Manubot Rootstock: Manuscript Title

Research Plan

Authors

- John Doe
- Jane Roe

Introduction

Determine the mechanism by which highly enriched PtdInsP₂ domains are stabilized

Recent studies have shown that submicron domains of PtdIns $(4,5)P_2$ exist *in vivo* at physiological levels of monovalent and divalent cations.

These clusters reach a stable size around 80 nm.

PtdIns $(4,5)P_2$ caries a large negative charge.

We have shown that Ca^{2+} is able to stabilize these clusters, in a limited fashion.

We have recently shown how Ca^{2+} can initiate the formation of clusters, however, it is not clear how clustesrs grow until they reach \sim 80 nm.

References