STABILITY & CONTROL CHARACTERIZATION OF FLIGHT VEHICLES FROM WINDTUNNEL TESTING

by: Dr. Subrahmanyam Saderla

Assistant Professor, Flight Dynamics & Control Group, Department of Aerospace Engineering, Indian Institute of Technology Kanpur.

Road Map for Aerodynamic Characterization from flight data

Aerodynamic Characterization

Classical Estimation methods

- 1. Output Error Method (MLE)
- 2. Equation Error Method (LS)
- 3. Filter Error Method (EKF)

Neural based methods

1. Neural Gauss Newton method (NGN)

1. Static tests

2. Dynamic tests

Wind tunnel Tests

Flight Tests

Computational fluid dynamic methods

Analytical Estimates

Why wind tunnel testing ??

• Aircraft is considered as a rigid body to derive its equations of motion.

s - reference planform area

I - characteristic length

• Forces and moments acts about the c.g of the aircraft

$$\sum \delta \bar{F}_{ext} = \frac{d}{dt} \left(\sum \delta m \bar{V} \right) \Rightarrow \sum \bar{F}_{ext} = m \left(\frac{\partial}{\partial t} (\bar{V}) + \bar{\omega} \times \bar{V} \right)$$
$$\sum \bar{F}_{ext} = \bar{F}_{aerodynamic} + \bar{F}_{propulsion} + \bar{F}_{gravity}$$

$$\sum \delta \bar{\tau}_{ext} = \frac{d}{dt} \left(\sum \delta \bar{h} \right) \Rightarrow \bar{M}_{ext} = m \left(\frac{\partial}{\partial t} (\bar{H}) + \bar{\omega} \times \bar{H} \right)$$

$$\sum \bar{M}_{ext} = \bar{M}_{aerodynamic} + \bar{M}_{propulsion}$$

$$\bar{F}_{aero} = q_{\infty} s \bar{C}_{FA}$$

$$\bar{M}_{aero} = q_{\infty} s l \bar{C}_{MA}$$

$$\text{where } q_{\infty} = \frac{1}{2} \rho v_{\infty}^{2} \text{ -dynamic pressure}$$

SIX DOF Equations

$$\dot{u} = \frac{F_x}{m} - g * \sin \theta - q * w + r * v$$

$$\dot{v} = \frac{F_y}{m} + g * \cos \theta * \sin \phi - r * u + p * w$$

$$\dot{w} = \frac{F_z}{m} + g * \cos \theta * \cos \phi - p * v + q * u$$

$$\dot{p} = \left(\frac{1}{J_{xx}J_{zz} - J_{xz}^2}\right) \{J_{zz} * L + J_{xz} * N - q * r(J_{xz}^2 + J_{zz}^2 - J_{yy} * J_{zz}) + p * q * J_{xz} * (J_{xx} - J_{yy} + J_{zz})\}$$

$$\dot{q} = \left(\frac{1}{J_{yy}}\right) \{M - r * p * (J_{xx} - J_{zz}) - (p^2 - r^2) * J_{xz}\}$$

$$\dot{r} = \left(\frac{1}{J_{xx}J_{zz} - J_{xz}^2}\right) \{J_{xz} * L + J_{xx} * N - q * r * J_{xz} * (J_{xx} - J_{yy} + J_{zz}) + p * q * (J_{xz}^2 + J_{xx}^2 - J_{yy} * J_{xx})\}$$

$$\dot{\phi} = p + q \tan \theta \sin \phi + r \tan \theta \cos \phi$$

$$\dot{\theta} = q \cos \phi - r \sin \phi$$

$$\dot{\psi} = r \cos \phi \sec \theta + q \sin \phi \sec \theta$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & \sin \varphi \\ 0 & -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

SIMULATION → *Aerodynamic Model*

$$\begin{cases}
C_{f_x} \\
C_{f_y} \\
C_{f_z}
\end{cases} = \left(\frac{1}{q_{\infty}S}\right) x \begin{cases}
F_x \\
F_y \\
F_z
\end{cases}$$

$$\begin{cases}
C_{m_x} \\
C_{m_y} \\
C_{m_z}
\end{cases} = \left(\frac{1}{q_{\infty}S\bar{l}}\right) x \begin{cases}
M_x \\
M_y \\
M_z
\end{cases}$$

$$\begin{bmatrix} C_L \\ C_D \\ C_y \end{bmatrix} = \begin{bmatrix} \sin(\alpha) & 0 & -\cos(\alpha) \\ -\cos(\alpha) & 0 & -\sin(\alpha) \\ 0 & \cos(\beta) & 0 \end{bmatrix} \begin{pmatrix} C_{f_x} \\ C_{f_y} \\ C_{f_z} \end{pmatrix}$$

$$C_{L} = C_{L_{0}} + C_{L_{\alpha}} \alpha + C_{L_{q}} q + C_{L_{\delta_{e}}} \delta_{e}$$

$$C_{D} = C_{D_{0}} + C_{D_{\alpha}} \alpha$$

$$C_{m} = C_{m_{0}} + C_{m_{\alpha}} \alpha + C_{m_{q}} q + C_{m_{\delta_{e}}} \delta_{e}$$

$$C_{Y} = C_{Y_{0}} + C_{Y_{\beta}} \beta + C_{Y_{r}} r + C_{Y_{\delta_{r}}} \delta_{r}$$

$$C_{n} = C_{n_{0}} + C_{n_{\beta}} \beta + C_{n_{r}} r + C_{n_{p}} p + C_{n_{\delta_{r}}} \delta_{r} + C_{n_{\delta_{a}}} \delta_{a}$$

$$C_{l} = C_{l_{0}} + C_{l_{\beta}} \beta + C_{l_{r}} r + C_{l_{p}} p + C_{l_{\delta_{r}}} \delta_{r} + C_{l_{\delta_{a}}} \delta_{a}$$

Aerodynamic Model → WIND TUNNEL TESTING @ NWTF

- To extract the longitudinal, lateral directional aerodynamic stability and control derivatives
- Static tests were performed
 - \circ α sweep: -5⁰ to 50⁰
 - \circ β sweep: -10^0 to 10^0
- Six component Load balance is used to measure the forces and moments of the model.
- Reynolds number : 3.45 x 10⁵
- Velocity: 8 m/s.

Aerodynamic Model → WIND TUNNEL TESTING @ NWTF

Aerodynamic Model → WIND TUNNEL TESTING → Model Mounting

- Model is mounted inside the test section of the wind tunnel with the help of β mechanism.
- β mechanism which in turn fixed to turn table, enables the model to have variable angle of attack(α), side slip angle(β).

$\mathsf{Aerodynamic} \ \mathsf{Model} \to \mathsf{WIND} \ \mathsf{TUNNEL} \ \mathsf{TESTING} \to \boldsymbol{\beta} \ \boldsymbol{mechanism}$

$\mathsf{Aerodynamic} \ \mathsf{Model} \to \mathsf{WIND} \ \mathsf{TUNNEL} \ \mathsf{TESTING} \ \boldsymbol{\to} \ \boldsymbol{Turning} \ \boldsymbol{Vanes}$

Aerodynamic Model → WIND TUNNEL TESTING → Six Component Load Balance

Aerodynamic Model → WIND TUNNEL TESTING → Model Mounting

Aerodynamic Model → WIND TUNNEL TESTING → Model Mounting

Aerodynamic Model → WIND TUNNEL TESTING → Load Balance Calibration

Aerodynamic Model → WIND TUNNEL TESTING → DATA Processing

- ☐ Data from load balance is obtained about balance center in the form of normalized voltage signals
 - ➤ Step1: Convert the obtained normalized voltage signals to kg and kg-m.

Let
$$[A] = \begin{cases} A_f \\ N_1 \\ N_2 \\ S_1 \\ S_2 \\ Rm \end{cases}$$
 and $[a] = \begin{cases} a_f \\ n_1 \\ n_2 \\ S_1 \\ S_2 \\ rm \end{cases}$
$$[A]_{6 \times 1} = [CM]_{6 \times 6} \times [a - NW]_{6 \times 1}$$

➤ Step2: Calculate the forces and moments about the balance center.

$$[f/m]_{b.c} = \begin{cases} A_{x} \\ S_{f} \\ N_{f} \\ R_{m} \\ P_{m} \\ Y_{m} \end{cases} = \begin{cases} A_{f} \\ S_{1} + S_{2} \\ N_{1} + N_{2} \\ Rm \\ (N_{1} - N_{2}) * 0.065 \\ (S_{1} - S_{2}) * 0.065 \end{cases} \times g$$

Aerodynamic Model → WIND TUNNEL TESTING → DATA Processing

➤ Step3: Transform the forces and moments to the body axis

$$[\mathbf{F}/\mathbf{M}]_{b.c} = \begin{cases} f_x \\ f_y \\ f_z \\ m_x \\ m_y \\ m_z \end{cases} = \begin{cases} -A_x \\ S_f \\ -N_f \\ R_m \\ P_m \\ Y_m \end{cases}$$
Body fixed axis

➤ Step4: Transform the forces and moments to the C.G of the flight vehicle.

$$\begin{bmatrix} C_L \\ C_D \\ C_y \end{bmatrix} = \begin{bmatrix} \sin(\alpha) & 0 & -\cos(\alpha) \\ -\cos(\alpha) & 0 & -\sin(\alpha) \\ 0 & \cos(\beta) & 0 \end{bmatrix} \begin{pmatrix} C_{f_x} \\ C_{f_y} \\ C_{f_z} \end{pmatrix}$$

Aerodynamic Model → WIND TUNNEL TESTING → CDFP & CDRW

Photographs of **cropped delta flat plate** (left) and **cropped delta reflex wing** (right) configurations mounted inside the test section of wind tunnel

Aerodynamic Model → WIND TUNNEL TESTING → **Generated Aerodynamic Database**

Parameters	CDFP	CDRW
C_{L_0}	0	0.067
C_{D_0}	0.035	0.020
$C_{L_{lpha}}$	3.273	2.981
$C_{L_{max}}$	1.022	0.923
α_{stall}	20.890	19.510
k	0.16	0.12
e	0.69	0.92

Aerodynamic Model → WIND TUNNEL TESTING → **Generated Aerodynamic Database**

Parameters	CDFP	CDRW
$\left(\frac{L}{D}\right)_{max}$	6.62	11.59
$\alpha_{(\frac{L}{D})_{max}}$	7.80	6.10
$C_{L_{(\overline{\underline{L}})_{max}}}$	0.46	0.39
$C_{D_{(\frac{L}{\overline{D}})_{max}}}$	0.067	0.032

WIND TUNNEL TESTING → Generated High Angle of Attack Aerodynamic Database

High angle of attack Longitudinal Wind Tunnel data: CDRW, CDFP

WIND TUNNEL TESTING → Generated Aerodynamic Database - CDFP & CDRW

Comparison of variation of \mathcal{C}_L and \mathcal{C}_m with δ_e of CDRW and CDFP configurations

WIND TUNNEL TESTING → Lateral - Directional Aerodynamic Database

Variation of C_y , C_l and C_n with β for the CDFP and CDRW UAVs during wind tunnel testing

WIND TUNNEL TESTING → Lateral - Directional Aerodynamic Database

Variation of C_y , C_l and C_n with δ_a for the CDFP and CDRW UAVs during wind tunnel testing

WIND TUNNEL TESTING → Lateral - Directional Aerodynamic Database

Variation of C_y , C_l and C_n with δ_r for the CDFP and CDRW UAVs during wind tunnel testing

Queries

