证明

本证明之附件是向本局提交的下列专利申请副本

申 请 日: 2004.05.19

申 请 号: 200410020567.1

申请类别: 发明

发明创造名称: 一种高强度高韧性铸造镁合金及其制备方法

申 请 人: 中国科学院金属研究所

发明人或设计人: 马跃群、陈荣石、韩恩厚

中华人民共和国国家知识产权局局长

2005 年 5 月 24 日

权 利 要 求 书

- 1、一种高强度高韧性铸造镁合金, 其特征在于: 按重量百分比计, 用于合金化的主要元素组成如下: 按重量百分比计, 镁含量为平衡余量; 铝含量为 3~9%; 锌含量为 3.5~9%; 锰含量为 0.15~1.0%; 锑含量为 0~2%; 稀土含量为 0~2%。
- 2、按照权利要求1所述高强度高韧性铸造镁合金, 其特征在于: 用于合金化的稀土元素为富铈混合稀土, 或者为纯稀土钇或钕。
- 3、按照权利要求1所述高强度高韧性铸造镁合金的制备方法,其特征在于具体步骤如下:
- 1) 先将纯镁、镁稀土中间合金、纯铝、铝锰中间合金、纯锌、锑粉各种配料在烘箱中预热至 140~160℃,覆盖剂同时放入烘箱进行烘干;将模具在另外的箱式炉中预热至 300~400℃;然后设定坩埚目标温度为 710~730℃,开始加热;
- 2) 当坩埚升温至 280~320℃时,通入 CO₂气体进行气体置换,然后在坩埚底部加入占配料总重量 0.3~2%的覆盖剂,并将预热好的纯镁配料放入坩埚内;
- 3) 纯镁配料熔化并且等坩埚温度稳定在 710~730℃后,加入占配料总重量 0.3~2%的覆盖剂,然后依次加入纯铝、铝锰中间合金、镁稀土中间合金以及纯锌 配料,最后加入用铝箔纸包好的锑粉配料;
- 4)下面各工序均恒温在 710~730℃下进行,配料加完后即可进行搅拌,搅拌均匀后静置 4~6分钟,按体积百分比,在 99~99.5%CO2+0.5~1% SF₆混合气体保护下掏出表面浮渣:
- 5) 掏渣完毕后,停止加热,按体积百分比,在99~99.5%CO2 + 0.5~1% SF₆ 混合气体保护下浇铸成型。
- 4、按照权利要求 3 所述高强度高韧性铸造镁合金的制备方法, 其特征在于: 将得到的铸造镁合金经固溶处理, 固溶处理温度为 350~390℃, 固溶处理时间为 16~24 小时, 空冷至室温; 或者时效处理, 时效处理温度为 160~200℃, 时效处理时间为 8~48 小时, 空冷至室温; 或者固溶处理加时效处理组合, 先在 350~390℃下进行 16~24 小时固溶处理后, 然后在 160~200℃下进行 8~48 小时的时效处理,

空冷至室温。

- 5、按照权利要求3所述的高强度高韧性铸造镁合金的制备方法,其特征在于: 所述浇铸成型采用金属型或砂型铸造,或者采用压力铸造或挤压铸造工艺。
- 6、按照权利要求 3 所述的高强度高韧性铸造镁合金的制备方法,其特征在于: 所述固溶处理在保护气氛下进行,保护气体为氩气或六氟化硫。
- 7、按照权利要求 3 所述的高强度高韧性铸造镁合金的制备方法, 其特征在于: 所述锑粉为工业纯锑。

一种高强度高韧性铸造镁合金及其制备方法

技术领域

本发明涉及铸造镁合金技术,具体地说是一种低成本、高强度高韧性铸造镁合金以及通过合金化和热处理,同时提高铸造镁合金强度和韧性的制备方法。本发明不仅适用于金属型和砂型铸造,同样适用于压力铸造、挤压铸造等工艺。

背景技术

镁合金作为一种新型金属材料,以其密度小、比强度和比刚度高等优点,在航空航天、汽车、3C(计算机、通信、消费类电子)等领域获得了广泛应用。以汽车工业为例:一方面,汽车尾气排放量约占全球性大气污染的65%左右;另一方面,能源紧张、油价上涨等问题日益严重。汽车减重是解决这些问题的有效措施。据计算,汽车自重每减轻10%,其燃油效率可提高5.5%左右。再如,镁合金还以其良好的导电导热性及易于回收利用等优点,在3C类产品的壳体结构件等处,替代塑料,获得广泛使用。因此,镁合金也获得了"二十一世纪的绿色工程材料"的美誉。

目前,商用镁合金大体上可以分为铸造镁合金和变形镁合金两大类,其消耗量的比例大约是 35:1,可见铸造镁合金的市场份额最大。在铸造镁合金中,AZ91系列和 AM60/50 系列应用最广泛。其中,AZ91系列强度虽高(典型压铸 AZ91D的抗拉强度 σ_b 为 230MPa,屈服强度 σ_{02} 为 160MPa),但是塑性较差(典型压铸 AZ91D的延伸率 δ_5 为 3%);而 AM60/50 系列塑性虽好(典型压铸 AM60/50 的延伸率 δ_5 为 8~10%),但是强度偏弱(典型压铸 AM60/50 的抗拉强度 σ_b 为 200~220MPa,屈服强度 σ_{02} 为 110~130MPa)。

为了适应市场要求,进一步扩大铸造镁合金的应用范围,在低成本前提下, 同时提高强度和韧性是关键所在。尽管许多研究者基于 AZ91 系列和 AM60/50 系 列进行了微合金化、晶粒细化等工作,但是其结果收效不大或者成本过高。因此, 开发一种低成本、高强高韧的铸造镁合金是目前亟待解决的问题。

发明内容

本发明的目的在于提供一种低成本、高强度高韧性铸造镁合金,并且通过合理选择合金化元素以及采用合适的热处理手段,得到了一种低成本、高强高韧的铸造镁合金制备方法。

本发明的技术方案是:

本发明通过在镁中加入高含量铝、高含量锌、构成了高铝高锌的新型镁合金体系;在高铝高锌镁合金基础上,通过加入锑、稀土等元素而产生的微合金化作用,达到了镁合金的增强增韧之目的。该发明的具体组成如下:按重量百分比计,镁(Mg)含量为平衡余量;铝(Al)含量为3.5~9%;锌(Zn)含量为3~9%;锰(Mn)含量为0.15~1.0%;锑(Sb)含量为0~2%;稀土含量为0~2%;其它不可避免的微量杂质铁(Fe) <0.005%、镍(Ni) <0.002%、铜(Cu) <0.015%。

本发明的增强增韧机理如下:在高铝高锌镁合金中,除了存在少量的镁铝合金系中常见的β (Mg₁₇Al₁₂)增强相在之外,主要增强相已成为 Mg₃₂ (AlZn)₄₉相;另外,加入 Sb 元素后,根据 X 射线和 EDAX 电镜观察的结果,会产生新的颗粒增强相 Mg₃Sb₂以及 (Mg_{0.43}Zn_{0.57})₂MgSb₂等。这些新的颗粒增强相不仅起到提高强度的作用,而且会在一定程度上细化高铝高锌合金中的连续脆性相,从而起到提高铸造性能和塑性的作用。

众所周知,镁合金中锌的加入可以提高熔体的流动性,有固溶强化的效果,可以提高强度;但若锌的加入量不合适,将会增大合金的热裂倾向性,恶化铸造成型性能(参见附图 1)。目前常见的铸造镁合金如 AZ91、AM60、AM50 等,综合性能不是很好,其中 AZ91 的锌含量为 0.45-0.9%wt(重量百分比),其强度较高,但韧性较差,AM60 和 AM50 的锌含量 ≤ 0.20%wt,其韧性较好,但强度较差。本发明根据镁一铝一锌三元相图,通过选择合适的铝、锌含量,从而保证了镁合金的铸造性能、较高的强度和韧性;在此基础上,通过加入锑(Sb)和稀土元素,并通过合适的热处理,使合金强度和韧性又有了较大提高。

本发明合金中铝也是主要强化元素,它通过固溶强化和与镁形成β

(Mg₁₇AI₁₂)相以及与镁、锌元素生成 Mg₃₂ (AlZn)₄₉相的沉淀强化,提高了合金的室温强度。此外,铝的加入还可提高合金的铸造工艺性能。

本发明合金中还可以含有 0~2%wt 的稀土元素钇、钕或富铈混合稀土等,稀土元素能改善合金铸造性能,减少晶界低熔点析出物,提高综合力学性能和良好的固溶强化效果,通过稀土元素对晶界的强化,及其和 Zn、Al 对合金力学性能的有益作用,以及各种元素的合理搭配,使合金的综合性能更好。

本发明合金中锰的作用是提高耐腐蚀性能,锰在合金熔炼过程中能与合金中的杂质元素铁形成化合物,沉淀到坩埚底部,去除杂质,消除铁对合金耐腐蚀性能的有害作用。

本发明高强度高韧性铸造镁合金的制备方法,具体步骤如下:

- 1) 先将纯镁、镁稀土中间合金、纯铝、铝锰中间合金、纯锌、锑粉各种配料在烘箱中预热至 140~160℃,覆盖剂同时放入烘箱进行烘干;将模具在另外的箱式炉中预热至 300~400℃;然后设定坩埚目标温度为 710~730℃,开始加热;
- 2) 当坩埚升温至 280~320℃时,通入 CO₂ 气体进行气体置换,然后在坩埚底部加入占配料总重量 0.3~2%的覆盖剂,并将预热好的纯镁配料放入坩埚内;
- 3) 纯镁配料熔化并且等坩埚温度稳定在 710~730℃后,加入占配料总重量 0.3~2%的覆盖剂,然后依次加入纯铝、铝锰中间合金、镁稀土中间合金以及纯锌 配料,最后加入用铝箔纸包好的锑粉配料;
- 4)下面各工序均恒温在 710~730℃下进行,配料加完后即可进行搅拌,搅拌均匀后静置 4~6分钟,按体积百分比,在 99~99.5%CO2+0.5~1% SF₆混合气体保护下掏出表面浮渣;
- 5) 掏渣完毕后, 停止加热, 按体积百分比, 在 99~99.5%CO₂ + 0.5~1% SF₆ 混合气体保护下浇铸成型。

本发明的热处理方式可分为固溶(T4)、时效(T5)、"固溶+时效"(T6)三种,下面分别介绍:①、T4固溶处理最好在保护气氛(如氩气、六氟化硫等)中进行,其温度与铝、锌含量密切相关,具体温度可参考镁-铝-锌三元合金相图(附图1);另外实验表明,少量锰、锑的加入对固溶温度影响不大,可以根据铝、

锌含量来确定; T4 固溶时间可取为 16~24 小时,时间过短固溶效果不理想,时间过长会出现晶粒长大。②、T5 时效处理,温度取为 160~200℃,时间可取为 8~24 小时。③、T6 热处理可以理解为 T4 与 T5 方式的组合。

由于热处理改变了颗粒增强相的分布方式和数量,因此显著影响了力学性能。 T4 固溶处理的试样由于中间相基本溶入基体内而以固溶体的方式存在,故而会提高塑性,但是屈服强度会有所降低; T6 处理的试样由于中间相又会在晶粒内部或沿晶界重新析出(但分布方式及数量显著不同于铸态试样),故而会在提高强度的同时,塑性有所下降。

本发明的研制过程虽然采用的是金属型铸造,但根据镁-铝-锌三元合金的 压铸性能(参见附图 2)可知,本发明的合金成分范围落在可铸造区域,因此同 样适用于压力铸造、挤压铸造等工艺,而不会存在热裂和热脆倾向。

本发明具有如下优点:

- 1. 本发明制备的镁合金,兼具高强度高韧性的特性,特别适合于轻质、高强、高韧的用材需求,如汽车轮毂等; 其抗拉强度 σ_b 达到 260~280MPa,屈服强度 σ_{02} \geq 140MPa,延伸率 δ_5 \geq 6%,冲击功 σ_k \geq 14J,布氏硬度 HB \geq 70。
 - 2. 本发明性价比高。本发明所用原材料易得,成本低。
- 3. 本发明冶炼工艺稳定。本发明采用的合金化元素,不与铁质坩埚壁或者覆盖剂发生明显副反应,工艺稳定,易于组织生产。
- 4. 本发明适用工艺范围广。本发明不仅适用于金属型和砂型铸造,同样适用 于压力铸造、挤压铸造等工艺,不存在热裂和热脆倾向。

附图说明

- 图 1 是 Mg-Al-Zn 三元合金的压力铸造性能示意图。
- 图 2 是 Mg-Al-Zn 三元合金相图 (固相表面)。
- 图 3a~c 是不同热处理方式对实施例 1 合金微观组织的影响,其中图 3a 为铸态(F)下的电镜照片;图 3b 为固溶(T4)下的电镜照片;图 3c 为固溶+时效(T6)下的电镜照片。
 - 图 4 是本发明所用的平板状拉伸试样示意图, 其厚度 $\delta = 3$ mm。

图 5 是图 4 中平板状拉伸试样尺寸图。

图 6 是实施例 1 合金和比较例合金 AZ91、AM60 在 T6 热处理态的力学性能对比情况。

图 7 是实施例 2 合金和比较例合金 AZ91、AM60 在 T6 热处理态的力学性能对比情况。

图 8 是实施例 3 合金和比较例合金 AZ91、AM60 在 T6 热处理态的力学性能对比情况。

具体实施方式

下面结合实施例详述本发明:

实施例 1

本实施例 1 合金 (比较例 1 合金 AZ91、比较例 2 合金 AM60) 基本操作步骤如下:

I)、合金成分:

合金牌号	元素含量 (重量百分比%)					
	镁(Mg)	铝 (Al)	锌(Zn)	锰(Mn)	锑(Sb)	
实施例 1	89.2	6	4	0.3	0.5	
AZ91	89.7	9	1	0.3	0	
AM60	93.7	6	0	. 0.3	0	

Ⅱ)、合金冶炼及铸造成型:

实施例 1 的冶炼工作是在井式炉中进行, 坩埚采用碳钢材质; 合金的浇铸成型则在金属型中完成。详细工序如下:

- 1) 先将纯镁、纯铝、铝锰中间合金、纯锌、锑粉等各种配料在 150℃烘箱中 预热, RJ-2 覆盖剂可同时放入烘箱进行烘干; 将模具在另外的箱式炉中预热至 350 ℃, 然后设定坩埚目标温度为 720℃, 开始加热。
- 2) 当坩埚升温至 300℃时,通入(按体积百分比,99.5%CO₂+0.5%SF₆) 混合气体进行气体置换,然后在坩埚底部加入覆盖剂(约占总配料 0.5%质量比),并将预热好的纯镁配料放入坩埚内,继续加热。

- 4)(下面各工序均要求坩埚温度在 720℃左右进行)配料加完后即可进行搅拌,搅拌均匀后静置 5分钟,在(99.5%CO₂+0.5%SF₆)混合气体保护下掏出表面浮渣,混合气体加入量以保证合金表面不燃烧为尺度。
- 5) 掏渣完毕后,停止加热,在模具内持续通入(99.5% $CO_2+0.5\%SF_6$)混合气体,同时浇铸成型。

比较例 AZ91 和 AM60 合金的冶炼及浇铸成型过程与实施例 1 合金基本是相同的,只是配料中没有锑粉,而且其它配料数量有所不同而已。

Ⅲ)、铸件的热处理:

实施例 1 合金和比较例 1 合金、比较例 2 合金的热处理可分为固溶 (T4)、时效 (T5)、"固溶+时效" (T6)三种:

①、参考镁-铝-锌三元合金相图(附图1)并最终由相关实验确定,实施例1合金的T4固溶处理的温度以380℃为宜,温度过低固溶效果不明显,温度过高会发生相变析出以至于合金成分发生变化; T4固溶时间可取为20小时,时间过短固溶效果不理想,时间过长会出现晶粒长大; T4处理的样品,取出后采用空冷至室温。

比较例 AZ91 和 AM60 的 T4 处理温度均为 410℃,时间为 20 小时,原因同上; T4 处理的样品,取出后采用空冷至室温。

- ②、实施例 1 和比较例 AZ91、AM60 三种合金的 T5 时效处理均相同。温度取为 180℃,时间为 20 小时; T5 处理的样品,取出后采用空冷至室温。
- ③、实施例 1 和比较例 AZ91、AM60 三种合金的 T6 热处理均为 T4 与 T5 方式的组合。每种合金先按照各自的合适温度进行 20 小时的 T4 固溶处理,然后再进行 20 小时的 T5 时效处理。

不同热处理方式 (F、T4、T6) 对实施例 1 合金微观组织的影响及其演化过程见附图 3a~c。

IV)、力学性能的样品制备及测试:

合金的力学拉伸性能样品是参考国标 GB 6397-86 的§3.6.2 对于板材试样的规定来制备,其结构及详细尺寸见附图 4、5。

合金的冲击性能参考国标 GB/T 229-1994 的规定,取 10mm×10mm×55mm 的 无缺口冲击试样。

金属布氏硬度实验方法参考 GB231-84, 试样尺寸 15mm×15mm×5mm。

实施例 1 合金的铸态机械性能如下:

抗拉强度 σ_b =216MPa,屈服强度 $\sigma_{0.2}$ =106MPa,延伸率 δ_5 =8%。

实施例 1 合金的 T4 态机械性能如下:

抗拉强度 σ_b =250MPa,屈服强度 $\sigma_{0.2}$ =101MPa,延伸率 δ_5 =11%。

实施例 1 合金的 T5 态机械性能如下:

抗拉强度 σ_b =230MPa,屈服强度 $\sigma_{0.2}$ =128MPa,延伸率 δ_5 =7%。

实施例 1 合金的 T6 态机械性能如下:

抗拉强度 σ_b = 285MPa,屈服强度 σ_{02} = 140MPa,延伸率 δ_5 = 10%,冲击功 σ_k = 20 J,布氏硬度 HB=70。

由上可见,实施例 1 合金的各热处理态中, T6 态的综合机械性能最优; 此外, 实施例 1 合金和比较例合金 AZ91、AM60 在 T6 热处理态的力学性能对比情况见附图 6。

实施例 2

与实施例1不同之处在于:

本实施例合金基本操作步骤如下:

I)、合金成分:

人人時已	元素含量 (重量百分比%)				
合金牌号	镁 (Mg)	铝(Al)	锌 (Zn)	锰(Mn)	
实施例 2	88.7	6	5	0.3	

Ⅱ)、合金冶炼及铸造成型:

参考实施例 1。本实施例合金在冶炼工序的第三步最后不需要加入用铝箔纸

包好的锑粉配料。

Ⅲ)、铸件的热处理:

参考实施例 1 中的热处理部分。本实施例合金的 T4 固溶处理的温度以 370 ℃为宜,此温度是参考镁 - 铝 - 锌三元合金相图并最终由实验确定的,温度过高会发生相变析出。

Ⅳ)、力学性能的样品制备及测试:

力学性能样品制备同实施例1中所述。

实施例 2 合金的铸态机械性能如下:

抗拉强度 σ_b =192MPa,屈服强度 $\sigma_{0.2}$ =104MPa,延伸率 δ_5 =6.2%。

实施例 2 合金的 T4 态机械性能如下:

抗拉强度 σ_b =258MPa,屈服强度 $\sigma_{0.2}$ =100MPa,延伸率 δ_5 =10.5%。

实施例 2 合金的 T5 态机械性能如下:

抗拉强度 $\sigma_b = 235$ MPa,屈服强度 $\sigma_{0.2}=137$ MPa,延伸率 $\delta_5=6\%$ 。

实施例 2 合金的 T6 态机械性能如下:

抗拉强度 σ_b = 287MPa,屈服强度 $\sigma_{0.2}$ = 161MPa,延伸率 δ_5 = 8%,冲击功 α_k = 22 J,硬度 HB=73。

由上可见,实施例 2 合金的各热处理态中, T6 态的综合机械性能最优; 此外, 实施例 2 合金和比较例合金 AZ91、AM60 在 T6 热处理态的力学性能对比情况见附图 7。

实施例3

与实施例 1 不同之处在于:

本实施例合金基本操作步骤如下:

I)、合金成分:

合金牌号	元素含量 (重量百分比%)					
	镁 (Mg)	铝(Al)	锌(Zn)	锰(Mn)	钇(Yt)	
实施例 2	88.2	4	7	0.3	0.5	

Ⅱ)、合金冶炼及铸造成型:

参考实施例 1。本实施例合金在冶炼工序的第三步要在加完纯铝、铝锰中间合金配料后,加入镁钇中间合金配料,最后再加纯锌配料。

Ⅲ)、铸件的热处理:

参考实施例 1 中的热处理部分。本实施例合金的 T4 固溶处理的温度以 360 ℃为宜,此温度是参考镁 - 铝 - 锌三元合金相图并最终由实验确定的,温度过高会发生相变析出。

IV)、力学性能的样品制备及测试:

力学性能样品制备同实施例1中所述。

实施例 3 合金的铸态机械性能如下:

抗拉强度 σ_b =202MPa,屈服强度 $\sigma_{0.2}$ =115MPa,延伸率 δ_5 =6.5%。

实施例 3 合金的 T4 态机械性能如下:

抗拉强度 σ_b =248MPa,屈服强度 $\sigma_{0.2}$ =110MPa,延伸率 δ_5 =9.5%。

实施例 3 合金的 T5 态机械性能如下:

抗拉强度 σ_b =231MPa,屈服强度 $\sigma_{0.2}$ =132MPa,延伸率 δ_5 =6.3%。

实施例 3 合金的 T6 态机械性能如下:

抗拉强度 σ_b = 260MPa,屈服强度 $\sigma_{0.2}$ = 149MPa,延伸率 δ_5 = 8%,冲击功 α_k = 18 J,硬度 HB=72。

由上可见, 实施例 3 合金的各热处理态中, T6 态的综合机械性能最优; 此外, 实施例 3 合金和比较例合金 AZ91、AM60 在 T6 热处理态的力学性能对比情况见附图 8。

说 明 书 附 4

图 2

图 3b ·

图 3c

图 3a

图 4

图 5

图 6

图 7

图 8

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/CN05/000479

International filing date: 11 April 2005 (11.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: CN

Number: 200410020567.1

Filing date: 19 May 2004 (19.05.2004)

Date of receipt at the International Bureau: 27 June 2005 (27.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потигр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.