_2 commute.

Montrons l'homéomorphisme : Puisque on a déjà une bijection par l'unicité de la décomposition polaire.

$$O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R}) \xrightarrow{\sim} GL_n(\mathbb{R})$$

Il reste à montrer que $M \in GL_n(\mathbb{R}) \mapsto (O_M, S_M) \in O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R})$ est continue. Si M_p est une suite de $GL_n(\mathbb{R})$, et $M_p = O_pS_p$ par quitter à extraire on peut supposer que $O_p \to O_\infty \in O_n(\mathbb{R})$ car $O_n(\mathbb{R})$ est compact.

Par hypothèse, $M_p \to M_\infty \in GL_n(\mathbb{R})$ et $O_p^{-1}M_p = S_p$ donc $S_p \to O_\infty^{-1}M_\infty = S_\infty$.

Ainsi $M_{\infty} = O_{\infty}(O_{\infty}^{-1}M_{\infty}) = O_{\infty}S_{\infty}$ par l'unicité de la décomposition polaire.

On a que $M_p \xrightarrow{p \to \infty} M_\infty$ implique $(O_p, S_p) \xrightarrow{p \to \infty} (O_\infty, S_\infty)$ d'où la continuité.

2 Action des Groupes et Groupes topologiques

2.1 Rappels sur les actions de groupes

Soient G un groupe et X un ensemble, $\alpha: G \times X \to X$, $\alpha(g,x) = g.x$ vérifie gh.x = g.(h.x) et e.x = x, $\forall x \in X$.

Proposition 2.1. On a une bijection $G/G_x \to Orb(x)$ pour tout $x \in X$.

où $G_x = \operatorname{Stab}(x)$ sous groupe de G et $Orb(x) = \{g.x, g \in G\}$.

Exemples 2.2. 1. G agit sur G par g.h = gh est une action.

- 2. G agit sur G par $g.h = hg^{-1}$ est une action.
- 3. G agit sur G par $g.h = ghg^{-1}$ est une action.
- 4. G agit sur $\mathbb{S}(G) = \{\text{sous groupe de } G\}$ par $g = gHg^{-1}$ est une action.

Définition 2.3. On dit qu'une action est transitive si $\forall x, y \in X, \exists g \in G, gx = y.$

On dit qu'une action est *n*-transitive si $\forall (x_1, \dots, x_n) \in X \times \dots \times X$ et $(y_1, \dots, y_n) \in X \times \dots \times X$, $\exists g \in G$ t.q. $gx_i = y_i \ \forall i$.

Exemples 2.4. 1. $GL_n(\mathbb{R})$ agit sur {bases de \mathbb{R}^n } est une action transitive.

2. $PGL_2(\mathbb{R})$ agit sur $\mathbb{P}^1(\mathbb{R})$ est une action 3-transitive.

2.2 Action de groupes topologiques

Définition 2.5. On dit que (G, \cdot) est un groupe topologique, si G est un espace topologique et les applications suivantes sont continues.

- 1. $(g,h) \in G \times G \mapsto gh \in G$.
- $2. \ g \in G \mapsto g^{-1} \in G.$

Exemple 2.6. Il est facile à vérifier que $(\mathbb{R}, +)$, (\mathbb{R}, \times) , $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$, $O_n(\mathbb{R})$, $(\mathbb{Z}, +)$ sont groupes topologiques.

Définition 2.7. On dit que action G sur X est continue, si $\alpha: G \times X \to X$ est continue pour la topologie produit sur $G \times X$.

Autrement dit, on a $G \to Aut(X) = \text{Hom\'eo}(X), g \mapsto \alpha(g, \cdot).$

Proposition 2.8. On se donne $\alpha: G \times X \to X$, X espace topologique séparé et G groupe topologique.

- 1. $\forall g \in G, \ \alpha(g,\cdot) \ est \ un \ homéomorphisme \ de \ X$.
- 2. $\forall x \in X$, Stab(x) < G est un sous groupe fermé.
- 3. $\forall x \in X$, $\alpha(\cdot, x)$ est continue sur $G \to X$.

Démonstration. Par définition, soit $x \in X$, $Stab(x) := \{g \in G, \alpha(g, x) = x\} = \alpha(\cdot, x)^{-1}(\{x\})$ est l'image réciproque de $\{x\}$, ainsi fermé.

Pour $g \in G$, $\alpha(g, \cdot)$ est continue et bijective, $\alpha(g^{-1}, \cdot)$ est l'application réciproque qui est continue. Donc $\alpha(g, \cdot)$ est homéomorphisme.

2.3 Topologie quotient

Soit H < G groupe topologique. Alors l'application canonique $\pi: G \to G/H$ définit une topologie sur G/H.

Définition 2.9. O ouvert de G/H si et seulement si $\pi^{-1}(O) \subset G$ est ouvert.

La collection des $\{O\subset G/H\ ,$ t.q. O satisfait 2.9 $\}$ est une topologie sur $G/H\ ,$ c'est la topologie quotient.

Remarque 2.10. Les ouverts de G de la forme $\pi^{-1}(\mathcal{U})$ où \mathcal{U} est ouvert de G/H s'appellent les saturés (完备的,饱和的) $(\pi^{-1}(\mathcal{U}))$ est le saturé de \mathcal{U}).

Proposition 2.11. 1. π est continue (pour la topologie quotient) et la topologie quotient est la topologie plus fine qui rend π continue.

2. π est une application ouverte.

3. Si $f: G \to Y$ est continue, si f est bien définie sur G/H (i.e. $\exists \overline{f}$ t.q. $f = \overline{f} \circ \pi$. Alors \overline{f} est continue de $G/H \to Y$.

Démonstration. 1. Soit τ une topologie telle si $O \in \tau$ alors $\pi^{-1}(O)$ est continue. Ceci implique que $O \in topologie$ quotient. Donc topologie quotient est la topo plus fine.

2. Montrons que π est ouverte i.e. si $V \subset G$ ouvert, alors $\pi(V)$ est un ouvert dans G/H. Montrons que $\pi^{-1}(\pi(V))$ est ouvert.

Fait : $\pi^{-1}(\pi(V)) = \bigcup_{h \in H} V_h$, principal de translation.

Fixons $h \in G$, $\varphi_h : x \in G \mapsto xh$, φ_h est homéomorphisme. Donc φ_h est ouvert.

3. \overline{f} est continue $\Leftrightarrow \overline{f}^{-1}(W)$ ouvert de G/H où W ouvert de G/H $\Leftrightarrow \pi^{-1}(\overline{f}^{-1}(W))$ ouvert de $G \Leftrightarrow \overline{f}^{-1}$ ouvert de $G \Leftrightarrow f$ est continue.

2.4 Propriétés des groupes topologiques

Proposition 2.12. Soient G un groupe topologique et H < G un sous groupe. Alors

- 1. Si H < G est ouvert, alors H est fermé.
- 2. Si G est séparé, alors H fermé ssi G/H est séparé.
- 3. Si G/H est séparé, alors π envoie le compact à compact.

Remarque 2.13. Si G est compact, alors G/H est compact.

Pour le 3ème point, soient $G=(\mathbb{R},+)$ et $H=(\mathbb{Q},+)$ alors \mathbb{R}/\mathbb{Q} n'est pas un espace topologique séparé.

Démonstration. 1. Soit H < G ouvert. Montrons que $G \backslash H$ est ouvert.

On a

$$G\backslash H = \bigcup_{g \in G\backslash H} \underbrace{gH}_{ouvert}$$

où gH est ouvert par principe de translation. Donc $G\backslash H$ est ouvert ainsi que H est fermé.

2. \Rightarrow : Prenons $g, g' \in G$ tels que $\pi(g) \neq \pi(g') \Leftrightarrow gH \neq g'H$, donc $g^{-1}g' \in G \setminus H$ et $G \setminus H$ est ouvert. Alors on pose U est un ouvert contenu dans $G \setminus H$ et $g^{-1}g' \in U$. Considérons la fonction $f: G \times G \to G, (x,y) \mapsto xg^{-1}g'y$ qui est continue.

Comme U est ouvert, on a que $f^{-1}(U)$ est ouvert de $G \times G$ et $(e, e) \in f^{-1}(U)$, donc il existe V_1, V_2 ouverts, t.q. $(e, e) \in V_1 \times V_2 \subset f^{-1}(U)$.

Considérons $W = (V_1 \cap V_2) \cap (V_1 \cap V_2)^{-1}$, on a $W = W^{-1}(g \in W \text{ ssi } g^{-1} \in W)$.

On a $f(W \times W) \cap H = \emptyset \Leftrightarrow Wg^{-1}g'W \cap H = \emptyset \Leftrightarrow gWH \cap g'WH = \emptyset$.

Puisque $gWH \subset G$ est ouvert saturé, on a $\pi(gWH) \cap \pi(g'WH) = \emptyset$.

Réciproquement, si G/H séparé, on a $\{eH\}$ fermé $\Rightarrow \pi^{-1}(\{eH\}) = \pi^{-1}(\{e\}) = H$ fermé.

Proposition 2.14. Soient G groupe topologie séparé et H < G sous groupe. Les assertions suivantes sont équivalentes.

- 1. H est ouvert.
- 2. e est intérieur à H.
- 3. $G/_{H}$ est discret.

 $D\acute{e}monstration.$ (1) \Leftrightarrow (2) est facile.

Montrons (1) \Rightarrow (3) Si H est ouvert $\Rightarrow \pi(H)$ est ouvert. De plus $\pi(H) = G/H \setminus (\pi(G \setminus H))$ est fermé. Donc $\{H\}$ dans G/H est à la fois ouvert et fermé. Faire de même $\{gH\}$ par translation, $\forall g \in G, \{gH\}$ est à la fois ouvert et fermé.

(3)⇒(1) : si G/H est discret, alors $\{H\}$ ouvert et fermé. Donc $\pi^{-1}(\{H\}) = H$ est ouvert dans G.

Exemple 2.15. Posons $G = O_n(\mathbb{R})$ et $H = SO_n(\mathbb{R})$, alors $O_n(\mathbb{R}) / SO_n(\mathbb{R}) = \{1, -1\}$ est discret.

Proposition 2.16. Si H < G, supposons H est discret. Alors H est fermé.

Proposition 2.17. Si G groupe topologique, $G_0 \subset G$ composante connexe et contient e. Alors $G_0 \subset G$ est fermé, G_0 est un sous groupe distingué.

Proposition 2.18. L'adhérence de H < G est un sous groupe de G.

2.5 Théorème d'homéomorphismes

Quand peut on dire qu'on a un homéomorphisme de $G/G_x \simeq G \cdot x$? (En général, faux) Où $\operatorname{Stab}(x) = G_x$ et $\operatorname{Orb}(x) = G \cdot x$.

Présentons deux cas où on a un homéomorphisme.

11

Si G est un groupe topologique compact

Proposition 2.19. Soient X espace topologique séparé, G groupe topologique compact et $\alpha: G \times X \to X$ continue.

Alors $G/G_x \simeq G \cdot x$ est un homéomorphisme pour tout x.

Démonstration. Soit $x \in X$, considérons $\alpha(\cdot, x) : G/G_x \to G \cdot x$ est continue. On a G_x fermé ainsi G/G_x est compact et séparé.

De plus, $\alpha(\cdot, x)$ (compact) est compact.

Ainsi $\alpha(\cdot,x): G/G_x \to G \cdot x$ continue, bijection et l'image d'un fermé est fermé. $\Rightarrow \alpha(\cdot,x)$ est aussi ouverte.

On a $\alpha(\cdot, x)$ qui est continue, bijective et ouverte, ceci conclut que $\alpha(\cdot, x)$ est homéomorphisme.

Théorème d'homéomorphisme pour les actions transitives

Définition 2.20 (localement compact). Soit X espace topologique séparé. On a dit que X est localement compact si tout point de X possède un voisinage compact.

Définition 2.21 (Dénombrable à l'infinie). On dit que X espace topologique et dénombrable à l'infinie (En Anglais : second countable). Si $X = \bigcup_{n \in \mathbb{N}} K_n$ où $(K_n)_{n \in \mathbb{N}}$ une suite de compact.

Théorème 2.22. Pour $\alpha: G \times X \to X$ une action continue et transitive. On suppose que G est localement compact et dénombrable à l'infini et X est localement compact (espace de Baire).

Alors $\forall x \in X$, $G/G_x \simeq G \cdot x$ est un homéomorphismes.

Exemple 2.23. $GL_n(\mathbb{R})$ satisfait les hypothèses : localement compact dénombrable à l'infini.

Définition 2.24 (Espace homogène). Si G groupe topologique localement compact et dénombrable à l'infini, et G agit continuellement et transitivement sur X. Alors on dit que X est un espace homogène.

Remarque 2.25. Si X homogène, alors on a $X \simeq G/H$, H < G fermé.

Si H < G fermé, alors on a G agit sur G/H et G/H est un espace homogène.

Démonstration du théorème. Fixons $x \in X$. Montrons que $\varphi_x(\cdot) = \alpha(\cdot, x)$ est un homéomorphisme (bijective, continue, ouvert). Donc il suffit de montrer que φ_x est ouvert.

Soit $U \subset G$ un ouvert, on veut que $\varphi_x(U) = U \cdot x$ soit ouvert.

Soit $g \in U$, montrons que g.x est intérieur à U.x(ssi x est intérieur dans $g^{-1}U \cdot x$).

Comme $e \in g^{-1}U$ et G localement compact, alors il existe V compact tel que $e \in V \subset g^{-1}U$. Par continuité du produit, il existe $W \ni e$ compact t.q. $e \in W^2 \subset U$ et on peut supposer $W = W^{-1}$. De plus pour $\forall h \in G$, on a hW est un voisinage de h.

Si K est compact et est contenu dans G, on a $K=\bigcup_{k\in K}kW$. Par compacité, il existe un recouvrement fini, $K=\bigcup_{fini}kW$.

De plus G est dénombrable à l'infini, $G = \bigcup_{n \in \mathbb{N}} K_n$, donc $\exists (g_i)_{i \in \mathbb{N}}$ telle que $G = \bigcup_{i \in \mathbb{N}} g_i W$.

Action transitive :
$$X = G.x = \bigcup_{i \in \mathbb{N}} \overbrace{g_i W x}^{\text{ferm\'e}}$$
.

Xespace de Baire $\Rightarrow \exists i_0$ t.q. $g_{i_0}Wx$ est un fermé d'intérieur non vide.

Comme $g_{i_0}W_x$ fermé d'intérieur non vide, $\exists w \in W \text{ t.q. } g_{i_0}wx \in (g_{i_0}Wx) \subset g_{i_0}Wx. \Rightarrow w^{-1}Wx \ni x \Rightarrow W^2x \ni x \Rightarrow g^{-1}Ux \supset W^2x \ni x.$

3 Représentations adjointes et l'application exponentielle

3.1 Représentations Adjointes

Si G est un groupe, prenons $g \in G$ quelconque. L'application $\theta : x \in G \mapsto gxg^{-1} \in G$ est un automorphisme qui est intérieur. $\theta \in \text{Int}(G) < \text{Aut}(G)$.

Prenons $G = GL_n(\mathbb{R})$, soit $g \in GL_n(\mathbb{R})$. Considérons $\rho(g)M = gMg^{-1}$ où $M \in M_n(\mathbb{R})$.

$$\rho: GL_n(\mathbb{R}) \to GL(V)$$
$$g \mapsto \rho(g)$$

où $V = M_n(\mathbb{R})$.

On a

Proposition 3.1. ρ est un morphisme de groupes, autrement dit ρ est une représentation de $GL_n(\mathbb{R})$ sur $V = M_n(\mathbb{R})$.

Rappel 3.2 (Rappel sur le calcul diff). Considérons

$$i: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$$

 $g \mapsto g^{-1}$

Calculons la différentiel de i en $g \in G = GL_n(\mathbb{R})$. On sait que $Di(g) \in \mathcal{L}(M_n(\mathbb{R}), M_n(\mathbb{R})) = \{applications \ linéaires\}.$

$$i(g+h) = i(g) + Di(g) \cdot h + o(||h||)$$

Fait :Di(g).h = $-g^{-1}hg^{-1}$, $h \in M_n(\mathbb{R})$.

Calculons la différentielle de

$$\rho: GL_n(\mathbb{R}) \to GL(V) = \operatorname{End}(V).$$

On a $D\rho(g) \in \mathcal{L}(M_n(\mathbb{R}), \operatorname{End}(V))$

Pour $h \in M_n(\mathbb{R})$ et $X \in V = M_n(\mathbb{R})$, on a

$$\rho(g+h)X = (g+h)X(g+h)^{-1} = (g+h)X(g(1+g^{-1}h))^{-1}$$

$$= (g+h)X(id+g^{-1}h)^{-1}g^{-1}$$

$$= (g+h)X(id-g^{-1}h+o(||h||))g^{-1}$$

$$= (g+h)X(g^{-1}-g^{-1}hg^{-1}+o(||h||))$$

$$= gXg^{-1} + \underbrace{hXg^{-1}-gXg^{-1}hg^{-1}}_{D\rho(g).h(X)} + o(||h||)$$

Proposition 3.3.

$$D\rho(Id): M_n(\mathbb{R}) \to \operatorname{End}(V)$$

 $h \mapsto D\rho(Id).h$

 $où D\rho(Id).h: X \in V \mapsto h.X - X.h \in V.$

On utilise la notation : $h.X - X.h = [h, X]_{M_n(\mathbb{R})}$, crochet de Lie sur $M_n(\mathbb{R})$.

Proposition 3.4. Les propriétés de $[\cdot,\cdot]$ sur $M_n(\mathbb{R})$

- 1. $\forall X, Y \in M_n(\mathbb{R}), [X, Y] = [Y, X].$
- 2. [X, X] = 0.
- 3. Identité de Jacobi [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Sur l'algèbre $\operatorname{End}(V)$, on définit le crochet suivant : $f,g\in\operatorname{End}(V)$, on pose $[f,g]_{\operatorname{End}(V)}=f\circ g-g\circ f$.

On a en fait:

$$D\rho(Id): (M_n(\mathbb{R}), [\cdot, \cdot]_{M_n(\mathbb{R})}) \xrightarrow{ad} (\operatorname{End}(V), [\cdot, \cdot]_{\operatorname{End}(V)})$$

$$X \mapsto [X, \cdot]_{M_n(\mathbb{R})}.$$

Notations : Représentations Adjointes $\rho(g) = Ad(g)$ et $D\rho(Id)(X) = ad_X$

Proposition 3.5. $\forall X, Y \in M_n(\mathbb{R}), \ on \ a$

$$ad_{[X,Y]_{M_n(\mathbb{R})}} = [ad_X, ad_Y]_{\mathrm{End}(V)}$$

morphisme des algèbres $(M_n(\mathbb{R}), [\cdot, \cdot]_{M_n(\mathbb{R})})$ et $(\text{End}(V), [\cdot, \cdot]_{\text{End}(V)})$.

3.2 L'application exponentielle

Sur $M_n(k)(k = \mathbb{R}, \mathbb{C})$ muni d'une norme matricielle ($||AB|| \le ||A|| \cdot ||B||$), on définit pour $A \in M_n(\mathbb{R})$:

$$\exp(A) = \sum_{k=0}^{+\infty} \frac{A^k}{k!}.$$

En fait la suite des sommes partielles $\sum_{k=0}^{N} \frac{A^k}{k!}$ converge sur tout compact de $M_n(\mathbb{R})$.

Ou une autre façon de le dire : C'est converge normale de la série $\sum_{k=0}^{N} \frac{A^k}{k!}$ sur tout compact de $M_n(k)$.

Théorème 3.6. Les propriétés fondamentales de l'exponentielle :

- 1. $\forall A$, $\exp(A)$ est un polynôme en A.
- 2. Si $A, B \in M_n(k)$ telles que AB = BA. Alors on a

$$\exp(A+B) = \exp(A)\exp(B).$$

- 3. Si $A = Diag(\lambda_1, \dots, \lambda_n)$, alors $\exp(A) = Diag(e^{\lambda_1}, \dots, e^{\lambda_n})$.
- 4. $\forall A \in M_n(\mathbb{R}), \ ^t(\exp(A)) = \exp(^t A).$
- 5. $\forall A \in M_n(\mathbb{C}), *(\exp(A)) = \exp(*A).$
- 6. det(exp(A)) = exp(Tr(X))
- 7. La différentielle en $0_{M_n(k)}$ est l'identité.

Démonstration. Tout est à faire en exercice, mais on donne la preuve du point 7.

On sait que $\text{Dexp}(A) \in \mathcal{L}(M_n(\mathbb{R})), \forall A \in M_n(\mathbb{R}).$

En $A = 0_{M_n(\mathbb{R})}$, on a

$$\exp(0+h) = Id + H + o(||H||).$$

Par définition, ainsi $Dexp(0).H = H, \forall H \in M_n(\mathbb{R}).$ Donc $Dexp(0) = id_{M_n(\mathbb{R})}.$

Définition 3.7. Un sous groupe à un paramètre de $GL_n(\mathbb{R})$ est un morphisme $\varphi : (\mathbb{R}, +) \to GL_n(\mathbb{R})$.

Exemple 3.8. Soit $X \in M_n(\mathbb{R})$, $\varphi_X(t) = e^{tX}$ est bien un sous-groupe à un paramètre. En fait tous les sous groupes à un paramètre sont de cette forme.

Proposition 3.9. L'application $X \in M_n(\mathbb{R}) \to \varphi_X \in \{sous\text{-}groupe à un paramètre de <math>GL_n(\mathbb{R})\}$ est une bijection.

De plus X s'appelle le générateur infinitésimal(无限小的) du sous-groupe à un paramètre.

 $D\acute{e}monstration$. D'abord $X \in M_n(\mathbb{R}) \to \varphi_X$ est bien définie par le théorème sur exp.

Injective : Si $\varphi_X = \varphi_Y$, alors on calcule la différentielle en t = 0,

$$X = \frac{d(e^{tX})}{dt}|_{t=0} = \frac{d(e^{tY})}{dt}|_{t=0} = Y.$$

Surjective : Soit φ un sous-groupe à un paramètre, ainsi $\varphi(s+t)=\varphi(s)\varphi(t)$ et $\varphi(0)=id$ et φ est C^1 . Alors on a

$$\varphi'(s+t) = \frac{d\varphi(s+t)}{dt} = \varphi(s)\varphi'(t),$$

 $4 \quad VARI\acute{E}T\acute{E}$

donc

$$\varphi'(s+t) = \varphi(s)\varphi'(t), \forall s, t \in \mathbb{R}.$$

Prendre t = 0, on a que $\varphi'(s) = \varphi(s)\varphi'(0)$ et $\varphi(0) = \mathrm{id}_{M_n(\mathbb{R})}$. Posons $X = \varphi'(0) \in M_n(\mathbb{R})$, alors on a $\varphi(t) = e^{tX}$ qui est l'unique solution de

$$\begin{cases} \varphi'(s) = \varphi(s)X \\ \varphi(0) = \mathrm{id}_{M_n(\mathbb{R})} \end{cases}$$

Proposition 3.10. Lien entre représentation Adjointes et l'application exp.

 $\forall X \in M_n(\mathbb{R}), \ on \ a$

$$Ad(\exp(X)) = \exp(ad_X)$$

.

Démonstration. Considérons $V = M_n(\mathbb{R})$ et

$$\varphi(t) = Ad(\exp(tX)), \varphi : \mathbb{R} \to GL(V)$$

 $\psi(t) = \exp(t \operatorname{ad}_X), \psi : \mathbb{R} \to GL(V)$

 φ et ψ sont deux sous groupes à un paramètre.

$$\varphi(t) = f \cdot g(t)$$
 avec $g(t) = \exp(tX)$ et $f(A) = \operatorname{Ad}(A)$

Donc
$$\varphi'(t)|_{t=0} = Df(g(t))g'(t)|_{t=0} = Df(Id).X = D\operatorname{Ad}(Id).X = ad_X$$

De plus, $\psi'(0) = ad_X$, comme φ et ψ 2 sous groupes à un paramètre tels que $\varphi'(0) = \psi'(0)$, $\Rightarrow Ad(t \exp(X)) = \exp(t \operatorname{ad}_X)$, $\forall t$. Ainsi que $Ad(\exp(X)) = \exp(\operatorname{ad}_X)$ quand t = 1.

4 Variété

Liste des groupes de Lie :

1.
$$(\mathbb{R}, +), (\mathbb{R}^*, *), GL_n(\mathbb{R}), SL_n(\mathbb{R}) \subset GL_n(\mathbb{R}).$$

2.
$$O_n(\mathbb{R}) \subset GL_n(\mathbb{R}), SO_n(\mathbb{R}) = O_n(\mathbb{R}) \cap SL_n(\mathbb{R}).$$

3.
$$O(p,q) = \{X \in M_n(\mathbb{R}), {}^tXI_{p,q}X = I_{p,q}\} \text{ avec } I_{p,q} = \begin{pmatrix} I_p & 0\\ 0 & I_q \end{pmatrix} \}.$$

- 4. $SO(p,q) = O(p,q) \cap SL(p+q,\mathbb{R}).$
- 5. $GL_n(\mathbb{C})$, $SL_n(\mathbb{C})$, U(n), SU(n).

4.1 Variétés et sous-variétés

Variétés M un espace topologique, séparé

carte un carte (U,φ) de M est une donnée $\varphi:U\to\varphi(U)\subset\mathbb{R}^n$ un homéomorphisme.

Atlas C'est un collection de carte $(U_i, \varphi_i)_{i \in I}$ avec I un certain ensemble tel que $M = \bigcup_{i \in I} U_i$. Un Atlas C^k $(k \in \{1, 2, \dots, +\infty\})$ est un atlas où les changements de cartes sont C^k .

Changement de cartes Soient U_i et U_j pour $i, j \in I$, $i \neq j$ telles que $U_i \cap U_j \neq \emptyset$. Alors la fonction de transition entre $\varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$ est C^k .

Définition 4.1. Une variété C^k M de dimension n est la donnée d'un espace topologique séparé avec un atlas de classe C^k .

Remarque 4.2. La donnée de l'atlas C^k est aussi ce qu'on appelle une structure différentielle C^k sur M.

Remarque 4.3. Soit une carte (U, φ) de M topologique et connexe. On a $\varphi : U \to \varphi(U) \subset \mathbb{R}^n$ un homéomorphisme.

En fait n ne dépend pas de la carte (U, φ) .

Exemples 4.4. \mathbb{S}^n , $\mathbb{P}^n(\mathbb{R})$, $\mathbb{P}^n(\mathbb{C})$.

Définition 4.5. Soient (M, \mathcal{A}) une variété C^k de dim n et (N, \mathcal{B}) une variété C^k de dim p.

On définit la variété produit $M \times N$ équipe de l'atlas $(U_i \times V_j)_{i \in I, j \in J}$ et des cartes $\varphi_i \times \psi_j$: $U_i \times V_j \to \varphi_i(U_i) \times \psi_j(U_j) \subset \mathbb{R}^{n+p}$. Pour tout i, j, il est facile de vérifier que le changement de cartes sont C^k .

Définition 4.6 (Morphisme de variétés). On dit que $f: M \to N$ est C^k en $x \in M$ si, avec y = f(x) il existe $U \ni x$ où U ouvert de l'atlas \mathcal{A} de M et $V \ni y$ où V ouvert de l'atlas \mathcal{B} de N t.q. $f(U) \subset V$ et telle que $\psi \circ f \circ \varphi^{-1} : \varphi(U) \subset \mathbb{R}^n \to \psi(V) \subset \mathbb{R}^P$ est C^k .

Proposition 4.7. La définition de $f: M \to N$ est C^k en $x \in M$ ne dépend pas la choix des cartes.

Définition 4.8. On dit que f est C^k de M à N, si f est C^k en tout point de M.

18 4 VARIÉTÉ

Définition 4.9 (Groupe de Lie). Soit G un groupe, on dit que G est un groupe de Lie. Si G est un variété différentielle de classe C^k telle que $g \in G \mapsto g^{-1} \in G$ est C^k et $(g,h) \in G \times G \mapsto gh \in G$ est C^k .

Remarque 4.10. En particulier pour le cas k=0, c'est la définition de groupe topologique.

4.2 Sous-variété(réelles)

Définition 4.11. On dit que M est une sous-variété de \mathbb{R}^N de dimension n si $\forall x \in M$, $\exists U_x$ voisinages ouverts et $0 \in V \subset \mathbb{R}^N$ et φ un difféomorphisme vérifie que $\varphi : U_x \xrightarrow{\sim} V$ et tel que

$$U_x \cap M = \varphi^{-1}(V \cap (\mathbb{R}^n \times 0_{N-n})).$$

Proposition 4.12. Soit $M \subset \mathbb{R}^N$ une sous-variété de dimension n, C^k . Alors

- 1. M est elle même une C^k variété.
- 2. $M \hookrightarrow \mathbb{R}^N$ l'inclusion naturelle est un morphisme de variétés.

Démonstration. (Exercice)

Proposition 4.13. Soient $f: M \subset \mathbb{R}^{N_1} \to N \subset \mathbb{R}^{N_2}$, 2 sous-variétés avec dim M = p, dim N = q, et f est C^k comme application de $\mathbb{R}^{N_1} \to \mathbb{R}^{N_2}$.

Alors $f|_M$ est C^k .

Théorème 4.14 (Définitions équivalentes des sous-variétés(réelles)). Les assertions suivantes sont équivalentes :

Redressement $M \subset \mathbb{R}^N$ est une sous-variété de dimension n.

Submersion $\forall x \in M, \exists U_x \subset \mathbb{R}^N \ et \ f : U_x \xrightarrow{C^k} \mathbb{R}^{N-n} \ est \ une \ submersion \ en \ x \ t.q.$

$$U_x \cap M = f^{-1}(0).$$

Graphe $\forall x \in M, \exists U_x \subset \mathbb{R}^N, \exists V \subset \mathbb{R}^n \ et \ f : V \xrightarrow{C^k} \mathbb{R}^{N-n} \ t.q.$

$$U_x \cap M = \operatorname{graphe}(f) = \{(x, f(x)), x \in V\}.$$

Immersion $\forall x \in M, U_x \subset \mathbb{R}^N$ et $V \ni 0$ dans \mathbb{R}^n avec homéomorphisme $\varphi : V \xrightarrow{C^k} \mathbb{R}^N$, $\varphi(0) = x, \varphi$ immersion en $0, \varphi : V \xrightarrow{\sim} U_x \cap M$. (notion de paramètrage).

4.3 Théorème du rang constant

Soit $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^p$ une application C^k . Considérons sa différentielle en $x \in \Omega$, ou plutôt la jacobienne

$$Df(x) = \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{1 \le i \le p, 1 \le j \le N} \in M_{p,N}(\mathbb{R}).$$

Considérons $r(x) = \operatorname{rg}(Df(x)) = \dim \operatorname{Vect}\{Df_i(x), 1 \leq i \leq p\}$. On a $\dim(\bigcap_{i=1}^p \ker Df_i(x)) = \operatorname{rg}Df(x)$.

Théorème 4.15. Soit $f: \Omega \subset \mathbb{R}^N \xrightarrow{C^k} \mathbb{R}^p$ de rang constant n, alors $\forall y \in f(\Omega)$, $f^{-1}(\{y\})$ est une sous-variété de \mathbb{R}^N de dimension N-r.

Application 4.16. 1. $GL_n(\mathbb{R})$ sous variété de dimension n^2 .

- 2. $SL_n(\mathbb{R})$ sous variété de $M_n(\mathbb{R})$, de dimension n^2-1 .
- 3. $O_n(\mathbb{R})$ sous variété de $M_n(\mathbb{R})$, de dimension $\frac{n(n-1)}{2}$.

Le cas $O_n(\mathbb{R})$ Pour $O_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}), {}^tAA = I\}$, on définit

$$f: M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$$

$$A \longmapsto {}^t AA - I$$

Ainsi que $f^{-1}(\{0\}) = O_n(\mathbb{R})$. Utilisons submersion du thm 4.14 sur les définitions équivalentes des sous-variétés : pour $\forall A \in O_n(\mathbb{R})$ et $H \in M_n(\mathbb{R})$, on a

$$Df(A).H = {}^{t}AH + {}^{t}HA.$$

On réécris

$$Df(A): M_n(\mathbb{R}) \longrightarrow S_n(\mathbb{R}) \simeq \mathbb{R}^{\frac{n(n+1)}{2}} = \mathbb{R}^{n^2 - \frac{n(n-1)}{2}}$$

de telle sort que f devient une submersion.

En effet, si $M \in S_n(\mathbb{R})$, alors il existe $H = \frac{AM}{2}$ tel que Df(A).H = M.

Ainsi f est C^{∞} , f est une submersion de $O_n(\mathbb{R}) \to S_n(\mathbb{R})$, donc $O_n(\mathbb{R}) = f^{-1}(\{0\})$ est une sous-variété de $M_n(\mathbb{R})$ de dimension $\frac{n(n-1)}{2}$.

Remarque 4.17. $\ker Df(A) = \{H|^t AH + {}^t HA = 0\} = \{H|^t AH = -{}^t HA\}$

20 4 VARIÉTÉ

- 1. $\ker Df(I) = \mathbb{A}_n(\mathbb{R})$, les matrices antisymétriques.
- 2. $\ker Df(A) = A \ker Df(I) = A\mathbb{A}_n(\mathbb{R}) \ (A^{-1} = {}^tA).$

Remarque 4.18. $A_n(\mathbb{R})$ l'algèbre de Lie de $O_n(\mathbb{R})$ et $\dim_{\mathbb{R}-ev} \mathbb{A}_n(\mathbb{R}) \simeq \dim_{\text{sous-variété}} O_n(\mathbb{R})$.

4.4 Espaces tangents, Champs de vecteurs, Dérivation

Espace tangent

Définition 4.19. Soient $M \subset \mathbb{R}^N$ une sous-variété de dimension n (C^k ou C^∞) et $x \in M$.

On suppose $\exists \epsilon > 0, \ \gamma_{\epsilon} :] - \epsilon, \epsilon [\subset \mathbb{R} \to M \text{ t.q. } \gamma(0) = x \text{ et } \gamma'_{\epsilon}(0) \text{ existe. On les appelle "les chemins } \gamma_{\epsilon}$ ".

On définit T_xM l'espace tangent

$$T_x M = \{ \gamma'_{\epsilon}(0), \gamma_{\epsilon} \text{ les chemins} \}.$$

Remarque 4.20. Si $M = U \subset \mathbb{R}^N$ un ouvert, $x \in U$, $T_xU = \mathbb{R}^N$. Par exemple $GL_n(\mathbb{R}) \subset M_n(\mathbb{R})$ ouvert, alors $T_gGL_n(\mathbb{R}) = M_n(\mathbb{R})$.

Regardons $r_i(t) = x + te_i$, où e_i vecteur de bases canoniques de \mathbb{R}^N , $i = 1, \dots, N$. Pour ϵ assez petit, car U est ouvert, $r_i(-]\epsilon, \epsilon[) \subset U$. Et donc $e_1, \dots, e_N \in \mathbb{R}^N$. Mais pas clair que T_xM est un espace vectoriel.

Théorème 4.21 (Définitions équivalentes de l'espace tangent). Correspond au théorème 4.14 précédent, nous donnons la définition de l'espace tangent sous les définitions de sous-variété différentes.

Redressement pour $x \in M$, si $U_x \subset \mathbb{R}^N$, $0 \in V \subset \mathbb{R}^N$, $\varphi : U_x \xrightarrow{\sim} V$, $\varphi(U_x \cap M) = V \cap (\mathbb{R}^n \times 0_{N-n})$. Alors

$$T_x M = (D\varphi(x))^{-1} (\mathbb{R}^n \times 0_{N-n}).$$

Submersion

$$T_x M = \ker Df(x)$$

Graphe

$$T_x M = \operatorname{Im} \{ v \in \mathbb{R}^n \mapsto (v, Df(0).v) \}$$

Immersion

$$T_x M = Im(D\varphi(0)) = D\varphi(0)(\mathbb{R}^n)$$

Dans le théorème l'espace tangent est un espace vectoriel.

Preuve de 2(submersion). Montrons que $\{\gamma'_{\epsilon}(0), \gamma_{\epsilon} \text{les chemins}\} = \ker Df(x)$.

D'une part, soit $\epsilon > 0$, γ_{ϵ} est sur M, $\forall t \in]-\epsilon, \epsilon[$ avec $\gamma_{\epsilon}(0) = x$ et $\gamma_{\epsilon}(t) \in U_x \cap M$ pour ϵ assez petit. Alors $f \circ \gamma_{\epsilon}(t) = 0$,

$$0 = (f \circ \gamma_{\epsilon})'(t) = Df(\gamma_{\epsilon}(t))\gamma_{\epsilon}'(t)$$

Donc $Df(x)\gamma'_{\epsilon}(0) = 0$, ainsi $\gamma'_{\epsilon}(0) \in \ker Df(x)$.

D'autre part, on a $T_xM \subset \ker Df(x)$ et Df(x) est surjective, donc dim $T_xM = \dim \ker Df(x)$.

Champs de Vecteurs Soit M une variété C^k , soit A son atlas avec $A = \{(U_i, \varphi_i), i \in I\}$.

Rappel 4.22. Le fibre tangent : $TM = \bigcup_{x \in M} \{x\} \times T_x M$ est une variété C^{k-1} de dimension 2n. Considérons la projection canonique

$$\pi: TM \longrightarrow M$$
$$(x,v) \longmapsto x$$

alors l'atlas de TM est donnée par

$$\pi^{-1}(U) \xrightarrow{\Psi_i} \varphi_i(U) \times \mathbb{R}^n$$
$$(x, v) \longmapsto (\varphi_i(x), D\varphi_i(x)v)$$

C'est facile à vérifier que $\Psi_i \circ \Psi_j^{-1}$ sont C^{k-1} .

Définition 4.23. On dit que X un champ de vecteur C^k sur M si X est une section du fibre tangent C^k , c'est-à-dire que $X: M \xrightarrow{C^k} TM$, $\pi(X(x)) = x$, en fait $X(x) \in T_xM$.

De plus on note $\Gamma^k(M,TM)$ l'ensemble des sections de fibre tangente C^k .

Action des difféomorphismes sur les champs de vecteurs Soient M, N deux variété C^{∞} . Soit $f \in \text{Diff}(M, N)$.

22 4 VARIÉTÉ

Poussé en avant un champ de vecteurs : Soit $X \in \Gamma^{\infty}(M, TM)$, on veut définir un champ de vecteur sur N, soit $y \in N$, on définit

$$f_{\star}X(y) = Df(f^{-1}(y))X(f^{-1}(y)) \in \Gamma^{\infty}(N, TN).$$

Remarque 4.24. Soient $\gamma: I \to M$, $\gamma(0) = x$, $\gamma'(0) = X(x)$, $f \circ \gamma$ est un chemin sur N associé au point y = f(x). De plus $(f \circ \gamma)'(0) = f_{\star}X(y)$.

Correspondance entre champ de vecteurs et dérivations Localement, dans un carte $(U,\varphi), \ \varphi : U \subset M \to \mathbb{R}^n$, un champ de vecteurs s'écrit $X \circ \varphi^{-1}(x_1, \dots, x_n) \in T_xM$, où (x_1, \dots, x_n) coordonnées de $p \in U$.

Autrement dit, si on pose a_i le champ en retire de coordonnées locales, le champ de vecteurs se réécrit en

$$X: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

$$(x_1, \cdots, x_n) \longmapsto \begin{pmatrix} a_1(x) \\ \vdots \\ a_n(x) \end{pmatrix}$$

Considérons l'application

$$X \longmapsto \delta_X \in \operatorname{Der}(C^{\infty}(U))$$

οù

$$\delta_X = \sum_{i=1}^n a_i(x) \frac{\partial}{\partial x_i}.$$

Alors δ_X vérifie la loi de Leibniz : $\delta_X(fg) = f\delta_X(g) + \delta_X(f)g$ pour tout $f, g \in C^{\infty}(U)$.

Ceci nous permet d'identifier champ de vecteurs et derivations.

On a vu que localement T_pM a pour base $\left(\frac{\partial}{\partial x_i}\right)_{i=1,\dots,n}$. Donc étant donné $f \in C^{\infty}(U)$, on a

$$(X.f)(x) = (\delta_X \cdot f)(x) = \sum_{i=1}^n a_i(x) \frac{\partial f}{\partial x_i}(x).$$

Action des difféomorphismes sur les flots associés à un champ de vecteurs Soient $X:U\subset\mathbb{R}^n\to\mathbb{R}^n$ et ϕ^X_t le flot associé à X. Étant donné un difféomorphisme $f:U\to V$,

alors on a la relation suivante

$$\phi_t^{f_{\star}X}(f(x)) = f(\phi_t^X(x))$$

Crochet de champs de vecteurs Ensuite, on peut définir le crochet de 2-champs de vecteurs. Pour $X: U \to \mathbb{R}^n$, $Y: U \to \mathbb{R}^n$, se réécrivent localement en

$$X = \begin{pmatrix} a_1(x) \\ a_2(x) \\ \vdots \\ a_n(x) \end{pmatrix} \quad \text{et} \quad Y = \begin{pmatrix} b_1(x) \\ b_2(x) \\ \vdots \\ b_n(x) \end{pmatrix}.$$

Alors le crochet de X et Y est donné localement par

$$[X,Y](x) := \left(\sum_{i=1}^{n} a_i(x) \frac{\partial b_j}{\partial x_i}(x) - b_i(x) \frac{\partial a_j}{\partial x_i}(x)\right)_{j=1,2\dots,n} \in \mathbb{R}^n$$

Retour sur l'action des diffée sur $\Gamma(M,TM)$ Pour $f:M\to N$ diffée local, soit $X\in\Gamma(M,TM)$. Alors $f_*X\in\Gamma(N,TN)$,

$$(f_*X)(y) = Df(f^{-1}(y)).X(f^{-1}(y)).$$

Et on a aussi l'opérateur tirer arrière : Soit $X \in \Gamma(N, TN)$, $f^*X \in \Gamma(M, TM)$,

$$(f^*X)(x) = [Df(x)]^{-1}X(f(x)).$$

D'ailleurs, on a

$$f^*(f_*X) = X.$$

Remarque 4.25. $C^{\infty}(M)$ peut agir sur $\Gamma(M,TM)$ de la façon suivante

$$(f.X)(x) = f(x)X(x).$$

Ainsi $\Gamma(M,TM)$ est un $C^{\infty}(M)$ -module.

Crochet de champs de vecteurs Localement on avait défini [X,Y]. Et à X un champ de vecteurs sur $U \subset \mathbb{R}^n$, on associe δ_X une dérivation sur l'algèbre $C^{\infty}(U)$. Pour $x \in U$, $h \in C^{\infty}(U)$, on a

24 4 VARIÉTÉ

$$\delta_X(h)(x) = \sum_{i=1}^n a_i(x) \frac{\partial h}{\partial x_i}(x).$$

Où
$$X = \begin{pmatrix} a_1(x) \\ a_2(x) \\ \vdots \\ a_n(x) \end{pmatrix}$$
 et $\delta_X \in \text{Der}(C^{\infty}(U))$.

La définition du crochet de [X, Y] correspond à

$$[X,Y] = \delta_X \circ \delta_Y - \delta_Y \circ \delta_X.$$

Proposition 4.26. Le crochet $[\cdot,\cdot]$ de champs de vecteurs vérifie : $\forall X,Y,Z$

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

Si $f:U\subset\mathbb{R}^n\to U'\subset\mathbb{R}^n$ un difféo, alors $\forall h\in C^\infty(U'),$ on a

$$\delta_{f_*X}(h)(y) = \delta_X(h \circ f)(f^{-1}(y)) \quad \forall y \in U'$$

avec $\delta_{f_*X} \in \operatorname{Der}(C^{\infty}(U')).$

Corollaire 4.27. On a

$$f_*[X,Y] = [f_*X,f_*Y]$$

Démonstration. (exercices)

On en déduit que le crochet de champs de vecteur est bien défini sur un variété M.

Dérivée de Lie Soient $X, Y \in \Gamma(M, TM)$, on pose la dérivée de Y le long de X par

$$\mathcal{L}_X(Y) = \frac{d}{dt}|_{t=0} \left(\phi_{-t}^X\right)_* Y.$$

Proposition 4.28. On a $[X,Y] = \mathcal{L}_X(Y)$.

Théorème 4.29 (Sens géométrie).

$$[X,Y] = 0 \quad \Leftrightarrow \quad \phi_t^X \circ \phi_s^Y = \phi_s^Y \phi_t^X$$

Remarque 4.30. La définition avec f_* pousser en avant. Il y a une définition équivalente avec "tirer en arrière" (cf. TD3)

5 Groupe de Lie

Rappel 5.1 (Groupe de Lie). Soit G un groupe, on dit que G est un groupe de Lie. Si G est un variété différentielle de classe C^k telle que $g \in G \mapsto g^{-1} \in G$ est C^k et $(g,h) \in G \times G \mapsto gh \in G$ est C^k .

5.1 Champs de vecteurs et plan tangents

Soit G un groupe de Lie C^{∞} . Soit $g \in G$ et on pose

$$L_g: G \longrightarrow G$$

 $x \longmapsto gx$

On a $(L_g)^{-1} = L_{g^{-1}}$ et L_g est un difféomorphisme.

Considérons l'application

$$\lambda_g: C^{\infty}(G) \longrightarrow C^{\infty}(G)$$

$$h \longmapsto h \circ L_g^{-1}$$

autrement dit pour $g, x \in G$, on a

$$\lambda_g(h)(x) = h(g^{-1}x).$$

Remarque 5.2. On pourrait considérer $R_g(x) = xg$ et faire le théorème qui suit à droite.

Définition 5.3. Un champs $X \in \Gamma(G, TG)$ est invariant à gauche si pour $\forall g \in G$

$$DL_g(e)X(e) = X(g)$$

Notons ${}^G\Gamma(G,TG)\subset\Gamma(G,TG)$ l'ensemble des champs de vecteurs invariant à gauche.

Proposition 5.4. Les assertions suivantes sont équivalentes

1.
$$X \in {}^{G}\Gamma(G, TG)$$
.

5 GROUPE DE LIE

2.
$$\forall g, x \in G$$
, on a $DL_g(x)X(x) = X(gx)$.

3.
$$(L_q)_*X = X$$
.

 $D\acute{e}monstration$. Montrons que $1 \Rightarrow 2$. On a

$$DL_g(x).X(x) = DL_g(x)(DL_x(e)X(e))$$

$$= D(L_g \circ L_x)(e)X(e)$$

$$= D(L_{gx})X(e)$$

$$= X(gx).$$

Montrons que $1 \Rightarrow 3$. Pour $\forall x \in G$

$$((L_g)_*)X(x) = DL_g(L_g^{-1}(x))X(L_g^{-1}(x))$$

= $DL_g(g^{-1}x)X(g^{-1}x)$
= $X(x)$.

En terme de dérivation on a la proposition suivante :

Proposition 5.5. Soit $X \in {}^{G}\Gamma(G, TG)$. Alors sur $C^{\infty}(G)$, on a

$$\delta_X \circ \lambda_g = \lambda_g \circ \delta_X.$$

Démonstration. On a pour $h \in C^{\infty}(G)$, on a $\forall g \in G$

$$(\delta_X \circ \lambda_{g^{-1}})(h)(x) = \delta_X(h \circ L_g)(x)$$

$$= D(h \circ L_g)(x)X(x)$$

$$= Dh(L_g(x))DL_g(x)X(x)$$

$$= Dh(gx)DL_g(x)X(x)$$

$$= Dh(gx)X(gx) = \lambda_{g^{-1}} \circ \delta_X(h)(x)$$

Notons $^G\operatorname{Der}(C^\infty(G))$ les dérivations sur G invariantes à gauche.

But : définir l'algèbre de Lie de G.

Soit $X \in T_eG$ (Un vecteur mais pas champs de vecteurs). On définit le champs de vecteurs

$$v_X: G \longrightarrow TG$$

 $g \longmapsto DL_q(e).X \in T_q(G)$

Alors $v_X \in {}^G\Gamma(G, TG)$ est un champ de vecteurs invariant à gauche.

Proposition 5.6. L'application

$$T_e G \longrightarrow {}^G \Gamma(G, TG)$$

 $X \longmapsto v_X$

est un isomorphisme d'espace vectoriel et de plus via $\Gamma(G,TG) \simeq \operatorname{Der}(C^{\infty}(G))$, on a

$$T_eG \simeq {}^G \operatorname{Der}(C^{\infty}(G)).$$

Démonstration. (En exercice TD3)

Ainsi T_eG peut être muni du crochet de Lie : $\forall X,Y\in T_eG$, alors

$$[X, Y]_{T_eG} = [\delta_{v_X}, \delta_{v_Y}] = [v_X, v_Y].$$

Définition 5.7 (Une algèbre de Lie). $\mathfrak g$ est une algèbre de Lie si

- 1. \mathfrak{g} est un k-espace vectoriel
- 2. si g est muni d'une application bilinéaire

$$[\cdot,\cdot]:\mathfrak{g} imes\mathfrak{g} o\mathfrak{g}$$

qui vérifie

- (a) $[X, X] = 0, \forall X \in \mathfrak{g}$.
- (b) $\forall X, Y, Z, [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$

Proposition 5.8 (Prop-Def). $\mathfrak{g} = (T_eG, [\cdot, \cdot])$ est une algèbre de Lie qui s'appelle l'algèbre de Lie de G et telle que dim $\mathfrak{g} = \dim G$ (en tant que variété).

28 5 GROUPE DE LIE

5.2 Cas de $GL_n(\mathbb{R})$

On a vu que

$$GL_n(\mathbb{R}) \subset M_n(\mathbb{R})$$

un ouvert de $M_n(\mathbb{R})$. La carte $(GL_n(\mathbb{R}), id_{M_n(\mathbb{R})})$ suffit pour $GL_n(\mathbb{R})$ variété C^{∞} de dimension n^2 . On a $T_eG = M_n(\mathbb{R})$. De plus

$$L_q(A) = gA$$

et

$$DL_g(A)H = gH \quad \forall H \in M_n(\mathbb{R}) \ et \ g, A \in GL_n(\mathbb{R}).$$

Donc $DL_g(A)$ est la multiplication par g sur $M_n(\mathbb{R})$.

Description des champs de vecteurs invariants à gauche sur $T_{Id}G$ Par l'application

$$A \in M_n(\mathbb{R}) = T_{Id}G \longmapsto v_A, \quad v_A(g) = DL_q(Id).A = gA.$$

On a ${}^{G}\Gamma(G,TG) = \{g \in G \mapsto gA, A \in M_n(\mathbb{R})\}.$

Flot associé à v_A , noté ϕ_t^A :

$$\phi_t^A(g) = ge^{tA}$$

En posons $c(t) = ge^{tA}$, on a c(0) = g et $c'(t) = v_A(c(t))$ car

$$c'(t) = \frac{d}{dt}|_{t=t_0} g e^{tA} = g e^{t_0 A} \frac{d}{dt}|_{t=t_0} g e^{(t-t_0)A} = g e^{t_0 A} A = v_A(c(t_0)).$$

Donc par l'unicité du flot, on a $\phi_t^A(g) = ge^{tA}$.

Dérivée de Lie Soient $A, B \in T_{Id}G = M_n(\mathbb{R})$. Calculons :

$$[A, B](Id) = \frac{d}{dt}|_{t=0} (\phi_{-t}^A)_* v_B(Id).$$

Par définitions,

$$\frac{d}{dt}|_{t=0} (\phi_{-t}^{A})_{*} v_{B}(Id) = \frac{d}{dt}|_{t=0} D\phi_{-t}^{A} (\phi_{t}^{A}(Id)) v_{B}(\phi_{t}^{A}(Id))$$

$$= \frac{d}{dt}|_{t=0} (e^{tA}Be^{-tA}) = AB - BA = [A, B]$$

5.3 L'exponentielle

Soient G groupe de Lie et T_eG son algèbre de Lie. Pour un champ invariant à gauche $X \in T_e(G)$ et $X(g) = DL_g(e)X$.

Définition 5.9. Un groupe à paramètre de G est un morphisme de groupe de Lie de $\mathbb{R} \to G$.

Théorème 5.10. Soit $X \in T_eG$ un vecteur. Soit $v_X \in {}^G\Gamma(G, TG)$. Alors le flot associé à v_X , noté ϕ_t^X , est défini pour $\forall t \in \mathbb{R}$ (i.e. v_X est un champ complet) et

$$\phi_t^X(g) = g\phi_t^X(e) \quad \forall t \in \mathbb{R}, g \in G$$

Par conséquent $\alpha_X : t \in \mathbb{R} \mapsto \phi_t^X(e)$ est un sous-groupe à un paramètre de G.

Et réciproquement si θ est un sous-groupe à paramètre alors $\theta = \alpha_X$ pour $X = \theta'(0)$.

Donc on a bijection entre vecteurs de T_eG et sous-groupe à un paramètre de G.

$$X \longleftrightarrow \alpha_X$$

Démonstration. Considérons le flot

$$(t,g) \in \mathbb{R} \times G \longmapsto \phi_t^X(g) \in G.$$

Soit $I = I_e$ le domaine de définition maximale de la course intégrale $\alpha : t \mapsto \phi_t^X(e)$. Alors I est ouvert et contient 0. On veut $I = \mathbb{R}$ et $\phi_t^X(g) = g\phi_t^X(e)$.

Soit $s \in I$, posons $g = \alpha(s)$. Définissons $\beta(t) = g\alpha(t-s), t-s \in I \Leftrightarrow t \in s+I$. Alors on a $\beta(s) = g = \alpha(s)$ et

$$\beta'(t) = (L_g \circ \alpha)'(t - s) = DL_g(\alpha(t - s)) \cdot \alpha'(t - s)$$
$$= DL_g(\alpha(t - s))X(\alpha(t - s))$$
$$= X(g\alpha(t - s)) = X(\beta(t)).$$

30 5 GROUPE DE LIE

Ainsi que $\alpha = \beta$, donc on a I = I + s pour tout $s \in I$, donc $I = \mathbb{R}$.

Ensuite, $\beta(t)=g\alpha(t)$ qui est la courbe intégrale de $\begin{cases} \beta(0)=g\\ \beta'(t)=X(\beta(t)) \end{cases}$, donc

$$\beta(t) = \phi_t^X(g) \ et \ \alpha(t) = \phi_t^X(g)$$

Ceci conclut que $\phi_t^X(g) = g\phi_t^X(g)$.

On pose pour tout $X \in T_eG$, $\alpha_X(s) = \phi_s^X(e)$, par la propriété du flot, on a

$$\alpha_X(s+t) = \phi_{s+t}^X(e) = \alpha_X(s)\alpha_X(t).$$

Soit θ un sous-groupe à un paramètre de G, on a

$$\theta(t+s) = \theta(t)\theta(s) = L_{\theta(t)}(\theta(s)).$$

On veut montrer que $\theta'(t) = X(\theta(t))$ et $\theta(0) = e$.

$$X(\theta(t)) = DL_{\theta(t)}(e)X = DL_{\theta(t)}(\theta(s)|_{s=0})\theta'(s)|_{s=0}$$
$$= \left(\frac{d}{dt}\theta(t+s)\right)_{s=0} = \theta'(t).$$

Corollaire 5.11. $X \in T_eG$ et $t \in \mathbb{R}$. Alors $\alpha_{tX}(1) = \alpha_X(t)$.

Définition 5.12 (Application Exponentielle). Soit $X \in T_eG$, on définit $\exp(X)$ comme $\alpha_X(1)$.

Rappel 5.13.

$$X \in \text{Lie}(G), v_X \in {}^G\Gamma(G, TG), \phi_t^X(g) = g\phi_t^X(e)$$

Le champ était complet car $t \mapsto \phi_t^X(g)$ est défini sur \mathbb{R} entier.

Définition 5.14. L'application exponentielle

$$\exp: \mathrm{Lie}(G) \longrightarrow G$$

$$X \longmapsto \phi_1^X(e)$$

Remarque 5.15. En posant $G = GL_n(\mathbb{R})$ et $Lie(G) = M_n(\mathbb{R})$, on a

$$\phi_t^X(g) = ge^{tX} \quad X \in M_n(\mathbb{R}), g \in GL_n(\mathbb{R}).$$

Dans ce cas, $\exp(X) = \phi_1^X(e) = e^X$, il s'agit de l'exponentielle de matrice naturelle.

Notion

$$\alpha_X(t) = \phi_t^X(e)$$

Remarque 5.16. Calculons que

$$\alpha_X(t+s) = \phi_{t+s}^X(e) = \phi_s^X(\phi_t^X(e)) = \alpha_X(t)\alpha_X(s)$$

Ainsi on sait que : $\mathbb{R} \longrightarrow G$ est un sous-groupe à un paramètre. $t \longmapsto \alpha_X(t)$

Théorème 5.17. Propriétés de Exp

- 1. $\exp: \operatorname{Lie}(G) \to G \text{ est } C^{\infty}$.
- 2. $D(\exp)(0) = \mathrm{id}_{\mathrm{Lie}(G)}$ est donc \exp est un difféo de

$$U_0 \subset \mathrm{Lie}(G) \to V_e \subset G$$
,

où U_0 est voisinage de $0_{\mathrm{Lie}(G)}$ et V_e est voisinage de e.

3. Le sous-groupe engendré par V_e est égale à $G^0 \subset G$, la composante connexe de G.

Démonstration. 1)La régularité de exp provient de la régularité du flot par rapport aux conditions initiales dans la théorie des équations différentielles :

Rappel 5.18. Considérons l'application C^{∞}

$$F: \Lambda \times U \subset \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^n$$
$$(\lambda, x) \longmapsto F(\lambda, x)$$

Problème de Cauchy : trouvons $\varphi : D \subset \Lambda \times \mathbb{R} \to U$ t.q.

$$\begin{cases} \varphi(\lambda, 0) = 0 \\ \frac{d\varphi}{dt}(\lambda, t) = F(\lambda, \varphi(\lambda, t)) \end{cases}$$

Le théorème de Cauchy-Lipschitz assume que $\varphi:D\subset\Lambda\times\mathbb{R}\to U$ et que φ est $C^\infty.$

32 5 GROUPE DE LIE

Utilisation: Considérons $M = \text{Lie}(G) \times G$ et définissons

$$F(X,g) = (0, DL_q(e)X)$$

Ensuite la solution est $\phi_t^F(X,g) = (X, ge^{tX})$ et le théorème de Cauchy-Lipschitz nous dit que $\phi_t^F(\cdot,g)$ est C^{∞} , $\forall g \in G, t \in \mathbb{R}$. On choisi g=e et t=1, on obtient la régularité de $\phi_1^F(X,e)$.

On définit l'application i et p qui sont C^{∞} par la manière naturelle

$$i: \mathrm{Lie}(G) \hookrightarrow \mathrm{Lie} \times e \times \mathbb{R} \subset \mathrm{Lie}(G) \times G$$

 $p: \mathrm{Lie}(G) \times G \to G.$

Donc $\exp(X) = p \ \phi_1^F(i(X))$ qui est C^{∞} .

2) Montrons $D\exp(0_{\mathrm{Lie}(G)})=id.$ Si $c:\mathbb{R}\to\mathrm{Lie}(G)$ un chemin C^∞ alors on a

$$\frac{d}{dt}|_{t=0}\exp(c(t)) = D\exp(c(0))c'(0)$$

Prenons $c(t) = tX, X \in \text{Lie}(G)$, on obtient

$$D \exp(0).X = \frac{d}{dt}|_{t=0} \exp(tX) = \frac{d}{dt}|_{t=0} \phi_t^X(e) = X$$

Donc

$$D\exp(0) = \mathrm{id}_{\mathrm{End}(\mathrm{Lie}(G))}$$

Ainsi, $D \exp(0)$ est invisible. Alors par le théorème d'inversion locale, il existe $U \subset \text{Lie}(G)$ et $V \subset G$ ouverts t.q. exp réalise un difféo de $U \to V$.

Remarque 5.19. De plus le sous-groupe engendré par U_e égale composante connexe de G(cf. exercices groupes topologiques TD2).

Remarque 5.20. En générale, l'application exp n'est ni injective ni surjective :

- 1. $\exp : \mathbb{R} \to \mathbb{S}^1$, $\theta \mapsto e^{i\theta}$, pas injective.
- 2. $\exp: M_2(\mathbb{R}) \to GL_2^+(\mathbb{R})$, pas surjective.

Si
$$g = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$
, alors il n'existe pas de $M \in M_2(\mathbb{R})$ t.q. $\exp(M) = g$.

Théorème 5.21 (Fonctorialité). Soit $\varphi: G \to M$ morphismes de groupes de Lie. Notons Lie(G) et Lie(H) les algèbres de Lie associé. Alors le diagramme suivant est commutatif.

$$G \xrightarrow{\varphi} H$$

$$\exp \uparrow \qquad \uparrow \exp$$

$$\operatorname{Lie}(G) \xrightarrow{D\varphi(e)} \operatorname{Lie}(H)$$

 $C'est-\grave{a}-dire\ que\ \forall X\in \mathrm{Lie}(G)$

$$\varphi(\exp_G(X)) = \exp_H(D\varphi(e)X)$$

Démonstration. Considérons pour $X \in \text{Lie}(G)$

$$\alpha: t \in \mathbb{R} \longrightarrow \varphi(\exp(tX)).$$

On a α est C^{∞} parce que φ morphisme de groupe est C^{∞} et exp est C^{∞} . De plus $\alpha(t+s) = \alpha(t)\alpha(s)$. Ainsi α sous à un paramètre de H. D'après la correspondance $X \in Lie(G) \leftrightarrow \alpha_X$ sous groupe à un paramètre. Par $\alpha'(t) = D\varphi(e^{tX})D\exp(tX).X$, on a $\alpha'(0) = D\varphi(e)D\exp(0).X$.

Alors $\forall t \in \mathbb{R}$

$$\varphi(\exp_G(tX)) = \exp_H(D\varphi(e).tX)$$

Prenons $t = 1, \forall X \in \text{Lie}(G)$, on a

$$\varphi(\exp_G(X)) = \exp_H(D\varphi(e).X).$$

5.4 Action adjointe

Action de G sur une variété M On dit μ est une action de G sur une variété M si $\mu: G \times M \to M$ est C^{∞} , et $x \in M \to \mu_g(x) = \mu(g,x)$ est un difféo pour tout $g \in G$. Et $\mu_g^{-1} = \mu_{g^{-1}}$. (donc $\mu_{g^{-1}}$ est aussi un difféo)

Proposition 5.22. Soit $p \in M$ un point fixe sous l'action de G (i.e. $\mu(g,p) = p$, $\forall g \in G$)

34 5 GROUPE DE LIE

Alors $D\mu_g \in GL(T_pM)$ et en fait on a

$$g \longmapsto D\mu_q(p) \in GL(T_pM)$$

est une représentation de G qui est C^{∞} .

Démonstration. Par définitions on a $D\mu_g(p): T_pM \longrightarrow T_{g,p}M = T_pM$ et $D\mu_e(p) = id_{GL(T_pM)}$. Comme μ_g difféo, on a $D\mu_g(p) \in GL(T_pM)$ et

$$D\mu_{q,h}(p) = D(\mu_q \circ \mu_h)(p) = D\mu_q(\mu_h(p))D\mu_h(p) = D\mu_q(p)D\mu_h(p).$$

Alors $g \mapsto D\mu_g(p)$ est un morphisme. On a bien une représentation $G \to GL(T_pM)$.

Ensuite, vérifions que $g \mapsto D\mu_g(p)$ est C^{∞} localement : Soit V_p un voisinage de p. En terme de coordonnées locales $(g,x) \mapsto \mu_g(x) = (f_1(g,x), \cdots, f_n(g,x))$. Dans la base de T_pM donnée par $\mathcal{B} = \left(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}\right)$, on obtient pour les coefficients matriciels de $D\mu_g(p)$,

$$g \mapsto \left(\frac{\partial f_i}{\partial x_j}(g, x)\right)_{i, j=1, \dots, n} = Matrice_{\mathcal{B}}(D\mu_g(p))$$

qui sont C^{∞} .

Action adjointe L'action G sur M = G, $\mu(g, x) = gxg^{-1} = \text{Int}_g(x)$. Le point $e \in G$ est fixé par tout $g \in G$: $Int_g(e) = e$. Par ce qui précèdent,

$$Ad: G \longrightarrow GL(Lie(G))$$
$$g \longmapsto D \operatorname{Int}_g(e)$$

est une représentation C^{∞} , noté Ad.

Lemme 5.23. Soient $g \in G$, $X \in \text{Lie}(G)$, on $a \ \forall t \in \mathbb{R}$:

$$ge^{tX}g^{-1} = \operatorname{Int}_g(e_G^{tX}) = \exp_G(t\operatorname{Ad}(g)X).$$

Démonstration. Utilisons la fonctorialité :

$$G \xrightarrow{\operatorname{Int}_g} G$$

$$\stackrel{\exp_G}{\longrightarrow} \qquad \stackrel{\exp_G}{\longrightarrow} \operatorname{Lie}(G)$$

$$\stackrel{\operatorname{Ad}(g)}{\longrightarrow} \operatorname{Lie}(G)$$

$$\operatorname{Int}_q(\exp_G(tX)) = \exp_G(t\operatorname{Ad}(g)X).$$

Notion-Définitions:

1. Centre de $G: Z(G) = \{g \in G, gh = hg \ \forall h \in G\}.$

2. Centre d'un algèbre de Lie $\mathfrak{g}: Z(\mathfrak{g}) = \{X \in \mathfrak{g}, [X, Y] = 0 \ \forall Y \in \mathfrak{g}\}.$

3. On définit

$$\operatorname{ad}: \mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g})$$

$$X \longmapsto \operatorname{ad}(X) := [X, \cdot]$$

Ainsi, $ad(X).Y = [X, Y], \forall Y \in \mathfrak{g}.$

4. On a d'autre part : $Ad: G \to GL(Lie(G)), DAd(e): Lie(G) \to End(Lie(G)).$

Question : $D \operatorname{Ad}(e) = ad$? (Réponse : oui)

Théorème 5.24. 1. $D \operatorname{Ad}(e) = \operatorname{ad}(i.e.\ D \operatorname{Ad}(e)X.Y = [X,Y]\ \forall X,Y \in \operatorname{Lie}(G))$

- 2. $\operatorname{Ad}(\exp_G(X)) = \exp_{GL(\operatorname{Lie}(G))}(\operatorname{ad}(X))$.
- 3. Si G connexe, ker(Ad) = Z(G) et Lie(Z(G)) = ker(ad) = Z(Lie(G)).

Démonstration. 1. Notons $\tilde{ad} = D \operatorname{Ad}(e)$, soit $X \in \operatorname{Lie}(G)$, on a

$$\frac{d}{dt}|_{t=0}\operatorname{Ad}(\exp(tX)) = D\operatorname{Ad}(e).X = \operatorname{ad}(X).$$

Ensuite, pour tout $Y \in \text{Lie}(G)$,

$$\tilde{\mathrm{ad}}(X).Y = \frac{d}{dt}|_{t=0} \operatorname{Ad}(\exp(tX))Y$$

Soit $f \in C^{\infty}(G)$, alors f est C^{∞} au voisinage de e, donc

$$\widetilde{\mathrm{ad}}(X)Y.f(e) = \frac{d}{dt}|_{t=0} \operatorname{Ad}(\exp(tX))Y.f(e)$$

Observation Pour $Z \in \mathrm{Lie}(G)$,

$$(Z.f)(g) = Df(g).Z(g) = Df(g)DL_g(e)Z(e) = \frac{d}{dt}|_{t=0}f(ge^{tZ}).$$

36 5 GROUPE DE LIE

Donc

$$\begin{aligned} \operatorname{Ad}(\exp(tX))Y.f(e) &= \frac{d}{ds}|_{s=0} f(\exp(s\operatorname{Ad}(\exp(tX))Y)) \\ &= \frac{d}{ds}|_{s=0} f(\exp(\operatorname{Ad}(\exp(tX))sY)) \\ &= \frac{d}{ds}|_{s=0} f(\exp(tX)\exp(sY)\exp(-tX)) \end{aligned}$$

Soit $F(t,s) = f(e^{tX}e^{sY}e^{-tX}) = H \circ i(t,x)$, où i(t,s) = (t,s,-t) et $H(t_1,s,t_2) = f(e^{t_1}e^se^{t_2})$.

On a

$$\tilde{\operatorname{ad}}(X).Y.f(e) = \frac{\partial^2}{\partial t \partial s}|_{(0,0)}F(t,s) = \frac{\partial^2}{\partial t \partial s}|_{(0,0)}f(e^{tX}e^{sY}) - f(e^{sY}e^{tX})$$
$$= X.Y.f(e) - Y.X.f(e) = [X,Y]f(e) = \operatorname{ad}(X).Y.f(e)$$

Donc ad = $D \operatorname{Ad}(e)$

2. Fonctorialié

$$G \xrightarrow{\operatorname{Ad}} \operatorname{GL}(\operatorname{Lie}(G))$$

$$\stackrel{\exp_G}{\longrightarrow} \stackrel{\exp_{\operatorname{GL}(\operatorname{Lie}(G))}}{\operatorname{End}(\operatorname{Lie}(G))}$$

Donc
$$\operatorname{Ad}(\exp_G(X)) = \exp_{\operatorname{GL}}(\operatorname{ad}(X)) = \sum_{n=0}^{+\infty} \frac{1}{n!} (\operatorname{ad}(X))^n$$
.

3. Résultat admis : Soit $\varphi: G \to H$ morphisme de groupes de Lie, alors $\ker \varphi < G$ est sous groupe de Lie de G et Lie $(\ker \varphi) = \ker(D\varphi(e))$.

Ici on pose $\varphi = \mathrm{Ad}: G \to \mathrm{GL}(\mathrm{Lie}(G))$ et utilise le résultat ci-dessus, on a ker $\mathrm{Ad} = Z(G)$ et

$$\operatorname{Lie}(Z(G)) = \ker D\varphi(e) = \ker D\varphi(e) = \ker(\operatorname{ad}) = Z(\operatorname{Lie}(G)).$$

Preuve ker Ad = Z(G): D'abord $Z(G) \subset \ker Ad$ car $\operatorname{Int}_g = \operatorname{id} \operatorname{pour} g \in Z(G)$. Donc $\operatorname{Ad}|_{Z(G)} = \operatorname{id}$. D'autre part, $\forall X \in \operatorname{Lie}(G), g \in \ker Ad$, on a

$$g \exp_G(X)g^{-1} = \exp(\operatorname{Ad}(g)X) = \exp(X)$$

Donc g commute à $\exp_G(\text{Lie}(G))$ qui engendre G puisque G est connexe. Alors $g \in Z(G)$.

5.5 Sous-groupes de Lie

Un des buts : Théorème de Cartan-Von Neumann.

Définition 5.25 (Sous-groupe de Lie). Soient G groupe de Lie et H < G sous groupe. On dit que K est un sous-groupe de Lie de G si

- 1. H est muni d'une structure de groupe de Lie.
- 2. L'inclusion $H \hookrightarrow G$ est un morphisme de groupe de Lie.

Remarque 5.26. Une autre façon de le dire : (H, τ) où $\tau : H \to G$ est l'immersion injective. On dit que $(H, \tau) \simeq (H', \tau')$ s'il existe $\varphi : H \to H'$ un isomorphisme de groupe de Lie t.q. $\tau \circ \varphi = \tau$. Alors définition H < G sous-groupe de Lie coïncide avec $[(H, \tau)]$

G groupe de Lie. H < G un sous-groupe. À quelle condition H est un sous-groupe de Lie?

Exemples 5.27. Dans $GL_n(\mathbb{R})$ vous connaissez : $SO_n(\mathbb{R}) \subset O_n(\mathbb{R}) \subset GL_n(\mathbb{R})$, ou bien encore $SL_n(\mathbb{R})$.

Exemples 5.28.

$$D_{\alpha} := \{(t, \alpha t) \mid t \in \mathbb{R}\} \subset (\mathbb{R}^{2}, +)$$

$$\downarrow \exp$$

$$H_{\alpha} = \{(e^{it}, e^{i\alpha t}) \mid t \in \mathbb{R}\} \subset S^{1} \times S^{1}$$

 α un paramètre, H_{α} sous-groupe du groupe de Lie $(S^1\times S^1,\times).$

 H_{α} n'est pas un sous-groupe de Lie si α est irrationnel. En effet, H_{α} est dense dans $S^1 \times S^1$ (H_{α} n'est pas du tout fermé!) et n'a pas de structure de variétés.

Rappel de la définition d'un sous-groupe de Lie

Définition 5.29. Soit G un groupe de Lie. Soit H un sous-groupe de G. H est un sous-groupe de Lie si

- 1. H est aussi d'une structure de groupe de Lie;
- 2. $H \hookrightarrow G$ (inclusion) morphisme de variétés.

Définition 5.30. (deuxième définition) Soit H un groupe et G un groupe de Lie. Si $\exists \tau$: $H \to G$ une immersion et si de plus τ est injective, alors H est un sous-groupe de Lie de G.

38 5 GROUPE DE LIE

On a $(H, \tau) \simeq (H', \tau')$ si $\varphi : H \xrightarrow{\sim} H'$ tel que $\tau' \circ \varphi = \tau$.

Théorème 5.31. (admis) G groupe de Lie et soit $\mathfrak{h} \subset Lie(G)$. Alors $\exists ! H < G$ sous-groupe de Lie de G connexe tel que $Lie(H) = \mathfrak{h}$.

Proposition 5.32. G un groupe de Lie, $\mathfrak{g} = Lie(G)$, et $\mathfrak{h} \subset Lie(G)$. Supposons H sousgroupe de Lie de G tel que $Lie(H) = \mathfrak{h}$. Alors H est engendré par $\exp(\mathfrak{h})$.

Démonstration.

$$H \longleftrightarrow G$$

$$\exp_{H} \uparrow \qquad \qquad \uparrow^{\exp_{G}}$$

$$\mathfrak{h} \longleftrightarrow \mathfrak{g}$$

Donc $H \supset \exp(\mathfrak{h})$, est alors $H = \langle \exp(\mathfrak{h}) \rangle$ par la connexité.

Exemples 5.33. $(S^1, \times) \subset (\mathbb{C}^*, \times)$. $\mathfrak{g} = \mathbb{C} = \mathbb{R} \oplus i\mathbb{R}$ et $\exp: z \in \mathbb{C} \mapsto e^z \in \mathbb{C}^*$. $S^1 = \{z \in \mathbb{C}^* \mid z\bar{z}=1\}$ et $Lie(S^1) = \{z \in \mathbb{C} \mid z+\bar{z}=0\}$.

Corollaire 5.34. G un groupe de Lie, $\mathfrak{h} \subset Lie(G)$, $K \subset G$ groupe de Lie tel que $Lie(K) = \mathfrak{h}$. Alors, $K^{\circ} = \langle \exp(h) \rangle$. En particulier, si G est connexe et $Lie(K) = \mathfrak{g}$, alors, G = K.

5.6 Théorème de Cartan - Von Neumann

Théorème 5.35. Soit G un groupe de Lie. H < G un sous-groupe fermés. Alors H est un sous-groupe de Lie de G et $\mathfrak{h} := Lie(H) = \{X \in Lie(G) \mid e^{tX} \in H, \ \forall t \in \mathbb{R}\}.$

Démonstration. Le but : montrer qu'il existe U voisinage ouvert de $0 \in \mathfrak{g}$, V voisinage ouvert de $e \in G$, et $\psi : \mathfrak{h} \to V$ difféomorphisme tel que $\psi(U \cap \mathfrak{h}) = V \cap H$.

Il y a 3 étapes :

Lemme 5.36. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de $\mathfrak{g}=Lie(G)$ tel que $X_n\to 0$ et $\exp(X_n)\in H$ et $\frac{X_n}{\|X_n\|}\to u\in\mathfrak{g}$. Alors, $\exp(tu)\in H$, $\forall t\in\mathbb{R}$ (autrement dit $u\in\mathfrak{h}$).

Démonstration. Soit $t \in \mathbb{R}$. On va trouver $k_n(t) \in \mathbb{N}$ tel que $k_n X_n \to tu$, quand $n \to +\infty$: considérons $\frac{t}{\|X_n\|} = t_n$, posons $k_n = E(t_n)$ (partie entière) et $t'_n = t_n - k_n \in [0,1[$. On

a une observation : $t'_n X_n \to 0$, car $X_n \to 0$. Ainsi $k_n X_n \to tu$ quand $n \to +\infty$. Donc $\exp(k_n X_n) = \underbrace{\exp(\alpha_n) \cdots \exp(\alpha_n)}_{k_n \ fois}$ et donc $\exp(tu) \in H$ (exp continue)

Lemme 5.37. $\mathfrak{h} = \{X \in \mathfrak{g} \mid \exp(tX) \in H, \ \forall t \in \mathbb{R}\}\ est\ un\ sous-espace\ vectoriel\ de\ \mathfrak{g} = Lie(G).$

Démonstration. Si $X \in \mathfrak{h}$, alors $sX \in h$, $\forall s \in \mathbb{R}$. Prenons $X, Y \in h$ et montrons que $X + Y \in h$. exp est un difféomorphisme local : $\mathfrak{h}_0 \to V_e$ avec réciproque, notée $\log : V_e \to \mathfrak{h}_0$ telle que $\log \exp(X) = X$, $\forall X \in \mathfrak{h}_0 \subset \mathfrak{g}$. $D \log(e) = id$.

Supposons $X + Y \neq 0$. Soit $\exp(sX) \exp(tY)$ avec $s, t \in I =] - \varepsilon, \varepsilon[$, ε petit. Considérons $\psi(t) = \log(\exp(tX) \exp(tY))$. $\psi'(t) \neq 0$ pour $t \neq 0$. On a

$$\exp(\psi(t)) \in H, \ \psi'(0) = X + Y$$

et

$$\psi(t) = t(X+Y) + O(t^2).$$

(voir ex0 TD : $\mu: G \times G \to G$, $(x,y) \mapsto xy$, $D\mu(e,e)(H,K) = H + K$.) Prenons $t_n \to 0$ $(t_n \in I)$. On a $\psi(t_n) \to 0$ dans \mathfrak{h}_0 . Posons $z_n = \psi(t_n)$, $\exp(z_n) \in H$. De plus $\frac{z_n}{t_n} \to X + Y$ et alors $\frac{z_n}{\|z_n\|} \to \frac{X+Y}{\|X+Y\|}$.

Par lemme 5.36 on a $\exp(tu) \in H$, $\forall t \in \mathbb{R}$. Soit $u = \frac{X+Y}{\|X+Y\|}$, alors $X + Y \in \mathfrak{h}$.

Lemme 5.38. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ pour un certain espace vectoriel. On peut choisir un voisinage $W_{\mathfrak{m}} \ni 0$ de \mathfrak{m} tel que $e^{W_{\mathfrak{m}}} \cap H = \{e\}.$

Démonstration. Si ce n'est pas le cas : $\exists (Y_k)$ de \mathfrak{m} telle que $0 \neq Y_k \to 0$ et $e \neq \exp(Y_k) \in H$ (exp difféomorphisme local). Considérons $X_k = \frac{Y_k}{\|Y_k\|} \in \mathfrak{m}$, dans la sphère unité, compacte, X_k a une valeur d'adhérence X dans la sphère unité. Par lemme 1 on a vu que $e^{tX} \in H$, $\forall t \in \mathbb{R}$. Alors $X \in \mathfrak{h}$. Finalement $X \in \mathfrak{m} \cap \mathfrak{h}$ alors X = 0. Impossible! Ainsi $\exists W_{\mathfrak{m}}$ voisinage ouvert de $0 \in \mathfrak{m}$ tel que $\exp(W_{\mathfrak{m}}) \cap H = \{e\}$.

40 5 GROUPE DE LIE

On est prêt à montrer qu'on a une structure de sous-variété

$$\psi: \mathfrak{h} \oplus \mathfrak{m} \longrightarrow G$$

 $(X,Y) \longmapsto \exp(X+Y).$

 ψ est difféomorphisme local parce que $\exists U_{\mathfrak{h}}, U_{\mathfrak{m}}$ et $V_e \ni e$ tel que $\psi : U_{\mathfrak{h}} \times U_{\mathfrak{m}} \to V_e$ difféomorphisme. Sinon considérer $U_{\mathfrak{m}} \cap W_{\mathfrak{m}} \subset W_{\mathfrak{m}}$. Alors $\exp(U_{\mathfrak{m}} \cap W_{\mathfrak{m}}) \cap H = \{e\}$.

On a $\exp(U_{\mathfrak{h}} \times \{0\}) \subset V_e \cap H$. Et réciproquement, $h \in V_e \cap H$ où

$$h = \exp(X) \exp(Y) \in \exp(\mathfrak{h}) \exp(U_{\mathfrak{m}})$$

et

$$\exp(-X)h = \exp_{\in H} Y.$$

Comme $\exp(Y) \in \exp(U_{\mathfrak{m}}) \cap H = \{e\}$, on a Y = 0. Alors $V_e \cap H = \exp(U_{\mathfrak{h}} \cap \{0\}_{\mathfrak{m}}) = \psi(U_K \times \{0_{\mathfrak{m}}\})$. Donc, au voisinage de e, H est une sous-variété de dimension : dim \mathfrak{h} .

Pour conclure, en utilisant $L_h: x \in G \mapsto hx \in G$, $h \in H$ (C^{∞} difféomorphisme) transporter la structure de sous-variété de $V_e \cap H$ sur tout $V_h \cap H$. Enfin $:f(t) = e^{tX} \in \mathfrak{h}$, $X \in H$, alors f(s) = e et f'(s) = X, donc $\mathfrak{h} \subset Lie(H)$, et $\mathfrak{h} = Lie(H)$ comme ils ont la même dimension.

Corollaire 5.39. Tout sous-groupe fermé de $GL_n(\mathbb{R})$ est un sous-groupe de Lie de G.

Corollaire 5.40. Soit $G \overset{C^{\infty}}{\curvearrowright} M$ variété, G groupe de Lie. Alors Stab(p), $p \in M$ est un sous-groupe fermé de G et ainsi un sous-groupe de Lie de G.

Question : H < G, $G = GL_n(\mathbb{R})$. Que pourriez-vous dire de \overline{H} ?(facile...) Oui, c'est un sous-groupe de Lie!

Retour:

$$\{(t, t\alpha), t \in \mathbb{R}\} \subset \mathbb{R}^2 \xrightarrow{\exp} \{(e^{it}, e^{it\alpha}), t \in \mathbb{R}\}$$

qui met une structure de groupe de Lie sur H_{α} (même si $\alpha \in \mathbb{R} \setminus \mathbb{Q}$).

Retour sur la fonctorialité : $\varphi:G\to H$ morphisme entre deux groupe de Lie. On a

$$G \xrightarrow{\varphi} H$$

$$\stackrel{\exp}{\uparrow} \qquad \stackrel{\exp}{\uparrow} \text{Lie}(G) \xrightarrow{D\varphi(e)} \text{Lie}(H)$$

On a démontré que $\forall X \in \text{Lie}(G)$

$$\varphi(\exp_G(X)) = \exp_H(D\varphi(e)X).$$

Sur $D\varphi(e)$: Lie $(G) \to \text{Lie}(H)$, on voudrait que ce soit un morphisme d'algèbre de Lie.

But :Montrons que dans la fonctionnalité, $D\varphi(e)$ est un morphisme d'algèbre de Lie.

Variétés : Prenons $\varphi:M\to N$ C^∞ un morphisme de variété. Soient $X\in\Gamma(M,TM)$ et $Y\in\Gamma(N,TN)$.

Définition 5.41. On dit que X et Y sont φ -liées si

$$Y(\varphi(m)) = D\varphi(m)X(m)$$

En terme de dérivation : pour $f \in C^{\infty}$

$$Y(f)(\varphi(m)) = Df(\varphi(m)).Y(\varphi(m)) = Df(\varphi(m))D\varphi(m)X(m) = D(f \circ \varphi)(m)X(m)$$

Proposition 5.42. Soient $X_1, X_2 \in \Gamma(M, TM)$ et $Y_1, Y_2 \in \Gamma(N, TN)$. Supposons que (X_1, Y_1) et (X_2, Y_2) sont φ -liés. Alors $[X_1, X_2]$ et $[Y_1, Y_2]$ sont φ -liés

Démonstration. On veut montrer que $D\varphi(m).[X_1,X_2](m)=[Y_1,Y_2](\varphi(m)).$ Utilisons les dérivations : pour $f\in C^\infty(N)$, on a :

$$D\varphi(m)[X_{1}, X_{2}](f) = Df(\varphi(m))D\varphi(m)[X_{1}, X_{2}](m) = [X_{1}, X_{2}]_{m}(f \circ \varphi)$$

$$= X_{1}(m)X_{2}(f \circ \varphi) - X_{2}(m)X_{1}(f \circ \varphi)$$

$$= X_{1}(m)Y_{2}(f) \circ \varphi - X_{2}(m)Y(f) \circ \varphi$$

$$= D\varphi(m).X_{1}(m).Y_{2}(f) - D\varphi(m)X_{2}(m)Y_{1}(f)$$

$$= Y_{1}(\varphi(m))Y_{2}(f) - Y_{2}(\varphi(m))Y_{1}(f) = [Y_{1}, Y_{2}]_{\varphi(m)}(f).$$

42 5 GROUPE DE LIE

On spécialise la proposition précédente aux groupe de Lie.

Proposition 5.43. $\varphi: G \to H$, morphisme de groupes de Lie. Alors $D\varphi(e)$ est morphisme d'algèbre de Lie.

Démonstration. Soient $X_1, X_2 \in {}^G\Gamma(G, TG)$. Définissons $Y_1(e) = D\varphi(e)X_1(e), Y_2(e) = D\varphi(e)X_2(e)$. Considérons donc $Y_1, Y_2 \in {}^H\Gamma(H, TH)$.

Observation: $(X_1, Y_1), (X_2, Y_2)$ sont φ -liées.

En effet:

$$Y_1(\varphi(g)) = DL_{\varphi(g)}(e)Y_1(e_H)$$

$$= DL_{\varphi(g)}(e)D\varphi(e)X_1(e)$$

$$= D(L_{\varphi(g)} \circ \varphi)(e)X_1(e)$$

$$= D(\varphi \circ L_g)(e)X_1(e)$$

$$= D\varphi(g)X(g).$$

De même pour Y_2 et X_2 . Alors par la proposition précédente, on a

$$D\varphi(e_G)[X_1, X_2](e_G) = [Y_1, Y_2]\varphi e_H = [D\varphi(e)X_1, D\varphi(e)X_2]$$

Ceci conclut que c'est un morphisme d'algèbre de Lie. Donc finalement :

$$G \xrightarrow{\varphi} H$$

$$\stackrel{\exp}{\uparrow} \qquad \stackrel{\exp}{\uparrow}$$

$$\operatorname{Lie}(G) \xrightarrow{D\varphi(e)} \operatorname{Lie}(H)$$

Etant donnée : $\varphi: G \to H$ implique que $D\varphi(e): \text{Lie}(G) = T_eG \to \text{Lie}(H) = T_eH$.

- 1. $D\varphi(e)$ morphisme de $Lie(G) \to Lie(H)$.
- 2. $\varphi(\exp_G(X)) = \exp_H(D\varphi(e)X)$.

Question : Si $\Phi : \mathfrak{g} \to \mathfrak{h}$ est un morphisme d'algèbre de Lie. Est-ce qu'il existe $\varphi : G \to H$ morphisme de groupe de Lie tel que $\text{Lie}(G) = \mathfrak{g}$ et $\text{Lie}(H) = \mathfrak{h}$, de plus $D\varphi(e) = \Phi$?

Théorème 5.44. Soient G_1 et G_2 deux groupes connexes. Soient Lie(G) et $Lie(G_2)$ leur algèbre de Le et $\Phi : Lie(G_1) \to Lie(G_2)$ morphisme. Alors

- 1. Il existerait au plus un morphisme $\sigma: G_1 \to G_2$ tel que $D\sigma(e) = \Phi$.
- 2. Si G_1 est simplement connexe alors $\exists !$ morphisme $\sigma : G_1 \to G_2$ tel que $D\sigma(e) = \Phi$.

6 Revêtement de groupes de Lie

6.1 Rappels sur les revêtements

Définition 6.1. Soit M une variété C^{∞} (resp. topologique). On dit que (\mathcal{B}, p) est un revêtement de M si

- 1. $p: \mathcal{B} \to M$ C^{∞} (resp. continue) surjective où \mathcal{B} est une variété telle que
- 2. $\forall x \in M, \exists V_x \subset M \text{ t.q. } p^{-1}(V_x) = \coprod_{i \in I} U_i \text{ où } (U_i)_{i \in I} \text{ ouverts de } \mathcal{B} \text{ et } p : U_i \to V_x \text{ est } C^{\infty}$ difféo(resp. homéomorphisme).

Remarque 6.2. On peut aussi voir comme dans la cadre topologique : $\exists F$ discrète, $\exists \varphi_{V_x}$ homéomorphisme t.q. $\varphi_{V_x}: p^{-1}(V_x) \to V_x \times F$ avec $proj_{V_x} \circ \varphi_{V_x} = p$.

En particulière, si $M = V_x$ et $\mathcal{B} = V_x \times F$ est un revêtement trivial.

Exemple 6.3. 1. : $\mathbb{R} \longrightarrow \mathbb{S}^1$ est un revêtement et $F = \mathbb{Z}$. $t \longmapsto e^{it}$

2. : $\mathbb{S}^1 \longrightarrow \mathbb{S}^1$ est un revêtement. Exercice : trouver F ? $z \longmapsto z^n$

Définition 6.4. Un morphisme de revêtement est une application f C^{∞} (continue) avec $p_2 \circ f = p_1$.

Définition 6.5. Soit M une variété C^{∞} (topologique) et $x_0 \in M$, point choisi. Alors (M, x_0) une variété pointé : un lacet de (M, x_0) est une application $\gamma : [0, 1] \to M$ C^{∞} (continue) avec $\gamma(0) = x_0 = \gamma(1)$.

Définition 6.6 (Homotopie). On dit que $\gamma_1 \sim \gamma_2$ (γ_1 homotopie à γ_2) si $\exists h : [0,1] \times [0,1] \to M$ continue t.q. $h_t(s)$ où $h_0(s) = \gamma_1(s)$ et $h_1(s) = \gamma_2(s)$. $\forall t \in]0,1[,h_t(\cdot)]$ est un lacet, c'est-à-dire $h_t(0) = h_t(1) = x_0$.

 h_t déformation continue de lacet.

Exercice 6.7. Lacets non homotopes. Soient γ_1 le cercle horizontal de torus et γ_2 le cercle longitudinal. Alors γ_1 et γ_2 ne sont pas homotopes. On ne peut pas passer de γ_1 à γ_2 par une déformation continue de chemins!

Définition 6.8. $\Pi_1(M, x_0) := \{\text{lacets sur } (M, x_0)\} / \sim. \sim : \text{homotopie.}$

 $\Pi_1(M, x_0)$ a une structure de groupe : composition des chemins : $\gamma_1 * \gamma_2(s)$.

Proposition 6.9. $(\Pi_1(M, x_0), *)$ est un groupe.

Démonstration. Idées pour la démonstration : avant tout il faut vérifier que si $\gamma_1 \sim \alpha_1$ et $\gamma_2 \sim \alpha_2$ alors $\gamma_1 * \gamma_2 \sim \alpha_1 * \alpha_2$. L'élément neutre : $e = e(s) \equiv x_0$. Loi associative : $\gamma_1 * (\gamma_2 * \gamma_3) = (\gamma_1 * \gamma_2) * \gamma_3$ et $\gamma^{-1}(s) = \gamma(1-s)$.

Exercise 6.10. $\Pi_1(\mathbb{R}^2, x_0) = \{e\}, \ \Pi_1(\mathbb{S}^1, x_0) = \mathbb{Z}, \ \Pi_1(\mathbb{R}^2 \setminus \{(0, 0)\}) = \mathbb{Z}, \ \Pi_1(\mathbb{T}^2, x_0) = \mathbb{Z}^2$

Définition 6.11. On dit que M est simplement connexe si $\Pi_1(M) = \{e\}$.

Remarque 6.12. Si M est connexe par arcs alors $\Pi_1(M, x_0) \simeq \Pi_1(M, x_1)$ est isomorphisme. Dans ce cas $\Pi_1(M, x_0) = \Pi_1(M)$.

Notion encore plus forte: Espace contractile.

Définition 6.13. $\exists f : [0,1] \times M \to M$ t.q. $f(1,0) = \mathrm{id}_M$ et $f(0,\cdot) \equiv m_0 \in M$ constant. Alors M contrate en un point.

Exemple 6.14. M est un \mathbb{R} -e.v. $f:[0,1]\times M\longrightarrow M$ permet de montrer que M est $(t,v)\longmapsto tV$ contractile.

On a M contractile $\Rightarrow M$ connexe par arcs et M simplement connexe.

Théorème 6.15 (Admis). Soit M une variété connexe. Alors $\exists ! \tilde{M}(\hat{a} \text{ iso près})$ revêtement et $p: \tilde{M} \to M$ t.q. \tilde{M} est simplement connexe.

Théorème 6.16 (Relèvement des applications). Si $p: X \to B$ est un revêtement, pour tout espace topologique Y localement connexe par arcs et simplement connexe, pour toute application continue $f: Y \to B$, pour tous les $x \in X$ et $y \in Y$ tels que p(x) = f(y), il existe un et un seul relèvement $f: Y \to X$ de f tel que f(y) = x.

En particulier si $X=\widetilde{B}$ le revêtement universel de B.

Proposition 6.17. Si M est simplement connexe alors \tilde{M} est trivial. (Revêtement $M \times F \to M$)

Remarque 6.18 (hors programme). Soit (X,d) est un espace métrique. Si $\Gamma < \mathrm{Iso}(X,d)$ groupe discrète d'isométries qui agit "proprement discrètement", alors $p: X \to X/\Gamma$ est un revêtement.

6.2 Revêtement de groupes de Lie

Proposition 6.19. Si G est un groupe de Lie, alors $\Pi_1(G,e)$ est commutatif.

Démonstration. Soient $\gamma_1, \gamma_2 : [0, 1] \to G$ deux lacets dans G. Considérons $\gamma(s) = \gamma_1(s)\gamma_2(s)$.

D'abord on démonte que
$$\gamma \simeq \gamma_1 * \gamma_2$$
. En effet, on définit $\alpha_1(s) = \begin{cases} \gamma_1(2s) & 0 \le s \le \frac{1}{2} \\ e_G \end{cases}$.

Alors on a $\alpha_1 \sim \gamma_1$ où $h^{(1)}: [0,1] \times [0,1] \to G$ est donné par $h_t^{(1)}(s) = \begin{cases} \gamma_1(\frac{s}{1-\frac{t}{2}}) & 0 \le s \le \frac{1}{2} \\ e_G \end{cases}$.

De même, on définit $\alpha_2(s) = \begin{cases} \gamma_1(2s) & \frac{1}{2} \le s \le 1 \\ e_G & 0 \le s \le \frac{1}{2} \end{cases}$ et on obtient $\alpha_2 \sim \gamma_2$ qui est assuré par

$$h_t^{(2)}(s) = \begin{cases} \gamma_2((t+1)(s-1)+1) & 1 - \frac{1}{1+t} \le s \le 1\\ e & s \le 1 - \frac{1}{1+t} \end{cases}.$$

Donc, on en déduit que $\gamma_1 \cdot \gamma_2 \sim \alpha_1 \cdot \alpha_2$ en effet $h_t(s) = h_t^{(1)}(s) h_t^{(2)}(s)$. Il s'en suit que

$$[\gamma] = [\gamma_1 \cdot \gamma_2] = [\alpha_1 \cdot \alpha_2] = [\alpha_1 * \alpha_2] = [\alpha_1] * [\alpha_2] = [\gamma_1] * [\gamma_2].$$

On en déduit que $[\gamma^{-1}] = [\gamma]^{-1}$. Considérons alors

$$h(t,s) = \gamma_2(st)\gamma_1(s)\gamma_2^{-1}(st)$$

qui vérifie $h(0,s) = \gamma_1(s)$ et $h(1,s) = \gamma_2(s)\gamma_1(s)\gamma_2^{-1}(s)$. Donc on a $[\gamma_1] = [\gamma_2\gamma_1\gamma_2^{-1}] = [\gamma_2][\gamma_1][\gamma_2]^{-1}$ qui conclut que $[\gamma_1][\gamma_2] = [\gamma_2][\gamma_1]$.

Théorème 6.20 (Caractérisation d'un revêtement de groupe de Lie). Soit $p: G \to H$ un morphisme de groupes de Lie avec G et H connexes. Alors les conditions suivantes sont équivalentes :

- 1. p est un revêtement.
- 2. p est surjective et ker p < Z(G) est discret.

3. $Dp(e_G)$ est un isomorphisme.

Remarque 6.21. En d'autres termes : les revêtements d'un groupe de Lie, se décrivent comme $G = \tilde{H}$ vérifiant

$$\ker p \hookrightarrow G \xrightarrow{p} H$$

où ker p est un sous-groupe distingué de \tilde{H} et est discret. Donc on a aussi un isomorphisme de groupe suivant :

$$H \simeq \tilde{H}/_{\ker p}$$
.

Remarque 6.22. Dans le cas où \tilde{H} est le revetement universel de H, on a

$$\tilde{H}/\pi_1(H,e) \simeq H$$

 $D\acute{e}monstration.$ (1) \Rightarrow (2) : Soit $V_{e_H} \subset H$ un voisinage ouvert de H. Ecrivons $p^{-1}(V_{e_H}) = \coprod_{i \in I} U_i$, U_i ouvert de G. Donc $\exists ! i_0$ t.q. $e_G \in U_{i_0}$. Or d'après la définition d'un revêtement $p|_{U_{i_0}}: U_{i_0} \to V_{e_H}$ est un difféo. Donc $\ker p \cap U_{i_0} = \{e_G\}$. Alors $\ker p$ est discret (tous les points de $\ker p$ sont isolés).

Montrons que $\ker p \subset Z(G)$: Prenons $x \in \ker p$. Considérons $\varphi: G \longrightarrow \ker p$. Alors $q \longmapsto qxq^{-1}$

 $\operatorname{Im} \varphi \subset \ker p$ qui est discret, comme G connxe et φ continue. Donc $\operatorname{Im} \varphi$ est connexe dans $\ker p$ discret. Alors on a $\operatorname{Im} \varphi = \{x\}$ qui nous dit que gx = xg pour tout $g \in G$. Donc $x \in Z(G)$ et donc $\ker p$ est distingué.

- $(2) \Rightarrow (3)$: Montrons que $Dp(e_G)$ est un isomorphisme.
 - 1. $Dp(e_G)$ est injective : Par l'absurde si $\ker Dp(e_G) \neq \{0\} \Rightarrow D \subset \ker Dp(e_G)$, D une certaine droite vectorielle.

Utilisons la fonctorialité!

$$G \xrightarrow{p} H$$

$$\stackrel{\exp}{\longrightarrow} \stackrel{\exp}{\longrightarrow} \operatorname{Lie}(G) \xrightarrow{Dp(e)} \operatorname{Lie}(H)$$

Si $x \in D$, alors $\exp_H(Dp(e)x) = p(\exp_G(x)) = e_H$. Alors

$$\exp_G(D) \subset \ker p$$

Mais $\ker p$ est discret et $\exp_G(D)$ est un courbe non constants. Donc $Dp(e_G)$ est injec-

tive.

2. Surjectivité : H étant connexe, $H = \langle \exp_H(V_0) \rangle$ où V_0 voisinage de Lie H de 0. On pose $V_{e_H} = \exp_H(V_0)$. Comme par hypothèse p est surjective, il existe $U_{e_G} \subset G$ t.q. $p(U_{e_G}) \supset V_{e_H}$. Quitte à changer V_{e_H} et U_{e_G} on peut supposer qu'il exsite $W_0 \subset \text{Lie}(G)$ assez petit de 0 t.q.

$$\exp_G: W_0 \to U_{e_G}$$

est un C^{∞} difféo.

On a alors: $\forall v \in V_{e_H}$, $\exists u \in U_{e_G}$ t.q. p(u) = v. $\Rightarrow \forall v \in V_{e_H}$, $\exists x \in W_0$ t.q. $p(\exp_G(x)) = v$. $\Rightarrow \forall v \in V_{e_H}$, $\exists x \in W_0$ t.q. $\exp_H(Dp(e)x) = v$.

Or

$$H = \langle \exp_H(V_{0_{\text{Lie}(H)}}) \rangle = \langle \exp_H(Dp(e)W_0) \rangle = \langle \exp_H(Dp(e)\mathfrak{g}) \rangle.$$

Ici on a $Dp(e)\mathfrak{g}\subset \mathrm{Lie}(H)$ et H est connexe. Donc H est uniquement déterminé par $\mathrm{Lie}(H)$. Alors on a

$$Lie(H) = Dp(e)\mathfrak{g}$$

Donc Dp(e) est surjective! Ainsi Dp(e): $Lie(G) \to Lie(H)$ est un isomorphisme d'algèbre de Lie.

 $(3) \Rightarrow (1)$: Prenons $W_0 \subset \text{Lie}(G)$ voisinage assez petit tel que $\exp_G: W_0 \to \exp_G(W_0)$ est difféo. On a

$$p(\exp_G(W_0)) = \exp_G(Dp(e)W_0)$$

$$\Rightarrow p \circ \exp_G = \exp_G \circ Dp(e) \quad \text{sur}W_0.$$

$$\Rightarrow p = \exp_G \circ Dp(e) \exp_G^{-1} \quad \text{sur} \exp_G(W_0).$$

Alors p est un difféo local de $U_{e_G} \to V_{e_H} \subset H$.

On en déduit que $\ker p \cap U_{e_G} = \{e_G\}$ car p difféo. Donc $\ker p$ est discret. Il s'en suite que

$$p^{-1}(V_{e_H}) = \coprod_{x \in \ker p} U_{e_G} x.$$

De plus par H est connexe $H=\bigcup_{n\geq 0}V^n_{e_H}=\bigcup_{n\geq 0}p(U^n_{e_H})$. Donc p est surjective. Alors $p:G\to H$ est bien un revêtement. \square

Exemples 6.23. 1. SU(2) est un revêtement universel de SO(3) puisque $SU(2) \simeq \mathbb{S}^3$ est simplement connexe.

2. Comprendre revêtements universels de $SL_2(\mathbb{R})$.

Théorème 6.24. Soient G_1 et G_2 deux groupe de Lie connexes et $\Phi : \text{Lie}(G_1) \to \text{Lie}(G_2)$. Alors on a

Unicité Il existe au plus un $\varphi: G_1 \to G_2$ t.q. $D\varphi(e) = \Phi$. Plus précisément si on a l'existence alors on obtient unicité immédiatement et

$$\operatorname{Lie}(\ker \varphi) = \ker D\varphi(e) = \ker \Phi.$$

Existence Si G simplement connexe alors $\exists ! \varphi : G_1 \to G_2$ morphisme de groupe de Lie tel que $D\varphi(e) = \Phi$.

Démonstration. Considérons $G_1 \times G_2 = G$. Alors $\text{Lie}(G) = \text{Lie}(G_1) \oplus \text{Lie}(G_2)$ et $Graphe(\Phi) = \{(x, \Phi(x)), x \in \text{Lie}(G)\} \subset \text{Lie}(G)$ a une structure d'algèbre de Lie suivant.

$$[(x_1, \Phi(x_1)), (x_2, \Phi(x_2))] = ([x_1, x_2], [\Phi(x_1), \Phi(x_2)]) = ([x_1, x_2], \Phi([x_1, x_2])).$$

Donc $Graphe(\Phi)$ est un sous algèbre de Lie de Lie (G) on le note $\mathfrak{h} \subset \text{Lie}(G)$. Alors $\exists ! H$ connexe t.q. $H = \exp(\mathfrak{h})$ où H est un sous-groupe de Lie de G et $\tau : H \hookrightarrow G$ une immersion injective. On trouve que $D\tau(e) = (\mathrm{id}, \Phi)$.

Unicité Si $\varphi: G_1 \to G_2$ et $D\varphi(e) = \Phi$ considérons $\overline{\varphi}: G_1 \longrightarrow G_1 \times G_2$, alors sa $x \longmapsto (x, \varphi(x))$

dérivation $D\overline{\varphi}(e) = (\mathrm{id}_{\mathrm{Lie}(G)}, \Phi) = D\tau(e). \Rightarrow \overline{\varphi} : G_1 \to G_1 \times G_2$ une immersion injection et $\mathrm{Lie}\,\overline{\varphi}(G_1) = \mathfrak{h}$. Parce que G_1 et H sont sous groupes de Lie avec la même l'algèbre de Lie, alors $G_1 \simeq H$. De plus il existe $\psi : G_1 \xrightarrow{iso} H$ t.q. $\tau \circ \psi = \overline{\varphi}$.

Montrons : $\ker \varphi$ est un sous-groupe de Lie de G_1 et Lie $(\ker \varphi) = \ker \Phi$.

On a ker $\varphi = \varphi^{-1}(\{e_{G_2}\})$. On rappelle que $\varphi \circ L_g = L_{\varphi(g)}$ et

$$D\varphi(g) \circ DL_q(e) = DL_{\varphi(q)}(e) \circ D\varphi(e).$$

Puisque DLg(e) et $DL_{\varphi(g)}(e)$ sont inversibles, on sait que $Rg(D\varphi(g))$ est constant $\forall g \in G$. Donc $\ker \varphi$ est un sous groupe de Lie de G_1 de dimension = $\dim \operatorname{Lie}(G_1) - \operatorname{rang}(D\varphi(e))$ et $\operatorname{Lie}(\ker \varphi) \subset \ker D\varphi(e)$. ($\operatorname{car} \varphi(\exp_{G_1}(X)) = \exp_{G_2}(D\varphi(e)X)$). Alors on a

$$\dim \operatorname{Lie}(\ker \varphi) = \dim \ker D\varphi(e).$$

Ceci conclut que

$$\operatorname{Lie}(\ker \varphi) = \ker D\varphi(e).$$

Existence Construisons φ lorsque on suppose G_1 simplement connexe. On a $p_1: G_1 \times G_2 \to G_1$. Posons $\Pi = p \circ \tau: H \to G_1$. Alors on a

$$D\Pi(e) = Dp_1(\tau(e))D\tau(e) = p_1 \circ D\tau(e) = p_1 \circ (id_{\text{Lie}(G)}, \Phi) = id_{\text{Lie}(G)}.$$

Donc Π est un difféo au voisinage de e_H . $\Pi: U_{e_H} \to V_{e_{G_1}} \subset G$ un difféo. Par connexité, on a $\Pi(H) = G_1$.

Et donc $\Pi: H \to G$ est un revêtement. Or G_1 simplement connexe donc Π est un homéomorphisme (en fait un difféo car $D\Pi(e) = id$).

$$Graphe(\Phi) \longrightarrow H$$

$$\downarrow^{i} \qquad \qquad \downarrow^{\tau}$$
 $Lie(G_1) \times Lie(G_2) \qquad G_1 \times G_2$

$$\Pi: H \xrightarrow{\tau} G_1 \times G_2 \xrightarrow{p_1} G_1, \quad \Pi = p_1 \circ \tau.$$

Alors Π est un difféo sur tout H. Posons $\varphi = p_2 \circ \tau \circ \Pi^{-1} : G_1 \to G_2$ où $p_2 : G_1 \times G_2 \to G_2$. On a que $D\varphi(e) = \Phi$ (et $D\Pi(e) : \text{Lie}(H) \to \text{Lie}(G_1)$). Ainsi φ est défini de manière unique. \square

6.3 Application aux représentations

Rappels sur les théorèmes fondamentaux (théorèmes de Lie)

Théorème 6.25. Si G est un groupe de Lie, soit Lie(G) l'algèbre de Lie de G. Il y a une bijection entre sous groupe connexes H et sous algèbres de Lie $\mathfrak{h} \subset \mathrm{Lie}(G)$.

Théorème 6.26. Soient G_1, G_2 deux groupes de Lie tels que G_1 connexe et simplement connexe. Alors on a la correspondance de morphismes de groupe de Lie et morphismes d'algèbre de Lie.

$$\operatorname{Hom}(G_1, G_2) = \operatorname{Hom}(\operatorname{Lie}(G_1), \operatorname{Lie}(G_2)).$$

 $Autrement\ dit:$

- Pour $\varphi: G_1 \to G_2$, alors $D\varphi(e) \in \text{Hom}(\text{Lie}(G_1), \text{Lie}(G_2))$.
- $Pour \ \Phi : Lie(G_1) \to Lie(G_2)$, alors il existe unique $\varphi : G_1 \to G_2$ t.q. $D\varphi(e) = \Phi$.

Remarque 6.27. Il y a un 3ème théorème de Lie qui est le suivant :

Théorème 6.28. Si g est une algèbre de Lie réelle ou complexe de dimension finie. Alors il existe un groupe de Lie G telle que $Lie(G) = \mathfrak{g}$.

Structure réelle et complexe Comme on va s'intéresser aux représentations, il se trouve que lorsqu'on considère des représentations sur un C-ev, la théorème est plus satisfaisant. Une représentation de G(un groupe de Lie) est la donnée de $\rho: G \to GL_{\mathbb{C}}(V)$ un morphisme de groupe de Lie, dans ce cas là $GL_{\mathbb{C}}(V)$ est un groupe de Lie.

Pour l'instant on va s'intéresser aux représentations de dimensions finies.

Lemme 6.29. Pour $n = \dim V$, on a

$$\operatorname{GL}_n(\mathbb{C}) = \operatorname{GL}_{\mathbb{C}}(V)$$

On a $\mathrm{GL}_n(\mathbb{C}) \subset \mathrm{GL}_{2n}(\mathbb{R})$ est un groupe de Lie réel.

Démonstration. Puisque $\mathbb{C}^n = \mathbb{R}^n \oplus \mathbb{R}^n$, soient (e_1, e_2, \cdots, e_n) une base de \mathbb{R}^n . Considérons $\mathcal{B}=(e_1,\cdots,e_n,ie_1,\cdots,ie_n)$ une base de \mathbb{C}^n . Soit J la matrice dans \mathcal{B} de l'endomorphisme de \mathbb{C}^n qui désigne par : $\mathbb{C}^n \longrightarrow \mathbb{C}^n$, multiplication par i. Alors $J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$. Ainsi $z \longmapsto iz$ $M \in \mathrm{GL}_n(\mathbb{C}), \ M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ écrit dans \mathcal{B} alors MJ = JM.

$$M \in \mathrm{GL}_n(\mathbb{C}), \ M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 écrit dans \mathcal{B} alors $MJ = JM$.

$$\operatorname{GL}_n(\mathbb{C}) = \{ M \in \operatorname{GL}_{2n}(\mathbb{R}), MJ = JM \} = \{ \begin{pmatrix} A & B \\ C & D \end{pmatrix}, A, B \in \operatorname{GL}_n(\mathbb{R}) \}.$$

C'est une sous-variété réelle de dimension $2n^2$.

Son algèbre de Lie est

$$M_n(\mathbb{C}) = \{X \in M_{2n}(\mathbb{R}), XJ = JX\} = \{\begin{pmatrix} A & B \\ C & D \end{pmatrix}, A, B \in M_n(\mathbb{R})\}.$$

Structure complexe des algèbres de Lie réelles Si on considère une algèbre de Lie réelle, $\mathfrak{g}_{\mathbb{R}}$, alors sa complexification s'écrit $\mathfrak{g}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{g}_{\mathbb{R}} \oplus i\mathfrak{g}_{\mathbb{R}}$ avec le crochet de Lie suivant.

$$[x+iy,x'+iy']_{\mathfrak{g}_{\mathbb{C}}}=([x,x']_{\mathfrak{g}_{\mathbb{R}}}-[y,y']_{\mathfrak{g}_{\mathbb{R}}})\oplus i([y,x']_{\mathfrak{g}_{\mathbb{R}}}+[x,y']_{\mathfrak{g}_{\mathbb{R}}}).$$

Exercice 6.30.

$$M_n(\mathbb{R}) \bigoplus iM_n(\mathbb{R}) \simeq M_n(\mathbb{C})$$

 $A \oplus iB \longmapsto \begin{pmatrix} A & B \\ -B & A \end{pmatrix}$

Lemme 6.31. Si \mathfrak{g} est une algèbre de Lie réelle et soit $\mathfrak{g}_{\mathbb{C}}$ sa complexification. Si

$$\rho: \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(V)$$

est une représentation de \mathfrak{g} complexe, alors il existe une unique structure de représentation complexe de $\mathfrak{g}_{\mathbb{C}}$. On la note $\rho_{\mathbb{C}}$.

Autrement dit : se donner un représentation de \mathfrak{g} complexe c'est la même chose que se donner un représentation complexe de $\mathfrak{g}_{\mathbb{C}}$.

$$\operatorname{Rep}(\mathfrak{g}) \longrightarrow \operatorname{Rep}(\mathfrak{g}_{\mathbb{C}})$$
$$\rho \leadsto \rho_{\mathbb{C}}$$

Démonstration. Soit $\rho: \mathfrak{g} \to \mathfrak{gl}(V) = \operatorname{End}_{\mathbb{C}}(V)$. On l'étend à $\mathfrak{g}_{\mathbb{C}} \to \operatorname{End}_{\mathbb{C}}(V)$ par $\rho(x \oplus iy) :=$

 $\rho(x) + i\rho(y), \, \forall x, y \in \mathfrak{g}.$ Vérifier que ρ est $\mathbb C$ linéaire et que

$$[\rho(a), \rho(b)]_{\operatorname{End}_{\mathbb{C}}(V)} = \rho([a, b]_{\mathfrak{g}_{\mathbb{C}}}).$$

Théorème 6.32. Si G est connexe, simplement connexe, alors

$$\rho_*: Rep(G) \longrightarrow Rep(Lie(G))$$

$$\rho \longmapsto D\rho(e)$$

est une bijection. ou mieux : c'est une équivalence de catégories!

Remarque 6.33. conséquences de théorème 6.26 de Lie.

Démonstration. Injectivité Si $\rho, \rho' : G \to GL_n(\mathbb{C})$ tels que $D\rho_{\mathbb{C}}(e) = D\rho'_{\mathbb{C}}(e)$ sur s \mathbb{C} . Alors $D\rho(e) = D\rho'(e)$ en tant que morphisme de $Lie(G) \to End_{\mathbb{C}}(V)$. Alors il existe au plus $\rho : G \to GL_n(\mathbb{C})$ t.q. $D\rho(e) = D\rho'(e)$. $\Rightarrow \rho = \rho'$.

Surjectivité Soit $\Phi : \operatorname{Lie}(G) \to \operatorname{End}_{\mathbb{C}}(V)$. On peut la restreindre dans la partie réelle de $\operatorname{Lie}(G) = \operatorname{Lie}_{\mathbb{R}}(G) \oplus i \operatorname{Lie}_{\mathbb{R}}(G)$, on a $\Phi : \operatorname{Lie}_{\mathbb{R}}(G) \to \operatorname{End}_{\mathbb{C}}(V)$. Alors $\exists ! \varphi : G \to \operatorname{GL}_n(\mathbb{C})$ t.q. $D\varphi(e) = \Phi$.

7 Théorie des représentations des algèbres de Lie

7.1 Rappels sur les représentations

On dit que $\rho: G \to GL_{\mathbb{C}}(V)$ ou $\rho: \mathfrak{g} = \mathfrak{gl}(V) = \operatorname{End}_{\mathbb{C}}(V)$ est une représentation de groupe de Lie ou algèbre de Lie sur V de dimension finie, \mathbb{C} -espace vectoriel si ρ est un homomorphisme.

Remarque 7.1. Pour une représentation d'algèbre de Lie $\rho: \mathfrak{g} \to \mathfrak{gl}(V) = \operatorname{End}_{\mathbb{C}}(V)$, il faut satisfaire que ρ est linéaire, morphisme d'algèbre et de plus

$$\rho([x,y]) = [\rho(x),\rho(y)]_{\mathrm{End}} = \rho(x) \circ \rho(y) - \rho(y) \circ \rho(x).$$

Opération sur représentations, définitions

1. Sous représentation : $W \subset V$ est une sous-représentation ssi $\rho(g)W \subset W, \forall g \in G$ ou $\rho(x)W \subset W, \forall x \in \mathfrak{g}$.

Exercice 7.2 (Observation). Soient $\rho: G \to \mathrm{GL}_{\mathbb{C}}(V), \ D\rho(e): \mathrm{Lie}(G) \to \mathrm{End}_{\mathbb{C}}(V)$. Alors W stable par ρ ssi W stable par $D\rho(e)$.

- 2. Représentation quotient : si W stable par ρ alors on peut considérer le représentation quotient $\overline{\rho}: G \to \mathrm{GL}_{\mathbb{C}}(V/W)$ où $\overline{\rho}(g)(v+W) = \rho(g)v + W$.
- 3. Somme direct opérations sur les représentations des groupes et algebres : Soit (ρ, V) et (σ, W) deux représentations, alors somme direct

$$(\rho \oplus \sigma)(g).v \oplus w = \rho(g)v \oplus \sigma(g)w$$

- 4. Produit tensoriel : il est différent pour le groupe de Lie et l'algèbre de Lie.
 - pour G un groupe deLie, on a naturellement

$$(\rho \otimes \sigma)(g).v \otimes w = \rho(g)v \oplus \sigma(g)w.$$

— Pour Lie(G) = \mathfrak{g} , $X \in \mathfrak{g}$

$$(\rho \otimes \sigma)(X).v \otimes w = \rho(X)v \oplus w + v \otimes \sigma(X)w$$

 $\begin{array}{l} \textit{Preuve pour le cas } \operatorname{Lie}(G). \text{ On a } (\rho \circ \gamma)'(0) = D\rho(e)\gamma'(0) = D\rho(e)X \text{ pour un chemin} \\ \text{qui vérifie} \begin{cases} \gamma(0) = e \\ \gamma'(0) = X \in \operatorname{Lie}(G) \end{cases}. \text{ Alors on peut obtenir} \end{array}$

$$D\rho(e)(X)(v\otimes w) = (\rho\circ\gamma)'(0)(v\otimes w) = \frac{d}{dt}|_{t=0}\rho\circ\gamma(t)v\otimes\rho\circ\gamma(t)w$$
$$= (rho\circ\gamma)'(0)v\otimes(\rho\circ\gamma)(0)w + (\rho\circ\gamma)(0)v\otimes(\rho\circ\gamma)'(0)w$$
$$= (D\rho(e)X)v\otimes w + v\otimes(D\rho(e)X)w.$$

5. Représentation contragradiente(Représentation duale) : D'abord on considère le groupe de Lie. si $\rho: G \to \operatorname{GL}_{\mathbb{C}}(V)$ une représentation, on veut définir une représentation canonique sur V^* . Soit un élément de V^* sera noté $\langle \cdot, v \rangle = v^*$.

7.2 Irréductibilité 55

On désigne $\tilde{\rho}$ une représentation contregradients qui vérifie

$$<\rho(g)v, \tilde{\rho}(g)w>=(\tilde{\rho}(g)w)^*(\rho(g)v)=w^*(v)=< v, w>.$$

Donc on a

$$\tilde{\rho}(g) = {}^t \rho(g^{-1}).$$

Ensuite, pour l'algèbre de Lie : On pose encore $\begin{cases} \gamma(0) = e \\ \gamma'(0) = X \end{cases}, \text{ considèrer } \tfrac{d}{dt}|_{t=0} \rho \circ \gamma(t).$

$$\begin{split} &\frac{d}{dt}|_{t=0} < \rho \circ \gamma(t)v, \tilde{\rho} \circ \gamma(t)w> = < v, w> \\ &\Rightarrow < D\rho(e)Xv, w> + < v, D\tilde{\rho}(e)Xw> = 0 \\ &\Rightarrow D\tilde{\rho}(e).X = -{}^t(D\rho(e)X). \end{split}$$

7.2 Irréductibilité

Notion identique par groupes de Lie, algèbres de Lie.

Définition 7.3. $\rho: G \to \operatorname{GL}(V)$ ou $\rho: \mathfrak{g} \to \operatorname{End}(V)$ est semi-simple si $V = \bigoplus_{i \in I} V_i$ où chaque V_i est irréductible. c'est-à-dire que V se décompose en irréductible.

Exercice 7.4. Si G est fini. Alors toute représentation est semi-simple.

Définition 7.5. Deux représentations (ρ, V) et (σ, W) sont isomorphes s'il existe $I: V \to W$ inversible t.q.

$$\sigma(g) \circ I(v) = I \circ \rho(g)v, \quad \forall v \in V, g \in G.$$

De même pour l'algèbre de Lie.

Ici, on appelle I un entrelaceur(交织).

On désigne $\operatorname{Hom}_G(V,W)$ (resp. $\operatorname{Hom}_{\mathfrak{g}}(V,W)$) l'ensemble des entrelaceurs $V\to W$.

Questions concernantes G et Lie(G)

- 1. Classifier les représentations de G et Lie(G).
- 2. Étant donné V, écrire $V = \bigoplus_{i \in I} V_i$ en somme direct.

3. Pour quel groupe G, tous les représentations sont semi-simple?

Soient $\rho: G \to GL(V)$ et $A: V \to V$ t.q. $A\rho(g) = \rho(g)A$. Soit λ une valeur propre de A, alors V_{λ} , le sous espace propre associé à A, est une sous représentation de ρ .

Ainsi si A est diagonalisable, alors $V = \bigoplus_{\lambda \in \operatorname{Sp}(A)} V_{\lambda}$ et V est semi-simple.

Lemme 7.6 (lemme de Schur). On énonce le lemme de Schur au cas de représentation de groupe de Lie mais c'est pareil pour l'algèbre de Lie.

- 1. Si (ρ, V) est irréductible alors $\operatorname{Hom}_G(V, V) = \mathbb{C} \cdot \operatorname{id}$. C'est-à-dire que si $A\rho(g) = \rho(g)A$, $\forall g \in G$, alors il existe $\lambda \in \mathbb{C}$ t.g. $A = \lambda \cdot \operatorname{id}$.
- 2. Si V et W sont irréductibles et non isomorphes, alors $\operatorname{Hom}_G(V,W)=0$.

Proposition 7.7. Si G est commutatif (Resp. \mathfrak{g} est commutative) alors toute représentation irréductible est de dimension 1.

Vous avez vu que toutes représentations de G groupe fini est semi-simple. Il en est de même pour les groupes compacts. Si (ρ, V) est une représentation de G compact alors $V = \bigoplus_{i \in I} V_i$ où les V_i sont de dimension finie.

7.3 Représentations de $Lie(SL_2(\mathbb{C}))$

Classification des représentations irréductibles complexes de dimension finie

Théorème 7.8. Toute représentation de Lie de $SL_2(\mathbb{C})$ est semi-simple.

Démonstration. 1. On a que $\text{Lie}(SU(2)) \otimes_{\mathbb{R}} \mathbb{C} = \text{Lie}(SL_2(\mathbb{C}))$. Donc

$$\operatorname{Rep}_{\mathfrak{g}}(\operatorname{Lie}(SU(2))) = \operatorname{Rep}_{\mathfrak{g}}(\operatorname{Lie}(SL_2(\mathbb{C}))).$$

2. SU(2) est connexe, simplement connexe et compact. A l'aide du théorème d'équivalence des catégories(cf. Thm 6.32):

$$\operatorname{Rep}_{\mathfrak{g}}(\operatorname{Lie}(SL_2(\mathbb{C}))) = \operatorname{Rep}_G(SU(2)).$$

3. Or SU(2) compact, donc toute représentation est semi-simple. Donc toute représentation de $SL_2(\mathbb{C})$ est semi-simple.

On se propose de classifier les représentations de dimension finie.

Rappel 7.9. On a Lie($SL_2(\mathbb{C})$) = Vect(e, f, h) $o\dot{u}$

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

On a

$$[h, f] = -2f, \quad [h, e] = 2e, \quad [e, f] = h.$$

Se donner une représentation ρ : Lie(SL₂(\mathbb{C})) \to End(V) d'algèbre de Lie. C'est pareil la même chose que se donner un \mathfrak{g} -module V. En effet une représentation ρ de \mathfrak{g} sur V donne une structure de \mathfrak{g} module à V par $x.v := \rho(x)v$ pour $x \in \mathfrak{g}, v \in V$.

Alors on peut vérifier $0.v = \rho(0)v = v$, $(x + y).v = \rho(x + y)v = \rho(x)v + \rho(y)v = x.v + y.v$ et $[x, y].v = \rho([x, y])v = [\rho(x), \rho(y)]v = \rho(x)\rho(y)v - \rho(y)\rho(x)v = xyv - yxv$

On notera pour $x \in \text{Lie SL}_2(\mathbb{C})$, $\rho(x)v = x.v$ ou même xv.

Définition 7.10. Soit V une représentation de Lie($\mathrm{SL}_2(\mathbb{C})$). Un vecteur $v \in V$ est de **poids** $\lambda \in \mathbb{C}$ si $h.v = \lambda v$.

On note $V_{\lambda} = \{ v \in V, v \text{ a un poids } \lambda \}.$

Lemme 7.11. *On a*

$$eV_{\lambda} \subset V_{\lambda+2}, \quad fV_{\lambda} \subset V_{\lambda-2}$$

.

Démonstration. Soit $v \in V_{\lambda}$. Considérons $e.v \in V$ et $f.v \in V$.

$$h.(e.v) = ([h, e] + eh).v = 2e.v + eh.v = (2 + \lambda)e.v.$$

Donc $e.v \in V_{\lambda+2}$.

Et de même:

$$h.(f.v) = ([h, f] + fh).v = -2f.v + fh.v = (-2 + \lambda)f.v.$$

Donc $f.v \in V_{\lambda-2}$.

Proposition 7.12. Soit $\rho: \operatorname{Lie}(\operatorname{SL}_2(\mathbb{C})) \to \operatorname{End}(V)$ une représentation, alors V est un module sur $\operatorname{Lie}(\operatorname{SL}_2(\mathbb{C}))$ de dimension finie qui se décompose

$$V = \bigoplus_{\lambda \in Sp(h)} V_{\lambda}.$$

où Sp(h) spectre de h, c'est l'ensemble des valeurs propres de $\rho(h) \in End(V)$.

 $D\acute{e}monstration$. On sait que toutr représentation V se décompose en somme de représentation irréductible de dim finie. Il suffit de prouver la proposition pour V irréductible.

Considérons $V' = \sum_{\lambda \in Sp(h)} V_{\lambda}$. On a de plus que si $\lambda \neq \mu$ alors $V_{\lambda} \cap V_{\mu} = \{0\}$. Ainsi V' se réécrit comme somme direct $V' = \bigoplus_{\lambda \in Sp(h)} V_{\lambda}$.

Mais par le lemme 7.11 on sait que e, f, h préserve V'. Donc V' est une sous représentation de V, donc V' = V car V est irréductible.

Définition 7.13. On dit que λ est de plus haut poids s'il est maximal au sens où $Re(\lambda) \ge Re(\mu)$ pour $\forall \mu$ une autre poids.

Lemme 7.14. Soit $v \in V_{\lambda}$ de poids maximal. Alors on a :

- 1. e.v = 0.
- 2. Définissons $v^k = \frac{1}{k!} f^k v \in V$. Alors

$$\begin{cases} h.v^{k} = (\lambda - 2k).v^{k} \\ f.v^{k} = (k+1)v^{k+1} \\ e.v^{k} = (\lambda - k + 1)v^{k-1} \end{cases}$$

 $D\'{e}monstration$. Pour 1: soit $v\in V_{\lambda}$ de poids maximal. Alors $e.v\in V_{\lambda+2}$ et in a un vecteur de poids plus grand que λ ! Ce n'est pas possible car λ poids maximal. Donc e.v=0.

Pour $2: h.v = (\lambda - 2).v$ pour k = 1 (lemme 7.11). Ensuite on le démontre par récurrence, s'il est vraie pour k, alors

$$h.v^{k+1} = \frac{1}{k+1}(h.f).v^k = (fh - 2f).v^k$$
$$= \frac{1}{k+1}f.(\lambda - 2k)v^k - \frac{2}{k+1}f.v^k = (\lambda - 2k - 2)v^{k+1}$$

Montrons $ev^k = (\lambda - k + 1)v^{k-1}$: Pareillement, on le démontre par récurrence sur k, s'il est varie pour k, alors

$$\begin{split} ev^{k+1} &= \frac{1}{k+1}(ef)v^k = \frac{1}{k+1}(fe+h)v^k = \frac{1}{k+1}fev^k + \frac{1}{k+1}hv^k \\ &= f\frac{\lambda - k + 1}{k+1}v^{k-1} + \frac{\lambda - 2k}{k+1}v^k = (\lambda - k + 1)\frac{k}{k+1}v^k + \frac{\lambda - 2k}{k+1}v^k = (\lambda - k)v^k. \end{split}$$

L'idée : prendre $v \in V$ de plus haut poids de h. Donc $\text{Vect}\{f^k v, k \in \mathbb{N}\}$ une base qui permet de construire des représentations irréductibles.

Observation : $\{v^k, k \in \mathbb{N}\}$ libre. En effet les v^k seront des vecteurs propres de h associés aux valeurs propres $\lambda - 2k$.

On se donne V une représentation de dimension finie de $\text{Lie}(SL_2(\mathbb{C}))$. Soit λ plus haut poids et $v \in V_{\lambda}$ associé, c'est-à-dire que $h.v = \lambda v$.

Étudions $M_{\lambda} = \text{Vect}\{v^0, v^1, \dots, v^k, \dots\}$. Pour cela considérons un vecteur $v \in V$ pas forcement de dimension finie. Supposons que $\forall k \in \mathbb{N}$,

$$h.v^{k} = (\lambda - 2k)v^{k}$$

$$f.v^{k} = (k+1)v^{k+1}$$

$$e.v^{k} = (\lambda - k + 1)v^{k-1}$$

Alors

- 1. M_{λ} est une représentation de Lie $(SL_2(\mathbb{C}))$.
- 2. Toute V de dimension finie contenant V_{λ} où λ plus haut poids s'écrit $V = M_{\lambda}/W$ où W sous représentation de M_{λ} de Lie $SL_2(\mathbb{C})$.

Démonstration. Lie $(SL_2(\mathbb{C})) = \text{Vect}\{e, f, h\}$. Par hypothèses : $e.v, f.v, h.v \in M_{\lambda}, \forall v \in M_{\lambda}$ et de plus $[h, f].v, [h, e].v, [e, f].v \in M_{\lambda}$. Donc M_{λ} est bien une représentation.

Ensuite il suffit de vérifier que $[e, f]v^k = e.(f.v^k) - f.(e.v^k)$:

$$[e, f]v^k = (ef - fe).v^k = h.v^k = (\lambda - 2k)v^k$$

 et

$$e(f \cdot v^k) - f(e \cdot v^k) = e((k+1)v^{k+1}) - f(\lambda - k + 1)v^{k-1}$$
$$= (\lambda - k + 1)(k+1)v^k - k(\lambda - k + 1)v^k = (\lambda - 2k) \cdot v^k.$$

On a bien une représentation d'algèbre de Lie.

Ensuite, $\varphi: M_{\lambda} \longrightarrow V$ Si dim V est finie alors il existe n t.q. $v^k = 0, \forall k \geq n, v^{n-1} \neq 0$. $v \longmapsto v$

Ainsi $V = \text{Vect}\{v^0, \dots, v^{n-1}\}\ \text{et}\ V \simeq M_{\lambda}/\text{ker}\ \varphi$ où $\text{ker}\ \varphi$ est une sous représentation. \square

Théorème 7.15. Définissons $V_n = \text{Vect}\{v^0, v^1, \cdots, v^n\}$, dim $V_n = n+1$ et on suppose

$$\begin{cases} h.v^k = (n-2k)v^k \\ f.v^k = (k+1)v^{k+1} \text{ si } k < n, & f.v^k = 0 \text{ sinon} \\ e.v^k = (n-k+1)v^{k-1}, & ev^0 = 0 \end{cases}$$

Alors

- 1. V_n est une représentions irréductible de $\text{Lie}(SL_2(\mathbb{C}))$.
- 2. $V_n \not\simeq V_m$ non isomorphes pour $m \neq n$.
- 3. Si V est irréductible et de dimension finie alors $V \simeq V_n$ pour un certain n.

Démonstration. 1. Considérons $M_{\lambda} = \text{Vect}\{v^0, v^1, \cdots\}$.

Si $\lambda = n$, considérons alors on pose $M' = \text{Vect}\{v^{n+1}, v^{n+2}, \cdots\} \subset M_{\lambda}$. En fait M' est une sous représentation de M_{λ} d'après les relations : pour $v^k \in M' \subset M_{\lambda}$ on a

$$h.v^k = (n-2k)v^k \in M'$$

$$e.v^k = 0 \text{ si } k = n+1, \text{ et} \quad e.v^k \in \text{Vect}(v^{k-1}) \subset M' \text{ si } k > n+1$$

$$f.v^k \in M'$$

De plus M_n/M' de dimension finie et isomorphe à $\text{Vect}\{v^0, \dots, v^n\}$.

Vérifions que V_n est irréductible : chaque v^i pour $0 \le i \le n$ est cyclique au sens où $\rho(\text{Lie}(SL_2(\mathbb{C})))v^i = V_n$ car e, f, h permettent de récupérer tous les v^k pour $0 \le k \le n$.

2. V_n et V_m ne sont pas isomorphes car dim $V_n \neq \dim V_m$.

3. Soit V irréductible de dimension n+1. Soit $v \in V_{\lambda}$ un vecteur de plus haut poids (il existe toujours car on travaille sur \mathbb{C}) Alors l'espace $\text{Vect}\{v^0, \dots, v^k, \dots\}$ est de dimension finie. Soit $n = \max\{i, v^i \neq 0 \text{ et } v^{i+1} = 0\}$, chaque v^i vecteur propre de n, donc $\{v^0, \dots, v^n\}$ est une base de V.

Montrons que λ est entier : on a $ev^{n+1}=0$ par définition de n, mais $ev^{n+1}=(\lambda-n)v^n$ car $v\in V_{\lambda}$ de plus haut poids. Donc $\lambda=n$.

Transcription des représentations : $V_n = \text{Vect}\{v^0, \dots, v^n\}$.

On a avait classifié les représentations irréductibles de $\text{Lie}(SL_2(\mathbb{C})) = \text{Lie}_{\mathbb{C}}(SU(2))$.

 $\mathfrak{sl}_2(\mathbb{C})=$ algèbre de dimension 3 engendré par $\{e,f,h\}$ avec [e,f]=h et [h,e]=2e et [h,f]=-2f.

7.4 L'algèbre $\mathfrak{sl}_2(\mathbb{C})$

Réalisation concrète des représentations de $\mathfrak{sl}_2(\mathbb{C})$: $k = \mathbb{R}$ ou \mathbb{C} Considérons $A = \mathbb{C}[X_1, \dots, X_n]$, \mathbb{C} -algèbre commutative de type fini. Soit

$$\operatorname{Der}_{\mathbb{C}}(A) = \{ D : A \to A, \text{ linéaire t.q. } D(ab) = aD(b) + D(a)b \}$$
 (7.1)

Observation : D(1) = 0, $D(\mathbb{C}.1) = 0$.

 $\mathrm{Der}_{\mathbb{C}}(A) \subset \mathrm{End}_{\mathbb{C}}(A)$ algèbre de Lie. En fait $(\mathrm{Der}_{\mathbb{C}}(A), [,])$ est une algèbre de Lie.

$$[f,g] := [f,g]_{\operatorname{End}_{\mathbb{C}}(A)} = f \circ g - g \circ f$$

vérifier que $D_1 \circ D_2 - D_2 \circ D_1$ verifie 7.1.

Exemples de dérivation sur $\mathbb{C}[X_1, \dots, X_n] : \partial_i : P \mapsto \frac{\partial P}{\partial X_i}$.

Proposition 7.16. L'application

$$\Phi: \operatorname{Der}_{\mathbb{C}}(A) \longrightarrow A^{n}$$

$$D \longmapsto (D(X_{1}), \cdots, D(X_{n}))$$

est un isomorphisme de A-module. Ainsi $(\partial_i)_{i=1,\dots,n}$ est une base de $Der_{\mathbb{C}}(A)$ et $\forall D \in Der_{\mathbb{C}}(A)$, $\exists ! (P_1,\dots,P_n) \in A^n$ tel que

$$D = P_1 \frac{\partial}{\partial X_1} + \dots + P_n \frac{\partial}{\partial X_n}.$$

 $D\acute{e}monstration$. Exo

Définition 7.17. L'anneau des opérateurs différentiels de $\mathbb{C}[X_1, \dots, X_n]$ est le sous-anneau de $\mathrm{End}_{\mathbb{C}}(A)$ qui est engendré par $X_1, \dots, X_n, \partial_1, \dots, \partial_n$. Autrement dit on va le noter

$$Diff(A) = \mathbb{C}[X_1, \cdots, X_n, \partial_1, \cdots, \partial_n].$$

De plus Diff(A) est une \mathbb{C} -algèbre et $[X_i, X_j] = 0 = [\partial_i, \partial_j]$ et $[\partial_i, X_j] = \delta_{i,j} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$ comme crochet de Lie de $\mathrm{End}_{\mathbb{C}}(A)$.

Remarque 7.18. On regarde l'élément de A comme l'élément de $\operatorname{End}_{\mathbb{C}}(A)$ par multiplication

$$A \hookrightarrow \operatorname{End}_{\mathbb{C}}(A)$$

 $P \longmapsto m(P)$

où $m(P): A \longrightarrow A$ linéaire. $Q \longmapsto PQ$

Application 7.19. Ecrivons

$$\mathbb{C}[X,Y] \bigoplus_{n \ge 0} \mathbb{C}_n[X,Y]$$

où $\mathbb{C}_n[X,Y] = \{\text{les polynômes homogènes de degré } n\}.$ (Tout $P \in \mathbb{C}[X,Y]$, on peut écrire $P = \sum_{n=0}^{N} P_n$ où P_n homogènes de degrés n). D'ailleurs,

$$\mathbb{C}[X,Y] = \text{Vect}\{Y^n, Y^{n-1}X, \cdots, YX^{n-1}, X^n\}$$

Doncdim $\mathbb{C}_n[X,Y] = n+1$.

Proposition 7.20. Idée : Faisons agir $\mathfrak{sl}_2(\mathbb{C})$ sur $\mathbb{C}_n[X,Y]$.

$$\begin{split} \rho: \mathfrak{sl}_2(\mathbb{C}) &\longrightarrow \mathrm{Diff}(\mathbb{C}[X,Y]) \subset \mathrm{End}_{\mathbb{C}}(V) \\ e &\longmapsto Y \frac{\partial}{\partial X} \\ f &\longmapsto X \frac{\partial}{\partial Y} \\ h &\longmapsto Y \frac{\partial}{\partial Y} - X \frac{\partial}{\partial X} \end{split}$$

est une représentation d'algèbre de Lie. De plus, $\rho(\mathfrak{sl}_2(\mathbb{C}))V_n \subset V_n$.

Démonstration. Il suffit de vérifier

$$[\rho(e), \rho(f)] = \rho([e, f]) = \rho(h)$$
$$[\rho(e), \rho(h)] = \rho([e, h]) = -2\rho(e)$$
$$[\rho(f), \rho(h)] = \rho([f, h]) = 2\rho(f)$$

De plus montrer que $\rho(V_n) \subseteq V_n$ et vérifier que $v^k = Y^{n-k}X^k$ vérifie les relations $\rho(h)v^k = (n-2k)v^k$, $\rho(f)v^k = (k+1)v^{k+1}$, $\rho(e)v^k = (n+1-k)v^{k-1}$. Thm des cours précédent nous dit que V_n est irréductible.

Remarque 7.21. $\rho: \mathfrak{sl}_2(\mathbb{C}) \to \operatorname{End}_{\mathbb{C}}(V)$ définie précédemment agit par dérivation sur $P \in \mathbb{C}[X,Y]$. C'est-à-dire que $\rho(X)(PQ) = (\rho(X)P)Q + P(\rho(X)Q)$.

8 Structure des algèbres de Lie

8.1 Rappels sur les idéaux de $\mathfrak g$ une algèbre de Li

Définition 8.1. $I \subset \mathfrak{g}$ est un idéal si $[X, A] \in I \ \forall X \in \mathfrak{g}, A \in I$.

Remarque 8.2. Si $\mathfrak{a} \subset \mathfrak{g}$ est un idéal de \mathfrak{g} , alors $\mathfrak{g}/_{\mathfrak{a}}$ a une structure d'algèbre de Lie.

Notation : Si $\mathfrak{a},\mathfrak{b}\subset\mathfrak{g}$ deux sous-espace vectoriels. Alors on peut définir le crochet de \mathfrak{a} et $\mathfrak{b},$

$$[\mathfrak{a},\mathfrak{b}] := \text{Vect}\{[a,b], a \in \mathfrak{a}, b \in \mathfrak{b}\}.$$

Si
$$X \in [\mathfrak{a}, \mathfrak{b}]$$
, alors $X = \sum_{\text{finie}} [a_i, b_i]$.

Proposition 8.3. Si $\mathfrak{a}, \mathfrak{b} \subset \mathfrak{g}$ sont 2 idéaux alors : $\mathfrak{a} + \mathfrak{b}$, $\mathfrak{a} \cap \mathfrak{b}$ et $[\mathfrak{a}, \mathfrak{b}]$ sont des idéaux.

Démonstration.

$$[\mathfrak{g}, [\mathfrak{a}, \mathfrak{b}]] \subseteq [[\mathfrak{g}, \mathfrak{a}], \mathfrak{b}] + [\mathfrak{a}, [\mathfrak{g}, \mathfrak{b}]] \subseteq [\mathfrak{a}, \mathfrak{b}] + [\mathfrak{a}, \mathfrak{b}] = [\mathfrak{a}, \mathfrak{b}].$$

Par exemple : $Z(\mathfrak{g}) = \{X \in \mathfrak{g}, [X,Y] = 0, \forall Y \in \mathfrak{g}\}$ est un idéal. En fait une source d'idéaux sont les noyaux de $f : \mathfrak{g} \to \mathfrak{h}$ morphisme d'algèbre de Lie. Ici, on peut trouver que $Z(\mathfrak{g}) = \ker \mathfrak{g}$ ad où ad : $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$.

$$X \longmapsto \operatorname{ad}_X$$

L'idéaux dérivé : On définit $\mathcal{D}(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}].$

Remarque 8.4. Si \mathfrak{g} est abélienne, alors $\mathcal{D}(\mathfrak{g}) = 0$. (en particulier si dim $\mathfrak{g} = 1$.)

Observation fondamentale : $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ est abélienne! En effet :

$$[X + [\mathfrak{g}, \mathfrak{g}], Y + [\mathfrak{g}, \mathfrak{g}]] = [X, Y] + [\mathfrak{g}, \mathfrak{g}]$$
$$[Y + [\mathfrak{g}, \mathfrak{g}], X + [\mathfrak{g}, \mathfrak{g}]] = [Y, X] + [\mathfrak{g}, \mathfrak{g}]$$

$$\text{Or } [X,Y]-[Y,X] \in [\mathfrak{g},\mathfrak{g}], \, \text{donc } [X+[\mathfrak{g},\mathfrak{g}],Y+[\mathfrak{g},\mathfrak{g}]] = [Y+[\mathfrak{g},\mathfrak{g}],X+[\mathfrak{g},\mathfrak{g}]].$$

Résultat général:

Idéaux de $\mathfrak{g}/_{\mathfrak{a}} \longleftrightarrow \mathrm{Idéaux}$ de \mathfrak{g} qui contiennent \mathfrak{a}

Lemme 8.5. Si $I \subset \mathfrak{g}$ alors \mathfrak{g}/I abélien si et seulement si $I \supseteq \mathcal{D}(\mathfrak{g})$.

Démonstration. \mathfrak{g}/I abélien ssi [X,Y]+[I,I]=[Y,X]+[I,I] ssi $[X,Y]\in [I,I]\subseteq I$. Alors on a bien que $\mathcal{D}(\mathfrak{g})\subset I$.

Exercice 8.6. À faire en TD

$$\mathcal{D}(\mathfrak{gl}_n(\mathbb{C}))=\mathcal{D}(\mathfrak{sl}_n(\mathbb{C}))$$

Remarque 8.7. Idéaux caractéristiques : Considérons $\mathrm{Der}_{\mathbb{C}}(\mathfrak{g})$. Si $D \in \mathrm{Der}_{\mathbb{C}}(\mathfrak{g})$ on a

$$D[X,Y] = [D(X),Y] + [X,D(Y)].$$

On dit que $I \subset \mathfrak{g}$ est caractéristique si $D(I) \subseteq I$. Par exemple, $Z(\mathfrak{g})$ est stable par D, $\mathcal{D}(g)$ est stable par D.

Proposition 8.8. Soient $\mathfrak{a}, \mathfrak{b} \subset \mathfrak{g}$ deux idéaux et $\mathfrak{a} + \mathfrak{b} = \mathfrak{g}$. On a :

$$\mathfrak{a} \longrightarrow \mathfrak{g} \longrightarrow \mathfrak{g}/_{\mathfrak{a}}$$

Alors

$$\mathfrak{g}/\mathfrak{a} = \mathfrak{a} + \mathfrak{b}/\mathfrak{a} = \mathfrak{a}/\mathfrak{a} \cap \mathfrak{b}$$
.

8.2 Algèbre de Lie résoluble

Définition 8.9 (la série dérivée). Soit \mathfrak{g} une algèbre de Lie. On a $\mathcal{D}^0(\mathfrak{g}) = \mathfrak{g}$, $\mathcal{D}^1(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}]$ et

$$\mathcal{D}^{n+1}(\mathfrak{g}) = [\mathcal{D}^n(\mathfrak{g}), \mathcal{D}^n(\mathfrak{g})], \forall n \ge 0$$

Remarque

- $--\mathfrak{g}\supseteq\mathcal{D}(\mathfrak{g})\supseteq\mathcal{D}^2(\mathfrak{g})\supseteq\cdots\supseteq\mathcal{D}^n(\mathfrak{g})\supseteq\mathcal{D}^{n+1}(\mathfrak{g})\cdots.$
- $\mathcal{D}^{n+1}(\mathfrak{g})$ est un idéal de $\mathcal{D}^n(\mathfrak{g})$.
- $\mathcal{D}^n(\mathfrak{g})/\mathcal{D}^{n+1}(\mathfrak{g})$ est abélien.

Définition 8.10. On dit que \mathfrak{g} est résoluble (solvable) s'il existe une suite finie de sous-algèbres :

$$\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \mathfrak{g}_2 \supset \cdots \supset \mathfrak{g}_{n+1} = \{0\}$$

telle que

- 1. \mathfrak{g}_{i+1} est un idéal de \mathfrak{g}_i .
- 2. $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ est abélien. $([\mathfrak{g}_i,\mathfrak{g}_i]\subset\mathfrak{g}_{i+1}.)$

Proposition 8.11. \mathfrak{g} est résoluble ssi $\exists n \in \mathbb{N}$ telle que $\mathcal{D}^{n+1}(\mathfrak{g}) = 0$.

Démonstration. Si $\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \mathfrak{g}_2 \supset \cdots \supset \mathfrak{g}_{n+1} = \{0\}$, alors par récurrence on obtient que $\mathcal{D}^i(\mathfrak{g}) \subset \mathfrak{g}_i, \forall i = 0, 1, \cdots, n$. Alors $\mathcal{D}^{n+1}(\mathfrak{g}) = 0$.

D'autre part, si $\mathcal{D}^{n+1}(\mathfrak{g}) = 0$, alors $\mathfrak{g} \supseteq \mathcal{D}(\mathfrak{g}) \supseteq \mathcal{D}^2(\mathfrak{g}) \supseteq \cdots \supseteq \mathcal{D}^n(\mathfrak{g}) \supseteq \mathcal{D}^{n+1}(\mathfrak{g}) = \{0\}$ est une suite qu'on veut.

Exemple 8.12. Reprenons Lie($\mathrm{SL}_2(\mathbb{C})$) = $\mathfrak{sl}_2(\mathbb{C})$, $\mathfrak{a} \subset \mathfrak{sl}_2(\mathbb{C})$ définie par $\mathfrak{a} = \mathrm{Vect}(e,h)$. Alors [h,e] = 2e. Donc $\mathcal{D}(\mathfrak{a}) = \mathbb{C}.e$ et $\mathcal{D}^2(\mathfrak{a}) = 0$. Ainsi \mathfrak{a} est résoluble.

Exemple 8.13 (Contre-exemple). $\mathfrak{sl}_2(\mathbb{C}) = \mathbb{C}e \oplus \mathbb{C}f \oplus \mathbb{C}h$. Alors $\mathcal{D}(\mathfrak{sl}_2(\mathbb{C})) = \mathfrak{sl}_2(\mathbb{C})$ donc $\mathfrak{sl}_2(\mathbb{C})$ n'est pas résoluble.

Lemme 8.14. Soit $\pi : \mathfrak{g} \to \mathfrak{g}'$ morphisme d'algèbre de Lie surjective, $\pi(\mathfrak{g}) = \mathfrak{g}'$. Alors $\pi(\mathcal{D}^i(\mathfrak{g})) = \mathcal{D}^i(\mathfrak{g}'), \forall i$.

Démonstration. On le démontre par récurrence sur i. Si i = 0, $\pi(\mathfrak{g}) = \mathfrak{g}'$. Supposons que $\pi(\mathcal{D}^i(\mathfrak{g})) = \mathcal{D}^i(\mathfrak{g}')$. D'abord si $X, Y \in \mathcal{D}^i(\mathfrak{g})$, $\pi[X, Y] = [\pi(X), \pi(Y)]$, donc $\pi(\mathcal{D}^{i+1}(\mathfrak{g})) \subseteq \mathcal{D}^{i+1}(\mathfrak{g}')$.

Montrons d'autre l'inclusion : $\mathcal{D}^{i+1}(\mathfrak{g}') \subseteq \pi(\mathcal{D}^{i+1}(\mathfrak{g}))$. Par

$$\mathcal{D}^{i+1}(\mathfrak{g}') = \operatorname{Vect}\{[a,b], a, b \in \mathcal{D}^{i}(\mathfrak{g}')\} = \operatorname{Vect}\{[a,b], a, b \in \pi(\mathcal{D}^{i}(\mathfrak{g}))\}.$$

Donc
$$[a,b] = [\pi(x), \pi(y)] = \pi([x,y])$$
 avec $x,y \in \mathcal{D}^i(\mathfrak{g})$. Ainsi que $\mathcal{D}^{i+1}(\mathfrak{g}') \subseteq \mathcal{D}^{i+1}(\mathfrak{g})$.

Proposition 8.15. Stablilité de la notion d'algèbre de Lie résoluble

- 1. Si g est résoluble alors
 - tout sous-algèbre de g est résoluble.
 - tout quotient \mathfrak{g}/I est résoluble.
- 2. Comme $I \to \mathfrak{g} \to \mathfrak{g}/I$ si I et \mathfrak{g}/I sont résolubles, alors \mathfrak{g} est résoluble.

Démonstration. 1. Si $\mathfrak{h} \subset \mathfrak{g}$, alors $\mathcal{D}^i(\mathfrak{h}) \subset \mathcal{D}^i(\mathfrak{g})$, donc $\mathcal{D}^{n+1}(\mathfrak{h}) \subset \mathcal{D}^{n+1}(\mathfrak{g}) = 0$, donc \mathfrak{h} est résoluble.

Si $\pi: \mathfrak{g} \to \mathfrak{g}/I$. On a vu que $\pi(\mathcal{D}^i(\mathfrak{g})) = \mathcal{D}^i(\mathfrak{g}/I)$. Donc $\mathcal{D}^{n+1}(\mathfrak{g}/I) = \pi(\mathcal{D}^{n+1}(\mathfrak{g})) = \pi(0) = 0$. Donc \mathfrak{g}/I est résoluble.

2.

$$I \to \mathfrak{g} \to \mathfrak{g}/I$$

Par l'hypothèse, il existe $p, q \in \mathbb{N}$ t.q. $\mathcal{D}^p(\mathfrak{g}/I) = 0$ et $\mathcal{D}^q(I) = 0$. Par $\pi(\mathcal{D}^p(\mathfrak{g})) = \mathcal{D}^p(\mathfrak{g}/I) = 0$, on a $\mathcal{D}^p(\mathfrak{g}) \subset I$. Donc $\mathcal{D}^q(\mathcal{D}^p(\mathfrak{g})) \subset \mathcal{D}^q(I) = 0$. Ceci conclut que \mathfrak{g} est résoluble.

8.3 Définition du radical 67

8.3 Définition du radical

Définition 8.16 (Radical). On appelle radical de \mathfrak{g} le plus grand idéal résoluble de \mathfrak{g} .

En fait si $\mathfrak a$ est un idéal résoluble de $\mathfrak g$ de dimension finie tel que $\mathfrak a$ a une dimension maximale. Soit b un autre idéal résoluble, considérons

$$\mathfrak{a} \to \mathfrak{a} + \mathfrak{b} \to \mathfrak{a} + \mathfrak{b}/_{\mathfrak{a}} \simeq \mathfrak{b}/_{\mathfrak{a}} \cap \mathfrak{b}$$

Donc $\mathfrak{a} + \mathfrak{b}$ est résoluble et $\mathfrak{b} \subseteq \mathfrak{a}$ car dim \mathfrak{a} maximale en tant que idéal résoluble (dim $\mathfrak{a} + \mathfrak{b} \leq \dim \mathfrak{a}$).

On peut donc définir le plus grand idéal résoluble d'une algèbre \mathfrak{g} de dimension finie.

Proposition 8.17. L'algèbre $\mathfrak{g}/_{\mathrm{Rad}(\mathfrak{g})}$ a elle-même un radical=0!

 $Remarque: \mathfrak{g}/Rad(\mathfrak{g})$ n'a pas d'idéaux résolubles.

 $D\acute{e}monstration$. Si \overline{I} idéal de $\mathfrak{g}/Rad(\mathfrak{g})$, alors I est un idéal de \mathfrak{g} t.q. $I \supset Rad(\mathfrak{g})$. Donc

$$\operatorname{Rad}(\mathfrak{g}) \hookrightarrow I \longrightarrow I / \operatorname{Rad}(\mathfrak{g}) = \overline{I}.$$

Si \overline{I} est résoluble, alors I est résoluble et est contenue dans $\operatorname{Rad}(\mathfrak{g})$ donc $\overline{I}=0$.

8.4 Algèbre de Lie nilpotente

Soit g une algèbre de Lie.

Définition 8.18 (Serie centrale). Posons $C^1(\mathfrak{g}) = \mathfrak{g}$, $C^2(\mathfrak{g}) = [\mathfrak{g}, C^1(\mathfrak{g})] = [\mathfrak{g}, \mathfrak{g}]$ et

$$C^{i+1}(\mathfrak{g}) = [\mathfrak{g}, C^i(\mathfrak{g})], \text{ pour tout } i \geq 0.$$

Remarque 8.19. 1. Avec ces notations, on a

$$[\mathcal{C}^i(\mathfrak{g}), \mathcal{C}^j(\mathfrak{g})] \subseteq \mathcal{C}^{i+j}(\mathfrak{g}).$$

2. Le lien avec $\mathcal{D}^n(\mathfrak{g})$: si n=2, $\mathcal{D}^2(\mathfrak{g})=[[\mathfrak{g},\mathfrak{g}],[\mathfrak{g},\mathfrak{g}]]\subseteq [\mathfrak{g},[\mathfrak{g},\mathfrak{g}]]=\mathcal{C}^3(\mathfrak{g})$. Ensuite on peut montrer par récurrence que

$$\mathcal{D}^n(\mathfrak{g}) \subseteq \mathcal{C}^{n+1}(\mathfrak{g})$$

Définition 8.20. \mathfrak{g} est nilpotent si $\exists n \in \mathbb{N}$ t.q. $\mathcal{C}^{n+1}(\mathfrak{g}) = 0$.

Remarque 8.21. 1. Abélien \Rightarrow nilpotent, par exemple $Z(\mathfrak{g})$ est nilpotent.

- 2. Nilpotent \Rightarrow Résoluble
- 3. Résoluble

 → Nilpotent

Proposition 8.22. Supposons g nilpotente, alors

- toute sous-algèbre $\mathfrak{h} \subset \mathfrak{g}$ est nilpotente.
- tout quotient \mathfrak{g}/I est nilpotent pour I idéal de \mathfrak{g} .

Démonstration. Exo, voir prop analogue pour le cas résoluble.

La réciproque de cette proposition est fausse. En effet, \mathfrak{sl}_2 est engendré par e, f, h tels que

$$[h, e] = 2e, \quad [e, f] = h, \quad [h, f] = -2f.$$

Considérons $\mathfrak{b} = \mathbb{C}e \oplus \mathbb{C}h$, $[\mathfrak{b}, \mathfrak{b}] = \mathbb{C}e$ est abélien. On a alors

$$I \hookrightarrow \mathfrak{b} \longrightarrow \mathfrak{b}/I$$

où $I = [\mathfrak{b}, \mathfrak{b}]$. Ici, $I = [\mathfrak{b}, \mathfrak{b}]$ et \mathfrak{b}/I sont abéliens donc nilpotents. Mais \mathfrak{b} n'est pas nilpotent parce que $[\mathfrak{b}, [\mathfrak{b}, \mathfrak{b}]] = \mathbb{C}e$ et donc $C^i(\mathfrak{b}) = \mathbb{C}e$, $\forall i \geq 2$. Mais il faut remarquer que \mathfrak{b} est résoluble.

Proposition 8.23. Soit $I \subseteq Z(\mathfrak{g})$. Si $I \hookrightarrow \mathfrak{g} \longrightarrow \mathfrak{g}/I$ avec I et \mathfrak{g}/I nilpotentes. Alors \mathfrak{g} est nilpotente.

Démonstration. Par définition, $\exists n \text{ t.q. } \mathcal{C}^n(\mathfrak{g}/I) = 0$. Alors $\mathcal{C}^n(\mathfrak{g}) \subseteq I \subseteq Z(\mathfrak{g})$. Donc $\mathcal{C}^{n+1}(\mathfrak{g}) = 0$.

Application 8.24. La représentation adjointe

$$\operatorname{ad}: \mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g})$$
$$x \longmapsto \operatorname{ad}(x)$$

On rappelle que ker ad = $Z(\mathfrak{g})$. On a $\mathrm{ad}(\mathfrak{g}) \simeq \mathfrak{g}/Z(\mathfrak{g})$. Donc, d'après ce qui précèdent, $\mathrm{ad}(\mathfrak{g})$ nilpotente ssi \mathfrak{g} nilpotente.

Remarque 8.25. — Les idéaux $C^i(\mathfrak{g})$ sont des idéaux caractéristiques.

— On a
$$\mathcal{C}^i(\mathfrak{g})/\mathcal{C}^{i+1}(\mathfrak{g})$$
 est un idéal central de $\mathfrak{g}/\mathcal{C}^{i+1}(\mathfrak{g})$.

Exercice 8.26. Une algèbre de Lie nilpotente :

1.
$$\left\{\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}, a \in \mathbb{R}\right\}$$
 sous-algèbre de Lie de $M_2(\mathbb{R})$ qui est abélien ainsi niplotente.

2.
$$\mathfrak{g} = \left\{ \begin{pmatrix} 0 & a & c \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix}, a, b, c \in \mathbb{R} \right\} \subseteq M_3(\mathbb{R})$$
 n'est pas abélien mais nilpotent. $[\mathfrak{g}, \mathfrak{g}] = \left\{ \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, a \in \mathbb{R} \right\}, \text{ donc } \mathcal{C}^3(\mathfrak{g}) = 0.$

3. Plus généralement, les matrices triangulaires supérieures sont nilpotents.

Proposition 8.27. Soient

$$\mathfrak{b}_{n} = \left\{ \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix}, \text{ matrices triangulaires supérieures diagonale a priori non nul.} \right\}$$

$$\mathfrak{a}_{n} = \left\{ \begin{pmatrix} 0 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 0 \end{pmatrix}, \text{ matrices triangulaires supérieures avec 0 sur les diagonales.} \right\}$$

Alors

1.
$$[\mathfrak{b}_n, \mathfrak{b}_n] = \mathfrak{a}_n$$
.

- 2. \mathfrak{a}_n est nilpotente.
- 3. \mathfrak{b}_n est résoluble.

Théorème d'Engel et théorème de Lie

Définition 8.28. Soit V un espace vectoriel de dimension d. Un drapeau de V est la donnée :

$$\{0\} \subset V_1 \subset V_2 \subset \cdots \subset V_d = V$$

Soit $u \in \text{End}(V)$. S'il vérifie $u(V_i) \subset V_i$, $\forall i = 0, \dots, d$, alors on dit que u stabilise le drapeau de V.

On peut se placer dans une base adaptée ai drapeau : $\mathcal{B} = (e_1, \dots, e_d)$ telle que (e_1, \dots, e_i) est une base de V_i , $\forall i = 0, \dots, d$. Et alors $Mat_{\mathcal{B}}(u) = \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix}$.

De plus si
$$u(V_i) \subseteq V_{i-1}$$
, alors $Mat_{\mathcal{B}}(u) = \begin{pmatrix} 0 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 0 \end{pmatrix}$.

Lemme 8.29. Soit $x \in \text{End}(V)$ où V espace vectoriel de dimension finie. Alors ad(x): $\text{End}(V) \to \text{End}(V)$ telle que $\text{ad}(x)y = x \circ y - y \circ x$ vérifie la prop suivante :

x nilpotent en tant qu'endomorphisme de $V \Rightarrow \operatorname{ad}(x)$ nilpotent en tant qu'endomorphisme de $\operatorname{End}(V)$.

Démonstration.
$$ad(x) = L_x - R_x$$
 où $L_x(y) = xy$ et $R_x(y) = yx$. On a $L_xR_x = R_xL_x$. Donc $(ad(x))^m = (R_x - L_x)^m = \sum_{k=0}^m R_x^{m-k} L_x^k$. Pour m assez grand $m = 2n + 1$ où $x^n = 0$, donc $(ad(x))^m = 0$.

Théorème 8.30 (Engel). Soit $\rho : \mathfrak{g} \to \operatorname{End}(V)$ une représentation de \mathfrak{g} telle que $\rho(x)$ est nilpotent $\forall x \in \mathfrak{g}$.

- 1. Alors $\exists v \in V \ t.q. \ \rho(x)v = 0, \ \forall x \in \mathfrak{g}.$
- 2. Il existe une base \mathcal{B} de V dans laquelle $\rho(\mathfrak{g})$ est constituée de notions triangulaires supérieurs avec 0 sur diagonales.

Remarque 8.31. 1. On sait que le point 2 est équivalent à « \exists drapeau de V t.q. $u(V_i) \subseteq V_i$. »

- 2. Il se trouve que si $\forall x \in \mathfrak{g}, \, \rho(x)$ est nilpotent alors $\rho(\mathfrak{g})$ est nilpotente.
- 3. En résumé, on aura : \mathfrak{g} nilpotente $\Leftrightarrow \forall x \in \mathfrak{g}$, $\mathrm{ad}(x) \in \mathrm{End}(\mathfrak{g})$ est nilpotente.

Démonstration. Pour le point 1, $\exists v \in V$ t.q. $\rho(x)v = 0$, $\forall x \in \mathfrak{g}$.

On le fait par récurrence sur $\dim \mathfrak{g}$:

Si dim $\mathfrak{g} = 1$, $\mathfrak{g} = \mathbb{C}x_0$. On a que $\rho(x_0)$ nilpotent $\Rightarrow \ker \rho(x_0) \neq 0 \Rightarrow \exists v \in V \neq 0$ t.q. $\rho(x_0)v = 0$ alors $\rho(x)v = 0$, $\forall x \in \mathfrak{g}$.

Récurrence : Soit \mathfrak{g} de dimension d. Supposons que toute sous-algèbre de dimension maximale $d = \dim \mathfrak{g}$ vérifie que toute représentation de dimension finie (ρ, V) de \mathfrak{h} admet un vecteur d tel que d0, d0, d2 d3.

Considérons ad : $\mathfrak{h} \to \operatorname{End}(\mathfrak{g})$ représentation adjointe de \mathfrak{g} s'étreindre à \mathfrak{h} . Par ad préserve \mathfrak{h} , donc

$$\mathrm{ad}:\mathfrak{h}\to\mathrm{End}(\mathfrak{g}/_{\mathfrak{h}})$$

encore une représentation de \mathfrak{h} . Si $\operatorname{ad}(x)$ est nilpotent sur \mathfrak{g} pour tout $x \in \mathfrak{h}$, donc $\operatorname{ad}(x)$ est nilpotent sur $\mathfrak{g}/_{\mathfrak{h}}$.

Par l'hypothèse à \mathfrak{h} , il existe $v \in \mathfrak{g}/\mathfrak{h}$, $\mathrm{ad}(x)v = 0$, $\forall x \in \mathfrak{g}/\mathfrak{h}$. Donc $\exists x_0 \in \mathfrak{g}$, qui n'est pas dans \mathfrak{h} tel que $[x_0, y] \in \mathfrak{h}$, $\forall y \in \mathfrak{h}$. Or $\mathfrak{h} \not\subset \mathfrak{h} \oplus \mathbb{C} x_0 \subseteq \mathfrak{g}$, $\Rightarrow \mathfrak{g} \oplus \mathbb{C} x_0 = \mathfrak{g}$ et en déduit que \mathfrak{h} idéal de \mathfrak{g} .

Considérons $W = \{v \in V, \rho(h)v = 0, \forall h \in \mathfrak{h}\} \subseteq V$ et montrons que $\mathfrak{g} = \mathfrak{h} \oplus \mathbb{C}x_0$ stabilise W.

On a $\rho(x_0)w \in W$ parce que

$$\rho(y)\rho(x_0)w = [\rho(y), \rho(x_0)]w + \rho(x_0)\rho(y)w = \rho(\underbrace{[y, x_0]}_{\in \mathfrak{h}})w = 0.$$

Ainsi $\rho(x_0)|_W$ est bien défini, alors il existe $w_0 \in W$ t.q. $\forall x \in \mathbb{C}x_0$, $\rho(x)w_0 = 0$ et $\rho(\mathfrak{h})w_0 = 0$. Donc $\rho(\mathfrak{g})w_0 = 0$.

Ainsi si $\rho(x)$ est nilpotent $\forall x \in \mathfrak{g}$, alors $\exists v \in V$ t.q. $\rho(x)v = 0$, $\forall x \in \mathfrak{g}$.

Conclusion de la preuve, on démontre le point 2 par récurrence sur dim V.

Si dim
$$V = 1$$
, alors $\rho(\mathfrak{g})v = 0$, donc rien à faire. Si pour dim $V = n$, $\rho(\mathfrak{g}) \subset \left\{ \begin{pmatrix} 0 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 0 \end{pmatrix} \right\}$.

Soit (ρ, V) de dimension n+1. Or, on sait qu'il existe v t.q. $\rho(x)v=0, \forall x\in \mathfrak{g}$. Soit $D=\mathrm{Vect}(v)$. Alors $\overline{\rho}:\mathfrak{g}\to\mathrm{End}(V/D)$. Par l'hypothèse de récurrence, on a V/D est un drapeau avec une base adaptée telle que $\overline{\rho}(x)V_i\subset V_{i-1}, \forall x\in \mathfrak{g}$.

Définir alors $\widetilde{V}_i = V_i \oplus D$ et on obtient donc drapeau de V où dim V = n+1 t.q. $\rho(x)\widetilde{V}_i \subset \widetilde{V}_{i-1}$. Donc $\rho(x)$ est une matrices triangulaires supérieures avec 0 sur la diagonale.

Théorème de Lie

Théorème 8.32. Soit \mathfrak{g} algèbre de Lie résoluble, soit $\rho : \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(V)$. Alors

1.
$$\exists v \in V \ et \ \lambda \in \mathfrak{g}^* \ t.q. \ \rho(x)v = \lambda(x)v, \ \forall x \in \mathfrak{g}.$$

2. Il existe une base
$$\mathcal{B}$$
 de V telle que $Mat_{\mathcal{B}}(\rho(x)) = \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix}$

Démonstration. Par récurrence sur dim \mathfrak{g} : Si dim $\mathfrak{g} = 1$, $\rho : \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(V)$. Alors si on pose $A = \rho(x_0)$ donc $\rho(x) = \mu \rho(x_0)$ pour $x = \mu x_0 \in \mathfrak{g}$. Puisque A est diagonalisable dans $M_n(\mathbb{C})$,

alors il existe
$$\mathcal{B}$$
 de V telle que $Mat_{\mathcal{B}}(\rho(x)) = \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix}$.

Hypothèse de récurrence : Supposons que 2 est vraie pour tout $\mathfrak{h} \subset \mathfrak{g}$ mais $\mathfrak{h} \neq \mathfrak{g}$ et tout $\rho : \mathfrak{h} \to \operatorname{End}_{\mathbb{C}}(V)$.

Par \mathfrak{g} résoluble, alors $\mathcal{D}(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}] \not\subseteq \mathfrak{g}$. Soit $\mathfrak{h} \subset \mathfrak{g}$ un sous algèbre telle que $\mathfrak{g} \supseteq \mathfrak{h} \supseteq \mathcal{D}(\mathfrak{g})$. Alors $[\mathfrak{h}, \mathfrak{g}] \subseteq [\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{h}$, donc \mathfrak{h} est un idéal. Donc \mathfrak{h} algèbre résoluble, on peut lui appliquer l'hypothèse de récurrence : $W = \{v \in V, \exists \mu \in \mathfrak{h}^*, \forall y \in \mathfrak{h}, \rho(y)v = \mu(y)v\} \subseteq V$.

But: Vérifier que $\rho(x)W \subseteq W, \forall x \in \mathfrak{g}$.

Soient $y \in \mathfrak{h}$ et $x \in \mathfrak{g}$, pour tout $w \in W$, on a

$$\rho(y)\rho(x)w = \rho([y,x])w + \rho(x)\rho(y)w = \mu([y,x])w + \mu(y)\rho(x)w.$$

Si $\mu([y,x]) = 0$ (Par le lemme 8.33), alors on a $\rho(y)\rho(x)w = \mu(y)\rho(x)w$, ainsi que $\rho(x)W \subseteq W$, $\forall x \in \mathfrak{g}$.

Donc par l'hypothèse de récurrence à l'algèbre $\mathbb{C}x_0$, on sait qu'il existe $w_0 \in W$, $\rho(x_0)w_0 = t_0w_0$ pour $t_0 \in \mathbb{C}$. Définir $\lambda : \mathfrak{h} \oplus \mathbb{C}x_0 = \mathfrak{g} \to \mathbb{C}$ t.q. $\lambda|_{\mathfrak{h}} = \mu$ et $\lambda(x_0) = t_0$. Alors $\rho(z)w_0 = \lambda(z)w_0$.

Pour le point 2 : Même raisonnement que le théorème de Engel. On le fait par récurrence sur dim V. S'il est vari pour dim V=n. Pour dim V=n+1, le point 1 nous donne qu'il existe $v \in V$ et $\lambda \in \mathfrak{g}^*$ t.q. $\rho(x)v=\lambda(x)v, \, \forall x \in \mathfrak{g}$. Ensuite, considérons $\overline{\rho}: \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(V/D)$ où $D=\operatorname{Vect}(v)$ puis même conclusion.

Dans le théorème de Lie, il manquait le lemme suivant pour terminer la preuve.

Lemme 8.33. Soit $\rho : \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(V)$, $\mathfrak{h} \subseteq \mathfrak{g}$ idéal. Supposons $\exists v \in V$, $\lambda \in \mathfrak{h}^*$ t.q. $\rho(h)v = \lambda(h)v, \forall h \in \mathfrak{h}$. Alors on a $\lambda([\mathfrak{g},\mathfrak{h}]) = 0$.

Démonstration. Soit $x \in \mathfrak{g}$, considérons le plus petit entier n tel que

$$-(v, \rho(x)v, \rho^2(x)v, \cdots, \rho^{n-1}(x)v, \rho^n(x)v)$$
 soit liée.

—
$$(v, \rho(x)v, \rho^2(x)v, \cdots, \rho^{n-1}(x)v)$$
 soit libre.

Posons $W_i = \operatorname{Vect}(v, \rho(x)v, \rho^2(x)v, \cdots, \rho^i(x)v)$ et $W_{-1} = 0$ et $W_0 = \operatorname{Vect}(v)$ pour $i \in \{1, 2, \cdots, n\}$.

Par récurrence sur i montrons que $\rho(y)\rho^i(x)v \in \lambda(y)\rho^i(x)v + W_{i-1}$.

Pour
$$i = 0$$
, $\rho(y)v = \lambda(y)v$, $\forall y \in \mathfrak{h}$.

Supposons la propriété varie pour i, alors

$$\rho(y)\rho^{i+1}(x)v = \rho(y)\rho(x)\rho^{i}(x)v = \rho([y,x])\rho^{i}(x)v + \rho(x)\rho(y)\rho^{i}(x)v$$

car $\rho(y)\rho^i(x)v \in \lambda(y)\rho^i(x)v + W_{i-1}$ et $[y,x] \in \mathfrak{h}$, donc

$$\rho([y,x])\rho^{i}(x)v + \rho(x)\rho(y)\rho^{i}(x)v \in \lambda([y,x])\rho^{i}(x)v + \lambda(y)\rho^{i+1}(x)v + \rho(x)W_{i-1}$$

$$\subseteq \lambda(y)\rho^{i+1}(x)v + W_{i}$$

Maintenant, on a $\mathfrak{h} \oplus \mathbb{C}x$ stabilise W_{n-1} car $\rho(\mathfrak{h} \oplus \mathbb{C}x)W_{n-1} \subseteq W_{n-1}$.

La matrice de
$$\rho(y)$$
 dans $(v, \rho(x)v, \rho^2(x)v, \cdots, \rho^{n-1}(x)v)$ est de la forme
$$\begin{pmatrix} \lambda(y) & * & * \\ 0 & \ddots & * \\ 0 & 0 & \lambda(y) \end{pmatrix}.$$

Donc

$$\operatorname{Tr}(\rho(y)) = n\lambda(y).$$

De plus la matrice de $\rho(x)$ s'écrit $\begin{pmatrix} 0 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 0 \end{pmatrix}$. Alors $\forall x \in \mathfrak{g}, y \in \mathfrak{h}$.

$$n\lambda([x,y])=\mathrm{Tr}(\rho([x,y]))=\mathrm{Tr}([\rho(x),\rho(y)])=0$$

Ainsi que
$$\lambda[\mathfrak{g},\mathfrak{h}]=0.$$

Conséquences du théorème de Lie

Proposition 8.34. Soit $\rho : \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(V)$ une représentation de \mathfrak{g} résoluble. Si ρ est irréductible alors ρ est de dimension 1.

Démonstration. En effet, $\exists v \neq 0$ t.q. $\rho(x)v = \lambda(x)v$. Alors $D = \text{Vect}(v) \subset V$. Alors $\rho|_D$ est une représentation irréductible de dimensionnement 1. Donc ρ irréductible, ainsi que $\dim V = 1$.

Proposition 8.35. Si g est résoluble, alors il existe une suite d'idéaux tels que

$$\mathfrak{g} = I_n \supseteq I_{n-1} \supseteq \cdots \supseteq I_1 \supseteq I_0 = \{0\}$$

qui vérifient : I_{i+1}/I_i sont de dimension 1.

Idée du preuve. Considérons ad : $\mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(\mathfrak{g})$. Théorème de Lie nous dit que $\exists v \in \mathfrak{g}$ t.q. $\operatorname{ad}(x)v = \lambda(x)v$. Alors $\operatorname{Vect}(v) \subseteq \mathfrak{g}$ est un idéal de dimension 1 parce que $\operatorname{ad}(x)v = [x,v] \in \operatorname{Vect}(v), \forall x \in \mathfrak{g}$. Ensuite, on le démontre par récurrence sur dim \mathfrak{g} .

Proposition 8.36. \mathfrak{g} résoluble ssi $[\mathfrak{g}, \mathfrak{g}]$ est nilpotente.

 $D\acute{e}monstration.$ " \Leftarrow ":

$$[\mathfrak{g},\mathfrak{g}]\longrightarrow \mathfrak{g}\longrightarrow \mathfrak{g}\Big/[\mathfrak{g},\mathfrak{g}]$$

On sait que $[\mathfrak{g},\mathfrak{g}]$ est nilpotente donc résoluble et $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ est abélien donc résoluble. Alors \mathfrak{g} est résoluble.

" \Rightarrow " Considérons ad : $\mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(\mathfrak{g})$. Par théorème de Lie, $\forall x \in \mathfrak{g}$, ad(x) se présente comme triangulaire supérieure

$$\operatorname{ad}(x) = \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix}$$

Alors pour $y \in \mathcal{D}(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}]$, on a $\mathrm{ad}(y)$ se représente dans une base donnée par le théorème de Lie : $\begin{pmatrix} 0 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 0 \end{pmatrix}$. $\forall y \in \mathcal{D}(\mathfrak{g})$, $\mathrm{ad}(y)$ est alors un endomorphisme nilpotent, donc $\mathcal{D}(\mathfrak{g})$ est nilpotente.

9 Algèbre de Lie semi-simples, Forme de Killing

9.1 Algèbre de Lie simple et semi-simple

Définition 9.1. On dit que g est simple si

- 1. g n'est pas abélienne.
- 2. seuls idéaux de \mathfrak{g} sont $\{0\}$ et \mathfrak{g} .

Définition 9.2. On dit que \mathfrak{g} est semi-simple si elle ne contient pas d'idéaux résolubles.(\Leftrightarrow \mathfrak{g} ne contient pas d'idéaux abéliens)

Remarque 9.3. En particulier si \mathfrak{g} est semi-simple, alors $Z(\mathfrak{g}) = 0$.

Proposition 9.4. g est simple, alors g est semi-simple.

Démonstration. Soit $I \subseteq \mathfrak{g}$ résoluble non nul, alors $I = \mathfrak{g}$ car \mathfrak{g} simple. Alors $\mathcal{D}(I) \subsetneq I$ car I résoluble alors $\mathcal{D}(I) = 0$ donc I abélien. Ainsi I = 0 contradiction.

Exercice 9.5. \mathfrak{sl}_2 est une algèbre de Lie simple.

On a aussi que \mathfrak{g} est semi-simple ssi $Rad(\mathfrak{g}) = 0$.

Proposition 9.6. 1. Si \mathfrak{g} est une algèbre de Lie, alors $\mathfrak{g}/Rad(\mathfrak{g})$ est une algèbre de Lie semi-simple.

 $\textit{2. Si}\ \mathfrak{b}\subset\mathfrak{g}\ \textit{est id\'eal r\'esoluble et tel que}\ \mathfrak{g}/_{\mathfrak{b}}\ \textit{est semi-simple alors}\ \mathfrak{b}=\mathrm{Rad}(\mathfrak{g}).$

 $D\acute{e}monstration$. Soit $I \subset \mathfrak{g}/\mathrm{Rad}(\mathfrak{g})$ un idéal résoluble. Alors il se relève en $\widetilde{I} \subseteq \mathfrak{g}$ un idéal qui contient $\mathrm{Rad}(\mathfrak{g})$. On a alors

$$\operatorname{Rad}(\mathfrak{g}) \longrightarrow \widetilde{I} \longrightarrow \widetilde{I} / \operatorname{Rad}(\mathfrak{g}) = I$$

Puisque $\operatorname{Rad}(\mathfrak{g})$ et I sont résoluble, alors \widetilde{I} est résoluble. Donc $\widetilde{I} = \operatorname{Rad}(\mathfrak{g})$ ainsi I = 0.

On notera le théorème de structure suivant, du à Levi.

Théorème 9.7. Soit g une algèbre de Lie, alors

$$\mathfrak{g} = \operatorname{Rad}(\mathfrak{g}) \oplus \mathfrak{g}_{ss}$$

où \mathfrak{g}_{ss} est algèbre de Lie semi-simple. C'est une décomposition d'espace vectoriel et d'algèbre de Lie. En fait $\mathfrak{g}_{ss} \subset \mathfrak{g}$ n'est pas un idéal de \mathfrak{g} à priori.

Définition 9.8 (Produit direct et somme d'algèbre de Lie). Soient $(\mathfrak{g}_1, [,]_1)$ et $(\mathfrak{g}_2, [,]_2)$ deux algèbres de Lie. Alors $\mathfrak{g}_1 \times \mathfrak{g}_2$ a une structure d'algèbre de Lie avec

$$[(x_1, x_2), (y_1, y_2)]_{\mathfrak{g}_1 \times \mathfrak{g}_2} = ([x_1, y_1], [x_2, y_2]).$$

Notion : $\mathfrak{g}_1 \oplus \mathfrak{g}_2$ pour $(\mathfrak{g}_1 \times \mathfrak{g}_2, [,]_{\mathfrak{g}_1 \times \mathfrak{g}_2})$.

Proposition 9.9. Soient $\mathfrak{g}_1, \dots, \mathfrak{g}_n$ des algèbres de Lie simple. Considérons

$$\mathfrak{g}=\mathfrak{g}_1\oplus\mathfrak{g}_2\oplus\cdots\oplus\mathfrak{g}_n.$$

Alors tout idéal de \mathfrak{g} est s'écrit comme $\mathfrak{g}_{i_1} \oplus \cdots \oplus \mathfrak{g}_{i_p}$ pour un certain p.

Conséquences

- 1. Les \mathfrak{g}_i sont des idéaux minimaux de \mathfrak{g} car \mathfrak{g}_i est simple.
- 2. g ne contient alors pas d'idéaux résolubles.
- 3. En fait ${\mathfrak g}$ est semi-simple.

Il se trouve que sur un corps (\mathbb{R} où \mathbb{C}) de caractère nul. Alors \mathfrak{g} semi-simple $\Leftrightarrow \mathfrak{g} = \bigoplus_{i \in I} \mathfrak{g}_i$ pour les \mathfrak{g}_i simple.

Démonstration. Soit $i \in \{1, 2, \dots, n\}$. On a $\forall x_i \in \mathfrak{g}_i \setminus \{0\}$. On a que $[\mathfrak{g}_i, x_i] \subseteq \mathfrak{g}_i$, l'idéal engendré par $[\mathfrak{g}_i, x_i]$ est \mathfrak{g}_i car \mathfrak{g}_i simple $(Z(\mathfrak{g}_i) = 0)$.

Considérons $I \subseteq \mathfrak{g}$ et soit $\pi_i : \mathfrak{g} \to \mathfrak{g}_i$ la projection. Soit j un indice tel que $\pi_j(I)$ non nul. Donc dire qu'il existe $x \in I$ t.q. $\pi_j(x)$ non nul, x s'écrit $x = x_1 + \cdots + x_n$ avec x_j non nul.

Donc $[\mathfrak{g}_j, x] = [\mathfrak{g}_j, x_j] \in \mathfrak{g}_j$. Donc l'idéal engendré par $[\mathfrak{g}_j, x_j]$ est contenue dans I. Ainsi $\mathfrak{g}_j \subseteq I$.

Soit $A = \{j \in \{1, \dots, n\}, t.q. \ \pi_j(I) \neq 0\}$. Alors on a :

$$I = \bigoplus_{j \in A} \mathfrak{g}_j.$$

De plus [I, I] = I car $[\mathfrak{g}_j, \mathfrak{g}_j] = \mathfrak{g}_j$. Donc I n'est pas résoluble.

9.2 Forme de Killing

Une forme bilinéaire :

$$\phi: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$$
 ou \mathbb{C}

On dit que ϕ est invariante si $\forall x, y, z \in \mathfrak{g}$

$$\phi([x,y],z) + \phi(x,[z,y]) = 0 \Leftrightarrow \phi([x,y],z) = \phi(x,[y,z]) \Leftrightarrow \phi(\operatorname{ad}(x)y,z) = \phi(x,\operatorname{ad}(y)z).$$

Exemple 9.10. Dans $\mathfrak{gl}_n(\mathbb{C}) = M_n(\mathbb{C}), \, \phi(X,Y) = \mathrm{Tr}(XY).$

Vérifions l'invariance

$$Tr([X,Y],Z) = Tr(XYZ - YXZ) = Tr(XYZ) - Tr(YXZ)$$
$$Tr(X,[Y,Z]) = Tr(XYZ - XZY) = Tr(XYZ) - Tr(XZY)$$

Donc $\mathrm{Tr}([X,Y],Z)=\mathrm{Tr}(X,[Y,Z]).$ L'invariance de ϕ permet aux $I\subseteq\mathfrak{g}$ idéaux de bien se comporter :

Lemme 9.11. Soit $\phi: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ ou \mathbb{C} invariante. Si $I \subseteq \mathfrak{g}$ idéal. Alors

$$I^{\perp} = \{x \in \mathfrak{g}, \phi(x, y) = 0, \forall y \in I\}$$

est également un idéal de g.

En particulier, $\ker \phi$ est un idéal puisque $\ker \phi = \{x \in \mathfrak{g}, \phi(x,y) = 0, \forall y \in \mathfrak{g}\}.$

Remarque9.12. Si ${\mathfrak g}$ est simple et $\phi \neq 0$ alors $\ker \phi = 0.$ Autrement dit ϕ non dégénérée.

Attention : soit $I\subseteq \mathfrak{g}$ et ϕ non dégénérée. Alors $I\oplus I^\perp=\mathfrak{g}$ est faux en général.

Observation : $I \cap I^{\perp}$ idéal abélien.

Soit $x,y\in I\cap I^{\perp}$. Alors $\phi([x,y],z)=\phi(x,[z,y])=0,\ \forall z\in\mathfrak{g}.$ Donc $[x,y]\in\ker\phi.$ ϕ non dégénérée, donc $[x,y]=0,\ \forall x,y\in I\cap I^{\perp}.$ Alors $I\cap I^{\perp}$ est abélien.

Remarque 9.13. Si ${\mathfrak g}$ est semi-simple, alors $I\cap I^\perp=\{0\}$ car ${\mathfrak g}$ n'a pas idéal résoluble.

Soit $\rho: \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(V)$. On considérons alors : $K_{\rho}: \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ définie par $K_{\rho}(x,y) = \operatorname{Tr}(\rho(x) \cdot \rho(y))$.

Proposition 9.14. K_{ρ} est bilinéaire symétrique invariante.

Démonstration.

$$K_{\rho}([x,y],z) = \text{Tr}(\rho([x,y]) \cdot \rho(z)) = \text{Tr}([\rho(x),\rho(y)],\rho(z)) = \text{Tr}(\rho(x),[\rho(y),\rho(z)]) = K_{\rho}(x,[y,z])$$

1. . .

Définition 9.15. La forme de Killing est K_{ρ} pour $\rho : \mathfrak{g} \xrightarrow{\mathrm{ad}} \mathrm{End}_{\mathbb{C}}(\mathfrak{g})$ représentation adjointe, noté $K_{\mathfrak{g}}$.

Théorème 9.16. \mathfrak{g} est résoluble ssi $K_{\mathfrak{g}}([\mathfrak{g},\mathfrak{g}],\mathfrak{g})=0$.

Théorème 9.17 (Cartan). \mathfrak{g} semi-simple ssi $K_{\mathfrak{g}}$ non dégénérée.

La forme de Killing par rapport aux idéaux :

Proposition 9.18. Soit $I \subseteq \mathfrak{g}$ un idéal. Alors

- 1. $K_I = K_{\mathfrak{g}}|_I$.
- 2. Si I est abélien, alors $I \subseteq \ker K_{\mathfrak{g}}$.
- 3. Si $K_{\mathfrak{g}}$ non dégénérée, alors \mathfrak{g} ne contient pas d'idéal résoluble. De plus $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_n$ avec \mathfrak{g}_i simple. Donc \mathfrak{g} est semi-simple.

Démonstration. 1. Écrivons $\mathfrak{g} = I \oplus V$ où $I \subseteq \mathfrak{g}$ idéal. Alors pour $x \in I$, $\operatorname{ad}(x)$ s'écrit dans une base adaptée à $I \oplus V$, $\operatorname{ad}(x) = \left(\begin{array}{c|c} A & * \\ \hline 0 & 0 \end{array}\right)$ où A est la matrice de $\operatorname{ad}(x)|_{I}$.

De même pour $y \in \mathfrak{g}$, on a $ad(y) = \left(\begin{array}{c|c} B & * \\ \hline 0 & * \end{array}\right)$, $ad(y)|_I = B$.

Ainsi $\forall x, y \in I$,

$$\operatorname{Tr}(\operatorname{ad}(x)\operatorname{ad}(y)) = \left(\begin{array}{c|c} AB & * \\ \hline 0 & 0 \end{array}\right) = \operatorname{Tr}(\operatorname{ad}(x)|_{I}\operatorname{ad}(y)|_{I}) = K_{I}(x,y).$$

- 2. Si I est abélien. Soit $x \in I$. $ad(x) = \begin{pmatrix} 0 & * \\ \hline 0 & 0 \end{pmatrix}$. Alors $\forall z \in \mathfrak{g}$, Tr(ad(x), ad(z)) = 0. Donc $K_{\mathfrak{g}}(x, z) = 0$, $\forall z \in \mathfrak{g}$. Ainsi $x \in \ker K_{\mathfrak{g}}$ et $I \subseteq \ker K_{\mathfrak{g}}$.
- 3. Si $K_{\mathfrak{g}}$ non dégénérée, alors \mathfrak{g} n'ai pas d'idéals abélien, donc \mathfrak{g} est semi-simple par le lemme suivant (lemme 9.19).

Ensuite, montrons que $\mathfrak{g} = \bigoplus_{i \in I} \mathfrak{g}_i$ où \mathfrak{g}_i algèbre de Lie simple.

Recurrence sur dim \mathfrak{g} . Si vraie pour dim $\mathfrak{g} = n - 1$. Soit $\mathfrak{g}_1 \subseteq \mathfrak{g}$ l'idéal minimal. Considérons $\mathfrak{g}_1^{\perp} = \mathfrak{h} \subset \mathfrak{g}$. On a vu que $\mathfrak{g}_1 \cap \mathfrak{h}$ est abélien. Par 2 on a $\mathfrak{g}_1 \cap \mathfrak{h} = 0$. Donc $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{h} = \mathfrak{g}_1 \oplus \mathfrak{g}_1^{\perp}$ avec $[\mathfrak{g}, \mathfrak{h}] = 0$.

Ensuite, \mathfrak{g}_1 est simple car tout $V \subseteq \mathfrak{g}_1$ idéal non nul de \mathfrak{g}_1 , alors $[V, \mathfrak{g}_1 \oplus \mathfrak{h}] = [V, \mathfrak{g}_1] \subseteq V$. Donc V est un idéal de \mathfrak{g} . Mais par minimalité de \mathfrak{g}_1 , on a $V = \mathfrak{g}_1$, alors \mathfrak{g}_1 est simple. De plus $K_{\mathfrak{h}} = K_{\mathfrak{g}}|_{\mathfrak{h}}$ est non dégénérée. Donc cela nous permet d'appliquer l'hypothèse de récurrence sur \mathfrak{h} et de finir la démonstration. Ainsi

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_n$$

De plus comme tous les \mathfrak{g}_i sont simples et que les idéaux de \mathfrak{g} se décrivent comme $\bigoplus_{finie} \mathfrak{g}_i$, donc les idéaux ne sont pas résolubles!

Finalement $K_{\mathfrak{g}}$ non dégénérée $\Rightarrow \mathfrak{g}$ semi-simple.

Lemme 9.19. Soit $\mathfrak g$ algèbre de Lie, $\mathfrak g$ n'a pas d'idéaux résoluble ssi $\mathfrak g$ n'a pas d'idéaux abéliens.

Démonstration. Si \mathfrak{g} a un idéal résoluble $I \subseteq \mathfrak{g}$. Soit n le plus grand entier tel que $\mathcal{D}^n(I) \neq 0$. Donc $\mathcal{D}^{n+1}(I) = 0$. Donc $\mathcal{D}^n(I)$ est abélien et c'est un idéal de I.

Montrons que $\mathcal{D}^n(I)$ est en fait un idéal de \mathfrak{g} . Soit $\forall x \in \mathfrak{g}$. Considérons $\mathrm{ad}(x)|_I : I \to I$ (bien définie). Il s'agit d'une dérivation de I! Elle préserve les sous-espace caractéristiques! Donc $\mathrm{ad}(x)|_I$ préserve $\mathcal{D}^n(I) \subseteq I$, donc $\mathcal{D}^n(I)$ est abélien idéal de \mathfrak{g} .

Les caractérisations à l'aide de $K_{\mathfrak{g}}$ sont :

Théorème 9.20. \mathfrak{g} résoluble ssi $K_{\mathfrak{g}}(\mathfrak{g},[\mathfrak{g},\mathfrak{g}])=0$. (i.e. $\mathfrak{g}\perp\mathcal{D}(\mathfrak{g})$)

Remarque 9.21.
$$\mathfrak{g} \subseteq \operatorname{End}_{\mathbb{C}}(V)$$
, telle que $\mathfrak{g} = \left\{ \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix} \right\}$, $\mathcal{D}(\mathfrak{g}) = \left\{ \begin{pmatrix} 0 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 0 \end{pmatrix}$. $x \in \mathfrak{g}, y \in [\mathfrak{g}, \mathfrak{g}]$, alors $\operatorname{Tr}(xy) = 0$.

 $D\acute{e}monstration$. Si $\mathfrak g$ résoluble, par théorème de Lie, $\exists \mathcal B$ telle que pour ad : $\mathfrak g \to \operatorname{End}_{\mathbb C}(\mathfrak g)$, on a

$$Mat_{\mathcal{B}}(\operatorname{ad}(x)) = \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix}.$$

Si $y \in [\mathfrak{g}, \mathfrak{g}]$, ad(y) dans \mathcal{B} se présente dans la forme $\begin{pmatrix} 0 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 0 \end{pmatrix}$. Donc $\operatorname{Tr}(\operatorname{ad}(x)\operatorname{ad}(y)) = 0$.

Plus difficile : montrons que si $\operatorname{Tr}(\operatorname{ad}(x)\operatorname{ad}(y)) = 0$, $\forall x \in \mathfrak{g}$, $\forall y \in \mathcal{D}(\mathfrak{g})$. Alors \mathfrak{g} résoluble. Utiliser la décomposition de Jordan (Dunford)

Théorème 9.22. Soient $u \in \operatorname{End}_{\mathbb{C}}(V)$ où V un \mathbb{C} -espace vectoriel de dimension finie. Alors il existe un unique couple (u_s, u_n) t.q. $u = u_s + u_n$ où $u_s u_n = u_n u_s$ et u_s diagonalisable $(u_s$ semi-simple dans $\operatorname{End}_{\mathbb{C}}(V)$) et u_n nilpotente.

Théorème 9.23. Soit $\operatorname{ad}(u):\operatorname{End}_C(V)\longrightarrow\operatorname{End}_C(V)$. Alors $x\longmapsto u\circ x-x\circ u$

$$ad(u) = ad(u)_s + ad(u)_n = ad(u_s) + ad(u_n).$$

De plus $\operatorname{ad}(u_s) = P(\operatorname{ad}(u))$ où P est un polynôme de $X\mathbb{C}[X]$ $(P \in \mathbb{C}[X] \text{ avec } P(0) = 0)$.

Remarque 9.24. Alexander Kirillov, An introduction to Lie groups and Lie algebras, Section 5.9 Jordan Decomposition .

On a vu que \mathfrak{g} résoluble ssi $[\mathfrak{g},\mathfrak{g}]$ nilpotente. Par le théorème d'Engel il suffit de montrer que $\mathrm{ad}(x)$ est nilpotent pour $x \in \mathfrak{g}$. Supposons $\mathfrak{g} \subseteq \mathrm{End}_{\mathbb{C}}(\mathfrak{g})$ (considérons la représentation adjointe $\mathrm{ad}(\mathfrak{g}) \subseteq \mathrm{End}_{\mathbb{C}}(\mathfrak{g})$). Pour cela, $x = x_s + x_n$.

On a d'une part:

$$\operatorname{Tr}(x\overline{x_s}) = \sum_{fini} |\lambda_i|^2$$

où λ sont les valeurs propres de x_s (ou les valeurs propres de x).

Prenons $x \in [\mathfrak{g}, \mathfrak{g}]$, x combinaison linéaire de $[y_i, z_i]$, $y_i, z_i \in \mathfrak{g}$. On a d'autre part alors

$$\operatorname{Tr}(x\overline{x_s}) = \sum_{i \ finie} \operatorname{Tr}([y_i, z_i]\overline{x_s}) = -\sum_{i \ finie} \operatorname{Tr}(y_i, [\overline{x_s}, z_i]) = 0$$

Or par la décomposition de Jordan, on sait que $[\overline{x_s}, z_i] = \operatorname{ad}(x_s)z_i = P(\operatorname{ad}(x))z_i \in [\mathfrak{g}, \mathfrak{g}]$.

Donc $\sum_{finie} |\lambda_i|^2 = 0$, alors toutes les valeurs propres de x sont nulls, ainsi $x = x_n$ et x est nilpotent. Par le théorème d'Engel on a $[\mathfrak{g},\mathfrak{g}]$ nilpotent ainsi que \mathfrak{g} est résoluble.

Pour conclure clairement :

Théorème 9.25 (Cartan). \mathfrak{g} semi-simple ssi $K_{\mathfrak{g}}$ non dégénérée

Démonstration du critère de Cartan. On a vu que $K_{\mathfrak{g}}$ non dégénérée, donc \mathfrak{g} est semi-simple. Montrons que $K_{\mathfrak{g}}$ non dégénérée si \mathfrak{g} semi-simple. Considérons

$$\mathfrak{h} = \ker K_{\mathfrak{g}} = \{ x \in \mathfrak{g}, K_{\mathfrak{g}}(x, y) = 0, \forall y \in \mathfrak{g} \}.$$

On a $K_{\mathfrak{g}}(x,y) = 0$, $\forall x \in \mathfrak{h}, y \in \mathfrak{g}$. Alors on a bien que $K_{\mathfrak{g}}(x,y) = 0$, $\forall x \in \mathfrak{h}, y \in \mathcal{D}(\mathfrak{h})$, donc \mathfrak{h} résoluble. C'est impossible car \mathfrak{g} semi-simple sauf si $\mathfrak{h} = 0$.

Remarque 9.26. On a supposé $k=\mathbb{C}$. Ceci reste vrai pour $k=\mathbb{C}$. Justifions cela.

9.3 Extension et restriction aux scalaires

Soit $k = \mathbb{R}$, $\mathbb{R} \to \mathbb{C}$ extension algébrique clos. Soit $\mathfrak{g}_{\mathbb{R}}$ une algèbre de Lie réelle. Alors $\mathfrak{g}_{\mathbb{R}} \otimes \mathbb{C} = \mathfrak{g}_{\mathbb{R}} \oplus i\mathfrak{g}_{\mathbb{R}}$ est complexification de $\mathfrak{g}_{\mathbb{R}}$ avec

$$[x \oplus iy, x' \oplus iy']_{\mathfrak{g}_{\mathbb{R}} \otimes \mathbb{C}} = ([x, x'] - [y, y']) \oplus i([x, y'] + [y, x']).$$

Lemme 9.27. $K_{\mathfrak{g}_{\mathbb{R}}}$ non dégénérée ssi $K_{\mathfrak{g}_{\mathbb{R}}\otimes\mathbb{C}}$ non dégénérée.

Démonstration. Soit $\mathcal{B}=(e_1,\cdots,e_n)$ une base de $\mathfrak{g}_{\mathbb{R}}$ en tant que \mathbb{R} -espace vectoriel. On a aussi que $(e_1,\cdots,e_n)\in\mathfrak{g}_{\mathbb{R}}\otimes\mathbb{C}$ reste une base de $\mathfrak{g}_{\mathbb{R}}\otimes\mathbb{C}$ en tant que \mathbb{C} -ev. $(\dim_{\mathbb{R}}\mathfrak{g}_{\mathbb{R}}=\dim_{\mathbb{C}}\mathfrak{g}_{\mathbb{R}}\otimes\mathbb{C})$. Donc $Mat_{\mathcal{B}}(K_{\mathfrak{g}_{\mathbb{R}}})=Mat_{\mathcal{B}}(K_{\mathfrak{g}_{\mathbb{R}}\otimes\mathbb{C}})$ ainsi même déterminant. Donc $K_{\mathfrak{g}_{\mathbb{R}}}$ non dégénérée ssi $K_{\mathfrak{g}_{\mathbb{R}}\otimes\mathbb{C}}$ non dégénérée.

Finalement par le critère de Cartan : $\mathfrak{g}_{\mathbb{R}}$ semi-simple ssi $\mathfrak{g}_{\mathbb{R}} \otimes \mathbb{C}$ semi-simple.

Soit $\mathfrak{g}_{\mathbb{C}}$ une algèbre de Lie complexe. Par exemple prenons (e_1, \dots, e_n) une base de $\mathfrak{g}_{\mathbb{C}}$. Considérons $\mathrm{Vect}_{\mathbb{R}}(e_1, \dots, e_n, ie_1, \dots, ie_n) \subseteq \mathfrak{g}_{\mathbb{C}}$. Notons $\mathfrak{g}^{\mathbb{R}}$ algèbre de Lie de dimension 2n, si $\dim_{\mathbb{C}} \mathfrak{g}_{\mathbb{C}} = n$. $\mathfrak{g}^{\mathbb{R}}$ est la restriction aux scalaires de $\mathfrak{g}_{\mathbb{C}}$.

Proposition 9.28. Soit $K_{\mathfrak{g}_{\mathbb{C}}}:\mathfrak{g}_{\mathbb{C}}\times\mathfrak{g}_{\mathbb{C}}\to\mathbb{C}$ et soit $K^{\mathbb{R}}:\mathfrak{g}_{\mathbb{R}}\times\mathfrak{g}_{\mathbb{R}}\to\mathbb{R}$. Alors $K^{\mathbb{R}}=2\operatorname{Re}K_{\mathfrak{g}_{\mathbb{C}}}$ et $\ker K^{\mathbb{R}}=\ker K_{\mathfrak{g}_{\mathbb{C}}}$.

Démonstration. Soit $\mathcal{B}=(e_1,\cdots,e_n)$ base de $\mathfrak{g}_{\mathbb{C}}$. Alors la \mathbb{R} -base de $\mathfrak{g}^{\mathbb{R}}$ donnée par

$$\mathcal{B}_0 = (e_1, \cdots, e_n, ie_1, \cdots, ie_n).$$

Soit $Mat_{\mathcal{B}}(\operatorname{ad}(x)\operatorname{ad}(y)) = A = B + iC \operatorname{dans} M_n(\mathbb{C})$, alors

$$Mat_{\mathcal{B}_0}(\operatorname{ad}(x)\operatorname{ad}(y)) = \begin{pmatrix} B & -C \\ C & B \end{pmatrix} \in M_{2n}(\mathbb{R}).$$

Donc on a

$$K^{\mathbb{R}}(x,y) = \operatorname{Tr}(Mat_{\mathcal{B}_0}(\operatorname{ad}(x)\operatorname{ad}(y)) = 2\operatorname{Tr}(B) = 2\operatorname{Re}(\operatorname{Tr}(A)) = 2\operatorname{Re}(K_{\mathfrak{g}_{\mathbb{C}}}).$$

On a immédiatement $\ker K_{\mathfrak{g}_{\mathbb{C}}} \subseteq \ker K^{\mathbb{R}}$. Réciproquement si $x \in K^{\mathbb{R}}$, donc $\forall y \in \mathfrak{g}_{\mathbb{C}}$, $K(x,y) = 2\operatorname{Re}(K(x,y)) = 0$. Or $\operatorname{Im}(K_{\mathfrak{g}_{\mathbb{C}}}(x,y)) = -\operatorname{Re}K^{\mathbb{R}}(x,iy) = \frac{1}{2}(K^{\mathbb{R}}(x,iy) = 0$. Donc $\operatorname{Re}(K_{\mathfrak{g}_{\mathbb{C}}}(x,y)) = \operatorname{Im}(K_{\mathfrak{g}_{\mathbb{C}}}(x,y)) = 0$ ainsi $\ker K^{\mathbb{R}} \subseteq \ker K_{\mathfrak{g}_{\mathbb{C}}}$.

9.4 Forme réelle

Soit $\mathfrak{g}_{\mathbb{C}}$ une algèbre de Lie complexe.

Définition 9.29. \mathfrak{g}_0 est une forme réelle de $\mathfrak{g}_\mathbb{C}$ si c'est une sous-algèbre de $\mathfrak{g}^\mathbb{R}$ telle que

$$\mathfrak{g}_0 \times \mathbb{C} \xrightarrow{bijection} \mathfrak{g}$$

Autrement dit si $\mathfrak{g}_0 = \operatorname{Vect}_{\mathbb{R}}(e_1, \dots, e_n)$, alors $\operatorname{Vect}_{\mathbb{C}}(e_1, \dots, e_n) = \mathfrak{g}_{\mathbb{C}}$, avec $e_i \in \mathfrak{g}_0$.

9.4 Forme réelle 83

Exemple 9.30 ($\mathfrak{sl}_2(\mathbb{C})$ et $\mathfrak{sl}_2(\mathbb{R})$). Reprenons $\mathfrak{sl}_2(\mathbb{C})$ l'algèbre sur \mathbb{C} engendrée par e, f, h telles que [e, f] = h et [h, e] = 2e et [h, f] = -2f.

Une réalisation matricielle est donnée par

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \in M_2(\mathbb{R}) \subseteq M_2(\mathbb{C}).$$

Considérons $\mathfrak{g}_0 = \operatorname{Vect}_{\mathbb{R}}(e, f, h) = \mathfrak{sl}_2(\mathbb{R})$ est une forme réelle de $\mathfrak{g}_{\mathbb{C}}$ car $\operatorname{Vect}_{\mathbb{C}}(e, f, h) = \mathfrak{sl}_2(\mathbb{C})$.

D'ailleurs on peut également considérer dans $\mathfrak{sl}_2(\mathbb{C})$ la base (e-f,ih,i(e+f)). Notons là (x',y',z').

C'est encore une base de $\mathfrak{sl}_2(\mathbb{C}) = \mathrm{Vect}_{\mathbb{C}}(x', y', z')$. Sa forme réelle associée est $\mathrm{Vect}_{\mathbb{R}}(x', y', z') = su(2) = \mathfrak{g}_1$. En fait, il se trouve que \mathfrak{g}_0 et \mathfrak{g}_1 ne sont pas isomorphes! (Il suffit de calculer la forme de Killing associée.)

En résumé:

$$\mathfrak{g}_0$$
 une R-algebre de Lie
$$\mathfrak{g} \ \text{une algebre de Lie complexe}$$

$$\mathfrak{g}=\mathfrak{g}_0\otimes\mathbb{C}$$

$$\mathfrak{g}^\mathbb{R} \ \text{une forme r\'eelle}$$

Alors \mathfrak{g}_0 semi-simple $\longrightarrow \mathfrak{g}$ semi-simple $\longrightarrow \mathfrak{g}^{\mathbb{R}}$ semi-simple

Donc il suffit de étudier les algèbres de Lie semi-simple complexe!

10 Élément semi-simple et sous-algèbre torales

Vers la classification des algèbres de Lie semi-simples complexes.

On dit que $A \in \operatorname{End}_{\mathbb{C}}(V)$ est semi-simple si A diagonalisable $\Leftrightarrow V = \bigoplus_{\lambda_i \in \operatorname{Sp}(A)} V_{\lambda_i}$.

Exemple 10.1. $\operatorname{ad}(h) \in \operatorname{End}(\mathfrak{sl}_2(\mathbb{C}))$ est semi-simple parce que $\operatorname{ad}(h) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Définition 10.2. On dit que $x \in \mathfrak{g}$ est semi-simple si $ad(x) \in End_{\mathbb{C}}(\mathfrak{g})$ est semi-simple.

On dit que $x \in \mathfrak{g}$ est nilpotent si $ad(x) \in End_{\mathbb{C}}(\mathfrak{g})$ est nilpotent.

Remarque 10.3. Pour la représentation adjointe ad : $\mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(\mathfrak{g})$ si \mathfrak{g} est semi-simple, alors $Z(\mathfrak{g}) = 0$ donc ad est injective.

Théorème 10.4. Si \mathfrak{g} est semi-simple alors tout $x \in \mathfrak{g}$ se décompose de manière unique

$$x = x_s + x_n$$

 $avec [x_s, x_n] = 0, x_s semi-simple et x_n nilpotent.$

Démonstration. Unicité Si $x = x_s + x_n = x'_s + x'_n$, alors $ad(x) = ad(x_s) + ad(x_n) = ad(x'_s) + ad(x'_n)$. Par l'unicité de la décomposition de Jordan appliquée à $ad(x) \in End_{\mathbb{C}}(\mathfrak{g})$, on a $ad(x_s) = ad(x'_s)$. Alors $ad(x_s - x'_s) = 0$, ainsi $x_s - x'_s \in Z(\mathfrak{g}) = 0$ par \mathfrak{g} est semi-simple. Donc $x_s = x'_s$.

Existence Soit $x \in \mathfrak{g}$. Considérons $ad(x) \in End_{\mathbb{C}}(\mathfrak{g})$, alors

$$\mathfrak{g} = \bigoplus \ker(\operatorname{ad}(x) - \lambda_i \operatorname{id})^{n_{\lambda_i}} = \bigoplus \mathfrak{g}_{\lambda_i}$$

où $\mathfrak{g}_{\lambda_i} = \ker(\operatorname{ad}(x) - \lambda_i \operatorname{id})^{n_{\lambda_i}}$ sont les sous-espaces caractéristiques.

On a aussi que $(\operatorname{ad}(x) - \lambda_i \operatorname{id})^N|_{\mathfrak{g}_{\lambda_i}} = 0$ pour N assez grand.

Lemme 10.5. Pour $\lambda, \mu \in \operatorname{Sp}(\operatorname{ad}(x))$, on a

$$[\mathfrak{g}_{\lambda},\mathfrak{g}_{\mu}]\subseteq\mathfrak{g}_{\lambda+\mu}.$$

Démonstration. Soit $y, z \in \mathfrak{g}_{\lambda} \times \mathfrak{g}_{\mu}$, alors

$$\operatorname{ad}(x)[y,z] = [\operatorname{ad}(x)y,z] + [y,\operatorname{ad}(x)z]$$

On a

$$(\operatorname{ad}(x) - (\lambda + \mu)\operatorname{id})[y, z] = [(\operatorname{ad}(x) - \lambda\operatorname{id})y, z] + [y, (\operatorname{ad}(x) - \mu\operatorname{id})z].$$

Donc par récurrence, on a

$$(ad(x) - (\lambda + \mu) id)^n [y, z] = \sum_{k=0}^n [(ad(x) - \lambda id)^k y, (ad(x) - \mu id)^{n-k} z]$$

Si on prend $n > \dim \mathfrak{g}_{\lambda} + \dim \mathfrak{g}_{\mu}$, alors $(\operatorname{ad}(x) - (\lambda + \mu)\operatorname{id})^n[y, z] = 0$, donc $[y, z] \in \ker(\operatorname{ad}(x) - (\lambda + \mu)\operatorname{id})^n \subseteq \ker(\operatorname{ad}(x) - (\lambda + \mu)\operatorname{id})^{n_{\lambda + \mu}} = \mathfrak{g}_{\lambda + \mu}$.

Conséquence : $ad(x) = ad(x)_s + ad(x)_n$.

Grâce au lemme on peut définir

$$\operatorname{ad}(x)_s|_{\mathfrak{a}_\lambda} = \lambda \cdot \operatorname{id}.$$

Alors $ad(x)_s : \mathfrak{g} \to \mathfrak{g}$ definit une dérivation parce que

$$[ad(x)_s y, z] + [y, ad(x)_s z] = \lambda[y, z] + \mu[y, z] = (\lambda + \mu)[y, z] = ad(x)_s[y, z].$$

Ensuite, il faut faire attention à l'isomorphisme :

$$\mathfrak{g} \longrightarrow \mathrm{Der}(\mathfrak{g})$$
 $x \mapsto [x, \cdot] = \mathrm{ad}(x)$

Rappel 10.6. On avait défini les éléments nilpotents et semi-simples $\mathfrak g$ une algèbre de Lie semi-simple.

On a vu que tout élément de \mathfrak{g} se décompose en $x=x_s+x_n$ où x_s semi-simple et x_n nilpotent.

Un argument de la décomposition de Jordan (Dunford) reposait sur le fait que

$$ad: \mathfrak{g} \longrightarrow Der(\mathfrak{g}) \subseteq End(\mathfrak{g})$$
$$x \longmapsto ad(x)$$

est un isomorphisme d'algèbre de Lie où $\operatorname{ad}(x)[y,z] = [\operatorname{ad}(x)y,z] + [y,\operatorname{ad}(x)z]$ donc $\operatorname{ad}(x) \in \operatorname{Der}(\mathfrak{g})$.

Définition 10.7. Soient \mathfrak{g} semi-simple complexe et $\mathfrak{h} \subseteq \mathfrak{g}$ une sous-algèbre. On dit que h est torale si

- 1. h ne contient que des éléments semi-simples.
- 2. h est abélienne.

Remarque 10.8. On sait qu'il en existe : en effet si tous les éléments x de \mathfrak{g} qui s'écrivent $x = x_s + x_n$ ont $x_s = 0$, alors \mathfrak{g} est nilpotente par thm d'Engel. Or \mathfrak{g} semi-simple non nul, c'est impossible.

Ainsi il existe $x \in \mathfrak{g}$ avec la partie semi-simple non nulle donc $\mathbb{C}x_s \subseteq \mathfrak{g}$ est une sous-algèbre torale oùad $(x_s) = P(\operatorname{ad}(x))$.

Remarque 10.9. Vous pouvez trouver une définition d'algèbre torale sans la condition 2(hypothèse Adeline). Ii se trouve que 2 est automatique. On peut montrer qu'une algèbre torale avec la condition 1 implique qu'elle est abélienne.

Théorème 10.10. \mathfrak{g} algèbre de Lie semi-simple complexe. Soit $\mathfrak{h} \subseteq \mathfrak{g}$ une sous-algèbre de Lie torale. \mathfrak{g} est munie de la forme de Killing $K_{\mathfrak{g}}(x,y) = \operatorname{Tr}(\operatorname{ad}(x)\operatorname{ad}(y))$ qui est non dégénérée. Alors

- 1. $\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha}$.
- 2. $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subseteq\mathfrak{g}_{\alpha+\beta}$.
- 3. Si $\alpha + \beta \neq 0$ alors $\mathfrak{g}_{\alpha} \perp \mathfrak{g}_{\beta}$.
- 4. $\forall \alpha \in \mathfrak{h}^*, K_{\mathfrak{g}} : \mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \to \mathbb{C}$ est non dégénérée.

où $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g}, \operatorname{ad}(h)x = \alpha(h)x, \forall h \in \mathfrak{h}\}\$ est la généralisation de espace propres (espace de poids α associé à la représentation adjointe de \mathfrak{h}) pour $\alpha : \mathfrak{h} \to \mathbb{C}$ une forme bilinéaire.

Exemple 10.11. Soient $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C}) = \mathrm{Vect}_{\mathbb{C}}(e, f, h)$ et $\mathfrak{h} = \mathbb{C}h \subseteq \mathfrak{g}$, alors On a

$$\mathfrak{g}_2 = \mathbb{C}e, \quad \mathfrak{g}_{-2} = \mathbb{C}f.$$

Démonstration. 1. Soit $h \in \mathfrak{g}$, alors h est semi-simple donc $\mathrm{ad}(h)$ est diagonalisable. Alors $(\mathrm{ad}(h))_{h \in \mathfrak{h}}$ est une famille d'endomorphismes qui commutent deux à deux ainsi elles sont simultanément diagonalisables. Il existe une décomposition de \mathfrak{g}

$$\mathfrak{g}=igoplus_{lpha\in\mathfrak{h}^*}\mathfrak{g}_lpha$$

telle que $\begin{cases} \operatorname{ad}(h)x = \alpha_h x \\ x \in \mathfrak{g}_{\alpha_h} \end{cases}, \ \alpha_h \text{ est une forme linéaire sur } \mathfrak{h}. \text{ Comme } \mathfrak{g} \text{ est de dimension finie} \\ \mathfrak{g}_{\alpha} \text{ est nulle sauf un nombre fini de } \alpha. \text{ Notons } R = \{\alpha_1, \cdots, \alpha_n\} \text{ avec } \alpha_i \neq 0, \ \forall i = 1, \cdots, n \\ \text{ et remarque que } \mathfrak{g}_0 = \{x \in \mathfrak{g}, [x, h] = 0, \forall h \in \mathfrak{h}\} \text{ qui contient } \mathfrak{h} \text{ car } \mathfrak{h} \text{ est abélien. Ainsi} \end{cases}$

$$\mathfrak{g}=\mathfrak{g}_0\oplus igoplus_{i=0}^n \mathfrak{g}_{lpha_i}.$$

2. Soient $y \in \mathfrak{g}_{\alpha}$, $z \in \mathfrak{g}_{\beta}$. On a alors

$$ad(x)[y, z] = [ad(x)y, z] + [y, ad(x)z] = \alpha[y, z] + \beta[y, z] = (\alpha + \beta)[y, z].$$

Ainsi

$$[\mathfrak{g}_{lpha},\mathfrak{g}_{eta}]\subseteq\mathfrak{g}_{lpha+eta}.$$

3. Par l'invariance de forme de Killing on a

$$0 = K_{\mathfrak{g}}(\operatorname{ad}(x)y, z) + K_{\mathfrak{g}}(y, \operatorname{ad}(x)z) = (\alpha + \beta)K_{\mathfrak{g}}(x, y).$$

Si $K_{\mathfrak{g}}(x,y) \neq 0$, alors $\alpha + \beta = 0$.

Donc on a $\mathfrak{g} = \mathfrak{g}_0 \stackrel{\perp}{\oplus} \bigoplus_{i=0}^n \mathfrak{g}_{\alpha_i}$ pour $K_{\mathfrak{g}}$.

4. $K_{\mathfrak{g}}: \mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \to \mathbb{C}, (x,y) \longmapsto K_{\mathfrak{g}}(x,y).$

$$\{x\in\mathfrak{g}_\alpha,K_{\mathfrak{g}}(x,y)=0,\forall y\in\mathfrak{g}_{-\alpha}\}=0=\{y\in\mathfrak{g}_{-\alpha},K_{\mathfrak{g}}(x,y)=0,\forall x\in\mathfrak{g}_\alpha\}$$

Remarque 10.12. Centralisateur de \mathfrak{h} dans \mathfrak{g} est défini par $\mathfrak{g}_0 = \{x \in \mathfrak{g}, [x, h] = 0, \forall h \in \mathfrak{h}\} = C_{\mathfrak{g}}(\mathfrak{h}).$

Proposition 10.13. Si $x \in \mathfrak{g}$, $\alpha \neq 0$. Alors ad(x) est nilpotent.

Démonstration. Soit $x \in \mathfrak{g}_{\alpha}$, $\operatorname{ad}(x) : \mathfrak{g} \to \mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha} = \mathfrak{g}_0 \oplus \bigoplus_{i=0}^n \mathfrak{g}_{\alpha_i}$. Pour $m \in \mathbb{N}$, on a $\operatorname{ad}(x)^m(\mathfrak{g}_{\beta}) \subseteq \mathfrak{g}_{\beta+m\alpha}$.

Comme $(\beta + m\alpha)_{m \in \mathbb{N}}$ racines deux à deux distinctes, il existe m_0 t.q. $\beta + m_0\alpha = 0$ car $R = \{\alpha_1, \dots, \alpha_n\}$ est fini. Donc $\operatorname{ad}(x)^{m_0} = 0$ ainsi x est nilpotent.

Définition 10.14. Soient $\mathfrak{h} \subseteq \mathfrak{g}$, \mathfrak{g} est semi-simple, \mathfrak{h} une sous-algèbre de \mathfrak{g} .

On dit que \mathfrak{h} est sous-algèbre de Cartan si $\mathfrak{h} = C_{\mathfrak{g}}(\mathfrak{h}) = \{x \in \mathfrak{g}, [x, h] = 0, \forall h \in \mathfrak{h}\}.$

Remarque 10.15. Si \mathfrak{h} abélienne alors $\mathfrak{h} \subseteq C_{\mathfrak{g}}(\mathfrak{h})$.

Exemple 10.16. Soit $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}), \operatorname{Tr}(A) = 0\}$. Considérons $\mathfrak{h} \subseteq \mathfrak{g}$ définie par $\mathfrak{h} = \{Diag(t_1, \dots, t_n), t_1 + t_2 + \dots + t_n = 0\}$. Alors on a

- 1. h est semi-simple.
- 2. h est abélien.

Il faut vérifier que $C_{\mathfrak{g}}(\mathfrak{h}) \subseteq \mathfrak{h}$. En fait si $x \in \mathfrak{sl}_n(\mathbb{C})$ telle que xh = hx, x doit commuter avec des matrices diagonales donc les valeurs propres sont distinctes, ainsi x doit être diagonalisable. Alors $x \in \mathfrak{h}$ et $C_{\mathfrak{g}}(\mathfrak{h}) = \mathfrak{h}$.

Problème : Existe t-il des sous algèbre de Cartan dans \mathfrak{g} semi-simple?

Théorème 10.17. Soit \mathfrak{g} semi-simple. Soit $\mathfrak{h} \subseteq \mathfrak{g}$ torale maximale (dim \mathfrak{h} maximale).

Alors h est une sous-algèbre de Cartan et de plus

$$\mathfrak{g}=\mathfrak{g}_0\oplusigoplus_{lpha\in R}\mathfrak{g}_lpha$$

 $o\dot{u} R = \{\alpha_1, \cdots, \alpha_n\} \subseteq \mathfrak{h}^*.$

Démonstration. On veut montrer que $C_{\mathfrak{g}}(\mathfrak{h}) = \mathfrak{g}_0 \subseteq \mathfrak{h}$.

Étape 1 : Soit $x \in \mathfrak{g}_0$. On écrit $x = x_s + x_n$. En fait $x_s, x_n \in \mathfrak{g}_0$ car $\operatorname{ad}(x_s) = P(\operatorname{ad}(x))$ où $P \in X\mathbb{C}[X]$ un polynôme sans termes constants. Or $[x, h] = \operatorname{ad}(x)h = 0$ pour $x \in \mathfrak{g}_0$, $h \in \mathfrak{h}$. Donc $[x_s, h] = \operatorname{ad}(x_s)h = 0$ ainsi $x_s \in \mathfrak{g}_0$ et $x_n = x - x_s \in \mathfrak{g}_0$.

Étape 2 : Soit $x_s \in \mathfrak{g}_0$ semi-simple. $\operatorname{ad}(x_s)\operatorname{ad}(h) = \operatorname{ad}(h)\operatorname{ad}(x_s)$ pour $\forall h \in \mathfrak{h}$. Considérons alors $\mathfrak{h} \oplus \mathbb{C}x_s$ est torale (abélienne et torale), or \mathfrak{h} est maximale, donc $x_s \in \mathfrak{h}$. Ainsi tous les éléments semi-simples de \mathfrak{g}_0 sont dans \mathfrak{h} .

Étape 3 : \mathfrak{g}_0 est nilpotente. Soit $x \in \mathfrak{g}_0$, $x = x_s + x_n$ la décomposition de Jordan. On sait que $x_s, x_n \in \mathfrak{g}_0$ et $x_s \in \mathfrak{h}$. Or pour $h \in \mathfrak{h}$, on a $[h, \mathfrak{g}_0] = 0$. Donc $\mathrm{ad}_{\mathfrak{g}_0}(x) = \mathrm{ad}_{\mathfrak{g}_0}(x_n)$ où $\mathrm{ad}_{\mathfrak{g}_0}(x) \in \mathrm{End}(\mathfrak{g}_0)$. Donc $\mathrm{ad}_{\mathfrak{g}_0}(x)$ est nilpotent pour $\forall x \in \mathfrak{g}_0$. Par le théorème d'Engel, \mathfrak{g}_0 est nilpotente.

Étape 4 : Si $x \in \mathfrak{g}$, on a $x = x_s + x_n$ et $x_s \in \mathfrak{h}$. Si on montre que $x_n = 0$, alors on a gagné $x = x_s \in \mathfrak{h}$. On sait que $\mathrm{ad}(x_n)$ est nilpotent. De plus \mathfrak{g}_0 est commutative.(assez difficile,

il faut le montrer. Mais par remarque 10.18, la démonstration ici reste en marche.) On a $\operatorname{Tr}(\operatorname{ad}(x_n)\operatorname{ad}(y))=0$ pour $y\in\mathfrak{g}_0$ car $\operatorname{ad}(y)$ est une matrice triangulaire supérieure dans une certaine base.

Donc $K_{\mathfrak{g}}(x_n, y) = 0$ pour $\forall y \in \mathfrak{g}_0$. Alors on obtient

$$x_n \in \mathfrak{g}_0^{\perp} \cap \mathfrak{g}_0.$$

Or $K_{\mathfrak{g}}|_{\mathfrak{g}_0}$ est non dégénérée (exo), donc $x_n=0$.

Ainsi toute algèbre de Lie semi-simple a une sous algèbre de Cartan.

Remarque 10.18. Montrer que $C^2(\mathfrak{g}_0) = [\mathfrak{g}_0, \mathfrak{g}_0] = 0$. Soit $n \geq 2$ le plus petit entier tel que $C^n(\mathfrak{g}_0) \neq 0$. Alors $[\mathfrak{g}_0, C^n(\mathfrak{g}_0)] = C^{n+1}(\mathfrak{g}_0)$ est un idéal central non nul.

Soit $z \in \mathcal{C}^n(\mathfrak{g}_0) \subseteq [\mathfrak{g}_0,\mathfrak{g}_0], z \neq 0$, on s'écrit $z = z_s + z_n$ par la décomposition de Jordan.

Fait : $z_n \neq 0$. $z_n = P(\operatorname{ad}(z))$ avec $P \in X\mathbb{C}[X]$. On a $\operatorname{ad}(z)(\mathfrak{h}) = 0 = \operatorname{ad}(z)(\mathfrak{g}_0)$ Alors $\operatorname{ad}(z_n)(\mathfrak{h}) = \operatorname{ad}(z_n)(\mathfrak{g}_0) = 0$ donc $z_n \in Z(\mathfrak{g}_0)$.

Montrons que $z_n \neq 0$. Si $z = z_s \in \mathfrak{h}$ alors on avait $z = \sum_{fini} [x_i, y_i]$ avec $x_i, y_i \in \mathfrak{g}_0$. Pour $\forall h \in \mathfrak{h}$,

$$K_{\mathfrak{g}}(z,h) = \sum_{i} K_{\mathfrak{g}}([x_i, y_i], h) = \sum_{i} K_{\mathfrak{g}}(x_i, [y_i, h]) = 0$$

Donc $z = z_s \perp \mathfrak{h}$, mais c'est impossible car $z \in \mathfrak{h}$.

Avant de continuer comprendre la décomposition sur un exemple : $\mathfrak{g} = \mathfrak{sl}_3(\mathbb{C})$.

$$\mathfrak{h} = \left\{ \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}, h_1 + h_2 + h_3 = 0 \right\} \subseteq \mathfrak{g}$$

et $\mathfrak{h}=C_{\mathfrak{g}}(\mathfrak{h})$ est une sous-algèbre de Cartan. Définissons $e_i^*\in\mathfrak{h}^*$ par

$$e_i^*: \qquad \mathfrak{h} \qquad \longrightarrow \quad \mathbb{C} \quad$$

$$\begin{pmatrix} h_1 & & \\ & h_2 & \\ & & h_3 \end{pmatrix} \quad \longmapsto \quad h_i$$

Étudions ad(h), $h \in \mathfrak{h}$: on a ad $(h)E_{i,j} = (h_i - h_j)E_{i,j} = (e_i^* - e_j^*)(h)E_{i,j}$. En posant $R = \{e_i^* - e_j^*, i \neq j\}$.

Remarque 10.19. $\mathfrak{h}^* = \mathbb{C}e_1^* \oplus \mathbb{C}e_2^* \oplus \mathbb{C}e_3^* / \mathbb{C}(e_1^* + e_2^* + e_3^*)$ est de dimension 2 et $R \subseteq \mathfrak{h}^*$.

On a une dualité $\mathfrak{h} \to \mathfrak{h}^*$ une identification est donnée par $K_{\mathfrak{g}}^{\natural}: \mathfrak{h} \longrightarrow \mathfrak{h}^*$. $h \longmapsto K_{\mathfrak{g}}(h,\cdot)$

Ainsi toute $\alpha \in \mathfrak{h}^*$ se représente par un $H_{\alpha} \in \mathfrak{h}$ tel que $\alpha = K^{\natural}(H_{\alpha})$ (i.e. $\alpha(\cdot) = K_{\mathfrak{g}}(\cdot, H_{\alpha})$).

Lemme 10.20. Soit $e_{\alpha} \in \mathfrak{g}_{\alpha}$, $f_{\alpha} \in \mathfrak{g}_{-\alpha}$. $(\mathfrak{g}_{\alpha}^* = \mathfrak{g}_{-\alpha})$. On a $[e_{\alpha}, f_{\alpha}] = K_{\mathfrak{g}}(e_{\alpha}, f_{\alpha})H_{\alpha}$, on a normalisation près $[e_{\alpha}, f_{\alpha}] = H_{\alpha}$.

Démonstration. Définissons $h_{\alpha} = \frac{2H_{\alpha}}{\alpha(H_{\alpha})}$. Il existe $f_{-\alpha} \in \mathfrak{g}_{\alpha}$ t.q. $[e_{\alpha}, f_{\alpha}] = h_{\alpha}$, alors $e_{\alpha}, f_{\alpha}, h_{\alpha}$ engendre une sous-algèbre de Lie de \mathfrak{g} qui est isomorphe à $\mathfrak{sl}_2(\mathbb{C})$.

Théorème 10.21. Soit \mathfrak{g} semi-simple. $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}$, où $R = \{\alpha \in \mathfrak{h}^*, \alpha \neq 0, \mathfrak{g}_{\alpha} \neq 0\}$ s'appelle le système des racines.

- 1. R engendre \mathfrak{h}^* et $(h_{\alpha})_{\alpha \in \mathbb{R}}$ engendre \mathfrak{h} .
- 2. $\forall \alpha$, dim $\mathfrak{g}_{\alpha} = 1$.
- 3. $\forall \alpha, \beta \in R, \ \beta(h_{\alpha}) = \frac{2K_{\mathfrak{g}}(\alpha,\beta)}{K_{\mathfrak{g}}(\alpha,\alpha)} \ est \ un \ entier.$
- 4. Définissons $\delta_{\alpha}: \mathfrak{h}^* \to \mathfrak{h}^*$, $\delta_{\alpha}(\lambda) = \lambda \lambda(h_{\alpha})\alpha$. Si $\alpha, \beta \in R$, alors $\delta_{\alpha}(\beta) \in R$.
- 5. Si $\alpha \in R$, alors seulement α ou $-\alpha$ appartient à R, $n\alpha \notin R$.
- 6. $V = \bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{\beta+k\alpha}$ est une représentation irréductible de $\mathfrak{sl}_{2,\alpha}$
- γ . $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subseteq\mathfrak{g}_{\alpha+\beta}$.