Digitalna vezja UL, FRI

P11, Pomnilnik

Vsebina

- Pomnilniki uvod
- ROM (Read Only Memory)
- RAM (Random Access Memory)
- > Literatura:
- Widmer, S.W, Moss, G.L., Tocci, R.J., Digital Systems, Principles and Applications, Pearson, 2018, poglavje 12 (887 – 959)
- Wakerly, J.F., Digital Design, Principles & Practices, Prentice Hall International, 2001, poglavje 9, (799 – 840)

Pomnilnik

- Digitalni sistemi velike količine podatkov
- Shranjevanje podatkov in ukazov.
- Pomnilne naprave in sistemi
- > Tip pomnilnika:
 - Notranji pomnilnik
 - > Registri CPE
 - > Predpomnilnik
 - > Glavni pomnilnik
 - Zunanji pomnilnik
 - Magnetni disk
 - Optični disk
 - Magnetni trak
- Bipolarna in MOS tehnologija
 - Najhitrejši pomnilniki
 - Nižanje cene

http://www.tutorialspoint.com/computer_logical_organization/memory_devices.htm

Osnovni principi

Vsak tip pomnilnika, ki jih bomo spoznali, ima v osnovi drugačne notranje operacije.

Za vse pomnilne sisteme pa veljajo osnovni principi delovanja:

- Uporaba dvojiškega naslova za dostop do pomnilne lokacije.
- Omogočiti pomnilniku, da odgovori na krmilne vhode.
- Posredovanje podatkov, ki so shranjeni na določeni lokaciji, na notranje podatkovne linije (vodilo).
- > Branje omogočiti tri-stanjski izhod, ki posreduje podatke na izhodne pine.
- > Pisanje uporaba podatkov za shranjevanje iz vhodnih pinov.
- Omogočiti operacijo pisanja podatki se bodo shranili na določeno lokacijo.
- Sprostitev krmiljenja Branje/Pisanje po izvedbi branja ali pisanja in onemogočanje delovanja pomnilnega integriranega vezja (IC-integrated circuit)

Pomnilnik: 32 x 4

Osnovne funkcije poenostavljenega diagrama pomnilnika, ki shrani 32 4-bitnih besed.

- ~WE write enable
- A_i naslovni vhodi
- - ME memory enable
 > I_i podatkovni vhodi
- OE output enable
- > O_i podatkovni izhodi

Naslov														
00000	0	0	1	1										
00001	0	1	1	0										
00010	1	1	1	1										

Pomnilne celice

11101	0	0	0	1									
11110	1	0	1	1									
11111	1	1	0	1									

Oznaka za negacijo: ~

Primer:

- > Pomnilnik velikost 2K x 8:
 - Število pomnilnih besed: 2 * 1024 = 2048
 - > Dolžina besede: 8-bitov ali I bajt
 - Število bitov: 2048 * 8 = 16384
- Kateri pomnilnik shrani več bitov: 5M x 8 ali 1M x 16?
 - > 5M x 8 = 5*2²⁰ * 2³ = 5* 2²³ (shrani več bitov)
 - \rightarrow IM x I6 = I*2²⁰ * 2*2^{*3} = 2* 2²³
- Za branje lokacije 00010 pomnilnika 32 x 4 so določeni vhodi, izhodi, signali:
 - > Naslov: 00010
 - Podatkovni vhodi: xxxx
 - > ~WE: HIGH
 - > ME: HIGH
 - > OE: HIGH
 - Podatkovni izhodi: I I I I

Arhitektura pomnilnika

- N besed -> N izbiralnih signalov
- \triangleright Dekoder določa število izbiralnih signalov (K=log₂N)
- K bitni naslov

Primer:

Shraniti želimo 16 različnih 8-bitnih podatkov – kakšna je struktura pomnilnika?

- > Število bitov naslova:
- Velikost pomnilnika-število bitov:

Rešitev:	4-bitn naslov	_								
<u>Določitev naslova:</u> N=16 besed	0000	b7	b6	b5	b4	b3	b2	b1	b0	bajt 0
$K = log_2 N -> 2^K = 16 = 2^4$	0001									bajt 1
K = 4 (število bitov naslova)	0010									bajt 2
	0011									bajt 3
Velikost pomnilnika: 16 bajtov (16B)				••						
16x8 = 128 bitov	1110									bajt 14
	1111									bait 15

Primer:

Zapis datuma v pomnilniku: 30.december 2016

Vsebina pomnilnika: Vsaka beseda je UTF-8 (ASCII) zapis znakov

Vir: http://www.utf8-chartable.de/

Na	aslo	V							Poc	latek	ı	Naslo	V							P	oda	tek
0	0	0	ı	ı	0	0	ı	ı	3	33		8	0	ı	I	0	0	0	I	0	b	62
ı	0	0	I	I	0	0	0	0	0	30		9	0	I	I	0	0		0	I	е	65
2	0	0	I	0	I	I	I	0		2e		10	0	I	I	I	0	0	I	0	r	72
3	0	ı	I	0	0	I	0	0	d	64		П	0	0	ı	0	0	0	0	0		20
4	0	ı	I	0	0	ı	0	I	е	65		12	0	0	ı	I	0	0	ı	0	2	32
5	0	I	I	0	0	0	I	I	С	63		13	0	0	ı	I	0	0	0	0	0	30
6	0	I	I	0	0	I	0	I	е	65		14	0	0	ı	I	0	0	0	ı	1	31
7	0	I	I	0	I	I	0	I	m	6d		15	0	0	I	I	0	I	I	0	6	36

Pomnilniki – pomnilniška polja

Povezava: CPE - Pomnilnik

- Glavni pomnilnik polprevodniški pomnilnik (angl. semiconductor)
- Naslovno vodilo enosmerno vodilo, kjer naslov iz CPE določa lokacijo.
- Podatkovno vodilo dvosmerno vodilo za prenos podatkov v/iz CPE.
- ▶ Kontrolno vodilo signala ~RD (read data), ~WR (write data) iz CPE v pomnilnik. Izvajata se operaciji branja in pisanja.

ROM (Read Only Memory)

- ROM ima samo operacijo branja.
- > Enkrat (večkrat) ga je mogoče programirati pred uporabo.
- > Obstojno, trajno shranjevanje podatkov, kjer se ob izklopu napetosti ohrani informacija (angl. Nonvolatile memory).
- Naključni dostop do podatkov ('random access') Čas dostopa je enak za vse lokacije pomnilnika.
- Brisanje in ponovno programiranje:
 - PROM (Programmable ROM)
 - EPROM (Erasable Programmable ROM).
 - EEPROM (Electrically Erasable Programmable ROM)
- Uporaba:
 - > shranjevanje preslikovalnih tabel (tabela trigonometričnih funkcij: sin, cos,, ...), pretvornik kod (BCD koda \rightarrow 7-segmentni prikazovalnik)
 - Program za zagon naprave (Bootstrap memory)
 - > Posebne, enostavne programske aplikacije

16 x 8 ROM

- > Osnovne komponente:
 - Polje registrov (8-bitov)
 - Dekodirnik vrstic
 - Dekodirnik kolon
 - Izhodni 'tri-state buffer' (izhodni medpomnilnik)

- Polje registrov shranjevanje podatkov, ki so programirani v ROM, vsebuje več pomnilnih celic, pozicija registra je določena z vrstico in kolono.
- Naslovni dekodirniki z naslovi $A_3A_2A_1A_0$ določajo kateri register v polju bo izbran, da se bodo podatki pojavili na vodilu.
 - Naslova A₁A₀ določata vrstico v polju registrov
 - Naslova A₃A₂ določata kolono v polju registrov

En register bo izbran v polju in omogočen – podatki se pojavijo na izhodu.

 Izhodni 'buffer' – Register, ki je izbran z naslovnimi linijami posreduje podatke na podatkovno vodilo. Če imata vhoda ~CS in ~OE vrednost 0, se bodo podatki posredovali na zunanje podatkovne izhode.

ROM - časovni diagram

- Spreminjanje naslova poteka pred časom t₁ naslov postane veljaven.
- > Signal ~CS bo aktiviran, notranje vezje v ROMu dekodira nov naslov za izbiro registra, ki pošlje podatke na izhodni 'buffer'.
- \triangleright V času t₂ sta aktivirana tako \sim CS in \sim OE, da omogočita izhodni 'buffer'.
- \triangleright V času t₃ se izhodi spremenijo iz stanja HI-Z (tri-stanjski izhodi) v veljavne podatke.

RAM (Random Access Memory)

- Pomnilnik z naključnim dostopom (random access memory)
 - Čas dostopa enak za vse lokacije
 - Hiter dostop (visoka cena)
- Notranji pomnilnik, ki je povezan s CPE in začasno shranjuje:
 - Podatke
 - Programe
- Bralno/pisalni pomnilnik (read/write memory), ki ne upočasnjuje izvajanje operacij
- Neobstojni pomnilnik (angl. Volatile memory) izguba vsebine ob izklopu:
 - Statični RAM
 - Dinamični RAM

RAM 64 x 4 - Arhitektura

- RAM sestavljajo registri, ki shranjujejo besedo, za katero obstaja unikaten naslov
- ~CS (Chip Select): 0 omogoči celoten čip za operacijo branja ali pisanja (READ ali WRITE)
- ~OE (Output Enable):
 0 omogoči izhode za branje (READ)
- ~WE (Write Enable) omogočena je operacija:
 - ▶ 0 write
 - I read

SRAM (Statični RAM)

- Na prejšnji prosojnici opisane operacije se nanašajo na SRAM.
- Shranjena vsebina ostane zapisana v pomnilniku vse dokler je čip pod napajanjem.
- Izvedba, tehnologije: bipolarna, MOS, BiCMOS; večinoma poznamo čipe SRAM, ki so na voljo v CMOS izvedbi.
- SRAM se uporablja kot predpomnilnik, ki je majhen in zelo hiter.

Branje:

- ► t_{ACC} čas dostopa (access time)
- t_{CO} čas, ki je potreben za veljavnost podatkov, če sta \sim OE in \sim CS veljavna.
- ▶ t_{OD} čas, ko so podatki še veljavni, ko se ~OE in ~CS spremenita v HIGH

Pisanje:

- t_{AS} čas, ki je potreben, da se ~WE, ~CS spremenita v LOW (address setup time)
- t_W čas, ki je potreben za pisanje (write time interval)
- ▶ t_{AH} čas, ko mora biti naslov še veljaven (address hold time)

SRAM - branje

SRAM - pisanje

Veljavnost podatkov: t_{DS} (data setup time), t_{DH} (data hold time)

Dinamični RAM (DRAM)

- Arhitektura-polje pomnilnih celic
- ▶ $16,384 \text{ celic} \rightarrow 128 \times 128$
- ▶ 14 naslovnih vhodov:
 - Stolpec: $A_0 A_6$
 - ightharpoonup Vrstica: $A_7 A_{13}$
- Primer:

16K x I DRAM

Naslovni vhodi - stolpec

DRAM – izbiranje naslova

- Naslavljanje je izvedeno v dveh delih naslovni vhodi so povezani na naslovni register vrstice in naslovni register stolpca.
- Shranjevanje naslova vrstice in vrstic stolpca krmilita:
- ~RAS (row address strobe) shrani naslovne vhode v register vrstice
- ➤ ~CAS (column address strobe) shrani naslovne vhode v register stolpca
- t_{RS} čas vzpostavitve naslova vrstice
- ▶ t_{CS} čas vzpostavitve naslova stolpca

DRAM - branje

- Vhodni signal ~WE je pri branju HIGH.
- Postopek branja poteka po korakih v časih od t_0 do t_5 .

DRAM - pisanje

Postopek branja poteka po korakih v časih od t_0 do t_7 .

DRAM - osveževanje

- Celica DRAM se osveži takoj potem, ko je bila izvedena operacija branja.
- Vsaka pomnilna celica mora biti osvežena periodično (vsakih 2 do 8 ms).
- Proizvajalci so razvili integrirana vezja DRAM tako, da se v izvedbe operacije branja na celici izvede osvežitev na celotni vrstici.
- Razširitveno osveževanje (angl. burst refresh mode) pomnilna operacija je prekinjena in vsaka vrstica DRAMa je osvežena dokler niso osvežene vse vrstice.
- Univerzalna metoda osveževanja: "RAS-only refresh" izvede se z naslovom vrstice z ~RAS takrat, ko sta ~CAS in ~WE HIGH.

Naloga 1: Opis

> ROM: naslovni vhodi (n), podatkovni izhodi (m)

Naloga 2: Uporaba pomnilnika ROM

Zapis logičnih funkcij v pomnilnik ROM - logične funkcije z n spremenljivkami se iz pravilnostne tabele shrani v bralni pomnilnik velikosti 2ⁿ x m.

Primer:

n=3 - število spremenljivk

(število naslovnih linij)

2ⁿ =8 - število vhodnih kombinacij

(število pomnilnih besed)

m=4 - število funkcij (f_a, f_b, f_c, f_d,)

(število izhodov)

Х	у	Z	f _a	f_b	f _c	f_d
0	0	0	0	0	1	1
0	0	1	0	1	1	0
0	1	0	1	1	1	1
0	1	1	0	1	0	1
1	0	0	1	1	1	0
1	0	1	0	0	0	1
1	1	0	1	0	1	1
1	1	1	1	1	0	1
			,			

Realizacija funkcij v ROMu - izvede se preslikava funkcij v pomnilno polje

- 8 vhodnih kombinacij funkcije pomeni 8 besed v ROM-u,
- 4 funkcije so 4 izhodi ROM-a

3-bitni naslov	4-k	oitni podatek							
000	0	1	1						
001	0	1	1	0					
010	1	1	1	1					
011	0	1	0	1					
110	1	1	1	0					
111	0	0	0	1					
110	1	0	1	1					
111	1	1	0	1					

Naloga 3

- Realizacija 4-bitnega množilnika P=X*Y.
- Pomnilnik ROM:

$$2^8 \times 8 = 256B (256 \text{ bajtov})$$

Vsebina ROMa (hex zapis)

00:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
10:	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	OF	
20:	00	02	04	06	08	OA	OC	0E	10	12	14	16	18	1A	1C	1E	
30:	00	03	06	09	OC	OF	12	15	18	1B	1E	21	24	27	2A	2D	
40:	00	04	08	OC	10	14	18	1C	20	24	28	2C	30	34	38	3C	
50:	00	05	OA	OF	14	19	1E	23	28	20	32	37	30	41	46	4B	
60:	00	06	OC	12	18	1E	24	2A	30	36	30	42	48	4E	54	5A	
70:	00	07	0E	15	10	23	2A	31	38	3F	46	4D	54	5B	62	69	
80:	00	08	10	18	20	28	30	38	40	48	50	58	60	68	70	78	
90:	00	09	12	18	24	2D	36	3F	48	51	5A	63	6C	75	7E	87	
AO:	00	OA	14	1E	28	32	30	46	50	5A	64	6E	78	82	80	96	
B0:	00	OB	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5	
CO:	.00	0C	18	24	30	3C	48	54	60	6C	78	84	90	90	A8	B4	
DO:	00	OD	1A	27	34	41	4E	5B	68	75	82	8F	90	A9	B6	C3	
EO:	00	0E	1C	2A	38	46	54	62	70	7E	8C	9A	A8	B6	C4	D2	
F0:	00	OF	1E	2D	30	4B	5A	69	78	87	96	A5	B4	C3	D2	E1	

Naloga 4: Pomnilnik (4x3)

- Pomnilnik vsebuje 4 besede, vsaka beseda ima 3 bite
- ➤ Za predstavitev 4 besed potrebujemo 2-bita za naslov (S₁, S₀) dekoder za naslavljanje izvede izbiro posamezne besede oz. vrstice v pomnilniku.
- Za shranjevanje podatkov uporabimo eno D pomnilno celico za vsak bit, kar predstavlja 12 celic v pomnilniku.
- Potrebujemo tudi spremenljivko Write Enable (WE) za izbiro branja ali pisanja, ki je povezana z urinim signalom (Clock):
 - \triangleright WE = I pisanje v pomnilnik
 - WE = 0 − branje iz pomnilnika
- Potrebujemo še drugo kombinacijsko vezje, logična vrata
- Podatkovni vhodi: In₂, In₁, In₀,
- Podatkovni izhodi: Out₂, Out₁, Out₀,

Branje besede z naslovom 1 (Word 1)

Pisanje v besedo z naslovom 1 (Word 1)

