Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Johannes Naab, M.Sc.

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 1 (20. April – 24. April 2015)

Hinweis: Die mit * gekennzeichneten Teilaufgaben sind ohne Kenntnis der Ergebnisse vorhergehender Teilaufgaben lösbar.

Aufgabe 1 Quellenentropie

Gegeben sei eine binäre Nachrichtenquelle Q, welche voneinander statistisch unabängige Zeichen X aus dem Alphabet $A = \{a,b\}$ emittiert. Die Wahrscheinlichkeit, dass die Quelle das Zeichen X = a emittiert, betrage $p_a = \Pr[X = a] = 0.25$.

- a)* Bestimmen Sie die Wahrscheinlichkeit p_b , dass das Zeichen X = b emittiert wird.
- b) Bestimmen Sie den Informationsgehalt *I(a)* und *I(b)* beider Zeichen.
- c) Bestimmen Sie die Entropie H der Quelle.
- d) Bestimmen Sie die Auftrittswahrscheinlichkeiten p_0 und p_1 einer anderen binären Nachrichtenquelle Q', so dass deren Entropie H maximal ist.
- e) Wie hoch ist demnach die maximale Entropie einer binären Quelle?
- f) Skizzieren Sie die Quellenentropie H einer binären Quelle allgemein in Abhängingkeit der Auftrittswahrscheinlichkeit p.
- g) Offensichtlich ist die Entropie H(X) < 1 nicht maximal. Welche Schlussfolgerung lässt sich aus dieser Tatsache für den von den von der Quelle Q emittierten Datenstrom ableiten hinsichtlich Redundanz?
- h) Verallgemeinern Sie die Ergebnisse der Teilaufgaben d) und e) auf eine N-äre Quelle, d.h. auf eine Quelle, die N unterschiedliche Zeichen emittiert.

Aufgabe 2 Fourierreihe

Gegeben sei das folgende *T*-periodische Zeitsignal *s*(*t*):

a)* Finden Sie einen analytischen Ausdruck für s(t) im Intervall [0,T].

Das Signal s(t) lässt sich als Fourierreihe entwickeln, d. h.

$$S(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(k\omega t) + b_k \sin(k\omega t) \right). \tag{1}$$

Die Koeffizienten a_k und b_k lassen sich wie folgt bestimmen:

$$a_k = \frac{2}{T} \int_0^T s(t) \cdot \cos(k\omega t) \ dt \ \text{und} \ b_k = \frac{2}{T} \int_0^T s(t) \cdot \sin(k\omega t) \ dt. \tag{2}$$

- b)* Welcher Koeffizient in Formel (1) ist für den Gleichanteil von s(t) verantwortlich?
- c) Bestimmen Sie rechnerisch den Gleichanteil des Signals s(t).
- d)* Hätte man das Ergebnis aus der vorhergehenden Teilaufgabe auch by inspection erahnen können?
- e)* Bestimmen Sie die Koeffizienten ak.

Hinweis: Sie benötigen hier keine Rechnung. Vergleichen Sie stattdessen die Symmetrie von s(t) mit einer Kosinus-Schwingung. Kann ein gewichteter Kosinus einen Beitrag zum Gesamtsignal liefern?

Von nun an nehmen wir zur Vereinfachung T = 1 an.

f)* Bestimmen Sie die Koeffizienten bk.

Hinweise:
$$\int_0^1 t \sin(ct) dt = \frac{\sin(c) - c \cdot \cos(c)}{c^2} \text{ und } \omega = 2\pi/T.$$

g) Skizzieren Sie mit Hilfe der bisherigen Ergebnisse den Gleichanteil $a_0/2$, die ersten beiden Harmonischen sowie deren Summe für $A = \pi$ in einem Koordinatensystem.

Aufgabe 3 Binärpräfixe (Hausaufgabe)

Die Unterschiede zwischen Binärpräfixen und SI-Präfixen sorgen immer wieder für Verwirrung. Das Problem besteht in widersprüchlichen Angaben insbesondere auf Seiten der Betriebssysteme: Häufig wird die Speicherbelegung von Massenspeichern in Binärpräfixen angegeben, obwohl die angegebenen Einheiten SI-Präfixe enthalten. Ein Beispiel: Sie kaufen eine Festplatte mit einer vom Hersteller ausgewiesenen Kapazität von 3 TB. Im Kleingedruckten auf der Verpackung finden Sie den Hinweis "1 TB = 10¹² B". Es handelt sich also klar um SI-Präfixe. Nehmen wir an, das verwendete Betriebssystem rechnet mit Binärpräfixen.

SI-I	Präfix	Wert	Binärpräfixe		Wert
k	(kilo)	10 ³	Ki	(Kibi)	2 ¹⁰
M	(Mega)	10 ⁶	Mi	(Mebi)	2 ²⁰
G	(Giga)	10 ⁹	Gi	(Gibi)	2^{30}
Τ	(Tera)	10 ¹²	Ti	(Tebi)	2 ⁴⁰
Р	(Peta)	10 ¹⁵	Pi	(Pebi)	2 ⁵⁰

Tabelle 1: SI-Präfixe und Binärpräfixe im Vergleich

- a)* Geben Sie die Kapazität der Festplatte in TiB an.
- b)* Bestimmen Sie für die in Tabelle 1 angegebenen Präfixe den prozentualen Unterschied zwischen SI- und Binär-präfixen.

Übrigens: Die Angabe von Binärpräfixen ist nur für Byte-Werte üblich. Bitwerte, z.B. kbit oder Mbit, werden ausschließlich mit SI-Präfixen angegeben.