Using GraphX/Pregel on Browsing History to Discover Purchase Intent

Zhang, Lisa Rubicon Project Buyer Cloud

Problem

 Identify possible new customers for our advertisers using intent data, one of which is browsing history

Challenges

Sites are numerous and ever-changing

Need to build **one** model per advertiser

Positive training cases are **sparse**

Offline Evaluation Metrics

- AUC: area under ROC curve
- Precision at top 5% of score: model used to identify top users only
- Baseline: Previous solution prior to Spark

Linear Dimensionality Reduction

Evaluation

SPARK SUMMIT EAST

SVD: Top Sites

Home Improvement Advertiser

deal-site-101.com

chat-site-001.com

ecommerce-site-001.com

chat-site-002.com

invitation-site-001.com

classified-site-001.com

Telecom Advertiser

developer-forum-001.com

chat-site-001.com

invitation-site-001.com

deal-site-101.com

college-site-001.com

chat-site-002.com

The Issue with SVDs

- Dominated by the same signal across all advertisers
- Identify online buyers, but not those specific to each advertiser
- Not appropriate for our use case

SVD per Advertiser?

Non-linear Approaches?

Can We Simplify?

Intuition:

Given a known positive training case, target other users that have **similar site history** as the current user.

One natural way is to treat sites as a **graph**.

Sites as Graphs

Easy to interpret

 Easy to visualize

Graph algos well studied

Spark GraphX

- Spark's API for parallel graph computations
- Comes with some common graph algorithms
- API for developing new graph algorithms:
 e.g. via pregel

Pregel API

- Pass messages from vertices to other, typically adjacent, vertices: "Think like a vertex"
- Define an algorithm by stating:

how to send messages
how to merge multiple messages
how to update a vertex with message

Propagation Based Approach

hawaii-999.com

 Pass positive (converter) information across edges

canoe-travel-102.com

sports-201.com

sports-200.com

sport-team-101.com

 Give credit to "similar" sites

Example Scenario

travel-site-101.com

1 converter / 40,000 visitors

canoe-travel-102.com

0 converter / 48,000 visitors

book-my-travel-103.com

0 converter / 41,000 visitors

Sending Messages

travel-site-101.com

 $\Delta\omega = \omega * edge_weight$

 $\omega = 1/40,000$

 $\Delta\omega = \omega * edge_weight$

canoe-travel-102.com

book-my-travel-103.com

Receiving Messages

Weights After One Iteration

travel-site-101.com

2.5 x 10⁽⁻⁵⁾

canoe-travel-102.com

1.2 x 10⁽⁻⁵⁾

book-my-travel-103.com

 0.8×10^{-5}

Simplified Code

Model Output & Application

- Model output is a mapping of sites to final scores
- To apply the model, aggregate scores of sites visited by user

<u>SITE</u>	SCORE
travel-site-101.com	0.5
canoe-travel-102.com	0.4
sport-team-101.com	0.1

Other Factors

- Edge Weights: Cosine Similarity, Jaccard Index, Conditional Probability
- Edge/Vertex Removal: Remove sites and edges on the long-tail
- Hyper parameter Tuning: lambda, numlterations and others through testing (there is no convergence)

Evaluation

SPARK SUMMIT EAST

Propagation: Top Sites

Home Improvement Advrt.

label-maker-101.com

laptop-bags-101.com

renovations-101.com

fitness-equipment-101.com

renovations-102.com

buy-realestate-101.com

Telecom Advertiser

canada-movies-101.ca

canadian-news-101.ca

canadian-jobs-101.ca

canadian-teacher-rating-101.ca

watch-tv-online.com

phone-system-review-101.com

Renovations

Challenges (from earlier)

Sites are **numerous** and **ever-changing**

Need to build **one** model per advertiser

Positive training cases are **sparse**

Graph built just in time for training

Need to build **one** model per advertiser

Positive training cases are **sparse**

Graph built just in time for training

Graph built once; propagation runs per advertiser

Positive training cases are **sparse**

Graph built just in time for training

Graph built once; propagation runs per advertiser

Propagation resolves sparsity: intuitive and interpretable

Graph built just in time for training

Graph built once; propagation runs per advertiser

Propagation resolves sparsity: intuitive and interpretable

Evaluating users **fast**; does **not** require GraphX

General Spark Learnings

- Many small jobs > one large job: We split big jobs into multiple smaller, concurrent, jobs and increased throughput (more jobs could run concurrently).
- **Serialization**: Don't save SparkContext as a member variable, define Python classes in a separate file, check if your object serializes/deserializes well!
- Use rdd.reduceByKey() and others over rdd.groupByKey().
- Be careful with **rdd.coalesce()** vs **rdd.repartition()**, **rdd.partitionBy()** can be your friend in the right circumstances.

THANK YOU.

Izhang@rubiconproject.com

