SECTION-A

- 1. Write the coordinates of the point which is the reflection of the point (α, β, γ) in the XZ-plane.
- 2. find the position vector of the point which divides the join of points with position vectors $\vec{P_1} = \vec{a} + 3\vec{b}$ and $\vec{P_2} = \vec{a} \vec{b}$ internally in the ratio 1:3.
- 3. If $|\vec{a}| = 4$, $|\vec{b}| = 3$, and $\vec{a} \cdot \vec{b} = 6\sqrt{3}$, then find the value of $\vec{a} \times \vec{b}$.
- 4. Write the value of

$$\begin{bmatrix} a-b & b-a & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{bmatrix}$$

5.

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$

and

$$B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1j \end{bmatrix}$$

and $BA = (b_{ij})$, find $b_{21} + b_{32}$.

6. The number of all possible 2×3 matrices with each entry being either 1 or 2.

SECTION-B

- 7. Find the equation of the tangent line to the curve $y = \sqrt{5x-3} 5$, which is parallel to the line 4x 2y + 5 = 0.
- 8. solve the differential equation: $(x^2 + 3xy + y^2)dx x^2dy = 0$ given that y = 0 when x = 1.
- 9. On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, every one would have got ₹10 more. However, if there were 16 children more, every one would have got ₹10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema's decision?
- 10. show that the lines $\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$ and $\frac{x-4}{2} = \frac{y}{0} = \frac{z+1}{3}$ intersect. Find their point of intersection

11. show that the function f given by:

$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}, & if x \neq 0 \\ -1, & if x = 0 \end{cases}$$

is discontinuous at x = 0

12. Find:

$$\int \frac{2x+1}{(x^2+1)(x^2+4)} \, dx$$

13. If $x = e^{\cos 2t}$ and $y = e^{\sin 2t}$, prove that $\frac{dy}{dx} = -\frac{y \log x}{x \log y}$

OR.

verify mean value theorem for the function $f(x) = 2\sin x + \sin 2x$ on $[0, \pi]$

14. Solve for x: $\tan^{-1}\left(\frac{2-x}{2+x}\right) = \frac{1}{2}\tan^{-1}\left(\frac{x}{2}\right), x > 0.$

OR

Prove that $2sin^{-1}\left(\frac{3}{5}\right) - tan^{-1}\left(\frac{17}{31}\right) = \left(\frac{\pi}{4}\right)$.

15. Evaluate: $\int_1^5 \{|x-1| + |x-2| + |x-3|\} dx$

OR

Evaluate: $\int_0^{\pi} \frac{x \sin x}{1 + 3 \cos^2 x} dx$

- 16. $x \frac{dy}{dx} + y x + xycotx = 0; x \neq 0.$
- 17. A committee of 4 students is selected at random from a group consisting of 7 boys and 4 girls. Find the probability that there are exactly 2 boys in the committee, given that at least one girl must be there in the committee.

OR

A random variable X has the following probability distribution:

X	0	1	2	3	4	5	6
P(X)	c	2c	2c	3c	c^2	$2c^2$	$7c^2+c$

Find the value of C and also calculate mean of the distribution

- 18. Find the angle between the vector $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ if $\vec{a} = 2\hat{i} \hat{j} + 3\hat{k}$, and $\vec{b} = 3\hat{i} + \hat{j} 2\hat{k}$ hence find a vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$
- 19. $\int (3x+5)\sqrt{5+4x-2x^2} \, dx$

SECTION-C

- 20. Using integration, find the area of the triangle formed by negative x-axis and tangent and normal to the circle $x^2+y^2=9$ at $(-1,2\sqrt{2})$.
- 21. A company manufactures two types of cardigans type A and type B. It costs ₹360 to make a type A cardigan and ₹120 to make a type B cardigan. The company can make at most 300 cardigans and spend at most ₹72,000 a day. The number of cardigans of type B cannot exceed the number of cardigans of type A by more than 200. The company makes a profit of ₹100 for each cardigan of type A and ₹50 for every cardigan of type B. Formulate this problem as a linear programming problem to maximise the profit to the company. Solve it graphically and find maximum profit.
- 22. Find the coordinates of the foot of perpendicular and perpendicular distance from the point P(4,3,2) to the plane x+2y+3z=2 Also find the image of P in the plane.
- 23. Solve for x: $\begin{vmatrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \end{vmatrix} = 0,$ using properties of determinants.

OR

- Using elementary row operation find the inverse of matrix X $A = \begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix}$ and hence solve the following system of equations 3x 3y + 4z = 21, 2x 3y + 4z = 20, -y + z = 5.
- 24. A, B and C throw a pair of dice in that order alternately till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.
- 25. Show that the relation R defined by (a,b) R (c,d) $\Rightarrow a+d=b+c$ on the $A \times A$, where $A = \{1, 2, 3, \dots, 10\}$ is an equivalence relation. Hence write the equivalence class $[(3, 4)]; a, b, c, d \in A$.
- 26. Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle α is one-third that of 4 the cone and the greatest volume of the cylinder is $\frac{4}{27}\pi h^3 \tan^2 \alpha$.

OR

Find the intervals in which the function $f(x) = \frac{4sinx}{2+cosx} - x$; $0 \le x \le 2\pi$ is strictly incresing or strictly decreasing

3