Losungen au ausgewählten Hausaufgaben

Mathematik II für Studierende der Informatik (Analysis und Lineare Algebra) Th. Andreae, N.N.

Sommersemester 2012 Blatt 1

B: Hausaufgaben zum 12. April 2012

- 3. Die Folge (a_n) sei definiert durch $a_n = \frac{3n+2}{n+4}$. Es sei a = 3.
 - a) Berechnen Sie zunächst $|a_n-a|$, d.h. den Abstand des Folgenglieds a_n von a=3.
 - b) Zeigen Sie sodann durch direktes Zurückführen auf die Definition der Konvergenz (Skript, Seite 9), dass $(a_n) \to a$ gilt.
 - c) Man gebe zu $\varepsilon = \frac{1}{5}$, $\varepsilon = \frac{1}{100}$ sowie $\varepsilon = \frac{1}{1000}$ ein jeweils möglichst kleines $N \in \mathbb{N}$ an, so dass $|a_n a| < \varepsilon$ für alle $n \ge N$ gilt.

a)
$$|a_{N}-a|=\left|\frac{3n+2}{N+4}-3\right|=\left|\frac{3n+2-3(N+4)}{N+4}\right|=\frac{10}{N+4}$$

b) Es sei E>O. Anfgrund von a) erhält man

(*)
$$|a_n-a| < \epsilon \Leftrightarrow \frac{10}{\epsilon} - 4 < n$$
.

Wir wählen N> 10 - 4. Für alle n > N gilt dann n> 10 - 4, was wegen (*) ägnivalent ist an der Feststellung, dass |an-a| < E für alle n≥N gilt. Dies zeigt (an) → a.

c) Anhand von (*) erkennt man, wie N∈W au wählen vit, damit | an-a| < E für alle N ≥ N gilt: Man muss N> 20-4 wählen. Für E= 2 gilt

 $\frac{10}{\epsilon}$ -4 = 46. Also ist N=47 die blemstmögliche Wahl von N, so dass $|an-a| < \epsilon$ für alle $n \ge N$ silt.

Analog: N = 997 für $E = \frac{1}{1000}$ and N = 9997 für $E = \frac{1}{1000}$.

4. Die Folge (a_n) sei rekursiv definiert durch

$$a_1 = 1;$$

$$a_{n+1} = \left(\frac{a_n}{2}\right)^2 + 1.$$

Weisen Sie die Konvergenz der Folge mit Hilfe des Satzes über monotone, beschränkte Folgen nach.

Hinweis: Man beginne mit dem Nachweis, dass (a_n) beschränkt ist. Man zeige die Beschränktheit, indem man durch vollständige Induktion beweist, dass $1 \le a_n < 2$ für alle $n \in \mathbb{N}$ gilt. Zum Nachweis der Monotonie zeige man anschließend $a_{n+1} \ge a_n$ für alle $n \in \mathbb{N}$.

Nachweis von 1 < an < 2 durch vollst. Und .:

(I) <u>Induktionsamfang</u>: Wegen $q_n = 1$ gilt die Behauptung für n = 1.

(II) Industions schrift: Für ein n ≥ 1 gelte $1 \leq a_n < 2$. Es folgt $\frac{1}{2} \leq \frac{2}{2} < 1$, woraus man durch quadrieren $\frac{1}{4} \leq \left(\frac{q_n}{2}\right)^2 < 1$ erhält. Es folgt $\frac{5}{4} \leq \left(\frac{q_n}{2}\right)^2 + 1 < 2$, also $1 \leq a_{n+1} < 2$.

Dannit ist die Beschränktheit der Folge (an)
gebeigt. Die Monotonie ergibt sich aus $a_{n+n} \ge a_n \iff \left(\frac{a_n}{2}\right)^2 + 1 \ge a_n \iff \left(\frac{a_n}{2}\right)^2 - a_n + 1 \ge 0$ $\iff \left(\frac{a_n}{2} - 1\right)^2 \ge 0$.

Ans dem Satz über monotone, beschränkte Folgen erhält man die Konvergenz von (an).