- 1 # import das bibliotecas
- 2
- 3 import pandas as pd
- 4 import numpy as np
- 5 import matplotlib.pyplot as plt
- 6 import seaborn as sns
- 7 import plotly.express as px
- 8 import plotly.figure_factory as ff

Criar os DataFrame

- 1 from google.colab import drive
- 2 drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m

→

1 tb5 = pd.read_csv('tb_vendors_treatment.csv')

2 tb5.head(3)

	id_fornecedor	nome_fornecedor	data_registro	qtde_produtos	preco_me
0	5f550609cba01d00210ed015	Meus Bolos	2020-09-06 00:42:34	0	
1	5f584189fc58110021464422	Moça Doceria	2020-09-09 01:56:25	0	
2	5f5a8be1ccc6c40021a8185f	Cami's Candy	2020-09-10 00:49:18	0	

1 tb1 = pd.read_csv('tb_addresses_treatment.csv')

2 tb1.tail(2)

 pais	uf	estado	cidade	bairro	id_endereco	
 Brasil	ТО	Tocantins	Palmas	Setor Morada do Sol (Taquaralto)	616058c21770da002259306f	81031
Brasil	ТО	Tocantins	Palmas	Plano Diretor Sul	60e4bec7a3d5dd0021ab88d3	81032

1 tb13 = pd.read_csv('tb_products_treatment.csv')

2 tb13.head(2)

	id_produto	id_fornecedor	id_tipo	1
0	5f550676cba01d00210ed018	5f550609cba01d00210ed015	5f518a26a4a5fbed86099757	Bol cen
				Dal

Rodrigo

Esse arquivo não é o original, fiz um a parte para não correr o risco de perder o principal, observem as relações a seguir:

OBS: Isso_aqui_eh_Flamengo

id_fornecedor nome_fornecedor data_registro qtde_produtos preco_me 2 5f5a8be1ccc6c40021a8185f Cami's Candy 2020-09-10 00:49:18 0 3 5f5bc310b8742200213bda1d Re doces 2020-09-11 01:07:10 0

```
1 ## Concatenei vendedores e produtos
2 df_vendors_products = pd.merge(tb5, tb13)
3 df_vendors_products.head(2)
```

/usr/local/lib/python3.7/dist-packages/pandas/core/reshape/merge.py:1127: UserWarning

You are merging on int and float columns where the float values are not equal to their

- 1 ## Usei o 'tb_addresses_treatment.csv'
- 2 # Filtrei para obter dados da cidade que pré-determinamos
- 3 tb1 = tb1[tb1['cidade'] == 'São Paulo']
- 4 tb1.head(2)

	id_endereco	bairro	cidade	estado	uf	pais	tipo	
96	61421da6c6638d0022d9565d	Indianópolis	São Paulo	São Paulo	SP	Brasil	HOME	4
99	6165c6fcc1fbab0022f398e3	Vila Nair	São Paulo	São Paulo	SP	Brasil	HISTORY	4

- 1 ## Concatenei vendedores e produtos com endereços
- 2 # assim temos em um dataframe somente produtos e vendedores aprovados na cidade de São
- 3 # com os id_endereco de vendedores e endereços ordenados?
- 4 df_vendors_products_addresses = pd.merge(df_vendors_products, tb1)
- 5 df vendors products addresses.head(2)

		id_fornecedor	nome_fornecedor	data_registro	qtde_produtos	preco_med
•	0	5f5a8be1ccc6c40021a8185f	Cami's Candy	2020-09-10 00:49:18	0	
	1	5f5a8be1ccc6c40021a8185f	Cami's Candy	2020-09-10 00:49:18	0	

- 1 # Adelaide disse que faz sentido com a quantidade de empresas ativos segundo as Lives
- 2 len(df_vendors_products_addresses['nome_empresa'].unique())

105

1 df_vendors_products_addresses['delivery_raio_km'].unique()

1 df_vendors_products_addresses['avaliacao_media'].unique()

```
array([0])
```

1 df_vendors_products_addresses.shape

```
(1680, 28)
```

- 1 # df_saopaulo = pd.read_csv('dataset-limpo.csv', sep=',')
- 2 # df_saopaulo.head()

2 3

4

2

5)

6 fig.show()

3 fig.update_layout(

title = 'Regiões Vem de Bolo',

```
1 df_kaggle = pd.read_csv('dataset-limpo.csv')
2 df_kaggle.head(2)
```

```
id
                bairro created_at descricao
                                                              id.1 ip_address_origin
                                                  endereco
                                                                                         lati
                                              5
                                                    Avenida
                                       bandidos,
                                                     Trona
                         2015-06-16
                                         armas,
       49787
               Butantã
                                                 Constanzo,
                                                            49787
                                                                                  NaN -23.58
                        23:34:01.000
                                       entraram
                                                       177,
                                      em casa e
                                                    Butantã
                                      vasculha...
                                      Meu caso
                                                    Avenida
                                       foi para o
                                                      José
                          2013-09-11
                                      Pequenas
                                                    Pinheiro
        10679 Itaquera
                                                             10679
                                                                            187.11.1.51 -23.54
                        18:26:31.819
                                                    Borges,
                                        Causas,
                                      ganhamos
                                                  450-876 -
                                                    Itaque...
1 df_kaggle_sp = pd.DataFrame(df_kaggle, columns=['bairro', 'latitude', 'longitude'])
1 df_kaggle_sp.shape
    (12899, 3)
1 df_kaggle_sp.drop_duplicates(subset=['bairro'], inplace=True)
1 teste = df_kaggle_sp['bairro'].unique().tolist()
1 df_vendors_products_addresses_filtrado = pd.DataFrame(df_vendors_products_addresses, co
                                                                       'e_aprovado', 'nome',
                                                                       'bairro', 'cidade', 'e
                                                                       'uf', 'tipo'])
1 df_nestle = pd.merge(df_vendors_products_addresses_filtrado, df_kaggle_sp, how='left',
```

```
https://colab.research.google.com/drive/1X cmug4P38q8S-\_zObCXc31Rs2\_KwydpO? authuser=2\#scrollTo=2QB1bLz7B3I4\&printMode=true
```

1 fig = px.density mapbox(df nestle, lat='latitude', lon='longitude', radius=5, zoom=10,

mapbox_style="stamen-terrain", hover_name= 'nome_fornecedor', z

Regiões Vem de Bolo


```
1 df_cognatis = pd.read_csv('tb_solds_cognatis_treatment.csv')
```

1 df_cognatis_sp = df_cognatis[df_cognatis['MUNICIPIO'] == 'SAO PAULO']

Dropar colunas menos importantes para analise

1 df_cognatis_sp.head(1)

	SETOR_ATIV	UF	MUNICIPIO	CEP	TRABALHADORES	S_RENDA_MEDIA	S_FLI
4871	AGROPECUARIA	SP	SAO PAULO	49400000.0	8889.0	1787.380005	

1 df_cognatis_sp_filter.head(5)

	CEP	TRABALHADORES	S_POP_TOTAL	S_PCT_CLASSE_A	2_bc1_crazze_r	S_PCI_
4871	49400000.0	8889.0	158260.0	0.04	17.910000	
4872	55290001.0	17338.0	105274.0	4.26	45.820000	4
4873	40000001.0	16464.0	144552.0	1.88	38.810001	

¹ plt.figure(figsize=(12,6))

⁴ plt.show()

CEP	ī	-0.36	-0.072	-0.18	-0.43	0.31	0.1	0.21	-0.41	-0.48	-0.16
TRABALHADORES	-0.36	1	0.15	0.5	0.36	-0.44	0.2	0.2	0.37	0.43	0.65
S_POP_TOTAL	-0.072	0.15		-0.18	-0.19	0.23	0.39	-0.008	-0.081	-0.13	-0.2
S_PCT_CLASSE_A	-0.18	0.5	-0.18		0.7	-0.92	-0.5	-0.021	0.72	0.74	0.69
S_PCT_CLASSE_B	-0.43	0.36	-0.19	0.7	1	-0.91	-0.68	-0.24	0.93	0.93	0.48
S_PCT_CLASSE_C	0.31	-0.44	0.23	-0.92	-0.91	1	0.66	0.15	-0.88	-0.89	-0.62
S_PCT_JOVENS	0.1	0.2	0.39	-0.5	-0.68	0.66		0.37	-0.69	-0.66	-0.13
S_PCT_ADULTOS	0.21	0.2	-0.008	-0.021	-0.24	0.15	0.37		-0.42	-0.43	0.2
S_PCT_SENIOR	-0.41	0.37	-0.081	0.72	0.93	-0.88	-0.69	-0.42		0.95	0.44
S_PCT_IDOSOS	-0.48	0.43	-0.13	0.74	0.93	-0.89	-0.66	-0.43	0.95		0.48
S_RENDA_MEDIA	-0.16	0.65	-0.2	0.69	0.48	-0.62	-0.13	0.2	0.44	0.48	1
	CEp	TRABALHADORES	S. POP. TOTAL	S.PCT.CLASSE.A	S.PCT.CLASSE.B	S.PCT. CLASSE.C	SPCTJOVENS	S. PCT. ADULTOS	S. PCT. SENIOR	S. PCT. IBOSOS	S. RENDA MEDIA

1 df_vendors_products_addresses['cidade'].value_counts()

```
São Paulo 1680
```

Name: cidade, dtype: int64

1 df_vendedores['tipo'].value_counts(True) *100

OFFICE 99.22619 HISTORY 0.77381

Name: tipo, dtype: float64

² sns.heatmap(df_cognatis_sp_filter.corr(), annot=True, cmap='Wistia',)

³ plt.xticks(rotation=70)

```
1 df_office = df_vendedores[df_vendedores['tipo'] == 'OFFICE']
2 df_office.head(2)
```

	nome_fornecedor	data_registro	hora_abertura	hora_fechamento	delivery_raio_km
0	Cami's Candy	2020-09-10 00:49:18	08:00	19:00	15
1	Cami's Candy	2020-09-10 00:49:18	08:00	19:00	15

```
1 df_office['delivery_raio_km'].value_counts(True).head() *100
```

```
50 15.416917
15 13.257349
10 13.197361
25 9.958008
20 7.798440
```

Name: delivery_raio_km, dtype: float64

```
1 df_office['hora_abertura'].value_counts().head()
```

```
09:00 514
10:00 382
08:00 281
12:00 110
11:00 103
```

Name: hora_abertura, dtype: int64

1 df_office['hora_fechamento'].value_counts().head()

```
20:00 411
18:00 369
19:00 207
21:00 153
18:30 143
```

Name: hora fechamento, dtype: int64

1 df_nestle.head()

	nome_fornecedor	nome_empresa	e_aprovado	nome	delivery_raio_km	bairro	C:
0	Cami's Candy	Csmws Csydy	True	Brigadeiro prestígio	15	Brooklin	
1	Cami's Candy	Csmws Csydy	True	Brigadeiro tradiconal	15	Brooklin	

1 df_nestle['bairro'].value_counts().head(10)

```
Bela Vista
                                 109
Vila Olímpia
                                 101
Vila Andrade
                                  78
Mirandópolis
                                  69
Campo Belo
                                  64
Alto de Pinheiros
                                  60
Jardim Sao Paulo(Zona Leste)
                                  60
Santana
                                  55
Pinheiros
                                  53
Itaim Bibi
                                  50
Name: bairro, dtype: int64
```

```
1 df_top10_aprov = pd.DataFrame(df_nestle['bairro'].value_counts().head(10))
2 df_top10_aprov.reset_index(inplace=True)
```

3 df_top10_aprov.rename(columns={'index': 'Bairros', 'bairro': 'Qtde'}, inplace=True)

1 df_top10_aprov

	Bairros	Qtde
0	Bela Vista	109
1	Vila Olímpia	101
2	Vila Andrade	78
3	Mirandópolis	69
4	Campo Belo	64
5	Alto de Pinheiros	60
6	Jardim Sao Paulo(Zona Leste)	60
7	Santana	55
8	Pinheiros	53
9	Itaim Bibi	50

```
#*sns.set(rc={'figure.figsize':(15,8)})
plt.figure(figsize=(12,8))
ax*-*sns.barplot(y*-*df_top10_aprov['Bairros'],*x*-*df_top10_aprov['Qtde']);

4
5
```

 $https://colab.research.google.com/drive/1Xcmug4P38q8S-_zObCXc31Rs2_KwydpO?authuser=2\#scrollTo=2QB1bLz7B3I4\&printMode=true$

6 #·Colocando·os·rótulos·de·dados·no·gráfico·

⁷ for·i·in·range(len(df top10 aprov)):·#·Varre-se·todo·o·intervalo·de·iogos·vendidos·no

1 df_top10_bairros

```
8     ··ax.text(df_top10_aprov['Qtde'][i]·-·10,·i,·
9     ······df_top10_aprov['Qtde'][i],·fontsize=11,·
10     ······color='white',verticalalignment='center',
11     ······horizontalalignment='right',weight='bold')
```



```
1 df_top10_bairros = pd.DataFrame(tb1['bairro'].value_counts().head(10))
2 df_top10_bairros.reset_index(inplace=True)
3 df_top10_bairros.rename(columns={'index': 'Bairros', 'bairro': 'Qtde'}, inplace=True)
```

```
Bairros Qtde

O Vila Mariana 1369
```

```
nl+ (i-----/(i--i--- /12 0)
```


1