

Estimation of ATE (average treatment effect) in Causal Survival Analysis: Practical recommendations

Charlotte VOINOT^[1,2], Julie JOSSE^[1], Bernard Sebastien^[2] [1] INRIA, Montpellier, France [2] R&D Sanofi, Gentilly, France

Introduction

- Causal survival inferences: mixed between causal inference vs survival analysis. It assesses the causal effect of a treatment on an outcome which is a time until an event occurs in the presence of censoring
- HR mainly used in survival analysis but not a causal measure and assumes proportional hazard.

- Comprehensive overview of the different estimators & Implementations
- Practical recommandation for users

Causal estimand

In grey, the observed data $(X_i, A_i, \Delta_i, \widetilde{T}_i)$ with $\widetilde{T}_i = \min(T_i, C_i)$ **Treatment Outcomes Covariates** Censoring Status X_2 T(0)T(1)24 200 200 100 52 100 0 1 200 33 200 0

Difference in RMST: Average treatment effect in survival analysis

$$\theta_{RMST}(\tau) = E[\min(T(1), \tau) - \min(T(0), \tau)] = \int_0^{\tau} S_1(t) - S_0(t) dt$$

Identifiability assumptions & Estimators

S.T.U.V.A. T = AT(1) + (1 - A)T(0)

Observational study

Observational & Independent censoring • Independent censoring • Unconfoundedness $A \perp \!\!\!\perp (T(0), T(1))|X$ Positivity for treatment $1 > P(A = a \mid X = x) > 0$ $C \perp \!\!\! \perp T(0), T(1), X, A$

IPTW Kaplan-Meier estimator [3]

$$\hat{S}_{IPCW}(t|a) = \prod_{j=1, t_j \le t} 1 - \frac{\sum_i \widehat{w_i}(t_j, X_i) . I\{\widetilde{T}_i = t_j, \Delta_i = 1, A_i = a\}}{\sum_k \widehat{w_k}(t_j, X_k) . I\{\widetilde{T}_k \ge t_j, A_i = a\}}$$
with $\widehat{w}_i(t, X_i) = \frac{A_i}{\widehat{e}(X_i)} + \frac{1 - A_i}{1 - \widehat{e}(X_i)}$

Observational & Dependent censoring

- Unconfoundedness $A \perp \!\!\!\perp (T(0), T(1))|X$ Conditionally independent Positivity for censoring Positivity for treatment $0 < P(C > t \mid X = x, A = a) < 1$ censoring
- $1 > P(A = a \mid X = x) > 0$ $C \perp \!\!\!\perp T(0), T(1)|X, A$

IPTW-IPCW Kaplan-Meier estimator [4]

 $\hat{S}_{IPTW-IPCW}$ corresponds to a weighted KM with $\hat{w}_i(t,X_i) = \frac{\Delta^{\tau}_i}{\widehat{S_c}(t|X_i,A_i)} (\frac{A_i}{\hat{e}(X_i)} + \frac{1-A_i}{1-\hat{e}(X_i)})$

G-formula plug-in estimator [5]

$$\widehat{\theta}_{g-formula}(\tau) = \frac{1}{n} \sum_{i=1}^{n} \left[\widehat{F}(X_i, A = 1) - \widehat{F}(X_i, A = 0) \right]$$
 with $\widehat{F}(x, a) \stackrel{1}{=} E[T \land \tau \mid X = x, A = a]$

AIPTW-AIPCW estimator [6][7]

 $\hat{\theta}_{AIPTW-AIPCW}$ is an **augmented** estimator of $\hat{\theta}_{IPTW-IPCW}$:

- 3 nuisance models to compute
- Consistent if at least one of nuisance parameter is consistent (**Double robust**)
 - Parametric **convergence** rate

RCT

RCT & Independent censoring

• Random treatment assignment • Independent censoring $A \perp \!\!\!\perp (T(0), T(1), C, X)$ $C \perp \!\!\! \perp T(0), T(1), X, A$

Non-adjusted Kaplan-Meier estimator [1]

$$\hat{S}_{KM}(t|a) = \prod_{j=1, t_j \le t} 1 - \frac{\sum_{i} I\{\widetilde{T}_i = t_j, \Delta_i = 1, A_i = a\}}{\sum_{k} I\{\widetilde{T}_k \ge t_j, A_i = a\}}$$

RCT & Dependent censoring

• Random treatment assignment • Conditionally independent • Positivity for censoring $0 < P(C > t \mid X = x, A = a) < 1$ censoring $A \perp \!\!\!\perp (T(0), T(1), C, X)$ $C \perp \!\!\!\perp T(0), T(1)|X, A$

IPCW Kaplan-Meier estimator [2]

$$\hat{S}_{IPCW}(t|a) = \prod_{j=1,t_j \le t} 1 - \frac{\sum_i \widehat{w_i}(t_j, X_i) . I\{\widetilde{T}_i = t_j, \Delta_i = 1, A_i = a\}}{\sum_k \widehat{w_k}(t_j, X_k) . I\{\widetilde{T}_k \ge t_j, A_i = a\}}$$
with $\widehat{w}_i(t, X_i) = \frac{\Delta^{\tau_i}}{\widehat{S_c}(t|X_i, A_i)}$

- $\widehat{S}_c(t|X_i,A_i)$ is the survival function of remain uncensored given the covariate X in the treatment arm A=a.
- $\Delta^{\tau} = I\{T \land \tau < C | A = 1\}$ is the status of the individual truncated at τ . Every uncensored observation is weighted by the inverse of the probability of remain uncensored given the covariates.

Methodology

- Type of censoring: Independent or Dependent censoring.
- DGP: Parametric (well estimated by cox) and Nonparametric (well estimated by forest).

Evaluate and compare efficiency of: Self-implemented RMST estimators & Naive

estimator $(E(\min(\tilde{T}(1), \tau) - \min(\tilde{T}(0), \tau))$.

Simulations results

- RMST Estimators from R-Packages:
 - o IPTW Kaplan-Meier from RISCA.
 - Unadjusted Kaplan-Meier from SurvRM2.
 - o Causal survival forest from grf.

Boxplot of RMST results from different estimators under well specified nuisance models (nuisance for propensity = « glm »,

conditional survival & conditional censoring =« cox », number of simulations = 150 and τ =25)

RCT & Dependent censoring: Parametric simulation

• Biased:

Naive, Kaplan Meier (KM), Rmst2() from SurvRM2, IPTW Kaplan Meier, ipw.survival() from RISCA, Causal survival forest.

• Unbiased:

IPCW Kaplan Meier, IPTW-IPCW Kaplan Meier, 🏆 G-formula, AIPTW-AIPCW.

• Biased:

Naive, Kaplan Meier (KM), Rmst2() from SurvRM2, ipw.survival() from RISCA, IPCW Kaplan Meier, IPTW-IPCW Kaplan Meier, G-formula, AIPTW-AIPCW.

Unbiased:

Tausal survival forest.

IPTW Kaplan Meier

Conclusions & Perspectives

- Few packages available (RISCA, SurvRM2, grf). • G-formula has the lowest variance when conditional survival model is well
- specified in parametric simulation. In complex simulation, it converges slowly with survival forest (need a lot of observations).
- Causal survival forest is accurate for complex setting and large sample size and have nice theoretical properties.

REFERENCES

- [1] E. L. Kaplan and Paul Meier. "Nonparametric Estimation from Incomplete Observations". In: Journal of the American Statistical Association (1958) [2] James M. Robins and Dianne M. Finkelstein. "Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests". In: Biometrics (2000).
- [3] Jun Xie and Chaofeng Liu. "Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data". In Statistics in Medicine (2005). [4] Schaubel, Douglas E., and Guanghui Wei. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects under Nonproportional Hazards and
- Dependent Censoring." Biometrics 67 (2011). [5] Robins, James. "A New Approach to Causal Inference in Mortality Studies with a Sustained Exposure Period—Application to Control of the Healthy
- Worker Survivor Effect." Mathematical Modelling 7 (1986) [6] Rubin, Daniel, and Mark J. van der Laan. "A Doubly Robust Censoring Unbiased Transformation", The International Journal of Biostatistics (2007).
- [7] James M. Robins, Andrea Rotnitzky, and Lue Ping Zhao. "Estimation of Regression Coefficients When Some Regressors Are Not Always Observed." Journal of the American Statistical Association (1994).

45TH Annual Conference of the International Society for Clinical Biostatistics