Handling Data Annotation Uncertainty in Human Activity Recognition

Hyeokhyen Kwon, Gregory Abowd, Thomas Plotz

Motivation

- Data Collection and Annotation are important!
- Most HAR models used a discrete data labeling scheme
- But even the most reliable annotator can get it wrong
 - Exact activity transition points are hard to determine
 - Activity can overlap each other
- Label jitter: uncertainty region at the start/end of an activity (activity boundary)
- -> Label jitters can prevent the HAR model from achieving ideal performance

Past attempts

- Discrete label correction
 - Ignorance is bliss!
 - Majority voting among multiple annotators
 - Iteratively shift label to refine annotation (EM method, Fukunaga Class-Separability)
- Soft label fusion
 - Use multiple annotators -> subjectivity and uncertainty
 - Labels are represented as multinomial distribution of activities
 - Uniform contribution
 - Assign weights based on reliability
- Label augmentation: Incorporate noise into the dataset to regularize models

Effects of Label Misalignment on HAR models

- Experiment:
 - Opportunity dataset, ConvLSTM model
 - Shift the labels at the start/end/both of the boundary
 - Amount of shifting is proportional to the length of the activity (max 50%)
- Effects on the F1 score shown in the plot on the right

Adaptive Smooth Activity Transition (SAT)

- **CORE interval**: middle section of an activity, essence of the motions
- **NULL interval**: where nothing "interesting" happen
- **Event boundaries**: Start/End-points of an activity
- Perspectives:
 - Label jitter is unlikely at CORE interval
 - Activity Transition (TR) uncertainty inversely proportional to activity length
 - Overlapping (OV) uncertainty is inversely proportional to NULL interval length

Adaptive Smooth Activity Transition (SAT)

- Derive the smoothing kernel based on the observations:

$$P(t_b) = \gamma \mathcal{N}(t_b, \sigma_{t_b}^{TR}) + (1 - \gamma) \mathcal{N}(t_b, \sigma_{t_b}^{OV})$$
$$\sigma_{t_b}^{TR} = \frac{\alpha}{L_t} \text{ and } \sigma_{t_b}^{OV} = \frac{\beta}{\Delta_t}$$

Constraint:

$$0 \le \gamma \le 1$$

$$\sigma_{t_h}^{TR} \leq U^{TR} = L_t * p^{TR}$$

$$\sigma_{t_b}^{ov} \leq U^{ov} = (\Delta 1..\,t, p^{ov})$$

$$0 \le p^{TR}, p^{OV} \le 0.5$$

Variables:

L is the length of the activity

 Δ is the length of the NULL interval

 α, β is the control parameters, with $[\alpha, \beta] = percentile([L_{1,t}, \Delta_{1,t}], 50\%)$

Smooth Activity Transition

Finally, we use P(t) as the kernel to smooth activity boundary at timestep t.

How can we use SAT with classifiers?

- Classifiers that work with soft labels: fuzzy SVM, softmax classifier, ...
- Discrete classifiers: augment the dataset by sampling from the uncertainty distribution

Figure 2: Smooth Activity Transition (SAT) with adaptive label jittering distributions.

Evaluation Procedure

- **Datasets**: Opportunity, Daphne Gait, Wetlab, 50salads
- Metrics: F1 score, Wilson score interval, misalignment analysis, ...
- Models: Random Forest (RF), Conv, ConvLSTM
- Labels: baseline (remove the uncertainty), SAT-OV, SAT-TR, SAT

Results

	Opp	DG	Wetlab	50salads
Random Forest (RF)				
Baseline	0.367	0.286	0.168	0.467
SAT-TR	0.389	0.335	0.188	0.474
SAT-OV	0.403	0.334	0.179	0.498
SAT	0.428	0.349	0.194	0.511
Conv				
Baseline	0.643	0.703	0.315	0.536
SAT-TR	0.652	0.725	0.338	0.576
SAT-OV	0.668	0.717	0.335	0.591
SAT	0.679	0.740	0.346	0.609
ConvLSTM				
Baseline	0.672	0.734	0.341	0.564
SAT-TR	0.675	0.738	0.380	0.587
SAT-OV	0.680	0.736	0.376	0.596
SAT	0.698	0.742	0.396	0.615
Train-core-only	0.645	0.609	0.347	0.562
confidence interval	±0.009	±0.017	±0.006	±0.008
U^{OV}	0.21s	1.52s	3.14s	0.46s
(p_u)	(10%)	(15%)	(10%)	(15%)

Results

Figure 3: Importance of modeling annotation uncertainty for a sequence (30s) of complex interactions with kitchen objects (from Opportunity, ConvLSTM). Target labels (top) are compared to predictions from baseline (2nd), baseline with soft-voting (3rd), SAT (4th), and SAT with soft-voting (bottom). The significant deviations in predictions are highlighted as red boxes.

- Examining SAT compatibility with post-hoc label errors correction
- Apply soft-voting filter to the baseline/SAT labels
 - The filter removes sequence of activities in the baseline case
 - The filter do minor adjustments on the SAT case, results in a sequence nearly identical to the target.

Effects of Adaptive Label Jitter Modeling

Compare SAT with a fixed-size label jitter (uniform smoothing):

- Uniform smoothing works for dataset with large uncertainty
- Uniform smoothing underperforms the baseline in dataset with short activities/NULL intervals

Robustness Under Label Shift

Conclusion

- Create a scheme to incorporate label uncertainty into model training
- Dynamic label jitter smoothing significantly increases model performances on various datasets
- Adaptive SAT is shown to reduce boundary errors and substitution errors
- Future research:
 - Does uncertainty boundary depend on activity classes?
 - Does long-term context influence annotation behaviors?