# 离散数学基础

函数基础知识

中山大学 MOOC 课程组

中山大学计算机学院

March 4, 2021



# 目录

目录

- 1 基础知识回顾
  - 基本概念
  - 函数的性质与运算
- 2 习题讲解
- 3 总结

# 目录

- 1 基础知识回顾
  - 基本概念
  - 函数的性质与运算

基本概念

## 函数、像、原像

### 函数

集合 A 到 B 的函数 f,记为  $f: A \to B$ ,是笛卡尔积集  $A \times B$  的子集,且满足对任意  $a \in A$ ,都有且只有唯一的  $b \in B$  使得  $< a, b > \in f$ 。函数通常也称为<mark>映射</mark>。

### 像、原像

由于 b 存在且唯一,因此记 b = f(a),称  $b \in a$  在函数 f 下的<mark>像</mark>, $a \in b$  在函数 f 下的<mark>原像</mark>。



基本概念

# 域的相关定义

### 域

对于函数  $f: A \to B$ ,称  $A \in f$  的<mark>定义域</mark>,而 B 称为 f 的<mark>陪域</mark>。特别地, f(A) 称为 f 的<mark>值域</mark>。

对于某个函数 f 来说,它的值域一定为陪域的子集,而且,我们可以得到: 一个映射的值域等于陪域,当且仅当映射为满射。



基本概念

# 取整相关定义

### 天花板 (ceiling)

天花板函数 f(x) = [x], 是大于等于 x 的最小整数。

### 地板 (floor)

地板函数  $f(x) = \lfloor x \rfloor$ ,是小于等于 x 的最小整数。

天花板和地板的定义域为实数集, 而陪域为整数集。



函数的性质与运算

# 单函数、满函数、双函数

### 单函数

陪域 B 的每个元素至多有定义域 A 的一个函数与之对应。单函数有时也称作一对一函数。

### 满函数

陪域 B 的每个元素至少有定义域 A 的一个元素与之对应。满函数有时也称为映上函数。

### 双函数

一个既是单函数又是满函数的函数是双函数,也称为一一对应。



函数的性质与运算

# 特殊约定

- 定义域为空的空函数是单函数,如果陪域也为空,那么认为是双函数。
- 对任意集合 A, A 上的恒等函数  $id_A$  是双函数。

函数的性质与运算

# 复合函数、反函数

### 复合函数

函数  $f: A \to B$  和  $g: B \to C$  的复合,记为  $g \circ f$  (不是  $f \circ g$ ),定义为:

$$\forall x \in A, g \circ f = g(f(x))$$

### 反函数

如果一个函数  $f: A \to B$  是双函数,那么它的逆关系  $f^{-1}$  也是函数,称为 f 的反函数,且对任意  $x \in A, y \in B$ ,  $f^{-1}(y) = x$  当且仅当 f(x) = y。



- 1 基础知识回顾
  - ■基本概念
  - ■函数的性质与运算
- 2 习题讲解
- 3 总结

# 判断关系是否可以构成函数

### 下列哪些关系可以构成函数?

- $\{ \langle y_1, y_2 \rangle | y_1, y_2 \in \mathbf{R}, y_2 = y_1^2 \}$

# 判断关系是否可以构成函数

下列哪些关系可以构成函数?

- $\{\langle y_1, y_2 \rangle | y_1, y_2 \in \mathbf{R}, y_2 = y_1^2\}$

### 答案

不能、能、不能。

下列哪些关系可以构成函数?

- $\{\langle x_1, x_2 \rangle | x_1, x_2 \in \mathbb{N}, x_1 + x_2 < 10\}$
- $\{ \langle y_1, y_2 \rangle | y_1, y_2 \in \mathbf{R}, y_2 = y_1^2 \}$
- $\{\langle v_1, v_2 \rangle | v_1, v_2 \in \mathbf{R}, v_2^2 = v_1\}$

### 答案

不能、能、不能。

#### 解析

函数和关系的区别在于他们的对应法则。在关系 R 的表达式中,如果  $\langle x,y \rangle \in R$ , 就说 x 对应到 y,注意这种对应可以是一对一的、多对一 的和一对多的。但函数不允许一对多的对应, 因此判别一个关系是否 构成函数,就要检查关系中是否存在一对多的情况。

设  $f: A \to B$  是函数,且  $S \to B$  上的关系,在 A 上定义关系 R:

$$R = \{(x, y) \in A \times A | (f(x), f(y)) \in S\}$$

#### 试证明:

- 若 S 是自反关系,则 R 也是自反关系。
- 若 S 是对称关系,则 R 也是对称关系。
- 若 S 是传递关系,则 R 也是传递关系。



### 设 $f: A \to B$ 是函数,且 $S \in B$ 上的关系,在 A 上定义关系 R:

$$R = \{(x, y) \in A \times A | (f(x), f(y)) \in S\}$$

### 自反关系

假定 S 是自反的,则对任意  $x \in A$ ,有  $< f(x), f(x) > \in S$ ,从而根据 R 的定义,有  $< x, x > \in R$ ,从而 R 也是自反的。



# 函数与关系

设  $f: A \to B$  是函数,且  $S \in B$  上的关系,在 A 上定义关系 R:

$$R = \{(x, y) \in A \times A | (f(x), f(y)) \in S\}$$

### 自反关系

假定 S 是自反的,则对任意  $x \in A$ ,有  $< f(x), f(x) > \in S$ ,从而根据 R 的定义,有  $< x, x > \in R$ ,从而 R 也是自反的。

### 对称关系

假定 S 是对称的,则对任意  $x,y \in A$ ,有  $< f(x),f(y) > \in S$ ,由于 S 是对称的,那么  $< f(y),f(x) > \in S$ ,从而根据 R 的定义有  $< y,x > \in R$ ,即 R 也是对称的。



设  $f: A \to B$  是函数, 且  $S \to B$  上的关系, 在 A 上定义关系 R:

$$R = \{(x, y) \in A \times A | (f(x), f(y)) \in S\}$$

### 传递关系

假定 S 是传递的,则对任意  $x,y,z \in A$ ,若  $< x,y > \in R$  且  $< y,z > \in R$ ,即  $< f(x),f(y) > \in S$  且  $< f(y),f(z) > \in S$ 。由于 S 是传递的,因此也有  $< f(x),f(z) > \in S$ ,从而根据 R 的定义,有  $< x,z > \in R$ ,这就表明 R 是传递的。

# 双射函数的构建

对下面给定的集合 A 和 B, 构造从 A 到 B 的双射函数。

- $\blacksquare A = \mathbf{N}, B = \{x | x = 2^y \land y \in \mathbf{N}\}\$
- $A = [\frac{\pi}{2}, \frac{3\pi}{2}], B = [-1, 1]$ ,都是实数区间

# 双射函数的构建

对下面给定的集合 A 和 B,构造从 A 到 B 的双射函数。

- $\blacksquare A = \mathbf{N}, B = \{x | x = 2^y \land y \in \mathbf{N}\}$
- $A = [\frac{\pi}{2}, \frac{3\pi}{2}], B = [-1, 1]$ ,都是实数区间

### 答案 (不唯一, 合理即可)

- $\blacksquare f: A \rightarrow B, f(x) = 2^x$
- $\blacksquare f: A \to B, f(x) = sinx$

给定集合 A, B, 如何构造从 A 到 B 的双射? 一般可采用如下技巧:

# 双射函数的构建技巧分析

给定集合 A, B, 如何构造从 A 到 B 的双射? 一般可采用如下技巧:

■ 若 A,B 都是有穷集合,则可用列元素的方 法表示 A,B, 然后顺序将 A 中的元素与 B中的元素建立对应。

# 双射函数的构建技巧分析

给定集合 A, B, 如何构造从 A 到 B 的双射? 一般可采用如下技巧:

- 若 A,B 都是有穷集合,则可用列元素的方法表示 A,B,然后顺序将 A 中的元素与 B 中的元素建立对应。
- 若 A,B 都是实数区间,可以采用直线方程作为从 A 到 B 的双射函数。例如 A = [1,2], B = [2,3] 都是实数区间,先将 A,B 分别标记在直角坐标系的 x,y 轴上,过 (1,2) 和 (2,3) 两点的直线方程将 A 中的每个数映射到 B 上,因此该直线方程 所代表的一次函数就是从 A 到 B 的双射函数,为 f(x) = x + 1。但对半开半闭区间需注意开端点与开端点对应,闭端点与闭端点对应。



# 双射函数的构建技巧分析

■ 若 A 是一个无穷集合,而 B 是自然数集 N。为构造从 A 到 B 的双射,只需将 A 中的元素排成一个有序序列,且指定这个序列的初始元素,这就叫把 A'' 良序化"。例如 A 良序化后为  $\{x_0.x_1,x_2\cdots\}$ ,那么令  $f: A \rightarrow B$ ,  $f(x_i) = i$ ,  $i = 0, 1, 2, \cdots$ , f 就是从 A 到 B 的双射。

设  $f: A \rightarrow B$  和  $g: B \rightarrow C$  是函数,证明:

- 如果  $g \circ f$  是单函数,则 f 是单函数,但 g 不一定是单函数。
- 如果  $g \circ f$  是满函数,则 g 是满函数,但 f 不一定是满函数。
- 如果  $g \circ f$  是双函数,则 f 是单函数,且 g 是满函数。



### 证明:

■ 设  $g \circ f$  是单函数,对任意  $x_1, x_2 \in A$ ,若  $f(x_1) = f(x_2)$ ,则有  $g(f(x_1)) = g(f(x_2))$ 。而由  $g \circ f$  是单函数可得, $x_1 = x_2$ ,这就证明 了 f 是单函数。

### 证明:

- 设  $g \circ f$  是单函数,对任意  $x_1, x_2 \in A$ ,若  $f(x_1) = f(x_2)$ ,则有  $g(f(x_1)) = g(f(x_2))$ 。而由  $g \circ f$  是单函数可得, $x_1 = x_2$ ,这就证明 了 *f* 是单函数。
- 设  $g \circ f$  是满函数,对任意  $c \in C$ ,由于  $g \circ f$  是满函数,因此一定存 在  $a \in A$ , 使得  $g \circ f(a) = c$ , 从而 c 在 g 下有原像 f(a), 因此 g 为满 函数。

#### 证明:

- 设  $g \circ f$  是单函数,对任意  $x_1, x_2 \in A$ ,若  $f(x_1) = f(x_2)$ ,则有  $g(f(x_1)) = g(f(x_2))$ 。而由  $g \circ f$  是单函数可得, $x_1 = x_2$ ,这就证明 了 f 是单函数。
- 设  $g \circ f$  是满函数,对任意  $c \in C$ ,由于  $g \circ f$  是满函数,因此一定存在  $a \in A$ ,使得  $g \circ f(a) = c$ ,从而 c 在 g 下有原像 f(a),因此 g 为满函数。
- 对于" 不一定" 的证明,我们通常采用举反例的方法。设  $A = \{1,2\}, B = \{a,b,c\}, C = \{0,1\}, f$  定义为 f(1) = a, f(2) = b, g 定义为 g(a) = g(b) = 0, g(c) = 1,即可举出以上两问的反例。



#### 证明:

- 设  $g \circ f$  是单函数,对任意  $x_1, x_2 \in A$ ,若  $f(x_1) = f(x_2)$ ,则有  $g(f(x_1)) = g(f(x_2))$ 。而由  $g \circ f$  是单函数可得, $x_1 = x_2$ ,这就证明 了 f 是单函数。
- 设  $g \circ f$  是满函数,对任意  $c \in C$ ,由于  $g \circ f$  是满函数,因此一定存在  $a \in A$ ,使得  $g \circ f(a) = c$ ,从而 c 在 g 下有原像 f(a),因此 g 为满函数。
- 对于"不一定"的证明,我们通常采用举反例的方法。设  $A=\{1,2\}, B=\{a,b,c\}, C=\{0,1\}, f$  定义为 f(1)=a,f(2)=b, g 定义为 g(a)=g(b)=0, g(c)=1,即可举出以上两问的反例。
- 由前两问可立即得出第三问的结论。



## 口沙

- 1 基础知识回顾
  - ■基本概念
  - 函数的性质与运算
- 2 习题讲解
- 3 总结

- 函数的定义
  - 像、原像
  - 定义域、陪域、值域
- 函数的性质和运算
  - 单函数、满函数、双函数
  - 复合函数、反函数

# Thank you

# Thank you for listening!