

INSTITUTO POLITÉCNICO DE LEIRIA Escola Superior de Tecnologia e Gestão REDES DE DADOS

Trabalho laboratorial de Apoio

LAN Switching e Virtual LAN (VLAN)

Objetivos:

1ª parte: Configurações básicas num switch

- a) Executar as configurações básicas num switch
- b) Criar VLANs
- c) Atribuir interfaces a VLANs

2ª parte: Configurar um trunk para a ligação entre switch

- a) IP e Trunk
- b) Configurar a VLAN de Gestão num switch
- c) Configurar o envio de mensagens syslog para um servidor
- d) Validar o envio de mensagens de syslog a partir do switch

3ª Parte: Reflexões

1) Configurações básicas num switch

Cenário 1

a. Configurações iniciais dos switches

- i. Crie a rede apresentada no cenário 1 no Packet Tracer. Utilize um switch 2960.
- ii. Execute as seguintes configurações básicas no switch S1:
 - Nome do equipamento (hostname);
 - Password encriptada "class" no ficheiro de configuração para acesso ao modo privileged EXEC (modo de configuração);
 - Password "cisco" para acesso ao switch através da consola e através de Telnet;
 - MOTD banner com a seguinte informação:

iii. Configure os PC com o seguinte endereçamento IP e complete a tabela:

Equipamento	MAC	IP	Máscara de rede	Default Gateway
PC A		192.168.10.1	255.255.255.0	192.168.10.254
PC B		192.168.20.1	255.255.255.0	192.168.20.254

É possível efetuar um ping com sucesso do PC A para o PC B? não

Justifique. Redes diferentes

Qual o comando que permite obter a informação abaixo apresentada? show vlan brief

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4
			Fa0/5, Fa0/6, Fa0/7, Fa0/8
			Fa0/9, Fa0/10, Fa0/11, Fa0/12
			Fa0/13, Fa0/14, Fa0/15, Fa0/16
			Fa0/17, Fa0/18, Fa0/19, Fa0/20
			Fa0/21, Fa0/22, Fa0/23, Fa0/24
			Gig1/1, Gig1/2
1002	fddi-default		act/
1003	token-ring-default		act/
1004	fddinet-default		act/
1005	trnet-default		act/

Justifique. Um switch propaga o tráfego de Broadcast

iv. Altere o endereçamento do PC B para:

Equipamento	IP	Máscara de rede	Default Gateway
PC B	192.168.10.2	255.255.255.0	192.168.10.254

É possível efetuar um ping com sucesso do PC A para o PC B? Sim

v. Verifique as tabelas de ARP dos PC bem como a tabela de MAC do *switch*. Deverá encontrar correspondência entre os vários elementos para que as *frames* Ethernet circulem corretamente entre o PC A e PC B. Exemplo:

PC A:

PC>ipconfig/all

Physical Address:	0001.C988.AE0C
IP Address:	192.168.10.1
Subnet Mask:	255.255.255.0
Default Gateway:	192.168.10.254

PC>arp -a

Internet Address	Physical Address	Type
192.168.10.2	00d0.bc31.1650	dynamic

PC B:

PC>ipconfig /all

Physical Address:	00D0.BC31.1650
IP Address:	192.168.10.2
Subnet Mask:	255.255.255.0
Default Gateway:	192.168.10.254

PC>arp -a

Internet Address	Physical Address	Type
192.168.10.1	0001.c988.ae0c	dynamic

Switch S1:

S1#sh mac-address-table

SI#SII IIIa	c-address-table		
	Mac Address Tab	le	
Vlan	Mac Address	Туре	Ports
1	0001.c988.ae0c	DYNAMIC	Fa0/1
1	00d0.bc31.1650	DYNAMIC	Fa0/2

b. Criação de VLAN

No switch S1, crie VLAN 10, com o nome REDE-A e VLAN 20, com o nome REDE-B

i. Identifique os comandos que introduziu no switch de forma a criar os nomes das VLAN.

Conf t; vlan 10; name REDE-A e vlan 20; name REDE-B

ii. Que comando lhe permite visualizar as VLAN criadas?

Show interface fastEthernet 0/1 switchport

c. Atribuir interfaces do switch a VLAN

 Através do comando show interface switchport verifique o estado atual do interface fa0/1 (ligação ao PC A).

```
Name: Fa0/1
Switchport: Enabled
Administrative Mode: dynamic auto
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
```

ii. Configure o *switch* S1 para que o PC A pertença à VLAN **REDE-A** e o PC B à VLAN **REDE-B**. Identifique os comandos utilizados.

```
Conf t; int fa 0/1; switchport mode access; switchport access vlan 10; end int fa 0/2; switchport mode access; switchport access vlan 20; end
```

Verifique as alterações ocorridas na interface fa0/1.

```
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 10 (REDE-A)
```

Justifique. VLAN diferentes

iii. Verifique novamente a tabela de MAC do *switch*. Depois de tentar efetuar um *ping* do PC A para o PC B e outro do PCB para o PC A deverá obter algo semelhante (à exceção dos MAC) a:

Dê a sua interpretação da tabela acima. As VLAN 10 e 20 estão ativas

iv. Altere novamente o endereçamento do PC B para os seus valores iniciais:

Equipamento	IP	Máscara de rede	Default Gateway
РС В	192.168.20.1	255.255.255.0	192.168.20.254

2) Configurar um trunk para a ligação entre switch

Cenário 2

a. Conectividade IP e Trunk

- i. Configure o Cenário 2, mantendo as configurações anteriores do switch S1.
- ii. Através do comando show interface switchport verifique o estado atual da interface Gig 1/1

```
Name: Gig1/1
Switchport: Enabled
Administrative Mode: dynamic auto
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: On
```

iii. Configure o trunk entre os switches S1 e S2, através do comando switchport mode trunk.

Verifique as alterações que ocorreram na interface Gig 1/1

```
Name: Gig1/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
```

Verifique as configurações atuais dos trunks, através do comando show interface trunk.

Port Gig1/1	Mode on	Encapsulation 802.1q	Status trunking	Native 1	vlan
Port Gig1/1	Vlans allowe 1-1005	ed on trunk			
Port Gig1/1	Vlans allowed 1,10,20	ed and active in	management do	main	
Port Gig1/1	Vlans in spa 1,10,20	nning tree forw	arding state a	nd not p	runed

iv. Configure o *router* R1 para que sirva de *gateway* para o PC A através do interface fa0/0 e para o PC B através do interface fa0/1. Registe os *endereços/mask* atribuídos.

Fa0/0: ip address 192.168.10.254 255.255.255.0	
Fa0/1: ip address 192.168.20.254 255.255.255.0	

v. Configure o *smitch* S4 para que os dois interfaces de ligação com o Router R1 pertençam às VLAN corretas, i.e., às VLAN que irão permitir a conetividade entre os PC e respetivos *gatemays*. Identifique os comandos utilizados. Conf t; int fa 0/1; switchport mode access; switchport access vlan 10; int fa 0/2; switchport mode access; switchport access vlan 20; end

Consegue 6	efetuar um <i>ping</i>	entre os PC e o	os respetivos g	ateways? <mark>Não</mark>	

vi. Efetue as configurações que faltam de forma a garantir a conetividade bidirecional entre os PC e as suas gateways. Registe as configurações efetuadas, indicando o(s) equipamento(s) em questão.

Inserir os trunks em falta entre (S4 - S3) e (S3 - S2).

Porque é que se verifica esse comportamento? Falta configurar os trunks (S4 - S3) e (S3 - S2).

Deverá conseguir visualizar na tabela de ARP do Router R1 todas as entradas que permitem a comunicação entre o PC A e o PC B:

R1#show arp								
Protocol	Address	Age	(min)Hardware Addr	Type	Interface		
Internet Internet	192.168.10.1 192.168.10.254 192.168.20.1 192.168.20.254		16 - 16 -	0001.C988.AE0C 0030.F220.0C01 00D0.BC31.1650 0030.F220.0C02	ARPA ARPA ARPA ARPA	FastEthernet0/0 FastEthernet0/0 FastEthernet0/1 FastEthernet0/1		

b. Configuração da VLAN de gestão nos switches

i. Configure os *switches* para garantir conetividade IP para gestão na **VLAN 99** com o nome "Management". O endereçamento IP a configurar nos diversos *switches* deverá ser o seguinte:

Equipamento	IP	Máscara de rede	Default Gateway
S1	10.10.10.1	255.255.255.0	10.10.10.254
S2	10.10.10.2	255.255.255.0	10.10.10.254
S 3	10.10.10.3	255.255.255.0	10.10.10.254
S4	10.10.10.4	255.255.255.0	10.10.10.254

Registe a configuração efetuada no *switch* S1. Interface vlan 99; ip address 10.10.10.1 255.255.255.0; no shutdown

Consegue efetuar um *ping* entre os *switches*? Sim

Justifique. Todos os switches estão na mesma VLAN 99 e pertence à mesma rede IP

ii. Os *swiches* também têm uma tabela de ARP. Pesquise qual o comando utilizado para a visualizar? Show arp

iii. Adicione uma ligação de S4 ao servidor de acordo com o diagrama apresentado no cenário seguinte e configure o servidor com os dados apresentados na tabela seguinte.

Equipamento	IP	Máscara de rede	Default Gateway
Syslog Server	10.10.10.100	255.255.255.0	10.10.10.254

iv. Consegue efetuar um ping entre os switches e o Syslog Server? Sim

c. Configuração do envio de mensagens syslog a partir dos switches

i. Coloque o servidor no modo de visualização do serviço de Syslog:

- ii. Configure os *switches* para que sejam enviadas mensagens de *syslog* para o servidor configurado na tarefa anterior. Para tal, em cada um dos *switch*, efetuar o comando logging 10.10.10.100.
- iii. Simule a falha da ligação entre o PC A e o *switch* S1, através de um *shutdown* no interface fa0/1. Verifique a ocorrência do envio de mensagens de *syslog* para o servidor.

3) Reflexões

- i. De que forma poderia adicionar o Router R1 à rede de Gestão, para enviar as suas mensagens de syslog para o Syslog Server?
 - a) Adicionar uma nova ligação física entre o switch S4 e o Router R1.
 - b) Atribuir IP 10.10.10.254 ao interface do router utilizado para a ligação anterior.
 - c) Adicionar ao R1 o comando Logging 10.10.10.100
 - d) Associar a porta do switch S4, utilizada para a ligação anterior, à VLAN 99 (Gestão).
- ii. Indique qual a principal desvantagem da utilização desta abordagem de interligação de VLAN, através de um *router* convencional?
 - Requer a utilização de muitas interfaces físicas no router, uma para cada VLAN, tradicionalmente caras.

```
Em todos os swiches colocar:
VLAN 10
name REDE-A
VLAN 20
name REDE-B
VLAN 99
name Management
S1#sh run
hostname S1
interface FastEthernet0/1
switchport access vlan 10
switchport mode access
interface FastEthernet0/2
switchport access vlan 20
switchport mode access
interface GigabitEthernet1/1
switchport trunk native vlan 99
switchport mode trunk
interface Vlan1
no ip address
interface Vlan99
ip address 10.10.10.1 255.255.255.0
ip default-gateway 10.10.10.254
logging 10.10.10.100
S2#sh run
hostname S2
```

```
interface GigabitEthernet1/1
switchport trunk native vlan 99
switchport mode trunk
interface GigabitEthernet1/2
switchport trunk native vlan 99
switchport mode trunk
interface Vlan1
no ip address
interface Vlan99
ip address 10.10.10.2 255.255.255.0
ip default-gateway 10.10.10.254
logging 10.10.10.100
S3#sh run
hostname S3
interface GigabitEthernet1/1
switchport trunk native vlan 99
switchport mode trunk
interface GigabitEthernet1/2
switchport trunk native vlan 99
switchport mode trunk
interface Vlan1
no ip address
interface Vlan99
ip address 10.10.10.3 255.255.255.0
ip default-gateway 10.10.10.254
logging 10.10.10.100
```

```
S4#sh run
hostname S4
interface FastEthernet0/1
switchport access vlan 10
switchport mode access
interface FastEthernet0/2
switchport access vlan 20
switchport mode access
interface FastEthernet0/3
switchport access vlan 99
switchport mode access
interface FastEthernet0/4
switchport access vlan 99
switchport mode access
interface GigabitEthernet1/1
switchport trunk native vlan 99
switchport mode trunk
interface Vlan1
no ip address
interface Vlan99
ip address 10.10.10.4 255.255.255.0
ip default-gateway 10.10.10.254
logging 10.10.10.100
R1#sh run
hostname R1
interface FastEthernet0/0
```

ip address 192.168.10.254 255.255.255.0

duplex auto

```
speed auto
!
interface FastEthernet0/1
ip address 192.168.20.254 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet1/0
ip address 10.10.10.254 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
logging 10.10.10.100
```