

Introduction to Computer Graphics (CS360A)

Instructor: Soumya Dutta

Department of Computer Science and Engineering

Indian Institute of Technology Kannur (IITK)

Indian Institute of Technology Kanpur (IITK)

email: soumyad@cse.iitk.ac.in

Acknowledgements

 A subset of the slides that I will present throughout the course are adapted/inspired by excellent courses on Computer Graphics offered by Prof. Han-Wei Shen, Prof. Wojciech Matusik, Prof. Frédo Durand, Prof. Abe Davis, and Prof. Cem Yuksel

Draw using gl.DrawElements()


```
// buffer for point locations
const bufData = new Float32Array([
    0.5, 0.5,
    -0.5, 0.5,
    0.5, -0.5,
    -0.5, -0.5,
]);
```

```
// buffer for point indices
const indices = new Uint16Array([
    0, 1, 2,
    1, 2, 3]);
```

```
// buffer for the point colors
const colors = new Float32Array([
    0.0, 0.0, 1.0,
    0.0, 1.0, 0.0,
    1.0, 0.0, 0.0,
    1.0, 1.0, 0.0,
]);
```

```
// A single draw call is sufficient
gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0);
```


Viewport

- Viewport indicates the current drawing area on the screen space coordinate system
- Specifies the affine transformation of x and y from normalized device coordinates to window coordinates

```
gl.viewportWidth = canvas.width;
gl.viewportHeight = canvas.height;
gl.viewport(0,
gl.viewportWidth,
gl.viewportHeight);
```

Multiple Viewports

Multiple Viewports

- Divide the canvas area into multiple drawing areas (viewports)
- You need to enable SCISSOR_TEST to be able to use multiple viewports
 - gl.enable(gl.SCISSOR_TEST);

```
// Lower left viewport area
gl.viewport(0, 0, 300, 300);
gl.scissor(0, 0, 300, 300);
gl.clearColor(0.9, 0.9, 0.9, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.drawArrays(gl.TRIANGLES, 0, 3);
||||||
// Lower right viewport area
gl.viewport(300, 0, 300, 300);
gl.scissor(300, 0, 300, 300);
gl.clearColor(0.75, 0.75, 0.75, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.drawArrays(gl.TRIANGLES, 0, 3);
```

```
// upper right viewport area
gl.viewport(300, 300, 300, 300);
gl.scissor(300, 300, 300, 300);
gl.clearColor(0.4, 0.4, 0.4, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.drawArrays(gl.TRIANGLES, 0, 3);
// upper left viewport area
gl.viewport(0, 300, 300, 300);
gl.scissor(0, 300, 300, 300);
gl.clearColor(0.2, 0.2, 0.2, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.drawArrays(gl.TRIANGLES, 0, 3);
```

Transformations

• Let's say, we want to build a (2D) scene like the following

Affine Transformations

Translation

Rotation

Scale

Skew

A combination of rotation and scale

- We will learn about Translation, Rotation, and Scale operations in 2D and 3D
- Affine Transformation
 - Linear combination
 - All lines will remain as lines after affine transformation
 - All parallel lines will remain parallel after affine transformation

• Translate vector a to a'

- Translate vector a to a'
- We can do this by adding vector **t** with **a**

- Translate vector a to a'
- We can do this by adding vector **t** with **a**

- Translate vector a to a'
- We can do this by adding vector t with a

- Translate vector a to a'
- We can do this by adding vector t with a

$$a' = a + t$$

$$\begin{bmatrix} a_{x}' \\ a_{y}' \end{bmatrix} = \begin{bmatrix} a_{x} & + tx \\ a_{y} & + ty \end{bmatrix}$$

- Scale vector a to a'
- We can do this by multiplying scalar s with vector a

- Scale vector a to a'
- We can do this by multiplying scalar s with vector a

- Scale vector a to a'
- We can do this by multiplying scalar s with vector a

$$\begin{bmatrix} a_x' \\ a_y' \end{bmatrix} = \begin{bmatrix} sa_x \\ sa_y \end{bmatrix}$$

• Scale vector a to a'

- Scale vector a to a'
- We can do this by multiplying scalars s_x and s_y with vector **a**

- Scale vector a to a'
- We can do this by multiplying scalars s_x and s_y with vector **a**

- Scale vector a to a'
- We can do this by multiplying scalars s_x and s_y with vector a

Non-Uniform scaling
$$\begin{bmatrix} a_x' \\ a_y' \end{bmatrix} = \begin{bmatrix} s_x a_x \\ s_y a_y \end{bmatrix}$$

- Rotate vector ${\bf a}$ to ${\bf a'}$ counterclockwise by angle θ
- How do we find the transformation?
 - Not so straightforward as translation and scaling!

$$\mathbf{a} = a_x \mathbf{x} + a_y \mathbf{y}$$

$$\mathbf{a} = a_x \mathbf{x} + a_y \mathbf{y}$$

$$\mathbf{a} = a_x \mathbf{x} + a_y \mathbf{y}$$

$$a_x \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$$

$$\mathbf{a} = a_x \mathbf{x} + a_y \mathbf{y}$$

$$a_x \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

$$a_y \begin{bmatrix} -sin\theta \\ cos\theta \end{bmatrix}$$

$$\mathbf{a} = a_x \mathbf{x} + a_y \mathbf{y}$$

$$\begin{bmatrix} a_{x}' \\ a_{y}' \end{bmatrix} = a_{x} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} + a_{y} \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} a_{x}' \\ a_{y}' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} a_{x} \\ a_{y} \end{bmatrix}$$

• Rotate vector **a** to **a'** counterclockwise by angle θ

$$\mathbf{a} = a_x \mathbf{x} + a_y \mathbf{y}$$

a' = R a (R is the rotation matrix)

$$\begin{bmatrix} a_{x}' \\ a_{y}' \end{bmatrix} = a_{x} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} + a_{y} \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} a_{x}' \\ a_{y}' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} a_{x} \\ a_{y} \end{bmatrix}$$

• Rotate vector **a** to **a'** counterclockwise by angle θ

$$\mathbf{a} = a_x \mathbf{x} + a_y \mathbf{y}$$

$$\begin{bmatrix} a_{x}' \\ a_{y}' \end{bmatrix} = a_{x} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} + a_{y} \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} a_x' \\ a_y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} a_x \\ a_y \end{bmatrix}$$

a' = R a (R is the rotation matrix)

- Rotation matrices are <u>orthogonal</u> matrices
 - Column/Row vectors are perpendicular to each other
- $R^T = R^{-1}$
- $RR^T = R^TR = I$ (Identity matrix)

Scaling: Represent as a Matrix!

• Scale vector a to a'

Scaling: Represent as a Matrix!

- Scale vector a to a'
- We can do this by multiplying scalars s_x and s_y with vector a

$$\begin{bmatrix} a_x' \\ a_y' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & \mathbf{0} \\ \mathbf{0} & \mathbf{s}_y \end{bmatrix} \begin{bmatrix} a_x \\ a_y \end{bmatrix} = \begin{bmatrix} s_x a_x \\ s_y a_y \end{bmatrix} \quad \text{Scale matrices are } \underline{\text{diagonal}} \quad \text{matrices}$$

a' = S a (S is the scaling matrix)

Skew Operation

 Skew can be shown as a combination of rotation, followed by non-uniform scaling, and another rotation

$$\mathbf{a'} = R_2 S R_1 \mathbf{a}$$

= $S_k \mathbf{a}$ (S_k is the skew matrix)

 Any sequence of rotation and scaling operations now can be combined to a single matrix!

$$\mathbf{a'} = R_4 S_3 R_3 S_2 R_2 S_1 R_1 \mathbf{a}$$

= M a

Rotation (R₂)

Great, let's form the Translation matrix!

Translation: Represent as a Matrix!

Translation?

$$a' = M a + t$$
 $a' = M_2 (M_1 a + t)$
 $a' = M_2 (M_1 a + t_1) + t_2$

This does not seem to be a nice way to add translation into a sequence of transformations!

Homogeneous Coordinates

$$a' = a + t$$
 $a' = T a$

$$\begin{bmatrix} a_{x}' \\ a_{y}' \end{bmatrix} = \begin{bmatrix} a_{x} + tx \\ a_{y} + ty \end{bmatrix}$$

$$\begin{bmatrix} a_x' \\ a_y' \end{bmatrix} = \begin{bmatrix} ? \end{bmatrix} \begin{bmatrix} a_x \\ a_y \end{bmatrix}$$

Homogeneous Coordinates

$$a' = a + t$$
 \Rightarrow $a' = Ta$

$$\begin{bmatrix} a_x' \\ a_y' \end{bmatrix} = \begin{bmatrix} a_x & + tx \\ a_y & + ty \end{bmatrix}$$

$$\begin{bmatrix} a_x' \\ a_y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ 1 \end{bmatrix}$$

Do addition in a matrix multiplication form

Add an extra dimension, to make the math work Homogeneous coordinate!

Great! Now we can do the following!

Summary of 2D Transformations

Translation matrix

$$T = egin{bmatrix} 1 & 0 & t_x \ 0 & 1 & t_y \ 0 & 0 & 1 \end{bmatrix}$$

Scale matrix

$$S = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation matrix

$$R = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Thinking About Affine Transformations

Thinking transformations as deforming the vectors or objects

Thinking About Affine Transformations

Thinking transformations as changing the coordinate frame

Thinking About Affine Transformations

Thinking transformations as changing the coordinate frame

Transformation Matrix Interpretation

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix}$$

Affine transformation matrix

Transformation Matrix Interpretation

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation and Scaling components

Affine transformation matrix

Transformation Matrix Interpretation

$$egin{bmatrix} a & b & c \ d & e & f \ 0 & 0 & 1 \ \end{bmatrix}$$
 Rotation and Scaling community Translation components

Rotation and Scaling components

Affine transformation matrix

Positions vs Directions

- Vectors represent both positions and directions
 - When transforming, are the rules same for position and direction vectors?

Positions vs Directions

- Vectors represent both positions and directions
 - When transforming, are the rules same for position and direction vectors?

For Position vectors:

$$\begin{bmatrix} a_{x'} \\ a_{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{x} \\ a_{y} \\ 1 \end{bmatrix}$$

Positions vs Directions

- Vectors represent both positions and directions
 - When transforming, are the rules same for position and direction vectors?

What if we are interested in the direction?

For Direction vectors:

$$\begin{bmatrix} a_{x}' \\ a_{y}' \\ 0 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{x} \\ a_{y} \\ 0 \end{bmatrix}$$

Revisit Rotation

• The standard rotation matrix rotates objects around the origin (0,0)

$$R = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

But what if I want to rotate around an arbitrary center point?

Revisit Rotation

- To rotate about an arbitrary point P (p_x, p_y) by θ :
- 1. Translate the object so that P will coincide with the origin
- 2. Rotate the object
- 3. Translate the object back

$$\mathbf{a}' = \mathbf{T}(p_x, py) \mathbf{R}(\theta) \mathbf{T}(-px, -py) \mathbf{a}$$

Y-axis

Revisit Scaling

• The standard scaling matrix only pivot around origin (0,0)

$$S = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

But what if I want to scale about an arbitrary pivot point?

Revisit Scaling

- To scale about an arbitrary pivot point P (p_x, p_y) by θ :
- 1. Translate the object so that P will coincide with the origin
- 2. Scale the object
- 3. Translate the object back

$$a' = T(p_x, py) S(s_x, sy) T(-px, -py) a$$

Y-axis

Transformation Order Matters!

Example: Rotation and Translation are not commutative!

Transformation Order Matters!

Example: Rotation and Translation are not commutative!

 Rotate 75 degrees and then Translate (5,0)