Mini-project

Britta Wilde (briwil-3), Emil Lundin (lunemi-9)

- 1 Process of choosing datasets
- 2 Selected datasets
- 3 Preprocessing of datasets
- 4 Models
- 5 Training
- 6 Results
- 7 Comparison/Discussion
- 8 Conclusion

Datasets and preprocessing

Pipeline for selecting and processing the data

Dataset selection process

Criteria - easy to deal with:

- Based on article
- No special preprocessing
- Limited size

Result: 22 selected datasets

Algerian forest fire:

Classes	
Classes	
fire	131
not fire	101
fire	4
fire	2
not fire	2
not fire	1
not fire	1
not fire	1

Example of not included dataset.

Dataset	No. samples	No. features	Missing values	Majority class %	No. classes	UCI id
acute_inflamations	120	7	No	58.3	2	184
balance_scale	625	4	No	46.1	3	12
balloons	16	4	No	56.3	2	13
breast_cancer_wisconsin_diagnostic	569	30	No	62.7	2	17
car_evaluation	1728	6	No	70.0	4	19
congress_voting_records	232	16	Yes	61.4	2	105
credit_approval	653	15	Yes	55.5	2	27
ecoli	336	7	No	42.6	8	39

Dataset	No. samples	No. features	Missing values	Majority class %	No. classes	UCI id
fertility	100	9	No	88	2	244
habermans_survival	306	3	No	73.5	2	43
hayes_roth	132	4	Yes	31.9	4	44
heart_disease	297	13	Yes	54.1	5	45
ilpd	579	10	Yes	71.4	2	225
iris	150	4	No	33.3	3	53
lenses	24	3	No	62.5	3	58
mammographic_mass	830	5	Yes	53.7	2	161

Dataset	No. samples	No. features	Missing values	Majority class %	No. classes	UCI id
mushroom	5644	22	Yes	51.8	2	73
spect_heart	267	22	No	79.4	2	95
spectf_heart	267	44	No	79.4	2	96
statlog	1000	20	No	70	2	144
wine_quality	6497	11	No	43.7	7	186
Z00	101	16	No	40.6	7	111

Dataset	No. samples	No. features	Missing values	UCI id	Our id
acute_inflamations	120	7	No	184	1
balance_scale	625	4	No	12	2
balloons	16	4	No	13	3
breast_cancer_wisconsin_diagnostic	569	30	No	17	4
car_evaluation	1728	6	No	19	5
congress_voting_records	232	16	Yes	105	6
credit_approval	653	15	Yes	27	7
ecoli	336	7	No	39	8

Dataset	No. samples	No. features	Missing values	UCI id	Our id
fertility	100	9	No	244	9
habermans_survival	306	3	No	43	10
hayes_roth	132	4	Yes	44	11
heart_disease	297	13	Yes	45	12
ilpd	579	10	Yes	225	13
iris	150	4	No	53	14
lenses	24	3	No	58	15
mammographic_mass	830	5	Yes	161	16

Dataset	No. samples	No. features	Missing values	UCI id	Our id
mushroom	5644	22	Yes	73	17
spect_heart	267	22	No	95	18
spectf_heart	267	44	No	96	19
statlog	1000	20	No	144	20
wine_quality	6497	11	No	186	21
Z00	101	16	No	111	22

Overview: pipeline

Preprocessing

Cleaning

Remove rows with missing values.

Encoding

Convert categorical features into numerical.

Splitting

Stratified 80-20 train-test split.

Scaling

Normalize using mean and standard deviation.

Based on article

Models and Training

For supervised and unsupervised classification

Models: supervised

Hyperparameter optimization

Random Forest

Logistic Regression

SVM

KNN

Gaussian naive bayes

Models: unsupervised

Hyperparameter optimization

Affinity Propagation

Agglomerative Clustering

```
metrics = ["euclidean", "l1", "l2", "manhattan"]
linkages = ["complete", "average", "single"]
pca_options = [True, False]

score = 0.8 * val_acc + 0.2 * train_acc
if score > best_score:
    best_params = params
    best_score = score
```

Training

For K-means and affinity propagation: mode mapping

For agglomerative clustering: Hungarian algorithm mapping, no single prediction, no cross validation (80/20 train/validation split)

Results and Discussion

Our results in comparison to the article

Results

Average metrics

Results: supervised

Average metrics supervised

Results: unsupervised

Average metrics unsupervised

Results |

To see all results:

We saved all results in a tensorboard logger

Our runs are saved in our **GitHub**

Command to start (given tensorboard installed, replace runs/ with path to folder, might have to try different port number)

tensorboard --logdir runs/ --port 6006 --samples_per_plugin images=22

Regex for colours:

(knn|kmeans|svm|random|gnb|log_reg|agglo|affini)

Comparison/discussion

	Classifier name	Paper (average accuracy)	Our result
Random Forest	RF_t	82.3 %	83.6 %
Support Vector Machine	SVM_c	81.8 %	84.2 %
K-Nearest Neighbor	knn_R	79.0 %	81.3 %
Logistic Regression	multinom_t	77.9 %	80.8 %
	SimpleLogistic_w	77.8 %	
Naive Bayes	BayesNet_w	75.1 %	77.9 %
	NaiveBayesSimple_w	72.0 %	
Clustering (K-Means)	ClassificationViaClustering_w	52.1%	71.8 %
Affinity Propagation	1	/	77.5 %
Agglomerative Clustering	1	/	71

Comparison/discussion

Paper vs our results (Test accuracy per classifier)

Conclusion

- implemented 8 classifiers for 21 datasets, common preprocessing and CV
- reach similar but slightly better results than the paper
- Difficulties with imbalanced datasets => stratified sampling, F1-score
- Supervised classifiers were easier to implement with the pipeline that is provided by sklearn
- learned about different techniques how to remap labels for unsupervised classifiers
- Future additions:
 - removing highly correlated columns
 - adding more classifiers
 - adding more possible combinations of hyperparameters
 - adding more complex datasets

Thank you for your attention!

Kontakt

Britta Wilde - briwil-3

Emil Lundin - lunemi-9

Github: https://github.com/Dropptimus/D7041E Mini project

=> full_pipeline_fixed_metrics_multiple_seed.ipynb

