PML Project* Summary

- This summary focuses on the implementation in the 2-D serial code.
- The Parallel 2-D and 3-D codes give similar results, so it's probably not just a "random" bug in this one.
- Here, we limit ourselves to the 1-D case of a uniform (along y) laser pulse moving in x.
- Launching a radially moving wave from the center gives similar results.
- I think that if we can get the 1-D pulse working, then I can get the radial wave to work too.
- The paper by Vay I reference here is his 2000 JCP paper.

^{*}AKA the scourge of my life in June and July.

Ordering of the PML Routines in the Loop (1)

- PML is a treated as being separate from the box => separate arrays.
 - Allocate E and B arrays for the PML region.
 - Allocate and calculate the attenuation coefficients for each boundary.
- We have to do the $\Delta t/2$ \vec{B} and Δt \vec{E} updates in separate routines.
 - Do $\Delta t/2 \ \overrightarrow{B}$ push in Fourier space.
 - Shift \vec{E} and \vec{B} to Yee positions, copy \vec{B} to buffer box array, FFT buffer \vec{B} to real space.
- Call the \vec{E} PML update routine.
 - Communicate \overrightarrow{B} between the box buffer and the actual PML \overrightarrow{B} arrays.
 - Communicate \vec{B} between neighboring PML \vec{B} arrays, if needed.
 - Propagate the \overline{E} field in the PML arrays with the PML equations.
- Impose the \overrightarrow{B} update on the actual box \overrightarrow{B} array to use in the \overrightarrow{E} update.
 - FFT the \vec{B} box buffer to Fourier space, copy it to the simulation box \vec{B} array, shift \vec{E} and \vec{B} back to integer grid points.

Ordering of the PML Routines in the Loop (2)

- Do the full \vec{E} push on the actual box \vec{E} array in Fourier space.
 - Shift \vec{E} and \vec{B} to Yee positions, copy \vec{E} to buffer box array, FFT buffer \vec{E} to real space.
- Call the \vec{B} PML update routine.
 - Communicate \vec{E} between the box buffer and the actual PML \vec{E} arrays.
 - Propagate the \overrightarrow{B} field in the PML arrays with the PML equations.
- Impose the \vec{E} update on the actual box \vec{E} array to use in the second \vec{B} update.
 - FFT the \vec{E} box buffer to Fourier space, copy it to the simulation box \vec{E} array, shift \vec{E} and \vec{B} back to integer grid points.
- Call the second $\frac{1}{2}$ \overrightarrow{B} update, then repeat the loop.

The attenuation coefficients are calculated from Vay's paper (1)

- The t_i s from Vay's Eq. 40 a distance x in the PML is $t(x) = e^{s_1(s_2x)^n}$.
 - Left/Lower: $t_j = t(j\Delta x 1/2)$, $t_{j+1/2} = t(j\Delta x)$, $t_{j+1} = t(j\Delta x + 1/2)$.
 - Right/Upper: $t_j = t(j\Delta x)$, $t_{j+1/2} = t(j\Delta x + 1/2)$, $t_{j+1} = t(j\Delta x + 1)$.
 - $s_1 = -2/5(n+1)$, $s_2 = 1(T-3)$, I find n = 4.6 works better than n = 4.
- The β s from Vay's Eq. 26 are
 - $\beta_{1E} = dt/dx \left(1 + \left(\frac{1 dt/dx}{1 + dt/dx}\right) (1 t_{j-1/2})\right).$
 - $\beta_{1E} = dt/dx \left(1 + \left(\frac{1 dt/dx}{1 + dt/dx}\right) (1 t_{1/2})\right).$
 - $\beta_{2B} = \beta_{2B} = dt/dx$.

The attenuation coefficients are calculated from Vay's paper (2)

- The coefficients for the fields in Vay's Eq. 27 are
 - Left/Lower:

•
$$c_{1E}(T-j) = 1 - \beta_{1E} + t_{j+1/2}\beta_{2E}$$
 and $c_{B1}(T-j) = 1 - \beta_{1B} + t_{j1}\beta_{2B}$

•
$$c_{2E}(T-j) = t_j \beta_{1E}$$
 and $c_{B2}(T-j) = t_{j+1/2} \beta_{1B}$

•
$$c_{3E}(T-j) = c_{3E}(T-j) = \beta_{2E} = \beta_{2B} = dt/dx$$
.

- Right/Upper:
- $c_{E1}(j) = 1 \beta_{1E} + t_{j+1/2}\beta_{2E}$ and $c_{B1}(j) = 1 \beta_{1B} + t_{j1}\beta_{2B}$

•
$$c_{E2}(j) = c_{B2}(j) = \beta_{2E} = \beta_{2B} = dt/dx$$
.

•
$$c_{E3}(j) = t_j \beta_{1E}$$
 and $c_{B3}(j) = t_{j+1/2} \beta_{1B}$

• The code for these was copy/pasted from OSIRIS to UPIC.

The PML Overlaps with the Actual Simulation Box

- This is to comply with the periodic FFT.
- Whole PML is copied to box.
- Loop ranges to the standard Yee solver and attenuation regions are slightly different than in OSIRIS.
- Yes, that is a bug in the loop range on the right side in B.
 - Shouldn't't matter when thickness is large.

The Field Push Equations Come from the standard Yee solver and Vay's Paper

- The components of \vec{E} moving in \hat{y} are not attenuated in the x PML.
- $E_{xy}^{i,j} = E_{xy}^{i,j} + dt/dx (B_{zx}^{i,j} B_{zx}^{i,j-1} + B_{zy}^{i,j} B_{zy}^{i,j-1}).$
- $E_{zy}^{i,j} = E_{zy}^{i,j} dt/dx (B_{xy}^{i,j} B_{xy}^{i,j-1}).$
- The components of \overline{E} moving in \hat{x} are attenuated in the x PML with the 2-D version of Vay's Eq. 27.
- $E_{yx}^{i,j} = c_{1E}E_{yx}^{i,j} c_{2E}(B_{zx}^{i,j} + B_{zy}^{i,j}) + c_{3E}(B_{zx}^{i-1,j} + B_{zy}^{i-1,j}).$
- $E_{zx}^{i,j} = c_{1E}E_{zx}^{i,j} + c_{2E}B_{yx}^{i,j} c_{3E}B_{yx}^{i-1,j}$.
- Note: I give E and B both integer indices here because this is how I coded it up. They are staggered like the Yee grid, though.

The Field Push Equations Come from the standard Yee solver and Vay's Paper

- The components of \overrightarrow{B} moving in \widehat{y} are not attenuated in the x PML.
- $B_{xy}^{i,j} = B_{xy}^{i,j} dt/dx (E_{zx}^{i,j+1} E_{zx}^{i,j} + E_{zy}^{i,j+1} E_{zy}^{i,j}).$
- $B_{zy}^{i,j} = B_{zy}^{i,j} + dt/dx (E_{xy}^{i,j+1} E_{xy}^{i,j}).$
- The components of \overline{B} moving in \hat{x} are attenuated in the x PML with the 2-D version of Vay's Eq. 27.
- $B_{yx}^{i,j} = c_{1B}B_{yx}^{i,j} + c_{2B}(E_{zx}^{i+1,j} + E_{zy}^{i+1,j}) c_{3B}(E_{zx}^{i,j} + E_{zy}^{i,j}).$
- $B_{zx}^{i,j} = c_{1B}B_{zx}^{i,j} c_{2B}E_{yx}^{i+1,j} + c_{3B}E_{yx}^{i,j}$.
- Note: I give E and B both integer indices here because this is how I coded it up. They are staggered like the Yee grid, though.

Using 20 PML Cells Results In Partial Attenuation

• dEz is calculated from the difference between a wave moving in a 512 cell box with 20 PML cells (493-512) and a 1024 box with no PML ("perfectly absorbing").

Reducing the Time Step Results in Roughly the Same Results

END

The PML Arrays Overlay the Simulation Box

- Everywhere except the red cells are copied to the box.
- It's actually a bug that a whole column is being copied to the x PML, but it gets overwritten by the y PML right away so I guess it doesn't matter..

