Para el caso de una distr. lognormal. lim hit) = 0 2 No- es may utilizada. f_{r(t)} =] K { K-1 exp{Nt}. K>0, N>0, t>0 The Gamma (K, χ) Gamma (r, χ)

Supervisencia: $\int_{T} (t) = \int_{T} (u) du = \int_{T} (\kappa) u^{\kappa-1} e^{-\lambda u} du$ The supervisencia is the supervisencia in t = 1 (K) t = 1 - GI (K, Xt) lim

TIK)

U

Esqueme

de

Integración

numérica $\Rightarrow \sum_{i=1}^{k-1} -\lambda t_{i}$

Función de Riesgo:
$$h_{T}(t) = \int_{T}(t) \cdot \frac{\lambda^{k} t^{k-1}}{|T(t)|^{2}} \frac{\lambda^{k}}{|T(t)|^{2}} \frac{\lambda^{k}}{|T(t)|^{2}}$$

$$\varphi = 1$$

$$\lim_{t \to \infty} h(t) = \lim_{t \to \infty} \lambda = 2 \int_{0}^{\infty} \varphi / 1$$

$$\lim_{t \to \infty} h(t) = \infty$$

$$\lim_{t \to \infty} h(t) = \infty$$

$$\lim_{t \to \infty} h(t) = \int_{0}^{\infty} h_{\tau}(u) du = 2 \int_{0}^{\infty} (\varphi / 1)$$

$$\lim_{t \to \infty} h(t) = \int_{0}^{\infty} h_{\tau}(u) du = 2 \int_{0}^{\infty} (\varphi / 1)$$

$$\lim_{t \to \infty} h(t) = \int_{0}^{\infty} h_{\tau}(u) du = 2 \int_{0}^{\infty} (\varphi / 1)$$

$$\lim_{t \to \infty} h(t) = \int_{0}^{\infty} h_{\tau}(u) du = (1 + 2 \int_{0}^{\infty} h_{\tau}(u) - 2 \int_{0}^{\infty} h_{\tau}(u) du = 2 \int_{0$$

Prodemos definira Fn(t) de la signiente forma:

Ti Lt Ti es el tiempo de fallo
Fn(t) = n del cisimo objeto de cetadio
n es el tamaño de la

muestra

$$\frac{f_{6}(t_{1})}{f_{6}(t_{2})} = \frac{0}{6} \quad f_{6}(t_{3}) = \frac{1}{6}$$

$$\frac{f_{6}(t_{1})}{f_{6}(t_{2})} = \frac{3}{6} = \frac{1}{2}; f_{6}(t_{6}) = \frac{1}{6}$$

$$\frac{f_{6}(t_{1})}{f_{6}(t_{2})} = \frac{5}{6} \quad f_{6}(t_{8}) = \frac{1}{6}$$

1,

Table dovide.
la lestinadar es una extensión de las tables de frecuencias relativas o Función da Supero empírica
Super empírica.
-> El tiempo de observación lo mediremos en K intervalos.
0 - α_{0} α_{1} α_{2} α_{3} α_{k} = ∞
Definences al intervalo I, le la signiente
Definences al intervalo I, le la signiente forma: Ij = [aj-1, a] j=1, ?, ., K
dj = # individuos que meren un Ij
Cj = # individuos consumdos en Ij
nj = # individuos en riesgo al inicio de Ij (vivos y no censurados al tiempo aj)
Cómo construinos la fin de supervisencia asociale a esta table?
S (aj.,) = P[T>aj.,] = P[T>a,]P[T>a, IT>a)
· [[7]a, 17]a,] · PCT > aj-1/17aj-2]
· IPL1 = Qj-1/1=Qj-2 J

P(T)aj-1|T)aj-2]=1-P(T)aj-1|T)aj-2]

P(Sobrevivir en Ij-1]

P(mori- in Ij-1]

d'Como calculeros estas probabilidades?

-> Vanos a asumir que las censuras se distribuyen uniformes en el intervelo, entonces, supondremos que los individuos se econsuran a mital del intervalo.

=) Si no hubiera consura:

 $P[T<\alpha_j|T>\alpha_{j-1}] = \frac{d_j}{h_i}$

-> Como los individuos consurados permanecieros en riesgo la mital del tiempo:

P[Taj |T=aj-] = nj-Ci/}

P(T>a; |T>a; |T>