מתמטיקה דיסקרטית - תרגיל בית 5 עם פתרון

הגשה ליום חמישי, 29/8 בשעה 23:57, לפי ההנחיות במודל סמסטר קיץ תשפ"ד

באות: הבאות הטענות את הפריכו או הוכיחו A יחסים מעל R_1,R_2 ייהיו קבוצה, ויהיו A אבלה A

- A אם שקילות שקילות מעל $R_1 \cup R_2$ אז גם אז יחסי שקילות מעל וו- R_1
- A יחס סדר חלקי מעל $R_1 \cup R_2$ אז גם A יחס סדר חלקי מעל וו- R_1 יחס סדר חלקי מעל ב.
 - A אם שקילות שקילות מעל $R_1 \triangle R_2$ אז גם $R_1 \triangle R_2$ יחסי שקילות מעל ג. אם וו-
- A או מעל סדר חלקי יחס סדר $R_1 \triangle R_2$ או גם A או מעל סדר חלקי יחס סדר וו- R_1

פתרון $A=\{1,2,3\}$ עבור א. הפרכה: עבור $A=\{1,2,3\}$

$$R_1 = \{(1,1), (2,2), (3,3), (1,3), (3,1)\},\$$

 $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$

$$\implies R_1 \cup R_2 = \{(1,1), (2,2), (3,3), (1,3), (3,1), (2,3), (3,2)\}$$

 $.(1,2)\notin R_1\cup R_2$ אבל (1,3) אבל (1,3) בשים יבי: א טרנזיטיבי: אבל א $R_1\cup R_2$ אבל לב

ב. החלקיים אסדר יחסי על נסתכל , $A=\{1,2,3\}$ ב. ב. הפרכה:

$$R_1 = \{(1,1), (2,2), (3,3), (1,3)\}\$$

 $R_2 = \{(1,1), (2,2), (3,3), (3,2)\}\$

$$\implies R_1 \cup R_2 = \{(1,1), (2,2), (3,3), (1,3), (3,2)\}$$

 $(1,2) \notin R_1 \cup R_2$ אבל (1,3) , $(3,2) \in R_1 \cup R_2$ לא טרנזיטיבי: $R_1 \cup R_2$ אינו אנטי-בנוסף, עבור $R_1 \cup R_2 \cup R_3$ אינו אנטי- $R_1 \cup R_3 \cup R_3$ נקבל ש $R_2 = \{(1,1),(2,2),(3,3),(3,1)\}$ אינו אנטי-סימטרי חלש.

ג. הפרכה: עבור יחס השקילות $R=\{(x,x)\mid x\in\mathbb{N}\}$ מעל ת נקבל $R=\{(x,x)\mid x\in\mathbb{N}\}$, וזהו לא יחס רפלקסיבי.

 $R\triangle R=\{(x,y)\in\mathbb{N}^2\mid x\leq y\}$ מעל תקבל נקבל ברכה: עבור הפרכה: עבור איזס הסדר החלקי ווהו לא איזס רפלקסיבי.

באות: חסענות הטענות או הפריכו או הוכיחו A יחס מעל B יחס היהי A קבוצה, ויהי A

- איבר קטן איבר אזי אזי איבר מינימלי. אזי איבר איבר מלא, ויהי א $m\in A$ ויהי מלא, הוא הוא הוא Rביותר.
 - $x,y \in A$ כך שלכל S מעל מעל ב. נגדיר יחס

$$x S y \iff \exists z \in A : x R z \land z R y.$$

 $S \subseteq R$ אזי אם טרנזיטיבי אמ טרנזיטיבי אזי א

- $y\in A$ קיים $x\in A$ סימטרי מלכל אמ"מ שקילות אזי, Rיחס אזי, אזי, אזי, $x\in R$ סימטרי וטרנזיטיבי. אזי, x
- R-פתרון ש-a R m מכיוון ש-a לא מתקיים a A לא מתקיים a A מינימום.

ב. הוכחה:

- $S \subseteq R$ אם א טרנזיטיבי אז R אם (i)
- $(z,y)\in R$ וגם $(x,z)\in R$ כך ש- $z\in A$ כיים אזי אזי קיים ($(x,y)\in S$ יהיי סטרנזיטיביות נקבל ער ה $(x,y)\in R$
 - טרנזיטיבי. אז $S \subseteq R$ אז (ii)
- יהיו S מהגדרת $(a,b)\in R$ כך ש- $a,b,c\in A$ יהיו $a,b,c\in A$ יהיו $a,b,c\in A$ יהיו $a,c)\in R$ נקבל ש- $a,c)\in S$ נקבל ש- $a,c)\in S$

ג. הוכחה:

- x R yע כך שיים $y \in A$ קיים $x \in A$ כך אז לכל (i)
- $(x,x)\in$ מתקיים $x\in A$ מכיוון ש-R יחס שקילות, הוא רפלקסיבי. לכן לכל פיים $x\in A$ יחס שקילות, כך ש- $y\in A$ יוכך קיים אוכך R
 - . אז R יחס שקילות ער x אז x y כך ש $y \in A$ יחס שקילות (ii)
- סימטרי R- מכיוון ש- x סימטרי ער היי $x \in A$ סימטרי אזי קיים מתקיים מתקיים $x \in A$
- $(x,y)\in R \land (y,x)\in R \implies$ ($(x,x)\in R$ שטרנזיטיביות $(x,x)\in R$ נקבל ש-). ($(x,x)\in R$

- שאלה R מעל יחס R מעל מעלה R מעל אמ"מ R עדיר אמ"מ R מעל אמ"מ R מעל יחס R מעל אמ"מ R א
 - $A = \{1, 2, 3, 4\}$ כאשר \mathcal{H} את את במפורש א.
 - ב. הוכיחו כי R הוא יחס סדר חלקי.
 - \mathcal{H} -ג. מצאו איבר מינימלי ומקסימלי ב-

פתרון 3. א.

```
 \mathcal{H} = \left\{ \{1\}, \{2\}, \{3\}, \{4\}\} \cup \\ \left\{ \{\{1,2\}, \{3\}, \{4\}\}, \{\{1,3\}, \{2\}, \{4\}\}, \{\{1,4\}, \{2\}, \{3\}\} \right\} \cup \\ \left\{ \{\{1\}, \{2,3\}, \{4\}\}, \{\{1\}, \{2,4\}, \{4\}\}, \{\{1\}, \{2\}, \{3,4\} \right\} \cup \\ \left\{ \{1,2\}, \{3,4\}\}, \{\{1,3\}, \{2,4\}\}, \{\{1,4\}, \{2,3\} \right\} \cup \\ \left\{ \{1\}, \{2,3,4\}\}, \{\{2\}, \{1,3,4\}\}, \{\{3\}, \{1,2,4\}\}, \{\{4\}, \{1,2,3\} \right\} \right\}
```

- קיימת $S\in\mathcal{F}$ לכל \mathcal{F} : לכל \mathcal{F} היא עידון של \mathcal{F} : מתקיים ש $S\in\mathcal{F}$ קיימת ב. $S\subseteq T$ כך ש $S\in\mathcal{F}$ ולכן $S\subseteq T$. ולכן
 - $\mathcal{F}_1,\mathcal{F}_2, \in R$ כך שי-סימטרי הלש: תהיינה $\mathcal{F}_1
 eq \mathcal{F}_2 \in \mathcal{H}$ אנטי-סימטרי הלש: R
- $,x\in X\cap Y$ ער כך אכן וו-א ו- $A\in A$ היים שונות, שונות, מכיוון שהחלוקות אונות, קיים א $X\neq Y\subseteq A$ ו. אינם $Y\in\mathcal{F}_1$ וגם אונם אונ $X\in\mathcal{F}_1$
 - $X \subseteq T$ בר כך כך כך מכיוון של \mathcal{F}_2 היימת של עידון של -
- שונות שונות (כי מחלקות שמכילה את ב-ב- \mathcal{F}_2 שמכילה היח הקבוצה היח היא מכיוון ש $X \subset Y$ לכן Y = Y לכן \mathcal{F}_2 זרות) נקבל
 - \mathcal{F}_1 של עידון של \mathcal{F}_2 , כלומר \mathcal{F}_2 , היא עידון של נניח בשלילה \mathcal{F}_2 , כלומר נניח בשלילה ש
- ומכיוון , $x\in S$ אזי אזי $Y\subseteq S$ כך ש- $S\in \mathcal{F}_1$ קיימת אזי אזי לכן עבור לכן עבור X=S זרות נקבל ש- \mathcal{F}_1 זרות שמחלקות שונות ב-
 - . הגענו לסתירה אוגע X=Y לכן לכן אוגם $X\subseteq Y$ ווגענו לסתירה. בסך הכל קיבלנו כי
- טרנזיטיבי: תהיינה $(\mathcal{F}_1,\mathcal{F}_2)$, $(\mathcal{F}_2,\mathcal{F}_3)\in\mathcal{H}$ כך ש- $\mathcal{F}_1,\mathcal{F}_2,\mathcal{F}_3\in\mathcal{H}$ מרנזיטיבי: תהיינה \mathcal{F}_2 וגם \mathcal{F}_2 וגם ביא עידון של \mathcal{F}_1
- כך $S_2\in\mathcal{F}_2$ קיימת \mathcal{F}_2 קיימת של \mathcal{F}_1 היא עידון של היא $S_1\in\mathcal{F}_1$ כך מכיוון מכיוון היא $S_1\subseteq S_2$ ש
- לכן $S_2\subseteq S_3$ כך ש
- $S_3\in \mathcal{F}_3$ קיימת קיימת , \mathcal{F}_3 שידון של היא לידון ש
- $S_1\subset S_3$

- $(\mathcal{F}_1,\mathcal{F}_3)\in R$ ומתקיים \mathcal{F}_3 ושל עידון של -
- , לכן, \mathcal{F}_2 כדי להגיע כדי היא מחלקות לאחד ניתן אם ניתן של \mathcal{F}_2 להגיע ל- \mathcal{F}_1 האיבר המינימלי והמקסימלי הם בהתאמה

$$\mathcal{F}_{min} = \{ \{a\} \mid a \in A \}, \mathcal{F}_{max} = \{A\}.$$

. תהי כלשהי חלוקה $\mathcal{F}\subseteq\mathcal{P}\left(A
ight)$

- \mathcal{F} ב ממצא במחלקה של ברור כי $a\in A$ לכל :
 \mathcal{F} של של עידון היא \mathcal{F}_{min} ולכן
 $\{a\}$ מוכלת בה. $\{a\}$
- $S\subseteq A\in\mathcal{F}_{max}$ מתקיים $S\in\mathcal{F}$ מחלקה לכל : \mathcal{F}_{max} של היא עידון של -

יחס הרישא

 A^* כלומר, A איברי A איברי A איברי ... נסמן ב- A^* את כל הסדרות באורך סופי של איברי ... כלומר, הגדרה $a_1,\ldots,a_n\in A$ -יות הסדורות $a_1,\ldots,a_n\in A$ -יות הסדורות הסדורות הסדורות הסדורות יכא היא קבוצת כל ה- a_1,\ldots,a_n

$$A^* = \{(a_1, \dots, a_n) \mid n \in \mathbb{N}, a_1, \dots, a_n \in A\}$$

= $\bigcup_{n \in \mathbb{N}} \{(a_1, \dots, a_n) \mid a_1, \dots, a_n \in A\} = \bigcup_{n \in \mathbb{N}} A^n.$

n=0 בסמן ב-arepsilon את ה-"סדרה הריקה" - המקרה בו

לכל באופן באופן מעל A^* מוגדר מעל הרישא קבוצה. יחס הרישא קבוצה. תהי A

$$(a_1, \ldots, a_n), (b_1, \ldots, b_m) \in A^*,$$

 $a_i=b_i$ מתקיים $1\leq i\leq n$ וגם לכל אמ"מ ווא אמ"מ $(a_1,\ldots,a_n)\leq_{\mathrm{pre}}(b_1,\ldots,b_m)$

:אינטואיציה

אם בתחילת הסדרה $(a_i)_{i=1}^n$ אז איברי $(a_1,\dots,a_n)\leq_{\mathrm{pre}}(b_1,\dots,b_m)$ אם אם $(b_i)_{i=1}^m$ הוא יחס סדר מלא אם $(b_i)_{i=1}^m$ היחס $(b_i)_{i=1}^m$ היחס סדר מלא אם ב-pre שני איברים שונים, $(a_i)_{i=1}^m$ אם ב- $(a_i)_{i=1}^m$ איברים שונים, $(a_i)_{i=1}^m$ אם ב- $(a_i)_{i=1}^m$ איברים שונים, $(a_i)_{i=1}^m$ אז הסדרות $(a_i)_{i=1}^m$ מקיימות $(a_i)_{i=1}^m$ אונים $(a_i)_{i=1}^m$ אונים, $(a_i)_{i=1}^m$ אונים, $(a_i)_{i=1}^m$ אונים, $(a_i)_{i=1}^m$ אונים, $(a_i)_{i=1}^m$ אונים, $(a_i)_{i=1}^m$

. טענה 1. תהי א קבוצה. אזי היחס מעל א ב \leq_{pre} אזי היחס סדר חלקי. מענה 1. תהי

שאלה 4.

א. הוכיחו את טענה 1.

- ב. האם קיים איבר מינימלי ב- A^* ? אם כן, מצאו אחד כזה.
- ... האם קיים איבר מקסימלי ב- A^* ? אם כן, מצאו אחד כזה.
 - פתרון 4. א. נוכיח כי הוא הוא יחס סדר חלקי. \leq_{pre}
- מתקיים $1 \leq i \leq n$ וגם לכל $n \geq n$ אזי ואז $n \geq n$ אזי וגהיי: תהי אוי תהי בילקסיבי: תהי ולכן הפלקסיבי: תהי $(a_i)_{i=1}^n \leq_{\mathrm{pre}} (a_i)_{i=1}^n$ ולכן $a_i = a_i$
- $(a_i)_{i=1}^n \leq_{\mathrm{pre}}$ אנטי-סימטרי חלש: תהיינה A^* היינה הלש: תהיינה \leq_{pre} (ii) a_i אנטי-סימטרי חלש: a_i היינה a_i הולם: a_i ה
- $(a_i)_{i=1}^n \leq_{\mathrm{pre}}$ טרנזיטיבי: תהיינה $(a_i)_{i=1}^n$, $(b_i)_{i=1}^m$, $(c_i)_{i=1}^k \in A^*$ טרנזיטיבי: תהיינה $k \geq n$ טרנזיטיבי: אזי $m \geq n$ וגם $m \geq n$ וגם $(b_i)_{i=1}^m \leq_{\mathrm{pre}} (c_i)_{i=1}^k$ וגם $(b_i)_{i=1}^m$ וגם $(b_i)_{i=1}^m$ וגם $(b_i)_{i=1}^m$ בנוסף, לכל $(c_i)_{i=1}^n$ מתקיים $(c_i)_{i=1}^n$ מתקיים $(c_i)_{i=1}^n$ מתקיים $(c_i)_{i=1}^n$ בסך הכל, לכל $(c_i)_{i=1}^n$ מתקיים $(c_i)_{i=1}^n$ ור-
- ב. הסדרה הריקה $(a_i)_{i=1}^n\in A^*$ לכל ב- A^* : לכל הסדרה מינימלי ב- A^* : לכל מתקיים מתקיים $n\in\mathbb{N}$ מתקיים כך $n\geq 0$ מכיוון ש- $n\geq 0$ בנוסף, התנאי השני מתקיים באופן ריק: לא קיים $i\in\mathbb{N}$ ש- $i\in\mathbb{N}$ לכן בפרט מינימלי. $i\in\mathbb{N}$ בפרט מינימלי. $i\in\mathbb{N}$
- ג. לא קיים איבר מקסימלי ב- A^* : נניח בשלילה ש- A^* שיבר מקסימלי. יהי ג. לא קיים איבר מקסימלי ב- A^* : נניח בשלילה להבא: גדיר A^* : נגדיר A^* : גדיר איבר כלשהו. נגדיר A^* : גדיר איבר מקסימלי

$$\forall 1 \le i \le n+1 : b_i = \begin{cases} a_i & i \le n \\ \alpha & i = n+1 \end{cases}.$$

 $(a_i)_{i=1}^n \leq_{\mathrm{pre}} (b_i)_{i=1}^{n+1}$ לכן $a_i=b_i$ מתקיים $1\leq i\leq n$ ולכל ולכל $n+1\geq n$ נשים לב שים לב לכן $n+1\geq n$ ולכל גם המירה לכך ש $(a_i)_{i=1}^n$ מקסימלי.

- שאלה 5. בדקו האם כל אחת מהפונקציות הבאות היא חח"ע/על (האם בהכרח חח"ע, בהכרח לא חח"ע או ייתכן שחח"ע, וכנ"ל לעל) במידה והפונקציה הפיכה, מצאו את הפונקציה הבופרים
 - $.f\left(x
 ight)=1-1/x$ מתקיים $x\in\left(1,\infty
 ight)$ לכל , $f:\left(1,\infty
 ight)
 ightarrow\left(0,1
 ight)$ א.
 - $.g\left(x
 ight)=1/x$ מתקיים $x\in\left(0,\infty
 ight)$ לכל ק
: $g:\left(0,\infty
 ight)
 ightarrow\left(0,\infty
 ight)$ ב.
 - $.h\left(A
 ight)=A\triangle\mathbb{N}$ מתקיים $A\in\mathcal{P}\left(\mathbb{R}
 ight)$ לכל , $h:\mathcal{P}\left(\mathbb{R}
 ight)
 ightarrow\mathcal{P}\left(\mathbb{R}
 ight)$.

- |A| < |B|כך ש-A,B כך סופיות עבור קבוצות כלשהי f:A o B ד. פונקציה
- |A|>|B|- כך ש-A,B כן סופיות עבור קבוצות כלשהי f:A o B כך ה.

פתרון 5. אוי, $f\left(x
ight)=f\left(x'
ight)$ - כך $x,x'\in(1,\infty)$ יהיי יהיא f (i) אוי, פתרון 5.

$$1 - \frac{1}{x} = 1 - \frac{1}{x'} \iff -\frac{1}{x} = -\frac{1}{x'} \iff x = x'.$$

f(x) = y- ער כך $x \in (1, \infty)$ נרצה למצוא $y \in (0, 1)$ יהי על: היא על: f (ii)

$$f(x) = y \iff 1 - \frac{1}{x} = y \iff \frac{1}{x} = 1 - y \iff x = \frac{1}{1 - y}$$

 $x=1/\left(1-y
ight)\in 1$ וכך וכך $1-y\in (0,1)$, $y\in (0,1)$ -שנשים לב שמכיוון שבת לב $f\left(x
ight)=y$ נקבל לבן עבור $x=1/\left(1-y
ight)$. (1, ∞)

 $x\in$ לכל כי תאינו הקודם ההסעיף וולכן ועל ולכן היא חח"ע היא היא קיבלנו (iii) מתקיים (1, ∞) , $y\in$ (0, 1)

$$f(x) = y \iff x = \frac{1}{1 - y},$$

-ש כך $f^{-1}:(0,1)\to (1,\infty)$ היא ההופכית הפונקציה ולכן ולכן

$$\forall y \in (0,1): f^{-1}(y) = 1/(1-y).$$

- $g\left(x
 ight)$ פעל: יהי $x=1/y\in\left(0,\infty
 ight)$ עבור עבור $y\in\left(0,\infty
 ight)$ יהי יהי $y\in\left(1/y
 ight)$ נקבל על: $1/\left(1/y
 ight)=y$
- $x,y\in$ לכל כי לכל האינו הקודם הקודם מהסעיף ועל ולכן ועל ועל ועל חח"ע היא קיבלנו (iii) $g^{-1}:(0,\infty)\to(0,\infty)$ מתקיים שg(x)=y אמ"מ אמ"מ ולכן מקיימת מקיימת

$$\forall y \in (0, \infty) : g^{-1}(y) = g(y) = \frac{1}{y}.$$

 $A\triangle\mathbb{N}=$ אזי h (B)= כך ש $A,B\in\mathcal{P}\left(\mathbb{R}\right)$ אזי תהיינה h (B) ג. $A\triangle\mathbb{N}=$ אזי בית קודם נקבל A

$$(A\triangle\mathbb{N})\triangle\mathbb{N} = (B\triangle\mathbb{N})\triangle\mathbb{N} \implies A = B.$$

- ונקבל $A=B\triangle\mathbb{N}$ נגדיר $B\in\mathcal{P}\left(\mathbb{R}\right)$ ונקבל h (ii)
- $h(A) = (B \triangle \mathbb{N}) \triangle \mathbb{N} = B \triangle (\mathbb{N} \triangle \mathbb{N}) = B \triangle \emptyset = B.$
- $A,B\in$ איט ראינו כי הקודם הקודם הפיכה. מהסעיף ועל ועל חח"ע ועל g (iii) $h^{-1}:$ אמ"מ $A=B\triangle\mathbb{N}$ אמ"מ אמ"מ $h\left(A\right)=B$, $\mathcal{P}\left(\mathbb{R}\right)$. $h^{-1}=h$ היא $\mathcal{P}\left(\mathbb{R}\right)\to\mathcal{P}\left(\mathbb{R}\right)$

הערה: פונקציה שהופכיות לעצמן (כמו סעיפים ב., ג.) נקראת אינבולוציה (Involution).

- $f\left(1
 ight)=-1$ הח"ע. למשל, עבור $A=\left\{1,2
 ight\},B=\left\{1,2,3
 ight\}$ ייתכן הח"ע. למשל, עבור $f\left(1
 ight)=1,f\left(2
 ight)=2$ נקבל לא הח"ע. אך עבור $f\left(2
 ight)=1$ נקבל לא הח"ע.
- (ii) בהכרח לא על. נניח בשלילה ש-f על, אזי $|B|=|\mathrm{Im}\,(f)|$. בנוסף |A|<|B|, בסתירה לכך ש- $|\mathrm{Im}\,(f)|=|f\,(A)|\leq |A|$
- $|\operatorname{Im}(f)|=|f(A)|=|A|$ ה. הכרח לא חח"ע. נניח בשלילה ש-f חח"ע, אזי ווע בהכרח לא הח"ע. נניח בשלילה המונה $|\operatorname{Im}(f)|\leq B$ ווע ווע ממופה ממופה ממופה תמונה שונה. עם זאת, |A|>|B| בסתירה לכך ש-|B|
- $f\left(1
 ight)=f\left(2
 ight)$ פיתכן ש-1 $A=\left\{1,2,3
 ight\}, B=\left\{1,2
 ight\}$ על. עבור לוו ייתכן ש-1 $f\left(1
 ight)=f\left(2
 ight)=f\left(3
 ight)=1$ נקבל על. לא על.