

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Name:	Digital Design Laboratory	Semester:	III
Date of Performance:	//	Batch No:	E2
Faculty Name:		Roll No:	16010123325
Faculty Sign & Date:		Grade/Marks:	/25

Experiment No: 4

Title: 4-bit magnitude comparator

Aim and	Objective	of the	Experiment:
---------	------------------	--------	--------------------

To design and implement 1-bit comparator using logic gates and verify 4-bit magnitude comparator using IC 7485

COs to be achieved:

CO2: Use different minimization techniques and solve combinational circuits.

Tools used:	
Trainer kits	

Theory:

Comparator: The comparison of two numbers is an operator that determines one number is greater than, less than (or) equal to the other number. A magnitude comparator is a combinational circuit that compares two numbers A and B and determines their relative magnitude. The outcome of the comparator is specified by three binary variables that indicate whether A>B, A=B (or) A<B.

Digital Design Laboratory	Semester: III	Academic Year: 2024-25

Roll No:____

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

1-bit Comparator Implementation Details: Truth Table

Semester: III

Digital Design Laboratory

Academic Year: 2024-25

Roll No:_____

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Four Bit Magnitude Comparator Implementation Details

Pin Diagram of IC 7485

Logic Diagram of IC 7485

Academic Year: 2024-25 Semester: III Digital Design Laboratory

Roll No:__

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Comparing Table

Implementation Details

Procedure:

- 1) Locate the IC 7485 on the trainer kit.
- 2) Connect 1st input no. to A3-A0 input slot and 2nd to B3-B0.
- 3) Connect the output $Y_{A>B}$, $Y_{A<B}$ and $Y_{A=B}$ to the output indicators.
- 4) Switch ON the power supply and monitor the output for various input combinations.

Post Lab Subjective/Objective type Questions:

1. Design 2-bit magnitude comparator.

Semester: III Academic Year: 2024-25 Digital Design Laboratory

Roll No:

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

2. How can we implement 5-bit magnitude comparator using IC 7485.

To implement a 5-bit magnitude comparator using IC 7485:

- 1. Use Two ICs: IC 7485 is a 4-bit comparator; use two ICs.
- 2. **Connect First IC:** Inputs for the 4 MSBs of the numbers; get the comparison result for these bits.
- 3. Connect Second IC: Input the LSBs; combine with the results from the first IC. 4.

Combine Outputs: Use the outputs from both ICs to determine if the numbers are equal, greater than,

or less than each other.	
Conclusion:	
Thus, in this experiment, we learned about b IC7485.	binary comparators and how to implement them using

Semester: III

Digital Design Laboratory

Academic Year: 2024-25

Roll No: