Matthew Morgan Student ID: 010471280 Data Mining - 209

Task 2: Classification Analysis Western Governor's University

Part I: Research Question A1. Research Ouestion

Can I predict which patients are at risk of re-admission using a decision tree analysis so the hospital can take appropriate steps to reduce re-admissions?

A2. Goal of the Data Analysis

The primary goal of this data analysis is to develop a machine learning model using a decision tree to help the company identify patients who are at risk of re-admission.

Part II: Method Justification B1. Explain Method from Part A1

A decision tree is a tree-like model that acts as a decision support tool. A decision tree is a sequence of if-else questions about individual features that's able to capture non-linear relationships between features and labels, and doesn't require feature scaling. This machine learning algorithm can also handle numerical and categorical data while also requiring less computational time. Because of these features, it is a good fit for my dataset.

B2. Summarize one assumption of your chosen classification model.

One assumption of the decision tree algorithm is that it is non-parametric. It doesn't make distribution assumptions on the data. Thus, decisions can deal with non-linear data, skewed data, multi-model data, and categorical, ordinal, and non-ordinal data efficiently. This characteristic makes the model easier to understand, interpret, and visualize. (Navlani, 2018)

B3. List Packages or Libraries Chosen

Packages Usage

Pandas Importing data and data manipulation
Numpy Provides array objects for calculations
Seaborn For visualizations like correlation matrix

Matplotlib.pyplot For visualizations like ROC curve missingno For visualizing missing data

Sklearn, preprocessing To scale features
Skleanr.feature_selection For feature selection

Sklearn.model selection For splitting data into train and test sets

Sklearn.pipeline To assemble several steps that can be performed together

while setting different parameters

sklearn.metricsTo import accuracy score and MSEScipy.statsTo run statistical calculationssklearn.treeTo run the decision tree model

```
In [22]: # Data Analytics imports
         import pandas as pd
         import numpy as np
         # Visualization imports
         import seaborn as sns
         import matplotlib.pyplot as plt
         import missingno as msno
         # Statistics imports
         import scipy.stats as stats
         from scipy.stats import skew, kurtosis
         import statistics as stat
         # scikit-learn imports
         import sklearn
         from sklearn import preprocessing
         from sklearn.model selection import train test split
         from sklearn import metrics
         from sklearn.metrics import accuracy score
         from sklearn.metrics import mean squared error
         # import decisiontreeclassifier
         from sklearn.tree import DecisionTreeClassifier
         from sklearn import tree
         #Ignore warnings
         import warnings
         warnings.filterwarnings('ignore')
```

```
Part III: Data Preparation
C1. One Data Preprocessing Goal from A1
Removing white spaces, imputing missing data, converting binary (yes/no) variables into
quantitative (1/0) variables.
C2. Identify Initial Data Set Variables Used for Analysis
Variable # Independent Variable
                                               Data Type
                                                           Data Class
        1 Initial days
                                               Continuous Quantitative
        2 Services CT Scan
                                               Categorical Oualitative
        3 Children
                                               Continuous Quantitative
        4 Services Intravenous
                                               Categorical Qualitative
        5 Population
                                               Continuous Quantitative
        6 Initial_Admin_Emergency_admission Categorical Qualitative
C3. Explain Each of the Steps Used to Prepare the Data for Analysis
1. Load data into dataframe
2. View the data to evaluate structure and types
3. Detect null values
4. Check for missing data
```

```
In [23]: #Loading the CSV of the default dataset
df = pd.read_csv(r'C:\Users\mmorg\WGU\D209\medical_clean.csv')
```

8. Visualize univariate stats from dataframe to ensure data quality

5. Visualize data to check for outliers6. Convert categorical data to quantitative7. Rename columns from pd.get_dummies

In [24]: #Viewing Data to evaluate structure and types df.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 50 columns):

Data	columns (total 50 co	olumns)):	
#	Column		ull Count	Dtype
0	CaseOrder			int64
1			non-null non-null	
2	Customer_id Interaction		non-null	object object
				•
3	UID		non-null	object
4	City		non-null	object
5	State		non-null	object
6	County		non-null	object
7	Zip		non-null	int64
8	Lat		non-null	float64
9	Lng		non-null	float64
10	Population		non-null	int64
11	Area		non-null	object
12	TimeZone		non-null	object
13	Job		non-null	object
14	Children		non-null	int64
15	Age		non-null	int64
16	Income		non-null	float64
17	Marital		non-null	object
18	Gender		non-null	object
19	ReAdmis		non-null	object
20	VitD_levels		non-null	float64
21	Doc_visits		non-null	int64
22	Full_meals_eaten		non-null	int64
23	vitD_supp		non-null	int64
24	Soft_drink		non-null	object
25	Initial_admin		non-null	object
26	HighBlood		non-null	object
27	Stroke		non-null	object
28	Complication_risk		non-null	object
29	Overweight		non-null	object
30	Arthritis	10000		object
31	Diabetes		non-null	object
32	Hyperlipidemia		non-null	object
33	BackPain	10000	non-null	object
34	Anxiety		non-null	object
35	Allergic_rhinitis		non-null	object
36	Reflux_esophagitis	10000		object
37	Asthma		non-null	object
38	Services		non-null	object
39	Initial_days		non-null	float64
40	TotalCharge		non-null	float64
41	Additional_charges		non-null	float64
42	Item1		non-null	int64
43	Item2		non-null	int64
44	Item3		non-null	int64
45	Item4		non-null	int64
46	Item5		non-null	int64
47	Item6		non-null	int64
48	Item7		non-null	int64
49	Item8		non-null	int64
dtype	es: float64(7), int64	1(16),	object(27))

memory usage: 3.8+ MB

In [25]: #Detect null values print(df.isnull().sum())

CaseOrder Customer_id 0 Interaction 0 UID 0 City 0 State 0 County 0 0 Zip 0 Lat 0 Lng 0 Population 0 Area 0 TimeZone 0 Job Children 0 Age 0 Income Marital 0 Gender 0 ReAdmis 0 VitD_levels 0 0 Doc_visits Full_meals_eaten 0 vitD_supp 0 Soft drink 0 Initial_admin 0 HighBlood 0 Stroke 0 Complication_risk 0 Overweight 0 0 Arthritis 0 Diabetes Hyperlipidemia 0 BackPain 0 Anxiety 0 Allergic_rhinitis 0 Reflux_esophagitis 0 0 Asthma Services 0 Initial_days 0 TotalCharge 0 Additional_charges 0 Item1 0 Item2 0 Item3 0 Item4 0 Item5 0 0 Item6 Item7 0 0 Item8 dtype: int64


```
In [27]: #Detection of outliers for quantitative values
         boxplot=sns.boxplot(x='Children',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Age',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Income',data=df)
         plt.show()
         boxplot=sns.boxplot(x='VitD levels',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Doc visits',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Full_meals_eaten',data=df)
         plt.show()
         boxplot=sns.boxplot(x='vitD supp',data=df)
         plt.show()
         boxplot=sns.boxplot(x='TotalCharge',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Additional charges',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item1',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item2',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item3',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item4',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item5',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item6',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item7',data=df)
         plt.show()
         boxplot=sns.boxplot(x='Item8',data=df)
         plt.show()
         #Visualizing distribution shapes
         print('Children Original: ')
         plt.hist(df['Children'])
         plt.show()
         print('Age Original: ')
         plt.hist(df['Age'])
         plt.show()
         print('Income Original: ')
         plt.hist(df['Income'])
         plt.show()
         print('Overweight Original: ')
         plt.hist(df['Overweight'])
         plt.show()
         print('Anxiety Original: ')
         plt.hist(df['Anxiety'])
         plt.show()
         print('Initial days Original: ')
         plt.hist(df['Initial_days'])
         plt.show()
```


Children Original:

Age Original:

Income Original:

Overweight Original:

Anxiety Original:

Initial_days Original:


```
In [28]: #Data Wrangling; turn categorical values into quantitative data
         df['ReAdmis_numeric'] = df['ReAdmis']
         dict_ReAdmis = {"ReAdmis_numeric": {"No": 0, "Yes": 1}}
         df.replace(dict ReAdmis, inplace=True)
         df['Soft drink numeric'] = df['Soft drink']
         dict_Soft_drink = {"Soft_drink_numeric": {"No": 0, "Yes": 1}}
         df.replace(dict Soft drink, inplace=True)
         df['HighBlood numeric'] = df['HighBlood']
         dict HighBlood = {"HighBlood numeric": {"No": 0, "Yes": 1}}
         df.replace(dict HighBlood, inplace=True)
         df['Stroke numeric'] = df['Stroke']
         dict_stroke = {"Stroke_numeric": {"No": 0, "Yes": 1}}
         df.replace(dict stroke, inplace=True)
         df['Arthritis numeric'] = df['Arthritis']
         dict arthritis = {"Arthritis numeric": {"No": 0, "Yes": 1}}
         df.replace(dict arthritis, inplace=True)
         df['Diabetes_numeric'] = df['Diabetes']
         dict diabetes = {"Diabetes numeric": {"No": 0, "Yes": 1}}
         df.replace(dict diabetes, inplace=True)
         df['Hyperlipidemia numeric'] = df['Hyperlipidemia']
         dict hyperlipidemia = {"Hyperlipidemia numeric": {"No": 0, "Yes": 1}}
         df.replace(dict_hyperlipidemia, inplace=True)
         df['BackPain numeric'] = df['BackPain']
         dict_backpain = {"BackPain_numeric": {"No": 0, "Yes": 1}}
         df.replace(dict_backpain, inplace=True)
         df['Allergic rhinitis numeric'] = df['Allergic rhinitis']
         dict_allergies = {"Allergic_rhinitis_numeric": {"No": 0, "Yes": 1}}
         df.replace(dict allergies, inplace=True)
         df['Reflux esophagitis numeric'] = df['Reflux esophagitis']
         dict reflux = {"Reflux esophagitis numeric": {"No": 0, "Yes": 1}}
         df.replace(dict reflux, inplace=True)
         df['Asthma numeric'] = df['Asthma']
         dict_asthma = {"Asthma_numeric": {"No": 0, "Yes": 1}}
         df.replace(dict asthma, inplace=True)
         df['Overweight_numeric'] = df['Overweight']
         dict Overweight = {"Overweight numeric": {"No": 0, "Yes": 1}}
         df.replace(dict_Overweight, inplace=True)
         df['Anxiety_numeric'] = df['Anxiety']
         dict_Anxiety = {"Anxiety_numeric": {"No": 0, "Yes": 1}}
         df.replace(dict_Anxiety, inplace=True)
         df = pd.get_dummies(df, columns=["Marital", "Services", "Gender", "Initial_admin", "Complicatio")
         df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 76 columns):

Data	columns (total 76 columns):		
#	Column	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	int64
1	Customer_id	10000 non-null	object
2	Interaction	10000 non-null	object
3	UID	10000 non-null	object
4	City	10000 non-null	object
5	State	10000 non-null	object
6	County	10000 non-null	object
7	Zip	10000 non-null	int64
8	Lat	10000 non-null	float64
9	Lng	10000 non-null	float64
10	Population	10000 non-null	int64
11	Area	10000 non-null	object
12	TimeZone	10000 non-null	object
13	Job	10000 non-null	object
14	Children	10000 non-null	int64
15	Age	10000 non-null	int64
16	Income	10000 non-null	float64
17	ReAdmis	10000 non-null	object
18	VitD_levels	10000 non-null	float64
19	Doc_visits	10000 non-null	int64
20	Full_meals_eaten	10000 non-null	int64
21	vitD_supp	10000 non-null	int64
22	Soft_drink	10000 non-null	object
23	HighBlood	10000 non-null	object
24	Stroke	10000 non-null	object
25	Overweight	10000 non-null	object
26	Arthritis	10000 non-null	object
27	Diabetes	10000 non-null	object
28	Hyperlipidemia	10000 non-null	object
29	BackPain	10000 non-null	object
30	Anxiety	10000 non-null	object
31	Allergic_rhinitis	10000 non-null	object
32	Reflux_esophagitis	10000 non-null	object
33	Asthma	10000 non-null	object
34	<pre>Initial_days</pre>	10000 non-null	float64
35	TotalCharge	10000 non-null	float64
36	Additional_charges	10000 non-null	float64
37	Item1	10000 non-null	int64
38	Item2	10000 non-null	int64
39	Item3	10000 non-null	int64
40	Item4	10000 non-null	int64
41	Item5	10000 non-null	int64
42	Item6	10000 non-null	int64
43	Item7	10000 non-null	int64
44	Item8	10000 non-null	int64
45	ReAdmis_numeric	10000 non-null	int64
46	Soft_drink_numeric	10000 non-null	int64
47	HighBlood_numeric	10000 non-null	int64
48	Stroke_numeric	10000 non-null	int64
49	Arthritis_numeric	10000 non-null	int64
50	Diabetes_numeric	10000 non-null	int64
51	Hyperlipidemia_numeric	10000 non-null	int64
52	BackPain_numeric	10000 non-null	int64
53	Allergic_rhinitis_numeric	10000 non-null	int64
54	Reflux_esophagitis_numeric	10000 non-null	int64
55	Asthma_numeric	10000 non-null	int64
56	Overweight_numeric	10000 non-null	int64
57	Anxiety_numeric	10000 non-null	int64
58	Marital_Divorced	10000 non-null	uint8
59	Marital_Married	10000 non-null	uint8
60	Marital_Never Married	10000 non-null	uint8
61	Marital_Separated	10000 non-null	uint8

```
10000 non-null uint8
62 Marital Widowed
63 Services Blood Work
                                            10000 non-null uint8
64 Services_CT Scan
                                            10000 non-null uint8
65 Services_Intravenous
                                            10000 non-null uint8
                                            10000 non-null uint8
66 Services_MRI
67 Gender_Female
                                            10000 non-null uint8
68 Gender_Male
                                            10000 non-null uint8
                                            10000 non-null uint8
69 Gender Nonbinary
70 Initial_admin_Elective Admission
71 Initial_admin_Emergency Admission
                                            10000 non-null uint8
                                            10000 non-null uint8
72 Initial admin Observation Admission 10000 non-null uint8
73 Complication risk High
                                            10000 non-null uint8
74 Complication_risk_Low
                                            10000 non-null uint8
74 Complication_risk_Low 10000 non-null uint8
75 Complication_risk_Medium 10000 non-null uint8
dtypes: float64(7), int64(29), object(22), uint8(18)
```

memory usage: 4.6+ MB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 76 columns):

Data	columns (total 76 columns):		
#	Column	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	int64
1	Customer_id	10000 non-null	object
2	Interaction	10000 non-null	object
3	UID	10000 non-null	object
4	City	10000 non-null	object
5	State	10000 non-null	object
6	County	10000 non-null	object
7	Zip	10000 non-null	int64
8	Lat	10000 non-null	float64
9	Lng	10000 non-null	float64
10	Population	10000 non-null	int64
11	Area	10000 non-null	object
12	TimeZone	10000 non-null	object
13	Job	10000 non-null	object
14	Children	10000 non-null	int64
15	Age	10000 non-null	int64
16	Income	10000 non-null	float64
17	ReAdmis	10000 non-null	object
18	VitD_levels	10000 non-null	float64
19	Doc_visits	10000 non-null	int64
20	Full_meals_eaten	10000 non-null	int64
21	vitD_supp	10000 non-null	int64
22	Soft_drink	10000 non-null	object
23	HighBlood	10000 non-null	object
24	Stroke	10000 non-null	object
25	Overweight	10000 non-null	object
26	Arthritis	10000 non-null	object
27	Diabetes	10000 non-null	object
28	Hyperlipidemia	10000 non-null	object
29	BackPain	10000 non-null	object
30	Anxiety	10000 non-null	object
31	Allergic_rhinitis	10000 non-null	object
32	Reflux_esophagitis	10000 non-null	object
33	Asthma	10000 non-null	object
34	<pre>Initial_days</pre>	10000 non-null	float64
35	TotalCharge	10000 non-null	float64
36	Additional_charges	10000 non-null	float64
37	Item1	10000 non-null	int64
38	Item2	10000 non-null	int64
39	Item3	10000 non-null	int64
40	Item4	10000 non-null	int64
41	Item5	10000 non-null	int64
42	Item6	10000 non-null	int64
43	Item7	10000 non-null	int64
44	Item8	10000 non-null	int64
45	ReAdmis_numeric	10000 non-null	int64
46	Soft_drink_numeric	10000 non-null	int64
47	HighBlood_numeric	10000 non-null	int64
48	Stroke_numeric	10000 non-null	int64
49	Arthritis_numeric	10000 non-null	int64
50	Diabetes_numeric	10000 non-null	int64
51	Hyperlipidemia_numeric	10000 non-null	int64
52	BackPain_numeric	10000 non-null	int64
53	Allergic_rhinitis_numeric	10000 non-null	int64
54	Reflux_esophagitis_numeric	10000 non-null	int64
55	Asthma_numeric	10000 non-null	int64
56	Overweight_numeric	10000 non-null	int64
57	Anxiety_numeric	10000 non-null	int64
58	Marital_Divorced	10000 non-null	uint8
59	Marital_Married	10000 non-null	uint8
60	Marital_Never_Married	10000 non-null	uint8
61	Marital_Separated	10000 non-null	uint8

```
62 Marital Widowed
                                           10000 non-null uint8
63 Services Blood Work
                                           10000 non-null uint8
64 Services_CT_Scan
                                           10000 non-null uint8
65 Services_Intravenous
                                           10000 non-null uint8
                                           10000 non-null uint8
66 Services_MRI
67 Gender_Female
                                           10000 non-null uint8
68 Gender_Male
                                           10000 non-null uint8
                                           10000 non-null uint8
69 Gender Nonbinary
71 Initial_admin_Emergency_Admission
72 Initial admin_Observed
                                           10000 non-null uint8
                                           10000 non-null uint8
72 Initial admin Observation Admission 10000 non-null uint8
73 Complication risk High
                                           10000 non-null uint8
74 Complication_risk_Low
                                           10000 non-null uint8
74 Complication_risk_Low 10000 non-null uint8
75 Complication_risk_Medium 10000 non-null uint8
dtypes: float64(7), int64(29), object(22), uint8(18)
```

memory usage: 4.6+ MB

```
In [30]: ##Univariate Stats Dataframe
def unistats(df):
    output_df = pd.DataFrame(columns=['Count', 'Missing', 'Unique', 'Dtype', 'Numeric', 'Mean',
    for col in df:
        if pd.api.types.is_numeric_dtype(df[col]):
            output_df.loc[col] = [df[col].count(), df[col].isnull().sum(), df[col].nunique(), d
        else:
            output_df.loc[col] = [df[col].count(), df[col].isnull().sum(), df[col].nunique(), d
        return output_df.sort_values(by=['Numeric', 'Skew', 'Unique'], ascending=False)

df.drop(columns=['CaseOrder', 'Customer_id', 'Interaction', 'UID', 'State', 'County', 'Job', 'Z
        print(unistats(df))
```

	Count	Missin	g Unique	Dtype	Numeric	١
Gender_Nonbinary	10000	(9 2	uint8	True	
Services_MRI	10000	(9 2	uint8	True	
Services_CT_Scan	10000	(9 2	uint8	True	
Population	10000	6	5951	int64	True	
vitD supp	10000		9 6	int64	True	
Marital_Never_Married	10000		2	uint8	True	
Marital_Separated	10000		2	uint8	True	
Stroke_numeric	10000		2	int64	True	
Marital_Married	10000	(uint8	True	
Marital Widowed			9 2		True	
-	10000			uint8		
Children	10000		11	int64	True	
Income	10000		9993	float64	True	
Complication_risk_Low	10000		2	uint8	True	
<pre>Initial_admin_Observation_Admission</pre>	10000		2	uint8	True	
<pre>Initial_admin_Elective_Admission</pre>	10000		2	uint8	True	
Soft_drink_numeric	10000	(int64	True	
Diabetes_numeric	10000	(int64	True	
Full_meals_eaten	10000	(int64	True	
Asthma_numeric	10000	(9 2	int64	True	
Additional_charges	10000	(9418	float64	True	
Services_Intravenous	10000	(9 2	uint8	True	
Anxiety_numeric	10000	(9 2	int64	True	
Complication_risk_High	10000	(2	uint8	True	
Hyperlipidemia_numeric	10000	(2	int64	True	
Arthritis_numeric	10000	(int64	True	
ReAdmis_numeric	10000	(int64	True	
Allergic_rhinitis_numeric	10000	(int64	True	
HighBlood_numeric	10000		2	int64	True	
BackPain_numeric	10000	(int64	True	
Reflux_esophagitis_numeric	10000	è		int64	True	
Complication_risk_Medium	10000		2	uint8	True	
Gender_Male	10000	(uint8	True	
_			9997	float64	True	
Initial_days	10000					
TotalCharge	10000			float64	True	
VitD_levels	10000		9976	float64	True	
Age	10000		72	int64	True	
Doc_visits	10000	(int64	True	
Initial_admin_Emergency_Admission	10000	(uint8	True	
Services_Blood_Work	10000	(uint8	True	
Overweight_numeric	10000	(2	int64	True	
		Mean		de		\
Gender_Nonbinary		021400	0.000		000000	
Services_MRI		038000	0.000		000000	
Services_CT_Scan		122500	0.000	00 0.	000000	
Population	9965.	253800	0.000	00 0.	000000	
vitD_supp	0.	398900	0.000	00 0.	000000	
Marital_Never_Married	0.	198400	0.000	00 0.	000000	
Marital_Separated	0.	198700	0.000	00 0.	000000	
Stroke_numeric	0.	199300	0.000	00 0.	000000	
Marital_Married	0.	202300	0.000	00 0.	000000	
Marital Widowed	0.	204500	0.000	00 0.	000000	
Children	2.	097200	0.000	00 0.	000000	
Income	40490.	495160	14572.400	00 154.	080000	
Complication_risk_Low		212500	0.000		000000	
Initial_admin_Observation_Admission		243600	0.000		000000	
Initial_admin_Elective_Admission		250400	0.000		000000	
Soft_drink_numeric		257500	0.000		000000	
Diabetes numeric		273800	0.000		000000	
Full_meals_eaten		273800 001400	0.000		000000	
Asthma_numeric		289300	0.000		000000	
Additional_charges	12934.		3883.664		703000	
Services_Intravenous		313000	0.000		000000	
Anxiety_numeric		321500	0.000		000000	
Complication_risk_High		335800	0.000		000000	
Hyperlipidemia_numeric	0.	337200	0.000	00 0.	000000	

·	DZ00_1d3KZ_DC0l3l0l	inco oupytoi itt	Stobook
Arthritis_numeric	0.357400	0.00000	0.000000
ReAdmis_numeric	0.366900	0.00000	0.000000
Allergic_rhinitis_numeric	0.394100	0.00000	
HighBlood_numeric	0.409000	0.00000	0.000000
BackPain numeric	0.411400	0.00000	0.000000
Reflux_esophagitis_numeric	0.413500	0.00000	0.000000
Complication_risk_Medium	0.451700	0.00000	0.000000
Gender_Male	0.476800	0.00000	0.000000
Initial_days	34.455299	63.54432	
TotalCharge	5312.172769	7555.45200	
VitD_levels	17.964262	15.26009	9.806483
Age	53.511700	47.00000	
Doc_visits	5.012200	5.00000	1.000000
<pre>Initial_admin_Emergency_Admission</pre>	0.506000	1.00000	0.000000
Services_Blood_Work	0.526500	1.00000	0.000000
Overweight_numeric	0.709400	1.00000	0.000000
	Median	Ma	ax \
Gender_Nonbinary	0.000000	1.00000	90
Services_MRI	0.000000	1.0000	
Services_CT_Scan	0.000000	1.00000	
Population	2769.000000	122814.00000	
	0.000000		
vitD_supp		5.00000	
Marital_Never_Married	0.000000	1.00000	
Marital_Separated	0.000000	1.00000	
Stroke_numeric	0.000000	1.00000	
Marital_Married	0.000000	1.00000	90
Marital_Widowed	0.000000	1.00000	90
Children	1.000000	10.00000	90
Income	33768.420000	207249.10000	90
Complication_risk_Low	0.000000	1.00000	90
Initial_admin_Observation_Admission	n 0.000000	1.00000	30
<pre>Initial_admin_Elective_Admission</pre>	0.000000	1.00000	90
Soft_drink_numeric	0.000000	1.00000	
Diabetes_numeric	0.000000	1.00000	
Full_meals_eaten	1.000000	7.00000	
Asthma_numeric	0.000000	1.00000	
Additional_charges	11573.977735	30566.07000	
Services_Intravenous	0.000000	1.00000	
Anxiety_numeric	0.000000	1.00000	30
Complication_risk_High	0.000000	1.00000	90
Hyperlipidemia_numeric	0.000000	1.00000	90
Arthritis_numeric	0.000000	1.00000	90
ReAdmis_numeric	0.000000	1.00000	90
Allergic_rhinitis_numeric	0.000000	1.00000	30
HighBlood_numeric	0.000000	1.00000	30
BackPain_numeric	0.000000	1.00000	
Reflux_esophagitis_numeric	0.000000	1.00000	
Complication risk Medium	0.000000	1.00000	
Gender_Male	0.000000	1.00000	
Initial days	35.836244	71.98149	
- ,			
TotalCharge	5213.952000	9180.72800	
VitD_levels	17.951122	26.3944	
Age	53.000000	89.00000	
Doc_visits	5.000000	9.00000	90
<pre>Initial_admin_Emergency_Admission</pre>	1.000000	1.00000	90
Services_Blood_Work	1.000000	1.00000	90
Overweight_numeric	1.000000	1.00000	90
	Std	Skew	Kurt
Gender_Nonbinary	0.144721		1.772323
Services_MRI	0.191206		1.366572
Services_CT_Scan	0.327879		3.305119
Population	14824.758614		5.880913
vitD_supp	0.628505		2.330763
Marital_Never_Married	0.398815		0.288572
Marital_Separated	0.399042	1.510420	0.281425

```
0.399494 1.505705
         Stroke numeric
                                                                     0.267202
         Marital Married
                                                 0.401735 1.482369
                                                                     0.197456
         Marital Widowed
                                                 0.403356 1.465500
                                                                     0.147720
         Children
                                                 2.163659 1.448013
                                                                     2.076321
                                             28521.153293 1.405899 2.745690
         Thcome
                                                 0.409097 1.405815 -0.023688
         Complication risk Low
                                                 0.429276 1.194810 -0.572544
         Initial admin Observation Admission
         Initial admin Elective Admission
                                                 0.433265 1.152412 -0.672081
         Soft drink numeric
                                                 0.437279 1.109354 -0.769488
                                                 0.445930 1.014712 -0.970553
         Diabetes numeric
         Full meals eaten
                                                 1.008117 1.009461 1.042727
         Asthma numeric
                                                 0.453460 0.929485 -1.136285
                                           6542.601544 0.831842 -0.142684
         Additional_charges
         Services Intravenous
                                                0.463738 0.806652 -1.349583
         Anxiety numeric
                                                 0.467076 0.764483 -1.415849
         Complication risk High
                                               0.472293 0.695470 -1.516625
                                               0.472777 0.688834 -1.525813
         Hyperlipidemia numeric
         Arthritis_numeric
                                               0.479258 0.595206 -1.646059
         ReAdmis numeric
                                               0.481983 0.552412 -1.695180
         Allergic_rhinitis_numeric
                                               0.488681 0.433498 -1.812442
         HighBlood numeric
                                               0.491674 0.370238 -1.863296
         BackPain_numeric
                                                0.492112 0.360153 -1.870664
         Reflux_esophagitis_numeric
                                               0.492486 0.351350 -1.876929
                                               0.497687 0.194137 -1.962703
         Complication_risk_Medium
                                                0.499486 0.092914 -1.991765
         Gender Male
         Initial days
                                                26.309341 0.070286 -1.754525
                                            2180.393838 0.069661 -1.668267
         TotalCharge
         VitD levels
                                                 2.017231 0.032435 -0.022112
                                                20.638538 0.005117 -1.189527
         Age
         Doc visits
                                                 1.045734 -0.018563
                                                                     0.025999
         Initial admin_Emergency_Admission
                                                 0.499989 -0.024005 -1.999824
         Services Blood Work
                                                 0.499322 -0.106165 -1.989127
         Overweight numeric
                                                 0.454062 -0.922526 -1.149176
In [31]: #C4. Cleaned Dataset:
         # Provide a copy of the cleaned Data Set
         df.to_csv(r'C:\Users\mmorg\WGU\D209\Cleaned209data.csv')
         Part IV: Analysis
In [ ]: D1. Split Data into Training and Test Data Sets and Provide the File(s)
In [32]: |#Set predictor variables & target variable
         X = df.drop(['ReAdmis numeric'], axis=1)
         y = df["ReAdmis numeric"]
In [33]: SEED = 1
         X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=0.8,test_size=0.2,
                                                            random_state=15,stratify=y)
In [34]: #export training and test set to csv files
         X_train.to_csv(r'C:\Users\mmorg\WGU\D209\X_train.csv')
         X_test.to_csv(r'C:\Users\mmorg\WGU\D209\X_test.csv')
         y_train.to_csv(r'C:\Users\mmorg\WGU\D209\y_train.csv')
```

D2. Describe Analysis Technique Used

y_test.to_csv(r'C:\Users\mmorg\WGU\D209\y_test.csv')

A decision tree is a non-parametric supervised learning method that builds the models in a tree structure. It breaks down a data set into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed. The result is a tree with decision nodes and leaf nodes. A decision node has two or more branches. Leaf node represents a classification or decision. The topmost decision node in a tree corresponds to the best predictor called the root node. Decision trees can handle both categorical and numerical data.

In []: D3. Provide the code used to perform the classficiation analysis from part D2.

```
In [35]: # Instantiate dt model
dt = DecisionTreeClassifier(max_depth=2, random_state=1)

# Fit dt to the training set
dt.fit(X_train,y_train)

# Predict the test set labels
y_pred = dt.predict(X_test)

# Evaluate the test-set accuracy
accuracy_score(y_test, y_pred)
```

Out[35]: 0.982

```
Part V: Data Summary and Implications
E1. Explain the accuracy and the mean squared error (MSE) of your prediction model.
```

The accuracy of the model is initially reported as 98.2% accurate. The MSE is also very low. Because the accuracy is high and the MSE is low, this analysis supports the model's high accuracy.

```
In [36]: # Setting up model to calculate MSE for the training set
X_pred = dt.predict(X_train)

# Calculate the MSE for the training set
train_mse = mean_squared_error(y_train, X_pred)
print("Training MSE:", train_mse)

# Calculate the MSE for the test set
test_mse = mean_squared_error(y_test, y_pred)
print("Test MSE:", test_mse)
```

Training MSE: 0.022625 Test MSE: 0.018

E2. Discuss the results and implications of your classification analysis.

The accuracy of the model is initially reported as 98.2% accurate. The MSE is also very low. Because the accuracy is high and the MSE is low, this analysis supports the model's high accuracy. To make the model more accurate we can do hyperparameter tuning. Hyperparameter tuning could be used to perform variable analysis and finding the optimal values for max_depth. The model accuracy could be further improved by performing hyperparameter tuning on additional parameters and by using more labeled data to train the model.

E3. Discuss one limitation of your data analysis.

Decision tree analysis can be somewhat unstable. One small change in the data can result in a major change in the structure of the decision tree. (Taylor, 2023)

E4. Recommend a course of action for the real-world organizational situation from part A1 based on your results and implications discussed in part E2.

This model seems to be able to predict with 98.2% accuracy whether a patient will be readmitted or not. When new patients are admitted their data should be fed into the model, and the resulting prediction can then be used to categorize the patient and their re-admission risk factor. This information can be useful in coming up with a patient-treament plan. Patients who are predicted for re-admission should be treated with a more intensive care plan than those who are predicted for no re-admission. The intensive care plan can hopefully reduce the chances of future re-admission and save the hospital money.

Part VI: Demonstration

F. Provide a Panopto video recording that includes a demonstration of the functionality of the code used for the analysis and a summary of the programming environment.

https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f8d2071d-7ce1-47d1-82cc-afcc018a4407

- G. Record the web sources used to acquire data or segments of third-party code to support the analysis. Ensure the web sources are reliable.
- H. Acknowledge sources, using in-text citations and references, for content that is quoted, paraphrased, or summarized.

Navlani, Avinash. "Decision Tree Classification in Python Tutorial." datacamp, 28 Dec. 2018, www.datacamp.com/community/tutorials/decision-tree-classification-python. Accessed 10 Apr. 2022.

Taylor, Sebastian (2023, March 8). Decision Tree - Overview, Decision Types, Applications. Retrieve March, 18, 2023 from

https://corporatefinanceinstitute.com/resources/data-science/decision-tree/.