COMP 5711: Advanced Algorithms Fall 2020 Final Exam (Part 1)

Note 1: For any positive integer n, we denote $[n] = \{1, 2, ..., n\}$.

Note 2: For questions with multiple steps, if you don't know how to prove earlier steps, you can still try to prove later steps, assuming earlier steps have been proven.

- 1. (6 pts) Suppose an data structure is able to handle a sequence of n operations for any n. For each of the following statements, determine if it is true or false. You don't need to justify your answers.
 - (a) If the cost of each operation is c, then the amortized cost of the operation is c.
 - (b) Let the total cost of n operations be f(n). If $\lim_{n\to\infty} f(n)/n = c$, then the amortized cost of the operation on the initial state is at most c.
 - (c) Suppose there are two types of operations op₁ and op₂. When the sequence consists of solely op₁, its amortized cost is c_1 ; when the sequence consists of solely op₂, its amortized cost is c_2 . Then the amortized cost of each operation is at most max $\{c_1, c_2\}$, when the sequence consists of both op₁ and op₂.
- 2. (15 pts) Suppose we have an array of elements $\{A_i\}_{i=1}^n$, and an array of bits $\{M_i\}_{i=1}^n$ where $M_1=1$ and $M_i\in\{0,1\}$ for i>1. The bits in M define a partitioning of A into a number of segments. More precisely, a *segment* is the sub-sequence of elements $A_i, A_{i+1}, \cdots, A_{j-1}$ where $M_i=1, M_j=1$, and $M_k=0$ for $k=i+1, \cdots, j-1$. The goal is to compute the prefix sums for each segment, i.e., output an array B, such that

$$B_i = A_i + \dots + A_j$$
, where $i = \max\{k \mid M_k = 1, k \le j\}$.

(a) Define a binary operator \oplus between two pairs (u, b_1) and (v, b_2) where b_1, b_2 are two bits, as follows.

$$(u, b_1) \oplus (v, b_2) = \begin{cases} (u + v, b_1), & \text{if } b_2 = 0; \\ (v, b_2), & \text{if } b_2 = 1. \end{cases}$$

Prove that \oplus is associative.

- (b) Design a parallel algorithm to compute the prefix sums for all segments with O(n) work and $O(\log n)$ time, under the EREW model with unlimited processors.
- 3. (25 pts) Consider the balls and bins problem. Suppose we throw n balls into n bins uniformly. Suppose the i-th ball falls into the A_i -th bin. Let $X_j = |\{i \mid A_i = j\}|$ be the number of balls in the i-th bin, and $X = \max_{j \in [n]} X_j$. You may assume n is large enough.
 - (a) Prove that if $\{A_i\}_{i=1}^n$ are mutually independent, then $\Pr(X \ge \ln(n)) = o(1/n^c)$ for any positive constant c.
 - (b) Prove that if $\{A_i\}_{i=1}^n$ are pairwise independent, then $\Pr(X \ge \sqrt{2n} + 1) \le 1/2$.
 - (c) Below, we will show that the bound in (b) is tight, i.e., there is a sequence $\{A_i\}_{i=1}^n$ that are pairwise independent, such that X is very likely to be $\Omega(\sqrt{n})$. Consider the following random process. First we choose a uniformly random number $K \in [n]$ and a random permutation π of [n-1]. Then for each $i \in [n-1]$, we independently set $A_i = K$ with probability $1/\sqrt{n}$, and $A_i = K + \pi(i)$ otherwise (if $K + \pi(i) > n$, we set $A_i = K + \pi(i) n$ instead). Finally, we draw A_n uniformly at random from [n]. Show that each A_i is uniformly distributed over [n], i.e., $\Pr(A_i = j) = 1/n$ for any $i \in [n], j \in [n]$.

(d) Let $\{A_i\}_{i=1}^n$ be defined as in (c). They are no longer mutually independent, but are still pairwise independent (you do not need to prove this). Show that under this sequence $\{A_i\}_{i=1}^n$, $\Pr(X \leq \sqrt{n}/2) = o(1)$. [Hint: Since $X \geq X_K$, it's sufficient to bound $\Pr(X_K \leq \sqrt{n}/2)$.]