

Instituto Superior de Engenharia de Lisboa

Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores (ADEETC)

Redes de Internet (RI) - 2019/2020

Ficha nº 2 - Routing, RIP e OSPF monoárea

- A resposta à ficha é individual. Para ter aprovação à disciplina deve realizar e entregar a maioria das fichas propostas.
- A bibliografia a consultar é a recomendada para a disciplina. Pode e deve procurar mais informação em outras fontes (ex: os livros da biblioteca, as normas e a Internet).
- Deve justificar convenientemente todas as suas respostas, quer das perguntas de desenvolvimento, quer das perguntas de escolha múltipla.
- Recorra ao seu professor para esclarecer as dúvidas.
- A ficha resolvida deve ser entregue ao professor até: Ver Moodle
- 1) Indique um endereço de rede (hosts Id = 0) pertencente a:

Classe A: 20.0.0.0/8

Classe B: _____140.16.0.0/16

Classe C: ______ 193.16.20.0/24

Classe D: ______ 224.0.0.2

2) Indique o endereço de uma máquina que pertence a uma:

Sub-rede classe A: ______40.10.0.1/16

Sub-rede classe B: ______160.60.40.1/24

Sub-rede classe C: ______198.30.20.65/26

Super-rede classe C: 200.20.16.24/22

3) Indique um endereço unicast de uma rede privado/reservado de :

Classe A: ______10.20.30.40/8

Classe B: ______172.20.30.22/16

Classe C: ______192.168.40.22/24

APIPA: ______169.254.16.190/16

4) Considere uma máquina numa LAN com o endereço IP 170.140.33.40/22 indique:

O endereço de rede da LAN:________170.140.32.0/22

O endereço de difusão da LAN: _________170.140.35.255/22

O número máximo de máquinas suportadas na LAN: 1022

5) Sub-redes com dimensão fixa

Distribua o conjunto de endereços 200.10.72.0/21 pelas 4 redes (LAN A a LAN D).

Rede	Endereço de Rede/Máscara	Endereço difusão (broadcast)	Nº Máximo de Dispositivos
LAN A	200.10.72.0/23	200.10.73.255	510
LAN B	200.10.74.0/23	200.10.75.255	510
LAN C	200.10.76.0/23	200.10.77.255	510
LAN D	200.10.78.0/23	200.10.79.255	510

6) Sub-redes com dimensão variável (VLSM – Variable Lenght Subnet Mask)

Distribua o conjunto de endereços 200.10.10.0/25 pelas 4 LANs de modo a suportar os dispositivos indicados.

Rede	Dispositivos a Suportar	Endereço de Rede/Máscara	Endereço de Broadcast	Nº Máximo de Dispositivos
LAN A	16	200.10.10.0/27	200.10.10.31	30
LAN B	8	200.10.10.32/28	200.10.10.47	14
LAN C	2	200.10.10.48/30	200.10.10.51	2
LAN D	40	200.10.10.64/26	200.10.10.127	62

7) Redes com dimensão variável

Para a rede apresentada, com *routing* RIPv2, distribua o conjunto de endereços 200.10.10.0/24 de forma a utilizar o mínimo de endereços e permitir o máximo de utilizadores nas redes com os *switches* 1 e 2.

Rede	Endereço de Rede/Máscara	Endereço de <i>Broadcast</i>	Nº Máximo de Dispositivos
Sw1	200.10.10.0/25	200.10.10.127	126
Sw2	200.10.10.128/26	200.10.10.191	62
R1-R2	200.10.10.192/30	200.10.10.195	2
PC5	200.10.10.196/30	200.10.10.195	2
Sw3	200.10.10.200/30	200.10.10.203	2
PC3	200.10.10.204/30	200.10.10.207	2
R3-R7	200.10.10.208/30	200.10.10.211	2
PC2	200.10.10.212/30	200.10.10.213	2
R2-R3	200.10.10.214/30	200.10.10.217	2

Atribua endereços IP às interfaces dos *routers* (endereços mais elevados da LAN) e preencha a tabela de encaminhamento do *router* R1.

	-		
LAN	Endereço de Rede/Máscara	Gateway	Interface
Sw1	200.10.10.0/25	200.10.10.126	200.10.10.126
Sw2	200.10.10.128/26	200.10.10.190	200.10.10.190
R1-R2	200.10.10.192/30	200.10.10.193	200.10.10.193
PC5	200.10.10.196/30	200.10.10.194	200.10.10.193
Sw3	200.10.10.200/30	200.10.10.188	200.10.10.190
PC3	200.10.10.204/30	200.10.10.189	200.10.10.190
R3-R7	200.10.10.208/30	200.10.10.188	200.10.10.190
PC2	200.10.10.212/30	200.10.10.213	200.10.10.213
R2-R3	200.10.10.214/30	200.10.10.1194/(188)	200.10.10.193(190)
Internet	0.0.0.0/0	200.10.10.188	200.10.10.190

-		onsidere as seguint 2.20.0.192/27: Podem ser sumariz Podem ser sumariz Podem ser sumariz Podem ser sumariz	radas em 12.20.0.0/ radas em 12.20.0.0/ radas em 12.20.0.0/	/26 e 12.20.0.96/25 /26, 12.20.0.96/26 e /16137.220.251	e 12.20.	0.160/26	5	.0.128/27, 12.20.0.160 .92/27 #	/2/
9	9)	Na seguinte tabela	Gateway	Genmask	Flags	Metric	Ref Us	se Iface	
LO)			0.0.0.0 193.137.220.126 193.137.220.126 193.137.220.126 193.137.220.126 0.0.0.0 193.137.237.173	255.255.255.255 255.255.255.240 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.254.0 255.0.0.0 0.0.0.0	UGH U UG UG UG UG UG UG	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 eth2 0 eth2 0 bond0 0 tond0 0 tond0	
			oróximo <i>router</i> ao e	encaminhar um pac _193.137.220.126	cote cor	n o ende	ereço de de	estino 193.137.221.10?	1
:	12)	Tendo em conside seguintes resposta	-	os base usados nos	protoc	colos de	encaminha	nmento, indique quais	das
		os melhores camin	a listas com os cami roca listas com os c trói uma tabela que hos constrói uma tabel	nhos completos de aminhos completos e representa o "ma	s desde pa" da a	a origen área ond	n até ao des le é aplicad		
13)		m protocolo de enc Suporta VLSM # Apenas suporta en As tabelas de <i>routil</i> Sumariza automati Todas as sub-redes	dereços nos equipa ng têm de incluir as camente para a clas	mentos da classe A máscaras das rede sse a que pertence	, B ou C s destir o ender	; no # reço da i	nterface	se de endereços IP	
•		o RIP v1: As atualizações per Todos os <i>routers</i> tê As atualizações per É utilizado o ender	èm conhecimento d	e toda a topologia o da a informação na	tabela	de enca	minhament		

·	o os protocolos RIPv1 e RIPv2:
☐ O protocol☐ Os protoco	1 e 2 do RIP usam métricas distintas o RIPv1 tem como o valor de 16 <i>hops</i> como inatingível # olos RIP usam uma métrica baseada no débito de cada ligação o RIPv2 usa <i>broadcast</i> como forma por omissão de enviar as suas mensagens
16) Qual das afir	mações é verdadeira relativamente aos protocolos de routing classless?
□ O RIPv1 é i □ O RIPv2 su	LSM é permitido# um protocolo <i>classless</i> porta <i>classless routing</i> # edes descontínuas não é permitido
☐ Dividir a re☐ Não enviar☐ Enviar o va	lit Horizon destina-se a? Ede em zonas RIP e não RIP Tatualizações de rotas a quem as forneceu # Ilor correspondente a infinito quando uma rota deixa de ser possível Tas atualizações aos routers vizinhos acerca da rota que deixa de ser possível
☐ Não incorp☐ Um <i>router</i> ☐ A informaç☐ Previne qu	rmações definem route poisoning: poração de rotas aprendidas por RIP na RIB, apenas de estáticas anuncia com uma métrica para o infinito uma rede que fique indisponível ção que é recebida por um router, não pode ser enviada pelo mesmo caminho e mensagens de update instalem na RIB uma rota que acabou de ficar disponível ao receber informação de outro sobre uma rota devolve-lhe a informação com um custo de 16 #
☐ Os routers☐ Devido ao☐ O Poisened	sados <i>triggered updates</i> para aprenderem as rotas para todas as redes trocam LSA do tipo 1 e 2 entre eles Split Horizon as tabelas de <i>routing</i> não são enviadas na totalidade para os <i>routers</i> vizinhos # d Reverse faz com que um <i>router</i> devolva a quem lhe deu a informação sobre uma rota a mesma rota ima métrica de 16#
20) Que método ☐ VLSM ☐ Split horiza ☐ Autenticaç ☐ Holddown	ão
☐ Converge r☐ Possui os r	2: cil de configurar que o RIPv1 mais rapidamente que o RIPv1 mesmos tempos relativamente ao RIPv1# a distância administrativa menor em relação ao RIPv1
anunciada co □ A rede esta □ A rede eno □ Esta rota p	publeshooting num router a correr o protocolo RIP, repara que a rede 172.16.10.0 está a se om uma métrica de 16, qual o significado? á inacessível# contra-se a 16 hops cossui um delay de 16 microsegundos ara esta rede é de 16 pacotes por segundo

23) A figura representa a tabela de encaminhamento de um *router* a correr um protocolo de encaminhamento baseado no algoritmo *Bellman-Ford,* protocolo RIPv2. Preencha a tabela da direita considerando que o *router* recebe um *update* proveniente do router 12.254.254.254 com os destinos: 10.0.0.0/8 com métrica 6, 192.52.64.0/24 com métrica 3, 160.14.0.0/16 com métrica 16, 20.0.0.0/8 com métrica 3 e 200.123.234.0/24 com métrica 4.

Destino	Próximo Salto	Métrica
10.0.0.0/8	12.254.254.254	5
192.52.64.0/24	12.254.254.254	4
160.14.0.0/16	12.254.254.254	5
20.0.0.0/8	15.4.25.128	6
200.123.234.0/24	11.254.254.254	7

Destino	Próximo Salto	Métrica
10.0.0.0/8	12.254.254.254	7
192.52.64.0/24	12.254.254.254	4
20.0.0.0/8	12.254.254.254	4
200.123.234.0/24	12.254.254.254	5

24) A OSPF a métrica usada é baseada:
☐ Na distância administrativa
□ No débito de cada troço de rede #
☐ No número de redes IP atravessadas
☐ No número de sistemas autónomos atravessados
25) Em OSPF, se dois <i>routers</i> são vizinhos entre si:
☐ São adjacentes entre si
☐ Atualizam entre si as suas LSDB
☐ Os seus tempos entre mensagens Hello são iguais #
☐ A área a que dizem pertencer tem de ser a mesma #
☐ Possuem LSDB (mapas da área) iguais para as áreas em que são comuns#
26) No OSPF, um designated router:
☐ É vizinho de todos os <i>routers</i> com quem tem uma ligação física
☐ Pode-se forçar um <i>router</i> a ser DR colocando a sua prioridade a 0
☐ É adjacente de todos os <i>routers</i> que partilham a rede BMA de que é DR#
☐ É adjacente de todos os <i>routers</i> que partilham a rede NBMA de que é DR #
27) Os LSA que são enviados apenas para todos os <i>routers</i> pertencentes à mesma área onde são gerados são os
☐ LSA tipo 1 #
☐ LSA tipo 2 #
☐ LSA tipo 3
☐ LSA tipo 4
☐ LSA tipo 5
28) Em OSPF, o algoritmo Dijkstra para calcular as melhores rotas dentro de uma área é aplicado sobre:
☐ LSA tipo 1 #
☐ LSA tipo 2 #
☐ LSA tipo 3
☐ LSA tipo 4
☐ LSA tipo 5

- ☐ Não existem LSA tipo 3#
- ☐ Não existem LSA tipo 4 #
- ☐ Não existem LSA tipo 5
- ☐ Não existem LSA tipo 7 #