ElGamal Encyption (1982)

PRE from D-H.

Ingredients! a: FCA of order g when g & G.

(Es, Ds): sym. cipher over (u, m, c)

H: G2 -> pk: hash fn.

Scheme!

Gen: der 22, h:= gd, [SK=d, pk:heG]

K:= H(u,v) & N = wind from D-H sunt v

OUTHER (WIN)

D(SK, (u, c)): $V = ud = g^{\alpha}P$ $K = H(u, v) \in K$ $M = D_S(R, c)$ But m

Performance | enc! 2 exp in G

1 syn enc

dec! 1 exp in G

1 syn dec

As a standard! ECTES (ell. curve. cnc. system)

Securty.

Thm. 1. (hen, E, D) is sensee (eaverdryping)

assuming (1) (1) H holds in (Cyg)

(2) (Es,Ds) is sense.

(3) It is a second key derivation to preserves entropy in v)

Thm. 2. (Gen, E, D) is CCA secure.

assuming (1) Interestive D-H assumption holds
(obsorper show CDH)

(2) (Es, Ds) provides A.E.

(3) His a "random oracle" Cident bash to)

CLA security

Trajdoor Functions (TDF)

Det. Tuyle of eff. algs (hen, F, F^{-1})

Chen: rank. alg outputs bey pair (PM, SK) $F(pk, \cdot)$ det. alg that defines an fin $\pi \to \gamma$ $F^{-1}(sk, \cdot)$ defines a fin $Y \to X$ that inverts $F(pk, \cdot)$

Y(ph, sh) det by hen, tx EX: F-1 (sh, F(ph, x))= x

Security. (Gen, F, F-1) is secure if it is a one-way for?

Can be evaluated, but not inverted who the

Def. Cum (f, f^{-1}) is secure if for all eff. A: Advant $[A, P] = 1 \cdot [x = x'] < \text{regularity}$.

PRE from TOF.

Chen F, F-1): Secure TOF x-> y

(Fs, Ds) sym- auth. en. over (k, M, c)

H: x→ K huh to

> (Gen, E, 3):

hen: sum as TDF of gen E(pu, m): $\chi \in X$, $y = F(n, \chi)$ $k \leftarrow H(x)$, $c \leftarrow E_s(u, m)$ output (y, c)

D(sh, (y,c)) $x \in F^{-1}(sh, y)$ $k \in H(x), m \in D_1(n,c)$ But put m

Thm. If (hen, F, F-1) is a secure TOF, (Es, Ds) provides AE, H: X > N is a smlow scale, then it is CLA-secure.

RSA

Trafator permubbon

Let N= 12 where p, q prime

Gen(): chose rindom histint primes 1,7 x 1024 bits set N=17 chose into e, d s.t. ed=1 (und q(N)) subject yh = (N,e), sh = (N,d)

F Unxi? Tot RA (x) = ze in ZN

 $E'(suy) = y^{\lambda}$; $y^{\lambda} = RSA(x)^{\lambda} = \chi^{c\lambda} = \chi^{RQ(N)+1} = (\chi^{Q(N)})^{R} \chi = \pi$

RSAc Assumption

RSA wlexy e. is a one-way permutation

For all eff. algs A:

Pr[A(Nie, y) = y'll] < nykyibh
Where 1,2 & n_bit primes, N < 12, y & 22

PRE

(Es, De): sque ere, scheme providing AE

H! $R_n \rightarrow K$ where K is key space of (Es, D₃)

her(): greate RSA params $I^{K} = (N_{1}c)$, $S_{N} = (N_{1}d)$ $E(pk_{1}m)$: 1. choose realow x in R_{1}^{M} 2. $y \leftarrow RSA(x) = xe$, $n \leftarrow H(s)$ 3. Output $(y, E_{3}(u, \mu))$

O(sk, (gc)): output Ds (HCRSA-1(y)), c)

RSA in practice

Never use textbook RSA

Resulting value is RSA energyted
Widely deployed (e.g. 171795 - TLS 1.2)

Is RSA a one-way permulation?

To insurt who d' attacher must compute x from $c=x^{2}$ (mod N)

Best algo!

1. factor & (hard) & easy on a quantum computer

2. compute eth roots mad p, q (easy)

Note: if we use small (2125 Lit) sk:

RSA is very issuerum (d can be recovered from Nye)

However, making e small is oh (min e=3, woully e=65537)

Asymmetry of RSA: fact enel stous dec El Camal: approx same Have for both

Why is ROA dying?

Key lights: security of PK system should be comparable to security of sym. cipher

Cipher key size	RSA not size	ECC wook size
80 113	1054 MP	110 2.15
128 Wb	8072 615	256 ht
256 6its (AES)	13360 6.15	S12 6h

Also - very valuerable to side - channel attach s.