APPLICATIONS OF DERIVATIVES

OBJECTIVES

1.	The approxima	te increase in th	e area of a square	plane when o	each side
	expands from 3	c m to 3.01 cm	is		
	(1) 0.001 sq. cm	(2) 0.006 sq. cr	m (3) 0.06 sq. cm	(4) None	-011
2.	If $y = \log x$ then	8y when $x = 3.8$	3x = 0.03 is		C
	(1) 0.01	(2) 0.009	(3) 0.0091	(4) 0.0099	•
3.	The approxima	te percentage er	ror in the volume	of a sphere is	s equal to
	(1) Percentage e	rror in r	(2) Double	the percentag	ge error in r
	(3) Treble the pe	ercentage error in	r (4) None		
4.	If $y = x''$, then	ratio of relative	errors in y and x i	s	
	(1) 1:1	(2) 2:1	(3) 1: <i>n</i>	(4) 1	n:1
5.	Let P be the pro	essure and V the	e volume of a gas s	uch that PV :	= constant. If
	percentage erro	or in \mathbf{P} is k then	percentage error i	n V is	
	(1) <i>k</i>	(2) 1/k	(3) <i>-k</i>	(4) None	
6.	If $\log 4 = 1.3868$	3 then log 4.01 =			
1	(1) 1.3968	(2) 1.3898	(3) 1.3893		(4) None
7.	$\frac{1}{\sqrt[3]{998}}$ correct to	4 decimal place	es is		
	(1) 0.3333	(2) 0.1667	(3) 0.1666		(4) None

8.	The circumfer	rence of a circle	is measured a	s 28 cm with an	error of 0.01 cm.
	The percentag	ge error in the a	rea is		
	(1) 1/14	(2) 0.01	(3) 1	./7	(4) None
9.	While measur	ring the side of a	n equilateral	triangle an erro	r of 0.5% is made.
	Percentage en	rror in its area i	S		
	(1) 0.5		(2) 1	(3) 10	(4) 1.5
10.	If there is an o	error of 0.02 cm	in the measur	rement of the di	ameter of a sphere,
	then the perce	entage error in i	ts volume who	en the radius = 1	0 cm, is
	(1) 0.1		(2) 0.2	(3) 0.3	(4) 3
11.	If the percent	age error in the	surface area	of a sphere is α ,	then percentage
	error i n the v				•
	(1) (3/2)		(2/3) α	(3) α	(4) None
12.	If there is an o	error of 2% in n	neasuring the	length of a simp	le pendulum then
	percentage er	ror in its period	is		
	(1) 1	(2) 2	(3) 3	3 ((4) 4
13.	The radius of	a closed cylinde	er is half of its	height. If an err	or of 0.5% is
				nge error in the s	
		(2) 1	(3) 1.5	(4) nor	
14.	If $T = 2\pi \sqrt{\frac{l}{g}}$ th	nen the ratio of t	he relative er	ror in T to relati	ve error in / is
		(2) 2		(4) Non	

15.	The voltage	E of a t	hermocouj	ple as a functio	n of temper	ature is given by
	$\mathbf{E} = \mathbf{6.2T} + 0.$	0002 T	³ . When T	changes from	100° to 101°	the approximate
	change in E	is				
	(1) 12		(2) 12.1		(3) 12.12	(4) 12.2
16.	In A ABC th	ne sides	<i>b</i> , <i>c</i> are giv	ven. If there is	an error 8A	i n measuring angle
	A then $\delta a =$					
	$1. \frac{{}^{\Delta}}{2a} \delta A$	$2.\frac{2\triangle}{2a}\delta a$	4	$3.bc \sin A.\delta A$	4. N	Tone Control
17	Te 41 42	. C 41 1		1 1 1- 1- 4 - 6 -	• C	
17.				_	X	and percentage
	error in the		_	percentage erro		
	(1) k		(2) 2k	(3) 3 1	(4) N	Vone
18.	A circular h	ole of 4	mm in dia	meter and 12 r	nm deep in	a metal block is
	rebored to in	ncrease	the diame	ter to 4.12 mm	, and then th	ne amount of metal
	removed is a	approxi	mately			
			(6)			
	(1) $2.88 \pi mn$	1 ³	(2) 3.99 πn	nm^3 (3) 3.	$.79 \pi mm^3$	(4) $3.725 \pi mm^3$
19.	The semi-ve	rtical a	ngle of a co	one is 45° . If the	e height of t	he cone is 20.025, the
	approximate	e latera	l surface ai	rea is		
	$1.401\sqrt{2}\pi$		$2.400\sqrt{2}\pi$	3.401	$\sqrt{2}\pi$	4.None
20.	∧ ABC is no	t right :	angled and	is inscribed in	a fixed circ	le. If <i>a</i> , A, <i>b</i> , B be
	slightly varie	_				,, ,
	1)2R	2) π	3)0	4)Nor	ne	
	,	,	- , -	,		

- The focal length of a mirror is given by $\frac{1}{v} \frac{1}{u} = \frac{2}{f}$. If equal errors α are made 21. in measuring u and v then relative error is
 - 1) $\frac{2}{\alpha}$
- 2) $\alpha \left(\frac{1}{u} + \frac{1}{v} \right)$ 3) $\alpha \left(\frac{1}{u} \frac{1}{v} \right)$ 4) None

- Approximate value of $\cos 61^{\circ}$ given that $\sin 60^{\circ} = 0.86603$ and $1^{\circ} = 0.001745$ 22.
 - (1) 0.4849
- (2) 0.4983
- (3) 0.9969
- (4) 0.5012
- 23. A stone moving vertically upwards has its equation of motion $s = 490t 4.9t^2$. The maximum height reached by the stone is
 - (a) 12250
- (b) 1225
- (c) 36750
- (d) None of these
- 24. A particle moves in a straight line so that its velocity at any point is given by $v^2 = a + bx$, where $a, b \ne 0$ are constants. The acceleration is
 - (a) Zero
- (b) Uniform
- (c) Non-uniform
- (d) Indeterminate
- 25. The maximum height is reached in 5 seconds by a stone thrown vertically upwards and moving under the equation $10s = 10ut - 49t^2$, where s is in metre and t is in second. The value of u is
- (b) $49m / \sec$
- (d) None of these
- 26. A stone is falling freely and describes a distance s in t seconds given by equation $s = \frac{1}{2}gt^2$. The acceleration of the stone is
 - (a) Uniform
- (b) Zero (c) Non-uniform
- (d) Indeterminate

27.	A $10cm$ long rod AB moves with its ends on two mutually perpendicular
	straight lines OX and OY . If the end A be moving at the rate of $2cm/\sec$, then
	when the distance of A from O is $8cm$, the rate at which the end B is moving, is

- (a) $\frac{8}{3} cm / \sec$ (b) $\frac{4}{3} cm / \sec$
- (c) $\frac{2}{9}$ cm / sec
- (d) None of these

28. If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is

- (a) $1.2\pi \ cm^2$
- (b) $12\pi \ cm^2$
- (c) $6\pi \ cm^2$
- (d) None of these

29. The equation of motion of a particle is given by $s = 2t^3 - 9t^2 + 12t + 1$, where s and t are measured in cm and sec. The time when the particle stops momentarily is

- (a) 1 *sec*
- (b) 2 *sec*
- (c) 1, 2 sec
- (d) None of these

30. A particle is moving in a straight line according as $s = 45 t + 11t^2 - t^3$ then the time when it will come to rest, is

31. A ladder 5 m in length is resting against vertical wall. The bottom of the ladder is pulled along the ground away from the wall at the rate of $1.5 \, m/\sec$. The length of the highest point of the ladder when the foot of the ladder 4.0 m away from the wall decreases at the rate of

- (a) 2 *m*/*sec*
- (b) 3 m/sec
- (c) 2.5 *m/sec*
- (d) $1.5 \, m/sec$

- 32. The equation of motion of a particle moving along a straight line is s=2 $t^3 - 9t^2 + 12t$, where the units of s and t are cm and sec. The acceleration of the particle will be zero after
 - (a) $\frac{3}{2}$ sec
- (b) $\frac{2}{3}$ sec
- (c) $\frac{1}{2}$ sec (d) Never
- 33. A particle is moving on a straight line, where its position s (in metre) is a function of time t (in seconds) given by $s = at^2 + bt + 6, t \ge 0$. If it is known that the particle comes to rest after 4 seconds at a distance of 16 metre from the starting **position** (t = 0), then the retardation in its motion is

- (a) $-1m/\sec^2$ (b) $\frac{5}{4}m/\sec^2$ (c) $-\frac{1}{2}m/\sec^2$ (d) $-\frac{5}{4}m/\sec^2$
- **34.** If the law of motion in a straight line is $s = \frac{1}{2}vt$, then acceleration is
 - (a) Constant
- (b)Proportional to t
- (c) Proportional to v (d)Proportional to s
- 35. If the distance travelled by a point in time t is $s = 180 t 16 t^2$, then the rate of change in velocity is
 - (a) 16 unit
- (b) 48 *unit*
- (d) None of these
- 36. The edge of a cube is increasing at the rate of 5cm / sec. How fast is the volume of the cube increasing when the edge is 12cm long
 - (a) $432 \text{ cm}^3 / \text{sec}$
- (b) $2160 \text{ cm}^3 / \text{sec}$
- (c) $180 \text{ cm}^3 / \text{sec}$
- (d) None of these

37.	A body moves a	according to the for	rmula $v = 1 + t^2$, where v is the velocity at time t.
	The acceleration	n after 3 sec will be	(v in cm/sec)
	(a) $24 cm / sec^2$	(b) $12 cm / sec^2$	
	(c) $6 cm / sec^2$	(d) None of the	ese
38.	A point moves i	in a straight line du	uring the time $t=0$ to $t=3$ according to the law
	$s = 15t - 2t^2$. The a	verage velocity is	
	(a) 3	(b) 9	
	(c) 15	(d) 27	
39.	A man 2metre	high walks at a uni	iform speed 5 metre/hour away from a lamp
	post 6 metre hig	h. The rate at whicl	h the length of his shadow increases is
	(a) 5 <i>m/h</i>	(b) $\frac{5}{2} m/h$	
	(c) $\frac{5}{3}$ m/h	(b) $\frac{5}{2} m/h$ (d) $\frac{5}{4} m/h$	20.
40.	If the path of a	moving point is the	e curve $x = at$, $y = b \sin at$, then its acceleration at
	any instant		
	(a) Is constant	-0	
	(b) Varies as the	distance from the ax	ris of x
	(c) Varies as the	distance from the ax	is of y
	(d) Varies as the	distance of the point	t from the origin
	119		
41.	The rate of char	nge of the surface a	area of a sphere of radius r when the radius is
	increasing at th	e rate of 2 cm/sec is	proportional

(b) $\frac{1}{r^2}$

(d) r^2

(a) $\frac{1}{r}$

(c) r

- 42. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $50 \text{ cm}^3/\text{min}$. When the thickness of ice is 5 cm, then the rate at which the thickness of ice decreases, is
 - (a) $\frac{1}{54\pi} cm/min$ (b) $\frac{5}{6\pi} cm/min$
- - (c) $\frac{1}{36\pi} cm/min$ (d) $\frac{1}{18\pi} cm/min$
- 43. A ladder is resting with the wall at an angle of 30°. A man is ascending the ladder at the rate of 3 ft/sec. His rate of approaching the wall is
 - (a) 3 *ft/sec*
- (b) $\frac{3}{2}$ ft/sec
- (c) $\frac{3}{4}$ ft/sec (d) $\frac{3}{\sqrt{2}}$ ft/sec
- 44. Gas is being pumped into a spherical balloon at the rate of $30 \, ft^3/min$. Then the rate at which the radius increases when it reaches the value 15 ft is
 - (a) $\frac{1}{30\pi}$ ft/min.
- (b) $\frac{1}{15\pi}$ ft/min.
- (c) $\frac{1}{20}$ ft/min. (d) $\frac{1}{25}$ ft/min.
- 45. A ladder 10 m long rests against a vertical wall with the lower end on the horizontal ground. The lower end of the ladder is pulled along the ground away from the wall at the rate of 3 cm/sec. The height of the upper end while it is descending at the rate of 4 cm/sec is
 - (a) $4\sqrt{3} m$
- (b) $5\sqrt{3} m$ (c) $5\sqrt{2} m$ (d) 8 m

- 46. The speed v of a particle moving along a straight line is given by $a + bv^2 = x^2$ (where x is its distance from the origin). The acceleration of the particle is
 - (a) bx
- (b) x/a
- (c) x/b
- (d) x/ab

47.	If the volume of a spherical balloon is increasing at the rate of 900cm ³ persec,
	then the rate of change of radius of balloon at instant when radius is 15cm [in
	cm/sec]

(a) $\frac{22}{7}$ (b) 22 (c) $\frac{7}{22}$ (d) None of these

48. A spherical balloon is being inflated at the rate of 35 cc/min. The rate of increase of the surface area of the balloon when its diameter is 14 cm is

(a) 7 sq. cm/min

(b) 10 sq. cm/min (c)17.5 sq. cm/min (d)28 sq. cm/min

49. The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when the side is 10 cm is

(a) $\sqrt{3}$ sq. unit/sec (b) 10 sq. unit/sec (c) $10\sqrt{3}$ sq. unit/sec (d) $\frac{10}{\sqrt{3}}$ sq. unit/sec

50. A point on the parabola $y^2 = 18x$ at which the ordinate increases at twice the rate of the abscissa is

(a) $\left(\frac{9}{8}, \frac{9}{2}\right)$

(b) (2, -4) (c) $\left(\frac{-9}{8}, \frac{9}{2}\right)$ (d) (2, 4)

51. The position of a point in time 't' is given by $x = a + bt - ct^2$, $y = at + bt^2$. Its acceleration at time t is

52. A particle moves in a straight line so that $s = \sqrt{t}$, then its acceleration is proportional to

(a) Velocity

(b) (Velocity)^{3/2} (c)(Velocity)³ (d) (Velocity)²

53.	If $x + y = 10$, then the	maximum value of	xy is	
	(a) 5	(b) 20		
	(c) 25	(d) None of these		
54.	The necessary cond	ition to be maximu	m or minimum for the function i	is
	(a) $f'(x) = 0$ and it is su		(b) $f''(x) = 0$ and it is sufficient	
	(c) $f'(x) = 0$ but it is no	t sufficient	(d) $f'(x) = 0$ and $f''(x) = -ve$	
55.	The value of a so	that the sum of t	he squares of the roots of the	equation
	$x^2 - (a-2)x - a + 1 = 0$ as	sume the least valu	ie, is	
	(a) 2	(b) 1		
	(c) 3	(d) 0	Co	
56.	If $f(x) = 2x^3 - 3x^2 - 12x$	+ 5 and $x \in [-2, 4]$, the	n the maximum value of function	ı is at the
	following value of x	.0		
	(a) 2	(b) -1		
	(c) - 2	(d) 4		
57.	If $x + y = 16$ and $x^2 + y$	is minimum, then	the values of x and y are	
	(a) 3, 13	(b) 4, 12		
	(c) 6, 10	(d) 8, 8		
58.	A minimum value o	$\mathbf{f} \int_0^x t e^{-t^2} dt \mathbf{is}$		
	(a) 1	(b) 2		
	(c) 3	(d) 0		

59.	If two sides of a tria	ngle be given, then the area of the triangle will be maximum
	if the angle between	the given sides be
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{4}$
	(c) $\frac{\pi}{6}$	(d) $\frac{\pi}{2}$
60.	The sufficient condi	tions for the function $f: R \to R$ is to be maximum at $x = a$, will
	be	
	(a) $f'(a) > 0$ and $f''(a) > 0$	(b) $f'(a) = 0$ and $f''(a) = 0$
	(c) $f'(a) = 0$ and $f''(a) < 0$	(d) $f'(a) > 0$ and $f''(a) < 0$
61.	The maximum value	e of $2x^3 - 24x + 107$ in the interval [-3, 3] is
	(a) 75	(b) 89
	(c) 125	(d) 139
		.0
62.	If for a function $f(x)$	f'(a) = 0, f''(a) = 0, $f'''(a) > 0$, then at $x = a$, $f(x)$
	(a) Minimum	(b) Maximum
	(c) Not an extreme po	oint (d) Extreme point
	C	
63.	_ \	tangle will be maximum for the given perimeter, when
	rectangle is a	
	(a) Parallelogram	(b) Trapezium
	(c) Square	(d) None of these
64.	x and y be two var	iables such that $x > 0$ and $xy = 1$. Then the minimum value of
	x + y is	
	(a) 2	(b) 3

(d)0

(c) 4

- 65. If from a wire of length 36 *metre* a rectangle of greatest area is made, then its two adjacent sides in *metre* are
 - (a) 6, 12
- (b) 9, 9
- (c) 10, 8
- (d) 13, 5
- **66.** The minimum value of $\frac{\log x}{x}$ in the interval $[2, \infty)$ is
 - (a) $\frac{\log 2}{2}$
- (b) Zero
- (c) $\frac{1}{e}$
- (d) Does not exist
- 67. The minimum value of 2x + 3y, when xy = 6, is
 - (a) 12
- (b) 9

(c) 8

- (d)6
- 68. Area of the greatest rectangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
 - (a) \sqrt{ab}
- (b) $\frac{a}{b}$
- (c) 2ab
- (d) ab
- **69.** If $y = a \log x + bx^2 + x$ has its extremum value at x = 1 and x = 2, then $(a,b) = a \log x + bx^2 + x$
 - (a) $\left(1, \frac{1}{2}\right)$
- (b) $\left(\frac{1}{2},2\right)$
- (c) $\left(2, \frac{-1}{2}\right)$
- (d) $\left(\frac{-2}{3}, \frac{-1}{6}\right)$
- 70. A cone of maximum volume is inscribed in a given sphere, then ratio of the height of the cone to diameter of the sphere is
 - (a) 2/3
- (b) 3/4
- (c) 1/3
- (d) 1/4

71. If $xy = c^2$, then minimum va	alue of $ax + by$	ÌS
-------------------------------------	-------------------	----

- (a) $c\sqrt{ab}$
- (b) $2c\sqrt{ab}$
- (c) $-c\sqrt{ab}$
- (d) $-2c\sqrt{ab}$

72. If $A + B = \frac{\pi}{2}$, the maximum value of $\cos A \cos B$ is

- (a) $\frac{1}{2}$
- (b) $\frac{3}{4}$

- (c) 1
- (d) $\frac{4}{3}$

73. The minimum value of
$$4e^{2x} + 9e^{-2x}$$
 is

- (a) 11
- (b) 12
- (c) 10
- (d) 14

74. If
$$PQ$$
 and PR are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is

- (a) π
- (h) $\pi/3$
- (c) $\pi/4$
- (d) $\pi/2$

75. If $a^2x^4 + b^2y^4 = c^6$, then maximum value of xy is

- (a) $\frac{c^2}{\sqrt{ab}}$
- (b) $\frac{c^3}{ab}$
- (c) $\frac{c^3}{\sqrt{2ab}}$
- (d) $\frac{c^3}{2ab}$

76. The minimum value of
$$e^{(2x^2-2x+1)\sin^2 x}$$
 is

(a) *e*

(b) 1/e

(c) 1

(d)0

77.	If x is real, then gre	atest and least v	values of $\frac{x^2}{x^2}$	$\frac{x^2 - x + 1}{x^2 + x + 1}$ are	
	(a) $3, -\frac{1}{2}$	(b) $3, \frac{1}{3}$			
	(c) $-3, -\frac{1}{3}$	(d) None of the	se		
78.	The ratio of height	of cone of ma	ximum vo	lume inscribe	ed in a sphere to its
	radius is				
	(a) $\frac{3}{4}$	(b) $\frac{4}{3}$	(c) $\frac{1}{2}$	(d) $\frac{2}{3}$	CO.
79.	The maximum valu	e of $\sin x (1 + \cos x)$	will be at t	the	\sim
	(a) $x = \frac{\pi}{2}$	(b) $x = \frac{\pi}{6}$.:.0	
	(c) $x = \frac{\pi}{3}$	(d) $x = \pi$		-VI	
				5	
80.	The perimeter of a	sector is p. T	he area of	the sector is	maximum when its
	radius is	. (20		
	(a) \sqrt{p}	(b) $\frac{1}{\sqrt{p}}$			
	(c) $\frac{p}{2}$	(d) $\frac{p}{4}$			
		*			
81.	The function $y = a(1 - a)$	$\cos x$) is maximu	m when x	=	
	(a) π	(b) $\pi/2$			
	(c) $-\pi/2$	(d) $-\pi/6$			

82. If P = (1,1), Q = (3,2) and R is a point on x-axis then the value of PR + RQ will be minimum at

(a) $\left(\frac{5}{3}, 0\right)$ (b) $\left(\frac{1}{3}, 0\right)$

(c) (3, 0) (d) (1, 0)

83. The function $\sin x - bx + c$ will be increasing in the interval (-	-∞, ∞) , if
--	--------------------

- (a) $b \le 1$
- (b) $b \le 0$
- (c) b < -1
- (d) $b \ge 0$

84. The function f defined by $f(x) = (x + 2)e^{-x}$ is

- (a) Decreasing for all x
- (b) Decreasing in $(-\infty, -1)$ and increasing in $(-1, \infty)$
- (c) Increasing for all x
- (d) Decreasing in $(-1, \infty)$ and increasing in $(-\infty, -1)$

85. If the function $f(x) = \frac{K \sin x + 2 \cos x}{\sin x + \cos x}$ is increasing for all values of x, then

- (a) K < 1
- (b) K > 1
- (c) K < 2
- (d) K > 2

86. The interval for which the given function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is decreasing, is

- (a)(-2,3)
- (b)(2,3)
- (c)(2,-3)
- (d) None of these

87.
$$f(x) = x^3 - 27x + 5$$
 is an increasing function, when

- (a) x < -3
- $(b) \mid r \mid > 3$
- (c) $x \le -3$
- (d) |x| < 3

88. If
$$f(x) = kx^3 - 9x^2 + 9x + 3$$
 is monotonically increasing in each interval,

- (a) k < 3
- (b) $k \le 3$
- (c) k > 3
- (d) None of these

89. Function $f(x) = \frac{\lambda \sin x + 6 \cos x}{2 \sin x + 3 \cos x}$ is monotonic increasing, if

- (a) $\lambda > 1$
- (b) $\lambda < 1$
- (c) $\lambda < 4$
- (d) $\lambda > 4$

90. The values of 'a' for which the function $(a+2)x^3 - 3ax^2 + 9ax - 1$ decreases monotonically throughout for all real x, are

- (a) a < -2
- (b) a > -2
- (c) -3 < a < 0
- (d) $-\infty < a \le -3$

91. The function $\frac{a \sin x + b \cos x}{c \sin x + d \cos x}$ is decreasing, if

- (a) ad bc > 0
- (b) ad bc < 0
- (c) ab cd > 0
- (d) ab-cd < 0

92. The function $\frac{1}{1+x^2}$ is decreasing in the interval

- (a) $(-\infty, -1]$
- (b) $(-\infty, 0]$
- (c) $[1, \infty)$
- (d) $(0,\infty)$

93. The least value of k for which the function $x^2 + kx + 1$ is an increasing function in the interval 1 < x < 2 is

- (a) 4
- (b) 3
- (c) = 1
- (d) 2

94. If $f(x) = x^3 - 6x^2 + 9x + 3$ be a decreasing function, then x lies in

- (a) $(-\infty,-1)\cap(3,\infty)$
- (b) (1, 3)
- (c) $(3, \infty)$
- (d) None of these

95. The function $f(x) = \tan^{-1}(\sin x + \cos x)$, x > 0 is always an increasing function on the interval

- (a) $(0,\pi)$
- (b) $(0, \pi/2)$
- (c) $(0, \pi/4)$
- (d) $(0, 3\pi/4)$

96. Let $f(x) = x^3 + bx^2 + cx + d, 0 < b^2 < c$. Then f

- (a) Is bounded
- (b) Has a local maxima
- (c) Has a local minima (d) Is strictly increasing

97. The function $f(x) = x^{1/x}$ is

(a) Increasing in (1, ∞)

- (b) Decreasing in $(1, \infty)$
- (c) Increasing in (1,e), decreasing in (e,∞)
- (d) Decreasing in (1,e), increasing in (e,∞)

98. For all $x \in (0,1)$

- (a) $e^x < 1 + x$
- (c) $\sin x > x$

99. Given function f(x)

- (a) Increasing
- (b) Decreasing
- (d) None of these

100. If
$$f(x) = 2x + \cot^{-1} x + \log(\sqrt{1 + x^2} - x)$$
, then $f(x)$

(a) Increases in $[0, \infty)$

- (b) Decreases in $[0, \infty)$
- (c) Neither increases nor decreases in $(0, \infty)$ (d) Increases in $(-\infty, \infty)$

101. Rolle's theorem is not applicable to the function $f(x) \neq x$ | defined on [-1, 1] because

- (a) f is not continuous on [-1, 1]
- (b) f is not differentiable on (-1,1)

(c) $f(-1) \neq f(1)$

(d) $f(-1) = f(1) \neq 0$

102. From mean value theorem $f(b) - f(a) = (b - a)f'(x_1)$; $a < x_1 < b$ if $f(x) = \frac{1}{x}$, then $x_1 = \frac{1}{x}$

- (a) \sqrt{ab}
- (c) $\frac{2ab}{a+b}$
- (d) $\frac{b-a}{b+a}$

103. The function $f(x) = x(x+3)e^{-(1/2)x}$ satisfies all the conditions of Rolle's theorem in [-3,

- 0]. The value of c is
- (a) 0
- (c) 2

104. The function $f(x) = x^3 - 6x^2 + ax + b$ satisfy the conditions of Rolle's theorem in [1,

- 3]. The values of a and b are
- (a) 11, -6
- (c) -11, 6

105. In the Mean-Value theorem $\frac{f(b) - f(a)}{b - a} = f'(c)$, if $a = 0, b = \frac{1}{2}$ and f(x) = x(x - 1)(x - 2), the value of c is

- (b) $1+\sqrt{15}$ (c) $1-\frac{\sqrt{21}}{6}$ (d) $1+\sqrt{21}$

106. If from mean value theorem, $f'(x_1) = \frac{f(b) - f(a)}{b - a}$, then

- (a) $a < x_1 \le b$
- (b) $a \le x_1 < b$
- (c) $a < x_1 < b$
- (d) $a \le x_1 \le b$

- 107. If f(x) satisfies the conditions of Rolle's theorem in [1,2] and f(x) is continuous in
 - [1,2] then $\int_{1}^{2} f'(x)dx$ is equal to
 - (a) 3

(b) 0

(c) 1

- (d) 2
- 108. Let f(x) satisfy all the conditions of mean value theorem in [0, 2]. If f(0) = 0 and $|f'(x)| \le \frac{1}{2}$ for all x, in [0, 2] then
 - (a) $f(x) \le 2$

(b) $|f(x)| \le 1$

(c) f(x) = 2x

- (d) f(x) = 3 for at least one x in [0, 2]
- 109. If the function $f(x) = x^3 6x^2 + ax + b$ satisfies Rolle's theorem in the interval [1,3]
 - and $f\left(\frac{2\sqrt{3}+1}{\sqrt{3}}\right)=0$, then
 - (a) a = -11
- (b) a = -6
- (c) a = 6
- (d) a = 11
- 110. The radius of the cylinder of maximum volume, which can be inscribed in a sphere of radius R is
 - (a) $\frac{2}{3}$
- (b) $\sqrt{\frac{2}{3}}R$
- $(c) \frac{3}{4}R$
- (d) $\sqrt{\frac{3}{4}} R$
- **111. Let** $f(x) = \begin{cases} x^{\alpha} \ln x, x > 0 \\ 0, x = 0 \end{cases}$, Rolle's theorem is applicable to f for $x \in [0,1]$, if $\alpha = (0,1)$
 - (a) 2
- (b) 1
- (c) 0
- (d) $\frac{1}{2}$

112. The function $f(x) = \int_{-1}^{3} t(e^t - 1)(t - 1)(t - 2)^3 (t - 3)^5 dt$ has a local minimum at x = 1

(a) 0

(b) 1

(c) 2

(d)3

113. If the function $f(x) = x^3 - 6ax^2 + 5x$ satisfies the conditions of Lagrange's mean value theorem for the interval [1, 2] and the tangent to the curve y = f(x) at $x = \frac{7}{4}$ is parallel to the chord that joins the points of intersection of the curve with the ordinates x = 1 and x = 2. Then the value of a is

(a) $\frac{35}{16}$

(b) $\frac{35}{48}$ (c) $\frac{7}{16}$ (d) $\frac{5}{16}$

114. If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 - 2cx + b^2$ such that min f(x) > max g(x), then the relation between b and c is

(a) No real value of b and c

(c) $|c| < |b| \sqrt{2}$

115. Let $h(x) = f(x) - (f(x))^2 + (f(x))^3$ for every real number *x*. Then

(a) h is increasing whenever f is increasing

(b) h is increasing whenever f is decreasing

(c) h is decreasing whenever f is decreasing

(d) Nothing can be said in general

116. The function $f(x) = \frac{\ln(\pi + x)}{\ln(\rho + x)}$ **is**

(a) Increasing on $[0,\infty)$

(b) Decreasing on $[0,\infty)$

(c) Decreasing on $\left[0, \frac{\pi}{e}\right]$ and increasing on $\left[\frac{\pi}{e}, \infty\right]$

(d) Increasing on $\left[0, \frac{\pi}{e}\right]$ and decreasing on $\left[\frac{\pi}{e}, \infty\right]$

117. In [0, 1] Lagrange's mean value theorem is NOT applicable to

(a)
$$f(x) = \begin{cases} \frac{1}{2} - x, & x < \frac{1}{2} \\ \left(\frac{1}{2} - x\right)^2, & x \ge \frac{1}{2} \end{cases}$$
 (b) $f(x) = \begin{cases} \frac{\sin x}{x}, & x \ne 0 \\ 1, & x = 0 \end{cases}$

$$\mathbf{(b)} f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

(c) f(x) = x | x |

(d) $f(x) \neq x$

max max max sales filed lication 118. On the interval [0, 1], the function $x^{25}(1-x)^{75}$ takes its maximum value at the

APPLICATIONS OF DERIVATIVES

HINTS AND SOLUTIONS

1. (3)

Let side = x and area = A then $A = x^2$.

$$\therefore \delta A = \frac{dA}{dx} \times dx = 2 \times 3 \times 0.01 = 0.06$$

2. (1)

$$\delta y = \frac{dy}{dx} \times \delta x = \frac{1}{3} \times 0.03 = 0.01$$

3. (3)

For a sphere of radius = r and volume = V, we have $V = \frac{4}{3}\pi r^3$ $\Rightarrow \log V = \log \frac{4\pi}{2} + 3\log r$

$$\Rightarrow \log V = \log \frac{4\pi}{3} + 3\log I$$

$$\Rightarrow \frac{\delta V}{V} = 0 + \frac{3\delta r}{r}$$

$$\Rightarrow \frac{\delta V}{V} \times 100 = \frac{3\delta r}{r} \times 100$$

$$y = x^n \Rightarrow \log y = n \log x$$

$$\Rightarrow \frac{\delta y}{y} = n \frac{\delta x}{x} \Rightarrow n:1$$

5. (4)

PV = Constant

$$\Rightarrow \log P + \log V = \log C$$
$$\Rightarrow \frac{\delta P}{P} \times 100 + \frac{\delta V}{V} \times 100 = 0.$$

6. (3)

Take $f(x) = \log x$ so that f'(x) = 1/x.

$$f(x + \delta x) = f(x) + f'(x) \cdot \delta x$$

$$=1.3868 + \frac{1}{4}(0.01) = 1.3893$$

7. (1)

Consider
$$f(x) = \frac{1}{\sqrt[3]{x}} = x^{-1/3}$$
 so that

$$f'(x) = (-1/3)x^{-4/3} = -(1/3)(x^{-1/3})^4$$

Take
$$x = 1000$$
, $\delta x = -2$

Then
$$f(x) = 0.1$$
 and $f'(x) = -\frac{1}{3} \times \frac{1}{10^4}$

We have
$$x = 4$$
 and $\delta x = 0.01$

$$f(x + \delta x) = f(x) + f'(x) \cdot \delta x$$

$$= 1.3868 + \frac{1}{4}(0.01) = 1.3893$$
(1)
$$Consider \ f(x) = \frac{1}{\sqrt[3]{x}} = x^{-1/3} \text{ so that}$$

$$f'(x) = (-1/3)x^{-4/3} = -(1/3)(x^{-1/3})^4$$

$$Take \ x = 1000, \ \delta x = -2$$

$$Then \ f(x) = 0.1 \ \text{and} \ f'(x) = -\frac{1}{3} \times \frac{1}{10^4}$$

$$f(x + \delta x)\underline{\Omega}0.1 - \frac{1}{3 \times 10^4}(-2)$$

$$= 0.1 - (0.6666)10^{-4}$$
(1)

8. (1)

If r is radius then $C = 2\pi r$ and $A = \pi r^2$

$$\therefore A = \frac{C^2}{4\pi}$$

By log differentiation

$$\frac{\delta A}{A} \times 100 = 2 \frac{\delta C}{C} \times 100 = 2 \frac{(0.01)}{28} \times 100 = \frac{1}{14}$$

Let x = side and A = area for the equilateral triangle.

Then
$$A = \frac{\sqrt{3}}{4}x^2$$

$$\Rightarrow \log A = \log \frac{\sqrt{3}}{4} + 2\log x$$

$$\Rightarrow \frac{\delta A}{A} \times 100 = 2(0.5)$$

10. (3)

Let d = diameter and V = volume for a sphere.

Then,
$$V = \frac{1}{6}\pi d^3$$

$$\Rightarrow \log V = \log \frac{\pi}{6} + 3\log d$$

$$\Rightarrow \frac{\delta V}{V} \times 100 = 3 \frac{\delta d}{d} \times 100$$

$$=\frac{3(0.02)}{20}\times100=0.3$$

11. (1)

Let radius = r, surface area = S and volume = V for a sphere.

Then
$$S = 4\pi r^2$$
 and $V = \frac{4}{3}\pi r^3$

$$\Rightarrow V = \frac{4\pi}{3} \left(\frac{S}{4\pi}\right)^{3/2}$$

$$\Rightarrow \log V = \log(\text{constant}) + \frac{3}{2}\log S$$

$$\Rightarrow \frac{\delta V}{V} \times 100 = \frac{3}{2} \frac{\delta S}{S} \times 100$$

12. (1)

$$T = 2\pi \sqrt{\frac{1}{g}}$$

$$\Rightarrow \log T = \log 2\pi + \frac{1}{2} \log \ell - \frac{1}{2} \log g$$

$$\Rightarrow \frac{\delta T}{T} \times 100 = \frac{1}{2} \frac{\delta \ell}{\ell} \times 100 = \frac{1}{2} (2) = 1.$$

13. (2)

Let r = radius and S = surface area.

Given height = 2r

$$\Rightarrow \log T = \log 2\pi + \frac{1}{2} \log \ell - \frac{1}{2} \log g$$

$$\Rightarrow \frac{\delta T}{T} \times 100 = \frac{1}{2} \frac{\delta \ell}{\ell} \times 100 = \frac{1}{2} (2) = 1.$$
(2)

Let $r = \text{radius and } S = \text{surface area.}$

Given height = $2r$

$$\therefore S = 2\pi r(2r) + 2\pi r^2 = 6\pi r^2$$

$$\Rightarrow \frac{\delta S}{S} \times 100 = 2 \frac{\delta r}{r} \times 100 = 2(0.5) = 1.$$
(1)
$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

$$\Rightarrow \log T = \log 2\pi + \frac{1}{2} \log \ell - \frac{1}{2} \log g$$

14. (1)

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

$$\Rightarrow \log T = \log 2\pi + \frac{1}{2} \log \ell - \frac{1}{2} \log g$$

$$\Rightarrow \frac{\delta T}{T} = \frac{1}{2} \frac{\delta \ell}{\ell}$$

15. (4)

$$\frac{dE}{dT} = 6.2 + 0.0006T^2$$

Take
$$T = 100^\circ$$
, $\delta T = 1^\circ$

$$\delta E = [6.2 + (0.0006)(100)^{2}]1 = 12.2$$

16. (2)

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$\Rightarrow 2a \cdot \delta a = 0 + 0 - 2bc(-\sin A)\delta A$$

$$\Rightarrow \delta a = \frac{bc \sin A}{a} \cdot \delta A = \frac{2\Delta}{a} \cdot \delta A$$

17. (3)

Let r = radius, h = height and V = volume of a cone.

Given that $r : h = 1 : 2 \Rightarrow h = 2r$

$$V = \frac{1}{3}\pi r^{2}(2r) = \frac{2}{3}\pi r^{3}$$
$$\Rightarrow \frac{\delta V}{V} \times 100 = 3\frac{\delta r}{r} \times 100 = 3k$$

18. (1)

Let r = radius and h = depth.

Then
$$r = 2$$
, $\delta r = 0.06$ and $h = 12$.

$$Volume\ V=\pi r^2h=12\pi r^2$$

$$\therefore \delta V \underline{\Omega} \frac{dV}{dr} \cdot \delta r = 24\pi r \times \delta r = 24\pi \times 2 \times 0.06$$

19. (1)

Semi vertical angle = 45°

$$\Rightarrow$$
 r = h and $\ell = h\sqrt{2}$

Take
$$h = 20$$
 and $\delta h = 0.025$

Let S = lateral surface area.

Then,
$$S = \pi h(h\sqrt{2}) = \pi \sqrt{2}h^2$$

$$S + \delta S = \pi \sqrt{2} (20)^2 + 2\sqrt{2}\pi (20)(0.025)$$
$$= 401\sqrt{2}\pi$$

20. (3)

We have

 $a = 2R \sin A$, $b = 2R \sin B$, $c = 2R \sin C$.

 $\delta a = 2R \cos A \delta A$, $\delta b = 2R \cos B \delta B$, $\delta c = 0$

$$\therefore \frac{\delta a}{\cos A} + \frac{\delta b}{\cos B} = 2R(\delta A + \delta B)$$
$$= 2R(\delta A + \delta B + \delta C) = 2R\delta(\pi) = 0$$

21. (2)

$$\begin{split} &\frac{1}{v} - \frac{1}{u} = \frac{2}{f} \\ &\Rightarrow -\frac{1}{v^2} \cdot \delta v + \frac{1}{u^2} \cdot \delta u = -\frac{2}{f^2} \cdot \delta f \\ &\Rightarrow \frac{\delta f}{f} = \frac{f}{2} \left[\frac{1}{v^2} - \frac{1}{u^2} \right] \alpha = \left(\frac{1}{v} + \frac{1}{u} \right) \alpha \end{split}$$

22. (1)

Let $f(x) = \cos x$ so that $f'(x) = -\sin x$.

Take $x = 60^{\circ}$ and $\delta x = 1^{\circ}$

Then $\cos 60^\circ = 0.5$, $\sin 60^\circ = 0.86603$

$$\cos 61^{\circ} \underline{\Omega} \cos 60^{\circ} + (-\sin 60^{\circ}) \times I(0.001745)$$
$$= 0.5 - 0.0151 = 0.4849$$

23. (a) Here u = 490, g = 9.8 (downward)

Therefore,
$$S = \frac{u^2}{2g} = 12250$$
.

24. (b)
$$v^2 = a + bx \implies 2v \frac{dv}{dt} = b \frac{dx}{dt} \implies 2v \frac{dv}{dt} = bv \implies \frac{dv}{dt} = \frac{b}{2}$$

Hence acceleration is constant or uniform.

25. (b) Given equation is $10 s = 10ut - 49 t^2$ or $s = ut - 4.9 t^2$

$$\Longrightarrow \frac{ds}{dt} = u - 9.8t = v$$

When stone reached the maximum height, then v = 0

$$\implies$$
 $u - 9.8t = 0 \implies u = 9.8t$

But time t = 5 sec

So the value of $u = 9.8 \times 5 = 49.0 \text{ m/sec}$

Hence initial velocity = $49 \, m/sec$.

26. (a) Given
$$s = \frac{1}{2}gt^2 \Longrightarrow \frac{ds}{dt} = gt$$
; Again $\frac{d^2s}{dt^2} = g$

27. (a) By figure,
$$x^2 + y^2 = 100$$

$$\Rightarrow 2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$$

$$x = 8$$

Therefore by (i) and (ii),

$$\frac{dy}{dt} = -\frac{16}{6} = -\frac{8}{3} \, cm \, / \sec .$$

$$=\frac{8}{3}cm/\sec$$
.

28. (a) We know that area of a circle is $A = \pi R$

$$\therefore \frac{dA}{dt} = 2\pi R \frac{dR}{dt} = 1.2\pi cm^2.$$

29. (c)
$$\frac{ds}{dt} = 6t^2 - 18t + 12 = \text{velocity} = 0$$

(when particle stopped)

$$\implies$$
 6 $t^2 - 18t + 12 = 0 \implies (t - 1)(t - 2) = 0$

Hence time 1, 2 sec.

30. (c)
$$\frac{ds}{dt}$$
 = velocity = $45 + 22t - 3t^2$

When particle will come to rest, then v = 0

$$\implies$$
 $3t^2 - 22t - 45 = 0 \implies t = 9$, (since $t \neq -\frac{5}{3}$).

31. (a) According to fig.
$$x^2 + y^2 = 25$$
(i)

Differentiate (i) w.r.t.t, we get

$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0 \dots (ii)$$

Here
$$x = 4$$
 and $\frac{dx}{dt} = 1.5$

From (i),
$$4^2 + y^2 = 25 \Rightarrow y = 3$$

$$\therefore \text{ From (ii), } 2(4)(1.5) + 2(3) \frac{dy}{dt} = 0$$

So,
$$\frac{dy}{dt} = -2m / \sec t$$

Hence, length of the highest point decreases at the rate of 2m/sec.

32. (a)
$$\frac{ds}{dt} = 6t^2 - 18t + 12$$

Again
$$\frac{d^2s}{dt^2}$$
 = 12t - 18 = acceleration

If acceleration becomes zero, then 0 = 12t - 18

 $\Rightarrow t = \frac{3}{2} \sec$. Hence acceleration will be zero after $\frac{3}{2} \sec$.

33. (b) Given equation
$$s = at^2 + bt + 6$$
(i

Differentiating w.r.t. time, we get

Velocity
$$(v) = 2at + b$$
(ii)

After 4sec, v = 0 and distance s = 16 metres

$$\therefore 0 = 2a \times 4 + b \Rightarrow 8a + b = 0 \qquad \qquad \dots (iii)$$

and
$$16 = 16a + 4b + 6 \Longrightarrow 16 = 16a + 4(-8a) + 6$$

$$\therefore a = -\frac{5}{8}$$

But retardation in its motion is, $2a = \frac{-5}{4}m / \sec^2$

Retardation = $\frac{5}{4}m/s^2$ (Retardation itself means -ve).

34. (a)
$$s = \frac{1}{2}vt \Longrightarrow 2s = vt \Longrightarrow 2\frac{ds}{dt} = v + t.\frac{dv}{dt}$$

$$\implies 2\frac{d^2s}{dt^2} = \frac{dv}{dt} + t \cdot \frac{d^2v}{dt^2} + \frac{dv}{dt}$$

But
$$\frac{dv}{dt}$$
 = acceleration (a)

$$\Rightarrow 2a = a + t \cdot \frac{da}{dt} + a \Rightarrow \frac{da}{dt} = 0 \text{ or } t = 0$$

But for whole notation t = 0 is impossible so that $\frac{da}{dt} = 0$ *i.e.*, a is constant.

35. (c)
$$\frac{d^2s}{dt^2} = -32 \text{ unit.}$$

36. (b) Let velocity v = 5 cm / sec

(Increasing the rate/sec is called the velocity)

$$\frac{da}{dt} = 5 \qquad \qquad \dots (i)$$

Where a is distance and t is time.

But if a is edge of a cube, then $V = a^3$

Differentiating w.r.t. time t, so

$$\frac{dV}{dt} = 3a^2 \frac{da}{dt} = 3a^2.5 = 15a^2 = 15 \times (12)^2$$
= 2160 cm³/sec (:edge a = 12 cm).

- **37.** (c) Acceleration $f = \frac{dv}{dt} = 2t$, then acceleration after 3 second = $2 \times 3 = 6cm / \sec^2$.
- **38.** (b) Motion of a particle $s = 15t 2t^2$

Therefore, velocity $\frac{ds}{dt} = 15 - 4t$

$$\Rightarrow \left(\frac{ds}{dt}\right)_{t=0} = 15 \text{ and } \left(\frac{ds}{dt}\right)_{t=3} = 3$$

Therefore, average = $\frac{15+3}{2}$ = 9.

39. (b)
$$\frac{dy}{dt} = 5$$
, $\frac{dx}{dt} = ?$

From figure, $\frac{x}{2} = \frac{x+y}{6} \Rightarrow 4x = 2y \Rightarrow x = \frac{1}{2}y$

Hence $\frac{dx}{dt} = \frac{1}{2} \frac{dy}{dt} = \frac{5}{2} metre / hour$.

40. (c)
$$\frac{dx}{dt} = v_x = a \Rightarrow \frac{d^2x}{dt^2} = 0 = a_x$$

 a_x is acceleration in x-axis

$$\frac{d^2y}{dt^2} = -ba^2 \sin at \Rightarrow a_y = -a^2y$$

Hence, a_y changes as y changes.

41. (c) : Surface area $s = 4\pi r^2$ and $\frac{dr}{dt} = 2$

$$\therefore \frac{ds}{dt} = 4\pi \times 2r \frac{dr}{dt} = 8\pi r \times 2 = 16\pi r \Longrightarrow \frac{ds}{dt} \propto r.$$

42. (d) $V = \frac{4}{3}\pi(x+10)^3$ where x is thickness of ice.

$$\therefore \frac{dV}{dt} = 4\pi(10 + x)^2 \frac{dx}{dt}$$

43. (b)

44. (a) Given that $dV/dt = 30 ft^3 / min$ and r = 15 ft

$$V = \frac{4}{3}\pi r^3; \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$$

$$\frac{dr}{dt} = \frac{dV/dt}{4\pi r^2} = \frac{30}{4\times\pi\times15\times15} = \frac{1}{30\pi}ft/min$$

45. (b) We have $x^2 + y^2 = 10^2$

$$x = \frac{4}{3}y$$
. Thus, $\left(\frac{4}{3}y\right)^2 + y^2 = 10^2 \Rightarrow y = 6 m$.

46. (c)
$$a + bv^2 = x^2 \Longrightarrow 0 + b \left(2v \cdot \frac{dv}{dt} \right) = 2x \cdot \frac{dx}{dt}$$

$$\Rightarrow v.b \frac{dv}{dt} = x. \frac{dx}{dt} \Rightarrow \frac{dv}{dt} = \frac{x}{b}, \quad \left(\because \frac{dx}{dt} = v\right).$$

47. (c)
$$V = \frac{4}{3} \pi r^3$$

$$\frac{dV}{dt} = \frac{4}{3}\pi 3r^2 \cdot \frac{dr}{dt} \Longrightarrow \frac{dr}{dt} = \frac{1}{4\pi r^2} \cdot \frac{dV}{dt}$$

$$\frac{dr}{dt} = \frac{1}{4 \times \pi \times 15 \times 15} \times 900 \implies \frac{dr}{dt} = \frac{1}{\pi} = \frac{7}{22}$$

$$\Rightarrow v.b \frac{dv}{dt} = x. \frac{dx}{dt} \Rightarrow \frac{dv}{dt} = \frac{x}{b}, \quad \left(\because \frac{dx}{dt} = v\right).$$
47. (c) $V = \frac{4}{3}\pi r^3$

Differentiate with respect to t ,
$$\frac{dV}{dt} = \frac{4}{3}\pi 3r^2 \cdot \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{1}{4\pi r^2} \cdot \frac{dV}{dt}$$

$$\frac{dr}{dt} = \frac{1}{4 \times \pi \times 15 \times 15} \times 900 \Rightarrow \frac{dr}{dt} = \frac{1}{\pi} = \frac{7}{22}.$$
48. (b) Volume $= V = \frac{4}{3}\pi r^3 \Rightarrow \frac{dV}{dt} = 4\pi r^2 \cdot \frac{dr}{dt}, \text{ at } r = 7 \text{ cm}$

$$35 \text{ cc/min} = 4\pi (7)^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{5}{28\pi}$$
Surface area, $S = 4\pi r^2$

$$\frac{dS}{dt} = 8\pi r \frac{dr}{dt} = \frac{8\pi \cdot 7.5}{28\pi} = 10 \text{ cm}^2/\text{min}.$$

$$35 \ cc/min = 4\pi(7)^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{5}{28\pi}$$

$$\frac{dS}{dt} = 8\pi r \frac{dr}{dt} = \frac{8\pi \cdot 7.5}{28\pi} = 10 \text{ cm}^2/\text{min}.$$

49. (c) If x is the length of each side of an equilateral triangle and A is its area, then

$$A = \frac{\sqrt{3}}{4}x^2 \Rightarrow \frac{dA}{dt} = \frac{\sqrt{3}}{4}2x\frac{dx}{dt}$$

Here,
$$x = 10 \text{ cm}$$
 and $\frac{dx}{dt} = 2 \text{ cm/sec}$

50. (a)
$$y^2 = 18x$$

Differentiate both sides w.r.t.t

$$2y\left(\frac{dy}{dt}\right) = 18\left(\frac{dx}{dt}\right)$$

$$\implies 2y \left(2 \frac{dx}{dt}\right) = 18 \left(\frac{dx}{dt}\right), \left(\because \frac{dy}{dt} = 2 \frac{dx}{dt}\right)$$

$$\therefore$$
 4y = 18 or y = $\frac{9}{2}$ and $x = \frac{y^2}{18} = \frac{9}{8}$

Hence the required point is $\left(\frac{9}{8}, \frac{9}{2}\right)$.

51. (d) Acceleration in direction of x-axis = $\frac{d^2x}{dt^2}$ = -2c and acceleration in direction of

y-axis =
$$\frac{d^2y}{dt^2}$$
 = 2b

Resultant acceleration is

$$= \sqrt{(-2c)^2 + (2b)^2} = 2\sqrt{b^2 + c^2}$$

52. (a) Given $s = \sqrt{t}$. Now $v = \frac{ds}{dt} = \frac{1}{2\sqrt{t}}$

Also
$$a = \frac{dv}{dt} = \frac{-1}{2 \times 2(t)^{3/2}} \Longrightarrow a \propto \frac{1}{t\sqrt{t}}$$
 or $a \propto v^3$.

53. (c) x + y = 10; $\therefore y = 10 - x$

Now
$$f(x) = xy = x(10 - x) = 10x - x^2$$

$$f'(x) = 10 - 2x$$

For maximum value of f(x), f'(x) = 0

$$\therefore x = 5 \text{ and } y = 5$$

So maximum value of $xy = 5 \times 5 = 25$.

54. (c) The necessary condition to be maximum or minimum for function f'(x) = 0 and for maximum f''(x) = -ve and for minimum f''(x) = +ve.

Hence f(x) = 0, but it is not sufficient.

55. (b) Let α , β be the roots of the equation

56. (d)
$$f'(x) = 6x^2 - 6x - 12$$

$$f'(x) = 0 \Rightarrow (x-2)(x+1) = 0 \Rightarrow x = -1, 2$$

Here
$$f(4) = 128 - 48 - 48 + 5 = 37$$

$$f(-1) = -2 - 3 + 12 + 5 = 12$$

$$f(2) = 16 - 12 - 24 + 5 = -15$$

$$f(-2) = -16 - 12 + 24 + 5 = 1$$

Therefore the maximum value of function is 37 at x = 4.

57. (d)
$$x + y = 16 \Rightarrow y = 16 - x \Rightarrow x^2 + y^2 = x^2 + (16 - x)^2$$

Let
$$z = x^2 + (16 - x)^2 \Rightarrow z' = 4x - 32$$

To be minimum of z, z'' > 0, and it is.

Therefore $4x - 32 = 0 \Rightarrow x = 8 \Rightarrow y = 8$

58. (d)
$$f(x) = \int_0^x te^{-t^2} dt \Rightarrow f'(x) = xe^{-x^2} = 0 \Rightarrow x = 0$$

$$f''(x) = e^{-x^2}(1 - 2x^2);$$
 $f''(0) = 1 > 0$

 \therefore Minimum value f(0) = 0.

59. (d) Let a and b are given, then area $A = \frac{1}{2}ab\sin C \Rightarrow \frac{dA}{dC} = \frac{1}{2}ab\cos C$

Hence A is maximum, when $\frac{dA}{dC} = 0 \Rightarrow C = 90^{\circ}$.

60. (c) Given function $f: R \to R$ is to be maximum, if f'(a) = 0 and f''(a) < 0.

61. (d) Let
$$f(x) = 2x^3 - 24x + 107$$

At
$$x = -3$$
, $f(-3) = 2(-3)^3 - 24(-3) + 107 = 125$

At
$$x = 3$$
, $f(3) = 2(3)^3 - 24(3) + 107 = 89$

For maxima or minima, $f'(x) = 6x^2 - 24 = 0$

$$\Rightarrow x = 2, -2$$

So at
$$x = 2$$
, $f(2) = 2(2)^3 - 24(2) + 107 = 75$

At
$$x = -2$$
, $f(-2) = 2(-2)^3 - 24(-2) + 107 = 139$

Thus the maximum value of the given function in [-3, 3] is 139.

- **62.** (c) It is a fundamental property.
- **63.** (c) We know that perimeter of a rectangle S = 2(x + y), where x and y are adjacent sides

 $\Rightarrow y = \frac{S - 2x}{2}$. Now area of rectangle,

$$A = xy = \frac{x}{2}(S - 2x) = \frac{1}{2}(Sx - 2x^2)$$

64. (a)
$$xy = 1 \Rightarrow y = \frac{1}{x}$$
 and let $z = x + y$

$$z = x + \frac{1}{x} \Rightarrow \frac{dz}{dx} = 1 - \frac{1}{x^2}$$

65. (b) Given
$$2(a+b) = 36$$
, $a+b=18$

Area of rectangle = ab = a(18 - a)

$$A = 18 a - a^2$$
, $\therefore \frac{dA}{da} = 18 - 2a$

66. (d) Let
$$y = \frac{\log x}{x} \Longrightarrow \frac{dy}{dx} = \frac{x \cdot \frac{1}{x} - \log x}{x^2} = \frac{1 - \log x}{x^2}$$

Put
$$\frac{dy}{dx} = 0 \Rightarrow \frac{1 - \log x}{x^2} = 0$$

$$\Rightarrow$$
 1-log $x = 0 \Rightarrow x = e$ and $\frac{d^2y}{dx^2} = \frac{-3x + 2x \log x}{x^4}$

At
$$x = e$$
, $\frac{d^2y}{dx^2} = \frac{1}{-e^3} < 0$

 \therefore In $[2, \infty)$ the function $\frac{\log x}{x}$ will be maximum and minimum value does not

exist.

67. (a)
$$f(x) = 2x + 3y$$
 when $xy = 6$

$$f(x) = 2x + 3y = 2x + \frac{18}{x}$$

$$f'(x) = 2 - \frac{18}{x^2} = 0$$

$$\Rightarrow x = \pm 3 \text{ and } f''(x) = \frac{36}{x^3} \Rightarrow f''(3) > 0$$

Putting x = +3, we get the minimum value to be 12.

68. (c) Concept

69. (d)
$$\frac{dy}{dx} = \frac{a}{x} + 2bx + 1 \Rightarrow \left(\frac{dy}{dx}\right)_{x=1} = a + 2b + 1 = 0 \Rightarrow a = -2b - 1$$

$$\operatorname{and}\left(\frac{dy}{dx}\right)_{x=2} = \frac{a}{2} + 4b + 1 = 0$$

$$\Rightarrow \frac{-2b - 1}{2} + 4b + 1 = 0 \Rightarrow -b + 4b + \frac{1}{2} = 0$$

$$\Rightarrow 3b = \frac{-1}{2} \Rightarrow b = \frac{-1}{6} \text{ and } a = \frac{1}{3} - 1 = \frac{-2}{3}.$$
70. (a) Standard Problem

71. (b) $xy = c^2 \Rightarrow y = \frac{c^2}{x} \Rightarrow f(x) = ax + by = ax + \frac{bc^2}{x}$
Differentiate with respect to $x f'(x) = a - \frac{bc^2}{x^2}$
Put $f'(x) = 0 \Rightarrow ax^2 - bc^2 = 0$

$$\Rightarrow x^2 = \frac{bc^2}{a} \Rightarrow x = \pm c\sqrt{b/a}$$

70. (a) Standard Problem

71. (b)
$$xy = c^2 \implies y = \frac{c^2}{x} \implies f(x) = ax + by = ax + \frac{bc^2}{x}$$

Differentiate with respect to $x f'(x) = a - \frac{bc^2}{x^2}$

Put
$$f'(x) = 0 \Longrightarrow ax^2 - bc^2 = 0$$

$$\implies x^2 = \frac{bc^2}{a} \implies x = \pm c\sqrt{b/a}$$

At $x = +c\sqrt{b/a}$, ax + by will be minimum.

The minimum value
$$f\left(c\sqrt{\frac{a}{b}}\right) = a.c\sqrt{\frac{a}{b}} + \frac{bc^2}{c}.\sqrt{\frac{b}{a}}$$

$$= 2c\sqrt{ab}$$
.

72. (a) Let
$$f(A) = \cos A \cos B = \cos A \cos \left(\frac{\pi}{2} - A\right) = \cos A \sin A$$

$$\therefore f'(A) = \cos^2 A - \sin^2 A = \cos 2A$$

Now,
$$f'(A) = 0 \Rightarrow \cos 2A = 0 \Rightarrow 2A = \frac{\pi}{2} \Rightarrow A = \frac{\pi}{4}$$

Now
$$f''(A) = -2\sin 2A = -2\sin \frac{\pi}{2} = -2$$
 (-ve)

73. (b) Let
$$f(x) = 4e^{2x} + 9e^{-2x}$$

$$f'(x) = 8e^{2x} - 18e^{-2x}$$

Put
$$f'(x) = 0 \Rightarrow 8e^{2x} - 18e^{-2x} = 0$$

$$e^{2x} = 3 / 2 \Rightarrow x = \log(3 / 2)^{1/2}$$

Again
$$f''(x) = 16e^{2x} + 36e^{-2x} > 0$$

Now
$$f(\log(3/2)^{1/2}) = 4e^{2.(\log(3/2)^{1/2})} + 9e^{-2(\log(3/2)^{1/2})}$$

$$= 4 \times \frac{3}{2} + 9 \times \frac{2}{3} = 6 + 6 = 12$$

Hence minimum value = 12.

74. (d) Let
$$PQ = a$$
 and $PR = b$, then $\Delta = \frac{1}{2}ab\sin\theta$

$$\therefore -1 \le \sin \theta \le 1$$

Since, area is maximum when $\sin \theta = 1 \Longrightarrow \theta = \frac{\pi}{2}$.

75. (c)
$$a^2x^4 + b^2y^4 = c^6 \Longrightarrow y = \left(\frac{c^6 - a^2x^4}{b^2}\right)^{1/4}$$

Hence
$$f(x) = xy = x \left(\frac{c^6 - a^2 x^4}{b^2} \right)^{1/4}$$

$$\Rightarrow f(x) = \left(\frac{c^6 x^4 - a^2 x^8}{b^2}\right)^{1/4}$$

Differentiate f(x) with respect to x, then

$$f'(x) = \frac{1}{4} \left(\frac{c^6 x^4 - a^2 x^8}{b^2} \right)^{-3/4} \left(\frac{4x^3 c^6}{b^2} - \frac{8x^7 a^2}{b^2} \right)$$

Put
$$f'(x) = 0$$
, $\frac{4x^3c^6}{b^2} \frac{8x^7a^2}{b^2} = 0$

$$\Rightarrow x^4 = \frac{c^6}{2a^2} \Rightarrow x = \pm \frac{c^{3/2}}{2^{1/4}\sqrt{a}}$$

At $x = \frac{c^{3/2}}{2^{1/4}\sqrt{a}}$ the f(x) will be maximum

76. (c) Given
$$y = e^{(2x^2 - 2x + 1)\sin^2 x}$$

For minima or maxima, $\frac{dy}{dx} = 0$

$$\therefore e^{(2x^2 - 2x + 1)\sin^2 x} [(4x - 2)\sin^2 x + 2(2x^2 - 2x + 1)\sin x \cos x] = 0$$

$$\implies$$
 2 sin x[(2x-1)sin x + (2x² - 2x + 1)cos x] = 0

$$\implies \sin x = 0$$

 \therefore y is minimum for $\sin x = 0$

77. (b) Let
$$y = \frac{x^2 - x + 1}{x^2 + x + 1}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(x^2 + x + 1)(2x - 1) - (x^2 - x + 1)(2x + 1)}{(x^2 + x + 1)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x^2 - 2}{(x^2 + x + 1)^2} = 0 \Rightarrow 2x^2 - 2 = 0 \Rightarrow x = -1, +1$$

$$\frac{d^2y}{dx^2} = \frac{4(-x^3 + 3x + 1)}{x^2 + x + 1}$$

78. (b) Standard Problem

79. (c)
$$y = \sin x (1 + \cos x) = \sin x + \frac{1}{2} \sin 2x$$

$$\therefore \frac{dy}{dx} = \cos x + \cos 2x \text{ and } \frac{d^2y}{dx^2} = -\sin x - 2\sin 2x$$

On putting
$$\frac{dy}{dx} = 0$$
, $\cos x + \cos 2x = 0$

$$\Rightarrow \cos x = -\cos 2x = \cos(\pi - 2x) \Rightarrow x = \pi - 2x$$

$$\therefore x = \frac{\pi}{3}; \quad \therefore \left(\frac{d^2y}{dx^2}\right)_{x=\pi/3} = -\sin\left(\frac{1}{3}\pi\right) - 2\sin\left(\frac{2}{3}\pi\right)$$
$$= \frac{-\sqrt{3}}{2} - 2\cdot\frac{\sqrt{3}}{2} = \frac{-3\sqrt{3}}{2}, \text{ which is negative.}$$

- 80. (d) Standard Problem
- 81. (a) Standard Problem
- **82.** (a) Standard Problem

83. (c) Let
$$f(x) = \sin x - bx + c$$

$$\therefore f'(x) = \cos x - b > 0 \text{ Of } \cos x > b \text{ Of } b < -1.$$

84. (d)
$$f(x) = (x+2)e^{-x}$$

$$f'(x) = e^{-x} - e^{-x}(x+2)$$

85. (d) Since $f(x) = \frac{K \sin x + 2 \cos x}{\sin x + \cos x}$ is increasing for all x, therefore f'(x) > 0 for all x

$$\Rightarrow \frac{K-2}{(\sin x + \cos x)^2} > 0 \text{ for all } x$$

$$\implies K-2>0 \implies K>2$$
.

86. (a)
$$f(x) = 2x^3 - 3x^2 - 36x + 7$$

$$\Rightarrow f'(x) = 6x^2 - 6x - 36$$
 but for decreasing $f'(x) < 0$

$$\Rightarrow x^2 - x - 6 < 0 \Rightarrow (x - 3)(x + 2) < 0 \Rightarrow -2 < x < 3$$

Hence the required interval is (-2, 3).

87. (b) To be increasing $f'(x) = 3x^2 - 27 > 0$

$$\Rightarrow x^2 > 9 \Longrightarrow |x| > 3$$
.

88. (c)
$$f(x) = 3kx^2 - 18x + 9 = 3 [kx^2 - 6x + 3] > 0, \forall x \in \mathbb{R}$$

$$\Delta = b^2 - 4ac < 0$$
, $k > 0$ i.e., $36 - 12k < 0$ Or $k > 3$.

89. (d) The function is monotonic increasing, if f'(x) > 0

$$\Rightarrow \frac{(2\sin x + 3\cos x)(\lambda\cos x - 6\sin x)}{(2\sin x + 3\cos x)^2} - \frac{(\lambda\sin x + 6\cos x)(2\cos x - 3\sin x)}{(2\sin x + 3\cos x)^2} > 0$$

$$\Rightarrow 3\lambda(\sin^2 x + \cos^2 x) - 12(\sin^2 x + \cos^2 x) > 0$$

$$\Rightarrow 3\lambda - 12 > 0 \Rightarrow \lambda > 4$$
.

90. (d) If $f(x) = (a+2)x^3 - 3ax^2 + 9ax - 1$ decreases monotonically for all $x \in R$, then $f'(x) \le 0$ for

all
$$x \in R$$

$$\Rightarrow$$
 3(a+2)x² - 6ax + 9a \le 0 for all $x \in R$

$$\Rightarrow$$
 $(a+2)x^2 - 2ax + 3a \le 0$ for all $x \in R$

 $\Rightarrow a+2 < 0$ and Discriminant ≤ 0

$$\Rightarrow a < -2, -8a^2 - 24a \le 0 \Rightarrow a < -2 \text{ and } a(a+3) \ge 0$$

$$\Rightarrow a < -2$$
, $a \le -3$ or $a \ge 0 \Rightarrow a \le -3 \Rightarrow -\infty < a \le -3$

91. (b) Let
$$y = \frac{a \sin x + b \cos x}{c \sin x + d \cos x}$$

The function will be decreasing, when $\frac{dy}{dx} < 0$.

$$\frac{(c\sin x + d\cos x)(a\cos x - b\sin x) - (a\sin x + b\cos x)(c\cos x - d\sin x)}{(c\sin x + d\cos x)^2} < 0$$

$$\Rightarrow$$
 ac sin x cos x - bc sin² x + ad cos² x

$$-bd \sin x \cos x - ac \sin x \cos x + ad \sin^2 x - bc \cos^2 x + bd \sin x \cos x < 0$$

$$\Rightarrow ad(\sin^2 x + \cos^2 x) - bc(\sin^2 x + \cos^2 x) < 0$$

$$\Longrightarrow (ad - bc) < 0$$
.

92. (d)
$$y = \frac{1}{1+x^2} \Longrightarrow \frac{dy}{dx} = -\frac{2x}{(1+x^2)^2}$$

To be decreasing, $-\frac{2x}{(1+x^2)^2} < 0 \Longrightarrow x > 0 \Longrightarrow x \in (0,\infty)$.

93. (d) To be increasing,
$$\frac{d}{dx}(x^2+kx+1)>0 \Rightarrow 2x+k>0$$

For $x \in (1,2)$, the least value of k is -2

94. (b)
$$f(x) = x^3 - 6x^2 + 9x + 3$$
, For decreasing $f'(x) < 0$

$$\Rightarrow 3x^2 - 12x + 9 < 0 \Rightarrow x^2 - 4x + 3 < 0$$

$$\Rightarrow (x-3)(x-1) < 0$$
, $\therefore x \in (1,3)$.

95. (c)
$$f(x) = y = \tan^{-1} \left(\sqrt{2} \sin \left(x + \frac{\pi}{4} \right) \right)$$

$$\Rightarrow \tan y = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) \Rightarrow \sec^2 y \frac{dy}{dx} = \sqrt{2} \cos \left(x + \frac{\pi}{4} \right)$$

$$\frac{dy}{dx} > 0 \Rightarrow \cos\left(x + \frac{\pi}{4}\right) > 0$$
. $\therefore x \in \left(0, \frac{\pi}{4}\right)$.

96. (d) Given
$$f(x) = x^3 + bx^2 + cx + dx$$

:
$$f'(x) = 3x^2 + 2bx + c$$

Now its discriminant = $4(b^2 - 3c)$

$$\Rightarrow 4(b^2 - c) - 8c < 0$$
, as $b^2 < c$ and $c > 0$

Therefore, f'(x) > 0 for all $x \in R$

Hence f is strictly increasing.

97. (c) Let
$$y = x^{1/x} \Longrightarrow \log y = \frac{1}{x} \log x$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{1}{x^2} - \frac{\log x}{x^2} = \frac{1 - \log x}{x^2} \Rightarrow \frac{dy}{dx} = x^{1/x} \left(\frac{1 - \log x}{x^2} \right)$$

Now, $x^{1/x} > 0$ for all x and $\frac{1 - \log x}{x^2} > 0$ in (1, e) and $\frac{1 - \log x}{x^2} < 0$ in (e, ∞)

 \therefore f(x) is increasing in (1, e) and decreasing in (e, ∞) .

98. (b) Both e^x and 1+x are increasing and $\sqrt{e} \ge 1+\frac{1}{2}$, because $\sqrt{e} = 1.65$ nearly. so the answer (a) is not correct. Since $\sin \frac{\pi}{6} < \frac{\pi}{6}$ because $\frac{1}{2} < \frac{22}{42}$. So, (c) is not correct. $\log \frac{1}{2} < \frac{1}{2}$ because $\log \frac{1}{2}$ is negative.

99. (a)
$$f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\Rightarrow (i) f(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1} = \frac{1 - e^{2x}}{1 + e^{2x}} \Rightarrow f(x) = -\frac{e^{2x} - 1}{e^{2x} + 1} = -f(x)$$

f(x) is an odd function.

Again
$$f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \Rightarrow f'(x) = \frac{4e^{2x}}{(1 + e^{2x})^2} > 0 \ \forall \ n \in \mathbb{R}$$

 $\Rightarrow f(x)$ is an increasing function

100. (d) We have
$$f(x) = 2x + \cot^{-1} x + \log(\sqrt{1 + x^2} - x)$$

$$f(x) = 2 - \frac{1}{1 - x^2} + \frac{1}{\sqrt{1 + x^2} - x} \left(\frac{x}{\sqrt{1 - x^2}} - 1 \right)$$

$$= \frac{1+2x^2}{1+x^2} - \frac{1}{\sqrt{1+x^2}} = \frac{1+2x^2}{1+x^2} - \frac{\sqrt{(1+x^2)}}{1+x^2}$$

$$= \frac{x^2 + \sqrt{1 + x^2} (\sqrt{1 + x^2} - 1)}{1 + x^2} \ge 0 \text{ for all } x$$

Hence f(x) is an increasing function on $(-\infty,\infty)$ and in particular n $[0,\infty)$.

101. (b)
$$f(x) = \begin{cases} -x, & \text{when } -1 \le x < 0 \\ x, & \text{when } 0 \le x \le 1 \end{cases}$$

Clearly f(-1) = -1 = f(1)

But
$$Rf'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

$$Lf'(0) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{h} = \lim_{h \to 0} \frac{|-h|}{-h} = \lim_{h \to 0} \frac{h}{-h} = -1$$

$$\therefore Rf'(0) \neq Lf'(0)$$

102. (a)
$$f'(x_1) = \frac{-1}{x_1^2}$$

$$\therefore \frac{-1}{x_1^2} = \frac{\frac{1}{b} - \frac{1}{a}}{b - a} = -\frac{1}{ab} \Rightarrow x_1 = \sqrt{ab}.$$

$$Lf'(0) = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{h} = \lim_{h \to 0} \frac{1 - h}{-h} = \lim_{h \to 0} \frac{h}{-h} = -1$$

$$\therefore Rf'(0) \neq Lf'(0)$$
Hence it is not differentiable on (-1, 1).

102. (a) $f'(x_1) = \frac{-1}{x_1^2}$

$$\therefore \frac{-1}{x_1^2} = \frac{1}{b} - \frac{1}{a} = -\frac{1}{ab} \Rightarrow x_1 = \sqrt{ab} .$$
103. (c) To determine 'c' in Rolle's theorem, $f'(c) = 0$.

Here $f'(x) = (x^2 + 3x)e^{-(1/2)x} \left(-\frac{1}{2}\right) + (2x + 3)e^{-(1/2)x}$

$$= e^{-(1/2)x} \left\{ -\frac{1}{2}(x^2 + 3x) + 2x + 3 \right\}$$

$$= -\frac{1}{2}e^{-(x/2)} \{x^2 - x - 6\}$$

$$\therefore f'(c) = 0 \Rightarrow c^2 - c - 6 = 0 \Rightarrow c = 3, -2,$$
But $c = 3 \notin [-3, 0]$.

But
$$c = 3 \notin [-3,0]$$
.

104. (a) $f(1) = f(3) \Rightarrow a+b-5 = 3a+b-27 \Rightarrow a = 11$, which is given in option (a) only.

105. (c) From mean value theorem
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$a = 0, f(a) = 0 \Longrightarrow b = \frac{1}{2}, f(b) = \frac{3}{8}$$

$$f'(x) = (x-1)(x-2) + x(x-2) + x(x-1)$$

$$f'(c) = (c-1)(c-2) + c(c-2) + c(c-1)$$

$$= c^2 - 3c + 2 + c^2 - 2c + c^2 - c$$

$$f'(c) = 3c^2 - 6c + 2$$

According to mean value theorem, $f'(c) = \frac{f(b) - f(a)}{b - a}$

$$\implies 3c^2 - 6c + 2 = \frac{(3/8) - 0}{(1/2) - 0} = \frac{3}{4} \implies 3c^2 - 6c + \frac{5}{4} = 0$$

$$c = \frac{6 \pm \sqrt{36 - 15}}{2 \times 3} = \frac{6 \pm \sqrt{21}}{6} = 1 \pm \frac{\sqrt{21}}{6}$$
.

106. (c) According to mean value theorem,

In interval [a, b] for f(x)

$$\frac{f(b) - f(a)}{b - a} = f'(c), \text{ where } a < c < b$$

$$\therefore a < x_1 < b.$$

107. (b)
$$\int_{1}^{2} f'(x)dx = [f(x)]_{1}^{2} = f(2) - f(1) = 0$$

$$f(2) = f(1)])$$

108. (b)

109. (d)
$$f(x) = x^3 - 6x^2 + ax + b$$

$$\Rightarrow f'(x) = 3x^2 - 12x + a$$

$$\Rightarrow f'(c) = 0 \Rightarrow f'\left(2 + \frac{1}{\sqrt{3}}\right) = 0$$

$$\Rightarrow 3\left(2+\frac{1}{\sqrt{3}}\right)^2-12\left(2+\frac{1}{\sqrt{3}}\right)+a=0$$

$$\Rightarrow 3\left(4 + \frac{1}{3} + \frac{4}{\sqrt{3}}\right) - 12\left(2 + \frac{1}{\sqrt{3}}\right) + a = 0$$

$$12 + 1 + 4\sqrt{3} - 24 - 4\sqrt{3} + a = 0 \Longrightarrow a = 11$$
.

110. (b) Standard Problem

- **111.** (d) For Rolle's theorem to be applicable to f, for $x \in [0,1]$, we should have (i) f(1) = f(0),
 - (ii) f is continuous for $x \in [0,1]$ and f is differentiable for $x \in (0,1)$

From (i), f(1) = 0, which is true.

From (ii),
$$0 = f(0) = f(0_+) = \lim_{x \to 0_+} x^{\alpha} \ln x$$

Which is true only for positive values of α , thus (d) is correct

112. (b,d)
$$f(x) = \int_{-1}^{x} t(e^{t} - 1)(t - 1)(t - 2)^{3}(t - 3)^{5} dt$$

$$f'(x) = x(e^x - 1)(x - 1)(x - 2)^3(x - 3)^5$$

113. (b)
$$f(b) = f(2) = 8 - 24 a + 10 = 18 - 24 a$$

$$f(a) = f(1) = 1 - 6a + 5 = 6 - 6a$$

$$f'(x) = 3x^2 - 12ax + 5$$

From Lagrange's mean value theorem,

$$f'(x) = \frac{f(b) - f(a)}{b - a} = \frac{18 - 24a - 6 + 6a}{2 - 1}$$

$$f'(x) = 12 - 18 a$$

At
$$x = \frac{7}{4}$$
, $3 \times \frac{49}{16} - 12a \times \frac{7}{4} + 5 = 12 - 18a$

$$\Rightarrow 3a = \frac{147}{16} - 7 \Rightarrow 3a = \frac{35}{16} \Rightarrow a = \frac{35}{48}$$

114. (d) $f(x) = (x+b)^2 + 2c^2 - b^2$ is minimum at x = -b and $g(x) = b^2 + c^2 - (x+c)^2$ is maximum at

$$x = -c$$

$$\Rightarrow 2c^2 - b^2 > b^2 + c^2 \Rightarrow c > \sqrt{2} |b|$$

115. (a,c) $h(x) = f(x) - [f(x)]^2 + [f(x)]^3$ $h'(x) = f'(x) - 2f(x)f'(x) + 3[f(x)]^2 f'(x)$ $= f'(x)[1 - 2f(x) + 3[f(x)]^2]$

$$h'(x) = f'(x) - 2f(x)f'(x) + 3[f(x)]^2 f'(x)$$

$$= f'(x)[1-2f(x)+3[f(x)]^2]$$

$$=3f'(x)\left\{ \left(f(x) - \frac{1}{3} \right)^2 + \frac{2}{9} \right\}$$

h'(x) and f'(x) have same sign.

116. (b) Let
$$f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$$

$$\therefore f'(x) = \frac{\ln(e+x) \times \frac{1}{\pi+x} - \ln(\pi+x) \frac{1}{e+x}}{\ln^2(e+x)}$$

$$= \frac{(e+x)\ln(e+x) - (\pi+x)\ln(\pi+x)}{\ln^2(e+x) \times (e+x)(\pi+x)}$$

$$\Rightarrow f'(x) < 0 \text{ for all } x \ge 0, \{:: \pi > e\}$$

117. (a) The function defined in option (a) is not differentiable at $x = \frac{1}{2}$.

118. (d) $f(x) = x^{25} (1-x)^{75}$ $f(x) = x^{25} (75)(1-x)^{74} (-1) + 25x^{24} (1-x)^{75}$ For maxima and minima, $-75x^{25} (1-x)^{74} + 25x^{24} (1-x)^{75} = 0$ $\Rightarrow 25x^{24} (1-x)^{74} [(1-x) - 3x] = 0$ $\Rightarrow \text{Either } x = 0 \text{ or } x = 1 \text{ or } x = \frac{1}{x}$

118. (d)
$$f(x) = x^{25} (1-x)^{75}$$

$$f'(x) = x^{25} (75)(1-x)^{74} (-1) + 25 x^{24} (1-x)^{75}$$

$$-75x^{25}(1-x)^{74} + 25x^{24}(1-x)^{75} = 0$$

$$\implies$$
 25 $x^{24} (1-x)^{74} [(1-x)-3x] = 0$

$$\Rightarrow$$
 Either $x = 0$ or $x = 1$ or $x = \frac{1}{4}$

$$\Rightarrow 25 x^{24} (1-x)^{74} [(1-x)-3x] = 0$$

$$\Rightarrow \text{Either } x = 0 \text{ or } x = 1 \text{ or } x = \frac{1}{4}$$

$$\text{At } x = \frac{1}{4}, \ f\left(\frac{1}{4} - h\right) > 0 \text{ and } f\left(\frac{1}{4} + h\right) < 0$$

$$\therefore f(x) \text{ is maximum at } x = \frac{1}{4}.$$