TD 3: Nombres complexes

Forme cartésienne, forme polaire :

Exercice 1. (*)

Mettre sous la forme a + ib $(a, b \in \mathbb{R})$ les nombres :

$$\frac{3+6i}{3-4i}$$
 ; $\left(\frac{1+i}{2-i}\right)^2$; $\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$.

Exercice 2. (*)

Déterminer pour $(\alpha, \theta) \in \mathbb{R}^2$ le module et l'argument des nombres complexes :

$$e^{e^{i\alpha}}$$
 et $e^{i\theta} + e^{2i\theta}$.

Exercice 3. (*)

Soit $z \in \mathbb{C} \setminus \{-i\}$

Montrer que

$$\left| \frac{1+zi}{1-zi} \right| = 1 \iff z \in \mathbb{R}$$

Exercice 4. (*)

Trouver l'ensemble des points M d'affixe z tels que $\frac{z^2}{z+i}$ est imaginaire pur.

Exercice 5. (*)

Pour $\theta \neq 2k\pi$, avec $k \in \mathbb{Z}$, on note $z = i\left(\frac{1 + e^{i\theta}}{1 - e^{i\theta}}\right)$. Démontrer que z est un nombre réel.

Exercice 6. (**)

- 1. Résoudre l'équation $\Re(z^3) = \Im(z^3)$.
- 2. Résoudre l'équation $1 + \bar{z} = |z|$.

Exercice 7. (**)

On considère la suite (u_n) définie par

$$u_n = \frac{(1+i)^n + (1-i)^n}{2^{n/2}}$$

- 1. Montrer que (u_n) est une suite de nombres réels. Simplifier les termes u_n .
- 2. Étudier la convergence de la suite (u_n) .

Exercice 8. (**)

Considérons l'application

$$f: \left\{ \begin{array}{ccc} \mathbb{C}\backslash \{-1\} & \longrightarrow & \mathbb{C}^* \\ z & \longmapsto & \frac{2}{z+1} \end{array} \right.$$

Déterminer $f(\mathbb{U}\setminus\{-1\})$.

Exercice 9. (**)

Soit $\mathscr{P} = \{z \in \mathbb{C} \mid \mathfrak{Im}(z) > 0\} \text{ et } D = \{z \in \mathbb{C}, |z| < 1\}.$

- 1. Soit $z \in \mathcal{P}$. Montrer que $\frac{z-i}{z+i} \in D$.
- 2. Soit $z \neq -i$ tel que $\frac{z-i}{z+i} \in D$. Montrer que $z \in \mathscr{P}$.
- 3. Montrer que l'application

$$f: \left\{ \begin{array}{ccc} \mathscr{P} & \longrightarrow & D \\ z & \longmapsto & \frac{z-i}{z+i} \end{array} \right.$$

est une bijection puis calculer sa réciproque.

Exercice 10. (**)

Trouvez l'ensemble des points M d'affixe z tels que les points d'affixes 1, z et z^2 sont alignés.

Racine n-ième:

Exercice 11. (*)

Résoudre les équations suivantes :

1.
$$z^n = -1$$

2.
$$(z-i)^n - (z+i)^n = 0$$

$$3. \left(\frac{z+1}{z-1}\right)^n = e^{in\theta}$$

$$4. \left(\frac{z+1}{z-1}\right)^n + \left(\frac{z-1}{z+1}\right)^n = 2\cos(n\theta)$$

Exercice 12. (*)

Trouver les racines cubiques de 2-2i et de 11+2i.

Exercice 13. (**)

Factoriser X^n – 1 dans $\mathbb{R}[X]$. On pourra commencer par résoudre l'exercice dans le cas n=5.

Exercice 14. (**)

Soient m et n deux éléments de \mathbb{N}^* . À quelle condition a-t-on l'inclusion $\mathbb{U}_m \subset \mathbb{U}_n$?

Exercice 15. (**)

- 1. Que vaut $1 + e^{\frac{2i\pi}{5}} + e^{\frac{4i\pi}{5}} + e^{\frac{6i\pi}{5}} + e^{\frac{8i\pi}{5}}$? En déduire la valeur de $\cos\left(\frac{2\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right)$.
- 2. En déduire la valeur de $\cos\left(\frac{2\pi}{5}\right)$ puis la valeur de $\cos\left(\frac{\pi}{5}\right)$.

Exercice 16. (**)

Soit $\omega = e^{\frac{2i\pi}{7}}$ Calculer les nombres

$$A = \omega + \omega^2 + \omega^4$$
 et $B = \omega^3 + \omega^5 + \omega^6$

On pourra calculer A + B et AB.

Exercice 17. (***)

Déterminer l'ensemble des complexes s'écrivant comme somme de trois complexes de module 1.

Trinôme du second degré à coefficients dans $\mathbb C$:

Exercice 18. (*)

- 1. Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$. En déduire les valeurs de $\cos(\frac{\pi}{8})$ et $\sin(\frac{\pi}{8})$.
- 2. Calculer les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 19. (*)

Résoudre dans $\mathbb C$ l'équation

$$z^2 - (3+4i)z - 1 + 5i = 0$$

Exercice 20. (*)

Résoudre l'équation d'inconnue complexe z $(-4-2i)z^2 + (7-i)z + 1 + 3i = 0$.

Exercice 21. (**)

Soit $u \in [0;\pi].$ Résoudre l'équation d'inconnue $z \in \mathbb{C}$

$$z^2 + 2(1 - \cos u)z + 2(1 - \cos u) = 0.$$

Préciser le module et l'argument de chaque solution.

Exercice 22. (**)

Résoudre l'équation

$$z^{3} + (i-2)z^{2} + (3-3i)z + 2i - 2 = 0$$

sachant qu'elle admet une solution réelle.

Trigonométrie:

Exercice 23. (*)

En utilisant les nombres complexes, calculer $\cos(5\theta)$ et $\sin(5\theta)$ en fonction de $\cos(\theta)$ et $\sin(\theta)$.

Exercice 24. (*)

Linéariser $\cos^5 x$, $\sin^5 x$ et $\cos^2 x \sin^3 x$.

Exercice 25. (**)

Résoudre le système suivant :

$$\begin{cases} \cos a + \cos(a+x) + \cos(a+y) = 0\\ \sin a + \sin(a+x) + \sin(a+y) = 0 \end{cases}$$

Exercice 26. (**)

Sachant que $\cos(\frac{\pi}{8}) = \frac{1}{2}\sqrt{2+\sqrt{2}}$, déterminer la valeur de $\cos(\frac{3\pi}{8})$.

Exercice 27. (**)

Exprimer le produit $\cos^2(x) \times \sin(3x)$ uniquement à l'aide de la fonction sin.

Exercice 28. (**)

Soient a,b deux nombres réels tels que a,b et $a+b \notin \frac{\pi}{2} + \pi \mathbb{Z}$.

- 1. Exprimer tan(a+b) en fonction de tan a et tan b.
- 2. En déduire que si $x \notin \pm \frac{\pi}{4} + \pi \mathbb{Z}$, alors $\tan(\frac{\pi}{4} x) + \tan(\frac{\pi}{4} + x) = \frac{2}{\cos(2x)}$
- 3. Calculer $\tan(\frac{\pi}{8})$.

Exercice 29. (**)

Soit $x \in]-\pi, \pi[+2\pi\mathbb{Z}]$. On pose $t = \tan(\frac{x}{2})$. Exprimer $\cos(x), \sin(x)$ et $\tan(x)$ en fonction de t.

Géométrie du plan complexe :

Exercice 30. (*)

Déterminer l'ensemble des nombres complexes z tels que :

1.
$$\left| \frac{z-3}{z-5} \right| = 1$$
,

$$2. \left| \frac{z-3}{z-5} \right| = \frac{\sqrt{2}}{2}.$$

Exercice 31. (*)

Montrer que pour $u, v \in \mathbb{C}$, on a

$$|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2).$$

Donner une interprétation géométrique.

Exercice 32. (***)

Soit $a,b,c\in\mathbb{C}$ deux à deux distincts. Montrer que les propositions suivantes sont équivalentes

- 1. les points d'affixes a, b, c forment un triangle équilatéral;
- 2. j ou j^2 est solution de $az^2 + bz + c = 0$;
- 3. $a^2 + b^2 + c^2 = ab + ac + bc$;
- 4. $\frac{1}{a-b} + \frac{1}{b-c} + \frac{1}{c-a} = 0$;

Groupe IPESUP Année 2022-2023

Inégalités dans le plan complexe :

Exercice 33. (**)

Montrer que, pour tout $z \in \mathbb{C}$, $|z-1| \le |z-j| + |z-j^2|$.

Exercice 34. (**)

Soit a, b, c et d des complexes de module 1.

Montrer que $|ab - cd| \le |a - c| + |b - d|$.

Exercice 35. (**)

Soit z et z' des complexes de module au plus 1. Montrer que

$$min(|z+z'|, |z-z'|) \le \sqrt{2}.$$

Divers exercices:

Exercice 36. (**)

Soit $\mathbb{Z}[i] = \{a + ib ; a, b \in \mathbb{Z}\}.$

- 1. Montrer que si α et β sont dans $\mathbb{Z}[i]$ alors $\alpha + \beta$ et $\alpha\beta$ le sont aussi.
- 2. Trouver les élements inversibles de $\mathbb{Z}[i]$, c'est-à-dire les éléments $\alpha \in \mathbb{Z}[i]$ tels qu'il existe $\beta \in \mathbb{Z}[i]$ avec $\alpha\beta = 1$.
- 3. Vérifier que quel que soit $\omega \in \mathbb{C}$ il existe $\alpha \in \mathbb{Z}[i]$ tel que $|\omega \alpha| < 1$.
- 4. Montrer qu'il existe sur $\mathbb{Z}[i]$ une division euclidienne, c'est-à-dire que, quels que soient α et β dans $\mathbb{Z}[i]$ il existe q et r dans $\mathbb{Z}[i]$ vérifiant :

$$\alpha = \beta q + r$$
 avec $|r| < |\beta|$.

(Indication : on pourra considérer le complexe $\frac{\alpha}{\beta}$)

Exercice 37. (**)

On dit qu'un entier naturel N est somme de deux carrés s'il existe deux entiers naturels a et b de sorte que $N = a^2 + b^2$.

- 1. On souhaite prouver que, si N_1 et N_2 sont sommes de deux carrés, alors leur produit N_1N_2 est aussi somme de deux carrés. Pour cela, on écrit $N_1 = a^2 + b^2$ et $N_2 = c^2 + d^2$, et on introduit $z_1 = a + ib$, $z_2 = c + id$. Comment écrire N_1 et N_2 en fonction de z_1 et z_2 ? En déduire que N_1N_2 est somme de deux carrés.
- 2. Démontrer que si N est somme de deux carrés, alors pour tout entier $p \ge 1$, N^p est somme de deux carrés.

Exercice 38. (**)

Soient n un entier naturel non nul et φ un réel. Résoudre le système

$$\begin{cases} (z+it)^n + (z-it)^n = 2\cos\varphi \\ z^2 + t^2 = 1 \end{cases}$$

où z et t sont des inconnues complexes.