

Heru Lestiawan, M.Kom

POKOK BAHASA/MATERI

- ☐ Pengertian Dan Tujuan Normalisasi
- ☐ Proses Normalisasi
- Pentingnya Normalisasi
- Tahapan Normalisasi, ketergantungan fungsional, ketergantungan penuh, ketergantungan parsial, ketergantungan transitif.
- ☐ Closure Ketergantungan Fungsional
- ☐ Anomali, Dependensi
- Diagram Dependensi Fungsional
- Dekomposisi Tak Hilang
- ☐ Contoh Kasus Bentuk Normal dan tidak normal

- Normalisasi adalah suatu teknik untuk mengorganisasi data ke dalam tabel-tabel untuk memenuhi kebutuhan pemakai di dalam suatu organisasi.
- Normalisasi adalah proses pembentukan struktur basis data sehingga sebagian besar ambiguity bisa dihilangkan.
- Normalisasi merupakan sebuah teknik dalam logical desain sebuah basis data yang mengelompokkan atribut dari suatu relasi sehingga membentuk struktur relasi yang baik (tanpa redudansi)

TUJUAN

- Untuk menghilangkan kerangkapan data
- Untuk mengurangi kompleksitas
- Untuk mempermudah pemodifikasian data

PROSES NORMALISAS

- ☐ Data diuraikan dalam bentuk tabel, selanjutnya dianalisis berdasarkan persyaratan tertentu ke beberapa tingkat.
- Apabila tabel yang diuji belum memenuhi persyaratan tertentu, maka tabel tersebut perlu dipecah menjadi beberapa tabel yang lebih sederhana sampai memenuhi bentuk yang optimal.

PENTINGNYA NORMALISASI

- ☐Suatu rancangan database disebut buruk jika:
 - Data yang sama tersimpan di beberapa tempat (file atau record)
 - Ketidakmampuan untuk menghasilkan informasi tertentu.
 - Terjadi kehilangan informasi
 - Terjadi adanya redudansi (pengulangan) atau duplikasi data sehingga memboroskan ruang penyimpanan dan menyulitkan saat proses updating data.
 - Timbul adanya Null Value

PENTINGNYA NORMALISASI

- Kehilangan informasi bisa terjadi bila pada waktu merancang database, kita melakukan proses dekomposisi yang keliru.
- ☐ Tujuan normalisasi adalah menyempurnakan struktur table dengan :
 - Mengeliminasi adanya duplikasi informasi
 - Memudahkan pengubahan struktur tabel.
 - Memperkecil pengaruh perubahan struktur database
 - dll.
- ☐ Bentuk normalisasi yang sering digunakan adalah 1 st NF, 2nd NF, 3nd, dan BCNF

Tahapan Normalisasi

- □ Bentuk Tidak Normal
 - Menghilangkan perulangan group
- □ Bentuk Normal Pertama (First Normal Form (1NF))
 - Menghilangkan ketergantungan sebagian
- ☐ Bentuk Normal Kedua (Second Normal Form (2NF))
 - Menghilangkan ketergantungan transitif
- □ Bentuk Normal Ketiga (Third Normal Form (3NF))
 - Menghilangkan anomali-anomali hasil dari
 - ketergantungan fungsional
- □ Bentuk Normal Boyce-Codd (BCNF)
 - Menghilangkan Ketergantungan Multivalue
- ☐ Bentuk Normal Keempat (4NF)
 - Menghilangkan anomali-anomali yang tersisa
- □ Bentuk Normal Kelima

Functional Dependency

- Untuk melakukan normalisasi, harus bisa menentukan terlebih dahulu Functional Dependency (FD) atau Ketergantungan Fungsional, khususnya dalam melakukan dekomposisi rancangan database.
- Functional Dependency (FD) dapat disimbolkan dengan:
 A -> B: artinya B memiliki ktergantungan dengan A
- Berarti A secara fungsional menentukan B atau B secara fungsional tergantung pada A.
 Dengan kondisi: jika dan hanya jika untuk setiap rows data pada tabel T, pasti ada 2 rows di tabel T dengan nilai untuk A yang sama, maka nilai untuk B pasti juga sama.
- Jadi, diberikan 2 rows, yaitu: row r1 dan r2 dalam dalam tabel
 T, dimana A -> B, sehingga jika r1(A)=r2(A), maka r1(B)=r2(B)

Functional Dependency

Contoh:

	Mata_Kuliah	NRP	Nama	Nilai
row 1	Aplikasi Web	7405040100	Deni Astikapuri	Α
	Aplikasi Web		Uun Widiatmoko	Α
row 3	Basis Data 1		Deni Astikapuri	В
row 4	Basis Data 1	7405040102	Wasis Waskito Adi	В
row 5	Basis Data 1	7405040103	lmam Bukhori	Α
row 6	Basis Data 2		Aswina Rahayu Kurniati	Α
row 8	Administrasi Basis Data	7405040101	Uun Widiatmoko	AB

• Fd1 : NRP -> Nama (Nama bergantung pada NRP)

 Fd2: Mata_Kuliah, NRP -> Nilai (Nilai bergantung pada Mata_Kuliah + NRP)

Non Functional Dependency:

- Mata_Kuliah +> NRP
- NRP → Nilai

Ketergantungan Fungsional Penuh

Definisi:

Atribut Y pada relasi R dikatakan tergantung fungsional penuh pada atribut X pada relasi R, jika Y tidak tergantung pada subset dari X (bila X adalah key gabungan)

Contoh:

KIRIM-BARANG(No-pem, Na-pem, No-bar, Jumlah)

No-pem	Na-pem	<u>No-bar</u>	Jumlah
P01	Baharu	B01	1000
P01	Baharu	B02	1500
P01	Baharu	B03	2000
P02	Sinar	B03	1000
P03	Harapan	B02	2000

Ketergantungan fungsional:

- No-pem → Na-pem
- No-bar, No-pem → Jumlah (Tergantung penuh thd keynya)

Ketergantungan Transitif

DEFINISI:

Atribut Z pada relasi R dikatakan tergantung transitif pada atribut X, jika atribut Y tergantung pada atribut X pada relasi R dan atribut Z tergantung pada atribut Y pada relasi R. ($X \rightarrow Y$, $Y \rightarrow Z$, maka $X \rightarrow Z$)

Contoh:

No-	pem Ko	de-kota	Kot	а	No-bar	Jumlah
P01	1	1	Jakarta		B01	1000
P01	1	r	Jakarta	1	B02	1500
P01	1	1	Jakarta	1	B03	2000
P02	3	1	Bandun	ng	B03	1000
P03	2	!	Suraba	ya	B02	2000
			↑ ↑			

Ketergantungan Parsial

 Ketergantungan Parsial adalah bahwa ada field yang hanya diidentifikasi (bergantung pada) salah satu atau sebagian primary key field saja. Primary Key yang terdiri dari satu field seperti ini disebut Concatenated Primary Key

(Dunn, et al. 2005:54). Tabel 2B. Bentuk 1NF (B)

No Order	Kode Buku	Judul	Kode Supplier	Nama Supplier	Kuantitas Pesan
PO1	AIS-B01	Accounting Information Systems	S123	PT. Asal	25
PO1	AIS-H01	Accounting Information Systems	S123	PT. Asal	10
PO2	AIS-R01	Accounting Information Systems	S234	PT. Sembarang	15
PO2	AIS- W01	Accounting Information Systems	S234	PT. Sembarang	5

 Field "Judul", "Kode Supplier" dan "Nama Supplier" hanya bergantung pada field "Kode Buku", bukan pada concatenated primary key dari Tabel 2B ini. Ketergantungan parsial seperti ini harus dihilangkan. Dengan demikian Tabel 2B dipecah menjadi Tabel 3A, dan Tabel 3B.

Tabel 3A. Bentuk 2NF (A)

No Order	Kode Buku	Kuantitas Pesan
PO1	AIS-B01	25
PO1	AIS-H01	10
PO2	AIS-R01	15
PO2	AIS-W01	5

Tabel 3B. Bentuk 2NF (B)

Kode Buku	Kode Supplier	Nama Supplier

Bentuk tidak normal (Unnormalized Table)

- Merupakan kumpulan data yang akan direkam, tidak ada keharusan mengikat suatu format tertentu, dapat saja tidak lenglap atau terduplikasi. Data dikumpulkan apa adanya sesuai dengan kedatangannya.
- Buat bentuk tabel tidak normal (unnormalized table) menjadi bentuk normal (1NF)

1st Normal Form (1NF)

- Merubah dari bentuk tabel tidak normal (unnormalized table) menjadi bentuk normal (1NF)
- Suatu relasi R disebut 1st NF jika dan hanya jika kondisi tablenya dari *Unnormalized* dirubah ke bentuk normal dengan kondisi semua attribute harus simple/atonic yang tidak bisa dibagi-bagi lagi (tidak boleh ada attribute yang Composit / Multivalue)

1. Apakah bentuk relasi table Department sudah memenuhi normal 1 (1NF)? Jika belum normalisasikan.

DEPARTMENT			
DNO	DNAME	DMGRSSN	DLOCATIONS

2. Apakah bentuk relasi table Emp_Proj sudah memenuhi normal 1 (1NF)? Jika belum normalisasikan.

EMP_PROJ			
SSN	ENAME	PNO	HOURS

Contoh-1(1): NORMALISASI 1

- Sebuah bentuk relasi Department dengan asumsi tiap department dapat memiliki sejumlah lokasi (gambar (a) Department)
- Bentuk relasi table Department pada gambar tsb <u>bukan merupakan bentuk</u> <u>normal 1NF</u>, karena **DLOCATIONS bukan atribut atomic**, sehingga pada kasus ini **DLOCATIONS tidak** benar-benar **Functional Dependent** (FD) pada **Primary Key DNo**, **DNO** DLOCATIONS
- Atribut **DLOCATIONS**, dapat mengandung nilai lebih dari satu sehingga termasuk **Multivalue** seperti ilustrasi gambar (a) Department

DNUMBER	DNAME	DMSGSSN	DLOCATIONS
5	Research	333445555	Bellaire, Sugarrland, Houston
4	Administration	987654321	Stafford
1	Headquarters	888665555	Houston

DNUMBER	DNAME	DMSGSSN	DLOCATIONS
5	Research	333445555	Bellaire
5	Research	333445555	Sugarrland,
5	Research	333445555	Houston
4	Administration	987654321	Stafford
1	Headquarters	888665555	Houston

(a) DEPARTMENT

(b) DEPARTMENT

Contoh-1(1): NORMALISASI 1

Terdapat 3 cara untuk mendapatkan bentuk normal (1NF) dari skema relasi **DEPARTMENT**, yaitu:

1. Hapus atribut DLOCATIONS lalu pisahkan sehingga membentuk table baru Dept_Locations, Atributnya terdiri atas Primary Key dari table Department dan atribut itu sendiri DLOCATIONS.

Kedua atribut tersebut {DNO, DLOCATIONS} digabung

membentuk Primary Key.

Contoh-1(1): NORMALISASI 1

- 2. Sama seperti cara 1, dengan pengembangan atribut key yang masih dalam 1 relasi (PK kombinasi {DNO, DLOCATIONS}), akan tetapi solusi ini kurang menguntungkan karena menyebabkan terjadinya redudancy dengan penulisan DNAME & DMGRSSN berulang-ulang (seperti pada gambar (b)).
- 3. Dengan mencari nilai max atribut DLOCATIONS, misal terdapat 3 lokasi dalam 1 department, sehingga strukturnya dirubah menjadi DLOCATION1, DLOCATION2, DLOCATION3, maka dapat menyebabkan terjadinya adalah NULL VALUE, pada salah satu atribut DLOCATIONS-n.

Dari ketiga teknik diatas, yang lebih memenuhi adalah teknik yang PERTAMA.

Contoh-1(2): NORMALISASI 1

Contoh-2: NORMALISASI 1 NE

- A. Unnormalized table (tabel tidak normal) Suatu table dikatakan <u>unnormalized</u> jika:
- a) Mempunyai penggandaan field yang sejenis Contoh:

Tabel dibawah adalah tabel siswa mengambil matakuliah (MK) SISWA

NRP	Nama	MK1	MK2	MK3

Tabel siswa diatas mempunyai 3 field yang sejenis, yaitu MK1, MK2 dan MK3. Sehingga tabel diatas adalah termasuk <u>Umormali ed</u>, Jika kita isikan nilai datanya, maka akan terjadi kemungkinan <u>Null Value</u>, atau data mata kuliah yang diambil bisa lebih dari satu atau <u>Multivalue</u>.

Contoh-2: NORMALISASI 1 NF

b) Elemen datanya memungkinkan untuk **Null Value** (tidak berisi) Contoh :

Tabel yang mencatat No. SIM yang dimiliki siswa SISWA_SIM

NIS	Nama	No SIM
1	Budi	12345
2	Amin	
3	Irfan	67890
4	Bayu	

Tampak dalam tabek diatas bahwa elemen data dari No.SIM si-Amin dan si-Bayu adalah Null atau tidak berisi nilai. Sehingga tabel di atas adalah termasuk *Unnormalized*.

Contoh-2: NORMALISASI 1 NF

B. NORMAL I (1NF)

 Suatu tabel dikatakan berada pada bentuk Normal I jika ia tidak berada pada bentuk unnormalized table. Unnormalized tabel SISWA disebabkan karena adanya Multivalue column yaitu MK, sehingga dilakukan proses Normalisasi I (1NF).

Contoh:

Kalau tabel pada contoh (a) diatas kita normalisasi 1, dengan melakukan decompose menjadi 2 table yaitu :

Contoh-2: NORMALISASI 1 NE

Kalau pada contoh (b) diatas kita normalisasi I, maka hasilnya akan didapatkan seperti ini :

REVIEW NORMALISASI 1 NF

1st Normal Form (1NF)

- Merubah dari bentuk *Unnormalize* ke Normal Pertama (1NF)
- Suatu relation R disebut 1st NF jika dan hanya jika semua attribute value-nya atomic (tidak boleh ada attribute yang Composit & Multivalue).
- Menghindari terjadi Null Value Duplikasi (Redudancy).

REVIEW NORMALISASI 1 NF

Contoh 1NF:

☐ Suatu format tabel yang dikenal sehari-hari:

Nama	Alamat	Nama_Anak	Pendidikan_Anak
Amir	Keputih 21	Ali	TK
		Budi	SD
		Cici	SMP

☐ Bentuk UnNormalize: (Redudancy pada Alamat)

Nama	Alamat	Nama_Anak	Pendidikan_Anak
Amir	Keputih 21	Ali	TK
Amir	Keputih 21	Budi	SD
Amir	Keputih 21	Cici	SMP

☐ Bentuk Normal 1NF & 2 NF:

Contoh lain 1NF:

☐ Suatu format tabel yang dikenal sehari-hari:

NIP	Nama_Karwayan	Nama_Departemen	Gaji	<u>Kurs us</u>	Tgl_Seles ai
25210021	Ali Topan	Geologi Komputasi	2.000.000	AutoCAD Map	8-Oct-2002
				Potoshop	9-Oct-2002
25210022	James Bond	Pengeboran	1.250.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000	3D MAX	9-Oct-2002
				ArcView	10-Dec-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000	Oracle	21-Sep-2002
				SQL Server	21-Sep-2003

☐ Bentuk UnNormalize: (Redudancy)

NIP	Nama_Karyawan	Nama_Departemen	Gaji	<u>Kursus</u>	Tgl_Seles ai
25210021	Ali Topan	Geologi Komputasi	2.000.000	AutoCAD Map	8-Oct-2002
25210021	Ali Topan	Geologi Komputasi	2.000.001	Potoshop	9-Oct-2002
25210022	James Bond	Pengeboran	1.250.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.001	ArcView	10-Dec-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000	Oracle	21-Sep-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.001	SQL Server	21-Sep-2003

2st Normal Form (2NF)

- Dibuat berdasarkan Full Functional Dependency (Ketergantungan Fungsional Penuh)
- Normalisasi 2NF: Jika tabel berada dalam bentuk Normal Pertama (1NF) dan setiap atribut Bukan Kunci Bergantung Penuh pada Kunci Primer.
- Relasi R adalah 2NF: Apabila setiap atribut NonPrime atribut A (yang bukan Anggota Primary Key) dalam R adalah Fully Dependent terhadap Primary Key dari R.
- Sehingga tidak ada atribut bukan kunci yang bergantung pada sebagian (parsial) kunci primer.

Syarat 2st Normal Form (2NF)

- Memenuhi ktriteria tabel Normal 1 (1NF)
- Di dalam tabel tersebut tidak ada redudansi / pengulangan data dan Null Value.
- Field-field yang bukan Primary Key adalah Full Dependent (Bergantung Penuh) pada Primary Key

Contoh 2NF:

• Suatu format tabel Normal I (1NF): (Menghilangkan redudansi)

• Bentuk Normal II (2NF): (Decompose)

Contoh 2NF: (Penjelasan)

• Suatu format tabel Normal I (1NF): (Menghilangkan redudansi)

NIP	Nama_Karyawan	Nama_Departemen	Gaji	Kursus	Tgl_Seles ai
25210021	Ali Topan	Geologi Komputasi	2.000.000	AutoCAD Map	8-Oct-2002
25210021	Ali Topan	Geologi Komputasi	2.000.001	Potoshop	9-Oct-2002
25210022	James Bond	Pengeboran	1.250.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.001	ArcView	10-Dec-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000	Oracle	21-Sep-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.001	SQL Server	21-Sep-2003

• Bentuk Normal II (2NF): (Decompose)

KARYAWAN					
NIP	Nama_Karyawan	Nama_Departemen	Gaji		
25210021	Ali Topan	Geologi Komputasi	2.000.000		
	James Bond	Pengeboran	1.250.000		
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000		
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000		

PENGAMBILAN_KURSUS				
<u>NIP</u>	Kursus	Tgl_Seles ai		
25210021	Auto CAD Map	8-Oct-2002		
25210021	Potoshop	9-Oct-2002		
25210022	3D MAX	9-Oct-2002		
25210023	3D MAX	9-Oct-2002		
25210023	ArcView	10-Dec-2002		
25210024	Oracle	21-Sep-2002		
25210024	SQL Server	21-Sep-2003		

NORMALISASI 3 NE

3rd Normal Form (3NF)

- Suatu relasi R disebut normal ke tiga (3rd NF) jika sudah memenhi dalam bentuk normal ke dua (2nd NF) dan tidak dijumpai adanya Ketergantungan Transitif (Transitive Dependency)
- Ketergantungan Transitif (Transitive Dependency) adalah ketergantungan fungsional antara 2 (atau lebih) atribut bukan Key (Kunci/Primary Key).

Syarat 3NF:

- Harus berada dalam bentuk Normal ke Dua (2NF).
- Ketergantungan field-field yang bukan Primary Key adalah harus secara Mutlak (Full-Dependent). Artinya Harus tidak ada Transitive Dependency (Ketergantungan secara transitif).

Contoh (3NF):

• Bentuk Normal ke Dua (2NF):

Tabel di samping sudah masuk dalam bentuk Normal 2 Akan tetapi kita lihat bahwa field Nama dan Nilai adalah Full-Dedendent terhadap NRP yang bertindak sebagai PK. Berbeda dengan field Keterangan di atas yang dependent kepada NRP akan tetapi <u>Tidak Mutlak</u>. Ia lebih dekat ketergantungannya dengan field <u>Nilai</u>. Karena field <u>Nilai</u> Dedendent kepada NRP dan field Keterangan Dedenden kepada NIIai, maka field Keterangan juga dependent kepada NRP. Ketergantungan yang demikian ini dinamakan Transitive-dependent (Dependent secara transitif atau samar/tidak langsung).

Untuk itu dilakukan Normalisasi 3 (3Nf).

> Bentuk Normal ke Tiga (3NF) :

NRP	Nama	Nilai
1	Budi	75
2	Amin	95
2	Irfan	85
3	Bayu	40

<u>Nilai</u>	Keterangan
90	Istimewa
80	Baik
70	Cukup baik
60	Lumayan
0	Kurang

Contoh Lain (3NF):

• Tabel Bentuk Normal ke Dua (2NF), dengan ketergantungan fungsional pada tanda panah:

FD1		1	1	1
No_Pe	langgan	Nama_Pelanggan	Nama_Sales	Wilayah
25	521	Ariel	Ali	Surabaya
25	522	Fajar	Ria	Malang
25	523	Reni	Ana	Ngawi
25	524	Hilda	Ari	Yogyakarta
			FD2	

Pada tabel diatas, kita lihat terdapat ketergantungan transitif, yaitu wilayah yang secara fungsional bergantung pada Nama_Sales, sedang Nama_Sales bergantung pada No_Pelanggan. Sehingga terdapat beberapa anomali pembahahruan pada relasi Penjualan diatas:

- Anomali Penyisipan (Insert): Pada saat memasukkan data Nama Sales Baru, maka data No_Pelanggan dan data lain juga harus dimasukkan.
- Anomali Penghapusan (Delete): Pada saat dilakukan penghapusan <u>No_Pelanggan=2522</u>, maka informasi tentang nama sales juga akan ikut terhapus.
- Anomali Modifikasi (Update): Pada saar dilakukan update data Nama_Sales, maka harus dilakukan peng-update-an pada semua baris (row) pada tabel, hal ini sanggat tidak efisien.

Bentuk Normal (3NF):

BENTUK NORMAL BCNF

Boyce-Codd Normal Form (BCNF):

- Secara praktis, tujuan rancangan database adalah cukup sampai level 3NF. Akan tetapi untuk kasus-kasus tertentu kita bisa mendapatkan rancangan yang lebih baik lagi apabila bisa mencapai ke BCNF.
- BCNF ditemukan oleh : R.F. Boyce dan E.F. Codd
- Suatu relasi R dikatakan dalam bentuk BCNF: Jika dan hanya jika setiap atribut kunci (Key) pada suatu relasi adalan kunci Kandidat (Candidate Key).
- Kunci Kandidat (Candidate Key) adalah atribut-atribut dari entitas yang mungkin dapat digunakan sebagai Kunci (Key) atribut.
- BCNF hampir sama dengan 3NF, dengan kata lain setiap BCNF adalah 3NF.

BENTUK NORMAL BONF

Contoh BCNF:

• Suatu format tabel Normal II (2NF):

• Bentuk Normal III (3NF) atau BCNF:

PEMBIMBI	۱G	
Pembim	bing	Mata_Kuliah

BENTUK NORMAL BONF

Contoh BCNF Dilakukan Konversi sebagai berikut

- Pembimbing bagian dari kunci primer yang .
 Atribut Mata Kuliah secara fungsional bergantung pada Pembimbing menjadi atribut bukan kunci.
- Terdapat ketergantungan fungsional pasrsial antara Mata_Kuliah dengan pembimbing, yang merupakan satu komponen dari kunci primer, sehingga relasi ini dalam bentuk normal pertama (1NF).
- Langkah Kedua, Decompose relasi untuk menghilangkan ketergantungan pasial. Hasilnya seperti dibawahnya yang berupa relasi bentuk normal ketiga (3NF). Fakta bahwa relasi tersebut juga BCNF sebab hanya satu kunci kandidat (yang selanjutnya disebut kunci primer), membuat kita mengambil kesimpulan bahwa untuk kasus ini bentuk normal ketiga (3NF) dan BCNF adalah sama/ekivalen.

BENTUK NORMAL BC

NRP	Nama_Mhs	Alarret_Ms	Tgl_Lahir	Kode_Mk	Nama_MK	SKS	Serrester	Nilai	Waktu	Ruang	Nama_Dsn	Alamat_Dan
26961 00001	Manisha Kojraja	JI. Bombay No. 09,	21-09-1979	IF-110	Struktur Data	3	7		Serin , 08 00 - 10.15	Ruang A	Prof. Al Khan	Jl.Gebarg 21,
2030100001	Man sia Honda	Surabaya, 60009	21-03-13/3	11 -110	Struktur Data	_			Kamis, 10.30 - 12.20	reading ~	FIGI. AINIBI	Surabaya, 60021
2696100001	Manisha Koirala	JI. Blombay No. 09,	21-09-1979	IF-111	Basis Data	3	9	A	Selasa, 10.30 - 12.20	Ruang B	Prof. Sharukh Khan	JI. Keputih 12,
1030/0000/	Montara Horida	Surabaya, 60009	21-03-1313	11 -111	Datis Date		,		Jun'at, 08.00 - 10.15	Trawing C	FIDI. SHARAFITATA	Surabaya, 60012
2696100001	Mani sha Kairala	JI. Bombay No. 09,	21-09-1979	IF-112	Jaringan	3	4		Rabu, 06,00 - 10,15	Ruang J	Dr. Ajay Khan	Jl. Mulyosari 42,
2000100001	morrowanianam	Surabaya, 60009	21-05-1010	11 -112	Komputer	Ŭ	,		11464,0000-10.15	TO MAIN TO U		Surabaya, 60042
2696100002	Amir Khan	JI.BollyNo.12,	12-12-1972	IE-111	Basis Data	3	3	A	Selasa,10.30 - 12.20	Ruang B	Prof. Sharukh Khan	JI. Keputih 12,
200010002	- Interest	Surabaya, 60012	12-12-1012		Dotto D otto	Ŭ			Jun'at, 08.00 - 10.15	i. wing D	Prof. Statukrikrati	Surakaya, 60012
2696100002	Amir Khan	JI. Bolly No. 12,	12-12-1972	IF-117	Admiristrasi	3	9	ΔB	Rabu, 10.30 - 12.20	Ruang B	Prof. Sharukh Khan	Jl. Keputih 12,
1038/8882	~	Surabaya, 60012	12-12-1312		Basis Data	_	_		Kamis, 08.00 - 10.15	aung L	T T ST. STEIGHT THE	Surabaya, 60012
2696100004	Salman Kitan	Jl. Khan-Khan No. 06,	06-06-1976	IE-111	Basis Data	3	9	ΑB	Selesa,10.30-12.20	Ruano B	Prof. Sharukh Khan	Jl. Keputih 12,
1000100004	Contra ITCTUIT	Surabaya, 60006	00-00-1010	11 -111	DWSIS D'GIDI		,	~0	Jun'at, 08.00 - 10.15	TOWNING LI	T TOT. STATUTE TRUM	Surabaya, 60012
2696100004	Salman Khan	Ji. Khan-Khan No. 05,	06-06-1976	IF-110	Struktur Data	3	2		Senin ,08.00 - 10.15	RuangA	Prof. Ai Khan	JI. Gebarg 21,
2030100004	Sourior HVTBIT	Surabaya, 60006	00-00-1976	11 -110	Sucktor Date				Kamis, 10.30 - 12.20	R wang A	Prof. Al Man	Surakaya, 60111

Bentuk Normal Tahap Keempat (5th Normal Form /5NF)

- Bentuk normal 5NF terpenuhi jika tidak dapat memiliki sebuah *lossless decomposition* menjadi tabel-tabel yg lebih kecil.
- Jika 4 bentuk normal sebelumnya dibentuk berdasarkan functional dependency, 5NF dibentuk berdasarkan konsep join dependence. Yakni apabila sebuah tabel telah di-dekomposisi menjadi tabel-tabel lebih kecil, harus bisa digabungkan lagi (join) untuk membentuk tabel semula

Studi Kasus Normalisasi Data

NoProyek	NamaProyek	NoPegawai	NamaPegawai	Golongan	BesarGaji
NP001	BRR	Peg01	Anton	A	1.000.000
		Peg02	Paula	В	900.000
		Peg06	Koko	С	750.000
NP002	PEMDA	Peg01	Anton	A	1.000.000
		Peg12	Sita	В	900.000
		Peg14	Yusni	В	900,000

Untuk mendapatkan hasil yang paling normal, maka proses normalisasi dimulai dari normal pertama.

Field-field tabel di atas yang merupakan group berulang : NoPegawai, NamaPegawai, Golongan, BesarGaji.

Normalisasi pertama

• Solusinya hilangkan duplikasi dengan mencari ketergantungan parsial. menjadikan field-field menjadi tergantung pada satu atau beberapa field. Karena yang dapat dijadikan kunci adalah NoProyek dan NoPegawai, maka langkah kemudian dicari field-field mana yang tergantung pada NoProyek dan mana yang tergantung pada NoPegawai.

Noproyek	NamaProyek	Nopegawai	NamaPegawai	Golongan	BesarGaji
NP001	BRR	Peg01	Anton	A	1.000.000
NP001	BRR	Peg02	Paula	В	900.000
NP001	BRR	Peg06	Koko	C	750.000
NP002	PEMDA	Peg01	Anton	A	1.000.000
NP002	PEMDA	Peg12	Sita	В	900.000
NP002	PEMDA	Peg14	Yusni	В	900.000

Normalisasi Kedua

 Field-field yang tergantung pada satu field haruslah dipisah dengan tepat, misalnya NoProyek menjelaskan NamaProyek dan NoPegawai menjelaskan NamaPegawai, Golongan dan BesarGaji.

Normalisasi Kedua

TABEL PROYEK

Noproyek	NamaProyek
NP001	BRR
NP002	PEMDA

TABEL PEGAWAI

Nopegawai	NamaPegawai	Golongan	BesarGaji
Peg01	Anton	A	1.000.000
Peg02	Paula	В	900.000
Peg06	Koko	С	750.000
Peg12	Sita	В	900.000
Peg14	Yusni	В	900.000

 Untuk membuat hubungan antara dua tabel, dibuat suatu tabel yang berisi key-key dari tabel yang lain.

TABEL PROYEKPEGAWAI

Noproyek	NoPegawai
NP001	Peg01
NP001	Peg02
NP001	Peg06
NP002	Peg01
NP002	Peg12
NP002	Peg14

Normalisasi Ketiga

- Pada tabel diatas masih terdapat masalah, bahwa BesarGaji tergantung kepada Golongan nya. Padahal disini Golongan bukan merupakan field kunci.
- Artinya kita harus memisahkan field non-kunci Golongan dan BesarGaji yang tadinya tergantung secara parsial kepada field kunci NoPegawai, untuk menghilangkan ketergantungan transitif.

TABEL PROYEK

Noproyek	NamaProyek
NP001	BRR
NP002	PEMDA

TABEL PEGAWAI

Nopegawai	NamaPegawai	Golongan
Peg01	Anton	A
Peg02	Paula	В
Peg06	Koko	C
Peg12	Sita	В
Peg14	Yusni	В

TABEL GOLONGAN

Golongan	BesarGaji
A	1.000.000
В	900.000
C	750.000

TABEL PROYEKPEGAWAI

Noproyek	NoPegawai
NP001	Peg01
NP001	Peg02
NP001	Peg06
NP002	Peg01
NP002	Peg12
NP002	Peg14

Latihan 1:

Apakah skema table berikut ini sudah memenuhi Normalisasi? Jika belum termasuk kategori Normal keberapa? Dan Normalisasikan beserta Functional Dependency (FD) untuk tiap-tiap relasi Normalisasi yang terjadi.

1.

Latihan 2: Studi Kasus Normalisasi

Berdasarkan Nota Penjualan

Toko "Anda"

Tgl.Nota:

Jl.Abcdefghi, No: 123, Telp: 123-121212, Kota Anda

01/01/2019

Sedia berbagai kebutuhan sehari-hari

NOTA PENJUALAN

Kepada Yth:

No.Nota: 1220-01-2019

15:10:12

Bpk/Ibu. Pelanggan Anda Alamat Pelanggan Anda

Kota Anda

No.	Nama	Qty	Satuan	Harga	Jumlah
1	Аааааааа	2	Btl	7.500	Rp 15.000
2	Bbbbbbbb	1	Box	12.500	Rp 12.500
3	Ссссссссс	5	Sachet	5.000	Rp 25.000
		Total	Rp 52.500		

Terbilang: #Lima puluh dua ribu lima ratus rupiah

Tanda Terima:

(.....) Nama Jelas Semarang, 01 Januari 2019

Hormat Kami,

(.....)

Nama Jelas

Tahapan:

Bentuk Unnormalized Table

Buat bentuk tabel tidak normal (unnormalized table) menjadi bentuk normal (1NF)

• Bentuk Normal Kesatu (1NF)

Suatu relasi R disebut 1st NF jika dan hanya jika kondisi tablenya dari *Unnormalized* dirubah ke bentuk normal dengan kondisi semua attribute harus <u>simple/atonic</u> yang tidak bisa dibag begi lagi (tidak boleh ada attribute yang <u>Composit</u> / Multivalue)

• Bentuk Normal Kedua (2NF)

- Dibuat berdasarkan Full Functional Dependency (Ketergantungan Fungsional Penuh)
- Normalisasi 2NF: Jika tabel berada dalam bentuk Normal Pertama (1NF) dan setiap atribut Bukan Kunci Bergantung Penuh pada Kunci Primer.
- Relasi R adalah 2NF: Apabila setiap atribut NonPrime atribut A
 (yang bukan Anggota Primary Key) dalam R adalah <u>Fully</u>
 <u>Dependent</u> terhadap Primary Key dari R.
- Sehingga tidak ada atribut bukan kunci yang bergantung pada sebagian (parsial) kunci primer.

Bentuk Normal Ketiga (3NF)

- Suatu relasi R disebut normal ke tiga (3rd NF) jika sudah memenhi dalam bentuk normal ke dua (2nd NF) dan tidak dijumpai adanya Ketergantungan Transitif (Transitive Dependency)
- Ketergantungan Transitif (Transitive Dependency) adalah ketergantungan fungsional antara 2 (atau lebih) atribut bukan Key (Kunci/Primary Key).

Syarat 3NF:

- Harus berada dalam bentuk Normal ke Dua (2NF).
- Ketergantungan field-field yang bukan Primary Key adalah harus secara Mutlak (Full-Dependent). Artinya Harus tidak ada Transitive Dependency (Ketergantungan secara transitif).

Jawaban: Kasus Berdasarkan Nota Penjualan

No_Nota	DateTime_Nota	Nama_Plg	Alm_Plg	Kota_Plg	Nama_Brg
1220-01-2019	01/01/2019, 10:10	Pelangganku	Jl. PelangganKu	Kota_KdPos_PlgKu	Аааааааааа
1220-01-2019	01/01/2019, 10:10	Pelangganku	Jl. PelangganKu	Kota_KdPos_PlgKu	Bbbbbbbbb
1220-01-2019	01/01/2019, 10:10	Pelangganku	Jl. PelangganKu	Kota_KdPos_PlgKu	Ccccccccc

Qty	Satuan	Harga	Jumlah	Total	Terbilang
2	Btl	7.500	15.000	52.500	Terbilang
1	Вох	12.500	12.500	52.500	Terbilang
5	Sachet	5.000	25.000	52.500	Terbilang

Untuk mendapatkan hasil yang paling normal, maka proses normalisasi dimulai dari normal pertama.

Field-field tabel di atas yang merupakan group berulang : No_Nota, DateTime_Nota, Nama_Plg, Alm_Plg, Kota_Plg, Total dan Terbilang.

Normalisasi pertama

• Solusinya hilangkan duplikasi dengan mencari ketergantungan parsial. menjadikan field-field menjadi tergantung pada satu atau beberapa field. Karena yang dapat dijadikan kunci adalah No_Nota, Kode Plg (tambahkan Kode_Plg sebagai kunci data Pelanggan) dan Kode_Brg (tambahkan Kode_Brg sebagai kunci data Brg), maka langkah kemudian dicari field-field mana yang tergantung pada No_Nota, mana yang tergantung pada Kode_Plg, mana yang tergantung pada Kode_Brg.

Normalisasi Kedua

Field-field yang tergantung pada satu field haruslah dipisah dengan tepat, misalnya

- ✓ Kode_Plg menjelaskan Nama_Plg, Alm_Plg, Kota_Plg
 dan KodePos_Plg.
- ✓ Kode_Brg menjelaskan Nama_Brg, Satuan dan Hrg_Brg.
- No_Nota menjelaskan DateTime_Nota, Kode_Plg, Kode_Brg, Qty, Harga_Jual, Jumlah, Total dan Terbilang.

Normalisasi Kedua

TABEL PELANGGAN

Kode_Plg	Nama_Plg	Alm_Plg	Kota_Plg	KdPos_Plg
K0001	Pelangganku	Jl. PelangganKu	Kota_PlgKu	KdPos_PlgKu

TABEL BARANG

Kode_Brg	Nama_Brg	Satuan	Harga_Brg
0000001	Ааааааааа	Btl	7.500
0000002	Bbbbbbbbb	Вох	12.500
0000003	Ссссссссс	Sachet	5.000

TABEL JUALHeader

No_Nota	DateTime_Nota	Kode_Plg	Jumlah	Total	Terbilang
1220-01-2019	01/01/2019, 10:10	K0001	15.000	52.500	Terbilang

TABEL JUALDetail

No_Nota	Kd_Brg	Qty	Satuan	Harga	Jumlah
1220-01-2019	0000001	2	Btl	7.500	15.000
1220-01-2019	0000002	1	Вох	12.500	12.500
1220-01-2019	0000003	5	Sachet	5.000	25.000

Normalisasi Ketiga

 Pada tabel diatas masih terdapat masalah, bahwa Terbilang (hasil proses/penjabaran dari total) tidak tergantung penuh terhadap field kunci, begitu juga Jumlah (hasil proses Qty x Harga_Jual).

Normalisasi Ketiga

TABEL PELANGGAN

Kode_Plg	Nama_Plg	Alm_Plg	Kota_Plg	KdPos_Plg
K0001	Pelangganku	Jl. PelangganKu	Kota_PlgKu	KdPos_PlgKu

TABEL BARANG

Kode_Brg	Nama_Brg	Satuan	Harga_Brg
0000001	Ааааааааа	Btl	7.500
0000002	Bbbbbbbbb	Вох	12.500
0000003	Ccccccccc	Sachet	5.000

TABEL JUALHeader

No_Nota	DateTime_Nota	Kode_Plg	Jumlah	Total
1220-01-2019	01/01/2019, 10:10	K0001	15.000	52.500

TABEL JUALDetail

No_Nota	Kd_Brg	Qty	Satuan	Harga
1220-01-2019	0000001	2	Btl	7.500
1220-01-2019	0000002	1	Вох	12.500
1220-01-2019	0000003	5	Sachet	5.000

