长郡中学高一年级适应性调查

数学

时量:120 分钟

满分:100 分

得分	

一、单项选择题:本大题共 12 个小题,每小题 3 分,共 36 分,在每个小题给出 的四个选项中,只有一项是符合题目要求的.

- 1. 已知集合 $A = \{2,3,4\}, B = \{3,5\}, M A \cup B =$
 - A. {3}
 - B. $\{2,3,4,5\}$
 - $C. \{2,3,4\}$
 - $D. \{3,5\}$
- 2. 命题"所有能被2整除的整数都是偶数"的否定是
 - A. 所有不能被 2 整除的整数都是偶数
 - B. 所有能被 2 整除的整数都不是偶数
 - C. 存在一个不能被 2 整除的整数是偶数
 - D. 存在一个能被 2 整除的整数不是偶数
- 3. 函数 y=f(x)的图象与直线 x=1 的公共点数目是
 - A. 1

B. 0

C.0或1

D.1或2

4. 已知集合 $A = \{x \mid 0 \le x \le 2\}$, $B = \{x \mid x^2 - x > 0\}$,则图中的阴影部分表示的集合为

A. $(-\infty,1]$ $\bigcup (2,+\infty)$

B. $(-\infty, 0) \cup (1, 2)$

C. [1,2)

D. (1,2]

5. 已知集合 $A = \{1,4,x\}, B = \{x^2,1\}, 且 A \cap B = B$,则满足条件的实数 x 的 值为

A.1或0

B. 1,0 或 2

C.0,2 或-2

D. 0, -1, 2 或-2

数学试题(长郡版)第1页(共8页)

全条

闘

赵

更

+

മ

珙

线内

本

出 倒

;; 这 6. 若 $a,b,c \in \mathbb{R}$,且 a > b,则下列不等式一定成立的是

A. $a+c \gg b-c$

B. ac > bc

C. $\frac{c^2}{a-b} > 0$

D. $(a-b)c^2 \ge 0$ 7. "x>2"是"x>3"的

A. 充分不必要条件 B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

8. 已知对 $\forall x \in \{x \mid 1 \le x < 3\}$,都有 m > x,则 m 的取值范围为

A. $m \ge 3$

B m > 3

C, m > 1

D. $m \ge 1$

9. 已知函数 $f(x) = \frac{1}{ax^2 + ax - 3}$ 的定义域是 **R**,则实数 a 的取值范围是

A. $a > \frac{1}{2}$

B. $-12 < a \le 0$

 $C_{-}=12 < a < 0$

D. $a \le \frac{1}{2}$

10. 已知圆的直径为 2,则其内接矩形 ABCD 的周长的最大值为

A. $4\sqrt{2}$

B. 8

C. $8\sqrt{2}$

D. 12

11. 已知方程 $x^2+2(m-1)x+2m+6=0$ 有两个实根 x_1,x_2 ,且满足 $0 < x_1 <$ $1 < x_2 < 4$,则 m 的取值范围是

A.
$$\left(-\frac{7}{5}, -\frac{5}{4}\right)$$

B.
$$(-\infty, -1) \bigcup (5, +\infty)$$

C.
$$\left(-3, -\frac{7}{5}\right)$$

D.
$$\left(-3, -\frac{5}{4}\right)$$

12. 在 **R**上定义运算 \otimes : $x \otimes y = \frac{x}{2-y}$,若关于 x 的不等式 $x \otimes (x+1-a) > 0$

的解集是集合 $\{x \mid -2 \le x \le 2, x \in \mathbb{R}\}$ 的子集,则实数 a 的取值范围是

A. $-2 \le a \le 2$

B. $-1 \le a \le 2$

D. $-3 \le a \le 1$

数学试题(长郡版)第2页(共8页)

=	、多项选择题:本大题共3个小题,每小题3分,共9分,在每小题给出的四个
	选项中,有多项是符合题目要求,全部选出得3分,漏选得2分,选错或多选
	得 0 分.

13. 下列函数中,对任意 x,满足 2f(x) = f(2x)的是

A.
$$f(x) = |x|$$

B.
$$f(x) = -2x$$

C.
$$f(x) = x - |x|$$

D.
$$f(x) = x - 1$$

14. 小王从甲地到乙地往返的速度分別为 a 和 b (a<b),其全程的平均速度为 v,则

A.
$$a < v < \sqrt{ab}$$

B.
$$v = \sqrt{ab}$$

C.
$$\sqrt{ab} < v < \frac{a+b}{2}$$

D.
$$v = \frac{2ab}{a+b}$$

15. 当一个非空数集 F 满足条件"若对任意 $a,b \in F$,则 $a+b,a-b,ab \in F$,且 当 $b \neq 0$ 时, $\frac{a}{b} \in F$ "时,称 F 为一个数域. 以下四个关于数域的命题中,真 命题为

- A. 0 是任何数域的元素
- B. 若数域 F 有非零元素,则 $2020 \in F$
- C. 集合 $P = \{x \mid x = 3k, k \in \mathbb{Z}\}$ 为数域
- D. 有理数集为数域

答题卡

题号	1	2	3	4	5	6	7	8
答案								
题号	9	10	11	12	13	14	15	得分
答案								

- 三、填空题:本大题共5个小题,每小题3分,共15分,将答案填在答题纸上.
- 16. 若 2<a<5,3<b<10,则 a-2b 的范围为_____

17. 若集合
$$A = \{x \mid |2x-1| < 3\}$$
, $B = \{x \mid \frac{2x+1}{3-x} < 0\}$, 则 $A \cap B =$ ______

18. 若关于 x 的不等式 $mx^2 + mx - 1 > 0$ 的解集为 \varnothing ,则实数 m 的取值范围为______.

图象的交点个数是

20. 已知函数 $f(x) = x^2 - 2x$, g(x) = ax + 2(a > 0), 对任意的 $x_1 \in [-1, 2]$ 都 存在 $x_0 \in [-1, 2]$, 使得 $g(x_1) = f(x_0)$, 则实数 a 的取值范围是

- 四、解答题:本大题共5个小题,每小题8分,共40分.解答应写出文字说明、证明过程或演算步骤.
- 21. (本小题满分8分)

已知集合 $A = \{x \mid 2 \le x \le 8\}$, $B = \{x \mid 1 < x < 7\}$, $C = \{x \mid x > a\}$, $U = \mathbf{R}$.

- (1)求($[UA)\cap B$;
- (2)若 $A \cap C \neq \emptyset$,求实数 a 的取值范围.

22.(本小题满分8分)

已知 a>0, b>0, a+b=1, 求证:

$$(1)\frac{1}{a} + \frac{1}{b} + \frac{1}{ab} \geqslant 8;$$

$$(2)\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right) \geqslant 9.$$

23. (本小题满分8分)

某企业生产 A, B 两种产品,根据市场调查和预测,A 产品的利润与投资额成正比,设比例系数为 k_1 , 其关系如图 1 所示;B 产品的利润与投资额的算术平方根成正比,设比例系数为 k_2 ,其关系如图 2 所示(注:利润与投资额单位是万元).

- (1)分别将 A,B 两种产品的利润表示为投资额的函数,并求出 k_1 , k_2 的值,写出它们的函数关系式;
- (2)该企业已筹集到 10 万元资金,并全部投入 A,B 两种产品的生产,问: 怎样分配这 10 万元投资额,才能使企业获得最大利润,其最大利润 为多少万元.

24.(本小题满分8分)

已知 f(x)是二次函数,且满足 f(0)=2, f(x+1)-f(x)=2x+3.

- (1)求函数 f(x)的解析式;
- (2)设 h(x) = f(x) 2tx, 当 $x \in [1, +\infty)$ 时, 求函数 h(x)的最小值.

25. (本小题满分8分)

对于函数 f(x),若 f(x)=x,则称 x 为 f(x)的"不动点",若 f(f(x))=x,则称 x 为 f(x)的"稳定点",函数 f(x)的"不动点"和"稳定点"的集合分别记为 A 和 B,即 $A=\{x|f(x)=x\}$, $B=\{x|f(f(x))=x\}$.

- (1)求证: $A\subseteq B$;
- (2)若 $f(x) = ax^2 1(a \in \mathbf{R}, x \in \mathbf{R})$,且 $A = B \neq \emptyset$,求实数 a 的取值范围.

长郡中学高一年级适应性调查

数学参考答案

一、单项选择题:本大题共 12 个小题,每小题 3 分,共 36 分,在每个小题给出的四个选项中,只有一项是符合题 目要求的.

题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
答案	В	D	С	A	С	D	В	A	В	A	A	D	ABC	AD	ABD

1. B

【解析】命题"所有能被2整除的整数都是偶数"是一个全称命题, 2. D

其否定一定是一个特称命题,故排除 A,B:

结合全称命题的否定方法,我们易得命题"所有能被2整除的整数都是偶数"的否定应为"存在一 个能被2整除的整数不是偶数"。

故选 D.

3. C 【解析】若函数在 x=1 处有意义,则函数 y=f(x)的图象与直线 x=1 的公共点数目是 1; 若函数在 x=1 处无意义,则二者没有公共点.

所以有可能没有交点,如果有交点,那么仅有一个.

故选 C.

4. A 【解析】 $B = \{x \mid x^2 - x > 0\} = \{x \mid x > 1 \text{ if } x < 0\}$,

由题意可知阴影部分对应的集合为 $[A \cap B]$,

- $A \cap B = \{x \mid 1 < x \leq 2\}, A \cup B = \mathbf{R}.$
- $\therefore \int_{A \cap B} (A \cap B) = \{x \mid x \leq 1 \text{ is } x > 2\}, \mathfrak{P}(-\infty, 1) \cup \{2, +\infty\}.$

故选 A.

- 5. C 【解析】: $A \cap B = B$, $B \subseteq A$,且 $B = \{x^2, 1\}$, $A = \{1, 4, x\}$,
 - ∴ $r^2 = 4$, ø, $r^2 = r$, 解得 r = -2.2.0 ø, 1.
 - x=1 时不满足集合元素的互异性, x=1 舍去,
 - :,满足条件的实数 x 的值为-2,2 或 0.

故选 C.

- 6. D 【解析】A. 当 a = -1, b = -2, c = -3 时, a + c = -4, b c = 1, a + c < b c, 本选项不一定成立:
 - B. 当 c=0 时, ac=bc, 本选项不一定成立;
 - C. 当 c=0 时, $\frac{c^2}{a-b}=0$, 本选项不一定成立;
 - D. : a > b, : a b > 0, 又 $c^2 \ge 0$, $: (a b)c^2 \ge 0$, 本选项一定成立.

故选 D.

- 7. B
- 8. A
- 9. B
- 10. A

11. A 【解析】设 $f(x) = x^2 + 2(m-1)x + 2m + 6$,

:关于实数 x 的方程 $x^2+2(m-1)x+6=0$ 的两个实根 x_1, x_2 满足 $0 < x_1 < 1 < x_2 < 4$, (f(0)>0, (2m+6>0,

∴ f(1) < 0, $\mathbb{P} \setminus \{4m+5 < 0\}$, $\mathbb{R} = \frac{7}{5} < m < -\frac{5}{4}$. |f(4)>0, |10m+14>0.故选 A.

12. D 【解析】由运算 \otimes ,关于x的不等式 $x\otimes(x+1-a)>0$ 化为 $\frac{x}{2-(x+1-a)}>0$,化为x(x-a-1)>0

1) < 0.①当a+1>0时,其解集是 $\{x \mid 0 < x < a+1\}$,由于其解集是 $\{x \mid -2 \le x \le 2, x \in \mathbf{R}\}$ 的子集, $∴ a+1 \le 2$, 解得 $a \le 1$. ∴ $-1 < a \le 1$.

②当 a+1<0 时,其解集是 $\{x|a+1< x<0\}$,由于其解集是 $\{x|-2\le x\le 2.x\in \mathbb{R}\}$ 的子集.

 $\therefore a+1 \ge -2$, 解得 $a \ge -3$, ∴ $-3 \le a < -1$. ③当a+1=0时,其解集是Ø,由于其解集是 $\{x\mid -2 \le x \le 2, x \in \mathbb{R}\}$ 的子集,

: a+1=0,解得 a=-1。 综上可知,实数a的取值范围是[-3,1].

故洗D 二、多项选择题: 本大题共3个小题,每小题3分,共9分,在每小题给出的四个选项中,有多项是符

合题目要求,全部选出得3分,漏选得2分,选错或多选得0分.

13. ABC 14. AD 【解析】设甲、乙两地之间的距离为 s,则全程所需的时间为 $\frac{s}{a} + \frac{s}{b}$,: $v = \frac{2s}{\frac{s}{a} + \frac{s}{b}} = \frac{2ab}{a+b}$.

$$\therefore b > a > 0$$
,由基本不等式可得 $\sqrt{ab} < \frac{a+b}{2}$, $\therefore v = \frac{2ab}{a+b} < \frac{2ab}{2\sqrt{ab}} = \sqrt{ab}$,
$$\beta - 方面, v = \frac{2ab}{a+b} < \frac{2\left(\frac{a+b}{2}\right)^2}{a+b} = \frac{a+b}{2}, v - a = \frac{2ab}{a+b} - a = \frac{ab-a^2}{a+b} > \frac{a^2-a^2}{a+b} = 0,$$

另一方面,
$$v = \frac{2ab}{a+b} < \frac{(2)}{a+b} = \frac{a+b}{2}$$
, $v - a = \frac{2ab}{a+b} - a = \frac{ab-a^2}{a+b} > \frac{a^2 - a^2}{a+b} =$

$$\therefore v > a, \text{则} \ a < v < \sqrt{ab}.$$

故选 AD.

15. ABD

三、填空题:本大题共5个小题,每小题3分,共15分,将答案填在答题纸上.

16.
$$(-18, -1)$$

17. $\left(-1, -\frac{1}{2}\right)$

18.
$$[-4,0]$$

19. 4 【解析】当 $x \in (0,2)$ 时, $|x-1| = \frac{1}{2}$,解得 $x = \frac{1}{2}$ 或 $x = \frac{3}{2}$,

当 $x \in (-\infty, 0] \cup [2, +\infty)$ 时, $2 - |x - 1| = \frac{1}{2}$,解得 $x = -\frac{1}{2}$ 或 $x = \frac{5}{2}$,

综上所述函数 y=f(x)与 $y=\frac{1}{2}$ 的图象的交点的个数是 4. 故答案为:4.

数学参考答案(长郡版)-2

20. $(0,\frac{1}{2}]$

【解析】: 函数 $f(x) = x^2 - 2x$ 的图象是开口向上的抛物线,且关于直线 x=1 对称,

∴ x_0 ∈ [-1,2] 时, f(x) 的最小值为 f(1)=-1, 最大值为 f(-1)=3,

可得 $f(x_0)$ 的值域为[-1,3]. 又: g(x) = ax + 2(a > 0), g(x) 为单调递增函数,

 $\therefore x_1 \in [-1,2]$ 时, $g(x_1)$ 的值域为[g(-1),g(2)],

 $\operatorname{\mathbb{R}}_{g(x_1)} \in [2-a,2a+2].$: 对任意的 $x_1 \in [-1,2]$ 都存在 $x_0 \in [-1,2]$, 使得 $g(x_1) = f(x_0)$,

・対任意的
$$x_1 \in [-1,2]$$
都存在 $x_0 \in [-1,2]$,使得 $g(x_1) = \{2-a \geqslant -1, \\ 2a+2 \leqslant 3, : 0 \leqslant a \leqslant \frac{1}{2}.$

故答案为: $\left[0, \frac{1}{2}\right]$.

四、解答题,本大题共5个小题,每小题8分,共40分,解答应写出文字说明、证明过程或演算步骤。

21.【解析】(1): 全集 $U=\mathbb{R}$,集合 $A=\{x|2 \le x \le 8\}$, $B=\{x|1 < x < 7\}$,

 $\therefore (\downarrow _{U}A) \cap B = \{x \mid 1 < x < 2\}. \qquad 4$

可得 a 在小干等干 8 的范围内,

 $\mathbb{P}_a \leq 8$.

当 a=8 可得 $C=\{x|x>8\}$,此时不满足题意,

∴ a<8. ·······

22.【证明】(1):a+b=1,

 $(2):A\cap C\neq\emptyset,C=\{x\mid x>a\}.$

$$ab \le \left(\frac{a+b}{a}\right)^2 = \frac{1}{a}$$

 $\therefore ab \leqslant \left(\frac{a+b}{2}\right)^2 = \frac{1}{4}$

 $\therefore \frac{1}{ab} \geqslant 4$,

$$\therefore ab \leqslant \left(\frac{a+b}{2}\right) = \frac{1}{4}$$

 $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{ab} = \frac{a+b}{ab} + \frac{1}{ab} = \frac{2}{ab} \geqslant 8.$ 当且仅当 $a = b = \frac{1}{2}$ 时等号成立. 4 分 $(2)\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right) = \frac{1}{a} + \frac{1}{b} + \frac{1}{ab} + 1,$

由(1)可知 $\frac{1}{a} + \frac{1}{b} + \frac{1}{ab} \ge 8$,

由(1)可知
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{ab}$$

 $\frac{1}{a} + \frac{1}{a} + \frac{1}{ab} + 1 \geqslant 9$

由题设 $f(x) = k_1 x, g(x) = k_2 \sqrt{x}$,

由图可知 $f(1) = \frac{1}{4}$,所以 $k_1 = \frac{1}{4}$,又 $g(4) = \frac{5}{2}$,所以 $k_2 = \frac{5}{4}$, 数学参考答案(长郡版)-3

所以 $f(x) = \frac{1}{4}x(x \ge 0), g(x) = \frac{5}{4}\sqrt{x}(x \ge 0).$ 4 分 (2)设 A 产品投入 x 万元,则 B 产品投入(10-x)万元,设企业的利润为 v 万元, $y=f(x)+g(10-x)=\frac{1}{4}x+\frac{5}{4}\sqrt{10-x}(0 \le x \le 10),$ 所以当 $t=\frac{5}{2}$ 时, $y_{\text{max}}=\frac{65}{16}$, 此时 $x=10-\left(\frac{5}{2}\right)^2=\frac{15}{4}=3.75$, 所以当 A 产品投入 3.75 万元,B 产品投入 6.25 万元时,企业获得最大利润为 $\frac{65}{16}$ 万元,即 4.062524.【解析】(1)设 $f(x) = ax^2 + bx + c(a \neq 0)$, : f(0) = c = 2, f(x+1) - f(x) = 2x + 3, $a(x+1)^2+b(x+1)+c-(ax^2+bx+c)=2x+3$ 2ax+a+b=2x+3. c = 2, a = 1, b = 2 $f(x) = x^2 + 2x + 2$. 4 $f(x) = x^2 + 2x + 2$. (2)由题意得 $h(x) = x^2 + 2(1-t)x + 2$,对称轴为直线 x = t-1, ①当 $t-1 \le 1$,即 $t \le 2$ 时,函数在 $[1,+\infty)$ 单调递增, $h(x)_{min} = h(1) = 5 - 2t$; ·············· 6 分 ②当 t-1>1,即 t>2 时,函数在 $\lceil 1, t-1 \rceil$ 单调递减,在 $\lceil t-1, +\infty \rceil$)单调递增, $h(x)_{\min} = h(t-1) = -t^2 + 2t + 1$ 综上: $h(x)_{min} = \begin{cases} 5-2t, t \leq 2, \\ -t^2+2t+1, t > 2. \end{cases}$ 25.【解析】(1) 若 $A = \emptyset$,则 $A \subseteq B$ 显然成立: 若 $A\neq\emptyset$,设任意 $t\in A$,则f(t)=t,f(f(t))=f(t)=t, (2): $A \neq \emptyset$, $ax^2 - 1 = x$ 有实根, $\therefore a \geqslant -\frac{1}{4}$. 即 $a^3 x^4 - 2a^2 x^2 - x + a - 1 = 0$ 的左边有因式 $ax^2 - x - 1$. 从而有 $(ax^2-x-1)(a^2x^2+ax-a+1)=0$. A = B. ∴ $a^2x^2+ax-a+1=0$ 要么没有实根,要么实根是方程 $ax^2-x-1=0$ 的根. $\ddot{a}^2 x^2 + ax - a + 1 = 0$ 有实根且实根是方程 $ax^2 - x - 1 = 0$ 的根, 则由方程 $ax^2-x-1=0$, 得 $a^2x^2=ax+a$, 代入 $a^2x^2+ax-a+1=0$,有 2ax+1=0. 由此解得 $x = -\frac{1}{2a}$,再代入得 $\frac{1}{4a} + \frac{1}{2a} - 1 = 0$,由此 $a = \frac{3}{4}$,

故 a 的取值范围是 $\left[-\frac{1}{4},\frac{3}{4}\right]$ 数学参考答案(长郡版)-4