Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 2, zadanie nr 3

Wojciech Rokicki, Radosław Pietkun, Jakub Gruszecki

Spis treści

1. Sprawdzen		wdzenie poprawności punktu pracy
	1.1. 1.2.	Poprawność wartości sygnałów w punkcie pracy
	1.3.	Implementacja
2.	Odp	owiedzi skokowe i charakterystyka statyczna
	2.1.	Wyznaczenie odpowiedzi skokowych toru wejście-wyjście procesu
	2.2.	Wyznaczenie odpowiedzi skokowych toru zakłócenie-wyjście procesu
	2.3.	Charakterystyka statyczna
	2.4.	Wzmocnienie statyczne procesu
	2.5.	Implementacja
3.	Odp	owiedzi skokowe dla algorytmu DMC
	3.1.	Odpowiedź skokowa toru wejście-wyjście procesu
	3.2.	Odpowiedź skokowa toru zakłócenie-wyjście procesu
	3.3.	Implementacja

1. Sprawdzenie poprawności punktu pracy

1.1. Poprawność wartości sygnałów w punkcie pracy

W celu sprawdzenia poprawności wartości sygnałów $U_{\rm pp},\,Z_{\rm pp}$ oraz $Y_{\rm pp}$ obiekt został pobudzony sygnałami o wartościach: $U_{\rm pp}=0$ i $Z_{\rm pp}=0$. Wartości sygnałów w punkcie pracy będą poprawne, jeśli sygnał wyjściowy przyjmie wartość $Y_{\rm pp}=0$.

Rys. 1.1. Przebiegi sygnałów u(k), z(k), y(k) w punkcie pracy

1.2. Wnioski

Na podstawie rysunku 1.1 widać, że dla stałej wartości sygnału sterującego $U_{\rm pp}=0$ oraz stałej wartości sygnału zakłócenia $Z_{\rm pp}=0$ wyjście obiektu przyjmuje stałą wartość, równą $Y_{\rm pp}=0$. Jest to dowód na to, że podane wartości sygnałów wejsciowego, zakłócenia oraz wyjściowego w punkcie pracy są poprawne.

1.3. Implementacja

Do przeprowadzenia eksperymentu wykorzystany został skrypt zad1.m.

2. Odpowiedzi skokowe i charakterystyka statyczna

2.1. Wyznaczenie odpowiedzi skokowych toru wejście-wyjście procesu

W celu wyznaczenia odpowiedzi skokowych obiekt był pobudzany, w punkcie pracy, różnymi skokami sygnału sterującego w chwili k=50. Przeprowadzono osiem testów dla różnych wartości skoków. Uzyskane odpowiedzi skokowe wraz z odpowiadającymi im przebiegami sygnału sterowania przedstawiono na rys. 2.1.

Rys. 2.1. Odpowiedzi skokowe toru wejście-wyjście procesu

2.2. Wyznaczenie odpowiedzi skokowych toru zakłócenie-wyjście procesu

W celu wyznaczenia odpowiedzi skokowych obiekt był pobudzany, w punkcie pracy, różnymi skokami sygnału zakłócenia w chwili k=50. Przeprowadzono osiem testów dla różnych wartości skoków. Uzyskane odpowiedzi skokowe wraz z odpowiadającymi im przebiegami sygnału zakłócenia przedstawiono na rys. 2.2.

Rys. 2.2. Odpowiedzi skokowe toru zakłócenie-wyjście procesu

2.3. Charakterystyka statyczna

W celu wyznaczenia charakterystyki statycznej procesu wyznaczono odpowiedź układu w stanie ustalonym dla pobudzeń różnymi wartościami sygnału sterującego i zakłócenia. Zebrane wyniki przedstawiono na rys. 2.3.

2.4. Wzmocnienie statyczne procesu

Na podstawie rys. 2.3 można powiedzieć, że obiekt jest w przybliżeniu liniowy. Można zatem wyznaczyć wzmocnienie statyczne obu torów procesu. Wzmocnienie statyczne toru U-Y dla danego zakłócenia Z można obliczyć na podstawie wzoru:

$$K_{\text{stat_uy}} = \frac{Y(Z, U_{\text{max}}) - Y(Z, U_{\text{min}})}{U_{\text{max}} - U_{\text{min}}}$$
(2.1)

Natomiast wzmocnienie statyczne toru Z-Y dla danego sterowania U można obliczyć ze wzoru:

$$K_{\text{stat_zy}} = \frac{Y(Z_{\text{max}}, U) - Y(Z_{\text{min}}, U)}{Z_{\text{max}} - Z_{\text{min}}}$$
(2.2)

Dla danego procesu wzmocnienie statyczne toru U-Y wynosi $K_{\rm stat_uy}=1,8857,$ a wzmocnienie statyczne toru Z-Y wynosi $K_{\rm stat_zy}=1,0906.$

Rys. 2.3. Charakterystyka statyczna procesu

2.5. Implementacja

Implementacje fukcji wykorzystanych do wykonania zadania zawarte są w skryptach ${\tt zad2.m}$ oraz ${\tt zad2_char_stat.m}$.

3. Odpowiedzi skokowe dla algorytmu DMC

3.1. Odpowiedź skokowa toru wejście-wyjście procesu

Do wyznaczania odpowiedzi skokowej toru U-Y dla algorytmu DMC wybrana została odpowiedź procesu dla jednostkowej zmiany sygnału sterującego:

$$u(k) = \begin{cases} 0 & \text{dla } k < 0 \\ 1 & \text{dla } k \geqslant 0 \end{cases}$$

W trakcie symulacji sygnał zakłócenia miał caly czas wartość zerową, odpowiadającą wartości z punktu pracy. Otrzymaną odpowiedź skokową przedstawiono na rys. 3.1.

Odpowiedz skokowa toru wejście-wyjście procesu

Rys. 3.1. Odpowiedź skokowa toru wejście-wyjście procesu dla algorytmu DMC

3.2. Odpowiedź skokowa toru zakłócenie-wyjście procesu

Do wyznaczania odpowiedzi skokowej toru Z-Y dla algorytmu DMC wybrana została odpowiedź procesu dla jednostkowej zmiany sygnału zakłócenia:

$$z(k) = \begin{cases} 0 & \text{dla } k < 0 \\ 1 & \text{dla } k \geqslant 0 \end{cases}$$

W trakcie symulacji sygnał sterujący miał caly czas wartość zerową, odpowiadającą wartości z punktu pracy. Otrzymaną odpowiedź skokową przedstawiono na rys. 3.2.

Rys. 3.2. Odpowiedź skokowa toru zakłócenie-wyjście procesu dla algorytmu DMC

3.3. Implementacja

 $Implementacje fukcji wykorzystanych do wykonania zadania są zawarte w skryptach \verb|zad_skokU.m|| oraz | \verb|zad_skokZ.m||.$