85594505 Mercuny James Mandoe		
(-(a)		
First, $\frac{dT}{dt} = \lambda(Ta-T)$ we know $Ta=25^{\circ}C$, $T_0=19$		
#= 9(25-T) -> 9T+ #= 257 ux can n	maltiply both sides with 8 ⁹⁰ and get	
ent. NT + ent # = 25 nen	nt ⇒ #(entτ) = πnent	
	thus $e^{Nt}T=25e^{Nt}+C$ (C is a constant) making $T=26+Ce^{-Nt}$	
	at t=0, T₀= M = 25+0·8° = 25+0 ∴ C= 72	
	at $t=\tau=(00\text{seconds},\ 70=267c\bar{c}^{1000}=267452.\bar{c}^{1000}$	
	th ⇒ 第=e ¹⁰⁰ → λ= 100 L(套) ≈ 0.00446 s ⁻¹	
	→ 5½=υ··· → λ= 16 μ·· (= 1 × 0.001446 ε1	
1-(b) Now Ta=15°C, therefore $\frac{dI}{dc} = \lambda(15-T) \Rightarrow$	$ \underbrace{\#} + \lambda T = IS\lambda \Rightarrow \; C^{M} (\underbrace{\#} + \lambda T) = IS\lambda \cdot C^{NL} \Rightarrow \; C^{ML} + T = ISC^{ML} + D \; \; (D \; K \; a \; constant) $	
	⇒ 1= 12+0.6-xt.	
Now the new initial temperature is T(0)=7	(i=10 herce D=99).	
Teip = T(360-(00) = T(260) = 15+55.0 = 1	= 52.7\h;\(\frac{1}{2}\);	
	∴ 52.9⊌5°c	
1-(c) Ta = Tb(1+at), a= 0.0038462 sect and Tb=10		
	Kiotlad)	
$T_{h}(t) = E \cdot e^{-\lambda t}$, $T_{p}(t) = At+B \Rightarrow A+\lambda(A)$	At the B) = AAt + (A4AB) = 10a\tau +10\lambda \Rightarrow A=10a, B= 10- $\frac{10}{\lambda}$ 0. Here Text = 10at + 10(1- $\frac{\alpha}{\lambda}$)	
Hence, $T(t) = E \cdot e^{-\lambda t} + 10\alpha t + 10(1-\frac{\alpha}{\lambda})$		
As (-(b), $T(0) = 10 = E + 10(1-\frac{\alpha}{\lambda})$.: $E = 6$	60+10- <u>3</u>	
Now $T_{\text{eip}} = T(260) = (60 + (0 \cdot \frac{\alpha}{\lambda}) e^{-3400\lambda} + 260 \cdot (100)$	w) + 10 ((- (x²)) = 52. 8₩+C ∴ 52. 864+°C	
(-(d)		
as both (b), (c) are in the bounds 44:c2	T<60°C, both are uncombroide situations.	

_																										
2.																										
Fa :	π.ρ. R.	اجُم . ٠	/*+ C2R*1	r ^a . When	we hit	the gow	f ball dro	g force i	s opposite	e to motil	on, hence	∑F=mo	= -Fd.													
M=	1 π R ³ . β ₆ :	⇒ (4	πR3 ps)	::::::::::::::::::::::::::::::::::::::	π.β	· v. 1a	° + c4€	Λ _Σ · (-()																		
⇒	\$ R+ P/A		=-ak ⇒	481%				Lo	1		4010-															
	43,+5%	W		3 Pa. a.v	1+(음 ^), 마	= -ax	⇒] _{v.}	1+(& **	3/6-a-V	= -%														
									L	→ le	t taus:	<u>ck</u> √.	then sect	9 - d0 = 6	R du .	s₀ [° -	(I+ <u>/S</u>		: ∫ sec	6 d8 · a\	. When	e 4= a	rctan (al	(8ec4+		
																	11.00	,	~~ ₁	~[<u>"</u>	(sed+t) (9mg	=lm	(seca+	tana)	
								π Ω		(58ca+tz		ι ρ . ρ.	av _ a	(noned to		4RA				-		٦ĸ		,		
								INCRE 306	e, 404 t	Cackwa	Me.) . 3(kαν)A									
													= 1	n(ab 16+	1+(%)	<u>o)*</u>) · ¾	<u>c</u> = α									
Let	s call the o	riginal h	olls to	wellina J	listanc <i>o</i>	% = .1)u(<u>eR</u> vs.	14/58	<u>a)*</u>) . 3	RPL ALC																
		4									. L. (1. e	.е. _. г. Г.	. هميان	- /			, r									
							r dimples								nce a i	increased	to ta	and c	decreas	4 4 38						
					There	fore pu	alessor	dimple	is ball	îs bett	er if	tx ar	d vas	畿.												

3-(a) for natural angular forquency $\omega_{\rm o}$, $Lq^0 + \frac{q}{c} = \varepsilon_0 \cdot \sin(\omega_0 t)$ when $\varepsilon_0 = 0$ So Lq"+2=0 det's multiply both sides with C. Lc q"+q=0. Let's assume give etc. Lc q"+q=(Lck+1)ekc=0 since etc. Lck4=0 thus k=1/11/2 making give= etc. we etait = cos(athinism(ath) thus que an see that we also a see that we also are that we are see that the second of the secon 3-(b) When & +0, w+w. Lq"+ & = E. · Sincot) We shand out at 8-ca) that qut) = Asin(\$\frac{1}{42}\$) + Box(\$\frac{1}{42}\$t). Now for \$q^*_{1}\$_{L}\$ + \$\frac{1}{7}_{2}\$ = \$\frac{1}{4}\$_{2}\$ = \$\frac{1}{4}\$_{3}\$ = \$\frac{1}{4}\$_{4}\$ = \$\frac{1}{4}\$_{5}\$ = \$\frac{1}{4}\$_{5}\$_{5}\$ = \$\frac{1}{4}\$_{5}\$_{5}\$ = \$\frac{1}{4}\$_{5}\$_{5}\$ = \$\frac{1}{4}\$_{5}\$_{5}\$ = \$\frac{1}{4} Then $q_p^p \cdot L + \frac{q_p}{C} = L\omega^2(-D \sin\omega t - E \cos\omega t) + \frac{1}{C}(D \sin\omega t + E \cos\omega t)$ = $sinut(-l\omega^2D+\frac{p}{c})+cos\omega t(-l\omega^2E+\frac{p}{c})=\epsilon_0.sin\omega t$. Since $\omega \neq \omega_0$, E=0. Making $\epsilon_0.sin\omega t=D(-l\omega^2+\frac{1}{c})$ $sin\omega t$. $\varepsilon_{o} = D\left(-L\omega^{2} + \frac{1}{C}\right) \Rightarrow D = \frac{\varepsilon_{o}}{-L\omega^{2} + \frac{1}{C}} = -\frac{\varepsilon_{o}}{L} \frac{1}{\omega^{2} - \frac{1}{LC}} = -\frac{\varepsilon_{o}}{L} \cdot \frac{1}{\omega^{2} \omega^{2}}$ thus $q_{pob} = -\frac{E_L}{L} \cdot \frac{1}{\omega^2 \omega_L^2}$ simut therefore $q(t) = q_p(t) + q_p(t) = -\frac{E_L}{L} \cdot \frac{1}{\omega^2 \omega_L^2}$ simut + Asmut + B cos $\omega_0 t$ \Rightarrow q(0) = B, $q(0) = \frac{z_0 \cdot \omega}{\omega} \cdot \frac{1}{\omega_0^2 \cdot \omega^2} + A\omega_0$ $\Rightarrow A = \frac{1}{\omega_0} \left(q^{\dagger}(\omega - \frac{\varepsilon_0 \omega}{L} \cdot \frac{1}{(\omega_0^{\perp} \omega^{\perp})} \right)$ $\therefore \ q(\pm) = - \frac{\mathcal{E}_0}{L} \cdot \frac{1}{\omega^2 \omega^3} \cdot \text{Sinw} \pm + \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \text{Sinw} \pm + q(0) \cdot \cos \omega \delta \pm \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q'(0) - \frac{\mathcal{E}_0 L}{L} \cdot \frac{1}{\omega_0^2 \omega^2} \right) \cdot \frac{1}{100} \left(q$ 3-(c) &+0. w=w. 9 w = 9 w = 0 We solved from above that $q_n(t) = A coswitt + B sincust (A,B are constants)$ When $Lq^{11} + \frac{q}{L} = \epsilon_0$ since $q_p(t) = \text{Etcoscost} + \text{Ftsin wet}$ (F. on the constants) q'p(t) = E(coswot -wotsinuot) + F(sinuot + wotcoswot) quet) = E(-2200 sinust-100 tosust) + F(2000 cosust-100 tsinust) So Lq"+ 2 = smwt (-2EwoL - Fw2Lt + 2. Ft) $+ \cos \omega_0 t \left(2F\omega_0 L - E\omega_0^2 L t + \frac{1}{C}Et \right)$ $= \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{2F\omega_0 L}{-2E\omega_0 L} + Ft \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \right)$ $= \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{2F\omega_0 L}{-2E\omega_0 L} + Ft \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \right)$ $= \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ $\Rightarrow \left(\frac{1}{C} - \omega_0^2 L \right) = \varepsilon_0 \cdot \text{showt}$ Home, que) = Acoscopt + B sinust - 200 . tcoscopt. q(0) = A = 0 $q(t) = -Au_0 \sin \omega_0 t + Buscosiust - \frac{\epsilon_0}{2u_0 L}$ (assust-usetsinust). $q(0) = Bu_0 - \frac{\epsilon_0}{2u_0 L} = 0 \Rightarrow B = \frac{\epsilon_0}{2u_0 L}$ $\therefore q(t) = \frac{\varepsilon_0}{266^2} Simu_0 t - \frac{\varepsilon_0}{2666} \cdot t \cdot coswot$ the charges does not decay and the amplitude increases

3 - (d))																							
Now I	L·q"+	Rq'	+ 훈 =	٤																				
let's	first (assume	e the p	particula	ur sduti	ion .																		
q jeto =	. A,	then	L-q"+	+R·q'+	두다= 돌	<u>}</u> =ε.	⇒ A=	C.E.	hence o]pct) =	c. & .													
Now (let's	get th	he han	uasueou	is solutio	m. L·q	<u>"+ Rq'</u>	+ 눈 ٩=	o. Assu	ime qua)= 6 _{kF}	, then	ekt (L	k*+ RK +	[) = 0	٠								
													colution	into th	MGE COIZES									
I) R^>	설 ,	then	k= -R:	37. 〒165条	as R2-4	늘 > 0 .	qct) = A	· 6 ===	+ e	· 6	<u>-78+</u> ≯L +	د٠٤٠												
2) K_=	설 .	then	k= =	<u>R</u> +	ws quet)= c·e_	\$±+ D	+∙e-\$t	t mali	ang ge	t)= C1	e ^{-£t} +	D.t.e	£±+	C·E0									
3) R2<	, <mark>원</mark> ,	then	k=- <u>R</u>	77 ∓ (독류	but 0	ns R <u>*</u> 4	<u>}</u> <0 ⇒	k= -R	카	<u>·i</u> (i=	ر ا	ohich ma	pez dan	= e=	(E · a	s(<u>丰</u> -	2 +)+	F·sin(-	원-원 t)+ce	•.			
						lly when																		
								Д. Н	lence is	R ^x ≥	솯 is	satis.	fied the	cunen	t will n	ot oscillo	ite. Thi	s is true	os I c	current) =	能 .			