For Reference

NOT TO BE TAKEN FROM THIS ROOM

For Reference

NOT TO BE TAKEN FROM THIS ROOM

Ex libris Universitates Albertheasis

Digitized by the Internet Archive in 2020 with funding from University of Alberta Libraries

THE UNIVERSITY OF ALBERTA

SOME ASYMPTOTIC NON-CENTRAL DISTRIBUTIONS OF THE SAMPLE LINEAR REGRESSION COEFFICIENT

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS

EDMONTON ALBERTA

SPRING 1970

51-5

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled 'Some Asymptotic Non-Central Distributions of the Sample Linear Regression Coefficient', submitted by Peter Capell in partial fulfilment of the requirements for the degree of Master of Science.

ABSTRACT

The purpose of this thesis is to find the approximate distribution of sample regression coefficients based on samples from two linear time series. Chapter I introduces the problem. In Chapter II the distribution of the regression coefficients with known and unknown means, when sampling from a bivariate normal population with zero correlation, are derived, using Daniels's (1956) form of Geary's (1944) extension of Cramer's theorem. In Chapter III Daniels's method is again used, together with the saddle-point approximation and the method of steepest descents to find an asymptotic approximation of the distributions of the same coefficients as in Chapter II, when sampling from two linear time series.

ACKNOWLEDGEMENTS

I should like to give sincere thanks to Dr. J.R. McGregor for his assitance and guidance in the preparation of this thesis, and to Mr. G.S. Marliss for his computational assistance, and to the University of London for the use of their C.D.C. 1600.

TABLE OF CONTENTS

		Page
CHAPTER I	INTRODUCTION	1
CHAPTER II	THE DISTRIBUTION OF THE SAMPLE	
	REGRESSION COEFFICIENT	4
CHAPTER III	THE APPROXIMATE DISTRIBUTION OF	
	THE SAMPLE REGRESSION COEFFICIENT	
	BASED ON SAMPLES FROM TWO LINEAR	
	TIME SERIES	11
REFERENCES		36
APPENDIX I	DANIELS'S FORM OF GEARY'S (1944)	
	EXTENSION OF CRAMER'S THEOREM	37
APPENDIX II	EXAMPLE TABLES OF THE APPROXI-	
	MATE DISTRIBUTION OF THE SAMPLE	
	REGRESSION COEFFICIENT	39

- 1 -

CHAPTER I

INTRODUCTION

In regression and correlation analysis of bivariate data, a common error is to infer the existence of a direct relationship between the two variables, whereas, in reality, both are related to a third, hidden variable.

Let (x_1, y_1) , (x_2, y_2) ,..., (x_n, y_n) , be a sample of size n from a bivariate population. Denote the sample regression coefficient of y on x by

$$b_{21} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(1.1)

and the sample regression coefficient with known means by

$$b_{21} = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} . \tag{1.2}$$

The distribution of b₂₁^x, when sampling from a bivariate normal population, was first derived by K. Pearson (1926) and Romanovsky (1926).

In Chapter II of this thesis we derive the corresponding

•

distributions of b₂₁ and b₂₁ in the case where the population has zero correlation, using Daniels's (1956) form of Geary's (1944) extension of Cramér's theorem.

In Chapter III, section I, we derive the approximate distribution of b_{21} when sampling at times t_1, t_2, \ldots, t_n , from two linear time series, passing through the origin, with normal residuals. Thus we have

$$x_{i} = B_{1} t_{i} + e_{i},$$

$$y_{i} = B_{2} t_{i} + f_{i}, \text{ for } i = 1, 2, ..., n,$$
(1.3)

where B_1 and B_2 are constants, and $\{e_i, f_i\}$ are independent N(0, 1) random variables. We again use Daniels's method to find an asymptotic approximation of the inversion integral (2.1) involved in using the saddlepoint approximation and the method of steepest descents (see De Bruijn (1961)). In section II the same procedure is followed to derive the approximate distribution of $b_{21}^{\mathbf{x}}$ when sampling at times t_1, t_2, \ldots, t_n , from the series

$$x_{i} = \alpha_{l} + B_{l} t_{i} + e_{i}$$
,
 $y_{i} = \alpha_{2} + B_{2} t_{i} + f_{i}$, for $i = 1, 2, ..., n$,
$$(1.4)$$

where α_1 and α_2 are constants and B_1 , B_2 , and $\{e_i, f_i\}$ are as defined for (1.3). The corresponding distributions of b_{12} and b_{21}^{x} , the coefficients of regression of x on y, can be found by permutating the indices in the distributions of b_{21} and b_{12}^{x} respectively.

Daniels's method is given in Appendix I.

The distribution of b_{21} is tabulated for various exemplary values of B_1 , B_2 , and n, in Appendix II.

CHAPTER II

THE DISTRIBUTION OF THE SAMPLE REGRESSION COEFFICIENT

If r is a statistic of the form c/c_0 , where c_0 is non-negative, the probability density function (p. d. f.) of r is given by

$$h(r) = \frac{1}{2\pi i} \int \frac{\partial M}{\partial u} (u-rT, T) \Big|_{u=0} dT, \qquad (2.1)$$

where $M(T_o, T) = E$ e , is the joint moment-generating function of c_o and c. Integration is along the imaginary axis in the complex T plane, or any allowable deformation. This is Daniels's form of Geary's extension of Cramér's theorem.

Let (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) , be n observed pairs of values from a bivariate normal distribution with zero correlation. The joint distribution of $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$, is

$$dF = (2\pi)^{-n} \exp \left\{ -\frac{1}{2} \left[\sum_{i=1}^{n} x_{i}^{2} + \sum_{i=1}^{n} y_{i}^{2} \right] \right\}$$
 (2.2)

$$x dx_1 \dots dx_n dy_1 \dots dy_n$$

Let

$$c = \sum_{i=1}^{n} (x_i - x)(y_i - y), \text{ and}$$
(2.3)

$$c_{o} = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
,

where

$$\frac{-}{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \text{ and }$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

The joint moment-generating function of c and c is

$$M(T_{o}, T) = (2\pi)^{-n} \int_{-\infty}^{\infty} \cdot \cdot \cdot \int_{-\infty}^{\infty} \exp \left\{ -\frac{1}{2} \left[\sum_{i=1}^{n} x_{i}^{2} \right] \right\}$$

$$+ \sum_{i=1}^{n} y_{i}^{2} - 2 T_{0} \sum_{i=1}^{n} (x_{i} - x)^{2} - 2 T \sum_{i=1}^{n} (x_{i} - x)(y_{i} - y) \right]$$

$$dx_1 \dots dx_n dy_1 \dots dy_n$$
.

We now replace $\mathbf{x}_1,\dots,\mathbf{x}_n$ by new variables $\mathbf{w}_1,\dots,\mathbf{w}_n$ by means of an orthogonal transformation such that

$$w_1 = \sqrt{n} \, \overline{x} \, , \qquad (2.4)$$

and apply a transformation with the same matrix to y_1, \dots, y_n , which are thus replaced by new variables z_1, \dots, z_n , such that

$$z_1 = \sqrt{n} \overline{y}$$
.

We have then

$$\sum_{i=1}^{n} x_{i}^{2} = \sum_{i=2}^{n} w_{i}^{2},$$

$$\sum_{i=1}^{n} y_{i}^{2} = \sum_{i=1}^{n} z_{i}^{2},$$

$$\sum_{i=1}^{n} (x_i^{-x})^2 = \sum_{i=1}^{n} x_i^2 - n x^2 = \sum_{i=2}^{n} w_i^2,$$

and

$$\sum_{i=1}^{n} (x_{i}^{-x})(y_{i}^{-y}) = \sum_{i=1}^{n} x_{i}^{y} - n = \sum_{i=2}^{n} w_{i}^{z}$$

Hence

$$M(T_{o}, T) = (2\pi)^{-n} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2} \left[w_{1}^{2} + z_{1}^{2}\right] + (1 - 2 T_{o}) \sum_{i=2}^{n} w_{i}^{2} - 2 T \sum_{i=2}^{n} w_{i} z_{i} + \sum_{i=2}^{n} z_{i}^{2}\right] \right\} dw_{1} \dots dw_{n} dz_{1} \dots dz_{n}.$$

This is the product of n double integrals.

Thus

$$M(T_o, T) = \left| \underline{A} \right|^{-\frac{(n-1)}{2}}$$

where

$$\underline{\mathbf{A}} = \begin{bmatrix} 1 - 2\mathbf{T} & -\mathbf{T} \\ -\mathbf{T} & 1 \end{bmatrix}$$

Hence

$$M(T_{o}, T) = (1 - 2T_{o} - T^{2})^{-\frac{(n-1)}{2}}.$$
(2.5)

Making the substitution

$$u = T_o + b_{21}^{X} T,$$

we obtain

$$M(u-b_{21}^{x} T, T) = (1 - 2u + 2b_{21}^{x} T - T^{2})^{-\frac{(n-1)}{2}}$$
.

Differentiating with respect to u, and putting u = 0, we obtain,

$$\frac{3 \text{ M}}{3 \text{ u}} (\text{u} - \text{b}_{21}^{\text{X}} \text{T}, \text{T}) \bigg|_{\text{u}=0}$$

$$= (\text{n-1}) (1 + 2 \text{b}_{21}^{\text{X}} \text{T-T}^2)^{-\frac{(\text{n+1})}{2}}.$$

Thus from (2.1), the p.d.f. of b_{21}^{x} is given by

$$h(b_{21}^{x}) = \frac{(n-1)}{2\pi i} \int (1+2b_{21}^{x}T-T^{2})^{-\frac{(n+1)}{2}} dT.$$
 (2.6)

The integrand $\phi(T) = (1 + 2b_{21}^{x}T-T^{2})^{\frac{-(n+1)}{2}}$ has two singularities at

the points

$$T = b_{21} + \sqrt{1 + b_{21}}$$
.

For any real value of b_{21}^{x} these two points are real and are located on either side of the origin and of the point $(b_{21}^{x}, 0)$ in the complex T plane. Thus we can deform the path of integration from the imaginary axis in the complex T plane to the parallel path through the point $(b_{21}^{x}, 0)$ on the real axis. The value of the integral taken along this new path will be unaltered since

$$\lim_{\text{real } t \to \infty} \int_{(0, -it)}^{(b_{21}^{x}, -it)} \phi(T) dT + \int_{(b_{21}^{x}, it)}^{(0, it)} \phi(T) dT = 0 , \quad (2.7)$$

where integration is along the straight lines joining the points indicated.

Thus letting $T = b_{21}^{x} + i\eta$ in (2.6) we have

$$h(b_{21}^{x}) = \frac{(n-1)}{\pi i} \int_{0}^{\infty} \left[1 + b_{21}^{x_2} + \eta^2\right]^{-\frac{(n+1)}{2}} id\eta . \qquad (2.8)$$

Let

$$\xi = \begin{bmatrix} 1 + \frac{\eta^2}{(1+b_{21}^{x_2})} \end{bmatrix}^{-1} ,$$

so that

$$d\eta = -\frac{(1 + b_{21}^{\mathbf{x}_{2}})^{\frac{1}{2}}}{\frac{3}{2}(1 - \xi)^{\frac{1}{2}}} d\xi.$$

Thus

$$h(b_{21}^{x}) = \frac{(n-1)}{2\pi} (1 + b_{21}^{x_2})^{-\frac{n}{2}} \int_{0}^{1} \xi^{\frac{n}{2}-1} (1 - \xi)^{-\frac{1}{2}} d\xi, \qquad (2.9)$$

which reduces to

$$h(b_{21}^{x}) = \frac{\left(\frac{n}{2}\right)}{\sqrt{\pi} \left(\frac{n-1}{2}\right)} \qquad (1+b_{21}^{x_2})^{-\frac{n}{2}}. \tag{2.10}$$

If we define the new variable

$$t^{x} = \sqrt{n-1} \quad b_{21}^{x} ,$$

it can be seen that the p.d.f. of t is given by

$$p(t^{X}) = \frac{\Gamma(\frac{n}{2})}{\sqrt{\pi(n-1)}\Gamma(\frac{n-1}{2})} (1 + \frac{t^{X_{2}}}{n-1})^{-\frac{n}{2}}$$
 (2.11)

This is Student's 't' distribution with n-l degrees of freedom. If we replace (2.3) by

$$c = \sum_{i=1}^{n} x_i y_i \text{ and}$$

$$i=1$$
(2.12)

$$c_{o} = \sum_{i=1}^{n} x_{i}^{2},$$

and follow the same procedure without the orthogonal transformation (2.4) we see that the p.d.f. of b_{21} is given by

$$h(b_{21}) = \frac{\left(\frac{n+1}{2}\right)}{\sqrt{\pi} \left(\frac{n}{2}\right)} (1 + b_{21}^{2})^{-\frac{(n+1)}{2}}.$$
 (2.13)

Thus the variable

$$t = \sqrt{n} b_{21}$$

has Student's 't' distribution with n degrees of freedom.

CHAPTER III

THE APPROXIMATE DISTRIBUTION OF THE SAMPLE REGRESSION COEFFICIENT BASED ON SAMPLES FROM TWO LINEAR TIME SERIES

Section 1

In this section we follow the method of the second chapter .

to find the approximate distribution of

$$b_{21} = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$$

where

$$x_i = B_1 t_i + e_i$$
, (3.1.1)
 $y_i = B_2 t_i + f_i$, for $i = 1, 2, ..., n$,

where B_1 and B_2 are constants and $\{e_i, f_i\}$ are independent N(0, 1) random variables.

We consider the case

$$\sum_{i=1}^{n} t_i^2 = O(n).$$
 (3.1.2)

If, for example, we choose a fixed time interval of length K and take

the sample values at n equally spaced time throughout this interval, we have

$$t_i = K \frac{i}{n}$$
 for $i = 1, 2, ..., n$.

This gives
$$\sum_{i=1}^{n} t_i^2 = \frac{K^2}{6n} (n+1) (2n+1) = O(n)$$
.

We consider this case to be more interesting than any others, as it would probably be of more practical value.

The joint distribution of $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n$, as defined in (3.1.1) is

$$dF = (2\pi)^{-n} \exp \left\{ -\frac{1}{2} \left[\sum_{i=1}^{n} (x_i - B_1 t_i)^2 \right] \right\}$$

$$+ \sum_{i=1}^{n} (y_{i} - B_{2}t_{i})^{2} dx_{1} \dots dx_{n} dy_{1} \dots dy_{n}.$$

Let

$$c = \sum_{i=1}^{n} x_{i} y_{i}, \quad \text{and}$$

$$i=1$$
(3.1.3)

$$c_{o} = \sum_{i=1}^{n} x_{i}^{2}.$$

The joint moment-generating function of co and c is

$$M(T_0, T) = (2\pi)^{-n} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp \left\{ -\frac{1}{2} \left[\sum_{i=1}^{n} (x_i - B_1 t_i)^2 \right] \right\}$$

$$+ \sum_{i=1}^{n} (y_{i} - B_{2}t_{i})^{2} - 2T_{o} \sum_{i=1}^{n} x_{i}^{2}$$

$$- 2T \sum_{i=1}^{n} x_{i} y_{i} \int dx_{1} \dots dx_{n} dy_{1} \dots dy_{n},$$

$$= (2\pi)^{-n} \int \dots \int exp \left\{ -\frac{1}{2} \left[(1 - 2T_{o}) \sum_{i=1}^{n} x_{i}^{2} \right] \right\}$$
(3.1.4)

$$-2B_{1}$$
 $\sum_{i=1}^{n} x_{i}^{t}_{i} + \sum_{i=1}^{n} y_{i}^{2} - 2B_{2}$ $\sum_{i=1}^{n} y_{i}^{t}_{i}$

$$-2 \text{ T} \sum_{i=1}^{n} x_{i} y_{i} + (B_{1}^{2} + B_{2}^{2}) \sum_{i=1}^{n} t_{i}^{2} \right]$$

$$\propto dx_1 \dots dx_n dy_1 \dots dy_n$$
.

Except for a constant factor, (3.1.4) is the product of n double integrals of the form

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left\{ -\frac{1}{2} (x, y) \left[\underline{A} \begin{pmatrix} x \\ y \end{pmatrix} - 2 \begin{pmatrix} a \\ b \end{pmatrix} \right] \right\} dx dy, \qquad (3.1.5)$$

where \underline{A} is a symmetric 2 x 2 constant matrix, and a and b are constants. We denote the integrand of (3.1.5) by

$$\exp\left\{-\frac{1}{2} \phi(x, y)\right\}, \tag{3.1.6}$$

where $\phi(x, y)$ can be written in the form

$$\phi(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{y}) \left[\underline{\underline{A}} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} - \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \right]$$

$$+ (\mathbf{a}, \mathbf{b}) \left[\underline{\underline{A}}^{-1} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} - \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} \right] - (\mathbf{a}, \mathbf{b}) \underline{\underline{A}}^{-1} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$$

$$(3.1.7)$$

or

$$\phi(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} (\mathbf{x}, \mathbf{y}) - (\mathbf{a}, \mathbf{b}) & \underline{\mathbf{A}}^{-1} \end{bmatrix} \underline{\mathbf{A}} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} - \underline{\mathbf{A}}^{-1} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$$

$$- (\mathbf{a}, \mathbf{b}) & \underline{\mathbf{A}}^{-1} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} .$$

$$(3.1.8)$$

Since \underline{A} is symmetric, we can write (3.1.8) as

$$(w, z) \underline{A} \begin{pmatrix} w \\ z \end{pmatrix} - (a, b) \underline{A}^{-1} \begin{pmatrix} a \\ b \end{pmatrix}$$

where

$$(w, z) = (x, y) - (a, b) \underline{A}^{-1}$$
 (3.1.9)

Clearly the Jacobian of this transformation is unity, so

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[-\frac{1}{2} \phi(x, y)\right] dx dy \qquad (3.1.10)$$

$$= \exp\left[\frac{1}{2} (a, b) \underline{A}^{-1} {a \choose b}\right]$$

$$\times \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2} (w, z) \underline{A} {w \choose z}\right\} dw dz .$$

$$= \frac{2\pi}{1} \exp\left\{\frac{1}{2} (a, b) \underline{A}^{-1} {a \choose b}\right\} .$$

Using this result to evaluate (3.1.4) we have

$$M(T_0, T) = (2\pi)^{-n} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} t_i^2 (B_1^2 + B_2^2) \right\}$$
(3. 1. 11)

where

$$\underline{A} = \begin{bmatrix} 1-2T_0 & -T \\ -T & 1 \end{bmatrix},$$

$$a_{i} = B_{1} t_{i}$$
, and $b_{i} = B_{2} t_{i}$,

Hence

$$\underline{A}^{-1} = (1 - 2T_0 - T^2)^{-1} \| T \|_{T} \|_{T-2T_0} \|_{T},$$

and we obtain

$$M(T_o, T) = (1-2T_o-T^2)^{-\frac{n}{2}} \exp \left\{-\frac{1}{2} \sum_{i=1}^n t_i^2 (B_1^2+B_2^2)\right\}$$

$$\times \exp \left\{ \frac{\sum_{i=1}^{n} t_{i}^{2}}{2(1-2T_{o}-T^{2})} \left[B_{1}^{2} + (1-2T_{o})B_{2}^{2} + 2T B_{1}B_{2} \right] \right\}$$

$$(3.1.12)$$

Putting m =
$$\sum_{i=1}^{n} t_i^2$$
 and

$$u = T_o + b_{21}T,$$

we obtain

$$M(u-b_{21} T, T) = \frac{e^{-\frac{m}{2}(B_1^2 + B_2^2)}}{(1-2u + 2b_{21} T-T^2)^{\frac{n}{2}}}$$

$$x \exp \left\{ \frac{m}{2(1-2u+2b_{21}T-T^2)} \left[B_1^2 + (1-2u+2b_{21}T) B_2^2 + 2TB_1B_2 \right] \right\}$$

$$(3.1.13)$$

Differentiating with respect to u we have

$$\frac{\partial M}{\partial u} \stackrel{(u-b_{21} T, T)}{= M(u-b_{21} T, T) \left[\frac{n}{(1-2u+2b_{21} T-T^2)} + \frac{m}{(1-2u+2b_{21} T-T^2)^2} \right] - B_2^2 (1-2u+2b_{21} T-T^2)$$

$$+ \left[B_1^2 + (1-2u+2b_{21} T) B_2^2 + 2T B_1 B_2 \right] , \qquad (3.1.14)$$

and putting u = 0 we have

$$\frac{\partial M}{\partial u} (u-b_{21} T, T) \Big|_{u=0}$$

$$= \frac{-\frac{m}{2}(B_1^2 + B_2^2)}{\frac{n}{2} + 2} \left[n(1 + 2b_{21}^2 T - T^2) + m(B_2^2 T + B_1^2)^2 \right]$$

$$= \frac{(1 + 2b_{21}^2 T - T^2)^2}{(1 + 2b_{21}^2 T - T^2)^2}$$

$$x \exp \left\{ \frac{m}{2} \left[\frac{B_1^2 + B_2^2 + 2TB_2(b_{21}B_2 + B_1)}{1 + 2b_{21}T - T^2} \right] \right\}. \quad (3.1.15)$$

Thus from (2.1) the p.d.f. of b21 is given by

$$h(b_{21}) = \frac{e}{2\pi i}$$

$$x \int \frac{\left[n(1+2b_{21} T-T^2) + m(B_2T+B_1)^2\right]}{\left[1+2b_{21} T-T^2\right]^{\frac{n}{2}+2}}$$

$$x \exp\left\{\frac{m}{2} \left[\frac{B_1^2 + B_2^2 + 2TB_2(b_{21}B_2+B_1)}{1+2b_{21} T-T^2}\right]\right\} dT,$$
(3.1.16)

where integration is along the imaginary axis in the complex T plane, or along any allowable deformation.

In the case (3.1.2), with a possible relative error which is $O(n^{-1})$ we may write m = Rn, where R is a constant. In (3.16) where m occurs it is multiplied by homogeneous terms of the second degree in B₁ and B₂ and we may, without loss of generality, take

and write (3.1.16) in the form

$$h(b_{21}) = \frac{n}{2\pi i} e^{-\frac{n}{2}B_1^2} \int \frac{\left[1+2b_{21}T-T^2+(B_2T+B_1)^2\right]}{\left[1+2b_{21}T-T^2\right]^{\frac{n}{2}}+2}$$

$$\times \exp\left\{\frac{n}{2}\left[\frac{(B_1+B_2T)^2}{1+2b_{21}T-T^2}\right]\right\} dT. \qquad (3.1.17)$$

Let

$$z = \frac{T - b_{21}}{\sqrt{1 + b_{21}^{2}}}, \quad A = \frac{b_{21} B_{2} + B_{1}}{\sqrt{1 + b_{21}^{2}}}, \quad (3.1.18)$$

$$p^2 = B_2^2 + A^2$$
, and $k = B_2 A$.

Then we have

$$(1 + 2 b_{21} T-T^{2}) = (1 + b_{21}^{2}) - (b_{21}-T)^{2}$$

$$= (1 + b_{21}^{2}) (1 - z^{2}),$$

and

$$(B_2T + B_1)^2 = \{B_2(T-b_{21}) + (b_{21}B_2 + B_1)\}^2$$

= $(1 + b_{21}^2) (B_2z + A)^2$.

Thus

$$(1 + 2b_{21} T-T^{2}) + (B_{2}T + B_{1})^{2}$$

$$= (1 + b_{21}^{2}) \left[1 + A^{2} + 2kz + (B_{2}^{2}-1)z^{2}\right],$$

and

$$\frac{(B_2 T + B_1)^2}{(1+2b_{21} T - T^2)} = \frac{B_2^2 z^2 + 2kz + A^2}{(1-z^2)}$$

$$= \frac{p^2 z^2 + 2kz}{(1-z^2)} + A^2.$$

Substituting in (3.1.17) we have

$$h(b_{21}) = \frac{n}{2\pi i} e^{-\frac{n}{2}(B_1^2 - A^2)} (1+b_{21}^2)^{-\frac{(n+1)}{2}}$$

$$\times \int \frac{\left[1+A^2 + 2kz + (B_2^2 - 1)z^2\right]}{(1-z^2)^2}$$

$$\times \exp\left\{\frac{n}{2} \left[\frac{2kz + p^2z^2}{1-z^2} - \ln(1-z^2)\right]\right\} dz,$$
(3.1.19)

where integration is along the path

Re(z) =
$$-\frac{b_{21}}{\sqrt{1+b_{21}^2}}$$
, (3.1.20)

or any allowable deformation. We evaluate this integral using the following saddlepoint approximation and method of steepest descents,

$$\int f(x) e^{tg(x)} dx$$

$$= \sqrt{2\pi} \alpha \left[t \left| g_{11}(\hat{x}) \right| \right]^{-\frac{1}{2}} f(\hat{x}) e^{tg(\hat{x})}$$

$$\times \left\{ 1 + O(t^{-1}) \right\} (t \to \infty), \qquad (3.1.21)$$

where

$$g_{11}(\hat{x}) = \frac{d^2g}{dx^2}\Big|_{x=\hat{x}}$$
 (3.1.22)

 $\frac{A}{x}$ is the solution of $\frac{dg}{dx} = 0$,

the path of integration in the neighbourhood of the saddlepoint at \hat{x} is the path of steepest descent, which is directed along the axis of the saddlepoint, that is, along the straight line

$$(x-\hat{x})^2 g_{11}(\hat{x}) \text{ real and } \leq 0$$
, (3.1.23)

and α is the complex number with modulus 1 whose argument corresponds to the direction of the axis (see, for example, De Bruijn (1961), Chapter 5).

The integral in (3.1.19) is in the form of the left member of (3.1.21) with x replaced by z, where

$$g(z) = \frac{2kz + p^{2}z^{2}}{1 - z^{2}} - \ln(1 - z^{2}),$$

$$f(z) = \frac{\left[1 + A^{2} + 2kz + (B_{2}^{2} - 1)z^{2}\right]}{(1 - z^{2})^{2}}$$
and $t = \frac{n}{2}$. (3.1.24)

The only singularities of the integrand of (3.1.19) are at

$$z = + 1$$

and, from (3.1.20), for any finite value of b 21, the path of integration

in the complex z plane is parallel to the imaginary axis and cuts the real axis at a point in the interval (-1, 1). We shall show that there is always a unique point \hat{z} ε (-1,1), such that

$$\frac{\mathrm{dg}}{\mathrm{dz}} \bigg|_{\mathbf{z}=\mathbf{z}} = 0.$$

From (3.1.24) we have

$$\frac{dg}{dz} = \frac{2}{(1-z^2)^2} \left[k + (p^2+1)z + kz^2 - z^3 \right]$$
 (3.1.25)

and

$$\frac{d^2g}{dz^2} = \frac{2}{(1-z^2)^2} \left[p^2 + 1 + 2kz - 3z^2 \right] - \frac{4z}{(1-z^2)} \frac{dg}{dz}.$$

Thus, from (3.1.22),

$$g_{11}(\hat{z}) = \frac{2}{(1-\hat{z}^2)^2} \left[p^2 \pm 1 + 2k\hat{z} - 3\hat{z}^2 \right] . \qquad (3.1.26)$$

Let

$$h(z) = k + (p^2+1)z + kz^2 - z^3$$
.

From (3.1.25) and (3.1.26) we see that for real z, if $z^2 \neq 1$,

$$h(\hat{z}) = 0 \implies \frac{dg}{dz} \Big|_{z=\hat{z}} = 0$$
 (3.1.27)

and

$$g_{11}(\hat{z})$$
 has the same sign as $\frac{dh}{dz}\Big|_{z=\hat{z}}$ (3.1.28)

Also h(z) is a continuous function of z with three roots and $\frac{dh}{dz}$ is a continuous function of z with two roots. We denote the real parts of the roots of h(z) by $A \leq B \leq C$.

From the definitions (3.1.18) we note

$$p^2 > |2k|$$
.

(a) Suppose $p^2 \neq \pm 2k$.

Then $p^2 > |2k|$

and we have

$$h(-1) = 2k - p^{2} < 0,$$

$$h(1) = 2k + p^{2} > 0,$$

$$h(\infty) = -\infty \quad \text{and}$$

$$h(-\infty) = \infty.$$

Thus h(z) has three real roots where

$$A \in (-\infty, -1), \quad B \in (-1, 1), \text{ and } C \in (1, \infty).$$
 Let $\hat{z} = B$.

(b) Suppose $p^2 = 2k \neq 0$, which implies that k > 0. Then h(-1) = 0, h(1) = 4k > 0, $h(-\infty) = \infty$, $h(\infty) = -\infty$, and $\frac{dh}{dz} = \left[2k(1+z) + (1-3z^2) \right]_{z=-1}$

$$= -2 < 0$$
.

Thus h(z) has three real roots where

$$A = -1$$
, $B \in (-1, 1)$, and $C \in (1, \infty)$.

Let
$$\hat{z} = B$$
.

Suppose
$$p^2 = -2k \neq 0$$
, which implies that $k < 0$. Then
$$h(-1) = 4k < 0$$
,
$$h(1) = 0$$
,
$$h(-\infty) = \infty$$
,
$$h(\infty) = -\infty$$
, and
$$\frac{dh}{dz} = \left[2k(z-1) + (1-3z^2) \right] = -2 < 0$$
.
$$z=1$$

Thus h(z) has three real roots where

 $\mbox{A \mathcal{E} $(-\infty,\ -1)$} \;, \qquad \mbox{B \mathcal{E} $(-1,1)$}, \quad \mbox{and $C=1$}.$ Let $\overset{\mbox{$\lambda$}}{\mathbf{z}}$ = B.

(d) Suppose k = 0. Then $h(z) = z(p^2+1 - z^2),$

so

$$h(-1) = -p^2 \le 0$$
, $h(0) = 0$, and $h(1) = p^2 \ge 0$.

Thus h(z) has three real roots where

A \mathcal{E} $(-\infty, -1]$, B = 0 , and C \mathcal{E} [1, ∞). Let \hat{z} = B.

In all four cases (a), (b), (c), (d), $\frac{dh}{dz}$ must have a root in each of the intervals (A, B) and (B, C), so

$$\frac{\mathrm{dh}}{\mathrm{dz}} \bigg|_{z=\hat{z}} \neq 0 ,$$

and since h(z) < 0 for $z \in (A, B)$, and h(z) > 0 for $z \in (B, C)$, we have

$$\frac{\mathrm{dh}}{\mathrm{dz}} \bigg|_{z=z} > 0$$
.

Thus from (3.1.27) and (3.1.28) we see that for any finite values of p^2 and k there exists a unique real number \hat{z} such that

$$z \in (-1, 1), \frac{dg}{dz} = 0, \text{ and } g_{11}(z) > 0.$$

From (3.1.23) we see that, since \hat{z} is real, and $g_{11}(\hat{z}) > 0$, the axis of the saddlepoint is the straight line

$$Re(z) = \hat{z}$$
.

Thus, in the neighbourhood of the saddlepoint we can deform the path of integration of (3.1.19) to pass along the axis of the saddlepoint, and use the saddlepoint approximation (3.1.21) with (3.1.26), to obtain

$$h(b_{21}) = \sqrt{\frac{n}{2\pi}} e^{-\frac{n}{2}(B_1^2 + B_2^2)} (1 + b_{21}^2)^{-\frac{(n+1)}{2}}$$

Putting $B_1 = B_2 = 0$ in definitions (3.1.18) we have $A = p^2 = k = 0$, hence from case (d) we have $\hat{z} = 0$. Substituting these values in

(3.1.29) we obtain

$$h(b_{21}) = \sqrt{\frac{n}{2\pi}} (1 + b_{21}^{2})^{-\frac{(n+1)}{2}}$$

$$\times \left\{ 1 + O(n^{-1}) \right\} \qquad (n \to \infty) . \tag{3.1.30}$$

As expected (3.1.30) is consistent with (2.13) which can be obtained exactly from (3.1.30) by renormalising.

Section II

In this section we follow the procedure of Section I to find the approximate distribution of

$$b_{21}^{x} = \frac{\sum_{i=1}^{n} (x_{i}^{-x}) (y_{i}^{-y})}{\sum_{i=1}^{n} (x_{i}^{-x})^{2}},$$

where

$$x_i = \alpha_1 + B_1 t_i + e_i$$
,
 $y_i = \alpha_2 + B_2 t_i + f_i$, for $i = 1, 2, ..., n$,
$$(3.2.1)$$

where α_1 , α_2 , B_1 , B_2 , are constants, and $\{e_i, f_i\}$ are independent N(0,1) random variables.

The joint distribution of x_1, x_2, \dots, x_n , y_1, y_2, \dots, y_n , as defined in (3.2.1) is

$$dF = (2\pi)^{-n} \exp \left\{ -\frac{1}{2} \left[\sum_{i=1}^{n} (x_i - \alpha_1 - B_1 t_i)^2 \right] \right\}$$

+
$$\sum_{i=1}^{n} (y_i - \alpha_2 - B_2 t_i)^2 \bigg] dx_1 \dots dx_n dy_1 \dots dy_n.$$

Let

$$c = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$
 and

$$c_{0} = \sum_{i=1}^{m} (x_{i} - \bar{x})^{2}.$$

The joint moment-generating function of c and c is

$$M(T_0, T) = (2\pi)^{-n}$$

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2}\right[$$

$$\sum_{i=1}^{n} (x_i - \alpha_1 - B_1 t_i)^2 + \sum_{i=1}^{n} (y_i - \alpha_2 - B_2 t_i)^2$$
 (3.2.3)

$$-2T_{0}$$
 $\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} - 2T$ $\sum_{i=1}^{n} (x_{i} - \overline{x}) (y_{i} - \overline{y}) \right]$

$$\propto$$
 $dx_1 \dots dx_n dy_1 \dots dy_n$.

We replace x_1, \ldots, x_n by w_1, \ldots, w_n by an orthogonal transformation

where B is an n x n orthogonal matrix such that

$$w_1 = \sqrt{n} \times .$$

Thus

$$\underline{\mathbf{B}} = \begin{bmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \dots & \frac{1}{\sqrt{n}} \\ \frac{\underline{\mathbf{C}}}{} & & \\ \end{bmatrix}$$
 (3. 2. 4)

where \underline{C} is an $(n-1) \times n$ matrix. We apply the same transformation to y_1, \ldots, y_n to obtain z_1, \ldots, z_n , where

and thus from the definition of \underline{B} we have

$$z_1 = \sqrt{n} \overline{y}$$
.

We have then

$$\sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} w_{i}^{2}, \qquad \sum_{i=1}^{n} y_{i}^{2} = \sum_{i=1}^{n} z_{i}^{2},$$

$$\sum_{i=1}^{n} (x_i - x)^2 = \sum_{i=2}^{n} w_i^2, \quad \sum_{i=1}^{n} (x_i - x) (y_i - y) = \sum_{i=2}^{n} w_i^2,$$

$$\sum_{i=1}^{n} x_{i} t_{i} = (t_{1} \dots t_{n}) \quad \left\| \begin{array}{c} x_{1} \\ \vdots \\ x_{n} \end{array} \right\| \quad = (t_{1} \dots t_{n}) \quad \underline{B}^{-1} \quad \left\| \begin{array}{c} w_{1} \\ \vdots \\ w_{n} \end{array} \right\| \quad ,$$

and
$$\sum_{i=1}^{n} y_i t_i = (t_1 \dots t_n) \underline{B}^{-1} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$$

Substituting (3.2.5) in (3.2.3) we obtain

$$M(T_o, T) = (2\pi)^{-n} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2} \left[\sum_{i=1}^{n} w_i^2 + \sum_{i=1}^{n} z_i^2\right]\right\}$$

$$-2T_{0} \sum_{i=2}^{n} w_{i}^{2} - 2T \sum_{i=2}^{n} w_{i}z_{i} - 2\alpha_{1} \sqrt{n} w_{1} - 2\alpha_{2} \sqrt{n} z_{1}$$

$$-2B_{1}(t_{1} \dots t_{n}) \underline{B}^{-1} \quad \begin{vmatrix} w_{1} \\ \vdots \\ w_{n} \end{vmatrix} \quad -2B_{2}(t_{1} \dots t_{n}) \underline{B}^{-1} \quad \begin{vmatrix} z_{1} \\ \vdots \\ z_{n} \end{vmatrix}$$

$$+ n(\alpha_1^2 + \alpha_2^2) + \sum_{i=1}^{n} t_i^2 (B_1^2 + B_2^2) + 2n\overline{t} (\alpha_1 B_1 + \alpha_2 B_2)$$

$$\times dw_1 \dots dw_n dz_1 \dots dz_n,$$
(3. 2. 6)

where
$$t = \frac{1}{n} \sum_{i=1}^{n} t_i$$
.

Since \underline{B} is orthogonal we have

$$\underline{B}^{-1} = \underline{B}^{!} = \begin{bmatrix} \frac{1}{\sqrt{n}} \\ \frac{1}{\sqrt{n}} \\ \vdots \\ \frac{1}{\sqrt{n}} \end{bmatrix}$$

$$(3.2.7)$$

thus

$$(t_1 \ldots t_n) \underline{B}^{-1} = (\sqrt[n]{t}) (t_1 \ldots t_n) \underline{C}^{\dagger}),$$
 (3.2.8)

so (3.2.6) can be written as

$$M(T_{o}, T) = (2\pi)^{-n} \exp \left\{ -\frac{1}{2} \left[n(\alpha_{1}^{2} + \alpha_{2}^{2}) + (B_{1}^{2} + B_{2}^{2}) \sum_{i=1}^{n} t_{i}^{2} + 2n\overline{t}(\alpha_{1}B_{1} + \alpha_{2}B_{2}) \right] \right\}$$

$$-2B_{2}(t_{1}, \dots t_{n}) \stackrel{C'}{=} \|z_{2}\| \qquad \qquad dw_{1} \dots dw_{n} dz_{1} \dots dz_{n}.$$

$$(3.2.9)$$

Integrating with respect to w, and z, we obtain

$$-\frac{1}{2} \left[(B_1^2 + B_2^2) \left(\sum_{i=1}^{n} t_i^2 - n\overline{t}^2 \right) \right]$$

$$M(T_0, T) = (2\pi)^{-(n-1)} e$$

$$x \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp \left\{ -\frac{1}{2} \left[(1-2T_0) \sum_{i=2}^{n} w_i^2 + \sum_{i=2}^{n} z_i^2 - 2T \sum_{i=2}^{n} w_i^2 \right] - 2B_1(t_1 \dots t_n) \underline{C'} \| w_2 \| - 2B_2(t_1 \dots t_n) \underline{C'} \| z_2 \| \right\}$$

$$-2B_{1}(t_{1} \dots t_{n}) \underline{C}' \qquad \begin{vmatrix} w_{2} \\ \vdots \\ w_{n} \end{vmatrix} \qquad -2B_{2}(t_{1} \dots t_{n}) \underline{C}' \qquad \begin{vmatrix} z_{2} \\ \vdots \\ z_{n} \end{vmatrix}$$

$$\times \quad dw_2 \dots dw_n \quad dz_2 \dots dz_n . \tag{3.2.10}$$

Except for a constant factor this is the product of n-1 double integrals of the form (3.1.5). Thus from (3.1.10),

$$-\frac{1}{2}(B_1^2 + B_2^2) \sum_{i=1}^{n} (t_i - \overline{t})^2$$

$$M(T_0, T) = e$$

$$x \left| \underline{A} \right|^{-\frac{(n-1)}{2}} \exp \left\{ \sum_{i=2}^{n} \frac{1}{2} (a_i b_i) \underline{A}^{-1} \left(b_i \right) \right\},$$
 (3.2.11)

where

$$\underline{A} = \begin{bmatrix} 1-2 & T & & -T \\ & -T & & 1 \end{bmatrix} ,$$

$$(a_2 \ldots a_n) = B_1(t_1 \ldots t_n) \underline{C}^{\dagger}$$
, and

$$(b_2 ... b_n) = B_2(t_1 ... t_n) \underline{C}^{\dagger}$$
.

Thus

$$-\frac{1}{2}(B_1^2 + B_2^2) \sum_{i=1}^{n} (t_i - \overline{t})^2$$

$$M(T_0, T) = e$$

$$\times (1-2T_{o}-T^{2})^{-\frac{(n-1)}{2}} \exp \left\{ \frac{\sum_{i=2}^{n} (a_{i}^{2} + (1-2T_{o})b_{i}^{2} + 2T a_{i}^{b})}{(1-2T_{o}-T^{2})} \right\},$$

$$(3.2.12)$$

where

$$\frac{1}{B_1^2} \sum_{i=2}^{n} a_i^2 = \frac{1}{B_2^2} \sum_{i=2}^{n} b_i^2 = \frac{1}{B_1 B_2} \sum_{i=2}^{n} a_i b_i$$

$$= (t_1 \cdots t_n) \underline{C}^{\dagger} \underline{C} \qquad \begin{vmatrix} t_1 \\ \vdots \\ t_n \end{vmatrix}$$

$$(3. 2. 13)$$

Since B is orthogonal we have

$$\sum_{i=1}^{n} t_{i}^{2} = (t_{1} \dots t_{n}) \underline{B}' \underline{B} \qquad \begin{cases} t_{1} \\ \vdots \\ t_{n} \end{cases}, \qquad (3.2.14)$$

thus from (3.2.8)

$$\sum_{i=1}^{n} t_{i}^{2} = (\sqrt{n} t | (t_{1} \dots t_{n}) \underline{C}') \begin{vmatrix} \sqrt{n} t \\ \underline{C} \end{vmatrix} \begin{vmatrix} t_{1} \\ \vdots \\ t_{n} \end{vmatrix}$$

(3.2.15)

$$= n t^{2} + (t_{1} \dots t_{n}) \underline{C}' \underline{C} \qquad \begin{vmatrix} t_{1} \\ \vdots \\ t_{n} \end{vmatrix}$$

thus from (3.2.13)

$$\frac{1}{B_1^2} \sum_{i=2}^{n} a_i^2 = \frac{1}{B_2^2} \sum_{i=2}^{n} b_i^2 = \frac{1}{B_1 B_2} \sum_{i=2}^{n} a_i b_i = \sum_{i=1}^{n} (t_i - \overline{t})^2.$$
(3. 2. 16)

Substituting (3. 2. 16) in (3. 2. 12) we obtain

$$-\frac{1}{2}(B_1^2 + B_2^2) \sum_{i=1}^{n} (t_i - \overline{t})^2$$

$$M(T_0, T) = e$$
(3. 2. 17)

$$\times (1-2T_{o}-T^{2})^{-\frac{(n-1)}{2}} \exp \left\{ \frac{\sum_{i=1}^{n} (t_{i}-\overline{t})^{2}}{2(1-2T_{o}-T^{2})} \left[B_{1}^{2} + (1-2T_{o})B_{2}^{2} + 2TB_{1}^{2}B_{2} \right] \right\}.$$

We see that (3.2.17) can be obtained from (3.1.12) by replacing

$$\sum_{i=1}^{n} t_{i}^{2} \text{ and } (1 - 2T_{0} - T^{2})^{-\frac{n}{2}} \text{ by}$$

$$\sum_{i=1}^{n} \frac{-(n-1)}{(t_i-t_i)^2} \text{ and } (1-2T_0-T_1^2)^{-\frac{(n-1)}{2}} \text{ respectively.}$$

Thus, if we follow the same procedure as in Section I from (3.1.12) onwards, with

$$m-1 = \sum_{i=1}^{n} (t_i - \overline{t})^2$$
,

and assume

$$m = O(n)$$
,

we obtain the expression corresponding to (3.1.29) for the p.d.f. of $b_{21}^{\mathbf{x}}$,

$$h(b_{21}^{x}) = \sqrt{\frac{n-1}{2\pi}} e^{-\frac{(n-1)}{2}(B_{1}^{2} + B_{2}^{2})} (1+b_{21}^{x_{2}})^{-\frac{n}{2}}$$
(3.2.18)

$$x \frac{\left[1 + A^{2} + 2kx^{2} + (B_{2}^{2} - 1)x^{2}\right]}{\frac{n-1}{2} + 1} exp \left\{\frac{n-1}{2} \left[\frac{2kx^{2} + p^{2}}{(1 - x^{2})}\right]\right\}$$

$$x \left\{1 + O(n^{-1})\right\} \qquad (n -> \infty),$$

where A, k, p^2 are defined by (3.1.18) with b_{21} replaced by b_{21}^{x} .

A Fortran program was written to compile re-normalised tables of the approximate distribution of b_{21} given in (3. 1.29). It can be seen from (3. 2.18) that the distribution of b_{21}^{\times} for n degrees of freedom is the same as that of b_{21} for n-1 degrees of freedom. Also from the distribution of b_{21} (3. 1.29), definitions (3. 1.18), and the fact that \hat{z} is a root of (3. 1.25) it can be seen that the following pairs of values for B_1 , B_2 and n give identical distributions.

(i)
$$B_1 = b_1$$
, $B_2 = b_2$, n, and $B_1 = -b_1$, $B_2 = -b_2$, n;

(ii)
$$B_1 = 0$$
, $B_2 = b$, n , and $B_1 = 0$, $B_2 = -b$, n ;

(iii)
$$B_1 = b$$
, $B_2 = 0$, n and $B_1 = -b$, $B_2 = 0$, n;

and that the distribution is symmetric if either $B_1 = 0$ or $B_2 = 0$.

Also the values $B_1 = -b_1$, $B_2 = b_2$, n, give a distribution which is a reflection in the axis of b_{21} of the distribution given by $B_1 = -b$, $B_2 = b_2$, n.

The tables in Appendix II show the 5 distinct distributions of

 $^{b}21$ where the values for $^{B}1$ and $^{B}2$ are chosen from the integers -1, 0, 1, for each of the values 15, 30, 45, for n. It can be seen that in all the cases a measure of central tendency is the value

$$\frac{B_{1} B_{2}}{1+B_{1}^{2}} = \frac{E \sum_{i=1}^{n} x_{i} y_{i}}{E \sum_{i=1}^{n} x_{i}^{2}}$$

in the case (3.1.2), and this value is the mean in the cases where the distribution is symmetric. In each case the variance of b_{21} decreases approximately as $\frac{1}{n}$. For each value of n the variance for the case $B_1 = 0$, $B_2 = 1$ is approximately twice that for the case $B_1 = 0$, $B_2 = 0$, which latter is approximately twice that for the remaining cases $B_1 = 1$, $B_2 = 0$; $B_1 = 1$, $B_2 = 1$; $B_1 = -1$, $B_2 = 1$.

REFERENCES

- Daniels, H. E. (1956), The approximate distribution of serial correlation coefficients. Biometrika, 43, 169-85.
- De Bruijn, N.G. (1961), <u>Asymptotic Methods in Analysis</u>. North Holland Publ.
- Geary, R.C. (1944), Extension of a theorem by Harald Cramer on the frequency distribution of a quotient of two variables.

 J.R. statist. Soc. 107, 56-7
- Pearson, K. (1926), Researches on the mode of distribution of the constants of samples taken at random from a bivariate normal population. Proc. Roy. Soc. A, 112, 1-14.
- Romanovsky, V. (1926), On the distribution of the regression coefficient in samples from a normal population. <u>Bull. Acad.</u>

 Sc. Leningrad, 20, 643-648.

APPENDIX I

DANIELS'S FORM OF GEARY'S (1944) EXTENSION OF CRAMER'S
THEOREM

We are interested in the distribution of statistics of the form $r=\frac{c}{c_0}$, where c_0 is non-negative. If c_0 , c have a joint p.d.f. $f(c_0,c)$, the density for r is

$$h(r) = \int_{0}^{\infty} c_{o} f(c_{o}, r c_{o}) dc_{o}.$$

Let

$$M(T_o, T) = E e^{T_o c_o + Tc}$$

be the joint moment-generating function for c_0 and c. We are concerned only with cases where $M(T_0,T)$ exists in strips of non-zero width containing the imaginary axes in the T_0 and T planes. The usual Fourier inversion formula is most conveniently written as

$$f(c_{o},c) = \frac{1}{(2\pi i)^{2}} \iint M(T_{o},T) e^{-T_{o}c_{o}-Tc} dT_{o}dT,$$

where integration is along the imaginary axes of $T_{\rm o}$ and $T_{\rm o}$ or any allowable deformations of these paths. In particular,

$$f(c_{o}, rc_{o}) = \frac{1}{(2\pi i)^{2}} \iiint M(T_{o}, T) e^{-(T_{o} + rT)c_{o}} dT_{o} dT$$

$$= \frac{1}{(2\pi i)^{2}} \iiint M(U - rT, T) e^{-u c_{o}} du dT,$$

where the integration of $u = T_0 + rT$ is taken over a similar path in the u plane. Inversion of the transform with respect to u gives

$$\int_{0}^{\infty} f(c_{0}, rc_{0}) e^{uc_{0}} dc_{0}$$

$$=\frac{1}{2\pi i}\int M(u-r T, T) dT,$$

so that, when differentiation is permissible,

$$\int_{0}^{\infty} c_{0} f(c_{0}, rc_{0}) e^{uc_{0}} dc_{0}$$

$$= \frac{1}{2\pi i} \int \frac{\partial M(u - r T, T)}{\partial u} dT$$

and

$$h(r) = \frac{1}{2\pi i} \int \frac{\partial M(u - rT, T)}{\partial u} \Big|_{u=0} dT.$$

APPENDIX II

EXAMPLE TABLES OF THE APPROXIMATE DISTRIBUTION OF THE SAMPLE REGRESSION COEFFICIENT

The following tables provide examples of the renormalized density and distribution functions of the approximate distribution of b_{21} . Thus if $h(b_{21})$ is defined by equation (3.1.29), the columns in the table give values of $h(b_{21})/NORM$, $H(b_{21})/NORM$ and $\frac{1}{2}$ for various values of b_{21} centred at $B_1B_2/(1+B_1^2)$, where

NORM =
$$\int_{-\infty}^{\infty} h(b_{21}) db_{21}$$
, $H(b_{21}) = \int_{-\infty}^{\infty} h(x)dx$

and $\hat{\mathbf{z}}$ is defined in section 3.1. The mean and variance of the renormalized distribution and the value NORM of the normalizing constant are given at the bottom of each table.

$B_1 = 0.0$	В2	B ₂ = 1.0	
^b 21	h(b ₂₁)/NORM	H(b ₂₁)/NORM	Z
-2.200	00004	.00001	•39298
-2.100	.00007	.00001	.39096
-2.000	.00013	.00002	.38866
-1.900	.00022	.00004	.38601
-1.800	.00039	.00007	.38294
-1.700	.00070	.00012	.37937
-1.600	.00125	.00022	.37519
-1.500	.00225	.00039	.37027
-1.400	.00406	.00070	.36445
-1.300	.00732	.00126	.35751
-1.200	.01314	.00556	.34920
-1.100	.02336	.00405	.33919
-1.000	.04094	.00721	.32711
900	.07025	.01268	.31248
800	.11719	.02192	.29478
700	.18862	.03703	.27343
600	.29057	.06079	.24786
500	. 42513	.09638	.21759
400	•58648	.14683	.18232
300	.75817	.21407	.14214
200	.91398	.29787	.09758
100	1.02386	.39514	.04969
0.000	1.06359	•50000	0.00000
.100	1.02386	.60486	04969
.200	•91398	.70213	09758
.300	•75817	.78593	14214
.400	•58648	.85317	18232
.500	.42513	.90362	 21759
.600	.29057	.93921	24786
.700	.18862	.96297	 27343
.800	.11719	.97808	29478 31248
.900	.07025	•98732 •99279	
1.000	.04094	•99595	32711
1.100	.02336	• 99774	33919 34920
1.200	.01314	.99874	 35751
1.300	.00406	.99930	 36445
1.400	.00225	• 99961	37027
1.500 1.600	.00125	.99978	37519
	.00123	•99988	 37937
1.700	.00070	• 99993	 38294
1.800	•00025	• 99996	38601
1.900	.00022	• 99998	38866
2.000	.00007	• 99999	39096
2.100		• 99999	 39298
2.200	.00004	• 77777	• 376.70

 $B_1 = 0.0$ $B_2 = 0.0$ N = 15b₂₁ h(b₂₁)/NORM $H(b_{21})/NORM$ -2.200 .00000 .00000 0.00000 -2.100 .00000 .00000 0.00000 -2.000 .00000 .00000 0.00000 -1.900 .00001 .00000 0.00000 -1.800 .00001 .00000 0.00000 -1.700.00003 .00000 0.00000 -1.600 .00006 .00001 0.00000 -1.500 .00012 .00002 0.00000 -1.400 .00026 .00004 0.00000 -1.300 .00055 .00007 0.00000 -1.200.00121 .00016 0.00000 -1.100.00267 .00035 0.00000 -1.000 .00594 .00076 0.00000 -.900 .01319 .00168 0.00000 -.800 .02904 .00372 0.00000 -.700 .06255 .00815 0.00000 -.600 .12984 .01749 0.00000 -.500 .25494 .03628 0.00000 .07162 -.400 .46351 0.00000 -.300 .76262 .13242 0.00000 -.200 1.11034 .55605 0.00000 -.100 1.40330 .35245 0.00000 0.000 1.51958 .50000 0.00000 .100 1.40330 .64755 0.00000 .77398 .200 1.11034 0.00000 .86758 0.00000 .76262 .300 .46351 .92838 0.00000 .400 .25494 .96372 0.00000 .500 .600 .12984 .98251 0.00000 .99185 0.00000 .06255 .700 .99628 .02904 0.00000 .800 .01319 .99832 0.00000 .900 1.000 .00594 .99924 0.00000 .99965 0.00000 .00267 1.100 .99984 0.00000 1.200 .00121 .99993 0.00000 1.300 .00055 .99996 0.00000 .00026 1.400 .99998 0.00000 .00012 1.500 .99999 0.00000 .00006 1.600 1.00000 0.00000 .00003 1.700 0.00000 1.00000 .00001 1.800 0.00000 .00001 1.00000 1.900 1.00000 0.00000 .00000 2.000

NORM= 1.01679

0.00000

0.00000

1.00000

1.00000

VARIANCE=

.07692

.00000

.00000

.00000

2.100

2.200

MEAN=

 $B_1 = 1.0$ $B_2 = 0.0$ N = 15 $H(b_{21})/NORM$ h(b₂₁)/NORM b₂₁ -1.500 .00000 .00000 0.00000 -1.400 .00000 .00000 0.00000 -1.300 .00001 .00000 0.00000 -1.200 .00002 .00000 0.00000 -1.100 .00005 .00000 0.00000 -1.000 .00017 .00002 0.00000 -.900 .00058 .00005 0.00000 -.800 .00198 .00017 0.00000 -.700 .00689 .00057 0.00000 -.600 .02358 .00198 0.00000 -.500 .07662 .00662 0.00000 -.400 .22567 .02086 0.00000 -.300 .57070 .05912 0.00000 -.200 1.16993 .14473 0.00000 -.100 1.84512 0.00000 .29623 0.000 2.15736 .50000 0.00000 .100 1.84512 .70377 0.00000 1.16993 .500 .85527 0.00000 .57070 0.00000 .300 .94088 .400 .22567 .97914 0.00000 .500 .07662 .99338 0.00000 .600 .02358 .99802 0.00000 .00689 .99943 0.00000 .700 .800 .00198 .99983 0.00000 .900 .00058 .99995 0.00000 1.000 .00017 .99998 0.00000 1.100 .00005 1.00000 0.00000 1.00000 0.00000 1.200 .00002

1.00000

1.00000

1.00000

.03715

VARIANCE=

.00001

.00000

.00000

.00000

1.300

1.400

1.500

MEAN=

NORM= 1.01286

0.00000

0.00000

0.00000

$B_1 = 1.0$	В2	= 1.0	N = 15	
^b 21	h(b ₂₁)/NORM	H(b ₂₁)/NORM	Z	
-1.150	.00000	.00000	.04915	
-1.050	.00000	.00000	.01724	
950	.00000	.00000	01812	
850	.00001	.00000	05705	
750	.00002	.00000	09949	
650	.00005	.00001	14510	
550	.00014	.00001	19309	
-,450	.00041	.00004	24212	
 350	.00128	.00012	29019	
250	.00419	.00037	33471	
150	.01419	.00121	37293	
050	.04750	.00406	40273	
.050	.14787	.01319	-,42349	
.150	.39832	.03926	43625	
.250	.86894	.10125	44307	
.350	1.46669	.21803	44614	
•450	1.88258	•38773	44713	
•550	1.85500	.57761	44715	
.650	1.44420	.74418	44684	
.750	.92379	.86241	44649	
.850	.50617	•93293	44624	
•950	.24706	•96966	44613	
1.050	•11114	.98697	44612	
1.150	• 04738	.99458	44621	
1.250	.01957	•99778	44635	
1.350	.00797	• 99909	44652	
1.450	.00324	.99963	44669	
1.550	.00132	• 99985	44686	
1.650	.00055	.99993	44699	
1.750	.00023	.99997	44710	
1.850	.00010	.99999	44717	
1.950	.00004	,99999	44721	
2.050	.00002	1.00000	44721	
2.150	.00001	1.00000	44717	
2.250	.00000	1.00000	44711	
2.350	.00000	1.00000	44701	
2.450	.00000	1.00000	44688	

.04753

VARIANCE=

.51702

MEAN=

NORM=

1.01332

B ₁ =	-1.0	B ₂ = 1.0	N = 15	
^b 21	h(b ₂₁)/NOF	RM H(b ₂₁)/No	ORM z	
-2.450 -2.350 -2.350 -2.150 -2.050 -1.950 -1.950 -1.850 -1.650 -1.550	.00000 .00000 .00000 .00001 .00002 .00004 .00010 .00023 .00055 .00132 .00324 .00797 .01957 .04738 .11114 .24706 .50617 .92379 1.44420 1.85500 1.88258 1.46669 .86894 .39832 .14787 .04750 .01419 .00419 .00128 .00041 .00014 .00005 .00000 .00000	.00000 .00000 .00000 .00000 .00000 .00000 .00001 .00001 .00003 .00007 .00015 .00037 .00091 .00222 .00542 .01303 .03034 .06707 .13759 .25582 .42239 .61227 .78197 .89875 .96074 .98681 .99594 .99879 .99999 .99999 .99999 1.00000 1.00000 1.00000 1.00000	.44688 .44701 .44711 .44717 .44721 .44721 .44710 .44699 .44686 .44669 .44652 .44613 .44624 .44613 .44624 .44613 .44624 .44614 .44715 .44713 .44614 .44715 .44713 .44614 .44307 .43625 .42349 .40273 .37293 .33471 .29019 .24212 .19309 .14510 .09949 .05705 .01812 01724	
1.150 MEAN=	• 0 0 0 0 0	1.00000	04915 -753 NORM=	1.01332

$B_1 = 0.0$) В	2 = 1.0	N = 30	
^b 21	h(b ₂₁)/NORM	H(b ₂₁)/NORM	Z	
-1.700 -1.600 -1.500 -1.400 -1.300	.00000 .00000 .00001 .00003	.00000 .00000 .00000 .00000	.37937 .37519 .37027 .36445	
-1.200 -1.100 -1.000 900 800 700 600 500	.00028 .00085 .00255 .00730 .01986 .05045 .11779	.00002 .00008 .00024 .00070 .00199 .00534 .01345	.34920 .33919 .32711 .31248 .29478 .27343 .24786	
400 300 200 100 0.000	.46936 .77944 1.12828 1.41292 1.52373 1.41292	.06660 .12857 .22399 .35182 .50000	.21759 .18232 .14214 .09758 .04969 0.00000 04969	
.200 .300 .400 .500 .600 .700 .800	1.12828 .77944 .46936 .24894 .11779 .05045 .01986 .00730	.77601 .87143 .93340 .96871 .98655 .99466 .99801	09758 14214 18232 21759 24786 27343 29478 31248	
1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700	.00255 .00085 .00028 .00009 .00003 .00001 .00000	.99976 .99992 .99998 .99999 1.00000 1.00000 1.00000	32711 33919 34920 35751 36445 37027 37519 37937	

MEAN= .00000 VARIANCE= .07134 NORM=

1.01403

$B_1 = 0.0$	В	2 = 0.0	N = 30	
^b 21	h(b ₂₁)/NORM	H(b ₂₁)/NORM	Z	
-1.300	.00000	• 0 0 0 0 0	0 00000	
-1.200	.00000		0.00000	
-1.100	.00001	.00000	0.00000	
-1.000	.00005	.00000	0.00000	
900	.00022	.00000	0.00000	
800	.00101	.00007	0.00000	
700	.00448	.00031	0.00000	
600	.01845	•00135	0.00000	
500	.06819	.00532	0.00000	
400	.21715	•01866	0.00000	
300	•56983	.05641	0.00000	
200	1.17987	.14249	0.00000	
100	1.85725	.29516	0.00000	
0.000	2.16697	•50000	0.00000	
.100	1.85725	.70484	0.00000	
.200	1.17987	.85751	0.00000	
.300	•56983	• 94359	0.00000	
.400	.21715	.98134	0.00000	
.500	.06819	.99468	0.00000	
.600	.01845	• 99865	0.00000	
.700	.00448	• 99969	0.00000	
.800	.00101	•99993	0.00000	
.900	.00022	.99999	0.00000	
1.000	.00005	1.00000	0.00000	
1.100	.00001	1.00000	0.00000	
1 200	10000	1.00000	0.0000	

.00000 VARIANCE= .03571

.00000

.00000

1.200

1.300

MEAN=

1.00000

1.00000

1.00837

0.00000

0.00000

NORM=

B ₁ =	1.0	$B_2 = 0.0$		N = 30	
^b 21	h(b ₂₁)	/NORM H(l	2 ₁)/NORM	Z	
900800700600500400300200100 0.000 .100 .200 .300 .400 .500 .600 .700 .800	.0000 .0000 .0000 .0004 .0045 .0375 .2291 .9295 2.2629 3.0707 2.2629 .9295 .0375 .0006 .0006	10	00000 00000 00000 00002 00022 00195 01346 06689 22446 50000 77554 93311 98654 99805 99978	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
.900 MEAN=	.0000	VARIANCE=	.01756	0.00000 NORM=	1.00634

B ₁ = 1.0)	B ₂ = 1.0	N = 30	
b ₂₁	h(b ₂₁)/NORN	M H(b ₂₁)/NORM	Z Z	
350250150050 .050 .150 .250 .350 .450 .550 .650 .750 .850 .950 1.050 1.150 1.250	.00000 .00002 .00020 .00200 .01791 .12262 .56241 1.57602 2.59970 2.56448 1.59762 .67777 .21233 .05302 .01128 .00216 .00039	.00000 .00000 .00001 .00010 .00090 .00686 .03788 .14159 .35414 .62054 .83131 .94251 .98436 .99643 .99928 .99987	2901933471372934027342349436254461444713447154468444649446244461244635	
1.350 1.450 1.550	.00007 .00001 .00000	1.00000 1.00000 1.00000	44652 44669 44686 NORM=	1.00655

$B_1 = -1.0$	В	= 1.0	N = 30	
b ₂₁	h(b ₂₁)/NORM	H(b ₂₁)/NORM	Z	
-1.550 -1.450 -1.350 -1.250 -1.150	.00000 .00001 .00007 .00039	.00000 .00000 .00002 .00013	.44686 .44669 .44652 .44635	
-1.050 950 850 750 650	.01128 .05302 .21233 .67777	.00072 .00357 .01564 .05749	.44612 .44613 .44624 .44649	
550 450 350 250 150	2.56448 2.59970 1.57602 .56241 .12262	.37946 .64586 .85841 .96212 .99314	.44715 .44713 .44614 .44307 .43625	
050 .050 .150 .250	.01791 .00200 .00020 .00002	.99910 .99990 .99999 1.00000	.42349 .40273 .37293 .33471 .29019	

1.0065

NORM=

MEAN= -.50842 VARIANCE= .02218

 $B_1 = 0.0$ $B_2 = 1.0$ N = 45

b ₂₁	h(b ₂₁)/N(ORM H(b	21)/NORM	Z	
-1.300	.00000	•	00000	•35751	
-1.200	.00001		00000	.34920	
-1.100	.00003		00000	.33919	
-1.000	.00014		70001	.32711	
900	.00065		00004	.31248	
800	.00289	-	00020	.29478	
700	.01159	•	00086	.27343	
600	.04100	•	00328	.24786	
500	.12518	•	01109	.21759	
400	.32257	6	03256	.18232	
300	.68812	•	08197	.14214	
200	1.19609	•	17565	.09758	
100	1.67443	•	32016	.04969	
0.000	1.87461	•	50000	0.00000	
.100	1.67443	•	57984	04969	
.200	1.19609	•	82435	09758	
.300	.68812	•	91803	14214	
.400	.32257	•	96744	18232	
.500	.12518	•	98891	21759	
.600	.04100	•	99672	24786	
.700	.01159	• '	99914	27343	
.800	.00289	•	99980	29478	
.900	.00065	•	99996	31248	
1.000	e 0 0 0 1 4	•	99999	32711	
1.100	.00003	1 .	00000	33919	
1.200	.00001		00000	34920	
1.300	.00000	1.	00000	 35751	
MEAN=	.00000	VARIANCE=	.04648	NORM=	1.000 +40

B ₁ = 0.	0	$B_2 = 0.0$	N = 45	
^b 21	h(b ₂₁)/N(ORM H(b ₂₁)/N	ORM z	
-1.000	.00000	•00000	0.00000	
900	.00000	.00000	0.00000	
800	•00003	.00000	0.00000	
700	.00028	.00001	0.00000	
600	.00226	.00012	0.00000	
500	.01571	.00087	0.00000	
400	.08761	.00537	0.0000	
300	• 36669	.02605	0.00000	
200	1.07978	.09522	0.00000	
100	2.11696	.25490	0.00000	
0.000	2.66136	.50000	0.00000	
.100	2.11696	.74510	0.00000	
.200	1.07978	.90478	0.00000	
.300	• 36669	.97395	0.00000	
.400	.08761	.99463	0.00000	
.500	.01571	.99913		
.600	.00226	.99988	0.00000	
.700	.00028	.99999	0.00000	
.800	•00003	1.00000	0.00000	
.900	.00000	1.00000	0.00000	
1.000	.00000	1.00000	0.00000	
MEAN=	.00000 V	ARIANCE= .0	2326 NORM=	1.00557

B ₁ = 1	. 0	$B_2 = 0.0$		N = 45	
b ₂₁	h(b ₂₁)/N(DRM H(b	21)/NORM	Z	
700600500400300200100 0.000 .100 .200 .300 .400 .500 .600 .700	.00000 .00001 .00023 .00537 .07933 .63737 2.39326 3.76885 2.39326 .63737 .07933 .00537 .00023 .00001	.0 .0 .0 .0 .0 .1 .5 .8 .9	0000 0000 0001 0021 0343 3360 7784 0000 2216 6640 9657 9979 9999 0000 0000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
ME AN=	.00000 V	ARIANCE=	.01150	NORM=	1.00421

$B_1 = 1.0$)	B ₂ = 1.0		N = 45	
^b 21	h(b ₂₁)/NC	ORM H(b ₂₁)/NORM	Z	
150 050 .050 .150 .250 .350 .450 .550 .650 .750 .850 .950	.00000 .00007 .00187 .03254 .31383 1.46003 3.09505 3.05653 1.52368 .42872 .07679 .00981	.0 .0 .0 .0 .3 .6 .8 .9 .9	0000 0000 0007 0135 1550 9713 2830 5061 8188 7377 9594 9953	37293 40273 42349 43625 44307 44614 44713 44715 44684 44649 44649 44613 44612	
1.150 1.250 1.350	.00008 .00001 .00000	1.0	0000	44621 44635 44652	
MEAN=	.50560	VARIANCE=	.01447	NORM=	1.0043

B ₁ = ·	-1.0	$B_2 = 1.0$		N = 45	
b ₂₁	h(b ₂₁)/N	NORM H (b	21)/NORM	Z	
-1.350	.0000	0 . (0000	.44652	
-1.250	.0000		00000	.44635	
-1.150	.0000	8 . (00000	.44621	
-1.050	.0009	9	00005	.44612	
950	.0098	1 . (0047	.44613	
850	.0767	9	00406	.44624	
750	.4287	2	02623	. 44649	
650	1.5236	8	11812	• 44684	
550	3.0565	3 .:	34939	.44715	
450	3.0950	5	37170	.44713	
350	1.4600	3	90287	.44614	
250	.3138	3	98450	.44307	
150	.0325	4	99865	.43625	
050	.0018	7	99993	.42349	
.050	.0000	7	00000	.40273	
.150	.0000	0 1.	00000	.37293	
MEAN=	50560	VARIANCE=	.01447	NORM=	1.00435

B29937