

INDR 450/550

Spring 2022

Lecture 10: Regression for Time Series

March 16, 2022

Fikri Karaesmen

Announcements

- Class Exercise at the end of lecture today. If you are participating online, please upload your document under Course Contents/Class Exercises
- HW 1 due date approaching.
- HW 2 available soon.

- The first three labs were uploaded. Please follow them.
 - Next HW based on lab2

A few notes and corrections

- Homework: the data is not very pretty. Simpler models may perform better.
 - Please try to understand why.

Summary of ACF and PACF patterns for simple AR and MA models

Process	ACF	PACF
AR(1)	Exponential decay: on positive	Spike at lag 1, then cuts off to
	side if $\phi_1 > 0$ and alternating in	zero: spike positive if $\phi_1 > 0$
	sign starting on negative side if	negative if $\phi_1 < 0$.
	$\phi_1 < 0$.	
AR(p)	Exponential decay or damped	Spikes at lags 1 to p , then cuts of
	sine-wave. The exact pattern de-	to zero.
	pends on the signs and sizes of	
	ϕ_1, \ldots, ϕ_p .	
MA(1)	Spike at lag 1 then cuts off to zero:	Exponential decay: on negative
	spike positive if $\theta_1 < 0$, negative	side if $\theta_1 > 0$ and alternating in
	if $\theta_1 > 0$.	sign starting on positive side i
		$\theta_1 < 0$.
MA(q)	Spikes at lags 1 to q , then cuts off	Exponential decay or damped
	to zero.	sine-wave. The exact pattern de
		pends on the signs and sizes of
		$\theta_1, \ldots, \theta_q$.

Please note that the MA-terms are defined with a negative sign in this Reference. This is why the signs are reversed in the examples in Lab 3.

Makridakis, Wheelwright and Hyndman (1997)

ARIMA Framework: Residuals

- Recall that we want our forecasts to be unbiased: $E[\hat{Y}_t] = E[Y_t]$. But this can only be checked if we know the theoretical model.
- But we can check unbiasedness from the residuals of the fitted model $e_t = y_t \hat{y}_t$.
- The average of the residuals must be zero (i.e. Statistically indistinguishable from zero).
- In this example, we have an unbiased forecast.

ARIMA Framework: Residuals

- We also want that the residuals do not have any auto-correlation remaining. Otherwise, the ARIMA model would be insufficient to explain the auto-correlation structure.
- In this example, the residuals do not have any auto-correlation. The fitted model is sufficient to explain the auto-correlation structure.

• Consider the following linear model:

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \dots + \beta_n x_{nt} + \epsilon_t$$

• y_t is the forecast and x_{kt} are the predictors.

Note that we can use other time series on the right hand side of a regression. For instance, to predict the sales of dishwashers, we can take as a predictor the sales of refrigerators from one month Ago.

Figure 5.12: Trending time series data can appear to be related, as shown in this example where air passengers in Australia are regressed against rice production in Guinea.

But it's not a good idea to predict the number of air passengers by using as a predictor rice production in Guinea! They are correlated but unrelated, the prediction will be completely off if Guinea allocates additional land to rice farmers or if there's a drought.

- Linear regression is a general tool that looks for a linear relationship between a response and predictors.
- We have observations at different levels of the predictors and the corresponding response.
- The goal is to have predictions for the response that will be generated by so far unobserved levels of the predictors.
- We'll look into time series data where the data is the time series itself. The prediction is then typically a forecast for future demand, prices etc.

• Consider the following linear model:

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + ... + \beta_n x_{nt} + \epsilon_t$$

- y_t is the forecast and x_{kt} are the predictors.
- We are therefore looking for a linear relationship between the predictors and the response (the forecast).
- Note that in the setting of forecasting, this is somewhat different than
 designing a controlled experiment where we can control the levels of the
 predictors. The predictors that are available to us cannot be controlled in
 general.

- The Google Share Price Data has a strong trend.
- Let's try a simple trend based regression. Call this Model 1.

$$y_t = \beta_0 + \beta_1 t + \epsilon_t$$

	Price	Day
1	2064.879883	1
2	2070.860107	2
3	2095.169922	3
4	2031.359985	4
5	2036.859985	5

result = lm.fit()
result.summary()

 $\hat{\beta}_0 = 2197.62, \hat{\beta}_0 = 3.31$

lm = sm.OLS.from formula('Price ~ Day', df)

Code

 Since the execution is very easy, we are tempted to try other predictors, let us try:

$$y_t = \beta_0 + \beta_1 t + \beta_2 \sqrt{t} + \beta_3 t^2 + \epsilon_t$$

Out[2]:

	Price	Day	Sqrtd	Sqrd
1	2064.879883	1	1.000000	1
2	2070.860107	2	1.414214	4
3	2095.169922	3	1.732051	9
4	2031.359985	4	2.000000	16
5	2036.859985	5	2.236068	25

```
In [12]: lm2 = sm.OLS.from_formula('Price ~ Day + Sqrtd+ Sqrd', df)
    result2 = lm2.fit()
```

Let us call this model Model 2.

Regression for Time Series: Basic Predictors: Google Share Price OLS Regression Results

 $y_t = \beta_0 + \beta_1 t + \beta_2 \sqrt{t} + \beta_3 t^2 + \epsilon_t$

Dep. \	Dep. Variable:			Price	R-	squared:	0.937
	Model:			OLS	Adj. R	squared:	0.936
	Method:			quares	F	-statistic:	1236.
	Date : Tu			ar 2022	Prob (F-	statistic):	3.40e-149
	Time	:	12	2:17:45	Log-Li	kelihood:	-1440.8
No. Obser	vations	:		253		AIC:	2890.
Df Re	siduals	:		249		BIC:	2904.
D	f Model	l:		3			
Covarian	ce Type	:	nor	nrobust			
	(coef	std err	t	P> t	[0.025	0.975]
Intercept	2207.3		std err 43.714	t 50.496		[0.025 2121.282	0.975] 2293.476
Intercept Day		790		_	0.000	•	•
	2207.3	3790 3417	43.714	50.496	0.000	2121.282	2293.476
Day	2207.3 19.8 -111.2	3790 3417	43.714 1.304	50.496 15.219 -7.430	0.000 0.000 0.000	2121.282	2293.476 22.409
Day Sqrtd	2207.3 19.8 -111.2	3790 3417 2141	43.714 1.304 14.968	50.496 15.219 -7.430	0.000 0.000 0.000	2121.282 17.274 -140.695	2293.476 22.409 -81.733
Day Sqrtd Sqrd	2207.3 19.8 -111.2	3790 3417 2141	43.714 1.304 14.968 0.002	50.496 15.219 -7.430	0.000 0.000 0.000 0.000	2121.282 17.274 -140.695	2293.476 22.409 -81.733
Day Sqrtd Sqrd	2207.3 19.8 -111.2 -0.0 nibus:	3790 3417 2141 3432	43.714 1.304 14.968 0.002	50.496 15.219 -7.430 -18.802	0.000 0.000 0.000 0.000	2121.282 17.274 -140.695 -0.048	2293.476 22.409 -81.733
Day Sqrtd Sqrd Omi	2207.3 19.8 -111.2 -0.0 nibus:	9.8° 0.00	43.714 1.304 14.968 0.002 14 Du	50.496 15.219 -7.430 -18.802 urbin-Wat	0.000 0.000 0.000 0.000 tson:	2121.282 17.274 -140.695 -0.048 0.308	2293.476 22.409 -81.733

$$y_t = \beta_0 + \beta_1 t + \beta_2 \sqrt{t} + \beta_3 t^2 + \epsilon_t$$

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2207.3790	43.714	50.496	0.000	2121.282	2293.476
Day	19.8417	1.304	15.219	0.000	17.274	22.409
Sqrtd	-111.2141	14.968	-7.430	0.000	-140.695	-81.733
Sqrd	-0.0432	0.002	-18.802	0.000	-0.048	-0.039

• Note that $\hat{\beta}_2$ and $\hat{\beta}_3$ are also statistically significant.

We can become even more aggressive and try adding a log term to the model

$$y_t = \beta_0 + \beta_1 t + \beta_2 \sqrt{t} + \beta_3 t^2 + \beta_4 \log(t) + \epsilon_t$$

Out[19]:

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.938
Model:	OLS	Adj. R-squared:	0.937
Method:	Least Squares	F-statistic:	931.6
Date:	Mon, 14 Mar 2022	Prob (F-statistic):	4.69e-148
Time:	17:18:57	Log-Likelihood:	-1439.8
No. Observations:	253	AIC:	2890.
Df Residuals:	248	BIC:	2907.
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2225.6083	45.448	48.971	0.000	2136.096	2315.121
Day	24.3821	3.432	7.105	0.000	17.623	31.141
np.sqrt(Day)	-199.9354	63.822	-3.133	0.002	-325.637	-74.234
np.square(Day)	-0.0481	0.004	-11.574	0.000	-0.056	-0.040
np.log(Day)	100.0696	69.986	1.430	0.154	-37.773	237.912

Let us call this model Model 3.

The log term is not statistically significant but R² improved!

- Crucial Question 1: Is there a relationship between the response and the predictor.
- We test the null hypothesis:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_n = 0$$

versus the alternative hypothesis

 H_1 : at least one β_k is non-zero

• This is computed through the F-statistic. We typically check for the p-value of the F-statistic being less than 5%.

- Crucial Question 1b: Is there a relationship between a particular response and the predictor.
- We test the null hypothesis:

$$H_0: \beta_k = 0$$

versus the alternative hypothesis

$$H_1: \beta_k \neq 0$$

• This is computed through the t-statistic. We typically check for the p-value of the t-statistic being less than 5%.

- Crucial Question 2: Which variables are important?
- Assume that the F-test has a small p-value and the regression is significant.
 Which predictors are important?
- One answer would be to fit all models that include subsets of all potential predictors. For each model, we can then check adjusted R^2 , AIC, BIC and other similar criteria. Unfortunately, when there are n potential predictors, the total number of subsets is 2^n . This is impractical when n is large.
- We'll spend some time later on this critical question.

Regression for Time Series: Crucial Questions - Example

- Recall that we fitted three different models to the Google share price data (all data points), Model 1 (one predictor), Model 2 (three predictors), Model 3 (four predictors). Model 3 has the highest R² followed by Model 2 and Model 1 last.
- It turns out that we can always improve R² and MSE by adding more terms.
 - This comes from the least squares optimization formulation. If we have more degrees of freedom, we can always improve the objective function.

Regression for Time Series: Crucial Questions - Example

- To avoid model overfitting, the appropriate approach for model selection is to separate the training and test samples
 - Let's take the first 180 days as the training data
 - And the remaining 73 days as the test data
- We fit the models on the training data and check its error performance on the test data.

Regression for Time Series: Crucial Questions - Example

Here are the results:

Model	Test Set RMSE
Model 1	415.68
Model 2	105.02
Model 3	116.42

- Model 3 has more predictors but performs worse than Model 2 on the test set. This is a sign of overfitting.
- Based on this particular train-test split, we'll prefer Model 2
 - But we can run more validation tests with different train-test splits.

- Crucial Question 3: How strong is the model fit?
- We check R² and RMSE (or its corrected version the Residual Standard Error (RSE))

$$\mathsf{RSE} = \sqrt{\frac{\mathsf{RSS}}{T-p-1}}$$

where

$$\mathsf{RSS} = \sum_{t=1}^T (y_t - \hat{y}_t)^2$$

Plot the data and the predictions

- Crucial Question 4: Predictions
- The regression gives the mean of the predicted response but using the RSE we can compute confidence intervals.
- A $(1-\alpha)\%$ confidence interval is expected to contain the true observation $(1-\alpha)\%$ of the time.

Other useful tricks for time series:

• We can use dummy variables to incorporate the effects of non-numerical (categorical predictors). For instance, assume that we are trying to predict daily demand but notice that weekends are considerably different than weekdays. We can then use a binary variable x_{wt} that takes the value of 1 if day t corresponds to a weekend day.

$$y_t = \beta_0 + \beta_1 x_{wt} + \epsilon_t$$

Note that our prediction would be $\hat{y}_t = \hat{\beta}_0$ for a weekday and $\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1$ for a weekend day.

Note that we only need one predictor for a binary variable (weekend vs. weekday). If it's not a weekend then it must be a week day.

• Dummies can be used to model multiple categories. We can distinguish six dummies to mark the different days of the week. We don't need the seventh one since it would be dependent on the other six. x_{1t} is equal to 1 if it's a Monday and is 0 otherwise, x_{2t} is equal to 1 if it's a Tuesday and is 0 otherwise, ..., x_{6t} is equal to 1 if it's a Saturday and is 0 otherwise, The model is then:

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \dots + \beta_6 x_{6t} + \epsilon_t$$

Note that our prediction for a Monday would be $\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1$. For a sunday it would be $\hat{y}_t = \hat{\beta}_0$.

- We can use dummies to mark months of the year, quarters of the year, hours of the day etc.
- We can also use dummies to mark irregular (non-seasonal) exceptions (holidays, days of Ramadan, promotions, school holidays etc.)
- This is great but note that we may easily end up with a very large number of dummies!

Production

• The Australian Beer Production Data is strongly seasonal. We can try to fit:

$$y_t = \beta_0 + \beta_1 t + \beta_2 x_{1t} + \beta_3 x_{2t} + \dots + \beta_{12} x_{11,t} + \epsilon_t$$

• where $x_{1t},..., x_{11,t}$ are the monthly dummies.

In [16]:	<pre>df = pd.read_csv('ausbeer_dummies.csv', index_col=0) df.head()</pre>													
Out[16]:		Production	t	M1	M2	М3	M4	M5	M6	M7	M8	М9	M10	M11
	Month													
	1	164	1	1	0	0	0	0	0	0	0	0	0	0
	2	148	2	0	1	0	0	0	0	0	0	0	0	0
	3	152	3	0	0	1	0	0	0	0	0	0	0	0
	4	144	4	0	0	0	1	0	0	0	0	0	0	0
	5	155	5	0	0	0	0	1	0	0	0	0	0	0

Production

$$y_t = \beta_0 + \beta_1 t + \beta_2 x_{1t} + \beta_3 x_{2t} + \dots + \beta_{12} x_{11,t} + \epsilon_t$$

Dep. Variable:	Production	R-squared:	0.836
Model:	OLS	Adj. R-squared:	0.791
Method:	Least Squares	F-statistic:	18.30
Date:	Tue, 08 Mar 2022	Prob (F-statistic):	3.97e-13
Time:	12:20:51	Log-Likelihood:	-194.93
No. Observations:	56	AIC:	415.9
Df Residuals:	43	BIC:	442.2
Df Model:	12		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	192.9750	5.015	38.477	0.000	182.861	203.089
t	-0.2158	0.075	-2.887	0.006	-0.367	-0.065
M1	-39.7792	6.030	-6.597	0.000	-51.940	-27.619
M2	-48.5633	6.026	-8.059	0.000	-60.715	-36.411
М3	-30.9475	6.023	-5.139	0.000	-43.093	-18.802
M4	-46.7317	6.020	-7.762	0.000	-58.873	-34.591
M5	-46.1158	6.019	-7.662	0.000	-58.254	-33.978
M6	-58.5000	6.018	-9.720	0.000	-70.637	-46.363
M7	-51.8842	6.019	-8.620	0.000	-64.022	-39.746
M8	-42.2683	6.020	-7.021	0.000	-54.409	-30.127
М9	-46.6475	6.348	-7.349	0.000	-59.449	-33.846
M10	-19.6817	6.346	-3.102	0.003	-32.479	-6.884
M11	-2.9658	6.344	-0.467	0.643	-15.760	9.829

Production

$$y_t = \beta_0 + \beta_1 t + \beta_2 x_{1t} + \beta_3 x_{2t} + \dots + \beta_{12} x_{11,t} + \epsilon_t$$

	coef	std err	t	P> t	[0.025	0.975]
Intercept	192.9750	5.015	38.477	0.000	182.861	203.089
t	-0.2158	0.075	-2.887	0.006	-0.367	-0.065
M1	-39.7792	6.030	-6.597	0.000	-51.940	-27.619
M2	-48.5633	6.026	-8.059	0.000	-60.715	-36.411
М3	-30.9475	6.023	-5.139	0.000	-43.093	-18.802
M4	-46.7317	6.020	-7.762	0.000	-58.873	-34.591
M5	-46.1158	6.019	-7.662	0.000	-58.254	-33.978
M6	-58.5000	6.018	-9.720	0.000	-70.637	-46.363
M7	-51.8842	6.019	-8.620	0.000	-64.022	-39.746
M8	-42.2683	6.020	-7.021	0.000	-54.409	-30.127
М9	-46.6475	6.348	-7.349	0.000	-59.449	-33.846
M10	-19.6817	6.346	-3.102	0.003	-32.479	-6.884
M11	-2.9658	6.344	-0.467	0.643	-15.760	9.829

Our prediction for month 4 is: 192.98 -0.2158 (4) -46.73

Our prediction for month 11 is: 192.98 -0.2158 (11) - 2.97

Our prediction for month 12 is: 192.98 -0.2158 (12)

Our prediction for month 26 is: 192.98 -0.2158 (2) -48.56

Month 12 is clearly the peak month for sales, all other months have negative seasonality factors wrt to month 12.

Production

In-sample predictions in blue, and the observed production in red.

```
In [9]: error_beer = prod - result_beer.fittedvalues

In [10]: mse_beer = np.mean(np.square(error_beer ))
    rmse_beer = np.mean(np.abs(error_beer ))
    mape_beer = np.mean(np.abs(error_beer ))
    mape_beer = np.mean(np.abs(error_beer )/prod)
    print('MSE Beer = ', mse_beer)
    print('RMSE Beer = ', rmse_beer)
    print('MAE Beer = ', mae_beer)
    print('MAPE Beer = ', mape_beer)

MSE Beer = 61.805178571428556
    RMSE Beer = 7.861626967201417
    MAE Beer = 6.44124999999998
    MAPE Beer = 0.04378739163608506
```

- We can use dummies to mark months of the year, quarters of the year, hours of the day etc.
- We can also use dummies to mark irregular (non-seasonal) exceptions (holidays, days of Ramadan, promotions, school holidays etc.)
- This is great but note that we may easily end up with a very large number of dummies!