

2IMN20 - Real-Time Systems

Scheduling 101 - Quiz

Geoffrey Nelissen

2023-2024

Buttazzo's book, chapters 2 and small part of 3

Disclaimer: Most slides were provided by Dr. Mitra Nasri

Ready for a quick test?

Character: Luffy Anime: One Piece

What are the priorities used by the FP algorithm?

 $(P_i > P_j \text{ means Task } i \text{ has a higher priority than task } j)$

1:
$$P_2 > P_1 > P_3$$

3:
$$P_1 > P_2 > P_3$$

2:
$$P_2 > P_3 > P_1$$

4:
$$P_3 > P_2 > P_1$$

Which scheduling algorithm is used?

- 1: FIFO
- **3: EDF**
- 2: FP with priorities: $P_1 > P_2 > P_3$
- 4: shortest job first

Which schedule has a shorter maximum lateness?

2: shortest job first

Question: In any arbitrary feasible schedule of this task set, which task(s) might be executing at time 14? Why? (think carefully)

Question: In any arbitrary feasible schedule of this task set, which task(s) might be executing at time 14? Why? (think carefully)

Only Task 2

The slack of Task 2 is 1 time unit. Task 3, however, needs that slack within the execution window of Task 2, otherwise it will not meet its deadline. Hence, Task 2 must be the only one else that executes throughout [4, 15] apart from Task 3.

Is this task set feasible?

$ au_i$	C_i	$r_{i,1}$	$d_{i,1}$
$ au_1$	8	5	14
$ au_2$	3	10	14
$ au_3$	4	2	17

Is this task set feasible?

$ au_i$	C_i	$r_{i,1}$	$d_{i,1}$
$ au_1$	8	5	14
$ au_2$	3	10	14
$ au_3$	4	2	17

No, because whatever you do, you cannot find a solution without a deadline miss. Try!

In general, this claim always requires a proof!

Proof: both the job of τ_1 and τ_2 must execute in the interval [5,14). However, $C_1+C_2=11>14-5=9$.

Therefore, the execution of τ_1 and τ_2 does not fit in [5,14).

$ au_i$	C_i	$r_{i,1}$	$d_{i,1}$
$ au_1$	8	5	14
$ au_2$	3	10	14
$ au_3$	4	2	17

What would be the maximum number of deadline misses that this job set may have for "any imaginable" scheduling algorithm?

3

How?

My "just-invented-scheduling-policy-for-fun" (JISPFF) schedules each job τ_i at time $i \times 10$

It is easy to mess up!

Never underestimate the power of a BAD scheduling algorithm!

https://www.thecatniptimes.com/learn/cat-care-tips/cleaning-hacks-for-cat-owners/#iLightbox[gallery15488]/0

