Chapter 2: Training vs Testing (II)

Problem 1. What is the VC dimension of the following hypothesis classes? (These hypothesis classes all come from either Example 2.2 on page 43-45 or the problems in the back of the chapter.)

1. The set of positive rays in 1 dimension:

$$\mathcal{H} = \left\{ x \mapsto \operatorname{sign}(x - a) : a \in \mathbb{R} \right\}$$
 (1)

2. The set of positive and negative rays in 1 dimension:

$$\mathcal{H} = \left\{ x \mapsto \sigma \operatorname{sign}(x - a) : a \in \mathbb{R}, \sigma \in \{+1, -1\} \right\}$$
 (2)

3. The set of positive intervals in 1 dimension:

$$\mathcal{H} = \left\{ x \mapsto \left[a \le x \le b \right] : a \in \mathbb{R}, b \in \mathbb{R} \right\}$$
 (3)

4. The set of positive and negative intervals in 1 dimension:

$$\mathcal{H} = \left\{ x \mapsto \sigma \left[a \le x \le b \right] : a \in \mathbb{R}, b \in \mathbb{R}, \sigma \in \{+1, -1\} \right\}$$
 (4)

5. The set of centered spheres in \mathbb{R}^d :

$$\mathcal{H} = \left\{ \mathbf{x} \mapsto [\| \mathbf{x} \|_2 \le \alpha] : \alpha \in \mathbb{R}^+ \right\}$$
 (5)

6. The set of non-centered spheres in \mathbb{R}^d :

$$\mathcal{H} = \left\{ \mathbf{x} \mapsto \left[\|\mathbf{x} - \mu\|_2 \le \alpha \right] : \alpha \in \mathbb{R}^+, \mu \in \mathbb{R}^d \right\}$$
 (6)

7. The set of non-centered spheres in \mathbb{R}^d :

$$\mathcal{H} = \left\{ \mathbf{x} \mapsto [\| \mathbf{x} - \mu \|_2 \le \alpha] : \alpha \in \mathbb{R}^+, \mu \in \mathbb{R}^d \right\}$$
 (7)

8. Convex sets in 2 dimensions: \mathcal{H} is the set of all functions $h: \mathbb{R}^2 \to \{+1, -1\}$ that are positive inside some convex set and negative elsewhere. (Recall that a set is convex if the line segment connecting any two points in the set lies entirely within the set.)

Problem 2. For each statement below, indicate whether it is true or false and explain why. (The best possible explanation for true answers is a proof, and the best possible explanation for false answers is a counterexample.)
1. Let f be the true labeling function. Then for all data distributions, $E_{\rm out}(f)=0$.

2. Let \mathcal{H} be the perceptron hypothesis class, and g be the result of the PLA. Also let f be the true labeling function. Then $E_{\mathrm{out}}(g) \geq E_{\mathrm{out}}(f)$.

3.	Let \mathcal{H} be the perceptron hypothesis class, and g be the result of the PLA. Also let f be the true labeling function. Then $E_{\text{in}}(g) \geq E_{\text{in}}(f)$.	е
4.	Let f be the true labeling function. There exists some hypothesis class \mathcal{H} with hypothesis $g \in \mathcal{H}$ satisfying $F_{-r}(g) \subset F_{-r}(f)$	·l
	satisfying $E_{\text{out}}(g) < E_{\text{out}}(f)$.	
5.	If \mathcal{H} is a finite hypothesis class, and g is trained using the TEA algorithm, the it is always true tha $ E_{\rm in}(g) - E_{\rm out}(g) \leq E_{\rm in}(g)$.	t

6. Let g be a hypothesis selected from some hypothesis class \mathcal{H} with finite dimension. for $E_{\text{in}}(g)$ to be less than $E_{\text{out}}(g)$.	Then it is possible
7. The VC dimension of every finite hypothesis class is finite.	
8. The VC dimension of every infinite hypothesis class is infinite.	

9.	If there exists a hypothesis h such that $\min_h E_{\text{in}}(h) = 0$, then the VC dimension of \mathcal{H} must be	finite.
10.	If \mathcal{H} can shatter a set of size N , then $d_{\mathrm{VC}}(\mathcal{H}) \geq N$.	
11.	For any hypothesis class \mathcal{H} , the value $d_{\mathrm{VC}}(\mathcal{H})+1$ is a break point for \mathcal{H} .	

12. If the hypothesis class \mathcal{H} shatters some dataset of size N, then $m_{\mathcal{H}}(N) = 2^{N}$.

13. There exists some hypothesis class \mathcal{H} with growth function $m_{\mathcal{H}}(N) = \Theta(2^{\sqrt{N}})$.

14. Let \mathcal{H} be an arbitrary hypothesis class. Then $m_{\mathcal{H}}(N) = O(2^N)$.

15.	Let	\mathcal{H}_1	and	\mathcal{H}_2	be	hypotl	nesis	classe	s sati	sfying	$\mathcal{H}_1 \subset$	\mathcal{H}_2 .	Then	$d_{ m VC}($	$\mathcal{H}_1) \leq$	$d_{ m VC}$	\mathcal{H}_2).
16.	Let	\mathcal{H}_1	and	\mathcal{H}_2	be	hypotl	nesis	classe	s sati	sfying	$d_{ m VC}(\mathcal{F})$	$\mathcal{H}_1) \leq$	$d_{ m VC}($	\mathcal{H}_2).	Then	$\mathcal{H}_1 \subset$	\mathcal{H}_2 .
17	Let	и.	and	\mathcal{U}_{α}	he	hypotl	nesis	classe	ac cati	efvina	dva(1	¥.) —	· dval	\mathcal{U}_{α}	Then	¥. –	\mathcal{U}_{α}
11.	Det	π1	and	/ t 2	De	пуроп	.10515	Classe	5 5 6 1 1	siyilig	avc(7	ι ₁) –	· avc(/t2).	Then	$n_1 -$	7t ₂ .