

TEAM MEMBERS

ANNACHIARA KORCHMAROS
CHEN GUO
MENGNAN ZHANG
PEIJUE ZHANG

OVERVIEW

Scope

Dilated cardiomyopathy (DCM) is a disease of the heart muscle, the heart becomes weaker and its failure can occur. Dilated cardiomyopathy also can lead to heart valve problems, arrhythmias (irregular heartbeats) and blood clots in the heart. Often, cause of dilated cardiomyopathy is not known but up to one-third of the people of those who have it inherit it from their parents. Therefore, it is fundamental to find the mutations that more likely can cause the disease in the members of the same family tree.

Data

Hiseq Exome sequencing data from 4 patients and 2 controls from the same family tree. Analysis of genetic variants among 6 genes: LMNA, MYBPC3, MYH6, MYH7, SCNSA, TNNT2.

Results

From our analysis the variants that are more likely to cause the disease:

chr1 156104248 LMNA

chr14 23858232 MYH6

The first variant was found in all the patients and the second in three of the patients. None of them were found in the controls.

Methodology

 Search for the genes that are more likely to cause DCM in the same family tree across the literature. This narrowed down the gene pool to

```
LMNA (NM_170707)

MYBPC3 (NM_000256)

MYH6 (NM_002471)

MYH7 (NM_000257)

SCNSA (NM_198056)

TNNT2 (NM_001001430)
```

- For each person, perform the variant call analysis and variant recalibration using GATK-HaplotypeCaller. Then, recalibrate the output obtained using GATK-recalibrator.
- For each person, analyze the depth distribution for each exon in all genes. Eliminate the
 mutations with depth below the lower whisker (cutoff) of the exon they belong. See Plot
 1 for an example of depth distribution among the exons and Table 2 for an example of
 the cutoffs.
- Select the mutations found in at least 3 of the patients and none of the controls as more likely to be pathogenic.

Limitations

In Table 1 the variants that were found in all patients and only one controls are listed. We recommend to reanalyzed those sites in the controls because they are chances that they may be pathogenic.

SUPPLEMENTARY MATERIAL

• Table 1: Variants found in all patients and one control

POSITION 156107534 23861811 23865885	Α	Mutated Allele T G	Gene LMNA MYH6
23861811	Α	-	МҮН6
		-	
23865885	<u></u>		
23003003	u	Α	MYH6
23874523	С	Т	MYH6
38622467	Т	С	SCNSA
38674712	Т	С	SCNSA
	38622467	38622467 T 38674712 T	38622467 T C

• Table 2: Depth distribution significant values and cutoffs of LMNA in Patient 1

MEDIAN		90th_QUANTILE			EXON1		EXON2		EXON3		EXON4	EXON4			
	33			0		0			106			7	25		23
												'		1	,
EXON6		EXON7		EXON	8	EXO	N 9		EXC	ON10		EXON11		EXON12	
	20		22		94			56			38		16		0
		EXON6	33	EXON6 EXON7	EXON6 EXON7 EXON	EXON6 EXON7 EXON8	EXON6 EXON7 EXON8 EXOI	EXON6 EXON7 EXON8 EXON9	EXON6 EXON7 EXON8 EXON9	33 0 0 106 EXON6 EXON7 EXON8 EXON9 EXC	33 0 0 106 EXON6 EXON7 EXON8 EXON9 EXON10	33 0 0 106 EXON6 EXON7 EXON8 EXON9 EXON10	33 0 0 106 7 EXON6 EXON7 EXON8 EXON9 EXON10 EXON11	33 0 0 106 7 25 EXON6 EXON7 EXON8 EXON9 EXON10 EXON11	33 0 0 106 7 25 EXON6 EXON7 EXON8 EXON9 EXON10 EXON11 EXON12

• Boxplot: Exon depth distribution plots of MYH6 in Patient 1

Boxplots of Depth by Exons

