Cap. 1- Funções reais de variável real

Setembro 2019

M.Isabel Caiado [MIEInf] Cálculo-2019-20 1 / 16

1.1 O conjunto $\ensuremath{\mathbb{R}}$

Valor absoluto de um número real

Conjuntos limitados

Distância

Conjuntos abertos e conjuntos fechados

Valor absoluto

▶ Dado $x \in \mathbb{R}$, chama-se valor absoluto de x ao maior dos números x e -x. Escreve-se

$$|x| = \max\{x, -x\}$$

• Sai de imediato que |0| = 0 e que

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

3 / 16

► [Propriedades do valor absoluto]

Sejam $x,y,z\in\mathbb{R}$ e $a\geq 0$. Então:

- $|x| \ge 0$ e |x| = 0 sse x = 0;
- |-x| = |x|;
- $\bullet |x| \ge x \quad \mathsf{e} \quad |x| \ge -x;$
- \bullet $-|x| \le x \le |x|$;
- $|x| \le a$ sse $-a \le x \le a$;
- $|x| \ge a$ sse $x \ge a \lor x \le -a$;
- $\bullet ||x \cdot y| = |x| \cdot |y|;$
- $\bullet |x+y| \le |x| + |y|;$
- $|x z| \le |x y| + |y z|$.

Conjuntos limitados

Seja X um subconjunto de \mathbb{R} e $a \in \mathbb{R}$. Diz-se que a é

- ightharpoonup majorante de X se $\forall x \in X$ $x \leq a$;
- ightharpoonup minorante de X se $\forall x \in X$ $a \leq x$;
- ightharpoonup máximo de X se a é majorante de X e $a \in X$;
- ightharpoonup mínimo de X se a é minorantes de X e $a \in X$;
- ightharpoonup ínfimo de X se é o maior dos minorante de X;
- ightharpoonup supremo de X se é o menor dos majorantes de X.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

5 / 16

Notação

Usam-se as notações

- $lacktriangledown \max X$ para o máximo de X
- $ightharpoonup \min X$ para o mínimo de X
- ightharpoonup supX para o supremo de X
- $ightharpoonup \inf X$ para o ínfimo de X

M.Isabel Caiado [MIEInf] Cálculo-2019-20 6 / 16

Exemplo

- 1. Se $X=]0,\pi]$ então
 - majorantes de X: $[\pi, +\infty[$;
 - minorantes de X: $]-\infty,0]$;
 - $\sup X = \pi$ e $\pi \in X$, então $\max X = \pi$;
 - $\inf X = 0$ e $0 \notin X$ então X não tem mínimo.
- 2. Se $X=[0,\pi]\cap \mathbb{Q}$ então
 - majorantes de X: $[\pi, +\infty[$;
 - minorantes de X: $]-\infty,0]$;
 - $\sup X = \pi$ e $\pi \not\in X$, então X não tem máximo;
 - $\inf X = 0$ e $0 \in X$ então $\min X = 0$.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

7 / 16

- ightharpoonup [Conjunto limitado] Dado um conjunto $X\subset\mathbb{R}$, diz-se que X é
 - limitado inferiormente ou minorado se possui algum minorante;
 - limitado superiormente ou majorado se possui algum majorante;
 - ullet limitado quando X é, simultaneamente, limitado inferiormente e limitado superiormente.

Distância

▶ [Distância] Dados $x,y \in \mathbb{R}$, chama-se distância de x a y ao número d(x,y) definido por

$$d(x,y) = |x - y|.$$

► [Propriedades]

Sejam $x,y,z\in\mathbb{R}$. Então

- $\bullet \ d(x,y) \, \geq \, 0 \quad \text{ e } \quad d(x,y) = 0 \ \text{ sse } \ x = y;$
- d(x,y) = d(y,x)
- $\bullet \ d(x,y) \leq d(x,z) + d(z,y) \qquad \qquad \text{(Designal dade triangular)}$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

9 / 16

Conjuntos abertos e conjuntos fechados

Seja $X \subset \mathbb{R}$ qualquer.

▶ [Ponto interior] $x \in \mathbb{R}$ é ponto interior de X se

$$\exists r > 0 \]x - r, x + r[\subset X;$$

 \bullet Ao conjunto dos pontos interiores de X chama-se interior de X e representa-se por

$$\operatorname{int} X$$
 ou \mathring{X} .

► [Conjunto aberto] Se $\mathring{X} = X$ diz-se que X é um conjunto aberto.

Exemplo

- 1. Se A=[0,1[então $\mathring{A}=]0,1[$; A não é aberto.
- 2. Se B=]0,1[então $\mathring{B}=]0,1[$; B é aberto.
- 3. Se $C=\mathbb{R}$ então $\mathring{C}=\mathbb{R}$; C é aberto.
- 4. Se $D=\emptyset$ então $\mathring{D}=\emptyset$; D é aberto.
- 5. Se $E =]0,1] \cap \mathbb{Q}$ então $\mathring{E} = \emptyset$; E não é aberto.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

11 / 16

▶ [Ponto aderente] $x \in \mathbb{R}$ é ponto aderente de X se

$$\forall r>0 \]x-r,x+r[\ \cap X\neq\emptyset$$

 \bullet Ao conjunto dos pontos aderentes de X chama-se aderência de X e representa-se por

$$\overline{X}$$
 ou ad X .

▶ [Conjunto fechado] Se $\operatorname{ad} X = X$ diz-se que X é um conjunto fechado.

Exemplo

- 1. Se A = [0, 1] então ad A = [0, 1]; A não é fechado.
- 2. Se B = [0, 1] então ad B = [0, 1]; B é fechado.
- 3. Se $C = \mathbb{R}$ então $\operatorname{ad} C = \mathbb{R}$; C é fechado.
- 4. Se $D = \emptyset$ então $\operatorname{ad} D = \emptyset$; D é fechado.
- 5. Se $E =]0,1[\cap \mathbb{Q}$ então $\operatorname{ad} E = [0,1]$; E não é fechado.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

13 / 16

▶ [Ponto fronteiro] $x \in \mathbb{R}$ é ponto fronteiro de X se

$$\forall r > 0 \]x - r, x + r[\cap X \neq \emptyset \ e \]x - r, x + r[\cap (\mathbb{R} \backslash X) \neq \emptyset$$

$$]x-r,x+r[\cap (\mathbb{R}\backslash X)\neq \emptyset$$

 Ao conjunto dos pontos de fronteira de X chama-se fronteira de X e representa-se por

$$\operatorname{fr} X$$
 ou ∂X .

- ► [Exemplo]
 - 1. Se A = [0, 1] então $\partial A = \{0, 1\}$.
 - 2. Se $B = [0, 2 | \{1\} \text{ então } \partial B = \{0, 1, 2\}.$
 - 3. Se $C =]0,1[\cap \mathbb{Q}$ então $\partial C = [0,1]$.

lacktriangle [Ponto de acumulação] $x\in\mathbb{R}$ é ponto de acumulação de X se

$$\forall r > 0 \ (|x - r, x + r| \setminus \{x\}) \ \cap X \neq \emptyset$$

ullet $x\in\mathbb{R}$ é ponto de acumulação à direita de X se

$$\forall r > 0 \]x, x + r[\ \cap X \neq \emptyset.$$

• $x \in \mathbb{R}$ é ponto de acumulação à esquerda de X se

$$\forall r > 0 \ |x - r, x| \ \cap X \neq \emptyset.$$

• Ao conjunto dos pontos de acumulação de X chama-se derivado de X e representa-se por

▶ [Ponto isolado] $x \in \mathbb{R}$ é um ponto isolado de X quando $x \in X$ mas $x \not\in X'$,

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

15 / 16

16 / 16

- ► [Notação] Usam-se as notações
 - X'_{+} o conjuntos dos pontos de acumulação à direita de X;
 - X'_{-} o conjuntos dos pontos de acumulação à esquerda de X.
- ► [Exemplo]
 - 1. Se $A = ([0,3[\setminus\{1\}) \cup \{4\} \text{ então } A' = [0,3] \text{ e } 4 \text{ é o único ponto isolado de } A.$
 - 2. Se $B=]0,3[\cap\mathbb{Q}$ então B'=[0,3] e B não possui pontos isolados.