## RS 06 (HA) zum 30.11.2012

## Paul Bienkowski, Hans Ole Hatzel

## 4. Dezember 2012

1. a) Die Funktion liegt bereits als KNF vor:

$$f(x) = (x_3 \vee \overline{x_2}) \wedge (x_2 \vee \overline{x_1})$$

$$= x_2 x_3 \vee \overline{x_1} \overline{x_2}$$

$$= 1 \oplus x_1 \oplus x_2 \oplus x_1 x_2 \oplus x_2 x_3$$
 (Reed-Muller-Form)

b) Die Funktion liegt bereits nahezu als Reed-Muller-Form vor:

$$\begin{array}{rcl} g(x) & = & \underline{x_3} \oplus x_1 & \text{(Reed-Muller-Form)} \\ & = & \overline{x_3} x_1 \vee x_3 \overline{x_1} & \text{(DNF)} \\ & = & (x_3 \vee \overline{x_1}) \wedge (x_1 \vee \overline{x_3}) & \text{(KNF)} \end{array}$$

- **2.** Es sei  $a \overline{\wedge} b$  die Schreibweise für (a NAND b).
  - a) Da  $a \wedge a = a$  gilt, ist  $a \wedge a = \overline{a}$ , also lässt sich die Negation von a durch NAND-Kombination von a mit sich selbst bilden. Wahrheitstafel:

Um AND zu erreichen, kann das Ergebnis von NAND einfach negiert werden (siehe oben). Dann gilt  $a \wedge b = \overline{a \wedge b} = (a \wedge b) \wedge (a \wedge b)$ . Wahrheitstafel:

| a | $\mid b \mid$ | $a \wedge b$ | $a \overline{\wedge} b$ | $(a \overline{\wedge} b) \overline{\wedge} (a \overline{\wedge} b)$ |
|---|---------------|--------------|-------------------------|---------------------------------------------------------------------|
| 0 | 0             | 0            | 1                       | 0                                                                   |
| 0 | 1             | 0            | 1                       | 0                                                                   |
| 1 | 0             | 0            | 1                       | 0                                                                   |
| 1 | 1             | 1            | 0                       | 1                                                                   |

Nach de Morgan gilt  $\overline{a \lor b} = \overline{a} \land \overline{b}$ . Dies lässt sich umformen zu  $a \lor b = \overline{a} \land \overline{b}$ . Die Negation von a und b kann wie oben mit NAND dargestellt werden:  $a \lor b = (a \land \overline{a}) \land (b \land \overline{b})$ .

| a | $\mid b \mid$ | $a \lor b$ | $a \bar{\wedge} a = \bar{a}$ | $b \overline{\wedge} b = \overline{b}$ | $(a \overline{\wedge} a) \overline{\wedge} (b \overline{\wedge} b)$ |
|---|---------------|------------|------------------------------|----------------------------------------|---------------------------------------------------------------------|
| 0 | 0             | 0          | 1                            | 1                                      | 0                                                                   |
| 0 | 1             | 1          | 1                            | 0                                      | 1                                                                   |
| 1 | 0             | 1          | 0                            | 1                                      | 1                                                                   |
| 1 | 1             | 1          | 0                            | 0                                      | 1                                                                   |

b) 
$$f(x_3, x_2, x_1) = (\overline{x_3}(\overline{x_2} \vee x_1)) \vee (x_1(\overline{x_2} \vee x_1))$$

$$= (\overline{x_2} \vee x_1) \wedge (\overline{x_3} \vee x_1)$$

$$= x_1 \wedge (\overline{x_2} \vee \overline{x_3})$$

$$= x_1 \wedge (x_2 \overline{\wedge} x_3)$$

$$= (x_1 \overline{\wedge} (x_2 \overline{\wedge} x_3)) \overline{\wedge} (x_1 \overline{\wedge} (x_2 \overline{\wedge} x_3))$$

**3.** a) Funktionstabelle für A und B:

| $\boldsymbol{x}$                       | $x_4$ | $x_3$ | $x_2$ | $x_1$ | A | B |
|----------------------------------------|-------|-------|-------|-------|---|---|
| 0                                      | 0     | 0     | 0     | 0     | 1 | 1 |
| 1                                      | 0     | 0     | 0     | 1     | 0 | 1 |
| $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ | 0     | 0     | 1     | 0     | 1 | 1 |
| 3                                      | 0     | 0     | 1     | 1     | 1 | 1 |
| 4                                      | 0     | 1     | 0     | 0     | 0 | 1 |
| 5                                      | 0     | 1     | 0     | 1     | 1 | 0 |
| 6                                      | 0     | 1     | 1     | 0     | 1 | 0 |
| 7                                      | 0     | 1     | 1     | 1     | 1 | 1 |
| 8                                      | 1     | 0     | 0     | 0     | 1 | 1 |
| 9                                      | 1     | 0     | 0     | 1     | 1 | 1 |

$$A(x) = \frac{x_3}{8} \vee \frac{x_1}{x_1} \vee \frac{x_2 x_0}{x_0} \vee \frac{x_2}{x_0} \overline{x_0}$$

$$B(x) = \frac{x_3}{x_2} \vee \frac{x_1}{x_1} \vee \frac{x_2 x_0}{x_0} \vee x_1 x_0$$

**4.** a) Funktionstabelle:  $x \parallel x_2 \parallel x_2 \parallel x_1 \parallel x_0 \parallel y$ 

| x                                              | $x_3$                                          | $x_2$                 | $x_1$                                | $x_0$                                                                        | $\mid y \mid$ |
|------------------------------------------------|------------------------------------------------|-----------------------|--------------------------------------|------------------------------------------------------------------------------|---------------|
| 0                                              | 0                                              | 0                     | 0                                    | 0                                                                            | 0             |
| 1                                              | 0                                              | 0                     | 0                                    | 1                                                                            | 0             |
| 2                                              | 0                                              | 0                     | 1                                    | 0                                                                            | 0             |
| 3                                              | 0                                              | 0                     | 1                                    | 1                                                                            | 0             |
| 4                                              | 0                                              | 1                     | 0<br>1<br>1<br>0                     | 0                                                                            | 0             |
| 5                                              | 0                                              | 1                     |                                      | 1                                                                            | 1             |
| 6                                              | 0                                              | 1                     | 1                                    | 0                                                                            | 0             |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1 | 0<br>1<br>1<br>1<br>1 | 0<br>1<br>1<br>0<br>0<br>1<br>1<br>0 | 1                                                                            | 1             |
| 8                                              | 1                                              | 0                     | 0                                    | 0                                                                            | 0             |
| 9                                              | 1                                              | 0                     | 0                                    | 1                                                                            | 0             |
| 10                                             | 1                                              | 0                     | 1                                    | 0                                                                            | 0             |
| 11<br>12                                       | 1                                              | 0                     | 1                                    | 1                                                                            | 0             |
| 12                                             | 1                                              | 1                     | 0                                    | 0                                                                            | 1             |
| 13                                             | 1                                              | 1                     | 0                                    | 1                                                                            | 1             |
| 14                                             | 1                                              | 1                     | 1                                    | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 0             |
| 15                                             | 1                                              | 1                     | 1                                    | 1                                                                            | 1             |

b) Karnaugh-Veitch-Diagramme:



b) Karnaugh-Veitch-Diagramm:



- c)  $y = x_3x_2 \lor x_2x_0$
- d) Schaltnetz (US-Symbole):



e) Binäres Entscheidungsdiagramm (ROBDD):



Die Schaltvariable  $x_1$  wurde weggelassen, da sie für den Wert der Schaltfunktion ohne Bedeutung ist. Durchgezogene Linien haben den Wert 1, gestrichelte den Wert 0.