Целта е да докажем, че за всяко доказателство от G1 има доказателство за същото твърдение със същите допускания и в H. Тоест, ако $\Gamma \implies \Delta$ в G1 и $\Delta \neq \{\}$, то ще има поне едно доказателство в H, което извежда нещо от Δ .

Ще решим задачата като направим пълна индукция по дълбочината на дървото.

\mathbf{C} лучай $\mathbf{A}\mathbf{x}$

1. A (As)

Случай $L\bot$

Случаят не се разглежда, понеже $\Delta = \{\}$

\mathbf{C} лучай LW

Използваме доказателството на $\Gamma \Longrightarrow \Delta$ и "игнорираме" допускането A.

\mathbf{C} лучай RW

Използваме доказателството за $\Gamma \implies \Delta$.

\mathbf{C} лучай LC

Тъй като при Хилбертовите системи допусканията са множество, то няма разлика между A, A, Γ и A, Γ и по тази причина можем да използваме докзателството на $A, \Gamma \Longrightarrow \Delta$.

\mathbf{C} лучай RC

Използваме доказателството за $A, \Gamma \implies \Delta, A, A$.

Случай $L \wedge$

Генерираме следното доказателство при допускания $\Gamma A_0 \wedge A_1$

- 1. $A_0 \wedge A_1$ (As)
- 2. $(A_0 \wedge A_1) \rightarrow A_i \text{ (Ax)}$
- 3. $A_i \text{ (MP 1, 2)}$

След това залепяме доказателството на Γ , A_i отзад като махаме всички случаи, в които A_i се използва като (As).

Случай $R \wedge$

Нека имаме $X_1, X_2, ..., X_n$ е доказателство на $\Gamma \Longrightarrow \Delta, A$ и $Y_1, Y_2, ..., Y_m$ е доказателство на $\Gamma \Longrightarrow \Delta, B$. Ако $X_n \in \Delta$ или $Y_m \in \Delta$, тогава използваме съотвентото доказателство. В противен случай, знаем, че $X_n = A$ и $Y_m = B$. Тогава, залепяме двете доказателства и добавяме следната последователност:

 $n+m+1: A \to B \to A \land B \text{ (Ax)}$

n+m+2: $B \to A \land B$ (MP n, n+m+1), тук на позиция n седи X_n

n+m+3: $A \wedge B$ (MP n+m, n+m+2), тук на позиция n+m седи Y_m .

Случай $L\lor$

Нека $O \in \Gamma$. По предположение знаем, че съществуват доказателства на $A, \Gamma \implies \Delta$ и $B, \Gamma \implies \Delta$. Нека те да бъдат съотвенто $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_m$, където $X_n, Y_m \in \Delta$. От теорема за дедукцията знаем, че съществуват доказателства и на $\Gamma \implies A \to O$ и $\Gamma \implies B \to O$. Нека тези доказателства са $U_1, U_2, ..., U_k = A \to X_n$ и $V_1, V_2, ..., V_l = B \to Y_m$. Залепяме двете доказателства едно след друго и към тях слагаме следната последователност:

$$k+l+1: (A \to X_n) \to (B \to Y_m) \to A \lor B \to O (Ax)$$

 $\mathbf{k+l+2}\colon\ (B\to Y_m)\to A\vee B\to O$ (MP k, k+l+1), тук на позиция n седи U_k

k+l+3: $A \vee B \rightarrow O$ (MP k+l, k+l+2), тук на позиция k+l седи V_l

 $k+l+4: A \vee B$ (As)

k+l+5: O (MP k+l+4, k+l+3)

Случай $R \lor$

Нека имаме доказателство $X_1, X_2, ..., X_n$ на $\Gamma \implies \Delta, A_i$. Ако $X_n \in \Delta$, то просто използваме това доказателство. В противен случай, знаем, че $X_n = A_i$. Тогава към това доказателство добавяме $X_{n+1} = A_i \rightarrow A_0 \lor A_1 \ (Ax)$ и $X_{n+2} = A_0 \lor A_1 \ \mathrm{MP}(n, n+1)$.

Случай $L \rightarrow$

ОТ ИП имаме доказателства $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_m$ за $\Gamma \Longrightarrow \Delta, A$ и $B, \Gamma \Longrightarrow \Delta$. От теорема на дедукцията знаем, че имаме доказалтество $Z_1, Z_2, ..., Z_k$ на $\Gamma \Longrightarrow B \to Y_m$. Ако $X_n \in \Delta$, тогава можем да използваме $X_1, X_2, ..., X_n$ като доказалтество на $A \to B, \Gamma \Longrightarrow \Delta$. В противен случай, знаем, че $X_n = A$ и правим следната конструкция.

Залепяме доказателствата $X_1, X_2, ..., X_n$ и $Z_1, Z_2, ..., Z_k$ едно след друго и добавяме следната последователност:

 $n+k+1: A \rightarrow B \text{ (As)}$

n+k+2: B MP(n, n+k+1), тук на позиция n стои X_n

 ${\bf n}+{\bf k}+3:\ \ Y_m$ MP(n+k+2, n+k), тук на позиция n+kстои $Z_k=B\to Y_m$

Случай $R \rightarrow$

Следва директно от теоремата за дедукцията.

Случай $L\forall$

Нека $X_1, X_2, ..., X_n$ е доказалтество на $\Gamma, A[x \longmapsto t] \Longrightarrow \Gamma$. Слагаме $C_1 = \forall_x A \to A[x \longmapsto t]$ (Ax), $C_2 = \forall_x A$ (As), $C_3 = A[x \longmapsto t]$ МР(1, 2). Сега залепяме $X_1, X_2, ..., X_n$ като вече не използваме $A[x \longmapsto t]$ като допускане, а като резултат.

Случай $R \forall$

Знаем, че имаме доказателство $X_1, X_2, ..., X_n$ на $\Gamma \Longrightarrow \Delta, A$. Ако $X_n \in \Delta$ можем да използваме това доказателство и за $\Gamma \Longrightarrow \Delta, \forall_x A$, в противен случай знаем, че $X_n = A$. Тогава можем да довършим като използваме теорема за генерализацията.

Случай $L\exists$

Знаем, че имаме доказателство $X_1, X_2, ..., X_n \in \Delta$ на $A, \Gamma \Longrightarrow \Delta$. От теоремата за дедукцията знаем, че съществува доказателство $Z_1, Z_2, ..., Z_k = A \to X_n$ за $\Gamma \Longrightarrow A \to X_n$. Тъй като $x \notin FV(\exists_x A, \Gamma)$, то от теоремата за генерализацията знаем, че съществува доказателство $Y_1, Y_2, ..., Y_m = \forall_x (A \to X_n)$ за $\Gamma, \exists_x A \Longrightarrow \forall_x (A \to \exists_x A)$. Правим доказателството $Z_1, ..., Z_k, Y_1, ..., Y_m$ и към него добавяме:

```
k+m+1: \forall_x (A \to X_n) \to (\exists_x A \to X_n) (Ax).
```

k+m+2: $\exists_x A \to X_n$ MP(k, n+m+2), тук на позиция k седи $\forall_x (A \to X_n)$.

 $k+m+3: \exists_x A \text{ (As)}$

k+m+4: $X_n MP(k+m+3, k+m+2)$

Тъй като $X_n \in \Delta$, то това докзателство върши работа.

Случай В∃

Нека имаме доказателството $X_1, X_2, ..., X_n$ на $\Gamma \implies \Delta, A[x \longmapsto t]$. Ако $X_n \in \Delta$, то можем да използваме това доказателство. В противен случай,

знаем, че $X_n = A[x \longmapsto t]$. Тогава към това доказателство залепяме следната последователност:

n+1:
$$A[x \longmapsto t] \rightarrow \exists_x A \text{ (Ax)}$$

n+2:
$$\exists_x A$$
 MP(n, n+1), тук на позиция n седи $X_n = A[x \longmapsto t].$