

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE And the application of:

LUTTICKEN ET AL.

Serial Number: 09/084,837 Group Art Unit: to be assigned

Filed: May 26, 1998

Examiner: to be assigned

For: RECOMBINANT BIRNAVIRUS VACCINE

CLAIM TO PRIORITY UNDER 35 USC 119

Assistant Commissioner of Patents Washington, D.C. 20231

June 9, 1998

Sir:

JUN 1 2 1998

The benefit of the filing date of the following prior foreign application is hereby requested for the above-identified application, and the priority provided in 35 USC 119 is hereby claimed:

European Patent Application No. 972015994 filed May 26, 1997

In support of this claim, the requisite certified copy of said original foreign application is filed herewith.

It is requested that the file of this application be marked to indicate that the Applicant has complied with the requirements of 35 USC 119 and that the Patent and Trademark Office kindly acknowledge receipt of this document.

In the event any fees are required with this paper, please charge our Deposit Account No. 02-2334.

Respectfully submitted,

Agent for Applicants

Registration No. 34,409

Attorney Docket No. I/97269 US

AKZO NOBEL N.V. 1300 Piccard Drive, Suite 206 Rockville, Maryland 20850-4373

(301) 948-7400 Fax: (301) 948-9751

MEG/ms Enclosures

68lutckn.pri

European Patent Office

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein. The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

97201599.4

CERTIFIED COPY OF PRIORITY DOCUMENT

98 JUL 22 MM 9: 35 98 JUL 22 MM 9: 35

RIBEON CUT BY MICH

Der Präsident des Europäischen Patentamts: Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

DEN HAAGUE 7/05/98 LA HAYE, LE

EPA/EPO/OEB Form

- 02.91

B. RIJLING

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.:

97201599.4

Application no.: Demande n*:

Anmelder: Applicant(s): Demandeur(s): Akzo Nobel N.V. 6824 BM Arnhem NETHERLANDS

Anmeldetag: Date of filing: Date de dépôt:

26/05/97

Bezeichnung der Erfindung: Title of the invention: Titre de l'invention:

Recombinant birnavirus vaccine

In Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat: State: Pays: Tag:

Date:

Aktenzeichen:

File no.

Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

C12N15/40, C12N7/01, A61K39/12, G01N33/569

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing: AT/BE/CH/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE Etats contractants désignés lors du depôt

Bemerkungen: Remarks: Remarques:

EPA/EPO/OEB Form

1012

- 02.96

Recombinant birnavirus vaccine

The present invention is concerned with a birnavirus mutant, a vaccine comprising this mutant, a method for determining birnavirus infection in an animal, as well as with a test kit for carrying out this method.

į

5

10

15

20

25

30

Infectious bursal disease virus (IBDV) and Infectious pancreatic necrosis virus (IPNV) are members of the Birnaviridae family. Viruses in this family have a very similar genomic organisation and a similar replication cycle. The genomes of these viruses consist of 2 segments (A and B) of double-stranded (ds) RNA. The larger segment A encodes a polyprotein which is cleaved by autoproteolysis to form mature viral proteins VP2, VP3 and VP4 (Hudson, P.J. et al, Nucleic Acids Res., 14, 5001-50012, 1986; Dobos P., Annual review of fish diseases 5, 25-54, 1995). VP2 and VP3 are the major structural proteins of the virion. VP2 is the major host-protective immunogen of birnaviruses, and contains the antigenic regions responsible for the induction of neutralising antibodies. The VP4 protein appears to be a virus-coded protease that is involved in the processing of a precursor polyprotein of the VP2, VP3 and VP4 proteins. The larger segment A possesses also a second open reading frame (ORF), preceding and partially overlapping the polyprotein gene. This second open reading frame encodes a protein VP5 of unknown function that is present in IBDV infected cells (Mundt, E. et al., J. Gen. Virol., 76, 437-443, 1995).

The smaller segment B encodes VP1, a 90 kDa multifunctional protein with polymerase and capping enzyme activities (Spies, U. et al., Virus Res., 8, 127-140, 1987 and Spies, U. et al., J. Gen. Virol., 71, 977-981, 1990; Duncan R. et al., Virology 181, 541-552, 1991).

For IBDV, two serotypes exist, serotype 1 and 2. The 2 serotypes may be differentiated by virus neutralisation (VN) tests. Furthermore, subtypes of serotype 1 have been isolated. These so-called "variant" viruses of serotype 1 can be identified by cross-neutralisation tests (Diseases of Poultry, 9th edition, 1991, Wolfe Publishing Ltd, ISBN 0 7234 1706 7, Chapter 28, P.D. Lukert and Y.M. Saif, 648-663), a panel of monoclonal antibodies (Snyder, D.B. et al., Arch. Virol., 127, 89-101. 1992.) or RT-PCR (Jackwood, D.J., Proceedings of the International symposium on infectious bursal disease and chicken infectious anaemia, Rauischholzhausen, Germany, 155-161, 1994). Some of these subtypes of serotype 1 of IBDV have been described in literature for example: Classical, Variant-E, GLS, RS593 and DS326 strains (Van Loon, et al. Proceedings of

the International symposium on infectious bursal disease and chicken infectious anaemia, Rauischholzhausen, Germany, 179-187, 1994).

Infectious Bursal disease (IBD), also called Gumboro disease, is an acute, highly-contagious viral infection in chickens that has lymphoid tissue as its primary target with a selective tropism for cells of the bursa of Fabricius. The morbidity rate in susceptible flocks is high, with rapid weight loss and moderate mortality rates. Chicks that recover from the disease may have immune deficiencies because of the destruction of the bursa of Fabricius which is essential to the defence mechanism of the chicken. The IBD-virus causes severe immunosuppression in chickens younger than 3 weeks of age and induces bursal lesions in chicks up to 3 months old.

5

10

15

20

25

30

For many years the disease could be prevented by inducing high levels of antibodies in breeder flocks by the application of an inactivated vaccine, to chickens that had been primed with attenuated live IBDV vaccine. This has kept economic losses caused by IBD to a minimum. Maternal antibodies in chickens derived from vaccinated breeders prevents early infection with IBDV and diminishes problems associated with immunosuppression. In addition, attenuated live vaccines have also been used successfully in commercial chicken flocks after maternal antibodies had declined.

Recently, very virulent strains of IBDV have caused outbreaks of disease with high mortality in Europe. The current vaccination programs failed to protect chicks sufficiently. Vaccination failures were mainly due to the inability of live vaccines to infect the birds before challenge with virulent field virus.

Eradication of the disease by other preventative measures than vaccination has not been feasible, because the virus is widely spread and because with currently administered live attenuated or inactivated IBDV vaccines it is not possible to determine whether a specific animal is infected with an IBDV field virus or whether the animal was vaccinated with an IBDV vaccine. In order to be able to start an eradication control programme for IBDV it is highly desirable that the possibility exists to discriminate between animals vaccinated with an IBDV vaccine and those infected with a field virus so as to be able to take appropriate measures, i.e. remove infected flocks, to reduce spreading of the virulent field virus. The introduction of, for example, a serologically identifiable marker can be achieved by introducing a mutation in genes

encoding non-essential (glyco)proteins of the IBDV which still give rise to the production of antibodies in an infected host animal. A marker vaccine for Aujeszky's disease and companion diagnostic tests have proven their practical value in the control of this disease. Whereas such control programs for other viral infectious diseases in animals are under development, until the present invention a vaccine based on an IBDV vaccine strain which would fit in IBDV control programs has not been described yet. The main reason for this is that the prerequisites for the development for such an IBDV marker vaccine were not met. No permissive position or region in the genomic IBDV sequence, i.e. a position or region which can be used for the incorporation of the mutation without disrupting essential functions of IBDV, such as those necessary for infection and replication, have been identified yet. Moreover, such a non-essential region in the IBDV genome should encode a (glyco)protein which elicits a major serological response in an animal infected with wild-type IBDV, and such a region was not identified before.

The present inventors have unexpectedly found a non-essential gene within segment A of a birnavirus genome which can be mutated such that the resulting birnavirus mutant does not produce the native expression product of that gene. Moreover, it has been found that this birnavirus mutant can be used as a marker vaccine virus which allows to make a serological distinction between animals infected with wild-type birnavirus and animals immunised with a vaccine based on this birnavirus mutant.

20

25

30

5

10

15

The present invention provides a birnavirus mutant which is not able to produce a native VP5 protein as a result of a mutation in the VP5 gene of the birnavirus genome.

Preferably, the birnavirus mutant is an IBDV mutant or an IPNV mutant, the IBDV mutant being most preferred.

The inventors have found that an IBDV mutant which is not able to produce the native VP5 protein is still able to infect cells and to replicate in these cells <u>in vitro</u>. It is demonstrated that the IBDV mutant according to the invention is replication competent in cell culture (Example 2). The VP5⁻ IBDV exhibits a delay in replication in chicken embryo cells as compared to the VP5⁺ parental virus, however, final yields of the virus are similar, i.e. about 10^{7.5} TCID₅₀/ml (Example 1). Moreover, it is demonstrated that the IBDV mutant is also able to infect poultry and to replicate in the infected host animals <u>in vivo</u>, i.e. evidence is provided that the gene encoding the VP5 protein is a non-essential gene. Example 3 shows that the VP5⁻ IBDV can be re-isolated

from organs of animals infected with the IBDV mutant and that the IBDV mutant induces a protective immune response in the infected animals.

Moreover, it has been established herein that part of the normal anti-IBDV immune response in poultry is directed to the VP5 region. This is rather surprising as the VP5 protein is considered to represent a non-structural viral protein (Mundt et al., J. Gen. Virol. <u>76</u>, 437-443, 1995) and the immune response in an animal against a viral pathogen is usually elicited against the structural (glyco)proteins of the virus. These findings make the IBDV mutant and other birnavirus mutants according to the present invention a suitable vaccine candidate for a marker vaccine. Such a marker vaccine provides the possibility to determine whether animals are infected with a wild-type birnavirus, e.g. IBDV, or with a vaccine virus.

Additionally, it has been found that the VP5 protein is involved in the expression of virulence of the birnaviruses, in particular of IBDV, and that the inability of the virus mutants to produce the native VP5 protein leads to an attenuation of the virus.

With the term "which is not able to produce a native VP5 protein" is meant that the birnavirus mutant produces a polypeptide that can be distinguished by serological tests from the native VP5 protein, or does not produce a VP5 protein at all. For example, in the former case, the birnavirus mutant produces only a fragment of the native birnavirus VP5 protein which lacks one or more immunogenic epitopes.

Preferably, the birnavirus mutant according to the invention produces no VP5 protein upon infection of a host cell.

As described above, the genomic organisation of the birnaviruses is well established: the IBDV and IPNV genome comprises a large segment A and a smaller segment B. The segment A of IBDV comprises a large open reading frame (ORF) encoding a polyprotein of about 110 kDa (VP2-VP4-VP3). The gene encoding the VP5 protein is identified in the prior art, and defined herein, as the small ORF on segment A of the birnavirus genome which precedes and partially overlaps the polyprotein encoding ORF (Bayliss et al., J. Gen. Virol. 71, 1303-1312, 1990; Spies et al., J. Gen. Virol. 71, 977-981, 1990; Havarstein L.S. et al., J. Gen. Virology 71, 299-308; 1990; Dobos et al., 1995, supra; Figures 1-3 herein and SEQ ID No.'s 1-7). The mutation introduced in the VP5 gene is such that it does not prevent the expression of the polyprotein.

SEQ ID No. 1 comprises the full length cDNA nucleotide sequence of segment B of IBDV strain P2, as well as the amino acid sequence of the VP1 protein encoded by segment B (see also SEQ ID. No. 2). SEQ ID No. 3 and 5 depict the full length cDNA sequence of segment A of

10

15

5

20

25

IBDV strain D78 and the coding region of the VP5 protein and the polyprotein, respectively. SEQ ID 3 and 4 also show the amino acid sequence of the D78 VP5 protein. SEQ ID No. 5 and 6 show the amino acid sequence of the polyprotein VP2-VP4-VP3 of D78. SEQ ID No. 7 shows the 5'-end of segment A of strain D78, including the mutations introduced in the VP5 coding region. SEQ ID No. 8 shows the nucleotide sequence of segment B of strain D78 and the amino acid sequence of the D78 VP1 protein. The genomic organisation of both segments is also shown in Figure 1.

5

10

15

20

25

30

The ORF coding for VP5 is conserved in all hitherto published segment A sequences. The IBDV ORF encodes 145 amino acids resulting in a calculated molecular mass of 16.5 kDa. The nucleotide sequence of the ORF encoding the VP5 protein of IBDV strain D78 used herein is shown in SEQ ID No. 3 and 4. Natural variations may exist between individual IBDV isolates. These natural variations result from small differences in the genomes of these viruses. The nucleotide sequence of the segment A, including the nucleotide sequence of the VP5 gene for many IBDV isolates have been described in the prior art (Vakharia et al., Avian Diseases 36, 736-742, 1992; Bayliss et al., J. Gen. Virol. 71, 1303-1314, 1990; Hudson et al., Nuc. Acid Res. 14, 5001-5012, 1986; Schnitzler et al., J. Gen. Virol. 47, 1563-1571, 1993; Kibenge et al., J. Gen. Virol. 71, 569-577, 1990 and Virology 184, 437-440, 1991; Mundt et al., Virology 209, 10-18, 1995; Lana et al., Virus Genes 6, 247-259, 1992; Vakharia et al., Virus Res. 31, 265-273, 1994; Brown et al., Virus Res. 40, 1-15, 1996). The amino acid sequence of the VP5 protein from serotype I IBDV strains display a homology of at least 95% with the VP5 amino acid sequence shown in SEQ ID No. 3 and 4, whereas the homology between serotype II VP5 sequence and the amino acid sequence shown in SEQ ID No. 3 and 4 is at least 75%. Therefore, a preferred IBDV mutant according to the present invention is an IBDV mutant wherein the mutation is introduced in the VP5 gene having a homology of at least 75%, in particular at least 95% on the amino acid sequence level with the VP5 amino acid sequence shown herein.

Preferably an IBDV mutant according to the present invention is derived from any of the classical or variant (e.g. variant E or GLS) IBDV vaccine strains, such as those currently used in the field. Such suitable IBDV strains include the IBDV vaccine strains present in the commercially available vaccines: D78, PBG 98, LZ 228E, 89-03 (Intervet International B.V.), Bursine 2 (Fort Dodge Animal Health) and S 706 (Rhône Mérieux).

A particular preferred IBDV mutant according to the invention is derived from the D78 strain comprising a VP5 gene encoding a protein having the amino acid sequence shown in SEQ ID No. 3 and 4.

Alternatively, the parent birnavirus strain for the virus mutant according to the invention is a virulent birnavirus field strain. It is found herein that the VP5 protein is a factor associated with virulence, and that the absence of the native VP5 protein in a birnavirus results in an attenuated form of the virus.

5

10

15

20

25

30

Preferably the invention provides a birnavirus mutant which is not able to produce a native VP5 protein as a result of a mutation in the part of the VP5 gene which does not overlap with the large ORF encoding the polyprotein.

In particular, the birnavirus mutant according to the invention comprises a mutation in the 5'-end of the VP5 gene spanning nucleotides 1-30, preferably 1-20, more preferably 1-10. Most preferred is an birnavirus mutant having a mutation in nucleotides 1-3 of the VP5 gene.

A mutation is understood to be a change of the genetic information in the VP5 gene with respect to the genetic information present in this region of the genome of naturally occurring birnavirus producing native VP5 protein. The mutation is, for example, a nucleic acid substitution, deletion, insertion or inversion, or a combination thereof.

In a preferred embodiment of the present invention a birnavirus mutant is provided wherein the mutation is a substitution of one or more nucleotides. In particular, a nucleic acid substitution is introduced in the start codon, as a result of which the new codon encodes an amino acid different from methionine or represents a stop codon, preferably the nucleic acid substitution comprises at least two of the nucleotides of the start codon.

A further birnavirus mutant according to the invention comprises a substitution of one or more nucleotides in a codon(s) different from the start codon resulting in one or more stop codons, preferably in the 5'-end of the VP5 gene as defined above, if desired in addition to a substitution in the start codon as described above. Preferably, the birnavirus mutant comprises a stop codon in this region of the VP5 gene in each of the three reading frames.

Such a preferred birnavirus mutant may be an IBDV mutant having a mutation in the start codon, the fourth and the sixth codon of the VP5 gene, preferably resulting in the mutated codons shown in SEQ ID No. 7 and Figure 3.

Alternatively, a birnavirus mutant is provided wherein the mutation is a deletion. In particular, the deletion comprises less than 20, less than 10 or less than 5 nucleotides. Preferably, the deletion comprises a total number of nucleotides not dividable by three, resulting in a shift of the reading frame.

Preferably the deletion comprises one or more nucleotides of the start codon of the VP5 gene.

In an alternative embodiment of the present invention a birnavirus mutant is provided wherein the mutation comprises the insertion of a heterologous nucleic acid sequence in the birnavirus genome. A heterologous nucleic acid sequence is a nucleic acid sequence normally not present at the specific insertion site of the particular virus species.

The heterologous nucleic sequence to be incorporated into the birnavirus genome is a nucleic acid fragment which either encodes a polypeptide or is a non-coding sequence. The nucleic acid fragment can be derived from any source, e.g. viral, eukaryotic, prokaryotic or synthetic, including oligonucleotides suitable for the interruption of the expression of the VP5 gene.

A suitable oligonucleotide for the interruption of the VP5 expression may comprise three translational stop codons in each of the possible reading frames in both directions, in addition to one or more appropriate restriction enzyme cleavage sites useful for the insertion of a second heterologous nucleic acid sequence. The length and nucleotide sequence of such a non-coding heterologous nucleic acid sequence is not critical, but preferably varies between 8-50 nucleotides.

In a further embodiment of the present invention a birnavirus mutant is provided which can be used not only for the preparation of a vaccine against infection by a specific birnavirus, but also against other poultry or fish infectious diseases. For example, a vector vaccine based on such an IBDV mutant offers the possibility to immunise against other avian pathogens by the expression of antigens of these avian pathogens within infected cells of the immunised host. Such an IBDV vector according to the present invention can be obtained by inserting a heterologous nucleic acid sequence encoding a polypeptide heterologous to the IBDV in the VP5 gene as defined herein.

The heterologous nucleic acid sequence may encode an antigen of an avian pathogen such as Newcastle disease virus, Infectious bronchitis virus, Marek's disease virus, avian encephalomyelitis virus, avian reovirus, avian influenza virus, chicken anaemia virus, Salmonella spp., E.coli, and Eimeria spp.

20

15

5

10

25

Furthermore, an IBDV mutant according to the invention comprises in addition to the mutation in the VP5 gene, a mutation in the VP2 gene, wherein this gene expresses a chimeric protein comprising neutralising epitopes of more than one antigenic type of IBDV (e.g. classic, Variant-E and/or GLS). Preferably, such a mutant comprises the relevant protective VP2 epitopes of a variant GLS strain and classic strain. In particular, the mutated VP2 gene is a GLS VP2 gene comprising a nucleic acid sequence fragment encoding the B69 epitope. The construction of such a mutated VP2 genes is described in Snyder et al., Avian Diseases 38, 701-707, 1994.

Furthermore, nucleic acid sequences encoding polypeptides for pharmaceutical or diagnostic applications, in particular immuno-modulators such as lymphokines, interferons or cytokines, may be incorporated into the VP5 gene. The heterologous nucleic acid sequence may also encode a screenable marker, such as Ε. coli β-galactosidase or Ε. coli β-glucuronidase.

The construction of birnavirus mutants, in particular of IBDV mutants according to the present invention can be achieved by means of the recently established infectious cRNA system for IBDV (Mundt and Vakharia, Proc. Natl. Acad. Sci. USA 93, 11131-11136, 1996). This reverse genetics system opens the possibility to introduce mutations in the RNA genome of the IBD virus, in particular in the VP5 gene. The most important step in this reverse genetics system is to provide full length cDNA clones of the segments A and B of IBD virus. cDNA constructs comprising the segment A or B, including the nucleotides of the 5'- and 3'- ends of both these segments can be generated according to the method described by Mundt and Vakharia (1996, supra). Additionally, these constructs comprise a RNA polymerase promoter operably linked to either of the segments. The promoter can be the promoter for the T7, SP6 or T3 polymerase, the T7 promoter being preferred. Mutations can be introduced into the VP5 gene by means of methods generally known in the art for this purpose. In particular, the mutation(s) are introduced by means of site directed mutagenesis.

For example, in a first step a cDNA fragment is provided comprising at least a substantial part of the VP5 gene. In the next step suitable primer pairs are designed and hybridised with the VP5 sequence containing fragment. The 5'-primer comprises in addition to sequences complementary to the VP5 sequence, nucleotides which harbour the desired mutation, e.g. a mutation which changes the ATG start codon to an AGG (arginine) codon. Moreover, the 5'-primer is provided with an upstream nucleotide sequence representing a suitable restriction enzyme cleavage site which allows the restoring of the complete 5'-end non-coding sequence. Subsequently, the new mutated fragment is amplified using PCR and the new fragment is

introduced in the starting sequence by replacing the native nucleic acid sequence using appropriate restriction enzymes. In the next step plus-sense transcripts of the segment A and B are generated in vitro with (T7) RNA polymerease, after which the synthetic transcripts are purified using conventional RNA purification techniques. The recombinant IBDV mutant according to the invention is obtained after transfection of suitable cells (e.g. VERO cells, QM-7 cells or CEC cells) with the synthetic RNA transcripts of both segments of the IBDV genome, if desired in the presence of transfection-enhancing compositions, such as Lipofectin. Finally the recombinant IBDV is harvested from the supernatant of the transformed cells.

Methods for introducing a mutation in the birnavirus genome are described herein, but are also generally used in the art (Mundt and Vakharia, 1996, supra; Current Protocols in Molecular Biology, eds.: F. M. Ausubel et al., Wiley N.Y., 1995 edition, pages 8.5.1.-8.5.9.)

Further to the unexpected finding by the present inventors that the VP5 ORF of IBDV is a non-essential region of the IBDV genome, it has also been found that an IBDV mutant according to the present invention is able to induce a protective immune response, i.e. animals immunised with a vaccine comprising the IBDV mutant are protected against virulent challenge. Moreover, it has been found that anti-sera of animals infected with naturally occurring IBDV comprise antibodies directed to the non-structural VP5 protein and that these antisera can be distinguished from anti-sera derived from animals infected with an IBDV mutant according to the present invention. In addition, it has been found that the IBDV mutant as described above is attenuated if compared with the parent IBD virus which is able to produce the native VP5 protein.

Therefore, another aspect of this invention is a vaccine for use in the protection of animals against birnavirus infection comprising the birnavirus mutant as characterised above, together with a pharmaceutical acceptable carrier or diluent. In particular, the vaccine according to the invention is a vaccine for use in the protection of poultry against infectious bursal disease comprising the IBDV mutant described above.

The birnavirus mutant according to the present invention can be incorporated into the vaccine as live or inactivated virus.

A vaccine according to the invention can be prepared by conventional methods such as for example commonly used for the commercially available live- and inactivated IBDV vaccines. Briefly, a susceptible substrate is inoculated with an IBDV mutant according to the invention and

20

25

30

5

10

propagated until the virus replicated to a desired infectious titre after which IBDV containing material is harvested.

Every substrate which is able to support the replication of IBD viruses can be used in the present invention, including primary (avian) cell cultures, such as chicken embryo fibroblast cells (CEF) or chicken kidney cells (CK), mammalian cell lines such as the VERO cell line or the BGM-70 cell line, or avian cell lines such as QT-35, QM-7 or LMH. Usually, after inoculation of the cells, the virus is propagated for 3-10 days, after which the cell culture supernatant is harvested, and if desired filtered or centrifuged in order to remove cell debris.

5

10

15

20

25

30

Alternatively, the IBDV mutant is propagated in embryonated chicken eggs. In particular, the substrate on which these IBD viruses are propagated are SPF embryonated eggs. Embryonated eggs can be inoculated with, for example 0.2 ml IBDV mutant containing suspension or homogenate comprising at least 10^2 TCID₅₀ per egg, and subsequently incubated at 37 °C. After about 2-5 days the IBD virus product can be harvested by collecting the embryo's and/or the membranes and/or the allantoic fluid followed by appropriate homogenising of this material. The homogenate can be centrifuged thereafter for 10 min at 2500 x g followed by filtering the supernatant through a filter (100 µm).

The vaccine according to the invention containing the live virus can be prepared and marketed in the form of a suspension or in a lyophilised form and additionally contains a pharmaceutically acceptable carrier or diluent customary used for such compositions. Carriers include stabilisers, preservatives and buffers. Suitable stabilisers are, for example SPGA, carbohydrates (such as sorbitol, mannitol, starch, sucrose, dextran, glutamate or glucose), proteins (such as dried milk serum, albumin or casein) or degradation products thereof. Suitable buffers are for example alkali metal phosphates. Suitable preservatives are thimerosal, merthiolate and gentamicin. Diluents include water, aqueous buffer (such as buffered saline), alcohols and polyols (such as glycerol).

If desired, the live vaccines according to the invention may contain an adjuvant. Examples of suitable compounds and compositions with adjuvant activity are the same as mentioned below.

Although administration by injection, e.g. intramuscular, subcutaneous of the live vaccine according to the present invention is possible, the vaccine is preferably administered by the inexpensive mass application techniques commonly used for IBDV vaccination. For IBDV vaccination these techniques include drinking water and spray vaccination.

Alternative methods for the administration of the live vaccine include eye drop and beak dipping administration.

In another aspect of the present invention a vaccine is provided comprising the birnavirus mutant in an inactivated form. The major advantage of an inactivated vaccine is the extremely high levels of protective antibodies of long duration that can be achieved.

5

10

15

20

25

30

The aim of inactivation of the viruses harvested after the propagation step is to eliminate reproduction of the viruses. In general, this can be achieved by chemical or physical means. Chemical inactivation can be effected by treating the viruses with, for example, enzymes, formaldehyde, β -propiolactone, ethylene-imine or a derivative thereof. If necessary, the inactivating compound is neutralised afterwards. Material inactivated with formaldehyde can, for example, be neutralised with thiosulphate. Physical inactivation can preferably be carried out by subjecting the viruses to energy-rich radiation, such as UV light or γ -rays. If desired, after treatment the pH can be adjusted to a value of about 7.

A vaccine containing the inactivated birnavirus mutant can, for example comprise one or more of the above-mentioned pharmaceutically acceptable carriers or diluents suited for this purpose.

Preferably, an inactivated vaccine according to the invention comprises one or more compounds with adjuvant activity. Suitable compounds or compositions for this purpose include aluminium hydroxide, -phosphate or -oxide, oil-in-water or water-in-oil emulsion based on, for example a mineral oil, such as Bayol F® or Marcol 52® or a vegetable oil such as vitamin E acetate, and saponins.

The vaccine according to the invention comprises an effective dosage of the birnavirus mutant as the active component, i.e. an amount of immunising birnavirus material that will induce immunity in the vaccinated birds against challenge by a virulent virus. Immunity is defined herein as the induction of a significant higher level of protection in a population of birds after vaccination compared to an unvaccinated group.

Typically, the live vaccine according to the invention can be administered in a dose of 10^2 - 10^9 TCID₅₀ infectious dose₅₀ (TCID₅₀) per animal, preferably in a dose ranging from $10^{5.0}$ - $10^{7.0}$ TCID₅₀, and an inactivated vaccines may contain the antigenic equivalent of 10^5 - 10^9 TCID₅₀ per animal.

Inactivated vaccines are usually administered parenterally, e.g. intramuscularly or subcutaneously.

Although, the IBDV vaccine according to the present invention may be used effectively in chickens, also other poultry such as turkeys, guinea fowl and partridges may be successfully vaccinated with the vaccine. Chickens include broilers, reproduction stock and laying stock.

The age of the animals receiving a live or inactivated vaccine according to the invention is the same as that of the animals receiving the conventional live- or inactivated IBDV vaccines. For example, broilers (free of maternally derived antibodies-MDA) may be vaccinated at one-day-old, whereas broilers with high levels of MDA are preferably vaccinated at 2-3 weeks of age. Laying stock or reproduction stock with low levels of MDA may be vaccinated at 1-10 days of age followed by booster vaccinations with inactivated vaccine on 6-8 and 16-20 weeks of age.

The invention also includes combination vaccines comprising, in addition to the IBDV or IPNV mutant according to the invention, one or more immunogens derived from other pathogens infectious to poultry or fish, respectively.

Preferably, the combination vaccine additionally comprises one or more vaccine strains of infectious bronchitis virus (IBV), Newcastle disease virus (NDV), egg drop syndrome (EDS) virus, turkey rhinotracheitis virus (TRTV) or reovirus.

In addition to a marker vaccine for birnaviruses, the availability of an appropriate diagnostic test is an essential requirement for the application of a birnavirus eradication control programme. Such a diagnostic test is provided herein and comprises a method for determining IBDV infection in poultry and IPNV infection in fish, i.e. it provides a method for distinguishing an animal in the field vaccinated with a vaccine as described above, from an animal infected with a naturally-occurring IBDV or IPNV.

Therefore, the present invention provides a method for the detection of birnavirus infection, in particular for the detection of IBDV infection in an animal comprising the step of examining a sample of the animal for the presence of VP5 antibodies or antigens. The animal is an animal from the field and is in particular an avian species, preferably a chicken. The sample coming from the animal may be any sample in which IBDV antibodies or antigens are present, e.g. a blood, serum or tissue sample, the serum sample being preferred.

10

15

5

20

A preferred method for determining birnavirus infection in an animal is a method for the detection of antibodies against the VP5 protein, comprising the steps of:

- (i) incubating a sample suspected of containing anti-birnavirus antibodies, with VP5 antigen,
- (ii) allowing the formation of antibody-antigen complex, and
- (ii) detecting the presence of the antibody-antigen complex.

The design of this immunoassay may vary. For example, the immunoassay may be based upon competition or direct reaction. Furthermore, protocols may use solid supports or may use cellular material. The detection of the antibody-antigen complex may involve the use of labelled antibodies; the labels may be, for example, enzymes, fluorescent-, chemiluminescent-, radioactive- or dye molecules.

Suitable methods for the detection of the VP5 antibodies in the sample include the enzymelinked immunosorbent assay (ELISA), immunofluorescent test (IFT) and Western blot analysis.

In an exemplifying ELISA, the wells of a polystyrene micro-titration plate are coated with VP5 antigen. Next, the wells of the coated plates are filled with chicken serum and serial dilutions are made. After incubation, chicken anti-VP5 protein serum antibodies are determined by detecting antibody (monoclonal or polyclonal) with the same specificity as the coated one, but which is labelled (e.g. with biotin). The labelled antibody will occupy the free antigens that have not been occupied by anti-VP5 antibodies in the chicken serum. For example, horse radish peroxidase coupled to avidin may be added and the amount of peroxidase is measured by an enzymatic reaction. If no antibodies against VP5 are present in the chicken serum sample then a maximum absorption is obtained. If the serum contains many antibodies against VP5 then a low absorption is expected. Alternatively, after the incubation with chicken serum, the amount of antibodies present in the serum that bound to the VP5 antigen may be determined directly by using an anti-chicken conjugate followed by the enzymatic reaction.

In a sandwich ELISA the wells of a polystyrene micro-titration plate can be coated with a monoclonal antibody directed against the VP5 protein. Next, the wells of these coated plates are incubated with VP5 antigen. After the antigen is captured, the wells are filled with the chicken serum and serial dilutions are made. Subsequently, the protocol as described above may be followed. This test can also be carried out by using polyclonal serum against VP5 instead of the coated monoclonal antibodies.

In another diagnostic test (Western blot analysis), the VP5 antigen (containing) material is subjected to SDS-PAGE. Next, the separated proteins are electroblotted onto nitro-cellulose

15

5

10

25

20

membrane. Thereafter, the membranes can be cut into lanes and the lanes are incubated with the chicken serum. The presence of VP5 antibodies in the sample can be determined by examination whether antibodies bound to the VP5 antigen, for example by using an anti-chicken conjugate followed by an enzymatic reaction. If antibodies against VP5 are present then a band at about 17 kDa is identifiable.

The VP5 antigen may be any VP5 protein (fragment) comprising material which allows the formation of the VP5 antigen-VP5 antibody complex. Preferably, the VP5 antigen comprises the expression product of a conventional recombinant host cell or virus, e.g. such as E.coli expressed VP5 (Mundt et al., J. Gen. Virol. 76, 437-443, 1995) or baculovirus expressed protein (Vakharia et al., Vaccine 12, 452-456, 1994; Vakharia et al., J. Gen Virol. 74, 1201-1206, 1993). In a further embodiment of the present invention a diagnostic test kit is provided which is suitable for performing the diagnostic test according to the invention as described above.

In particular, a diagnostic test kit is provided which comprises in addition to the components usually present, the VP5 antigen (if desired coated onto a solid phase) as the immunological reagent. Other components usually present in such a test kit include, biotin or horseradish peroxidase conjugated antibodies, enzyme substrate, washing buffer etc.

To determine birnavirus VP5 antigen in a test sample from an animal in the field, VP5-specific antibodies are used as the immunological reagent, preferably fixed to a solid phase. The test sample is added, and after an incubation time allowing formation of the antibody-antigen complex, a second labelled antibody may be added to detect the complex.

EXAMPLES

Example 1.

5

10

15

20

30

Construction and analysis of recombinant VP5 IBD virus

Construction of full length VP5 clone of IBDV segment A.

To construct a VP5-negative IBDV, the *Eco*RI site immediately following the 3'-end of the full length cDNA of strain D78 segment A (pUC19FLAD78; Mundt and Vakharia, Proc. Natl. Acad. Sci. USA <u>93</u>, 11131-11136, 1996) was deleted. An *Eco*RI - *Kpn*I fragment containing the

T7 polymerase binding site followed by the complete segment A sequence was excised and inserted into EcoRI - KpnI cleaved vector pUC18 after inactivation of the unique NdeI within the vector sequence resulting in plasmid pAD78/EK. Thereafter, the genomic region encompassing the initiation codon for VP5 was amplified in two pieces using primers A1F5' and VP5MutR, and VP5MutF and A2R, respectively (see Table 1 for sequence and location of primers). PCR fragments were cloned separately and were subsequently fused via a unique AfIII site which had been created by mutations within respective primers (see Fig. 2). An EcoRI - NdeI fragment containing the T7 polymerase binding site, and the 5'-part of segment A including the introduced mutations was excised and used to substitute the wild-type EcoRI - NdeI fragment in pAD78/EK to yield plasmid pAD78/VP5. Of the three mutations introduced one altered the initiation methionine codon for VP5 into an arginine codon (Fig. 2).

Table 1: Sequence of oligonucleotide primers used for generating mutant constructs.

aNucleotide sequence AGAGAATTCTAATACGACTCACTATAGGA	Orientation	Designation	Nucleotide no
MCGAICGGICTGAC	+	A1F5	1-18
TGGGCCTGTCACTGCTGTCACATGT			
ALIGCTCTGCAGTGTGTAGTGAGG	-	A2R	716 - 740
TACAACGCTATCCTTAAGGGTTAGTA		A3R	338 - 362
AU	+	VP5MutF	80 - 109
TCTACTAACCCTTAAGGATAGCGTTGT			
G	- 1	VP5MutR	80 - 109
G	-	VP5MutR	80 - 109

a) Underlined nucleotides denote virus specific nucleotides. T7 promotor sequences are marked in italics. Mutated nucleotides are bold and orientation of the primer is shown for sense (+) and antisense (-). Primer positions are given according to the published sequence of serotype I strain P2 (Mundt et al., Virology 209, 209-218, 1995).

Virus recovery from cRNA. For *in vitro* transcription of RNA plasmids pAD78/EK, pAD78/VP5⁻ and pBP2 (Fig. 2) were linearized by cleavage with *BsrGI* and *PstI*, respectively. Treatment of linearized DNA, transcription and purification of RNA, and transfection were carried out as described by Mundt and Vakharia (1996, supra) with the exception that secondary

3

, 15

20

25

5

CEC were used for the transfection experiments. Three days after transfection a CPE was visible in CEC. Cells were freeze/thawed, centrifuged at 700 x g to eliminate cellular debris, and the resulting supernatants were filtrated through 0.45 µm filters and stored at -20°C. For the transfection experiments full length cDNA clones of segment A of strain D78 capable of expressing (pAD78/EK) or unable to express VP5 (pAD78/VP5) were transcribed into synthetic RNA and cotransfected with segment B full length cRNA into CEC. Resulting virus progeny IBDV/EK and IBDV/VP5 was further characterised.

Analysis of transfection progeny immunofluorescence by Radioimmunoprecipitation assay (RIPA). VP5 was expressed in E.coli as described in Mundt et al. (J. Gen. Virol. 76, 437-443, 1995). Rabbit monospecific polyclonal anti serum and mouse monoclonal antibodies against VP5 were prepared according to standard protocols. Vero cells infected with IBDV/VP5⁻, IBDV/EK, and non-infected cells, respectively, were incubated with rabbit anti-IBDV serum, rabbit anti-VP5 serum and with anti-VP5 mAb DIE 7, and stained with fluoresceine-conjugated secondary antibodies. Both antisera and the monoclonal antibody recognised IBDV antigens in the cytoplasm of IBDV/EK infected cells. In contrast, whereas the anti-IBDV serum readily detected viral antigens in IBDV/VP5 infected cells, neither the monospecific anti VP5-serum nor the monoclonal anti-VP5 antibody exhibited specific reactivity. None of these immunological reagents reacted with non-infected controls.

To analyse viral proteins expressed during replication lysates of radioactively labelled CEC infected with IBDV/VP5⁻ (Fig 4, lanes 1-3) and IBDV/EK (Fig. 4, lanes 4-6) were immunoprecipitated with rabbit anti-IBDV serum, rabbit anti-VP5 serum and mAb DIE 7. Non-infected CEC were used as control (Fig. 4, lanes 7-9). IBDV/EK (lane 4) as well as IBDV/VP5⁻ (lane 1) infected CEC showed viral proteins VP2, VP3, and VP4 after precipitation with rabbit anti-IBDV serum. The rabbit anti-VP5 serum (lane 5) and mAb DIE 7 (lane 6) precipitated VP5 with a molecular mass of 21 kDa only from IBDV/EK infected cells. No specific reactivity was detectable in IBDV/VP5⁻ infected CEC after precipitation with rabbit-anti VP5 (lane 2) as well as the VP5 specific mAb DIE 7 (lane 3). Non-infected CEC showed no specific reactivity (lanes 7-9).

25

20

5

10

Replication of IBDV/VP5⁻ in CEC. To assay replication of IBDV/VP5⁻ in more detail one step growth was analysed (Fig. 5). Confluent secondary CEC were infected with IBDV/EK and IBDV/VP5⁻ with 10^{7.2} TCID₅₀, respectively. Immediately after overlaying the infected cells with 5 ml growth medium, supernatant from one infected CEC tissue plate of each virus was removed and stored at -20°C (0 h p.i.). Remaining tissue culture plates were further incubated and 4h, 8h, 16h, 24h, and 48h p.i. supernatants were removed and stored at -20°C. Supernatants were centrifuged and titrated according to standard methods. The TCID₅₀ at the different time points after infection showed that the VP5 expressing virus (IBDV/EK) replicated faster than the virus mutant lacking VP5 (IBDV/VP5⁻). 16 h after infection IBDV/EK showed a 100-fold higher than IBDV/VP5⁻ (Fig. 5). However, at 48 h p.i. IBDV/VP5⁻ reached a titre of 10^{7.2} TCID₅₀/ml which was similar to IBDV/EK (10 ^{7.45}/ml)

Preparation of recombinant IBDV VP5-2. Plasmid pAD78/VP5-2 was prepared by techniques similar to those described above. The nucleotide sequence of part of the mutated VP5 gene is shown in SEQ ID No. 7 and Figure 3. A restriction enzyme fragment harbouring the mutations was used to substitute the wild-type *EcoRI* - *NdeI* fragment in pAD78/EK. An outline of the protocol for the preparation of the recombinant plasmid is shown in Figure 3. The organisation of pBD78 is also depicted in Figure 3. The recombinant virus was prepared as described above, except for the fact that segment B of strain D78 (SEQ ID No. 8) was used and QM-7 cells were used for the transfection experiment.

Example 2

5

10

15

to

Identification of VP5 protein in different IBDV strains

Different strains of IBDV were investigated for the expression of the VP5-gene. This was done by making use of the immuno-fluorescence technique (IFT). Chicken embryo fibroblasts grown in microtiterplates were infected with different IBDV strains. Three to 5 days after incubation at 37°C cells were fixed with 70% ethanol, then treated with polyclonal rabbit anti IBDV serum (R1928), polyclonal rabbit anti VP5 serum (RαVP5) or monoclonal antibody directed against VP5 (DIE7), respectively. Binding of the poly- or monoclonal antibodies to the

different IBDV strains was visualised by making use of a fluorescence labelled conjugate (goat-anti-rabbit or goat-anti-mouse). The results are shown in Table 2:

<u>Table 2</u>: Identification of different sero- and subtypes of IBDV strains. Determination of the presence of VP5 proteins.

IBDV-	IBDV-	IBDV-strain	R1928	RaVP5	DIE7
serotype	subtype				
I	Classical	D78	+	+	+
I	Classical	228TC	+	+	+
I	Classical	PBG98	+	+	+
I	Classical	Ram0404	+	+	+
I	Classical	IBDV/EK	+	+	+
I	Classical	IBDV/VP5	+	-	-
I	GLS	GLS	+	+	+
I	Variant-E	8903	+	+	+
П	TY89	TY89	+	+	+

From these data it can be concluded that the different strains of IBDV belonging to different sero- and subtypes do express the VP5-gene. Furthermore, the recombinant VP5-IBDV vaccine strain can be differentiated from field and vaccine viruses, thereby enabling the recombinant VP5- virus to be used as a marker vaccine.

Example 3

10

20

In vivo testing of the recombinant VP5[±] and VP5⁻ IBDV vaccines in comparison with a commercial available live IBDV vaccine.

Preparation of IBDV vaccine. Primary chicken embryo fibroblast (CEF) cells were prepared at a final concentration of 2x10⁶/ml. The cells were cultured in Eagles minimum essential medium containing 5% fetal calf serum. To 25 ml of this cell suspension 0.1 ml

IBDV/EK or IBDV/VP5⁻ virus (having an infectious titre of about 3.0 log10 TCID₅₀/ml) was added. After incubation for 5 days in a high-humidity incubator at 37°C, the total suspension was used in the animal experiment without further purification. The infectious titre of the supernantant was 10^{7.1} TCID50/ml.

Animal experiment. In this study the potency of different vaccines (VP5 positive strain IBDV/EK and a VP5 negative strain IBDV/VP5⁻, and the commercial available IBDV vaccine Nobilis strain D78, Intervet International B.V., NL) was investigated. SPF chicks of 3 weeks old were treated as indicated in the treatment schedule.

Treatment Schedule:

4	_
1	•
1	v

15

5

Days after		Grou	ıps	
vaccination	1	2	3	4
00	IBDV/EK	IBDV/VP5	D78	-
03	х	x1	х	х
07	x,bl	x1,bl	x,b	x,bl
14	x,bl	x,bl	x,bl	x,bl
20	x,bl	x,bl	x,bl	x,bl
21	ch	ch	ch	ch
24	х	х	х	х
31	+	+	+	+

VP5⁺ Bursal disease vaccination with VP5 positive vaccine clone, eye-drop route, dose 10^{4.6} TCID50/animal, 0.1 ml/animal.

VP5 Bursal disease vaccination with VP5 negative vaccine clone, eye-drop route, dose 10^{5.9} TCID50/animal, 0.1 ml/animal.

D78 Bursal disease vaccination with IBDV VACCINE NOBILIS STRAIN D78, eye-drop route, one field dose.

ch Challenge with Bursal disease virus, Farragher strain F52/70, eye-drop route, dose 10^{2.0} CID50/animal, 0.1 ml/animal.

20 bl Serological examination; VN-test and/or Western blotting.

x Histological examination (H.E. staining) and MCA-8 ELISA on bursae.

- x1 Histological examination (H.E. staining) and MCA-8 ELISA on bursae and reisolation of virus from bursa of Fabricius.
- + Clinical examination and after 10 days histological examination of the bursa.

5 Detection of virus in the bursa of Fabricius.

Three, 7, 14 and 20 days after eye-drop vaccination, animals were sacrificed and blood and bursae obtained. The presence of virus in the bursa was determined with an enzyme-linked immunosorbent assay (ELISA) making use of the monoclonal antibody 8 (MAB-8). MAB-8 is directed specifically against IBDV. Data are depicted in Table 3.

Furthermore, 3 and 7 days after vaccination, bursae from animals of group 2 were investigated for the presence of the recombinant VP5⁻ virus. For that purpose bursae were homogenised and cultured on chicken embryo fibroblasts. The presence of the VP5⁻ virus was determined by IFT using polyclonal rabbit sera against IBDV or VP5 or monoclonal antibodies against VP5. From 13 out of 15 bursae (87%) investigated, VP5⁻ virus could be reisolated and identified (positive for R1928 and negative for RαVP5 and DIE7). This indicates that the virus upon animal passage is still VP5⁻, indicating that the virus is stable and does not revert to VP5⁺. Furthermore, by using the different poly- and monoclonal antibodies VP5⁻ vaccine virus can be discriminated from all other vaccine and/or field IBDV viruses. Therefore, the VP5⁻ vaccine may be used as a marker vaccine.

Three days after challenge no virus could be detected in groups 1, 2 and 3 with the MCA-8 ELISA. In contrast, all animals of group 4 (non-vaccinated control group) contained challenge virus in the bursa of Fabricius, 3 days after challenge. The results show that animals vaccinated with recombinant VP5⁺ (group 1), recombinant VP5⁻ (group 2) and IBDV vaccine Nobilis D78 (group 3) were protected against severe challenge.

<u>Table 3:</u> Individual data for detection of virus in the bursa of Fabricius with the MCA-8 ELISA at different days after vaccination or challenge.

	Day	s after v	vaccinat	ion→	Days after challenge	
	3	7	14	20	3	
Group↓			Virus d	etection	by ELISA↓	Protection↓
1 VP5 [†]	2/8	1/7	0/2	0/3	0/5	100%
2 VP5	0/8	0/7	0/2	0/3	0/5	100%
3 D78	1/8	6/7	0/2	0/3	0/5	100%
4 -	0/8	0/7	0/2	0/3	5/5	0%

5 *Number of positive bursae per total number tested.

10

15

20

Detection of lesions in the bursa of Fabricius.

The microscopic average lesion score induced by the different IBDV (recombinant) vaccines or the challenge virus are depicted in Table 4.

Before challenge, animals vaccinated with the recombinant VP5⁺ IBDV vaccine (group 1) or vaccinated with IBDV vaccine Nobilis D78 (group 3) showed mild to moderate lesions in the bursa. Three days after challenge only chronic lesions were observed in the bursa of Fabricius, indicating that the animals of groups 1 and 3 were protected against challenge. Furthermore, 10 days after challenge only very mild lesions (0-20% lymphocytic depletion) were observed in the bursa of the animals vaccinated with VP5⁺ recombinant IBDV vaccine or with Nobilis vaccine D78. In contrast animals not vaccinated and challenged showed severe lesions 10 days after challenge. In other words all animals (100%) of groups 1 and 3, vaccinated with the VP5⁺ recombinant IBDV vaccine or with Nobilis vaccine D78 were protected against severe challenge.

Three, 7, 14 and 20 days after vaccination and 3 and 10 days after challenge with the recombinant VP5 IBDV vaccine, animals of group 2 showed no to hardly any lesions (0-20% lymphocytic depletion) in the bursa. All animals of group 2, vaccinated with the VP5 recombinant IBDV vaccine, were protected against severe challenge. When animals vaccinated with the recombinant VP5 IBDV vaccine are compared to animals of groups 1 or 3 (vaccinated

with a recombinant VP5⁺ or commercial available vaccine) the recombinant VP5⁻ vaccine induces less lesions and therefore, is safer, milder than the vaccines tested in this experiment.

Three days post-challenge, all non-vaccinated animals of group 4 showed severe acute lesions in the bursa (total lymphocyte depletion, score 5.0). Ten days after challenge, all animals (17 out of 17 animals) showed total lymphocytic depletion, indicating that these animals were not protected against severe challenge. Animals that died after challenge, all showed severe lesions in the bursa of Fabricius. It was concluded that control group 4 was not protected against severe challenge indicating that the test conditions were optimal.

Table 4: Average bursal lesion score at different days after vaccination or challenge. The average lesion score is calculated as follows: all lesion scores from the animals per group on a certain day are added. This number is then divided by the total number of animals investigated in that group on that day. Individual scores range from 1 to 5. Score 0 = no lymphocytic depletion, score 1 = 0 - 20%; score 2 = 20 - 40%; score 3 = 40 - 60%; score 4 = 60 - 80% and score 5 = 80 - 100 % lymphocytic depletion (total lymphocytic depletion).

	D	ays after	vaccination	on→	Days after	challenge→	
	3						
Group↓			Bursa	l lesions	score↓		Protection
VP5 [†]	0.8	2.9	1.0	1.0	1.0°	0.6	100%
VP5	0.0	0.0	0.5	0.0	0.0°	0.1	100%
D78	0.1	2.4	3.5	2.0	2.8°	1.1	100%
•	0.0	0.0	0.0	0.0	5.0 ^a	5.0	0%

^a Acute lesions ^c Chronic lesions

20 Serological response.

5

The serological response of the animals was determined by measuring the ability of blood serum to neutralise a classical infectious bursal disease virus strain in a virus neutralising (VN) test. Serum was investigated 3, 7, 14 and 20 days after vaccination. The average neutralising titres are shown in Table 5.

The results show that recombinant IBDV vaccine VP5⁺ applied to chickens of group 1 induced a good and high serological response 20 days after vaccination which is comparable to the serological response of the chickens vaccinated with the commercial IBDV vaccine Nobilis strain D78 (group 3). The recombinant IBDV vaccine VP5⁻ applied to chickens of group 2 induced also a good serological response. A titre of 9.4 log2 was observed 20 days after vaccination. The serological response induced by the recombinant VP5⁻ IBDV vaccine was delayed when compared to the serological response induced by the recombinant IBDV VP5⁺ vaccine or the commercial IBDV vaccine Nobilis strain D78.

The non-vaccinated group 4 showed no serological response to IBDV.

Table 5: Average IBDV-VN-titres for groups 1 to 4 at different days after vaccination, expressed as log2 of the dilution.

Group	Days after vaccination													
	3	14	20											
1 VP5 ⁺	$\leq 1.0 \pm 0.0$	7.1 ± 1.7	10.2 ± 1.4	11.9 ± 1.8										
2 VP5	$\leq 1.0 \pm 0.0$	2.1 ± 1.7	6.3 ± 2.9	9.4 ± 1.4										
3 D78	$\leq 1.0 \pm 0.0$	5.2 ± 2.8	10.3 ± 1.3	11.6 ± 1.5										
4 -	$\leq 1.0 \pm 0.0$	$\leq 1.0 \pm 0.0$	$\leq 1.0 \pm 0.0$	$\leq 1.0 \pm 0.0$										

Serological differentiation between antisera.

5

10

15

20

25

The serological response against VP5 was investigated by making use of western blot analysis. For this purpose the VP5 protein was expressed in the E. coli or baculo expression system. The expressed proteins were separated by SDS PAGE. Next the proteins were electroblotted onto a nitro-cellulose membrane. Thereafter, the membrane was cut into lanes and the lanes were incubated with rabbit anti-VP5 serum, chicken serum directed against VP5⁺ recombinant vaccine, chicken serum directed against VP5⁻ recombinant vaccine or negative serum from SPF chickens. Data are summarised in Table 6. As can be seen from Table 6, the VP5⁻ serum does not induce a serological response against VP5. In contrast the rabbit anti-VP5 serum and chicken serum directed against VP5⁺ recombinant vaccine do recognise the VP5-

protein and thus induces a serological response against VP5. This indicates that chicken serum may be used to investigate if animals are exposed to a virus that expresses the VP5 protein (e.g. field virus) or to the VP5 recombinant vaccine.

Table 6: Western blot analysis. Serum from animals vaccinated with VP5⁺ or VP5-recombinant vaccine as well as SPF chicken serum and anti VP5-rabbit serum were investigated for their reaction with the VP5-protein.

Identification of serum sample	Immuno-blot
VP5 ⁺ vaccinated animal, serum sample 20d after vaccination	positive
VP5 vaccinated animal, serum sample 20d after vaccination	negative
Non-vaccinated control, serum sample at 20d	negative
Rabbit anti VP5 serum	positive

10

Mortality and clinical signs.

None of the animals vaccinated with VP5⁺ IBDV vaccine (group 1), vaccinated with recombinant VP5⁻ IBDV vaccine (group 2) or vaccinated with the commercial IBDV vaccine Nobilis strain D78 (group 3), died or showed clinical signs of infectious bursal disease after challenge, indicating that the animals were protected against severe challenge. All animals in the non-vaccinated control group were not protected against severe challenge.

LEGENDS TO THE FIGURES

Figure 1 Genomic organization of segment A and segment B of IBDV. The numbers indicate the nucleotide positions of the start, end and coding region on the segments.

Figure 2 Construction of genomic cDNA clones for the preparation of IBDV/VP5⁻. Plasmid pAD78/EK contains the complete D78 segment A cDNA encoding the polyprotein (VP2-VP4-VP3) and VP5. Plasmid pBP2 contains the complete strain P2 segment B encoding VP1. Mutations were introduced in plasmid pAD78/VP5⁻ altering the methionine start codon for VP5 into arginine and creating an artificial Afl II cleavage site. Recombinant plasmids were linearized with the underlined restriction enzymes, followed by T7 polymerase transcription.

15

10

5

Figure 3 Construction of genomic cDNA clones for the preparation of IBDV/VP5⁻-2. Plasmid pAD78/EK contains the complete D78 segment A cDNA encoding the polyprotein (VP2-VP4-VP3) and VP5. Plasmid pBD78 contains the complete strain D78 segment B encoding VP1. Mutations were introduced in plasmid pAD78/VP5⁻ altering the methionine start codon for VP5 into glutamic acid and creating an artificial BstBI cleavage site. Further mutations were introduced in the arginine and glutamine codon. Recombinant plasmids were linearized with the underlined restriction enzymes, followed by T7 polymerase transcription.

20

25 Figure 4 Radioimmunoprecipitation of proteins from CEC infected cells with recombinant IBDV. CEC infected cells with IBDV/VP5 (lanes 1-3), IBDV/EK (lanes 4-6) and uninfected controls were immunoprecipitated with rabbit anti-IBDV serum (lanes 1, 4, 7), rabbit anti-VP5 serum (lanes 2, 5, 8) and mAb DIE 7 (lanes 3, 6, 9). Position of molecular mass markers (M) is indicated. Location of the viral proteins VP2, VP3, VP4 and VP5 are marked.

30

Figure 5 Replication kinetics of IBDV/EK and IBDV/VP5. Infectious titers of supernatants (vertical axis) are determined at the times indicated.

ŕ

SEQUENCE LISTING

5 (1) GENERA	AL INFORMATION:
5 (1) GENERA	AL INFORMATION

- (i) APPLICANT:
 - (A) NAME: Azko Nobel N.V.
 - (B) STREET: Velperweg 76
- 10 (C) CITY: Arnhem
 - (E) COUNTRY: The Netherlands
 - (F) POSTAL CODE (ZIP): 6824 BM
 - (G) TELEPHONE: 0412 666379
 - (H) TELEFAX: 0412 650592

15

- (ii) TITLE OF INVENTION: Recombinant birnavirus vaccine
- (iii) NUMBER OF SEQUENCES: 8
- 20 (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

25

30

- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2827 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
- 40 (B) LOCATION:112..2745
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
- 45 GGATACGATG GGTCTGACCC TCTGGGAGTC ACGAATTAAC GTGGCTACTA GGGGCGATAC

Employee the section of the second section of

		CCGC	CCGC	rgg (CCGC	CACG	TT AC	GTGG	CTCC	CT:	CTT	GATG	ATTO	CTGC	CAC (G AGT	117
																:	L	
	5						CCA Pro											165
	10						GCT Ala											213
	15						CCT Pro 40											261
	20						GAG Glu											309
	20						GAG Glu											357
	25						ATA Ile											405
Ď	30						CAG Gln											453
	35					-	AAG Lys 120										CTA Leu 130	501
	40						TAC Tyr											549
	40						GTA Val											597
	45						ACC Thr											645

								GAT Asp			693
	5							GAC Asp			741
	10							GTG Val			789
Ď	15							GTA Val			837
	20							AAG Lys 255			885
								ATT Ile			933
								ACA Thr			981
								CTA Leu		1	029
	35			TAC Tyr				TTT Phe		1	077
	40							CGG Arg 335		1	125
								ATC Ile		1	173
								GAA Glu		1	221

	TCA	CTC	TAC	AAA	TTC	AAC	CCG	TTC	AGA	GGA	GGG	TTG	AAC	AGG	ATC	GTC	1269
	Ser	Leu	Tyr	Lys	Phe	Asn	Pro	Phe	Arg	Gly	Gly	Leu	Asn	Arg	Ile	Val	
					375					380					385		
5	a. a.	maa															
3												CTT					1317
	Giu	пр	TIE	390	Ala	PIO	GIU	GIU	395	гуѕ	Ala	Leu	vai	1yr	Ala	Asp	
				390					393					400			
	AAC	ATA	TAC	ATT	GTC	CAC	TCA	AAC	ACG	TGG	TAC	TCA	ATT	GAC	CTA	GAG	1365
10	Asn	Ile	Tyr	Ile	Val	His	Ser	Asn	Thr	Trp	Tyr	Ser	Ile	Asp	Leu	Glu	
			405					410					415				
												CAA					1413
1.5	Lys		Glu	Ala	Asn	Cys		Arg	Gln	His	Met	Gln	Ala	Ala	Met	Tyr	
15		420					425					430					
	ТАС	ΔΤΔ	СТС	ACC	AGA	GGG	тсс	מיים	GAC	ממ	GGC	GAC	CCA	ΣΤС	ጥጥር	አ እ ጥ	1461
												Asp					1401
	435				J	440			F		445	F				450	
20																	
	CAA	ACA	TGG	GCC	ACC	TTT	GCC	ATG	AAC	ATT	GCC	CCT	GCT	CTA	GTG	GTG	1509
	Gln	Thr	Trp	Ala	Thr	Phe	Ala	Met	Asn	Ile	Ala	Pro	Ala	Leu	Val	Val	
					455					460					465		
25																	
25												AAG					1557
	Asp	ser	Ser	Cys 470	Leu	TTE	Met	Asn		GIn	He	Lys	Thr	_	GIY	Gln	
				4/0					475					480			
	GGC	AGC	GGG	TAA	GCA	GCC	ACG	TTC	ATC	AAC	AAC	CAC	CTC	TTG	AGC	ACA	1605
30												His					
			485					490					495				
												CCC					1653
25	Leu		Leu	Asp	Gln	Trp		Leu	Met	Arg	Gln	Pro	Arg	Pro	Asp	Ser	
35		500					505					510					
	GAG	GAG	ידר	מממ	тсъ	ידידמ	GAG	GAC	אאפ	רידא	сст	ATC	ממ	ттт	AAG	איייית	1701
												Ile					1701
	515			-1-		520			-,-		525				-70	530	
40																	
	GAG	AGG	TCC	ATT	GAT	GAT	ATC	AGG	GGC	AAG	CTG	AGA	CAG	CTT	GTC	CTC	1749
	Glu	Arg	Ser	Ile	Asp	Asp	Ile	Arg	Gly	Lys	Leu	Arg	Gln	Leu	Val	Leu	
					535					540					545		
4.5																	
45												GAA					1797
	ьeu	Ala	GIn		GIY	Tyr	ьеп	Ser		Gly	Val	Glu	Pro		Gln	Ser	
				550					555					560			

	AGC (5	65	i Gi	u Leu	Asp	Leu 570	Leu	ı Gly	' Trp	Ser	Ala :	Thr 1	ſyr	Ser	1845
5	Lys A	80 80	eu Gi	у 116	e Tyr	Val 585	Pro	Val	Leu	Asp	Lys 590	Glu A	rg L	eu	Phe	1893
10	TGT T Cys Se 595	er Ar	a Al	a Tyr	600	Lys	Gly	Val	Glu	Asn 605	Lys :	Ser L	eu L	ys S	Ser 510	1941
15	AAA G1 Lys Va	rc gg	G ATO	GAG Glu 615	CAG Gln	GCA '	TAC .	AAG Lys	GTA Val 620	GTC Val	AGG 1 Arg 1	TAT G	AG GO lu Al 62	la L	TTG Jeu	1989
20	AGG TT Arg Le	G GTA	A GGT l Gly 630	GIY	TGG .	AAC : Asn :	lyr I	CCA Pro 535	CTC Leu	CTG /	AAC A Asn L	AA GO ys Al 64	а Су	C A	AG ys	2037
	AAT AA Asn Asi	C GCA n Ala 645	GIY	GCC Ala	GCT (arg A	GG C rg H	CAT (CTG (Leu (GAG G	la L	AG GG ys Gl	G TT	C CO	CA ro	2085
25	CTC GAC Leu Asr 660	GIU	TTC Phe	CTA Leu	Ala G	GAG T Glu T G65	GG T rp S	CT (SAG C	eu s	CA G er G]	AG TTO	C GG: e Gl	r ga / Gl	AG .u	2133
30	GCC TTC Ala Phe 675	GAA Glu	GGC Gly	Pne .	AAT A Asn I 680	TC A	AG C' Ys Le	TG A eu T	hr V	TA AG	CA TC	CT GAC	3 AGC	CT Le	u	2181
35	GCC GAA Ala Glu	CTG Leu	ASI	AAG (Lys 1 695	CCA G	TA CC	CC CC	CO L	AG C ys P:	CC CC	CA AA	T GTC n Val	AAC Asn 705	AG;	A g	2229
40	CCA GTC Pro Val	AAC Asn	ACT Thr	GGG (GGA C	TC AA eu Ly	G GC s Al 71	a Va	TC AG	GC AA ∋r As	AC GC	C CTC a Leu 720	AAG Lys	AC(C C	2277
	GGT CGG Gly Arg	TAC Tyr 725	AGG /	AAC G Asn G	AA GO	CC GG. a Gl:	y Le	G AC	GT GG	GT CT ly Le	C GTC u Va]	l Leu	CTA Leu	GCC Ala	2	2325
45	ACA GCA Thr Ala 740	AGA A	AGC (CGT C	TG CA eu Gl 74	n Ası	r GC	A GT a Va	T AA l Ly	G GCC s Ala	a Lys	GCA Ala	GAA Glu	GCC Ala		2373

	GAG	AAA	CTC	CAC	AAG	TCC	AAG	CCA	GAC	GAC	CCC	GAT	GCA	GAC	TGG	TTC	242
	Glu	Lys	Leu	His	Lys	Ser	Lys	Pro	Asp	Asp	Pro	Asp	Ala	Asp	Trp	Phe	
	755					760					765					770	
5	GAA	AGA	TCA	GAA	ACT	CTG	TCA	GAC	CTT	CTG	GAG	AAA	GCC	GAC	ATC	GCC	2469
	Glu	Arg	Ser	Glu	Thr	Leu	Ser	Asp	Leu	Leu	Glu	Lys	Ala	Asp	Ile	Ala	
					775					780					785		
	AGC	AAG	GTC	GCC	CAC	TCA	GCA	CTC	GTG	GAA	ACA	AGC	GAC	GCC	CTT	GAA	2517
10	Ser	Lys	Val	Ala	His	Ser	Ala	Leu	Val	Glu	Thr	Ser	Asp	Ala	Leu	Glu	
				790					795					800			
	GCA	GTT	CAG	TCG	ACT	TCC	GTG	TAC	ACC	CCC	AAG	TAC	CCA	GAA	GTC	AAG	2565
	Ala	Val	Gln	Ser	Thr	Ser	Val	Tyr	Thr	Pro	Lys	Tyr	Pro	Glu	Val	Lys	
15			805					810					815				
	AAC	CCA	CAG	ACC	GCC	TCC	AAC	CCC	GTT	GTT	GGG	CTC	CAC	CTG	CCC	GCC	2613
	Asn	Pro	Gln	Thr	Ala	Ser	Asn	Pro	Val	Val	Gly	Leu	His	Leu	Pro	Ala	
••		820					825					830					
20																	
					GGT												2661
		Arg	Ala	Thr	Gly	Val	Gln	Ala	Ala	Leu	Leu	Gly	Ala	Gly	Thr	Ser	
	835					840					845					850	
25	AGA	CCA	ATG	GGG	ATG	GAG	GCC	CCA	ACA	CGG	TCC	AAG	AAC	GCC	GTG	AAA	2709
	Arg	Pro	Met	Gly	Met	Glu	Ala	Pro	Thr	Arg	Ser	Lys	Asn	Ala	Val	Lys	
					855					860					865		
	ATG	GCC	AAA	CGG	CGG	CAA	CGC	CAA	AAG	GAG	AGC	CGC	TAAC	AGCC	AT		2755
30	Met	Ala	Lys	Arg	Arg	Gln	Arg	Gln	Lys	Glu	Ser	Arg					
				870					875								
	GATO	GGAA	CC A	CTCA	AGAA	G AG	GACA	CTAP	A TCC	CAGA	rccc	CGTA	TCCC	CG G	CCTT	CGCCT	2815
35	GCGG	GGGC	ec c	CC													2827

(2) INFORMATION FOR SEQ ID NO: 2:

一人かつかけないであるかった。

40

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 878 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

		Met 1	Ser	Asp	Ile	Phe 5	Asn	Ser	Pro	Gln	Ala 10	Arg	Ser	Thr	Ile	Ser 15	Ala
	5	Ala	Phe	Gly	Ile 20	Lys	Pro	Thr	Ala	Gly 25	Gln	Asp	Val	Glu	Glu 30	Leu	Lei
		Ile	Pro	Lys 35	Val	Trp	Val	Pro	Pro 40	Glu	Asp	Pro	Leu	Ala 45	Ser	Pro	Ser
1	10	Arg	Leu 50	Ala	Lys	Phe	Leu	Arg 55	Glu	Asn	Gly	Tyr	Lys 60	Val	Leu	Gln	Pro
1	15	Arg 65	Ser	Leu	Pro	Glu	Asn 70	Glu	Glu	Tyr	Glu	Thr 75	Asp	Gln	Ile	Leu	Pro 80
		Asp	Leu	Ala	Trp	Met 85	Arg	Gln	Ile	Glu	Gly 90	Ala	Val	Leu	Lys	Pro 95	Thr
2	20	Leu	Ser	Leu	Pro 100	Ile	Gly	Asp	Gln	Glu 105	Tyr	Phe	Pro	Lys	Туг 110	Tyr	Pro
		Thr	His	Arg 115	Pro	Ser	Lys	Glu	Lys 120	Pro	Asn	Ala	Tyr	Pro 125	Pro	Asp	Ile
2	25	Ala	Leu 130	Leu	Lys	Gln	Met	Ile 135	Tyr	Leu	Phe	Leu	Gln 140	Val	Pro	Glu	Ala
30	30	Asn 145	Glu	Gly	Leu	Lys	Asp 150	Glu	Val	Thr	Leu	Leu 155	Thr	Gln	Asn	Ile	Arg 160
,		Asp	Lys	Ala	Tyr	Gly 165	Ser	Gly	Thr	Tyr	Met 170	Gly	Gln	Ala	Asn	Arg 175	Lev
	35	Val	Ala	Met	Lys 180	Glu	Val	Ala	Thr	Gly 185	Arg	Asn	Pro	Asn	Lys 190	Asp	Pro
		Leu	Lys	Leu 195	Gly	Tyr	Thr	Phe	Glu 200	Ser	Ile	Ala	Gln	Leu 205	Leu	Asp	Ile
•	40	Thr	Leu 210	Pro	Val	Gly	Pro	Pro 215	Gly	Glu	Asp	Asp	Lys 220	Pro	Trp	Val	Pro
•	45	Leu 225	Thr	Arg	Val	Pro	Ser 230	Arg	Met	Leu	Val	Leu 235	Thr	Gly	Asp	Val	As ₁
		Gly	Asp	Phe	Glu	Val	Glu	Asp	Tyr	Leu	Pro	Lys	Ile	Asn	Leu	Lys	

	Ser	Ser	Gly	Leu 260	Pro	Tyr	Val	Gly	Arg 265	Thr	Lys	Gly	Glu	Thr 270	Ile	Gly
5	Glu	Met	Ile 275	Ala	Ile	Ser	Asn	Gln 280	Phe	Leu	Arg	Glu	Leu 285	Ser	Thr	Let
	Leu	Lys 290	Gln	Gly	Ala	Gly	Thr 295	Lys	Gly	Ser	Asn	Lys 300	Lys	Lys	Leu	Lev
10	Ser 305	Met	Leu	Ser	Asp	Tyr 310	Trp	Tyr	Leu	Ser	Cys 315	Gly	Leu	Leu	Phe	Pro 320
15	Lys	Ala	Glu	Arg	Tyr 325	Asp	Lys	Ser	Thr	Trp 330	Leu	Thr	Lys	Thr	Arg 335	Asr
	Ile	Trp	Ser	Ala 340	Pro	Ser	Pro	Thr	His 345	Leu	Met	Ile	Ser	Met 350	Ile	Thr
20	Trp	Pro	Val 355	Met	Ser	Asn	Ser	Pro 360	Asn	Asn	Val	Leu	Asn 365	Ile	Glu	Gly
	Cys	Pro 370	Ser	Leu	Tyr	Lys	Phe 375	Asn	Pro	Phe	Arg	Gly 380	Gly	Leu	Asn	Arg
25	Ile 385	Val	Glu	Trp	Ile	Leu 390	Ala	Pro	Glu	Glu	Pro 395	Lys	Ala	Leu	Val	Tyr 400
25 30 35	Ala	Asp	Asn	Ile	Tyr 405	Ile	Val	His	Ser	Asn 410	Thr	Trp	Tyr	Ser	Ile 415	Asp
	Leu	Glu	Lys	Gly 420	Glu	Ala	Asn	Cys	Thr 425	Arg	Gln	His	Met	Gln 430	Ala	Ala
35	Met	Tyr	Tyr 435	Ile	Leu	Thr	Arg	Gly 440	Trp	Ser	Asp	Asn	Gly 445	Asp	Pro	Met
	Phe	Asn 450	Gln	Thr	Trp	Ala	Thr 455	Phe	Ala	Met	Asn	Ile 460	Ala	Pro	Ala	Leu
40	Val 465	Val	Asp	Ser	Ser	Cys 470	Leu	Ile	Met	Asn	Leu 475	Gln	Ile	Lys	Thr	Tyr 480
45	Gly	Gln	Gly	Ser	Gly 485	Asn	Ala	Ala	Thr	Phe 490	Ile	Asn	Asn	His	Leu 495	Leu
7.7	Ser	Thr	Leu	Val 500	Leu	Asp	Gln	Trp	Asn 505	Leu	Met	Arg	Gln	Pro 510	Arg	Pro

	Asp	Ser	Glu 515	Glu	Phe	Lys	Ser	Ile 520	Glu	Asp	Lys	Leu	Gly 525	Ile	Asn	Phe
5	Lys	Ile 530	Glu	Arg	Ser	Ile	Asp 535	Asp	Ile	Arg	Gly	Lys 540	Leu	Arg	Gln	Leu
	Val 545	Leu	Leu	Ala	Gln	Pro 550	Gly	Tyr	Leu	Ser	Gly 555	Gly	Val	Glu	Pro	Glu 560
10	Gln	Ser	Ser	Pro	Thr 565	Val	Glu	Leu	Asp	Leu 570	Leu	Gly	Trp	Ser	Ala 575	Thr
15	Tyr	Ser	Lys	Asp 580	Leu	Gly	Ile	Tyr	Val 585	Pro	Val	Leu	Asp	Lys 590	Glu	Arg
, 13	Leu	Phe	Cys 595	Ser	Ala	Ala	Tyr	Pro 600	Lys	Gly	Val	Glu	Asn 605	Lys	Ser	Leu
20	Lys	Ser 610	Lys	Val	Gly	Ile	Glu 615	Gln	Ala	Tyr	Lys	Val 620	Val	Arg	Tyr	Glu
	Ala 625	Leu	Arg	Leu	Val	Gly 630	Gly	Trp	Asn	Tyr	Pro 635	Leu	Leu	Asn	Lys	Ala 640
25	Cys	Lys	Asn	Asn	Ala 645	Gly	Ala	Ala	Arg	Arg 650	His	Leu	Glu	Ala	Lys 655	Gly
30	Phe	Pro	Leu	Asp 660	Glu	Phe	Leu	Ala	Glu 665	Trp	Ser	Glu	Leu	Ser 670	Glu	Phe
30	Gly	Glu	Ala 675	Phe	Glu	Gly	Phe	Asn 680	Ile	Lys	Leu	Thr	Val 685	Thr	Ser	Glu
35	Ser	Leu 690	Ala	Glu	Leu	Asn	Lys 695	Pro	Val	Pro	Pro	Lys 700	Pro	Pro	Asn	Val
	Asn 705	Arg	Pro	Val	Asn	Thr 710	Gly	Gly	Leu	Lys	Ala 715	Val	Ser	Asn	Ala	Leu 720
40	Lys	Thr	Gly	Arg	Tyr 725	Arg	Asn	Glu	Ala	Gly 730	Leu	Ser	Gly	Leu	Val 735	Leu
45	Leu	Ala	Thr	Ala 740	Arg	Ser	Arg	Leu	Gln 745	Asp	Ala	Val	Lys	Ala 750	Lys	Ala
43	Glu	Ala	Glu 755	Lys	Leu	His	Lys	Ser 760	Lys	Pro	Asp	Asp	Pro 765	Asp	Ala	Asp

	Trp Phe Glu Arg Ser Glu Thr Leu Ser Asp Leu Leu Glu Lys Ala Asp 770 775 780
5	790 795 800
	Leu Glu Ala Val Gln Ser Thr Ser Val Tyr Thr Pro Lys Tyr Pro Glu 805 810 815
10	Val Lys Asn Pro Gln Thr Ala Ser Asn Pro Val Val Gly Leu His Leu 820 825 830
15	Pro Ala Lys Arg Ala Thr Gly Val Gln Ala Ala Leu Leu Gly Ala Gly 835 840 845
	Thr Ser Arg Pro Met Gly Met Glu Ala Pro Thr Arg Ser Lys Asn Ala 850 855 860
20	Val Lys Met Ala Lys Arg Arg Gln Arg Gln Lys Glu Ser Arg 865 870 875
25	(2) INFORMATION FOR SEQ ID NO: 3:
_30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3261 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: cDNA
35	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:97531
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
	GGATACGATC GGTCTGACCC CGGGGGAGTC ACCCGGGGAC AGGCCGTCAA GGCCTTGTTC 60
45	CAGGATGGGA CTCCTCCTTC TACAACGCTA TCATTG ATG GTT AGT AGA GAT CAG Met Val Ser Arg Asp Gln

	ACA	AAC	GAT	CGC	AGC	GAT	GAC	AAA	CCT	GCA	AGA	TCA	AAC	CCA	ACA	GAT	162
	Thr	Asn	Asp	Arg	Ser	Asp	Asp	Lys	Pro	Ala	Arg	Ser	Asn	Pro	Thr	Asp	
				10					15					20			
5	тст	TCC	CTT	CAT	N.C.G	GNG	ССТ	тст	CAT	GCC	אאכ	אאכ	CGG	ልሮር	GGC	GTC	210
5															Gly		210
	-7-		25					30					35		1		
	CAT	TCC	GGA	CGA	CAC	CCT	GGA	GAA	GCA	CAC	TCT	CAG	GTC	AGA	GAC	CTC	258
10	His		Gly	Arg	His	Pro	_	Glu	Ala	His	Ser		Val	Arg	Asp	Leu	
		40					45					50					
	GAC	CTA	CAA	TTT	GAC	TGT	GGG	GGA	CAC	AGG	GTC	AGG	GCT	AAT	TGT	CTT	306
															Cys		
15	55					60					65					70	
															ACT		354
	Phe	Pro	Trp	Ile		Trp	Leu	Asn	Cys	_	Cys	Ser	Leu	His	Thr	Ala	
20					75					80					85		
20	GGG	CAA	TGG	GAA	CTA	CAA	GTT	CGA	TCA	GAT	GCT	CCT	GAC	TGC	CCA	GAA	402
	Gly	Gln	Trp	Glu	Leu	Gln	Val	Arg	Ser	Asp	Ala	Pro	Asp	Cys	Pro	Glu	
				90					95					100			
25																	. = 4
25															TCT		450
	Pro	Thr	105	GIN	Leu	GIII	Leu	110	GIII	Ата	ser	GIU	115	Giu	Ser	uis	
			103					110					110				
	AGT	GAG	GTC	AAG	CAC	ACT	TCC	TGG	TGG	CGT	TTA	TGC	ACT	AAA	CGG	CAC	498
30	Ser	Glu	Val	Lys	His	Thr	Ser	Trp	Trp	Arg	Leu	Cys	Thr	Lys	Arg	His	
		120					125					130					
	63 m				G > G	amm.	663	200	220	oom.	ana	mc > 2	, CmC 1	\C\\\	^ x m//	PER COM	551
									Lys			IGAZ	AC I Gr	CA (GAIG.	TTAGCT	331
35	135	Lys	g	A- 9	p	140		5	-7-		145						
	ACA	ATGG	GTT (GATG:	rctg	A AC	CAGC	CAAC	A TC	AACG!	ACAA	AAT	rggg?	AAC (GTCC:	TAGTAG	611
40	GGG	AAGG	GGT (CACC	GTCC:	rc a	GCTT/	ACCC	A CAT	rcat/	ATGA	TCT	rggg:	rat +	GTGA	GGCTTG	671
40	СТС	۵ د د د د	י דער	rccc	יממטנ	אר מר	GCT	TGAC	C CA	יממממ	гсст	AGC	CACA	rgr	GACA	GCAGTG	731
	0101		UFI.			0											
	ACAG	GCC	CAG Z	AGTC	TACA	CC A	raac'	TGCA	G CC	GATG	ATTA	CCA	ATTC:	ГСА	TCAC	AGTACC	791
45	AAC	CAGG	TGG (GGTA	ACAA'	rc A	CACT	GTTC'	r ca	GCCA	ACAT	TGA:	rgcc/	ATC .	ACAA	GCCTCA	851
	GCC	יייים ביי	366 3	ስርአርሳ	ייייטייי	יים באי	ימיייי	ልልሮል:	A GC(<u> ፲</u> ሞርር	۵ د د د	CCTr	ኮርሞልባ	יייני י	GGCG/	CCACCA	911
	GCG.	1100		UMU	-100							CCI.	-017/	-10	الالالال	CACCA	

TCTACCTCAT AGGCTTTGAT GGGACAACGG TAATCACCAG GGCTGTGGCC GCAAACAATG 971 GGCTGACGAC CGGCACCGAC AACCTTATGC CATTCAATCT TGTGATTCCA ACAAACGAGA 1031 5 TAACCCAGCC AATCACATCC ATCAAACTGG AGATAGTGAC CTCCAAAAGT GGTGGTCAGG 1091 CAGGGGATCA GATGTCATGG TCGGCAAGAG GGAGCCTAGC AGTGACGATC CATGGTGGCA 1151 ACTATCCAGG GGCCCTCCGT CCCGTCACGC TAGTGGCCTA CGAAAGAGTG GCAACAGGAT 1211 10 CCGTCGTTAC GGTCGCTGGG GTGAGCAACT TCGAGCTGAT CCCAAATCCT GAACTAGCAA 1271 AGAACCTGGT TACAGAATAC GGCCGATTTG ACCCAGGAGC CATGAACTAC ACAAAATTGA 1331 TACTGAGTGA GAGGGACCGT CTTGGCATCA AGACCGTCTG GCCAACAAGG GAGTACACTG 1391 ACTTTCGTGA ATACTTCATG GAGGTGGCCG ACCTCAACTC TCCCCTGAAG ATTGCAGGAG 1451 CATTCGGCTT CAAAGACATA ATCCGGGCCA TAAGGAGGAT AGCTGTGCCG GTGGTCTCCA 1511 20 CATTGTTCCC ACCTGCCGCT CCCCTAGCCC ATGCAATTGG GGAAGGTGTA GACTACCTGC 1571 TGGGCGATGA GGCACAGGCT GCTTCAGGAA CTGCTCGAGC CGCGTCAGGA AAAGCAAGAG 1631 25 CTGCCTCAGG CCGCATAAGG CAGCTGACTC TCGCCGCCGA CAAGGGGTAC GAGGTAGTCG 1691 CGAATCTATT CCAGGTGCCC CAGAATCCCG TAGTCGACGG GATTCTTGCT TCACCTGGGG 1751 TACTCCGCGG TGCACACAC CTCGACTGCG TGTTAAGAGA GGGTGCCACG CTATTCCCTG 1811 30 TGGTTATTAC GACAGTGGAA GACGCCATGA CACCCAAAGC ATTGAACAGC AAAATGTTTG 1871 CTGTCATTGA AGGCGTGCGA GAAGACCTCC AACCTCCATC TCAAAGAGGA TCCTTCATAC 1931 35 GAACTCTCTC TGGACACAGA GTCTATGGAT ATGCTCCAGA TGGGGTACTT CCACTGGAGA 1991 CTGGGAGAGA CTACACCGTT GTCCCAATAG ATGATGTCTG GGACGACAGC ATTATGCTGT 2051 CCAAAGATCC CATACCTCCT ATTGTGGGAA ACAGTGGAAA TCTAGCCATA GCTTACATGG 2111 40 ATGTGTTTCG ACCCAAAGTC CCAATCCATG TGGCTATGAC GGGAGCCCTC AATGCTTGTG 2171 GCGAGATTGA GAAAGTAAGC TTTAGAAGCA CCAAGCTCGC CACTGCACAC CGACTTGGCC 2231 45 TTAGGTTGGC TGGTCCCGGA GCATTCGATG TAAACACCGG GCCCAACTGG GCAACGTTCA 2291 TCAAACGTTT CCCTCACAAT CCACGCGACT GGGACAGGCT CCCCTACCTC AACCTACCAT 2351

	ACCITCCACC CAATGCAGGA CGCCAGTACC ACCTTGCCAT GGCTGCATCA GAGTTCAAAG	2411
	AGACCCCCGA ACTCGAGAGT GCCGTCAGAG CAATGGAAGC AGCAGCCAAC GTGGACCCAC	2471
5	TATTCCAATC TGCACTCAGT GTGTTCATGT GGCTGGAAGA GAATGGGATT GTGACTGACA	2531
	TGGCCAACTT CGCACTCAGC GACCCGAACG CCCATCGGAT GCGAAATTTT CTTGCAAACG	2591
10	CACCACAAGC AGGCAGCAAG TCGCAAAGGG CCAAGTACGG GACAGCAGGC TACGGAGTGG	2651
	AGGCTCGGGG CCCCACACCA GAGGAAGCAC AGAGGGAAAA AGACACACGG ATCTCAAAGA	2711
_	AGATGGAGAC CATGGGCATC TACTTTGCAA CACCAGAATG GGTAGCACTC AATGGGCACC	2771
15	GAGGGCCAAG CCCCGGCCAG CTAAAGTACT GGCAGAACAC ACGAGAAATA CCGGACCCAA	2831
	ACGAGGACTA TCTAGACTAC GTGCATGCAG AGAAGAGCCG GTTGGCATCA GAAGAACAAA	2891
20	TCCTAAGGGC AGCTACGTCG ATCTACGGGG CTCCAGGACA GGCAGAGCCA CCCCAAGCTT	2951
	TCATAGACGA AGTTGCCAAA GTCTATGAAA TCAACCATGG ACGTGGCCCA AACCAAGAAC	3011
	AGATGAAAGA TCTGCTCTTG ACTGCGATGG AGATGAAGCA TCGCAATCCC AGGCGGGCTC	3071
25	TACCAAAGCC CAAGCCAAAA CCCAATGCTC CAACACAGAG ACCCCCTGGT CGGCTGGGCC	3131
	GCTGGATCAG GACCGTCTCT GATGAGGACC TTGAGTGAGG CTCCTGGGAG TCTCCCGACA	3191
_30	CCACCCGCGC AGGTGTGGAC ACCAATTCGG CCTTACAACA TCCCAAATTG GATCCGTTCG	3251
	CGGGTCCCCT	3261

35 (2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 145 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
- 45 Met Val Ser Arg Asp Gln Thr Asn Asp Arg Ser Asp Asp Lys Pro Ala
 1 5 10 15

Arg Ser Asn Pro Thr Asp Cys Ser Val His Thr Glu Pro Ser Asp Ala 20 25 Asn Asn Arg Thr Gly Val His Ser Gly Arg His Pro Gly Glu Ala His 5 35 Ser Gln Val Arg Asp Leu Asp Leu Gln Phe Asp Cys Gly Gly His Arg 50 55 10 Val Arg Ala Asn Cys Leu Phe Pro Trp Ile Pro Trp Leu Asn Cys Gly 65 70 80 Cys Ser Leu His Thr Ala Gly Gln Trp Glu Leu Gln Val Arg Ser Asp 90 15 Ala Pro Asp Cys Pro Glu Pro Thr Gly Gln Leu Gln Leu Gln Ala 100 105 Ser Glu Ser Glu Ser His Ser Glu Val Lys His Thr Ser Trp Trp Arg 20 115 120 125 Leu Cys Thr Lys Arg His His Lys Arg Arg Asp Leu Pro Arg Lys Pro 135 25 Glu 145 30 (2) INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3261 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

35

40

- (A) NAME/KEY: CDS
- (B) LOCATION: 131..3166
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

	CAG	GATG	iGGA	CTCC	TCCT	TC T	'ACA	ACGCT	TA TO	CATTO	SATGG	TT	AGTA	GAGA	TCAC	SACAAAC	120
5	GAT	CGCA									ACC Thr						169
				1				5		0211	****	0111	10	116	vai	PIO	
																CCG	217
10	FIIC	15		261	neu	. Бес	20		, 1111	ini	GIY	25		ser	: Ile	Pro	
																TAC	265
<u>-</u>	Asp 30	Asp	Thr	Leu	Glu	Lys 35		Thr	Leu	Arg	Ser 40		Thr	Ser	Thr	Tyr 45	
15																	
																CCT	313
	ASII	neu	1111	vai	50 50	Asp	1111	GIY	ser	55 55	Leu	тте	val	Phe	Phe 60		
20	GGA	TTC	CCT	GGC	TCA	ATT	GTG	GGT	GCT	ÇAC	TAC	ACA	CTG	CAG	GGC	AAT	361
	Gly	Phe	Pro	Gly 65	Ser	Ile	Val	Gly	Ala 70	His	Tyr	Thr	Leu	Gln 75	Gly	Asn	
	GGG	AAC	TAC	AAG	TTC	GAT	CAG	ATG	CTC	CTG	ACT	GCC	CAG	AAC	CTA	CCG	409
25	Gly	Asn	Tyr 80	Lys	Phe	Asp	Gln	Met 85		Leu	Thr	Ala	Gln 90	Asn	Leu	Pro	
	GCC	AGT	TAC	AAC	TAC	TGC	AGG	CTA	GTG	AGT	CGG	AGT	CTC	ACA	GTG	AGG	457
30	Ala	Ser 95	Tyr	Asn	Tyr	Cys	Arg 100	Leu	Val	Ser	Arg	Ser 105		Thr	Val	Arg	
	TCA	AGC	ACA	CTT	CCT	GGT	GGC	GTT	TAT	GCA	CTA	AAC	GGC	ACC	ATA	AAC	505
	Ser 110	Ser	Thr	Leu	Pro	Gly 115	Gly	Val	Tyr	Ala	Leu	Asn	Gly	Thr	Ile		
35	110					115					120					125	
											CTG						553
	Ala	Val	Thr	Phe	Gln 130	Gly	Ser	Leu	Ser	Glu 135	Leu	Thr	Asp	Val	Ser 140	Tyr	
40											AAC						601
	Asn	Gly	Leu	Met 145	Ser	Ala	Thr	Ala	Asn 150	Ile	Asn	Asp	Lys	Ile 155	Gly	Asn	
	GTC	CTA	GTA	GGG	GAA	GGG	GTC	ACC	GTC	CTC	AGC	TTA	CCC	ACA	TCA	TAT	649
45	Val	Leu	Val 160	Gly	Glu	Gly	Val	Thr 165	Val	Leu	Ser	Leu	Pro 170	Thr	Ser	Tyr	
	GAT	CTT	GGG	TAT	GTG	AGG	CTT	GGT	GAC	ccc	ATT	CCC	GCA	ATA	GGG	CTT	697

STATE OF THE STATE

Asp Leu Gly 1	yr Val Arg Leu Gly Asp Pro Ile Pro Ala 180 185	Ile Gly Leu
GAC CCA AAA A 5 Asp Pro Lys M 190	TG GTA GCC ACA TGT GAC AGC AGT GAC AGG et Val Ala Thr Cys Asp Ser Ser Asp Arg 195 200	CCC AGA GTC 745 Pro Arg Val 205
TAC ACC ATA ACT TYR THR Ile THE	CT GCA GCC GAT GAT TAC CAA TTC TCA TCA ar Ala Ala Asp Asp Tyr Gln Phe Ser Ser o 210	CAG TAC CAA 793 Gln Tyr Gln 220
CCA GGT GGG GT Pro Gly Gly Va 22		SAT GCC ATC 841 Asp Ala Ile 35
ACA AGC CTC AG Thr Ser Leu Se: 240	C GTT GGG GGA GAG CTC GTG TTT CAA ACA A r Val Gly Gly Glu Leu Val Phe Gln Thr S 245	GC GTC CAC 889 er Val His
20 GGC CTT GTA CTC Gly Leu Val Leu 255	G GGC GCC ACC ATC TAC CTC ATA GGC TTT GA Gly Ala Thr Ile Tyr Leu Ile Gly Phe As 260 265	AT GGG ACA 937 Sp Gly Thr
ACG GTA ATC ACC 25 Thr Val Ile Thr 270	AGG GCT GTG GCC GCA AAC AAT GGG CTG ACATG Ala Val Ala Ala Asn Asn Gly Leu Th	G ACC GGC 985 r Thr Gly 285
ACC GAC AAC CTT Thr Asp Asn Leu	ATG CCA TTC AAT CTT GTG ATT CCA ACA AA Met Pro Phe Asn Leu Val Ile Pro Thr Ass 290	C GAG ATA 1033 n Glu Ile 300
ACC CAG CCA ATC Thr Gln Pro Ile 305	ACA TCC ATC AAA CTG GAG ATA GTG ACC TCC Thr Ser Ile Lys Leu Glu Ile Val Thr Ser 310	Lys Ser
GGT GGT CAG GCA	GGG GAT CAG ATG TCA TGG TCG GCA AGA GGG Gly Asp Gln Met Ser Trp Ser Ala Arg Gly 325 330	
40 GCA GTG ACG ATC of Ala Val Thr Ile 1	CAT GGT GGC AAC TAT CCA GGG GCC CTC CGT His Gly Gly Asn Tyr Pro Gly Ala Leu Arg 340	CCC GTC 1177 Pro Val
ACG CTA GTG GCC T 45 Thr Leu Val Ala T 350	CAC GAA AGA GTG GCA ACA GGA TCC GTC GTT Yr Glu Arg Val Ala Thr Gly Ser Val Val 355 360	ACG GTC 1225 Thr Val 365
GCT GGG GTG AGC A	AC TTC GAG CTG ATC CCA AAT CCT GAA CTA	GCA AAG 1273

	Ala	Gly	Val	Ser	Asn 370	Phe	Glu	Leu	Ile	Pro 375	Asn	Pro	Glu	Leu	Ala 380	Lys	
	AAC	CTG	GTT	ACA	GAA	TAC	GGC	CGA	TTT	GAC	CCA	GGA	GCC	ATG	AAC	TAC	1321
5					Glu												1321
				385					390					395		-	
					CTG												1369
• •	Thr	Lys		Ile	Leu	Ser	Glu	Arg	Asp	Arg	Leu	Gly	Ile	Lys	Thr	Val	
10			400					405					410				
					GAG												1417
	Trp		Thr	Arg	Glu	Tyr		Asp	Phe	Arg	Glu		Phe	Met	Glu	Val	
15	000	415	OTD C	220	mam.	000	420		3 mm	553	663	425	mma				
	_				TCT												1465
	430	Asp	neu	ASII	Ser	435	пеп	пуъ	116	Ala	440	Ala	PHE	GIY	Pne	цуs 445	
						133					440					443	
20	GAC	ATA	ATC	CGG	GCC	ATA	AGG	AGG	ATA	GCT	GTG	CCG	GTG	GTC	TCC	ACA	1513
					Ala												
					450					455					460		
	TTG	TTC	CCA	CCT	GCC	GCT	CCC	CTA	GCC	CAT	GCA	TTA	GGG	GAA	GGT	GTA	1561
25	Leu	Phe	Pro	Pro	Ala	Ala	Pro	Leu	Ala	His	Ala	Ile	Gly	Glu	Gly	Val	
				465					470					475			
					GGC												1609
. 20	Asp	Tyr		Leu	Gly	Asp	Glu		Gln	Ala	Ala	Ser	_	Thr	Ala	Arg	
3 0			480					485					490				
					AAA												1657
	Ата		ser	GIY	Lys	Ala		Ala	AIA	ser	GIY	_	TTE	Arg	GIn	Leu	
35		495					500					505					
22	ACT	CTC	GCC	GCC	GAC	AAG	GGG	TAC	GAG	GTA	GTC	GCG	ТАА	СТА	ттс	CAG	1705
					Asp												1,03
	510				_	515		- 2 -			520					525	
40	GTG	ccc	CAG	TAA	CCC	GTA	GTC	GAC	GGG	TTA	CTT	GCT	TCA	CCT	GGG	GTA	1753
	Val	Pro	Gln	Asn	Pro	Val	Val	Asp	Gly	Ile	Leu	Ala	Ser	Pro	Gly	Val	
					530					535					540		
	CTC	CGC	GGT	GCA	CAC	AAC	CTC	GAC	TGC	GTG	TTA	AGA	GAG	GGT	GCC	ACG	1801
45	Leu	Arg	Gly	Ala	His	Asn	Leu	Asp	Cys	Val	Leu	Arg	Glu	Gly	Ala	Thr	
				545					550					555			
	CTA	TTC	CCT	GTG	GTT	TTA	ACG	ACA	GTG	GAA	GAC	GCC	ATG	ACA	CCC	AAA	1849

	Leu	Phe	Pro 560	Val	Val	Ile	Thr	Thr 565	Val	Glu	Asp	Ala	Met 570	Thr	Pro	Lys	
5										ATT Ile							1897
10										TTC Phe							1945
15										GGG Gly 615							1993
										GAT Asp							2041
20										CCT Pro							2089
25										TTT Phe							2137
~ 30										GCT Ala							2185
25										ACT Thr 695							2233
35										GTA Val							2281
40										AAT Asn							2329
45										CCA Pro							2377
	TAC	CAC	CTT	GCC	ATG	GCT	GCA	TCA	GAG	TTC	AAA	GAG	ACC	ccc	GAA	CTC	2425

	Tyr His Leu Ala Met Ala Ala Ser Glu Phe Lys Glu Thr Pro Glu Leu 750 755 760 765	
5	GAG AGT GCC GTC AGA GCA ATG GAA GCA GCA GCC AAC GTG GAC CCA CTA Glu Ser Ala Val Arg Ala Met Glu Ala Ala Ala Asn Val Asp Pro Leu 770 775 780	2473
10	TTC CAA TCT GCA CTC AGT GTG TTC ATG TGG CTG GAA GAG AAT GGG ATT Phe Gln Ser Ala Leu Ser Val Phe Met Trp Leu Glu Glu Asn Gly Ile 785 790 795	2521
<u> </u>	GTG ACT GAC ATG GCC AAC TTC GCA CTC AGC GAC CCG AAC GCC CAT CGG Val Thr Asp Met Ala Asn Phe Ala Leu Ser Asp Pro Asn Ala His Arg 800 805 810	2569
	ATG CGA AAT TTT CTT GCA AAC GCA CCA CAA GCA GGC AGC AAG TCG CAA Met Arg Asn Phe Leu Ala Asn Ala Pro Gln Ala Gly Ser Lys Ser Gln 815 820 825	2617
20	AGG GCC AAG TAC GGG ACA GCA GGC TAC GGA GTG GAG GCT CGG GGC CCC Arg Ala Lys Tyr Gly Thr Ala Gly Tyr Gly Val Glu Ala Arg Gly Pro 830 835 840 845	2665
25	ACA CCA GAG GAA GCA CAG AGG GAA AAA GAC ACA CGG ATC TCA AAG AAG Thr Pro Glu Glu Ala Gln Arg Glu Lys Asp Thr Arg Ile Ser Lys Lys 850 855 860	2713
. 30	ATG GAG ACC ATG GGC ATC TAC TTT GCA ACA CCA GAA TGG GTA GCA CTC Met Glu Thr Met Gly Ile Tyr Phe Ala Thr Pro Glu Trp Val Ala Leu 865 870 875	2761
35	AAT GGG CAC CGA GGG CCA AGC CCC GGC CAG CTA AAG TAC TGG CAG AAC Asn Gly His Arg Gly Pro Ser Pro Gly Gln Leu Lys Tyr Trp Gln Asn 880 885 890	2809
	ACA CGA GAA ATA CCG GAC CCA AAC GAG GAC TAT CTA GAC TAC GTG CAT Thr Arg Glu Ile Pro Asp Pro Asn Glu Asp Tyr Leu Asp Tyr Val His 895 900 905	2857
40	GCA GAG AAG AGC CGG TTG GCA TCA GAA GAA CAA ATC CTA AGG GCA GCT Ala Glu Lys Ser Arg Leu Ala Ser Glu Glu Gln Ile Leu Arg Ala Ala 910 915 920 925	2905
45	ACG TCG ATC TAC GGG GCT CCA GGA CAG GCA GAG CCA CCC CAA GCT TTC Thr Ser Ile Tyr Gly Ala Pro Gly Gln Ala Glu Pro Pro Gln Ala Phe 930 935 940	2953
	ATA GAC GAA GTT GCC AAA GTC TAT GAA ATC AAC CAT GGA CGT GGC CCA	3001

الالعامة معمودا

	4 3	
	Ile Asp Glu Val Ala Lys Val Tyr Glu Ile Asn His Gly Arg Gly Pro 945 950 955	
	AAC CAA GAA CAG ATG AAA GAT CTG CTC TTG ACT GCG ATG GAG ATG AAG 5 Asn Gln Glu Gln Met Lys Asp Leu Leu Leu Thr Ala Met Glu Met Lys 960 965 970	3049
10	CAT CGC AAT CCC AGG CGG GCT CTA CCA AAG CCC AAG CCA AAA CCC AAT His Arg Asn Pro Arg Arg Ala Leu Pro Lys Pro Lys Pro Lys Pro Asn 975 980 985	3097
<u> </u>	GCT CCA ACA CAG AGA CCC CCT GGT CGG CTG GGC CGC TGG ATC AGG ACC Ala Pro Thr Gln Arg Pro Pro Gly Arg Leu Gly Arg Trp Ile Arg Thr 990 995 1000 1005	3145
	GTC TCT GAT GAG GAC CTT GAG TGAGGCTCCT GGGAGTCTCC CGACACCACC Val Ser Asp Glu Asp Leu Glu 1010	3196
20	TOGGCCTTA CAACATCCCA AATTGGATCC GTTCGCGGGT	3256
	CCCCT	3261
. 30	(2) INFORMATION FOR SEQ ID NO: 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1012 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	Met Thr Asn Leu Gln Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg 1 5 10 15	
40	Ser Leu Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr 20 25 30	
	Leu Glu Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr 35 40 45	
45	Val Gly Asp Thr Gly Ser Gly Leu Ile Val Phe Phe Pro Gly Phe Pro 50 55 60	
	Gly Ser Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn Gly Asn Tyr	

Lys Phe Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Pro Ala Ser Tyr Asn Tyr Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr Leu Pro Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr Phe Gln Gly Ser Leu Ser Glu Leu Thr Asp Val Ser Tyr Asn Gly Leu Met Ser Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val Gly Glu Gly Val Thr Val Leu Ser Leu Pro Thr Ser Tyr Asp Leu Gly Tyr Val Arg Leu Gly Asp Pro Ile Pro Ala Ile Gly Leu Asp Pro Lys Met Val Ala Thr Cys Asp Ser Ser Asp Arg Pro Arg Val Tyr Thr Ile Thr Ala Ala Asp Asp Tyr Gln Phe Ser Ser Gln Tyr Gln Pro Gly Gly Val Thr Ile Thr Leu Phe Ser Ala Asn Ile Asp Ala Ile Thr Ser Leu Ser Val Gly Glu Leu Val Phe Gln Thr Ser Val His Gly Leu Val Leu Gly Ala Thr Ile Tyr Leu Ile Gly Phe Asp Gly Thr Thr Val Ile Thr Arg Ala Val Ala Ala Asn Asn Gly Leu Thr Thr Gly Thr Asp Asn Leu Met Pro Phe Asn Leu Val Ile Pro Thr Asn Glu Ile Thr Gln Pro Ile Thr Ser Ile Lys Leu Glu Ile Val Thr Ser Lys Ser Gly Gly Gln Ala Gly Asp Gln Met Ser Trp Ser Ala Arg Gly Ser Leu Ala Val Thr

						325					330					335	
	5	Ile	His	Gly	Gly 340	Asn	Tyr	Pro	Gly	Ala 345	Leu	Arg	Pro	Val	Thr 350	Leu	Val
	J	Ala	Tyr	Glu 355	Arg	Val	Ala	Thr	Gly 360	Ser	Val	Val	Thr	Val 365	Ala	Gly	Val
	10	Ser	Asn 370	Phe	Glu	Leu	Ile	Pro 375	Asn	Pro	Glu	Leu	Ala 380	Lys	Asn	Leu	Val
<u> </u>		Thr 385	Glu	Tyr	Gly	Arg	Phe 390	Asp	Pro	Gly	Ala	Met 395	Asn	Tyr	Thr	Lys	Leu 400
	15	Ile	Leu	Ser	Glu	Arg 405	Asp	Arg	Leu	Gly	Ile 410	Lys	Thr	Val	Trp	Pro 415	Thr
	20	Arg	Glu	Tyr	Thr 420	Asp	Phe	Arg	Glu	Tyr 425	Phe	Met	Glu	Val	Ala 430	Asp	Leu
		Asn	Ser	Pro 435	Leu	Lys	Ile	Ala	Gly 440	Ala	Phe	Gly	Phe	Lys 445	Asp	Ile	Ile
	25	Arg	Ala 450	Ile	Arg	Arg	Ile	Ala 455	Val	Pro	Val	Val	Ser 460	Thr	Leu	Phe	Pro
		Pro 465	Ala	Ala	Pro	Leu	Ala 470	His	Ala	Ile	Gly	Glu 475	Gly	Val	Asp	Tyr	Leu 480
Ì	30	Leu	Gly	Asp	Glu	Ala 485	Gln	Ala	Ala	Ser	Gly 490	Thr	Ala	Arg	Ala	Ala 495	Ser
	35	Gly	Lys	Ala	Arg 500	Ala	Ala	Ser	Gly	Arg 505	Ile	Arg	Gln	Leu	Thr 510	Leu	Ala
		Ala	Asp	Lys 515	Gly	Tyr	Glu	Val	Val 520	Ala	Asn	Leu	Phe	Gln 525	Val	Pro	Gln
	40	Asn	Pro 530	Val	Val	Asp	Gly	Ile 535	Leu	Ala	Ser	Pro	Gly 540	Val	Leu	Arg	Gly
		Ala 545	His	Asn	Leu	Asp	Cys 550	Val	Leu	Arg	Glu	Gly 555	Ala	Thr	Leu	Phe	Pro 560
	45	Val	Val	Ile	Thr	Thr 565	Val	Glu	Asp	Ala	Met 570	Thr	Pro	Lys	Ala	Leu 575	Asn
		Ser	Lys	Met	Phe	Ala	Val	Ile	Glu	Gly	Val	Arg	Glu	Asp	Leu	Gln	Pro

Pro Ser Gln Arg Gly Ser Phe Ile Arg Thr Leu Ser Gly His Arg Val Tyr Gly Tyr Ala Pro Asp Gly Val Leu Pro Leu Glu Thr Gly Arg Asp Tyr Thr Val Val Pro Ile Asp Asp Val Trp Asp Asp Ser Ile Met Leu Ser Lys Asp Pro Ile Pro Pro Ile Val Gly Asn Ser Gly Asn Leu Ala Ile Ala Tyr Met Asp Val Phe Arg Pro Lys Val Pro Ile His Val Ala Met Thr Gly Ala Leu Asn Ala Cys Gly Glu Ile Glu Lys Val Ser Phe Arg Ser Thr Lys Leu Ala Thr Ala His Arg Leu Gly Leu Arg Leu Ala Gly Pro Gly Ala Phe Asp Val Asn Thr Gly Pro Asn Trp Ala Thr Phe Ile Lys Arg Phe Pro His Asn Pro Arg Asp Trp Asp Arg Leu Pro Tyr Leu Asn Leu Pro Tyr Leu Pro Pro Asn Ala Gly Arg Gln Tyr His Leu Ala Met Ala Ala Ser Glu Phe Lys Glu Thr Pro Glu Leu Glu Ser Ala Val Arg Ala Met Glu Ala Ala Ala Asn Val Asp Pro Leu Phe Gln Ser Ala Leu Ser Val Phe Met Trp Leu Glu Glu Asn Gly Ile Val Thr Asp Met Ala Asn Phe Ala Leu Ser Asp Pro Asn Ala His Arg Met Arg Asn Phe Leu Ala Asn Ala Pro Gln Ala Gly Ser Lys Ser Gln Arg Ala Lys Tyr Gly Thr Ala Gly Tyr Gly Val Glu Ala Arg Gly Pro Thr Pro Glu

للايد والمناز المنافية المرافع المرافع

			835					840					845			
5	Glu	Ala 850	Gln	Arg	Glu	Lys	Asp 855	Thr	Arg	Ile	Ser	Lys 860	Lys	Met	Glu	Th
J	Met 865	Gly	Ile	Tyr	Phe	Ala 870	Thr	Pro	Glu	Trp	Val 875	Ala	Leu	Asn	Gly	His
10	Arg	Gly	Pro	Ser	Pro 885	Gly	Gln	Leu	Lys	Tyr 890	Trp	Gln	Asn	Thr	Arg 895	Gli
_	Ile	Pro	Asp	Pro 900	Asn	Glu	Asp	Tyr	Leu 905	Asp	Tyr	Val	His	Ala 910	Glu	Lys
15	Ser	Arg	Leu 915	Ala	Ser	Glu	Glu	Gln 920	Ile	Leu	Arg	Ala	Ala 925	Thr	Ser	Ile
20	Tyr	Gly 930	Ala	Pro	Gly	Gln	Ala 935	Glu	Pro	Pro	Gln	Ala 940	Phe	Ile	Asp	Glu
	Val 945	Ala	Lys	Val	Tyr	Glu 950	Ile	Asn	His	Gly	Arg 955	Gly	Pro	Asn	Gln	Glu 960
25	Gln	Met	Lys	Asp	Leu 965	Leu	Leu	Thr	Ala	Met 970	Glu	Met	Lys	His	Arg 975	Asn
	Pro	Arg	Arg	Ala 980	Leu	Pro	Lys	Pro	Lys	Pro	Lys	Pro	Asn	Ala 990	Pro	Thr

Gln Arg Pro Pro Gly Arg Leu Gly Arg Trp Ile Arg Thr Val Ser Asp.
995 1000 1005

Glu Asp Leu Glu 1010

35

45

(2) INFORMATION FOR SEQ ID NO: 7:

40 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3261 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

	<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:97531</pre>	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	GGATACGATC GGTCTGACCC CGGGGGAGTC ACCCGGGGAC AGGCCGTCAA GGCCTTGTTC	60
10	CAGGATGGGA CTCCTCCTTC TACAACGCTA TCATTC GAA GTT AGT TGA GAT CTG Glu Val Ser * Asp Leu 1 5	114
15	ACA AAC GAT CGC AGC GAT GAC AAA CCT GCA AGA TCA AAC CCA ACA GAT Thr Asn Asp Arg Ser Asp Asp Lys Pro Ala Arg Ser Asn Pro Thr Asp 10 15 20	162
20	(2) INFORMATION FOR SEQ ID NO: 8:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2827 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
•	(ii) MOLECULE TYPE: cDNA	
30	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:1122745	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	GGATACGATG GGTCTGACCC TCTGGGAGTC ACGAATTAAC GTGGCTACTA GGGGCGATAC	60
40	CCGCCGCTGG CTGCCACGTT AGTGGCTCCT CTTCTTGATG ATTCTGCCAC C ATG AGT Met Ser 1	117
45	GAC ATT TTC AAC AGT CCA CAG GCG CGA AGC ACG ATC TCA GCA GCG TTC Asp Ile Phe Asn Ser Pro Gln Ala Arg Ser Thr Ile Ser Ala Ala Phe 5 10 15	165
	GGC ATA AAG CCT ACT GCT GGA CAA GAC GTG GAA GAA CTC TTG ATC CCT	213

•	
Gly Ile Lys Pro Thr Ala Gly Gln Asp Val Glu Glu Leu Leu Ile Pro 20 25 30	
AAA GTT TGG GTG CCA CCT GAG GAT CCG CTT GCC AGC CCT AGT CGA CTG Lys Val Trp Val Pro Pro Glu Asp Pro Leu Ala Ser Pro Ser Arg Leu 40 45 50	261
GCA AAG TTC CTC AGA GAG AAC GGC TAC AAA GTT TTG CAG CCG CGG TCT Ala Lys Phe Leu Arg Glu Asn Gly Tyr Lys Val Leu Gln Pro Arg Ser 55 60 65	309
CTG CCC GAG AAT GAG GAG TAT GAG ACC GAC CAA ATA CTC CCA GAC TTA Leu Pro Glu Asn Glu Glu Tyr Glu Thr Asp Gln Ile Leu Pro Asp Leu 70 75 80	357
GCA TGG ATG CGA CAG ATA GAA GGG GCT GTT TTA AAA CCC ACT CTA TCT Ala Trp Met Arg Gln Ile Glu Gly Ala Val Leu Lys Pro Thr Leu Ser 85 90 95	405
20 CTC CCT ATT GGA GAT CAG GAG TAC TTC CCA AAG TAC TAC CCA ACA CAT Leu Pro Ile Gly Asp Gln Glu Tyr Phe Pro Lys Tyr Tyr Pro Thr His 100 105 110	453
CGC CCT AGC AAG GAG AAG CCC AAT GCG TAC CCG CCA GAC ATC GCA CTA Arg Pro Ser Lys Glu Lys Pro Asn Ala Tyr Pro Pro Asp Ile Ala Leu 115 120 125 130	501
CTC AAG CAG ATG ATT TAC CTG TTT CTC CAG GTT CCA GAG GCC AAC GAG Leu Lys Gln Met Ile Tyr Leu Phe Leu Gln Val Pro Glu Ala Asn Glu 135 140 145	549
GGC CTA AAG GAT GAA GTA ACC CTC TTG ACC CAA AAC ATA AGG GAC AAG Gly Leu Lys Asp Glu Val Thr Leu Leu Thr Gln Asn Ile Arg Asp Lys 150 155 160	597
GCC TAT GGA AGT GGG ACC TAC ATG GGA CAA GCA ACT CGA CTT GTG GCC Ala Tyr Gly Ser Gly Thr Tyr Met Gly Gln Ala Thr Arg Leu Val Ala 165 170 175	645
ATG AAG GAG GTC GCC ACT GGA AGA AAC CCA AAC AAG GAT CCT CTA AAG Met Lys Glu Val Ala Thr Gly Arg Asn Pro Asn Lys Asp Pro Leu Lys 180 185 190	693
CTT GGG TAC ACT TTT GAG AGC ATC GCG CAG CTA CTT GAC ATC ACA CTA Leu Gly Tyr Thr Phe Glu Ser Ile Ala Gln Leu Leu Asp Ile Thr Leu 200 205 210	741
CCG GTA GGC CCA CCC GGT GAG GAT GAC AAG CCC TGG GTG CCA CTC ACA	789

	Pro	Va]	Gly	Pro	Pro 215	Gly	Glu	Asp	Asp	Lys 220	Pro	Trp	Val	Pro	Leu 225	Thr	
	AGZ	GTG	CCG	TCA	CGG	ATG	ттс	GTG	СТС	ACG	GGA	GAC	стъ	ТДЭ	GGC	GAC	837
:			Pro														037
		,		230	5				235		7			240		p	
	TTT	GAG	GTT	GAA	GAT	TAC	CTT	CCC	AAA	ATC	AAC	CTC	AAG	TCA	TCA	AGT	885
			Val														
10	0		245					250					255				
	GGA	CTA	CCA	TAT	GTA	GGT	CGC	ACC	AAA	GGA	GAG	ACA	ATT	GGC	GAG	ATG	933
	Gly	Leu	Pro	Tyr	Val	Gly	Arg	Thr	Lys	Gly	Glu	Thr	Ile	Gly	Glu	Met	
1:	5	260					265					270					
··		GCI	ATA	TCA	AAC	CAG	TTT	CTC	AGA	GAG	CTA	TCA	ACA	CTG	TTG	AAG	981
	Ile	Ala	Ile	Ser	Asn	Gln	Phe	Leu	Arg	Glu	Leu	Ser	Thr	Leu	Leu	Lys	
	275					280					285					290	
20	CAA	GGI	GCA	GGG	ACA	AAG	GGG	TCA	AAC	AAG	AAG	AAG	СТА	CTC	AGC	ATG	1029
	Glr	Gly	Ala	Gly	Thr	Lys	Gly	Ser	Asn	Lys	Lys	Lys	Leu	Leu	Ser	Met	
					295					300					305		
	TTA	AGI	GAC	TAT	TGG	TAC	TTA	TCA	TGC	GGG	CTT	TTG	TTT	CCA	AAG	GCT	1077
2:	5 Lev	Ser	Asp	Tyr	Trp	Tyr	Leu	Ser	Cys	Gly	Leu	Leu	Phe	Pro	Lys	Ala	
				310					315					320			
	GAA	AGG	TAC	GAC	AAA	AGT	ACA	TGG	CTC	ACC	AAG	ACC	CGG	AAC	ATA	TGG	1125
		Arg	Tyr	Asp	Lys	Ser	Thr	Trp	Leu	Thr	Lys	Thr	Arg	Asn	Ile	Trp	
~ 30	0		325					330					335				
			CCA														1173
	Ser	Ala	Pro	Ser	Pro	Thr	His	Leu	Met	Ile	Ser		Ile	Thr	Trp	Pro	
3:	5	340					345					350					
٥.		ATO	TCC	AAC	AGC	CCA	AAT	AAC	GTG	TTG	AAC	ATT	GAA	GGG	TGT	CCA	1221
			Ser														
	355	;				360					365			_	_	370	
4	0 тся	CTC	TAC	AAA	TTC	AAC	CCG	TTC	AGA	GGA	GGG	TTG	AAC	AGG	ATC	GTC	1269
	Sei	Lev	Tyr	Lys	Phe	Asn	Pro	Phe	Arg	Gly	Gly	Leu	Asn	Arg	Ile	Val	
					375					380					385		
	GAG	TGC	ATA	TTG	GCC	CCG	GAA	GAA	CCC	AAG	GCT	CTT	GTA	TAT	GCG	GAC	1317
4	5 Gli	Tr	Ile	Leu	Ala	Pro	Glu	Glu	Pro	Lys	Ala	Leu	Val	Tyr	Ala	Asp	
				390					395					400			
	AA	ATA	TAC	ATT	GTC	CAC	TCA	AAC	ACG	TGG	TAC	TCA	ATT	GAC	CTA	GAG	1365

	Asn Ile Tyr Ile Val His Ser Asn Thr Trp Tyr Ser Ile Asp Leu Glu 405 410 415	
5	AAG GGT GAG GCA AAC TGC ACT CGC CAA CAC ATG CAA GCC GCA ATG TAC Lys Gly Glu Ala Asn Cys Thr Arg Gln His Met Gln Ala Ala Met Tyr 420 425 430	1413
10	TAC ATA CTC ACC AGA GGG TGG TCA GAC AAC GGC GAC CCA ATG TTC AAT Tyr Ile Leu Thr Arg Gly Trp Ser Asp Asn Gly Asp Pro Met Phe Asn 435 440 445 450	1461
~ 15	CAA ACA TGG GCC ACC TTT GCC ATG AAC ATT GCC CCT GCT CTA GTG GTG Gln Thr Trp Ala Thr Phe Ala Met Asn Ile Ala Pro Ala Leu Val Val 455 460 465	1509
	GAC TCA TCG TGC CTG ATA ATG AAC CTG CAA ATT AAG ACC TAT GGT CAA Asp Ser Ser Cys Leu Ile Met Asn Leu Gln Ile Lys Thr Tyr Gly Gln 470 475 480	1557
20	GGC AGC GGG AAT GCA GCC ACG TTC ATC AAC AAC CAC CTC TTG AGC ACG Gly Ser Gly Asn Ala Ala Thr Phe Ile Asn Asn His Leu Leu Ser Thr 485 490 495	1605
25	CTA GTG CTT GAC CAG TGG AAC TTG ATG AGA CAG CCC AGA CCA GAC AGC Leu Val Leu Asp Gln Trp Asn Leu Met Arg Gln Pro Arg Pro Asp Ser 500 505 510	1653
30	GAG GAG TTC AAA TCA ATT GAG GAC AAG CTA GGT ATC AAC TTT AAG ATT Glu Glu Phe Lys Ser Ile Glu Asp Lys Leu Gly Ile Asn Phe Lys Ile 515 520 525 530	1701
	GAG AGG TCC ATT GAT GAT ATC AGG GGC AAG CTG AGA CAG CTT GTC CTC Glu Arg Ser Ile Asp Asp Ile Arg Gly Lys Leu Arg Gln Leu Val Leu	1749
35	CTT GCA CAA CCA GGG TAC CTG AGT GGG GGG GTT GAA CCA GAA CAA TCC Leu Ala Gln Pro Gly Tyr Leu Ser Gly Gly Val Glu Pro Glu Gln Ser 550 555 560	1797
40	AGC CCA ACT GTT GAG CTT GAC CTA CTA GGG TGG TCA GCT ACA TAC AGC Ser Pro Thr Val Glu Leu Asp Leu Leu Gly Trp Ser Ala Thr Tyr Ser 565 570 575	1845
45	AAA GAT CTC GGG ATC TAT GTG CCG GTG CTT GAC AAG GAA CGC CTA TTT Lys Asp Leu Gly Ile Tyr Val Pro Val Leu Asp Lys Glu Arg Leu Phe 580 585 590	1893
	TGT TCT GCT GCG TAT CCC AAG GGA GTA GAG AAC AAG AGT CTC AAG TCC	1941

	Cys 595		Ala	Ala	Tyr	Pro 600		Gly	Val	Glu	Asn 605		Ser	Leu	Lys	Ser 610	
5					Glu	Gln										TTG Leu	1989
	AGG	TTG	GTA	GGT	615 GGT		AAC	TAC	CCA	620 CTC		AAC	AAA	GCC	625 TGC	AAG	2037
10					Gly											Lys	
·•_						GCT Ala										CCA Pro	2085
15						GCC Ala							GAG				2133
20		660					665		,			670					
20						AAT Asn 680											2181
25						CCA Pro											2229
30						GGA Gly											2277
			Tyr			GAA Glu		Gly									2325
35	ACA	GCA	725 AGA	AGC	CGT	CTG	CAA	730 GAT	GCA	GTT	AAG	GCC	735 AAG	GCA	G.A.A	GCC	2373
	Thr	Ala 740	Arg	Ser	Arg	Leu	Gln 745	Asp	Ala	Val	Lys	Ala 750	Lys	Ala	Glu	Ala	
40						TCC Ser 760											2421
45						CTG Leu											2469
	AGC	AAG	GTC	GCC		TCA	GCA	CTC	GTG		ACA .	AGC	GAC	GCC		GAA	2517

marghete to

	Ser Lys Val Ala His Ser Ala Leu Val Glu Thr Ser Asp Ala Leu Glu 790 795 800	
5	GCA GTT CAG TCG ACT TCC GTG TAC ACC CCC AAG TAC CCA GAA GTC AAG Ala Val Gln Ser Thr Ser Val Tyr Thr Pro Lys Tyr Pro Glu Val Lys 805 810 815	2565
10	AAC CCA CAG ACC GCC TCC AAC CCC GTT GTT GGG CTC CAC CTG CCC GCC Asn Pro Gln Thr Ala Ser Asn Pro Val Val Gly Leu His Leu Pro Ala 820 825 830	2613
~ 15	AAG AGA GCC ACC GGT GTC CAG GCC GCT CTT CTC GGA GCA GGA ACG AGC Lys Arg Ala Thr Gly Val Gln Ala Ala Leu Leu Gly Ala Gly Thr Ser 840 845 850	2661
	AGA CCA ATG GGG ATG GAG GCC CCA ACA CGG TCC AAG AAC GCC GTG AAA Arg Pro Met Gly Met Glu Ala Pro Thr Arg Ser Lys Asn Ala Val Lys 855 860 865	2709
20	ATG GCC AAA CGG CGG CAA CGC CAA AAG GAG AGC CGC TAACAGCCAT Met Ala Lys Arg Arg Gln Arg Gln Lys Glu Ser Arg 870 875	2755
25	GATGGGAACC ACTCAAGAAG AGGACACTAA TCCCAGACCC CGTATCCCCG GCCTTCGCCT GCGGGGGCCC CC	2815
		2827

CLAIMS

- 1 A birnavirus mutant which is not able to produce a native VP5 protein as a result of a mutation in the VP5 gene of the birnavirus genome.
- A birnavirus mutant according to claim 1, characterised in that the mutation is a substitution.

5

10

15

20

- 3 A birnavirus mutant according to claim 1, characterised in that the mutation is an insertion of a heterologous nucleic acid sequence.
- 4 A birnavirus mutant according to claim 3, characterised in that the heterologous nucleic acid sequence encodes a polypeptide and the heterologous nucleic acid sequence is under the control of an expression control sequence regulating the expression of the sequence in a cell infected with the virus mutant.
- 5 A birnavirus mutant according to claims 1-4, characterised in that the birnavirus is infectious bursal disease virus (IBDV).
- 6 A birnavirus mutant according to claim 5, characterised in that the mutation is in the genome of a virulent field virus.
- A birnavirus mutant according to claim 5, characterised in that the mutation is in the genome of vaccine strain, preferably in vaccine strain D78.
- 8 A birnavirus mutant according to claims 5-7, characterised in that the mutant has a mutated start codon and three stop codons in the 5'-end of the VP5 gene as shown in SEQ ID No: 7.
- 30 9 A birnavirus according to claims 5-8, characterised in that the IBDV expresses a chimeric VP2 protein comprising virus neutralising epitopes of different antigenic IBDV types.

- 10 A vaccine against a birnavirus infection in animals, characterised in that it comprises a birnavirus mutant according to claims 1-9 and a pharmaceutically acceptable carrier.
- A method for determining birnavirus infection in an animal, characterised in that a sample of the animal is examined for the presence of anti-VP5 antibodies.
 - 12 A method according to claim 11, characterised in that the method comprises the steps of:
 - (i) incubating a sample suspected of containing anti-birnavirus antibodies, with VP5 antigen,
 - (ii) allowing the formation of antibody-antigen complex, and
 - (ii) detecting the presence of the antibody-antigen complex.
- 15 13 A diagnostic test kit suitable for carrying out a method according to claims 11-12.
 - 14 Use of the lack of the expression of native VP5 protein by a birnavirus mutant as a marker to distinguish vaccinated animals from animals infected with naturally-ocurring birnavirus.

20

ABSTRACT

The present invention provides a birnavirus mutant which is suited as vaccine candidate in eradication control programmes. The mutant is not able to produce a native VP5 protein, and this feature can be used as a marker to distinguish between animals vaccinated with the VP5 mutant or infected with a naturally-occurring birnavirus.

Figure 1

Genomic organization of segment A of strain D78 and segment B of strain P2

D78 segment A

P2 segment B

Figure 2

Figure 3

Figure 4

Figure 5

10₈

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
| OTHER: ______

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.