Homework 9

- 1. Copy the following questions to your answer sheet and remember them: (30')
 - (1). Suppose that X_1, X_2, \dots, X_n is a random sample from a population $X \sim N(\mu, \sigma^2)$, where σ^2 is known. Then, a confidence interval for the unknown parameter μ with confidence level 1α is
 - (2). Suppose that $X_1, X_2, ..., X_n$ is a random sample from a population $X \sim N(\mu, \sigma^2)$, where σ^2 is unknown. Then, a confidence interval for the unknown parameter μ with confidence level 1α is ______.
 - (3). Assume that $X_1, X_2, ..., X_n$ is a random sample from a population $X \sim N(\mu, \sigma^2)$, where μ is unknown. Then, a confidence interval for the unknown parameter σ^2 with confidence level 1α is _____.
- 2. In order to confirm the formaldehyde concentration in a solution, a random sample of size 4 is obtained with observed sample mean $\overline{X} = 8.34\%$, and sample variance $S^2 = 0.03\%$. Suppose the population X obeys a normal distribution $X \sim N(\mu, \sigma^2)$. Find the confidence interval for μ and σ^2 under confidence level 95%, respectively. $(t_{0.025}(3) = 3.182, t_{0.025}(4) = 2.776, \chi^2_{0.025}(3) = 9.348, \chi^2_{0.975}(3) = 0.216)$. (30')
- 3. A researcher has conducted 4 independent experiments to measure the melting points of iron, and the results are as follows: 1550° C, 1540° C, 1530° C, 1560° C. Suppose that the melting points of iron obeys a normal distribution $X \sim N(\mu, \sigma^2)$. Find a confidence interval for the mean μ of the population X under confidence level 0.95. $(t_{0.025}(3) = 3.182, t_{0.025}(4) = 2.776)$. (20')
- 4. Suppose that $X_1, X_2, ..., X_n$ is a random sample from a population $X \sim N(\mu, \sigma^2)$, where σ^2 is unknown. Then, the statistic for testing the hypothesis $H_0: \mu = 0, H_1: \mu \neq 0$ is _____.(t-test) (10')
- 5. In the problems of hypothesis testing, the significance level α means that () (10')
 - A. $P(H_0 \text{ is accepted } | H_0 \text{ is false});$ B. $P(H_0 \text{ is rejected } | H_0 \text{ is true});$
 - C. the confidence level; D. nothing but a real number.