ATCTCAATTAGTCAGCAACCCAGTTTT

FIGURE 1

ACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGA CCCACGCGTCCGGGCCGGAGCACCACGCCGCAGGACCTGGAGCTCCGGCTGCTCTTCCCG CTGCTGCCGCCCGCGCGGAGGCCGCCAAGAAGCCGACGCCCTGCCACCGGTGCCGGGGGCT GGTGGACAGTTTAACCAGGGGATGGTGGACACCGCAAAGAAGAACTTTGGCGGCGGGAACA CGGCTTGGGAGGAAAAGACGCTGTCCAAGTACGAGTCCAGCGAGATTCGCCTGCTGGAGATC CTGGAGGGCTGTGCGAGAGCAGCGACTTCGAATGCAATCAGATGCTAGAGGCGCAGGAGGA GCACCTGGAGGCCTGGTGGCTGCAGCTGAAGAGCGAATATCCTGACTTATTCGAGTGGTTTT GTGTGAAGACACTGAAAGTGTGCTGCTCTCCAGGAACCTACGGTCCCGACTGTCTCGCATGC CAGGGCGGATCCCAGAGGCCCTGCAGCGGGAATGGCCACTGCAGCGGAGATGGGAGCAGACA ACGCTACTTCAGCTCCCTCCGGAACGAGCCCACAGCATCTGCACAGCCTGTGACGAGTCC TGCAAGACGTGCTCGGGCCTGACCAACAGAGACTGCGGCGAGTGTGAAGTGGGCTGGGTGCT GGACGAGGGCGCCTGTGTGGATGTGGACGAGTGTGCGGCCGAGCCGCCTCCCTGCAGCGCTG CGCAGTTCTGTAAGAACGCCAACGGCTCCTACACGTGCGAAGAGTGTGACTCCAGCTGTGTG GGCTGCACAGGGAAGGCCCAGGAAACTGTAAAGAGTGTATCTCTGGCTACGCGAGGGAGCA CGGACAGTGTGCAGATGTGGACGAGTGCTCACTAGCAGAAAAAACCTGTGTGAGGAAAAACC GAAGATGCCTGTGTGCCGCCGGCAGAGGCTGAAGCCACAGAAGGAGAAAGCCCGACACAGCT GCCCTCCGCGAAGACCTGTAATGTGCCGGACTTACCCTTTAAATTATTCAGAAGGATGTCC CGTGGAAAATGTGGCCCTGAGGATGCCGTCTCCTGCAGTGGACAGCGGCGGGGAGAGGCTGC CTGCTCTCTAACGGTTGATTCTCATTTGTCCCTTAAACAGCTGCATTTCTTGGTTGTTCTTA AACAGACTTGTATATTTTGATACAGTTCTTTGTAATAAAATTGACCATTGTAGGTAATCAGG TTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCA TCACAAATTCACAAATAAAGCATTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTC ATCAATGTATCTTATCATGTCTGGATCGGGAATTAATTCGGCGCAGCACCATGGCCTGAAAT AACCTCTGAAAGAGGAACTTGGTTAGGTACCTTCTGAGGCGGAAAGAACCAGCTGTGGAATG ><subunit 1 of 1, 353 aa, 0 stop ><MW: 38192, pI: 4.53, NX(S/T): 2

MRLPRRAALGLLPLLLLLPPAPEAAKKPTPCHRCRGLVDKFNOGMVDTAKKNFGGGNTAWEEKTLSKYESSEIRL LEILEGLCESSDFECNQMLEAQEEHLEAWWLQLKSEYPDLFEWFCVKTLKVCCSPGTYGPDCLACQGGSQRPCSG NGHCSGDGSRQGDGSCRCHMGYQGPLCTDCMDGYFSSLRNETHSICTACDESCKTCSGLTNRDCGECEVGWVLDE GACVDVDECAAEPPPCSAAQFCKNANGSYTCEECDSSCVGCTGEGPGNCKECISGYAREHGQCADVDECSLAEKT CVRKNENCYNTPGSYVCVCPDGFEETEDACVPPAEAEATEGESPTQLPSREDL

Signal peptide: amino acids 1-24

N-glycosylation sites.

amino acids 190-194 and 251-255

Glycosaminoglycan attachment sites.
amino acids 149-153 and 155-159

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 26-30

Casein kinase II phosphorylation sites.

🕷 amino acids 58-62, 66-70, 86-90, 197-201, 210-214, 255-259, 295-299, 339-343 and 349-353

Tyrosine kinase phosphorylation site.

amino acids 303-310

N-myristoylation sites.

amino acids 44-50, 54-60, 55-61, 81-87, 150-156, 158-164, 164-170, 252-258 and 313-319

Aspartic acid and asparagine hydroxylation site.

amino acids 308-320

EGF-like domain cysteine pattern signature.

amino acids 166-178

Leucine zipper pattern.

amino acids 94-116

CAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTC GACCTCGACCCACGCGTCCGCCAGGCCGGGAGGCGACGCCCCAGCCGTCTAAACGGGAACA GCCCTGGCTGAGGGAGCTGCAGCGCAGCAGAGTATCTGACGGCGCCAGGTTGCGTAGGTGCG ${\tt TTCAGAAAAGCGCAACAGAGAATGCCAGCTATTCCTGTCAATATCCATTCCATGAATTTTAC}$ AAGGCATCATGGCAGATCCAACCGTCAATGTCCCTCTGCTGGGAACAGTGCCTCACAAGGCA TCAGTTGTTCAAGTTGGTTTCCCATGTCTTGGAAAACAGGATGGGGTGGCAGCATTTGAAGT GGATGTGATTGTTATGAATTCTGAAGGCAACACCATTCTCCAAACACCCTCAAAATGCTATCT TCTTTAAAACATGTCAACAAGCTGAGTGCCCAGGCGGGTGCCGAAATGGAGGCTTTTGTAAT GAAAGACGCATCTGCGAGTGTCCTGATGGGTTCCACGGACCTCACTGTGAGAAAGCCCTTTG TACCCCACGATGTATGAATGGTGGACTTTGTGTGACTCCTGGTTTCTGCATCTGCCCACCTG GATTCTATGGAGTGAACTGTGACAAAGCAAACTGCTCAACCACCTGCTTTAATGGAGGGACC TGTTTCTACCCTGGAAAATGTATTTGCCCTCCAGGACTAGAGGGAGAGCAGTGTGAAATCAG CAAATGCCCACAACCCTGTCGAAATGGAGGTAAATGCATTGGTAAAAGCAAATGTAAGTGTT $\tt CCAAAGGTTACCAGGGAGACCTCTGTTCAAAGCCTGTCTGCGAGCCTGGCTGTGGTGCACAT$ GGAACCTGCCATGAACCCAACAAATGCCAATGTCAAGAAGGTTGGCATGGAAGACACTGCAA TAAAAGGTACGAAGCCAGCCTCATACATGCCCTGAGGCCAGCAGGCGCCCCAGCTCAGGCAGC ACACGCCTTCACTTAAAAAGGCCGAGGAGCGGCGGGATCCACCTGAATCCAATTACATCTGG TGAACTCCGACATCTGAAACGTTTTAAGTTACACCAAGTTCATAGCCTTTGTTAACCTTTCA TGTGTTGAATGTTCAAATAATGTTCATTACACTTAAGAATACTGGCCTGAATTTTATTAGCT TCATTATAAATCACTGAGCTGATATTTACTCTTCCTTTTAAGTTTTCTAAGTACGTCTGTAG CATGATGGTATAGATTTCTTGTTTCAGTGCTTTGGGACAGATTTTATATTATGTCAATTGA 坑 TCAGGTTAAAATTTTCAGTGTGTAGTTGGCAGATATTTTCAAAATTACAATGCATTTATGGT GTCTGGGGGCAGGGGAACATCAGAAAGGTTAAATTGGGCAAAAATGCGTAAGTCACAAGAAT TTGGATGGTGCAGTTAATGTTGAAGTTACAGCATTTCAGATTTTATTGTCAGATATTTAGAT 🖺 GTTTGTTACATTTTTAAAAATTGCTCTTAATTTTTAAACTCTCAATACAATATATTTTGACC AAACAATATAATATATTCTAAACACAATGAAATAGGGAATATAATGTATGAACTTTTTGCAT TGGCTTGAAGCAATATAATATTGTAAACAAAACAGCTCTTACCTAATAAACATTTTAT AAAAAAAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAGCTTGGC CGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33094
><subunit 1 of 1, 379 aa, 0 stop
><MW: 41528, pI: 7.97, NX(S/T): 2
```

MARRSAFPAAALWLWSILLCLLALRAEAGPPQEESLYLWIDAHQARVLIGFEEDILIVSEGK ${\tt MAPFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFLSLRSLDKGIMADPTVNVPLL}$ ${\tt GTVPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILQTPQNAIFFKTCQQAECPGGC}$ ${\tt RNGGFCNERRICECPDGFHGPHCEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCDKANCST}$ ${\tt TCFNGGTCFYPGKCICPPGLEGEQCEISKCPQPCRNGGKCIGKSKCKCSKGYQGDLCSKPVC}$ EPGCGAHGTCHEPNKCQCQEGWHGRHCNKRYEASLIHALRPAGAQLRQHTPSLKKAEERRDP PESNYIW

Signal peptide:

A amino acids 1-28

N-glycosylation site.

amino acids 88-92, 245-249

Casein kinase II phosphorylation site.

amino acids 319-323

Tyrosine kinase phosphorylation site.

amino acids 370-378

N-myristoylation sites.

amino acids 184-190, 185-191, 189-195, 315-321

ATP/GTP-binding site motif A (P-loop).

amino acids 285-293

EGF-like domain cysteine pattern signature.

amino acids 198-210, 230-242, 262-274, 294-306, 326-338

TGCTGTTGCTGCCGCTGGCCACTTGGCTCTGGGTGCCCAGCAGGGTCGTGGGCGCCGG GAGCTAGCACCGGGTCTGCACCTGCGGGGCATCCGGGACGCGGGAGGCCGGTACTGCCAGGA GCAGGACCTGTGCTGCCGCGGCCGTGCCGACGACTGTGCCCTGCCCTACCTGGGCGCCATCT GTTACTGTGACCTCTTCTGCAACCGCACGGTCTCCGACTGCCTGACTTCTGGGACTTC TGCCTCGGCGTGCCACCCCCTTTTCCCCCGATCCAAGGATGTATGCATGGAGGTCGTATCTA ${\tt TCCAGTCTTGGGAACGTACTGGGACAACTGTAACCGTTGCACCTGCCAGGAGAACAGGCAGT}$ ${\tt GAACCACAGCGCCTTCTGGGGCATGACCCTGGA} \underline{{\tt TGA}} {\tt GGGCATTCGCTACCGCCTGGGCACCA}$ TCCGCCCATCTTCCTCGGTCATGAACATGCATGAAATTTATACAGTGCTGAACCCAGGGGAG GTGCTTCCCACAGCCTTCGAGGGCCTCTGAGAAGTGGCCCAACCTGATTCATGAGCCTCTTGA ACCCACCAGCAGCAGGGCTGCCGCGGTGGGCGTCTCGATGGTGCCTGGTGGTTCCTGCGTCG ${\tt CACTGCCCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACCGCCT}$ $\tt CGGCTCCAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCA$ TGGAGGTGCATGAGGACTTCTTCCTATACAAGGGAGGCATCTACAGCCACACGCCAGTGAGC CTTGGGAGGCCAGAGAGATACCGCCGGCATGGGACCCACTCAGTCAAGATCACAGGATGGGG CAGCCTGGGGCGAGAGGGGCCACTTCCGCATCGTGCGCGCGTCAATGAGTGCGACATCGAG AGCTTCGTGCTGGGCCTCTGGGGCCGCGTGGGCATGGAGGACATGGGTCATCACTGAGGCTG CGGGCACCACGCGGGGTCCGGCCTGGGATCCAGGCTAAGGGCCCGGCGGAAGAGGCCCCAATG GGGCGGTGACCCCAGCCTCGCCCGACAGAGCCCGGGGGCGCAGGGGGGCGCCAGGGCGCTAAT $\tt CCCGGCGCGGGTTCCGCTGACGCAGCCCCCGCCTGGGAGCCGCGGGGCAGGCGAGACTGGCG$ GAGCCCCCAGACCTCCCAGTGGGGACGGGGCAGGGCCTGGCCTGGGAAGAGCACAGCTGCAG ATCCCAGGCCTCTGGCGCCCCCACTCAAGACTACCAAAGCCAGGACACCTCAAGTCTCCAGC TTGCCCAGGTTGGAGTGCAGTGGCCCATCAGGGCTCACTGTAACCTCCGACTCCTGGGTTCA AGTGACCCTCCCACCTCAGCCTCTCAAGTAGCTGGGACTACAGGTGCACCACCACCACCTGGC TAATTTTTGTATTTTTTGTAAAGAGGGGGGTCTCACTGTGTTTGCCCAGGCTGGTTTCGAACT CCTGGGCTCAAGCGGTCCACCTGCCTCCGCCTCCCAAAGTGCTGGGATTGCAGGCATGAGCC TAAAACCAAAGTATTGATAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33223

><subunit 1 of 1, 164 aa, 1 stop

><MW: 18359, pI: 7.45, NX(S/T): 1

MWRCPLGLLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYCQEQDLCCRGRADDC ALPYLGAICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPPIQGCMHGGRIYPVLGTYWDNCNR CTCQENRQWHGGSRHDQSHQPGQLWLAGWEPQRLLGHDPG

N-glycosylation site.

amino acids 78-82, 161-165

Casein kinase II phosphorylation site.

amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300, 411-415

N-myristoylation site.

amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230, 269-275, 378-384, 442-448

Amidation site.

amino acids 26-30, 318-322 amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300,

Eukaryotic thiol (cysteine) proteases histidine active site. amino acids 398-409

AGGCTCCTTGGCCCTTTTTCCACAGCAAGCTTNTGCNATCCCGATTCGTTGTCTCAAATCCA
ATTCTCTTGGGACACATNACGCCTGTCCTTTNGCCCCAGAACCTGCTGTTGTTACACCCAC
CAGCAGCAGGAGGCTGCCGGTTGGGCGTTCGATGGTGCTCTGGTGGTTCCTGCGCCCGGGG
GNTGGTGTCTGACCACTGCTACCCCTTCTCGGGCCGTGAACGAGACGAGGCTGGCCCTGCGC
CCCCTGTATGATGACACGCCGAGCCATGGGTCGGCAAGCGCCAGGCCACTGCCCACTGC
CCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACCGCCTCGGCTC
CAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCATGGAGG
TGCATGAGGACTTCTTCCTATACAAGGGAGGCATCTACAGCCACACGCCAGTGAGCCTTGGG
AGGCCAGAGAGAATACCGCCGGCATGGGACCCACTCAG

GCTGCTTGCCCTGTTGATGGCAGGCTTGGCCCTGCAGCCAGGCACTGCCCTGCTGCTACT CCTGCAAAGCCCAGGTGAGCAACGAGGACTGCCTGCAGGTGGAGAACTGCACCCAGCTGGGG GAGCAGTGCTGGACCGCGCGCATCCGCGCAGTTGGCCTCCTGACCGTCATCAGCAAAGGCTG CAGCTTGAACTGCGTGGATGACTCACAGGACTACTACGTGGGCAAGAAGAACATCACGTGCT $\tt GTGACACCGACTTGTGCAACGCCAGCGGGGGCCCATGCCCTGCAGCCGGCTGCCGCCATCCTT$ GCGCTGCTCCCTGCACTCGGCCTGCTGCTGTGGGGACCCGGCCAGCTATAGGCTCTGGGGGG $\tt CCCCGCTGCAGCCCACACTGGGTGTGGTGCCCCAGGCCTCTGTGCCACTCCTCACAGACCTG$ CTGCACCCTGTCCCCACCCTGACCCTCCCATGGCCCTCTCCAGGACTCCCACCCGGCAGA TCAGCTCTAGTGACACAGATCCGCCTGCAGATGGCCCCTCCAACCCTCTCTGCTGCTGTTTC ${\tt CATGGCCCAGCATTCTCCACCCTTAACCCTGTGCTCAGGCACCTCTTCCCCCAGGAAGCCTT}$ CCCTGCCCACCCCATCTATGACTTGAGCCAGGTCTGGTCCGTGGTGTCCCCCGCACCCAGCA $\operatorname{GGGGACAGGCACTCAGGAGGGCCCAG}$ GGACAAGAGTCGACGTGAGTTCCTGGGAGTCTCCAGAGATGGGGCCTGGAGGCCTGGAGGAA GGGGCCAGGCCTCACATTCGTGGGGCTCCCTGAATGGCAGCCTGAGCACAGCGTAGGCCCTT AATAAACACCTGTTGGATAAGCCAAAAAAA

MTHRTTTWARRTSRAVTPTCATPAGPMPCSRLPPSLRCSLHSACCSGDPASYRLWGAPLQPT LGVVPQASVPLLTDLAQWEPVLVPEAHPNASLTMYVCTPVPHPDPPMALSRTPTRQISSSDT DPPADGPSNPLCCCFHGPAFSTLNPVLRHLFPQEAFPAHPIYDLSQVWSVVSPAPSRGQALRRAQ

Signal peptide:

amino acids 1-47

N-glycosylation site.

amino acids 31-35, 74-78, 84-88

Casein kinase II phosphorylation site.

amino acids 22-26, 76-80

N-myristoylation site.

amino acids 56-60

Amidation site.

amino acids 70-74

 $\tt CCCACGCGTCCGAACCTCTCCAGCG\underline{ATG}GGAGCCGCCCGCCTGCTGCCCAACCTCACTCTGT$ GCTTACAGCTGCTGATTCTCTGCTGTCAAACTCAGTACGTGAGGGACCAGGGCGCCATGACC GACCAGCTGAGCAGGCGGCAGATCCGCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCA TCATAGTGGAGACGGACACGTTTGGCAGCCGGGTTCGCATCAAAGGGGGCTGAGAGTGAGAAG TACATCTGTATGAACAAGAGGGGCAAGCTCATCGGGAAGCCCAGCGGGAAGAGCAAAGACTG CGTGTTCACGGAGATCGTGCTGGAGAACAACTATACGGCCTTCCAGAACGCCCGGCACGAGG GCTGGTTCATGGCCTTCACGCGGCAGGGGCGGCCCGCCAGGCTTCCCGCAGCCGCCAGAAC CAGCGCGAGGCCCACTTCATCAAGCGCCTCTACCAAGGCCAGCTGCCCTTCCCCAACCACGC GGCGGCCCCAGCCCTCACGTAGTCTGGGAGGCAGGGGGGGCAGCAGCCCCTGGGCCGCCTCCC GAGGGAGGACCCTGAGGGCCGCGAAGCATCCGAGCCCCAGCTGGGAAGGGGCAGGCCGGTG $\tt CCCCAGGGGGGGGGCACAGTGCCCCCTTCCCGGACGGGTGGCAGGCCCTGGAGAGGAACT$ ${\tt GAGTGTCACCCTGATCTCAGGCCACCAGCCTCTGCCGGCCTCCCAGCCGGGCTCCTGAAGCC}$ $\tt CGCTGAAAGGTCAGCGACTGAAGGCCTTGCAGACAACCGTCTGGAGGTGGCTGTCCTCAAAA$ TCTGCTTCTCGGATCTCCCTCAGTCTGCCCCCAGCCCCCAAACTCCTCCTGGCTAGACTGTA CGGAATAAAACCATTTTCCTGC

 ${\tt MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHVQVTGRRI}$ SATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGKSKDCVFTEIVLE NNYTAFONARHEGWFMAFTROGRPROASRSRONOREAHFIKRLYOGOLPFPNHAEKOKOFEF VGSAPTRRTKRTRRPQPLT

```
Signal peptide:
  amino acids 1-22
  N-glycosylation site.
  amino acids 9-13, 126-130
cAMP- and cGMP-dependent protein kinase phosphorylation site.
  Tyrosine kinase phosphorylation site.
```

amino acids 39-48, 89-97

N-myristoylation site. amino acids 69-75, 188-194

Amidation site. amino acids 58-62

HBGF/FGF family signature. amino acids 103-128

GACAGCAGCAAAGAGGGCAACACAGGCTGATAAGACCAGAGACAGCAGGGAGATTATTTTAC ${\tt CATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCAACAGAACCCCATCCAGT}$ CTAGTGTGTGCCGCTGCGACAGGAACTTTGTCTACTGTAATGAGCGAAGCTTGACCTCAGTG CCTCTTGGGATCCCGGAGGGCGTAACCGTACTCTACCTCCACAACAACCAAATTAATAATGC TGGATTTCCTGCAGAACTGCACAATGTACAGTCGGTGCACACGGTCTACCTGTATGGCAACC AACTGGACGAATTCCCCATGAACCTTCCCAAGAATGTCAGAGTTCTCCATTTGCAGGAAAAC AATATTCAGACCATTTCACGGGCTGCTCTTGCCCAGCTCTTGAAGCTTGAAGAGCTGCACCT GGATGACAACTCCATATCCACAGTGGGGGTGGAAGACGGGGCCTTCCGGGAGGCTATTAGCC TTGCAAGAGCTGAGAGTGGATGAAAATCGAATTGCTGTCATATCCGACATGGCCTTCCAGAA TCTCACGAGCTTGGAGCGTCTTATTGTGGACGGGAACCTCCTGACCAACAAGGGTATCGCCG AGGGCACCTTCAGCCATCTCACCAAGCTCAAGGAATTTTCAATTGTACGTAATTCGCTGTCC ${\tt CACCCTCCCGATCTCCCAGGTACGCATCTGATCAGGCTCTATTTGCAGGACAACCAGATCAGGACAACCAGATCAGGACAACCAGATCAGGACAACCAGATCAGGACAACCAGATCAGGACAACCAGATCAGGACAACCAGATCAGGACAACCAGATCAGGACAACCAGATCAGGACAACCAGATCAGGACAACCAGATCAGATCAGGACAACCAGATCAGATCAGGACAACCAGATCAGATCAGGACAACCAGATCAGATCAGGACAACCAGATCAGATCAGGACAACCAGATCAGATCAGGACAACCAGATCAGATCAGGACAACCAGATCAGATCAGGACAACCAGATCAGATCAGATCAGATCAGGACAACCAGATC$ ACAACCAACTGCGGATGCTGACTCAAGGGGTTTTTGATAATCTCTCCAACCTGAAGCAGCTC ACTGCTCGGAATAACCCTTGGTTTTGTGACTGCAGTATTAAATGGGTCACAGAATGGCTCAA ATATATCCCTTCATCTCCAACGTGCGGGGTTTCATGTGCCAAGGTCCTGAACAAGTCCGGG $\tt GGATGGCCGTCAGGGAATTAAATATGAATCTTTTGTCCTGTCCCACCACGACCCCCGGCCTG$ $\tt CCTCTCTTCACCCCAGCCCCAAGTACAGCTTCTCCGACCACTCAGCCTCCCACCCTCTCTAT$ $\tt CTGACTGGGATGGCAGAGAAGAGTGACCCCACCTATTTCTGAACGGATCCAGCTCTCTATC$ ${\tt CAAACTCACATGGGTGAAAATGGGCCACAGTTTAGTAGGGGGCCATCGTTCAGGAGCGCATAG}$ CACCACCCATGCCTCCTATCTGAACAACGGCAGCAACACAGCGTCCAGCCATGAGCAGACGA $\tt CGTCCCACAGCATGGGCTCCCCCTTTCTGCTGGCGGGCCTTGATCGGGGGGCGCGGTGATATTT$ CCAGAAGTGGAAATACAACCGGGGCCGGCGGAAAGATGATTATTGCGAGGCAGCACCAAGA ${\tt AGGACAACTCCATCCTGGAGATGACAGAAACCAGTTTTCAGATCGTCTCCTTAAATAACGAT}$ CACAGACTGCCATATCCCCAACAACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGC ${\tt ACTGCCATACG} \underline{{\tt TGA}} {\tt CAGCCAGAGGCCCAGCGTTATCAAGGCGGACAATTAGACTCTTGAGAA}$ ${\tt CACACTCGTGTGTGCACATAAAGACACGCAGATTACATTTGATAAATGTTACACAGATGCAT}$ ${\tt TTGTGCATTTGAATACTCTGTAATTTATACGGTGTACTATATAATGGGATTTAAAAAAAGTG}$ ${\tt CTATCTTTCTATTTCAAGTTAATTACAAACAGTTTTGTAACTCTTTTGCTTTTTAAATCTT}$

MGLQTTKWPSHGAFFLKSWLIISLGLYSQVSKLLACPSVCRCDRNFVYCNERSLTSVPLGIP
EGYVTVLYHHNNOINNAGFPABLHNVQSVHTVYLYGNQLDEFPMNLPKNVRVLHLQENNIQTI
SRAALAQLLKLEELHLDDNSISTVGVEDGAFREAISLKLLFLSKNHLSSVPVGLPVDLQEIR
VDENRIAVISDMAFQNLTSLERLIVDGNLLTNKGIAEGTFSHLTKLKEFSIVRNSLSHPPPD
LPGTHLIRLYLQDNQINHIPLTAFSNLRKLERLDISNNQLRMLTQGVFDNLSNLKQLTARNN
PWFCDCSIKWVTEWLKYIPSSLNVRGFMCQGPEQVRGMAVRELIMMLLSCPTTTFGLPLFTP
APSTASPTTQPFTLSIPNPSRSYTPPTFTTSKLPTIPDWDGRERVTPPISERIQLSIHFVND
TSIQVSWLSLFTYMAYKLTWVKMGHSLVGGIVQERIVSGEKQHLSLVNLEPRSTYRICLVPL
DAFNYRAVEDTICSEATTHASYLNNGSNTASSHEGUTSHSMGSPFLLAGLIGGAVIFVLVVL
LSVFCWHMHKKGRYTSQKWKYNGGRKKDDYCEAGTKKONSILEMTETSFQIVSLNNDQLLKG
DFRLQPIYTPNGGINYTDCHIPNNMRYCNSSVPDLEHCHT

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653 Casein kinase II phosphorylation site.

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655
Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300, 522-528, 545-551, 633-639

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

 $\tt TCGCTTCCCAGGCGCCGGCGGCTGCAGCCTTGCCCCTCTTGCTCGCCTTGAAA\underline{ATG}GAAAAGATGCTCGCAGGCT$ ${\tt GCTTTCTGCTGATCCTCGGACAGATCGTCCTCCTCCCTGCCGAGGCCAGGGAGCTCACGTGGGAGGTCCATCT}$ TCTTGCAATTCTTGGACATTGGTCCTGATGTCACCCGAGTGGGCCTGCTCCAATATGGCAGCACTGTCAAGAATG AGTTCTCCCTCAAGACCTTCAAGAGGAAGTCCGAGGTGGAGCGTGCTGTCAAGAGGATGCGGCATCTGTCCACGG $\tt GGGAGAATGTGCCACGGGTCATAATGATCGTGACAGATGGGAGACCTCAGGACTCCGTGGCCGAGGTGGCTGCTACTAGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTACTAGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTACTAGATGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTACTAGATGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTACTAGATGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTACTAGATGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTACTAGATGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTACTAGATGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTACTAGATGGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTAAGATGGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTAAGATGGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTAAGATGGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTAAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTAAGATGGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTAAGATGGGAGATGGGAGACTCCGTGGCCGAGGTGGCTGCTAAGATGGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGAGATGAGATGAGATGGAGATGGAGATGAGAGATGAGAGATGAGAGATGAGATGAGATGAGATGAGATGAGATGAGATGAGATGAGAGATGAGAGATGAGATGAGATGAGATGAGATGAGATGAGATGAGAGATGAGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAGAATGAATGAATGAATGAGAATG$ GGAGTGAGCCCCATGAGGACCATGTCTTCCTTGTGGCCAATTTCAGCCAGATTGAGACGCTGACCTCCGTGTTCC AGAAGAAGTTGTGCACGGCCCACATGTGCAGCACCCTGGAGCATAACTGTGCCCACTTCTGCATCAACATCCCTG GCTCATACGTCTGCAGGTGCAAACAAGGCTACATTCTCAACTCGGATCAGACGACTTGCAGAATCCAGGATCTGT GTGCCATGGAGGACCACAACTGTGAGCAGCTCTGTGTGAATGTGCCGGGCTCCTTCGTCTGCCAGTGCTACAGTG $\tt ATGAGTGTGAAATGCTGATGGCTCCTACCTTTGCCAGTGCCATGAAGGATTTGCTCTTAACCCAGATGAAAAAA$ ACTACTGCCGCTGCCACCGTGGCTACACTCTGGACCCCAATGGCAAAACCTGCAGCCGAGTGGACCACTGTGCAC $\tt GTGTCAACATGGACAGATCCTTTGCCTGTCAGTGTCCTGAGGGACACGTGCTCCGCAGCGATGGGAAGACGTGTG$ ${\tt CAAAATTGGACTCTTGTGGGGGGACCACGGTTGTGAACATTCGTGTGAAGCAGTGAAGATTCGTTTGTGT}$ GCCAGTGCTTTGAAGGTTATATACTCCGTGAAGATGGAAAAACCTGCAGAAGGAAAGATGTCTGCCAAGCTATAG CTGAGGATGGGAAACGCTGCCGAAGGAAGGATGTCTGCAAATCAACCCACCATGGCTGCGAACACATTTGTGTTA GCACTGAAGGCCCAATTGACCTGGTCTTTGTGATCGATGGATCCAAGAGTCTTGGAGAAGAGAATTTTGAGGTCG ATTCCACACAGGTCCACACAGAGTTCACTCTGAGAAACTTCAACTCAGCCAAAGACATGAAAAAAGCCGTGGCCC ${\tt CAGGGGAACTGCCAAAAACGGTCCAACAGCCAACAGAATCTGAGCCAGTCACCATAAATATCCAAGACCTACTTT}$ ${\tt CCTGTTCTAATTTTGCAGTGCAACACAGATATCTGTTTGAAGAAGACAATCTTTTACGGTCTACACAAAAGCTTT}$ $\tt CCCATTCAACAAAACCTTCAGGAAGCCCTTTGGAAGAAAAACACGATCAATGCAAATGTGAAAACCTTATAATGT$ ${\tt TCCAGAACCTTGCAAACGAAGAAGTAAGAAAATTAACACAGCGCTTAGAAGAAATGACACAGAGAATGGAAGCCCC}$ ${\tt TGGAAAATCGCCTGAGATACAGA\underline{TGA}}{\tt AGATTAGAAATCGCGACACATTTGTAGTCATTGTATCACGGATTACAAT$ $\overline{\texttt{GAACGCAGTGCAGAGCCCCAAAGCTCAGGCTATTGTTAAATCAATAATGTTGTGAAGTAAAACAATCAGTACTGA}$ ${\tt GAAACCTGGTTTGCCACAGAACAAAGACAAGAAGTATACACTAACTTGTATAAATTTATCTAGGAAAAAAATCCT}$ AACTTGCTTCTGCCTCATCCTGCCTTAGTGTGCAATCTCATTTGACTATACGATAAAGTTTGCACAGTCTTACTT $\tt CTGTAGAACACTGGCCATAGGAAATGCTGTTTTTTTGTACTGGACTTTACCTTGATATATGTATATGGATGTATG$ CATAAAATCATAGGACATATGTACTTGTGGAACAAGTTGGATTTTTATACAATATTAAAATTCACCACTTCAG

MEKMLAGCFLLILGQIVLLPAEARERSRGRSISRGRHARTHPQTALLESSCENKRADLVFII
DSSRSVNTHDYAKVKEFIVDILQFLDIGFDVTRVGLLQYGSTVKNEFSLKTFKRKSEVERAK
KRMRHLSTGTMTGLAIQYALNIAFSEAEGARPLRENVPRVIMIVTDGRPQDSVAEVAKARD
KRMRHLSTGTMTGLAIQYALNIAFSEAEGARPLRENVPRVIMIVTDGRPQDSVAEVAKARD
KRMRHLSTGTMTGLAIQYALNIAFSEAEGARPLRENVPRVIMIVTDGRPQDSVAEVAKARD
KRMRHLSTGTMTGLAIGVAGVALCHARCSTLEHN
CAHFCINIPGSYVCRCKQGYILNSDQTTCRIQDLGAMEDHNCEQLCVNVPGSFVCQCYSGYL
LAEDGKRCVAVDYCASENHGCEHECVNADGSYLCQHEGFFALNPEBKTCTRINYCHKFGC
EHECVNMEESYYCRCHRGYTLDPNGKTCSRVDHCAQQDHGCEQLCLNTEDSFVCQCSEGFLI
NEDLKTCSRVDYCLLSDHGCEYSCVNMDRSFAQCPEGHVLXBGKTCAKLDSCALGDHGCE
ESCVSSEDSFVCQCFEGYILREDGKTCRKRDVCQAIDHGCEHICVNSDDSYTCECLEGFRLA
EDGRRCRRKDVCKSTHHGCEHICVNNGNSYICKCSEGFVLAEDGRRCKKCTEGPIDLVFVID
GSKSLGEBENFEVVKQFYTGIIDSLTISPKARVGLLQYSTQVHTEFTLRNFNSAKDMKKAVA
HMKYMGKGSMTGLALKHMFERSFTQSEGARPLSTRVPRAAIVFTDGRAQDDVSEWASKAKAN
GITMYAVGVGKAIEEELQEIASEPTNKHFYAEDFSTMDEISEKLKKGICEALEDSDGRQDS
PAGELPKTVQOPTESEPVTINIODLLSCSNFAVQHRYLFEEDNLLRSTQKLSHSTKPSGSPL
EEKHDQCKCENLIMFQNLANEEVRKLTQRLEEMTQRMEALENRLRYR

Signal peptide: amino acids 1-23

N-glycosylation site.

amino acids 221-225

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 115-119, 606-610, 892-896

Casein kinase II phosphorylation site.

amino acids 49-53, 118-122, 149-153, 176-180, 223-227, 243-247,

401-405, 442-446, 501-505, 624-628, 673-677, 706-710, 780-784,

781-785, 819-823, 866-870

N-myristoylation site.

amino acids 133-139, 258-264, 299-305, 340-346, 453-459, 494-500, 639-645, 690-696, 752-758, 792-798

Amidation site.

amino acids 314-318, 560-564, 601-605

Aspartic acid and asparagine hydroxylation site.

amino acids 253-265, 294-306, 335-347, 376-388, 417-423, 458-464, 540-546, 581-587

GTGCCCTCGCGCCCCCCCGCGGGCCCAGCTGCAACTGCACTTGCCCGCCAACCGGTTGCAG GCGGTGGAGGGGGGGAGTGGTGCTTCCAGCGTGGTACACCTTGCACGGGGAGGTGTCTTC ATCCCAGCCATGGGAGGTGCCCTTTGTGATGTGGTTCTTCAAACAGAAAAAAAGGAGGATC AGGTGTTGTCCTACATCAATGGGGTCACAACAAGCAAACCTGGAGTATCCTTGGTCTACTCC ATGCCCTCCCGGAACCTGTCCCTGCGGCTGGAGGGTCTCCAGGAGAAAGACTCTGGCCCCTA ${\tt CAGCTGCTCCGTGAATGTGCAAGACAAACAAGGCAAATCTAGGGGCCACAGCATCAAAACCT}$ TAGAACTCAATGTACTGGTTCCTCCAGCTCCTCCATCCTGCCGTCTCCAGGGTGTGCCCCAT GTGGGGGCAAACGTGACCCTGAGCTGCCAGTCTCCAAGGAGTAAGCCCGCTGTCCAATACCA GTGGGATCGGCAGCTTCCATCCTTCCAGACTTTCTTTGCACCAGCATTAGATGTCATCCGTG GGTCTTTAAGCCTCACCAACCTTTCGTCTTCCATGGCTGGAGTCTATGTCTGCAAGGCCCAC AATGAGGTGGGCACTGCCCAATGTAATGTGACGCTGGAAGTGAGCACAGGGCCTGGAGCTGC $\tt ATTGCTCCCCGGACCCTGCCCTGGCCCAAGAGCTCAGACACAATCTCCAAGAATGGGACCCT$ $\tt TTCCTCTGTCACCTCCGCACGAGCCCTCCGGCCACCCCATGGCCCTCCCAGGCCTGGTGCAT$ $\tt GGGGCCCACCCTCAACCAATATCCCCCATCCCTGGTGGGGTTTCTTCCTCTGGCTTGAGCCG$ AGAGGCCTGAGTCATGGGAAAGAGTCACACTCCTGACCCTTAGTACTCTGCCCCCACCTCTC TTTACTGTGGGAAAACCATCTCAGTAAGACCTAAGTGTCCAGGAGACAGAAGGAGAAGAGGA AGTGGATCTGGAATTGGGAGGAGCCTCCACCCACCCCTGACTCCTTATGAAGCCAGCTG $\tt CTGAAATTAGCTACTCACCAAGAGTGAGGGGGCAGAGACTTCCAGTCACTGAGTCTCCCAGGC$ $\tt CCCCTTGATCTGTACCCCACCCCTATCTAACACCACCCTTGGCTCCCACTCCAGCTCCCTGT$ ATTGATATAACCTGTCAGGCTGGCTTGGTTAGGTTTTACTGGGGCAGAGGATAGGGAATCTC TGTTTGTATGAAAAA

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHLPANRLQAVEGGEVVLPAWYTLHGEVSS
SQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGLQEKDSGPY
SCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKPAVQYQ
WDRQLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGTAQCNVTLEVSTGPGAA
VVAGAVVGTLVGLGLLAGLVLLYHRRGKALEEPANDIKEDAIAPRTLPWPKSSDTISKNGTL
SSVTSARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTTDGAHPQPISPIPGGVSSSGLSR
MGAVPVMVPAOSOAGSLV

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 245-267

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

amino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262, 262-268, 308-314, 363-369, 364-370

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 164-175

 $\tt CGCCACCACTGCGGCCACCGCCAATGAAACGCCTCCCGCTCCTAGTGGTTTTTTCCACTTTG$ TTGAATTGTTCCTATACTCAAAATTGCACCAAGACACCTTGTCTCCCAAATGCAAAATGTGA AATACGCAATGGAATTGAAGCCTGCTATTGCAACATGGGATTTTCAGGAAATGGTGTCACAA TTTGTGAAGATGATAATGAATGTGGAAATTTAACTCAGTCCTGTGGCGAAAATGCTAATTGC ACTAACACAGAAGGAAGTTATTATTGTATGTGTGTACCTGGCTTCAGATCCAGCAGTAACCA AGACAGGTTTATCACTAATGATGGAACCGTCTGTATAGAAAATGTGAATGCAAACTGCCATT TAGATAATGTCTGTATAGCTGCAAATATTAATAAAACTTTAACAAAAATCAGATCCATAAAA GAACCTGTGGCTTTGCTACAAGAAGTCTATAGAAATTCTGTGACAGATCTTTCACCAACAGA TATAATTACATATATAGAAATATTAGCTGAATCATCTTCATTACTAGGTTACAAGAACAACA CTATCTCAGCCAAGGACACCCTTTCTAACTCAACTCTTACTGAATTTGTAAAAACCGTGAAT AATTTTGTTCAAAGGGATACATTTGTAGTTTGGGACAAGTTATCTGTGAATCATAGGAGAAC ACATCTTACAAAACTCATGCACACTGTTGAACAAGCTACTTTAAGGATATCCCAGAGCTTCC AAAAGACCACAGAGTTTGATACAAATTCAACGGATATAGCTCTCAAAGTTTTCTTTTTTGATTCCAAAGAGAAAAGCTGCATATGATTCAAATGGCAATGTTGCAGTTGCATTTTTATATTATA AGAGTATTGGTCCTTTGCTTTCATCATCTGACAACTTCTTATTGAAACCTCAAAATTATGAT AATTCTGAAGAGGAGGAAAGAGTCATATCTTCAGTAATTTCAGTCTCAATGAGCTCAAACCC ACCCACATTATATGAACTTGAAAAAATAACATTTACATTAAGTCATCGAAAGGTCACAGATA GGTATAGGAGTCTATGTGCATTTTGGAATTACTCACCTGATACCATGAATGGCAGCTGGTCT GACACATTTTGCAATTTTGATGTCCTCTGGTCCTTCCATTGGTATTAAAGATTATAATATTC ${\tt TTACAAGGATCACTCAACTAGGAATAATTATTTCACTGATTTGTCTTGCCATATGCATTTTT}$ ACCTTCTGGTTCTTCAGTGAAATTCAAAGCACCAGGACAACAATTCACAAAAATCTTTGCTG TCTGTTCAATCATTGCCGGACTGCTACACTACTTCTTTTTAGCTGCTTTTTGCATGGATGTGC ATTGAAGGCATACATCTCTATCTCATTGTTGTGGGTGTCATCTACAACAAGGGATTTTTGCA TAGGATACAGATATTATGGCACAACCAAAGTATGTTGGCTTAGCACCGAAAACAACTTTATT ${\tt TGGAGTTTTATAGGACCAGCATGCCTAATCATTCTTGTTAATCTCTTGGCTTTTGGAGTCAT}$ ${\tt TAAGGTCTTGTGCAAGAGGAGCCCTCGCTCTTCTGTTCCTTCTGGCACCACCTGGATCTTT}$ ${\tt GGGGTTCTCCATGTTGTGCACGCATCAGTGGTTACAGCTTACCTCTTCACAGTCAGCAATGC}$ ${\tt TTTCCAGGGGATGTTCATTTTTTTTTTTTCCTGTGTGTTTTTATCTAGAAAGATTCAAGAAGAAT}$ GTGGATAATTACAACTGCACAAAAATAAAAATTCCAAGCTGTGGATGACCAATGTATAAAAA TGACTCATCAAATTATCCAATTATTAACTACTAGACAAAAAGTATTTTAAATCAGTTTTTCT GTTTATGCTATAGGAACTGTAGATAATAAGGTAAAATTATGTATCATATAGATATACTATGT TTTTCTATGTGAAATAGTTCTGTCAAAAATAGTATTGCAGATATTTGGAAAGTAATTGGTTT TGTCCTGAAGGAAACCACTGGCTTGATATTTCTGTGACTCGTGTTGCCTTTGAAACTAGTCC ${\tt CCTACCACCTCGGTAATGAGCTCCATTACAGAAAGTGGAACATAAGAGAATGAAGGGGCAGA}$ TAGCTGAGAAATTGTTGACATAAAATAAAGAATTGAAGAAACACATTTTACCATTTTGTGAA ${\tt TTGTTCTGAACTTAAATGTCCACTAAAACAACTTAGACTTCTGTTTGCTAAATCTGTTTCTT}$ ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

MKRLPLLVVFSTLLNCSYTQNCTKTPCLPNAKCEIRNGIEACYCNMGFSGNGVTICEDDNEC GNLTQSCGENANCTNTEGSYYCMCVPGFRSSSNQDRFITNDGTVCIENVNANCHLDNVCIAS NINKTLITKIRSIKEPVALLQEVYRNSVTDLSPTDIITYIEILAESSSLIGYKNNTISAKDTL SNSTLTEFVKTVNNFVQRDTFVVWDKLSVNHRRTHLTKLMHTVEQATLRISQSFQKTTEFDT NSTDIALKVFFFDSYMKHHPHNMMCDYINIPPKRKAAYDSNGNVAVAFLYYKSIGPLLS SSDNFLLKPQNTYDNSEEERVISSVISVSNSSNPPTLYELEKITFTLSHRKVTDRYRSLCAF WNYSPDTMNGSWSSEGCELTYSNETHTSCRCNHLTHFAILMSSGPSIGIKDYNLITRITQLG IIISLICLAICIFTFWFFSEIQSTRTTHKNLCCSLFLAELVFLVGINTNTNKLFCSIIAGL LHYFFLAAFAWMCIEGHILVLIVVGYIYMKGFLKNFYIFGYLSPAVVGFSAALGYRYYGT TKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFRHTAGLKPEVSCFENLTSCARGA LALLFLLGTTWIFGVLSPAVVTASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNV PCCFFGLE

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 430-450, 465-486, 499-513, 535-549, 573-593, 619-636, 648-664

N-glycosylation site.

amino acids 15-19, 21-25, 64-68, 74-78, 127-131, 177-181, 188-192, 249-253, 381-385, 395-399

Glycosaminoglycan attachment site.

amino acids 49-53

 $\mathtt{cAMP-}$ and $\mathtt{cGMP-} \mathtt{dependent}$ protein kinase phosphorylation site.

amino acids 360-364

Casein kinase II phosphorylation site.

amino acids 54-58, 68-72, 76-80, 94-98, 135-139, 150-154, 155-159, 161-165, 181-185, 190-194, 244-248, 310-314, 325-329, 346-350, 608-612

Tyrosine kinase phosphorylation site.

amino acids 36-44, 669-677, 670-678

N-myristoylation site.

amino acids 38-44, 50-56, 52-58, 80-86, 382-388, 388-394, 434-440, 480-486, 521-527

Aspartic acid and asparagine hydroxylation site.

amino acids 75-87

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGGTGGGGAGGAGTTCCCCGAAACCCGGCCG GGTGTGAGTGGGTGTGCGGGGGGGGGGGGGGTTGATGCAATCCCGATAAGAAATGCTCGGG TGTCTTGGGCACCTACCCGTGGGGCCCGTAAGGCGCTACTATATAAGGCTGCCGGCCCGGAG GGCACTCACAGCCCCGCAGCGCATCCCGGTCGCCGCCCAGCCTCCCGCACCCCCATCGCCGG AGCTGCGCCGAGAGCCCCAGGGAGGTGCCACGGGCTCTCCAGCTGCTTCCTGCGCATCCGTGCCGACGGCGTCGTGGACTGCGCGCGGGGGC ${\tt CAGAGCGCGCACAGTTTGCTGGAGATCAAGGCAGTCGCTCTGCGGACCGTGGCCATCAAGGG}$ CGTGCACAGCGTGCGGTACCTCTGCATGGGCGCCGACGGCAAGATGCAGGGGCTGCTTCAGT ACTCGGAGGAAGACTGTGCTTTCGAGGAGGAGATCCGCCCAGATGGCTACAATGTGTACCGA TCCGAGAAGCACCGCCTCCCGGTCTCCCTGAGCAGTGCCAAACAGCGGCAGCTGTACAAGAA CAGAGGCTTTCTTCCACTCTCATTTCCTGCCCATGCTCCCATGGTCCCAGAGGAGCCTG AGGACCTCAGGGGCCACTTGGAATCTGACATGTTCTCTTCGCCCCTGGAGACCGACAGCATG ${\tt GACCCATTTGGGCTTGTCACCGGACTGGAGGCCGTGAGGAGTCCCAGCTTTGAGAAGTAACT}$ $\tt GAGACCATGCCGGGCCTCTTCACTGCTGCCAGGGGGTTGTGGTACCTGCAGCGTGGGGGGACG$ TGCTTCTACAAGAACAGTCCTGAGTCCACGTTCTGTTTAGCTTTAGGAAGAACATCTAGAA $\tt GTTGTACATATTCAGAGTTTTCCATTGGCAGTGCCAGTTTCTAGCCAATAGACTTGTCTGAT$ CATAACATTGTAAGCCTGTAGCTTGCCCAGCTGCTGCCCGGGCCCCCATTCTGCTCCCTCGA GGTTGCTGGACAAGCTGCTGCACTGTCTCAGTTCTGCTTGAATACCTCCATCGATGGGGAAC ${\tt TCACTTCCTTTGGAAAAATTCTTATGTCAAGCTGAAATTCTCTAATTTTTTCTCATCACTTC}$ CCCAGGAGCAGCCAGAAGACAGGCAGTAGTTTTAATTTCAGGAACAGGTGATCCACTCTGTA AAACAGCAGGTAAATTTCACTCAACCCCATGTGGGAATTGATCTATATCTCTACTTCCAGGG ${\tt GCTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGGACAACTTGAGAATTCCCC}$ $\tt CTGAGGCCAGTTCTGTCATGGATGCTGTCCTGAGAATAACTTGCTGTCCCGGTGTCACCTGC$ TTCCATCTCCCAGCCCACCAGCCCTCTGCCCACCTCACATGCCTCCCCATGGATTGGGGCCT CCCAGGCCCCCACCTTATGTCAACCTGCACTTCTTGTTCAAAAATCAGGAAAAGAAAAAAGAT TTTTGTATATTAAAATGGAGTTTGTTTGT

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWGDPIRLRHLYTSGPHGLSSCFLRI RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE EIRPDGYNVYRSEKHRLPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

Signal peptide:

amino acids 1-22

Casein kinase II phosphorylation site.

amino acids 78-82, 116-120, 190-194, 204-208

N-myristoylation site.

amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 48-59

AGAAGACTGTTTCCTCCAGATTAGAGTGGAAGAAACTGGGTCGGAGTGTCTCCTTTGTCTAC TATCAACAGACTCTTCAAGGTGATTTTAAAAATCGAGCTGAGATGATAGATTTCAATATCCG GATCAAAAATGTGACAAGAAGTGATGCGGGGGAAATATCGTTGTGAAGTTAGTGCCCCATCTG ${\tt AGCAAGGCCAAAACCTGGAAGAGGATACAGTCACTCTGGAAGTATTAGTGGCTCCAGCAGTT}$ ${\tt CCATCATGTGAAGTACCCTCTTCTGCTCTGAGTGGAACTGTGGTAGAGCTACGATGTCAAGA}$ CAAAGAAGGGAATCCAGCTCCTGAATACACATGGTTTAAGGATGGCATCCGTTTGCTAGAAA ATCCCAGACTTGGCTCCCAAAGCACCAACAGCTCATACACAATGAATACAAAAACTGGAACT ${\tt TGTTGGATATCGCAGGTGTCCTGGGAAACGAATGCAAGTAGATGATCTCAACATAAGTGGCA}$ ${\tt TCATAGCAGCCGTAGTAGTTGTGGCCTTAGTGATTTCCGTTTGTGGCCTTGGTGTATGCTA$ ${\tt GCTCAGAGGAAAGGCTACTTTTCAAAAGAAACCTCCTTCCAGAAGAGTAATTCTTCATCTAA}$ AGCCACGACAATGAGTGAAAATGTGCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGAAGG ${\tt TTGGGAGACAGGAGATCACTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCTGAGATCACGC}$

MARRSRHRLLLLLRYLVVALGYHKAYGFSAPKDQQVVTAVEYQEAILACKTPKKTVSSRLE WKKLGRSVSFVYYQQTLQGDFKNRAEMIDFNIRIKNVTRSDAGKYRCEVSAPSEQGQNLEED TVTLEVLVAPAVPSCEVPSSALSGTVVELRCQDKEGNPAPEYTWFKDGIRLLENPRLGSQST NSSYTMNTKTGTLQFNTVSKLDTGEYSCEARNSVGYRRCPGKRMQVDDLNISGIIAAVVVVA LVISVCGLGVCYAQRKGYFSKETSFQKSNSSSKATTMSENVQWLTPVIPALWKAAAGGSRGQEF

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 130-144, 238-258

N-glycosylation site.

amino acids 98-102, 187-191, 236-240, 277-281

Casein kinase II phosphorylation site.

amino acids 39-43, 59-63, 100-104, 149-153, 205-209, 284-288

N-myristoylation site.

amino acids 182-188, 239-245, 255-261, 257-263, 305-311

Amidation site.

amino acids 226-230

GACATCGGAGGTGGGCTAGCACTGAAACTGCTTTTCAAGACGAGGAGGAGGAGGAGAAAGAG ${\tt CATGCTGCTATTCCTGCAAATACTGAAGAAGCATGGGATTTAAATATTTTACTTCTAAATAA}$ ATGAATTACTCAATCTCCTATGACCATCTATACATACTCCACCTTCAAAAAGTACATCAATA TTATATCATTAAGGAAATAGTAACCTTCTCTCTCTCCCAATATGCATGACATTTTTGGACAATG ${\tt TGGAATCCTTAAGGGCCCATTACATTTCTGAAGAAGAAGCTAAG{\tt ATG}{\tt AAGGACATGCCACT}}$ TGGATTGTCCACGGTTATGTACGTGTGAAATCAGGCCTTGGTTTACACCCAGATCCATTTAT AGCTAACACACAGATTCTTCTCCTACAGACTAACAATATTGCAAAAATTGAATACTCCACAG ACTTTCCAGTAAACCTTACTGGCCTGGATTTATCTCAAAACAATTTATCTTCAGTCACCAAT ACTGCCTGAAAAATGTCTGTCCGAACTGAGCAACTTACAAGAACTCTATATTAATCACAACT AATTCAAATAGATTGCAGATGATCAACAGTAAGTGGTTTGATGCTCTTCCAAATCTAGAGAT TCTGATGATTGGGGAAAATCCAATTATCAGAATCAAAGACATGAACTTTAAGCCTCTTATCA ATCTTCGCAGCCTGGTTATAGCTGGTATAAACCTCACAGAAATACCAGATAACGCCTTGGTT ${\tt GGACTGGAAAACTTAGAAAGCATCTCTTTTTACGATAACAGGCTTATTAAAGTACCCCATGT}$ GAGCTGATTTCCATCGATAGTCTTGCTGTGGATAACCTGCCAGATTTAAGAAAAATAGAAGC TACTAACAACCCTAGATTGTCTTACATTCACCCCAATGCATTTTTCAGACTCCCCAAGCTGG AATCACTCATGCTGAACAGCAATGCTCTCAGTGCCCTGTACCATGGTACCATTGAGTCTCTG CCAAACCTCAAGGAAATCAGCATACACAGTAACCCCATCAGGTGTGACTGTGTCATCCGTTG ${\tt CACCTGAATTCCAAGGTCAGAATGTTCGGCAAGTGCATTTCAGGGACATGATGGAAATTTGT}$ $\tt CTCCCTCTTATAGCTCCTGAGAGCTTTCCTTCTAATCTAAATGTAGAAGCTGGGAGCTATGT$ TTCCTTTCACTGTAGAGCTACTGCAGAACCACAGCCTGAAATCTACTGGATAACACCTTCTG $\tt GTCAAAAACTCTTGCCTAATACCCTGACAGACAAGTTCTATGTCCATTCTGAGGGAACACTA$ GATATAAATGGCGTAACTCCCAAAGAAGGGGGGTTTATATACTTGTATAGCAACTAACCTAGT GCTCTTTGAATATTAAAATAAGAGATATTCAGGCCAATTCAGTTTTGGTGTCCTGGAAAGCA AGTTCTAAAATTCTCAAATCTAGTGTTAAATGGACAGCCTTTGTCAAGACTGAAAATTCTCA TGCTGCGCAAAGTGCTCGAATACCATCTGATGTCAAGGTATATAATCTTACTCATCTGAATC CATCAACTGAGTATAAAATTTGTATTGATATTCCCACCATCTATCAGAAAAACAGAAAAAAA TGTGTAAATGTCACCACCAAAGGTTTGCACCCTGATCAAAAAGAGTATGAAAAGAATAATAC AAACCAACCTTTGCATTAGGTGAGCTTTATCCTCCTCTGATAAATCTCTGGGAAGCAGGAAA ${\tt AGAAAAAGTACATCACTGAAAGTAAAAGCAACTGTTATAGGTTTACCAACAAATATGTCC} {\bf T}$ **AA**AAACCACCAAGGAAACCTACTCCAAAAATGAAC

MKDMPLRIHVLLGLAITTLVQAVDKKVDCPRLCTCEIRPWFTPRSIYMEASTVDCNDLGLLT FPARLPANTQLLLLQTINIIAKIEYSTDFPVNLTGLDLSONNLSSVTNINVKKMPQLLSVYLE ENKLTELPEKCLSELSNLQELYINHNLLSTISPGAFIGLHNLIRLHLNSNRLQMINSKWFDA LPNLEILMIGENPIIRIKDMNFKPLINLRSLVIAGINLTEIPDNALVGLENLESISFYDNRL IKVPHVALQKVVNLKFLDLHKNPINRIRRGDFSNMLHLKELGINNMPELISIDSLAVDNLPD LRKIEATNNPRLSYIHPNAFFRLPKLESLMLNSNALSALYHGTIESLPNLKEISISHSNPIRC DCVIRWMNMNKTNIRFMEPDSLFCVDPPEFQGQNVRQVHFRDMMEICLPLLAPESFPSNLNV EAGSYVSFHCRATAEPQPEIYWITPSGQKLLPNTLITDKFYVHSEGTLDINGVTPKEGGLYTC LATNLVGADLKSVMIKVDGSFPDDNNGSLMIKIRDIQANSVLVSWKASSKILKSSVKWTAFV KTENSHAAQSARIPSDVKVYNLTHLNPSTEYKICIDIPTIYQKNRKKCVNVTTKGLHPDQKE YEKNNTTILMACLGGLLGIIGVICLISCLSPEMNCDGGHSYVRNYLQKPTFALGELYPPLIN LWBAGKEKSTSLKVKATVIGLPTMMS

Signal sequence:

amino acids 1-22

Transmembrane domain:

amino acids 633-650

N-glycosylation site.

amino acids 93-97, 103-107, 223-227, 382-386, 522-526, 579-583, 608-612, 624-628, 625-629

Casein kinase II phosphorylation site.

amino acids 51-55, 95-99, 242-246, 468-472, 487-491

Tyrosine kinase phosphorylation site.

amino acids 570-579

N-myristoylation site.

amino acids 13-19, 96-102, 158-164, 221-227, 352-358, 437-443, 491-497, 492-498, 634-640, 702-708

Cell attachment sequence.

amino acids 277-280

GCCCGGGACTGGCGCAAGGTGCCCAAGCAAGGAAAGAAATAATGAAGAGACACATGTGTTAG CACGCTTGTTGGAGTAGATGAGGAATGGGCTCGTGATTATGCTGACATTCCAGCATGAATCT GGTAGACCTGTGGTTAACCCGTTCCCTCTCCATGTGTCTCCTCCTACAAAGTTTTGTTCTTA TGATACTGTGCTTTCATTCTGCCAGTATGTGTCCCAAGGGCTGTCTTTGTTCTTCCTCTGGG GGTTTAAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGATCTTCCTCCTGA AACAGTCTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCCAATGAAATTTTTAAGG ACCTCCATCAACTGAGAGTTCTCAACCTGTCCAAAAATGGCATTGAGTTTATCGATGAGCAT GCCTTCAAAGGAGTAGCTGAAACCTTGCAGACTCTGGACTTGTCCGACAATCGGATTCAAAG TGTGCACAAAAATGCCTTCAATAACCTGAAGGCCAGGGCCAGAATTGCCAACAACCCCTGGC ACTGCGACTGTACTCTACAGCAAGTTCTGAGGAGCATGGCGTCCAATCATGAGACAGCCCAC AACGTGATCTGTAAAACGTCCGTGTTGGATGAACATGCTGGCAGACCATTCCTCAATGCTGC CAACGACGCTGACCTTTGTAACCTCCCTAAAAAAACTACCGATTATGCCATGCTGGTCACCA TGTTTGGCTGGTTCACTATGGTGATCTCATATGTGGTATATTATGTGAGGCAAAATCAGGAG ${\tt ACCTGATGATATTAGCACTGTGGTA} {\tt TAGTGTCCAAACTGACTGTCATTGAGAAAGAAAGAAA}$ ${\tt TAAATAATTTGAGTTTAGGTGATCCACCCCTTAATTGTACCCCCGATGGTATATTTCTGAGT}$

MNLVDLWLTRSLSMCLLLQSFVLMILCFHSASMCPKGCLCSSSGGLNVTCSNANLKEIPRDL
PPETVLLYLDSNQITSIPNEIFKDLHQLRVLINLSKNGIEFIDEHAFKGVAETLQTLDLSDNR
IQSVHKNAFNNLKARARIANNPWHCDCTLQQVLRSMASNHETAHNVICKTSVLDEHAGRPFL
NAANDADLCNLPKKTTDYAMLVTMFGWFTMVISYVVYYVRQNQEDARRHLEYLKSLPSRQKK
ADEPDDISTVV

Signal sequence:

amino acids 1-33

Transmembrane domain:

amino acids 205-220

N-glycosylation site.

amino acids 47-51, 94-98

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 199-203

Casein kinase II phosphorylation site.

amino acids 162-166, 175-179

N-myristoylation site.

amino acids 37-43, 45-51, 110-116

GGCGTGAGGAGCATGCCCAGCCCCTCCTGGCCTGCTGGCAGCCCATCCTCCTGCTGGTGCT GGGCTCAGTGCTGTCAGGCTCGGCCACGGGCTGCCCGCTGCGAGTGCTCCGCCCAGG ACCGCGCTGTGCTGTGCCACCGCAAGTGCTTTGTGGCAGTCCCCGAGGGCATCCCCACCGAG ACGCGCCTGCTGGACCTAGGCAAGAACCGCATCAAAACGCTCAACCAGGACGAGTTCGCCAG CTTCCCGCACCTGGAGGAGCTGGAGCTCAACGAGAACATCGTGAGCGCCGTGGAGCCCGGCG CCTTCAACAACCTCTTCAACCTCCGGACGCTGGGTCTCCGCAGCAACCGCCTGAAGCTCATC CCGCTAGGCGTCTTCACTGGCCTCAGCAACCTGACCAAGCAGGACATCAGCGAGAACAAGAT $\tt CGTTATCCTACTGGACTACATGTTTCAGGACCTGTACAACCTCAAGTCACTGGAGGTTGGCG$ ACAATGACCTCGTCTACATCTCTCACCGCGCCTTCAGCGGCCTCAACAGCCTGGAGCAGCTG ${\tt ACGCTGGAGAAATGCAACCTGACCTCCATCCCCACCGAGGCGCTGTCCCACCTGCACGGCCT}$ TGTACCGACTCAAGGTCTTGGAGATCTCCCACTGGCCCTACTTGGACACCCAAC TGCCTCTACGGCCTCAACCTGACGTCCCTGTCCATCACACACTGCAATCTGACCGCTGTGCC GCACCATTGAGGGCTCCATGTTGCATGAGCTGCTCCGGCTGCAGGAGATCCAGCTGGTGGGC GGGCAGCTGGCCGTGGTGGAGCCCTATGCCTTCCGCGGCCTCAACTACCTGCGCGTGCTCAA TGTCTCTGGCAACCAGCTGACCACACTGGAGGAATCAGTCTTCCACTCGGTGGGCAACCTGG ${\tt AGACACTCATCCTGGACTCCAACCCGCTGGCCTGCGACTGTCGGCTCCTGTGGGTGTTCCGG}$ $\tt CGCCGCTGGCGGCTCAACTTCAACCGGCAGCAGCCCACGTGCGCCACGCCCGAGTTTGTCCA$ GGGCAAGGAGTTCAAGGACTTCCCTGATGTGCTACTGCCCAACTACTTCACCTGCCGCCGCG $\tt CCCGCATCCGGGACCGCAAGGCCCAGCAGGTGTTTGTGGACGAGGGCCACACGGTGCAGTTT$ GTGTGCCGGGCCGATGCCGCCCGCCCCCCCCTCTCTCTCACCCCGAAAGCACCT GGTCTCAGCCAAGAGCAATGGGCGGCTCACAGTCTTCCCTGATGGCACGCTGGAGGTGCGCT TCCATGCCCGCCCACCTGCATGTGCGCAGCTACTCGCCCGACTGGCCCCATCAGCCCAACAA GACCTTCGCTTTCATCTCCAACCAGCCGGGCGAGGGAGAGGCCCAACAGCACCCGCGCCACTG ${\tt TGCCTTTCCCCTTCGACATCAAGACCCTCATCATCGCCACCACCATGGGCTTCATCTCTTTC}$ AAAGCACAACATCGAGATCGAGTATGTGCCCCGAAAGTCGGACGCAGGCATCAGCTCCGCCG GGCGGCCGGGCAGGGGAAGGGGCCTGGTCGCCACCTGCTCACTCTCCAGTCCTTCCCACCTC CCAGCCCTCACCACCTGCCCTCCTTCTACCAGGACCTCAGAAGCCCAGACCTGGGGACCCCA CCTACACAGGGGCATTGACAGACTGGAGTTGAAAGCCGACGAACCGACACGCGGCAGAGTCA ATAATTCAATAAAAAGTTACGAACTTTCTCTGTAACTTGGGTTTCAATAATTATGGATTTT

MQVSKRMLAGGVRSMPSPLLACWQPILLLVLGSVLSGSATGCPPRCECSAQDRAVLCHRKCF VAVPEGIPTETRLDLGKNRIKTLMQDEFASFPHLEELEINENIVSAVEPGAFNNLFNLETLGLRSNRIKLIPLGVFTGLSNLTKQDISENKIVILLDYMFDQLYNLKSLEVGDNDLVYISHRA FSGLNSLEQLTLEKCNLTSIPTEALSHLHGLIVLRIRHLNINAIRDYSFKRLYRLKVLEISH WPYLDTMTPNCLYGLNLTSISITHCNLTAVPYLAVRHLVYLFFINLSYNPISTIEGSMLHEL LRLGEIQLVGGQLAVVEPYAPFGLNYLRVLNYSGNQLTTLEESVFHSVGNLETLILDSNPLA CDCRLLWVFRRWRLNFNRQQFTCATPEFVQGKEFKDFPDVLLPNVFTCRRARIRDRKAQQV FVDEGHTVQFVCRADGDPPPAILWLSPRKHLVSAKSNGRLTVFPDGTLEVXAQVQDNGTYL CIAANAGGNDSMPAHLWYSSYSDWPHQPNKTFAFISNQPGEGEANSTRATVPFPFDIKTLI IATTMGFISFLGVVLFCLVLLFLWSRGKGNTKHNIELEYVPRKSDAGISSADAPRKFMMKMI

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 556-578

N-glycosylation site.

amino acids 144-148, 202-206, 264-268, 274-278, 293-297, 341-345, 492-496, 505-509, 526-530, 542-546

Casein kinase II phosphorylation site.

amino acids 49-53, 108-112, 146-150, 300-304, 348-352, 349-353, 607-611

Tyrosine kinase phosphorylation site.

amino acids 590-598

N-myristoylation site.

amino acids 10-16, 32-38, 37-43, 113-119, 125-131, 137-143, 262-268, 320-326, 344-350, 359-365, 493-499, 503-509, 605-611

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 32-43

ATCGTAGTCCACCCCTCCCCATCCCCAGCCCCCGGGGATTCAGGCTCGCCAGCGCCCAGCC ACATCTGATGAAACAGTGGTGGCTGGTGGCACCGTGGTGCTCAAGTGCCAAGTGAAAGATCA $\tt CGAGGACTCATCCCTGCAATGGTCTAACCCTGCTCAGCAGACTCTCTACTTTGGGGAGAAGA$ GAGCCCTTCGAGATAATCGAATTCAGCTGGTTACCTCTACGCCCCACGAGCTCAGCATCAGC ATCAGCAATGTGGCCCTGGCAGACGAGGGCGAGTACACCTGCTCAATCTTCACTATGCCTGT GCGAACTGCCAAGTCCCTCGTCACTGTGCTAGGAATTCCACAGAAGCCCATCATCACTGGTT ${\tt ACAGGAAGATCCCAATGGTAAAACCTTCACTGTCAGCAGCTCGGTGACATTCCAGGTTACCC}$ GGGAGGATGATGGGGCGAGCATCGTGTGCTCTGTGAACCATGAATCTCTAAAGGGAGCTGAC AGATCCACCTCTCAACGCATTGAAGTTTTATACACACCAACTGCGATGATTAGGCCAGACCC GCCCTGATCTTCCCTCAACAAGAGTGACAGTGGCACCTACGGCTGCACAGCCACCAG ${\tt CAACATGGGCAGCTACAAGGCCTACTACACCCTCAATGTTAATGACCCCAGTCCGGTGCCCT}$ $\tt CCTCCTCCAGCACCTACCACGCCATCATCGGTGGGATCGTGGCTTTCATTGTCTTCCTGCTG$ $\tt TGAGGCAAAAGGCTCCGACGATGCTCCAGACGCGGACACGGCCATCATCAATGCAGAAGGCG$ $\tt CCGCAGGGCCGCCCTCCCGCTTGCTCCCCAGCCCACCCCACCCCCCTGTACAGAATGTCTGC$ CAAATCAAATCTGTCTCCAGGCTGGAGAGGCAGGAGCCCTGGGGTGAGAAAAAAACA AACAAAAAACA

MGAPAASLLLLLLLFACCWAPGGANLSQDDSQPWTSDETVVAGGTVVLKCQVKDHEDSSLQW SNPAQQTLYFGEKRALRDNRIQLVTSTPHELSISISNVALADEGEYTCSIFTMPVRTAKSLV TVLGIPQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQEDPNGK TFTVSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQ KLLLHCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGSYKA YYTLNVNDPSPVPSSSSTYHAIIGGIVAFIVFLLLIMLIFLGHYLIRKGTYLTHEAKGSDD APDADTAIINAEGGOSGGDDKKEYFI

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 331-352

N-glycosylation site.

amino acids 25-29, 290-294

Casein kinase II phosphorylation site.

amino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site.

amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304, 306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

CTTCGGACATTGGAGCACTAAATGAACTTGAATTGTGTCTGTGGCGAGCAGGATGGTCGCTG ${\tt TTACTTTGTGATGAGATCGGGGATGAATTGCTCGCTTTAAAA} \underline{{\tt ATG}} {\tt CTGCTTTGGATTCTGTT}$ GCTGGAGACGTCTCTTTGTTTTGCCGCTGGAAACGTTACAGGGGACGTTTGCAAAGAGAAGA TCTGTTCCTGCAATGAGATAGAAGGGGACCTACACGTAGACTGTGAAAAAAAGGGCTTCACA CCTCACTCGACTTTTCCCTAATGAGTTCGCTAACTTTTATAATGCGGTTAGTTTGCACATGG AAAACAATGGCTTGCATGAAATCGTTCCGGGGGCTTTTCTGGGGCTGCAGCTGGTGAAAAGG CTGCACATCAACAACAACAAGATCAAGTCTTTTCGAAAGCAGACTTTTCTGGGGCTGGACGA TCTGGAATATCTCCAGGCTGATTTTAATTTATTACGAGATATAGACCCGGGGGCCTTCCAGG ACTTGAACAAGCTGGAGGTGCTCATTTTAAATGACAATCTCATCAGCCACCCTACCTGCCAAC GTGTTCCAGTATGTGCCCATCACCCACCTCGACCTCCGGGGTAACAGGCTGAAAACGCTGCC CTATGAGGAGGTCTTGGAGCAAATCCCTGGTATTGCGGAGATCCTGCTAGAGGATAACCCTT GGGACTGCACCTGTGATCTGCTCTCCCTGAAAGAATGGCTGGAAAACATTCCCAAGAATGCC CTGATCGGCCGAGTGGTCTGCGAAGCCCCCACCAGACTGCAGGGTAAAGACCTCAATGAAAC CACCGAACAGGACTTGTGTCCTTTGAAAAACCGAGTGGATTCTAGTCTCCCGGCGCCCCCTG CCCAAGAAGAGACCTTTGCTCCTGGACCCCTGCCAACTCCTTTCAAGACAAATGGGCAAGAG GATCATGCCACACCAGGGTCTGCTCCAAACGGAGGTACAAAGATCCCAGGCAACTGGCAGAT CAAAATCAGACCCACAGCAGCGATAGCGACGGGTAGCTCCAGGAACAAACCCTTAGCTAACA GTTTACCCTGCCCTGGGGGCTGCAGCTGCGACCACATCCCAGGGTCGGGTTTAAAGATGAAC TGCAACACAGGAACGTGAGCAGCTTGGCTGATTTGAAGCCCAAGCTCTCTAACGTGCAGGA GCTTTTCCTACGAGATAACAAGATCCACAGCATCCGAAAATCGCACTTTGTGGATTACAAGA ACCTCATTCTGTTGGATCTGGGCAACAATAACATCGCTACTGTAGAGAACAACACTTTCAAG AACCTTTTGGACCTCAGGTGGCTATACATGGATAGCAATTACCTGGACACGCTGTCCCGGGA GAAATTCGCGGGGCTGCAAAACCTAGAGTACCTGAACGTGGAGTACAACGCTATCCAGCTCA TCCTCCCGGGCACTTTCAATGCCATGCCCAAACTGAGGATCCTCATTCTCAACAACAACCTG ${\tt CAATTACTTCATGTACCTCCCGGTGGCAGGGGTGCTGGACCAGTTAACCTCCATCATCCAGA}$ TAGACCTCCACGGAAACCCCTGGGAGTGCTCCTGCACAATTGTGCCTTTCAAGCAGTGGGCA GAACGCTTGGGTTCCGAAGTGCTGATGAGCGACCTCAAGTGTGAGACGCCGGTGAACTTCTT TAGAAAGGATTTCATGCTCCTCTCCAATGACGAGATCTGCCCTCAGCTGTACGCTAGGATCT AACTCCTACCTAGACACCAGCAGGGTGTCCATCTCGGTGTTGGTCCCGGGACTGCTGCTGGT GTTTGTCACCTCCGCCTTCACCGTGGTGGGCATGCTCGTGTTTATCCTGAGGAACCGAAAGC GACTCTTCCTACTGGCACAATGGGCCTTACAACGCAGATGGGGCCCACAGAGTGTATGACTG CCATCAGCCTGGATGGGCATAAGTAGATAAATAACTGTGAGCTCGCACAACCGAAAGGGCCT GACCCCTTACTTAGCTCCCTCCTTGAAACAAAGAGCAGACTGTGGAGAGCTGGGAGAGCGCA GCCAGCTCGCTCTTTGCTGAGAGCCCCTTTTGACAGAAAGCCCAGCACGACCCTGCTGGAAG ATATATACATATATCCACATCTATATAGAGAGATAGATATCTATTTTTCCCCTGTGGATTAG CCCCGTGATGGCTCCCTGTTGGCTACGCAGGGATGGCACGTTGCACGAAGGCATGAATGTAT TGTAAATAAGTAACTTTGACTTCTGAC

MLLWILLLETSLCFAAGNVTGDVCKEKICSCNEIEGDLHVDCEKKGFTSLQRFTAPTSQFYH
LFLHGNSLTRLFPNEFAFYNAVSLHMENNGLHEIVPCAFLGLQLVKRLHINNNKIKSFKKQ
FTLGLDDLEYLQADFNLLRDIDPGAFQDLMKLEVLILNDNLISTLPANVFQYVPITHLDLRG
NRLKTLPYEBVLBQIPGIAEILLEDNPWDCTCDLLSLKEWLENIPKNALIGRVVCEAPTRLQ
GKDLNETTEQDLCPLKNRVDSSLPAPPAQEETFAPGFLPFPFKTNGGEDHATPGSAPNGGTK
HPGNNQIKIRPTAAIATGSSRNKPLANSLPCPGGCSCHIPGSGLKMNCNNRVSSLADLKP
KLSNVQELFLRDNKIHSIRKSHFVDYKNLILLDGNNNIATVENNTFKNLLDLRWLYMDSNY
LDTLSREKFAGLQNLEYLNVEYNAIQLILPGTFNAMPKLRILILNNNLLRSLPVDVFAGVSL
SKLSLHNNYFMYLPVAGVLDQLTSIQTDLHGPBWEGSCTIVPFKQWAERLGSEVLMSDLKC
ETPVNFFRKDFMLLSNDEICPQLYARISPTLTSHSKNSTGLAETGTHSNSYLDTSRVSISVL
VPGLLLVFVTSAFTVVGMLVFILRNRKRSKRRDANSSASEINSLQTVCDSSYWHNGPYNADG
AHRVYDCGSHSLSD

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 618-638

N-glycosylation site.

amino acids 18-22, 253-257, 363-367, 416-420, 595-599, 655-659

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 122-126, 646-650

Casein kinase II phosphorylation site.

amino acids 30-34, 180-184, 222-226, 256-260, 366-370, 573-577, 608-612, 657-661, 666-670, 693-697

N-myristoylation site.

amino acids 17-23, 67-73, 100-106, 302-308, 328-334, 343-349, 354-360, 465-471, 493-499, 598-604, 603-609

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 337-348

AGTCGACTGCGTCCCCTGTACCCGGCGCCAGCTGTGTTCCTGACCCCAGAATAACTCAGGGC TGCACCGGGCCTGGCAGCGCTCCGCACACATTTCCTGTCGCGGCCTAAGGGAAACTGTTGGC AAGGGAGGGGAACCGGGTTGGGGAAGCCAGCTGTAGAGGGCGGTGACCGCGCTCCAGACAC CGGCGAACACCCCACTGCCGACCGTGCTGGCTGCTCGGCCTCGGGGGCCTGCTACAGCCTGC ACCACGCTACCATGAAGCGGCAGGCGGCCGAGGAGGCCTGCATCCTGCGAGGTGGGGCGCTC AGCACCGTGCGTGCGGGCGCCGAGCTGCGCGCTGTGCTCGCGCGCTCCTGCGGGCAGGCCCAGG GCCCGGAGGGGGCTCCAAAGACCTGCTGTTCTGGGTCGCACTGGAGCGCAGGCGTTCCCACT GCACCCTGGAGAACGAGCCTTTGCGGGGTTTCTCCTGGCTGTCCTCCGACCCCGGCGGTCTC GGTACTCCAGGCCACCGGTGGGGTCGAGCCCGCAGGCTGGAAGGAGATGCGATGCCACCTGC GCGCCAACGGCTACCTGTGCAAGTACCAGTTTGAGGTCTTGTGTCCTGCGCCGCGCCCCCGGG GCCGCCTCTAACTTGAGCTATCGCGCGCCCCTTCCAGCTGCACAGCGCCGCTCTGGACTTCAG GGGAGGTACCTCCGTGCTGGCAAATGCGCAGAGCTCCCTAACTGCCTAGACGACTTGGGAGG $\tt CTTTGCCTGCGAATGTGCTACGGGCTTCGAGCTGGGGAAGGACGGCCGCTCTTGTGTGACCA$ GCAACCAGCCCCGTGCCGCAGAGAACATGGCCAATCAGGGTCGACGAGAAGCTGGGAGAGAC ACCACTTGTCCCTGAACAAGACAATTCAGTAACATCTATTCCTGAGATTCCTCGATGGGGAT CACAGAGCACGATGTCTACCCTTCAAATGTCCCTTCAAGCCGAGTCAAAGGCCACTATCACC $\tt CCATCAGGGAGCGTGATTTCCAAGTTTAATTCTACGACTTCCTCTGCCACTCCTCAGGCTTT$ TGACCATGACAGTACTGGGGCTTGTCAAGCTCTGCTTTCACGAAAGCCCCTCTTCCCAGCCA AGGAAGGAGTCTATGGGCCCGCGGGCCTGGAGAGTGATCCTGAGCCCGCTGCTTTGGGCTC CATGGGCACTCCTGTGAACAGTTTTTCACTTTTGATGAAACGGGGAACCAAGAGGAACTTAC TTGTGTAACTGACAATTTCTGCAGAAATCCCCCTTCCTCTAAATTCCCTTTACTCCACTGAG GAGCTAAATCAGAACTGCACACTCCTTCCCTGATGATAGAGGAAGTGGAAGTGCCTTTAGGA TTTGGAGAAGTGATTGAACTTTTCAAGACATTGGAAACAAATAGAACACAATATAATTTACA ${\tt TTAAAAAATAATTTCTACCAAAATGGAAAGGAAATGTTCTATGTTCAGGCTAGGAGTAT$

MRPAFALCLLWQALWPGPGGGEHPTADRAGCSASGACYSLHHATMKRQAAEEACILRGGALS
TVRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRRSHCTLENEPLRGFSWLSSDPGGLE
SDTLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRANGYLCKYQFEVLCPAPRPGA
ASNLSYRAPFQLHSAALDFSPFGTEVSALCRGQLPISVTCIADEIGARWDKLSGDVLCPCPG
RYLRAGKCAELPNCLDDLGGFACECATGFELGKDGRSCVTSGEGQPTLGGTGVPTRRPPATA
TSPVPQRTWPIRVDEKLGETPLVPEQDNSVTSIBIPRWGSOSTMSTLQMSLQABSKATITP
SGSVISKFNSTTSSATPQAFDSSSAVFIFVSTAVVVLVILTMTVLGLVKLCFHESPSSQPR
KESMGPPGLESDFEPAALGSSSAHCTINNGVKVGDCDLRDRAEGALLAESPIGSSDF

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 189-193, 381-385

Glycosaminoglycan attachment site.

amino acids 289-293

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 98-102, 434-438

Casein kinase II phosphorylation site.

amino acids 275-279, 288-292, 342-346, 445-449

N-myristoylation site.

amino acids 30-36, 35-41, 58-64, 59-65, 121-127, 151-157, 185-191, 209-215, 267-273, 350-356, 374-380, 453-459, 463-469, 477-483

Aspartic acid and asparagine hydroxylation site.

amino acids 262-274

 ${\tt CAGCAGTCCCCAGAGAGACCTGTTTTCACATGTGGTGGCATTCTTACTGGAGAGTCTGGATT}$ TATTGGCAGTGAAGGTTTTCCTGGAGTGTACCCTCCAAATAGCAAATGTACTTGGAAAATCA TGATTTCTGATGCCAACACAGCTGGCAATGGCTTCATGGCCATGTTCTCCGCTGCTGAACCA AACGAAAGAGGGGATCAGTATTGTGGAGGACTCCTTGACAGACCTTCCGGCTCTTTTAAAAC $\tt CCCCAACTGGCCAGACCGGGATTACCCTGCAGGAGTCACTTGTGTGGCACATTGTAGCCC$ ${\tt CAAAGAATCAGCTTATAGAATTAAAGTTTGAGAAGTTTGATGTGGAGCGAGATAACTACTGC}$ $\tt CGATATGATTATGTGGCTGTTTTAATGGCGGGGAAGTCAACGATGCTAGAAGAATTGGAAA$ GTATTGTGGTGATAGTCCACCTGCGCCAATTGTGTCTGAGAGAAATGAACTTCTTATTCAGT AAACTGCCTACAACTACAGAACAGCCTGTCACCACCACATTCCCTGTAACCACGGGTTTAAA $\tt GTTCAAGTGACTTTGTATTAGCCGGCACTGTTATCACAACCATCACTCGCGATGGGAGTTTG$ CACGCCACAGTCTCGATCATCAACATCTACAAAGAGGGAAATTTGGCGATTCAGCAGGCGGG ${\tt TAAATTACATTATTATGGGCCAAGTAGGTGAAGATGGGCGAGGCAAAATCATGCCAAACAGC}$ TTTATCATGATGTTCAAGACCAAGAATCAGAAGCTCCTGGATGCCTTAAAAAATAAGCAATG TCTCAGTAGAAAAAAAATACTTATAAAATTACATATTCTGAAAGAGGATTCCGAAAGATGG GACTGGTTGACTCTTCACATGATGGAGGTATGAGGCCTCCGAGATAGCTGAGGGAAGTTCTT TGCCTGCTGTCAGAGGAGCAGCTATCTGATTGGAAACCTGCCGACTTAGTGCGGTGATAGGA ATTTTAGAATTGAGTTGTGAAGATGTCAAAAAAAGATTTTAGAAGTGCAATATTTATAGT GTTATTTGTTTCACCTTCAAGCCTTTGCCCTGAGGTGTTACAATCTTGTCTTGCGTTTTCTA

MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESGFIGSEGFPGVYPPNSKCTWK
ITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGHANGQRIGRFCGTFRPGALVSSGNKMMV
QMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDRDYPAGVTCVWHIV
APKNQLIELKFEKFDVERDNYCRYDYVAVFNGGEVNDARRIGKYCGDSPPAPIVSERNELLI
QFLSDLSLTADGFIGHYIFRPKKLPTTTEQPVTTTFPVTTGLKPTVALCQQKCRRTGTLEGN
YCSSDFVLAGTVITTITRDGSLHATVSIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRR
GLNYIIMGQVGEDGRGKIMPNSFIMMFKTKNQKLLDALKNKQC

Signal sequence:

amino acids 1-23

N-glycosylation site.

amino acids 355-359

Casein kinase II phosphorylation site. amino acids 64-68, 142-146, 274-278

Tyrosine kinase phosphorylation site.

amino acids 199-208

N-myristoylation site.

amino acids 34-40, 35-41, 100-106, 113-119, 218-224, 289-295, 305-311, 309-315, 320-326, 330-336

Cell attachment sequence.

amino acids 149-152

 $\tt CCTTCTCCGTGGCCTACGAGGGTCCCCAGCCTGGGTAAAG{\color{red} ATG}GCCCCATGGCCCCGAAGG{\color{red} CCCCGAAGG{\color{red} CCCCCGAAGG{\color{red} CCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCAAGG{\color{red} CCCCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCAAGG{\color{red} CCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCAAGG{\color{red} CCCCCCAAGG{\color{red} CCCCCAAGG{\color{red} CCCCAAGG{\color{red} CCCCAAGG{\color{red} CCCCAAGG{\color{red} CCCCAAGG{\color{red}$ GCCTAGTCCCAGCTGTGCTCTGGGGCCTCAGCCTCTCCTCAACCTCCCAGGACCTATCTGG CTCCAGCCCTCTCCACCTCCCCAGTCTTCTCCCCCGCCTCAGCCCCATCCGTGTCATACCTG $\tt CCGGGGACTGGTTGACAGCTTTAACAAGGGCCTGGAGAGAACCATCCGGGACAACTTTGGAG$ GTGGAAACACTGCCTGGGAGGAAGAGAATTTGTCCAAATACAAAGACAGTGAGACCCGCCTG $\tt GTAGAGGTGCTGGAGGGTGTGCAGCAAGTCAGACTTCGAGTGCCACCGCCTGCTGGAGCT$ GAGTGAGGAGCTGGTGGAGAGCTGGTTCACAAGCAGCAGGAGGCCCCGGACCTCTTCC AGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCCGCAGGCACCTTCGGGCCCTCCTGC GACACGAGGGGCAGCGGCACTGTGACTGCCAAGCCGGCTACGGGGGTGAGGCCTGTGGCC $\tt TTTGGCCCCTGTGCCCGATGCTCAGGACCTGAGGAATCAAACTGTTTGCAATGCAAGAAGGG$ $\tt CTGGGCCCTGCATCACCTCAAGTGTGTAGACATTGATGAGTGTGGCACAGAGGGAGCCAACT$ GTGGAGCTGACCAATTCTGCGTGAACACTGAGGGCTCCTATGAGTGCCGAGACTGTGCCAAG ${\tt GCCTGCCTAGGCTGCATGGGGGCCAGGCCAGGTCGCTGTAAGAAGTGTAGCCCTGGCTATCA}$ GCAGGTGGGCTCCAAGTGTCTCGATGTGGATGAGTGTGAGACAGAGGTGTGTCCGGGAGAGA AGAAGACGAGTTGGTGCTGCAGCAGATGTTCTTTGGCATCATCATCTGTGCACTGGCCA ATCGCGGCCACCAGTAGGACCTCCTCCCACCCACGCTGCCCCAGAGCTTGGGCTGCCC TCCTGCTGGACACTCAGGACAGCTTGGTTTATTTTTGAGAGTGGGGTAAGCACCCCTACCTG CCTTACAGAGCAGCCCAGGTACCCAGGCCCGGGCAGACAAGGCCCCTGGGGTAAAAAGTAGC CCTGAAGGTGGATACCATGAGCTCTTCACCTGGCGGGGACTGGCAGGCTTCACAATGTGTGA ATTTCAAAAGTTTTTCCTTAATGGTGGCTGCTAGAGCTTTGGCCCCTGCTTAGGATTAGGTG GTCCTCACAGGGGTGGGGCCATCACAGCTCCCTCCTGCCAGCTGCATGCTGCCAGTTCCTGT

MAP#PKGLVPAVLWGLSLFLNLPGPIWLQPSPPPQSSPPPQPHPCHTCRGLVDSFNKGLER
TIRDNFGGGNTAWEEENLSKXKDSETRIVEVULGEVUSKSDFECHRLLELSEELVESWWFHKQ
QEAPDLFOWLCSDSLKLCCPAGTFGPSCLPCPGGTERPCGGYGQCEGEGTRGGSGHCDCQAG
YGGEACQCGLGYFEAERNASHLVCSACFGPCARCSGPEESNCLQCKKGWALHHLKCVDIDE
CGTEGANCGADDFCWNTEGSYECRDCAKACLGCMGAGPGRCKKCSPGYQQVGSKCLDVDECE
TEVCPGENKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELVVLQQMFFG
IIICALATLAAKGDLVFTAIFIGAVAAMTGYNLSERSDRVLEGFIKGR

Signal sequence:

amino acids 1-29

Transmembrane domain:

amino acids 372-395

N-glycosylation site.

amino acids 79-83, 205-209

cAMP- and cGMP-dependent protein kinase phosphorylation site.

Casein kinase II phosphorylation site.

amino acids 63-67, 73-77, 99-103, 101-105, 222-226, 359-263

N-myristoylation site.

amino acids 8-14, 51-57, 59-65, 69-75, 70-76, 167-173, 173-179, 177-183, 188-194, 250-256, 253-259, 267-273, 280-286, 283-289, 326-332, 372-378, 395-401

Aspartic acid and asparagine hydroxylation site.

amino acids 321-333

EGF-like domain cysteine pattern signature.

amino acids 181-193

 ${\tt TGAGACCCTCCTGCAGCCTTCTCAAGGGACAGCCCCACTCTGCCTCTTGCTCCTCCAGGGCA}$ GCACC $\underline{\textbf{ATG}}$ $\underline{\textbf{CAGCCCCTGTGGCTCTGGCCAGCCCCGGG}}$ ${\tt GCCGCCCTGACCGGGGAGCAGCTCCTGGGCAGCTGCGGCAGCTGCAGCTCAAAGAGGT}$ ACGTGGCCCTGCTGCAGCGCAGCCACGGGGACCGCTCCCGCGGAAAGAGGTTCAGCCAGAGC $\tt TTCCGAGAGGTGGCCGGCAGGTTCCTGGCGTTGGAGGCCAGCACACCTGCTGGTGTTCGG$ $\tt CGGGTGACCGTCGAGTGGCTGCGCGTCCGCGACGGCTCCAACCGCACCTCCTCATCGA$ CTCCAGGCTGGTGTCCGTCCACGAGAGCGGCTGGAAGGCCTTCGACGTGACCGAGGCCGTGA ACTTCTGGCAGCAGCTGAGCCGGCCCCGGCAGCCGCTGCTGCTACAGGTGTCGGTGCAGAGG CTCAGGGCGACTGTGACCCTGAAGCACCAATGACCGAGGGCACCCGCTGCTGCCGCCAGGAG ${\tt ATGTACATTGACCTGCAGGGGATGAAGTGGGCCGAGAACTGGGTGCTGGAGCCCCCGGGCTT}$ ${\tt CCTGGCTTATGAGTGTGGGCACCTGCCGGCAGCCCCCGGAGGCCCTGGCCTTCAAGTGGC}$ $\tt ATCAAGGAGGGAGGCAGGACCAGGCCCCAGGTGGTCAGCCTGCCCAACATGAGGGTGCAGAACATGAGAGAACATGAGAGAACATGAGAGAACATGAGAGAACATGAGAACATGAGAGAACATGAGAGAACATGAGAGAACATGAGAGAACATGAGAGAACATGAGAGAACATGAGAGAACATGAGAACATGAGAACATGAGAGAACATGAGAACATGAGAGAACATGAGAACATGAGAGAACATGAGAGAACATGAGAACATGAGAGAACATGAGAGAACATGAGAACATGAGAGAACATGAGAACATGAGAGAACATGAAGAACATGAGAGAACATGAGAACATGAGAACATGAGAGAACATGAAGAACATGAGAACATGAAGAACATGAGAACATGAGAACATGAGAACATGAGAACATGAACATGAGAACATG$ $\tt GTGCAGCTGTGCCTCGGATGGTGCGCTCGTGCCAAGGAGGCTCCAGCCA{\color{blue}{T}}{\color{blue}{A}}{\color{blue}{G}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{\color{blue}{G}}{\color{blue}{G}}{\color{blue}{G}}{\color{blue}{G}}{\color{blue}{C}}{\color{blue}{G}}{$ $\tt GCGATGACTGCATGTGATGGACAAATGCTCTGTGCTCTCTAGTGAGCCCTGAATTTGCTT$ $\tt CCTCTGACAAGTTACCTCACCTAATTTTTGCTTCTCAGGAATGAGAATCTTTGGCCACTGGA$ GAGCCCTTGCTCAGTTTTCTCTATTCTTATTATTCACTGCACTATATTCTAAGCACTTACAT GTGGAGATACTGTAACCTGAGGGCAGAAAGCCCANTGTGTCATTGTTTACTTGTCCTGTCAC ${\tt TGGATCTGGGCTAAAGTCCTCCACCACCACTCTGGACCTAAGACCTGGGGTTAAGTGTGGGT}$ ${\tt TGTGCATCCCCAATCCAGATAATAAAGACTTTGTAAAACATGAATAAAACACATTTTATTCT}$ AAAA

MQPLWLCWALWVLPLASPGAALTGEQLLGSLLRQLQLKEVPTLDRADMEELVIPTHVRAQYV ALLQRSHGDRSRGKRFSQSFREVAGRFLALEASTHLLVFGMEQRLPPNSELVQAVLRLFQEP VPKAALHRHGRLSPRSARARVTVEWLRVRDDGSNRTSLIDSRLVSVHESGWKAFDVTEAVNF WQQLSRPRQPLLLQVSVQREHLGPLASGAHKLVRFASQGAPAGLGEPQLELHTLDLGDYGAQ GDCDPEAPMTEGTRCCRQEMYIDLQGMKWAENWVLEPPGFLAYECVGTCRQPPEALAFKWPF LGPRQCIASETDSLPMIVSIKEGGRTRPQVVSLPNMRVQKCSCASDGALVPRRLQP

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 158-162

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 76-80

Casein kinase II phosphorylation site.

amino acids 68-72, 81-85, 161-165, 169-173, 319-323, 329-333

N-myristoylation site.

amino acids 19-25, 156-162, 225-231, 260-266, 274-280

Amidation site.

amino acids 74-78

TGF-beta family signature.

amino acids 282-298

 $\tt GTCTGTTCCCAGGAGTCCTTCGGCGGCTGTTGTCAGTGGCCTGATCGCGATGGGGACAAA$ $\tt GGCGCAAGTCGAGAGGAAACTGTTGTGCCTCTTCATATTGGCGATCCTGTTGTGCTCCCTGG$ ${\tt CATTGGGCAGTGTTACAGTGCACTCTTCTGAACCTGAAGTCAGAATTCCTGAGAATAATCCT}$ GTGAAGTTGTCCTGTGCCTACTCGGGCTTTTCTTCTCCCCGTGTGGAGTGGAAGTTTGACCA AGGAGACACCACCAGACTCGTTTGCTATAATAACAAGATCACAGCTTCCTATGAGGACCGGG ${\tt TGACCTTCTTGCCAACTGGTATCACCTTCAAGTCCGTGACACGGGAAGACACTGGGACATAC}$ ACTTGTATGGTCTCTGAGGAAGGCGGCAACAGCTATGGGGAGGTCAAGGTCAAGCTCATCGT GCTTGTGCCTCCAAGCCTACAGTTAACATCCCCTCCTCTGCCACCATTGGGAACCGGG ${\tt CAGTGCTGACATGCTCAGAACAAGATGGTTCCCCACCTTCTGAATACACCTGGTTCAAAGAT}$ $\tt GGGATAGTGATGCCTACGAATCCCAAAAGCACCCGTGCCTTCAGCAACTCTTCCTATGTCCT$ GAATCCCACAACAGGAGAGCTGGTCTTTGATCCCCTGTCAGCCTCTGATACTGGAGAATACA ${\tt GCTGTGAGGCACGGAATGGGTATGGGACACCCATGACTTCAAATGCTGTGCGCATGGAAGCT}$ GTGGAGCGGAATGTGGGGGTCATCGTGGCAGCCGTCCTTGTAACCCTGATTCTCCTGGGAAT $\tt CTTCGAGTAAGAAGGTGATTTACAGCCAGCCTAGTGCCCGAAGTGAAGGAGAATTCAAACAG$ $\texttt{ACCTCGTCATTCCTGGTG} \underline{\textbf{TGA}} \\ \texttt{GCCTGGTCGGCCTCACCGCCTATCATCTGCCTTACT}$ ${\tt CAGGTGCTACCGGACTCTGGCCCCTGATGTCTGTAGTTTCACAGGATGCCTTATTTGTCTTC}$ TACACCCCACAGGGCCCCCTACTTCTTCGGATGTGTTTTTAATAATGTCAGCTATGTGCCCC ATCCTCCTTCATGCCCTCCCTCCCTTTCCTACCACTGCTGAGTGGCCTGGAACTTGTTTAAA GTGTTTATTCCCCATTTCTTTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCC TTCTAAGTAGACAGCAAAAATGGCGGGGGTCGCAGGAATCTGCACTCAACTGCCCACCTGGC GACCAGGGCCAGCTGTTCTAGAGCGGGAATTAGAGGCTAGAGCGGCTGAAATGGTTGTTTGG TGATGACACTGGGGTCCTTCCATCTCTGGGGGCCCACTCTCTTCTGTCTTCCCATGGGAAGTG GGAAAATGGGAGCTCTTGTTGTGGAGAGCATAGTAAATTTTCAGAGAACTTGAAGCCAAAAG ${\tt GATTTAAAACCGCTGCTCTAAAGAAAAAGAAAACTGGAGGCTGGGCGCAGTGGCTCACGCCTG}$ ACATGGAGAAACCCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCCTGTAGTC

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPVKLSCAYSGFSSPRVEW
KFDQGDTTRLVCYNNKITASYEDRVTFLPTGITFKSVTREDTGTYTCMVSEEGGNSYGEVKV
KLIVLVPPSKPTVNIPSSATIGNRAVLTCSEQDGSPPSEYTWFKDGIVMPTNPKSTRAFSNS
SYVLNPTTGELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIVAAVLVTLI
LLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 270-274

Casein kinase II phosphorylation site.

amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158, 193-197, 203-207, 287-291

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

 $\texttt{CAGCGCGTGGCCGCTGTGGGGACAGC} \underline{\textbf{ATG}} \\ \texttt{AGCGGCGGTTGGATGGCGCAGGTTGGA} \\$ $\tt GCGTGGCGAACAGGGGCTCTGGGCCTGGCGCTGCTGCTGCTCGGCCTCGGACTAGGCCT$ GGAGGCCGCGGGGCCGCTTTCCACCCCGACCTCTGCCCAGGCCGCAGGCCCCAGCTCAG GCTCGTGCCCACCCAAGTTCCAGTGCCGCACCAGTGGCTTATGCGTGCCCCTCACCTGG ${\tt CGCTGCGACAGGGACTTGGACTGCAGCGATGGCAGGATGAGGAGGAGTGCAGGATTGAGCC}$ ATGTACCCAGAAAGGGCAATGCCCACCGCCCCTGGCCTCCCTGCCCCTGCACCGGCGTCA $\tt GTGACTGCTCTGGGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCCTGGCCTAGCA$ GGCGAGCTCCGTTGCACGCTGAGCGATGACTGCATTCCACTCACGTGGCGCTGCGACGGCCA CCCAGACTGTCCCGACTCCAGCGACGAGCTCGGCTGTGGAACCAATGAGATCCTCCCGGAAG GGGATGCCACAACCATGGGGCCCCCTGTGACCCTGGAGAGTGTCACCTCTCTCAGGAATGCC $\tt CTCGCTGCCC\underline{TGA}GGACAAGCACTTGCCACCACCGTCACTCAGCCCTGGGCGTAGCCGGACA$ GGAGGAGAGCAGTGATGCGGATGGGTACCCGGGCACACCAGCCCTCAGAGACCTGAGTTCTT $\tt CTGGCCACGTGGAACCTCGAACCCGAGCTCCTGCAGAAGTGGCCCTGGAGATTGAGGGTCCC$ $\tt GGGCTGGCCCCAGGCAGCTCCCAGGGGGTAGAACGGCCCTGTGCTTAAGACACTCCCTGCTG$ CCCCGTCTGAGGGTGGCGATTAAAGTTGCTTC

MSGGWMAQVGAWRTGALGLALLLLGLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCR TSGLCVPLTWRCDRDLDCSDGSDEEECRIEPCTQKGQCPPPPGLPCPCTGVSDCSGGTDKKL RNCSRLACLAGELRCTLSDDCIPLTWRCDGHPDCPDSSDELGCGTNEILPEGDATTMGPPVT LESVTSLRNATTMGPPVTLESVPSVGNATSSSAGDQSGSPTAYGVIAAAAVLSASLVTATLL LLSWLRAQERLRPLGLLVAMKESLLLSEQKTSLP

Signal sequence:

amino acids 1-30

Transmembrane domain:

amino acids 230-246

N-glycosylation site.

amino acids 126-130, 195-199, 213-217

Casein kinase II phosphorylation site.

amino acids 84-88, 140-144, 161-165, 218-222

N-myristoylation site.

amino acids 3-9, 10-16, 26-32, 30-36, 112-118, 166-172, 212-218, 224-230, 230-236, 263-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 44-55

Leucine zipper pattern.

amino acids 17-39

 $\tt CCCACGCGTCCGGTCTCGCTCGCGCAGCGGCGGCAGCAGAGGTCGCGCACAGATGCGG$ GAGATGGATTTCTAGAGCAGCAGCAGCAGCAGCAGCACCTCAGTCCCCCCAGAGACTCTTG GAGGGGTTTTCTTTGAAGGCTCTGTAGCCCGATTTCACTGCCAAGACGGATTCAAGCTGAAG GGCGCTACAAAGAGACTGTGTTTGAAGCATTTTAATGGAACCCTAGGCTGGATCCCAAGTGA TAATTCCATCTGTGTGCAAGAAGATTGCCGTATCCCTCAAATCGAAGATGCTGAGATTCATA ACAAGACATATAGACATGGAGAGAAGCTAATCATCACTTGTCATGAAGGATTCAAGATCCGG TACCCCGACCTACACAATATGGTTTCATTATGTCGCGATGATGGAACGTGGAATAATCTGCC ${\tt CATCTGTCAAGGCTGCCTGAGACCTCTTAGCCTCTTCTAATGGCTATGTAAACATCTCTGAGC}$ ${\tt TCCAGACCTCCTTCCCGGTGGGGACTGTGATCTCCTATCGCTGCTTTCCCGGATTTAAACTT}$ GATGGGTCTGCGTATCTTGAGTGCTTACAAAACCTTATCTGGTCGTCCAGCCCACCCCGGTG $\tt CCTTGCTCTGGAAGCCCAAGTCTGTCCACTACCTCCAATGGTGAGTCACGGAGATTTCGTCT$ GCCACCCGCGGCCTTGTGAGCGCTACAACCACGGAACTGTGGTGGAGTTTTACTGCGATCCT GGCTACAGCCTCACCAGCGACTACAAGTACATCACCTGCCAGTATGGAGAGTGGTTTCCTTC TTATCAAGTCTACTGCATCAAATCAGAGCAAACGTGGCCCAGCACCCATGAGACCCTCCTGA CCACGTGGAAGATTGTGGCGTTCACGGCAACCAGTGTGCTGCTGGTGCTGCTGCTCATC TTCCAGCAGTGACCCTGACTTTGTGGTGGTAGACGGCGTGCCCGTCATGCTCCCGTCCTATG ACGAAGCTGTGAGTGGCGTTGAGTGCCTTAGGCCCCGGGTACATGGCCTCTGTGGGCCAG GGCTGCCCCTTACCCGTGGACGACCAGAGCCCCCCAGCATACCCCGGCTCAGGGGACACGGA ${\tt CACAGGCCCAGGGGAGTCAGAAACCTGTGACAGCGTCTCAGGCTCTTCTGAGCTGCTCCAAA}$ GTCTGTATTCACCTCCCAGGTGCCAAGAGAGCACCCCGCCTGCTTCGGACAACCCTGACATA ${\tt GTTGTTCCTAAGAAACT\underline{TGA}TTGATTAAAAAATTTTCCCAAAGTGTCCTGAAGTGTCTCTTCAA}$ ATACATGTTGATCTGTGGAGTTGATTCCTTTCCTTCTCTTGGTTTTAGACAAATGTAAACAA AGCTCTGATCCTTAAAATTGCTATGCTGATAGAGTGGTGAGGGCTGGAAGCTTGATCAAGTC CTGTTTCTTCTTGACACAGACTGATTAAAAATTAAAAGNAAAAAA

MYHGMNPSNGDGFLEQQQQQQPQSPQRLLAVILWFQLALCFGPAQLTGGFDDLQVCADPGI
PENGFRTPSGGVFFEGSVARFHCQDGFKLKGATKRLCLKHFNGTLGWIPSDNSICVQEDCRI
PQIEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMVSLCRDDGTWNNLPICQGCLRPLAS
SNGYVNISELQTSFPVGTVISYRCFPGFKLDGSAYLECLQNLIWSSSPPRCLALEAQVCPLP
PMVSHGDFVCHPRPCERYNHGTVVEFYCDPGYSLTSDYKYITCQYGEWFPSYQVYCIKSEQT
WPSTHETLLTTWKLVAFTATSVLLVLLLVILARMFQTKFKAHFPPRGPPRSSSSDPDFVVVD
GVPVMLPSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGDTDTGPGESETCDS
VSGSSELLQSLYSPPRCQESTHPASDNPDIIASTAEEVASTSPGIHHAHWVLFLRN

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 325-344

N-glycosylation site.

amino acids 104-108, 134-138, 192-196

Casein kinase II phosphorylation site.

amino acids 8-12, 146-150, 252-256, 270-274, 313-317, 362-366, 364-368, 380-384, 467-471, 468-472

N-myristoylation site.

amino acids 4-10, 61-67, 169-175, 203-209, 387-393, 418-424, 478-484

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 394-405

 ${\tt AGCGCCCGAGTGTCGGGGGGGGCGCACCCGAGTCGGGCC}$ ${\tt TAAAGTCATTTACTTCCATGATACTTCTCGAAGACTGAACTTTGAGGAAGCCAAAGAAGCCT}$ GCAGGAGGGATGGAGGCCAGCTAGTCAGCATCGAGTCTGAAGATGAACAGAAACTGATAGAA AAGTTCATTGAAAACCTCTTGCCATCTGATGGTGACTTCTGGATTGGGCTCAGGAGGCGTGA GGAGAAACAAAGCAATAGCACAGCCTGCCAGGACCTTTATGCTTGGACTGATGGCAGCATAT $\tt CACAATTTAGGAACTGGTATGTGGATGAGCCGTCCTGCGGCAGCGAGGTCTGCGTGGTCATG$ TACCATCAGCCATCGGCACCCGCTGGCATCGGAGGCCCCTACATGTTCCAGTGGAATGATGA $\tt CCGGTGCAACATGAAGAACAATTTCATTTGCAAATATTCTGATGAGAAACCAGCAGTTCCTT$ CTAGAGAAGCTGAAGGTGAGGAAACAGAGCTGACAACACCTGTACTTCCAGAAGAACACAG GAAGAAGATGCCAAAAAAACATTTAAAGAAAGTAGAGAAGCTGCCTTGAATCTGGCCTACAT $\tt CCTAATCCCCAGCATTCCCCTTCTTCCTCCTTGTGGTCACCACAGTTGTATGTTGGGTTT$ GGATCTGTAGAAAAAGAAAACGGGAGCAGCCAGACCCTAGCACAAAGAAGCAACACCATC TGGCCCTCTCCTCACCAGGGAAACAGCCCGGACCTAGAGGTCTACAATGTCATAAGAAAACA ${\tt AAGCGAAGCTGACTTAGCTGAGACCCGGCCAGACCTGAAGAATATTTCATTCCGAGTGTGTT}$ $\tt CGGGAGAAGCCACTCCCGATGACATGTCTTGTGACTATGACAACATGGCTGTGAACCCATCA$ ${\tt GAAAGTGGGTTTGTGACTCTGGTGAGCGTGGAGAGTGGATTTGTGACCAATGACATTTATGA}$ GTTCTCCCCAGACCAAATGGGGAGGAGTAAGGAGTCTGGATGGGTGGAAAATGAAATATATG GTTAT<u>TAG</u>GACATATAAAAAACTGAAACTGACAACAATGGAAAAGAAATGATAAGCAAAATC $\tt CTCTTATTTCTATAAGGAAAATACACAGAAGGTCTATGAACAAGCTTAGATCAGGTCCTGT$ GGATGAGCATGTGGTCCCCACGACCTCCTGTTGGACCCCCACGTTTTGGCTGTATCCTTTAT CCCAGCCAGTCATCCAGCTCGACCTTATGAGAAGGTACCTTGCCCAGGTCTGGCACATAGTA ${\tt GAGTCTCAATAAATGTCACTTGGTTGGTTGTATCTAACTTTTAAGGGACAGAGCTTTACCTG}$ GCAGTGATAAAGATGGGCTGTGGAGCTTGGAAAACCACCTCTGTTTTCCTTGCTCTATACAG GTTGGCCTGTGCATCGGCAATTCTCATATCTGTTTTTTTCAAAGAATAAAATCAAATAAAGA GCAGGAAAAAAAA

MRPGTALQAVLLAVLLVGLRAATGRLLSASDLDLRGGQPVCRGGTQRPCYKVIYFHDTSRRL
NFEEAKEACRRDGGQLVSIESEDEQKLIEKFIENLLPSDGDFWIGLRRREEKQSNSTACQDL
YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPYMFQWNDDRCNMKNNFICKY
SDEKPAVPSREAEGEETELTTPVLPEETQEEDAKKTFKESREAALNLAYILIPSIPLLLLLV
VTTVVCWVWICRKRKREQPDPSTKKQHTIWPSPHQGNSPDLEVYNVIRKQSEADLAETRPDL
KNISFRVCSGEATPDDMSCDYDNMAVNPSESGFVTLVSVESGFVTNDIYEFSPDQMGRSKES
GWVENEIYGY

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 117-121, 312-316

 $\mathtt{cAMP-}$ and $\mathtt{cGMP-} \mathtt{dependent}$ protein kinase phosphorylation site.

amino acids 296-300

Casein kinase II phosphorylation site.

amino acids 28-32, 30-34, 83-87, 100-104, 214-218, 222-226, 299-303, 306-310, 323-327

N-myristoylation site.

amino acids 18-24, 37-43, 76-82, 146-152

ATCCGCAGGTTCCCGCGGACTTGGGGGCCCCCCTGAGCCCCGGCGCCCCAGAAGACTTGT $\tt GTTTGCCTCCTGCAGCCTCAACCCGGAGGGCCAGCGAGGGCCTACCACC\underline{ATG}\underline{ATC}\underline$ AGCGGCGGGTGGCCCTGGCCGAGCTGCAGGAGGCCGATGGCCAGTGTCCGGTCGACCGCAGC $\tt CTGCTGAAGTTGAAAATGGTGCAGGTCGTGTTTCGACACGGGGCTCGGAGTCCTCTCAAGCC$ GCTCCCGCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGTCCCACCCCAAACTC AGTTTGATTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCATATTCTCCTTACGACTCT ${\tt CAATACCATGAGACCACCCTGAAGGGGGGGCATGTTTGCTGGGCAGCTGACCAAGGTGGGCAT}$ GCAGCAAATGTTTGCCTTGGGAGAGAGACTGAGGAAGAACTATGTGGAAGACATTCCCTTTC ${\tt TTTCACCAACCTTCAACCCACAGGAGGTCTTTATTCGTTCCACTAACATTTTTCGGAATCTG}$ CCACACTGATGAAGCAGATTCAGAAGTCTTGTATCCCAACTACCAAAGCTGCTGGAGCCTGA GGCAGAGACCAGAGGCCGGAGGCAGACTGCCTCTTTACAGCCAGGAATCTCAGAGGATTTG AAAAAGGTGAAGGACAGGATGGGCATTGACAGTAGTGATAAAGTGGACTTCTTCATCCTCCT GGACAACGTGGCTGCCGAGCAGGCACACCACCTCCCAAGCTGCCCCATGCTGAAGAGATTTG ${\tt CACGGATGATCGAACAGAGAGCTGTGGACACATCCTTGTACATACTGCCCAAGGAAGACAGG}$ GAAAGTCTTCAGATGGCAGTAGGCCCATTCCTCCACATCCTAGAGAGCCAACCTGCTGAAAGC CATGGACTCTGCCACTGCCCCCGACAAGATCAGAAAGCTGTATCTCTATGCGGCTCATGATG TGACCTTCATACCGCTCTTAATGACCCTGGGGATTTTTGACCACAAATGGCCACCGTTTGCT GTTGACCTGACCATGGAACTTTACCAGCACCTGGAATCTAAGGAGTGGTTTGTGCAGCTCTA TTACCACGGGAAGGAGCAGGTGCCGAGAGGTTGCCCTGATGGGCTCTGCCCGCTGGACATGT TCTTGAATGCCATGTCAGTTTATACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAA TTAAAATAAAGTGCCTTTATACAATG

MITGVFSMRLWTPVGVLTSLAYCLHQRRVALAELQEADGQCPVDRSLLKLKMVQVVFRHGAR
SPLKPLPLEEQVEWNPQLLEVPPQTQFDYTVTNLAGGPKPYSPYDSQYHETTLKGGMFAGQL
TKVGMQQMFALGERLRKNYVEDIPFLSPTFNPQEVFIRSTNIFRNLESTRCLLAGLFQCQKE
GPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRRQTASLQPGISEDLKKVKDRMGIDSSDKVD
FFILLDNVAAEQAHNLPSCPMLKRFARMIEQRAVDTSLYILPKEDRESLQMAVGPFLHILES
NLLKAMDSATAPDKIRKLYLYAAHDVTFIPLLMTLGIFDHKWPPFAVDLTMELYQHLESKEW
FVQLYYHGKEQVPRGCPDGLCPLDMFLNAMSVYTLSPEKYHALCSQTQVMEVGNEE

Signal sequence:

amino acids 1-23

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 218-222

Casein kinase II phosphorylation site. amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site.

amino acids 280-288

N-myristoylation site.

amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site.

amino acids 216-220

Leucine zipper pattern.

amino acids 10-32

Histidine acid phosphatases phosphohistidine signature.

amino acids 50-65

 $\tt CTCCTCTTAACATACTTGCAGCTAAAACTAAATATTGCTGCTTGGGGACCTCCTTCTAGCCT$ $\texttt{TAAATTTCAGCTCATCACCTTCACCTTGGTC} \textbf{A} \underline{\textbf{TG}} \texttt{GCTCTGCTATTCTCCTTGATCCTT}$ ${\tt GCCATTTGCACCAGACCTGGATTCCTAGCGTCTCCATCTGGAGTGCGGCTGGTGGGGGGCCTT}$ ${\tt ACGGCTGGGACATTAAGGACGTGGCTGTGTTGTGCCGGGAGCTGGGGCTGTGGAGCTGCCAGC}$ ATCAGTCAGTTGCACAGGAACAGAAGATACATTGGCTCAGTGTGAGCAAGAAGAAGTTTATG ATTGTTCACATGATGAAGATGCTGGGGGCATCGTGTGAGAACCCAGAGAGCTCTTTCTCCCCA GTCCCAGAGGGTGTCAGGCTGACGGCCCTGGGCATTGCAAGGGACGCGTGGAAGTGAA GCACCAGAACCAGTGTATACCGTGTGCCAGACAGGCTGGAGCCTCCGGGCCGCAAAGGTGG TGTGCCGGCAGCTGGGATGTGGGAGGGCTGTACTGACTCAAAAACGCTGCAACAAGCATGCC $\tt GGATTGCCCTTCTGGGGCCTTGGGGGAAGAACACCTGCAACCATGATGAAGACACGTGGGTCG$ AATGTGAAGATCCCTTTGACTTGAGACTAGTAGGAGGAGACAACCTCTGCTCTGGGCGACTG AATGCTATGGCCCTGGGGTTGGCCGCATCTGGCTGGATAATGTTCGTTGCTCAGGGGAGGAG GAAAAACACAGAAGAAGGGAGCATTTACTGTCTACATGACTGCATGGGATGAACACTGATCT TCTTCTGCCCTTGGACTGGGACTTATACTTGGTGCCCCTGATTCTCAGGCCTTCAGAGTTGG ATCAGAACTTACAACATCAGGTCTAGTTCTCAGGCCATCAGACATAGTTTGGAACTACATCA CCACCTTTCCTATGTCTCCACATTGCACACAGCAGATTCCCAGCCTCCATAATTGTGTGTAT TTCTAGAGGAACGGAATTTTAAGGATAAATTTTCTGAATTGGTTATGGGGTTTCTGAAATTG TATGTGTTCAAA

MALLFSLILAICTRPGFLASPSGVRLVGGLHRCEGRVEVEQKGQWGTVCDDGWDIKDVAVLC RELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEVYDCSHDEDAGASC ENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVCQTGWSLRAAKVVCRQLGCGRAVL TQKRCNKHAYGRKPIWLSQMSCSGREATLQDCPSGPWGKNTCNHDEDTWVECEDPFDLRLVG GDNLCSGRLEVLHKGVWGSVCDDNWGEKEDQVVCKQLGCGKSLSPSFRDRKCYGPGVGRIWL DNVRCSGEEQSLEOCOHRFWGFHDCTHOEDVAVICSV

Signal sequence:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 47-51, 97-101, 115-119, 209-213, 214-218, 234-238, 267-271, 294-298, 316-320, 336-340

N-myristoylation site.

amino acids 29-35, 43-49, 66-72, 68-74, 72-78, 98-104, 137-143, 180-186, 263-269, 286-292

Amidation site.

amino acids 196-200

Speract receptor repeated domain signature.

amino acids 29-67, 249-287

ACTGCACTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGAC CGTCTTCGGCCTCTTCCGGCTGCTGCAGTGGGTGCGCGGGAAGGCCTACCTGCGGAATGCTG TGGTGGTGATCACAGGCCCACCTCAGGGCTGGGCAAAGAATGTGCAAAAGTCTTCTATGCT GCGGGTGCTAAACTGGTGCTCTGTGGCCGGAATGGTGGGGCCCTAGAAGAGCTCATCAGAGA ACTTACCGCTTCTCATGCCACCAAGGTGCAGACACAAGCCTTACTTGGTGACCTTCGACC TCACAGACTCTGGGGCCATAGTTGCAGCAGCAGCTGAGATCCTGCAGTGCTTTGGCTATGTC GACATACTTGTCAACAATGCTGGGATCAGCTACCGTGGTACCATCATGGACACCACAGTGGA ${\tt TGTGGACAAGAGGGTCATGGAGACAAACTACTTTGGCCCAGTTGCTCTAACGAAAGCACTCC}$ TGCCCTCCATGATCAAGAGGGGGAAGGCCACATTGTCGCCATCAGCAGCATCCAGGGCAAG $\tt CTCTGGCTCCTGGGCTCTTCTTCAGCCTCATGGCCTCCAGGGCCAGAAAAGAGCGGAAATCC$ ${\tt AAGAACTCC} \textbf{TA} \underline{\textbf{G}} \\ {\tt TACTCTGACCAGCCAGGGCCAGGGCAGAGAAGCAGCACTCTTAGGCTTGC} \\$ AAAGACTGAAGAAACACATCTCGTGCAGATCTGCTGGCAGAGGACAATCAAAAACGACAACA AGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTAC

MDFITSTAILPLLFGCLGVFGLFRLLQWVRGKAYLRNAVVVITGATSGLGKECAKVFYAAGA
KLVLCGRNGGALEELIRELTASHATKVQTHKPYLVTFDLTDSGAIVAAAAEILQCFGYVDIL
VNNAGISYRGTIMDTTVDVDKRVMETNYFGFVALTKALLPSMIKRRQGHIVAISSIQGKMSI
PFRSAYAASKHATQAFFDCLRAEMEQYEIEVTVISPGYIHTNLSVNAITADGSRYGVMDTTT
AQGRSPVEVAQDVLAAVGKKKKDVILADLLPSLAVYLRTLAPGLFFSLMASRARKERKSKNS

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 104-120, 278-292

N-glycosylation site.

amino acids 228-232

Glycosaminoglycan attachment site.

amino acids 47-51

Casein kinase II phosphorylation site.

amino acids 135-139, 139-143, 253-257

Tyrosine kinase phosphorylation site.

amino acids 145-153, 146-153

N-myristoylation site.

amino acids 44-50, 105-111, 238-244, 242-248, 291-297

Amidation site.

amino acids 265-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 6-17

CCCACGCGTCCGCTGGTGTTAGATCGAGCAACCCTCTAAAAGCAGTTTAGAGTGGTAAAAAA ${\tt AAAAAAAACACACCAAACGCTCGCAGCCACAAAAGGG\underline{ATG}AAATTTCTTCTGGACATCCTC}$ $\tt CTGCTTCTCCCGTTACTGATCGTCTGCTCCCTAGAGTCCTTCGTGAAGCTTTTTATTCCTAA$ GAGGAGAAAATCAGTCACCGGCGAAATCGTGCTGATTACAGGAGCTGGGCATGGAATTGGGA CATGGACTGGAGGAAACAGCTGCCAAATGCAAGGGACTGGGTGCCAAGGTTCATACCTTTGT GGTAGACTGCAGCAACCGAGAAGATATTTACAGCTCTGCAAAGAAGGTGAAGGCAGAAATTG CAAGATCCTCAGATTGAAAAGACTTTTGAAGTTAATGTACTTGCACATTTCTGGACTACAAA GGCATTTCTTCCTGCAATGACGAAGAATAACCATGGCCATATTGTCACTGTGGCTTCGGCAG TTTCATAAAACTTTGACAGATGAACTGGCTGCCTTACAAATAACTGGAGTCAAAACAACATG ${\tt TCTGTGTCCTAATTTCGTAAACACTGGCTTCATCAAAAATCCAAGTACAAGTTTGGGACCCA}$ ${\tt CCTGGCAGTTTTAAAACGAAAAATCAGTGTTAAGTTTGATGCAGTTATTGGATATAAAATGA}$ ${\tt AAGCGCAA} {\color{red}{\bf TAA}} {\color{gray}{\bf GCACCTAGTTTTCTGAAAACTGATTTACCAGGTTTAGGTTGATGTCATCTA}$ ATAGTGCCAGAATTTTAATGTTTGAACTTCTGTTTTTTCTAATTATCCCCATTTCTTCAATA ACATATGATATAAACAGAGAAATACCTTTAGAGGTGACTTTAAGGAAAATGAAGAAAAAGAA AATTTGTACCATAACCGTTTATTTAACATATATTTTTATTTTTGATTGCACTTAAATTTTGT TGAAGGACTATATCTAGTGGTATTTCACAATGAATATCATGAACTCTCAATGGGTAGGTTTC ATCCTACCCATTGCCACTCTGTTTCCTGAGAGATACCTCACATTCCAATGCCAAACATTTCT GCACAGGGAAGCTAGAGGTGGATACACGTGTTGCAAGTATAAAAGCATCACTGGGATTTAAG

MKFLLDILLLPLLIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLKSK LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKKVKAEIGDVSILVNNAGVV YTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHVSVPFLLAYC SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPEEVVNRLMH GILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 30-34, 283-287

Casein kinase II phosphorylation site.

amino acids 52-56, 95-99, 198-202, 267-271

N-myristoylation site.

amino acids 43-49, 72-78, 122-128, 210-216

 ${\tt AGGGAGGAGCACCGACCGCACCCTGAGAG} \underline{{\tt ATG}} {\tt GTTGGTGCCATGTGGAAGGTGATTG}$ $\tt TTTCGCTGGTCCTGTTGATGCCTGGCCCCTGTGATGGGCTGTTTCGCTCCCTATACAGAAGT$ GTTTCCATGCCACCTAAGGGAGACTCAGGACAGCCATTATTTCTCACCCCTTACATTGAAGC ${\tt TGGGAAGATCCAAAAAGGAAGAGAATTGAGTTTGGTCGGCCCTTTCCCAGGACTGAACATGA}$ AGAGTTATGCCGGCTTCCTCACCGTGAATAAGACTTACAACAGCAACCTCTTCTTCTGGTTC TTCCCAGCTCAGATACAGCCAGAAGATGCCCCAGTAGTTCTCTGGCTACAGGGTGGGCCGGG AGGTTCATCCATGTTTGGACTCTTTGTGGAACATGGGCCTTATGTTGTCACAAGTAACATGA $\tt GTGGGCACAGGCTTCAGTTTTACTGATGATACCCACGGATATGCAGTCAATGAGGACGATGT$ AGCACGGGATTTATACAGTGCACTAATTCAGTTTTTCCAGATATTTCCTGAATATAAAAATA ATCCATTCCCTCAACCCTGTGAGAGAGGTGAAGATCAACCTGAACGGAATTGCTATTGGAGA TGGATATTCTGATCCCGAATCAATTATAGGGGGCTATGCAGAATTCCTGTACCAAATTGGCT TGTTGGATGAGAAGCAAAAAAAGTACTTCCAGAAGCAGTGCCATGAATGCATAGAACACATC AGGAAGCAGAACTGGTTTGAGGCCTTTGAAATACTGGATAAACTACTAGATGGCGACTTAAC ${\tt AAGTGATCCTTCTTACTTCCAGAATGTTACAGGATGTAGTAATTACTATAACTTTTTGCGGT}$ ${\tt GCACGGAACCTGAGGATCAGCTTTACTATGTGAAATTTTTGTCACTCCCAGAGGTGAGACAA}$ GCCATCCACGTGGGGAATCAGACTTTTAATGATGGAACTATAGTTGAAAAGTACTTGCGAGA ${\tt AGATACAGTACAGTCAGTTAAGCCATGGTTAACTGAAATCATGAATAATTATAAGGTTCTGA}$ $\hbox{ATCTGACAGTGAAGTGGCTGGTTACATCCGGCAAGCGGGTGACTTCCATCAGGTAATTATTC}$ GAGGTGGAGGACATATTTTACCCTATGACCAGCCTCTGAGAGCTTTTGACATGATTAATCGA ${\tt TTCATTTATGGAAAAGGATGGGATCCTTATGTTGGA} {\tt TAAA} {\tt ACTACCTTCCCAAAAGAGAACAT}$ ${\tt TTATCTTTCATATCTGCAAGATTTTTTTCATCAATAAAAATTATCCTTGAAACAAGTGAGC$ ${\tt TTTTGTTTTTGGGGGGGGAGATGTTTACTACAAAATTAACATGAGTACATGAGTAAGAATTACA}$ TTATTTAACTTAAAGGATGAAAGGTATGGATGATGTGACACTGAGACAAGATGTATAAATGA AATTTTAGGGTCTTGAATAGGAAGTTTTAATTTCTTCTAAGAGTAAGTGAAAAGTGCAGTTG TAGTTTTGGGGAAAAGATTCTCAAATGTATAAAGTCTTAGAACAAAAGAATTCTTTGAAATA AAAATATTATATATAAAAGTAAAAAAAAAA

MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPKGDSGQPLFLTPYIEAGKIQKGRELSL VGPFPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEH GPYVVTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVARDLYSALIQF FQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSLNPVREVKINLNGIAIGDGYSDPESIIGG YAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGDLTSDPSYFQNVTG CSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIHVGNQTFNDGTIVEKYLREDTVQSVKPWLT EIMNNYKVLIYNGQLDIIVAAALTERSLMGMDWKGSQEYKKAEKKVWKIFKSDSEVAGYIRQ AGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDPYVG

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 81-85, 132-136, 307-311, 346-350

Casein kinase II phosphorylation site.

amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352, 353-357, 424-428

Tyrosine kinase phosphorylation site.

amino acids 423-432

N-myristoylation site.

amino acids 22-28, 110-116, 156-162, 232-238

Serine carboxypeptidases, serine active site.

amino acids 200-208

Crystallins beta and gamma 'Greek key' motif signature.

amino acids 375-391

 $\tt CGAGGGCTTTTCCGGCTCCGGAATGGCACATGTGGGAATCCCAGTCTTGTTGGCTACAACAT$ CCTCTCTGTGGATAACAGAGCATGAGAAAGTGAAGAGATGCAGCGGAGTGAGGTGATGGAAG TGAACTTCAACAGCCTTTTAACCTCTCTGGGAGATGAAAACGATGGCTTAAGGGGCCCAGAAA TAGAGATGCTTTGTAAAATAAAATTTTAAAAAAAAGCAAGTATTTTATAGCATAAAGGCTAGA GACCAAAATAGATAACAGGATTCCCTGAACATTCCTAAGAGGGAGAAAGTATGTTAAAAATA GAAAAACCAAAATGCAGAAGGAGGAGACTCACAGAGCTAAACCAGGATGGGGACCCTGGGTC $\underline{\mathsf{AGGCCAGCCTCTTTGCTCCTCCCGGAAATTATTTTTGGTCTGACCACTCTGCCTTGTGTTTT}$ CCTCACCGCCCCCTCTCAGCATGGAACAGAGGCAGCCCTGGCCCCGGGCCCTGGAGGTGG ATGCCTCAGTTCAGCACCTTCCACTCTGAGAATCGTGACTGGACCTTCAACCACTTGACCGT ACCTGACCATCCAGGTGGCTCATAAGACAGGGCCAGAAGAGGACAACAAGTCTCGTTACCCG $\tt CCCCTCATCGTGCAGCCCTGCAGCGAAGTGCTCACCACCAACAATGTCAACAAGCTGCT$ CATCATTGACTACTCTGAGAACCGCCTGCTGGCCTGTGGGAGCCTCTACCAGGGGGTCTGCA AGCTGCTGCGGCTGGATGACCTCTTCATCCTGGTGGAGCCATCCCACAAGAAGGAGCACTAC $\tt CTGTCCAGTGTCAACAAGACGGGCACCATGTACGGGGTGATTGTGCGCTCTGAGGGTGAGGA$ ${\tt TGGCAAGCTCTTCATCGGCACGGCTGTGGATGGGAAGCAGGATTACTTCCCGACCCTGTCCA}$ $\tt GCCGGAAGCTGCCCCGAGACCCTGAGTCCTCAGCCATGCTCGACTATGAGCTACACAGCGAT$ ${\tt TTTGTCTCCTCTCATCAAGATCCCTTCAGACACCCTGGCCCTGGTCTCCCACTTTGACAT}$ $\tt CTTCTACATCTACGGCTTTGCTAGTGGGGGGCTTTGTCTACTTTCTCACTGTCCAGCCCGAGA$ $\tt CCCCTGAGGGTGTGGCCATCAACTCCGCTGGAGACCTCTTCTACACCTCACGCATCGTGCGG$ $\tt CTCTGCAAGGATGACCCCAAGTTCCACTCATACGTGTCCCTGCCCTTCGGCTGCACCCGGGC$ AGGCCTTCAATATCACCAGCCAGGACGATGTACTCTTTGCCATCTTCTCCAAAGGGCAGAAG ${\tt CAGTATCACCACCCGCCCGATGACTCTGCCCTGTGTGCCTTCCCTATCCGGGCCATCAACTT}$ GCAGATCAAGGAGCGCCTGCAGTCCTGCTACCAGGGCGAGGGCAACCTGGAGCTCAACTGGC TGCTGGGGAAGGACGTCCAGTGCACGAAGGCGCCTGTCCCCATCGATGATAACTTCTGTGGA CTGGACATCAACCAGCCCCTGGGAGGCTCAACTCCAGTGGAGGGCCTGACCCTGTACACCAC $\tt CAGCAGGGACCGCATGACCTCTGTGGCCTCCTACGTTTACAACGGCTACAGCGTGGTTTTTG$ ${\tt TGGGGACTAAGAGTGGCAAGCTGAAAAAGGTAAGAGTCTATGAGTTCAGATGCTCCAATGCC}$ ATTCACCTCCTCAGCAAAGAGTCCCTCTTGGAAGGTAGCTATTGGTGGAGATTTAACTATAG $\texttt{GCAACTTTATTTCTTGGGGAACAAAGG} \underline{\textbf{TGA}} \texttt{AATGGGGAGGTAAGAAGGGGTTAATTTTGTG}$ ACTTAGCTTCTAGCTACTTCCTCCAGCCATCAGTCATTGGGTATGTAAGGAATGCAAGCGTA TTTCAATATTTCCCAAACTTTAAGAAAAACTTTAAGAAGGTACATCTGCAAAAGCAAA

MGTLGQASLFAPPGNYFWSDHSALCFAESCEGQPGKVEQMSTHRSRLLTAAPLSMEQRQPWP
RALEVDSRSVVLLSVVWVLLAPPAAGMPQFSTFHSENRDWTFNHLTVHQGTGAVYVGAINRV
YKLTGNLTIQVAHKTGPEEDNKSRYPPLIVQPCSEVLTLTNNVNKLLIIDYSENRLLACGSL
YQGVCKLLRLDDLFILVEPSHKKEHYLSSVNKTGTMYGVIVRSEGEDGKLFIGTAVDGKQDY
FPTLSSRKLPRDPESSAMLDYELHSDFVSSLIKIPSDTLALVSHFDIFYIYGFASGGFYYFL
TVQPETPEGVAINSAGDLFYTSRIVRLCKDDPKFHSYVSLPFGCTRAGVEYRLLQAAYLAKP
GDSLAQAFNITSQDDVLFAIFSKGQKQYHHPPDDSALCAFPIRAINLQIKERLQSCYQGEGN
LELNWLLGKDVQCTKAPVPIDDNFCGLDINQPLGGSTPVEGLTLYTTSRDRMTSVASYVYNG
YSVVFVGTKSGKLKKVRVYEFRCSNAIHLLSKESLLEGSYWWRFNYRQLYFLGEOR

Signal sequence:

amino acids 1-32

Transmembrane domain:

amino acids 71-87

N-glycosylation site.

amino acids 130-134, 145-149, 217-221, 381-385

Casein kinase II phosphorylation site.

amino acids 139-143, 229-233, 240-244, 291-295, 324-328, 383-387, 384-388, 471-475, 481-485, 530-534

N-myristovlation site.

amino acids 220-226, 319-325, 353-359, 460-466, 503-509

GGAGGGACCGCCTGCTGAAGATGAAGGCCTGTGGCTTGAACACCCTCACCACCTATGTTCCGTGGAACCTGCATG AGCCAGAAAGAGGCAAATTTGACTTCTCTGGGAACCTGGACCTGGAGGCCTTCGTCCTGATGGCCGCAGAGATCG GGCTGTGGGTGATTCTGCGTCCAGGCCCCTACATCTGCAGTGAGATGGACCTCGGGGGGCTTGCCCAGCTGGCTAC GTTCCTATAATAAAGACCCCGCATACATGCCCTACGTCAAGAAGGCACTGGAGGACCGTGGCATTGTGGAACTGC CAACACACGAGCTGCAGCTACTGACCACCTTTCTCTTCAACGTCCAGGGGACTCAGCCCAAGATGGTGATGGAGT ACTGGACGGGGTGGTTTGACTCGTGGGGAGGCCCTCACAATATCTTGGATTCTTCTGAGGTTTTGAAAACCGTGT $\tt CTGCCATTGTGGACGCCGGCTCCTCCATCAACCTCTACATGTTCCACGGAGGCACCAACTTTGGCTTCATGAATG$ GAGCCATGCACTTCCATGACTACAAGTCAGATGTCACCAGCTATGACTATGATGCTGTGCTGACAGAAGCCGGCG ${\tt ACCTTCTTCCCAAGATGCCGTATGAGCCCTTAACGCCAGTCTTGTACCTGTCTCTGTGGGACGCCCTCAAGTACC}$ ${\tt TGGGGGGAGCCAATCAAGTCTGAAAAGCCCATCAACATGGAGAACCTGCCAGTCAATGGGGGAAATGGACAGTCCT}$ TGTTTGTGAACACAGTATCCATAGGATTCTTGGACTACAAGACAACGAAGATTGCTGTCCCCCTGATCCAGGGTT ACACCGTGCTGAGGATCTTGGTGGAGAATCGTGGGCGAGTCAACTATGGGGAGAATATTGATGACCAGCGCAAAG GCTTAATTGGAAATCTCTATCTGAATGATTCACCCCTGAAAAACTTCAGAATCTATAGCCTGGATATGAAGAAGA ${\tt GCTTCTTTCAGAGGTTCGGCCTGGACAAATGGNGTTCCCTCCCAGAAACACCCCACATTACCTGCTTTCTTCTTGG}$ GTAGCTTGTCCATCAGCTCCACGCCTTGTGACACCTTTCTGAAGCTGGAGGGGCTGGGAGAAGGGGGTTGTATTCA ${\tt TCAATGGCCAGAACCTTGGACGTTACTTGGAACATTGGACCCCAGAAGACGCTTTACCTCCCAGGTCCCTGGTTGA}$ ${\tt ACCTGGGCAGGAACCAGTACATTAAG\underline{TGA}_{\tt GCGGTGGCACCCCTCCTGCTGGTGCCAGTGGGAGACTGCCGCCTC}}$ ${\tt ACTGGGGGCTACAGTCTGCCCCTGTCTCAGCTCAAAACCCTAAGCCTGCAGGGAAAGGTGGGATGGCTCTGGGCCCTAAGCCTGCAGGGAAAGGTGGGATGGCTCTGGGCCCTAAGCCCTAAGCCTGCAGGGAAAGGTGGGATGGCTCTGGGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCTGCAGGGAAAGGTGGGATGGCTCTGGGCCCCTAAGCCTAAGCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAGCCCTAAG$ AGCTAATCAGATCGCCCAGCCTTTGGCCCTCAGAAAAAGTGCTGAAACGTGCCCTTGCACCGGACGTCACAGCCC $\tt TTTATCCCCGAAATCCTGGGTGTCACCAGTGTAGAGGGTGGGGAAGGGGTGTCTCACCTGAGCTGACTTTGTT$ $\tt CATCCAGGGAGGAGGACAGAGGCCCAGCTCACATGTGAGTCCTGGCAGAAGCCATGGCCCATGTCTGCACATCC$ AGGGAGGAGGACAGAAGGCCCAGCTCACATGTGAGTCCTGGCAGAAGCCATGGCCCATGTCTGCACATCCAGGGA GGAGGACAGAAGGCCCAGCTCACATGTGAGTCCTGGCAGAAGCCATGGCCCATGTCTGCACATCCAGGGAGGAGG ACAGAAGGCCCAGCTCAGTGGCCCCCGCTCCCCACCCCCCACGCCCGAACAGCAGGGGCAGAGCAGCCCTCCTTC GAAGTGTGTCCAAGTCCGCATTTGAGCCTTGTTCTGGGGCCCAGCCCAACACCTGGCTTGGGCTCACTGTCCTGA GTTGCAGTAAAGCTATAACCTTGAATCACAA

MTTWSLRRRPARTLGLLLLVVLGFLVLRRLDWSTLVPLRLRHRQLGLQAKGWNFMLEDSTFW
IFGGSIHYFRVPREYWRDRLLKMKACGLNTLTTYVPWNLHEPERGKFDFSGNLDLEAFVLMA
AEIGLWVILRPGPŸICSEMDLGGLPSWLLQDPGMRLRTTYKGFTEAVDLYFDHLMSRVVPLQ
YKRGGPIIAVQVENEYGSYNKDPAYMPYVKKALEDRGIVELLLTSDNKDGLSKGIVQGVLAT
INLQSTHELQLLTTFLFNVQGTQPKMVMEYWTGWFDSWGGPHNILDSSEVLKTVSAIVDAGS
SINLYMFHGGTNFGFMNGAMHFHDYKSDVTSYDYDAVLTEAGDYTAKYMKLRDFFGSISGIP
LPPPPDLLPKMPYEPLTPVLYLSLWDALKYLGEPIKSEKPINMENLPVNGGNGQSFGYILYE
TSITSSGILSGHVHDRGQVFVNTVSIGFLDYKTTKIAVPLIQGYTVLRILVENRGRVNYGEN
IDDQRKGLIGNLYLNDSPLKNFRIYSLDMKKSFFQRFGLDKWXSLPETPTLPAFFLGSLSIS
STPCDTFLKLEGWEKGVVFINGQNLGRYWNIGPQKTLYLPGPWLSSGINQVIVFEETMAGPA
LQFTETPHLGRNQYIK

Signal sequence:

amino acids 1-27

Casein kinase II phosphorylation site.

amino acids 141-118, 253-257, 340-344, 395-399, 540-544, 560-564

N-myristoylation site.

amino acids 146-152, 236-242, 240-246, 244-250, 287-293, 309-315, 320-326, 366-372, 423-429, 425-431, 441-447, 503-509, 580-586

GGGGACGCGGAGCTGAGAGGCTCCGGGCTAGCTAGGTGTAGGGGTGGACGGGTCCCAGGACC GGAGCAAAGCCGGGCTCGGCCCGAGGCCCCCAGGACCTCCATCTCCCAATGTTGGAGGAATC $\hbox{\tt AAGAAGCTGTCCTGCCTTCGTTCCCTGCTGCCGCTCAGCCTGACGCTACTGCTGCCCCA}$ CGGCTTTTGAAGATGCGATGGAGCGCCTCAACGCCATACAGTTTTATGTGCCCTGGAACTA $\tt CCACGAGCCACAGCCTGGGGTCTATAACTTTAATGGCAGCCGGGACCTCATTGCCTTTCTGA$ ATGAGGCAGCTCTAGCGAACCTGTTGGTCATACTGAGACCAGGACCTTACATCTGTGCAGAG TGGGAGATGGGGGGTCTCCCATCCTGGTTGCTTCGAAAACCTGAAATTCATCTAAGAACCTC AGATCCAGACTTCCTTGCCGCAGTGGACTCCTGGTTCAAGGTCTTGCTGCCCAAGATATATC TACAGAGCCTGTGACTTCAGCTACATGAGGCACTTGGCTGGGCTCTTCCGTGCACTGCTAGG GACTCTATACCACTGTAGATTTTGGCCCAGCTGACAACATGACCAAAATCTTTACCCTGCTT CTGGGGCCAGAATCACTCCACACGGTCTGTGTCAGCTGTAACCAAAGGACTAGAGAACATGC ${\tt TCAAGTTGGGAGCCAGTGTGAACATGTACATGTTCCATGGAGGTACCAACTTTGGATATTGG}$ AATGGTGCCGATAAGAAGGGACGCTTCCTTCCGATTACTACCAGCTATGACTATGATGCACC TATATCTGAAGCAGGGGACCCCACACCTAAGCTTTTTGCTCTTCGAGATGTCATCAGCAAGT ${\tt TCCAGGAAGTTCCTTTGGGACCTTTACCTCCCCGAGCCCCAAGATGATGCTTGGACCTGTG}$ ${\tt ACTCTGCACCTGGTTGGGCATTTACTGGCTTTCCTAGACTTGCTTTGCCCCCGTGGGCCCAT}$ TCATTCAATCTTGCCAATGACCTTTGAGGCTGTCAAGCAGGACCATGGCTTCATGTTGTACC GAACCTATATGACCCATACCATTTTTGAGCCAACACCCATTCTGGGTGCCAAATAATGGAGTC CATGACCGTGCCTATGTGATGGTGGATGGGGTGTTCCAGGGTGTTGTGGAGCGAAATATGAG AGACAAACTATTTTTGACGGGGAAACTGGGGTCCAAACTGGATATCTTGGTGGAGAACATGG GGAGGCTCAGCTTTGGGTCTAACAGCAGTGACTTCAAGGGCCTGTTGAAGCCACCAATTCTG GGGCAAACAATCCTTACCCAGTGGATGATGTTCCCTCTGAAAATTGATAACCTTGTGAAGTG GTGGTTTCCCCTCCAGTTGCCAAAATGGCCATATCCTCAAGCTCCTTCTGGCCCCACATTCT ACTCCAAAACATTTCCAATTTTAGGCTCAGTTGGGGACACATTTCTATATCTACCTGGATGG ACAACAGACCCTCTACGTGCCAAGATTCCTGCTGTTTCCTAGGGGAGCCCTCAACAAAATTA $\tt CTCAATAGCACTAGTACTTTGCACAGGACACATATCAATTCCCTTTCAGCTGATACACTGAGGACACATATCAATTCCCTTTCAGCTGATACACTGAGGACACATATCAATTCCCTTTCAGCTGATACACTGAGGACACATATCAATTCCAATTCCAGTGATACACTGAGGACACATATCAATTCCCTTTCAGCTGATACACTGAGGACACATATCAATTCCAATTCCAGTGATACACTGAGGACACATATCAATTCCAATTCCAGTGATACACTGAGGACACATATCAATTCCAGTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCCAGTTCAGCTGATACACTGAGGACACATATCAATTCAATTCCAGTTCAGCTGATACACTGAGAGACACATATCAATTCAATTCCAGTTCAGCTGATACACATATCAATT$ CCAGCCTGGCCAACATGGTGAAACCCCGTCTCCACTAAAAATACAAAAATTAGCCGGGCGTG ATGGTGGGCACCTCTAATCCCAGCTACTTGGGAGGCTGAGGGCAGGAGAATTGCTTGAATCC AGGAGGCAGAGGTTGCAGTGAGTGGAGGTTGTACCACTGCACTCCAGCCTGGCTGACAGTGA GACACTCCATCTCAAAAAAAAAAAA

MAPKKLSCLRSLLLPLSLTLLLPQADTRSFVVDRGHDRFLLDGAPFRYVSGSLHYFRVPRVL
WADRLLKMRWSGLNAIQFYVPWNYHEPQPGVYNFNGSRDLIAFLNEAALANLLVILRPGPYI
CAEWEMGGLPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHNGGNIISIQVENE
YGSYRACDFSYMRHLAGLFRALLGEKILLFTTDGPEGLKCGSLRGLYTTVDFGPADNMTKIF
TLLRKYEPHGPLVNSEYYTGWLDYWGQNHSTRSVSAVTKGLENMLKLGASVNMYMFHGGTNF
GYWNGADKKGRFLPITTSYDYDAPISEAGDPTPKLFALRDVISKFQEVPLGPLPPPSPKMML
GPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGFMLYRTYMTHTIFEPTPFWVPN
NGVHDRAYVMVDGVFQGVVERNMRDKLFLTGKLGSKLDILVENMGRLSFGSNSSDFKGLLKP
PILGQTILTQWMMFPLKIDNLVKWWFPLQLPKWPYPQAPSGPTFYSKTFPILGSVGDTFLYL
PGWTKGQVWINGFNLGRYWTKQGPQQTLYVPRFLLFPRGALNKITLLELEDVPLQPQVQFLD
KPILNSTSTLHRTHINSLSADTLSASEPMELSGH

Signal sequence:

amino acids 1-27

N-glycosylation site.

amino acids 97-101, 243-247, 276-280, 486-490, 625-629

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 4-8

Casein kinase II phosphorylation site.

amino acids 148-152, 234-238, 327-331, 423-427, 469-473, 550-554, 603-607, 644-648

Tyrosine kinase phosphorylation site.

amino acids 191-198

N-myristoylation site.

amino acids 131-137, 176-182, 188-194, 203-209, 223-229, 227-233, 231-237, 274-280, 296-300, 307-313, 447-453, 484-490

 $\tt GCTTTGAACACGTCTGCAAGCCCAAAGTTGAGCATCTGATTGGTTATGAGGTATTTGAGTGC$ ${\tt ACCCACAAT} \underline{\textbf{ATG}} \texttt{GCTTACATGTTGAAAAAGCTTCTCATCAGTTACATATCCATTATTTGTGT}$ TTATGGCTTTATCTGCCTCTACACTCTTCTTGTTATTCAGGATACCTTTGAAGGAATATT $\tt CTTTCGAAAAAGTCAGAGAGAGAGAGCAGTTTTAGTGACATTCCAGATGTCAAAAACGATTTT$ GCGTTCCTTCACATGGTAGACCAGTATGACCAGCTATATTCCAAGCGTTTTGGTGTGTT CTTGTCAGAAGTTAGTGAAAATAAACTTAGGGAAATTAGTTTGAACCATGAGTGGACATTTG AAAAACTCAGGCAGCACATTTCACGCAACGCCCAGGACAAGCAGGAGTTGCATCTGTTCATG $\tt CTGTCGGGGGTGCCCGATGCTGTCTTTGACCTCACAGACCTGGATGTGCTAAAGCTTGAACT$ AATTCCAGAAGCTAAAATTCCTGCTAAGATTTCTCAAATGACTAACCTCCAAGAGCTCCACC TCTGCCACTGCCCTGCAAAAGTTGAACAGACTGCTTTTAGCTTTCTTCGCGATCACTTGAGA CCTTCGAGAGTTGTACTTAATAGGCAATTTGAACTCTGAAAACAATAAGATGATAGGACTTG AATCTCTCCGAGAGTTGCGGCACCTTAAGATTCTCCACGTGAAGAGCAATTTGACCAAAGTT TAAACTCTTGGTACTGAACAGCCTTAAGAAAATGATGAATGTCGCTGAGCTGGAACTCCAGA ACTGTGAGCTAGAGAAATCCCACATGCTATTTTCAGCCTCTCTAATTTACAGGAACTGGAT TTAAAGTCCAATAACATTCGCACAATTGAGGAAATCATCAGTTTCCAGCATTTAAAACGACT AAAACTTGGAGTCACTTTATTTCTCTAACAACAAGCTCGAATCCTTACCAGTGGCAGTATTT AGTTTACAGAAACTCAGATGCTTAGATGTGAGCTACAACAACATTTCAATGATTCCAATAGA AATAGGATTGCTTCAGAACCTGCAGCATTTGCATATCACTGGGAACAAAGTGGACATTCTGC ${\tt CAAAACAATTGTTTAAATGCATAAAGTTGAGGACTTTGAATCTGGGACAGAACTGCATCACC}$ CTTGGACCGCCTGCCAGCCCAGCTGGGCCAGTGTCGGATGCTCAAGAAAAGCGGGCTTGTTG TGGAAGATCACCTTTTTGATACCCTGCCACTCGAAGTCAAAGAGGCATTGAATCAAGACATA AATATTCCCTTTGCAAATGGGATT<u>TAA</u>ACTAAGATAATATATGCACAGTGATGTGCAGGAAC AACTTCCTAGATTGCAAGTGCTCACGTACAAGTTATTACAAGATAATGCATTTTAGGAGTAG ATACATCTTTTAAAATAAAACAGAGGGGTGCATAGAAGGCTGATAGAAGACATAACTGAAT GCTGCCGCTACTGAATGTTTACAAATTGCTTGCCTGCTAAAGTAAATGATTAAATTGACATT TTCTTACTAAAAAAAAAAAAAAAA

MAYMLKKLLISYISIICVYGFICLYTLFWLFRIPLKEYSFEKVREESSFSDIPDVKNDFAFL
LHMVDQYDQLYSKRFGVFLSEVSENKLREISLNHEWTFEKLRQHISRNAQDKQELHLFMLSG
VPDAVFDLTDLDVLKLELIPEAKIPAKISQMTNLQELHLCHCPAKVEQTAFSFLRDHLRCLH
VKFTDVAEIPAWVYLLKNLRELYLIGNLMSENNKMIGLESLRELRHLKILHVKSNLTKVPSN
ITDVAPHLTKLVHNDGTKLLVLNSLKKMMNVAELELQNCELERIPHAIFSLSNLQELDLKS
NNIRTIEEIISFQHLKRLTCLKLWHNKIVTIPPSITHVKNLESLYFSNNKLESLEVAVFSLQ
KLRCLDVSYNNISMIPIEIGLLQNLQHLHITGNKVDILPKQLFKCIKLRTLNLGQNCITSLP
EKVGQLSQLTQLELKGNCLDRLPAQLGQCRMLKKSGLVVEDHLFDTLPLEVKEALNQDINIP
FANGI

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 241-245, 248-252, 383-387

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 326-330

Casein kinase II phosphorylation site. amino acids 48-52, 133-137, 226-230, 315-319, 432-436, 444-448

Tyrosine kinase phosphorylation site.

amino acids 349-355, 375-381

N-myristoylation site.

amino acids 78-84, 124-130, 212-218, 392-398

TTTTTTCCATCTCTGGGCCAGCTTGGGATCCTAGGCCGCCCTGGGAAGACATTTGTGTTTTACACACATAAGGAT GCTCAGTGCTTGCCTTATCTGCCTAGGTACATCGAAGTCTTTTGACCTCCATACAGTGATTATGCCTGTC ATCGCTGGTGGTATCCTGGCGGCCTTGCTCCTGCTGATAGTTGTCGTGCTCTGTCTTTACTTCAAAATACACAAC GCGCTAAAAGCTGCAAAGGAACCTGAAGCTGTGGCTGTAAAAAATCACAACCCAGACAAGGTGTGGTGGGCCAAG AACAGCCAGGCCAAAACCATTGCCACGGAGTCTTGTCCTGCCCTGCAGTGCTGTGAAGGATATAGAATGTGTGCC AGTTTTGATTCCCTGCCACCTTGCTGTTGCGACATAAATGAGGGCCTCTGAGTTAGGAAAGGCTCCCTTCTCAAA GCAGAGCCCTGAAGACTTCAATGATGTCAATGAGGCCACCTGTTTTGTGATGTGCAGGCACAGAAGAAGGCACAC CTCCCCATCAGTTTCATGGAAAATAACTCAGTGCCTGCTGGGAACCAGCTGCTGGAGATCCCTACAGAGAGCTTC ${\tt CACAGCTGCTCTATTCTCACACAAATCTACCCCTTGCGTGGCTGGAACTGACGTTTCCCTGGAGGTGTCCAGAAA}$ GCTGATGTAACACAGAGCCTATAAAAGCTGTCGGTCCTTAAGGCTGCCCAGCGCCTTGCCAAAAATGGAGCTTGTA AGAAGGCTCATGCCATTGACCCTCTTAATTCTCTCCTGTTTGGCGGAGCTGACAATGGCGGAGGCTGAAGGCAAT GCAAGCTGCACAGTCAGTCTAGGGGGTGCCAATATGGCAGAGCCCACAAAGCCATGATCCTGCAACTCAATCCC AGTGAGAACTGCACCTGGACAATAGAAAGACCAGAAAACAAAAGCATCAGAATTATCTTTTCCTATGTCCAGCTT GATCCAGATGGAAGCTGTGAAAGTGAAAACATTAAAGTCTTTGACGGAACCTCCAGCAATGGGCCTCTGCTAGGG GGCGGTTACCTGGATACCTTGGAAGGATCCTTCACCAGCCCCAATTACCCAAAGCCGCATCCTGAGCTGGCTTAT TGTGTGTGGCACATACAAGTGGAGAAAGATTACAAGATAAAACTAAACTTCAAAGAGATTTTCCTAGAAATAGAC AAACAGTGCAAATTTGATTTCTTGCCATCTATGATGGCCCCTCCACCAACTCTGGCCTGATTGGACAAGTCTGT ${\tt GGCCGTGTGACTCCCACCTTCGAATCGTCATCAAACTCTCTGACTGTTGTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTATGCCAATTCTCTACAGATTCTCTACAGATTCTCTACAGATTATGCCAATTCTCTACAGATTCTACAGATTCTCTACAGATTCTCTACAGATTCTCTACAGATTCTCTACAGATTCTACAGATTCTCTACAGATTCTCTACAGATTCATAGATTCTACAGAT$ TACCGGGGATTTTCTGCTTCCTACACCTCAATTTATGCAGAAAACATCAACACTACATCTTTAACTTGCTCTTCT GACAGGATGAGAGTTATTATAAGCAAATCCTACCTAGAGGCTTTTAACTCTAATGGGAATAACTTGCAACTAAAA GACCCAACTTGCAGACCAAAATTATCAAATGTTGTGGAATTTTCTGTCCCTCTTAATGGATGTGGTACAATCAGA AAGGTAGAAGATCAGTCAATTACTTACACCAATATAATCACCTTTTCTGCATCCTCAACTTCTGAAGTGATCACC CGTCAGAAACAACTCCAGATTATTGTGAAGTGTGAAATGGGACATAATTCTACAGTGGAGATAATATACATAACA GAAGATGATGATACAAAGTCAAAATGCACTGGGCAAATATAACACCAGCATGGCTCTTTTTTGAATCCAATTCA ACCTCAGATCCAAATTTGGTGGTGTTTCTTGATACCTGTAGAGCCTCTCCCACCTCTGACTTTGCATCTCCAACC TACGACCTAATCAAGAGTGGATGTAGTCGAGATGAAACTTGTAAGGTGTATCCCTTATTTGGACACTATGGGAGA ${\tt AGCAGTGACCACCAGTCTCGCTGCAATCAAGGTTGTGTCTCCAGAAGCAAACGAGACATTTCTTCATATAAATGG}$ AAAACAGATTCCATCATAGGACCCATTCGTCTGAAAAGGGATCGAAGTGCAAGTGCAATTCAGGATTTCAGCAT GAAACACATGCGGAAGAAACTCCAAACCAGCCTTTCAACAGTGTGCATCTGTTTTCCTTCATGGTTCTAGCTCTG AATGTGGTGACTGTAGCGACAATCACAGTGAGGCATTTTGTAAATCAACGGGCAGACTACAAATACCAGAAGCTG ${\tt CAGAACTAT} \underline{{\tt TAA}} {\tt CTAACAGGTCCAACCCTAAGTGAGACATGTTTCTCCAGGATGCCAAAGGAAATGCTACCTCGT}$ GGCTACACATATTATGAATAAATGAGGAAGGGCCTGAAAGTGACACACAGGCCTGCATGTAAAAAAA

MELVRLMPLTLLILSCLAELTMAEAEGNASCTVSLGGANMAETHKAMILQLNPSENCTWTI
ERPENKSIRIIFSYVQLDPDGSCESENIKVFDGTSSNGPLLGQVCSKNDYVPVFBSSSTIF
FQIVTDSARIQRTVFVPYYFFSPNISIPNCGGYLDTLEGSFTSPNYPKPHPELAYCVWHIQV
EKDYKIKLNFKEIFLEIDKQCKFDFLAIYDGPSTNSGLIGQVCGRVTPTFESSSNSLTVVLS
TDYANSYRGFSASYTSIYAENINTTSLTCSSDEMRVIISKSYLEAFNSNGNNLQLKDPTCRP
KLSNVVEFSVPLNGCGTIRKVEDQSITYTNIITFSASTSEVITRQKQLQIIVKCEMGNTV
VEIIYITEDDVIQSQNALGKXNTSMALFESNSFEKTILESPYYVDLNQTLFVQVSLHTSDPN
LVVFLDTCRASPTSDFASPTVDLIKSGCSRDETCKVYPLFGHYGRPQFNAFKFLRSMSSVYL
QCKVLICDSSDHQSRCNQGCVSRSKRDISSYKWKTDSIIGPIRLKRDRSAGNSGFQHETHA
EETPNQPFNSVHLFSFMVLALNVVTVATITVRHFVNQRADYKYQKLQNY

Signal sequence:

amino acids 1-24

Transmembrane domain:

amino acids 571-586

N-glycosylation site.

amino acids 29-33, 57-61, 67-71, 148-152, 271-275, 370-374, 394-398, 419-423

Casein kinase II phosphorylation site.

amino acids 22-26, 108-112, 289-293, 348-352, 371-375, 379-383, 408-412, 463-467, 520-524, 556-560

Tyrosine kinase phosphorylation site.

amino acids 172-180, 407-415, 407-416, 519-528

N-myristoylation site.

amino acids 28-34, 38-44, 83-89, 95-101, 104-110, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

GACGGAAGAACAGCGCTCCCGAGGCCGCGGGAGCCTGCAGAGAGGACAGCCGGCCTGCGCCG TGCTGCCGCCGCCGTGCCCTGCCCACAGCGCGCTTCGACCCCACCTGGGAGTCC CTGGACGCCCGCCGCGCGTGGTTTGACCAGGCCAAGTTCGGCATCTTCATCCACTG GGGAGTGTTTTCCGTGCCCAGCTTCGGTAGCGAGTGGTTCTGGTGGTATTGGCAAAAGGAAA AGATACCGAAGTATGTGGAATTTATGAAAGATAATTACCCTCCTAGTTTCAAATATGAAGAT ${\tt TTTGGACCACTATTTACAGCAAAATTTTTTAATGCCAACCAGTGGGCAGATATTTTTCAGGC}$ CTCTGGTGCCAAATACATTGTCTTAACTTCCAAACATCATGAAGGCTTTACCTTGTGGGGGT CAGAATATTCGTGGAACTGGAATGCCATAGATGAGGGGCCCAAGAGGGACATTGTCAAGGAA CTTGAGGTAGCCATTAGGAACAGAACTGACCTGCGTTTTGGACTGTACTATTCCCTTTTTGA ATGGTTTCATCCGCTCTTCCTTGAGGATGAATCCAGTTCATTCCATAAGCGGCAATTTCCAG TTTCTAAGACATTGCCAGAGCTCTATGAGTTAGTGAACAACTATCAGCCTGAGGTTCTGTGG TCGGATGGTGACGGAGGACACCGGATCAATACTGGAACAGCACAGGCTTCTTGGCCTGGTT ATATAATGAAAGCCCAGTTCGGGGCACAGTAGTCACCAATGATCGTTGGGGAGCTGGTAGCA TCTGTAAGCATGGTGGCTTCTATACCTGCAGTGATCGTTATAACCCAGGACATCTTTTGCCA ${\tt CATAAATGGGAAAACTGCATGACAATAGACAAACTGTCCTGGGGCTATAGGAGGGAAGCTGG}$ AATCTCTGACTATCTTACAATTGAAGAATTGGTGAAGCAACTTGTAGAGACAGTTTCATGTG GAGGAAATCTTTTGATGAATATTGGGCCCACACTAGATGGCACCATTTCTGTAGTTTTTGAG GAGCGACTGAGGCAAGTGGGGTCCTGGCTAAAAGTCAATGGAGAAGCTATTTATGAAACCTA TACCTGGCGATCCCAGAATGACACTGTCACCCCAGATGTGTGGTACACATCCAAGCCTAAAG AAAAATTAGTCTATGCCATTTTTCTTAAATGGCCCACATCAGGACAGCTGTTCCTTGGCCAT CCCAAAGCTATTCTGGGGCAACAGAGGTGAAACTACTGGGCCATGGACAGCCACTTAACTG GATTTCTTTGGAGCAAAATGGCATTATGGTAGAACTGCCACAGCTAACCATTCATCAGATGC CGTGTAAATGGGGCTGGGCTCTAGCCCTAACTAATGTGATCTAAAGTGCAGCAGAGTGGCTG ATGCTGCAAGTTATGTCTAAGGCTAGGAACTATCAGGTGTCTATAATTGTAGCACATGGAGA AAGCAATGTAAACTGGATAAGAAAATTATTTGGCAGTTCAGCCCTTTCCCTTTTTCCCACTA AATTTTTCTTAAATTACCCATGTAACCATTTTAACTCTCCAGTGCACTTTGCCATTAAAGTC TCTTCACATTGATTTCCATGTGTGACTCAGAGGTGAGAATTTTTTCACATTATAGTAG CAAGGAATTGGTGGTATTATGGACCGAACTGAAAATTTTATGTTGAAGCCATATCCCCCATG ${\tt ATTATATGCATCACTTAATATGGGGATATTTTCTGGGAAATGCATTGCTAGTCAAT}$ TTTTTTTTGTGCCAACATCATAGAGTGTATTTACAAAATCCTAGATGGCATAGCCTACTACA CACCTAATGTGTATGGTATAGACTGTTGCTCCTAGGCTACAGACATATACAGCATGTTACTG AATACTGTAGGCAATAGTAACAGTGGTATTTGTATATCGAAACATATGGAAACATAGAGAAG GTACAGTAAAAATACTGTAAAATAAATGGTGCACCTGTATAGGGCACTTACCACGAATGGAG CTTACAGGACTGGAAGTTGCTCTGGGTGAGTCAGTGAATGTGAAGGCCTAGGACATTA GTTTTTCTTCTAATTAAATTAAATTAACATAAGTGTACTGTAACTTTACAAACGTTTTAATT TTTAAAACCTTTTTGGCTCTTTTGTAATAACACTTAGCTTAAAACATAAACTCATTGTGCAA ATGTAA

MRPQELPRLAFPLLLLLLLLPPPPCPAHSATRFDPTWESLDARQLPAWFDQAKFGIFIHWG
VFSVPSFGSEWFWWYWQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWADIFQAS
GAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRFGLYYSLFEW
FHPLFLEDESSSFHKRQFPVSKTLPELYELVNNYQPEVLWSDGDGGAPDQYWNSTGFLAWLY
NESPVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDKLSWGYRREAGI
SDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQVGSWLKVNGEAIYETYT
WRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGATEVKLLGHGQPLNWI
SLEQNGIMVELPQLTIHOMPCKWGWALALTNVI

Signal sequence:

amino acids 1-28

N-glycosylation site.

amino acids 171-175, 239-243, 377-381

Casein kinase II phosphorylation site.

amino acids 32-36, 182-186, 209-213, 227-231, 276-280, 315-319, 375-375

Tyrosine kinase phosphorylation site.

amino acids 361-369. 389-397

N-myristoylation site.

amino acids 143-149, 178-184, 255-261, 272-278, 428-434

Leucine zipper pattern.

amino acids 410-432

Alpha-L-fucosidase putative active site.

amino acids 283-295

TCCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAGTGGCCATC CTTCTCACTTCCATCTGGACCACGAGGCTCCTGGTCCAAGGCTCTTTGCGTGCAGAGAGCT TTCCATCCAGGTGTCATGCAGAATTATGGGGATCACCCTTGTGAGCAAAAAGGCGAACCAGC AGCTGAATTTCACAGAAGCTAAGGAGGCCTGTAGGCTGCTGGGACTAAGTTTGGCCGGCAAG GACCAAGTTGAAACAGCCTTGAAAGCTAGCTTTGAAACTTGCAGCTATGGCTGGGTTGGAGA ACTTGGACTAACTCGTGCATTCCAGAAATTATCACCACCAAAGATCCCATATTCAACACTCA AACTGCAACAACAACAACAACTTATTGTCAGTGACAGTACCTACTCGGTGGCATCCCCTT ACTCTACAATACCTGCCCCTACTACTACTCCTCCTGCTCCAGCTTCCACTTCTATTCCACGG AGAAAAAATTGATTTGTGTCACAGAAGTTTTTATGGAAACTAGCACCATGTCTACAGAAAC TGAACCATTTGTTGAAAATAAAGCAGCATTCAAGAATGAAGCTGCTGGGTTTGGAGGTGTCC CGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCCTAATGAGGAATCAAAGA AAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGCGATGCCTGGAA TTACCCTGCCCCAGCTGGGGAAATCAAAAGGGCCCAAAGAACCAAAGAAGAAGTCCACCCTT GGTTCCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAATGC CCTTCTCCTTATTGTAACCCTGTCTGGATCCTATCCTCCTACCTCCAAAGCTTCCCACGGCC TTTCTAGCCTGGCTATGTCCTAATAATATCCCACTGGGAGAAAGGAGTTTTGCAAAGTGCAA GGACCTAAAACATCTCATCAGTATCCAGTGGTAAAAAAGGCCTCCTGGCTGTCTGAGGCTAGG TGGGTTGAAAGCCAAGGAGTCACTGAGACCAAGGCTTTCTCTACTGATTCCGCAGCTCAGAC CCTTTCTTCAGCTCTGAAAGAGAAACACGTATCCCACCTGACATGTCCTTCTGAGCCCGGTA AGAGCAAAAGATGGCAGAAAAGTTTAGCCCCTGAAAGCCATGGAGATTCTCATAACTTGAG ACCTAATCTCTGTAAAGCTAAAATAAAGAAATAGAACAAGGCTGAGGATACGACAGTACACT GTCAGCAGGGACTGTAAACACAGACAGGGTCAAAGTGTTTTCTCTGAACACATTGAGTTGGA ATCACTGTTTAGAACACACACACTTACTTTTTCTGGTCTCTACCACTGCTGATATTTTCTCT AGGAAATATACTTTTACAAGTAACAAAAATAAAAACTCTTATAAATTTCTATTTTTATCTGA GTTACAGAAATGATTACTAAGGAAGATTACTCAGTAATTTGTTTAAAAAGTAATAAAATTCA ACAAACATTTGCTGAATAGCTACTATATGTCAAGTGCTGTGCAAGGTATTACACTCTGTAAT TGAATATTATTCCTCAAAAAATTGCACATAGTAGAACGCTATCTGGGAAGCTATTTTTTTCA GTTTTGATATTTCTAGCTTATCTACTTCCAAACTAATTTTTATTTTTTGCTGAGACTAATCTT ATTCATTTTCTCTAATATGGCAACCATTATAACCTTAATTATTATTATCATACCTAAGAAG TACATTGTTACCTCTATATACCAAAGCACATTTTAAAAGTGCCATTAACAAATGTATCACTA GCCCTCCTTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATTTGTGACAAAAAATTAA AGCATTTAGAAAACTT

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACR LLGLSLAGKDQVETALKASFETCSYGWVGDGFVVISRISPNPKCGKNGVGVLIWKVPVSRQF AAYCYNSSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPP APASTSIPRRKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVLALLFF GAAAGLGFCYVKRYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSP SKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

 ${\tt AG} \underline{\textbf{ATG}} \texttt{GCGGTCTTGGCACCTCTAATTGCTCTCGTGTATTCGGTGCCGCGACTTTCACGATGG}$ $\tt CTCGCCCAACCTTACTACCTTCTGTCGGCCCTGCTCTCTGCTGCCTTCCTACTCGTGAGGAA$ ACTGCCGCCGCTCTGCCACGGTCTGCCCACCCAACGCGAAGACGGTAACCCGTGTGACTTTG ACTGGAGAGAGTGGAGATCCTGATGTTTCTCAGTGCCATTGTGATGATGAAGAACCGCAGA ${\tt TCCATCACTGTGGAGCAACATATAGGCAACATTTTCATGTTTAGTAAAGTGGCCAACACAAT}$ TCTTTCCTCCGCTTGGATATTCGCATGGGCCTACTTTACATCACACTCTGCATAGTGTTCC TGATGACGTGCAAACCCCCCTATATATGGGCCCTGAGTATATCAAGTACTTCAATGATAAA ACCATTGATGAGGAACTAGAACGGGACAAGAGGGTCACTTGGATTGTGGAGTTCTTTGCCAA TTGGTCTAATGACTGCCAATCATTTGCCCCTATCTATGCTGACCTCTCCCTTAAATACAACT $\tt GTACAGGGCTAAATTTTGGGAAGGTGGATGTTGGACGCTATACTGATGTTAGTACGCGGTAC$ ${\tt AAAGTGAGCACATCACCCTCACCAAGCAACTCCCTACCCTGATCCTGTTCCAAGGTGGCAA}$ GGAGGCAATGCGGCGCCACAGATTGACAAGAAAGGACGGGCTGTCTCATGGACCTTCTCTG AGGAGAATGTGATCCGAGAATTTAACTTAAATGAGCTATACCAGCGGGCCAAGAAACTATCA AAGGCTGGAGACAATATCCCTGAGGAGCAGCCTGTGGCTTCAACCCCCACCACAGTGTCAGA ${\tt TGGGGAAAACAAGAAGGATAAAT \textbf{A}\textbf{A}\textbf{G}\textbf{A}\textbf{T}\textbf{C}\textbf{C}\textbf{T}\textbf{C}\textbf{A}\textbf{C}\textbf{T}\textbf{T}\textbf{T}\textbf{G}\textbf{G}\textbf{C}\textbf{A}\textbf{G}\textbf{T}\textbf{T}\textbf{C}\textbf{T}\textbf{T}\textbf{T}\textbf{C}\textbf{T}\textbf{C}\textbf{T}\textbf{C}\textbf{T}\textbf{T}\textbf{T}\textbf{C}\textbf{T}\textbf{C}\textbf$ ${\tt CCAGGCTCTTTCCATAACCACAAGCCTGAGGCTGCAGCCTTTNATTNATGTTTTCCCTTTGG}$ $\tt CTGNGACTGGNTGGGGCAGCATGCAGCTTCTGATTTTAAAGAGGCATCTAGGGAATTGTCAGGGATTGTCAGGATTGTAGATTGTCAGGATTGTAGATTGTCAGGATTGTAGATTGTAGATTGTAGATTGTTCAGGATTGTAGATTGTAGATTGTAGATTGTTAGG$ ${\tt AGCTATTCAGACATCTCCATGGTTTCTCCATGAAACTCTGTGGTTTCATCATTCCTTTAG}$ ${\tt TTGACCTGCACAGCTTGGTTAGACCTAGATTTAACCCTAAGGTAAGATGCTGGGGTATAGAA}$ $\tt CGCTAAGAATTTTCCCCCAAGGACTCTTGCTTCCTTAAGCCCTTCTGGCTTCGTTTATGGTC$ TTCATTAAAAGTATAAGCCTAACTTTGTCGCTAGTCCTAAGGAGAAACCTTTAACCACAAAG TTTTTATCATTGAAGACAATATTGAACAACCCCCTATTTTGTGGGGATTGAGAAGGGGTGAA ${\tt TAGAGGCTTGAGACTTTCCTTTGTGTGGTAGGACTTTGGAGGAGAAATCCCCTGGACTTTCAC}$ TAACCCTCTGACATACTCCCCACACCCAGTTGATGGCTTTCCGTAATAAAAAGATTGGGATT TCCTTTTG

MAVLAPLIALVYSVPRLSRWLAQPYYLLSALLSAAFLLVRKLPPLCHGLPTQREDGNPCDFD WREVEILMFLSAIVMMKNRRSITVEQHIGNIFMFSKVANTILFFRLDIRMGLLYITLCIVFL MTCKPPLYMGPEYIKYFNDKTIDEELERDKRVTWIVEFFANWSNDCQSFAPIYADLSLKYNC TGLNFGKVDVGRYTDVSTRYKVSTSPLTKQLPTLILFQGGKEAMRRPQIDKKGRAVSWTFSE ENVIREFNLNELYQRAKKLSKAGDNIPEEQPVASTPTTVSDGENKKDK

Signal sequence:

amino acids 1-48

Transmembrane domain:

amino acids 111-125

N-glycosylation site.

amino acids 165-169, 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 154-158, 265-269

Casein kinase II phosphorylation site.

amino acids 51-55, 145-149, 245-249, 286-290, 288-292

N-myristoylation site.

amino acids 188-194, 225-231

Myb DNA-binding domain repeat signature 1.

amino acids 244-253

GGACAGCTCGCGGCCCCCGAGAGCTCTAGCCGTCGAGGAGCTGCCTGGGGGACGTTTGCCCTG $\tt GGGCCCAGCCTGGCCCGGGTCACCCTGGCATGAGGAGATGGGCCTGTTGCTCCTGGTCCCA$ TTGCTCCTGCTGCCCGGCTCCTACGGACTGCCCTTCTACAACGGCTTCTACTACTCCAACAG CGCCAACGACCAGAACCTAGGCAACGGTCATGGCAAAGACCTCCTTAATGGAGTGAAGCTGG TGGTGGAGACACCCGAGGAGACCCTGTTCACCTACCAAGGGGCCAGTGTGATCCTGCCCTGC GTCGGAGAACGGGGCCCCAGAGAAGGACGTGCTGGTGGCCATCGGGCTGAGGCACCGCTCCT ATCCAGGATCTGCGGCTGGAGGACTATGGGCGTTACCGCTGTGAGGTCATTGACGGGCTGGA GGATGAAAGCGGTCTGGTGGAGCTGGAGCTGCGGGGGTGTGGTCTTTCCTTACCAGTCCCCCA ACGGGCGCTACCAGTTCAACTTCCACGAGGGCCAGCAGGTCTGTGCAGAGCAGGCTGCGGTG GTGGCCTCCTTTGAGCAGCTCTTCCGGGCCTGGGAGGGGCCTGGACTGGTGCAACGCGGG ${\tt CAGGCCTGGCACCTGCGAGCTACGGCCCCCCGCCACCGCCTGCACCGCTATGAT}$ $\tt GTATTCTGCTTCGCTACTGCCCTCAAGGGGGCGGGTGTACTACCTGGAGCACCCTGAGAAGCT$ GACGCTGACAGAGGCAAGGGAGGCCTGCCAGGAAGATGATGCCACGATCGCCAAGGTGGGAC GGCAGCGTCCGCTACCCTGTGGTTCACCCGCATCCTAACTGTGGGCCCCCAGAGCCTGGGGT $\tt CGTTTTCCCTTGTGGGTTGGAGCCATTTTAACTGTTTTATACTTCTCAATTTAAATTTTCT$ TTAAACATTTTTTTACTATTTTTTGTAAAGCAAACAGAACCCAATGCCTCCCTTTGCTCCTG GATGCCCCACTCCAGGAATCATGCTTGCTCCCCTGGGCCATTTGCGGTTTTGTGGGCTTCTG GGTGGCCTGTCTAGAATGCCGCCGGGAGTCCGGGCATGGTGGGCACAGTTCTCCCTGCCCCT GGAGGGGCCCTCAGGTGTGTGTACTTTGGACAATAAATGGTGCTATGACTGCCTTCCGCCAA

MGLLLLVPLLLLPGSYGLPFYNGFYYSNSANDQNLGNGHGKDLLNGVKLVVETPEETLFTYQ
GASVILPCRYRYEPALVSPRRVRVKWKLSENGAPEKDVLVAIGLRHRSFGDYQGRVHLRQD
KEHDVSLEIQDLRLEDYGRYRCEVIDGLEDESGLVELELRGVVFPYQSPNGRYQFNFHEGQQ
VCAEQAAVVASFEQLFRAWEEGLDWCNAGWLQDATVQYPIMLPRQPCGGPGLAPGVRSYGPR
HRRLHRYDVFCFATALKGRVYYLEHPEKLTLTEAREACQEDDATIAKVGQLFAAWKFHGLDR
CDAGWLADGSVRYPVVHPHPNCGPPEPGVRSFGFPDPQSRLYGVYCYRQH

Signal sequence:

amino acids 1-17

Casein kinase II phosphorylation site. amino acids 29-33, 53-57, 111-115, 278-282

Tyrosine kinase phosphorylation site.

amino acids 137-145

N-myristoylation site.

amino acids 36-42, 184-190, 208-214, 237-243, 297-303, 307-313

CAGGGGAGGTGCACCAGGCGCCCCCTGAGCGACGCTCCCCATGATGACGCCCACGGGAA CTTCCAGTACGACCATGAGGCTTTCCTGGGACGGGAAGTGGCCAAGGAATTCGACCAACTCA CCCCAGAGGAAAGCCAGGCCCGTCTGGGGCGGATCGTGGACCGCATGGACCGCGCGGGGGAC GGCGACGGCTGGGTGTCGCCGAGCTTCGCGCGTGGATCGCGCACACGCAGCAGCGGCA CATACGGGACTCGGTGAGCGCGGCCTGGGACACGTACGACACGGACCGCGACGGGCGTGTGG GTTGGGAGGAGCTGCGCAACGCCACCTATGGCCACTACGCCCCGGTGAAGAATTTCATGAC GTGGAGGATGCAGAGACCTACAAAAAGATGCTGGCTCGGGACGAGCGGCGTTTCCGGGTGGC CGACCAGGATGGGGACTCGATGGCCACTCGAGAGGAGCTGACAGCCTTCCTGCACCCCGAGG AGTTCCCTCACATGCGGGACATCGTGATTGCTGAAACCCTGGAGGACCTGGACAGAAACAAA GATGGCTATGTCCAGGTGGAGGAGTACATCGCGGATCTGTACTCAGCCGAGCCTGGGGAGGA GGAGCCGGCGTGGGTGCAGACGAGAGGCAGCAGTTCCGGGACTTCCGGGATCTGAACAAGG ATGGGCACCTGGATGGGAGTGAGGTGGGCCACTGGGTGCTGCCCCTGCCCAGGACCAGCCC CTGGTGGAAGCCAACCACCTGCTGCACGAGAGCGACACGGACAAGGATGGGCGGCTGAGCAA AGCGGAAATCCTGGGTAATTGGAACATGTTTGTGGGCAGTCAGGCCACCAACTATGGCGAGG ${\tt ACCTGACCCGGCACCACGATGAGCTG} {\color{red} {\bf TGA}} {\tt GCACCGCGCACCTGCCACAGCCTCAGAGGCCCG}$ $\tt GCAGATGCAGTCCCAGGCATCCTCCTGCCCCTGGGCTCTCAGGGACCCCCTGGGTCGGCTTC$ TGTCCCTGTCACACCCCCAACCCCAGGGGGGGGGTGTCATAGTCCCAGGGGATAAGCAATAC CTATTTCTGACTGAGTCTCCCAGCCCAGACCCAGGGACCCTTGGCCCCAAGCTCAGCTCTAA GAACCGCCCCAACCCCTCCAGCTCCAAATCTGAGCCTCCACCACATAGACTGAAACTCCCCT ΑΑΑΑΑΑΑΑΑΑΑΑΑ

MMWRPSVLLLLLLRHGAQGKPSPDAGPHGQGRVHQAAPLSDAPHDDAHGNFQYDHEAFLGR
EVAKEFDQLTPEESQARLGRIVDRMDRAGDGDGWVSLAELRAWIAHTQQRHIRDSVSAAWDT
YDTDRDGRVGWEELRNATYGHYAPGEEFHDVEDAETYKKMLARDERRFRVADQDGDSMATRE
ELTAFLHPEEFPHMRDIVIAETLEDLDRNKDGYVQVEEYIADLYSAEPGEEEPAWVQTERQQ
FRDFRDLNKDGHLDGSEVGHWVLPPAQDQPLVEANHLLHESDTDKDGRLSKAEILGNWNMFV
GSOATNYGEDLTRHHDEL

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 140-144

Casein kinase II phosphorylation site.

amino acids 72-76, 98-102, 127-131, 184-188, 208-212, 289-293, 291-295, 298-302

N-myristoylation site.

amino acids 263-269, 311-317

Endoplasmic reticulum targeting sequence.

amino acids 325-330

GGGGCCTTGCCTTCCGCACTCGGGCGCAGCCGGGTGGATCTCGAGCAGGTGCGGAGCCCCGG GCGGCGGGCGCGGTGCGAGGGATCCCTGACGCCTCTGTCCCTGTTTCTTTGTCGCTCCCAG CCTGTCTGTCGTCGTTTTGGCGCCCCCGCCCTCCCGCGGGTGCGGGGTTGCACACCGATCCTG GGCTTCGCTCGATTTGCCGCCGAGGCGCCTCCCAGACCTAGAGGGGCGCTGGCCTGGAGCAG GAGGAGGTGACGCGGGGGCCTCCCGCACCCTGGCCTTGCCCGCATTCTCCCTCTCTCCCAG $\tt GTGTGAGCAGCCTATCAGTCACC\underline{ATG}{\tt TCCGCAGCCTGGATCCCGGCTCTCGGCCTCGGTGTG}$ TGTCTGCTGCTGCCGGGGCCCGCGGGCAGCGAGCGAGCCGCTCCCATTGCTATCACATG TTTTACCAGAGGCTTGGACATCAGGAAAGAGAAAGCAGATGTCCTCTGCCCAGGGGGCTGCC $\tt CTCTTGAGGAATTCTCTGTGTATGGGAACATAGTATATGCTTCTGTATCGAGCATATGTGGG$ GCTGCTGTCCACAGGGGAGTAATCAGCAACTCAGGGGGACCTGTACGAGTCTATAGCCTACC TGGTCGAGAAAACTATTCCTCAGTAGATGCCAATGGCATCCAGTCTCAAATGCTTTCTAGAT GGTCTGCTTCTTTCACAGTAACTAAAGGCAAAAGTAGTACACAGGAGGCCACAGGACAAGCA GTGTCCACAGCACATCCACCAACAGGTAAACGACTAAAGAAAACACCCGAGAAGAAAACTCG GCCGATTTAATTTACAGAAGAATTTTGTTGGAAAAGTGGCTCTAATGTTGGGAATTGGAACA GAAGGACCACATGTGGGCCTTGTTCAAGCCAGTGAACATCCCAAAATAGAATTTTACTTGAA AAACTTTACATCAGCCAAAGATGTTTTGTTTGCCATAAAGGAAGTAGGTTTCAGAGGGGGGTA ATTCCAATACAGGAAAAGCCTTGAAGCATACTGCTCAGAAATTCTTCACGGTAGATGCTGGA GTAAGAAAAGGGATCCCCAAAGTGGTGGTGGTATTTATTGATGGTTGGCCTTCTGATGACAT $\tt CGGAATAATGGCTTCTTCTCTTACCACATGCCCAACTGGTTTGGCACCACAAAATACGTAAA$ GCCTCTGGTACAGAGCTGTGCACTCATGAACAAATGATGTGCAGCAAGACCTGTTATAACT CAGTGAACATTGCCTTTCTAATTGATGGCTCCAGCAGTGTTGGAGATAGCAATTTCCGCCTC ATGCTTGAATTTGTTTCCAACATAGCCAAGACTTTTGAAATCTCGGACATTGGTGCCAAGAT AAGAGAATGTCCTAGCTGTCATCAGAAACATCCGCTATATGAGTGGTGGAACAGCTACTGGT GATGCCATTTCCTTCACTGTTAGAAATGTGTTTTGGCCCTATAAGGGAGAGCCCCAACAAGAA CTTCCTAGTAATTGTCACAGATGGGCAGTCCTATGATGATGTCCAAGGCCCTGCAGCTGCTG ${\tt CACATGATGCAGGAATCACTATCTTCTCTGTTGGTGTGGCTTGGGCACCTCTGGATGACCTG}$ AAAGATATGGCTTCTAAACCGAAGGAGTCTCACGCTTTCTTCACAAGAGAGTTCACAGGATT ${\tt AGAACCAATTGTTTCTGATGTCATCAGAGGCATTTGTAGAGATTTCTTAGAATCCCAGCAA{\bf T}}$ AATGGTAACATTTTGACAACTGAAAGAAAAGTACAAGGGGATCCAGTGTGTAAATTGTATT CTCATAATACTGAAATGCTTTAGCATACTAGAATCAGATACAAAACTATTAAGTATGTCAAC AGCCATTTAGGCAAATAAGCACTCCTTTAAAGCCGCTGCCTTCTGGTTACAATTTACAGTGT ACTTTGTTAAAAACACTGCTGAGGCTTCATAATCATGGCTCTTAGAAACTCAGGAAAGAGGA GATAATGTGGATTAAAACCTTAAGAGTTCTAACCATGCCTACTAAATGTACAGATATGCAAA

MSAAWIPALGLGVCLLLLPGPAGSEGAAPIAITCFTRGLDIRKEKADVLCPGGCPLEEFSVY
GNIVYASVSSICGAAVHRGVISNSGGPVRVYSLPGRENYSSVDANGIQSQMLSRWSASFTVT
KGKSSTQEATGQAVSTAHPPTGKRLKKTPEKKTGNKDCKADIAFLIDGSFNIGQRRFNLQKN
FVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLKNFTSAKDVLFAIKEVGFRGGNSNTGKAL
KHTAQKFFTVDAGVRKGIPKVVVVFIDGWPSDDIEEAGIVAREFGVNVFIVSVAKPIPEELG
MVQDVTFVDKAVCRNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSKTCYNSVNIAFLI
DGSSSVGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTEFSFTDYSTKENVLAVI
RNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVIVTDGQSYDDVQGPAAAAHDAGITI
FSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRGICRDFLESQQ

Signal sequence:

amino acids 1-24

N-glycosylation site.

amino acids 100-104, 221-225

Casein kinase II phosphorylation site.

amino acids 102-106, 129-133, 224-228, 316-320, 377-381, 420-424, 425-429, 478-482, 528-532

N-myristoylation site.

amino acids 10-16, 23-29, 81-87, 135-141, 158-164, 205-211, 239-245, 240-246, 261-267, 403-409, 442-448, 443-449

Amidation site.

amino acids 145-149

CGCCGCGCTCCCGCACCCGCGCCCCACCGCGCCCCCCCATCTGCACCCGCAGCCC GGCGGCCTCCCGGCGGGAGCGAGCAGATCCAGTCCGGCCCGCAGCGCAACTCGGTCCAGTCG TGCTGGCGGCGGTCCCACGGCCCCGCGCCCGACGGCGACCTCGGCTCCAGTC AAGCCCGGCCCGGCTCTCAGCTACCCGCAGGAGGAGGCCACCCTCAATGAGATGTTCCGCGA GGTTGAGGAACTGATGGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGAGG CAGAAGAAGCTGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACTTACCTCCCAGCTAT TCACAAGATAACCAACAACCAGACTGGACAAATGGTCTTTTCAGAGACAGTTATCACATCTG TGGGAGACGAAGAAGGAGCCACGAGTGCATCATCGACGAGGACTGTGGGCCCAGC TGGCCACCAGGGGCAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGGCTG TGCTGTGCCTTCCAGAGAGGCCTGCTGTTCCCTGTGTGCACACCCCTGCCCGTGGAGGGCGA GCTTTGCCATGACCCCGCCAGCCGGCTTCTGGACCTCATCACCTGGGAGCTAGAGCCTGATG GAGCCTTGGACCGATGCCCTTGTGCCAGTGGCCTCTCTGCCAGCCCACAGCCACAGCCTG GTGTATGTGCAAGCCGACCTTCGTGGGGAGCCGTGACCAAGATGGGGAGATCCTGCTGCC CAGAGAGGTCCCCGATGAGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCGCCAGGAGCTGG AGGACCTGGAGAGGGCCTGACTGAAGAGATGGCGCTGGGGGAGCCTGCGGCTGCCGCCGCT $\tt GCACTGCTGGGAGGGGAAGAGATT{\color{red}{TAG}} ATCTGGACCAGGCTGTGGGTAGATGTGCAATAGAA$ ATAGCTAATTTATTTCCCCAGGTGTGTGCTTTAGGCGTGGGCTGACCAGGCTTCTTCCTACA TCTTCTTCCCAGTAAGTTTCCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTTGTTCAGC TGCAGGAGCAGTTTGCCACCCCTGTCCAGATTATTGGCTGCTTTGCCTCTACCAGTTGGCAG ACAGCCGTTTGTTCTACATGGCTTTGATAATTGTTTGAGGGGAGGAGATGGAAACAATGTGG ${\tt AGTCTCCCTGATTGGTTTTGGGGAAATGTGGAGAAGAGTGCCCTGCTTTGCAAACATCAA}$ CCTGGCAAAAATGCAACAAATGAATTTTCCACGCAGTTCTTTCCATGGGCATAGGTAAGCTG TGCCTTCAGCTGTTGCAGATGAAATGTTCTGTTCACCCTGCATTACATGTGTTTATTCATCC AGCAGTGTTGCTCAGCTCCTACCTCTGTGCCAGGGCAGCATTTTCATATCCAAGATCAATTC GCTCAGAGACTGCAAGCTGCCCAAGTCACACAGCTAGTGAAGACCAGAGCAGTTTCAT CTGGTTGTGACTCTAAGCTCAGTGCTCTCTCCACTACCCACACCAGCCTTGGTGCCACAA AAGTGCTCCCCAAAAGGAAGGAGAATGGGATTTTTCTTGAGGCATGCACATCTGGAATTAAG $\tt GTCAAACTAATTCTCACATCCCTCTAAAAGTAAACTACTGTTAGGAACAGCAGTGTTCTCAC$ AGTGTGGGGCAGCCGTCCTTCTAATGAAGACAATGATATTGACACTGTCCCTCTTTGGCAGT TGCATTAGTAACTTTGAAAGGTATATGACTGAGCGTAGCATACAGGTTAACCTGCAGAAACA GTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTTGCAAAATCACTTAGCAGCAAC TGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGCTGTGTGAAACATGGTT GTAATATGCGACTGCGAACACTGAACTCTACGCCACTCCACAAATGATGTTTTCAGGTGTCA TGGACTGTTGCCACCATGTATTCATCCAGAGTTCTTAAAGTTTAAAGTTGCACATGATTGTA TAAGCATGCTTTCTTTGAGTTTTAAATTATGTATAAACATAAGTTGCATTTAGAAATCAAGC

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQ
HKLRSAVEEMEAEEAAAKASSEVNLANLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTG
QMVFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRDSECCG
DQLCVWGHCTKMATRGSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGELCHDPASRL
LDLITWELEPDGALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEV
GSFMEEVRQELEDLERSLTEEMALGEPAAAAAALLGGEEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316, 327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

TTCGAGACCAGCCTGGCCAACATGGAGAAACCCCCCATCTCTACTAAAAATTAGACAAAATTAGCCAGGAGTGGTGGC AGGTGCCTGTAATCCCAGCTACTCAGGTGGCTGAGCCAGGAGAATCGCTTGAATCCAGGAGGCGGAGGATGCAGT GGGGTAGATACTGCTTCTCTGCAACCTCCTTAACTCTGCATCCTCTTCTTCCAGGGCTGCCCCTGATGGGGCCTG GCAATGACTGAGCAGGCCCAGCCCCAGAGGACAAGGAAGAAGGCATATTGAGGAGGGCAAGAAGTGACGCCCG GTGTAGAATGACTGCCCTGGGAGGGTGGTTCCTTGGGCCCTGGCAGGGTTGCTGACCCTTACCCTGCAAAACACA AAGAGCAGGACTCCAGACTCTCCTTGTGAATGGTCCCCTGCCCTGCAGCTCCACCATGAGGCTTCTCGTGGCCCCACTCTTGCTAGCTTGGGTGGCTGGTGCCACTGTGCCCGTGGTACCCTGGCATGTTCCCTGCCCCCCTCAGTGTGCCTGCCAGATCCGGCCCTGGTATACGCCCCGCTCGTCCTACCGCGAGGCTACCACTGTGGACTGCAATGA $\tt CCTATTCCTGACGGCAGTCCCCCGGGCACTCCCCGCAGGCACACAGACCCTGCTCCTGCAGAGCAACAGCATTGT$ GGAGGACCACAGCTTTGCAGGGCTGGCCAGCCTACAGGAACTCTATCTCAACCACCAGCTCTACCGCATCGC GAACTTCCGGCCCTGGCCAACCTGCGTAGCCTGGTGCTAGCAGGCATGAACCTGCGGGAGATCTCCGACTATGC $\tt CCTGGAGGGGCTGCAAAGCCTGGAGAGCCTCTCTTCTATGACAACCAGCTGGCCCGGGTGCCCAGGCGGGCACT$ ${\tt GGAACAGGTGCCCGGGCTCAAGTTCCTAGACCTCAACAAGAACCCGCTCCAGCGGGTAGGGCCGGGGGGACTTTGC}$ CCTGCCCAACCTGCAGGAGGTAGGTCTCCACGGCAACCCCATCCGCTGTGACTGTCATCCGCTGGGCCAATGC GGTCCGTGAGGTGCCCTTCCGGGAGATGACGGACCACTGTTTGCCCCTCATCTCCCCACGAAGCTTCCCCCCAAG ${\tt GGTCACTCCAGCTGGGCTTCGACTGACACCTGCCCATGCAGGGAGGTACCGGGTGTACCCCGAGGGGACCCT}$ GGAGCTGCGGAGGGTGACAGCAGAAGAGGCCAGGGCTATACACCTGTGTGGCCCAGAACCTGGTGGGGGCTGACAC $\tt GTTGGCTTGTGTATGGGCCAGGACCAAAGAGGCCACTTCTTGCCACAGAGCCTTAGGGGATCGTCCTGGGCTCAT$ $\tt TGCCATCCTGGCTGTCCTTCTCCTGGCAGCTGGGCTAGCGGCCCACCTTGGCACAGGCCAACCCAGGAA$ GGGTGTGGGTGGGAGGCGGCCTCTCCCTCCAGCCTGGGCTTTCTGGGGGCTGGAGTGCCCCCTTCTGTCCGGGTTGT ${\tt ACCATTGTCTCAAAATTCT} \underline{{\tt TGA}} {\tt AGCTCAGCCTGTTCTCAGCAGTAGAGAAATCACTAGGACTACTTTTTACCAAA}$ $\tt CCTCTGCTGCCATTCTGAGGAACATCTCCAAGGAACAGGAGGGACTTTGGCTAGAGCCTCCTGCCTCCCCATCTT$ ${\tt TCTTTCTCTGTACAGTCTCAGTTGCTCTTGTGCCTCCTGGGCAAGGGCTGAAGGAGGCCACTCCATCTCACTCACTCTCACTCTCACTCTCACTCTCACTCTCACTCTCAC$ $\tt CGCCTCATCTCAGCAGCCTGGGCTCGGCATTCCGAAGCTGACTTTCTATAGGCAATTTTGTACCTTTGTGGAGAA$ AAAA

MRLLVAPLLLAWVAGATATVPVVPWHVPCPPQCACQIRPWYTPRSSYREATTVDCNDLFLTA
VPPALPAGTQTLLLQSNSIVRVDQSELGYLANLTELDLSQNSFSDARDCDPHALPQLLSLHL
EENQLTRLEDHSFAGLASLQELYLANINGLYRLAFASCLSNLLRLHLINSNLLRALADSRWFE
MLPNLEILMIGGNKVDAILDMNFRPLANLRSLVLAGMNLREISDYALEGLQSLESLSFYDNQ
LARVPRRALEQVPGLKFLDLDKNPLQRVGPGDPANMLHLKBLGLINNMEELVSIDKFALVNLP
ELTKILDITNNPRLSFIHPRAFHHLPQMETLMINNNALSAHLQOTVESLPNLQEVGHGMPIR
CDCVIRWANATGTRVRFIEPQSTLCAEPPDLQRLPVREVPFREMTDHCLPLISPRSFPPSLQ
VASGESWVLHCRALAEFEPBIYWVTPAGLRLTPAHAGRRYRVYPEGTLELRRVTTAEEAGLYT
CVAQNLVAGDTKTVSVVUGRALLQFGDREGQGLERVQETHPYHILLSWYTPPNTYSTNLTW
SSASSLRGQGATALARLPRGTHSYNITRLLQATEYWACLQVAFADAHTQLACVWARTKEATS
CHRALGDRPGLIAILALAVLLLAAGLAAHLGTGQPRKGVGGRRPLPPAWAFWGWSAPSVRVV
SAPLVLPWNPGRKLPRSSEGETLLPPLSONS

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 629-648

N-glycosylation site.

amino acids 94-98, 381-385, 555-559, 583-587

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 485-489

Casein kinase II phosphorylation site.

amino acids 46-50, 51-55, 96-100, 104-108, 130-134, 142-146, 243-247, 313-317, 488-492, 700-704

Tyrosine kinase phosphorylation site.

amino acids 532-540

N-myristoylation site.

amino acids 15-21, 493-499, 566-572

Amidation site.

amino acids 470-474, 660-664, 692-696

GCAAGCCAAGGCGCTGTTTGAGAAGGTGAAGAAGTTCCGGACCCATGTGGAGGAGGGGGACATTGTGTACCGCCT $\tt CCTGGCCACACTCTTCAAGATCCTGGCGTCCTTCTACATCAGCCTAGTCATCTTCTACGGCCTCATCTGCATGTA$ CGACATCCCCGACGTCAAGAACGACTTCGCCTTCATGCTGCACCTCATTGACCAATACGACCCGCTCTACTCCAA GGACAAGCTCCGGCAGCGGCTCACCAAGAACGCGCAGGACAAGCTGGAGCTGCACCTGTTCATGCTCAGTGGCAT CCCTGACACTGTGTTTGACCTGGTGGAGCTGGAGGTCCTCAAGCTGGAGCTGATCCCCGACGTGACCATCCCGCC GGCCTTCCTGCGCGAGAACCTGCGGGCGCTGCACATCAAGTTCACCGACATCAAGGAGATCCCGCTGTGGATCTA AGATGTGGGCGTGCACCTGCAGAAGCTGTCCATCAACAATGAGGGCACCAAGCTCATCGTCCTCAACAGCCTCAA GAAGATGGCGAACCTGACTGAGCTGGAGCTGATCCGCTGCGACCTGGAGCGCATCCCCCACTCCATCTTCAGCCT $\tt CCACAACCTGCAGGAGATTGACCTCAAGGACAACCTCAAGACCATCGAGGAGATCATCAGCTTCCAGCACCT$ GCACCGCCTCACCTGCCTTAAGCTGTGGTACAACCACATCGCCTACATCCCCATCCAGATCGGCAACCTCACCAA AGCCATCACGGCCAACCGGATCGAGACGCTCCCTCCGGAGCTCTTCCAGTGCCGGAAGCTGCGGGCCCTGCACCT GCCGGCCCAGCACAGCAAGCAGCAGGACCGCTGCCCAGTCCTCAGGCCCGGAGGGGCAGGCCTAGCTTCTCCCAG AACTCCCGGACAGCCAGGACAGCCTCGCGGCTGGGCAGGAGCCTGGGGCCGCTTGTGAGTCAGGCCAGAGCGAGA GGACAGTATCTGTGGGGCTGGCCCCTTTTCTCCCTCTGAGACTCACGTCCCCCAGGGCAAGTGCTTGTGGAGGAG AGCAAGTCTCAAGAGCGCAGTATTTGGATAATCAGGGTCTCCTCCCTGGAGGCCCAGCTCTGCCCCAGGGGCTGAGAGATAACTTATACATTCCCAAGAAAGTTCAGCCCAGATGGAAGGTGTTCAGGGAAAGGTGGGCTGCCTTTTCCCC ${\tt AAAAGACACTAACGGCCAGTGAGTTGGAGTCTCAGGGCAGGGTGGCAGTTTCCCTTGAGCAAAGCAGCCAGACGT}$ $\tt CCAGTGCCACCGCTGGCTTCCATCAGCCCTGTCGCCACCTGGTCCTTCATGAAGAGCAGACACTTA$ GAGGCTGGTCGGGAATGGGGAGGTCGCCCCTGGGAGGGCAGGCGTTGGTTCCAAGCCGGTTCCCGTCCCTGGCGC $\tt CTGGAGTGCACACCCGGTCGGCACCTGGTGGCTGGAAGCCAACCTGCTTTAGATCACTCGGGTCCCCACCTT$ ${\tt AGAAGGGTCCCCGCCTTAGATCAATCACGTGGACACTAAGGCACGTTTTAGAGTCTCTTGTCTTAATGATTATGT}$ ${\tt CCATCCGTCTGTCCGTCCATTTGTGTTTTCTGCGTCGTGTCATTGGATATAATCCTCAGAAATAATGCACACTAG}$ CCTCTGACAACCATGAAGCAAAAAATCCGTTACATGTGGGTCTGAACTTGTAGACTCGGTCACAGTATCAAATAAA ATCTATAACAGAAAAAAAAAAAAAAA

MRQTIIKVIKFILIICYTVYYVHNIKFDVDCTVDIESLTGYRTYRCAHPLATLFKILASFYI SLVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDPLYSK RFAVFLSEVSENKLRQLNLNNEWTLDKLRQRLTKNAQDKLELHLFMLSGIPDTVFDLVELEV LKLELIPDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFLRENLRALHIKFTDIKEIPLWI YSLKTLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSKLPQVVTDVGVHLQKLSI NNEGTKLIVLNSLKKMANLTELELIRCDLERIPHSIFSLHNLQEIDLKDNNLKTIEEIISFQ HLHRLTCLKLWYNHIAYIPIQIGNLTNLERLYLNRNKIEKIPTQLFYCRKLRYLDLSHNNLT FLPADIGLLQNLQNLAITANRIETLPPELFQCRKLRALHLGNNVLQSLPSRVGELTNLTQIE LRGNRLECLPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site.

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 85-89

Casein kinase II phosphorylation site.

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368, 398-402, 493-497

N-myristovlation site.

amino acids 173-179, 261-267, 395-401, 441-447

 $\texttt{GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTC} \underline{\textbf{ATG}} \\ \texttt{GAGCTGGCACTGCGGCGCTCTCCCGT}$ CCCGCGGTGGTTGCTGCTGCCGCTGCTGCTGGGCCTGAACGCAGGAGCTGTCATTGACT GGCCCACAGAGGAGGCCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATG ${\tt TTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCAT}$ GTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGC CCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTT GTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGA CCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAG ${\tt AATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGC}$ ATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGT $\tt TGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGT$ ACAGCATGTCTCTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTA $\tt CTGAATGCCGTAAATAAGGGGCTCTACAGAGGGCCACAGAGCTGTGGGGGAAAGCAGAAAT$ GATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCA $\tt CGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGC$ GCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACA ${\tt AACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTG}$ ACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTC TACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGAT ${\tt GATGAGACTGGTGACTCAGCAAGAA} \underline{{\tt TAG}} {\tt GATGGGGCTGGAGATGAGCTGGTTTGGCCT}$ ${\tt TGGGGCACAGAGCTGAGGCCGCTGAAGCTGTAGGAAGCGCCATTCTTCCCTGTATCT}$ AACTGGGGCTGTGATCAAGAAGGTTCTGACCAGCTTCTGCAGAGGATAAAATCATTGTCTCT GGAGGCAATTTGGAAATTATTTCTGCTTCTTAAAAAAAACCTAAGATTTTTTAAAAAATTGAT TTGTTTTGATCAAAATAAAGGATGATAATAGATATTAA

MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSC KNFSELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSY VNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQR GTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYRE ATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALS QLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDL IVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVP SDQGDMALKMMRLVTQQE

Signal sequence:

amino acids 1-25

N-glycosylation site.

amino acids 64-68, 126-130, 362-366

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 101-105

Casein kinase II phosphorylation site.

amino acids 204-208, 220-224, 280-284, 284-288, 351-355, 449-453

N-myristoylation site.

amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-175, 187-193, 195-201, 331-337, 332-338, 360-366

GGGCTGGACTCAGGAAGCCGGAGTCGCAGGAGGCGGCGCCGTTATCAGGACCATGCGGCCGA GGGGAGCCTGCGCCTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGG GTCCAGTTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCG TTACTTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCTATGACATTG CCTTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG AGAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATAAACA ACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGAGACATG $\tt GTTTGTGCTGGCAACGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGTGGACCCTT$ GGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGAGTGGGCTGTG GTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAGTGGATCCAGAAG $\tt CTGATGGCCCAGAGTGGCATGTCCCAGCCAGACCCCTCCTGGCCACTACTCTTTTTCCCTCT$ CACTGCCAAGTCAGGCCCTGGTTCTCTTCTTGTTTTGGTAATAAACACATTCCAGTTGA

MGARGALLIALLLARAGLRKPESQEAAPLSGPCGRRVITSRIVGGEDAELGRWPWQGSLRLW
DSHVCGVSLLSHRWALTAAHCFETYSDLSDPSGWMVQFGQLTSMPSFWSLQAYYTRYFVSNI
YLSPRYLGNSPYDIALVKLSAPVTYTKHIQPICLQASTFEFENRTDCWVTGWGYIKEDEALP
SPHTLQEVQVAIINNSMCNHLFLKYSFRKDIFGDMVCAGNAQGGKDACFGDSGGPLACNKNG
LWYQIGVVSWGVGCGRPNRPGVYTNISHHFEWIQKLMAQSGMSQPDPSWPLLFFPLLWALPL
LGPV

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 167-171, 200-204, 273-277

Casein kinase II phosphorylation site.

amino acids 86-90, 134-138, 161-165, 190-194, 291-295

N-myristoylation site.

amino acids 2-8, 44-50, 101-107, 225-231, 229-235, 239-245, 259-265, 269-275

Amidation site.

amino acids 33-37

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 252-263,

Serine proteases, trypsin family, histidine active site.

amino acids 78-84

 $\tt CCCACGCGTCCGCGGACGCGTGGGAAGGGCAGA{\color{red}ATG}GGACTCCAAGCCTGCCTAGGGCT$ CTTTGCCCTCATCCTCTGGCAAATGCAGTTACAGCCCGGAGCCCGACCAGCGGAGGACGC $\tt TGCCCCCAGGCTGGGTGTCCCTGGGCCGTGCGGACCCTGAGGAAGAGCTGAGTCTCACCTTT$ GCCCTGAGACAGCAGAATGTGGAAAGACTCTCGGAGCTGGTGCAGGCTGTGTCGGATCCCAG CTCTCCTCAATACGGAAAATACCTGACCCTAGAGAATGTGGCTGATCTGGTGAGGCCATCCC CACTGACCCTCCACACGGTGCAAAAATGGCTCTTGGCAGCCGGAGCCCAGAAGTGCCATTCT GTGATCACACAGGACTTTCTGACTTGCTGGCTGAGCATCCGACAAGCAGAGCTGCTGCTCCC TGGGGCTGAGTTTCATCACTATGTGGGAGGACCTACGGAAACCCATGTTGTAAGGTCCCCAC ATCCCTACCAGCTTCCACAGGCCTTGGCCCCCCATGTGGACTTTGTGGGGGGGACTGCACCGT $\tt TTTCCCCCAACATCATCCCTGAGGCAACGTCCTGAGCCGCAGGTGACAGGGACTGTAGGCCT$ GCATCTGGGGGTAACCCCCTCTGTGATCCGTAAGCGATACAACTTGACCTCACAAGACGTGG GCTCTGGCACCAGCAATAACAGCCAAGCCTGTGCCCAGTTCCTGGAGCAGTATTTCCATGAC TCAGACCTGGCTCAGTTCATGCGCCTCTTCGGTGGCAACTTTGCACATCAGGCATCAGTAGC ACCTGATGAGTGCTGGTGCCAACATCTCCACCTGGGTCTACAGTAGCCCTGGCCGGCATGAG GGACAGGAGCCCTTCCTGCAGTGGCTCATGCTGCTCAGTAATGAGTCAGCCCTGCCACATGT GCATACTGTGAGCTATGGAGATGATGAGGACTCCCTCAGCAGCGCCCTACATCCAGCGGGTCA ACACTGAGCTCATGAAGGCTGCCGCTCGGGGTCTCACCCTGCTCTTCGCCTCAGGTGACAGT GGGGCCGGGTGTTGGTCTCTGGAAGACACCAGTTCCGCCCTACCTTCCCTGCCTCCAG CCCCTATGTCACCACAGTGGGAGGCACATCCTTCCAGGAACCTTTCCTCATCACAAATGAAA TTGTTGACTATATCAGTGGTGGTGGCTTCAGCAATGTGTTCCCACGGCCTTCATACCAGGAG GAAGCTGTAACGAAGTTCCTGAGCTCTAGCCCCCACCTGCCACCATCCAGTTACTTCAATGC ${\tt CAGTGGCCGTGCCTACCCAGATGTGGCTGCACTTTCTGATGGCTACTGGGTGGTCAGCAACA}$ GAGTGCCCATTCCATGGGTGTCCGGAACCTCGGCCTCTACTCCAGTGTTTGGGGGGGATCCTA TCCTTGATCAATGAGCACAGGATCCTTAGTGGCCGCCCCCCTCTTGGCTTTCTCAACCCAAG GCTCTACCAGCAGGAGGGGGGGGCTCTCTTTGATGTAACCCGTGGCTGCCATGAGTCCTGTC AGGAGAGATGGCTTGTCCCCTGCCCTGAAGCTGGCAGTTCAGTCCCTTATTCTGCCCTGTTG GAAGCCCTGCTGAACCCTCAACTATTGACTGCTGCAGACAGCTTATCTCCCTAACCCTGAAA TGCTGTGAGCTTGACTCCCAACCCTACCATGCTCCATCATACTCAGGTCTCCCTACT ATCTCATCTTTCTCTTTTCAATCAGGCTTTTCCAAAGGGTTGTATACAGACTCTGTGCACTA TTTCACTTGATATTCATTCCCCAATTCACTGCAAGGAGACCTCTACTGTCACCGTTTACTCT TTCCTACCCTGACATCCAGAAACAATGGCCTCCAGTGCATACTTCTCAATCTTTGCTTTATG GCCTTTCCATCATAGTTGCCCACTCCCTCTCCTTACTTAGCTTCCAGGTCTTAACTTCTCTG ACTACTCTTGTCTTCCTCTCATCAATTTCTGCTTCATGGAATGCTGACCTTCATTGC TCCATTTGTAGATTTTTGCTCTTCTCAGTTTACTCATTGTCCCCTGGAACAAATCACTGACA TGTAAAAAA

MGLQACLLGLFALILSGKCSYSPEPDQRRTLPPGWVSLGRADPEEELSLTFALRQQNVERLS
ELVQAVSDPSSPQYGKYLTLENVADLVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWL
SIRQAELLLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFVGGLHRFPPTSSLRQRP
EPQVTGTVGLHLGVTPSVIRKRYNLTSQDVGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFG
GNFAHQASVARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPGRHEGQEPFLQWLML
LSNESALPHVHTVSYGDDEDSLSSAYIQRVNTELMKAAARGLTLLFASGDSGAGCWSVSGRH
QFRPTFPASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEEAVTKFLSSSP
HLPPSSYFNASGRAYPDVAALSDGYWVVSNRVPIPWVSGTSASTPVFGGILSLINEHRILSG
RPPLGFLNPRLYQQHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWGTPTSQLC

Signal sequence:

amino acids 1-16

N-glycosylation site.

amino acids 210-214, 222-226, 286-290, 313-317, 443-447

Glycosaminoglycan attachment site.

amino acids 361-365, 408-412, 538-542

Casein kinase II phosphorylation site.

amino acids 212-216, 324-328, 392-396, 420-424, 525-529

N-myristoylation site.

amino acids 2-8, 107-113, 195-201, 199-205, 217-223, 219-225, 248-254, 270-276, 284-290, 409-415, 410-416, 473-479, 482-488, 521-527, 533-539, 549-555

 $\tt GGGCTGCTCGGCGGAACAGTGCTCGGCATGCCAGGGATTCCAGGGCTCCTCTTCTT$ TTCTTTCTGCTCTGTGCTGTTGGGCAAGTGAGCCCTTACAGTGCCCCCTGGAAACCCACTTG GCCTGCATACCGCCTCCCTGTCGTCTTGCCCCAGTCTACCCTCAATTTAGCCAAGCCAGACT TTGGAGCCGAAGCCAAATTAGAAGTATCTTCTTCATGTGGACCCCAGTGTCATAAGGGAACT CCACTGCCCACTTACGAAGAGGCCAAGCAATATCTGTCTTATGAAACGCTCTATGCCAATGG ACCGAGACTCAGGGTCTTCAGGAAAGTCTCGAAGGAAGCGGCAGATTTATGGCTATGACAGC ${\tt AGGTTCAGCATTTTTGGGAAGGACTTCCTGCTCAACTACCCTTTCTCAACATCAGTGAAGTT}$ ATCCACGGGCTGCACCGGCACCCTGGTGGCAGAGAAGCATGTCCTCACAGCTGCCCACTGCA TACACGATGGAAAAACCTATGTGAAAGGAACCCAGAAGCTTCGAGTGGGCTTCCTAAAGCCC AAGTTTAAAGATGGTGGTCGAGGGGCCAACGACTCCACTTCAGCCATGCCCGAGCAGATGAA ATTTCAGTGGATCCGGGTGAAACGCACCCATGTGCCCAAGGGTTGGATCAAGGGCAATGCCA ATGACATCGGCATGGATTATGATTATGCCCTCCTGGAACTCAAAAAGCCCCACAAGAGAAAA TTTATGAAGATTGGGGTGAGCCCTCCTGCTAAGCAGCTGCCAGGGGGGCAGAATTCACTTCTC ${\tt CCTATGACTTGCTCTACCAGCAATGCGATGCCCAGCCAGGGGGCCAGCGGGTCTGGGGTCTAT}$ $\tt GTGAGGATGTGGAAGAGACAGCAGCAGCAGAAGTGGGAGCGAAAAATTATTGGCATTTTTTCAGG$ $\tt GCACCAGTGGGTGGACATGAATGGTTCCCCACAGGATTTCAACGTGGCTGTCAGAATCACTC$ CTTATAATCTTTTACCTATTTCTTACAATTGCAAGATGACTGGCTTTACTATTTGAAAACTG GTTTGTGTATCATATCATATCATTTAAGCAGTTTGAAGGCATACTTTTGCATAGAAATAA AAAAAATACTGATTTGGGGCAATGAGGAATATTTGACAATTAAGTTAATCTTCACGTTTTTG CAAACTTTGATTTTATTTCATCTGAACTTGTTTCAAAGATTTATATTAAATATTTGGCATA CAAGAGATATGAAAAAAAAAAAAAAA

MAGIPGLLFLLFFLLCAVGQVSPYSAPWKPTWPAYRLPVVLPQSTLNLAKPDFGAEAKLEVS SSCGPQCHKGTPLPTYEEAKQYLSYETLYANGSRTETQVGIYILSSSGDGAQHRDSGSSGKS RRKRQIYGYDSRFSIFGKDFLLNYPFSTSVKLSTGCTGTLVAEKHVLTAAHCIHDGKTYVKG TQKLRVGFLKPKFKDGGRGANDSTSAMPEQMKFQWIRVKRTHVPKGWIKGNANDIGMDYDYA LLELKKPHKRKFMKIGVSPPAKQLPGGRIHFSGYDNDRPGNLVYRFCDVKDETYDLLYQQCD AQPGASGSGVYVRMWKRQQQKWERKIIGIFSGHQWVDMNGSPQDFNVAVRITPLKYAQICYW IKGNYLDCREG

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 93-97, 207-211

Glycosaminoglycan attachment site.

amino acids 109-113, 316-320

Casein kinase II phosphorylation site.

amino acids 77-81, 95-99, 108-112, 280-284, 351-355

N-myristoylation site.

amino acids 159-165, 162-168, 202-208, 205-211, 314-320, 338-344

Serine proteases, trypsin family, histidine active site. amino acids 171-177

CTGGAGCGCCCCAGCCCTGGGTGGGGGGCTGTCTCGGCACCTTCACCTCCCTGCTGCTGCTG GCGTCGACAGCCATCCTCAATGCGGCCAGGATACCTGTTCCCCCAGCCTGTGGGAAGCCCCA GCAGCTGAACCGGGTTGTGGGCGGCGAGGACAGCACTGACAGCGAGTGGCCCTGGATCGTGA ACTGCTGCCCACTGTTTCAAGGACAACCTGAACAAACCATACCTGTTCTCTGTGCTGGG CCCACCCTGTGTATTCCTGGAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCGTCTCGAG CGCTCCATACAGTTCTCAGAGCGGGTCCTGCCCATCTGCCTACCTGATGCCTCTATCCACCT CCCACCCTCAGACCCTGCAGAAGCTGAAGGTTCCTATCATCGACTCGGAAGTCTGCAGCCAT $\tt CTGTACTGGCGGGGAGCAGGACCGGCTACTT$ GGAGGGGGAGCGGGATGCTTGTCTGGGCGACTCCGGGGGCCCCCTCATGTGCCAGGTGGACG GCGCCTGGCTGCCGGCATCATCAGCTGGGGCGAGGGCTGTGCCGAGCGCAACAGGCCC GGGGTCTACATCAGCCTCTCTGCGCACCGCTCCTGGGTGGAGAAGATCGTGCAAGGGGTGCA GCTCCGCGGCGCGCTCAGGGGGTGGGGCCCTCAGGGCACCGAGCCAGGGCTCTGGGGCCG TCTGGATCTGCGCCGCCGCCGTAAATAGGCTCATCTACC GGCCTCAGGCCCCCTCCAAGGCATCAGGCCCCGCCCCAACGGCCTCATGTCCCCGCCCCCAC GACTTCCGGCCCCCGGGCCCCAGCGCTTTTGTGTATATAAATGTTAATGATTTTTAT CTCCAAAAAAAAAA

```
></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA43318
><subunit 1 of 1, 317 aa, 1 stop</pre>
```

><MW: 33732, pI: 7.90, NX(S/T): 1

MVVSGAPPALGGCCLGTFTSLLLLASTAILNAARIPVPPACGKPQQLNRVVGGEDSTDSEWP
WIVSIQKNGTHHCAGSLLTSRWVITAAHCFKDNLNKPYLFSVLLGAWQLGNPGSRSQKVGVA
WVEPHPVYSWKEGACADIALVRLERSIQFSERVLPICLPDASIHLPPNTHCWISGWGSIQDG
VPLPHPQTLQKLKVPIIDSEVCSHLYWRGAGQGPITEDMLCAGYLEGERDACLGDSGGPLMC
QVDGAWLLAGIISWGEGCAERNRPGVYISLSAHRSWVEKIVQGVQLRGRAQGGGALRAPSQG
SGAAARS

Signal sequence:

amino acids 1-32

N-glycosylation site.

amino acids 62-66, 96-100, 214-218, 382-386, 409-413, 455-459, 628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268, 314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653, 671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962, 1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534, 612-618, 623-629, 714-720, 873-879

CTGCTGGTGGCCACACGGCCCCGTTGGAGCCCTCACAGATGAGGAGAAACGTTTGATGGT GGAGCTGCACAACCTCTACCGGGCCCAGGTATCCCCGACGGCCTCAGACATGCTGCACATGA AACAAGGAGCGCGGCGCGCGAGAATCTGTTCGCCATCACAGACGAGGGCATGGACGT $\tt GCCGCTGGCCATGGAGGAGTGGCACCACGAGCGTGAGCACTACAACCTCAGCGCCGCCACCT$ GGCTGTGGTTCCCACTTCTGTGAGAAGCTCCAGGGTGTTGAGGAGACCAACATCGAATTACT GGTGTGCAACTATGAGCCTCCGGGGAACGTGAAGGGGGAAACGGCCCTACCAGGAGGGGACTC CGTGCTCCCAATGTCCCTCTGGCTACCACTGCAAGAACTCCCTCTGTGAACCCATCGGAAGC $\tt CCGGAAGATGCTCAGGATTTGCCTTACCTGGTAACTGAGGCCCCATCCTTCCGGGCGACTGA$ AGCATCAGACTCTAGGAAAATGGGTACTCCTTCTTCCCTAGCAACGGGGATTCCGGCTTTCT ${\tt TGGTAACAGAGGTCTCAGGCTCCCTGGCAACCAAGGCTCTGCCTGTGGAAACCCAGGCC}$ CCAACTTCCTTAGCAACGAAAGACCCGCCCTCCATGGCAACAGAGGCTCCACCTTGCGTAAC AACTGAGGTCCCTTCCATTTTGGCAGCTCACAGCCTGCCCTCCTTGGATGAGGAGCCAGTTA AAAGTGCCCTCTAGGAGCCCAGAGAACTCTCTGGACCCCAAGATGTCCCTGACAGGGGCAAG GGAACTCCTACCCCATGCCCAGGAGGAGGCTGAGGCTGAGGCTGAGTTGCCTCCTTCCAGTG AGGTCTTGGCCTCAGTTTTTCCAGCCCAGGACAAGCCAGGTGAGCTGCAGGCCACACTGGAC CACACGGGGCACACCTCCTCCAAGTCCCTGCCCAATTCCCCAATACCTCTGCCACCGCTAA TGCCACGGGTGGCCTGGCTCTGCAGTCGTCCTTGCCAGGTGCAGAGGGCCCTGACA ${\tt AGCCTAGCGTTGTGTCAGGGCTGAACTCGGGCCCTGGTCATGTGTGGGGCCCTCTCCTGGGA}$ $\tt CTACTGCTCCTGCTCTGGTGTTGGCTGGAATCTTC\underline{TGA}ATGGGATACCACTCAAAGGG$ TGAAGAGGTCAGCTGTCCTCCTGTCATCTTCCCCACCCTGTCCCCAGCCCCTAAACAAGATA ATCCTGGAGGCACAAGGCCTGGCTGCGAGCTCAGGAGGCCGCCTGAGGACTGCACACC GGGCCCACACCTCTCCTGCCCCTCCTGAGTCCTGGGGGTGGGAGGATTTGAGGGAGCT CACTGCCTACCTGGCCTGGGGCTGTCTGCCCACACAGCATGTGCGCTCTCCCTGAGTGCCTG TGTAGCTGGGGATGGGGATTCCTAGGGGCAGATGAAGGACAAGCCCCACTGGAGTGGGGTTC GTCCAACCTGTGAAA

MHGSCSFLMLLLPLLLLUATTGPVCALITDEEKRLMVELHNLYRAQVSPTASDMLHMRWDEE LAAFAKAYARQCVWGHNKERGRRGENLFALTDEEMDVPLAMEEWHHEREHYNLSAATCSPGQ MCGHYTQVVWAKTERIGCGSHFCEKLQGVEETNIELLVCUNYEPPGMYNKGKRPYQEGTPCSQC PSGYHCKNSLCEPIGSPEDAQDLPYLVTEAPSFRATEASDSRKMGTPSSLATGIPAFLVTEV SGSLATKALPAVETQAPTSLATKDPSMATEAPPCVTTEVPSILAAHSLPSLDEEPVTFPKS THVPIPKSADKVTDKTKVPSRSPENSLDPKMSLTGARELLPHAQEEAEAELPSSEVLAS VFFAQDKFGELQATLDHTGHTSSKSLPNFPNTSATANATGGRALALQSSLPGAEGPDKPSVV SGLMSKPGFWWGFLLGLLLLPPLVLAGIF

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 114-118, 403-407, 409-413

Glycosaminoglycan attachment site.

amino acids 439-443

Casein kinase II phosphorylation site.

amino acids 29-33, 50-54, 156-160, 195-199, 202-206, 299-303

N-myristoylation site.

amino acids 123-129, 143-149, 152-158, 169-175, 180-186, 231-237, 250-256

Amidation site.

amino acids 82-86, 172-176

Peroxidases proximal heme-ligand signature.

amino acids 287-298

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1.

amino acids 127-138

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2.

amino acids 160-172

 $\overline{\text{ACTTCTGTTGTTCTCCCTCTGCTTGCTTTTCACATTAGCAGACCGGACTTAAGTCACAACAGATTATCTTTCAT}$ AAATCTGGGACCAGTCTCGGCAAATATTACACTTCTCTCTTGGCTGGAAACAGGATTGTTGAAATACTCCCTGA ${\tt ACATCTGAAAGAGTTTCAGTCCCTTGAAACTTTGGACCTTAGCAGCAACAATATTTCAGAGCTCCAAACTGCATTG$ TCCAGCCCTACAGCTCAAATATCTGTATCTCAACAGCAACCGAGTCACATCAATGGAACCTGGGTATTTTGACAA GCCCCAACTGCAACATCTCGAATTGAACCGAAACAAGATTAAAAATGTAGATGGACTGACATTCCAAGGCCTTGG TGAGCTGGACCTAACTTTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCCTTGGCCTAAGCTTACTAAATAC A CTGCACATTGGGAACAACAGAGTCAGCTACATTGCTGATTGTGCCTTCCGGGGGCTTTCCAGTTTAAAGACTTT ${\tt GCGACTGATACTCCAAGGAAATCGGATCCGTTCTATTACTAAAAAAGCCTTCACTGGTTTGGATGCATTGGAGCA}$ TCTAGACCTGAGTGACAACGCAATCATGTCTTTACAAGGCAATGCATTTTCACAAATGAAGAAACTGCAACAATT TCAGAGCTTTGTAAATGCCAGTTGTGCCCATCCTCAGCTGCTAAAAGGAAGAAGCATTTTTGCTGTTAGCCCAGA TGGCTTTGTGTGTGATGATTTTCCCAAACCCCAGATCACGGTTCAGCCAGAAACACAGTCGGCAATAAAAGGTTC CAATTTGAGTTTCATCTGCTCAGCTGCCAGCAGCAGTGATTCCCCCAATGACTTTTGCTTGGAAAAAAAGACAATGA ACTACTGCATGATGCTGAAATGGAAAATTATGCACACCTCCGGGCCCAAGGTGGCGAGGTGATGGAGTATACCAC CATCCTTCGGCTGCGCGAGGTGGAATTTGCCAGTGAGGGGAAATATCAGTGTGTCATCTCCAATCACTTTGGTTC $\tt CCGAGCTGGGGCCATGGCACGCTTGGAGTGTGCTGTGGGGCACCCAGCCCCCCAGATAGCCTGGCAGAAGGA$ GGATGTGAAGATAGAGGACATTGGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTTCAGCAAATGC ${\tt AACTCTGACTGTCCTAGAAACACCATCATTTTTGCGGCCACTGTTGGACCGAACTGTAACCAAGGGAGAAACAGC}$ $\tt CGTCCTACAGTGCATTGCTGGAGGAAGCCCTCCCCCTAAACTGAACTGGACCAAAGATGATAGCCCATTGGTGGT$ AACCGAGAGGCACTTTTTTGCAGCAGGCAATCAGCTTCTGATTATTGTGGACTCAGATGTCAGTGATGCTGGGAA A TACACATGTGAGATGTCTAACACCTTTGGCACTGAGAGGGGGAACGTGCGCCTCAGTGTGATCCCCACTCCAAC $\tt CTGCGACTCCCTCAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCCACTGTGGGTGTCGTGATCATAGC$ TTGCAGCATTACCAACACAGATGAGACCAACTTGCCAGCAGATATTCCTAGTTATTTGTCATCTCAGGGAACGTT AGCTGACAGGCAGGATGGGTACGTGTCTTCAGAAAGTGGAAGCCACCACCAGTTTGTCACATCTTCAGGTGCTGG CATAAAGAAAAAGGAGTGCTACCCATGTTCTCATCCTTCAGAAGAATCCTGCGAACGGAGCTTCAGTAATATATC GTGGCCTTCACATGTGAGGAAGCTACTTAACACTAGTTACTCTCACAATGAAGGACCTGGAATGAAAAATCTGTG AGATTTTCAGGAAGAAAATCACATTTGTACCTTTAAACAGACTTTAGAAAACTACAGGACTCCAAATTTTCAGTC GAACCAAAATTACAAAAAGTTATGAAAATTTTTATACTGGGAATGATGCTCATATAAGAATACCTTTTTAAACTA ${\tt TTTTTTAACTTTGTTTTATGCAAAAAGTATCTTACGTAAATTAATGATATAAATCATGATTATTTTATGTATTT$ TTAAATAGAAGTTACTTCATTATATTTTGCACATTATATTTAATAAAATGTGTCAATTTGAA

MVDVLLLFSLCLLFHISRPDLSHNRLSFIKASSMSHLQSLREVKLNNNELETIPNLGPVSAN ITLLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEP GYFDNLANTLLVLKLNRNR ISAIPPKMFKLPOLOHLELNRNKIKNVDGLTFOGLGALKSLKM QRNGVTKLMDGAFWGLSNMEILQLDHNNLTEITKGWLYGLLMLQELHLSQNAINRISPDAWE ${\tt FCQKLSELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRGLSSLKTLDLKNNE}$ ISWTIEDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQ ${\tt MKKLQQLHLNTSSLLCDCQLKWLPQWVAENNFQSFVNASCAHPQLLKGRSIFAVSPDGFVCD}$ DFPKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAOG GEVMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGA ${\tt MARLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAQN}$ ${\tt SAGSISANATLTVLETPSFLRPLLDRTVTKGETAVLQCIAGGSPPPKLNWTKDDSPLVVTER}$ HFFAAGNQLLIIVDSDVSDAGKYTCEMSNTLGTERGNVRLSVIPTPTCDSPOMTAPSLDDDG WATVGVVIIAVVCCVVGTSLVWVVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLAD ${\tt RQDGYVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGP}$ MYLKGNVYGSDPFETYHTGCSPDPRTVLMDHYEPSYIKKKECYPCSHPSEESCERSFSNISW PSHVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDA YSSFGQPSDCQPRAFYLKAHSSPDLDSGSEEDGKERTDF0EENHICTFKOTLENYRTPNF0S YDLDT

Signal sequence:

amino acids 1-19

Transmembrane domain:

amino acids 746-765

N-glycosylation site.

amino acids 62-66, 96-100, 214-220, 382-386, 409-413, 455-459, 628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

```
amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268, 314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
```

671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,

1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

```
amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534, 612-618, 623-629, 714-720, 873-879
```

GAAGCTTTTTCTTGTGAGCCCTGGATCTTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATGAAA $\tt CCACCCCAAAAAAAAAGGATGATTGGAAATGAAGAACCGAGGATTCACAAAGAAAAAAGTATGTTCATTTTTCTC$ TATAAAGGAGAAAGTGAGCCAAGGAGATATTTTTGGAATGAAAAGTTTGGGGCTTTTTTAGTAAAGTAAAGAACT GGTGTGGTGGTGTTTTCCTTTCTTTTGAATTTCCCACAAGAGGGAGAGGAAATTAATACATCTGCAAAGAAA TTTGTGCCTATGTTGACTAAAATTGACGGATAATTGCAGTTGGATTTTTTTCATCAACCTCCTTTTTTTAAAT GACCTTACATCCACAGCAGATAATGATAGGTCCTAGGTTTAACAGGGCCCTATTTGACCCCCTGCTTGTGGTGCT GCTGGCTCTTCAACTTCTTGTGGTGGCTGGTCTGGTGCGGGCTCAGACCTGCCCTTCTGTGTGCTCCTGCAGCAA ${\tt GCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTTCAAGCACTTGAGGCACTTGGAAATCCT}$ ACAGTTGAGTAGGAACCATATCAGAACCATTGAAATTGGGGCTTTCAATGGTCTGGCGAACCTCAACACTCTGGA GCGAAACACCCCATTGAAAGCATCCCTTCTTATGCTTTTAACAGAATTCCTTCTTTGCGCCGACTAGACTTAGG GGAATTGAAAAGACTTTCATACATCTCAGAAGGTGCCTTTGAAGGTCTGTCCAACTTGAGGTATTTGAACCTTGC ${\tt TTTATCTGCCATCAGGCCTGGCTCTTTCCAGGGTTTGATGCACCTTCAAAAACTGTGGATGATACAGTCCCAGATCCCAGATCAGATCCCAGATCAGATCCCAGATCAGATCCCAGATCAG$ TCAAGTGATTGAACGGAATGCCTTTGACAACCTTCAGTCACTAGTGGAGATCAACCTGGCACACAATAATCTAAC ATTACTGCCTCATGACCTCTTCACTCCCTTGCATCATCTAGAGCGGATACATTTACATCACAACCCTTGGAACTG TAACTGTGACATACTGTGGCTCAGCTGGTGGATAAAAGACATGGCCCCCTCGAACACAGCTTGTTGTGCCCGGTG TAACACTCCTCCCAATCTAAAGGGGAGGTACATTGGAGAGCTCGACCAGAATTACTTCACATGCTATGCTCCGGT ${\tt CCTGACATCTGTATCTTGGATTACTCCAAATGGAACAGTCATGACACATGGGGCGTACAAAGTGCGGATAGCTGT}$ GCTCAGTGATGGTACGTTAAATTTCACAAATGTAACTGTGCAAGATACAGGCATGTACACATGTATGGTGAGTAA AACCGTCACAGTAGAGACTATGGAACCGTCTCAGGATGAGGCACGGACCACAGATAACAATGTGGGTCCCACTCC CACCATCCCAGTGACTGATATAAACAGTGGGATCCCAGGAATTGATGAGGTCATGAAGACTACCAAAATCATCAT $\tt TGGGTGTTTTGTGGCCATCACACTCATGGCTGCAGTGATGCTGGTCATTTTCTACAAGATGAGGAAGCAGCACCA$ ${\tt TCGGCAAAACCATCACGCCCCAACAAGGACTGTTGAAATTATTAATGTGGATGATGAGATTACGGGAGACACACCC}$ CATGGAAAGCCACCTGCCCATGCCTGCTATCGAGCATGAGCACCTAAATCACTATAACTCATACAAATCTCCCTT CAACCACAACAACAACTAACACAATAAATTCAATACACAGTTCAGTGCATGAACCGTTATTGATCCGAATGAA AAAAGAAAAGAAATTTATTATTAAAAATTCTATTGTGATCTAAAGCAGACAAAAA

MLNKMTLHPQQIMIGPRFNRALFDPLLVVLLALQLLVVAGLVRAQTCPSVCSCSNQFSKVIC VRKNLREVPDGISTNTRLLNLHENQIQIIKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLS YISEGAFEGLSNLRYLNLAMCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL WMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPLHHLERIHLHHNPWNCNCDIL WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNVTEGMAAE LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTVQDTGMYTCMVSNSVGN TTASATLNVTAATTTPFSYFSTVTVETMEPSQDEARTTDNNVGPTPVVDWETTNVTTSLTPQ STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRKQHHRQN HHAPTRTVEIINVDDEITGDTPMESHLPMPAIEHEHLNHYNSYKSPFNHTTTVNTINSIHSS VHEPLLIRMNSKDNVQETQI

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438, 442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243, 391-397, 422-428, 433-439, 531-537

 $\tt GAGGGCGGGCGTGCACCCTCGGCTGGAAGTTTGTGCCGGGCCCCGAGCGCCGCCGGCTGGGAGCTTCGGGTAGA$ GCGGTGCTGGGCGCGCTCCGACAGCGGCGGCGCGGGGAACTCGGGCAGCCCTCTGGGGTAGCCGCC $\tt GAGCGCCCATGCCCACTACCTGCCGCTGCCTCGGGGACCTGCTGCACTGCAGTCGTAAGCGGCTAGCGCGTCTT$ $\tt CCCGAGCCACTCCCGTCCTGGGTCGCTCGGCTGGACTTAAGTCACAACAGATTATCTTTCATCAAGGCAAGTTCCCCGAGCCACTCCCCGTCCTGGGTCGCCAGGCCAAGTTCCCCGAGCCAACAGATTATCTTTCATCAAGGCAAGTTCCCCGAGCCAACAGATTATCTTTCATCAAGGCAAGTTCCCCGAGCCAAGTTCCCCGAGCCAAGTTCCCCAAGGCCAAGTTCCCAAGGCCAAGTTCCCCAAGGCCAAGTTCCCCAAGGCCAAGTTCCCAAGGCCAAGTTCCAAGGCCAAGTTCCAAGGCCAAGTTCAAGGCCAAGTTCAAGGCCAAGTTCAAGGCCAAGTTCAAGGCCAAGTTCAAGGCCAAGTTCAAGGCCAAGTTCAAGGCCAAGTTCAAGGCCAAGGCCAAGTTCAAGGCCAAGATTCAAGGCCAAGGTCCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGATTCAAGGCCAAGATTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGTCAAGGCCAAGGCAAGGCCAAGGTCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGG$ GTCTCGGCAAATATTACACTTCTCTCTTGGCTGGAAACAGGATTGTTGAAATACTCCCTGAACATCTGAAAGAG $\tt CATCTCGAATTGAACCGAAACAAGATTAAAAATGTAGATGGACTGACATTCCAAGGCCTTGGTGCTCTGAAGTCTCTAAGATCTAGATGTAGATTCCAAGGCCTTGGTGCTCTGAAGTCTCTAAGATCTAGATGTAGATTCCAAGGCCTTGGTGCTCTGAAGTCTCTAAGATCTAGATGTAGATTCCAAGGCCTTGGTGCTCTGAAGTCTCTAAGATCTAGATGTAGATTCCAAGGCCTTGGTGCTCTGAAGTCTCTAAGATCTAGATGTAGATTCCAAGGCCTTGGTGCTCTGAAGTCTCTAAGATCTAGATTCCAAGGCCTTGGTGCTCTGAAGTCTCTAAGATCTAGATCTAGATGTAGATCTAGATCTAGATCTAAGATCTAGATCAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCTAGATCAGATCTAGATCAGA$ $\tt CTCAGCCAAAATGCCATCAACAGGATCAGCCCTGATGCCTGGGAGTTCTGCCAGAAGCTCAGTGAGCTGGACCTA$ ${\tt ACTTTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCCTTGGCCTAAGCTTACTAAATACACTGCACATTGGG}$ AACAACAGAGTCAGCTACATTGCTGATTGTGCCTTCCGGGGGCTTTCCAGTTTAAAGACTTTGGATCTGAAGAAC ${\tt AATGAAATTTCCTGGACTATTGAAGACATGAATGGTGCTTTCTCTGGGCTTGACAAACTGAGGCGACTGATACTC}$ GACAACGCAATCATGTCTTTACAAGGCAATGCATTTTCACAAATGAAGAAACTGCAACAATTGCATTTAAATACA AATGCCAGTTGTGCCCATCCTCAGCTGCTAAAAGGAAGAAGCATTTTTGCTGTTAGCCCAGATGGCTTTGTGTGT GATGATTTTCCCAAACCCCAGATCACGGTTCAGCCAGAAACACAGTCGGCAATAAAAGGTTCCAATTTGAGTTTC ATCTGCTCAGCTGCCAGCAGCAGTGATTCCCCCAATGACTTTTGCTTGGAAAAAAGACAATGAACTACTGCATGAT $\tt CGCGAGGTGGAATTTGCCAGTGAGGGGAAATATCAGTGTGTCATCTCCAATCACTTTGGTTCATCCTACTCTGTC$ TTCCCAGCTGCACGGGAGAGACGCATGCATGTGATGCCCGAGGATGACGTGTTCTTTATCGTGGATGTGAAGATA GAGGACATTGGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTTCAGCAAATGCAACTCTGACTGTC ATTGCTGGAGGAAGCCCTCCCCCTAAACTGAACTGGACCAAAGATGATAGCCCATTGGTGGTAACCGAGAGGCAC ATGTCTAACACCCTTGGCACTGAGAGAGAAACGTGCGCCTCAGTGTGATCCCCACTCCAACCTGCGACTCCCCT ${\tt CAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCCACTGTGGGTGTCGTGATCATAGCCGTGGTTTGCTGT}$ GTGGTGGGCACGTCACTCGTGTGGGTGGTCATCATATACCACACAAGGCGGAGGAATGAAGATTGCAGCATTACC CAACATGACAGTAGTGGGACCTGCCATATTGACAATAGCAGTGAAGCTGATGTGGAAGCTGCCACAGATCTGTTC $\tt CTTTGTCCGTTTTTGGGATCCACAGGCCCTATGTATTTGAAGGGAAATGTGTATGGCTCAGATCCTTTTGAAACA$ TATCATACAGGTTGCAGTCCTGACCCAAGAACAGTTTTAATGGACCACTATGAGCCCAGTTACATAAAGAAAAAG ${\tt GAGTGCTACCCATGTTCTCATCCTTCAGAAGAATCCTGCGAACGGAGCTTCAGTAATATATCGTGGCCTTCACAT}$ $\tt GTGAGGAAGCTACTTAACACTAGTTACTCTCACAATGAAGGACCTGGAATGAAAAATCTGTGTCTAAACAAGTCC$ TCTTTAGATTTTAGTGCAAATCCAGAGCCAGCGTCGGTTGCCTCGAGTAATTCTTTCATGGGTACCTTTGGAAAA GCTCTCAGGAGACCTCACCTAGATGCCTATTCAAGCTTTGGACAGCCATCAGATTGTCAGCCAAGAGCCTTTTAT AAAAAGTTATGAAAATTTTTATACTGGGAATGATGCTCATATAAGAATACCTTTTTAAACTATTTTTAACTTTG

 ${\tt MSAPSLRARAAGLGLLLCAVLGRAGRSDSGGRGELGQPSGVAAERPCPTTCRCLGDLLDCSR}$ KRLARLPEPLPSWVARLDLSHNRLSFIKASSMSHLQSLREVKLNNNELETIPNLGPVSANIT LLSLAGNRIVEILPEHLKEFOSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEPGY FDNLANTLLVLKLNRNRISAIPPKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKSLKMOR $\tt MGVTKLMDGAFWGLSNMEILQLDHNNLTEITKGWLYGLLMLQELHLSQNAINRISPDAWEFC$ QKLSELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRGLSSLKTLDLKNNEIS WTIEDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQMK $\verb|KLQQLHLNTSSLLCDCQLKWLPQWVAENNFQSFVNASCAHPQLLKGRSIFAVSPDGFVCDDF|\\$ PKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAQGGE VMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGAMA RLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAONSA ${\tt GSISANATLTVLETPSFLRPLLDRTVTKGETAVLOCIAGGSPPPKLNWTKDDSPLVVTERHF}$ FAAGNQLLIIVDSDVSDAGKYTCEMSNTLGTERGNVRLSVIPTPTCDSPQMTAPSLDDDGWATVGVVIIAVVCCVVGTSLVWVVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLADRQ DGYVSSESGSHHQFVTSSGAGFFLPOHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGPMY LKGNVYGSDPFETYHTGCSPDPRTVLMDHYEPSYIKKKECYPCSHPSEESCERSFSNISWPS ${\tt HVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDAYS}$ ${\tt SFGQPSDCQPRAFYLKAHSSPDLDSGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQSYDLDT}$

```
LKGNVYGSDPFETYHTGCSPDPRTVLMDHYEPSYIKKKEXPYCSHPSEESCERSFSNISWPS
HVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDAYS
SFGQPSDCOQPRAFYLKAHSSPDLDSGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQSYDLDT
Signal sequence:
amino acids 1-27
Transmembrane domain:
amino acids 808-828
N-glycosylation site.
amino acids 122-126, 156-160, 274-278, 442-446, 469-473, 515-519, 688-692, 729-733, 905-909, 987-991, 999-1003, 1016-1020
Glycosaminoglycan attachment site.
amino acids 886-890
```

Casein kinase II phosphorylation site.

amino acids 99-103, 180-184, 263-267, 314-318, 324-328, 374-378, 383-387, 407-411, 524-528, 608-612, 692-696, 709-713, 731-735, 799-803, 843-847, 863-867, 907-911, 1003-1007, 1018-1022, 1073-1077, 1079-1083, 1081-1085

Tyrosine kinase phosphorylation site.

amino acids 667-675

N-myristoylation site.

amino acids 14-20, 36-42, 239-245, 257-263, 380-386, 427-433,

513-519, 588-594, 672-678, 683-687, 774-780, 933-939

Leucine zipper pattern.

amino acids 58-80, 65-87

CAAAACTTGCGTCGCGGAGAGCGCCCAGCTTGACTTGAATGGAAGGAGCCCGAGCCCGCGGAGCGCAGCTGAGAC CTGCTCCACGAGGCGCCACTGGTGTGAACCGGGAGAGCCCCTGGGTGGTCCCGTCCCCTATCCCTCCTTTATATA GAAACCTTCCACACTGGGAAGGCAGCGGCGAGGCAGGAGGGCTCATGGTGAGCAAGGAGGCCGGCTGATCTGCAG TGCTCCTGCTGCTGCCGCCACAGCTGCACCTGGGACCTGTGCTTGCCGTGAGGGCCCCAGGATTTGGCCGAA GTGGCGGCCACAGCCTGAGCCCCGAAGAGAACGAATTTGCGGAGGAGGAGCCGGTGCTGGTACTGAGCCCTGAGG AGCCCGGGCCTGGCCCAGCCGGTCAGCTGCCCCCGAGACTGTGCCTGTTCCCAGGAGGGCGTCGTGGACTGTG TGGAAAAGATCTACCCTGAGGAGCTCTCCCGGCTGCACCGGCTGGAGACACTGAACCTGCAAAACAACCGCCTGA $\tt TGACCTTGGCACCCCGCTTCCTGCCAAACGCCCTGATCAGTGTGGACTTTGCTGCCAACTATCTCACCAAGATCT$ TGCCGGACAACATGTTCAACGGCTCCAGCAACGTCGAGGTCCTCATCCTGTCCAGCAACTTCCTGCGCCACGTGC $\tt CCAAGCACCTGCCGCTGTACAAGCTGCACCTCAAGAACAAGCTGGAGAAGATCCCCCCGGGGGCCT$ CGCGCAGCCTGGTGCTGCACTTGGAGAAGAACGCCATCCGGAGCGTGGACGCGAATGTGCTGACCCCCATCC GCACCCTCATGATCCTGCACAACCAGATCACAGGCATTGGCCGCGAAGACTTTGCCACCACCTACTTCCTGGAGG GCTCGCTGGACCTGTCGGGCAACCGGCTGCACACGCTGCCACCTGGGCTGCCTCGAAATGTCCATGTGCTGAAGG TCGCCGGGAATCAGCTCACAGAGATCCCCGAGGGGGCTCCCCGAGTCACTTGAGTACCTGTACCTGCAGAACAACA AGATTAGTGCGGTGCCCGCCAATGCCTTCGACTCCACGCCCAACCTCAAGGGGATCTTTCTCAGGTTTAACAAGC ${\tt AGGAAGGAAACAAGAT}{\tt AGGAAGGTGATGCAGATGTGACCTAGGATGGACCGCCGGACTCTTTTCTGC}$ TCCCACATGACACGGGCTGACACAGTCTCATATCCCCACCCCTTCCCACGGCGTGTCCCACGGCCAGACACATGC GGAACTCACAAAAGCTGGCTTTTATTCCTTTCCCATCCTATGGGGACAGGAGCCTTCAGGACTGCCTGGCC CAGGCACTTTTCCAATGGGCAAGCCCAGTGGAGGCAGGATGGGAGAGCCCCCTGGGTGCTGCTGGGGCCTTGGGG CAGGAGTGAAGCAGAGGTGATGGGGCTGAGCCAGGGAAGGACCCAGCTGCACCTAGGAGACACCTTT

MEGEEAEQPAWFHQPWRPGASDSAPPAGTMAQSRVLLLLLLLPPQLHLGPVLAVRAPGFGRS
GGHSLSPEENEFABEEPVLVLSPEEPGPGPAAVSCPRDCACSQEGVVDCGGIDLREFPGDLP
EHTNHLSLQNNQLEKIYPEELSRLHRLETLNLQNNRLTSRGLPEKAFEHLTNLNYLYLANNK
LTLAPRFLPNALISVDFAANYLTKIYGLTFGQKFNLRSVYLHNNKLADAGLPDNMFNGSSNV
EVLILSSNFLRHVPKHLPPALYKLHLKNNKLEKIPPGAFSELSSLRELYLQNNYLTDEGLDN
ETFWKLSSLEYLDLSSNNLSRVPAGLPRSLVLLHLERNAIRSVDANVLTPIRSLEYLLLHSN
QLREQGIHPLAFOGLKRLHTVHLYNNALERVPSGLPRRVRTLMILHNQITGIGREDFATTYF
LEELNLSYNRITSPQVHRDAFRKLRLLRSLDLSGNRLHTLPPGLPRNVHVLKVKRNELAALA
RGALAGMAQLRELYLTSNRLRSRALGPRAWVDLAHLQLLDIAGNQLTEIPEGLPESLEYLYL
QNNKISAVPANAFDSTPNLKGIFLRFNKLAVGSVVDSAFRRLKHLQVLDIEGNLEFGDISKD
RGRLGKEKEEBEBEBEBEBER

Signal sequence:

amino acids 1-48

N-glycosylation site.

amino acids 243-247, 310-314, 328-332, 439-443

Casein kinase II phosphorylation site.

amino acids 68-72, 84-88, 246-250, 292-296, 317-321, 591-595

N-myristoylation site.

amino acids 19-25, 107-113, 213-219, 217-223, 236-242, 335-341, 477-483, 498-502, 539-545, 548-554

Leucine zipper pattern.

amino acids 116-138, 251-273, 258-280, 322-344, 464-486, 471-493, 535-557

GGGAGGGGCTCCGGGCGCGCGCAGCAGACCTGCTCCGGCCGCCGCCTCGCCGCTGTCCTCCGGGAGCGGCAG $\overline{\texttt{GCTGGTATCCTCGCTCTACCTGCAGGCGGCCGCCGAGTTCGACGGGAGGTGGCCCAGGCAAATAGTGTCATCGAT}}$ ${\tt TGGCCTATGTCGTTATGGTGGGAGGATTGACTGCTGCTGGGGCTCGGCCAGTCTTGGGGACAGTGTCAGCC}$ $\tt TGTGTGCCAACCACGATGCAAACATGGTGAATGTATCGGGCCAAACAAGTGCAAGTGTCATCCTGGTTATGCTGG$ AAAAACCTGTAATCAAGATCTAAATGAGTGTGGCCTGAAGCCCCGGCCCTGTAAGCACAGGTGCATGAACACTTA $\tt CTCCATGGCAAACTGTCAGTATGGCTGTGATGTTAAAGGACAAATACGGTGCCAGTGCCCATCCCCTGGCCT$ ${\tt CAAATATCAATGTCATGACATAGACGAATGCTCACTTGGTCAGTATCAGTGCAGCAGCTTTGCTCGATGTTATAA}$ AGTTATGATTGAACCTTCAGGTCCAATTCATGTACCAAAGGGAAATGGTACCATTTTAAAGGGTGACACAGGAAA ${\tt TAATAATTGGATTCCTGATGTTGGAAGTACTTGGTGGCCTCCGAAGACACCATATATTCCTCCTATCATTACCAA}$ CAGGCCTACTTCTAAGCCAACAACAAGACCTACACCAAAGCCAACACCAATTCCTACTCCACCACCACCACCACCACCA CCTGCCAACAGAGCTCAGAACACCTCTACCACCTACAACCCCAGAAAGGCCAACCACCGGACTGACAACTATAGC GGGAAAAGCTGCACGCTTGGTGCTACCTCTCGGCCGCCTCATGCATTCAGGGGACCTGTGCCTGTCATTCAGGCA GGGAAGAAATGGTGGCCATGGCTGGAGGCAAACACAGATCACCTTGCGAGGGGCTGACATCAAGAGCGAATCACA $AAGA\underline{TGA}TTAAAGGGTTGGAAAAAAAGATCTATGATGGAAAATTAAAGGAACTGGGATTATTGAGCCTGGAGAAG$ AGAAGACTGAGGGGCAAACCATTGATGGTTTTCAAGTATATGAAGGGTTGGCACAGAGAGGGGTGGCGACCAGCTG AGATGTTTTGATCCTACTAGTAGTATGCAGTGAAAATCTTTAGAACTAAATAATTTGGACAAGGCTTAATTTAGG ${\tt CATTTCCCTCTTGACCTCCTAATGGAGAGGGATTGAAAGGGGGAAGAGCCCACCAAATGCTGAGCTCACTGAAATA}$ A GATATTTTAGTATCTCAGTAATGTCCTAGTGTGGCGGTGGTTTTCAATGTTTCTTCATGGTAAAGGTATAAGCC ${\tt ACACCGGCAGACCTTTCCTTCACCTCATCAGTATGATTCAGTTTCTCTTATCAATTGGACTCTCCCAGGTTCCAC}$ AGAACAGTAATATTTTTTGAACAATAGGTACAATAGAAGGTCTTCTGTCATTTAACCTGGTAAAGGCAGGGCTGG AGGGGGAAAATAAATCATTAAGCCTTTGAGTAACGGCAGAATATATGGCTGTAGATCCATTTTTAATGGTTCATT ${\tt TGATACATTGCACTAAACTGATGGAAGAAGTTATCCAAAGTACTGTATAACATCTTGTTTATTATTTAATGTTTT}$

MDFLIALVLVSSLYLQAAAEFDGRWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQCQPVCQP
RCKHGECIGPHNCKCHEGYJAGKTCNQDLHECGLKPRPCKHRCMNTYGSYKCYCLNGYMLMPG
GSCSSALTCSMANCQYGCDVVKGQIRQCCPSPGGLHLAPDGRTCUDVDECATGRASCPRFRQC
VNTFGSYICKCHKGFDLMYIGGKYQCHDIDECSLGQYQCSSFARCYNVRGSYKCKKEGYQG
DGLTCVY1PKVMLEPSGPIHVPKGNGTILKGDTGNNWIPDVGSTWWPPKTPYIPPITTRYP
TSKPTTRFTPKFPTPIPPPPPPPPPTELRTPLPPTPERPTTGLTT1APAASTPGGITVDN
RVQTDPQKPRGDVFSVLVHSCNFDHGLCGWIREKDNDLHWEPIRDPAGGQYLTVSAAKAPGG
KAARLVLPLGRIMHSGDLCLSFRHKVTGLHSGTLQVFVRKHGAHGAALWGRNGGHGWRQTQI
TLRGADIKSESOR

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 273-277

Casein kinase II phosphorylation site.

amino acids 166-170, 345-349

Tyrosine kinase phosphorylation site.

amino acids 199-206

N-myristoylation site.

amino acids 109-115, 125-131, 147-153, 191-197, 221-227, 236-242, 421-427, 433-439, 462-468, 476-482

Aspartic acid and asparagine hydroxylation site.

amino acids 104-116, 186-198, 231-243

Cell attachment sequence.

amino acids 382-385

EGF-like domain cysteine pattern signature.

amino acids 75-87

CTTCTTTGAAAAGGATTATCACCTGATCAGGTTCTCTCTGCATTTGCCCCCTTTAGATTGTGA CACTATGGCTTCCACACTCCAGCATCAGACATCCAGATCATATGGCTATTTGAGAGACCCCA CACAATGCCCAAATACTTACTGGGCTCTGTGAATAAGTCTGTGGTTCCTGACTTGGAATACC AACACAAGTTCACCATGATGCCACCCAATGCATCTCTGCTTATCAACCCACTGCAGTTCCCT GATGAAGGCAATTACATCGTGAAGGTCAACATTCAGGGAAATGGAACTCTATCTGCCAGTCA GAAGATACAAGTCACGGTTGATGATCCTGTCACAAAGCCAGTGGTGCAGATTCATCCTCCCT $\tt CTAGCTTACCAATGGCTAAAAAATGGGAGACCTGTCCACACCAGCTCCACCTACTCCTTTTC$ TCCCCAAAACAATACCCTTCATATTGCTCCAGTAACCAAGGAAGACATTGGGAATTACAGCT GCCTGGTGAGGAACCCTGTCAGTGAAATGGAAAGTGATATCATTATGCCCATCATATATTAT GGACCTTATGGACTTCAAGTGAATTCTGATAAAGGGCTAAAAGTAGGGGAAGTGTTTACTGT TGACCTTGGAGAGGCCATCCTATTTGATTGTTCTGCTGATTCTCATCCCCCCAACACCTACT CCTGGATTAGGAGGACTGACAATACTACATATATCATTAAGCATGGGCCTCGCTTAGAAGTT CGGCAGGCAAGATGAAACTCATTTCACAGTTATCATCACTTCCGTAGGACTGGAGAAGCTTG ${\tt CACAGAAAGGAAAATCATTGTCACCTTTAGCAAGTATAACTGGAATATCACTATTTTTGATT}$ ATATCCATGTGTCTTCTTCCTATGGAAAAAATATCAACCCTACAAAGTTATAAAACAGAA ACTAGAAGGCAGGCCAGAAACAGAATACAGGAAAGCTCAAACATTTTCAGGCCATGAAGATG $\tt CTCTGGATGACTTCGGAATATATGAATTTGTTGCTTTTCCAGATGTTTCTGGTGTTTCCAGG$ ATTCCAAGCAGGTCTGTTCCAGCCTCTGATTGTGTATCGGGGCAAGATTTGCACAGTACAGT GTATGAAGTTATTCAGCACATCCCTGCCCAGCAGCAAGACCATCCAGAGTGAACTTTCATGG GCTAAACAGTACATTCGAGTGAAATTCTGAAGAAACATTTTAAGGAAAAACAGTGGAAAAGT ATATTAATCTGGAATCAGTGAAGAAACCAGGACCAACACCTCTTACTCATTATTCCTTTACA ${\tt TGCAGAATAGAGGCATTTATGCAAATTGAACTGCAGGTTTTTCAGCATATACACAATGTCTT}$ $\tt GTGCAACAGAAAAACATGTTGGGGAAATATTCCTCAGTGGAGAGTCGTTCTCATGCTGACGG$ GGAGAACGAAAGTGACAGGGGTTTCCTCATAAGTTTTGTATGAAATATCTCTACAAACCTCA ATTAGTTCTACTCTACACTTTCACTATCATCAACACTGAGACTATCCTGTCTCACCTACAAA TTAAGAATGCTAAATTTATGTTTCAATTTTATTTCCAAATTTCTATCTTGTTATTTGTACAA AGTAGTATTTTTGAGAAGACTTGTGAACACTTAAGGAAATGACTATTAAAGTCTTATTTTTA

MWLKVFTTFLSFATGACSGLKVTVPSHTVHGVRGQALYLPVHYGFHTPASDIQIIWLFERPH
TMPKYLLGSVNKSVVPDLEYQHKFTMMPPNASLLINPLQFPDEGNYIVKVNIQGNGTLSASQ
KIQVTVDDPVTKPVVQIHPPSGAVEYVGNMTLTCHVEGGTRLAYQWLKNGRPVHTSSTYSFS
PQNNTLHIAPVTKEDIGNYSCLVRNPVSEMESDIIMPIIYYGPYGLQVNSDKGLKVGEVFTV
DLGEAILFDCSADSHPPNTYSWIRRTDNTTYIIKHGPRLEVASEKVAQKTMDYVCCAYNNIT
GRQDETHFTVIITSVGLEKLAQKGKSLSPLASITGISLFLIISMCLLFLWKKYQPYKVIKQK
LEGRPETEYRKAQTFSGHEDALDDFGIYEFVAFPDVSGVSRIPSRSVPASDCVSGQDLHSTV
YEVIQHIPAQQQDHPE

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 341-359

N-glycosylation site.

amino acids 73-77, 92-96, 117-121, 153-157, 189-193, 204-208, 276-280, 308-312

Casein kinase II phosphorylation site.

amino acids 129-133, 198-202, 214-218, 388-392, 426-430, 433-437

Tyrosine kinase phosphorylation site.

amino acids 272-280

N-myristoylation site.

amino acids 15-21, 19-25, 118-124, 163-167, 203-209, 231-237, 239-245

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

 $\texttt{GCAAGCGGCGAA} \underline{\textbf{ATG}} \texttt{GCGCCCTCCGGGAGTCTTGCAGTTCCCCTGGCAGTCCTGGTGCTGTT}$ GCTTTGGGGTGCTCCCTGGACGCACGGGCGGGGGGAGCAACGTTCGCGTCATCACGGACGAGA ${\tt ACTGGAGAGAACTGCTGGAAGGAGACTGGATGATAGAATTTTATGCCCCGTGGTGCCCTGCT}$ TGTCAAAATCTTCAACCGGAATGGGAAAGTTTTGCTGAATGGGGAGAAGATCTTGAGGTTAA TATTGCGAAAGTAGATGTCACAGAGCAGCCAGGACTGAGTGGACGGTTTATCATAACTGCTC TTCCTACTATTTATCATTGTAAAGATGGTGAATTTAGGCGCTATCAGGGTCCAAGGACTAAG AAGGACTTCATAAACTTTATAAGTGATAAAGAGTGGAAGAGTATTGAGCCCGTTTCATCATG ${\tt TCAGGACGTGCCATAACTACTTTATTGAAGACCTTGGATTGCCAGTGTGGGGATCATATACT}$ GTTTTTGCTTTAGCAACTCTGTTTTCCGGACTGTTATTAGGACTCTGTATGATATTTGTGGC AGATTGCCTTTGTCCTTCAAAAAGGCGCAGACCACAGCCATACCCATACCCTTCAAAAAAAT TATTATCAGAATCTGCACAACCTTTGAAAAAAGTGGAGGAGGAACAAGAGGCGGATGAAGAA ${\tt CATAAGACAACGCTCTCTGGGTCCATCATTGGCCACAGATAAATCC} {\color{red}{\bf TAAATTTTATAG}}$ ${\tt AACTGTGACTTTTTGAATATTGCAGGGTTCAGTCTAGATTGTCATTAAATTGAAGAGTCTA}$ CATTCAGAACATAAAAGCACTAGGTATACAAGTTTGAAATATGATTTAAGCACAGTATGATG GTTTAAATAGTTCTCTAATTTTTGAAAAATCGTGCCAAGCAATAAGATTTATGTATATTTGT TTAATAATAACCTATTTCAAGTCTGAGTTTTGAAAATTTACATTTCCCAAGTATTGCATTAT ${\tt TGAGGTATTTAAGAAAAATATTTCTCATTTGATATATTTTTCTCTG}$ ${\tt TTTCACTGTGTGAAAAAAAGAAGATATTTCCCATAAATGGGAAGTTTGCCCATTGTCTCAAGATTCCCATAAATGGGAAGTTTGCCCATTGTCTCAAGATTCCCATAAATGGGAAGTTTGCCCATTGTCTCAAGATTCCCATAAATGGGAAGTTTTGCCCATTGTCTCAAGATTCCCATAAATGGGAAGTTTTGCCCATTGTCTCAAGATTCCCATAAATGGGAAGTTTTGCCCATTGTCTCAAGATTCCCATAAATGGGAAGTTTTGCCCATTGTCTCAAGATTCCCATAAATGGGAAGTTTTGCCCATTGTCTCAAGATTCCCATAAATGGGAAGTTTTGCCCATTGTCTCAAGATTCCCATAAATGGGAAGTTTTGCCCATTGTCTCAAGATTCAAGATT$ AAATGTGTATTTCAGTGACAATTTCGTGGTCTTTTTAGAGGTATATTCCAAAATTTCCTTGT GTTTCAAACTGAAGTTTACTGAGAGATCCATCAAATTGAACAATCTGTTGTAATTTAAAATT TTTTACATTTTGAAAATTCAAAGAAGCTTAATATAAAAGTTTGCATTCTACTCAGGAAAAAG ${\tt CATCTTCTTGTATATGTCTTAAATGTATTTTTGTCCTCATATACAGAAAGTTCTTAATTGAT}$ TTTACAGTCTGTAATGCTTGATGTTTTAAAATAATAACATTTTTATATTTTTTAAAAGACAA ACTTCATATTATCCTGTGTTCTTTCCTGACTGGTAATATTGTGTGGGGATTTCACAGGTAAAA GTCAGTAGGATGGAACATTTTAGTGTATTTTTACTCCTTAAAGAGCTAGAATACATAGTTTT CACCTTAAAAGAAGGGGGAAAATCATAAATACAATGAATCAACTGACCATTACGTAGTAGAC AATTTCTGTAATGTCCCCTTCTTTCTAGGCTCTGTTGCTGTGAATCCATTAGATTTACAG TATCGTAATATACAAGTTTTCTTTAAAGCCCTCTCCTTTAGAATTTAAAATATTGTACCATT AAAGAGTTTGGATGTGTAACTTGTGATGCCTTAGAAAAATATCCTAAGCACAAAATAAACCT

MAPSGSLAVPLAVLVLLLWGAPWTHGRRSNVRVITDENWRELLEGDWMIEFYAPWCPACQNL QPEWESFAEWGEDLEVNIAKVDVTEQPGLSGRFIITALPTIYHCKDGEFRRYQGPRTKKDFI NFISDKEWKSIEPVSSWFGPGSVLMSSMSALFQLSMWIRTCHNYFIEDLGLPVWGSYTVFAL ATLFSGLLLGLCMIFVADCLCPSKRRRPQPYPYPSKKLLSESAQPLKKVEEEQEADEEDVSE EEAESKEGTNKDFPQNAIRQRSLGPSLATDKS

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 182-201

Casein kinase II phosphorylation site.

amino acids 68-72, 119-123, 128-132, 247-251, 257-261

Tyrosine kinase phosphorylation site.

amino acids 107-115

N-myristoylation site.

amino acids 20-26, 192-198

Amidation site.

amino acids 25-29

GCGAGTGTCCAGCTGCGGAGACCCGTGATAATTCGTTAACTAATTCAACAAACGGGACCCTT CTGTGTGCCAGAAACCGCAAGCAGTTGCTAACCCAGTGGGACAGGCGGATTGGAAGAGCGGG AAGGTCCTGGCCCAGAGCAGTGTGACACTTCCCTCTGTGACCATGAAACTCTGGGTGTCTGC ATTGCTGATGGCCTGGTTTGGTGTCCTGAGCTGTGTGCAGGCCGAATTCTTCACCTCTATTG GGCACATGACTGACCTGATTTATGCAGAGAAAGAGCTGGTGCAGTCTCTGAAAGAGTACATC CTTGTGGAGGAAGCCAAGCTTTCCAAGATTAAGAGCTGGGCCAACAAAATGGAAGCCTTGAC TAGCAAGTCAGCTGCTGATGCTGAGGGCTACCTGGCTCACCCTGTGAATGCCTACAAACTGG GGTTTTATCGCCAACCTCTCTGTGCAGCGGCAGTTCTTCCCCACTGATGAGGACGAGATAGG AGCTGCCAAAGCCCTGATGAGACTTCAGGACACATACAGGCTGGACCCAGGCACAATTTCCA GAGGGGAACTTCCAGGAACCAAGTACCAGGCAATGCTGAGTGTGGATGACTGCTTTGGGATG AAAGCAGCTTGATGCCGGGGAGGAGGCCACCACAACCAAGTCACAGGTGCTGGACTACCTCA GCTATGCTGTCTCCAGTTGGGTGATCTGCACCGTGCCCTGGAGCTCACCCGCCGCCTGCTC TCCCTTGACCCAAGCCACGAACGAGCTGGAGGGAATCTGCGGTACTTTGAGCAGTTATTGGA GGAAGAGAGAAAAAACGTTAACAAATCAGACAGAAGCTGAGCTAGCAACCCCAGAAGGCA TCTATGAGAGGCCTGTGGACTACCTGCCTGAGAGGCGATGTTTACGAGAGCCTCTGTCGTGGG GAGGGTGTCAAACTGACACCCCGTAGACAGAAGAGGCTTTTCTGTAGGTACCACCATGGCAA CAGGGCCCCACAGCTGCTCATTGCCCCCTTCAAAGAGGAGGACGAGTGGGACAGCCCGCACA TCGTCAGGTACTACGATGTCATGTCTGATGAGGAAATCGAGGAGGATCAAGGAGATCGCAAAA CCTAAACTTGCACGAGCCACCGTTCGTGATCCCAAGACAGGAGTCCTCACTGTCGCCAGCTA GTCGGATGCAGCATATCACAGGGTTAACAGTAAAGACTGCAGAATTGTTACAGGTTGCAAAT TATGGAGTGGGAGGACAGTATGAACCGCACTTCGACTTCTCTAGGCGACCTTTTGACAGCGG CCTCAAAACAGAGGGGAATAGGTTAGCGACGTTTCTTAACTACATGAGTGATGTAGAAGCTG GTGGTGCCACCGTCTTCCCTGATCTGGGGGCTGCAATTTGGCCTAAGAAGGGTACAGCTGTG TGTGCTTGTGGGCTGCAAGTGGGTCTCCAATAAGTGGTTCCATGAACGAGGACAGGAGTTCT $\mathsf{TGAGACCTTGTGGATCAACAGAAGTTGACTGACATCCTTTTCTGTCCTTCCCCCTTCCTGGTC$ CTTCAGCCCATGTCAACGTGACAGACACCTTTGTATGTTCCTTTGTATGTTCCTATCAGGCT GATTTTTGGAGAAATGAATGTTTGTCTGGAGCAGAGGGAGACCATACTAGGGCGACTCCTGT GTGACTGAAGTCCCAGCCCTTCCATTCAGCCTGTGCCATCCCTGGCCCCAAGGCTAGGATCA AAGTGGCTGCAGCAGAGTTAGCTGTCTAGCGCCTAGCAAGGTGCCTTTGTACCTCAGGTGTT

MKLWVSALLMAWFGVLSCVQAEFFTSIGHMTDLIYAEKELVQSLKEYILVEEAKLSKIKSWA
NKMEALTSKSAADAEGYLAHPVNAYKLVKRLNTDWPALEDLVLQDSAAGFIANLSVQRQFFP
TDEDBIGAAKALMRLQDTYRLDPGTISRGELPGTKYQAMLSVDDCFGMGRSAYNEGDYYHTV
LWMEQVLKQLDAGEEATTKSQVLDYLSYAVFQLGDLHRALELTRRLLSLDPSHERAGGNLR
YFEQLLEEEREKTLITNQTEAELATPEGIYERFUVJLEERDVYESLCRGEGVKLTPRRQKRLF
CRYHHGNRAPQLLIAPFKEEDEWDSPHIVRYYDVMSDEBIERIKEIAKPKLARATVRDPKTG
VLTVASYRVSKSSWLEEDDDPVVARVNRRMQHITGLTVKTAELLQVANYGVGGQYEPHFDFS
RRFPDSGLKTEGNRLATFLHXMSDVEAGGATVFPDLGAAIWPKKGTAVFWYNLLRSGEGDYR
TRHAACPVLVGCKWVSNKWFHERGOEFLRPCGSTEVD

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 115-119, 264-268

Glycosaminoglycan attachment site.

amino acids 490-494

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 477-481

Casein kinase II phosphorylation site.

amino acids 43-47, 72-76, 125-129, 151-155, 165-169, 266-270, 346-350, 365-369, 385-389, 457-461, 530-534

Tyrosine kinase phosphorylation site.

amino acids 71-80, 489-496

N-myristoylation site.

amino acids 14-20, 131-137, 171-177, 446-452

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 8-19

Leucine zipper pattern.

amino acids 213-235

AGACAGGACAATCTTCTTGGGGATGCTGGTCCTGGAAGCCAGCGGGCCTTGCTCTGTCTTTGGCCTCATTGACCC $\tt CCTGGGGCACCCACCTGGCAGGGCCTACCACCATGCGACTGAGCTCCCTGTTGGCTCTGCTGCGGCCAGCGCTTC$ CCCTCATCTTAGGGCTGTCTCTGGGGTGCAGCCTGAGCCTCCTGCGGGTTTCCTGGATCCAGGGGGAGGAGAAG ATCCTGTGTCGAGGCTGTAGGGGAGCGAGGGGCCACAGAATCCAGATTCGAGAGCTCGGCTAGACCAAAGTG ATGAAGACTTCAAACCCCGGATTGTCCCCTACTACAGGGACCCCAACAAGCCCTACAAGAAGGTGCTCAGGACTC GGTACATCCAGACAGAGCTGGGCTCCCGTGAGCGGTTGCTGGTGGCTGTCCTGACCTCCCGAGCTACACTGTCCA CCCGCCTGCCAGCCTTGCTGCCACCTCAGCATCAACCAAGACCTGTACTTAGGCCGGGCAGAGGAGTTCATTG GGCCACATCTGGATGGCTGCCGAGGAGACATTCTCAGTGCCCGTCCTGACGAGTGGCTTGGACGCTGCCTCATTG ACTCTCTGGGCGTCGGCTGTGTCTCACAGCACCAGGGGCAGCAGTATCGCTCATTTGAACTGGCCAAAAATAGGG ACCCTGAGAAGGAAGGGAGCTCGGCTTTCCTGAGTGCCTTCGCCGTGCACCCTGTCTCCGAAGGTACCCTCATGT ACCGGCTCCACAAACGCTTCAGCGCTCTGGAGTTGGAGCGGCTTACAGTGAAATAGAACAACTGCAGGCTCAGA CACCACACTCTCGCTTTGAGGTGCTGGGCTGGGACTACTTCACAGAGCAGCACCTTCTCCTGTGCAGATGGGG ATCGGCGCTATCAGCCCCGCCTGCGCTTCCAGAAGCAGCGACTGCTCAACGGCTATCGGCGCTTCGACCCAGCAC GGGGCATGGAGTACACCCTGGACCTGCTGTTGGAATGTGTGACACAGCGTGGGCACCGGCGGGCCCTGGCTCGCA AGCTGGTGCTGCCACTCCTGGTGGCTGAAGCTGCTGCAGCCCCGGCTTTCCTCGAGGCGTTTGCAGCCAATGTCC TGGAGCCACGAGAACATGCATTGCTCACCCTGTTGCTGGTCTACGGGCCACGAGAAGGTGGCCGTGGAGCTCCAG ACCCATTCTTGGGGTGAAGGCTGCAGCAGCGGAGTTAGAGCGACGTACCCTGGGACGAGGCTGGCCTGGCTCG TCTTCCTTACCACCGTGTGGACAAGGCCTGGGCCCGAAGTCCTCAACCGCTGTCGCATGAATGCCATCTCTGGCT GGCAGGCCTTCTTCCAGTCCATTTCCAGGAGTTCAATCCTGCCCTGTCACCACAGAGATCACCCCCAGGGCCCC CGGGGGCTGGCCCTGACCCCCCTCCCTGGTGCTGACCCCTCCCGGGGGGGCTCCTATAGGGGGGAGATTTG ACCTCTTTCGGGCCGTAGAGCCAGGGCTGGTGCAGAAGTTCTCCCTGCGAGACTGCAGCCCACGGCTCAGTGAAG AACTCTACCACCGCTGCCGCCTCAGCAACCTGGAGGGGCCTAGGGGGCCCTGCCCAGCTGGCTATGGCTCTCTTTG AGCAGGAGCAGGCCAATAGCACTTAGCCCGCCTGGGGGCCCTAACCTCATTACCTTTCCTTTGTCTGCCTCAGCC $\tt CCAGGAAGGCCAAGATGGTGGACAGATAGAGAATTGTTGCTGTATTTTTAAATATGAAAATGTTATTAA$ ACATGTCTTCTGCC

MRLSSLLALLRPALPLILGLSLGCSLSLLRVSWIQGEGEDPCVEAVGERGGPQNPDSRARLD QSDEDFKPRIVPYYRDPNKPYKKVLRTRYIQTELGSEBRLLVAVLTSRATLSTLAVAVNRTNAHHPPRLLYFTGQRGARAPAGMQVVSHGBERPAMLMSETLRHLHTHEGADYDWFPIMQDDTY VQAPRLAALAGHLSINQDLYLGRAEEFIGAGEQARYCHGGFGYLLSRSLLLRLRPHLDGCRG DILSARPDEWLGRCLIDSLGVGCVSQHQGQQYRSFELAKNRDPEKEGSSAFLSAFAVHPVSE GTLMYRLHKRFSALELERAYSEIEQLQAQIRNLTVLTPEGEAGLSWPVGLPAPFTPHSRFEV LGWDYFTECHTSCADGAPKCPLQGASRADVGDALETALEQLNRRYQPRLRFQKQRLLMGYR RFDPARGMEYTLDLLLECVTQRGHRRALARRVSLLRPLSRVEILPMPYVTEATRVQLVLPLL VAEAAAAPAFLEAFAANVLEPREHALLTLLLVYGPREGGRGAPDPPLGVKAAAAELERRYPGTRLAWLAVRAEAPSQVRLMDVVSKKHPVDTLFFLTTVWTRPGFEVLNRCRMNAISGWQAFFP VHFQEFNPALSPQRSPPGPPGAGPDPPSPGADPSRGAPIGGRFDRQASAEGCFYNADYLAA RARLAGELAGGEEEALEGLEVMDVFLRFSGLHLFRAVEPGLVQKFSLRDCSPRLSEELYHR CRUSNIEGLGGRADMALFEGEOANST

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 489-507

N-glycosylation site.

amino acids 121-125, 342-346

 $\mathtt{cAMP-}$ and $\mathtt{cGMP-} dependent$ protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-68, 150-154, 322-326, 331-337, 368-372, 385-389,

399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,

558-564, 651-657, 657-663, 672-678

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

CGGAGTGCTGCCCAACGTGAGAGGAAACCCGTGCGCGCTGCGCTTTCCTGTCCCCAAGCC $\tt GTTCTAGACGCGGGAAAA {\color{red} ATG} CTTTCTGAAAGCAGCTCCTTTTTGAAGGGTGTGATGCTTGG$ AAGCATTTCTGTGCTTTGATCACTATGCTAGGACACATTAGGATTGGTCATGGAAATAGAA TGCACCACCATGAGCATCATCACCTACAAGCTCCTAACAAAGAAGATATCTTGAAAATTTCA GAGGATGAGCGCATGGAGCTCAGTAAGAGCTTTCGAGTATACTGTATTATCCTTGTAAAACC CAAAGATGTGAGTCTTTGGGCTGCAGTAAAGGAGACTTGGACCAAACACTGTGACAAAGCAG AGTTCTTCAGTTCTGAAAATGTTAAAGTGTTTGAGTCAATTAATATGGACACAAATGACATG TGGTTAATGATGAGAAAAGCTTACAAATACGCCTTTGATAAGTATAGAGACCAATACAACTG GTTCTTCCTTGCACGCCCCACTACGTTTGCTATCATTGAAAACCTAAAGTATTTTTTGTTAA AAAAGGATCCATCACAGCCTTTCTATCTAGGCCACACTATAAAATCTGGAGACCTTGAATAT GTGGGTATGGAAGGAGTTGTCTTAAGTGTAGAATCAATGAAAAGACTTAACAGCCTTCT CAATATCCCAGAAAAGTGTCCTGAACAGGGAGGGATGATTTGGAAGATATCTGAAGATAAAC AGCTAGCAGTTTGCCTGAAATATGCTGGAGTATTTGCAGAAAATGCAGAAGATGCTGATGGA AAAGATGTATTTAATACCAAATCTGTTGGGCTTTCTATTAAAGAGGCAATGACTTATCACCC ATCAGATGCATGTGATGATGTATGGGGTATACCGCCTTAGGGCATTTTGGGCATATTTTCAAT GATGCATTGGTTTTCTTACCTCCAAATGGTTCTGACAATGACTGAGAAGTGGTAGAAAAGCG TGAATATGATCTTTGTATAGGACGTGTGTTGTCATTATTTGTAGTAGTAACTACATATCCAA TACAGCTGTATGTTTCTTTTTCTTATTTGGTGGCACTGGTATAACCACACACTTAAAG GTGATAAATTCTAAATTATGAACATTAGAAAATCTGTGGGGCACATATTTTTTGCTGATTGGTT AAAAATTTTAACAGGTCTTTAGCGTTCTAAGATATGCAAATGATATCTCTAGTTGTGAATT TGTGATTAAAGTAAAACTTTTAGCTGTGTGTCCCTTTACTTCTAATACTGATTTATGTTCT AAGCCTCCCCAAGTTCCAATGGATTTGCCTTCTCAAAATGTACAACTAAGCAACTAAGAAA ATTAAAGTGAAAGTTGAAAAAT

MLSESSSFLKGVMLGSIFCALITMLGHIRIGHGNRMHHHEHHHLQAPNKEDILKISEDERME LSKSFRVYCIILVKPKDVSLWAAVKETWTKHCDKAEFFSSENVKVFESINMDTNDMWLMMRK AYKYAFDKYRDQYNWFFLARPTTFAIIENLKYFLLKKDPSQPFYLGHTIKSGDLEYVGMEGG IVLSVESMKRLNSLLNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGKDVFNT KSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQMHVMMYGVYRLRAFGHIFNDALVFL PPNGSDND

Signal sequence:

amino acids 1-33

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-132, 150-154, 322-326, 331-335, 368-372, 385-389, 399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550, 558-564, 651-657, 657-663, 672-672

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 14-25

Cell attachment sequence.

amino acids 247-250

CTGAAACACAATGCACAGAGAGAGGATGCTTCTCTCTCCCAAATGTTCTTATGGACTGTTGCT GGGATCCCCATCCTATTTCTCAGTGCCTGTTTCATCACCAGATGTGTTGTGACATTTCGCAT CTTTCAAACCTGTGATGAGAAAAAGTTTCAGCTACCTGAGAATTTCACAGAGCTCTCCTGCT ACAATTATGGATCAGGTTCAGTCAAGAATTGTTGTCCATTGAACTGGGAATATTTTCAATCC AGCTGCTACTTCTTCTACTGACACCATTTCCTGGGCGTTAAGTTTAAAGAACTGCTCAGC CATGGGGGCTCACCTGGTGGTTATCAACTCACAGGAGGAGCAGGAATTCCTTTCCTACAAGA AACCTAAAATGAGAGAGTTTTTTATTGGACTGTCAGACCAGGTTGTCGAGGGTCAGTGGCAA TGGGTGGACGCACACCTTTGACAAAGTCTCTGAGCTTCTGGGATGTAGGGGAGCCCAACAA CATAGCTACCCTGGAGGACTGTGCCACCATGAGAGACTCTTCAAACCCAAGGCAAAATTGGA ATGATGTAACCTGTTTCCTCAATTATTTTCGGATTTGTGAAATGGTAGGAATAAATCCTTTG AGAACATGGCCACACCGCCCCACACGAGAAATTTGTGCGCTGAACTTCAAAGGACTTC AAAAA

MNSSKSSETQCTERGCFSSQMFLWTVAGIPILFLSACFITRCVVTFRIFQTCDEKKFQLPEN FTELSCYNYGSGSVKNCCPLNWEYFQSSCYFFSTDTISWALSLKNCSAMGAHLVVINSQBEQ EFLSYKKPKMREFFIGLSDQVVEGQWQWVDGTPLTKSLSFWDVGEPNNIATLEDCATMRDSS NPRONWNDVTCFLNYFRICEMVGINPLNKGKSL

Signal sequence:

amino acids 1-42

N-glycosylation site.

amino acids 2-6, 62-66, 107-111

Casein kinase II phosphorylation site.

amino acids 51-55, 120-124, 163-167, 175-179, 181-185

N-myristoylation site.

amino acids 15-21, 74-80, 155-161

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 27-38

GGGACTACAAGCCGCGCGCCGCCTGCCCCTCAGCAACCCTCGACATGCCGCTGAGGCGCCACCGCGAC TCAAATCCAGCAATCGAACCCCAGTGGTACAGGAATTTGAAAGTGTGGAACTGTCTTGCATCATTACGGATTCGC AGACAAGTGACCCCAGGATCGAGTGGAAGAAAATTCAAGATGAACAAACCACATATGTGTTTTTTGACAACAAAA ACTCAGCCCTTTATCGCTGTGAGGTCGTTGCTCGAAATGACCGCAAGGAAATTGATGAGGATTGTGATCGAGTTAA ACTGCCAGGAGAGTGAGGGCCACCCCGGCCTCACTACAGCTGGTATCGCAATGATGTACCACTGCCCACGGATT AGATGGAAGTCTATGACCTGAACATTGGCGGAATTATTGGGGGGGTTCTGGTTGTCCTTGCTGTACTGGCCCTGA CTACTCTTCTTACTCTAACAAGCCACATGAATAGAAGAATTTTCCTCAAGATGGACCCGGTAAATATAACCACAA GGAAGCGAAACTGGGTGCGTTCACTGAGTTGGGTTCCTAATCTGTTTCTGGCCTGATTCCCGCATGAGTATTAGG GTGATCTTAAAGAGTTTGCTCACGTAAACGCCCGTGCTGGGCCCTGTGAAGCCAGCATGTTCACCACTGGTCGTT ACCTTCGTCTTAGGCTAAGTCTGAAATGGTACTGAAATATGCTTTTCTATGGGTCTTGTTTATTTTATAAAATTT $\tt CACACAAGTTTTAGCCTTTTTCACAAGGGAACTCATACTGTCTACACATCAGACCATAGTTGCTTAGGAAACCTT$ GCCATCCTTGGGCCCTGGCAGTGGCTGTCCCCAGTGAGCTTTACTCACGTGGCCCTTGCTTCATCCAGCACAGC ${\tt TCTCAGGTGGGCACTGCAGGGACACTGGTGTCTTCCATGTAGCGTCCCAGCTTTGGGCTCCTGTAACAGACCTCT}$ AAGATTGTCTAAGGCCAAAGGCAATTGCGAAATCAAGTCTGTCAAGTACAATAACATTTTTAAAAGAAAATGGAT TGTGGGGGGACATTAGCAACATCACTCAGAAGCCTGTGTTCTTCAAGAGCAGGTGTTCTCAGCCTCACATGCCCT GCCGTGCTGGACTCAGGACTGAAGTGCTGTAAAGCAAGGAGCTGCTGAGAAGGAGCACTCCACTGTGTGCCTGGA AATTGCATACATGAGACTGTTGACTTTTTTTAGTTATGTGAAACACTTTGCCGCAGGCCGCCTGGCAGAGGCA TGGGAACCAGGTCTGAAAAAGTAGAGAAGTGAAAGTAGAGTCTGGGAAGTAGCTGCCTATAACTGAGACTAGA $\tt CGGAAAAGGAATACTCGTGTATTTTAAGATATGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCTCAAGAAAGGAATACTCGAGGCCGATACGAGGCTGTGATTCTCAAGAATATGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCTCAAGAATATGAATGTGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCTCAAGAATATGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCTCAAGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATCTCAAGACTCGAGGCCGATACGAGGCTGTGATTCTCAAGAATGTTGAATGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGTGAATGA$ GCCTTTGGATGGATGTTGCTGTACACAGATGCTACAGACTTGTACTAACACACCGTAATTTGGCATTTGTTTAAC CTCATTTATAAAAGCTTCAAAAAAACCCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77624

><subunit 1 of 1, 310 aa, 1 stop

><MW: 35020, pI: 7.90, NX(S/T): 3

MALRRPPRIRLCARLPDFFLLLLFRGCLIGAVNLKSSNRTPVVQEFESVELSCIITDSQTSD PRIEWKKIQDEQTTYVFFDNKIQGDLAGRAEILGKTSLKIWNVTRRDSALYRCEVVARNDRK EIDEIVIELTVQVKPVTPVCRVPKAVPVGKMATLHCQESEGHPRPHYSWYRNDVPLPTDSRA NPRFRNSSFHLNSETGTLVFTAVHKDDSGQYYCIASNDAGSARCEEQEMEVYDLNIGGIIGG VLVVLAVLAULITLGICCAYRRGYFINNKQDGESYKNPGKPDGVNYIRTDEEGDFRHKSSFVI

Important features of the protein:

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 243-263

N-glycosylation sites.

amino acids 104-107, 192-195

cAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 107-110

Casein kinase II phosphorylation site.

amino acids 106-109, 296-299

Tyrosine kinase phosphorylation site.

amino acids 69-77

N-myristoylation sites.

amino acids 26-31, 215-220, 226-231, 243-248, 244-249, 262-267