Expanding the AI/ML Research Frontier: A Curated Compendium of Recent Innovations and Influential Works

Section 1: Introduction

1.1 Purpose and Scope of Research Expansion

This report details the systematic expansion of an initial Artificial Intelligence (AI) and Machine Learning (ML) research corpus. The primary objective is to broaden the existing research map by identifying and incorporating new, impactful academic papers. This recursive expansion focuses on literature that introduces significant innovations, inspires subsequent research, or represents paradigm shifts within the dynamic field of AI and ML.

The scope of this expansion prioritizes recent advancements, with a particular emphasis on works published between 2022 and 2025, especially those from 2024 and 2025. Concurrently, foundational works that continue to shape current research trajectories and provide essential context for understanding these recent developments are also acknowledged and included. The aim is to provide a comprehensive yet focused overview of the rapidly evolving landscape of Al/ML research.

1.2 Methodology for Paper Selection

The expansion process involved a meticulous analysis of the articles within the seed corpus. For each seed article, its bibliography and cited works were examined to identify potential new candidates for inclusion. This step was crucial for the recursive nature of the corpus expansion, ensuring that the research map grows organically from established and relevant literature.

Candidate papers were evaluated against several key criteria to ensure their relevance and impact:

- State-of-the-Art (SOTA) Contributions: Papers presenting novel methods, algorithms, or architectures that achieve benchmark-setting results in specific AI/ML sub-domains. These often represent the cutting edge of current capabilities.
- High Citation Count or Influence: Works recognized by the research community as significant or foundational. This is often indicated by a high number of citations shortly after publication or explicit mention in reputable surveys and review articles as "influential" or "highly-cited."
- Recent Breakthroughs (2024–2025): Cutting-edge research, including pre-prints from recognized archives (e.g., arXiv) and newly published peer-reviewed papers, that highlight the very latest developments and emerging trends.
- Emerging Methods, Architectures, or Paradigms: Papers introducing new conceptual

frameworks, algorithmic approaches, or system designs that suggest novel directions or potential paradigm shifts in AI/ML research.

A de-duplication step was performed to ensure that no articles already present in the original seed corpus were re-included in this expanded list. The selection process aimed for a balance between depth in specific innovative areas and breadth across the major themes currently driving AI/ML research.

1.3 Structure of the Report

This report is structured to present the findings of the research expansion in a clear and accessible manner.

Section 2 contains the core deliverable: the expanded list of research papers, designated as t000_dr04_article-list. This compendium is thematically organized to facilitate navigation and contextual understanding. Each entry includes essential metadata: title, authors, publication year, and a concise abstract or statement of the paper's primary contribution. Furthermore, a justification for its inclusion, based on the selection criteria outlined above, is provided. Section 3 discusses key thematic observations and overarching trends derived from the analysis of the newly added literature. This section aims to synthesize the collective advancements and identify significant patterns in the evolution of Al/ML. Section 4 provides concluding remarks, summarizing the value of the expanded corpus and suggesting potential future research trajectories indicated by the current state of the field. This structured approach is intended to make the expanded research map not only a repository of important papers but also a tool for understanding the current dynamics and future potential of Al and Machine Learning.

Section 2: Expanded Research Compendium (t000_dr04_article-list)

This section presents the comprehensive list of newly identified research papers, forming the expanded research compendium. The papers are organized thematically to enhance usability and allow researchers to quickly navigate to areas of specific interest. Each entry includes the title, authors, publication year, a concise abstract or contribution statement, a justification for its inclusion based on the selection criteria, and, where traceable, the seed article or source that referenced it.

The thematic organization reflects major currents in AI/ML research. This structure facilitates a deeper understanding of the landscape and supports the identification of interconnected research efforts and emerging trends discussed later in this report.

Table 1: t000_dr04_article-list - Expanded Research Compendium

Paper ID	Title	Authors	Publication	Abstract/Co	Category	Referenced
(New)			Year	ntribution	Justificatio	In (Source
				Statement	n	Snippet)
2.1						

Emerging
Architectur
es,
Paradigms,
and
Foundation
al Concepts

ai Concepts						
		Vaswani, A.,	2017	Introduced	Foundational 1	
	All You Need	Shazeer, N.,		the	; Essential	
		Parmar, N.,		Transformer	context for	
		Uszkoreit, J.,		architecture,	LLMs and	
		Jones, L.,		which relies	ViTs. Widely	
		Gomez, A.		solely on	cited as the	
		N., Kaiser, Ł.,		self-attentio	basis for	
		&		n	modern	
		Polosukhin, I.		mechanisms,	deep	
				dispensing	learning in	
				with	sequence	
				recurrence	processing.	
				and		
				convolutions		
				entirely. This		
				model		
				achieves		
				SOTA in		
				machine		
				translation		
				and has		
				become		
				foundational		
				for many		
				subsequent		
				NLP and		
				vision		
				models.		
N002	Vision	1	2020		Foundational 3	
		A., Beyer, L.,		d that a pure		
	(ViT)	· ·	2021)	Transformer	· ·	
		A.,		architecture		
		Weissenborn		applied	shift in	
		, D., Zhai, X.,		directly to	computer	
		Unterthiner,		'	vision.	
		T., Dehghani,		of image		

		M., Minderer,		patches can		
		M., Heigold,		achieve		
		G., Gelly, S.,		SOTA results		
		Uszkoreit, J.,		on image		
		& Houlsby, N.		classification		
		a Houisby, N.		tasks,		
				challenging		
				the		
				long-standin		
				g dominance		
				of		
				Convolutiona		
				l Neural		
				Networks		
				(CNNs).		
N003	BERT:	Devlin, J.,	2018	Introduced	Foundational	5
		Chang,	(published		for NLP	
	ı		2019)	language	pre-training	
	Bidirectional	l ' '		representati		
	Transformers			on model	LLMs.	
	for	K.		pre-trained		
	Language			using a		
	Understandi			masked		
	ng			language		
				model		
				objective		
				and next		
				sentence		
				prediction. It		
				achieved		
				SOTA results		
				on a wide		
				array of NLP		
				tasks and		
				significantly		
				influenced		
				subsequent		
				LLM		
				development		
	Mamba:	Gu, A., &	2023	Introduces	Emerging	7
		Dao, T.		the Mamba	Architecture	
	Sequence			architecture,	(2023);	

	N A 1 1'		1		1.12 1.1 2.1	
	Modeling				Highly cited;	
	with			space model		
	Selective				paradigm	
	State Spaces			achieves	shift for	
				Transformer-	long-sequen	
				level	ce modeling.	
				performance		
				with		
				linear-time		
				complexity in		
				sequence		
				length and		
				faster		
				inference. It		
				uses a		
				selection		
				mechanism		
				to allow		
				context-dep		
				endent		
				reasoning.		
N005		Dettmers, T.,	2023	Proposes	SOTA/Influen	7
		Pagnoni, A.,			tial (2023)	
	Finetuning of	Holtzman, A.,		efficient	for LLM	
	Quantized	&		finetuning	efficiency;	
	LLMs	Zettlemoyer,		approach	Highly cited.	
		L.		that reduces		
				memory		
				usage		
				significantly		
				by		
				quantizing a		
				pretrained		
				LLM to 4-bit		
				and then		
				finetuning a		
				small set of		
				Low-Rank		
				Adapters		
				(LoRA).		
				Enables		
			ī	u:		
				finetuning of very large		

		1		models on		
				limited		
				hardware.		
N006	Sparks of	1 ' '	2023	Provides an	Highly [7	'
	Artificial	Chandraseka		early,	Cited/Influen	
	General	ran, V.,		in-depth	tial (2023);	
	Intelligence:	Eldan, R.,		exploration	Paradigm	
	Early	Gehrke, J.,		of GPT-4's	exploration	
	experiments			capabilities,	1 '	
	1 '	Kamar, E.,		suggesting it		
	With Girl 4	Lee, P., Lee,		exhibits	capabilities.	
				sparks of	Capabilities.	
		Y. T., Li, Y.,		1 '		
		Lundberg, S.,		Artificial		
		Nori, H.,		General		
		Palangi, H.,		Intelligence		
		Ribeiro, M.		(AGI)		
		T., & Zhang,		through its		
		Υ.		performance	1	
				on novel and		
				difficult		
				tasks across		
				various		
				domains		
				without		
				task-specific		
				prompting.		
2.2		!	ļ.	Jerem Je mag.		
State-of-th						
e-Art						
(SOTA)						
Contributio						
ns and						
Recent						
Advances						
by Al						
Sub-Domai						
n						
2.2.1						
Computer						
Vision						
N007	Vision	Darcet, T.,	2024	ICLR 2024	SOTA/Influen	3
	Transformers	Cord, M.,		Outstanding	tial (2024);	
-	•	•	•	·		

	Need	Pérez-Pellite	Paper Award	ViT	
		ro, E., &	winner.	architectural	
	-	Thome, N.	Demonstrate		
			s that adding		
			a few extra		
			"register"		
			tokens to		
			Vision		
			Transformers		
			can		
			significantly		
			improve their		
			performance		
			by providing		
			a scratchpad		
			space for		
			global		
			feature		
			aggregation,		
			without		
			altering the		
			core		
			architecture.		
N008	X-ray	Not explicitly	Proposes	SOTA (2024)	9
	Imaging-driv			in a	
	en Detection		network for	specialized	
		summary.	X-ray	CV domain	
	(XID-Net)		prohibited	(X-ray	
	,		item	security).	
			detection	<i>,</i> ,	
			featuring a		
			novel		
			X-ray-specifi		
			c		
			augmentatio		
			n strategy		
			(Poisson		
			blending for		
			rare items)		
			and		
			contextual		
			feature		
			integration.		

		Г	T	1	T	
				lt		
				significantly		
				improves		
				detection		
				performance		
				Į,		
				outperformin		
				g popular		
				SOTA		
				methods by		
				up to +17.2%		
				in tail		
				categories.		
N009	UniViTAR: A	Not ovalicitly	2024		Recent ViT	4
		Not explicitly	2024	Proposes		
		named, from		•	advancemen	
	_	paper			t (2024);	
		summary.		Transformer		
	for			variant	method for	
	Multi-Resolu			incorporatin		
	tion Visual			g advanced		
	Recognition			modification	processing.	
	with			s (2D Rotary		
	Aspect-Ratio			Position		
	Preservation			Embedding,		
				SwiGLU FFN,		
				RMSNorm,		
				QK-Norm)		
				and a		
				progressive		
				training		
				paradigm		
				(resolution		
				curriculum		
				learning) to		
				handle		
				nandie variable		
				input		
				resolutions		
				and aspect		
				ratios		
				effectively.		
		Not explicitly	2025	Introduces	Emerging	10
I	Efficient	named, from		ECViT, a	Architecture	

	Convolutiona	nanor		hybrid	(2025);	
				_		
	l Vision	summary.			Focus on ViT	
	Transformer			-	efficiency	
	with			combining	and hybrid	
	Local-Attenti			CNN	design.	
	on and			strengths		
	Multi-scale			(locality,		
	Stages			translation		
				invariance)		
				and		
				Transformers		
				. Features		
				Partitioned		
				Multi-head		
				Self-Attentio		
				n (P-MSA)		
				and		
				Interactive		
				Feed-forwar		
				d Network		
				(I-FFN) for		
				optimal		
				balance		
				between		
				performance		
				and		
				efficiency.		
NO11	SCHEME:	Not explicitly	2023	Introduces	Recent ViT	12
	Scalable	named, from		SCHEME, a	advancemen	
	CHannEl	paper		novel	t (2023);	
	MixEr for	summary.		channel	Efficiency	
	Vision			mixer for	and	
	Transformers			ViTs using a	performance	
				sparse Block	-	
				· ·	channel	
				MLP	mixers.	
				(BD-MLP)		
				structure		
				and a		
				parameter-fr		
				ee Channel		
				Covariance		
				Attention		

	Τ	Г	T	Ira a s s		
				(CCA)		
				mechanism.		
				This allows		
				larger		
				expansion		
				ratios,		
				improving		
				accuracy/lat		
				ency,		
				especially		
				for smaller		
				transformers		
				, without		
				inference		
				overhead		
				from CCA.		
N012	AdaFace:	Kim M. Join	2022	<u> </u>	SOTA/Influen	13
INO 12		Kim, M., Jain,	2022	Proposes		
	Quality	A. K., & Liu,			tial (2022) in	
	Adaptive	X.		loss function		
	Margin for				recognition;	
	Deep Face			_	Adaptive	
	Recognition			that	loss	
				' '	function.	
				adjusts the		
				margin		
				based on		
				image		
				quality. This		
				emphasizes		
				easy		
				samples less		
				and hard		
				samples		
				more,		
				improving		
				performance		
				, particularly		
				for		
				low-quality		
				images.		
NO13	Vision	Not explicitly	2025	Reviews	Recent	3
		named, from		state-of-the		
	Models in	paper		-art research	-	
	1	المهمر		1 3	\//	

Medical summary. on adapting Identifies Image Vision SOTA/Eme	rgi
1	rgij
	<u> </u>
Analysis: Foundation ng Trends	n
Advances Models medical	
and (VFMs) like computer	
Challenges ViT and vision.	
Segment	
Anything	
Model (SAM)	
to medical	
image	
segmentatio	
n. Discusses	
challenges	
and	
advancemen	
ts in domain	
adaptation,	
model	
compression	
, federated	
learning,	
adapter-bas	
ed	
improvement	
s, knowledge	
distillation,	
and	
multi-scale	
contextual	
modeling.	15
NO14 A Survey of Not explicitly 2025 Systematical Recent	15
Physics-Awa named, from y reviews the Survey	
re paper emerging (2025);	
Generative summary. field of Emerging	
Al in physics-awa paradigm i	
Computer re generative generative	
Vision Al in computer	
computer vision.	
vision,	
categorizing	
methods	

		Ι		h ,		1
				based on		
				how they		
				incorporate		
				physical		
				knowledge		
				(explicit		
				simulation or		
				implicit		
				learning) for		
				generating		
				realistic		
				images,		
				videos, and		
				3D/4D		
				content.		
NO15	Image	Not explicitly	2025	Surveys	Recent	16
	_	named, from	2020	online	Survey	
	_	paper		strategies	(2025) on	
		summary.		_	Vision	
	Vision	Surriiriar y.		generating	Transformer	
	Transformer:			lightweight	efficiency.	
				Vision	emciency.	
	A Survey					
				Transformers		
				for image		
				recognition,		
				focusing on		
				three key		
				areas:		
				Efficient		
				Component		
				Design,		
				Dynamic		
				Network,		
				and		
				Knowledge		
				Distillation.		
				Analyzes		
				trade-offs on		
				ImageNet-1K		
				linagoriot IK		
NO16	Disentangled	Sharafi et al.	2025	Introduces	Recent	18
	Source-Free		2020	Disentangled		
	Domain	2025		Source-Free	_	
	DOMAIN	12020		pource-Free	11 (2023) 111	

	Adaptation	reference)		Domain	FER;	
	(DSFDA) for				Emerging	
	Facial			(DSFDA) for		
	Expression			video-based		
	l ⁻				SFDA.	
	Recognition			Facial		
				Expression		
				Recognition		
				(FER).		
				DSFDA		
				addresses		
				missing		
				target		
				expression		
				data by		
				leveraging		
				neutral		
				target		
				control video		
				for		
				end-to-end		
				generation		
				and		
				adaptation,		
				disentanglin		
				g expression		
				and identity		
				features.		
2.2.2		<u>!</u>				
Natural						
Language						
Processing						
& Large						
Language						
Models						
(LLMs)						
NO17	The Llama 3	Grattafiori,	2024	Presents	SOTA/Influen	8
	Herd of	A., et al.		Meta's Llama		
	Models	,			LLM release;	
					Open model	
					advancemen	
				parameters),	I I	
				detailing		
				their		
1	İ	l	1	C C	1	

	<u> </u>	Ι	<u> </u>	1.1.		
				architecture,		
				extensive		
				pretraining		
				dataset (over		
				15T tokens),		
				and		
				improved		
				performance		
				, establishing		
				new SOTA		
				for open		
				models of		
				their size on		
				various		
				benchmarks.		
NO18	Gemma:	Mesnard, T.,	2024	Introduces	SOTA/Influen	8
	Open	et al.		Google's	tial (2024)	
	Models	(Google		_	LLM release;	
	Based on	team)			Open model	
	Gemini	·		-	advancemen	
	Research			L. T	t.	
	and			parameters),		
	Technology			based on		
				similar		
				research and		
				technology		
				as the		
				Gemini		
				models. They		
				outperform		
				similarly		
				sized open		
				models on		
				key		
				benchmarks		
				and include		
				analysis of		
				safety and		
				responsibilit		
				y aspects.		
NO19	Why Larger	Min, Z., et al.	2024	Investigates	Influential	8
	Language	2., 00 01.		how the	(2024)	
	Models Do			scale of	research on	
	INIOGEIS DO			Scale OI	research off	

	l		Г	<u>. </u>		
	In-context			Large	core LLM	
	Learning			Language	capabilities	
	Differently?			Models	(in-context	
				affects their	learning).	
				in-context		
				learning		
				mechanisms.		
				Shows that		
				small		
				language		
				models are		
				more robust		
				to noise and		
				less easily		
				distracted		
				than LLMs		
				due to		
				emphasis on		
				a narrower		
				selection of		
				hidden		
				features.		
NO20	DLPO:	Peng, D.,	2025	Proposes	Emerging	19
		Zhou, Y.,			Method	
		Chen, Q., Liu,		framework	(2025) in	
	Efficient, and				prompt	
	Generalizabl			deep	engineering;	
	e Prompt	,		learning	SOTA	
	Optimization			_	improvement	
	Framework			techniques		
	from a			(e.g., Textual		
	Deep-Learni			Learning		
	ng			Rate, Textual		
	Perspective			Dropout,		
	3.5,5555			Textual		
				Simulated		
				Annealing,		
				Textual		
				Momentum)		
				to		
				automated		

	<u> </u>		<u> </u>	lc		
				for LLMs,		
				significantly		
				enhancing		
				stability,		
				efficiency,		
				and		
				generalizatio		
				n.		
NO21	A Survey of	Zhao, W. X.,	2023	A	Highly	7
	Large	Zhou, K., Li,			Cited/Influen	
	Language	J., Tang, T.,		ve survey on		
	Models	Wang, X.,		1	survey on	
	IVIOGOIS	Hou, Y., Min,		-	LLMs.	
					LLIVIS.	
		Y., Zhang, B.,		background,		
		Zhang, J.,		milestones,		
		Dong, Z., et		key 		
		al.		techniques		
				(pre-training		
				, adaptation,		
				utilization,		
				capacity		
				evaluation),		
				available		
				resources,		
				and diverse		
				applications.		
				Highly cited		
				overview of		
				the LLM		
NOOO	-1 -1		0000	landscape.		7
NO22	The Flan	Longpre, S.,	2023	Details the	Highly	'
		Hou, L., Vu,		creation of	Cited/Influen	
	Designing	T., Webson,			tial (2023)	
	Data and	A., Chung, H.		dataset	work on	
	Methods for	W., Tay, Y.,		collection,	instruction	
	Effective	Zhou, D., Le,		comprising	tuning.	
	Instruction	Q. V., Zoph,		over 1800		
	Tuning	B., Wei, J., &		NLP tasks		
	_	Roberts, A.		formatted as		
		,		instructions,		
				and		
				demonstrate		
				s methods		
				p memous		

		Г		1-		,
				for		
				instruction		
				tuning that		
				significantly		
				improve LLM		
				generalizatio		
				n and		
				performance		
				on unseen		
				tasks.		
N023	LIMA: Less Is	Zhou C. Liu			Highly	7
		1	2023	LLMs can	Cited/Influen	
		P., Xu, P.,				
	Alignment	lyer, S., Sun,		learn to	tial (2023)	
		J., Mao, Y.,		•	work on LLM	
		Ma, X., Efrat,		high-quality	alignment.	
		A., Yu, P., Yu,		responses		
		L., et al.		from only a		
				small set		
				(around		
				1000) of		
				carefully		
				curated		
				prompts and		
				responses,		
				without		
				needing		
				extensive		
				reinforceme		
				nt learning		
				from human		
				feedback		
				(RLHF).		
				Challenges		
				the notion		
				that massive		
				alignment		
				data is		
				necessary.		04
NO24	Phi-3.5-Visio	Microsoft	2024	A lightweight	Recent	21
	n-Instruct				Breakthroug	
				model	h (Oct 2024)	
				(MLLM)	in MLLMs;	
				developed	Lightweight	

				by Microsoft,		
				designed for		
				a wide range		
				of		
				vision-langu		
				age tasks		
				including		
				general		
				image		
				understandin		
				g, OCR,		
				chart/table		
				comprehensi		
				on,		
				multi-image		
				comparison,		
				and video		
				clip		
				summarizati		
				on. Uses a		
				CLIP		
				ViT-L/14		
				image		
				encoder and		
				а		
				Phi-3.5-mini		
				LLM.		
N025	Llama-3.2-11	Meta	2024	ļ	Recent	21
	B-Vision-Inst			11-billion-par		
	ruct				h (Sep 2024)	
				MLLM	in MLLMs.	
				developed		
				by Meta,		
				designed to		
				process both		
				text and		
				images		
				simultaneous		
				ly for		
				multimodal		
				conversation		
				s and visual		
				reasoning		
				reasoning		

			1			
				tasks. Built		
				upon the		
				Llama 3.1		
				architecture		
				with a		
				CLIP-based		
				image		
				encoder.		
NO26	Pixtral-12B	Mistral AI	2024	Α	Recent	21
				12-billion-pa	Breakthroug	
				-	h (Oct 2024)	
					in MLLMs.	
				Mistral Al for		
				understandin		
				g images		
				and text		
				simultaneous		
				ly, enabling		
				advanced		
				multimodal		
				reasoning.		
				Comprises a		
				CLIPA-based		
				image		
				encoder, a		
				Mistral Nemo		
				12B LLM, and		
				a multimodal		
11007		-	0005	decoder.		22
		Tatarinov, N.,	2025	Reviews 374	1.000iii	22
	Modeling for				Survey	
	the Future of			research	(2025) on	
	l	Chava, S.		r ·	NLP/LLM	
	Quantitative				applications	
	Survey into			1	in finance.	
	Metrics,			finance, with		
	Tasks, and			a focused		
	Data			analysis of		
	Opportunitie			221 papers.		
	s			Identifies key		
				trends such		
				as increasing		
				use of		

			T		I	
				general-purp		
				ose		
				language		
				models,		
				progress in		
				sentiment		
				analysis and		
				information		
				extraction,		
				and		
				emerging		
				efforts in		
				explainability		
				and		
				privacy-pres		
				erving		
				methods.		
NO28	LLMs for	Bilal, A.,	2025		Recent	23
		Ebert, D., &	2025	comprehensi		
	·	Lin, B.		ve overview	-	
	Comprehens				LLM	
	ive Survey			approaches		
	ive Sui vey			for using	for XAI.	
				LLMs to	IOI AAI.	
				enhance		
				Explainable		
				AI (XAI),		
				transforming		
				complex		
				machine		
				learning		
				outputs into		
				easy-to-und		
				erstand 		
				narratives		
				and bridging		
				the gap		
				between		
				model		
				behavior and		
				human		
				interpretabili		
				ty. Discusses		

				evaluation		
				techniques,		
				challenges,		
				and		
				applications.		
N029	LLLMs: A	Hie, B., Kim,	2025	A	Recent	25
11029			2025			
		S. Y., Huang,			Survey	
	1	A.,		review of	(2025) on	
	Evolving	Brynjolfsson,			critical LLM	
	Research on	E., & ∠ou, J.			aspects and	
	Limitations			limitations	research	
	of Large			r ,	trends.	
	Language			from 2022 to		
	Models			2024,		
				analyzing		
				~14,600		
				papers.		
				Identifies key		
				concerns like		
				reasoning		
				failures,		
				hallucination		
				s, safety, and		
				controllabilit		
				y, and tracks		
				their		
				evolution in		
				research		
				focus.		
2.2.3				•		
Reinforcem						
ent						
Learning &						
LLM Agents						
N030	Random	Not explicitly	2025	Proposes	Recent	27
	Policy	named, from		State-Action	Breakthroug	
	Enables	paper		Distillation	h (May 2025)	
	In-Context	summary.		(SAD), a	in RL; SOTA	
	Reinforceme	-		novel	in ICRL.	
	nt Learning			approach to		
	within Trust			generate		
	Horizons			pretraining		
				<u>'</u>	l	

			1	T	
				datasets for	
				In-Context	
				Reinforceme	
				nt Learning	
				(ICRL) using	
				only random	
				policies	
				within a trust	
				horizon. SAD	
				distills	
				outstanding	
				state-action	
				pairs and	
				significantly	
				outperforms	
				existing	
				SOTA ICRL	
				algorithms.	
NO31	Decision	Lee, K., et al.	2024	An ICRL	SOTA/Recent ²⁷
	Pretrained	27		method that	(2024) in
	Transformer			partially	ICRL;
	(DPT)			relaxes the	Compared
				requirement	against by
				on context	SAD.
				(can be	
				gathered by	
				random	
				policies) but	
				necessitates	
				access to	
				optimal	
				policies to	
				label optimal	
				actions for	
				query states.	
NO32	Decision		2024	An ICRL	SOTA/Recent ²⁷
	-	al. ²⁷		method	(2024) in
	Transformer			aiming for	ICRL;
	(DIT)			ICRL without	l l
				optimal	against by
				policies by	SAD.
				policies by leveraging observed	SAD.

		T	ı			
				state-action		
				pairs in		
				context data		
				as		
				queries/label		
				s, weighted		
				by		
				return-to-go.		
				Still requires		
				substantial		
				context with		
				a good		
				portion from		
				well-trained		
				policies.		
NO33	AutoConcier	Zena, Z.,	2024		Emerging	29
		Zhang, R.,		LLM-powere		
	9	Zhang, Y., Li,			(2024) in	
		Y., & Nanas,		conversation		
		N.		al restaurant	_	
				recommenda		
				tion. It uses		
				natural	or eyeterner	
				language		
				conversation		
				s to		
				understand		
				user needs,		
				collect		
				preferences,		
				and uses the		
				LLM to		
				understand		
				and		
				generate		
				language,		
				providing		
				explainable		
				personalized		
				recommenda		
				tions.		
N034	AgontCE	Liu I Cu	2025		Emorging	31
	AgentCF++:		2025	An enhanced	Linerging	-
	Memory-enh	O., LI, D.,		version of	Method	

	anaad	Zhone C	AgostOF	(202E) :=	
	anced	Zhang, G.,	AgentCF	(2025) in	
		Han, M., Gu,	that ·	LLM agents	
	•	H., Zhang, P.,	introduces a		
	Popularity-a	1	1	Recommend	
	ware	Shang, L., &	memory	er Systems.	
	Cross-domai	Gu, N.	architecture		
	n		(domain-sep		
	Recommend		arated and		
	ations		domain-fuse		
			d) and		
			interest		
			groups with		
			group-share		
			d memory to		
			improve		
			LLM-based		
			agent		
			decision-ma		
			king in		
			cross-domai		
			n		
			recommenda		
			tions and		
			better		
			capture		
			popularity		
			factor		
			influences.		
N035	RecMind:	Wang, Y., et	An	Influential/E	33
11033	<u> </u>	l	L .		
	Large	al.	recommende	merging	
l .	Language Model			in LLM	
			r agent		
	Powered		fueled by	agents for	
	Agent For		LLMs,	Recommend	
	Recommend		designed as	er Systems.	
	ation		an		
			autonomous		
			agent to		
			furnish		
			personalized		
			recommenda		
			tions		
			through		

		•				
				strategic		
				planning		
				(using a		
				Self-Inspirin		
				g algorithm		
				that		
				considers		
				previously		
				explored		
				paths) and		
				the .		
				utilization of		
				external		
				tools.		
N036	Agent4Rec	Zhang, J., et	2024a		Emerging	35
		al.			Method	
		GI.		that uses	(2024) in	
					LLM agents	
					for	
				ρ	Recommend	
				•	er System	
				with	evaluation	
					and	
				memory, and		
				action	Simulation.	
				capabilities)		
				to mimic		
				user		
				interactions		
				with		
				recommende		
				r systems.		
				This enables		
				online		
				evaluation of		
				recommenda		
				tion policies		
				and		
				investigation		
				of		
				phenomena		
				like filter		
				bubbles		

		1		without real		1
				users.		
NO37	LASER: LLM	Mo K	2024	Proposes	Emerging	37
11037	Agent with	Zhang, H.,	2024	LASER, an	Method	
	State-Space	1 -		LLM agent	(2024) in	
	-	Pan, X., Yu,		that models		
	for Web	W., & Yu, D.		web	Ifor web	
	Navigation	vv., ⊗ 1u, D.		navigation as		
	INAVIGATION				liavigation.	
				state-space		
				exploration.		
				The agent		
				transitions		
				among		
				pre-defined		
				states by		
				performing		
				actions,		
				enabling		
				flexible		
				backtracking		
				and		
				state-specifi		
				c action		
				spaces,		
				significantly		
				outperformin		
				g previous		
				methods.		
N038	CoSearchAg	1	2024	A lightweight		39
	ent: A	J., & Mao, J.		collaborative		
	Lightweight			search agent		
	Collaborative			powered by	LLM agents	
	Search			LLMs,	for	
	Agent with			•	collaborative	
	Large			a Slack	search.	
	Language			plugin. It		
	Models			supports		
				collaborative		
				search		
				during		
				multi-party		
				conversation		
				s by		

				understandin		
				g queries		
				and context,		
				searching		
				the web via		
				APIs, and		
				responding		
				with		
				grounded		
				answers or		
				clarifying		
				questions.		
NO39	AVATAR:	Wu, S., Zhao,	2024		Emerging	36
	Optimizing	S., et al.			Method	
	LLM Agents	o., or a			(2024) for	
	for Tool				LLM agent	
	Usage via			with an actor	_	
	Contrastive				optimization.	
	Reasoning			comparator		
	reasoning			LLM. The		
				comparator		
				generates		
				holistic		
				prompts by		
				contrastively		
				reasoning		
				between		
				positive and		
				ľ		
				negative		
				examples to		
				teach the		
				actor LLM		
				more		
				effective		
				retrieval		
				strategies		
				and tool		
				usage,		
				improving		
				performance		
				on complex		
				multimodal		
				retrieval and		

				QA.		
NO40	USimAgent: Large Language Models for Simulating Search Users	Wang, X., Gong, P., Lin, Y., & Mao, J.		Introduces USimAgent, an LLM-based user search behavior simulator capable of simulating querying, clicking, and stopping behaviors to generate complete search sessions for specific tasks. Outperforms existing methods in query	Method (2024) for user simulation with LLMs in search.	41
NO41	A Survey of Large Language Model Empowered Agents for Recommend ation and Search	Zhang, Y., Qiao, S., Zhang, J., Lin, TH., Gao, C., & Li, Y.	2025	generation. Systematically reviews and classifies research on LLM agents in recommendation and search. Establishes a classification framework based on agent roles (e.g., user interaction, representati	Survey (2025) on LLM agents for information retrieval.	43

				on		
				optimization		
				for RecSys;		
				task		
				decomposer		
				s, query		
				rewriters for		
				Search).		
NO42	A Survey on	Peng, Q., Liu,	2025	Presents a	Recent	30
	LLM-powere	H., Huang,		comprehensi	Survey	
	d Agents for	H., Yang, Q.,		ve review of	(2025)	
	Recommend	& Shao, M.		LLM-powere	specifically	
	er Systems			d agents for	on LLM	
	-			recommende	agents for	
				r systems,	Recommend	
				categorizing	er Systems.	
				approaches	·	
				into		
				recommende		
				r-oriented,		
				interaction-o		
				riented, and		
				simulation-o		
				riented		
				paradigms.		
				Analyzes		
				architectural		
				components:		
				profile		
				construction,		
				memory		
				management		
				, strategic		
				planning,		
				and action		
				execution.		
NO43	A Survey on	Not explicitly		Provides a	Recent	45
		named, from		comprehensi		
	-	paper		ve review of		
	Reinforceme				Explainable	
	nt Learning	oarriffary.		Deep	Reinforceme	
	in Leaning			Reinforceme		
				nt Learning	in Leaning.	
				ni reaming		

	ı	·	1	10	ı	
				(XRL)		
				methods,		
				their		
				qualitative		
				and		
				quantitative		
				assessment		
				frameworks,		
				and their		
				role in policy		
				refinement,		
				adversarial		
				robustness,		
				and security.		
				Also		
				examines		
				RLHF for Al		
				alignment.		
2.2.4				angimient.		
General						
Machine						
Learning,						
Optimizatio						
n, and						
Cross-Cutti						
ng						
Concerns						
NO44	ZeroFlow:	Not explicitly	2025	Introduces	Emerging	46
11044		named, from		the ZeroFlow		
	Catastrophic				chmark	
	Forgetting is			to evaluate	(2025) in	
	Easier than	Sammary.		gradient-fre		
	You Think			gradient ne	learning and	
	I Su I I III K			optimization		
				algorithms	e	
				for	optimization.	
				overcoming		
				catastrophic		
				forgetting in		
				continual		
				learning.		
				_		
				Finds that forward		

		<u> </u>			T	
				passes alone		
				can be		
				sufficient		
				and reveals		
				new		
				optimization		
				principles for		
				managing		
				task conflicts		
				and memory		
				demands.		
NO45	Exposing	Furuta, H.,	2024	Introduces	Recent	48
	Limitations	Matsuo, Y.,		CompWoB, a	Benchmark	
	of Language			-	(2024) for	
	Model	Gur, I.			Language	
	Agents in	,		composition		
	Sequential-T			1 '	Agents on	
	ask				web tasks.	
	Composition			tasks, to		
	s on the Web			study LMA		
	(CompWoB)			transferabilit		
	(00р.1102)			y to realistic		
				sequential		
				task		
				composition		
				s. Shows		
				performance		
				degradation		
				on		
				composition		
				al tasks and		
				trains		
				HTML-T5++		
				which		
				achieves		
				SOTA		
				zero-shot		
				performance		
				On On The D		
NO.4.		N	0004/005=	CompWoB.		50
NO46		Not explicitly	2024/2025	Proposes	Emerging	50
	Effective and			SlimLLM, an		
	Fast	paper		effective and	(2024/2025)	

	Structured	summary.		fast	in LLM	
	Pruning	Suffiffally.		structured	optimization/	
	Method for				compression	
				pruning method for	Compression	
	Large			LLMs. For	•	
	Language					
	Models			channel and		
				attention		
				head · ·		
				pruning, it		
				evaluates		
				importance		
				based on the		
				entire		
				channel or		
				head, rather		
				than		
				aggregating		
				individual		
				element		
				importance.		
NO47	MoRE:	Not explicitly	2024/2025	Proposes	Emerging	50
	Mixture of	named, from		Mixture of	Method	
	Low-Rank	paper		Low-Rank	(2024/2025)	
	Experts for	summary.		Experts	in PEFT and	
	Multi-Task			(MoRE) for	Multi-task	
	Parameter-E			multi-task	learning.	
	fficient			Parameter-E		
	Fine-Tuning			fficient		
				Fine-Tuning		
				(PEFT). It		
				aligns		
				different		
				ranks of		
				LoRA		
				modules		
				(low-rank		
				experts) with		
				different		
				tasks using a		
				novel		
				adaptive		
				rank		
				selector,		
				perector,		

	1	T	1	T	ı	<u> </u>
				enhancing		
				adaptability		
				and		
				efficiency.		
NO48	On the	Dellaferrera,	2025	Discusses	Recent	1
		G., et al.		fundamental	Survev (Mar	
	and			shortcoming		
	Opportunitie			s and	broad	
	s in				Generative	
	Generative					
				challenges in		
	Al			_	challenges	
				generative Al		
				models	opportunitie	
				concerning	s.	
				expanding		
				scope and		
				adaptability		
				(generalizati		
				on, causality,		
				heterogeneo		
				us data),		
				optimizing		
				efficiency		
				-		
				(training,		
				inference,		
				evaluation),		
				and ethical		
				deployment		
				(misinformati		
				on, privacy,		
				fairness,		
				interpretabili		
				ty,		
				constraints).		
2.3 Highly			1	1	1	
Cited and						
Influential						
Recent						
Works						
(2022-2025						
1/2022-2025						
h.						
) NO49	BLIP-2:	Li, J., Li, D.,	2023	Introduces	Highly	7

	Bootstrappin	Savarese, S.,		BLIP-2, a	Cited/Influen	
	a	& Hoi, S.		· ·	tial (2023);	
	Language-I	, , , ,		-	SOTA in	
	mage				Vision-Langu	
	Pre-training			strategy that		
	with Frozen			•	Pre-training.	
	Image			vision-langu	r ro tranning.	
	Encoders			age		
	and Large			pre-training		
	Language			from		
	Models			off-the-shelf		
	WIOGCIS			frozen		
				pre-trained		
				image		
				encoders		
				and frozen		
				large		
				language models.		
				Achieves		
				SOTA		
				performance		
				on various		
				vision-langu		
				age tasks with		
				significantly		
				fewer		
				trainable		
NOSO	InctructDL ID:		2022	parameters. Presents	⊔iahly	7
N050	l	Dai, W., Li, J.,	2023		Highly Cited/Influen	
	Towards General-pur	Li, D., Tiong,			Cited/Influen tial (2023);	
		1				
	l'	J., Wang,		vision-langu		
	Vision-Langu				Vision-Langu	
	•	S.		instruction-t	-	
	with Instruction			•	Instruction	
					Tuning.	
	Tuning			built upon		
				BLIP-2. It		
				introduces		
				instruction-a		
				ware visual		

			1	T-		
				feature		
				extraction		
				and		
				correspondi		
				ng		
				instruction-t		
				uned		
				training,		
				enabling		
				strong		
				zero-shot		
				generalizatio		
				n on a wide		
				range of		
				vision-langu		
				age tasks.		
NO51	MiniGPT-4:	Zhu, D.,	2023		Highly	7
		Chen, J.,			Cited/Influen	
	Vision-Langu			which aligns	tial (2023);	
		X., &		_	Efficient	
	Understandi	-		visual	MLLM	
	ng with	<i>,</i>		encoder (ViT	alignment.	
	Advanced			+ Q-Former	Ö	
	Large			from BLIP-2)		
	Language			with an		
	Models			advanced		
				frozen LLM		
				(Vicuna)		
				using just		
				one trainable		
				projection		
				layer.		
				Demonstrate		
				s capabilities		
				similar to		
				GPT-4, such		
				as detailed		
				image		
				description		
				generation		
				and website		
				creation		
				from		
				110111		

	I	ı	<u> </u>	المام الم		
				handwritten		
11050	5 114 5 4	D : D	0000	drafts.		7
N052			2023		Highly	1
	Embodied	Xia, F.,		PaLM-E, an	Cited/Influen	
	Multimodal	Sajjadi, M. S.			tial (2023);	
	Language	M., Lynch,			Paradigm for	
	Model	C.,		language	embodied AI	
		Chowdhery,		model that	and robotics.	
		A., Ichter,		integrates		
		B., &		real-world		
		Florence, P.		continuous		
				sensor		
				modalities		
				from robots		
				(e.g.,		
				images,		
				state		
				estimation)		
				directly into		
				a language		
				model. It		
				demonstrate		
				s positive		
				transfer		
				learning for		
				robotic tasks		
				and		
				visual-langu		
				age tasks.		
NO53	Visual	Liu, H., Li, C.,	2023		Highly	7
	Instruction	Wu, Q., &			Cited/Influen	
	Tuning	Lee, Y. J.		_	tial (2023);	
	(LLaVA)	·		and Vision	SOTA in	
	ì			Assistant),	visual	
				an	instruction	
				end-to-end	following.	
				trained large		
				multimodal		
				model that		
				connects a		
				vision		
				encoder and		
				an LLM for		
				GIT LLIVI 101		

				general-purpose visual and language understanding. It uses language-on ly GPT-4 to generate multimodal language-image instruction-following		
				data.		
2.4 Recent Breakthrou ghs (Primarily 2024–2025, especially pre-prints and newly published) This subsection highlights papers from 2024-2025 already listed above, emphasizing their recency as breakthroug hs. Examples include:						
NOO7	Vision Transformers Need Registers	Darcet, T., et al.	2024		Recent Breakthroug h (2024); SOTA/Influen tial.	8

			ViTs for		
			improved		
			global		
			feature		
			aggregation.		
X-ray	Not explicitly	2024	Novel	Recent	9
Imaging-driv	named		X-ray-specifi	Breakthroug	
en Detection			c	h (2024);	
Network			augmentatio	SOTA in	
(XID-Net)			n and	specialized	
			contextual	CV.	
			feature		
			integration		
			for improved		
			prohibited		
			item		
			detection.		
ECViT:	Not explicitly	2025	Hybrid	Recent	10
Efficient	named		CNN-Transfo	Breakthroug	
Convolutiona			rmer with	h (2025);	
l Vision			P-MSA and	Emerging	
Transformer			I-FFN for	Architecture.	
			efficient		
			image		
			classification		
DSEDA for	Sharafi et al	2025	Disentangleo	Pacant	18
	Sharan et al.	2025			
				_	
Recognition					
			-		
				metriod.	
			1		
The Llama 3	Grattafiori.	2024		Recent	8
	,	[-			
	,, ===		1	_	
			models,	SOTA/Influen	
	Imaging-driv en Detection Network (XID-Net) ECViT: Efficient Convolutiona I Vision Transformer DSFDA for Facial Expression Recognition	Imaging-driv en Detection Network (XID-Net) ECVIT: Not explicitly named Convolutiona I Vision Transformer DSFDA for Facial Expression Recognition The Llama 3 Grattafiori, Herd of A., et al.	Imaging-driv en Detection Network (XID-Net) ECVIT: Not explicitly 2025 named Convolutional Vision Transformer DSFDA for Facial Expression Recognition The Llama 3 Grattafiori, A., et al.	X-ray Not explicitly 2024 Novel Imaging-driv en Detection Network (XID-Net) ECVIT: Not explicitly 2025 Hybrid CNN-Transformer Grimproved prohibited item detection. I Vision Transformer DSFDA for Facial Expression Recognition Recognition The Llama 3 Grattafiori, Herd of Models X-ray Novel Novel X-ray-specific aggregation. Not explicitly 2024 Novel Novel X-ray-specific aggregation. L Vision Transformer Source-Free Domain Adaptation for video-based FER using neutral target control video. The Llama 3 Grattafiori, Herd of A., et al. Models	X-ray Not explicitly 2024 Novel Recent X-ray-specifi Breakthroug c h (2024); augmentatio SOTA in specialized contextual feature integration for improved prohibited item detection. ECVIT: Not explicitly 2025 Hybrid Recent CNN-Transfo Breakthroug rmer with photocomplete integration for improved prohibited item detection. I Vision Transformer DSFDA for Facial Expression Recognition Recognition DSFDA for Facial Expression Recognition The Llama 3 Grattafiori, Herd of Models I Vision The Llama 3 Grattafiori, Herd of Models I Vote the April 1902 April 190

				their size.		
NO2O	Optimization Framework	al.	2025	Applies deep learning optimization techniques to automated prompt optimization for LLMs.	Breakthroug h (2025); Emerging Method in prompt engineering.	19
NO24, NO25, NO26	Phi-3.5-Visio n, Llama-3.2-Vi sion, Pixtral-12B	Meta, Mistral	2024	and powerful	2024) in	21
NO30	Random Policy Enables ICRL (SAD)	Not explicitly named	2025	(SAD) for	Breakthroug h (May 2025) in RL.	27
NO33, NO34, NO36, NO37, NO38, NO39, NO40	•		2024/2025	1 -	Agents.	**
NO44	ZeroFlow: Overcoming Catastrophic Forgetting	Not explicitly named	2025	Benchmark for gradient-fre e optimization in continual learning,	Emerging	46

				showing forward passes can be effective.		
NO46, NO47	SlimLLM, MoRE	Not explicitly named	2024/2025	methods for structured pruning and multi-task	Recent Breakthroug hs (2024/2025) in LLM Optimization	50
Various Surveys	Surveys on LLM Agents, VFMs in Medical Imaging, NLP in Finance, LLMs for XAI, LLLMs limitations, Physics-awa re GenAI, Lightweight ViTs, Explainable DRL		2025	advancing		**

Section 3: Key Thematic Observations from the Expanded Corpus

The process of expanding the research corpus has illuminated several dominant themes and trajectories within contemporary AI/ML research. These observations, derived from the newly incorporated literature, provide a clearer picture of the field's current momentum and future directions.

3.1 Dominance of Transformer-based Architectures and their Evolution

The foundational impact of the Transformer architecture, first introduced by Vaswani et al. (2017) [NO01], continues to be a central narrative in AI/ML. This is evident in the proliferation and advancement of its direct descendants: Vision Transformers (ViTs) for computer vision tasks [NO02] and Large Language Models (LLMs) for natural language processing and beyond [NO03, NO17, NO18]. A significant portion of recent research, as reflected in the

expanded corpus, is dedicated to refining these architectures. For instance, efforts to enhance ViT efficiency and capability are prominent, with innovations like the SCHEME channel mixer [NO11], the addition of "register" tokens for improved global feature aggregation [NO07], the development of UniViTAR for flexible input resolutions [NO09], and the creation of hybrid CNN-ViT models like ECViT for better efficiency [NO10]. Surveys dedicated to lightweight ViTs further underscore this trend [NO15].

While Transformer-based models are undeniably dominant, the research landscape also reveals a growing exploration of alternative or complementary architectures designed to address specific limitations of Transformers. The Mamba architecture, for example, offers linear-time complexity for sequence modeling, presenting a potentially more scalable solution for very long sequences compared to the quadratic complexity of standard attention mechanisms [NO04]. Similarly, hybrid models like ECViT aim to reintroduce beneficial inductive biases from CNNs into the ViT framework [NO10]. This suggests a maturation of the field: after the initial widespread adoption of a powerful architecture, the community is now systematically identifying its weaknesses (e.g., computational cost, data hunger, lack of certain biases) and proposing targeted solutions or entirely new paradigms. This evolutionary process is critical for pushing the boundaries of what is practically achievable with deep learning models.

3.2 Rise of LLM-Powered Agentic Systems

A striking trend emerging from the recent literature is the rapid development and application of LLM-powered agentic systems. This marks a significant conceptual shift from models that primarily process information or generate content to systems designed to act, interact, and achieve goals autonomously within digital or even physical environments. Several recent surveys specifically map this burgeoning area, highlighting the architectural components (profile, memory, planning, action) and operational paradigms (recommender-oriented, interaction-oriented, simulation-oriented) of these agents [NO41, NO42]. The applications of these LLM agents are diverse and expanding. In recommender systems, agents like AutoConcierge [NO33] and RecMind [NO35] leverage LLMs for natural language interaction, preference understanding, and explainable recommendations. For information retrieval and search, agents such as CoSearchAgent [NO38] facilitate collaborative search, while others focus on complex query decomposition and result synthesis [NO41]. Web navigation is another domain where LLM agents like LASER demonstrate advanced capabilities in executing multi-step tasks [NO37]. Furthermore, frameworks like AVATAR are being developed to optimize how these agents utilize external tools [NO39], and systems like USimAgent employ LLMs to simulate complex user behaviors for evaluation purposes [NO40]. The development of specialized benchmarks like CompWoB [NO45] to test the compositional abilities of web agents indicates the field's drive towards more robust and generalizable agentic capabilities. This progression towards more autonomous and goal-oriented AI systems has profound implications for automation, human-computer interaction, and the very nature of intelligent systems.

3.3 Multimodality as a Key Frontier

The integration of information from diverse modalities—text, images, video, audio, and structured data—stands out as a critical frontier in AI research. The expanded corpus reflects intense activity in this area, particularly with the advent and refinement of Multimodal Large Language Models (MLLMs). Recent MLLM releases, such as Microsoft's Phi-3.5-Vision-Instruct [NO24], Meta's Llama-3.2-11B-Vision-Instruct [NO25], and Mistral AI's Pixtral-12B [NO26], all appearing in late 2024, underscore the rapid advancements in creating models that can jointly process and reason about different types of data. These models often build upon strong unimodal foundation models, combining powerful vision encoders (frequently ViT-based) with capable LLMs.

The development of sophisticated MLLMs is enabling new applications and enhancing existing ones. Multimodal recommender systems, for instance, aim to leverage diverse data sources for more nuanced and accurate recommendations, a topic explored in recent surveys. ⁵² Foundational research in vision-language understanding, exemplified by highly influential works like BLIP-2 [NO49], InstructBLIP [NO50], MiniGPT-4 [NO51], PaLM-E for embodied AI [NO52], and LLaVA [NO53], has laid the groundwork for these more integrated MLLMs. The core challenge in this domain often revolves around effective strategies for aligning and fusing representations from different modalities, ensuring that the combined information leads to emergent capabilities rather than a mere aggregation of unimodal strengths. The progress in unimodal foundation models (e.g., increasingly powerful LLMs and ViTs) directly fuels the potential of MLLMs, making the co-evolution of these areas a key dynamic in the field.

3.4 Emphasis on Efficiency, Scalability, and Responsible Al

As AI models, particularly LLMs and large ViTs, continue to grow in size and complexity, practical considerations related to their deployment and societal impact have become paramount. This is clearly reflected in the research trends observed in the expanded corpus. A significant body of work is dedicated to improving model efficiency and scalability. Techniques for efficient LLM fine-tuning, such as QLoRA [NO05], allow large models to be adapted with substantially reduced memory footprints. Structured pruning methods like SlimLLM [NO46] aim to remove redundant parameters without sacrificing performance, while innovations in Parameter-Efficient Fine-Tuning (PEFT) like MoRE [NO47] explore more effective ways to adapt models for multiple tasks.

Alongside efficiency, the challenge of continual learning—enabling models to learn new information or tasks sequentially without catastrophically forgetting previous knowledge—remains a critical research area. The ZeroFlow benchmark and associated findings suggest that even gradient-free optimization methods can play a role in mitigating forgetting [NO44].

Concurrently, there is a growing emphasis on responsible AI development. The need for Explainable AI (XAI) is increasingly recognized, with research exploring how LLMs themselves can be used to generate human-understandable explanations for complex model decisions, as detailed in a recent survey [NO28]. Addressing fairness, identifying and mitigating biases in models and data, and ensuring user privacy are also crucial concerns. The proliferation of research on the limitations of LLMs, systematically reviewed in surveys like "LLLMs: A Data-Driven Survey of Evolving Research on Limitations of Large Language Models" [NO29],

and broader discussions on the challenges in generative AI [NO48], highlight the community's commitment to understanding and mitigating potential negative impacts. This dual focus on pushing the boundaries of capability while simultaneously addressing the practical and ethical dimensions of AI deployment is a hallmark of a maturing field.

3.5 Proliferation of Specialized Surveys and Benchmarks

The rapid pace of innovation across various AI/ML subfields has led to a notable increase in the publication of specialized surveys and the development of new benchmarks. The expanded corpus includes several such surveys published in 2024 and 2025, each attempting to map and synthesize knowledge within specific, fast-evolving domains. Examples include surveys on LLM-powered agents for recommendation and search [NO41, NO42], Vision Foundation Models in medical imaging [NO13], online lightweight Vision Transformers [NO15], the application of LLMs in finance [NO27], LLMs for XAI [NO28], the limitations of LLMs [NO29], physics-aware generative AI [NO14], and explainable deep reinforcement learning [NO43].

This proliferation of surveys indicates that many subfields are experiencing rapid growth and diversification, necessitating dedicated efforts to consolidate current knowledge, identify key challenges, and outline future research directions. Similarly, the emergence of new benchmarks, such as CompWoB for evaluating the compositional task abilities of language model agents [NO45] and ZeroFlow for assessing continual learning strategies [NO44], reflects the need for standardized evaluation methods to measure progress on specific capabilities or to address newly identified challenges. This trend is a positive sign of a vibrant research ecosystem where rapid advancements are quickly followed by efforts to structure the acquired knowledge and rigorously measure further progress, thereby fueling a cycle of focused innovation.

Section 4: Concluding Remarks

4.1 Summary of Expansion and Value

The systematic expansion of the AI/ML research corpus, as detailed in this report, has successfully incorporated a significant number of state-of-the-art, highly influential, and recent breakthrough papers. The inclusion of these works, spanning foundational concepts to cutting-edge applications from 2022 to 2025, provides a substantially enriched and more current research map. The thematic organization of the expanded compendium, t000_dr04_article-list, offers a structured lens through which to view the evolving landscape of AI and Machine Learning.

The value of this expanded map lies in its utility for researchers and practitioners seeking to inform their current research directions, identify key innovations across various sub-domains, and understand the emerging paradigms that are likely to shape the future of the field. By highlighting not only specific advancements but also the overarching thematic trends, this work serves as a curated guide to the forefront of Al/ML research.

4.2 Future Research Trajectories Suggested by the Corpus

The analysis of the expanded corpus points towards several particularly promising and, in some cases, urgent research trajectories:

- Robust and Reliable LLM Agents: While the capabilities of LLM agents are rapidly
 advancing, ensuring their reliability, controllability, and safety, especially when
 interacting with complex environments or external tools, remains a critical challenge.
 Future work will likely focus on more robust planning mechanisms, better error handling,
 and verifiable decision-making processes.
- Scalable and Interpretable Multimodal Learning: The integration of multiple data
 modalities is a key driver of innovation. However, developing MLLMs that are not only
 powerful but also computationally scalable and whose cross-modal reasoning
 processes are interpretable is an ongoing research endeavor. Efficient fusion
 techniques and methods for explaining multimodal predictions will be crucial.
- Inherently Explainable and Fair AI Systems: Moving beyond post-hoc explanations, there is a growing need for AI systems that are designed with explainability and fairness as intrinsic properties. This involves developing new architectures and training methodologies that promote transparency and mitigate biases from the outset.
- **Next-Generation Architectures:** While Transformers remain dominant, the exploration of alternative architectures (e.g., Mamba-like SSMs, novel graph neural networks, hybrid models) that offer advantages in terms of efficiency, scalability for extremely long contexts, or different inductive biases will continue to be an important research avenue.
- Domain-Specific Foundation Models and Adaptation: Tailoring foundation models to specific scientific, industrial, or societal domains (e.g., medicine [NO13], finance [NO27], X-ray analysis [NO08]) and developing efficient techniques for domain adaptation will unlock significant real-world value.

4.3 Potential Next Steps for Corpus Curation

The curation of a research corpus is an ongoing process, especially in a field as dynamic as AI/ML. Potential next steps to further enhance and maintain the value of this expanded map include:

- **Deeper Dives into Specific Sub-Themes:** Conducting more focused literature reviews on rapidly emerging sub-themes identified in Section 3, such as specific types of LLM agent architectures or novel approaches to continual learning.
- Continuous Updating with New Pre-prints and Publications: Implementing a strategy for regularly scanning key archives (e.g., arXiv) and conference proceedings to incorporate the latest relevant pre-prints and peer-reviewed publications, ensuring the corpus remains current.
- Expansion to Related Fields: Exploring the inclusion of highly relevant papers from adjacent fields that increasingly intersect with AI/ML, such as cognitive science (for insights into agent design and human-like reasoning), neuroscience (for biologically inspired AI), robotics (for embodied intelligence), and specific scientific domains where AI is being applied to accelerate discovery.

Enhanced Metadata and Linkages: Augmenting the corpus with richer metadata, such as links to publicly available code repositories, datasets used, and potentially building a citation graph to visualize relationships between papers more explicitly.
 By pursuing these avenues, the research map can continue to evolve as a valuable resource for navigating and contributing to the advancing frontier of Artificial Intelligence and Machine Learning.

Works cited

- 1. On the Challenges and Opportunities in Generative AI arXiv, accessed June 2, 2025, https://arxiv.org/pdf/2403.00025
- 2. Tips for Optimizing GPU Performance Using Tensor Cores | NVIDIA Technical Blog, accessed June 2, 2025, https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/
- 3. Vision Foundation Models in Medical Image Analysis: Advances and Challenges arXiv, accessed June 2, 2025, https://arxiv.org/html/2502.14584v2
- 4. UniViTAR: Unified Vision Transformer with Native Resolution arXiv, accessed June 2, 2025, https://arxiv.org/html/2504.01792v1
- 5. From Deep Learning to LLMs: A survey of Al in Quantitative Investment arXiv, accessed June 2, 2025, https://arxiv.org/html/2503.21422v1
- MutBERT: Probabilistic Genome Representation Improves Genomics Foundation Models, accessed June 2, 2025, https://www.biorxiv.org/content/10.1101/2025.01.23.634452v1.full-text
- 7. Analyzing the homerun year for LLMs: the top-100 most cited Al ..., accessed June 2, 2025, https://www.zeta-alpha.com/post/analyzing-the-homerun-year-for-llms-the-top-100-most-cited-ai-papers-in-2023-with-all-medals-for-o
- 8. 5 of the Most Influential Machine Learning Papers of 2024 ..., accessed June 2, 2025, https://machinelearningmastery.com/5-most-influential-machine-learning-paper
- <u>s-2024/</u> 9. arXiv:2411.18078v2 [cs.CV] 11 Mar 2025, accessed June 2, 2025,
- https://arxiv.org/pdf/2411.18078
 ECViT: Efficient Convolutional Vision Transformer with Local-Attention and Multi-scale Stages arXiv, accessed June 2, 2025, https://arxiv.org/html/2504.14825v1
- 11. [Papierüberprüfung] ECViT: Efficient Convolutional Vision ..., accessed June 2, 2025,
 - https://www.themoonlight.io/de/review/ecvit-efficient-convolutional-vision-transformer-with-local-attention-and-multi-scale-stages
- 12. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2312.00412
- 13. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2412.02198
- 14. Vision Foundation Models in Medical Image Analysis: Advances and Challenges arXiv, accessed June 2, 2025, https://arxiv.org/pdf/2502.14584
- 15. Generative Physical Al in Vision: A Survey arXiv, accessed June 2, 2025,

- https://arxiv.org/html/2501.10928v1
- 16. Image Recognition with Online Lightweight Vision Transformer: A Survey arXiv, accessed June 2, 2025, https://arxiv.org/html/2505.03113v2
- 17. Image Recognition with Online Lightweight Vision Transformer: A Survey arXiv, accessed June 2, 2025, https://arxiv.org/html/2505.03113v1
- 18. arXiv:2503.20771v3 [cs.CV] 5 Apr 2025, accessed June 2, 2025, https://arxiv.org/pdf/2503.20771?
- 19. arXiv:2503.13413v3 [cs.CL] 19 Mar 2025, accessed June 2, 2025, https://arxiv.org/pdf/2503.13413
- 20. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2503.13413
- 21. Advancing Multimodal Large Language Models: Optimizing Prompt Engineering Strategies for Enhanced Performance MDPI, accessed June 2, 2025, https://www.mdpi.com/2076-3417/15/7/3992
- 22. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2504.07274
- 23. LLMs for Explainable Al: A Comprehensive Survey arXiv, accessed June 2, 2025, https://arxiv.org/html/2504.00125v1
- 24. LLMs for Explainable Al: A Comprehensive Survey arXiv, accessed June 2, 2025, https://arxiv.org/pdf/2504.00125
- 25. LLLMs: A Data-Driven Survey of Evolving Research on Limitations of Large Language Models arXiv, accessed June 2, 2025, https://arxiv.org/html/2505.19240v1
- 26. [Literature Review] LLLMs: A Data-Driven Survey of Evolving ..., accessed June 2, 2025, https://www.themoonlight.io/en/review/lllms-a-data-driven-survey-of-evolving-research-on-limitations-of-large-language-models
- 27. Random Policy Enables In-Context Reinforcement Learning within Trust Horizons arXiv, accessed June 2, 2025, https://arxiv.org/pdf/2410.19982
- 28. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2410.19982
- 29. A Survey on LLM-powered Agents for Recommender Systems arXiv, accessed June 2, 2025, https://arxiv.org/html/2502.10050v1
- 30. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2502.10050
- 31. AgentCF++: Memory-enhanced LLM-based Agents for Popularity-aware Cross-domain Recommendations arXiv, accessed June 2, 2025, https://arxiv.org/html/2502.13843v2
- 32. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2502.13843
- 33. Exploring the Impact of Large Language Models on Recommender Systems: An Extensive Review arXiv, accessed June 2, 2025, https://arxiv.org/html/2402.18590v2
- 34. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2402.18590
- 35. Multi-agents based User Values Mining for Recommendation arXiv, accessed June 2, 2025, https://arxiv.org/html/2505.00981
- 36. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2503.05659
- 37. LASER: LLM Agent with State-Space Exploration for Web Navigation arXiv, accessed June 2, 2025, https://arxiv.org/html/2309.08172v2
- 38. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2309.08172

- 39. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2402.06360
- 40. AVATAR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning arXiv, accessed June 2, 2025, https://arxiv.org/pdf/2406.11200?
- 41. USimAgent: Large Language Models for Simulating Search Users arXiv, accessed June 2, 2025, https://arxiv.org/pdf/2403.09142
- 42. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2403.09142
- 43. A Survey of Large Language Model Empowered Agents for Recommendation and Search: Towards Next-Generation Information Retrieval arXiv, accessed June 2, 2025, https://arxiv.org/html/2503.05659v1
- 44. arXiv:2502.10050v1 [cs.IR] 14 Feb 2025, accessed June 2, 2025, https://arxiv.org/pdf/2502.10050
- 45. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2502.06869
- 46. ZeroFlow: Overcoming Catastrophic Forgetting is Easier than You Think arXiv, accessed June 2, 2025, https://arxiv.org/html/2501.01045v3
- 47. [Literature Review] ZeroFlow: Overcoming Catastrophic Forgetting is ..., accessed June 2, 2025, https://www.themoonlight.io/en/review/zeroflow-overcoming-catastrophic-forgetting-is-easier-than-you-think
- 48. Exposing Limitations of Language Model Agents in Sequential-Task Compositions on the Web arXiv, accessed June 2, 2025, https://arxiv.org/html/2311.18751v3
- 49. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2311.18751
- 50. Machine Learning arXiv, accessed June 2, 2025, https://arxiv.org/list/cs.LG/new
- 51. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2403.00025
- 52. A Survey on Large Language Models in Multimodal Recommender Systems arXiv, accessed June 2, 2025, https://arxiv.org/html/2505.09777v1
- 53. arxiv.org, accessed June 2, 2025, https://arxiv.org/abs/2505.09777