

## PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS
DEPARTAMENTO DE ESTADÍSTICA
PROFESOR: REINALDO ARELLANO

Ayudante: Daniel Gálvez Primer semestre 2024

## Modelos Probabilísticos - EYP1025/1027 Ayudantía 1

- 1. Demuestre las siguientes igualdades.
  - (a)  $A = (A \cap B) \cup (A \cap B^c)$
  - (b)  $A^c B^c = B A$
  - (c)  $A \cap B^c = A (A \cap B)$
  - (d)  $A \cup B = A \cup (B \cap A^c)$
  - (e)  $A (B \cap C) = (A B) \cup (A C)$
- 2. Un trabajador elabora n artículos. El evento "El i-ésimo artículo es defectuoso" será denotado por  $A_i$ , con i=1,...,n. Describa los siguientes eventos usando los conjuntos  $A_i$  y las operaciones usuales entre eventos;
  - (a) B = "Al menos un artículo es defectuoso".
  - (b) C = "Ninguno de los n artículos es defectuoso".
  - (c) D = "Exactamente un artículo es defectuoso".
  - (d) E = "A lo más un artículo es defectuoso".
- 3. Sean A y B pertenecientes a una  $\sigma$ -algebra  $\mathcal{F}$ . Demuestre que  $\mathcal{F}$  contiene los conjuntos  $A \cap B$ ,  $A \setminus B y A \triangle B$ .
- 4. Sean  $\mathcal{F}_1$  y  $\mathcal{F}_2$  dos  $\sigma$ -álgebras definidos sobre un mismo espacio muestral,  $\Omega$ . Demuestre que  $\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2$  también corresponde a un  $\sigma$ -álgebra. Ahora defina  $\mathcal{F}^* = \mathcal{F}_1 \cup \mathcal{F}_2$ . ¿Es  $\mathcal{F}^*$  también una  $\sigma$ -algebra? Para esto considere los siguientes casos

$$\Omega = \{a, b, c\}, \quad \mathcal{F}_1 = \{\{a\}, \{b, c\}, \emptyset, \Omega\}, \quad \mathcal{F}_2 = \{\{b\}, \{a, c\}, \emptyset, \Omega\}$$

у

$$\Omega=\{1,2\}, \quad \mathcal{F}_1=\{\emptyset,\Omega\}, \quad \mathcal{F}_2=\{\emptyset,\{1\},\{2\},\Omega\}$$

- 5. Demuestre las siguientes propiedades generales de una medida de probabilidad: Sea  $(\Omega, \mathcal{A}, P)$  un espacio de probabilidad, entonces:
  - (a) Monotonía: Si  $A \subseteq B$ , tal que  $A, B \in \mathcal{A}$ , entonces  $P(A) \leq P(B)$ .
  - (b) Subaditividad: Si  $A_1, A_2, \dots A_k \in \mathcal{A}$ , entonces  $P\left(\bigcup_{n=1}^k A_n\right) \leq \sum_{n=1}^k P(A_n)$ .