Concours Marocain 2001: Maths II, MP

Maths-MPSI

Mr Mamouni : myismail@altern.org

Source disponible sur:

@http://www.chez.com/myismail

1^{ère} Partie. Résultats préliminaires.

A-Calcul de la dimensin d'un sous espace vectoriel de E.

- 1) Conclusion immédiate du théorème de décomposition des noyaux car $(X \lambda)^p \wedge Q = 1$, puisque $Q(\lambda) \neq 0$ et du fait que $(u \lambda I_E)^p$ et Q(u) commuttent avec u car sont des polynômes en u, donc leurs noyaux sont stables par u.
- 2) a) $\forall x \in F_{\lambda} = \ker (u \lambda I_E)^p$, on a: $(v \lambda I_E)^p(x) = (u \lambda I_E)^p(x) = 0_E$, donc $v \lambda I_E$ est nilpotent, en particulier $\chi_{v \lambda I_E}(X) = (-1)^d X^d$, où $d = \dim F_{\lambda}$.
 - b) $\chi_v(X) = \det(v XI_E)$ $= \det(v - \lambda I_E - (X - \lambda)I_E)$ $= \chi_{v - \lambda I_E}(X - \lambda)$ $= (-1)^d (X - \lambda)^d$

On a $E = F_{\lambda} \oplus \ker Q(u)$ avec F_{λ} , $\ker Q(u)$ stables par $u, v = u_{|F_{\lambda}}$ et $w = u_{|\ker Q(u)}$, donc $\chi_u = \chi_v \cdot \chi_w = (-1)^d (X - \lambda)^d \chi_w$.

c) D'aprés ce qui précède on a : $\chi_u = (-1)^d (X - \lambda)^d \chi_w = (X - \lambda)^p Q$, ainsi $(X - \lambda)^p$ divise $(X - \lambda)^d \chi_w$, or $(X - \lambda)^p \wedge \chi_w = 1$, car $\chi_w(\lambda) \neq 0$, d'où $(X - \lambda)^p$ divise $(X - \lambda)^d$, donc $p \leq d$, de même et puisque $Q(\lambda) \neq 0$, on a aussi $(X - \lambda)^d$ divise $(X - \lambda)^p$, donc $p \geq d$, d'où l'égalité.

B-Un résultat sur le polynôme minimal.

- 1) Posons $\mathcal{J}_x = \{P \in \mathbb{K}[X] \text{ tel que} : P(u)(x) = 0\}$, on vérifie facilement, tenant compte de la relation $(PQ)(u) = P(u) \circ Q(u)$, que \mathcal{J}_x est un idéal non nul de $\mathbb{K}[X]$ car contient π_u , donc engendré par un unique polynôme unitaire de degré minimal noté $\pi_{x,u}$ qui vérifie $\pi_{x,u}(u)(x) = 0_E$, car $\pi_{x,u} \in \mathcal{J}_x$ et qui divise π_u car $\pi_u \in \mathcal{J}_x$ et $\pi_{x,u}$ engendre \mathcal{J}_x .
- 2) $\{\pi_{x,u} \text{ tel que} : x \in E, x \neq 0_E\}$ est fini car inclu dans $\{P \in \mathbb{K}[X] \text{ qui divisent } \pi_u\}$ qui est fini.
- 3) Posons $\pi = \bigvee_{x \neq 0_E} \pi_{x,u}$, ce polynôme a bien un sens car $\{\pi_{x,u} \text{ tel que} : x \in E, x \neq 0_E\}$ est fini, et il est divisible par tous les polynômes $\pi_{x,u}$, donc $\pi(u)(x) = 0, \forall x \in E, \text{ d'où } \pi_u = P_1^{\alpha_1} \cdots P_r^{\alpha_r} \text{ divise } \pi, \text{ car } \pi \text{ polynôme annulateur de } u, \text{ donc } \forall 1 \leq i \leq r, P_i^{\alpha_i} \text{ divise } \pi, \text{ donc } \exists x \in E \text{ tel que} : x \neq 0_E, \text{ qu'on notera } y_i \text{ tel que} : P_i^{\alpha_i} \text{ divise } \pi_{y_i,u}, \text{ car } P_i \text{ est irréductible.}$

Comme
$$\pi_u(u) = 0 = P_i^{\alpha_i}(u) \circ \prod_{j \neq i} P_j^{\alpha_j}(u)$$
, alors
$$E = \operatorname{Ker} P_i^{\alpha_1}(u) \oplus \operatorname{Ker} \prod_{j \neq i} P_j^{\alpha_j}(u) \text{ donc } y_i = x_i + z_i, \text{ avec}$$
$$x_i \in \operatorname{Ker} P_i^{\alpha_i}(u), z_i \in \operatorname{Ker} \prod_{j \neq i} P_j^{\alpha_j}(u).$$

Supposons
$$x_i = 0_E$$
, alors $y_i = z_i \in \text{Ker} \prod_{j \neq i} P_j^{\alpha_j}(u)$, donc
$$\prod_{j \neq i} P_j^{\alpha_j}(u)(y_i) = 0_E$$
, d'où $\pi_{y_i,u}$ divise $\prod_{j \neq i} P_j^{\alpha_j}$, or $P_i^{\alpha_i}$ divise $\pi_{y_i,u}$, donc divise aussi $\prod P_j^{\alpha_j}$, impossible car les $P_j^{\alpha_j}$ sont premiers entre eux deux

à deux puisque les P_i sont irréductibles deux à deux distincts. Donc $x_i \neq 0_E$.

Montrons maintenant que $\pi_{x_i,u} = P_i^{\alpha_i}$, en effet $R = \pi_{x_i,u}$ divise $P_i^{\alpha_i}$ car $x_i \in \operatorname{Ker} P_i^{\alpha_i}(u)$, mais aussi $S = \pi_{x_i,u}$ divise $\prod_{j \neq i} P_j^{\alpha_j}$, pour la même raison, donc $R \wedge S = 1$, en utilisant la question suivante on aura $P_i^{\alpha_i}$ divise $\pi_{u_i,u} = RS$ et $P_i^{\alpha_i} \wedge S = 1$, donc $P_i^{\alpha_i}$ divise R, d'où l'égalité.

- 4) Supposons x + y = 0, donc y = -x et par suite R(u)(y) = -R(u)(x) = 0, donc $S = \pi_{y,u}$ divise R, absurde. D'autre part : $(RS)(u)(x + y) = R(u) \circ S(u)(x + y) = R(u) \circ S(u)(x) + S(u) \circ R(u)(y) = 0$, car R(u) et S(u) commuttent, donc $\pi_{x+y,u}$ divise RS Or $\pi_{x+y}(u)(x + y) = 0$, donc $\pi_{x+y}(u)(y) = -\pi_{x+y}(u)(x)$, d'où $(R\pi_{x+y,u})(u)(y) = R(u) \circ \pi_{x+y,u}(u)(y) = -R(u) \circ \pi_{x+y,u}(u)(x) = -\pi_{x+y,u}(u) \circ R(u)(x) = 0$, donc $S = \pi_{y,u}$ divise $R\pi_{x+y,u}$, or $S \wedge R = 1$, d'où S divise $\pi_{x+y,u}$, de même S divise $\pi_{x+y,u}$, de même S divise $\pi_{x+y,u}$, d'où l'égalité.
- 5) Prendre $e = x_1 + \cdots + x_r$.

2^{ème}Partie

Étude de $\mathcal{C} = \{ u \in \mathcal{L}(E) \text{ tel que : } \deg \pi_u = n - 1 \}$

A-Le cas d'un endomorphisme nilpotent.

1) $x \in \text{Ker}v^k \Longrightarrow v^k(x) = 0 \Longrightarrow v^{k+1}(x) = v(0) = 0 \Longrightarrow x \in \text{Ker}v^{k+1}$.

Comme on a déjà $\mathrm{Ker} v^{k+1} \subset \mathrm{Ker} v^{k+2}$, il suffit de montrer l'autre inclusion.

En effet,
$$x \in \text{Ker}v^{k+2} \implies v^{k+2}(x) = v^{k+1}(v(x)) = 0$$

 $\implies v(x) \in \text{Ker}v^{k+1} = \text{Ker}v^k$
 $\implies v^k(v(x)) = v^{k+1}(x) = 0$
 $\implies x \in \text{Ker}v^{k+1}$

2) Utilisons la contraposée de l'implication précédete, donc $v^{n-1}=0, v^{n-2}\neq 0 \implies E=\mathrm{Ker} v^{n-1}\neq \mathrm{Ker} v^{n-2}\ , \\ \implies \mathrm{Ker} v^{n-2}\neq \mathrm{Ker} v^{n-3}\ .$

$$\implies \{0\} = \text{Ker}v^0 \neq \text{Ker}v$$

or $\{0\} \subset \operatorname{Ker} v \subset \cdots \subset \operatorname{Ker} v^{n-1} = E$, donc les inclusions sont strictes.

 $\dim \operatorname{Ker} v^k < \dim \operatorname{Ker} v^{k+1}$, donc $\dim \operatorname{Ker} v^k + 1 \leq \dim \operatorname{Ker} v^{k+1}$.

Montrer $\operatorname{Ker} v^k \leq k$, par récurrence descendante sur k en utilisant le fait que $\dim \operatorname{Ker} v^{k-1} < \dim \operatorname{Ker} v^k$, donc

Montrer $k \leq \text{Ker}v^k$, par récurrence sur k en utilisant le fait que

4) Si $\operatorname{Ker} v^{p+1} = \operatorname{Ker} v^p \oplus F$, alors $\dim F = 2$. De plus $v_{|F|} : F \longrightarrow v(F)$ est bijective car $\operatorname{Ker} v_{|F|} = F \cap \operatorname{Ker} v \subset F \cap \operatorname{Ker} v^p = \{0\}$, donc $\dim v(F) = \dim F = 2$ $x \in F \implies v^{p+1}(x) = 0 \quad \operatorname{car} F \subset \operatorname{Ker} v^{p+1}$ $\implies v(x) \in \operatorname{Ker} v^p \quad \operatorname{car} v^p(v(x)) = 0$

Donc $v(F) \subset \operatorname{Ker} v^p$, mais aussi $\operatorname{Ker} v^{p-1} \subset \operatorname{Ker} v^p$, donc $\operatorname{Ker} v^{p-1} + v(F) \subset \operatorname{Ker} v^p$.

D'autre part :

 $\dim \operatorname{Ker} v^{k-1} < \dim \operatorname{Ker} v^k - 1.$

$$x \in \operatorname{Ker} v^{p-1} \cap v(F) \implies \exists x' \in F \text{ tel que} : x = v(x') \text{ et } v^{p-1}(x) = 0$$

 $\implies \exists x' \in F \text{ tel que} : x = v(x') \text{ et } v^p(x') = 0$
 $\implies \exists x' \in F \cap \operatorname{Ker} v^p \text{ tel que} : x = v(x')$
 $\implies x = 0$
 $\operatorname{car} x = v(x') \text{ tel que} : x' \in F \cap \operatorname{Ker} v^p = \{0\}$

Ainsi Ker $v^{p-1} \cap v(F) = \{0\}$, d'où Ker $v^{p-1} \oplus v(F) \subset \text{Ker}v^p$, et donc dim Ker $v^p \geq \dim \text{Ker}v^{p-1} + \dim v(F) = \dim \text{Ker}v^{p-1} + 2$. Or dim Ker $v^{p-1} \geq p-1$, d'où dim Ker $v^{p-1} \leq p-2$, or dim Ker $v^{p-1} \geq p-1$, absurde.

- 5) D'aprés la question 3) on a : $0 \le \dim(\operatorname{Ker}v^{k+1}) \dim(\operatorname{Ker}v^k) \le 2$, d'aprés les questions précédentes on a $\dim(\operatorname{Ker}v^{k+1}) \dim(\operatorname{Ker}v^k) \notin \{0,2\}$, donc $\dim(\operatorname{Ker}v^{k+1}) = \dim(\operatorname{Ker}v^k) + 1$, or $\dim(\operatorname{Ker}v^{n-1}) = n$ car $\operatorname{Ker}v^{n-1} = E$, donc par récurrence descendante on montre facilement que $\dim(\operatorname{Ker}v^k) = k + 1$.
-) Supposons $\operatorname{Ker} v \subset \operatorname{Im} v$, et soit F un supplémentaire de $\operatorname{Ker} v$ dans $\operatorname{Im} v$, donc $\operatorname{Im} v = \operatorname{Ker} v \oplus F$, d'où $\operatorname{Im} v^2 = v(\operatorname{Im} v) = v(F) = \operatorname{Im} v_{|F}$ et $\operatorname{Ker} v_{|F} = F \cap \operatorname{Ker} v = \{0\}$, d'aprés la formule du rang appliquée à $v_{|F}$, on conclut que : $\dim F = \dim \operatorname{Im} v^2 = n \dim \operatorname{Ker} v^2 = n 3$ mais aussi, $\dim F = \dim \operatorname{Im} v \dim \operatorname{Ker} v = n 2 2 = n 4$, absurde.

- 7) a) Si on montre que $\{y, v(y), \ldots, v^{n-2}(y)\}$ est libre, alors dim H = n-1. En effet: Soit $\lambda_0, \ldots, \lambda_{n-2}$ tel que: $\lambda_0 y + \ldots + \lambda_{n-2} v^{n-2}(y) = 0$, composons par v^{n-2} , donc $\lambda_0 v^{n-2}(y) = 0$, car $v^{n-1} = 0$ et donc $v^k = 0, \forall k \geq n-1$, or $v^{n-2}(y) \neq 0$, car $y \notin \text{Ker} v^{n-2}$, donc $\lambda_0 = 0$, en composant aprés par v^{n-3} , on trouve $\lambda_1 = 0$ et ainsi de suite.
 - b) Soit $x \in H \cap \mathbb{K}x_0$, donc $x = \lambda x_0 = \lambda_0 y + \ldots + \lambda_{n-2} v^{n-2}(y)$, or $x_0 \in \text{Ker}v$, donc x aussi d'où v(x) = 0 mais surtout $v^{n-2}(x) = 0$, en reprenant la même démarche que dans la question précédente, on montre que tous les λ_i sont nuls donc x = 0, donc $H \cap \mathbb{K}x_0 = \{0\}$, ainsi leur somme est directe, de plus dim $\mathbb{K}x_0 = 1$, donc dim $(H \oplus \mathbb{K}x_0) = n$ donc $H \oplus \mathbb{K}x_0 = E$.

Montrons maintenant H et $\mathbb{K}x_0$ sont stables par v. Soit $x \in H$, donc $x = \lambda_0 y + \ldots + \lambda_{n-2} v^{n-2}(y)$, d'où $v(x) = \lambda_0 v(y) + \ldots + \lambda_{n-3} v^{n-2}(y) \in H$, car $v^{n-1} = 0$. Soit $x \in \mathbb{K}x_0$, donc $x = \lambda x_0$, d'où $v(x) = 0 \in \mathbb{K}x_0$ car $x_0 \in \text{Ker}v$.

c) $\mathcal{B} = \{y, v(y), \dots, v^{n-2}(y), x\}$ est une base de E car ruénion de deux base de H et $\mathbb{K}x_0$ avec $H \oplus \mathbb{K}x_0 = E$. Dans ce cas

$$J = \mathcal{M}_{\mathcal{B}}(v) = \begin{pmatrix} 0 & \dots & & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & & & \\ \vdots & \ddots & & & \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$

B- Cas général.

1) a) D'aprés la forme de M, on a : $u(e_1) = e_2, \dots, u(e_{n-2}) = e_{n-1}, u(e_{n-1}) = \alpha_0 e_1 + \dots + \alpha_{n-2} e_{n-1}$ et enfin $u(e_n) = \alpha e_n$. Donc $u^2(e_1) = u(e_2) = e_3$ et par récurrence sur $1 \le k \le n-2$, on montre que $u^k(e_1) = e_{k+1}$ et enfin $u^{n-1}(e_1) = u(u^{n-2}(e_1)) = u(e_{n-1}) = \alpha_0 e_1 + \dots + \alpha_{n-2} e_{n-1}$.

b)
$$R(u)(e_1) = u^{n-1}(e_1) - \sum_{k=0}^{n-2} \alpha_k u^k(e_1)$$

 $= \alpha_0 e_1 + \ldots + \alpha_{n-2} e_{n-1} - \sum_{k=0}^{n-2} \alpha_k e_{k+1}$
 $= 0$

Pour $k \in \{2, ..., n-1\}$, on a $e_k = u^{k-1}(e_1)$, donc $R(u)(e_k) = R(u) \circ u^{k-1}(e_1) = u^{k-1} \circ R(u)(e_1) = 0$.

D'autre part $u(e_n) = \alpha e_n$, donc $u^k(e_n) = \alpha^k e_n$ et $R(u)(e_n) = R(\alpha)(e_n) = 0$ car α racine de R.

Ainsi R(u) s'annulle sur une base de E, donc sur E, d'où R(u) = 0, donc R est un polynôme annulateur de u.

- c) Supposons $\deg \pi_u \leq n-2$, donc $\pi_u = \lambda_0 + \cdots + \lambda_{n-2} X^{n-2}$, avec les λ_k non tous nuls. Or $\pi_u(e_1) = 0$ et $u^k(e_1) = e_{k+1}$, donc $\lambda_0 e_1 + \cdots + \lambda_{n-2} e_{n-1} = 0$, avec les λ_k non tous, donc la famille $\{e_1, \dots, e_{n-1}\}$ est liée, absurde car incluse dans une base. D'aprés la question précédente on a π_u divise R, et $\deg R = n-1$, donc $\deg \pi_u \leq n-1$, or $\deg \pi_u \geq n-1$, donc $\deg \pi_u = \deg R = n-1$, or π_u divise R et sont tous les deux unitaires donc égaux. D'où $u \in \mathcal{C}$.
- d) En développant suivant la dérnière ligne, on trouve que

$$\chi_u = (\alpha - X)\chi_{M'} \text{ où } M' = \begin{pmatrix} 0 & 0 & \dots & 0 & \alpha_0 \\ 1 & 0 & \dots & 0 & \alpha_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & 1 & 0 & \alpha_{n-3} \\ 0 & \dots & 0 & 1 & \alpha_{n-2} \end{pmatrix},$$

matrice classique appelée matrice compagnon dont le polynôme caractéristque est exactement $(-1)^{n-1}R$, formule qu'on obtient en développant le déterminant suivant la dernière colonne. D'où $\chi_u = (-1)^n (X - \alpha) R$.

- 2) a) π_u qui est unitaire de degré n-1 divise χ_u de degré n et de coéfficient dominant $(-1)^n$, donc $\chi_u = (-1)^n (X \alpha) \pi_u$, or χ_u et π_u ont les mêmes racines qui sont les valeurs propres de u, donc α qui est racine de χ_u est aussi racine de π_u .
 - b) On a $\chi_u = (X \alpha)^k Q$ et $Q \wedge (X \alpha)^k = 1$ car $Q(\alpha) \neq 0$,

or $\chi_u(u) = 0$, d'aprés le théorème des noyaux on conclut que : $E = \text{Ker}(\chi_u(u)) = \text{Ker}(u - \alpha I_E)^k \oplus \text{Ker}(u)$.

De façon pareille puisque, $\pi_u = (X - \alpha)^{k-1}Q$ et $\pi_u(u) = 0$, on a aussi $E = \text{Ker}(u - \alpha I_E)^{k-1} \oplus \text{Ker}Q(u)$.

En utilisant l'inégalité précèdente on conclut que :

 $\dim \operatorname{Ker}(u - \alpha I_E)^k = \dim \operatorname{Ker}(u - \alpha I_E)^{k-1}$, or $\operatorname{Ker}(u - \alpha I_E)^{k-1} \subset \operatorname{Ker}(u - \alpha I_E)^k$, d'où l'égalité.

D'autre part, supposons que

 $\operatorname{Ker}(u - \alpha I_E)^{k-2} = \operatorname{Ker}(u - \alpha I_E)^{k-1}$, donc

 $E = \operatorname{Ker}(u - \alpha I_E)^{k-2} \oplus \operatorname{Ker}Q(u) = \operatorname{Ker}(u - \alpha I_E)^{k-2} \circ Q(u)$, d'aprés le théorème des noyaux, ainsi $(X - \alpha)^{k-2}Q$ est un polynôme annulateur de u donc divisible par $\pi_u = (X - \alpha)^{k-1}Q$ ce qui est impossible, donc $\operatorname{Ker}(u - \alpha I_E)^{k-2} \neq \operatorname{Ker}(u - \alpha I_E)^{k-1}$, or $\operatorname{Ker}(u - \alpha I_E)^{k-2} \subset \operatorname{Ker}(u - \alpha I_E)^{k-1}$, d'où l'inclusion est stricte.

- c) i. $\forall x \in \text{Ker}(u \alpha I_E)^k = \text{Ker}(u \alpha I_E)^{k-1}$, on a $(u \alpha I_E)^{k-1}(x) = 0$, donc $v^k(x) = 0$. Or $\text{Ker}(u - \alpha I_E)^{k-2} \neq \text{Ker}(u - \alpha I_E)^{k-1}$ donc $v^{k-2} \neq 0$.
 - ii. Raisonner de façon pareille que dans la question II.A.7
- d) On a $H_1 \subset \operatorname{Ker}(u \alpha I_E)^k$ donc $H_1 \cap \operatorname{Ker}Q(u) \subset \operatorname{Ker}(u \alpha I_E)^k \cap \operatorname{Ker}Q(u) = \{0\} \operatorname{car}(X-a)^k \wedge Q = 1$ puisque $Q(\alpha) \neq 0$, donc la somme $H_1 + \operatorname{Ker}Q(u)$ est directe. Or $E = \operatorname{Ker}(u \alpha I_E)^k \oplus \operatorname{Ker}Q(u) = \mathbb{K}x_0 \oplus H_1 \oplus \operatorname{Ker}Q(u) = \mathbb{K}x_0 \oplus H$, avec $H = H_1 + \operatorname{Ker}Q(u)$ stable par u en tant que somme de deux sous espace vectoriel stables par u.
- e) i. Soit \mathcal{B}' une base de H, alors $\mathcal{B} = \{x_0\} \cup \mathcal{B}'$ est une base de E avec

$$\mathcal{M}_{\mathcal{B}}(u) = \begin{pmatrix} \alpha & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & \mathcal{M}_{\mathcal{B}'}(w) & \\ 0 & & \end{pmatrix}, \text{ et ceci car } u(x_0) = \alpha x_0, u = w$$

sur H qui est stable par u. Donc $\chi_u = (\alpha - X)\chi_w$. Or $\chi_u = (-1)^n (X - \alpha)^k Q$, donc $\chi_w = (-1)^{n-1} (X - \alpha)^{k-1} Q = (-1)^{n-1} \pi_u$ et $\pi_u(\alpha) = 0$, donc $\chi_w(\alpha) = 0$, or π_w et χ_w ont les mêmes racines, donc $\pi_w(\alpha) = 0$.

ii. D'abord $\pi_w(u) = 0$ sur H, car w = u sur H, d'autre part, comme

 $u(x_0) = \alpha x_0$, alors $\pi_w(u)(x_0) = \pi_w(\alpha)x_0 = 0$, donc $\pi_w(u) = 0$ sur $\mathbb{K}x_0$, et comme $E = \mathbb{K}x_0 \oplus H$, alors $\pi_w(u) = 0$. Ainsi π_u divise π_w , or $\deg \pi_u = n - 1$ car $u \in \mathcal{C}$, d'où $\deg \pi_w \geq n - 1$ et comme w est un endomorphisme de H et $\dim H = n - 1$, alors $\deg \pi_w \leq n - 1$, d'où l'égalité.

f) Soit $e \in H$ tel que : $\pi_{e,w} = \pi_w$, et supposons que la famille $\{e, w(e), \ldots, w^{n-2}(e)\}$ est liée, donc ils existent des coéfficients $\lambda_0, \ldots, \lambda_{n-2}$ non tous nuls tels que $\lambda_0 e + \lambda_1 w(e) + \ldots + \lambda_{n-2} w^{n-2}(e) = 0$, donc P(u)(e) = 0 avec $P(X) = \lambda_0 + \lambda_1 X + \ldots + \lambda_{n-2} X^{n-2}$ de degré inférieur à n-2, or deg $\pi_{e,w} = n-1$ ce qui contredit le fait que deg $\pi_{e,w}$ est un polynôme annulateur pour e de degré minimal. Ainsi $\mathcal{B} = \{e, w(e), \ldots, w^{n-2}(e)\}$ est libre dans H de cardinal n-1 = 0

dim
$$H$$
, donc base de H , avec $\mathcal{M}_{\mathcal{B}}(w) = \begin{pmatrix} 0 & 0 & \dots & 0 & \alpha_0 \\ 1 & 0 & \dots & 0 & \alpha_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & 1 & 0 & \alpha_{n-3} \\ 0 & \dots & 0 & 1 & \alpha_{n-2} \end{pmatrix}$

En prenant $\mathcal{B}' = \mathcal{B} \cup \{x_0\}$, on obtient $\mathcal{M}_{\mathcal{B}}(u)$ de la forme (1).

3) Le sens direct découle de la question précédente, celui inverse découle de la question II.B.1.c

3^{ème}Partie

- 1) a) On sait que le déterminant est une forme n-linéaire donc continue. D'autre part $G(\mathbb{C}) = \det^{-1}(\mathbb{C}^*)$ et $G(\mathbb{R}) = \det^{-1}(]0, +\infty[)$ sont ouverts car \mathbb{C}^* et $]0, +\infty[$ sont ouverts et det continue.
 - b) Posons $A = (a_{i,j})_{1 \le i,j \le n}$, $B = (b_{i,j})_{1 \le i,j \le n}$ et $AB = (c_{i,j})_{1 \le i,j \le n}$, avec $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$, d'aprés l'inégalité de Cauchy-Schwarz on a : $c_{i,j}^2 \le \left(\sum_{k=1}^{n} a_{i,k}^2\right) \left(\sum_{k=1}^{n} b_{k,j}^2\right), \text{ donc}$

$$\begin{split} \|AB\|^2 &= \sum_{1 \leq i, j \leq n} c_{i,j}^2 \\ &\leq \sum_{i=1}^n \sum_{j=1}^n \left(\sum_{k=1}^n a_{i,k}^2 \right) \left(\sum_{k=1}^n b_{k,j}^2 \right) \\ &= \left(\sum_{i=1}^n \sum_{k=1}^n a_{i,k}^2 \right) \left(\sum_{j=1}^n \sum_{k=1}^n b_{k,j}^2 \right) \\ &= \|A\|^2 \|B\|^2 \end{split}$$

c) Montrons d'abors ce résultat, si E est muni d'une norme d'algèbre $\|\|$ et si $x \in E$ tel que : $\|x\| < 1$, alors (1-x) inversible d'inverse $\sum_{k=0}^{+\infty} x^k.$

En effet, on sait que
$$(1-x)\sum_{k=0}^{n} x^k = 1-x^{n+1}$$
 et

$$||x^{n+1}|| < ||x||^{n+1} \underset{n \to +\infty}{\longrightarrow} 0 \text{ car } ||x|| < 1, \text{ donc } (1-x) \sum_{k=0}^{+\infty} x^k = 1.$$

Revenons à notre problème maintenant, donc

$$||H|| < ||A^{-1}||^{-1} \implies ||A^{-1}H|| \le ||A^{-1}|| \cdot ||H|| < 1$$

$$\Longrightarrow I_n + A^{-1}H$$
 inversible, d'inverse $\sum_{k=0}^{+\infty} (-A^{-1}H)^k$

Donc $A + H = A(I_n + A^{-1}H)$ est aussi inversible, d'inverse $(I_n + A^{-1}H)^{-1}A^{-1} = \sum_{k=0}^{+\infty} (-A^{-1}H)^k A^{-1} = A^{-1} + \sum_{k=1}^{+\infty} (-A^{-1}H)^k A^{-1},$

d'où
$$(A+H)^{-1} - A^{-1} = \sum_{k=1}^{+\infty} (-A^{-1}H)^k A^{-1}$$
.

d) Il suffit de montrer que $\lim_H 0(A+H)^{-1}=A^{-1}$. En effet, dans ce cas on peut supposer $\|H\|<\|A^{-1}\|^{-1}$ et donc $\exists r<0$ tel que : $\|A^{-1}H\|< r<1$, donc

$$\begin{aligned} \|(A+H)^{-1} &= A^{-1}\| &= \|\sum_{k=1}^{+\infty} (-A^{-1}H)^k A^{-1}\| \\ &\leq \|A^{-1}H)^k A^{-1} \sum_{k=0}^{+\infty} \|A^{-1}H\|^k \\ &\leq \|H\|.\|A^{-1}\|^2 \sum_{k=0}^{+\infty} r^k \\ &= \frac{\|H\|.\|A^{-1}\|^2}{1-r} \underset{H \to 0}{\longrightarrow} 0 \end{aligned}$$

- 2) a) Posons $A = (a_{i,j})_{1 \le i,j \le n}$, $B = (b_{i,j})_{1 \le i,j \le n}$, donc $T(x) = \det(xB + (1-x)A) = \sum_{\sigma \in \mathcal{S}_n} \prod_{i=1}^n (xb_{i,\sigma(i)} + (1-x)a_{i,\sigma(i)}) \text{ est un}$ polynôme en x de degré inférieur à n non nul, car $T(1) = \det B \neq 0$.
 - b) i. $\lim_{t} \frac{1}{2}^+ \gamma(t) = \lim_{t} \frac{1}{2}^- \gamma(t) = \frac{1+2ir}{2} = \gamma\left(\frac{1}{2}\right)$, donc γ est continue et par suite ϕ aussi, or $\gamma(0) = 0$ et $\gamma(1) = 1$, donc $\phi(0) = A$ et $\phi(1) = B$.
 - ii. On a det $\phi(t) = T(\gamma(t))$ et $T(x) = \prod_{i=1}^{p} x z_i$, donc det $\phi(t) = \sum_{i=1}^{p} x_i$

$$\prod_{i=1}^{r} \gamma(t) - z_i, \text{ or } \operatorname{Im}(\gamma(t) - z_i) = 2tr - \operatorname{Im} z_i \quad \text{si } 0 \le t \le \frac{1}{2}$$
$$= 2r(1 - t) - \operatorname{Im} z_i \quad \text{si } 0 \le t \le 1$$
Supposons
$$\operatorname{Im}(\gamma(t) - z_i) = 0$$

Supposons $\operatorname{Im}(\gamma(t) - z_i) = 0$.

- 1ér cas : $0 \le t \le \frac{1}{2}$, dans ce cas $\text{Im} z_i = 2tr \le r$, absurde.
- 2ème cas : $\frac{1}{2} \le t \le 1$, dans ce cas $\text{Im} z_i = 2(1-t)r \le r$, absurde.

Ainsi $t \mapsto \phi(t)$ est un chemin inclu dans $\operatorname{GL}_n(\mathbb{C})$, joignant A et B, donc $\operatorname{GL}_n(\mathbb{C})$ est connexe par arcs.

3) Découle du fait que les applications $P \mapsto PJ, P \mapsto P^{-1}$ sont continues donc leur produit aussi, et du fait que l'image d'un connexe par arcs par une application continue est connexe par arcs.

4) On a:
$$M(t) = \begin{pmatrix} 0 & 0 & \dots & 0 & \beta_0 & 0 \\ 1 & 0 & \dots & 0 & \beta_1 & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \ddots & 1 & 0 & \beta_{n-3} & 0 \\ 0 & \dots & 0 & 1 & \beta_{n-2} & 0 \\ 0 & 0 & \dots & 0 & 0 & \beta \end{pmatrix}, \text{ avec} \quad \beta_k = t\alpha, \ \forall k \ge 1 \\ \beta_k =$$

Ainsi M(t) remplit les conditions des matrices de la forme (1), donc $M(t) \in \mathcal{C}(\mathbb{K})$.

D'autre part les coéfficients de M(t) sont des fonctions polynômailes en t, donc $\psi: t \mapsto M(t)$ est continue, c'est donc un chemin inclu dans $\mathcal{C}(\mathbb{K})$,

joingnat $J = \psi(0)$ et $M = \psi(1)$.

5) D'aprés la question précedente toute matrice peut être jointe à J par un chemin continue inclu dans $\mathcal{C}(\mathbb{K})$, si on prend deux matrices quelconques M et N dans $\mathcal{C}(\mathbb{K})$, on joigne M à J, puis J à N, donc M à N, d'où $\mathcal{C}(\mathbb{K})$ est connexe par arcs.

Fin.