1.

a)

add x_5, x_7, x_1

b)

 $\operatorname{Idur} x_0, [x_6, 16]$

c)

sub $x_0, x_5, x_1 1$ cbz x_0 , END

d)

 $lsr x_{10}, x_9, 15$

2.

a)

The instruction can be written in binary and it shows as follows,

11111000000000100000000101001001

So in hex, it should be,

0xF8020149

b)

The instruction can be written in binary and it shows as follows,

10010001000000000010000011001001

So in hex, it should be,

0x910020C9

3.

a)

First we need to transfer it into binary,

The opcode should be 10001011000 and it is add, so the instruction is,

add
$$x_0, x_0, x_0$$

b)

First we need to transfer it into binary,

$$0xB4016B54 = 1011010000000010110101101010100$$

The opcode should be 10110100 and it is cbz, and the address is 0000000101101011010, so the instruction is,

$$cbz$$
 $x_{20}, 0xB5A$

4.

a)

I will do it step by step. I will ignore the first 7 0s in hex because I donnot need it.

 $x_{12} = 10101010101010101010101010101010100000$

Then I will write x_{12} and x_{11} then do orr.

In hex, it should be,

$$x_{12} = 0x1234567ABABEFEF8$$

b)

In hex, it should be,

 $x_{12} = 0x0000000000000545$

5.

a)

subi $x_2, x_2, 5$ add x_0, x_1, x_2

b)

sub x_3 , x_3 , x_4 lsl x_8 , x_3 , 3 add x_9 , x_6 , x_8 ldur x_{10} , $[x_9, 0]$ stur x_{10} , $[x_7, 8]$

$\mathbf{c})$

sub x_0 , x_0 , x_1 cbnz x_0 , ELSE addi x_3 , x_3 , 1 b END ELSE: addi x_3 , x_3 , 2 END