

GRUNDLAGEN DER ELEKTROTECHNIK 1

Teil 6: Nichtlineard Inst Ind Quellin, gest wert & Quellen

Foto: HAW Solar e.V.

GLEICHSTROM

Inhalte der Kapitel 1 – 4: Gleichstrom

2 GLEICHSTROMSCHALTUNGEN

2.1	Zählpfeilsystem	Grundlagen
2.2	Grundlegende Begriffe	
2.3	Kirchhoffsche Gesetze	
2.4	Parallel- und Reihenschaltung von Widerständer	1
2.5	Strom- und Spannungsteiler	
2.6	Lineare Quellen	
2.7	Umwandlung in Ersatzquellen	Methoden
2.8	Überlagerungsprinzip	
2.9	Netzwerkanalyse	
2.10	Leistungsanpassung	Sonstiges
2.11	Nichtlineare Quellen und Verbraucher	
2.12	Gesteuerte Quellen	

NICHTLINEARE QUELLEN UND LASTEN

Nichtlineare Quelle/Last wird durch Kennlinie beschrieben

⇒ Arbeitspunkt kann graphisch bestimmt werden:

· Schriftprokt de last-grade mit de Quell- Kenntierie

Beispiel: Solarzelle an (linearem) Lastwiderstand

EXKURS: LEISTUNG VON SOLARZELLEN

Bei welchem Lastwiderstand ergibt sich die größte Leistungsabgabe der Solarzelle?

A. R_1

B. R_2

 $\mathsf{C}.\ R_3$

ÜBUNGSAUFGABE

Bestimmen Sie den Arbeitspunkt, für jede Diode, wenn Sie eine davon an eine lineare Spannungsquelle anschließen.

Es sei: $U_0 = 1.5 V \text{ und } R_i = 20 \Omega$.

A. Ge: 50 mA, 0,45 V

B. Ge: 40 mA, 0,3 V

C. Si: 50 mA, 0,45 V 🗸

D. Si: 28 mA, 0,94 V

E. Si: 94 mA, 0,28 V

- res

VORGEHEN BEI KOMPLIZIERTEREN QUELLEN

Was tun, wenn die Quelle aus mehreren idealen Quellen und/oder Widerständen besteht?

- 1. Ersatzquelle bestimmen
- 2. Kennlinie der Ersatzquelle zeichnen
- 3. Schnittpunkt mit Lastkennlinie ergibt Arbeitspunkt

QUELLENUMWANDLUNG BEI NICHTLINEARER LAST

Für genau eine nichtlineare Last kann das Prinzip der Ersatzquelle nach Thévenin- oder Norton genutzt werden.

Es sei:

$$U = 12.4 V$$

$$R_1 = 800 \Omega$$

$$R_2 = 1.6 k\Omega$$

Leerlaufspannung:

$$U_0 = U \cdot \frac{R_2}{R_4 + R_4 + R_2} = M_{R_2} = 6/2 V$$

Innenwiderstand:

$$R_i = 4 \int_{-\infty}^{\infty} |R_i|^3 = 2R_1 ||R_2|^2 = 2000$$

Kurzschlußstrom:

$$I_0 = \frac{10}{10} = \frac{10}{10}$$

FORTSETZUNG ZUR QUELLENUMWANDLUNG

Die Ersatzquelle kann durch $U_0=6.2\,V,\,R_i=800\,\Omega$ beschrieben werden. Bestimmen Sie den Arbeitspunkt für die gegebene Kennlinie des Varistors.

- A. 1 *mA* bei 2 *V*
- B. 4 mA bei 3 V
- C. 6 mA bei 3,3 V

2 GLEICHSTROMSCHALTUNGEN

2.1	Zählpfeilsystem	Grundlagen
2.2	Grundlegende Begriffe	
2.3	Kirchhoffsche Gesetze	
2.4	Parallel- und Reihenschaltung von Widerständer	1
2.5	Strom- und Spannungsteiler	
2.6	Lineare Quellen	
2.7	Umwandlung in Ersatzquellen	Methoden
2.8	Überlagerungsprinzip	
2.9	Netzwerkanalyse	
2.10	Leistungsanpassung	Sonstiges
2.11	Nichtlineare Quellen und Verbraucher	
2.12	Gesteuerte Quellen	

SPANNUNGSGESTEUERTE SPANNUNGSQUELLE

Funktion:

Ausgangsspannung U_a = Verstärkung $v \cdot$ Eingangsspannung U_e

Achtung:

Gesteuerte Quellen dürfen bei der Superposition nie entfernt werden!

ANDERE GESTEUERTE QUELLEN

Spannungsgesteuerte Stromquelle

Steilheit S

Stromgesteuerte Stromquelle

Stromverstärkung h

ANWENDUNGSBEISPIEL ZU GESTEUERTEN QUELLEN

Transistor

Halbleiterbauelement, das schwache Ströme verstärkt Kollektorstrom $I_C = B \cdot \text{Basisstrom } I_B$

Schaltzeichen

1. Collector 2. Base 3. Emitter

typische Bauform

Frage: Was für eine gesteuerte Quelle ist das?

- A. stromgesteuerte Spannungsquelle
- B. spannungsgesteuerte Stromquelle
- C. stromgesteuerte Stromquelle

ANWENDUNGSBEISPIEL

Ansteuerung einer Leuchtdiode (LED) mit 2 V, 15 mA durch ein Signal von 1,5 V?

Die Gesamtschaltung werde mit 5 V versorgt.

AUFGABE

Dimensionieren Sie die folgende Schaltung um die Diode im Arbeitspunkt (2V / 15mA) zu betreiben:

gegeben:

- $U_{LED} = 2 V$
- $I_{LED} = 15 mA$
- $U_{CE} \approx 0.2 V$
- $U_{BE} \approx 0.7V$
- B = 300

gesucht:

• R_B , R_C

AUFGABE 1: BESTIMMUNG R_C

gegeben:

- $U_{LED} = 2 V$
- $U_{CE} = 0.2 V$
- $I_{LED} = 15 \, mA$
- B = 300

gesucht:

• *R_C*

$$A. R_C = 178 \Omega$$

$$B. R_C = 187 \Omega$$

C.
$$R_C = 333 \Omega$$

AUFGABE 2: BESTIMMUNG R_B

gegeben:

- $U_{LED} = 2 V$
- $U_{CE} = 0.2 V$
- $I_{LED} = 15 \, mA$
- B = 300

gesucht:

 \bullet R_B

- A. 100Ω
- B. $16 k\Omega$
- C. $30 k\Omega$

WAS SIE MITNEHMEN SOLLTEN...

Nichtlineare Quellen und Verbraucher

- Bestimmung des Arbeitspunktes über:
- Mathematische Beschreibung einer nichtlinearen Kennlinie
 - Gleichstromwiderstand
 - Differentieller Widerstand

Gesteuerte Quellen:

- Idealisierte Spannungs- oder Stromverstärker
- 3 Arten und deren Gleichungen

```
Sh. yes. Spg
Sh. yes. Sh.
```

