```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

dataset = pd.read_csv('vehicle.csv')

dataset.head()

8		compactness	circularity	distance_circularity	radius_ratio	pr.axis_aspect_ratio
	0	95	48.0	83.0	178.0	72.0
	1	91	41.0	84.0	141.0	57.0
	2	104	50.0	106.0	209.0	66.0
	3	93	41.0	82.0	159.0	63.0
	4	85	44.0	70.0	205.0	103.0

dataset.shape

(846, 19)

dataset.describe().transpose()

	count	mean	std	min	25%	50%	75%	
compactness	846.0	93.678487	8.234474	73.0	87.00	93.0	100.0	
circularity	841.0	44.828775	6.152172	33.0	40.00	44.0	49.0	
distance_circularity	842.0	82.110451	15.778292	40.0	70.00	80.0	98.0	
radius_ratio	840.0	168.888095	33.520198	104.0	141.00	167.0	195.0	
pr.axis_aspect_ratio	844.0	61.678910	7.891463	47.0	57.00	61.0	65.0	
max.length_aspect_ratio	846.0	8.567376	4.601217	2.0	7.00	8.0	10.0	
scatter_ratio	845.0	168.901775	33.214848	112.0	147.00	157.0	198.0	
elongatedness	845.0	40.933728	7.816186	26.0	33.00	43.0	46.0	
pr.axis_rectangularity	843.0	20.582444	2.592933	17.0	19.00	20.0	23.0	
max.length_rectangularity	846.0	147.998818	14.515652	118.0	137.00	146.0	159.0	
scaled_variance	843.0	188.631079	31.411004	130.0	167.00	179.0	217.0	
scaled_variance.1	844.0	439.494076	176.666903	184.0	318.00	363.5	587.0	1
scaled_radius_of_gyration	844.0	174.709716	32.584808	109.0	149.00	173.5	198.0	
scaled_radius_of_gyration.1	842.0	72.447743	7.486190	59.0	67.00	71.5	75.0	
skewness_about	840.0	6.364286	4.920649	0.0	2.00	6.0	9.0	
skewness_about.1	845.0	12.602367	8.936081	0.0	5.00	11.0	19.0	

dataset.dtypes

dataset['class'].value_counts()


```
car 429
hus 210
dataset.groupby('class').size()
```


class bus 218 car 429 van 199 dtype: int64

dataset.plot(kind='box', figsize=(20,10))

<matplotlib.axes._subplots.AxesSubplot at 0x7f7868b09310>

dataset.hist(figsize=(15,15))


```
array([[<matplotlib.axes. subplots.AxesSubplot object at 0x7f7820f4bb50>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f7820e665d0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f7820ee6350>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f7820df8890>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7f7820f0cf10>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f7820ec3490>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f7820d83e10>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f7820cd0850>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7f7820cf9750>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f7820cc8d90>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f7820c17d50>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x7f7820c427d0>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7f78208ec050>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f7820bfbf10>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f7820864990>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f7820832350>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7f78207f0d50>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f78207bf810>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f7868cc6050>,
      dtype=object)
           circularity
                                        compactness
```


dataset.isnull().sum()

compactness	0
circularity	5
distance_circularity	4
radius_ratio	6
<pre>pr.axis_aspect_ratio</pre>	2
<pre>max.length_aspect_ratio</pre>	0
scatter_ratio	1
elongatedness	1
<pre>pr.axis_rectangularity</pre>	3
<pre>max.length_rectangularity</pre>	0
scaled_variance	3
scaled_variance.1	2
scaled_radius_of_gyration	2
<pre>scaled_radius_of_gyration.1</pre>	4
skewness_about	6
skewness_about.1	1
skewness_about.2	1
hollows_ratio	0
class	0
dtype: int64	

dataset.info()


```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 846 entries. 0 to 845
for i in dataset.columns[:-1]:
   median_value = dataset[i].median()
   dataset[i] = dataset[i].fillna(median_value)
     albeance_cri carai rey
                                     U-12 HOLL HULL 1 100 CO-1
dataset.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 846 entries, 0 to 845
     Data columns (total 19 columns):
     compactness
                                     846 non-null int64
     circularity
                                     846 non-null float64
     distance_circularity
                                     846 non-null float64
     radius_ratio
                                     846 non-null float64
                                     846 non-null float64
     pr.axis_aspect_ratio
     max.length_aspect_ratio
                                     846 non-null int64
                                     846 non-null float64
     scatter_ratio
     elongatedness
                                     846 non-null float64
                                     846 non-null float64
     pr.axis_rectangularity
                                     846 non-null int64
     max.length_rectangularity
     scaled_variance
                                     846 non-null float64
     scaled variance.1
                                     846 non-null float64
     scaled_radius_of_gyration
                                     846 non-null float64
     scaled_radius_of_gyration.1
                                     846 non-null float64
     skewness about
                                     846 non-null float64
     skewness_about.1
                                     846 non-null float64
     skewness_about.2
                                     846 non-null float64
                                     846 non-null int64
     hollows ratio
     class
                                     846 non-null object
     dtypes: float64(14), int64(4), object(1)
     memory usage: 125.6+ KB
for col name in dataset.columns[:-1]:
   q1 = dataset[col_name].quantile(0.25)
    q3 = dataset[col name].quantile(0.75)
   iqr = q3 - q1
   low = q1-1.5*iqr
   high = q3+1.5*iqr
   dataset.loc[ (dataset[col name] < low) | (dataset[col name] > high), col name] = dataset[col
dataset.plot(kind='box', figsize=(20,10))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f781e9dc990>

spd = pd.scatter_matrix(dataset, figsize=(20,20), diagonal='kde')

/usr/local/anaconda/python2/lib/python2.7/site-packages/ipykernel_launcher.py:1: Futu """Entry point for launching an IPython kernel.

dataset.corr()

	_	
- 4		
N		

	compactness	circularity	distance_circularity	radius_rat
compactness	1.000000	0.684887	0.789928	0.7219
circularity	0.684887	1.000000	0.792320	0.6382
distance_circularity	0.789928	0.792320	1.000000	0.7942
radius_ratio	0.721925	0.638280	0.794222	1.0000
pr.axis_aspect_ratio	0.192864	0.203253	0.244332	0.6505
max.length_aspect_ratio	0.499928	0.560470	0.666809	0.4639
scatter_ratio	0.812620	0.847938	0.905076	0.7699
elongatedness	-0.788750	-0.821472	-0.911307	-0.8253
pr.axis_rectangularity	0.813694	0.843400	0.893025	0.7441
max.length_rectangularity	0.676143	0.961318	0.774527	0.5794
scaled_variance	0.769871	0.802768	0.869584	0.7861
scaled_variance.1	0.806170	0.827462	0.883943	0.7602
scaled_radius_of_gyration	0.585243	0.925816	0.705771	0.5507
scaled_radius_of_gyration.1	-0.246681	0.068745	-0.229353	-0.3904
skewness_about	0.197308	0.136351	0.099107	0.0357
skewness_about.1	0.156348	-0.009666	0.262345	0.1796
skewness_about.2	0.298537	-0.104426	0.146098	0.4058
hollows_ratio	0.365552	0.046351	0.332732	0.4917

X = dataset.iloc[:,0:18]

from sklearn.decomposition import PCA

pca = PCA().fit(X)

plt.plot(np.cumsum(pca.explained_variance_ratio_))


```
pca = PCA(n_components=10)
pca.fit(X)

X = pca.transform(X),

from sklearn import cross_validation

Y = dataset.iloc[:,18]
test_size=0.2
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_

from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC

from sklearn.model_selection import GridSearchCV
model = SVC()
params = {'C': [0.01, 0.1, 0.5, 1], 'kernel': ['linear', 'rbf']}
model1 = GridSearchCV(model, param_grid=params, verbose=5)
model1.fit(X_train, Y_train)
print("Best Hyper Parameters:\n", model1.best_params_)
```



```
Fitting 3 folds for each of 8 candidates, totalling 24 fits
[CV] kernel=linear, C=0.01 ......
[CV] ..... kernel=linear, C=0.01, score=0.845132743363, total= 0.0s
[CV] kernel=linear, C=0.01 ......
[CV] ..... kernel=linear, C=0.01, score=0.83555555556, total= 0.0s
[CV] kernel=linear, C=0.01 .....
[CV] ..... kernel=linear, C=0.01, score=0.89777777778, total= 0.1s
[CV] kernel=rbf, C=0.01 .....
[CV] ...... kernel=rbf, C=0.01, score=0.504424778761, total= 0.0s
[CV] kernel=rbf, C=0.01 .....
[CV] ...... kernel=rbf, C=0.01, score=0.50222222222, total= 0.0s
[CV] kernel=rbf, C=0.01 .....
[Parallel(n jobs=1)]: Done  1 out of  1 | elapsed:  0.0s remaining:
                                                     0.0s
[Parallel(n jobs=1)]: Done
                    2 out of
                           2 | elapsed: 0.1s remaining:
                                                     0.0s
                                      0.1s remaining:
                            3 | elapsed:
[Parallel(n_jobs=1)]: Done
                    3 out of
                                                     0.0s
[Parallel(n_jobs=1)]: Done 4 out of
                            4 | elapsed: 0.2s remaining:
                                                     0.0s
[CV] ...... kernel=rbf, C=0.01, score=0.502222222222, total= 0.0s
[CV] kernel=linear, C=0.1 ......
[CV] ..... kernel=linear, C=0.1, score=0.849557522124, total= 0.1s
[CV] kernel=linear, C=0.1 ......
[CV] ..... kernel=linear, C=0.1, score=0.831111111111, total= 0.2s
[CV] kernel=linear, C=0.1 .....
[CV] ..... kernel=linear, C=0.1, score=0.89333333333, total= 0.2s
[CV] kernel=rbf, C=0.1 .....
[CV] ...... kernel=rbf, C=0.1, score=0.504424778761, total= 0.0s
[CV] kernel=rbf, C=0.1 .....
[CV] ...... kernel=rbf, C=0.1, score=0.502222222222, total= 0.0s
[CV] kernel=rbf, C=0.1 .....
[CV] ...... kernel=rbf, C=0.1, score=0.50222222222, total= 0.0s
[CV] kernel=linear, C=0.5 ......
[CV] ...... kernel=linear, C=0.5, score=0.836283185841, total= 0.7s
[CV] kernel=linear, C=0.5 ......
[CV] ...... kernel=linear, C=0.5, score=0.82666666667, total= 1.2s
[CV] kernel=linear, C=0.5 ......
[CV] ...... kernel=linear, C=0.5, score=0.88888888889, total= 1.0s
[CV] kernel=rbf, C=0.5 .....
[CV] ...... kernel=rbf, C=0.5, score=0.504424778761, total= 0.0s
[CV] kernel=rbf, C=0.5 .....
[CV] ...... kernel=rbf, C=0.5, score=0.502222222222, total= 0.0s
[CV] kernel=rbf, C=0.5 .....
[CV] ...... kernel=rbf, C=0.5, score=0.502222222222, total= 0.0s
[CV] kernel=linear, C=1 .....
[CV] ...... kernel=linear, C=1, score=0.849557522124, total= 1.8s
[CV] kernel=linear, C=1 ......
[CV] ...... kernel=linear, C=1, score=0.82666666667, total= 2.4s
[CV] kernel=linear, C=1 .....
[CV] ...... kernel=linear, C=1, score=0.88888888889, total= 1.8s
[CV] kernel=rbf, C=1 .....
[CV] ..... kernel=rbf, C=1, score=0.508849557522, total= 0.0s
[CV] kernel=rbf, C=1 .....
[CV] ..... kernel=rbf, C=1, score=0.50222222222, total= 0.0s
[CV] kernel=rbf, C=1 .....
[CV] ..... kernel=rbf, C=1, score=0.506666666667, total= 0.0s
('Best Hyper Parameters:\n', {'kernel': 'linear', 'C': 0.01})
[Parallel(n_jobs=1)]: Done 24 out of 24 | elapsed: 9.8s finished
```