Homework 1

Solving Permutation Flowshop Scheduling Problem using Trajectory-based Metaheuristics

Instructor: Tsung-Che Chiang tcchiang@ieee.org

Department of Computer Science and Information Engineering National Taiwan Normal University

Permutation Flowshop Scheduling

Problem definition

- There are m machines and n jobs.
- Each machine can process only one job at a time.
- Each job is processed by machine 1, 2, 3, ..., m in order.
- Each machine except the first one processes jobs in a FIFO order.

Permutation Flowshop Scheduling

- Objective
 - Find the schedule with the shortest makespan.

Algorithms

- Tested algorithms
 - iterative improvement
 - simulated annealing
 - tabu search
- Common parts of the tested algorithms
 - permutation-based encoding
 - \blacksquare a string of integers 1, 2, ..., n
 - swap neighborhood
 - swap two arbitrary jobs

e.g.

Requirements

- Nine instances from Taillard (1993) will be given on moodle.
 - $n = \{20, 50, 100\} \times m = \{5, 10, 20\}$
- Solve the nine problem instances using three kinds of metaheuristics.
- Each instance should be solved by each algorithm for at least 20 times.

Taillard, E. (1993). Benchmarks for basic scheduling problems. *European Journal of Operational Research*, 64, 278–285.

Requirements

20×5: 20 jobs and 5 machines

```
(本文)
```

Processing times of the 20th job on the five machines.

Taillard, E. (1993). Benchmarks for basic scheduling problems. *European Journal of Operational Research*, 64, 278–285.

- Algorithm description
 - For each algorithm, you need to give <u>detailed</u> descriptions.
 - For example, the cooling schedule of SA and the tabu structure of TS should certainly be presented clearly.
- Experimental setting
 - The values of parameters (e.g. initial temperature, epoch length, tabu tenure, etc.) in the experiments should be provided.

Experimental results

- The best-, average-, and worst-case performance over 20 (or more) runs should be given.
- Computer environment and average computation time should be provided, too.
- Comparison between II, SA, and TS
 - Compare them in terms of solution quality, computational efficiency, simplicity, robustness, etc.

- You are encouraged to do more experiments.
 - Difficulty of problem instances
 - Run a random search with equal computational effort and see how much difference between random search and your algorithms is.
 - Run iterative improvement for a large number of times (say 1,000,000) and record the number of local optima and size of basin of attraction.
 - Define a distance between solutions and check if there exists the "big valley" structure.
 - Discuss how the three algorithms perform differently on instances with different sizes.
 - Intensification or diversification? Which is more important?

- You are encouraged to do more experiments.
 - Performance analysis
 - Try different setting of cooling schedule and tabu list and see how the performance varies.
 - Examine which parameters are more critical to the algorithm performance.
 - Examine which algorithm is more sensitive to the parameters.
 - Draw the "makespan vs. iteration" plot and see how the algorithms converge and which algorithm converges faster.

Grading

Correctness

- Define the problem and objective correctly.
- Describe the algorithm correctly.
- Verify your results.
- Interpret the results and draw the conclusions correctly.
 - Do not make any claim without evidence.
 - Use the experimental results to support your claim.

Clarity

Describe your ideas, algorithms, and experiments in detail.

Carefulness

fonts, notations, figures, tables, references, etc.

Completeness

how much effort you spent on this project

Submission

- Deadline: 2018/3/31 0:00
- The package "MHPS2018-HW1-TeamX.rar" should include
 - a directory called "code," containing the source code.
 - a document called "MHPS2018-HW1-TeamX.pdf."
- Submit the package on moodle by the team member with the smallest ID.