MathTools HW 8

- 1. **Total variation distance.** Recall that, by definition, $d_{TV}(p, q) = \frac{1}{2} ||p q||_1$, where $p, q \in [0, 1]^n$ are probability distributions.
 - (a) Prove the following statement from TA8:

$$d_{TV}(\boldsymbol{p},\boldsymbol{q}) = \max_{S \subset [n]} [\boldsymbol{p}(S) - \boldsymbol{q}(S)] .$$

Hint: Find explicitly the maximizing set *S*. Also, remember that $\sum_{i \in S} (p_i - q_i) + \sum_{i \notin S} (p_i - q_i) = 0$ - explain why.

(b) Consider the following *hypothesis testing*. One observed a random variable $X \in \{1, ..., n\}$ sampled from one of the distributions p or q - we don't know which, and want to guess with the smallest possible error. A (deterministic) test is a set of outcomes $S \subset [n]$ such that: (i) if $X \in S$, we declare "p"; (ii) if $X \notin S$, we declare "q".

Denote by $\varepsilon_p(S)$ the error probability when the group truth is p: namely, X was sampled from p, but we erroneously declared "q"; $\varepsilon_q(S)$ is defined likewise. Prove that

$$\varepsilon_p(S) + \varepsilon_q(S) \ge 1 - d_{TV}(\boldsymbol{p}, \boldsymbol{q})$$
,

and show that there is a test for which there is equality above.

- 2. **Easy leftovers from TA.** Let *P* the transition matrix on an **ergodic** Markov chain.
 - (a) Suppose that $P = P^{\top}$. Prove that its stationary distribution is the uniform distribution.
 - (b) Denote by \mathbf{x}_t the marginal distribution of X_t at time t. Prove that the sequence $d_{TV}(\mathbf{x}_t, \boldsymbol{\pi})$ is non-increasingly, namely, $d_{TV}(\mathbf{x}_{t+1}, \boldsymbol{\pi}) \leq d_{TV}(\mathbf{x}_t, \boldsymbol{\pi})$.
 - (c) Using the notations from TA8, so that

$$\tau(\varepsilon) = \max_{i=1,...,n} \tau(\varepsilon|\mathbf{e}_i).$$

In other words, the "worst" starting distribution in terms of mixing time is one which starts deterministically at some state.

3. Let *G* be a *d*-regular, connected non-bipartite graph. As in the TA, let $\tau(\varepsilon)$ be the mixing time of the SRW on *G* to within ε TV-distance from the stationary (uniform) distribution. Recall: we proved that

$$\tau(\varepsilon) = O\left(\frac{\log n + \log \frac{1}{\varepsilon}}{\gamma}\right)$$

where γ is the spectral gap (throughout, let's assume it is small, so that $\log \frac{1}{1-\gamma} = \Theta(\gamma)$). In particular, when $\varepsilon = 1/\text{poly}(n)$, for example, $\varepsilon = n^{-4}$, we get $\tau(\varepsilon) = O\left(\frac{\log n}{\gamma}\right)$. Prove a *matching lower bound* on the mixing time, for *very small target precision* ε : namely, show that for $\varepsilon = n^{-4}$

$$\tau(n^{-4}) = \Omega\left(\frac{\log n}{\gamma}\right).$$

Hint: You need to come up with a starting distribution π_0 , such that $d_{TV}(\pi_0 P^t, \pi)$ is large for all small t. Explain why the following is true: if $||u||_2 = 1$ and $u \perp 1$, then $\pi + n^{-1}u$ is a kosher probability distribution (recall: $\pi = (1/n, ..., 1/n)$). Now, basically follow the same proof we did in class.

- 4. **Lazy random walk.** Let G be a connected graph. Consider the following random walk on G: suppose that in time t, you are in vertex X_t ; you flip an even coin (head w.p. 1/2) if it is heads, you stay in X_t (meaning $X_{t+1} = X_t$), otherwise X_{t+1} is just a random neighbor of X_t , chosen uniformly (as in a SRW).
 - (a) Let *P* be the transition matrix for the SRW (the "usual" random walk) on *G*. What is the transition matrix for the LRW (lazy random walk)?
 - (b) Show that the stationary distribution of the LRW is the same as that of the SRW.
 - (c) Prove that the LRW is always ergodic (even when *G* is bipartite!).
 - (d) Suppose that G is not bipartite. Denote by $\tau_{SRW}(\varepsilon)$ the mixing time for the SRW and by $\tau_{LRW}(\varepsilon)$ the mixing time for the LRW. Suppose that the SRW on G is rapidly mixing, in the sense that for every constant $\varepsilon > 0$, $\tau_{SRW}(\varepsilon) = \text{polylog}(n)$, where ε is thought of as a *constant*. Prove that the LRW is also rapidly mixing, that is, that $\tau_{LRW}(\varepsilon) = \text{polylog}(n)$.

Hint: I am sure there are many ways to show this. Here is the one I had in mind (but you can prove this any way you like): Let \mathbf{x}_0 be the initial dist. and \mathbf{x}_t be the dist. at step t. Show that $d_{TV}(\mathbf{x}_t, \boldsymbol{\pi}) \leq 2^{-t} \sum_{i=0}^t \binom{t}{i} d_{TV}(\mathbf{x}_0^\top P^i, \boldsymbol{\pi})$. Take, e.g, $t = [\tau_{SRW}(\varepsilon/2)]^2$; control the first \sqrt{t} terms and the remaining $(t+1-\sqrt{t})$ terms separately.

¹A nitpicky point: since we're talking about rapid mixing (asymptotics in n), in truth we have here a *family* of graph on n vertices, and $n \to \infty$...