Descriptive Statistics

Mahbub Latif, PhD

October 2024

Describing data sets

- The numerical findings of a study should be presented clearly, concisely and in such a manner that others can quickly obtain a feel for the essential characteristics of the data
- Tables and graphs are useful ways of presenting data
- The choice of graphs depends on the type of data
 - Bar graph is used for qualitative data
 - For quantitative data, histogram, line graph, and frequency plygons are used

Frequency tables

- A data set can be conveniently presented in a frequency table if the data set has a relatively small number of distinct values
- Consider a sample of starting salary of 42 recent graduates with BS degrees in electrical engineering
- Salary is a quantitative variable

Starting salary	Frequency
47	4
48	1
49	3
50	5
51	8
52	10
53	0
54	5
56	2
57	3
60	1

Graphical summary of salary data

Relative frequency

- Relative frequency of a data value is the proportion of the data that have that value
- ullet If there are n values in the data set and f is the frequency of a particular value
 - $\circ \ (f/n) \ o \ ext{relative frequency}$

Salary, x	Freq., f	relative freq. f/n
47	4	0.095 (=4/42)
48	1	0.024 (=1/42)
49	3	0.071 (=3/42)
50	5	0.119 (=5/42)
51	8	0.190 (=8/42)
52	10	0.238 (=10/42)
53	0	0.000 (=0/42)
54	5	0.119 (=5/42)
56	2	0.048 (=2/42)
57	3	0.071 (=3/42)
60	1	0.024 (=1/42)

Graphical summary of salary data

Qualitative data

- Data available on different types of cancers affecting the 200 most recent patients to enroll at a clinic specializing in cancer
- "Cancer type" is a qualitative variable and Bar chart or pie chart can be used as graphical tools

Cancer type Frequency Relative freq.			
Lung	42	0.210	
Breast	50	0.250	
Colon	32	0.160	
Prostate	55	0.275	
Melanoma	9	0.045	
Bladder	12	0.060	

Width and position of bars are not important

• Bar chart is more useful than a pie chart as a graphical tool

Group data and related graphical tools

Lifetime of lamps

- Lifetime (in hour) is a quantitative variable and frequency distribution of raw data (200 observations) would not be very useful as number of distinct values is too large
- Divide the data into groups (known as class interval) and frequency distribution of the grouped data would be useful

Lifetime of lamps

 TABLE 2.3
 Life in Hours of 200 Incandescent Lamps

		973							
Item Lifetimes									
1,067	919	1,196	785	1,126	936	918	1,156	920	948
855	1,092	1,162	1,170	929	950	905	972	1,035	1,045
1,157	1,195	1,195	1,340	1,122	938	970	1,237	956	1,102
1,022	978	832	1,009	1,157	1,151	1,009	765	958	902
923	1,333	811	1,217	1,085	896	958	1,311	1,037	702
521	933	928	1,153	946	858	1,071	1,069	830	1,063
930	807	954	1,063	1,002	909	1,077	1,021	1,062	1,157
999	932	1,035	944	1,049	940	1,122	1,115	833	1,320
901	1,324	818	1,250	1,203	1,078	890	1,303	1,011	1,102
996	780	900	1,106	704	621	854	1,178	1,138	951
1,187	1,067	1,118	1,037	958	760	1,101	949	992	966
824	653	980	935	878	934	910	1,058	730	980
844	814	1,103	1,000	788	1,143	935	1,069	1,170	1,067
1,037	1,151	863	990	1,035	1,112	931	970	932	904
1,026	1,147	883	867	990	1,258	1,192	922	1,150	1,091
1,039	1,083	1,040	1,289	699	1,083	880	1,029	658	912
1,023	984	856	924	801	1,122	1,292	1,116	880	1,173
1,134	932	938	1,078	1,180	1,106	1,184	954	824	529
998	996	1,133	765	775	1,105	1,081	1,171	705	1,425
610	916	1,001	895	709	860	1,110	1,149	972	1,002

Grouped data

- The number of class intervals should not be too large or too small
 - 5-10 class intervals are typical
- Endpoints of a class interval is known as class boundaries and we will adopt left-end inclusion convention, i.e. class interval contains its left-end but not the right-end boundary point
 - $^{\circ}$ E.g. the interval 20–30 contains all the values greater than or equal to 20 and less than 30, i.e. $(20 \leq Lifetime < 30)$
- Histogram is commonly used as a graphical tool for grouped quantitative data

Frequency distribution

Class interval	Frequency
500-600	2
600-700	5
700-800	12
800-900	25
900-1000	58
1000-1100	41
1100-1200	43
1200-1300	7
1300-1400	6
1400-1500	1

Histogram

Relative frequency and density

$$Relative freq = \frac{Class frequency}{Total frequency}$$

$$Density = \frac{Relative freq}{Class interval}$$

 Histograms can be drawn using relative frequency and density

Frequency	Relative freq.	Density
2	0.010	0.00010
5	0.025	0.00025
12	0.060	0.00060
25	0.125	0.00125
58	0.290	0.00290
41	0.205	0.00205
43	0.215	0.00215
7	0.035	0.00035
6	0.030	0.00030
1	0.005	0.00005
	2 5 12 25 58 41 43 7 6	5 0.025 12 0.060 25 0.125 58 0.290 41 0.205 43 0.215 7 0.035 6 0.030

Histogram of lifetime

Cumulative frequency and cumulative relative frequency

Class interval	Frequency	Cumulative freq.	Cumulative relative freq
500-600	2	2	0.010
600-700	5	7	0.035
700-800	12	19	0.095
800-900	25	44	0.220
900-1000	58	102	0.510
1000-1100	41	143	0.715
1100-1200	43	186	0.930
1200-1300	7	193	0.965
1300-1400	6	199	0.995
1400-1500	1	200	1.000

Cumulative relative frequency plot

- Cumulative relative frequency plot is useful to obtain some useful characteristics of the distribution
- E.g. about 50% lamps have lifetime less than or equal to 900 hours
- Cumulative relative frequency plot is also known as *ogive*

Cumulative relative frequency plot

Stem and Leaf plot

- Stem and leaf plot is an efficient way of organizing a small- to moderatesized data set
- It is obtained by dividing each data value into two parts stem and leaf
 - $\circ \,$ E.g. the data value 62 is divided into *Stem* (=6) and *Leaf* (=2)
 - Similarly, for data values 62 and 67, Stem will be 6 and Leaf will be 2 and 7

Stem and Leaf plot

• The annual average daily minimum temperatures in 35 U.S. cities

```
7 | 0.0
6 | 9.0
5 | 1.0, 1.3, 2.0, 5.5, 7.1, 7.4, 7.6, 8.5, 9.3
4 | 0.0, 1.0, 2.4, 3.6, 3.7, 4.8, 5.0, 5.2, 6.0, 6.7, 8.1, 9.0, 9.2
3 | 3.1, 4.1, 5.3, 5.8, 6.2, 9.0, 9.5, 9.5
2 | 9.0, 9.8
```

Summarizing Data Sets

Summarizing Data Sets

- There are two important numerical measures of summarizing data
 - Measures of central tendency or location
 - Measures of spread or dispersion
- A measure of central tendency is a representative value of the data set
- A measure of dispersion quantifies the average distances of the data points from its location value

Measures of central tendency or location

- Most common measures of location
 - Sample mean, median, and mode

- The sample mean is a measure of location, which can be obtained only for quantitative data
- Let x_1, \ldots, x_n be n numerical values and the sample mean of these values is denoted by \bar{x} (read "x-bar") and is defined as

$$ar{x}=rac{x_1+\cdots+x_n}{n}=rac{1}{n}\sum_{i=1}^n x_i$$

ullet The sample mean of 5 numerical values $\{10,15,20,18,12\}$ is

$$ar{x} = rac{1}{5} \sum_{i=1}^{5} x_i = rac{75}{5} = 15$$

- ullet Transformed data $y_i=ax_i+b$, where a and b are constants
- Sample mean of transformed data

$$egin{aligned} ar{y} &= rac{1}{n} \sum_{i=1}^n y_i \ &= rac{1}{n} \sum_{i=1}^n (ax_i + b) \ &= aar{x} + b \end{aligned}$$

ullet For x values $\{10$, 15, 20, 18, $12\}$, sample mean of $y_i=2x_i+5$

$$egin{aligned} ar{y} &= rac{1}{5} \sum_{i=1}^n y_i \ &= rac{175}{5} = 35 = 2ar{x} + 5 \end{aligned}$$

 \circ $ar{x}=15$

 Calculate the sample mean of the following winning scores of US masters golf tournament

ullet It is easier to calculate sample mean $ar{x}$ using the sample mean of the transformed scores $(y_i=x_i-280)$ than by direct calculation using the x values

Sample mean as an weighted average

- Suppose the data consist of k values v_1,\ldots,v_k , each of which repeated f_1,\ldots,f_k times, respectively, such that $n=\sum_{i=1}^n f_i$
- The sample mean is defined as

$$ar{x} = rac{1}{n} \sum_{i=1}^k f_i v_i = \sum_{i=1}^k w_i v_i, \ \ where \ w_i = f_i/n$$

ullet Expressing a sample mean in terms of weights w's and frequencies f's is known as $weighted\ mean$

Example 2.3b

- The frequency table shows the ages of members of a symphony orchestra for young adults.
- Find the sample mean of the ages of the 54 members of the symphony.

AGE	FREQUENCY
15	2
16	5
17	11
18	9
19	14
20	13

Example 2.3b

$$egin{aligned} ar{x} &= rac{1}{n} \sum_{i=1}^6 f_i v_i \ &= rac{1}{54} (985) = 18.24 \end{aligned}$$

$$ullet n = \sum_{i=1}^6 f_i = 54$$

Age, v	Freq, f	fv
15	2	30
16	5	80
17	11	187
18	9	162
19	14	266
20	13	260

- Sample median is another measure of location and it indicates the middle value when the data set is arranged in increasing or decreasing order
- Let x_1,\ldots,x_n be the sample observations and $x_{(1)},\ldots,x_{(n)}$ is the corresponding ordered sample
- The sample median is defined as

$$median = \left\{ egin{array}{ll} x_{((n+1)/2))} & ext{if n is odd} \ & & & & \ rac{x_{(n/2)} + x_{(n/2+1)}}{2} & ext{if n is even} \end{array}
ight.$$

• Obtain sample median of the x_1, \ldots, x_n

ullet Ordered sample $x_{(1)},\ldots,x_{(n)}$

- ullet Since n=7, the sample median is the $4^{th} \ [=(7+1)/2]$ observation of the ordered sample, which is 23
- Calculate the sample median of the sample

Sample mean and sample median

- Sample mean is applicable only for quantitative data and sample median is applicable for both quantitative and ordinal data
- Sample median is preferable over sample mean for a data set that contains extreme values (also known as outliers)

Measures of spread

- Commonly used measures of spread or dispersion
 - o sample range, variance, stanard deviation

- The sample variance and standard deviation are measures of spread
- For a sample of n observations, x_1, \ldots, x_n , the sample variance is

$$s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2$$

- Sample variance is the average squared distances, where distances are defined as the difference between observations and its sample mean
- The reason for using (n-1) instead of n in calculating the average will be discussed later in the course

 Calculate sample of the following two samples and which sample has more variability

- $\circ A: 3,4,6,7,10$
- $\circ B: -20, 5, 15, 24$

An algebraic identity

$$\sum_{i=1}^n (x_i - ar{x})^2 = \sum_{i=1}^n x_i^2 - nar{x}^2$$

Sample variance of $y_i = ax_i + b$

$$egin{align} s_y^2 &= rac{1}{n-1} \sum_{i=1}^n (y_i - ar{y})^2 \ &= a^2 s_x^2 \ \end{aligned}$$

$$ullet s_x^2 = \sum_{i=1}^n (x_i - ar{x})^2/(n-1)$$

- The data give the worldwide number of fatal airline accidents of commercially scheduled air transports in the years from 1997 to 2005.
- Find sample variance using transformed observations $y_i = x_i 18$

Year	accidents
1997	25
1998	20
1999	21
2000	18
2001	13
2002	13
2003	7
2004	9
2005	18

The sample standard deviation

ullet The positive square root of sample variance is known as the sample standard deviation, which is denoted by s

$$s = \sqrt{s^2} = \sqrt{\sum_{i=1}^n (x_i - ar{x})^2/(n-1)}$$

 The main advantage of standard deviation over variance as a measure of spread is that the standard deviation is measured in the same unit as the data

Sample percentiles

Sample percentiles

- The sample $100p^{th}$ percentile is the data value such that 100p percent of the data are less than or equal to it and 100(1-p) percent of the data are greater than or equal to it $(0 \le p \le 1)$
- To determine the sample 100p percentile of a data set of size n, we need to determine the data values such that
 - \circ At least np of the values are less than or equal to it
 - \circ At least n(1-p) of the values are greater than or equal to it

Sample percentiles

- ullet If np is a fraction then there will be only one data value which satisfies the above two conditions
 - $\circ\,$ E.g. n=22 and p=0.8, then np=17.6 and n(1-p)=4.4 and the 18^{th} observation is the 80^{th} percentile
- ullet If np is an integer then two values in positions np and (np+1) satisfy the conditions, the arithmetic average of these values is the 100pth percentile
 - \circ E.g. n=32 and p=0.25, then np=8 and then average of the 8^{th} and 9^{th} observations is the 25^{th} percentile

TABLE 2.6 Population of 25 Largest U.S. Cities, July 2006

Rank	City	Population
1	New York, NY	8,250,567
2	Los Angeles, CA	3,849,378
3	Chicago, IL	2,833,321
4	Houston, TX	2,144,491
5	Phoenix, AR	1,512,986
6	Philadelphia, PA	1,448,394
7	San Antonio, TX	1,296,682
8	San Diego, CA	1,256,951
9	Dallas, TX	1,232,940
10	San Jose, CA	929,936
11	Detroit, MI	918,849
12	Jacksonville, FL	794,555
13	Indianapolis, IN	785,597
14	San Francisco, CA	744,041
15	Columbus, OH	733,203
16	Austin, TX	709,893
17	Memphis, TN	670,902
18	Fort Worth, TX	653,320
19	Baltimore, MD	640,961
20	Charlotte, NC	630,478
21	El Paso, TX	609,415
22	Milwaukee, WI	602,782
23	Boston, MA	590,763
24	Seattle, WA	582,454
25	Washington, DC	581,530

ullet Find the sample 10^{th} and 80^{th} percentiles

Quartiles

- Sample quartiles equally divide the data into four parts so that each part contains roughly 25% of observations
 - \circ The first quartile (Q_1) $ightarrow 25^{th}$ percentile
 - \circ The second quartile $(Q_2)
 ightarrow 50^{th}$ percentile, median
 - \circ The third quartile (Q_3) $ightarrow 75^{th}$ percentile

Quartiles

• The difference between the third and first quartile is known as the *Inter-Quartile Range (IQR)*, which is a measure of spread

$$IQR = Q_3 - Q_1$$

Quartiles

• Obtain the quartiles from the following data on noise levels measured at 36 different times outside Grand Central Station in Manhattan, New York City

```
## 82 89 94 110 74 122 112 95 100 78 65 60 90 83 87 75 114 85
## 69 94 124 115 107 88 97 74 72 68 83 91 90 102 77 125 108 65
```

- In the presence of outliers in the data, trimmed and Winsorized means are used because these are more robust compared to the sample mean
- Trimming and Winsorization are methods for reducing the effects of extreme values in the sample

ullet The k-times trimmed mean is calculated as

$$ar{x}_{tk} = rac{1}{n-2k} \sum_{i=k+1}^{n-k} x_{(i)}$$

• For a sample x_1, \ldots, x_{20} , the 3-times trimmed mean is defined as

$$ar{x}_{t3} = rac{1}{14} \sum_{i=4}^{17} x_{(i)}$$

 \circ It excluded $\{x_{(1)}, x_{(2)}, x_{(3)}\}$ and $\{x_{(18)}, x_{(19)}, x_{(20)}\}$

• The k-times Winsorized mean is calculated as

$$ar{x}_{wk} = rac{1}{n} \Big\{ (k+1) x_{(k+1)} + \sum_{i=k+2}^{n-k-1} x_{(i)} + (k+1) x_{(n-k)} \Big\} \, .$$

ullet For a sample x_1,\ldots,x_{20} , the 3-times Winsorized mean is defined as

$$ar{x}_{w3} = rac{1}{20} \Bigl\{ 4x_{(4)} + \sum_{i=5}^{16} x_{(i)} + 4x_{(17)} \Bigr\} .$$

 \circ It replaced $\{x_{(1)}, x_{(2)}, x_{(3)}\}$ by $x_{(4)}$ and $\{x_{(18)}, x_{(19)}, x_{(20)}\}$ by $x_{(17)}$

• The Winsorized sum of squared deviations is defined as

$$egin{align} ss_{wk} &= \left\{ (k+1)(x_{(k+1)} - ar{x}_{wk})^2
ight. \ &+ \sum_{i=k+2}^{n-k-1} (x_{(i)} - ar{x}_{wk})^2 + (k+1)(x_{(n-k)} - ar{x}_{wk})^2
ight\} \end{aligned}$$

Boxplot

- A boxplot is used to plot five summary statistics, which are
 - Lower-limit, first quartile, second quartile, third quartile, and upper-limit

Boxplot

• The upper- and lower-limits are defined as

$$\circ$$
 upper-limit = $Q_3 + (1.5 imes IQR)$

- \circ lower-limit = $Q_1 (1.5 imes IQR)$
- Outliers are the observations that are greater than upper-limit or smaller than lower-limit

Boxplot and skewness

Positively skewed distribution

Symmetric distribution

Boxplot and skewness

Positively skewed distribution

Symmetric distribution

Boxplot and skewness

Positively skewed distribution

Symmetric distribution

Chebyshev's Inequality

- ullet Let $ar{x}$ and s be sample mean and standard deviation of a data set
- Chebyshev's inequality states that

for any value $k\geq 1$, at least $100(1-1/k^2)$ percent of the data lie within the interval from $\bar x-ks$ to $\bar x+ks$

ullet For k=2, at least 75% of the data lie within ar x-2s and ar x+2s

Normal data sets

Normal data sets

- Histograms of normal data sets are bell-shaped, and mean and median of normal data sets are approximately equal
- The statistical theory for analyzing normal distributed data are well established and distributions of many variables (e.g. adult male's height, blood pressure, etc.) are approximately normal
- A data set is said to be skewed if the histogram is not bell-shaped, for skewed data mean and median will not be equal

Histogram of bimodal data set

Empirical rule

- If a data set is approximately normal with mean \bar{x} and standard deviation s, then the following statements are true:
 - Approximately 68% of the observations lie within

$$\bar{x} \pm s$$

Approximately 95% of the observations lie within

$$\bar{x} \pm 2s$$

Approximately 99.5% of the observations lie within

$$\bar{x} \pm 3s$$

Paired data sets

Paired data sets

- Sometime pair of values are observed from each element and goal is to examine the relationship between the two
 - E.g. one may be interested in examining whether the daily temperature has any relation with the number of defective items produced per day
 - \circ Paired data $(x_i,y_i),\;i=1,2,\ldots,n$

 TABLE 2.8
 Temperature and Defect Data

Day	Temperature	Number of Defects
1	24.2	25
2	22.7	31
3	30.5	36
4	28.6	33
5	25.5	19
6	32.0	24
7	28.6	27
8	26.5	25
9	25.3	16
10	26.0	14
11	24.4	22
12	24.8	23
13	20.6	20
14	25.1	25
15	21.4	25
16	23.7	23
17	23.9	27
18	25.2	30
19	27.4	33
20	28.3	32
21	28.8	35
22	26.6	24

Scaltter plot

 Scatter plot is used to examine the association between two quantitative variables

Sample correlation coefficient

• For the paired data $\{(y_i,x_i), i=1,\ldots,n\}$, the sample correlation coefficient is defined

$$r = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{ig[\sum_{i=1}^n (x_i - ar{x})^2 \sum_{i=1}^n (y_i - ar{y})^2ig]^{1/2}} = rac{s_{xy}}{ig[s_{xx} \, s_{yy}ig]^{1/2}}$$

- $\circ \ r > 0 \longrightarrow$ the sample data pairs are positively correlated
- $\circ \ r < 0 \longrightarrow$ the sample data pairs are negatively correlated

Properties of sample correlation coefficient

- \bullet $-1 \leq r(x,y) \leq 1$
- ullet Let $y_i=a+bx_i$

$$r(x,y) = egin{cases} +1 & ext{if } b>0 \ -1 & ext{if } b<0 \end{cases}$$

ullet If r is the sample correlation coefficient between values x_i and y_i , then it is also the sample correlation coefficient between the values

$$a + bx_i$$
 and $c + dy_i$

 \circ provided the constants b and d have the same sign

- The following data show the resting pulse rate (in bears per minute) and the years of schooling.
- Obtain the sample correlation coefficient of these two variables.

Person	Years of schooling	Pulse rate
1	12	73
2	16	67
3	13	74
4	18	63
5	19	73
6	12	84
7	18	60
8	19	62
9	12	76
10	14	71

Homeworks

• 1, 6, 7, 8, 14, 16, 26, 30, 36