

MATLAB(2)

繪圖

大綱

linespace函數
plot函數
axis grid box
title xlabel ylabel text legend
長條圖 直方圖

繪圖

```
y = sin(x);
plot(x,y);

y = linspace(a,b,n)

a: 起始點
b: 結束點
n: a與b之間切n等分
(預設100)
```

x = linspace(0,2*pi,200);

PLOT函數

x	1	2	3	4	5	6
у	0.8415	0.9093	0.1411	-0.757	-0.959	-0.279

只要線段個段數夠多,每一段夠短,那麼人的眼睛很容易被欺瞞,而以為看到一幅平滑的曲線

繪圖

```
>> x=linspace(1,8,36);
```

```
>> y1=sin(2*x)./x;
```

>> plot(x,y1,'-sb')

PLOT函數額外修飾(1)

● plot(x,y,'str') 以字串 str 所指定的格式繪出二維圖形

plot 函數的控制碼(一),控制資料點的顯示符號

符號	說 明	符號	說 明
	繪點	^	繪出「^」符號
*	繪出星號	ν	繪出「v」符號(小寫 v)
0	繪出小圓 (小寫字母 o)	s或square	繪出正方形
+	繪出加號	d或diamond	繪出菱形
х	繪出打叉符號 (小寫字母 x)	p或pentagram	繪出五角形
<	繪出「<」符號	h或hexagram	繪出六角形
>	繪出「>」符號	none	不繪出任何形狀(預設)

>>plot(x,y,'+')

>>plot(x,y,'-+')

plot 函數的控制碼(二),控制線條樣式

線條樣式	說 明	線條樣式	說 明
- (減號)	實線(預設)	:	由點連成的線段
	虛線	none	不繪出線段
	虛線和點連成的線段		

plot 函數的控制碼(三),控制線條顏色

線條顏色	說 明	線條顏色	說 明
g	綠色 (green)	W	白色(white)
m	紫色(magmata)	r	紅色(red)
b	藍色(blue)(預設)	k	黑色(black)
С	青藍色 (cyan)	У	黃色(yellow)

>>plot(x,y,'-+g') >>plot(x,y,'-.c')

PLOT函數額外修飾(2)

● plot (x₁,y₁,'str','p_str',property,…) 根據繪圖性質 p_str 來繪圖,其中 p_str 可為:

LineWidth - 設定線條寬度

MarkerFaceColor — 設定標記的顏色

MarkerEdgeColor — 設定標記的邊框顏色

MarkerSize — 設定標記的大小

```
>>plot(x,y,'-+b','LineWidth',1,...
'MarkerFaceColor','y',...
'MarkerEdgeColor','w',...
'MarkerSize',9)
```


更改繪圖範圍 AXIS函數

如果想自行設定函數圖形顯示的範圍時, 可利用axis函數:

函數 說明

axis([xmin,xmax,ymin,ymax]) 指定繪圖的範圍,x 方向從 xmin 到 xmax,y 方向從 ymin 到 ymax

>>axis([xmin,xmax,ymin,ymax]) 放在m-file哪邊皆可

```
0.4
                                   0.2
>> x=linspace(0,10,64);
>> y=x.*cos(4*x)./12;
>> plot(x,y,'-ro')
                                   -0.4
                                   -0.6
>> axis([0,6,-0.6,0.6])
                                   0.3
                                   0.2
                                   0.1
                                   -0.1
                                   -0.2
                                   -0.3
                                   -0.4
                                   -0.5
```

格線

●利用 box 和 grid 指令可設定設定格線與外框:

指令	說 明
grid	設定是否顯示格線,設定 on 為顯示,設定 off 則不顯示
box	設定是否顯示圖形的外框,設定 on 顯示,設定 off 不顯示

>>grid on

>>box on

加入文字(1)

下表面的函數可設定圖形的標題文字,以及每一個繪圖 軸的解說文字:

函 數	說 明
title('text')	設定圖形的標題文字為 text
<pre>xlabel('text')</pre>	設定 x 軸的解說文字為 text
ylabel('text')	設定 y 軸的解說文字為 text
zlabel('text')	設定 z 軸的解說文字為 text

```
>>xlabel('X axis');
>>ylabel('Y axis');
>>title('Beauty Girl');
```


加入文字(2)

●下面的函數可在圖形內加入註解:

函 數	說 明
$legend(str_1, str_2,)$	設定圖例標記的字串
$legend(str_1, str_2, \ldots, pos)$	設定圖例標記的位置,1 代表將圖例放在右上角,2 是左上角,3 是左下角,4 則是放在右下角
legend off	清除圖例標記
text($x, y, 'text'$)	在圖形中位置為(x,y)之處加入註解文字
gtext('text')	利用滑鼠來設定文字輸入的位置

已存在的圖中加入新圖

●利用hold on 可將新繪的圖形附加於原有圖形之上:

指令 說明

hold 設定 hold 為 on 時,則新產生的圖形會疊加在原有圖形的上面,若是設定 off,則原有的圖形會被新產生的圖形覆蓋掉。

```
>> plot(x,y1,'-rs')
```

- >> hold on
- >> plot(x,y2,'-bo')
- >> hold off


```
x=linspace(0,10,64);
y1=x.*cos(2*x)./12;
y2=x.*cos(2*x+1)./12;
plot(x,y1,'-ro')
hold on
plot(x,y2,'-+b')
legend('x*cos(2x)','x*cos(2x+1)',2)
```


數張圖繪進一張大圖

函數說明

subplot (m,n,p) 把繪圖視窗分成 $m \times n$ 個區域,並在第 p 個位置建立一個子

繪圖區。位置p的計算方式是由左而右,由上而下來排列

subplot (m,n,p, 'replace') 於第 p 個位置建立一個子繪圖區,若此繪圖區內已有其它

圖形存在,則新繪的圖會取代掉原有的圖

for i = 1:10 subplot (2,5,i); end

將圖畫上去

```
x=linspace(0,10,64);
y=x.*cos(4*x)./12;plot(x,y,'-ro')

for i = 1:10
    subplot ( 2,5,i );
    plot(x,y);
    hold on
end
```


長條圖

bar(y)

- >> A=[1 2 3 6;2 4 1 3;8 6 1 4]
- >> bar(A)

直方圖

函 數	說 明
v=hist(data)	將向量 $data$ 按數據大小分成 10 個等距的區間,然後將這 10 個區間內元素的個數傳回給向量 v
v=hist(data,n)	同上,但區間數為 n

>> data=[0 3 3 4 5 3 7 4 2 8 2 8 10];

>> hist(data)

普地成績成績分布

