

Università degli Studi di Padova

VC Dimension

Machine Learning 2023-24

UML Book Chapter 6
Slides P. Zanuttigh (some slides from F. Vandin)

Which hypothesis classes are PAC learnable?

Agnostic PAC

Learnable

Simplification: focus on binary classification and 0-1 loss

- ☑ Theorem (*uniform convergence*): finite classes are agnostic PAC learnable
- Theorem (*corollary of NFL*): The set of all functions from an infinite domain set to {0,1} is not PAC learnable
- \blacktriangleright Up to now, if $|\mathcal{H}|<\infty\Rightarrow\mathcal{H}$ is PAC learnable (finite size classes are agnostic PAC learnable)
- \blacktriangleright What about infinite size classes ($|\mathcal{H}| = \infty$)?
- → We'll demonstrate that the finite size is a sufficient but not necessary condition for agnostic PAC learnability

Finite

 $\mathcal{H} = \{h_a : a \in \mathbb{R} \}$ $h_a : \mathbb{R} \to \{0,1\}$ $Example: threshold function \to it is PAC learnable with sample and the sample of the sample o$

Restriction of a Function

Definition: Restriction of ${\mathcal H}$ to ${\mathcal C}$

- Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$
- Let $C = \{c_1, ..., c_m\} \subset \mathcal{X}$ (i.e., a subset of the data domain)

The restriction \mathcal{H}_c of \mathcal{H} to \mathcal{C} is the set of functions from \mathcal{C} to $\{0,1\}$ that can be derived from \mathcal{H} :

$$\mathcal{H}_{c} = \{ [h(c_{1}), ..., h(c_{m})] : h \in \mathcal{H} \}$$
Each entry: A vector of 0s and 1s of length m with the output for each c_{i}

Notes:

- We can represent each function h from C to $\{0,1\}$ as $[h(c_1), ..., h(c_m)]$, i.e., as a vector in $\{0,1\}^{|C|}$ with the output for each c_i
- No Free Lunch theorem: the idea is to select a distribution concentrated on a set C (→restriction) on which the algorithm A fails

Shattering

Definition (Shattering)

Given $C \subset X$, \mathcal{H} shatters C if \mathcal{H}_c contains all the $2^{|C|}$ functions from C to $\{0,1\}$

Corollary (of No Free Lunch)

Let $\mathcal H$ be a hypothesis class of functions from $\mathcal X$ to $\{0,1\}$. Let m be a training set size. Assume that there exist a set $\mathcal C \subset \mathcal X$ of size 2m that is shattered by $\mathcal H$. Then for any learning algorithm A there exist a distribution D over $\mathcal X$ x $\{0,1\}$ and a predictor $h \in \mathcal H$ such that $L_d(h) = 0$ but with probability at least 1/7 over the choice of S we have that $L_D(A(S)) \geq \frac{1}{8}$

Demonstration (intuition): on set C all functions from C to {0,1} can be chosen and we fall back into the situation of the NFL corollary

VC Dimension (1)

Definition (VC-dimension)

The VC-dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} , is the maximal size of a set $C \subset X$ that can be shattered by \mathcal{H}

Note: if \mathcal{H} can shatter sets of arbitrarily large size then $VCdim(\mathcal{H}) = +\infty$

VC Dimension (2)

Definition (VC-dimension): The VC-dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} , is the maximal size of a set $C \subset X$ that can be shattered by \mathcal{H}

- ☐ In the case of finite class hypotheses:
 - They are agnostic PAC learnable (already demonstrated)
 - 2. To shatter a set of size $|C| \rightarrow$ at least $2^{|C|}$ functions (need all combinations)
 - 3. With $|\mathcal{H}|$ functions \rightarrow the largest set that can be shattered has size $\log_2 |\mathcal{H}|$
 - 4. To have $VCdim(\mathcal{H}) = d \implies$ shatter a set of size $d \implies VCdim(\mathcal{H}) \le \log_2 |\mathcal{H}|$
- \Box If $\mathcal H$ has an infinite VC dimension: it is not PAC learnable
 - 1. $VCdim(\mathcal{H}) = \infty \Longrightarrow \forall m$: \exists a shattered set of size 2m (can shatter any size)
 - 2. Apply NFL corollary: $\exists D$ on which A does not work (for any possible A)
 - 3. $\exists D$ with probability $\geq \frac{1}{7} L_D \geq \frac{1}{8} \Longrightarrow$ it is not PAC learnable (for \forall A)

Compute VC Dimension

VC-dimension: The VC-dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} , is the maximal size of a set $C \subset X$ that can be shattered by \mathcal{H}

To show that $VCdim(\mathcal{H}) = d$ we need to show that:

- 1. $VCdim(\mathcal{H}) \geq d$: there exists a set C of size d which is shattered by \mathcal{H}
- 2. $VCdim(\mathcal{H}) < (d+1)$: every set of size d+1 is not shattered by \mathcal{H}

Note: need to shatter a single set of size d but must not shatter any possible set of size d+1

Compute VC Dimension: Example (1)

Threshold function

$$\mathcal{H} = \{h_a : a \in \mathbb{R} \}$$

$$h_a: \mathbb{R} \to \{0,1\}$$
 is:

$$h_A(x) = \begin{cases} 1 & \text{if } x < a \\ 0 & \text{if } x \ge a \end{cases}$$

$$VCdim(\mathcal{H}) \geq 1$$

$$VCdim(\mathcal{H}) < 2$$

$$VCdim(\mathcal{H}) = 1$$

Compute VC Dimension: Example (2)

Interval

$$\mathcal{H} = \left\{ h_{a,b} \colon a, b \in \mathbb{R} \mid a < b \right\}$$

$$h_{a,b} \colon \mathbb{R} \to \{0,1\}$$
 is:

$$h_{a,b}(x) = \begin{cases} 1 & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$VCdim(\mathcal{H}) \geq 2$$

$$VCdim(\mathcal{H}) < 3$$

$$VCdim(\mathcal{H}) = 2$$

Compute VC Dimension: Exercise – Try to do it!!

Axis aligned rectangle

$$\mathcal{H} = \left\{ h_{a_1, a_2, b_1, b_2} \colon a_1, a_2, b_1, b_2 \in \mathbb{R} , a_1 \le a_2, b_1 \le b_2 \right\}$$

$$h_{a_1,a_2,b_1,b_2} : \mathbb{R} \to \{0,1\}$$
 is:

$$h_{a_1,a_2,b_1,b_2}(x_1,x_2) = \begin{cases} 1 & \text{if } a_1 \le x_1 \le a_2, b_1 \le x_2 \le b_2 \\ 0 & \text{otherwise} \end{cases}$$

Case 5 points: define c1 top point, c2 rightmost, c3 bottom, c4 leftmost, c5 the remaining one.

If different labeling just swaps the case that can not be obtained.

Compute VC Dimension: Example (4)

- \square Recall: for finite classes: $VCdim(\mathcal{H}) \leq \log_2(|\mathcal{H}|) \dots$
- ... but VC dimension does not always correspond to the number of parameters !!
- □ Example $\mathcal{H} = \{h_{\theta} : \theta \in \mathbb{R}\}, h_{\theta} : \mathcal{X} \to \{0,1\} h_{\theta} = [0.5\sin(\theta x)]$
 - It has infinite VC dimension !!

$$\theta = 1$$

$$\theta = 2$$

Fundamental Theorem of Statistical Learning

Let $\mathcal H$ be a hypothesis class of functions from $\mathcal X$ to $\{0,1\}$ and let the loss function be the 0-1 loss

Then, the following statements are equivalent:

- 1. \mathcal{H} has the uniform convergence property
- 2. Any ERM rule is a successful agnostic PAC learner for ${\cal H}$
- 3. \mathcal{H} is agnostic PAC learnable
- 4. \mathcal{H} is PAC learnable
- 5. Any ERM rule is a successful PAC learner for ${\cal H}$
- 6. $\mathcal H$ has finite VC dimension

Theorem of Statistical Learning: Notes on the demonstration

- 1. We have already seen that $1 \rightarrow 2 \rightarrow 3$ (uniform convergence implies agnostic PAC learnable and ERM rule is PAC learner)
- $3 \rightarrow 4$ is trivial (if realizable they are the same if not PAC condition does not apply)
- 3. $2 \rightarrow 5$ also trivial (ERM rule, if realizable same target)
- 4. $4 \rightarrow 6$ and $5 \rightarrow 6$ follow from corollary of No-Free-Lunch (by contradiction, if $VCdim(\mathcal{H}) = \infty$, \mathcal{H} is not PAC learnable)
- 5. The challenging part is how to close the loop $(6 \rightarrow 1)$, from finite VC dimension to uniform convergence)

The proof $6 \rightarrow 1$ (not part of the course) can be divided in two main parts:

- If $VCdim(\mathcal{H}) = d$, then even though $|\mathcal{H}|$ might be infinite, when restricting \mathcal{H} to a finite set C, its "effective size" $|\mathcal{H}_C|$, is only $O(|C|^d)$. That is, $|\mathcal{H}_C|$ grows polynomially rather than exponentially with |C| (Sauer's lemma)
- Recall that finite hypothesis classes enjoy the uniform convergence property. This result can be generalized by showing that uniform convergence holds whenever the hypothesis class has a "small effective size" (i.e., classes for which $|\mathcal{H}_C|$ grows polynomially with |C|)

Theorem of Statistical Learning: Quantitative Version

Not part of the course, just notice how the number of samples depend on $VCdim(\mathcal{H}) = d$

Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Assume that $VCdim(\mathcal{H}) = d < \infty$ Then, there are absolute constants C_1 and C_2 such that:

1. ${\mathcal H}$ has the uniform convergence property with sample complexity

$$C_1 \frac{d + \log(\frac{1}{\delta})}{\epsilon^2} \le m_{\mathcal{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d + \log(\frac{1}{\delta})}{\epsilon^2}$$

2. ${\mathcal H}$ is agnostic PAC learnable with sample complexity

$$C_1 \frac{d + \log(\frac{1}{\delta})}{\epsilon^2} \le m_{\mathcal{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d + \log(\frac{1}{\delta})}{\epsilon^2}$$

3. ${\mathcal H}$ is PAC learnable with sample complexity

$$C_1 \frac{d + \log(\frac{1}{\delta})}{\epsilon} \le m_{\mathcal{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d \log(\frac{1}{\epsilon}) + \log(\frac{1}{\delta})}{\epsilon}$$

Recall:

Proposition

Let \mathcal{H} be a finite hypothesis class, let Z be a domain, and let $\ell: \mathcal{H} \times Z \to [0,1]$ be a loss function. Then:

• H enjoys the uniform convergence property with sample complexity

 $= \log 2|\mathcal{H}| + \log \frac{1}{s}$