父疑

1.设下是一个自由Abel群,基为{x1,111,xn}=X 则下一季棒健得工(X1),…,正(Xn)是唇=(Zz)的 一组基(四是一个域,(四)产是四上的维向量空间) 证明: 岩工(x1)=ōe至则 x162F即存在n,;;,n, $\chi_1 = 2n_1\chi_1 + \cdots + 2n_n\chi_n \Rightarrow (2n_1-1)\chi_1 + \cdots + 2n_n\chi_n = 0$ 这与X是一组基矛盾,所以下(x1), …, 下(xn) +0 i=1,…,n 设. t, T(x1)+···+ tn T(xn)= 0 Tiefo, T} $\mathbb{P} \quad t_1 \times t_1 \times \cdots + t_n \times n \in 2F \qquad t_i \in \{0,1\}$

別 $\exists m_1, \dots, m_n$ $t_1 \times_1 + \dots + t_n \times_n = 2m_1 \times_1 + \dots + 2m_n \times_n$, 若北地 这与X是-组基矛盾

推论一年一种第三人

2. 有限生成Abel群的自同构群.

一般情况看不清楚

(1) 若G=GxGz 別Aut(G1) XAut(G2) < Aut(G)

Aut G = GL(2, Z). 这一般不相等例如G=Z×Z

Mf=(f₁₁ f₁₂) G= ¥G₂. (2) Vf (AutG, G=G, XG2

设 G有限生成Abel群, G空中的石户。 其中Pi,..., Ps 马芹素数, 15ei,5ei25...5eili 正整数 G=H,中···中Hs中Hs+I 设てEAutG考虑H, 数入G型料 せ $h_1 \longmapsto (h_1, e_2, \dots, e_{s+1}) \xrightarrow{\mathcal{T}} (a_1, a_2, \dots, a_{s+1})$ ^Vhi ∈ Hi 因为 $P_i^{e_{i}l_i}h_i=0$, $\varphi(P_i^{e_{i}e_i}h_i)=P_i^{e_{i}l_i}a_t\in H_t(e_{\uparrow, \downarrow, \downarrow, \downarrow, \downarrow, \downarrow, \downarrow})$ 即 $P_t^{e_{t}l_t}$ $a_t \Rightarrow a_t = e_t = 0$ 若 t=1, T经定 H.的 ∀ (h,,..., hs+1) ∈ G $T(h_1, \dots, h_{s+1}) = (T_1(h_1), \dots, T_{s+1}(h_{s+1}))$ BP Aut G → Aut Hix ··· × Aut Hs+1 $T \longrightarrow (T_1, \cdots, T_{S+1})$ $Aut H_{s+1} = Aut(Z^t) \cong GL(t, Z)$ Aut H.,···, Aut H。不容易计算.一般地,令H=①Zpei P素数,我们检查 Aut H, 说 中 E Aut H, 固定i, i

 $\mathbb{Z}_{pe_i} \longrightarrow H^{2p} \longrightarrow \mathbb{Z}_{pe_j}$

 $\overline{1} \mapsto (\overline{0}, \dots, \overline{0}, \overline{1}, \overline{0}, \dots \overline{0}) \xrightarrow{\phi} (\overline{a}_{i_1}, \dots, \overline{a}_{i_R})$ 给定TEZpei $\frac{1}{a_{ij}} \in \mathbb{Z}_{pe_j}$ 这给出中is: Zpei -> Zpei 群同态 因为 $P^{e_i}T = \overline{0}$ $P^{e_i}a_{ij} = \overline{0} \in \mathbb{Z}_{p^{e_i}}$ 即 $P^{e_j}|P^{e_i}a_{ij}$ 即 $P^{e_j-e_i}|a_{ij}$ 若 i=j 则 $\overline{a_{ij}}=\overline{1} \in \mathbb{Z}_{p^{e_i}}$ 中可写成矩阵 $\phi = (\phi_{ij})_{i,j=1}^{\ell} = (\overline{a}_{ij})_{i,j=1}^{\ell} P^{\ell_j - \ell_i} / a_{ij}$ 财新 $Ap \longrightarrow AutH$ 群反之,给定 $A \in Mp$ 身有一个同态 $H \longrightarrow H$ $\begin{pmatrix} \overline{\chi}_1 \\ \vdots \\ \overline{\chi}_\ell \end{pmatrix} \longmapsto A \begin{pmatrix} \chi_1 \\ \vdots \\ \chi_\ell \end{pmatrix}$ 需要检查哪些 A 给出的同态是自同的? 基 A考定 Mp → DMe(Zp) (aij) - (āij modP) 若AEM,满足h(A)可逆,则Ai辫了H上自同构。

ENDINGLE PERTY OF THE BUTTON.