6 (a) Show that $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$

(3)

The quadratic equation $x^2 - 7kx + k^2 = 0$, where k is a positive constant, has roots α and β where $\alpha > \beta$

(b) Show that $\alpha - \beta = 3k\sqrt{5}$

(3)

(c) Hence form a quadratic equation with roots $\alpha+1$ and $\beta-1$

Give your equation in the form $x^2 + px + q = 0$ where p and q should be given in terms of k.

(4)

DO NOT WRITE IN THIS AREA

Question 6 continued	

