ESO 208A: Computational Methods in Engineering

Tutorial 9

Interpolation

1. For the following data, interpolate the value of function f(x) at x = 0.275 by (a) Lagrange polynomials and (b) Newton's divided difference. Perform interpolation using first, second and third order polynomials.

x	f(x)
0.1	0.99010
0.2	0.96154
0.3	0.91743
0.4	0.86207
0.5	0.80000

If the actual function is $f(x) = \frac{1}{1+x^2}$, estimate the true relative error in interpolation by the different order polynomials.

Cubic splines

2. Consider the function $f(x) = \exp(x)$ sampled at points x = 0, 0.5, 1.0, 1.5 and 2. Estimate the function value at x = 1.80 by interpolating the function using - (a) natural cubic spline and (b) not-a-knot cubic spline. Calculate the true percentage error for both the splines. Which is the better spline for this problem and why?