0.1.1. 7.1 Answer each part TRUE or FALSE

0.1.1.1. a.
$$2n = O(n)$$

by the definition of O(n) we have

$$L \in O(n) \Leftrightarrow cL \leq n$$

set c to 2 , then we have $\mathbf{2}n$, so it must be the case that $2n \in O(n)$

0.1.1.2. b.
$$n^2 = O(n)$$

by the definition, again

$$L \in O(n) \Leftrightarrow cL \leq n$$

but note that c must be n, thus

$$nL < n^2$$

thus it must be that this case is false

0.1.1.3. c.
$$n^2 = O(n \log^2 n)$$

by the definition of $O(n \log^2 n)$

remember that we can multiply the outside factor for the inside one, thus

$$L \in O(\log^2 n^2) \Leftrightarrow L \le c \log^2 n^2$$

but, then, $2^L \le 2^c n^2$, but it's not the same language anymore, thus it must be the case that n^2 does not belong to $O(\log^2 n^2)$, false

0.1.1.4. d. $n \log n = O(n^2)$

by the definition, $n \log n \in O(n^2) \Leftrightarrow n \log n \le cn^2$, simplifying

$$\log n^2 \le cn^2$$

 $n^2 \le 2^c 2^{n^2}$ again not a constant, as such is false.

0.1.1.5. e .
$$3^n = 2^{O(n)}$$

$$3^n \in 2^{O(n)} \Leftrightarrow 3^n < 2^{cn}$$

0.1.1.6.
$$\mathbf{f} \cdot 2^{2^n} = O(2^{2^n})$$

again, by definition

$$2^{2^n} \in O(2^{2^n}) \Leftrightarrow 2^{2^n} \le c2^{2^n}$$

keep applying log

$$2^n \le \log c + 2^n$$

repeat, one more time

$$2^n - 2^n \le \log c$$

$$0 < \log c$$

so there's a constant > 1 so TRUE.

0.1.2. 7.2 Answer each part TRUE or FALSE

0.1.2.1. a.
$$n = o(2n)$$

based on the definition of o(n)

$$L \in o(n) \Leftrightarrow n < cn$$

if c=1 then it must be the case that $n \in O(n)$, but then we can always find a constant that would make this false, they have the same growth rate, thus it must be false.

0.1.2.2. b .
$$2n = o(n^2)$$

it must be the case that $n \in o(n^2) \Leftrightarrow n < cn^2$ thus it must also be the case that $2n < n^2$ for any c, thus $2n \in o(n^2)$

0.1.2.3. c.
$$2^n = o(3^n)$$

again, based on the definition

$$2^n \in o(3^n) \Leftrightarrow 2^n < c3^n$$

it must be the case as well, thus TRUE.

0.1.2.4. d.
$$1 = o(n)$$

by the definition $1 \in O(n)$, that is a linear function always grow faster than a constant, TRUE.

$$0.1.2.5. e n = o(log n)$$

by the definition

$$n \in o(\log n) \Leftrightarrow n < c \log n$$

but $\log n \leq n$, thus it must be false.

0.1.2.6. f.
$$1 = o(\frac{1}{n})$$

this one must be false, due to 0 < n < 1 being the only case for this to be true.

0.1.2.7. 7.4 Fill out the table described in the polynomial time algorithm for context free language

recognition from Theorem 7.16 for string w = baba and CFG G:

$$S \to RT$$

$$R \to TR \mid a$$

$$T \rightarrow TR \mid b$$

	1	2	3	4	4
1	Т				
2		R			
3			Т		
4				R	

7.6 Show that P is closed under union, concatenation, and complement

Consider the following TM

 $M = "On input \langle M_1, M_2, a \rangle$ where M_1 is a TM and M_2 is a TM and a is a string

- 1. Run M_1 on input a
- 2. Run M_2 on input b
- 3. If any of them accept, accept, else reject

Due to each machine taking at most polynomial time due to $L \in P$ it must be the case that step 1 takes $O(t^{k_i})$ and step 2 $O(t^{k_j})$ for some $(k_j, k_i) \in N \times N$ and the sum of two polynomials is a polynomial, thus it must be the case that the union of two P languages is also in P.

 $M = "On input \langle M_1, M_2, a \rangle$ where M_1 is a TM and M_2 and is a TM, a is a string

- 1. For k = 0 to |a|
- 2. Partition a as (l,r) where l start at position 0 of a and end at k-1 and r start at k and end at |a| position
- 3. Run M_1 in l and M_2 in r
- 4. If M_1, M_2 accepts then accept
- 5. Reject

Note that we can partition a in a^2 splits, each partition can have at most size |a| and two exists, each partition takes $O(t^{k_j})$ for M_1 and $O(t^{k_i})$ for M_2 for $(t_k,t_i)\in N\times N$, so as seen before the sum of polynomials is a polynomial, and the multiplication of a constant by a polynomial is a polynomial, a^2 , in this case.

As such it must be the case that concatenation of languages is in P

 $M=\mbox{"On input }\langle M_1,a\rangle$ where M_1 is a TM and a a string

- 1. Run M_1 on a
- 2. Reject if accepts and accept if rejects

Note that it must be the case that the time it takes is $O(t^k)$ where $k \in N$, as such it take polynomial time, consequently the extra step is constant time, inverting the answer, thus negation of a language in P belongs to P as well

0.1.3. 7.7 Show that NP is closed under union and concatenation

M = "On input $\langle M_1, M_2, a \rangle$ where M_1 is a TM, M_2 is a TM and a is a string

- 1. Run M_1 with a as input
- 2. Run M_2 with a as input
- 3. Accept if one of them accept, otherwise reject"

Note that takes polynomial time for each machine, and the sum of polynomials is a poylnomial consequently it must be the case that the union of two languages in NP is in NP

 $M = \text{"On input } \langle M_1, M_2, a \rangle$ where M_1, M_2, a is a TM, TM and string respectively

- 1. Partition a in a non deterministic manner
- 2. For each partition run M_1 on the left substring and M_2 on the right substring
- 3. Accept if both accept
- 4. Reject

0.1.4. 7.8 Let CONNECTED = $\{ < G > | G \text{ is a connected undirected graph} \}$. Analyze the algorithm given on page 185 to show that this language is in P.

M = "On input $\langle G \rangle$ where G is the encoding of a Graph

- 1. Select the first node of G and mark it
- 2. Repeat the following stage until no new nodes are marked:
- 3. For each node in G, mark it if its attached by an edge to a node that is already marked
- 4. Scan all the nodes of G to determine whether they all are marked. If they are, accept; otherwise, reject"
- the first step takes O(1) so constant time
- the second step takes $O(G^3)$ so linear time
- the last step takes $\mathcal{O}(G)$ so linear time

so $O(G^2)$ is the final time the second step has the following time because in the worst case a node might compare with n-1 nodes and n nodes exist, so $O(n^3)$

0.1.5. 7.9 A triangle in an undirected graph is a 3-clique. Show that TRIANGLE \in P, where TRIANGLE = $\{\langle G \rangle \mid G \text{ contains a triangle}\}$