Lecture 07 Software Reliability

- In the broad sense
 - S/w design will operate (execute) well for a substantial time period.
- In a narrow sense
 - Reliability is a metric which is probability of operational success of the s/w
- Probabilistic and Deterministic Model
 - Example Winding of a motor bourns out
 - Due to temperature above melting point

(It will burns – it is certainly deterministic, But we are unable to predict when they will occur – it is probabilistic)

 Thus the model of failures become a probabilistic one and the random element (random variable) is the time to failure

Failure Modes

- Hardware
- Software
- Skinware(Human)

Reliability Theory

- Modeling of failure and prediction of success probability
- Based on the concept of random/continuous variable, probability density function, probability distribution function

- Probability concept:
- Discrete random variable, X is a discrete random variable
 - 1) Probability Density Function: Probability of occurrence $P(x_i) = f(x_i)$
 - 2) Distribution Function : Defined in term of the probability that $X \leq x$:

$$P(X \le x) \equiv F(x) = \sum_{X \le x} f(x)$$

Continuous random variable,

The variable is continuous over some range of definition Density function, $P(t < x < t + \Delta t) = f(t)\Delta t$

- Distribution Function: $F(x) = \int f(x) dx$
 - Let x take on all values between points a and b,

So,
$$P(X \le x) = F(x) = \int_a^a f(x) dx$$
 for $a < x \le b$
 $dF(x)/dx = f(x)$

- The Probability that X lies in an interval x < X < x + dx,

$$P(x < X < x + dx) = P(X \le x + dx) - P(X \le x)$$

$$= \int_{a}^{x+dx} f(x)dx - \int_{a}^{x} f(x)dx$$

$$= \int_{x}^{x+dx} f(x) dx = F(x+dx) - F(x)$$

F(x) is a continuous, $dx \rightarrow 0$; P(X=x) is zero

Definition of Reliability

 R(t) = Reliability is the mathematical probability is function of time t, is the success.

$$R(t) = P(x>t) = 1 - P(x where x is continuous
= $P(x>=t) = 1 - P(x<=t)$ where x is discrete$$

- Hazard rate (conitional failure rate), z(t)
 - Defined in term of the probability that a failure occurs in the same interval t to t+ Δt , given that system has survival up to time t

$$Z(t)\Delta t = P(t < x < t + \Delta t \mid x > t)$$

We know, F(t)=1-R(t)

Relationship R(t) and Z(t)

• We know, from definition of Hazard rate

$$Z(t) \Delta t = P(t < x < t + \Delta t \mid x > t) \qquad [P(AB) = P(A) \cdot P(B/A)]$$

$$Z(t) = P(t < x < t + \Delta t) / \Delta t \cdot P(x > t) \qquad [P(AB) = P(B) \cdot P(A/B)]$$

$$= \left[P(x < t + \Delta t) - P(x < t) \right] / \Delta t \cdot P(x > t)$$

$$= \left[1 - P(x > t + \Delta t) \right] - \left[1 - P(x > t) \right] / \Delta t \cdot P(x > t)$$

$$= -1 / R(t) \times [R(t + \Delta t) - R(t)] / \Delta t$$

$$= -R'(t) / R(t)$$

$$\Rightarrow \int_{0}^{t} Z(t) dt = -\int_{0}^{t} R'(t) / R(t) dt$$

$$R(t) = e^{-t} \int_{0}^{t} Z(t) dt$$

Estimation theory:

- How one determines the parameters in a probabilistic model from statistical data taken on the items governed by the model
- Specifically, in reliability work we place a group of components on life test and observe the sequence of failure times t1,t2,...,tn
- On the basis of these data we compute time-to-failure models and hazard models
- Estimation theory provides guidelines for efficient and accurate components

- $n \le 5$ (few data) \rightarrow result must be questioned
- $n \ge 100 \rightarrow \text{result should be good}$
- $n \rightarrow \infty$ \rightarrow many of the different computational scheme is need
- $10 \le n \le 50$ \rightarrow best for estimation theory
- A point estimation formula, MTTF=(10+20+25+35+40)/5
- =26h
- It is often convenient to characterize a failure model using set of failure data by a single parameter (MTTF/MTBF)

- If we have life test information on a population of n items with failure times t1,t2,...tn
- MTTF= $1/n\sum_{i=1}^{n} t_i$
- Expected value, $E(x) = \sum_{i=1}^{n} x_i f(x_i); x = x_{1, i} x_{2, ..., i} x_{n}$ where x

is discrete random variable

$$E(x) = \int_{a}^{b} x_{i} f(x_{i}) dx; \ a \le x \le b$$
 where x

is continuous random variable

 Using Hazard model, the MTTF for the probability distribution defined by the model is,

• MTTF=
$$E(t) = \int_{0}^{\infty} t f(t) dt$$

• Let,
$$I = \int t f(t) dt$$
 $f(t) = dF(t)/dt$ $f(t) = dF(t)/dt$

- Case I : Constant hazard, $R(t) = e^{-\lambda t}$
- Case II: Linearly increasing hazard, $R(t) = e^{-kt^2/2}$
- Case III: Weibull distribution, $R(t) = e^{-kt^{(m+1)}/(m+1)}$