

PES UNIVERSITY

(Established under Karnataka Act No. 16 of 2013) 100-ft Ring Road, Bengaluru – 560 085, Karnataka, India

6th Semester Project Report on

Context Analyzer

Submitted by

Harsha K Y (PES1201801839)

Jan - May, 2020

under the guidance of

Mr. Tamal Dey

Assistant Professor

Department of Computer Applications

PES University, Bengaluru - 560085

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER APPLICATIONS

PROGRAM – MASTER OF COMPUTER APPLICATIONS

FACULTY OF ENGINEERING DEPARTMENT OF COMPUTER APPLICATIONS PROGRAM – MASTER OF COMPUTER APPLICATIONS

CERTIFICATE

This is to certify that the project entitled

Context Analyzer

is a bona fide work carried out by

Harsha K Y (PES1201801839)

in partial fulfilment for the completion of 6th semester project work in the Program of Study MCA with specialization in Data Science under rules and regulations of PES University, Bengaluru during the period Jan. 2020 – May 2020. The project report has been approved as it satisfies the 6th semester academic requirements in respect of project work

Internal Guide

Mr. Tamal Dey, Assistant Professor Department of Computer Applications PES University, Bengaluru – 560085.

Chairperson

Dr. Veena S
Department of Computer Applications
PES University, Bengaluru – 560085.

Dean-Faculty of Engineering Technology Dr. Keshavan B K

PES University, Bengaluru – 560085.

Name and Signature of Examiners:

Examiner 1: Examiner 2: Examiner 3:

DECLARATION

I, Harsha K Y, hereby declare that the project entitled, Context Analyzer, is an original

work done by us under the guidance of Mr. Tamal Dey, Assistant Professor, Department of

Computer Applications, PES University and is being submitted in partial fulfilment of the

requirements for completion of 6th Semester course work in the Program of Study MCA. All

corrections/suggestions indicated for internal assessment have been incorporated in the report.

The plagiarism check has been done for the report and is below the given threshold.

PLACE: Bengaluru

DATE:

HARSHA K Y

PES1201801839

ACKNOWLEDGEMENT

The satisfaction and euphoria are that successful completion of any task would be incomplete without mentioning the people who made it possible.

I would like to express my deep sense of gratitude to respected Vice Chancellor of PES University, **Dr. Suryaprasad K**, for giving the opportunity to work on this project.

I take this occasion to thank my sincere and heartfelt thanks to Dean, Faculty of Engineering and Technology, **PES University Dr. Keshavan B K** and Chairperson, Department of Computer Applications, **PES University Dr. Veena S** for their motivation, support and for providing a suitable working environment.

With a great pleasure, I express my sincere gratitude to my guide Mr. Tamal Dey, Assistant Professor, Department of Computer Applications, PES University for providing me with right guidance and advice at the crucial junctures which helped me in completing the project work on time. I am whole-heartedly thankful to him for giving me valuable time, suggestions and for showing me the right way in completing my project successfully.

I extend my sincere thanks to our project **coordinator Mr Tamal Dey, Assistant Professor, Department of Computer Applications,** for providing schedule and timelines and documenting information about project.

I also thank other faculty members and friends at this occasion.

CONTENTS

1.	INTRODUCTION	1	
	1.1. PROJECT DESCRIPTION	2	
2.	LITERATURE SURVEY		
	2.1 BACKGROUND STUDY	5	
	2.2 FEASIBILITY STUDY	7	
	2.3 TOOLS AND TECHNOLOGIES	8	
3.	HARDWARE AND SOFTWARE REQUIREMENTS		
	3.1 HARDWARE REQUIREMENTS	10	
	3.2 SOFTWARE REQUIREMENTS	10	
4.	SOFTARE REQUIREMENTS SPECIFICATION		
	4.1 USERS	11	
	4.2 FUNCTIONAL REQUIREMENTS	11	
	4.3 NON – FUNCTIONAL REQUIREMENTS	13	
5.	SYSTEM DESIGN		
	5.1 FLOW DIAGRAM	14	
	5.2 DETAILED METHODOLOGY	16	
6.	IMPLEMENTATION		
	6.1 SAMPLE SOURCE CODE AND DESCRIPTION	22	
	6.2 SCREENSHOTS	28	
7.	RESULTS AND DISCUSSION		
	7.1 CORRECT CLASSIFICATION	35	
	7.2 WRONG CLASSIFICATION	36	
	7.3 DISCUSSION	38	
8.	SOFTWARE TESTING		
	8.1 TEST CASES	39	
9.	CONCLUSION	43	
10	10. FUTURE ENHANCEMENT		
	APPENDIX A: BIBLIOGRAPHY	45	
	APPENDIX B: USER MANUAL	46	

LIST OF FIGURES

	Page No.
1. Figure 5.1 – Flow diagram, ML View	14
2. Figure 5.2 – Flow diagram, Web-application View	15
3. Figure 5.3 – LSTM	18
4. Figure 5.4 – Architecture of Sentiment Analysis Model	19
5. Figure 5.5 – Architecture of Multi-class Classification Mode	1 20
6. Figure 5.6 – Architecture of Spam Detection Model	21
7. Figure 6.1 – Server.js setup	22
8. Figure 6.2 – Server.js routes	23
9. Figure 6.3 – sentimentAPI.js	24
10. Figure 6.4 – Home Page	28
11. Figure 6.5 – Sentiment Analysis	29
12. Figure 6.6 – Category Prediction	30
13. Figure 6.7 – Spam Detection	31
14. Figure 6.8 – API Documentation	32
15. Figure 6.9 – Sentiment Response	33
16. Figure 6.10 – Category Response	33
17. Figure 6.11 – Spam Response	34
18. Figure 7.1 – Training Epochs	35
19. Figure 7.2 – Spam detection response	36
20. Figure 7.3 – Category Wrong Prediction	37

LIST OF TABLES

		Page No
1. Table 8.1 – Test case	e T001	39
2. Table 8.2 – Test case	e T002	40
3. Table 8.3 – Test case	e T003	41
4. Table 8.4 – Test case	e T004	42

ABSTRACT

Text classification is an important task in supervised machine learning. A piece of text is assigned to one or more classes or categories. This can be done manually or with the help of powerful machine learning algorithms. The problem with doing this manually is that it takes up a lot of time and resources.

Let's say you own a blogging website or a news website. Every article that is being posted has to be classified and put into a category. Making people read these articles manually is both time consuming and expensive. It would be easier if the computer itself classified these articles, as soon as they are posted. This is where natural language processing comes into play. Natural Language Processing or NLP, is a Machine Learning (ML) task that is used to train an ML model to recognize text data and get meaningful insights from it. This means that a trained ML model will be able to go through some text data and give us some context on it.

So, if you pass an article as input, this model will be able to tell you where it belongs. NLP can also be used to do other interesting tasks such as Sentiment Analysis. This means that a model will be able to tell if some text data is positive, negative, or neutral about any topic that is in discussion. Context Analyzer provides solutions for both of these tasks.