DBMS

Week One

Content we will cover in this semester

Basics

Relational Languages

Database Design

Application
Design &
Development

Big Data
Analytics

Storage
Management
& Indexing

Query processing and Optimization

Transaction Management

Part One

BASICS

Chapter 1 Introduction

A database-management system (DBMS) is a collection of interrelated data and a set of programs to access those data. The collection of data, usually referred to as the database, contains information relevant to an enterprise. The primary goal of a DBMS is to provide a way to store and retrieve database information that is both convenient and efficient.

Database-System Applications

Evolution to Database Systems

History of Databases (1960-2020)

Importance of Data

- IMPROVE PEOPLE'S LIVES
- MAKE INFORMED DECISIONS
- STOP MOLEHILLS FROM TURNING INTO MOUNTAINS
- GET THE RESULTS YOU WANT
- FIND SOLUTIONS TO PROBLEMS
- BACK UP YOUR ARGUMENTS
- STOP THE GUESSING GAME
- BE STRATEGIC IN YOUR APPROACHES
- KNOW WHAT YOU ARE DOING WELL
- KEEP TRACK OF IT ALL
- MAKE THE MOST OF YOUR MONEY
- ACCESS THE RESOURCES AROUND YOU

Abstraction for Managing Complexity

- Abstraction allows users to interact with complex systems without understanding their internal details.
- Database systems provide a high-level abstraction of data storage and organization.
- Abstraction simplifies interaction for users and programmers.

Representative Applications

- Enterprise information (sales, accounting, human resources)
- Manufacturing (supply chain management, production tracking)
- Banking and finance (customer information, transactions, holdings)
- Universities (student records, course registrations)
- Airlines (reservations, schedules)
- Web-based services (social media, online retail, advertisements)
- Document databases, navigation systems, etc.

Changing User Interaction with Databases

Session =	Subject =	Student Intake Year 🔻	Program =	Registration No 🔻	StudentName	∓ Grade	₹ Grade Point ₹	Total Marks =	Final Examination 🔻	Midterm Exa
FA21	Design and Analysis of Algorithms	FA18	BSCS	FA18-BSCS-0077	SYEDTAHAHASAN	Α	4.00	93.00	40.00	
FA21	Design and Analysis of Algorithms	FA19	BSCS	FA19-BSCS-0019	SYEDSHAHZAIBRAFIQ	Α	4.00	89.00	36.00	
FA21	Design and Analysis of Algorithms	SP20	MCS	SP20-MCS-0013	FARHANAHMED	Α	4.00	88.00	32.00	
FA21	Design and Analysis of Algorithms	SP20	MCS	SP20-MCS-0018	AMNAAHMED	Α	4.00	86.00	30.67	
FA21	Design and Analysis of Algorithms	SP20	MCS	SP20-MCS-0029	ASADZAKIR	Α	4.00	87.00	34.67	
FA21	Design and Analysis of Algorithms	SP20	MCS	SP20-MCS-0032	FARZAMYOUSUF	Α	4.00	86.00	34.67	
FA21	Design and Analysis of Algorithms	SP21	MCS	SP21-MCS-0018	ARBAZKHAN	Α	4.00	90.00	37.33	
FA21	Design and Analysis of Algorithms	FA21	MSCS	FA21-MSCS-0007	RAMEEZQURESHI	A-	3.67	85.00	30.67	
FA21	Design and Analysis of Algorithms	SP20	MCS	SP20-MCS-0035	SEEMAALIAFRIDI	В	3.00	74.00	25.33	
FA21	Design and Analysis of Algorithms	FA21	MSCS	FA21-MSCS-0049	MUHAMMADHAMZAARAB	B-	2.67	72.00	26.67	
FA21	Design and Analysis of Algorithms	SP20	MCS	SP20-MCS-0039	AMIRQADEER	B-	2.67	73.00	26.67	
FA21	Design and Analysis of Algorithms	SP21	MCS	SP21-MCS-0005	MUHAMMADTALHABINTAHIR	B-	2.67	70.00	24.00	
FA21	Design and Analysis of Algorithms	SP20	BSCS	SP20-BSCS-0071	MARIUMZAFARREHMAN	B+	3.33	79.00	33.33	
FA21	Design and Analysis of Algorithms	FA19	MSCS	FA19-MSCS-0028	AYAZAHMED	C	2.00	64.00	14.67	
FA21	Design and Analysis of Algorithms	SP20	MCS	SP20-MCS-0033	SYEDADNANSHAH	C	2.00	65.00	20.00	
FA21	Design and Analysis of Algorithms	SP21	MCS	SP21-MCS-0007	MUHAMMADSALMANSAJID	С	2.00	64.00	13.33	
FA21	Design and Analysis of Algorithms	FA18	MCSW	FA18-MCSW-0022	FAHADIFTIKHARKHAN	C-	1.67	58.00	14.67	
FA21	Design and Analysis of Algorithms	SP18	BSCS	SP18-BSCS-0028	SYEDKHAWARHUSSAINBURNI	C-	1.67	59.00	18.67	
FA21	Design and Analysis of Algorithms	SP20	BSCS	SP20-BSCS-1015	SHAHOON	C-	1.67	60.00	20.00	
FA21	Design and Analysis of Algorithms	SP20	MCS	SP20-MCS-0005	SYEDTAQIRIZVI	C-	1.67	58.00	18.67	
FA21	Design and Analysis of Algorithms	SP20	MCS	SP20-MCS-0037	MAJIDALI	C-	1.67	60.00	13.33	
FA21	Design and Analysis of Algorithms	SP19	MCSW	SP19-MCSW-0007	TALHAHUSSAIN	D	1.00	50.00	10.67	
-101						-			***	

Modes of Database Usage

Purpose of Database Systems

Disadvantages of File-Processing Systems

- Data redundancy and inconsistency arise due to different structures and formats of files and application programs.
- Difficulty in accessing data arises when application programs are not available for specific queries.
- Data isolation occurs due to the scattered nature of data in various files.
- Integrity problems result from enforcing consistency constraints across various files and programs.
- Atomicity problems involve ensuring that operations either fully complete or leave the system unchanged in the event of a failure.
- Concurrent-access anomalies lead to inconsistencies when multiple users update data simultaneously.
- Security issues arise when different users require different levels of data access.

Transition to Database Systems

- Database systems were developed in response to the challenges faced by file-processing systems.
- Database systems provide solutions to the limitations of file-based systems.

View of Data

Data Models

- A data model provides conceptual tools to describe data, relationships, semantics (meaning), and constraints.
- Different data models exist, including the relational, entityrelationship, semi-structured, and object-based models.
- The relational model is the most widely used and serves as the foundation for many database applications.

Data Models

Data Abstraction

- Database systems use different levels of data abstraction to hide implementation complexities from users.
- The levels of abstraction are physical, logical, and view.
- The physical level describes how data are stored,
- the logical level describes what data are stored and relationships,
- and the view level presents a subset of the data to specific users.

Instances and Schemas

- A database instance refers to the collection of data stored in the database at a specific time.
- The database schema refers to the overall design of the database.
- Schemas are partitioned into physical, logical, and view levels.
- Logical schema is crucial for application programs, and changes to the physical schema should not affect application programs if physical data independence is achieved.
- Flexibility in logical schema design is essential for modern database applications.

Database Languages

Data-Definition Language (DDL)

- DDL is used to specify the database schema and properties of the data.
- It includes data storage and definition language to define storage structure and access methods.
- DDL is used to define integrity constraints like domain constraints, referential integrity, and authorization.

SQL Data-Definition Language

- SQL provides a rich DDL for defining tables, data types, integrity constraints, and authorizations.
- Examples of DDL statements include creating tables with specific columns and data types, specifying primary keys, and defining relationships.

Data-Manipulation Language (DML)

- DML enables users to retrieve, insert, delete, and modify data in the database.
- Two types of DMLs:
 - procedural DML (user specifies how to get data) and
 - declarative DML (user specifies what data is needed without specifying how to get it).

SQL Data-Manipulation Language

- SQL is a nonprocedural query language for retrieving and manipulating data.
- SQL queries take tables as input and return a single table as output.
- Examples of SQL queries include retrieving specific attributes from a table and combining information from multiple tables using joins.

Database Access from Application Programs

- Application programs interact with the database using DML statements.
- Application programs are written in a host language (e.g., C/C++, Java) and include embedded SQL queries.
- Application-program interfaces like ODBC and JDBC are used to send DML and DDL statements to the database for execution.

Database Design

Context of Database Design

- Databases are part of an enterprise's operations and may serve as a supporting role or provide information as the product.
- Database design involves designing the database schema, but a complete application environment requires consideration of broader issues.

High-Level Data Model

- A high-level data model offers a conceptual framework for specifying data requirements and structuring the database.
- Initial database design involves understanding user data needs through interactions with domain experts and users.
- The outcome of this phase is a specification of user requirements, indicating what data is needed.

Translating User Requirements

- The designer selects a data model and uses it to translate user requirements into a conceptual schema of the database.
- The schema provides an overview of the enterprise, focusing on data and relationships without specifying physical storage details.

Choosing a Design Approach

- In the context of the relational model, the "what" part involves business decisions about what attributes to capture.
- The "how" part involves two approaches: using the entity-relationship model to capture relationships or employing normalization algorithms to generate tables.

Functional Requirements

- A fully developed conceptual schema indicates the functional requirements of the enterprise.
- Functional requirements involve specifying operations or transactions that will be performed on the data, such as modification, retrieval, and deletion.

Logical-Design Phase

- In the logical-design phase, the designer maps the high-level conceptual schema to the implementation data model used by the database system.
- This mapping results in a system-specific database schema, which forms the basis for the subsequent physical-design phase.

Physical-Design Phase

- The physical-design phase focuses on specifying physical features of the database, including file organization and internal storage structures.
- These features are crucial for optimizing the performance of the database system.

Database Engine

Storage Manager

- The storage manager bridges the gap between the low-level data stored in the database and the applications and queries interacting with the system.
- It interacts with the file manager to handle the storage of raw data on disk using the file system provided by the operating system.
- The storage manager is responsible for tasks such as data retrieval, storage, and updates.
- Its components include:
 - Authorization and integrity manager: Checks integrity constraints and user authorization for data access.
 - Transaction manager: Ensures database consistency despite failures and conflicts between concurrent transactions.
 - File manager: Manages disk storage space allocation and data structures for representing information stored on disk.
 - Buffer manager: Fetches data from disk to main memory and decides which data to cache in main memory.

Query Processor

• The query processor simplifies data access and facilitates efficient query execution.

• It includes:

- DDL interpreter: Interprets Data Definition Language (DDL) statements and records them in the data dictionary.
- DML compiler: Translates Data Manipulation Language (DML) queries into evaluation plans of low-level instructions.
- Query evaluation engine: Executes the low-level instructions generated by the DML compiler.

Transaction Management

- Transaction management ensures the atomicity, consistency, isolation, and durability (ACID) properties of database transactions.
- It allows a sequence of operations to be treated as a single unit of work that either completes fully or has no effect on the database.
- Components of the transaction manager include:
 - Concurrency-control manager: Manages concurrent execution of transactions to maintain database consistency.
 - Recovery manager: Detects system failures and restores the database to a consistent state before the failure occurred.

Database and Application Architecture

Centralized Architecture and System Structure

- This architecture is suitable for shared-memory server architectures where multiple CPUs exploit parallel processing.
- Users interact with the system through query tools, application interfaces, and application programs.
- Components like the query processor, storage manager, buffer manager, file manager, transaction manager, and authorization manager work together to manage the database.

Scalability and Distributed Databases

- To handle larger data volumes and higher processing speeds, parallel databases run on clusters of multiple machines.
- Distributed databases allow data storage and query processing across geographically separated machines.

Database Application Architecture

- Database applications can be classified into two-tier and three-tier architectures.
- Two-tier architecture involves the application residing on the client machine, which directly invokes database functionality on the server machine.
- Modern applications use a three-tier architecture, where the client is a front-end (web browser, mobile app) that communicates with an application server.
- The application server communicates with the database system, housing the application's business logic.
- Three-tier architecture enhances security and performance compared to two-tier architecture.

