Surface Area

Let $\mathbf{r}(u, v)$ be a parametrization of a surface S that lies in \mathbb{R}^3 . Then

surface area
$$(S) = \iint_{S} dS = \iint_{D} \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| dA$$
,

where \mathbf{r}_u and \mathbf{r}_v are the functions we get by taking partial derivatives of \mathbf{r} with respect to u and v, respectively.

 $\nabla f = \operatorname{grad} f$ $\nabla \cdot \mathbf{F} = \operatorname{div} \mathbf{F}$

 $\nabla \times \mathbf{F} =$ curl \mathbf{F}

Conservative Vector Fields

Surface Integrals of Scalar-Valued Functions

Example: Surface Area

Find the surface area of the portion S of the plane $\delta x + 3y + 2z = 6$ that lies in the first octant.

 $\nabla f = \operatorname{grad} f$ $\nabla \cdot \mathbf{F} = \operatorname{div} \mathbf{F}$ $\nabla \times \mathbf{F} = \operatorname{curl} \mathbf{F}$ Conservative Vector Fields
Surface

Integrals of Scalar-Valued Functions

Surface = $\int dS_{R}$ upper case $S = \int \int ||\vec{r}_{u} \times \vec{r}_{v}|| dA$ are $\int dS_{R}$ upper case $S = \int \int ||\vec{r}_{u} \times \vec{r}_{v}|| dA$ $\int dA$ ∂A ∂A

Where
$$(u,v) \in D$$
, where $\int_{-2}^{\infty} |f| \leq 1$ is $\int_{-2}^{\infty} |f| \leq 1$. If $\int_{-2}^{\infty} |f| \leq 1$ is $\int_{-2}^{\infty} |f| = 1$. Then $\int_{-2}^{\infty} |f| = 1$.

Surface Integral of Scalar-Valued Functions

Let

- ullet $\mathbf{r}:D o\mathbb{R}^3$ be parametrization of surface $\mathcal S$ in \mathbb{R}^3 , and
- f be a continuous real-valued function.

Then the surface integral of the scalar function f over the surface $\mathcal S$ is given by

$$\iint_{S} f \ dS = \iint_{D} f(\mathbf{r}(u, v)) \|\mathbf{r}_{u} \times \mathbf{r}_{v}\| \ dA.$$

 $\nabla f = \operatorname{grad} f$

 $\nabla \cdot \mathbf{F} = \operatorname{div} \mathbf{F}$

 $\nabla \times \mathbf{F} =$

Conservative Vector Fields

Surface Integrals of Scalar-Valued Functions

Example: Surface Integral of Scalar-Valued Function

