一元函数微分学

〈1〉导数概念及计算

一、分别讨论函数 f(x) = |x|, g(x) = x |x|在 x = 0 处的可导性.

【不可导,0】

二、设
$$f(x)$$
 在 $x = 0$ 处连续且 $\lim_{x \to 0} \frac{xf(x) + e^{-2x} - 1}{x^2} = 4$,则 $f'(0) = ($).

[2]

三、设
$$f(x)$$
在 $x = 0$ 处可导,又设 $v(x) < 0 < u(x)$, $\lim_{x \to 0} v(x) = \lim_{x \to 0} u(x) = 0$,

四、设 f(x) 在 x = 0 处存在二阶导数,且 $\lim_{x \to 0} \frac{xf(x) - \ln(1+x)}{x^3} = \frac{1}{3}$,求 f(0),f'(0).

[
$$f(0)=1$$
, $f'(0)=-\frac{1}{2}$, $f''(0)=\frac{4}{3}$]

五、设函数 $f(x)=|x-x_0|g(x)$, g(x) 在 $x=x_0$ 的某邻域内有定义,试证明 f(x) 在 $x=x_0$ 处可导的充要条件是 $g(x_0^-)$ 与 $g(x_0^+)$ 都存在且 $g(x_0^-)=-g(x_0^+)$.

【略】

【练习】问函数 $f(x) = |x^3 - x| \sqrt[3]{x^2 - 2x - 3}$ 有几个不可导的点?

六、(第十二届初赛
$$-$$
 (2)) 设 $f(x) = (x+1)^n e^{-x^2}$, 则 $f^{(n)}(-1) = ($

$$f^{(n)}(-1) = n!e^{-1}$$

【练习】设
$$f(x) = (x^2 - 1)^n$$
,则 $f^{(n+1)}(-1) = (n+1)!(-2)^{n-1}n$)
七、已知函数 $f(x) = x^2 \int_1^x \frac{1}{t^3 - 3t^2 + 3t} dt$,求 $f^{(2019)}(1)$

$$[f^{(2019)}(1) = 2019 \cdot 2018 \cdot 2016! = \frac{2019!}{2017}]$$

八、(第十二届初赛 — (3)) 设
$$y = f(x)$$
 是由方程 $\arctan \frac{x}{y} = \ln \sqrt{x^2 + y^2} - \frac{1}{2} \ln 2 + \frac{\pi}{4}$ 确

定的隐函数,且满足 f(1)=1,则曲线 y=f(x) 在点 (1,1) 处的切线方程为 () .

九、(第十届初赛 - (2)) 设 y=y(x) 是由 $\begin{cases} x=t+\cos t \\ e^y+ty+\sin t=1 \end{cases}$ 确定,则曲线 y=y(x) 在 t=0 处的切线方程为(

$$[y = -x + 1]$$

【练习】设y = f(x)存在二阶导数, $f'(x) \neq 0$, $x = \varphi(y)$ 是y = f(x)的反函数,求 $\varphi''(y)$.

$$\left[-\frac{f''(x)}{\left(f'(x)\right)^3}\right]$$

【练习】设 $f(x)=\int_{-1}^x\sqrt{1-e^t}dt$, 那么求 y=f(x) 的原函数 $x=f^{-1}(y)$ 在 y=0 处的导数 $\frac{\mathrm{d}x}{\mathrm{d}y}\big|_{y=0}\,.$

$$[\frac{1}{\sqrt{1-e^{-1}}}]$$

<2> 导数的应用

十、(第十二届初赛 三) 设 f(x) 在[0,1] 上连续, f(x) 在(0,1) 内可导, 且 f(0) = 0, f(1) = 1, 证明:

- (1) 存在 $x_0 \in (0,1)$, 使得 $f(x_0) = 2 3x_0$;
- (2) 存在 $\xi, \eta \in (0,1)$, 且 $\xi \neq \eta$, 使得 $[1+f'(\xi)][1+f'(\eta)]=4$.

十一、(第十一届初赛 三)设 f(x) 在 $[0,+\infty)$ 上可微,f(0)=0,且存在常数 A>0, 使得 $|f'(x)| \le A|f(x)|$ 在 $[0,+\infty)$ 上成立,试证明在 $(0,+\infty)$ 上有 $f(x)\equiv 0$.

十二、(第八届初赛 五)设函数 f(x) 在区间 [0,1] 上连续,且 $I=\int_0^1 f(x)\mathrm{d}x\neq 0$,

证明: 在 (0,1) 内存在不同的两点 x_1, x_2 , 使得 $\frac{1}{f(x_1)} + \frac{1}{f(x_2)} = \frac{2}{I}$.

十三、设函数 f(x) 在区间 [0,1] 上连续,在 (0,1) 内可导,且 f(0) = 0, f(1) = 1,

常数 a,b>0 证明: 在 (0,1) 内存在不同的两点 x_1,x_2 ,使得 $\frac{a}{f'(x_1)} + \frac{b}{f'(x_2)} = a+b$.

十四、设函数 g(x) 连续,当 $x \neq 0$ 时, $\frac{g(x)}{x} > 0$,且 $\lim_{x \to 0} \frac{g(x)}{x} = 1$,又设 f(x) 在包含 x = 0 在内的某区间 (a,b) 内存在二阶导数且满足式子: $x^2 f''(x) - (f'(x))^2 = \frac{1}{4} x g(x)$,

证明 (1) x = 0 是 f(x) 在区间 (a,b) 内的驻点,且是极小值点

(2) 曲线 y = f(x) 在 (a,b) 内是凸的.

【练习】设 f(x) 在 $x=x_0$ 处存在三阶导数, $f''(x_0)=0$, $f'''(x_0)>0$,则 f(x) 在点 $(x_0,f(x_0))$ 的<u>右</u>侧邻近是凹的,<u>左</u>侧邻近是凸的.

十五、设 $e < a < b < e^2$, 证明. $\ln^2 b - \ln^2 a > \frac{4}{e^2}(b-a)$

【练习】设x与y同号且 $x \neq y$,证明 $\frac{1}{x-y}\begin{vmatrix} x & y \\ e^x & e^y \end{vmatrix} < 1$.

十六、设函数 f(x) 在 [-1,1] 上存在三阶连续导数,且 f(-1)=0,f(1)=1,f'(0)=0,试证明:存在 $\xi\in (-1,1)$,使得 $f'''(\xi)=3$.

十七、设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内存在二阶导数,且 $f(0)=f(1)=0.\max_{0\le x\le 1}\{f(x)\}=2.$ 试证明:存在 $\xi\in(0,1)$,使得 $f''(\xi)\le -16$.