Bayesian multimodeling: Variational inference-2

MIPT

2022

Model selection: coherent Bayesian inference

First level: find optimal parameters:

$$w = arg \max \frac{p(\mathfrak{D}|w)p(w|h)}{p(\mathfrak{D}|h)},$$

Second level: find optimal model:

Evidence:

$$p(\mathfrak{D}|\mathsf{h}) = \int_{\mathsf{w}} p(\mathfrak{D}|\mathsf{w}) p(\mathsf{w}|\mathsf{h}) d\mathsf{w}.$$

Model selection scheme

Polynomial regression example

Evidence lower bound, ELBO

Evidence lower bound is a method of approximation of intractable distribution $p(w|\mathfrak{D}, h)$ with a distribution $q(w) \in \mathfrak{Q}$.

Evidence lower bound estimation often reduces to optimization problem

$$\log p(\mathfrak{D}|\mathsf{h}) \geq \mathsf{KL}(q(\mathsf{w})||p(\mathsf{w}|\mathfrak{D})) = -\int_{\mathsf{w}} q(\mathsf{w})\log \frac{p(\mathsf{w}|\mathfrak{D})}{q(\mathsf{w})} d\mathsf{w} = \mathsf{E}_{\mathsf{w}}\log p(\mathfrak{D}|\mathsf{w}) - \mathsf{KL}(q(\mathsf{w})||p(\mathsf{w}|\mathsf{h}))$$

Variational inference vs. expectation propogation (Bishop)

Laplace Approximation vs Variational inference

ELBO estimation

ELBO maximization

$$\int_{w} q(w) \log \frac{p(y, w|X, h)}{q(w)} dw$$

is equivalent to KL-divergence minimization between $q(w) \in \mathfrak{Q}$ and posteriod distribution p(w|y,X,h):

$$\begin{split} \hat{q} &= \operatorname*{arg\,max}_{q \in \mathfrak{Q}} \int_{\mathsf{w}} q(\mathsf{w}) log \; \frac{p(\mathsf{y}, \mathsf{w}|\mathsf{X}, \mathsf{h})}{q(\mathsf{w})} d\mathsf{w} \Leftrightarrow \\ \hat{q} &= \operatorname*{arg\,min}_{q \in \mathfrak{Q}} \mathsf{D}_{\mathsf{KL}} \big(q(\mathsf{w}) || p(\mathsf{w}|\mathsf{y}, \mathsf{X}, \mathsf{h}) \big), \\ \mathsf{D}_{\mathsf{KL}} \big(q(\mathsf{w}) || p(\mathsf{w}|\mathsf{y}, \mathsf{X}, \mathsf{h}) \big) &= \int_{\mathsf{w}} q(\mathsf{w}) log \left(\frac{q(\mathsf{w})}{p(\mathsf{w}|\mathsf{y}, \mathsf{X}, \mathsf{h})} \right) d\mathsf{w}. \end{split}$$

MCMC and variational inference

MCMC idea: Sample from the simple distribution and accept them, if the ratio is greater than some threshold:

$$\min\left(1,\frac{p(w^{\tau}|y,X,h)}{p(w^{\tau-1}|y,X,h)}\right),$$

where w^{τ} is set based on the previous sample:

$$\mathsf{w}^{ au} = \mathcal{T}(\mathsf{w}^{ au-1}).$$

Salimans et al., 2014: let's interperete the sequence of some operator T application as a variational optimization:

$$T^1 \circ \dots T^{\eta}(\mathsf{w}) \to p(\mathsf{w}^{\tau}|\mathsf{y},\mathsf{X},\mathsf{h}).$$

Maclaurin et. al, 2015: use gradient descent as such operator. Do not reject samples at all.

Optimization operator, Maclaurin et. al, 2015

Definition

Let T be an algorithm of changing model parameters w' using previous parameter values w:

$$w' = T(w)$$
.

Definition

Let L be a continuos loss function.

Define a gradient descent operator in the following way:

$$T(\mathbf{w}) = \mathbf{w} - \beta \nabla L(\mathbf{w}, \mathbf{y}, \mathfrak{D}).$$

Gradient descent for evidence estimation

Consider posterior probability maximization:

$$L = -\log p(\mathfrak{D}, w|h) = -\sum_{\mathfrak{D} \in \mathfrak{D}} \log p(\mathfrak{D}|w, h) p(w|h)$$

Optimize neural network in a multi-start regime with r initial parameter values w_1, \ldots, w_r using (stochastic) gradient descent:

$$w' = T(w)$$
.

The parameter vectors w_1, \ldots, w_r are from some latent distribution q(w).

Entropy

We can rewrite variational inference using differential entropy term:

$$\log p(\mathfrak{D}|f) \ge \int_{w} q(w) \log \frac{p(\mathfrak{D}, w|h)}{q(w)} dw =$$

$$\mathsf{E}_{q(w)}[\log p(\mathfrak{D}, w|h)] + \mathsf{S}(q(w)),$$

where S(q(w)) is a differential entropy:

$$S(q(w)) = -\int_{w} q(w) \log q(w) dw.$$

Gradient descent for evidence estimation

Statement

Let L be a Lipschitz function, and optimization operator be a bijection. Then entropy difference for two steps is:

$$\mathsf{S}(q'(\mathsf{w})) - \mathsf{S}(q(\mathsf{w})) \simeq \frac{1}{r} \sum_{g=1}^{r} (-\beta \mathsf{Tr}[\mathsf{H}(\mathsf{w}'^g)] - \beta^2 \mathsf{Tr}[\mathsf{H}(\mathsf{w}'^g) \mathsf{H}(\mathsf{w}'^g)]).$$

Final estimation for the τ optimization step:

$$\log \hat{p}(\mathsf{Y}|\mathfrak{D},\mathsf{h}) \sim \frac{1}{r} \sum_{g=1}^{r} L(\mathsf{w}_{\tau}^{g},\mathfrak{D},\mathsf{Y}) + \mathsf{S}(q^{0}(\mathsf{w})) +$$

$$+\frac{1}{r}\sum_{i=1}^{\tau}\sum_{j=1}^{r}\left(-\beta \text{Tr}[\mathsf{H}(\mathsf{w}_{b}^{g})]-\beta^{2}\text{Tr}[\mathsf{H}(\mathsf{w}_{b}^{g})\mathsf{H}(\mathsf{w}_{b}^{g})]\right),$$

 w_b^g is a parameter vector for optimization g on the step b, $S(q^0(w))$ is an initial entropy.

How to calculate Hessian trace?

Problem

$$Tr[H(w_b^g)]$$

Statement

Let U be a symmetric matrix and v be the random vector with the following properties:

- ① $Ev_i = 0$;
- ② $Var(v_i) = 1$.

Then

$$\mathsf{E}\mathsf{v}^\mathsf{T}\mathsf{U}\mathsf{v} = \mathit{Tr}[\mathsf{U}].$$

Overfitting, Maclaurin et. al, 2015

Gradient descent does not optimize KL-divergence $KL(q(w)||p(w|\mathfrak{D},h))$. Evidence estimation gets worse while optimization tends to the optimal parameter values. This can be considered as a overfitting start.

Stochastic gradient Langevin dynamics

A modification of SGD:

$$T = \mathbf{w} - \beta \nabla L + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \frac{\beta}{2})$$

where β changes with a number of iterations:

$$\sum_{\tau=1}^{\infty} \beta_{\tau} = \infty, \quad \sum_{\tau=1}^{\infty} \beta_{\tau}^{2} < \infty.$$

Statement [Welling, 2011]. Distribution $q^{\tau}(w)$ converges to posterior distribution p(w|X,f). Entropy adjustment:

$$\hat{\mathsf{S}}\big(q^\tau(\mathsf{w})\big) \geq \frac{1}{2} |\mathsf{w}| \mathsf{log}\big(\mathsf{exp}\big(\frac{2\mathsf{S}(q^\tau(\mathsf{w}))}{|\mathsf{w}|}\big) + \mathsf{exp}\big(\frac{2\mathsf{S}(\epsilon)}{|\mathsf{w}|}\big)\big).$$

Stochastic gradient Langevin dynamics for generative models

Altieri et al., 2015: sample latent variable z and use SGLD as a normalizing flow.

SGLD vs SGD

Parameter distribution after 2000 iterations:

Reparametrization trick: problems

Reparamterization idea:

$$\varepsilon = S_{\boldsymbol{\theta}}(\mathsf{w}), \quad \mathsf{w} = S_{\boldsymbol{\theta}}^{-1}(\varepsilon).$$

Then:

$$\nabla_{\theta} E_q f(\mathsf{w}) = \mathsf{E}_q \nabla_{\theta} f(S_{\theta}^{-1}(\varepsilon)) = \mathsf{E}_q \nabla_{\mathsf{w}} f(S_{\theta}^{-1}(\varepsilon)) \nabla_{\theta} S^{-1}(\varepsilon).$$

Example:

$$w \sim \mathcal{N}(\mu, \sigma^2) \rightarrow S(w) = \frac{w - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Challenge: calculation of S^{-1} is an expensive operation.

Implicit reparametrization trick

$$\nabla_{\boldsymbol{\theta}} E_q f(\mathbf{w}) = \mathsf{E}_q \nabla_{\mathbf{w}} f(\mathbf{w}) \nabla_{\boldsymbol{\theta}} \mathbf{w}.$$

Use a total gradient formula for $\varepsilon = S_{\theta}(w)$:

$$abla_{\mathsf{w}} S_{oldsymbol{ heta}}(\mathsf{w})
abla_{oldsymbol{ heta}} \mathsf{w} +
abla_{oldsymbol{ heta}} S_{oldsymbol{ heta}}(\mathsf{w}) = 0
ightarrow$$

$$ightarrow
abla_{m{ heta}} {\sf w} = - (
abla_{\sf w} S_{m{ heta}}({\sf w}))^{-1}
abla_{m{ heta}} S_{m{ heta}}.$$

Obtain an expression without inverse function for S.

For 1d samples we can use, for example:

$$S(\mathsf{w}) = F(\mathsf{w}|\boldsymbol{\theta}) \sim \mathcal{U}(0,1).$$

Table 4: Test negative log-likelihood (lower is better) for VAE on MNIST. Mean \pm standard deviation over 5 runs. The von Mises-Fisher results are from [9].

Prior	Variational posterior	D=2	D=5	D = 10	D = 20	D = 40
$\mathcal{N}(0,1)$	$\mathcal{N}(\mu,\sigma^2)$	131.1 ± 0.6	107.9 ± 0.4	92.5 ± 0.2	88.1 ± 0.2	88.1 ± 0.0
Gamma(0.3, 0.3)	$Gamma(\alpha, \beta)$	132.4 ± 0.3	108.0 ± 0.3	94.0 ± 0.3	90.3 ± 0.2	90.6 ± 0.2
Gamma(10, 10)	$\operatorname{Gamma}(\alpha,\beta)$	135.0 ± 0.2	107.0 ± 0.2	92.3 ± 0.2	88.3 ± 0.2	88.3 ± 0.1
Uniform(0,1)	$\mathrm{Beta}(lpha,eta)$	128.3 ± 0.2	107.4 ± 0.2	94.1 ± 0.1	88.9 ± 0.1	88.6 ± 0.1
Beta(10, 10)	$\mathrm{Beta}(lpha,eta)$	131.1 ± 0.4	106.7 ± 0.1	92.1 ± 0.2	87.8 ± 0.1	${f 87.7} \pm 0.1$
$\operatorname{Uniform}(-\pi,\pi)$	$vonMises(\mu, \kappa)$	127.6 ± 0.4	107.5 ± 0.4	94.4 ± 0.5	90.9 ± 0.1	91.5 ± 0.4
vonMises(0, 10)	$vonMises(\mu,\kappa)$	130.7 ± 0.8	107.5 ± 0.5	92.3 ± 0.2	87.8 ± 0.2	87.9 ± 0.3
$\operatorname{Uniform}(S^D)$	von Mises Fisher ($\pmb{\mu}, \kappa)$	132.5 ± 0.7	108.4 ± 0.1	93.2 ± 0.1	89.0 ± 0.3	90.9 ± 0.3

Model selection: coherent Bayesian inference

First level: find optimal parameters:

$$w = arg \max \frac{p(\mathfrak{D}|w)p(w|h)}{p(\mathfrak{D}|h)},$$

Second level: find optimal model:

Evidence:

$$p(\mathfrak{D}|\mathsf{h}) = \int_{\mathsf{w}} p(\mathfrak{D}|\mathsf{w}) p(\mathsf{w}|\mathsf{h}) d\mathsf{w}.$$

Model selection scheme

Polynomial regression example

Discrete variational optimization

Discrete distibution: relaxation

$$\bar{\alpha} = [1, 1, 1], t = 0.9$$

 $\bar{\alpha} = [0.5, 0.25, 0.25], t = 30.0 \quad [0.75, 0.125, 0.125] \quad [0.9, 0.05, 0.05]$

t = 1.0

t = 10.0

Discrete distribution in variational inference

Relaxation:

- Dirichlet distribution (+ Implicit reparametrization trick)
- Gumbel-softmax:

$$p(\mathbf{w}) = \Gamma(k)\tau^{k-1}(\sum_{i=1}^k \alpha_i/w_i)^{-k} \prod_{i=1}^k (\alpha_i/w_i\tau + 1)$$

- ► Reparameterization works well
- ► KL divergence is intractable
- Invertible Gaussian reparametrization:

$$p(w) = \overline{softmax}(\alpha), \quad \alpha \sim \mathcal{N},$$

(there should be a ϵ in the denominator for invertibility of the function)

- ► Reparameterization works well
- $\blacktriangleright KL(w_1|w_2) = KL(\alpha_1|\alpha_2)$
- ► Poor interpretation

Local reparametrization

Let y = ReLU(XW) and parameter matrix W be distributed normally: $w_{i,j} \sim \mathcal{N}(\mu_{i,j}, \sigma_{i,j}^2)$. Then XW is a Gaussian matrix:

$$G = XW, \quad G_{i,j} \sim \mathcal{N}(\sum_{k} x_{i,k} \mu_{k,j}, \sum_{k} x_{i,k}^2 \sigma_{k,j}^2).$$

Instead of sampling parameters, sample elements from G (units after activation). Using CLT:

$$\sum_{k} x_{i,k} w_{k,j} \sim \mathcal{N}(\cdot,\cdot).$$

Conclusion: we can use the local reparametrization for discrete parameters too.

Rényi divergence

$$D_{lpha}(p(\mathsf{w})|q(\mathsf{w})) = rac{1}{lpha - 1}\log\int p(\mathsf{w})^{lpha}q(\mathsf{w})^{1-lpha}d\mathsf{w}.$$

Table 1: Special cases in the Rényi divergence family.

α	Definition	Notes
$\alpha \to 1$	$\int p(\boldsymbol{\theta}) \log \frac{p(\boldsymbol{\theta})}{q(\boldsymbol{\theta})} d\boldsymbol{\theta}$	Kullback-Leibler (KL) divergence, used in VI (KL[$q p $) and EP (KL[$p q $)
$\alpha = 0.5$	$-2\log(1-\mathrm{Hel}^2[p q])$	function of the square Hellinger distance
$\alpha \to 0$	$-\log \int_{p(\boldsymbol{\theta})>0} q(\boldsymbol{\theta}) d\boldsymbol{\theta}$	zero when $supp(q) \subseteq supp(p)$ (not a divergence)
$\alpha = 2$	$-\log(1-\chi^2[p q])$	proportional to the χ^2 -divergence
$\alpha \to +\infty$	$\log \max_{\boldsymbol{\theta} \in \Theta} \frac{p(\boldsymbol{\theta})}{q(\boldsymbol{\theta})}$	worst-case regret in minimum description length principle [24]

References

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. № 9.
- MacKay D. J. C., Mac Kay D. J. C. Information theory, inference and learning algorithms. Cambridge university press, 2003.
- Salimans, Tim, Diederik Kingma, and Max Welling, 2015. Markov chain monte carlo and variational inference: Bridging the gap
- Altieri: http://approximateinference.org/accepted/AltieriDuvenaud2015.pdf
- Stephan Mandt, Matthew D. Hoffman, David M. Blei, 2017. Stochastic Gradient Descent as Approximate Bayesian Inference
- Бахтеев О. Ю., Стрижов В. В. Выбор моделей глубокого обучения субоптимальной сложности //Автоматика и телемеханика. 2018. – № 8. – С. 129-147.
- Figurnov M., Mohamed S., Mnih A. Implicit reparameterization gradients //arXiv preprint arXiv:1805.08498. 2018.
- Jang E., Gu S., Poole B. Categorical reparameterization with gumbel-softmax //arXiv preprint arXiv:1611.01144. 2016.
- Potapczynski A., Loaiza-Ganem G., Cunningham J. P. Invertible gaussian reparameterization: Revisiting the gumbel-softmax //arXiv preprint arXiv:1912.09588. 2019.
- Maddison C. J., Mnih A., Teh Y. W. The concrete distribution: A continuous relaxation of discrete random variables //arXiv preprint arXiv:1611.00712. – 2016.
- Shayer O., Levi D., Fetaya E. Learning discrete weights using the local reparameterization trick //arXiv preprint arXiv:1710.07739. 2017.
- Li Y., Turner R. E. Rényi Divergence Variational Inference //arXiv preprint arXiv:1602.02311. 2016.
- Hutchinson, M. F. (1990). A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Communications in Statistics - Simulation and Computation, 19(2), 433-450.