

Name :Kiran Kumar Reddy L

4*k*

В

3k

Fig. 8.8

Batch:2

ID :cometfwc027 Date :16th may 2025

178 Mathematics

Remark: Since the hypotenuse is the longest side in a right triangle, the value of $\sin A$ or $\cos A$ is always less than 1 (or, in particular, equal to 1).

Let us consider some examples.

Example 1: Given $\tan A = \frac{4}{3}$, find the other trigonometric ratios of the angle A.

Solution:Let us first draw a right $\triangle ABC$ (see Fig. 8.8).

Now, we know that $\tan A = \frac{BC}{AB} = \frac{4}{3}$. Therefore, if BC = 4k, then AB = 3k, where k is a positive number.

Now, by using the Pythagoras Theorem, we have

Now, we can write all the trigonometric ratios using their definitions:

$$\sin A = \frac{BC}{AC} = \frac{4k}{5k} = \frac{4}{5},$$

$$\cos A = \frac{AB}{AC} = \frac{3k}{5k} = \frac{3}{5}$$
Therefore,
$$\cot A = \frac{1}{\tan A} = \frac{3}{4}, \quad \csc A = \frac{1}{\sin A} = \frac{5}{4}, \quad \sec A = \frac{1}{\cos A} = \frac{5}{3}$$

Example 2: If $\angle B$ and $\angle Q$ are acute angles such that $\sin B = \sin Q$, then prove that $\angle B = \angle Q$.

Solution: Let us consider two right triangles ABC and PQR where $\sin B = \sin Q$ (see Fig. 8.9).

Fig. 8.9

2019-2020

$$\sin B = \frac{AC}{AB}$$

We have

$$\sin Q = \frac{PR}{PQ}$$

Then

$$\frac{AC}{AB} = \frac{PR}{PQ}$$

Therefore,

$$\frac{AC}{PR} = \frac{AB}{PQ} = k, \text{ say}$$
 (1)

Now, using Pythagoras theorem,

$$BC = \sqrt{AB^2 - AC^2}$$

and

$$QR = \sqrt{PQ^2 - PR^2} \label{eq:qr}$$

So,
$$\frac{BC}{QR} = \frac{\sqrt{AB^2 - AC^2}}{\sqrt{PQ^2 - PR^2}} = \frac{\sqrt{k^2PQ^2 - k^2PR^2}}{\sqrt{PQ^2 - PR^2}} = \frac{k\sqrt{PQ^2 - PR^2}}{\sqrt{PQ^2 - PR^2}} = k$$
 (2)

From (1) and (2), we have

$$\frac{AC}{PR} = \frac{AB}{PQ} = \frac{BC}{QR}$$

Then, by using Theorem 6.4, \triangle ACB $\sim \triangle$ PRQ and therefore, \angle B = \angle Q.

Example 5: In $\triangle OPQ$, right-angled at P, OP = 7 cm and OQ - PQ = 1 cm (see Fig. 8.12).

Determine the values of $\sin Q$ and $\cos Q$.

Solution: In $\triangle OPQ$, we have:

178 Mathematics

$$OQ^2 = OP^2 + PQ^2$$

i.e., $(1 + PQ)^2 = OP^2 + PQ^2$ (Why?)
i.e., $1 + PQ^2 + 2PQ = OP^2 + PQ^2$
i.e., $1 + 2PQ = 7^2$ (Why?)
i.e., $2PQ = 49 - 1 = 48$
i.e., $PQ = 24 \, \text{cm}$ and $OQ = 1 + PQ = 25 \, \text{cm}$

So,
$$\sin Q = \frac{7}{25}$$
 and $\cos Q = \frac{24}{25}$ 2019-2020

Fig. 8.12