Experimentalphysik 4 - Boykott-Gruppenseminar

Fabs Chris Michi Paul Anton Sören

Hein Martina Mitsch

3. Juni 2016

Inhaltsverzeichnis

1	Einl	eitung - Ex3 Zusammenfassung	4
	1.1	Notation der Quantenzahlen	4
	1.2	Korrekturterme der Energieniveaus	5
	1.3	Näherungen für mehrere Elektronen	5
	1.4	Das Pauli-Prinzip	5
2	Ex4	- Atomphysik	7
	2.1	Spektroskopische Notation	7
	2.2	Hund'sche Regeln und Auswahlregeln	8
	2.3	Vielelektronenprobleme	10
	2.4	Moseley-Gesetz	11
	2.5	LS-Kopplung, jj-Kopplung	12
3	Wer	kzeuge der Kern- und Teilchenphysik	15
	3.1	Zerfallsgesetz	16
	3.2	Fermis Goldene Regel	18
	3.3	Wirkungsquerschnitt	20
	3.4	Darstellung der Teilchen-WW mit Feynman-Diagrammen	22
4	Teil	chendetektoren	26
	4.1	Impulsmessung	26
	4.2	Energiemessung	28
		4.2.1 Messung von Photonen	28
	4.3	Teilchenidentifikation	29
5	Eler	mentarteilchen-Zoo	30
	5.1	Charakterisierung von Elementarteilchen	30
		5.1.1 Masse	31
		5.1.2 Spin	32
		5.1.3 Klassifizierung anhand Wechselwirkung	33
		5.1.3.1 Elektromagnetische Wechselwirkung	33
		5.1.3.2 Schwache Wechselwirkung	34
		5.1.3.3 Starke Wechselwirkung	35
	5.2	Leptonen	37
		01	20

In halts verzeichn is

5.4	Charakterisierung durch WW	40
5.5	Zerfallsbreite	40

1 Einleitung - Ex3 Zusammenfassung

Wir hatten die QUANTENMECHANIK eingeführt, siehe Theo 4:

Axiom 4: Es gilt die Schrödingergleichung:
$$\hat{H} |\psi\rangle = i\hbar \partial_t |\psi\rangle$$
 wobei $\hat{H} := \frac{\hat{p}^2}{2m} + \hat{V} = -\frac{\hbar^2}{2m} \nabla^2 + V$

Diese hatten wir für das Wasserstoffatom (H-At.) **analytisch** gelöst. (Coulombpotential, Kugelkoordinaten, Separation: Schwerpunkt/Relativbew., Winkel-/Radialanteil). Die Lösungen sind Polynome mit ganzzahligen Parametern, "Quantenzahlen":

$$\begin{split} \psi_{n,l,m_l}\left(r,\vartheta,\varphi\right) &= R_{n,l}(r) \cdot \Theta_l^{m_l}(\vartheta) \cdot \phi_{m_l}(\varphi) \\ \psi_{n,l,m_l} \propto \ \mathrm{e}^{-\frac{Zr}{na_0}} \ \underbrace{L_{n-l-1}^{2l+1}\left(\frac{2Zr}{na_0}\right) \cdot P_l^{m_l}(\cos\vartheta) \cdot \frac{1}{\sqrt{2\pi}}}_{\text{zugeordnete Laguerre- bzw. Legendrepolynome.} \end{split}$$

Es gilt für physikalische Lösungen: $|m_l| \le l < n$

1.1 Notation der Quantenzahlen

Hauptquantenzahlen $n \in \{1, 2, 3, ...\} = \{K, L, M, ...\}$ "Schale" Bahndrehimpulsquantenzahlen $l \in \{0, 1, 2, ...\} = \{s, p, d, f, ...\}$ "Unterschale" Magnetbahnquantenzahlen $m_l \in \{-l, -l+1, ..., l\}$ "Orbital" (zzgl. "Spin")

$$E\left(\psi_{n}\right) = E_{n} = -E_{0} \frac{Z^{2}}{n^{2}}$$

"Rydberg-Formel", mit $E_0:=Ry=13.6\,\mathrm{eV}$ und Z als Kernladungszahl. Dem Übergang entspricht dann die Differenz E_n-E_m .

1.2 Korrekturterme der Energieniveaus

Die Energieniveaus (EN) werden korrigiert durch:

$$\hat{H} = \hat{H}_0 + \underbrace{\Delta \hat{E}_{\text{rel}} + \Delta \hat{E}_{S-B} + \Delta \hat{E}_{\text{Darwin}}}_{\sum = \text{Feinstruktur } \Delta E_{FS}} + \Delta \hat{E}_{\text{Lamb}} + \Delta \hat{E}_{\text{HFS}} + \Delta \hat{E}_{\text{Zeeman}}$$

$$\hat{H}_0 = \frac{\hat{p}^2}{2m_e} + \hat{V}$$

$$\Delta \hat{E}_{\rm rel} = -\frac{p^4}{8m_e^3 c^2}$$

$$\Delta \hat{E}_{\text{S-B}} = \frac{Zq_e^2\mu_0}{8\pi m_e^2 \langle r \rangle^3} \ \hat{\vec{l}} \cdot \hat{\vec{s}} = \frac{Zq_e^2\mu_0\hbar^2}{16\pi m_e^2 \langle r \rangle^3} \cdot \begin{cases} l, & j = l + \frac{1}{2} \\ -(l+1), & j = l - \frac{1}{2} \end{cases}$$

$$\Delta \hat{E}_{\text{FS}} \stackrel{\text{H-At.}}{=} E_0 \frac{Z^2}{n^2} \left[\frac{Z^2\alpha^2}{n} \left(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \right) \right]$$

$$\Delta \hat{E}_{\text{Darwin}} = \mu_0 \left(\frac{q_e\hbar}{m_e} \right)^2 Z \cdot \delta \left(\vec{r} \right) \text{ "Kernpotential"}$$

 $\Delta \hat{E}_{\rm Lamb} \mathrel{\widehat{=}}$ quantenelektrodynamische Wechselwirkung (WW) mit dem Vakuum

$$\Delta \hat{E}_{\mathrm{HFS}} \propto \vec{J} \cdot \underbrace{\vec{I}}_{\mathrm{"Kernspin"}}$$

$$\Delta \hat{E}_{\rm Zeeman} = \frac{\mu}{\hbar} \left(\hat{L}_z + g_e \hat{S}_z \right) B_z \text{ "anomal", normal für } \hat{S}_z = 0 \text{ , } g_e \approx 2 \text{ , } \mu = \frac{q_e \hbar}{2 m_e}$$

1.3 Näherungen für mehrere Elektronen

Für mehrere Elektronen (e^-) müssen wir Näherungen machen, denn die e^--e^--WW verhindert das analytische Lösen.

Helium (He):

1.
$$E_B = -Z^2 E_0 \left(\frac{1}{n_1^2} + \frac{1}{n_2^2}\right)$$
 "Bindungsenergie" (negativ!)

2.
$$E_B = -E_0 \left(\frac{Z^2}{1^2} + \frac{(Z-1)^2}{n_2^2} \right)$$
 Abschirmung des $n_2 - e^{-1}$

3.
$$E_B = -E_0 \left(-2Z_R^2 + (4Z - \frac{5}{4})Z_R \right)$$
 minimiere $E_B(Z_R)$

4. wahrer Wert $E_B \approx -79.0 \,\mathrm{eV}$

1.4 Das Pauli-Prinzip

Die relativistische Quantenmechanik fordert für Teilchen mit Spin $\frac{1}{2}$, $\frac{3}{2}$, ... [bzw. 0, 1, 2, ...] eine unter Teilchenvertauschung \hat{P}_{ij} antisymmetrische [bzw, symmetrische]

Gesamtwellenfunktion $|\psi\rangle = |\psi_{\rm Ort}\rangle \otimes |\chi_{\rm Spin}\rangle$. Wir nennen diese Teilchen Fermionen [bzw. Bosonen]. Aus diesem Postulat folgt das:

Paul:-Prinzip: Man kann nie mehr als ein Fermion im gleichen (Orts- & Spin-) Zustand haben.

Für zwei e^- (z.B. Helium) gilt daher:

$$|\psi_{\mathrm{Ort}}\rangle_{\mathrm{symm.}} \Rightarrow \underbrace{|\chi_{-}\rangle} = \frac{1}{\sqrt{2}} \left(|\uparrow_{1}\downarrow_{2}\rangle - |\downarrow_{1}\uparrow_{2}\rangle\right) \ \widehat{=} \underbrace{|S=0,M_{S}=0\rangle}_{\text{[Großbuchstaben S, M_{S}, J, ...}\\ \text{sind Gesamtquantenzahlen, Summen]}}$$

$$\begin{split} |\psi_{\mathrm{Ort}}\rangle_{\mathrm{antisym.}} &\Rightarrow & |\chi_{+}, \ 1\rangle = |\uparrow_{1} \uparrow_{2}\rangle \\ & |\chi_{+}, \ 0\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_{1} \downarrow_{2}\rangle + |\downarrow_{1} \uparrow_{2}\rangle\right) \\ & |\chi_{+}, \ -1\rangle = |\downarrow_{1} \downarrow_{2}\rangle \end{split} \end{cases} \stackrel{|S=1, \ M_{S}=0\rangle}{=} |1, \ 0\rangle \\ |1, \ -1\rangle \end{split}$$

 $|\chi_+,\;-\rangle$ ist ein **symm**etrisches Triplett [2S+1=3 heißt Multiplizität].

2 Ex4 - Atomphysik

In der Ex4-Vorlesung wird es um folgende Themen gehen:

- Atome
- Kerne und Elementarteilchen
- Symmetrien
- schwache und starke Wechselwirkung
- Spaltung und Fusion

Johanna Stachels Notation:

$$\begin{split} e^2 &= \frac{q_e^2}{4\pi\epsilon_0} \\ 1 \ eV &= 1.60 \cdot 10^{-19} J \\ 1 \ fm &= 913 \ ^{MeV/c^2} = 1.66 \cdot 10^{-27} kg \\ \hbar &= 6.58 \cdot 10^{-16} eVs = 1.05 \cdot 10^{-34} Js \\ \alpha &= \frac{e^2}{c\hbar} = \frac{1}{137} \\ c &= 3 \cdot 10^8 \ ^{m/s} \end{split}$$

2.1 Spektroskopische Notation

Um den Zustand einer Unterschale nl anzugeben, führen wir die spektroskopische Notation ein:

$$\boxed{n^{2S+1}L_J}$$
(2.1)

mit

$$\begin{split} S := |\sum_i m_{s,i}| \qquad L := |\sum_i m_{l,i}| \\ J := |\vec{L} + \vec{S}| = |M_L + M_S| = |\sum_i m_{l,i} + \sum_i m_{s,i}| \end{split}$$

Die Notation für die Elemente des Periodensystems lautet:

2.2 Hund'sche Regeln und Auswahlregeln

Die Elektronen werden für die Grundzustände so aufgefüllt, dass die Bindungsenergie(negativ) minimiert wird, das heißt deren Betrag maximal wird. Zwischen den Unterschalen gilt folgende Reihenfolge:

Abbildung 2.1. Auffüllung der Grundzustände

Pro Unterzustand hat man $N_e=2(2l+1)$ Elektronen. Die Gesamtzahl der Elektronen in der n-ten Schale entspricht somit $N_e=2\sum_l^{n-1}2l+1=2n^2$

Innerhalb einer Unterschale gelten für die Grundzustände die hierarchischen Hund'schen Regeln:

- 1. Der Gesamtspin $S := |\sum_i m_{s,i}|$ wird maximal.
- 2. Der Gesamtdrehimpuls $L := |\sum_i m_{l,i}|$ wird maximal.
- 3. Ist die Unterschale bis zu (einschließlich) halb voll, so wird J minimal d.h $J:=|M_L+M_S|\stackrel{!}{=}|L-S|$, bei mehr als halb vollen Unterschalden muss $J\stackrel{!}{=}L+S$ sein.

Diese Regeln bestimmen die Feinstruktur des Elements. Reg
t man das Element an, so gelten diese Regeln nicht mehr.

Die Schalen-/Orbitalübergänge werden von den sog. **Auswahlregeln** beherrscht, die wohlgemerkt nicht hierarchisch sind.

- 1. $\Delta L \in \{-1,1\}$ bei L-S-Kopplung
- 2. $\Delta M_L \in \{-1,0,1\}$
- 3. $\Delta S = 0$ für leichte Atome
- 4. $\Delta J \in \{-1,0,1\}$ wobei $J=0 \rightarrow J=0$ verboten

2.3 Vielelektronenprobleme

Für Elemente mit mehr als einem Elektron gibt es keine analytische Lösung der Schrödinger-Gleichung, auch numerische Verfahren sind mit zunehmender Elektronenzahl extrem aufwändig. Wir machen deshalb folgende Näherungen: **Alkaliatome** (1.Hauptgruppe)

- Alkaliatome haben nur ein Elektron außerhalb geschlossener Schalen. Die Grundzustände sind immer ${}^2S_{\frac{1}{2}}$ ($n \in \{2,3,4,\ldots\}$ nicht notiert).
- \bullet Wir betrachten zu Näherung ein effektives Potential $V_{eff}(r)$

$$V_{eff}(r) = -\frac{e^2 Z_{eff}(r)}{r} \text{ mit } 1 < Z_{eff}(r) < Z \text{ und } Z_{eff} \overset{r \to \infty}{\to} 1, \ Z_{eff} \overset{r \to 0}{\to} Z$$

Abbildung 2.2. Effektives Potential

- Dies hebt die E_n -Entartung bezüglich Z bereits auf (Feinstruktur): $E_n(s) < E_n(p) < E_n(d) < E_n(f)$ (für kleine n am stärksten)
- Für große n und r (wasserstoffähnlich) lässt sich dies so schreiben:

$$E_{n,l} = -E_0 \frac{Z_{eff}^2}{n^2} = -\frac{E_0}{n_{eff}^2} = -\frac{E_0}{(n - \delta_{n,l})^2} \qquad E_0 = 13.6 \ eV$$
 (2.3)

wobei $\delta_{n,l}$ der sog. **Quantendefekt** ist: $\delta_{n,l} = n - \sqrt{\frac{E_0}{-E_{n,l}}}$ $E_{n,l} < 0$ ist die real gemessene Energie.

Um allgemeine Vielelektronenprobleme zu lösen, können wir (zumindest bis jetzt) nur nähern indem wir zur Lösung eines Elektron die anderen Elektronen unabhängig voneinander gelöst habe und das entstehen $V_{eff}(r)$ kugelsymmetrisch ist.

Wir suchen deshalb eine Gesamtwellenfunktion für N Teilchen.

Diese muss antisymmetrische unter Vertauschung sein, wir nehmen zusätzlich an, dass sie sich als Produkt der Einteilchenwellenfunktionen schreiben lässt.

Analog zu $\psi_{ges}(1,2) = \psi_1(1)\psi_2(2) - \psi_2(1)\psi_1(2)$ definieren wir die

 ${\bf Slater determinante:}$

$$\psi_{ges}(r_1, ..., r_N) = \frac{1}{\sqrt{N!}} \det \begin{pmatrix} \psi_1(1) & \psi_1(2) & \dots & \psi_1(N) \\ \vdots & \vdots & \vdots & \vdots \\ \psi_N(1) & \psi_N(2) & \dots & \psi_N(N) \end{pmatrix}$$
(2.4)

Diese ist total antisymmetrisch unter Spaltenvertauschung als Summe aus N! Produkten.

2.4 Moseley-Gesetz

Für Eletronen-übergänge zwischen Zuständen wurde empirisch festgestellt, dass $\sqrt{f} \propto Z$ ist, wobei f die Frequenz des emittiereten Lichts ist.

Moseley Gesetz:
$$f = E_0 c(1/n_2^2 - 1/n_1^2) (Z - b)^2$$

 $mit \ c = \lambda f : \lambda = E_0 (1/n_2^2 - 1/n_1^2) (Z - b)^2$

für Übergänge $n_1 \to n_2$, b - Abschirmkonstante

Für das Wasserstoffatom entspricht das Moseley-Gesetz der Rydberg-Formel.

Für wasserstoffähnliche Atome (b=1) gilt : K-Linie: $n_2=1,~\alpha:n_1=2,~\beta:n_1=3$ Für schwere Atome (Z>40) gilt : L-Linie: $n_2=2,b\approx 7.4,~\alpha:~n_1=3,~\beta:n_1=4$

Die Auswahlregeln müssen gelten.

2.5 LS-Kopplung, jj-Kopplung

LS-Kopplung

- Wasserstoff: Potential \rightarrow Störungen \rightarrow Spin-Bahn-Kopplung
- Spin-Bahn-Kopplung: nicht ℓ und s sondern j relevant
- $\bullet\,$ Viele Elektronen: J relevant

Abbildung 2.3. L-S-Kopplung

SATZ:

Sei die Spin-Bahnkopplung eines Elekektrons \ll Bahn-Bahn-Kopplung und Spin-Spin-Kopplung zwischen den Elektronen. Dann ist der Gesamtdrehimpuls:

$$\vec{J} = \vec{L} + \vec{S} = \sum_i \vec{\ell}_i + \sum_i \vec{s}_i$$

$$s_1$$
 ℓ_1 + + + s_2 ℓ_2 Anzahl der Feinstrukturaufspaltungen: $\min{(2s+1;2\ell+1)}$. + + s_3 ℓ_3

Entscheidend für die Feinstrukturaufspaltung ist die Zusammensetzung von ${\cal L}$ und ${\cal S}.$

Beispiel:

Elektronenkonfiguration: $L=2,\,S=1\rightarrow J=1,2,3.$

Anzahl der J_S : min (2S+1; 2L+1)

Hier: 3

Abbildung 2.4. Termschema

Abbildung 2.5. Vektordiagramme der möglichen Additionen

Feinstruktur ist sehr klein im verglichen mit den Energiedifferenzen zwischen verschiedenen L_S oder S.

Energien:

$$\begin{split} E_{j}\left(n,L,S\right) &= E\left(n,L,S\right) + c \cdot L \cdot S = E\left(n,L,S\right) + \frac{c}{2}\left(J(J+1) - S(S+1) - L(L+1)\right) \\ E_{j}(n,L,S) &= E(n,L,S) + \frac{c}{2}\left(J(J+1) - 8\right)\hbar^{2} \\ &\to J = 3: E(n,L,S) + 2c\hbar^{2} \end{split}$$

$$J = 2 : E(n, L, S) - 1c\hbar^{2}$$

$$J = 1 : E(n, L, S) - 3c\hbar^{2}$$

c ist am größten für kleine n. \rightarrow Bei großen n
 nur noch sehr kleine Feinstruktur.

jj-Kopplung

SATZ:

Sei die Spin-Bahn-Kopplung eines Elektrons \gg Bahn-Bahn-Kopplung und Spin-Spin-Kopplung verschiedener Elektronen. Dann ist der Gesamtdrehimpuls:

$$\vec{J} = \sum_{i} \vec{j}_{i} = \sum_{i} \left| \vec{s}_{i} + \vec{\ell}_{i} \right|$$

- \bullet Bei jj-Kopplung sind L und Snicht definiert, daher nur Gesamtdrehimpuls J
- Multiplett-Zustände nicht mehr erkennbar.

$$\begin{array}{c} s_1 & \longrightarrow \ell_1 \\ & + \\ s_2 & \longrightarrow \ell_2 \\ & + \\ s_3 & \longrightarrow \ell_3 \end{array}$$

Abbildung 2.6. jj-Kopplung

3 Werkzeuge der Kern- und Teilchenphysik

Die Bausteine von Atomen sind Protonen, Elektronen und Neutronen. Als Nuklide bezeichnet man Atome, deren Atomkerne die gleiche Zusammensetzung aus Protonen und Neutronen haben.

In Abb. 3.2 ist die Protonenanzahl verschiedener Nuklide gegen ihre Neutronenzahl aufgetragen. Die Farben deuten auf die Stabilität der Nuklide hin.

Bezeichnung	Eigenschaft	Beispiel		
Isotope	Gleiche Protonenanzahl	$^{12}_{6}C$ $,^{13}_{6}C$		
Isotone	Gleiche Neutronenanzahl	$^{13}_{6}C$ $,^{14}_{17}N$		
Isobare	Gleiche Massenzahl			

Abbildung 3.1. Klassifizierung von Isotopen

Abbildung 3.2. Stabilität von Nukliden

3.1 Zerfallsgesetz

Es gibt 3 verschiedene Zerfallsarten des Radioaktiven Zerfalls. (A: Nukleonenanzahl , Z: Kernladungszahl)

- α Zerfall: ${}^A_Z X \to_{Z-2}^{A-4} Y + {}^4_Z He$ α -Strahlung wird mittels Heliumkernen vermittelt (positiv geladen). Das α Teilchen wird einerseits durch die starke Wechselwirkung vom Kern angezogen, aber zugleich von der Coulomb-Wechselwirkung abgestoßen. Die stärkere Kernkraft hat eine kurze, die schwächere Coulomb-Kraft eine lange Reichweite. Somit bildet das Potential eine Art Barriere, den Coulombwall. Dieser Wall ist höher als die verfügbare kinetische Energie für das Teilchen. Jedoch kann es den Kern aufgrund des Tunneleffekts verlassen. Die Strahlung wird hauptsächlich von schweren Kernen ($Z \gtrsim 110$) emittiert.
- \bullet β Zerfall: Dieser Zerfall entsteht durch einen Neutronenüberschuss im Kern.
 - 1. β^- Zerfall: ${}_Z^A X \to_{Z+1}^A Y + e^- + \overline{\nu_e}$ Beim β^- -Zerfall wird im Kern ein Neutron in ein Proton umgewandelt. Dabei werden eine Elektron und ein Elektron-Antineutrino emittiert.
 - 2. β^- Zerfall: ${}^A_Z X \to_{Z-1}^A Y + e^+ + \nu_e$ Beim β^- -Zerfall wird im Kern ein Proton in ein Neutron umgewandelt. Dabei werden eine Elektron und ein Elektron-Neutrino emittiert.
- γ -Zerfall : ${}^A_ZX^* \to {}^A_ZX + \gamma$ Falls nach einem α Zerfall oder β Zerfall ein Atomkern in einem angeregten Zustand vorliegt, ist γ Zerfall möglich. Beim Übergang in einen energetisch günstigeren Zustand wird hochfrequente elektromagnetische Strahlung emittiert. Meist folgt der γ -Zerfall unmittelbar auf einen α oder β Zerfall.

Für die Zerfallsrate (Aktivität) $A=\frac{d}{dt}N(t)$ gilt die folgende Differentialgleichung:

$$\frac{d}{dt}N(t) = -\lambda N(t) \tag{3.1}$$

 λ : Zerfallskonstante beschreibt Wahrscheinlichkeit für eine bestimmte radioaktive Zerfallsart. Sie ist unabhängig von Ort und Zeit, aber charakteristisch für den Kern.

Die Lösung dieser Gleichung gibt die Anzahl N der Atome zum Zeitpunkt t an:

$$N(t) = N_0 e^{-\lambda \cdot t} \tag{3.2}$$

Wobei man in diesem Zusammenhang noch folgende nützliche Größen definiert:

- Mittlere Lebensdauer: $\tau=1/\lambda$ Nach dieser Zeit sind nurnoch 1/e ($\approx 37\%$) der ursprünlichen Atome vorhanden.
- Halbwertszeit : $T_{1/2}=\frac{ln(2)}{\lambda}$ Nach dieser Zeit sind nurnoch 50 % der ursprünglichen Atome vorhanden.

Für die Zerfallsintensität gilt:

$$I(t) = -\frac{dN}{dt} = N(0)\lambda \cdot e^{-\lambda t} = I_0 \cdot e^{-\lambda t}$$
(3.3)

Absorption von Radioaktiver Strahlung

Geladene Teilchen (α - und β - Strahlung) werden in Materie überwiegend durch Stöße und Wechselwirkung mit den Elektronen der Atomhüllen gebremst. Dabei geben sie ihre Energie in nahezu kontinuierlichen Portionen ab. Schnellere Teilchen geben weniger Energie ab, als langsame. Die abgegebene Energie wird vom Material in Ionisation angelegt. α - Teilchen sind eher schwerer und haben somit eine geringere Reichweite im Absorbermaterial. Somit lässt sich α - Strahlung schon mit Papier gut abschirmen. Elektronen hingegen sind viel leichter und somit schneller als α - Teilchen gleicher Energie. Deshalb hat β - Strahlung eine viel größere Reichweite. γ - Quanten werden nach dem Lambert-Beer'schen Gesetz absorbiert. Die Strahlungsintensität nach einer Strecke x im Absorbermaterial mit Schwächungskoeffizient μ ist:

$$I(x) = I_0 \cdot e^{-\mu x} \tag{3.4}$$

Der radioaktive Zerfall ist ein stat. Prozess. Die Wahrscheinlichkeit einen zerfallenden Kern anzutreffen ist bei t=0 am größten, danach fällt sie exponentiell ab. Diese Wahrscheinlichkeit ist prinzipiell eine Binomial-Verteilung. Für eine hohe Anzahl an Versuchen und eine kleine Wahrscheinlichkeit konvergiert die Binomialverteilung gegen eine Poisson-Verteilung. Diese Näherung lässt sich auf den radioaktiven Zerfall anwenden, da man in der Regel viele Atome (N $\approx 10^{23}$) betrachtet, also eine hohe Anzahl Versuche durchführt, und die Zerfallswahrscheinlichkeit in der Regel klein ist:

$$p(t) = 1 - e^{-\lambda \cdot t} \tag{3.5}$$

Somit lässt sich der Zerfall also durch eine Poisson-Verteilung beschreiben mit dem Mittelwert $\mu=n\cdot p$ und der Standardabweichung $\sigma=\sqrt{\mu}$ wobei der Zerfall k-mal eintreten soll.

$$P(k) = \frac{\mu^k \cdot e^{-\mu}}{k!} \tag{3.6}$$

3.2 Fermis Goldene Regel

Wir wollen eine Vorraussage für die Übergangsrate λ (Übergangswahrscheinlichkeit pro Zeit), mit der ein Anfangszustand unter dem Einfluss einer Störung in einen anderen Zustand übergeht, treffen. Wir nehmen dabei an, dass es sich um ein an sich zeitlich konstantes System handelt, welches durch den Hamilton-Operator H_0 beschrieben wird, und durch einen Störoperator V, welcher vergleichsweise klein gegenüber H_0 ist, gestört wird. Der gesamte Hamiltonoperator lautet also $H = H_0 + V$ Wir formulieren Fermis Goldene Regel:

$$\lambda_{A->E} = \frac{2\pi}{\hbar} \cdot |\langle \psi_E | V | \psi_A \rangle|^2 \cdot \rho_E = \frac{dP}{dt}$$
 (3.7)

Die Übergangsrate hängt also davon ab wie stark die Störung V den Anfangszustand ψ_A und den Endzustand ψ_E koppelt. Außerdem skaliert die Übergangsrate mit der Anzahl der möglichen Übergänge welche durch die Endzustandsdichte ρ_E beschrieben wird.

Was ist $\rho(E)$ eigentlich?

Wir bezeichnen den Phasenraum unseres Systems als den Raum, der durch die Ortskoordinaten \mathbf{x} und die dazugehörigen Impulse \mathbf{p} aufgespannt wird. Motiviert durch die Unschärferelation können wir einem Punkt ein Volumen von $h^3 = (2\pi\hbar)^3$ zuordnen (Unschärferelation).

1 Dimension:

Zunächst betrachten wir einen jeweils eindimensionalen Orts-und Impulsraum mit Zuständen $(x,p) \in [x,x+L] \times [p_x,p_x+p]$ In diesem Fall kann die Gesamtfläche Lp mit $N=\frac{Lp}{2\pi\hbar}$ Zuständen gefüllt werden. Für die Zustandsdichte gilt dann:

$$\rho(E) = \frac{dN}{dE} = 2\frac{dN}{dp}\frac{dp}{dE} = \frac{Lp}{2\pi\hbar}\frac{2m}{p} = \frac{Lp}{2\pi\hbar}\sqrt{\frac{2m}{E}}$$
(3.8)

Wobei wir im letzten Schritt auf Kugelkoordinaten transformieren. Der Faktor 2 kommt daher, dass die Zustände (x,p) und (x,-p) bezüglich der Energie entartet sind, denn $E = E_{kin} = \frac{p^2}{2m}$

3 Dimensionen:

Die Anzahl der Gesamtzustände N ist nun

$$N = \frac{1}{2\pi\hbar} \int d\mathbf{x}^3 d\mathbf{p}^3 = \frac{V}{2\pi\hbar} \int d\mathbf{p}^3 = \frac{V}{2\pi\hbar} \int p^2 dp \ d\Omega$$
 (3.9)

Aus der relativistischen Energie-Impuls-Beziehung $E^2 = (pc)^2 + (m_p c^2)^2$ folgern wir

 $\frac{d}{dE} = \frac{E}{pc^2} \frac{d}{dp}$ und erhalten damit für die Zustandsdichte für ${\bf 1}$ Teilchen

$$\rho(E) = \frac{dN}{dE} = \frac{V}{(2\pi\hbar)^3} \frac{E}{pc^2} \frac{d}{dp} \int p^2 dp \ d\Omega = \frac{V}{(2\pi\hbar)^3} \frac{pE}{c^2} \int d\Omega = \frac{VpE}{2\pi^2 c^2 \hbar^3}$$
 (3.10)

Für **2 Teilchen** addieren sich die Impulse im Mittel zu 0, weshalb die Zustandsdichte konstant ist. Jedoch addieren sich die Energien zu $E = E_1 + E_2$

$$dE = dE_1 + dE_2 = \frac{p_1 c^2}{E1} dp 1 + \frac{p_2 c^2}{E2} dp 2$$
(3.11)

Da $p_1^2 = p_2^2$ folgt $p_1 dp_1 = p_2 dp_2$

$$\begin{split} & \to dE = \frac{E_1 + E_2}{E_1 E_2} c^2 p_1 dp_1 \\ & \to \rho_2 = \frac{V}{(2\pi\hbar)^3} \frac{E_1 E_2}{E_1 + E_2} p_1 \int d\Omega_1 \end{split}$$

Wir können dies auf n Teilchen erweitern

$$\rho_n = \frac{V^{n-1}}{(2\pi\hbar)^{3(n-1)}} \frac{d}{dE} \prod_{i=1}^{n-1} \int d^3 p_i$$
 (3.12)

3.3 Wirkungsquerschnitt

Die bisherigen Überlegungen dienten allesamt dazu die Reaktionsrate einer Zustandsänderung zu quantifizieren. Wir nennen nun eine letzte Größe kennen, die ebenfalls diesen Zweck erfüllt. Der Wirkungsquerschnitt σ gibt die Stärke einer Reaktion an. Um dies zu begreifen betrachten wir einen konstanten Fluss Φ von Teilchen, die allesamt der Sorte a zugehören und auf ein Target der Dicke x aus Teilchen der Sorte b geschossen werden.

Abbildung 3.3. Teilchenfluss auf Target

Die Reaktionsrate pro Targetteilchen ist $W = \Phi \cdot \sigma$ Die Reaktionsrate im gesamten Target ist $W \cdot N = \Phi \cdot n_B \cdot x$ mit N Targetteilchen und der Volumenteilchendichte n_B .

Im Allgemeinen hängt der Wirkungsquerschnitt σ von der Art der Reaktion ab:

- Absorbtion σ_A
- elastische Streuung σ_E
- inelastische Streuung σ_I

Der Gesamtwirkungsquerschnitt ergibt sich dann via Addition $\sigma_{Ges}=\sigma_A+\sigma_E+\sigma_I$ Für Teilchen die sich innerhalb eines Mediums ausbreiten definiert man die mittlere freie Weglänge $\lambda=\frac{1}{n_B\sigma}$

Diese gibt die durchschnittliche Stracke an, die ein Teilchen im Target ohne Wechselwirkun zurücklegen kann. Das Volumen in dem 1 Targetteilchen ist ist also $V=\lambda\cdot\sigma=1/n$

Anhand der mittleren freien Weglänge lassen sich folgende Größen berechnen:

- Anzahl der Strahlteilchen im Targetmaterial : $N(x) = N_0 \cdot e^{-x/\lambda}$
- Kollisions rate: $c(x) = -\frac{dN(x)}{dx} = \frac{N_0}{\lambda} \cdot e^{-x/\lambda} = c_0 \cdot e^{-x/\lambda}$

• Wahrscheinlichkeit für Reaktion eines einfallenden Teilchens: $p(x) = 1 - e^{-x/\lambda}$

Aus Dimensionsbetrachtungen lässt sich darauf schliessen, dass der Wirkungsquerschnitt die Dimension einer Fläche hat. Wir werden dies nun veranschaulichen:

Abbildung 3.4. Wirkungsquerschnitt eines Teilchens (rot) das auf ein Targetteilchen (blau) trifft, mit Wirkungsquerschnitt (gewellte Fläche)

Wir definieren nun also verschiedene Arten von Wirkungsquerschnitten:

• Im Allgemeinen ist bei Teilchenkollisionen der Geometrische Wirkungsquerschnitt die kleinste Fläche, die beide Teilchen komplett einschließt:

$$\sigma_{aeom} = \pi (r_K + r_P)^2 = \pi (r_0 \cdot A^{1/3})^2 \tag{3.13}$$

Kernradius: r_K Projektilradius: r_P

Massenzahl des Targetkerns: A $r_0 = 1.26 \text{ fm}$

Hieraus ergibt sich die Wahrscheinlichkeit, dass das n Projektile mit dem Target wechselwirken, als das Verhältnis der effektiven Flächen:

$$P = \frac{n\sigma}{A} \tag{3.14}$$

ullet Um die Stärke einer Wechselwirkung in Anbetracht der hervorgerufenen Reaktionen mit Anzahl N_{reac} zu beschreiben definiert man den **Reaktionsquerschnitt** als

$$\sigma_{reac} = \frac{N_{reac}}{N_p \cdot N_A} \tag{3.15}$$

mit der Protonenanzahl N_P in einem Target mit der Atomanzahl pro Fläche N_A Dieser Wirkungsquerschnitt hat also auch die Dimension einer Fläche.

• Bei einer Reaktion definiert man den **Produktionsquerschnitt** für eine bei der Reaktion entstandenen Teilchensorte i als:

$$\sigma_{prod,i} = \frac{N_{part,i}}{N_P \cdot N_A} \tag{3.16}$$

mit der Anzahl der Teilchen einer Sorte i $N_{part,i}$

3.4 Darstellung der Teilchen-WW mit Feynman-Diagrammen

Regeln

- Meist ist die Zeitachse eingezeichnet, übrige Richtungen beziehen sich auf den Raum
- Teilchen werden durch Linien symbolisiert, dabei gibt die Pfeilrichtung an, ob es sich um das Teilchen selbst (Pfeil in Richtung der Zeitachse) oder sein Antiteilchen (Pfeil entgegengesetzt zur Zeitachse gerichtet). Die reellen Teilchen erfüllen alle $E^2 p^2 = m^2$ (c = 1).
- virtuelle Teilchen hingegen sind durch im Feynman-Diagramm abgeschlossene Linie dargestellt und erfüllen $E^2 p^2 = m^2$ nicht!
- Linienformen können angeben, um welche Teilchen es sich handelt. So haben die Eichbosonen γ , W^+ , W^- , Z^0 eine Wellenlinie (3.5), Gluonen eine schraubenförmige Linie (3.6).
- Vertices, die Knotenpunkte zwischen den Linien, geben durch ihre Anzahl die Ordnung der Feynman-Diagramme an.
- Propagatoren, die Linien zwischen Vertices, sind virtuelle Eichbosonen, welche keine Vorzugsrichtung haben.

Abbildung 3.5. Eichboson

Abbildung 3.6. Gluon

Eichbosonen	Anzahl	$\mathbf{W}\mathbf{W}$	auf Materieteilchen
Gluon	8	$starke\ WW$	Quarks
$W^+, \ W^-, \ Z^0$	3	$schwache\ WW$	$Quarks,\ Leptonen$
Photonen	1	$el.mag.\ WW$	$Quarks,\ Leptonen$

Abbildung 3.7. Tabelle über die WW von Eichbosonen

Beispiele

1. Positron (Antifermion) + Elektron(Fermion) in Feynman-Diagramm 2. Ordnung:

Abbildung 3.8. zeitartig $q^2 > 0$ (links) / raumartig $q^2 < 0$ (rechts)

Wichtig: Das Zeitinterwall der Wechselwirkung ist durch die Heisenberg'sche Unschärferelation beschränkt: $\Delta E \cdot \Delta t \geq \frac{\hbar}{2}$ für el.mag. WW: $E = h \cdot \nu \Rightarrow \Delta t \geq (2\pi\nu)^{-1}$

Diese Unschärfe erlaubt die Superposition aller möglichen Prozesse, die wir durch die Feynman-Diagramme darstellen können.

2. Compton-Effekt:

Abbildung 3.9. Feynman-Diagramm des Compton-Effekts

3. Proton-Zerfall:

Abbildung 3.10. Feynman-Diagramm des Proton-Zerfalls

Feynman-Kalkül

Prozesse sind auf beliebig vielen Arten darstellbar (mehr Vertices möglich). Jeder Vertex liefert die Wurzel aus einer Kopplungskonstante: $\sqrt{\alpha}$.

Z.B. $\alpha=\frac{e^2}{\hbar c}$ für el.mag. WW ist es die Feinstrukturkonstante. Je mehr Vertices ein Diagramm enthällt, desto geringer ist sein Beitrag zur Gesamtamplitude der superponierten Zustände (alle bis heute erzielten Forschungsergebnisse mit Termen nur bis 4. Ordnung errechnet).

Austauschteilchen in Berechnung von Matrixelement durch Propagator beschrieben:

Es gilt:
$$\frac{1}{m^2+q^2}$$
, Matrixelement $M \propto \frac{1}{\alpha q^2} \Rightarrow \sigma \propto \frac{\alpha^2}{q^4}$

4 Teilchendetektoren

Teilchendetektoren messen Produkte von Kollisionen und Zerfällen.

Aufgaben

- Nachweis entstandener Teilchen
- Messung von Energie/Impuls
- \bullet Messung von Lebensdauer, Zerfallslänge, $\beta,~\gamma,~\tau$
- Teilchenidentifikation (Bestimmung $M^2 = E^2 \vec{p}^2$)

Kapitel

- 4.1 Impulsmessung
- 4.2 Energiemessung
- 4.3 Messung von Photonen
- 4.4 Teilchen

4.1 Impulsmessung

Ablenkung von geladenen Teilchen im Magnetfeld.

- \rightarrow Homogenes B-Feld
- \rightarrow Kreisbahn mit Radius $r=\frac{p}{q \cdot B}$

Gasdetektor

- Kondensator \rightarrow E-Feld
- Ionisationsgas, nicht elektronegativ $\Delta U = -\frac{N \cdot e}{C}, \text{ wobei } N \text{ die Teilchenanzahl, } e \text{ die Elementarladung und } C \text{ die Kapazität des Kondensators ist. (siehe Abb. 4.1)}$

Abbildung 4.1. Schematischer Aufbau eines Gasdetektors (oben) Spannungsänderung am Kondensator über Zeit (unten)

Proportionalzählrohr

- $\bullet\,$ sehr dünner Anodendraht $\to \mu m$
- $E(r) = \frac{U_0}{r \cdot \ln \left| \frac{R}{r_A} \right|} \Rightarrow$ starkes Feld im Zentrum (siehe Abb. 4.2)
- Sau starke Beschleunigung in Nähe des Anodendrahtes
- Reicht aus, im Gas zu ionisieren Sekundärelektronen $\Delta U=-\frac{ANe}{C},\quad A=10^4-10^5 \ {\rm Verst\"{a}rkungsfaktor}$

Abbildung 4.2. Schema eines Proportionalzählrohrs

Halbleiterzähler

Ein Halbleiterzähler ist ein pn-Übergang, an den in Sperrrichtung eine Spannung angelegt wird. Dadurch entsteht eine Verarmungszone, in der keine freien Ladungsträger vorhanden sind.

Durchgehende Teilchen erzeugen durch Ionisation in dieser Zone Elektronen-Loch-Paare, die im E-Feld zu den Anschlusspolen wandern und ein Signal erzeugen.

Szintillationszähler

- Teilchen oder γ-Teilchen gibt Energie ab, die in Form von sichtbarem Sicht wieder frei wird.
- Auslesen durch Photodetektor

4.2 Energiemessung

- Absorbtion eines hadronischen Schauers in Kaloriemeter
- Hadronen: z.B. Protonen, Neutronen.. (aus Quarks zusammengesetzte Teilchen)

hadronischer Schauer

Beim Einfall hochenergetischer Teilchen entstehen Sekundärteilchen, die selbst so lange Teilchen generieren, bis die Energie erschöpft ist.

Beispiel:

Mittlere Weglänge eines Teilchens in Blei: $5.6 \text{mm} = \lambda$

Ideale Länge: $20\lambda \rightarrow 112$ mm Blei

Abwechselnd: 2mm Blei und 5mm Szintillationszähler

 \rightarrow 392mm Länge (elektromagnetisches Kaloriemeter, ECAL)

Hadronen: Absorbtionslänge $\lambda = 18.5 \text{cm} \rightarrow 10 \lambda = 1.85 \text{m} + \text{ECAL}$

4.2.1 Messung von Photonen

- Röntgen- & Gammastrahlen in Halbleiterkristallen (Si, Ge, ...) \rightarrow gute Auflösung
- Messung durch szintillierende Kristalle $(NaT, PbWO_4)$
 - niedrige Energie \rightarrow schlechte Auflösung
 - hohe Energie (> 100 MeV)+ ausreichende Dichte \rightarrow gute Messung

– "Kristallkaloriemeter":
$$\frac{\sigma_E}{E} = \frac{0.04}{\sqrt{E}} + 0.01 \begin{cases} \text{für 1GeV} &: \frac{\sigma_E}{E} = 4.1\% \\ \text{für 100GeV} &: \frac{\sigma_E}{E} = 1.1\% \end{cases}$$

4.3 Teilchenidentifikation

- Massenbestimmung durch Messung von Impuls & Flugzeit $pc = \beta E = \beta \gamma m_0 c^2$ Impulsbereich limitiert durch Auflösung von Zeitmessung & Flugstrecken Grenze der Methode: Impuls etwa in $\frac{\text{GeV}}{c}$
- Massenbestimmung durch Zerfallsprodukte (Masse & Impulse erhalten!) $K^0 \to \pi^+\pi^-$
- durch spezifische Energieverluste Bei bekanntem $p\cdot c$ wird $\frac{\mathrm{d}E}{\mathrm{d}x}$ gemessen $\to \beta\gamma$ bestimmt
- durch "Tricks":
 - Myonen: nur Energieverluste durch Ionisation, keine Schauer
 - Photonen: keine Energieverluste durch Ionisation, nur el.mag. Schauer
 - Elektronen: Energieverluste durch Ionisation, el.mag. Schauer, Übergangsstrahlung
 - Neutronen, Antineutronen: keine Ionisation, nur hadronischer Schauer
 - geladene, hochenergetische Teilchen: Cherenkov-Strahlung (Teilchen in Medium schneller als Licht → strahlen Licht ab (Energie ändert sich nicht wirklich) über welches Information über Teilchen zu erhalten sind.)

5 Elementarteilchen-Zoo

5.1 Charakterisierung von Elementarteilchen

Elementarteilchen lassen sich anhand folgender Größen klassifizieren:

- Masse
- Spin
- Quantenstatistik
- Ladung
- Lebensdauer (falls instabil)

Teilchen lassen sich in verschiedene Typen unterteilen:

- Elementarteilchen:
 - unteilbar,keine Struktur oder Anregung
 - punktförmig ($r < 10^{-18} \text{ m}$)
 - z.B: Elektron, Neutrino, Quark
- Austausch-/Feldteilchen: vermitteln Wechselwirkung z.B: Photon
- Zusammengesetzte Teilchen:
 - gebundene Zustände von Elementarteilchen
 - z.B: Atom, Proton, Neutron

5.1.1 Masse

Anhand des Aston'schen Massenspektrometers lässt sich die Masse von Elementarteilchen experimentell bestimmen. Man verwendet dazu eine Kombination von Elektrischen und Magnetischen Feldern, wobei sich durch die Ablenkung des Teilchens in diesen, die Masse bestimmen lässt.

Abbildung 5.1. Aufbau eines Massenspektrometers

Nachdem das Teilchen das E-Feld durchlaufen hat ist seine Geschwindigkeit in y-Richtung:

$$v_y = a_y \cdot t = \frac{F}{m} \cdot \frac{L_E}{v_x} \tag{5.1}$$

Für den Einfallswinkel des Teilchens folgt:

$$tan \theta = \frac{v_y}{v_x} = \frac{qEL_E}{mv_x} \tag{5.2}$$

Nachdem das Teilchen das B-Feld durchlaufen hat ist seine Geschwindigkeit in y-Richtung:

$$v_y = v_{0y} + \frac{qBL_B}{mv_x} \tag{5.3}$$

Durch geeignete Dimensionierung der Apparatur werden Teilchen gleicher Masse unabhängig von Geschwindigkeit gleich stark abgegelenkt. Auf diese Weise lassen sich die Massen stabiler Teilchen bestimmen.

Bei instabilen Teilchen misst man den Impuls sowie die Flugzeit(mittlere Lebensdauer) und bestimmt die Masse via:

$$pc = \beta \gamma mc^2 \tag{5.4}$$

$$t = \frac{L}{\beta c} \tag{5.5}$$

Bei zu kurzen Lebensdauern misst man den Viererimpuls der Zerfallsprodukte,

$$P^{2} = (P_{1}^{2} + P_{2}^{2}) = (E_{1}^{2} + E_{2}^{2}) - (\vec{p}_{1}c + \vec{p}_{2}c)^{2} = m_{x}^{2}c^{4}$$
(5.6)

wobei man die invariante Masse m_x im Ruhesystem des Ursprungs des Teilchens erhält über:

$$m_x = \sqrt{m_1^2 + m_2^2 + 2E_1 E_2 (1 - \beta_1 \beta_2 \cos \theta)}$$
 (5.7)

Wenn X ein Zerfallsprodukt von Y ist, kann durch die beim Zerfall freiwerdende Energie (Q-Wert) die Masse von X berechnet werden, sofern man die Masse von Y kennt.

5.1.2 Spin

Man kann Teilchen ebenfalls durch ihren Spin klassifizieren. Diesen kann man über eine Messung des magnetischen Moments μ eines Teilchens bestimmen. Es gilt:

$$\vec{\mu}_s = \frac{g_s \mu_0}{\hbar} \vec{S} \tag{5.8}$$

$$\mu_0 = \frac{e\hbar}{2mc} \quad \text{Magneton} \tag{5.9}$$

Der Faktor g ist in diesem Fall das gyromagnetische Verhältnis , welches individuell vom Teilchen abhängt (für Elektronen: g=-2). Für andere Wechselwirkungen gibt es andere g-Faktoren, doch dazu später.

Man unterscheidet prinzipiell anhand des Spins 2 Teilchenarten:

- Teilchen mit halbzahligem Spin "Fermionen"
 - Elektronen, Quarks, Neutrinos
 - Fermi-Dirac-Statistik
- Teilchen mit ganzzahligem Spin "Bosonen"
 - Photon, Higgs-Boson
 - Bose-Einstein-Statistik

Man unterscheidet für die jeweiligen Werte noch verschiedene Arten Bosonen

 $\begin{array}{lll} - & S=0 & Skalarboson & Pion, Higgs-Boson \\ - & S=1 & Vektorboson & Photon, Eichboson \\ - & S=2 & Tensorboson & Graviton \end{array}$

5.1.3 Klassifizierung anhand Wechselwirkung

Es gibt 4 fundamentale Wechselwirkungen:

- Gravitation
- Elektromagnetische Wechselwirkung
- Schwache Wechselwirkung (z.B β -Zerfall)
- Starke Wechselwirkung (Bindung von Nukleonen im Kern / Quarks im Nukleon)

Die Stärke dieser Wechselwirkungen wird charakterisiert durch eine dimensionlose Kopplungskonstante, die Ladung und die Reichweite. Wechselwirkungen werden durch Austauschteilchen vermittelt, die allerdings nur aufgrund der Unschärferelation überhaupt existieren können.

Austauschteilchen bleiben in sogenannten virtuellen Zuständen und für die Außenwelt unsichtbar. Jedoch konnten die messbaren physikalischen Prozesse mit diesem Modell mit sonst nicht erreichter Präzision erklärt werden.

5.1.3.1 Elektromagnetische Wechselwirkung

Das Austauschteilchen dieser Wechselwirkung ist das Photon. Das Potential eines Elektrons, dass diese Wechselwirkung auslöst ist gegeben durch:

$$V(r) = -\frac{e^2}{r} \tag{5.10}$$

Durch Fouriertransformation vom Orts- in den Impulsraum kann man dieses Potential auch durch das Betragsquadrat des Impulsübertragsvektors darstellen. Das Potential nimmt folgende Form an:

$$V(q^2) = \frac{e^2 \hbar^2}{q^2} \tag{5.11}$$

Die Kopplungskonstante für diese Wechselwirkung ist:

$$\alpha = \frac{e^2}{\hbar c} = \frac{1}{137} \tag{5.12}$$

5.1.3.2 Schwache Wechselwirkung

Diese Wechselwirkung wirkt nur auf sehr kleine Abstände, die kleiner als ein Atomradius sind. Sie tritt vorallem bei Zerfällen und Umwandlungen von Teilchen auf (z.B β -Zerfall). Die Austauschteilchen dieser Wechselwirkung sind Eichbosonen (Z-, W⁺-, W⁻-Boson).

Abbildung 5.2. Neutron-Zerfall mit W^- -Boson als Austauschteilchen. Dieser Zerfall ist Ursache für β^- - Strahlung.

Das Potential dieser Wechselwirkung ist:

$$V_{weak} = \frac{g_{weak}^2}{r} \cdot e^{-\frac{m_{weak}^r}{\hbar c}} = \frac{g_{weak}}{q^2 + m_{weak}^2}$$
(5.13)

Wobei man sich den g-Faktor als Analogon zur Ladung vorstellen kann und mit der Masse m_{weak} die Masse der Austauschteilchen gemeint ist, welche groß ist ($m_{weak} = 80.4 \text{ GeV}$ für W^{\mp} -Bosonen).

Aufgrund der Massenbehaftung hat diese Wechselwirkung eine kurze Reichweite

$$\Delta x = 2 \cdot 10^{-18} m \quad \text{für} \quad \beta = 0.02$$
 (5.14)

$$\Delta x = 90 \cdot 10^{-18} m \quad \text{für} \quad \beta = 0.7$$
 (5.15)

Unabhängig von der Geschwindigkeit β der Austauschteilchen kann man also sagen, dass die Größenordnung der Reichweite sehr klein ist. Die Kopplungskonstante ist für diese Wechselwirkung auch klein, was sich darauf zurückführen lässt das die g-Faktoren klein vergleichsweise zur Elementarladung sind.

$$\frac{g_{weak}^2}{\hbar c} = 4 \cdot 10^{-3} \tag{5.16}$$

5.1.3.3 Starke Wechselwirkung

Diese Wechselwirkung erklärt die Bindung von Quarks in Hadronen. Auch hier wird der Austausch durch Eichbosonen beschrieben, den sog. Gluonen.

Abbildung 5.3. Proton-Neutron-Wechselwirkung aufgrund starker Wechselwirkung mit negativ geladenem Pion als Austauschteilchen

Das Potential ist ähnlich wie das der schwachen Wechselwirkung:

$$V_{strong} = \frac{g_{strong}^2}{r} \cdot e^{-\frac{m_{strong}r}{\hbar c}} = \frac{g_{strong}}{q^2 - m_{strong}^2}$$
 (5.17)

Die Masse der Austauschteil
chen sind $m_{strong}=m_\pi=140$ MeV für Pionen. Die Kopplungskonstante ist hier sehr groß:

$$\frac{g_{strong}^2}{\hbar c} = 15 \tag{5.18}$$

Die Reichweite ist hier immernoch klein,
jedoch 1000-mal größer als bei der schwachen Wechselwirkung. Ab einer Reichweite von
 $\sim 2.5~{\rm fm}$ gleichen sich starke Wechselwirkung und die Coulomb-Kraft aus. Dies erklärt die Größenordnung von Atomkernen.

$$\Delta x = 1.4 \cdot 10^{-15} \ m \tag{5.19}$$

Wechselwirkung zwischen Quarks

Allgemeiner lässt sich die starke Wechselwirkung als Wechselwirkung zwischen Quarks auffassen, die Bestandteile der Hadronen sind und Gluonen austauschen. Das Potential hat hier folgende Form:

$$V_{strong} = -\frac{4}{3} \frac{g_{strong}^2}{4\pi r} + k \cdot r \tag{5.20}$$

Mit der Konstanten k=1 $\frac{GeV}{fm}$ welche besagt, wieviel Energie man pro Abstand aufwenden muss um dem Potential entgegenzuwirken.

Abbildung 5.4. Potential der Quarkwechselwirkung

Quarks können nicht alleine existieren. Versucht man 2 Quarks zu trennen, so ist das Potential irgendwann so groß, dass aus dieser Energie wieder ein neues Quark-Antiquark-Paar entsteht.

Tabelle 5.1. Übersicht des Elementarteilchen-Zoos

Anmerkungen

- Es gibt insgesamt 8 Gluonen, die sich in ihrer Farbladung unterscheiden
- Das Higgs-Boson ist ein weiteres Elementarteilchen, das sich keiner der 3 Gruppen zuordnen lässt und Teil des Higgs-Feldes ist. (Annahme: durch Wechselwirkung mit dem Higgsfeld erhalten Teilchen ihre Masse.)

5.2 Leptonen

• 3 Generationen

- \bullet In jeder Generation ein Teilchen mit q=-e und eines mit q=0sowie deren Antiteilchen
- Antiteilchen haben entgegengesetztes Vorzeichen bei Ladung und Leptonenzahl

Generation	q = -1	q = 0	Leptonenzahl (= $n_l - n_{\bar{l}}$)
1	e^{-}	$ u_e$	$L_e = 1, \ L_{\mu} = 0, \ L_{\tau} = 0$
2	μ^-	$ u_{\mu}$	$L_e = 0, \ L_{\mu} = 1, \ L_{\tau} = 0$
3	$ au^-$	$\nu_{ au}$	$L_e = 0, \ L_{\mu} = 0, \ L_{\tau} = 1$

Tabelle 5.2. Übersicht der 3 Leptonen-Generationen und ihrer Eigenschaften

Die Antileptonen werden wie folgt notiert: $e^+,~\mu^+,~\tau^+,~\overline{\nu}_e,~\overline{\nu}_\mu,~\overline{\nu}_\tau.$

Beispiel eines Zerfalls

Myon zerfällt zu einem Elektron und zwei Neutrinos:

Tabelle 5.3. Myonenzerfall

Ladung und Leptonenzahl bleiben **erhalten**. Masse der Produkte darf die des Edukts nicht überschreiten.

5.3 Quarks

Generation	Flavour	q	I_3	S	C	B	T
1	d (down)	-1/3	-1/2				
1	u(up)	$^{2}/_{3}$	1/2				
2	$s \; (strange)$	-1/3		-1		0	
2	$c\ (charm)$	2/3			1		
3	$b\ (bottom)$	-1/3		0		-1	
9	t (top)	2/3					1

Tabelle 5.4. Übersicht der 3 Quark-Generationen und deren Eigenschaften

Hierbei steht I_3 für den sog. Isospin, und S, C, B, T für die Quantenzahlen.

Antiquarks haben umgekehrtes Vorzeichen bei Ladung und Quantenzahlen/Isospin. I_3 , S, C, B, T sind Flavour-Quantenzahlen:

Flavour-Quantenzahlen $I_3,\ S,\ C,\ B,\ T$

$$I_3 = \frac{1}{2} \left((n_u - n_{\overline{u}}) - \left(n_d - n_{\overline{d}} \right) \right) \tag{5.21}$$

$$\rightarrow up - Quark: I_3 = \frac{1}{2}; down - Quark: I_3 = -\frac{1}{2}$$
 (5.22)

$$C = n_C - n_{\overline{C}} \rightarrow charme - Quark: C = 1$$
 (5.23)

$$S = n_S - n_{\overline{S}} \rightarrow strange - Quark: S = -1$$
 (5.24)

$$T = n_T - n_{\overline{T}} \rightarrow top - Quark: T = 1$$
 (5.25)

$$B = n_B - n_{\overline{B}} \rightarrow bottom - Quark: B = -1$$
(5.26)
(5.27)

Farbladung

Quarks können 3 verschiedene Farbladungen annehmen: r,~g,~b Antiquarks können 3 Antifarben annehmen: $\overline{r},~\overline{g},~\overline{b}$

Alle gebundenen Zustände sind farbneutral (**Confinement-Hypothese**). Dies kann auf 2 Arten erreicht werden:

- Kombination von Quark und Antiquark (Mesonen)
 - \rightarrow Farbe + Antifarbe = Neutral
 - Zerfallen in Sekundenbruchteilen
- Kombination aller 3 Farben, also 3 Quarks (Baryonen) $\rightarrow r + g + b = wei \beta$ (neutral)

Gluonen tragen jeweils eine Farb- und Antifarbladung.

- $\rightarrow 3^2 = 9$ Kombinationsmöglichkeiten
- \rightarrow davon ist aber eine neutral \rightarrow 8 Möglichkeiten

5.4 Charakterisierung durch WW

- Leptonen unterliegen der schwachen WW, der Gravitation und, falls sie geladen sind, der el.mag. WW.
- Quarks unterliegen allen Wechselwirkungen

5.5 Zerfallsbreite

Wir wollen die Lebensdauer von kurzlebigen Teilchenzuständen (=Resonanzen: aus Stoßprozessen entstandene instabile Teilchen) herausfinden.

Der Zerfall eines instabilen Teilchens / einer Resonanz erfolgt nach dem Zerfallsgesetz:

$$N(t) = N_0 \exp\left(-\lambda t\right), \quad \lambda = \frac{1}{\tau}$$
(5.28)

Der Zustand einer festen Energie E_r ist durch die Wellenfunktion gegeben:

$$\psi(t) = \psi_0 \cdot \exp\left(-\frac{\iota E_r t}{\hbar}\right)$$
ortsabhängig
zeitabhängig
$$(5.29)$$

Die Wahrscheinlichkeitsdichte, ein Teilchen zu finden, ist:

$$\psi^*\psi = \psi_0^2 \tag{5.30}$$

 \Rightarrow zeitlich konstant, kein Zerfall.

Dies führt uns zu dem Problem, dass sich auch für instabile Teilchen nur konstante Wahrscheinlichkeitsdichten ergeben.

Lösungsansatz

Wähle komplexe Energie für zerfallende Teilchen:

$$E = E_r - i\frac{\Gamma}{2}, \quad \Gamma \in \mathbb{R}$$
 (5.31)

Einsetzen in obige Gleichungen für Wellenfunktion und Wahrscheinlichkeitsdichte führt uns auf:

$$\psi(t) = \psi_0 \exp\left(-i\frac{E_r t}{\hbar}\right) \exp\left(-\frac{\Gamma t}{2\hbar}\right)$$
 (5.32)

$$\psi^* \psi = \psi_0^2 \exp\left(-\frac{\Gamma t}{\hbar}\right) \tag{5.33}$$

 \Rightarrow exponentieller Zerfall mit $\frac{\Gamma}{\hbar}=\lambda=\frac{1}{\tau};\ \Gamma\tau=\hbar$

Betrachte nun die Fourier–Transformierte der Wellenfunktion: $\psi(t) \stackrel{\mathcal{F}}{\Rightarrow} \psi(E)$:

$$\psi(E) = \frac{1}{\sqrt{2\pi}} \int_0^\infty \psi(t) \exp\left(i\frac{Et}{\hbar}\right) dt \tag{5.34}$$

$$= \frac{\psi_0}{\sqrt{2\pi}} \int_0^\infty \exp\left(-t\left(\frac{i}{\hbar} \left(E_r - E\right) + \frac{\Gamma}{2\hbar}\right)\right) dt \tag{5.35}$$

$$=\frac{\psi_0}{\sqrt{2\pi}}\frac{i\hbar}{(E-E_r)+\frac{i\Gamma}{2}}\tag{5.36}$$

Daraus erhalten wir nun P(E):

$$P(E) = A \cdot \psi^*(E)\psi(E) \tag{5.37}$$

mit Normierung:

$$A = \frac{\Gamma}{\hbar^2 \psi_0^2} \tag{5.38}$$

P(E) heißt Lorentz- oder Breit-Wigner-Verteilung. Ihr Maximum liegt bei E_r , ihre FWHM (= Full Width Half Maximum) bzw. Halbwertsbreite beträgt Γ .

$$P(E) = \frac{\Gamma}{2\pi} \frac{1}{(E - E_r)^2 + \frac{\Gamma^2}{4}}$$
 (5.39)

Abbildung 5.5. Funktion für die Wahrscheinlichkeitsdichte der Lorentz-Verteilung

Aufgrund seiner endlichen Lebensdauer besitzt jedes Teilchen eine Energiebreite Γ . Über die Heisenberg'sche Energie–Zeit Unschärfe–Relation $\Delta t \Delta E \geq \hbar/2$ ist die Lebensdauer eines instabilen Zustandes mit der Energieunschärfe verknüpft. Wird die Lebensdauer unmessbar klein \rightarrow Zerfallsbreite $\Gamma = \frac{\hbar}{\tau}$, was eine messbare Größe ist.

 Γ und τ werden durch freigesetzte Energie (Phasenraum) und Art der Wechselwirkung bestimmt:

WW	Teilchen $ au$		Γ
stark	$\Delta(1232)$	10^{-23} s	$100 \mathrm{MeV}$
el.mag.	π^0	$10^{-18}\mathrm{s}$	$1 \mathrm{keV}$
schwach	π^{\pm}	$10^{-8}\mathrm{s}$	$10^{-7} \mathrm{eV}$
	n	$10^3 \mathrm{s}$	$10^{-18} {\rm eV}$

Tabelle 5.5. Übersicht einiger kurz- und langlebiger Teilchen(zustände). $\Delta(1232)$ ist ein Delta-Baryon (oder Delta-Resonanz) mit $m=1232 {\rm MeV/c^2}$