4

Aufgabe 2: M3-Schaltung

Gehen Sie von idealen Bedingungen aus (ideale Bauteile, idealer Stromübergang von einem auf das andere Ventil) Sämtliche Wechselgrößen sind als Effektivwerte gegeben.

 $U_{\Delta} = 400 \text{ V}$, 50 Hz $\ddot{u} = \text{Np/Ns} = \frac{1}{\sqrt{3}}$ $R = 10 \Omega$ Steuerwinkel $\sigma = 60^{\circ}$ $L_{d} \rightarrow \infty$

ü: Übersetzungsverhältnis des Transformators

Np. Primärwindungszahl des Transformators je Strang Ns. Sekundärwindungszahl des Transformators je Strang 1. Zeichnen Sie den zeitlichen Verlauf der Spannung u_d . Benutzen Sie das bereitgestellte Diagramm (2a).

2. Berechnen Sie Gleichspannung U_{dia} und den Gleichstrom I_{d} .

Annahme: Die Thyristoren T₁ und T₂ werden durch Dioden ersetzt (gleiche Sperrichtung). Der Steuerwinkel für den Thyristor T₃ bleibt zunächst unverändert.

3. Zeichnen Sie für diesen Fall den zeitlichen Verlauf der Spannung u_d und kennzeichnen Sie α_{T3} . Benutzen Sie das bereitgestellte Diagramm (2b).

4. Berechnen Sie die neue Gleichspannung U_{dio} .

5. Bestimmen Sie α_{T3} , so dass $U_{dia} = 405 \text{ V}$ ist.

 Zeichnen Sie für diesen Fall den zeitlichen Verlauf der Spannung u_d und kennzeichnen Sie ατ3·. Benutzen Sie das bereitgestellte Diagramm (2c).

