MC-202 — Unidade 14 Ordenação em tempo linear

Rafael C. S. Schouery rafael@ic.unicamp.br

Universidade Estadual de Campinas

 2° semestre/2023

Ordenação em $O(n \lg n)$

Vimos dois algoritmos de ordenação $O(n \lg n)$:

- MergeSort
- HeapSort

E o caso médio do QuickSort é $O(n \lg n)$...

Dá para fazer melhor que $O(n \lg n)$?

- Não, se considerarmos algoritmos que usam comparação
 - algoritmos que precisam saber apenas se v[i] < v[j]
 - algoritmos de ordenação "genéricos"
- Sim, se não usarmos comparações
 - algoritmos que sabem a estrutura da chave
 - ex: a chave é um número inteiro com 32 bits

Algoritmos baseados em comparações

Um algoritmo de ordenação baseado em comparações

- recebe uma sequência de n valores
- precisa decidir qual das n! permutações é a correta
- usando apenas comparações entre pares de elementos
 - pode ordenar int, float, strings, structs, etc...
 - desde que tenha uma função de comparação

Os algoritmos que vimos são baseados em comparações

Quantas comparações um tal algoritmo precisa fazer no mínimo para ordenar o vetor?

Quão rápido pode ser um algoritmo baseado em comparações?

Árvore de decisão

Um algoritmo baseado em comparações:

- compara dois elementos v[i] e v[j]
- e toma decisões diferentes dependendo do resultado

Podemos pensar a execução do algoritmo como uma árvore:

- cada nó interno representa um teste se v[i] < v[j]
- subárvore esquerda: comparações feitas se for verdade
- subárvore direita: comparações feitas se for falso

Ex: SelectionSort de (a, b, c)

Árvore de decisão

Qual é a altura mínima h de uma árvore de decisão?

- Temos pelo menos n! folhas (uma para cada permutação)
- Uma árvore de altura h tem no máximo 2^h folhas
- Seja l o número de folhas, temos que $n! \le l \le 2^h$

Ou seja,

$$h \ge \lg(n!) \ge \lg\left(\frac{n}{e}\right)^n = n\left(\lg n - \lg e\right)$$

Não dá para fazer um algoritmo baseado em comparações melhor do que $O(n \lg n)$

5

Ordenação em tempo linear

Quando falamos de ordenação em tempo linear:

- São algoritmos que não são baseados em comparação
- Eles n\u00e3o servem para qualquer tipo de chave
 - Já que não usamos apenas comparações
 - Eles usam a estrutura da chave de alguma forma
 - Ex: número inteiros entre 0 e R-1
 - Ex: número inteiros de 32 bits

Veremos dois algoritmos de ordenação em tempo linear

Ordenação Estável

Um algoritmo de ordenação é *estável* se ele mantém a ordem relativa original dos items com chaves de ordenação duplicadas

Algoritmos estáveis:

• InsertionSort, BubbleSort e MergeSort

Algoritmos não-estáveis:

SelectionSort, Quicksort e Heapsort

Ordenação por Contagem — CountingSort

Se temos números inteiros entre 0 e R-1:

- Contamos o número de ocorrências de cada número
 - Fazemos um histograma dos números
- Colocamos os números na posição correta (de maneira estável)

Ex: Se queremos ordenar 2, 0, 3, 2, 1, 0, 3, 0, 4, 2

- Temos três ocorrências do número 0
- Temos uma ocorrência do número 1
- Temos três ocorrências do número 2
- Temos duas ocorrências do número 3
- Temos uma ocorrência do número 4

Basta colocar, em ordem:

- três 0's, um 1, três 2's, dois 3's e um 4
- Ou seja, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4

```
1 #define MAX 10000
2 #define R 5
3
4 int aux[MAX];
5
6 void countingsort(int *v, int 1, int r) {
    int i, count[R + 1];
    for (i = 0; i <= R; i++)</pre>
8
       count[i] = 0;
9
    for (i = 1; i <= r; i++)</pre>
10
       count[v[i] + 1]++:
11
    for (i = 1; i <= R; i++)
12
       count[i] += count[i-1];
13
    for (i = 1; i <= r; i++) {
14
       aux[count[v[i]]] = v[i];
15
    count[v[i]]++;
16
                                                 count
17
    for (i = 1; i <= r; i++)
18
19
     v[i] = aux[i-1];
                                        aux
20 }
```

```
1 #define MAX 10000
2 #define R 5
3
4 int aux[MAX];
5
6 void countingsort(int *v, int 1, int r) {
    int i, count[R + 1];
    for (i = 0; i <= R; i++)</pre>
8
     count[i] = 0;
9
    for (i = 1; i <= r; i++)</pre>
10
      count[v[i] + 1]++:
11
    for (i = 1; i <= R; i++)
12
      count[i] += count[i-1];
13
    for (i = 1; i <= r; i++) {
14
       aux[count[v[i]]] = v[i];
15
    count[v[i]]++;
16
                                                count
17
    for (i = 1; i <= r; i++)
18
19
     v[i] = aux[i-1];
                                        aux
20 }
```

V

```
1 #define MAX 10000
2 #define R 5
3
4 int aux[MAX];
5
6 void countingsort(int *v, int 1, int r) {
    int i, count[R + 1];
    for (i = 0; i <= R; i++)</pre>
8
       count[i] = 0;
9
    for (i = 1; i <= r; i++)</pre>
10
       count[v[i] + 1]++:
11
    for (i = 1; i <= R; i++)
12
       count[i] += count[i-1];
13
    for (i = 1; i <= r; i++) {
14
       aux[count[v[i]]] = v[i];
15
    count[v[i]]++;
16
                                                 count
17
    for (i = 1; i <= r; i++)
18
19
     v[i] = aux[i-1];
                                        aux
20 }
```

```
1 #define MAX 10000
2 #define R 5
3
4 int aux[MAX];
5
6 void countingsort(int *v, int 1, int r) {
    int i, count[R + 1];
    for (i = 0; i <= R; i++)</pre>
8
       count[i] = 0;
9
    for (i = 1; i <= r; i++)</pre>
10
       count[v[i] + 1]++:
11
    for (i = 1; i <= R; i++)
12
       count[i] += count[i-1];
13
    for (i = 1; i <= r; i++) {
14
       aux[count[v[i]]] = v[i];
15
       count[v[i]]++;
16
                                                 count
                                                                        10
17
    for (i = 1: i <= r: i++)
18
19
     v[i] = aux[i-1];
                                        aux
20 }
                                                                     3
```

Ordenando datas

Ideia: ordena por ano, depois por mês e depois por dia

30/09/2017	26	/06/ 2000	19/ 01 /2010
01/12/2005	03	/04/ 2000	03/04/2000
09/09/2003	13	/12/ 2000	10/04/2004
26/06/2000	21	/09/ 2002	01/ 04 /2014
19/01/2010	09	/09/ 2003	28/ 05 /2007
03/04/2000	10	/04/ 2004	26/ 06 /2000
01/04/2014	01	/12/ 2005	01/ 06 /2006
13/12/2000	17	/07/ 2005	17/ 07 /2005
21/09/2002	01	/06/ 2006	27/08/2014
28/05/2007	28	/05/ 2007	21/ 09 /2002
27/08/2014	19	/01/ 2010	09/09/2003
10/04/2004	01	/04/ 2014	30/09/2017
01/06/2006	27	/08/ 2014	28/10/2014
17/07/2005	28	/10/ 2014	13/12/2000
28/10/2014	30	/09/ 2017	01/12/2005

Ordenando datas

Ordena por dia, depois por mês e depois por ano

30/09/2017	01 /12/2005	19/ 01 /2010	03/04/2000
01/12/2005	01 /04/2014	01/ 04 /2014	26/06/ 2000
09/09/2003	01/06/2006	03/ 04 /2000	13/12/ 2000
26/06/2000	03/04/2000	10/ 04 /2004	21/09/ 2002
19/01/2010	09 /09/2003	28/ 05 /2007	09/09/ 2003
03/04/2000	10 /04/2004	01/ 06 /2006	10/04/2004
01/04/2014	13 /12/2000	26/ 06 /2000	17/07/2005
13/12/2000	17 /07/2005	17/ 07 /2005	01/12/ 2005
21/09/2002	19 /01/2010	27/ 08 /2014	01/06/2006
28/05/2007	21 /09/2002	09/ 09 /2003	28/05/ 2007
27/08/2014	26 /06/2000	21/ 09 /2002	19/01/ 2010
10/04/2004	27 /08/2014	30/ 09 /2017	01/04/2014
01/06/2006	28 /05/2007	28/10/2014	27/08/ 2014
17/07/2005	28 /10/2014	01/12/2005	28/10/ 2014
28/10/2014	30 /09/2017	12/12/2000	30/09/2017
20/10/2014	30/09/2017	13/ 12 /2000	30/09/2011

Funciona se o algoritmo for estável!

14

RadixSort.

Ideia:

- Usar o mesmo princípio da ordenação de datas
- Ordenar números comparando sequências de bits
 - do menos significativo para o mais significativo
 - usando ordenação estável
- Radix é o mesmo que a base do sistema numeral

Vamos ordenar números inteiros de 4 bytes, i.e., 32 bits

- Poderia ser números maiores
- Nosso radix será 256 (1 byte)
 - Poderia ser outro número
 - É melhor escolher uma potência de 2
- Precisaremos extrair o i-ésimo byte do número
 - contando da direita para esquerda

Deslocamento de bits

Desloca para a esquerda (<<) — "multiplica por 2^k "

- Ex: 00000101 << 3 == 00101000 (5 << 3 == 40)
- Ex: 01000101 << 3 == 00101000 (69 << 3 == 40)

Desloca para a direita (>>) — divide por 2^k

- Ex: 00101000 >> 3 == 00000101 (40 >> 3 == 5)
- Ex: 00101011 >> 3 == 00000101 (43 >> 3 == 5)

Bits e Bytes

```
1 #define bitsword 32
2
3 #define bitsbyte 8
4
5 #define bytesword 4
6
7 #define R 256
8
9 #define digit(N,D) (((N) >> (D)*bitsbyte) % R)
```

RadixSort.

```
1 void radixsort(int *v, int 1, int r) {
     int i, w, count[R+1];
    for (w = 0; w < bytesword; w++) {
       for (i = 0; i <= R; i++)
         count[i] = 0:
       for (i = 1; i <= r; i++)</pre>
6
         count[digit(v[i], w) + 1]++;
7
       for (i = 1; i <= R; i++)</pre>
8
         count[i] += count[i-1];
9
       for (i = 1; i <= r; i++) {
10
         aux[count[digit(v[i], w)]] = v[i];
11
         count[digit(v[i], w)]++;
12
13
       for (i = 1: i <= r: i++)
14
        v[i] = aux[i-1];
15
16
17 }
```

CountingSort no w-ésimo dígito

Tempo: $O(bytesword \cdot (R+n))$

Se a chave tem k bits, tempo: $O\left(\frac{k}{\lg R}(n+R)\right)$

Comparação do algoritmos

Limite de tempo=0.05s

- bubblesort ordena 5.000 números em 0.034s
- insertionsort_v4 ordena 20.000 números em 0.038s
- quicksort_mdt_v3 ordena 640.000 números em 0.05s
- radixsort ordena 2.560.000 números em 0.04s

Comparação Assintótica

Algoritmo	Melhor Caso	Caso Médio	Pior Caso	Memória
BubbleSort	O(n)	$O(n^2)$	$O(n^2)$	O(1)
SelectionSort	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(1)
InsertionSort	O(n)	$O(n^2)$	$O(n^2)$	O(1)
QuickSort	$O(n \lg n)$	$O(n \lg n)$	$O(n^2)$	O(n)
MergeSort	$O(n \lg n)$	$O(n \lg n)$	$O(n \lg n)$	O(n)
HeapSort	$O(n \lg n)$	$O(n \lg n)$	$O(n \lg n)$	O(1)
RadixSort	$O((n+R)\frac{k}{\lg R})$	$O((n+R)\frac{k}{\lg R})$	$O((n+R)\frac{k}{\lg R})$	O(R)

onde k é o número de bits na chave de ordenação

Lembrando que RadixSort não pode ser usado sempre

• não é baseado em comparações

Conclusão

Escolher entre dois algoritmos de mesmo tempo tem resultado na prática

- Ex: bubblesort vs. insertionsort
- Ex: heapsort vs. mergesort

Otimizar o código dos algoritmos pode trazer boas melhoras

- Ex: insertionsort vs. insertionsort_v2
- Ex: quicksort vs. quicksort_mdt

No fim do dia, o que mais faz diferença é o tempo assintótico

- Se n for grande...
 - Se n for pequeno, o overhead pode não compensar
- Ex: insertionsort_v2 vs. heapsort
- Ex: quicksort_mdt vs. radixsort

Exercício

Mostre um esquema para tornar qualquer algoritmo em um algoritmo estável. Quanto espaço e tempo adicional é necessário para o seu esquema?