Económicas, UBA. Actuario. Análisis Numérico. Cuatrimestre 2, 2021. Segundo Examen Parcial. RECUPERATORIO.

PARA APROBAR EL EXAMEN DEBE SUMAR AL MENOS 50 PUNTOS.

Alumna/o: Facundo Matias De Lorenzo 895187

07/diciembre/2021

INSTRUCCIONES

- 1. Ingrese su apellido, nombre y número de registro en la línea 4 de este documento Rmd (sección "author").
- 2. Remplace NULL por su número de registro en la línea 19 de este documento Rmd.
- 3. Teja el documento Rmd en pdf y utilice dicho documento para realizar su examen.
- 4. La entrega del examen debe constar de lo siguiente:
 - a. El archivo pdf con el enunciado (generado en el punto 3. anterior).
 - b. Cuantro scripts de R, uno por cada ejercicio. Los nombres de los scripts deben ser:
 - 1_Integracion_NroReg.R
 - \bullet 2_Derivacion_NroReg.R
 - 3 InterpolacionAjustamiento NroReg.R
 - 4 Simulation NroReg.R

Observación: en cada uno de los scripts debe figurar su nombre, apellido y número de registro (ingresados como *comentarios*, antes del código). Si no realiza un ejercicio, de todos modos deberá cargar el script correspondiente con sus datos y sin código.

5. Los archivos mencionados en el punto 4. deberán ser comprimidos en un archivo zip (o rar), cuyo nombre será $AN_2021_C2_Parcial2_Recup_NroRegistro.zip$, y cargados al campus de la materia, en la sección entregas.

1 Integración (30 puntos)

Considere la siguiente función de densidad de la variable aleatoria Y, con dominio en el intervalo $(0, \infty)$, y parámetros $\alpha = 1.99$ y $\theta = 1.32$ [De ser necesario, use la función de R gamma(x) para calcular $\Gamma(\alpha)$.]:

$$f_Y(x|\alpha,\theta) = \frac{(\theta/x)^{\alpha}e^{-\theta/x}}{x\Gamma(\alpha)}$$

1.1 Probabilidades simple

Aproxime la probabilidad de que Y esté entre 3.38 y 3.99 usando los métodos de "Trapecio", "Simpson" y "Simpson tres octavos". Ingrese cada algoritmo por separado (**NO SE ACEPTARÁ UN "ALGORITMO GENERAL"**). Indique en cada caso los "nodos" y_0, y_1, \ldots, y_n que se utilizan para la aproximación.

1.2 Probabilidades Compuesto

Aproxime la probabilidad de que Y esté entre 3.38 y 3.99 usando el método de Simpson Compuesto con n=27 (si el método es "Simpson" con n impar, use 'n+1'). Además:

- Indique los "nodos" y_0, y_1, \dots, y_n que se utilizan para la aproximación.
- Calcule la cota del error.
- Compare los resultados con el punto 1.1.

1.3 Esperanza

Use Simpson Compuesto con n = 354 (si el método es "Simpson" con n impar, use 'n+1') para aproximar E(Y); es decir, la esperanza matemática de Y. Calcule la cota del error.

1.4 Derivada de E(Y)

Estime numéricamente las derivadas parciales de $E(Y|\alpha;\theta)$ respecto de los parámetros α y θ .

1.5 Varianza

Use Trapecio Compuesto con n=354 (si el método es "Simpson" con n impar, use 'n+1') para aproximar la varianza de Y, es decir $V[Y] = E(Y^2) - E(Y)^2$. Calcule la cota del error.

1.6 Derivada de V(Y)

Estime numéricamente las derivadas parciales de $V(Y|\alpha;\theta)$ respecto de los parámetros α y θ .

2 Derivación (10 puntos)

Considere los datos de la tabla siguiente, donde P = f(r).

r	Р
0.00	114.8878
0.01	110.0817
0.02	104.9943
0.03	100.1919
0.04	95.1450
0.05	91.4054

r	Р
0.06	87.2913
0.07	83.8146
0.08	80.0810
0.09	76.8462
0.10	73.4838
0.11	70.6687

2.1 Derivada primera

Utilice el método de los **tres puntos (punto extremo, con h<0)** para aproximar P'(0.01) y P'(0.02). Si no pudiese aplicar el método, explique por qué. [Observación: **Utilice solamente el código necesario** (no más de dos líneas) para el cálculo de cada derivada. **No se aceptará un "algoritmo general"**.]

2.2 Derivada segunda

Aproxime las derivadas segundas P''(0.01) y P''(0.02). Si no pudiese aproximarla/s, explique por qué. [Observación: **Utilice solamente el código necesario** (no más de dos líneas) para el cálculo de cada derivada. **No se aceptará un "algoritmo general"**.]

3 Interpolación y Ajustamiento (45 puntos)

Considere los datos x de la variable aleatoria pérdidas (L), y las **probabilidades** acumuladas $(F_L(x) = Prob(L < x))$ estimadas en la siguiente Tabla.

X	F(x) = P(L < x)
0.0227	0.0769
0.0817	0.1538
0.3147	0.2308
0.5258	0.3077
0.7502	0.3846
0.8877	0.4615
1.3583	0.5385
1.3716	0.6154
1.5854	0.6923
1.6288	0.7692
2.8558	0.8462
3.0106	0.9231
5.1854	1.0000

3.1 Lagrange (15 puntos)

- Utilice un polinomio de Lagrange que pase por todos los puntos dados para aproximar F(0.0522). Comente el resultado hallado.
- Construya un polinomio de Lagrange que pase por los últimos 4 pares de datos para aproximar F(0.0522). Comente el resultado hallado, comparándolo con el punto anterior.
- Construya un polinomio de Lagrange que pase por las últimas dos observaciones dadas para aproximar F(0.0522). Comente el resultado hallado, comparándolo con los puntos anteriores.

[Observación: no es necesario que esriba los polinomios P(x).]

3.2 Cubic Splines (10 puntos)

- Escriba el trazador cúbico S(x) que pasa por todos los puntos dados. Indique claramente qué polinomio $S_j(x)$ debe utilizarse en cada subintervalo. Para presentar el polinomio, utilice solamente cuatro decimales en los coeficientes.
- Utilice el trazador cúbico para aproximar F(0.0522) (Advertencia: para los cálculos, no redondee los coeficientes!). Comente el resultado hallado, comparándolo con los resultados hallados con el polinomio de Lagrange.

3.3 Ajustamiento (10 puntos)

- Ajuste los datos de la tabla a una distribución normal (pnorm(x, mu, sigma)) utilizando mínimos cuadrados no lineales (nls).
- Utilice el ajuste realizado para aproximar F(0.0522). Comente el resultado hallado, comparándolo con los resultados de Lagrange y Cubic Splines.

3.4 Gráfico comparativo (10 puntos)

Realice un gráfico comparativo que incluya lo siguiente:

- Puntos originales en color negro y tipo de punto pch = 4.
- Curva continua con el polinomio de Lagrange que pasa por todos los puntos dados en color naranja, y un punto (pch = 5 y el mismo color) marcando el valor interpolado.
- Curva continua con el trazador cúbico que pasa por todos los puntos dados en color dorado, y un punto (pch = 7 y el mismo color) marcando el valor interpolado.
- Curva continua con el ajuste de la distribución Normal en color azul, y un punto (pch = 9 y el mismo color) marcando el valor interpolado.

4 Simulación de Montecarlo (15 puntos)

4.1 Caminos de precios

Utilice una semilla igual a su número de registro¹ para simular 1941 *caminos de precios diarios*, considerando $P_0 = 96$, $\mu = 0.19$ y $\sigma = 0.15$, y un horizonte temporal de seis meses.

Calcule la esperanza, calcule el desvío estándar, y grafique un histograma de los precios finales, P_T .

 $^{^1}$ Ingrese $\mathtt{set.seed}(\mathtt{NroReg})$, donde NroReg es su numero de registro, antes de empezar a simular.

4.2 Probabilidad

Calcule la probabilidad de que el precio final P_T sea menor al precio esperado en T (calculado en 4.1).

4.3 Percentil

Calcule el precio final x tal que $Prob(P_T < x) = 5\%$ (es decir, el percentil 5).