

The principal value of the argument of Z = 2+iy ($Z \neq 0$) is the unique number Arg(Z) such that DEF 1.3.2 • $-\pi < Arg(z) = \pi$ • $\cos(Argz) = \pi/r$ | Arg(z) rs an
• $\sin(Argz) = \pi/r$ | argument for z.

The set of all arguments is $arg(z) = \frac{1}{2} Arg(z) + 2k\pi : k \in \mathbb{Z}$ Remark Here arg(z) is multi-valued. Example Find the modulus, the argument and polar 1.3.3 form of (d) $z_4 = 1 + i$ (e) $z_5 = 1 - i$ (f) $z_6 = -1 - i$ Sol. (d) $|z_4| = \sqrt{2}$. $arg(z) = \begin{cases} Arg(z) + \lambda RT : k \in \mathbb{Z}_5. \\ Arg(z) = \sqrt{2} \end{cases}$ Here, $0 = tan^{-1} (1/1) = T/4 = Arg(z)$ $\Rightarrow z = \sqrt{2} (cos(T/4) + i sin(T/4)).$

Multiplication in polar form Let $Z_1 = \Gamma_1 \left(\cos \theta_1 + i \sin \theta_1 \right)$ $Z_2 = \Gamma_2 \left(\cos \theta_2 + i \sin \theta_2 \right)$ $z_1 z_2 = r_1 r_2 \left(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \right)$ $t i r_1 r_2 \left(\cos \theta_1 \sin \theta_2 t \sin \theta_1 \cos \theta_2 \right)$ Keeall: (050, (050z - 5m0, 5m0z = cos(0, +0z) (050, 5m0z + 5m0, cos0z = 5m(0, +0z)Polar form of the product => $2 + 2 = r_1 r_2 \left(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right)$ Conse: $arg(z_1z_2) = arg(z_1) + arg(z_2)$ Polar form of the inverse: $\frac{1}{Z_1} = \frac{1}{\Gamma_1} \left(\cos(-\theta) + i \sin(-\theta) \right)$

Conse:
$$arg\left(\frac{1}{Z_1}\right) = -arg\left(z_1\right) = arg\left(\overline{z}_1\right)$$

Polar form of quotient: $(\overline{z}z \neq 0)$

$$\frac{Z_1}{Z_2} = \underline{\Gamma_1} \left(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)\right).$$

$$\frac{Z_1}{Z_2} = arg\left(z_1\right) - arg\left(\overline{z}_2\right).$$

Once: $arg\left(\frac{Z_1}{Z_2}\right) = arg\left(z_1\right) - arg\left(\overline{z}_2\right).$

De Hoivie's Identity

Let $z = r(\cos\theta + i\sin\theta)$

$$\Rightarrow z^2 = r^2 \left(\cos 2\theta + i\sin 2\theta\right)$$

$$\Rightarrow z^3 = r^3 \left(\cos 3\theta + i\sin 3\theta\right)$$

$$\Rightarrow z^4 = r^4 \left(\cos 4\theta + i\sin 4\theta\right)$$

Prop. For a positive integer n and a 1.3.6 complex number $z = \cos \theta + i \sin \theta$, $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$. Example Using de Moivre's Identity, show that the following trig. identity holds: $cos(40) = cos^40 - 6 cos^20 sin^20 + sin^40.$ Solution Notice that $\cos 40 = \text{Re} \left(\cos 40 + i \sin 40 \right)$ $= \text{Re} \left(\cos 0 + i \sin 6 \right)^4$ = cus 0 - 6 cos 20 sin 20 + Sin 40. 12 Roots of complex numbers Let $w \neq 0$ and $n \in \mathbb{N} = \frac{1}{2}, \frac{7}{3}, \dots \frac{7}{5}$. A number $z \in \mathbb{C}$ in an n+h root of $w \in \mathbb{F}$ $z^{n} = w$. Def 1.3.9

Let
$$Z = \Gamma((os\theta + isin\theta))$$

and $W = P(cos\theta + isin\theta)$
So, $Z^n = W$ becomes
 $\Gamma((osn\theta + isinn\theta))$
 $\Rightarrow \Gamma = P$ and $R = D + 2k\pi$
 $R \in Z = \{..., 2, 1,...\}$
 $\Rightarrow \Gamma = VP$ and $Q = D + 2k\pi$
with $R = 0, 1, ..., n-1$.
Prop. Let $W = P(cos\theta + isin\theta)$, $W \neq 0$.
13.10 The nth roots of W are $Z = VP$ (cos $Q + 2k\pi$) + isin $Q + 2k\pi$)
 $With R = 0, 1, 2, ..., n-1$.
Remarks • The unique number $Z = D + Z^n = W$,
 $Arg(Z) = Arg(W)$ is the Principal

	nth root of w.
	· The Principal with root is denoted
	by Nw.
	by Nw. For all the nth roots, we use the notation (w)'n.
	notation (w)/n.
Example	Find all the roots of $z^2 + z + 1 - i = 0$
	$z^{2} + z + 1 - i = 0$
Solution.	Quadrabic Formula: Z _{1,2} = -b ± $\sqrt{b^2-4ac}$
	$Z_{1,2} = -b \pm \sqrt{b^2 - 4ac}$
	$\frac{1}{2\alpha}$
	= -1 + \ -3+4i
	Z
	$ -3+4i =5$ and $Arg(-3+4i)^{2}=2.2142=A$
	$\Rightarrow \sqrt{-344i} = \sqrt{5} \left(\cos \left(\frac{A}{2} \right) + i \sin \left(\frac{A}{2} \right) \right)$
	= 1 + 2i
	lence,
	$Z_{i} = [-1 + (1+z_{i})]/2 = [i]$
	$Z_1 = [-1 + (1+z_i)]/2 = [i]$ $Z_2 = [-1 - (1+z_i)]/2 = [-1 - i]$