Support Vector Machine

So let's start by getting get an intuitive sense of the main ideas behind **Support Vector Machines**.

Kernel Functions

When **d** = 1, the **Polynomial Kernel** computes the relationships between each pair of observations in 1-Dimension...

And when d = 4 or more, then we get even more dimensions to find a Support Vector Classifier.

In summary, the **Polynomial Kernel** systematically increases dimensions by setting **d**, the degree of the polynomial...

...and the relationships between each pair of observations are used to find a **Support Vector Classifier**.

Last but not least, we can find a good value for *d* with **Cross**Validation.

Another very commonly used **Kernel** is the **Radial Kernel**, also known as the **Radial Basis** Function (RBF) Kernel.

Unfortunately, the **Radial Kernel** finds **Support Vector Classifiers** in *infinite dimensions*, so I can't give you an example of what it does exactly.

...the **Radial Kernel** behaves like a **Weighted Nearest Neighbor** model.

Kernel Tricks

However, regardless of how the relationships are calculated, the concepts are the same.

When we have **2** categories, but no obvious linear classifier that separates them in a nice way...

