Matemática Financiera

Autor: José M. Martín Senmache Sarmiento

Capítulo 3: Tasa de Interés Compuesta o Nominal

Solución de Ejercicio Nº54

e-financebook

- 54. El 1º de Noviembre del 2006 **Sebastián** abrió una cuenta de ahorro con US\$ 80,000.00 recibiendo el ofrecimiento de una tasa de interés nominal anual (TNA) de 4.86% con capitalización diaria (c.d.), sin embargo el 1º de enero la tasa de interés bajo a 3.60% nominal anual (TNA) con la misma capitalización.
 - a) ¿Cuánto recibirá Sebastián si decide retirar su dinero a los 150 días?
 - b) Si no retirase su dinero y la tasa no sufre variación durante los siguientes 150 días, ¿Cuánto tendrá al finalizar este período?

Respuestas: a) US\$ 81,382.54, b) US\$ 82,612.42

DATOS		
Nombre	Descripcion	Valor
С	Valor presente del préstamo	80,000.00
TN 1	Tasa de Interés Nominal Anual (TNA)	4.86%
c.d. 1	Periodo de capitalización	Diaria
TN 2	Tasa de Interés Nominal Anual (TNA)	3.60%
c.d. 2	Periodo de capitalización	Diaria
Fecha 1	Fecha de apertura de cuenta	01/11/2006
Fecha 2	Fecha de cambio en la tasa	01/01/2007

FÓRMULAS		
Número	Fórmula	
9	$S = C * \left(1 + \frac{TN}{m}\right)^n$	

SOLUCIÓN

a) Usamos calendario ordinario:

Para el conteo de días, tomamos en cuenta simpre el primer día y nunca el ultimo día, entonces:

$$t_{tdias} = 01/01/2007 - 01/11/2006$$

$$t_{\text{días}}\,=30+31$$

$$t_{\text{días}} = 61$$

TNA
$$4.86\% \leftarrow \frac{m = 360}{}$$
 c.d. $\frac{n = 61}{}$ $t = 61$ días

$$S = C * (1 + \frac{TNA}{m})^n$$

$$S = 80,000.00 * (1 + \frac{4.86\%}{360})^{61}$$

$$S = 80,661.48$$

Luego reinvertimos dicho dinero en los siguientes 89 (150 - 61) días.

$$t_{\text{días}}\,=150-61$$

$$t_{\text{días}} = 89$$

TNA
$$3.60\% \leftarrow \frac{m = 360}{}$$
 c.d. $\frac{n = 89}{}$ $t = 89$ días

$$S = C * (1 + \frac{TNA}{m})^n$$

$$S = 80,661.48 * (1 + \frac{3.60\%}{360})^{89}$$

$$S = 81,382.54$$

b) Ahora $t_{días} = 150$ días adicionales

TNA
$$3.60\% \leftarrow \frac{m = 360}{}$$
 c.d. $\frac{n = 150}{}$ t = 150 días

$$S = C * (1 + \frac{TNA}{m})^{n}$$

$$S = 81,382.54 * (1 + \frac{3.60\%}{360})^{150}$$

$$S = 82,612.42$$