Matemática **UNINOVE**

Números reais

Apresentação

Objetivo: Definir o número real e como são suas representações.

Módulo I

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

Situação-problema

É possível medir a diagonal de um quadrado de lado 1?

Resposta: A diagonal de um quadrado de lado 1 mede $\sqrt{2}$ vezes o lado 1.

Para resolver esse problema, utilizamos o Teorema de Pitágoras. Contudo, o valor de $\sqrt{2}$ não pode ser escrito como uma fração $\frac{a}{b}$ com a e b inteiros, porém $\sqrt{2}$ é um número real.

Para definirmos o que é um número real, precisamos de uma associação com um objeto geométrico, chamada reta (essa reta será chamada de reta real).

Cada ponto da reta será associado a um número e cada número será associado a um ponto da reta. Assim, podemos colocar os números inteiros na reta, de forma ordenada (veja o conteúdo sobre números inteiros):

Cada número real tem uma representação decimal como 0,2 ou 1,41424344... ou ainda: -3,12121212... Essas representações têm quatro características possíveis, para cada número:

- 1) O número pode ser inteiro.
- 2) O número pode ser um inteiro e ter uma parte finita após a vírgula.
- 3) O número pode ser um inteiro e ter uma parte infinita após a vírgula, mas que a parte final sempre se repete.
- **4)** O número pode ser um inteiro e ter uma parte infinita após a vírgula, mas que a parte final não se repete.

Assim, o conjunto dos números inteiros tem apenas a primeira característica, o conjunto dos números racionais tem as três primeiras características e o conjunto dos números reais tem as quatro características.

Desse modo, fica claro que o conjunto dos números inteiros está contido no conjunto dos números racionais e que o conjunto dos números racionais está contido no conjunto dos números reais.

Por exemplo, $\sqrt{2}$ tem infinitas casas decimais após a vírgula, pois não é um número racional. Observamos que entre 2 racionais distintos, há sempre um irracional e entre 2 irracionais distintos, há sempre um racional.

De modo geral, a raiz quadrada de um número é sempre irracional, a menos que o número seja o quadrado de um número racional, por exemplo, $\sqrt{3}$ é irracional, mas $\sqrt{4}$ é racional, porque, apesar de ter uma representação com o símbolo $\sqrt{}$, $\sqrt{4}=2$, pois $2^2=4$.

Usando uma calculadora, é possível obter uma aproximação do número $\sqrt{2}$, em que utiliza apenas uma quantidade finita de casas após a vírgula; então, o uso da calculadora não nos garante que temos o número exato. Porém, com a aproximação de $\sqrt{2}$, por exemplo, podemos dar uma localização próxima de que a $\sqrt{2}$ está na reta real, conforme podemos ver na tabela:

Aproximação por falta	Aproximação por excesso	Diferença
1,4	1,5	0,1
1,41	1,42	0,01
1,414	1,415	0,001
1,4142	1,4143	0,0001
1,41421	1,41423	0,00001

Isso porque o é um número que fica entre 1 e 2 e está um pouco mais próximo do 1 que do 2. O número $\sqrt{2}\cong 1,41421356$. A leitura desse símbolo \cong é "aproximadamente".

Vale observar também que a soma de um número racional somado com um número irracional é sempre irracional. A soma de dois racionais é sempre racional e a soma de dois irracionais pode ser um número racional ou irracional, como podemos ver nos seguintes exemplos:

- 1) Soma de dois racionais: $\frac{2}{5} + \frac{6}{7} = \frac{14+30}{35} = \frac{44}{35}$
- 2) Soma de um racional com um irracional: $\sqrt{3} + 2$, a melhor representação é dessa forma, pois não temos como representar os números irracionais com todas as casas decimais aqui.
- 3) Soma de dois irracionais resultando um número irracional: $\sqrt{3} + \sqrt{3} = 2\sqrt{3}$.
- **4)** Soma de dois irracionais resultando um número racional: $\left(8-\sqrt{5}\right)+\sqrt{5}=8$

Exercícios resolvidos:

1) Simplifique a expressão a seguir: $(4-\sqrt{7})^2+8\sqrt{7}$

Resposta: Para simplificar essa expressão, devemos, primeiramente, resolver a potenciação, isto é, saber quanto vale $\left(4-\sqrt{7}\right)^2$. Para isso, podemos resolver de várias formas, uma delas, é utilizando os produtos notáveis: $(a-b)^2=a^2-2$. a. $b+b^2$

Assim, quando o a = 4 e $b = \sqrt{7}$, temos:

$$(4 - \sqrt{7}) = 4 - 2.4. \sqrt{7} + \sqrt{7}$$

ou seja,
$$(4 - \sqrt{7})2 = 16 - 8.\sqrt{7} + 7$$

Simplificando: $(4 - \sqrt{7})2 = 23 - 8.\sqrt{7}$.

Como a expressão original é $\left(4-\sqrt{7}\right)^2+8\sqrt{7}$, o que podemos fazer é substituir o valor que encontramos no desenvolvimento de $\left(4-\sqrt{7}\right)^2$ por $23-8\sqrt{7}$.

Assim, a expressão fica $(4 - \sqrt{7})^2 + 8\sqrt{7} = 23 - 8.\sqrt{7} + 8\sqrt{7}.$

Simplificando, a expressão fica: $\left(4-\sqrt{7}\right)^2+8\sqrt{7}=23$

2) Qual dos números é maior, $(1-\sqrt{2})^2$ ou 0?

Resposta: O número $1-\sqrt{2}$ é negativo, porém seu valor deve ser elevado ao quadrado. Como o produto de dois números negativos é um número positivo. Assim, o menor valor é o 0.

DICA

Pode-se utilizar a calculadora para ter um valor aproximado do número.

3) O número $\frac{1}{\sqrt{3}}$ e o número $\frac{\sqrt{3}}{3}$ são iguais? Justifique.

Resposta: Sim, porque podemos multiplicar o numerador e o denominador de $\frac{1}{\sqrt{3}}$ por $\sqrt{3}$. Assim, obtemos:

$$\frac{1}{\sqrt{3}}.\frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

REFERÊNCIAS

BONJORNO, J. R., GIOVANNI, J. R. e GIOVANNI JÚNIOR, J. R. Matemática – Uma nova abordagem – vols. 1 e 2 - Ensino Médio. São Paulo: FTP, 2011.

IEZZI, G. Fundamentos da Matemática Elementar – vol. 1. São Paulo: Atual, 2005; DOLCE O. Tópicos de Matemática – vol. 1. São Paulo: Atual, 1999.

Matemática: Ciência e Aplicações. São Paulo: Atual, 2004. NERY, C.; TROTTA, F. Matemática – Curso Completo. São Paulo: Moderna, 2001.