1.1 Постановка задачи

Задача коммивояжера является одной из самых известных задач комбинаторной оптимизации. Суть задачи в том, что имеется *п* городов и стоит задача посетить все города и вернуться в начальный. Как правило также стоит условие не посещать дважды один и тот же город, однако есть постановки задачи которые допускают это. Переход между каждыми двумя городами стоит некоторое количество ресурсов: денег, времени, запаса провизии и т.д. Нужно найти оптимальный способ посетить все города. В некоторых постановках, на максимум, наоборот ищется маршрут, который будет стоить максимальное количество ресурсов.

1.2 Приложения задачи

У задачи коммивояжера есть множество практических применений.

Самое очевидное - это сама постановка задачи. Посетить некоторое количество городов затратив наименьшее количество ресурсов. Таким образом, например, рассмотрены задачи посещения всех городов с учетом расхода ресуров линейно зависящего от расстояния между данными городами для одной отдельно взятой страны для некоторых европейских стран. Задача посещения всех европейских стран с учетом стоимости перелета между ними. Однако есть и другие применения задачи, более неочевидные.

Допустим, у нас есть некое устройство, которое одновременно может выполнять только одну задачу. Нам нужно последовательно выполнить на данном устройстве *п* задач, причем после каждой задачи нам нужно некое время на подготовку к следующей, причем между похожими задачами время подотовки может быть сокращено, а между разными - наоборот, очень большим. Требуется найти такой порядок выполнения, чтоб было затрачено минимальное количество времени на промежуточные подготовки.

А вот еще одно применение задачи коммивояжера. В сфере радиокоммуникаций есть такая задача как назначение частот передатчикам. У нас есть n передатчиков и некоторый набор доступных частот с некими ограничениями. Эти ограничения могут быть представлены как граф G=(V,E) где каждая вершина i это передатчик. c_{ij} - вес ребра (i,j) это допустимое отклонение частоты. Пусть $F=\{0,1,2,...,R\}$ это набор доступных частот. Задача назначить число $f(i) \in F$ вершине $i \in V$ так, чтобы $|f(i)-f(j)| > c_{ij}$ для всех $(i,j) \in E$ Если такое назначение существует, оно называется допустимым. Если R относительно большое, то допустимое назначение существует всегда. Минимальное число R для которого существует допустимое назначение для G называется диапазон G и обозначается Span(G).

Пусть G^* - полный граф, который получается из G путем добавления ребер нулевого веса. Пусть c'_{ij} будет весом ребра (i,j) в G^* таким, что $c'_{ij}=c_{ij}+1$. Пусть $C'(H^*)$ это сумма весов ребер в гамильтоновом цикле наименьшего веса в графе G^* Д. Смит и С. Хёрли, доказали, что $Span(G) \geq C'(H^*)$. Поэтому

задача коммивояжера имеет здесь применение для расчета нижней границы для данной задачи.

1.3 Математическая модель для задачи коммивояжера.

Изначальную задачу можно представить как граф. Вершинами графа будут города, которые нам необходимо посетить. Ребрами же будут пути, пролегающие из города в город. Весом ребра будет стоимость перехода из города в город по этому ребру. В дальнейшем, если заранее не оговорено, мы будем рассматривать такую постановку, в которой нам дан полный взвешенный граф. То есть из любого города в любой есть некий путь.

Цель задачи коммивояжера - найти такой цикл в графе, в котором будут содержаться все вершины, причем вес цикла, который определяется как сумма весов ребер между вершинами, входящими в цикл, должен быть минимальным. Такой цикл, в котором все вершины содержатся ровно один раз называется Гамильтоновым циклом.

Данная задача относится к классу NP-трудных задач. То есть, на данный момент не найден алгоритм, который бы решал задачу за полиномиальное время и не найдено алгоритма, который бы проверял некоторое решение задачи на оптимальность за полиномиальное время. По этой причине для задачи актуально исследование приближенных алгоритмов с целью получения приемлемого решения за более короткий промежуток времени.

Одним из таких алгоритмов, находящих некое решение за приемлемое количество операций, а именно $O(n^2)$, где n - количество вершин, является жадный алгоритм с выбором ближайшей вершины. Суть алгоритма заключается в том, что на каждом шаге мы просматриваем все непосещенные вершины в которые можно попасть из текущей вершины, и выбираем ту, расстояние до которой минимально. Оценку времени работы алгоритма получить нетрудно: на каждом шаге мы просматриваем не более п вершин и выбираем одну из них. Всего у нас n вершин, значит будет n шагов. Получаем оценку $O(n^2)$. В общем случае данный алгоритм может работать сколь угодно плохо относительно оптимального решения. На изображении ниже представлен пример на котором жадный алгоритм ИБГ будет работать сколь угодно плохо в зависимости от веса ребра.

Рассмотрим данный граф. При начале работы ИБГ из вершины A у нас получится путь ACDBA который зависит от веса M ребра DB, которое может быть сколь угодно тяжелым. Оптимальным же маршрутом для данного графа является цикл *ADCBA*

Однако, если мы наложим дополнительные условия на веса ребер или сам граф мы можем получить более точный результат. Например, если граф метрический, у нас появляются верхняя и нижняя оценки оптимальности работы жадного алгоритма.

Для маршрута коммивояжера с n вершинами справедлива теорема:

Теорема 1. Верхняя оценка оптимальности:

$$\left(\frac{Greedy}{Optimal}\right) \le \frac{1}{2}\lceil \lg n \rceil + \frac{1}{2} \tag{1}$$

Где Greedy - вес пути, найденного жадным алгоритмом, Optimal - вес наиболее оптимального пути.

Доказательство:

Лемма 1: Допустим существует отображение вершины p в число l_p такое, что:

- 1) $d(p,q) \ge \min(l_p, l_q) \forall p, q$
- 2) $l_p \leq \frac{1}{2}Optimal \ \forall \ p$

Тогда

$$\sum l_p \le \frac{1}{2} (\lceil lg(n) \rceil + 1) Optimal \tag{2}$$

Доказательство. Допустим б.о.о., что N такое, что $\{i|1 \le i \le n\}$ и $l_i \ge l_i$ если $i \leq j$ Докажем, что

$$Optimal \ge 2 \sum_{i=k+1}^{min(2k,n)} 1_i \tag{3}$$

для любого k такого что $l \le k \le$ n Пусть H полный подграф, определенный на множестве узлов

$$\{i|1 \le i \le \min(2k,n)\}\tag{4}$$

Пусть T - это маршрут коммивояжера в H, который посещает вершины H в том же порядке, что и эти узлы посещаются при оптимальном обходе исходного графа. Обозначим длину маршрута T как LENGTH. По неравенству треугольника каждое ребро (b, c) графа T должно иметь длину меньше или равную длине пути от D до D0, вычисленного D1 оптимальном пути коммивояжера. Так как ребра D1 суммируются в D2 сумма ребер оптимального пути равна D3 оптимального пути равна D4 оптимального пути равна D6 оптимального пути равна D7 оптимального пути равна D8 оптимального пути равна D8 оптимального пути равна D9 оптимального путимального путимального путимального путимал

$$Optimal \ge LENGTH \tag{5}$$

По условию 1) Леммы для каждого (i,j) в пути Т $d(i,j) \ge min(\mathbf{l}_i,\mathbf{l}_j)$. Следовательно,

$$LENGTH \ge \sum_{(i,j)\in T} min(l_i, l_j) = \sum_{i\in H} \alpha_i l_i$$
 (6)

где a_i - количество ребер (i,j) в T, для которых i>j (и, следовательно, $l_i=min(l_i,l_j)$). Мы хотим получить нижнюю оценку правой части 6. Заметьте, что каждое a_i не превосходит 2 (потому что i это конечная точка только двух ребер в маршруте T) и что сумма a_i равна количеству ребер в T. Поскольку k составляет не менее половины количества ребер в T, мы заведомо получим нижнюю оценку правой части 6, если мы предположим, что k наибольших l_i имеют $a_i=0$, а остальные min(2k,n)-k из l_i имеют $a_i=2$. По предположению, k наибольших $\{l_i|1\leq i\leq k\}$, поэтому оценка нижней границы:

$$\sum_{i \in H} a_i l_i \ge 2 \sum_{i=k+1}^{\min(2k,n)} l_i \tag{7}$$

Таким образом мы доказали неравенство 3

Теперь просуммируем неравенства 3 для всех k равных степени двойки меньшей n, то есть:

$$\sum_{j=0}^{\lfloor lg(n)\rfloor - 1} Optimal \ge \sum_{j=0}^{\lfloor lg(n)\rfloor - 1} 2 * \sum_{i=2^{j}+1}^{min(2^{j+1}, n)} l_i$$
 (8)

Это можно упростить до

$$\lceil lg(n) \rceil Optimal \ge 2 * \sum_{i=2}^{n} l_i$$
 (9)

По условию 2) Леммы

$$Optimal \ge 2 * l_1 \tag{10}$$

Два данных неравенства доказывают лемму

Доказательство Теоремы 1. Для каждой вершины p положим, что l_p это длина ребра, выходящего из p и идущего p вершину, которая выбирается жадным алгоритмом. Мы хотим показать, что l_p удовлетворяет условиям Леммы 1. Если вершина p была выбрана жадным алгоритмом до вершины q, тогда вершина q была кандидатом на ближайшую невыбранную вершину для вершины p. Это значит, что ребро (p,q) не короче чем выбранное ребро, то есть

$$d(p,q) \ge l_p \tag{11}$$

И наоборот, если вершина q была выбрана до p, тогда

$$d(p,q) \ge l_q \tag{12}$$

Так как одна из вершин была выбрана раньше другой, одно из двух последних неравенств должно выполняться, вследствие чего условие 1) Леммы 1 выполняется. Для доказательства условия 2) достаточно доказать, что для любого ребра (p,q)

$$d(p,q) \le \frac{1}{2}Optimal \tag{13}$$

Мы можем рассмотреть оптимальный маршрут как объединение двух частей маршрута, каждый из которых это путь между p и q. Из неравенства треугольника получаем, что длина любого пути между p и q не может быть меньше, чем d(p,q), что доказывает неравенство выше. Так как l_p это длины всех пар, составляющих маршрут T

$$\sum l_p = GREEDY \tag{14}$$

Данное равенство вместе с Леммой 1 доказывают неравенство из Теоремы 1. **Теорема 2. Нижняя оценка оптимальности:**

$$\left(\frac{Greedy}{Optimal}\right) > \frac{1}{3}\lg(n+1) + \frac{4}{9} \tag{15}$$

Доказательство: Для каждого $i \ge 1$ построим неполный взвешенный граф F с тремя особыми вершинами: левая вершина, центральная вершина и правая вершина. Эти графы строятся рекурсивно как показано на рис.1 (TODO нарисовать и вставить) где левая вершина располагается слева, правая - справа и центральная посередине. Каждый граф F имеет путь P, соединяющий левую вершину и центральную, в который входят все вершины графа. Путь P также строится рекурсивно как на рис.1.

Рис. 1

Граф F_1 состоит из трех вершин, между каждыми двумя из которых проведено ребро веса 1. Путь P состоит из двух ребер: между левой и правой вершиной, между правой и центральной вершиной. Для построения графа F_{i+1} возьмем две копии графа F_i , назовем одну копию левой, а другую правой. Добавим дополнительную вершину которая впоследствии станет центральной для F_{i+1} . На рис.1 эта вершина обозначена D. Она соединяется с правой вершиной левой копии (вершина E) и левой вершиной правой копии (вершина E) ребрами длины 1. Дополнительная вершина E ребром веса E0, который будет определен ниже. Наконец, центральная вершина левой копии (вершина E1) ребром веса E2. Левая вершина E3 ребром веса E4. Левая вершина E4, определяется как левая вершина левой копии (вершина E5). Путь E6, определяется как правая вершина правой копии (вершина E6). Путь E7, определяется как правая вершина правой копии (вершина E7). Путь E8, определяется как правая вершина правой копии (вершина E6). Путь E7, определяется как правая вершина правой копии (вершина E7). Путь E7, определяется как правая вершина правой копии (вершина E7). Путь E7, определяется как правая вершина правой копии (вершина E7). Путь E8, определяется по формуле

$$l_i = \frac{1}{6}(4 * 2^i - (-1)^i + 3) \tag{16}$$

Пусть L_i - длина пути P_i . Для длины L_i есть рекуррентное соотношение:

$$L_{i+1} = 2 * L_i + 2 * l_i (17)$$

Так как P_{i+1} состоит из двух копий P_i и двух ребер веса l_i При условии что $L_1 = 2$, решение данного уравнения:

$$L_i = \frac{1}{9}(6i * 2^i + 8 * 2^i + (-1)^i - 9)$$
 (18)

Для каждого F мы определяем граф G_i , который получается из F путем соединения левой вершины и правой вершины графа ребром веса 1 и соединением центральной вершины с левой вершиной ребром веса l_i — 1. Левая вершина графа F считается начальной вершиной графа G_i . На рисунке изображен граф G_4 Определим \bar{G}_i как полный граф на вершинах G_i . Длина ребер в данном графе будет равна длине наименьшего пути в G_i между двумя вершинами, которые соединяет ребро. Таким образом \bar{G}_i будет удовлетворять неравенству треугольника.

Граф \bar{G}_i имеет два важных свойства:

- 1) Ребра графа G_i имеют в графе \bar{G}_i такие же длины как и в G_i
- 2) Если жадный алгоритм начинает свою работу с начальной вершины графа G_i то при подходящем выборе меджу несколькими возможными путями в алгоритме метод может найти путь P_i , который будет следовать за ребром длины $l_i 1$, проведенным из центральной вершины (последняя в пути P_i) в начальную вершину.

Мы вернемся к доказательству этих свойств после завершения доказательства основной теоремы. Каждый граф \bar{G}_i имеет оптимальный маршрут, состоящий из ребер единичного веса, с, соответственно весом пути равным n, где n - это количество вершин ($2^{i+1}-1$). Данный путь начинается в начальной вершине и далее посещаются все вершины слева направо, после чего происходит возврат в начальную вершину. Примером, удовлетворяющим теореме является граф \bar{G}_{m-1} Соотношение для него:

$$\frac{GREEDY}{Optimal} = (L_i + l_i - 1)/n, \ i = lg(n+1) - 1$$
(19)

Данное соотношение больше чем соотношение в теореме. Остается доказать свойства 1) и 2). Рассмотрим рис. 1 Покажем что для каждого F_{i+1}

$$\overline{AB} = \overline{BC} = \overline{EF} = \overline{FG} = l_i - 1 \tag{20}$$

$$\overline{AC} = \overline{EG} = l_{i+1} - 2 \tag{21}$$

$$\overline{BE} = \overline{DF} = l_i \tag{22}$$

$$\overline{AD} = \overline{DG} = l_{i+1} - 1 \tag{23}$$

$$\overline{AG} = l_{i+2} - 2 \tag{24}$$

Рис. За

Запись \overline{XY} означает длину кратчайшего пути между X и Y в графе F_{i+1} . Данные равенства тривиально доказываются для і=1. Далее будем вести доказательство по индукции. Предположим что равенства верны для $i \leq I - 1$, например для F_I На рис.3а изображены связанные вершины графа F_{I+1} до объединения двух копий F_I в F_{I+1} . Веса ребер графа равны кратчайшему пути между ними в F_I . Эти веса определены в предположении индукции. Например, ребро (A,B) на рис.3а соединяет левую и центральную вершины F_I и, как следует из 23, длина кратчайшего пути между этими вершинами равна l_i – 1. На рис.36 мы можем увидеть фигуры с рис.3а с ребрами, которые были добавлены при построении F_{I+1} . Так как каждый вес ребра между двумя вершинами на рис. За равен кратчайшему пути между этими вершинами, то применяя формулу 16 для l_I ко всем возможным путям в F_{i+1} мы можем найти, что вес каждого ребра на рис. Зб действительно является длиной кратчайшего пути между двумя вершинами, которые соединяет ребро. Это доказывает равенства 20-22 для F_{I+1} . Равенства 23, 24 доказываются аналогичными рассуждениями для всех путей на рис.36. Путем длины l_{i+1} – 2 из A в G является путь ABEG.

Также стоит отметить, что 20 - 23 выполняются и когда из F_{I+1} строится G_{I+1} . Это можно доказать соединив A и G на рис. Зб ребром веса $l_{I+1} - 1$ и снова проверив пути. Кратчайшим путем из A в D является ребро (A, D).

Теперь вернемся к свойству а). Уравнение (22) показывает, что для каждого построенного F_{i+1} ребра, добавленные при построении содержатся в кратчайшем пути. Все расстояния между точками в F_i уже вычислены на момент построения F_{i+1} потому, что расстояния между особыми точками уже вычислены. (сравним (20) и (23), (21) и (24))

Мы уже заметили, что последнее добавленное ребро при построении G_i является кратчайшим путем и, очевидно, путь состоящий из ребер длины 1 является кратчайшим. Таким образом, свойство 1) доказано.

Свойство 2) доказывается тем фактом, что центральная вершина графа F_i достигается только после посещения всех остальных вершин, и вершина в конце ребра длины l_i хотя бы настолько же близка как любая другая вершина, достигаемая через левую или правую вершины. Эти вершины уже на расстоянии l_{i-1} от центральной вершины и как минимум на расстоянии 1 от еще не выбранной вершины.

Объектом исследований данной работы являются оценки оптимальности решения задачи, найденного жадным алгоритмом при случае когда веса ребер являются случайными величинами и распределены по некоторому закону распределения.

2. Некоторые определения и вспомогательные теоремы

2.1 Определения

Алгоритм \mathcal{A} будем называть ассимптотически оптимальным если существуют такие $\epsilon_n \to 0$, $\delta_n \to 0$ при $n \to \infty$ что применение алгоритма \mathcal{A} дает значение $\mathcal{Z}_{\mathcal{A}}$, удовлетворяющее неравенству

$$P\{Z_{\mathcal{A}} \le (1 + \epsilon_n)Z\} \ge 1 - \delta_n \tag{25}$$

где $\mathcal{Z}_{\mathcal{A}}$ - решение, найденное алгоритмом, \mathcal{Z} - минмальное решение. Это определение при $\epsilon_n \equiv 0$ совпадает с понятием алгоритма, который почти всегда приводит к точному решению.

2.2 Неравенство Чебышева

Пусть случайная величина $X:\Omega\to\mathbb{R}$ определена на вероятностном пространстве ($\Omega,\mathcal{F},\mathbb{P}$) , а её математическое ожидание μ и дисперсия σ^2 конечны. Тогда

$$\mathbb{P}\left(|X - \mu| \geqslant a\right) \leqslant \frac{\sigma^2}{a^2} \tag{26}$$

, где а>0.

2.3 Теорема Петрова

Пусть X1,...,Xn — независимые случайные величины и существуют положительные постоянные g1,...,gn и T такие, что для всех $0 \le t \le T$

$$\mathbb{E}e^{tX_k} \le e^{\frac{1}{2}g_k t^2} \tag{27}$$

Положим $S = \sum_{k=1}^{n} X_k$ и $G = \sum_{k=1}^{n} g_k$. Тогда

$$P\{S > x\} \le \begin{cases} exp(-\frac{x^2}{2G}), & 0 \le x \le GT \\ exp(-\frac{Tx}{2}), & x \ge GT \end{cases}$$
 (28)

3. Условия асимптотической оптимальности жадного алгоритма

Найдем условия, при выполнении которых жадный алгоритм является асимптотически оптимальным, то есть

$$P\{\mathcal{Z}_{\mathcal{H}'} > (1 + \epsilon_n)\mathcal{Z}\} \le \delta_n \tag{29}$$

где $\epsilon_n \to 0, \delta_n \to 0 \ n \to \infty$

Вес маршрута коммивояжера, полученного применением жадного алгоритма обозначим как $\mathcal{Z}_{\mathcal{A}'}$. Он определяется формулой

$$\mathcal{Z}_{\mathcal{A}'} = \sum_{k=1}^{n} a_{i_k i_{k+1}} \tag{30}$$

Вес маршрута отпимального решения задачи обозначим как \mathcal{Z} . Он определяется формулой:

$$Z = \min_{\{\pi\}} \sum_{k=1}^{n} a_{i_k i_{k+1}}$$
 (31)

Оценим сверху левую часть (29). Так как a>0, то $\mathcal{Z}\geq na$ и

$$P\{\mathcal{Z}_{\mathcal{A}'} > (1 + \epsilon_n)\mathcal{Z}\} \le P\{\mathcal{Z}_{\mathcal{A}'} > (1 + \epsilon_n)na\}$$
(32)

Обозначим через $\mathbb{Z}_{\mathcal{A}'}^*$ и $\mathcal{D}_{\mathcal{A}'}^*$ верхние оценки соответственно математического ожидания $E(\mathbb{Z}_{\mathcal{A}'})$ и дисперсии $D(\mathbb{Z}_{\mathcal{A}'})$ случайной величины $\mathbb{Z}_{\mathcal{A}'}$. Обозначим $\Delta_n = (1 + \epsilon_n)na - \mathbb{Z}_{\mathcal{A}'}^*$. Получаем:

$$P\{\mathcal{Z}_{\mathcal{A}'} > (1+\epsilon_n)na\} = P\{\mathcal{Z}_{\mathcal{A}'} > \mathcal{Z}_{\mathcal{A}'}^* + [(1+\epsilon_n)na - \mathcal{Z}_{\mathcal{A}'}^*]\} \le P\{\mathcal{Z}_{\mathcal{A}'} > E(\mathcal{Z}_{\mathcal{A}'})) + \Delta_n\}$$
(33)

Пусть $\epsilon_n = K(\frac{\mathcal{Z}_{\mathcal{A}'}^*}{na} - 1), K > 1$. Тогда $\Delta_n = (K - 1)(\mathcal{Z}_{\mathcal{A}'}^* - na) \ge 0$. Продолжим неравенство 33 применив неравенство Чебышева.

$$P\{\mathcal{Z}_{\mathcal{A}'} > E(\mathcal{Z}_{\mathcal{A}'}) + \Delta_n\} \leq P\{|\mathcal{Z}_{\mathcal{A}'} - E(\mathcal{Z}_{\mathcal{A}'}))| \geq \Delta_n\} \leq \frac{D(\mathcal{Z}_{\mathcal{A}'})}{\Delta_n^2} \leq \frac{\mathcal{D}_{\mathcal{A}'}^*}{\Delta_n^2} = \frac{\mathcal{D}_{\mathcal{A}'}^*}{(K-1)^2(\mathcal{Z}_{\mathcal{A}'}^* - na)^2}$$
(34)

Так как K - константа, K>1, то из данной цепочки неравенств следует, что условие ассимптотической оптимальности жадного алгоритма будет выполнено если мы покажем, что $\epsilon_n=K(\frac{\mathcal{Z}_{\mathcal{A}'}^*}{na}-1)\to 0$ и $\delta_n=\frac{\mathcal{D}_{\mathcal{A}'}^*}{(K-1)^2(\mathcal{Z}_{\mathcal{A}'}^*-na)^2}\to 0$ при $n\to\infty$

Вычисление верхних оценок $\mathcal{Z}_{\mathcal{A}'}^*$ и $\mathcal{D}_{\mathcal{A}'}^*$

Математическое ожидание $E(\mathcal{Z}_{\mathcal{A}'})$ равно сумме матожиданий величин $a_{i_k i_{k+1}}$ минимальных длин ребер, ведущих в еще непосещенную вершину на k-м шаге алгоритма \mathcal{A}' . В целях удобства дальнейших вычислений пронормируем случайную величину ξ значений элементов a_{ij} длин ребер графа, положив $\xi' = \frac{\xi-a}{b-a}$. Обозначим через l_k значение матожидания нормированной случайной величины $l_k = a'_{i_k i_{k+1}}$. На k-ом шаге алгоритма выбирается минимум из n-k элементов. В силу независимости этих элементов вероятность $\Phi_k(x)$ того, что величина l_k минимального из этих элементов не превышает величины x равна

$$\Phi_k(x) = P\{l_k \le x\} = 1 - (1 - F(x))^{n-k} \tag{35}$$

, где

$$F_k(x) = P\{\xi' \le x\}, 0 \le x \le 1 \tag{36}$$

Тогда величина $E(l_k)$ равна

$$E(l_k) = \begin{cases} \int_0^1 x d\Phi_k(x), k = 1, 2, ... n - 1\\ E(l_{n-1}), k = n \end{cases}$$
 (37)

откуда получим

$$E(l_k) = x\Phi_k(x)|_0^1 - \int_0^1 \Phi_k(x)dx =$$

$$= 1 - \int_0^1 [1 - (1 - F(x))^{n-k}]dx = \int_0^1 (1 - F(x))^{n-k}]dx$$

$$k = \overline{1, n-1}$$
(38)

В силу нормировки минимальный элемент $a_{i_{k-1}i_k}$ связан с величиной l_k соотношением $a_{i_ki_{k+1}}=a+(b-a)l_k$. Поэтому

$$E(\mathcal{Z}_{\mathcal{H}'}) = \sum_{k=1}^{n} [a + (b - a)E(l_k)]$$
 (39)

. Откуда с учетом 38 имеем:

$$E(\mathcal{Z}_{\mathcal{A}'}) = na + (b - a) \left[\int_{0}^{1} \sum_{k=1}^{n-1} (1 - F(x))^{n-k} dx + \int_{0}^{1} (1 - F(x)) dx \right] =$$

$$= na + (b - a) \int_{0}^{1} \frac{[1 - F(x)][1 - (1 - F(x))^{n-1} + F(x)]}{F(x)} dx \le$$

$$\leq na + (b - a) \int_{0}^{1} \frac{1 - (1 - F(x))^{n}}{F(x)} dx =$$

$$= na + (b - a) \left[\int_{0}^{\gamma_{n}} \frac{1 - (1 - F(x))^{n}}{F(x)} dx + \int_{\gamma_{n}}^{1} \frac{1 - (1 - F(x))^{n}}{F(x)} dx \right]$$

$$(40)$$

где γ_n - корень уравнения $F(\gamma) = \frac{1}{n}$, то есть $\gamma_n = F^{-1}(\frac{1}{n})$. Учитывая что при $0 \le Z \le 1$ справедливо неравенство $\frac{1-(1-Z)^n}{Z} \le n$, оценку $E(\mathcal{Z}_{\mathcal{H}'})$ можем продолжить следующим образом

$$E(\mathcal{Z}_{\mathcal{H}'}) \le \mathcal{Z}_{\mathcal{H}'}^* = na + (b - a)\left[\gamma_n * n + \int_{\gamma_n}^1 \frac{dx}{F(x)}\right] \tag{41}$$

Перейдем к вычислению верхней оценки $\mathcal{D}_{\mathcal{A}}^*$. Дисперсия d_k случайной нормированной величины l_k на k-ом шаге равна

$$d_k = \int_0^1 (x - E(l_k))^2 d\Phi_k(x) = \int_0^1 x^2 d\Phi_k(x) - (E(l_k))^2 < \int_0^1 x d\Phi_k(x) = E(l_k)$$
(42)

Тогда с учетом того, что дисперсия минимального элемента $a_{i_k i_{k+1}}$ равна $(b-a)^2 d_k$, дисперсия случайной величины $\mathcal{Z}_{\mathcal{H}'}$ с учетом 39 оценивается следующим образом:

$$\mathcal{D}(\mathcal{Z}_{\mathcal{H}'}) = \sum_{k=1}^{n} (b-a)^{2} d_{k} < (b-a)^{2} \sum_{k=1}^{n} E(l_{k}) =$$

$$= (b-a)^{2} * \frac{E(\mathcal{Z}_{\mathcal{H}'}) - na}{(b-a)} \le (b-a)(\mathcal{Z}_{\mathcal{H}'}^{*} - na)$$
(43)

Окончательно с учетом 41 получаем верхнюю оценку для $\mathcal{D}(\mathcal{Z}_{\mathcal{A}'})$

$$\mathcal{D}(\mathcal{Z}_{\mathcal{H}'}) < \mathcal{D}_{\mathcal{H}'}^* = (b - a)^2 \left[\gamma_n * n + \int_{\gamma_n}^1 \frac{dx}{F(x)} \right]$$
 (44)

Вернемся к неравенству 34. Имея в виду полученные оценки 41 и 44, выражения для ϵ_n и δ_n можно записать в следующем виде:

$$\epsilon_n = K(\frac{b}{a} - 1)\left[\gamma_n + \frac{1}{n} \int_{\gamma_n}^1 \frac{dx}{F(x)}\right] \tag{45}$$

$$\delta_n = \frac{1}{(K-1)^2 [\gamma_n * n + \int_{\gamma_n}^1 \frac{dx}{F(x)}]}$$
(46)

Обозначим $I_n = \int_{\gamma_n}^1 \frac{dx}{F(x)}, \ \Psi(n)$ - произвольная растущая от n функция, $\lim_{x\to\infty} \Psi(n) = \infty$

Теорема 1

Алгоритм \mathcal{A}' является асимптотически оптимальным при выполнении условий $\lim_{n\to\infty} \mathcal{I}_n = \infty$ и

$$\frac{b}{a} \le \frac{1}{\Psi(n)} \min\{\frac{1}{\gamma_n}, \frac{n}{I_n}\}\tag{47}$$

Доказательство. Покажем, что при выполнении условий теоремы $\epsilon_n \to 0$ и $\delta_n \to 0$ с ростом п. Действительно, при K>1 имеем:

$$\delta_{n} = \frac{1}{(\gamma_{n}n + I_{n})(K - 1)^{2}} \leq \frac{1}{I_{n} * (K - 1)^{2}} \rightarrow 0$$

$$\epsilon_{n} = K(\frac{b}{a} - 1)(\gamma_{n} + \frac{1}{n}I_{n}) \leq K * \frac{b}{a}(\gamma_{n} + \frac{1}{n}I_{n}) \leq$$

$$\leq \frac{K}{\Psi(n)}min(\frac{1}{\gamma_{n}}, \frac{n}{I_{n}})(\gamma_{n} + \frac{1}{n}I_{n}) =$$

$$= \frac{K}{\Psi(n)}min(1 + \frac{I_{n}}{n\gamma_{n}}, 1 + \frac{n\gamma_{n}}{I_{n}}) \leq \frac{2K}{\Psi(n)} \rightarrow 0$$

$$(48)$$

при $n \to \infty$. Теорема 1 доказана.

Замечание. Как было показано выше, для своей работы алгоритм \mathcal{A}' требует $O(n^2)$ операций, что сравнимо с трудоемкостью записи исходной информации о задаче коммивояжера. Отсюда получаем, что при выполнении условий теоремы 1 алгоритм \mathcal{A}' является статистически эффективным.

Равномерное распределение.

Определим условия асимптотической оптимальности алгоритма \mathcal{A}' для случая, когда веса ребер графа a_{ij} могут быть выбраны равновероятно из отрезка [a,b], a>0. В этом случае нормированная интегральная функция распределения имеет вид $F(x) = x, \ 0 \le x \le 1, \ \gamma_n = F(\frac{1}{n}) = \frac{1}{n}$ и

$$I_n = \int_{\gamma_n}^1 \frac{dx}{F(x)} = \int_{\frac{1}{n}}^1 \frac{dx}{x} = \ln(n)$$
 (49)

Тогда из теоремы 1 непосредственно получаем результат, который может быть сформулирован как:

Теорема 2

Если элементы aij матрицы A принимают значения равновероятно из отрезка [a,b], то алгоритм \mathcal{A}' является асимптотически оптимальным при выполнении следующего условия:

$$\frac{b}{a} \le \frac{n}{\ln(n)} \frac{1}{\Psi(n)} \tag{50}$$

Представляет интерес оценить величины ϵ_n и δ_n , фигурирующие в соотношении (25).

Учитывая специфику равномерного распределения можно получить более точные оценки для этих величин по сравнению с общим случаем. Выведем условия асимптотической оптимальности алгоритма \mathcal{A}' в случае равномерного распределения, проведя в сокращенном виде вычисления оценок для $E(\mathcal{Z}_{\mathcal{A}'})$ и $\mathcal{D}(\mathcal{Z}_{\mathcal{A}'})$ и $P\{\mathcal{Z}_{\mathcal{A}'} \leq (1 + \epsilon_n)\mathcal{Z}\}$. Согласно 38

$$E(l_k) = \int_0^1 (1-x)^{n-k} dx = \int_0^1 x^{n-k} dx = \frac{1}{n-k+1}$$
 (51)

 $k = 1, 2, ...n - k; E(l_n) = E(l_n - 1) = \frac{1}{2}$ С учетом (39)

$$E(\mathcal{Z}_{\mathcal{A}'}) = \sum_{k=1}^{n} [a + (b-a)E(l_k)] = na + (b-a)(\frac{1}{2} + \sum_{k=1}^{n-1} \frac{1}{n-k+1}) \le$$

$$\le na + (b-a)(\frac{1}{2} + ln(n)) = \mathcal{Z}_{\mathcal{A}'}^*$$
(52)

Оценим дисперсию $d_k = \int_0^1 (x-E(l_k))^2 d\Phi_k(x)$ случайной величины l_k с учетом того, что для равномерного распределения $\Phi_k(x)=1-(1-x)^{n-k}$ Используя (51), имеем

$$d_{k} = \int_{0}^{1} x^{2} d\Phi_{k}(x) - E(l_{k})^{2} = x^{2} \Phi_{k}(x) |_{0}^{1} - 2 \int_{0}^{1} x \Phi_{k}(x) dx - E(l_{k})^{2} =$$

$$= 1 - 2 \int_{0}^{1} x [1 - (1 - x)^{n - k}] dx - E(l_{k})^{2} =$$

$$= \frac{2}{n - k + 1} - \frac{2}{n - k + 2} - \frac{1}{(n - k + 1)^{2}},$$

$$k = 1, 2, ..., n - 1; d_{n} = d_{n - 1} = \frac{1}{12}$$
(53)

Отсюда с учетом определения дисперсии величины $\mathcal{Z}_{\mathcal{A}'}$, получим

$$\frac{1}{(b-a)^2}D(\mathcal{Z}_{\mathcal{H}'}) = \sum_{k=1}^n d_k = \frac{1}{12} + \sum_{k=1}^{n-1} \left(\frac{2}{n-k+1} - \frac{2}{n-k+2} - \frac{1}{(n-k+1)^2}\right) =
= \frac{1}{12} - \frac{2}{n+1} + 1 - \sum_{k=1}^{n-1} \frac{1}{(n-k+1)^2} \le \frac{13}{12} - \frac{2}{n+1} - \frac{1}{4} - \int_3^{n+1} \frac{dx}{x^2} =
= \frac{13}{12} - \frac{2}{n+1} - \frac{1}{4} + \frac{1}{n+1} - \frac{1}{3} < 0.417 = \frac{\mathcal{D}_{\mathcal{H}'}^*}{(b-a)^2} \tag{54}$$

Приведем оценку вероятности невыполнения соотношения (25) для случая равномерного распределения:

$$P\{Z_{\mathcal{A}'} > (1 + \epsilon_{n})Z\} \leq P\{Z_{\mathcal{A}'} > (1 + \epsilon_{n})na\} \leq$$

$$\leq P\{Z_{\mathcal{A}'} + Z_{\mathcal{A}'}^{*} - E(Z_{\mathcal{A}'}) > (1 + \epsilon_{n})na\} =$$

$$= P\{Z_{\mathcal{A}'} - E(Z_{\mathcal{A}'}) > (1 + \epsilon_{n})na - Z_{\mathcal{A}'}^{*}\} \leq$$

$$\leq P\{|Z_{\mathcal{A}'} - E(Z_{\mathcal{A}'})| > (1 + \epsilon_{n})na - Z_{\mathcal{A}'}^{*}\} \leq$$

$$\leq \frac{D(Z_{\mathcal{A}'})}{[(1 + \epsilon_{n})na + Z_{\mathcal{A}'}^{*}]^{2}} \leq$$

$$\leq \frac{0.417(b - a)^{2}}{[1 + \epsilon_{n})na - (nu + (b - a)(\frac{1}{2} + ln(n)))]^{2}} =$$

$$= \frac{0.417}{[\frac{n\epsilon_{n}}{b} - ln(n) - \frac{1}{2}]^{2}}$$

Положим $\epsilon_n = \frac{c}{\Psi(n)}$, константа c>1, и пусть $\frac{a}{b} \leq \frac{n}{\ln(n)} \frac{1}{\Psi(n)}$. Тогда (55) может быть продолжено следующим образом:

$$\frac{0.417}{\left[\frac{n\frac{c}{\Psi(n)}}{\left(\frac{b}{a}-1\right)} - \frac{1}{2} - ln(n)\right]} \le \frac{0.417}{\left[\frac{c\frac{b}{a}ln(n)}{\left(\frac{b}{a}-1\right)} - \frac{1}{2} - ln(n)\right]^2} = \frac{0.417}{\left[(c-1)ln(n) - \frac{1}{2}\right]^2} = \delta_n \quad (56)$$

Таким образом, окончательная оценка для вероятности выполнения соотношения (25) примет вид:

$$P\{Z_{\mathcal{H}'} \le (1 + \epsilon_n)Z\} \ge 1 - \frac{0.417}{[(c-1)ln(n) - \frac{1}{2}]^2}$$
 (57)

Нетрудно заметить, что эта величина, характеризующая точность получаемого решения, улучшается с ростом $\Psi(n)$, но при этом ухудшается оценка для величины $\frac{b}{a}$. Выберем функцию $\Psi(n)$ таким образом, чтобы произведение верхних оценок для ϵ_n и $\frac{b}{a}$ стремилось к (25) с ростом п. Такому условию отвечает функция $\Psi(n) = \sqrt{\frac{cn}{ln(n)}}$. При этом оценки для ϵ_n и $\frac{b}{a}$ принимают вид:

$$\frac{b}{a} \le \sqrt{\frac{n}{c \ln(n)}} \tag{58}$$

$$\epsilon_n \le \sqrt{\frac{cln(n)}{n}}$$
 (59)

Анализ соотношений 57-59, полученных для равномерного распределения показывает, что уменьшение константы c "улучшает" оценки для $\frac{b}{a}$ и ϵ_n и "ухудшает" оценку вероятности $P\{Z_{\mathcal{A}'} \leq (1+\epsilon_n)\mathcal{Z}\}$

 β - распределение. Очень часто в опытно-конструкторских разработках в промышленности и научно-исследовательских проектах длительности a_{ij} отдельных операций предполагается распределенными по следующему закону / β - распределение /:

$$f(\xi) = \begin{cases} \frac{(\xi - a)^{\alpha} * (b - \xi)^{\gamma}}{(b - a)^{\alpha + \gamma + 1} \beta (\alpha + 1, \gamma + 1)}, & \xi \in [a, b] \\ 0, & \xi \notin [a, b] \end{cases}$$
(60)

где

$$\beta(\alpha, \gamma) = \int_0^1 x^{\alpha - 1} (1 - x)^{\gamma - 1} dx = \frac{\Gamma(\alpha)\Gamma(\gamma)}{F(\alpha + \gamma)}$$
 (61)

где α и γ - параметры распределения. В нормированном виде функция плотности $f(\xi)$ запишется следующим образом:

$$f(\xi') = \begin{cases} \frac{(\xi)^{\alpha}(1-\xi)^{\gamma}}{\beta(\alpha+1,\gamma+1)}, & \xi' \in [0,1] \\ 0, & \xi' \notin [0,1] \end{cases}$$
(62)

Рассмотрим частный случай β - распределения, когда $\gamma=0, \alpha>0.$ В этом случае интегральная функция распределения равна

$$F(x) = \int_0^x f(\xi')d\xi' = \int_0^x \frac{x}{\beta(\alpha+1,1)} = x^{\alpha+1}$$
 (63)

Вычислим величину γ_n , фигурирующую в условиях теоремы 1:

$$\gamma_n = F^{-1}(\frac{1}{n}) = \frac{1}{\alpha \sqrt[4]{n}} \tag{64}$$

Тогда первое из условий теоремы 1 выполняется в силу $\alpha>0$

$$I_n = \int_{\gamma_n}^1 \frac{dx}{F(x)} = \int_{\gamma_n}^1 \frac{dx}{x^{\alpha+1}} = \frac{1}{\alpha} (n^{\frac{\alpha}{\alpha+1}} - 1) \to \infty, \quad n \to \infty$$
 (65)

Второе условие принимает вид:

$$\frac{b}{a} \leq \frac{1}{\Psi(n)} \min\left(\sqrt[\alpha+1]{n}, \frac{\alpha n}{n^{\frac{\alpha}{\alpha+1}} - 1} \right) = \\
= \frac{\sqrt[\alpha+1]{n}}{\Psi(n)} \min\left(1, \frac{\alpha}{1 - n^{-\frac{\alpha}{\alpha+1}}} \right) \tag{66}$$

Учитывая, что

$$min(1, \frac{\alpha}{1 - n^{-\frac{\alpha}{\alpha + 1}}}) \ge min(1, \alpha)$$
 (67)

Получаем следующее условие асимптотической оптимальности алгоритма \mathcal{A}' для β - распределения в частном случае $\gamma = 0, \, \alpha > 0$:

$$\frac{b}{a} \le \frac{\alpha \sqrt[4]{n}}{\Psi(n)} min(1, \alpha) \tag{68}$$

- 4. Оптимальность жадного алгоритма для графов с случайным распределением весов ребер.
- 4.1. Граф с равномерным распределением весов ребер на промежутке. Оценка оптимальности жадного алгоритма.

Список использованных источников и литературы.

Статьи из журнала:

- 1. Э. Х. Гимади, А. Ле Галлу, А. В. Шахшнейдер, "Вероятностный анализ одного алгоритма приближённого решения задачи коммивояжёра на неограниченных сверху входных данных", Дискретн. анализ и исслед. опер., 15:1 (2008), 23–43; J. Appl. Industr. Math., 3:2 (2009), 207–221
- 2. Rosenkrantz, Daniel J.; Stearns, Richard E.; Lewis, II, Philip M An Analysis of Several Heuristics for the Traveling Salesman Problem. September 1977 SIAM Journal on Computing 6(3):563-581
- 3. Э. X. Гимади, В. А. Перепелица, "Асимптотический подход к решению задачи коммивояжера", Управляемые системы, 1974, № 12, 35–45

Книги:

1. Gregory Gutin, Abraham P. Punnen, The travelling salesman problem adn its variations. - 2006