Grafos

introdução, estruturas de dados e buscas

Profs. Andre Gustavo, Salles Magalhaes

Departamento de Informática Universidade Federal de Viçosa

INF 333 - 2024/1

Grafos

- Conceito muito utilizado em matemática e ciência da computação
- Representa um conjunto de entidades e seus relacionamentos

- O mais importante é saber se existe um relacionamento entre duas entidades
- A forma desse relacionamento é, muitas vezes, irrelevante

Exemplos

Pode representar um mapa rodoviário

Também pode representar, entre outros

Rede

Computadores

Cabos

Rede social

Pessoas

Amizades

Campeonato de futebol

Times

Partidas disputadas

Fonte: http://www.metro.sp.gov.br

4/53

Fonte: http://www.voeazul.com.br

Fonte: http://en.wikipedia.org/wiki/Social_graph

Grafo

Um grafo é um par ordenado G = (V, A), sendo V um conjunto de vértices e A um conjunto de arestas, cada uma conectando dois vértices $\in V$

Exemplo de Grafo

```
G = (V, A)

V = \{a, b, c, d, e\}

A = \{\{a, b\}, \{a, c\}, \{b, b\}, \{a, d\}, \{b, d\}, \{c, d\}, \{c, d\}, \{d, e\}\}
```

- Vértices são também chamados nós ou nodos
- Arestas são também chamadas links
- Grafos são também representados por G = (V, E), pois edges é o termo mais comum em inglês

- Grafos são geralmente representados graficamente (desenhados)
- Muitas de suas propriedades são mais facilmente entendidas com esse desenho
- Cada vértice é representado por um ponto (círculo) e cada aresta por uma linha

- O desenho de um grafo meramente descreve a relação entre vértices e arestas
- Entretanto, o desenho de um grafo geralmente é chamado de grafo, como se ele mesmo fosse o grafo. E os pontos e linhas chamados de vértices e arestas.
- Não há uma forma única de desenhar um grafo; as posições relativas dos pontos e linhas não tem significado

Exemplos de representação gráfica

$$G = (V, A)$$

 $V = \{a, b, c, d, e\}$
 $A = \{\{a, b\}, \{a, c\}, \{b, d\}, \{c, d\}, \{d, e\}\}$

- O número de vértices de um grafo é representado por |V| ou n
- O número de arestas de um grafoé representado por |A| ou m

- Os vértices de uma aresta são ditos incidentes à aresta, e vice-versa
- Dois vértices incidentes a uma aresta em comum são ditos adjacentes
- Uma aresta com vértices incidentes idênticos é chamada loop ou laço
- Múltiplas arestas podem incidir em um mesmo par de vértices

Exemplo de Grafo

- a e b são incidentes a {a, b}
- a e b são adjacentes
- b e c não são adjacentes
- {*b*, *b*} é um loop
- há múltiplas arestas {c, d}

Grafo simples

Um grafo é simples se não tem loops nem arestas múltiplas

 A teoria de grafos estuda principalmente as propriedades de grafos simples

- Para todo grafo G existe uma matriz $|V| \times |A|$ chamada matriz de incidência
- Seja $V = \{v_1, v_2, ..., v_n\}$ e $A = \{a_1, a_2, ..., a_m\}$
- A matriz de incidência de G é a matriz $\mathbf{M}(G) = [m_{ij}]$, sendo m_{ij} o número de vezes (0, 1 ou 2) que o vértice v_i e a aresta a_j são incidentes

Table: M(G)

	a_1	a_2	a_3	a_4	a 5	a_6	a_7
<i>V</i> ₁	1	1	1	0	0	0	0
<i>V</i> ₂	1	0	0	1	2	0	0
<i>V</i> 3	0	1	0	0	0	1	1
<i>V</i> ₄	0	0	1	1	0	1	1

- Para todo grafo G existe uma matriz $|V| \times |V|$ chamada matriz de adjacência
- Seja $V = \{v_1, v_2, ..., v_n\}$
- A matriz de adjacência de G é a matriz $\mathbf{A}(G) = [a_{ij}]$, sendo a_{ij} o número de arestas unindo os vértices v_i e v_i

Table: A(G)

	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄
<i>V</i> ₁	0	1	1	1
v_2	1	1	0	1
<i>V</i> 3	1	0	0	2
V ₄	1	1	2	0

- A matriz de adjacência é geralmente consideravelmente menor que a matriz de incidência (por que?)
- Por isso a de adjacência é mais usada que a de incidência para armazenar grafos em computadores

	,								` ′				
	a_1	a_2	a_3	a_4	a_5	a_6	a_7			<i>V</i> ₁	<i>V</i> ₂	<i>V</i> 3	<i>V</i> ₄
	1	1	1	0	0	0	0			0	1	1	1
<i>V</i> ₂	1	0	0	1	2	0	0		V_2	1	1	0	1
Va	Ω	1	Ω	Ω	Ω	1	1		Vo	1	Ω	Ω	2

Table: $\mathbf{M}(G)$

Table: $\mathbf{A}(G)$

- Grafos esparsos são grafos com poucas arestas em relação à quantidade de vértices
- São bastante comuns em situações reais, por exemplo, o grafo das ruas e esquinas de uma cidade
- Para esses grafos, mesmo a matriz de adjacência é um desperdício de memória!
 - A grande maioria das células vale 0
- A estrutura de dados mais adequada é a lista de adjacência

 A lista de adjacência de G é uma lista de listas lineares, uma para cada vértice, contendo seus vértices adjacentes

Table: L(G)

$$egin{array}{c|ccccc} V_1 & V_2 & V_3 & V_4 \\ V_2 & V_1 & V_2 & V_4 \\ V_3 & V_1 & V_4 & V_4 \\ V_4 & V_1 & V_2 & V_3 & V_3 \\ \hline \end{array}$$

- A lista de adjacêcia de cada vértice pode estar ordenada ou não, pode ser contígua ou encadeada...
- A melhor forma depende da aplicação, do tamanho das listas, da frequência de consulta e de inserção/remoção

Definição

O grau $d_G(v)$ de um vértice v em G é o número de arestas de Gincidentes a v. cada loop contando como duas

• Denota-se por $\delta(G)$ e $\Delta(G)$ respectivamente o mínimo e o máximo grau dos vértices de G

Exemplo

- $d(v_1) = 3$
- $d(v_2) = 4$
- $d(v_3) = 3$
- $d(v_4) = 4$

- \bullet $\delta = 3$

Outro exemplo

- $d(v_1) = 3$
- $d(v_2) = 6$
- $d(v_3) = 3$
- $d(v_4) = 5$

- $d(v_5) = 0$
- $d(v_6) = 1$
- $d(v_7) = 1$
- $d(v_8) = 1$
- Um vértice de grau 0 é chamado vértice isolado

Grafo completo

Um grafo completo é um grafo simples em que cada par de vértices é unido por uma aresta

 Sem contar isomorfismo, há apenas um grafo completo com n vértices. Tal grafo é denotado por Kn

Exemplos de grafos completos

Grafo bipartido

Um grafo bipartido é um cujo conjunto de vértices pode ser dividido em dois subconjuntos X e Y tal que toda aresta seja incidente a vértice em X e a um em Y.

 Ou seja, não há arestas incidentes a vértices do mesmo subconjunto

Grafo bipartido completo

Um grafo bipartido completo é um grafo simples, bipartido, com uma bipartição (X, Y) tal que todo vértice de X é adjacente a todo vértice de Y

• Um grafo bipartido completo com |X| = m e |Y| = n é denotado por $K_{m,n}$

Exemplos de grafos bipartidos completos

Busca em grafo

- Percorrer sistemática e completamente um grafo
- Visitar todo vértice e toda aresta numa ordem bem definida e sem repetições desnecessárias

 Percorrer/visitar nesse caso não é propriamente achar um caminho no grafo, mas percorrer sua estrutura, processar cada vértice e aresta

Tipos de busca

- Há dois algoritmos básicos de busca em grafos
 - Busca em profundidade (DFS Depth-First Search)
 - Busca em largura (BFS Breadth-First Search)
- Em alguns problemas não faz diferença qual busca usar
- Em outros, a escolha da busca certa é muito importante

Tipos de busca

- As duas buscas compartilham uma mesma idéia fundamental
 - Marcar vértices (arestas) já vistos para não explorá-los novamente
 - Do contrário podem se perder num labirinto sem achar saída
- Elas diferem basicamente na ordem de visita aos vértices

Busca em profundidade a partir de um vértice

```
BP (Grafo G, vertice v, bool visitado[]) {
    visitado[v] = true
    escrever(v), processar(v), ...
    para cada w adjacente a v
        se !visitado[w]
        BP(G,w,visitado)
}
```

- G: grafo a ser percorrido
- v: vértice inicial da busca
- visitado[]: array de booleanos, inicialmente todos false

V	Adjacentes						
Α	В	С					
В	Α	D	Ε				
С	Α	Н	- 1	J			
D	В						
Ε	В	F	G				
F	E						
G	E						
Н	С						
-1	C						
J K	С	K					
K	J						

```
BP (Grafo G, vertice v, bool visitado[]) {
    visitado[v] = true
    escrever(v), processar(v), ...
    para cada w adjacente a v
        se !visitado[w]
            BP(G,w,visitado)
}
```

A BP visita os vértices na ordem: A B D E F G C H I J K

V	Adjacentes					
Α	В	D	F			
В	Α	С	G			
С	В	Н				
D	Α	Ε				
Ε	D	F	- 1			
F	Α	Ε	G	J		
G	В	F	Н	K		
Н	С	G	L			
	E	J				
J	F	- 1	K			
K	G	J	L			
L	Н	K				

```
BP (Grafo G, vertice v, bool visitado[]) {
    visitado[v] = true
    escrever(v), processar(v), ...
    para cada w adjacente a v
        se !visitado[w]
            BP(G,w,visitado)
}
```

A BP visita os vértices na ordem: A B C H G F E D I J K L

Busca em profundidade em todo o grafo

```
BuscaProfundidade (Grafo G) {
   para todo vértice v de G
     visitado[v] = false
   para todo vértice v de G
     se !visitado[v]
          BP(G,v,visitado)
}
```

- G: grafo a ser percorrido
- enquanto n\u00e3o visitar todos os v\u00e9rtices, faz nova busca a partir de um v\u00e9rtice ainda n\u00e3o visitado (outro componente)

Busca em largura

```
BL (Grafo G, vertice v, bool visitado[]) {
   Fila F
   F.insere(v)
   visitado[v] = true
   enquanto !F.vazia()
       v \leftarrow F.remove()
       escrever(v), processar(v), ...
       para cada w adjacente a v
          se !visitado[w]
             F.insere(w)
             visitado[w] = true
```


V	Adjacentes					
Α	В	С				
В	Α	D	Ε			
С	Α	Н	- 1	J		
D	В					
Ε	В	F	G			
F	E					
G	E					
Н	С					
-1	CCC					
J	С	K				
K	J					

```
BL (Grafo G, vertice v, bool visitado[]) {
    Fila F
    F.insere(v)
    visitado[v] = true
    enquanto !F.vazia()
       v \leftarrow F.remove()
       escrever(v), processar(v), ...
       para cada w adjacente a v
           se !visitado[w]
              F.insere(w)
              visitado[w] = true
```

A BL visita os vértices na ordem: A B C D E H I J F G K

Exemplo #2

V	Adjacentes			
Α	В	D	F	
В	Α	С	G	
С	В	Н		
D	Α	Ε		
Ε	D	F	- 1	
F	Α	Ε	G	J
G	В	F	Н	K
Н	С	G	L	
- 1	E	J		
J	F	- 1	K	
K	G	J	L	
_ <u>L</u>	Н	K		

```
BL (Grafo G, vertice v, bool visitado[]) {
    Fila F
    F.insere(v)
   visitado[v] = true
    enquanto !F.vazia()
       v \leftarrow F.remove()
       escrever(v), processar(v), ...
       para cada w adjacente a v
           se !visitado[w]
              F.insere(w)
              visitado[w] = true
```

A BL visita os vértices na ordem: A B D F C G E J H K I L

Semelhanças

- Ambas visitam todos os vértices e todas as arestas
 - BL geralmente é feita para apenas um componente, mas pode ser reiniciada para os demais componentes
- Ambas marcam os vértices visitados para não entrar em loop
- Ambas tem tempo de execução de acordo com o número de vértices e arestas
- Ambas funcionam para grafos construídos on the fly (gerado dinamicamente à medida que é percorrido)

Semelhanças (e diferença)

```
BL (Grafo G, vertice v, bool visitado[]) {
   Fila F
   F.insere(v)
   visitado[v] = true
   enquanto !F.vazia()
       v \leftarrow F.remove()
       escrever(v), processar(v), ...
       para cada w adjacente a v
          se !visitado[w]
             F.insere(w)
             visitado[w] = true
```

Semelhanças (e diferença)

```
BP (Grafo G, vertice v, bool visitado[]) {
    Pilha F
   F.insere(v)
   visitado[v] = true
   enquanto !F.vazia()
       v \leftarrow F.remove()
       escrever(v), processar(v), ...
       para cada w adjacente a v
          se !visitado[w]
             F.insere(w)
             visitado[w] = true
```

Diferenças

- A ordem de visita dos vértices é diferente
 - Numa árvore, a busca em largura faz a visita por nível
 - Já a busca em profundidade primeiramente vai da raiz à folha
- Uso de memória
 - a busca em largura usa memória adicional para a fila
 - a busca em profundidade usa memória adicional para a pilha (estrutura ou chamadas recursivas)

Diferenças

- A busca em profundidade é essencialmente um backtracking
 - Caminhamentos in-order, pre-order e pos-order são exemplos de BP, diferindo somente no local do código em que o vértice é processado
- A busca em largura prioriza a distância do caminho
 - Os vértices são visitados em ordem de distância (em número de arestas) até o vértice inicial
 - Logo, é a busca apropriada para caminho mais curto em grafo sem pesos

Exemplos de aplicação

- As buscas podem ser adaptadas para resolver vários problemas em grafos
- Em alguns casos as mudanças são mínimas, basicamente o que deve ser feito ao visitar um vértice
- Em outros algumas s\(\tilde{a}\) acrescentados outras funcionalidades e estruturas adicionais

Contar o número de componentes conexos

```
BP (Grafo G, vertice v, bool visitado[]) {
   visitado[v] = true
   escrever(v), processar(v), ...
   para cada w adjacente a v
      se !visitado[w]
         BP(G,w,visitado)
BuscaProfundidade (Grafo G) { cont = 0
   para todo vértice v de G
      visitado[v] = false
   para todo vértice v de G
      se !visitado[v]
         BP(G,v,visitado) cont++
```

Verificar se há ciclo no grafo

```
BP (Grafo G, vertice v, bool visitado[], vertice pai[]) {
   visitado[v] = true
   escrever(v), processar(v), ...
   para cada w adjacente a v
      se !visitado[w]
          pai[w] = v; BP(G,w,visitado,pai)
      senão se w != pai[v] CICLO!! //vertice já visitado antes
BuscaProfundidade (Grafo G) {
   para todo vértice v de G
      visitado[v] = false ; pai[v] = '-'
   para todo vértice v de G
      se !visitado[v]
          BP(G,v,visitado,pai)
```

Caminho com menos arestas

- Encontrar caminho com menor número de arestas de v a x
- É também o caminho com menos vértices intermediários

Caminho com menos arestas

```
BL (Grafo G, vertice v, bool visitado[], vertice x) {
   Fila F
   F.insere(v)
   visitado[v] = true
   enquanto !F.vazia()
      v \leftarrow F.remove()
       escrever(v), processar(v), ...
       para cada w adjacente a v
          se !visitado[w]
             F.insere(w); pai[w] = v
             visitado[w] = true
             se w == x
                EscreveCaminho(x,pai); return
```

Caminho com menos arestas

• Escreve recursivamente o caminho guardado no vetor 'pai'

```
EscreveCaminho (vertice x, vertice pai[]) {
    se x!='-'
        EscreveCaminho(pai[x],pai)
        escreve x
}
```

Verificar se é bipartido

- Verificar se um grafo é bipartido
- É o mesmo que verificar se é 2-colorable

Verificar se é bipartido

```
BP (Grafo G, vertice v, bool visitado[], int cor[]) {
   visitado[v] = true
   escrever(v), processar(v), ...
   para cada w adjacente a v
      se cor[v] == cor[w] NÃO É BIPARTIDO!
      se !visitado[w]
         se cor[v]==1 cor[w]=2 senão cor[w]=1
         BP(G,w,visitado,cor)
BuscaProfundidade (Grafo G) {
   para todo vértice v de G
      visitado[v] = false ; cor[v] = 0 //sem cor
   para todo vértice v de G
      se !visitado[v]
         cor[v] = 1; BP(G,v,visitado,cor)
```

Exemplos

Exemplo: UVa 10067 - Playing with Wheels (link)

- Um vértice para cada valor (0000 a 9999)
- Aresta se um obtido do outro por 1 movimento
- Apagar vértices proibidos (ou suas arestas)
- Busca em largura do valor inicial ao final

Obs.: não é necessário construir o grafo, pode ser usado implicitamente

Exemplos

Exemplo: UVa 11902 - Dominator (link)

- Fazer uma busca a partir do inicial e marcar os atingidos
- "Apagar" um vértice v e fazer a busca novamente
- Os atingidos anteriormente que não forem atingidos na nova busca são dominados por v

Exemplos

UVa 469 - Wetlands of Florida (link)

- Técnica recursiva conhecida como flood fill (inundação)
 - inunda como o "balde" de tinta num editor de imagens