Варіант 7

Умова:

Розв'язати крайову задачу

import numpy as np

$$Ay = f;$$
 $x_1 < x < x_2;$
 $a_1 y = f_1;$ $x = x_1;$
 $a_2 y = f_2;$ $x = x_2;$

де Ay = y'' + p(x)y' + q(x)y = f(x); p(x), q(x) - задані функції; a_1 , a_2 - задані оператори; x_1 , x_2 - задані числа.

Для дослідження точності методів потрібні задачі, що мають аналітичний розв'язок. Тому розв'язком Вашої задачі є функція

$$y(x) = ax^2 + bx + c + (dx+e)^{-1}$$
.

Допрограмовий етап:

$$y=0.267 x^{2}+0.871 x-0.194+(-1.093 x-1.572)^{-1}$$

$$Ay=y''-3y'+\frac{y}{x}$$

$$y'=0.534 x-0.871-1.093 *(-1.093 x-1.572)^{-2}$$

$$y''=(y')'=0.534+2.389298 *(-1.093 x-1.572)^{-3}$$

$$\frac{y}{x}=0.267 x+0.871-\frac{0.194}{x}-\frac{1}{x}*(-1.093 x-1.572)^{-1}$$

 $a_1 y = y(0.4) = -0.300590531555$ крайова умова типу Діріхле $a_2 y = y(0.7) - 2 y'(0.7) = 3.000846632502$ змішана крайова умова

Текст програми:

```
import matplotlib.pyplot as plt
A = 0.267; B = 0.871; C = -0.194; D = -1.093; E = -1.572
P = -3.; Q = lambda x: 1./x
def y(x):
  global A; global B; global C; global D; global E
  return A*pow(x, 2) + B*x + C + 1./(D*x + E)
def dy(x):
  global A; global B; global D; global E
  return 2.*A*x + B - D/pow((D*x + E), 2)
def d2v(x):
  global A; global D; global E
  return 2.*A + 2.*pow(D, 2)/pow((D*x + E), 3)
def f(x):
  global P
  return d2y(x) + P*dy(x) + Q(x)*y(x)
def fdMethod(n=30, x0=0.4, xn=0.7):
  h = float((xn - x0)/n)
```

```
x = np.zeros(n + 1); x[0] = x0
  for i in range(1, n + 1):
     x[i] = x[i - 1] + h
  y_{=} = np.zeros(n + 1)
  for i in range(n + 1):
     y_[i] = y(x[i])
  matr = np.array([[0.]*(n+1)]*(n+1))
  matr[0, 0] = -2./pow(h, 2) + Q(x[0]) - 3./h + 1.5*P
  matr[0, 1] = 2./pow(h, 2)
  matr[n, n] = 2.
  for i in range(1, n):
     matr[i, i - 1] = 1./pow(h, 2) - P/(2*h)
     matr[i, i] = -2./pow(h, 2) + Q(x[i])
     matr[i, i + 1] = 1./pow(h, 2) + P/(2*h)
  b = np.array([0.]*(n + 1))
  b[0] = f(x[0]) - 2.*(1.5*y(x0) - dy(x0))/h + P*(1.5*y(x0) - dy(x0))
  b[n] = 2.*y(xn)
  for i in range(1, n):
     b[i] = f(x[i])
  return x, np.linalg.solve(matr, b), y_, h
N = 10
BEST = 4
n = (30, 40, 60, 80, 100, 150, 300, 400, 500, 3000)
x = [[0.]]*N
y \text{ fd} = [[0.]]*N
y_{=} = [[0.]]*N
h = np.zeros(N)
for i in range(N):
  x [i], y [i], h[i] = fdMethod(n=n[i])
fdAcc = [[0]]*N
for i in range(N):
  fdAcc[i] = abs(y_[i] - y_fd[i])
hfdAcc = np.zeros(N)
for i in range(N):
  hfdAcc[i] = np.amax(fdAcc[i])
                                         Acc"
print "x
for i in range(n[BEST] + 1):
  print x_[BEST][i], " ", y_[BEST][i], " ", y_fd[BEST][i], " ", fdAcc[BEST][i]
print "n
                          e(h)"
            h
for i in range(N):
  print n[i], " ", h[i], " ", hfdAcc[i]
plt.plot(x [BEST], y [BEST], x [BEST], y fd[BEST])
plt.title("y and y fd for n = \%i"%n[BEST])
plt.grid(True)
plt.xlabel('x')
plt.ylabel('y')
```

plt.show()
plt.plot(x_[BEST], fdAcc[BEST])
plt.title("Residual for n = %i"%n[BEST])
plt.grid(True)
plt.xlabel('x')
plt.ylabel('fdAcc')
plt.show()

plt.plot(h, hfdAcc)
plt.title("Residual max for all n")
plt.grid(True)
plt.xlabel('h')
plt.ylabel('hfdAcc')
plt.show()

Результати роботи програми:

X	y	y_fd	Acc
0.4		0.300590409821	1.21733362279e-07
0.403	-0.296523391977	-0.296523271855	1.20122409075e-07
0.406	-0.292454084674	-0.292453966153	1.18520664172e-07
0.409	-0.28838259679	-0.288382479862	1.16928082827e-07
0.412	-0.284308915556	-0.284308800211	1.1534462091e-07
0.415	-0.280233028283	-0.280232914513	1.13770234289e-07
0.418	-0.276154922366	-0.276154810161	1.12204879388e-07
0.421	-0.27207458528	-0.272074474632	1.10648512353e-07
0.424	-0.267992004581	-0.26799189548	1.09101089885e-07
0.427	-0.263907167906	-0.263907060343	1.07562568463e-07
0.43	-0.259820062969	-0.259819956937	1.06032905123e-07
0.433	-0.255730677566	-0.255730573054	1.04512057009e-07
0.436	-0.251638999569	-0.251638896569	1.02999981599e-07
0.439	-0.247545016928	-0.247544915432	1.01496636207e-07
0.442	-0.24344871767	-0.243448617668	1.00001978892e-07
0.445	-0.239350089898	-0.239349991382	9.85159673561e-08
0.448	-0.235249121792	-0.235249024753	9.7038560215e-08
0.451	-0.231145801604	-0.231145706034	9.55697156413e-08
0.454	-0.227040117664	-0.227040023555	9.41093924456e-08
0.457	-0.222932058375	-0.222931965717	9.26575496607e-08
0.46	-0.218821612211	-0.218821520997	9.12141465415e-08
0.463	-0.214708767722	-0.214708677943	8.97791425369e-08
0.466	-0.210593513528	-0.210593425176	8.83524974848e-08
0.469	-0.206475838321	-0.206475751387	8.69341713339e-08
0.472	-0.202355730865	-0.202355645341	8.55241243103e-08
0.475	-0.198233179993	-0.198233095871	8.41223171399e-08
0.478	-0.194108174609	-0.19410809188	8.27287104377e-08
0.481	-0.189980703686	-0.189980622343	8.13432654845e-08
0.484	-0.185850756266	-0.1858506763	7.99659436168e-08
0.487	-0.181718321459	-0.181718242862	7.85967063655e-08
0.49	-0.177583388443	-0.177583311208	7.72355157608e-08
0.493	-0.173445946464	-0.173445870581	7.58823340274e-08
0.496	-0.169305984832	-0.169305910295	7.45371236677e-08
0.499	-0.165163492927	-0.165163419727	7.3199847378e-08
0.502	-0.161018460192	-0.161018388322	7.18704682712e-08
0.505	-0.156870876137	-0.156870805588	7.05489498487e-08

```
0.508
       -0.152720730334
                         -0.152720661099
                                            6.9235255723e-08
0.511
       -0.148568012422
                         -0.148567944493
                                            6.79293497285e-08
0.514
       -0.144412712102
                                            6.66311961439e-08
                         -0.144412645471
0.517
       -0.14025481914
                        -0.140254753799
                                           6.53407594697e-08
0.52
      -0.136094323362
                        -0.136094259304
                                           6.40580047617e-08
0.523
                                            6.27828969368e-08
       -0.131931214659
                         -0.131931151876
0.526
       -0.127765482982
                         -0.127765421466
                                            6.15154014394e-08
0.529
       -0.123597118343
                         -0.123597058088
                                            6.02554840745e-08
0.532
       -0.119426110817
                         -0.119426051814
                                            5.90031107445e-08
0.535
       -0.115252450537
                         -0.115252392779
                                            5.77582478373e-08
0.538
       -0.111076127698
                         -0.111076071177
                                            5.65208620878e-08
0.541
       -0.106897132552
                         -0.106897077261
                                            5.52909203977e-08
0.544
       -0.102715455412
                         -0.102715401344
                                            5.40683899181e-08
0.547
       -0.0985310866492
                          -0.098531033796
                                             5.28532381194e-08
0.55
      -0.0943440166924
                         -0.0943439650469
                                             5.16454328886e-08
0.553
       -0.0901542360282
                          -0.0901541855833
                                              5.04449425148e-08
0.556
       -0.0859617352008
                          -0.0859616859491
                                              4.92517351486e-08
0.559
       -0.0817665048109
                          -0.0817664567451
                                              4.80657798563e-08
0.562
       -0.0775685355155
                          -0.0775684886285
                                              4.68870454684e-08
0.565
       -0.073367818028
                         -0.0733677723125
                                             4.57155016065e-08
0.568
       -0.0691643431169
                          -0.0691642985658
                                              4.455111767e-08
0.571
                          -0.0649580582122
                                              4.33938636413e-08
       -0.0649581016061
0.574
       -0.0607490843741
                          -0.0607490421304
                                              4.22437099329e-08
0.577
       -0.0565372823537
                          -0.0565372412531
                                              4.11006269505e-08
0.58
      -0.0523226865318
                         -0.0523226465672
                                             3.99645857241e-08
0.583
       -0.0481052879486
                          -0.048105249113
                                             3.88355573464e-08
                          -0.0438850399839
0.586
       -0.0438850776975
                                              3.77135132637e-08
0.589
       -0.0396620469245
                          -0.0396620103261
                                              3.65984253667e-08
0.592
       -0.0354361868282
                          -0.0354361513379
                                              3.54902654487e-08
0.595
                                              3.43890063752e-08
       -0.0312074886589
                          -0.0312074542699
0.598
       -0.0269759437187
                          -0.026975910424
                                             3.32946204565e-08
0.601
       -0.0227415433605
                          -0.0227415111534
                                              3.22070808981e-08
                                             3 11263608672e-08
0.604
       -0.0185042789884
                          -0.018504247862
0.607
       -0.0142641420567
                          -0.0142641120043
                                              3.00524340257e-08
0.61
      -0.0100211240699
                         -0.0100210950846
                                             2.89852744619e-08
0.613
       -0.00577521658213
                           -0.00577518865728
                                                2.79248559849e-08
0.616
       -0.00152641119688
                           -0.00152638432573
                                                2.6871153384e-08
0.619
       0.0027253004334
                         0.00272532625754
                                              2.58241413869e-08
0.622
       0.00697992660763
                           0.00697995139143
                                               2.47837951464e-08
0.625
       0.0112374755765
                         0.0112374993266
                                             2.37500901099e-08
0.628
       0.0154979555426
                         0.0154979782656
                                             2.27230018083e-08
       0.0197613746613
0.631
                         0.0197613963638
                                             2.17025064274e-08
0.634
       0.0240277410404
                         0.024027761729
                                            2.06885801442e-08
0.637
       0.0282970627411
                         0.0282970824223
                                             1.96811997463e-08
0.64
      0.0325693477777
                        0.032569366458
                                           1.86803418845e-08
0.643
       0.0368446041187
                         0.0368446218046
                                             1.76859838302e-08
0.646
       0.0411228396864
                         0.0411228563845
                                             1.66981032959e-08
0.649
       0.0454040623577
                         0.0454040780744
                                             1.57166778411e-08
0.652
       0.0496882799643
                         0.049688294706
                                            1.47416856638e-08
0.655
       0.0539755002929
                         0.053975514066
                                            1.37731050107e-08
```

0.664	0.0668552548119	0.0668552657175	5 1.09056217529e-08
0.667	0.0711545630095	0.071154572972	9.96247738472e-09
0.67	0.0754569122006	0.0754569212263	9.02564137317e-09
0.673	0.0797623099093	0.0797623180044	8.09509329014e-09
0.676	0.0840707636169	0.0840707707877	7.17081405366e-09
0.679	0.0883822807623	0.0883822870151	6.25278402666e-09
0.682	0.0926968687423	0.0926968740833	5.34098441862e-09
0.685	0.097014534912	0.0970145393474	4.43539653616e-09
0.688	0.101335286585	0.101335290121	3.53600201897e-09
0.691	0.105659131033	0.105659133676	2.64278254836e-09
0.694	0.109986075488	0.109986077244	1.75572055505e-09
0.697	0.114316127141	0.114316128015	8.74798775086e-10
0.7	0.118649293141 0.	118649293141 5	5.55111512313e-16

n	h	e(h)
30	0.01	1.35258589778e-06
40	0.0075	7.60831526003e-07
60	0.005	3.38147957024e-07
80	0.00375	1.902083821e-07
100	0.003	1.21733362279e-07
150	0.002	5.41035795609e-08
300	0.001	1.35255708855e-08
400	0.00075	7.60714402581e-09
500	0.0006	4.86952173029e-09
3000	0.0001	8.36148927874e-11

Висновки:

Цей метод дає гарні результати (похибка < 1E-5) на малих проміжках та при не надто малій кількості ітерацій. Під час виконання роботи були виявлено, що похибка отриманих результатів параболічно залежить від величини ітераційного інтервалу з коефіцієнтом a \sim 0.0130092745497 (e(h) \sim a*h*h).