```
In [1]:
          #imports
          import pandas as pd
          pd.set option('display.max columns', None)
          import numpy as np
In [2]:
          #alias fun
          true = True
          false = False
In [3]:
          #read in data
          #p = pd.read csv("../src/test/resources/CelticsTrain.csv")
          p = pd.read_csv("fifa_18_train_data.csv")
          p = p[:64] #need only the first half of the data
          p["1st Goal"] = p["1st Goal"].fillna(0)
Out[3]:
                                                                Ball
                                                                                 On-
                                                                                       Off-
                                              Goal
                   Date
                           Team Opponent
                                                   G>=3 Possession
                                                                    Attempts
                                                                                             Blocked
                                                                              Target Target
                                                                 %
                                      Saudi
          0 14-06-2018
                                                                 40
                                                                           13
                                                                                   7
                                                                                          3
                                                                                                  3
                           Russia
                                                 5
                                                     >=3
                                     Arabia
                           Saudi
           1 14-06-2018
                                                 0
                                                      <3
                                                                 60
                                                                            6
                                                                                   0
                                                                                          3
                                                                                                  3
                                     Russia
                           Arabia
          2 15-06-2018
                                                                 43
                                                                                   3
                                                                                                  2
                                                 0
                                                      <3
                                                                            8
                                                                                          3
                           Egypt
                                   Uruguay
          3 15-06-2018
                                                                 57
                                                                           14
                                                                                          6
                                                                                                  4
                         Uruguay
                                      Egypt
                                                 1
                                                      <3
           4 15-06-2018
                         Morocco
                                                 0
                                                      <3
                                                                 64
                                                                           13
                                                                                   3
                                                                                          6
                                                                                                  4
                                       Iran
                                                                  • • •
                                                                           ...
                                                                                   2
         59 24-06-2018
                                                                 42
                                                                            8
                                                                                          5
                                                                                                  1
                          Panama
                                    England
                                                      <3
          60 24-06-2018
                                                                            7
                                                                                   3
                                                                                          2
                                                                                                  2
                           Japan
                                    Senegal
                                                 2
                                                      <3
                                                                 54
         61 24-06-2018
                          Senegal
                                                 2
                                                                 46
                                                                           14
                                                                                   7
                                                                                          5
                                                                                                  2
                                     Japan
                                                      <3
         62 24-06-2018
                                                                                   2
                                                                                          3
                           Poland
                                   Colombia
                                                      <3
                                                                 45
                                                                            9
                                                                                                  4
                                                                                                  5
                                                3
                                                                                   3
                                                                                          5
         63 24-06-2018 Colombia
                                                     >=3
                                                                 55
                                                                           13
                                     Poland
         64 rows × 28 columns
In [4]:
          #dependent variables (needed for sorting output later)
          labels = p['G>=3']
          labels
```

```
Out[4]: 0
              >=3
        1
               <3
                <3
        2
        3
                <3
                <3
        4
              . . .
        59
               <3
        60
               <3
               <3
        61
        62
               <3
        63
              >=3
        Name: G>=3, Length: 64, dtype: object
In [5]: #features/independent variables
         features = ["Ball Possession %","Attempts","On-Target","Off-Target","Blocked"
         features
Out[5]: ['Ball Possession %',
          'Attempts',
          'On-Target',
          'Off-Target',
         'Blocked',
          'Corners',
          'Offsides',
          'Free Kicks',
          'Saves',
          'Pass Accuracy %',
          'Passes',
          'Distance Covered (Kms)',
          '1st Goal']
In [6]: #get dataframe of just features
         #get all rows and just the columns that match our features
         X = p.loc[:,features]
         #p.loc[[0]]
         Χ
```

Out[6]:		Ball Possession %	Attempts	On- Target	Off- Target	Blocked	Corners	Offsides	Free Kicks	Saves	Pass Accuracy %	Passes
	0	40	13	7	3	3	6	3	11	0	78	306
	1	60	6	0	3	3	2	1	25	2	86	511
	2	43	8	3	3	2	0	1	7	3	78	395
	3	57	14	4	6	4	5	1	13	3	86	589
	4	64	13	3	6	4	5	0	14	2	86	433
	•••											
	59	42	8	2	5	1	2	0	17	1	88	398
	60	54	7	3	2	2	2	2	18	5	84	449
	61	46	14	7	5	2	5	4	10	1	79	338
	62	45	9	2	3	4	7	1	11	0	79	424
	63	55	13	3	5	5	5	1	16	2	82	514

64 rows × 13 columns

```
In [7]: #setup plot for the confusion matrix and decision tree
          import matplotlib.pyplot as plt
          print(plt.rcParams.get('figure.figsize'))
         [6.0, 4.0]
 In [8]: #setup figure size
          fig size = plt.rcParams["figure.figsize"]
          fig size[0] = 20
          fig size[1] = 20
          plt.rcParams["figure.figsize"] = fig size
 In [9]: #output/labels once more for naming
          Y = p["G>=3"]
          Υ
               >=3
 Out[9]: 0
                <3
         1
         2
                <3
         3
                <3
         4
                <3
         59
                <3
         60
                <3
                <3
         61
                <3
         62
         63
               >=3
         Name: G>=3, Length: 64, dtype: object
In [10]: | #some system checks for versions
          from platform import python version
          print(python_version())
          import sklearn
         3.6.9
In [11]:
         #import decision tree
          print('The scikit-learn version is {}.'.format(sklearn. version ))
          from sklearn import tree
          clf = tree.DecisionTreeClassifier(random state=0)
          clf = clf.fit(X, Y)
         The scikit-learn version is 0.23.2.
In [12]: #get sorted labels for plot
          import numpy as np
          sorted = labels.unique()
          sorted = np.sort(sorted)
          sorted = list(map(str, sorted))
          sorted
Out[12]: ['<3', '>=3']
In [13]: from pandas.plotting import scatter matrix
In [14]: | #x = tree.plot_tree(clf,feature_names=features,class_names=labels.astype(str)
          x = tree.plot tree(clf,rounded=True,filled=True,class names=sorted,feature names=sorted)
```


In [15]: #testData = pd.read_csv("../src/test/resources/CelticsTest.csv")
 testData = pd.read_csv("fifa_18_test_data.csv")
 testData["1st Goal"] = testData["1st Goal"].fillna(0)
 testData

Out[15]:

	Date	Team	Opponent	Goal Scored	G>=3	Ball Possession %	Attempts	On- Target	Off- Target	Blocked	
0	25-06-2018	Uruguay	Russia	3	>=3	56	17	7	6	4	
1	25-06-2018	Russia	Uruguay	0	<3	44	3	1	1	1	
2	25-06-2018	Saudi Arabia	Egypt	2	<3	61	22	7	10	5	
3	25-06-2018	Egypt	Saudi Arabia	1	<3	39	8	1	6	1	

9/28/2020, 2:33 AM

	Date	Team	Opponent	Goal Scored	G>=3	Ball Possession %	Attempts	On- Target	Off- Target	Blocked
4	25-06-2018	Spain	Morocco	2	<3	68	16	4	11	1
••		***	***	•••	•••	***	***	***	•••	•••
59	11/7/2018	England	Croatia	1	<3	46	11	1	6	4
60	14-07-2018	Belgium	England	2	<3	43	12	4	3	5
61	14-07-2018	England	Belgium	0	<3	57	15	5	7	3
67	15 N7 2N1Q	Eranco	Croatia	1	<-5	20	Ω	6	1	1
	get X feat Test = tes		oc[:,feati	ıres]						

In [16]

XTest

Out[16]:

•		Ball Possession %	Attempts	On- Target	Off- Target	Blocked	Corners	Offsides	Free Kicks	Saves	Pass Accuracy %	Passes
	0	56	17	7	6	4	4	0	20	1	88	492
	1	44	3	1	1	1	2	2	17	5	83	355
	2	61	22	7	10	5	7	1	19	0	90	655
	3	39	8	1	6	1	2	3	8	5	82	357
	4	68	16	4	11	1	7	1	18	1	91	762
	•••											
	59	46	11	1	6	4	4	3	24	5	79	479
	60	43	12	4	3	5	4	1	5	5	88	510
	61	57	15	5	7	3	5	0	12	2	92	698
	62	39	8	6	1	1	2	1	14	1	75	271
	63	61	15	3	8	4	6	1	15	3	83	547

64 rows × 13 columns

```
In [17]: YTest = testData["G>=3"]
         YTest
```

```
Out[17]: 0
               >=3
         1
                 <3
                 <3
         3
                 <3
                 <3
         59
                 <3
                 <3
```

```
61
                                                                                                         <3
                                                              62
                                                                                                    >=3
                                                             63
                                                                                                          <3
                                                             Nama. C>-2 I anoth. 61 dtima. object
In [18]: #make predictions on test data
                                                                  YPredicted = clf.predict(XTest)
                                                                  YPredicted
Out[18]: array(['<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<
                                                                                                            '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '
                                                                                                           '<3', '<3', '<3', '>=3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3', '<3',
                                                                                                    dtype=object)
 In [19]:
                                                                   #YTest
 In [20]:
                                                                  #calculate accuracy
                                                                   from sklearn import metrics
                                                                  accuracy = metrics.accuracy score(YTest,YPredicted)
                                                                  accuracy
Out[20]: 0.765625
 In [21]:
                                                                   #setup plots for confusion matrix
                                                                   from sklearn.metrics import plot confusion matrix as matrix
                                                                   figSize = plt.rcParams["figure.figsize"]
                                                                  figSize[0] = 30
                                                                  figSize[1] = 5
                                                                  plt.rcParams["figure.figsize"]=figSize
                                                                  print(plt.rcParams.get('figure.figsize'))
                                                                   #plot the confusion matrices 1 for normalzied the other un-normalized
                                                                  values = ['true', None]
                                                                   #cmap='cividis'
                                                                  for x in values:
                                                                                            disp = matrix(clf, XTest, YTest, display_labels=sorted, normalize=x)
                                                                                            disp.ax .set title("Confusion matrix with normalization = "+str(x))
                                                                  print(disp.confusion matrix)
                                                               [30.0, 5.0]
                                                               [[49 9]
                                                                    [6 0]]
```


In [22]: #get false positives
 #pd.set_option('display.max_rows',100)
 testData[(YTest!=YPredicted)&(YPredicted==">=3")]

Out[22]:

	Date	Team	Opponent	Goal Scored	G>=3	Ball Possession %	Attempts	On- Target	Off- Target	Blocked
16	27-06-2018	Korea Republic	Germany	2	<3	30	11	5	5	1
21	27-06-2018	Brazil	Serbia	2	<3	56	13	6	3	4
36	1/7/2018	Spain	Russia	1	<3	75	25	9	6	10
37	1/7/2018	Russia	Spain	1	<3	25	6	1	3	2
44	3/7/2018	Sweden	Switzerland	1	<3	37	12	3	6	3
53	7/7/2018	England	Sweden	2	<3	57	12	2	4	6
54	7/7/2018	Russia	Croatia	2	<3	38	13	7	4	2
56	10/7/2018	France	Belgium	1	<3	40	19	5	8	6
59	11/7/2018	England	Croatia	1	<3	46	11	1	6	4

7 of 8

```
In [23]: #get false negative
    #pd.set_option('display.max_rows',100)
    testData[(YTest!=YPredicted)&(YPredicted=="<3")]</pre>
```

Out[23]:

	Date	Team	Opponent	Goal Scored	G>=3	Ball Possession %	Attempts	On- Target	Off- Target	Blocked
0	25-06-2018	Uruguay	Russia	3	>=3	56	17	7	6	4
19	27-06-2018	Sweden	Mexico	3	>=3	35	13	5	7	1
32	30-06-2018	France	Argentina	4	>=3	41	9	4	4	1
33	30-06-2018	Argentina	France	3	>=3	59	9	4	1	4
42	2/7/2018	Belgium	Japan	3	>=3	56	24	8	10	6
62	15-07-2018	France	Croatia	4	>=3	39	8	6	1	1

In []:

In []:

8 of 8