Lecture 10. From the Short to the Medium Run: The *IS-LM-PC* Model

Reading: Blanchard, Chapters 9, 13-1 and 13-2.

In the previous lecture...

 Goods (and services) Market + Financial Markets + Labor Market PS and WS Keynesian cross Money market • (Y, r) LM • (u,π) PC PC (relation) • (Y, π)

• We introduce price, wage, (un)employment, and production to our framework.

Various versions of the Phillips Curve

	Unemployment: u_t	Unemployment Gap: $u_t - u_n$
Benchmark	$\pi_t - \pi_t^e = (m+z) - \alpha u_t$	$\pi_t - \pi_t^e = -\alpha(u_t - u_n)$
$\pi_t^e = \bar{\pi}$	$\pi_t = (\bar{\pi} + m + z) - \alpha u_t$	$\pi_t = \bar{\pi} - \alpha(u_t - u_n)$
$\pi_t^e = \pi_{t-1}$	$\Delta \pi_t = (m+z) - \alpha u_t$	$\Delta \pi_t = -\alpha (u_t - u_n)$

•
$$u_n = \frac{m+z}{\alpha}$$

- Derivation
 - The Phillips curve (PC) relation (the labor market)
 - The IS-LM-PC model in the short/medium run

- Applications
 - The Zero Lower Bound and Deflation Spirals
 - Monetary policies
 - Fiscal policies
 - An increase in the oil price
 - Productivity shocks

- Derivation
 - The Phillips curve (PC) relation (the labor market)
 - The IS-LM-PC model in the short/medium run

- Applications
 - The Zero Lower Bound and Deflation Spirals
 - Monetary policies
 - Fiscal policies
 - An increase in the oil price
 - Productivity shocks

Derivation of the Phillips curve relation

- Goal: Write the Phillips curve in terms of and .
- The Phillips curve: $\pi_t \pi_t^e = -\alpha(u_t u_n)$
- Production function: Y = AN
- $Y = \mathcal{A}L(1-u)$.
- We define...

The natural level of employment: $N_n = L(1 - u_n)$

The natural level of output: $Y_n = \mathcal{A}N_n = \mathcal{A}L(1 - u_n)$

or the potential output

Derivation of the Phillips curve relation, continued

• The Phillips curve: $\pi_t - \pi_t^e = -\alpha(u_t - u_n)$

•
$$u = \frac{U}{L} = \frac{L-N}{L} = 1 - \frac{N}{L} = 1 - \frac{1}{A} \frac{Y}{L}$$

• $u_t - u_n = \left(1 - \frac{1}{A} \frac{Y}{L}\right) - \left(1 - \frac{1}{A} \frac{Y}{L}\right) = -\frac{1}{AL} \underbrace{(Y_t - Y_n)}$

• The PC Relation:

The PC Relation:
$$\pi_t - \pi_t^e = \frac{\alpha}{cAL} (Y_t - Y_n)$$

- Interpretation
- $Y \uparrow \rightarrow$ To produce more, more workers should be hired: N

$$\rightarrow u = \frac{L-N}{L}$$
 \rightarrow Workers' bargaining power

$$\rightarrow W$$
 \rightarrow Marginal costs of production

$$\rightarrow$$
 Firms set prices: P

$$\rightarrow$$
 Given $P_{t-1} = P(-1)$,

this leads to a inflation than expected: $\pi - \pi^e$

 \therefore The PC is upward sloping in the $(Y, \pi - \pi^e)$ plane.

We know that

Output gap =
$$0 \Leftrightarrow Y = Y_n \Leftrightarrow N = N_n$$

$$\Leftrightarrow u = u_n \quad \text{(Unemployment gap = 0)}$$

$$\Leftrightarrow$$
 $P = P^e \Leftrightarrow \pi = \pi^e \text{ (given } P(-1)\text{)}.$

• Therefore, the PC passes through $(Y_n, 0)$ in the $(Y, \pi - \pi^e)$ plane.

- Based on the assumption that $\pi^e = \pi(-1)$.
- PC passes through $(Y_n, 0)$. That is, when $Y = Y_n$, $\pi = \pi(-1)$.
- Point A: $Y > Y_n$ ($N N_n$ and $u u_n$).

- Derivation
 - The Phillips curve (PC) relation (the labor market)
 - The IS-LM-PC model in the short/medium run

- Applications
 - The Zero Lower Bound and Deflation Spirals
 - Monetary policies
 - Fiscal policies
 - An increase in the oil price
 - Productivity shocks

The IS-LM-PC Model

• IS:
$$Y = C(Y - T) + I(Y, r + x) + G$$

- LM: $r = \bar{r}$
- PC: $\Delta \pi = \pi \pi(-1) = \frac{\alpha}{AL}(Y Y_n)$
- Figures and analysis in the textbook are based on the accelerationist PC, i.e., $\pi_t^e = \pi_{t-1} = \pi(-1)$.

- The Short Run: the output gap and $\Delta\pi$ need not be 0.
- The Medium Run: $Y = Y_n$, $u = u_n$, and $\pi = \pi^e = \pi(-1)$.

The Short Run

• IS:
$$Y = C(Y - T) + I(Y, r + x) + G$$

• PC:
$$\Delta \pi = \pi - \pi(-1) = \frac{\alpha}{AL}(Y - Y_n)$$

- In this case, Y_A Y_n , u_A u_n , $\pi^e = \pi(-1)$.

From the short to the medium run

- In theory, there are two possible approaches.
- 1) Active policy regime: The CB adjusts \bar{r} to shift the LM curve until Y becomes Y_n .

2) Active policy regime: The government adjusts G and/or T to shift the IS curve until Y becomes Y_n .

From the short to the medium run

- In practice, the CB usually takes the role. Why?
- 1) The MP has shorter "policy lags" than the FP. It takes some time for the congress to pass a bill for new G and T.
- 2) The gov't has many other objectives (redistribution, providing public goods, etc.), while the CB can focus on the stabilization policy.

- But when $i \approx 0$ and the CB does not have enough remaining options, FP can be very important for the purpose.
- After the Great Recession and a long-lasting episode of the zero lower bound, people start to pay more attention to the active FP regime.
- In our introductory course, we focus on the active MP regime.

The Medium Run

• The short-run equilibrium: Point A.

$$Y_A > Y_n$$
, $u_A < u_n$, $\pi_A > \pi(-1)$.

- After realizing that the economy is heated too much, the CB will raise i and r to go to point A'.
- Over time, the economy moves along the IS and PC curves.

• The medium-run equilibrium: Point A'.

$$Y_{A}$$
, Y_{n} , u_{A} , u_{n} , π_{A} , $\pi(-1)$.

• r_n :

Then, why doesn't the CB change r to r_n right away?

1) Y_n , u_n , and r_n are not directly observable. So, the CB might want to adjust i (and r) slowly and see what happens.

2) It takes time for the economy to react to changes in the monetary policy. Therefore, although the CB changes r to r_n right away, the economy does not move from point A to A' immediately.

Figure 1: Historical Revisions in CBO Estimates of U.S. Potential Output.

Panel A: The Great Recession

- Congressional Budget Office estimates of Y_n , made in different years.
- It may take a long time to have a better guess of the current value of Y_n ...
- Source: Coibion, Gorodnichenko and Ulate (2018), The Cyclical Sensitivity in Estimates of Potential Output, Brookings Papers on Economic Activity, 343-434.

Policy makers think that gradual changes in i may be beneficial.

- "In their discussion of the relative merits of smaller and more frequent adjustments versus larger and less frequent adjustments ..., [FOMC] participants generally agreed that large adjustments had been appropriate when economic activity was declining sharply in response to the financial crisis. In current circumstances, however, most saw advantages to a more incremental approach that would involve smaller changes ... calibrated to incoming data."
 - Minutes of the FOMC video conference meeting, October 15, 2010.

It takes time for the effect of MP to materialize.

FIGURE 2. THE EFFECT OF MONETARY POLICY ON OUTPUT

- Responses of output to a 100bp increase in the interest rate.
- The "peak" effect occurs after about 2 years.
- The real effects of monetary policy vanishes after 4-5 years.

Figure 4. The Effect of Monetary Policy on the Price Level

- Responses of price level to a 100bp increase in the interest rate.
- The price level reacts negatively and very slowly.
- Source: Romer, C. D. and D. H. Romer (2004), A New Measure of Monetary Shocks: Derivation and Implications, *American Economic Review* 94(4), 1055-1084.

- Derivation
 - The Phillips curve (PC) relation (the labor market)
 - The IS-LM-PC model in the short/medium run

- Applications
 - The Zero Lower Bound and Deflation Spirals
 - Monetary policies
 - Fiscal policies
 - An increase in the oil price
 - Productivity shocks

The ZLB and Deflation Spirals

•
$$r_t = i_t - \pi_t^e = i_t - \pi_{t-1}$$

• (ZLB) $i_t \geq 0$

• Suppose that the economy is in a recession (point A) and i is already zero.

$$\Rightarrow r_t = -\pi_t^e = -\pi_{t-1}$$

$$\rightarrow r_{t+1} = -\pi_t > -\pi_{t-1} = r_t$$

• $r \uparrow$ over time.

The ZLB and Deflation Spirals

• $r \uparrow$ over time. \Rightarrow The economy moves further away from Y_n along the IS and PC curves.

- A fiscal intervention that shifts the IS curve to the right can help the economy to circumvent the deflation spirals.
- Or, the CB may try to make the inflation expectation anchored, i.e., $\pi^e = \bar{\pi}$. In this case, $\pi_A \bar{\pi} < 0$, and it does not necessarily lead to $\pi_t \downarrow$ and $r_t \uparrow$ over time.

The Natural Rate of Interest in the US

- r_n has been declining in the US (and in other advanced countries).
- Remember that $i=r+\pi^e$. As $r_n\downarrow$, and the CB tries to maintain low and stable inflation, the ZLB might be binding more frequently.
- This is why we care about the ZLB, deflation spirals, and unconventional MP (Ch. 23-4).
- Source: Laubach, T. and J. Williams (2003). Measuring the Natural Rate of Interest. Review of Economics and Statistics 85(4): 1063-1070.

- Derivation
 - The Phillips curve (PC) relation (the labor market)
 - The IS-LM-PC model in the short/medium run

- Applications
 - The Zero Lower Bound and Deflation Spirals
 - Monetary policies
 - Fiscal policies
 - An increase in the oil price
 - Productivity shocks

A Monetary Expansion

- Assume that $Y = Y_n$ initially (Point A)
- What happens if the CB lowers r from r_n to r_A ?
- In the short run, the LM curve . Point A' becomes the short-run equilibrium.
- Overtime, the CB observes inflationary pressure ($\Delta \pi$ 0). So, it raises i (and r).
- This process continues until the LM returns to the original level.
- The medium-run equilibrium is represented by point A''=A.

In the short run (A vs. A')

- Y increases.
- *i* and *r* decrease.
- How about the following variables?
 - C
 -]
 - G
 - $\bullet G T$
 - *u*
 - W/P
 - $\bullet \pi$

In the medium run (A vs. A'')

- Y and r do not change.
- How about the following variables?
 - (
 - *I*
 - G
 - \bullet G-T
 - *u*
 - W/P
 - π
 - 1

- Derivation
 - The Phillips curve (PC) relation (the labor market)
 - The IS-LM-PC model in the short/medium run

Applications

- The Zero Lower Bound and Deflation Spirals
- Monetary policies
- Fiscal policies
- An increase in the oil price
- Productivity shocks

A Fiscal Consolidation

- Assume that $Y = Y_n$ initially (Point A)
- What happens if the government increases *T* to reduce its debt?
- In the short run, the IS curve . Point A' becomes the short-run equilibrium.
- Overtime, the CB observes that π decreases ($\Delta \pi$ 0). So, it lowers i (and r).
- This process continues until the LM curve shifts to the LM'.
- The medium-run equilibrium is represented by point A".

In the short run (A vs. A')

- Y decreases.
- r does not change.
- How about the following variables?
 - (
 - *I*
 - G
 - \bullet G-T
 - *u*
 - W/P
 - \bullet π
 - 1

In the medium run (A vs. A'')

- *Y* does not change.
- r decreases.
- How about the following variables?
 - C
 - *I*
 - G
 - \bullet G-T
 - *u*
 - W/P
 - π
 - į

- Derivation
 - The Phillips curve (PC) relation (the labor market)
 - The IS-LM-PC model in the short/medium run

- Applications
 - The Zero Lower Bound and Deflation Spirals
 - Monetary policies
 - Fiscal policies
 - An increase in the oil price
 - Productivity shocks

Oil price index

- Two spikes in the 1970s
- The OPEC (the Organization of Petroleum Exporting Countries), a cartel of oil producers, acted as a monopoly and increased prices by reducing the supply of oil at that time.

Source: Series OILPRICE, CPIAUSCL Federal Reserve Economic Data (FRED) http://research. stlouisfed.org/fred2/. The value of the index is set equal to 100 in 1970.)

- Inflation rate based on the GDP deflator (blue) and growth rate of real GDP (red)
- Some people associate the recession in the 70s (stagflation = low output and high inflation) with the rise in oil prices.

- Price setting rule: P = (1 + m) MC, where MC = W/A.
- An increase in the oil price will raise the marginal costs of production (MC) in the real world.
- But we assumed that $Y = \mathcal{A}N$; therefore $MC = W/\mathcal{A}$, which is not a function of the oil price.
- Thus, we instead raise the markup (m) to capture the increase in the oil price and its effects on the other parts of the economy.

Markup shocks, u_n , and Y_n

- $m \uparrow \rightarrow PS$ shifts downward
- \rightarrow The natural rate of unemployment increases from u_n to u_n' .
- \rightarrow The natural level of output decreases from Y_n to Y_n' .

 Hiring less workers and producing less output becomes the medium-run equilibrium.

A Rise in the Oil Price

- Assume that $Y = Y_n$ initially (Point A)
- What happens if $m \uparrow (or, the oil price \uparrow)$?
- In the short run, the PC curve X_n as X_n to X_n' . Point A' becomes the short-run equilibrium without changes in MP and FP.
- Overtime, the CB observes that π increases $(\Delta \pi \quad 0)$. So, it i (and r).
- This process continues until the LM curve shifts to the LM'.
- The medium-run equilibrium is represented by point A''.

In the short run (A vs. A')

- Y and r do not change.
- How about the following variables?
 - (
 - *I*
 - G
 - $\bullet G T$
 - *u*
 - W/P
 - π
 - 1

In the medium run (A vs. A'')

- Y decreases.
- r increases.
- How about the following variables?
 - C
 -]
 - G
 - \bullet G-T
 - *u*
 - W/P
 - π
 - 1

Can either MP or FP help?

- One may try to maintain the original output Y_n by maintaining the current r, G, and T.
- ...at the cost of rising inflation rate ($:\Delta\pi>0$ at point A').
- One may instead want to drive the economy to the new medium-run output Y_n quickly by taking contractionary MP and/or FP
- ...at the cost of a fast decline in output in the short run.
- Some people think that FRB took the first approach in the 70s, which partly explains the great inflation during the period.
- Then, FRB raised interest rates dramatically in the early 80s under the leadership of Paul Volcker, who was a chairperson of FRB from 1979 to 1987. This lowered π at the cost of initiating a recession.

- Note that during the 70s, the FRB maintained i around π , implying that (ex-post) r was around 0 or even negative.
- Then, since the early 80s, $i > \pi$ and (ex-post) r became positive.

Outline

- Derivation
 - The Phillips curve (PC) relation (the labor market)
 - The IS-LM-PC model in the short/medium run

Applications

- The Zero Lower Bound and Deflation Spirals
- Monetary policies
- Fiscal policies
- An increase in the oil price
- Productivity shocks

Productivity shocks (Chapters 13-1 and 13-2)

- What happens to the economy in the short and medium run in response to technological progress?
- An increase in productivity (or a positive productivity shock) is represented by $\mathcal{A} \uparrow$ in our framework.

• We first study the PC curve. Then, we investigate the IS curve and the short and medium-run equilibrium.

u_n and Y_n in our model when $\mathcal{A} \uparrow$

- WS Relation: $W/P = \mathcal{A}F(u,z)$
- PS Relation: $W/P = \mathcal{A}/(1+m)$
- u_n satisfies the following condition:

$$\mathcal{A}F(u_n, z) = \frac{\mathcal{A}}{1+m}$$

- $\Rightarrow u_n$ does not change.
- $\Rightarrow N_n = L(1 u_n)$ does not change.
- $Y_n = \mathcal{A}N_n$ increases as $\mathcal{A} \uparrow$.
- The PC curve shifts to the right.

The empirical evidence

- Because u_n , N_n , and Y_n are not directly observable, it is not easy to empirically test (i.e. using data) the model implication that u_n and N_n does not depend on \mathcal{A} .
- But we can infer indirectly from the data that N_n does not seem to be very sensitive to \mathcal{A} .
- For example, in the U.S., the average hours worked per person did not change much for the working age population during the last century.
- That is, how much people work did not change much, although technology improved dramatically since 1900.

- Average Weekly Hours Worked per Person, by Age Group in the U.S.
- Working hours for the working age population did not change much.
- Source: Ramey, V. and N. Francis (2009). A Century of Work and Leisure. *American Economic Journal: Macroeconomics* 1(2): 189-224.

The IS curve when $\mathcal{A} \uparrow$

- The prospect of higher growth in the future
 - \rightarrow consumer confidence $\uparrow \qquad \rightarrow$
- The prospect of higher profits in the future
 - → stock price ↑ (you expect more dividend in the future)
 - → consumers now feel more wealthy
- Because firms need to put the new technology in place and they want to produce more when $\mathcal A$ is high, investment demand .

• As a result, the IS curve shifts to the right.

The IS shifts to the right. But, by how much?

- In the textbook, Blanchard discusses why IS may ← (like IS'). In this course, we focus on cases where IS → (like IS").
- Suppose that

•
$$\mathcal{A} < \mathcal{A}'$$
, $Y_n = \mathcal{A}N_n < Y_n' = \mathcal{A}'N_n$

•
$$Y_A = Y_n$$
.

- Case 1) $Y'' Y_A < Y'_n Y_n$
- Case 2) $Y'' Y_A = Y'_n Y_n$
- Case 3) $Y'' Y_A > Y'_n Y_n$
- Below, we consider Case 1. Cases 2 and 3 are left as an exercise.

A positive productivity shock

- Assume that $Y = Y_n$ initially (Point A)
- What happens if $A \uparrow$?
- Point A' represents the short-run equil.
 - PC \rightarrow as $Y_n \uparrow$ to Y'_n
 - IS → by less than PC (Case 1)
- Overtime, the CB observes that π decreases $(\Delta \pi < 0)$. So, it decreases i (and r) until the LM curve shifts to the LM'.
- The medium-run equilibrium is represented by point A".

In the short run (A vs. A')

- *Y* ↑
- r does not change.
- How about the following variables?
 - (
 -]
 - *u*
 - W/P
 - π
 - i

In the medium run (A vs. A'')

- Y increases.
- r decreases.
- How about the following variables?
 - (
 -]
 - *u*
 - W/P
 - π
 - 1

In the next class...

We move to our last topic in this semester, the economic growth.

- Basic facts on the (modern) economic growth (Chapter 10)
- The Solow growth model (Chapters 11, 12)