UNCLASSIFIED

AD NUMBER
AD820760
NEW LIMITATION CHANGE
TO Approved for public release, distribution unlimited
FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; MAY 1967. Other requests shall be referred to Naval Air Systems Command, Washington, DC 20360.
AUTHORITY
USNASC notice, 23 Dec 1970

ENGINEERING REPORT

SHROUDED PROPELLER TEST PROGRAM DATA

PHASE 1
(10W)
CONTRACT NQ464-0707-d
MAY ,1967

Hamilton Standard

ED AIR(RAF 1

HSER 4348 VOLUME 2 OF

ENGINEERING REPORT

SHROUDED PROPELLER TEST PROGRAM DATA

PREPARED BY: UNITED AIRCRAFT RESEARCH LABORATORIES

APPROVED BY: Will Ropelach
C. ROHRBACH - HEAD OF AERODYNAMICS
& HYDRODYNAMICS
1.2 follmann
W. FORTMANN - CHIEF OF TECHNICAL STAFF
all D. Propall
A. D. CROXALL - CHIEF PROJECT ENGINEER

THE WORK COVERED BY THIS REPORT WAS CARRIED OUT FOR HAMILTON STANDARD BY THE UNITED AIRCRAFT CORPORATION RESEARCH LABORATORIES

PHASE 1

CONTRACT NO. 64-0707-d MAY ,1967

 STATEMENT	#2	UNCLASSIFIED	7
	"		

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Neval Live Suptement Cooks -AIR-604 Hamilton washed 20360 Standard

United Aircraft Research Laboratories

UNITED AIRCRAFT CORPORATION

EAST HARTFORD, CONNECTICUT

Report E330590-1

Wind Tunnel Tests

of Shrouded Propellers

VOLUME TOF IV

REPORTED BY a. W. Simmonds

A. W. Simmonds

APPROVED BY

Fasano

Supervisor, Low Speed

Wind Tunnels

DATE 3/20/67

NO. OF PAGES 334 - Volume I

COPY NO.

Report E330590-1

Wind Tunnel Tests of

Shrouded Propellers

TABLE OF CONTENTS

<u>-</u>	age
INDEX TO CONTENTS OF VOLUMES	iii
SUMMARY	1
INTRODUCTION	2
TEST FACILITY, PROPELLER DYNAMOMETER AND TEST MODELS	
Wind Tunnel Facility	2
Propeller Dynamometer and Shroud Balance	2
Propeller Dynamometer and Shroud Installation	3
Test Models	4
TEST PROCEDURES	
Initial Testing	6
Performance Testing	7
Pressure Testing	7
STATEMENT OF ACCURACY	8
DATA REDUCTION AND PRESENTATION	9
REFERENCES	11
TIET OF DATA SYMBOLS	10

TABLE OF CONTENTS (Contd.)

	Page
APPENDICES - HSD SHROUDED PROPELLER TEST	
I - Model Dimensional Data	18
II - Pressure Sensing Instrumentation and Traversing Probe Calibration	28
III - Tunnel Blockage Calibrations	38
IV - Propeller Hub Skin Friction Tare	42
V - Side Arm and "A" Frame Tare and Interference Effects	1,1,4
VI - Data Reduction Equations	51
VII - Balance Load Cell Slopes	56
TABLES - HSD SHROUDED PROPELLER TEST	
I - Component Designation Symbols	58
II - Test Schedule	61
III - Wind Tunnel Run Log	65
IV - List of Figures	100
V - Performance Data	Vol. II
VI - Phase I - 18-Ft Test Section Shroud Inlet Velocities (for Performance Runs)	Vol. II
VII - Phase I - 8-Ft Test Section Pressure Data, (Inlet Velocities and Exit Pressures for Performance Runs)	Vol. III
VIII - Phase I - 18- and 8-Ft Test Section Traversing Probe Data	Vol. III
IX - Phase I - 18- and 8-Ft Test Sections Pressure Data (Inlet Velocities, Exit Pressures and Shroud Surface Pressures for Pre-sure Runs)	Vol. III

INDEX TO CONTENTS OF VOLUMES

Volume	Contents	<u>Figures</u>
I	Text of Report	-
	Appendices	~
	Tables I through IV	
	Photographs and Sketches	1-16
	Performance Data Figures	-
	Data Repeatability	17-26
	Basic Shroud Characteristics	27-46
	Shroud Contour Effects	47-102
	Propeller Location and Chord Effects	103-130
	Inlet and Exit Vane Effects	131-157
	Blade Geometry Effects	158-199
	Blade Tip Clearance Effects	200-227
II	Table V: Performance Data	-
,	Table VI: Phase I - 18-Ft Test Section Shroud Inlet Velocities (for Performance Runs)	-
III	Table VII: Phase I - 8-Ft Test Section Pressure Data (Inlet Velocities and Exit Pressure Data for Performance Runs)	-

INDEX TO CONTENTS OF VOLUMES (Contd.)

Volume	Content	<u>.s</u>	<u>Figure</u> s
III (contd.)	Table VIII:	Phase I - 18- and 8-Ft Test Section Traversing Probe Data	-
	Table IX:	Phase I - 18- and 8-Ft Test Section Pressure Data (Inlet Velocities, Exit Pressures for Pressure Runs and Shroud Surface Pressures)	-

Report E330590-1

Wind Tunnel Tests of

Shrouded Propellers

SUMMARY

Wind tunnel tests of a shrouded propeller model were conducted for the Hamilton Standard Division of the United Aircraft Corporation in the 18- and 8-ft test sections of the UARL Large Subsonic Wind Tunnel during December 1965 and May 1966. The test model comprised a shroud-propeller assembly which was attached to a propeller dynamometer through strain-gage balances. The balances provided shroud chord force, shroud normal force, propeller thrust and propeller torque data. Various pressure measurements were also obtained including shroud inlet pitot-static pressures, shroud exit total pressures, shroud surface pressure distributions, non-steady shroud surface pressures and velocity-angularity radial traverse probe data. These data were obtained for propellers with varying blede planform, number of blades and blade-shroud tip clearance. Attendant shroud variables included lip contour, length, axial position, exit area and inlet-exit guide vanes. Test data for these model configurations were obtained through ranges of blade rotational speed at various blade pitch angles and at tunnel Mach numbers from 0.02 to 0.60.

A complete transcript of test data and descriptive information pertinent to the test models, equipment and techniques were transmitted to Hamilton personnel shortly after the test was completed. This report presents an explanatory text, detailed tabulations of the performance and pressure data, and a comprehensive graphical presentation of the performance data.

This project was undertaken for Hamilton Standard under Purchase Order No. E277698 dated March 31, 1965 and Supplement No. 2 dated February 1, 1966.

TMTRODUCTION

The subject shrouded propeller tests comprise the experimental phase of an experimental-analytical program contracted by Hamilton Standard with the Navy Bureau of Weapons. The data obtained are intended to provide detailed and systematically varied performance curves which are sufficient to permit empirical performance estimates for most shrouded propeller configurations. The data also serve as a reference for the analytic predictions which will evolve from the analytical phase of the Navy contract. The data obtained are presented herein in detailed tabular and graphical formats; the test apparatus and techniques are also described.

TEST FACILITY, PROPELLER DYNAMOMETER AND TEST MODELS

Wind Tunnel Facility

The UARL Large Subsonic Wind Tunnel shown in Fig. 1 is a single-return, closed-throat facility with interchangeable 18- and 8-ft octagonal test sections. Maximum tunnel velocity is approximately 200 mph in the 18-ft section and near sonic Mach numbers can be obtained in the 8-ft section. Tunnel stagnation pressure equals atmospheric pressure, and the stagnation temperature of the airstream is held constant in the 40 to 130 F range by means of air exchanger valves. Electric power may be supplied to test models by two motor generator sets each of which develop a maximum of 375 hp at frequencies of 0 to 400 cps. Auxiliary vacuum systems and a 400 psig air supply are also available. A small digital computer and a high-speed data acquisition system capable of sampling 20 channels of dynamic data, 200 steady pressures or 150 steady temperatures are available in the tunnel control room. A detailed description of the wind tunnel and its auxiliary equipment is given in Ref. 1.

Propeller Dynamometer and Shroud Balance

The model propellers were driven by the UARL propeller dynamometer which consists of two variable-speed motors, mounted in tandem, and housed within a

streamlined cast-stee pod with an integral support strut (Fig. 2). The motors are mounted in hydrostatic bearings to restrain all motion except axial motion along, or rotational motion about, the longitudinal axis of the dynamometer. These motions were restrained by load cells which measure thrust and torque of the model propeller. Each motor is capable of delivering 375 hp at 12,000 rpm; together they provide a maximum torque of 330 lb-ft at any operational speed. Model speed was controlled by variable frequency power supplied by two motorgenerator sets and measured with a Berkley EPUT meter and 60 tooth gear signal generator. The dynamometer was faired such that there is negligible axial static pressure gradient in the plane of the propeller (Ref. 2). The dynamometer is also designed so that the model propeller and hub are the only portion of the metric system exposed to the airstream. Pressure instrumentation was provided within the dynamometer in order to correct the measured thrust for any difference in pressure between the front face of the hub and an equal area in the rear fairing (Fig. 2). Further details of the propeller dynamometer are presented in Ref. 2.

The shroud strain-gage balance system shown in Fig. 3 was used to support the shroud on the propeller dynamometer and to measure shroud normal and chord forces. The balance ground structure was provided by a new fairing of heavy gage rolled boiler plate machined to provide essentially the same shape as the metal fairing normally used. The shroud was supported on the ground structure by a three-point linkage schematically illustrated in Fig. 4. Support points P₁ and P₂ shown in Figs. 3 and 4 were fixed in the y-z plane (Fig. 4) by two "A" frames which were free to pivot at both ends. Points P_1 and P_2 were restrained in the axial direction by flexured load cells (C4, C5) which attached to the non-metric structure. Points P1 and P2 permitted lateral as well as vertical rotation and thus only axial chord forces (C4, C5) were transmitted through these points. Forces N_1 and N_2 were obtained directly from load cells which measured a bending moment in the lateral plane between points P1 and P2 and the shroud. Support point P_{3} was fixed in space by a rigid normal force support arm projecting forward from the fairing of the extension shaft housing. A flexured load cell (N_3) was located between the side arm and shroud. The interference effect of the support arm of point P3 and the tare and interference effect of the "A" frames were obtained by use of dummy images of these supports.

Propeller Dynamometer and Shroud Installation

The shroud-dynamometer was initially installed in each test section at a yaw angle of 0 deg and with the thrust axis coincident with the tunnel centerline

elevation. Figures 5 to 8 illustrate the installation although the dynamometer is shown at non-zero yaw angles (28 deg in 18-ft test section, 8 deg in 8-ft test section) as used during stress tests not described herein. Dynamometer monitoring instrumentation consisted of an EPUT meter for rotational speed, a vibration meter with provision for selecting vertical or horizontal motion and a Speed-O-Max display for numerous thermocouple temperatures. Fressure leads from the dynamometer and electrical leads from the dynamometer and shroud balance were connected at the dynamometer strut bulkhead (Fig. 2) then led across the tunnel balance chamber to the appropriate facility in the control room. Electrical leads from the shroud transient pressure transducers were led across the shroud balance linkage, along and down the leading edge of the dynamometer, and into the balance chamber where they were directed into the control room and connected to a Visicorder. Pressure tubing leads from the shroud and exit rake were led downstream across the shroud balance linkage, along and down the leading edge of the dynamometer, and into the balance chamber where they were connected to a patch panel. Pressure tubing leads from the inlet rake and spinner (P; in Fig. 2) were led upstream through the spinner and a sting, through the sting support struts, and into the balance chamber where they were connected to the patch panel. At the patch panel the leads were directed to the high-speed data acquisition system and manometer boards in the tunnel control room. The electrical and pressure leads from the traversing probe were led into the balance chamber and then directed to the appropriate facility in the control room. During pre-performance stress tests, the electrical leads from the blade strain gages were directed along the trailing edge of the blade and through the hub to a slip ring assembly mounted on the upstream surface of the hub. The electrical leads from the slip ring assembly were led upstream through the spinner and sting and down the sting support strut into the balance chamber where they were directed to the appropriate HSD equipment in the control room.

Test Models

The test models consisted of a 20-inch chord shroud with provisions for varying shroud geometry, a 15-inch chord shroud (short chord) of fixed geometry and four sets of propeller blades. The 20-inch chord shroud geometric variations included shroud axial position (two locations), shroud lip shape (two nose sections), shroud diffuser shape and exit area (four aft sections), shroud adjustable pitch inlet guide vanes (set of five), and shroud adjustable pitch exit guide vanes (set of five). Specifications for the shroud components and guide vanes are presented in Appendix I, Figs. I-1 through I-4. Changes in shroud geometry were provided through use of a central support ring which supported the shroud components and transferred aerodynamic loads from the model to the shroud balance.

The support ring as shown in Fig. 9 was fabricated from aluminum to form a channel section with component variation attachment points and was machined to provide a close tolerance inner surface ring concentric with the propeller tip path. The support ring could be located downstream of the position shown in Fig. 9 by the removal of spacers at the upper and lower support points. The forward position places the propeller at the 40 percent chord station of the 20-inch shroud and the aft position locates the propeller at the 25 percent station of that shroud. Figures 10 and 11 show the support ring with exit vanes and with typical shroud diffuser and inlet sections attached, respectively. The diffusers were fabricated from laminated mahogany and machined to provide the exterior contour. Also shown in Fig. 11 is the location of shroud surface static pressure orifices (90 and 315 deg azimuth) and the normal force load cell fairing. A surface pressure transducer on the inner surface and outer surface of the shroud upstream of the propeller plane was also installed for portions of the program. Figures 12 and 13 show the complete shroud model including lip section, center ring fairing blocks, diffuser, aluminum inlet vanes, aluminum exit vanes and exit total pressure rake. Figures 12 and 13 also show the propeller hub spinner which is specified in Appendix I, Fig. I-5.

The test models included four sets of propeller blades comprising rectangular, wide tip and narrow tip planform three-way configurations and comprising a narrow tip four-way configuration. A blade of each of the four propeller sets is shown in Fig. 14 and the geometry of each blade is described in Appendix I, Figs. I-6 through I-9. The blades were aluminum and the three-way rectangular set incorporated fiberglass tips which provided for tip clearance variations between the blade tip and shroud. The blades installed in the 7.5-inch diameter steel hub provided a disc diameter of approximately 30 inches. All three-way propellers had an activity factor of 168 per blade and a design camber of 0.4. The four-way propeller had an activity factor of 126 per blade and a design camber of 0.4. Changes in blade angle were accomplished by manually turning worm gears in the hub that mesh with integral gear sectors on the blade root. Figure 15 shows the rectangular blades installed in the three-way hub (HSD Dwg. SK 27388), and Fig. 16 shows the narrow tip blades, with strain gage instrumentation attached, installed in the four-way hub (HSD Dwg. SK 27388).

Provisions for mounting of inlet pitot-static rakes and an exit total pressure rake were provided in addition to the static pressure orifices and surface pressure transducers incorporated in the model shroud components. The 15-orifice pitot-static inlet rake and the 25-orifice total pressure exit rake were both non-metrically supported from the spinner and dynamometer cowl fairing, respectively. A probe which traversed the exit of each shroud and just behind the propellers was mounted from the turnel wall. A complete description of this instrumentation is provided in Appendix II.

E330590-1

The configuration designation system used herein is based on 16 symbols, each consisting of a letter with subscripts denoting variables and superscripts, where applicable, denoting angle deflections. A typical example would be $L_1C_1E_1B_3P_8T_1$, which defines the complete shroud-propeller model with inlet lip one (L_1) , propeller located at 40 percent shroud chord (C_1) , diffuser exit area ratio of 1.1 (E_1) , three-way hub (B_3) , rectangular planform blade (P_R) and basic blade tip-shroud clearance (T_1) . The symbols are concisely defined in Table I and illustrated in Figs. 9 to 16. Special forms of these symbols used in computer tabulations are included in parenthesis after the symbol definition in Table I.

TEST PROCEDURES

Initial Testing

The initial testing consisted of traversing probe calibration, tunnel blockage calibration, hub tare, tare and interference, and pre-performance stress runs. The traversing probe calibration, as described in Appendix II, defined the parameters required for interpretation of velocity-angularity data. The blockage calibrations, as described in Appendix III, provided a technique for setting tunnel speed. The hub tare runs, as described in Appendix IV, defined the hub skin friction drag which was to be subtracted from the thrust measurements.

The tare and interference runs, as described in Appendix V, defined the effects of the side arm and "A" frame which were to be deleted from the shroud normal and chord-force data. The pre-performance stress runs were conducted with strain-gaged blades to define safe operating limits. The blade stress signals were transmitted through a slip ring assembly within the hub spinner and monitored on a Visicorder by Hamilton personnel. Based on observed stress levels of specific blades selected by HSD personnel, a safe operating range (windmill rpm to 8000 rpm) was established for all the blades tested. Propeller dynamic balance calibrations were interspersed in the test program and were conducted following assembly and static balancing of each hub propeller configuration. These calibrations consisted of monitoring horizontal and vertical vibration as sensed by the vibration gages immediately downstream of the hub as shown in Fig. 2. A safe operating limit of ±0.005 inch has been established for the subject test rig.

Performance Testing

The performance test program consisted of recording and processing propeller thrust and torque, shroud chord and normal force, and shroud inlet and exit pressures for various model blade angles through a range of rotational speed at constant Mach number, shroud configuration and yaw angle (zero). Each rotational speed setting constituted a test point and each range of rotational speed defined a data run. This testing was conducted without strain gage instrumentation on the blades.

The performance data instrumentation consisted of one EPUT meter for propeller rotational speed and ten strain gage unit (sgu) potentiometers for torque, thrust, delta thrust, normal force (three load cells), chord force (two load cells), and local Mach number at the hub (two transducers). This instrumentation incorporated a locking circuit which provided a simultaneous visual sample of each signal which was manually recorded and at the same time punched into a digital computer in the tunnel control room for processing. The almost simultaneous reduction of the basic data permitted a manual on-line graphic presentation of the data in coefficient form. The inlet and exit pressure data were displayed on manometer boards in the control room and recorded photographically, or on magnetic tape with the high-speed data acquisition system. When these data were recorded on magnetic tape, a back-up record was usually obtained through a photographic record of the pressures as displayed on the manometer boards. These data were reduced concurrent with the test program at the UARL Computation Laboratory.

Performance data in the Mach number ranges from 0.02 to 0.20 and 0.3 to 0.6 were obtained in the 18-ft and 8-ft test sections, respectively. A functional sequence of shroud configurations with attendant run numbers and figure numbers is presented in Table II, and a detailed listing of each run obtained during the entire program is given in Table III.

Pressure Testing

The pressure program consisted of recording and processing pressures sensed by a probe traversed radially across the shroud exit area (T_p) and behind the propeller disc (T_{p_2}) for various model blade angles at constant rotational speed, Mach number and shroud configuration. Each radial station setting constituted a test point and each complete traverse across the shroud exit area or behind the

propeller disc defined a pressure run. In the 8-ft test section pressures were also recorded at a specified rotational speed below and above the design rotational speed for one radial position of the traversing probe.

The installation of the probe in the clear 8-ft section preceding the 8-ft section test phase constitutes a third probe position identified in Table I. In addition to the traverse probe data, pressures sensed with the inlet pitot-static rake, the exit total pressure rake and the static orifices on the shroud were recorded on magnetic tape and processed at the computation laboratory. For some shroud-propeller configurations, transient pressures sensed by pressure transducers mounted flush with the inner and outer surface of the shroud lip were recorded on a Visicorder.

STATEMENT OF ACCURACY

At the conclusion of the test program a statistical analysis based on methods outlined in Ref. 3 was made of approximately 300 static zero shifts noted for each of the four balance components. Estimates of static data accuracy (two standard deviations) based on these results are tabulated below.

Component	System Capacity	Measured Force or Moment	Coefficient (5000 RPM)
Thrust, 1b	700	±0.93	±0.002
Torque, ft-lb	500	±0.54	±0.002
Chord Force, 1b	±1000	±1. 26	±0.004
Normal Force, 1b	±2000	±1.82	±0.003

Accuracy in setting propeller rotational speed and propeller blade angle is estimated as ±1 rpm and ±0.1 deg, respectively. Accuracy in setting tunnel Mach number is estimated as 0.005. Overall data repeatability as influenced by all of these parameters and also by model configuration duplication is illustrated in Figs. 17 to 26 of the Data Repeatability tab section. Figures 17 to 20 present data repeatability through the speed regime of the 18-ft tunnel; Figs. 21 and 22 present data repeatability between the 18-ft and 8-ft test sections for a common Mach number of 0.2 and Figs. 23 to 26 present data repeatability in the 8-ft test section. The plots presented are a sampling of the repeat runs conducted throughout the test program and are felt to be representative of the overall data repeatability.

E330590-1

An arithmetic mean estimate of the pressure data repeatability based on a small number of samples indicated values of ±0.06 in surface pressure coefficient, ±0.5 deg in traverse probe yaw angle (ZETA), ±1.0 deg in traverse probe pitch angle (THETA), and ±5 fps in traverse probe velocity (V'). The accuracy in setting the traversing probe radial position was estimated as 0.012 inches.

DATA REDUCTION AND PRESENTATION

The reduction and presentation of the performance and pressure data which were obtained during the runs listed in Table II are discussed herein. Additional calibration and tare data are described in Appendices II through V. The data reduction equations for the performance data are presented in Appendix VI in the initial five sections. The first section (Eqs. 1 to 5) is preliminary in nature and includes standard calculations for determining tunnel air density, velocity and dynamic pressure, and an equation for solid and wake blockage corrections to tunnel velocity. The symbols used in these equations and all subsequently discussed equations are defined in the List of Symbols. The second group of equations (Eqs. 6 to 9) converts the force and moment gage readings to thrust, torque, chord force and normal force. The third and fourth groups of equations (Eqs. 10 to 16) indicate expressions for tare corrections and balance interactions to the basic force and moment equations. The fifth group of equations (Eqs. 17 to 28) converts thrust, torque, chord force and normal force to aerodynamic coefficient form and also includes standard calculations for advance ratio, shaft horsepower and propeller tip speed. These equations also indicate the "A"-frame tare and interference correction on chord force.

The parameters defined by Eqs. 17 to 28 represent the required performance data in their final algebraic form. The data reduction equations for the pressure data are presented in the remaining two sections. Section VI presents an equation for dynamic pressure (Eq. 29) corrected for solid blockage at Mach numbers greater than 0.2 and an equation for pressure coefficient (Eq. 30). The seventh and final group of equations (Eqs. 31 to 38) includes expressions for converting traversing probe pressures to inclined velocity and to projected velocity parallel to the thrust axis.

The presentation of the performance data is in the form of aerodynamic coefficient plots and tabulations. The plots are divided into seven tab-sectioned groups as indicated in Table IV "List of Figures." The groups are descriptively annotated as: Data Repeatability, Basic Shroud Characteristics, Shroud Contour

E330590-1

Effects, Propeller Location and Chord Effects, Vane Effects, Blade Geometry Effects and Blade Tip Clearance Effects.

The first tab section presents a comparison of the data repeatability and is discussed in the preceding section of this report (Statement of Accuracy). The remaining tab-sectioned groups are presented so that the effects of a specific change in model geometry is presented in an individual tab section and is easily compared with the basic model characteristics presented in the second tab section. Within each tab-sectioned group the salient aerodynamic parameters for low (M = 0.02 to 0.15) and high (M = 0.20 to 0.60) speed performance are presented in sets of two and three figures, respectively. The low-speed performance plots present power coefficient and thrust coefficient, versus advance ratio on the first figure of the set and net thrust coefficient and chord force versus advance ratio on the second figure of the set.

The first data presented in the Basic Shroud Characteristics tab section are a single figure set since the shroud was not installed and net thrust coefficient and chord force data were not pertinent. The high-speed performance plots present efficiency, net efficiency and power coefficient versus advance ratio. The contents of the Vane Effects tab section differ slightly from the described format in that, in addition to the typical performance plots, the effect of vane angle at two propeller blade angles for Mach numbers of 0.05 and 0.20 is presented. In addition to the graphic presentation of the performance data, a complete tabulation of these data is presented in Table V.

Concurrent with the acquisition of performance data and in addition to the pressure data obtained during the "Pressure Data" phases of the test program, recovery large quantity of shroud inlet velocity and shroud exit pressure data was obtained. Complete tabulations of these data have been transmitted to HSD personnel and only selections of these results are presented herein. The presentation of these data is in the form of data tabulations in Tables VI and VII. A complete tabulation of the shroud inlet velocities obtained during the performance data runs in the 18-ft test section is presented in Table VI. Table VII presents shroud inlet velocities and exit pressures at, or above, the design rpm (5500) for the performance data runs in the 8-ft test section. A complete tabulation of the traversing probe data obtained during the "Pressure Data" phase of the program and the accompanying inlet, exit and model surface pressure data are presented in Tables VIII and IX, respectively.

REFERENCES

- 1. UAC Research Laboratories Report and Organization. UAC Research Laboratories Report R-10100, April 1950.
- 2. Lanz, Henry: Description of UAC 12,000 RPM Propeller Test Rig. UAC Research Laboratories Report R-14493-1, November 1953.
- 3. Ireson, W. and E. Grant: Handbook of Industrial Engineering and Management. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1955.
- 4. Pope, Allen: Wind Tunnel Testing. John Wiley & Sons, New York, 1954.
- 5. Wells, W. J.: Blockage Corrections for the UAC 8-Foot High Speed Wind Tunnel. UAC Research Dept. Report M-4500-50, January 14, 1954.
- 6. Grose, Ronald M.: Wind Tunnel Tests of Shrouded Propellers at Mach Numbers from 0 to 0.60. United Aircraft Research Laboratories, December 1958 (WADC Technical Report 58-604).
- 7. Black, D.: Tare and Interference (T&I) for the Shroud "A"-Frame Support System for the 8-Foot Tunnel Testing. Memorandum to A. Simmonds, June 24, 1966.

 c_{u}

LIST OF SYMBOLS

A	Ordinate intercept of hub skin friction tare equation, 1b, Ref. App. IV
$^{ m A}_{ m e}$	Area of the shroud exit, station 100% chord, sq ft
$A_{\mathbf{P}}$	Disc area of 2.494 ft diameter propeller (T_1), sq ft
AŢ	Cross sectional area of test section; 49 sq ft for 8-ft test section
В	Slope of hub skin friction tare versus local Mach number, $1b/M_{\mbox{\it l}}$, Ref. App. IV
ъ	Blade local chord, ft
С	Shroud chord force, 1b
с	Shroud chord length, in.
$^{\mathtt{C}}\mathbf{c}$	Shroud chord force coefficient, positive upstream, (CC)
Cct	"A"-frame chord force tare coefficient, Ref. App. V, VI
Cct&i	"A"-frame chord force tare and interference coefficient, Ref. App. V, VI
$\mathtt{c}_{\mathbf{L}}$	Integrated design lift coefficient
$c_{ m LD}$	Blade design lift coefficient
$c_{ m N}$	Shroud normal force coefficient, positive to right looking upstream, (CN)
c _n	Interaction slope of chord force on normal force, lb N/lb C, Ref. App. VII
CP	Power or pressure coefficient, (CP)
$\mathtt{C}_{\mathbf{T}}$	Thrust coefficient, (CT)
$c_{T_{NET}}$	Net thrust coefficient, (CT NET)

Shroud chord force uncorrected for balance interaction, 1b

	(/
$d_{\mathbf{p}}$	Actual model propeller diameter, ft, Ref. Table I
d_S	Shroud minimum internal diameter, 30.0 in.
е	Ordinate intercept of "A"-frame tare and interference equation, Ref. App. V, VI
${ t f_{ t h_t}}$	Hub skin friction tare on thrust, 1b, Ref. App. IV
f	Slope in "A"-frame tare and interference equation, Ref. App. V, VI
g	Acceleration due to gravity, 32.16 ft/sec/sec
h	Blade local thickness, ft
H_{O}	Barometric pressure, psf, (HO)
HP	Horsepower, (HP)
J	Advance ratio
K	Shroud shape factor, 1.03, (Ref. 4)
Kl	Slope of torque strain gage unit (sgu) read-out instrument, ft-lb/sgu Ref. App. VII
к ₂	Slope of thrust sgu read-out instrument, lb/sgu, Ref. App. VII
кз	Slope of Δ T sgu read-out instrument, lb/sgu, Ref. App. VII
Кų	Slope of normal force N_1 (upper bending moment \pm ad cell), read-out instrument, 1b/sgu, Ref. App. VII
к ₅	Slope of normal force N2 (lower bending moment load cell), read-out instrument, lb/sgu, Ref. App. VII
к ₆	Slope of normal force N_3 (side arm load cell), read-out instrument, lb/sgu, Ref. App. VII
K ₇	Slope of chord force $C_{l_{\downarrow}}$ (upper "A"-frame load cell), read-out instrument, lb/sgu, Ref. App. VII

PTR

Propeller test rig

LIST OF SYMBOLS (Contd.)

к	Slope of chord force C_5 (lower "A"-frame load cell), read-out instrument, lb/sgu, Ref. App. VII
к9	Slope of local (hub), total pressure read-out instrument, psf/sgu, Ref. App. VII
K ₁₀	Slope of local (hub), static pressure read-out instrument, psf/sgu, Ref. App. VII
ĸ	Constant for determining static pressure at traversing probe; obtained from probe calibration data, Ref. App. II
LER	Leading edge radius, % chord
М	Mach number, uncorrected for solid and wake blockage (performance data) tabulations and plots; or, corrected for solid blockage only (pressure data), (M)
^M L	Mach number at 20 deg azimuth approximately 1.5 inches above hub surface, Ref. App. IV
$\mathtt{M}_{\mathtt{r}}$	Mach number pressure ratio at traversing probe, Ref. App. II
$\mathtt{M}_{ extbf{TP}}$	Mach number at traversing probe, Ref. App. VI
N	Shroud normal force, 1b
n	Rotational speed, rps
- N	Rotational speed, (RPM)
n _c	Interaction slope of normal force on chord force, lb C/lb $N_{\rm u}$, Ref. App. VII
N_u	Shroud normal force uncorrected for balance interaction, lb
P	Pressure, psi

$\Delta {\tt Pt}$	Hub pressure differential tare (buoyancy) on thrust, 1b
Q	Torque, ft-1b
đ	Dynamic pressure corrected for solid and wake blockage (performance data); or, corrected for solid blockage only (pressure data), psf (Q)
$\mathtt{Q}_{\mathbf{P}}$	Torque uncorrected for thrust interaction on torque, ft-1b
qt	Interaction slope of torque on thrust, lb T/ft-lb QF, Ref. App. VII
$q_{\mathbf{u}}$	Dynamic pressure uncorrected for solid and wake blockage, psf
R	Gas constant, $1716 \text{ ft}^2/\text{sec}^2$ OR; nominal blade radius, 30 in.
r	Local propeller radius, in.
Т	Thrust, 1b
TER	Trailing edge radius, % chord
ΔТ	Increment of thrust due to axial pressure differential across hub, 1b
t	Shroud thickness, in.
$\mathtt{T}_{ ext{NET}}$	Net thrust (T+C), lb
$\mathtt{T}_{\mathtt{P}}$	Thrust uncorrected for hub pressure differential tare, hub skin friction tare, and balance interactions, lb
$^{\mathrm{t}}\mathtt{q}$	Interaction slope of thrust on torque, ft-lb Q/lb T, Ref. App. VII
$\mathtt{T}_{\mathtt{SC}}$	Settling chamber temperature, OR, (TSC)
v	Velocity component at traversing probe; or, free airstream velocity (18-ft section pressure data uncorrected and 8-ft section data corrected for solid blockage), fps, (V)
v'	Velocity component parallel to thrust axis at traversing probe, fps (V PRIME)

v_o	Velocity of airstream corrected for blockage, fps (VO)
$v_{\mathtt{S}}$	Volume of shroud, 13 cu ft
v_{T}	Propeller tip speed, fps (VT)
v_u	Velocity of airstream uncorrected for solid and wake blockage, fps
β	Blade twist, deg, Ref. App. I
γ	Ratio of specific heat of air, 1.4
Z	Angle of yaw at traversing probe, deg, (ZETA)
η	Propeller efficiency, (ETA)
$\gamma_{ m NET}$	Net propeller efficiency, (ETA NET)
θ	Blade angle at $3/4$ blade radius, (THETA $3/4$); or pitch angle at traversing probe, (THETA), deg, Ref. App. II
$ heta_{ extbf{r}}$	Ratio of pressure differential across axial scatic orifices to traverse orifices on traversing probe, Ref. App. II
π	Constant, 3.1416
ρ	Mass density of free airstream, slugs/cu ft, (RHO)
τ_{i}	Model span to width factor, 0.83 (Ref. 4)
Ψ	Angle of yaw, deg, (PSI)
Subscrip	ts .
l	Local condition
m	Model surface

o Initial or zero gage reading or ambient condition

Subscripts (Contd.)

- P Parameters uncorrected for interactions, buoyancy, and tares

 R Strain gage reading, sgu
- s Static pressure
- t Total pressure
- σ Free stream static pressure, (INF)
- 1-5 Orifices on traversing probe (see Fig. II-4)

APPENDIX I

HSD SHROUDED PROPELLER TEST

Model Dimensional Data

The presentation in this appendix comprises tabulation of the shroud, inlet and exit guide vane, and spinner dimensions. Plots of propeller blade width ratio, thickness ratio, twist angle and design lift coefficient are also presented.

Title and Description	Figure
Lip Ordinates	I-1
Diffuser Ordinates	- 2
Short Chord Ordinates	- 3
Inlet and Exit Guide Vane Ordinates	-4
Spinner Ordinates	- 5
4-Way Narrow Tip Blade Gecmetry	- 6
3-Way Rectangular Blade Geometry	-7
3-Way Blade Tip Blade Geometry	- 8
3-Way Narrow Tip Blade Geometry	- 9

HSD SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA

LIP ORDINATES

Station Percent	Lip, L ₁ Ordinate,Y		Lip, Ordina	
of Chord	Upper	Lower	Upper	Lower
0.0	10.050	. 10.050	8.753	8.753
0.25	11.325	8.400	10.175	7.200
0.5	11.885	7.715	10.740	6.560
0.75	12.260	7.160	11.160	6.055
1.00	12.535	6.695	11.475	5.630
1.50	12.970	5.930	12.000	4.950
2.00	13.305	5.255	12.395	4.385
2.50	13.555	4.705	12.725	3.950
3.00	13.760	4.205	13.015	3.460
4.00	14.090	3.335	13.500	2.735
5.00	14.335	2.640	13.835	2.190
6.00	14.500	2.085	14.110	1.735
8.00	14.730	1.215	14.485	1.000
10.00	14.870	0.645	14.740	0.525
13.00	14.960	0.170	14.900	0.160
16.00	14,990	0.020	14.965	0.035
18.75	15.000	0.00	15.000	0.0
	t/c = 15	% t/ds	= 10%	

HSD SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA DIFFUSER ORDINATES

Station Percent	Diffus Ordina		Diffuser, E ₂ Ordinate, Y				Diffuser, E ₄ Ordinate, Y	
of Chord	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
20.0 25.0 30.0 35.0 40.0 50.0 50.0 50.0 65.0 65.0 80.0 90.0 97.5	15.000 15.000 14.910 14.640 14.235 13.775 13.225 12.935 12.610 11.910 11.175 10.335 9.475 8.520 7.490 6.360 5.100 4.435	0.040 0.205 0.580 0.965 1.745 2.130 2.510 2.900 3.480	15.000 15.000 14.940 14.800 14.525 14.190 13.800 - 13.365 12.895 12.875 11.835 11.230 10.550 9.800 8.960 8.960 8.965 7.565	0.0 0.150 0.400 1.105 1.825 2.560 3.295 4.015 4.750 5.480 6.210 6.600	15.000 15.000 14.965 14.925 14.835 14.730 14.575 - 14.350 14.060 13.700 13.290 12.825 12.330 11.810 11.285 10.760 10.510	0.110 0.540 1.600 2.665 3.720 4.785 5.860 6.920 7.990 9.055 9.595	14.960 14.875 14.690 14.320 13.680 12.800 11.800 10.500 8.795 6.550	0.0 0.040 0.205 0.580 0.965 1.745 2.130 2.510 2.900 3.290
100.0	3.760	3.760	7:035	7.035	10.180	10.180	3.860	3.860
	A _e /Ap :	= 1.1	A _e /A _P	= 1.2	$A_{\rm e}/A_{ m P}$	= 1.3	A _e /A _P	= 1.1
	*TER = 0.085%		*TER =	0.085%	*TER =	0.085%	. *TER =	0.200%

*TER = Trailing Edge Radius, % Chord

HSD SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA SHORT CHORD ORDINATES

Percent of Chord	Upper	Lower
0.33 0.67 1.00 1.33 2.00 2.67 3.33 4.00 5.33 6.67 8.00 10.67 13.33 17.33 21.33	13.399 15.098 15.845 16.345 16.712 17.292 17.738 18.072 18.345 19.111 19.331 19.638 19.825 19.945 19.985	13.399 11.199 10.286 9.546 8.926 7.906 7.906 6.273 5.606 4.446 3.520 2.780 1.620 0.860 0.227 0.027

Station Percent	Ordina	ate, Y
of Chord	Upper	Lower
26.66 33.33 40.00 49.66 50.66 53.33 59.99 66.66 73.33 79.99 86.66 93.32 96.66	20.000 19.318 18.531 17.498 16.732 16.178 14.731 13.265 11.745 10.199 8.566 6.813 5.913 5.013	0.053 0.713 1.413 2.120 2.813 3.506 4.200 4.553 5.013
	$A_e/A_P = 1$	
		0.113%

*TER = Trailing Edge Radius

HSD SHROUDED PROPELLER TEST

MODEL DIMENSIONAL DATA INLET AND EXIT GUIDE VANE ORDINATES

Station Percent of Chord	Inlet Vane, I Ordinate, Y Upper & Lower
0	0.0
1.25	1.050
2.5	1.500
5.0	2.100
7.5	2.500
10	2.900
15	3.450
20	3.900
30	4.500
40	4.850
50	5,000
60	4.850
70	4.400
80	3.500
90	2.100
95	1.150
100	0.100
	* LER = 0.55%

Thickness	ratio = 1	.0% chord		
*LER = lea	ading edge	radius,	%	chord

Station Percent of Chord	Exit Vane, V Ordinate, Y Upper & Lower
0.0	0.0
1.25	1.067
2.5	1.500
5.0	2,100
7•5	2.533
10	2.867
15	3•433
20	3.867
30	4.500
40	4.867
50	5.000
60	4.867
70	4.400
80	3.500
90	2.100
95	1.167
100	1.000
	*LER = 0.533%

Thickness ratio = 10% chord *LER = leading edge radius, % chord

HSD SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA SJINNER ORDINATES

Station Percent of Length	Spinner Ordinate, Y Upper and Lower
0	0.0
1	2.69
2	3.81
3 4	4.74
	5.56
5	6.31
10	9.36
15	11.73
20	13.65
25	15.32
30	16.81
35	18.15
40	19.36
45	20,45
50	21.42
60	23.08
70	24.33
80	25.21
90	25.74
100	25.90

HSD SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA

4-WAY NARROW TIP BLADE GEOMETRY SK 571 42

HSD SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA

3-WAY RECTANGULAR BLADE GEOMETRY SK 57143

HSI) SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA

3-WAY WIDE TIP BLADE GEOMETRY SK 57144 DESIGN CL = 04

HSD SHROUDED PROPELLER TEST MODEL DIMENSIONAL DATA

3-WAY NARROW TIP BLADE GEOMETRY SK 57145 DESIGN CL = 04

APPENDIX II

HSD SHROUDED PROPELLER TEST

Pressure Sensing Instrumentation and Traversing Probe Calibration

This appendix describes the pressure sensing instrumentation used and presents a relationship for the complete solid blockage correction to pressure coefficient values in Table IX. As shown in Fig. II-1, the instrumentation consisted of either one or two inlet pitot-static rakes, an exit total pressure rake, shroud surface static pressure orifices at two azimuth angles, a traversing probe applicable to two axial stations and two transient pressure transducers. Except for the transient d.ta, pressures sensed by these devices were converted to electrical signals with transducers and recorded on magnetic tape with a high-speed data acquisition system in the tunnel control room. Pressures sensed by the transient pressure transducer were recorded on Visicorder paper and transmitted to HSD during the test period; these results were retained by Hamilton and have not been incorporated in this report. In addition to the magnetic tape record, a photographic record of the pressures as displayed on manometer boards was obtained. Sketches of an inlet pitot-static rake, the exit total pressure rake and the traversing probe are presented in Figs. II-2, II-3, and II-4, respectively. Figures II-5 and II-6 present the results of the traversing probe calibration conducted immediately prior to the 8-ft section test and used in the final reduction of traversing probe data obtained in the 8- and 18-ft test sections.

The traversing probe calibration was performed to extend the scope of the orig. nal calibration provided by the probe manufacturer to higher speeds and pitch angles. The results of the UARL calibration did not agree with the original calibration provided with the probe and therefore the probe was returned to the manufacturer for further calibration. A lack of repeatability between the original and second calibration performed by the manufacturer, with respect to the parameter \overline{K} , weakened both UARL's and HSD's confidence in these calibration data. It was mutually agreed between UARL and HSD to utilize the UARL calibration data for reduction of the traversing probe data obtained during the test period in the 8-ft test section; and in addition, to extrapolate these data for reduction of the previcusly obtained traversing probe data obtained during the test period in the 18-ft test section. These calibration data were used in conjunction with Eqs. 31 through 38 of Appendix VI to define the velocity and angularity of the airflow at the probe station.

The test technique employed with the traversing probe consisted of recording pressures P₁ through P₅ at discrete radial stations at shroud azimuth 166.5 deg

APPENDIX II (Contd.)

for particular shroud chord locations (T_P and T_{P2}). Radial positioning of the probe was remotely controlled at a console in the tunnel control room which lso provided for rotating the probe to balance the pressures P_2 and P_3 shown in Fig. II-4. Nulling of these pressures provided a yaw angle (ZETA) in numerical display through an electro-mechanical system integral in the control console. With a discrete radial position and yaw angle the parameters M_r and θ_r were determined by Eqs. 31 and 32 of Appendix VI, respectively. With values of M_r and θ_r , pitch angle (THETA) and subsequently parameter \tilde{K} were determined from the calibration data presented in Figs. II-5 and II-6, respectively. Linear interpolation was used to determine pitch angle and \tilde{K} for values of M_r and θ_r parameter intermediate to the presented curves. The parameter \tilde{K} was used to determine a corrected static pressure (Eq. 35) which in turn leads to the determination of Mach number, velocity component and axial velocity by Eqs. 36 through 38, respectively.

Pressure coefficient values presented in Table IX were obtained in accordance with the data reduction equations presented in Appendix VI and as such, are not based on a test section static pressure corrected for solid blockage. The effect of this correction can be expressed as an additive pressure coefficient of 0.06. Pressure coefficient with dynamic pressure corrected for solid blockage and with static pressure uncorrected and corrected for solid blockage may be expressed as:

$$C_{P} = \frac{P_{Z} - P_{QQ}}{H_{Q} - H_{Q}}$$

(dynamic pressure corrected for solid blockage)

$$C_{PC} = \frac{\frac{9}{1}}{\frac{H_o}{Q/H_o}} - \frac{\frac{P_{QQC}}{H_o}}{\frac{H_o}{Q/H_o}}$$

(dynamic and test section static pressure corrected for solid blockage)

The increment in pressure coefficient may be presented as:

$$\Delta C_P = C_{P_C} - C_P = \frac{\frac{P_{\infty}}{H_o} - \frac{P_{\infty}c}{H_o}}{g/H_o}$$

E330590-1

APPENDIX II (Contd.)

Expressing the ratios of static-to-stagnation pressure as functions of Mach number we have:

$$\Delta C_{P} = \frac{P_{\infty}}{q} \left[1 - \left(\frac{1 + .2 M^{2}}{1 + .2 M_{C}^{2}} \right)^{3.5} \right]$$

and

$$C_{PC} = C_P + \Delta C_P = C_P + \frac{P_{\infty}}{q} \left[1 - \left(\frac{1 + .2M^2}{1 + .2Mc^2} \right)^{3.5} \right]$$

Pressure coefficient increments (Δ Cp) for the Mach number range traversed in the 8-ft test section phase are:

Mach number, M 0.3 0.4 0.5 0.6

C_D 0.0626 0.0601 0.0584 0.0567

Note that the corrected pressure coefficient described above is based on solid but not wake blockage in the static pressure and dynamic pressure terms. Wake blockage was not applied since dependent thrust data were not obtained during the pressure testing. This effect would however reduce the above factors within the ± 0.06 value indicated for repeatability in the text.

A static pressure identification system for the tabulated pressure coefficients presented in Table IX is presented in Table II-7.

HSD SHROUDED PROPELLER TEST PRESSURE SENSING INSTRUMENTATION ARRANGEMENT

VIEW LOOKING DOWNSTREAM

HSD SHROUDED PROPELLER TEST INLET RAKE ORIFICE LOCATIONS AND DESIGNATIONS

NOTE: DIMENSIONS SHOWN IN INCHES

HSD SHROUDED PROPELLER TEST EXIT RAKE ORIFICE LOCATIONS AND DESIGNATIONS

NOTE: DIMENSIONS SHOWN IN INCHES

TRAVERSING PROBE INSTALLATION

TRAVERSING PROBE CALIBRATION

TRAVERSING PROBE CALIBRATION

Surface Pressure Orifice Identification System for Table IX

I - Symbols

S - Shroud

1 - 90 deg azimuth

B - Inside Surface

2 - 315 deg azimuth

LEO - Leading Edge

T - Outside

II - Orifice Legend

APPENDIX III

HSD SHROUDED PROPELLER TEST

Tunnel Blockage Calibrations

Various tunnel calibrations were performed in order to establish a solid and wake blockage correction for the dynamometer-shroud model in both 18- and 8-ft test sections. The initial efforts associated with the 18-ft test section operation indicated that the dynamometer and shroud blockage was negligible. Tunnel speed was then set from a propeller-plane wall pressure which accounts for the remaining wake blockage thrust effect. Subsequent efforts for the 8-ft test section indicated significant blockage due to the shroud (but not the dynamometer). A simple solid blockage correction was found to agree with measured speed increments due to the shroud and thus this correction and a comparable correction for the propeller thrust effect were used in the 8-ft test section. These calibrations are described below.

In the 18-ft test section the average static pressure in the propeller plane at the two vertical walls of the test section was compared with an average of four static pressures on the 45 degree sides of the octagonal test section (speed ring) located 167.56 inches upstream of the propeller plane. This comparison was made with the propeller test rig installed in the test section with and without the shroud present. As shown in Fig. III-1 the static pressure at the tunnel walls in the propeller plane does not differ from the upstream value due to the addition of the dynamometer with or without the shroud. Blockage effects of the dynamometer and shroud in the 18-ft test section were thus considered negligible and tunnel speeds were set in the propeller plane at the tunnel walls to account for the remaining thrust effect on wake blockage.

In the 8-ft test section the propeller is close to the beginning of the test section and thus it was not possible to establish an upstream pressure reference which was equal to the test section static prossure without being influenced by the model. A reference pressure in the test section bellmouth was therefore selected (speed bump, 81.4 inches upstream of the propeller; average of three pressures). The speed bump (Fig. 7) data is plotted in Fig. III-2 against data from orifices in the propeller plane at the top wall of the test section for the clear test section and for the dynamometer with and without the shreud. As indicated in Fig. III-2 an increase in speed of

APPENDIX III (Contd.)

approximately 4 percent is caused by the presence of the dynamometer and shroud (primarily from shroud). Since the dynamometer itself does not significantly increase the propeller plane wall pressure it appears that its blockage interference is negligible. The shroud, however, increases the wall speed about 4% and approximately half of this increment (Ref. 5) may be applicable at the center of the tunnel as a blockage interference correction. Since it is difficult to accurately determine the tunnel centerline correction from the measured wall data for a realistic model, a simpler and more conventional solid blockage correction was calculated at a reasonable 3.2% as shown in Appendix VI. Tunnel speed in the 8-ft test section was therefore set from the upstream speed bump value calibrated to give clear tunnel speed. The clear tunnel speed was then increated by 3.2% to account for shroud solid blockage and by a varying amount dependent on propeller thrust to account for the thrust effect (App. VI and Ref. 4).

BLOCKAGE EFFECT OF PROPELLER TEST RIG WITH AND WITHOUT SHROUD 18-FT TEST SECTION

SYM	RUN NO	MACH NO	CONFIGURATION	θ _{3/4}
C	ı	VARY	PTR W/O SHROUD AND BLADES	-
Δ	2,3	٧	LICIF 3B4RI	,

BLOCKAGE EFFECT OF PROPELLER TEST RIG WITH AND WITHOUT SHROUD 8 - FT TEST SECTION

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	413	VARY	TP3 (CLEAR TEST SECTION)	_
Δ	423		LICIESBSRI	
	422		PTR W/O SHROUD & BLADES	

APPENDIX IV

HSD SHROUDED PROPELLER TEST

Propeller Hub Skin Friction Tare

The forces measured by the dynamometer's thrust balance represent a summation of the propeller thrust, a hub-skin friction drag and a thrust force derived from the pressure differential across the hub. The pressure differential thrust is determined from direct measurement of the pressures across the hub at each data point. The hub skin friction drag tare was determined from a calibration made without blades through a Mach number range at zero hub rotational speed. The gross thrust measured during this calibration is equal to the independently measured pressure thrust plus the skin friction drag since the propeller thrust is equal to zero. Hub skin friction tare values measured in this manner are shown in Fig. IV-1. A linear function of local Mach number was fitted to the data as shown in this plot to simplify computer application of the data. Local Mach number was selected, rather than tunnel speed, to account for the effect due to the shroud presence. It should be noted that these results are applicable only with the finite spinner.

HSD SHROUDED PROPELLER TEST PROPELLER HUB SKIN FRICTION TARE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	2	VARY	L ₁ C ₁ E ₃ B ₄ R ₁	_
Δ	3			
O	427	V	V V V B ₃ V	V

APPENDIX V

HSD SHROUDED PROPELLER TEST

"A"-Frame Tare and Interference and Side Arm Interference Effects

The tare and interference effect of the "A"-frame (Fig. V-1) on chord force and the interference effect of the side arm (Fig. V-2) on normal force are presented in this appendix. The tare and interference effects of the "A"-frame on normal force and the interference on the side arm on chord force were assumed negligible (Ref. 6) and corrections for these effects were not applied to the performance data presented in this report. In the case of the side arm interference on normal force, the effect was small in both test sections (less than 1% of the normal force system capacity of 2,000 lbs) and was not applied to the subject data. Results of the normal force measurements without and with the dummy side arm installed are presented in Fig. V-3.

Unlike the side arm interference, the "A"-frame tare and interference effect on chord force was significant in both test sections. For data obtained in the 18-ft test section the difference in shroud chord force coefficient without and with the single dummy "A"-frame installed (this configuration produces half the effect of the two "A"-frames) was determined. These differences were then doubled (to account for the two "A"-frames) and represented by linear functions of power coefficient (App. VI, Eq. 11). The corrections which were employed in reducing the data were based on four runs made with the basic shroud configuration (L1CJE1) and three runs made with the 1.3 exit area ratio (L1CJE3) as noted below.

Run Nu			Shroud	
W/O Image	W/Image	Mach No.	Configuration	Correction Applicable to:
18	22	0.02	$L_1C_1E_1$	L1C1E1, L1C2E1, L1SCC1SCE1SC
19	23	0.10		
20	24	0.20		
28	27		V	
94	99	0.02	L ₁ C ₁ E ₃	L ₁ C ₁ E ₃
95	98	0.10		
96	97	0.20	V	V

APPENDIX V (Contd.)

For intermediate Mach numbers and for the 1.2 exit area ratio shroud (E_2) the corrections were interpolated from the preceding results. Ten other tare and interference runs were also made with the short chord shroud configuration; but, due to inconsistent results did not contribute to the evaluation of the corrections employed. The following table presents the slope (f) constants for the "A"-frame tare and interference chord force correction in the 18-ft test section (Eq. 11 of Appendix VI). The intercept (e) value was zero through the Mach number range for all configurations tested.

Mach Number

Shroud Configuration	Constant	0.02	0.05	0.10	0.15	0.20
All, unless noted below $L_1C_1E_2$ $L_1C_1E_3$	f		0.0409	0.0318	0.0190 0.0265 0.0337	0.0221

For the 8-ft test section data, an "A"-frame correction to chord force was obtained based on chord force measurements of the two isolated (no shroud) "A"-frames rather than from the dummy "A"-frame image. This change in technique was made because the previous data obtained with the dummy "A"-frames were somewhat inconsistent; a direct measurement of isolated "A"-frame chord force was thus made to improve the correction. With the measurements of "A"-frame chord force presented in Fig. V-4 and the approach described in Ref. 7, a chord force correction as a function of propeller advance ratio and thrust coefficient was derived as given in Eq. 12 of Appendix The revised correction does not include the "interference" of tare and interference, nor does it account for changes in tare and interference that could be associated with variations in "A"-frame shroud attachment proximities. However, these effects should be small and thus it is possible to reduce the required tare and interference runs to a single data run. In order to check the correction, data without the dummy "A"-frame were corrected for the effect of one "A"-frame by applying one half of the correction noted above. The corrected data were then compared to measured results with the dummy "A"-frame present. This comparison as shown in Fig. V-5 was satisfactory. The following table presents the constant terms in the chord force correction (App. VI, Eq. 12) for the data obtained on the 8-ft test section. For the intermediate Mach numbers the correction constants were obtained from interpolation of the curve presented in Fig. V-5.

Constant	Mach Number				
	0.3	0.4	0.5	0.6	
е	0.00405	0.00390	0.00435	0.00510	
f = 2.7le	0.01100	0.01059	0.01182	0.01385	

HSD SHROUDED PROPELLER TEST "A"-FRAME IMAGE SYSTEM

HSD SHROUDED PROPELLER TEST SIDE ARM IMAGE SYSTEM

E330590-I

HSD SHROUDED PROPELLER TEST

EFFECT OF SIDE ARM ON NORMAL FORCE COEFFICIENT

SYM	RUN NO	MACH NO.	CONFIGURATION	83/4
0	18	0.02	L ₁ C ₁ E ₁ B ₃ P _{WT} T ₁ R ₁	30
•	29		N _D	
Δ	19	0.10		_
A	30		N _D	
	20	0.20		
	31	Ÿ	N _D	
◊	465	0 30	R _E	
•	497		N _D	<u> </u>
	468			38
	498	<u> </u>	N _D	
∇	469	0 40		
▼	499		N _D	
D	475			46
D	495	V	N _O	
<u> </u>	476	0.50]]
•	496		N _D	V]
Ø	481			54
•	500		T T T T T T NO	†

HSD SHROUDED PROPELLER TEST "A"-FRAME DRAG TARE

SYN	RUN NO.	MACH NO.	CONFIGURATION	83/4
0	422	VARY	PTR W/O SHROUD & BLADES	-

$$C_{C_{\dagger}} = \left[e + f\left(\frac{C_{\dagger}}{J^2}\right)\right] J^2$$
 (APP VI, EQ 12)
WHERE: $f = 2.71e$

HSD SHROUDED PROPELLER TEST COMPARISON OF "A"-FRAME TARE CORRECTION WITH TEST DATA

SYM	RUN NO.	MACH NO	CONFIGURATION	θ _{3/4}
•	465	0.3	LICIEI B3 PWT TIR, RE	30.0
0	488		A _D	1
A	468			38.0
Δ	489		A _D	
	475	0.4		460
	491		A _D	1

NOTE: DATA WITHOUT "A" - FRAME (SHALED SYMBOLS) CORRECTED FOR ONE "A" - FRAME EFFECT (X) AND COMPARED WITH DATA OBTAINED WITH DUMMY "A" - FRAME ADDED (UNSHADED SYMBOLS)

E330500-1

APPENDIX VI

HSD SHROUDED PROPELLER TEST DATA REDUCTION EQUATIONS

I - Preliminary Equations

$$\rho_{\rm C} = \frac{H_0}{RT_{SC}} \tag{1}$$

$$\rho = \rho_0 \left(1 + \frac{\gamma - 1}{2} \mathbf{M}^2 \right)^{-\frac{1}{\gamma - 1}} \tag{2}$$

$$V_{u} = M \left(\frac{\gamma g R T_{SC}}{1 + \frac{\gamma - 1}{2} M^{2}} \right)^{1/2}$$
(3)

$$q_{u} = \frac{\rho V_{u}^{2}}{2} \tag{4}$$

$$q = \frac{\rho V_0^2}{2} \quad \text{where} \quad V_0 = V_U \quad \text{@} \quad M \le 0.2 \tag{5}$$

and
$$V_0 = V_U \left[1 + \frac{K \tau_1 V_S}{A_T^{3/2}} - \frac{T_{NET}}{4A_T q_U \left(1 + \frac{T_{NET}}{q_U A_P} \right)^{1/2}} \right] \quad @ \quad M > 0.2$$

II - Conversion of Strain Gage Readings

$$T_{P} = K_{2} \left(T_{R} - T_{O} \right) \tag{6}$$

$$Q_{P}=K_{1}\left(Q_{R}-Q_{0}\right) \tag{7}$$

E330590-1

APPENDIX VI (Contd.)

II - Conversion of Strain Gage Readings (Contd.)

$$C_u = K_7 \left(C_{4_R} - C_{4_C} \right) + K_8 \left(C_{5_R} - C_{5_0} \right)$$
 (8)

$$N_{u} = K_{6} \left(N_{3R} - N_{30} \right) - K_{4} \left(N_{1R} - N_{1C} \right) - K_{5} \left(N_{2R} - N_{20} \right)$$
(9)

III - Hub Skin Friction Tare and "A" Frame Tare and Interference

$$f_{h_{\uparrow}} = A + BM_{2}$$
where
$$\frac{P_{SA}}{P_{W}} = \frac{H_{0} - K_{10} \left(P_{SLR} - P_{SLO}\right)}{H_{0} - K_{9} \left(P_{SLR} - P_{SLO}\right)}$$
and
$$M_{2} = \left[\frac{\left(\frac{P_{SA}}{P_{LA}}\right)^{-286}}{\frac{\gamma - 1}{2}}\right]^{1/2}$$

$$C_{C_{\text{fai}}} = e + f C_{p} \qquad \emptyset \qquad M \le 0.2 \tag{11}$$

$$C_{C_{\dagger}} = \left[e + f\left(\frac{C_{T}}{J^{2}}\right) \right] J^{2} \qquad \text{(12)}$$

IV - Balance Interactions, Hub Buoyancy and Hub Skin Friction Tare Correction

$$\Upsilon = T_{P} + f_{h_{1}} - K_{3}(\Delta T_{R} - \Delta T_{0}) - Q_{P}Q_{1}$$
 (13)

$$Q = Q_P - T_P t_q \tag{1h}$$

E330590-1

APPENDIX VI (Contd.)

IV - Balance Interactions, Hub Buoyancy and Hub Skin Friction Tare Correction (Contd.)

$$C = C_{\mathbf{u}} - N_{\mathbf{u}} n_{\mathbf{c}} \tag{15}$$

$$N = N_{u} - C_{u}C_{n} \tag{16}$$

V - Conversion of Force Components to Performance Parameters

$$n = \overline{N}/60 \tag{17}$$

$$J = \frac{V_0}{n d p} \tag{18}$$

$$C_{p} = \frac{2}{\rho} \frac{\pi Q}{n^2 d_p^5} \tag{19}$$

$$c_c = \frac{c}{\rho n^2 d_p^4} + c_{ctai}$$
 @ M≤0.2 (20)

$$c_{c} = \frac{c}{\rho n^{2} d_{p}^{4}} + c_{c_{\dagger}}$$
 @ M≥0.3 (21)

$$C_{\mathsf{T}^2} \frac{\mathsf{T}}{\rho \,\mathsf{n}^2 \mathsf{d}_{\mathsf{P}^4}} \tag{22}$$

$$C_{\mathsf{T}_{\mathsf{NET}}} \cdot C_{\mathsf{T}} + C_{\mathsf{C}} \tag{23}$$

$$\eta = \left(\frac{C_{T}}{C_{P}}\right) J$$
(24)

$$\eta_{\text{NET}} = \left(\frac{C_{\text{TNET}}}{C_{\text{P}}}\right) J \tag{25}$$

APPENDIY VI (Contd.)

V - Conversion of Force Components to Performance Parameters (Contd.)

$$C_{N} = \frac{N}{\rho n^{2} d_{p}^{4}} \tag{26}$$

$$V_{T} = \pi \, \text{nd}_{P} \tag{27}$$

$$HP = \frac{\bar{N}Q}{5252} \tag{28}$$

VI - Calculation of Pressure Coefficient

$$q = \frac{\rho V_0^2}{2}$$
 where $V_0 = V_U @ M \le 0.2$ (29)

and
$$V_0 = V_u \left(\frac{1 + K \tau_l V_s}{A \tau^{3/2}} \right)$$
 @ $M > 0.2$

$$c_{P} = \frac{P_{S_{m}} - P_{S_{\infty}}}{q} \tag{30}$$

VII - Reduction of Traversing Probe Data

$$M_{r} = \frac{P_{l} - P_{2}}{P_{l}} \tag{31}$$

$$\theta_{\mathsf{r}} = \frac{\mathsf{P_4} - \mathsf{P_5}}{\mathsf{P_1} - \mathsf{P_2}} \tag{32}$$

$$\theta = f(\theta_r, M_r)$$
 From Fig. II-5 (33)

APPENDIX VI (Contd.)

VII - Reduction of Traversing Probe Data (Contd.)

$$\overline{K} = (M_r, \theta)$$
 From Fig. II-6 (34)

$$P_{S} = P_{1} - \overline{K} (P_{1} - P_{2})$$
(35)

$$\mathbf{M}_{\mathsf{TP}} = \left[\frac{\left(\frac{\mathsf{P}_{\mathsf{S}}}{\mathsf{P}_{\mathsf{I}}}\right)^{-\frac{\gamma}{\gamma-\mathsf{I}}} - \mathsf{I}}{\frac{\gamma-\mathsf{I}}{2}} \right]^{1/2} \tag{36}$$

$$V = M_{TP} \left[\frac{\gamma g R T_{SC}}{1 + \frac{\gamma - 1}{2} M^2} \right]^{1/2}$$
(37)

$$V' = V \cos\theta \cos Z \tag{38}$$

APPENDIX VII

HSD SHROUDED PROPELLER TEST

Balance Load Cell Slopes

			Numerical V	alue/
	Constart	Description	18-Ft Section	8-Ft Section
	C _n	Interaction slope of chord force on normal force, lb N/lb/C	0.021714	0.010630 0.040650*
	к ₁	Slope of torque strain gage unit read- out instrument, ft-lb/sgu	0.049140	0.049852
	К2	Slope of thrust sgu read-out instrument lb/sgu	, 0.072161	0.073019
)	кз	Slope of ΔT sgu read-cut instrument, lb/sgu	0.004421	0.008842
	К4	Slope of normal force N_1 (upper bending moment load cell), read-out instrument, lb/sgu	0.018153	0.017400 0.04442*
	К ₅	Slope of normal force N_2 (lower bending moment load cell) read-out instrument, lb/sgu	0.019328	0.019460 0.053980*
	к6	Slope of normal force N3 (side arm load cell), read-out instrument, lb/sgu	0.190553	0.185400 0.217760*
	Кү	Slope of chord force Ch (upper "A"-frame load cell), read-out instrument, lb/sgu	0.044366	0.042520 0.042580*
	кв	Slope of chord force C5 (lower "A"-frame load cell), read-out instrument, lb/sgu	0.044805	0.043820 0.044630*

APPENDIX VII (Contd.)

Constant	Description	Numerical 18-Ft Section	
к ₉	Slope of local (hub), total pressure read-out instrument, psf/sgu	0.0	0.0202
^κ 10	Slope of local (hub) static pressure read-out instrument, psf/sgu	0.0288	0.0719
$\mathtt{n}_{\mathtt{C}}$	Interaction slope of normal force on chord, force, lb C/lb N	-0.031438	-0.045426 0.029290*
q _{t,}	Interaction slope of torque on thrust, 1b $\mathbb{E}/\text{ft-lb}\ \mathbb{Q}_p$	0.0	0.0
$t_{\mathbf{q}}$	Interaction slope of thrust on torque, ft-lb Q/lb T	0.0	0.0

^{*}Used for configuration with propeller plane located at 25% shroud chord (c_2).

TABLE I

HSD Shrouded Propeller Test

Component Designation Symbols

			rigure
$\mathbf{A}_{\mathbf{D}}$	Chord force "A" frame dummy,	(AD)	V-1
$\mathtt{B}_{\mathbf{X}}$	Propeller hub configuration		
	where subscript $x = 3$ = μ	3-way nub (B3) 4-way hub (B4)	15 16
$\mathtt{C}_{\mathbf{x}}$	Shroud - propeller plane rela	ationship	
		ropeller plane located at 40% aroud chord, (Cl)	9
	= 1SC	short chord shroud with propeller plane located at 40% shroud chord, (CISC)	-
		ropeller plane located at 5% shroud chord, (C2)	9
$\mathbf{E}_{\mathbf{X}}$	Diffuser section		
	where subscript $x = 1$	shroud exit area divided by shroud internal area at propeller equal 1.1, (E1)	10
	= 1SC	short chord shroud diffuser with shroud exit area divided by shroud internal area at propeller equal 1.1, (EISC)	-
	= 2	shroud exit area divided by shroud internal area at propeller equal 1.2, (E2)	.,

TABLE I (Contd.)

		Figure
$\mathbf{z}_{\mathbf{x}}$	Diffuser section (Contd.)	
	where subscript x = 3 shroud exit area divided by shroud internal area at propeller equal 1.3, (E3)	-
	= 4 NACA series 16 section with shroud exi: area divided by shroud internal area at propeller equal 1.1, (E4)	-
Ix	Five inlet guide vanes with numerical superscript indicating deflection angle in degrees. Clockwise rotation when viewed from tip positive	12
$L_{\mathbf{x}}$	Inlet lip	
	where subscript $x = 1$ inlet lip 1, (L1.)	11
	= lSC short chord shrcud inlet lip, (LlSC)	-
	= 2 inlet lip 2, (L2)	-
ИD	Side arm dummy, (ND)	V-2
Pxx	Planform of propeller blades	14-16
	where subscript x = R rectangular planform, (PR)	
	= WT wide tip planform (PWT)	
	= NT narrow tip planform, (PNT)	
PTR	Propeller dynamometer, PTR	2
R _x	Inlet rake	II-2
	where subscript $x = 1$ 20 deg azimuth, (R1)	
	= 4 270 deg azimuth, (R4)	

TABLE I (Contd.)

		Figure
$R_{\mathbf{E}}$	Exit rake at 75 deg az muth	II-3
TP	Traversing probe at 166.5 deg shroud azimuth, at trailing edge of basic (E1) shroud diffuser (tunnel station -71.75 in.), (TP)	II-4
$T_{ m P2}$	Traversing probe at 166.5 deg shroud azimuth, immediately downstream of blade plane (tunnel station -82.00 in.), (TP2)	II-4
ТРЗ	Traversing probe protruding from tunnel floor at tunnel station -9 in., (TP3)	•
$T_{\mathbf{X}}$	Blade tip-shroud clearance	
	where subscript $x = 1$ 29.925 in. diameter propeller, (T1)	
	= 2 29.850 in. diameter propeller, (T2)	
	= 3 29.700 in. diameter propeller, (T3)	
Note:	Minimum internal shroud diameter = 30.0 in. for all shrouds	
$\Lambda_{\mathbf{x}}$	Five exit vanes with numerical superscript indicating deflection angle in degrees. Counterclockwise rotation when viewed from tip positive.	13

TABLE II

HSD Shrouded Propeller Test Test Schedule

I - 18-Ft Test Section Performance Data (Table V)

Configuration							Run Number	Figure Number
L ₁ C ₁ E ₁ B ₃ P _{WT} T ₁ R ₁				18-21,28,32-36,38-49	18-20,28-34			
				ł	l l	${f g}_{f E}$	260-272	28-34
†				PNT			51-58,213-220	172-176
L_2		↓		PWT			61-74	19,20,47-51
L _l		E ₂					77-80,82-92	61-65
		E ₃					93-96,101-104,106-116	17,18,75-79
•	↓	E4			↓		117-129	17,89-93
				↓			130-134	27
$^{\mathrm{L}_{\mathrm{l}}}$	ر _ا	El	V	P_{R}	Tl		1.75-179,181-186	158-162
			Вμ	P_{NT}	+		188-199	21,22,186-190
+	¥	↓	Вз	P_{R}	T2		201-211	200-204
L _{lsc}	$c_{\mathtt{lSC}}$	Elsc	вз	P_{NT}	T ₁ ↓	V	230-233,235-242	117-121
Ll	c_1	El	Вз	P_{R}	T ₃ R ₁ F	$R_{ m E}$	247 - 258	214-218
	c ₂			PWT	Tl		278-285,287-290	103-107
	C _l					v	291 - 303	143-145,152-157
*	1	V	7	7	1 1	I	304-315	131-133,137-142
L _{lsc}	c _{lsc}	Elsc	^B 3	P _Ŗ	T ₃ R ₁ I	$R_{ m E}$	348-351 , 358-363	-

TABLE II

HSD Shrouded Propeller Test Test Schedule

II - 18-Ft Test Section Pressure Data

	Run Numbers	Tabulations Presented		
Configuration		*Pressure Trav. Probe (Table IX) (Table VIII)		
L ₁ C ₁ E ₁ B ₃ P _{WT} T ₁ R ₄ R _E T _P	137-139	- X		
	141-143	x		
	144	-		
	149,150	x		
B4 PNT R1	158,159,162,163	-		
B ₃ P _{NT}	165,166,168,169	x		
$ ho_{ m R}$	171-174			
P _{WT}	316-321			
P _R T ₃	323 - 326			
E ₃ P _{WT} T ₁	328,329,331,332			
L _{lsc} C _{lse} E _{lsc} B ₃ P _{WT} T ₁	334,335,340~341			

^{*}Surface pressures, inlet rake, exit rake

TABLE II

HSD Shrouded Propeller Test
Test Schedule

III - 8-Ft Test Section Performance Data.

	Configur	ation		Run Numbers	Figure Number
Ī	$\mathtt{L_1}$ $\mathtt{C_1}$ $\mathtt{E_1}$	B4 PNT T1 R1	$R_{ m E}$	434-446	21,22,191-199
		B ₃ P _R		449-458,460,461	163-171
		PwT		463-479,481,482, 485-487,702-704	25,26,35-46
			I	501-504,722-729	131-136
			V	505-508	146-151
	E ₂			509-521	66-74
	E3			522-527,529-533	80-88
	E14			539-551	94-102
	L ₂ E ₁			552-565	52-60
	L _l C ₂	+ +		566-577	108-116
	L _{lSC} C _{lSC} E _{lSC}	B ₃ P _{NT}		585-590,592-598,600-603	122-130
	L ₁ C ₁ E ₁	P _R T ₂		612-614,616-625,708-713, 717-720	205-21.3
		P _{NT} T _l		627-639	177-185
		P _R T ₃		641-653	23,24,219-227
	1 1	P _{WT} T ₁	VIV	730-734	

TABLE II

HSD Shrouded Propeller Test Test Schedule

I - 8-Ft Test Section Pressure Data

1 - 0 10 1con become resource baroa	Run Numbers	Tabulations Presented	
Configuration		*Pressure (Table IX)	Trav.Probe (Table VIII)
L _l C _l E _l B ₃ P _R T ₃ R _l R _E T _P	654	Х	Х
	655,656		
P _{NT} T ₁	658-660		
B ₁₄	662-664		
B ₃ P _{VII}	666-676		
	677-679		
B ₃ P _R	681-684		
E ₃ P _{WT}	686-688		
L _{lsc} C _{lsc} E _{lsc} P _{NT}	691-693		
L _l C _l E _l P _{WT} T _{P2}	695-698,700,701		<u> </u>

^{*}Surface pressures, inlet rake, exit rake

TABLE III

HSD SHROUDED PROPELLER TEST

			cc)NF	igu	RATION	i	03/4	cc				^	TEST	REMARKS
									MACH	NO.	RP	M	U	BJECTIVE	
PT:	R w	/o	sh	rou	ıd a	and bl	ades	_	Var.	ied	()	Ca.	Lib.	PTR installed 12-2-65
L_1	ClE	3B)	₊ R ₁												Run aborted
									,				,		Rerun of run 2
	E	1 ^B	3PR	Tl	R _l I	¹⁰ +Ga ₆	ges	10	0	.0	Var	ied			Fouling indicati
						+							,		Rerun of run 4
						+		35	0	.02					
						+		20							and the same of the same same same same same same same sam
						+	payangan sa shallan milibuya dinasa Himi	40	0	.10				država pir ma — np. strikuljudiji jegaja, m	
						+			0	.20					
								30	0	.02			Pe	rformance	Blades damaged
			Pwŋ	,		+Ga ₍	ges	10	0	.0			ŀ		
						+		20	0	.02			1		
						+	NATIONALLY OF THE NAME OF THE		1 0	.15				halijaliskim malinki kun m remaniskim	
					Ĺ	+	n gangga ng santaba tanasan	35	0	.02			 		and the state of t
						+			0	.15					
						+		40	0	.10					
						+			0	.20					
						der employee as an		30	0	.02			Pe	rformance	
							MARKANIS (ANNO LANGE MARKANIS)		0	.1.0					
									i	.20				'	
	-17-17-12-12-12-12-12-12-12-12-12-12-12-12-12-	L ₁ C ₁ E	E ₁ B	PTR w/o sh	PTR w/o shrou	PTR w/o shroud a L1C1E3B4R1 E1B3PRT1R1I	PTR w/o shroud and bl L1C1E3B4R1 E1B3PRT1R1IO+Gag + + + + + + + + + + + + + + + + + +	E ₁ B ₃ P _R T ₁ R ₁ I ^{1O} +Gages + + + + + + + + + + + + + + + + + +	PTR w/o shroud and blades - L1C1E3B4R1	PTR w/o shroud and blades - Var. L1C1E3B4R1	CONFIGURATION PTR w/o shroud and blades L1C1E3B4R1 E1B3PRT1R1IO+Gages 10 0.00 + 35 0.02 + 40 0.20 PwT + 20 0.20 30 0.02 1 4 40 0.10 1 4 35 0.02 1 4 40 0.15 1 4 40 0.15 1 4 40 0.15	MACH NO. RP PTR w/o shroud and blades	CONFIGURATION PTR w/o shroud and blades L1C1E3B4R1	CONFIGURATION ## CONDITIONS MACH NO. RPM	CONFIGURATION

TABLE III

HSD SHROUDED PROPELLER TEST

RUN NO.					C.	ON	FIG	URATION	θ ₃ ,	/4	TES CONDIT		3	TEST OBJECTIVE	REMARKS
140.											MACH NO.	RI	PM	OBJECTIVE	
21	L	1 ^C	LE:	ιB :	$^{P_{V}}$	ľΤ	1 ^R	1	30		0.10	Var	ied	Performance	Repeat of run 19
22								AD			0.02				
23											0.10				
24											0.20				
25									10		0			Static balance	
26									30		0.20			Performance	Repeat of run 24
27									40		0.20				
28															
29								N_{D}	30		0.02				
30											0.10				
31											0.20				
32											0.05				
33											0.10				Repeat of run 19
34		L									0.20	_			Repeat of run 20
35											0.05		<u>.</u>		Repeat of run 32
36									20	l					
37											0.10				Instrumentation inoperative
38									30						Repeat of run 33
39									40)	0.20				Repeat of run 28
40								$R_{ m E}$	20		0.10				Rerun of run 37

TABLE I

HSD SHROUDED PROPELLER TEST

RUN NO.			CC	ONF	IGUR	RATION	θ _{3/4}	CON	res1	r Ons		TE			REA	IAR	KS		
140.								MACH	NO.	Rf	M	UBJE	CTIVE					- 4	
41	L ₁ C ₁	Ε _l Β	3 ^P W	TT:	lR1R	E	25	0.0	05	Var	ied	Perfo	rmance						
42								0.1	ro										
43								0.2	20										
44							35		,										
45								0.3	10					-					
46								0.0	05										
47							30	0.:	10					Repe	at	of	ru	n 3	38
48																			
49																			
50			PN	T	R ₁		10	0				Stati balan					يسيجيد		
51							20	0.0	05			Perfo	rmance		anak			•	
52								0.:	10								r		
53								0.2	20						.				
54						and the state of t	25	0.0	05										
55								0.:	10							₽ ₽₹₩•			
56								0.:	20										
57							30												
58								0.3	10										
59								0,0	05					Blad	les	den	nag	ed	
60	L ₂		PV	ΨŢ			10	0		1		Statio balan							

TABLE I

WIND TUNNEL RUN LOG

RUN NO.			CON	FIGURA	TION	θ _{3/4}			ONS		TE OBJE	ST CTIVE	REMARKS
61	T.= C	'- F- T) _ D(T	o Do D.		20	0.				Dowfo	rmance	
	120	TEL	3PWTT	TWTWE	·	120			Val	Teu	reric	Talance	
62		-					0.	05					
63						25							
64							0.	10					
65							0.	20					
66						30							
67							0.	10					
68							0.	05					
69						35							
70							0.	10					
71							0.	20					
72						40							
73						25							Repeat of run 65
74													Repeat of run 73
75	L ₁		P_{R}			10	0				Stat:		Aborted blade failure
76		E ₂											
77						20	0.	05			Perf	ormance	
78							0.	10					
79						25	0.	.05					
80							0	70					

68

TABLE I

RUN NO.					co	NF	IGL	IRA	TION	1	θ_3	/4		TES	r Ons		TE	ST CTIVE	RE	MARKS
140.													MACH	NO.	RF	M	ODVE.	CTIVE		
81	L	1 ^C :	ĘĘ	2B3	P_{W_1}	$\mathbf{T}^{\mathbf{T}_{j}}$	լռյ	$_{ m LR_{ m E}}$	1		25	5	0.	20	Vai	ied	Perfo	rmance	Aborte vibrat	d high ion
82																			Rerun	of run 81
83											30)	0.	05						
84													0.	02						
85													٥.	10						
86													0.	20						
ጸፖ											3	5	0.	20						
88													0.	10						
89													0.	.02						
90									+ Tu	fts	2	5	0.	.02						
91									+		2	0	0.	.02						
92									+		4	0	0.	.20						
93			E	3							2	0	0.	.02						
94											3	0								ميورج والمتعادلة والمت
95													0	.10						
96													0	.20						
97									Α _Ι)										
98													0	.10						
99													0	.02						
100																			Repea	t of run

TABLE III

HSD SHROUDED PROPELLER TEST

				СО	NF	igi	UR	ATION	e	3/4	со						F	ÆM	IAR	KS	
										- , ·	MACH	NO.	RF	M	OBJR	CTIVE					
L	1 ^C	LE:	3B :	3 ^P W	$\mathbf{T}^{\mathbf{T}}$	ıR:	ıR]	E		30	0.	.02	Var	ied	Perfo	rmance	Repea	ıt	of	run	94
																	Repea 101	ıt	of	run	
											0.	.10					Repea	ıt	of	run	95
											0	.05				ļ					
								AD			0.	.05									
									2	20											
											0	.10									
									2	25	0	.02									
											0	.05									
											0	.10									
											0	.20									
										35											···
											0	.10									
											0	.05									
											0	.02									
								.,	1	40	0	.20									
		Eį	4																		
									1	20	0	.10									
											0	.02									
										25											
		L ₁ C		L1C1E3B	L1C1E3B3PW	L1C1E3B3PWTT	L1C1E3B3PWTT1R	L1C1E3B3PWTT1R1R		L1C1E3B3PWTT1R1RE	L1C1E3B3PWTT1R1RE 30 L11C1E3B3PWTT1R1RE 30 AD AD 20 AD AD 25 AD AD 35 AD 35 AD AD 35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MACH NO RESTRICT TO THE STATE	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CONFIGURATION ### CONTINUES **CONFIGURATION** **Page 125** **Page 12	CONFIGURATION 63/4 CONOTIONS MACH NO. RPM	CONFIGURATION 34 CONOTIONS RPM CONOTIONS REPORT	CONFIGURATION	CONDITION	CONFIGURATION 63/4 CONDITIONS MACH NO RPM

TABLE III

RUN NO.					C	ON	FIG	SUR	ATI	ON		93/4		CON	TEST	ONS			est Ective		REI	MARKS
121	I	1 ('n.	i ₄ B	3 ^P	WI [,]	1	RIR	E			2 5		ο.	10	Var	ied	Perf	ormance			
122														0.	20							
123												30										
124														0.	10							
125														٥.	02							
126												35										
127														٥.	10							
128														٥.	20				,		e	
129														0.	02						epeat un 12	
130												30		0.	20					W	o sh	roud
131			-											0.	10							
132														0.	.05							
133												25	<u> </u>	0.	10							
134											 			0.	.05						<u></u>	
135															-		_				unnel ainte	fan nance
136	:	ել	c _l	E ₁			${f T_1}$		T	P		30		0.	.05	55	00	Pres	sure			d Epsco ative
137																				T		of run 136
138																65	00					
139														1		75	00					
140								R ₄						0	.10	55	00					ed Epsco rative

TABLE III

HSD SHROUDED PROPELLER TEST

WIND TUNNEL RUN LOG

RUN NO.		اده ادخواید ا		(ON	FIG	iuf	RAT	ION		0	3/4		TES	T IONS			EST	R	EMARKS
NO.													MACH	NO.	RI	M	084	ECTIVE		
141	L	1 ^C)	E	В3	Pw <u>r</u>	ין. ובי	34)	REΙ	P		3	0	0.	10	55	00	Pres	sure		
142															650	00				
143										·					75	00				
144											2	5	0.	05	55	00				
145										-			40						Epsco inope	rative
146																				
147																				
148																				
149													0.	05	65	00				
150															7.50	X				
151				В4.	P _{NT}		R _l		∙Юв	ge	1	.0	0		Va.	ried	Stat			
152									+		a	0	0.	02			Blac			
153									+				0.	15						
154									+		3	5	٥.	02						
155									+				0.	15						
156									+		4	0	0.	10						
157							T	T	+				0.	20						
158											3	10	0.	05	5 5	00	Pres	ssure		
159							T			فسنوا هجوا					75	00				
160					Ţ								0.	20	55	00			Abor	ted, trav. e inoperati

72

TABLE I

HSD SHROUDED PROPELLER TEST WIND TUNNEL RUN LOG

RUN NO.				CON	FIC:	R/	TION	θ.	5/4	cc	TES	T IONS		TES OBJE		RE	MA	RKS	
										MACH	NO.	RPN	1	ODUC					
161	L	LC1E	1B)	PNT	Րլռյ	RE	$T_{ m P}$	3	٥	o.	20	5500		Press	ure	Trav. inope			
162									L							Rerun	of	run	160
163												7500	İ						
164			B	3				1	0	0		Varie	đ	Stati balan					
165								3	0	0.	05	5500		Press	ure				
166												7500		:					
167										0.	20	5500							
168																			
169								,				7500							
170				P_{R}				1	0	0		Vari	€đ	Stati balan					
171								3	0	0.	05	5500		Press	ure				
172												7500							·
173										0.	20	5500							
174												7500			<u> </u>				
175								a	0	0.	02	Varie	đ	Perfo	rmance				
176										0.	10								
177								2	5	0.	02								
178										0.	10								
179										0.	20							- ~	
180								1	LO	0				Stati balar					
<u> </u>	لسه				لسيد					7:	3	t							

TABLE I

RUN NO.			CON	ıFi	GUI	RATION	6	3/4	TES'			TES		REMARKS
NO.									MACH NO.	RF	M	OBJE	TIVE	
181	Ŀ	ւԵլե	E1B3PR	T.	ıR1	$ m R_{ m E}$		30	0.20	Var:	Led	Perfo	mance	
182									0.10					
183									0.02					
184								35						
185									0.10					
186									0.20			,		
187			вцРу	r				10	0			Static balance		
188								20	0.02			Perfo	rmance	
189									0.10					
190									0.20					
191								25	0.02					
192									0.10					
193									0.20					
194								30						
195									0.10					
196									0.02					
197								35						
198									0.10					
199									0.20					
200			B ₃ P _R	T_2				10	0			Stati balan		

TABLE III

HSD SHROUDED PROPELLER TEST

RUN NO.	CONFIGURATION	θ _{3/4}	TES CONDIT		TEST	REMARKS
			MACH NO.	RPM	OBJECTIVE	
201	L ₁ C ₁ E ₁ B ₃ P _R T ₂ R ₁ R _E	20	0.02	Varied	Performance	
202			0.10			
203		25	0.02			
204			0.10			
205			0.20			
206		30	0.20			
207			0.10			
208			0.02			
209		35	0.02			
210			0.10			
211			0.20			
212	P _{NT} T ₁	10	0		Static balance	
213		20	0.02		Performance	
214		25				
215		30				
216			0.05			Rerun of run 59
217		35	0.02			
218			0.05			
219			0.10			
220			0.20			
**************************************			75			Commission in the commission of the commission o

TABLE III

HSD SHROUDED PROPELLER TEST

RUN			со	NFIC	SUR	ATIC)N			θ _{3/4}		cc	TEST			TE		REMA	RKS
NO.												MACH	I NO.	RF	M	OBJE	CTIVE		
221	Ll	sc ^C ls	SC ^E 18	scB3	3 ^P w:	Tl.	R ₁ R ₂	EΑΙ)	10			**	Var	ied	Stati balan			
222										30		0.	02			Perfo	rmance	Run abor	ted
223																		Rerun of	run 222
224												0.	10					Blades de	amaged
225					PN	r				10		0				Stati b al an			
226										30		0.	02	·		Perfo	rmance		
227						\perp						0.	10						
228											1	٥.	20						
229										35		0.	20						
230										$\perp \downarrow \downarrow$	\downarrow								
233.						\downarrow						0.	10						
232												٥.	.02						
233						1				30		0.	.02						
234								_		11	1	٥.	10					Shroud b	alance operative
235										$\perp \downarrow$									
236										$\perp \downarrow \downarrow$		0.	.20						
237								_		20		0.	.02						
238								L				0.	.10						
239												0.	.20						
240										25		0 7 (.02						-

TABLE III

HSD SHROUDED PROPELLER TEST

RUN NO.	CONI	FIGURATION	03/4		IONS	TEST OBJECTIVE	REMARKS
				MACH NO.	RPM		
241	L _{lsc} C _{lsc} E _{lsc}	CB3PNTT1R1RE	25	0.10	Varied	Performance	
242				0.20			
243		AD		0.02			
244				0.10			
245				0.20			
246	L ₁ C ₁ E ₁	PR T3	10	0		Static balance	
247			20	0.20		Performance	
248				0.10			
249				0.02			
250			25				
251				0.10			
252				0.20			
253			30				
254				0.10			and the second s
255				0.02			
256			35				
257				0.10			
258				0.20			
259		PWTTl	10	0		Static balance	
260			15	0.02		Performance	
T representation record	ak angs ping sarahanganagi u sapira — antos	nacional and the first discountry of the		77	adri se i ine administrativa	and the second s	and and the management of the second

TABLE III

HSD SHROUDED PROPELLER TEST

RUN	CONFIGURATION	θ _{3/4}	TES		TEST	REMARKS
NO.		3/4	MACH NO.	RPM	OBJECTIVE	
261	L ₁ C ₁ E ₁ B ₃ P _{WT} T ₁ R ₁ R _E	15	0.05	Varied	Performance	
262			0.10			
263		20	0.02			
264			0.15			
265			0.20			
266		25	0.15			
267			0.02			
268		30	0.15			
269		35				
270			0.02			
271		40	0.10			
272			0.15			
273	C ₂	20	0.02			
274			0.10			
275			0.02			Rerun of run 273
276			0.20			
277		30	0.02			
278						Rerun of run 277
279			0.10			
280			0.20			
	<u></u>		78	 		**************************************

TABLE I

- 1	UN 10.				CON	IFIG	URAT	ION		θ _{3/4}		TIONS		TEST OBJECTIVE	REMARKS
				-		,					MACH NO). R	PM	00000	
2	281	L	1 ^C 2	ElE	3 ^P w	r ^T l ^I	$R_{1}R_{E}$			20	0.20	Vai	ried	Performance	Rerun of run 276
2	82										0.10				Rerun of run 274
2	283									_	0.02				Rerun of run 275
2	84									25					
2	285								İ		0.10				
2	286										0.20				Aborted high vibration
a	87														Rerun of run 286
2	288									<u>35</u>					
2	289										0.10				
2	290										0.02				
2	291		C					_v o			0.05				
a	292										0.20				
2	293									25					
a	294										0.05				
3	95							v ¹⁰							
2	296										0.20				
2	297									35	0.20				
a	298										0.05				
2	299							V-10		25					
	300							v- 5							

TABLE III

HSD SHROUDED PROPELLER TEST

RUN			CONF	FIGU	RATION	θ _{3/4}	TE CONDI			TES		REMARKS
NO.						3,4	MACH NO		M	OBJEC	TIVE	
301	L_1	$^{\mathtt{C_1E_1}}$	B3Pww	[1R]	REV ⁻⁵	25	0.20	Var	ied	Perfor	mance	
302						35	0.20					dispense side in a sure as a post of the side of the s
303							0.05					erlanda agan in kapungalan Palakus President andre andre andre delegan
304					I ₀							
305							0.20					and an approximation of the second se
306						25						
307							0.05					
308					110							arita ingana nagam
309							0.20					makan ng managanan maga ng hini nakalabi san a mana sang
310						35						
311							0.05					
312					r-10							
313							0.20					garabes a naunth san agains in the direct integers don a line of
314						25	0.05					la na fha an an an an an an an an an an an an an
315							0.20					agy was 11 og 200 og gapt a flygge Nigge af Skreining grængstation
316					I ¹⁰ T _P	35	0.05	55	500	Press	ure	rape a complete disposate
317								75	500			
318							0.20	55	500			enason inglis y na mai admi w tw to e
319								75	500			mages three surfittings than a six and and so six a six
320					I-10		80	5	500			

TABLE II

RUN NO		C	ONF	IGUR	AT 101	N			θ _{3/4}				T IONS RPM	0		ST	REMARKS
321	L _l	c _l E		33Pw:	r ^T 1R	1 ^R J	_E 1 ⁻¹⁰ T	P	35	1	0.2	20	7500	Pr	ess	sure	
322					Т3				10		0		Varie	1	at: lar		
323									35		0.0)5	5500	Pr	es	sure	
324							·····						7500				
325		-			_					1	0.2	20	5500	-			
326													7500				
327		F	^E 3	PW	\mathbb{T}_1				10		0		Varie	11	at:	ic nce	
328									30	,	0.0)5	5500	Pr	es	sure	
329													7500				
330											0.2	20	5500				Aborted, trav. probe inoper.
331																	Rerun of run330
332							P-1-5						7500				
333	L _{lS0}	ClscI	E _{1SC}								0.0	25	5500				Epsco inoper.
334										1					_		Rerun of run 333
335											0.2	20					
336											0.0)5	7500				N ₃ flexure broken
337																	Epsco inoper.
338																	Run aborted resonant noise
339														_			Run aborted resonant noise
340											81				1		Rerun of run 336

TABLE I

HSD SHROUDED PROPELLER TEST

WIND TUNNEL RUN LOG

RUN NO.			c	ONF	IGUI	RAT	ON			03/4		cc	TES		 S	i .	ST ECTIVE	REMARKS
140.												MACH	NO.	R	PM	CBUC	CTIVE	
341	L	LSCC	1sc ^E	ısc ^E	3 P v	$\sqrt{\Gamma}$	R_1	$R_{ m E}T_{ m P}$		30	>	0.	20	7	000	Press	sure	
342										35	5			Var	ied	Perf	rmance	
343									-									
344												0,	10					
345																		
346																		Blades damaged
347					PI	3 [™] 3				10)	0				Stati balar		
348										35	5	0.	20			Perfo	rmance	
349												0.	05					
350												0.	10					
351												٥.	05					
352								1	4D						<u> </u>			
353												0.	10					
354												0.	20					
355										30	>							
356												0.	10	L				
357									na se incompleta			0.	05					
358																		-
359																		
360												0.	.10					

82

TABLE III

HSD SHROUDED PROPELLER TEST

RUN NO.	CONFIGURATION	θ _{3/4}	TES CONDIT		TEST OBJECTIVE	REMARKS
NO.			MACH NO	RPM	OBJECTIVE	
361	L_ggClscElscB3PRT3R1RE	30	0.20	Varied	Performance	
362		10	0.05			
363		0				Final data run in 18-ft section
	Phase I program in 18-ft test	sect	on concl	uded Ja	n. 7, 1966	
	L-P stress program conducted t	for H	D under	Project	No. 330798	
	and 330821 initiated Jan. 7.	1			to 411 compl	eted
	satisfactorily and PTR removed	Jan	12, 190	o.		
	Phase I program in δ -ft test	secti	on initia	ted Apr		
412	T _{P3}	_	0.20	_	Trav.Probe Calib.	Probe installed 8-ft sec.4-28-66
413			Varied			α = 0 deg
414						a = 40 deg
415		<u> </u>				a = 20 deg
416						a = 5 deg
417						a = 10 deg
418						a = 30 deg
419						a = 50 deg
420						a = 0 deg Repeat of Run 413
421			83			a =-1 0 deg probe remov.d 4-29-66

()

TABLE III

HSD SHROUDED PROPELLER TEST

RUN		CONFIGURATION	θ _{3/4}	TES		TEST	REMARKS
NO.	-			MACH NO.	RPM	OBJECTIVE	
	Propelle	er test rig instal	iled in 8-1	t test s	ection	pril 29, 19	66.
422	PTR w/o	shroud and		Varied	0	Calib.	
423	L ₁ C ₁ E ₃ B				Ì		
424							n 4 100
							Rerun of run 423
425				 			
426	-+++					 	
427	 		<u> </u>	 	<u> </u>	Static	
428	ElBi	4PNTT1 + gages	10	0.0	Varied	Balance Blade	
429			45	0.30		Stress	
430			55	0.45			
431			50	0.45			
432			60	0.60			
433			45	0.30			Repeat of run 429
434		$R_{ m E}$	20	0.20		Performance	Repeat of 18-ft tunnel run 190
435			34	0.30			
⁾ : 36			38				
437			42				
438			42	0.40			
439			46	0.30			
440				0.40			
	to desired			84	<u></u>	<u> </u>	

TABLE II

RUN		C	ONFIGUE	RATION	θ _{3/4}	cc	TES'			TE		REMARKS
NO.	<u>.</u>					MACH	NO.	RP	M	OBJE	CTIVE	
441	LlCl	E 1 B4 P 1	ppT <u>1</u> R1R	E	46	0.	.50	Var	Led	Perfo	rmance	
442					50	0.	.40					
443						0.	. 50					
444					54	0.	.40					
445					· ·	0.	. 50					
446					58		Y			1		
447		B ₃ P _I	3		10	0.	.0			Stati Balan		
448							Y					
449					34	0.	. 30			Perfo	rmance	
450					38							
451				,	42							
452						0	· ⁾ +O					
453					46	0	. 30		4 -11-2-7-1			
454						0	.40					
455						0	.50					
456					50	0	.40					
457						0	•50					
458					54	0	.40					
459						0	•50					N inoperative, run aborted
460						L	5		L		<u> </u>	Rerun of run 459

TABLE III

HSD SHROUDED PROPELLER TEST

RUN	CONFIGURATION	83/4	TES CONDIT		TEST	REMARKS
NO.		3/4	MACH NO.		OBJECTIVE	
461	${ t L_1 C_1 E_1 B_3 P_R T_1 R_1 R_E}$	42	0.5	Varied	Performance	
462	$P_{ m WT}$	10	0.0		Static Balance	
463		25	0.20		Performance	
464		30				
465			0.30			
466		34				
467		35	0.20			
468		38	0.30			
469			0.40			
470						Repeat of run 46
471		40	0.20			
472		42	0.30			
473			0.40			
474			0.50			
47 5		46	0.40			
476			0,50			
477			0.60			
478		50	0.40			
479			0.50			
480		54				Fouling indicat-

TABLE I

HSD SHROUDED PROPELLER TEST WIND TUNNEL RUN LOG

RUN NO		CONFIGURATION	θ _{3/4}	COND	ST ITIONS	TEST OBJECTIVE	REMARKS
				MACH N	O. RPM	OBOLCTIVE	
481	L ₁ C ₁ E ₁ B ₃ I	P _{WT} T ₁ R ₁ R _E	54	0.50	Varied	Performance	Fouling indicat- ion, rerun of run 480
482			50				Rerun of run 479
483				0.60			Biade-shroud interference
484							
485							Rerun of run 483
486			54				
487			58				
488		A _D	30	0.30			
4 8 9			38				
490				0.40			
491			46				
492				0.50			
493			54	Y			
494			46	0.40			Repeat of run 491
495		N _D					
496				0.50			
497			30	0.30			
498			38				
499				0.40			
500			54	0.50			

87

 \bigcirc

TABLE I

HSD SHROUDED PROPELLER TEST WIND TUNNEL RUN LOG

RUN NO.	CON	FIGURATION	B _{3/4}	TES CONDIT		TEST OBJECTIVE	REMARKS
				MACH NO.	RPM	OBOLCTIVE	
501	L1C1E1B3Pwr	$r_1 R_1 R_E I^O$	42	0.40	Varied	Performance	
502			46				
503				0.50			
504			50				
505		ν°					
506			42	0.40			
507			46				
508				0.50			
509	E ₂		30	0.30			
510			34				
511		,	38				
512				0.40			
513			42	0.30			
514				0.40			
515				0.50			
516			46	0.40			
517				0.50			
518			50	0.40			
519				0.50			
520			54	00			

88

TABLE I

HSD SHROUDED PROPELLER TEST

RUN NO.				CONÍ	FIGU	RATION	83/4		TES	IONS		TES OBJE		REA	MARKS
								MAK	CH NO.	RF	M				
521	Ll	ClE	δB3	Pwr	' ₁ R ₁	T	54	(50	Var	ied	Perfo	rmance	Repeat	of run 520
522		E	3				34	,	30						
523							38								
524							42								
525								(0.40						
526							46		0.30						
527									0.40						
528									0.50						Ll speed gh.No data
529						50		0.40							
530									0.50						
531						,								Repeat	of run 53
532					\coprod		58								
533		_			\prod		54		0.40						
534					\coprod	A _D	38	1 (0.30						
535							42		0.40						
536							46		0.30						
537							50] (0.50						
538									0.40						
539		1	£4				30		0.30						
540							34		89						

TABLE IN

HSD SHROUDED PROPELLER TEST

RUN NO.	CONFIGUR	RATION $\theta_{3/4}$	TES'		TEST OBJECTIVE	REMARKS
100.			MACH NO.	RPM	OBUECTIVE	
541	L ₁ C ₁ E ₄ B ₃ P _{WT} T ₁ R ₁ F	E 38	0.30	Varied	Performance	
542			0.40			
543		42	0.30			
544			0.40			
545			0.50			
546		46	0.40			
547			0.50			
548		50	0.40			
549		<u> </u>	0.50			
550		54				
551		ļ ₁ 2	0.30			Repeat of run 54
552	I2 E1	30	0.31			
553		314				
554		38				
555			0.41			
556		42	0.31			
557			0.41			
558			0.52			
559		46	0.41			
560			0.52 90			

TABLE II

HSD SHROUDED PROPELLER TEST WIND TUNNEL RUN LOG

RUN NO.	C	CONFIGURATION	B _{3/4}	TES CONDIT		TEST OBJECTIVE	REMARKS
140.				MACH NO.	RPM	OBOCCTIVE	
561	L ₂ C ₁ E ₁ B ₃ P	$_{ m WT}$ 1 $_{ m R_1}$ R $_{ m E}$	50	0.41	Varied	Performance	
562				0.52			
563			54				
564			34	0.31			Repeat of run 553
565							Repeat of run 56
566	L ₁ C ₂		30				
567			34				
568			38				
569				0.41			
570			42	0.31			
571				0.41			
572				0.52			
573			46	0.41			
574				0.52			
575			50	0.41			
576				0.52			
577			54				
578		AD	30	0.31			
579			38				
580				0.41			

£330590~I

TABLE III

HSD SHRCUDED PROPELLER TEST

RUN NO.	CONFIC	GURATION	83/4	TES		TEST OBJECTIVE	REMARKS
PO .				MACH NO.	RPM	OBJECTIVE	
581	L ₁ C ₂ E ₁ B ₃	PWTT1R1READ	46	0.41	Varied	Performance	
582				0.52			
583			54				
584	L _{lsc} c _{lsc} E _{lsc}	PNT	10	0.0		Static Balance	
585			30	0.31		Performance	
586			34				
587			38				
588				0.41			
589			42	0.31			
590				0.41			
591				0.52			Windmill speed too high.No data
592				0.41			Repeat of run 590
593			46	0.31			
594				0.41			
595				0.52			
596			50	0.41			
597				0.52			
598			54				
599			46				Repeat of run 595 run aborted
600				92			Rerun of run 599

TABLE III

HSD SHROUDED PROPELLER TEST

RUN			C	ONF	GUF	RATIO	N			θ _{3/4}		СО	TES'			TE		RE	MAF	RKS	
NO.												MACH	NO.	RF	M	OBJE	CTIVE				
601	L_{1}	SC ^C l:	SCE	LSCB	3 ^P N	TT1	Rli	₹ <u>F</u>		46	\prod	0.3	31	Var	ied	Perfo	rmance	Lepeat	of	run	593
602												0.1	1					Repeat	of	run	594
603																		Repeat	of	run	602
604								A_{D}													
605				_							\downarrow	-						Repeat	of	run	604
606											\downarrow	0.	52		ļ						
607										30	\downarrow	0.	31								
608									·	38											
609							_				\downarrow	0.	+1				ļ				
610				<u> </u>					·	54		0.	52			G+ - + 4	<u> </u>				
611	Ll	C ₁	E	1	PF	, T ₂				10		0.0)			Stati Balan					
612					\coprod			_		30		٥.	31			Perfo	rmance				
613							_			34	-										
614										38											
615												0.	41					Large shift	sta on	tic Nı	zero
6 <u>1</u> 6																		Rerun	of	run	615
617										42		0.	31								
618												0.	41		<u> </u>						
619			~~									0.	52								·
620										46		o.					<u> </u>				

TABLE III

HSD SHROUDED PROPELLER TEST

RUN NO.	CONFIGURATION	θ _{3/4}	TES CONDIT		TEST OBJECTIVE	REMARKS
140.			MACH NO.	RPM	OBJECTIVE	
621	L ₁ C ₁ E ₁ B ₃ P _R T ₂ R ₁ R _E	46	0.52	Varied	Performance	
622		50	:3.41.			
623			0.52			
624		54				
625		34	0.31			Repeat of run 61
626	PNTT	10	0.0		Static Balance	
627		30	0.31		Performance	
628		34				
629		38				
630			0.41			
631		42	0.31			
632			0.41			
633			0.52			
634		58				
635		46	0.41			
636			0.52			
637		50	0.41			
638			0.52			
639		54				
640	PR T3	10			Static Balance	
********			94			

TABLE III

RUN NO.				(CON	FIG	UR	ATION	θ _{2/4}		TES CONDIT	IONS	PM	TE OBJE	ST CTIVE	REMARKS	6
641	L	լԸլ	El	B31	R	r ₃ r	1R1	<u> </u>	30	C	30	Var	ied	Perfo	rmance		
642									34								
643									38		y						
644										С	.40						
645									42	С	30						-
676										С	.40						
647										О	.50						_
648					_				34	0	.30					Repeat of r	un 642
649									46	0	.40						
650										0	.50						
651								•	50	0	.40						
652										0	•50						
653				_					54								
654				\downarrow				Tp	38	0	.30			Press	ure		
655									46	0	.40						
65 6									50	0	.50			1			
657				F	μīл	n			10	0	.0			Station Balance			
658									38	0	.30			Pressu	ıre		
659				 -					46	0	.40						
560									50		.50 5						

TABLE I

RUN	CONFIGURATION	B _{3/4}	TES CONDIT		TEST	REMARKS
NO.		3/4	MACH NO.		OBJECTIVE	
661	$\mathtt{L}_{1}\mathtt{C}_{1}\mathtt{E}_{1}\mathtt{B}_{4}\mathtt{P}_{\mathtt{NT}}\mathtt{T}_{1}\mathtt{R}_{1}\mathtt{R}_{\mathtt{E}}\mathtt{T}_{\mathtt{P}}$	3 0	0.0	Varied	Static Balance	
662		38	0.30		Pressure	
663		46	0.40			
664		50	0.50			
665	B ₃ P _{WT}	10	0.0		Static Balance	
666	· ·	30	0.20		Pressure	
667		34	0.30			
668		35	0,20			
669		38	0.30			
670		42	0.40			
671		46				
672			0.50			
673		50				
67և			0.60			Blade-shrouu interference
675		54	0.40			
676		46				Repeat of run 67
677	ı°	42				
678		46				
679			0.50			
680	řR	10	0		Static Balance	

TABLE I

RUN NO.		CON	NFIGURAT	ION		θ _{3/4}	C(TES ONDIT I NO.	IONS	VI	TE 09JE	ST	REMARKS
681	L ₁ (L E ₁	B ₃ P _R 1	$_{1}^{R}_{1}^{R}$	${f T_P}$	38	٥.	. 30	Vari	ed	Press	sure	
682						50	0.	40					
683							0.	50					
684						46	0.	40					
685		E3	P_{WT}			10	0.	.0			Stati Balar		
686						42	0.	30			Press	sure	
687						50	0.	40					
688						58	0.	50					
689	Lisco	: isc ^e ls	SC PNT			10	0.	0			Stati Balan		
690						42	0.	30			Press	ure	Tp not in posi- tion, run aborted
691													Rerun of run 690
692						46	0.	40					
693						50	0.	5°			,		
694	L ₁ C	'ı Eı	B ₃ P _{WT}		T _{P2}	10	0.	0			Stati Balan		
695	į					34	0.	30	5500	,	Press	ure	
696						38							
697						42	0.	40		1			
698						46							
699							0.	50					High vibration, run aborted
700											·		Rerun of run 699

TABLE III

RUN NO.					СО	NF	IGU	PRATION		θ _{3/4}		TES	IONS		TES			REM	ARK	5
	Ĺ					حتد					MAC	H NO.	RPN	1						
701	I	1C	LE)	В	Pw:	Γ^{T}	R ₁	R _E T _{P2}		50	0.	.50	5500		Pressu	ıre				
702									ما المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية ا	15	0.	.10	Vari	eđ	Perfo	rmance	Re	verse	thi	ust
703										10										
704					1	1				5										
705					$P_{\mathbf{R}}$	T				10	0	.0			Station Balance				,	
706										30	0	. 30			Perfo	rmance		ade al tting	_	
707										34							,			
708																Re	run o	f r	ın 707	
709									38											
710										0	.40									
711										30	0	. 30					Re	run o	f m	ın 706
712										42										
713											0	.40								
714											0	.50					1	gh vi n abo		•
715										46	0	.40				<u> </u>				
716										10	0	.0			Stati Balan					
717										46	0	.52			Perfo	rmance				
718										50	0	.42								
719											0	.52								
720										54										

TABLE II

RUN NO.					CON	ıF	igi	RA	TIC	N			θ _{3/4}		TES	TIONS			TEST JECTIVE	RE	MAR	IKS	
							-							MAC	CH NO	. R	PM						
721	L	լԵյ	E ₁	В3	P _{WI}	Γ	R ₁	$R_{ m E}$	ı°				10	0	.0	Vai	ied	Stat Bala					
722													34	0	. 32			Peri	formance				
723													38										
724													42	0	.42					Repeat	of	run	501
725																				Repeat	of	run	·724
726														0	•40					Repeat	of	run	725
727											50												
728													54	0	•50								
729													42	0	. 30								
730									\	₇ 0				0	.40								
731																							
732													38	0	.30								
733													46	0	.50								
734									1 5				42	0	.40								
	1										tes	t s	ectio	n c	onclu	ded	May	16,	1966.				:
												-											
	1.	·P	st	rei	ss į	or	og:	rar	n c	ondu	ıcte	l fo	r HS	u r	nder	Proj	ect	No.	330821 a	nd 3308	399		
	ir	ı i t	iai	ted	l Ma	y	10	5,	19	66.	Da	ta r	uns	735	to 7	5 ⁴ c	ompl	eted	satisfa	ctorily	an	d	
	Pi	ľR	rei	101	ved	М	ау	19	θ,	1900	ó.												
											-												····
L	<u></u>		-							···········			<u> </u>	<u> </u>	99	1		L		1			

TABLE IV

HSD Shrouded Propeller Test

List of Figures

Figure	Tab Section: Photographs and Sketches
1	UARL Large Subsonic Wind Tunnel
2	Schematic Drawing of Propeller Dynamometer
3	Balance System
14	Schematic Diagram of Shroud Balance
5	Model Propeller Test Dynamometer Installed in 18-Ft Test Section - View Looking Downstream
6	Model Propeller Test Dynamometer Installed in 18-Ft Test Section - View Looking Upstream
7	Model Propeller Test Dynamometer Installed in 8-Ft Test Section - View Looking Downstream
8	Model Propeller Test Dynamometer Installed in 8-Ft Test Section - View Looking Upstream
9	Shroud Support Ring Installation
10	Shroud Diffuser and Exit Vane Installation
11	Shroud Center Section and Lip Installation
12	Complete Model Showing Spinner and Inlet Vanes Installed
13	Complete Model Showing Exit Vanes and Exit Rake Installed
14	Propeller Test Blades
15	Rectangular Blades Installed in 3-Way Hub

TABLE IV (Contd.)

Figure	Tab Section: Photographs and Sketches
16	Narrow Tip Blades with Strain Gage Instrumentation Installed in 4-Way Hub
	Tab Section: Data Repeatability
17-20	Comparison of Data Repeatability in 18-Ft Test Section
21, 22	Comparison of Data in 18- and 8-Ft Test Section
23-26	Comparison of Data Repeatability in 8-Ft Test Section
	Tab Section: Basic Shroud Characteristics
27	Effect of Blade Angle on Propeller Performance
28-46	Effect of Blade Angle on Shrouded Propeller Performance
	Tab Section: Shroud Contour Effects
47- 59	Effect of Inlet Lip (L2) on Shrouded Propeller Performance
61-74	Effect of Diffuser (E2) on Shrouded Propeller Performance
75 - 88	Effect of Diffuser (E3) on Shrouded Propeller Performance
89-102	Effect of Diffuser (E_4) on Shrouded Propeller Performance
	Tab Section: Propeller Location and Chord Effects
103-116	Effect of Propeller Location on Shrouded Propeller Performance
117-130	Effect of Chord Length on Shrouded Propeller Performance
	Tab Section: Inlet and Exit Vane Effects
131-136	Effect of Inlet Vanes on Shrouded Propeller Performance
137-142	Effect of Inlet Vane Angle on Shrouded Propeller Performance

TABLE IV (Contd.)

Figure	Tab Section: Inlet and Exit Vane Effects (Contd.)
143-151	Effect of Exit Vanes on Shrouded Propeller Performance
152-157	Effect of Exit Vane Angle on Shrouded Propeller Performance
	Tab Section: Blade Geometry Effects
158-185	Effect of Blade Planform on Shrouded Propeller Performance
186-199	Effect of 4-Way Blades on Shrouded Propeller Performance
	Tat Section: Blade Tip Clearance Effects
200-227	Effect of Blade Tip Clearance on Shrouded Propeller Performance

LARGE SUBSONIC WIND TUNNEL SHROUDED PROPELLER TEST HSD UARL

HSD SHROUDED PROPELLER TEST BALANCE SYSTEM

HSD SHROUDED PROPELLER TEST SCHEMATIC DIAGRAM OF SHROUD BALANCE

$$N = N_3 - N_1 - N_2$$

 $C = C_4 + C_5$

MODEL PROPEILER TEST DYNAMOMETER INSTALLED IN 18-FT TEST SECTION HSD SHROUDED PROPELLER TEST

VIEW LOOKING DOWNSTREAM

, charten

MODEL PROPELLFR TEST DYNAMOMETER INSTALLED IN 18-FT TEST SECTION HSD SHROUDED PROPELLER TEST

VIEW LOOKING UPSTREAM

HSD SHROUDED PROPELLER TEST MODEL PROPELLER TEST DYNAMOMETER INSTALLED IN 8-FT TEST SECTION

VIEW LOOKING DOWNSTREAM

HSD SHROUDED PROPELLER TEST MODEL PROPELLER TEST DYNAMOMETER INSTALLED IN 8-FT TEST SECTION

VIEW LOOKING UPSTREAM

HSD SHROUDED PROPELLER TEST SHROUD SUFPORT RING INSTALLATION

and the second s

У = и У 5 с

から 一次にはなるないのでは、あらればないのでは、

HSD SHROUDED PROPELLER TEST SHROUD DIFFUSER AND EXIT VANE INSTALLATION

HSD SHROUDED PROPELLER TEST SHROUD CENTER SECTION AND LIP INSTALLATION

HSD SHROUDED PROPELLER TEST COMPLETE MODEL SHOWING SPINNER AND INLET VANES INSTALLED

HSD SHROUDED PROPELLER TEST COMPLETE MODEL SHOWING EXIT VANES AND EXIT RAKE INSTALLED

HSD SHROUDED PROPELLER TEST PROPELLER TEST BLADES

3-WAY

3-WAY

3-WAY

4-WAY RECTANGULAR, PR WIDE TIP, PWT NARROW TIP, PNT NARROW TIP, PNT

HSD SHROUDED PROPELLER TEST RECTANGULAR BLADES INSTALLED IN 3-WAY HUB

HSD SHROUDED PROPELLER TEST NARROW TIP BLADES WITH STRAIN GAGE INSTRUMENTATION INSTALLED IN 4-WAY HUB

HSD SHROUDED PROPELLER TEST
COMPARISON OF DATA REPEATABILITY IN 18-FT TEST SECTION

SYM	RUN NO.	MACH NO.	CONFIGURATION	<i>θ</i> 3/4	
0	94	0.02	LICIE3B3PWTTI RIRE	30	
۷	102				
0	126		E4	35	
\Diamond	129			 	

HSD SHROUDED PROPELLER TEST

COMPARISON OF DATA REPEATABILITY IN 18-FT TEST SECTION

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
0	19	0.10	LICIEI B3 PWT TIRI	30
Δ	21			
<u> </u>	95		E ₃ R _E	
0	103			1

E330590-1

HSD SHROUDED PROPELLER TEST

ADVANCE RATIO, J

HSD SHROUDED PROPELLER TEST
COMPARISON OF DATA REPEATABILITY IN 18-FT TEST

E330590-I

HSD SHROUDED PROPELLER TEST

COMPARISON OF DATA IN 18 - AND 8-FT TEST SECTIONS

E330590-I

HSD SHROUDED PROPELLER TEST

COMPARISON OF DATA IN 18 - AND 8-FT TEST SECTIONS

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}	
0	190(18 FT)	0.20	LICIEIB4PNTTIRIRE	20	
Δ	434(8 FT)				

HSD SHROUDED PROPELLER TEST

COMPARISON OF DATA REPEATABILITY IN 8-FT TEST SECTION

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}	
0	642	0.30	LICIEI B3 PRT3 RI RE	34	
Δ	648			1	

HSD SHROUDED PROPELLER TEST

COMPARISON OF DATA REPEATABILITY IN 8-FT TEST SECTION

HSD SHROUDED PROPELLER TEST
COMPARISON OF DATA REPEATABILITY IN 8 - FT TEST SECTION

SYM	RUN NO.	RUN NO. MACH NO. CONFIGURATION			
0	469	0.40	LICIEIB3PWTTI RIRE	38	
Δ	470			+	
o	479			50	
\Q	482		++++++++	•	

HSD SHROUDED PROPELLER TEST COMPARISON OF DATA REPEATABILITY IN 8 - FT TEST SECTION

SYM	RUN NO.	RUN NO. MACH NO. CONFIGURATION				
0	469	0.40	LICIEIB3 PWT TI RIRE	38		
Δ	470			1		
0	479			50		
0	482			1		

E330590-I

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE ANGLE ON PROPELLER PERFORMANCE

SYM	RUN NO	MACH NO	CONFIGURATION	$\theta_{3/4}$
0	134,133	0.05,010	B3 PWT RIRE	25
\Q	132,131			30

HSD SHROUDED PROPELLER TEST EFFECT OF BLADE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO	MACH NO	MACH NO CONFIGURATION				
0	260,261	0.02,005	.02,005 L,C,E,B3PWTT,R,RE,RE				
Δ	263, 36			20			
	267,41		, R _E	25			
♦	- ,32		,-	30			
⊿	270,46		, R _E	35			

SYM	RUN NO	MACH NO.	CONFIGURATION	θ _{3/4}
0	260,261	0 02,0 05	LICIEI B3 PWT TI RIRE, RE	15
Δ	263,36		,-	20
	267,41		, R _E	25
\Q	- ,32		, –	30
Δ	270,46	1	, R _E	35

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO	MACH 1	MACH NO. CONFIGURATION					θ _{3/4}	
0	262, -	010,-	_	LICIEIB3PWTTIRIRE,RE				15	
Δ	37,264	0.	.15				ŢŢ	_, [20
	42,266		\Box				\top	RE,	25
0	33 ,268							-,	30
À	45 ,269							RE,	35
∇	271,272	Y	Ÿ	1	V	1	1	RE,	 40

ADVANCE RATIO, J

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO	MACH NO	CONFIGURATION	83/4
0	262, —	010, -	LICIEI B3 PWT TI RIRE, RE	15
Δ	37 ,264	0.15		20
	42 ,266		R _E ,	25
\Diamond	33,268			30
Δ	45 ,269		R _E ,	35
∇	271 ,272	Y	Y Y Y RE.	40

E330590~1

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO	MACH NO.	CONFIGURATION	θ _{3/4}
Δ	265	0 20	LICIEI B3 PWT TI RI RE	20
	43			25
\Diamond	34			30
Δ	44		RE	35
∇	39			40

E330590-I

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO	MACH NO	CONFIGURATION	$\theta_{3/4}$
Δ	265	0 20	LICIEI B3 PWTTI RIRE	20
0	43			25
\Diamond	34			30
4	44		Re	35
∇	39	Y	Y Y Y Y Y Y Y Y	40

EFFECT OF BLADE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
Δ	265	0 20	LICIEI B3 PWTTI RIRE	20
	43			25
◊	34			30
Δ	44		RE	35
∇	39			40

FIG. 35

E330590-I

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
\Diamond	465	0 30	LiCiEiB3 PWT TiRIRE	30
Δ	466			34
∇	468			38
D	472	V		42

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
\Diamond	465	0 30	LICIEI B3 PWTTI RI RE	30
Δ	466			34
∇	468			3٤
D	472			42

SYM	RUN 70.	MACH NO.	CONFIGURATION	8 3/4
◊	465	0.30	L,CIE, B3 PWT TI RIRE	30
Δ	466			34
▽	468			38
Đ	472		* * * * * * * * *	42

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
∇	469	0 40	LICIEIB3 PWTTI RIRE	38
Đ	473			42
7	475			46
٥	478			50

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
∇	469	0.40	LICIEI B3 PWTTI RIRE	38
D	473			42
4	475			46
a	478			50

FIG. 40 E330590-I **HSD** SHROUDED PROPELLER TEST
ANGLE ON SHROUDED PROPELLER PERFORMANCE RUN NO. MACH NO. CONFIGURATION 469 0.40 38 LICIEI B3 PWTTI RIRE 473 42 475 478 1.0 0.8 POWER COEFFICIENT, CP 0.6 04 0.2 0 1.0 8.0 POWER COEFFICIENT, CP 20 04 0.2 0 29 23 ١5

ADVANCE RATIO, J

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
D	474	0 50	LICIEI B3 PWTTI RIRE	42
Δ	476			46
0	479			50
0	481			54

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Đ	474	0.50	LiCi Ei B3 PWTTi Ri RE	42
4	476			46
a	479			50
0	481			54

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO	CONFIGURATION	θ _{3/4}
Δ	477	0 60	LICI EI B3 PWTTI RI RE	46
0	485			50
0	486			54
Δ	487			58

HSD SHROUDED PROPELLER TEST
BLADE ANGLE ON SHROUDET PROPELLER PERFORMANCE

EFFECT OF

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
4	477	0 60	LICI EI B3 PWTTI RI RE	46
0	485			50
0	486			54
Δ	487		+++++++++	58

EFFECT OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO	MACH NO.	CONFIGURATION	<i>θ</i> _{3/4}
Δ	62,61	0.05,0.10	L2C, E, B3PWTT, R, RE	20
	63,64			25
\Q	68 ,67			30
4	69,70		4 4 3 4 4 4 4	35

FOR THE SHROUDED PROPELLER TEST FOR FOR TEST FOR THE STREET OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO	MACH NO	CONFIGURATION	θ3/4
Δ	62,61	0.05,0.10	L2 C1 E1 B3 PWTT1 R1 RE	20
	63,64			25
\Diamond	68,67			30
Δ	69,70			35

HSD SHROUDED PROPELLER TEST
INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE EFFECT OF

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
0	65	0 20	L2C1E1B3PWTT1R1RE	25
◊	66			30
⊿	71			35
∇	72	1 1		40

HSD SHROUDED PROPELLER TEST

EFFECT OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
	65	0 20	L2C1E1B3PWTT1R1RE	25
\rightarrow	66			30
Δ	71			35
▽	72	V		40

E330590-I FIG.51 HSD SHROUDED PROPELLER TEST LET LIP (L2) ON SHROUDED PROPELLER **PERFORMANCE** INLET LIP EFFECT OF RUN NO. MACH NO. CONFIGURATION 020 L2C, E, B3 PWTI R, RE 25 65 30 \Diamond 66 35 Δ 71 72 40 1.0 0.8 POWER COEFFICIENT, CP 0.6 04 0.2 0 I.O 0.8 POWER COEFFICIENT, Cp 80 04 0.2

1.4

ADVANCE RATIO, J

1.8

FIG. 52

E330590-1

HSD SHROUDED PROPELLER TEST

EFFECT OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
◊	552	0.31	L2C, E, B3 PWTT, R, RE	30
Δ	553			34
∇	554			38
D	556			42

FIG. 53 E330590-I PROPELLER SHROUDED TEST HSD EFFECT OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE RUN NO. MACH NO. CONFIGURATION $\theta_{3/4}$ L2C, E, B3 PWT T, R, RE 30 552 031 553 34 38 554 100 90 06 70 EFFICIENCY, N NET - PERCENT 60 50 40 30 20 10 0 1.0 1.8 2.0 2.2 0.6 8.0 1.6

ADVANCE RATIO , J

E330590-I

HSD SHROUDED PROPELLER TEST

EFFECT OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUM NO.	MACH MO.	CONFIGURATION	8 3/4
\Diamond	552	0.31	L2C1E1B3PWTT1R1RE	30
Δ	553			34
∇	554			38
D	556	V	 	42

E330590-1 FIG.55

HSD SHROUDED PROPELLER TEST
EFFECT OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE

AJVANCE RATIO, J

HSD SHROUDED PROPELLER TEST

EFFECT OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
▽	55.5	0.41	L2CIE B3 PWTTI RI RE	38
D	557			42
Δ	559			46
0	56:			50

HSD SHROUDED PROPELLER TEST EFFECT OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
D	558	0 52	L2 CI EI B3 PWTTI RI RE	42
Δ	560			46
0	5 62			50
0	5 63			54

EFFECT OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO	MACH NO.	CONFIGURATION	θ _{3/4}
D	558	0.52	L2 CIEIB3 PWTTI RIRE	42
4	560			46
0	562			50
0	563	ų.		54

E330590-I

EFFECT OF INLET LIP (L2) ON SHROUDED PROPELLER PERFORMANCE

HSD SHROUDED PROPELLER TEST

EFFECT OF DIFFUSER (E2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Δ	91,78	0 02,0.10	LICIE 2 B3 PWTTIR IRE + TUFTS	20
	90,80			25
◊	84,85			30
Δ	89,88		+ + + + + + + + + + + + + + + + + + +	35

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Δ	91,78	0 02 , 0 10	LICIE2B3PWTTIRIRE+ TUFTS	20
0	90,80			25
♦	84 ,85			30
Δ	89,88	+ +		35

HSD SHROUDED PROPELLER TEST EFFECT OF DIFFUSER (E2) ON SHROUDED PROPELLER PERFORMANCE

HSD SHROUDED PROPELLER TEST EFFECT OF DIFFUSER (E2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
	82	0.20	L, C, E2B3 PWT T, R, RE	25
\rightarrow	86			30
Δ	87			35
∇	92		+ TUFTS	40

FIG. 65

E330590-I

HSD SHROUDED PROPELLER TEST
EFFECT OF DIFFUSER (Eg) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NC.	MACH NO.	CONFIGURATION	θ _{3/4}
◊	509	030	L _I C ₁ E ₂ B ₃ P _{WT} T ₁ R ₁ R _E	30
Δ	510			34
▽	511			38
D	513			42

E330590-1

HSD SHROUDED PROPFILER TEST

E330590-I

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
\Diamond	509	0 30	',C:E2B3PWTTIRIRE	30
Δ	510			34
∇	5l i			38
D	513	V	* * * * * * * *	42

SYM	RUN NO.	MACH NO.	CONFIGURATION	03/4
∇	512	0 40	LICIE2B3 PWTTIRI RE	38
D	5 14			42
7	5 16			46
۵	518		* * * * * * * * *	50

HSD SHROUDED PROPELLER TEST

EFFECT OF DIFFUSER (E2) ON SHROUDED PROPELLER PERFORMANCE

SYM RUN NO MACH NO CONFIGURATION

Great .			SYM	RUN NO.	MACH NO.		CONFIGU	RATION	θ,	/4
			▽	512	0 40	LIC	C1 E 2 B 3 P	wTTIRIF	₹ _E 3	
			D	514					4	2
			4	516					4	6
	100		C	518	<u> </u>	•	* * *	* * *	50	0
	100	1.1-	-		1			: Incl Edi	:	
				h . + + + + + + + + + + + + + + + +	1. 1. -		. 1 1			11
								-1		
	90		- -			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-		
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							<i>-</i>
	80		# 1 3		+ - + - + - + - + - + - + - + - + - + -					-11
	80									
									用蜡蜡	
						1-,1-24				
	70		**							
⊨										
Ä						i je				##
PERCENT					*			115 7 117		4
<u>a</u> .	60		1		Z	+				
Ē			7:							
Ž			1	'! t						
٠,	50	111						Falst		
ည်						1 1 1 1 1				
SE			11.11			- - - - - - - - - - - -				
EFFICIENCY, η NET			# 4							7
	40		+							
NET			:1::::				+ +	+++++	1-11-11-11	
										-
	30					†				ili.
			1::1							
			+ 4							
		.:	;	-			14.12			:
	20									
		HT THE	1:1					T-1		1 7
			1							+
	10									
			-			- 15 11 - 1				
			+							
	_		. -' -							
	0	<u> </u>	.7	1.9	2.1		.3	2.5	2.7	1:
		1.0	. 1	1.9	2.1	2	4	26	^ 7	

FIG.71

E330590-I

HSD SHROUDED PROPELLER TEST

EFFECT OF DIFFUSER (E2) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	## 3/4		
□	512	0 40	L₁C₁E₂B₃Pw₁T₁R₁Rε	38		
□	514	□	□	□	□	42
□	516	□	□	□	46	
□	516	□	□	□	46	
□	516	□	□	□	46	
□	516	□	□	□	□	46
□	10	10	10	10	10	
□	10	10	10	10	10	
□	10	10	10	10	10	
□	10	10	10	10	10	
□	10	10	10	10	10	
□	10	10	10	10	10	
□	10	10	10	10	10	
□	10	10	10	10	10	
□	10	10	10	10		
□	10	10	10	10		
□	10	10	10	10		
□	10	10	10			
□	10	10	10			
□	10	10	10			
□	10	10	10			
□	10	10	10			
□	10	10	10			
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□	10	10				
□						

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
7	515	0.50	LICIE2 B3 PWT TI RI RE	42
Δ	517			46
0	5!9			50
0	520			54

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
D	515	0 50	LICIE2 B3 PWTTI RI RE	42
4	517			46
0	519			50
0	520			54

HSD SHROUDED PROPELLER TEST

EFFECT OF DIFFUSER (E3) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
Δ	93 ,107	0 02 ,0.10	LICIE3B3PWTTIRIRE	20
O	108 ,110			25
\Q	102,95			30
Δ	115 ,113			35

HSD SHROUDED PROPELLER TEST

EFFECT OF DIFFUSER (E3) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Δ	93 ,107	0.02 ,0.10	LICIE3B3 PWTTIRIRE	20
0	108 ,1 10			25
◊	102,95			30
Δ	115 ,113	V		35

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
	111	0 20	LICIE3 B3 PWTTI RIRE	25
\Diamond	96			30
Δ	112			35
▽	116			40

HSD SHROUDED PROPELLER TEST
EFFECT OF DIFFUSER (E3) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
	111	0 20	LICIES BSPWTTIRIRE	25
\Diamond	96			30
⊿	112			35
∇	116		***	40

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}	
Δ	522	0.30	LICIE3 B3 PWTTIRI RE	34	
▽	523			38	
Đ	524			42	
Δ	526		.	46	

HSD SHROUDED PROPELLER TEST
EFFECT OF DIFFUSER (E3) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Δ	522	0 30	LICIE3 B3 PWTTIRIRE	34
∇	523			38
D	524			42
4	526			46

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
Δ	522	030	LiCi E 3 B 3 PWTTI RI RE	34
∇	523			38
D	524			42
0	526		* * * * * * * * * *	46

HSD SHROUDED PROPELLER TEST EFFECT OF DIFFUSER (E3) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
D	525	0 40	L _I C _I E ₃ B ₃ P _{WT} T _I R _I R _E	42
7	527			46
0	529			50
0	533			54

HSD SHROUDED PROPELLER TEST EFFECT OF DIFFUSER (E3) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
D	525	0 40	LICIE3 B3 PWTTIRIRE	42
7	527			46
0	529			50
0	533			54

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
a	530	0.50	LICIES BS PWTTI RI RE	50
Δ	532	 		53

HSD SHROUDED PROPELLER TEST
DIFFUSER (E4) ON SHROUDED PROPELLER PERFORMANCE EFFECT OF

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
Δ	119 ,118	010, 200	LICIE 4 B3 PWTTI RI RE	20
۵	120,121			2 5
\Q	125 ,124			30
Δ	126 ,127		****	3.5

HSD SHROUDED PROPELLER TEST
EFFECT OF DIFFUSER (E4) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Δ	119,118	0.02 ,0.10	LICIE4B3PWTTIRIRE	20
0	121, CSI			2.5
\Q	125,124			30
Δ	126,127			35

SYM RUN NO.		RUN NO. MACH NO.	CONFIGURATION	θ3/4 25
		0.20	LICIE4 B3 PWT TIRIRE	
\lambda	123			30
Δ	128			35
▽	117			40

HSD SHROUDED PROPELLER TEST
EFFECT OF DIFFUSER (E4) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
	122	020	LICI E4B3PWTTIRIRE	25
◊	123			30
Δ	128			35
∇	117	•		40

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
	122	0 20	LICIE4B3 PWTTI RI RE	25
\Diamond	123			30
Δ	128			35
∇	117			40

HSD SHROUDED PROPELLER TEST
EFFECT OF DIFFUSER (E4) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
◊	539	0 30	LICIE4B3 PWTTIRI RE	30
Δ	540			34
∇	541			38
D	543			42

PO-I HSD SHROUDED PROPELLER TEST EFFECT OF DIFFUSER (E4) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
◊	539	0 30	LICIE4B3PWTTI RI RE	30
⊿	540			34
▽	541			38
D	543			42

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
\Diamond	539	0 30	LICI E4B3 PWTTI RI RE	30
Δ	540			34
∇	541			38
D	543		* * * * * * * *	42

HSD SHROUDED PROPELLER TEST EFFECT OF DIFFUSER (E4) ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
∇	542	0.40	L ₁ C ₁ E ₄ B ₃ P _{WT} T ₁ R ₁ R _E	38
D	544			42
Δ	546			46
0	548			50

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
▽ 542		0.40	LiCiE4B3PWT Ti Ri RE	38
D	544			42
Δ	546			46
٥	548			50

FIG.99 E330590-I HSD S DIFFUSER SHROUDED R (E4) ON PROPELLER TEST SHROUDED PROPELLER **PERFORMANCE EFFECT** OF RUN NO. MACH NO. θ 3/4 SYM CONFIGURATION 542 0 40 LICI E4B3 PWTTI RIRE 38 D 544 42 546 46 7 1.0 0.8 7NET 75 POWER COEFFICIENT, CP 0.6 04 0.2 0 I.O 8.0 POWER COEFFICIENT, CP **a**0 04

المراجع والمراجع المراجع المرا

23

ADVANCE RATIO, J

0.2

100

FIG. 100

HSD SHROUDED PROPELLER TEST

EFFECT OF DIFFUSER (E4) ON SHROUDED PROPELLER PERFORMANCE

U	ר נ	JILL OOEK	(=4) 0	N SHROUDED PROPELLER	PERF
	SYM	RUN NO.	MACH NO.	CONFIGURATION	03/4
	D	545	0 50	LICIE4 B3 PWTTIRIRE	42
	Δ	547			46
	a	549			50
	0	550	· ·		54

and the contraction of the contr

FIG.101

E330590-1

HSD SHROUDED PROPELLER TEST

HSD SHROUDED PROPELLER TEST EFFECT OF DIFFUSER (E4) ON SHROUDED PROPELLER

FIG.102

0		FFUSER	(E4) ON	SHROUDED PROPELLE	R PERF	ORMANCE
	SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4	
	D	545	0.50	LICIE4B3 PWTTIRIRE	42	
	4	547			46	
	ં	549			50	
	0	550			54	

HSD SHROUDED PROPELLER TEST

EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}				
Δ	283,282	0.02 , 0.10	LiC2EIB3PWTTIRIRE					
0	284,285			25				
\Q	278,279			30				
Δ	290,289			35				

HSD SHROUDED PROPELLER TEST

FIG. 104

EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

SYM	YM RUN NO.		MACH NO.			CONFIGURATION						θ3/4		
Δ	283,282	0.	0.10	LIC2EIB3PWTTIRIRE										
	284,285	Γ				Π		Γ			Γ			25
◊	278,279	Γ					Γ							30
Δ	290, 289		V	7		T	1	,		1	,	,	V	35

HSD SHROUDED PROPELLER TEST

EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Δ	281 287	0.20	LIC2EIB3PWTT, RIRE	20
				25
◊	280			30
4	288			35

FIG.105

HSD SHROUDED PROPELLER TEST
EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NC.	CONFIGURATION	θ _{3/4}
Δ	281	0.20	LICZEIB3PWTTIRIRE	
	287			25
0	280			30
Δ	288	V		35

HSD SHROUDED PROPELLER TEST

EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
Δ	281	020	LIC2EI B3 PWTTI RIRE	20
	287			25
◊	280			30
Δ	288	Ÿ	++++++++	35

FIG.108

E330590-I

HSD SHROUDED PROPELLER TEST

EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
0	566	0.31	LIC2EIB3 PWT TIRIRE	30
Δ	567			34
♥	568			38
D	570			42

E330590-I FIG.109 **HSD** SHROUDED PROPELLER **TEST** EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE SYM RUN NO. MACH NO. CONFIGURATION 83/4 566 0.31 LIC2EIB3 PWT TIRIRE Δ 567 34 568 ∇ 38 D 100

EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
Ÿ	566	031	LIC2EIB3PWT TIRIRE	30
Δ	567			34
∇	568			38
D	570			42

HSD SHROUDED PROPELLER TEST
EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
▽	569	0.41	LIC2EIB3PWTTIRIRE	38
D	571			42
Δ	573			46
0	575		4444444	50

HSD SHROUDED PROPELLER TEST
EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

HSD SHROUDED PROPELLER TEST
EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Đ	572	0.52	LICZEIB3 PWT TIRIRE	42
Δ	574			46
0	576			50
0	577		+++++++	54

HSD SHROUDED PROPELLER TEST

FIG. 115

EFFECT OF PROPELLER LOCATION ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Đ	572	0.52	LICZEIB3 PWT TI RIRE	42
Δ	574			46
0	576			50
0	577			54

HSD SHROUDED PROPELLER TEST
EFFECT OF CHORD LENGTH ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
Δ	237 ,238	0.02,0.10	LISC CISC E SC B3 PNT TI R RE	20
0	240,241			25
◊	233,235			30
Δ	232,231	V		35

HSD SHROUDED PROPELLER TEST
EFFECT OF CHORD LENGTH ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Δ	237,238	002,010	LISC CISC EISC B3PNT TIRIRE	20
0	240,241			25
0	233,235			30
Δ	232,231			35

HSD SHROUDED PROPELLER TEST
EFFECT OF CHORD LENGTH ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Δ	239	0.20	Lisc Cisc Eisc B3 PNT TIRIRE	20
0	242			25
◊	236			30
4	230	l l		35

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
Δ	239	0 20	LISC CISC EISC B3 PNT TIRIRE	20
	242			25
\Diamond	236			30
⊿	230	·		35

FIG. 122

E330590-I

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
◊	585	0.31	LISC CISC EISC B3 PNT TI RI RE	30
Δ	586			34
∇	587			38
D	589			42

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
0	585	031	LISC CISC EISC B3 PNT TI RI RE	30
Δ	586			34
▽	587			38
D	589	1		42

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
\Diamond	585	0.31	LISC CISC EISC B3 PNT TI RI RE	30
Δ	586			34
∇	587			38
Ď	589	I		42

HSD SHROUDED PROPELLER TEST
EFFECT OF CHORD LENGTH ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN MO.	MACH NO.	CONFIGURATION	83/4
♥ 588 0.		0.41	LISC CISC EISC B3 PNT TI RIRE	38
7	594			46
0	596			50

E330590-1

HSD SHROUDED PROPELLER TEST

EFFECT OF CHORD LENGTH ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4} 38
∇	588	041	LISC CISC EISC B3 PNT TI RIRE	
7	594			46
0	596	V	, , , , , , , , , , , , , , , , , , ,	50

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
∇	588	041	LISC CISC EISC B3 PNT TI RIRE	38
Δ	594			46
0	596	V		50

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	A _{3/4}	
7	595	0.52	LISC CISC EISC B3 PWTT, R, RE	46	
0	597			50	
0	598	1 1		54	

SYM	RUN NO.	N NO. MACH NO. CONFIGURATION					
7	595	0 52	LISC CISC FISC B3 PWT I RI RE	46			
O	597			50			
0	598			54			

EFFECT OF CHORD LENGTH ON SHROUDED PROPELLER PERFORMANCE

A STATE OF STATE OF

SYM	RUN NO.	N NO. MACH NO.	CONFIGURATION	θ3/4
□ 306	0 20	LICIEI B3 PWT TIRIRE IO	25	
Δ	305	V		35
∇	723	0.30		38
D	729	.		42

	SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
		306	0 20	LICIE, B3 PWTTIRIRE IO	25
Ì	Δ	305	V		35
	♡	723	0 30		38
	D	729			42

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}	
D	501	0 40	L+C+E1B3PWTT1R1RE IO	42	
4	502	¥		46	
Q	504	0 50		50	
0	728			54	

HSD SHROUDED PROPELLER TEST
EFFECT OF INLET VANE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	RUN NO. MACH NO. CONFIGURATION					
0	314,312	0 05	LICIEIB3 PWTTIRIRE I-10	25,35			
Δ	307 ,304		Io				
	308,311		I,o	1			

SYM	RUN NO.	RUN NO. MACH NO. CONFIGURATION					
0	314,312	0 05	LICIEIB3PWTTIRIRE I-10	25,35			
Δ	307,304		Io				
	308,311	V	I,o	1			

HSD SHROUDED PROPELLER TEST
EFFECT OF INLET VANE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	RUN NO. MACH NO. CONFIGURATION						CONFIGURATION				
O 315		0.20	LICIEIB3PWTTIRIRE I-10						25			
Δ	30€			7-	T		TT		Io	\Box		
□	309			1		1	1	—	I IO		 I	

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	8-14
0	315	0 20	LICIEIB3 PWTT, RIRE I-10	25
Δ	306 [′]		Io	
o l	309		IIO	V

90-I HSD SHROUDED PROPELLER TEST
EFFECT OF INLET VANE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
0	313	0.20	LICIEIB3PWTTIRIRE I-10	35
Δ	305		I°	
0	310		I 10	

HSD SHROUDED PROPELLER TEST
EFFECT OF INLET VANE ANGLE ON SHROUDED PROPELLER PERFORMANCE

FIG.142

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4	
0	313	0 20	LICIEIB3 PWTTIRIRE I-10	35	
Δ	305		Io		
	310		I,0	1	

E330590-1

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
	293	020	LICIEIB3PWTTIRIRE VO	25
Δ	292			3 5

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
0	293	0 20	LICIEI B3 PWT TIRIRE VO	25
Δ	292	V		3 5

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
	293	0 20	LICIEIB3 PWT TIRIRE VO	25
Δ	292	Ť		35

E330590-I

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
Đ	506	0.40	LICIEIB3 PWTTIRIREVO	42
Δ	507			46

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
D	506	0 40	LICIEIB3 PWTTIRIRE VO	42
Δ	507		+ + + + + + + + +	46

E 330590-I

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
D	506	0.40	LICIEI B3 PWT TIRIRE VO	42
Δ	507			46

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Δ	508	0 50	LICIEIB3 PWTTI RIREVO	46
0	505	•		50

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
Δ	508	0.50	LICIEIB3 PWTTI RIRE VO	46
0	505			50

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
0	508	0 50	LICIEIB3 PWTTI RIREVO	46
Q	505		* * * * * * * * * * * * * * * * * * * *	50

E330590-I

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
0	300,303	0.05	LICIEI B3 PWTTIRIRE V-5	25,35
Δ	294,291		V°	
0	295,298	V.	V10	1

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
0	300 ,303	0.05	LICIEI B3 PWT TIRIRE V-5	25,35
Δ	294,291		Vo	
0	295,298	y	V10	

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
0	301	0 20	LICIEIB3PWTTIRIREV-5	25
Δ	293		Vo	
	296		V10	++

EFFECT OF EXIT VANE ANGLE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
0	301	0 20	LICIEIB3 PWTTIRIRE V-5	25
Δ	293		V o	
	296	V	V 10	•

EFFECT OF EXIT VANE ANGLE ON SHROUDED PROPELLER PERFORMANCE

ADVANCE RATIO, J

E330590-I

HSD SHROUDED PROPELLER TEST

FIG. 157

SYM	RUN NO.	MACH NO	CONFIGURATION	θ _{3/4}
0	302	0.20	L, C, E, B3 PWT T, R, RE V-5	35
Δ	292		V0	
	297		V 10	

HSD SHROUDED PROPELLER TEST

"FFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE"

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
Δ	175,176	002,010	LICIEIB3 PRTIRIRE	20
	177,178			25
◊	183,182			30
Δ	184,185		+ + + + + + +	35

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Δ	175,176	0.02,0.10	LICIEI B3 PRTI RIRE	
Image: Control of the control of the	177,178			25
◊	183,182			30
Δ	184 ,185	—		35

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
	179	0.20	LiCiEiB3PRTiRIRE	25
\Diamond	181			30
⊿	186	V		35

E330590-i

SYM	RU. i NO.	MACH NO.	CONFIGURATION	θ _{3/4}
ı	179	0.20	L, C, E, B, P, T, R, RE	25
◊	181			30
Δ	186	V		35

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
0	179	0.20	LICIEI B3 PR TI RI RE	25
\Diamond	181			30
Δ	186		* * * * * * * *	35

E330590-1 FIG.163 HSD SHROUDED PROPELLER **TEST** EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

100

90

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Δ	449	0.30	L _i C ₁ E ₁ B ₃ P _R T ₁ R ₁ R ₂	34
V	450			38
D	451			42
4	453	!		46

SYM	RUN NO.	RUN NO. MACH NO. CONFIGURATION			
Δ	449	0.30	LICIEI B3 PR TIRIRE	34	
V	450			38	
D	451			42	
دا	453		* * * * * * * *	46	

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
D	452	0 40	LICIEIB3PRTIRIRE	42
Δ	454			46
0	456			50
0	458			54

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
D	452	0 40	LICIEI B3 PRTI RI RE	42
Δ	454			46
a	456			50
0	458	•		54

E330590-I

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

		SYM	 	MACH NO.		NFIGURAT		θ _{3/4}	
		D	461	0 50	L; C; E	B3PRT	I R I RE	42	
		17	455	 		$\vdash \downarrow \downarrow \vdash$		46	
		q	457	 				50	
100		0	460	<u> </u>	* * *	* * * *	<u> </u>	54	
100		1	1	<u> </u>	<u> </u>	4-4-4		<u> </u>	
90	是.进于下								
	D	7							
80			\mathcal{X}						
70	d								
70									
							8		
60									
•									
50									
40									
30									
.,0									
20									
		+ =					11-1-11-1		
10		 							
				B					
_									
0	19	2.1	2.:					3 . I	3.3

E330590-1

HSD SHROUDED PROPELLER TEST

FIG. 170

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
D	461	0 50	LICIEIB3 PRTIRIRE	42
4	455			46
0	457			50
0	460			54

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
Δ	213,52	002,010	L, C, E, B, PNTT, R, RE	20
0	214, 55			25
\Diamond	215, 58			30
Δ	217, 219			35

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Δ	213,52	0 02,010	LICIEIB3 PNT TIRIRE	20
	د5, 214			55
\rightarrow	215,58			30
Δ	217,219			35

E330590-1

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Δ	53	0.20	LICIEIB3PNT TIRIRE	20
0	56			25
◊	57			30
Δ	220			35

E330590-1

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
Δ	53	0 20	LICIEIB3 PNT TI RI RE	20
0	56			25
\rightarrow	57			30
Δ	220		* * * * * * * *	35

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
Δ	53	0 20	LICIEI B3 PNTTI RI RE	20
	56			25
◊	57			30
Δ	220	•	* * * * * * * * *	35

E330590-I

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

FIG. 177

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
◊	627	0.31	LICIEIB3PNTTIRIRE	30
Δ	628			34
∇	629			38
D	631			42

O-I HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
0	627	0.31	LICIEIB3PNT TIRIRE	30
Δ	628			34
♥	629			38
D	631			42

E330590-I

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
◊	627	0.31	LICIEIB3PNT TIRIRE	30
Δ	628			34
∇	629			38
D	631	1		42

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
₹	630	041	LICIEIB3 PNT TIRIRE	38
D	632			42
Δ	635			46
0	637			50

1.9

NET EFFICIENCY, η NET - PERCENT

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

2.3 ADVANCE RATIO, E330590-I

FIG.182

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE PLANFORM ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
∇	630	041	LICIEI B3 PNTTI RIRE	38
D	632			42
7	635			46
Q	637	V	* * * * * * * * * * * * * * * * * * *	50

(

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Δ	636	0.52	LICIEI B3 PNT TIRIRE	46
٥	638			50
0	639	V	* * * * * * * * * *	54

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
Δ	636	0 52	LICIEI B3 PNTTI RIPE	46
0	638			50
0	639		.	54

E330590-I

HSD SHROUDED PROPELLER YEST

HSD SHROUDED PROPELLER TEST
EFFECT OF 4 - WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Δ	188 , 189	0 02 ,0.10	LIC; EIBAPNTTI RIRE	20
	191,192			25
◊	196 ,195			30
Δ	'37 , 198			35

HSD SHROUDED PROPELLER TEST
EFFECT OF 4-WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
Δ	188,189	0.02,010	LICI EI BAPNT TI RI RE	50
	191,192			25
\Diamond	196 , 195			30
Δ	197 ,198			35

HSD SHROUDED PROPELLER TEST
EFFECT OF 4 - WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Δ	190	0.20	LICIEIB4PNT TIRIRE	20
	193			25
0	194			30
Δ	199		* * * * * * * * *	35

E330590-1

HSD SHROUDED PROPELLER TEST

EFFECT OF 4-WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

FIG. 189

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
Δ	190	0.20	Li Ci E i B 4 P NT T i R i RE	20
	193			25
0	194			30
4	199			35

E330590-I

HSD SHROUDED PROPELLER TEST

FIG.190

EFFECT OF 4-WAY BLADE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
Δ	190	0.20	LICIEIB4 PNT TI RIRE	20
	197			25
Ç.	194			30
ك	133			35

E330590-1

HSD SHROUDED PROPELLER TEST

EFFECT OF 4-WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Δ	435	0.30	LICIEIBAPNTTIRIRE	34
∇	436			38
D	437			42
4	439			46

FIG. 192

E330590-I

HSD SHROUDED PROPELLER TEST

EFFECT OF 4-WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

.

EFFECT OF 4-WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
⊿	435	0 30	LICIEI BAPNT TI RIRE	34
A	436			38
Đ	437			42
7	439		* * * * * * * *	46

SHROUDED PROPELLER TEST HSD

EFFECT OF 4-WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

	FFEC	' '	Ur	SYI	M		N N			MA								FIGU	-	TIO				1		3/4		/1 \ 1	V! ~~	140	_	
				D	1	# #	438	3	Ī	(0 4	0			L	C۱	E, I	B4 F	N T	Τ _I	R, F	₹E			4							
				۵	4		440		1		\downarrow		\perp		_	\perp	_	\perp		\perp	\perp			\perp	4	6	1					
				0	_		442		4		4		4		_	4	+	_	+	_	+	╀		\dashv	5		4					
100				<u></u>	Ц.		444	1			1					1	*	<u> </u>	1	<u> </u>	<u>Ť</u>	Ý.			5	4						-7
	<u> </u>	1			- '		:-1 : ::				· = = :	<u> -</u> -	j	=	*	;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		; ; ; =		 ! :-			=			1				-:-	<u>. 45</u>	
	 	=	<u> </u>	-	- 1	ا <u>-</u> ا :		<u> </u>	- - i	•			-	F				Ē	- ::		====		- - -	<u> </u>		111		ائند. [= = 1.			
90								-			-7-	1 . 1		Ţ <u>.</u>			==				.ī			-12-	3.5	7, 4						
		! _ i	1.		-4.		٠	_			×		121-	1 2		×		- I	منب. دنايد			1,5				O.	1:5.1		<u> </u>	-		_
				75	بنيم			ار			J 21.		×				1		سند					= :			-] 					
00				1		- 1	/			ار:	1			1				1		 	<u> </u>		1 =							# <u>+</u>		
80		Ø	-		٦. ا		<u>. با</u> ابت.						-		0	i -	-		1	+ - ; .	#		1.2		盟							<u> </u>
			+		-2.4 -2.4	4		4		; } }	,-	. ,		-,	1_				\ 				£.		- T = - 11 1							Ē
	= -		1	- 1		7	- 4 <u>1</u>			<u> </u>	1		,	<u>;</u> ;- ;		·:-•	-	, :	;	1				111		11+ 11- 11- 11- 11- 11- 11- 11- 11- 11-						
70		7		-			10.5 11 11			1		;	i i				11: 11:17		1		\		7- 1- -1- -1	1511 515								
	11.1		业	<u> </u>			ᆲ		/		ţi E	Ŧ.		, II							1		171	H.						ij. 		
			111			11.7 1.7 1.7	H				11.7		107		##		-113 -113		11-1			1 G	1	1. 1. 1.	= 1							1
Z 60							6				<u> </u>		1111		1-1		19 I ;			÷-L;		12							1:11	7		뒤
PERCENT							:151							Γ		1	17.1 27.1 171	: <u>-</u> ;				+	7.d - ; 1									-
g H		77	: 1			-													1-17 <u> </u> 1-17 1-17			ŧ÷, i		i+i		11.1°						
50			- 4			; ;	111				1 1	Ē,	11		;;;; ;;;	1	111	14,	11/1	1-1		, :		÷		11.7	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		1			F
r. 7		= 1			- <u>i.</u> -	1					111 111	; . ; . 	-	};;;;	韫		' T	1 -			1	#	1	#*\;;;		417 37		;	.+.: :			
၌ နို		1				.,1	, E				- 1- 1 - 1- 1		7.		1 1 1					117	:: '- :-		+	· · · · ·		, <u>, , , , , , , , , , , , , , , , , , </u>		111			- r	<u>-</u> 4
9 40 40		12		Ŧ	-11	1				;# 	4 1-		1 · · · · ·		1		77	Ĭ.;;	1,	1-				1		4±, t	14.	:1:-	1			: }
EFFICIENCY, 7					.i:			7.] []	1:1	, i [ļ:: -	;			15.			; ;	7 1.1 1 - 1	.		1 2 2	::! ::::	;- ;† 	1 1 1	+ +	, 1		
_		1									. , : ,;	• • • <u>•</u>	ļ	1	1	1	-	7 <u></u>	7 11		1	† +-	17.	+					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1		-
70										:-:.:1	Hi:	irri	11 i	1]; ; ; ; ; ; ;	• • • • • • • • • • • • • • • • • • • •	1		1-+ 	11.1							1 1 1 1 1 1 1 1 1	;			#	-
30			14	Ţ.Ţ.		: 	<u>.</u>					. 	 			1,17		1 1		11	7 -	7; [] 1 1	.i.	F		-11	14.1					-
	-11	111	:T-11:				t !!!	; † † · ·					::	1		1 .	b	1.1	1.1		-:		3.17		1	ii	1111	 				
		-	백							41	!] [11		11.1		177	; ; ; ; ;	[5]: 		 	- [512]	-i 	r •			- }			<u>.</u>			,	-
20								111		::11	F. IT.		-	10.7	1:::	1: 1:	7-1		1111	1.		· : · , · ;	11.1			\	1	-		,		
						+ +;	-11. -11.		Fil		; ; ;		1	f irzi	;'		;;	· .	,	, , .	- 'T	: ;;			. 1	4		, -				
		: · · · ·									1,1	F. ::	11.5	+					1				,	-	- 1			: :	; ; ;		Ţ. :	
Ю					<u>: </u>		<u>: </u>	-			+ (F)	1	ļ , `	1 1	-	· : .	- 1		.,,	:	<u>-</u> <u>-</u>			<u>. []</u>		-				 :	<u>: </u> ;	: : :
			-		-:-				1		14					1.,		,	1 - 1 - 1 - 1 - 1 - 1		:			, !-	+. <u> </u>		;					
									.,1						:+.				11	1, 1 1, 1			-:-:	-			F.		Fil			 :
0	E .1			F.[.		::,			. 1					j · :	1,		ir:		H.	-	T-1.	.,		17.1		: . : ! ; . : !	; ; ; ; ;			: 	::' ':	[]
	1.5			1.7				1, 9	•			2.	1			2	.3	سود		2.				2.	7			2	9		3	3. 1
													ΑC	ΝΔ	NC	=	RΑ	TIC	Ι,	J												

EFFECT OF 4-WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

23

ADVANCE RATIO, J

2.5

2.7

2 9

3.1

1.9

E330590-I

EFFECT OF 4-WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
Δ	441	0.50	LICIEIB4PNT TIRIRE	46
a	443			50
0	445		* * * * * * * * *	54

E330590-1

HSD SHROUDED PROPELLER TEST

EFFECT OF 4-WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
	441	0 50	LICIEIB4PNT TIRIRE	46
٥	443			50
0	445			54

EFFECT OF 4-WAY BLADES ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO	MACH NO.	CONFIGURATION	θ 3/4
Δ	201,202	0 02,0 10	LICIEIB3PR T2RIRE	20
ם	203 ,204			25
\rightarrow	208,207			30
Δ	209,210	+	· · · · · · · · · · · · · · · · · · ·	35

SYM	RUN NO.	M	ACH I	NO.			CO	NF	IGU	RAT	ION	_		θ _{3/4}
Δ	201,202	00	02,0.	10	L	. ₁ C	ı E	ı B	3 P	R T	2 F	ı R	E	20
	203,204													25
◊	208 ,207													30
Δ	209 ,210	i			1	1		,	,		Y	,		35

E330590-I

HSD SHROUDED PROPELLER TEST

E330590-1

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
<u>.</u>	205	020	LICIEIB3PRT2RIRE	25
\Q	206			3()
	211	•	* * * * * * * *	3.5

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Ø	612	0.31	LICIEIB3PRT2RIRE	30
4	613			34
♡	614			38
9	617			42

E330590-I

HSD SHROUDED PROPELLER TEST

FIG.206

				SYM	RUN NO.	- -"	IACH N	"		CONF				θ3,	4		
				\Q	612		031		L _I	C, E, B	3 PR	r ₂ R ₁ 1	R _E	30	4		
					613	\dashv			-	+ + -	_	┼-┼-		34	-		
				₽	614 617	+			_		+	 	 	38 42	-		
	100	- 1				<u></u>	1	l_ _		1 1 1	, <u> </u>	<u> </u>	1	1	J		
		-1	-				-ļ	., .	ر د د د سنت	T .	i -		1				,
			1	1-1				ļ			!	\$				1 .	1
	90	- 1	+				·		ì		 +	7 -	•				
				1	-		<u> </u>		1 -	+	L i	+	•		,		
			~			٠ . ا حـ	<u>.</u>	1	-!1	1	ì			,	1		,
	80		+-1			ئىر ئىدالىك		-	<u> </u>	ļ	1	-+			-	ļ." .	ì -
						; -	-	- 35		M	7	7		1	t	1	1
			1 .	1.				V	X	0		ļ.	A			; -	; - 1
	70							1-1-3		; ;	-/-		7	ξ	D	۱ ا	,
							1	. 0		1	£.,£ 4				! `	Ž	
Z					- 1.	f	1	* 		7		1	† :-	17	+		1
PERCENT	60			- -		. i,	1 : .	-1	` <u> </u> '.	سدائد ا			ф 4	1.	!	:	· \
שׁ ש			-	- !	-	-	-	i	1		1	7		\	V	1	1
ı H			++				† 1		1	- '-	: :	i	1 -	} = 1+=-	1		1
EFFICIENCY, N NET	50								L						F	-: -	
<u>-</u>						•	1	;		1 1	, ,		1	1	[] ;		1
E S			+						- 		-	ے لیا۔ ا		,,	4 4 4		ļ.,
<u> </u>	40	<u>, </u>		· - 				1 - -	<u> </u>	<u> </u>		ļ	ļ.	1	ا اس المالية		;
E	70	2-4	1.:				- !				! !		:	, ,		+ .	
Ę.			+	+-		; ,			 	1		+- *) · · · ·	÷	 -
-	30	 			111		 	·		ļ	i :			1			!
		- 4				٠; ،		· · ·	,		: 	1	; ;	ļ	! !	;	ļ
						1	· -,-				1 - 1 -	-! -	; •	:	L t	-	
	20	- [2] 		_ . ,	.		t- 	i i	;	; r		1		, 	· -: .	1	-
	20	- +	1 4.	- -		1	,	;		<u> </u>	t F		:		:	t ,	;
			1		, , , , , , , , , , , , , , , , , , , 		ļ			!	i	1	. J.	1 _		1	1.
	10		, , , , , , , , , , , , , , , , , , ,			,		., ., .			-	í • •		1		i	; { }_
	.0					·		i	r 1	1		<u> </u>	:	ı		1	}
		 -	- ;		-				 -	-	+	· • • • • • • • • • • • • • • • • • • •		† †	-	+ ->-	
	_		1			:	 	1	; ; 4	† •, ≥ L		i	:		1	i i	
	0	.6		0.8	1.	0		1.2		I.4 RAT		ì.6		1.8		2.0	

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
\Diamond	612	0 31	LICIEIB3PRT2RIRE	30
Δ	613			34
∇	614			38
D	617		* * * * * * * *	42

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ _{3/4}
▽	616	041	L, C, E, B, P, T, R, R,	38
Đ	618			42
Δ	620			46
0	622		.	50

PROPELLER TEST SHROUDED **HSD** EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

2.3

ADVANCE RATIO , J

1.9

1.5

1.7

E330590-I HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

FIG 210

E330590-I

(

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

				ſ	SYM	1	RUN	NC).	N	AAC	H N	Ю.				CO	NF	GUR	AT	ION				θ	3/4	\Box	
				İ	Đ	Ī	6	19		Г	0	52		Γ	L	, C	ιE	В;	, P _R	T,	2 P	, R	E		4			
				ľ	Δ	T	6	21		Γ				Τ			П	T	T						4	6	٦	
				Ì	(1		6	23						T			П	7		T				_	5	0		
					0	T	6	24			١				1	,			1			\			5	4		
ł	00	<u></u>	1 111		i,	H.F	:41	÷'n.'	:	11.1		L = E		 Ei			- + + +		2-	Ţ			+			Ī		
				-11-						- 1 r.z	= 1	1		F:F	1			7,1			-11			-		-	-	
					1 1	Ξ.	1-1-1		Ξ.			115					1-1	H.,			+	_		<u>+,-</u>		-		
	90							rati Tati	111.1 111.1			Ξ.		F.E		5, F.					<u> </u>		E [7]		· ·	۱۱: بات	-1	
			1	1 1	17-1			1	-1		F++	1-1-1			1.5		: 141				:-:-!	1		أبنا		Ŧ ¦.		,
					123	<u> </u>						A	نسب انتازا	1							15	17	Ю			-	+-	1
				2 1 1 1 1 1 2 1	مليل				,	-					متنها	-						11,			Fald July		<u>.</u>	1
	80						7	ď				0		X	17.1			1 F1 1-1-7				7 1 1 L			Li.F	1	T i	+
			/								مر			1.11										Ţ. 	+-1	‡:	7	1
		K				X			مر		311		113		1	1.1.					H-1	X	<u> </u>			11	Ę.	1
	70		1					of [II.					描	лп. Не ^т	- []·		- , ;	\		+ 11E1			11	1
	70							111								TE.	盐			11:			X					
<u> </u>		1																			E					# ##		
Z W									HH										171	; <u>†</u>	1]] 2]+					##	##	†
PERCENT	60					#		+ 14 - 14 - 14													f:=1 11:							
<u>a</u> .				膗					11 (1 t 11 (1 t						[1	
_									Ш																			1
د												∏t.				11						#						-
5	50																		 									ļ
<u> </u>				脳								 		111								岸						t
EFFICIENCY,																						12.4	:1:11				1	ŀ
L	40				.· ₁ i	111	11.				, r	ii;l!	11,				#	111		, <u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</u>			Hii	1			41	
	70			11'F'];# !#!				Щ		Įi.		lit.	il!	Щ			#					‡: <u>†</u> !! ;::::			™ .; 	-
		1 1, , , 1		1111				4		11'4 11'4	E		-	-	1	-		1.5	:+1:	111 11					'; 1	111		
						4 44.) - [1] - [1			 	ļļ.	1	1.1	+ '- 	-1-			1,1			F : 1					-#		-
	30	1,51		F.T.	ľ.ď	+++		ŧ	1:		-			#:				117		11.11	++	141 141 141 141				+	1	1
						1-4	;;;;; ;;;;;	Đ	117		- '	'l' 'l. 'l		111	15	H-1-	777	11.		1	## -1 7		- F	Ė		+	÷,;	-
		31.12	-	 		1 ,		-		111	ļ.	+	+	 	1.,	ļ.,;	† -					** 	1	.: 1	***	+	, ,	1
	20		111	į ',	1, , , 1					Τ, ^{÷-} ']	1	1:-	111				1 1 1	7111		1	,					٠.,	7
	20	i lift.		 	17.1	111 1	1	11				T .:		1.15	7			+-	1				1.	;			.13	
			: 1:1:	II.		ļļ.,	1 1	,	,			h,		1:	L'		I	.,,,		1	, 1	173		, ,			111	1
					1.1.		i ,	 	1.	Tri:		4 '-	, -	-	1:		6	• •		1						-	', . :	j
	10		11111		1,,,,	i : :	1	. ·	-			1,1,	ļ.—	17:	1	,	1:::	1 1			711			11.			•	-
		F		1::::	1 7 7 1 7 7	; ; ; .	11-	· .	ļ';		ļ		. :	1.	-::			-'	- 5	,			4.1 1			_ [1
			11- 1	1	1: :1			. :	1		-	1	·	1:		<u> </u>	1:-	j (1944) 171	<u> ; ; </u>	: : :		- -			<u> </u>	1	,	+
								· · · · ·	11		1 :	· ! * ·	ı	1-1-	-	1. ;	'			;··;								
	0	1			لنبيا		سنبن	حبسب		1	<u> </u>		سل		<u>i</u>	4.4	1	<u> </u>	L				<u> </u>	- 1			_	ليحد

2 6 ADVANCE RATIO , J

3 2

3 4

3 6

2 4

2 2

2.0

E330590-I

HSD SHROUDED PROPELLER TEST

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO.	CONFIGURATION	83/4
Δ	249 ,248	0.02,0.10	LICIEIB3PRT3RIRE	20
0	250 ,251			25
\Diamond	255 ,254			30
Δ	256 ,257		* * * * * * * * * * * * * * * * * * *	35

HSD SHROUDED PROPELLER TEST

(M	RUN NO.	MACH NO.	CONFIGURATION	θ3/4
Δ	249 ,248	002,0.10	LICIEIB3PRT3RIRE	20
	250 ,251			25
\Q	255 , 254			30
Δ	256,257			35

HSD SHROUDED PROPELLER TEST
-EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

E330590-1

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

SYM	RUN NO.	MACH NO. CONFIGURATION								
Δ	247	0.20	LiCIEIB3PR T3RIRE	20						
0	252			25						
0	253			30						
Δ	258			35						

FIG.218

E 330590-1

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	θ 3/4
Δ	247	050	LICIEI B3 PR T3 RI RE	20
	252			25
◊	253			30
Δ	258		* * * * * * * *	35

The second secon

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

				SYM	F	₹UN	NO.		N	ACI	1 N	0.				co	NFI	GUI	7,47	ION					93/4						
				0	L	64	11			0.	30			l	-1 (ĮΕ	, 8	3 P	R	Γ ₃ Ι	R, F	₹E	_		30						
				4	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	64		_			_	_	_								_	<u> </u>			34						
				♥	╀-	64					<u> </u>	_	_		L					_	_	<u> </u>		┿	38	_					
	100	f	1	D	<u>_</u>	64	15			1 1	<u> </u>	_		 	<u> </u>	<u> </u>	لبا			<u> </u>	<u> </u>	1		Ľ	42					,	
				= :	<u>. i.</u>	1.	1	ئيا.	-	-	7.	+-	-	-		1 3	 	1	+	 	-		· ·	1	- -	j- :		-		L	
					=======================================		111		11			1-1	4.5	100],T-	121-		:: -	-	<u> </u>	-	1	1	····	 	r E	-	· ·	1	 -
	90		Ē		İ	1.1							!]' !] ₊ ::			:					': , :: .	-		ļ-:	<u>-</u> 	1 1 1	i (*) [-]	-			<u>1</u>
	30		1::1	11.			† Ξ. ‡Ξ.,		1		117									1	1	ښا	ļ		3	سُع	منسيا		Ð		
		1 1 1 1	- F		1 1		1.7			1			Ø		Ý	\geq			-		 		سير		7 1		>		1-1-1	, -	
					1==						#.F	-					X			سنا	15		Y		ţ			ļ.,	W	'; :::::	17. 17.
	80		-			+	1,7	#			H.L.				7	/				1	11 -	-	- 1		<u> </u>	+	1 -	<u> </u>		- 1	111
											-41	1		1					 				-	1	-	 			É	- 1 - 1	<u>.</u>
					# -								1		11	/		1	ŢŢ.	i i	E		[-] <u>.</u>	::1		-	3		ii.		1
	70											1												17.7	111		F. 1		Fiji		<u></u>
											4						7	7	-				-i-,			1	1. 1			† † †	
PERCENT				7-1 -1			<u> </u>						7						· +.		111		7 11	= -		1111	1	1 -11	1-1	- - -	
2	60				1	7,1		FE	ΪĪ				14	1:		, ; ;	1		-	ļ.:-		1		;;;;				 : †'		;; ·	141
ĭ	00	1 1	12		ļ	- 1	ļ: 	1 3 4	'''' -==		ש		1-7			-	1	1.			, , , , ,		1 .		1 .		:			;; <u>;</u> ;	7. :
l -		2:11		- -				· · · ·	<u> </u>	1 1	1131	1	-					 	 	.	ــنـا	<u> </u>	! -	1					1 2	ri i	
E .			++	; -		 		-11,	<u> </u>	11	#+	-1-	-	-	•• `	-::	l-u.	- :			Ė	+ -	 -	:: :::	1		##		1 1 1 E		
EFFICIENCY,	50			###	† - -	<u> </u>	. ;		11		 -		1				1 -11	 		-		1	 	•				1 ; 1		447	Ę.
2				- 1	<u> </u>			1	ļ L.	Ţ.,	· -	-			; 	· .	1	- ;	; }		}						- T ₁				+ '
<u>.</u>			-1	·			ļ) 	†, ' + ,-							-	1	-			`.				1	سا	
_	40				1	 	<u>.</u>		ļ	 		-	 	ļ		 -	-		Ŀ.		<u> </u>	 									
		++++	E	'	· .	-	-	- 1			ŧ,	-				-	 		1	-	! '. ·		,	,				٠	٠.	- ;	- -; '
					11	1	-		- -		i - i	-					 	- - - -	 -		1			7,			 -	,	; -	'. 	
	30			-11	<u> </u>	ļ.: <u>.</u>		1.1.	-	-	1 -		1		, ,	-		-	1.		'- , 		,					, ,	† . ·	اي. ا	-
		H.H		. 1] :	; i	; ,, ,,		-17,	-	‡5,	<u> </u> :_	į ·	;) . ; ! =		,1;	;		ļ.,.;	1) 			L				: i			~ '
					<u> </u>			-	- · · ·	L.	[ļ.,,	+	.1	F 1		: '	1		· :		<u>'</u>					-		-	<u>.</u> '
	00	ļ-;; 	•	·; ; -		- :					}- !		<u> </u>	1		-	-, '-	- 4-	ļ;- ·	,	; ;;;;	-		· • ·	٠٠ ۔). !		٠ - ا	- 17	· • į	;
	20										ļ		T .	7		7						 		,			-				í
		4:		_	! !						1 † 		****						, , ,	-	ļ - ·					₁	-			į	i
		 			-	- '	-	7) :		١.			, ;						<u>-</u>		1	- 1			;	-		1
	10					<u></u>																					+				; !
		- -	1	+			-	;		!	-		;			;		. '							-	,	1	,	-	ļ	
					_ :	 	. !			-			į .					لينيد. ا		:	<u>.</u>		 			t		*****		!- :	
	0				, -		-							7		. 1						-		1	-	1	-	- ;			-
	(0.6	•	8.0			1.0	0			1.	2		NCE	١.		TI)			6			1.6	3			2.	o			2.

E330590-I

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

FIG. 220

HSD SHROUDED PROPELLER TEST

SYM	RUN NO.	MACH NO.	CONFIGURATION	8 3/4
\Q	641	0.30	Li Ci Ei Ba PR Ta Ri RE	30
Δ	642			34
Ø	643			38
D	645		* * * * * * * * *	42

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

E330590-1

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

HSD SHROUDED PROPELLER TEST
EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

ADVANCE RATIO,

E330590-1

HSD SHROUDED PROPELLER TEST

FIG. 226

E330590-I FIG.227

HSD SHROUDED PROPELLER TEST

EFFECT OF BLADE TIP CLEARANCE ON SHROUDED PROPELLER PERFORMANCE

