# 國立雲林科技大學 資訊管理系碩士班 資料探勘

分群比較 Iris 與 Wine Quality 資料集

M11123028 林永沂 M11123017 洪國書

指 導教師:許中川

中華民國 111 年 12 月

# 摘要

本研究蒐集分析了兩個資料集,首先,葡萄牙是世界前段的葡萄酒出口國,本次研究資料從 UCIDataSet 中蒐集葡萄酒品質資料集(Wine Quality Dataset),其樣本來自葡萄牙西北部的紅色和白色「Vinho Verde」葡萄酒,資料集樣本屬性包括固定酸度、揮發性酸度、氯化物、二氧化硫以及 ph 值等。其次,蒐集了鳶尾花資料集(Iris Dataset),此資料集包含來自三種鳶尾(Iris setosa、Iris virginica 及 Iris versicolor)各50個樣本,並從每個樣本測量四個特徵,分別是萼片長度、萼片寬度、花瓣長度以及花瓣寬度,以厘米為單位。本研究選用此兩個資料集,並採用 K-Means、DBSCAN以及 Hierachiccal Clustering 三種群聚分析方法來比較分群結果。

Keyword:葡萄酒、葡萄酒品質、Vinho Verde、鳶尾

### 壹、緒論

### 1.1 研究背景

### **Wine Quality Dataset**

葡萄酒是由新鮮葡萄果實或葡萄汁,經過發酵釀製而成的酒精飲料。而葡萄酒又有許多分類方式,常見的顏色分類,可分為紅葡萄酒、白葡萄酒及粉紅葡萄酒,以釀造方式來分類大致可分為平靜葡萄酒、氣泡葡萄酒、加烈葡萄酒及加味葡萄酒等。

葡萄酒的風味取決於釀製葡萄的品種,不同品種的果實所釀製出來的香味、喝的方式、收藏的方式都不同。而不同的地理位置、氣候、土質以及水質都有其適合栽培的葡萄品種,其中全球最大的三個產地為義大利、法國及西班牙。而葡萄酒也廣泛滲透至人們日常生活各種文化及行業領域,在歐洲地區尤其受歡迎,其選擇多樣、價格親民,成為家家戶戶每日必喝飲品,而觀光產業也因葡萄酒而衍伸了一系列的旅遊形式。

葡萄牙是世界前段的葡萄酒出口國,在世界葡萄酒產量排名在第十一位(糧農組織,2022),本次研究資料從 UCIDataSet 中蒐集葡萄酒品質資料集(Wine Quality Dataset),其樣本來自葡萄牙西北部的紅色和白色「Vinho Verde」葡萄酒,資料集樣本屬性包括固定酸度、揮發性酸度、氯化物、二氧化硫以及 ph 值等。

### **Iris Dataset**

鳶尾屬(Iris),是一類開花植物,屬於鳶尾科,其下包含 260-300 個種,因鳶尾花極其多樣的色彩,使得它在園藝中是十分受歡迎的花卉種類。

本次研究資料從 UCIDataSet 中蒐集鳶尾花資料集(Iris Dataset),此資料集包含來自三種鳶尾(Iris setosa、Iris virginica 及 Iris versicolor)各 50 個樣本,並從每個樣本測量四個特徵,分別是萼片長度、萼片寬度、花瓣長度以及花瓣寬度,以厘米為單位。

### 1.2 研究目的

### Wine Quality Dataset

針對葡萄牙葡萄酒的品質分析,從 UCIDataSets 的葡萄酒品質資料集蒐集資料,並利用 python 來分析該數據,而數據樣本與葡萄牙的西北部生產的「Vinho Verde」葡萄酒之紅色與白色變體有關,資料內容主要為物理化學(輸入)與感官(輸出),而由於隱私與物流問題,此資料集沒有納入葡萄品種、品牌、售價等數據。

### **Iris Dataset**

使用著名的鳶尾花資料集進行分析,此資料集數據樣本包含了三種鳶尾亞屬,分別是山鳶尾(Iris setosa)、維吉尼亞鳶尾(Iris virginica)、及變色鳶尾(Iris versicolor),每個樣本皆包含四種特徵,分別是萼片長度、萼片寬度、花瓣長度以及花瓣寬度,並以厘米為單位。

最後,透過對以上兩個數據集進行群聚分析,來檢測分類優質與劣質的葡萄酒特性,與不同鳶尾品種的特徵,並比較不同分群方法之差異。

# 貳、資料集

### 2.1 真實資料集

本實驗所選擇的資料分別是 Iris Dataset、Wine Quality Dataset。

# **Wine Quality Dataset**

Wine Quality Dataset 有 4898 筆資料、12 個欄位,分別是 fixed acidity、volatile acidity、citric acid、residual sugar、 chlorides、free sulfur dioxide、total sulfur dioxide、density、pH、sulphates、alcohol、quality,詳見圖一。

|   | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free sulfur<br>dioxide | total sulfur<br>dioxide | density | рН   | sulphates | alcohol | quality |
|---|------------------|---------------------|----------------|-------------------|-----------|------------------------|-------------------------|---------|------|-----------|---------|---------|
| 0 | 7.4              | 0.70                | 0.00           | 1.9               | 0.076     | 11.0                   | 34.0                    | 0.9978  | 3.51 | 0.56      | 9.4     | 5       |
| 1 | 7.8              | 0.88                | 0.00           | 2.6               | 0.098     | 25.0                   | 67.0                    | 0.9968  | 3.20 | 0.68      | 9.8     | 5       |
| 2 | 7.8              | 0.76                | 0.04           | 2.3               | 0.092     | 15.0                   | 54.0                    | 0.9970  | 3.26 | 0.65      | 9.8     | 5       |
| 3 | 11.2             | 0.28                | 0.56           | 1.9               | 0.075     | 17.0                   | 60.0                    | 0.9980  | 3.16 | 0.58      | 9.8     | 6       |
| 4 | 7.4              | 0.70                | 0.00           | 1.9               | 0.076     | 11.0                   | 34.0                    | 0.9978  | 3.51 | 0.56      | 9.4     | 5       |

**圖 1** Wine Quality DataSet 資料表

### **Iris Dataset**

Iris 有 150 筆資料、6 個欄位,分別是 ID、SepalLengthcm、SepalWidthCm、PetalLengthCm、PetalWidthCm、Species。

|   | Id | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species     |
|---|----|---------------|--------------|---------------|--------------|-------------|
| 0 | 1  | 5.1           | 3.5          | 1.4           | 0.2          | Iris-setosa |
| 1 | 2  | 4.9           | 3.0          | 1.4           | 0.2          | Iris-setosa |
| 2 | 3  | 4.7           | 3.2          | 1.3           | 0.2          | Iris-setosa |
| 3 | 4  | 4.6           | 3.1          | 1.5           | 0.2          | Iris-setosa |
| 4 | 5  | 5.0           | 3.6          | 1.4           | 0.2          | Iris-setosa |

**圖 2** Iris DataSet 資料表

# 參、方法

### 2.1 研究架構

本研究的研究架構如圖 3,將數據集的資料依序步驟進行統整、分析、決策樹建置、驗證、結論。並試著將葡萄酒品質數據集與鳶尾資料集內的資料利用 Python 將資料進行分群,並得出階層式分群之階層樹,得到的結論將有助於日後研究葡萄酒品質、鳶尾花種類變異的數據參考。



圖 3 研究架構

### 2.2 執行程式的方法

### (1) 選擇資料集

從 UCI Dataset 中挑選資料集,並將挑選出來的變數簡化為目標資料集。

### (2) 前置處理

針對資料的完整性去除不符合規則或不一致的資料,例如"空值"。

### (3) 變換

將資料的輸入格式轉換成符合後續資料探勘步驟的格式。

### (4) 群聚分析

資料經過轉換後,藉由 K-Means、階層式分群以及 DBSCAN 方法,來分析 出資料集中的資料分布,並將其圖像化。

# (5) 方法比較

透過以上方法分析後,經由統計及其他技術來確認其結果,設立衡量指標以利於比較不同群聚分析之品質。

### 肆、實驗

### 3.1 實驗設計

### Wine Quality Dataset

在這項實驗中,本研究將嘗試找到最佳的群聚分析方法,以最有效和穩定的方式對不同的葡萄酒進行分組。為此,本實驗將利用 K-Means、Hierachiccal Clustering、DBSCAN 進行分析,並且列出 Hierachiccal Clustering 中的階層數,最後本實驗使用 Purity 與 Silhouette 來比較分群的品質與結果。

### **Iris Dataset**

本實驗需要數據可視化和數據建模,所以使用 seaborn 和 python 的 sklearn 庫 matplotlib 來做題。首先 Import 本實驗會使用到的 Python 函式,把 Excel 裡面的欄位 名稱輸入進去並且列出表格,接著從資料集刪除 Species 等欄位,本實驗將利用 K-Means、 Hierachiccal Clustering、 DBSCAN 來 進 行 群 聚 分 析 , 然 後 再 列 出 Hierachiccal Clustering 中的階層數,最後本實驗利用 Purity 來比較各個分群法的分群 結果。

### 3.3 實驗結果

### **Wine Quality Dataset**

透過上述實驗方式,使用 K-Means 分群法透過 Purity 得到的結果是 8.88%,而 Silhouette 結果是 0.355。使用 DBSCAN 分群法透過 Purity 得到的結果是 14.32%, Silhouette 則是 0.367,最後是 Hierachiccal Clustering 分群法,透過 Purity 得到 42.59%,Silhousette 則是 0.355,綜合評估下 Hierachiccal Clustering 的結果與花費時間是三個分群法中最佳的,如表 1 所示。

|                            | Purity | Silhousette |
|----------------------------|--------|-------------|
| K-Means                    | 8.88%  | 0.355       |
| DBSCAN                     | 14.32% | 0.367       |
| Hierachiccal<br>Clustering | 42.59% | 0.355       |

表 1 Wine Quality Dataset 三種分群法比對表格



**圖 4** K-Means



圖 5 DBSCAN



**■ 6** Hierachiccal Clustering



**圖 7** Wine Quality Dataset Dendrogram

### **Iris Dataset**

透過以上實驗方式,使用 K-Means 所得出的 Purity 指標是 89.33%,使用 Hierachiccal Clustering 所得出的 Purity 指標是 100%,使用 DBSCAN 所得出的 Purity 指標是 100%,綜合以上數據,Hierachiccal Clustering 與 DBSCAN 的結果是最佳的。

|                         | Purity |
|-------------------------|--------|
| K-Means                 | 89.33% |
| Hierachiccal Clustering | 100%   |
| DBSCAN                  | 100%   |

表 2 Iris Dataset 三種分群結果









**圖 11** Iris Dataset Dendrogram

# 肆、結論

本研究對 Iris Dataset、Wine Quality Dataset 進行不同的分群法進行了檢查展示了它們的細節,並且比較了三種分群法的群聚分析,且利用 Purity、Silhousette 得出各分群結果的指標,Wine Quality Dataset 在實驗上可能發生了一些錯誤導致各個衡量指標分數都在水準之下,未來本研究將會在針對程式碼進行修改以達到水準之上。

# 參考文獻

聯合國糧食及農業組織(糧農組織)2022 年 12 月 https://www.fao.org/faostat/en/#data/QCL