

2nd NOSE II Workshop

Linköping, 18 - 21 May 2003

Signal processing methods for drift compensation

Ricardo Gutierrez-Osuna

Department of Computer Science Texas A&M University

Outline

- Sources of "drift"
- Compensation approaches
- Univariate methods

2nd Workshop

- Multivariate methods
- Discussion

This material is based upon work supported by the **National Science Foundation** under CAREER Grant No. 9984426 / 0229598

What is drift?

"A gradual change in any quantitative characteristic that is supposed to remain constant"

[Holmberg and Artursson, 2003], and references therein

Sources of "drift"

- True drift
 - Aging (reorganization of sensing layer)
 - Poisoning (irreversible binding)
- Experimental noise
 - Short-term drift (warm-up, thermal trends)
 - Memory effects (hysteresis, sampling sequence)
 - Environmental (pressure, temp., seasonal)
 - Odor delivery (flow rate, outgass, condensation)
 - Matrix effects (background, humidity)
 - Sample degradation (oxidation, decarbonation)

Approaches for drift compensation

- Drift-free sensors
 - Duh!
- Reference sensors
 - Differential or ratiometric measurements [Choi et al., 1985]
- Excitation
 - Temperature modulation [Roth et al., 1996]
- Frequent re-calibration
 - Unavoidable
- Careful experimental design
 - Avoid systematic errors
- Feature extraction
 - Transient response analysis [Wilson and DeWeerth, 1995]
 - **Signal processing**
 - The focus of this tutorial

Signal processing for drift compensation

Univariate

- Compensation applied to each sensor independently
 - Frequency analysis
 - Baseline manipulation
 - Differential measurements (w/ calibrant)
 - Multiplicative correction (w/ calibrant)

Multivariate

- Compensation applied to the response across sensors
 - Adaptive clustering
 - System identification
 - Calibration transfer (w/ calibrant)
 - Orthogonal signal correction and deflation (w/ calibrant)

Univariate Techniques

Frequency analysis

- Drift, noise and odor information occur at different time scales [Artursson et al., 2000]
 - Noise = high frequencies
 - Drift = low frequencies
 - Perform separation in the frequency domain
 - Filter banks [Davide et al., 1996]
 - Discrete Wavelet Transform
 - Drawbacks
 - Requires long-term time series to be collected
 - Time series has "gaps", variable sampling rates

Baseline manipulation (1)

Basics

- The simplest form of drift compensation
 - "Remove" the sensor response in the recovery cycle prior to sample delivery
 - Also used for pre-processing [Gardner and Bartlett, 1999]
 - A local technique, processes one "sniff" at a time

Baseline manipulation (2)

Differential

• Corrects additive δ_{A} or baseline drift

$$\hat{x}_s(t) = \underbrace{y_s(t)}_{\substack{\text{measured} \\ \text{response}}} - y_s(0) = \left(x_s(t) + \delta_A\right) - \left(x_s(0) + \delta_A\right) = \underbrace{x_s(t)}_{\substack{\text{ideal} \\ \text{response} \\ \text{(w/o drift)}}} - x_s(0)$$

Baseline manipulation (3)

Relative

• Corrects multiplicative $(1+\delta_M)$ or sensitivity drift

$$\hat{x}_{s}(t) = \frac{y_{s}(t)}{y_{s}(0)} = \frac{x_{s}(t)(1+\delta_{M})}{x_{s}(0)(1+\delta_{M})} = \frac{x_{s}(t)}{x_{s}(0)}$$

Baseline manipulation (4)

Fractional

Percentual change in the sensor response

$$y_s(t) = \frac{x_s(t) - x_s(0)}{x_s(0)}$$

- Properties
 - Yields a dimensionless measurement
 - Normalizes sensor responses, but can amplify noisy channels
 - Fractional conductance shown to be the most suitable method for MOS sensors [Gardner, 1991]

Reference gas [Fryder et al., 1995]

- Equivalent to diff. BM, except a calibrant is used
 - Calibrant must be chemically <u>stable</u> over time AND highly <u>correlated</u> with samples [Haugen et al., 2000]

Calibration schedule

Efficient (systematic memory errors)

Efficient (random memory errors)

Time, €

adapted from [Salit and Turk, 1998]

Multiplicative correction [Haugen et al., 2000]

Basic idea

- Model temporal variations in a calibration gas with a multiplicative correction factor
- Apply the same correction to the samples
- Perform this process first on short-term trends, then on long-term fluctuations

Properties

- Heuristic, global technique
- Practical for industrial applications
- Compensates for short- and long-term drift

Short-term correction (1)

2nd Workshop

Signal processing methods for drift compensation - 16 -

Ricardo Gutierrez-Osuna Texas A&M University

Short-term correction (2)

For each sequence

 Compute a correction factor for each calibration sample

$$q_{n,seq} = \frac{U_{1,seq}^{cal}}{U_{n,seq}^{cal}}$$

 Build regression model for series {q_{1,seq}, q_{6,seq}, q_{11,seq},...}

$$\hat{q}_{n,seq} = ax_n + b$$

with $x_n = mod(n, N_{sam} + 1)$

Correct all samples

$$U_{n,seq}^{STC} = U_{n,seq} \hat{q}_{n,seq}$$

(seq subindex omitted for clarity)

Long-term correction (1)

Long-term correction (2)

- For each sequence
 - Compute a correction factor for the first calibration sample

$$f_{\text{seq}} = \frac{U_{1,1}^{\text{cal}}}{U_{1,\text{seq}}^{\text{cal}}}$$

Correct all samples

$$U_{\text{n,seq}}^{\text{LTC}} = \underbrace{U_{\text{n,seq}} \hat{q}_{\text{n,seq}}}_{U_{\text{n,seq}}^{\text{STC}}} f_{\text{seq}}$$

Performance of multiplicative correction

PCA plot of uncorrected milk samples measured over 2 days: pasteurized milk (\bigcirc), oxidized pasteurized milk (\spadesuit), calibration samples (\triangle).

PCA plot of drift corrected milk samples measured over 2 days: reference milk (\bigcirc) , oxidized milk (\clubsuit) , calibration samples (\triangle) .

from [Haugen et al., 2000]

Multivariate Techniques

Adaptive clustering

Basic idea

- Model the distribution of examples with a codebook
- Assign an incoming (unknown) sample to the "closest" class
- Adapt class parameters to incorporate information from the newly classified example

Adaptive clustering (1)

Adaptive clustering (2)

Adaptive clustering (3)

Adaptive clustering (4)

Adaptive clustering (5)

Adaptive clustering (6)

Adaptive clustering (7)

Adaptive clustering (8)

Adaptive clustering (9)

Adaptive clustering (10)

Adaptive clustering (11)

Adaptive clustering (12)

Adaptive clustering methods

- Mean updating
 - One cluster center per class [Holmberg et al., 1996]
- Kohonen self-organizing maps
 - One SOM common to all classes [Davide et al., 1994; Marco et al., 1997]
 - A separate SOM for each class [Distante et al., 2002]
- Adaptive Resonance Theory
 - ART is slightly different; new clusters can be created [Gardner et al., 1996]

Adaptive clustering: discussion

- Algorithm relies on correct classification
 - Miss-classifications will eventually cause the model to lose track of the class patterns
- All odors need to be sampled frequently to prevent their patterns to drift too far
- This problem has also been addressed in the machine learning literature
 - see [Freund and Mansour, 1997] and refs. therein

System identification [Holmberg et al., 1996]

Basic idea

- Chemical sensor responses co-vary over time
 - This "common-mode" behavior can be modeled with a dynamic model (e.g., ARMAX)

$$\sum_{n=0}^{|A|} a_n \underbrace{y_s(k-n)}_{\text{sensor s}} = \sum_{\substack{i=1\\i\neq s}}^{|S|} \sum_{n=0}^{|B|} b_{in} \underbrace{y_i(k-n)}_{\text{all other sensors}} + \sum_{n=0}^{|C|} c_n \underbrace{e(k-n)}_{\text{white noise}}$$

- where y_s(k) is the response of sensor 's' at time k, and y_i(k) is the response from *all other* sensors
- Model parameters {A,B,C} may be adapted over time with a recursive least-squares procedure [Holmberg et al., 1997]

System identification: classification

- Each odor/sensor pair has a unique dynamic behavior that can be used as a fingerprint
 - Build a dynamic model for each sensor/odor
 - When an unknown odor is presented, predict its behavior of each sensor with each of the models
 - The method requires that multiple (consecutive) samples of the unknown odor be collected
 - The model with lowest prediction error corresponds to the true odor

System identification: illustration

Calibration transfer

- Learn a regression mapping (e.g., MLPs, PLS)
 from drifting calibrant samples onto a baseline t₀
 - MLPs for PyMS [Goodacre and Kell, 1996]
 - PLS for e-noses [Tomic et al., 2002]
 - MLPs for e-noses [Balaban et al., 2000]

Training phase:

Drifting calibrant samples at times t_1 , t_2 , ... t_N

Recall phase:

Drifting odor samples at times t_1 , t_2 , ... t_N

Training phase:

Baseline calibrant sample at time t_0

Recall phase:

Corrected odor samples at times t_1 , t_2 , ... t_N

Orthogonal signal correction [Wold et al., 1998]

- Basic idea
 - Assume dataset matrices
 - Y: sensor-array data (independent variables)
 - C: concentration vector or class label (dependent)
 - Subtract from Y factors that account for as much of the variance in Y as possible <u>AND</u> are orthogonal to C

Orthogonal signal correction: intuition

Orthogonal signal correction: an example

Component correction [Artursson et al., 2000]

Basic idea

- Drift is associated with the principal components of variance in a calibration gas
- These directions are removed from the multivariate sensor response by means of a bilinear transformation
- Algorithm

$$\mathbf{x}_{\text{corrected}} = \mathbf{x} - (\mathbf{x} \cdot \mathbf{v}_{\text{cal}}) \mathbf{v}_{\text{cal}}^{\mathsf{T}}$$

where v_{cal} is the first eigenvector of the calibration data x_{cal}

Component correction results

300 - 200 - 100 - 200 - 100 0 100 200 300 400 500 PC 1 (71%)

PCA scatter plot of uncorrected samples for eight gas mixtures. Arrows indicate the direction of drift. The center cluster (+) is the calibration gas.

PCA scatter plot after component correction. The calibration gas (+), no longer shown in the figure, has been used to estimate and remove the principal direction of drift (v_{cal}) .

Ricardo Gutierrez-Osuna

Component correction results (2)

Component deflation [Gutierrez, 2000]

Basic idea

- Identify variables 'x' whose variance can be attributed to drift or interferents
 - E.g., response to a wash/reference gas, time stamps, temperature, pressure, humidity, etc.
- Measure 'y', the sensor-array response to an odor
- Remove variance in 'y' that can be explained by 'x' (by means of regression/deflation)
- Related to target rotation [Esbensen et al., 1987]
 - "...removal of undesired information provided that there are variables uniquely connected to that information" [Christie, 1996]

Component deflation algorithm

ullet Find linear projections x'=Ax and y'=By that are maximally correlated

$${A,B} = argmax[\rho(Ax,By)]$$

- How? Canonical Correlation Analysis (CCA) or PLS
- Interpretation: x' and y' are low-dimensional projections that summarize the linear dependencies between x and y
- Find regression model y_{pred}=Wy'

$$W = \operatorname{argmin} |y - Wy'|^2$$

- Interpretation: y_{pred} contains the variance in the odor vector y that can be explained by y' and, as a result of the CCA stage, by x
- Deflate y and use the residual z as a corrected sensor response

$$z = y - y_{pred} = y - WBy$$

Component deflation: interpretation

Component deflation: motivation

- Exploit transient information in wash/reference cycle
 - To capture temporal trends, augment vector x with the time stamp of each sample (also in [Artursson et al., 2000])

Component deflation performance

Database

- Three months of data collection
 - Four cooking spices
 - Twenty four days
 - Four samples per day and spice
- Ten metal-oxide sensors
- Plot shows one particular transient feature
 - Examples are sorted
 - By odor class
 - Within a class, by date

Influence of aging and training set size

Ricardo Gutierrez-Osuna Texas A&M University

Discussion of univariate methods

- Frequency decomposition
 - Mostly useful for diagnostics and analysis
- Baseline manipulation
 - Attractive for its simplicity, but not an effective driftcorrection approach for chemical sensors
- Differential measurements wrt calibrant
 - First-order approximation, but does not exploit crosscorrelations
- Multiplicative correction wrt calibrant
 - Empirically shown to work, heuristic, does not exploit cross-correlations

Discussion of multivariate methods (1)

- Adaptive clustering
 - Requires equiprobable and frequent sampling
 - Correct identification is essential to ensure that the adapting distributions track the odors
 - Does not use information from a calibrant
- System identification
 - Builds a separate drift model for each odor, but requires multiple consecutive samples
 - Can be used as a template-matching classifier
 - Does not use information from a calibrant

Discussion of multivariate methods (2)

- Calibration transfer
 - Shown to work in MS and e-nose data
 - Black-box approach
- Orthogonal Signal Correction and Deflation
 - In my experience, the best approach
 - Why? Time tested in chemometrics, uses multivariate and calibrant information, and IT IS SIMPLE

References (1)

- M. Holmberg and T. Artursson, "Drift Compensation, Standards and Calibration Methods," in T. C. Pearce, S. S. Schiffman, H. T. Nagle and J. W. Gardner (Eds.), Handbook of Machine Olfaction: Electronic Nose Technology, Weinheim, Germany: Wiley-VCH, 2002, pp.325-346.
- S.-Y. Choi, K. Takahashi, M. Esani and T. Matsuo, "Stability and sensitivity of MISFET hydrogen sensors," in *Proc. Int. Conf. Solid State Sensors and Actuators*, Philadelphia, PA, 1985.
- M. Roth, R. Hartinger, R. Faul and H.-E. Endres, "Drift reduction of organic coated gas-sensors by temperature modulation," Sensors and Actuators B 36(1-3), pp. 358-362, 1996.
- D.M. Wilson and S.P. DeWeerth, "Odor discrimination using steady-state and transient characteristics of tin-oxide sensors," Sensors and Actuators B 28(2), pp. 123-128. 1995.
- J.W. Gardner and P.N. Bartlett, Electronic Noses, Principles and Applications, New York: Oxford University Press, 1999.
- J.W. Gadner, "Detection of Vapours and Odours from a Multisensor Array using Pattern recognition. Part 1. Principal Components and Cluster Analysis," in Sensors and Actuators B 4, pp. 109-115, 1991.
- M. Fryder, M. Holmberg, F. Winquist and I. Lündstrom, "A calibration technique for an electronic nose," in *Eurosensors IX*, 1995, pp. 683-686.
- M.L. Salit and G.C Turk, "A Drift Correction Procedure," Analytical Chemistry 70(15), pp. 3184-3190, 1998.
- J.E. Haugen, O. Tomic and K. Kvaal, "A calibration method for handling the temporal drift of solidstate gas sensors," *Analytica Chimica Acta 407*, pp. 23-39, 2000.
- T. Artursson, T. Eklöv, I. Lundström, P. Mårtensson, M. Sjöström and M. Holmberg, "Drift correction for gas sensors using multivariate methods," *Journal of Chemometrics* 14(5-6), pp. 711-723, 2000.

Texas A&M University

References (2)

- F.A.M. Davide, C. Di Natale, M. Holmberg and F. Winguist, "Frequency Analysis of Drift in Chemical Sensors," in Proc. 1st Italian Conf. on Sensors and Microsystems, Rome, Italy, 1996, pp. 150-154.
- R. Goodacre and D.B. Kell, "Correction of mass spectral drift using artificial neural networks," *Analytical Chemistry 68*, pp. 271-280, 1996.
- O. Tomic, H. Ulmer and J.E. Haugen, "Standardization methods for handling instrument related signal shifts in gas-sensor array measurement data," *Analytica Chimica Actă 472*, 99-111, 2002.
- M.O. Balaban, F. Korel, A.Z. Odabasi and G. Folkes, "Transportability of data between electronic noses: mathematical methods," Sensors and Actuators B 71, pp. 203-211, 2000.
- S. Wold, H. Antti, F. Lindgren and J. Öhman, "Orthogonal signal correction of near-infrared spectra," Chemometrics and Intelligent Laboratory Systems 44, pp. 175-185, 1998.
- K. Esbensen, L. Lindqvist, I. Lundholm, D. Nisca and S. Wold, "Multivariate Modeling of Geochemical and Geophysical Data," *Chemometrics and Intelligent Laboratory Systems 2*, pp. 161-175, 1987.
- O.H.J. Christie, "Data Laundering by Target Rotation in Chemistry-Based Oil Exploration," Journal of Chemometrics 10, pp. 453-461, 1996.
- M. Holmberg, F. Winquist, I. Lundström, F. Davide, C. DiNatale, and A. D'Amico, "Drift counteraction for an electronic nose," *Sensors and Actuators B* 36(1-3), pp. 528-535, 1996.
- F.M. Davide, C. Di Natale, and A. D'Amico, "Self-organizing Multisensor Systems for Odour Classification: Internal Categorization, Adaptation, and Drift Rejection," *Sensors and Actuators B* 18-19, pp. 244-250, 1994.
- S. Marco, A. Pardo, A. Ortega and J. Samitier, "Gas Identification with Tin Oxide Sensor Array and Self-Organizing Maps: Adaptive Correction of Sensor Drifts," in Proc. IEEE Instrumentation and Measurement Technology Conference, Orrawa, Canada, May 19-21, 1997, pp. 904-907.

References (3)

- C. Distante, P. Siciliano and K.C. Persaud, "Dynamic Cluster Recognition with Multiple Self-Organising Maps," Pattern Analysis and Applications 5, pp. 306-315, 2002.
- J. W. Gardner, E. L. Hines and C. Pang, "Detection of vapours and odours from a multisensor array using pattern recognition: self-organizing Adaptive Resonance Techniques," *Measurement + Control 29*, pp. 172-178, 1996.
- Y. Freund and Y. Mansour, "Learning under persistent drift," in *Proc. European Conference on Computational Learning Theory*, 1997, pp. 109-118.

Questions

Thank you