Signs of reductio Frequency, duration, and signing

rate in three sign language corpora

Carl Börstell

Onno Crasborn

Adam Schembri

UNIVERSITYOF **BIRMINGHAM**

Radboud University

What affects signing rate & duration?

Previous work: frequency & age effects. 1,3,9

Results: frequency

Sign mean duration decreases with frequency $(\beta = -41.254, t(19892) = -24.98, p < .0001)$

Inverse correlation between signing rate (signs/min) and mean duration of signs - that is, duration decrease is a strategy for rate increase $(\beta = -2.584, t(10790) = -76.74, p < .0001)$

References

 Börstell, C., T. Hörberg & R. Östling. 2016. Distribution and duration of signs and parts of speech in Swedish Sign Language. Sign Language & Linguistics 19(2). 143–196.
 Crasborn, O., R. Bank, I. Zwitserlood, E. v.d. Kooij, A. de Meijer, & A. Sáfár (2015). Corpus NGT annotations, release 3. Nijmegen: Radboud University.
 Grosjean, F. 1979. A study of timing in a manual and a spoken language: American Sign Language and English. Journal of Psycholinguistic Research 8(4). 379–405.
 Kuznetsova, A, P. B. Brockhoff & R. H. B. Christensen. 2016. ImerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software 82(13). 1–26.
 Mesch, J. 2018. Annotated files for the Swedish Sign Language Corpus (Version 6). Stockholm: Department of Linguistics, Stockholm University.
 R Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/. 7. Schembri, A., J. Fenlon, R. Rentelis & K. Cormier. 2017. British Sign Language Corpus Project: A corpus of digital video data and annotations of British Sign Language 2008–2017 (3rd edition). London: UCL. 8. Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag. http://ggplot2.org.
9. Wilbur, R. B. 2009. Effects of varying rate of signing on ASL manual signs and nonmanual markers. Language and Speech 52(2-3). 245-285.

Data & Method

Corpus	Sign types	Sign tokens
BSL Corpus ⁷	5,480	54,2019
Corpus NGT ²	4,693	122,881
STS Corpus ⁵	9,776	93,224

Pauses > 1000 msec \rightarrow sentence segmentation \rightarrow ≈270,000 sign glosses; ≈12,000 utterances

Results: age

With age, sign **duration** increases $(\beta = 1.1134, t(8859) = 13.351, p < .0001)$

... and signing rate decreases

 $(\beta = -0.50546, t(493.8) = -8.052, p < .0001)$

KEY FINDINGS:

- Frequent = shorter
- Duration ⇔ rate
- Age ⇔ duration/rate