Lecture 6: Normal Quantile Plot; Chance Experiments, Probability Concepts

Chapter 5: Probability and Sampling Distributions

Example

- Scores for 10 students are:
- 78 80 80 81 82 83 85 85 86 87
- Find the median and quartiles:
 - 1. Median= Q2 = M = (82+83)/2 = 82.5
 - 2. Q1 = Median of the lower half, i.e. 78 80 80 81 82, = 80
 - 3. Q_3 = Median of the upper half, i.e. $83\ 85\ 85\ 86\ 87$, = 85

Therefore, $IQR = Q_3 - Q_1 = 8_5 - 8_0 = 5$

Additionally, find Min and Max

$$Min = 78$$
, and $Max = 87$

- We get a five-number summary!
- Min Q1 Median Q3 Max
 78 80 82.5 85 87

Boxplots; Modified Version

- Visual representation of the five-number summary
 - Central box: Q1 to Q3
 - Line inside box: Median
 - Extended straight lines: from each end of the box to lowest and highest observation.
- Modified Boxplots: only extend the lines to the smallest and largest observations that are not outliers. Each **mild outlier*** is represented by a closed circle and each **extreme outlier**** by an open circle.
- *Any observation **farther than 1.5 IQR from the closest quartile** is **an outlier**.
- **An outlier is <u>extreme if more than 3 IQR from t</u>he nearest quartile, and is mild otherwise.

Example

- Five-number summary is:
- Min: 78
- Q1: 80
- Median: 82.5
- Q3: 85
- Max: 87
- Draw a boxplot:

More on Boxplots

- Much more compact than histograms
- "Quick and Dirty" visual picture
- Gives rough idea on how data is distributed
 - Shows center/typical value (the median);
 - Position of median line indicates symmetric/not symmetric, positively/negatively skewed.
 - IQR gives the middle 50%
 - Min to Max gives the entire range
- Side-by-side boxplots very useful for comparisons
 - See from slide 10

Describe a Boxplot

- Symmetric? if not, positively or negatively skewed (based on median line)
- Outliers? Based on 1.5IQR rule (and 3IQR rule for extreme outliers)
- Overall range : = Max Min;
- IQR : = Central box's range;
- Similar procedure for side-by-side comparison

Examples--MPG

2.4 Normal Quantile Plot (QQplot)

- Used to check whether your data is Normal
- To make a QQplot:

For a sample of size $n: x_1, x_2,...x_n$

1. Order the data from smallest to largest:

 $x_{(1)}, x_{(2)}, ... x_{(n)}$ where $x_{(i)}$ is the *i*-th smallest

2. Calculate the sample quantile

Sample quantile is calculated as:

 $x_{(i)} = [(i-0.5)/n]$ th sample quantile

- 3. Plot the points ([(i-0.5)/n]th z-percentile, $x_{(i)}$)
- If the data distribution is close to normal, the plotted points will lie close to a sloped straight line on the QQplot!

Examples

Examples—Newcomb's Data

Newcomb's Data (without outliers)

Examples—Supermarket data

A Statistic, or Statistical Inference?

• A statistic is any numerical measure calculated from sample data.

E.g., the sample mean, sample s.d., 5-number-summary, and correlation coefficient ...

 What parameter values to use to describe the continuous or discrete distribution?

We have to use **statistical inference** that converts the information from random samples into reliable estimates of population parameters.

After Class...

- Review Ch. 2
- Read Sec 5.1 through 5.3, till Pg 207

- Hw#2, 5pm next Monday
- Lab#2 (next Wed, due on next Friday)