Answer

a.
$$X(j0) = \int_{-\infty}^{\infty} x(t)e^{-j0t}dt = 0$$
.

b.
$$\int_{-\infty}^{\infty} X(j\omega)e^{j\frac{\omega T}{4}}d\omega = 2\pi x \left(\frac{T}{4}\right) = -2\pi A.$$

c.
$$\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = 2\pi \int_{-\infty}^{\infty} |x(t)|^2 dt = 2\pi \cdot 2 \cdot \frac{A^2 T}{2} = 2\pi A^2 T.$$

d. Since x(t) and $\frac{dx}{dt}$ do not have any impulses (delta functions), but $\frac{d^2x}{dt^2}$ has impulses, $|X(j\omega)| \propto |\omega|^{-2}$ as $|\omega| \to \infty$.