ALGEBRA RELAZIONALE

2

L'algebra relazionale

- L'insieme principale di operazioni per il modello relazionale è l'**algebra relazionale.**
- Le operazioni dell'algebra relazionale consentono all'utente di specificare le interrogazioni fondamentali in termini di espressioni dell'algebra relazionale.
- Il risultato di un'interrogazione è una nuova relazione che può essere stata formata a partire da una o più relazioni.
- Una sequenza di operazioni di algebra relazionale forma un'espressione dell'algebra relazionale (il cui esito sarà ancora una relazione che rappresenta il risultato di un'interrogazione della BDD).

Perché l'algebra relazionale

- Fornisce un fondamento formale per le operazioni del modello relazionale
- E' usata come base per implementare (e ottimizzare) le interrogazioni nei sistemi di gestione di basi di dati relazionali (RDBMS)
- Alcuni dei suoi concetti sono incorporati nel linguaggio SQL

4

Calcolo relazionale

- Il calcolo relazionale fornisce una notazione dichiarativa di livello più alto per specificare le interrogazioni relazionali
- Un'espressione di calcolo relazionale crea una nuova relazione che è specificata in termini di variabili che assumono valori sulle righe delle relazioni memorizzate nella base di dati o sulle colonne delle relazioni memorizzate
- In un'espressione del calcolo relazionale non c'è un ordine delle operazioni, l'espressione specifica solo quali informazioni dovrebbe contenere il risultato

Le operazioni relazionali

UNARIF

- Selezione
- Proiezione

BINARIE

- Unione
- Intersezione
- Differenza
- Prodotto Cartesiano
- Join
- Divisione

6

L'operazione di SELEZIONE (1)

- È usata per selezionare un sottoinsieme di tuple di una relazione che soddisfano una **condizione di selezione**
- Si può considerare come un **filtro** che trattiene solo le tuple che soddisfano una condizione
- Può essere vista come una *partizione orizzontale* ella relazione in due insiemi di tuple:
 - quelle che soddisfano la condizione (e sono selezionate)
 - quelle che non la soddisfano (e sono scartate)

È indicata con $\sigma_{\text{-condizione di selezione}}(R)$

- σ (sigma) denota l'operazione di selezione
- la <condizione di selezione> è un'espressione booleana (specificata sugli attributi di)
- R la relazione su cui applicare la selezione

L'operazione di SELEZIONE (2)

- R è generalmente un'espressione dell'algebra relazionale il cui risultato è una relazione (l'espressione più semplice è costituita dal nome di una relazione della BDD)
- Il risultato dell'operazione è una relazione con gli stessi attributi di R
- <condizione di selezione> è costituita da un ceto numero di clausole nella forma:
 - <nome di attributi><op di confronto><valore costante> oppure
 - <nome di attributo><op di confronto><nome di attributo>

dove

- <nome di attributo> è il nome di un attributo di R
- <op di confronto> è un operatore tra $\{=, <, \le, >, \ge, \ne\}$
- <valore costante> è un valore nel dominio dell'attributo
- Le clausole possono essere unite tramite operatori booleani standard (AND, OR, NOT)

8

L'operazione di SELEZIONE (3)

Come si determina il risultato di un'operazione di selezione?

- la <condizione di selezione> viene applicata indipendentemente a ciascuna tupla t di R, sostituendo ogni occorrenza di un attributo A_i nella condizione di selezione con il suo valore nella tupla t[A_i]
- se la condizione è valutata vera allora la tupla viene selezionata

Caratteristiche della SELEZIONE

- È un operatore **unario** cioè applicato ad una singola relazione
- La condizione si applica a ciascuna tupla individualmente (perciò la condizione non può coinvolgere più di una tupla)
- Il **grado** della relazione risultate (cioè il suo numero di attributi) è uguale a quello di *R*
- Il numero delle tuple risultati è sempre minore o uguale al numero di tuple presenti in R: $|\sigma_C(R)| \le |R|$ per ogni condizione C

10

Proprietà della SELEZIONE

L'operazione di selezione è commutativa:

$$\sigma_{\text{cond}}(\sigma_{\text{cond}}(R)) = \sigma_{\text{cond}}(\sigma_{\text{cond}}(R))$$

 È sempre possibile unire una cascata di operazioni di selezione in una sola operazione con una condizione congiuntiva:

$$\sigma_{\text{cond1}}(\sigma_{\text{cond2}}(...(\sigma_{\text{cond}n}(R))) = \sigma_{\text{cond1}} + \text{AND} + \text{cond2} + \text{AND} + \text{condn} + \text{co$$

Esempio di SELEZIONE

- $\sigma_{N_D=4}$ (IMPIEGATO)
- $\sigma_{STIPENDIO>30000}$ (IMPIEGATO)
- $\sigma_{(N_D=4 \text{ and } STIPENDIO>25000)}$ or $(N_D=5 \text{ and } STIPENDIO>30000)}$ (IMPIEGATO)

NOME_BATT	INIZ_INT	COGNOME	SSN	DATA_N	INDIRIZZO	SESSO	STIPENDIO	SUPER_SSN	N_D
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer	s	Wallace	987654321	1941-06-20	291 Berry,Bellaire,TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 FireOak,Humble,TX	М	38000	333445555	5

 In SQL la condizione di selezione è specificata nella clausola WHERE:

SELECT *

FROM IMPIEGATO

WHERE N_D=4 AND STIPENDIO>25000;

12

L'operazione di PROIEZIONE (1)

- · Seleziona certe colonne della tabella e ne scarta altre
- Può essere vista come una partizione verticale della relazione in due relazioni:
 - una possiede gli attributi necessari (ed è il risultato dell'operazione)
 - l'altra contiene le colonne scartate

È indicata con $\pi_{\text{clista di attributi}}(R)$

- π (pi greco) denota l'operazione di proiezione
- di attributi
 è l'elenco degli attributi desiderati
 (presi fra quelli di R)

L'operazione di PROIEZIONE (2)

- Il risultato dell'operazione ha solo gli attributi specificati nella sta di attributi>, nello stesso ordine con cui compaiono nella lista
- Il suo grado è uguale al numero di attributi in lista di attributi>
- Se la lista di attributi comprende solo attributi nonchiave di R, possono presentarsi tuple duplicate;
 l'operazione di proiezione rimuove tutte le tuple duplicate

14

Caratteristiche della PROIEZIONE

- Il numero di tuple di una relazione risultante da una proiezione è sempre minore o uguale al numero di tuple presenti in *R*
- Se la lista di attributi è una superchiave di R allora la relazione risultante ha lo stesso numero di tuple presenti in R
- Per la proiezione NON vale la commutatività

Esempio di PROIEZIONE

- $\pi_{NOME_BATT, COGNOME, STIPENDIO}$ (IMPIEGATO) (esempio (b))
- π_{SESSO, STIPENDIO}(IMPIEGATO) (esempio (c))

(b)	COGNOME	NOME_BATT	STIPENDIO
	Smith	John	30000
	Wong	Franklin	40000
	Zelaya	Alicia	25000
	Wallace	Jennifer	43000
	Narayan	Ramesh	38000
	English	Joyce	25000
	Jabbar	Ahmad	25000
	Borg	James	55000

(c)	SESSO	STIPENDIO
	М	30000
	М	40000
	F	25000
	F	43000
	M	38000
	М	25000
	М	55000

• In SQL:

SELECT DISTINCT SESSO, STIPENDIO **FROM** IMPIEGATO

16

Sequenze di operazioni

 È possibile eseguire più operazioni di algebra relazionale una di seguito all'altra

 $\pi_{NOME_BATT, COGNOME, STIPENDIO}(\sigma_{N_D=5}(IMPIEGATO))$

NOME_BATT	COGNOME	STIPENDIO
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

• È possibile dare un nome alle relazioni risultanti

$$\begin{split} & \text{IMP_DIP5} \leftarrow \sigma_{\text{N_D=5}}(\text{IMPIEGATO}) \\ & \text{RISULTATO} \leftarrow \pi_{\text{NOME_BATT, COGNOME, STIPENDIO}}(\text{IMP_DIP5}) \end{split}$$

Ridenominazione

 È possibile usare la tecnica della suddivisione delle operazioni per ridenominare gli attributi delle relazioni intermedie e del risultato

TEMP $\leftarrow \sigma_{N_D=5}$ (IMPIEGATO) R(NOME_DI_BATTESIMO, NOME_DI_FAMIGLIA, STIPENDIO) $\leftarrow \pi_{NOME_BATT, COGNOME, STIPENDIO}$ (TEMP)

TEMP	NOME_BATT	INIZ_INT	COGNOME	SSN	DATA_N	INDIRIZZO	SESSO	STIPENDIO	SUPERSSN	N_D
	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss,Houston,TX	М	40000	888665555	5
	Ramesh	К	Narayan	666884444	1962-09-15	975 Fire Oak,Humble,TX	М	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

R	NOME_DI_BATTESIMO	NOME_DI_FAMIGLIA	STIPENDIO
	John	Smith	30000
	Franklin	Wong	40000
	Ramesh	Narayan	38000
	Joyce	English	25000

18

L'operazione di RIDENOMINAZIONE

È indicata con $\rho_{S(B1, B2, ..., Bn)}(R)$

- ρ (rho) è usato per indicare l'operazione
- S è il nuovo nome della relazione
- B_1 , B_2 , ..., B_n sono i nuovi nomi degli attributi

In SQL:

SELECT I.NOME_BATT **AS** NOME_BATTESIMO,

I.COGNOME **AS** COGNOME,

I.STIPENDIO AS STIPENDIO

FROM IMPIEGATO AS I

WHERE $I.N_D = 5$;

UNIONE, INTERSEZIONE, DIFFERENZA

- Sono operazioni binarie: si applicano a due relazioni
- Le due relazioni su cui è eseguita ognuna delle operazioni deve avere lo stesso tipo di tuple: questa condizione è detta compatibilità all'unione
- Si dice che due relazioni $R(A_1, A_2, ..., A_n)$ e $S(B_1, B_2, ..., B_n)$ sono **compatibili all'unione** se:
 - hanno lo stesso grado n
 - se dom(A_i) = dom(B_i) per $1 \le i \le n$
- Ciò significa che le due relazioni hanno lo stesso numero di attributi e che ogni coppia di attributi corrispondenti ha lo stesso dominio.

20

Definizioni

UNIONE: R U S

Il risultato è una relazione che comprende tutte le tuple che sono in *R* o in *S* oppure sia in *R* sia in *S*. Le tuple duplicate vengono eliminate.

INTERSEZIONE: $R \cap S$

Il risultato è una relazione che comprende tutte le tuple che sono sia in *R* sia in *S*.

DIFFERENZA: R - S

Il risultato è una relazione che comprende tutte le tuple che sono in *R* ma non in *S*.

Proprietà

• Sia l'unione, sia l' intersezione sono operazioni commutative

$$R \cup S = S \cup R$$

- $R \cap S = S \cap R$
- Entrambe possono essere trattate come operazioni narie (applicabili a un qualsiasi numero di relazioni)
- L'operazione differenza NON è commutativa $R - S \neq S - R$
- · L'intersezione può essere espressa come

 $R \cap S = ((R \cup S) - (R - S) - (S - R))$

Esempi

- (b) STUDENTE U ASSISTEN
- (c) STUDENTE ∩ ASSISTEN
- (d) STUDENTE ASSISTENTE
- (e) ASSISTENTE STUDENTE

STUDENTE	N_B	co
	Susan	Yao
	Ramesh	Shah
	Johnny	Kohler
TENTE	Barbara	Jones
	Amy	Ford
TENTE	Jimmy	Wang
TENITE	Ernest	Gilbert

ASSISTENTE	NOME_BATT	COGNOME
	John	Smith
	Ricardo	Browne
	Susan	Yao
	Francis	Johnson
	Ramesh	Shah

(a)

-	•	

N_B	CO	
Susan	Yao	
Ramesh	Shah	
Johnny	Kohler	
Barbara	Jones	
Amy	Ford	
Jimmy	Wang	
Ernest	Gilbert	
John	Smith	
Ricardo	Browne	
Francis	Johnson	

(c)	N_B	CO
	Susan	Yao
	Romoch	Shah

(d)

N_B	CO
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

(e)	

•	NOME_BATT	COGNOME
	John	Smith
	Ricardo	Browne
	Francis	Johnson

L'operazione di PRODOTTO CARTESIANO

- È indicata con ×
- Si applica a relazioni che NON sono compatibili all'unione
- $R(A_1, A_2, ..., A_n) \times S(B_1, B_2, ..., B_m)$ produce $Q(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$
- Q (ha *n* + *m* attributi e) contiene una tupla per ogni possibile combinazione di tuple (una di *R* e una di *S*)
- × produce una nuova tupla combinando ogni tupla di R con ogni tupla di S
- Se R ha n_R tuple e S ne ha n_S , allora $R \times S$ ha $n_R * n_S$ tuple

24

Esempio di prodotto cartesiano

Applicato da solo è generalmente privo di significato

Esempio:

Recuperare per ogni impiegato di sesso femminile un elenco di nomi delle persone a suo carico

```
\begin{split} & \mathsf{IMP\_SESSO\_FEMM} \leftarrow \sigma_{\mathsf{SESSO} = 'F'}(\mathsf{IMPIEGATO}) \\ & \mathsf{NOMI\_IMP} \leftarrow \pi_{\mathsf{NOME\_BATT, COGNOME, SSN}}(\mathsf{IMP\_SESSO\_FEMM}) \\ & \mathsf{IMP\_PERS\_A\_CARICO} \leftarrow \mathsf{NOMI\_IMP} \times \mathsf{PERSONA\_A\_CARICO} \\ & \mathsf{PERS\_A\_CARICO\_EFF} \leftarrow \sigma_{\mathsf{SSN=SSN\_I}}(\mathsf{IMP\_PERS\_A\_CARICO}) \\ & \mathsf{RISULTATO} \leftarrow \pi_{\mathsf{NOME\_BATT, COGNOME, NOME\_PERSONA\_A\_CARICO}(\mathsf{PERS\_A\_CARICO\_EFF}) \end{split}
```

IMP_SESSO_FEMMINILE

NOME_BATT	INIZ_INT	COGNOME	SSN	DATA_N	INDIRIZZO	SESSO	STIPENDIO	SUPER_SSN	N_D
Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	s	Wallace	987654321	1941-06-20	291 Berry,Bellaire,TX	F	43000	888665655	4
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

NOMI-IMP

	NOME_BATT	COGNOME	SSN
Γ	Alicia	Zelaya	999887777
	Jennifer	Wallace	987654321
ı	Joyce	English	453453453

IMP PERSONE A CARICO

NOME_BATT	COGNOME	SSN	SSN_I	NOME_PERSONA_A_CARICO	SESSO	DATA_N	• • •
Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	• • •
Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	• • •
Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	• • •
Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	• • •
Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	• • •
Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	• • •
Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	• • •
Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	• • •
Jennifer	Wallace	987654321	333445555	Theodore	М	1983-10-25	• • •
Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	• • •
Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	• • •
Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	• • •
Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	• • •
Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	• • •
Joyce	English	453453453	333445555	Alice	F	1986-04-05	
Joyce	English	453453453	333445555	Theodore	М	1983-10-25	• • •
Joyce	English	453453453	333445555	Joy	F	1958-05-03	• • •
Joyce	English	453453453	987654321	Abner	М	1942-02-28	• • •
Joyce	English	453453453	123456789	Michael	М	1988-01-04	• • •
Joyce	English	453453453	123456789	Alice	F	1988-12-30	• • •
Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	• • •

PERSONE_A_CARICO_EFFETTIVE

NOME_BATT	COGNOME	SSN	SSN_I	NOME_PERSONA_A_CARICO	SESSO	DATA_N	• • •
Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	• • •

RISULTATO

NOME_BATT	COGNOME	NOME_PERSONA_A_CARICO
Jennifer	Wallace	Abner

26

L'operazione di JOIN (1)

- · Consente di eseguire associazioni tra relazioni
- È usata per unire tuple *logicamente collegate* provenienti da due relazioni
- È indicata con *R* ⋈_{<condizione di join>} *S*
- Il risultato presenta una tupla in corrispondenza di una combinazione di tuple (una di *R* e una di *S*) quando la tupla soddisfa la condizione di join.

L'operazione di JOIN (2)

- La condizione di join è precisata sugli attributi delle due relazioni R e S ed è valutata per ogni combinazione di tuple.
- Ogni combinazione di tuple per cui la condizione è vera è inserita nella relazione risultante come una singola tupla risultante dall'unione.

28

La condizione di JOIN

Una condizione di join generale assume la forma:

<condizione> AND <condizione> AND ... AND <condizione>

in cui ogni condizione assume la forma $A_i \theta B_j$

- *A_i* è un attributo di *R*
- B_i è un attributo di S
- A_i B_i hanno lo stesso dominio
- θ (theta) è uno degli op. di confronto $\{=, <, \le, >, \ge, \ne\}$
- Le tuple i cui attributi di join sono nulli NON compaiono nel risultato

Esempio 1

- Trovare il nome del direttore di ogni dipartimento.
- Occorre unire ogni tupla di dipartimento con la tupla di impiegato il cui valore di SSN si accorda con il valore di SSN_DIR presente in dipartimento.

DIR_DIP
$$\leftarrow$$
 DIPARTIMENTO $\bowtie_{SSN_DIR=SSN}$ IMPIEGATO RISULTATO \leftarrow $\pi_{NOME\ DIP,\ COGNOME,\ NOME\ BATT}$ (DIR_DIP)

DIR_DIP	NOME_D	NUMERO_D	SSN_DIR		NOME_BATT	INIZ_INT	COGNOME	SSN	• • •
	Ricerca	5	333445555		Franklin	Т	Wong	333445555	• • •
	Amministrazione	4	987654321		Jennifer	S	Wallace	987654321	• • •
	Sede centrale	1	888665555	• • •	James	Е	Borg	888665555	• • •

30

Esempio 2

 Può essere espressa come un prodotto cartesiano seguito da un'operazione di selezione.

```
\begin{split} & \text{IMP\_PERS\_A\_CARICO} \leftarrow \text{NOMI\_IMP} \times \text{PERSONA\_A\_CARICO} \\ & \text{PERS\_A\_CARICO\_EFF} \leftarrow \sigma_{\text{SSN=SSN I}} (\text{IMP\_PERS\_A\_CARICO}) \end{split}
```

Queste due sono sostituibili da

 $\mathsf{PERS_A_CARICO_EFF} \leftarrow \mathsf{NOMI_IMP} \bowtie_{\mathsf{SSN}=\mathsf{SSN}} \mathsf{PERSONA_A_CARICO}$

L'operazione di EQUIJOIN

- Un join con solo confronti di uguaglianza è detto equijoin
- Si noti che nel risultato si hanno sempre una o più coppie di attributo con valori identici in ogni tupla.

32

L'operazione di JOIN NATURALE

- È indicata con *
- È usata per eliminare l'attributo superfluo
- È necessario che i due attributi coinvolti nel join abbiano lo stesso nome in entrambe le relazioni (diversamente si può applicare un'operazione di ridenominazione)

Esempio di JOIN NATURALE (1)

Combinare le tuple di PROGETTO con le tuple di DIPARTIMENTO che controllano quel progetto. E' necessario ridenominare in NUM_D l'attributo NUMERO_D di DIPARTIMENTO (in modo che abbia lo stesso nome dell'attributo in PROGETTO).

 $\mathsf{PROG_DIP} \leftarrow \mathsf{PROGETTO} * \rho_{(\mathsf{NOME_D}, \, \mathsf{NUM_D}, \, \mathsf{SSN_DIR}, \, \mathsf{DATA_INIZIO_DIR})} (\mathsf{DIPARTIMENTO})$

PROG_DIP	NOME_P	NUMERO_P	SEDE_P	NUM_D	NOME_D	SSN_DIR	DATA_INIZIO_DIR
	ProdottoX	1	Bellaire	5	Ricerca	333445555	1988-05-22
	ProdottoY	2	Sugarland	5	Ricerca	333445555	1988-05-22
	ProdottoZ	3	Houston	5	Ricerca	333445555	1988-05-22
	Informatizzazione	10	Stafford	4	Amministrazione	987654321	1995-01-01
	Riorganizzazione	20	Houston	1	Sede centrale	888665555	1981-06-19
	Nuove opportunità	30	Stafford	4	Amministrazione	987654321	1995-01-01

34

Esempio di JOIN NATURALE (2)

DIP_SEDI ← DIPARTIMENTO * SEDI_DIP

DIP_SEDI	NOME_D	NUMERO_D	SSN_DIR	DATA_INIZIO_DIR	SEDE
	Sede centrale	1	888665555	1981-06-19	Houston
	Amministrazione	4	987654321	1995-01-01	Stafford
	Ricerca	5	333445555	1988-05-22	Bellaire
	Ricerca	5	333445555	1988-05-22	Sugarland
	Ricerca	5	333445555	1988-05-22	Houston

Un insieme completo

- Si può dimostrare che l'insieme di operazioni dell'algebra relazionale {σ, π, ∪, ρ, −, ×} è un insieme completo
- Cioè ogni altra operazione dell'algebra relazionale può essere espressa come una sequenza di operazioni di questo insieme

36

L'operazione di DIVISIONE

- L'operazione di DIVISIONE si applica a due relazioni $R(Z) \div S(X)$ in cui $X \subseteq Z$
- Sia Y l'insieme degli attributi di R che non sono attributi di S, cioè Y = Z - X
- Il risultato della divisione è una relazione T(Y) che comprende una tupla t se in R sono presenti tuple con $t_R[Y] = t$ e con $t_R[X] = t_s$ per ogni tupla t_s di S.
- Perché una tupla compaia nel risultato, in R devono comparire i valori di t in combinazione con ogni tupla di S.

Esempio di DIVISIONE (1)

Trovare i nomi degli impiegati che lavorano a tutti i progetti su cui lavora "John Smith".

1. SMITH
$$\leftarrow \sigma_{NOME_BATT='John'\ AND\ COGNOME='Smith'}$$
 (IMPIEGATO) SMITH_N_PROG $\leftarrow \pi_{N_P}$ (LAVORA_SU $\bowtie_{SSN_I=SSN}$ SMITH) 2. SSN_N_P $\leftarrow \pi_{SSN_I,\ N_P}$ (LAVORA_SU) 3. SSNS(SSN) \leftarrow SSN_N_P \div SMITH_N_PROG RISULTATO $\leftarrow \pi_{NOME_BATT,\ COGNOME}$ (SSNS * IMPIEGATO)

38

Esempio di DIVISIONE (2)

SSN_N_P	\$SN_I	N_P
	123456789	1
	123456789	2
	666884444	3
	453453453	1
	453453453	2
	333445555	2
	333445555	3
	333445555	10
	333445555	20
	999887777	30
	999887777	10
	987987987	10
	987987987	30
	987654321	30
	987654321	20
	888665555	20

SMITH_N_PROG	N_P
	1
	2

SSNS	SSN
	123456789
	453453453

Esempio di DIVISIONE (3)

 $\bullet \ \mathsf{T} \longleftarrow \mathsf{R} \div \mathsf{S}$

R	Α	В
	a1	b1
	a2	b1
	аЗ	b1
	a4	b1
	a1	b2
	a3	b2
	a2	b3
	аЗ	b3
	a4	b3
	a1	b4
	a2	b4
	a3	b4

S	Α
	a1
	a2
	a3

T	В
	b1
	b4

40

Sintesi

Operazione	Effetto	Notazione
SELEZIONE	Seleziona tutte le tuple di una relazione R che soddisfano la condizione di selezione.	$\sigma_{< ext{condizione di seleziones}}(R)$
PROIEZIONE	Produce una nuova relazione con solo alcuni degli attributi di <i>R</i> ed elimina le tuple duplicate.	$\pi_{ ext{}}(R)$
THETA JOIN	Produce tutte le combinazioni di tuple di R_1 e di R_2 che soddisfano la condizione di join.	$R_1 \bowtie_{< m condizione \ di \ join>} R_2$
EQUIJOIN	Produce tutte le combinazioni di tuple prelevate da R_1 e R_2 che soddisfano una condizione di join che presenta solo confronti di uguaglianza.	$\begin{array}{c} R_1 \bowtie_{< \mathrm{condizione\ di\ join>}} R_2, \\ \mathrm{oppure\ } R_1 \bowtie_{(< \mathrm{attributi\ di\ join\ }} R_2), \\ \text{1>)*}\ (< \mathrm{attributi\ di\ join\ }} R_2 \end{array}$
JOIN NATURALE	Lo stesso dell'EQUIJOIN, se non per il fatto che gli attributi di join di R_2 non sono inseriti nella relazione risultante; se gli attributi di join hanno gli stessi nomi non è necessario specificarli.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Sintesi

UNIONE $R_1 \cup R_2$ Produce una relazione che contiene tutte le tuple presenti in R_1 o in R_2 , o in entrambe; R_1 e R_2 devono essere compatibili all'unione. INTERSEZIONE Produce una relazione che contiene $R_1 \cap R_2$ tutte le tuple presenti sia in R_1 sia in R_2 ; R_1 e R_2 devono essere compatibili DIFFERENZA Produce una relazione che contiene $R_1 - R_2$ tutte le tuple di R_1 che non sono in R_2 ; R_1 e R_2 devono essere compatibili PRODOTTO Produce una relazione che presenta $R_1 \times R_2$ CARTESIANO gli attributi di R_1 e R_2 e contiene come tuple tutte le possibili combinazioni di tuple di R_1 con tuple di R_2 . DIVISIONE Produce una relazione R(X) che $R_1(Z) \div R_2(Y)$ contiene tutte le tuple t[X] di $R_1(Z)$ che in R_1 si presentano in combinazione con ogni tupla di $R_2(Y)$, dove $Z = X \cup Y$.

42

Alberi di interrogazione

- Un albero di interrogazione è una struttura dati ad albero corrispondente a un'espressione di algebra relazionale.
- Le relazioni in input sono nodi foglia
- Le operazioni dell'algebra relazionale sono i nodi interni
- Un'esecuzione dell'albero di interrogazione consiste in:
 - eseguire un'operazione (in un nodo interno) ogni volta che sono disponibili i corrispondenti operandi
 - sostituire il nodo interno con la relazione risultante
- L'esecuzione termina quando viene eseguito il nodo radice

Un albero di interrogazione

Per ogni progetto con sede a Stafford si elenchi il codice del progetto, il codice del progetto elenchi il progetto e il cognome, indirizzo, e data di nascita del direttore di quel dipartimento.

44

Altre operazioni

 Proiezione generalizzata: estende l'operazione di proiezione permettendo di includere delle funzioni sugli attributi nella lista di proiezione.

Es.: $\pi_{SSN, (STIPENDIO-TRATTENUTE), 0.25*STIPENDIO}$ (IMPIEGATO)

- Funzioni aggregate: consentono di specificare funzioni aggregate matematiche su collezioni di valori della base di dati. Sono: SUM, AVERAGE, MAXIMUM, MINIMUM e COUNT.
- Funzioni di raggruppamento: per raggruppare le tuple presenti in una relazione sulla base del valore di alcuni loro attributi (su cui applicare poi una funzione aggregata).

Esempio

R	N_D	N_DI_IMPIEGATI	STIP_MEDIO
	5	4	33250
	4	3	31000
1		1	55000

(b)

N_D	COUNT_SSN	AVERAGE_STIPENDIO
5	4	33250
4	3	31000
1	1	55000

(c)

COUNT_SSN	AVERAGE_STIPENDIO
8	35125

L'operazione di FUNZIONE AGGREGATA.

- $\begin{array}{l} \overset{\cdot}{(a)} \overset{\cdot}{\rho_{R(N_-D,\; N_-DL_IMPIEGATI,\; STIP_MEDIO)}(N_-D\; \widetilde{\mathcal{S}}\; \text{ count }_{SSN,\; AVERAGE\; STIPENDIO} \\ (b) & \underset{\cdot}{N_-D}\; \widetilde{\mathcal{S}}\; \text{ count }_{SSN,\; AVERAGE\; STIPENDIO} \\ (c) & \underset{\cdot}{\widetilde{\mathcal{S}}}\; \text{ count }_{SSN,\; AVERAGE\; STIPENDIO} \\ \end{array} (IMPIEGATO).$

Esercizi su AZIENDA

IMPIEGATO

NOME_BATT INIZ_INT COGNO	IE <u>SSN</u> DATA_N	INDIRIZZO SESSO	STIPENDIO SUPER_SSN	N_D
--------------------------	----------------------	-----------------	---------------------	-----

DIPARTIMENTO

NOME_D	NUMERO_D	SSN_DIR	DATA_INIZIO_DIR

SEDI_DIP

NUMERO_D	SEDE_D
----------	--------

PROGETTO

NOME_P	NUMERO_P	SEDE_P	NUM_D
--------	----------	--------	-------

LAVORA_SU

SSN I	ΝP	ORE
	<u> </u>	

PERSONA_A_CARICO

SSN_I	NOME_PERSONA_A_CARICO	SESSO	DATA_N	PARENTELA
-------	-----------------------	-------	--------	-----------

Esercizi

IMPIEGATO

NOME_BATT	INIZ_INT	COGNOME	SSN	DATA_N	INDIRIZZO	SESSO	STIPENDIO	SUPER_SSN	N_D
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	s	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	M	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	NULL	1

DIPARTIMENTO

NOME_D	NUMERO_D	SSN_DIR	DATA_INIZIO_DIR
Ricerca	5	333445555	1988-05-22
Amministrazione	4	987654321	1995-01-01
Sede centrale	1	888665555	1981-06-19

SEDI_DIP

NUMERO_D	SEDE_D
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

LAVORA_SU

SSN_I	N_P	ORE
123456789	1	32,5
123456789	2	7,5
666884444	3	40,0
453453453	1	20,0
453453453	2	20,0
333445555	2	10,0
333445555	3	10,0
333445555	10	10,0
333445555	20	10,0
999887777	30	30,0
999887777	10	10,0
987987987	10	35,0
987987987	30	5,0
987654321	30	20,0
987654321	20	15,0
888665555	20	NULL

PROGETTO

NOME_P	NUMERO_P	SEDE_P	NUM_D
ProdottoX	1	Bellaire	5
ProdottoY	2	Sugarland	5
ProdottoZ	3	Houston	5
Informatizzazione	10	Stafford	4
Riorganizzazione	20	Houston	1
Nuove opportunità	30	Stafford	4

PERSONA_A_CARICO

SSN_I	NOME_PERSONA_A_CARICO	SESSO	DATA_N	PARENTELA
333445555	Alice	F	1986-04-05	FIGLIA
333445555	Theodore	М	1983-10-25	FIGLIO
333445555	Joy	F	1958-05-03	CONIUGE
987654321	Abner	М	1942-02-28	CONIUGE
123456789	Michael	М	1988-01-04	FIGLIO
123456789	Alice	F	1988-12-30	FIGLIA
123456789	Elizabeth	F	1967-05-05	CONIUGE