

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Docket No. 10773.00

CLAIM FOR BENEFIT OF EARLIER-FILED FOREIGN APPLICATION

Application of

MAR 24 2004

Dennis Flood et al.

PIPIN E I LOUT

Serial No. 10/717,882

Group Art Unit: 3676

Filed: November 20, 2003

Examiner: Unknown

For:

SCALEABLE LOCKING

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner for Patents, PO Box 1450, Alexandria VA 22313-1450 on MAR 2.4. 2004 (Date of Deposit).

Shirley Doll

Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450

Sir:

Applicants wish to claim the benefit of the filing date of the earlier G.B. Application Serial No. 0227991.7, filed on December 2, 2002, recited in the Declaration under the provision of 35 U.S.C. 119, and accordingly, Applicants submit herewith a certified copy of said application.

Respectfully submitted,

Michael Chan

Reg. No. 33,663

Attorney for Applicant(s)

NCR Corporation, Law Department, WHQ4 1700 S. Patterson Blvd., Dayton, OH 45479-0001 Tel. No. 937-445-4956/Fax No. 937-445-3733 THIS PAGE BLANK (USPTO)

INT'L PATENTS

- 8 DEC 2003

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

RECEIVED

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 4 December 2003 THIS PAGE BLANK (USPTO)

The **Patent** Office

Patents Act 1977 (Rule 16)

Statement of inventorship and of right to grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

<u>020EC02 E767673-1 D02073</u> OFFICF01/7700 0.00-0227991.7 THE PAT - 2 DEC 2002 NEWPUH

The Patent Office

Cardiff Road Newport South Wales NP9 1RH

Your reference 10773

2. Patent application number (The Patent Office will fill in this part)

0227991.7

52 DEG 2002

3. Full name, address and postcode of the or of

each applicant (underline all surnames)

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

NCR INTERNATIONAL, INC 1700 SOUTH PATTERSON BOULEVARD DAYTON, OHIO 45479 UNITED STATES OF AMERICA

7920234001

INCORPORATED IN THE STATE OF DELAWARE

4.

SCALEABLE LOCKING

5. Name of your agent (if you have one) "Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

B WILLIAMSON INTERNATIONAL IP DEPARTMENT NCR LIMITED 206 MARYLEBONE ROAD LONDON NW1 6LY

Patents ADP number (if you know it)

If you are declaring priority from one 6. or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

100 Country

Priority application number (if you know it)

Date of Filing (day/month/year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day/month/year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer Yes' if:

- any applicant named in part'3 is not an inventor, or
- there is an inventor who is not named as an applicant, or
- any named applicant is a corporate body. See note (d))

YES

Patents Form 1/77

Patents Form 1/77

Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document. Continuation sheets of this form 15 Description 5 Claim(s)Abstract Drawing(s) If you are also filing any of the following, 10. state how many against each item. Priority documents Translation of priority documents Statement of inventorship and right to grant of a patent (Patents Form 7/77) Request for preliminary examination 1 (Patents Form 9/77) Request for substantive examination (Patents Form 10/77) Any other documents (please specify) 11. I/We request the grant of a patent on the basis of this application. 19/11/2002 Signature Date

12. Name and daytime telephone number of person to contact in the United Kingdom

CHRISTINE SHEPPARD 020 7725 8379

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 01645 500505
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

DUPLICATE.

SCALEABLE LOCKING

The present invention relates to a locking arrangement for a secure enclosure, and in particular a locking arrangement for a self-service terminal, such as an automated teller machine.

5

10

15

20

25

a variety use teller machines Automated safe locks, for example, conventional high security conventional three wheel high security locks that need a three wheel combination to be opened. These three wheel even are, however, difficult to open, practice. This can cause serious security problems. addition, often the lock wheels are not fully spun on closing, so the lock can be re-opened without having to dial up the three wheel combination. Furthermore, it can be difficult to change the combinations for these locks, so they can remain set on the same combination number for years. In a bank environment dozens of people get to know this potentially lucrative opening number. Clearly, this is a security risk.

keypad combination locks. An advantage of these is that they can be re-programmed so that the combination number can be altered as and when desired. This solves the usability aspect. However, even the cheapest of these locks is around three times the cost of a mechanical lock. Much of this cost is because of the electronics

and processors that have to be embedded in the lock to give the necessary intelligence to activate the locking mechanism.

5

10

15

20

25

Another more recent lock is the so-called audit that can be processor includes a This lock. personal unique of series а programmed using identification numbers (PINs) to identify who entered the safe; when they entered; when they exited; whether they gave the correct daily cash in transit (CIT) code, and whether they gave the correct exit code. The use of a 500-event memory has become commonplace in this type of This has proven to be an invaluable tool to prevent "shrinkage" of cash, especially for the The lock can be interrogated at the safe by industry. using, for example, dedicated hardware, such as printers, to download audit trail information from the lock. main drawback with these audit trail locks is the price, the cost times ten than more which can be In addition, the best of them need a conventional lock. complete infrastructure and special hardware to allow auditing and monitoring of risky sites.

An object of the invention is to provide an improved lock for use in secure enclosures, in particular for use in self-service machines, such as automated teller machines.

According to one aspect of the present invention, there is provided a device or machine, such as self-service machine, for example an automated teller machine, the device or machine having a secure enclosure; a lock for securing the secure enclosure and a controller, for example a processor, for controlling device or machine functionality and additionally the lock.

As part of its inherent intelligent capabilities at delivering cash and related services to the public, the modern ATM has a processing ability that can far outstrip the best lock processing for top-of-the-range electronic audit trail locks. By using this processing capability to control both the teller machine functionality and additionally a lock, a simple lock can be made to operate in a manner that surpasses the capabilities of audit trail locks.

Preferably, the controller/processor is connected to the lock via a secure communications link. For example, the controller/processor may be operable to generate encrypted control commands for sending to a decryptor in the secure enclosure, wherein the decryptor is operable to decrypt the control command and pass the decrypted command to the lock.

Preferably, the lock is an electronic solenoid lock.

A detector may be provided for detecting tampering with the safe. The detector may be operable to send an

25

20

5

10

15

alarm signal to the controller/processor when tampering is detected.

control signal from the controller/processor may be provided. The spoiler mechanism is operable to cause damage to the contents of the secure enclosure in the event that tampering is detected. The spoiler mechanism may be operable to spray fluid over the contents of the secure enclosure. The fluid may be such as to render the contents of the secure enclosure unusable. For example, the fluid may be paint.

5

10

15

20

25

present the οf aspect another According to invention, there is provided a system for controlling a device or machine, such as a self-service machine, for example an automated teller machine, the device machine having a secure enclosure that is securable using a lock, the system comprising controller, for example a processor, that is adapted or configured to control machine functionality and additionally the device or lock. The controller may be provided in the device or machine or may be provided separately or remotely therefrom.

According to yet another aspect of the present invention, there is provided a controller for controlling a device or machine, such as a self-service machine, for example an automated teller machine, the device or

machine having a secure enclosure that is securable using a lock, the controller, for example a processor, being adapted or configured to control device or machine functionality and additionally the lock. The controller may be provided in the device or machine or may be provided separately or remotely therefrom.

5

10

15

20

25

According to still another aspect of the invention, there is provided a computer program, preferably on a medium, readable computer a carrier ordata controlling a device or machine, such as a self-service machine, for example an automated teller machine, device or machine having a secure enclosure that is securable using a lock, the computer program having code machine ordevice controlling for instructions functionality and additionally the lock.

An automated teller machine in which the invention is embodied will now be described with reference to Figure 1, which is a diagrammatic representation of an automated teller machine.

Figure 1 shows an ATM 10 that has an outer housing having a screen for with a front fascia 14 keypad 18 presenting information to user, a a receiving user inputs, a slot 20 for receiving a magnetic card and a dispenser slot 22 through which money from a Also dispensed. dispenser mechanism (not shown) is shown) for transfer mechanism (not а is provided

reader (not shown). Connected to the screen 16, the keypad 18 and the card reader is a core module 24. This is provided in the housing 12, together with a safe 26 for storing money that is to be dispensed from the ATM. The safe 26 has a door 28 that is lockable using an electronic solenoid lock 30. The door 28 of the safe 26 is only opened when the ATM has to be replenished with money.

5

10

15

20

25

The core module 24 may be implemented in hardware or using a computer program. It is operable to control the reading such as functionality, overall MTA interpreting magnetic cards inserted into the housing 12 and receiving and acting on user inputs. The core 24 is also optionally connected to a central server 32, so that remote control and/or inspection and/or interrogation of the ATM are possible. All of this is standard. in addition to this, the core electronics module 24 is In lock 30. electronic the control to particular, the core module 24 is operable to cause the lock 30 to be released so that the safe door 28 can be The core module 24 is also operable to cause the lock 30 to be secured, when the door is closed. course, it will be appreciated that this may not always be necessary, because many locks can be automatically activated when the door is closed.

the integrity οf the ensure order to In communication channel, the core electronics module 24 is connected to the lock 30 via a secure link 32. secure link 32 includes an encryptor that is implemented in the core electronics 24, some form of cable 34 and a decryptor 36 that resides within the safe 26. All control signals sent to the lock 30 from the core module 24 are encrypted and passed to the decryptor 36. Hence, even although the processing core 24 is placed outside the safe 26, there is no associated security risk. one tapping the signals from the core 24 would be able to break into the line 32 and mimic the signals needed to open the lock.

5

10

15

20

25

Any suitable encryption technique could be used to encrypt the command signals for the lock 30. In particular, any of the encryption standards that are already in existence for financial and other institutions could be used.

The ATM 10 is adapted to control the lock 30 in response to user inputs. These can be received from the keypad 18 or the remote server 32 or an enhanced operator panel (EOP) (not shown), which is typically provided separately from the user keypad 18 on the front fascia 14. For high security environments, this option may necessitate encrypting the communication lines to the keypad 18 and EOP module. Such encryption is already

commonplace for customer inputs such as keyboards, and so will not be described herein in detail.

5

10

15

20.

25

In order for the core module 24 to implement audit trail functionality, each authorised user, for example, refill the safe service personnel who allocated a unique personal identification number (PIN) This information is stored in an or combination number. access control file. To open the safe 26, a PIN number has to be input to the core module 24, where it checked against the list of authorised numbers in the In the event that the number control access file. entered is not on the list, the core module 24 does not send an activation signal to the lock 30. In contrast, if the number entered is on the list, the core module 24 generates and sends an appropriately encrypted signal to the decryptor 36, which decrypts the message and sends a control signal to open the lock 30.

Each time a PIN is accepted and a command signal is generated and sent, the core module 24 records the PIN entered in a suitable log, together with the time at which it was entered. In this way, by subsequently referring to the log, it is possible to uniquely identify who opened the lock and when.

The data for access control, that is the list of authorised PINs, and audit trail log could be stored within the core 24. Alternatively, the data could be

stored or maintained in the remote server 32 and transferred in real time between the server 32 and the core 24 as and when desired.

updated could be PINs authorised list of The each ATM. personnel at service manually by Alternatively, when the ATM 10 is connected to a remote server 32, the data could be up-dated remotely by server 32.

5

10

15

20

25

The lock 30 itself could be a solenoid device with, for example a 9V input to drive the lock. It would be easy to downgrade existing electronic locks to provide a suitable lock to do this cheaply. Electronic solenoid locks have a lockbolt. This is used to secure the safe door closed. By enabling the solenoid using a control signal from the core module 24, the lockbolt can be moved To allow this, the lock could have to an open position. a simple handle to withdraw the lockbolt, once the lock's solenoid had been enabled. Alternatively the lock could be made with no handle at all, and the lockbolt could be withdrawn automatically when the solenoid is enabled. either case, the solenoid of the lock firstly has to be enabled by an appropriate control signal from the core 24.

In order to provide additional security, a detector 38 may be provided in association with the lock 30 and/or the door 28 of the safe 26 for detecting tampering with

5

10

15

20

25

the safe 26. The detector 38 is connected to the core module 24 via the secure link 32 and is operable to send an alarm signal thereto when tampering is detected. this case, it should be noted that a safe encryptor is provided for encrypting messages from the detector 38 to This could be provided separately or as the core 24. part of the safe decryptor module 36. In the event that tampering is detected, the detector 38 is operable to This is sent to the safe generate an alarm signal. encryptor, where it is encrypted and forwarded to the core processor 24. Once received at the core 24, signal is decrypted and recognised as being an alarm. The audible alarm. an activate then 24 may core Alternatively, when the ATM 10 is networked, the core 24 may generate an alarm signal and send it to the remote server 32, where appropriate action can be taken. this way, the system can be adapted to provide a socalled silent alarm.

As a further security measure, a spoiler mechanism 40 may be provided. This is adapted to cause damage to the contents of the safe 26 in the event that tampering is detected. The spoiler mechanism 40 may be operable to spray fluid over the contents of the safe 26. The fluid may be such as to render the contents of the secure enclosure unusable. For example, the fluid may be paint. The spoiler mechanism 40 may be actuatable in response to

a control command sent over the secure link 32 from the core module 24. Alternatively, the control command may be generated by the detector 38 and sent directly to the spoiler mechanism 40.

5

1:0

15

20

25

There are various ways in which the ATM 10 in which the invention is embodied could be implemented. In one example, a CIT worker could access the ATM safe 26 using an access level card (not shown) that can be inserted into the card slot 20 and read by the conventional card this, the authorised person would be To do reader. provided with a card and a PIN to give a preliminary He could then input the lock identity verification. combination, possibly together with his own unique lock PIN, either from the lock keypad, or alternatively from It should be noted that the customer keypad or EOP. these latter options mean that there need be no external keypad on the safe door 28 at the lock 30. As mentioned previously, audit trail data concerning times of access and personnel identity could be stored at the ATM, or transmitted immediately to the central server 32. Once is released, the service personnel can lock 30 replenish the safe 26. After this is done, the safe door is closed and the lock 30 is either manually or automatically moved to its secured position. Once this is done, a signal may be sent to the core 24 to confirm that the safe 26 is again secured.

Because of the extensive processing capabilities of most ATMs, many useful security functions can be simply and efficiently implemented. For example, the core module 24 could set time windows for planned access for particular personnel. This means that access to the safe 26 by authorised personnel can be set so that they are only allowed to open the safe at certain times, e.g. for thirty minutes after bank closing. Alternatively, this time window could be set by the server 32 and downloaded to the core processor 24. As an additional or alternative feature, verification of the person accessing the safe could be done by someone at the central server 32, rather than by the core processor 24. In this way, using the ATM network, there is provided a remote verification capability to allow the safe to be opened.

5

10

15

20

25

Whilst in the example shown in Figure 1, a separate mounted adjacent to the lock 36 is decryptor decryption could be done using a processor associated with or provided as part of the lock 30. However, an advantage of having a separate decryptor 36 is that it makes scalability easier. This is because in a single network the ATMs may use a variety of different locks having different processing needs or requirements. example a basic keypad lock might need very little high-end multidecryption or processing whereas a permit better trail lock may audit function

encryption/decryption capabilities. By having a separate decryptor all locks in a network can be retrofitted with the lock arrangement in which the invention is embodied, without having to take into account the capabilities of the existing locks. A further advantage of having a separate decryptor is that several locks could be run off it. This could be useful, because two locks are usually used on high security safes.

5

10

15

20

25

The present invention has many advantages. provides a very cheap electronic lock for safes and high security ATM applications, using the extensive processing multi-functional. capabilities of the ATM to become Additionally, it can be scaled up to become a high-end audit trail lock at little extra cost. Furthermore, direct communication with a central server allows remote audit; remote enable; remote user PIN change after preset remote user enable/disable; remote monitoring, remote signals etc; alarm status, lock including authentications, including who, what and when; and remote updates. For example, the remote server could up-date allowable time windows for opening, remote enabling of new authorised personnel at the ATM, and totally remote In addition, it is easy to program in time locking. delays, an anti-hold-up alarm, that is a silent alarm, and verification codes that access codes, indicative of task completion by CIT or serviceman. Furthermore, the arrangement provides for the control of two or more locks via one processing and encryption package.

5

10

15

20

25

Using the ATM in-built processing capability means that the bank does not need to manage a network for the ATMs controlled at the server, and an additional, separate network controlled by their CIT and servicing Furthermore, using existing, in-built organisations. processing capability means that the lock can incorporate security lock high trail and audit available today, at a fraction of the cost. As well as this it can be used as an intelligent hub to monitor and distribute alarm signals and can be used as the initiator the event spoiling/degradation devices in Furthermore, no special hardware is needed intrusion. for print-outs of any audit trail information, instead the standard ATM printer can be used.

A skilled person will appreciate that variations of the disclosed arrangements are possible without departing from the invention. For example, whilst the invention has been described with reference to an ATM, it will be appreciated that it could be used in any system that has processing capability that is provided for one function, which processing capability can be extended to be used to control a lock for an associated secure enclosure, such as a safe. For example, the invention may be used in

slot machines or vending machines, each of which may include processors for controlling functionality, but also need a secure enclosure for holding money input by users. Accordingly, the above description of a specific embodiment is made by way of example only and not for the purposes of limitation. It will be clear to the skilled person that minor modifications may be made without significant changes to the operation described.

Claims

- 1. A device or machine, such as a self-service machine, for example an automated teller machine, the device or machine having a secure enclosure; a lock for securing the secure enclosure and a controller, for example a processor, for controlling device or machine functionality and additionally the lock.
- 2. A device or machine as claimed in claim 1, wherein the controller is connected to the lock via a secure communications link.
 - 3. A device or machine as claimed in claim 2, wherein the secure link includes a decryptor that is provided in the secure enclosure and the controller is operable to encrypt a control command and send it to the decryptor, which decryptor is operable to decrypt the control command and pass the decrypted command to the lock.

20

- 4. A device or machine as claimed in any of the preceding claims, wherein the lock is an electronic solenoid lock.
- 5. A device or machine as claimed in any of the preceding claims, wherein the controller is operable to send

information relating to the lock to a central processor, such as a central server.

- 6. A device or machine as claimed in any of the preceding claims, wherein a plurality of locks is provided and the controller is operable to control each of these.
- 7. A device or machine as claimed in any of the preceding claims, wherein a detector is provided for detecting tampering with the safe.
- 8. A device or machine as claimed in claim 7, wherein the detector is operable to send an alarm signal to the controller when tampering is detected.

15

5

10

9. A device or machine as claimed in any of the preceding claims further comprising a spoiler mechanism that is operable to cause damage to the contents of the secure enclosure.

20

10. A device or machine as claimed in claim 9, wherein the spoiler mechanism is actuatable in response to a control signal from the controller.

- 11. A device or machine as claimed in claim 9 or claim 10, wherein the spoiler mechanism is actuatable in the event that tampering with the lock is detected.
- 12. A device or machine as claimed in any of claims 9 to 11, wherein the spoiler mechanism is operable to spray fluid over the contents of the secure enclosure.
- 13. A device or machine as claimed in any of the preceding claims, wherein the lock is an electronic solenoid lock.
 - 14. A device or machine as claimed in any of the preceding claims configured to communicate with a remote host.
- 15 15. A device or machine as claimed in any of the preceding claims further comprising a printer.
 - 16. A system for controlling a device or machine, such as a self-service machine, for example an automated teller machine, the device or machine having a secure enclosure that is securable using a lock, the system comprising controller, for example a processor, that is adapted or configured to control device or machine functionality and additionally the lock.

20

17. A system as claimed in claim 16, wherein the controller is able to communicate with the lock via a secure communications link.

18. A system as claimed in claim 17, wherein the secure link includes a decryptor that is provided in the secure enclosure and the controller is operable to encrypt a control command and send it to the decryptor, which decryptor is operable to decrypt the control command and pass the decrypted command to the lock.

19. A controller for controlling a device or machine, such as a self-service machine, for example an automated teller machine, the device or machine having a secure enclosure that is securable using a lock, the controller, for example a processor, being adapted or configured to control device or machine functionality and additionally the lock.

15

- 20 20.A controller as claimed in claim 19 that is provided in the device or machine or separately or remotely therefrom.
- 21. A computer program, preferably on a data carrier or a computer readable medium, for controlling a device or machine, such as a self-service machine, for example an

automated teller machine, the device or machine having a secure enclosure that is securable using a lock, the computer program having code or instructions for controlling device or machine functionality and additionally the lock.

- 22.A device or machine substantially as described hereinbefore with reference to the accompanying drawing.
- 23. A system substantially as described hereinbefore with reference to the accompanying drawing.

5

24. A controller substantially as described hereinbefore with reference to the accompanying drawing.

Abstract

An automated teller machine (10) having a secure enclosure (26); a lock (30) for securing the secure enclosure (26) and a processor (24) for controlling teller machine functionality and additionally the lock (30).

Figure 1

10

5

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

-1