Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2020f/

Binary Classification

Many slides attributable to:
Erik Sudderth (UCI)
Finale Doshi-Velez (Harvard)
James, Witten, Hastie, Tibshirani (ISL/ESL books)

Prof. Mike Hughes

Today's objectives (day 07) Binary Classification Basics

- 3 steps of a classification task
 - Prediction
 - Predicting probabilities of each binary class
 - Making hard binary decisions
 - Training
 - Evaluation (much more in next class)
- A "taste" of 2 Methods
 - Logistic Regression
 - K-Nearest Neighbors

What will we learn?

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Before: Regression

Supervised Learning

regression

Unsupervised Learning

Reinforcement Learning y is a numeric variable e.g. sales in \$\$

Task: Binary Classification

Supervised Learning

binary classification

Unsupervised Learning

Reinforcement Learning y is a binary variable (red or blue)

Example: Hotdog or Not

https://www.theverge.com/tldr/2017/5/14/15639784/hbo-silicon-valley-not-hotdog-app-download

Task: Multi-class Classification

Supervised Learning

multi-class classification

Unsupervised Learning

Reinforcement Learning y is a discrete variable (red or blue or green or purple)

Binary Prediction Step

Goal: Predict label (o or 1) given features x

```
• Input: x_i \triangleq [x_{i1}, x_{i2}, \dots x_{if} \dots x_{iF}]

"features" Entries can be real-valued, or other numeric types (e.g. integer, binary)

"predictors"

"attributes"

• Output: y_i \in \{0, 1\} Binary label (0 or 1)

"responses"

"labels"
```

Binary Prediction Step

```
>>> # Given: pretrained binary classifier model
>>> # Given: 2D array of features x NF
>>> x NF.shape
(N, F)
>>> yhat N = model.predict(x NF)
>>> yhat N[:5] # peek at predictions
[0, 0, 1, 0, 1]
>>> yhat N.shape
(N,)
            Mike Hughes - Tufts COMP 135 - Fall 2020
```

Types of binary predictions

TN: true negative

FN: false negative

FP : false positive

TP: true positive

		classifier calls	
		"negative" C=0	"positive" C=1
true outcome	Y=0	TN	FP
	Y=1	FN	TP

Probability Prediction Step

Goal: Predict probability of event y=1 given features x

• Input:
$$x_i \triangleq [x_{i1}, x_{i2}, \dots x_{if} \dots x_{iF}]$$

"features" Entries can be real-valued, or other numeric types (e.g. integer, binary)

"predictors" attributes"

• Output: \hat{p}_i "probabilities"

Probability between 0 and 1 e.g. 0.001, 0.513, 0.987

Probability Prediction Step

```
>>> # Given: pretrained regression object model
>>> # Given: 2D array of features x NF
>>> x NF.shape
(N, F)
>>> yproba N2 = model.predict proba(x NF)
>>> yproba N2.shape
                               Column index 1 gives
(N, 2)
                             probability of positive label
                               given input features
                                  p(Y=1\mid X)
>>> yproba N2[:, 1]
[0.003, 0.358, 0.987, 0.111, 0.656]
```

Thresholding to get Binary **Decisions**

Thresholding to get Binary Decisions

Thresholding to get Binary Decisions

Classifier: Training Step

Goal: Given a labeled dataset, learn a **function** that can perform (probabilistic) prediction well

• Input: Pairs of features and labels/responses

$$\{x_n, y_n\}_{n=1}^N$$

• Output:
$$\hat{y}(\cdot): \mathbb{R}^F o \{0,1\}$$

Useful to break into two steps:

- 1) Produce real-valued scores OR probabilities in [0, 1]
- 2) Threshold to make binary decisions

Classifier: Training Step

```
>>> # Given: 2D array of features x NF
>>> # Given: 1D array of binary labels y N
>>> y N.shape
(N,)
>>> x NF.shape
(N, F)
>>> model = BinaryClassifier()
>>> model.fit(x NF, y N)
>>> # Now can call predict or predict proba
```

Classifier: Evaluation Step

Goal: Assess quality of predictions

Many ways in practice:

- 1) Evaluate probabilities / scores directly cross entropy loss (aka log loss), hinge loss, ...
- 2) Evaluate binary decisions at specific threshold accuracy, TPR, TNR, PPV, NPV, etc.
- 3) Evaluate across range of thresholds ROC curve, Precision-Recall curve

Metric: Confusion Matrix Counting mistakes in binary predictions

#TN : num. true negative

#FN: num. false negative

#TP: num. true positive

#FP: num. false positive

		classifier calls	
		"negative" C=0	"positive" C=1
true outcome	Y=0	#TN	#FP
	Y=1	#FN	#TP

Metric: Accuracy

accuracy = fraction of correct predictions TP + TN

$$= \frac{1}{TP + TN + FN + FP}$$

Potential problem:

Suppose your dataset has 1 positive example and 99 negative examples

What is the accuracy of the classifier that always predicts "negative"?

Metric: Accuracy

accuracy = fraction of correct predictions $= \frac{TP + TN}{TP + TN + FN + FP}$

Potential problem:

Suppose your dataset has 1 positive example and 99 negative examples

What is the accuracy of the classifier that always predicts "negative"? 99%!

Objectives: Classifier Overview

- 3 steps of a classification task
 - Prediction
 - Making hard binary decisions
 - Predicting class probabilities
 - Training
 - Evaluation

- A "taste" of 2 Methods
 - Logistic Regression
 - K-Nearest Neighbors

Logistic Sigmoid Function

Goal: Transform real values into probabilities

Logistic Regression

Parameters:

weight vector
$$w = [w_1, w_2, \dots w_f \dots w_F]$$

bias scalar b

Prediction:

$$\hat{p}(x_i, w, b) = p(y_i = 1 | x_i) \triangleq \text{sigmoid} \left(\sum_{f=1}^F w_f x_{if} + b \right)$$

Training:

find weights and bias that minimize "loss"

Measuring prediction quality for a probabilistic classifier

Use the log loss (aka "binary cross entropy")

from sklearn.metrics import log_loss

$$\log_{-}\log(y, \hat{p}) = -y \log \hat{p} - (1 - y) \log(1 - \hat{p})$$

Advantages:

- smooth
- easy to take derivatives!

Logistic Regression: Training

Optimization: Minimize total log loss on train set

$$\min_{w,b} \sum_{n=1}^{N} \log \log(y_n, \hat{p}(x_n, w, b))$$

Algorithm: Gradient descent

Avoid overfitting: Use L2 or L1 penalty on weights

Much more in depth in next class

Visualizing predicted probas for Logistic Regression

Visualizing predicted probas for Logistic Regression Part Logistic Regression

Nearest Neighbor Classifier

Parameters:

none

Prediction:

- find "nearest" training vector to given input *x*
- predict *y* value of this neighbor

Training:

none needed (use training data as lookup table)

K nearest neighbor classifier

Parameters:

K : number of neighbors

Prediction:

- find K "nearest" training vectors to input *x*
- predict: vote most common *y* in neighborhood
- predict_proba: report fraction of labels

Training:

none needed (use training data as lookup table)

Visualizing predicted probas for K-Nearest Neighbors

Visualizing predicted probas for K-Nearest Neighbors Enarchine Proposition of the New York Neighbors

Summary of Methods

	Function class flexibility	Hyperparameters to select (control complexity)	Interpret?
Logistic Regression	Linear	L2/L1 penalty on weights	Inspect weights
K Nearest Neighbors Classifier	Piecewise constant	Number of Neighbors Distance metric	Inspect neighbors