ISFASA 1st International Symposium on Energy System Analysis

Resilient strategies for the European energy system A case study on 2030 EU policy targets **Bobby Xiong**

xiong@tu-berlin.de

Technische Universität Berlin, Germany

November 11, 2024

RESILIENT project partners

Funded via CETPartnership 2022 Call – BMWK for all German partners.

PyPSA-Eur: An open-source, sector-coupled model for Europe

- Spatially and temporally highly linear optimisation model that covers the European continent,
- Built on top of the open-source toolbox PyPSA,
- Includes stock of existing power plants, renewable potentials, availability time series,
- Covers the electricity high-voltage grid from AC 220 kV to 750 kV (UA) and DC 150 kV upwards, option to include planned transmission projects (TYNDP and German NEP),
- Maintained by the Department of Digital Transformation in Energy Systems at TU Berlin

Selection of planned model developments

Computational methods for uncertainties

- decomposition techniques
- large-scale stochastic optimisation
- test robustness of system
- using SMS++ framework

Carbon management and biomass usage

- CO₂ network
- CO₂ sequestration potentials
- circular carbon economy and recycling
- biomass usage options

Industry transformation (FORECAST)

- fuel and process switching
- industry relocation
- carbon sources and feedstocks
- data on stock & investment cycles
- new technologies (oxyfuel cement, etc.)

Global green fuel and material markets

- imports of green energy and materials
- effects on European infrastructure
- restructuring of value chains
- risks (geopolitical, technological, etc.)

Case study: Motivation

Blabla

target 1

Case study: Model setup

- Including sectors power, heat, transport, industry, agriculture
- Minimising total system costs (investment and operation) for the target
- Co-optimising generation, transmission, storage, and power-to-X conversion
- Resolving 34 countries to 90 regions at 3-hourly temporal resolution
- Implementing PCI/PMI hydrogen and carbon infrastructure projects as well as key 2030 targets:
 - 55 % emission reduction (Fit for 55)
 - 10 Mt p.a. production of hydrogen (REPowerEU)
 - 50 Mt p.a. of CO₂ sequestration (Net-Zero Industry Act)

Case study: Overview of PCI-PMI H₂ and CO₂ infrastructure

- Baseline scenario incorporates PCI/PMI projects for H₂ and CO₂ infrastructure, including pipelines, storages (H_2) and sequestration sites (CO_2) , commissioned by 2030
- Total CO₂ sequestration potential sums up to 75 Mt p.a., mostly located in the North Sea
- Total H₂ storage capacity sums up to 977 GWh

First results

test

Case study: First takeaways

- Imports of green energy could reduce cost of European net-zero system by 1-14%.
- **Diminishing returns** for larger import volumes; **preference** for steel, MeOH and H_2 .
- 3 Infrastructure policy needs **coordination** with import strategy & carbon management.
- 4 Protect against interannual weather variability, e.g. with (green) fuel reserves.
- Maneuvering space to accommodate non-cost factors: **geopolitics**, **reuse** of infrastructure, **resilience** of supply chains, diversification, and reduced land usage..

Outlook

Add all PCI/PMI projects, including hybrid offshore interconnection projects (energy islands), electricity storages, etc.

Appendix

Why H_2 ? Most H_2 is used for derivative fuels and chemicals!

Mostly green electrolytic hydrogen supply. Few direct uses of hydrogen in the energy system, but it is used to synthesise other fuels and chemicals:

- ammonia for fertilizers
- direct reduced iron for steelmaking
- shipping and aviation fuels

- precursor to high-value chemicals
- backup heat and power supply
- some heavy duty land transport

Transporting CO_2 to H_2 or transporting H_2 to CO_2 ?

Case study: PCI/PMI + 2030 targets

Carbon management: Capture, use, transport and sequestration

- CCS for process emissions (for instance, in cement industry)
- CCU for e-synfuels and e-chemicals (in particular, shipping, aviation, plastics)
- CDR for unabatable and negative emissions (to offset imperfect capture rates)

