Practice Problems

1.

 Use Hermite polynomial that agrees with the data listed below to find the approximation of f(1.5)

k	$x_{_k}$	$f(x_k)$	$f(x_k)$
0	1.3	0.6200860	-0.5220232
1	1.6	0.4554022	-0.5698959
2	1.9	0.2818186	-0.5811571

2

1. Find the value of y for x=2.1 using a 2^{nd} order Lagrange polynomial with the appropriate data

Sl.	x	Y
1	-1	2.2
2	0	10.6
3	1	17.0
4	2	22.4
5	3	25.8

2. What is Round off error and Truncation true error in numerical method?

3

3. Let's assume you have a dataset as given below. Perform second order Lagrange interpolation and Newton's divided difference interpolation to find the f(x) for x=1.5. Also comment on the results that you are getting from the two methods.

x	1	1.3	1.6	1.9	2.2
f(x)	0.1411	-0.6878	-0.9962	-0.5507	0.3115

4.

a) Given
$$\beta=2$$
, m=4, $e_{min}=-2$, $e_{max}=0$.

5.

- Find out the values that each group represents for the sets of e, and plot them on a number line starting from 0.
- 2. Calculate the machine epsilon for the problem ϵ_{m}
- b) Write down the Mathematical notation for Fixed-point Representation and Floating-Point Representation and explain each term.

The upward velocity of a rocket is given as a function of time (t) as:

s	m/s
0	0
7	101
15	197
22	280
27	360
32	460

- Determine the value of the velocity at t=16 seconds with fourth order polynomial interpolation using Newton's divided difference polynomial method.
- b) Using the third order polynomial interpolant for velocity, find the distance covered by the rocket from t=11s to t=16s.
- Using the third order polynomial interpolant for velocity, find the acceleration of the rocket at t=16s.

6.

11. Find the value of y for x=1.8 using a 3rd order Newton's divided difference polynomial with the appropriate data sets from the table below.

Sl.	x	Y
1	-1	2.5
2	0	12.6
3	1	19.0
4	2	22.4
5	3	27.8

7. Let f(x) = Cos(x) and the nodes are $\{-pi/4,0,pi/4\}$. Use Cauchy's theorem to find the upper bound of the error

- 8. Using the combination B=2, m=4, and e [-1,2]
 - a. Find the max value for convention (1).
 - b. Find the min non-negative value for convention (1).
 - c. Find the min value for convention (1).
 - d. Find the combination of values possible.