Securitate perfectă

- ► Primul curs: Sisteme de criptare istorice (substituție, Vigenere etc.) care pot fi sparte cu efort computațional foarte mic
- ► Cursul de azi: Scheme perfect sigure care rezistă în fața unui adversar cu putere computațională nelimitată
- ► Insă...limitările sunt inevitabile

Securitatea Sistemelor Informatice

2/26

Securitate perfectă (Shannon 1949)

Definiție echivalentă

O schemă de criptare (Enc, Dec) este perfect sigură dacă pentru orice mesaje $m_0, m_1 \in \mathcal{M}$ cu $|m_0| = |m_1|$ și $\forall c \in \mathcal{C}$ următoarea egalitate este îndeplinită:

$$Pr[M = m_0|C = c] = Pr[M = m_1|C = c]$$

unde $k \in \mathcal{K}$ este o cheie aleasă uniform.

- ightharpoonup fiind dat un text criptat, este imposibil de ghicit dacă textul clar este m_0 sau m_1
- cel mai puternic adversar nu poate deduce nimic despre textul clar dat fiind textul criptat

Securitate perfectă (Shannon 1949)

Definiție

O schemă de criptare peste un spațiu al mesajelor $\mathcal M$ este perfect sigură dacă pentru orice probabilitate de distribuție peste $\mathcal M$, pentru orice mesaj $m \in \mathcal M$ și orice text criptat c pentru care Pr[C=c]>0, următoarea egalitate este îndeplinită:

$$Pr[M = m | C = c] = Pr[M = m]$$

- ightharpoonup Pr[M=m] probabilitatea *a priori* ca Alice să aleagă mesajul m:
- ▶ Pr[M = m | C = c] probabilitatea *a posteriori* ca Alice să aleagă mesajul *m*, chiar dacă textul criptat *c* a fost văzut ;
- ▶ securitate perfectă dacă Oscar afla textul criptat nu are nici un fel de informație în plus decât dacă nu l-ar fi aflat.

Securitatea Sistemelor Informatice

3/26

Un exemplu de cifru sigur - One Time Pad (OTP)

- ► Patentat in 1917 de Vernam (mai poartă denumirea de Cifrul Vernam)
- ► Algoritmul:
 - 1. Fie l > 0 iar $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^{l}$
 - 2. Cheia k se alege cu distribuție uniformă din spațiul cheilor $\mathcal K$
 - 3. **Enc**: dată o cheie $k \in \{0,1\}^I$ și un mesaj $m \in \{0,1\}^I$, întoarce $c = k \oplus m$.
 - **4. Dec**: dată o cheie $k \in \{0,1\}^I$ și un mesaj criptat $c \in \{0,1\}^I$, întoarce $m = k \oplus c$.

Un exemplu de cifru sigur - One Time Pad (OTP)

mesai: 0 cheie: 1 text criptat: 1 1 0 1

- avantaj criptare şi decriptare rapide
- dezavantaj cheia foarte lungă (la fel de lungă precum textul clar)
- ► Este OTP sigur?

Securitatea Sistemelor Informatice

6/26

Limitările securității perfecte - optimalitate OTP

Teoremă

Fie o schemă (Enc. Dec) de criptare perfect sigură peste un spatiu al mesajelor \mathcal{M} și un spațiu al cheilor \mathcal{K} . Atunci $|\mathcal{K}| \geq |\mathcal{M}|$.

Demonstrație

Intuitie:

- ▶ Pentru orice text criptat, se încearcă decriptarea lui cu toate cheile posibile din K și se obține o listă de cel mult |K|elemente
- ightharpoonup Dacă $|\mathcal{K}| < |\mathcal{M}|$ unele mesaje nu sunt pe listă contradicție cu securitatea perfectă (vezi definiția)

Teoremă

Schema de criptare OTP este perfect sigură.

- securitatea perfecta nu este imposibilă dar...
- ▶ cheia trebuie să fie la fel de lungă precum mesajul
- ▶ incoveniente practice (stocare, transmitere)
- ► cheia trebuie să fie folosită o singură dată one time pad de ce?

Exercițiu Ce se întâmplă dacă folosim o aceeași cheie de două ori cu sistemul OTP?

Securitatea Sistemelor Informatice

7/26

Securitate perfectă vs. Criptografie computațională

- ▶ Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată:
- ► Se mai numesc și informational-teoretic sigure;
- Adversarul nu are suficientă informație pentru a efectua un atac:
- ightharpoonup Majoritatea construcțiilor criptografice moderne ightarrow securitate computațională;
- ► Schemele moderne pot fi sparte dacă un atacator are la dispoziție suficient spațiu și putere de calcul.

Securitatea Sistemelor Informatice 8/26 Securitatea Sistemelor Informatice 9/26

Securitate perfectă vs. Criptografie computațională

- ► Securitatea computațională mai slabă decât securitatea informational-teoretică:
- ▶ Prima se bazează pe prezumptii de securitate: a doua este neconditionată;
- ▶ Întrebare: de ce renunțăm la securitatea perfectă?
- ► Raspuns: datorită limitărilor practice!
- ▶ Preferăm un compromis de securitate pentru a obține construcții practice.

Securitatea Sistemelor Informatice

10/26

Securitatea Sistemelor Informatice

Securitate computațională

2. Adversarii pot efectua un atac cu succes cu o **probabilitate** foarte mică:

Exemplu: un adversar află textul clar cu probabilitate 2^{-60} într-un an

- ▶ sunt şanse mai mari ca Alice şi Bob să fie loviți de fulger în aceeași perioadă de timp
- ▶ un eveniment cu prob. 2⁶⁰/sec. se produce o dată la un miliard de ani

Securitate computațională

► Ideea de bază: principiul 1 al lui Kerckhoffs Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

- ► Sunt de interes mai mare schemele care practic nu pot fi sparte deși nu beneficiază de securitate perfectă;
 - 1. Adversari limitați computațional/eficienti/timp polinomial Exemplu: Un atacator care realizeaza un atac prin forta bruta peste spatiul cheilor și testeaza o cheie/ciclu de ceas
 - ► calculator desktop se pot testa aprox. 2⁵⁷ chei/an
 - ► supercalculator se pot testa aprox. 2⁸⁰ chei/an
 - ▶ supercalculator, varsta universului 2¹¹² chei

11/26

Indistinctibilitate perfectă

- ▶ Pentru securitatea perfectă am dat două definitii echivalente, a doua sublinia ideea de indistinctibilitate: adversarul nu poate distinge între criptările a două mesaje diferite
- ▶ Vom defini indistinctibilitatea pe baza unui experiment $Priv_{A\pi}^{eav}$ unde $\pi = (Enc, Dec)$ este schema de criptare
- \triangleright Personaje participante: **adversarul** \mathcal{A} care încearcă să spargă schema și un provocator (challenger).
- ► Trebuie să definim capabilitățile adversarului: el poate vedea un singur text criptat cu o anume cheie, fiind un adversar pasiv care poate rula atacuri în timp polinomial, si nu are nici o alta interactiune cu Alice sau Bob

Securitatea Sistemelor Informatice 12/26 Securitatea Sistemelor Informatice 13/26

Experimentul $Priv_{\mathcal{A},\pi}^{eav}$

- Output-ul experimentului este 1 dacă b'=b și 0 altfel. Dacă $Priv_{A\pi}^{eav}=1$, spunem că \mathcal{A} a efectuat experimentul cu succes.
- ightharpoonup Schema π este perfect indistinctibilă dacă

$$extit{Pr}[extit{Priv}_{\mathcal{A},\pi}^{ extit{eav}}(extit{n})=1]=rac{1}{2}$$

► Reamintim ca indistinctibilitatea perfectă este doar o definitie alternativa pentru securitatea perfectă

Securitatea Sistemelor Informatice

18/26

Securitate computațională asimptotică

- ▶ parametru de securitate *n* atât pentru schema de criptare cât și pentru părțile oneste și adversar
 - poate fi vazut ca lungimea cheii
 - ▶ timpul în care rulează adversarul și probabilitatea lui de succes sunt funcții de *n*
 - este cunoscut adversarului
 - permite utilizatorului să își aleagă nivelul de securitate dorit este fixat la momentul inițializării schemei de criptare

Securitate computațională concretă

O schemă de criptare este (t,ϵ) -indistinctibila dacă orice adversar care rulează în timp cel mult t

$$Pr[\mathit{Priv}^{\mathsf{eav}}_{\mathcal{A},\pi} = 1] \leq rac{1}{2} + \epsilon$$

- ightharpoonup probabilitatea de succes a adversarului $\leq \epsilon$
- ightharpoonup adversarul ruleaza in timp < t
- dezavantaj: am dori sa avem scheme in care utilizatorul isi poate ajusta nivelul de securitate dorit

Securitatea Sistemelor Informatice

20/26

Securitate computațională asimptotică

► Se impune o nouă modalitate de a defini securitatea:

Definiție

O schemă de criptare este indistinctibila dacă pentru orice adversar PPT, exista o functie neglijabila ϵ așa încat

$$extit{Pr}[extit{Priv}_{\mathcal{A},\pi}^{ extit{eav}}(extit{n}) = 1] \leq rac{1}{2} + \epsilon(extit{n})$$

Neglijabil și ne-neglijabil

- ightharpoonup în practică: ϵ este scalar și
 - $ightharpoonup \epsilon$ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$
 - ightharpoonup reglijabil dacă $\epsilon \leq 1/2^{80}$
- ▶ în teorie: ϵ este funcție ϵ : $\mathbb{Z}_{\geq 0} \to \mathbb{R}_{\geq 0}$ și p(n) este o funcție polinomială în n (ex.: $p(n) = n^d$, d constantă)
 - lacktriangledown ne-neglijabiă în n dacă $\exists p(n): \epsilon(n) > 1/p(n)$
 - lacktriangledown neglijabilă în n dacă $\forall p(n), \exists n_d$ a.î. $\forall n \geq n_d : \epsilon(n) \leq 1/p(n)$

Securitatea Sistemelor Informatice

23/26

Important de reținut!

- ▶ Parametrul de securitate *n* este public cunoscut si parte din schema
- ► Input-urile pentru toti algoritmii, inclusiv adversarul, sunt polinomiale in *n*
- ▶ Tipic, n este lungimea cheii secrete (de ex. n = 128, 256 etc.)

Functii de parametru n

Probabilitatea de succes a adversarului - neglijabil in n

Valori concrete pentru n

Presupunem ca pentru o schema de criptare concreta, un adversar care ruleaza in timp n^3 minute reuseste sa sparga schema cu probabilitate $2^{40} * 2^{-n}$.

- \triangleright Ce valori alegem pentru n la implementare?
 - ▶ pentru $n \le 40$, atunci un adversar care rulează în 40^3 minute (adica 6 saptamani) sparge schema cu probabilitate 1
 - ▶ pentru n = 50, atunci un adversar care rulează în 50^3 minute (adica aproximativ 3 luni) sparge schema cu probabilitate aprox. 1/1000 (ar putea sa nu fire acceptabil)
 - ▶ pentru n = 500, atunci un adversar care rulează în 200 de ani sparge schema cu probabilitate aprox. 2^{-500} (acceptabil)

Securitatea Sistemelor Informatice

24/26

26/26

Criptarea simetrică - redefinită

Definiție

Un sistem de criptare simetric definit peste (K, M, C), cu:

- $\triangleright \mathcal{K} = spațiul cheilor$
- $ightharpoonup \mathcal{M} = spațiul textelor clare (mesaje)$
- ightharpoonup C = spațiul textelor criptate

este un triplet (Gen, Enc, Dec), unde:

- 1. $Gen(1^n)$: este algoritmul probabilistic de generare a cheilor care întoarce o cheie k conform unei distribuții
- 2. Enc: primește o cheie k și un mesaj $m \in \{0,1\}^*$ și întoarce $c \leftarrow Enc_k(m)$
- 3. Dec: primește cheia k și textul criptat și întoarce m sau "eroare".