7	Æ	٨	т	T	Т	1		
1	Æ	Д		Н	-1	- 1	٦.	
Τ,		4	. 1	1	1		v	J

Exam 2 (100 points)

November 21, 2022

12 noon-1:20 p.m.

Carefully	PRINT	vour	full	name:

Solutions

•CIRCLE your section: Section 1 (Tu) Section 2 (Tu) Section 3 (Hasselblatt)

Instructions: No books, notes, calculators, or external help from any person or device are allowed. Except in the true-false questions or when instructed otherwise, justify all of your steps.

Write only in the space provided and do not attach any extra page.

•Please sign the following pledge:

I pledge that in this exam I have neither given nor received assistance or cheated in any other way.

Signature:			
Digitatuic.			

- 1. (16 points) Circle either True or False. You do not need to justify your choice.
 - (a) **True** / (False) Every continuous function on a closed set has a maximum. (f: R > R, f(x)=x, has no maximum.)
 - (b) True / False: Uniform convergence implies pointwise convergence, but the converse is not true.
 - (c) **True** / **False:** Suppose $A \subset B \subset \mathbb{R}^n$. If A is closed and B is sequentially compact, then A is sequentially compact. (B bounded, A is also closed.)
 - (d) True / False: If $A, B \subset \mathbb{R}^n$, then $\operatorname{int} A \cup \operatorname{int} B = \operatorname{int}(A \cup B)$.

 (a) True / False: A = [0,1](b) True / False: A = [0,2](c) True / False: A = [0,2]
 - (e) True / False: If $A, B \subset \mathbb{R}^n$, then $bdA \cup bdB = bd(A \cup B)$. hd AUB = 20,23. bdA ubdB = 20,1,23.
 - (f) **True** / **False**! If the sets A_i are open in \mathbb{R}^n for all $i \in \mathbb{N}$, then the intersection $\bigcap_{i=1}^{\infty} A_i$ is open in \mathbb{R}^n . $\int_{i=1}^{\infty} (-\frac{1}{i}, 1+\frac{1}{i}) = [0,1]$
 - (g) True / False: Let A be a subset of \mathbb{R}^n and let $F: A \to \mathbb{R}^m$ be continuous. If A is sequentially compact, then F(A) is sequentially compact.
 - (h) **True** / (False) Let A be a subset of \mathbb{R}^n and let $F: A \to \mathbb{R}^m$ be continuous. If A is closed in \mathbb{R}^n , then F(A) is closed in \mathbb{R}^m . $F: \mathbb{R} \to \mathbb{R}, F(x) = e^{x}, F(\mathbb{R}) = (0,\infty)$
- 2. (10 points) Fill in the blanks (no words). You do not need to justify your answer. Let $A = [0,1] \setminus \mathbb{Q}$, where \mathbb{Q} denotes the rationals. Thus, A is the set of irrationals in [0,1].
 - (a) $intA = \frac{\phi}{50 \text{ cannot be a subset of } A.)}$ (b) $bdA = \frac{[0,1]}{(For z \in [0,1], every open interval (x-5, z + 5) \text{ contains a rational point)}}{rational point and an irrational point)}$ (c) $extA = \frac{(-0,0) \cup (1,\infty)}{(the complement of (a) \cup (b))}$ (d) $clA = \frac{[0,1]}{(the complement of (a) \cup (b))}$

 - (e) $\mathbb{R} \setminus A = \underbrace{(-\infty, 0) \cup ((, \infty)) \cup (Q \cap [0, 1])}$

Carefully PRINT your full name:

- 3. (10 points) Let $A \subset \mathbb{R}^n$.
 - (a) State the definition (using sequences) of **continuity** of a mapping $F: A \to \mathbb{R}^m$ at a point $\mathbf{u} \in A$ and on the whole domain A.

 $F: A \to \mathbb{R}^m$ is **continuous at** $u \in A$ if

$$\forall u_k \in A,$$

$$u_k \to u \Rightarrow F(u_k) \to F(u).$$

 $F: A \to \mathbb{R}^m$ is **continuous on** A if

F is continuous at all $u \in A$.

(b) State the ϵ - δ criterion for **uniform continuity** of a mapping $F: A \to \mathbb{R}^m$. (Note that it is **continuity** in (a), but **uniform continuity** in (b).)

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ such that $\forall u, v \in A$,
$$\|u-v\| < \delta \Rightarrow \|F(u) - F(v)\| < \varepsilon.$$

- 4. (14 points)
 - (a) State the definition of **uniform convergence** in \mathbb{R} : Let f_n and f be functions from \mathbb{R} to \mathbb{R} . Then f_n converges uniformly to f on \mathbb{R} if

$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$ and $\forall x \in \mathbb{R}$, $|f_n(x) - f(x)| < \varepsilon$.

(b) Let $\{f_n\}$ be a sequence of functions from \mathbb{R} to \mathbb{R} . Assume that $f_n \to f$ uniformly on \mathbb{R} . Prove using the definition of uniform convergence that $3f_n + 2 \rightarrow 3f + 2$ uniformly on \mathbb{R} .

Let €>0. We need to find N ∈ IN such that \ n ≥ N and Yxell,

which is equivalent to $3|f_n(x) - f(x)| < \varepsilon$ or $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$

$$f_n(x) - f(x) < \frac{\varepsilon}{3}$$

Since Fn -> funiformly on R, 3 NEIN such that YnzN and Yxelk, |fn(x)-f(x)| < \frac{z}{3}

$$|f_n(x) - f(x)| < \frac{z}{3}$$

or as shown above,

This proves that $3f_0+2 \rightarrow 3f+2$ uniformly on R.

Carefully PRINT your full name:
F (10 m sints)
5. (10 points)
(a) State the definition of a Cauchy sequence in \mathbb{R} : a sequence $\{x_n\}$ in \mathbb{R} is <i>Cauchy</i> if
∀ ε70, ∃N∈N such that ∀m, n ≥N, zm-xn < ε.
(m could be replaced by n+h for h ∈ N.)
(b) Suppose $ x_{n+k} - x_n < 1/n$ for all $n, k \in \mathbb{N}$. Prove that $\{x_n\}$ converges. (You may use whatever theorem about convergence you think is appropriate.)
Let E>O. We need to find NEW s.t. YnzN and REN,
$ \chi_{n+h} - \chi_n < \frac{1}{n} < \varepsilon$.
Scratch work: 1/8 => n> E.
Choose $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}$. Then $\forall n \geq N$,
n>te or to < E. Thus,
$ x_{n+2}-x_n <\frac{1}{n}<\varepsilon$

6. (10 points) Determine the radius of convergence of the power series $\sum_{k=1}^{\infty} \frac{kx^k}{3^k}$.

Let
$$a_h = \frac{f_h x^h}{3h}$$
. Consider the ratio

$$= \frac{h+1}{h} \frac{|x|}{3} \rightarrow \frac{|x|}{3}$$

By the ratio test the series converges for \frac{|x|}{3} < 1

or |x| < 3 and diverges for $\frac{|x|}{3} > 1$ or |x| > 3.

Therefore, the radius of convergence is 3.

7. (10 points) Prove that $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$ converges uniformly on \mathbb{R} . (*Hint*. You may assume the *p*-test: $\sum_{n=1}^{80} 1/n^p$ converges for p > 1.)

For all x = IR, since x2+n2 > n2, $\left|\frac{1}{x^2+n^2}\right| \leq \frac{1}{n^2} = M_n$

By the p-test, $\Sigma \frac{1}{n^2}$ converges. By the Weiersfrass M-test, $\Sigma \frac{1}{\chi^2+n^2}$ converges

uniformly on R.

Carefully PRINT your full name:

8. (10 points) Let $A = \{(x,y) \in \mathbb{R}^2 \mid x^6 + y^6 = 1\}$. Prove that A is sequentially compact.

Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = x^6 + y^6 - 1$. Then $A = f^{-1}(f \circ f)$. Since f is a polynomial, it is continuous.

Since 103 is closed in IR and under a continuous

map on R2, the inverse image of a closed set is closed,

A = f ((103) is closed in R2.

 $x^6 \leq x^6 + y^6 \leq 1 \Rightarrow x^6 \leq 1 \Rightarrow |x| \leq 1$

Similarly, $|y| \le 1$. So $x + y^2 \le 1 + 1 = 2$.

This proves that $A \subset \overline{B}_{NZ}(0) = closed ball of radius$

NZ contered at o.

Hense, A is bounded.

Being closed and bounded, A is sequentially

Compact.

9. (10 points) Define

$$\mathcal{O} = \{ u \in \mathbb{R}^n \mid ||u|| > 1 \}.$$

Prove that \mathcal{O} is open in \mathbb{R}^n by showing that every point in \mathcal{O} is an interior point of \mathcal{O} . (*Hint*. Pictures may help but do not suffice.)

Let $u \in O$ Define
n = u - 1.
We will show that $B_c(u) \subset O$.
This will prove that u is an interior
point of O
Proof that $B_r(u) \subset Q$
Let x & Br(u). We want x > 1 This means in the
triangle inequality 1/2/1 should be on the RHS. Try
u \leq u-x + x
< r + x
= u (-1 + x .
Hence, $0 < -1 + 1 \times 1 = 1$
This proves that $z \in O$ so $B_r(u) = O$, Ω
Since an arbitrary point u ∈ O is an interior point. O is
open.

Bonus question (3 points, of which 1 for correct spelling—so write clearly!): Name a mathematician who made important contributions to real analysis. [No credit for naming Fitzpatrick, Sandwich, or Tufts faculty.]

	_