Лабораторная работа №1. Логистическая регрессия в качестве нейронной сети

Данные: В работе предлагается использовать набор данных notMNIST, который состоит из изображений размерностью 28×28 первых 10 букв латинского алфавита (А ... J, соответственно). Обучающая выборка содержит порядка 500 тыс. изображений, а тестовая – около 19 тыс.

In [10]:

```
import numpy as np
import pandas as pd
import os
from PIL import Image
from matplotlib import pyplot as plt

from utils import display_images, remove_duplicates, train, plot_accuracy
```

Загружаем данные

In [11]:

```
input_data = pd.read_csv('notmnist_test.csv')
```

In [12]:

```
input_data.head()
```

Out[12]:

	Unnamed: 0	0	1	2	3	4	5	6	7	8	 775	776	777	778	779
0	0	0	1	0	0	0	0	0	0	0	 188	149	108	54	6
1	1	255	255	255	255	255	255	255	255	255	 255	255	255	255	255
2	2	0	5	0	146	255	250	255	255	255	 255	255	255	255	254
3	3	0	61	255	255	254	255	255	255	255	 255	255	255	255	254
4	4	58	243	255	254	255	255	255	254	251	 255	255	255	253	255

5 rows × 786 columns

In [13]:

```
X = input_data.iloc[:, 1:785].to_numpy()
labels = input_data['labels'].to_numpy()
y = labels
```

Разделим данные на обучающую и контрольную

In [14]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=labels)
```

Отобразим нельсколько картинок из исходных данных

In [15]:

```
display_images(X_train)
```

Sample Images from Dataset

Проверим, что классы являются сбалансированны

In [16]:

```
plt.figure(figsize=(20, 8))
plt.suptitle('Data classes histogram')
res = plt.hist(labels, bins=10, ec='black')
plt.show()
```

Data classes histogram

Уберем дубликаты из обучающей выборки

```
In [17]:
```

```
X, y = remove_duplicates(X_train, y_train, X_test, y_test)
```

```
In [18]:
```

```
print(f'Removed {X_train.shape[0] - X.shape[0]} duplicates')
```

Removed 268 duplicates

Построим простейший классификатор с помощью логистической регрессии

```
In [19]:
```

```
score = train(X, y, X_test, y_test)
print("Test score with L1 penalty: %.4f" % score)
```

Test score with L1 penalty: 0.8470

In [20]:

```
plot_accuracy(X, y, X_test, y_test)
```


Вывод

В данной лабораторной работе был построен простейший классификатор использую набор данных notMNIST