දෙවන වාර ඇගයීම් වැඩසටහන - 2020

විදහාව		11 ලෝණිය	පිළිතුරු පතුය
	•		

I කොටස

1	2	11	2	21	4	31	3
2	2	12	3	22	3	32	3
3	4	13	1	23	3	33	3
4	1	14	4	24	3	34	2
5	3	15	3	25	3	35	4
6	2	16	2	26	4	36	1
7	3	17	2	27	2	37	1
8	1	18	2	28	4	38	3
9	3	19	3	29	4	39	2
10	2	20	2	30	4	40	1

${f A}$ - කොටස වාූහගත රචනා

01.(A)	(i)	<u>මෙවරස</u>	(ලකුණු	01)	
	(ii)	ඇඳුම / දියවැඩියාව	(ලකුණු	01)	
	(iii)	<u>ෙ</u> පාස්ෆරස්	(ලකුණු	01)	
	(iv)	සෝඩියම් ක්ලෝරයිඩ්	(ලකුණු	01)	
	(v)	සමෙහි ඇති දහදිය වාෂ්ප කර හැරීමට දේහ උෂ්ණත්වය වැය කළ විට	ඉහළ ගිය	ා දේහ	
		උෂ්ණත්වය ඉක්මනින්ම නියමිත අගයට ගෙන ඒමට	(ලකුණු	01)	
(B)	(i)	මල බැඳිම	(000	02)	
(D)	(ii)	ඔක්සිජන් / වාතය හා ජලය / ජලවාෂ්ප	(ලකුණු (ලකුණු		
	(iii)	Fe ₂ O ₃ .XH ₂ O	(ලකුණු (ලකුණු		
			(ලකුණු (ලකුණු		
	(iv)	තාපදායකයි	(ලකුණු	01)	
(C)	(i)	310	(ලකුණු	01)	
	(ii)	උෂ්ණත්වය තුල කිුියාකරණ පුතිරෝධය වැනි ගුණයක් මත	(ලකුණු		
	(iii)	(ඝන) අයිස් 1kg ක ස්කන්ධයක් රත් කර දුව බවට පත්කිරිම සඳහා අව			
		තාප පුමාණය ජූල් 3.36×10 ⁵ ක් බව	(ලකුණු	01)	
	(iv)	ගතික සමතුලිත අවස්ථාව	(ලකුණු		
			- • -		
02.(A)	(i)	බහිස්සුාවීය පද්ධතියට	(ලකුණු	01)	
	(ii)	රුධිරයේ අඩංගු නයිටුජනීය අපදුවා හා ලවණ වර්ග, වැඩිපුර ඇති ජලය	ය, පෙරා	රුධිරයෙන්	
		වෙන් කර ගැනීම.	(ලකුණු	01)	
	(iii)	4 යි. වම් කර්ණිකාව, වම් කෝෂිකාව, දකුණු කර්ණිකාව, දකුණු කෝෂි	මි කාව	(ලකුණු 01)	
	(iv)	පුප්එුශීය රුධිර සංසරණය	(ලකුණු	01)	
	(v)	සාපේක්ෂව ඔක්සිජන් සාන්දුණය වැඩි රුධිරය ඔක්සිජනීකෘත රුධිරයදි	∄.		
		සාපේක්ෂව ඔක්සිජන් සාන්දුණය අඩු රුධිරය ඔක්සිජනීහෘත රුධිරයයි.	. (ලකුණු	02)	
(B)	(i)	ඔක්සිජන්	(cm &	01)	
(D)	(ii)		(ලකුණු (ලකුණ		
		නිවැරදි රූපය ඇඳ නම් කිරීමට $6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$	(ලකුණු (ලකුණු		
	(iii)		(ලකුණු (ලකුණු		
	(iv)	සූර්ය ශක්තිය> රසායනික ශක්තිය	(ලකුණු	01)	

03.(A) (i) a. සමජාතීය b. විෂමජාතීය මිශුණ c. මිශුණය පුරාම සංයුතිය ඒකාකාර නැත. d. ඒකකාකාරව පවතී. e. විනිවිද පෙනෙන සුළු බව, වර්ණය, ඝනත්වය වැනි ලක්ෂණ මිශුණය පූරා ඒකාකාරව නොපවතී. (ලකුණු 03) (ii) a. කොපර් හා සින්ක් (ලකුණු 01) b. කොපර් (ලකුණු 01) (iii) පද්ධතියේ උෂ්ණත්වය, දුාවකයේ ස්වභාවය, දුාවායේ ස්වභාවය (ලකුණු 01) ගුීස් නිර්ධුැවීයය, භූමිතෙල් ද නිර්ධුැවීය, නිර්ධුැවීය දුවාා නිර්ධුැවීය දුාවකවල දියවේ. (iv) නිර්ධැවීය, ශීස් ධැවීය දාවකයක් වන ජලයේ දිය නොවේ. (නිරුධැවීය දුවා දියවන්නේ නිර්ධැවීය දාවකවලයි.) (ලකුණු 01) දුවාගේ ස්කන්ධ භාගය = 0.1(v) (ලකුණු 02) 200

(B) (i) විඛාදක ගුණය (ලකුණු 01)

(ii) ඇඹුල් රසය (ලකුණු 01) දෙහි, විනාකිරි, බිලිං වැනි පිළිතුරු (iii)

(ලකුණු 01) (iv) (ලකුණු 01) රතු

pH කඩදාසි (v) (ලකුණු 01)

04.(A) (i) නිවැරදි කිරණ සටහනට (ලකුණු 01) (ii) උත්තල කාචයේ සිට නාභිය දුර මෙන් දෙගුනයකට වඩා අඩු දුරකින් වස්තුව තැබීමෙන්

(ලකුණු 01) (iv) a. ආලෝක වර්තනය (ලකුණු 02) b. do කිරණයෙන් (ලකුණු 02)

(ලකුණු 02) යාන්තුික තර∘ග (v) (ලකුණු 02)

(B) (i) X- වෝල්ට් මීටරය Y- ඇමීටරය (ලකුණු 02) (ii) ශේණිගතව (ලකුණු 01)

(iii)

(ලකුණු 02)

පරිපථයේ උෂ්ණක්වය නියකව පවත්වා ගැනීමට (iv) (ලකුණු 02)

(v) විභව අන්තරය (V) විභව අන්තරය (ලකුණු 01) (A) B කොටස ජීව පරම්පරාවක් මිය යාමට පෙර තම වර්ගයා බෝ කිරීම. 05.(A) (i) (ලකුණු 01) ශ්වසනය, චලනය වැනි (ii) (ලකුණු 01) (iii) මව් පරම්පරාවට සර්ව සම වූ නව ශාක ලබා ගත හැකි වීම. (ලකුණු 01) (iv) (ලකුණු 01) (v) a. පූෂ්ප පරාගණයෙන් තොරවම ඵල හටගැනීම. (ලකුණු 01) b. බීජ රහිත වීම. (ලකුණු 01) පුෂ්පයක පරිණත පරාග එම විශේෂයේම පුෂ්පයක කලංකය මත පතිත වීමේ කිුයාවලිය (vi) (ලකුණු 01) (vii) වැලිස්තේරියා පුෂ්ප ජලය මගින් පරාගණය වන නිසා (ලකුණු 01) (B) (i) (ලකුණු 01) (ii) ඩිම්බ සංසේවනය සිදුවීම. (ලකුණු 02) (iii) හෝ ඩිම්බයක (ලකුණු 02) ශුකුාණුවක Χ (**C**) (i)RR හෝ rr (ලකුණු 02) (ii) (ලකුණු 02) (iii) r r R Rr Rr (ලකුණු 02) (iv) (ලකුණු 02) රතු : සුදු 1:1 06.(A) (i) විසර්ජක නලය අම්ලය තුළ ගිලී තිබීම. (ලකුණු 01) (ii) ප්ලාස්කුව තුල පීඩනය වැඩි වී පුපුරා යාම. (ලකුණු 01) (iii) (ලකුණු 02) O = C - Oa. $\frac{11}{44} = 0.25$ (iv) (ලකුණු 02) b. මවුල 1 ක අණු $=6.022 \times 10^{23}$ මවුල 0.25 අණු = $\frac{6.022 \times 10^{23}}{1} \times 0.25$ H2 වායුවට අමතරව වෙනත් වායුන් ද නිපදවීම සිදු වීම. (v) (ලකුණු 02) $Mg + 2HCl \longrightarrow MgCl_2 + H_2$ (vi) (ලකුණු 02) අම්ල - දෙහි යුෂ / සබන් දියර / ආප්ප සෝඩා / ලුණු දියර (**B**) (i) (ලකුණු 02) (ii) දෙහි යුෂ (ලකුණු 01) $H^{+}_{(aq)} + OH^{-}_{(aq)}$ \longrightarrow $H_2O_{(l)}$ (iii) (ලකුණු 01) (iv) ජලීය දුාවණයක දී පූර්ණ ලෙස විසටනයට ලක්වන අම්ල (ලකුණු 01) අම්ලයේ හෝ හෂ්මයේ පුබලතාව පිළිබඳ දැන ගත හැකි වීම. (v) (ලකුණු 02) අම්ල හා භෂ්ම උදාසීනකරණය තාපදායක පුතිකිුයාවක් නිසා / පුතිකිුයාවේ දී පරිසරයට (vi) තාපය මුදා හරින නිසා (ලකුණු 01)

(vii)

(ලකුණු 02)

07.(A) (i) ස්ලින්කිය

(ලකුණු 02)

(ii) අන්වායම තරංග

(ලකුණු 01)

(iii)

විදාුුුත් චුම්බක තරංග	යාන්තිුක තරංග
පුචාරණයට පදාර්ථමය මාධාායක් අවශාා	පුචාරණයට පදාර්ථමය මාධාsයක් අවශාs ය.
නැත.	නැත.
රික්තයකදී නියත වේගයකින් ගමන් කරයි.	එමස් නොවේ.

(ලකුණු 02)

(iv) තරංගයේ පුවේගය = සංඛානතය imes අන්වායාම තරංග (ලකුණු 02)

(v) හමඩ සැර (ලකුණු 01)

(B) (i) ආකිමිඩිස් මූලධර්මය (ලකුණු 02)

(ii) අඩු ය. (ලකුණු 01)

(iii) 0.05 kg (ලකුණු 01)

(iv) වස්තුවේ පරිමාවට (ලකුණු 01)

(v) විස්ථාපිත තරලයේ බරට හා වස්තුවේ බරෙහි අඩුවීමට (තුලාවේ පෙන්වන) (ලකුණු 02)

 $({
m vi})$ විස්ථාපිත තරල පරිමාව $=500~{
m m}l$

 $= 500 \text{ cm}^3$

 1 cm^3 ක ස්කන්ධය = 1 g 500 cm^3 ක ස්කන්ධය = 500 g

 500 cm^3 ක සකනයය -500 g $= \frac{500}{1000} \times 10^5 \text{ N}$

 $-\frac{1000}{1000} = 5 \text{ N}$

(විස්ථාපන තරල බර = උඩුකරු තෙරපුම) (ලකුණු 02)

(vii) උඩුකුරු තෙරපුම් බලය = වස්තුවේ බර (ලකුණු 01)

(viii) දුව මානය (ලකුණු 01)

- 08.(A) (i) ඉසෙල \longrightarrow පටක \longrightarrow අවයව \longrightarrow පද්ධති \longrightarrow ජීවියා (ලකුණු 01)
 - (ii) මහා පුාචීරයේ පේශි සංකෝචනය වී එහි වකුභාවය අඩු වී උර කුහරයේ පරිමාව වැඩි කර ගැනීම හා අන්තර් පර්ශුක පේශි සංකෝචනය වී පර්ශු ඉහලට එසවී උරතලය ඉදිරිය නෙරා ඒමෙන් ද උරකුහර පරිමාව වැඩි කර ගැනීම. (ලකුණු 02)

(iii) ගර්ත බිත්ති තුනී වීම, තෙත්ව පැවතීම, පාරගමා වීම (ලකුණු 02)

(iv) පිත ගබඩා කර තබා ගැනීම (ලකුණු 01)

(v) ඉන්සියුලින් හා ග්ලුකගන් (ලකුණු 02)

(vi) මල නිපදවෙන්නේ ආහාර ජීර්ණයේ දී ජීර්ණය නොවී ඉතිරිවන කොටස්වලින් ය. බහිස්සුාවී දවා යනු ජීව සෛල තුල සිදුවන වෛ රසායනික පුතිකියාවල දී සෑදෙන නිශ්පයෝජන ඵලය. ආහාර ජීර්ණය ජෛව රසායනික පුතිකියාවක් නොවන බැවින්එහිදී සෑදෙන මල බහිස්සුාවී දුවායක් ද නොවේ. (ලකුණු 01))

(B) (i)

- (ලකුණු 03) (ii) 3 ms⁻¹ (ලකුණු 01)
- (ii) 3 ms⁻¹ (ලකුණු 01) (iii) නැත (ලකුණු 01)
- $(iv) \qquad \frac{1}{2} \times 4 \times 2 = 4 m \qquad (easi 02)$
- (v) තත්පර 8 සිට 10 දක්වා (ලකුණු 01)
- (vi) ත්වරණය = $\frac{3}{2}$ = 1.5 ms⁻² (ලකුණු 02)
- 08.(A) (i) 2 , 1 (ලකුණු 01)
 - (ii) 2 යි. K හා S L හා T (ලකුණු 03)
 - (iii) අයනික (ලකුණු 01)
 - (iv) T_2Q (ලකුණු 01)
 - (v) වායු (ලකුණු 01)
 - (vi) S (ලකුණු 01)
 - (vii) a. K b. R (ලකුණු 02)
 - (B) (i) පළමු මාධා (ලකුණු 01)
 - (ii) a. 90° (ලකුණු 01)
 - b. අවධි කෝණය (ලකුණු 01)
 - (iii)

- (ලකුණු 03)
- (iv) පූර්ණ අභාන්තර පරාවර්තනය (ලකුණු 01)
- (C) (i) මෝටරය 230~V විභවයකට සම්බන්ධ කළ විට එය කුියාත්මක වීමේ දී තත්පරයට ජූල 2300ක ශක්තියක් නිදහස් වන බව (ලකුණු 01)
 - (ii) $\begin{array}{ccc} P &= VI \\ 2300 &= 230 \times I \\ I &= 10A \end{array}$ (ලකුණු 02)