Deep Learning of the tissue-regulated splicing code

Leung, Xiong, Lee, Frey University of Toronto

Deep learning

Black magic behind 👃

Object classification in photos

Natural language processing

Automatic game playing

Academic research: biology, finance, health, sports,

Big players

Google, Microsoft, Facebook, tons of start-ups

Yann LeCun, Geoffrey Hinton, Yoshua Bengio, GOD

OpenAl and the fear of DL

Deep learning Examples

DL Architectures: RNN, LSTM, FFNN, CNN, RBM and many variations

predicting house prices

Alternative splicing (AS)

Same mRNA transcript can be spliced in different ways

- → 1 gene, 1 mRNA transcript
- → 1 mRNA transcript, n proteins,
- difference in amino acid sequence, difference in biological functions
- → AS and the human genome: synthesis of many more proteins than the 20,000 protein-coding genes

DL applied to AS

- DNN used to model RNA-Seq data from mouse
- Relatively cheaper computationally
- Works better with sparse data
- Large (many hidden variables) and deep (multiple hidden layers) neural nets can improve the predictive performances of splicing code compared to BNN or MCMC
- PSI (percent splicing index) prediction for each tissue
 - Ratio between exon inclusions and inclusion + exclusion
- Difference in PSI between tissue pairs

Methods & Model

- → No data no love: 11019 mouse exons along with PSI values
- → 5 tissue types: whole brain, heart, kidney, liver and testis
- → Model output: activation of each hidden layer

$$a_{v}^{l} = f\left(\sum_{m}^{M^{l-1}} \theta_{v,m}^{l} a_{m}^{l-1}\right)$$

Output activation of each hidden unit v in layer I: sum of weighted outputs from previous layer using a nonlinear function f

- Input layer: 1393 genomic features describes exon, neighboring introns and adjacent exons
- Outputs of last layer is used as input into a softmax function: represents the probability of each splicing pattern k

$$h_k = \frac{\exp(\sum_m \theta_{k,m}^{last} a_m^{last})}{\sum_{k'} \exp(\sum_m \theta_{k',m}^{last} a_m^{last})}$$

Training & Predictions

- → First hidden layer trained as an autoencoder to reduce dimensionality of the feature space
- → AE trained by supplying the input through a nonlinear layer
- → Works well with DNNs since nonlinear techniques are more likely to discover better representation of the features
- → Prediction: PSI value given a particular tissue type set of genomic features: low, medium, high (LMH). This represents the probability that a given exon and tissue type has a PSI value within these intervals
- Implemented in Python using Gnumpy (GPU library)

Results

Tissue	Method	Low	Medium	High	
Brain	MLR	81.3 ± 0.1	72.4 ± 0.3	81.5 ± 0.1	
	BNN	89.2 ± 0.4	75.2 ± 0.3	88.0 ± 0.4	
	DNN	89.3 ± 0.5	79.4 ± 0.9	88.3 ± 0.6	
Heart	MLR	84.6 ± 0.1	73.1 ± 0.3	83.6 ± 0.1	
	BNN	91.1 ± 0.3	74.7 ± 0.3	89.5 ± 0.2	
	DNN	90.7 ± 0.6	79.7 ± 1.2	89.4 ± 1.1	
Kidney	MLR	86.7 ± 0.1	75.6 ± 0.2	86.3 ± 0.1	
	BNN	92.5 ± 0.4	78.3 ± 0.4	91.6 ± 0.4	
	DNN	91.9 ± 0.6	$\textbf{82.6} \pm \textbf{1.1}$	91.2 ± 0.9	
Liver	MLR	86.5 ± 0.2	75.6 ± 0.2	86.5 ± 0.1	
	BNN	92.7 ± 0.3	77.9 ± 0.6	92.3 ± 0.5	
	DNN	92.2 ± 0.5	80.5 ± 1.0	91.1 ± 0.8	
Testis	MLR	85.6 ± 0.1	72.3 ± 0.4	85.2 ± 0.1	
	BNN	91.1 ± 0.3	75.5 ± 0.6	90.4 ± 0.3	
	DNN	90.7 ± 0.6	76.6 ± 0.7	89.7 ± 0.7	

Tissue	Method	Low	Medium	High
Brain	MLR	71.1 ± 0.2	58.8 ± 0.2	70.8 ± 0.1
	BNN	77.9 ± 0.5	61.1 ± 0.5	76.5 ± 0.7
	DNN	$\textbf{82.8} \pm \textbf{1.0}$	69.5 ± 1.1	$\textbf{81.1} \pm \textbf{0.4}$
Heart	MLR	73.9 ± 0.3	58.6 ± 0.4	72.7 ± 0.1
	BNN	78.1 ± 0.3	58.9 ± 0.3	75.7 ± 0.3
	DNN	$\textbf{82.0} \pm \textbf{1.1}$	67.4 ± 1.3	$\textbf{79.7} \pm \textbf{1.2}$
Kidney	MLR	79.7 ± 0.3	64.3 ± 0.2	79.4 ± 0.2
	BNN	83.9 ± 0.5	66.4 ± 0.5	83.3 ± 0.6
	DNN	86.2 ± 0.6	$\textbf{73.2} \pm \textbf{1.3}$	$\textbf{85.3} \pm \textbf{1.2}$
Liver	MLR	80.1 ± 0.5	63.7 ± 0.3	79.4 ± 0.3
	BNN	84.9 ± 0.7	65.4 ± 0.7	84.4 ± 0.7
	DNN	87.7 ± 0.6	69.4 ± 1.2	84.8 ± 0.8
Testis	MLR	77.3 ± 0.2	60.8 ± 0.3	77.0 ± 0.1

 81.1 ± 0.5

 84.6 ± 1.1

 81.0 ± 0.5

 83.5 ± 0.9

 63.9 ± 0.9

 67.8 ± 0.9

BNN

DNN

(a) AUC _{DvI}							(b) AUC _{Change}				
Method	Brain versus Heart	Brain versus Kidney	Brain versus Liver	Brain versus Testis	Heart versus Kidney	Heart versus Liver	Heart versus Testis	Kidney versus Liver	Kidney versus Testis	Liver versus Testis	Change versus No change
MLR BNN-MLR DNN-MLR DNN	50.3 ± 0.2 65.3 ± 0.3 77.9 ± 0.1 79.4 ± 0.7	48.8 ± 0.8 73.7 ± 0.2 83.0 ± 0.1 83.3 ± 0.8	48.3 ± 1.1 69.1 ± 0.4 81.6 ± 0.1 82.5 ± 0.6	51.2 ± 0.5 72.9 ± 0.5 82.3 ± 0.2 82.9 ± 0.7	50.0 ± 1.5 72.6 ± 0.3 82.4 ± 0.1 86.1 ± 1.0	47.8 ± 1.7 66.7 ± 0.4 81.3 ± 0.1 85.1 ± 1.1	51.1 ± 0.5 68.3 ± 0.7 82.4 ± 0.1 84.8 ± 0.8	49.4 ± 0.8 54.7 ± 0.6 76.8 ± 0.5 76.2 ± 1.0	79.9 ± 0.2	51.3 ± 0.6 65.0 ± 0.9 79.1 ± 0.1 81.8 ± 1.3	76.6 ± 0.8 79.9 ± 0.8

- → AUC (area under the curve) comparison of multinomial linear regression, bayesian neural network, and deep neural network
- → DNN predicts both LMH and DNI at the same time, but BNN can only predict LMH
- → Methods were combined for fair comparison

Conclusion

- → Introduced a computational model that extends the previous splicing models with new prediction targets and improved tissue-specificity
- → Used a learning algorithm that scales well with high volume data and large number of hidden variables
- → DNNs can be trained rapidly with the aid of GPUs
- → Deep architectures can be beneficial when dealing with sparse biological datasets
- Input features can be analyzed in terms of the predictions of the model to gain insights into inferred tissue-regulated splicing code