





## Messtechnik

Prof. Dr. Robert Bösnecker, angewandte Informatik

(Prof. Dr. Martin Jogwich, E-Technik)

Technische Hochschule DEGGENDORF (University of Applied Sciences)

# Vorlesungsinhalte: Messtechnik

- 1. Einleitung
- 2. Grundlagen Digital-Analog-Wandler
- 3. Grundlagen Analog-Digital-Wandler
- 4. Komponenten
- 5. Messung nicht-elektrischer Größen

## 4.4 Messverstärker:

## 4.4.1 Verstärkertypenübersicht



#### 4.4 Messverstärker:

#### 4.4.1 Verstärkertypenübersicht





#### Spannungsgenerator: a) Ersatzschaltbild, b) Ausgangsspannung

(E. Schrüfer: Elektrische Messtechnik)





Stromgenerator: a) Ersatzschaltbild, b) Ausgangsspannung

#### 4.4 Messverstärker:

## 4.4.3 Operationsverstärker





#### **Operationsverstärker:**

Schaltbild (a) und (ideale) Kennlinie (b)

#### 4.4 Messverstärker:

## 4.4.3 Operationsverstärker

#### 4.4.3.3 Nicht-invertierende Spannungsverstärker (1)



#### Gegengekoppelter u/u-Verstärker:

elektrotechnische Darstellung (a) und funktionale Darstellung (b)

#### 4.4 Messverstärker:

## 4.4.3 Operationsverstärker

#### 4.4.3.3 Nicht-invertierende Spannungsverstärker (2)



#### Gegengekoppelter u/i-Verstärker:

elektrotechnische Darstellung (a) und funktionale Darstellung (b)

#### 4.4 Messverstärker:

4.4.3 Operationsverstärker

4.4.3.4 Invertierende Stromverstärker (1)



#### Gegengekoppelter *i/u*-Verstärker:

elektrotechnische Darstellung (a) und funktionale Darstellung (b)

## 4.4 Messverstärker:

## 4.4.3 Operationsverstärker

#### 4.4.3.4 Invertierende Stromverstärker (2)



a)



b)

#### Gegengekoppelter i/i-Verstärker:

elektrotechnische Darstellung (a) und funktionale Darstellung (b)

#### 4.4 Messverstärker:

## 4.4.3 Operationsverstärker

#### 4.4.3.5 Anwendungen des Spannungsverstärkers (1)







#### Gegengekoppelte Verstärker:

Konstantspannungsquelle (a),
Konstantstromquelle (b),
Spannungsfolger (c)

4.4 Messverstärker:

4.4.3 Operationsverstärker

4.4.3.5 Anwendungen des Spannungsverstärkers (2)



Präzisisionsgleichrichter:

für positiven Spitzenwert (a),

für Gleichrichtwert (b)

#### 4.4 Messverstärker:

4.4.3 Operationsverstärker

4.4.3.6 Anwendungen des Stromverstärkers (1)



## Invertierender Verstärker:

für Polaritätsumkehr (a),
Addition (b),
Subtraktion (c)





## 4.4 Messverstärker:

## 4.4.3 Operationsverstärker

4.4.3.6 Anwendungen des Stromverstärkers (2)





Integrierer: Schaltung (a) und Signale (b) (E. Schrüfer: Elektrische Messtechnik)





Differenzierer: Schaltung (a) und Signale (b) (E. Schrüfer: Elektrische Messtechnik)

4.4 Messverstärker:

4.4.3 Operationsverstärker

4.4.3.6 Anwendungen des Stromverstärkers (3)



#### Logarithmierer

## 4.4 Messverstärker:

## 4.4.3 Operationsverstärker

#### 4.4.3.7 reale Operationsverstärker

## Übersicht: Operationsverstärker Typen

|                   | Bezeichnung<br>↓ | 0PVs ¢ | Unity-<br>Gain ♦<br>in MHz | SIew-Rate<br>in V/μs ♦ | Input Offset<br>Spannung in ♦<br>mV | Input<br>Offset<br>Strom | Input<br>Bias<br>Strom | R2R in ◆                              | R2R out<br>@RL Vcc ◆                                           | Strom-<br>aufnahme in ♦<br>mA | Bemerkung \$                                                                                                                    | Daten-<br>blatt | Lieferant <b>♦</b> | Preis<br>(€) |
|-------------------|------------------|--------|----------------------------|------------------------|-------------------------------------|--------------------------|------------------------|---------------------------------------|----------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|--------------|
|                   | µA733            | 1      | 1200*                      |                        |                                     | 6 µА                     | 40 µA                  |                                       | Vcc-3,5V Vee+3,5V<br>@2kΩ                                      | 25                            | Video OP, Vcc=12V, I <sub>sink</sub> =2mA;<br>Gains of 10, 100, 400; R <sub>in</sub> =8kΩ;<br>Voutput offset <sup>=</sup> 0,6V; | PDF             | R                  | 0,50         |
|                   | TS912            | 2      | 1 @5∨                      | 0,8 @5∨                | 2-10                                | 1 pA                     | 1 pA                   | Vcc+0,2V<br>Vee-0,2V<br>over the rail | Vcc-0,05V<br>Vee+0,04V @10kΩ<br>5V                             | 0,4                           | Standard Rail2Rail Typ,<br>Vcc=2,7-16V, lout=40mA, Quad:<br>TS914                                                               | PDF             | alle               | 0,80         |
|                   | TLC3702          | 2      |                            |                        | 1,2                                 |                          | 5pA                    |                                       |                                                                | 0,02                          | Micropower-Komparator (20μΑ)<br>PushPull Ausgang                                                                                | PDF             | F, C               | 08,0         |
|                   | TLC272           | 2      | 1,7                        | 2,9                    | 1,1                                 | 0,1 pA                   | 0,7 pA                 | Vcc-0.8V<br>Vee-0.3V                  | Vcc-1.2V Vee+0V<br>@10kΩ                                       | 5                             | Precision OPV, für hochohmige<br>Messanwendungen, Single:<br>TLC271, Quad: TLC274, weniger<br>Offset: TLC277                    | PDF             | R, CSD             | 0,26         |
|                   | ТL072            | 2      | 3                          | 13                     | 3                                   | 5 pA                     | 65 pA                  | Vcc-0V<br>Vee+3V                      | Vcc-1,5V Vee+1,5V<br>@10kΩ 30V                                 | 2,8                           | Standard Audio, Low Noise/JFET<br>Eingang, Quad-Version: TL074,<br>single: TL071(mit Offsetkorr.)                               | PDF             | alle               | 0,17         |
|                   | TL062            | 2      | 1                          | 3                      | 3                                   | 5 pA                     | 30 pA                  |                                       |                                                                | 0,4                           | Low Power/JFET Eingang, veraltet                                                                                                | PDF             | alle               | 0,17         |
|                   | TCA0372          | 2      | 1,1                        | 1,3                    | 1                                   | 10 nA                    | 100 nA                 | Vee to<br>Vcc-1,0V                    | Vcc-0,8V Vee+0,8V<br>@0,1A 30V<br>Vcc-1,3V Vee+1,3V<br>@1A 24V | 5                             | Power-OPV, Thermal Shutdown,<br>Io=1A Io(max)=1.5A                                                                              | PDF             | alle, R            | 0,70         |
| THE STREET STREET | OPA335           | 1      | 2                          | 1.6                    | 0.001                               | 120 pA                   | 70 pA                  | Vcc-1.5V<br>Vee-0.1V                  | Vcc-15mV<br>Vee+15mV @10kΩ,<br>Vcc-1mV Vee+1mV<br>@100kΩ       | 0.285                         | low offset 1µV, Rail2Rail,<br>Vcc=2.7-5.5V, SOT23-5 SO-8,<br>Dual:OPA2335                                                       | PDF             | F                  | 3,50         |

#### Übersicht Teil 1 von 3

(zu beschaffen bei: Reichelt, Conrad, Farnell, R&S, Schukat, ...)

http://www.mikrocontroller.net/articles/Standardbauelemente#Operationsverst.C3.A4rker

#### 4.4 Messverstärker:

## 4.4.3 Operationsverstärker

#### 4.4.3.7 reale Operationsverstärker

| OPA333       | 1 | 0.350                               | 0.16                           | 0.002  | 140 pA             | 70 pA              | Vcc+0.1V<br>Vee-0.1V                  | Vcc-30mV<br>Vee+30mV @10kΩ                           | 0.017         | micro power, low offset 2μV,<br>Rail2Rail, Vcc=1.8-5.5V, SOT23-5<br>SO-8, Dual:OPA2333                   | PDF | E                 | 3,60           |
|--------------|---|-------------------------------------|--------------------------------|--------|--------------------|--------------------|---------------------------------------|------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------|-----|-------------------|----------------|
| OPA2340      | 2 | 5,5                                 | 6                              | 0,150  | 1 pA               | 1 pA               | Vcc+0,5V<br>Vee-0,5V<br>over the rail | Vcc-0,04V<br>Vee+0,04V @2kΩ                          | 1,5           | CMOS Vcc=2,5V - 5,5V                                                                                     | PDF | R                 | 1,65           |
| OP07         | 1 | 0,6                                 | 0,3                            | 0,030  | 0,4 nA             | 1 nA               | Vcc-1,5V<br>Vee+1,5V                  | Vcc-2,2V Vee+2,2V<br>@2kΩ 15V                        | 0,7 - 2,5     | geringer Offset <80µ∨ je nach<br>Hersteller                                                              | PDF | alle              | 0,25           |
| NE592        | 1 | 1200*                               | 8 8                            |        | 1 μΑ               | 9 µА               |                                       | Vcc-4V Vee+4V<br>@2kΩ                                | 20            | $ m Video$ OP, $ m Vcc=12V$ , $ m I_{sinK}=15mA$ ; $ m R_{in}=4-30kΩ$ ; $ m Voutput$ offset=1,5 $ m V$ ; | PDF | R, I              | 0,40           |
| NE5532       | 2 | 10                                  | 9                              | 0,5    | 10 nA              | 500 nA             |                                       | Vcc-2V Vee+2V<br>@600Ω 30V                           | 8             | Standard Audio OP, treibt 600Ω,<br>lout=35mA                                                             | PDF | alle              | 0,23           |
| MCP602-I/P   | 2 | 2,8                                 | 2,3                            | 1      | 1 pA               | 1 pA               | Vcc-1,2V<br>Vee-0,2V                  | Vcc-0,1V Vee+0,1V<br>@5kΩ                            | 0,5           | Vcc=2,7V-5,5V Vout=20mA                                                                                  | PDF | R                 | 0,55           |
| MAX4238/4239 | 1 | MAX4238:<br>1.0,<br>MAX4239:<br>6.5 | MAX4238: 0.35,<br>MAX4239: 1.6 | 0,0001 | 2 pA               | 1 pA               | Vcc+0.3V<br>Vee-0.3V                  | Vcc-4mV Vee+4mV<br>@10kΩ / Vcc-35mV<br>Vee+35mV @1kΩ | 0.6 @Vcc=5.5V | very low offset ("zero offset")<br>0.1µV, Rail2Rail, Vcc=2.7-5.5V,<br>MAX4239: min. Gain x10             | PDF | F, (R<br>MAX4238) | 2,55<br>(1,45) |
| LT1363       | 1 | 70                                  | 1000                           | 1,5    | 120 nA             | 0,6 µА             | Vcc-1,6V<br>Vee+1,8V                  | Vcc-0,9V Vee+0,9V<br>@500Ω 10V                       | 7             | Steilheits OP, Vcc=5-15V,<br>Isink/source=30-60mA; Rin=5ΜΩ*;                                             | PDF | R                 | 3,80           |
| LMC6484      | 4 | 1,5                                 | 0,9                            | 3      | 2 pA               | 4 pA               | Vcc+0,2V<br>Vee-0,2V<br>over the rail | Vcc-0,2V Vee+0,2V<br>@2kΩ 5V                         | 3             | lout=16mA@5V lout=28mA@15V                                                                               | PDF | R                 | 2,35           |
| LMC6062      | 2 | 0,1                                 | 0,015                          | 0,1    | 0,01 pA<br>max:2pA | 0,01 pA<br>max:4pA |                                       | Vcc-0 ,05V<br>Vee+0 ,05V @25kΩ<br>5V                 | 0,045         | Precision, Micropower, CMOS,<br>Is~40μA (typ.), lout=8mA                                                 | PDF | R                 | 2,05           |
| LM4250       | 1 | 0,3-0,01                            | 1-0,001                        | 3-5    | 3-10 nA            | 8-50 nA            | Vcc-0,6V<br>Vee+0,6V                  | Vcc-0,6V Vee+0,6V<br>@10kΩ 3V                        | 0,008 - 0,09  | Micropower, "programmierbar",<br>Werte jeweils für ls=8μA und 90μA                                       | PDF | R                 | 0,98           |

#### Übersicht Teil 2 von 3

(zu beschaffen bei: Reichelt, Conrad, Farnell, R&S, Schukat, ...)

http://www.mikrocontroller.net/articles/Standardbauelemente#Operationsverst.C3.A4rker

#### 4.4 Messverstärker:

# 4.4.3 Operationsverstärker

## 4.4.3.7 reale Operationsverstärker

| LM393                | 2   |      |      | 1   | 5 nA   | 65 nA  | Vcc-2V<br>Vee+0V               | Open- Collector                                                | 1,6       | Standard-Komparator,<br>Isink=16mA, Vcc=2V - 36V,<br>Response-Time=1,5µs                                      | PDF                    | alle | 0,10 |
|----------------------|-----|------|------|-----|--------|--------|--------------------------------|----------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------|------------------------|------|------|
| LM358 / LM324        | 2/4 | 1    | 0,5  | 3   | 5 nA   | 45 nA  | Vcc-2V<br>Vee-0,1V             | Vcc-1,5V Vee+5mV<br>@10kΩ 5V                                   | 0,8       | Standard-OP, Vcc=3V-30V,<br>I <sub>sink</sub> =15mA I <sub>source</sub> =30mA I <sub>sink</sub> -<br>max=40mA | PDF(358) /<br>PDF(324) | alle | 0,19 |
| LM339                | 4   |      |      | 1,4 | 2,3 nA | 60 nA  |                                | Open- Collector                                                | 1,1       | Standard-Komparator,<br>Isink=16mA, Vcc=2V - 36V,<br>Response-Time=1,5µs                                      | PDF                    | alle | 0,10 |
| LM13700              | 2   | 2    | 50   | 0,5 | 0,1 μΑ | 0,4 μΑ |                                | Vcc-0,8V Vee+0,6V                                              | 2,6       | OTA - Steilheits-OP 50V/μs                                                                                    | PDF                    | R    | 0,90 |
| LF356                | 1   | 5    | 12   | 3   | 3 рА   | 30 pA  | Vcc+0,1V<br>Vee+3V             | Vcc-2V Vee+2V<br>@10kΩ 30V                                     | 5         | high bandwidth J-FET,<br>Settling-Time = 1,5μs @0.01%<br>error-voltage, Eingang knapp über<br>Vcc,            | PDF                    | alle | 0,50 |
| LA6510               | 2   |      | 0,15 | 2   | 10 nA  | 100 nA | Vcc-2V<br>Vee+0V               | Vcc-2V Vee+2V<br>@33Ω 30V                                      | 12        | Power-OPV, current limiter pin,<br>Imax=1A P=2,5W,<br>Gehäuse:SIP10F                                          | PDF                    | R    | 0,80 |
| L272                 | 2   | 0,35 | 1    | 15  | 50 nA  | 300 nA |                                | Vcc-1V Vee+0,3V<br>@0,1A 24V<br>Vcc-1,5V Vee+0,6V<br>@0,5A 24V | 8         | Power-OPV, Vcc=4V-28V, Io=0,7A<br>P=1W, Thermal Shutdown<br>@160°C                                            | PDF                    | R    | 0,70 |
| ICL7621              | 2   | 0,5  | 0,15 | 15  | 30 pA  | 1 pA   | Vcc-0,3V<br>Vee+0,3V<br>unklar | Vcc-0,1V Vee+0,1V<br>@100kΩ                                    | 0,2       | Micropower CMOS Vcc=2V - 16V                                                                                  | PDF                    | R    | 1,10 |
| ICL7611 /<br>ICL7612 | 1   | 0,5  | 0,15 | 15  | 30 pA  | 1 pA   | Vcc-0,3V<br>Vee+0,3V<br>unklar | Vcc-0,1V Vee+0,1V<br>@100kΩ                                    | 0,010 - 1 | gleich mit ICL7621, aber nur 1<br>OPV und dafür programmierbar:<br>Is= 10μΑ, 100μΑ, 1mA                       | PDF                    | R    | 0,82 |
| CA3140               | 1   | 4,5  | 9    | 5   | 0,5 pA | 10 pA  | Vee-0,5V                       | Vcc-2V Vee+0,6V<br>@2kΩ 15V                                    | 4         | BIMOS-OP - kleiner<br>Eingangsstrom, ideal für Single-<br>Supply, Vcc-min=4V                                  | PDF                    | R    | 0,47 |

#### Übersicht Teil 3 von 3

(zu beschaffen bei: Reichelt, Conrad, Farnell, R&S, Schukat, ...)

http://www.mikrocontroller.net/articles/Standardbauelemente#Operationsverst.C3.A4rker