UAS KECERDASAN BUATAN

Perhitungan Manual menentukan Jumlah Produksi Karet dengan metode Fuzzy Tsukamoto

Perhitungan Manual

Data Permintaan, Persediaan dan Produksi Karet

No	Tanggal	Permintaan	Persediaan	Produksi
1	03/04/2018	5164	774	5428
2	04/04/2018	2979	700	4393
3	05/04/2018	3517	1142	3928
4	06/04/2018	2227	628	5545
5	07/04/2018	3043	1452	4020
6	08/04/2018	4777	1018	4741
7	09/04/2018	3148	1147	6769
8	10/04/2018	5766	1419	4951
9	11/04/2018	7493	1332	5501
10	12/04/2018	4935	863	5369
11	13/04/2018	2049	1152	6029
12	14/04/2018	4778	617	4887
13	15/04/2018	6176	711	5775

14	16/04/2018	5821	567	5161
15	17/04/2018	6632	1237	6496
16	18/04/2018	2847	1223	3867
17	19/04/2018	7198	927	4948
18	20/04/2018	2360	1285	3719
19	21/04/2018	2925	1249	6705
20	22/04/2018	4861	1175	4768
21	23/04/2018	6510	1248	5433
22	24/04/2018	5070	926	4876
23	25/04/2018	7147	695	6180
24	26/04/2018	4254	667	4460
25	27/04/2018	4971	550	4785
		Minimal = 2049	Minimal = 550	Minimal = 3719
		Maksimal = 7493	Maksimal = 1285	Maksimal = 6769
		Median = 4861		

Mendefinisikan Variable

a. Variable Permintaan

terdiri dari atas 3 himpunan fuzzy, yaitu Turun, Tetap dan Naik.

- pmt Turun [z] = (z_median z / z_median z_minimal)
- pmt Naik [z] = (z z_median / z_maximal z_median)
- pmt Tetap [z] = (z_maksimal z / z_maksimal z_median)

atau

(z - z_minimal / z_median - z_minimal)

z = 5662

- pmt Turun [5662] = (4861 5662 / 4861 2049)
 = 801 / 2812
 = 0.28485064
- pmt Naik [5662] = (5662 4861 / 7493 4861)= 801 / 2632

= 0.3043313067

- pmt Tetap [5662] =(7493 5662 / 7493 4861)
 = 1831 / 2632
 = 0.695668693
- b. Variable Persediaan

terdiri dari 2 himpunan fuzzy, yaitu Sedikit dan Banyak.

- psd Sedikit [z] = (z_maksimal z / z_maksimal z_minimal)
- psd Banyak [z] = (z z_minimal / z_maksimal z_minimal)

z = 630

- psd Sedikit [630] = (1285 630 / 1285 550)
 = 655/735
 = 0.891156563
- psd Banyak [630] = (630 550 / 1285 550)
 = 80/735
 = 0.108843537
- c. Variable Produksi

terdiri dari 2 himpunan fuzzy, yaitu Kurang dan Tambah.

- kurang [s] = (s_makasimal s / s_maksimal s_minimal)
 kurang [s] = (6769 s / 6769 3719)
- tambah [s] = (s s_minimal / s_maksimal s_minimal)
 tambah [s] = (s 3719 / 6769 3719)

Inferensi

dari uraian diatas terbentuk 6 himpunan fuzzy dan diperoleh 6 aturan fuzzy sebagai berikut :

[Q1] jika Permintaan **TURUN**, dan Persediaan **BANYAK**, maka Produksi Barang **BERKURANG**.

- = min(pmt TURUN [5662], psd Banyak[630])
- $= \min([0.28485064], [0.108843537])$
- = 0.108843537

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

Q1 = $Zmax-\alpha$ 1(Zmax-Zmin) Q1 = 6769-0.108843537(6769-3719) Q1 = 6769 - 331.97278785 Q1 = 6437.03

[Q2] jika Permintaan **TURUN**, dan Persediaan **SEDIKIT**, maka Produksi Barang **BERKURANG**.

- = min(pmt TURUN [5662], psd Sedikit[630])
- = min([0.28485064], [0.891156563])
- = 0.28485064

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

Q2 = $Zmax-\alpha$ 2(Zmax-Zmin)

Q2 = 6769 - 0.28485064(6769 - 3719)

Q2 = 6769 - 868.794452

Q2 = 5900

[Q3] jika Permintaan **NAIK**, dan Persediaan **BANYAK**, maka Produksi Barang **BERTAMBAH**.

- = min(pmt Naik [5662], psd Banyak[630])
- = min([0.3043313067], [0.108843537])
- = 0.108843537

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

Q3 = α 3(Zmax–Zmin)+ Zmin

Q3 = 0.108843537(6769 - 3719) + 3719

Q3 = 331.97278785 + 1000

Q3 = 1331.97

[Q4] jika Permintaan **NAIK**, dan Persediaan **SEDIKIT**, maka Produksi Barang **BERTAMBAH**.

```
= min(pmt Naik [5662], psd Banyak[630])
```

- = min([0.3043313067], [0.891156563])
- = 0.3043313067

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

```
Q4 = \alpha 4(Zmax-Zmin) + Zmin
```

Q4 = 0.3043313067(6769 - 3719) + 3719

Q4 = 928.210485435 + 1000

Q4 = 1928.2

[Q5] jika Permintaan **TETAP**, dan Persediaan **SEDIKIT**, maka Produksi Barang **BERTAMBAH**.

- = min(pmt Tetap[5662], psd Sedikit[630])
- = min([0.695668693], [0.891156563])
- = 0.695668693

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

```
Q5 = Zmax-\alpha 5(Zmax-Zmin)
```

Q5 = 6769 - 0.695668693(6769 - 3719)

Q5 = 6769 - 2121.78951365

Q5 = 4647.2

[Q6] jika Permintaan **TETAP**, dan Persediaan **BANYAK**, maka Produksi Barang **BERKURANG**.

```
= min(pmt Tetap[5662], psd Banyak[630])
```

- = min([0.695668693], [0.108843537])
- = 0.108843537

Menurut fungsi keanggotaan himpunan Produksi Barang BERKURANG pada persamaan di atas maka diperoleh persamaan berikut.

Q6 = $Zmax-\alpha$ 6(Zmax-Zmin)

Q6 = 6769 - 0.108843537(6769 - 3719)

Q6 = 6769 - 331.97278785

Q6 = 6437

Defuzifikasi

Pada metode tsukamoto, untuk menentukan output crisp, digunakan defuzifikasi rata-rata terpusat, yaitu :

 $Z = \alpha 1*q 1+ \alpha 2*q 2+\alpha 3*q 3+ \alpha 4*q 4+\alpha 5*q 5+ \alpha 6*q 6 / \alpha 1+\alpha 2+ \alpha 3+\alpha 4$

Z= 0.108843537*6437.03+0.28485064*5900+ 0.108843537*1331.97 +0.3043313067*1928.2+ 0.695668693*4647.2 +0.108843537*6437 / 0.108843537+0.28485064+0.108843537+ 0.3043313067 +0.695668693+ 0.108843537

Z= 700.629112975+1680.618776+144.976325978 +586.811625579 + 3232.91155011 + 700.625847669 / 1.6113812507

Z=7046.57323831 / 1.6113812507

Z=4373.00187975