Math 310: Class Notes Avinash Iyer

Introduction: naive set theory

$$\begin{split} \mathbb{N} &= \{1,2,3,\ldots\} \\ \mathbb{Z} &= \{0,\pm 1,\pm 2,\ldots,\} \\ \mathbb{Z}_+ &= \{0,1,2,\ldots,\} \\ \mathbb{Q} &= \left\{\frac{\alpha}{b} \mid \alpha,b \in \mathbb{Z}, b \neq 0\right\} \\ \mathbb{C} &= \{\alpha+bi \mid \alpha,b \in \mathbb{R}\} \\ \mathbb{C}_q &= \{\alpha+bi \mid \alpha,b \in \mathbb{Q}\} \end{split}$$

Recall: given sets X and Y, a relation from X to Y is a subset of $X \times Y$, where \times denotes the cartesian product of X and Y.

A relation $f \subseteq X \times Y$ is a function from X to Y such that $\forall x \in X$, $\exists ! y \in Y$ such that $(x, y) \in f$. We write f(x) = y, and denote f as $f : X \to Y$.

X is the **domain** of f and Y is the **codomain**. The range $Ran(f) = \{f(x) \mid x \in X\} \subseteq Y$.

The graph of a function $Graph(f) = \{(x, f(x)) \mid x \in X\} \subseteq X \times Y.$

Examples

$$id_x : X \to X, id_X(x) = x$$

This is the identity function.

The Characteristic Function: If $A \subseteq X$

$$\mathbf{1}_A: X \to \mathbb{R}, \ \mathbf{1}_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Algebra of Functions

Let X be any set, and $(X; \mathbb{R}) = \{f : X \to \mathbb{R}\}$ represent the function space of X with codomain \mathbb{R} .

Let f, $g \in \mathcal{F}(X;\mathbb{R})$. Then, (f+g)(x) = f(x) + g(x), and $(f \cdot g)(x) = f(x) \cdot g(x)$.

If $t \in \mathbb{R}$, then (tf)(x) = tf(x) (scalar multiplication). If $g(x) \neq 0 \forall x \in X$, then $\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}$.

Finally, we have composition. If $f: X \to Y$ and $g: Y \to Z$ are functions, then $g \circ f(x) = g(f(x))$.

Injective, Surjective, and Bijective

A function $f:X\to Y$ is a **injective** map, then, if $f(x_1)=f(x_2)$, then $x_1=x_2$. For example, the shift map $S:\mathbb{N}\to\mathbb{N}$, S(n)=n+1 is injective.

Any strictly increasing function $f:I\to\mathbb{R}$, where I is any interval, is injective.

A function f is **surjective** if $\forall y \in Y, \exists x \in X \text{ such that } f(x) = y$.

Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 - 2x + 1$. We can show that this function is surjective because $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to -\infty} f(x) = -\infty$. Due to the intermediate value theorem, we get that $Ran(f) = \mathbb{R}$.

f is **bijective** if it is injective and surjective.

Math 310: Class Notes Avinash Iyer

Invertibility

Let $f: X \to Y$ be a function. f is left-invertible if $\exists g: Y \to X$ such that $g \circ f = \mathrm{id}_X$. f is right-invertible if $\exists h: Y \to X$ such that $f \circ h = \mathrm{id}_Y$.

f is **invertible** if $\exists k : Y \to X$ such that $f \circ k = id_Y$ and $k \circ f = id_X$.

Proposition

f is invertible if and only if f is left and right invertible.

Forward direction: This is via the definition of invertibility.

Reverse direction: Suppose g is a left-inverse of f, and h is a right-inverse of f. Therefore, $g \circ f = id_X$, and $f \circ h = id_Y$. Observe that $g = g \circ id_Y$. Therefore, $g = g \circ (f \circ h)$. Via associativity, $g = (g \circ f) \circ h = id_X \circ h = h$.

Theorem

If $f: X \to Y$ is a function:

- 1. f is injective \Leftrightarrow f is left-invertible.
- 2. f is surjective $\Leftrightarrow f$ is right-invertible.
- 3. f is bijective \Leftrightarrow f is invertible.

We will prove the first proposition in the forward direction. Suppose f is injective. Given $y \in Ran(f)$, we know that $\exists ! x_y \in X$ such that $f(x_y) = Y$, by the definition of injective.

Let $g: Y \to X$. We will define g as follows:

$$g(y) = \begin{cases} x_y & y \in Ran(f) \\ x_0 & y \notin Ran(f) \end{cases}$$

Where x_0 is an arbitrary point in X. We can see that $g \circ f = id_X$.

For example, the function Sin(x) defined as sin(x) restricted to $[-\pi/2, \pi/2]$ has an inverse, $arcsin(x): [-1,1] \rightarrow [-\pi/2, \pi/2]$.