Analysis: Transform the String

Let us first define the two operations that we can perform.

- Clockwise: Changing a letter to the one following it. For example, changing from c to d.
- **Counter-clockwise**: Changing a letter to the one preceding it. For example, changing from a to z.

Let us denote the <u>ASCII</u> value of a character c_x by $ASCII(c_x)$. If we move the padlock from a character c_a to another character c_b such that $ASCII(c_a) < ASCII(c_b)$, the number of operations required in clockwise direction = $ASCII(c_b) - ASCII(c_a)$ and the number of operations required in counter-clockwise direction = $26 - (ASCII(c_b) - ASCII(c_a))$.

For example, if we move the padlock from c to e:

- Number of operations required in clockwise direction = ASCII(e) ASCII(c) = 2.
- Number of operations required in counter-clockwise direction = 26 (ASCII(e) ASCII(c)) = 24.

Similarly, if we move the padlock from a character c_a to another character c_b such that $ASCII(c_a) > ASCII(c_b)$, the number of operations required in clockwise direction = $26 - (ASCII(c_a) - ASCII(c_b))$ and the number of operations required in counter-clockwise direction = $ASCII(c_a) - ASCII(c_b)$).

For example, if we move the padlock from g to b:

- Number of operations required in clockwise direction = 26 (ASCII(g) ASCII(b)) = 21.
- Number of operations required in counter-clockwise direction = ASCII(g) ASCII(b) = 5.

Thus minimum number of operations required to change a character in the padlock from c_a to c_b = $min(abs(ASCII(c_a) - ASCII(c_b)), 26 - abs(ASCII(c_a) - ASCII(c_b)))$.

Let us call the above expression $f(c_a, c_b)$.

Approach 1

Test Set 1

When length of ${\bf F}$ = 1 we need to change every character in ${\bf S}$ to that in ${\bf F}$. Therefore, the answer is the sum of $f(c_s,c_f)$ for every character c_s in ${\bf S}$ and c_f in ${\bf F}$.

Test Set 2

For this case, \mathbf{F} can have multiple characters.

For each character in \mathbf{S} we need to find a character in \mathbf{F} such that $f(c_s, c_f)$ is minimized. Therefore, for every character c_s in \mathbf{S} , we iterate over all possible characters c_f in \mathbf{F} and find minimum of $f(c_s, c_f)$ and add the minimum value to the final answer.

Approach 2

For each character in ${\bf S}$, move the padlock in the clockwise direction and count the number of operations until we reach a character that belongs to ${\bf F}$. Similarly, for the same character in ${\bf S}$, move the padlock in the counter-clockwise direction and count the number of operations until we reach a character that belongs to ${\bf F}$. Compare the number of operations in both directions and add minimum of the two to the final answer.