

# **COMSATS University Islamabad Department of Computer Science Course Description Form (CDF)**

**Course Information** 

Course Code: CSC455 Course Title: Computer Vision

Credit Hours: **3(3,0)**Lab Hours/Week: **0**Lecture Hours/Week: **3**Pre-Requisites: **None** 

### **Catalogue Description:**

The topics covers includes: Overview of Computer Vision; Multiple Views & Motion; Feature Detection & Matching; Recognition; Geometry for 3D Vision; Motion Analysis; and Deep Networks.

**Unit wise Major Topics:** 

| Unit               | Торіс                                                                                                                                                          | No. of teaching hours |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1.                 | Computer Vision: Overview, Vision Paradigms, Camera Geometry, Camera Calibration, Camera Projection, Projective Geometry, Lighting, and Image formation.       | 4.5                   |
| 2                  | Multiple Views & Motion: Stereo Vision, Epipolar Geometry, Dense Stereo Correspondence, and Stereo Disparity Matching.                                         | 6                     |
| 3                  | Feature Detection & Matching: Interest Points & Corners, Local Image Features, Model Fitting, Hough Transform, and RANSAC.                                     | 7.5                   |
| 4.                 | Recognition: Bag of Features, Large-scale Instance Recognition, Large-scale Scene Recognition & Advanced Feature Encoding, and Detection with Sliding Windows. | 9                     |
| 5.                 | Geometry for 3D Vision: Radiometry, Surface Reflectance, Shape from Shading, Motion, and Texture, 3D Vision Model, and 2D View Representation of a 3D Scene.   | 6                     |
| 6.                 | Motion Analysis: Differential Motion & Optical Flow Analysis, and Kalman Filter.                                                                               | 6                     |
| 7.                 | Deep Networks Architectures: ResNets, R-CNNs, FCNs, and UNets.                                                                                                 | 6                     |
| <b>Total Conta</b> | 45                                                                                                                                                             |                       |

Mapping of CLOs and SOs

| Sr.#  | Unit # | Course Learning Outcomes                                                                            | Blooms<br>Taxonomy<br>Learning Level | so  |
|-------|--------|-----------------------------------------------------------------------------------------------------|--------------------------------------|-----|
| CLO-1 | 1-2    | Identify basic concepts, terminology, theories, models and methods in the field of computer vision. | Understanding                        | 1   |
| CLO-2 | 3-4    | Apply computer vision techniques for solving practical problems.                                    | Applying                             | 2,4 |
| CLO-3 | 5      | Contrast the geometric relationships between 2D images and the 3D world.                            | Understanding                        | 2   |
| CLO-4 | 6      | Analyze various motion analysis techniques.                                                         | Analyzing                            | 2   |
| CLO-5 | 7      | Develop computer vision applications using deep                                                     | Creating                             | 2-5 |

|                          |   | neural networks. |              |              |              |              |  |  |  |  |  |
|--------------------------|---|------------------|--------------|--------------|--------------|--------------|--|--|--|--|--|
| CLO Assessment Mechanism |   |                  |              |              |              |              |  |  |  |  |  |
| Assessment<br>Tools      | t | CLO-1            | CLO-2        | CLO-3        | CLO-4        | CLO-5        |  |  |  |  |  |
| Quizzes                  |   | Quiz 1           | Quiz 2       | Quiz 3       | Quiz 4       | -            |  |  |  |  |  |
| Assignments              | s |                  | Assignment 1 | Assignment 2 | Assignment 3 | Assignment 4 |  |  |  |  |  |
| Mid Term                 |   | Mid Term         | Mid Term     | _            |              |              |  |  |  |  |  |
| Exam                     |   | Exam             | Exam         | •            | -            | -            |  |  |  |  |  |
| Final Term<br>Exam       |   | Final Terms Exam |              |              |              |              |  |  |  |  |  |

## **Text and Reference Books**

### **Textbook:**

1. Computer Vision: Algorithms and Applications, Richard Szeliski, Springer, 2021.

## **Reference Book:**

1. Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras, Verdhan, Vaibhav, Apress, 2021.