ALGEBRA 4. LINEAR MAPS

Grau de Matemàtiques. FME 2018-2019

Marta Casanellas Departament de Matemàtiques

- DEFINITION AND EXAMPLES
- Nullspace and Image
- Composition
- MATRICES OF LINEAR MAPS
- **S** ENDOMORPHISMS AND INVARIANT SUBSPACES
- **6** DUAL SPACE
- BIBLIOGRAPHY

- DEFINITION AND EXAMPLES
- NULLSPACE AND IMAGE
- Composition
- MATRICES OF LINEAR MAPS
- **S** ENDOMORPHISMS AND INVARIANT SUBSPACES
- 6 DUAL SPACE
- BIBLIOGRAPHY

DEFINITION

A linear map (or linear transformation) between two $\mathbb{K}-e.v\ E$ and F is a map that preserves linear combinations. More precisely,

DEFINITION

- $f: E \longrightarrow F$ is a linear map if
 - f(u+v) = f(u) + f(v) for all $u, v \in E$, and

Examples

- $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ where f(x,y) = (x+2y,3x,y-x)
- $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ where f(x,y) = (-y,x) (rotation of $\pi/2$ centered at (0,0))
- $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n \ f(v) = \lambda.v \ \text{for some} \ \lambda \in \mathbb{K} \ (homothety).$
- $f: E \longrightarrow F$, $f(v) = \mathbf{0} \ \forall v \in E$ is called *zero* map.
- $f: E \longrightarrow E \ f(v) = v$ is called *identity* map Id.
- Example of maps that are not linear

PROPERTIES OF LINEAR MAPS

Let $f: E \longrightarrow F$ be a map between \mathbb{K} -e.v. Then:

- f linear $\Leftrightarrow f(c_1v_1 + \cdots + c_kv_k) = c_1f(v_1) + \cdots + c_kf(v_k)$ $\forall v_1, \dots, v_k \in E \text{ and } c_1, \dots, c_k \in \mathbb{K}.$
- f linear $\Rightarrow f(\mathbf{0}) = \mathbf{0}$.

A linear map *f* is determined by the **image of a basis** (any basis):

PROPOSITION

Given a basis $\{u_1, \ldots, u_n\}$ of E and any set of vectors $v_1, \ldots, v_n \in F$, there exists a unique linear map $f : E \longrightarrow F$ such that $f(u_i) = v_i \ \forall i$.

LINEAR MAPS $\mathbb{K}^n \longrightarrow \mathbb{K}^m$ AND MATRICES

• Basic example of linear map: If $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, the map $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ defined by

$$v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto f(v) = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

 All linear maps f: Kⁿ → K^m are of this type: in standard coordinates they are defined as degree 1 homogeneous polynomials:

$$(x_1,\ldots,x_n)\mapsto (a_{1,1}x_1+\ldots+a_{1,n}x_n,\cdots,a_{m,1}x_1+\ldots+a_{m,n}x_n)$$
 and f corresponds to $v\mapsto Av$ where $A=(a_{i,j})$; the i th column of A is $f(e_i)$.

• The standard matrix M(f) of a linear map $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$ is the $m \times n$ matrix whose columns are the vectors $f(e_i)$:

$$M(f) = (f(e_1) \cdots f(e_n))$$

- DEFINITION AND EXAMPLES
- Nullspace and Image
- Composition
- MATRICES OF LINEAR MAPS
- **S** ENDOMORPHISMS AND INVARIANT SUBSPACES
- 6 DUAL SPACE
- BIBLIOGRAPHY

DEFINITIONS

Let $f: E \longrightarrow F$ be a map between \mathbb{K} -e.v.

- f is injective if different vectors always have different images (f(u) = f(v)) implies u = v.
- f is surjective if every vector v in F is the image of a certain vector $u \in E$, v = f(u).
- The set of all images of vectors is called the image or range of f,

$$Im(f) = \{ v \in F \mid v = f(u) \text{ for some } u \in E \} \subseteq F$$

- f is surjective if and only if Im(f) = F.
- *f* is bijective if it is at the same time injective and surjective. A bijective linear map is called an isomorphism.

NULL SPACE

Let $f: E \longrightarrow F$ be a linear map.

DEFINITION

The null space or kernel (*nucli*) of *f* is the subspace

Nuc(
$$f$$
) = { $v \in E \mid f(v) = \mathbf{0}$ } = $f^{-1}(\{\mathbf{0}\}) \subset E$.

THEOREM

A linear map f is injective if and only if $Nuc(f) = \{0\}$.

If $f: \mathbb{K}^n \longrightarrow \mathbb{K}^m$ is a linear map and A is its standard matrix, then

- Nuc(f) = { $v \in \mathbb{K}^n \mid f(v) = 0$ } = { $x \in \mathbb{K}^n \mid Ax = 0$ }.
- dim Nuc(f) = n rank(A).
- f is injective \Leftrightarrow rank(A) = n (=number of columns).
- f injective $\Rightarrow n \leq m$.

IMAGE AND PREIMAGE OF A SUBSPACE

Let $f: E \longrightarrow F$ be a linear map.

DEFINITION

The image of $V \subseteq E$ is the set

$$f(V) := \{ w \in F | w = f(u) \text{ for some } u \in V \}.$$

- If V is a subspace $\Rightarrow f(V)$ is also a subspace.
- If $V = [u_1, \ldots, u_d] \subset E \Rightarrow f(V) = [f(u_1), \ldots, f(u_d)] \subset F$.
- If u_1, \ldots, u_d are linearly independent, $f(u_1), \ldots, f(u_d)$ do **NOT** need to be l.i.
- $Im(f) = f(E) = [f(u_1), ..., f(u_n)]$ if $\{u_1, ..., u_n\}$ is a basis of E.
- dim Im(f) is called the rank of f.

IMAGE FOR $f: \mathbb{K}^n \longrightarrow \mathbb{K}^m$

Let $f: \mathbb{K}^n \longrightarrow \mathbb{K}^m$ be a linear map and let A be its standard matrix. Then,

- Im(f) = [columns of A].
- $\dim \operatorname{Im}(f) = \operatorname{rank}(A)$.
- f is surjective if and only if rank(A) = m (= number of rows).
- f surjective $\Rightarrow m \le n$.

Let $f: E \longrightarrow F$ be a linear map.

DEFINITION

The preimage of $W \subseteq F$ is $f^{-1}(W) := \{u \in E \mid f(u) \in W\} \subseteq E$.

LEMMA

• If $u \in E$ and $v \in F$ satisfy f(u) = v, then

$$f^{-1}(v) = \{u + w \mid w \in \mathsf{Nuc}(f)\}.$$

• If W is a subspace, so is $f^{-1}(W)$.

- DEFINITION AND EXAMPLES
- Nullspace and Image
- Composition
- MATRICES OF LINEAR MAPS
- **S** ENDOMORPHISMS AND INVARIANT SUBSPACES
- 6 DUAL SPACE
- **BIBLIOGRAPHY**

COMPOSITION OF LINEAR MAPS

Let $f: E \longrightarrow F$ and $g: F \longrightarrow G$ be linear maps, the composition of g with f is the linear map $g \circ f: E \longrightarrow G$ defined as:

$$g \circ f : E \xrightarrow{f} F \xrightarrow{g} G$$

 $v \mapsto f(v) \mapsto (g \circ f)(v) := g(f(v))$.

If $f: \mathbb{K}^n \longrightarrow \mathbb{K}^m$ has standard matrix A and $g: \mathbb{K}^m \longrightarrow \mathbb{K}^p$ has standard matrix $B \Rightarrow$ the standard matrix of $g \circ f$ is

$$M(g \circ f) = \mathbf{BA}.$$

INVERSE OF LINEAR MAPS

If $f: E \longrightarrow F$ is a linear map, we say that $g: F \longrightarrow E$ is the inverse of f (denoted as $g = f^{-1}$) if

$$g \circ f = f \circ g = Id$$
.

Note: f is invertible $\Leftrightarrow f$ is bijective.

Invertible linear maps are called isomorphisms. Two \mathbb{K} -ev. are isomorphic if there exists an isomorphism $f: E \longrightarrow F$; in this case we use the notation $E \cong F$.

Properties:

- If f is iso. $\Rightarrow f^{-1}$ is a linear map.
- If $f: \mathbb{K}^n \longrightarrow \mathbb{K}^n$ is iso. and has standard matrix $A \Rightarrow M(f^{-1}) = A^{-1}$.
- If f has inverse map f^{-1} , then the preimage $f^{-1}(W)$ of a subspace W coincides with its image by f^{-1} .

THEOREM (FIRST THEOREM OF ISOMORPHISM)

If $f: E \longrightarrow F$ is a linear map, then the map

$$\overline{f}: E/\operatorname{Nuc}(f) \longrightarrow \operatorname{Im}(f)$$
 $\overline{v} \mapsto \overline{f}(\overline{v}) := f(v)$

is well defined and is an isomorphism, $E/\operatorname{Nuc}(f) \cong \operatorname{Im}(f)$.

COROLLARY

Let $f: E \longrightarrow F$ be a linear map and assume that E has finite dimension. Then, Nuc(f) and Im(f) have finite dimension and

$$\dim \operatorname{Nuc}(f) + \dim \operatorname{Im}(f) = \dim E$$

- f is injective $\Leftrightarrow \text{Nuc}(f) = \{\mathbf{0}\} \Leftrightarrow \dim \text{Im}(f) = \dim E$.
- f is surjective \Leftrightarrow dim Im(f) = dim F \Leftrightarrow dim Nuc(f) = dim E dim F.
- f is bijective \Leftrightarrow dim $E = \dim F$ and Nuc $(f) = \{0\} \Leftrightarrow \dim E = \dim F$ and dim Im $(f) = \dim F$.
- If dim $E = \dim F$, then f is bijective \Leftrightarrow injective \Leftrightarrow surjective.

- f is injective $\Leftrightarrow \text{Nuc}(f) = \{\mathbf{0}\} \Leftrightarrow \dim \text{Im}(f) = \dim E$.
- f is surjective \Leftrightarrow dim Im(f) = dim F \Leftrightarrow dim Nuc(f) = dim E dim F.
- f is bijective \Leftrightarrow dim $E = \dim F$ and Nuc $(f) = \{0\} \Leftrightarrow \dim E = \dim F$ and dim Im $(f) = \dim F$.
- If dim $E = \dim F$, then f is bijective \Leftrightarrow injective \Leftrightarrow surjective.

- f is injective $\Leftrightarrow \operatorname{Nuc}(f) = \{\mathbf{0}\} \Leftrightarrow \dim \operatorname{Im}(f) = \dim E$.
- f is surjective \Leftrightarrow dim Im(f) = dim F \Leftrightarrow dim Nuc(f) = dim E dim F.
- f is bijective \Leftrightarrow dim $E = \dim F$ and Nuc $(f) = \{0\} \Leftrightarrow \dim E = \dim F$ and dim Im $(f) = \dim F$.
- If dim $E = \dim F$, then f is bijective \Leftrightarrow injective \Leftrightarrow surjective.

- f is injective $\Leftrightarrow \operatorname{Nuc}(f) = \{\mathbf{0}\} \Leftrightarrow \dim \operatorname{Im}(f) = \dim E$.
- f is surjective \Leftrightarrow dim Im(f) = dim F \Leftrightarrow dim Nuc(f) = dim E dim F.
- f is bijective \Leftrightarrow dim $E = \dim F$ and Nuc $(f) = \{0\} \Leftrightarrow$ dim $E = \dim F$ and dim Im $(f) = \dim F$.
- If dim E = dim F, then f is bijective ⇔ injective ⇔ surjective.

- f is injective $\Leftrightarrow \text{Nuc}(f) = \{\mathbf{0}\} \Leftrightarrow \dim \text{Im}(f) = \dim E$.
- f is surjective \Leftrightarrow dim Im(f) = dim F \Leftrightarrow dim Nuc(f) = dim E dim F.
- f is bijective \Leftrightarrow dim $E = \dim F$ and Nuc $(f) = \{0\} \Leftrightarrow$ dim $E = \dim F$ and dim Im $(f) = \dim F$.
- If dim $E = \dim F$, then f is bijective \Leftrightarrow injective \Leftrightarrow surjective.

ISOMORPHISM OF E.V. OF FINITE DIMENSION

PROPOSITION

If dim(E) = n and $B = \{v_1, \dots, v_n\}$ is a basis of E, then

$$egin{array}{cccc} E & \longrightarrow & \mathbb{K}' \\ V & \mapsto & V_B \end{array}$$

is an isomorphism.

THEOREM

If E and F are two \mathbb{K} -e.v of finite dimension, then

$$E \cong F \Leftrightarrow \dim(E) = \dim(F)$$
.

- DEFINITION AND EXAMPLES
- Nullspace and Image
- Composition
- MATRICES OF LINEAR MAPS
- **S** ENDOMORPHISMS AND INVARIANT SUBSPACES
- 6 DUAL SPACE
- BIBLIOGRAPHY

Consider now linear maps $f: E \longrightarrow F$ between \mathbb{K} -e.v. of finite dimension, $n = \dim E$, $m = \dim F$. Let $\mathbf{u} = \{u_1, \dots, u_n\}$ and $\mathbf{v} = \{v_1, \dots, v_m\}$ be bases of E and F (resp.).

DEFINITION

The matrix of f in bases \mathbf{u}, \mathbf{v} is the $m \times n$ matrix whose columns are the coordinates of $f(u_1), \ldots, f(u_n)$ in the basis \mathbf{v} :

$$M_{\mathbf{u},\mathbf{v}}(f) = (f(u_1)_{\mathbf{v}} \cdots f(u_n)_{\mathbf{v}}).$$

Properties:

- If $E = \mathbb{K}^n$, $F = \mathbb{K}^m$ and \mathbf{u} , \mathbf{v} are the standard bases \Rightarrow this matrix is the *standard matrix* we have already introduced, M(f).
- If $M_{\mathbf{u},\mathbf{v}}(f) = (a_{i,j})_{i,j} \Rightarrow f(u_i) = \sum_i a_{i,j} v_i$.
- $M_{\mathbf{u},\mathbf{v}}(f)(w_{\mathbf{u}}) = (f(w))_{\mathbf{v}}$.
- $\bullet \ M_{\mathbf{u},\mathbf{v}}(g \circ f) = M_{\mathbf{w},\mathbf{v}}(g)M_{\mathbf{u},\mathbf{w}}(f),$

$$g \circ f : E_{\mathbf{u}} \xrightarrow{f} F_{\mathbf{w}} \xrightarrow{g} G_{\mathbf{v}}$$

$$M_{\mathbf{u},\mathbf{w}}(f) \qquad M_{\mathbf{w},\mathbf{v}}(g)$$

CHANGE OF BASIS AS MATRICES OF LINEAR MAPS

If $A_{\mathbf{u},\mathbf{e}}$ is the change-of-basis matrix from \mathbf{u} to \mathbf{e} , then this matrix can be thought as the matrix of the Identity map in certain basis:

$$A_{\mathbf{u} \to \mathbf{e}} = M_{\mathbf{u}, \mathbf{e}}(Id).$$

Note: The matrix of the identity map is the Identity matrix if we put the same basis at both sides.

If $A_{\mathbf{u} \to \mathbf{u}'}$ is the change-of-basis matrix from \mathbf{u} to \mathbf{u}' , and $A_{\mathbf{v} \to \mathbf{e}'}$ is the change-of-basis matrix from \mathbf{v} to \mathbf{v}' , then:

$$M_{\mathbf{u}',\mathbf{v}'}(f) = A_{\mathbf{v} \to \mathbf{v}'} M_{\mathbf{u},\mathbf{v}}(f) A_{\mathbf{u} \to \mathbf{u}'}^{-1},$$

$$M_{\mathbf{u},\mathbf{v}}(f) = A_{\mathbf{v} \to \mathbf{v}}^{-1}, M_{\mathbf{u}',\mathbf{v}'}(f) A_{\mathbf{u} \to \mathbf{u}'}.$$

- DEFINITION AND EXAMPLES
- Nullspace and Image
- Composition
- MATRICES OF LINEAR MAPS
- **S** ENDOMORPHISMS AND INVARIANT SUBSPACES
- **6** DUAL SPACE
- BIBLIOGRAPHY

ENDOMORPHISMS

An endomorphism is a linear map from *E* to itself.

Notation

- $End(E) = \{f : E \longrightarrow E \mid f \text{ linear map } \}.$
- If $f \in End(E)$ and $\mathbf{u} = \{u_1, \dots, u_n\}$ is a basis of E, we denote by $M_{\mathbf{u}}(f)$ the matrix $M_{\mathbf{u},\mathbf{u}}(f)$.
- Using composition we can define f^m for any $m \in \mathbb{N}$:

$$f^m = f \circ \stackrel{m}{\dots} \circ f$$
.

DEFINITION

The determinant of an endomorphism $f \in End(E)$ (E of finite dimension) is the determinant of its matrix in any basis \mathbf{u} ,

$$\det(f) = \det(M_{\mathbf{u}}(f)).$$

This does not depend on the basis and

$$\det(g\circ f)=\det g\det f.$$

THE VECTOR SPACE OF LINEAR MAPS

The set of linear maps between \mathbb{K} -e.v, E, F is denoted as L(E, F). This is a \mathbb{K} -e.v with the usual sum and product by scalars of maps: if $f, g \in L(E, F)$ and $c \in \mathbb{K}$,

- + f + g is the map $(f + g)(v) := f(v) + g(v), v \in E$.
 - $\cdot c \cdot f$ is the map $(c \cdot f)(v) := cf(v), v \in E$.

THEOREM

Let $\mathbf{u} = \{u_1, \dots, u_n\}$ and $\mathbf{v} = \{u_1, \dots, u_m\}$ be bases of E and F, respectively. Then the map

$$\varphi: L(E,F) \longrightarrow \mathcal{M}_{m\times n}(\mathbb{K})$$

$$f \mapsto \mathcal{M}_{u,v}(f)$$

is an isomorphism.

POLYNOMIALS OF MATRICES AND ENDOMORPHISMS

Let $p(X) = a_m X^m + a_{m-1} X^{m-1} + \cdots + a_1 X + a_0$ be a polynomial in $\mathbb{K}[X]$; let $A \in \mathcal{M}_n(\mathbb{K})$ and $f \in End(E)$. We define

$$p(A) := a_m A^m + a_{m-1} A^{m-1} + \dots + a_1 A + a_0 Id_n \in \mathcal{M}_n(\mathbb{K}),$$

$$p(f) := a_m f^m + a_{m-1} f^{m-1} + \dots + a_1 f + a_0 Id \in End(E).$$

PROPOSITION

If **u** is a basis of E and $A = M_{\mathbf{u}}(f)$, then

$$M_{\mathbf{u}}(p(f)) = p(A).$$

Invariant subspaces

Let $f \in End(E)$ and $F \subseteq E$ be a subspace.

DEFINITION

F is f-invariant (or invariant by f) if $f(F) \subseteq F$. In this case we define the restriction of f to F, as the endomorphism $f_{|F|} \in End(F)$ defined by $f_{|F|}(v) := f(v)$.

PROPOSITION

Let $\mathbf{u} = \{u_1 \dots u_n\}$ be a basis of E obtained by extension of a basis $B = \{u_1, \dots, u_d\}$ of a subspace $F \subset E$. Then F is f-invariant if and only if

$$M_{\boldsymbol{u}}(f) = \left(\begin{array}{c|c} A & * \\ \hline \boldsymbol{0} & * \end{array}\right),$$

where $A \in \mathcal{M}_d(\mathbb{K})$. In this case, $A = M_B(f_{|F})$.

- DEFINITION AND EXAMPLES
- Nullspace and Image
- Composition
- MATRICES OF LINEAR MAPS
- **S** ENDOMORPHISMS AND INVARIANT SUBSPACES
- **6** DUAL SPACE
- BIBLIOGRAPHY

DUAL SPACE

DEFINITION

If E is a \mathbb{K} -e.v., we define the dual space E^* as the \mathbb{K} -e.v $L(E,\mathbb{K})$. Its elements are called linear forms instead of vectors.

If $\mathbf{u} = \{u_1, \dots, u_n\}$ is a basis of E, for each $i \in \{1, \dots, n\}$ we call $u_i^* : E \to \mathbb{K}$ the unique linear map such that

$$u_i^*(u_j) = \left\{ \begin{array}{l} 0, \text{ if } j \neq i \\ 1, \text{ if } j = i \end{array}, \text{ for all } j \in \{1, \ldots, n\}. \right.$$

Hence, $u_i^*(\sum x_j u_j) = x_i$.

PROPOSITION

- **1** $u^* = \{u_1^*, \dots, u_n^*\}$ is a basis of E^* , called the dual basis of u.
- **①** The coordinates of $\omega \in E^*$ in basis \mathbf{u}^* are $\omega(u_1), \dots, \omega(u_n)$.
- **1** The coordinates of $v \in E$ in basis **u** are $u_1^*(v), \ldots, u_n^*(v)$.

In particular, if *E* has finite dimension \Rightarrow dim $E^* = \dim E$.

DUAL AND LINEAR MAPS

Let $f \in L(E, F)$. We define the dual map f^* as the map

$$f^*: F^* \longrightarrow E^*$$
 $\omega \mapsto f^*(\omega) := \omega \circ f$.

Note: $f^* \in L(F^*, E^*)$.

PROPOSITION

If dim $E, F < \infty$ and \boldsymbol{u} , \boldsymbol{v} are basis of E, F respectively, then

$$M_{\mathbf{v}^*,\mathbf{u}^*}(f^*)=(M_{\mathbf{u},\mathbf{v}}(f))^t$$
.

COROLLARY

If dim $E < \infty$ and \boldsymbol{u} , \boldsymbol{v} are two basis of E, then

$$A_{\mathbf{v}^* \to \mathbf{u}^*} = \left(A_{\mathbf{v} \to \mathbf{u}}^{-1}\right)^t.$$

THE BIDUAL

Let E be a \mathbb{K} -e.v of finite dimension. For each $u \in E$, consider the map $\Phi_u : E^* \to \mathbb{K}$ defined as

$$\Phi_u(\omega) = \omega(u), \quad \text{ for each } \omega \in E^*.$$

Then, $\Phi_u \in E^{**} = (E^*)^*, \forall u \in E$.

THEOREM

$$\Phi: E \longrightarrow E^{**}$$

$$u \mapsto \Phi(u) := \Phi_u$$

is an isomorphism, $E \cong E^{**}$.

- DEFINITION AND EXAMPLES
- Nullspace and Image
- Composition
- MATRICES OF LINEAR MAPS
- **S** ENDOMORPHISMS AND INVARIANT SUBSPACES
- **6** DUAL SPACE
- BIBLIOGRAPHY

BIBLIOGRAPHY

Basic:

- D. Poole, Algebra lineal, una introducción moderna (3a ed.), Brooks/Cole, 2013.
- S. Friedberg, A. Insel, L. Spence, Linear Algebra, Pearson Education 2014
- Castellet, LLerena, Algebra lineal i geometria, Edicions UAB, 2000.