Master Plan - Isak Hammer - Solving Cahn-Hilliard Equation using CutCIP

Version: January 22, 2023

	Phase 1	Phase 2	Phase 3	Phase 4	Report
Estimated time	2-3 Weeks	4-5 Weeks	2 Weeks	3 Weeks	
Problem	CutDG for $-\Delta u = f$	CutCIP for $\Delta^2 u = f$	CutCIP for $\partial_t u + \Delta^2 u = g$	CutCIP for $\partial_t u + \Delta^2 u + f(u) = g$	
Goals	 Analysis □ Coercivity □ Boundedness Implementation □ L² convergence □ H¹ convergence 	 Analysis □ Coercivity □ Boundedness □ A priori estimates □ Condition number † Implementation □ L² convergence □ H¹ convergence 	 Analysis BDF analysis Implementation □ L²L² convergence □ L²H¹ convergence 	• Implementation \square Fixed point method \square L^2L^2 convergence \square L^2H^1 convergence	
Comments	Mostly based on (Gürkan and Massing, 2019)	† Not prioritized			
Digression		2nd order mixed formulation	2nd order mixed formulation	Solve $\partial_t u + \kappa(u)\Delta^2 u = g$	

	January	February	March	April	May	June
Introduction						
Phase 1						
Phase 2						
Phase 3						
Phase 4						
Final						<u>: : : : : : : : : : : : : : : : : : : </u>

References

Gürkan, Ceren and André Massing (2019). "A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems". In: Computer Methods in Applied Mechanics and Engineering 348, pp. 466–499.