1. Calculate for Step Index Fibers (using MATLAD).		
a)Numerical aperture		
b)Acceptance angle	it .	
c)Solid acceptance angle		
d)Propagation constant		
	Ü	
2. Calculate for Step Index Fibers(using MATLAB):		
a) Propagation constant (β)		
b) Normalized propagation constant (b)	· ·	
c) V number (V)		
d) Check whether the fiber is single mode or multi mode.		
e) Graph between normalized propagation constar	nt (b) and V number	
f) Cut off wavelength (λc)		
g) Number of modes traveling in fiber (Ms)		
	· ·	
3. Calculate for Graded Index Fibers(using MATLA	AB):	
a) Graphical representation of core refractive index profile parameters.		
b) Graphical representation of numerical aperture N profile parameters.		
c) Acceptance Angle (θa) for given value of radius difference	Where $0 < r \le a$, $\Delta = \text{refractive index}$	

difference

1	4. Calculate for Graded Index Fibers(using MATLA); D\.
	a) Numerical aperture (NA)	в):
	c) V number (V)	•
	d) Check whether the fiber is single mode or mult	ii I mada
	e) Graph between V number and wavelength (λ)	i mode.
	f) Cut off wavelength (λc)	
	g) Number of modes traveling in fiber (Ms)	Ů
	5. Calculate for Step Index Fibers (using MATLAB)	: Mode Field Diameter
	6. Calculate for pure Silica fibers (using MATLAB):	€ •
	a) Graph for refractive index (n) with wavelength	(2)
	b) Graph for $dn/d\lambda$ with wavelength (λ)	
	c) Graph for $d^2n/d\lambda^2$ with wavelength(λ)	
	d) Graph for material dispersion (Dm) with wavele	ngth
	e) Calculate material dispersion (Dm) at given way	relength
	f) Find Zero material dispersion wavelength	
	7. Calculate for step index fibers (using MATLAB):	
	a) V number (V)	*
	b) Cut off wavelength (λc)	
	c) Waveguide dispersion at given wavelength	
	d) Plot of waveguide dispersion with wavelength	

- 8. Calculate (using MATLAB):
- a) The Rayleigh Scattering Loss for Silica Fibers.
- b) Plot a graph for Loss with wavelength.
- 9. Calculate the Infrared absorption loss for silica fibers and plot a graph with wavelength (using MATLAB)

 https://www.fiberoptics4sale.com/blogs/archive-posts/95048006-optical-fiber-loss-and-attenuation different loss link
- 10. Calculate (using MATLAB):
 - a) Total loss for silica fibers and plot a graph with wavelength.
- b) Plot output power with length.

https://sites.google.com/site/worldofmatlab/home/optical-fiber link for Optical Communication Laboratory

6

https://www.mathworks.com/matlabcentral/answers/286107-how-to-get-b-vs-v-plot-for-multimode-optical-fiber-using-matlab-with-using-bessel-s-equation Link for b vs V plot for multimode optical fiber using matlab using bessel's equation