НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА» Кафедра загальної фізики

3BIT

про виконання лабораторної роботи № 15 Назва роботи «дослідження механічних згасаючих коливань»

Виконав: Марущак А.С. **студент групи ПЗ-15 інституту ІКНІ**

Лектор: доцент Рибак О.В

Керівник лабораторних занять:

Ільчук Г.А.

Мета роботи: Визначити основні параметри згасання коливань механічної системи.

Прилади та матеріали: Коливна система, секундомір.

Короткі теоретичні відомості:

Реальні механічні коливання здійснюються за наявності сил опору середовища. Тому механічна енергія коливної системи з часом зменшується, а самі коливання згасають. Сила опору середовища переважно пропорційна швидкості руху тіла, що здійснює коливання:

$$F_{\text{on}} = -ru$$

де r – коефіцієнт опору середовища, знак (–) вказує на протилежний напрям сили опору і швидкості руху.

Нехай тіло масою m під дією пружної сили -kx і сили опору $-ru_x = -r\dot{x}$ здійснює коливання вздовж осі ОХ. Рівняння руху такого тіла:

$$m\ddot{x} + r\dot{x} + kx = 0,$$

або

$$\ddot{x} + \frac{r}{m}\dot{x} + \frac{k}{m}x = 0$$

Позначивши:

$$\frac{k}{m} = \omega_0^2; \frac{r}{m} = 2\beta,$$

де β — коефіцієнт згасання, запишемо диференціальне рівняння згасаючих коливань:

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0$$

Якщо $\omega_0 > \beta$, розв'язком є рівняння:

$$x = A_0 e^{-\beta t} \cos(\omega t + \varphi_0)$$

, яке описує гармонічні коливання з циклічною частотою $\omega = \sqrt{\omega_0^2 - \beta^2}$ і змінною у часі амплітудою $A = A_0 e^{-\beta t}$ при початковій амплітуді A_0 .

• Період згасаючих коливань:

$$T = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}$$

• Декрементом згасання D називається відношення амплітуд двох послідовних коливань:

$$D = \frac{A_n}{A_{n+1}} = e^{\beta T}$$

• Лотарифмічним декрементом згасання називається фізична величина:

$$\lambda = lnD = \beta T$$

• Часом релаксації коливальної системи т називається проміжок часу, протягом якого амплітуда коливань зменшується в е разів (е — основа натурального логарифму). Коефіцієнтом згасання називається фізична величина, обернена до часу релаксації:

$$\beta = \frac{1}{\tau}$$

• N_e — число коливань, після здійснення яких амплітуда зменшується в е разів, так що $\tau = N_e T$.

$$\lambda = \beta T = \frac{T}{\tau} = \frac{T}{N_e T} = \frac{1}{N_e}$$

Отже, лотарифмічний декремент згасання— це фізична величина, обернена до числа коливань N_e , після здійснення яких амплітуда зменшується в е разів.

• Добротністю системи називається фізична величина:

$$Q = 2\pi \frac{E}{|\Delta E|'}$$

де E — енертія системи у даний момент часу; ΔE — енертія, втрачена протягом одного періоду. Отже, добротність системи тим більша, чим менші втрати енертії системи ΔE . Можна показати, що:

$$Q = \frac{\pi}{\lambda} = \pi N_e$$

Контрольні запитання:

1. Під дією яких сил тіло може здійснювати згасаючі гармонічні коливання?

Найважливішою умовою виникнення згасаючих коливань є наявність сили опору середовища, а самі коливання можуть здійснюватися, наприклад, під дією сили пружності або тяжіння.

2. Записати і пояснити диференціальне рівняння згасаючих гармонічних коливань.

Нехай тіло масою m під дією пружної сили -kx і сили опору $-ru_x = -r\dot{x}$ здійснює коливання вздовж осі ОХ. Рівняння руху такого тіла:

$$m\ddot{x} + r\dot{x} + kx = 0,$$

або

$$\ddot{x} + \frac{r}{m}\dot{x} + \frac{k}{m}x = 0$$

Позначивши:

$$\frac{k}{m} = \omega_0^2; \frac{r}{m} = 2\beta,$$

де β – коефіцієнт згасання, запишемо диференціальне рівняння згасаючих коливань:

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0$$

3. Записати і пояснити розв'язок диференціального рівняння згасаючих гармонічних коливань.

Якщо $\omega_0 > \beta$, розв'язком є рівняння:

$$x = A_0 e^{-\beta t} \cos(\omega t + \varphi_0),$$

яке описує гармонічні коливання з циклічною частотою $\omega = \sqrt{\omega_0^2 - \beta^2}$ і змінною у часі амплітудою $A = A_0 e^{-\beta t}$ при початковій амплітуді A_0 .

4. Як залежить період згасаючих коливань від коефіцієнта згасання? *Період згасаючих коливань:*

$$T = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}$$

5. У чому полягає фізичний зміст коефіцієнта згасання?

Коефіцієнтом згасання називається фізична величина, обернена до часу релаксації:

$$\beta = \frac{1}{\tau}$$

Часом релаксації коливальної системи т називається проміжок часу, протягом якого амплітуда коливань зменшується в е разів (е — основа натурального логарифму).

6. У чому полягає фізичний зміст логарифмічного декремента згасання? Як він зв'язаний з коефіцієнтом згасання?

Лотарифмічний декремент згасання— це фізична величина, обернена до числа коливань N_e , після здійснення яких амплітуда зменшується в е разів.

$$\lambda = \beta T = \frac{T}{\tau} = \frac{T}{N_e T} = \frac{1}{N_e}$$

7. Що називається добротністю коливної системи?

Добротністю системи називається фізична величина:

$$Q = 2\pi \frac{E}{|\Delta E|},$$

де E — енертія системи у даний момент часу; ΔE — енертія, втрачена протягом одного періоду. Отже, добротність системи тим більша, чим менші втрати енертії системи ΔE . Можна показати, що:

$$Q = \frac{\pi}{\lambda} = \pi N_e$$

8. Намалювати графіки залежностей $\mathbf{x}(t)$, $\mathbf{A}(t)$ для згасаючих коливань при $\mathbf{j}_0 = \mathbf{0}$

Робочі формули:

$$\beta = \frac{\ln Z}{n_z T}$$

$$\Delta \beta = \left(\frac{\Delta n_2}{n_2} + \frac{\Delta T}{T}\right) \beta$$

$$\delta\beta = \frac{\Delta\beta}{\beta} \cdot 100\%$$

$$\lambda = \frac{\Delta(\ln Z)}{\Delta f(n_z)}$$

$$Q = \frac{\pi}{\lambda}$$

Хід роботи

- 1. Ввімкнути повітряний заспокоювач (вертикальне положення)
- 2. Відхилити стрижень на 10–15 поділок шкали, відпустити; визначити і записати в табл. 1 час t, протягом якого здійсниться 10 коливань.
- 3. За формулою $T = \frac{t}{10}$ розрахувати період коливань і записати результат у табл. 1.
- 4. Дії, зазначені в п. 2–3, повторити ще двічі.
- 5. Вимкнути повітряний заспокоювач (горизонтальне положення), увімкнути рідинний заспокоювач (вертикальне положення) і повторити 3 рази дії, зазначені в п. 2–3.
- 6. Для повітряного заспокоювача, відхилити стрижень на 12 поділок, відпустити і визначити число коливань, протягом яких початкова амплітуда зменшиться у 2; 3 і 4 рази: n_2 , n_3 , n_4 . Результати записати у табл. 1.
- 7. Дії, зазначені в п. 6, повторити ще двічі.
- 8. Для рідинного заспокоювача повторити 3 рази дії, зазначені в п. 6, 7. Табл 1

Заспокоювач	<u>№</u>	t, c	Т, с	ΔT , c	n_2	Δn_2	n_3	n_4
повітряний	1	18,6	1,86	0,01	16	1	26	31
	2	18,7	1,87	0,02	14	1	25	29
	3	18,3	1,83	0,02	16	1	26	30
	Сер.	18,5	1,85	0,02	15	1	26	30
рідинний	1	18,9	1,89	0	8	1	11	16
	2	18,8	1,88	0,01	7	0	9	15
	3	19,0	1,90	0,01	7	0	10	16
	Cep.	18,9	1,89	0,01	7	0	10	16

- 9. Використовуючи середні значення n_2 і T для всіх трьох випадків визначити за формулою коефіцієнти згасання.
- 10. Розрахувати абсолютну і відносну похибки величин β.

11. Для всіх випадків побудувати графіки $\ln Z = f(n_z)$ і визначити логарифмічні декременти згасання.

Графіки:

Жовтий графік – повітряний заспокоювач Синій графік – рідинний заспокоювач

- 12.За формулою визначити добротність коливної системи при наявності і відсутності заспокоювачів.
- 13. Результати розрахунків, виконаних у п. 9–12, записати у табл. 2. Табл 2

Заспокоювач	β , c^{-1}	$\Delta \beta$, c^{-1}	δβ,%	λ	Q
повітряний	0,025	0,002	8%	0,044	71,4
рідинний	0,052	0,0003	0,58%	0,073	43

$$\beta_n = \frac{\ln 2}{15 * 1,85} = 0,025(c^{-1})$$

$$\Delta \beta_n = \left(\frac{1}{15} + \frac{0,02}{1,85}\right) 0,025 = 0,002(c^{-1})$$

$$\delta \beta_n = \frac{0,002}{0,025} * 100\% = 8\%$$

$$\lambda_n = \frac{f_n(0,02) - f_n(0,01)}{0,01} = 0,044$$

$$Q_n = \frac{\pi}{0,044} = 71,4$$

$$\Delta \beta_p = \left(\frac{0}{7} + \frac{0,01}{1,89}\right) 0,052 = 0,0003(c^{-1})$$

$$\delta \beta_p = \frac{0,0003}{0,052} * 100\% = 0,58\%$$

$$\lambda_p = \frac{f_p(0,02) - f_p(0,01)}{0,01} = 0,073$$

$$Q_p = \frac{\pi}{0,073} = 43$$

Аналіз результатів:

Найголовніше, що можна винести, аналізуючи результати, це те, що величина $\ln Z$ лінійно залежить від кількості коливань n_z . Це знання є корисним, коли треба обчислити швидкість зупинки системи. Також в цьому можуть допомогти і інші величини, які ми обчислили.

Висновок:

Виконавши цю лабаратону роботу ми визначили основні параметри згасання коливань механічної системи. Ці знання допоможуть нам у майбутньому легше передбачати поведінку коливальної системи за різних умов.