МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Параллельные алгоритмы»

Тема: Реализация структур данных без блокировок

Студент гр. 0303	Парамонов В.В
Преподаватель	Сергеева Е. И.

Санкт-Петербург

2023

Цель работы.

Исследовать структуры данных без блокировок. Воспользоваться структурой данных без блокировок для решения задачи производителипотребители.

Постановка задачи.

Выполняется на основе работы 2.

- Реализовать очередь, удовлетворяющую lock-free гарантии прогресса.
- Протестировать доступ к реализованной структуре данных в случае нескольких потоков производителей и потребителей.
- Сравнить производительность с реализациями структур данных из работы 2.
- Сформулировать инвариант структуры данных.

Выполнение задач.

1. Изменения структуры решения в сравнении с лабораторной 2:

- 1) Появился новый шаблонный класс nonLockThreadsQueue (многопоточная очередь без блокировок) унаследованный от baseThreadsQueue (Виртуальный базовый класс многопоточной очереди). Данный класс многопоточной очереди без блокировок реализован на базе алгоритма Michael & Scott queue. Для очистки памяти был реализован механизм "сбощика мусора", который занимается удалением старых узлов в случае, если все потоки на некоторое время перестали вызывать метод рор.
- 2) Изменилась реализация классов "грубой" (roughThreadsQueue), "тонкой" (thinThreadsQueue) очередей и их базового класса (baseThreadsQueue) на использование односвязного списка.

2. Исследование получаемых с использованием программы результатов:

- 1) Инвариант для очереди на односвязном списке: голова списка всегда должна находиться до хвоста.
- 2) Исследуем скорость работы очереди с грубой блокировкой, с тонкой блокировкой и без блокировок в зависимости от количества

производителей и потребителей, результаты измерений времени работы, усредненные для 100 запусков, представлены в таблице 1 (размеры матриц – (20, 40), (40, 20); количество генерируемых производителями и обрабатываемыми потребителями наборов данных – 200; макс. Размер очереди – 50):

Таблица 1 — Измерение времени работы разных очередей в зависимости от кол-ва потребителей и производителей

Количество производителей	Количество потребителей	Время выполнения задачи(мкс)
		Для грубой блокировки
		Для тонкой блокировки
		Для без блокировок
5	5	10586
		10568
		12429
2	5	11681
		11400
		12840
5	2	15866
		15084
		20331
10	10	10030
		9957
		17535
20	20	9848
		9632
		16861

Исходя из полученных данных в таблице 1 очередь с "тонкой" блокировкой быстрее, чем очередь с "грубой" блокировкой и намного быстрее очереди без блокировок. Это объясняется тем, что очередь без блокировок может выигрывать по времени выполнения в случае малой конкуренции процессов, так как при большой конкуренции в очереди с отсутствием блокировок все чаще потоки мешают друг другу выполнится полностью и происходит активная блокировка. Так же проблемой является необходимость

очищения динамически выделяемых ресурсов в очереди без блокировок. Это увеличивает количество выполняемых операций и плохо сказывается на производительности.

Заключение.

В ходе работы была изучена разница между "грубой" и "тонкой" блокировкой. Были использованы очереди на основе блокировок и без блокировок для решения задачи производители-потребители. Было практически подтверждено, что в данной задаче с высокой конкуренцией очереди с блокировками оказались быстрее очереди без блокировок.