Análise e Programação Orientada a Objetos

Sistemas de Informação

Unidade II – Parte I
A Linguagem de Modelagem
Unificada (UML)

Prof. Marciel de Liz Santos

Motivação – Necessidade de Padronização

- Percebeu-se a necessidade de um padrão para a modelagem de sistemas, que fosse aceito e utilizado amplamente.
- Padrão Facilita o intercâmbio de informações entre equipes
- Alguns esforços nesse sentido de padronização, o principal liderado pelo "três amigos".
 - Grady Booch (Booch Method)
 - James Rumbaugh (OOSE)
 - Ivar Jacobson (OMT)

UML

- Surge a UML (Unified Modeling Language) em 1996 como a melhor candidata para ser linguagem "unificadora" de notações.
- A UML é uma linguagem padrão para modelar sistemas orientados a objetos.
- UML é...
 - uma linguagem visual.
 - independente de linguagem de programação.
 - independente de processo de desenvolvimento.

Histórico

UML

- Desde que foi aprovada pela OMG, a UML tem tido grande aceitação pela comunidade de desenvolvedores de sistemas.
- É uma linguagem ainda em desenvolvimento.
- Aprender a notação é relativamente trivial
- Só aprender a notação UML não é tudo.
 - Muito mais importante:
 - habilidade de criar excelentes projetos
 - como pensar em objetos como projetar sistemas orientados a objetos.

Diagramas da UML

- Um processo de desenvolvimento que utilize a UML como linguagem de modelagem envolve a criação de diversos documentos.
 - Estes documentos podem ser textuais ou gráficos.
 - Estes documentos são denominados artefatos de software.
 - São os artefatos que compõem as visões do sistema.
- Os artefatos gráficos produzidos durante o desenvolvimento de um sistema de software são definidos através da utilização dos diagramas da UML.

Visões de um sistema

- Modelar um sistema complexo exige que se crie um conjunto de visões do modelo
 - Possibilidade de examinar e estudar o sistema a partir de diversas perspectivas

Diagramas UML: Visões

- As visões UML podem ser divididas em três grupos
 - Arquitetural Física
 - Diagrama de Componentes
 - Diagrama de Implantação
 - Estática ou Estrutural
 - Diagrama de Classes
 - Diagrama de Objetos

Diagramas UML: Visões

- Comportamental
 - Diagrama de Casos de Uso
 - Diagrama de Sequência
 - Diagrama de Colaboração
 - Diagrama de Estados
 - Diagrama de Atividades

Visão Estática ou Estrutural

- Diagrama de Classes
 - São os principais diagramas estruturais da UML
 - Exibe um conjunto de classes, interfaces e seus relacionamentos
 - As classes especificam a estrutura e o comportamento dos objetos (que são instâncias de classes)
- Diagrama de Objetos
 - Mostra objetos e seus relacionamentos
 - Representam instâncias estáticas de elementos dos diagramas de classes
 - São úteis para a modelagem de estruturas de dados complexas

Visão Estática ou Estrutural

Visão Comportamental

- Diagrama de Casos de Uso
 - Organiza e modela o comportamento do sistema
 - Mostra um conjunto de atores e casos de uso

Visão Comportamental

- Diagrama de Interação
 - Ilustra a implementação dinâmica do sistema
 - Mostra uma interação, envolvendo troca de mensagens entre objetos (classes)
 - Diagrama de Seqüência
 - Diagrama de interação que enfatiza o ordenamento das mensagens
 - Diagrama de Colaboração
 - Diagrama de interação que enfatiza a organização estrutural dos objetos que trocam mensagens

Visão Comportamental - Sequência

Visão Comportamental - Colaboração

Visão Comportamental

- Diagrama de Estados
 - Enfatiza o comportamento de um objeto de acordo com um conjunto de eventos
 - Mostra uma máquina contendo estados, transições, eventos e atividades
 - Nestes diagramas são modelados os estados em que um objeto pode estar e os eventos que fazem o objeto passar de um estado para outro
 - Usados para modelar o comportamento de objetos (com comportamento complexo)

Visão Comportamental - Estados

Visão Comportamental

- Diagrama de Atividades
 - Enfatiza o fluxo entre atividades
 - É semelhante aos antigos fluxogramas
 - Muito usado para modelar atividades concorrentes

Visão Comportamental - Atividades

Visão Arquitetural (Física)

- Diagrama de Componentes
 - Ilustra a implementação estática do sistema
 - Mostra um conjunto de componentes e seus relacionamentos
 - Exemplos de componentes são documentos, executáveis e tabelas de bancos de dados
- Diagrama de Implantação
 - Modela o ambiente em que o sistema será executado, ou seja, seus aspectos físicos:
 - São compostos por nós e relacionamentos de comunicação
 - Um nó pode ser um computador, uma rede, etc

Uso da UML no Processo Incremental e Iterativo

- A UML é independente do processo de desenvolvimento.
 - Vários processos podem utilizar a UML para modelagem de um sistema OO.
- Os artefatos de software construídos através da UML evoluem à medida que as iterações são realizadas.
 - A cada iteração, novos detalhes são adicionados a esses artefatos.
 - Além disso, a construção de um artefato fornece informações para adicionar detalhes a outros.