Matematici Financiare și Actuariale Capitolul 2: Matematici actuariale

Lect. univ. dr. Alexandru-Darius Filip

Universitatea Babeş-Bolyai Cluj-Napoca Facultatea de Științe Economice și Gestiunea Afacerilor IDFR

Cuprins

Capitolul 2. Matematici actuariale

- 2.1. Funcții biometrice
- 2.2. Plăți viagere și plăți în caz de deces
- 2.3. Asigurări de persoane

Bibliografie:

- 1. A.S. Mureşan & colectiv didactic, *Matematici Financiare și Actuariale. Teorie și probleme*, ed. Mega, Cluj-Napoca, 2013.
- 2. A.S. Mureşan, *Operații financiare certe și aleatoare. Optimizări și modelare*, ed. Mega, Cluj-Napoca, 2009.
- 3. Suport de curs (Silabus) disponibil pe Moodle.

Evaluare

NotaFinală = 30% NotaTeme + 70% NotaExamen

NotaTeme = Media aritmetică a notelor obținute pe temele de control de la capitolele: Matematici financiare, respectiv Matematici actuariale.

Temele de control se găsesc în **Suportul de curs (Silabus).**Rezolvarile se salvează într-un fișier PDF (sub formă de poze), iar fișierul se încarcă pe Moodle la secțiunea *Tema1* pentru partea de *Matematici financiare*, respectiv *Tema2* pentru partea de *Matematici actuariale*.

Evaluare

Tema nr.2

- Referat:
- Rezerva matematică (Bibliografie: A.S. Mureșan & colectiv didactic, *Matematici Financiare și Actuariale. Teorie și probleme*, ed. Mega, Cluj-Napoca, 2013)
- De rezolvat problemele propuse în suportul de curs (Bibliografie: Suportul de curs, Teme de control, pag. 73-78)

§ 2.1. Funcții biometrice

A. Probabilități de viață și de deces

Notații:

p(x,y)= probabilitatea de viață (probabilitatea ca o persoană în vârstă de x ani să fie în viață la vârsta de y ani, $x\leq y$)

q(x,y)= probabilitatea de deces (probabilitatea ca o persoană în vârstă de x ani să nu mai fie în viață la vârsta de y ani, $x\leq y$)

$$p(x,y)+q(x,y)=1$$

Observație: Probabilitatea de viață se calculează cu formula:

$$p(x,y) = \frac{L_y}{L_x} \in [0,1]$$

unde L_x , L_y sunt valori ale funcției de supraviețuire. (L_x = numărul de indivizi dintr-o populație statistică, care vor mai fi în viață la vârsta de x ani).

Valorile funcției de supraviețuire L_x , se citesc din tabelul numerelor de comutație.

Tabelul numerelor de comutație cu 5%

Numere de comutatie cu 5%

Х	Lx	Dx	Nx	Mx	Х	Lx	Dx	Nx	Mx
0	100000	100000	1811317.38	14086.27	51	80501	6685.70	90603.82	2429.79
1	91992	87611.43	1711317.38	6271.26	52	79867	6317.19	83918.12	2378.41
2	91000	82539.68	1623705.95	5349.27	53	79172	5964.02	77600.93	2324.76
3	90545	78216.18	1541166.27	4946.52	54	78418	6525.92	71636.91	2269.33
4	90286	74278.52	1462950.10	4728.17	55	77603	5302.33	66010.99	2212.27
5	90101	70596.49	1388671.58	4579.64	56	76735	4993.36	60708.66	2154.39
6	89951	67122.82	1318075.09	4464.95	57	75810	4698.25	55715.30	2095.65
7	89837	63845.48	1250952.27	4381.93	58	74815	4415.80	51017.05	2035.47
8	89735	60736.18	1187106.79	4311.18	59	73741	4145.15	46601.25	1973.61
9	89644	57785.32	1126370.61	4251.08	60	72581	3885.66	42456.09	1909.97
10	89562	54983.30	1068585.29	4199.49	61	71320	3636.34	38570.43	1844.09
11	89484	52319.44	1013601.99	4152.76	62	69937	3396.02	34934.10	1775.28
12	89407	49785.16	961282.55	4108.83	63	68438	3164.98	31538.07	1704.24
13	89330	47373.61	911497.38	4066.98	64	66817	2942.88	28373.09	1631.08
14	89250	45077.31	864123.78	4025.58	65	65068	2729.37	25430.22	1555.91
15	89165	42889.89	819046.46	3983.68	66	63112	2521.26	22700.84	1475.84
16	89070	40803.99	776156.57	3939.09	67	61036	2322.22	20179.58	1394.90
17	88967	38816.01	735352.58	3893.04	68	58836	2131.92	17857.36	1313.22
18	88856	36921.50	696536.57	3845.78	69	56508	1950.06	15725.44	1230.90
19	88737	35116.24	659615.07	3797.52	70	54051	1776.45	13775.38	1148.15
20	88607	33395.05	624498.83	3747.32	71	51363	1607.72	11998.93	1061.93

Exemplu: Ce șanse sunt ca o persoană de 60 de ani să fie în viață peste 10 ani ? Soluție:

Alte notații pentru probabilitățile de viață și de deces

$$p_x = p(x, x+n)$$

– este probabilitatea ca o persoană în vârstă de
$$x$$
 ani, să fie în viață peste n ani

$$_{n}q_{\times}=q(x,x+n)$$

- este probabilitatea ca o persoană în vârstă de
$$x$$
 ani, să nu mai fie în viață peste n ani

$$p_{x}=p(x,x+1)$$

- este probabilitatea ca o persoană în vârstă de
$$\boldsymbol{x}$$
 ani, să fie în viață peste $\boldsymbol{1}$ an

$$q_{x}=q(x,x+1)$$

- este probabilitatea ca o persoană în vârstă de \boldsymbol{x} ani, să nu mai fie în viață peste $\boldsymbol{1}$ an

$$_{m/n}q_{x}=p(x,x+m)\cdot q(x+m,x+n)$$

- este probabilitatea ca o persoană în vârstă de x ani, să decedeze între x+m și x+n ani.

Exemplu: Calculați și interpretați $_{12}q_{65}$. Procentul de actualizare este 5%. Soluție:

Exemplu: Care este probabilitatea ca o persoană în vârstă de 51 de ani, să decedeze între 60 și 70 de ani ?

Soluție:

B. Viața medie

- este numărul mediu de ani pe care îi mai are de trăit o persoană în vârstă de x ani.

$$e_x = \frac{1}{2} + \frac{1}{L_x} \cdot (L_{x+1} + L_{x+2} + \ldots + L_{100})$$

Exemplu: Să se calculeze viața medie a unei persoane în vârstă de 97 de ani. Procentul de actualizare este 5%.

Solutie:

În domeniul asigurărilor de persoane, plățile au un caracter aleator:

- Asiguratul: face plățile doar dacă este în viață
- Instituția de asigurare: face plățile doar dacă au loc anumite evenimente din viața asiguratului (împlinirea unei vârste, ieșirea la pensie, decesul asiguratului).

Plăți viagere

- sunt făcute fie de asigurat, fie de instituția de asigurare către asigurat dacă acesta este în viată la o anumită vârstă.
- Plata viageră poate fi unică sau periodică (anuitate viageră)

A.1. Plata viageră unică

- este făcută de instituția de asigurare către asiguratul în vârstă de x ani, în momentul când acesta împlineste vârsta de x + n ani, fiind în viată la această vârstă.

Factor de actualizare viager (notat ${}_{n}E_{x}$) = este valoarea medie actuală a sumei S=1u.m. pe care o va primi un asigurat în vârstă de x ani, la împlinirea vârstei de x + nani, dacă va fi în viață la această vârstă.

Formula de calcul:
$$nE_x = \frac{D_{x+n}}{D}$$

$$_{n}E_{x}=rac{D_{x+n}}{D_{x}}$$

Exemplu: Aflați valoarea medie actuală a sumei de 1000 €, pe care o va primi o persoană în vârstă de 50 de ani, la împlinirea vârstei de 90 de ani, dacă va fi în viață la această vârstă. Procentul de actualizare este 5%.

A.2. Plata viageră periodică (anuitate viageră)

Notație: a_x = anuitatea viageră pentru o persoană în vârstă de x ani.

Avem următoarele tipuri de anuități viagere:

- anuitate viageră întreagă posticipată (a.v.î.p.) a_x
- anuitate viageră întreagă anticipată (a.v.î.a.) $\ddot{a}_{\scriptscriptstyle X}$
- anuitate viageră fracționată posticipată (a.v.f.p.) $a_x^{(m)}$
- anuitate viageră fracționată anticipată (a.v.f.a.) $\ddot{a}_{x}^{(m)}$

Observație: Fiecare din anuitățile de mai sus poate avea următoarele caracteristici:

• a.v. imediată și nelimitată

• a.v. imediată, limitată la n ani

• a.v. amânată cu n ani, nelimitată

Exemplu: Aflați valoarea medie actuală a sumei de 500 €, pe care o va primi o persoană în vârstă de 50 de ani, la împlinirea vârstei de 65 de ani, la sfârșitul fiecărui an. Procentul de actualizare este 5%.

B. Plăți în caz de deces

- sunt făcute de instituția de asigurare către familia persoanei asigurate sau către o altă persoană mentionată de asigurat în contractul de asigurare, în cazul când are loc decesul asiguratului.

B.1. Plata unică în caz de deces

- instituția de asigurare va plăti suma S familiei asiguratului, dacă asiguratul în vârstă de x ani, va deceda între x + n și x + n + 1 ani.
- presupunem că asiguratul în vârstă de x ani mai trăiește $n+\frac{1}{2}$ ani (n ani și jumătate), adică decesul asiguratului va avea loc la mijlocul intervalului de vârstă (x + n, x + n + 1).

Factor de actualizare în caz de deces (notat $_{n}D_{x}$) = valoarea medie actuală a sumei S=1 u.m., ce se va plăti de instituția de asigurare, dacă asiguratul în vârstă de x ani, va deceda la vârsta de $x + n + \frac{1}{2}$ ani.

unde:
$$u = 1 + i$$
, $v = \frac{1}{1+i}$,

i = procentul de actualizare (precizat în tabelul numerelor de comutație!)

Exemplu: Aflați valoarea medie actuală a sumei de 5.000 €, pe care o va primi familia unei persoane în vârstă de 80 de ani, dacă aceasta va deceda între 90 și 91 de ani. Procentul de actualizare este 5%.

B.2. Anuități de deces

Notație: A_x = anuitatea de deces pentru o persoană în vârstă de x ani.

- ullet Anuitate de deces imediată și nelimitată: A_{x}
- Anuitate de deces dublu limitată: $m|n A_x$
- Anuitate de deces imediată, limitată la n ani: $A_{x:\overline{n}|}$
- ullet Anuitate de deces amânată cu n ani, nelimitată: $_{n|}A_{x}$

Exemplu: Aflați valoarea medie actuală a sumei de 3.000 €, pe care o va primi familia unei persoane în vârstă de 60 de ani, dacă aceasta va deceda oricând, după împlinirea vârstei de 90 de ani. Procentul de actualizare este 5%.

§ 2.3. Asigurări de persoane

În domeniul asigurărilor de persoane se folosește:

Principiul echilibrului financiar: exprimă egalitatea dintre valoarea medie actuală a plăților efectuate de asigurat și valoarea medie actuală a plăților efectuate de instituția de asigurare, conform contractului de asigurare încheiat.

Tipuri de asigurări

- Asigurarea de viață
- Asigurarea de pensie
- Asigurarea de deces
- Asigurarea mixtă

În toate tipurile de asigurări, folosim notațiile:

P =prima de asigurare, plătită de asigurat

S = suma asigurată, plătită de instituția de asigurare

1. Asigurarea de viață

Obligațiile asiguratului

- asiguratul, în vârstă de x ani, plătește periodic, anticipat, prima de asigurare P, timp de k ani.

Obligațiile instituției de asigurare

- instituția de asigurare plătește asiguratului suma S, la împlinirea vârstei de x+n ani. (Dacă asiguratul nu mai este în viață la vârsta de x+n ani, instituția de asigurare nu mai are nicio obligație financiară față de asigurat).

Principiul echilibrului financiar

$$P \cdot \ddot{a}_{x:\overline{k}|} = S \cdot {}_{n}E_{x}$$

Observatii:

- 1. Dacă asiguratul decide să plătească o singură primă (prima unică), atunci principiul echilibrului financiar devine: $P = S \cdot {}_{n}E_{x}$
- 2. Dacă plata primelor se face fracționat, anticipat, atunci principiul echilibrului financiar devine: $m \cdot P \cdot \ddot{a}_{x \cdot \vec{k}|}^{(m)} = S \cdot {}_{n}E_{x}$

Exemplu: O persoană în vârstă de 48 de ani, încheie un contract de asigurare la o bancă. Persoana va plăti băncii, prime în valoare de 500 de lei, timp de 10 ani, la începutul fiecărui an, urmând ca, la împlinirea vârstei de 75 de ani, să primească o anumită sumă de bani din partea băncii. Aflați această sumă, știind că procentul de actualizare este de 5%.

2. Asigurarea de pensie

Obligațiile asiguratului

- asiguratul, în vârstă de x ani, plătește periodic, anticipat, prima de asigurare P, timp de k ani.

Obligațiile instituției de asigurare

- instituția de asigurare plătește periodic, anticipat, asiguratului suma S (pensia), din momentul în care acesta împlinește vârsta de x+n ani și până la decesul său. (Dacă asiguratul nu mai este în viață la vârsta de x+n ani, instituția de asigurare nu mai are nicio obligație financiară față de asigurat).

Principiul echilibrului financiar

$$P \cdot \ddot{a}_{x:\overline{k}|} = S \cdot {}_{n|} \ddot{a}_{x}$$

Observații:

- 1. Dacă asiguratul decide să plătească o singură primă (prima unică), atunci principiul echilibrului financiar devine: $P = S \cdot_{n|} \ddot{a}_{x}$
- 2. Dacă plata primelor, respectiv a pensiei, se face fracționat, anticipat, atunci principiul echilibrului financiar devine: $m \cdot P \cdot \ddot{a}_{y,\overline{k}|}^{(m)} = m' \cdot S \cdot {}_{n|} \ddot{a}_{x}^{(m')}$

Exemplu: O persoană în vârstă de 30 de ani dorește ca, la împlinirea vârstei de 65 de ani, să beneficieze de o pensie lunară, anticipată, în cuantum de 2.000 de lei. Ce primă trebuie să plătească la sfârșitul fiecărui an, timp de 20 de ani, pentru a putea beneficia de această pensie ? Procentul de actualizare este de 5%.

3. Asigurarea de deces

Obligațiile asiguratului

- asiguratul, în vârstă de x ani, plătește periodic, anticipat, prima de asigurare P, timp de k ani.

Obligațiile instituției de asigurare

- instituția de asigurare va plăti familiei asiguratului (sau unei alte persoane menționate de asigurat în contractul de asigurare) suma S, dacă asiguratul decedează între vârsta de x+m ani (inclusiv) și x+n ani (exclusiv).
- (Dacă decesul asiguratului nu are loc în intervalul de timp menționat în contract, instituția de asigurare nu mai are nicio obligație financiară).

Principiul echilibrului financiar

$$P \cdot \ddot{a}_{x:\overline{k}|} = S \cdot {}_{m|n}A_x$$

Observații:

- 1. Dacă asiguratul decide să plătească o singură primă (prima unică), atunci principiul echilibrului financiar devine: $P = S \cdot_{m|n} A_x$
- 2. Dacă plata primelor se face fracționat, anticipat, atunci principiul echilibrului

financiar devine: $m \cdot P \cdot \ddot{a}_{x:\bar{k}|}^{(m)} = S \cdot {}_{m|n}A_x$

Exemplu: O persoană în vârstă de 50 de ani dorește să-și asigure familia cu suma de $10.000 \in$, în cazul în care decesul ei ar avea loc între 80 și 90 de ani. Ce primă unică de asigurare trebuie să plătească persoana azi ? Se consideră procentul de actualizare de 5%.

4. Asigurarea mixtă

Obligațiile asiguratului

- asiguratul, în vârstă de x ani, plătește periodic, anticipat, prima de asigurare P, timp de k ani.

Obligațiile instituției de asigurare

- instituția de asigurare va plăti asiguratului suma S dacă acesta va fi în viață la vârsta de x+n ani. În caz contrar, instituția de asigurare va plăti suma S' familiei asiguratului (sau unei alte persoane menționate de asigurat în contractul de asigurare), dacă asiguratul decedează între vârsta de x+m ani (inclusiv) și x+n ani (exclusiv).

Principiul echilibrului financiar

$$P \cdot \ddot{a}_{x:\overline{k}|} = S \cdot {}_{n}E_{x} + S' \cdot {}_{m|n}A_{x}$$

Observații:

- 1. Dacă asiguratul decide să plătească o singură primă (prima unică), atunci principiul echilibrului financiar devine: $\boxed{P = S \cdot {}_{n}E_{x} + S' \cdot {}_{m|n}A_{x}}$
- 2. Dacă plata primelor se face fracționat, anticipat, atunci principiul echilibrului financiar devine: $m \cdot P \cdot \ddot{a}_{v,\overline{b}|}^{(m)} = S \cdot {}_{n}E_{x} + S' \cdot {}_{m|n}A_{x}$

Exemplu: O persoană în vârstă de 60 de ani dorește ca la împlinirea vârstei de 100 de ani, să primească din partea unei firme de asigurări, suma de 5.000 €, dacă va fi în viață la această vârstă. În caz contrar, persoana dorește ca familia ei, să primească 50% din suma asigurată, dacă decesul are loc oricând, între 80 și 100 de ani. Care este prima unică pe care persoana trebuie să o plătească azi firmei de asigurări? Se consideră procentul de actualizare de 5%.