第三章: 线性模型

目录

- □ 线性回归
 - 最小二乘法
- □ 二分类任务
 - 对数几率回归
 - 线性判别分析
- □ 多分类任务
 - \(\bar{\pi} \)
 - 一对其余
 - 多对多
- □ 类别不平衡问题

基本形式

□ 线性模型一般形式

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + b$$

 $\boldsymbol{x}=(x_1;x_2;\ldots;x_d)$ 是由属性描述的示例,其中 x_i 是 \boldsymbol{x} 在第 i个属性上的取值

□ 向量形式

$$f\left(\boldsymbol{x}\right) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b$$

其中 $\boldsymbol{w} = (w_1; w_2; \dots; w_d)$

线性模型优点

- □形式简单、易于建模
- □ 可解释性
- □ 非线性模型的基础
 - 引入层级结构或高维映射

- □ 一个例子
 - 综合考虑色泽、根蒂和敲声来判断西瓜好不好
 - 其中根蒂的系数最大,表明根蒂最要紧;而敲声的系数比色泽大,说明敲声比色泽更重要

$$f_{\text{GL}}(\mathbf{x}) = 0.2 \cdot x_{\text{AB}} + 0.5 \cdot x_{\text{RB}} + 0.3 \cdot x_{\text{BB}} + 1$$

线性回归

- □ 给定数据集 $D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\}$ 其中 $\boldsymbol{x}_i = (x_{i1}; x_{i2}; \dots; x_{id}) \ y_i \in \mathbb{R}$
- □ 线性回归 (linear regression) 目的
 - 学得一个线性模型以尽可能准确地预测实值输出标记

$$f(x_i) \simeq y_i$$

- □ 离散属性处理
 - 有 "序" 关系
 - 连续化为连续值
 - 无 "序" 关系
 - 有k个属性值,则转换为k维向量

线性回归

□ 单一属性的线性回归目标

$$f(x) = wx_i + b$$
 使得 $f(x_i) \simeq y_i$

□ 参数/模型估计: 最小二乘法 (least square method)

$$(w^*, b^*) = \underset{(w,b)}{\operatorname{arg \, min}} \sum_{i=1}^m (f(x_i) - y_i)^2$$
$$= \underset{(w,b)}{\operatorname{arg \, min}} \sum_{i=1}^m (y_i - wx_i - b)^2$$

线性回归 - 最小二乘法

□ 最小化均方误差

$$E_{(w,b)} = \sum_{i=1}^{m} (y_i - wx_i - b)^2$$

 \square 分别对 w 和 b 求导,可得

$$\frac{\partial E_{(w,b)}}{\partial w} = 2\left(w\sum_{i=1}^{m} x_i^2 - \sum_{i=1}^{m} (y_i - b)x_i\right)$$

$$\frac{\partial E_{(w,b)}}{\partial b} = 2\left(mb - \sum_{i=1}^{m} (y_i - wx_i)\right)$$

线性回归 - 最小二乘法

□ 得到闭式 (closed-form)解

$$w = \frac{\sum_{i=1}^{m} y_i (x_i - \bar{x})}{\sum_{i=1}^{m} x_i^2 - \frac{1}{m} \left(\sum_{i=1}^{m} x_i\right)^2} \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b = \frac{1}{m} \sum_{i=1}^{m} (y_i - wx_i)$$

其中

$$\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

线性回归 - 最小二乘法

□ 广告费与销售额的线性回归分析 (利用最小二乘法建立销售额(y)与广告费(x)的线性回归方程,并预测广告费为3.5万元时的销售额)

广告费(x)	1.2	1.5	2.0	2.5	3.0	3.8
销售额(y)	4.0	4.5	6.0	6.8	7.5	9.0

$$= 2.3333$$

$$\frac{8}{-} = 6.3$$

$$wx_i)$$

$$\approx 1.82$$

$$w = \frac{\sum_{i=1}^{m} y_i (x_i - \bar{x})}{\sum_{i=1}^{m} x_i^2 - \frac{1}{m} (\sum_{i=1}^{m} x_i)^2}$$

$$w = \frac{97.25 - 6 \times 2.3333 \times 6.3}{37.38 - \frac{1}{6} \times (14.0)^2}$$

$$w = \frac{9.05}{4.71} \approx 1.92$$

$$y = 1.92x + 1.82$$
 $y = 1.92 \times 3.5 + 1.82 = 8.54$

多元线性回归

□ 给定数据集

$$D = \{ (\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m) \}$$
$$\boldsymbol{x}_i = (x_{i1}; x_{i2}; \dots; x_{id}) \ y_i \in \mathbb{R}$$

□ 多元线性回归目标

$$f(\boldsymbol{x}_i) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + b$$
 使得 $f(\boldsymbol{x}_i) \simeq y_i$

多元线性回归

 \square 把 \boldsymbol{w} 和 b 吸收入向量形式 $\hat{\boldsymbol{w}}=(\boldsymbol{w};b)$,数据集表示为

$$\mathbf{X} = egin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} & 1 \ x_{21} & x_{22} & \cdots & x_{2d} & 1 \ dots & dots & \ddots & dots & dots \ x_{m1} & x_{m2} & \cdots & x_{md} & 1 \end{pmatrix} = egin{pmatrix} oldsymbol{x}_1^{\mathrm{T}} & 1 \ oldsymbol{x}_2^{\mathrm{T}} & 1 \ dots & dots \ oldsymbol{x}_m^{\mathrm{T}} & 1 \end{pmatrix}$$

$$\boldsymbol{y} = (y_1; y_2; \dots; y_m)$$

多元线性回归 - 最小二乘法

□ 最小二乘法 (least square method)

$$\hat{\boldsymbol{w}}^* = \operatorname*{arg\,min}_{\hat{w}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})$$

$$\hat{m{\varphi}} E_{\hat{m{w}}} = \left(m{y} - \mathbf{X}\hat{m{w}}
ight)^{\mathrm{T}} \left(m{y} - \mathbf{X}\hat{m{w}}
ight)$$
 , 对 $\hat{m{w}}$ 求导得到

$$\frac{\partial E_{\hat{\boldsymbol{w}}}}{\partial \hat{\boldsymbol{w}}} = 2\mathbf{X}^{\mathrm{T}} \left(\mathbf{X} \hat{\boldsymbol{w}} - \boldsymbol{y} \right)$$

令上式为零可得 $\hat{m{w}}$ 最优解的闭式解

多元线性回归 - 满秩讨论

□ X^TX 是满秩矩阵或正定矩阵,则

$$\hat{oldsymbol{w}}^* = \left(\mathbf{X}^{\mathrm{T}} \mathbf{X}
ight)^{-1} \mathbf{X}^{\mathrm{T}} oldsymbol{y}$$

其中 $\left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}$ 是 $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ 的逆矩阵,线性回归模型为

$$f\left(\hat{oldsymbol{x}}_i
ight) = \hat{oldsymbol{x}}_i^{\mathrm{T}} \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}
ight)^{-1} \mathbf{X}^{\mathrm{T}}oldsymbol{y}$$

- \square $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ 不是满秩矩阵
 - 根据归纳偏好选择解(参见1.4节)
 - 引入正则化 (参加**6.4**节, **11.4**节)

Ridge:
$$\min_{w} ||Xw - y||_2^2 + \alpha ||w||_2^2$$

Lasso:
$$\min_{w} \frac{1}{2n_{samples}} ||Xw - y||_{2}^{2} + \alpha ||w||_{1}$$

对数线性回归

□ 输出标记的对数为线性模型逼近的目标

$$\ln y = \mathbf{w}^{\mathrm{T}} \mathbf{x} + b$$

$$\mathbf{y} = \mathbf{w}^{\mathrm{T}} \mathbf{x} + b$$

线性回归 - 广义线性模型

□ 一般形式

$$y = g^{-1} \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b \right)$$

- \square $g(\cdot)$ 称为联系函数 (link function)
 - 单调可微函数

 \square 对数线性回归是 $g(\cdot) = \ln(\cdot)$ 时广义线性模型的特例

二分类任务

□ 预测值与输出标记

$$z = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b \qquad \qquad y \in \{0, 1\}$$

- □ 寻找函数将分类标记与线性回归模型输出联系起来
- □ 最理想的函数——单位阶跃函数

$$y = \begin{cases} 0, & z < 0; \\ 0.5, & z = 0; \\ 1, & z > 0, \end{cases}$$

预测值大于零就判为正例,小于零就判为反例,预测值为临界值零则可任意判别

二分类任务

- □ 单位阶跃函数缺点
 - 不连续
- □ 替代函数——对数几率函数 (logistic function)
 - 单调可微、任意阶可导

单位阶跃函数与对数几率函数的比较

$$y = \frac{1}{1 + e^{-z}}$$

对数几率回归

□ 运用对数几率函数

$$y = \frac{1}{1 + e^{-z}}$$
 要为 $y = \frac{1}{1 + e^{-(\mathbf{w}^{\mathrm{T}}\mathbf{x} + b)}}$

- □ 对数几率 (log odds)
 - 样本作为正例的相对可能性的对数

$$\ln \frac{y}{1-y}$$

- □ 对数几率回归优点
- 无需事先假设数据分布
- 可得到"类别"的近似概率预测
- 可直接应用现有数值优化算法求取最优解

□ 对数几率

$$\ln \frac{p(y=1 \mid \boldsymbol{x})}{p(y=0 \mid \boldsymbol{x})} = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$$

显然有

$$p(y = 1 \mid \boldsymbol{x}) = \frac{e^{\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b}}{1 + e^{\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b}}$$

$$p(y = 0 \mid \boldsymbol{x}) = \frac{1}{1 + e^{\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b}}$$

- 极大似然法 (maximum likelihood)
 - 给定数据集

$$\left\{ \left(\boldsymbol{x}_{i}, y_{i} \right) \right\}_{i=1}^{m}$$

- 最大化样本属于其真实标记的概率
 - 最大化对数似然函数

$$\ell\left(\boldsymbol{w},b\right) = \sum_{i=1}^{m} \ln p\left(y_i \mid \boldsymbol{x}_i; \boldsymbol{w}_i, b\right)$$

- □ 转化为最小化负对数似然函数求解
 - ullet 令 $oldsymbol{eta}=(oldsymbol{w};b)$, $\hat{oldsymbol{x}}=(oldsymbol{x};1)$,则 $oldsymbol{w}^{\mathrm{T}}oldsymbol{x}+b$ 可简写为 $oldsymbol{eta}^{\mathrm{T}}\hat{oldsymbol{x}}$
 - 再令

$$p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) = p(y = 1 \mid \hat{\boldsymbol{x}}; \boldsymbol{\beta})$$
$$p_0(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) = p(y = 0 \mid \hat{\boldsymbol{x}}; \boldsymbol{\beta}) = 1 - p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta})$$

则似然项可重写为

$$p(y_i \mid \boldsymbol{x}_i; \boldsymbol{w}_i, b) = y_i p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) + (1 - y_i) p_0(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta})$$

● 故等价形式为要最小化

$$\ell\left(\boldsymbol{\beta}\right) = \sum_{i=1}^{m} \left(-y_{i}\boldsymbol{\beta}^{\mathrm{T}}\hat{\boldsymbol{x}}_{i} + \ln\left(1 + e^{\beta^{\mathrm{T}}\hat{\boldsymbol{x}}_{i}}\right)\right)$$

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{m} \ln\left(\left[p_{1}(\hat{\boldsymbol{x}}_{i};\boldsymbol{\beta})\right]^{y_{i}}\left[p_{0}(\hat{\boldsymbol{x}}_{i};\boldsymbol{\beta})\right]^{1-y_{i}}\right)$$

$$= \sum_{i=1}^{m} \left[y_{i} \ln\left(p_{1}(\hat{\boldsymbol{x}}_{i};\boldsymbol{\beta})\right) + (1-y_{i}) \ln\left(p_{0}(\hat{\boldsymbol{x}}_{i};\boldsymbol{\beta})\right)\right]$$

$$= \sum_{i=1}^{m} \left\{y_{i} \left[\ln\left(p_{1}(\hat{\boldsymbol{x}}_{i};\boldsymbol{\beta})\right) - \ln\left(p_{0}(\hat{\boldsymbol{x}}_{i};\boldsymbol{\beta})\right)\right] + \ln\left(p_{0}(\hat{\boldsymbol{x}}_{i};\boldsymbol{\beta})\right)\right\}$$

$$= \sum_{i=1}^{m} \left[y_{i} \ln\left(\frac{p_{1}(\hat{\boldsymbol{x}}_{i};\boldsymbol{\beta})}{p_{0}(\hat{\boldsymbol{x}}_{i};\boldsymbol{\beta})}\right) + \ln\left(p_{0}(\hat{\boldsymbol{x}}_{i};\boldsymbol{\beta})\right)\right]$$

$$= \sum_{i=1}^{m} \left[y_{i} \ln\left(e^{\boldsymbol{\beta}^{T}\hat{\boldsymbol{x}}_{i}}\right) + \ln\left(\frac{1}{1+e^{\boldsymbol{\beta}^{T}\hat{\boldsymbol{x}}_{i}}}\right)\right]$$

$$= \sum_{i=1}^{m} \left(y_{i}\boldsymbol{\beta}^{T}\hat{\boldsymbol{x}}_{i} - \ln(1+e^{\boldsymbol{\beta}^{T}\hat{\boldsymbol{x}}_{i}})\right)$$

对数几率回归

□ 求解得

$$\boldsymbol{\beta}^{*} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \ell\left(\boldsymbol{\beta}\right)$$

□ 牛顿法第t+1轮迭代解的更新公式

$$\boldsymbol{\beta}^{t+1} = \boldsymbol{\beta}^{t} - \left(\frac{\partial^{2}\ell\left(\boldsymbol{\beta}\right)}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^{\mathrm{T}}}\right)^{-1} \frac{\partial\ell\left(\boldsymbol{\beta}\right)}{\partial\boldsymbol{\beta}}$$

其中关于 β 的一阶、二阶导数分别为

$$\frac{\partial \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -\sum_{i=1}^{m} \hat{\boldsymbol{x}}_i \left(y_i - p_1 \left(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta} \right) \right)$$

$$\frac{\partial^{2} \ell\left(\boldsymbol{\beta}\right)}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\mathrm{T}}} = \sum_{i=1}^{m} \hat{\boldsymbol{x}}_{i} \hat{\boldsymbol{x}}_{i}^{\mathrm{T}} p_{1}\left(\hat{\boldsymbol{x}}_{i}; \boldsymbol{\beta}\right) \left(1 - p_{1}\left(\hat{\boldsymbol{x}}_{i}; \boldsymbol{\beta}\right)\right)$$

高阶可导连续凸函数,梯度下降法/牛顿法 [Boyd and Vandenberghe, 2004]

机器学习的三要素

□ 模型

- 线性方法: $f(\mathbf{x}, \theta) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b$
- 广义线性方法: $f(\mathbf{x}, \theta) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$
 - 如果 $\phi(x)$ 为可学习的非线性基函数, $f(x,\theta)$ 就等价于神经网络。

□学习准则

• 期望风险

$$\mathcal{R}(f) = \mathbb{E}_{(\mathbf{x},y) \sim p(\mathbf{x},y)} [\mathcal{L}(f(\mathbf{x}),y)],$$

□优化

● 梯度下降

□ 线性判别分析 (Linear Discriminant Analysis) [Fisher, 1936]

LDA也可被视为一种 监督降维技术

□ LDA的思想

- 欲使同类样例的投影点尽可能接近,可以让同类样例投影点的协方差 尽可能小
- 欲使异类样例的投影点尽可能远离,可以让类中心之间的距离尽可能大

□ 一些变量

- 第i类示例的集合 X_i
- 第i类示例的均值向量 μ_i
- ullet 第i类示例的协方差矩阵 $oldsymbol{\Sigma}_i$
- 两类样本的中心在直线上的投影: $m{w}^{\mathrm{T}}m{\mu}_0$ 和 $m{w}^{\mathrm{T}}m{\mu}_1$
- 两类样本的协方差: $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Sigma}_{0}\boldsymbol{w}$ 和 $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Sigma}_{1}\boldsymbol{w}$

□ 最大化目标

$$J = rac{\left\|oldsymbol{w}^{ ext{T}}oldsymbol{\mu}_0 - oldsymbol{w}^{ ext{T}}oldsymbol{\mu}_1
ight\|_2^2}{oldsymbol{w}^{ ext{T}}oldsymbol{\Sigma}_0oldsymbol{w} + oldsymbol{w}^{ ext{T}}oldsymbol{\Sigma}_1oldsymbol{w}} \ = rac{oldsymbol{w}^{ ext{T}}\left(oldsymbol{\mu}_0 - oldsymbol{\mu}_1
ight)\left(oldsymbol{\mu}_0 - oldsymbol{\mu}_1
ight)^{ ext{T}}oldsymbol{w}}{oldsymbol{w}^{ ext{T}}\left(oldsymbol{\Sigma}_0 + oldsymbol{\Sigma}_1
ight)oldsymbol{w}}$$

□ 类内散度矩阵

$$egin{aligned} \mathbf{S}_w &= oldsymbol{\Sigma}_0 + oldsymbol{\Sigma}_1 \ &= \sum_{oldsymbol{x} \in X_0} (oldsymbol{x} - oldsymbol{\mu}_0) \left(oldsymbol{x} - oldsymbol{\mu}_0
ight)^{\mathrm{T}} + \sum_{oldsymbol{x} \in X_1} \left(oldsymbol{x} - oldsymbol{\mu}_1
ight) \left(oldsymbol{x} - oldsymbol{\mu}_1
ight)^{\mathrm{T}} \end{aligned}$$

□ 类间散度矩阵

$$\mathbf{S}_b = \left(oldsymbol{\mu}_0 - oldsymbol{\mu}_1
ight) \left(oldsymbol{\mu}_0 - oldsymbol{\mu}_1
ight)^{\mathrm{T}}$$

□ 广义瑞利商 (generalized Rayleigh quotient)

$$J = \frac{\boldsymbol{w}^{\mathrm{T}} \mathbf{S}_{b} \boldsymbol{w}}{\boldsymbol{w}^{\mathrm{T}} \mathbf{S}_{w} \boldsymbol{w}}$$

 $\square \diamondsuit w^{\mathrm{T}} \mathbf{S}_w w = 1$,最大化广义瑞利商等价形式为

$$\min_{m{w}} \ - m{w}^{\mathrm{T}} \mathbf{S}_b m{w}$$

s.t.
$$\boldsymbol{w}^{\mathrm{T}}\mathbf{S}_{w}\boldsymbol{w}=1$$

□ 运用拉格朗日乘子法

$$\mathbf{S}_b \boldsymbol{w} = \lambda \mathbf{S}_w \boldsymbol{w}$$

□同向向量

 $\mathbf{S}_b oldsymbol{w} = \lambda \left(oldsymbol{\mu}_0 - oldsymbol{\mu}_1
ight)$

□结果

$$oldsymbol{w} = \mathbf{S}_w^{-1} \left(oldsymbol{\mu}_0 - oldsymbol{\mu}_1
ight)$$

- □求解
 - ullet 奇异值分解 $\mathbf{S}_w = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$

$$S_w^{-1} = V \Sigma^{-1} U^T$$

- □ LDA的贝叶斯决策论解释
 - 两类数据同先验、满足高斯分布且协方差相等时,LDA达到最优分类

LDA推广 - 多分类任务

□ 全局散度矩阵

$$\mathbf{S}_t = \mathbf{S}_b + \mathbf{S}_w \ = \sum_{i=1}^m \left(oldsymbol{x}_i - oldsymbol{\mu}
ight) \left(oldsymbol{x}_i - oldsymbol{\mu}
ight)^T$$

□ 类内散度矩阵

$$\mathbf{S}_w = \sum_{i=1}^N \mathbf{S}_{w_i}$$

其中

$$\mathbf{S}_{w_i} = \sum_{oldsymbol{x} \in X_i} \left(oldsymbol{x} - oldsymbol{\mu}_i
ight) \left(oldsymbol{x} - oldsymbol{\mu}_i
ight)^T$$

□求解得

$$\mathbf{S}_b = \mathbf{S}_t - \mathbf{S}_w$$

$$= \sum_{i=1}^N m_i \left(\boldsymbol{\mu}_i - \boldsymbol{\mu} \right) \left(\boldsymbol{\mu}_i - \boldsymbol{\mu} \right)^T$$

LDA推广 - 多分类任务

□ 优化目标

$$\max_{\mathbf{W}} \frac{\operatorname{tr}\left(\mathbf{W}^{\mathrm{T}}\mathbf{S}_{b}\mathbf{W}\right)}{\operatorname{tr}\left(\mathbf{W}^{\mathrm{T}}\mathbf{S}_{w}\mathbf{W}\right)}$$

其中 $\mathbf{W} \in \mathbb{R}^{d \times (N-1)}$

 ${f W}$ 的闭式解则是 ${f S}_w^{-1}{f S}_b$ 的 ${f N-1}$ 个最大广义特征值所对应的特征向量组成的矩阵

□ 多分类LDA将样本投影到N-1维空间, N-1通常远小于数据原有的属性数, 因此LDA也被视为一种监督降维技术

二分类LDA示例

- Compute the Linear Discriminant projection for the following twodimensional dataset.
 - Samples for class ω_1 : $\mathbf{X}_1 = (x_1, x_2) = \{(4,2), (2,4), (2,3), (3,6), (4,4)\}$
 - Sample for class ω_2 : $\mathbf{X}_2 = (x_1, x_2) = \{(9,10), (6,8), (9,5), (8,7), (10,8)\}$

• The classes mean are:

$$\mu_{1} = \frac{1}{N_{1}} \sum_{x \in \omega_{1}} x = \frac{1}{5} \left[\binom{4}{2} + \binom{2}{4} + \binom{2}{3} + \binom{3}{6} + \binom{4}{4} \right] = \binom{3}{3.8}$$

$$\mu_{2} = \frac{1}{N_{2}} \sum_{x \in \omega_{2}} x = \frac{1}{5} \left[\binom{9}{10} + \binom{6}{8} + \binom{9}{5} + \binom{8}{7} + \binom{10}{8} \right] = \binom{8.4}{7.6}$$

% class means
Mu1 = mean(X1)';
Mu2 = mean(X2)';

Covariance matrix of the first class:

$$S_{1} = \sum_{x \in \omega_{1}} (x - \mu_{1})(x - \mu_{1})^{T} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3 \end{bmatrix} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

% covariance matrix of the first class S1 = cov(X1);

Covariance matrix of the second class:

$$S_{2} = \sum_{x \in \omega_{2}} (x - \mu_{2})(x - \mu_{2})^{T} = \left[\begin{pmatrix} 9 \\ 10 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 6 \\ 8 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 9 \\ 5 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 8 \\ 7 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 10 \\ 8 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 2.3 & -0.05 \\ -0.05 & 3.3 \end{pmatrix} \right]$$

% covariance matrix of the first class S2 = cov(X2);

Within-class scatter matrix:

$$\begin{split} S_w &= S_1 + S_2 = \begin{pmatrix} 1 & -0.25 \\ -0.25 & 2.2 \end{pmatrix} + \begin{pmatrix} 2.3 & -0.05 \\ -0.05 & 3.3 \end{pmatrix} \\ &= \begin{pmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{pmatrix} \end{split}$$

% within-class scatter matrix Sw = S1 + S2 ; Between-class scatter matrix:

$$S_{B} = (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{T}$$

$$= \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} - \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix} \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} - \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -5.4 \\ -3.8 \end{bmatrix} (-5.4 - 3.8)$$

$$w^* = S_W^{-1}(\mu_1 - \mu_2) = \begin{pmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{pmatrix}^{-1} \begin{bmatrix} 3 \\ 3.8 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{bmatrix}$$
$$= \begin{pmatrix} 0.3045 & 0.0166 \\ 0.0166 & 0.1827 \end{pmatrix} \begin{pmatrix} -5.4 \\ -3.8 \end{pmatrix}$$
$$= \begin{pmatrix} 0.9088 \\ 0.4173 \end{pmatrix}$$

LDA - Projection

LDA - Projection

多分类学习

- □ 多分类学习方法
 - 二分类学习方法推广到多类
 - 利用二分类学习器解决多分类问题(常用)
 - 对问题进行拆分,为拆出的每个二分类任务训练一个分类器
 - 对于每个分类器的预测结果进行集成以获得最终的多分类结果

□ 拆分策略

- 一対一 (One vs. One, OvO)
- 一对其余 (One vs. Rest, OvR)
- 多对多 (Many vs. Many, MvM)

多分类学习 - 一对一

- □ 拆分阶段
 - N个类别两两配对
 - N(N-1)/2 个二类任务
 - 各个二类任务学习分类器
 - N(N-1)/2 个二类分类器

- □ 测试阶段
 - 新样本提交给所有分类器预测
 - N(N-1)/2 个分类结果
 - 投票产生最终分类结果
 - 被预测最多的类别为最终类别

多分类学习 - 一对其余

- □ 任务拆分
 - 某一类作为正例,其他反例
 - N 个二类任务
 - 各个二类任务学习分类器
 - N 个二类分类器

- □测试阶段
 - 新样本提交给所有分类器预测
 - N 个分类结果
 - 比较各分类器预测置信度
 - 置信度最大类别作为最终类别

多分类学习 - 两种策略比较

多分类学习 - 两种策略比较

一对

- □ 训练N(N-1)/2个分类器, 存储开销和测试时间大
- □ 训练只用两个类的样例,训练时间短

一对其余

- □ 训练N个分类器,存储开销和 测试时间小
- □ 训练用到全部训练样例,训练 时间长

预测性能取决于具体数据分布, 多数情况下两者差不多

多分类学习 - 多对多

- □ 多对多 (Many vs Many, MvM)
 - 若干类作为正类,若干类作为反类
- □ 纠错输出码 (Error Correcting Output Code, ECOC)

多分类学习 - 多对多

□ 纠错输出码(Error Correcting Output Code, ECOC)

(a) 二元 ECOC 码

[Dietterich and Bakiri,1995]

(b) 三元 ECOC 码

[Allwein et al. 2000]

- ECOC编码对分类器错误有一定容忍和修正能力,编码越长、纠错能力越强
- 对同等长度的编码,理论上来说,任意两个类别之间的编码距离越远,则 纠错能力越强

类别不平衡问题

- 类别不平衡 (class imbalance)
 - 不同类别训练样例数相差很大情况(正类为小类)

类别平衡正例预测
$$\frac{y}{1-y}>1$$
 正负类比例

- □ 再缩放
 - 欠采样 (undersampling)
 - 去除一些反例使正反例数目接近(EasyEnsemble [Liu et al.,2009])
 - 过采样 (oversampling)
 - 增加一些正例使正反例数目接近(SMOTE [Chawla et al.2002])
 - 國值移动(threshold-moving)

优化提要

- □ 各任务下(回归、分类)各个模型优化的目标
 - 最小二乘法:最小化均方误差
 - 对数几率回归:最大化样本分布似然
 - 线性判别分析:投影空间内最小(大)化类内(间)散度
- □ 参数的优化方法
 - 最小二乘法:线性代数
 - 对数几率回归: 凸优化梯度下降、牛顿法
 - 线性判别分析:矩阵论、广义瑞利商

总结

- □ 线性回归
 - 最小二乘法 (最小化均方误差)
- □ 二分类任务
 - 对数几率回归
 - 单位阶跃函数、对数几率函数、极大似然法
 - 线性判别分析
 - 最大化广义瑞利商
- □ 多分类学习
 - \(\sqrt{1}\)—
 - 一对其余
 - 多对多
 - 纠错输出码
- □ 类别不平衡问题
 - 基本策略:再缩放