Statisticã - proiect final

Pentru 130 de persoane fumatoare sau nefumatoare, au fost înregistrate date privind tensiunea, respectiv pulsul acestora. Sa se verifice daca:

Existã diferențe semnificative în tensiune, în func pie de statut ?

Existã diferențe semnificative în puls, în funcție de statut ?

Existã o corelapie între tensiune °i puls? Pentru primele 2 întrebãri voi folosi t.test pentr u a vedea dacã existã diferenpe semnificative într e valorile menpionate, iar pentru a treia întrebar e voi studia corelapia.

Voi crea un tabel în care pe a doua coloană introd uc statutul, iar pe următoarele două tensiunea °i pulsul pentru fiecare individ.

Rezolvare punctul a)

> tema.data=read.table("D:\\FMI\\Anul III-311\\Sta
tistica\\Proiect Final\\date.dat",col.names=
c("Statut","Tensiune","Puls"))

> tema.data

Statut	Tensiune	Puls
NF	11.8	70
F	12.7	85
NF	11.8	60
F	11.8	90
NF	13.8	100
NF	13.8	95
F	12.9	90
F	11.8	95
${f NF}$	18.7	80
${f NF}$	12.9	110
NF	15.7	85
${f NF}$	9.7	80
${f NF}$	10.7	110
${f NF}$	10.7	70
${ m NF}$	11.8	90
${f NF}$	10.8	75
${f NF}$	11.8 80)
	NF F NF NF F NF NF NF NF NF NF NF	NF 11.8 F 12.7 NF 11.8 F 11.8 F 13.8 NF 13.8 F 12.9 F 11.8 NF 12.9 F 11.8 NF 18.7 NF 12.9 NF 15.7 NF 10.7 NF 10.7 NF 10.7 NF 10.7 NF 10.7

KN NNNN FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	11.8 11.8 11.8 11.8 11.8 11.9 11.9 11.9	100 1100 1000 1000 1000 1000 1000 1000
F F	13.8 14.9	80 90
	N FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	NF 11.8 F 11.8 NF 10.7 NF 10.8 NF 11.9 F 10.8 F 11.9 F 11.8 NF 11.9 NF 13.7 NF 10.8 NF 12.8 F 11.8 F 11.7 F 13.7 F 13.8 F 12.7 F 13.8 F 12.7 F 13.8 F 14.9 F 13.8 F 12.7 F 13.8 F 12.7 F 13.8 F 12.9 F 13.8 F 12.9 F 13.8 F 13.8 F 14.9 F 13.8 F 13.8 F 14.9 F 13.8 F 13.8 F 13.8 F 14.9 F 13.8 F 13.8 F 14.9 F 13.8 F

60	F	12.7	90
61	NF	13.7	85
62	NF _	14.7	80
63	F	12.9	95
64	F	12.7 15.7	80 105
65 66	NF NF	13.7	80
67	F	14.7	65
68	NF	12.7	90
69	F	12.7	130
70	NF	14.7	100
71	NF	12.7	90
72	NF	12.7	85
73	NF	14.7	105
74	F	14.8	80
75 76	F NF	13.8 12.7	80 85
70 77	NF	9.8	90
78	NF	12.7	80
79	F	13.8	90
80	NF	13.8	95
81	NF	13.7	85
82	NF	12.7	75
83	F	14.8	60
84	F	12.7	65
85	NF	12.7	70
86 87	NF F	10.7 10.8	75 90
88	r NF	9.7	100
89	NF	11.8	90
90	NF	12.9	95
91	NF	11.8	80
92	NF	9.8	75
93	NF	12.9	70
94	NF	10.8	90
95	NF	12.9	95
96	NF	13.8	75
97 98	NF F	10.8 9.7	85 80
98	r F	10.7	70
100	NF	9.8	75
_ 5 5		- • •	

```
> tensiune.f=temp.data[tema.data[,"Statut"]=="F","T
ensiune"]
> tensiune.f
  [1] 12.7 11.8 12.9 11.8 11.8 10.8 10.8 11.9 11.8 1
2.8 11.8 11.7 14.9 13.7 13.8
[16] 12.7 13.9 13.8 14.9 13.8 12.9 11.8 13.8 10.7 1
1.9 13.8 14.9 9.8 12.7 10.7
[31] 12.7 12.9 12.9 12.7 12.9 12.7 14.7 12.7 14.8 1
3.8 13.8 14.8 12.7 10.8 9.7
[46] 10.7
```

- > tensiune.nf=tema.data[tema.data[,"Statut"]=="NF",
 "Tensiune"]
- > tensiune.nf
 [1] 11.8 11.8 13.8 13.8 18.7 12.9 15.7 9.7 10.7 1
 0.7 11.8 10.8 11.8 11.8 11.8
 [16] 10.7 10.8 11.8 12.9 11.8 11.9 13.7 10.8 9.8 1
 4.7 14.8 13.7 14.7 15.7 13.8
 [31] 12.7 14.7 12.7 12.7 14.7 12.7 9.8 12.7 13.8 1
- 3.7 12.7 12.7 10.7 9.7 11.8 [46] 12.9 11.8 9.8 12.9 10.8 12.9 13.8 10.8 9.8
- > summary(tensiune.f)
 Min. 1st Qu. Median Mean 3rd Qu. Max.

 9.70 11.80 12.70 12.66 13.80
 14.90

Observație: Cele două repartiții au medii aproximat iv egale.

> boxplot(tensiune.f,tensiune.nf)

Din acest grafic reiese cã pentru persoanele fumãto avem nicio valoare aberantã, însã pentru nefumãtori observã o valoare aberantã. Aceastã valoare va fi eliminatã pentru a nu influenba greºit rezultatul. > boxplot(tensiune.f,tensiune.nf) > par(mfrow=c(2,1))> hist(tensiune.f) > hist(tensiume.nf) Observabie: Întrucât graficul se află pe clopotul lui Gauss, pot spune cã tensiunea este repartizatã normal. > gqnorm(tensiune.f) > ggline(tensiune.f) > qqnorm(tensiune.nf) > ggline(tensiune.nf) > var(tensiune.f) [1] 1.90599 > var(tensiune.nf) [1] 4.112219 Observabie: Între dispersia datelor pentru indiviz ii fumãtori, respectiv nefumãtori este o diferenbã destul de mare. > var.test(tensiune.f,tensiune.nf) F test to compare two variances

```
data: tensiune.f and tensiune.nf
F = 0.4635, num df = 45, denom df = 53, p-value = 0
.00924
alternative hypothesis: true ratio of variances is
not equal to 1
95 percent confidence interval:
 0.2642582 0.8238499
sample estimates:
ratio of variances
         0.4634944
Observabie: Întrucât am obbinut un p-value <0.05,
 respingem ipoteza H - Statutul unei persoane infl
uenbeazã tensiunea acesteia.
Eliminam valorile aberante doar în cazul indivizil
or nefumatori(la cei fumatori nu avem valori abera
nte.)
> var(tensiune.f)
[1] 1.90599
> var(tensiune.nf[tensiune.nf<16])</pre>
[1] 2.658008
Raportul dispersiilor este aproximativ 1, deci rabi
a este 1.
Aplic testul var.test din nou:
> var.test(tensiune.f,tensiune.nf[tensiune.nf<16])</pre>
F test to compare two variances
data: tensiume.f and tensiume.nf[tens.nf < 16]
F = 0.7171, num df = 45, denom df = 50, p-value = 0
.2595
alternative hypothesis: true ratio of variances is
not equal to 1
95 percent confidence interval:
0.4046893 1.2818687
sample estimates:
ratio of variances
0.7170748
```

Observabie: p-value>0.05, deci acceptam ipoteza H (statutul persoanei nu influenbeazã tensiunea aces teia) Aplicam testul student fara a elimina valorile aber ante. t.test(tensiune.f,tensiune.nf) Welch Two Sample t-test data: tensiune.f and tensiune.nf t = 0.1181, df = 93.696, p-value = 0.9062 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.6403840 0.7213824sample estimates: mean of x mean of y 12.66087 12.62037 Observabie: Obbinem p-value>0.05, deci acceptãm i poteza H(statutul persoanei nu influenbeazã tensiu nea sa) Aplicam testul fara valorile aberante: t.test(tensiune.f,tensiune.nf[tens.nf<16]) Welch Two Sample t-test data: tensiume.f and tensiume.nf[tens.nf < 16] t = 1.1157, df = 94.64, p-value = 0.2674 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.2659835 0.9485070 sample estimates: mean of x mean of y

12.66087 12.31961

Observație: Obținem p-value>0.05, deci acceptam i poteza H(statutul persoanei nu influențează tensiu nea acesteia)

Rãspuns final:

Statutul de fumator/ nefumator nu influenpeaza tens iunea.

Rezolvare punctul 2)

```
> pulsf=tema.data[tema.data[,"Statut"]=="F","Puls"]
```

```
90
 [1]
     85
          90
              90
                  95 100
                              95
                                  85 105 105 100
                                                   9
0 85
     95
           90 80
                 85
                       85 105
[20]
      80
          80
              90
                  95
                      80 105
                              80
                                  90 100
                                          70
                                               80
                                                   8
      75
                      65 130
5 90
           90
              95
                  80
          80
[39]
      80
              90
                  60
                      65
                          90
                              80
                                  70
```

> pulsnf=tema.data[tema.data[,"Statut"]=="NF","Puls
"]

> pulsnf

[1] 60 100 80 110 80 110 5 80 100 110 80 80 105 [20] 0 100 85 105 [39] 75 100 0 95

> summary(pulsf)

Min. 1st Qu. Median Mean 3rd Qu. Max. 60.00 80.00 90.00 87.61 95.00

```
> summary(pulsnf)
Min. 1st Qu. Median
50.00 76.25 85.00
                          Mean 3rd Qu. Max.
                              85.74 ~ 95.00
60.00
110.00
> boxplot(pulsf,pulsnf)
Observație: Pentru fumători avem o valoare aberantă
> par(mfrow=c(2,1))
> hist(pulsf)
> hist(pulsnf)
 Observabie: Cele două histograme se află pe clopot
ul lui Gauss (exceptând valoarea aberantã)
> gqnorm(pulsf)
> qqline(pulsf)
> ggnorm(pulsnf)
> gqline(pulsnf)
> var(pulsf)
[1] 155.2657
> var(pulsnf)
[1] 145.6674
```

Observație: Raportul variațiilor este aproximativ 1, deci rația este 1, în ciuda valorilor aberante.

> var.test(pulsf,pulsnf) F test to compare two variances pulsf and pulsnf F = 1.0659, num df = 45, denom df = 53, p-value = 0 .8185 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.6077113 1.8945971 sample estimates: ratio of variances 1.065892 Observație: p-value > 0.05, deci acceptam ipoteza H - Statutul de fumãtor sau nefumãtor al unui indi vid nu influenþeazã pulsul sãu. > var(pulsf[pulsf<110])</pre> [1] 117.0455 > var.test(pulsf[pulsf<110],pulsnf)</pre> F test to compare two variances pulsf[pulsf < 110] and pulsnf</pre> data: F = 0.8035, num df = 44, denom df = 53, p-value = 0 .4579 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.4569407 1.4347806 sample estimates: ratio of variances 0.8035119 Observație: p-value > 0.05, deci acceptam ipoteza H - Statutul de fumãtor sau nefumãtor al unui indi vid nu influenbeazã pulsul sãu.

Facem testul student cu valorile aberante:

> t.test(pulsf,pulsnf)

```
Welch Two Sample t-test
data: pulsf and pulsnf
t = 0.758, df = 94.449, p-value = 0.4503
alternative hypothesis: true difference in means is
 not equal to 0
95 percent confidence interval:
 -3.024712 6.760621
sample estimates:
mean of x mean of y
 87.60870 85.74074
Observație: p-value > 0.05, deci acceptam ipoteza
H - Statutul de fumãtor sau nefumãtor al unui indi
vid nu influenbeazã pulsul sãu.
Facem testul student fără valorile aberante:
> t.test(pulsf[pulsf<110],pulsnf)</pre>
        Welch Two Sample t-test
data: pulsf[pulsf < 110] and pulsnf
t = 0.4023, df = 96.459, p-value = 0.6884
alternative hypothesis: true difference in means is
 not equal to 0
95 percent confidence interval:
 -3.642950 5.494802
sample estimates:
mean of x mean of y
 86.66667 85.74074
Observabie: p-value > 0.05, deci acceptãm ipoteza
H - Statutul de fumãtor sau nefumãtor al unui indi
vid nu influenbeazã pulsul sãu.
Rãspuns final:
Pulsul nu este influenþat de statutul de fumãtor sa
u nefumator al unui individ.
Rezolvare 3)
 > plot(tema.data[,"Tensiune"],tema.data[,"Puls"])
```

Rãspuns final:

Indicele de corelapie este mai mare decât 0, deci tensiunea °i pulsul sunt pozitiv corelate, însã nu existã o corelapie strânsã între ele, deoarece va loarea este mai apropiatã de 0 decât de 1.