Learning Dynamic Graph Representation of Brain Connectome with Spatio-Temporal Attention

Byung-Hoon Kim *

Department of Psychiatry
Institute of Behavioral Sciences in Medicine
College of Medicine, Yonsei University
egyptdj@yonsei.ac.kr

Jong Chul Ye

Department of Bio/Brain Engineering Kim Jaechul Graduate School of AI KAIST jong.ye@kaist.ac.kr

Jae-Jin Kim

Department of Psychiatry
Institute of Behavioral Sciences in Medicine
College of Medicine, Yonsei University
jaejkim@yonsei.ac.kr

(NeurIPS 2021) Presenter: Nikoleta Chantzi | ENGG 192

Background

> Functional Connectivity (FC); correlation of different brain regions over time

Previous Work | Limitations

- A. Models missing dynamic component; provided by temporal data
- B. Dynamic Features of FC
 - a. Lower accuracy level (example: gender misclassification)
 - b. Lacking temporal explainability; FC brain changes over time

Paper's Contribution

Uncover functional basis of the brain

- Attention-based readout functions
- 2. Transformer encoder

Related Work & Challenges

- The dynamic brain graphs do not include any addition or deletion of nodes and are sampled uniformly over time
- Pooling function | Graph Neural Networks (GNN)
 - data aggregation can be tricky
 - randomly initialized parameters or local graph structures, suboptimal for graph classification tasks that require the graph as a whole.

STAGIN Model [1/2]

A. Achieve high classification of human activity

a. Resting state

b. Active state

STAGIN Model [2/2]

- A. Spatial Attention
 - a. Graph-Attention READOUT (GARO)
 - b. Squeeze-Excitation READOUT (SERO)
- B. Prior Knowledge
 - a. h_g global average-pooled graph feature

Experimental settings

- A. Supervised manner with the loss function $\mathcal{L} = \mathcal{L}_{xent} + \lambda \cdot \mathcal{L}_{ortho}$
- B. Dynamic learning rate α
- C. Region of Interest (ROI)-timeseries matrix P (n = 400)
- D. The time dimension of P was randomly sliced with a fixed length

Table 1: Comparative study on HCP-Rest and HCP-Task dataset.

Model	HCP-Rest		HCP-Task	Type of FC	# Params
	Accuracy (%)	AUROC	Accuracy (%)	-71	
STAGIN-SERO	88.20 ± 1.33	0.9296 ± 0.0187	99.19 \pm 0.20	Dynamic	1,209k
STAGIN-GARO	87.01 ± 3.00	0.9151 ± 0.0258	99.02 ± 0.17	Dynamic	1,068k
ST-GCN [15]	76.95 ± 3.00	0.8545 ± 0.0316	98.92 ± 0.27	Dynamic	355k
MS-G3D [10]	79.16 ± 2.53	0.8912 ± 0.0329	-	Dynamic	3,045k
BAnD++[36]	-	-	97.20 ± 0.57	None	2,010k
BAnD [36]	-	-	95.10 ± 0.62	None	2,010k
r-BAnD	-	-	98.90 ± 0.27	Dynamic	664k
GIN [23]	81.34 ± 2.40	0.8955 ± 0.0237	93.87 ± 0.66	Static	169k
GCN [24]	80.79 ± 2.00	0.8741 ± 0.0174	45.07 ± 1.63	Static	101k
GraphSAGE [31]	75.48 ± 1.97	0.8237 ± 0.0228	54.52 ± 0.97	Static	202k
ChebGCN [2]	77.76 ± 2.09	0.8582 ± 0.0233	73.06 ± 0.68	Static	704k

Gender Classification | Results

Task decoding | Results

SMN, visual network (VN), and salience/ventral attention network (SVN) dominance

DMN and cognitive control network (CCN) dominance

The Code

In the context of spatial-temporal context in smart homes...

- K-means clustering
- Elbow Method to choose optimal k

