Introduction
Basic principles
The Katz-Sarnak Philosophy
Averages of Selmer Ranks
Constructive results

Distribution of ranks of elliptic curves

Frank Thorne

University of Wisconsin - Madison

February 12, 2007

Constructive results

Goldfeld's Conjecture

Conjecture (Goldfeld)

Half of all elliptic curves have rank 0, half have rank 1, and the rest have rank \geq 2.

Constructive results

Goldfeld's Conjecture

Conjecture (Goldfeld)

Half of all elliptic curves have rank 0, half have rank 1, and the rest have rank \geq 2.

Questions:

Constructive results

Goldfeld's Conjecture

Conjecture (Goldfeld)

Half of all elliptic curves have rank 0, half have rank 1, and the rest have rank \geq 2.

Questions:

▶ What are "half of all elliptic curves?"

Goldfeld's Conjecture

Conjecture (Goldfeld)

Half of all elliptic curves have rank 0, half have rank 1, and the rest have rank ≥ 2 .

Questions:

- ▶ What are "half of all elliptic curves?"
- Why would we believe such a claim?

Ranks in families

▶ Understand distribution of ranks of elliptic curves.

Ranks in families

- Understand distribution of ranks of elliptic curves.
- ▶ If we write down some list $E_1, E_2, ...$, we want to show

$$\sum_{i \le X} \operatorname{rk} \, E_i \sim f(X)$$

$$\{i \leq X : \operatorname{rk} E_i = r\} \sim g(X)$$

for suitable functions f, g.

Natural Questions

▶ How should we order such a list?

Natural Questions

- ▶ How should we order such a list?
- ▶ What do we expect, and what can we prove?

Natural Questions

- ▶ How should we order such a list?
- ▶ What do we expect, and what can we prove?
- What about quantities related to the rank?

(i.e., analytic rank, the parity, Selmer ranks, etc.)

Families of curves: quadratic twists

Let

$$E: y^2 = x^3 + ax + b$$

be an elliptic curve. The *D-quadratic twist of E* is

$$E(D): Dy^2 = x^3 + ax + b$$

where D is a fundamental discriminant. This family...

Families of curves: quadratic twists

Let

$$E: y^2 = x^3 + ax + b$$

be an elliptic curve. The *D-quadratic twist of E* is

$$E(D): Dy^2 = x^3 + ax + b$$

where D is a fundamental discriminant. This family...

will not include all elliptic curves, but...

Families of curves: quadratic twists

Let

$$E: y^2 = x^3 + ax + b$$

be an elliptic curve. The *D-quadratic twist of E* is

$$E(D): Dy^2 = x^3 + ax + b$$

where D is a fundamental discriminant. This family...

- will not include all elliptic curves, but...
- is accessible for reasons we'll see.

Height and conductor

The height of
$$E$$
: $y^2 = x^3 + ax + b$ is
$$\max(|a|^3, |b|^2).$$

With an appropriate minimality condition, every elliptic curve occurs exactly once.

Height and conductor

The height of
$$E$$
: $y^2 = x^3 + ax + b$ is
$$\max(|a|^3, |b|^2).$$

With an appropriate minimality condition, every elliptic curve occurs exactly once.

Can we prove results ordering by height or conductor?

Height and conductor

The height of
$$E$$
: $y^2 = x^3 + ax + b$ is
$$\max(|a|^3, |b|^2).$$

With an appropriate minimality condition, every elliptic curve occurs exactly once.

Can we prove results ordering by height or conductor? Some anyway... (we won't concentrate on these)

Algebraic families

Let $a_1, a_2, a_3, a_4, a_6 \in \mathbb{Z}[t]$. Consider

$$y^2 + a_1(t)xy + a_3(t)y = x^3 + a_2(t)x^2 + a_4(t)x + a_6(t)$$
.

This defines an algebraic family : for almost all $t \in \mathbb{Z}$ this defines an elliptic curve.

Algebraic families

Let $a_1, a_2, a_3, a_4, a_6 \in \mathbb{Z}[t]$. Consider

$$y^2 + a_1(t)xy + a_3(t)y = x^3 + a_2(t)x^2 + a_4(t)x + a_6(t)$$
.

This defines an algebraic family : for almost all $t \in \mathbb{Z}$ this defines an elliptic curve.

If you know a lot of algebraic geometry, you can get results.

Related quantities

Analytic ranks Kummer exact sequence

Basic principles: related quantities

Often quantities related to the rank are easier to study, such as:

Related quantities

Analytic ranks Kummer exact sequence

Basic principles: related quantities

Often quantities related to the rank are easier to study, such as:

Analytic ranks and parity

Related quantities Analytic ranks Kummer exact sequence

Basic principles: related quantities

Often quantities related to the rank are easier to study, such as:

- Analytic ranks and parity
- p-ranks and Selmer groups.

Analytic rank

Definition

If E is an elliptic curve over $\mathbb Q$ and L(E,s) is the associated L-function, then the *analytic rank* of E is

$$\mathrm{ord}_{s=1}\ L(E,s).$$

Analytic rank

Definition

If E is an elliptic curve over \mathbb{Q} and L(E,s) is the associated L-function, then the *analytic rank* of E is

$$\operatorname{ord}_{s=1} L(E,s).$$

Conjecture (Birch and Swinnerton-Dyer)

$$\operatorname{rk} \, E = \operatorname{ord}_{s=1} \, L(E,s).$$

Parities of analytic ranks

Theorem

Given an elliptic curve E with conductor N(E). Assume D is a fundamental discriminant. Then the analytic ranks of E and E(D) have the same parity if and only if $\left(\frac{D}{-N}\right)=1$.

Proof:

If the L-series of E is

$$L(E,s)=\sum_n a_n n^{-s},$$

then we have

$$L(E(D),s) = \sum_{n} a_{n} \left(\frac{D}{n}\right) n^{-s}.$$

Proof:

If the L-series of E is

$$L(E,s)=\sum_{n}a_{n}n^{-s},$$

then we have

$$L(E(D),s) = \sum_{n} a_{n} \left(\frac{D}{n}\right) n^{-s}.$$

Why? Look at

$$E: y^2 = x^3 + ax + b$$

 $E(D): Dv^2 = x^3 + ax + b.$

Proof:

If the L-series of E is

$$L(E,s)=\sum_n a_n n^{-s},$$

then we have

$$L(E(D),s) = \sum_{n} a_{n} \left(\frac{D}{n}\right) n^{-s}.$$

Why? Look at

$$E: y^2 = x^3 + ax + b$$

$$E(D) : Dy^2 = x^3 + ax + b.$$

How to compute a_p ? Look for solutions in \mathbb{F}_p .

Proof:

If the *L*-series of *E* is

$$L(E,s)=\sum_n a_n n^{-s},$$

then we have

$$L(E(D),s) = \sum_{n} a_{n} \left(\frac{D}{n}\right) n^{-s}.$$

Why? Look at

$$E: y^2 = x^3 + ax + b$$

$$E(D): Dy^2 = x^3 + ax + b.$$

How to compute a_p ? Look for solutions in \mathbb{F}_p . Is D is a square in \mathbb{F}_p ?

The root number

Our L-series have functional equations: Write

$$\Lambda(E,s) = L(E,s)(\sqrt{N}/2\pi)^{-s}\Gamma(s)$$

then

$$\Lambda(E,s) = \Lambda(E,2-s)\omega(E).$$

The root number $\omega(E)=\pm 1$ determines the parity.

The root number

Our *L*-series have functional equations: Write

$$\Lambda(E,s) = L(E,s)(\sqrt{N}/2\pi)^{-s}\Gamma(s)$$

then

$$\Lambda(E,s) = \Lambda(E,2-s)\omega(E).$$

The root number $\omega(E)=\pm 1$ determines the parity. By the theory of modular forms,

$$\omega(E) = \omega(E(D)) \left(\frac{D}{-N}\right).$$

So, quadratic twists are split evenly between even and odd analytic rank.

The Kummer exact sequence is

$$0 \to E/pE \to S_p(E) \to Sha[p] \to 0.$$

The Kummer exact sequence is

$$0 \to E/pE \to S_p(E) \to Sha[p] \to 0.$$

 \triangleright E/pE is the *p*-rank of E,

The Kummer exact sequence is

$$0 \to E/pE \to S_p(E) \to Sha[p] \to 0.$$

- \triangleright E/pE is the p-rank of E,
- ▶ $S_p(E)$ is the *p*-Selmer group,

The Kummer exact sequence is

$$0 \to E/pE \to S_p(E) \to Sha[p] \to 0.$$

- \triangleright E/pE is the p-rank of E,
- ▶ $S_p(E)$ is the *p*-Selmer group,
- ► *Sha*[*p*], defined by this exact sequence, is the *p*-part of the Shafarevich-Tate group.

The Kummer exact sequence is

$$0 \to E/pE \to S_p(E) \to Sha[p] \to 0.$$

- \triangleright E/pE is the p-rank of E,
- ▶ $S_p(E)$ is the *p*-Selmer group,
- ► Sha[p], defined by this exact sequence, is the p-part of the Shafarevich-Tate group.

So

$$\operatorname{rk}(E) + \operatorname{rk}_p(\operatorname{Tor}(E)) = rk_pS_p(E) - rk_pSha[p].$$

The Kummer exact sequence (cont.)

Theorem

(Mazur). E doesn't have much p-torsion, and if $p \ge 11$ it has none at all.

The Kummer exact sequence (cont.)

Theorem

(Mazur). E doesn't have much p-torsion, and if $p \ge 11$ it has none at all.

Theorem

(Cassels, Tate [AEC X.4.14]) If the Shafarevich-Tate group is finite then its order is a square.

The Katz-Sarnak Philosophy

The object is to study the distribution of objects such as

Zeroes of individual zeta and L-functions.

The Katz-Sarnak Philosophy

The object is to study the distribution of objects such as

- ► Zeroes of individual zeta and L-functions.
- Critical values of families of L-functions.

The Katz-Sarnak Philosophy

The object is to study the distribution of objects such as

- Zeroes of individual zeta and L-functions.
- Critical values of families of L-functions.

Big Idea: These distributions can be modeled by the theory of random matrices.

Example: SO(N).

Example: SO(N).

It is a compact Lie group,

Example: SO(N).

It is a *compact Lie group*, and therefore it has a *Haar measure* μ

satisfying

Example: SO(N).

It is a compact Lie group, and therefore it has a Haar measure μ satisfying

▶
$$\mu(SO(N)) = 1$$
,

Example: SO(N).

It is a compact Lie group, and therefore it has a Haar measure μ satisfying

- ▶ $\mu(SO(N)) = 1$,
- $\blacktriangleright \mu(X) = \mu(gX) = \mu(Xg)$ for any subset X and element g.

We think of μ as a probability measure on SO(N).

A probability measure on SO(N)

A probability measure on O(N) (U(N), Sp(N), etc.) lets us talk about:

Expected distribution of eigenvalues on the unit circle

A probability measure on SO(N)

A probability measure on O(N) (U(N), Sp(N), etc.) lets us talk about:

- Expected distribution of eigenvalues on the unit circle
- Moments of characteristic polynomials

A probability measure on SO(N)

A probability measure on O(N) (U(N), Sp(N), etc.) lets us talk about:

- Expected distribution of eigenvalues on the unit circle
- Moments of characteristic polynomials
- ► Etc.

Analogy between number fields and function fields.

Analogy between number fields and function fields.

Theorem

For function fields, the Riemann Hypothesis is true.

Analogy between number fields and function fields.

Theorem

For function fields, the Riemann Hypothesis is true.

Proof: Give a *spectral interpretation* to the zeroes, in terms of eigenvalues of Frobenius acting on *I*-adic cohomology.

Analogy between number fields and function fields.

Theorem

For function fields, the Riemann Hypothesis is true.

Proof: Give a *spectral interpretation* to the zeroes, in terms of eigenvalues of Frobenius acting on *l*-adic cohomology.

This involves Galois representations into GL(N) for appropriate N; the images are *monodromy groups* and are often nice:

$$SO(N), Sp(N), \dots$$

Analogy between number fields and function fields.

Theorem

For function fields, the Riemann Hypothesis is true.

Proof: Give a *spectral interpretation* to the zeroes, in terms of eigenvalues of Frobenius acting on *l*-adic cohomology.

This involves Galois representations into GL(N) for appropriate N; the images are *monodromy groups* and are often nice:

$$SO(N), Sp(N), \dots$$

These monodromy groups are related to statistics of the zeta functions.

Wild Speculation

All of the above is true for number fields too.

Wild Speculation

All of the above is true for number fields too.

Work of Katz-Sarnak, Rubinstein, and others uses this assumption to make predictions.

Ranks of elliptic curves

Conjecture

The values of L(E(D), 1) as D varies are given by an orthogonal distribution.

In particular the *L*-values shouldn't be zero more often than they have to be.

Goldfeld's Conjecture

Conjecture (Goldfeld)

Fix any elliptic curve E/\mathbb{Q} . Then the sets of fundamental discriminants D for which the rank of E(D) is 0 and 1 have density 1/2 each.

In other words, elliptic curves usually have the smallest rank possible.

Goldfeld's Conjecture

Conjecture (Goldfeld)

Fix any elliptic curve E/\mathbb{Q} . Then the sets of fundamental discriminants D for which the rank of E(D) is 0 and 1 have density 1/2 each.

In other words, elliptic curves usually have the smallest rank possible.

Is it true? See some data to the contrary compiled by Bektemirov, Mazur, Stein, and Watkins.

Conjecture for rank 2

Let

$$N_E(X) = \#\{|D| \le X : \text{rk } E(D) \ge 2, \text{even}\}.$$

$$N'_E(X) = \#\{|p| \le X : \operatorname{rk} E(p) \ge 2, even\}.$$

Conjecture for rank 2

Let

$$N_E(X) = \#\{|D| \le X : \text{rk } E(D) \ge 2, \text{even}\}.$$

$$N'_{E}(X) = \#\{|p| \le X : \text{rk } E(p) \ge 2, \text{even}\}.$$

Conjecture (Conrey, Keating, Rubinstein, Snaith)

$$N'_E(X) \sim C_E X^{3/4} \log^{-5/8} X$$
.

The power of log is complicated. So let's get the 3/4.

Restrict to curves with even analytic rank. (Half of them)

Restrict to curves with even analytic rank. (Half of them) Katz-Sarnak philosophy says, the values L(E(D),1) follow an orthogonal distribution. But,

Restrict to curves with even analytic rank. (Half of them) Katz-Sarnak philosophy says, the values L(E(D),1) follow an orthogonal distribution. But, they are discretized!

Restrict to curves with even analytic rank. (Half of them) Katz-Sarnak philosophy says, the values L(E(D),1) follow an orthogonal distribution. But, they are discretized!

Theorem (Waldspurger, Shimura, Kohnen-Zagier)

$$L(E(D),1) = \kappa_E c_E(|D|)^2 / \sqrt{D},$$

where the c_E are the *integer valued* coefficients of a certain half-integral weight modular form.

Ramanujan conjecture: $c_E(|D|) \ll |D|^{1/4+\epsilon}$.

L(E(D), 1) vanishes iff the Fourier coefficient $c_E(|D|)$ does.

L(E(D),1) vanishes iff the Fourier coefficient $c_E(|D|)$ does. If $c_E(|D|)$ can be as large as $|D|^{1/4}$, assume roughly equal distribution.

L(E(D),1) vanishes iff the Fourier coefficient $c_E(|D|)$ does. If $c_E(|D|)$ can be as large as $|D|^{1/4}$, assume roughly equal distribution.

Then approximately $X^{3/4}$ of the $c_E(|D|)$ will be zero.

The congruent number curve

The congruent number elliptic curve is

$$E: y^2 = x^3 - x$$

and its *D*-quadratic twist is

$$E(D): y^2 = x^3 - D^2x.$$

The congruent number curve

The congruent number elliptic curve is

$$E: y^2 = x^3 - x$$

and its D-quadratic twist is

$$E(D): y^2 = x^3 - D^2x.$$

For Heath-Brown's theorem, restrict to odd *D*.

Notation for Heath-Brown's theorem

Idea: study distribution of 2-Selmer ranks.

Notation for Heath-Brown's theorem

Idea: study distribution of 2-Selmer ranks. The 2-Selmer rank s(D) is defined by

$$2^{2+s(D)} = \#|S_2(E(D))|.$$

Notation for Heath-Brown's theorem

Idea: study distribution of 2-Selmer ranks. The 2-Selmer rank s(D) is defined by

$$2^{2+s(D)} = \#|S_2(E(D))|.$$

Here

▶ $S_2(E(D))$ is the 2-Selmer group,

Notation for Heath-Brown's theorem

Idea: study distribution of 2-Selmer ranks. The 2-Selmer rank s(D) is defined by

$$2^{2+s(D)} = \#|S_2(E(D))|.$$

Here

- ▶ $S_2(E(D))$ is the 2-Selmer group,
- ▶ We add 2 to s(D) because of the 2-torsion.

Heath-Brown's Theorem

Theorem

For any integer $r \ge 0$, the set of quadratic twists E(D) with D odd and s(D) = r has density

$$2^{r}\delta(r,D)\prod_{n\geq 0}(1-2^{-2n-1})\prod_{j=1}^{r}(2^{j}-1)^{-1}.$$

Heath-Brown's Theorem

Theorem

For any integer $r \ge 0$, the set of quadratic twists E(D) with D odd and s(D) = r has density

$$2^{r}\delta(r,D)\prod_{n\geq 0}(1-2^{-2n-1})\prod_{j=1}^{r}(2^{j}-1)^{-1}.$$

 $\delta(r,D)$ is 1 for r even and $D\equiv 1,3\mod 8$, or for r odd and $D\equiv 5,7\mod 8$, and $\delta(r,D)=0$ otherwise.

Heath-Brown's Theorem (cont.)

Corollary

The density of curves considered with rank r has the above upper bound.

Heath-Brown's Theorem (cont.)

Corollary

The density of curves considered with rank r has the above upper bound.

The proof of the theorem follows by computing

$$\sum_{D} 2^{s(D)}$$

and (for
$$k \geq 2$$
)

$$\sum_{D} 2^{ks(D)}.$$

Heath-Brown's Theorem (cont.)

Corollary

The density of curves considered with rank r has the above upper bound.

The proof of the theorem follows by computing

$$\sum_{D} 2^{s(D)}$$

and (for
$$k \geq 2$$
)

$$\sum_{D} 2^{ks(D)}.$$

Remember,
$$2^{s(D)} = \frac{1}{4} \# |S_2(E(D))|$$
.

By classical 2-descent theory, rational points on ${\cal E}({\cal D})$ correspond to systems

$$D_1X^2 + D_4W^2 = D_2Y^2$$
, $D_1X^2 - D_4W^2 = D_3Z^2$

with integer solutions.

By classical 2-descent theory, rational points on E(D) correspond to systems

$$D_1X^2 + D_4W^2 = D_2Y^2$$
, $D_1X^2 - D_4W^2 = D_3Z^2$

with integer solutions.

By definition, the 2-Selmer group is the number of such systems with p-adic solutions for all p.

By classical 2-descent theory, rational points on E(D) correspond to systems

$$D_1X^2 + D_4W^2 = D_2Y^2$$
, $D_1X^2 - D_4W^2 = D_3Z^2$

with integer solutions.

By definition, the 2-Selmer group is the number of such systems with p-adic solutions for all p.

This depends on whether certain quantities are squares mod p or not.

By classical 2-descent theory, rational points on E(D) correspond to systems

$$D_1X^2 + D_4W^2 = D_2Y^2$$
, $D_1X^2 - D_4W^2 = D_3Z^2$

with integer solutions.

By definition, the 2-Selmer group is the number of such systems with p-adic solutions for all p.

This depends on whether certain quantities are squares mod p or not. So we get to estimate character sums!

A character sum

We have

$$2^{s(D)} = \sum_{F} g(F)$$

A character sum

We have

$$2^{s(D)} = \sum_{F} g(F)$$

where F ranges over factorizations

$$D = \prod_{\substack{1 \le i \le 4, 0 \le j \le 4 \\ i \ne j}} D_{ij},$$

A character sum

We have

$$2^{s(D)} = \sum_{F} g(F)$$

where F ranges over factorizations

$$D = \prod_{\substack{1 \le i \le 4, 0 \le j \le 4 \\ i \ne j}} D_{ij},$$

$$g(F) := \left(\frac{-1}{D_{12}D_{14}D_{23}D_{21}}\right) \left(\frac{2}{D_{24}D_{21}D_{34}D_{41}}\right) \prod_{\substack{i:j \neq 0 \\ l \neq i:i:l}} 4^{-\omega(D_{i0}) - \omega(D_{ij})} \left(\frac{D_{kl}}{D_{ij}}\right).$$

Another character sum

The sum $\sum_{D} 2^{ks(D)}$ is even worse.

Constructive results

The idea: prove lower bounds by constructing a family of curves of a certain rank.

A Lower Bound for Rank 2

As before let

$$N_E(X)=\#\{|D|\leq X: \mathrm{rk}\ E(D)\geq 2, even\}.$$

A Lower Bound for Rank 2

As before let

$$N_E(X) = \#\{|D| \le X : \text{rk } E(D) \ge 2, \text{even}\}.$$

Theorem (Gouvêa-Mazur)

For any E/\mathbb{Q} ,

$$N_E(X) \gg X^{1/2-\epsilon}$$
.

Proof of Gouvêa-Mazur

If our curve is

$$E: y^2 = ax^3 + bx^2 + cx + d$$

write

$$F(u, v) = v(u^3 + au^2v + buv^2 + cv^3).$$

Proof of Gouvêa-Mazur

If our curve is

$$E: y^2 = ax^3 + bx^2 + cx + d$$

write

$$F(u, v) = v(u^3 + au^2v + buv^2 + cv^3).$$

By construction,

$$(u/v, 1/v^2) \in E(F(u, v))(\mathbb{Q}).$$

Proof of Gouvêa-Mazur

If our curve is

$$E: y^2 = ax^3 + bx^2 + cx + d$$

write

$$F(u, v) = v(u^3 + au^2v + buv^2 + cv^3).$$

By construction,

$$(u/v,1/v^2) \in E(F(u,v))(\mathbb{Q}).$$

With only finitely many exceptions, not a torsion point!

Proof of Gouvêa-Mazur, cont.

Recall the parity principle as applied to root numbers:

$$\omega(E) = \omega(E(D)) \left(\frac{D}{-N}\right).$$

By work of Cassels, etc., the parities of the algebraic ranks will be even in this case too.

Proof of Gouvêa-Mazur, continued

Thus, E(D) will have even rank ≥ 2 whenever

$$lackbox{} \left(rac{D}{-N}
ight) = 1$$
 (or -1 in case E has even rank)

Proof of Gouvêa-Mazur, continued

Thus, E(D) will have even rank ≥ 2 whenever

- ▶ $\left(\frac{D}{-N}\right) = 1$ (or -1 in case E has even rank)
- ► *D* is squarefree

Proof of Gouvêa-Mazur, continued

Thus, E(D) will have even rank ≥ 2 whenever

- ▶ $\left(\frac{D}{-N}\right) = 1$ (or -1 in case E has even rank)
- D is squarefree
- ▶ D = F(u, v) for some u and v.

The result follows by sieve methods.

Ono-Skinner's lower bound for rank 0

Write

$$N_{0,E}(X) = \#\{|D| \le X : \operatorname{rk} E(D) = 0\}.$$

Ono-Skinner's lower bound for rank 0

Write

$$N_{0,E}(X) = \#\{|D| \le X : \operatorname{rk} E(D) = 0\}.$$

Theorem (Ono-Skinner)

We have

$$N_{0,E}(X) \gg X/\log X$$
.

There are additional related results due to Ono.

Sketch proof of Ono-Skinner

Recall the formula of Waldspurger:

$$L(E(D),1) = \kappa_E c_E(|D|)^2 / \sqrt{D}$$

The c_E are Fourier coefficients of a weight 3/2 modular form.

Sketch proof of Ono-Skinner

Recall the formula of Waldspurger:

$$L(E(D),1) = \kappa_E c_E(|D|)^2 / \sqrt{D}$$

The c_E are Fourier coefficients of a weight 3/2 modular form. We know that

$$L(E(D),1) \neq 0 \rightarrow \operatorname{rk} E = 0$$

and so can look for nonvanishing Fourier coefficients.

▶ Multiply by an appropriate theta function to get an integer weight modular form *F*.

- ▶ Multiply by an appropriate theta function to get an integer weight modular form *F*.
- Associate a Galois representation ρ to F using work of Deligne and Serre.

- ▶ Multiply by an appropriate theta function to get an integer weight modular form *F*.
- Associate a Galois representation ρ to F using work of Deligne and Serre.
- ► Find *some* nonzero Fourier coefficient using work of Friedberg and Hoffstein.

- ▶ Multiply by an appropriate theta function to get an integer weight modular form *F*.
- Associate a Galois representation ρ to F using work of Deligne and Serre.
- Find some nonzero Fourier coefficient using work of Friedberg and Hoffstein.
- Use surjectivity properties of ρ and Chebotarev Density to prove a lower bound for nonvanishing modulo a prime.