Section 17: Customer Segmentation

1.	Feature	Matrix
----	---------	---------------

- Clean, scaled dataset used for clustering

https://docs.google.com/spreadsheets/d/1ejnuioXFQa2MBZ4P95fUspL6CNPP3AqmDqG_eoeatSc/edit?qid=197570711#qid=197570711

Scope: Segment the consumer base into distinct personas using behavioral, demographic, and attitudinal data to drive marketing and product strategies.

Objectives

- Segment respondents into 4–6 unique personas using quantitative clustering methods.
- Characterize each persona by demographics, behavioral features, and attitudinal indicators.
- Validate segmentation effectiveness using silhouette scores and GMM-based model fit indices.

Analysis Tasks

Task Details Method / Tools

1. Feature - Extract numeric python import pandas as pd import Matrix variables from numpy as np df =Constructio Q1-Q30: pd.read_csv("survey_data_cleaned.csv") n — Dandruff features = df[["Dandruff_Score", severity, hair fall, "HairFall_Freq", "Purchase_Cadence", usage frequency "Sentiment_Score", — Purchase "EyeTracking_Flag"]] X = behavior. engagement flags features.copy() (eye-tracking) Sentiment/exciteme nt scores from open-ended responses 2. - Impute missing python from sklearn.impute import Preprocessi values using mean SimpleImputer from ng & Scaling or flags

- Standardize features before clustering

sklearn.preprocessing import StandardScaler imputer = SimpleImputer(strategy="mean") X_imputed = imputer.fit_transform(X) scaler = StandardScaler() X_scaled = scaler.fit_transform(X_imputed)

3. Clustering - Apply KMeans Models

with k = 4 to 6 - Fit Gaussian Mixture Models for soft segmentation

python from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixture kmeans = KMeans(n_clusters=5, random_state=42) kmeans_labels = kmeans.fit_predict(X_scaled) gmm = GaussianMixture(n_components=5, random_state=42) gmm_labels = gmm.fit_predict(X_scaled)

4. Cluster Validity & Selection

- Evaluate silhouette scores and GMM BIC/AIC - Visualize results with elbow and silhouette plots

python from sklearn.metrics import silhouette_score import matplotlib.pyplot as plt silhouette_scores = [] bic_scores = [] $aic_scores = [] for k in range(2, 8):$ km = KMeans(n_clusters=k, random_state=42) labels = km.fit_predict(X_scaled) silhouette_scores.append(silhouette_sc ore(X_scaled, labels)) gmm_k = GaussianMixture(n_components=k, random_state=42).fit(X_scaled) bic_scores.append(gmm_k.bic(X_scaled)) aic_scores.append(gmm_k.aic(X_scaled)) plt.plot(range(2, 8), silhouette_scores, label="Silhouette") plt.plot(range(2, 8), bic_scores, label="BIC") plt.plot(range(2, 8), aic_scores, label="AIC") plt.legend(); plt.title("Cluster Evaluation Metrics"); plt.xlabel("Number of Clusters"); plt.show()

5. Persona Profiling

Aggregate means for each cluster
Breakdown by demographics (age, gender, NCCS)
Label segments with persona narratives python df["Cluster"] = kmeans_labels
profile = df.groupby("Cluster").agg({
 "Dandruff_Score": "mean",
 "HairFall_Freq": "mean",
 "Purchase_Cadence": "mean",
 "Sentiment_Score": "mean", "Gender":
 lambda x: x.value_counts().index[0],
 "Age_Group": lambda x:
 x.value_counts().index[0], "NCCS":
 lambda x: x.value_counts().index[0]
}).reset_index() print(profile)

6. Validation&Refinement

Cross-tab against known segments
(e.g., Test vs
Control)
Bootstrap sampling to assess cluster stability

python from sklearn.utils import
resample stability_scores = [] for i
in range(10): X_sample =
resample(X_scaled, random_state=i) km
= KMeans(n_clusters=5,
random_state=42) labels =

```
km.fit_predict(X_sample) score =
silhouette_score(X_sample, labels)
stability_scores.append(score)
print("Mean Silhouette Stability:",
np.mean(stability_scores))
```

Deliverables

Feature Matrix

• Final preprocessed dataset used for clustering:

```
feature_matrix_scaled.csv
python
pd.DataFrame(X_scaled).to_csv("feature_matrix_scaled.csv",
index=False)
```

Clustering Results

• Cluster assignments:

```
python df[["Respondent_ID",
"Cluster"]].to_csv("cluster_assignments.csv", index=False)
```

- Model selection plots (Silhouette, BIC/AIC)
- KMeans parameters: n_clusters=5, init='k-means++'

Persona Profiles

- 4–6 consumer personas with titles such as:
 - o "Loyal High-Frequency Users"
 - "Skeptical Low-Engagement Trialists"
- Profile document includes:
 - Mean scores
 - Demographic dominance
 - Key behaviors and sentiment indicators

Visualization Deck

- Plots:
 - o Silhouette and BIC/AIC curves
 - Heatmaps or radar charts of cluster averages
- One slide per persona:
 - Name
 - o Demographic composition
 - o Key usage/sentiment behavior

Analysis Notebook

- Fully commented Python code:
 - Feature engineering
 - o Clustering
 - Evaluation
 - Persona generation
- Reproducible and modular for future updates