

Теория вероятностей и математическая статистика

Практическое занятие 2. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Задача. Производится 3 независимых выстрела по цели. Вероятности попадания при разных выстрелах одинаковы и равны p = 0.9. Какова вероятность: а) промаха; б) одного попадания; в) двух попаданий; г) трех попаданий? Решить задачу в случае, если вероятности попадания при разных выстрелах различны: $p_1 = 0.7$, $p_2 = 0.8$, $p_3 = 0.9$.

Q В данном случае n=3, p=0.9, q=0.1. Пользуясь формулой Бернулли (1.32), находим:

- а) $P_3(0) = C_3^0 \cdot 0.9^0 \cdot 0.1^3 = 0.001$ вероятность трех промахов;
- б) $P_3(1) = C_3^1 \cdot 0.9^1 \cdot 0.1^2 = 3 \cdot 0.9 \cdot 0.01 = 0.027$ вероятность одного попадания;
- в) $P_3(2) = C_3^2 \cdot 0.9^2 \cdot 0.1^1 = 3 \cdot 0.81 \cdot 0.1 = 0.243$ вероятность двух попаданий;
- г) $P_3(3) = C_3^3 \cdot 0.9^3 \cdot 0.1^0 = 0.9^3 = 0.729$ вероятность трех попаданий.

Эти результаты можно изобразить графически, отложив на оси Ox значения m, на оси Oy — значения $P_n(m)$

Ломаная, соединяющая точки (0;0,001), (1;0,027), (2;0,243), (3;0,729), называется многоугольником распределения вероятностей.

Задача. Производится 3 независимых выстрела по цели. Вероятности попадания при разных выстрелах одинаковы и равны p = 0.9. Какова вероятность: а) промаха; б) одного попадания; в) двух попаданий; г) трех попаданий? Решить задачу в случае, если вероятности попадания при разных выстрелах различны: $p_1 = 0.7$, $p_2 = 0.8$, $p_3 = 0.9$.

Если вероятности при разных выстрелах различны, то производящая функция имеет вид $\varphi_3(z) = (0.3 + 0.7z)(0.2 + 0.8z)(0.1 + 0.9z) = 0.504z^3 + 0.398z^2 + 0.092z + 0.006$. Откуда находим вероятность трех, двух, одного попаданий, промаха соответственно: $P_3(3) = 0.504$, $P_3(2) = 0.398$, $P_3(1) = 0.092$, $P_3(0) = 0.006$. (Контроль: 0.504 + 0.398 + 0.092 + 0.006 = 1.)

Задача. Стрелок делает 6 выстрелов по мишени. Вероятность попадания при одном выстреле 2/3. Найти вероятность того, что он попал 4 раза.

Решение: используем формулу Бернулли:

$$P_n^m = C_n^m p^m q^{n-m}$$

В данном случае:

n=6 — всего выстрелов;

m = 4 — искомое количество попаданий в шести испытаниях;

 $p = \frac{2}{3}$ — вероятность попадания в мишень при каждом выстреле;

 $q = 1 - p = 1 - \frac{2}{3} = \frac{1}{3}$ — вероятность промаха в каждом выстреле;

Таким образом:

$$P_6^4 = C_6^4 \cdot \left(\frac{2}{3}\right)^4 \cdot \left(\frac{1}{3}\right)^2 = \frac{6!}{4! \cdot 2!} \cdot \frac{16}{81} \cdot \frac{1}{9} = \frac{5 \cdot 6}{2} \cdot \frac{16}{729} = \frac{80}{243}$$
 — вероятность того, что при шести

выстрелах будет ровно 4 попадания.

Ответ:
$$P_6^4 = \frac{80}{243} \approx 0,3292$$

Монета подбрасывается 5 раз. Найти вероятность события A, состоящее в выпадении 3 гербов.

Выпадение герба будем считать успехом. Так как $\;p\;=\;q\;=\;rac{-}{2},\;$

$$P(A) = C_5^3 \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2 = \frac{10}{2^5} = \frac{5}{16} = 0,3125.$$

Полиномиальное распределение

Игральная кость бросается 12 раз. Найти вероятность события *A*, состоящее в том, что каждая грань выпадет дважды.

Пусть A_1, \ldots, A_6 — события, соответствующие выпадению грани.

По условию все p_i = 1/6 и все m_i = 2. В силу формулы

$$P_n(m_1, m_2, \dots, m_k) = \frac{n!}{m_1! m_2! \dots m_k!} p_1^{m_1} p_2^{m_2} \dots p_k^{m_k}$$

получаем

$$P(A) = \frac{12!}{(2!)^6} \left(\frac{1}{6}\right)^{12} = \frac{1925}{559872} = 0,003438...$$

Формула Пуассона

С винного завода отправили в Москву 1500 бутылок вина. Вероятность того, что в пути бутылка может разбиться, равна 0,002. Найти вероятность того, что в пути будет разбито не более 4-х бутылок.

О Искомая вероятность равна

$$P_{1500}(0) + P_{1500}(1) + P_{1500}(2) + P_{1500}(3) + P_{1500}(4)$$
.

Так как n = 1500, p = 0.002, то a = [np] = 3. Вероятность события A найдем, используя формулу Пуассона (1.35):

$$P(A) = \frac{3^{0} \cdot e^{-3}}{0!} + \frac{3^{1} \cdot e^{-3}}{1!} + \frac{3^{2} \cdot e^{-3}}{2!} + \frac{3^{3} \cdot e^{-3}}{3!} + \frac{3^{4} \cdot e^{-3}}{4!} \approx 0.815. \quad \bullet$$

Формула Пуассона

На лекции по теории вероятностей присутствуют 84 студента. Какова вероятность того, что среди них есть 2 студента, у которых сегодня день рождения?

$$p=1:365\approx 0{,}0027,\ n=84,\ a\approx 0{,}23.$$
 По формуле Пуассона $P_{84}(2)\approx rac{0{,}23^2\cdot 0{,}7945}{2!}\approx 0{,}021.$ ($e^{-0{,}23}\approx 0{,}7945$).

Формула Пуассона

2.3. Возможно короткое замыкание, вероятность которого равна 0,0005 для каждого провода коммуникации. Всего проходит 4000 проводов. Определить вероятность возникновения обесточивания всей системы, если для этого достаточно хотя бы одного замыкания.

Решение. А - событие, состоящее в том, что произойдёт хотя бы одно замыкание; В – событие, состоящее в том, что не произойдёт ни одного замыкания, тогда $p(B)=p_{4000}(0)$; P(A)=1-P(B); $p_{4000}(0)=0.0005$, p_{4000

Математическая модель простейшего потока событий

Задача. Телефонная станция обслуживает 2000 абонентов. Вероятность позвонить любому абоненту в течение часа равна 0,003. Какова вероятность того, что в течение часа позвонят 5 абонентов?

О Среднее число позвонивших в течение часа абонентов равно $2000 \cdot 0.003 = 6$ ($a = np = \lambda t$). Стало быть, $p_5 = \frac{6^5 e^{-6}}{5!} \approx 0,13$.

Локальная теорема Муавра-Лапласа

Найти вероятность того, что событие *А* наступит ровно 80 раз в 400 испытаниях, если вероятность этого события в каждом испытании равна 0,2.

Peшение. По условию $n=400,\,m=80,\,p=0,2,\,q=0,8$. Из локальной теоремы Муавра-Лапласа имеем

$$P_{400}(80) \approx \frac{1}{\sqrt{npq}} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} = \frac{1}{\sqrt{400 \cdot 0, 2 \cdot 0, 8}} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} = \frac{1}{8\sqrt{2\pi}} e^{-x^2/2}.$$

Hаходим x:

$$x = \frac{m - np}{\sqrt{npq}} = 0.$$

В результате

$$P_{400}(80) \approx \frac{1}{8\sqrt{2\pi}} = 0.049867785...$$

Точное значение

$$P_{400}(80) = \frac{400!}{80! \, 320!} \, 0.2^{80} \, 0.8^{320} = 0.049813272....$$

Локальная теорема Муавра-Лапласа

2.1. 100 разбойников пробираются по замку по одиночке. Каждого из них подстерегает ловушка, вероятность попадания в которую равна 0.8, при этом вероятность его смерти равна 0.9. Какова вероятность летального исхода у 60 разбойников.

Решение. А – событие, заключающееся в том, что разбойник умрет. Тогда, p (A)=0.8*0.9=0 .72;

$$x = \frac{60 - 100 * 0.72}{\sqrt{100 * 0.72 * 0.28}} = -2.67;$$

Согласно локальной формуле Муавра-Лапласа

$$p_{100}(60)=0.00265$$
.

Приложение 2. Значение функции $\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int\limits_0^x e^{-\frac{t^2}{2}} \, dt$

		· · · · · · · · · · · · · · · · · · ·									
Γ		Сотые доли x									
1	x	0	1	2	3	4	5	6	7	8	9
1	0,0	0,0000	0040	0080	0112	0160	0199	0239	0279	0319	0359
- 1	0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0754
	0,2	0793	0832	0871	0910	0948	0987	1026	1064	1103	1141
	0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
- 1	0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
	0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
	0,6	2258	2291	2324	2357	2389	2422	2454	2486	2518	2549
- 1	0,7	2580	2612	2642	2673	2704	2734	2764	2794	2823	2852
	0,8	2881	2910	2939	2967	2996	3023	3051	3079	3106	3133
	0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
	1,0	3413	3438	3461	3485	3508	3531	3553	3577	3599	3621
1	1,1	3643	3665	3686	3708	3729	3749	3770	3790	3810	3830
	1,2	3849	3869	3888	3907	3925	3944	3962	3980	3997	4015
-	1,3	4032	1049	4066	4082	1099	4115	4131	4147	4162	4177
-	1,4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
-	1.5	4332	4345	4357	4370	4382	4394	4406	1418	4430	4441
-	1.6	4452	4463	4474	4485	.4495	4505	4515	4525	4535	4545
-	1,7	4554	4564	4573	4582	1591	4599	4608	4616	4625	4633
- 1	1,8	4641	4649	4656	4664	4671	4678	4686	1693	4700	4706
	1,9	4713	4719	4726	4732	4738	4744	4750	4756	4762	4767
Ì			Десятые доли x								
1	\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9
ı	2,	4773	4821	4861	4893	4918	4938	4953	4965	4974	4981
	3,	4987	4990	4993	4995	4997	4998	4998	4999	4999	5000 ¹

Интегральная теорема Муавра-Лапласа

Задача. Проверкой установлено, что цех в среднем выпускает 96% продукции высшего сорта. На базе приемщик проверяет 200 изделий этого цеха. Если среди них окажется более 10 изделий не высшего сорта, то вся партия изделий бракуется, т.е. возвращается в цех. Какова вероятность того, что партия будет принята?

 \mathbf{Q} Здесь $n=200,\ p=0.04$ (вероятность негодного изделия), q=0.96. Вероятность принятия всей партии, т. е. $P_{200}(0\leqslant m\leqslant 10)$, можно найти по формуле (1.44); здесь $k_1=0.$ $k_2=10.$ Находим, что $x_1=\frac{0-200\cdot 0.04}{\sqrt{200\cdot 0.04\cdot 0.96}}\approx -2.89,\ x_2=\frac{10-200\cdot 0.04}{\sqrt{200\cdot 0.04\cdot 0.96}}\approx 0.72,$ $P_{200}(0\leqslant m\leqslant 10)=\Phi_0(0.72)-\Phi_0(-2.89)=0.26424+0.49807=0.7623.$ Заметим, что $\Phi(0.72)-\Phi(-2.89)=0.7642-(1-\Phi(2.89))=0.7642-(1-0.998074)=0.7623.$

Интегральная теорема Муавра-Лапласа

Вероятность того, что зашедший в ресторан посетитель сделает заказ, равна 0,8. Определить вероятность того, что из 100 зашедших не менее 75 человек сделают заказ.

Решение. Поскольку n=100 велико, p=0,8 и q=0,2 не малы, применим интегральную формулу Муавра-Лапласа, получим

$$p_{100}(m \geq 75) = p_{100}(75 \leq m \leq 100) = \Phi(x_1) - \Phi(x_2) = \Phi(\frac{100 - 100 * 0.8}{\sqrt{100 * 0.8 * 0.2}}) -$$

$$\Phi(\frac{75-100*0,8}{\sqrt{100*0,8*0,2}}) = \Phi(5) - \Phi(-1,2) = \Phi(5) + \Phi(1,2) = 0,5+0,385=0,885.$$

Дискретная случайная величина

Задача. В урне 8 шаров, из которых 5 белых, остальные — черные. Из нее вынимают наудачу 3 шара. Найти закон распределения числа белых шаров в выборке.

О Возможные значения с. в. X — числа белых шаров в выборке есть $x_1=0,\ x_2=1,\ x_3=2,\ x_4=3.$ Вероятности их соответственно будут $p_1=P\{X=0\}=\frac{C_5^0\cdot C_3^3}{C_8^3}=\frac{1}{56},\ p_2=P\{X=1\}=\frac{C_5^1\cdot C_3^2}{C_8^3}=\frac{15}{56},\ p_3=\frac{30}{56},\ p_4=\frac{10}{56}$. Закон распределения запишем в виде таблицы.

X	0	1	2	3	
P	$\frac{1}{56}$	$\frac{15}{56}$	$\frac{30}{56}$	$\frac{10}{56}$	

(Контроль:
$$\sum_{1}^{4} p_i = \frac{1}{56} + \frac{15}{56} + \frac{30}{56} + \frac{10}{56} = 1.$$
)

Дискретная случайная величина

Задача. В ящике 10 деталей, из которых 3 дефектных. Наугад извлекают 2 детали. Построить ряд распределения случайной величины ξ - количества дефектных деталей среди извлечённых.

Решение. Случайная величина ξ в данном случае принимает значения $x_i = \text{i-1}$, где i = 1, 2, 3. Вероятности $p_i = P\left(\xi = x_i\right)$ того, что среди двух взятых деталей окажется ровно x_i дефектных, вычисляются в соответствии с классическим определением вероятности по формуле

$$P(\xi=x_i) = \frac{C_3^{i-1} \cdot C_{10-3}^{3-i}}{C_{10}^2}, \text{ откуда получаем, что ряд распределения случайной}$$

x_i	0	1	2
p_i	7 / 15	7 / 15	1 / 15

Отметим, что
$$\sum_{i=1}^{3} p_{i} = 1$$
.

Задача. Спортсмен стреляет по мишени до первого попадания или до израсходования всех патронов. Предполагая, что вероятность поражения мишени при каждом выстреле равна 0.8 и имеется 5 патронов, построить ряд распределения случайной величины ξ - количества израсходованных патронов.

Решение. Случайная величина ξ в данном случае принимает значения $x_k = k$ (k = 1, 2, 3, 4, 5). Обозначим через A_k - попадание при k-ом выстреле. Тогда, очевидно

$$P(\xi=1)=P(A_1)=0.8, \qquad P(\xi=4)=P(\overline{A_1}\overline{A_2}\overline{A_3}A_4)=0.2\cdot0.2\cdot0.2\cdot0.8, \\ P(\xi=2)=P(\overline{A_1}A_2)=0.2\cdot0.8, \qquad P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_4})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=3)=P(\overline{A_1}\overline{A_2}A_3)=0.2\cdot0.2\cdot0.8, \qquad P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_4})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=3)=P(\overline{A_1}\overline{A_2}A_3)=0.2\cdot0.2\cdot0.8, \qquad P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_4})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_4})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_4})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_4})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_3})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_3})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=5)=P(\overline{A_1}\overline{A_2}\overline{A_3})=0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2\cdot0.2, \\ P(\xi=5)=P(\overline{A_$$

т.е. для k = 1, 2, 3, 4, $P(\xi = x_k) = p \cdot q^{k-1}$, где p = 0.8, $q = 1 \cdot p = 0.2$. Например, ровно 3 патрона будут израсходованы, если спортсмен в первых двух выстрелах промахнётся, а в третьем попадёт; вероятность такого исхода равна $P(\xi = 3) = q \cdot q \cdot p = p \cdot q^2$. Если случайная величина ξ принимает значение $x_5 = 5$, это означает, что все патроны израсходованы, т.е. в четырёх первых выстрелах были промахи, следовательно, $P(\xi = 5) = q^4$.

Проведя вычисления, получим следующий ряд распределения случайной величины ξ

x_k	1	2	3	4	5
p_k	0.8	0.16	0.032	0.0064	0.0016

Проверка:
$$\sum_{k=1}^{5} p_{k} = 1$$
.

Дискретная случайная величина

Идёт охота на дикого зверя с помощью ловушки. Вероятность попасть в ловушку для волка-0.3, для медведя-0.5, для лисы и зайца-0.6. Найти закон распределения нормальной величины х - числа попавших в ловушку зверей.

- - -

Решение. p_1 =0,3; q_1 =0,7; p_2 =0,5; q_2 =0,5; p_3 =0,6; q_3 =0,4; p(x=0)= $p_1p_2p_3$ =0.7*0.5*0.4=0.14; p(x=1)= $p_1q_2q_3+q_1p_2q_3+q_1q_2p_3$ =0.41;

P(x=2)=0.36; P(x=3)=0.09.

X	0	1	2	3
p	0,14	0,41	0,36	0,09