CHAPITRE 26

DÉTERMANT

1. Introduction géométrique

Un parallélogramme du plan est donné par deux vecteurs u et v. Ces deux vecteurs sont colinéaires si et seulement si l'aire du parallélogramme est nulle. Soit $\mathscr{B} = (e_1, e_2)$ du plan vectoriel E. Comment calculer l'aire (orientée) a(u, v) du parallélogramme engendré par u et v à partir des coordonnées de u et v dans la base \mathscr{B} ?

On vérifie facilement que la fonction $a: E \times E \to \mathbb{R}$ vérifie les propriétés suivantes :

- (1) a est linéaire à gauche : pour tout $u, u', v \in E, \lambda, \mu \in \mathbb{R}, a(\lambda u + \mu u', v) = \lambda a(u, v) + \mu a(u', v)$.
- (2) a est linéaire à droite : pour tout $u, v, v' \in E$, $\lambda, \mu \in \mathbb{R}$, $a(u, \lambda v + \mu v') = \lambda a(u, v) + \mu a(u, v')$.
- (3) a est antisymétrique : pour tout $u, v \in E$, a(v, u) = -a(u, v).
- (4) $a(e_1, e_2) = 1$.

En particulier, a est alternée : pour tout u, a(u, u) = 0 (car a(u, u) = -a(u, u)).

Ces propriétés vont nous permettre de déterminer entièrement a. En effet, soit $u = xe_1 + ye_2$ et $v = x'e_1 + y'e_2$. On a alors

$$a(u,v) = a(xe_1 + ye_2, v) = xa(e_1, v) + ya(e_2, v)$$

$$= xa(e_1, x'e_1 + y'e_2) + ya(e_2, x'e_1 + y'e_2)$$

$$= xx'a(e_1, e_1) + xy'a(e_1, e_2) + yx'a(e_2, e_1) + yy'a(e_2, e_2)$$

$$= xy' - yx'.$$

Ainsi, $u = xe_1 + ye_2$ et $v = x'e_1 + y'e_2$ forment une base de E si et seulement si $xy' - yx' \neq 0$. On aimerait généraliser cette formule dans un \mathbb{K} -espace vectoriel de dimension finie quelconque.

2. Définitions

Dans ce paragraphe, E est un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}$.

Définition 2.1

Soit $f: E^n \to \mathbb{K}$ une application. On dit que f est une forme n-linéaire si f est linéaire par rapport à chacune de ses variables :

$$\forall i \in [1, n], \forall (x_1, ..., x_{i-1}, x_{i+1}, ..., x_n), g : x \in E \mapsto f(x_1, ..., x_{i-1}, x, x_{i+1}, ..., x_n)$$
 est linéaire.

Définition 2.2

Soit $f: E^n \to \mathbb{K}$ une forme *n*-linéaire. On dit que f est

- (1) alternée si pour tout $(x_1,...,x_n) \in E^n$, s'il existe $i \neq j$ tel que $x_i = x_j$, alors $f(x_1,...,x_n) = 0$.
- (2) antisymétrique si pour tout $(x_1,...,x_n) \in E^n$, $f(x_1,...,x_i,...,x_i,...,x_n) = -f(x_1,...,x_i,...,x_i,...,x_n)$.

Proposition 2.3

Soit $f: E^n \to \mathbb{K}$ une forme n-linéaire. Alors f est alternée si et seulement si f est antisymétrique.

Proposition 2.4

Soit f une forme n-linéaire antisymétrique et $\sigma \in S_n$. Alors pour tout $(x_1, ..., x_n) \in E^n$,

$$f(x_{\sigma(1)},...,x_{\sigma(n)}) = \varepsilon(\sigma)f(x_1,...,x_n).$$

Proposition 2.5

L'ensemble des formes n-linéaires alternées de E est une droite vectorielle.

Proposition 2.6

Soit $\mathscr{B} = (e_1, ..., e_n)$ une base de E. Il existe une unique forme n-linéaire de E telle que $f(e_1, ..., e_n) = 1$.

Définition 2.7

Soit $\mathscr{B} = (e_1, ..., e_n)$ une base de E et f l'unique forme n-linéaire alternée de E telle que $f(e_1, ..., e_n) = 1$. On appelle f le déterminant relativement à la base \mathscr{B} . On le note $\det_{\mathscr{B}}$.

Proposition 2.8

Soient \mathscr{B} et \mathscr{B}' deux bases de E. Alors $\det_{\mathscr{B}'} = \det_{\mathscr{B}'}(\mathscr{B}) \det_{\mathscr{B}}$.

Théorème 2.9

Soit $(x_1,...x_n) \in E^n$ et \mathcal{B} une base de E. La famille $(x_1,...,x_n)$ est une base de E si et seulement si $\det_{\mathcal{B}}(x_1,...,x_n) \neq 0$.

Théorème 2.10

Soit \mathcal{B} une base de E, $(x_1,...x_n) \in E^n$ et $A = \operatorname{Mat}_{\mathcal{B}}(x_1,...,x_n) = (a_{i,j})_{1 \leq i,j \leq n}$. Alors

$$\det_{\mathscr{B}}(x_1,...,x_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}.$$

3. Déterminant d'un endomorphisme

Proposition 3.1

Soit f un endomorphisme de E et \mathcal{B} une base de E. Il existe un unique $\lambda \in \mathbb{K}$ tel que

$$\forall (x_1, ..., x_n) \in E^n, \det_{\mathscr{B}}(f(x_1), ..., f(x_n)) = \det_{\mathscr{B}}(x_1, ..., x_n).$$

De plus, λ ne dépend pas du choix de la base \mathscr{B} .

Définition 3.2

Avec les notations précédentes, le coefficient λ est appelé déterminant de f et noté $\det(f)$.

Définition 3.3

Soit $f \in L(E)$. Alors $f \in GL(E) \iff \det(f) \neq 0$.

Définition 3.4

Soient f et g deux endomorphismes de E. Alors $\det(f \circ g) = \det(f) \det(g)$. En particulier, si f est un automorphisme de E, alors $\det(f^{-1}) = \frac{1}{\det f}$.

4. Déterminant d'une matrice carrée

Définition 4.1

Soit $A \in M_n(\mathbb{K})$. Le déterminant de A est défini par la formule

$$\det(A) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}.$$

Proposition 4.2

Soit $\mathscr{B} = (e_1, ..., e_n)$ une base de E et $(x_1, ..., x_n) \in E^n$. On note A la matrice de $(x_1, ..., x_n)$ dans la base \mathscr{B} . Alors $\det(A) = \det_{\mathscr{B}}(x_1, ..., x_n)$.

Proposition 4.3

Soit f un endomorphisme de E, \mathscr{B} une base E et $A = Mat_{\mathscr{B}}(f)$. Alors $\det(f) = \det(A)$.

Proposition 4.4

Soient $A, B \in M_n(\mathbb{K})$. Alors $\det(AB) = \det(A) \det(B)$.

En particulier, A est inversible si et seulement si $\det(A) \neq 0$, et dans ce cas $\det(A^{-1}) = \frac{1}{\det(A)}$.

Proposition 4.5

Soit $A \in M_n(\mathbb{K})$. Alors $\det({}^t A) = \det(A)$.

5. Méthodes de calcul

Proposition 5.1

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc.$$

Proposition 5.2

Le déterminant d'une matrice triangulaire est égal au produit de ses coefficients diagonaux.

Proposition 5.3

Soit $A \in M_n(\mathbb{K})$ et A' la matrice obtenue à partir de A en effectuant une opération élémentaire C sur les colonnes de A.

- Si $C = (C_i \leftrightarrow C_i)$, alors $\det(A') = -\det(A)$.
- Si $C = (C_i \leftarrow \lambda C_i)$, alors $\det(A') = \lambda \det(A)$.
- Si $C = (C_i \leftarrow C_i + \lambda C_j)$, alors $\det(A') = \det(A)$.

Proposition 5.4

Soit $A \in M_n(\mathbb{K})$ et A' la matrice obtenue à partir de A en effectuant une opération élémentaire L sur les lignes de A.

- Si $L = (L_i \leftrightarrow L_j)$, alors $\det(A') = -\det(A)$.
- Si $L = (L_i \leftarrow \lambda L_i)$, alors $\det(A') = \lambda \det(A)$.
- Si $L = (L_i \leftarrow L_i + \lambda L_i)$, alors $\det(A') = \det(A)$.

Proposition 5.5: Développement suivant une colonne - formule de Laplace

Soit $A \in M_n(\mathbb{K})$. Pour tout (i, j), on pose $\Delta_{i,j}$ le déterminant de la matrice obtenue à partir de A en supprimant la ligne i et la colonne j.

Alors pour tout $j \in [1, n]$,

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \Delta_{i,j}.$$

Proposition 5.6: Développement suivant une ligne - formule de Laplace

Soit $A \in M_n(\mathbb{K})$. Pour tout (i, j), on pose $\Delta_{i,j}$ le déterminant de la matrice obtenue à partir de A en supprimant la ligne i et la colonne j.

Alors pour tout $i \in [1, n]$,

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \Delta_{i,j}.$$

Proposition 5.7: Déterminant de Vandermonde

Soient a_0, \ldots, a_n des scalaires, et M la matrice carrée de coefficients $m_{i,j} = a_i^j$. Alors $\det(M) = \prod_{0 \le i \le j \le n} (a_j - a_i)$.

6. Comatrice

Définition 6.1

Soit $A \in M_n(\mathbb{K})$. Pour tout (i,j), on appelle cofacteur de A d'indices (i,j) le scalaire $(-1)^{i+j}\Delta_{i,j}$ où $\Delta_{i,j}$ est le déterminant de la matrice obtenue à partir de A en supprimant la ligne i et la colonne j.

Proposition 6.2

Soit $A \in M_n(\mathbb{K})$. La comatrice de A est la matrice dont les coefficients sont les cofacteurs de A.

Théorème 6.3

Soit $A \in M_n(\mathbb{K})$. On a $A^t \operatorname{com}(A) = t \operatorname{com}(A)A = \det(A)I_n$.