

Machine Learning

Dr. Mehran Safayani

safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Example: Linear regression (housing prices)

The slides are modified, based on original slides by [Andrew NG, Stanford university

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

Example: Logistic regression

"just right"

high variance

Addressing overfitting:

```
x_1 = size of house
```

 $x_2 = no.$ of bedrooms

 $x_3 = \text{no. of floors}$

 x_4 = age of house

 x_5 = average income in neighborhood

 x_6 = kitchen size

•

•

•

 X_{100}

Evaluating your hypothesis

• Dataset:

Size	Price
2104	400
1600	330
2400	369 60% Trai
1416	232
3000	540
1985	300
1534	315 20 %
1427	199 Cro
1380	212 20%
1494	243 Tes

Train/validation/test error

• Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2mcv} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^{2}$$

• Test error:

$$J_{test}(\theta) = \frac{1}{2mtest} \sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2}$$

Model Selection

$$h_{\theta_{1}}(x) = \theta_{0} + \theta_{1}x$$

$$J_{cv}(\theta^{1})$$

$$h_{\theta_{2}}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$$

$$\vdots$$

$$h_{\theta_{10}}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$$

$$J_{cv}(\theta^{10})$$

$$i^{*} = \operatorname{argmin} J_{cv}(\theta^{1})$$

$$i$$

$$J_{test}(\theta^{i^{*}})$$

Regularization Intuition

• Suppose we penalize and make θ_3 , θ_4 really small.

$$\frac{\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \underbrace{1000\theta_{3}^{2} + 1000\theta_{4}^{2}}_{\theta_{3} \approx 0} \theta_{4} \approx 0}$$

Regularization

- Small values for parameters θ_0 , θ_1 , ..., θ_n
 - ➤"Simpler" hypothesis
 - Less prone to overfitting
- Housing:
 - \triangleright Features: $x_1, x_2, ..., x_{100}$
 - \triangleright Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

$$\theta_{0}, \theta_{1}, \theta_{2}, \dots, \theta_{100}$$

Regularization

•
$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

min $J(\theta)$

 θ

Regularization

• In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

• What if λ is set to an extremely large value (perhaps for too large for our problem, say / = 1010)?

$$\theta_1, \theta_2, \theta_3, \theta_4$$

$$\theta_1 \approx 0, \theta_2 \approx 0$$

$$\theta_3 \approx 0, \theta_4 \approx 0$$

$$h_{\theta}(x) = \theta_0$$

Evaluating your hypothesis

• Fails to generalize to new examples not in training set.

 $x_1 = size of house$

 $x_2 = \text{no. of bedrooms}$

 $x_3 = \text{no. of floors}$

 x_4 = age of house

 x_5 = average income in neighborhood

 x_6 = kitchen size

•

•

•

 X_{100}

Bias/variance

- Training error: $J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2$
- Cross validation error: $J_{cv}(\theta) = \frac{1}{2mcv} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) y_{cv}^{(i)})^2$ (or $J_{test}(\theta)$)

Diagnosing bias vs. variance

• Suppose your learning algorithm is performing less well than you were hoping. $(J_{cv}(\theta) \text{ or } J_{test}(\theta))$ is high.) Is it a bias problem or a variance problem?

Bias (underfit):

$$J_{train}(\theta)$$
 will be high $J_{cv}(\theta) \approx J_{train}(\theta)$

Variance (overfit):

$$J_{train}(\theta)$$
 will be low $J_{cv}(\theta) \gg J_{train}(\theta)$

Linear regression with regularization

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Large λ **High bias(underfit)**

Intermediate λ

"Just right"

$$\lambda = 10000$$
. $\theta_1 \approx 0$, $\theta_2 \approx 0$, ... $h_{\theta}(x) \approx \theta_0$

size of house

Small λ **High variance (overfit)**

$$\lambda = 0$$

Choosing the regularization parameter λ

Model:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$
1. Try $\lambda = 0 \rightarrow \min J(\theta) \rightarrow \theta^{(1)} \rightarrow J_{cv}(\theta^{(1)})$
2. Try $\lambda = 0.01 \rightarrow \min J(\theta) \rightarrow \theta^{(2)} \rightarrow J_{cv}(\theta^{(2)})$
3. Try $\lambda = 0.02 \rightarrow \min J(\theta) \rightarrow \theta^{(3)} \rightarrow J_{cv}(\theta^{(3)})$
4. Try $\lambda = 0.04$
5. Try $\lambda = 0.08 \rightarrow \min J(\theta) \rightarrow \theta^{(5)} \rightarrow J_{cv}(\theta^{(5)})$

$$\vdots$$

$$\vdots$$
12. Try $\lambda = 10 \rightarrow \min J(\theta) \rightarrow \theta^{(12)} \rightarrow J_{cv}(\theta^{(12)})$
Pick (say) $\theta^{(5)}$. Test error: $J_{test}(\theta^{(5)})$

Bias/variance as a function of the regularization parameter λ

• Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2}$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2mcv} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

• Test error:

$$J_{test}(\theta) = \frac{1}{2mtest} \sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2}$$

GD:

Repeat until convergence{

$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x_i) - y_i)$$
 ($x_0^i = 1$)

$$\theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x_i) - y_i) x_j^i + \lambda \theta_j \right]$$

$$J = 1, 2, ..., n$$

Early stopping

Old way of splitting data

• Deep learning

• K-fold cv

