Lenguaje matemático, conjuntos y números

a

1 de diciembre de 2016

Índice general

1.	Noc	iones d	le lógica	7
	1.1.	Conec	tores lógicos básicos	7
		1.1.1.	Negación	7
		1.1.2.	Disyunción	7
		1.1.3.	Conjunción	7
		1.1.4.	Condicional	8
		1.1.5.	Bicondicional	8
	1.2.		rucción de nuevas propociones	8
	1.3.	Leyes	lógicas	S
		1.3.1.	Leyes lógicas con una proposición	Ĝ
		1.3.2.	Simplificación	S
		1.3.3.	Leyes lógicas equivalentes con dos proposiciones	9
		1.3.4.	Leyes lógicas equivalentes con tres proposiciones	11
		1.3.5.	Leyes lógicas condicionales	11
		1.3.6.	Validación de proposiciones	12
	1.4.	Forma	clausulada	12
2.	Con	juntos		13
	2.1.	Algun	as ideas sobre conjuntos. Predicados	13
		2.1.1.	Igualdad de conjuntos	13
		2.1.2.	Inclusión de conjuntos	13
		2.1.3.	Predicados	14
		2.1.4.	Conjunto vacío	14
		2.1.5.	Principio de inducción	14
		2.1.6.	Cuantificadores	14
		2.1.7.	1 0 1	15
	2.2.	Opera	ciones con conjuntos	15
		2.2.1.	Union	15
		2.2.2.	Intersección	15
		2.2.3.	Familia de conjuntos	15
		4.4.9.	· ·	
		2.2.4.	Diferencia de conjuntos	16
		_	· ·	16 16
	2.3.	2.2.4. 2.2.5.	Diferencia de conjuntos	

Índice general

	2.5.	Relaci	ones entre conjuntos	17
		2.5.1.	Conjunto original de la relación R	17
		2.5.2.	Conjunto final de la relación R	17
		2.5.3.	Conjunto imagen de $x \in A$	17
		2.5.4.	Conjunto original de $y \in B$	17
		2.5.5.	Composición de relaciones	18
3.	Rela	ciones	y aplicaciones entre conjuntos	19
			edades básicas	19
		3.1.1.	Reflexiva	19
		3.1.2.	Simétrica	19
		3.1.3.	Antisimétrica	19
		3.1.4.	Transitiva	19
	3.2.	Relaci	ón de equivalencia	19
		3.2.1.	Clase de equivalencia	20
		3.2.2.	Conjunto cociente	20
		3.2.3.	Partición de un conjunto	20
	3.3.	Relaci	ón de orden	21
		3.3.1.	Intervalos en un conjunto ordenado	21
		3.3.2.	Intervalos iniciales y finales	21
		3.3.3.	Orden lexicográfico en \mathbb{R}^2	22
		3.3.4.	Orden producto en \mathbb{R}^2	22
		3.3.5.	Conjunto acotado	22
		3.3.6.	Máximo, mínimo, supremo e ínfimo	22
		3.3.7.	Maximal y minimal	23
	3.4.	Aplica	aciones entre conjuntos	24
		3.4.1.	Igualdad entre aplicaciones	25
		3.4.2.	Composición de aplicaciones	25
		3.4.3.	Función característica de un conjunto	25
		3.4.4.	Aplicación sobreyectiva o sobreyección	25
		3.4.5.		25
		3.4.6.	Composición de aplicaciones sobreyectivas e inyectivas	26
		3.4.7.	Aplicación biyectiva o biyección	26
	3.5.	Equip	otencia de conjuntos	26
		3.5.1.	Cardinal	27
4.	Оре	racione	es internas y estructuras algebraicas	29
	4.1.	Opera	ciones internas	29
		4.1.1.	Propiedades	29
	4.2.	Grupo	os	29
		4.2.1.	Propiedades de un grupo	30
		4.2.2.	Subgrupos	30
		4.2.3.	Congruencia modulo	30

Índice general

	4.3.	Anillo	8	31
		4.3.1.	Propiedades de un anillo	31
				32
	4.4.			32
				33
	15		1	33
	4.0.		v 1	33
			1	
				34
	4.6.	Homo		35
		4.6.1.	1	35
		4.6.2.	Homomorfismo de grupo	36
		4.6.3.	Homomorfismo de anillos y cuerpos	36
		4.6.4.	Homomorfismo de conjuntos ordenados	37
5.	Los	númer	os naturales y los números enteros	39
	5.1.	Los nú	imeros naturales	39
				40
				10
				11
	5.2.			12
	•			
		·		14
	5.4.			15
		5.4.1.	1	45
		5.4.2.	Orden en \mathbb{Z}	45
		5 4 3	Identificación de N con 7.	15

1 Nociones de lógica

1.1. Conectores lógicos básicos

1.1.1. Negación

p	$\neg p$
0	1
1	0

Tabla 1.1: Negación

1.1.2. Disyunción

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

Tabla 1.2: Disyunción

1.1.3. Conjunción

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

Tabla 1.3: Conjunción

1.1.4. Condicional

p	q	$p \to q$
0	0	1
0	1	1
1	0	0
1	1	1
	0	$\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$

Tabla 1.4: Disyunción

A la proposicional condicional se le asocian 3 nuevas proposiciones:

Condiconal recíproco $q \rightarrow p$.

 $\mbox{Condiconal contrario } \neg p \rightarrow \neg q.$

Condiconal contrarrecíproco $\neg q \rightarrow \neg p$.

1.1.5. Bicondicional

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Tabla 1.5: Disyunción

1.2. Construcción de nuevas propociones

Contradicción Proposición que solo toma el valor 0, se denota como 0.

Tautología Proposición que solo toma el valor 1, se denota como 1.

1.3. Leyes lógicas

1.3.1. Leyes lógicas con una proposición

Doble negación

 $\neg\neg p \Leftrightarrow p$

1.3.2. Simplificación

- 1. $p \lor p \Leftrightarrow p$
- 2. $p \wedge p \Leftrightarrow p$
- 3. $p \rightarrow p \Leftrightarrow p$
- $4. \ p \leftrightarrow p \Leftrightarrow p$

Tercio exclusivo

 $p \lor \neg p \Leftrightarrow \mathbf{1}$

Contradicción

 $p \land \neg p \Leftrightarrow \mathbf{0}$

1.3.3. Leyes lógicas equivalentes con dos proposiciones

Identidad

1. $p \lor 0 \Leftrightarrow p \lor p \lor 1 \Leftrightarrow 1$.

1 Nociones de lógica

- 2. $p \wedge 1 \Leftrightarrow p \neq p \wedge 0 \Leftrightarrow 0$.
- 3. $1 \rightarrow p \Leftrightarrow p$.

De Morgan

- 1. $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$.
- $2. \neg (p \land q) \Leftrightarrow \neg p \lor \neg q.$

Del condicional

- 1. $p \to q \Leftrightarrow \neg p \lor q$.
- 2. $p \to q \Leftrightarrow \neg (p \land \neg q)$.
- 3. $p \to q \Leftrightarrow p \to (p \land q)$.
- 4. $p \to q \Leftrightarrow q \to (p \lor q)$.

Del bicondicional

$$p \leftrightarrow q \Leftrightarrow (p \to q) \land (q \to p)$$

Reducción al absurdo

$$\neg p \to (q \land \neg q) \Leftrightarrow p$$

Transposición

- 1. $p \to q \Leftrightarrow \neg q \to \neg p$.
- 2. $p \leftrightarrow q \Leftrightarrow \neg p \leftrightarrow \neg q$.

1.3.4. Leyes lógicas equivalentes con tres proposiciones

Asociativas

- 1. $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$.
- 2. $p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$.
- 3. $p \leftrightarrow (q \leftrightarrow r) \Leftrightarrow (p \leftrightarrow q) \leftrightarrow r$.
- 4. $p \to (q \lor r) \Leftrightarrow (p \to q) \lor (p \to q)$.
- 5. $p \to (q \land r) \Leftrightarrow (p \to q) \land (p \to q)$.

Distributivas

- 1. $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land q)$.
- 2. $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor q)$.
- 3. $p \to (q \lor r) \Leftrightarrow (p \to q) \lor (p \to q)$.
- 4. $p \to (q \land r) \Leftrightarrow (p \to q) \land (p \to q)$.

1.3.5. Leyes lógicas condicionales

Simplificación condicional

- 1. $p \wedge q \Rightarrow p$.
- 2. $p \Rightarrow p \lor q$

Inferencia

- 1. $\neg p \land (p \lor q) \Rightarrow q$.
- 2. $p \land (\neg p \lor \neg q) \Rightarrow \neg q$.

Ponendo ponens

$$(p \to q) \land p \Rightarrow q$$

Tollendo tollens

$$(p \to q) \land \neg q \Rightarrow \neg p$$

1.3.6. Validación de proposiciones

La validación de las proposiciones se puede realizar mediante:

- Construcción de la tabla de verdad.
- Refutación: Se aplica reducción al absurdo.

1.4. Forma clausulada

Proposición formada por la conjunción (\land) de disyunciones (\lor) .

2 Conjuntos

2.1. Algunas ideas sobre conjuntos. Predicados

Un conjunto C está bien definido cuando se tiene un criterio que permite decidir si un determinado elemento b pertenece al conjunto C o no pertenece al conjunto C.

Un objeto no puede ser a la vez un conjunto y un elemento de ese conjunto. Este decir, la proposición $b \in b$ es falsa.

La colección de todos los conjuntos posibles no forman un conjunto.

2.1.1. Igualdad de conjuntos

Se dice que dos conjuntos A y B son iguales, y se escribe A = B, si y sólo si tiene los mismo elementos.

Cuando un conjunto se determina mediante una lista de todos sus elementos se dice que está **definido por extensión**.

2.1.2. Inclusión de conjuntos

$$A \subset B \Leftrightarrow x \in A \land x \in B$$

$$A = B \Leftrightarrow A \subset B \land B \subset A$$

2.1.3. Predicados

$$C_P = \{ x \in C | P_x \}$$

 P_x es un predicado que indica si el elemento x forma parte del conjunto o no. Los conjuntos así definidos se dice que está **definido por extensión**.

Al conjunto C se le conoce como **universo** de **predicado**.

Dos predicados son **equivalentes** sobre un universo C si definen el mismo subconjunto de C.

2.1.4. Conjunto vacío

$$\emptyset = \{ x \in C | x \notin C \}$$

No tiene ningún elemento y es subconjunto de cualquier conjunto.

2.1.5. Principio de inducción

Si un predicado P se define sobre \mathbb{N} tal que:

- 1. 0 satisface la propiedad P. Es decir, P_x es verdadero.
- 2. Si n satisface la propiedad P entonces el sucesor de n satisface también la propiedad P.

2.1.6. Cuantificadores

$$\neg(\forall x P_x) \Leftrightarrow \exists x \neg P_x$$
$$\neg(\exists x P_x) \Leftrightarrow \forall x \neg P_x$$

2.1.7. Complementario y partes de un conjunto

Complementario

$$\bar{A} = \{x \in U | x \notin A\} = \{x \in U | \neg P_x\}$$

Partes de un conjunto

$$\mathbb{P}(A) = \{B | B \subset A\}$$

2.2. Operaciones con conjuntos

2.2.1. Union

$$A \cup B = \{x | x \in A \lor x \in B\}$$

2.2.2. Intersección

$$A \cap B = \{x | x \in A \land x \in B\}$$

2.2.3. Familia de conjuntos

Si tenemos en cuenta un **conjunto de indices** no vacío I. A cada $i \in I$ le asociamos un conjunto F_i . La colección de todos esos conjuntos se denomina **familia de conjuntos** y se denota:

$$F = \{F_i | i \in I\}$$

Cuando todos los F_i son subconjuntos de un mismo conjunto U entonces F es un subconjunto de P(U). Cualquier subconjunto G no vacío de P(U) es una familia de conjuntos.

La unión e intersección se generaliza a familias arbitrarias:

$$\bigcup_{i \in I} = \{x | \exists i \in I, x \exists F_i\}$$
$$\bigcap_{i \in I} = \{x | \forall i \in I, x \exists F_i\}$$

Si la familia viene dada por $\emptyset \neq G \subset P(U)$:

$$\bigcup_{F \in G} = \{x | \exists F \in G, x \exists F_i\}$$
$$\bigcap_{F \in G} = \{x | \forall F \in G, x \exists F_i\}$$

2.2.4. Diferencia de conjuntos

$$A \backslash B = \{ x | x \in A \land x \notin B \}$$

2.2.5. Diferencia simétrica

$$A\triangle B = (A \cup B) \setminus (A \cap B) =$$
$$\{x | x \in A \land x \notin B\} \cup \{x | x \notin A \land x \in B\}$$

2.3. Algebra de conjuntos

2.4. Producto de conjuntos

Dado n conjuntos A_1, A_2, \ldots, A_n se denomina producto de A_1 , por A_2 , por \ldots , por A_n al conjunto:

$$A_1 \times A_2 \times \cdots \times A_n = \{(x_1, x_2, \dots, x_n) | x_1 \in A_1, x_2 \in A_2, \dots, x_n \in A_n\}$$

2.5. Relaciones entre conjuntos

Dados los conjuntos A y B, todo subconjunto $R \subset A \times B$ es una relación del conjunto A al conjunto B, relación entre A y B o correspondencia entre A y B.

$$R:A\longrightarrow B$$

Otra notación posible es:

$$xRy \Leftrightarrow (x,y) \in R \subset A \times B$$

A es el conjunto inicial, y B el conjunto final.

2.5.1. Conjunto original de la relación R

$$R^{-1}(B) = \{ x \in A | \exists y \in B, xRy \}$$

2.5.2. Conjunto final de la relación R

$$R(A) = \{ y \in B | \exists x \in A, xRy \}$$

2.5.3. Conjunto imagen de $x \in A$

$$R(x) = \{ y \in B | (x, y) \in R \} = \{ y \in B | xRy \}$$

2.5.4. Conjunto original de $y \in B$

$$R^{-1}(y) = \{x \in A | (x,y) \in R\} = \{x \in A | xRy\}$$

2.5.5. Composición de relaciones

Dadas las relaciones R entre los conjuntos A y B, y la relación S entre los conjuntos B y C, se define una relación entre los conjuntos A y C conocida como **composición de las relaciones** R y S o relación composición:

$$S \circ R = \{(x,z) \in A \times C | \exists y \in B, xRy \wedge ySz\}$$

3 Relaciones y aplicaciones entre conjuntos

3.1. Propiedades básicas

3.1.1. Reflexiva

R es reflexiva $\Leftrightarrow (x, x) \in R \Leftrightarrow \forall x \in U, xRx$

3.1.2. Simétrica

R es simétrica $\Leftrightarrow R^{-1} \subset R \Leftrightarrow \forall x, y \in U, xRy \Rightarrow yRx$.

3.1.3. Antisimétrica

R es antisimétrica $\Leftrightarrow R^{-1} \cap R = \{(x,x) | x \in U\} \Leftrightarrow \forall x,y \in U, xRy \land yRx \Rightarrow x = y.$

3.1.4. Transitiva

R es transtitiva $\Leftrightarrow R \circ R = R \Leftrightarrow \forall x, y, z \in U, xRy \land yRz \Rightarrow xRz$.

3.2. Relación de equivalencia

Una relación \mathcal{E} en el conjunto U se denomina relación de equivalencia si posee las siguientes características:

3 Relaciones y aplicaciones entre conjuntos

- 1. Reflexiva.
- 2. Simétrica.
- 3. Transitiva.

3.2.1. Clase de equivalencia

Dada una relación de equivalencia \mathcal{E} en el conjunto U, se denomina clase de equivalencia del elemento $x \in U$ al conjunto imagen de x:

$$x\mathcal{E} = [x] = \{y \in U | x\mathcal{E}y\}$$

- $x\mathcal{E}y \Rightarrow [x] = [y].$
- Cualquier $y \in [x]$ es denominado representante de la clase [x].
- $x \mathcal{E}y \Rightarrow [x] \cap [y] = \emptyset$

3.2.2. Conjunto cociente

Dada una relación de equivalencia \mathcal{E} en el conjunto U, se denomina **conjunto cociente**, y se denota por U/\mathcal{E} , al conjunto de todas las clases que general la relación de equivalencia \mathcal{E} .

3.2.3. Partición de un conjunto

Una partición de un conjunto U es una familia P de subconjuntos no vacíos de U disjuntos dos a dos y cuya unión es el conjunto U. Es decir:

- 1. $\forall A, B \in P, A = B \lor A \cap B = \emptyset$.
- $2. \bigcup_{A \in P} A = U.$

3.3. Relación de orden

Una relación \mathcal{R} en el conjunto U se denomina **relación de orden** is posee las propiedades:

- 1. Reflexiva.
- 2. Antisimétrica.
- 3. Transitiva.

 \mathcal{R} es una relación de orden total $\Leftrightarrow \mathcal{R}^{-1} \cup \mathcal{R} = U \times U \Leftrightarrow \forall x, y \in U, x\mathcal{R}y \vee y\mathcal{R}x$. En cualquier otro caso es una relación de orden parcial.

3.3.1. Intervalos en un conjunto ordenado

Dados un conjunto ordenado (U, \preceq) , y $a, b \in U$ tales que $a \preceq b$, se denominan intervalos a cada uno de los siguientes conjuntos:

Intervalo abierto $(a,b) = \{x \in U | a \prec x \prec y\}$

Intervalo cerrado $[a,b] = \{x \in U | a \leq x \leq y\}$

Intervalo semiabiertos Pueden ser:

- $\bullet \ (a,b] = \{x \in U | a \prec x \preceq y\}$
- $\bullet \ [a,b) = \{x \in U | a \preceq x \prec y\}$

3.3.2. Intervalos iniciales y finales

Dado un conjunto ordenado (U, \preceq) , los siguientes conjuntos también se denominan intervalos:

Intervalo inicial abierto $(\leftarrow,a)=\{x\in U|x\prec a\}.$

Intervalo final abierto $(a,\leftarrow)=\{x\in U|a\prec x\}.$

Intervalo inicial cerrado $(\leftarrow, a] = \{x \in U | x \leq a\}.$

Intervalo final cerrado $[a, \leftarrow) = \{x \in U | a \leq x\}.$

3.3.3. Orden lexicográfico en \mathbb{R}^2

$$(a,b) \leq_L (c,d) \Leftrightarrow (a < c) \lor (a = c \land (b \leq d))$$

3.3.4. Orden producto en \mathbb{R}^2

$$(a,b) \leq_P (c,d) \Leftrightarrow a \leq c \land b \leq d$$

3.3.5. Conjunto acotado

Dados un conjunto ordenado (U, \preceq) y un subconjunto $A \subset U$, se denomina:

Cota superior Cualquier elemento $u \in U$ que cumple que $\forall x \in A, x \leq u$.

Cota inferior Cualquier elemento $u \in U$ que cumple que $\forall x \in A, u \leq x$.

Conjunto A acotado superiormente Si existe una cota superior de A.

Conjunto A acotado inferiormente Si existe una cota inferior de A.

Conjunto A acotado Si existe tanto cota superior como inferior de A.

3.3.6. Máximo, mínimo, supremo e ínfimo

Máximo del conjunto $A \max(A) = m \in A \text{ tal que } \forall x \in A, x \leq m.$

Mínimo del conjunto $A \min(A) = m \in A \text{ tal que } \forall x \in A, m \leq x.$

Supremo del conjunto A Cota superior $\sup(A) = s \in U$ tal que $s \leq u$ para toda cota superior u de A.

Ínfimo del conjunto A Cota inferior $\inf(A) = i \in U$ tal que $u \leq i$ para toda cota inferior u de A.

El ínfimo es el máximo de las cotas inferiores. El supremo es el mínimo de las cotas superiores.

Si existe máximo entonces hay supremo y son iguales. Si existe mínimo entonces hay ínfimo y son iguales.

Dados un conjunto ordenado (U, \preceq) y un subconjunto $A \subset U$, se tiene:

- Si existe máximo, mínimo, del conjunto A, entonces éste es único.
- Si existe supremo, ínfimo, del conjunto A, entonces éste es único.
- Si existe supremo s del conjunto A y $s \in A$, entonces s es el máximo de A.
- Si existe ínfimo i del conjunto A y $i \in A$, entonces i es el mínimo de A.

Propiedad del buen orden

Se dice que un conjunto (U, \preceq) es un conjunto **bien ordenado**, o que la relación \preceq es una buena ordenación, si cualquier subconjunto no vacío posee mínimo. El elemento mínimo de cada subconjunto A también se denomina primer elemento.

Propiedad del supremo

Se dice que un conjunto (U, \preceq) cumple la propiedad del supremo si y sólo si cualquier subconjunto no vacío A acotado superiormente posee supremo.

3.3.7. Maximal y minimal

Dados un conjunto ordenado (U, \preceq) y un subconjunto $A \subset U$ se define:

Maximal del conjunto A Es un elemento $m \in A$ tal que

$$\not\exists x \in A, x \neq m, m \leq x$$

Minimal del conjunto A Es un elemento $m \in A$ tal que

$$\not\exists x \in A, x \neq m, x \leq m$$

Si un conjunto tiene máximo (mínimo) entonces solo hay un maximal (minimal) que coincide con él.

3.4. Aplicaciones entre conjuntos

Una relación entre los conjuntos A y B se denomina **aplicación**, o **función**, entre A y B si y sólo si cualquier elemento del conjunto inicial A esta relacionado con un único elemento del conjunto final B.

- A es el conjunto inicial, original o dominio de definición de f, y se denota como Orig(f), Dom(f).
- \blacksquare B es el conjunto **final** de f.
- $f(A) = Im(f) = \{y \in B | \exists x \in A, f(x) = y\} = \{f(x) | x \in A\}$ es el conjunto imagen.
- f(x) es la imagen de x.
- $f^{-1}(y) = \{x \in A | f(x) = y\}$ se denomina **imagen inversa de** y **por** f.
- El conjunto de aplicaciones de A a B se denota por $\mathcal{F}(A, B), B^A, \mathcal{F}(A)$.

Una aplicación f es **constante** $\Leftrightarrow \forall x, x' \in A, f(x) = f(x')$.

Una relación de equivalencia \mathcal{E} sobre un conjunto A define una aplicación f que asigna a cada elemento su clase de equivalencia. Se denomina **proyección canónica**.

La aplicación de identidad asigna a cada $x \in A$ el mismo valor. Se denota como $I_A, 1_A, Id_A$.

3.4.1. Igualdad entre aplicaciones

Dos aplicaciones $f:A\longrightarrow B$ y $g:A'\longrightarrow B'$ son iguales:

$$f = g \Leftrightarrow \begin{cases} A = A' \\ B = B' \\ f(x) = g(x) \ \forall x \in A \end{cases}$$

3.4.2. Composición de aplicaciones

Dadas las aplicaciones $f: A \longrightarrow B \ y \ g: B \longrightarrow C$, se define la **composición de** f y g, o aplicación composición, a la aplicación de A a C, que denotamos como $g \circ f$, tal que:

$$(g \circ f)(x) = g(f(x)), \forall x \in A$$

3.4.3. Función característica de un conjunto

Dado un subconjunto $A \subset U$, se llama función característica de A, y se denota \mathcal{X}_A , a la función $\mathcal{X}_A : U \longrightarrow \mathbb{R}$ definida de la forma:

$$\mathcal{X}_A = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

3.4.4. Aplicación sobreyectiva o sobreyección

Es una aplicación tal que cualquier elemento del conjunto final está relacionado con alguno del conjunto inicial. Es decir, $f \in \mathcal{F}(A, B)$ tal que Im(f) = B, o lo que es lo mismo:

$$\forall y \in B, \exists x \in tal \ que \ Af(x) = y$$

3.4.5. Aplicación inyectiva o inyección

Es una aplicación tal que no hay dos elementos del conjunto inicial que tengan la misma imagen. Es decir, $f \in \mathcal{F}(A, B)$ tal que:

$$\forall x, x' \in A, f(x) = f(x') \Rightarrow x = x'$$

O lo que es lo mismo:

$$\forall x, x' \in A, x \neq x' \Rightarrow f(x) \neq f(x')$$

3.4.6. Composición de aplicaciones sobreyectivas e inyectivas

Dadas las aplicaciones $f \in \mathcal{F}(A, B)$, $g \in \mathcal{F}(B, C)$ y $g \circ f \in \mathcal{F}(A, B)$, se tiene:

- 1. Si f y g son sobrevectivas, entonces $g \circ f$ es sobrevectiva.
- 2. Si f y g son invectivas, entonces $g \circ f$ es invectiva.

3.4.7. Aplicación biyectiva o biyección

Es una aplicación que es sobreyectvia o inyectiva al mismo tiempo, es decir, tal que cada elemento del conjunto final está relacionado cono un único elemento del conjunto inicial. Es decir, una aplicación $f \in \mathcal{F}(A, B)$ tal que:

para cada $y \in B$ existe un unico elemento $x \in A$ tal que f(x) = y

Una aplicación $f \in \mathcal{F}(A, B)$ es biyectiva si y sólo si existe una aplicación $g \in \mathcal{F}(A, B)$ tal que $f \circ g = I_B$ y $g \circ f = I_A$.

Sean $f \in \mathcal{F}(A, B)$ y $g \in \mathcal{F}(B, C)$ aplicaciones biyectivas, entonces $g \circ f \in \mathcal{F}(A, C)$ es biyectiva, y su inversa es:

$$(g \circ f)^{-1}(x) = f^{-1}(x) \circ g^{-1}(x)$$

Sea una aplicación $f \in \mathcal{F}(A, B)$:

- 1. f es sobreyectiva si y sólo si existe una aplicación $h \in \mathcal{F}(B,A)$ tal que $f \circ h = I_B$.
- 2. f es inyectiva si y sólo si existe una aplicación $g \in \mathcal{F}(A, B)$ tal que $g \circ f = I_A$.

3.5. Equipotencia de conjuntos

Dos conjuntos A y B se dicen equipotentes si y sólo si existe una biyección entre ellos, y se denota $A \equiv B$.

3.5.1. Cardinal

Se denomina:

Cardinal 0 Es la colección de todos los conjuntos equipotentes con \emptyset , y se representa con el símbolo del número 0.

Cardinal n Es la colección de todos los conjuntos equipotentes con $1, \ldots, n \subset \mathbb{N}^*$, y se representa con el símbolo del número n.

Cardinal de \mathbb{N} o \mathfrak{N}_0 Es la colección de todos los conjuntos equipotentes con \mathbb{N} , y se representa con el símbolo del número \mathfrak{N}_0 .

Cardinal \mathbb{R} **o** \mathfrak{c} Es la colección de todos los conjuntos equipotentes con \mathbb{R} , y se representa con el símbolo del número \mathfrak{c} .

Decimos que el conjunto A tiene n elementos siendo $n \in \mathbb{N}^*$ si y sólo si:

$$card(A) = n$$

Se dice que un conjunto A es:

Finito Si existe $n \in \mathbb{N}$ tal que card(A) = n.

Infinito Si no es un conjunto finito.

Numerable Si existe una biyección de los números naturales al conjunto, y se indica escribiendo $card(A) = \mathfrak{N}_0$.

4 Operaciones internas y estructuras algebraicas

4.1. Operaciones internas

Sea E un conjunto. Una **operación interna**, o **ley de composición interna**, en E es una aplicación de $E \times E$ en E. Es decir, es una ley que asocia a todo par (a,b) de elemento de E un elemento único de E, que notaremos, $a \star b$.

4.1.1. Propiedades

Sea E un conjunto y \star una operación interna definida en E:

Asociativa $\forall a, b, c \in E, a \star (b \star c) = (a \star b) \star c.$

Conmutativa $\forall a, b \in E, a \star b = b \star a$.

Elemento neutro $\exists e \in E, \forall a \in E, a \star e = e \star a = a.$

Elemento simétrico del elemento $a \in E$ a un elemento $a' \in E$ tal que $a \star a' = a' \star a = e$.

Sea \star una operación interna en E, si existe elemento neutro de \star en E este es único.

Sea \star una operación asociativa interna en E con elemento neutro $e \in E$. Si $a \in E$ tiene elemento simétrico, este es único.

4.2. Grupos

Sean G un conjunto y \star una **operación interna** en G. Se dice que el par (G, \star) tiene estructura de grupo, o que (G, \star) es un **grupo**, si se satisfacen las siguientes propieda-

des:

- 1. \star es asociativa.
- 2. Existe **elemento neutro** de \star en G.
- 3. Para todo elemento $a \in G$, existe en G el **elemento simétrico** de a respecto de \star .

Si ademas la operación \star es conmutativa se dice que el grupo es **conmutativo** o **abeliano**.

4.2.1. Propiedades de un grupo

Sea (G, \star) un grupo. Se tiene:

- 1. $\forall a, b \in G, a \star b = a \star c \Rightarrow b = c$ (Propiedad cancelativa).
- 2. Para todo $a, b \in G$, existe un único $x \in G$, tal que $a \star x = b$.
- 3. Si a^{-1} y b^{-1} son los simétricos de a y b respectivamente, entonces $(a \star b)^{-1} = b^{-1} \star a^{-1}$.

4.2.2. Subgrupos

Dados (G, \star) y $H \subset G$, se dice que H es un subgrupo de G si (H, \star) tiene a su vez estructura de grupo. En particular, el subconjunto $\{e\}$ y el propio G son subgrupos de G.

Sean un grupo (G, \star) y H un subconjunto no vacío de G, (H, \star) es un subgrupo de G si y sólo si $\forall a, b \in H, a \star b^{-1} \in H$.

4.2.3. Congruencia modulo

Sea (G, \star) un **grupo abeliano** y sea (H, \star) un subgrupo. La relación \mathcal{R}_H en G definida:

$$\forall a, b \in G, a\mathcal{R}_H \Leftrightarrow a \star b^{-1} \in H$$

es una relación de equivalencia, que se denomina congruencia modulo H.

4.3. Anillos

Sea A un conjunto y sean + y \cdot dos operaciones internas definidas en A. Diremos que (A, \star) es un **anillo** si se satisface:

- 1. (A, +) es un grupo conmutativo.
- 2. La operación \cdot es asociativa.
- 3. La operación \cdot es distributiva respecto de la operación +, esto es,

$$a(b+c) = ab + ac$$
$$(b+c)a = ba + ca$$

Si además la operación \cdot es conmutativa, se dice que $(A, +, \cdot)$ es una **anillo conmutativo**.

Si $(A, +, \cdot)$ tiene elemento neutro para \cdot , siendo este distinto del elemento neutro de \star , se dice que $(A, +, \cdot)$ es una **anillo unitario**.

4.3.1. Propiedades de un anillo

Sea $(A, +, \cdot)$ un anillo. Se tiene:

- 1. $\forall a \in A, A \cdot 0 = 0 \cdot A = 0$, se dice que 0 es absorbente para el producto.
- 2. $\forall a, b \in A, (-a)b = a(-b) = -(ab) \text{ y } (-a)(-b) = ab.$
- 3. Si además el $(A, +, \cdot)$ es una anillo conmutativo se satisfacen las siguientes igualdades:

$$(a+b)^{2} = a^{2} + b^{2} + 2ab$$
$$(a+b)(a-b) = a^{2} - b^{2}$$
$$(a+b)^{n} = \sum_{i=0}^{n} \binom{n}{i} a^{n-i}b^{i}$$

Divisores de cero

En un anillo $(A, +, \cdot)$ se dice que el elemento $a \in A, a \neq 0$, es un divisor si existe $b \in A, b \neq 0$, tal que ab = 0.

4.3.2. Subanillos. Ideales

Sea $(A, +, \cdot)$ un anillo y H un subconjunto no vació de G. Se dice que H es un **subanillo** de A si $(H, +, \cdot)$ es a su vez una anillo. Los subconjuntos $\{1\}$ y el propio A son subanillos de A.

Sean $(A, +, \cdot)$ un anillo y H un subconjunto no vacío de A. H es un **subanillo** de A si y sólo si $\forall a, b \in H$ se cumple:

- 1. $a b \in H$.
- $2. ab \in H.$

Sean $(A, +, \cdot)$ un **anillo conmutativo** e I un subconjunto no vacío de A. Se dice que I es un **ideal** de A si cumple:

- 1. $a b \in I, \forall a, b \in I$.
- 2. $ac \in I, \forall a \in I, \forall c \in A$.

Si $(A, +, \cdot)$ un anillo conmutativo y $a \in A$ es un elemento fijo, el conjunto

$$aA = (a) = \{ak | k \in A\}$$

es un ideal de A que se denomina **ideal principal** generado por a.

4.4. Cuerpos

Sea \mathbb{K} un conjunto y seán + y \cdot dos operaciones internas definidas en \mathbb{K} . (\mathbb{K} , +, \cdot) es un **cuerpo** si se satisfacen las siguientes propiedades:

- 1. Las operaciones $+ y \cdot \text{son asociativas en } \mathbb{K}$.
- 2. Las operaciones $+ y \cdot \text{son conmutativas en } \mathbb{K}$.

- 3. La operación \cdot es distributiva respecto la operación + en \mathbb{K} .
- 4. Existen dos elementos distintos en \mathbb{K} que se designan por 0,1 que son elementos neutros de la suma y del producto respectivamente.
- 5. Existencia de opuesto: para todo a en \mathbb{K} existe el simétrico de a respecto de la suma que se designa por -a.
- 6. Existencia de inverso: para todo elemento $a \neq 0$ de \mathbb{K} existe el simétrico de a para el producto que se designa por a^{-1} .

O lo que es lo mismo:

- 1. $(\mathbb{K}, +)$ es un grupo conmutativo.
- 2. (\mathbb{K},\cdot) es un grupo conmutativo.
- 3. La operación \cdot es distributiva respecto de la operación + en \mathbb{K} .

4.4.1. Subcuerpos

Sea $(\mathbb{K}, +, \cdot)$ un cuerpo y sea H un subconjunto no vacío de \mathbb{K} donde consideramos las restricciones de las operaciones en \mathbb{K} . Se dice que H es un **subcuerpo** de \mathbb{K} si $(H, +, \cdot)$ es su vez un cuerpo.

Sea $(\mathbb{K}, +, \cdot)$ un cuerpo y sea H un subconjunto con al menos dos elementos distintos. H es un subcuerpo de \mathbb{K} si y sólo si se cumple:

- 1. $a b \in \mathbb{K}$ para todo $a, b \in H$.
- 2. $ab^{-1} \in H$ para todo $a, b \in H^* = H \setminus \{0\}$.

4.5. Orden y operaciones

4.5.1. Grupo ordenado

Sea una una relación de orden \leq definida sobre un grupo conmutativo (G, +), se dice que $(G, +, \leq)$ es un **grupo ordenado** si la relación de orden es compatible con la suma,

4 Operaciones internas y estructuras algebraicas

es decir:

$$\forall a, b, c \in G, a \prec b \Rightarrow a + c \prec b + c$$

En un grupo ordenado $(G, +, \preceq)$ se satisfacen las siguientes propiedades:

- 1. $a \leq b \Leftrightarrow b + (-a) \in G_+$.
- 2. $a \prec b \land a' \prec b' \Rightarrow a + a' \prec b + b'$.
- 3. $a \prec b \Rightarrow -b \prec -a$.

4.5.2. Anillo ordenado

Sea una una relación de orden \leq definida sobre un grupo conmutativo $(A, +, \cdot)$, se dice que $(A, +, \cdot, \leq)$ es un **anillo ordenado** si se cumple:

- 1. $\forall a, b, c \in A, a \leq b \Rightarrow a + c \leq b + c$.
- 2. $\forall a, b \in A, 0 \leq a \land 0 \leq b \Rightarrow 0 \leq ab$.

Si la relación de orden es total, se dice que el anillo es una **anillo totalmente ordenado**. Si además, es un cuerpo hablaremos de **cuerpo ordenado**.

En un anillo totalmente ordenado se define el valor absoluto de $a \in A$ mediante:

$$[a] = \begin{cases} a & si & 0 \le a \\ -a & si & a < a \end{cases}$$

En un anillo totalmente ordenado $(A, +, \cdot, \preceq)$ se satisfacen las siguientes propiedades:

- 1. $a \prec b \Leftrightarrow b a \in A$.
- 2. $a \leq b \wedge a' \leq b' \Rightarrow a + a' \leq b + b'$.
- 3. $a \leq b \Rightarrow -b \leq -a$.
- 4. $a \prec b \land 0 \prec c \Rightarrow ac \prec bc$.
- 5. $a \prec b \land c \prec 0 \Rightarrow bc \prec ac$.
- 6. $\forall a \in A, 0 \leq a^2$.

7. Si A es un anillo unitario entonces $0 \prec 1$.

8.
$$|a| \succeq 0, \forall a \in A \text{ y } |a| = 0 \Leftrightarrow a = 0.$$

9.
$$|ab| = |a||b|, \forall a, b \in A$$
.

10.
$$|a+b| \leq |a| + |b|, \forall a, b \in A$$
.

Si además $(A, +, \cdot)$ es un cuerpo también se cumple:

1.
$$a \succ b \Rightarrow a^{-1} \succ 0$$
.

$$2. \ 0 \prec a \leq b \Rightarrow b^{-1} \leq a^{-1}.$$

3.
$$a \prec b \prec 0 \Rightarrow b^{-1} \prec a^{-1}$$
.

4.6. Homomorfismos

Sean G y G' dos conjuntos donde se tiene respectivamente definida una operación interna +. Sea $f:G\longrightarrow G'$ una aplicación. Se dice que f es un **homomorfismo** si se cumple que:

$$\forall a, b \in G, f(a+b) = f(a) + f(b)$$

Si G = G' se denomina **endomorfismo**. Si el homomorfismo es biyectivo hablaremos de **isomorfismo** y todo endomorfismo biyectivo se denomina **automorfismo**.

4.6.1. Propiedades de un homomorfismo

- 1. Si $f: G \longrightarrow G'$ es un homomorfismo entonces la operación de G' es una operación interna cuando se restringe al conjunto imagen f(G).
- 2. Si $f: G \longrightarrow G'$ y $g: G' \longrightarrow G''$ son homomorfismo entonces la composición $g \circ f: G \longrightarrow G'$ es un homomorfismo.
- 3. Si $f:G\longrightarrow G'$ es un isomorfismo entonces la aplicación inversa $f^{-1}:G'\longrightarrow G$ es un isomorfismo.

La existencia de un isomorfismo entre dos conjuntos define una relación de equivalencia, ya que es reflexiva, simétrica y transitiva.

4.6.2. Homomorfismo de grupo

Sean (G, +) y (G', +) dos grupos tales que sus elementos neutros son respectivamente 0_G y $0_{G'}$, y -a y -a' los elementos simétricos de $a \in G$ y $a' \in G'$. Sea $f : G \longrightarrow G'$. Se tiene:

- 1. $f(0_G) = 0_{G'}$.
- 2. $f(-a) = -f(a), \forall a \in G$.
- 3. Si H es un subgrupo de G entonces,

$$f(H) = \{a' \in G' | \exists a \in H, f(a) = a'\}$$

es un subgrupo de G'.

4. Si H' es un subgrupo de G' entonces,

$$f^{-1}(H') = \{ a \in G | a \in G, f(a) \in H' \}$$

es un subgrupo de G.

Sean (G, +) y (G', +) dos grupos y $f: G \longrightarrow G'$ es un homomorfismo. Se tiene:

- 1. Imf es un subgrupo de G'.
- 2. Kerf es un subgrupo de G.
- 3. f es inyectivo si y sólo si $Kerf = \{0_G\}$.
- 4. f es sobrevectivo si y sólo si Im f = G'

4.6.3. Homomorfismo de anillos y cuerpos

Si $(A, +, \cdot)$ y $(A', +, \cdot)$ son dos anillos, un **homomorfismo de anillos** es una aplicación $f: A \longrightarrow A'$ tal que para todo $a, b \in A$ se cumple:

- 1. f(a+b) = f(a) + f(b).
- 2. f(ab) = f(a)f(b).

Para la + se cumplen las todas propiedades del homomorfismo de grupo, y para \cdot las propiedades del último grupo.

Si Si $(A, +, \cdot)$ y $(A', +, \cdot)$ son cuerpos estaríamos ante un **homomorfismo de cuer- pos**.

4.6.4. Homomorfismo de conjuntos ordenados

Si tenemos dos conjuntos ordenados (U, \preceq) y (V, \preccurlyeq) una aplicación $f: U \longrightarrow V$ se denomina **homomorfismo de estructuras ordenadas** si es creciente, es decir:

$$\forall a, b \in U, a \leq b \Rightarrow f(a) \leq f(b)$$

Si f es biyectiva estaremos ante un isomorfirmos de estructuras ordenadas.

5 Los números naturales y los números enteros

5.1. Los números naturales

Los números naturales se definen mediante los axiomas de Peano:

- 1. El elemento 0 es un número natural.
- 2. Todo elemento natural n tiene un único elemento sucesor que tambien es un número natural.
- 3. 0 no es el sucesor de ningún número natural.
- 4. Dos números naturales cuyos sucesores sean iguales, son iguales.
- 5. Si un conjunto de número naturales incluye al 0 y a todos los sucesores de cada uno de los elementos, incluye a todos los números naturales.

Se denotan de la siguiente manera, teniendo en cuenta si incluyen al 0 o no:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$
$$\mathbb{N} * = \{1, 2, 3, \ldots\}$$

En resumen:

- \blacksquare Todo número natural $n \neq 0$ es sucesor de algún número natural.
- Para todo $n \in \mathbb{N}, n \neq s(n)$.

5.1.1. Suma

Se define mediante recursión sobre n la suma m+n mediante:

- 1. m + 0 = n para todo $m \in \mathbb{N}$.
- 2. m + s(n) = s(m+n) para todo $m, n \in \mathbb{N}$.

La suma de números naturales es una operación interna en \mathbb{N} que satisface, cualesquiera que sean $m, n, p \in \mathbb{N}$, las siguientes propiedades:

- 1. Existencia de elemento neutro: m + 0 = 0 + m = m.
- 2. Asociativa: (m + n) + p = m + (n + p).
- 3. Conmutativa: m + n = n + m.
- 4. Cancelativa: $m + p = n + p \Rightarrow m = n$.

5.1.2. Producto

Se define por recurrencia sobre n el producto, que designamos por $m \cdot n$ o mn, de los numeros naturales m y n mediante:

- 1. $m \cdot 0 = 0$ para todo $n \in \mathbb{N}$.
- 2. $m \cdot s(n) = m \cdot n + m$ para todo $m, n \in \mathbb{N}$.

El producto de números naturales es una operación interna en \mathbb{N} que satisface, cualesquiera que sean $m, n, p \in \mathbb{N}$, las siguientes propiedades:

- 1. Existencia de elemento neutro: $m \cdot 1 = 1 \cdot m = m$.
- 2. Distributiva: m(n+p) = mn + mp y (n+p)m = nm + pm.
- 3. Asociativa: $(m \cdot n) \cdot p = m \cdot (n \cdot p)$.
- 4. Conmutativa: $m \cdot n = n \cdot m$.
- 5. Cancelativa: $mp = np \land p \neq 0 \Longrightarrow m = n$.

Se define la potencia n-ésima de a, a^n , mediante:

- 1. $0^n = 0$ para todo $n \in \mathbb{N}*$.
- 2. $a^0 = 1$ para todo $a \in \mathbb{N}*$.
- 3. $a^{n+1} = aa^n$ para todo $a \in \mathbb{N} * y n \in \mathbb{N}$.

5.1.3. Ordenación de números naturales

Dados $m, n \in \mathbb{N}$ se define la relación menor o igual, \leq , mediante:

$$\exists p \in \mathbb{N}, m+p=n \Rightarrow m \leq n$$

Se define estrictamente menor, < como:

$$m \le n \land m \ne n \Rightarrow m < n$$

Además, se obtiene la siguiente relación:

$$m < n \Leftrightarrow m + 1 \le n$$

Las relaciones $mayor\ o\ igual, \geq, \ y\ estrictamente\ mayor, <, \ se definen como:$

$$m \ge n \Leftrightarrow n < m$$

 $m < n \Leftrightarrow n \le m$

La relación \leq es una relación de orden total en \mathbb{N} , compatible con la suma y producto de número naturales, es decir para todo $m, n, p \in \mathbb{N}$ se tiene:

$$m \le n \Rightarrow \begin{cases} m+p \le n+p \\ mp \le np \end{cases}$$

El intervalo abierto $(n, n+1)_{\mathbb{N}}$ es vacío, para todo $n \in \mathbb{N}$.

El conjunto $\mathbb N$ con la relación \leq es un conjunto bien ordenado.

En N, todo subconjunto no vacío y acotado superiormente, tiene máximo.

5.2. Conjuntos finitos

Un conjunto A es **finito** si es vacío o si existe una biyección de A sobre un listado cerrado $[1, n]_{\mathbb{N}}$, con $n \neq 0$. En caso contrario, se dice que el conjunto es **infinito**.

Los intervalos cerrados tienen las siguientes propiedades:

- Si $n, m \in \mathbb{N}$ y existe una aplicación inyectiva $f: [1, n]_{(\mathbb{N})} \longrightarrow [1, m]_{(\mathbb{N})}$ entonces $n \leq m$.
- Si $n, m \in \mathbb{N}$ y existe un biyección $f: [1, n]_{(\mathbb{N})} \longrightarrow [1, m]_{(\mathbb{N})}$ entonces n = m.

Sea A un conjunto finito no vacío. Existe un único número natural n, no nulo, tal que A y $[1, n]_{\mathbb{N}}$ son equipotentes. Se dice entonces que card(A) = n.

Si $n \in \mathbb{N}$ entonces toda aplicación inyectiva $f:[1,n]_{(\mathbb{N})} \longrightarrow [1,n]_{(\mathbb{N})}$ es biyectiva.

Sea A un subconjunto no vacío de \mathbb{N} . A es un conjunto finito si y sólo si A es un conjunto acotado superiormente.

Esta propiedad presenta los siguientes corolarios:

- N es un conjunto finito.
- Todo subconjunto de un subconjunto finito de N es finito.
- La unión de dos subconjuntos finitos de N es un subconjunto finito.
- El complementario de un subconjunto finito de N es un conjunto infinito.

Sea A un subconjunto de un conjunto finito de B y $A \neq B$. Entonces A es un conjunto finito y card(A) < card(B).

Sea A un conjunto finito y f una aplicación de A en cualquier conjunto B. Entonces f(A) es un conjunto finito y

$$card(f(A)) \le card(A)$$

Además, card(f(A)) = card(A) si y sólo si f es inyectiva.

Si f es una aplicación sobreyectiva de un conjunto finito A en un conjunto B, entonces:

$$card(B) \le card(A)$$

Además, se tiene la igualdad card(A) = card(B) si y sólo si f es una aplicación biyectiva.

Sean A y B dos conjuntos finitos de igual cardinal y sea una aplicación $f:A\longrightarrow B$. Son equivalentes:

- 1. f es inyectiva.
- 2. f es bivectiva.
- 3. f es sobreyectiva.

Sean A y B dos conjuntos finitos disjuntos. Entonces $A \cup B$ es un conjunto finito y:

$$card(A \cup B) = card(A) + card(B)$$

Sean A y B dos conjuntos finitos. Entonces $A \cup B$ y $A \cap B$ son conjuntos finitos y

$$card(A \cup B) + card(A \cap B) = card(A) + card(B)$$

Sean A y B dos conjuntos finitos. Entonces, $A \times B$ es un conjunto finito y

$$card(A \times B) = card(A) \cdot card(B)$$

Sean A y B dos conjuntos finitos. Supongamos que $a = card(A) \neq 0$ y $b = card(B) \neq 0$. Entonces

$$card(\mathcal{F}(A,B)) = card(B^A) = b^a$$

Sea A un conjunto finito. Entonces

$$card(\mathcal{P}(A)) = 2^{card(A)}$$

Sea A y B dos conjuntos finitos cuyos cardinales son $card(A) = n \neq 0$ y $card(B) = m \neq 0$. Entonces el número de aplicación inyectivas de A en B es

$$card(\mathcal{I}(A,B))) = m(m-1)\cdots(m-n+1)$$

El número anterior se conoce como variaciones de m sobre n $V_{m,n}$:

$$V_{m,n} = m(m-1)\cdots(m-n+1) = \frac{m!}{(m-n)!}$$

Sea A y B dos conjuntos finitos cuyos cardinales son card(A) = card(B) = n. Entonces el número de aplicaciones biyectivas de A en B es:

$$card(\mathcal{B}(A,B)) = n!$$

Sea A un conjunto finito tal que card(A) = m. Sea $0 \le n \le m$. El número de subconjuntos de A que poseen exactamente n elementos es

$$\binom{m}{n} = \frac{m!}{n!(m-n)!}$$

Es número se lee msobren y se denomina coeficiente binomial, número combinatorio o combinaciones de m sobre en $C_{m,n}$.

5.3. Conjuntos infinitos

Sea A un conjunto cualquiera. Entonces el conjunto $\mathcal{P}(A)$ y el conjunto A no son equipotentes.

Un conjunto A se considera **numerable** si es equipotente con \mathbb{N} . El cardinal de los conjuntos numerables se denota como aleph sub zero \aleph_0 .

Sea A un subconjunto de \mathbb{N} . Entonces A es un conjunto finito o A es un conjunto numerable.

El conjunto $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ es numerable.

Se satisfacen las siguientes propiedades:

- 1. Todo subconjunto de un conjunto numerable es finito o numerable.
- 2. El producto de conjuntos numerables es numerable.
- 3. La unión de dos conjuntos numerables es numerables.
- 4. La unión numerable de conjuntos numerables es numerable.

5.4. Los números enteros

En $\mathbb{N} \times \mathbb{N}$ se define la relación de equivalencia \mathcal{E} :

$$(a,b)\mathcal{E}(a',b') \Leftrightarrow a+b'=a'+b$$

El representante canónico del número entero α es el par (m,n) donde al menos una de sus componentes es nula.

5.4.1. Operaciones en \mathbb{Z}

Sean $\alpha, \beta \in \mathbb{Z}$ y sean $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$ sendos representantes. Se define:

$$\alpha + \beta = (a+c, b+d)$$

$$\alpha\beta = (ac+bd, bc+ad)$$

 \mathbb{Z} es una anillo conmutativo unitario.

$$\alpha \cdot 0 = 0 \cdot \alpha = 0$$

$$\alpha, \beta \in \mathbb{Z}, \alpha\beta = 0 \Rightarrow \alpha = 0 \lor \beta = 0$$

5.4.2. Orden en \mathbb{Z}

Dados $\alpha, \beta \in \mathbb{Z}$:

$$\alpha < \beta \Leftrightarrow \beta - \alpha \in \mathbb{Z}_+$$

 $(\mathbb{Z}, +, \cdot, \leq)$ es un anillo totalmente ordenado.

5.4.3. Identificación de $\mathbb N$ con $\mathbb Z_+$

Todo subconjunto de $\mathbb Z$ no vacío y acotado

- 1. superiormente tiene máximo.
- 2. inferiormente tiene mínimo.

$5\,$ Los números naturales y los números enteros

Propiedad arquimediana de $\ensuremath{\mathbb{Z}}$

Dados $\alpha,\beta\in\mathbb{Z}$ si $\alpha>0$ entonces existe $n\in\mathbb{N}$ tal que $n\alpha\geq\beta.$