Indian Institute of Technology Indore MA204 Numerical methods

Instructor: Dr. Debopriya Mukherjee Tutorial Sheet 1

- 1. Show that the error in approximation of the root at the n^{th} step (n = 1, 2, 3, ...) in the bisection method is bounded by $(b-a)/2^n$, where [a,b] is the interval containing the root that is being approximated.
- 2. Find an approximation to $\sqrt[3]{25}$ correct to within 10^{-4} using the bisection method.
- 3. (a) Show that the order of convergence of Newton's (or also called the Newton-Raphson) method is 2, i.e. the method is quadratically convergent.
 - (b) Show that the order of convergence of the secant method is $(1+\sqrt{5})/2 \approx 1.618$.
- 4. Use Newton's method to find solutions accurate to within 10^{-5} to the following problems
 - (a) $\ln(x-1) + \cos(x-1) = 0$, for $1.3 \le x \le 2$.
 - (b) $e^x + 2^{-x} + 2\cos x = 6$, for $1 \le x \le 2$.

You may use the mid point of the interval as the initial guess in each case.

- 5. Repeat problem 5 with the secant method. Take x_0 same as that taken in problem 5 and x_1 from the first iteration of Newton's method but with only three significant digits after rounding off.
- 6. Let $f(x) = e^x x 1$. Show that f(x) has a zero of multiplicity 2 at x = 0. Find this root accurate to within 10^{-5} by (i) Newton's method and (ii) by modified Newton's method. [Realize the rate of convergence of the two methods to the root.]
- 7. A calculator is defective: it can only add, subtract, and multiply. Use the equation 1/x = 1.37, the Newton Method, and the defective calculator to find 1/1.37 correct to 8 decimal places.
- 8. Implement the bisection method, Newton's method and the secant method in your favorite programming language to find the root of $x^6 x 1 = 0$ that lies in the interval [1, 2]. The tolerance for the error you may take as 10^{-5} . For Newton's method, you may take $x_0 = 1.5$ and for the secant method you may take $x_0 = 1.5$ and $x_1 = 1$.
- 9. Show that $x^3 + 4x^2 = 10$ has a solution in [1, 2], and use the bisection method to determine an approximation to this solution that is accurate to at least within 10^{-5} .
- 10. Use the bisection method to find solutions accurate to within 10^{-4} for the following problems
 - (a) $e^x x^2 + 3x = 2$ for $0 \le x \le 1$,
 - (b) $x + 1 2\sin(\pi x) = 0$ for $0.5 \le x \le 1$.