CS4495/6495 Introduction to Computer Vision

3B-L1 Stereo geometry

Stereo: A Special case of Multiple views

Hartley and Zisserman

Why multiple views?

 Structure and depth are inherently ambiguous from single views.

Why multiple views?

 Structure and depth are inherently ambiguous from single views.

Perspective effects

Shading

Texture

A.M. Loh. The recovery of 3-D structure using visual texture patterns.

Texture

A.M. Loh. The recovery of 3-D structure using visual texture patterns.

Focus/defocus

Images from same point of view, different camera parameters

3d shape / depth estimates

Motion

Figures from L. Zhang

Shape cues

Estimating scene shape from one eye

 "Shape from X": Shading, Texture, Focus, Motion...

Very popular circa 1980

But we (and lots of creatures) have two eyes!

Stereo:

- The image from one eye is a little different than the image form he other eye.
- Think of shape from "motion" between two views
- Infer 3d shape of scene from two (multiple) images from different viewpoints

Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images.

Invented by Sir Charles Wheatstone 1838

People fascinated by 3D

http://www.johnsonshawmuseum.org

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Teesta suspension bridge Darjeeling, India

Stereo photography and stereo viewers

Stereo photography and stereo viewers

The Basic Idea: Two slightly different images

http://www.well.com/~jimg/stereo/stereo list.html

Random dot stereograms

Random dot stereograms

Basic stereo geometry

Estimating depth with stereo

Stereo: shape from "motion" between two views

We'll need to consider:

- Info on camera pose ("calibration")
- Image point correspondences

Estimating depth with stereo

Stereo: shape from "motion" between two views

We'll need to consider:

Info on camera pose ("calibration")

Image point correspondences

Geometry for a simple stereo system

- First, assuming parallel optical axes, known camera parameters (i.e., calibrated cameras)
- Figure is looking down on the cameras and image planes
- Baseline B, focal length f
- Point *P* is distance *Z* in camera coordinate systems

Geometry for a simple stereo system

 Point P projects into left and right images.

 Distance is positive in left image, and negative in right

Geometry for a simple stereo system

- What is the expression for Z?
- Similar triangles (p₁, P, p_r) and (C_L,P, C_r):

$$\frac{B - x_l + x_r}{Z - f} = \frac{B}{Z}$$

$$Z = f \frac{B}{x_l - x_r}$$

Disparity

Depth from disparity

image I(x,y)

image I'(x,y)

Depth from disparity

image I(x,y)

Disparity map D(x,y)

Depth from disparity

(x',y')=(x+D(x,y), y)

image I'(x',y')

