Université de Med Khider, Biskra

Le 25/01/2012

Faculté de sciences FSESNV.

Département de Mathématiques.

Module: T. G. Proc. Stoch

Mokhtar HAFAYED

Epreuve $N^{\circ}1$

Exercice-1 [7p]

Soit $Y \sim \mathcal{P}(\alpha)$ et $Z \sim \mathcal{P}(\beta)$ deux variables aléatoires de Poisson indépendantes. On s'intéresse à leur somme X = Y + Z.

- (1) Quelle est la loi de X
- (2) Quelle est la loi de Y sachant X ($\mathbb{P}(Y = k \mid X = n)$).
- (3) Montrer que $\mathbb{E}(Y \mid X = n) = \frac{\alpha n}{\alpha + \beta}$ et $\mathbb{V}ar(Y \mid X = n) = \frac{n\alpha\beta}{(\alpha + \beta)^2}$
- (4) Déduire que $\mathbb{E}[Y|X] = \frac{\alpha X}{\alpha + \beta}$.
- (5) Si Y est intégrable, Montrer que la variable aléatoire $\mathbb{E}[Y|X]$ est d'esperance α . Vérifier que on a toujours $\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}[Y]$.

Exercice-2 [5p]

- 1) On suppose que $(X_n)_{n\in\mathbb{N}}$ est une sous-martingale (par rapport a la filtration $(\mathcal{B}_n)_{n\in\mathbb{N}}$). Montrer que la suite $(\mathbb{E}(X_n))_{n\in\mathbb{N}}$ est croissante.
- 2) On suppose que $(X_n)_{n\in\mathbb{N}}$ est une martingale (par rapport a la filtration $(\mathcal{B}_n)_{n\in\mathbb{N}}$). Montrer que $\mathbb{E}[X_{n+m}|\mathcal{B}_n]=X_n$ pour tout $m\geq 0$.

Exercice-3 [5p] Soit N une variable aleatoire vérifiant:

$$\forall n \in \mathbb{N}^* : \mathbb{P}(N_t = n) = \frac{(\alpha t)}{n} \mathbb{P}(N_t = n - 1).$$

- (1) Exprimer $\mathbb{P}(N_t = n)$ en fonction de $\mathbb{P}(N_t = 0)$.
- (2) Déterminer $\mathbb{P}(N_t = 0)$ puis déduire $\mathbb{P}(N_t = n)$, a quelle loi de probabilité usuelle correspond-elle?
- (3)-Si s < t, Montrer que la loi de $(N_t N_s)$ est la meme que celle de N_{t-s} . **Exercice-4** [5p]—
- (1) On dit que la variable aléatoire discrète X suit une loi géométrique de paramètre $p \in]0,1[$ si X est à valeurs dans \mathbb{N}^* , avec $\mathbb{P}(X=k)=p(1-p)^{k-1}$. Soit $m \in \mathbb{N}$, déterminer $\mathbb{P}(X>m)$.
- (2) Montrer que X vérifie la propriété suivante, dite d'absence de mémoire

$$\forall (m,n) \in \mathbb{N}^2 : \mathbb{P}(X > n + m \mid X > n) = \mathbb{P}(X > m).$$

(3) Rappeler la densité d'une loi exponentielle de paramètre $\blacksquare > 0$, ainsi que sa fonction de répartition. Montrer que X vérifie:

$$\forall t > 0, \forall s > 0 : \mathbb{P}(X > t + s \mid X > t) = \mathbb{P}(X > s)$$

(4) <u>Application</u>: la durée de vie d'une radio suit une loi exponentielle de moyenne 5 ans. Si j'achète une radio qui a 5 ans, quelle est la probabilité qu'elle fonctionne encore deux ans plus tard?