Biomedical Engineering Degree

3. Hypothesis Testing: Two-Sample Inference

Felipe Alonso Atienza ⊠felipe.alonso@urjc.es **y** @FelipeURJC

Escuela Técnica Superior de Ingeniería de Telecomunicación Universidad Rey Juan Carlos

References

- R. Bernard. Fundamentals of Biostatistics. Ed.: Thompson. Chapter 8
- $oldsymbol{0}$ B. Caffo. Statistical Inference for Data Science. Leanpub. Chapters 9-11
- O. Díez, M Cetinkaya-Rundel and CD Barr. OpenIntro Statistics. Chapter 7.

Outline

Introduction

- Testing for the equality of two means
 - Paired samples
 - Independent Samples

Testing for the equality of two variances

Introduction

We want to compare two populations

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$$
 vs $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

by using **two random samples** of n_1 and n_2 **observations** from X_1 and X_2 , respectively. We are interested in:

- Testing for the equality of two population means:
 - Paired or matched samples
 - Independent samples
 - Equal vs unequal variances
- Testing for the equality of two population variances
 - Independent samples

Paired vs Independent samples

- Two samples are said to be **paired** when each data point in the first sample is matched and is related to a unique data point in the second sample.
 - ▶ Prices of books in Casa del libro vs Amazon
 - Longitudinal or follow-up studies, where the same group of people is followed over time.
- Two samples are said to be independent when the data points in one sample are unrelated to the data points in the second sample
 - Cross-sectional studies, where the participants are seen at only one point in time.

Outline

Introduction

- Testing for the equality of two means
 - Paired samples
 - Independent Samples

Testing for the equality of two variances

Paired t Test

- ullet Let X_1 be a population with mean μ_1 , and X_2 be a population with mean μ_2
- ullet Suppose we have a random sample of n paired observations from these two populations and let

$$d_{1} = x_{1,1} - x_{1,2}$$

$$d_{2} = x_{2,1} - x_{2,2}$$

$$\vdots$$

$$d_{n} = x_{n,1} - x_{n,2}$$

represent n differences with

- Sample mean: \overline{d}
- Quasi-standard deviation¹: s_d

Let assume that the population of differences is normal $D \sim \mathcal{N}(\mu_d, \sigma_d)$

Example

i	SBP level while not using OCs (x_{i1})	SBP level while using OCs (x_{12})	d_i^{\star}
1	115	128	13
2	112	115	3
3	107	106	-1
4	119	128	9
5	115	122	7
6	138	145	7
7	126	132	6
8	105	109	4
9	104	102	-2
10	115	117	2

Where:

$$\bullet$$
 $\overline{d} = \frac{1}{10} \sum_{i=1}^{10} d_i = 4.8$

•
$$s_d = \frac{1}{n-1} \sum_{i=1}^{10} (d_i - \overline{d})^2 = 5.56$$

Paired t Test

To test the hypothesis

$$H_0: \mu_d = 0 \text{ vs } H_1: \mu_d \neq 0$$

with unknown σ_d with a significance level of α

Paired t-Test

Compute

$$t = \frac{\bar{d}}{s_d/\sqrt{n}} \sim t_{n-1}$$

- if $|t| > t_{n-1,1-\alpha/2}$, then we reject H_0
- if $|t| \leq t_{n-1,1-\alpha/2}$, then we accept H_0

Paired t Test. Confidence interval

To test the hypothesis

$$H_0: \mu_d = 0 \text{ vs } H_1: \mu_d \neq 0$$

with unknown σ_d with a significance level of α

Paired t-Test

Compute the confidence interval

$$\bar{d} \pm t_{n-1,1-\alpha/2} \frac{s_d}{\sqrt{n}}$$

- if $100\%(1-\alpha)$ CI does not contain 0, then we reject H_0
- if $100\%(1-\alpha)$ CI does contain 0, then we accept H_0

Example

Paired t-Test

Assess the statistical significance of the example data shown in the previous table. Use:

- The critical-value method
 - p-value method

Example solution

Using the critical-value approach, first we compute the statistic

$$t = \frac{\bar{d}}{s_d/\sqrt{n}} = \frac{4.8}{4.56/\sqrt{10}} = 3.32$$

and then: $t_{n-1,1-\alpha/2}={ t (df=9).ppf(0.975)}=2.262.$ Thus, $t\geq t_{9,0.975}$

ullet On the other hand, using the p-value approach, we calculate

$$\begin{array}{lcl} p = 2*P(t_9 > 3.32) & = & 2\cdot(1-P(t_9 \leq 3.32)) = \\ & = & 2*(1-\texttt{t(df=9).cdf(3.32)}) = 0.0089 \end{array}$$

then, the results are statistically significant to reject H_0

We REJECT the null hypothesis H_0 at a significance level of 0.05

t—Test for independent samples with equal variances

- ullet Let X_1 be a population with mean μ_1 and variance σ_1^2
- ullet Let X_2 be a population with mean μ_2 and variance σ_2^2

Let assume that both population are **normally distributed** with unknown but equal variances

$$\sigma^2=\sigma_1^2=\sigma_2^2$$

- Suppose we have a random sample of n_1 observations from X_1 and an independent random sample of n_2 observations from X_2
- Thus, we have access to:
 - \bar{x}_1, s_1 , for X_1 population
 - $ightharpoonup ar x_2, s_2$, for X_2 population

Variance estimation

- Since both populations have equal variances, we can estimate σ from either n_1 or n_2 observations. Thus,
 - On the one hand, $\hat{\sigma} = s_{*,1}$
 - On the other hand, $\hat{\sigma} = s_{*,2}$
- ... or we could use both of them (weighted average):

Pooled estimate of the variance

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

t-Test for independent samples with equal variances

We want to test the hypothesis

$$H_0: \mu_1 = \mu_2 \quad \text{vs} \quad H_1: \mu_1 \neq \mu_2$$

with unknown σ with a significance level of α

t-Test for independent samples with equal variances

Compute

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

- if $|t| > t_{n_1+n_2-2,1-\alpha/2}$, then we reject H_0
- ullet if $|t| \leq t_{n_1+n_2-2,1-lpha/2}$, then we accept H_0

t-Test for independent samples with equal variances

Example

A study attempted to assess the effect of the presence of a moderator on the number of ideas generated by a group. Groups of four members, with or without moderator, were observed. For a random sample of four groups with a moderator, the mean number of ideas generated per group was 78.0, and the sample quasi-standard deviation was 24.4. For an independent sample of four groups without a moderator, the mean number of ideas generated was 63.5, and the sample quasi-standard deviation was 20.2. Assuming that the populations distributions are normal with equal variances, test the null hypothesis $(\alpha=0.1)$ that the population means are equal against the alternative that the true mean is higher for groups with a moderator.

Example solution

- We know that $\bar{x}_1 = 78.0$, $s_1 = 24.4$, and $n_1 = 4$
- We also know that $\bar{x}_2 = 63.5$, $s_1 = 20.2$, and $n_2 = 4$
- Then,

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2} = \frac{(4 - 1)24.4^{2} + (4 - 1)20.2^{2}}{4 + 4 - 2} = 501.7$$

• Therefore $s = \sqrt{501.7} = 22.4$. Using this value, we can calculate t

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{78.0 - 63.5}{22.4\sqrt{\frac{1}{4} + \frac{1}{4}}} = 0.915$$

and then $t_{n_1+n_2-2,1-\alpha/2}=t_{4+4-2,1-0.1/2}={ t(df=6).ppf(0.95)}=1.94$

• Since $t < t_{n_1 + n_2 - 2, 1 - \alpha/2}$, then

We ACCEPT the null hypothesis H_0 at a significance level of 0.1

t-Test for independent samples with equal variances

• We want to test the hypothesis

$$H_0: \mu_1 = \mu_2 \text{ vs } H_1: \mu_1 \neq \mu_2$$

with unknown σ with a significance level of α

Compute the confidence interval

$$\bar{x}_1 - \bar{x}_2 \pm t_{n_1 + n_2 - 2, 1 - \alpha/2} \cdot s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

- if $100\%(1-\alpha)$ CI does not contain 0, then we reject H_0
- if $100\%(1-\alpha)$ CI does contain 0, then we accept H_0

Test for independent samples with unequal and known

- **Variances** Let X_1 be a population with mean μ_1 and variance σ_1^2
 - ullet Let X_2 be a population with mean μ_2 and variance σ_2^2

Let assume that both population are **normally distributed with known** variances

- Suppose we have a random sample of n_1 observations from X_1 and an **independent** random sample of n_2 observations from X_2
- Thus, we have access to:
 - \bar{x}_1, σ_1 , for X_1 population
 - \bar{x}_2, σ_2 , for X_2 population

Homework!

If we want to test the hypothesis

$$H_0: \mu_1 = \mu_2 \quad \text{vs} \quad H_1: \mu_1 \neq \mu_2$$

with a significance level of α , what would be test we should apply?^a

^aHint: if $\overline{X}_i \sim \mathcal{N}(\mu_i, \frac{\sigma_i}{n_i})$, i = 1, 2, how is distributed $\overline{X}_1 - \overline{X}_2$?

Test for independent samples with **unequal and known** variances: solution

• We want to test the hypothesis

$$H_0: \mu_1 = \mu_2 \quad \text{vs} \quad H_1: \mu_1 \neq \mu_2$$

with unknown σ_1 , σ_2 and a significance level of α

$t-{\sf Test}$ for independent samples with unknown and unequal variances

Compute

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim \mathcal{N}(0, 1)$$

- if $|z|>z_{1-\alpha/2}$, then we reject H_0
- if $|z| \leq z_{1-\alpha/2}$, then we accept H_0

Test for independent samples with **unequal and unknown** variances

- ullet Let X_1 be a population with mean μ_1 and variance σ_1^2
- ullet Let X_2 be a population with mean μ_2 and variance σ_2^2

Let assume that both population are normally distributed with unknown variances

- Suppose we have a random sample of n_1 observations from X_1 and an **independent** random sample of n_2 observations from X_2
- Thus, we have access to:
 - \bar{x}_1, s_1 , for X_1 population
 - $ightharpoonup \bar{x}_2, s_2$, for X_2 population

t—Test for independent samples with unknown and unequal variances

We want to test the hypothesis

$$H_0: \mu_1 = \mu_2 \quad \text{vs} \quad H_1: \mu_1 \neq \mu_2$$

with unknown $\sigma_1\text{, }\sigma_2$ and a significance level of α

$t{\operatorname{\mathsf{-Test}}}$ for independent samples with unknown and unequal variances

Compute

$$t = \frac{x_1 - x_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t_d \text{ (Satterthwaite approximation)}$$

- if $|t| > t_{d,1-\alpha/2}$, then we reject H_0
- ullet if $|t| \leq t_{d,1-lpha/2}$, then we accept H_0 where

$$d = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\left(s_1^2/n_1\right)^2/(n_1 - 1) + \left(s_2^2/n_2\right)^2/(n_2 - 1)}$$

Also know as Welch's t-test. You can find a deep explanation here

Outline

Introduction

- Testing for the equality of two means
 - Paired samples
 - Independent Samples

3 Testing for the equality of two variances

Testing for the equality of two variances

- Let X_1 be a population with mean μ_1 and variance σ_1^2
- Let X_2 be a population with mean μ_2 and variance σ_2^2

Let assume that both population are normally distributed

- Suppose we have a random sample of n_1 observations from X_1 and an **independent** random sample of n_2 observations from X_2
- Thus, we have access to:
 - \bar{x}_1, s_1 , for X_1 population
 - \bar{x}_2, s_2 , for X_2 population

Testing for the equality of two variances

We want to test the hypothesis

$$H_0: \sigma_1 = \sigma_2 \quad \text{vs} \quad H_1: \sigma_1 \neq \sigma_2$$

with a significance level of $\boldsymbol{\alpha}$

Testing for the equality of two variances

Compute the statistic

$$f = \frac{s_1^2}{s_2^2} \sim F_{n_1 - 1, n_2 - 1}$$
 (F distribution)

- \bullet if $f > F_{n_1-1,n_2-1,1-\alpha/2},$ or $f < F_{n_1-1,n_2-1,\alpha/2}$ then we reject H_0
- ullet Otherwise we accept H_0

F-distribution

• if x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_m denote r.v.'s following a $\mathcal{N}(0, 1)$ distribution. Then, the r.v.

$$F = \frac{\frac{1}{n} \sum_{i=1}^{n} x_i^2}{\frac{1}{m} \sum_{i=1}^{m} y_i^2}$$

follows a $F_{n,m}$ with n and m degrees of freedom

We can view it as a ratio of two normalized chi-square r.v.'s

$$\frac{s_1^2}{s_2^2} = \frac{\frac{1}{n_1 - 1}}{\underbrace{\frac{1}{n_1 - 1}}} \underbrace{\frac{(n_1 - 1)s_1^2}{\sigma^2}}_{\underbrace{\frac{1}{n_2 - 1}}} \sim F_{n_1 - 1, n_2 - 1}$$

F-distribution

Testing for the equality of two variances

Example

For a random sample of 17 newly issued AAA-rated industrial bonds, the quasi-variance of maturities (in years squared) was 123.35. For an independent random sample of 11 issued CCC-rated industrial bonds, the quasi-variance of maturities was 8.02. If the respective population variances are denoted σ_1 and σ_2 , perform a two-sided test at a $5\,\%$ level.

Example solution

• Calculate the *f* statistic

$$f = \frac{s_1^2}{s_2^2} = \frac{123.35}{8.02} = 15.38 \sim F_{16,10}$$

where

- $F_{16,10,1-\alpha/2} = f(16,10).ppf(0.975) = 3.496$
- $ightharpoonup F_{16,10,lpha/2} = exttt{f(16,10).ppf(0.025)} = 0.335$

and since $f > F_{16,10,1-\alpha/2}$ then

We REJECT the null hypothesis H_0 at a significance level of 0.05

