# Everyone's Connected



# Contents

| L | Ten | nplate                                     |
|---|-----|--------------------------------------------|
| 2 | Dat | a structures                               |
|   | 2.1 | Simplified DSU (Stolen from GGDem)         |
|   | 2.2 | Disjoint Set Union                         |
|   | 2.3 | Segment tree                               |
|   | 2.4 | Segment tree Lazy                          |
|   | 2.5 | Trie                                       |
|   | Gra | phs                                        |
|   | 3.1 | Graph Transversal                          |
|   |     | 3.1.1 BFS                                  |
|   |     | 3.1.2 DFS                                  |
|   | 3.2 | Topological Sort                           |
|   | 3.3 | APSP: Floyd Warshall                       |
|   | 3.4 | SSSP                                       |
|   |     | 3.4.1 Lazy Dijkstra                        |
|   |     | 3.4.2 Bellman-Ford                         |
|   | 3.5 | Strongly Connected Components: Kosaraju    |
|   | 3.6 | Articulation Points and Bridges: ModTarjan |
|   | Mat | th                                         |
|   | 4.1 | Identities                                 |

|    | 4.2  |                                              | 3 |
|----|------|----------------------------------------------|---|
|    | 4.3  | Modular Inverse (dividir mod)                |   |
|    | 4.4  |                                              | 3 |
|    | 4.5  | Non-Mod Binomial Coeficient and Permutations |   |
|    | 4.6  | Modular Catalan Numbers                      |   |
|    | 4.7  | Ceil Fraccionario                            |   |
|    | 4.8  | Numeros de Fibonacci                         |   |
|    | 4.9  | Sieve Of Eratosthenes                        |   |
|    | 4.10 | Sieve-based Factorization                    |   |
|    | 4.11 | Cycle Finding                                |   |
|    | 4.12 | Berlekamp Massey                             | 3 |
|    | 4.13 | Modular Berlekamp Massey                     |   |
|    |      | Matrix exponentiation                        |   |
|    |      | Ecuaciones Diofantinas                       |   |
|    | 4.16 | Pollard-Rho, Stolen from GGDem               |   |
|    |      | FFT, Stolen from GGDem                       |   |
|    | 4.18 | Euler Totient Function                       | 3 |
|    |      |                                              |   |
| 5  | Geo  | metry                                        | 3 |
| 6  | Stri | ngs 3                                        | 3 |
|    | 6.1  | Explode by token                             | 3 |
|    | 6.2  |                                              | 3 |
|    | 6.3  | Permute chars of string                      | 3 |
|    | 6.4  | Longest common subsequence                   | 3 |
|    | 6.5  | KMP                                          | 3 |
|    | 6.6  | Suffix Array                                 | 3 |
|    | 6.7  | STL Suffix Array                             | 3 |
|    |      |                                              |   |
| 7  | Clas | sicos                                        |   |
|    | 7.1  | 8                                            | 3 |
|    |      | 7.1.1 One machine, linear penalty            |   |
|    |      | 7.1.2 One machine, deadlines                 |   |
|    |      | 7.1.3 One machine, profit                    |   |
|    |      | 7.1.4 Two machines, min time                 | 3 |
| 8  | Flov |                                              | , |
| 0  | 8.1  |                                              | 3 |
|    | 0.1  | Dillic, thx GGDem                            | ) |
| 9  | Mis  | cellaneous                                   | 3 |
|    | 9.1  | pbds                                         | 3 |
|    | 9.2  |                                              | 3 |
|    |      | 1                                            |   |
| 40 | Test | ing 3                                        | • |

| 10.1 | Gen and AutoRun testcases | 3 |
|------|---------------------------|---|
|      | 10.1.1 Gen.cpp            | 3 |
|      | 10.1.2 Stress testing     | 3 |
|      | 10.1.3 Autorum            | 3 |
| 10.2 | Highly Composite Numbers  | 3 |

# 1 Template

```
#include <bits/stdc++.h>
 2 #define ll long long int
   #define ull unsigned long long int
   using namespace std;
   void solve() {
       return;
 8
 9
10
   int main() {
       ios_base::sync_with_stdio(0);
12
       cin.tie(0);
13
14
       int t = 1; cin >> t;
15
       while (t--) solve();
16
17
       return 0;
18
19 }
```

### Data structures

## Simplified DSU (Stolen from GGDem)

- 2.2 Disjoint Set Union
  - 2.3 Segment tree
- 2.4 Segment tree Lazy
  - 2.5 Trie

# 3 Graphs

- 3.1 Graph Transversal
  - 3.1.1 BFS
  - 3.1.2 DFS
- Topological Sort 3.2
- 3.3 APSP: Floyd Warshall
  - 3.4 SSSP
  - 3.4.1 Lazy Dijkstra
  - 3.4.2 Bellman-Ford
- Strongly Connected Components: Kosaraju 3.5
- Articulation Points and Bridges: ModTarjan 3.6

#### Math 4

#### Identities 4.1

Coeficientes binomiales.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

$$\sum_{k=0}^n \binom{n}{k} = 2^n$$

$$\sum_{k=0}^n (-1)^k \binom{n}{k} = 0$$

$$\binom{n+m}{t} = \sum_{k=0}^t \binom{n}{k} \binom{m}{t-k}$$

$$\sum_{j=k}^n \binom{j}{k} = \binom{n+1}{k+1}$$

$$C_{n} = \frac{2(2n-1)}{n+1}C_{n-1}$$

$$C_{n} = \frac{1}{n+1}\binom{2n}{n}$$

$$C_{n} \sim \frac{4^{n}}{n^{3/2}\sqrt{\pi}}$$

$$\Sigma(n) = O(\log(\log(n))) \text{ (number of divisors of } n)$$

$$F_{2n+1} = F_n^2 + F_{n+1}^2$$

$$F_{2n} = F_{n+1}^2 - F_{n-1}^2$$

$$\sum_{i=1}^n F_i = F_{n+2} - 1$$

$$F_{n+i}F_{n+j} - F_nF_{n+i+j} = (-1)^n F_i F_j$$

### (Möbius Function)

0 if n is square-free

1 if n got even amount of distinct prime factors 0 if n got odd amount of distinct prime factors

#### (Möbius Inv. Formula)

Let 
$$g(n) = \sum_{d|n} f(d)$$
, then  $f(n) = \sum_{d|n} d \mid ng(d)\mu\left(\frac{n}{d}\right)$ .

Permutaciones objetos repetidos

$$P(n,k) = \frac{P(n,k)}{n_1!n_2!...}$$

Separadores, Ecuaciones lineares a variables = b  $\binom{a \choose b} = \binom{a+b-1}{b} = \binom{a+b-1}{a-1}$ 

$$\binom{\binom{a}{b}}{=} \binom{a+b-1}{b} = \binom{a+b-1}{a-1}$$
Teorema chino

sean  $\{n_1, n_2, ..., n_k\}$  primos relativos

$$P = n_1 \cdot n_2 \cdot ... \cdot n_k$$
 $P_i = \frac{P}{n_i}$ 
 $x \cong a_1(n_1)$ 
 $x \cong a_2(n_2) ... x \cong a_k(n_k)$ 

 $P_1S_1 \cong 1(n_1)$  Donde S soluciones.

$$x = P_1 S_1 a_1 + P_2 S_2 a_2 \dots P_k S_k a_k$$

- 4.2 Binary Exponentiation and modArith
  - 4.3 Modular Inverse (dividir mod)
- 4.4 Modular Binomial Coeficient and Permutations
- 4.5 Non-Mod Binomial Coeficient and Permutations
  - 4.6 Modular Catalan Numbers
    - 4.7 Ceil Fraccionario
    - 4.8 Numeros de Fibonacci
    - 4.9 Sieve Of Eratosthenes
  - 4.10 Sieve-based Factorization
    - 4.11 Cycle Finding
    - 4.12 Berlekamp Massey
  - 4.13 Modular Berlekamp Massey
    - 4.14 Matrix exponentiation
    - 4.15 Ecuaciones Diofantinas
  - 4.16 Pollard-Rho, Stolen from GGDem
    - 4.17 FFT, Stolen from GGDem
      - 4.18 Euler Totient Function
        - 5 Geometry
          - 6 Strings
        - 6.1 Explode by token
      - 6.2 Multiple Hashings DS
      - 3.3 Permute chars of string
    - 6.4 Longest common subsequence
      - 6.5 KMP
      - 6.6 Suffix Array
      - 6.7 STL Suffix Array