fix		volatile acid			2.3 0. 1.9 0. 1.9 0. idual sugar			dioxide total	57.0 0.9968 54.0 0.9970 60.0 0.9980 34.0 0.9978 sulfur dioxide	3.26 0.6 3.16 0.5 3.51 0.5 density	9.8 9.8 9.8 9.4 pH	5 5 6 5 sulphates	alcohol 1599,00000	quality 1599,000000		
count 15 mean std min 25% 50% 75%			000 1599.00 000 0.19 000 0.00 000 0.26 000 0.42			0.087467 0.047065 0.012000 0.070000 0.079000 0.090000 0.611000	1599. 15. 10. 1. 7. 14. 21.	0000000 874922 460157 0000000 0000000 0000000		1599.000000 0.996747 0.001887 0.990070 0.995600 0.996750 0.997835 1.003690			1599.000000 10.422983 1.065668 8.400000 9.500000 10.200000 11.100000 14.900000			
5 681 6 638 7 199 4 53 8 18	12) t['qualit 1 3 9 3 3	y'].value	e_counts()													
Name: quadrile quadri	ality, d ality 7 a t.isnull(cidity e acidity acid l sugar es).sum() 0 0 0	e can be c	consider	ed as goo	d quality										
free subtotal sudensity pH sulphate alcohol quality dtype: b x=data_s	lfur diox ulfur dio es int64 set.drop(ide 0 xide 0 0 0 0 0 columns=['quality'													
0 1 2 3 4 1594 1595 1596 1597 1598 fr 0 1 2 3 4 1594 1595 1596 1597 1598 a 1 0 1 2 3 4 1594 1595 1596 1597 1598 [1599 re	lcohol 9.4 9.8 9.8 9.8 10.5 11.2 11.0 10.2 11.0	7.4 7.8 7.8 7.8 1.2 7.4 6.2 5.9 6.3 5.9 6.0 r dioxide 11.0 25.0 17.0 11.0 32.0 39.0 29.0 32.0 18.0	0. 0. 0. 0. 0. 0. total s	700 880 760 280 700 600 550 510 645 310 sulfur da	0.00 0.04 0.56 0.00 0.08 0.10 0.13 0.12 0.47 ioxide d 34.0 0 67.0 0 54.0 0 44.0 0 44.0 0 42.0 0	ensity p.99780 3.5.99680 3.2.99700 3.1.99780 3.5	1.9 2.6 2.3 1.9 1.9 2.0 2.0 2.2 2.3 2.0 3.6 H sulpha 1 0 6 6 0 1 0 2 7 0 9	lorides \ 0.076 0.098 0.092 0.075 0.076 0.090 0.062 0.075 0.067 tes \ .56 .68 .65 .58 .76 .75 .71 .66								
print(y 0 1 2 3 4 1594 1595		icy jiapp	z) (zamsuc	a value:		ue										
y.value 0 138 1 23 Name: qu x_train	_counts() 32 17 uality, d ,x_test,y	type: int _train,y_	_test=trai		split(x,y	,random_sta	ite=1, test	_size=0.2,	stratify=y)							
model.fi RandomFo train_po train_ao print(to	it(x_trai prestClas rediction ccuraacy rain_accu	= model. = accurac raacy)	predict(x cy_score(t	train_pro		y_train)										
test_protest_according test_according test_accordinates test_accordinates test_accordinates test_accordinates test_accordinate	curaacy = checking et and cr to_predic rray = np eshaped=v = model. dict[0]== nt('The q nt('The q lity is g	accuracy the accu oss check t = (12.8 .asarray(alue_arra predict(v 1): uality is uality is	aing the values_to values_to value_reshape value_reshape bad')	re of the /laidity 4,2.6,0.0 predicte(1,-1) naped)	e test da of the r 095,9,28, t)	ta and they esults 0.9994,3.2,	0.77,10.8	3)					ım F		f	
warnir data_se fix count 15 mean std min 25% 50%	ngs.warn(t.describ	e() volatile acid	lity citric 000 1599.00 321 0.27 060 0.19 000 0.09 000 0.26 000 0.42	cacid res	idual sugar		free sulfur (1599. 15. 10. 1. 7. 14. 21.		sulfur dioxide	density	рН	sulphates	alcohol 1599.000000 10.422983 1.065668 8.400000 9.500000 10.2000000 11.1000000	quality	s fitted with fe	eature name
data_se ⁻ fixe volati c residu	fied acidity le acidity citric acid ual sugar chlorides r dioxide		volatile aci -0.256 1.000 -0.552 0.001 0.061 -0.010 0.076	idity citric 5131 0.67 50000 -0.55 2496 1.00 1918 0.14 1.298 0.20 5504 -0.06	cacid resident 71703 52496 00000 43577 03823 60978 835533 64947	ng various lual sugar chl 0.114777 0.0 0.001918 0.0 0.143577 0.2 1.000000 0.0 0.055610 1.0 0.187049 0.0 0.203028 0.0 0.355283 0.2 -0.085652 -0.2	lorides free 093705 061298 203823 055610 000000 005562 047400 200632		total sulfur (c) total sulfur (c) 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.	lioxide den 113181 0.668 076470 0.022 035533 0.364 203028 0.355 047400 0.200 667666 -0.021	sity pH 047 -0.682978 026 0.234937 947 -0.541904 283 -0.085652 632 -0.265026 946 0.070377 269 -0.066495	-0.260987 0.312770 0.005527 0.371260 0.051658 0.042947 0.148506	-0.061668 0. -0.202288 -0.	226373 013732 128907 050656 185100 174919		
sns . hea <axessul< td=""><td>alcohol quality tmap(data</td><td>0.183006 -0.061668 0.124052 _set.corr</td><td>-0.260 -0.202 -0.390</td><td>0987 0.31 2288 0.10 0558 0.22 'Blues',</td><td>12770 09903 26373 annot=Tru</td><td>0.005527 0.3 0.042075 -0.2 0.013732 -0.3 e, annot_kws</td><td>371260 221141 128907 s={'size':</td><td>0.051658 -0.069408 -0.050656</td><td>3 0.0</td><td></td><td>506 -0.196648 180 0.205633</td><td>1.000000 0.093595</td><td>0.093595</td><td>251397 476166</td><td></td><td></td></axessul<>	alcohol quality tmap(data	0.183006 -0.061668 0.124052 _set.corr	-0.260 -0.202 -0.390	0987 0.31 2288 0.10 0558 0.22 'Blues',	12770 09903 26373 annot =Tru	0.005527 0.3 0.042075 -0.2 0.013732 -0.3 e, annot_kws	371260 221141 128907 s={'size':	0.051658 -0.069408 -0.050656	3 0.0		506 -0.196648 180 0.205633	1.000000 0.093595	0.093595	251397 476166		
res free su	citric aci idual suga chloride Ifur dioxid Ifur dioxid densit pi sulphate alcohe	e - 0.11 0.00 e - 0.15 -0.00 e - 0.11 0.00 e - 0.15 -0.00 e - 0.11 0.00 e - 0.67 0.00 e - 0.68 0.00 e - 0.18 -0.00 e - 0.062 -0.00	1 0.1 019 0.14 1 061 0.2 0.0 011 0.061 0.1 076 0.036 0.3 022 0.36 0.3 23 -0.54 -0.0 0.2 0.11 0.00 0.2 0.11 0.00	14 0.2 -0. 10 0.056 0 10 0.0056 2 0.047 0 36 0.2 -0. 386 -0.27 0 386 -0.27 0 42 -0.22 -0. 14 -0.13 -0.	0.061 0.036 0.019 0.2 0.0056 0.047 0.0056 0.047 0.0056 0.047 0.0052 0.071 0.0052 0.043 0.0052 0.043 0.0051 0.19 0.051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.19 0.0051 0.0051 0.19 0.0051 0.0051 0.19 0.0051	022 0.23 0.26 36 0.54 0.31 36 0.086 0.0055 32 0.27 0.37 022 0.07 0.052 071 0.066 0.043 1 0.34 0.15 34 1 0.2 15 0.21 0.094 17 0.058 0.25	0.11 0.23 0.042 0.014 -0.22 -0.13 -0.069 -0.051 -0.21 -0.19 -0.5 -0.17 0.21 -0.058 0.094 0.25 1 0.48	- 0.8 - 0.6 - 0.4 - 0.2 - 0.0 0.2 0.4 0.6								
#quanti sns.cou	ty of the	se items ta=data_s		acid,cit the qua ality')	ric acid, lity of o	residual s ur wine inc						if the				
500 · 400 · 300 · 200 ·	-															
			quality l		5 and 6 v		8									
sns.barı <axessuk 1.0 -</axessuk 	plot(x='q	uality',y		le acidi	ty',data=	data_set)										
volatile acidity - 0.0 - 2.0																
sns.barı	plot(x='q	uality',y	ould be in y='citric ity', yla	quality on the rai acid',da	nge of 0. ata=data_		8 wine qual	ity								
0.5 - 0.4 - 0.3 -		ı			+											
0.1 -	3	4		5 quality		7	8									
sns.bar 	plot(x='q	uality',y	e in the ='sulphat ity', yla	tes',data	a=data_se		good wir	re quality								
0.6 - 0.5 - 0.4 - 0.3 -																
sns.barı	plot(x='q	uality',y		L',data=	0.7 and a	7	8 nod wine q	uality								
12 - 10 - 8 -		1ual	, ута	al												
Te 6 1 4 - 2 - 0 →	3	4	5	quality	6	7	8									
sns.barı	plot(x='q	uality',y	/='total s	ge of 11 sulfur d:	and abov	e for good ata=data_se r dioxide'>	et)	ity								
total sulfur dioxide																
sns.barı	plot(x='q	uality',y	⁄='density	quality De in the	e range o data_set)	7 f 35 and ab	8 nove for g	good wine q	uality							
1.0 - 0.8 -			ity', yla													
0.6 - 0.4 - 0.2 -																
#the der	plot(x='q	uality',y		acidity'	for good ,data=dat		8 Ty									
fixed acidity 4 9																
2 -	3 xed acidi	4	5 I be in th	quality		7	8	ne -								
sns.barı	plot(x='q	uality',y	/ be in th /='residua ity', yla	al sugar	',data=da		er good wi	ne quality								
Lesidnal sugar 2.0 - 1.5 -																
data_se	t		d be in t		e of 2.7	7 for good wi			h:-		h					
0 1 2 3 4 	7.4 7.8 7.8 11.2 7.4 	0.70 0.88 0.76 0.28 0.70	00 0.0 00 0.0 00 0.0 00 0.0	00 00 04 56 00 	1.9 2.6 2.3 1.9 1.9 	0.076 0.098 0.092 0.075 0.076 	11.0 25.0 15.0 17.0 11.0		34.0 0.997 67.0 0.996 54.0 0.997 60.0 0.998 34.0 0.997 44.0 0.994	80 3.51 80 3.20 00 3.26 00 3.16 80 3.51 	0.56 9.4 0.68 9.8 0.65 9.8 0.58 9.8 0.56 9.4 0.58 10.5	5 5 6 5 				
1595 1596 1597 1598 599 rows	5.9 6.3 5.9 6.0 6 × 12 colur i am taki	0.55 0.51 0.64 0.31 nns	50 0.1 10 0.1 45 0.1 10 0.4	10 13 12 17 he first	2.2 2.3 2.0 3.6	0.062 0.076 0.075 0.067	39.0 29.0 32.0 18.0		51.0 0.995 40.0 0.995 44.0 0.995 42.0 0.995	12 3.52 74 3.42 47 3.57 49 3.39	0.76 11.2 0.75 11.0 0.71 10.2 0.66 11.0	6 6 5				
	rray <mark>=</mark> np	.asarray(alue_arra	0.7,0,1.9 values_to value_reshape value_resh	o_predic [.] e(1,-1)		978,3.51,0.	.4)									