Química Configurações eletrônicas

Prof. Diego J. Raposo UPE – Poli 2025.1

Spin do elétron

- Esse número quântico, mais os três abordados anteriormente, permitem obter a configuração eletrônica de um átomo no seu estado fundamental (arranjo dos elétrons nos orbitais que leva a menor energia do átomo).
- A função de onda que inclui os três números quânticos e o do spin é chamada de spin-orbital:
- · Relembrando, os números quânticos são:
 - Número quântico principal (n);
 - Número quântico do momento angular (I);
 - Número quântico magnético (m_i);
 - Número quântico do spin (m_s).

Principal, n defines Orbital size and shell define Orbital energy Angular momentum, I defines Orbital shape and subshell Magnetic, m_I defines Orbital orientation Spin, m_s defines Electron spin

Spin do elétron

- O elétron, assim como outras partículas, possui uma propriedade chamada spin, s, associada (classicamente) ao sentido de um rodopio.
- O momento angular do elétron devido ao spin só pode assumir certos valores discretos. A componente do momento angular ao longo do eixo perpendicular ao plano da rotação (m_s) é o quarto número quântico, podendo assumir, no caso do elétron, dois valores: +1/2 (designado por †) ou -1/2 (designado por ‡).
- O momento angular do spin, como deve-se ao rodopio de cargas, também gera um campo magnético.

Exercício

- 1) Determine se cada um dos seguintes conjuntos de números quânticos para o átomo de hidrogênio são válidos. Se um conjunto não for válido, indique qual dos números quânticos cujo valor é inválido, e porque.
 - **a)** n = 4, l = 1, $m_l = 2$, $m_s = -1/2$;
 - **b)** n = 4, l = 3, $m_l = -3$, $m_s = +1/2$;
 - **c)** n = 3, l = 2, $m_l = -1$, $m_s = +1/2$;
 - **d)** n = 5, l = 0, $m_l = 0$, $m_s = 0$;
 - **e)** n = 2, l = 2, $m_l = 1$, $m_s = +1/2$;

Regras para dispor elétrons em orbitais

- O arranjo dos elétrons no átomo é o que dá várias das propriedades físicas e químicas de átomos e moléculas que observamos;
- Para determinar tal arranjo mais provável, chamado de configuração eletrônica, são observadas quatro regras:
- 1) Regra do Aufbau: Elétrons devem ocupar primeiro os subníveis com menor energia (estabilidade), e quando seus orbitais estiverem preenchidos, ocupam o próximo na ordem de energia;

Regras para dispor elétrons em orbitais

 3) Regra de Hund: elétrons, para evitar a repulsão ao ocuparem um mesmo orbital, primeiro ocupam orbitais diferentes caso esses possuam mesma energia (degenerados) ou diferença pequena de energia (veremos tal exemplo em hibridização);

Regras para dispor elétrons em orbitais

4) Regra de Bohr (diagrama de Pauling):
 a) orbitais com n + l menor possuem menor
 energia (são ocupados primeiro) e b) entre aqueles
 com mesmo n + l, os com menor n são os com
 menor energia.

Configurações de alguns elementos

Configurações de alguns elementos

Números quânticos do último elétron: n = 2, l = 1, $m_l = 0$, $m_s = +1/2$

- 2) Diferencie o princípio de exclusão de Pauli da regra de Hund;
- **3)** Escreva as configurações eletrônicas condensadas dos átomos a seguir e indique quantos elétrons desemparelhados cada um possui:
 - a) Mg;
 - **b)** Ge;
 - **c)** V.
- 4) O que está errado com as seguintes configurações eletrônicas para os átomos em seus estados fundamentais?
 - a) 1s22s23s1
 - **b)** [Ne] 2s² 2p³
 - c) [Ne] 3s2 3d5

Configurações de alguns elementos

Tipos de camadas/subníveis

- Subníveis são divididos em:
 - Subnível mais energético: último a ser ocupado;
 - **Subnível mais externo:** com maior valor de n.
- Em elementos com poucos elétrons, é comum o subnível mais externo ser também o mais energético. Porém, isso passa a mudar em elementos com Z maior que 20;
- A camada mais externa é aquela que possui o subnível mais externo (ou seja, a com maior valor de n).

Elétrons nos átomos

- É interessante dividir os elétrons nas configurações eletrônicas dos átomos em dois tipos:
 - Elétrons do caroço: mais fortemente ligados ao núcleo. São identificados guando:
 - fazem parte de uma configuração de gás nobre no átomo ou, analogamente,
 - quando uma camada é fechada: 2 elétrons na camada K, 8 elétrons nas restantes. Nas camadas K, L e M correspondem à uma camada fechada (totalmente preenchida);
 - Elétrons de valência: menos ligados ao núcleo, são todos os elétrons que não fazem parte do caroço. Se fazem parte de uma única camada, esta é chamada de camada de valência. São os principais responsáveis pelas propriedades físicas e químicas dos átomos.

Spin do elétron

- Após os sucessos do método proposto por Schrödinger, descobriu-se que 3 números quânticos são insuficientes para descrever o elétron no átomo;
- Isso porque o elétron possui uma propriedade chamada spin;
- Esse spin resulta em um momento angular, m_s , que pode ser um de dois valores: +1/2 ou -1/2.
- A função de onda que inclui os três números quânticos é chamada de spin-orbital:
- Relembrando, os números quânticos são:
 - Número quântico principal (n);
 - Número quântico do momento angular (/);
 - Número quântico magnético (m_i);
 - Número quântico do spin (m_s).

Bons estudos!