Option Based Risk Management

Information and Knowledge Management

Exercise 29.01.2021

Team 22

Eva Schleicher

Elisa Rodepeter

Diana Pop

Michael Ruth

Tim Zickenrott

Content

- Real Options Theory
- Option-Based Risk Management (OBRiM)
- Risk Management Process
- Benefit of OBRiM for the Business Value of IT

Real Options Theory

- Managers want to maximize value while taking underlying risks into account in information technology investments decisions
- Managerial flexibility allows for rational, value-adding actions to affect traits of the investment, e.g., timing or scope
 - Which risk countermeasures are optimal for a specific IT investment or even adding value from an economic perspective?
 - Need guidance on how to plan, design and create options to structure an investment in a way that maximizes its value

Real Options Theory

- Real Option: right, but not obligation, to make a business decision, typically a capital investment
 - → capture value of managerial flexibility
- Conceptualizing and valuing different forms of flexibility as real options when deciding on IT investments
- ▶ Based on ideas of financial risk management
 → design positions that protect against losses/generate profits from exploiting, well-defined risks specific to each investment
 - Put and Call options on financial markets
 Put: Right to buy an asset for an agreed upon price at a fixed date;
 Call: Right to sell asset for an agreed upon price at a fixed date
- ▶ **Risk:** downward or upward variation in outcomes
- **Risk management:** proactive process to skew variation in expected outcomes in a favorable manner
- → Options are not inherent to investment but must be **planned** and defined for each investment to **add value and control risks**

Depending on investment stage: different real options can be embedded

Inception sta	ge Recog	gnition stage	Building st	age Operation	on stage	Retirement stage	Obsoleteness stage
		Real investm opportunit		Opportunity Realization		onal Project stment	
		Defer		Stage, pilot/prototype, lease, outsource (development)	switch in out:	t, expand, put/output, source ns, abandon	
	equisite stments		•				ed follow-up ortunities

Option Based Risk Management (OBRiM)

- Real options as high-level risk mitigation strategies to determine what forms of, and how much, flexibility to build into an investment to deploy corrective actions
- Goal: find most cost-effective combination of real options to embed in an IT investment to optimally control risk and maximize investment value
- OBRiM provides a set of risk-option mappings to facilitate the choice of which options to embed
- Use real option models to find economically superior choice in case of multiple available options

NPV^A = NPV^P + value of managerial flexibility due to embedded options

Step 1: Define Investment and Risk Profile

- Define investment's goals, requirements and assumptions
- Identify risks the project is exposed to

Step 2: Recognize Shadow Embedded Options and Find Alternative Ways to Structure Investment

- Map risks to shadow options that can control them
- Find different combinations of recognized options

Step 3: Evaluate Combination of Options to Find Most Valuable Investment Structuring Alternative

- Assess tradeoffs and interactions between options, as well as costs
- Log-transformed binomial method for simple and intuitive evaluation of alternatives

Active NPV^A of the investment maximized

Risk Management Process of an Irish financial service organization (IFSO)

Basic process:

- New IT projects need to be submitted to the project investment department (PID) in form of a business case
- PID decides whether projects are implemented

Krcmar (2015), p. 532

Risk Identification and Risk Analysis

Krcmar (2015), p. 532

Risk identification

- ▶ 47 question instrument was designed by an external consultant
- Risks listed here are similar to risks found in related literature, e.g. architecture aligned = stability of technical architecture (Schmidt et al., 2001)
- Questions indicate no magnitude of loss

Risk analysis

- ▶ Business case submitted to the PID needs to include the 47 question instrument
- Evaluate the likelihood of occurrence for each risk on a scale from 1 to 10

Risk Handling and Risk Monitoring

Krcmar (2015), p. 532

Risk handling

- Business case already needs to include proper mitigation (also integrated in question 35 & 39)
 - ▶ Risk prevention, e.g. trough extra training of employees, or trough extra testing/ piloting, risk roll-over e.g. trough strong contract penalties with supplier
- Includes planned mitigation (according to the risk management plan) but also reactive risk handling

Risk monitoring

Projects' progress and status was reported periodically to PID management (milestone reviews).

Including OBRiM in the Risk Management Process

- Risk Mitigation measures can be mapped to real options
- OBRiM can then be included in all steps of the risk management process but in the step of risk identification
- Project related risks
 need to be identified
 before identifying real
 options to mitigate them

What influences the business value of IT?

Contextual Factors influencing Business Value of IT/IS

Melville et al. (2004) Osterwalder, A., & Pigneur, Y. (2010)

- ▶ **Risk factors** are also contextual factors
- OBRiM suggests particular options for different risk factors

Option	Defer	Pilot	Prototype	Incremental development	Abandon	Contract	Outsource development	Lease	Expand
Risk factor									
Application may be infeasible with the technology considered, or the technology is immature	+		+	+	+		+	+	
The introduction of a new, superior implementation technology may render the application obsolete	+				+			+	
Staff lacks needed skills and experience	+		+	+			+		
Parties slow to adopt the application		+		+	+	+		+	
Uncooperative internal parties	+	+		+	+			+	

Option	Defer	Pilot	Prototype	Incremental development	Abandon	Contract	Outsource development	Lease	Expand
Risk factor							, i		
Competition's response eliminates the firm's advantage	+	+			+	+		+	
Demand exceeds expectations	+	+							+
Low customer/supplier/partner demand/adoption/usage	+	+		+	+	+		+	

of IT

Melville et al. (2004); Osterwalder, A., & Pigneur, Y. (2010)

Option Risk factor	Defer	Pilot	Prototype	Incremental development	Abandon	Contract	Outsource development	Lease	Expand
Unanticipated action of regulatory bodies	+				+			+	

How to apply OBRiM - An Example

- IT Project
 - Risk of low adoption by customers

	Profit									
	Year 1	Year 2	Year 3	Year 4	Year 5					
50%	20	20	20	20	20					
50%	40	40	40	40	40					

▶ Initial capital requirements: MU 150, financed with loan with interest rate of 2%

$$NPV = -8,60 = -150 + \frac{0,5*40 + 0,5*20}{1,02} + \frac{0,5*40 + 0,5*20}{1,02^2} + \frac{0,5*40 + 0,5*20}{1,02^3} + \frac{0,5*40 + 0,5*20}{1,02^4} + \frac{0,5*40 + 0,5*20}{1,02^5} + \frac{0,5*40 + 0,5*20}{1,02^$$

How to apply OBRiM - An Example

- Option 1 Pilot:
 - Additional cost of MU 10

	Profit										
	Year 1	Year 2	Year 3	Year 4	Year 5						
20%	20	20	20	20	20						
80%	40	40	40	40	40						

$$NPV = 9,68 = -160 + \frac{0,8*40 + 0,2*20}{1,02} + \frac{0,8*40 + 0,2*20}{1,02^2} + \frac{0,8*40 + 0,2*20}{1,02^3} + \frac{0,8*40 + 0,2*20}{1,02^4} + \frac{0,8*40 + 0,2*20}{1,02^5} + \frac{0,8*40 + 0,2*20}{1,02^5$$

- Option 2 Contract:
 - Additional cost of MU 25

	Profit									
	Year 1	Year 2	Year 3	Year 4	Year 5					
10%	20	20	20	20	20					
90%	40	40	40	40	40					

$$NPV = 4,11 = -175 + \frac{0,9*40 + 0,1*20}{1,02} + \frac{0,9*40 + 0,1*20}{1,02^2} + \frac{0,9*40 + 0,1*20}{1,02^3} + \frac{0,9*40 + 0,1*20}{1,02^4} + \frac{0,9*40 + 0,1*20}{1,02^5}$$

- Which limitations of the OBRiM (Option-Based Risk Management) framework do you see?
- What is a possible advantage of OBRiM over ROT (real options theory)?
- If you were a manager dealing with IT investment risks, would you consider OBRiM a useful tool? Why (not)?

- Which limitations of the OBRiM framework do you see?
- Observations by Benaroch et al. (2006):
 - Cannot account for all types of risk mitigations
 - ▶ Some mitigations don't correspond to any type of option
 - ► Thus, cannot be modeled within OBRiM framework
 - Practitioners show difficulties in applying real option concepts
 - ▶ OBRiM cannot work efficiently in this context
 - Recommendations
 - Better training of IT personnel in financial concepts
 - ▶ Developing a simplified version of the model + methodological aids (e.g. implementing the mechanics of OBRiM in decision support tools)

- What is a possible advantage of OBRiM over ROT?
 - OBRiM offers a formalization of the ROT-framework in the context of IT risk management
 - concrete suggestions based on specific risks
 - Benaroch et al. (2006) found that experienced managers who make decisions based on intuition end up untertaking the options that would have been suggested by OBRiM too
 - ▶ OBRiM offers explicit knowledge that is in line with managers' tacit knowledge

- If you were a manager dealing with IT investment risks, would you consider OBRiM a useful tool? Why (not)?
 - It depends.
 - If I would not have much experience in a certain situation, OBRiM could be a **good first indication of the viable options**. So yes, it would be a useful tool in this case.
 - ▶ If I would have a lot of experience regarding a given project, intuition might reveal the best option. In this case, OBRiM could also be useful as a check-up to critically assess the option I chose based on intuition.
 - ▶ But if OBRiM suggests an option which makes no sense in a certain context and which goes against years of experience, then it would not be a useful tool.
 - As always, frameworks are just helping tools, not oracles of absolute truth.

References

- Benaroch et al. (2006), Real Options in IT Risk Management: An Empirical Validation of Risk-Option Relationships, In MIS Quarterly Vol. 30, No. 4 (Dec, 2006), pp. 827-864.
- Benaroch, M. (2001), Option-based management of technology investment risk, in IEEE Transactions on Engineering Management, vol. 48, no. 4, pp. 428-444.
- Krcmar, H. (2015). Informationsmanagement. Berlin Heidelberg: Springer Gabler.
- Melville, N., Kraemer, K., & Gurbaxani, V. (2004), "Information technology and organizational performance: An integrative model of IT business value." MIS Quarterly, 28:2, 283-322.
- Osterwalder, A., & Pigneur, Y. (2010), Business model generation: a handbook for visionaries, game changers, and challengers, Amsterdam: Osterwalder & Pigneur.
- ► IMKM WS 20/21 Lecture 2, slide 13.