

Redes móveis LTE – Falhas e degradações

Diagnóstico de causa raiz de falhas e degradação de indicadores de performance em redes LTE utilizando agrupamento não supervisionado e classificação supervisionada CPE 722 — Redes Neurais Não Supervisionadas e Agrupamento Prof. Luiz Pereira Calôba, Dr.Ing.

Carlos Eduardo Covas Costa 2017 / 1

Agenda

- 1 Introdução
- 2 Descrição do Dataset
- 3 Aprendizado não supervisionado
- 4 Aprendizado Supervisionado
- 5 Avaliação do resultados
- 6 Conclusão

Motivação

- Crescimento constante no tamanho e complexidade de redes móveis celulares LTE.
- Dificuldade maior para realização de tarefas de monitoramento e diagnóstico de falhas a medida que a quantidade de elementos de rede aumenta.
- Interesse crescente na capacidade de 'Self-Healing' de uma rede detectar suas falhas, evitando que problemas como queda de chamada, cobertura ruim e baixa velocidade permaneçam bastante tempo sem serem percebidos.
- Sistemas de diagnóstico de falhas normalmente utilizam regras definidas a priori (IF-ELSE) ou se baseiam em bases com rótulos de problemas de redes que dificilmente são produzidas.

Objetivo

- Utilizar técnica de aprendizado não supervisionado para detecção de padrões de falhas de rede LTE.
- Identificar os padrões detectados e perceber e atribuir rótulos para classes baseado no compormento estatístico dos dados e em conhecimento específico da área.
- Comparar o a técnica não supervisionado com uma técnica supervisionada utilizando o mesmo dataset .

Dataset gerado utilizando um simulador de redes LTE implementado em MATLAB [2]. 57 células distribuídas igualmente em uma grade hexagonal Dataset disponível em [3]

Parameter	Configuration			
	Configuration			
Cellular layout	Hexagonal grid, 57 cells, cell radius 0.5 km			
Transmission direction	Downlink			
Carrier frequency	2.0 GHz			
System bandwidth	1.4 MHz (6 physical resource blocks)			
Frequency reuse	1			
Propagation model	Okumura-Hata with wrap-around, Log-normal			
	slow fading, $\sigma_{sf} = 8$ dB and			
	correlation distance=50m			
Channel model	Multipath fading, ETU model			
Mobility model	Random direction, 3 km/h			
Service model	Full Buffer, poisson traffic arrival			
Base station model	Tri-sectorized antenna, SISO, Donwtilt=9 °			
	$P_{TX_{max}} = 43 \text{ dBm},$			
	Azimuth beamwidth (AB)=70 °			
	Elevation beamwidth (EB)=10 °			
Scheduler	Time domain: Round-Robin,			
	Frequency domain: Best Channel			
Power control	Equal transmit power per physical			
	resource blocks			
Link Adaptation	Fast, CQI based, perfect estimation			
Handover	Triggering event = $A3$, $HOM = 3 dB$,			
	Measurement type = RSRP			
Radio Link Failure	SINR < -6.9 dB for 500 ms			
Traffic distribution	Evenly distributed in space			
Time resolution	100 TTI (100 ms)			
Epoch & KPI time	100 s			

Entradas composta por indicadores KPIs 3GPP[4] de um célula em um determinado instante de tempo.

S = [Retainability, HOSR,RSRP,RSRQ,SINR,Throughput, Distance]

Retainability: Conexões terminadas com sucesso dividido pelo total de conexões estabelecidas.

HOSR: Taxa de sucesso de Handover (mobilidade)

RSRP: Reference Signal Received Power. Potência média dos sinais de referência da largura de banda usada.

RSRQ: Reference Signal Received Quality. Razão da potência útil (RSRP) e toda potência recebida (RSSI).

SINR: Relação sinal ruído.

Throughput: Média da velocidade dos usuários na célula.

Distance: Distância entre a estação e o usuário

6 diferentes tipos de falhas foram simulados para deteriorar células escolhidas aleatoriamente.

Células em estado normal são mais comuns que células com falhas em uma rede. Neste trabalho a proporção de células em estado normal é de 73.93%

Treinamento: 550 registros

Validação: 4009

Fault Cause	Configuration	Number of Cases		
raun Cause	Comiguration	Training	Validation	
EU	Downtilt=[0,1] °	32	212	
ED	Downtilt=[16,15,14] °	28	212	
ERP	$\Delta P_{TX} = [7,8,9,10] \text{ dB}$	28	208	
CH	$\Delta_{hole} = [49,50,52,53] \text{ dBm}$	14	103	
TLHO	HOM=[6,7,8] dBm	34	204	
II	$P_{TX_{max}} = 33 \text{ dBm}$			
	Downtilt=15 °			
	AB=[30, 60] °	15	106	
	EB=10 °			
No fault	Normal	399	2964	

Todos os KPIs foram normalizados com média 0 e desvio padrão 1

Aprendizado Não Supervisionado (SOM)

Parâmetros	Valores
Dimensionamento P/Q	$\sigma^2 da$ 1ª Componente principal
	$\sigma^2 da$ 2ª Componente principal
Treinamento	Batch
Inicialização	PCA
Iterações	20000
Função de Vizinhança	Bubble
Raio de Vizinhança Inicial	$2\sqrt{P^2+Q^2}=2.84$
Raio de Vizinhança Final	1
Decréscimo do Raio	Linear
Taxa de aprendizado inicial	0.1
Decréscimo da taxa de aprendizado	Linear

Aprendizado Não Supervisionado

- Treinamento não supervisionado utilizando rede SOM.
- 2. Avaliação do número de agrupamentos utilizando Silhouette Index
- Clusterização hierárquica não supervisionada utilizando método Ward.
- Análise das pdfs de cada KPI para cada classe encontrada para idenficação do tipo de falha.

Mapa de Kohonen calculado utilizando biblioteca Somoclu de Python[5]

Aprendizado Não Supervisionado

Silhouette Coefficient:

$$s = \frac{b - a}{max(a, b)}$$

a é distância média entre uma amostra e todos os outros pontos da mesma classe.

b é distância média entre uma amostra e todos os outros pontos no próximo cluster mais próximo.

Aprendizado Não Supervisionado

Clusterização aglomerativa hierárquica baseada no critério Ward (método de mínima variância) como função objetivo.

Escolhido K = 7 clusters

Pdf (KPIs por causa)

Pdf (KPIs por causa)

Identificação de causas (classes)

	Retainability	HOSR	RSRP	RSRQ	SINR	Throughput	Distance
class							
1	0.993707	0.978094	-71.821918	-18.148264	14.847058	118.550412	0.896384
2	0.995344	0.987531	-77.703219	-18.150281	12.831062	86.665656	1.234625
3	0.903300	0.950600	-72.182900	-17.943500	15.239200	112.678000	0.907000
4	0.934333	0.926467	-72.803600	-18.126867	7.105533	69.745067	0.892867
5	0.937952	0.629810	-72.219000	-19.306857	14.257952	111.963048	0.891143
6	0.977862	0.939759	-77.155310	-19.134207	9.844345	149.814483	0.713414
7	0.947538	0.858192	-65.857346	-19.391385	13.774462	176.092385	0.628423

Aprendizado Supervisionado

Algoritmo: *k*-nearest neighbors

K com maior acurácia = 3

Validação cruzada 10 fold

Avaliação

Taxa de falso positivo (TFP): Casos normais diagnosticados como falhas pelo número de casos normais

Taxa de falso negativo(TFN): Casos problematicos diagnosticados como normais pelo número de casos problematicos.

Erro de diagnóstico (ED): Casos problematicos diagnosticados com uma falha diferente da real

Prevalência de casos normais(PN): 73.93%

Prevalência de falhas(PF): 26.07% Erro Total: PN* TFP + PF*(TFN+ED)

Fase	Algoritmo	Acurácia[%]	TFP[%]	TFN[%]	ED[%]	Etotal[%]
Treinamento	KNN	97.19	0	5.3	0.66	1.64
Treinamento	SOM	96.36	0	11.92	1.32	3.63
Teste	KNN	99.57	0.26	1.14	0.76	0.69
Teste	SOM	98.21	0.067	5.16	1.53	1.79

Conclusão

- A grande prevalência de dados pertencente a uma mesma classe (células em estado normal) tornou a base desbalanceada, atrapalhando, assim, uma melhor visualização do mapa de Kohonen
- Apesar do desbalanceamento de classes, o algoritmo SOM+ clusterização hierárquica aglomerativa com método Ward apresentou ótimos resulados identificando as classes normais e falhas produzidas nos dados simulados.
- O método de avaliação dos agrupamentos, baseado em similaridade intra cluster e dissimilaridade inter cluster com o agrupamento mais próximo, encontrou resultado ótimo paraa k= 7 classes, como esperado.
- •Ambos os métodos tiveram taxa de falso positivo = 0 no treinamento e um valor bem pequeno no teste, mostrando que não tiveram problemas para classificar os casos em que não há falhas na rede.
- Ambos os métodos tiveram uma taxa um pouco elevada de falso negativos. O SOM apresentou cerca de 11% de classificação de normalidade quando há falhas. Tal fato merece ser revisto, pois possui implicações negativas na aplicação em questão.
- Ambos os métodos supervisionado e não supervisionado obtiveram ótimos resultados de acurácia e erro total de classificação de classes no geral. Apesar de obter um resultado um pouco inferior ao método supervisionado, o método não supervisionado obteve resultados satisfatórios, demostrando que a solução proposta é válida para aplicação de acordo com os objetivos definidos.

Referências

- [1] A. Gómez-Andrades, P. Muñoz, I. Serrano, and R. Barco, "Automatic root cause analysis for LTE networks based on unsupervised techniques," IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2369–2386, Apr. 2016
- [2] P. Muñoz et al., "Computationally efficient design of a dynamic systemlevel LTE simulator," Int. J. Electron. Telecommun., vol. 57, no. 3,pp. 347–358, Sep. 2011.
- [3] A. Gómez-Andrades et al., "Labelled cases of LTE problems," 2014. [Online]. Available: http://webpersonal.uma.es/de/rbarco/
- [4] "Physical layer; Measurements," Third-Generation Partnership Project, Sophia Antipolis Cedex, France, 3GPP TS 25.215.
- [5] Peter Wittek, Shi Chao Gao, Ik Soo Lim, Li Zhao (2015). Somoclu: An Efficient Parallel Library for Self-Organizing Maps.

[Online] Available: https://arxiv.org/abs/1305.1422