Data Structure Lecture I: Algorithm Complexity Analysis

Part 1. Sort Examples

1.Insertion sort

1. 伪代码:

```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 // Insert A[j] into the sorted sequence A[1 ... j - 1]

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i+1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i+1] \leftarrow key

1 i j n

A:
```

2. C++实现:

```
代码块
    void Insertion_sort(vector<int>& arr){
        int length = arr.size();
2
        for(int j = 2; j < length; j++){
3
4
            int key = arr[j];
            int i = j - 1;
5
            while(i >= 0 && arr[i] > key){
6
7
                arr[i + 1] = arr[i];
                i--;
8
9
```

```
10          arr[i + 1] = key;
11      }
12    }
```

3. Time Complexity Analysis

INSERTION-SORT(A)		cost	times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	do $key \leftarrow A[j]$	c_2	n-1
3	// Insert $A[j]$ into the sorted	0	n-1
	sequence $A[1 j - 1]$		
4	$i \leftarrow j - 1$	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	c_7	$\sum_{j=2}^{n} (t_{j} - 1)$
8	$A[i+1] \leftarrow key$	c_8	$\frac{n}{n}$ 1

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8 (n-1)$$

Best case:

• The best case occurs if the array is already sorted

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$
an + b (linear function)

Worst case:

• The worst case occurs if the array is in reverse sorted order

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - \left(c_2 + c_4 + c_5 + c_8\right)$$

$$an^2 + bn + c \text{ (quadratic function)}$$

The [a], [b], [c] coefficients are related to particular machines. When $n \to \infty$, we don't care about them.

Insertion sort works best with small amounts of data, since the coef of insert sort is the smallest(only compare and voluation), while other sort algorithms need more operations.

2.Merge Sort

Idea: divide and conquer

1. pseudocode

MERGE-SORT A[1 ... n]1. If n = 1, done. 2. Recursively sort $A[1 ... \lceil n/2 \rceil]$ and $A[\lfloor n/2 \rfloor + 1 ... n]$ 3. "Merge" the 2 sorted lists.

Key subroutine: *MERGE*

Merging two sorted arrays

Time = $\Theta(n)$ to merge a total of n elements (linear time).

2. C++ Implementation

```
代码块
    void Merge_sort(vector<int>& arr){
1
2
        auto helper = [&](this auto && helper, int left, int right) -> void{
            if(left == right - 1){
3
4
                return;
5
            int middle = (left + right) / 2;
6
7
            // devide
8
            helper(left, middle);
9
```

```
helper(middle, right);
10
11
             vector<int> left_part(arr.begin() + left, arr.begin() + middle);
12
             vector<int> right_part(arr.begin() + middle, arr.begin() + right);
13
14
             // conquer
15
              int p1 = 0, p2 = 0, p = left;
16
             while(p1 < middle - left && p2 < right - middle){</pre>
17
                  if(left_part[p1] < right_part[p2]){</pre>
18
                      arr[p] = left_part[p1];
19
                      p1++;
20
                  }
21
                  else{
22
23
                      arr[p] = right_part[p2];
24
                      p2++;
25
                  }
26
                  p++;
27
             }
28
         }
     }
29
```

Occupy a lot of memory!

Complexity analysis:

Let's discuss the time complexity of the merge sort:

$$T(N)=2T(rac{N}{2})+cn$$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

We draw the recursive tree:

Part 2. Complexity Theory

1.Kind of analyses

- Worst case (usually)
- Average case (sometimes)
- Best case (bogus, no meaning)

2. Θ, O, Ω Notation

- 1. Math definition:
 - a. ⊖ Notation

 $\Theta(g(n)) = \{ f(n) : \text{there exist positive constants}$ $c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0 \}$

 $f(n) = \Theta(g(n))$ can be thought of f(n) pprox g(n) in their scales

b. O Notation

 $O(g(n)) = \{ f(n) : \text{ there exist positive constants } c$ and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0 \}$

f(n) = O(g(n)) can be thought of $f(n) \leq g(n)$ in their scales

c. Ω Notation

 $\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \}$ and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$ }

 $f(n) = \Omega(g(n))$ can be thought of $f(n) \geq g(n)$ in their scales

2. Engineering meaning:

When we drop low order terms, ignore leading constants when $n \to \infty$

For example: $3n^3 + 90n^2 - 5n + 6046 = \Theta(n^3)$

Part3. Recurrences Analyses

Three methods to analyze the complexity of recursive algorithm:

- 1. Substitution method(数学归纳法)
- 2. Recursive-Tree method
- 3. Master Method

1. Substitution method

- 2. Recursive-tree method
- 3. Master method