

planetmath.org

Math for the people, by the people.

table of Fourier transforms

Canonical name TableOfFourierTransforms

Date of creation 2013-03-22 18:08:12 Last modified on 2013-03-22 18:08:12

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Feature

Classification msc 42A38

Synonym Groupoid Transforms

Defines Fourier-Stieltjes generalization of FT

Below are tables of http://planetmath.org/FourierTransformFourier transforms; one lists some of the common properties, and the other lists some common examples.

Properties

Original	Transformed	comment	derivation
af(t) + bg(t)	$a\mathcal{F}{f(t)} + b\mathcal{F}{g(t)}$	linearity	
f(t) * g(t)	$\mathcal{F}\{f(t)\}\mathcal{F}\{g(t)\}$	convolution property	
$f(t+\alpha)$	$F(s)\exp(-i\alpha s)$	time shift, where $F(s) = \mathcal{F}\{f(t)\}$	
f'(t)	$is\mathcal{F}\{f(t)\}$	differentiation	
$\overline{f(t)}$	$\overline{F(-s)}$	conjugation, where $F(s) = \mathcal{F}\{f(t)\}$	
$f(\alpha t)$	$\frac{1}{ \alpha }F(\frac{s}{\alpha})$	scaling, where $F(s) = \mathcal{F}\{f(t)\}\ $ with $\alpha \neq 0$	

Examples

f(t)	$\mathcal{F}\{f(t)\}$	conditions	explanation	derivation
$\delta(t)$	1		Dirac delta function	
1	$2\pi\delta(s)$			
e^{iat}	$2\pi\delta(s-\alpha)$	$a \in \mathbb{R}$		
$\cos(at)$	$\pi(\delta(s+a) + \delta(s-a))$	$a \in \mathbb{R}$		
$\sin(at)$	$i\pi(\delta(s+a)-\delta(s-a))$	$a \in \mathbb{R}$		