International Rectifier

HEXFET® Power MOSFET

- Dynamic dv/dt Rating
- P-Channel
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements

 $V_{DSS} = -200V$ $R_{DS(on)} = 3.0\Omega$ $I_{D} = -1.8A$

Description

The HEXFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of the HEXFET design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, VGS @ -10 V	-1.8	
I _D @ T _C = 100°C	Continuous Drain Current, VGS @ -10 V	-1.0	Α
IDM	Pulsed Drain Current ①	-7.0	
P _D @ T _C = 25°C	Power Dissipation	20	W
	Linear Derating Factor	0.16	W/°C
V _{GS}	Gate-to-Source Voltage	±20	V
ILM	Inductive Current, Clamp	-7.0	Α
dv/dt	Peak Diode Recovery dv/dt ③	-5.0	V/ns
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to +150	ô
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1 N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Ruc	Junction-to-Case			6.4	
Recs	Case-to-Sink, Flat, Greased Surface	_	0.50	_	_ ∘c/w
ReJA	Junction-to-Ambient			62]

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-200	_	-	٧	V _{GS} =0V, I _D =-250μA
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient	_	-0.23	_	V/°C	Reference to 25°C, ID=-1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	-	_	3.0	Ω	V _{GS} =-10V, I _D =-0.90A ④
V _{GS(th)}	Gate Threshold Voltage	-2.0	_	-4.0	٧	V _{DS} =V _{GS} , I _D =-250μA
g _{fs}	Forward Transconductance	0.90	-	_	S	V _{DS} =-50V, I _D =-0.90A ④
IDSS	Drain-to-Source Leakage Current	_	_	-100		V _{DS} =-200V, V _{GS} =0V
פטטי	Diam-to-Source Leakage Current	_	_	-500	μΑ	V _{DS} =-160V, V _{GS} =0V, T _J =125°C
I _{GSS}	Gate-to-Source Forward Leakage	_	_	-100	nA	V _{GS} =-20V
IGSS	Gate-to-Source Reverse Leakage	_	_	100	l na	V _{GS} =20V
Q_g	Total Gate Charge	_	_	11		I _D =-3.5A
Q _{gs}	Gate-to-Source Charge		_	7.0	nC	V _{DS} =-160V
Q _{gd}	Gate-to-Drain ("Miller") Charge	_		4.0		V _{GS} =-10V See Fig. 11 & 18 ④
t _{d(on)}	Turn-On Delay Time	_	8.0	_		V _{DD} =-100V
tr	Rise Time	_	15	_	ns	I _D =-0.90A
t _{d(off)}	Turn-Off Delay Time		10	_	113	$R_{G}=50\Omega$
tf	Fall Time	1	8.0	_		R _D =110Ω See Figure 17 ④
LD	Internal Drain Inductance	_	4.5	_	niH	Between lead, 6 mm (0.25in.)
Ls	Internal Source Inductance	_	7.5		1117	from package and center of die contact
Ciss	Input Capacitance	_	170	_		V _{GS} =0V
Coss	Output Capacitance	_	50	_	рF	V _{DS} =-25V
Crss	Reverse Transfer Capacitance	_	15	_		f=1.0MHz See Figure 10

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Мах.	Units	Test Conditions
Is	Continuous Source Current (Body Diode)	_	-	-1.8	_	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①	_	_	-7.0	A	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage		_	-5.8	٧	T _J =25°C, I _S =-1.8A, V _{GS} =0V @
trr	Reverse Recovery Time	_	240	360	ns	T _J =25°C, I _F =-1.8A
Qrr	Reverse Recovery Charge	-	1.7	2.6	μC	di/dt=100A/μs ④
ton	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+Lp)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature (See Figure 5)
- ③ Isp≤-1.8A, di/dt≤70A/μs, V_{DD}≤V_{(BR)DSS}, TJ≤150°C

② Not Applicable

ⓐ Pulse width ≤ 300 μ s; duty cycle ≤2%.

Fig. 1 — Typical Output Characteristics

Fig. 3 — Typical Saturation Characteristics

Fig. 2 — Typical Transfer Characteristics

Fig. 4 — Maximum Safe Operating Area

Fig. 5 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

Fig. 6 — Typical Transconductance Vs.

Drain Current

Fig. 8 — Breakdown Voltage Vs. Temperature

Fig. 10 — Typical Capacitance Vs.

Drain-to-Source Voltage

Fig. 7 — Typical Source-Drain Diode Forward Voltage

Fig. 9 — Normalized On-Resistance Vs. Temperature

Fig. 11 — Typical Gate Charge Vs. Gate-to-Source Voltage

Fig. 12 — Typical On-Resistance Vs.

Drain Current

Fig. 14 — Power Vs. Temperature Derating Curve

Fig. 17a - Switching Time Test Circuit

Fig. 13 — Maximum Drain Current Vs.

Case Temperature

Fig. 15 - Clamped Inductive Test Circuit

Fig. 16 — Clamped Inductive Waveforms

Fig. 17b - Switching Time Waveforms

Fig. 18a — Basic Gate Charge Waveform

Fig. 18b — Gate Charge Test Circuit

Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1506

Appendix B: Package Outline Mechanical Drawing - See page 1509

Appendix C: Part Marking Information – See page 1516

Appendix E: Optional Leadforms - See page 1525

International Rectifier