"Abstract" Vector Spaces

Math 152

Lecture 7

There are three important "algebraic structures" on \mathbb{R}^n (and any subspace $W \subset \mathbb{R}^n$) that allow us to study linear algebra on \mathbb{R}^n (or on W). Namely:

▶ **Addition**: For any two vectors \vec{v} , $\vec{w} \in \mathbb{R}^n$, we can add them $\vec{v} + \vec{w}$ to obtain another element of \mathbb{R}^n .

There are three important "algebraic structures" on \mathbb{R}^n (and any subspace $W \subset \mathbb{R}^n$) that allow us to study linear algebra on \mathbb{R}^n (or on W). Namely:

- ▶ Addition: For any two vectors \vec{v} , $\vec{w} \in \mathbb{R}^n$, we can add them $\vec{v} + \vec{w}$ to obtain another element of \mathbb{R}^n .
- ▶ **Scaling**: For any vector $\vec{v} \in \mathbb{R}^n$ and any scalar $c \in \mathbb{R}$, I can multiply $c \cdot \vec{v}$ to obtain another element of \mathbb{R}^n .

There are three important "algebraic structures" on \mathbb{R}^n (and any subspace $W \subset \mathbb{R}^n$) that allow us to study linear algebra on \mathbb{R}^n (or on W). Namely:

- Addition: For any two vectors $\vec{v}, \vec{w} \in \mathbb{R}^n$, we can add them $\vec{v} + \vec{w}$ to obtain another element of \mathbb{R}^n .
- Scaling: For any vector $\vec{v} \in \mathbb{R}^n$ and any scalar $c \in \mathbb{R}$, I can multiply $c \cdot \vec{v}$ to obtain another element of \mathbb{R}^n .
- ▶ **Zero Element**: There is a vector $\vec{0} \in \mathbb{R}^n$ such that $\vec{0} + \vec{v} = \vec{v}$ for any vector $\vec{v} \in \mathbb{R}^n$.

There are three important "algebraic structures" on \mathbb{R}^n (and any subspace $W \subset \mathbb{R}^n$) that allow us to study linear algebra on \mathbb{R}^n (or on W). Namely:

- ▶ Addition: For any two vectors \vec{v} , $\vec{w} \in \mathbb{R}^n$, we can add them $\vec{v} + \vec{w}$ to obtain another element of \mathbb{R}^n .
- Scaling: For any vector $\vec{v} \in \mathbb{R}^n$ and any scalar $c \in \mathbb{R}$, I can multiply $c \cdot \vec{v}$ to obtain another element of \mathbb{R}^n .
- ▶ Zero Element: There is a vector $\vec{0} \in \mathbb{R}^n$ such that $\vec{0} + \vec{v} = \vec{v}$ for any vector $\vec{v} \in \mathbb{R}^n$.

These structures satisfy several rules - and the importance of the zero element is so that we can state one of the rules.

Let $\vec{v}, \vec{w}, \vec{u}$ be vectors in \mathbb{R}^n , and $c, k \in \mathbb{R}$ scalars. Then we have the following properties:

1. Associativity of Addition: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$

- 1. Associativity of Addition: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$
- 2. Commutativity Addition: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$

- 1. Associativity of Addition: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$
- 2. Commutativity Addition: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$
- 3. Additive inverse: $\vec{v} + (-1) \cdot \vec{v} = \vec{0}$

- 1. Associativity of Addition: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$
- 2. Commutativity Addition: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$
- 3. Additive inverse: $\vec{v} + (-1) \cdot \vec{v} = \vec{0}$
- 4. Distributive Property for Vectors: $c \cdot (\vec{v} + \vec{w}) = c \cdot \vec{v} + c \cdot \vec{w}$

- 1. Associativity of Addition: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$
- 2. Commutativity Addition: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$
- 3. Additive inverse: $\vec{v} + (-1) \cdot \vec{v} = \vec{0}$
- 4. Distributive Property for Vectors: $c \cdot (\vec{v} + \vec{w}) = c \cdot \vec{v} + c \cdot \vec{w}$
- 5. Distributive Property for Scalars: $(c + k) \cdot \vec{v} = c \cdot \vec{v} + k \cdot \vec{v}$

- 1. Associativity of Addition: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$
- 2. Commutativity Addition: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$
- 3. Additive inverse: $\vec{v} + (-1) \cdot \vec{v} = \vec{0}$
- 4. Distributive Property for Vectors: $c \cdot (\vec{v} + \vec{w}) = c \cdot \vec{v} + c \cdot \vec{w}$
- 5. Distributive Property for Scalars: $(c + k) \cdot \vec{v} = c \cdot \vec{v} + k \cdot \vec{v}$
- 6. Associativity of Scaling: $c \cdot (k \cdot \vec{v}) = (c \cdot k) \cdot \vec{v}$

- 1. Associativity of Addition: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$
- 2. Commutativity Addition: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$
- 3. Additive inverse: $\vec{v} + (-1) \cdot \vec{v} = \vec{0}$
- 4. Distributive Property for Vectors: $c \cdot (\vec{v} + \vec{w}) = c \cdot \vec{v} + c \cdot \vec{w}$
- 5. Distributive Property for Scalars: $(c + k) \cdot \vec{v} = c \cdot \vec{v} + k \cdot \vec{v}$
- 6. Associativity of Scaling: $c \cdot (k \cdot \vec{v}) = (c \cdot k) \cdot \vec{v}$
- 7. 1 is Identity: $1 \cdot \vec{v} = \vec{v}$

Consider the set P_5 of polynomials with degree less than or equal to 5.

Consider the set P_5 of polynomials with degree less than or equal to 5. For example, the polynomials

$$p(x) = 4x^4 + 2x^3 + x^2 - 10$$
 $q(x) = x^5 + x + 10$ $n(x) = 0$

Consider the set P_5 of polynomials with degree less than or equal to 5. For example, the polynomials

$$p(x) = 4x^4 + 2x^3 + x^2 - 10$$
 $q(x) = x^5 + x + 10$ $n(x) = 0$

 P_5 has the three algebraic structures analogous to those for \mathbb{R}^n . That is:

▶ **Addition**: We can add any two polynomials in P_5 to obtain a polynomial in P_5 . For example,

$$p(x) + q(x) = x^5 + 4x^4 + 2x^3 + x^2 + x$$

Consider the set P_5 of polynomials with degree less than or equal to 5. For example, the polynomials

$$p(x) = 4x^4 + 2x^3 + x^2 - 10$$
 $q(x) = x^5 + x + 10$ $n(x) = 0$

 P_5 has the three algebraic structures analogous to those for \mathbb{R}^n . That is:

- Addition: We can add any two polynomials in P_5 to obtain a polynomial in P_5 .
- **Scaling**: We can multiply any polynomial in P_5 by a real number to obtain a polynomial in P_5 . For example,

$$2 \cdot q(x) = 2x^5 + 2x + 20$$

Consider the set P_5 of polynomials with degree less than or equal to 5. For example, the polynomials

$$p(x) = 4x^4 + 2x^3 + x^2 - 10$$
 $q(x) = x^5 + x + 10$ $n(x) = 0$

 P_5 has the three algebraic structures analogous to those for \mathbb{R}^n . That is:

- Addition: We can add any two polynomials in P_5 to obtain a polynomial in P_5 .
- Scaling: We can multiply any polynomial in P_5 by a real number to obtain a polynomial in P_5 .
- **Zero Element**: The zero polynomial n(x) = 0 is a zero element. For example,

$$p(x) + n(x) = 4x^4 + 2x^3 + x^2 - 10 + 0 = p(x)$$

Consider the set P_5 of polynomials with degree less than or equal to 5. For example, the polynomials

$$p(x) = 4x^4 + 2x^3 + x^2 - 10$$
 $q(x) = x^5 + x + 10$ $n(x) = 0$

 P_5 has the three algebraic structures analogous to those for \mathbb{R}^n . That is:

- Addition: We can add any two polynomials in P_5 to obtain a polynomial in P_5 .
- Scaling: We can multiply any polynomial in P_5 by a real number to obtain a polynomial in P_5 .
- ▶ Zero Element: The zero polynomial n(x) = 0 is a zero element.

There is nothing special about 5. If d is any whole number, then the collection P_d denotes the set of polynomials with degree $\leq d$. It has addition, scaling, and a zero element.

Let p(x), q(x), r(x) be polynomials in P_d , and $c, k \in \mathbb{R}$ scalars. Then we have the following properties:

1. Associativity of Addition:

$$(p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x))$$

- 1. Associativity of Addition:
 - (p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x))
- 2. Commutativity Addition: p(x) + q(x) = q(x) + p(x)

- 1. Associativity of Addition:
 - (p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x))
- 2. Commutativity Addition: p(x) + q(x) = q(x) + p(x)
- 3. Additive inverse: $p(x) + (-1) \cdot p(x) = \vec{0}$

- 1. Associativity of Addition:
 - (p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x))
- 2. Commutativity Addition: p(x) + q(x) = q(x) + p(x)
- 3. Additive inverse: $p(x) + (-1) \cdot p(x) = \vec{0}$
- 4. Distributive Property for Vectors:

$$c \cdot (p(x) + q(x)) = c \cdot p(x) + c \cdot q(x)$$

- 1. Associativity of Addition: (p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x))
- 2. Commutativity Addition: p(x) + q(x) = q(x) + p(x)
- 3. Additive inverse: $p(x) + (-1) \cdot p(x) = \vec{0}$
- 4. Distributive Property for Vectors: $c \cdot (p(x) + q(x)) = c \cdot p(x) + c \cdot q(x)$
- 5. **Distributive Property for Scalars**: $(c + k) \cdot p(x) = c \cdot p(x) + k \cdot p(x)$

Let p(x), q(x), r(x) be polynomials in P_d , and $c, k \in \mathbb{R}$ scalars. Then we have the following properties:

1. Associativity of Addition:

$$(p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x))$$

- 2. Commutativity Addition: p(x) + q(x) = q(x) + p(x)
- 3. Additive inverse: $p(x) + (-1) \cdot p(x) = \vec{0}$
- 4. Distributive Property for Vectors:

$$c \cdot (p(x) + q(x)) = c \cdot p(x) + c \cdot q(x)$$

- 5. Distributive Property for Scalars: $(c + k) \cdot p(x) = c \cdot p(x) + k \cdot p(x)$
- 6. Associativity of Scaling: $c \cdot (k \cdot p(x)) = (c \cdot k) \cdot p(x)$

- 1. Associativity of Addition:
 - (p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x))
- 2. Commutativity Addition: p(x) + q(x) = q(x) + p(x)
- 3. Additive inverse: $p(x) + (-1) \cdot p(x) = \vec{0}$
- 4. Distributive Property for Vectors:

$$c \cdot (p(x) + q(x)) = c \cdot p(x) + c \cdot q(x)$$

- 5. Distributive Property for Scalars: $(c + k) \cdot p(x) = c \cdot p(x) + k \cdot p(x)$
- 6. Associativity of Scaling: $c \cdot (k \cdot p(x)) = (c \cdot k) \cdot p(x)$
- 7. **1** is Identity: $1 \cdot p(x) = p(x)$

Definition of Vector Space

A **vector space** (over \mathbb{R}) is a set V along with the three algebraic structures:

- ▶ Addition: If $v, w \in V$, there is an element $v + w \in V$.
- ▶ Scaling: If $v \in V$ and $c \in \mathbb{R}$, then there is an element $c \cdot v \in V$.
- ▶ Zero element: There is an element $0 \in V$ such that 0 + v = v for all $v \in V$.

These three structures must satisfy the 7 rules given before.

Definition of Vector Space

A **vector space** (over \mathbb{R}) is a set V along with the three algebraic structures:

- ▶ Addition: If $v, w \in V$, there is an element $v + w \in V$.
- ▶ Scaling: If $v \in V$ and $c \in \mathbb{R}$, then there is an element $c \cdot v \in V$.
- ▶ Zero element: There is an element $0 \in V$ such that 0 + v = v for all $v \in V$.

These three structures must satisfy the 7 rules given before.

The elements v of a vector space V are called **vectors**.

Difference between V and \mathbb{R}^n

There are two main differences between the behavior of an abstract vector space V and \mathbb{R}^n :

Difference between V and \mathbb{R}^n

There are two main differences between the behavior of an abstract vector space V and \mathbb{R}^n :

▶ The dimension of \mathbb{R}^n is n. But the dimension of V can be infinite. We will not study such vector spaces closely.

Difference between V and \mathbb{R}^n

There are two main differences between the behavior of an abstract vector space V and \mathbb{R}^n :

- ▶ The dimension of \mathbb{R}^n is n. But the dimension of V can be infinite. We will not study such vector spaces closely.
- ▶ V does not have a standard basis, so you can't take it's standard coordinates. For $\vec{v} \in \mathbb{R}^n$, the i-th standard coordinate of \vec{v} is v_i . For example, the second standard coordinate of

$$\vec{v} = \begin{pmatrix} 5 \\ 7 \\ -1 \end{pmatrix}$$

is 7.

Consider the differential equation

$$f^{(4)} = f$$

Consider the differential equation

$$f^{(4)}=f$$

We are interested in the solution set. I.e. the set of all functions that satisfy that equation:

$$V = \{f(x) : \text{ the fourth derivative of } f(x) \text{ equals } f(x)\}$$

Consider the differential equation

$$f^{(4)}=f$$

We are interested in the solution set. I.e. the set of all functions that satisfy that equation:

$$V = \{f(x) : \text{ the fourth derivative of } f(x) \text{ equals } f(x)\}$$

For example, $f(x) = 7e^x + \cos x \in V$ is a solution.

Consider the differential equation

$$f^{(4)}=f$$

We are interested in the solution set. I.e. the set of all functions that satisfy that equation:

$$V = \{f(x) : \text{ the fourth derivative of } f(x) \text{ equals } f(x)\}$$

For example, $f(x) = 7e^x + \cos x \in V$ is a solution.

This is another example of a vector space. This is because *differentiation* is linear. That is,

$$(f+g)'(x) = f'(x) + g'(x)$$

Consider the differential equation

$$f^{(4)} = f$$

We are interested in the solution set. I.e. the set of all functions that satisfy that equation:

$$V = \{f(x) : \text{ the fourth derivative of } f(x) \text{ equals } f(x)\}$$

For example, $f(x) = 7e^x + \cos x \in V$ is a solution.

This is another example of a vector space. This is because *differentiation* is linear. That is,

$$(f+g)'(x) = f'(x) + g'(x)$$

Thus, if f and g are solutions, then

$$(f+g)^{(4)}(x) = f^{(4)}(x) + g^{(4)}(x) = f(x) + g(x) = (f+g)(x)$$

Consider the differential equation

$$f^{(4)}=f$$

We are interested in the solution set. I.e. the set of all functions that satisfy that equation:

$$V = \{f(x) : \text{ the fourth derivative of } f(x) \text{ equals } f(x)\}$$

For example, $f(x) = 7e^x + \cos x \in V$ is a solution.

This is another example of a vector space. This is because *differentiation* is linear. That is,

$$(f+g)'(x) = f'(x) + g'(x)$$

Thus, if f and g are solutions, then

$$(f+g)^{(4)}(x) = f^{(4)}(x) + g^{(4)}(x) = f(x) + g(x) = (f+g)(x)$$

Hence, f+g is also a solution. Similarly, multiplying a solution by a real number is also a solution. This example illustrates that there aren't standard coordinates for any vector space.

The Space of Matrices

Let $\mathbb{R}^{m \times n}$ denote the set of all $m \times n$ matrices. Then $\mathbb{R}^{m \times n}$ is a vector space.

The Space of Matrices

Let $\mathbb{R}^{m \times n}$ denote the set of all $m \times n$ matrices. Then $\mathbb{R}^{m \times n}$ is a vector space.

Addition is given entry by entry

$$A+B=(a_{ij})+(b_{ij})=\big(a_{ij}+b_{ij}\big)$$

The Space of Matrices

Let $\mathbb{R}^{m \times n}$ denote the set of all $m \times n$ matrices. Then $\mathbb{R}^{m \times n}$ is a vector space.

Addition is given entry by entry

$$A+B=(a_{ij})+(b_{ij})=(a_{ij}+b_{ij})$$

Scaling is given entry by entry

$$c \cdot A = c \cdot (a_{ij}) = (c \cdot a_{ij})$$

▶ The zero element is the matrix with all 0's.

A Flood of Definitions in Linear Algebra on \mathbb{R}^n and for V

The following have been defined for \mathbb{R}^n , and will also be defined for any vector space V:

A Flood of Definitions in Linear Algebra on \mathbb{R}^n and for V

The following have been defined for \mathbb{R}^n , and will also be defined for any vector space V:

- Subspace
- ► Linear Independence/Dependence
- Span
- Basis
- ightharpoonup Coordinates for a given basis ${\cal B}$
- ▶ Matrix of a linear transformation in terms of a given basis
- ► Linear Transformation
- Kernel
- Image

Definitions in Linear Algebra on \mathbb{R}^n and for V

The following have been defined for \mathbb{R}^n , but CANNOT be defined for every vector space V:

Definitions in Linear Algebra on \mathbb{R}^n and for V

The following have been defined for \mathbb{R}^n , but CANNOT be defined for every vector space V:

- ► The standard basis
- Standard coordinates
- ▶ <u>The</u> matrix of a linear transformation. (I.e., the matrix of a linear transformation in terms of the standard basis.)

Definitions in Linear Algebra on \mathbb{R}^n and for V

The following have been defined for \mathbb{R}^n , but CANNOT be defined for every vector space V:

- ▶ The standard basis
- Standard coordinates
- ▶ The matrix of a linear transformation. (I.e., the matrix of a linear transformation in terms of the standard basis.)

Note that \underline{a} matrix will be given for a linear transformation, but only in terms of a basis.

Subspace

A **subspace** of a vector space V is a subset $W \subset V$ which is itself a vector space, with the addition, scaling, and zero objecte the same as in V.

Subspace

A **subspace** of a vector space V is a subset $W \subset V$ which is itself a vector space, with the addition, scaling, and zero objecte the same as in V.

In practice, this means showing that W contains 0, and W is **closed** under addition and scaling. That is,

- ▶ If $w_1, w_2 \in W$, then $w_1 + w_2 \in W$
- ▶ If $w \in W$ and $c \in \mathbb{R}$ a scalar, then $c \cdot w \in W$.

▶ Any line or plane containing $\vec{0}$ in \mathbb{R}^n .

- ▶ Any line or plane containing $\vec{0}$ in \mathbb{R}^n .
- ▶ The set $W \subset P_5$ of all polynomials f(x) of degree 5 such that f(2) = 0 is a subspace of P_5 .

- ▶ Any line or plane containing $\vec{0}$ in \mathbb{R}^n .
- ▶ The set $W \subset P_5$ of all polynomials f(x) of degree 5 such that f(2) = 0 is a subspace of P_5 .
- ▶ The set $W \subset \mathbb{R}^{2\times 2}$ of matrices A such that

$$A\begin{pmatrix}1\\2\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}$$

is a subspace of $\mathbb{R}^{2\times 2}$.

- ▶ Any line or plane containing $\vec{0}$ in \mathbb{R}^n .
- ▶ The set $W \subset P_5$ of all polynomials f(x) of degree 5 such that f(2) = 0 is a subspace of P_5 .
- ▶ The set $W \subset \mathbb{R}^{2\times 2}$ of matrices A such that

$$A\begin{pmatrix}1\\2\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}$$

is a subspace of $\mathbb{R}^{2\times 2}$.

▶ The solution set of

$$f'(x) = x \cdot f(x)$$

is a subspace of the solution set of

$$f''(x) = (x^2 + 1) \cdot f(x)$$

Span

A **linear combination** of v_1, \dots, v_n in a vector space V is an element of the form

$$c_1v_1+\cdots+c_nv_n$$

Span

A **linear combination** of v_1, \dots, v_n in a vector space V is an element of the form

$$c_1v_1+\cdots+c_nv_n$$

The **span** of v_1, \dots, v_n is the set of linear combinations of v_1, \dots, v_n .

Span

A **linear combination** of v_1, \dots, v_n in a vector space V is an element of the form

$$c_1v_1+\cdots+c_nv_n$$

The **span** of v_1, \dots, v_n is the set of linear combinations of v_1, \dots, v_n .

The span of a set of vectors is a subspace.

Example of Span

Consider $x, x^2 + x^4 \in P_5$. The element

$$p(x) = 5x - x^2 - x^4 = (5) \cdot x + (-1) \cdot (x^2 + x^4)$$

is a linear combination of x and $x^2 + x^4$

Example of Span

Consider $x, x^2 + x^4 \in P_5$. The element

$$p(x) = 5x - x^2 - x^4 = (5) \cdot x + (-1) \cdot (x^2 + x^4)$$

is a linear combination of x and $x^2 + x^4$ Hence,

$$p(x) \in \text{span}(x, x^2 + x^4) = \{ax + bx^2 + bx^4 : a, b \in \mathbb{R}\}$$

A set of vectors v_1, \dots, v_n in V are **linearly dependent** if there exists a **relation**

$$c_1v_1+\cdots c_nv_n=0$$

for scalars c_i which is **nontrivial**.

A set of vectors v_1, \dots, v_n in V are **linearly dependent** if there exists a **relation**

$$c_1v_1+\cdots c_nv_n=0$$

for scalars c_i which is **nontrivial**. Nontrivial means that at least one of the $c_i \neq 0$. Every set of vectors satisfies the trivial relation.

A set of vectors v_1, \dots, v_n in V are **linearly dependent** if there exists a **relation**

$$c_1v_1+\cdots c_nv_n=0$$

for scalars c_i which is **nontrivial**. Nontrivial means that at least one of the $c_i \neq 0$. Every set of vectors satisfies the trivial relation.

The vectors v_1, \dots, v_n are **linearly independent** if they are not linearly dependent.

A set of vectors v_1, \dots, v_n in V are **linearly dependent** if there exists a **relation**

$$c_1 v_1 + \cdots c_n v_n = 0$$

for scalars c_i which is **nontrivial**. Nontrivial means that at least one of the $c_i \neq 0$. Every set of vectors satisfies the trivial relation.

The vectors v_1, \dots, v_n are **linearly independent** if they are not linearly dependent. To check that vectors are linearly independent, you must check that every relation between them is trivial.

Consider the set of vectors in $\mathbb{R}^{2\times 2}$

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad I_3$$

Consider the set of vectors in $\mathbb{R}^{2\times 2}$

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad I_3$$

They are linearly dependent, because $I_3 = A_1 + A_2$.

Consider the set of vectors in $\mathbb{R}^{2\times 2}$

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad I_3$$

They are linearly dependent, because $I_3 = A_1 + A_2$. This corresponds to the relation

$$A_1 + A_2 - I_3 = 0$$

Consider the set of vectors in $\mathbb{R}^{2\times 2}$

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad I_3$$

They are linearly dependent, because $I_3 = A_1 + A_2$. This corresponds to the relation

$$A_1 + A_2 - I_3 = 0$$

But A_1 and A_2 are linearly independent.

Consider the set of vectors in $\mathbb{R}^{2\times 2}$

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad I_3$$

They are linearly dependent, because $I_3 = A_1 + A_2$. This corresponds to the relation

$$A_1 + A_2 - I_3 = 0$$

But A_1 and A_2 are linearly independent. Indeed, if

$$c_1A_1+c_2A_2=0$$

Consider the set of vectors in $\mathbb{R}^{2\times 2}$

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad I_3$$

They are linearly dependent, because $I_3 = A_1 + A_2$. This corresponds to the relation

$$A_1 + A_2 - I_3 = 0$$

But A_1 and A_2 are linearly independent. Indeed, if

$$c_1A_1+c_2A_2=0$$

Then

$$\begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \Rightarrow \qquad c_1 = c_2 = 0$$

A **basis** of *V* is a set of vectors v_1, \dots, v_n such that:

A **basis** of *V* is a set of vectors v_1, \dots, v_n such that:

▶ They span V. That is, their span is all of V.

A **basis** of *V* is a set of vectors v_1, \dots, v_n such that:

- ▶ They span V. That is, their span is all of V.
- ► They are linearly independent.

A **basis** of *V* is a set of vectors v_1, \dots, v_n such that:

- ▶ They span *V*. That is, their span is all of *V*.
- ► They are linearly independent.

We say that V is **finite dimensional** if such a basis exists.

A **basis** of *V* is a set of vectors v_1, \dots, v_n such that:

- ▶ They span *V*. That is, their span is all of *V*.
- ▶ They are linearly independent.

We say that V is **finite dimensional** if such a basis exists. (Note: one can define what it means for an infinite list of vectors to be a basis, so that one can also study infinite dimensional vector spaces. From now on, we will always assume V is finite dimensional.)

A **basis** of *V* is a set of vectors v_1, \dots, v_n such that:

- ▶ They span *V*. That is, their span is all of *V*.
- ▶ They are linearly independent.

We say that V is **finite dimensional** if such a basis exists. (Note: one can define what it means for an infinite list of vectors to be a basis, so that one can also study infinite dimensional vector spaces. From now on, we will always assume V is finite dimensional.)

To say that v_1, \dots, v_n are a basis is equivalent to saying that every element of V can be written uniquely as a linear combination of the vectors v_1, \dots, v_n . (The "can" corresponds to the "span" condition, the "uniquely" corresponds to the "linear independence" condition.)

A **basis** of *V* is a set of vectors v_1, \dots, v_n such that:

- ▶ They span *V*. That is, their span is all of *V*.
- ▶ They are linearly independent.

We say that V is **finite dimensional** if such a basis exists. (Note: one can define what it means for an infinite list of vectors to be a basis, so that one can also study infinite dimensional vector spaces. From now on, we will always assume V is finite dimensional.)

To say that v_1, \cdots, v_n are a basis is equivalent to saying that every element of V can be written uniquely as a linear combination of the vectors v_1, \cdots, v_n . (The "can" corresponds to the "span" condition, the "uniquely" corresponds to the "linear independence" condition.)

Just as with subspaces of \mathbb{R}^n , the number of vectors in any basis of V is always the same. This number is called the **dimension** of V.

Consider the space P_3 of polynomials of degree ≤ 3 . Every element can be written uniquely as a linear combination of the monomials $1, x, x^2, x^3$. Hence, they form a basis of P_3 . Thus, it is 4-dimensional.

Consider the space P_3 of polynomials of degree ≤ 3 . Every element can be written uniquely as a linear combination of the monomials $1, x, x^2, x^3$. Hence, they form a basis of P_3 . Thus, it is 4-dimensional.

Now, consider the space $\mathbb{R}^{3\times 2}$ of 3×2 matrices. Then the matrices

$$E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$E_{2,1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad E_{3,1} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad E_{3,2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

form a basis of $\mathbb{R}^{3\times 2}$. Hence, it is 6-dimensional.

By general theory of ordinary differential equations (which you don't need to know), the space of solutions to

$$f'' = f$$

is two dimensional.

By general theory of ordinary differential equations (which you don't need to know), the space of solutions to

$$f'' = f$$

is two dimensional.

Two solutions are given by $f(x) = e^x$ and $f(x) = e^{-x}$.

By general theory of ordinary differential equations (which you don't need to know), the space of solutions to

$$f'' = f$$

is two dimensional.

Two solutions are given by $f(x) = e^x$ and $f(x) = e^{-x}$. They aren't scalar multiples of each other, and thus are linearly independent. Thus, e^x , e^{-x} is a basis of the solution set - i.e., a "fundamental system of solutions."

Coordinates

Fix a basis $\mathcal{B}=\{v_1,\cdots,v_n\}$ of V. Every vector w of V can be written uniquely as

$$w = c_1 v_1 + \cdots + c_n v_n$$

The \mathcal{B} -coordinates of w are the scalars c_1, \cdots, c_n .

Coordinates

Fix a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ of V. Every vector w of V can be written uniquely as

$$w = c_1 v_1 + \cdots + c_n v_n$$

The \mathcal{B} -coordinates of w are the scalars c_1, \dots, c_n .

The \mathcal{B} -coordinate vector of w is the column vector of \mathbb{R}^n

$$[w]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

Coordinates

Fix a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ of V. Every vector w of V can be written uniquely as

$$w = c_1 v_1 + \cdots + c_n v_n$$

The \mathcal{B} -coordinates of w are the scalars c_1, \dots, c_n .

The \mathcal{B} -coordinate vector of w is the column vector of \mathbb{R}^n

$$[w]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

The \mathcal{B} -coordinate transformation $L_{\mathcal{B}}$ is the function from V to \mathbb{R}^n given by

$$L_{\mathcal{B}}: V \to \mathbb{R}^n \qquad w \mapsto [w]_{\mathcal{B}}$$

Example of Coordinates

Let \mathcal{B} be the basis $1, x, x^2, x^3, x^4$ of P_4 . Then

$$L_{\mathcal{B}}(3x^4-1)=[3x^4-1]_{\mathcal{B}}=egin{pmatrix} -1\ 0\ 0\ 0\ 3 \end{pmatrix}$$

Example of Coordinates

Let \mathcal{B} be the basis $1, x, x^2, x^3, x^4$ of P_4 . Then

$$L_{\mathcal{B}}(3x^4-1)=[3x^4-1]_{\mathcal{B}}=\begin{pmatrix} -1\\0\\0\\0\\3 \end{pmatrix}$$

Note that $L_{\mathcal{B}}$ took the degree 4 polynomial $3x^4-1$ and gave a column vector in \mathbb{R}^5 .

Linearity of the \mathcal{B} -Coordinate Transformation

The \mathcal{B} -coordinate transformation for a basis \mathcal{B} gives our first example of an "abstract" linear transformation. That is, it satisfies for any vectors $v, w \in V$ and scalar $c \in \mathbb{R}$,

- $[c \cdot v]_{\mathcal{B}} = c \cdot [v]_{\mathcal{B}}$

Linear Transformation

Let V and W be two vector spaces.

Linear Transformation

Let V and W be two vector spaces. A function T from V to W

$$T\colon V\to W$$

is called a linear transformation if

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

for all vectors v_1, v_2 of V,

Linear Transformation

Let V and W be two vector spaces. A function T from V to W

$$T\colon V\to W$$

is called a linear transformation if

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

for all vectors v_1, v_2 of V, and

$$T(c \cdot v) = c \cdot T(v)$$

for all vectors v of V and scalars $c \in \mathbb{R}$.

The function

$$\int_0^x : P_5 \to P_6 \qquad f(x) \mapsto \int_0^x f(t) dt$$

is a linear transformation.

The function

$$\int_0^x : P_5 \to P_6 \qquad f(x) \mapsto \int_0^x f(t) dt$$

is a linear transformation.

The function

$$\frac{d}{dx}\colon P_8\to P_8$$

taking a polynomial to its derivative is also a linear transformation.

The function

$$\int_0^x : P_5 \to P_6 \qquad f(x) \mapsto \int_0^x f(t) dt$$

is a linear transformation.

The function

$$\frac{d}{dx}\colon P_8\to P_8$$

taking a polynomial to its derivative is also a linear transformation.

Let B be any matrix $k \times m$ matrix. The map

$$M_B^L \colon \mathbb{R}^{m \times n} \to \mathbb{R}^{k \times n} \qquad B \mapsto AB$$

is a linear transformation.

The function

$$\int_0^x : P_5 \to P_6 \qquad f(x) \mapsto \int_0^x f(t) dt$$

is a linear transformation.

The function

$$\frac{d}{dx}\colon P_8\to P_8$$

taking a polynomial to its derivative is also a linear transformation.

Let B be any matrix $k \times m$ matrix. The map

$$M_B^L: \mathbb{R}^{m \times n} \to \mathbb{R}^{k \times n} \qquad B \mapsto AB$$

is a linear transformation. M_B^L is my notation for multiply on the left by B.

Kernel

If T is a linear transformation from V to W, the set of elements v in V such that T(v) is called the **kernel** of T, and is denoted ker T.

Kernel

If T is a linear transformation from V to W, the set of elements v in V such that T(v) is called the **kernel** of T, and is denoted ker T.

 $\ker T$ is a subspace of V.

Image

If T is a linear transformation from V to W, the set of elements w in W such that w = T(v) for some v in V is called the **image** of T, and is denoted im T.

Image

If T is a linear transformation from V to W, the set of elements w in W such that w = T(v) for some v in V is called the **image** of T, and is denoted im T.

im T is a subspace of W.

Isomorphism/Isomorphic

A linear transformation \mathcal{T} from V to W is called an **isomorphism** if \mathcal{T} is invertible as a function.

Isomorphism/Isomorphic

A linear transformation \mathcal{T} from V to W is called an **isomorphism** if \mathcal{T} is invertible as a function.

Its inverse $T^{-1} \colon W \to V$ is necessarily linear.

Isomorphism/Isomorphic

A linear transformation T from V to W is called an **isomorphism** if T is invertible as a function.

Its inverse T^{-1} : $W \to V$ is necessarily linear.

Isomorphism means "same shape." By identifying vectors of V with those of W via T, studying linear algebra on V becomes equivalent to studying linear algebra on W.