

TRAVAUX DIRIGES N°6

Machines à états finis

I) Synthèse d'un machine à états finis

Soit le système suivant, dont la fonction est de détecter un "er" en fin de mot :

La tête de lecture lit les caractères et les décode en 2 signaux x1 et x2, selon la table cidessus.

Le système à concevoir a comme entrées x1 et x2, comme sortie z, et est cadencé par une horloge CK.

I.1) Etablir le **graphe d'états**, déduit uniquement du chronogramme, puis le graphe complet (de tous les cas pouvant exister) en machine de Mealy et en machine de Moore.

Me	aly	Moore			
Du chronogramme :	complet :	chronogramme :	complet :		
0	0	0/0	0/0		
1	1	1/0	1/0		
2	2	2/0	2/0		
3	3	3/1	3/1		

1.2) Etablir la **table des états**, issue du graphe complet. Cette table affiche les valeurs de x1 et x2 en fonction des états y. Les cases à remplir renseignent l'état futur de y (y+) et la sortie z pour les machines de Mealy et de Moore.

Mealy			Moore						
y+,z	x1x2 00	01	10	11	y+,z	x1x2 00	01	10	11
0					0				
1					1				
2					2				
3					3				
у					у				

- I.3) Rechercher d'éventuels états redondants.
- 1.4) Dessiner le graphe réduit.

Pour la suite, on codera les états en binaire naturel (le codage se fait parfois différemment à des fins d'optimisation).

I.5) Synthèse en bascules JK de la machine de Mealy

- Rappeler la table de vérité de la bascule JK synchrone sur front montant
- Établir la table de transition de la bascule JK
- Établir la table de vérité du séquenceur
- Donner les équations pour J_1 , K_1 , J_2 , K_2 et Z.

I.6) Synthèse en bascules D de la machine de Moore

- Rappeler la table de vérité de la bascule D synchrone sur front montant
- Établir la table de transition de la bascule D
- Établir la table de vérité du séquenceur
- Donner les équations pour D₁, D₂ et Z.

TRAVAIL EN AUTONOMIE

Simulations PSPICE

Remarque préliminaire : pour l'électronique numérique, consultez le fichier Excel de nomenclature présent sur le site pédagogie pour les références des composants.

Implémenter la machine à états finis de Mealy détectant la séquence 10 (machine expliquée en cours). On utilisera des bascules D (référence PSPICE : 7474).

Simulez cette machine sous PSPICE, avec ce stimulus comme entrée : 01100