Notes for Paper 3

Title:Convex relaxation of optimal power flow—Part I: Formulations and equivalence

Authors:Low S H.

Journal:IEEE Transactions on Control of Network Systems

Tags: Convex relaxation; optimal power flow; power system; QCQP; SOCP; SDP

0. Summary

1. Power flow models

1.1 Bus injection model

$$s_j = \sum_{k:j\sim k}^{I_{jk}} y_{jk}^H V_j (V_j^H - V_k^H), j \in N^+$$

where superscript H refers the conjugate transpose, s_j is the power flow on node j, $j\sim k$ refers that node j is connected with node k.

Bus 0 is the slack bus, which voltage is fixed and we assume that $V_0=1\angle 0^\circ$; s_j is the net complex power injection at bus $j\in N^+$.

So, the solution for the power flow model $V \in C^{n+1}$, where C is the complex numbers.

Bus type

- 1. slack bus. V_0 is given, s_0 is variable.
- 2. generator bus. $Re(s_j) = p_j$ and $|V_j|$ are known, $Im(s_j) = q_j$ and $\angle V_j$ are unknown.
- 3. load bus. s_i is specified and V_i is variable.

Each bus is characterized by two complex variables V_j and s_j (or four real variables). As described above, two variables will be given at each bus (slack, generator, load), then we can solve

the n+1 complex equations, or 2(n+1) real number equations, to get the remaining 2(n+1) variables.

1.2 Branch Flow Model

$$\sum_{k:j o k} S_{jk} = \sum_{i:i o j} (S_{ij} - z_{ij}|I_{ij}|^2) + s_j, j\in N^+ \ I_{ij} = y_{jk}(V_j - V_k), j o k\in \widetilde{E} \ S_{jk} = V_j I_{jk}^H, j o k\in \widetilde{E}$$

The solution $\widetilde{x}:=(S,I,V)\in C^{2m+n+1}$, where m is the number of directed edges, s_j is the net complex power injection at bus j. The total equation number is (n+1)+m+m=2m+n+1, so the equation group is closed.

2. convert OPF into QCQP

Let I_j be the net injection current from bus j to the rest of the network:

$$I_j = \sum_{k: j \sim k} y_{ik} (V_k - V_j)$$

Then we can construct a sysmmetric matrice to let I = YV:

$$Y_{ij} = egin{cases} \sum_{k:k\sim i} y_{ik}, & if & i=j \ -y_{ij} & if & i
eq j & and & i\sim j \ 0, & otherwise. \end{cases}$$

so BIM is equivalent to:

$$s_j = V_j I_j^H = (e_j^H V)(I^H e_j)$$

where e_j is the (n+1) dimensional vector with 1 in the jth entry and 0 elsewhere. Because sj is scalar variable, we have

$$s_j = tr(s_j) = tr(e_j^H V V^H Y^H e_j)$$

Because the shape of $e_j^H V V^H$ is the same with that of $(Y^H e_j)^T$, we have

$$s_j = tr(e_j^H V V^H Y^H e_j) = tr(Y^H e_j e_j^H V V^H)$$

Then we have (why?)

$$s_j = tr(Y^H e_j e_j^H V V^H) = tr(Y^H e_j e_j^H) V V^H = V^H Y_j^H V^H$$

where $Y_j := e_j e_j^H Y$

Then

$$Re(s_{j}) = 1/2V^{H}(Y_{j}^{H} + Y_{j})V \ Im(s_{j}) = 1/(2i)V^{H}(Y_{j}^{H} - Y_{j})V$$

Re
$$s_j = V^H \Phi_j V$$
 and Im $s_j = V^H \Psi_j V$.

Let their upper and lower bounds be denoted by

$$\begin{split} \underline{p}_j := & \operatorname{Re} \, \underline{s}_j \quad \text{and} \quad \overline{p}_j := \operatorname{Re} \, \overline{s}_j \\ \underline{q}_i := & \operatorname{Re} \, \underline{s}_j \quad \text{and} \quad \overline{q}_j := \operatorname{Re} \, \overline{s}_j. \end{split}$$

Let $J_j := e_j e_j^H$ denote the Hermitian matrix with a single 1 in the (j,j)th entry and 0 everywhere else, then OPF (7) can be written as a standard form QCQP

$$\min_{V \in \mathbb{C}^{n+1}} V^H CV \tag{10a}$$

s.t.
$$V^H \Phi_j V \leq \overline{p}_j$$
, $V^H (-\Phi_j) V \leq -\underline{p}_j$ (10b)

$$V^H \Psi_j V \le \overline{q}_j, \quad V^H (-\Psi_j) V \le -q_i \quad (10c)$$

$$V^H J_j V \le \overline{v}_j, \quad V^H (-J_j) V \le -\underline{v}_j$$
 (10d)

where $j \in N^+$ in (10).