

I.

Statistiques et probabilités conditionnelles

Variables catégorielles

—— Définition 1 ———————————————————————————————————
Un est un tableau dans lequel deux caractères différents sont représentés, l'un en ligne, l'autre en colonne. On appelle aussi ces tableaux et la valeur à l'intersection d'une ligne et d'une colonne est le nombre d'individus présentant simultanément les deux caractères.
Définition 2
On appelle l'effectif d'une sous-population qui ne dépend que d'un seul caractère. Ces effectifs sont représentés dans la ligne « Total » ou la colonne « Total ».
La d'une valeur est le quotient :
Définition 4 La de la valeur x_i sachant y_j est le quotient :
Effectif marginal de la valeur y_j

II. Une application

On interroge un groupe de 1 200 étudiants titulaires d'un baccalauré at STMG et ayant poursuivi leurs études. Parmi ces étudiants :

- 60 % de ces étudiants sont des filles, les autres sont des garçons;
- 55 % ont poursuivi leurs études en BTS;
- 264 étudiants sont inscrits à l'université;
- La moitié des étudiants inscrits à l'université sont des garçons;
- 45 % des étudiants en BTS sont des garçons.
- 1. Complétez le tableau ci-dessous :

	BTS	Université	Autres formations	Total
Filles				
Garçons				
Total		264		1200
,				

Calculer la <i>fre</i>	équence condition	nnelle des garç	ons parmi les p	ersonnes étudia	ant à l'universite
Calculer la <i>fre</i>	équence condition				

III. Probabilités conditionnelles

A. Rappels de l'an dernier

Définition 5

Étant donnés deux ensembles A et B, l'intersection de A et B, notée $A \cap B$, est

Exemple. On considère les élèves de cette classe, et :

- -A: « l'ensemble des garçons »;
- -B: « l'ensemble des personnes portant des lunettes ».

Alors $A \cap B$ est $_$

Définition 6

On choisit un individu au hasard dans une population, et on considère un évènement A. Alors :

$$\mathbf{P}(A) = \frac{\text{Nombre de cas favorables}}{\text{Nombre de cas possibles}}$$

B. Probabilités conditionnelles

Définition 7 -

On considère l'expérience aléatoire qui consiste à choisir un individu au hasard dans une population.

- On appelle _____ d'un évènement A, noté $\operatorname{card}(A)$, le nombre d'issues réalisant l'évènement A.
- Étant donnés deux évènements A et B tels que $\operatorname{card}(A) \neq 0$, on appelle _______, ou probabilité que B soit réalisé sachant que A est réalisé, le nombre :

$$\mathbf{P}_{B}(A) = \frac{\operatorname{card}(A \cap B)}{\operatorname{card}(B)}$$

IV. Exemple d'application

Une usine produit et vend de l'eau minérale en bouteilles d'un litre. L'eau provient de deux sources A et B.

Un laboratoire indépendant effectue des tests sur un stock journalier de 400 bouteilles produites par l'usine et détermine si l'eau est calcaire ou non :

- 250 bouteilles provenant de la source A ont été testées, parmi lesquelles 12 contenaient de l'eau calcaire.
- 85 % des bouteilles testées ne contenaient pas d'eau calcaire.
- 1. Compléter le tableau suivant :

	Source A	Source B	Total
Eau calcaire			
Eau non calcaire			
Total			400

2. On choisit au hasard une bouteille parmi le stock des 400 bouteilles testées. Toutes les bouteilles du stock ont la même probabilité d'être choisies.

On considère les évènements :

- A =« la bouteille provient de la source A »;
- B =« la bouteille provient de la source B »;
- C =« l'eau contenue dans la bouteille est calcaire ».
- (a) Calculer $\mathbf{P}(A)$:
- (b) Justifier que $\mathbf{P}(C) = 0, 15$.
- (c) Traduire par une phrase l'évènement $B\cap C$ puis calculer sa probabilité.

(d) Calculer la probabilité que l'eau contenue dans la bouteille provienne de la source B sachant qu'elle est calcaire.