DEVOIR À LA MAISON Nº 13

EXERCICE 1.

Dans tout l'exercice, n désigne un entier naturel non nul fixé.

1. a. Montrer l'existence de deux polynômes F_n et G_n de $\mathbb{R}_{n-1}[X]$ tels que

$$(1-X)^n F_n + X^n G_n = 1$$

On pourra par exemple développer $[(1-X)+X]^{2n-1}$ et on ne cherchera pas pour l'instant à calculer les coefficients de F_n et G_n .

- **b.** Montrer que (F_n, G_n) est l'unique couple de polynômes de $\mathbb{R}_{n-1}[X]$ vérifiant l'égalité de la question précédente.
- **2. a.** Montrer que $F_n(1-X) = G_n(X)$.
 - **b.** Calculer $F_n(0)$, $F_n\left(\frac{1}{2}\right)$ et $F_n(1)$.

Pour la suite de l'exercice, on pourra librement admettre que $F_n(1) \neq 0$.

- 3. a. Montrer que $F_n(x) = (1-x)^{-n} + o(x^{n-1})$.
 - $\mathbf{b.} \ \mathrm{En} \ \mathrm{d\'eduire} \ \mathrm{que} \ F_n = \sum_{k=0}^{n-1} \binom{n+k-1}{k} X^k.$
- 4. a. Montrer que $nF_n (1-X)F'_n = n\binom{2n-1}{n}X^{n-1}$.
 - **b.** Résoudre l'équation différentielle ny (1-x)y' = 0 sur $]-\infty, 1[$.
 - $\textbf{c.} \ \ \text{Montrer qu'il existe un unique polynôme} \ \ H_n \in \mathbb{R}[X] \ \ \text{tel que} \ \ H_n' = X^{n-1}(1-X)^{n-1} \ \ \text{et} \ \ H_n(0) = 0.$
 - **d.** Montrer que pour tout $x \in]-\infty,1[$

$$F_n(x) = \frac{1 - n\binom{2n-1}{n}H_n(x)}{(1-x)^n}$$

e. En déduire que

$$(1-X)^n F_n = 1 - n \binom{2n-1}{n} H_n$$

- 5. a. Que vaut $H_n(1)$?
 - **b.** Donner le tableau de variations de H_n sur \mathbb{R} suivant la parité de \mathfrak{n} (on identifie le polynôme H_n à la fonction polynomiale qui lui est associée).
 - ${\bf c.}\,$ En déduire le nombre de racines réelles de F_n suivant la parité de n.