Mathematical Finance Solution 7

Solution 7-1

a) Clearly $(\mathcal{M}_{loc})_{loc} \supseteq \mathcal{M}_{loc}$. To show the opposite, let $M \in (\mathcal{M}_{loc})_{loc}$. We want to find a sequence of stopping times (R_n) converging to ∞ a.s. such that $M^{R_n} \in \mathcal{M}$ for each n. Since $M \in (\mathcal{M}_{loc})_{loc}$, there exists a localizing sequence (T_n) such that $M^{T_n} \in \mathcal{M}_{loc}$ for each n. Thus, by definition of \mathcal{M}_{loc} , there exists for each n a localizing sequence $(S_{n,m})_m$ such that $(M^{T_n})^{S_{n,m}} \in \mathcal{M}$ for each m. For each n, choose m_n large enough such that

$$P[S_{n,m_n} < T_n \land n] \le 2^{-n}$$

and then define

$$R_n := T_n \wedge (\inf_{k \ge n} S_{k, m_k}).$$

By definition (R_n) is a sequence of stopping times. Moreover, by Borel-Cantelli, R_n converges to ∞ a.s. like T_n as

$$P\big[R_n < T_n \land n\big] \leq \sum_{k=n}^{\infty} P\big[S_{k,m_k} < T_n \land n\big] \leq \sum_{k=n}^{\infty} P\big[S_{k,m_k} < T_k \land k\big] \leq \sum_{k=n}^{\infty} 2^{-k} = 2^{-n+1} < \infty.$$

Moreover, as every stopped martingale is a martingale, we obtain that for each n

$$M^{R_n} = \left(\left(M^{T_n} \right)^{S_{n,m_n}} \right)^{R_n} \in \mathcal{M}.$$

b) By definition of being a σ -martingale, $ZS = \int \psi \, dM$ for a local martingale M and an integrand $\psi \in L(M)$ with $\psi > 0$. We claim that it suffices to show that ZS has locally a lower bound in L^1 . To prove this claim we first show that $\mathcal{M}_{loc} = \mathcal{H}^1_{loc}$. By definition, we have $\mathcal{M}_{loc} \supseteq \mathcal{H}^1_{loc}$. To show the reverse inclusion, let M be a local martingale with localizing sequence (σ_n) . Moreover, for each n, consider the stopping times $S_n := \inf\{t \ge 0 \mid |M_t| \ge n\}$ and then define $\rho_n := \sigma_n \wedge S_n$. By construction, (ρ_n) is a sequence of stopping times converging to infinity and as a martingale is integrable, we have

$$\sup_{t\geq 0} |M_t^{\rho_n}| \leq n + |\Delta M_{\rho_n}| \in L^1(P),$$

which implies that $M \in \mathcal{H}^1_{loc}$ and thus $\mathcal{M}_{loc} = \mathcal{H}^1_{loc}$ as desired. Now, let (ρ_n) be a localizing sequence of M such that $M^{\rho_n} \in \mathcal{H}^1$ for each n. As in the proof of the Ansel-Stricker theorem (see Proposition 6.1 from the lecture), for each n, we define $\psi^n := \psi \, \mathbf{1}_{\{|\psi| \le n\}}$ and $M^n := \int \psi^n \, dM^{\rho_n}$, which is in \mathcal{H}^1 by Proposition 5.8. By definition, $M^n \to \int \psi \, dM^{\rho_n}$ for the Emery topology, as well as $(\Delta M^n)^{\pm} \le (\Delta \int \psi \, dM^{\rho_n})^{\pm}$. Assume for the moment that $\int \psi \, dM$ has locally a lower bound in L^1 , which means that there exists a localizing sequence (τ_m) of stopping times and a sequence of random variables $(\gamma_m) \subseteq L^1(P)$ such that $(\int \psi \, dM)^{\tau_m} \ge \gamma_m$ for each m. In particular, we have $(\int \psi \, dM^{\rho_n})^{\tau_m} \ge \gamma_m$ for each n, m. Thus, all the assumptions of Lemma 6.2 are satisfied for each n, which implies that $\int \psi \, dM^{\rho_n} = (\int \psi \, dM)^{\rho_n} \in \mathcal{M}_{loc}$ for each n. In other words, $\int \psi \, dM \in (\mathcal{M}_{loc})_{loc}$ which implies that $\int \psi \, dM \in \mathcal{M}_{loc}$ due to a). So we have proved the claim. Therefore, it remains to show that $ZS = \int \psi \, dM$ has locally a lower bound in L^1 . For that purpose, we let (T_n) be a localizing sequence for the local martingale Z and define for each $n \in \mathbb{N}$ the stopping times

- $\sigma_n := \{t \geq 0 \mid |S_t| \geq n\}$ and $\widehat{T}_n := \{t \geq 0 \mid |Z_t| \geq n\}$. Consider the sequence of stopping times (τ_n) defined by $\tau_n := T_n \wedge \widehat{T}_n \wedge \sigma_n$. By construction, (τ_n) converges to ∞ a.s. Moreover, as S is continuous and $\sup_{t \geq 0} |Z_t^{\tau_n}| \leq n + \Delta |Z_{\tau_n}| \in L^1(P)$, we obtain for each n that $(ZS)^{\tau_n} \geq -n(n + \Delta |Z_{\tau_n}|) \in L^1$.
- c) First, we show that $H \in L(M)$. $H \in lb\mathcal{P}$ implies the existence of a localizing sequence (τ_m) such $\forall m: H_m:=H 1_{\{(0,\tau_m)\}} \in b\mathcal{P} \subseteq L(M)$. Thus, for all m, we have for $H_m^n:=H 1_{\{|H|\leq n\}} 1_{\{(0,\tau_m)\}}$ that $(H_m^n \bullet S)_{n\in\mathbb{N}}$ is Cauchy in the Émery topology. Moreover, $H_m=H$ on $((0,\tau_m)]$ and thus $(H_m^n \bullet S)_{n\in\mathbb{N}} = (H^n \bullet S)_{n\in\mathbb{N}}$ on $((0,\tau_m)]$ (where $H^n:=H 1_{\{|H|\leq n\}}$). Since $P[\tau_m < \infty] \to 0$, we conclude that $(H^n \bullet S)_{n\in\mathbb{N}}$ is Cauchy in the Émery topology and thus $H \in L(M)$. Now, let (τ_n) be a localizing sequence such that H^{τ_n} is bounded (by C_n) for each n and let (ρ_n) be a localizing sequence for the local martingale M. Moreover, let $\widehat{\rho_n}:=\inf\{t\geq 0 \mid M_t|\geq n\}$. Set $T_n:=\tau_n\wedge\rho_n\wedge\widehat{\rho_n}$. By construction, (T_n) is a sequence of stopping times converging to infinity. Moreover, we see that $(\Delta\int H dM)^{T_n}=(H\Delta M)^{T_n}\geq -C_n(n+\Delta|M_{T_n}|)\in L^1(P)$, which means that the jumps of $\int H dM$ have locally a lower bound in L^1 , which is equivalent that $\int H dM$ has locally a lower bound in L^1 (see Exercise 5-1 b)). Thus, we conclude that $\int H dM \in \mathcal{M}_{loc}$ directly from the arguments used in b).

Solution 7-2

a) For $n \in \mathbb{N}$, define the stopping time $\tau_n := \inf\{t > 0 : X_t < 1/n\}$. Then by right-continuity of X, $X_{\tau_n} \le 1/n$ on $\{\tau_n < \infty\}$ for $n \in \mathbb{N}$. Hence, by the optional stopping theorem, for all $n \in \mathbb{N}$,

$$E[X_t \, 1_{\{\tau_n \le t\}}] \le E[X_{\tau_n} \, 1_{\{\tau_n \le t\}}] \le 1/n, \quad t \ge 0. \tag{1}$$

Since $\tau_0 = \lim_{n \to \infty} \tau_n$ P-a.s., nonnegativity of X and dominated convergence give

$$E[X_t \, 1_{\{\tau_0 < t\}}] = 0, \quad t \ge 0. \tag{2}$$

This implies that $X_t = 0$ on $\{\tau_0 \le t\}$ P-a.s. for each $t \ge 0$, and right-continuity of X establishes the claim.

b) First, note that since X is a strictly positive local martingale, it is a strictly positive supermartingale by Fatou's lemma and hence $X_- > 0$ P-a.s. by part a). This implies that the process $\frac{1}{X_-}$ is well-defined. Since it is adapted and left-continuous, it is in addition predictable and locally bounded. Hence by the hint, the process $M = (M_t)_{t \ge 0}$ defined by

$$M_t := \int_0^t \frac{1}{X_{s-}} dX_s, \quad t \ge 0, \tag{3}$$

is well defined and a local martingale. Moreover, associativity of the stochastic integral gives

$$\int_0^t X_{s-} dM_s = \int_0^t \frac{X_{s-}}{X_{s-}} dX_s = X_t - X_0 = X_t - 1, \quad t \ge 0.$$
 (4)

This shows existence of M.

To establish uniqueness, suppose that \widetilde{M} is a local martingale null at 0 such that $X = \mathcal{E}(\widetilde{M})$. Then associativity of the stochastic integral together with the definition of the stochastic exponential give

$$\widetilde{M}_t = \int_0^t \frac{1}{X_{s-}} X_{s-} dM_s = \int_0^t \frac{1}{X_{s-}} dX_s = M_t, \quad t \ge 0.$$
 (5)

a) We first show that S fails NA. Consider the strategy $\vartheta = -1_{\lfloor \frac{1}{n}, 1 \rfloor}$. Then $V(\vartheta) \geq -1$ on [0, 1] since

$$V_t(\vartheta) = \vartheta \bullet S_t = -\int_{(\frac{1}{2}, t \wedge \gamma)} 2 \, du + 1_{\{\frac{1}{2} < \gamma \le t\}} = \begin{cases} 0 & \text{if } t \le \frac{1}{2} \text{ or } \gamma \le \frac{1}{2}, \\ -2(t - \frac{1}{2}) & \text{if } \frac{1}{2} < t < \gamma, \\ 1 - 2(\gamma - \frac{1}{2}) & \text{if } \frac{1}{2} < \gamma \le t. \end{cases}$$

Thus, $\vartheta \in \Theta^1$ and $V_1(\vartheta) \in L^0_+(\mathcal{F}_1) \setminus \{0\}$. To show that NUPBR holds, we show that \mathcal{G}^1 is bounded in L^1 which implies that \mathcal{G}^1 is bounded in L^0 . So let $\vartheta \in \Theta^1$. We first observe that

$$\mathcal{F}_t = \sigma(S_u; u \le t) = \sigma(\{\{\gamma < u\}; u \le t\} \cup \Omega) = \sigma(\gamma \wedge u; u \le t).$$

In particular, we see that on $[0, \gamma)$, every adapted process is deterministic. Moreover, if the process is additionally left-continuous, it is even deterministic on $[0, \gamma]$. Thus, by a monotone class argument, it is not difficult to show that there exists a deterministic Borel-measurable function $h:(0,1]\to\mathbb{R}$ such that $\vartheta 1_{[0,\gamma]} = h 1_{[0,\gamma]}$. This yields for $t \in [0,1]$

$$V_t(\vartheta) = \vartheta \bullet S_t = \int_{(0, t \wedge \gamma)} 2\vartheta_u \, du - \vartheta_\gamma 1_{\{\gamma \le t\}} = \int_{(0, t \wedge \gamma)} 2h(u) \, du - h(\gamma) 1_{\{\gamma \le t\}} \ge -1 \tag{6}$$

by 1-admissibility of ϑ . As γ is uniformly distributed on (0,1) we have $P[\gamma > t] > 0$ for all $t \in [0,1)$ and thus by (6),

$$\int_{0}^{t} 2h(u) \, du \ge -1, \qquad \qquad t \in [0, 1], \tag{7}$$

$$\int_{0}^{t} 2h(u) du - h(t) \ge -1, \qquad \text{for a.e. } t \in (0, 1).$$
 (8)

Note that (8) remains valid when replacing h by h^+ . A version of Gronwall's inequality therefore implies that $h^+(t) \leq 1 + 2t \exp(2t) < 19$ for a.e. $t \in (0,1)$. This together with (7) implies that $\int_0^1 |h(u)| du < 38.5$. Thus,

$$E[|\vartheta \bullet S_T|] = E\left[\left|\int_0^{\gamma} 2h(t) \, dt - h(\gamma)\right|\right] \le E\left[\int_0^1 2|h(u)| \, du\right] + E[|h(\gamma)|] = 3\int_0^1 |h(u)| \, du < 120.$$

b) To prove that S satisfies NA, let $\vartheta \in \Theta^1$ with $\vartheta \bullet S_T \in L^0_+(\mathcal{F}_T)$. As in a), there exists a measurable function $h:(0,\frac{1}{2}]\to\mathbb{R}$ such that $\vartheta 1_{[0,\gamma]}=h1_{[0,\gamma]}$. Moreover, by hypothesis,

$$0 \le V_{\frac{1}{2}}(\vartheta) = \vartheta \bullet S_{\frac{1}{2}} = \int_0^{\gamma} h(u) \, dS_u + h(\gamma) \Delta S_{\gamma} = \int_0^{\gamma} h(u) \left(1 - \frac{4}{3}u\right) \, du - h(\gamma) \frac{2}{3} (1 - 2\gamma)(1 - \gamma) \mathbb{1}_{\{\gamma < \frac{1}{2}\}}. \tag{9}$$

We have $P[\gamma > t] > 0$ for all $t \in [0, \frac{1}{2})$ and thus by (9),

$$\int_0^t h(u) \left(1 - \frac{4}{3}u \right) du - h(t) \frac{2}{3} (1 - 2t)(1 - t) \ge 0 \text{ for a.e. } t \in \left(0, \frac{1}{2} \right), \tag{10}$$

$$\int_0^{\frac{1}{2}} h(u) \left(1 - \frac{4}{3}u \right) du \ge 0. \tag{11}$$

As for (8), note that (10) remains valid when replacing h by h^+ . So the version of Gronwall's inequality given in the hints implies that $h^+(t) = 0$ for a.e. $t \in (0, \frac{1}{2})$. This together with (11) and

the fact that $1-\frac{4}{3}u \geq 0$ for $u \in (0,\frac{1}{2})$ shows that h(t)=0 for a.e. $t \in (0,\frac{1}{2})$, and so $V_{\frac{1}{2}}(\vartheta)=\vartheta \bullet S_{\frac{1}{2}}=0$ P-a.s.

To argue that NUPBR fails, we show that \mathcal{G}^1 is not bounded in probability. For that purpose, we set for $n \geq 2$

$$\vartheta_t^{(n)} = \frac{3}{2} \frac{1}{1 - 2t} \mathbf{1}_{(\ell(n), r(n)]}(t), \quad 0 \le t \le \frac{1}{2}, \tag{12}$$

where $\ell(n)=\frac{1}{2}\left(1-\frac{3}{2n}\right)$ and $r(n)=\frac{1}{2}\left(1-\frac{3}{2n}\exp(-4n)\right)$. Note that $0<\ell(n)< r(n)<\frac{1}{2}$. We choose $r(n)<\frac{1}{2}$ to get the integrability condition $\vartheta^{(n)}\in L(S)$. To show that $\vartheta^{(n)}\in\Theta^1$, since S is increasing on $[0,\gamma[$ and $\vartheta^{(n)}\geq 0$, it suffices to check that $V_t(\vartheta^{(n)})\geq -1$ P-a.s. on $\{\ell(n)<\gamma\leq t\leq r(n)\}$. So fix $n\geq 2$. Then on $\{\ell(n)<\gamma\leq t\leq r(n)\}$,

$$V_t(\vartheta^{(n)}) = \vartheta^{(n)} \bullet S_t = \int_{\ell(n)}^{\gamma} \frac{3}{2} \frac{1}{1 - 2t} \left(1 - \frac{4}{3}t \right) dt - \frac{3}{2} \frac{1}{1 - 2\gamma} \frac{2}{3} (1 - 2\gamma)(1 - \gamma)$$
$$= \gamma - \ell(n) + \frac{1}{4} \log \frac{1 - 2\ell(n)}{1 - 2\gamma} - (1 - \gamma) \ge -1.$$

Moreover on $\{\gamma = \frac{1}{2}\}$, for each $n \geq 2$,

$$V_{\frac{1}{2}}(\vartheta^{(n)}) = \vartheta^{(n)} \bullet S_{\frac{1}{2}} = \int_{\ell(n)}^{r(n)} \frac{3}{2} \frac{1}{1 - 2t} \left(1 - \frac{4}{3}t \right) dt = r(n) - \ell(n) + \frac{1}{4} \log \frac{1 - 2\ell(n)}{1 - 2r(n)} \ge n$$

by the choice of $\ell(n)$ and r(n). Since $P[\gamma = \frac{1}{2}] = \frac{1}{2}$, this implies that \mathcal{G}^1 is not bounded in probability.