ბილეთი #7

- **1.** ტურისტი გზათა ყოველ გასაყარზე თანაბარი ალბათობით ირჩევს გზის გაგრძელებას (უკან არ ბრუნდება). გზათა სქემა ქვემოთაა მოცემული. იპოვეთ ალბათობა იმისა რომ იგი \boldsymbol{A} წერტილიდან მივა \boldsymbol{B} წერტილში.
 - ა) ამოხსენით ამოცანა სრული ალბათობის ფორმულით **(1 ქულა**);
 - ბ) ამოხსენით ამოცანა დენდოგრამით (1 ქულა);
 - გ) ცნობილია რომ ტურისტი მივიდა **A** წერტილიდან **B** წერტილში. იპოვეთ ალბათობა იმისა, რომ მან ამას H_3 გზით მიაღწია (ამოხსენით ამოცანა ბაიესის ფორმულით, 1 ქულა).

- 2. ყუთში 15 თეთრი და 7 შავი ბურთულაა. ყუთიდან შემთხვევითად იღებენ 3 ბურთულას. რას უდრის ალბათობა იმისა, რომ ამოღებულ ბურთულებში შავი ბურთულების რაოდენობა მეტია თეთრი ბურთულების რაოდენობაზე ? (3 ქულა).
- **3.** მოცემულია (X,Y) შემთხვევითი ვექტორის განაწილების კანონი ცხრილის სახით:

X	-2	0
-2	1/3	1/15
0	2/15	0
1	1/5	4/15

იპოვეთ X და Y შემთხვევითი სიდიდეების:

- ა) კოვარიაცია **(1 ქულა)**;
- ბ) კორელაციის კოეფიციენტი (2 ქულა);

შუალედური გამოცდის ბილეთი საგანში "მონაცემთა ანალიზი და სტატისტიკა"

- გ) გამოთვალეთ T = -2X + 5Y 3 შემთხვევითი სიდიდის მათემატიკური ლოდინი და დისპერსია (1 ქულა).
- **4.** X შემთხვევითი სიდიდე N(6,4) ნორმალური კანონითაა განაწილებული. გამოთვალეთ შემდეგი ხდომილობათა ალბათობები:

ა)
$$P(X \le 4)$$
 (1 ქულა);

ბ)
$$P(X \ge 7)$$
 (1 ქულა);

იპოვეთ ისეთი α და β რიცხვეზი, რომელთათვისაც:

გ)
$$P(X \le \alpha) = 0.8$$
 (1 ქულა);

დ)
$$P(X \ge \beta) = 0.3$$
 (1 ქულა).

ისარგებლეთ სტანდარტული ნორმალური განაწილების ცხრილით:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

X	$\Phi(x)$										
0.00	0.500	0.33	0.629	0.66	0.745	0.99	0.838	1.32		1.65	0.950
0.01	0.503	0.34	0.633	0.67	0.748	1.00	0.841	1.33	0.908	1.66	0.951
0.02	0.507	0.35	0.636	0.68	0.751	1.01	0.843	1.34	0.909	1.67	0.952
0.03	0.511	0.36	0.640	0.69	0.754	1.02	0.846	1.35	0.911	1.68	0.953
0.04	0.515	0.37	0.644	0.70	0.758	1.03	0.848	1.36	0.913	1.69	0.954
0.05	0.519	0.38	0.648	0.71	0.761	1.04	0.850	1.37	0.914	1.70	0.955
0.06	0.523	0.39	0.651	0.72	0.764	1.05	0.853	1.38	0.916	1.71	0.956
0.07	0.527	0.40	0.655	0.73	0.767	1.06	0.855	1.39	0.917	1.72	0.957
0.08	0.531	0.41	0.659	0.74	0.770	1.07	0.857	1.40	0.919	1.73	0.958
0.09	0.535	0.42	0.662	0.75	0.773	1.08	0.859	1.41	0.920	1.74	0.959
0.10	0.539	0.43	0.666	0.76	0.776	1.09	0.862	1.42	0.922	1.75	0.959
0.11	0.543	0.44	0.670	0.77	0.779	1.10	0.864	1.43	0.923	1.76	0.960
0.12	0.547	0.45	0.673	0.78	0.782	1.11	0.866	1.44	0.925	1.77	0.961
0.13	0.551	0.46	0.677	0.79	0.785	1.12	0.868	1.45	0.926	1.78	0.962
0.14	0.555	0.47	0.680	0.80	0.788	1.13	0.870	1.46	0.927	1.79	0.963
0.15	0.559	0.48	0.684	0.81	0.791	1.14	0.872	1.47	0.929	1.80	0.964
0.16	0.563	0.49	0.687	0.82	0.793	1.15	0.874	1.48	0.930	1.81	0.964
0.17	0.567	0.50	0.691	0.83	0.796	1.16	0.876	1.49	0.931	1.82	0.965

	1										
0.18	0.571	0.51	0.694	0.84	0.799	1.17	0.879	1.50	0.933	1.83	0.966
0.19	0.575	0.52	0.698	0.85	0.802	1.18	0.881	1.51	0.934	1.84	0.967
0.20	0.579	0.53	0.701	0.86	0.805	1.19	0.882	1.52	0.935	1.85	0.967
0.21	0.583	0.54	0.705	0.87	0.807	1.20	0.884	1.53	0.936	1.86	0.968
0.22	0.587	0.55	0.708	0.88	0.810	1.21	0.886	1.54	0.938	1.87	0.969
0.23	0.590	0.56	0.712	0.89	0.813	1.22	0.888	1.55	0.939	1.88	0.969
0.24	0.594	0.57	0.715	0.90	0.815	1.23	0.890	1.56	0.940	1.89	0.970
0.25	0.598	0.58	0.719	0.91	0.818	1.24	0.892	1.57	0.941	1.90	0.971
0.26	0.602	0.59	0.722	0.92	0.821	1.25	0.894	1.58	0.942	1.91	0.971
0.27	0.606	0.60	0.725	0.93	0.823	1.26	0.896	1.59	0.944	1.92	0.972
0.28	0.610	0.61	0.729	0.94	0.826	1.27	0.897	1.60	0.945	1.93	0.973
0.29	0.614	0.62	0.732	0.95	0.828	1.28	0.899	1.61	0.946	1.94	0.973
0.30	0.617	0.63	0.735	0.96	0.831	1.29	0.901	1.62	0.947	1.95	0.974
0.31	0.621	0.64	0.738	0.97	0.833	1.30	0.903	1.63	0.948	1.96	0.975
0.32	0.625	0.65	0.742	0.98	0.836	1.31	0.904	1.64	0.949	1.97	0.975

(ცხრილის გაგრძელება)

	A ()		あ ()		 A ()		A ()	I	. . . ()
X	$\Phi(x)$	X	$\Phi(x)$	X	$\Phi(x)$	X	$\Phi(x)$	X	$\Phi(x)$
1.98	0.976	2.26	0.988	2.54	0.994	2.82	0.997	3.10	0.999
1.99	0.976	2.27	0.988	2.55	0.994	2.83	0.997	3.11	0.999
2.00	0.977	2.28	0.988	2.56	0.994	2.84	0.997	3.12	0.999
2.01	0.977	2.29	0.988	2.57	0.994	2.85	0.997	3.13	0.999
2.02	0.978	2.30	0.989	2.58	0.995	2.86	0.997	3.14	0.999
2.03	0.978	2.31	0.989	2.59	0.995	2.87	0.997	3.15	0.999
2.04	0.979	2.32	0.989	2.60	0.995	2.88	0.998	3.16	0.999
2.05	0.979	2.33	0.990	2.61	0.995	2.89	0.998	3.17	0.999
2.06	0.980	2.34	0.990	2.62	0.995	2.90	0.998	3.18	0.999
2.07	0.980	2.35	0.990	2.63	0.995	2.91	0.998	3.19	0.999
2.08	0.981	2.36	0.990	2.64	0.995	2.92	0.998	3.20	0.999
2.09	0.981	2.37	0.991	2.65	0.995	2.93	0.998	3.21	0.999
2.10	0.982	2.38	0.991	2.66	0.996	2.94	0.998	3.22	0.999
2.11	0.982	2.39	0.991	2.67	0.996	2.95	0.998	3.23	0.999
2.12	0.983	2.40	0.991	2.68	0.996	2.96	0.998	3.24	0.999
2.13	0.983	2.41	0.992	2.69	0.996	2.97	0.998	3.25	0.999
2.14	0.983	2.42	0.992	2.70	0.996	2.98	0.998	3.26	0.999
2.15	0.984	2.43	0.992	2.71	0.996	2.99	0.998	3.27	0.999
2.16	0.984	2.44	0.992	2.72	0.996	3.00	0.998	3.28	0.999

შუალედური გამოცდის ბილეთი საგანში "მონაცემთა ანალიზი და სტატისტიკა"

2.17	0.985	2.45	0.992	2.73	0.996	3.01	0.998	3.29	0.999
2.18	0.985	2.46	0.993	2.74	0.996	3.02	0.998	3.30	0.999
2.19	0.985	2.47	0.993	2.75	0.997	3.03	0.998	3.31	0.999
2.20	0.986	2.48	0.993	2.76	0.997	3.04	0.998	3.32	0.999
2.21	0.986	2.49	0.993	2.77	0.997	3.05	0.998	3.33	0.999
2.22	0.986	2.50	0.993	2.78	0.997	3.06	0.998	3.34	0.999
2.23	0.987	2.51	0.993	2.79	0.997	3.07	0.998	3.35	0.999
2.24	0.987	2.52	0.994	2.80	0.997	3.08	0.998	3.36	0.999
2.25	0.987	2.53	0.994	2.81	0.997	3.09	0.999	3.37	0.999

5. სტუდენტმა სასესიო პერიოდში, რომელიმე საგნის ქვიზებში **0-10** ბალიანი შეფასების სქემით მიიღო შემდეგი შეფასებები:

7641054974106467595967

- ა) გამოთვალეთ საშუალო, მედიანა, მოდა, Q_1 და Q_3 (2 ქულა);
- ბ) გამოთვალეთ გაბნევის დიაპაზონი, IQR , შერჩევითი დისპერსია (2 ქულა).
- გ) ამ მონაცემებით ააგეთ ფარდობითი სიხშირეების ჰისტოგრამა **2**-ის ტოლი ინტერვალით, რომლის მარცხენა ბოლოა **4**, ხოლო მარჯვენა ბოლოა **10**; ააგეთ ფარდობითი სიხშირეების პოლიგონი **(2 ქულა)**.