The second secon

TRANSLATION NO. 1526

DAAR 13
DATE: 17500 1. 1965

DDC AVAILABILITY NOTICE

Qualified requestors may obtain copies of this document from DDC.

This publication has been translated from the open literature and is available to the general public. Non-DOD agencies may purchase this publication from the Clearinghouse for Federal Scientific and Technical Information, U. S. Department of Commerce, Springfield, Va.

> DEPARTMENT OF THE ARMY Fort Detrick Frederick, Maryland

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

ISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

USE OF THE ANTIBODY NEUTRALIZATION TEST FOR STUDYING THE BODIES OF RODENTS KILLED BY PLAGUE

Mikrobiologiya i Immunologiya Osobo Opasnykh Infektsiy (Microbiology and Immunology of Especially Dangorous Diseases), Saratov, 1964, pp 226-230 M. I. Levi, A. G. Momot, and Yu. G. Suchkov (Restov-on-Don)

Bacteriological research on rodents and ectoparasites is the basic method for detecting the causative agent of plague in nature. The most valuable material for bacteriological studies on plague, as is well known, are bodies of animals collected in the steppes. On one hand they represent, so-to-speak, a natural selection from the rodent population; on the other hand, the amount of bacteria in theoreans and tissues of the animals killed by infection with plague is much higher than that in the organs and tissues of animals infected, which are caught alive.

However, bacteriological studies of decomposed carcasses of the animals meet with well known difficulties, since isolation of the plague pathogen cannot be successfully accomplished due to the rapid growth of commonplace microorganisms in the culture media. Study of the spinal cord of decomposed bodies of rodents is more effective; however, the causative agent may be successfully isolated for only a short period of time if the carcasses are at a temperature of 20°-30°C.

M. I. Levi and A. G. Momot (1961) developed and laid the foundation for the antibody neutralization test (ANT) in order to identify the specific plague antigen.

This paper is devoted to experimental exploration of several additional improved methods for analysis of rodent carcasses using the ANT, and also for studying the efficiency of this test in connection with the analysis of their individual organs.

Guinea pigs, white rats, and white mice, and meridienal gerbils from the left bank of the Volga River, and small susliks (Citallus) were succutaneously inoculated with virulent strains of the plague pathogen. Carcasses of the fallen animals were kept for 10 days at room temperature (20°-27°C); the ANT was then carried out with a 10% suspension of the decomposed organs. The guinea pigs were studied separately, while the organs from the 10 white mice were collected together in a single test. At the same time agar cultures were made from the same suspensions and also from spinal cord suspensions; white mice were inoculated with these materials.

The suspension of rodent organ or tissue was prepared by grinding in a mortar with sand and washing the pulp which formed with a salt solution. For the ANT 0.25 ml of diluted agglutinating anti-plague serum (two serum units) was mixed with 0.25 ml of a twice-diluted suspension of the spleen, liver, and femural bone; the mixture was left for one hour at 37°C. Then one drop of formaldehyde-treated sheep erythrocytes, sensitized by the lA fraction of the plague pathogen, was added to each test tube. At the same time all necessary controls were set up. A check of the ANT was made every three hours or on the following morning. In all experiments the same series of agglutinating anti-plague serum (series no. 69, manufactured by the "Mikrob" Institute), and the sensitized erythrocytes, which were agglutinated by the anti-plague serum in the passive hemagglutination test up to a dilution of 1:320,000, were used.

In connection with the participation of heterologous ingredients in the ANT, the sheep erythrocytes and suspension of organs from different kinds of rodents (horse anti-plague serum is not to be considered, since it was introduced in the experiment in very high dilutions), nonspecific clumping of experimental and control erythrocytes was frequently observed, apparently due to heterophyllous antibodies in organ suspensions. Various methods of treating tissue suspensions (mice and guinea pig liver and spleen) were tried in order to remove them: settling or centrifuging by using the upper layer of the liquid, filtering through filter paper after heating for 30 minutes at 56-58°C, with and without agitation of the suspension.

In the majority of cases it appeared that after heating the suspension and with subsequent filtering, the non-specific clumping of erythrocytes was eliminated; other methods of treating the suspension resulted in only partial elimination.

We then tested the effect of similar treatment on a specific titer of the suspension in the ANT of a large number of animals in a somewhat condensed program. Formaldehyde was added to the suspensions for the safety of the experimenters. All variations were tried at the same time in the tests (Table 1).

For comparison the treated suspension was also studied bacteriologically and through bioassay (white mice). In addition, organs of the animal carcasses were cultured by agar impression.

With the latter method a culture was successfully isolated only from the bodies kept at room temperature not longer than 43 hours. Even less frequently, plague pathogens were isolated from the original suspension of organs due to the growth of extraneous microorganisms. Where carcasses were kept longer than 43 hours, isolation of the plague pathogen was possible only by culturing bone marrow of several rodents, and with this method no culture was noted by the end of a week.

No culture was isolated by heating the suspension for 30 minutes at 56°-58°C, nor by heating and treating with a formaldehyde solution (as high as 1% concentration). In administering these suspensions to white mice, the mide did not perish, and no plague causative agent was isolated.

As seen from Table 1, the addition of a concentration of Formalin up to 1% to the suspensions under analysis with subsequent 30-minute heating at 56°-58°C and filtering did not reduce their titer in the ANT. In addition, the treatment as indicated fully sterilized the suspension, thus shortening the experiment.

In a number of cases Formalin and heat treatment of the suspension lead to a rise in the titer in the ANT. A similar phenomenon was noted by M. I. Levi and co-authors (1962) in setting up the passive hemagglutination test. This lead to the selection of treating the suspension with Formalin, heating, and filtering for practical research (qv. "Kratkoye Rudovodstvo..., (Concise Manual...)" 1962).

After working out the methodology, we investigated several dozen carcasses of animals of various types, artificially infected with plague, by means of the ANT (table 2). Only the experiments with the meridional gerbils from the left bank of the Volga River were set up immediately after inoculation of the animals. The suspension from their organs was heated for 30 minutes at $56^{\circ}-58^{\circ}\mathrm{C}$ and left standing for 16-18 hours at room temperature. Tested in the ANT was the upper layer of clear liquid.

From Table 2 it is evident that the spleen, as a rule, was the most highly active.

In a special experiment on white nice individual organs which had been kept warm for a long time were tested with the use of the ANT. Mice were sectioned on the day of their death and their spleen, liver, and femural bone extracted and placed in a Petri dish at room temperature for 6-10 days (during this time the organs were becoming dessicated); suspensions of these organs were treated with Formalin, heated, and filtered. In this case a high average harmonic titer of the organ suspension was obtained in the ANT, even after the organs had been preserved for 8-10 days.

TARLE 1

Effect of Various Methods of Treating Suspensions in ANT Titer

• • •	(3') Bul	животиих	(0)	ı e -	хранения (сутки)	(f) Суспензия	Средняя гармоническая титра суспензий в РНА после раз- личных способов обработки			
•	MENTHOPO -	число я	Штани	Доза зараж инкробные	Время х	органа	р исходивя суспензия	mporperan Se Se	прогрет ^(д) и профиль- трованная	формали- вив. про- гретая и профильт-
(1)	Морская свинка	2	1300	1010-		релезенка Пречень Бусть	1440 440 200	1600 800 40 0	3520 440 400	3520 280 400
(m)	Белая ирыса	7	•	10=10	ζ:	јелезенка јиечень кость	131 0 74	69 0 64	63 140	171 74 281
(n)	Белая мишь	2	•	10	[] c	селезенка печень кость	7680 5440 1280		2560 2560	6400 7680 1320
	To we	2	1230	104 – 109	1 7:	селезенка присчень кость	960 21120 5160	1600 21760 10280	1280 12800 10280	1600 21060 10320
	To we	2	1260	101-10		Селезенка п печень В жость	10880 1280 80	5440 1920 80	10560 1600 160	6400 2560 80
	To me	1	1252	10	ζ:	селезенка печень кость	10240 640 320	20480 640 160	20480 640 320	20480 640 320
(p)	Малий суслик	6	1300	ļ.	1 8	Селезенка почень в жость	19210 2330 3960	16640 2550 3850	16190 2450 3890	16620 4530 2330
' (o)	To me	4	-	10=	1 (селезенка и)печень е)кость	246080 14240 1200	246080 12960 1360	14240 1320	164160 7200 1840

Note: The titer is the quantity reversible to the last dilution active in the antibody neutralization test (ANT).

Kev:	a-Type of animal						
	b-Number of animals						
	cStrains						
	d-Infection dose, bacteria						
	ePreservation time for						
	carcasses (in days)						
	f-Organ suspension						
	g-Average harmonic titer in						
	suspension in ANT after						
	various treatments						
	h-Original suspension						
	i-Heated at 560-58°C						

j-Heated and filtered
k-Treated with Formalin,
heated, and filtered
l-Guinea pig
m-White rat
n-White mouse
o-Ditto
p-Suslik (Citellus)
q-Spleen
r-Liver
s-Bone

Activity of Decomposed Organ Suspensions in the Antibody Neutralization Test

(a)	(d)	(c)	Доза за- ражения	HADOUS OF HER	Средняя тармоническая тит- ра суспензий органов в PUA			
Вид животного	Число вотных	Штани	(микроб- ные клетки)	трупа (сутки)	ка селезен-	(h) печень	KOCTЬ	
ј) Морская свинка к) Белая крыса 1) То же т) Белая мышь 1) То же 1) То же т) Малый суслик 1) То же о) Полуденная песчанка 1) То же	4 1 6 5 1 4 5 1 10 12 45	1300 1230 1260 1300 1217	104 109 109 104 103 105—106 101—106 103 103 101—106	2 0 7 1-3 5 18 15-18 15-16 0	240 160 310 3580 1250 5920 8170 163840 888830 233950 17720	70 40 210 5630 320 8160 22590 20480 17360 820 6120	160 910 430 160 220 350 10240 3460 4400 13820	

Key: a-Type of animal
b-Number of animals
c-Strains
d-Infection dose
(bacterial cells)
e-Preservation time for
carcasses (days)
f-Average harmonic titer
of organ suspensions in

g--Spleen
h--Liver
i--Bone
j--Guinea pig
k--White rat
l--Ditto
m--White mouse
n--Suslik (Citellus)
o--Meriones meridianus (gerbil)

In the antibody neutralization test we also investigated the bones (verbebrae) of the midday gerbil (<u>Neriones meridianus</u>) from the left bank. As is known, dessicated bones are often found in epizootic plague foci (Varshavskiy and co-authors, 1957). Titers of suspensions prepared from the vertebrae and preserved for 3-11 days at 20°-28°C were the same as in suspensions prepared on the day of the animal's death.

Conclusions

1. With the use of the antibody neutralization test it is possible to study the decomposed bodies of plague-infected animals. Up to 18 days (the observation period) after the death of the animal, when the carcass is kept at room temperature there appeared to be no regular reduction in antibody activity in the antibody neutralization test (ANT). By using bacteriological or biological methods the plague pathogen was isolated only during the first seven days after the death of the animal.

- 2. In treating the tissue suspension with Formulin, heating, and filtering the non-specific clumping of erythrocytes was kept to a minimum in the antibody neutralization test, while the activity of the suspension did not change substantially.
- 3. In analyzing suspensions of the various types of animals perished from plague (132 carcasses) in the antibody neutralization test in the established that the activity of organ suspensions of guinca place white rats was somewhat lower than that of white mice, suslike, and Moriones meridianus gerbils from the left bank of the river. The splcon suspension from the above-mentioned animals often showed the greatest activity.
- 4. Dessicated soft tissue and bone of the animal's carcass can be analyzed with the antibody neutralization test.

Bibliography

- Varshavskiy, S. N., Rotshil'd, Ye. V., and Shilov, N. N., Subject of a report presented at the Nauchnaya Konferentsiya po Prirodnoy Ochagovosti i Epidemiologii Osobo Opasnykh Infektsionnykh Zabolevaniy (Scientific Conference on the State of Foci and Epidemiology of Highly Infectious Diseases), Saratov, 1957, pp 79-83;
- Shishkin, A. K. (Editor), Kratkoye Rukovodstvo po Epizootologicheskomu

 Obsledovaniyu v Prirodnom Ochage Chuny Severo-Zapadnogo Prikaspiya

 (Concise Manual on Epizootiological Examinations in the Natural Plague
 Focus of the Northwestern Caspian Area), Rostov-On-Don, 1962;
- Levi, M. I., and Momot, A. G., Sbornik Nauchnykh Rabot Elistinskov Protivochumov Stantsii (Collection of Scientific Works of the Elista Anti-Plague Station), Elista, 1961, 2, pp 207-214;
- Levi, M. I., Orlova, G. M., and Suchkov, Yu. G., Sbornik Nauchnykh Rabot
 Azerbaydzhanskov Protivochumov Stantsii (Collection of Scientific
 Works of the Azerbaidzhan Anti-Plague Station), Baku, 1962, 3 pp 191200;
- Levi, M. I., Basova, N. N., Suchkov, Yug. G., Orlova, G. M., Gerasyuk, L. G., and Momot, A. G., Zhurnal Mikrobiologii Epidemiologii i Immunobiologii (Journal of Microbiology, Epidemiology, and Immunobiology), 1962, No. 10, pp 40-46.