

Spodbujevalno učenje – domača naloga

Primer RL: "Miš išče hrano"

- Začetno stanje S
- Končno stanje G
- Dovoljeno mesto F
- Strup H
- Akcije
 - Levo
 - Dol
 - Desno
 - Gor

Primer RL: "Miš išče hrano"

- Začetno stanje S
- Končno stanje G
- Dovoljeno mesto F
- Strup H
- Akcije
 - Levo
 - Dol
 - Desno
 - Gor

Primer "Miš išče hrano"

- Reševanje s Q tabelo
 - vrstic: n*n
 - stolpcev: število akcij

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \ Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

Izbira akcij

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Primer "Miš išče hrano"

AKCIJE

Primer "Miš išče hrano" dimenzije 4 x 4

LEFT DOWN RIGHT UP -2.3578 -1.4293-1.4293 -2.3578 1.0000 2.0000 -1.4293-2.3578 -0.4519 -2.3578-4.0000 -4.0000 3.0000 -2.3578 -1.42934.0000 0 -2.3578 -0.4519 -0.4519 -1.4293 5.0000 6.0000 -1.4293 -4.0000 0.5770 -1.4293 7.0000 0 0 8.0000 9.0000 -1.4293 -4.0000 0.5770 -0.451910.0000 -0.4519 1.6600 1.6600 -0.451911.0000 -4.0000 2.8000 2.8000 0.5770 12.0000 -4.0000 2.8000 4.0000 1.6600 13.0000 0 0 14.0000 0.5770 2.8000 1.6600 -4.0000 15.0000 1.6600 4.0000 2.8000 1.6600 16.0000 0

Q tabela

Primer "Miš išče hrano" dimenzije 8 x 8

1 START 9 25 33 41 49 57 2 10 18 26 34 50 50 3 11 19 27 35 43 51 51 12 20 28 36 44 52 60 60 13 21 29 37 53 61 6 14 22 30 38 46 62 7 31 39 47 55 63 8 40 48 56 GOAL

Λ	110		_
Α	KL	IJ	E

	LEFT	DOWN	RIGHT	UP
1.0000	-6.3451	-5.6264	-5.6264	-6.3451
2.0000	-5.6264	-8.0000	-4.8699	-6.3451
3.0000	0	0	0	0
4.0000	0	0	0	0
5.0000	-4.9430	-4.9032	-5.0118	-7.9491
6.0000	-4.5211	-4.5135	-7.8540	-4.6217
7.0000	-4.2330	-4.1831	-4.1205	-4.2053
8.0000	-4.0274	-4.0565	-6.7992	-4.0545
9.0000	-6.4069	-4.8699	-4.8923	-5.6488
10.0000	-5.6264	-8.0000	-4.0736	-5.6264
11.0000	0	0	0	0
12.0000	-7.9959	-5.6764	-2.3530	-7.9997
13.0000	-5.2995	-7.8378	-7.9629	-4.7347
14 0000	0	0	0	0

STANJA

Q tabela

Algoritem učenja

```
Vhod: strategija \pi, uint no_epizod, faktor učenja \alpha, potek \epsilon
Izhod: optimalna funkcija vrednosti Q (če je število epizod dovolj veliko)
Inicializacija: Q(S,A) = 0 \ \forall S \in S \land A \in \mathcal{A}, in Q(končno\ stanje,\cdot) = 0
for i = 1 to no epizod
             Izberemo vrednost €
             Opazujemo stanje S_0
             t \leftarrow 0
             repeat
                          Izberemo akcijo A_t na osnovi strategije iz Q (na primer \epsilon – požrešna strategija)
                          Izvedemo akcijo A_t in opazujemo nagrado R_{t+1} in novo stanje S_{t+1}
                          Posodobimo Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)]
                          t \leftarrow t + 1
             until S_t je končno stanje
end
```

Parametri za učenje

```
no\_epizod - število epizod učenja \alpha - parameter hitrosti učenja \gamma - parameter zniževanja vrednosti nagrade \epsilon - izbira \epsilon-požrešne strategije
```


Algoritem učenja

```
Vhod: strategija \ \pi, uint \ no_epizod, faktor \ učenja \ \alpha, potek \ \epsilon  
Izhod: optimalna funkcija \ vrednosti \ Q (če je \ število \ epizod \ dovolj \ veliko)

Inicializacija: Q(S,A) = 0 \ \forall \ S \in S \ \land \ A \in \mathcal{A}, in Q(končno \ stanje,\cdot) = 0

for i=1 to no_epizod
Izberemo \ vrednost \ \epsilon
Opazujemo \ stanje \ S_0
t \leftarrow 0
repeat
Izberemo \ akcijo \ A_t \ na \ osnovi \ strategije \ iz \ Q \ (na \ primer \ \epsilon - požrešna \ strategija)
Izvedemo \ akcijo \ A_t \ in \ opazujemo \ nagrado \ R_{t+1} \ in \ novo \ stanje \ S_{t+1}
Posodobimo \ Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \ Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]
t \leftarrow t+1
until \ S_t \ je \ končno \ stanje end
```

Parametri za učenje

```
no\_epizod - število epizod učenja \alpha - parameter hitrosti učenja \gamma - parameter zniževanja vrednosti nagrade \epsilon - izbira \epsilon-požrešne strategije
```


Matlab predloga

- predloga frozen_lake_tmplt.m
 - v spremenljivko vpisna_stevilka vpisete vašo vpisno številko in dodate še eno cifro
 - ustvari tabelo *lake* s frozen lake okoljem in nagradami
 - prikaz okolja

vpišete vaš algoritem za spodbujevalno učenje

- na koncu skripte še klic funkcije visualization_Q4.p za prikaz končne rešitve
- zapis num_steps = visualization_Q_arrows4(Q, lake) izriše akcije v obliki puščic

```
vpisna_stevilka = 649901670;
rng(vpisna stevilka)
klet = -1*ones(n,n);
for i=1:n
   for j=1:n
       if (rand() < 0.25)
           klet(i,j) = -n;
klet(1,1) = -1;
klet(1,2) = -1;
klet(2,1) = -1;
klet(2,2) = -1;
klet(n-1,n) = -1;
klet(n,n) = n;
% Render environment
disp(klet)
fh = figure;
colormap(copper);
   for j=1:n
       if (i==1) && (j == 1)
           text(1,1,{'1','START'},'HorizontalAlignment','center');
       elseif (i==n) && (j==n)
           text(n,n,{num2str(n*n),'GOAL'},'HorizontalAlignment','center')
           text(j,i,num2str(i+n*(j-1)), 'HorizontalAlignment', 'center')
axis off
% Vizualizacija rešitve
indexQ = int32([(1:(n*n))]');
visQ = table(indexQ,Q)
num steps = vizualizacija Q4(Q, klet);
```


Matlab predloga

- vizualizacija rešitve s funkcijo visualization_Q4.p
- Q tabela mora imeti n x n vrstic, ter 4 stolpce za 4 akcije:
 - 1. stolpec za akcijo LEFT
 - 2. stolpec za akcijo DOWN
 - 3. stolpec za akcijo RIGHT
 - 4. stolpec za akcijo UP
- vizualizacija rešitve s funkcijo visualization_Q5.p
- Q tabela mora imeti n x n vrstic, ter 5 stolpcev za 5 akcij:
 - 1. stolpec za akcijo LEFT
 - 2. stolpec za akcijo DOWN
 - 3. stolpec za akcijo RIGHT
 - 4. stolpec za akcijo UP
 - 5. stolpec za akcijo RIGHT-DOWN

Primeri rešitev

Primeri rešitev

Vrednosti stanj

- Predavanje
 - Ovrednotenje naključne strategije v "majhni mreži" (stran 4, zgornja prosojnica)
 - Deterministično iteriranje vrednosti (stran 5, spodnja prosojnica)
 - 11 Spodbujevalno učenje planiranje in predikcija.pdf