3. 按图3测定电流控制电压源的特性。

①给定 u_1 =3V,R= 3 $K\Omega$,测定电流控制型电压源性能,并计算 γ_m 。

4	给定值	$R1/\Omega$	1k	2k	3k	4k	5k	
	测试值	i1/mA		3.05	1.52	1.02	0.77	0.62
CCVS	测试值	u2/V	-	-9. 13	-4.6	-3.08	-2 . 33	-1.86
	计算值	r m $/$ Ω		-3	-3	-3	-3	-3

② 将 R_1 改为固定电阻 $2K\Omega$, $u_1=3.0V$, $R=3K\Omega$, 在输出端接 入可调变阻箱 R_L 。

给定值		RL/Ω	1k	2k	3k	4k	5k	
CCUC	油17十7年	i1/mA		1.54	1.54	1. 54 -4. 62	1.54	1.54
CCVS	侧风徂	112/V		-4, 62	-4, 62	-4.62	-4.62	-4, 62

4.按图4测定电流控制电流源的特性。

给定 u_1 =2.0V , R_1 = R_2 =2k Ω , 测定 $R_{\rm L}$ 由0 \sim 3k Ω 变化时,

 i_1 、 u_2 的值。(由此算得 i_2 值),并计算 α 。

给定值		$R1/\Omega$	1k	2k	3k	
	洞山北古	i1/mA		1.31	1.31	1.31
CCCS	测试值	u2/V		2.61	5. 23	7.85
CCCS	计算值	i2/mA		2	2	2
	11 昇阻	α		2	2	2

五. 思考题

1.掌握四种受控源的符号、电路模型、控制量与被控制量之间的关系,以及四种受控源中的 μ 、gm、rm 和 α 的意义。

答: VCVS: U2= µ U1 µ 为转移电压比

VCCS: I2 = gmU1 gm 称为转移电导

CCVS: U2=rml1 rm 为转移电阻

CCCS: I2=α I1 α 称为转移电流比

2.对于初学电路基础的同学们来说,运放的概念可能有些抽象,理解上可能会遇到困难。同学们应详细阅读有关运放和受控源的章节,结合实验内容,争取尽早消化理解。在完成本节的实验内容之后,需要同学们结合测量数据,总结出四类受控源的特性和带负载时的特性,加深对于受控源的认识。

答: VCVS: 输出电压随着输入电压变化而成比例变化, 当带上负载时, 输出电压与负载无关。

VCCS: 输出电流随着输入电压变化而成比例变化, 当带上负载时, 输入电流与负载无关。

CCVS: 输出电压随着输入电流变化而成比例变化,但带上负载时,输出电压不随负载变化。

CCCS: 输出电流随着输入电流变化而成比例变化,与负载无关。

3.四类受控源由运放和相关电路组成,每一类的受控源的电路都不是唯一的,本节实验列举的只是 其中的一个典型电路。同学们可以根据实验原理中的电路自行推导,求出每一类受控源电路的转移 函数,加深对于运放和受控源的理解。

答:

VCVS:
$$M = 1 + \frac{R_1}{R_2}$$
VCCS $g_m = \frac{i_2}{u_1} = \frac{1}{R}$
CCVS: $r_m = \frac{u_2}{t_1} = -R$
CCCS: $Q = \frac{t_2}{t_1} = 1 + \frac{R_1}{R_2}$

- 4. 试分析受控源的输出特性是否适用于交流信号。
- 答: 受控源与信号的种类无关,因而它是适用于交流信号的。

学号_	姓名	_课程序号 <u>1134</u> 组别 B 实验台号 <u>14 实</u> 验时间: <u>3</u> 月 <u>31</u> 日周 <u>三</u> (上午/下午/ <u>晚</u>)
五.	数据分析	

学号	_姓名	_课程序号	1134 _组别	B 实验台号 <u>1</u>	<u>.4</u> 实验时间:_	3 月 31 日月	周 <u>三</u> (上午/下	· 午/ <u>晚</u>)