Dennis Kuzminer CSCI-UA 310-001 PS3b

- 3. To see if there is a k-alternating path, we can
 - a. Making k copies of the graph ($G^{(0)}$, $G^{(1)}$... $G^{(k-1)}$, $G^{(k)}$) connected by k edges with each edge that connects two graphs alternating between black and white.
 - b. Particularly, connect two such copies, i and i+1, iff an edge from i to i+1 (using the same connections as in the original graph) changes the current path color (alternates). This will make the "new" connections to the graph alternate in color.
 - c. Run Dijkstra from some node in $G^{(0)}$ to some node in $G^{(k)}$. Record whether Dijkstra has found a path.
 - d. Run Dijkstra again from some node in $G^{(0)}$ to some node in $G^{(k)}$; however, the starting node this time should have a different color than the staring node in step c. Record whether Dijkstra has found a path. This is to check whether there is a k-alternating path but starting on the opposite color of $G^{(0)}$.
 - e. If Dijkstra has found a path on either of these, then there exists a k-alternating path. In this case, because we are making k (with k times as many edges and vertices) copies of the graph, the time complexity of this algorithm is O((k|V| + k|E|)log(k|V|)). Although, we are running Dijkstra twice that should not impact time complexity.