Deep Learning - Foundations and Concepts Chapter 14. Sampling

nonlineark@github

March 27, 2025

Outline

Basic Sampling Algorithms

Expectations

For some applications the goal is to evaluate expectations with respect to the distribution. Suppose we wish to find the expectation of a function f(z) with respect to a probability distribution p(z):

$$E(f) = \int f(z)p(z)dz$$

The general idea behind sampling methods is to obtain a set of samples $z^{(l)}$ drawn independently from the distribution p(z). This allows the expectation to be approximated by a finite sum:

$$\bar{f} = \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)})$$

Expectations

Let's calculate the expectation and variance of \bar{f} :

$$E(\bar{f}) = E(\frac{1}{L} \sum_{l=1}^{L} f(z^{(l)})) = E(f)$$

$$E(\bar{f}^2) = E(\frac{1}{L^2} \sum_{l,l'} f(z^{(l)}) f(z^{(l')})) = (E(f))^2 + \frac{1}{L} \text{var}(f)$$

$$\text{var}(\bar{f}) = E(\bar{f}^2) - (E(\bar{f}))^2 = \frac{1}{L} \text{var}(f)$$

Which shows that:

- \bullet \bar{f} is an unbiased estimator of E(f).
- ullet Due to the linear decrease of the variance with increasing L, in principle, high accuracy may be achievable with a relatively small number of samples $z^{(l)}$.

Problem

Suppose that z is uniformly distributed over the interval (0,1). Given a probability density function p, find a function g such that the random variable y=g(z) has p as its probability density function.

Let U be the probability density function of the uniform distribution over the interval (0,1), we have:

$$p(y)dy = U(z)dz$$

$$f(y_0) = \int_{-\infty}^{y_0} p(y)dy = \int_{-\infty}^{z_0} U(z)dz = z_0$$

$$y_0 = f^{-1}(z_0)$$

So we have to transform the uniformly distributed random numbers using a function that is the inverse of the cumulative distribution function of the desired probability density function.

Some examples:

- Exponential distribution $p(y) = \lambda \exp(-\lambda y)$:
 - $z = f(y) = \int_0^y p(t) dt = 1 \exp(-\lambda y).$
 - $y = -\frac{1}{\lambda} \log(1-z)$.
- Cauchy distribution $p(y) = \frac{1}{\pi} \frac{1}{1+y^2}$:
 - $z = f(y) = \int_{-\infty}^{y} p(t)dt = \frac{1}{\pi} \arctan y + \frac{1}{2}$.
 - $y = \tan(\pi(z \frac{1}{2})).$

The generalization to multiple variables involves the Jacobian of the change of variables, so that:

$$p_Y(y_1,\ldots,y_M) = p_Z(z_1,\ldots,z_M) \left| \frac{\partial(z_1,\ldots,z_M)}{\partial(y_1,\ldots,y_M)} \right|$$

The Box-Muller method for generating samples from a Gaussian distribution. First, suppose we generate pairs of uniformly distributed random numbers $z_1,z_2\in(-1,1)$. Next, we discard each pair unless it satisfies $z_1^2+z_2^2\leq 1$. This leads to a uniform distribution of points inside the unit circle with $p_Z(z_1,z_2)=\frac{1}{\pi}$. Then, for each pair z_1,z_2 we evaluate the quantities:

$$y = z \frac{\sqrt{-4\log||z||}}{||z||}$$

The joint distribution of y_1 and y_2 is given by:

$$p_Y(y_1, y_2) = p_Z(z_1, z_2) \left| \frac{\partial(z_1, z_2)}{\partial(y_1, y_2)} \right| = \left(\frac{1}{\sqrt{2\pi}} \exp(-\frac{y_1^2}{2}) \right) \left(\frac{1}{\sqrt{2\pi}} \exp(-\frac{y_2^2}{2}) \right)$$

So y_1 and y_2 are independent and each has a Gaussian distribution with zero mean and unit variance.

Suppose that:

- We wish to sample from a distribution p(z), and sampling directly from p(z) is difficult.
- We are easily able to evaluate p(z) for any given value of z, up to some normalizing constant Z_p , so that $p(z) = \frac{1}{Z_p} \tilde{p}(z)$, where $\tilde{p}(z)$ can readily be evaluated, but Z_p is unknown.

To apply rejection sampling:

- ullet Find a simpler distribution q(z), called a proposal distribution, from which we can readily draw samples.
- Introduce a constant k whose value is chosen such that $kq(z) \geq \tilde{p}(z)$ for all values of z.
- Generate a number z_0 from the distribution q(z).
- ullet Generate a number u_0 from the uniform distribution over $[0,kq(z_0)].$
- If $u_0 > \tilde{p}(z_0)$ then the sample is rejected, otherwise u_0 is retained.
- ullet The corresponding z values in the remaining pairs are distributed according to p(z).

Figure: Illustration of the rejection sampling method

Let's verify the correctness of the rejection sampling method. Suppose that random variable Z is distributed according to q(z), and random variable U is uniformly distributed over [0,kq(Z)]. We want to calculate the probability density function of the random variable $Z|0 \leq U \leq \tilde{p}(Z)$:

$$P(Z \in E | 0 \le U \le \tilde{p}(Z)) = \frac{P(Z \in E, 0 \le U \le \tilde{p}(Z))}{P(0 \le U \le \tilde{p}(Z))}$$
$$= \frac{\int_{E} q(z) \frac{\tilde{p}(z)}{kq(z)} dz}{\int_{\mathbb{R}} q(z) \frac{\tilde{p}(z)}{kq(z)} dz}$$
$$= \int_{E} p(z) dz$$

We see that the random variable $Z|0 \le U \le \tilde{p}(Z)$ is indeed distributed according to p(z).

Let's calculate the probability that a sample will be accepted:

$$P_{\text{accept}} = \int_{\mathbb{R}} q(z) \frac{\tilde{p}(z)}{kq(z)} dz = \frac{Z_p}{k}$$

We see that the constant k should be as small as possible subject to the limitation that kq(z) must be nowhere less than $\tilde{p}(z)$.

Adaptive rejection sampling

- In many instances, it can be difficult to determine a suitable analytic form for the envelope distribution q(z).
- ullet An alternative approach is to construct the envelope function on the fly based on measured values of the distribution p(z).
- ullet Constructing an envelope function is particularly straightforward when p(z) is log concave.

Adaptive rejection sampling

- ullet Evaluate the function $\log p(z)$ and its gradient at some initial set of grid points.
- The intersections of the resulting tangent lines are used to construct the envelope function.
- Draw a sample value from the envelope distribution. This is straightforward because the envelope function comprises a piecewise exponential distribution.
- If the sample is accepted, then it will be a draw from the desired distribution.
- If the sample is rejected, then it is incorporated into the set of grid points, a new tangent line is computed, and the envelope function is thereby refined.

Adaptive rejection sampling

Figure: Illustration of the construction of an envelope function for adaptive rejection sampling

Importance sampling

The technique of importance sampling provides a framework for approximating expectations directly but does not itself provide a mechanism for drawing samples from a distribution p(z).

Suppose we wish to calculate the expectation of a function f(z) with respect to a distribution p(z):

- The distribution p(z) can be evaluated only up to a normalization constant, so that $p(z)=\frac{\tilde{p}(z)}{Z_p}$, where Z_p is unknown.
- ullet Because it is difficult to draw samples directly from p(z), we rely on a proposal distribution q(z) from which it is easy to draw samples.
- \bullet The distribution q(z) also has an unknown normalization constant Z_q , so that $q(z)=\frac{\tilde{q}(z)}{Z_q}.$

Importance sampling

Let's calculate the expectation of f(z) with respect to p(z):

$$\begin{split} E(f) &= \int f(z) p(z) \mathrm{d}z = \int f(z) \frac{p(z)}{q(z)} q(z) \mathrm{d}z \\ &\approx \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)}) \frac{p(z^{(l)})}{q(z^{(l)})} = \frac{Z_q}{Z_p} \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)}) \frac{\tilde{p}(z^{(l)})}{\tilde{q}(z^{(l)})} \\ &\frac{Z_p}{Z_q} = \frac{1}{Z_q} \int \tilde{p}(z) \mathrm{d}z = \frac{1}{Z_q} \int \frac{\tilde{p}(z)}{q(z)} q(z) \mathrm{d}z \\ &\approx \frac{1}{Z_q} \frac{1}{L} \sum_{l=1}^{L} \frac{\tilde{p}(z^{(l)})}{q(z^{(l)})} = \frac{1}{L} \sum_{l=1}^{L} \frac{\tilde{p}(z^{(l)})}{\tilde{q}(z^{(l)})} \end{split}$$

where the samples $\{z^{(l)}\}$ are drawn from q(z).

Importance sampling

Let:

$$ilde{r}_l = rac{ ilde{p}(z^{(l)})}{ ilde{q}(z^{(l)})} \ w_l = rac{ ilde{r}_l}{\sum_{l'} ilde{r}_{l'}}$$

we see that:

$$E(f) \approx \frac{\sum_{l=1}^{L} f(z^{(l)}) \tilde{r}_{l}}{\sum_{l=1}^{L} \tilde{r}_{l}} = \sum_{l=1}^{L} w_{l} f(z^{(l)})$$

Sampling-importance-resampling

- Draw L samples $z^{(1)}, \ldots, z^{(L)}$ from q(z).
- Construct weights w_1, \ldots, w_L using $w_l = \frac{\tilde{r}_l}{\sum_{l'} \tilde{r}_{l'}} = \frac{\tilde{p}(z^{(l)})/q(z^{(l)})}{\sum_{l'} \tilde{p}(z^{(l')})/q(z^{(l')})}$.
- Draw L samples from the discrete distribution $(z^{(1)}, \ldots, z^{(L)})$ with probabilities given by the weights (w_1, \ldots, w_L) .

Sampling-importance-resampling

Let's verify the correctness of the sampling-importance-resampling method.

$$P(z \le a) = \sum_{l=1}^{L} I(z^{(l)} \le a) w_l = \frac{\sum_{l=1}^{L} I(z^{(l)} \le a) \frac{\tilde{p}(z^{(l)})}{q(z^{(l)})}}{\sum_{l=1}^{L} \frac{\tilde{p}(z^{(l)})}{q(z^{(l)})}}$$

where I is the indicator function. Taking the limit $L \to \infty$:

$$P(z \le a) = \frac{\int I(z \le a) \frac{\tilde{p}(z)}{q(z)} q(z) dz}{\int \frac{\tilde{p}(z)}{q(z)} q(z) dz} = \frac{\int_{-\infty}^{a} \tilde{p}(z) dz}{\int_{-\infty}^{\infty} \tilde{p}(z) dz} = \int_{-\infty}^{a} p(z) dz$$