Lecture 13: Panel data III

PPHA 34600

Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

From last time: The event study design

In the general version of this model, we include pre-treatment "effects":

$$Y_{it} = \sum_{s=-R}^{S} \tau_s D_i \times \mathbf{1}[\text{periods to treatment} = s]_{it} + \alpha_i + \delta_t + \beta X_{it} + \varepsilon_{it}$$

• (Note the number of pre-treatment periods, *R*, and the number of post-treatment periods, *S*, need not be the same)

From last time: The event study design

In the general version of this model, we include pre-treatment "effects":

$$Y_{it} = \sum_{s=-R}^{S} \tau_s D_i \times \mathbf{1}[\text{periods to treatment} = s]_{it} + \alpha_i + \delta_t + \beta X_{it} + \varepsilon_{it}$$

• (Note the number of pre-treatment periods, *R*, and the number of post-treatment periods, *S*, need not be the same)

What's so great about this design?

- This "lines up" treatment at the same time for everyone
- We can still use fixed effects to soak up confounders
- We get a (partial) test of the identifying assumption

From last time: The event study design

In the general version of this model, we include pre-treatment "effects":

$$Y_{it} = \sum_{s=-R}^{S} \tau_s D_i \times \mathbf{1}[\text{periods to treatment} = s]_{it} + \alpha_i + \delta_t + \beta X_{it} + \varepsilon_{it}$$

• (Note the number of pre-treatment periods, *R*, and the number of post-treatment periods, *S*, need not be the same)

What's so great about this design?

- This "lines up" treatment at the same time for everyone
- We can still use fixed effects to soak up confounders
- We get a (partial) test of the identifying assumption
 - \rightarrow We want pre-treatment τ_s 's to be centered on 0 and not trending

Recall our general fixed effects model:

$$Y_{it} = \tau D_{it} + \alpha_i + \delta_t + \beta X_{it} + \varepsilon_{it}$$

For the FE model to work, we need:

$$E[\varepsilon_{it}|\alpha_i,\delta_t,X_{it}]=0$$

Recall our general fixed effects model:

$$Y_{it} = \tau D_{it} + \alpha_i + \delta_t + \beta X_{it} + \varepsilon_{it}$$

For the FE model to work, we need:

$$E[\varepsilon_{it}|\alpha_i,\delta_t,X_{it}]=0$$

Recall our general fixed effects model:

$$Y_{it} = \tau D_{it} + \alpha_i + \delta_t + \beta X_{it} + \varepsilon_{it}$$

For the FE model to work, we need:

$$E[\varepsilon_{it}|\alpha_i,\delta_t,X_{it}]=0$$

- Selection into treatment:
 - Treated and untreated individuals on different trends

Recall our general fixed effects model:

$$Y_{it} = \tau D_{it} + \alpha_i + \delta_t + \beta X_{it} + \varepsilon_{it}$$

For the FE model to work, we need:

$$E[\varepsilon_{it}|\alpha_i,\delta_t,X_{it}]=0$$

- Selection into treatment:
 - Treated and untreated individuals on different trends
- Coincident treatments
 - If a treated unit does two things at once, we can't cleanly estimate treatment

Recall our general fixed effects model:

$$Y_{it} = \tau D_{it} + \alpha_i + \delta_t + \beta X_{it} + \varepsilon_{it}$$

For the FE model to work, we need:

$$E[\varepsilon_{it}|\alpha_i,\delta_t,X_{it}]=0$$

- Selection into treatment:
 - Treated and untreated individuals on different trends
- Coincident treatments
 - If a treated unit does two things at once, we can't cleanly estimate treatment
- Anticipatory effects and the Ashenfelter dip

Threats to identification: Ashenfelter dip

Threats to identification: Ashenfelter dip

Threats to identification: Ashenfelter dip

Recall our general fixed effects model:

$$Y_{it} = \tau D_{it} + \alpha_i + \delta_t + \beta X_{it} + \varepsilon_{it}$$

For the FE model to work, we need:

$$E[\varepsilon_{it}|\alpha_i,\delta_t,X_{it}]=0$$

- Selection into treatment:
 - Treated and untreated individuals on different trends
- Coincident treatments
 - If a treated unit does two things at once, we can't cleanly estimate treatment
- Anticipatory effects and the Ashenfelter dip

OLS standard errors will be wrong with panel data:

• The OLS standard error assumes each observation is an IID draw

OLS standard errors will be wrong with panel data:

- The OLS standard error assumes each observation is an IID draw
- But of course, unit *i* is correlated with itself over time
- And some of this correlation sits in the error term
- Intuition: you have less data than you think you've got!

OLS standard errors will be wrong with panel data:

- The OLS standard error assumes each observation is an IID draw
- But of course, unit *i* is correlated with itself over time
- And some of this correlation sits in the error term
- Intuition: you have less data than you think you've got!
- → Clustered standard errors
 - These allow for correlations within cluster (eg, within individual)
 - Clustered SEs are usually (not always) bigger than OLS SEs
 - You need at least \approx 45 clusters for this to work

OLS standard errors will be wrong with panel data:

- The OLS standard error assumes each observation is an IID draw
- But of course, unit *i* is correlated with itself over time
- And some of this correlation sits in the error term
- Intuition: you have less data than you think you've got!
- → Clustered standard errors
 - These allow for correlations within cluster (eg, within individual)
 - Clustered SEs are usually (not always) bigger than OLS SEs
 - You need at least \approx 45 clusters for this to work
- → Typical panel data: cluster at the unit level

Even more differences

PPHA 34600 Program Evaluation Lecture 13 8 / 14

Our standard DD estimator was:

$$\hat{\tau}^{DD} = (\bar{Y}(\textit{treat}, \textit{post}) - \bar{Y}(\textit{treat}, \textit{pre})) - (\bar{Y}(\textit{untreat}, \textit{post}) - \bar{Y}(\textit{untreat}, \textit{pre}))$$

Our standard DD estimator was:

$$\hat{\tau}^{DD} = (\bar{Y}(\textit{treat}, \textit{post}) - \bar{Y}(\textit{treat}, \textit{pre})) - (\bar{Y}(\textit{untreat}, \textit{post}) - \bar{Y}(\textit{untreat}, \textit{pre}))$$

We sometimes worry about:

- Non-parallel counterfactual trends
- Coincident treatments

Adding a third comparison can help with this:

We use a comparison between affected and unaffected units or times

9 / 14

PPHA 34600 Program Evaluation Lecture 13

Using a third difference can sometimes help with identification:

As an example, think about:

• Outcome: SO_x emissions

• Treatment: State-level regulations

• Timing: Pre/post

• Additional grouping: Industry type (some industries don't emit SO_x)

Using a third difference can sometimes help with identification:

As an example, think about:

• Outcome: SO_x emissions

• Treatment: State-level regulations

• Timing: Pre/post

• Additional grouping: Industry type (some industries don't emit SO_x)

Rather than just comparing regulated vs. unregulated states pre vs. post, we can layer on emitting vs. non-emitting industries, too

 \rightarrow This alleviates concerns about non-parallel trends in regulated vs. non-regulated states

Using a third difference can sometimes help with identification:

As an example, think about:

• Outcome: SO_x emissions

• Treatment: State-level regulations

• Timing: Pre/post

• Additional grouping: Industry type (some industries don't emit SO_x)

Rather than just comparing regulated vs. unregulated states pre vs. post, we can layer on emitting vs. non-emitting industries, too

- \rightarrow This alleviates concerns about non-parallel trends in regulated vs. non-regulated states
- → What is the identifying assumption now?

Using a third difference can sometimes help with identification:

As an example, think about:

• Outcome: SO_x emissions

• Treatment: State-level regulations

• Timing: Pre/post

• Additional grouping: Industry type (some industries don't emit SO_x)

Rather than just comparing regulated vs. unregulated states pre vs. post, we can layer on emitting vs. non-emitting industries, too

- \rightarrow This alleviates concerns about non-parallel trends in regulated vs. non-regulated states
- → What is the identifying assumption now?
- → The difference in trends over time between regulated and unregulated states is similar for emitters and non-emitters

We can write this estimator formally as:

$$\hat{\tau}^{DDD} = [(\bar{Y}(\textit{treat}, \textit{post}, \textit{affected}) - \bar{Y}(\textit{treat}, \textit{pre}, \textit{affected})) \\ - \underbrace{(\bar{Y}(\textit{untreat}, \textit{post}, \textit{affected}) - \bar{Y}(\textit{untreat}, \textit{pre}, \textit{affected}))}_{\textit{first two lines are our normal DD}}$$

We can write this estimator formally as:

$$\hat{\tau}^{DDD} = [(\bar{Y}(\textit{treat}, \textit{post}, \textit{affected}) - \bar{Y}(\textit{treat}, \textit{pre}, \textit{affected})) \\ - \underbrace{(\bar{Y}(\textit{untreat}, \textit{post}, \textit{affected}) - \bar{Y}(\textit{untreat}, \textit{pre}, \textit{affected}))}_{\textit{first two lines are our normal DD}} \\ - [(\bar{Y}(\textit{treat}, \textit{post}, \textit{unaffected}) - \bar{Y}(\textit{treat}, \textit{pre}, \textit{unaffected})) \\ - (\bar{Y}(\textit{untreat}, \textit{post}, \textit{unaffected}) - \bar{Y}(\textit{untreat}, \textit{pre}, \textit{unaffected}))]$$

next two lines are the new difference

We can write this estimator formally as:

$$\hat{\tau}^{DDD} = [(\bar{Y}(\textit{treat}, \textit{post}, \textit{affected}) - \bar{Y}(\textit{treat}, \textit{pre}, \textit{affected})) \\ - \underbrace{(\bar{Y}(\textit{untreat}, \textit{post}, \textit{affected}) - \bar{Y}(\textit{untreat}, \textit{pre}, \textit{affected}))}_{\textit{first two lines are our normal DD}} \\ - [(\bar{Y}(\textit{treat}, \textit{post}, \textit{unaffected}) - \bar{Y}(\textit{treat}, \textit{pre}, \textit{unaffected})) \\ - (\bar{Y}(\textit{untreat}, \textit{post}, \textit{unaffected}) - \bar{Y}(\textit{untreat}, \textit{pre}, \textit{unaffected}))]$$
next two lines are the new difference

This relaxes our identifying assumption:

 DD: Treated and untreated groups are on similar (counterfactual) trends

We can write this estimator formally as:

$$\hat{\tau}^{DDD} = [(\bar{Y}(\textit{treat}, \textit{post}, \textit{affected}) - \bar{Y}(\textit{treat}, \textit{pre}, \textit{affected})) \\ - \underbrace{(\bar{Y}(\textit{untreat}, \textit{post}, \textit{affected}) - \bar{Y}(\textit{untreat}, \textit{pre}, \textit{affected}))]}_{\text{first two lines are our normal DD}} \\ - [(\bar{Y}(\textit{treat}, \textit{post}, \textit{unaffected}) - \bar{Y}(\textit{treat}, \textit{pre}, \textit{unaffected})) \\ - (\bar{Y}(\textit{untreat}, \textit{post}, \textit{unaffected}) - \bar{Y}(\textit{untreat}, \textit{pre}, \textit{unaffected}))]$$

This relaxes our identifying assumption:

- DD: Treated and untreated groups are on similar (counterfactual) trends
- DDD: Differences in trends between treated and untreated impact affected and unaffected groups similarly

Affected group ($Affected_j = 1$)

	Post	Pre	Difference
Treated	а	b	a − b
${\sf Untreated}$	С	d	c-d
Difference	а — с	<i>b</i> − <i>d</i>	(a-b)-(c-d)

Affected group ($Affected_i = 1$)

	Post	Pre	Difference
Treated	а	b	a − b
${\sf Untreated}$	С	d	c-d
Difference	а — с	<i>b</i> − <i>d</i>	(a-b)-(c-d)

Unaffected group ($Affected_j = 0$)

	Post	Pre	Difference
Treated	е	f	e – f
Untreated	g	h	g - h
Difference	e-g	f – h	(e-f)-(g-h)

Affected group ($Affected_i = 1$)

Post	Pre	Difference
а	b	a − b
С	d	c-d
<i>a</i> − <i>c</i>	<i>b</i> − <i>d</i>	(a-b)-(c-d)
	a C	Post Pre <i>a b c d a - c b - d</i>

Unaffected group ($Affected_j = 0$)

	Post	Pre	Difference
Treated	е	f	e – f
Untreated	g	h	g - h
Difference	e-g	f – h	(e-f)-(g-h)

DDD estimate is the differences between the two DID estimates:

$$[(a-b)-(c-d)]-[(e-f)-(g-h)].$$

12 / 14

Just like the DD estimator, we can do the DDD estimator via regression:

$$\begin{aligned} Y_{ijt} &= \beta_0 + \beta_1 \mathit{Treat}_i + \beta_2 \mathit{Post}_t + \beta_3 \mathit{Affected}_j + \beta_4 (\mathit{Treat}_i \times \mathit{Post}_t) \\ &+ \beta_5 (\mathit{Post}_t \times \mathit{Affected}_j) + \beta_6 (\mathit{Treat}_i \times \mathit{Affected}_j) \\ &+ \tau (\mathit{Treat}_i \times \mathit{Post}_t \times \mathit{Affected}_j) + \varepsilon_{ijt} \end{aligned}$$

Just like the DD estimator, we can do the DDD estimator via regression:

$$\begin{aligned} Y_{ijt} &= \beta_0 + \beta_1 \mathit{Treat}_i + \beta_2 \mathit{Post}_t + \beta_3 \mathit{Affected}_j + \beta_4 (\mathit{Treat}_i \times \mathit{Post}_t) \\ &+ \beta_5 (\mathit{Post}_t \times \mathit{Affected}_j) + \beta_6 (\mathit{Treat}_i \times \mathit{Affected}_j) \\ &+ \tau (\mathit{Treat}_i \times \mathit{Post}_t \times \mathit{Affected}_j) + \varepsilon_{ijt} \end{aligned}$$

- You can do this with fixed effects too
- You just can't have a $Treat_i \times Post_t \times Affected_j$ FE

Just like the DD estimator, we can do the DDD estimator via regression:

$$Y_{ijt} = \beta_0 + \beta_1 \operatorname{Treat}_i + \beta_2 \operatorname{Post}_t + \beta_3 \operatorname{Affected}_j + \beta_4 (\operatorname{Treat}_i \times \operatorname{Post}_t)$$

$$+ \beta_5 (\operatorname{Post}_t \times \operatorname{Affected}_j) + \beta_6 (\operatorname{Treat}_i \times \operatorname{Affected}_j)$$

$$+ \tau (\operatorname{Treat}_i \times \operatorname{Post}_t \times \operatorname{Affected}_i) + \varepsilon_{ijt}$$

- You can do this with fixed effects too
- You just can't have a $Treat_i \times Post_t \times Affected_i$ FE

For fun on your own: Show that au actually gets $\hat{ au}^{DDD}$

Recap

TL;DR:

- 1 We like the difference-in-differences approach a lot
- We discussed estimation with fixed effects
- 3 And covered the event study and distributed lag versions

PPHA 34600 Program Evaluation Lecture 13 14 / 14