DEEP LEARNING WITH KERAS

TEXT CLASSIFICATION

Themistoklis Diamantopoulos

Text Classification Problem

- Sentiment Analysis
 - Identify positive and negative emotions in text
 - Dataset from Twitter: http://thinknook.com/twitter-sentimentanalysis-training-corpus-dataset-2012-09-22/

POSITIVES ©

The weather is great today!

Yo, I had so much fun

NEGATIVES 🙁

What a boring movie!

I dn't feel like doing anythin

Feature Representation

Each word has an ID (lower ID ←→ higher frequency)

PHRASES
"Is is a common word"
"So is the"
"the is common"

"disco is not common"

DICTIONARY

Word	Index	Word	Index
a	4	not	8
common	2	SO	6
disco	7	the	3
is	1	word	5

SEQUENCES

[1, 1, 4, 2]

[1, 3]

[3, 1, 2]

[1, 2]

PADDED SEQUENCES

[1, 1, 4, 2]

[0, 0, 1, 3]

[0, 3, 1, 2]

[0, 0, 1, 2]

Vector Space Model

Representation of documents

Each word is a dimension

Each document is a vector

Can be used to find similar

documents

WORD FREQUENCIES

	Doc1	Doc2
accident	4	3
car	3	2
vehicle	1	3

Source: http://slideplayer.com/slide/4174408/

Solution using MLP

- 3-layer fully connected network
- Input vector size: 3000 (number of words)
- Output layer: 2 nodes
- 2 Intermediate layers

Layer (type)	Output	Shape	Param #
dense_4 (Dense)	(None,	512)	1536512
dropout_3 (Dropout)	(None,	512)	0
dense_5 (Dense)	(None,	256>	131328
dropout_4 (Dropout)	(None,	256>	0
dense_6 (Dense)	(None,	2)	514

Source: https://github.com/wxs/keras-mnist-tutorial/blob/master/MNIST%20in%20Keras.ipynb

Word Embedding

- Distributed representation of words
- Each word is a vector
- Similar words have similar vectors

Can be used to generate analogies

Source: http://www.developintelligence.com/blog/2017/06/practical-neural-networks-keras-classifying-yelp-reviews/

Solution using CNN

- Embedding
- 1 Conv. layer
- Connected MLP

non-static channels

Layer (type)	Output Shape	Param #
embedding_7 (Embedding)	(None, 300, 64)	192000
conv1d_2 (Conv1D)	(None, 299, 100)	12900
global_max_pooling1d_2 (Glob	(None, 100)	0
dense_7 (Dense)	(None, 256)	25856
dense_8 (Dense)	(None, 1)	257

softmax output

Source: https://machinelearningmastery.com/best-practices-document-classification-deep-learning/

feature maps

Solution using LSTM

- Embedding
- 1 LSTM
- Like RNN but can also handle long

Layer (type)	Output	Shape	Param #
embedding_1 (Embedding)	(None,	300, 64>	192000
lstm_1 (LSTM)	(None,	64>	33024
dense_1 (Dense)	(None,	1>	65

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/