Multi-Objective Bayesian Optimization with Diverse, Cluster-based Solutions (MOBy-DiC)

Joon Hyeok Kim

MOBy-DiC

Objective

• To generate a **diverse** set of Pareto-optimal solutions for multi-objective optimization problems.

Assumptions

- An initial set of Pareto-optimal solutions is provided as input.
 - These solutions can be sourced from existing algorithms
 - e.g.) MORBO, qNEHVI, NSGA-II
 - Alternatively, in real-world applications, they can be solutions found empirically.

Strategy 1: Clustering

Cluster the initial solutions in the design space $\mathcal{X} \subseteq \mathbb{R}^d$ to identify distinct promising regions.

Possible Clustering Algorithms

- 1. DBSCAN
 - Hyperparameters
 - \bullet : maximum distance between each datapoint
 - ullet $\epsilonpprox L_{
 m min}$ from TuRBO's TR, ${\cal T}$
 - MinPts: minimum number of points in a cluster
- 2. k-Means
 - Hyperparameters
 - $\dot{\mathbf{k}}$: number of clusters
 - How to choose k?

Strategy 2 : Dual Search

Apply a TuRBO-based strategy that operates on two levels:

1. Intra-Cluster Search

Local TuRBO like MORBO within the cluster

- ullet Input : $\mathbf{x}_1, \mathbf{x}_2 \in C_k \subseteq \mathbb{R}^d$: two intra-cluster points
 - \circ where C_k is the k-th cluster
- Output: $\mathbf{x}_{\text{intra}}^*$
- Procedure

$$\circ$$
 Let $\mathbf{x}_0 = rac{\mathbf{x}_1 + \mathbf{x}_2}{2}$: the mid point

$$\circ$$
 return $\mathbf{x}^*_{\text{intra}} = \mathsf{TuRBO}(\mathbf{x}_0, \mathcal{L}, \mathcal{GP})$

2. Inter-Cluster Search

Find a path between two clusters and apply TuRBO on it

- ullet Input : $\mathbf{x}_1 \in C_{k_1}, \; \mathbf{x}_2 \in C_{k_2}, \; C_{k_1}
 eq C_{k_2}$
 - Two points from different clusters
- Output : $\mathbf{x}_{\text{inter}}^*$
- Procedure
 - \circ Find a path between \mathbf{x}_1 and \mathbf{x}_2 by iteratively solving

$$lacksquare rg \max_{\mathbf{x} \in S} lpha(\mathbf{x}) = \mathrm{HV}(\mathbf{x}) - \lambda \|\mathbf{x} - \mathbf{x}_2\|, \; \lambda > 0$$

• where S is the set of points within the distance of L from the previous point.

Procedure

$$\mathbf{x}^{(0)} = \mathbf{x}_1, \; \mathbf{X}_{\mathrm{cand}} \leftarrow \emptyset$$

$$\circ$$
 for $t=1,\cdots,T$

$$lacksquare S \leftarrow \{\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^d, \; L_{\min} \leq \|\mathbf{x}^{(t-1)} - \mathbf{x}\| \leq L_{\max} \}$$

$$\quad \quad \mathbf{x}^{(t)} = \argmax_{\mathbf{x} \in S} \alpha(\mathbf{x}) = \mathrm{HV}(\mathbf{x}) - \lambda \|\mathbf{x} - \mathbf{x}_2\|, \; \lambda > 0$$

- Candidate HVs
 - EHVI
 - HV Scalarization by Zhang et al.

$$lackbox{f x}_{
m cand}^{(t)} = f TuRBO(f x^{(t)}, \mathcal{L})$$

$$lacksquare$$
 $\mathbf{X}_{\mathrm{cand}} \leftarrow \mathbf{X}_{\mathrm{cand}} \cup \{\mathbf{x}_{\mathrm{cand}}^{(t)}\}$

$$\circ \ \mathbf{x}^{ullet}_{\mathrm{inter}} = rg\max_{\mathbf{x} \in \mathbf{X}_{\mathrm{cand}}} \mathrm{HV}(\mathbf{x})$$

- lacktriangle Or maybe, return $\mathbf{X}_{\mathrm{cand}}$ in batch
- return **x**^{*}inter

Related Works

ROBOT

- Props.
 - Suggests diverse solutions using the Bayesian optimization technique
 - Utilizes TuRBO to search the high dimensional design space.
- Differences
 - Solves single objective optimization problems
 - Suggested solutions have priorities.
 - In MOBO, pareto optimality allows various solutions.

Related Works

DGEMO

- Props.
 - Solves multi objective optimization problems
 - Suggests diverse solutions using the Bayesian optimization technique
 - Adapts the batch selection strategy and the First-Order approximation technique
- Limit
 - \circ Does not work on higher dimensional design spaces (d>6)

Related Works

MORBO

- Props.
 - Solves the multi objective optimization problem
 - Works well on higher dimensional design spaces
 - Efficiently finds pareto optimal solutions using TuRBO
- Limit
 - Does not provide diverse solutions along the pareto front