Auxiliary Sections > Integral Transforms > Tables of Laplace Transforms > Laplace Transforms: Expressions with Logarithmic Functions

Laplace Transforms: Expressions with Logarithmic Functions

No	Original function, $f(x)$	Laplace transform , $\widetilde{f}(p) = \int_0^\infty e^{-px} f(x) dx$
1	$\ln x$	$-\frac{1}{p}(\ln p + \mathcal{C})$
2	ln(1+ax)	$-\frac{1}{p}e^{p/a}\operatorname{Ei}(-p/a)$
3	ln(x+a)	$\frac{1}{p} \left[\ln a - e^{ap} \operatorname{Ei}(-ap) \right]$
4	$x^n \ln x, \qquad n = 1, 2, \dots$	$\frac{n!}{p^{n+1}} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln p - \mathcal{C} \right)$
5	$\frac{1}{\sqrt{x}}\ln x$	$-\sqrt{\pi/p}\left[\ln(4p)+\mathcal{C}\right]$
6	$x^{n-1/2} \ln x$, $n = 1, 2, \dots$	$\frac{k_n}{p^{n+1/2}} \left[2 + \frac{2}{3} + \frac{2}{5} + \dots + \frac{2}{2n-1} - \ln(4p) - \mathcal{C} \right],$ $k_n = 1 \cdot 3 \cdot 5 \dots (2n-1) \frac{\sqrt{\pi}}{2^n}$
7	$x^{\nu-1}\ln x, \nu > 0$	$\Gamma(\nu)p^{-\nu}\big[\psi(\nu) - \ln p\big]$
8	$(\ln x)^2$	$\frac{1}{p} \left[(\ln x + \mathcal{C})^2 + \frac{1}{6} \pi^2 \right]$
9	$e^{-ax} \ln x$	$-\frac{\ln(p+a) + \mathcal{C}}{p+a}$

Notation: C = 0.5772... is the Euler constant, Ei(z) is the integral exponent, $\Gamma(\nu)$ is the gamma function, $\psi(\nu)$ is the logarithmic derivative of the gamma function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954. Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Laplace Transforms: Expressions with Logarithmic Functions