Static-34

Title

Pinched thin-walled cylinder

Description

A thin-walled cylinder is pinched by a pair of forces at the middle of the cylinder. Determine the radial displacement at the target point B, where the force P is applied. The ends of the cylinder are free edges.

Structural geometry and analysis model

MODEL

Analysis Type

3-D static analysis

Unit System

m, N

Dimension

Height 10.35 m Radius 4.953 m

Element

Plate element (thin)

Material

Modulus of elasticity $E = 1.05 \times 10^7 \text{ Pa}$ Poisson's ratio v = 0.3125

Sectional Property

Circular cross-section: radius 4.953 m, thickness 0.094 m

Boundary Condition

Node 1: Constrain D_Y , D_Z , R_X , R_Y and R_Z

Node $2\sim10$: Constrain D_Z , R_X and R_Y

Node 11: Constrain D_X , D_Z , R_X , R_Y and R_Z

Node 12~111: Constrain D_Y , R_X and R_Z Node 22~121: Constrain D_X , R_Y and R_Z

Load Case

A concentrated load, P = 25 N is applied at the middle of the cylinder length

Results

Displacements in the direction of the applied force P

Comparison of Results

		Unit: mm
Results	Theoretical	MIDAS/Civil
Displacement (δ_Y)	-113.900	-112.87

References

Afnor (1990). "Guide de Validation des Progiciels de Calcul de Structures", SFM, Afnor Technique, France.

Takemoto, H., and Cook, R. D. (1973). "Some Modification of an Isoparametric Shell Element" Int. J. Num. Methods in Engrg., 7(3).

Zienkiewicz, O. C. (1977). "The Finite Element Method", 3rd ed., McGraw-Hill, London, UK.