Assignment No. 3

Name: Hagit Shaposhnik

ID: 037650009

Part 1 – Aim: ANN from Scratch

The following "compare changes" presents the changes that was made to add a 2nd layer to the supplied code.

Helper functions

Modification in *compute_mse_and_acc*

Line 11. The _ variable represents the output layer (_, _ represents 2 layers).

Modification in *Train*

```
72
                         a_h, a_out = model.forward(X_train_mini)
       72 +
                         a_h, a_h2, a_out = model.forward(X_train_mini)
       73
73
74
       74
                         #### Compute gradients ####
75
                         d_loss__d_w_out, d_loss__d_b_out, d_loss__d_w_h, d_loss__d_b_h = \
76
                              model.backward(X_train_mini, a_h, a_out, y_train_mini)
       75 +
                         d_loss__d_w_out, d_loss__d_b_out, \
                         d_loss__d_w_h, d_loss__d_b_h, \
       76 +
                         d_{loss}_d_w_h2, d_{loss}_d_b_h2 = \
       77 +
       78
                              model.backward(X_train_mini, a_h, a_h2, a_out, y_train_mini)
77
       79
78
       80
                         #### Update weights ####
79
       81
                         model.weight_h -= learning_rate * d_loss__d_w_h
                         model.bias_h -= learning_rate * d_loss__d_b_h
80
       82
       83
                         model.weight_h2 -= learning_rate * d_loss__d_w_h2
                         model.bias_h2 -= learning_rate * d_loss__d_b_h2
```

Line 72. The *ah* variable represents the output layer (*ah*, *ah* _ represents 2 layers).

Lines 75-78. The backward function returns the loss also for the 2nd layer.

Line 83-84. Adjust the weight and bias of the 2nd layer by using the 2nd layer loss value.

NeuralNetMLP Class

Modification in *class init*

```
117
                       # 2nd layer weights (size * 2 than the first layer)
       118
                       rng = np.random.RandomState(random seed)
       119
       120
                       self.weight_h2 = rng.normal(
       121
                           loc=0.0, scale=0.1, size=(num_hidden * 2, num_hidden))
       122
                       self.bias_h2 = np.zeros(num_hidden * 2)
112
       123
113
       124
                       # output
114
       125
                       self.weight_out = rng.normal(
115
                           loc=0.0, scale=0.1, size=(num_classes, num_hidden))
       126
                           loc=0.0, scale=0.1, size=(num_classes, num_hidden * 2))
```

Line 117-122. Adding 2nd layer weight and bias initiate with random values, the 2nd layer size is twice the size of the 1st layer.

Line 126. Changing the output weight, the input of the last layer switched to the output of the 2^{nd} layer. Thus, the input size is twice the size it was before.

Modification in *foward*

```
135 +
                      # the second layer
       136 +
                      z_h2 = np.dot(a_h, self.weight_h2.T) + self.bias_h2
       137 +
                      a_h2 = sigmoid(z_h2)
      138 +
124
125
      139
                      # Output layer
126
                      # input dim: [n_examples, n_hidden] dot [n_classes, n_hidden].T
                      # input dim: [n_examples, n_hidden * 2] dot [n_classes, n_hidden * 2].
       140
127
      141
                      # output dim: [n_examples, n_classes]
128
                      z_out = np.dot(a_h, self.weight_out.T) + self.bias_out
                      z_out = np.dot(a_h2, self.weight_out.T) + self.bias_out
       142 +
                      # z_out = np.dot(a_h, self.weight_out.T) + self.bias_out
       143 +
129
       144
                      a_out = sigmoid(z_out)
130
                      return a_h, a_out
       145
                      return a_h, a_h2, a_out
```

Lines 136-137. The output of the 1st layer goes through the 2nd layer. Lines 140-142. The input of the output layer is the 2nd layer output. Line 145. Return the output of the 2nd layer.

Modification in backward

Line 173. The input of the output layer is the 2nd layer output. (Set variable to 2nd layer output)

```
168
                      # [n_classes, n_hidden]
169
                      d_z_out__a_h = self.weight_out
                      # [n_classes, n_hidden * 2]
       184
       185 +
                      d z out a h2 = self.weight out
170
       186
171
                      # output dim: [n_examples, n_hidden]
172
                      d_loss__a_h = np.dot(delta_out, d_z_out__a_h)
                      # output dim: [n_examples, n_hidden * 2]
       187
                      # delta_out is for the final layer loss, d_z_out__a_h are the final layer weights
       188 +
       189 +
                      d_loss__a_h2 = np.dot(delta_out, d_z_out__a_h2)
       190 +
       191 +
                      # [n_examples, n_hidden * 2]
       192 +
                      d_a_h_d_z_h^2 = a_h^2 * (1. - a_h^2) # sigmoid derivative
       193 +
       194 +
                      # [n_examples, n_hidden]
       195 +
                      d_zh_dw_h2 = a_h1
```

Line 185. The input of the output layer is the 2nd layer output. (Set variable to output weight).

Line 189. Calculates the loss result from the 2nd layer.

Line 192. Calculate the sigmoid on the 2nd layer.

Line 195. Set variable to 1st layer output

```
197 +
               # output dim: [n_hidden * 2, n_features]
               delta\_out\_h2 = d\_loss\_a\_h2 * d\_a\_h\__d\_z\_h2
198 +
199 +
               d_loss__d_w_h2 = np.dot(delta_out_h2.T, d_z_h__d_w_h2)
200 +
               d_loss__d_b_h2 = np.sum(delta_out_h2, axis=0)
201 +
202
               # [n classes, n hidden * 2]
203 +
               d_z_{a_h} = self_weight_h2
204 +
205 +
               # output dim: [n_examples, n_hidden * 2]
               # delta_out is for the final layer loss, d_z_out__a_h are the final layer weights
206 +
207 +
               d_loss_a_h = np.dot(delta_out_h2, d_z_out_a_h)
```

Lines 198-200. Calculates the loss for the 2nd layer.

Line 203. Set variable to the weight of the 2nd layer (The layer after the 1st layer)

Line 207. Calculate the loss result from the 1st layer.

```
175
                      d_a_h_d_z_h = a_h * (1. - a_h) # sigmoid derivative
      210 +
                      d_a_h_d_z_h = a_h1 * (1. - a_h1)
176
      211
177
       212
                      # [n_examples, n_features]
                      d_z_h_d_w_h = x
178
       213
  .‡.
              @@ -182,4 +217,5 @@ def backward(self, x, a_h, a_out, y):
      217
182
                      d_{oss}_d_b = np.sum((d_{oss}_a_h * d_a_h_d_z_h), axis=0)
183
       218
184
                      return (d_loss__dw_out, d_loss__db_out,
      219
                               d_loss__d_w_h, d_loss__d_b_h) \( \bullet
  \)
185
                               d_loss__d_w_h, d_loss__d_b_h,
       220
            +
       221 +
                               d_loss__d_w_h2, d_loss__d_b_h2)
```

Line 210. Calculates the sigmoid on the 1^{st} layer. Lines 220-221. Returns the loss for the 2^{nd} layer.

Part 2- Aim: Practice the usage of CNN (Convolutional Neural Network).

To understand the data, I used the Orange3™

Orange Embedding

Block A is an import images block that reads the images into the orange framework.

Orange default emending is a pre-trained network, SqueezeNet.

The emending block converts the images into a table containing 1000 features (B). Each feature receives a probability that affiliates to a particular group of images.

Test and Score

The results are quite high since I used a small number of Images (1155 images). Yet, it provides a good indication of the SqueezeNet.

Confusion Matrix

The following example shows that a group of 7 flowers mistakenly belong to category 11, although they belong to category 4.

Category 4 flowers

Category 11 flowers

Confused Flowers (4 -> 11)

Confusion Analysis

For example, the circled flower (in red) is a bit blur. Applying a blur augmentation on the dataset might deal with this issue.

Train, validate and test the whole dataset (102 oxford flowers)

Two pre-trained network were selected – SqueezeNet and MobileNet. The pre-trained layer were set to non-trainable.

All images were imported and preprocessed using Keras image processing.

The dataset was randomly divided into training (50%), validation (25%) for hyperparameter tuning, and test sets (25%). This random split was repeated twice.

The last layer of each model is a Dense layer at a size of 102 (number of categories in the dataset)

Each fitting set consists of 10 epochs.

SqueezeNet Learning Graph

MobileNet Learning Graph

Results

SqueezeNet

1st run - accuracy of 73.4%

2nd run - - accuracy of 78.6%

MobileNet

1st run - accuracy of 73.09%

2nd run - - accuracy of 74.46%