Resumen de procedimientos para el cálculo de intervalos de confianza

Tipo de Problema	Estimación Puntual	Intervalo de Confianza
Media μ , varianza σ^2 conocidas.	\overline{x}	$\mu: \overline{x} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$
Media μ de una distribución normal, varianza σ^2 desconocida.	$\frac{-}{x}$	$\mu: \overline{x} \pm t_{1-\alpha/2, n-1} \frac{S}{\sqrt{n}}$
Diferencia de medias de dos distribuciones normales $\mu_1-\mu_2$, varianzas σ_1^2 y σ_2^2 conocidas.	$\overline{x_1} - \overline{x_2}$	$\mu_1 - \mu_2 : (\overline{x_1} - \overline{x_2}) \pm z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
Diferencia de medias de dos distribuciones normales $\mu_1 - \mu_2$, varianzas $\sigma_1^2 = \sigma_2^2$ y	$\overline{x_1} - \overline{x_2}$	$\mu_1 - \mu_2 : (\overline{x}_1 - \overline{x}_2) \pm t_{1-\alpha/2, n_1 + n_2 - 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
desconocidas.		Donde $S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$
		$\mu_1 - \mu_2 : (\overline{x}_1 - \overline{x}_2) \pm t_{1-\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
Diferencia de medias de dos distribuciones normales $\mu_1-\mu_2$, varianzas $\sigma_1^2 \neq \sigma_2^2$ y desconocidas.	$\overline{x_1} - \overline{x_2}$	Donde $v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} - 2$
2		$n_1 + 1$ $n_2 + 1$
Varianza σ^2 de una distribución normal	s^2	$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$
Coeficiente de las varianzas $\frac{\sigma_1^2}{\sigma_2^2}$ de	s_1^2	$b\frac{s_1^2}{s_2^2} < \frac{\sigma_1^2}{\sigma_2^2} < a\frac{s_1^2}{s_2^2}$
dos distribuciones normales	$\overline{S_2^2}$	Donde $\alpha = F_{\alpha/2,n_1-1,n_2-1}$
		Y $b = F_{1-\alpha/2, n_1-1, n_2-1}$
		OBSERVACIÓN: $F_{\alpha,n,m} = \frac{1}{F_{1-\alpha,m,n}}$
Proporción poblacional (en base a muestras grandes)	p	$p: \stackrel{\wedge}{p\pm} z_{1-lpha/2} \sqrt{(pq)/n}$ donde q=1-p
Diferencia entre dos proporciones	$\hat{p_1}$ - $\hat{p_2}$	$p_{1}-p_{2}:(\hat{p}_{1}-\hat{p}_{2})\pm z_{1-\alpha/2}\sqrt{\frac{\hat{p}_{1}(1-\hat{p}_{1})}{n_{1}}+\frac{\hat{p}_{2}(1-\hat{p}_{2})}{n_{2}}}$