

Introduction to Data Science

Lecture 12 Statistics

Advanced Concepts: Confidence Interval

Zicheng Wang

Recap

Linear regression

Find the relationship between X and Y

Negative: larger x implies smaller y.

- Question: when x increases by a certain quantity, what's the reduction in y?
- Use a line to approximate the relationship:
 - Regression analysis.

Propose some models

- $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$
 - Given the observation of X
 - Y follows a normal distribution with mean $\beta_0 + \beta_1 X$, and variance σ^2
 - \circ To simplify the analysis, we assume σ^2 is known
- Regression analysis: knowing β_0 , β_1 , σ , you can predict X given Y

Propose some models

 \circ Y follows a normal distribution with mean $\beta_0 + \beta_1 X$

• $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$ 10 Given the observation of X

MLE: choose the best β_0, β_1

$$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right].$$

• Samples: $(X_1, Y_1), ..., (X_N, Y_N)$

• For the model with β_0 , β_1 , σ^2 , the likelihood is

$$\frac{1}{(\sqrt{2\pi})^n \sigma^n} \exp \left[-\frac{1}{2} \frac{\Sigma_i (Y_i - \beta_1 X_i - \beta_0)^2}{\sigma^2} \right]$$

• Given σ^2 , to maximize the likelihood, we only need to minimize

Given
$$\sigma^2$$
, to maximize the likelihood, we only need to minimize
$$\Sigma_i (Y_i - \beta_1 X_i - \beta_0)^2$$

• Taking derivative over β_0 and β_1 , we have

From High School:

 $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$

 $\Sigma_i(Y_i - \beta_1 X_i - \beta_0) = 0$ $\Sigma_i(Y_i - \beta_1 X_i - \beta_0)X_i = 0$

$$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right].$$

 $\Sigma_i (Y_i - \beta_1 X_i - \beta_0)^2$

 $\Sigma_i(Y_i - \beta_1 X_i - \beta_0) = 0$

• Samples:
$$(X_1, Y_1), ..., (X_N, Y_N)$$

• For the model with eta_0 , eta_1 , σ^2 , the likelihood is

$$\frac{1}{(\sqrt{2\pi})^n \sigma^n} \exp\left[-\frac{1}{2} \frac{\Sigma_i (Y_i - \beta_1 X_i - \beta_0)^2}{\sigma^2}\right]$$

• Given σ^2 , to maximize the likelihood, we only need to minimize

• Taking derivative over eta_0 and eta_1 , we have

$$\Sigma_i (Y_i - \beta_1 X_i - \beta_0) X_i = 0$$

Step 1 $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$

Step 1

$$f_{X_i}(Y_i) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{Y_i - (\beta_0 + \beta_1 X_i)}{\sigma}\right)^2\right]$$

$$L(\beta_0, \beta_1, \sigma^2) = f_{X_1}(Y_1) \times \dots \times f_{X_N}(Y_N)$$

$$= \frac{1}{(\sqrt{2\pi})^n \sigma^n} \exp\left[-\frac{1}{2} \frac{\Sigma_i (Y_i - \beta_1 X_i - \beta_0)^2}{\sigma^2}\right]$$

$$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right].$$

 $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$

- Samples: $(X_1, Y_1), ..., (X_N, Y_N)$
- For the model with β_0 , β_1 , σ^2 , the likelihood is

$$\frac{1}{(\sqrt{2\pi})^n \sigma^n} \exp \left[-\frac{1}{2} \frac{\Sigma_i (Y_i - \beta_1 X_i - \beta_0)^2}{\sigma^2} \right]$$
Step 2

- Given σ^2 , to maximize the likelihood, we only need to minimize $\Sigma_i (Y_i \beta_1 X_i \beta_0)^2$
- Taking derivative over β_0 and β_1 , we have

$$\Sigma_i (Y_i - \beta_1 X_i - \beta_0) = 0$$

$$\Sigma_i (Y_i - \beta_1 X_i - \beta_0) X_i = 0$$

$$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right].$$

 $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$

- Samples: $(X_1, Y_1), ..., (X_N, Y_N)$
- For the model with β_0 , β_1 , σ^2 , the likelihood is

Constants
$$\leftarrow \frac{1}{(\sqrt{2\pi})^n \sigma^n} \exp \left[-\frac{1}{2} \frac{\sum_i (Y_i - \beta_1 X_i - \beta_0)^2}{\sigma^2} \right]$$

• Given σ^2 , to maximize the likelihood, we only need to minimize

$$(\Sigma_i(Y_i - \beta_1 X_i - \beta_0)^2)$$

• Taking derivative over β_0 and β_1 , we have

$$\Sigma_i (Y_i - \beta_1 X_i - \beta_0) = 0$$

$$\Sigma_i (Y_i - \beta_1 X_i - \beta_0) X_i = 0$$

$$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right].$$

 $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$

• Samples: $(X_1, Y_1), ..., (X_N, Y_N)$

• For the model with
$$\beta_0$$
, β_1 , σ^2 , the likelihood is

Negative Sign
$$\frac{1}{(\sqrt{2\pi})^n \sigma^n} \exp \left[-\frac{1}{2} \frac{\Sigma_i (Y_i - \beta_1 X_i - \beta_0)^2}{\sigma^2} \right]$$

• Given σ^2 , to maximize the likelihood, we only need to minimize

$$\Sigma_i (Y_i - \beta_1 X_i - \beta_0)^2$$

• Taking derivative over β_0 and β_1 , we have

$$\Sigma_i (Y_i - \beta_1 X_i - \beta_0) = 0$$

$$\Sigma_i (Y_i - \beta_1 X_i - \beta_0) X_i = 0$$

$$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right].$$

 $\Sigma_i (Y_i - \beta_1 X_i - \beta_0)^2$

- Samples: $(X_1, Y_1), ..., (X_N, Y_N)$
- For the model with β_0 , β_1 , σ^2 , the likelihood is

$$\frac{1}{(\sqrt{2\pi})^n \sigma^n} \exp \left[-\frac{1}{2} \frac{\Sigma_i (Y_i - \beta_1 X_i - \beta_0)^2}{\sigma^2} \right]$$

- Given σ^2 , to maximize the likelihood, we only need to minimize

$$\Sigma_i (Y_i - \beta_1 X_i - \beta_0) X_i = 0$$

- First order condition

 $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$

 $\Sigma_i(Y_i - \beta_1 X_i - \beta_0) = 0$ • Set the derivative to be equal to zero

$$\Sigma_i(Y_i - \beta_1 X_i - \beta_0)X_i = 0$$
 AND $\Sigma_i(Y_i - \beta_1 X_i - \beta_0) = 0$

Eliminate β_0 first:

$$\Sigma_i(Y_i - \beta_1 X_i - \beta_0) = 0 \rightarrow \beta_0 = \frac{1}{N} \Sigma_i(Y_i - \beta_1 X_i) = \bar{Y} - \beta_1 \bar{X}$$

MLE:
$$\widehat{\beta_1} = \frac{\sum_i (X_i - X) (Y_i - Y)}{\sum_i (X_i - \overline{X})^2}$$

$$\widehat{\beta_0} = \overline{Y} - \widehat{\beta_1} \overline{X}$$

When simple regression is invalid?

• The model we propose is not correct.

$$Y \sim N(\beta_0 + \beta_1 X, \sigma^2) \text{ or } Y - \beta_0 - \beta_1 X \sim N(0, \sigma^2)$$

Linear regression assumes that...

- The relationship between X and Y is linear
- 2. The variance of $Y \beta_0 \beta_1 X$ at every value of X is the **same** (homogeneity of variances)

Residual Analysis: check assumptions

Residual:
$$e_i := Y_i - \widehat{\beta_0} - \widehat{\beta_1} X_i$$

- Check the assumptions by examining the residuals
 - Examine for linearity assumption:
 - e_i does not depend on X_i
 - Evaluate constant-variance assumption:
 - variance of e_i does not depend on X_i
- Graphical Analysis of Residuals: Can plot residuals vs. X

Residual Analysis for Linearity

Residual Analysis for constant-variance

Advanced Concepts: Confidence Interval

Reading Materials

Applied Statistics and Probability for Engineers, Third Edition, Douglas
 C. Montgomery and George C. Runger.

• Chap 8-2.1, ..., 8-2.5

Experiments

Whether a drug can cure a disease: $\hat{p} = \frac{\Sigma_i X_i}{n}$ (MLE)

- Drug 1: $\hat{p}_1 = 90\%$.
- Drug 2: $\hat{p}_2 = 80\%$.

Which drug do you think is more effective?

Experiments

Whether a drug can cure a disease: $\hat{p} = \frac{\Sigma_i X_i}{n}$

- Drug 1: $\hat{p}_1 = 90\%$. 10 experiments.
- Drug 2: $\hat{p}_2 = 80\%$. 10000 experiments.

Which drug do you think is more effective? Which estimation is more reliable?

Number of samples can affect the accuracy!!!

• With more data, we **believe** the estimator is closer to the true parameter.

Central limit theorem

No matter what the true distribution is, the **sample mean** will be very close to the **normal distribution**, as long as the sample size is **large**.

Central limit theorem

$$X_1, ..., X_n$$
 can be non-normal Mean: μ ; Variance: σ^2

$$\overline{X} = \frac{X_1 + X_2 + \cdots X_n}{n}$$

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\left| \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n} \right) \right|$$
 Or write as: $\left| \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0,1) \right|$

Standard Normal

Target

We will use normal distribution to show:

- with different size of data, how close the estimator is to the true parameter.
- With what probability, the true parameter falls in a region.

Interval Estimation – example 1

- We have data $X_1, X_2, ..., X_n$ that are sampled from some distribution with a **known** variance σ^2
- Their mean is μ , which we want to estimate
- We can easily give a point estimate: \overline{X} (sample mean)
- How to get an interval estimate??
 - Our Use Central Limit Theorem!

Interval Estimation – example 1

•
$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim \mathcal{N}(0,1)$$

- $P(a \le \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \le b) = \Phi(b) \Phi(a)$ $\Phi(x)$: CDF of a standard normal distribution \mathcal{N} (0,1).

•
$$P(\bar{X} - \frac{b \sigma}{\sqrt{n}} \le \mu \le \bar{X} - \frac{a \sigma}{\sqrt{n}}) = \Phi(b) - \Phi(a)$$

• W.P. $\Phi(b) - \Phi(a)$, μ is within $[\bar{X} - \frac{b \sigma}{\sqrt{n}}, \bar{X} - \frac{a \sigma}{\sqrt{n}}]$

- W.P. $\Phi(b) \Phi(a)$, μ is within $[\bar{X} \frac{b \sigma}{\sqrt{n}}, \bar{X} \frac{a \sigma}{\sqrt{n}}]$
- Fix $\Phi(b) \Phi(a)$, there are too many **a** and **b** to choose from.

- ullet At least, we want \overline{X} to be within the interval
 - a < 0
 - \circ b > 0

- W.P. $\Phi(b) \Phi(a)$, μ is within $[\bar{X} \frac{b \sigma}{\sqrt{n}}, \bar{X} \frac{a \sigma}{\sqrt{n}}]$
- Fix $\Phi(b) \Phi(a)$, there are too many **a** and **b** to choose from.

- μ has an **upper bound**, say U.
 - \circ If \bar{X} is too close to U, choose **a** such that $\bar{X} \frac{a}{\sqrt{n}} = U$

- W.P. $\Phi(b) \Phi(a)$, μ is within $[\bar{X} \frac{b \sigma}{\sqrt{n}}, \bar{X} \frac{a \sigma}{\sqrt{n}}]$
- Fix $\Phi(b) \Phi(a)$, there are too many **a** and **b** to choose from.

- μ has a **lower bound**, say L.
 - If \bar{X} is too close to L, choose **b** such that $\bar{X} \frac{b \sigma}{\sqrt{n}} = L$.

- W.P. $\Phi(b) \Phi(a)$, μ is within $[\bar{X} \frac{b \sigma}{\sqrt{n}}, \bar{X} \frac{a \sigma}{\sqrt{n}}]$
- Fix $\Phi(b) \Phi(a)$, there are too many **a** and **b** to choose from.

- μ has no **bound**.
 - Choose a and b such that b-a is minimized.

• W.P. $\Phi(b) - \Phi(a)$, μ is within $[\bar{X} - \frac{b \sigma}{\sqrt{n}}, \bar{X} - \frac{a \sigma}{\sqrt{n}}]$

- For the 1- α confidence interval, we need

 - b a is minimized.

- As pdf of normal is symmetric and has a single peak, for the 1- α confidence interval,
 - \circ b + a = 0.

Normal Distribution

Notation

N(0, 1): Standard Normal Distribution

let $z_{\alpha/2}$ be the number such that the area under the standard normal density function to the right of $z_{\alpha/2}$ is $\alpha/2$.

Then if $Z \sim N(0,1)$

$$P(-z_{\alpha/2} \leq Z \leq z_{\alpha/2}) = 1 - \alpha$$

Interval Estimation – example 1

- W.P. $\Phi(b) \Phi(a)$, μ is within $[\bar{X} \frac{b \sigma}{\sqrt{n}}, \bar{X} \frac{a \sigma}{\sqrt{n}}]$
- $P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 \alpha$
- Let b = $\mathbf{z}_{\alpha/2}$, a = $-\mathbf{z}_{\alpha/2}$. Then $\Phi(b) \Phi(a) = 1 \alpha$.

• The 1- α confidence interval for $\mu: [\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$

Some observations

1- α Confidence Interval (CI):

$$[\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

We typically call $1 - \alpha$ as the **confidence level**.

The length of the confidence interval is affected by several factors

- As the sample size *n* increases, the length of CI decreases
- As the variance σ^2 increases, the length of CI increases
- As the confidence level increases (α decreases), the length of CI increases.

Interval Estimation - example

- n patients use the new drug, whether the drug can cure the disease is a Bernoulli RV
- We have data $X_1, X_2, ..., X_n$ that are sampled from this Bernoulli distribution with unknown cure rate p to be estimated
- Clearly, the mean of Bernoulli(p) is p
- We can easily give a point estimate: $\hat{p} = \overline{X}$ (sample cure rate)
- How to get an interval estimate??
 - Use Central Limit Theorem!

Interval Estimation - example

$$Z = \frac{\sqrt{n}(\hat{p} - p)}{\sqrt{p(1-p)}} \sim N(0,1)$$

Mean: pVariance: p(1-p) $\hat{p} = \bar{X}$ (sample cure rate)

• 1 - α confidence interval:

$$[\widehat{p}-z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}},\ \widehat{p}+z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}]$$

• As p is unknown, replace p above by \hat{p} , 1 - α confidence interval:

$$[\widehat{p}-z_{lpha/2}\sqrt{rac{\widehat{p}(1-\widehat{p})}{n}},\ \widehat{p}+z_{lpha/2}\sqrt{rac{\widehat{p}(1-\widehat{p})}{n}}]$$

Experiments

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Whether a drug can cure a disease:
$$\hat{p} = \frac{\Sigma_i X_i}{n}$$

95% Confidence Interval

• Drug 1: $\hat{p}_1 = 90\%$. 10 experiments.

[71.41%, 100%]

• Drug 2: $\hat{p}_2 = 80\%$. 10000 experiments.

[79.22%, 80.78%]

Confidence Statements

• Fortune Teller

"I believe the cure rate is 80%"

point

Scientist

"I believe the cure rate is 80% plus or minus 5%"

interval