MIT OpenCourseWare http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP) 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 17

The Raw Experience

Raw Chips

Raw Microprocessor

- Tiled microprocessor with point-to-point pipelined scalar operand network
- Each tiles is 4 mm x 4mm
 - MIPS-style compute processor
 - Single-issue 8-stage pipe
 - 32b FPU
 - 32K D Cache, I Cache
- 4 on-chip mesh networks
 - Two for operands
 - One for cache misses, I/O
 - One for message passing

Raw Microprocessor

- 16 tiles (16 issue)
- 180 nm ASIC (IBM SA-27E)
- ~100 million transistors
- 1 million gates
- 3-4 years of development
- 1.5 years of testing
- 200K lines of test code
- Core Frequency:
 - 425 MHz @ 1.8 V
 - 500 MHz @ 2.2 V
- Frequency competitive with IBMimplemented PowerPCs in same process
- 18W average power

One Cycle in the Life of a Tiled Processor

Application uses as many tiles as needed to exploit its parallelism

Raw Motherboard

Raw in Action

MPEG-2 Encoder Performance

MPEG-2 Encoder Performance

	Encoding Rate (frames/s)				
# Tiles	352 x 240	640 x 480	720 x 480		
1	4.30	1.14	1.00		
2	8.48	2.24	1.97		
4	16.18	4.45	3.84		
8	30.82	8.69	7.52		
16	58.65	16.74	14.57		
32	103*		30*		
64	158*		51.90		

^{*} Estimated data rates

Programmable Graphics Pipeline

simplified graphics pipeline

Phong Shading

- Per-pixel phong-shaded polyhedron
- 162 vertices, 1 light

Output, rendered using Raw simulator

Phong Shading (64-tiles)

Shadow Volumes

- 4 textured triangles
- 1 point light
- Rendered in 3 passes

Output, rendered using Raw simulator

Shadow Volumes (64-tiles)

1020 Element Microphone Array

Case Study: Beamformer

The Raw Experience

- Insights into the design Raw architecture
- Raw parallelizing compiler
- StreamIt language and Compiler

Scalability Problems in Wide Issue Processors

Area and Frequency Scalability Problems

Operand Routing is Global

Idea: Make Operand Routing Local

Idea: Exploit Locality

Replace Crossbar with Point-To-Point Network

Replace Crossbar with Point-To-Point Network

Operand Transport Latency

	Crossbar	Point-to-Point Network
Non-local Placement	~ N	~ N ^{1/2}
Locality-driven Placement	~ N	~ 1

Distribute the Register File

More Scalability Problems

More Scalability Problems

Distribute Everything

Tiled Processor

Tiled Processor

Tiled Processor (Taylor PhD 2007)

 Fast inter-tile communication through point-to-point pipelined scalar operand network (SON)

 Easy to scale for the same reasons as multicores

Raw Compute Processor Internals

Tile-Tile Communication

add \$25,\$1,\$2

Route \$P->\$E

Route \$W->\$P

Why Communication Is Expensive on Multicores

Why Communication Is Expensive on Multicores

Why Communication Is Expensive on Multicores

A Figure of Merit for SONs

- 5-tuple <so, SL, NHL, RL, RO>
 - Send occupancy
 - Send latency
 - Network hop latency
 - Receive latency
 - Receive occupancy
- Tip: Ordering follows timing of message from sender to receiver

The Interesting Region

Scalable Multiprocessor (on-chip)

Raw SON (scalable)

Superscalar (not scalable)

Where is Cell in this space?

<2, 14, 3, 14,4>

< 0, 0, 1, 2, 0>

< 0, 0, 0, 0, 0>

The Raw Experience

- Insights into the design Raw architecture
- Raw parallelizing compiler

Raw Parallelizing Compiler (Lee PhD 2005)

Sequential Program

Fine-grained
Orchestrated
Parallel Program

- Data distribution
- Instruction distribution
- Coordination
 - Communication
 - Control flow

Data Distribution

Instruction Distribution

basic block

Clustering: Parallelism vs. Communication

Adjusting Granularity: Load Balancing

Placement

Communication Coordination

Instruction Scheduling

 Inter-tile cycle scheduling schedules communication and can guarantee deadlock freedom

Final Code Representation

Control Coordination

Asynchronous Global Branching

Summary

 Tiled microprocessors incorporate the best elements of superscalars and multiprocessors

Raw Project Contributors

Anant Agarwal Saman Amarasinghe

Jonathan Babb Walter Lee

Rajeev Barua Jason Miller

Ian Bratt James Psota

Jonathan Eastep Arvind Saraf

Matt Frank Vivek Sarkar

Ben Greenwald Nathan Shnidman

Henry Hoffmann Volker Strumpen

Paul Johnson Michael Taylor

Jason Kim Elliot Waingold

Theo Konstantakopoulos David Wentzlaff