МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Параллельные алгоритмы»

Тема: Реализация структур данных без блокировок

Студентка гр. 0303	Костебелова Е. К.
Преподаватель	Сергеева Е.И.

Санкт-Петербург

2023

Цель работы.

Научиться реализовывать lock-free структуру данных – lock-free очередь на основе атомарных операций.

Задание.

Выполняется на основе работы 2.

Реализовать очередь, удовлетворяющую lock-free гарантии прогресса. Протестировать доступ к реализованной структуре данных в случае нескольких потоков производителей и потребителей.

Выполнение работы.

Для решения поставленной задачи, был реализован класс lockfree_queue. Данный класс реализует два метода:

- add() для вставки элемента в очередь;
- get(T &element) для извлечения элемента из очереди в element; Lock-free свойство очереди обеспечивается за счет использования атомарной операции CAS – compare and set (compare and exchange).

Исследование.

Исследуем скорость работы очереди без блокировок в зависимости от количества потребителей и количества производителей. Так как, программа потенциально может работать бесконечно, посчитаем количество умноженных матриц размером 100×100 за 100 миллисекунд с разным количеством производителей и потребителей.

Результаты представлены в таблице (см. таблица 1).

Таблица 1 – Результаты исследования очередей.

Производители	Потребители	«грубая»	«тонкая»	lock-free
1	1	4	9	15
1	1	•		13
4	4	22	34	58
10	10	35	200	346
	- 0			
3	6	40	80	104
6	3	21	29	39
			-	

Из таблицы 1 видно, что lock-free очередь работает эффективнее, чем другие реализации.

Выводы.

В данной лабораторной работе была реализована lock-free очередь на основе алгоритма Майкла и Скотта. Было выявлено, что очередь без блокировок работает эффективнее, чем очереди с блокировками. За счет использования атомарных операций мы смогли повысить уровень параллелизма.