4.2. Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

Александр Романов Б01-110

1 Введение

1.1 Краткое описание

С помощью магнитного спектрометра исследуется энергетический спектр β -частиц при распаде ядер Cs^{137} и определяется их максимальная энергия. Калибровка спектрометра осуществляется по энергии электронов внутренней конверсии Cs^{137}

1.2 Экспериментальная установка

Рис. 1: Схема β -спектрометра с короткой магнитной линзой

Рис. 2: Блок-схема установки

2 Работа

Откачаем воздух из полости спектрометра. Включим вакуумметр. Включим формироватлель инпульсов, питание магнитной линзы и уменьшим ток через неё до нуля. Запустим измерение спектра в программе на ПЭВМ длительностью в 100с. Будем измерять с шагом тока через катушку равным 0.2A.

Изобразим это графически:

Вспомним следующую формулу:

$$\frac{\sqrt{N(p)/t}}{p} \simeq E_e - E$$

I, A	N	N_{err}
0.20	114	11
0.40	136	12
0.60	150	12
0.80	273	17
1.00	556	24
1.20	929	30
1.40	1189	34
1.60	1394	37
1.80	1489	39
2.00	1496	39
2.20	1449	38
2.40	1089	33
2.60	792	28
2.80	396	20
3.00	422	21
3.10	1276	36
3.15	1935	44
3.20	2279	48
3.25	2447	49
3.30	2229	47
3.35	1759	42
3.40	1487	39
3.50	602	25
3.60	265	16
3.78	82	9
4.00	80	9
4.20	57	8

Таблица 1: Результаты измерения числа N от тока на катушке $I\ (t=100s)$

Проведём преобразования наших данных и построим график $\frac{\sqrt{N/t}}{I}$ от I (график Ферми-Кюри):

Рис. 3: График Ферми-Кюри

Аппроксимируем график прямой на линейном участке:

$$\frac{\sqrt{N/t}}{I} = (-0.114 \pm 0.006) * K + (0.410 \pm 0.09)$$

По пересечению линии с осью абсцисс определим E_e :

$$E_e = 666 \pm 6 keV$$

Полученное значение немного больше энергии электронов внутренней конверсии $(634\;keV)$, что отлично согласуется с теорией

3 Выводы

В результате выполнения работы:

- 1. Был изучен β -спектр при распаде ядра Cs^{137}
- 2. Был получен и исследован график Ферми-Кюри и получено значение энергии $E_e = 666 \pm 6 keV$