|  | <b>←</b>                                                                                                                                                                                                                                                                                                                         | revious<br>cem                                                                                                                                            |                                                                                                                          |        | Next<br>Item →     |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|--------------------|
|  | ltem                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                         |                                                                                                                          |        | 10 points          |
|  | For values of $x\in\mathbb{R}$ suppose the linear model $(Y X=x)\sim\mathcal{N}(\mu(x),\sigma^2)$ holds with $E(Y X=x)=\mu(x)=1+2x-x^2$                                                                                                                                                                                          |                                                                                                                                                           |                                                                                                                          |        |                    |
|  | and $\sigma=2$ . Generate $n=50$ observations of $X\sim\mathcal{N}(0,1)$ and calculate the values $\mu(x_i)=1+2x_i-x_1^2, i=1,\dots,n,$ and, having that, sample the resulting values $\boldsymbol{y}=(y_1,\dots,y_n)$ for the response $Y$ by using the following $\mathbb{R}$ code (it is important to use the specific seed): |                                                                                                                                                           |                                                                                                                          |        | and,<br>ant to use |
|  |                                                                                                                                                                                                                                                                                                                                  | (a) What is the sample standard deviation of the sa sample mean values (i) for $\mu(x)=(\mu(x_1),\dots,\mu(x_n))$ precision: 2 digits)                    |                                                                                                                          |        | 1.5 points         |
|  |                                                                                                                                                                                                                                                                                                                                  | sample standard deviation of ${m x}$                                                                                                                      |                                                                                                                          | 0.5    | points             |
|  |                                                                                                                                                                                                                                                                                                                                  | sample mean value (i)                                                                                                                                     |                                                                                                                          | 0.5    | points             |
|  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           |                                                                                                                          | 2      |                    |
|  |                                                                                                                                                                                                                                                                                                                                  | sample mean value (ii)                                                                                                                                    |                                                                                                                          | 0.5    | points             |
|  |                                                                                                                                                                                                                                                                                                                                  | (b) Fit the model $\mu^{(0)}(x)=eta_1x$ . What is the resulti (requested precision: 4 digits)                                                             | ng estimate of the regression coefficient                                                                                | nt?    | 1 point            |
|  |                                                                                                                                                                                                                                                                                                                                  | $\hat{eta_1}$                                                                                                                                             |                                                                                                                          | 2      | 1 point            |
|  |                                                                                                                                                                                                                                                                                                                                  | (c) Fit the model $\mu^{(1)}(x)=\beta_0+\beta_1x+\beta_2x^2$ . What coefficients of $x$ and $x^2$ ? (requested precision: 4 c                             | are the resulting estimates of the regre ligits)                                                                         | ession | 1 point            |
|  |                                                                                                                                                                                                                                                                                                                                  | $\hat{eta}_1$                                                                                                                                             |                                                                                                                          | 0.5    | points             |
|  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           |                                                                                                                          | 0.5    | points             |
|  |                                                                                                                                                                                                                                                                                                                                  | $\hat{eta}_2$                                                                                                                                             |                                                                                                                          | 2      |                    |
|  |                                                                                                                                                                                                                                                                                                                                  | (d) For both models in (b) and (c), calculate $\delta_j:=rac{j}{r}$ $j=0$ and $j=1$ corresponding to the models in (b) digits)                           | $\sum_{i=1}^n (\hat{\mu}^{(j)}(x_i) - \mu(x_i))^2$ for $j \in \{0,1\}$ , and (c), respectively. <b>(requested precis</b> | with   | 1 point            |
|  |                                                                                                                                                                                                                                                                                                                                  | $\delta_0$                                                                                                                                                |                                                                                                                          | 0.5    | points             |
|  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           |                                                                                                                          | 2      |                    |
|  |                                                                                                                                                                                                                                                                                                                                  | $\delta_1$                                                                                                                                                |                                                                                                                          | 0.5    | points             |
|  |                                                                                                                                                                                                                                                                                                                                  | (e) Based on the values of $\delta_j,\ j\in\{0,1\},$ calculated                                                                                           | d in (d), which model do you prefer?                                                                                     |        | 0.5 points         |
|  |                                                                                                                                                                                                                                                                                                                                  | Deselect                                                                                                                                                  |                                                                                                                          |        |                    |
|  |                                                                                                                                                                                                                                                                                                                                  | Model in (c)                                                                                                                                              |                                                                                                                          |        |                    |
|  |                                                                                                                                                                                                                                                                                                                                  | Model in (b)                                                                                                                                              |                                                                                                                          |        |                    |
|  |                                                                                                                                                                                                                                                                                                                                  | (f) For both models in (b) and (c), use the Shapiro-Vevidence against the assumption of normally distriand your decision whether there is evidence or not | buted residuals. Give the resulting p-val                                                                                |        | 4 points           |
|  |                                                                                                                                                                                                                                                                                                                                  | p-value for model in (b)                                                                                                                                  |                                                                                                                          | 2      | 1 point            |

