

Zaštitno kodiranje II

Teorija informacije

Sadržaj predavanja

- Uvod
 - Komunikacijski sustav; Cilj zašt. kodiranja; Podjela zaštitnih kodova.
- Blok kodovi
 - Uvod
 - Paritetno kodiranje
 - Linearno binarni blok kodovi
 - Generirajuća matrica G i njen standardni oblik
 - Kodiranje
 - Dekodiranje (dekodiranje preko sindroma)
 - Proračun vjerojatnosti ispravnog dekodiranja
 - Hammingovi kodovi
 - Ciklični kodovi

Teorija informacije 2 od 36

Hammingovi i ciklični kodovi

(klasa linearnih blok kodova)

Teorija informacije 3 od 36

Hammingovi kodovi

Teorija informacije 4 od 36

Definicija: Hammingov kôd

Hammingov kôd: Neka je r pozitivan cijeli broj i neka je **H** matrica dimenzija $r \times (2^r - 1)$ čije stupce sačinjavaju svi vektori dimenzije r različiti od **0** iz vektorskog prostora V(r). Matrica **H** je matrica provjere pariteta Hammingovog koda s oznakom $\operatorname{Ham}(r)$.

• Primjer: Matrice provjere pariteta: r = 3, $n = 2^3 - 1 = 7$

$$\mathbf{H}_{1}^{\mathrm{T}} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix}$$

Stupci matrica provjere pariteta su binarni ekvivalenti cijelih brojeva od 1 do 2^r-1!
 Redoslijed je nevažan!

Teorija informacije 5 od 36

Svojstva Hammingovih kodova

Svojstva Hammingovih kodova: Neka je Ham(r) binarni Hammingov kôd. Za r ≥ 2 vrijedi da je Ham(r):

- *linearan blok-kôd* [2^r−1, 2^r−1−*r*];
- ima najmanju distancu 3 (otkriva dvostruku i ispravlja jednostruku pogrešku);
- perfektan kôd.

Veki mogući Hammingovi kodovi i njihove distance!

[n,k,3]	[n,k,5]	[n, k, 7]	[n, k, 9]	[n, k, 11]	[n,k,13]
[3,1,3]	[5,1,5]	[7,1,7]	[9,1,9]	[11,1,11]	[13,1,13]
[5,2,3]	[8,2,5]	[11,2,7]	[14,2,9]	[17,2,11]	[20,2,13]
[6,3,3]	[10,3,5]	[13,3,7]	[17,3,9]	[20,3,11]	[24,3,13]
[7,4,3]	[11,4,5]	[14,4,7]	[19,4,9]	[22, 4, 11]	[26,4,13]
[9,5,3]	[13,5,5]	[15,5,7]	[20,5,9]	[23,5,11]	[27,5,13]
[10,6,3]	[14,6,5]	[17,6,7]	[22,6,9]	[25,6,11]	[29,6,13]
[11,7,3]	[15,7,5]	[18,7,7]	[24,7,9]	[26,7,11]	[32,7,13]
[12,8,3]	[16,8,5]	[19,8,7]	[25,8,9]	[28,8,11]	[34,8,13]
[13,9,3]	[17,9,5]	[20,9,7]	[26,9,9]	[30,9,11]	[35,9,13]
[14,10,3]	[19,10,5]	[21,10,7]	[28,10,9]	[31,10,11]	[36,10,13]

Teorija informacije 6 od 36

Kodiranje pomoću Hammingovog koda

Primjer: Hammingov kôd [7, 4, 3]

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- Generirajuću matricu G nije jednostavno izračunati iz H jer ista nije u standardnom obliku, tj. jednadžba GH^T=0 daje velik broj mogućnosti.
- Potrebno je dobiti <u>sistematičan kôd</u> iz kojeg jednostavno dobivamo poslanu kodiranu poruku.
- Važno svojstvo matrice H: Svaki redak matrice provjere pariteta određuje pozicije simbola kodne riječi čiji zbroj mora bit paran broj (ili jednak 0 u aritm. mod. 2).

Teorija informacije 7 od 36

Formiranje kodne riječi Hammingovog koda

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

prvi redak	Pozicije (1), (3), (5) i (7).
drugi redak	Pozicije (2, 3), (6 i 7),
treći redak	Pozicije (4, 5, 6 i 7),

Ključno pitanje - koji bitovi su zaštitni?

$$x_1 = m_1 + m_2 + m_4 + m_5 + m_7 + \dots = x_3 + x_5 + x_7 + x_9 + \dots$$

$$x_2 = m_1 + m_3 + m_4 + m_6 + m_7 + \dots = x_3 + x_6 + x_7 + x_{10} + x_{11} + \dots$$

$$x_4 = m_2 + m_3 + m_4 + m_8 + m_9 + m_{10} + m_{11} + \dots = x_5 + x_6 + x_7 + x_{12} + x_{13} + x_{13} + x_{15} \dots$$

$$\vdots$$

Teorija informacije 8 od 36

Primjer: formiranje kodne riječi za Hammingov kôd [7, 4, 3]

Poruka 1 0 1 0

Okvir kodne riječi

Teorija informacije 9 od 36

Primjer: generirajuća matrica za Hammingov kôd [7, 4, 3]

- (1) Izbriši one stupce koji su na pozicijama paritetnih bitova
- (2) Dobivenu matricu transponiraj
- (3) Stupce transponirane matrice postavi na pozicije 1, 2, 4, 8, 16, ...
- (4) Ostatak stupaca popuni jediničnom matricom

$$\mathbf{I}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Primjer: sindrom za Hammingov kôd [7, 4, 3]

<u>Napomena:</u> Vrijedi samo za standardni način formiranja Hammingovih riječi!

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

e	S(y)	CJELOBROJNI EKVIVALENT	
1 0 0 0 0 0 0	1 0 0	1	
0 1 0 0 0 0 0	0 1 0	2	
0 0 1 0 0 0 0	1 1 0	3	
0 0 0 1 0 0 0	0 0 1	4	
0 0 0 0 1 0 0	1 0 1	5	
0 0 0 0 0 1 0	0 1 1	6	
0 0 0 0 0 0 1	1 1 1	7	

Teorija informacije 11 od 36

Primjer: određivanje sindroma bez matrice provjere pariteta (1/2)

Pogreška je na poziciji br. 6, a ispravna kodna riječ 1 0 1 1 0 1 0

Teorija informacije 12 od 36

Primjer: određivanje sindroma bez matrice provjere pariteta (2/2)

Pogreška je na poziciji br. 2, a ispravna kodna riječ 1 0 1 1 0 1 0

Teorija informacije 13 od 36

Ciklični kodovi

Teorija informacije 14 od 36

Definicija: ciklični kôd

Ciklični kôd: Blok kôd K je ciklični kôd ako je:

- linearan blok-kôd i
- ako bilo koji ciklični posmak kodne riječi iz K opet daje kodnu riječ iz K.

Ako je 11110000 kodna riječ, onda su kodne riječi i

Teorija informacije 15 od 36

01111000

Polinomski zapis kodne riječi

Kodna riječ [a_{n-1} a_{n-2}... a₂ a₁ a₀] cikličnog koda može se poistovjetiti s
polinomom stupnja n – 1:

$$\mathbf{a} = [a_{n-1} \dots a_2 \ a_1 \ a_0] \iff \ a(x) = a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x^1 + a_0 x^0$$

a(x) ne promatramo kao funkciju, nego čisto kao način zapisa. Na primjer,

$$a_{n-1}\left(x^{n}-1\right)+a_{n-2}x^{n-1}+\ldots+a_{1}x^{2}+a_{0}x^{1}+a_{n-1}x^{0} \quad : \quad x^{n}-1=a_{n-1}$$
 Koeficij $-a_{n-1}\left(x^{n}-1\right)$ aritmeti
$$a_{n-2}x^{n-1}+\ldots+a_{1}x^{2}+a_{0}x^{1}+a_{n-1}x^{0} \qquad \leftarrow ostatak \ nakon \ dijeljenja.$$

$$= a_{n-1}\left(x^{n}-1\right)+a_{n-2}x^{n-1}+\ldots+a_{1}x^{2}+a_{0}x^{1}+a_{n-1}x^{0}.$$

Nad polinomima kodnih riječi vršimo operacije u aritmetici modulo x^n-1 ! Zbrajanje polinoma odgovora zbrajanju vektora, a množenje s x odgovara cikličnom posmaku ulijevo.

Teorija informacije 16 od 36

Primjer: ciklični posmak kodne riječi

• a= [1 0 1] – polinom je $a(x) = x^2 + 1$, duljina riječi n = 3

$$b'(x) = a(x) \cdot x = x^{3} + x,$$

$$x^{3} + x : x^{3} - 1 = 1$$

$$-x^{3} + 1$$

$$x + 1 \leftarrow ostatak \ nakon \ dijeljenja.$$

- b = [0 1 1] kodna riječ nastala cikličnim posmakom kodne riječi a ulijevo za jedno mjesto!
- Svaka kodna riječ duljine n je polinom stupnja n 1 i nad njim sve operacije provodimo u aritmetici mod xⁿ –1;
- Skup svih riječi u mod $x^n 1$ aritmetici označavamo s R_n ;
- Ciklični kôd je neki podskup od R_n:

$$K \subset Rn$$

Teorija informacije 17 od 36

Uvjeti za cikličan kôd

Uvjeti za cikličan kôd: Kôd $K \subset R_n$ je cikličan kôd ako i samo ako K zadovoljava sljedeća dva uvjeta:

- $\forall a(x), b(x) \in K$, vrijedi $a(x) + b(x) \in K$ (svojstvo linearnosti);
- $\forall a(x) \in K i \forall r(x) \in R_n$, $vrijedi r(x) \cdot a(x) \mod(x^n-1) \in K$.

Kako dobiti sve kodne riječi nekog cikličkog koda?

- izaberi bilo koji polinom f(x) najvećeg stupnja n-1;
- sve kodne riječi cikličnog koda K dobit će se množenjem svih $r(x) \in R$ s f(x);

Kaže se da je kôd K generiran polinomom f(x):

$$K \equiv \langle f(x) \rangle = \{ r(x) f(x) | r(x) \in R_n \}.$$

f(x) je kodna riječ koda K!

Primjer: generiranje cikličnog koda

- Polinom kojim se generira kôd *K*: $f(x) = x^2 + 1$
- n=3, broj polinoma u R^n je $2^3 = 8$.

$$(0x^{2} + 0x + 0) \cdot (x^{2} + 1)(\text{mod}(x^{3} - 1)) = 0x^{2} + 0x + 0 \quad [000]$$

$$(0x^{2} + 0x + 1) \cdot (x^{2} + 1)(\text{mod}(x^{3} - 1)) = 1x^{2} + 0x + 1 \quad [101]$$

$$(0x^{2} + 1x + 0) \cdot (x^{2} + 1)(\text{mod}(x^{3} - 1)) = 0x^{2} + 1x + 1 \quad [011]$$

$$(0x^{2} + 1x + 1) \cdot (x^{2} + 1)(\text{mod}(x^{3} - 1)) = 1x^{2} + 1x + 0 \quad [110]$$

$$(1x^{2} + 0x + 0) \cdot (x^{2} + 1)(\text{mod}(x^{3} - 1)) = 1x^{2} + 1x + 0 \quad [110]$$

$$(1x^{2} + 0x + 1) \cdot (x^{2} + 1)(\text{mod}(x^{3} - 1)) = 0x^{2} + 1x + 1 \quad [011]$$

$$(1x^{2} + 1x + 0) \cdot (x^{2} + 1)(\text{mod}(x^{3} - 1)) = 1x^{2} + 0x + 1 \quad [101]$$

$$(1x^{2} + 1x + 1) \cdot (x^{2} + 1)(\text{mod}(x^{3} - 1)) = 0x^{2} + 0x + 0 \quad [000]$$

$$K = \begin{cases} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{cases} \qquad \qquad \mathbf{G} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Generirajući polinom cikličnog koda

Generiranje cikličnog koda: Neka je K ciklični kôd dimenzije veće od 1, podskup od R_n .

- Postoji jedinstven polinom g(x) najmanjeg stupnja u K.
- Kôd K je generiran upravo polinomom g(x).
- g(x) je faktor polinoma $x^n 1$, $tj. x^n 1 = g(x) \cdot q(x)$.

Polinom g(x) koji zadovoljava ovo svojstvo nazivamo:

Generirajući polinom cikličkog koda

Primjer: g(x) je jedan od faktora polinoma $x^{15} - 1$:

$$x^{15} - 1 = (x + 1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)$$

Svaki faktor generira jedan mogući ciklički kôd, pa faktoriziranjem polinoma $x^{15}-1$ praktički dobivamo 5 različitih cikličkih kodova s generirajućim polinomima:

$$g_1(x) = x + 1$$
, $g_2(x) = x^2 + x + 1$, $g_3(x) = x^4 + x + 1$, $g_4(x) = x^4 + x^3 + 1$, $g_5(x) = x^4 + x^3 + x^2 + x + 1$

Teorija informacije 20 od 36

Generirajuća matrica cikličnog koda

Generirajuća matrica cikličnog koda: Neka je generirajući polinom cikličnog koda $K \subset R_n$:

$$g(x) = g_r x^r + ... + g_2 x^2 + g_1 x + g_0.$$

Onda je dimenzija koda k = n - r, a generirajuća matrica koda je:

$$\mathbf{G} = \begin{bmatrix} g_r & g_{r-1} & g_{r-2} & \cdots & g_1 & g_0 & 0 & 0 & \cdots & 0 \\ 0 & g_r & g_{r-1} & g_{r-2} & \cdots & g_1 & g_0 & 0 & \cdots & 0 \\ 0 & 0 & g_r & g_{r-1} & g_{r-2} & \cdots & g_1 & g_0 & \vdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & g_r & g_{r-1} & g_{r-2} & \cdots & g_1 & g_0 \end{bmatrix}.$$

- Broj redaka matrice **G** odgovara dimenziji koda k = n r,
- Broj stupaca matrice G odgovara duljini kodne riječi n;
- Što je stupanj generirajućeg polinoma g(x) veći, dimenzija koda je manja!

Teorija informacije 21 od 36

Primjer: generirajuća matrica cikličnog koda (n = 5)

$$n = 5$$
 $x^5 - 1 = (x+1)(x^4 + x^3 + x^2 + x + 1)$

Potencijalni generirajući polinomi:
$$\begin{cases} g_1(x)=x+1 & r=1, k=5-1=4 \\ g_2(x)=x^4+x^3+x^2+x+1 & r=4, k=5-4=1 \end{cases}$$

$$g_{1}(x) = x + 1$$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$k = 4$$

$$n = 5$$

$$g_2(x) = x^4 + x^3 + x^2 + x^1 + 1$$

$$G = [1 1 1 1 1 1]$$

Faktorizacije nekih polinoma oblika

n	aritmetika	faktorizacija u aritmetici modulo 2
1	$x^{1}-1$	x+1
2	$x^2 - 1$	$(x+1)^2$
3	$x^3 - 1$	$(x+1)(x^2+x+1)$
5	$x^5 - 1$	$(x+1)(x^4+x^3+x^2+x+1)$
7	$x^7 - 1$	$(x+1)(x^3+x+1)(x^3+x^2+1)$
9	$x^9 - 1$	$(x+1)(x^2+x+1)(x^6+x^3+1)$
11	$x^{11}-1$	$(x+1)(x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)$
13	$x^{13}-1$	$(x+1)(x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)$
15	$x^{15}-1$	$(x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$
17	$x^{17}-1$	$(x+1)(x^8+x^5+x^4+x^3+1)(x^8+x^7+x^6+x^4+x^2+x+1)$
19	$x^{19}-1$	$(x+1)(x^{18}+x^{17}+x^{16}++x^4+x^3+x^2+x+1)$

Teorija informacije 23 od 36

Standardni oblik generirajuće matrice

ullet Traženi oblik matrice **G**: $\mathbf{G} = egin{bmatrix} \mathbf{I}_k & \mathbf{A} \end{bmatrix}$.

ALGORITAM:

- I. Upiši g(x) u binarnom obliku u k-ti redak.
- II. (k 1)-vi redak dobije se cikličnim posmakom k-tog retka za jedno mjesto u lijevo. Ovo odgovara operaciji xg(x).
- k-ti stupac mora u (k 1)-om retku imati nulu kako bi imali standardni oblik matrice G.
 - Ako je 1 \rightarrow na (k 1)-i redak treba dodati k-ti redak (aritm. mod. 2);
- III. Za (k 2) redak treba primijeniti postupak iz točke II.
 - Napraviti ciklični posmak (k 1)-og retka za jedno mjesto u lijevo.
 - Ako k—ti stupac u (k 2)-om retku ima 1 \rightarrow dodaj na (k 2)-i redak k-ti redak (aritm. mod. 2);
- Ponavljaj algoritam za svaki sljedeći redak sve dok se ne popuni matrica G.

Teorija informacije 24 od 36

Primjer: standardni oblik generirajuće matrice **G**

• Neka je $g(x) = x^4 + x^3 + x^2 + 1$ i neka je dan ciklični kôd [n, k] = [7, 3].

Teorija informacije 25 od 36

Matrica provjere pariteta cikličnog koda

Polinom za provjeru pariteta: Neka je K ciklični kôd duljine n i dimenzije k [n,k] s generirajućim polinomom g(x). Neka je h(x) polinom koji zadovoljava jednadžbu:

$$x^n - 1 = g(x) \cdot h(x)$$
.

h(x) se zove **polinom za provjeru pariteta** cikličnog koda K.

Matrica provjere pariteta cikličnog koda: Neka je $K \subset R_n$ ciklični kôd duljine n i dimenzije k s generirajućim polinomom g(x) i polinomom za provjeru pariteta

$$h(x) = h_k x^k + ... + h_2 x^2 + h_1 x + h_0.$$

- Bilo koji polinom c(x) koda K zadovoljava jednakost $c(x) \cdot h(x) = 0$.
- Paritetna matrica koda K je:

$$\mathbf{H} = \begin{bmatrix} h_0 & h_1 & h_2 & \cdots & h_{k-1} & h_k & 0 & 0 & \cdots & 0 \\ 0 & h_0 & h_1 & h_2 & \cdots & h_{k-1} & h_k & 0 & \cdots & 0 \\ 0 & 0 & h_0 & h_1 & h_2 & \cdots & h_{k-1} & h_k & \vdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & h_0 & h_1 & h_2 & \cdots & h_{k-1} & h_k \end{bmatrix}$$

Teorija informacije 26 od 36

Primjer: matrica provjere pariteta cikličnog koda (n = 7)

Promatramo ciklički kod n = 7: $g(x) = x^3 + x^2 + 1$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

$$x^7 - 1 = (x+1)(x^3 + x + 1)(x^3 + x^2 + 1)$$

$$x^{7}-1=(x+1)(x^{3}+x+1)(x^{3}+x^{2}+1)$$

$$h(x) = 1+x^{2}+x^{3}+x^{4}$$
1 0 1 1 1

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & & & & \end{bmatrix} \stackrel{\uparrow}{r} = 3$$

27 od 36

Implementacija kodera cikličnog koda (1/2)

- Duljina kodne riječi može biti iznimno velika!
- Generirajuća i paritetna matrica imaju prevelike dimenzije za praktičnu implementaciju.
- Želimo kodnu riječ koja je sistematična tako da odmah možemo razlučiti zaštitne bitove od bitova kodirane poruke:

Rješenje:

Cikličku provjeru zalihosti izračunati na osnovu podatkovnog dijela!

Teorija informacije 28 od 36

Implementacija kodera cikličnog koda (2/2)

- d(x) polinom kodirane poruke: $\begin{bmatrix} 1 & 0 & 1 & 1 & 1 \end{bmatrix} \rightarrow d(x) = x^4 + x^2 + x + 1$
- d(x) se može pomnožiti s x^r , gdje je r stupanj generirajućeg polinoma:

$$d(x) \cdot x^r = g(x)q(x) + r(x). - \text{ostatak nakon dijeljenja s } g(x)$$
 generirajući polinom - kvocijent

Svaki polinom pomnožen s g(x) u aritmetici $\text{mod } x^n - 1$ je neka kodna riječ c(x) koda K, pa je i $g(x) \cdot q(x)$ neka kodna riječ. Stoga se bilo koja kodna riječ može dobiti kao zbroj:

$$c(x) = g(x)q(x) = d(x) \cdot x^r + r(x),$$

$$r(x) = d(x) \cdot x^r \mod[g(x)].$$

Teorija informacije 29 od 36

Primjer: Generiranje CRC-a

- Poruka je: $\mathbf{d} = [1 \ 0 \ 1 \ 0], \ \mathbf{tj}. \ d(x) = x^3 + x,$
- Generirajući polinom: $g(x) = x^3 + x + 1 [1 \ 0 \ 1 \ 1],$
- Umnožak: $d(x) \cdot x^3 = x^6 + x^4 [1 \ 0 \ 1 \ 0 \ 0 \ 0].$

Teorija informacije 30 od 36

Primjer: Dijeljenje polinoma - Generiranje CRC-a

Teorija informacije 31 od 36

a

- $(1) \quad R_3 \quad = \quad R_2 \oplus (R_3 \cdot g_2)$
- $(2) R_2 = R_1 \oplus (R_3 \cdot g_1)$
- (3) $R_1 = \text{ulazni bit } \oplus (R_3 \cdot g_0),$

Teorija informacije 32 od 36

Implementacija dekodera (1/4)

- Proračun sindroma ima preveliku složenost zbog velike duljine kodnih riječi.
- Temeljno pitanje: Možemo li sindrom izračunati principom sličnim izračunu zalihosnog dijela CRC?
- Smisao sindroma: Svaka kodna riječ na kojoj je nastupila pogreška na istoj poziciji mora imati isti sindrom!

e				S(y)
$0\ 0\ 0\ 0\ 0$	11100	00111	11011	000
$0\ 0\ 0\ 0\ 1$	11101	00110	11010	001
00010	11110	00101	11001	010
00100	$1\ 1\ 0\ 0\ 0$	$0\ 0\ 0\ 1\ 1$	11111	100
$0\ 1\ 0\ 0\ 0$	10100	01111	10011	101
10000	01100	10111	01011	110

Teorija informacije 33 od 36

Implementacija dekodera (2/4)

$$e(x)$$
 je polinom pogreške: $e = [1 \ 0 \ 0 \ 1 \ 1], \ e(x) = x^4 + x + 1$

Primljena kodna riječ: y(x) = c(x) + e(x).

Što dobivamo funkcijom $S[y(x)] = x^r \cdot y(x) \mod g(x)$?

$$S[y(x)] = x^{r}y(x) \mod g(x)$$

$$= x^{r}[c(x) + e(x)] \mod g(x)$$

$$= x^{r}c(x) \mod g(x) + x^{r}e(x) \mod g(x)$$

$$= S[c(x)] + S[e(x)].$$

$$c(x) = g(x)q(x) | \cdot x^r \implies$$

$$c(x)x^r = g(x)q(x)x^r.$$

Ako $c(x) \cdot x^r$ podijelimo s g(x) ostatak je 0!

$$S[c(x)] = x^r \cdot c(x) \mod g(x) = 0.$$

Teorija informacije 34 od 36

Implementacija dekodera (3/4)

Primjenom funkcije $S[y(x)] = x^r \cdot y(x) \mod g(x)$ na primljenu kodnu riječ y(x) dobivamo:

$$S[y(x)] = S[c(x)] + S[e(x)] = S[e(x)],$$

S[y(x)] za kodne riječi s istom pogreškom uvijek daje isti rezultat!

S[y(x)] je funkcija za računanje sindroma primljene kodne riječi!!!

$$S[y(x)] = x^r \cdot y(x) \mod [g(x)]$$
$$r(x) = d(x) \cdot x^r \mod [g(x)].$$

JOŠ VAŽNIJE:

Sindrom se određuje na IDENTIČAN način kao i zaštitni dio kodne riječi. Slijedi da je i sklop za računanje sindroma jednak onome za izračunavanje CRC-a!

Teorija informacije 35 od 36

Implementacija dekodera (4/4)

Primjer dekodera za slučaj koda (7, 4, 3) s generirajućim polinomom: $g(x) = x^3 + x + 1$

Želimo detektirati pogrešku na 4. bitu $-e(x)=x^3$

$$S[y(x)] = S[e(x)] = x^{2} + 1$$
$$q = R_{3} \cdot \overline{R_{2}} \cdot R_{1}$$

Tablica sindroma

e(x)	S[e(x)]
1	x+1
х	$x^2 + x$
x^2	$x^2 + x + 1$
x^3	$x^2 + 1$
x^4	I
x^5	Х
x^6	x^2

Teorija informacije 36 od 36