Lösungsvorschlag für Übungsblatt 7

PROF. DR. DIRK-ANDRE DECKERT Anne Froemel, Phillip Grass, Aaron Schaal

Aufgabe 1

Es seien K ein Körper und $(V, +, \cdot)$ ein K-Vektorraum, außerdem $v \in V$ und $U \subseteq V$ ein Untervektorraum von V. Sei außerdem $W \subseteq V$ gegeben durch $W = \{u + v \mid u \in U\}$.

(i) Weisen Sie nach, dass durch

Abbildungen $W \times W \to W$ und $K \times W \to W$ gegeben sind, und dass es sich bei $(W, \oplus, *)$ um einen K-Vektorraum handelt.

(ii) Gegeben Sie eine hinreichende und notwendige Bedingung dafür an, dass W ein Untervektorraum von V ist.

zu Aufgabe 1:

Seien $w_1, w_2 \in W$ und $\lambda \in K$ vorgegeben. Nach Definition von W gibt es Vektoren $u_1, u_2 \in U$ mit $w_1 = u_1 + v$ und $w_2 = u_2 + v$. Weil U ein Untervektorraum ist, sind $u_1 + u_2$ und λu_1 in U enthalten. Dies zeigt, dass

$$w_1 \oplus w_2 = (w_1 + w_2) - v = u_1 + v + u_2 + v - v = (u_1 + u_2) + v$$

und

$$\lambda * w_1 = \lambda w_1 + (1 - \lambda)v = \lambda (u_1 + v) + v - \lambda v = \lambda u_1 + \lambda v + v - \lambda v = \lambda u_1 + v$$

in W enthalten sind. Nun überprüfen wir, dass $(W, \oplus, *)$ ein K-Vektorraum ist. Zunächst weisen wir nach, dass es sich bei (W, \oplus) um eine abelsche Gruppe handelt. Seien $w_1, w_2, w_3 \in W$ vorgegeben. Nach Definition von W gibt es $u_1, u_2, u_3 \in U$ mit $w_i = u_i + v$ für i = 1, 2, 3. Die Rechnungen

$$(w_1 \oplus w_2) \oplus w_3 = (w_1 + w_2 - v) \oplus w_3 = w_1 + w_2 - v + w_3 - v = w_1 + w_2 + w_3 - 2v = w_1 + (w_2 + w_3 - v) - v = w_1 + (w_2 \oplus w_3) - v = w_1 \oplus (w_2 \oplus w_3)$$

und

$$w_1 \oplus w_2 = w_1 + w_2 - v = w_2 + w_1 - v = w_2 \oplus w_1$$

zeigen, dass in (W, \oplus) das Assoziativ- und das Kommutativgesetz gültig sind. Wegen $0_V \in U$ ist $v = 0_V + v$ ein Element von W. Die Rechnungen

$$w_1 \oplus v = (w_1 + v) - v = w_1$$

und $v \oplus w_1 = w_1 \oplus v = v$ zeigen, dass $0_W = v$ das Neutralelement von (W, \oplus) ist. Mit u_1 auf Grund der Untervektorraum-Eigenschaft auch $-u_1$ in U enthalten, also liegt der Vektor $v_4 = (-u_1) + v$ in W. Wegen $v_1 \oplus v_4 = v_1 + v_4 - v = (u_1 + v) + ((-u_1) + v) - v = v = 0_W$ und $v_4 \oplus v_1 = v_1 \oplus v_4 = 0_W$ ist v_4 das Inverse von v_1 . Insgesamt ist (W, \oplus) also tatsächlich eine abelsche Gruppe.

Zum Nachweis der übrigen Vektorraum-Axiome seien $w_1, w_2 \in U$ und $\lambda, \mu \in K$ vorgegeben. Wieder stellen wir w_1, w_2 in der Form $w_1 = u_1 + v$ und $w_2 = u_2 + v$ dar, mit $u_1, u_2 \in U$. Die vier Axiome

verifiziert man nun durch die Rechnungen

$$(\lambda + \mu) * w_1 = (\lambda + \mu)w_1 + (1 - (\lambda + \mu))v = \lambda w_1 + \mu w_1 + v - \lambda v - \mu v = (\lambda w_1 + v - \lambda v) + (\mu w_1 + v - \mu v) - v = \lambda * w_1 + \mu * w_1 - v = (\lambda * w_1) \oplus (\mu * w_1)$$

$$\lambda * (w_1 \oplus w_2) = \lambda * (w_1 + w_2 - v) = \lambda (w_1 + w_2 - v) + (1 - \lambda)v = \lambda w_1 + \lambda w_2 - \lambda v + v - \lambda v = (\lambda w_1 + v - \lambda v) + (\lambda w_2 + v - \lambda v) - v = \lambda * w_1 + \lambda * w_2 - v = (\lambda * w_1) \oplus (\lambda * w_2)$$

$$\lambda * (\mu * w_1) = \lambda(\mu * w_1) + (1 - \lambda)v = \lambda(\mu w_1 + (1 - \mu)v) + (1 - \lambda)v = \lambda(\mu w_1 + v - \mu v) + v - \lambda v = \lambda\mu w_1 + \lambda v - \lambda\mu v + v - \lambda v = \lambda\mu w_1 + (1 - \lambda\mu)v = (\lambda\mu) * w_1$$

$$1 * w_1 = 1 \cdot w_1 + (1-1)v = w_1.$$

zu (ii): Wir zeigen, dass W genau dann ein Untervektorraum von V ist, wenn $v \in U$ gilt. Ist v in U enthalten, dann gilt U = W. Ist $u \in U$, dann gilt auf Grund der Untervektorraum-Eigenschaft auch $u - v \in U$ und somit $u = (u - v) + v \in W$. Ist umgekehrt $w \in W$, dann gibt es ein $u \in U$ mit w = u + v, und aus $u, v \in U$ folgt $w = u + v \in U$. Mit U ist auch W ein Untervektorraum von V. Setzen wir umgekehrt voraus, dass W ein Untervektorraum von V ist. Dann muss $0_V \in W$ gelten, es existiert also ein $u \in U$ mit $0_V = u + v$. Daraus folgt $v = -u \in U$.

Aufgabe 2

Sei I = [a, b] mit a < 0 < b und $C^0(I, \mathbb{R})$ versehen mit der üblichen Addition und skalaren Multiplikation von Funktionen der \mathbb{R} -Vektorraum der stetigen Funktionen. Sei zudem die Menge der reellen Polynome von Grad kleiner gleich $n \in \mathbb{N}$ gegeben durch

$$\mathcal{P}_n := \left\{ p : I \to \mathbb{R}, \ x \mapsto \sum_{k=0}^n a_k x^k \mid a_0, ..., a_n \in \mathbb{R} \right\}.$$

(i) Zeigen Sie, dass die Abbildung $\varphi_n : \mathbb{R}^{n+1} \to \mathcal{C}^0(I,\mathbb{R})$ gegeben durch

$$\varphi_n(v) = p \in \mathcal{C}^0(I, \mathbb{R}) \Leftrightarrow \left(v = \sum_{k=1}^{n+1} a_{k-1} \hat{e}_k \wedge \left(\forall x \in I : p(x) = \sum_{k=0}^n a_k x^k \right), \ a_0, ..., a_n \in \mathbb{R} \right)$$

wohldefiniert und ein Monomorphismus ist, wobei \hat{e}_k den k-ten Einheitsvektor bezeichnet. Zeigen Sie zudem $\varphi_n(\mathbb{R}^{n+1}) = \mathcal{P}_n$ und folgern Sie, dass \mathcal{P}_n einen Untervektorraum von $\mathcal{C}^0(I,\mathbb{R})$ darstellt.

(ii) Sein nun $n \in \mathbb{N}$ gegeben. Zeigen Sie, dass durch

$$T: \mathcal{P}_n \to \mathcal{P}_{n+1}, \ p \mapsto T := \left(I \to \mathbb{R}, \ x \mapsto \int_0^x p(t)dt\right)$$

eine lineare Abbildung definiert ist und bestimmen Sie ihr Bild $T(\mathcal{P}_n)$ sowie den Kern $\ker(T)$.

(iii) Die Abbildung $\phi_n: \mathbb{R}^{n+1} \to \mathcal{P}_n$ mit $\phi_n(v) := \varphi_n(v)$ für alle $v \in \mathbb{R}^{n+1}$, die man durch Einschränkung der Zielmenge von φ_n auf $\varphi_n(\mathbb{R}^{n+1}) = \mathcal{P}_n$ erhält, stellt offenbar einen Isomorphismus zwischen \mathbb{R} -Vektorräumen dar mit Umkehrabbildung $\phi_n^{-1}: \mathcal{P}_n \to \mathbb{R}^{n+1}$. Zeigen Sie, dass eine Matrix $A \in \mathbb{R}^{(n+2)\times(n+1)}$ existiert mit der Eigenschaft, dass $(\phi_{n+1}^{-1}\circ T\circ\phi_n)(v)=Av, \ \forall v\in\mathbb{R}^{n+1}$ und geben Sie diese an.

zu Aufgabe 2:

zu (i) Wir zeigen zunächst, dass jedem $v \in \mathbb{R}^{n+1}$ genau ein $p \in \mathcal{C}^0(I,\mathbb{R})$ zugeordnet wird und die Abbildung somit wohldefiniert ist.

Nach Definition hat jedes Element $v \in \mathbb{R}^{n+1}$ eine eindeutige Darstellung der Form $v := (a_0, ..., a_n)$ mit Elementen $a_0, ..., a_n \in \mathbb{R}$. Zudem wissen wir aus Mathe 1, dass Polynomfunktionen stetig sind und somit $P: I \to \mathbb{R}, \ x \mapsto \sum_{k=0}^n a_k x^k$ in $\mathcal{C}^0(I, \mathbb{R})$ liegt. P erfüllt offenbar die Bedingung $\forall x \in I: P(x) = \sum_{k=0}^n a_k x^k$ aus der Definition der Abbildung φ_n (d.h. jedem $v \in \mathbb{R}^{n+1}$ wird also schon mal mindestens ein Element aus $\mathcal{C}^0(I, \mathbb{R})$ zugeordnet). Da zudem I der Definitionsbereich der Abbildungen $p \in \mathcal{C}^0(I, \mathbb{R})$ ist, folgt direkt, dass das Polynom P die einzige Abbildung aus $\mathcal{C}^0(I, \mathbb{R})$ ist, welche diese Bedingung erfüllt (d.h. $v \in \mathbb{R}^{n+1}$ wird also tatsächlich genau ein Element aus $\mathcal{C}^0(I, \mathbb{R})$ zugeordnet).

Um die Linearität der Abbildung nachzurechnen seien $v := (a_0, ..., a_n), w := (b_0, ..., b_n) \in \mathbb{R}^{n+1}$ sowie $\lambda \in \mathbb{R}$ beliebig vorgegeben. Dann gilt für $x \in I$

$$(\varphi_n(v+w))(x) = \sum_{k=0}^n (a_k + b_k) x^k = \sum_{k=0}^n a_k x^k + \sum_{k=0}^n b_k x^k = (\varphi_n(v))(x) + (\varphi_n(w))(x)$$
$$(\varphi_n(\lambda v))(x) = \sum_{k=0}^n (\lambda a_k) x^k = \lambda \sum_{k=0}^n a_k x^k = \lambda (\varphi_n(v))(x)$$

und somit insgesamt $\varphi_n(v+w) = \varphi_n(v) + \varphi_n(w)$ sowie $\varphi_n(\lambda v) = \lambda \varphi_n(v)$.

Um nachzuweisen dass die Abbildung injektiv ist seien $v := (a_0, \dots, a_n)$ $w := (b_0, \dots, a_n)$

Um nachzuweisen, dass die Abbildung injektiv ist, seien $v := (a_0, ..., a_n), w := (b_0, ..., b_n) \in \mathbb{R}^{n+1}$ mit $\varphi_n(v) = \varphi_n(w)$ vorgegeben, dann folgt aus der Definition der Abbildung

$$\left(\forall x \in I : \sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} b_k x^k\right) \Rightarrow \left(\forall x \in I : \sum_{k=0}^{n} (a_k - b_k) x^k = 0\right) \Rightarrow \left(\forall k \in \{0, ..., n\} : a_k - b_k = 0\right).$$

Die letzte Implikation folgt, da ein Polynom von Grad $n \in \mathbb{N}$ höchstens n Nullstellen haben kann und nicht unendlich viele wie im mittleren Schritt gefordert. Dies zeigen wir gleich, aber folgern zuerst, dass wie gewünscht $v = (a_0, ..., a_n) = (b_0, ..., b_n) = w$ und damit die Injektivität der Abbildung folgt.

Die Aussage bzgl. der Anzahl von Nullstellen sieht man sehr leicht durch Induktion.

Der Fall n=1 ist klar, da $\forall x \in I: a_1x+a_0=0$ offenbar nur für $a_1=a_0=0$ erfüllt sein kann.

Angenommen die Aussage ist für ein $n \in \mathbb{N}$ erfüllt und sei $P: I \to \mathbb{R}, x \mapsto \sum_{k=0}^{n+1} a_k x^k, a_{n+1} \neq 0$ gegeben. Angenommen das Polynom hat höchstens n+1 Nullstellen, dann ist die gewünschte Aussage für dieses Polynom erfüllt. Andernfalls finden wir eine Anordnung $n_1 < ... < n_{n+2}$ von Nullstellen dieses Polynoms. Da dann $P(n_k) = 0 = P(n_{k+1})$ für $k \in \{1, ..., n+1\}$, folgt nach dem Satz von Rolle (die Voraussetzungen für diesen sind offenbar erfüllt, da Polynome sogar beliebig oft stetig differenzierbar sind), dass ein $\xi_k \in (n_k, n_{k+1})$ existiert mit $P'(\xi_k) = 0$. Die Ableitungsfunktion P' hat demnach mindestens n+1 Nullstellen. Da P' gemäß Mathe 1 jedoch ein Polynom von Grad n ist, steht dies im Widerspruch zur Induktionsvoraussetzung und der Induktionsschritt ist somit abgeschlossen.

Nun zeigen wir $\mathcal{P}_n = \varphi_n(\mathbb{R}^{n+1}) = \{\varphi_n(v) \in \mathcal{C}^0(I,\mathbb{R}) : v \in \mathbb{R}^{n+1}\}.$

 \supseteq : Bei der Diskussion zur Wohldefiniertheit haben wir bereits gezeigt, dass $\varphi_n(v) \in \mathcal{P}_n$ für beliebiges $v \in \mathbb{R}^n$.

 \subseteq : Nach Definition gibt es für jedes $p \in \mathcal{P}_n$ reelle Zahlen $a_0, ..., a_n$, so dass $p: I \to \mathbb{R}, \ x \mapsto \sum_{k=0}^n a_k x^k$. Offenbar gilt dann nach Definition der Abbildung für $v = (a_0, ..., a_n)$, dass $(\varphi_n(v))(x) = \sum_{k=0}^n a_k x_k = P(x)$ für alle $x \in I$, also $\varphi_n(v) = P$.

Insgesamt folgt $\mathcal{P}_n = \varphi_n(\mathbb{R}^{n+1})$.

Gemäß Vorlesung ist das Bild einer linearen Abbildung zwischen Vektorräumen $V \to W$ stets eine Untervektorraum von W. Also ist insbesondere \mathcal{P}_n ein Untervektorraum von $\mathcal{C}^0(I,\mathbb{R})$.

zu (ii): Die Abbildung T erfüllt gemäß Mathe 1 die nötigen Rechenregeln einer linearen Abbildung, d.h. es gilt für $f, g \in \mathcal{C}^0(I, \mathbb{R}), \lambda \in \mathbb{R}$ und $x \in [a, b]$ (mit a < 0 < b), dass

$$(T(f+g))(x) = \int_0^x (f+g)(t)dt = \int_0^x f(t) + g(t)dt = \int_0^x f(t)dt + \int_0^x g(t)dt = (T(f))(x) + (T(g))(x)$$

sowie

$$(T(\lambda f))(x) = \int_0^x (\lambda f)(t)dt = \int_0^x \lambda f(t)dt = \lambda \int_0^x f(t)dt = (\lambda T(f))(x),$$

also insgesamt T(f+g) = T(f) + T(g) und $T(\lambda f) = \lambda(T(f))$. Zudem gilt nach Mathe 1 für $P: I \to \mathbb{R}, x \mapsto \sum_{k=0}^{n} a_0 x^k$, dass

$$(T(P))(x) = \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1} = \sum_{k=1}^{n+1} \frac{a_{k-1}}{k} x^k.$$
 (1)

Damit ist leicht ersichtlich, dass in der Tat $T(P) \in \mathcal{P}_{n+1}$ und die Abbildung damit wohldefiniert ist. Ebenso sieht man leicht, dass

$$\left\{ f \in \mathcal{P}_{n+1} : \left(\forall x \in I : f(x) = \sum_{k=1}^{n+1} b_k x^k, \ b_1, ..., b_{n+1} \in \mathbb{R} \right) \right\} = \underbrace{\left\{ T(p) \in \mathcal{P}_{n+1} : p \in \mathcal{P}_n \right\}}_{=T(\mathcal{P}_n)}$$

 \supseteq : Folgt direkt aus Rechnung (1). \subseteq : Sei $f: I \to \mathbb{R}, x \mapsto \sum_{k=1}^{n+1} b_k x^k$ vorgegeben, dann wählen wir $a_0, ..., a_n \in \mathbb{R}$ mit $a_k = (k+1)b_{k+1}$ für $k \in \{0, ..., n\}$ und $p \in \mathcal{P}_n$ mit $p(x) = \sum_{k=0}^n a_k x^k \ \forall x \in I$. Aus Rechnung (1) folgt dann wiederum für alle

$$(T(p))(x) = \sum_{k=1}^{n+1} \frac{a_{k-1}}{k} x^k = \sum_{k=1}^{n+1} \frac{kb_k}{k} x^k = f(x)$$

bzw. insgesamt f = T(p).

Damit folgt die Gleichheit der Mengen.

Nun zum Kern der Abbildung: Es gilt

$$p \in \ker(T) \subseteq \mathcal{P}_n \Leftrightarrow (T(p) = \mathcal{O} : I \to \mathbb{R}, \ x \mapsto 0),$$

da $\mathcal O$ der Nullvektor von $\mathcal C^0(I,\mathbb R)$ und somit auch von jedem Untervektorraum ist. Aus Rechnung (1) folgt jedoch wiederum für $p \in \mathcal{P}_n$ mit $p(x) = \sum_{k=0}^n a_k x^k \ \forall x \in I, \ a_0, ..., a_n \in \mathbb{R}$:

$$T(p) = \mathcal{O} \Leftrightarrow \left(\forall x \in I : (T(p))(x) = \sum_{k=1}^{n+1} \frac{a_{k-1}}{k} x^k = 0 \right) \Leftrightarrow \forall k \in \{1, ..., n+1\} : \frac{a_{k-1}}{k} = 0$$
$$\Leftrightarrow \forall k \in \{0, ..., n\} : a_k = 0,$$

wobei die zweite Äquivalenz aus der vorherigen Diskussion über die Anzahl der Nullstellen von Polynomen folgt. Dies zeigt wiederum, dass der Kern trivial ist, also $\ker(T) = \{\mathcal{O}\}.$

zu (iii): Sei $v \in \mathbb{R}^{n+1}$ beliebig und $a_0, ..., a_n \in \mathbb{R}$ mit $v = (a_0, ..., a_n)$ sowie $p : I \to \mathbb{R}$, $x \mapsto \sum_{k=0}^n a_k x^k$, dann folgt unter Berücksichtigung von Rechnung (1), dass $\forall x \in I : (T(p))(x) = \sum_{k=1}^{n+1} \frac{a_{k-1}}{k} x^k$ und somit

$$(\phi_{n+1}^{-1}\circ T\circ\phi_n)(v)=(\phi_{n+1}^{-1}\circ T)(\phi_n(v))=\phi_{n+1}^{-1}(T(p))=(b_0,...,b_{n+1})$$

mit $b_k := \frac{a_{k-1}}{k}$, falls $k \in \{1, ..., n+1\}$ und $b_0 = 0$. Betrachten wir nun die Matrix $A \in \mathbb{R}^{(n+2)\times (n+1)}$, bei der alle Einträge 0 sind außer $(A)_{i,i-1} = \frac{1}{i-1}$ für $i \in \{2, ..., n+2\}, \text{ dann folgt für } j \in \{1, ..., n+2\}$

$$(Av)_j = \sum_{k=1}^{n+1} (A)_{j,k} \underbrace{a_{k-1}}_{=v} = \begin{cases} (A)_{j,j-1} a_{(j-1)-1} = \frac{a_{j-2}}{j-1}, & \text{falls } j \in \{2,...,n+2\} \\ 0, & \text{falls } j = 1 \end{cases},$$

also $((\phi_{n+1}^{-1} \circ T \circ \phi_n)(v))_j = b_{j-1} = \frac{a_{j-2}}{j-1} = (Av)_j$ bzw. insgesamt $(\phi_{n+1}^{-1} \circ T \circ \phi_n)(v) = Av$ für beliebiges $v \in \mathbb{R}^{n+1}$, was den Beweis abschließt.

Zur Veranschaulichung noch die schematische Form der Matrix:

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ \frac{1}{1} & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{2} & 0 & \cdots & 0 \\ 0 & 0 & \frac{1}{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \frac{1}{n+1} \end{pmatrix}$$

Aufgabe 3

Sei I := [-1, 1] und $C^0(I, \mathbb{R})$ versehen mit der üblichen Addition und skalaren Multiplikation von Funktionen der \mathbb{R} -Vektorraum der stetigen Funktionen.

- (i) Zeigen Sie, dass die Abbildungen $\mathcal{G} := \{ f \in \mathcal{C}^0(I, \mathbb{R}) : (\forall x \in I : f(x) = f(-x)) \}$ einen Untervektorraum von $\mathcal{C}^0(I, \mathbb{R})$ bilden.
- (ii) Sie dürfen ohne Beweis voraussetzen, dass $\mathcal{U} := \{ f \in \mathcal{C}^0(I,\mathbb{R}) : (\forall x \in I : f(x) = -f(-x)) \}$ einen Untervektorraum von $\mathcal{C}^0(I,\mathbb{R})$ darstellt. Zeigen Sie, dass $\mathcal{C}^0(I,\mathbb{R})$ durch die direkte Summe von \mathcal{G} und \mathcal{U} gegeben ist, also $\mathcal{C}^0(I,\mathbb{R}) = \mathcal{G} \oplus \mathcal{U}$.

zu Aufgabe 3:

zu (i): Offenbar erfüllt die Nullabbildung $\mathcal{O}: I \to \mathbb{R}, \ x \mapsto 0$ (also der Nullvektor von $\mathcal{C}^0(I,\mathbb{R})$) die Bedingung $\mathcal{O}(x) = 0 = \mathcal{O}(-x)$ für beliebiges $x \in I$ und somit $\mathcal{O} \in \mathcal{G}$. Hier muss beachtet werden, dass wegen der Symmetrie des Definitionsbereichs um die 0 aus $x \in I$ stets $-x \in I$ folgt. Seien $f, g \in \mathcal{G}$ sowie $\lambda \in \mathbb{R}$ vorgegeben, dann gilt für beliebiges $x \in I$:

$$(f(x) = f(-x) \land g(x) = g(-x)) \Rightarrow \begin{cases} (f+g)(x) = f(x) + g(x) = f(-x) + g(-x) = (f+g)(-x) \\ (\lambda f)(x) = \lambda f(x) = \lambda f(-x) = (\lambda f)(-x) \end{cases}$$

Damit folgt $(f+g), (\lambda f) \in \mathcal{G}$ und somit die Untervektorraumeigenschaft von \mathcal{G} .

zu (ii): Wir starten mit der Gleichheit $\mathcal{C}^0(I,\mathbb{R}) = \mathcal{G} + \mathcal{U}$ und schließen ab mit $\mathcal{G} \cap \mathcal{U} = \{\mathcal{O}\}$. \supseteq : Dies ist trivial, da nach Vorlesung $\mathcal{G} + \mathcal{U}$ wegen $\mathcal{G}, \mathcal{U} \subseteq \mathcal{C}^0(I,\mathbb{R})$ ein Untervektorraum von $\mathcal{C}^0(I,\mathbb{R})$ bildet.

 \subseteq : Sei $f \in \mathcal{C}^0(I,\mathbb{R})$ vorgegeben. Wir definieren $f_-: I \to \mathbb{R}, \ x \mapsto f(-x)$. Die Abbildung ist wohldefiniert, da (wie bereits erwähnt) wegen der Symmetrie des Definitionsbereich I = [-1,1] aus $x \in I$ stets $-x \in I$ folgt. Zudem definieren wir $g = \frac{f+f_-}{2}$ und $u = \frac{f-f_-}{2}$ und bemerken, dass offenbar $g + u = (\frac{f+f_-}{2}) + (\frac{f-f_-}{2}) = f$. Wenn wir also zeigen können, dass $g \in \mathcal{G}$ und $u \in \mathcal{U}$, sind wir mit dem Mengengleichheitsbeweis fertig. Tatsächlich gilt für beliebiges $x \in I$, dass

$$g(x) = \frac{f(x) + f(-x)}{2} = \frac{f(-x) + f(-(-x))}{2} = g(-x)$$
$$u(x) = \frac{f(x) - f(-x)}{2} = -\frac{f(-x) - f(-(-x))}{2} = -u(-x)$$

und damit die gewünschte Aussage.

Es bleibt zu zeigen, dass $\mathcal{G} \cap \mathcal{U} = \{\mathcal{O}\}$. " \supseteq " wissen wir bereits, da \mathcal{U} und \mathcal{G} Untervektorräume sind und somit beide den Nullvektor enthalten. Angenommen $f \in \mathcal{G} \cap \mathcal{U}$, dann folgt aus den definierenden Eigenschaften der Mengen für beliebiges $x \in I$

$$(f(-x) = f(x) \land f(-x) = -f(x)) \Rightarrow f(x) = -f(x) \Rightarrow f(x) = 0.$$

Da $x \in I$ beliebig vorgegeben war folgt insgesamt $f = \mathcal{O}$ und damit die Aussage.