Lista 5 - Integrais triplas em coordenadas cilíndricas

Utilize coordenadas cilíndricas para calcular a integral dada.

- 1. $\iiint \sqrt{x^2 + y^2} dV$, E é a região que está dentro do cilindro $x^2 + y^2 = 16$ e entre os planos z = -5 e z = 4Resposta: 384π
- 2. $\iiint_E z \, dV$, E é limitado pelo paraboloide $z = x^2 + y^2$ e pelo plano z = 4 Resposta: $\frac{64\pi}{3}$
- 3. $\iiint (x+y+z) dV$, E é o sólido do primeiro octante que está abaixo do paraboloide z= $4 - x^2 - y^2$ Resposta: $\frac{128+40\pi}{15}$
- 4. $\iiint (x-y) dV$, E é o sólido que está entre os cilindros $x^2 + y^2 = 1$ e $x^2 + y^2 = 16$, acima do plano xy e abaixo do plano z = y + 4
- 5. $\iiint x^2 dV$, E é o sólido que está dentro do cilindro $x^2 + y^2 = 1$, acima do plano z = 0 e abaixo do cone $z^2 = 4x^2 + 4y^2$
- 6. $\iiint x \, dV, \quad E \text{ \'e limitado pelos planos } z = 0 \text{ e } z = x + y + 5 \text{ e pelos cilindros } x^2 + y^2 = 4 \text{ e}$ $x^2 + y^2 = 9$ Resposta: $\frac{65\pi}{4}$

Utilize coordenadas cilíndricas para determinar o volume do sólido.

- 7. Limitado pelo cone $z=\sqrt{x^2+y^2}$ e abaixo da esfera $x^2+y^2+z^2=2$ Resposta: $\frac{4\pi(\sqrt{2}-1)}{3}$ 8. Entre o paraboloide $z=x^2+y^2$ e a esfera $x^2+y^2+z^2=2$ Resposta: $\frac{(8\sqrt{2}-7)\pi}{6}$ 9. Limitado pelo paraboloide $z=24-x^2-y^2$ e pelo cone $z=2\sqrt{x^2+y^2}$ Resposta: $\frac{512\pi}{3}$

Referência

STEWART, James. Cálculo: volume 2. 8ª ed. São Paulo, SP: Cengage Learning, 2016. ISBN 9788522125845.