IT'S OK TO BE SELFISH ...IF YOU'RE THE HIGGS BECAUSE WHY STOP AT ONE WHEN YOU CAN HAVE TWO?

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Nicole Hartman July 2022 © Copyright by Nicole Hartman 2022 All Rights Reserved

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.				
(Su Dong) Principal Adviser				
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.				
(Michael Kagan)				
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.				
(Patricia Burchat)				
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.				
(Michael Peskin)				
Approved for the Stanford University Committee on Graduate Studies				

Abstract

This thesis tells you all you need to know about...

Acknowledgments

I would like to thank...

Contents

A	Abstract			
\mathbf{A}	cknowledgments	v		
1	1 Introduction			
2	Theoretical motivation	2		
	2.1 The Standard Model	2		
	2.2 The Higgs mechanism	2		
	2.3 Effective Field Theories to search for new physics	2		
	2.4 Status of the experimental HH results	2		
3	LHC			
4	ATLAS			
5	Event reconstruction			
6	b-tagging	6		
	6.1 Low level taggers	6		
	6.1.1 IPXD	6		
	6.1.2 SV1	6		
	6.1.3 JetFitter	6		
	6.1.4 SMT	6		
7	Statistical techniques	7		
8	Analysis selection			
9	Background estimation			

10 Results		10
11 Future	directions?	11
12 Conclus	sions	12
A Reweigh	hting loss function	13
B Further	statistics fundamentals	14
C Gaussia	n Processes	15
D ML for	m jet ightarrow parton assignment	16

List of Tables

List of Figures

Introduction

- Why we expect new physics in the SM
- Motivation for HH
- Particulars about the 4b final state
- \bullet Connection to ML
- Highlight my work on b-tagging
- $\bullet\,$ Thesis organization

Theoretical motivation

- 2.1 The Standard Model
- 2.2 The Higgs mechanism

I heard from Dale that the pdg is a v good ref for this!!

- 2.3 Effective Field Theories to search for new physics
- 2.4 Status of the experimental HH results

LHC

ATLAS

Event reconstruction

b-tagging

- 6.1 Low level taggers
- 6.1.1 IPXD
- 6.1.2 SV1
- 6.1.3 JetFitter
- 6.1.4 SMT
- **6.2** RNNIP
- 6.2.1 Algorithm overview
- 6.2.2 Optimizations
- 6.2.3 Interplay with tracking inputs
- 6.3 Recommendations for Run 2 b-taggers
- 6.3.1 DL1(r) description
- 6.3.2 PFlow trainings
- 6.3.3 VR track jet trainings
- 6.4 RNNIP calibratability
- 6.5 Tagger R&D: DIPS

Statistical techniques

Analysis selection

Background estimation

Results

Conditional generative models for data-driven background modeling

Conclusions

Appendix A

Reweighting loss function

Appendix B

Further statistics fundamentals

Appendix C

Gaussian Processes

Appendix D

ML for jet \rightarrow parton assignment

...