INTRODUÇÃO A ENGENHARIA DE MATERIAIS

AULA PRÁTICA: IDENTIFICAÇÃO DE POLÍMEROS POR QUEIMA

Prof. Adriane Bassani Sowek – absowek@uepg.br

OBJETIVOS:

- Familiarizar o aluno com diferentes tipos de materiais poliméricos (mais consumidos)
- Reconhecer aspectos e propriedades destes polímeros
- Identificar amostras destes polímeros por uma técnica laboratorial simples
- Familiarizar o aluno com o teste de queima

ENGENHARIA DE MATERIAIS

O Tetraedro da Ciência e Engenharia de Materiais e no centro a caracterização

Materiais estudados na Engenharia de Materiais

Vocês já imaginaram como seria a nossa vida sem os Materiais Poliméricos?

Mas o que são Materiais Poliméricos?

Polímeros

Plásticos

- POLÍMEROS são materiais orgânicos ou inorgânicos, de origem natural ou sintética, de alto peso molecular (macromoléculas), cuja estrutura molecular consiste na repetição de pequenas unidades (meros), formada por ligações covalentes.
- > A palavra polímero vem do grego, significando Poli = muitas e Meros = partes

Macromoléculas

POLÍMEROS – Estruturas moleculares

PRINCIPAIS RESINAS CONSUMIDAS NO BRASIL - % (2021)

Etileno

Polietileno

Polímero Polietileno

Poliestireno (PS)

Propriedades

Aplicação

Estrutura

Processamento

EPS – poliestireno expandido (Conhecido como Isopor® - Knauf)

Etileno-glicol

Acido tereftálico

Polietileno tereftalato (PET)

Termoplásticos (PE, PP, PS, PVC, PET)

Quanto ao comportamento ao calor

Termofixos (resinas fenólicas, poliéster, epóxi)

Termorrígidos ou termoendurecíveis

TERMOFIXOS: Amolecem uma vez, passam pelo processo de cura (formação das ligações cruzadas – processo irreversível) e se tornam rígidos

Os polímeros podem ser identificados por meio de diversas técnicas:

- Por meio dos códigos de reciclagem (NBR 13.230)
- > Por meio de análise visual e sensitiva (aspectos -transparente, translúcido, brilho, som, etc.)
- Por meio do comportamento mecânico (rigidez e flexibilidade; dureza, etc.)
- Por meio de testes simples como queima (cor e odor da fumaça, ph, inflamabilidade, etc.)
- Ou pela diferença nas densidades
- Ou por técnicas mais sofisticadas (espectroscopia no infravermelho (IV), ressonância magnética nuclear, difração de raio-x, calorimetria diferencial de varredura (DSC)).

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Embalagens e acondicionamento plásticos recicláveis – Identificação e simbologia. NBR 13.230. Rio de Janeiro, RJ: ABNT, 2008

Símbolo		Sigla	Nome do polímero		
Δ	A PET	PET	Polietileno tereftalato		
2	2 PEAD	PEAD	Polietileno de alta densidade		
۵	23 PVC	PVC	Policloreto de vinila		
A	245 PEBD	PEBD	Polietileno de baixa densidade		
B	<u>ک</u> ئے	PP	Polipropileno		
۵	ۮ۪ٛ	PS	Poliestireno		
ß	OUTROS	OUTROS	Polímeros diferentes dos supracitados		

- 40% identificação de forma incorreta.
- Embalagens de PEBD (menor % de identificação correta)

COLTRO, L.; GASPARINO, B. F.; QUEIROZ, G. C. Reciclagem de materiais plásticos: A importância da identificação correta. Polímeros: Ciência e Tecnologia, v. 18, n.2, p. 119-125, 2008.

• 30% das embalagens com identificação de forma incorreta.

Teste de queima ou de chama ou de combustão:

- > Consiste na queima de uma amostra do polímero e a observação do seu comportamento quando queimado.
- Cada tipo de polímero apresenta caracterísiticas específicas quando queimados.
- ➤ É possível verificar algumas propriedades da chama, por exemplo: se o material incendeia ou não (inflamabilidade); combustão rápida ou lente; cor da chama; presença ou não de fuligem.
- ➤ Além disso, outras características: ph e o odor da fumaça; amolecimento; gotejamento; formação de fio; entre outras.
- > Com base nas características observadas é possível identificar o tipo de material polimérico que está sendo testado.

Determinação da inflamabilidade:

• Expor a amostra à chama por alguns segundos, remover a fonte da chama e observar se a amostra continua queimando (inflamável) ou se a chama apaga espontaneamente (auto-extinguível).

- Se o produto é inorgânico, não queima, resiste à chama.
- Se é orgânico, sofre inflamação; este é o caso mais comum nos polímeros.
- A resistência à propagação da chama aumenta quando alguns tipos de átomo estão presentes na molécula (CI e Br são retardantes de chama).

Amolecimento com aquecimento:

Termorrígidos (resinas fenólicas, epóxi)

Quanto ao comportamento ao calor

Termoplásticos (PE, PP, PVC)

Ph da fumaça:

$$n\begin{bmatrix} H & CI \\ H & C \end{bmatrix} \longrightarrow \begin{cases} H & CI \\ +C & C \end{cases}_{H}$$

Policloreto de vinila (PVC)

$$(C_2H_3CI)_{(g)} + 5/2O_{2(g)} \rightarrow 2CO_2 + H_2O_{(g)} + HCI_{(g)}$$

Polímero	TP, TF, elastômero	Ph Fumaça	Odor Fumaça	Cor chama	Incendeia/ auto-extinguível
HDPE, LDPE, LLDPE	TP	neutro	Vela queimada	amarela com base azul	incendeia
PS, EPS, HIPS, ABS	TP	neutro	Estireno, com muita fuligem	amarela com base azul	Incendeia
PP	TP	neutro	Vela queimada	amarela com base azul	Incendeia
PVC	TP	ácido	acre	amarela com base verde	auto-extinguivel
PMMA	TP	neutro	Metil metacrilato	amarela com base azul	incendeia
Nylon	TP	Levemente Básico / neutro	Cabelo queimado	azul com pontas amarelas	incendeia
PET	TP	neutro	adocicado	amarela	incendeia
PC	TP	neutro	Acre, picante, azedo	amarela com base azul	incendeia
Celofane	TP	básico	Papel, madeira queimada	amarelo esverdeada	incendeia

Polímero	TP, TF, elast.	Ph Fumaça	Odor Fumaça	Cor chama	Incendeia/ auto-exting.	
PVA (Poliacetato de vinila)	TP	neutro	acetato de vinila	amarelo escuro	incendeia	
ABS	ABS TP neut		etireno amarelo b azul		incendeia	
PTFE (poli TP ácido tetrafluor- etileno)		nenhum	amarela	auto-exting.		
Poliacetal	TP	neutro	formaldeído	azul claro	incendeia	
Epóxi	TF	neutro	azedo	amarela	incendeia	
Fenol- formaldeido	TF	neutro	Fenol form.	amarela	auto-exting.	
Poli-cis-isopreno (NR)	Elast.	neutro	acre	amarela	incendeia	
Policloropreno (CR)	Elast.	ácido	acre	amarela, borda verde	auto-exting.	
Poliuretano (PU)	TP, TF, elast.	neutro	acre	amarela, base azul	incendeia	
CANEVAROLO, S. V. Ciência dos Polímeros: um testo básico para tecnólogos e engenheiros. São Paulo: Artliber Editora, 2002.						

ATIVIDADE - 05/04/2024

Polímero	Sigla	Ph Fumaça	Odor Fumaça	Cor chama	Incendeia/ auto-extinguível	Outras OBS:

REFERÊNCIAS

- 1 CANEVAROLO, S. V. Ciência dos Polímeros: um texto básico para tecnólogos e engenheiros. São Paulo: Artliber Editora, 2002.
- 2 MANO, E. B. e MENDES, L. C. Identificação de plásticos, borrachas e fibras. São Paulo: Blucher, 2000.
- 3 PIVA, A. M. e WIEBECK, H. Reciclagem do Plástico. São Paulo: Artliber Editora, 2004.
- 4 FRANCHETTI, S. M. M.; MARCONATO, J. C. **Propriedades físicas dos polímeros na reciclagem.** Química nova na escola. n° 18, nov. 2003.
- 5 SPINACÉ, M. A. S.; DE PAOLI, M. A. A tecnologia da reciclagem de polímeros. Química Nova, vol. 28,no q, 65-72, 2005.
- 6 COLTRO, L.; GASPARINO, B. F.; QUEIROZ, G. C. **Reciclagem de materiais plásticos: A importância da identificação correta.** Polímeros: Ciência e Tecnologia, v. 18, n.2, p. 119-125, 2008.
- 7 COLTRO, L.; DUARTE, L. Reciclagem de Embalagens Plásticas Flexíveis: Contribuição da Identificação Correta. Polímeros, vol. 23, n. 1, p. 128-134, 2013.
- 9 JORGE, F. E.; NEVES, M. A. F. S. Comparação entre técnicas simples e a análise de espectroscopia no infravermelho na caracterização de polímeros recicláveis. Perspectivas da Ciência e Tecnologia, v. 8, n. 1, 47-61, 2016.
- 10 UNIVERSIDADE ESTADUAL DE PONTA GROSSA. BIBLIOTECA CENTRAL PROF. FARIS MICHAELE. **Manual de normalização para trabalhos científicos. 4.ed. Ponta Grossa: UEPG, 2019.**