Periodic task scheduling

Optimality of rate monotonic scheduling (among static priority policies)

Utilization bound for EDF

Optimality of EDF (among dynamic priority policies)

Tick-driven scheduling (OS issues)

Lecture outline

Lecture outline

Lecture outline

Next

- Rate monotonic scheduling is the optimal fixed-priority (or static-priority) scheduling policy for periodic tasks.
 - Optimality (Trial #1):

- Rate monotonic scheduling is the optimal fixed-priority (or static-priority) scheduling policy for periodic tasks.
 - Optimality (Trial #1): If any other fixed-priority scheduling policy can meet deadlines,
 so can RM.

- Rate monotonic scheduling is the optimal fixed-priority (or static-priority) scheduling policy for periodic tasks.
 - Optimality (Trial #1): If any other fixed-priority scheduling policy can meet deadlines,
 so can RM

$$P_1 < P_2$$

- Rate monotonic scheduling is the optimal fixed-priority (or static-priority) scheduling policy for periodic tasks.
 - Optimality (Trial #1): If any other fixed-priority scheduling policy can meet deadlines,
 so can RM

- Rate monotonic scheduling is the optimal fixed-priority (or static-priority) scheduling policy for periodic tasks.
 - Optimality (Trial #1): If any other fixed-priority scheduling policy can meet deadlines,
 so can RM

- Rate monotonic scheduling is the optimal fixed-priority (or static-priority) scheduling policy for periodic tasks.
 - Optimality (Trial #1): If any other fixed-priority scheduling policy can meet deadlines,
 so can RM

- Rate monotonic scheduling is the optimal fixed-priority (or static-priority) scheduling policy for periodic tasks.
 - Optimality (Trial #2): If any other fixed-priority scheduling policy can meet deadlines in the worst case scenario, so can RM.
- How do we prove it?

- Rate monotonic scheduling is the optimal fixed-priority (or static-priority) scheduling policy for periodic tasks.
 - Optimality (Trial #2): If any other fixed-priority scheduling policy can meet deadlines in the worst case scenario, so can RM.
- How do we prove it?
 - Consider the worst case scenario
 - Show that if someone else can schedule then RM can

The worst-case scenario

- Q: When does a periodic task, T, experience the maximum delay?
 - Which arrival time produces the largest response time for T?
- A: When it arrives together with all the higher-priority tasks (critical instant)
 - Liu and Layland

- Idea for the proof
 - If some higher-priority task does not arrive together with *T*, aligning the arrival times can only increase the completion time of *T*.

Critical instant theorem

Critical Instant: Proof (Case 1)

Case 1: Higher priority task 1 is running when task 2 arrives.

Critical Instant: Proof

Critical Instant: Proof

Critical Instant: Proof (Case 2)

Case 2: processor is idle when task 2 arrives

Critical Instant: Proof (Case 2)

Case 2: processor is idle when task 2 arrives

→ shifting task 1 left cannot decrease completion time of 2

Critical Instant: Proof (Case 2)

Critical Instant: Remarks

- All analyses hereafter will assume the critical instant theorem in effect
- Why is it important to identify the critical instant?
 - Characterizes the worst case scenario when a task experiences the max delay (remember the pitfall in trial #1 in proving RM optimality earlier?)
 - For task schedulability, need to reason only about the feasibility of the job arriving at the critical instant

Critical Instant: Remarks

- If task **phases** are **not all** 0, does there always exist a point of simultaneous release? Can you come up with a counterexample?
 - It does not necessarily exist in this case and a simple counterexample of 3 tasks exists
- If not, then how easy it is to determine whether a point of simultaneous release exists for non-zero phase task sets?
 - An algorithm exists! (naïve approach takes exponential time, however)

Critical Instant: Remarks

- Is RM optimal if a simultaneous release does not exist?
- What about EDF?
 - **Hint:** study the proof of optimality of EDF later and see whether the critical instant theorem was used.
- Does the critical instant theorem still hold in non-preemptive scheduling? (Assuming a simultaneous release exists)

Assumptions

- All scheduling is preemptive
- A simultaneous release exists even if tasks have non-zero phases
 - And thus critical instant theorem assumed
- Implicit deadlines (deadline = period)
- A task does not suspend itself (on I/O, for instance)
- All tasks in a task set are independent (there are no precedence relations and no resource constraints.)
- All overheads in the kernel are assumed to be zero (context switching and others)

Optimality of the RM policy

• If any other fixed-priority policy can meet deadlines so can RM

Policy X meets deadlines?

Optimality of the RM policy

If any other policy can meet deadlines so can RM

Optimality of the RM policy: Proof

Two tasks scheduled **not** according to RM

For feasibility in a non-RM policy, we need $C_1+C_2\leq P_1$ to hold at critical instant Why?

Optimality of the RM policy: Proof

For feasibility in a non-RM policy, we need $\mathcal{C}_1+\mathcal{C}_2\leq P_1$ to hold at critical instant

- Now exchange priorities of tasks to make it into an RM assignment
- Plan:
 - identify all possible cases
 - In each case derive feasibility condition
 - Show that if $C_1+C_2\leq P_1$ then derived feasibility condition in RM holds

Optimality of the RM policy: Case 1

For feasibility in a non-RM policy, we need $C_1 + C_2 \leq P_1$ to hold at critical instant

- Case 1: computation time of τ_1 is short enough that all its requests are completed before the second request of τ_2
 - Number of periods P_1 entirely contained in P_2 is $\left\lfloor \frac{P_2}{P_1} \right\rfloor \rightarrow \text{Let } F = \left\lfloor \frac{P_2}{P_1} \right\rfloor$
 - Case 1 translates to $C_1 + FP_1 \le P_2$
 - Feasibility: All computation requested by au_1 during P_2 , in addition to C_2 , should be completed by P_2
 - $(F+1)C_1 + C_2 \le P_2$ (*)
 - Need to show that $C_1 + C_2 \le P_1$ implies (*)

Optimality of the RM policy: Case 2

For feasibility in a non-RM policy, we need $C_1 + C_2 \leq P_1$ to hold at critical instant

- Case 2: computation time of au_1 is long enough to overlap with the second request of au_2
 - Case 2 translates to $C_1 + FP_1 \ge P_2$
 - Feasibility condition: $FC_1 + C_2 \le FP_1$ (**) Why?
 - For feasibility τ_2 must finish before the start of the (FP_1) -th request of τ_1 because τ_1 has higher priority than τ_2 so τ_1 will occupy the processor until P_2 by the condition in **case 2** and thus P_2 cannot execute in $[FP_1, P_2]$
 - Need to show that $C_1 + C_2 \le P_1$ implies (**)

What have we achieved?

Next

Recall: Utilization bounds for schedulability

- ullet U_S is called a **utilization bound** for a given scheduling policy S if
 - All task sets with utilization factor $\leq U_S$ can be scheduled using policy S
- U_S is **tight** if, in addition, for a given scheduling policy S the following holds:
 - For every $\epsilon>0$, there exists at least one task set with utilization $(U_S+\epsilon)$ that **cannot** be scheduled using policy S
- A tight bound is the best (largest) possible utilization bound: If U_S is tight, then no other $U>U_S$ can be a utilization bound for scheduling policy S
- ullet Of course, the maximum value that U_S can attain for any S is 1. Why? In class
- ullet U_S is also called the **schedulable utilization** of algorithm S

Utilization bound for EDF

- Why is it 100%?
- Consider a task set where:

$$\sum_{i} \frac{c_i}{P_i} = 1$$

• Imagine a policy that reserves for each task i a fraction u_i of each clock tick, where $u_i = C_i$ / P_i

Utilization bound for EDF

- Imagine a policy that reserves for each T_i a fraction u_i of each time unit, where $u_i = C_i/P_i$
- Divide time into, say, $L = GCD(P_1, ..., P_n)$ -length ticks after proper scaling of periods to integers

- This policy meets all deadlines, because:
 - Time given to T_i in its period = $u_i \times$ (# ticks/period) \times tick length (time/tick) = $u_i(P_i/L)L = (C_i/P_i) P_i = C_i$ time/period (i.e., enough to finish)

Utilization bound for EDF

 Pick any two execution chunks that are not in EDF order and swap them

Utilization bound for EDF

 Pick any two execution chunks that are not in EDF order and swap them

Still meets deadlines! Why?

Utilization bound for EDF

• Pick any two execution chunks that are not in EDF order and swap them

- Still meets deadlines!
- Repeat swap until all in EDF order
 - \rightarrow EDF meets deadlines

Utilization bound for EDF

- Why does this prove that the utilization bound of EDF is 1?
 - We showed that every taskset with U = 1 is feasible under EDF
 - ullet Must also show that every taskset with $U \leq 1$ is also feasible under EDF
 - This is not needed! Previous argument follows for any $U \leq 1$
 - Consequences:
 - EDF is optimal!
 - EDF is able to schedule every task set who utilization is 1 or less

Next

Next

Tick-based scheduling within an OS

- A real-time library for periodic tasks on Linux or Windows
 - There is need to provide approximate real-time guarantees on common operating systems (as opposed to specialized real-time OSes)
 - A high-priority "real-time" thread pool is created and maintained
 - A higher-priority scheduler is invoked periodically by timer-ticks to check for periodic invocation times of real-time threads. The scheduler resumes threads whose arrival times have come.
 - Resumed threads execute one invocation then block.
 - Scheduling is preemptive
 - The scheduler can implement arbitrary scheduling policies including EDF, RM, etc.
 - An admission controller is responsible for spawning new periodic threads if the new task set can meet its deadlines.

Tick-based scheduling within an OS

- A real-time library for periodic tasks on Linux or Windows
 - There is need to provide approximate real-time guarantees on common operating systems (as opposed to specialized real-time OSes)
 - A high-priority "real-time" thread pool is created and maintained
 - A higher-priority scheduler is invoked periodically by timer-ticks to check for periodic invocation times of real-time threads. The scheduler resumes threads whose arrival times have come.
 - Resumed threads execute one invocation then block.
 - Scheduling is preemptive
 - The scheduler can implement arbitrary scheduling policies including EDF, RM, etc.
 - An admission controller is responsible for spawning new periodic threads if the new task set can meet its deadlines.
 - Scheduler implements wrappers for blocking primitives

The time-driven scheduler

- /* N is the number of periodic tasks */
- For i=1 to N
- if (current_time = next_arrival_time of task i)
- put task i in ready_queue
- /* ready_queue is a priority queue that implements
- the desired scheduling policy. */
- Inspect top task from ready queue, call it j
- If (a task is running and its priority is higher than priority of j) return
- Else resume task i (and put the running task into the ready queue if applicable, return

Admission controller

- Implements schedulability analysis
 - If $U+C_{new}/P_{new} < U_{bound}$ admit task
 - Must account for various practical overheads. How?
 - Examples of overhead:
 - How to account for the overhead of running the time-driven scheduler on every time-tick?
 - How to account for the overhead of running the scheduler after task termination?
- If new task admitted
 - $U = U + C_{new}/P_{new}$
 - Create a new thread
 - Register it with the scheduler

Library with lock primitives

```
Lock (S) {
  Check if semaphore S = locked
 If locked
    enqueue running tasks in semaphore queue
  Else
    let semaphore = locked
Unlock (S) {
  If semaphore queue empty then
   semaphore = unlocked
  Else
    Resume highest-priority waiting task
```


Problem: some threads may execute blocking OS calls (e.g., disk or network read/write and block without calling your lock/unlock!)