TPC2

Resultados dos exercícios propostos:

1. ^(A)Converta o número **–233** para uma representação binária usando 10-bits, com as seguintes representações:

Bit#	9	8	7	6	5	4	3	2	1	0
Valor	512	256	128	64	32	16	8	4	2	1
Sinal & Ampl	1	0	1	1	1	0	1	0	0	1
Compl p/ 1	1	1	0	0	0	1	0	1	1	0
Compl p/ 2	1	1	0	0	0	1	0	1	1	1
Excesso 2 ⁿ⁻¹	0	1	0	0	0	1	0	1	1	1

2. ^(A)Converta para decimal o valor em binário (usando apenas 10-bits) 10 0111 0101₂; pode-se apresentar o resultado de uma de 2 maneiras: (i) escreve-se em cada célula o valor que cada bit (na codificação especificada) tem em decimal, sabendo-se que o <u>resultado</u> na coluna da direita toma em conta o bit do sinal (quando exista) e o seu valor é a soma desses valores, ou (ii) escreve-se em cada célula o valor que cada bit (na codificação especificada) tem no sistema de numeração binário, sabendo-se que o <u>resultado</u> na coluna da direita toma em conta o bit do sinal (quando exista) e o seu valor é a soma do produto dos bits indicados, pelo seu valor.

Bit#	9	8	7	6	5	4	3	2	1	0	Resultado
Valor	512	256	128	64	32	16	8	4	2	1	
Codif em bin	1	0	0	1	1	1	0	1	0	1	
Int s/ sinal	512+	0+	0+	64+	32+	16+	0+	4+	0+	1=	629
Sinal & Ampl	_	(0+	0+	64+	32+	16+	0+	4+	0+	1)=	-117
Compl p/ 1	-	(256+	128+	0+	0+	0+	8+	0+	2+	0)=	-394
Compl p/ 2	-	(256+	128+	0+	0+	0+	8+	0+	2+	1)=	-395
Excesso 2 ⁿ⁻¹	512+	0+	0+	64+	32+	16+	0+	4+	0+	1 -512 =	117

Bit#	9	8	7	6	5	4	3	2	1	0	Resultado
Valor	512	256	128	64	32	16	8	4	2	1	
Codif em bin	1	0	0	1	1	1	0	1	0	1	
Int s/ sinal	1	0	0	1	1	1	0	1	0	1	629
Sinal & Ampl	_	0	0	1	1	1	0	1	0	1	-117
Compl p/ 1	_	1	1	0	0	0	1	0	1	0	-394
Compl p/ 2	_	1	1	0	0	0	1	0	1	1	-395
Excesso 2 ⁿ⁻¹	0	0	0	1	1	1	0	1	0	1	117

3. (R) Executar código num computador de 6-bits; um inteiro "short" é codificado com 3-bits.

Expressão	Decimal	Binário			
Zero	0	00 0000			
	-6	11 1010			
	18	01 0010			
ux	47	10 1111			
У	-3	11 1101			
x>>1 *	-9	11 0111			
TMax	31	01 1111			
-Tmin	-(-32)	overflow			
Tmin+Tmin	-64	overflow			

- * Ver-se-á mais tarde porque razão este resultado é assim.

 <u>Sugestão para estudantes</u> **B**: analisar (e tentar compreender) como é que as operações de deslocamento de bits em C se comportam, e quais as diferenças entre deslocamento para a esquerda e deslocamento para a direita (para além da direcção, como é óbvio).
- 4. (R)Qual a gama de valores inteiros nas representações binárias de (i) sinal e amplitude, (ii) complemento para 2, e (iii) excesso 2ⁿ⁻¹, para o seguinte número de bits:

	(i)	(ii)	(iii)
a) 6 bits]-2 ⁵ , 2 ⁵ [[-2 ⁵ , 2 ⁵ [[-2 ⁵ , 2 ⁵ [
b) 12 bits]-2 ¹¹ , 2 ¹¹ [[-2 ¹¹ , 2 ¹¹ [[-2 ¹¹ , 2 ¹¹ [

5. ^(A)Efectue os seguintes cálculos usando aritmética binária de 8-bits em complemento para 2:

```
a) 4 + 120 Res.: 0000 \ 0100_2 + 0111 \ 1000_2 = 0111 \ 1100_2
b) 70 + 80 Res.: 0100 \ 0110_2 + 0101 \ 0000_2 = 1001 \ 0110_2 overflow (devia ser >0)
c) 100 + (-60) Res.: 0110 \ 0100_2 + 1100 \ 0100_2 = 0010 \ 1000_2
d) -100 - 27 Res.: 1001 \ 1100_2 - 0001 \ 1011_2 = 1000 \ 0001_2
```