Patent Claims

1. Process for the preparation of guanidinium salts of the formula (1)

5

in which the substituents R in each case, independently of one another, have the meaning of

hydrogen,

straight-chain or branched alkyl having 1-20 C atoms, saturated, partially or fully unsaturated cycloalkyl having 3-7 C atoms, which may be substituted by alkyl groups having 1-6 C atoms, where one or more substituents R may be partially or fully substituted by

15

halogen or partially by CN or NO₂ and halogen denotes F, Cl, Br or I, where up to four substituents R may be bonded to one another in pairs by a single or double bond

20

and where a carbon atom or two non-adjacent carbon atoms of one or more substituents R may be replaced by atoms and/or atom groups selected from the group -O-, -C(O)-, -C(O)O-, -S-, -S(O)-, -SO₂-, -SO₃-, -N=, -N=N-, -NH-, -NR'-, -PR'-, -P(O)R'-, -P(O)R'-O-, -O-P(O)R'-O-, and -P(R')₂=N-, where R' denotes non-fluorinated, partially or perfluorinated alkyl having 1-6 C atoms, saturated or partially unsaturated cycloalkyl having 3-7 C atoms, unsubstituted or substituted phenyl or an unsubstituted or substituted heterocycle

25

and

A⁻ is a sulfonate, alkyl- or arylsulfate, hydrogensulfate, imide, methanide, carboxylate, phosphate, phosphinate, phosphonate, borate, thiocyanate, perchlorate, fluorosilicate or nitrate,

30

by reaction of a compound of the formula (2)

$$\begin{array}{c|c}
X \\
| \\
N - C - N < R \\
| \\
X
\end{array}$$
(2)

in which the substituents R have a meaning indicated for formula (1) and X denotes F, Cl or Br,

with a compound of the formula (3)

$$Kt^+ A^-$$
 (3),

10

in which A has a meaning indicated for formula (1) and Kt can be a proton, R"₃Si, an alkali or alkaline earth metal cation, an ammonium cation, a phosphonium cation or a cation from group 11 or 12,

15

where R" in each case, independently of one another, denotes phenyl or a linear or branched alkyl group having 1-6 C atoms, which may be substituted by phenyl,

and subsequent reaction of the resultant compound of the formula (4)

20

where the substituents R, X and A⁻ have a meaning indicated for formula (1) or (2),

25

with compounds of the formula (5)

$$R$$
 N—M (5)

30

where the substituents R have a meaning indicated for formula (1) and M denotes hydrogen, R"₃Si, an alkali or alkaline earth metal and

R" in each case, independently of one another, denotes phenyl or a linear or branched alkyl group having 1-6 C atoms, which may be substituted by phenyl.

2. Process according to Claim 1, characterised in that compounds of the formula Kt⁺ A⁻ (3) are employed, in which Kt⁺ has a meaning indicated in Claim 1 and

A is selected from the group

 $[R^{1}OSO_{3}]^{-}, [R^{1}SO_{3}]^{-}, [R^{F}SO_{3}]^{-}, [(FSO_{2})_{2}N]^{-}, [(R^{F}SO_{2})_{2}N]^{-},$

- 10 $[(R^{F}SO_{2})(R^{F}CO)N]^{-}, [(R^{F}SO_{2})_{3}C]^{-}, [(FSO_{2})_{3}C]^{-}, [R^{1}CH_{2}C(O)O]^{-}, \\ [(R^{F}SO_{2})(R^{F}CO)N]^{-}, [(R^{F}SO_{2})_{3}C]^{-}, [(FSO_{2})_{3}C]^{-}, [(R^{1}CH_{2}C(O)O]^{-}, \\ [(R^{F}C(O)O)^{-}, [P(C_{n}F_{2n+1-m}H_{m})_{y}F_{6-y}]^{-}, [P(C_{6}F_{5})_{y}F_{6-y}]^{-}, [(R^{1}O)_{2}P(O)O]^{-}, \\ [(R^{1}_{2}P(O)O)^{-}, [R^{1}P(O)O_{2}]^{2-}, [R^{F}_{2}P(O)O]^{-}, [R^{F}P(O)O_{2}]^{2-}, [BF_{4-z}R^{F}_{z}]^{-}, \\ [(R^{1}_{2}P(O)O)^{-}, [R^{1}P(O)O_{2}]^{2-}, [R^{1}_{2}P(O)O]^{-}, [R^{1}P(O)O_{2}]^{2-}, [R^{1$
- in which the substituents R^F in each case, independently of one another, have the meaning of perfluorinated and straight-chain or branched alkyl having 1-20 C atoms, perfluorinated and straight-chain or branched alkenyl having 2-20 C atoms and one or more double bonds,
- perfluorinated and saturated, partially or fully unsaturated cycloalkyl having 3-7 C atoms, which may be substituted by perfluoroalkyl groups, where the substituents R^F may be bonded to one another in pairs by a single or double bond and
- where a carbon atom or two non-adjacent carbon atoms of the substituent R^F which are not in the α-position to the heteroatom may be replaced
 by atoms and/or atom groups selected from the group -O-, -C(O)-, -S-,
 -S(O)-, -SO₂-, -N=, -N=N-, -NR'-, -PR'- and -P(O)R'-, where R' denotes
 non-fluorinated, partially or perfluorinated alkyl having 1-6 C atoms,
 saturated or partially unsaturated cycloalkyl having 3-7 C atoms,
- unsubstituted or substituted phenyl or an unsubstituted or substituted heterocycle,

in which the substituents R¹ in each case, independently of one another, have the meaning of

straight-chain or branched alkyl having 1-20 C atoms,

straight-chain or branched alkenyl having 2-20 C atoms and one or more double bonds,

straight-chain or branched alkynyl having 2-20 C atoms and one or more triple bonds,

saturated, partially or fully unsaturated cycloalkyl having 3-7 C atoms, which may be substituted by alkyl groups having 1-6 C atoms, where the substituents R¹ may be partially substituted by CN, NO₂ or halogen and

halogen denotes F, Cl, Br or I,

where the substituents R¹ may be bonded to one another in pairs by a single or double bond and

where a carbon atom or two non-adjacent carbon atoms of the substituent R^1 which are not in the α -position to the heteroatom may be replaced by atoms and/or atom groups selected from the group -O-, -C(O)-,

 20 -P(O)R'-, P(O)R'O-, OP(O)R'O-, -PR'₂=N-, -C(O)NH-, -C(O)NR'-,

-SO₂NH- or -SO₂NR'-, where R' denotes non-fluorinated, partially or perfluorinated alkyl having 1-6 C atoms, saturated or partially unsaturated cycloalkyl having 3-7 C atoms, unsubstituted or substituted phenyl or an unsubstituted or substituted heterocycle

and the variables

n denotes 1 to 20,

m denotes 0, 1, 2 or 3,

y denotes 0, 1, 2, 3 or 4, and

z denotes 0, 1, 2, 3 or 4.

10

- 3. Process according to Claim 1 or 2, characterised in that A is selected from the group $[CH_3OSO_3]^T$, $[C_2H_5OSO_3]^T$, $[C(CN)_3]^T$, $[CH_3SO_3]^-$, $[C_8H_{17}SO_3]^-$, $[CH_3C_6H_4SO_3]^-$, $[CF_3SO_3]^-$, $[C_2H_5SO_3]^-$, 5 $[CF_3CF_2SO_3]^-$, $[(CF_3SO_2)_2N]^-$, $[(FSO_2)_2N]^-$, $[(CF_3SO_2)(CF_3CO)N]^-$, $[(C_2F_5SO_2)(CF_3CO)N]^-, [(C_2F_5SO_2)_2N]^-, [(CF_3SO_2)_3C]^-, [(C_2F_5SO_2)_3C]^-,$ $[(FSO_2)_3C]^T$, $[CH_3C(O)O]^T$, $[C_2H_5C(O)O]^T$, $[CF_3C(O)O]^T$, $[CF_3CF_2C(O)O]^{-}$, $[PF_6]^{-}$, $[P(C_2F_5)_3F_3]^{-}$, $[P(C_4F_9)_3F_3]^{-}$, $[P(CF_3)_3F_3]^{-}$, $[P(C_2F_4H)(CF_3)_2F_3]^-$, $[P(C_2F_3H_2)_3F_3]^-$, $[P(C_2F_5)(CF_3)_2F_3]^-$, $[P(C_6F_5)_3F_3]^-$, 10 $[P(C_3F_7)_3F_3]^{-}$, $[P(C_2F_5)_2F_4]^{-}$, $[(HO)_2P(O)O]^{-}$, $[(CH_3O)_2P(O)O]^{-}$, $[(C_2H_5O)_2P(O)O]^-, \ [(C_2F_5)_2P(O)O]^-, \ [(C_2F_5)P(O)O_2]^{2-}, \ [P(C_6F_5)_2F_4]^-, \ [P(C_6F_5)_2F_5]^-, \ [P(C_6F_5)_2F_5]^-, \ [P(C_6F_5)_2F_5]^-, \ [P(C_6F_5)_2F_5]^-, \ [P(C_6F_5)_2F$ $[(CH_3)_2P(O)O]^{-1}$, $[CH_3P(O)O_2]^{2-1}$, $[(CF_3)_2P(O)O]^{-1}$, $[CF_3P(O)O_2]^{2-1}$, $[BF_4]^{-1}$ $[BF_3(CF_3)]^{-}$, $[BF_2(C_2F_5)_2]^{-}$, $[BF_3(C_2F_5)]^{-}$, $[BF_2(CF_3)_2]^{-}$, $[B(C_2F_5)_4]^{-}$, $[BF_3(CN)]^-$, $[BF_2(CN)_2]^-$, $[B(CN)_4]^-$, $[B(OCH_3)_4]^-$, $[B(CF_3)_4]^-$, 15 $[B(OCH_3)_2(OC_2H_5)_2]^{-}$, $[B(O_2C_2H_4)_2]^{-}$, $[B(O_2C_2H_2)_2]^{-}$, $[B(O_2C_6H_4)_2]^{-}$, $[N(CN)_2]^-$, $[N(CF_3)_2]^-$, $[HSO_4]^-$, $[CIO_4]^-$, $[SiF_6]^-$, $[SCN]^-$ or $[NO_3]^-$.
 - 4. Process according to one or more of Claims 1 to 3, characterised in that the substituent X in dihalogen compounds of the formula (2) according to Claim 1 denotes fluorine or chlorine.
- 5. Process according to one or more of Claims 1 to 4, characterised in that the substituent R in compounds of the formula (5) according to Claim 1 in each case, independently of one another, has the meaning of hydrogen, straight-chain or branched alkyl having 1-20 C atoms or saturated, partially or fully unsaturated cycloalkyl having 3-7 C atoms, which may be substituted by alkyl groups having 1-6 C atoms.
- 30 6. Process according to one or more of Claims 1 to 5, characterised in that the first step of the process is carried out in water.

- 7. Process according to one or more of Claims 1 to 6, characterised in that the first step of the process is carried out at temperatures of 0° to 150°C.
- 8. Process according to one or more of Claims 1 to 5, characterised in that the first step of the process is carried out in an organic solvent.
 - 9. Process according to one or more of Claims 1 to 5 and 8, characterised in that the first step of the process is carried out at temperatures of -50° to 150°C.

5

- 10. Process according to one or more of Claims 1 to 9, characterised in that the second step of the process is carried out without a solvent.
- 11. Process according to one or more of Claims 1 to 10, characterised in that the second step of the process is carried out at a temperature at which at least one component is liquid.
 - 12. Process according to one or more of Claims 1 to 9, characterised in that the second step of the process is carried out in an organic solvent.

20

- 13. Process according to one or more of Claims 1 to 9 and 12, characterised in that the second step of the process is carried out at temperatures of -50° to 150°C.
- 25 14. Process according to one or more of Claims 1 to 9, characterised in that the second step of the process is carried out in water.
 - 15. Process according to one or more of Claims 1 to 9 and 14, characterised in that the second step of the process is carried out at temperatures of 0° to 150°C.
 - 16. Compounds of the formula (4)

20

in which the substituents R in each case, independently of one another, have the meaning of hydrogen,

straight-chain or branched alkyl having 1-20 C atoms,

saturated, partially or fully unsaturated cycloalkyl having 3-7 C atoms, which may be substituted by alkyl groups having 1-6 C atoms, where one or more substituents R may be partially or fully substituted by halogen or partially by CN or NO₂ and halogen denotes F, Cl, Br or I,

where up to four substituents R may be bonded to one another in pairs by a single or double bond and where a carbon atom or two non-adjacent carbon atoms of one or more substituents R may be replaced by atoms and/or atom groups

selected from the group -O-, -C(O)-, -C(O)O-, -S-, -S(O)-, -SO₂-, -SO₃-, -N=, -N=N-, -NH-, -NR'-, -PR'-, -P(O)R'-, -P(O)R'-O-, -O-P(O)R'-O-, and -P(R')₂=N-, where R' denotes non-fluorinated, partially or perfluorinated alkyl having 1-6 C atoms, saturated or partially unsaturated cycloalkyl

having 3-7 C atoms, unsubstituted or substituted phenyl or an unsubstituted or substituted heterocycle,

25 X denotes F, Cl or Br, with the proviso that all four substituents R are not simultaneously hydrogen and

A is selected from the group $[R^1OSO_3]^-$, $[R^1SO_3]^-$, $[R^FSO_3]^-$, $[(FSO_2)_2N]^-$, $[(R^FSO_2)_2N]^-$,

30 $[(R^{F}SO_{2})(R^{F}CO)N]^{-}, [(R^{F}SO_{2})_{3}C]^{-}, [(FSO_{2})_{3}C]^{-}, [R^{1}CH_{2}C(O)O]^{-}, \\ [R^{F}C(O)O]^{-}, [P(C_{n}F_{2n+1-m}H_{m})_{y}F_{6-y}]^{-}, [P(C_{6}F_{5})_{y}F_{6-y}]^{-}, [(R^{1}O)_{2}P(O)O]^{-}, \\ [R^{1}_{2}P(O)O]^{-}, [R^{1}P(O)O_{2}]^{2-}, [R^{F}_{2}P(O)O]^{-}, [R^{F}P(O)O_{2}]^{2-}, [BF_{4-z}R^{F}_{z}]^{-},$

30

heterocycle,

 $[BF_{4-7}(CN)_2]^-$, $[B(C_6F_5)_4]^-$, $[B(OR^1)_4]^-$, $[N(CN)_2]^-$, $[(CN_3)C]^-$, $[N(CF_3)_2]^-$, $[HSO_4]^-$, $[SiF_6]^{2-}$, $[CIO_4]^-$, $[SCN]^-$ and $[NO_3]^-$, where [CF₃SO₃] is excepted and in which the substituents R^F in each case, independently of one another, 5 have the meaning of perfluorinated and straight-chain or branched alkyl having 1-20 C atoms, perfluorinated and straight-chain or branched alkenyl having 2-20 C atoms and one or more double bonds. perfluorinated and saturated, partially or fully unsaturated cycloalkyl 10 having 3-7 C atoms, which may be substituted by perfluoroalkyl groups, where the substituents R^F may be bonded to one another in pairs by a single or double bond and where a carbon atom or two non-adjacent carbon atoms of the substituent R^F which are not in the α -position to the heteroatom may be replaced 15 by atoms and/or atom groups selected from the group -O-, -C(O)-, -S-, -S(O)-, -SO₂-, -N=, -N=N-, -NR'-, -PR'- and -P(O)R'-, where R' denotes non-fluorinated, partially or perfluorinated alkyl having 1-6 C atoms. saturated or partially unsaturated cycloalkyl having 3-7 C atoms, unsubstituted or substituted phenyl or an unsubstituted or substituted

in which the substituents $\ensuremath{\mathsf{R}}^1$ in each case, independently of one another, have the meaning of

straight-chain or branched alkyl having 1-20 C atoms,

25 straight-chain or branched alkenyl having 2-20 C atoms and one or more double bonds,

straight-chain or branched alkynyl having 2-20 C atoms and one or more triple bonds,

saturated, partially or fully unsaturated cycloalkyl having 3-7 C atoms, which may be substituted by alkyl groups having 1-6 C atoms.

where the substituents R¹ may be partially substituted by CN, NO₂ or halogen and

halogen denotes F, Cl, Br or I,

where the substituents R¹ may be bonded to one another in pairs by a single or double bond and

where a carbon atom or two non-adjacent carbon atoms of the substituent R^1 which are not in the α -position to the heteroatom may be replaced by atoms and/or atom groups selected from the group -O-, -C(O)-,

-C(O)O-, -S-, -S(O)-, -SO₂-, -SO₃-, -N=, -N=N-, -NH-, -NR'-, -PR'-,

-P(O)R'-, P(O)R'O-, OP(O)R'O-, -PR'2=N-, -C(O)NH-, -C(O)NR'-,

-SO₂NH- or -SO₂NR'-, where R' denotes non-fluorinated, partially or perfluorinated alkyl having 1-6 C atoms, saturated or partially unsaturated cycloalkyl having 3-7 C atoms, unsubstituted or substituted phenyl or an unsubstituted or substituted heterocycle

and the variables

n denotes 1 to 20,

m denotes 0, 1, 2 or 3,

y denotes 1, 2, 3 or 4 and

z denotes 1, 2, 3 or 4.

20

5

10

- 17. Compounds according to Claim 16, characterised in that the substituents R denote hydrogen or a straight-chain or branched alkyl group having 1-12 C atoms,
- with the proviso that all four substituents R are not hydrogen or at least
 two substituents R are bonded to one another by single or double bonds
 in such a way that a monocyclic cation is formed and
 the counteranion A denotes

 $[CH_3OSO_3]^-$, $[C_2H_5OSO_3]^-$, $[C(CN)_3]^-$,

 $[CH_3SO_3]^-, [C_8H_{17}SO_3]^-, [CH_3C_6H_4SO_3]^-, [CF_3SO_3]^-, [C_2H_5SO_3]^-, \\$

 $[CF_3CF_2SO_3]^-, [(CF_3SO_2)_2N]^-, [(FSO_2)_2N]^-, [(CF_3SO_2)(CF_3CO)N]^-, \\ [(C_2F_5SO_2)(CF_3CO)N]^-, [(C_2F_5SO_2)_2N]^-, [(CF_3SO_2)_3C]^-, [(C_2F_5SO_2)_3C]^-, \\ [(C_2F_5SO_2)(CF_3CO)N]^-, [(C_2F_5SO_2)_2N]^-, [(CF_3SO_2)_3C]^-, [(C_2F_5SO_2)_3C]^-, \\ [(C_2F_5SO_2)(CF_3CO)N]^-, [(C_2F_5SO_2)_2N]^-, [(CF_3SO_2)_3C]^-, \\ [(C_2F_5SO_2)(CF_3CO)N]^-, [(C_2F_5SO_2)_2N]^-, [(CF_3SO_2)_3C]^-, \\ [(C_2F_5SO_2)(CF_3CO)N]^-, [(C_2F_5SO_2)_2N]^-, [(CF_3SO_2)_3C]^-, \\ [(C_2F_5SO_2)(CF_3CO)N]^-, [(C_2F_5SO_2)_2N]^-, [(CF_3SO_2)_3C]^-, \\ [(C_2F_5SO_2)(CF_3CO)N]^-, [(CF_3SO_2)(CF_3CO)N]^-, \\ [(C_2F_5SO_2)(CF_3CO)N]^-, \\ [(C_2F_5SO_2)(CF_3CO)N]$

[(FSO₂)₃C]⁻, [CH₃C(O)O]⁻, [C₂H₅C(O)O]⁻, [CF₃C(O)O]⁻, [CF₃CF₂C(O)O]⁻, [P(G₂F₅)₃F₃]⁻, [P(C₄F₉)₃F₃]⁻, [P(CF₃)₃F₃]⁻, [P(C₂F₄H)(CF₃)₂F₃]⁻, [P(C₂F₃H₂)₃F₃]⁻, [P(C₂F₅)(CF₃)₂F₃]⁻, [P(C₆F₅)₃F₃]⁻, [P(C₃F₇)₃F₃]⁻, [P(C₂F₅)₂F₄]⁻, [(HO)₂P(O)O]⁻, [(CH₃O)₂P(O)O]⁻, [(C₂H₅O)₂P(O)O]⁻, [(C₂F₅)₂P(O)O]⁻, [(CF₃)₂P(O)O]⁻, [CF₃P(O)O₂]²⁻, [P(C₆F₅)₂F₄]⁻, [(CH₃)₂P(O)O]⁻, [CH₃P(O)O₂]²⁻, [(CF₃)₂P(O)O]⁻, [CF₃P(O)O₂]²⁻, [BF₄]⁻, [BF₃(CF₃)]⁻, [BF₂(C₂F₅)₂]⁻, [BF₃(C₂F₅)]⁻, [BF₂(CF₃)₂]⁻, [B(C₂F₅)₄]⁻, [B(CH₃)₄]⁻, [B(CH₃)₄]⁻, [B(CH₃)₂(OC₂H₅)₂]⁻, [B(O₂C₂H₄)₂]⁻, [B(O₂C₆H₄)₂]⁻, [B(O₂C₆H₄)₂]⁻, [B(O₂C₆H₄)₂]⁻, [B(O₂C₆H₄)₂]⁻, [B(O₂C₆H₄)₂]⁻, [SCN]⁻ or [NO₃]⁻.

15

20

25