

SEQUENCE LISTING

<120> ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR, AND USES THEREOF

	THEREOF					
<130>	28341/6280NCP	F	RECEIVE	:D		
<140> <141>	US 09/668,314 2000-09-22		JUN 1 9 2002			
<150> <151>	US 60/169,232 1999-12-06	TECH	CENTER 1600,	/2900		
	US 09/416,901 1999-10-13					
	US 60/155,493 1999-09-23					
	US 09/404,133 1999-09-23					-
	-PCT/US99/20881 1999-09-23		. <u> </u>			٠
<150> <151>	US 60/101,594 1998-09-24					
<160>	83	,				
<170>	PatentIn version	on 3.1				
<210> <211> <212> <213>	1 1804 DNA Homo sapiens			,		
<400> atgggc	1 gcac tggcccgggc	gctgctgctg	cctctgctgg	cccagtggct	cctgcgcgcc	60
gccccg	gagc tggcccccgc	gcccttcacg	ctgcccctcc	gggtggccgc	ggccacgaac	120
cgcgta	gttg cgcccacccc	gggacccggg	acccctgccg	agcgccacgc	cgacggcttg	180
gcgctc	geee tggageetge	cctggcgtcc	cccgcgggcg	ccgccaactt	cttggccatg	240

300

gtagacaacc tgcaggggga ctctggccgc ggctactacc tggagatgct gatcgggacc

```
cccccgcaga agctacagat tctcgttgac actggaagca gtaactttqc cqtqqcaqqa
                                                                   360
accecgcact cetacataga cacgtacttt gacacagaga ggtetagcac ataccgetee
                                                                   420
aagggetttg acgtcacagt gaagtacaca caaggaaget ggacgggett cgttggggaa
                                                                   480
gacctcgtca ccatccccaa aggettcaat acttcttttc ttgtcaacat tgccactatt
                                                                   540
tttgaatcag agaatttctt tttgcctggg attaaatgga atggaatact tggcctagct
                                                                   600
tatgccacac ttgccaagcc atcaagttct ctggagacct tcttcgactc cctggtgaca
                                                                   660
caagcaaaca tooccaacgt tttotocatg cagatgtgtg gagccggctt gcccgttgct
                                                                   720
ggatctggga ccaacggagg tagtcttgtc ttgggtggaa ttgaaccaag tttgtataaa
                                                                   780
ggagacatct ggtatacccc tattaaggaa gagtggtact accagataga aattctgaaa
                                                                   840
ttggaaattg gaggccaaag ccttaatctg gactgcagag agtataacgc agacaaggcc
                                                                   900
atcgtggaca gtggcaccac gctgctgcgc ctgccccaga aggtgtttga tgcggtggtg
                                                                   960
gaagetgtgg cccgcgcate tetgatteca gaattetetg atggtttetg gaetgggtee
                                                                  1020
cagctggcgt gctggacgaa ttcggaaaca ccttggtctt acttccctaa aatctccatc
                                                                  1080
tacctgagag atgagaactc cagcaggtca ttccgtatca caatcctgcc tcagctttac
                                                                  1140
attcagccca tgatgggggc cggcctgaat tatgaatgtt accgattcgg catttcccca
                                                                  1200
tccacaaatg cgctggtgat cggtgccacg gtgatggagg gcttctacgt catcttcgac
                                                                  1260
agageccaga agagggtggg ettegeageg ageceetgtg cagaaattge aggtgetgea
                                                                  1320
gtgtctgaaa tttccgggcc tttctcaaca gaggatgtag ccagcaactg tgtccccgct
                                                                  1380
cagtetttga gegageeeat tttgtggatt gtgteetatg egeteatgag egtetgtgga
                                                                  1440
gccatcctcc ttgtcttaat cgtcctgctg ctgctgccgt tccggtgtca gcgtcgcccc
                                                                  1500
cgtgaccctg aggtcgtcaa tgatgagtcc tctctggtca gacatcgctg gaaatgaata
                                                                  1560
gccaggcctg acctcaagca accatgaact cagctattaa gaaaatcaca tttccagggc
                                                                  1620
agcageeggg ategatggtg gegetttete etgtgeeeae eegtetteaa tetetgttet
                                                                  1680
gctcccagat gccttctaga ttcactgtct tttgattctt gattttcaag ctttcaaatc
                                                                  1740
1800
                                                                  1804
aaaa
```

<400> 2

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp 1 10 15

<210> 2 <211> 518 <212> PRT <213> Homo sapiens

Бей	ьец	Arg	20	AIG	PIO	GIU	ьeu	25	PIO	Ala	PIO	rne	30	ьeu	PIO
Leu	Arg	Val 35	Ala	Ala	Ala	Thr	Asn 40	Arg	Val	Val	Ala	Pro 45	Thr	Pro	Gly
Pro	Gly 50	Thr	Pro	Ala	Glu	Arg 55	His	Ala	Asp	Gly	Leu 60	Ala	Leu	Ala	Leu
Glu 65	Pro	Ala	Leu	Ala	Ser 70	Pro	Ala	Gly	Ala	Ala 75	Asn	Phe	Leu	Ala	Met 80
Val	Asp	Asn	Leu	Gln 85	Gly	Asp	Ser	Gly	Arg 90	Gly	Tyr	Tyr	Leu	Glu 95	Met
Leu	Ile	Gly	Thr 100	Pro	Pro	Gln	Lys	Leu 105	Gln	Ile	Leu	Val	Asp 110	Thr	Gly
Ser	Ser	Asn 115	Phe	Ala	Val	Ala	Gly 120	Thr	Pro	His	Ser	Tyr 125	Ile	Asp	Thr
Tyr	Phe 130	Asp	Thr	Glu	Arg	Ser 135	Ser	Thr	Tyr	Arg	Ser 140	Lys	Gly	Phe	Āsp
Val 145	Thr	Val	Lys	Tyr	Thr 150	Gln	Gly	Ser	Trp	Thr 155	Gly	Phe	Val	Gly	Glu 160
Asp	Leu	Val	Thr	Ile 165	Pro	Lys	Gly	Phe	Asn 170	Thr	Ser	Phe	Leu	Val 175	Asn
Ile	Ala	Thr	Ile 180	Phe	Glu	Ser	Glu	Asn 185	Phe	Phe	Leu	Pro	Gly 190	Ile	Lys
Trp	Asn	Gly 195			Gly			_				Ala 205	Lys	Pro	Ser
Ser	Ser 210	Leu	Glu	Thr	Phe	Phe 215	Asp	Ser	Leu	Val	Thr 220	Gln	Ala	Asn	Ile
Pro 225	Asn	Val	Phe	Ser	Met 230	Gln	Met	Cys	Gly	Ala 235	Gly	Leu	Pro	Val	Ala 240
Gly	Ser	Gly	Thr	Asn	Gly	Gly	Ser	Leu	Val	Leu	Gly	Gly	Ile	Glu	Pro

250

Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp 260 265 270

255

245

Tyr	Tyr	Gln 275	Ile	Glu	Ile	Leu	Lys 280	Leu	Glu	Ile	Gly	Gly 285	Gln	Ser	Leu
Asn	Leu 290	Asp	Cys	Arg	Glu	Tyr 295	Asn	Ala	Asp	Lys	Ala 300	Ile	Val ·	Asp	Ser
Gly 305	Thr	Thr	Leu	Leu	Arg 310	Leu	Pro	Gln	Lys	Val 315	Phe	Asp	Ala	Val	Val 320
Glu	Ala	Val	Ala	Arg 325	Ala	Ser	Leu	Ile	Pro 330	Glu	Phe	Ser	Asp	Gly 335	Phe
Trp	Thr	Gly	Ser 340	Gln	Leu	Ala	Cys	Trp 345	Thr	Asn	Ser	Glu	Thr 350	Pro	Trp
Ser	Tyr	Phe 355	Pro	Lys	Ile	Ser	Ile 360	Tyr	Leu	Arg	Asp	Glu 365	Asn	Ser	Ser
Arg	Ser 370	Phe	Arg	Ile	Thr	Ile 375	Leu	Pro	Gln	Leu	Tyr 380	Ile	Gln	Pro	Met
Met 385	Gly	Ala	Gly	Leu	Asn 390	Tyr	Glu	Cys	Tyr	Arg 395	Phe	Gly	Ile	Ser	Pro 400
Ser	Thr	Asn	Ala	Leu 405	Val	Ile	Gly	Ala	Thr 410	Val	Met	Glu	Gly	Phe 415	Tyr
Val	Ile	Phe	Asp 420	Arg	Ala	Gln	Lys	Arg 425	Val	Gly	Phe	Ala	Ala 430	Ser	Pro
Cys	Ala	Glu 435	Ile	Ala	Gly	Ala	Ala 440	Val	Ser	Glu	Ile	Ser 445	Gly	Pro	Phe
Ser	Thr 450	Glu	Asp	Val	Ala	Ser 455	Asn	Суѕ	Val	Pro	Ala 460	Gln	Ser	Leu	Ser
Glu 465	Pro	Ile	Leu	Trp	Ile 470	Val	Ser	Туг	Ala	Leu 475	Met	Ser	Val	Cys	Gly 480
Ala	Ile	Leu	Leu	Val 485	Leu	Ile	Val	Leu	Leu 490	Leu	Leu	Pro	Phe	Arg 495	Cys
Gln	Arg	Arg	Pro 500	Arg	Asp	Pro	Glu	Val 505	Val	Asn	Asp	Glu	Ser 510	Ser	Leu
Val	Arg	His 515	Arg	Trp	Lys										

<210> 3 <211> 2070 <212> DNA

<213> Homo sapiens

<400> 3 60 atggcccaag ccctgccctg gctcctgctg tggatggcg cgggagtgct gcctgcccac 120 ggcacccage aeggcatecg getgeecetg egcageggee tggggggege ecceetgggg 180 gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240 gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 300 360 gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 420 taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 480 540 gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 600 gggctggcct atgctgagat tgccaggcct gacgactccc tggagccttt ctttgactct 660 ctggtaaagc agacccacgt teccaacete tteteeetge agetttgtgg tgetggette cccctcaacc agtctgaagt gctggcctct gtcggaggga gcatgatcat tggaggtatc 720 780 gaccactege tgtacacagg cagtetetgg tatacaceca teeggeggga gtggtattat 840 gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag 900 tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgttt gcccaagaaa gtgtttgaag ctgcagtcaa atccatcaag gcagcctcct ccacggagaa gttccctgat 960 ggtttctggc taggagagca gctggtgtgc tggcaagcag gcaccacccc ttggaacatt 1020 1080 ttcccagtca tctcactcta cctaatgggt gaggttacca accagtcctt ccgcatcacc atccttccgc agcaatacct gcggccagtg gaagatgtgg ccacgtccca agacgactgt 1140 1200 tacaagtttg ccatctcaca gtcatccacg ggcactgtta tgggagctgt tatcatggag ggcttctacg ttgtctttga tcgggcccga aaacgaattg gctttgctgt cagcgcttgc 1260 catgtgcacg atgagttcag gacggcagcg gtggaaggcc cttttgtcac cttggacatg 1320 gaagactgtg gctacaacat tccacagaca gatgagtcaa ccctcatgac catagcctat 1380 gtcatggctg ccatctgcgc cctcttcatg ctgccactct gcctcatggt gtgtcagtgg 1440 cgctgcctcc gctgcctgcg ccagcagcat gatgactttg ctgatgacat ctccctgctg 1500 aagtgaggag gcccatgggc agaagataga gattcccctg gaccacacct ccgtggttca 1560 ctttggtcac aagtaggaga cacagatggc acctgtggcc agagcacctc aggaccctcc 1620 ccacccacca aatgcctctg ccttgatgga gaaggaaaag gctggcaagg tgggttccag 1680 ggactgtacc tgtaggaaac agaaaagaga agaaagaagc actctgctgg cgggaatact 1740

cttggtcacc	tcaaatttaa	gtcgggaaat	tctgctgctt	gaaacttcag	ccctgaacct	1800
ttgtccacca	ttcctttaaa	ttctccaacc	çaaagtattc	ttcttttctt	agtttcagaa	1860
gtactggcat	cacacgcagg	ttaccttggc	gtgtgtccct	gtggtaccct	ggcagagaag	1920
agaccaagct	tgtttccctg	ctggccaaag	tcagtaggag	aggatgcaca	gtttgctatt	1980
tgctttagag	acagggactg	tataaacaag	cctaacattg	gtgcaaagat	tgcctcttga	2040
attaaaaaaa	aaaaaaaaa	aaaaaaaaa				2070

<211> 501

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Gly Ser Phe Val Glu Met Val 50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp 180 185 Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 225 230 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg 250 Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln 265 Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 295 300 Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp 310 315 Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr 330 Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg 355 360 365 Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 370 Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu 385 390 395 Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 425

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro 435 440 445 .

Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala 450 460

Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp 465 470 475 480

Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp 485 490 495

Ile Ser Leu Leu Lys 500

<210> 5

<211> 1977

<212> DNA

<213> Homo sapiens

<400> 5 atggcccaag ccctgccctg gctcctgctg tggatgggcg cgggagtgct gcctgcccac 60 ggcacccage acqqcatccq qctqcccctq cqcaqcqqcc tqqqqqqcqc ccccctqqqq 120 180 . gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240 300 gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360: taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420 ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 480. gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540 gggctggcct atgctgagat tgccaggctt tgtggtgctg gcttccccct caaccagtct 600 gaagtgctgg cctctgtcgg agggagcatg atcattggag gtatcgacca ctcgctgtac 660 acaggcagtc tctggtatac acccatccgg cgggagtggt attatgaggt gatcattgtg 720 780 cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagtacaa ctatgacaag agcattgtgg acagtggcac caccaacctt cgtttgccca agaaagtgtt tgaagctgca 840 900 gtcaaatcca tcaaggcagc ctcctccacg gagaagttcc ctgatggttt ctggctagga 960 gagcagctgg tgtgctggca agcaggcacc accccttgga acattttccc agtcatctca ctctacctaa tgggtgaggt taccaaccag tccttccgca tcaccatcct tccgcagcaa 1020 tacctgcggc cagtggaaga tgtggccacg tcccaagacg actgttacaa gtttgccatc 1080 tcacagtcat ccacgggcac tgttatggga gctgttatca tggagggctt ctacgttgtc 1140

tttgatcggg	cccgaaaacg	aattggcttt	gctgtcagcg	cttgccatgt	gcacgatgag	1200
ttcaggacgg	cagcggtgga	aggccctttt	gtcaccttgg	acatggaaga	ctgtggctac	1260
aacattccac	agacagatga	gtcaaccctc	atgaccatag	cctatgtcat	ggctgccatc	1320
tgcgccctct	tcatgctgcc	actctgcctc	atggtgtgtc	agtggcgctg	cctccgctgc	1380
ctgcgccagc	agcatgatga	ctttgctgat	gacatctccc	tgctgaagtg	aggaggccca	1440
tgggcagaag	atagagattc	ccctggacca	cacctccgtg	gttcactttg	gtcacaagta	1500
ggagacacag	atggcacctg	tggccagagc	acctcaggac	cctccccacc	caccaaatgc	1560
ctctgccttg	atggagaagg	aaaaggctgg	caaggtgggt	tccagggact	gtacctgtag	1620
gaaacagaaa	agagaagaaa	gaagcactct	gctggcggga	atactcttgg	tcacctcaaa	1680
tttaagtcgg	gaaattctgc	tgcttgaaac	ttcagccctg	aacctttgtc	caccattcct	1740
ttaaattctc	caacccaaag	tattcttctt	ttcttagttt	cagaagtact	ggcatcacac	1800
gcaggttacc	ttggcgtgtg	tccctgtggt	accctggcag	agaagagacc	aagcttgttt	1860
ccctgctggc	caaagtcagt	aggagaggat	gcacagtttg	ctatttgctt	tagagacagg	1920
gactgtataa	acaagcctaa	cattggtgca	aagattgcct	cttgaaaaaa	aaaaaaa	1977

<210> 6

<400> 6

Met Ala Gl
n Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Glu Pro Glu Glu Pro Gly Arg Gly Ser Phe Val Glu Met Val 50 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 100 105 110

<211> 476

<212> PRT

<213> Homo sapiens

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 115 Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 135 Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 165 170 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val 230 Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr 245 250 Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val 290 295 Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser 305 315 310 320 Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile 325 330 335 Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln 340 345 350 Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val 355 360

· .

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala 370

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu 390 395

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu 410

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr 420 425

Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu 435 440

Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln 450 455

His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys 470

<210> 7 <211> 2043 <212> DNA <213> Mus musculus

<400> 7

atggccccag	cgctgcactg	gctcctgcta	tgggtgggct	cgggaatgct	gcctgcccag	60
ggaacccatc	tcggcatccg	gctgcccctt	cgcagcggcc	tggcagggcc	acccctgggc	. 120
ctgaggctgc	cccgggagac	tgacgaggaa	tcggaggagc	ctggccggag	aggcagcttt	180
gtggagatgg	tggacaacct	gaggggaaag	tccggccagg	gctactatgt	ggagatgacc	240
gtaggcagcc	ccccacagac	gctcaacatc	ctggtggaca	cgggcagtag	taactttgca	300
gtgggggctg	ccccacaccc	tttcctgcat	cgctactacc	agaggcagct	gtccagcaca	360
tatcgagacc	tccgaaaggg	tgtgtatgtg	ccctacaccc	agggcaagtg	ggaggggaa	420
ctgggcaccg	acctggtgag	catccctcat	ggccccaacg	tcactgtgcg	tgccaacatt	. 480
gctgccatca	ctgaatcgga	caagttcttc	atcaatggtt	ccaactggga	gggcatccta	540
gggctggcct	atgctgagat	tgccaggccc	gacgactctt	tggagccctt	ctttgactcc	600
ctggtgaagc	agacccacat	tcccaacatc	ttttccctgc	agctctgtgg	cgctggcttc	660
ccctcaacc	agaccgaggc	actggcctcg	gtgggaggga	gcatgatcat	tggtggtatc	720
gaccactcgc	tatacacggg	cagtctctgg	tacacaccca	tccggcggga	gtggtattat	780
gaagtgatca	ttgtacgtgt	ggaaatcaat	ggtcaagatc	tcaagatgga	ctgcaaggag	840
tacaactacg	acaagagcat	tgtggacagt	gggaccacca	accttcgctt	gcccaagaaa	900

: ;;

gtatttgaag ctgccgtcaa	gtccatcaag	gcagcctcct	cgacggagaa	gttcccggat	960
ggcttttggc taggggagca	gctggtgtgc	tggcaagcag	gcacgacccc	ttggaacatt	1020
ttcccagtca tttcacttta	cctcatgggt	gaagtcacca	atcagtcctt	ccgcatcacc	1080
atccttcctc agcaatacct	acggccggtg	gaggacgtgg	ccacgtccca	agacgactgt	1140
tacaagttcg ctgtctcaca	gtcatccacg	ggcactgtta	tgggagccgt	catcatggaa	1200
ggtttctatg tcgtcttcga	tcgagcccga	aagcgaattg	gctttgctgt	cagcgcttgc	1260
catgtgcacg atgagttcag	gacggcggca	gtggaaggtc	cgtttgttac	ggcagacatg	1320
gaagactgtg gctacaacat	tccccagaca	gatgagtcaa	cacttatgac	catagcctat	1380
gtcatggcgg ccatctgcgc	cctcttcatg	ttgccactct	gcctcatggt	atgtcagtgg	1440
cgctgcctgc gttgcctgcg	ccaccagcac	gatgactttg	ctgatgacat	ctccctgctc	1500
aagtaaggag gctcgtgggc	agatgatgga	gacgcccctg	gaccacatct	gggtggttcc	·1560
ctttggtcac atgagttgga	gctatggatg	gtacctgtgg	ccagagcacc	tcaggaccct	1620
caccaacctg ccaatgcttc	tggcgtgaca	gaacagagaa	atcaggcaag	ctggattaca	1680
gggcttgcac ctgtaggaca	caggagaggg	aaggaagcag	cgttctggtg	gcaggaatat	1740
ccttaggcac cacaaacttg	agttggaaat	tttgctgctt	gaagcttcag	ccctgaccct	1800
ctgcccagca tcctttagag	tctccaacct	aaagtattct	ttatgtcctt	ccagaagtac	1860
tggcgtcata ctcaggctac	ccggcatgtg	tccctgtggt	accctggcag	agaaagggcc	1920
aatctcattc cctgctggcc	aaagtcagca	gaagaaggtg	aagtttgcca	gttgctttag	1980
tgatagggac tgcagactca	agcctacact	ggtacaaaga	ctgcgtcttg	agataaacaa	2040
gaa					2043

<211> 501

<212> PRT

<213> Mus musculus

<400> 8

Met Ala Pro Ala Leu His Trp Leu Leu Leu Trp Val Gly Ser Gly Met 1 $$ 5 $$ 10 $$ 15

Leu Pro Ala Gln Gly Thr His Leu Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30

Gly Leu Ala Gly Pro Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Glu Ser Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val 50 55 60

, j. j.

Gly Phe Trp	Leu Gly		Gln	Leu	Val	Cys 330	Trp	Gln	Ala	Gly	Thr 335	Thr	
Pro Trp Asn	Ile Phe	e Pro	Val	Ile	Ser 345	Leu	Tyr	Leu	Met	Gly 350	Glu	Val	
Thr Asn Gln 355		e Arg	Ile	Thr 360	Ile	Leu	Pro	Gln	Gln 365	Tyr	Leu	Arg	
Pro Val Glu 370	Asp Val	. Ala	Thr 375	Ser	Gln	Asp	Asp	Cys 380	Tyr	Lys	Phe	Ala	
Val Ser Gln 385	Ser Ser	Thr 390	Gly	Thr	Val	Met	Gly 395	Ala	Val	Ile `	.Met	Glu 400	
Gly Phe Tyr	Val Val		Asp	Arg	Ala	Arg 410	Lys	Arg	Ile	Gly	Phe 415	Ala	
Val Ser Ala	Cys His	. Val	His	Asp	Glu 425	Phe	Arg	Thr	Ala	Ala 430	·Val	Glu	
Gly Pro Phe 435		Ala	Asp	Met 440	Glu	Asp	Cys	Gly	Tyr 445	Asn	Ile	Pro	
Gln Thr Asp 450	Glu Ser	Thr	Leu 455	Met	Thr	Ile	Ala	Tyr 460	Val	Met	Ala	Ala	
			455	. .=				460				÷ =	· · · · · · · · · · · · · · · · · · ·
450 Ile Cys Ala	Leu Phe	Met 470	455 Leu	Pro	Leu	Cys	Leu 475	460 Met	Val	Cys	Gln	Trp 480	
450 Ile Cys Ala 465	Leu Phe Arg Cys 485	Met 470	455 Leu	Pro	Leu	Cys	Leu 475	460 Met	Val	Cys	Gln	Trp 480	
450 Ile Cys Ala 465 Arg Cys Leu Ile Ser Leu <210> 9 <211> 2088 <212> DNA	Leu Phe Arg Cys 485 Leu Lys 500	Met 470	455 Leu	Pro	Leu	Cys	Leu 475 Asp	460 Met	Val	Cys	Gln	Trp 480	
450 Ile Cys Ala 465 Arg Cys Leu Ile Ser Leu <210> 9 <211> 2088 <212> DNA <213> Homo <400> 9	Leu Phe Arg Cys 485 Leu Lys 500	Met 470 3 Leu	455 Leu Arg	Pro	Leu	Cys His 490	Leu 475 Asp	460 Met	Val	Cys	Gln Asp 495	Trp 480 Asp	60
450 Ile Cys Ala 465 Arg Cys Leu Ile Ser Leu <210> 9 <211> 2088 <212> DNA <213> Homo	Leu Phe Arg Cys 485 Leu Lys 500	Met 470	Arg	Pro	Leu Gln	Cys His 490	Leu 475 Asp	Asp	Val	Cys Ala	Gln Asp 495	Trp 480 Asp	60 120
450 Ile Cys Ala 465 Arg Cys Leu Ile Ser Leu <210> 9 <211> 2088 <212> DNA <213> Homo <400> 9 atgctgcccg	Leu Phe Arg Cys 485 Leu Lys 500 sapiens gtttggca	Met 470 Leu	Arg Arg	Pro His	Leu Gln g gco	Cys His 490	Leu 475 Asp	Asp Cgga	Val Phe	Cys Ala	Gln Asp 495	Trp 480 Asp	
Ile Cys Ala 465 Arg Cys Leu Ile Ser Leu <210> 9 <211> 2088 <212> DNA <213> Homo <400> 9 atgctgcccg cccactgatg	Leu Phe Arg Cys 485 Leu Lys 500 sapiens gtttggca gtaatgct	Met 470 Leu cat go	Leu Arg	Pro His	Leu Gln g gco	Cys His 490	Leu 475 Asp	Asp cgga ttga	Val Phe ctcgc	Cys Ala ggc (gtt (atc a	Gln Asp 495	Trp 480 Asp gaggta ggcaga accaaa	120

ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360 420 gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 480 atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 540 aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600 660 gcggaggagg atgactcgga tgtctggtgg ggcggagcag acacagacta tgcagatggg agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720 780 gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 840 ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca gagtctgtgg aagaggtggt tcgagttcct acaacagcag ccagtacccc tgatgccgtt 900 960 gacaagtate tegagacace tggggatgag aatgaacatg eecattteea gaaagecaaa 1020 gagaggettg aggecaagea cegagagaga atgteecagg teatgagaga atgggaagag 1080 gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1140 . caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctggtggag acacacatgg ccagagtgga agccatgctc aatgaccgcc gccgcctggc cctggagaac 1200 1260 tacatcaccg ctctgcaggc tgttcctcct cggcctcgtc acgtgttcaa tatgctaaag aagtatgtcc gcgcagaaca gaaggacaga cagcacaccc taaagcattt cyagcatgtg 1320 1380 cgcatggtgg atcccaagaa agccgctcag atccggtccc aggttatgac acacctccgt gtgatttatg agcgcatgaa tcagtctctc tccctgctct acaacgtgcc tgcagtggcc 1440 1500 gaggagattc aggatgaagt tgatgagctg cttcagaaag agcaaaacta ttcagatgac gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgatgc tctcatgcca 1560 1620 tetttgaceg aaaegaaaae caeegtggag eteetteeeg tgaatggaga gtteageetg 1680 gacgatetee ageegtggea ttettttggg getgactetg tgeeageeaa cacagaaaac 1740 gaagttgage etgttgatge eegecetget geegacegag gaetgaeeae tegaeeaggt tctgggttga caaatatcaa gacggaggag atctctgaag tgaagatgga tgcagaattc 1800 1860 cgacatgact caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg ggttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 1920 atogtoatoa cottggtgat gotgaagaag aaacagtaca catocattoa toatggtgtg 1980 2040 gtggaggttg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac 2088 ggctacgaaa atccaaccta caagttcttt gagcagatgc agaactag

2.

<211> 695

<212> PRT

<213> Homo sapiens

<400> 10

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg

5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val 100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 145 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu 230 Glu Ala Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu 245 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 280 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 290 295 Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys 305 310 Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 325 330 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 355 360 365 Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn 390 395 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 420 425 430 Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 435 Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 450 455 Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 465 470

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn 485 490

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 500

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 515 520

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 530 535

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 550 555

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr 565 570

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser 585

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val 600 605

His His Glr Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys 610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val 625 630

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile 650

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg 660 665

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys 675

Phe Phe Glu Gln Met Gln Asn 690 695

<210> 11

<211> 2088

<212> DNA

<213> Homo sapiens

<400> 11

atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta 60

120 cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 180 ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240 300 cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg ggccgcaage agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360 gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420 480 atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540 ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600 gcggaggagg atgactcgga tgtctggtgg ygcggagcag acacagacta tgcagatggg 660 720 agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780 ecctacgaag aagecacaga gagaaccace agcattgeca ecaccaceae caccaccaca 840 gagtetgtgg aagaggtggt tegagtteet acaacagcag ecagtacece tgatgeegtt √ 900 gacaagtate tegagacaee tggggatgag aatgaacatg cecattteca gaaagecaaa 960 gagaggetty aggecaagea cegagagaga atgteecagg teatgagaga atgggaagag 1020 gcagaacgte aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1080 caggagaaag tgyaatottt ggaacaggaa gcagccaacg agagacagca gctggtgyag 1140 acacacatgg compagtgga agocatgoto aatgacogoo googootggo cotggagaac 1200. tacatuaccy etetgeagge tgtteeteet eggeetegte aegtgtteaa tatgetaaag 1260 aagtatytee gegeagaaca gaaggacaga cagcacaece taaagcattt egageatgtg-1320 1380 cgcatggtgg atcccaagaa agccgctcag atccggtccc aggttatgac acacctccgt gtgatttatg agegeatgaa teagtetete teeetgetet acaaegtgee tgeagtggee 1440 gaggagattc aggatgaagt tgatgagctg cttcagaaag agcaaaacta ttcagatgac 1500 gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgatgc tctcatgcca 1560 1620 tetttgaceg aaacgaaaac cacegtggag eteetteeeg tgaatggaga gtteageetg gacgatetee ageogtggea ttettttggg getgaetetg tgecageeaa caeagaaaae 1680 1740 gaagttgage ctgttgatge cegecetget geegaeegag gaetgaeeae tegaeeaggt 1800 tetgggttga caaatateaa gacggaggag atetetgaag tgaatetgga tgcagaatte cgacatgact caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg 1860 ggttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 1920 atcgtcatca ccttggtgat gctgaagaag aaacagtaca catccattca tcatggtgtg 1980

ggctacgaaa atccaaccta caagttettt gagcagatge agaactag <210> 12 <211> 695 <212> PRT <213> Homo sapiens <400> 12 Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg 5 : 10 15 Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 25 Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gin Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 90 Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val 100 Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140 Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 145 Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 165 Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu

gtggaggttg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac

2040

2088

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 215 220 Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu Glu Ala Asp Asp Asp Glu Asp Glu Asp Gly Asp Glu Val Glu Glu Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 260 265 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 280 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 290 295 Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys 310 315 Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 325 330 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 345 350 Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 360 Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 375 380 Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn 385 390 395 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe 405 Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 420 425 Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 455

15

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn 485 Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 500 Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 515 520 Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 530 535 Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 545 550 555 Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr 570 Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser 585 580 590 Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val 60.5 His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val 🦠 Ile Val Ile Thr Leu Val Met Leu Lys Lys Gln Tyr Thr Ser Ile 650 645 His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn 690

<210>	13	•
<211>	2088	
<212>	DNA	
<213>	Homo	sapien

<400> 13						
	gtttggcact	gctcctgctg	gccgcctgga	cggctcgggc	gctggaggta	60
cccactgatg	gtaatgctgg	cctgctggct	gaaccccaga	ttgccatgtt	ctgtggcaga	120
ctgaacatgc	acatgaatgt	ccagaatggg	aagtgggatt	cagatccatc	agggaccaaa	180
acctgcattg	ataccaagga	aggcatcctg	cagtattgcc	aagaagtcta	ccctgaactg	240
cagatcacca	atgtggtaga	agccaaccaa	ccagtgacca	tccagaactg	gtgcaagcgg	300
ggccgcaagc	agtgcaagac	ccatccccac	tttgtgattc	cctaccgctg	cttagttggt	360
gagtttgtaa	gtgatgccct	tctcgttcct	gacaagtgca	aattcttaca	ccaggagagg	420
atggatgttt	gcgaaactca	tcttcactgg	cacaccgtcg	ccaaagagac	atgcagtgag	480
aagagtacca	acttgcatga	ctacggcatg	ttgctgccct	gcggaattga	caagttccga	540
ggggtagagt	ttgtgtgttg	cccactggct	gaagaaagtg	acaatgtgga	ttctgctgat	600
gcggaggagg	atgactcgga	tgtctggtgg	ggcggagcag	acacayacta	tgcagatggg	660
agtgaagaca	aagtagtaga	agtagcagag	gaggaagaag	tggctyaggt	ggaagaagaa	720
gaageegatg	atgacgagga	cgatgaggat	ggtgatgagg	tagaggaaga	ggctgaggaa	780
ccctacgaag	aagccacaga	gagaaccacc	agcattgcca	ccaccaccac	caccaccaca	. 840
gagtstgtgg	aagaggtggt	tcgagttcct	acaacagcag	ccagtaccac	tgatgccgtt	900
gacaagtatc	tegagacace	tggggatgag	aatgaacatg	cccatttcca	gaaagccaaa	960
gagaggcttg	aggccaagca	ccgagagaga	atgtcccagg	tcatgagaga	atgggaagag	1020
gcayaacgtc	aagcaaagaa	cttgcctaaa	gctgataaga	aggcagttat	ccagcátttc	1080
caggagaaag	tggaatcttt	ggaacaggaa	gcagccaacg	agagacagca	gctggtggag	1140
acadacatgg	ccagagtgga	agccatgctc	aatgaccgcc	gccgcctggc	cctggagaac	1200
tacatcaccg	ctctgcaggc	tgttcctcct	cggcctcgtc	acgtgttcaa	tatgctaaag	1260
aagtatgtcc	gcgcagaaca	gaaggacaga	cagcacaccc	taaagcattt	cgagcatgtg	1320
cgcatggtąg	atcccaagaa	agccgctcag	atccggtccc	aggttatgac	acacctccgt	1380
gtgatttatg	agcgcatgaa	tcagtctctc	tccctgctct	acaacgtgcc	tgcagtggcc	1440
gaggagattc	aggatgaagt	tgatgagctg	cttcagaaag	agcaaaacta	ttcagatgac	1500
gtcttggcca	acatgattag	tgaaccaagg	atcagttacg	gaaacgatgc	tctcatgcca	1560
tctttgaccg	aaacgaaaac	caccgtggag	ctccttcccg	tgaatggaga	gttcagcctg	1620
gacgatctcc	agccgtggca	ttcttttggg	gctgactctg	tgccagccaa	cacagaaaac	1680
gaagttgagc	ctgttgatgc	ccgccctgct	gccgaccgag	gactgaccac	tcgaccaggt	1740

the project

135

caaatatcaa	gacggaggag	atctctgaag	tgaagatgga	tgcagaattc	1800
caggatatga	agttcatcat	caaaaattgg	tgttctttgc	agaagatgtg	1860
aaggtgcaat	cattggactc	atggtgggcg	gtgttgtcat	agcgacagtg	1920
ccttggtgat	gctgaagaag	aaacagtaca	catccattca	tcatggtgtg	1980
acgccgctgt	caccccagag	gagcgccacc	tgtccaagat	gcagcagaac	2040
atccaaccta	caagttcttt	gagcagatgc	agaactag		2088
	caggatatga aaggtgcaat ccttggtgat acgccgctgt	caggatatga agttcatcat aaggtgcaat cattggactc ccttggtgat gctgaagaag acgccgctgt caccccagag	caggatatga agttcatcat caaaaattgg aaggtgcaat cattggactc atggtgggcg ccttggtgat gctgaagaag aaacagtaca acgccgctgt caccccagag gagcgccacc	caggatatga agttcatcat caaaaattgg tgttctttgc aaggtgcaat cattggactc atggtgggcg gtgttgtcat ccttggtgat gctgaagaag aaacagtaca catccattca	caaatatcaa gacggaggag atctctgaag tgaagatgga tgcagaattc caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg ccttggtgat gctgaagaag aaacagtaca catccattca tcatggtgtg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac atccaaccta caagttcttt gagcagatgc agaactag

<211> 695

<212> PRT

<213> Homo sapiens

<400> 14

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Vai Tyr Pro Glu Leu 65 70 75 80

Gin Ile Thr Asn Val Val Glu Ala Asn Gin Pro Val Thr Ile Gin Asn 85 90 95 . . . A 31

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val 100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 165 170 175 Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu 225 230 235 Glu Ala Asp Asp Asp Glu Asp Glu Asp Gly Asp Glu Val Glu Glu 245 250 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 265 Ala Thr Thr Thr Thr Thr Thr Giu Ser Val Glu Glu Val Val Arg Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 295 Glu Thr Pro Gly Asp Glu Asa Glu His Ala His Phe Gln Lys Ala Lys .315 Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 330 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 355 . 360 Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 370 375

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His 420 425 430

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe

405

385

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 450 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn 485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 545 550 550

Giu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr 565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asm Ile Lys Thr Glu Glu Ile Ser 580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val 595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys 610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val 625 630 635 640

Ile Phe Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile 645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys 675 680 685

Phe Phe Glu Gln Met Gln Asn 690

<210> 15 <211> 2094 <212> DNA <213>

Homo sapiens

<400> 15 60 atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120 ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180 acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240 . cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300 ggeegeaage agtgeaagae ceateeceae tttgtgatte eetaeegetg ettagttggt 360 gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420 atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480 aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540 : 600 ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 660 gcggaggagg atgactegga tgtctggtgg ggcggagcag acacagacta tgcagatggg 720 agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 780 gaagccgatg atgacgagga cyatgaggat ggtgatgagg tagaggaaga ggctgaggaa 840 coctacgaag aagccacaga gagaaccacc ayoattgcca ccaccaccac caccaccaca gagtetytgg aagaggtggt tegagtteet acaacagcag ceagtacece tgatgeegtt . 5 900 960 gacaagtate tegagacace tggggatgag aatgaacatg cecattteca gaaagecaaa 1020 gagaggettg aggecaagea eegagagaga atgteeeagg teatgagaga atgggaagag 1080 gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1140 caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctggtggag acacacatgg ccagagtgga agccatgctc aatgaccgcc gccgcctggc cctggagaac 1200 tacatcaccg ctctgcaggc tgttcctcct cggcctcgtc acgtgttcaa tatgctaaag 1260 aagtatgtcc gcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320 cgcatggtgg atcccaagaa agccgctcag atccggtccc aggttatgac acacctccgt 1380 gtgatttatg agcgcatgaa tcagtctctc tccctgctct acaacgtgcc tgcagtggcc 1440 gaggagattc aggatgaagt tgatgagctg cttcagaaag agcaaaacta ttcagatgac 1500 gtcttggcca acatgattag tgaaccaagg atcagttacg gaaacgatgc tctcatgcca 1560 1620 tetttgaceg aaacgaaaac cacegtggag etcetteeeg tgaatggaga gtteageetg

E. 1

7.4

gacgatctcc	agccgtggca	ttcttttggg	gctgactctg	tgccagccaa	cacagaaaac	1680
gaagttgagc	ctgttgatgc	ccgccctgct	gccgaccgag	gactgaccac	tcgaccaggt	1740
tctgggttga	caaatatcaa	gacggaggag	atctctgaag	tgaagatgga	tgcagaattc	1800
cgacatgact	caggatatga	agttcatcat	caaaaattgg	tgttctttgc	agaagatgtģ	1860
ggttcaaaca	aaggtgcaat	cattggactc	atggtgggcg	gtgttgtcat	agcgacagtg	1920
atcgtcatca	ccttggtgat	gctgaagaag	aaacagtaca	catccattca	tcatggtgtg	1980
gtggaggttg	acgccgctgt	caccccagag	gagegeeace	tgtccaagat	gcagcagaac	2040
ggctacgaaa	atccaaccta	caagttcttt	gagcagatgc	agaacaagaa	gtag	2094

<211> 697

<212> PRT

<213> Home sapiens

<400> 16

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg 1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val 100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 145 150 155 160 Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Pro Cys Gly Ile Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 185 Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 210 215 220 Val Val Glu Val Ala Glu Glu Glu Glu Val Ala Glu Val Glu Glu Glu Glu Ala Asp Asp Glu Asp Glu Asp Glu Asp Glu Val Glu Glu 245 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 265 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 280 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 295 300 Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 330 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 345 Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 355 360 Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 370 375 Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn 385 390 395 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe 405 410

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn 485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 515 520 525

Val Glu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr 565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser 580 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val 595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys 610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val 625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Gln Tyr Thr Ser Ile 645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg 660 665 670

Phe Phe Glu Gln Met Gln Asn Lys Lys 690 695

<210> 17 <211> 2094 <212> DNA

<213> Homo sapiens

<400> 17 60 atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120 180 ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 240 acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300 360 geograage agtgeaagae ceateceeae tttgtgatte cetacegetg ettagttggt gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420 atggatgttt gegaaactca tetteactgg cacaccgtcg ccaaagagac atgcagtgag 480 :--540 aagagtadda acttgcatga ctacggcatg ttgctgcdct gcggaattga caagttdcga 600 ggggtagagt ttgtgtgttg cocactggot gaagaaagtg acaatgtgga ttotgotgat 660 geggaggagg atgaetegga tgtetggtgg ggeggageag acacagaeta tgeagatggg 720 agtgaayaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 780 gaageeyatg atgaegagga egatgaggat ggtgatgagg tagaggaaga ggetgaggaa coctacgaag aagocacaga gagaaccacc agoattgosa coaccaccac caccaccaca 840 900 gagtetgtgg aagaggtggt tegagtteet acaacagcag ceagtacece tgatgeegtt 960 gacaagtate tegagacaee tggggatgag aatgaacatg eecattteea gaaageeaaa 1020 gagaggettg aggeeaagea eegagagaga atgteeeagg teatgagaga atgggaagag 1080 gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcayttat ccagcatttc caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctggtggag 1140 acacacatgg ccagagtgga agccatgctc aatgaccgcc gccgcctggc cctggagaac 1200 tacatcaccg ctctgcaggc tgttcctcct cggcctcgtc acgtgttcaa tatgctaaag 1260 aagtatgtee gegeagaaca gaaggaeaga eageaeaece taaageattt egageatgtg 1320 cgcatggtgg atcccaagaa agccgctcag atccggtccc aggttatgac acacctccgt 1380 gtgatttatg agcgcatgaa tcagtctctc tccctgctct acaacgtgcc tgcagtggcc 1440 gaggagattc aggatgaagt tgatgagctg cttcagaaag agcaaaacta ttcagatgac 1500

14.

gtcttggcca acatgattag	tgaaccaagg	atcagttacg	gaaacgatgc	tetçatgeca	1560
tctttgaccg aaacgaaaac	caccgtggag	ctccttcccg	tgaatggaga	gttcagcctg	1620
gacgatctcc agccgtggca	ttcttttggg	gctgactctg	tgccagccaa	cacagaaaac	1680
gaagttgagc ctgttgatgc	ccgccctgct	gccgaccgag	gactgaccac	tcgaccaggt	1740
tctgggttga caaatatcaa	gacggaggag	atctctgaag	tgaatctgga	tgcagaattc	1800
cgacatgact caggatatga	agttcatcat	caaaaattgg	tgttctttgc	agaagatgtg	1860
ggttcaaaca aaggtgcaat	cattggactc	atggtgggcg	gtgttgtcat	agcgacagtg	1920
atcgtcatca ccttggtgat	gctgaagaag	aaacagtaca	catccattca	tcatggtgtg	1980
gtggaggttg acgccgctgt	caccccagag	gagcgccacc	tgtccaagat	gcagcagaac	2040
ggctacgaaa atccaaccta	caagttcttt	gagcagatgc	agaaçaagaa	gtag	2094

<211> 697

<212> PRT

<213> Homo sapiens

<400> 18

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Tle Asp 50 60 .

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 150 Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Pro Cys Gly Ile 170 Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 200 Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 210 215 220 Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu Glu Ala Asp Asp Asp Glu Asp Glu Asp Gly Asp Glu Val Glu Glu 245 · 250 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 🗼 🗼 270 265 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Arg 275 280 285 Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Fro Gly Asp Glu Asn Glu His Ala His Phe Glu Lys Aka Lys 310 315 Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 330 Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 340 345 350 Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 355 360 Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 370 375 380 Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn 395

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe 410 Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His

Thr Leu Lys His Phe Glu His Val Arq Met Val Asp Pro Lys Lys Ala

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala 465 470

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 520

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln 530 535 540

555

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser

Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys 610 615

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val 625

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg 660 665

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys 680

Phe Phe Glu Gln Met Gln Asn Lys Lys 690

<210> 19 <211> 2094 <212> DNA

<213> Homo sapiens

<400> atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta 60 cccactgatg gtaatgetgg cctgetgget gaaccccaga ttgccatgtt ctgtggcaga 120 ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180 acctgcattg ataccaagga aggeatectg cagtattgcc aagaagtcta ccctgaactg 240 cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300 ggccgcaage agtgcaagae ccatececae tttgtgatte ectacegetg ettagttggt 2 360 LAP CASS gagtttgtaa gtgatgccct tetegtteet gaeaagtgea aattettaca ceaggagagg 420 atggatgttt gogaaactoa tottoactyg cacacogtog ccaaagagac atgcagtgag 480 aayagtacca acttgcatga ctacggcatg tigctgccct gcggaattga caagttccga 540 ggggtagagt tigtgtgttg becaetgget gaagaaagtg acaatgigga tietgeligat 600 geggaggagg atgaetegga tytetggtgg ggeggageag acacagaeta tgeagatggg 🖫 660 agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 🥶 720 🦠 🚎🚁 gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 78.0 840 cectaegaag aagecacaga gagaaceaee ageattgeea ecaecaceae caecaceaea gagtetgtgg aagaggtggt tegagtteet acaacageag eeagtaceee tgatgeegtt 900 gacaagtate tegagacaee tggggatgag aatgaacatg eecattteea gaaageeaaa 960 gagaggettg aggeeaagea eegagagaga atgteecagg teatgagaga atgggaagag 1020 1080 gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctggtggag 1140 acacacatgg ccagagtgga agccatgctc aatgaccgcc gccgcctggc cctggagaac 1200 tacatcaccg ctctgcaggc tgttcctcct cggcctcgtc acgtgttcaa tatgctaaag 1260 aagtatgtcc gcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320

· 原學

1380

cgcatggtgg atcccaagaa agccgctcag atccggtccc aggttatgac acacctccgt

gtgatttatg	agcgcatgaa	tcagtctctc	tccctgctct	acaacgtgcc	tgcagtggcc '	1440
gaggagattc	aggatgaagt	tgatgagctg	cttcagaaag	agcaaaacta	ttcagatgac	1500
gtcttggcca	acatgattag	tgaaccaagg	atcagttacg	gaaacgatgc	tctcatgcca	1560
tctttgaccg	aaacgaaaac	caccgtggag	ctccttcccg	tgaatggaga	gttcagcctg	1620
gacgatctcc	agccgtggca	ttcttttggg	gctgactctg	tgccagccaa	cacagaaaac	1680
gaagttgagc	ctgttgatgc	ccgccctgct	gccgaccgag	gactgaccac	tcgaccaggt	1740
tctgggttga	caaatatcaa	gacggaggag	atctctgaag	tgaagatgga	tgcagaattc	1800
cgacatgact	caggatatga	agttcatcat	caaaaattgg	tgttctttgc	agaagatgtg	1860
ggttcaaaca	aaggtgcaat	cattggactc	atggtgggcg	gtgttgtcat	agcgacagtg	1920
atcttcatca	ccttggtgat	gctgaagaag	aaacagtaca	catccattca	tcatggtgtg	1980
gtygaggttg	acgccgctgt	caccccagag	gagogocaco	tgtccaagat	gcagcagaac	2040
gyctacgaaa	atccaaccta	caagttcttt	gagcagatgc	agaacaagaa	gtag	2094

<211> 697

<212> PRT

<213> Homo sapiens

<400> 20

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg 1 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val 100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125 Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 210 225

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu 225 230 235 240

Glu Ala Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu 245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 260 265 270

Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

. .

燮:

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu 290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys 305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg 325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp 340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu 355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala 370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn 390 Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe 405 410 Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala 435 440 Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu 450 455 Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn 490 Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser 505 Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr 520 525 Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn 555 Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr 570 Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser 580 585 Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val 595 600 605 His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys 610 615 Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val

44

Ile Phe Ile Thr Leu Val Met Leu Lys Lys Gln Tyr Thr Ser Ile 650

His His Gly Val Val Glu Val Asp Ala Val Thr Pro Glu Glu Arg

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys

Phe Phe Glu Gln Met Gln Asn Lys Lys 695

<210> 21 <211> 1341 <212> DNA

Homo sapiens <213>

<400> 60 atggctagca tgactggtgg acagcaaatg ggtcgcggat ccacccagca cggcatccgg etgecectge geageggeet ggggggegee eeeetgggge tgeggetgee eegggagaee gacgaagagc ccgaggagcc cggccggagg ggcagctttg tggagatggt ggacaacctg 180 240 aggggcaagt cggggcaggg ctactacgtg gagatgaccg tgggcagccc cccgcagacg ctcaacatcc tggtggatac aggcagcagt aactttgcag tgggtgctgc ccccacccc 300 tteetgeate getactacea gaggeagetg teeageacat acegggaeet eeggaagggt 360 gtgtatgtgc cctacaccca gggcaagtgg gaaggggagc tgggcaccga cctggtaagc 420 atcccccatg gccccaacgt cactgtgcgt gccaacattg ctgccatcac tgaatcagac 480 augttettea teaaeggete eaaetgggaa ggeateetgg ggetggeeta tgetgagatt 540 gccaggcctg acgactccct ggagcctttc tttgactctc tggtaaagca gacccacqtt 600 cccaacctct tctccctgca cctttgtggt gctggcttcc ccctcaacca gtctgaagtg 660 ctggcctctg tcggagggag catgatcatt ggaggtatcg accactcgct gtacacaggc 720 agtetetggt atacacecat eeggegggag tggtattatg aggteateat tgtgegggtg 780 gagatcaatg gacaggatct gaaaatggac tgcaaggagt acaactatga caagagcatt 840 900 gtggacagtg gcaccaccaa cettegtttg cecaagaaag tgtttgaage tgeagteaaa tecateaagg cageeteete caeggagaag tteeetgatg gtttetgget aggagageag 960 ctggtgtgct ggcaagcagg caccaccct tggaacattt tcccagtcat ctcactctac 1020 ctaatgggtg aggttaccaa ccagtccttc cgcatcacca tccttccgca gcaatacctg 1080 cggccagtgg aagatgtggc cacgtcccaa gacgactgtt acaagtttgc catctcacag 1140 teatecaegg geactgttat gggagetgtt ateatggagg gettetaegt tgtetttgat 1200 cgggcccgaa aacgaattgg ctttgctgtc agcgcttgcc atgtgcacga tgagttcagg 1260

340

...

acg	gcag	cgg ·	tggaa	aggco	cc tt	ttgt	tcaco	t tt	ggaca	atgg	aaga	actgt	gg (ctaca	acat	t	1320)
ccad	caga	cag a	atgaç	gtcat	g a												1341	
<210 <211 <212 <213	L> / 2>]	22 446 PRT Homo	sapi	iens														
<400)> :	22																
Met 1	Ala	Ser	Met	Thr 5	Gly	Gly	Gln	Gln	Met 10	Gly	Arg	Gly	Ser	Thr 15	Gln			
His	Gly	Ile	Arg 20	Leu	Pro	Leu	Arg	Ser 25	Gly	Leu	Gly	Gly	Ala 30	Pro	Leu	٠		
Gly	Leu	Arg 35	Leu	Pro	Arg	Glu	Thr 40	Asp	Glu	Glu	Pro	Glu 45	Glu	Pro	Gly			
Arg	Arg 50	Gly	Ser	Phe	Val	Glu 55	Met	Val	Asp	Asn	Leu 60	Arg	Gly	Lys	Ser			
Gly 65	Gln	Gly	Tyr	Tyr	Val 70	Glu	Met	Thr	Val	Gly 75	Ser	Pro	Pro	Gln	Thr 80	-		
Leu	Asn	Ile	Leu	Val 85	Asp	Thr	Gly	Ser	Ser 90	Asņ	Phe	Ala	Val	Gly 95	Ala			
Ala	Pro	His	Pro 100	Phe	Leu	His	Arg	Tyr 105	Tyr	Gln	Arg	Gln	Leu 110	Ser	Ser		,	
Thr	Tyr	Arg 115	Asp	Leu	Arg	Lys	Gly 120	Val	Tyr	Val	Pro	Tyr 125	Thr	Gln	Gly			
Lys	Trp 130	Glu	Gly	Glu	Leu	Gly 135	Thr	Asp	Leu	Val	Ser 140	Ile	Pro	His	Gly	,	·	
Pro 145	Asn	Val	Thr	Val	Arg 150	Ala	Asn	Ile	Ala	Ala 155	Ile	Thr	Glu	Ser	Asp 160			
Lys	Phe	Phe	Ile	Asn 165	Gly	Ser	Asn	Trp	Glu 170	Gly	Ile	Leu	Gly	Leu 175	Ala			
Tyr	Ala	Glu	Ile 180	Ala	Arg	Pro	Asp	Asp 185	Ser	Leu	Glu	Pro	Phe 190	Phe	Asp			
Ser	Leu	Val 195	Lys	Gln	Thr	His	Val 200	Pro	Asn	Leu	Phe	Ser 205	Leu	His	Leu			

ef so

1.3

Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly 230 235 Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys 260 265 Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu 275 280 Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln 310 315 Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val 325 330 Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile 340 345 350 Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly 375 Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp 395 Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His 405 410 415 Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp

420

435

425

Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser

440

. - .-

<212> D	3 380 NA omo sapiens						
<400> 2 atggctag	3 ca tgactggtgg	acagcaaatg	ggtcgcggat	cgatgactat	ctctgactct	60	
ccgcgtga	ac aggacggatc	cacccagcac	ggcatccggc	tgcccctgcg	cagcggcctg	120	
gggggcgc	cc ccctggggct	gcggctgccc	cgggagaccg	acgaagagcc	cgaggagccc	180	
ggccggag	gg gcagctttgt	ggagatggtg	gacaacctga	ggggcaagtc	ggggcagggc	240	
tactacgt	gg agatgaccgt	gggcagcccc	ccgcagacgc	tcaacatcct	ggtggataca	300	
ggcagcag	ta actttgcagt	gggtgctgcc	ccccacccct	tcctgcatcg	ctactaccag	360	
aggcagct	gt ccagcacata	ccgggacctc	cggaagggtg	tgtatgtgcc	ctacacccag	420	
ggcaagtg	gg aaggggagct	gggcaccgac	ctggtaagca	tcccccatgg	ccccaacgtc	. 480	
actgtgcg	tg ccaacattgc	tgccatcact	gaatcagaca	agttcttcat	caacggctcc	540	
aactggga	ag gcatcctggg	gctggcctat	gctgagattg	ccaggcctga	cgactccctg	- 600	
gagccttt	ct ttgactctct	ggtaaagcag	acccacgttc	ccaacctctt	ctccctgcac	660	
ctttgtgg	tg ctggcttccc	cctcaaccag	tctgaagtgc	tggcctctgt	cggagggagc	720	
atgatcat	tg gaggtatcga	ccactcgctg	tacacaggca	gtctctggta	tacacccatc	780	
cggcggga	gt ggtattatga	ggtcatcatt	gtgcgggtgg	agatcaatgg	acaggatctg	840	
aaaatgga	ct gcaaggagta	caactatgac	aagagcattg	tggacagtgg	caccaccaac	900	
cttcgttt	gc ccaagaaagt	gtttgaagct	gcagtcaaat	ccatcaaggc	agcctcctcc	960	
acggagaa	gt tccctgatgg	tttctggcta	ggagagcagc	tggtgtgctg	gcaagcaggc	1020	
accacccc	tt ggaacatttt	cccagtcatc	tcactctacc	taatgggtga	ggttaccaac	1080	
cagtcctt	cc gcatcaccat	ccttccgcag	caatacctgc	ggccagtgga	agatgtggcc	1140	
acgtccca	ag acgactgtta	caagtttgcc	atctcacagt	catccacggg	cactgttatg	1200	
ggagctgt	ta tcatggaggg	cttctacgtt	gtctttgatc	gggcccgaaa	acgaattggc	1260	
tttgctgt	ca gcgcttgcca	tgtgcacgat	gagttcagga	cggcagcggt	ggaaggccct	1320	
tttgtcac	ct tggacatgga	agactgtggc	tacaacattc	cacagacaga	tgagtcatga	1380	
<212> P	59 RT omo sapiens		· · · ·				

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr 1 $$ 5 $$ 10 $$ 15

Ile Ser Asp Ser Pro Arg Glu Gln Asp Gly Ser Thr Gln His Gly Ile 20 25 30

Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg 35 40 45

Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly 50 55 60

Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly 65 70 75 80

Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile 85 90 95

Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His 100 105 110

Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg 115 120 125

Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu 130 135 140

Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val 145 150 155 160

Thr Val Arg Ala Asn Iie Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe 165 170 175

Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu 180 185 190

Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val 195 200 205

Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala 210 215 220

Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser 225 230 235 240

Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp
245 250 255

Tyr Thr Pro Ile Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg 260 265 270

Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn 275 280 Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro 290 Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser 305 310 315 320 Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys 325 Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu 360 Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met 385 390 395 Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg 405 410 ---Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe 425 Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp 440 Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser 450 455 <210> 25 <211> 1302 <212> DNA <213> Homo sapiens <400> 25 atgactcage atggtattcg totgccactg cgtagcggtc tgggtggtgc tccactgggt 60 etgegtetge eeegggagae egacgaagag eeeggaggage eeggeeggag gggeagettt 120 gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 180

240

300

gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca

gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca

taccgggacc	tccggaaggg	tgtgtatgtg	ccctacaccc	agggcaagtg	ggaaggggag	360
ctgggcaccg	acctggtaag	catcccccat	ggccccaacg	tcactgtgcg	tgccaacatt	420
gctgccatca	ctgaatcaga	caagttcttc	atcaacggct	ccaactggga	aggcatcctg	480
gggctggcct	atgctgagat	tgccaggcct	gacgactccc	tggagccttt	ctttgactct	540
ctggtaaagc	agacccacgt	tcccaacctc	ttctccctgc	acctttgtgg	tgctggcttc	600
cccctcaacc	agtctgaagt	gctggcctct	gtcggaggga	gcatgatcat	tggaggtatc	660
gaccactcgc	tgtacacagg	cagtctctgg	tatacaccca	tccggcggga	gtggtattat	720
gaggtcatca	ttgtgcgggt	ggagatcaat	ggacaggatc	tgaaaatgga	ctgcaaggag	780
tacaactatg	acaagagcat	tgtggacagt	ggcaccacca	accttcgttt	gcccaagaaa	840
gtgtttgaag	ctgcagtcaa	atccatcaag	gcagcctcct	ccacggagaa	gttccctgat	900
ggtttctggc	taggagagca	gctggtgtgc	tggcaagcag	gcaccacccc	ttggaacatt	960
ttcccagtca	tctcactcta	cctaatgggt	gaggttacca	accagtcctt	ccgcatcacc	1020
atccttccgc	agcaatacct	gcggccagtg	gaagatgtgg	ccacgtccca.	agacgactgt	1080
tacaagtttg	ccatctcaca	gtcatccacg	ggcactgtta	tgggagctgt	tatcatggag	1140
ggcttctacg	ttgtctttga	tcgggcccga	aaacgaattg	gctttgctgt	cagcgcttgc	1200
catgtgcacg	atgagttcag	gacggcagcg	gtggaaggcc	cttttgtcac	cttggacatg	1260
gaagactgtg	gctacaacat	tccacagaca	gatgagtcat	ga	-	 1302

<210>---26

<400> 26

Met Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly 1 5 10 15

Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu 20 , 25 30

Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg 35 40 45

Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro 50 60

Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala 65 70 75 80

^{, &}lt;211> 433

<212> PRT

<213> Homo sapiens

Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile 115 120 Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr 130 135 Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu 145 150 Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser 180 185 Leu His Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met 245 Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr . 260 265 Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu

1.5

Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser 325 330 335

Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile

305

Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln	Tyr	Leu	Arg	Pro	Val	Glu	Asp
			340					345					350		

Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser 355 360 365

Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val 370 380

Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys 385 390 395 400

His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val 405 410 415

Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu 420 425 430

Ser

<210> 27 <211> 1278 <212> DNA <213> Homo sapiens

atggctagea tgactggtgg acagcaaatg ggtegeggat egatgaetat etetgaetet 60 ccgctggact ctggtatcga aaccgacgga tcctttgtgg agatggtgga caacctgagg 120 ggcaagtcgg ggcagggcta ctacgtggag atgaccgtgg gcagccccc gcagacgctc 180 aacatcctgg tggatacagg cagcagtaac tttgcagtgg gtgctgcccc ccaccccttc 240 ctgcatcgct actaccagag gcagctgtcc agcacatacc gggacctccg gaagggtgtg . 300 tatgtgccct acacccaggg caagtgggaa ggggagctgg gcaccgacct ggtaagcatc 360 ccccatggcc ccaacgtcac tgtgcgtgcc aacattgctg ccatcactga atcagacaag 420 ttcttcatca acggctccaa ctgggaaggc atcctggggc tggcctatgc tgagattgcc 480 aggectgacg actecetgga geetttettt gaetetetgg taaageagae eeacgtteee 540 aacctettet ceetgeacet ttgtggtget ggetteecee teaaccagte tgaagtgetg 600 gcctctgtcg gagggagcat gatcattgga ggtatcgacc actcgctgta cacaggcagt 660 ctctggtata cacccatccg gcgggagtgg tattatgagg tcatcattgt gcgggtggag 720 atcaatggac aggatctgaa aatggactgc aaggagtaca actatgacaa gagcattgtg 780 gacagtggca ccaccaacct tcgtttgccc aagaaagtgt ttgaagctgc agtcaaatcc 840 900 atcaaggcag cctcctccac ggagaagttc cctgatggtt tctggctagg agagcagctg

17

. .

gtgtgctggc	aagcaggcac	caccccttgg	aacattttcc	cagtcatctc	actctaccta	960
atgggtgagg	ttaccaacca	gtccttccgc	atcaccatcc	ttccgcagca	atacctgcgg	1020
ccagtggaag	atgtggccac	gtcccaagac	gactgttaca`	agtttgccat	ctcacagtca	1080
tccacgggca	ctgttatggg	agctgttatc	atggagggct	tctacgttgt	ctttgatcgg	1140
gcccgaaaac	gaattggctt	tgctgtcagc	gcttgccatg	tgcacgatga	gttcaggacg	1200
gcagcggtgg	aaggcccttt	tgtcaccttg	gacatggaag	actgtggcta	caacattcca	1260
cagacagatg	agtcatga					1278

<210> 28

<211> 425

<212> PRT

<213> Homo sapiens

<400> 28

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr 1 5 10 15

Ile Ser Asp Ser Pro Leu Asp Ser Gly Ile Glu Thr Asp Gly Ser Phe 20 25 30

Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr 35 40 45

Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val 50 55 60

Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe 65 70 75 80

Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu 85 90 95

Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu 100 105 110

Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val 115 120 125

Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn 130 135 140

Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala 145 150 155 160

Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile 195 200 205 Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu 230 235 Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp. Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys 260 265 Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu 280 Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln 295 Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln 325 330 Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys 340 Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala 355 'Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr 385 390

, i.e.

410

415

Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly

405

Tyr Asn Ile Pro Gln Thr Asp Glu Ser 420 425

<210> 29

<211> 1362 <212> DNA <213> Homo sapiens					
<400> 29 atggcccaag ccctgccctg	gctcctgctg	tggatgggcg	cgggagtgct	gcctgcccac	60
ggcacccagc acggcatccg	gctgcccctg	cgcagcggcc	tggggggcgc	cccctgggg	120
ctgcggctgc cccgggagac	cgacgaagag	cccgaggagc	ccggccggag	gggcagcttt	180
gtggagatgg tggacaacct	gaggggcaag	tcggggcagg	gctactacgt	ggagatgacc	240
gtgggcagcc ccccgcagac	gctcaacatc	ctggtggata	caggcagcag	taactttgca	300
gtgggtgctg cccccaccc	cttcctgcat	cgctactacc	agaggcagct	gtccagcaca	360
taccgggacc tccggaaggg	tgtgtatgtg	ccctacaccc	agggcaagtg	ggaaggggag	420
ctgggcaccg acctggtaag	catcccccat	ggccccaacg	tcactgtgcg	tgccaacatt	480
gctgccatca ctgaatcaga	caagttcttc	atcaacggct	ccaactggga	aggcatcctg	540
gggctggcct atgctgagat	tgccaggcct	gacgactccc	tggagccttt	ctttgactct	600
ctggtaaagc agacccacgt	tcccaacctc	ttctccctgc	acctttgtgg	tgctggcttc	660
cccctcaacc agtctgaagt	gctggcctct	gtcggaggga	gcatgatcat	tggaggtatc	720
gaccactcgc tgtacacagg	cagtctctgg	tatacaccca	tccggcggga	gtggtattat	780
gaggtcatca ttgtgcgggt	ggagatcaat	ggacaggatc	tgaaaatgga	ctycaaggag	840
tacaactatg acaagagcat	tgtggacagt	ggcaccacca	accttcgttt	gcccaagaaa	900
gtgtttgaag ctgcagtcaa	atccatcaag	gcagcctcct	ccacggagaa	gttccctgat	960
gġtttctggc taggagagca	gctggtgtgc	tggcaagcag	gcaccacccc	ttggaacatt	1020
ttcccagtca tctcactcta	cctaatgggt	gaggttacca	accagtcctt	ccgcatcacc	1080
atccttccgc agcaatacct	gcggccagtg	gaagatgtgg	ccacgtccca	agacgactgt	1140
tacaagtttg ccatctcaca	gtcatccacg	ggcactgtta	tgggagćtgt	tatcatggag	1200
ggcttctacg ttgtctttga	tcgggcccga	aaacgaattg	gctttgctgt	cagcgcttgc	1260
catgtgcacg atgagttcag	gacggcagcg	gtggaaggcc	cttttgtcac	cttggacatg	1320
gaagactgtg gctacaacat	tccacagaca	gatgagtcat	ga		1362

<210> 30

<211> 453 <212> PRT <213> Homo sapiens

<400> 30

Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val 50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp 180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro 195 200 205

Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln 210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 225 230 235 240 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg 245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln 260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val 275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp 305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr 325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val 340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg 355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 370 375 380

, if.

1

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu 385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro 435 440 445

Gln Thr Asp Glu Ser 450

<210> 31

<211> 1380

<212> DNA

<213> Homo sapiens

<400> 31					•	
	ccctgccctg	gctcctgctg	tggatgggcg	cgggagtgct	gcctgcccac	60
ggcacccagc	acggcatccg	gctgcccctg	cgcagcggcc	tggggggcgc	cccctgggg	120
ctgcggctgc	cccgggagac	cgacgaagag	cccgaggagc	ccggccggag	gggcagcttt	180
gtggagatgg	tggacaacct	gaggggcaag	tcggggcagg	gctactacgt	ggagatgacc	240
gtgggcagcc	ccccgcagac	gctcaacatc	ctggtggata	caggcagcag	taactttgca	300
gtgggtgctg	cccccaccc	cttcctgcat	cgctactacc	agaggcagct	gtccagcaca	360
taccgggacc	tccggaaggg	tgtgtatgtg	ccctacaccc	agggcaagtg	ggaaggggag	420
ctgggcaccg	acctggtaag	catcccccat	ggccccaacg	tcactgtgcg	tgccaacatt	480
gctgccatca	ctgaatcaga	caagttcttc	atcaacggct	ccaactggga	aggcatcctg	540
gggctggcct	atgctgagat	tgccaggcct	gạcgactccc	tggagccttt	ctttgactct	600
ctggtaaagc	agacccacgt	tcccaacctc	ttctccctgc	acctttgtgg	tgctggcttc	660
cccctcaacc	agtctgaagt	gctggcctct	gtcggaggga	gcatgatcat	tggaggtatc	720
gaccactcgc	tgtacacagg	cagtctctgg	tatacaccca	tccggcggga	gtggtattat	780
gaggtcatca	ttgtgcgggt	ggagatcaat	ggacaggatc	tgaaaatgga	ctgcaaggag	840
tacaactatg	acaayagcat	tgtggacagt	ggcaccacca	accttcgttt	gcccaagaaa	900 يَ ۥ؞
gtgtttgaag	ctgcagtcaa	atccatcaag	gcagcctcct	ccacggagaa	gttccctgat	960 👡
ggtttctggc	taggagagca	gctggtgtgc	tgycaagcag	gcaccacccc	ttggaacatt	1020
ttcccagtca	tctcactcta	cctaatgggt	gaggttacca	accagtectt	ccgcatcacc	1080
atccttccgc	agcaatacct	gcggccagtg	gaagatgtgg	ccacgtccca	agacgactgt	1140
tacaagtttg	ccatctcaca	gtcatccacg	ggcactgtta	tgggagctgt	tatcatggag	1200.
ggcttctacg	ttgtctttga	tcgggcccga	aaacgaattg	gctttgctgt	cagcgcttgc	1260 👸
catgtgcacg	atgagttcag	gacggcagcg	gtggaaggcc	cttttgtcac	cttggacatg	1320
gaagactgtg	gctacaacat	tccacagaca	gatgagtcac	agcagcagca	gcagcagtga	1380

<210> 32

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30

<211> 459

<212> PRT

<213> Homo sapiens

<400> 32

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 70 7.5 Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 150 Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 170 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp 185 Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro 200 Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln 210 215 220 Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 225 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg 245 Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln 260

285

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val

280

275

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr 325 330

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg 355

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 405 410

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 425

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro 440

ž .;**.

Gln Thr Asp Glu Ser His His His His His

<210> 33

<211> 25

<212> PRT

<213> Homo sapiens

<400> 33

Ser Glu Gln Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu

Ser Ser Leu Val Arg His Arg Trp Lys

<210> 34

19

<211> <212>

<212> PRT <213> Homo sapiens

Ser 1	Glu	Gln	Leu	Arg 5	Gln	Gln	His	Asp	Asp 10	Phe	Ala	Asp	Asp	Ile 15	Ser		
Leu	Leu	Lys															
<210 <211 <212 <213	> >	35 29 DNA Homo	sap:	iens								•					
<400 gtgg		35 cac	ccago	cacg	gc at	tccg	gctg										29
<210 <211 <212 <213	> >	36 36 DNA Homo	sapi	iens													
<400 gaaa		36 ttc a	atgad	ctca	to to	gtct	gtgga	a atq	gttg								36
<210 <211 <212 <213	> >	37 39 DNA Homo	sapi	iens										-			·. : 4
<400 gatc		37 gac t	atct	tctg	āč to	ctcc	gcgtg	g aad	caģģā	cg						:	39
<210 <211 <212 <213	> >	38 39 DNA Homo	sapi	iens													n y
<400 gatc		38 cct q	gttca	acgc	gg aq	gagto	cagaç	g ata	agtca	tc							39
<210 <211 <212 <213	> >	39 77 DNA Artii	ficia	al Se	equer	nce											
<220 <223		Hu-As	sp2											`			
<400 cggc		cgg (ctgco	ccct	gc gt	agc	ggtct	gg	gtggt	gct	ccad	ctgg	gtc t	gegt	ctgo	C .	60
ccgg	gag	acc. g	gacga	aag													77

<400> 34

<210> <211> <212> <213>	40 77 DNA Artificial sequence	
<220> <223>	Hu-Asp2	
<400> cttcgt	40 cggt ctcccggggc agacgcagac ccagtggagc accacccaga ccgctacgca	60
ggggca	gccg gatgccg	77
<210><211><211><212><213>	41 51 DNA Artificial sequence	
<220> <223>	Caspase-8 Cleavage Site	
<400> gatcga	41 tgac tatctctgac tctccgctgg actctggtat cgaaaccgac g	51
<210><211><211><212><213>	42 51 DNA Artificial sequence	:F
<220> <223>	Caspase-8 Cleavage Site	
<400> gateeg	42 tegg tittegatace agagtecage ggagagteag agatagteat e v v v v v	51
<210> <211> <212> <213>	43 32 DNA Homo sapiens	·
<400> aaggat	43 cctt tgtggagatg gtggacaacc tg	32
<210><211><211><212><213>	44 36 DNA Homo sapiens	
<400> gaaagc	44 tttc atgactcatc tgtctgtgga atgttg	36
<210><211><211><212><213>	45 24 DNA Artificial sequence	

<223>	6-His tag		
<400> gatcgc	45 atca tcaccatcac catg	24	
<210><211><212><212><213>	46 24 DNA Artificial sequence		
<220> <223>	6-His tag		
<400> gatcca	46 tggt gatggtgatg atgc	24	
<210> <211> <212> <213>	47 22 DNA Artificial sequence		
<220> <223>	Primer	•	
<400> gactga	47 ccac tcgaccaggt tc	22	
<210><211><212><212><213>		: :	
<220> <223>	Primer		
<400> cgaatta	48 aaat teeageacae tggetaette ttgttetgea teteaaagaa e	51	
<210><211><212><212><213>	49 26 DNA Artificial sequence	:	
<220> <223>	Primer		
<400> cgaatt	49 aaat teeageacae tggeta	26	
<210> <211> <212> <213>	50 1287 DNA Artificial sequence		
<220> <223>	Hu-Asp2(b) delta TM		

<400> 50							
	ccctgccctg	gctcctgctg	tggatgggcg	cgggagtgct	gcctgcccac	60	
ggcacccagc	acggcatccg	gctgcccctg	cgcagcggcc	tggggggcgc	cccctgggg	120	
ctgcggctgc	cccgggagac	cgacgaagag	cccgaggagc	ccggccggag	gggcagcttt	180	
gtggagatgg	tggacaacct	gagggcaag	tcggggcagg	gctactacgt	ggagatgacc	240	
gtgggcagcc	ccccgcagac	gctcaacatc	ctggtggata	caggcagcag	taactttgca	300	
gtgggtgctg	cccccaccc	cttcctgcat	cgctactacc	agaggcagct	gtccagcaca	360	
taccgggacc	tccggaaggg	tgtgtatgtg	ccctacaccc	agggcaagtg	ggaaggggag	420	
ctgggcaccg	acctggtaag	catcccccat	ggccccaacg	tcactgtgcg	tgccaacatt	480	
gctgccatca	ctgaatcaga	caagttcttc	atcaacggct	ccaactggga	aggcatcctg	540	
gggctggcct	atgctgagat	tgccaggctt	tgtggtgctg	gcttccccct	caaccagtct	600	
gaagtgctgg	cctctgtcgg	agggagcatg	atcattggag	gtatcgacca	ctcgctgtac	660	
acaggcagtc	tctggtatac	acccatccgg	cgggagtggt	attatgaggt	catcattgtg	720	
cgggtggaga	tcaatggaca	ggatctgaaa	atggactgca	aggagtacaa	ctatgacaag	780	
agcattgtgg	acagtggcac	caccaacctt	cgtttgccca	agaaagtgtt	tgaagctgca	840	
gtcaaatcca	tcaaggcagc	ctcctccacg	gagaagttcc	ctgatggttt	ctggctagga	900	· · · · · · · · · · · · · · · · · · ·
gagcagctgg	tgtgctggca	agcaggcacc	accccttgga	acattttccc	agtcatctca	960	
ctctacctaa	tgggtgaggt	taccaaccag	tccttccgca	tcaccatcct	tccgcagcaa	1020	A.
tacctgcggc	cagtggaaga	tgtggccacg	tcccaagacg	actgttacaa	gtttgccatc	,1080	ar e
tcacagtcat	ccacgggcac	tgttatggga	gctgttatca	tggagggctt	ctacgttgtc	1140	
tttgateggg	cccgaaaacg	aattggcttt	gctgtcagcg	cttgccatgt	gcacgatgag	1200	· ¥£
ttcaggacgg	cagcggtgga	aggccctttt	gtcaccttgg	acatggaaga	ctgtggctac	1260	~ % (
aacattccac	agacagatga	gtcatga				1287	

<210> 51

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30

<211> 428

<212> PRT

<213> Artificial sequence

<220>

<223> Hu-Asp2(b) delta TM

<400> 51

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val 50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly 180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly 195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu 210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val 225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr 245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu 260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser 275 280 285 Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val 290 Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser 305 310 315 Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile 325 330 335 Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln 340 345 Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val 355 360 365 Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu 385 390 395 Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu 405 Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Gln Ser 420 425 <210> 52 <211> 1305 <212> DNA <213> Artificial sequence

<220> <223> Hu-Asp2(b) delta TM <400> atggcccaag ccctgccctg gctcctgctg tggatgggcg cgggagtgct gcctgcccac 60 ggcacccagc acggcatccg gctgcccctg cgcagcggcc tgggggggcgc ccccctgggg 120 180 gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240 gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 300 gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcaget gtccagcaca 360 taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420 ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 480 gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540

gggctggcct	atgctgagat	tgccaggctt	tgtggtgctg	gcttccccct	caaccagtct	600
gaagtgctgg	cctctgtcgg	agggagcatg	atcattggag	gtatcgacca	ctcgctgtac	660
acaggcagtc	tctggtatac	acccatccgg	cgggagtggt	attatgaggt	catcattgtg	720
cgggtggaga	tcaatggaca	ggatctgaaa	atggactgca	aggagtacaa	ctatgacaag	780
agcattgtgg	acagtggcac	caccaacctt	cgtttgccca	agaaagtgtt	tgaagctgca	840
gtcaaatcca	tcaaggcagc	ctcctccacg	gagaagttcc	ctgatggttt	ctggctagga	900
gagcagctgg	tgtgctggca	agcaggcacc	accccttgga	acattttccc	agtcatctca	960
ctctacctaa	tgggtgaggt	taccaaccag	tccttccgca	tcaccatcct	tccgcagcaa	1020
tacctgcggc	cagtggaaga	tgtggccacg	tcccaagacg	actgttacaa	gtttgccatc	1080
tcacagtcat	ccacgggcac	tgttatggga	gctgttatca	tggagggctt	ctacgttgtc	1140
tttgatcggg	cccgaaaacg	aattggcttt	gctgtcagcg	cttgccatgt	gcacgatgag	1200
ttcaggacgg	cagcggtgga	aggccctttt	gtcaccttgg	acatggaaga	ctgtggctac	1260
aacattccac	agacagatga	gtcacagcag	cagcagcagc	agtga		1305

<210> 53

<211> 434

<212> PRT

<213> Artificial sequence

<220>

<223> Hu-Asp2(b) delta TM

<400> 53

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Gly Ser Phe Val Glu Met Val 50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 170 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly 185 . Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly 200 Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu 210 215 220 Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val 230 235 Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr 255 245 250 Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser 280 Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser 310 Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val 355 360

7 . 9

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala 370 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu 385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu 405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser His His His 420 425 430

His His

<210> 54 <211> 2310 <212> DNA <213> Homo sapiens

<400> atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta 60 cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120 --ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180 acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240 300 cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360 gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420 atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag 480 · aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540 ggggtagagt ttgtgttgt cccactggct gaagaaagtg acaatgtgga ttctgctgat 600 gcggaggagg atgactcgga tgtctggtgg ggcggagcag acacagacta tgcagatggg 660 agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720 gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780 ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840 gagtctgtgg aagaggtggt tcgagaggtg tgctctgaac aagccgagac ggggccgtgc 900 cgagcaatga tctcccgctg gtactttgat gtgactgaag ggaagtgtgc cccattcttt 960 tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg 1020 tgtggcagcg ccatgtccca aagtttactc aagactaccc aggaacctct tggccgagat 1080

. Te 24

4.4

23.

J. 1.

. .

cctgttaaac	ttcctacaac	agcagccagt	acccctgatg	ccgttgacaa	gtatctcgag	1140
acacctgggg	atgagaatga	acatgcccat	ttccagaaag	ccaaagagag	gcttgaggcc	1200
aagcaccgag	agagaatgtc	ccaggtcatg	agagaatggg	aagaggcaga	acgtcaagca	1260
aagaacttgc	ctaaagctga	taagaaggca	gttatccagc	atttccagga	·gaaagtggaa	1320
tctttggaac	agġaagcagc	caacgagaga	cagcagctgg	tggagacaca	catggccaga	1380
gtggaagcca	tgctcaatga	ccgccgccgc	ctggccctgg	agaactacat	caccgctctg	1440
caggctgttc	ctcctcggcc	tcgtcacgtg	ttcaatatgc	taaagaagta	tgtccgcgca	1500
gaacagaagg	acagacagca	caccctaaag	catttcgagc	atgtgcgcat	ggtggatccc	1560
aagaaagccg	ctcagatccg	gtcccaggtt	atgacacacc	tccgtgtgat	ttatgagcgc	1620
atgaatcagt	ctctctccct	gctctacaac	gtgcctgcag	tggccgagga	gattcaggat	1680
gaagttgatg	agctgcttca	gaaagagcaa	aactattcag	atgacgtctt	ggccaacatg	1740
attagtgaac	caaggatcag	ttacggaaac	gatgctctca	tgccatcttt	gaccgaaacg	1800
aaaaccaccg	tggagctcct	tcccgtgaat	ggagagttca	gcctggacga	tctccagccg	1860
tggcattctt	ttggggctga	ctctgtgcca	gccaacacag	aaaacgaagt	tgagcctgtt	1920
gatgcccgcc	ctyctgccga	ccgaggactg	accactcgac	caggttctgg	gttgacaaat	1980 ·
atcaagacgg	aggagatctc	tgaagtgaag	atggatgcag	aattccgaca	tgactcagga	2040
tatgaagttc	atcatcaaaa	attggtgttc	tttgcagaag	atgtgggttc	aaacaaaggt	2100
gcaatcattg	gactcatggt	gggcggtgtt	gtcatagcga	cagtgatcgt	catcaccttg	2160
gtgatgctga	agaagaaaca	gtacacatcc	attcatcatg	gtgtġgtgga	ggttgacgcc	2220
gctgtcaccc	cagaggagcg	ccacctgtcc	aagatgcagc	agaacggcta	cgaaaatcca	2280
acctacaaġt	tctttgagca	gatgcagaac				2310

<210> 55

<211> 770

<212> PRT

<213> Homo sapiens

<400> 55

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val 100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 210 215 220 .

.

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu 225 230 235 240

Glu Ala Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu 245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 260 265 270

Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile 290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe 310 Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr 330 Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr 340 345 350 Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala 360 Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp 370 375 Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala 405 410 Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu 465 470 475 Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys 495 Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe 500 Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser 515 Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser 530 535 Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp 545 550 555 560

, a \$ ()

. .

Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val

Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala

Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro 595 600

Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe 615

Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val 630 635

Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser 650

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp 660 665

Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu 680

Val Pne Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly 700

100

Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu

Val Met Leu Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val 725 730

Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met 740

Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met 755 760

Gln Asn 770

<210> 56 <211> 2253 <212> DNA

<213> Homo sapiens

<400> 56						
atgctgcccg	gtttggcact	gctcctgctg	gccgcctgga	cggctcgggc	gctggaggta	60
cccactgatg	gtaatgctgg	cctgctggct	gaaccccaga	ttgccatgtt	ctgtggcaga	120
ctgaacatgc	acatgaatgt	ccagaatggg	aagtgggatt	cagatccatc	agggaccaaa	180
acctgcattg	ataccaagga	aggcatcctg	cagtattgcc	aagaagtcta	ccctgaactg	240
cagatcacca	atgtggtaga	agccaaccaa	ccagtgacca	tccagaactg	gtgcaagcgg	300
ggccgcaagc	agtgcaagac	ccatccccac	tttgtgattc	cctaccgctg	cttagttggt	360
gagtttgtaa	gtgatgccct	tctcgttcct	gacaagtgca	aattcttaca	ccaggagagg	420
atggatgttt	gcgaaactca	tcttcactgg	cacaccgtcg	ccaaagagac	atgcagtgag	480
aagagtacca	acttgcatga	ctacggcatg	ttgctgccct	gcggaattga	caagttccga	5,40
ggggtagagt	ttgtgtgttg	cccactggct	gaagaaagtg	acaatgtgga	ttctgctgat	600
gcggaggagg	atgactcgga	tgtctggtgg	ggcggagcag	acacagacta	tgcagatggg	660
agtgaagaca	aagtagtaga	agtagcagag	gaggaagaag	tggctgaggt	ggaagaagaa	720
gaagccgatg	atgacgagga	cgatgaggat	ggtgatgagg	tagaggaaga	ggctgaggaa	780
ccctacgaag	aagccacaga	gagaaccacc	agcattgcca	ccaccaccac	caccaccaca	. 840
gagtctgtgg	aagaggtggt	tcgagaggtg	tgctctgaac	aagccgagac	ggggccgtgc	900.
cgagcaatga	tctcccgctg	gtactttgåt	gtgactgaag	ggaagtgtgc	cccattctt	960 t
tacggcggat	gtggcggcaa	ccggaacaac	tttgacacag	aagagtactg	catggccgtg	1020
tgtggcagcg	ccattcctac	aacagcagcc	agtacccctg	atgccgttga	caagtatete	1080 -
gagacacctg	gggatgagaa	tgaacatgcc	catttccaga	aagccaaaga	gaggcttgag	1140 💉
gccaagcacc	gagagagaat	gtcccaggtc	atgagagaat	gggaagaggc	agaacgtcaa	1200
gcaaagaact	tgcctaaagc	tgataagaag	gcagttatcc	agcatttcca	ggagaaagtg	1260;
gaatctttgg	aacaggaagc	agccaacgag	agacagcagc	tggtggagac	acacatggcc	1320
agagtggaag	ccatgctcaa	tgaccgccgc	cgcctggccc	tggagaacta	catcaccgct	1380
ctgcaggctg	ttcctcctcg	gcctcgtcac	gtgttcaata	tgctaaagaa	gtatgtccgc	1440
gcagaacaga	aggacagaca	gcacacccta	aagcatttcg	agcatgtgcg	catggtggat	1500
cccaagaaag	ccgctcagat	ccggtcccag	gttatgacac	acctccgtgt	gatttatgag	1560
cgcatgaatc	agtctctctc	cctgctctac	aacgtgcctg	cagtggccga	ggagattcag	1620
gatgaagttg	atgagctgct	tcagaaagag	caaaactatt	cagatgacgt	cttggccaac	1680
atgattagtg	aaccaaggat	cagttacgga	aacgatgctc	tcatgccatc	tttgaccgaa	1740
acgaaaacca	ccgtggagct	ccttcccgtg	aatggagagt	tcagcctgga	cgatctccag	1800
ccgtggcatt	cttttggggc	tgactctgtg	ccagccaaca	cagaaaacga	agttgagcct	1860

gttgatgccc	gccctgctgc	cgaccgagga	ctgaccactc	gaccaggttc	tgggttgaca	1920
aatatcaaga	cggaggagat	ctctgaagtg	aagatggatg	cagaattccg	acatgactca	1980
ggatatgaag	ttcatcatca	aaaattggtg	ttctttgcag	aagatgtggg	ttcaaacaaa	2040
ggtgcaatca	ttggactcat	ggtgggcggt	gttgtcatag	cgacagtgat	cgtcatcacc	2100
ttggtgatgc	tgaagaagaa	acagtacaca	tccattcatc	atggtgtggt	ggaggttgac	2160
gccgctgtca	ccccagagga	gcgccacctg	tccaagatgc	agcagaacgg	ctacgaaaat	2220
ccaacctaca	agttctttga	gcagatgcag	aac			2253

<2	1	0	>	5	7

<211> 751

<212> PRT

<213> Homo sapiens

<400> 57

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg 1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60 60 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 145 150 155 160

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 210 215 220

Val Val Glu Val Ala Glu Glu Glu Glu Val Ala Glu Val Glu Glu 225 230 235 240

Glu Ala Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu 245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile 290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe 305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr 325 330 335

Cys Met Ala Val Cys Gly Ser Ala Ile Pro Thr Thr Ala Ala Ser Thr 340 345 350

Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu 355 360 365

His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg 370 375 380

Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln 385 390 395 400

Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe 405 . 410 . 415

Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln 420 425 Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val 450 455 Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg 470 Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val 485 490 Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu

Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp

Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn 555

Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro

Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro Val Asn Gly 580

Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp 595

Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg 610

Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr

Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe

Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe 660 665 670

Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val

Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu 690

Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp

Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn

Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn 745

58 <210>

<211> 2316

<212> DNA

Homo sapiens <213>

<400> 60 atgetgeecg gtttggeact geteetgetg geegeetgga eggeteggge getggaggta cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120 ... ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180 acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240 cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300 ggccgcaagc aytgcaagac ccatccccac tttgtgattc cctaccgctg cttagttggt 360 gagtttgtaa gtgatgccct tctcgttcct gacaagtgca aattcttaca ccaggagagg 420 atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag -480 aagagtacca acttgcatga ctacggcatg ttgctgccct gcggaattga caagttccga 540 ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat 600 660 gcggaggagg atgactcgga tgtctggtgg ggcggagcag acacagacta tgcagatggg agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720 780 gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840 gagtctgtgg aagaggtggt tcgagaggtg tgctctgaac aagccgagac ggggccgtgc 900 cgagcaatga tctcccgctg gtactttgat gtgactgaag ggaagtgtgc cccattcttt 960 tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg 1020 tgtggcagcg ccatgtccca aagtttactc aagactaccc aggaacctct tggccgagat 1080 cctgttaaac ttcctacaac agcagccagt acccctgatg ccgttgacaa gtatctcgag 1140

ė.

. 5~

acacctgggg	atgagaatga	acatgcccat	ttccagaaag	ccaaagagag	gcttgaggcc	1200	
aagcaccgag	agagaatgtc	ccaggtcatg	agagaatggg	aagaggcaga	acgtcaagca	1260	
aagaacttgc	ctaaagctga	taagaaggca	gttatccagc	atttccagga	gaaagtggaa	1320	
tctttggaac	aggaagcagc	caacgagaga	cagcagctgg	tggagacaca	catggccaga	1380	
gtggaagcca	tgctcaatga	ccgccgccgc	ctggccctgg	agaactacat	caccgctctg	1440	
caggctgttc	ctcctcggcc	tcgtcacgtg	ttcaatatgc	taaagaagta	tgtccgcgca	1500	
gaacagaagg	acagacagca	caccctaaag	catttcgagc	atgtgcgcat	ggtggatccc	1560	
aagaaagccg	ctcagatccg	gtcccaggtt	atgacacacc	tccgtgtgat	ttatgagcgc	1620	
atgaatcagt	ctctctccct	gctctacaac	gtgcctgcag	tggccgagga	gattcaggat	1680	
gaagttgatg	agctgcttca	gaaagagcaa	aactattcag	atgacgtctt	ggccaacatg	1740	
attagtgaac	caaggatcag	ttacggaaac	gatgctctca	tgccatcttt	gaccgaaacg	1800	
aaaaccaccg	tggagctcct	tcccgtgaat	ggagagttca	gcctggacga	tctccagccg	1860	
tggcattctt	ttggggctga	ctctgtgcca	gccaacacag	aaaacgaagt	tgagcctgtt	1920	
gatgcccgcc	cťgctgccga	ccgaggactg	accactcgac	caggttctgg	gttgacaaat	1980	
atcaagacgg	aggagatete	tgaagtgaag	atggatgcag	aattccgaca	tgactcagga	2040	•
tatgaagttc	atcatcaaaa	attggtgttc	tttgcagaag	atgtgggttc	aaacaaaggt	2100	in the
gcaatcattg	gactcatggt	gggcggtgtt	gtcatagcga	cagtgatcgt	catcaccttg	2160	<u> </u>
gtgatgctga	agaagaaaca	gtacacatcc	attcatcatg	gtgtggtgga	ggttgacgcc	2220	*
gctgtcaccc	cagaggagcg	ccacctgtcc	aagatgcagc	agaacggcta	cgaaaatcca	2280	14
acctacaagt	tctttgagca	gatgcagaac	aagaag			2316	, <u>B</u> ,

<210> 59

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg 1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60

<211> 772 <212> PRT

<213> Homo sapiens

<400> 59

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val 100 105 Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 165 170 Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 200 Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu -225 230 235 Glụ Ala Asp Asp Asp Glu Asp Glu Asp Gly Asp Glu Val Glu Glu 245 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile 260 Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe 310 315

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr 340 Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala 360 Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp 370 Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala 390 Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala 410 Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile 420 425 430 Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met 455 Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu 470 Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys 485 490 Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe 500 505 Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser 515 Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp 550 Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val

570

565

Leu	Ala	Asn	Met 580	Ile	Ser	Glu	Pro	Arg 585	Ile	Ser	Tyr	Gly	Asn 590	Asp	Ala		
Leu	Met	Pro 595	Ser,	, Leu	Thr	Glu	Thr 600	Lys	Thr	Thr	Val	Glu 605	Leu	Leu	Pro		
Val	Asn 610	Gly	Glu	Phe	Ser	Leu 615	Asp	Asp	Leu	Gln	Pro 620	Trp	His	Ser	Phe		·
Gly 625	Ala	Asp	Ser	Val	Pro 630	Ala	Asn	Thr	Glu	Asn 635	Glu	Val	Glu	Pro	Val 640		
Asp	Ala	Arg	Pro	Ala 645	Ala	Asp	Arg	Gly	Leu 650	Thr	Thr	Arg	Pro	Gly 655	Ser		
Gly	Leu	Thr	Asn 660	Ile	Lys	Thr	Glu	Glu 665	Ile	Ser	Glu	Val	Lys 670	Met	Asp		
Ala	Glu	Phe 675	Arg	His	Asp	Ser	Gly 680	Tyr	Glu	Val	His	His 685	Gln	Lys	Leu		
Val	Phe 690	Phe	Ala	Glu	Asp	Val 695	Gly	Ser	Asņ	Lys	Gly 700	Äla	Ile	Ile	Gly	1	,
Leu 705	Met	Val	Gly	Gly	Val 710	Val	Ile	Ala	Thr	Val 715	Ile	Val	Ile	Thr	Leu 720		施
Val	Met	Leu	Lys	Lys 725	Lys	Gln	Tyr	Thr	Ser 730	Ile	His	.His	Gly	Val 735	Val		y - 92
Glu	Val	Asp	Ala 740	Ala	Val	Thr	Pro	Glu 745	Glu	Arg	His	Leu	Ser 750	Lys	Met .		. ins &
Gln	Gln	Asn 755	Gly	Tyr	Glu	Asn	Pro 760	Thr	Tyr	Lys	Phe ⁻	Phe 765	Glu	Gln	Met		
Gln	Asn 770	Lys	Lys														
<210 <211 <212 <213	.> 2 !> [50 2259 DNA Iomo	sapi	.ens													
<400> 60 atgctgcccg gtttggcact gctcctgctg gccgcctgga cggctcgggc gctggaggta 60																	
cccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120																	

ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180

ttg	gtgai	tgc 1	tgaaq	gaaga	aa ad	cagta	acaca	a tco	catto	catc	atg	gtgt	ggt (ggag	gttga	С	2160	
gcc	gctg	tca (ccca	agag	ga go	egeca	acct	g tco	caaga	atgc	agca	agaad	egg (ctac	gaaaa	t	2220	
ccaa	accta	aca a	agtto	ettt	ga go	cagat	gca	gʻaad	caaga	aag							2259	
<210 <210 <210 <210	l> ' 2> 1	61 753 PRT Homo	sapi	iens														
<400)>	61																
Met 1	Leu	Pro	Gly	Leu 5	Ala	Leu	Leu	Leu	Leu 10	Ala	Ala	Trp	Thr	Ala 15	Arg			
Ala	Leu	Glu	Val 20	Pro	Thr	Asp	Gly	Asn 25	Ala	Gly	Leu	Leu	Ala 30	Glu	Pro			
Gln	Ile	Ala 35	Met	Phe	Cys	Gly	Arg 40	Leu	Asn	Met	His	Met 45	Asn	Val	Gln			
Asn	Gly 50	Lys	Trp	Asp	Ser	Asp 55	Pro	Ser	Gly	Thr	Lys 60	Thr	Cys	Ile	Asp			
Thr 65	Lys	Glu	Gly	Ile	Leu 70	Gln	Tyr	Cys	Gln	Glu 75	Val	Tyr	Pro	Glu	Leu 80		***	
Glrı	Ile	Thr	Asn	Val 85	Val	Glu	Ala	Asn	Gln 90	Pro	Val	Thr	Ile	Gln 95	Asn	,		4
Trp	Cys	Lys	Arg 100	Gly	Arg	Lys	Gln	Cys 105	Lys	Thr	His	Pro	His 110	Phe	Val	,	•	ŗ
.Ile	Pro	Tyr 115	Arg	Cys	Leu	Val	Gly 120	Glu	Phe	Val	Ser	Asp 125	Ala	Leu	Leu			,
Val	Pro 130	Asp	Lys	Cys	Lys	Phe 135	Leu	His	Gln	Glu	Arg 140	Met	Asp	Val	Cys			
Glu 145	Thr	His	Leu	His	Trp 150	His	Thr	Val	Ala	Lys 155	Glu	Thr	Cys	Ser	Glu 160			
Lys	Šer	Thr	Asn	Leu 165	His	Asp	Tyr	Gly	Met 170	Leu	Leu	Pro	Cys	Gly 175	Ile			
Asp	Lys	Phe	Arg 180	Gly	Val	Glu	Phe	Val 185	Cys	Cys	Pro	Leu	Ala 190	Glu	Glu			

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu 225 230 235 240

Glu Ala Asp Asp Glu Asp Glu Asp Glu Asp Glu Glu Glu 245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$

Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile 290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe 305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr 325 330 335

Cys Met Ala Val Cys Gly Ser Ala Ile Pro Thr Thr Ala Ala Ser Thr 340 345 350

Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu 355 360 365

3

His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg 370 375 380

Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln 385 390 395 400

Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe 405 410 415

Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln 420 425 430

Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp 435 440 445 Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val 450 455 460

Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg 465 470 475 480

Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val 485 490 495

Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met 500 505 510

Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu 515 520 525

Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp 530 535 540

Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn 545 550 555

Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro 565 570 575

Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro Val Asn Gly. 580 585 590

¥.5:-

Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp 595 600 605

Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg. 610 620

Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr 625 630 635 640

Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe 645 650 655

Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe 660 665 670

Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val

Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu 690 695 700

Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp 705 710 715 720 Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn Lys 740 745 Lys <210> 62 <211> 8 <212> PRT <213> Artificial sequence <223> Synthetic peptide <400> 62 Leu Glu Val Leu Phe Gln Gly Pro-<210> 63 <211> 10 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide <400> 63 Ser Glu Val Asn Leu Asp Ala Glu Phe Arg <210> 64 <211> 10 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide <400> 64 Ser Glu Val Lys Met Asp Ala Glu Phe Arg <210> 65 <211> 15 <212> PRT <213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 65

Arg Arg Gly Gly Val Val Ile Ala Thr Val Ile Val Gly Glu Arg 1 5 10 15

<210> 66

<211> 518

<212> PRT

<213> Homo sapiens

<400> 66

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp 5 10 15

Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro
20 25 30

Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Pro Gly
35 40 45

Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu Ala Leu 50 55 60

Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met 65 70 75 80

Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met 85 90 95

Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly 100 105 110

Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr 115 120 125

Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp 130 135 140

Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu 145 150 155 160

Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn 165 170 175

Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys 180 185 190 Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser 195 200 205

Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile 210 215 220

Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala 225 230 235 240

Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro 245 250 255

Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp 260 265 270

Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu 275 280 285

Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser 290 295 300

Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val 305 310 315 320

Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe

Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp 340 345 350

Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser 355 360 365

Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met 370 375 380

Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro 385 390 395 400

Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr 405 410 415

Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro 420 425 430

Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe 435 440 445

Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser 450 460

Glu Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly 465 470 475 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Leu Pro Phe Arg Cys 485 490 495

Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu 500 505 510

Val Arg His Arg Trp Lys 515

<210> 67

<211> 475

<212> PRT

<213> Homo sapiens

<400> 67

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp 1 5 10 15

Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro 20 25 30

Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Fro Gly 35 40 45

1. 17

Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu 50 55 60

Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met 65 70 75 80

Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met 85 90 95

Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly 100 105 110

Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr 115 120 125

Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp 130 135 140

Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu 145 150 155 Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys 180 185 Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile 210 215 Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala 230 235 Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp 260 265 Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu 280 285 Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe 325 330 335 Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp 340 , 345 Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser 355 360 Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro 385 390 395

£...

Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr 405 410 415

Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro 420 425 430

Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe 435 440 445

Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser 450 455 460

Glu Pro Ile Leu Trp His His His His His 465 470 475

<210> 68

<211> 413

<212> PRT

<213> Homo sapiens

<400> 68

Ala Leu Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu

5 10 15

Ala Met Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu 20 25 30

Glu Met Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp 35 40 45

Thr Gly Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile 50 55 60

Asp Thr Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly 65 70 75 80

Phe Asp Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val 85 90 95

Gly Glu Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu 100 105 110

Val Asn Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly 115 120 125

Pro Ser Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala 150 Asn Ile Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile 180 185 190 Glu Pro Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu 200 Glu Trp Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gln Ser Leu Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp 265 Gly Phe Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr 280 Pro Trp Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln 310 315 Pro Met Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile 325 330 335 Ser Pro Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly 340 Phe Tyr Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala 355 360 Ser Pro Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser 385 390 395 400

Leu Ser Glu Pro Ile Leu Trp His His His His His 405 410

<210> 69 <211> 8 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide <400> 69 Gly Leu Ala Leu Ala Leu Glu Pro <210> 70 <211> 8 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide <400> 70 Glu Val Lys Met Asp Ala Glu Phe <210> 71 <211> 8 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide <400> 71 Glu Val Asn Leu Asp Ala Glu Phe 5 <210> 72 <211> 8 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide <400> 72 Leu Val Phe Phe Ala Glu Asp Val

```
<210>
      73
<211>
       8
<212>
      PRT
<213>
       Artificial sequence
<220>
<223> Synthetic peptide
<400> 73
Lys Leu Val Phe Phe Ala Glu Asp
<210>
       74
       39
<211>
<212>
       DNA
<213>
      Artificial sequence
<220>
<223>
      Primer
<400> 74
cgctttaagc ttgccaccat gggcgcactg gcccgggcg
                                                                         3.9
<210>
       75
<211>
       57
<212>
      DNA -
<213> Artificial sequence
<220>
<223> Primer
<400> -- 7:5 -- - - - - - - -
cgctttctcg agctaatggt gatggtgatg gtgccacaaa atgggctcgc tcaaaga
<2.10>
      76
<211>
       4
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
      Synthetic peptide
<400> 76
Asn Leu Asp Ala
<210>
       77
<211>
       5
<212>
       PRT
<213>
      Artificial sequence
<220>
<223>
       Synthetic peptide
<400> 77
Gly Arg Arg Gly Ser
```

```
<210> 78
<211>
       6
<212>
       PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 78
Thr Gln His Gly Ile Arg
<210> 79
<211>
       6
<212>
       PRT
<213>
      Artificial sequence
<220>
<223> Synthetic peptide
<400> 79
Glu Thr Asp Glu Glu Pro
<210>
      80
<211>
       15
<212> PRT
<213> Artificial sequence
·<220>
<223> Synthetic peptide
<400> 80
Met Cys Ala Glu Val Lys Met Asp Ala Glu Phe Lys Asp Asn Pro
                                                         15 .
<210> 81
<211>
      5
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 81
Asp Ala Glu Phe Arg
<210> 82
<211> 5
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Synthetic peptide
<400> 82
Ser Glu Val Asn Leu
<210> 83
<211>
       4
<212> PRT
'<213> Artificial sequence
<220>
<223> Peptide of Human APP
<220>
<221>
      misc_feature
<222>
        (1)
<223> Xaa = Lys or Asn
<220>
<221> misc_feature
<222> (2)
<223> Xaa = Met or Leu
<220>
<221> misc_feature
<222> (3)
<223> Xaa = Asp
<220>
<221> misc_feature
<222>
       (4)
<223> __Xaa = Asp-----
<400> 83
```

Xaa Xaa Xaa Xaa

FIGURE 1 (1)

ATGGGCGCACTGGCCGGGCGCTGCTGCTGCTGCCCAGTGGCTCCTGCGCGCC M G A L A R A L L L P L L A Q W L L R A CCCCGGAGCTGGCCCCCGCGCCCTTCACGCTGCCCCTCCGGGTGGCCGCGCCACGAAC APELAPAPFTLPLRVAAATN $\tt CGCGTAGTTGCGCCCACCCCGGGACCCGGGGACCCCTGCCGAGGGCCCACGCCGACGGCTTG$ RVVAPTPGPGTPAERHADGL GCGCTCGCCCTGGAGCCTGCCCTGGCGTCCCCCGCGGGCGCCCCAACTTCTTGGCCATG ALALEPALASPAGAANFLAM GTAGACAACCTGCAGGGGGACTCTGGCCGCGGCTACTACCTGGAGATGCTGATCGGGACC V D N L Q G D S G R G Y Y L E M L I G T CCCCGCAGAAGCTACAGATTCTCGTTGACACTGGAAGCAGTAACTTTGCCGTGGCAGGA PPQKLQILVDTGSSNFAVAG ACCCCGCACTCCTACATAGACACGTACTTTGACACAGAGAGGTCTAGCACATACCGCTCC T P H S Y I D T Y F D T E R S S T Y R S AAGGGCTTTGACGTCACAGTGAAGTACACACAAGGAAGCTGGACGGGCTTCGTTGGGGAA K G F D V T V K Y T Q G S W T G F V G E GACCTCGTCACCATCCCCAAAGGCTTCAATACTTCTTTTCTTGTCAACATTGCCACTATT D L V T I P K G F N T S F L V N I A T I TTTGAATCAGAGAATTTCTTTTTGCCTGGGATTAAATGGAATGGAATACTTGGCCTAGCT FESENFFLPGIKWNGILGLA TATGCCACACTTGCCAAGCCATCAAGTTCTCTGGAGACCTTCTTCGACTCCCTGGTGACA Y A T L.A K P S S S L E T F F D S L V T CAAGCAAACATCCCCAACGTTTTCTCCATGCAGATGTGTGGAGCCGGCTTGCCCGTTGCT Q A N I P N V F S M Q M C G A G L P V A GGATCTGGGACCAACGGAGGTAGTCTTGTCTTGGGTGGAATTGAACCAAGTTTGTATAAA G S G T N G G S L V L G G I E P S L Y K GGAGACATCTGGTATACCCCTATTAAGGAAGAGTGGTACTACCAGATAGAAATTCTGAAA G D I W Y T P I K E E W Y Y Q I E I L K TTGGAAATTGGAGGCCAAAGCCTTAATCTGGACTGCAGAGAGTATAACGCAGACAAGGCC LEIGGQSLNLDCREYNADKA ATCGTGGACAGTGGCACCACGCTGCTGCCCCCAGAAGGTGTTTGATGCGGTGGTG IVDSGTTLLRLPQKVFDAVV GAAGCTGTGGCCCGCGCATCTCTGATTCCAGAATTCTCTGATGGTTTCTGGACTGGGTCC EAVARASLIPEFSDGFWTGS CAGCTGGCGTGCTGGACGAATTCGGAAACACCTTGGTCTTACTTCCCTAAAATCTCCATC Q L A C W T N S E T P W S Y F P K I S I TACCTGAGAGATGAGAACTCCAGCAGGTCATTCCGTATCACAATCCTGCCTCAGCTTTAC Y L R D E N S S R S F R I T I L P Q L Y ATTCAGCCCATGATGGGGGCCGGCCTGAATTATGAATGTTACCGATTCGGCATTTCCCCA IQPMMGAGLNYECYRFGISP

My.

AGAGCCCAGAAGAGGGTGGGCTTCGCAGCGAGCCCCTGTGCAGAAATTGCAGGTGCTGCA

FIGURE 1 (2)

R A Q K R V G F A A S P C A E I A G A A

GTGTCTGAAATTTCCGGGCCTTTCTCAACAGAGGATGTAGCCAGCAACTGTGTCCCCGCT
V S E I S G P F S T E D V A S N C V P A

CAGTCTTTGAGCGAGCCCATTTTGTGGATTGTGTCCTATGCGCTCATGAGCGTCTGTGGA
Q S L S E P I L W I V S Y A L M S V C G

GCCATCCTCCTTGTCTTAATCGTCCTGCTGCTGCTGCCGTTCCGGTGTCAGCGTCGCCCC
A I L L V L I V L L L P F R C Q R R P

CGTGACCCTGAGGTCGTCAATGATGAGTCCTCTCTGGTCAGACATCGCTGGAAATGAATA
R D P E V V N D E S S L V R H R W K

FIGURE 2 (1)

MAQALPWLLLWMGAGVLPAH GGCACCCAGCACGGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCGCCCCCCTGGGG G T Q H G I R L P L R S G L G G A P L G CTGCGGCTGCCCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCCGGAGGGGCAGCTTT LRLPRETDEEPEEPGRRGSF GTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAGATGACC V E M V D N L R G K S G O G Y Y V E M T GTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAACTTTGCA V G S P P Q T L N I L V D T G S S N F A GTGGGTGCTGCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACA V G A A P H P F L H R Y Y O R O L S S TACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAAGGGGAG YRDLRKGVYVPYTQGKWEGE LGTDLVSIPHGPNVTVRANI GCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGCATCCTG AAITESDKFFINGSNWEGIL GGGCTGGCCTATGCTGAGATTGCCAGGCTTTGTGGTGCTGGCTTCCCCCTCAACCAGTCT G L A Y A E I A R L C G A G F P L N O S GAAGTGCTGGCCTCTGTCGGAGGGAGCATGATCATTGGAGGTATCGACCACTCGCTGTAC EVLASVGGSMIIGGIDHSLY ACAGGCAGTCTCTGGTATACACCCATCCGGCGGGGGTGGTATTATGAGGTGATCATTGTG TGSLWYTPIRREWYYEVIIV CGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGCAAGGAGTACAACTATGACAAG RVEINGQDLKMDCKEYNYDK AGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCCAAGAAAGTGTTTGAAGCTGCA SIVDSGTTNLRLPKKVFEAA GTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCTGATGGTTTCTGGCTAGGA V K S I K A A S S T E K F P D G F W L G GAGCAGCTGGTGTGCTGGCAAGCAGCCACCCCTTGGAACATTTTCCCAGTCATCTCA EQLVCWQAGTTPWNIFPVIS CTCTACCTAATGGGTGAGGTTACCAACCAGTCCTTCCGCATCACCATCCTTCCGCAGCAA LYLMGEVTNQSFRITILPQ TACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGACGACTGTTACAAGTTTGCCATC

FIGURE 2 (2)

Y L R P V E D V A T S Q D D C Y K F A I

TCACAGTCATCCACGGGCACTGTTATGGGAGGCTGTTATCATGGAGGGCTTCTACGTTGTC
S Q S S T G T V M G A V I M E G F Y V V

TTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGCGCTTGCCATGTGCACGATGAG
F D R A R K R I G F A V S A C H V H D E

TTCAGGACGGCAGCGGTGAAGGCCCTTTTGTCACCTTGGACATGGAAGACTGTGGCTAC
F R T A A V E G P F V T L D M E D C G Y

AACATTCCACAGACAGATGAGTCAACCCTCATGACCATAGCCTATGTCATGGCTGCCATC
N I P Q T D E S T L M T I A Y V M A A I

TGCGCCCTCTTCATGCTGCCACTCTGCCTCATGGTGTTCAGTGGCGCTGCCTCCGCTGC
C A L F M L P L C L M V C Q W R C L R C

CTGCGCCAGCAGCAGCATGATGACTTTGCTGATGACATCTCCCTGAAGTGAGGAGGCCCA
L R Q Q H D D F A D D I S L L K

FIGURE 3 (1)

MAQALPWLLLWMGAGVLPAH GGCACCCAGCACGCATCCGGCTGCCCCTGCGCAGCGGCCTGGGGGGCGCCCCCCTGGGG G T Q H G I R L P L R S G L G G A P L G CTGCGGCTGCCCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCCGGAGGGGCAGCTTT LRLPRETDEEPEEPGRRGSF GTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAGATGACC V E M V D N L R G K S G Q G Y Y V E M T GTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAACTTTGCA V G S P P Q T L N I L V D T G S S N F A GTGGGTGCTGCCCCCCCCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACA V G A A P H P F L H R Y Y Q R Q L S S T TACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAAGGGGAG YRDLRKGVYVPYTQGKWEGE LGTDLVSIPHGPNVTVRANI GCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGCATCCTG AAITESDKFFINGSNWEG G L A Y A E I A R P D D S L E P F F D S CTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCTGGCTTC LVKQTHVPNLFSLQLCGAGF PLNQSEVLASVGGSMIIGGI GACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGGTATTAT D H S L Y T G S L W Y T P I R R E W Y Y GAGGTCATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGCAAGGAG EVIIVRVEINGQDLKMDCKE TACAACTATGACAAGAGCATTGTGGACAGTGGCACCAACCTTCGTTTGCCCAAGAAA YNYDKSIVDSGTTNLRLPKK GTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCTGAT V F E A A V K S I K A A S S T E K F P D

K 3.5

FIGURE 3 (2)

GGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGCACCCCCTTGGAACATT G F W L G E Q L V C W Q A G T T P W N F P V I S L Y L M G E V T N Q S F R I ATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGACGACTGT ILPQQYLRPVEDVATSQDDC TACAAGTTTGCCATCTCACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATCATGGAG K F A I S O S S T G T V M G A V I M E GGCTTCTACGTTGTCTTTGATCGGGCCCGAAAACGAATTGGCTTTGCTGTCAGCGCTTGC G F Y V V F D R A R K R I G F A V S CATGTGCACGATGAGTTCAGGACGGCAGCGGTGGAAGGCCCTTTTGTCACCTTGGACATG H V H D E F R T A A V E G P F V T L GAAGACTGTGGCTACAACATTCCACAGACAGATGAGTCAACCCTCATGACCATAGCCTAT EDCGYNIPQTDESTLMT IAY GTCATGGCTGCCATCTGCGCCCTCTTCATGCTGCCACTCTGCCTCATGGTGTCAGTGG V M A A I C A L F M L P L C L M V C O CGCTGCCTCCGCTGCCCCAGCAGCATGATGACTTTGCTGATGACATCTCCCTGCTG RCLRQQHDDFADDISLL AAGTGAGGAGGCCCATGGGCAGAAGATAGAGATTCCCCTGGACCACACCTCCGTGGTTCA

MAPALHWLLLWVGSGMLPAO GGAACCCATCTCGGCATCCGGCTGCCCCTTCGCAGCGGCCTGGCAGGGCCACCCCTGGGC T H L G I R L P L R S G L A G P P L G CTGAGGCTGCCCGGGAGACTGACGAGGAATCGGAGGGAGCCTGGCCGGAGAGGCAGCTTT LRLPRETDEESEPGRRGSF GTGGAGATGGTGGACAACCTGAGGGGAAAGTCCGGCCAGGGCTACTATGTGGAGATGACC V E M V D N L R G K S G Q G Y Y V E M T GTAGGCAGCCCCCACAGACGCTCAACATCCTGGTGGACACGGGCAGTAGTAACTTTGCA G S P P Q T L N I L V D T G S S N F A GTGGGGGCTGCCCCACACCCTTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACA V G A A P H P F L H R Y Y Q R Q L S S TATCGAGACCTCCGAAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGGAGGGGGAA R D L R K G V Y V P Y T Q G K W E G E LGTDLVSIPHGPNVTVRANI GCTGCCATCACTGAATCGGACAAGTTCTTCATCAATGGTTCCAACTGGGAGGGCATCCTA AAITESDKFFINGSNWEGIL GGGCTGGCCTATGCTGAGATTGCCAGGCCCGACGACTCTTTGGAGCCCTTCTTTGACTCC G L A Y A E I A R P D D S L E P F F D S CTGGTGAAGCAGACCCACATTCCCAACATCTTTTCCCTGCAGCTCTGTGGCGCTGGCTTC LVKQTHIPNIFSLQLCGAGF PLNQTEALASVGGSMIIGGI GACCACTCGCTATACACGGGCAGTCTCTGGTACACACCCATCCGGCGGGAGTGGTATTAT D H S L Y T G S L W Y T P I R R E W Y Y GAAGTGATCATTGTACGTGTGGAAATCAATGGTCAAGATCTCAAGATGGACTGCAAGGAG E V I I V R V E I N G Q D L K M D C K E TACAACTACGACAAGAGCATTGTGGACAGTGGGACCACCAACCTTCGCTTGCCCAAGAAA Y N Y D K S I V D S G T T N L R L P K K GTATTTGAAGCTGCCGTCAAGTCCATCAAGGCAGCCTCCTCGACGGAGAAGTTCCCGGAT V F E A A V K S I K A A S S T E K F P D GGCTTTTGGCTAGGGGAGCAGCTGGTGTGCTGGCAAGCAGGCACGACCCCTTGGAACATT G F W L G E Q L V C W Q A G T T P W N I TTCCCAGTCATTTCACTTTACCTCATGGGTGAAGTCACCAATCAGTCCTTCCGCATCACC FPVISLYLMGEVTNQSFRIT ATCCTTCCTCAGCAATACCTACGGCCGGTGGAGGACGTGGCCACGTCCCAAGACGACTGT I L P Q Q Y L R P V E D V A T S Q D D C TACAAGTTCGCTGTCTCACAGTCATCCACGGGCACTGTTATGGGAGCCGTCATCATGGAA YKFAVSQSSTGTVMGAVIME GGTTTCTATGTCGTCTTCGATCGAGCCCGAAAGCGAATTGGCTTTGCTGTCAGCGCTTGC FYVVFDRARKRIGFAVSAC CATGTGCACGATGAGTTCAGGACGGCGGCAGTGGAAGGTCCGTTTGTTACGGCAGACATG H V H D E F R T A A V E G P F V T A D M GAAGACTGTGGCTACAACATTCCCCAGACAGATGAGTCAACACTTATGACCATAGCCTAT EDCGYNIPQTDESTLMTIAY GTCATGGCGGCCATCTGCGCCCTCTTCATGTTGCCACTCTGCCTCATGGTATGTCAGTGG V M A A I C A L F M L P L C L M V C Q W CGCTGCCTGCGTTGCCTGCGCCACCAGCACGATGACTTTGCTGATGACATCTCCCTGCTC RCLRCLRHQHDDFADDISLL AAGTAAGGAGGCTCGTGGGCAGATGATGGAGACGCCCCTGGACCACATCTGGGTGGTTCC CTTTGGTCACATGAGTTGGAGCTATGGATGGTACCTGTGGCCAGAGCACCTCAGGACCCT

TGGCGTCATACTCAGGCTACCCGGCATGTGTCCCTGTGGTACCCTGGCAGAGAAGGGCCAATCTCATTCCCTGCTGGCCAAAGTCAGCAGAAGAAGGTGAAGTTTGCCAGTTGCTTTAGTGATAGGGACTGCAGACTCAAGCCTACACTGGTACAAAGACTGCGTCTTGAGATAAACAAGAA

1	MAQALPWLLLWMGAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEE	50
1	MAPALHWLLLWVGSGMLPAQGTHLGIRLPLRSGLAGPPLGLRLPRETDEE	50
51	PEEPGRRGSFVEMVDNLRGKSGOGYYVEMTVGSPPOTLNILVDTGSSNFA	100
51	SEEPGRRGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFA	100
101	VGAAPHPFLHRYYOROLSSTYRDLRKGVYVPYTOGKWEGELGTDLVSIPH	150
101	VGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPH	150
151	GPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDS	200
	GPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDS	200
201	LVKOTHVPNLFSLOLCGAGFPLNOSEVLASVGGSMIGGIDHSLYTGSLW	250
	DVKQ1H1PN1FSLQLCGAGFPLNQTEALASVGGSMIIGGIDHSLYTGSLW	250
		300
	ITPIRREWIYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKK	300
301	VFEAAVKSIKAASSTEKFPDGFWLGEOLVCWOAGTTPWNIFPVISLYLMG	350
	VFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMG	350
351	EVTNOSFRITILPOOYLRPVEDVATSODDCYKFAISOSSTGTVMGAVIME	400
	EVINQSFRITILPQQYLRPVEDVATSQDDCYKFAVSQSSTGTVMGAVIME	400
101	GFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPOT	450
	GFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTADMEDCGYNIPQT	
	DESTLMTIAYVMAAICALFMLPLCLMVCOWRCLRCLROOHDDFADDISLL	
	DESILMTIAYVMAAICALFMLPLCLMVCQWRCLRCLRHQHDDFADDISLL !	500
01	K 501	
01	Ķ 501	

FIGURE 6 (1)

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCACCCAGCACGGCATCCGG M A S M T G G Q Q M G R G S T Q H G I R CTGCCCTGCGCAGCGGCCTGGGGGGCGCCCCCTGGGGCTGCCCCGGGAGACC L P L R S G L G G A P L G L R L P R E T GACGAAGAGCCCGAGGAGCCCGGCCGGAGGGGCAGCTTTGTGGAGATGGTGGACAACCTG D E E P E E P G R R G S F V E M V D N L AGGGGCAAGTCGGGGCAGGCTACTACGTGGAGATGACCGTGGGCAGCCCCCCGCAGACG RGKSGQGYYVEMTVGSPPQT CTCAACATCCTGGTGGATACAGGCAGCAGTAACTTTGCAGTGGGTGCTGCCCCCCACCCC LNILVDTGSSNFAVGAAPHP TTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACATACCGGGACCTCCGGAAGGGC F L H R Y Y Q R Q L S S T Y R D L R K G GTGTATGTGCCCTACACCCAGGGCAAGTGGGAAGGGGAGCTGGGCACCGACCTGGTAAGC V Y V P Y T Q G K W E G E L G T D L V S ATCCCCCATGGCCCCAACGTCACTGTGCGTGCCAACATTGCTGCCATCACTGAATCAGAC I P H G P N V T V R A N I A A I T E S D AAGTTCTTCATCAACGGCTCCAACTGGGAAGGCATCCTGGGGCTGGCCTATGCTGAGATT K F F I N G S N W E G I L G L A Y A E I GCCAGGCCTGACGACTCCCTGGAGCCTTTCTTTGACTCTCTGGTAAAGCAGACCCACGTT A R P D D S L E P F F D S L V K Q T H V CCCAACCTCTTCTCCCTGCAGCTTTGTGGTGCTGGCTTCCCCCTCAACCAGTCTGAAGTG P_N L F S L Q L C G A G F P L N Q S E V CTGGCCTCTGTCGGAGGGAGCATGATCATTGGAGGTATCGACCACTCGCTGTACACAGGC LASVGGSMIIGGIDHSLYTG AGTCTCTGGTATACACCCATCCGGCGGGAGTGGTATTATGAGGTCATCATTGTGCGGGTG S L W Y T P I R R E W Y Y E V I I V R V GAGATCAATGGACAGGATCTGAAAATGGACTGCAAGGAGTACAACTATGACAAGAGCATT EINGQDLKMDCKEYNYDKSI GTGGACAGTGGCACCACCAACCTTCGTTTGCCCAAGAAAGTGTTTGAAGCTGCAGTCAAA V D S G T T N L R L P K K V F E A A V K TCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCTGATGGTTTCTGGCTAGGAGAGCAG SIKAASSTEKFPDGFWLGEO CTGGTGTGCTGGCAAGCAGCACCACCCCTTGGAACATTTTCCCAGTCATCTCACTCTAC LVCWQAGTTPWNIFPVISLY CTAATGGGTGAGGTTACCAACCAGTCCTTCCGCATCACCATCCTTCCGCAGCAATACCTG LMGEVTNQSFRITILPQQYL CGGCCAGTGGAAGATGTGGCCACGTCCCAAGACGACTGTTACAAGTTTGCCATCTCACAG

FIGURE 6 (2)

R P V E D V A T S Q D D C Y K F A I S Q

TCATCCACGGGCACTGTTATGGGAGCTGTTATCATGGAGGGCTTCTACGTTGTCTTTGAT
S S T G T V M G A V I M E G F Y V V V F D

CGGGCCCGAAAACGAATTGGCTTTGCTGTCAGCGCTTGCCATGTGCACGATGAGTTCAGG
R A R K R I G F A V S A C H V H D E F R

ACGGCAGCGGTGAAGGCCCTTTGTCACCTTGGACATGAGACTGTGCCACAACATT
T A A V E G P F V T L D M E D C G Y N I

CCACAGACAGATGAGTCATGA
P Q T D E S *

12/20

13.7

FIGURE 7 (1)

ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCGATGACTATCTCTGACTCT MASMTGGQQMGRGSMTISDS CCGCGTGAACAGGACGGATCCACCCAGCACGGCATCCGGCTGCCCCTGCGCAGCGGCCTG P R E Q D G S T Q H G I R L P L R S G L GGGGGCGCCCCCTGGGGCTGCCCCGGGAGACCGACGAAGAGCCCGAGGAGCCC GGAPLGLRLPRETDEEPEEP GGCCGGAGGGCAGCTTTGTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGC G R R G S F V E M V D N L R G K S G Q G TACTACGTGGAGATGACCGTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACA Y Y V E M T V G S P P Q T L N I L V D T G S S N F A V G A A P H P F L H R Y Y O AGGCAGCTGTCCAGCACATACCGGGACCTCCGGAAGGGCGTGTATGTGCCCTACACCCAG R Q L S S T Y R D L R K G V Y V P Y T O GGCAAGTGGGAAGGGGAGCTGGGCACCGACCTGGTAAGCATCCCCCATGGCCCCAACGTC G K W E G E L G T D L V S I P H G P N V ACTGTGCGTGCCAACATTGCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCC TVRANIAAITESDKFFINGS AACTGGGAAGGCATCCTGGGGCTGGCCTATGCTGAGATTGCCAGGCCTGACGACTCCCTG N W E G I L G L A Y A E I A R P D D S L GAGCCTTTCTTTGACTCTCTGGTAAAGCAGACCCACGTTCCCAACCTCTTCTCCCTGCAG E P F F D S L V K Q T H V P N L F S L Q LCGAGFPLNQSEVLASVGGS ATGATCATTGGAGGTATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATC MIIGGIDHSLYTGSLWYTPI CGGCGGGAGTGGTATTATGAGGTCATCATTGTGCGGGTGGAGATCAATGGACAGGATCTG R R E W Y Y E V I I V R V E I N G Q D L AAAATGGACTGCAAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCAAC K M D C K E Y N Y D K S I V D S G T T N CTTCGTTTGCCCAAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCC LRLPKKVFEAAVKSIKAASS ACGGAGAAGTTCCCTGATGGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGGC T E K F P D G F W L G E Q L V C W Q A G ACCACCCCTTGGAACATTTTCCCAGTCATCTCACTCTACCTAATGGGTGAGGTTACCAAC TTPWNIFPVISLYLMGEVTN

FIGURE 7 (2)

FIGURE 8 (1)

ATGACTCAGCATGGTATTCGTCTGCCACTGCGTAGCGGTCTGGGTGGTGCTCCACTGGGT M T Q H G I R L P L R S G L G G A P L G CTGCGTCTGCCCCGGGAGACCGACGAAGAGCCCGAGGAGCCCGGCCGGAGGGGCAGCTTT LRLPRETDEEPEPGRRGSF GTGGAGATGGTGGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAGATGACC V E M V D N L R G K S G Q G Y Y V E M T GTGGGCAGCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAACTTTGCA V G S P P Q T L N I L V D T G S S N F A GTGGGTGCTGCCCCCACCCTTCCTGCATCGCTACTACCAGAGGCAGCTGTCCAGCACA V G A A P H P F L H R Y Y O R O L S S T TACCGGGACCTCCGGAAGGGCGTGTATGTGCCCTACACCCAGGGCAAGTGGGAAGGGGAG YRDLRKGVYVPYTQGKWEGE L G T D L V S I P H G P N V T V R A N I GCTGCCATCACTGAATCAGACAAGTTCTTCATCAACGGCTCCAACTGGGAAGGCATCCTG AAITESDKFFINGSNWEGIL G L A Y A E I A R P D D S L E P F F D S LVKQTHVPNLFSLQLCGAGF P L N Q S E V L A S V G G S M I I G G I GACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGGCGGGAGTGGTATTAT DHSLYTGSLWYTPIRREWYY GAGGTCATCATTGTGCGGGTGGAGATCAATGGACAGGATCTGAAAATGGACTGCAAGGAG EVIIVRVEINGODLKMDCKE TACAACTATGACAAGAGCATTGTGGACAGTGGCACCACCAACCTTCGTTTGCCCAAGAAA YNYDKSIVDSGTTNLRLPKK GTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCTGAT V F E A A V K S I K A A S S T E K F P D GGTTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGGCACCACCCCTTGGAACATT G F W L G E Q L V C W Q A G T T P W N I TTCCCAGTCATCTCACCTAATGGGTGAGGTTACCAACCAGTCCTTTCGCATCACC F P V I S L Y L M G E V T N Q S F R I T ATCCTTCCGCAGCAATACCTGCGGCCAGTGGAAGATGTGGCCACGTCCCAAGACGACTGT I L P Q Q Y L R P V E D V A T S Q D D C

1.30

FIGURE 8 (2)

1. 3 A

× 200

FIGURE 10

MAQALPWLLLWMGAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEE
PEEPGRRGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFA
VGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPH
GPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDS
LVKQTHVPNLFSLQLCGAGFPLNQSEVLASVGGSMIIGGIDHSLYTGSLW
YTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKK
VFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMG
EVTNQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIME
GFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQT
DES

MAQALPWLLLWMGAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEE PEEPGRRGSFVEMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFA VGAAPHPFLHRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPH GPNVTVRANIAAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDS LVKQTHVPNLFSLQLCGAGFPLNQSEVLASVGGSMIIGGIDHSLYTGSLW YTPIRREWYYEVIIVRVEINGQDLKMDCKEYNYDKSIVDSGTTNLRLPKK VFEAAVKSIKAASSTEKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMG EVTNQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIME GFYVVFDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQT DESHHHHHH

20/20