AIFA: Genetic Algorithm

07/04/2025

Koustav Rudra

GA: Evolutionary Cycle

No improvement in fitness values for fixed generation

Find a number between 1 to 100 that fits functional value f(x)

Genetic Algorithms

- Binary encoding uses 0's and 1's in a chromosome
- Each bit corresponds to a gene
- The values for a given gene are alleles
- A set of chromosomes forms population

Population contains a set of feasible and some infeasible solutions, if needed

Step1: Encoding Problem

• Types of encoding a solution of the problem into chromosome

Binary encoding

- Difficulty to apply directly
- Not a natural encoding

1	0	0	1	1	0
---	---	---	---	---	---

- Value or real number encoding
 - For constrained optimization problem

1.23 0.57 0	0.12 2.34	3.12 2.	27
-------------	-----------	---------	----

- Permutation encoding
 - For combinatorial optimization problems
 - TS or Quadratic Assignment Problems

3	2	5	1	8	4	7	6
---	---	---	---	---	---	---	---

• Tree encoding

Step1: Encoding a Problem

- Critical issues with Encoding
- Feasibility of a chromosome
 - Solution decoded from a chromosome lies in a feasible region of the problem
- Legality of a chromosome
 - Chromosomes represent a solution to the problem
- Uniqueness of mapping (between chromosomes and solution to the problem)
 - Between one-to-many, many-to-one, and one-to-one, one-to-one mapping is highly desirable
 - With one chromosome representing only one solution to the problem

Step1: Encoding a Problem

Step2: Initialization

- Create initial population of solutions
 - Through a process of randomization
 - Through a Local search procedure
 - Selecting only feasible solutions
- Consider a Problem: Minimize: F(x1, x2, x3) with binary encoding, we have:

Initialization

- Population of solutions
- Fitness of solutions are evaluated (= objective function)

Fitness values Solution No. 13.2783 20.3749 19.8302 Chromosomes 52.9405 25.8202 36.0282 70.9202 38.9022 29.0292 21.9292

Step3: Selection ("Survival of the fittest")

- Sampling Mechanisms: Select chromosomes from sampling space
- Stochastic Sampling
- Roulette Wheel Selection:
 - Determine survival probability to fitness value
 - Randomly generate number between [0,1] and select the individual
- Deterministic Samplings
 - Select best individuals from the parents and offspring with no duplication of the individuals
- Mixed Sampling
 - both random and deterministic sampling

Step3: Selection ("Survival of the fittest")

- Sampling Mechanisms: Select chromosomes from sampling space
- Stochastic Sampling
- Roulette Wheel Selection:
 - Determine survival probability to fitness value
 - Randomly generate number between [0,1] and select the individual
- Deterministic Samplings
 - Select best individuals from the parents and offspring with no duplication of the individuals
- Mixed Sampling
 - Both random and deterministic sampling

Selection probability for kth individual

$$p_k = \frac{f_k}{\prod_{j=1}^{pop_size} f_j}$$

How to construct Roulette wheel?

- Calculate cumulative probability
- Construct roulette wheel based on p_k

Selection Schemes

- Roulette wheel selection without scaling
- Roulette wheel selection with scaling
- Stochastic tournament selection with a tournament size of two
- Remainder stochastic sampling without replacement
- Remainder stochastic sampling with replacement
- Elitism
- Which one to use?
- When?
- Balance between population diversity and selection pressure

Roulette wheel selection without scaling

• C1: 10

• C2: 30

• C3: 40

• C4: 50

Roulette wheel selection with scaling

	2			
1		3	7	
				100

	22			
21		23	27	
				120

Tradeoff: Selection pressure (fitted chromosome) vs Population diversity

Remainder stochastic sampling without replacement

• C1: 10

• C2: 30

• C3: 40

• C4: 50

• Average: 32.5

• C1: $^{20}/_{65}$

• C2: $^{60}/_{65}$

• C3: $\frac{80}{65}$

• C4: $^{100}/_{65}$

• Average: 32.5

• C1: $^{20}/_{65}$

• C2: $^{60}/_{65}$

• C3: $1 + \frac{15}{65}$

• C4: $1 + \frac{35}{65}$

• Average: 32.5

• C3+C4

• C1: $^{20}/_{65}$

• C2: $^{60}/_{65}$

• C3: $^{15}/_{65}$

• C4: $^{35}/_{65}$

• Average: 32.5

Roulette

Elitism

- A selected chromosome directly move to next generation
- No crossover or mutation

- Crossover operation (Based on crossover probability)
- Select parents from population based on crossover probability
- Randomly select two points between strings to perform crossover operation
- Perform crossover operations on selected strings
- Known for Local search operation

Crossover Probability: 0.8

- Mutation operation (based on mutation probability Pm)
- Each bit of every individual is modified with probability Pm
- Main operator for global search (looking at new areas of the search space)
- Pm usually small {0.001,...,0.01}
- Rule of thumb $Pm=\frac{1}{no.of}$ bits in chromosome
- 1010 **→** 0010
- Boost population diversity where solution might be localized
- Make a drastic change

- Minimize: F(x1,x2,x3)
- Pm = 1/12 = 0.083
- Generate Random number [0,1] for each bit
- Select bits having probability less than Pm
- Interchange the bits with each other

Generating offspring

- Directs the search towards promising regions in the search space
- Basic issues involved in selection phase
- Sampling space: Parents and Offspring
- Regular sampling space: all offspring + few parent = pop_size
- Enlarged sampling space: all offspring + all parent

Generating offspring

- Directs the search towards promising regions in the search space
- Basic issues involved in selection phase
- Sampling space: Parents and Offspring
- Regular sampling space: all offspring + few parent = pop_size
- Enlarged sampling space: All offspring + All parent

GA: Evolutionary Cycle

No improvement in fitness values for fixed generation

Find a number between 1 to 100 that fits functional value f(x)

Summary of Genetic Algorithms

```
• Begin
• Initialize population;
• Evaluate population;
• While(Termination Criteria Not Satisfied)
    • Select parents for reproduction
    • Perform crossover and mutation
    • Evaluate population;
```

Parameters for GA

- Empirical studies of Gas show the following:
- Crossover rate should be high generally, about 80-95%
- Mutation rate should be very low
- Crossover and mutation type: operators depend on the chosen encoding and on the problem
- Population size:
 - Very big population size usually does not improve performance of GA speed actually reduces
 - Good population size is about 20-30
 - The best population size depends on the size of encoded string (chromosomes)
 - More the encoded sizes, more should be the size of population

Parameters for GA

• Selection:

- Basic Roulette wheel selection can be used, but sometimes rank selection can be better
- Elitism should be used for sure if you do not use other method for saving the best found solution

• Encoding

• Depends on the problem and also on the size of instance of the problem

Thank You