

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	

Отчет по лабораторной работе № 4 по курсу «Моделирование»

Тема	Моделирование простейшей СМО			
Студе	ент Виноградов А. О.			
Групі	ла <u>ИУ7-76Б</u>			
Оценка (баллы)				
Преп	одаватель Рудаков И. В.			

1 Теоретическая часть

1.1 Закон появления сообщений

Согласно заданию лабораторной работы для генерации сообщений используется равномерный закон распределения. Случайная величина имеет равномерное распределение на отрезке [a,b], если её функция плотности p(x) имеет вид:

$$p(x) = \begin{cases} \frac{1}{b-a}, \text{ если } x \in [a, b], \\ 0, \text{ иначе.} \end{cases}$$
 (1.1)

Функция распределения F(x) равномерной случайной величины имеет вид:

$$F(x) = \begin{cases} 0, \text{ если } x < a, \\ \frac{x-a}{b-a}, \text{ если } a < xb, \\ 1, \text{ если } x > b. \end{cases}$$
 (1.2)

Интервал времени между появлением i-ого и (i-1)-ого сообщения по равномерному закону распределения вычисляется следующим образом:

$$T_i = a + (b - a) \cdot R,\tag{1.3}$$

где R — псевдослучайное число от 0 до 1.

1.2 Закон обработки сообщений

Согласно заданию лабораторной работы для генерации сообщений используется нормальный закон распределения. Случайная величина имеет равномерное распределение на отрезке [a, b], если ее плотность распределения p(x) и функция распределения F(x) равны

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b; \\ 0, & x < ax > b. \end{cases}, F(x) = \begin{cases} 0, & x < a; \\ \frac{x-a}{b-a}, & a \le x \le b; \\ 1, & x > b. \end{cases}$$
(1.4)

1.3 Принцип Δt

Принцип Δt заключается в последовательном анализе состояний всех блоков в момент $t + \Delta t$ по заданному состоянию блоков в момент t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов, задаваемых распределениями вероятности.

В результате принимается решение о том, какие общесистемные события должны имитироваться программной моделью на данный момент времени. Основной недостаток: значительные затраты машинного времени на реализацию моделирования системы. При недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных результатов при моделировании. К достоинствам относится равномерная протяжка времени.

1.4 Событийный принцип

При использовании событийного принципа, состояние всех блоков имитационной модели анализируется лишь в момент появления какого-либо события. Момент поступления следующего события определяется минимальным значением из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояния каждого из блоков системы.

2 Результат

На рисунке 2.1 приведен пример работы программы.

Лабораторная работа #4	_		×		
Шаг по времени: 0,10 違					
Общее число сообщений: 500					
Генератор а 0,00	b 10,00 🛊				
Обслуживающий автомат м 5	σ2 2,00	P 0,30	•		
Промоделировать					
Максимальная длина очереди:					
Принцип ∆t: 166 🕏					
Событийный принцип: 154					

Рисунок 2.1 – Пример работы программы