Ph202

Chapitre 4 : Puissance, travail, énergie

E. Riedinger Département des Sciences Physiques

Mars 2020

E. Riedinger

- 1. Définitions
- 1.1 Puissance d'une force

Système de vitesse \overrightarrow{V} soumis à force \overrightarrow{F}

Puissance d'une force

$$\mathcal{P} = \overrightarrow{F} \cdot \overrightarrow{V}$$

Puissance "instantanée" (càd à l'instant t considéré)

Unité: le Watt (W)

 $\mathcal{P} > 0$ force motrice

 $\mathcal{P} < 0$ force résistante

 $\mathcal{P} = 0 \text{ si } \overrightarrow{F} \perp \overrightarrow{V}$

1.1 Puissance d'une force

Exemple 1

Montée à vitesse constante $v_1=+1,0\,\mathrm{m\cdot s^{-1}}$ d'un seau rempli d'eau (\mathcal{R} terrestre : galiléen) modélisé par point matériel (masse $m=75\,\mathrm{kg}$) soumis au poids ($g=9,8\,\mathrm{m\cdot s^{-2}}$) et à une traction. Calculer les puissances des forces sur le seau. **—

$$\overrightarrow{T} + m\overrightarrow{g} = m\overrightarrow{a} = \overrightarrow{0} \text{ donc } T = mg$$

$$\overrightarrow{T} \cdot \overrightarrow{V} + m\overrightarrow{g} \cdot \overrightarrow{V} = 0$$

$$\mathcal{P}(\overrightarrow{T}) + \mathcal{P}(m\overrightarrow{g}) = 0$$

$$\mathcal{P}(m\overrightarrow{g}) = -mgv_1 = -735 \text{ W}$$

$$\mathcal{P}(\overrightarrow{T}) = Tv_1 = +735 \text{ W}$$

Chevaux vapeur : 1 hp = 746 W, 1 ch = 735, 5 W

1.1 Puissance d'une force

Exemple 2 : Puissance d'un couple

Tige (système indéformable) tournant autour d'un axe Δ (\perp figure). A_1 et A_2 deux points de la tige symétriques / Δ . $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ deux forces symétriques (somme nulle et points d'application différents) s'exerçant en A_1 et A_2 \perp tige, formant un couple Γ (moment de deux forces symétriques). Calculer la puissance de ces forces.

Rotation
$$v_1 = v_2 = r\omega$$

Couple $\Gamma = F_1 r + F_2 r = 2F_1 r = F_1 d$
Puissance $\mathcal{P}(\Gamma) = \mathcal{P}(\overrightarrow{F_1}) + \mathcal{P}(\overrightarrow{F_2})$
 $\mathcal{P}(\Gamma) = \overrightarrow{F_1} \cdot \overrightarrow{v_1} + \overrightarrow{F_2} \cdot \overrightarrow{v_2}$
 $\mathcal{P}(\Gamma) = F_1 r\omega + F_2 r\omega = F_1 d\omega$
Donc $\mathcal{P}(\Gamma) = \Gamma \omega$

1.1 Puissance d'une force

Exemple 2 : Puissance d'un couple

Moteur d'automobile : À $f = 5000 \, \text{tr/min}$ on a $\omega = 2\pi f = 2\pi \times \frac{5000}{60}$ $\omega = 523, 6 \, \text{rad} \cdot \text{s}^{-1}$ et $\Gamma = 240 \, \text{Nm}$ Alors $\mathcal{P} = \Gamma \omega = 523, 6 \times 240$ $\mathcal{P} = 125, 7 \, \text{kW}$ (ou $\frac{125700}{735} = 171 \, \text{ch}$)

1.2 Travail d'une force

Travail d'une force \overrightarrow{F} sur un chemin AB

$$W_{AB}\left(\overrightarrow{F}\right) = \int_{A}^{B} \overrightarrow{F} \cdot d\overrightarrow{OM}$$

Travail élémentaire : $dW = \overrightarrow{F} \cdot d\overrightarrow{OM} (= \mathcal{P}dt)$

Propriétés (←Chap.1)

Travail $W(\overrightarrow{F})$: circulation de \overrightarrow{F} sur chemin menant de A à B: dépend du chemin suivi.

$$W\left(\overrightarrow{F}\right)$$
 en Joules (J)

Le travail est un échange d'énergie entre deux systèmes

W>0 pour force motrice, W<0 pour force résistante

 $\mathsf{NB}:\mathsf{Pour}\ \mathsf{toute}\ \mathsf{force}\ \bot\ \mathsf{au}\ \mathsf{d\'eplacement}:\ W\ \mathsf{et}\ \mathcal{P}\ \mathsf{nuls}$

E. Riedinger

1.2 Travail d'une force

Exemple

Point matériel (m = 20 kg) tiré de O à A (distance L = 4 m) sur plan horizontal. \vec{F} frottement de glissement $\mu = 0, 5$. Calculer sur chemins OA puis OBCA. *

Pas de mouvement vertical donc R = P

$$F = \mu R = \mu mg$$
 (loi Coulomb)

Sur
$$\overrightarrow{OA}$$
:
 $\overrightarrow{F} = -F\overrightarrow{u_y}$ et $\overrightarrow{OM} = \overrightarrow{dy}\overrightarrow{u_y}$
 $\overrightarrow{W}(\overrightarrow{F}) = \int_0^A \overrightarrow{F} \cdot \overrightarrow{dOM} = -\int_0^A F\overrightarrow{dy}$

$$W(\overrightarrow{F}) = -F \times OA = -\mu mgL = -400 \text{ J}$$

De même sur OBCA (=dépend du chemin!)

$$W\left(\overrightarrow{F}\right) = \int_{O}^{B} \overrightarrow{F} \cdot d\overrightarrow{OM} + \int_{B}^{C} \overrightarrow{F} \cdot d\overrightarrow{OM} + \int_{C}^{A} \overrightarrow{F} \cdot d\overrightarrow{OM}$$

$$W(\overrightarrow{F}) = -3\mu mgL = -1200 \text{ J}$$

2.1 Théorème de la puissance cinétique

Point matériel (m) soumis à résultante de forces extérieures \overrightarrow{F} $(\mathcal{R}$ galiléen)

$$m\overrightarrow{a} = \sum \overrightarrow{F}_{\text{ext}} = \overrightarrow{F}$$

 $m\overrightarrow{a} \cdot \overrightarrow{y} - \overrightarrow{F} \cdot \overrightarrow{y}$

Remarque :
$$\overrightarrow{V}^2 = \overrightarrow{V} \cdot \overrightarrow{V} = v^2$$

$$\frac{d\left(\frac{1}{2}m\overrightarrow{\nabla}^{2}\right)}{dt} = m\frac{d\overrightarrow{\nabla}}{dt} \cdot \overrightarrow{V} = m\overrightarrow{a} \cdot \overrightarrow{V}$$

Théorème de la puissance cinétique (TPC)

$$\frac{d\mathcal{E}_c}{dt} = \mathcal{P}\left(\overrightarrow{F}\right)$$

Dans $\mathcal R$ galiléen la puissance de la résultante des forces extérieures est égale à la dérivée temporelle de l'énergie cinétique.

2.1 Théorème de la puissance cinétique

Exemple

Montée d'un seau rempli d'eau (\mathcal{R} terrestre : galiléen) modélisé par point matériel (masse $m=10\,\mathrm{kg}$) soumis au poids ($g=10\,\mathrm{m\cdot s^{-2}}$) et à une traction constante ($T=110\,\mathrm{N}$) sans vitesse initiale. Vérifier le théorème de la puissance cinétique à l'instant $\tau=2\,\mathrm{s}$. **—

TPC à vérifier :
$$\frac{d\mathcal{E}_c}{dt} = \mathcal{P}\left(m\overline{g}\right) + \mathcal{P}\left(\overrightarrow{T}\right)$$

Accélération $m\overline{a} = \overrightarrow{T} + m\overline{g}$ Proj : $ma_z = T - mg$

$$a_z = \frac{T}{m} - g = \frac{110}{10} - 10 = +1 \text{ m·s}^{-2} \text{ constante !}$$

Vitesse (avec CI) : $v_z = a_z t$ (à $t = \tau$: $v = 2 \text{ m·s}^{-1}$)
$$\mathcal{E}_c = \frac{1}{2} m v_z^2 = \frac{1}{2} m (a_z t)^2 \qquad \frac{d\mathcal{E}_c}{dt} = ma_z^2 t$$

AN en τ : $\frac{d\mathcal{E}_c}{dt} = 10 \times 1^2 \times 2 = 20 \text{ W}$

$$\mathcal{P}\left(m\overline{g}\right) = -mgv = 10 \times (-10) \times 2 = -200 \text{ W}$$

$$\mathcal{P}\left(\overrightarrow{T}\right) = +Tv = 110 \times 2 = +220 \text{ W}$$
E. Riedinger Ph202 Ch4

2.2 Théorème de l'énergie cinétique

Point matériel (m) soumis à résultante de forces extérieures \overrightarrow{F} $(\mathcal{R}$ galiléen)

$$\frac{d\mathcal{E}_c}{dt} = \mathcal{P}$$

Donc
$$d\mathcal{E}_c = \mathcal{P}dt = \overrightarrow{F} \cdot \overrightarrow{V}dt = \overrightarrow{F} \cdot d\overrightarrow{OM}$$

Théorème de l'énergie cinétique (forme différentielle) $d\mathcal{E}_c = dW\left(\overrightarrow{F}\right)$ Intégration sur chemin entre point de départ A et point d'arrivée B: $\int_A^B d\mathcal{E}_c = \int_A^B dW\left(\overrightarrow{F}\right)$

Théorème de l'énergie cinétique (TEC)

$$\mathcal{E}_{c}(B) - \mathcal{E}_{c}(A) = W_{AB}(\overrightarrow{F})$$

Dans \mathcal{R} galiléen la différence d'énergie cinétique entre le point d'arrivée et le point de départ est égale au travail de la résultante des forces extérieures sur le chemin menant du départ à l'arrivée.

2.2 Théorème de l'énergie cinétique

Exemple 1

Point matériel (m) lancé vers le haut avec v_0 . Vérifier le TEC entre le point A (départ à z=0) et B (sommet de la trajectoire). *

$$a_z = -g$$
 donc $v_z(t) = -gt + v_0$
Vitesse s'annule (sommet) pour $t_1 = \frac{v_0}{g}$

Position
$$z(t) = -\frac{1}{2}gt^2 + v_0t$$

Sommet en

$$z_{1} = z(t_{1}) = -\frac{1}{2}g\left(\frac{v_{0}}{g}\right)^{2} + v_{0}\frac{v_{0}}{g} = \frac{v_{0}^{2}}{2g}$$

Énergie cinétique :

$$\mathcal{E}_{c}(B) - \mathcal{E}_{c}(A) = 0 - \frac{1}{2}mv_{0}^{2}$$

Travail
$$W_{AB}\left(m\overrightarrow{g}\right) = -\int_{A}^{B} mgdz = -mg\left(z_{1} - z_{0}\right)$$

Donc $W_{AB}\left(m\overrightarrow{g}\right) = -mg\left(\frac{v_{0}^{2}}{2g} - 0\right) = -\frac{1}{2}mv_{0}^{2}$ Identique (et <0!).

2.2 Théorème de l'énergie cinétique

Exemple 2

Montée d'un seau (initialement immobile) rempli d'eau Modélisé par point matériel (masse $m=10\,\mathrm{kg}$) soumis au poids ($g=10\,\mathrm{m\cdot s^{-2}}$) et à une traction ($T=110\,\mathrm{N}$). Déterminer la distance d parcourue et vérifier le TEC entre l'instant initial en A et l'instant final (à $\tau=2\,\mathrm{s}$) en B **—

$$\begin{aligned} v_z &= a_z t \text{ donc } z\left(t\right) = \frac{1}{2} a_z t^2 \\ \text{donc pour } t &= \tau \text{ on a } z = d = \frac{1}{2} a_z \tau^2 = \frac{1}{2} \times 1 \times 2^2 = 2 \text{ m} \\ W_{AB}\left(m\overrightarrow{g}\right) &= -mg\left(z_B - z_A\right) = -mgd = -10 \times 10 \times 2 = -200 \text{ J} \\ W_{AB}\left(\overrightarrow{T}\right) &= \int_A^B T_z dz = T_z \left(z_B - z_A\right) = T_z d = 110 \times 2 = 220 \text{ J} \\ \Delta \mathcal{E}_c &= \mathcal{E}_c\left(B\right) - \mathcal{E}_c\left(A\right) = \frac{1}{2} m v_1^2 - 0 = \frac{1}{2} \times 10 \times 2^2 = 20 \text{ J} \\ \Delta \mathcal{E}_c &= W_{AB}\left(\overrightarrow{T}\right) + W_{AB}\left(m\overrightarrow{g}\right) \end{aligned}$$

- 3.1 Énergie potentielle 3.2 Énergie mécanique
 - .3 Propriétés

3. Forces conservatives

3.1 Énergie potentielle

Dans le cas général le travail W_{AB} d'une force \overrightarrow{F} entre A et B dépend du chemin suivi. Sauf (cf. chap1) si \overrightarrow{F} est un gradient.

On pose $\overrightarrow{F} = -\overrightarrow{\text{grad}}\mathcal{E}_p$ où \mathcal{E}_p énergie potentielle.

Une telle force est appelée force conservative. NB : signe!

Travail d'une force conservative entre A et B

$$W_{AB}\left(\overrightarrow{F}\right) = \int_{A}^{B} \overrightarrow{F} \cdot d\overrightarrow{OM} = \int_{A}^{B} -\overrightarrow{\operatorname{grad}}\mathcal{E}_{p} \cdot d\overrightarrow{OM} = -\int_{A}^{B} d\mathcal{E}_{p}$$

$$W_{AB}\left(\overrightarrow{F}\right) = \mathcal{E}_{p}\left(A\right) - \mathcal{E}_{p}\left(B\right)$$
 indépendant du chemin suivi

 \mathcal{E}_p est bien une énergie car (déf. du gradient) $\overrightarrow{F} \cdot d\overrightarrow{OM} = -d\mathcal{E}_p$!

3.1 Énergie potentielle

Exemple

Travail du poids entre A et B.

$$W_{AB}(m\overrightarrow{g}) = \int_{A}^{B} m\overrightarrow{g} \cdot d\overrightarrow{OM}$$

$$W_{AB}(m\overrightarrow{g}) = \int_{A}^{B} mgdOM \cos \left(\alpha + \frac{\pi}{2}\right)$$

$$W_{AB}(m\overrightarrow{g}) = -mg \sin \alpha \int_{A}^{B} dOM$$

$$W_{AB}(m\overrightarrow{g}) = -mg \sin \alpha AB$$

$$W_{AB}(m\overrightarrow{g}) = -mg (z_{B} - z_{A})$$

À remplacer par méthode directe :

$$W_{AB}\left(m\overrightarrow{g}\right) = \mathcal{E}_{p}\left(A\right) - \mathcal{E}_{p}\left(B\right) = mgz_{A} - mgz_{B}$$

Énergie potentielle de pesanteur

 $\mathcal{E}_p = mgz + K$ (avec axe des z vers le haut)

$$\operatorname{car} \ m\overrightarrow{g} = -mg\overrightarrow{u_z} = -\overrightarrow{\operatorname{grad}} \left(mgz + K \right)$$

E. Riedinger

3.1 Énergie potentielle 3.2 Énergie mécanique

3.3 Propriétés

3.1 Énergie potentielle

Force conservative : $\overrightarrow{F} = -\overrightarrow{\operatorname{grad}}\mathcal{E}_p$

Cas général : identifier si \overrightarrow{F} est un gradient (méthode Chap.1)

Remarques

- \mathcal{E}_p définie à une constante près (\rightarrow choix d'une référence).
- Une force centrale (\rightarrow on travaille en cylindriques car le mouvement est plan cf. chap3), de la forme $\overrightarrow{F} = \phi(r) \overrightarrow{u_r}$ est conservative $(\phi(r)$ fonction de r):

$$\overrightarrow{\operatorname{grad}}\mathcal{E}_{p} = \frac{d\mathcal{E}_{p}}{dr}\overrightarrow{u_{r}} = -\phi\left(r\right)\overrightarrow{u_{r}} \text{ donc } \mathcal{E}_{p} = -\int\phi\left(r\right)dr = -\Phi\left(r\right)$$

Exemples d'énergies potentielles associées à des forces usuelles

• Force de rappel élastique :

$$\overrightarrow{F} = -kr\overrightarrow{u_r}$$
 avec $\phi(r) = -kr : \mathcal{E}_p = +\frac{1}{2}kr^2 + K$

• Attraction gravitationnelle :

$$\overrightarrow{F} = -rac{\mathcal{G}m_1m_2}{r^2}\overrightarrow{u_r}$$
 avec $\phi(r) = -rac{\mathcal{G}m_1m_2}{r^2}$: $\mathcal{E}_p = -rac{\mathcal{G}m_1m_2}{r} + \mathcal{K}$

3.1 Energie potentielle 3.2 Énergie mécanique

3.2 Énergie mécanique

Dans \mathcal{R} galiléen système soumis à $\overrightarrow{F_C}$ force conservative (\mathcal{E}_p énergie potentielle associée) et à $\overrightarrow{F_{NC}}$ force non conservative.

Théorème de l'énergie cinétique :
$$d\mathcal{E}_c = dW\left(\overrightarrow{F_C}\right) + dW\left(\overrightarrow{F_{NC}}\right)$$

Or énergie potentielle : $dW\left(\overrightarrow{F_C}\right) = -d\mathcal{E}_p$

Donc $d\mathcal{E}_c = -d\mathcal{E}_p + dW\left(\overrightarrow{F_{NC}}\right)$

Définition

Énergie mécanique $\mathcal{E}_m = \mathcal{E}_c + \mathcal{E}_p$

$$d\mathcal{E}_{m} = d\mathcal{E}_{c} + d\mathcal{E}_{p} = dW\left(\overrightarrow{F_{NC}}\right)$$

On intègre sur le chemin suivi entre A et B :

$$\Delta \mathcal{E}_{m} = \int_{A}^{B} d\mathcal{E}_{m} = \mathcal{E}_{m}(B) - \mathcal{E}_{m}(A) = \int_{A}^{B} dW \left(\overrightarrow{F_{NC}}\right)$$

$$\Delta \mathcal{E}_{m} = W_{AB} \left(\overrightarrow{F_{NC}} \right)$$

E. Riedinger

3.1 Energie potentielle
3.2 Énergie mécanique

3.2 Énergie mécanique

Théorème de l'énergie mécanique

$$\Delta \mathcal{E}_{m} = W_{AB} \left(\overrightarrow{F_{NC}} \right)$$

Dans \mathcal{R} galiléen la variation d'énergie mécanique d'un système entre A et B est égale au travail des forces non conservatives sur le chemin suivi entre A et B.

Système conservatif (=uniquement soumis à des forces conservatives)

L'énergie mécanique $\mathcal{E}_m = \mathcal{E}_c + \mathcal{E}_p$ d'un système conservatif est constante (= loi de conservation = intégrale première du mouvement).

Th. de l'énergie mécanique pour système conservatif à 1D (x): $\mathcal{E}_m = \mathcal{E}_c + \mathcal{E}_p(x) = \text{constante}$ (= valeur intiale) $(\mathcal{E}_p(x) \text{ connue})$

Retrouver l'équation différentielle du mouvement

Dériver (/t) cette équation énergétique : équation des puissances. Diviser par la vitesse (1D) : forces (PFD).

E. Riedinger

3.1 Energie potentielle 3.2 Énergie mécanique

3.2 Énergie mécanique

Exemple

Point matériel m=1 kg glisse ($\mu=0,2$) sans vitesse initiale sur plan incliné $\alpha=30^\circ$. Vérifier le théorème de l'énergie mécanique entre A(t=0) et $B(t=3\,\mathrm{s})$. $g=10\,\mathrm{m}\cdot\mathrm{s}^{-2}$. #—(cf. Ch.3)

 \overrightarrow{R} \perp déplacement ne travaille pas

Acc:
$$a_x = g \left(\sin \alpha - \mu \cos \alpha \right) = 3,27 \,\mathrm{m} \cdot \mathrm{s}^{-2}$$

En
$$B v_B = t a_x = 9,80 \,\mathrm{m \cdot s^{-1}}$$

Distance
$$AB = \frac{1}{2} a_x t^2 = 14,7 \,\mathrm{m}$$

TEM entre
$$A$$
 et $B: \mathcal{E}_m(B) - \mathcal{E}_m(A) = W_{AB}(\overrightarrow{F})$

$$\mathcal{E}_{m}(B) = \mathcal{E}_{c}(B) + \mathcal{E}_{p}(B) = \frac{1}{2}mv_{B}^{2} + mgz_{B}$$

$$\mathcal{E}_{m}(A) = \mathcal{E}_{c}(A) + \mathcal{E}_{p}(A) = 0 + mgz_{A}$$

$$\mathcal{E}_m(B) - \mathcal{E}_m(A) = \frac{1}{2} \times 1 \times 9, 8^2 - 1 \times 10 \times 14, 7 \times \frac{1}{2} = -25,47 \text{ J}$$

$$W_{AB}(\overrightarrow{F}) = \int_{A}^{B} \overrightarrow{F} \cdot d\overrightarrow{OM} = -F \times AB = -\mu mgAB \cos \alpha = -25,47 \text{ J}$$

- Définitions Théorèmes 3. Forces conservatives
- 3.3 Propriétés

3.3 Propriétés

3.3.1 Étude de la stabilité d'un équilibre

À 1D (1 degré de liberté x) $\overrightarrow{F} = F_x \overrightarrow{u_x}$ conservative, $\mathcal{E}_p(x)$ connue Position d'équilibre x_i : extremum de \mathcal{E}_p càd $\frac{d\mathcal{E}_p}{dx}(x_i) = -F_x = 0$

$$S_{1}^{i} \mathcal{E}_{p}$$
 minimale en x_{i} :

 $\frac{d^2 \mathcal{E}_p}{d v^2}(x_i) \geq 0$ càd $\frac{d \mathcal{E}_p}{d x}$ croissante autour de xi donc $F_x = -\frac{d\mathcal{E}_p}{dx}$ décroissante

Au voisinage de x_i : $F_{x}(x < x_{i}) > 0$ et

$$F_x(x > x_i) < 0$$
 donc \overrightarrow{F} ramène le mobile en $x_i = \text{position}$

le mobile en $x_i = position$ stable

Stabilité

Équilibre stable si $\frac{d^2\mathcal{E}_p}{dx^2}(x_i) > 0$, instable si $\frac{d^2\mathcal{E}_p}{dx^2}(x_i) < 0$

E. Riedinger

3.1 Energie potentielle 3.2 Énergie mécanique 3.3 Propriétés

3.3.1 Étude de la stabilité d'un équilibre

Conséquence

Déplacement au voisinage d'une position d'équilibre stable

Si petits déplacements autour de la position d'équilibre $x_0=0$:

Développement limité de $\mathcal{E}_p(x)$ à l'ordre 2 autour de 0 :

$$\mathcal{E}_{p}(x) = \mathcal{E}_{p}(0) + x \frac{d\mathcal{E}_{p}}{dx}(0) + \frac{1}{2}x^{2} \frac{d^{2}\mathcal{E}_{p}}{dx^{2}}(0)$$

avec
$$\frac{d\mathcal{E}_p}{dx}(0) = -F_x(0) = 0$$
 (équilibre) et $\frac{d^2\mathcal{E}_p}{dx^2}(0) > 0$ (stabilité)

On pose
$$k = \frac{d^2 \mathcal{E}_p}{dx^2} (0) (\neq 0)$$
 donc $\mathcal{E}_p(x) = \mathcal{E}_p(0) + \frac{1}{2}kx^2$

càd force $F_x = -\frac{d\mathcal{E}_p}{dx} = -kx$ identique à force de rappel élastique Alors (2e loi de Newton) $m\ddot{x} = F_x = -kx$ soit $\ddot{x} + \frac{k}{m}x = 0$

équation d'un oscillateur harmonique (cf. Chap.5)

Conclusion

Un système uniquement soumis à une force conservative effectue des oscillations harmoniques au voisinage d'une position d'équilibre stable

Prévision graphique

 $\mathcal{E}_m = \mathcal{E}_p + \mathcal{E}_c$ avec \mathcal{E}_m constante et $\mathcal{E}_c \geq 0$ Graphiquement \mathcal{E}_m au-dessus de \mathcal{E}_p

Cas 1 (\mathcal{E}_{m1}) : le mouvement peut aller de x_1 à $+\infty$ Cas 2 (\mathcal{E}_{m2}) : le mouvement est borné entre x_2 et x_3

1.1 Energie potentielle 1.2 Énergie mécanique

3.3 Propriétés

3.3.2 Détermination de la nature des mouvements

Exemple : Chute libre

Mobile avec vitesse v_0 initiale vers le haut : tracer $\mathcal{E}_p\left(z\right)$, \mathcal{E}_m .

$$\mathcal{E}_{p}\left(z
ight)=mgz$$
 (on choisit comme référence $\mathcal{E}_{p}\left(0
ight)=0$)

TEM : $\mathcal{E}_m = \mathcal{E}_c + \mathcal{E}_p$ constante (poids seule force, conservative)

Le mouvement ne peut donc pas aller plus haut que z_1 .

Valeur de
$$z_1$$
: $\mathcal{E}_m(0) = \mathcal{E}_m(z_1)$ càd $\frac{1}{2}mv_0^2 = mgz_1$ donc $z_1 = \frac{v_0^2}{2g}$

E. Riedinger Ph202 Ch.4