

Sentiment Analysis of Yelp Reviews

Derek Hu - Maile Naito -Bryan Ton

Overview

- Background
- Naive Bayes (Main Algorithm)
- Logistic Regression (Comparison Algorithm)
- Visualizations
- Demo

Background

- Why sentiment analysis?
 - Understand consumer attitudes using feedback data
 - With large consumer feedback, it helps to quantify data
 - Especially helpful for market research
- Data Set used:
 - Yelp reviews (UCI dataset)
 - o 1000 reviews
 - Associated with rating: 0 (negative) /1 (positive)

Naive Bayes Classifier

- Why Naive Bayes?
 - Simple
 - Doesn't need a huge set of data
 - Easy to train and update
 - Performs fairly accurately

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- What are some pitfalls?
 - Data scarcity
 - Likelihood of word
 - Assumes independence of features
 - I like pasta and burgers, but I don't like pasta burgers

Implementation

- Used textblob and nltk libraries.
- Removed stopwords from nltk and punctuation
 - Added words like "vegas", "food", "restaurant" because they have little effect on sentiment
- Stemmed words with Porter Stemmer
- List of reviews was split for training and testing
 - 70% used for training and 30% used for testing
- Achieved 82% accuracy for test data

Logistic Regression

- Why Logistic Regression?
 - Useful for classifying binary dependent variables (yes vs. no, positive vs. negative)
 - Easy to implement
 - Efficient to train
 - Robust to noise/avoid overfitting

- What are some pitfalls?
 - Assumes independence of features
 - Feature selection impacts accuracy
 - Doesn't handle large number of categorical features/variables well
 - Relies on transformations for non-linear features

Implementation

- Used pandas and sklearn library
- Vectorized reviews
- Used tf-idf term weighting for training and test set
- K-fold cross validation for testing
- Achieved 83% accuracy

How could we improve accuracy?

- Didn't use POS tagging, which may improve accuracy
- Implement spell correction for reviews with typos
- Try different stemmers (i.e. Snowball, Lancaster)
- Improve stopword list (Add irrelevant words, remove relevant words)

Stopword list

a	been	get
about	before	gettin
after	being	go
again	between	goes
age	but	going
all	by	gone
almost	came	got
also	can	gotte
am	cannot	had
an	come	has
and	could	ha

Probability Distributions Naive Bayes

```
Wow... Loved this place.
         Positive: 96.74%; Negative: 3.26%
Crust is not good.
         Positive: 18.07%; Negative: 81.93%
Not tasty and the texture was just nasty.
         Positive: 8.45%; Negative: 91.55%
Stopped by during the late May bank holiday off Rick Steve recommendation and loved it.
         Positive: 97.28%; Negative: 2.72%
The selection on the menu was great and so were the prices.
         Positive: 99.95%; Negative: 0.05%
Now I am getting angry and I want my damn pho.
         Positive: 19.16%; Negative: 80.84%
Honeslty it didn't taste THAT fresh.)
         Positive: 67.19%: Negative: 32.81%
The potatoes were like rubber and you could tell they had been made up ahead of time being kept under a warmer.
         Positive: 47.77%; Negative: 52.23%
The fries were great too.
         Positive: 98.47%; Negative: 1.53%
A great touch.
         Positive: 97.61%; Negative: 2.39%
```

Probability Distributions Logistic Regression

Crust is not good. Positive: 15.19%; Negative: 84.81% Stopped by during the late May bank holiday off Rick Steve recommendation and 1 oved it. Positive: 86.75%; Negative: 13.25% Now I am getting angry and I want my damn pho. Positive: 14.84%; Negative: 85.16% The potatoes were like rubber and you could tell they had been made up ahead of time being kept under a warmer. Positive: 32.23%; Negative: 67.77% A great touch. Positive: 98.27%; Negative: 1.73% Would not go back. Positive: 3.15%; Negative: 96.85% I tried the Cape Cod ravoli, chicken, with cranberry...mmmm! Positive: 83.02%; Negative: 16.98% I was shocked because no signs indicate cash only. Positive: 7.71%; Negative: 92.29% Waitress was a little slow in service. Positive: 16.08%; Negative: 83.92% did not like at all. Positive: 1.85%; Negative: 98.15%

Rating Distributions Naive Bayes

Rating Distributions Logistic Regression

Confusion Matrices

Sentiment Word Clouds

Positive Sentiment Word Cloud

Negative Sentiment Word Cloud

Most Frequent Words

Most Informative Words Data

```
contains(love) = True 1:0 = 8.5:1.0
  contains(amaz) = True 1:0 = 6.8:1.0
contains(friendli) = True 1:0 = 6.8:1.0
   contains(nice) = True 1:0 = 6.1:1.0
   contains(not) = True 0:1 = 5.5:1.0
   contains(wait) = True 0:1 = 5.3:1.0
contains(reason) = True 1:0 = 4.7:1.0
 contains(famili) = True 0:1 = 4.7:1.0
contains(impress) = True 0:1 = 4.6:1.0
  contains(much) = True 0:1 = 4.2:1.0
```

Most Informative Words Visualization

Demo