Lecture 23: Operational amplifier (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Unit-gain buffer

- Driving a relatively high current load
 - The output resistance of the op amp is almost negligible.
 - So, the resistance can provide as much current as necessary to the output load.

Schematic of a unit-gain buffer (Texas Instruments)

Its output characteristics

Realisitic curve

Using a negative voltage on the lower rail (rather than ground)
 allows the amplifier to maintain linearity for inputs below 2 V.

Output voltage versus input voltage (Texas Instruments)

Noninverting amplifier (1)

- Calculate the gain.
 - The input resistance of the op amp is large.

$$V_{in2} = \frac{R_2}{R_1 + R_2} V_{out}$$

Due to the high op amp gain,

$$V_{in2} \approx V_{in}$$

Therefore, the "closed-loop" gain is

$$\frac{V_{out}}{V_{in}} \approx \frac{R_1 + R_2}{R_2}$$

Noninverting amplifier (2)

- Repeat it again with a finite A₀.
 - Now,

$$V_{out} = A_0(V_{in} - V_{in2})$$

- Remember that $V_{in2} = \frac{R_2}{R_1 + R_2} V_{out}$.

Then, the closed-loop gain is

$$\frac{V_{out}}{V_{in}} = \frac{A_0}{1 + \frac{R_2}{R_1 + R_2} A_0}$$

Inverting amplifier

- The inverting input is called a "virtual ground."
 - Then, the output voltage is

$$V_{out} = -R_1 \frac{V_{in}}{R_2}$$

- Its input impedance is equal to R_2 .

Integrator

- Instead of a resistor, a capacitor is introduced.
 - In the time domain,

$$\frac{V_1}{R_1} = -C_1 \frac{dV_{out}}{dt}$$

