MATH3841 Statistical Analysis of Dependent Data

Session 2, 2012

Review of Vectors and Matrices

School of Mathematics and Statistics University of New South Wales

linear association. (Compare to correlation)

2. If c is a constant,

$$c\mathbf{a} = \begin{pmatrix} ca_1 \\ ca_2 \\ \vdots \\ ca_n \end{pmatrix}.$$

3. Let 0 denote a vector of zeros and 1 denote a vector of ones. This is sometimes written $\mathbf{0}_p$ and $\mathbf{1}_p$ to specify the length.

7

Vectors - basics

1. If
$$a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
, is an n -dimensional (column) vector, the **transpose** of a is a row vector $a^{\top} = (a_1, a_2, \cdots, a_n)$.

Also, if $a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$, $b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ then the sum is $a + b = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix}$.

The **inner product** of a and b

$$oldsymbol{a}^{ op} oldsymbol{b} = \sum_{i=1}^n a_i b_i = oldsymbol{b}^{ op} oldsymbol{a}.$$

The inner product generalises the dot product for two vectors $X \cdot Y = |X||Y|\cos\theta$, where θ is the angle between X and Y. It is therefore measures

Matrices - basics

If A is a $p \times n$ matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \end{pmatrix} = (a_{ik})_{p \times n}$$

and c is a constant, then $cA = (ca_{ij})_{p \times n}$.

If B is $n \times m$, $AB = (\sum_{k=1}^n a_{ik} b_{kj})_{p \times m}$ and $AB \neq BA$ in general, even if of the same dimension.

Subject to dimension restrictions (Can you verify these?):

1.
$$A + B = B + A$$

3.
$$c(A+B)=cA+cB$$

4.
$$(AB)C = A(BC)$$

5.
$$A(B+C)=AB+AC$$

elements equal to 0. **Some useful notatation**: Let $O_{p \times p}$ denote a $p \times p$ matrix of zeros and $I_{p \times p}$ denote a $p \times p$ matrix with diagonal elements all equal to 1 and all off-diagonal

$O_{p \times p}$ is a zero matrix I_p is an identity matrix:

 $O_{p \times p} A$ is a $p \times n$ matrix of zeros

 $I_p A = A$ for any $p \times n$ matrix A.

D is a $p \times p$ diagonal matrix if

3.
$$(AB)^\top = B^\top A^\top$$

For example: Show $(A+B)^{\top} = A^{\top} + B^{\top}$.

Proof:

The $(i,j)^{th}$ element of $(A+B)^{\top}$ is $a_{ji}+b_{ji}$.

The $(i,j)^{th}$ element of A^{\top} is a_{ji} , and of B^{\top} is b_{ji} . Hence the $(i,j)^{th}$ element of $A^{\top}+B^{\top}$ is $a_{ji}+b_{ji}$ as required.

If $A = (a_1, a_2, \cdots, a_n)$, then

$$A^{ op} = egin{pmatrix} oldsymbol{a_1} & oldsymbol{a_2} & & & \ oldsymbol{a_2} & & & \ & arphi & & \ oldsymbol{a_n} & & & \end{pmatrix}.$$

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_p \end{pmatrix} = \operatorname{Diag}(\lambda_1, \lambda_2, \cdots, \lambda_p).$$

The **transpose** of $A = (a_{ij})_{p \times n}$ is

$$A^{\top} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{pmatrix}_{n \times p}$$

Note (Can you show these?):

1.
$$(A^{+})^{+} = A$$

2. $(A+B)^{\top} = A^{\top} + B^{\top}$

Determinants of Matrices

The **determinant** of a square matrix A ($n \times n$ for some n) is

$$|A| = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |A_{ij}^*|$$
 (for some i)
 $= \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |A_{ij}^*|$ (for some j)

where A_{ij}^* is A, but with the i^{th} row and j^{th} column deleted, and if B= $\begin{pmatrix} a & b \\ c & d \end{pmatrix}, |B| = ad - bc.$

If
$$n = 1$$
, A is a scalar and $|A| = A$.

For example, choosing row i = 1:

$$\begin{vmatrix} 3 & -2 & 1 \\ 8 & 1 & -3 \\ -1 & 0 & 6 \end{vmatrix} = (-1)^2 \cdot 3 \begin{vmatrix} 1 & -3 \\ 0 & 6 \end{vmatrix} + (-1)^3 \cdot -2 \begin{vmatrix} 8 & -3 \\ -1 & 6 \end{vmatrix} + (-1)^4 \cdot 1 \begin{vmatrix} 8 & 1 \\ -1 & 0 \end{vmatrix}$$
$$= (3 \times 6) + (2 \times 45) + (1 \times 1) = 109.$$

Note (Can you show these?):

- 1. If *A* contains a row or column of zeros, |A| = 0.
- 2. $|A| = |A^{\top}|$.
- 3. If a row or column of A is multiplied by a constant c, |A| is multiplied by
- 4. $|cA| = c^n |A|$.
- 5. $|\operatorname{Diag}(\lambda_1, \lambda_2, ..., \lambda_p)| = \prod_{i=1}^p \lambda_i$
- 6. |AB| = |A||B|.

Matrix Inverse

such that $AB = I_n$. B is the **inverse** of A. Write $B = A^{-1}$. If A is $n \times n$ and $|A| \neq 0$, then A is **nonsingular**. There then exists a unique B

Then (Can you show these?)

1.
$$AA^{-1} = A^{-1}A = I_n$$
.

2.
$$(A^{-1})^{\top} = (A^{\top})^{-1}$$
.

- 3. $(AC)^{-1} = C^{-1}A^{-1}$ if both A and C are nonsingular and $n \times n$.
- 4. $|A^{-1}| = \frac{1}{|A|}$.

5. If
$$A = \operatorname{Diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$$
 with all $\lambda_i \neq 0$, then $A^{-1} = \operatorname{Diag}\left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \cdots, \frac{1}{\lambda_n}\right)$.

For Example: Show that $(AC)^{-1} = C^{-1}A^{-1}$ if both A and C are nonsingular

Trace of a Matrix

If
$$A = (a_{ij})_{n \times n}$$
, the trace of A is $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$.

Note (Can you show these?):

1.
$$tr(A) = tr(A^{\top})$$
.

2.
$$tr(A + B) = tr(A) + tr(B)$$
.

3.
$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$
 if A is $m \times n$ and B is $n \times m$.

4.
$$\operatorname{tr}(A^{\top}A) = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij}^{2}$$
.

5.
$$\operatorname{tr}(B^{-1}AB) = \operatorname{tr}(A)$$

$$\operatorname{tr}(B^{-1}AB) = \operatorname{tr}(AB)$$

6. $\operatorname{tr}(cA) = c\operatorname{tr}(A)$.

$$7. \operatorname{tr}(I_n) = n.$$

Proof: We note that

$$(AC)C^{-1}A^{-1} = A(CC^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$

If A is $n \times n$ and $A^{\top} = A$ ($a_{ij} = a_{ji}$ for all i, j), A is symmetric.

More on vectors

If
$$m{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, the **length** of $m{x}$ is $|m{x}| = \sqrt{x_1^2 + x_2^2}$.

$$\text{If } \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, |\boldsymbol{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\boldsymbol{x}^\top \boldsymbol{x}}.$$

Figure 1: Length |x| of a vector x.

If c is constant, |cx| = |c||x|.

15

$$\cos\theta_1 = \frac{x_1}{|x|}$$
, $\cos\theta_2 = \frac{y_1}{|y|}$, $\sin\theta_1 = \frac{x_2}{|x|}$, $\sin\theta_2 = \frac{y_2}{|y|}$ and

$$\cos\theta = \cos(\theta_2 - \theta_1) = \cos\theta_2 \cos\theta_1 + \sin\theta_2 \sin\theta_1 = \frac{x_1y_1 + x_2y_2}{|\boldsymbol{x}||\boldsymbol{y}|}.$$

Therefore the angle between x and y (or $x^{ op}$ and $y^{ op}$) is specified by

$$\cos \theta = \frac{\boldsymbol{x}^{\top} \boldsymbol{y}}{|\boldsymbol{x}| |\boldsymbol{y}|} = \frac{\boldsymbol{x}^{\top} \boldsymbol{y}}{\sqrt{\boldsymbol{x}^{\top} \boldsymbol{x}} \sqrt{\boldsymbol{y}^{\top} \boldsymbol{y}}}.$$

Figure 3: Vector projection

Now
$$|z| = \cos \theta |x| = \frac{x^{-1}y}{|y|}$$
 and $z = cy$. Thus

ħΙ

$$|z| = c|y| \Rightarrow c = \frac{x^{\top}y}{|y|^2} = \frac{x^{\top}y}{y^{\top}y}.$$

That is, the projection quantifies the degree of similarity between two vectors. Correlation!

A set of *p*-vectors x_1, x_2, \dots, x_k are **linearly dependent** if there exist constants c_1, c_2, \dots, c_k , not all zero, such that

Figure 2: Angle relations.

 Ξ The same formula applies if $\boldsymbol{x} = (x_1 \ x_2 \ \dots x_n)^T$ and $\boldsymbol{y} = (y_1 \ y_2 \ \dots y_n)^T$.

Do you see the connection between $\cos \theta$ and correlation?

x and y are **orthogonal** (that is, at right-angles to each other) if $x^\top y = 0 \iff \theta = \frac{\pi}{2}$.

The **projection** of x on y is a vector

$$oldsymbol{z} = \left(rac{oldsymbol{x}^{ op} oldsymbol{y}}{oldsymbol{y}^{ op} oldsymbol{y}}
ight) oldsymbol{y}$$
 .

$$c_1\boldsymbol{x}_1+c_2\boldsymbol{x}_2+\cdots+c_k\boldsymbol{x}_k=\boldsymbol{0}.$$

Otherwise the vectors are linearly independent.

Example 0.1 :
$$x_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $x_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $x_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

$$c_{1}x_{1} + c_{2}x_{2} + c_{3}x_{3} = \mathbf{0} \implies c_{1} + c_{2} + c_{3} = 0$$

$$c_{1}x_{1} + c_{2}x_{2} + c_{3}x_{3} = \mathbf{0} \implies c_{1} - c_{2} + c_{3} = 0$$

$$c_{1} - c_{2} + c_{3} = 0$$

$$c_{1} = c_{2} = c_{3} = 0.$$

ςι

Hence, x_1 , x_2 and x_3 are linearly independent.

Note: Linear dependence means any one of the vectors can be written as a linear combination of the others.

More on Matrices

If A is an $n \times n$ matrix, then

- 1. A^{-1} exists if and only if the n columns of A are linearly independent (Do you see why?).
- 2. A^{-1} is **symmetric** if A is symmetric.
- 3. A is **orthogonal** if $AA^{T} = A^{T}A = I_{n}$. (Do you see why?) If $A = (a_1, a_2, \cdots, a_n)$ is orthogonal, then A^{-1} exists since $|A| \neq 0$ and

91

- (a) $A^{-1} = A^{\top}$.
- (b) $\mathbf{a}_i^{\mathsf{T}} \mathbf{a}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$
- (c) |A| = 1 or -1.
- (d) If B is also orthogonal, so is AB as:

$$AB(AB)^{\top} = ABB^{\top}A^{\top} = AA^{\top} = I_n.$$

tion of the columns of the matrix. Thus corresponding to each λ_i is a vector x_i ing to λ_i . If $e_i = x_i/|x_i|$, then the e_i 's are eigenvectors with unit length. for which $(A - \lambda_i I_n)x_i = 0$ or $Ax_i = \lambda_i x_i$ and x_i is an **eigenvector** correspond. That is, multiplying a matrix on the right by a vector gives a linear combina-

- 1. If *A* is symmetric, the λ_i 's are all real (i.e. non-complex) and
- (a) Eigenvectors corresponding to distinct eigenvalues are orthogonal,
- (b) If $B = PAP^{-1}$ then A and B have the same eigenvalues,
- (c) There exists an orthogonal matrix Γ such that

81

$$\Gamma^{\mathsf{T}}A\Gamma = \mathrm{Diag}(\lambda_1, \lambda_2, \cdots, \lambda_n).$$

Note that $A\Gamma = \Gamma \mathrm{Diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$, since $(\Gamma^\top)^{-1} = \Gamma$. Hence if $\Gamma = (\gamma_1, \gamma_2, \cdots, \gamma_n)$, then $A\gamma_i = \lambda_i \gamma_i$ since if

Eigenvalues and Eigenvectors

The **eigenvalues** $\lambda_1, \lambda_1, \dots, \lambda_n$ of A are the n roots of $|A - \lambda I_n| = 0$. If $|A - \lambda_i I_n| = 0$, then $A - \lambda_i I_n$ is singular and hence from (1 on previous slide) all zero) x_1, x_2, \dots, x_n such that the columns of $A - \lambda_i I_n$ are linearly dependent. Thus there exist constants (not

ince if
$$B=(m{b}_1,m{b}_2,\dots,m{b}_n)$$
, then

ZΙ

since if $B=(\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_n)$, then

$$B\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix} = x_1\boldsymbol{b}_1 + x_2\boldsymbol{b}_2 + \dots + x_n\boldsymbol{b}_n;$$

$$A = egin{pmatrix} oldsymbol{a}_1^{\intercal} \ oldsymbol{a}_2^{\intercal} \ oldsymbol{a}_n^{\intercal} \end{pmatrix}, \qquad A\Gamma = egin{pmatrix} oldsymbol{a}_1^{\intercal} \gamma_1 & \cdots & oldsymbol{a}_1^{\intercal} \gamma_n \ dots & dots \ oldsymbol{a}_n^{\intercal} \gamma_1 & \cdots & oldsymbol{a}_n^{\intercal} \gamma_n \end{pmatrix}$$

and the i^{th} column of $A\Gamma$ is

$$egin{pmatrix} oldsymbol{a}_1^{ op} \gamma_i \ dots \ oldsymbol{a}_n^{ op} \gamma_i \end{pmatrix} = A \gamma_i$$

6I

and the i^{th} column of

$$\Gamma \mathrm{Diag}(\lambda_1,\cdots,\lambda_n) \text{ is } \Gamma \left(egin{array}{c} 0 \\ \vdots \\ \lambda_i \\ \vdots \end{array}
ight) = \lambda_i \gamma_i.$$
 unit length eigenvector corresponding to λ

Thus γ_i is the unit length eigenvector corresponding to λ_i .

We also write

where $\Lambda = \text{Diag}(\lambda_1, \dots, \lambda_n)$.

(d)
$$|A| = \prod_{i=1}^{n} \lambda_i$$
.
(e) $tr(A) = \sum_{i=1}^{n} \lambda_i$.

Example 0.2:
$$A = \begin{pmatrix} 1 & -5 \\ -5 & 1 \end{pmatrix}$$
.

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -5 \\ -5 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 25$$

$$\implies \lambda^2 - 2\lambda - 24 = 0 \implies \text{eigenvalues } \lambda_1 = 6, \lambda_2 = -4$$

$$A\mathbf{x} = \lambda_1 \mathbf{x} \Leftrightarrow \begin{pmatrix} 1 & -5 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 6 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$A = \lambda_1 e_1 e_1^{\mathsf{T}} + \lambda_2 e_2 e_2^{\mathsf{T}} + \dots + \lambda_n e_n e_n^{\mathsf{T}}$$

Proof: from 5(c), $Ae_i = \lambda_i e_i$ and so $Ae_i e_i^{\top} = \lambda_i e_i e_i^{\top}$ and hence where (λ_i, e_i) are the eigenvalue, unit eigenvector pair

$$A\left(\sum_{i=1}^n \boldsymbol{e}_i \boldsymbol{e}_i^\intercal\right) = \sum_{i=1}^n \lambda_i \boldsymbol{e}_i \boldsymbol{e}_i^\intercal$$

23

77

$$A\left(\sum_{i=1}^{n}e_{i}e_{i}^{\top}\right)=\sum_{i=1}^{n}\lambda_{i}e_{i}e_{i}^{\top},$$
 so we need to prove that $\sum_{i=1}^{n}e_{i}e_{i}^{\top}=I_{n}.$ Now
$$e_{i}e_{i}^{\top}=\begin{pmatrix}e_{1i}\\e_{2i}\\\vdots\\e_{ni}\end{pmatrix}(e_{1i}\,e_{2i}\,\cdots\,e_{ni})=\begin{pmatrix}e_{2i}^{2}&e_{1i}e_{2i}&\cdots&e_{1i}e_{mi}\\e_{2i}e_{1i}&e_{2i}^{2}&\cdots&e_{2i}e_{mi}\\\vdots&\ddots&\vdots\\e_{mi}e_{1i}&e_{mi}e_{2i}&\cdots&e_{ni}\end{pmatrix}$$

$$\Leftrightarrow \begin{array}{cc} x_1 & -5x_2 & = 6x_1 \\ -5x_1 & +x_2 & = 6x_2 \end{array} \right\} \Longrightarrow x_1 = -x_2.$$

sponding to λ_1 , so a unit length eigenvector is $e_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$ So every vector (except 0) of the form $\binom{a}{-a}$ is an eigenvector corre-

Similarly,
$$\lambda_2 = -4$$
 and $\boldsymbol{e}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$.
Note: $\boldsymbol{e}_1^{\mathsf{T}} \boldsymbol{e}_2 = 0$ and if $\Gamma = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$,
$$\Gamma^{\mathsf{T}} A \Gamma = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -5 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & -4 \end{pmatrix}$$
.
Also, $|A| = -24 = \lambda_1 \times \lambda_2$ and $\operatorname{tr}(A) = 2 = \lambda_1 + \lambda_2$.

12

(f) The spectral decomposition of A is given by

$$\Gamma = (e_1, e_2, \cdots, e_n) = \begin{pmatrix} e_{11} & e_{12} & \cdots & e_{1n} \\ e_{21} & e_{22} & \cdots & e_{2n} \\ \vdots & \ddots & \vdots \\ e_{n1} & e_{n2} & \cdots & e_{mn} \end{pmatrix}$$
 and $\Gamma\Gamma^{\top} = I_n$. Now $(\Gamma\Gamma^{\top})_{kk} = \sum_{i=1}^n e_{ki}^2$ and, for $k \neq j$, $(\Gamma\Gamma^{\top})_{kj} = \sum_{i=1}^n e_{ki}e_{ji}$. Therefore

(g) If A is symmetric and the quadratic form $x^{\top}Ax>0$ for all $x\neq 0$, then A is positive definite. If $x^{\top}Ax\geq 0$ for all $x\neq 0$, then A is nonnegative definite. $\sum_{i=1}^n oldsymbol{e}_i oldsymbol{e}_i^ op = \Gamma \Gamma^ op = I_n.$

Example 0.3 :
$$A = \begin{pmatrix} 3 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{pmatrix}$$
.

Let $x = (x_1 x_2)$, then $x^{\top} A x = 3x_1^2 + 2x_2^2 - 2\sqrt{2}x_1x_2$. We obtain $\lambda_1 = 4$, $\lambda_2 = 1$, so

and

 $A = 4\mathbf{e}_1\mathbf{e}_1^{\mathsf{T}} + \mathbf{e}_2\mathbf{e}_2^{\mathsf{T}}$

$$x^{\top} A x = 4 x^{\top} e_1 e_1^{\top} x + x^{\top} e_2 e_2^{\top} x$$

= $4 (e_1^{\top} x)^2 + (e_2^{\top} x)^2 = 4 y_1^2 + y_2^2$,

where $y_1=e_1^\top x$ and $y_2=e_2^\top x$. Thus, if y_1 and y_2 are not both zero, then $x^\top Ax>0$ for all $x\neq 0$ and A is positive definite. Now

$$oldsymbol{y} = \left(egin{array}{c} y_1 \ y_2 \end{array}
ight) = \left(egin{array}{c} e_1^{ op} \ e_2^{ op} \end{array}
ight) oldsymbol{x} = \Gamma^{ op} oldsymbol{x}$$

and if $x \neq 0$ then $y \neq 0$ since Γ^{\top} is nonsingular. Thus, A is positive

(h) If A is positive definite, $\lambda_i > 0$ for all i. **Proof:** $Ae_i = \lambda_i e_i$ implies

$$\boldsymbol{e}_i^{\top} A \boldsymbol{e}_i = \lambda_i \boldsymbol{e}_i^{\top} \boldsymbol{e}_i = \lambda_i > 0$$

Let $\Lambda^{1/2} = \text{Diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n})$. Then

$$\sum_{i=1}^{\tilde{}} \sqrt{\lambda_i} e_i e_i^{\mathsf{T}} = \Gamma \Lambda^{\frac{1}{2}} \Gamma^{\mathsf{T}}$$

is the **square root** of A and is denoted by $A^{1/2}$.

- (a) $\left(A^{1/2}\right)^{\top}=A^{1/2}\left(A^{1/2}\text{ is symmetric}\right).$ (b) $A^{1/2}A^{1/2}=A.$

97

- (c) $A^{-1/2} \equiv \left(A^{1/2}\right)^{-1} = \sum_{i=1}^{n} \frac{1}{\sqrt{\lambda_i}} e_i e_i^{\mathsf{T}} = \Gamma \Lambda^{-1/2} \Gamma^{\mathsf{T}}$, where $\Lambda^{-1/2} = \mathrm{Diag}(\frac{1}{\sqrt{\lambda_1}}, \frac{1}{\sqrt{\lambda_2}}, \cdots, \frac{1}{\sqrt{\lambda_n}})$.
- (d) $A^{1/2}A^{-1/2} = A^{-1/2}A^{1/2} = I_n$, and $A^{-1/2}A^{-1/2} = A^{-1}$

Partitioned matrices

1. If A, B are $p \times n$ matrices and

since A is positive definite. Similarly, if A is nonnegative definite, $\lambda_i \geq 0$

The square root of a matrix: if A is positive definite, then

$$A = \sum_{i=1}^{n} \lambda_i e_i e_i^{\mathsf{T}} = \Gamma \Lambda \Gamma^{\mathsf{T}},$$

where $\Gamma = (e_1, e_2, \dots, e_n)$ and $\Lambda = \text{Diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.

equality follows since Γ diagonalizes A; that is, $\Gamma^\top A \Gamma = \Lambda$ and, since Γ is orthogonal, Γ^{-1} exists and $(\Gamma^\top)^{-1} = \Gamma$ and $\Gamma^{-1} = \Gamma^\top$. **Proof:** The first equality is the spectral decomposition of A. The second

52

Now $\lambda_i>0$ for all i since A is positive definite, so Λ is nonsingular and $\Lambda^{-1}=\operatorname{Diag}\left(\frac{1}{\lambda_1},\frac{1}{\lambda_2},\cdots,\frac{1}{\lambda_n}\right)$. Thus $A^{-1}=\Gamma\Lambda^{-1}\Gamma^{\top}$ since

$$(\Gamma \Lambda^{-1} \Gamma^{\top})(\Gamma \Lambda \Gamma^{\top}) = \Gamma \Lambda^{-1} \Lambda \Gamma^{\top} = \Gamma \Gamma^{\top} = I_n$$

and $A^{-1} = \sum_{i=1}^n \frac{1}{\lambda_i} e_i e_i^{\mathsf{T}}$ since $A = \Gamma \Lambda \Gamma^{\mathsf{T}} = \sum_{i=1}^n \lambda_i e_i e_i^{\mathsf{T}}$.

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

are similarly partitioned, then

$$A + B = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{pmatrix}$$

77

$$A = \begin{pmatrix} q & n - q \\ A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad p - r$$

and C is $n \times m$:

$$C = \begin{pmatrix} s & m-s \\ C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \quad q \quad q$$

then AC is $p \times m$:

$$AC = \begin{pmatrix} A_{11}C_{11} + A_{12}C_{21} & A_{11}C_{12} + A_{12}C_{22} \\ A_{21}C_{11} + A_{22}C_{21} & A_{21}C_{12} + A_{22}C_{22} \end{pmatrix} \quad p - r$$

(as if A_{ij} , C_{ij} were scalars).

87

3. Suppose A is $n \times n$ and $|A| \neq 0$. Let A and A^{-1} be similarly partitioned:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \qquad A^{-1} = \begin{pmatrix} A^{11} & A^{12} \\ A^{21} & A^{22} \end{pmatrix}$$

where A_{11} , A^{11} , A_{22} and A^{22} are square matrices. If $|A_{11}| \neq 0$ and $|A_{22}| \neq 0$ and we let

$$B_{11} = A_{11} - A_{12}A_{22}^{-1}A_{21},$$

and

Matrix and Eigenvalue Inequalities

Lemma 0.1 The Cauchy-Schwarz Inequality for $d \times 1$ vectors **b**, **d** states that

$$\left(\boldsymbol{b}^{\top}\boldsymbol{d}\right)^{2} \leq (\boldsymbol{b}^{\top}\boldsymbol{b})(\boldsymbol{d}^{\top}\boldsymbol{d})$$

with equality if and only if b = cd for some c.

οε Proof

If $b - cd \neq 0$ for any c, then for all c,

$$B_{22} = A_{22} - A_{21}A_{11}^{-1}A_{12},$$

ther

(a)
$$A^{11}=B_{11}^{-1}$$
 and $A^{12}=-A_{11}^{-1}A_{12}B_{22}^{-1}$, $A^{21}=-A_{22}^{-1}A_{21}B_{11}^{-1}$ and $A^{22}=B_{22}^{-1}$.

Thus we can express A^{-1} in terms of the sub-matrices of A.

(b) $|A| = |B_{11}||A_{22}|$.

67

(c) $|A| = |A_{11}||B_{22}|$.

$$0 < (\boldsymbol{b} - c\boldsymbol{d})^{\top} (\boldsymbol{b} - c\boldsymbol{d}) = \boldsymbol{b}^{\top} \boldsymbol{b} - c\boldsymbol{b}^{\top} \boldsymbol{d} - c\boldsymbol{d}^{\top} \boldsymbol{b} + c^{2} \boldsymbol{d}^{\top} \boldsymbol{d}$$

$$= \boldsymbol{b}^{\top} \boldsymbol{b} - 2c\boldsymbol{b}^{\top} \boldsymbol{d} + c^{2} \boldsymbol{d}^{\top} \boldsymbol{d}$$

$$= \boldsymbol{d}^{\top} \boldsymbol{d} \left\{ c^{2} - 2c \frac{\boldsymbol{b}^{\top} \boldsymbol{d}}{\boldsymbol{d}^{\top} \boldsymbol{d}} + \left(\frac{\boldsymbol{b}^{\top} \boldsymbol{d}}{\boldsymbol{d}^{\top} \boldsymbol{d}} \right)^{2} \right\} - \frac{(\boldsymbol{b}^{\top} \boldsymbol{d})^{2}}{\boldsymbol{d}^{\top} \boldsymbol{d}} + \boldsymbol{b}^{\top} \boldsymbol{b}$$

$$= \boldsymbol{d}^{\top} \boldsymbol{d} \left(c - \frac{\boldsymbol{b}^{\top} \boldsymbol{d}}{\boldsymbol{d}^{\top} \boldsymbol{d}} \right)^{2} + \boldsymbol{b}^{\top} \boldsymbol{b} - \frac{(\boldsymbol{b}^{\top} \boldsymbol{d})^{2}}{\boldsymbol{d}^{\top} \boldsymbol{d}}.$$

In particular, if we put $c = \frac{b^{\top}d}{d^{\top}d}$, we have

33

$$(\boldsymbol{b}^{\top}\boldsymbol{d})^2 < (\boldsymbol{b}^{\top}\boldsymbol{b})(\boldsymbol{d}^{\top}\boldsymbol{d}) \qquad \text{if } \boldsymbol{b} \neq c\boldsymbol{d} \text{ for any } c.$$

If b = cd for some c, $b^{T}d = cd^{T}d$ and

$$0 = (\boldsymbol{b} - c\boldsymbol{d})^{\mathsf{T}} (\boldsymbol{b} - c\boldsymbol{d}) = \boldsymbol{b}^{\mathsf{T}} \boldsymbol{b} - \frac{(\boldsymbol{b}^{\mathsf{T}} \boldsymbol{d})^2}{\boldsymbol{d}^{\mathsf{T}} \boldsymbol{d}}$$

by the above argument, so $(\boldsymbol{b}^{\top}\boldsymbol{d})^2 = (\boldsymbol{b}^{\top}\boldsymbol{b})(\boldsymbol{d}^{\top}\boldsymbol{d})$.

Corollary 0.1 Assume that B is positive definite. Under the assumptions of Lemma 0.1

$$(\boldsymbol{b}^{\top}\boldsymbol{d})^2 \leq (\boldsymbol{b}^{\top}B\boldsymbol{b})(\boldsymbol{d}^{\top}B^{-1}\boldsymbol{d})$$

 $(b^\top d)^2 \leq (b^\top Bb)(d^\top B^{-1}d)$ with equality if and only if $\mathbf{b} = cB^{-1}d$ for some c.

If B has eigenvalue-eigenvector pairs $(\lambda_1,e_1),\cdots$, (λ_d,e_d) , then

$$B^{p/q} = \sum_{i=1}^{s} \lambda_i^{\ p/q} oldsymbol{e}_i oldsymbol{e}_i^{ op}$$

$$\boldsymbol{b}^{\top}\boldsymbol{d} = \boldsymbol{b}^{\top}B^{1/2}B^{-1/2}\boldsymbol{d} = \left(B^{1/2}\boldsymbol{b}\right)^{\top}\left(B^{-1/2}\boldsymbol{d}\right) \text{ and }$$

 $(\boldsymbol{x}^{\top}\boldsymbol{d})^{2} \leq (\boldsymbol{x}^{\top}B\boldsymbol{x}) (\boldsymbol{d}^{\top}B^{-1}\boldsymbol{d}),$

SO

$$\frac{(\boldsymbol{x}^{\top}\boldsymbol{d})^2}{\boldsymbol{x}^{\top}B\boldsymbol{x}} \leq \boldsymbol{d}^{\top}B^{-1}\boldsymbol{d} \quad \text{if } \boldsymbol{x} \neq 0$$

since \boldsymbol{B} is positive definite, which implies that

$$\max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\left(\boldsymbol{x}^{\top} \boldsymbol{d}\right)^{2}}{\boldsymbol{x}^{\top} B \boldsymbol{x}} \leq \boldsymbol{d}^{\top} B^{-1} \boldsymbol{d}.$$

When $\boldsymbol{x} = cB^{-1}\boldsymbol{d}$ for any c,

$$\left(oldsymbol{x}^{ op}oldsymbol{d}
ight)^2 = c^2 \left(oldsymbol{d}^{ op}B^{-1}oldsymbol{d}
ight)^2$$

and

hence, by the Cauchy-Schwarz inequality,

$$\begin{split} \left(\boldsymbol{b}^{\top}\boldsymbol{d}\right)^{2} &= \left[\left(B^{1/2}\boldsymbol{b}\right)^{\top}\left(B^{-1/2}\boldsymbol{d}\right)\right]^{2} \\ &\leq \left(B^{1/2}\boldsymbol{b}\right)^{\top}\left(B^{1/2}\boldsymbol{b}\right)\left(B^{-1/2}\boldsymbol{d}\right)^{\top}\left(B^{-1/2}\boldsymbol{d}\right) \\ &= \left(\boldsymbol{b}^{\top}B\boldsymbol{b}\right)\left(\boldsymbol{d}^{\top}B^{-1}\boldsymbol{d}\right) \\ &= \left(\boldsymbol{b}^{\top}B\boldsymbol{b}\right)\left(\boldsymbol{d}^{\top}B^{-1}\boldsymbol{d}\right) \text{ or } \boldsymbol{b} = cB^{-1}\boldsymbol{d} \text{ for some } c. \end{split}$$
 with equality if and only if $B^{1/2}\boldsymbol{b} = cB^{-1/2}\boldsymbol{d}$ or $\boldsymbol{b} = cB^{-1}\boldsymbol{d}$ for some c .

Lemma 0.2 If B is positive definite $d \times d$ matrix and d is a d-vector, then

$$\max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\left(\boldsymbol{x}^{\top} \boldsymbol{d}\right)^{2}}{\boldsymbol{x}^{\top} B \boldsymbol{x}} = \boldsymbol{d}^{\top} B^{-1} \boldsymbol{d}$$

and the maximum is attained when $x = cB^{-1}d$ for any $c \neq 0$.

By Corollary 0.1, for any x,

$$\begin{aligned} \left(\boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x} \right) \left(\boldsymbol{d}^{\top} \boldsymbol{B}^{-1} \boldsymbol{d} \right) &= c^2 \left(\boldsymbol{d}^{\top} \boldsymbol{B}^{-1} \boldsymbol{B} \boldsymbol{B}^{-1} \boldsymbol{d} \right) \left(\boldsymbol{d}^{\top} \boldsymbol{B}^{-1} \boldsymbol{d} \right) \\ &= c^2 \left(\boldsymbol{d}^{\top} \boldsymbol{B}^{-1} \boldsymbol{d} \right)^2 = \left(\boldsymbol{x}^{\top} \boldsymbol{d} \right)^2 \end{aligned}$$

SO

$$rac{\left(oldsymbol{x}^{ op}oldsymbol{d}
ight)^2}{oldsymbol{x}^{ op}Boldsymbol{x}} = oldsymbol{d}^{ op}B^{-1}oldsymbol{d}.$$

Thus

$$\max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\left(\boldsymbol{x}^{\top} \boldsymbol{d}\right)^{2}}{\boldsymbol{x}^{\top} B \boldsymbol{x}} = \boldsymbol{d}^{\top} B^{-1} \boldsymbol{d}.$$

Proposition 0.2 Suppose B is positive definite and with eigenvalue-eigenvector pairs (λ_i, e_i) and $\lambda_1 \geq \lambda_2 \cdots \geq \lambda_d > 0$. The following hold:

$$\max_{x \neq 0} \frac{x^{\top} B x}{x^{\top} x} = \lambda_1, \quad \text{attained when } x = e_1;$$

$$2. \quad \min_{x \neq 0} \frac{x^{\top} B x}{x^{\top} x} = \lambda_d, \quad \text{attained when } x = e_d.$$

$$3. \text{ For } k = 1, 2, \cdots, d-1,$$

$$\max_{x \neq 0} \frac{x^{\top} B x}{x^{\top} x} = \lambda_{k+1}, \quad \text{attained when } x = e_{k+1},$$

where the maximum is over all x orthogonal to e_1, \dots, e_k .

98

Let $\Gamma=(e_1,\cdots,e_d)$ and $\Lambda=\operatorname{Diag}(\lambda_1,\cdots,\lambda_d)$. Then $B=\Gamma\Lambda\Gamma^{\mathsf{T}}$ and for $\boldsymbol{x}\neq \boldsymbol{0},\ \boldsymbol{y}=\Gamma^{\mathsf{T}}\boldsymbol{x}\Longrightarrow \boldsymbol{y}\neq \boldsymbol{0}$ (Γ is nonsingular) and

$$\frac{\boldsymbol{x}^{\top}B\boldsymbol{x}}{\boldsymbol{x}^{\top}\boldsymbol{x}} = \frac{\sum_{i=1}^{d}\lambda_{i}y_{i}^{2}}{\sum_{i=1}^{d}y_{i}^{2}} \geq \frac{\lambda_{d}\sum_{i=1}^{d}y_{i}^{2}}{\sum_{i=1}^{d}y_{i}^{2}} = \lambda_{d}$$
and putting $\boldsymbol{x} = \boldsymbol{e}_{d}$, $\boldsymbol{y} = \Gamma^{\top}\boldsymbol{e}_{d} = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$, so
$$\frac{\boldsymbol{e}_{d}^{\top}B\boldsymbol{e}_{d}}{1} = \frac{\sum_{i=1}^{d}\lambda_{i}y_{i}^{2}}{\sum_{i=1}^{d}y_{i}^{2}} = \lambda_{d},$$
so the minimum is attained at $\boldsymbol{x} = \boldsymbol{e}_{d}$.

38

Finally for part (3) and any $x \neq 0$, if $y = \Gamma^{\top} x$ then

$$\boldsymbol{x} = \Gamma \, \boldsymbol{y} = y_1 \boldsymbol{e}_1 + y_2 \boldsymbol{e}_2 + \dots + y_p \boldsymbol{e}_d.$$

Thus if x is orthogonal to e_1, \dots, e_k ,

$$egin{array}{ll} rac{oldsymbol{x}^{ op} oldsymbol{x}}{oldsymbol{x}^{ op} oldsymbol{x}} &= rac{oldsymbol{x}^{ op} \Gamma \Lambda \Gamma^{ op} oldsymbol{x}}{oldsymbol{x}^{ op} \Gamma \Gamma^{ op} oldsymbol{x}} &= rac{oldsymbol{(} \Gamma^{ op} oldsymbol{x})^{ op} \Lambda \Gamma^{ op} oldsymbol{x}}{oldsymbol{x}^{ op} \Gamma oldsymbol{y}} &= rac{oldsymbol{x}^d \Gamma^d oldsymbol{x}}{\sum_{i=1}^d y_i^2} \\ &= rac{oldsymbol{y}^{ op} \Lambda_1 \sum_{i=1}^d y_i^2}{\sum_{i=1}^d y_i^2} = \lambda_1 & ext{for any } oldsymbol{x}
eq \mathbf{0}. \end{array}$$

Putting $\boldsymbol{x} = \boldsymbol{e}_1, \, \boldsymbol{y} = \boldsymbol{\Gamma}^{\top} \boldsymbol{e}_1 = (1 \ 0 \ \dots \ 0)^{\top}$ and

٤٤

$$\frac{e_1^{\top} B e_1}{e_1^{\top} e_1} = \frac{\sum_{i=1}^d \lambda_i y_i^2}{\sum_{i=1}^d y_i^2} = \lambda_1,$$

so the maximum is attained at $x = e_1$.

Similarly for part (2) and $x \neq 0$, we have

$$0 = \mathbf{e}_i^{\top} \mathbf{x}$$

$$= y_1 \mathbf{e}_i^{\top} \mathbf{e}_1 + y_2 \mathbf{e}_i^{\top} \mathbf{e}_2 + \dots + y_p \mathbf{e}_i^{\top} \mathbf{e}_d$$

$$= y_i \quad \text{for } 1 \le i \le k$$

and so

$$\frac{\bm{x}^{\top} B \bm{x}}{\bm{x}^{\top} \bm{x}} = \frac{\sum_{i=k+1}^{d} \lambda_{i} y_{i}^{2}}{\sum_{i=k+1}^{d} y_{i}^{2}} \leq \frac{\lambda_{k+1} \sum_{i=k+1}^{d} y_{i}^{2}}{\sum_{i=k+1}^{d} y_{i}^{2}} = \lambda_{k+1}.$$

68

For $x=e_{k+1}$ (which is orthogonal to e_1,\cdots,e_k)

 $\frac{x^{\top}Bx}{x^{\top}x} = \lambda_{k+1},$ so the maximum is attained at $x = e_{k+1}$.

$$oldsymbol{y} = \Gamma^ op oldsymbol{e}_{k+1} = egin{pmatrix} 0 \ 1 \ 0 \ 0 \ dots \ 0 \ dots \ 0 \end{pmatrix} ext{; that is, } y_{k+1} = 1 \ x^ op B oldsymbol{x}$$