Correction

Intervalles de fluctuation

I.1

1.
$$f_1 = \frac{46}{100} = 0,46 \text{ et } f_2 = \frac{1275}{2500} = \boxed{0,51}.$$

2. p = 0.55; on a $0.2 \le p \le 0.8$ et $n = 100 \ge 25$.

L'intervalle de fluctuation au seuil de 95 % est :
$$I = \left[p - \frac{1}{\sqrt{n}}; \ p + \frac{1}{\sqrt{n}} \right] = \left[0,55 - \frac{1}{\sqrt{100}}; \ 0,55 + \frac{1}{\sqrt{100}} \right] = \left[0,45; \ 0,65 \right].$$

 $f_1 \in I$. Ce centre est donc **représentatif** du résultat national au risque d'erreur de 5 %.

3. p=0.55: on a $0.2 \le p \le 0.8$ et $n=2500 \ge 25$. L'intervalle de fluctuation au seuil de 95 % est :

$$I = \left[p - \frac{1}{\sqrt{n}}; p + \frac{1}{\sqrt{n}} \right] = \left[0.55 - \frac{1}{\sqrt{2500}}; 0.55 + \frac{1}{\sqrt{2500}} \right] = \left[0.53; 0.57 \right]$$

4. $f_2 \notin I$. Ce centre n'est donc pas représentatif du résultat national au risque d'erreur de 5 %.

I.2

1. p = 0.791; on a $0.2 \le p \le 0.8$ et $n = 870 \ge 25$.

L'intervalle de fluctuation asymptotique au seuil de 95 % est

$$I = \left[p - \frac{1}{\sqrt{n}}; \ p + \frac{1}{\sqrt{n}} \right] = \left[0.791 - \frac{1}{\sqrt{870}}; \ 0.791 + \frac{1}{\sqrt{870}} \right] \approx \left[0.757; \ 0.825 \right].$$

2.
$$f = \frac{339}{870} \approx 0.39$$

La fréquence des personnes d'origine mexicaine dans les personnes convoquées n'appartient pas à cet intervalle dans les personnes convoquées n'appartient pas à cet intervalle.

3. On peut en conclure qu'au risque d'erreur de 5 %, l'échantillon des jurés n'est pas représentatif de la population. Il a donc raison d'attaquer ce jugement au risque d'erreur de 5 %.

Remarque: De plus, comme f est strictement inférieur à la borne inférieure de I, en particulier que les américains d'origine mexicaine étaient sous-représentés dans les personnes convoquées pour être jurés.

intervalles de confiance II

II.1

Dans une grande ville où la propreté des trottoirs est souvent critiquée, la municipalité a organisé un sondage, par tirage aléatoire, auprès de 400 foyers. Elle apprend ainsi que 78 foyers de cet échantillon sont propriétaires de chiens (ou plusieurs).

Peut-elle savoir plus sur le pourcentage des propriétaires de chiens de cette ville?

La taille de l'échantillon est n = 400; la fréquence de foyers, propriétaires de chiens au sein de cet échantillon, est $f = \frac{78}{400} = \frac{39}{200} = 0,195$.

L'intervalle de confiance est $\left[f - \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right] = \left[0,195 - \frac{1}{\sqrt{400}}; 0,195 + \frac{1}{\sqrt{400}}\right] = [0,145; 0,245].$

On peut en déduire, avec un risque d'erreur de 5 %, que la proportion de foyers possédant au moins un chien est comprise entre 0,145 et 0,245.

II.2

En vue d'une élection, un institut de sondage veut estimer la proportion d'électeurs favorables au candidat A.

Pour ce faire, l'institut procède à un sondage aléatoire de taille 2 500 et obtient 1 300 intentions de vote pour le candidat A.

- 1. n=2500>25 donc un peut calculer l'intervalle de confiance. La fréquence de gens voulant voter pour le candidat A est $f=\frac{1300}{2500}=0,52$. L'intervalle de confiance au seuil de 95 % est donc $I=\left[0,52-\frac{1}{\sqrt{2500}};\,0,52+\frac{1}{\sqrt{2500}}\right]=[0,5;\,0,54]$. La proportion de gens votant pour lui est supérieure ou égale à 0,5 avec un risque d'erreur de 5 %; il peut penser être élu.
- 2. Avec n = 1000, 'intervalle de confiance est $I = \left[0.52 \frac{1}{\sqrt{1000}}; 0.52 + \frac{1}{\sqrt{1000}}\right] \approx [0.488; 0.552]$. Il ne peut pas savoir s'il a des chances d'être élu.