ANNEX I

Risk register for European Digital Identity Wallets

INTRODUCTION

The risk register describes the main security and privacy risks and threats that apply to wallets, and which shall be properly addressed in every architecture and implementation of wallets. The **high-level risks** (Section I) are related to the use of wallets by users and relying parties, and they are associated to direct threats targeting the assets of wallets. In addition, a few **system-level risks** (Section II) to wallets are identified, which would typically result from a combination of threats applying to the entire wallet system.

Risk type	Risk ID	Related risk titles		
	R1	Creation or use of an existing electronic identity		
	R2	Creation or use of a fake electronic identity		
	R3	Creation or use of fake attributes		
	R4	Identify theft		
	R5	Data theft		
	R6	Data disclosure		
High-level risks to the	R7	Data manipulation		
wallets	R8	Data loss		
	R9	Unauthorised transaction		
	R10	Transaction manipulation		
	R11	Repudiation		
	R12	Transaction data disclosure		
	R13	Service disruption		
	R14	Surveillance		
	SR1	Wholesale surveillance		
System-related risks	SR2	Reputational damage		
	SR3	Legal non-compliance		

The register also identifies **technical threats** (Section III) targeting the implementation of the wallet solution. These threats are related to the high-level risks in the sense that each one of them could be used to trigger many high-level risks.

Threat type	Threat ID	Related threat titles	Subcategories of threats
	TT1	Physical attacks	1.1 Theft
			1.2 Information leakage
			1.3 Tampering
	TT2	Errors and	2.1 Errors made when managing an
		misconfigurations	IT system
			2.2 Application-level errors or usage errors
			2.3 Development-time errors and system misconfigurations
	TT3	Use of unreliable	3.1 Erroneous use or configuration
		resources	of wallet components
Technical	TT4	Failure and outages	4.1 Failure or dysfunction of
threat			equipment, devices or systems
			4.2 Loss of resources
			4.3 Loss of support services
	TT5	Malicious actions	5.1 Interception of information
			5.2 Phishing and spoofing
			5.3 Replay of messages
			5.4 Brute-force attack
			5.5 Software vulnerabilities
			5.6 Supply chain attacks
			5.7 Malware
			5.8 Random number prediction

Finally, the register **lists direct threats to the wallets**, and each one is associated to a (non-exhaustive) selection of risks (Section IV).

SECTION I: HIGH-LEVEL RISKS TO THE WALLETS

R1. Creation or use of an existing electronic identity

Creation or use of an existing electronic identity is defined as the creation of an electronic identity in a wallet that exists in the real world and is assigned to another user. By essence, this risk leads to the risks of Identity theft (R4), and Unauthorised transactions (R9).

R2. Creation or use of a fake electronic identity

Creation or use of a fake electronic identity is defined as the creation of an electronic identity in a wallet that does not exist in the real world.

R3. Creation or use of fake attributes

Creation or use of fake attributes is defined as the creation or use of attributes that cannot be validated to be issued by the claimed provider and cannot be trusted.

R4. Identify theft

Identity theft is defined as the unauthorised acquisition of the wallet unit or loss of authentication factors enabling to impersonate a person.

R5. Data theft

Data theft is defined as the unauthorised extraction of data. Data theft is also associated to threats, such as data interception (unauthorised capture of data in transit) and data decryption (unauthorised decoding of encrypted data), which are likely to lead in some cases to Data disclosure (R6).

R6. Data disclosure

Data disclosure is defined as the unauthorised exposure of personal data including special categories of personal data. The privacy breach risk is very similar when considered from a privacy rather than security viewpoint.

R7. Data manipulation

Data manipulation is defined as the unauthorised alteration of data.

R8. Data loss

Data loss is defined as the situation where data stored in the wallet is lost through misuse or malicious action. This risk is often a secondary risk of Data manipulation (R7) or Service disruption (R13), where all or part of the data cannot be restored.

R9. Unauthorised transaction

Unauthorised transactions are defined as operational activities conducted without the permission or knowledge of the wallet user. In many cases, an unauthorised transaction can lead to Identity theft (R4) or Data disclosure (R6). It is also related to unauthorised transactions, such as the misuse of cryptographic keys.

R10. Transaction manipulation

Transaction manipulation is defined as the unauthorised alteration of operations in the wallet. Transaction manipulation is an attack on integrity, and it is related to a data integrity breach.

R11. Repudiation

Repudiation is defined as a situation where a stakeholder can deny performing an action or being involved in a transaction, and other stakeholders do not have proper evidence to contradict them.

R12. Transaction data disclosure

Transaction data disclosure is defined as the disclosure of information related to information on a transaction between stakeholders.

R13. Service disruption

Service disruption is defined as an interruption or degradation in the normal operation of the wallet. A specific kind of service disruption is user lock-out, defined as the inability of a user to access their account or their wallet.

R14. Surveillance

Surveillance, or monitoring, is defined as the unauthorised tracking or observation of a wallet user's activities, communication, or data. Surveillance is often related to inference, which is defined as the deduction of sensitive or personal information from seemingly innocuous data.

SECTION II: SYSTEM-RELATED RISKS

These risks are not used in the list of threats, as they are usually the consequence of multiple threats, repeated in a way that threatens the full system.

SR1. Wholesale surveillance

Wholesale surveillance is defined as the tracking or observation of the activities of many users through their wallet's communication or data. Wholesale surveillance is often associated to surveillance (R14) and inference at a global scale, where information about many users is combined to deduce sensitive or personal data about users or to identify statistical trends that can be used to design further attacks.

SR2. Reputational damage

Reputational damage is defined as the harm caused to an organisation's or governmental body's reputation. Reputational damage will also stem from other risks when a breach or incident is covered by media and paints the organisation under an unfavourable light. Reputational damage can lead to further risks, such as loss of trust, stemming from the user's reasonable doubts, and loss of ecosystem, when the full ecosystem collapses.

SR3. Legal non-compliance

Legal non-compliance is defined as a situation when relevant laws, regulations or standards cannot be adhered to. In the context of the wallet, as security and privacy of the solution are legal requirements, all threats are likely to lead to some kind of legal non-compliance.

SECTION III: TECHNICAL THREATS

The technical threats are not all linked to specific risks on the wallets, because many of them are means that could be used to implement attacks corresponding to many different risks.

TT1. Physical attacks

1.1 Theft

Theft is defined as the theft of devices that may alter the wallet's proper functioning (in case the device is stolen and the wallet unit is not adequately protected). This may contribute to many risks, including Identity theft (R4), Data theft (R5), and Unauthorised transactions (R9).

1.2 Information leakage

Information leakage is defined as unauthorised access, information exposure, or sharing after physical access to the wallet. This may contribute in particular to Data Disclosure (R6) and Data theft (R5).

1.3 Tampering

Tampering is defined as violating the integrity of one or multiple components of the wallet unit, or of the components the wallet unit relies on, e.g., the user device or its operating system. This may contribute in particular to Data manipulation (R7), Data loss (R8) and Transaction manipulation (R10). When tampering targets software components, it may contribute to many risks.

TT2. Errors and misconfigurations

2.1 Errors made when managing an IT system

Errors made when managing an IT system are defined as information leakage, sharing or damage caused by misuse of IT assets by users (lack of awareness of application features) or by improper configuration or management of IT assets.

2.2 Application-level errors or usage errors

Application-level errors or usage errors are defined as dysfunctions of the application due to an error in the application itself or to an error by one of the users (wallet users and relying parties).

2.3 Development-time errors and system misconfigurations

Development-time errors and system misconfigurations are defined as dysfunction or vulnerabilities caused by improperly developed or configured IT assets or business processes (inadequate specifications of IT products, inadequate usability, insecure interfaces, improper policy and procedure flows, design errors).

TT3. Use of unreliable resources

The use of unreliable resources is defined as an activity leading to unintentional damage due to ill-defined trust relationships, such as trusting a third-party provider without sufficient assurance.

3.1 Erroneous use or configuration of wallet components

An erroneous use or configuration of wallet components is defined as unintentional damage to wallet components due to an erroneous use or misconfiguration by wallet users or by insufficiently trained developers, or due to lack of adaptation to changes in the threat landscape, typically the use of vulnerable third-party components or runtime platforms.

TT4. Failure and outages

4.1 Failure or dysfunction of equipment, devices or systems

A failure or dysfunction of equipment is defined as unintentional damage to IT assets due to a failure or dysfunction of equipment, including the provider's infrastructure and the user devices.

4.2 Loss of resources

The loss of resources is defined as an outage or dysfunction due to unavailability of such resources, e.g., as maintenance parts.

4.3 Loss of support services

The loss of support services is defined as an outage or dysfunction due to unavailability of support services required for proper operation of the system, including network connectivity of the provider's infrastructure and of the user device.

TT5. Malicious actions

5.1 Interception of information

The interception of information is defined as the capture of information improperly secured in transmission, including man-in-the-middle attacks.

5.2 Phishing and spoofing

Phishing is defined as the capture of information provided by the user following a deceptive interaction, often associate to the spoofing of legitimate communication means and websites. These threats target the user and typically contribute to Identity theft (R4) and Unauthorised transactions (R9), often through Data theft (R5) or Data disclosure (R6).

5.3 Replay of messages

Replay of messages is defined as the reuse of previously intercepted messages to perform unauthorised transactions, often at protocol level. This technical threat mainly contributes to unauthorised transactions, which may then lead to other risks, depending on the transaction.

5.4 Brute-force attack

Brute-force attack is defined as a breach of security, often confidentiality, by performing a large number of interactions until the responses provide valuable information.

5.5 Software vulnerabilities

The threat related to software vulnerabilities is a breach of security through exploitation of a software vulnerability in the components of the wallet or in the software and hardware components used in the implementation of the wallet, including published vulnerabilities and unpublished (0-day) vulnerabilities.

5.6 Supply chain attacks

A supply chain attack is defined as a breach of security through attacks perpetrated on the supplier of the wallet provider or of its users to enable further attacks on the wallet itself.

5.7 Malware

Malware is defined as a breach of security through malicious applications performing unwanted and illegitimate actions on the wallet.

5.8 Random number prediction

Random number prediction is defined as the enablement of brute-force attacks through partial or complete prediction of generated random numbers.

SECTION IV: THREATS TO THE WALLETS

This last section presents a selection of typical threat scenarios specific to the wallets, which are mapped to the key related high-level risks, as listed above. This list indicates threats that need to be covered, but it does not constitute an exhaustive list of threats, which depends greatly on the architecture of the selected wallet solution and on the evolution of the threat environment. Additionally, in the risk assessment and proposed measures, the wallet provider can only be responsible for those components in scope of certification (*).

ID	Threat description	Risk title
Identifier	Description of the identified threat (*)	Related risks
	An attacker can revoke pseudonyms without	Creation or use of a fake
TR1	justified reason.	electronic identity (R2)
	An attacker can issue fabricated electronic	Creation or use of a fake
TR2	identities that do not exist.	electronic identity (R2)
	An attacker can start to issue unauthorised	Creation or use of a fake
TR3	PIDs.	electronic identity (R2)
	An attacker can get an administrator to enter a	Creation or use of a fake
	wrong PID provider into the PID provider	electronic identity (R2)
TR4	trusted list.	
	An attacker can bypass the remote identity	Creation or use of an existing
	proofing service.	electronic identity (R1) /
		Creation or use of a fake
TR5		electronic identity (R2)
	An attacker can bypass the physical identity	Creation or use of an existing
	proofing service.	electronic identity (R1) /
		Creation or use of a fake
TR6		electronic identity (R2)
	An attacker can bypass the identity proofing	Creation or use of an existing
	services related to the use of a remote	electronic identity (R1) /
	(qualified) certificate.	Creation or use of a fake
TR7		electronic identity (R2)
	An attacker can get access to a wallet that is	Creation or use of an existing
	not bound to a person.	electronic identity (R1) /
		Creation or use of a fake
TR8		electronic identity (R2)
	An attacker can defeat technical and	Creation or use of an existing
TR9	procedural controls to create wrong PIDs.	electronic identity (R1) /

		Creation or use of a fake
	A	electronic identity (R2)
	An attacker can activate a new wallet on an invalid WSCD.	Creation or use of an existing electronic identity (R1) /
TR10		Creation or use of a fake electronic identity (R2)
TD 1.1	An attacker can bypass the identity proofing service related to the use of existing eID means.	Creation or use of an existing electronic identity (R1) / Identify theft (R4)/ Unauthorised transaction
TR11	An attacker can circumvent the verification by	(R9) Creation or use of an existing
TR12	the PID provider that the wallet is controlled by the user and have a PID issued into a compromised wallet under the attacker's control.	electronic identity (R1) / Identify theft (R4)/ Unauthorised transaction (R9)
TR13	An attacker can get a valid PID into an invalid wallet unit.	Creation or use of an existing electronic identity (R1) / Identify theft (R4)/ Unauthorised transaction (R9)
TR14	A PID provider can issue fabricated identities where the identity is related to an existing person.	Creation or use of an existing electronic identity (R1) / Identity theft (R4) / Unauthorised transaction (R9)
TR15	An attacker can link a PID with the wrong wallet because the PID provider is not able to link the PID to the correct wallet.	Creation or use of an existing electronic identity (R1) / Identify theft (R4) / Unauthorised transaction (R9)
TR16	An attacker can make the user approving the activation of a new wallet unit/instance under the attacker's control – with subsequent control of attestations as well.	Creation or use of an existing electronic identity (R1) / Creation or use of a fake electronic identity (R2) / Identify theft (R4) / Unauthorised transaction (R9)
TR17	An attacker can issue a PID of another state to access data / digital assets of targeted citizens.	Creation or use of an existing electronic identity (R1)/ Identity theft (R4) / Unauthorised transaction (R9)
TR18	An attacker can defeat technical and procedural controls to create fake (Q)EAAs.	Creation or use of fake attributes (R3)
TR19	An attacker can present (Q)EAAs that are not validly issued to them.	Creation or use of fake attributes (R3)
TR20	An attacker can attack the cryptographic linking mechanism of the wallet between the	Creation or use of fake attributes (R3)

	Not being able to prove user's consent for	Data disclosure (R6)
	shared attributes, relying parties can affect the	Data disclosure (Ro)
TR38	integrity of logs.	
11030	An attacker can unlawfully trace wallet users	Data disclosure (R6) /
TR39	using unique/traceable identifiers.	Surveillance (R14)
11(3)	A relying party that consists of multiple	Data disclosure (R6) /
	units/entities that each have a different scope	Unauthorised transaction
	of what they are allowed to request/process,	(R9)
	can request and process data for which they	
TR40	do not have lawful grounds for.	
11(10	An attacker can subvert the integrity and	Data manipulation (R7)
	authenticity checks by the wallet of PIDs to	But manipulation (11,)
TR41	always return success.	
11(11	An attacker can bypass or subvert the	Data manipulation (R7)
	performance of checks by the wallet that	
	verify the integrity and authenticity of	
TR42	requested attributes to always return success.	
-	An attacker can bypass or subvert the	Data manipulation (R7)
	performance of checks by the wallet that	(,
	verify all requested attributes belonging to the	
TR43	same user to always return success.	
	An attacker can bypass or subvert the	Data manipulation (R7)
	performance of checks by the wallet that	
	verify the PID is valid and issued by a trusted	
TR44	PID provider to always return success.	
	An attacker can bypass or subvert the	Data manipulation (R7)
	performance of checks by the wallet that	2
	verify that a QEAA is valid and issued by a	
	qualified TSP, who is registered to issue the	
TR45	QEAA, to always return success.	
	An attacker can bypass or subvert the	Data manipulation (R7)
	performance of checks by the wallet that	
	verify whether the PID has been revoked by	
TR46	the PID provider to always return success.	
	An attacker can bypass or subvert the	Data manipulation (R7)
	performance of checks by the wallet that	
	verify whether the (Q)EAA has been revoked	
	by the (Q)EAA provider to always return	
TR47	success.	
	An attacker can modify the content of backup	Data manipulation (R7) /
	and recovery data that should be exclusively	Data loss (R8)
TR48	under the user's control.	
	An attacker can modify the transaction history	Data manipulation (R7) /
	for a given wallet instance from the activity	Data loss (R8)
TR49	logs.	
	An attacker can eavesdrop during the	Data theft (R5) / Data
TR50	connection from the wallet to relying parties.	disclosure (R6)
	An attacker can convince a user to share	Data theft (R5) / Data
	personal data (i.e. PID, EAA-s, pseudonyms,	disclosure (R6)
TR51	electronic signatures, logs and other data) with	

		1
	the attacker or with a third party that the user did not intend to do so.	
	An attacker can read the transaction history	Data theft (R5) / Data
	for a given wallet instance from the activity	disclosure (R6)
TR52	logs.	
	An attacker can export or extract	Data theft (R5) / Data
	cryptographic key material outside of the	disclosure (R6) /
	WSCD.	Unauthorised transaction
TR53	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(R9)
	An attacker can read the content of backup	Data theft (R5) / Data
	and recovery data that should be exclusively	disclosure (R6)
TR54	under the user's control.	
110	An attacker can bypass the user authentication	Identity theft (R4)
	method to use a pseudonym generated by a	identity their (it i)
TR55	wallet unit.	
1100	An attacker can propose an application that	Identity theft (R4)
TR56	mimics a specific legitimate wallet to users.	lacinity mett (ICT)
1130	An attacker can export wallet data, including	Identity theft (R4)
TR57	PID, (Q)EAAs or logs.	identity their (ix+)
TK37	An attacker can export cryptographic binding	Identity theft (R4)
TR58	material.	identity their (K4)
1136		Identity that (D4)
TD 50	An attacker can take over identities through	Identity theft (R4)
TR59	the cryptographic keys of the wallet.	Identification (DA) / Constitution
	An attacker can duplicate another user's	Identify theft (R4) / Creation
TDCO	personal wallet unit on their personal device	or use of an existing
TR60	and use it.	electronic identity (R1)
	Authorities of another state can ask the user to	Identify theft (R4) /
	show and/or share all the wallet data in a	Surveillance (R14)
TD 61	situation of proximity, such as when crossing	
TR61	the border of that state.	D 1' (' (D11)
	Users cannot transfer their transaction logs	Repudiation (R11)
	after failure of a user device, resulting in a	
TD 62	loss of traceability of previous transactions on	
TR62	the new wallet.	Danis diation (D11)
	Users cannot recover their transaction logs	Repudiation (R11)
TD (2	after failure of a user device, resulting in a	
TR63	loss of traceability on the new wallet.	Daniel dia (D11)
TD C 4	Relying parties can have difficulties proving	Repudiation (R11)
TR64	consent for remote electronic signatures.	Camina Hamani (D12)
	An attacker can flood the connection(s) with	Service disruption (R13)
TD 65	requests during the connection to relying	
TR65	parties.	Camina dismertine (D12)
TDCC	An attacker can flood a status provisioning	Service disruption (R13)
TR66	service with connections to relying parties.	0 1 1 2 (710)
	An attacker can make the attribute	Service disruption (R13)
	presentation appearing as contested/denied,	
TD 67	despite the attribute presentation stating its	
TR67	validity.	

	An attacker can revoke a PID without justified	Service disruption (R13)
TR68	reason.	(200)
TR69	An attacker can revoke a PID without user consent.	Service disruption (R13)
TR70	An attacker can revoke a (Q)EAA without justified reason.	Service disruption (R13)
	An attacker can revoke a (Q)EAA without	Service disruption (R13)
TR71	user consent.	Complete diamentian (D12)
	An attacker can trigger multiple identification requests without them being recognised as	Service disruption (R13)
TR72	intentional orphan requests.	
	An attacker can send multiple requests with	Service disruption (R13)
TR73	no follow-up transaction.	
	An attacker can allow a relying party to	Service disruption (R13)
TR74	request identification without a matching identification (response) and full control.	
11\/+	An attacker can send a response to a request	Service disruption (R13)
	after its timeout, or similar situations leading	Sorvice disruption (1013)
TR75	to a service disruption.	
TD 7 :	A relying party can send multiple invalid	Service disruption (R13)
TR76	requests.	Convince diamentian (D12)
TR77	An attacker can send multiple invalid requests to a wallet provider.	Service disruption (R13)
11(1)	An attacker can make a Member State unable	Service disruption (R13)
	to revoke an untrusted PID provider from the	1
TR78	trusted PID provider trusted list.	
TD 70	An attacker can prevent suspension or	Service disruption (R13)
TR79	revocation of a wallet.	Service disruption (R13)
TR80	An attacker can block transactions by relying parties, users and/or PID provider.	Service disruption (K13)
11.00	An attacker can disable or make a WSCD	Service disruption (R13)
TR81	unavailable.	• , , ,
	An attacker can make the PID provider unable	Service disruption (R13) /
TR82	to revoke or suspend PIDs.	Unauthorised transaction (R9)
TID 0.0	A relying party can derive the user's identity	Surveillance (R14)
TR83	data beyond data shared with them.	Curvoillance (D14)
	A group of colluding relying parties or PID providers can derive the user's identity data	Surveillance (R14)
TR84	beyond data known to them.	
	An attacker can track and trace a user by using	Surveillance (R14)
	person identification data of the user where	, ,
TR85	identification of the user is not required.	
TDOC	An attacker can combine a 'forged'	Transaction manipulation
TR86	presentation of (Q)EAA combinations. An attacker can activate/take over the wallet	(R10)
	remotely (e.g., a bank app embedding an	Transaction manipulation (R10)
	authentication or attestation request) without	(1210)
TR87	the explicit consent or sole control of the user,	

		<u> </u>
	in situations where the user is unaware of	
	(e.g., asleep), or cannot see the relying party.	
	Attackers can make changes to a request's	Transaction manipulation
TR88	metadata (service name, usages, etc.).	(R10)
	Attackers can make changes to response	Transaction manipulation
TR89	information (service state, nonce, etc.).	(R10)
	Attackers can make changes to a request's	Transaction manipulation
TR90	attribute information (over asking, etc.).	(R10)
	A relying party can replay elements from a	Transaction manipulation
TR91	previous session in another session.	(R10)
	An attacker can replace or modify the PID	Transaction manipulation
	during its transfer from the PID provider to	(R10)
TR92	the wallet unit.	(110)
11()2	An attacker can replace or modify the PID	Transaction manipulation
	during its transfer from the wallet unit to the	(R10)
TR93	online relying party.	(1010)
11(/)		Transaction manipulation
	An attacker can replace or modify the PID during its transfer from the wallet unit to the	(R10)
TR94		(K10)
1K94	offline relying party.	TT41
TD05	An attacker can issue a PID without the user's	Unauthorised transaction
TR95	consent.	(R9)
	An attacker can use revoked or invalid	Unauthorised transaction
	embedded disclosure policies, possibly	(R9)
TR96	without the relying parties' knowledge.	
	An attacker can trick the wallet into verifying	Unauthorised transaction
TR97	wrong electronic signatures.	(R9)
	An attacker can use the wallet outside of the	Unauthorised transaction
TR98	user's control.	(R9)
	An attacker can convince a user to	Unauthorised transaction
	authenticate and approve transactions with an	(R9)
TR99	attacker or unauthorised third party.	
	An attacker can make a user electronically	Unauthorised transaction
	sign without presenting the content to the user	(R9)
TR100	or after presenting wrong content.	
	An attacker can bypass access control of the	Unauthorised transaction
TR101	user's account with the wallet provider.	(R9)
•	An attacker can impersonate relying parties	Unauthorised transaction
TR102	during the connection to relying parties.	(R9) / Data disclosure (R6)
	The user behind the relying party – browser	Unauthorised transaction
	connection can be different from the user	(R9) / Data disclosure (R6) /
TR103	behind the relying party – wallet connection.	Identity theft (R4)
111103	An attacker can convince the user to revoke	Unauthorised transaction
	the user's wallet without reason.	
TD 104	the user's wanter without reason.	(R9) / Service disruption
TR104	A	(R13)
	An attacker can perform man-in-the-middle	Unauthorised transaction
TD 107	attacks.	(R9) / Data disclosure (R6) /
TR105		Surveillance (R14)

		1
	An attacker can present invalid or revoked	Effect on various risks
TD 106	attributes from a wallet that does not regularly	
TR106	connect to the network.	Ties
FD 107	An attacker can steal information from a user	Effect on various risks
TR107	by spoofing a wallet.	77.00
	An attacker can impersonate the user by	Effect on various risks
	replaying/imitating a data request (e.g.,	
TR108	authentication), which would appear as valid.	
	An attacker can replay an embedded	Effect on various risks
	disclosure policy towards a user, to imitate an	
TR109	approved request.	
	An attacker can exploit the lack of	Effect on various risks
	information of wallet users, or undue delays,	
TR110	after a security breach or compromise.	
	An attacker can modify a previously installed	Effect on various risks
	legitimate wallet instance to add malicious	
TR111	features.	
	An attacker can modify a legitimate wallet	Effect on various risks
	instance and propose it to users as a legitimate	
TR112	one.	
	An attacker can defeat the user authentication	Effect on various risks
	mechanism itself to bypass the authentication	
TR113	of the wallet user.	
	An attacker can introduce malicious code or	Effect on various risks
	backdoors into the wallet code during its	
TR114	deployment to the user device.	
	An attacker can introduce malicious code or	Effect on various risks
	backdoors into the wallet code during its	
TR115	development.	
	An attacker can tamper with the generation of	Effect on various risks
	random numbers to reduce their entropy	
TR116	sufficiently to enable attacks.	
	An attacker can tamper with user devices in	Effect on various risks
	the supply chain to include code or	
	configurations that do not meet the conditions	
TR117	of use of the wallet.	
	An attacker can activate a wallet unit while	Effect on various risks
	using a spoofed WSCD controlled by the	
TR118	attackers.	
	An attacker can read information sent to the	Effect on various risks
TR119	WSCA and/or the WSCD.	
	An attacker can send arbitrary information to	Effect on various risks
TR120	the WSCA.	
	An attacker can steal information by	Effect on various risks
	intercepting the exchanges between the	
TR121	WSCA and the WSCD.	
	An attacker can send arbitrary information to	Effect on various risks
TR122	the WSCD.	100000000000000000000000000000000000000
	_ · · · · ·	I .

TR123	An attacker can send information to the	Effect on various risks
1K125	WSCD, circumnavigating the WSCA. An attacker can use phishing to get users to a fake wallet and PID management web	Effect on various risks
TR124	application.	
	An attacker can replace a wallet's keys with	Effect on various risks
TR125	other keys to create messages to be used in another attack.	
	An attacker can modify or destroy a wallet's	Effect on various risks
TR126	keys, making some functions of the wallet unusable.	
TD 107	An attacker can control a malware to access	Effect on various risks
TR127	data stored in the wallet.	Effect on vanious risks
TR128	An attacker can access evidence generated in the wallet.	Effect on various risks
TR129	Wallet providers can access objects in the wallet.	Effect on various risks
TR130	Wallet providers can access evidence generated in the wallet.	Effect on various risks
TR131	An attacker can steal an unlocked wallet device.	Effect on various risks
TR132	An attacker can manipulate the system to prevent certain events from being logged.	Effect on various risks
	An attacker can intercept communication	Effect on various risks
	between the wallet instance and the WSCA, or	
TR133	replay/imitate a user (e.g. by hijacking authentication mechanism).	