Name: Swagat Panda ID: 2017B5A30983P

Lab V

Study of Instrumentation Amplifier using LM741

Objectives

To study the Instrumentation Amplifier using op-amp LM741 and find out

- 1. Value of resistance (R_f) for DC null point,
- 2. Common mode gain (A_{cm}) for the instrumentation amplifier,
- 3. Differential mode $gain(A_{dm})$ for the instrumentation amplifier and find
 - a) the common mode rejection ratio (CMRR) for the instrumentation amplifier,
 - b) compare the results from simulation with the theoretical values of the quantities.

Also, draw schematic for each case.

Instrumentation Amplifier

An **instrumentation amplifier** is a type of differential amplifier that has been outfitted with input buffer amplifiers, which eliminate the need for input impedance matching and thus make the amplifier particularly suitable for use in measurement and test equipment.

Additional characteristics include very low DC offset, low drift, low noise, very high open-loop gain, very high common-mode rejection ratio, and very high input impedances. Instrumentation amplifiers are used where great accuracy and stability of the circuit both short and long-term are required.

1. DC Null Point

Results

The value of resistance Rf at DC null point (Vout = -9 nV \approx 0V) comes out to be approximately 267.575 k Ω .

2. Common Mode Gain (Acm)

Schematic and results from AC analysis

* H:\Academic	\BITS\Year 4\4 - Semester 2\Analog Ele	ectronics\Labs\Lab 5\	ASC Files\CMgain.asc X
AC	Analysis		
frequency:	1000 Hz		
V(+vcc):	mag: 0 phase:	0°	v oltage
V(-vcc):	mag: 0 phase:	0°	v oltage
V(n002):	mag: 0.0192807 phase: -0		v oltage
V(n003):	mag: 0.01928 phase: -0	0.0512225°	v oltage
V(vout):	mag: 0.000167774 phase:	157.483°	v oltage
V(vo1):	mag: 0.0200005 phase: -0	0.0513552°	v oltage
V(vo2):	mag: 0.0200005 phase:	-0.051356°	voltage
V(n001):	mag: 0.0200005 phase: -0	0.0512658°	v oltage
V(vin):	mag: 0.02 phase:	0°	voltage
V(n004):	mag: 0.0200005 phase: -0	0.0512658°	voltage
I(R4):	mag: 8.91015e-013 phase:	160.983°	device_current
I(R6):	mag: 6.69901e-011 phase:	-88.5106°	device current
I(R5):	mag: 6.63868e-011 phase:	-89.9514°	device current
I(Rf):	mag: 7.19845e-008 phase:	179.766°	device current
I(R3):	mag: 7.20546e-008 phase:	179.949°	device_current
I(R2):	mag: 7.20531e-008 phase:	179.945°	device current
I(R1):	mag: 7.1986e-008 phase:	179.77°	device current
I(Vs):	mag: 1.33365e-010 phase:	-89.2621°	device current
I(V2):	mag: 3.60105e-008 phase:	-0.157326°	device current
I(V1):	mag: 3.6046e-008 phase:	179.843°	device current
Ix(u1:1):	mag: 4.8737e-012 phase:	-107.112°	subckt current
Ix(u1:2):	mag: 4.88516e-012 phase:	72.4558°	subckt current
Ix(u1:99):	mag: 3.60236e-008 phase:	179.766°	subckt current
Ix(u1:50):	mag: 3.5961e-008 phase:	179.766°	subckt current
Ix(u1:28):	mag: 7.19845e-008 phase:	-0.233732°	subckt current
Ix(u2:1):	mag: 6.66826e-011 phase:	90.7379°	subckt current
Ix(u2:2):	mag: 6.66832e-011 phase:	-89.2278°	subckt_current
Ix(u2:99):	mag: 3.60066e-008 phase:	-0.282859°	subckt current
Ix(u2:50):	mag: 3.59796e-008 phase:	-0.282859°	subckt_current
Ix(u2:28):	mag: 7.19863e-008 phase:	179.717°	subckt current
Ix(u3:1):	mag: 6.66827e-011 phase:	90.738°	subckt current
Ix(u3:2):	mag: 6.66832e-011 phase:	-89.2277°	subckt current
Ix(u3:99):	mag: 3.6063e-008 phase:	-0.108177°	subckt current
Ix(u3:50):	mag: 3.59919e-008 phase:	-0.108177°	subckt current
Ix(u3:28):	mag: 7.2055e-008 phase:	179.892°	subckt current

Results

The value of common mode gain from simulation comes out to be
$$A_{cm}=\frac{V_{out}}{V_{in}}=8.387\times10^{-3}=-41.527~dB$$

The theoretical value of common mode gain should be

$$A_{cm} = 0$$

3. Differential Mode Gain A_{dm}

Schematic and results from AC analysis

	o maary	sis		
frequency:	1000	Hz		
V(+vcc):	mag:	0 phase:	0°	voltage
V(-vcc):	mag:	0 phase:	0°	voltage
V(n005):	mag:	0.202269 phase:	-4.99967°	voltage
V(n006):	mag:	0.202315 phase:	-1.79694°	voltage
V(vout):	mag:	11.3258 phase:	-3.40151°	voltage
7(n004):	mag:	0.20989 phase:	178.305°	voltage
7(n008):	mag:	0.20989 phase:	-1.68752°	voltage
V(n001):	mag:	0.0099949 phase:	178.232°	voltage
V(v2):	mag:	0.00999989 phase:	179.881°	voltage
7(n007):	mag:	0.00999468 phase:	-1.61445°	voltage
V(v1):	mag:	0.01 phase:	0°	voltage
V(n002):	mag:	0.01 phase:	0°	voltage
V(n003):	mag:	1.01772e-005 phase:	89.6243°	voltage
I (R4):	mag:	9.99994e-007 phase:	179.942°	device current
I(Rf1):	mag:	9.99994e-007 phase:	179.94°	device current
I(R7):	mag:	0.00042531 phase:	178.309°	device current
[(R6):	mag:	0.00042531 phase:	-1.69117°	device current
I (R5):	mag:	0.00042531 phase:	178.309°	device_current
[(Rf):	mag:	4.11986e-005 phase:	-3.37245°	device current
I (R3):	mag:	7.56204e-007 phase:	178.203°	device_current
I (R2):	mag:	7.58558e-007 phase:	-178.768°	device current
[(R1):	mag:	4.11988e-005 phase:	-3.31668°	device_current
I (V4):	mag:	9.99994e-007 phase:	179.942°	device_current
I (V3) :	mag:	1.00013e-009 phase:	-91.916°	device_current
I (V2):		0.00017082 phase:	-1.77912°	device_current
I(V1):	mag:	0.000171064 phase:	-1.76866°	device_current
[x(u1:1):	mag:	4.0103e-008 phase:	86.3541°	subckt_current
[x(u1:2):		4.0103e-008 phase:	-93.6454°	subckt_current
Ix(u1:99):	mag:	1.98338e-005 phase:	-3.37245°	subckt_current
[x(u1:50):	mag:	2.13648e-005 phase:	-3.37245°	subckt_current
Ix(u1:28):	mag:	4.11986e-005 phase:	176.628°	subckt_current
[x(u2:1):	mag:	1.02144e-009 phase:	-91.9625°	subckt_current
Ix (u2:2):	mag:	1.02144e-009 phase:	88.0386°	subckt_current
[x(u2:99):		0.000325609 phase:	178.165°	subckt_current
[x(u2:50):		0.000140884 phase:	178.165°	subckt_current
[x(u2:28):		0.000466493 phase:	-1.83472°	subckt_current
Ix(u3:1):		1.00013e-009 phase:	88.084°	subckt_current
Ix(u3:2):		1.00013e-009 phase:	-91.9149°	subckt_current
Ix(u3:99):	_	0.00013522 phase: 0.000290847 phase:	-1.68597°	subckt_current subckt_current

Results

The value of differential mode gain from simulation comes out to be
$$A_{dm} = \frac{V_{out}}{(V_1 - V_2)} = 566.29 = 55.06 \text{ dB}$$

The theoretical value of differential mode gain should be
$$A_{dm} = \left(1 + \frac{2R_5}{R_7}\right) \frac{R_F}{R_1} = 567 = 55.07 \ dB$$

Calculation of CMRR

The simulated value of common mode rejection ratio (CMRR) is:

$$\frac{A_{dm}}{A_{cm}} = \frac{566.29}{8.387 \times 10^{-3}} = 67519.97 = 96.58 \text{ dB}$$

The theoretical value of CMRR is: infinity.

Conclusions

Hence, practical circuits like the instrumentation amplifier using LM 741 do not have ideal infinite CMRR but are limited to some finite large value due to mismatch. The theoretical value of CMRR is much higher than simulated value as per calculations.