Profesor: Miguel Jiménez

Generalized Autoregressive Conditional Heteroskedastic - GARCH

Asume que los rendimientos se distribuyen normal.

Varianza condicional: cambia en el tiempo.

Asume que la varianza condicional depende de las innovaciones más recientes y de la varianza condicional previa.

Varianza condicional previa: σ_{t-1}^2

GARCH(1,1):

$$\sigma_t^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2 \qquad \alpha + \beta \le 1$$

Varianza incondicional: no cambia con el tiempo \Rightarrow Varianza de largo plazo (V_L) $\omega = \gamma V_L$

$$\sigma_t^2 = \gamma V_L + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2$$

$$\sigma_t^2 = (1 - \alpha - \beta)V_L + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2 = V_L + \alpha (r_{t-1}^2 - V_L) + \beta (\sigma_{t-1}^2 - V_L)$$

GARCH(1,1):

$$\sigma_t^2 = \gamma V_L + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2$$

La varianza de mañana es el promedio ponderado de la varianza a largo plazo, rentabilidad al cuadrado de hoy y la varianza de hoy.

 γ : peso asignado a V_L

 α : peso asignado a r_{t-1}^2

$$\gamma + \alpha + \beta = 1$$

 β : peso asignado a σ_{t-1}^2

EWMA es igual a GARCH(1,1) cuando $\gamma = 0$, $\beta = \lambda y \alpha = 1 - \lambda$

El (1,1) del GARCH indica que está basado en la rentabilidad al cuadrado anterior y la varianza estimada anterior.

 β puede ser interpretado por el factor de decaimiento similar a λ en el modelo EWMA

Gracias

Profesor: Miguel Jiménez