Sphere-Tracing/Ray-Marching in C++

C++ User-Treffen in Aachen, 17. Mai 2018

Mirco Müller, macslow@gmail.com

Was Euch erwartet

- ① Motivation
- ② Geschichte
- ③ Grundlagen in 2D
- 4 Schritt nach 3D
- © Kernalgorithmus & Objektdefinitionen
- 6 Beleuchtungsmodelle
- **Ticht & Schatten**
- ® Reflexionen & Boolsche Operationen
- 9 Landschaften
- 10 Zusammenfassung, Aussicht auf Teil 2 & Fragen

Motivation

- * Vorteile bzw. Abgrenzung zu Polygongrafik
- * Analogie: Raymarching: Polygongrafik -> Vektorgrafik: Rastergrafik

Geschichte

* Einführung von Sphere Tracing durch John C. Hart 1996 Paper

Grundlagen in 2D

"Raymarching" in 2D

- * Signed Distance Functions
- * Teilmenge impliziter Funktionen * 2D-only C++-Beispiel raymarcher-nongl

Demo

Schritt nach 3D

Raymarching-Algorithmus

Beispiele für Objekte

Basic Object

```
Plane:
point.y - height = .0
Sphere:
length (point) - radius = .0
Cylinder:
length (point.xz) - radius = .0
Box:
length (max (abs (point) - size, .0)) = .0
```

Demo

Beleuchtungsmodelle

bert Shading Model

Colordiffuse = N·L * ColorSurface * IntensityLight

- * Johann Heinrich Lambert, schweizer Mathematiker, 1726 1777
- * ok, aber nicht wirklich komplett in physikalischer Realität verankert

ular Highlights à la Blinn-Phong

V: direction to

H: halfvector o

N: surface norn

L: direction to l

N·L and N·H have clamped to [0...

Colordiffuse = $N \cdot L * Colorsurface * IntensityLight$ Colorfinal = $(N \cdot H)^{shininess} * Colorspecular + Colordiffuse$

- * Bùi Tường Phong, Jim Blinn, ca. 1975-1977
- * state-of-the-art ist aber PBR
- * PBR zu komplex -> eigener Vortrag
- * trotzdem zumindest demonstrieren

Mehr Schatten als Licht

distanceToLight = length (L - P)
distanceToObject = raymarch (P, normalize (L - P))
isShadowed = distanceToObject < distanceToLight
finalColor = isShadowed ? darken(shadingColor) : shadingColor</pre>

Spieglein, Spieglein an der Wand


```
struct HitR
bool hasH
float dis
int mater
}
```

Demo

Boolsche Operationen

pUnion: A + B

Boolean Operat

opSubtract: A - B

opIntersect:

Demo

Von der Ebene zur Landschaft

Demo

Zusammenfassung

- Geschichte 1996 von John C. Hart eingeführt
- Grundlagen in 2D Signed Distance Functions
- Schritt nach 3D matrizenlose 3D-Projektion
- Raymarching-Algorithmus
- Beleuchtungsmodelle Lambert, Blinn-Phong, PBR
- wie man an Schatten kommt
- Reflexionen und Boolsche Operationen
- Erzeugung von Landschaften
- jede Menge Demos

Aussicht auf Teil 2

- * mehr über Operatoren
- * Krümmung/Faltung/Wiederholung vom Raum
- * volumetrische Effekte: z.B. Wolken
- * Kontaktschatten/Ambient Occlusion
- * Tiefenunschärfe/Depth-of-field
- * Überstrahlung/Bloom
- * AA-Strategien
- * Bau von sehr komplexeren Objekten
- * bessere Materialien (Holz, Leder, Marmor, Blech, Plastik...)
- * spezielle Wünsche?

Gibt's Fragen?

Besten Dank für Eure Aufmerksamkeit!

- ① Vortrag, PDF, Sourcen https://github.com/MacSlow/raymarching-vortrag
- Leseempfehlung: John C. Hart Paper von 1996"a geometric method for the antialiased ray tracing of implicit surfaces"
- ③ Leseempfehlung: iq's Homepage http://www.iquilezles.org
- ⑤ Leseempfehlung: Keinert et. al. Paper von 2014 "Enhanced Sphere Tracing" http://erleuchtet.org/~cupe/permanent/enhanced_sphere_tracing.pdf
- © Leseempfehlung: Pharr, Jakob, Humphreys Buch von 2016 "Physically Based Rendering From Theory to Implementation"