Centre Number	Candidate Number	Name	•

MINISTRY OF EDUCATION, BOTSWANA

in collaboration with

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE

Botswana General Certificate of Secondary Education

SCIENCE: DOUBLE AWARD

0569/02

Paper 2

October/November 2004

2 hours

Candidates answer on the Question Paper No additional materials are required

Read the following carefully before you start.

Write your centre number, candidate number and name in the spaces provided at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

Do not use staples, paper clips, highlighters, glue or correction fluid.

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on page 20.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
TOTAL	

1	Use some of the words in the list to complete the blanks in the paragraph.
	greenhouse, nitrogen, solar, rise, fall, infrared, ultra-violet, carbon dioxide, increase, decrease.
	Some gases such as from industries accumulate in the atmosphere
	leading to an in temperature. These gases trap long wave
	radiation emitted by the earth. This is known as the
	effect, and is believed to lead to global warming. Global warming causes a rise in the
	temperature of the oceans, which leads to a in sea level. [5]
2	Fig. 2.1 shows a test-tube containing water and some ice.
	gauze o o o o o o o o o o o o o o o o o o o
	Fig. 2.1
	(a) If heat is supplied continuously the ice finally melts. Suggest one method through which most heat energy reaches and eventually melts the ice.
	Give a reason for your answer.
	[2]
	(b) Name two other methods of heat transfer and explain why they transfer less heat energy than the method named in (a).
	1 name
	explanation

		2	name
			explanation
			[2]
3	(a)	How	would you tell if a paper-clip is made of a magnetic material or not?
			[1]
	(b)	Fig.	3.1 shows an electromagnet used as a relay switch.
			iron bar springy metal pivot
	to op	oerat	ing circuit S
			o power source
			contact point Z soft iron core
			Fig. 3.1
		(i)	Explain what would happen when switch S is closed.

(i) Explain what would happen when switch S is closed.

[4]

(ii) What magnetic property of iron makes it more suitable for this purpose?

[1]

4 Fig. 4.1 shows a sound wave passing through air and glass.

Fig. 4.1

- (a) On Fig. 4.1 label a compression with a letter C and a rarefaction, with a letter R. [2]
- **(b)** What happens to the speed, frequency and wavelength of the sound wave as it enters glass?

(Tick one box only in each row).

	speed	frequency	wavelength	
Increases				
Decreases				
Stays the same				[3]

5 Fig. 5.1 shows some water being boiled by a 1.2 kW electric kettle connected to 240 V mains supply.

Fig. 5.1

- (a) What is the current through the
 - (i) live wire,

current = A [2]

(ii)	earth	wire
(Π	, carui	AAIIC

current =	 Α	[1]
current —	 $\overline{}$	

(iii) neutral wire?

(b) The kettle is switched on for 20 minutes every day. Calculate the cost of using the kettle for 12 days if 1 unit costs 30 t.

6 Fig. 6.1 shows some major stages in the generation of electricity at a thermal power station.

Fig. 6.1

(a) (i) What are the major energy changes at each stage in the power station?

boiler:	
turbines:	
generator:	. —

(ii)	What type of voltage does the generator produce? (<i>Tick one box</i>).			
	alternating direct [1]			
	e 240 V output from a generator is connected to a transformer with a primary coil of 000 turns. The secondary coil of the transformer has 20 000 turns.			
(i)	Calculate the output voltage,			
	output voltage = V [2]			
(ii)	The power input to the transformer from the generator is 1200 W.			
	Calculate the input current to the transformer.			
	input current = A [2]			
(a) Ch	noose from the list of metals:			
ca	lcium, copper, sodium, zinc.			
Th	e metal which:			
(i)	(i) forms a carbonate that does not decompose on heating,			
	[1]			
(ii)	does not react with dilute hydrochloric acid,			
	[1]			
(iii)	(iii) reacts with steam but not with cold water.			
[1]				
(b) Th	(b) The table shows the colours of some aqueous solutions.			
	solution colour			
	copper(II) sulphate blue			
	iron(II) sulphate green			

7

(i) State the colour change in the solution when iron is added to aqueous copper(II) sulphate solution.

blue to

(ii) Name the type of reaction that takes place in (b)(i).

.....

(iii) Explain why the reaction took place.

.....[3]

(c) Complete the equation for the reaction.

$$Fe(s) + CuSO4(aq) \longrightarrow \dots \qquad () + \dots \qquad ()$$

8 Fig. 8.1 shows the structures of two forms of carbon.

Name the form X.

Fig. 8.1

......[1]

(ii) What is the term used to describe two different forms of an element in the same physical state?

.....[1]

(b) Fig. 8.2 shows some objects made from diamond and X.

Fig. 8.2

	(i)	State the property that makes each form suitable for the use shown.	
		diamond	
		X [2	2]
	(ii)	Give one other use of diamond.	
c)	Two	isotopes of carbon are ${}^{12}_{6}$ C and ${}^{13}_{6}$ C.	
	(i)	What is the difference between the two isotopes?	
		[1]
	(ii)	State one reason why the isotopes react similarly.	
		[1]
	(iii)	Draw an atomic structure showing the arrangement of electrons in an atom of $^{13}_{\ 6}$	С

and the number and position of neutrons and protons.

[2]

9 Fig. 9.1 shows a set-up used for the electrolysis of aqueous copper(II) sulphate solution using carbon electrodes.

Fig. 9.1

(a) (i)	Label the anode on the diagram.	[1]
(ii)	Write the formulae of all the ions present in aqueous copper(II) sulphate.	
		[2]
(iii)	Name the electrode where copper is deposited.	
		[1]
(iv)	Name the product of electrolysis other than copper.	
		[1]

(b) Fig. 9.2 is a pie chart for the composition by mass of clean air.

Fig. 9.2

(i)	Name the	components	labelled	X and	Y
-----	----------	------------	----------	-------	---

(c) (i) State one use of each of the following gases:

Oxygen

Carbon dioxide[2]

(ii) Name one natural process responsible for maintaining the composition by mass of clean air.

.....[1]

10 (a) Complete the table on organic compounds. The first one has been done for you.

molecular formulae	molecular structure	homologous series
CH₄	H HCH H	alkane
С ₃ Н ₆		alkene
	H H 	

[3]

(b) 1.6 g of methane, CH₄, undergoes complete combustion according to the equation:

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$

(i) Calculate the number of moles of methane burnt.

[1]

(ii) Calculate the number of moles of water that would be formed.

[1]

(iii) Use your answer from (b)(ii) above to calculate the mass of water produced.

[1]

11	The diagram	shows	а	food	chain.	
----	-------------	-------	---	------	--------	--

		grass → grassnopper → blue tits → cat → nyena
(a)	(i)	Name the principal source of energy for this food chain.
		[1]
	(ii)	State the form in which energy is transferred from the grasshopper to the blue tit.
		[1]
(b)		I grasshoppers suddenly die explain what will happen to the amount of grass and aber of blue tits.
	amo	ount of grass
		[2]
	num	nber of blue tits
		[2]
(c)		each stage in a food chain, the mass of living material and energy is less than in the vious stage. Explain why this is so.
	••••	
		[3]

12 Fig. 12.1 shows some parts of a flower.

Fig. 12.1

(a) (i)	Name the agent of pollination for this flower.	[4]
(ii)	Give two reasons for your answer in a(i) .	[1]
	1	
	2	[2]
(b) (i)	Mark on the diagram with the letter X where ovules are produced.	[1]
(ii)	What does the ovule develop into after fertilisation?	
		[1]

J		ases below.
	(a)	where a fetus develops
	(b)	the liquid that contain sperms
	(c)	produces sperms
	(d)	where fertilisation takes place
	(e)	passes sperms into female during sexual intercourse[5]

14 Fig. 14.1 shows a simple reflex arc.

Fig. 14.1

(a)	Name the neurones labelled X, Y and Z.	
	X	
	Υ	
	Z	[3

(b)	On neurones X , Y and Z , show by arrows, the direction of movement of nervous impulses. [1]
(c)	Define reflex action.
	[1]
Fig.	15.1 shows the exchange of materials between cells and blood.

body cell

Fig. 15.1

(a)	Nan	ne the component of blood that transports dissolved substances around the body.
		[1]
(b)	(i)	Name the fluid through which waste materials pass from the body cells into the blood.
		[1]
	(ii)	Explain how waste products move through this fluid from the cell into the blood.
		[2]
(c)	How	does the structure of blood vessel C help in the removal of waste materials?
	•••••	
		[1]

15

16 Fig. 16.1 shows the effect of untreated sewage on the amount of oxygen dissolved in a river.

Fig. 16.1

(a) (i)	State the part of the graph at which sewage was discharged into the river.
	[1]
(ii)	Explain your answer in (i) above.
	[3]

DATA SHEET
The Periodic Table of the Flei

1					I			I									Γ.					ſ			
		0	→ ₽	Helium 2	50	Ş	Neon 10	9	Ā	Argon 18	8	ż	Krypton 36	131	×e	Xenon 54		吊	Radon 86				175	3	Lutetium
		II/			19	L.	Fluorine 9			Chlorine 17	ĺ	ă	Bromine 35	127	_	lodine 53		Ą	Astatine 85				173	Λþ	Ytterbium
		N			16	0	Oxygen 8	32	S	Sulphur 16	79	Se	8	128	<u>e</u>	Tellurium 52			Polonium 84				169	Ę	Thulium
		>			14	z	Nitrogen 7			Phosphorus 15	75	As	Arsenic 33	122		Antimony 51		ä	Bismuth 83				167	ш	Erbium
		>			12	ပ	Carbon 6	78	:S	Silicon 14			ε	İ	S	Tin 50	207	ď	Lead 82				165	운	Holmium
		=			F	ω	Boron 5	27	ΑĮ	Atuminium 13	02	Са			드	49	204	ĭ	Thatlium 81				162	۵	Dysprosium
ts												Zu	Zinc 30	112	ਲ	Cadmium 48	201	Ę	Mercury 80				159	đ	Terbium
Elemen											49	రె	Copper 29		Ag	47		Αn	Gold 79				157	ဥ	Gadolinium
The Periodic Table of the Elements	Group										59	Z	Nickel 28	901	Б	Palladium 46	195	ā.	Platinum 78				152	ЕС	Europium
dic Tabl	Gr.										29	ပိ	Cobalt 27	103	듄	Rhodium 45	192	ï	hidium 77				150	S	Samarium
he Perio			- I	Hydrogen 1							56	щ	iron 26	101	3	Ruthenium 44	190	Os	Osmium 76					P	Promethium
F											55	M	Manganese 25		ည	n Technetium 43	186		_				144	Ž	
											52	ర	Chromium 24		№		184	≥	Tungsten 74				141	ፚ	Praseodymium
;											51	>	Vanadium 23	86	g	Niobium 41	181	<u>ra</u>	Tantalum 73				140	సి	Cerium
											48	F	Titanium 22	16	Zr	Zirconium 40	178	Ŧ	Hafinium 72				1		
İ											45	လွ	Scandium 21	68	>	Yttrium 39	139	፫	Lanthanum 57 *	227	Ac	Actinium 89 †	001100	351153	กับ
		=			6	Be	Beryllium 4	24	₽	Magnesium 12	40	ပ္ပ	Calcium 20	88	ഗ്	Strontium 38	137	Ва	Barium 56	226	Z W	Radium 88	*58_71 anthanoid corios	-30-7 1 Callillariold selle -50 102 Astinoid sorion	ACILION
		_			7	=	Lithium 3	23	Š	Sodium 11	39	¥	Potassium 19	88	윤	Rubidium 37	133	ပိ	Caesium 55	Ĺ	T	Francium 87	*58_71	100 100	221-28
004												05	69/0	2/O	/N/()4									

	140	141	4		150	152	157	159	162	165	167	169	173	175	
TOTA Series	ပီ	ď	Ž	P	Sa	БС	gg	P	٥	웃	山	ᄩ	ΛÞ	ב	
on selles	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
a = relative atomic mass	232		238												
X = atomic symbol	두	Pa	¬	ď	Pu	Am	Ë	ă	5	Es	Æ	PΜ		۲	
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103	

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).