

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Брянский государственный технический университет

Утв	ерждаю	
Рект	гор универ	ситета
		О.Н. Федонин
~	>>	2019г.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

ПОСТРОЕНИЕ МОДЕЛЕЙ НЕПРЕРЫВНЫХ ДИНАМИЧЕСКИХ СИСТЕМ В ПРОГРАММНОМ КОМПЛЕКСЕ ANYLOGIC

Методические указания к выполнению лабораторной работы №8 для студентов очной формы обучения по направлению подготовки 09.03.01 «Информатика и вычислительная техника»

УДК 004.65

Компьютерное моделирование. Построение моделей непрерывных динамических систем в программном комплексе Anylogic [Электронный ресурс]: методические указания к выполнению лабораторной работы № 8 для студентов очной формы обучения по направлению подготовки 09.03.01 «Информатика и вычислительная техника». – Брянск: БГТУ, 2019. – 11 с.

Разработала А.А.Трубакова, ст.преп.

Рекомендовано кафедрой «Информатика и программное обеспечение» БГТУ (протокол № 4 от 24.12.2018г.)

Методические указания публикуются в авторской редакции

1. ЦЕЛЬ РАБОТЫ

Целью работы является ознакомление со средой имитационного моделирования AnyLogic и основными принципами построения моделей непрерывных динамических систем на примере модели развития эпидемии заболевания.

Продолжительность работы -2 часа.

2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Изучение основных возможностей и принципов работы в разделе системной динамики среды AnyLogic.
- 2. Изучение модели развития эпидемии.
- 3. Построение модели развития эпидемии в среде AnyLogic.
- 4. Самостоятельное построение имитационной модели развития эпидемии с дополнительными условиями.
- 5. Тестирование выполнения эксперимента при различных условиях воздействия на модель развития эпидемии.

3. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. Раздел системной динамики среды AnyLogic

Одним из важных приложений методов имитационного моделирования является прогнозирование распространения эпидемических заболеваний. В этой области находят применение системно-динамический.

Системно-динамические (СД) модели распространения эпидемических заболеваний имеют взаимодополняющие свойства, в связи с чем, задача совместного использования этих классов моделей для прогнозирования динамики эпидемических систем является актуальной и требует всестороннего сравнения их характеристик и свойств. С её помощью можно

наглядно продемонстрировать распространение эпидемии, что, в конечном счёте, может помочь спасти человеческие жизни.

Для построения имитационных моделей системно-динамических систем используются переменные четырех типов: время, фонд, поток и конвертор.

Переменная «время» является первичной для имитационной модели динамической системы: ее значение генерируется системным таймером и изменяется дискретно, т.е., начиная с некоторого начального значения, время за каждый такт увеличивается на заранее заданную величину, которая служит единицей модельного времени. Число тактов и единица времени являются параметрами «прогона» модели и определяются заранее.

Переменная типа «поток» равна объему (количеству) продукта, который поступает или извлекается из соответствующего фонда в единицу модельного времени. Значение этой переменной может изменяться в зависимости от внешних воздействий на нее. В частности, поток можно представить, как функцию от значений других потоков и фондов. Простейший пример цикла с обратной связью образует входящий поток, величина которого зависит от значения фонда, в который этот поток поступает.

Помимо фондов и потоков, при построении имитационных моделей динамических систем используются вспомогательные переменные, которые называются конверторами. Эти переменные могут быть равны константам или значениям математических функций от других переменных (в том числе и от переменной «время»), т.е. позволяют преобразовывать («конвертировать») одни числовые значения в другие.

АпуLogic поддерживает разработку и моделирование систем обратной связи (диаграммы потоков и накопителей, правила решений, включая массивы переменных). Разрабатываемая модель в среде AnyLogic может быть предназначена для исследования характеристик эпидемии и процесса восстановления системы. Среда позволяет изменять значения параметров модели непосредственно во время ее работы, что в жизни аналогично вмешательству человека в различные процессы.

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСПРОСТРАНЕНИЯ ЭПИДЕМИИ ЗАБОЛЕВАНИЯ

Рассмотрим математическую модель, описываемую системой дифференциальных уравнений первого порядка. Данная модель распространения заболевания задается тремя уравнениями:

$$\frac{d(susceptible)}{dt} = -get_sick,
\frac{d(infected)}{dt} = get_sick - get_well,
\frac{d(recovered)}{dt} = get_well.$$
(1)

где susceptible — общее число людей, восприимчивых к заболеванию, infected — общее число людей, уже заболевших к некоторому моменту времени, recovered — число людей, выздоровевших после болезни, с приобретенным иммунитетом на некоторый период времени. Параметры get_sick — интенсивность протекания заболевания (число людей, заболевших в единицу времени), get_well — интенсивность выздоровления (число людей, выздоровевших в единицу времени) (2).

$$get_sick = infected \times susceptible \times infection_rate,$$

 $get_well = infected \times recovery_rate.$ (2)

Факторы, влияющие на процесс заболевания и выздоровления infection_rate, доля заболевающих людей в единицу времени (от 0 до 1), и recovery rate, доля выздоравливающих в единицу времени (от 0 до 1).

3. ПОСТРОЕНИЕ МОДЕЛИ РАСПРОСТРАНЕНИЯ ЭПИДЕМИИ В СРЕДЕ ANYLOGIC

Для начала работы создадим новый проект в системе AnyLogic с именем *Epidemiya*. Открытое окно редактора нового проекта содержит три части. Слева в окне классов автоматически будет строиться дерево проекта. Для нового проекта в нем уже создан корневой класс активного объекта с именем *Main*, а для проведения экспериментов с будущей моделью уже создан один эксперимент — *Simulation*. Центральное окно — окно графического редактора структуры для создания структуры активного объекта, представляющего модель. Окно справа — это окно свойств выделенного элемента модели.

Изменим имя корневого объекта модели, назвав его *Zabolevanie* (вместо установленного по умолчанию имени *Main*).

Первой нашей задачей является построение модели, в которой присутствуют три переменные состояния (susceptible, infected и recovered) и два параметра – infection_rate и recovery_rate.

Данные о численности людей, характеризующих их состояния задаются в качестве накопителей. Для введения первой переменной susceptible нажмите на окно Палитра, выберете раздел Системная динамика и элемент Накопитель, с помощью перетаскивания мышью в какое-либо место поля окна редактора структуры объекта Zabolevanie добавьте элемент. Используя окно свойств, задайте этой переменной новое имя — susceptible. Созданная переменная susceptible связана с системой дифференциальных уравнений (1). В редакторе AnyLogic подобные зависимости можно указывать напрямую в таком же аналитическом виде. Для этого в окне свойств переменной susceptible в поле выберем Произвольный вариант Режима задания уравнения, после чего ниже в строке d(susceptible)/dt запишем дифференциальное уравнение = - get_sick. В поле начального значения запишем 800.

Вторую переменную *infected* определим аналогичным образам, задав в качестве уравнения $= get_sick-get_well$. В поле начального значения установим 1. Свойства третьего накопителя recovered, аналогично определяется уравнением $= get_well$.

Потоки get_sick , get_well – определяются уравнением (2).

Факторы, влияющие на процесс заболевания и выздоровления infection_rate и recovery_rate, задаются в качестве элемента Параметр.

Значение параметров $infection_rate$ установим 0,00119. А значение $recovery_rate$ равным 0,7.

Для проверки правильности синтаксиса (формальных правил) модели в любой момент при ее построении можно использовать кнопку *Модель* и выбрать *Построить* на панели инструментов. Если выполнить проверку сейчас, то обнаружатся ошибки, связанные с отсутствием связей для параметров модели. Для связывания этих параметров необходимо добавить элемент *Связь* из *Палитра* —> *Системная динамика* (рис.1).

Рис. 1. Модель распространения эпидемии

Одним из важных особенностей AnyLogic является возможность наглядного представления поведения модели, в частности, представления изменения во времени всех ее переменных. Построим графики изменения переменных susceptible, infected и recovered. Для этого необходимо в режиме выполнения модели добавить новые диаграммы. Для этого необходимо выбрать Палитра, затем, Статистика и добавить в окно структуры нужную диаграмму. Для наглядности модели добавим две диаграммы: круговую и временной график.

Для построения эксперимента зададим свойства его модельного времени. Для этого необходимо выбрать Simulation, затем Модельное время и

задать конечное время, равное 70, активировав свойство Остановить в заданное время.

Экспериментально найдём пороговое значение, при котором все люди инфицируются. Этого можно достичь, изменяя параметры *infection_rate* (интенсивность инфицирования), *recovery_rate* (интенсивность выздоровления).

Рис. 2. Результат моделирования распространения эпидемии

4. ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОГО ВЫПОЛНЕНИЯ

Определить пороговое значение, при котором все люди инфицируются.

Дополнить существующую модель параметрами, описывающими влияние дополнительных факторов на протекание заболевания:

- вероятность смерти населения от распространения эпидемии;
- пропадание иммунитета через некоторое время после болезни человека;

изначальное количество вакцинированных;
 Задайте параметры модели согласно вашему варианту.

№ Варианта	infection_rate	recovery_rate
1	0,001	0,4
2	0,0011	0,5
3	0,0012	0,6
4	0,0013	0,7
5	0,0014	0,8
6	0,0015	0,9
7	0,0016	1
8	0,0017	0,2
9	0,0018	0,1
10	0,0019	0,3
11	0,0001	0,5
12	0,0011	0,8
13	0,0002	1
14	0,0013	0,4
15	0,0004	0,7
16	0,0015	0,9
17	0,0006	1
18	0,0017	0,33
19	0,0008	0,9
20	0,0019	0,4
21	0,002	0,5
22	0,0019	0,6

Формой отчета по данной лабораторной работе является построенная в системе AnyLogic модель и ее тестирование.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. На чем основывается принцип построения моделей непрерывных динамических систем?
- 2. Для чего используется элемент системной динамики поток?
- 3. Какие блоки элементов раздела системная динамика могут задавать значения вероятностей людей восприимчивых к заболеванию, вероятности выздоровления и вероятности смерти?
- 4. Как определить пороговое значение, при котором инфицируется вся численность людей?
- 5. Как задаются параметры get_sick, get_well?

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Боев, В.Д. Компьютерное моделирование [Электронный ресурс] / В.Д. Боев, Р.П. Сыпченко. 2-е изд. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 525 с. Режим доступа: http://www.iprbookshop.ru/73655.html.
- 2. Ашихмин, В.Н. Введение в математическое моделирование [Электронный ресурс]: учебное пособие / В.Н. Ашихмин [и др.]. М.: Логос, 2016. 440 с. Режим доступа: http://www.iprbookshop.ru/66414.html.
- 3. Тупик, Н.В. Компьютерное моделирование [Электронный ресурс]: учебное пособие / Н.В. Тупик. 2-е изд. Саратов: Вузовское образование, 2019. 230 с. Режим доступа: http://www.iprbookshop.ru/79639.html.
- 4. Осоргин, А.Е. AnyLogic 6. Лабораторный практикум. / А.Е. Осоргин. Самара: ПГК, 2011. 100 с.

Компьютерное моделирование. Построение моделей непрерывных динамических систем в программном комплексе Anylogic: методические указания к выполнению лабораторной работы № 8 для студентов очной формы обучения по направлению подготовки 09.03.01 «Информатика и вычислительная техника»

ТРУБАКОВА АННА АЛЕКСЕЕВНА

Научный редактор Д. А. Коростелев Компьютерный набор А.А. Трубакова Иллюстрации А.А. Трубакова

Подписано в печать ___.__. Усл.печ.л. <mark>0,58</mark> Уч.-изд.л. <mark>0,58</mark>

Брянский государственный технический университет 241035, Брянск, бульвар 50 лет Октября, 7 БГТУ Кафедра «Информатика и программное обеспечение», тел. 56-09-84

Сопроводительный лист на издание в авторской редакции

Іазвание работы <u>Компьютерное моделирование. Построение моделей</u>				
епрерывных динамических систем в программном комплексе Anylogic:				
етодические указания к выполнению лабораторной работы № 8 для				
тудентов очной формы обучения по направлению подготовки 09.03.01				
«Информатика и вычислительная техника»				
ктуальность и соответствующий научно-методический уровень				
одтверждаю				
(подпись научного редактора)				
Рукопись сверена и проверена автором				
(подпись автора)				
екомендуется к изданию				
(подпись заведующего кафедрой)				