Adama Science and Technology University

School of Electrical Engineering and Computing

Computer Science and Engineering Program

Course Syllabus

Course Title		Data Structures and Algorithm				
Operation Period		Oct 2019-Feb 2019		Course Credits	3	
Code		CSE 2101		Target Grade	2nd Year	
	Prerequisite(s) for enrollment	CSE1101		Capacity (Maximum Number)	50	
	Course Team or SIG		Intelligent Systems	Contact person	Dr. Mohd Wazih Ahmad	
	or SIG	ML, AI	AI	Weekly programs		
	Learning outcome	 On the completion of the course, students should be able to: understand common data structures and algorithms, and be able to implement them; analyze the complexities of data structures and algorithms; choose appropriate data structures and algorithms for problem solving. This course aims to introduce a number of popular data structures and algorithms, along with the basic techniques in algorithm analysis. 			orithms, and be able to implement	
	Course Description					
	Related Research Areas	 Distributed compute Complex Network Bioinformatics Algorithmic game Machine learning Data mining 	theory	Jua pou		
on sakanina hiikosoo	androv transportunitation and the common state of the common state of the common state of the common state of	Unstructured data analys	SIS	LINE CHE	To the same	

				Remark
		Parameter	Weight	ACMIES -
		Attendance	5%	
		Quiz	10%	
	Assessment	Assignment / Presentation	10%	Lab Exam shall be conducted at the end of classes.
		Lab Exam	15%	
		Mid exam	25%	
		Final exam	35%	
Sufficie		Total	100 %	

Weekly Lecture Schedule

	Week1-2	Introduction: Data structure definition, ADT, classification of Data structures(primitive vs. non primitive, Linear vs nonlinear Data Structures), Array revision, pointer revision, Algorithm definition, properties of algorithms, expressing algorithms (natural language, flowchart, pseudocodes), properties of algorithm, Algorithm complexity analysis (operation count, big-O, theta, omega), best case analysis, worst case analysis, average case analysis.
	Week 3-4	Simple Searching and Sorting Algorithms: Linear Search, Binary Search, Bubble sort, Insertion sort, Selection sort
SN.	Week 5-6	List Data Structure: List ADT by the array, Dynamic memory, limitations of array, implementation of lists, Linked list:- Singly linked lists, doubly linked lists, circular (singly and doubly) linked lists, Operations on linked lists: creation, insertion, deletion, update, search, adding new nodes
	Week 7-8	Stack Data structure: Stack definition, Applications, operations on the stack, implementation of a stack using array, Stack implemented using linked lists, applications of stacks, conversion and evaluation of infix, postfix and prefix expressions using stack, recursive functions
	Week-9	Mid Examination
	Week 10-11	Queue Data Structure: Queue definition, applications, operations on queue, Queue implantation by array, queue implantation by linked lists, circular queue, priority queue
	Week 12-13	Tree Data Structure: Definition of tree, basic terminologies ,basic operations on tree: creation, insertion, deletion, update, search, print, Types of trees:- n-ary tree, Binary tree, BST, AVL tree, full BT, complete BT ,Balanced BT .Tree traversal methods: in-order, preorder, post-order

,	Heap data Structure:- definition, creation, insertion, update, deletion, print etc. Examples of Expression trees
Week 14-15	Graph data Structure: Graph definition, basic terminologies, representation of graph, operations on graphs: creation, insertion, deletion, traversal (DFS, BFS) Types of graphs: Cyclic and acyclic graphs, directed and undirected graphs, complete graph, balanced graph. Graph Algorithms: Dijkastra and prims algorithm
Week 16	Advanced sorting Algorithms Quick sort, Merge sort ,shell sort , Heap Sort

Course Text Books	 Introduction to Algorithms, Thomas H. Cormen [et al.]2nd ed.(2001), McGraw-Hill; ISBN 0-07-013151-1. Weiss Mark (1997), Data Structure and Algorithms Analysis in C: Benjamin Cummings Publishing. Ammereaal, Leendert (1988), Programming and data Structure in C (2nd ed.): John Wiley & Sons. 		
-	 Reingold Edward M. and Wilfred Hansen(1983). Data Structures: CBS Publisher & Distibutors. 		
References in MOOC	www.coursera.org,		
Related References	Standish, Thomas A. (1996), Data Structures, Algorithms, and Software Principles, Addison-Wesley Pub Co; ISBN: 0201528800.		
1	Sartaj Sahni, Data Structures, Algorithms, and Applications in C++, McGraw-Hill, 1998.		

Weekly Lab Schedule

Lab 1	C++ revision, implementation of arrays and basic operations
Lab2	Search algorithm: Linear and Binary Search
Lab 3	Sorting Algorithms: Bubble sort, Selection sort, Insertion sort
Lab 4	Linked list using array
Lab 5	Linked lists using dynamic memory allocation
Lab 6	Stack Implementation with operations on stacks
Lab 7	Recursion, expressions evaluation and conversion (prefix, postfix and infix)
energi.	Mid Examination
Lab 9	Queue Implementation: enque, deque using array
Lab 10	Queue Implementation with dynamic memory allocation: creation, enque, deque using array
Lab 11	Circular and priory queue
Lab 12	BST implementation using array and linked lists
Lab 13	Tree traversal methods: Pre-order, post-order, in-order
Lab 14	Graph implantation, DFS and BFS implantation
	Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 Lab 9 Lab 10 Lab 11 Lab 12 Lab 13

Final Lab exam

