SUPPLEMENTARY MATERIAL: Heterogeneity of Acute Myeloid Leukemia patients explored through single-cell and single-sample gene regulatory networks

Leandro Fernandes & Edoardo Saccenti^{*}
Laboratory of Systems and Synthetic Biology,
Wageningen University & Research, the Netherlands
July 23, 2025

^{*}Correspondence: Edoardo Saccenti, Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4 6708 WE, Wageningen, the Netherlands. E-mail: edoardo.saccenti@wur.nl; esaccenti@gmail.com
Wageningen University & Research, the Netherlands

1 Supplementary Tables

K	NN Progen		SVM Progenitor				
Class	Precision	Recall	F ₁ -score	Class	Precision	Recall	F ₁ -score
AML1012	1.00	0.29	0.45	AML1012	0.11	0.72	0.18
AML328	0.96	0.73	0.83	AML328	1.00	0.12	0.22
AML329	0.29	0.89	0.44	AML329	0.71	0.17	0.28
AML371	1.00	0.11	0.20	AML371	0.96	0.13	0.23
AML419A	1.00	0.10	0.19	AML419A	1.00	0.18	0.31
AML420B	1.00	0.15	0.26	AML420B	0.13	0.13	0.13
AML707B	0.39	0.75	0.51	AML707B	1.00	0.12	0.22
AML870	1.00	0.01	0.03	AML870	0.79	0.13	0.22
AML916	1.00	0.09	0.16	AML916	0.90	0.13	0.23
AML921A	0.16	0.63	0.26	AML921A	0.51	0.20	0.28
BM3	0.98	0.23	0.37	BM3	0.10	0.32	0.16
BM4	0.32	0.77	0.45	BM4	1.00	0.46	0.63
BM5	0.00	0.00	0.00	BM5	0.81	0.15	0.25
Macro avg	0.70	0.37	0.32	Macro avg	0.69	0.23	0.26
Weighted avg	0.70	0.37	0.32	Weighted avg	0.69	0.23	0.26
Accuracy			0.37	Accuracy			0.23

Table 1: Full classification reports for KNN, SVM, and RF classifiers on Progenitor Cells.

RF Progenitor

Class	Precision	Recall	F ₁ -score
AML1012	1.00	1.00	1.00
AML328	1.00	1.00	1.00
AML329	1.00	1.00	1.00
AML371	1.00	1.00	1.00
AML419A	1.00	1.00	1.00
AML420B	1.00	1.00	1.00
AML707B	1.00	1.00	1.00
AML870	1.00	1.00	1.00
AML916	1.00	1.00	1.00
AML921A	1.00	1.00	1.00
BM3	1.00	1.00	1.00
BM4	1.00	1.00	1.00
BM5	1.00	1.00	1.00
Macro avg	1.00	1.00	1.00
Weighted avg	1.00	1.00	1.00
Accuracy			1.00

KNN Monocyte SVM Monocyte

KI	in widildcy	10		IVI IVIOTIOCY	10		
Class	Precision	Recall	F ₁ -scoreClass		Precision	Recall	F ₁ -score
AML1012	0.15	0.81	0.26 AML1012		0.35	0.25	0.29
AML210A	0.14	0.49	0.22	AML210A	0.13	0.14	0.13
AML328	1.00	0.02	0.03	AML328	0.87	0.11	0.20
AML371	1.00	0.01	0.02	AML371	0.16	0.81	0.26
AML419A	1.00	0.02	0.03	AML419A	0.75	0.08	0.14
AML556	1.00	0.02	0.03	AML556	1.00	0.10	0.18
AML921A	1.00	0.14	0.25	AML921A	0.12	0.09	0.10
BM4	1.00	0.10	0.18	BM4	0.21	0.20	0.21
Macro avg	0.81	0.19	0.13	Macro avg	0.50	0.21	0.19
Weighted avg	0.81	0.19	0.13	Weighted avg	0.50	0.21	0.19
Accuracy			0.19	Accuracy			0.21

RF Monocyte

Class	Precision	Recall	F ₁ -score
AML1012	1.00	1.00	1.00
AML210A	1.00	1.00	1.00
AML328	1.00	1.00	1.00
AML371	1.00	1.00	1.00
AML419A	1.00	1.00	1.00

K	NN Dendrit	ic		SVM Dendritic				
Class	Precision	Recall	F ₁ -scoreClass		Precision	Recall	F ₁ -score	
AML1012	1.00	0.04	0.08	AML1012	0.16	0.67	0.26	
AML210A	0.15	0.99	0.26	AML210A	0.20	0.31	0.24	
AML371	1.00	0.07	0.13	AML371	0.18	0.18	0.18	
AML556	1.00	0.07	0.13	AML556	1.00	0.11	0.20	
AML921A	1.00	0.10	0.17	AML921A	1.00	0.05	0.09	
BM3	0.93	0.53	0.68	BM3	0.18	0.15	0.17	
BM4	1.00	0.22	0.37	BM4	1.00	0.06	0.12	
Macro avg	0.88	0.27	0.26	Macro avg	0.52	0.20	0.18	
Weighted avg	0.88	0.27	0.26	Weighted avg	0.52	0.20	0.18	
Accuracy			0.27	Accuracy			0.20	

Class	RF Dendri Precision	<u>ис</u> Recall	F ₁ -score
	1100131011	recan	11 30010
AML1012	1.00	1.00	1.00
AML210A	1.00	1.00	1.00
AML371	1.00	1.00	1.00
AML556	1.00	1.00	1.00
AML921A	1.00	1.00	1.00
BM3	1.00	1.00	1.00
BM4	1.00	1.00	1.00
Macro avg	1.00	1.00	1.00
Weighted avg	1.00	1.00	1.00
Accuracy			1.00

Table 3: Classification report comparison for KNN, SVM, and RF classifiers on Dendritic Cells.

Cell Type	KNN				SVM	1		RF				
	Accuracy	Precision	Recall	F ₁ -score	Accuracy	Precision	Recall	F ₁ -score	Accuracy	Precision	Recall	F ₁ -score
Progenitor	0.37	0.70	0.37	0.32	0.23	0.69	0.23	0.26	1.00	1.00	1.00	1.00
Monocyte	0.19	0.81	0.19	0.13	0.21	0.50	0.21	0.19	1.00	1.00	1.00	1.00
Dendritic	0.27	0.88	0.27	0.26	0.20	0.52	0.20	0.18	1.00	1.00	1.00	1.00

Table 4: Classification accuracy, macro-averaged precision, recall, and F_1 -score for each machine learning technique (KNN, SVM, RF) and cell type (Progenitor, Monocyte, Dendritic).

Figure 1: Hallmark Pathway Enrichment of the top 2500 genes by node degree/connections in progenitor cells for different patients. Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 2: Hallmark Pathway Enrichment of the top 2500 genes by node degree/connections in monocyte cells for different patients. Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 3: Hallmark Pathway Enrichment of the top 2500 genes by node degree/connections in dendritic cells for different patients. Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 4: Curated KEGG Canonical Pathway Enrichment of the top 2500 genes by node degree/connections in monocyte cells for different patients. Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 5: Gene Ontology Biological Process Pathway Enrichment of top 2500 genes by node degree/connections in progenitor cells for different patients (part 1 of 5). Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 6: Gene Ontology Biological Process Pathway Enrichment of top 2500 genes by node degree/connections in progenitor cells for different patients (part 2 of 5). Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 7: Gene Ontology Biological Process Pathway Enrichment of top 2500 genes by node degree/connections in progenitor cells for different patients (part 3 of 5). Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 8: Gene Ontology Biological Process Pathway Enrichment of top 2500 genes by node degree/connections in progenitor cells for different patients (part 4 of 5). Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 9: Gene Ontology Biological Process Pathway Enrichment of top 2500 genes by node degree/connections in progenitor cells for different patients (part 5 of 5). Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 10: Gene Ontology Biological Process Pathway Enrichment of top 2500 genes by node degree/connections in monocyte cells for different patients (part 1 of 3). Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 11: Gene Ontology Biological Process Pathway Enrichment of top 2500 genes by node degree/connections in monocyte cells for different patients (part 2 of 3). Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 12: Gene Ontology Biological Process Pathway Enrichment of top 2500 genes by node degree/connections in monocyte cells for different patients (part 3 of 3). Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 13: Gene Ontology Biological Process Pathway Enrichment of top 2500 genes by node degree/connections in dendritic cells for different patients (part 1 of 2). Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 14: Gene Ontology Biological Process Pathway Enrichment of top 2500 genes by node degree/connections in dendritic cells for different patients (part 2 of 2). Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 15: Oncogenic Signature Pathway Enrichment of top 2500 genes by node degree/connections in progenitor cells for different patients. Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.

Figure 16: Oncogenic Signature Pathway Enrichment of top 2500 genes by node degree/connections in monocyte cells for different patients. Benjamini-Hochberg correction was specified for multiple testing. Pathways with an adjusted p-value below 0.05 and q-value below 0.2 were considered significantly enriched.