BIOS 635: Principal Components Regression and Partial Least Squares

Kevin Donovan

3/4/2021

Review

- Midterm assigned on Github Classroom, due on 3/19 by 11PM EST
- Article evaluation 3 assigned on Github Classroom, due on 3/23 by 11PM EST
- Last lecture: shrinkage and penalized regression

Model selection

- Goal: Choose/build model parameters and structure to create optimal model
- General methods:
 - I. Subset Selection
 - 2. Shrinkage
 - 3. Dimension Reduction

Dimension Reduction

- For data with large p, may want to **reduce predictor set**
 - Reduces chance of overfitting, estimation variance
 - Predictors may be highly correlated, but still important to assess
 - ullet Traditional regression with p>n not computationally possible
- Idea: project predictor space into reduced dimensional space
 - Use these new variables as regression model predictors

Principal Components Regression

- lacktriangle Original predictors: X_1,\ldots,X_p
- New set: Z_1, \ldots, Z_M where M < p
 - ullet Suppose Z_i are **linear combinations** of X_1,\ldots,X_p

$$Z_m = \sum_{j=1}^p \phi_{jm} X_j$$

- Regression model:

$$Y_i = heta_0 + \sum_{m=1}^M heta_m Z_{im} + \epsilon_i \, .$$

- lacksquare Dimension of model reduced from p+1 to M+1
- How do we decide on reduced set?
 - I. How big should M be?
 - 2. How to estimate $\{\phi_{jm}\}$?

Principal Components Analysis (PCA)

- PCA creates reduced set of predictors equal to linear combos of original set
- Method:
 - First principal component (PC):

$$egin{aligned} Z_1 &= \phi_{11} X_1 + \phi_{21} X_2 + \ldots + \phi_{p1} X_p \ \hat{\phi_1} &= rgmax [ext{Var}(\phi_{11} X_1 + \phi_{21} X_2 + \ldots + \phi_{p1} X_p)] \ &= rgmax (\phi_{11}^2 + \phi_{21}^2 + \ldots + \phi_{p1}^2 + 2\phi_{11} \phi_{21}
ho_{12} + \ldots + 2\phi_{11} \phi_{p1}
ho_{1p} + \ldots + 2\phi_{p-1,1} \phi_{p1}
ho_{p-1,p}) \ &= rgmax (\phi_{11}^2 + \phi_{21}^2 + \ldots + \phi_{p1}^2 + 2\phi_{11} \phi_{21}
ho_{12} + \ldots + 2\phi_{11} \phi_{p1}
ho_{1p} + \ldots + 2\phi_{p-1,1} \phi_{p1}
ho_{p-1,p}) \end{aligned}$$

- $\bullet \ \rho_{ij} = \operatorname{Cor}(X_i, X_j)$
- First PC = linear combo containing maximum amount of variability between predictors
- Weights ϕ_{ij} call loadings

PCA details

- $||\phi_1|| = 1 \to \sum_{j=1}^p \phi_{j1}^2 = 1$
- Above assumes X predictor matrix is centered (X_j have mean 0) and scaled (have variance I)
- Can then compute PC values for each observation:

$$Z_{i1} = \phi_{11}X_{i1} + \phi_{21}X_{i2} + \ldots + \phi_{ip}X_{ip} \text{ for } 1 \leq i \leq n$$

- ullet For next PC Z_2 , same process is done but $\mathrm{Cor}(Z_1,Z_2)=0$ assumed
 - ullet $o \phi_2$ and ϕ_1 are orthogonal

PCA recap

- PCA uses an **orthogonal transformation** to convert predictor set into new set of **uncorrelated** predictors equal to **linear combinations** of the original set
- Can compute new variables for each observation using loadings

First principal component: $\mathbf{Z}_1 = \phi_{11}\mathbf{X}_1 + \phi_{21}\mathbf{X}_2 + ... + \phi_{p1}\mathbf{X}_p$

PC loading vector: $\phi_1 = \{\phi_{11}, \phi_{21}, ..., \phi_{p1}\}^T, \sum_{i=1}^p \phi_{i1}^2 = 1$

 $\hat{\pmb{\phi}}_1 = \operatorname*{argmax}_{||\pmb{\phi}_1||=1} \{ \pmb{\phi}_1^T \mathbf{X}^T \mathbf{X} \pmb{\phi}_1 \} \text{ maximizes the variance of } \mathbf{Z}_1.$

 ϕ_1 is the eigenvector corresponding to the largest eigenvalue of $\mathbf{X}^T \mathbf{X}$.

 \mathbf{Z}_2 is restrained to be uncorrelated with \mathbf{Z}_1 . Equivalently, $\boldsymbol{\phi}_2$ is orthogonal to $\boldsymbol{\phi}_1$.

PCA example

- Suppose we have a large amount of regional brain activity measures on group of infants
- Want to see if this regional brain activity is related to diganosis of Autism (ASD)

```
brain_data <- read_csv("../data/IBIS_brain_data_ex.csv")

brain_data <- brain_data %>%
   select("CandID", "RiskGroup", names(brain_data)[grep1("V12", names(brain_data))]) %>%
   select(CandID:Uncinate_R_V12) %>%
   drop_na()

dim(brain_data)
```

[1] 278 120

PCA example

Explain overall track and field athlete performance using results in many events

Sparse PCA

- Some predictors may not be very useful in principal components
 - However, loadings won't be exactly 0
 - Idea: apply penalized regression idea to PCA
 - Called sparse PCA

First principal component: $\mathbf{Z}_1 = \phi_{11}\mathbf{X}_1 + \phi_{21}\mathbf{X}_2 + ... + \phi_{p1}\mathbf{X}_p$

PC loading vector: $\phi_1 = \{\phi_{11}, \phi_{21}, ..., \phi_{p1}\}^T, \sum_{j=1}^p \phi_{j1}^2 = 1$

 $\hat{\boldsymbol{\phi}}_1 = \underset{||\boldsymbol{\phi}_1||=1, ||\boldsymbol{\phi}_1||_0 \le k}{\operatorname{argmax}} \left\{ \boldsymbol{\phi}_1^T \mathbf{X}^T \mathbf{X} \boldsymbol{\phi}_1 \right\} \text{ maximizes the variance of } \mathbf{Z}_1.$

If k = p, this reduces to ordinary PCA.

Sparse PCA in R

```
## PC1 PC2 PC3 PC4
## 1 2 10 6
```

Principal Components Regression

- Regression Model: Y=outcome, Z_1, \ldots, Z_M =predictors
 - Y not used in creation of predictors, thus unsupervised
 - ullet o PCs may best explain predictors but may **not** be best set at also **predicting response**
- Solution: partial least squares (PLS)

Partial Least Squares

- Goal: Find set of Z_1, \ldots, Z_M that best summarizes X_1, \ldots, X_p and their relationship to outcome Y
- Method:
 - I. Standardize p predictors
 - 2. For first component Z_1 :
 - \circ Set each ϕ_{1j} from PCA equal to eta from regression of Y onto X_j
 - $\circ \;$ Results in $Z_1 = \sum_{j=1}^p \phi_{1j} X_j$
 - \circ Then compute residuals of regressing Y onto Z_1
 - 3. Repeat for desired number of components
- Fit in R: pls package