Introduction to Data Science

Classification (Supervised Learning)

(Created by HL Viktor: Based on subset of Chapters 8, 9 of Han et. al.)

1

(Machine) Intelligence Revolution?

- http://dncapital.com/thoughts/beyond-big-data-to-data-driven-decisions/
- $\bullet \ \ \, \underline{\text{https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/human-capital/ca-EN-HC-The-Intelligence-Revolution-FINAL-AODA.pdf}$
- https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=IML14576USEN

Data mining + Machine Learning

- Data driven discovery: making sense of the data deluge

3

Data mining + Machine learning

- Introduction and definitions to supervised learning
- KDD lifecycle
- Data mining example
- Data preprocessing
- Evaluation of results

Classification and Prediction

- Examples of "Supervised learning"
- We have historic data and the outcome is known
 - Past home owners with a home loan (mortgage):
 - mortgage paid on time (class 0: good)
 - house repossessed by bank (class 1: bad)
 - Heart Surgery patients in a hospital:
 - Back at home (class 0: good)
 - in general ward (class 1: recovering)
 - in Intensive Care (class 2: seriously ill)
 - Deceased (class 3: bad)

5

The goal of classification

- We organize and categorize data in distinct classes
- We know the class labels and the number of classes
- E.g. Past Labor Negotiations (did they go no strike (or not))
- A model is created based on the data distribution
- The model is then used to classify new data
- Classification is used for the prediction of discrete and nominal values
 - Typically with classification, I aim to predict in which bucket to put the ball, not the exact weight of the ball.

The goal of prediction

- We aim to forecast the value of an attribute based on values of other attributes.
- E.g. Exchange Rate of Canadian Dollar to Euro
- A model is first created based on the data distribution.
- The model is then used to predict future or unknown values.
- Prediction is used for the prediction of numeric
 - Typically with prediction, I aim to predict the exact weight of the ball.

7

The phases of building a classifier (for now)

- 1. Divide the data into training and test data
- 2. Induce a classifier (model construction)
- 3. Test (model evaluation)
- 4. Use to predict new values (use model)

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Two important Issues

- 1. Data preparation
 - 2. Evaluation

13

Preparing data for classification

Data transformation:

- Discretization of continuous data
- Normalization to [-1..1], [0..1], [0.1..0.9], z-score...
- Data Cleaning
- Smoothing to reduce noise

Relevance Analysis:

• Feature selection to eliminate irrelevant attributes

User Expectations versus Data Reality

- Decisions
 - Do we have enough data?
 - Do we have enough high quality data?
 - Do we have the ability to get enough high quality data soon?
 - Biggest risk → underestimating the difficulty to source your data
 - List success criteria: specific, measurable

15

Types of Data Sets and Data

- · Records:
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: term-frequency vector
 - Transaction data
- Graph and network:
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered:
 - · Video data: sequence of images
 - Time series
 - Sequential Data: transaction sequences
 - Data streams
- Spatial, image and multimedia

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Important Characteristics of Structured Data

- Dimensionality
 - · Curse of dimensionality
- Sparsity
 - · Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - · Centrality and dispersion

17

Databases and Data Objects

- Databases are made up of data objects ©
- A data object represents an entity; with relationships (1:M, N:M, 1:1)
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples , examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns -> attributes.

A word about Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 - E.g., customer _ID, name, address
- Types:
 - Nominal
 - Binary
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

19

Attribute Types and Analytics

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes
 - Issue: measuring "distance"
- Ordinal
 - Values have a meaningful order (ranking) but magnitude between successive values is not known.
 - Size = {small, medium, large}, grades, army rankings
- Binary
 - Nominal attribute with only 2 states (0 and 1)
 - <u>Symmetric binary</u>: both outcomes equally important
 - e.g., gender
 - Asymmetric binary: outcomes not equally important
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., Cancer positive)

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 - E.g., temperature in C° or F° , calendar dates
- Ratio
 - Inherent zero-point
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., length, counts, monetary quantities

21

Discrete vs. Continuous Attributes

Discrete Attributes

- Has only a finite or countably infinite set of values
 - E.g., postal codes, profession, or the set of words in a collection of documents
 - Many ML algorithms struggle with these (more later)

Continuous Attributes

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits

Often we convert these to attribute bands, for data analysis

Attribute types: Questions

Issue: Some data mining techniques "favors" numeric versus nominal data, and vice versa

Initial Questions:

- Do we need to convert an attribute type (age to age-range)?
- Do we have an ordering (city → province → country)?
- Do we need to aggregate (individual sales to daily sales)?
- Do we need to combine values (auburn and brown hair)?
- How do we measure distance

Approaches

- Ask your users!!!!
- Done during data preprocessing once we got a feel of our data

2.3

Descriptive data summarization

General idea: Get an overall picture of your data

See how it is distributed; if there is skew, if it has a high variance, and so on

- Central tendencies
- Dispersion of data

Measuring the Central Tendency

• Mean (algebraic measure) (sample vs. population):

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Weighted arithmetic mean:
- Trimmed mean: chopping extreme values

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- Median: A holistic measure
 - Middle value if odd number of values, or average of the middle two values otherwise
 - Estimated by interpolation (for grouped data):

• Estimated by interpolation (for grouped data):
$$median = L_1 + (\frac{n/2 - (\sum f)l}{f_{median}})c$$

- · Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula: $mean-mode=3\times(mean-median)$

Symmetric vs. Skewed Data

• Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- · Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: IQR = Q₃ Q₁
 - Five number summary: min, Q₁, M, Q₃, max
 - Boxplot: ends of the box are the quartiles, median is marked, whiskers, and plot outlie individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: σ)
 - · Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

• Standard deviation s (or σ) is the square root of variance $s^2(or\sigma^2)$

20

Normal distribution: A strong assumption?

- Very often, we assume a normal distribution
- What if it is not? (e.g. earthquake, financial markets, ketchup sales...)

Boxplot Analysis

• Five-number summary of a distribution:

Minimum, Q1, M, Q3, Maximum

- Boxplot
 - Data is represented with a box
 - The ends of the box are at the first and third quartiles, i.e., the height of the box is IRQ
 - The median is marked by a line within the box

 Whiskers: two lines outside the box extend to Minimum and Maximum

1000

400

200

unit price (S)

31

Histogram Analysis

- Graph displays of basic statistical class descriptions
 - Frequency histograms
 - A univariate graphical method
 - Consists of a set of rectangles that reflect the counts or frequencies of the classes present in the given data

Scatter plot: Often used

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Loess (local regression) Curve

- Adds a smooth curve to a scatter plot in order to provide better perception of the pattern of dependence
- Loess curve is fitted by setting two parameters: a smoothing parameter, and the degree of the polynomials that are fitted by the regression

Evaluating Classification Methods

- Accuracy
 - classifier accuracy: predicting class label
 - predictor accuracy: guessing value of predicted attributes
- Speed
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules
- More later...

A word of caution...

- http://www.tylervigen.com/spurious-correlations
- We need to use our common sense!!!

Next... Classification algorithms