

Fundamentos de Banco de Dados

Normalização

Normalização

Objetivo

 Apresentar uma abordagem de projeto de banco de dados, denominada de Normalização, a qual permite analisar a qualidade das relações, bem como elevar a sua qualidade.

Principais tópicos

- Anomalias
- Tuplas espúrias
- Abordagens de Projeto de Banco de Dados
- Dependências Funcionais
- Regras de Inferência para DFs

Normalização

- Principais tópicos (Continuação)
 - Formas Normais com base em Chaves Primárias
 - Definição Geral de Formas Normais
 - BCNF (Boyce-Codd Normal Form)
 - Dependências Multivaloradas
 - Quarta Forma Normal (4FN)

Abordagens de Projeto de BD

Top-down

- Iniciar com o agrupamento dos atributos obtidos a partir do projeto conceitual de mapeamento
- Isso é chamado de projeto por análise

Bottom-up

- Considerar os relacionamentos entre atributos
- Construir as relações
- Isso é chamado projeto pela síntese

Nossa Abordagem

- Utilizar a abordagem Top-down para obter as relações
- Utilizar a abordagem Bottom-up para melhorar a qualidade das relações obtidas anteriormente

Anomalias

Cuidado com redundância de informação

EMP DEP

<u>NSS</u>	NOME	DTANIV	DNUMERO	DNOME	GERENTE
21	AA	-	5	CV	91
22	BB	-	5	CV	91
23	CC	-	6	TS	93
24	DD	-	7	OS	94
25	EE	-	7	OS	94

- Anomalias de Inserção:
 - Como inserir novo departamento sem que exista empregados?
 - Inserir empregados é difícil quando informações de departamento devem ser inseridas corretamente.
- Anomalias de Remoção:
 - O que acontece quando removemos CC? Perdemos o departamento 6!
- Anomalias de Alteração:
 - Se mudarmos o gerente do departamento 5, devemos mudá-lo em todas as tuplas com DNUMERO = 5.

Tuplas Espúrias

Não quebre uma relação em relações que possam gerar tuplas espúrias

DNUMERO	NOME	PNOME	PLOCALIZAÇÃO
123	XX	Compras	São Paulo
123	XX	Vendas	Rio de Janeiro
124	YY	Logística	São Paulo

A relação pode ser quebrada em

DNUMERO	NOME	PNOME	DNUMERO	PLOCALIZAÇÃO
123	XX	Compras	123	São Paulo
123	XX	Vendas	123	Rio de Janeiro
124	YY	Logística	124	São Paulo

Quando fazemos o Join, obtemos NOVAS TUPLAS!

<u>DNUMERO</u>	NOME	PNOME	PLOCALIZAÇÃO
123	XX	Compras	São Paulo
123	XX	Compras	Rio de Janeiro
123	XX	Vendas	São Paulo
123	XX	Vendas	Rio de Janeiro
124	YY	Logística	São Paulo

Após o Join, o resultado não foi a relação original. Assim, houve perda de informações. Conclui-se que houve uma decomposição com perdas.

Tuplas Espúrias

- Projetos incorretos de BDRs podem gerar resultados inválidos em certas operações Join
- A propriedade de "junção sem perdas" é usada para garantir resultados corretos em operações Join
- As relações devem ser projetadas para satisfazer a condição de junção sem perdas. Nenhuma tupla espúria deve ser gerada ao fazer um join natural de qualquer relação
 - **Espúrio**: Falso; suposto; adulterado; ilegítimo; bastardo; ilegal; desonesto; ilícito; fraudulento; viciado; impuro; incorreto; ilídimo.

Dependências Funcionais

- Dependências funcionais (DFs) são usadas para medir formalmente a qualidade do projeto relacional
- As DFs e chaves são usadas para definir formas normais de relações
- As DFs são restrições que são derivadas do significado dos atributos e do seus interrelacionamentos
- Um conjunto de atributos X determina funcionalmente um conjunto de atributos Y se o valor de X determinar um único valor Y

Dependências Funcionais

- X→Y
 - Se duas tuplas tiverem o mesmo valor para X, elas devem ter o mesmo valor para Y. Ou seja:
 - Se X→Y então, para quaisquer tuplas t1 e t2 de r(R):
 - Se t1[X] = t2[X], então t1[Y] = t2[Y]
- Se K é uma chave de R, então K determina funcionalmente todos os atributos de R
 - Isso porque, nunca teremos duas tuplas distintas com t1[K]=t2[K]
- Importante
 - X→Y especifica uma restrição sobre todas as instâncias de R
 - As DFs são derivadas das restrições do mundo real e não de uma extensão específica da relação R

Exemplos de Restrições de DF

- O número do seguro social determina o nome do empregado
 - NSS → ENOME
- O número do projeto determina o nome do projeto e a sua localização
 - PNUMERO → { PNOME, PLOCALIZACAO }
- O nss de empregado e o número do projeto determinam as horas semanais que o empregado trabalha no projeto
 - { NSS, PNUMERO } → HORAS

Regras de Inferência para DFs

- Regras de inferência de Armstrong:
 - RI1. (Reflexiva) Se Y ⊆ X (é subconjunto de), então $X\rightarrow Y$
 - (Isso também é válido quando X=Y)
 - RI2. (Aumentativa) Se X→Y, então XZ→YZ
 - (Notação: XZ significa X U Z)
 - RI3. (Transitiva) Se X→Y e Y→Z, então X→Z
- RI1, RI2 e RI3 formam um conjunto completo de regras de inferência

Regras de Inferência para DFs

- Algumas regras de inferência úteis:
 - (Decomposição) Se X→YZ, então X→Y e X→Z
 - (Aditiva) Se X→Y e X→Z, então X→YZ
 - (Pseudotransitiva) Se X→Y e WY→Z, então WX→Z
- As três regras de inferência acima, bem como quaisquer outras regras de inferência, podem ser deduzidas a partir de RI1, RI2 e RI3 (propriedade de ser completa)

Formas Normais

Formas Normais com base em Chaves Primárias

- Normalização de Relações
- Uso prático de Formas Normais
- Definições de Chaves e de Atributos que participam de Chaves
- Primeira Forma Normal
- Segunda Forma Normal
- Terceira Forma Normal

Normalização de Relações

- Normalização
 - Processo de decompor relações "ruins" dividindo seus atributos em relações menores e "melhores"
- Forma Normal
 - Indica o nível de qualidade de uma relação
- 1FN
 - Definição de relação. Atributos atômicos (indivisíveis).
- 2FN, 3FN, BCNF
 - Baseiam-se em chaves e DFs de uma relação esquema
- 4FN e 5FN
 - Baseiam-se em chaves e dependências multivaloradas

Uso Prático das Formas Normais

- Na prática, a normalização é realizada para obter projetos de alta qualidade
- Os projetistas de bancos de dados não precisam normalizar na maior forma normal possível.
- Desnormalização
 - Processo de armazenar junções de relações de forma normal superior como uma relação base que está numa forma normal inferior

- Uma superchave, S, de uma relação esquema
 - $-R = \{A1, A2,, An\}$
- é um conjunto de atributos, subconjunto de R, com a propriedade de que t1[S] ≠ t2[S] para qualquer extensão r(R)
- Uma superchave, K, é uma chave se K é uma superchave mínima
- Se uma relação esquema tiver mais de uma chave, cada chave será chamada de chave-candidata. Uma das chaves-candidatas é arbitrariamente escolhida para ser a chave-primária e as outras são chamadas de chaves-secundárias

Atributo Primo

- Um <u>atributo primo</u> (ou primário) é membro de alguma chave-candidata
- Um <u>atributo não-primo</u> é um atributo que não é primo – isto é, não é membro de qualquer chave-candidata

Primeira Forma Normal

Primeira Forma Normal

- Proíbe que relações tenham
 - Atributos compostos
 - Atributos multivalorados
 - Relações aninhadas
 - Ou seja
 - Permite apenas atributos que sejam atômicos
- Considerado como parte da definição de relação

Normalização na 1 FN

Normalização de Relações com Atributos Compostos para a 1 FN

Segunda Forma Normal

Segunda Forma Normal

- Para entender a 2FN precisamos entender:
 - Dependência Funcional
 - Chave-primária
 - Atributo Não-Primo
 - Dependência funcional total
 - Uma DF, Y→Z, onde a remoção de qualquer atributo de Y invalida a DF. Exemplos:
 - { NSS, PNUMERO } → HORAS é dependente totalmente de
 - { NSS, PNUMERO }, uma vez que
 - NSS n\u00e3o determina HORAS e nem PNUMERO determina HORAS
 - { NSS, PNUMERO } → ENOME não é dependente totalmente de
 - { NSS, PNUMERO }; ENOME é dependente parcialmente de
 - { NSS, PNUMERO }, pois NSS → ENOME

Segunda Forma Normal

- Uma relação esquema R está na 2FN se
 - Estiver na 1FN e
 - Todos os atributos não-primos A de R forem totalmente dependentes da chave-primária
- R pode ser decomposto em relações que estejam na 2 FN através do processo de normalização
- Visa a diminuição da redundância e o desagrupamento de informações. Na 2FN, uma tabela representa um quantidade menor de entidades.

Normalização para a 2FN e 3FN

Depende totalmente da chave-primária

Terceira Forma Normal

Terceira Forma Normal

- Para entender a 3FN precisamos entender:
 - 2FN
 - Atributo Não-Primo
 - Dependência funcional transitiva
 - Se X→Y e Y→Z então X→Z

Terceira Forma Normal

- Uma relação esquema R está na 3FN se:
 - Ela estiver na 2FN e
 - Nenhum atributo não-primo, A, for transitivamente dependente da chave-primária
- R pode ser decomposto em relações que estejam na 3FN via o processo de normalização
- Visa a diminuição da redundância eliminando a transitividade
- NOTA:
 - Em X→Y e Y→Z, sendo X a chave-primária, pode ser considerado um problema se, e somente se, Y não for uma chave-candidata. Quando Y é uma chave-candidata, não existe problema com a dependência transitiva
 - Por exemplo, considere EMP (NSS, Emp#, Salario).
 - Aqui, NSS → Emp# → Salario e Emp# é uma chave-candidata

Terceira Forma Normal Exemplo

Terceira Forma Normal Exemplo

Itens do Pedido						
Pedido	Item	Preço	Quantidade	Total		
15	102	9,25	2	18.5		
15	132	1,3	5	6,5		

Definição Geral de Formas Normais

- As definições anteriores consideravam somente a chave-primária
- As próximas definições levarão em consideração as várias chaves candidatas

Definição Geral de Formas Normais

- Redefinição da 2FN:
 - Uma relação esquema R está na 2FN se todos os atributos não-primos, A, forem totalmente dependentes de todas as chaves de R
- Teste:
 - Verifique que EMP_PROJ não está na 2FN
 - EMP_PROJ (nss, pnúmero, horas, enome, pnome, plocalizacao)

Exercícios

Normalize

<u>CódForn</u>	Nome	Status	Cidade	<u>CódPeça</u>	Preço	Qtde	Valor
F1	Fornecedor 1	20	Londres	P1	R\$ 10,00	300	R\$ 3.000,00
F1	Fornecedor 1	20	Londres	P2	R\$ 20,00	200	R\$ 4.000,00
F1	Fornecedor 1	20	Londres	P3	R\$ 15,00	400	R\$ 6.000,00
F1	Fornecedor 1	20	Londres	P4	R\$ 25,00	200	R\$ 5.000,00
F1	Fornecedor 1	20	Londres	P5	R\$ 12,00	100	R\$ 1.200,00
F1	Fornecedor 1	20	Londres	P6	R\$ 5,00	100	R\$ 500,00
F2	Fornecedor 2	10	Paris	P1	R\$ 10,00	300	R\$ 3.000,00
F2	Fornecedor 2	10	Paris	P2	R\$ 20,00	400	R\$ 8.000,00
F3	Fornecedor 3	10	Paris	P2	R\$ 20,00	200	R\$ 4.000,00
F4	Fornecedor 4	20	Londres	P2	R\$ 20,00	200	R\$ 4.000,00
F4	Fornecedor 4	20	Londres	P4	R\$ 25,00	300	R\$ 7.500,00
F4	Fornecedor 4	20	Londres	P5	R\$ 12,00	400	R\$ 4.800 ² ,0 ³ 0

Normalize

BB

Bobina

300,00

20

R\$ 15,00

Mapeie e Normalize

Forma Normal de Boyce-Codd

BCNF (Boyce-Codd Normal Form)

- Definição de BCNF:
 - Uma relação esquema R está na BCNF se, sempre que houver uma DF X→A em R, então X é uma superchave de R
- Cada FN engloba a FN anterior:
 - Toda relação em 2FN está na 1FN
 - Toda relação em 3FN está na 2FN
 - Toda relação em BCNF está na 3FN
- Existem relações que estão na 3FN mas não em BCNF
- A meta é alcançar a BCNF ou 3FN em todas as relações

Boyce-Codd normal form

	R	df2	df1
	<u>ESTUDANTE</u>	<u>CURSO</u>	INSTRUTOR
	Nair	Banco de dados	Marcos
	Silas	Banco de dados	Nico
	Silas	Sistemas Operacionais	Altair
	Silas	Teoria	Saulo
	Wilson	Banco de Dados	Marcos
	Wilson	Sistemas Operacionais	Álvaro
	Wellington	Banco de Dados	Carlos
	Zenaide	Banco de Dados	Nico
	D. L ~ .	~ ~ ~ ~ ~ ~	DONE

Relação em 3FN mas não em BCNF

Uma relação esquema R está na **3FN** se, sempre que houver uma DF X→A, então:

- X é uma superchave de R ou
- A é atributo primo de R.

Uma relação esquema R está na **BCNF** se, sempre que houver uma DF X→A, então:

• X é uma superchave de R

Alcançando a BCFN pela Decomposição

- Existem duas DF em relação:
 - df1: { estudante, curso } → instrutor
 - df2: instrutor → curso
 - Se a relação tivesse apenas df1, a relação estaria na BCNF.
 - Mas em df2, instrutor não é uma superchave, e, portanto, viola a BCNF, mas não a 3FN, pois curso é primo.
- Uma relação que não esteja na BCNF deve ser decomposta para atender a esta propriedade, mas abdica da preservação das dependências funcionais nas relações decompostas

Alcançando a BCFN pela Decomposição

- Três possíveis decomposições para relação:
 - R1(estudante, instrutor) e R2(estudante, curso)
 - R1(curso, instrutor) e R2(curso, estudante)
 - R1(instrutor, curso) e R2(instrutor, estudante)
- Todas as três decomposições perdem a df1.
 - Temos que conviver com este sacrifício, mas não podemos sacrificar a propriedade não-aditiva após a decomposição.
- Das três, apenas a terceira decomposição não gera tuplas espúrias após a junção (join), e, assim, mantém a propriedade não-aditiva.

Alcançando a BCFN pela Decomposição

?1	INSTRUTOR	ESTUDANTE	R2	INCTRUTOR	CLIDGO
	Marcos	Nair		INSTRUTOR	CURSO
				Marcos	Banco de dados
	Nico	Silas		Nico	Banco de dados
	Altair	Silas	X	Altair	Sistemas Operacionais
	Saulo	Silas	(JOIN)	Saulo	Teoria
	Marcos	Wilson		Álvaro	
	Álvaro	Wilson			Sistemas Operacionais
	Carlos	Wellington		Carlos	Banco de Dados
	Nico	Zenaide			

Relação original: R

ESTUDANTE	CURSO	INSTRUTOR
Nair	Banco de dados	Marcos
Silas	Banco de dados	Nico
Silas	Sistemas Operacionais	Altair
Silas	Teoria	Saulo
Wilson	Banco de Dados	Marcos
Wilson	Sistemas Operacionais	Álvaro
Wellington	Banco de Dados	Carlos
Zenaide	Banco de Dados	Nico
	Nair Silas Silas Silas Wilson Wilson Wellington	Nair Banco de dados Silas Banco de dados Silas Sistemas Operacionais Silas Teoria Wilson Banco de Dados Wilson Sistemas Operacionais Wellington Banco de Dados

Note que para as outras possíveis decomposições, isso não acontece.

Decomposição sem perdas

- A decomposição de R em X e Y é sem perdas se e somente se, pelo menos uma das duas DF for válida
 - X ∩ Y → X ou (Intersecção)
 - $X \cap Y \rightarrow Y$
- Caso especial
 - Se U → V, então a decomposição de R em UV e R Vérifique que a

Verifique que a decomposição de R satisfaz esta condição!

https://pt.wikipedia.org/wiki/Tabela_de_s%C3%ADmbolos_matem%C3%A1ticos

Algoritmo de Decomposição BCNF

- Considere uma relação R e suas DFs associadas.
 - Se X → Y violar a FNBC, decomponha R em XY e R
 Y.
- Aplicando esta idéia repetidamente, obteremos uma decomposição sem perdas de R em uma coleção de relações na BCNF.
- Em geral, mais de uma DF pode violar a BCNF. Dependendo da ordem em que as dependências são tratadas, podemos obter decomposições diferentes (e mesmo assim corretas).

FNBC: Exemplo

Quarta Forma Normal

- As dependências multivaloradas são consequência da 1FN, a qual não aceita atributos multivalorados.
 - Considere, por exemplo, a relação ACERVO abaixo:

ISBN	AUTOR	CÓPIAS
85-7323-169-6	Dantas	1, 2
0-13031-995-3	Molina, Ulman, Widom	1, 2

Relação Normalizada para BCNF (note que não há DFs)

ISBN	AUTOR	CÓPIAS
85-7323-169-6	Dantas	1
85-7323-169-6	Dantas	2
0-13031-995-3	Molina	1
0-13031-995-3	Molina	2
0-13031-995-3	Ulman	1
0-13031-995-3	Ulman	2
0-13031-995-3	Widom	1
0-13031-995-3	Widom	2
·		

Mas ainda temos redundâncias por que?

Porque existem dependências multivaloradas!

ISBN → AUTOR ISBN → CÓPIAS

- Sempre que X →→ Y ocorrer, dizemos que X multidetermina Y.
- Devido a semetria da definição, sempre que X
 →→ Y ocorrer em R, também ocorre X →→ Z.
- Por isso, X →→ Y implica X →→ Z; por isso, às vezes é escrito como X→→ Y | Z.
- Então, na relação ACERVO do exemplo anterior:
 - ISBN →→ AUTOR | CÓPIAS

MVD e 4FN

- Elimina redundâncias provocadas pelas dependências multivaloradas (MVD).
- Uma relação está na 4FN se não contiver mais de uma MVD.
 - Mas porque é tão ruim ter uma tabela com múltiplas dependências multivaloradas?
 - Em ACERVO
 - Para inserir mais uma cópia do ISBN 0-13031-995-3, será necessário inserir 3 tuplas, uma para cada autor.

	-, -	
ISBN	AUTOR	CÓPIAS
85-7323-169-6	Dantas	1
85-7323-169-6	Dantas	2
0-13031-995-3	Molina	1
0-13031-995-3	Molina	2
0-13031-995-3	Ulman	1
0-13031-995-3	Ulman	2
0-13031-995-3	Widom	1
0-13031-995-3	Widom	2

Alterações e Remoções carecem com mesmo problema

A solução é decompor a relação ACERVO em duas

ISBN	AUTOR
85-7323-169-6	Dantas
0-13031-995-3	Molina
0-13031-995-3	Ulman
0-13031-995-3	Widom

CÓPIAS
1
2
1
2

 A MVD desejável é aquele cujo determinante é superchave da relação

Quinta Forma Normal

- Algumas vezes uma relação não pode ser decomposta sem perdas em duas relações, mas pode ser decomposta em três ou mais.
- A 5FN capta a idéia de que uma relação esquema deve ter alguma decomposição sem perda (dependência de junção).
- Encontrar casos reais da 5FN é difícil.

Um pequeno exemplo

AEP

AGENTE	EMPRESA	PRODUTO
Smith	Ford	Carro
Smith	Ford	Caminhão
Smith	GM	Carro
Smith	GM	Caminhão
Jones	Ford	Carro

Regra:

Se um AGENTE vende um certo PRODUTO e este AGENTE representa uma EMPRESA que faz este PRODUTO

então

O AGENTE deve vender o PRODUTO para a EMPRESA.

AGENTES representam EMPRESAS EMPRESAS fazem PRODUTOS AGENTES vendem PRODUTOS

Um pequeno exemplo

AEP= AE * EP * AP

- Dependência de Junção
 - Uma relação R satisfaz a dependência de junção
 - JD (R1, R2, ..., Rn) se
 R = R1* R2 * ...* Rn
 - onde R1, R2, ..., Rn são subconjuntos dos atributos de R.
 - Note que uma dependência multivalorada é um caso especial de dependência de junção (n=2).

- Uma relação R está na 5FN se, e somente se, ela estiver na 4FN e todas as suas dependências de junção forem determinadas pelas chaves candidatas.
- A descoberta de DJs em bancos de dados reais com centenas de atributos é praticamente impossível. Isso poderá ser feito apenas contando com um grande grau de intuição sobre os dados por parte do projetista. Por isso, a prática atual de projeto de banco de dados dá pouca atenção a elas (Elmasri & Navathe 4ª. Edição).

Outras NFs

 Existem outras formas normais, porém elas estão fora do escopo desta disciplina, pois são formas pouco utilizadas em projetos de banco de dados devido a sua dificuldade de aplicação prática.

Questões de Estudo

 Dado o DER de uma locadora de vídeo (próximo slide), e o mapeamento realizado para o esquema do BD Relacional, verifique a qualidade das relações obtidas (qual forma normal atingida) e, se necessário, normalize todos os esquemas de relações para a 3FN ou, se possível, para a BCNF.

Exemplo

Esquema de Relações do BD

- Cliente (<u>CodCli</u>, CPF, NomeCli, Rua, Numero, Complemento, CEP, CodMun, NomeMun, SiglaEst, NomeEst)
- FoneEmailCliente (<u>CodCli</u>-CE, <u>Email</u>, <u>Telefone</u>)
- Venda (<u>NumVda</u>, DataVda)
- Fabricante (<u>CodFab</u>, NomeFab)
- Modelo (<u>CodMod</u>, NomeMod)
- Colecao (CodCol, NomeCol)
- Produto (<u>CodProd</u>, NomeProd, Genero, CodFab-CE, CodCol-CE, CodMol-CE)
- Estoque (<u>CodProd</u>-CE, <u>Numero</u>, <u>Cor</u>, Quantidade, CodBarra, Preço)
- Tem (<u>NumVda</u>-CE, <u>CodProd</u>-CE, Preco, Quantidade, <u>TotalItem</u>, CodCli-CE)

Primeira Forma Normal Eliminar Atributos Não Atômicos

1FN: Primeira Forma Normal

- Cliente (<u>CodCli</u>, CPF, NomeCli, Rua, Numero, Complemento, CEP, CodMun, NomeMun, SiglaEst, NomeEst)
- FoneEmailCliente (<u>CodCli</u>-CE, <u>Email</u>, <u>Telefone</u>)
- Venda (<u>NumVda</u>, DataVda)
- Fabricante (<u>CodFab</u>, NomeFab)
- Modelo (<u>CodMod</u>, NomeMod)
- Colecao (CodCol, NomeCol)
- Produto (<u>CodProd</u>, NomeProd, Genero, CodFab-CE, CodCol-CE, CodMol-CE)
- Estoque (<u>CodProd</u>-CE, <u>Numero</u>, <u>Cor</u>, Quantidade, CodBarra, Preço)
- Tem (<u>NumVda</u>-CE, <u>CodProd</u>-CE, Preco, Quantidade, TotalItem, CodCli-CE)

Segunda Forma Normal Eliminar Dependência Parcial da Chave Primária

IMPACTA 2FN: Segunda Forma Normal

- Cliente (<u>CodCli</u>, CPF, NomeCli, Rua, Numero, Complemento, CEP, CodMun, NomeMun, SiglaEst, NomeEst)
- FoneEmailCliente (<u>CodCli</u>-CE, <u>Email</u>, <u>Telefone</u>)
- Venda (<u>NumVda</u>, DataVda, <u>CodCli-CE</u>)
- Fabricante (<u>CodFab</u>, NomeFab)
- Modelo (<u>CodMod</u>, NomeMod)
- Colecao (CodCol, NomeCol)
- Produto (<u>CodProd</u>, NomeProd, <u>Genero</u>, <u>CodBarra</u>, Preço, CodFab-CE, CodCol-CE, CodMol-CE)
- Estoque (<u>CodProd</u>-CE, <u>Numero</u>, <u>Cor</u>, <u>Quantidade</u>, <u>CodBarra</u>, <u>Preço</u>) Fere a 2FN
 - CodProd → CodBarra, Preço, portanto temos uma dependência parcial da PK
- Estoque (<u>CodProd</u>-CE, <u>Número</u>, <u>Cor</u>, Quantidade)
- Tem (<u>NumVda-CE</u>, <u>CodProd-CE</u>, <u>Preco</u>, <u>Quantidade</u>, <u>TotalItem</u>, <u>CodCli-CE</u>) Fere 2FN
 - NumVda-CE, CodProd-CE → Preço, Quantidade, CodCli-CE
 - NumVda-CE → CodCli-CE
- Tem (<u>NumVda</u>-CE, <u>CodProd</u>-CE, <u>Preco</u>, Quantidade, <u>TotalItem</u>)

Terceira Forma Normal Eliminar Dependência por Transitividade da Chave Primária

3FN: Terceira Forma Normal

- Cliente (<u>CodCli</u>, CPF, NomeCli, Rua, Numero, Complemento, CEP, CodMun, NomeMun, SiglaEst, NomeEst) Fere a 3FN
 - CodCli → CodMun
 - CodMun → NomeMun, SiglaEst
 - SiglaEst → NomeEst, portanto temos 2 dependências por transitividade!
- Estado (<u>SiglaEst</u>, NomeEst)
- Municipio (<u>CodMun</u>, NomeMun, SiglaEst-CE)
- Cliente (<u>CodCli</u>, CPF, NomeCli, Rua, Numero, Complemento, CEP, CodMun-CE)
- FoneEmailCliente (<u>CodCli</u>-CE, <u>Email</u>, <u>Telefone</u>)
- Venda (NumVda, DataVda, CodCli-CE)
- Fabricante (<u>CodFab</u>, NomeFab)
- Modelo (<u>CodMod</u>, NomeMod)
- Colecao (<u>CodCol</u>, NomeCol)
- Produto (<u>CodProd</u>, NomeProd, <u>Genero</u>, <u>CodBarra</u>, Preço, CodFab-CE, CodCol-CE, CodMol-CE)
- Estoque (<u>CodProd</u>-CE, <u>Número</u>, <u>Cor</u>, Quantidade)
- Tem (NumVda-CE, CodProd-CE, Preco, Quantidade, TotalItem, CodCli-CE) Fere a 3FN
 - NumVda-CE, CodProd-CE → Preço, Quantidade
 - Preço, Quantidade → Totalltem, portanto temos aqui transitividade!
- Tem (<u>NumVda</u>-CE, <u>CodProd</u>-CE, Preco, Quantidade)

Quarta Forma Normal Eliminar Múltiplas Redundâncias Multivaloradas

4FN: Quarta Forma Normal

- Estado (<u>SiglaEst</u>, NomeEst)
- Municipio (<u>CodMun</u>, NomeMun, SiglaEst-CE)
- Cliente (CodCli, CPF, NomeCli, Rua, Numero, Complemento, CEP, CodMun-CE)
- FoneEmailCliente (CodCli-CE, Email, Telefone) Fere a 4FN
 - CodCli →→ Email
 - CodCli →→ Telefone, portanto temos mais de uma depenência multivalorada!
- TelefoneCLiente (<u>CodCli</u>-CE, <u>Telefone</u>)
- EmailCLiente (<u>CodCli</u>-CE, <u>Email</u>)
- Venda (<u>NumVda</u>, DataVda, <u>CodCli-CE</u>)
- Fabricante (<u>CodFab</u>, NomeFab)
- Modelo (<u>CodMod</u>, NomeMod)
- Colecao (<u>CodCol</u>, NomeCol)
- Produto (CodProd, NomeProd, Genero, CodBarra, Preço, CodFab-CE, CodCol-CE, CodMol-CE)
- Estoque (<u>CodProd</u>-CE, <u>Número</u>, <u>Cor</u>, Quantidade)
- Tem (NumVda-CE, CodProd-CE, Preco, Quantidade)

Esquema de Relações do Banco de Dados Normalizado

4FN: Quarta Forma Normal

- Estado (<u>SiglaEst</u>, NomeEst)
- Municipio (<u>CodMun</u>, NomeMun, SiglaEst-CE)
- Cliente (<u>CodCli</u>, CPF, NomeCli, Rua, Numero, Complemento, CEP, CodMun-CE)
- TelefoneCLiente (<u>CodCli</u>-CE, <u>Telefone</u>)
- EmailCLiente (CodCli-CE, Email)
- Venda (<u>NumVda</u>, DataVda, <u>CodCli-CE</u>)
- Fabricante (<u>CodFab</u>, NomeFab)
- Modelo (<u>CodMod</u>, NomeMod)
- Colecao (<u>CodCol</u>, NomeCol)
- Produto (<u>CodProd</u>, NomeProd, <u>Genero</u>, <u>CodBarra</u>, Preço, CodFab-CE, CodCol-CE, CodMol-CE)
- Estoque (<u>CodProd</u>-CE, <u>Número</u>, <u>Cor</u>, Quantidade)
- Tem (<u>NumVda</u>-CE, <u>CodProd</u>-CE, Preco, Quantidade)

Forma Normal de Boyce-Codd

IMPACTA FNBC: Forma Normal de Boyce-Codd

- Na Impacta e na grande maioria das faculdades, uma disciplina pode ser lecionada por mais de um professor.
- Então, desta maneira temos as seguintes dependências funcionais:
 - CodTurma -> CodProfessor, CodDisciplina
- E a relação Professor Disciplina Turma:
 - Professor_Disciplina_Turma (CodTurma, CodProfessor, CodDisciplina)

FNBC: Forma Normal de Boyce-Codd

- Entretanto, existem universidades (geralmente públicas) onde uma disciplina é lecionada por somente um professor!
- Nesta realidade, teríamos as seguintes dependências funcionais:
 - CodTurma -> CodDisciplina
 - CodDisciplina -> CodProfessor

FNBC: Forma Normal de Boyce-Codd

- Desta forma, seria necessária normalizar a relação Professor_Disciplina_Turma, pois ela fere a FNBC, uma vez que CodDisciplina não é uma superchave da seguinte forma:
 - Disciplina_Professor (CodDisciplina, CodProfessor)
 - Disciplina_Turma (CodTurma, CodDisciplina)

Leituras Recomendadas

Leituras Recomendadas

- ELMASRI, Ramez; NAVATHE, Shamkant B.. Sistemas de banco de dados. 6. ed. São Paulo: Pearson Education, 2011. 788 p.
 - Capítulos 15 e 16

ou

- ELMASRI, Ramez; NAVATHE, Shamkant B.. **Sistemas de banco de dados**. 4. **ed**. São Paulo: Pearson Education, 2005. 724 p.
 - Capítulos 10 e 11
- RANGEL, Alexandre Leite et al. Unidade 5 Normalização e Desempenho em Sistema de Banco de Dados Relacional. In: RANGEL, Alexandre Leite et al. Banco de Dados. Batatais: Claretiano, 2014. Cap. 5. p. 197-216.

Referências

Referências Bibliográficas

- 1. ELMASRI, Ramez; NAVATHE, Shamkant B.. **Sistemas de banco de dados**. 6. ed. São Paulo: Pearson Education, 2011. 788 p.
- 2. Korth, H.; Silberschatz, A. **Sistemas de Bancos de Dados**. 3a. Edição, Makron Books, 1998.
- 3. RAMAKRISHNAN, Raghu; GEHRKE, Johannes. **Sistemas de gerenciamento de banco de dados**. 3. ed. São Paulo: Mc Graw Hill, 2008. 884 p.
- 4. Teorey, T.; Lightstone, S.; Nadeau, T. **Projeto e modelagem de bancos de dados**. Editora Campus, 2007.

Obrigado

Prof. Dr. Alexandre L. Rangel <u>alexandre.leite@faculdadeimpacta.edu.br</u> www.alexandrelrangel.blogspot.com.br