Project 1

Basketball trajectory simulation


```
(1) corner(6.25 m): 8.46 m/s
(2) top(7.6 m): 9.19 m/s
(3) half court(14 m): 12.1 m/s
b)
We can validate this simulation using law of conservation of energy.
```


c)

Choose three different angles and find the initial velocity that can goal, using curve fit method to find a function which returns the initial velocity when we input the angle. In this way we can find the answer much faster and with more accuracy.


```
a)
  (1) corner(6.25 m): 8.92 m/s (+0.46 m/s
  (2) top(7.6 m): 9.80 m/_{S} (+0.79 m/_{S}
  (3) half court(14 m): 13.67 m/_{S} (+1.57 m/_{S}
a in Question 1)
  (1) corner(6.25 m): 8.46 m/_s
  (2) top(7.6 m): 9.19 m/_{s}
  (3) half court(14 m): 12.1 m/_{s}
```



```
a) (1) corner(6.25 m): 8.87 \, \frac{m}{s} \, 48.61^{\circ} \, 8.92 \, \frac{m}{s} (2) top(7.6 m): 9.78 \, \frac{m}{s} \, 47.50^{\circ} \, 9.80 \, \frac{m}{s} (3) half court(14 m): 13.67 \, \frac{m}{s} \, 45.36^{\circ} \, 13.67 \, \frac{m}{s} b)
```

The optimal angle will slightly decrease when shooting further away from the basketball hoop.


```
a )
 Q2:
  (1) corner(6.25 m): 8.88 m/s 8.92 m/s
  (2) top(7.6 m): 9.75 m/_{S} 9.80 m/_{S}
  (3) half court(14 m): 13.58 m/s 13.67 m/s
Q3:
  (1) corner(6.25 m): 8.85 m/_{S} 48.12° 8.87 m/_{S} 48.61°
  (2) top(7.6 m): 9.73 m/_{S} 47.25° 9.78 m/_{S} 47.50°
  (3) half court(14 m): 13.58 m/_{S} 44.64° 13.67 m/_{S} 45.36°
```

b)

Back spin makes both optimal angle and optimal velocity lower, thus if shooting with the same angle, back spin makes the velocities required to goal lower.

with back spin without back spin	with back spin	without back spin
8.88 m/s 8.92 m/s	8.85 m/s 48.12°	8.87 $m/_{S}$ 48.61°
9.75 m/s 9.80 m/s	9.73 m/s 47.25°	9.78 $m/_s$ 47.50°
13.58 $m/_{S}$ 13.67 $m/_{S}$	13.58 $m/_{S}$ 44.64	o 13.67 ^m / _s 45.36°

Python code explanation (basketball.py)

```
def shoot(self, v, angle, distance):
v: initial velocity (m/s)
angle: initial angle (degree)
distance: horizontal distance to the rim (m)
return [xlist, ylist, isInRange, self.od]
xlist: list, ball's x coordinate
ylist: list, ball's y coordinate
isInRange: boolean, whether the ball is in the rim or not
self.od: float, distance to rim at the end of the shoot
```

Reference

- Physics-Morris/General-Physics-Lecture https://github.com/Physics-Lecture
- Andrew Lang and Joerg M Gablonsky. "Modeling Basketball Free Throws"

https://digitalshowcase.oru.edu/cgi/viewcontent.cgi?article=1063&context=cose_pub

Source code

https://github.com/pierre0210/Basketball-sim

江育瑄:程式設計

謝孟融:問題分析

吳秉叡:結果討論