《密码学》课程设计实验报告

实验序号: 02

实验项目名称:分组密码 DES

学 号		姓 名		专业、班	18信安3-4班
实验地点	网安基地新珈楼 C203	指导教师	王张宜	时间	2020.11.24

一、实验目的及要求

教学目的:

- (1) 掌握分组密码的基本概念;
- (2) 掌握 DES (3DES) 密码算法;
- (3) 了解 DES (3DES) 密码的安全性;
- (4) 掌握分组密码常用工作模式及其特点;
- (5) 熟悉分组密码的应用。

实验要求:

- (1) 复习掌握实验 1(古典密码)使用的置换、代替、XOR、迭代等技术;
- (2) 比较 DES 中代替技术与古典密码中的联系与区别;
- (3) 理解 S 盒、P 置换等部件的安全性准则;
- (4) 实现 DES 算法的编程与优化。
- 二、实验设备(环境)及要求

Windows 操作系统, 高级语言开发环境

- 三、实验内容与步骤
- 1. DES 子密钥扩展算法的实现

输入: 64 位密钥

子过程:

- (1) 置换选择1(教材图3-3)
- (2) 循环左移(教材 表 3-1)
- (3) 置换选择2(教材图3-4)

输出: 16个48位长的子密钥。

2. DES 局部加密函数 f 的实现

加密函数是 DES 的核心部分。它的作用是在第 i 次加密迭代中用子密钥 K_i 对 R_{i-1} 进行加密。

输入: 32 位 R_{i-1} 和 48 位子密钥 K_i

子过程:

- (1) 扩展置换 E (教材 图 3-7): 将 32 位 R_{i-1}扩展为 48 位;
- (2) 异或操作:步骤(1)的48位结果与子密钥 Ki 按位模2相加;
- (3) 代替 S 盒 (教材 表 3-2): 步骤 (2) 的 48 位结果分成 6 位×8 组压缩为 4 位×8 组, 即 32 位输出;
- (4) 置换运算 P (教材 图 3-8): 32 位输入/输出。

输出: 32位 f(R_{i-1}, K_i)

3. DES 加密过程完整实现

- ① 64 位密钥经子密钥产生算法产生出 16 个子密钥: K_1 , K_2 , ... , K_{16} , 分别供第一次,第二次,... ,第十六次加密迭代使用。
- ② 64 位明文首先经过初始置换 IP (Initial permutation),将数据打乱重新排列并分成左 右两半。左边 32 位构成 L。,左边 32 位构成 R。
- ③ 由加密函数 f 实现子密钥 K 对 R 的加密,结果为 32 位的数据组 f (R , K)。f (R , K)再与 L。模 2 相加,又得到一个 32 位的数据组 L0 H (R , K)。以 L0 H (R , K) 作为第二次加密迭代的 R , 以 R 作为第二次加密迭代的 L1。至此,第一次加密迭代结束。
- ④ 第二次加密迭代至第十六次加密迭代分别用子密钥 K_0 , ..., K_{16} 进行,其过程与第一次加密迭代相同。
- ⑤ 第十六次加密迭代结束后,产生一个 64 位的数据组。以 R_6 作为其左边 32 位,以 L_6 作为其右边 32 位,两者合并再经过逆初始置换 IP^{-1} ,将数据重新排列,便得到 64 位密文。至此加密过程全部结束。

综上可将 DES 的加密过程用如下的数学公式描述:

$$\begin{cases}
L_{i} = R_{i-1} \\
R_{i} = L_{i-1} \oplus f(R_{i-1}, K_{i}) \\
i = 1, 2, 3, \dots 16
\end{cases}$$
(3-1)

4. DES 解密过程实现

由于 DES 的运算是对和运算,所以解密和加密可共用同一个运算,只是子密钥使用的顺序不同。

把 64 位密文当作明文输入,而且第一次解密迭代使用子密钥 K_{16} ,第二次解密迭代使用子密钥 K_{16} ,3二次解密迭代使用子密钥 K_{16} ,最后的输出便是 64 位明文。

解密过程可用如下的数学公式描述:

$$\begin{cases}
R_{i-1} = L_i \\
L_{i-1} = R_i \oplus f(L_i, K_i) \\
i = 16, 15, 14, \dots, 1
\end{cases}$$
(3-2)

5. DES的S 盒密码学特性(重点)

通过编程实现或者手工计算,试验证S盒的以下准则:

- ① 输出不是输入的线性和仿射函数;
- ② 任意改变输入中的一位,输出至少有两位发生变化;
- ③ 对于任何 S 盒和任何输入 x,S(x)和 $S(x \oplus 001100)$ 至少有两位不同,这里 x 是一个 6 位的二进制串;
- ④ 对于任何 S 盒和任何输入 x,以及 $y,z \in GF(2)$, $S(x) \neq S(x \oplus 11yz00)$,这里 x 是一个 6 位的二进制串;
- ⑤ 保持输入中的1位不变,其余5位变化,输出中的0和1的个数接近相等。

例如,可通过如下步骤验证②、③两条:

设 S 盒的输入为 X,输出为 Y。(X 和 Y 都以二进制表示)

- (1) 对于已知输入值 $X_1=110010$ 和 $X_2=100010$,分别求出对应的输出值 Y_1 和 Y_2 。
- (2) 比较输出值 Y_1 和 Y_2 各位的异同,即按位计算 $Y_1 \oplus Y_2$ 。

根据上面得出的结果试说明 S 盒对于 DES 的安全性影响。

6.扩展思考

- (1) Feistel 结构为什么可以保证算法的对合性?
- (2) 第16轮为什么不做左右互换?
- (3)如果去掉初始置换和逆初始置换,对算法安全性有影响吗? (提示: 算法 所有的细节都是公开的)
- (4) 证明 DES 解密算法是加密算法的逆,即 DES 的对合性。
- (5) a.设 X' 是对 X 按位取反的结果。证明如果明文和密钥都取反,则密文取反。即

如果
$$Y = E(K, X)$$

那么 $Y' = E(K', X')$

提示: 首先证明对任意两个相同长度的串 A 和 B, 有

$$(A \oplus B)' = A' \oplus B$$
.

- **b.**假设对 DES 的穷举攻击需要搜索 2⁵⁶ 个密钥的密钥空间。a 中的结论对此是否有影响?
- (6)证明 DES 中每个子密钥的前 24 位均来自于初始密钥的同一个子集,该子集有 28 位,而后 24 位来自于初始秘密钥的另外 28 位。

四、实验结果与数据处理

- 1. 程序优化要点
- (1)编程语言及编译器的选择 Java、C、汇编
- (2) 程序优化的三个方向
 - A. 执行速度优化方案:

函数——>宏(消除函数调用和参数传递的时间开销) 循环结构——>顺序结构(消除循环控制变量的额外计算) 预计算——〉造表(空间换取时间)

B. (编译后的)可执行程序的大小; C. 源代码的长度 五、分析与讨论

六、教师评语		成绩
	签名:	
	日期:	

DES S 盒题库

DES S 温趣库								
姓名	S 盒 号码	输入1	输入 2	输入差分	输出1	输出 2	输出差分	
2017301510027 李兆恒	S_1	011011	011111					
2016301500207 肖亦晓	S_3	011100	111100					
2016301500241 杨燏锂	S_4	011110	010110					
2017301500191 吴润泽	S_6	011110	011100					
2017301500330 陈磊	S_8	011010	010010					
2018302060248 张培铭	S_1	101110	101111					
2018302070001 沈思源	S_3	101100	101101					
2018302070131 谌金垚	S_6	000100	100100					
2018302080167 王智超	S_4	110011	110111					
2018302110381 李江旭	S_2	100010	110010					
2018302180056 鲁震豪	S_6	000101	000001					
2018302180057 王晨旭	S ₇	110100	111100					
2018302180059 梅润元	S_2	101110	111110					
2018302180060 吴逸豪	S_2	000000	010000					
2018302180062 翁 斌	S ₇	001101	001111					
2018302180063 袁浩天	S_7	011011	011010					
2018302180064 张展鹏	S ₇	010111	010011					
2018302180068 陈亚楠	S_6	000100	010100					
2018302180069 郭点点	S_5	011110	111110					
2018302180070 程昊天	S ₃	110101	100101					
2018302180073 郭梦卓	S ₈	110111	010111					
2018302180077 郑津哲	S_6	100101	000101					
2018302180079 王怡静	S ₈	100011	100010					
2018302180083 王丹君	S ₃	001010	000010					
2018302180084 倪迩畅	S ₄	011111	011110					
2018302180085 张思远	S ₇	000001	010001					
2018302180086 严诚逸	S ₄	101111	101101					
2018302180087 李宁馨	S ₇	101001	100001					
2018302180088 周渴一	S ₃	111100	111110					
2018302180091 盛威龙	S_2	111100	101100					
2018302180097 易子嘉	S ₇	000000	000010					
2018302180098 陈映江	S ₇	001011	001111					
2018302180099 郭瑞华	S_8	101100	101110					
2018302180151 邱振芳	S_1	100011	100010					
2018302180154 许可	S_3	011101	011111					
2018302180160 唐炜钦	S_8	100101	100100					

2018302180163 李金峰	S_2	111000	111001				
2018302180166 梅荣新	S ₅	000000	010000				
2018302180168 徐搏鸿	S ₇	011100	011000				
2018302180169 叶嘉昕	S ₅	000010	001010				
2018302180174 汪 毓	S_1	100010	101010				
2018302180176 蔡文颂	S_5	111101	111001				
2018302180179 陈思涵	S_6	100100	101100				
2018302180181 潘昱霏	S_6	101110	101111				
2018302180183 曾一帆	S_2	100010	000010				
2018302180184 林玉龙	S_3	111001	110001				
	S_7	001101	011101				
	S_5	001000	101000				
	S ₄	110111	100111				
	S_8	111101	011101				
	S_6	101001	001001				
	S ₅	101001	101011				
	S ₄	111101	111001				
	S_2	010001	000001				
	S_5	011000	011100				
	S_6	100000	000000				
	S_1	111011	101011				
	S ₄	110100	110101				
	S ₇	010100	010110				
	S ₄	111101	011101				
	S_1	000110	001110				
	S ₄	100001	100000				
	S_5	100000	100001				
	S ₇	110010	111010				
	S ₈	100101	100001				
	S_3	111100	101100				
	S ₄	100100	100101				
	S_2	111001	101001				
	S ₈	000011	000111				
	S_6	001010	011010				
例 1	S ₄	111111	111101	000010	1110	0010	1100
例 2	S_2	101110	100110	001000	0001	1011	1010
例 3	S ₁	011010	010010	001000	1001	1010	0011