Pure Mathematics 1

Tutorial 2 Functions

1	Find the set of values of k for which $k + 2x - 3x^2$ is negative for values of x.	all real [2] $ \left[k < -\frac{1}{2} \right] $	
		L 31	
2	The curves $y = x^2 - 3x + c$ and $y = k - x - x^2$, where c and k are constants, meet at the point (-2,12).		
	a) Find the values of c and k.	[2]	
	b) Hence, find the other point of intersection of the curves.	[4]	
		[2 14 . (2 2)]	
		[2, 14; (3,2)]	
3	(a) If α is a root of the equation $x^2 + 4x + 1 = 0$, show that $\alpha^2 = -4 \alpha - 1$ and $\alpha^3 = -4 \alpha^2 - \alpha$. Deduce that $\alpha^3 = 15 \alpha + 4$.		
		[4]	
	(b) Find the range of values of the constant p for which the function		
	$y = px^2 + 4x + p + 3$ is positive for all real values of x.	[4]	
		[n < 4 or n > 1]	
		[p < -4 or p > 1]	
4	(a) Show that if λ is positive but not greater than 3, the roots of		
	the equation $(\lambda - 2)x^2 - (8 - 2\lambda)x - (8 - 3\lambda) = 0$ are real.	[4]	
	(* 277) (* 277) (* 277) (* 277) (* 277)	[ד]	
	(b) Prove that for all real values of a, the equation		
	$x^2 + 2ax + 2a^2 + a + 1 = 0$ has no real roots for x.	[4]	
5			
	Solve the inequality $2x-1 \le x^2-4 \le 12$.	[6]	
	•		
		$[3 \le x \le 4]$	
6			
	The function $f: x \mapsto 4 - x^2$ is defined for all real values of x.		
	(i) State the range of f.	[2]	
	(ii) Determine the exact values of x for which $ff(x) = 0$.		
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	[5]	
		$\left[f(x) \le 4; \ \pm \sqrt{6}, \pm \sqrt{2}\right]$	
7			
'	Given that $f(x) = ax + b$, $(a > 0)$ and $f^{2}(x) = 4x - 9$, find:		
	(i) an expression for $f^4(x)$,	[2]	
	(ii) the value of a and b,	[4]	
	(iii) the value of $f^{-1}(7)$.	[2]	
<u> </u>			

г		7
[16x -	15.0	2.5
Hhr -	· Д ¬ ' / .	ー・ハー
II OA	TJ,4,	2,2

8

Given the function $f: x \to x^2 - 4x + 3$, where $x \ge k$,

i) express f in the form $(x+a)^2+b$,

[2]

ii) find the least value of k for which f is one-one,

- [1]
- iii) find f⁻¹ and sketch the graphs of f and f⁻¹ on the same set of axes, making clear the geometrical relationship between the two graphs,
- [5]

iv) find the point of intersection between f and f⁻¹.

[3]

$$\left[(x-2)^2 - 1; k = 2; 2 + \sqrt{x+1}; \left(\frac{5 + \sqrt{13}}{2}, \frac{5 + \sqrt{13}}{2} \right) \right]$$

9

The functions f and g are defined by

$$f: x \rightarrow x^2 + 3$$
, $x \in R$,
 $g: x \rightarrow 2x + 1$, $x \in R$.

- (a) (i) Express the function fg in the form $a\left(x+\frac{p}{q}\right)^2+r$ where a, p, q and r are integers. [4]
 - (ii) Sketch the curve with the equation y = fg(x). [3]
 - (iii) Determine the range of the function fg. [1]

Another function h is defined by $h: x \to \frac{x}{x-2}$; $x \ne 2$.

(b) Solve the equation $g(x) = h^{-1}(x) + 1$ where h^{-1} is the inverse function of h. [5]

$$\left[4(x+\frac{1}{2})^2 + 3; fg(x) \ge 3;0,2\right]$$

10

- Show that $x^2 + 4x + 7 = (x + 2)^2 + a$, where a is to be determined. .a)
- [2]

[3]

- Sketch the graph of $y = x^2 + 4x + 7$, indicating its y intercept and vertex. b) State the axis of symmetry.
- The function f is defined by $f(x) = x^2 + 4x + 7$ and has as its domain the set of all c) real numbers. Write down the range of f. [1]
- Explain, with reference to your sketch, why f has no inverse with its given domain. d) Suggest a domain for f for which it has an inverse. [2]

$$[(x+2)^2 + 3, a = 3; x = -2; f(x) \ge 3;$$
 not one - to - one function; if $x \ge -2$ or $x \le -2]$

-	-
1	-1
	- 1

The function f and g are defined by

$$f: x \to 1 + \sqrt{x}, x \ge 0$$

 $g: x \to x^2, x \in R$

(i) Find the domain of the inverse function of f.

[1]

(ii) Find the expression for f⁻¹.

[3]

(iii) Find an expression for fg(x) for the case $x \ge 0$.

[2]

(iv) Obtain the value of fg(2).

- [2]
- (v) Sketch the graph of y = fg(x) and its inverse function $y = (fg)^{-1}(x)$.

$$[x \ge 1; (x-1)^2; 1+x; 3]$$

12

(a) The function f and g are defined by:

$$f: x \mapsto 3x - 1, \quad x \in \Re$$

 $g: x \mapsto x^2 + 1, \quad x \in \Re$

(i) Find range of g.

- [1]
- (ii) Determine the values of x for which gf(x) = fg(x).
- [3]

(b) The function $h: x \mapsto x^2 + 3x$, $x \in \Re$, $x \ge q$, is one-to-one. Find the least value of q and the inverse function of h, h^{-1} . [5]

$$g(x) \ge 1; x = 0,1; q = -\frac{3}{2}, -\frac{3}{2} + \sqrt{x + \frac{9}{4}}$$

13

The functions f and g are defined by

f:
$$x \rightarrow x^2 - 1$$
, $x \in \mathbb{R}$, g: $x \rightarrow x - 2$, $x \in \mathbb{R}$.

Write down the composite function fg in a similar form. (i)

- [1]
- (ii) Given that h = fg with domain $x \le k$, write down the greatest possible value of k for which h is a one-one function. [1]
- Find the inverse function h⁻¹. Sketch h and h⁻¹ on the same coordinates axes. (iii)
 - [5]

(iv) Find the value of x for which $h = h^{-1}$. [4]

$$[(x-2)^2 - 1, k = 2; 2 - \sqrt{x+1}; x = 0.7]$$

14				
	Functions f and g are defined by			
	$f: x \to 4x^2 - 1, x \in \mathbb{R}, x \ge 0$			
	$g: x \to \sqrt{x+6}, x \in \mathbb{R}, x \ge m.$			
	a) State the range of f and sketch the graph of f.	[2]		
	b) Explain why the inverse function f ⁻¹ exists.	[1]		
	c) Find the smallest value of m for which the function g is valid.d) Find an expression in the terms of x for fg.	[2] [2]		
	$[f(x) \ge -1; f \text{ is one } -to -\text{ one } functio$			
15	y(x) = x, y(x) = x	., 0, 1, 10		
	(i) The curve with equation $y = 2 + k \sin x$ passes through the point with			
	coordinates $\left(\frac{\pi}{2},-2\right)$. Find			
	(a) the value of k,	[2]		
	(b) the values of x in the interval $0 \le x \le 2\pi$ for which $y = 2 + 2\sqrt{2}$.	[3]		
	(0) ,	t-1		
	(ii) Write down the maximum and minimum values of the expression 4 − 2s as x varies.	sin 3x		
	as A varies.	[2]		
	$\left[-4; \frac{5}{4}\pi, \frac{7}{4}\pi; \text{max}\right]$	z = 6 min = 2		
	4, 4	1 - 0, 11111 - 2		
16	A function is defined by $f(x) = \sqrt{(6+x)}$, $x \ge k$.			
	(i) State the value of k.	[1]		
	(ii) Write an equation for the inverse function.	[2]		
	(iii) State the domain and range of f ⁻¹ .	[2]		
	(iv) Find the value of $[f^{-1}(1)]^{-1}$.	[2]		
	(v) Graph f and f^{-1} on the same axes and find x when $f = f^{-1}$.	[4]		
	$\left[-6; x^2 - 6; x \ge 0; f^{-1}(x) \ge -1\right]$	$-6 \cdot -\frac{1}{2} \cdot x = 3$		

17

(a)

The function f is defined for all real values of x, and the diagram shows the graph of y = f(x). The gradient of the graph is always positive, and it decreases as x increases. The line y = 1 is an asymptote to the curve. Sketch the graph of the inverse function $f^{-1}(x)$ and state the domain of $f^{-1}(x)$

(b) The function $f(x) = x^3$ and g(x) = 2 - 3x are defined for $x \in R$. Find

$$(i)$$
 $fg(x)$

[1]

(ii)
$$(fg)^{-1}(x)$$

[2]

$$\left[x < 1; (2 - 3x)^3; \frac{1}{3}(2 - x^{\frac{1}{3}})\right]$$

18

(i) Express $2x^2 - 8x + 5$ in the form of $a(x + b)^2 + c$,

[3]

(ii) For the curve $y = 2x^2 - 8x + 5$, find the set of values of x for which $y \ge 15$.

[3]

Given that $f: x \mapsto 2x^2 - 8x + 5$ for the domain $x \ge k$.

(iii) Find the least value of k for which f is one-one.

[1]

(iv) State the domain and range of f^{-1} .

[2]

(v) Sketch, on a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, making clear the relationship between these two graphs. [3]

$$[2(x-2)^2 - 3; x \ge 5, x \le -1; 2; x \ge -3, f^{-1}(x) \ge 0]$$

19

The functions f and g are defined as follows:

$$f: x \to \sqrt{x+1}, \quad x \ge -1$$

$$g: x \rightarrow (x+1)^2, x \ge c, x \in R.$$

(i) State the range of f.

[1]

(ii) Find the inverse function f^{-1} .

- [2]
- (iii) Sketch, in a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, making
 - clear the relationship between these graphs.

[4]

(iv) Find the least value of c for which g has an inverse.

[1]

(v) Find the values of x for which $fg(x) = \sqrt{5}$.

[3]

$$[y \ge 0; x^2 - 1; -1; -3,1]$$

20

a) Express $3x^2 + 6x - 9$ in the form of $a(x+b)^2 + c$.

- [3]
- b) For the curve $y = 3x^2 + 6x 9$, state the least value of y and the corresponding value of x. [2]
- Given that $f(x) = 3x^2 + 6x 9$ for the domain $x \le k$,
- c) find the greatest value of k for which f(x) is one-one,

[1]

d) express $f^{-1}(x)$ in terms of x in this case.

[3]

$$\left[3(x+1)^2-12; -12, -1; -\frac{\sqrt{x+12}}{3}-1\right]$$