Surname	Of	her names	
Pearson Edexcel nternational Advanced Level	Centre Number	Candidate	Number
Mechanics	· M1		
Advanced/Advanced		7	
	d Subsidiary	Paper Referen	

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take g = 9.8 m s⁻², and give your answer to either two significant figures or three significant figures.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

	٦
eave	
olank	

1.	A railway truck A of mass m and a second railway truck B of mass $4m$ are a opposite directions on a smooth straight horizontal track when they collide Immediately before the collision the speed of truck A is $3u$ and the speed of truck In the collision the trucks join together. Modelling the trucks as particles, find	e directly.
	(a) the speed of A immediately after the collision,	(3)
	(b) the direction of motion of A immediately after the collision,	(1)
	(c) the magnitude of the impulse exerted by <i>A</i> on <i>B</i> in the collision.	(3)

Leave blank

2.

Figure 1

A block of mass 50 kg lies on a rough plane which is inclined to the horizontal at an angle α , where $\tan\alpha=\frac{7}{24}$. The block is held at rest by a vertical rope, as shown in Figure 1, and is on the point of sliding down the plane. The block is modelled as a particle and the rope is modelled as a light inextensible string. Given that the friction force acting on the block has magnitude 65.8 N, find

(a)	the tension in the rope,	
		(4)

(b)	the coefficient of friction between the block and the plane.	
		(4)

estion 2 continued		

Leave	
blank	

3.	[In this question i and j are unit vectors directed due east and due north respectively.]	
	A particle P is moving with constant velocity $(-6\mathbf{i} + 2\mathbf{j}) \mathrm{ms^{-1}}$. At time $t = 0$, P passes through the point with position vector $(21\mathbf{i} + 5\mathbf{j}) \mathrm{m}$, relative to a fixed origin O .	
	(a) Find the direction of motion of <i>P</i> , giving your answer as a bearing to the nearest degree.	
	(3)	
	(b) Write down the position vector of P at time t seconds. (1)	
	(c) Find the time at which <i>P</i> is north-west of <i>O</i> . (3)	

· · · / • · · • · · · · · · · · · · · · · · ·	•
e points P and Q are at the same height h metres above he is dropped from rest from P . Half a second later a stically downwards from Q with speed $7.35 \mathrm{m s^{-1}}$. Giund at the same time, find the value of h .	econd small stone is thrown even that the stones hit the
	(7)

Leave blank

5.

Figure 2

A particle P of mass $2 \, \text{kg}$ is pushed up a line of greatest slope of a rough plane by a horizontal force of magnitude X newtons, as shown in Figure 2. The force acts in the vertical plane which contains P and a line of greatest slope of the plane. The plane is

inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$

The coefficient of friction between P and the plane is 0.5

	Given that the	acceleration	of P is	1.45 m s^{-2}	find the	value of X .
--	----------------	--------------	-----------	-------------------------	----------	----------------

(10)

estion 5 continued		

Leave	
blank	

6. A uniform rod AC , of weight W and length $3l$, rests horizontally on two supports, one and one at B , where $AB = 2l$. A particle of weight $2W$ is placed on the rod at a distant from A . The rod remains horizontal and in equilibrium.				
	(a) Find the greatest possible value of x.			
	(5)			
	The magnitude of the reaction of the support at A is R . Due to a weakness in the support at A , the greatest possible value of R is $2W$,			
	(b) find the least possible value of x.			
	(5)			

estion 6 continued	

Leave	
blank	

7.	A train travels along a straight horizontal track between two stations A and B . The train starts from rest at A and moves with constant acceleration until it reaches its maximum speed of 108 km h ⁻¹ . The train then travels at this speed before it moves with constant deceleration coming to rest at B . The journey from A to B takes 8 minutes.			
	(a) Change $108 \text{ km h}^{-1} \text{ into m s}^{-1}$. (2)			
	(b) Sketch a speed-time graph for the motion of the train between the two stations A and B.			
	(2)			
	Given that the distance between the two stations is 12 km and that the time spent decelerating is three times the time spent accelerating,			
	(c) find the acceleration, in m s^{-2} , of the train.			
	(6)			

estion 7 continued	

Leave blank

8.

A particle A of mass 3m is held at rest on a rough horizontal table. The particle is attached to one end of a light inextensible string. The string passes over a small smooth pulley P which is fixed at the edge of the table. The other end of the string is attached to a particle B of mass 2m, which hangs freely, vertically below P. The system is released from rest, with the string taut, when A is 1.3 m from P and B is 1 m above the horizontal floor, as shown in Figure 3.

Given that B hits the floor 2 s after release and does not rebound,

(a)	find the acceleration of A	during the first two seconds,	
			(2)

(b) find the coefficient of friction between A and the table, (8)

(c)	determine whether A reaches the pulley.	(6)

Question 8 continued		Leave blank
	_	Q8
		۲
	(Total 16 marks)	
	TOTAL FOR PAPER: 75 MARKS	
END		