					Bitte hier unbedingt Ma- trikelnummer und Adres- se eintragen, sonst keine Bearbeitung möglich.		
Postanschi	Postanschrift: FernUniversität ·58084 Hagen						
(Name, Vo	name)						
(Straße, Nr	.)						
(PLZ, Woh	nort)						

FernUniversität in Hagen FAKULTÄT für Mathematik und Informatik

Klausur WS 2007/08

Nachklausur: 01141 Mathematische Grundlagen

DATUM: 29.3.2008

UHRZEIT: 10.00 - 12.00 Uhr

KLAUSURORT:

Bearbeitungshinweise

(Bitte vor Arbeitsbeginn durchlesen!)

- 1. Schreiben Sie Ihre Klausur bitte nicht mit Bleistift.
- 2. Füllen Sie bitte die grau hinterlegten Felder leserlich und vollständig aus, und schreiben Sie Ihren Namen und Ihre Matrikelnummer auf jedes Lösungsblatt, das Sie abgeben.
- 3. Die Reihenfolge, in der Sie die Aufgaben/Teilaufgaben lösen, ist Ihnen freigestellt. Kreuzen Sie in der Tabelle (s.u.) an, welche Aufgaben Sie bearbeitet haben.
- 4. Bei jeder Aufgabe ist die erreichbare Höchstpunktzahl vermerkt. Sie haben die Klausur bestanden, wenn Sie **40** Punkte erreichen.
- 5. Erlaubtes Hilfsmittel ist ein beidseitig beschriebenes, handschriftliches DIN-A4 Blatt mit eigenen Aufzeichnungen.
- 6. Weitere Hilfsmittel wie Studienbriefe, Glossare, Bücher, Aufzeichnungen, Taschenrechner, etc. dürfen während der Klausur nicht benutzt werden. Ihre Benutzung sowie andere Täuschungsversuche führen dazu, dass Ihre Klausur mit 5 bewertet wird.
- 7. Die Finanzamtsbescheinigung wird Ihnen zugeschickt.

Aufgabe	1	2	3	4	5	6	7	8	9	Summe
Bearbeitet										
max. Punktezahl	8	8	8	8	8	12	12	12	4	80
erreichte Punktezahl										
Korrektur										

Datum/Note	
Datuminote	

Nachklausur am 29.03.2008:

Aufgabenstellungen

Die Lösungen der folgenden Aufgaben müssen Sie begründen.

Aufgabe 1

Bestimmen Sie die Lösungsmenge \mathcal{L} des folgenden linearen Gleichungssystems über \mathbb{R} .

$$\begin{pmatrix} 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

[8 Punkte]

Aufgabe 2

Sei V ein Vektorraum über einem Körper \mathbb{K} . Sei v_1, v_2, v_3 eine Basis \mathcal{B} von V. Sei $f:V\to V$ die lineare Abbildung, die durch $f(v_1)=v_2+v_3,\ f(v_2)=v_3$ und $f(v_3)=v_1-v_2$ definiert wird.

Berechnen Sie $_{\mathcal{B}}M_{\mathcal{B}}(f)$ und dim(Bild(f)).

$$[4 + 4 = 8 \ Punkte]$$

Aufgabe 3

Sei V der Vektorraum der Polynome vom Grad ≤ 3 über \mathbb{R} .

Sei
$$U = \{a + bT + aT^2 + (a+b)T^3 \mid a, b \in \mathbb{R}\}.$$

- 1. Beweisen Sie, dass U ein Unterraum von V ist.
- 2. Bestimmen Sie eine Basis von U.

$$[4 + 4 = 8 Punkte]$$

Aufgabe 4

Sei V ein endlichdimensionaler Vektorraum über einem Körper \mathbb{K} . Sei $f:V\to V$ linear, und sei $\mathrm{Kern}(f)=\mathrm{Bild}(f)$.

- 1. Beweisen Sie, dass $\dim(V)$ gerade ist.
- 2. Geben Sie ein Beispiel für einen Vektorraum V und eine lineare Abbildung f mit Kern(f) = Bild(f). (Begründung bitte nicht vergessen.)

$$[2+6=8 Punkte]$$

Aufgabe 5

Beweisen Sie folgende Formel mit vollständiger Induktion.

Für alle
$$n \in \mathbb{N}$$
 gilt $\sum_{k=1}^{n} 2 \cdot 3^{k-1} = 3^n - 1$.

[8 Punkte]

Aufgabe 6

- 1. Beweisen Sie, dass die Potenzreihe $\sum_{n=0}^{\infty} \frac{n}{10^n} x^n$ für alle x mit |x| < 10 konvergent ist.
- 2. Beweisen Sie, dass die Reihe $\sum\limits_{n=1}^{\infty}\frac{n3^n}{(n+1)!}$ konvergent ist.

$$[6+6=12 \ Punkte]$$

Aufgabe 7

Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch $x \mapsto x - \exp(-x)$.

- 1. Beweisen Sie, dass f injektiv ist.
- 2. Beweisen Sie, dass die Gleichung $x = \exp(-x)$ genau eine reelle Lösung $x \in \mathbb{R}$ besitzt.

$$[6 + 6 = 12 \ Punkte]$$

Aufgabe 8

Bestimmen Sie die lokalen Extremwerte der Funktion $f:[0,\pi]\to\mathbb{R}$ definiert durch $x\mapsto\cos(x)-\cos^2(x).$

Hinweis: Es sind $\cos(\frac{\pi}{3}) = \frac{1}{2}$ und $\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$.

 $[12 \ Punkte]$

Aufgabe 9

Berechnen Sie eine Negationsnormalform von $\neg((A \lor B) \land (\neg C \lor D))$. Dabei sind A, B, C und D Atome.

[4 Punkte]

Funktion	Definitionsbereich	Stammfunktion
$x \mapsto x^n, n \in \mathbb{N}_0$	\mathbb{R}	$x \mapsto \frac{1}{n+1} x^{n+1}$
$x \mapsto x^{-n}, n \in \mathbb{N}, n \ge 2$	$\mathbb{R}\setminus\{0\}$	$x \mapsto \frac{1}{-n+1} x^{-n+1}$
$x \mapsto x^{-1}$	$(0,\infty)$	$x \mapsto \ln(x)$
$x \mapsto x^{-1}$	$(-\infty,0)$	$x \mapsto \ln(-x)$
$x \mapsto x^{\alpha}, \alpha \in \mathbb{R}, \alpha \neq -1$	$(0,\infty)$	$x \mapsto \frac{1}{\alpha + 1} x^{\alpha + 1}$
$x \mapsto \frac{1}{1+x^2}$	\mathbb{R}	$x \mapsto \arctan(x)$
$x \mapsto \frac{1}{\sqrt{1-x^2}}$	(-1,1)	$x \mapsto \arcsin(x)$
$x \mapsto \exp(x)$	\mathbb{R}	$x \mapsto \exp(x)$
$x \mapsto a^x, a > 0, a \neq 1$	\mathbb{R}	$x \mapsto \frac{1}{\ln(a)} a^x$
$x \mapsto \cos(x)$	\mathbb{R}	$x \mapsto \sin(x)$
$x \mapsto \sin(x)$	\mathbb{R}	$x \mapsto -\cos(x)$
$x \mapsto \frac{1}{\cos^2(x)}$	$((k-\frac{1}{2})\pi,(k+\frac{1}{2})\pi),k\in\mathbb{Z}$	$x \mapsto \tan(x)$
$x \mapsto \frac{1}{\sin^2(x)}$	$(k\pi,(k+1)\pi),k\in\mathbb{Z}$	$x \mapsto -\cot(x)$