Pseudo-code for MDLINFER

Here, we assume the existence of the calibrate procedure for epidemiological model $O_{\rm M}$ and term it as Calibrate($O_{\rm M}$, {list of datasets}). The list of datasets have at least reported infections time sequence $D_{\rm reported}$, and can also have others. This Calibrate uses loss function to learn parameterizations, usually root mean squared error (RMSE) or log likelihood [3, 2] loss functions. We then give the pseudo-code for MDLINFER:

Algorithm 1 MDLINFER

Input: Epidemiological model $O_{\rm M}$, calibration procedure CALIBRATE, reported infections time sequence $D_{\rm reported}$.

- 1: Calibrate baseline parameterization $\mathbf{p} = \text{Calibrate}(O_{\text{M}}, \{D_{\text{reported}}, \text{others}\})$
- 2: Step 1: Find $\alpha_{\text{reported}}^* = \text{GetAlpha}(O_{\text{M}}, \text{Calibrate}, D_{\text{reported}}, \mathbf{p})$
- 3: Step 2: Find D^* = GetTotalInfections($O_{\rm M}$, Calibrate, $D_{\rm reported}$, $\alpha^*_{\rm reported}$, ${\bf p}$)

Output: Total infections D^*

Next, we give the pseudo-code for Getalpha and GetTotalInfections:

```
Algorithm 2 GETALPHA (Step 1: Find the \alpha_{\text{reported}}^*)
```

```
Input: O_{\mathrm{M}}, Calibrate, D_{\mathrm{reported}}, \mathbf{p}.
```

- 1: The array to save the MDL cost: CostArray = []
- 2: for α_{reported} in the grid search space from 0.01 to 1 with step 0.01 do
- 3: $D = \frac{D_{\text{reported}}}{\alpha_{\text{reported}}}$
- 4: $D_{\text{unreported}}^{\alpha_{\text{reported}}} = D D_{\text{reported}}$
- 5: Calibrate candidate parameterization $\mathbf{p'} = \text{Calibrate}(O_{\text{M}}, \{D_{\text{reported}}, D_{\text{unreported}}, \text{others}\})$
- 6: Save the MDL cost for α_{reported} in $\text{CostArray}[\alpha_{\text{reported}}] = L(D_{\text{reported}}, D, \mathbf{p'}, \mathbf{p})$
- 7: end for
- 8: Find the $\alpha_{\text{reported}}^* = \arg\min_{\alpha_{\text{reported}}} \text{CostArray}[\alpha_{\text{reported}}]$

Output: Reported rate $\alpha_{\text{reported}}^*$

Algorithm 3 GetTotalInfections (Step 2: Find the D^* given $\alpha^*_{\text{reported}}$)

Input: O_{M} , Calibrate, D_{reported} , $\alpha_{\mathrm{reported}}^*$, **p**.

1: Find the $D^* = \arg\min_D L(D_{\text{reported}}, D, \mathbf{p'}, \mathbf{p})$. (using the Nelder-Mead algorithm*).

Output: Total infections D^*

References

- [1] GAO, F., AND HAN, L. Implementing the nelder-mead simplex algorithm with adaptive parameters. Computational Optimization and Applications 51, 1 (2012), 259–277.
- [2] HAO, X., CHENG, S., WU, D., WU, T., LIN, X., AND WANG, C. Reconstruction of the full transmission dynamics of covid-19 in wuhan. *Nature* 584, 7821 (2020), 420–424.
- [3] KAIN, M. P., CHILDS, M. L., BECKER, A. D., AND MORDECAI, E. A. Chopping the tail: How preventing superspreading can help to maintain covid-19 control. *Epidemics* 34 (2021), 100430.

^{*}Note: Nelder-Mead is a commonly used numerical algorithm used for optimization in multidimensional space [1].