CVE154 Exam 2, Part 2

prepared by Christian Cahig for classes of A.Y. 2024-2025 S1

2024-11-07

1 Blank space

Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ of N equations and N unknowns.

- 1. If A is upper-triangular, x is directly obtained using backward substitution.
- 2. The <u>augmented (coefficient)</u> matrix is formed by appending \boldsymbol{b} as a new column to \boldsymbol{A} .
- 3. The system has a unique solution if the determinant of A is <u>not zero</u>.
- 4. If A is lower-triangular, x is directly obtained using forward substitution.
- 5. If the inverse of the coefficient matrix, \mathbf{A}^{-1} , exists, then \mathbf{x} is computed as $\underline{\mathbf{A}^{-1}\mathbf{b}}$. See p. 387 of the main reference.
- 6. A is well-conditioned if its condition number of A is not significantly greater than unity. See Section 2.1, Subsection "Ill Conditioning" of Numerical Methods in Engineering with Python 3.

Consider direct methods for solving the above linear system.

- 7. Partial pivoting interchanges rows of the augmented matrix to find the pivot element. See p. 373 374 of the main reference.
- 8. <u>LU decomposition</u> involves factoring A into a product of a lower- and an upper-triangular matrix, with the requirement that A is non-singular.
- 9. The <u>Gauss-Jordan</u> method extends Gaussian elimination by transforming the system into an equivalent form Dx = d where D is diagonal. See Item 12 of Exercise Set 6.1 (p.~370) of the main reference.
- 10. In the <u>Doolittle</u> variant of LU decomposition, the lower-triangular factor of \boldsymbol{A} has 1s on the diagonal. See p. 405 of the main reference.
- 11. Complete pivoting looks for the pivot element across rows and columns of the augmented matrix. See p. 379 of the main reference.

- 12. In the <u>Crout</u> variant of LU decomposition, the diagonal elements of the upper-triangular factor of **A** are 1s. See p. 405 of the main reference.
- 13. Cholesky decomposition involves factoring A as a product of a lower- and an upper-triangular matrix, each being a transpose of the other. See p. 405 of the main reference.

2 Million reasons

3 pt. In the linear system Ax = b of N equations and N unknowns, the coefficient matrix has a determinant of -1709. Is the system solvable? Why do you think so?

That A has a nonzero determinant implies that it is nonsingular, and so the linear system has a solution.

4 pt. Suppose for a physical problem you derived two equivalent linear system representations: Ax = a and By = b, where x and y are the vectors containing unknown quantities. A and B have condition numbers of 2.024 and 2024, respectively. Which linear system should you use?

Ax = a is preferable, on the following basis. The further from unity the condition number of a coefficient matrix is, the less well-conditioned it is, and, consequently, the less reliable the solution is of the linear system.

5 pt. Discuss how Gaussian elimination can be used to compute the inverse of a square, nonsingular matrix A.

See pp. 388 - 389 of the main reference.

3 Look at those cavemen go

10 pt. Say you have a robot equipped with distance sensors so that you can collect Cartesian coordinates of N points — *i.e.*, (x_1, y_1, z_1) , (x_2, y_2, z_2) , ..., (x_N, y_N, z_N) — on the roof of a cave. Hoping

to simplify the estimation of the cave's dimensions, you hypothesize that the cave is adequately modelled as a portion of a sphere $(x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2 = \rho^2$. Here, the problem is determining from collected data the parameters α , β , γ , and ρ . Show that this problem can be modelled as a system of N linear equations in four unknowns.

Each of the N collected points must satisfy the sphere equation, *i.e.*,

$$(x_i - \alpha)^2 + (y_i - \beta)^2 + (z_i - \gamma)^2 = \rho^2,$$

for i = 1, 2, ..., N. Expanding the terms and rearranging, one can arrive at

$$2x_i\alpha + 2y_i\beta + 2z_i\gamma$$

+\rho^2 - \alpha^2 - \beta^2 - \gamma^2
= $x_i^2 + y_i^2 + z_i^2$.

The subscripted terms, being collected data, are known, and so is the quantity $b_i = x_i^2 + y_i^2 + z_i^2$. Since α , β , γ , and ρ are unknown, then the quantity $\theta = \rho^2 - \alpha^2 - \beta^2 - \gamma^2$ is also unknown. Therefore, each of the N collected data points must satisfy

$$2x_i\alpha + 2y_i\beta + 2z_i\gamma + \theta = b_i,$$

whence the linear system:

$$\begin{bmatrix} 2x_1 & 2y_1 & 2z_1 & 1 \\ 2x_2 & 2y_2 & 2z_2 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 2x_N & 2y_N & 2z_N & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \theta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix}.$$

Bonus

3 pt. Estimate the number of pedestrian crossings inside the campus. Explain your thought process.