

Stanley M. Longwill
Charles R. Wood

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF INTERNAL AFFAIRS
Genevieve Blatt, Secretary

BUREAU OF TOPOGRAPHIC AND GEOLOGIC SURVEY Arthur A. Socolow, State Geologist

PENNSYLVANIA STATE LIBRARY

BYG 3M5/4.3

Ground-Water Resources of the Brunswick Formation in Montgomery and Berks Counties, Pennsylvania

by Stanley M. Longwill and Charles R. Wood
Hydraulic Engineers, U. S. Geological Survey

Prepared by the United States Geological Survey, Ground Water Branch, in cooperation with the Pennsylvania Geological Survey

PENNSYLVANIA GEOLOGICAL SURVEY
FOURTH SERIES
HARRISBURG

1965

CONTENTS

	Page	
Introduction Purpose and scope Location of the area Methods of this investigation Previous investigations Acknowledgments Well-numbering system Climate Geology Newark Group Lockatong Formation Brunswick Formation Fanglomerates Metamorphism Diabase Structure Hydrology Principles Occurrence of ground water in the	1 2 2 2 3 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
Conclusions		
	ATIONS JRES Page	•
area covered by this 2. Diagram showing the re of wells in the Brun 3. Logarithmic graph of 4. Logarithmic graph of Mg-633	ennsylvania showing location of report	3

6. Logarithmic graph of recovery in well Be-115 when used as the pumped well and when used as an obser-	
vation well	22
gomery Counties, Pa	28
water in the Lockatong Formation in Montgomery County, Pa	29
9. Relation of calcium content and carbonate hardness as CaCO ₃ to dissolved-solids content	30
10. Relation of magnesium content to dissolved-solids con-	
tent	32 33
12. Relation of bicarbonate and sulfate content to dissolved-	2/
solids content	34
tent	35
PLATE	
PLATE 1. Geologic map of the Brunswick and Lockatong Formations in Berks and Montgomery Counties, Pa., showing well locations in pool	cke.
TABLES	
P	age
1. Summary of pumping tests with observation wells in the Brunswick Formation	17
2. Summary of pumping tests without observation wells in the Bruns-	
wick and Lockatong Formations	25
in Berks and Montgomery Counties, Pa	40
in Montgomery County, Pa	42
5. Comparison of the chemical quality of ground water in the Brunswick and Lockatong Formations	43
6. Record of wells	44
Montgomery Counties, Pa	52

Page

Ground-water Resources of the Brunswick Formation in Montgomery and Berks Counties, Pennsylvania

By

Stanley M. Longwill and Charles R. Wood

ABSTRACT

The Brunswick Formation in Montgomery and Berks Counties, Pa., consists of reddish-brown shale, mudstone, and siltstone, which are interbedded with sandstone and fanglomerate near the northern border of the Triassic basin. In places the Brunswick Formation has been intruded by diabase dikes and sills, and throughout much of its outcrop area it is interbedded with the Lockatong Formation. The Lockatong Formation in Montgomery County consists principally of massively bedded medium- to dark-gray argillite interbedded with thin beds of gray to black shale, siltstone, and marlstone.

Ground water in the Brunswick and Lockatong Formations occurs largely in secondary openings such as joint planes. These secondary openings are more abundant and much more closely spaced in the Brunswick Formation than in the Lockatong Formation. Consequently, wells in the Lockatong Formation generally yield water for domestic purposes only whereas many wells in the Brunswick Formation yield sufficient water for industrial and municipal use.

Data from 199 wells that obtain water from only the Brunswick Formation in Montgomery County indicate that wells should be drilled at least 200 feet deep, if yields of more than 100 gpm (gallons per minute) are desired. Wells drilled to depths between 200 and 550 feet are most likely to obtain maximum yields.

Pumping tests in the Brunswick Formation, using observation wells, were made at six localities. Coefficients of transmissibility computed from drawdown data at the observation wells are much higher than transmissibilities calculated at the pumped wells, demonstrating the poor hydraulic connection between the pumped wells and the observation wells. The excessively high transmissibilities are useful for estimating the effect of pumping upon nearby wells and indicate that interference between wells during brief periods of pumping may be somewhat less in the Brunswick Formation than in an ideal aquifer. Water levels in the observation wells declined to a greater extent than predicted by the transmissibilities computed from data obtained during the early part of a pumping test, however, because impermeable boundaries appear in the test data of almost all observation wells. Transmissibilities computed for the pumped wells at the six test localities range from 100 to 5,000 gpd (gallons per day) per foot, and the median transmissibility is 1,100 gpd per foot.

Transmissibilities determined from additional pumping tests in the Brunswick Formation, which were made without observation wells, range from 140 to 4,000 gpd per foot, and the median is 600 gpd per foot. Transmissibilities determined from pumping tests in the Lockatong Formation, all of which were made without observation wells, range from 60 to 2,600 gpd per foot, and the median is 150 gpd per foot.

Observation wells situated along a line from the pumping well that is perpendicular to the strike of the beds show much less drawdown in response to pumping than do wells situated along a line parallel to the strike, because the former do not penetrate the same strata as the pumped well. The resultant cone of depression surrounding a pumping well is ellipsoidal in shape—being elongated parallel to strike.

Chemical analyses of ground-water are available from 36 wells in the Brunswick Formation and six wells in the Lockatong Formation. Ground water in both formations is largely of the calcium-bicarbonate type. However, water samples from the Brunswick Formation having concentrations of dissolved solids greater than 500 ppm (parts per million) are of the calcium-sulfate type. Median dissolved-solids content is 302 ppm in water from the Brunswick Formation and 268 ppm in water from the Lockatong Formation. Median hardness as CaCO₃ is 218 ppm in water from the Brunswick Formation and 206 ppm in water from the Lockatong Formation.

INTRODUCTION

PURPOSE AND SCOPE

Prior to 1940, the area in Montgomery and Berks Counties that lies to the north and northwest of Philadelphia, Pa., consisted chiefly of small towns surrounded by farm land. The industrialization and urbanization of this area increased rapidly after the Second World War. For example, the population of Montgomery County as determined by the 1940 census was only 289,247, but by 1960 the population had risen to 516,682, almost double the 1940 figure. Most of the population increase and industrial investment occurred in the southern part of Montgomery County while the northern part retained its rural character.

The development of new ground-water supplies to meet the increased demands of industries, municipalities, and individual consumers in this rapidly growing area has been seriously handicapped by a lack of geologic and hydrologic data. Having recognized that maximum utilization of the available supply depends on understanding the occurrence, movement, and distribution of the ground water in the area, a study of the occurrence of ground-water in the Triassic rocks of southeastern Pennsylvania was begun in 1956 by the U.S. Geological Survey in cooperation with the Pennsylvania Topographic and Geologic Survey.

This report deals chiefly with the ground-water resources of the Brunswick Formation in Montgomery and Berks Counties, although some attention is directed to the water-bearing properties of the Lockatong Formation in the same area. It is one of a series of reports that will eventually describe the ground-water resources of the rocks of Triassic age in southeastern Pennsylvania. The first of these, a report on the Stockton Formation in southeastern Pennsylvania, was published in 1962 (Rima, D. R., and others, 1962).

LOCATION OF THE AREA

The area covered by this report is in Montgomery and Berks Counties, in southeastern Pennsylvania, between lat. 40°08′ and 40°27′ N. and long. 75°09′ and 75°56′ W. (See Fig. 1.) The area extends for 41 miles from the eastern border of Montgomery County to its most western point, on

Figure 1. Map of southeastern Pennsylvania showing location of area covered by this report. the Schuylkill River near Reading, Pa. It is 16 miles wide in eastern Montgomery County and narrows to less than 1 mile wide near Reading. The total area covered by the report is 347 square miles, of which 300 square miles is in Montgomery County and 47 square miles is in Berks County.

METHODS OF THIS INVESTIGATION

An inventory was made of nearly all municipal and industrial wells and about 70 rural and domestic wells in the area covered by this report. The records for 322 wells are given in table 6, and the well locations are shown in Plate 1.

Pumping tests ranging in duration from 3 to 101 hours (and making use of observation wells) were made at six locations. Short-term pumping tests (generally of 1-hour duration and without the use of observation wells) were made at 15 wells. Three test wells were drilled in order to obtain geologic data and to provide sites for pumping tests.

Ground-water samples were collected from 42 wells, and complete chemical analyses of the samples were made by the Quality of Water Branch, U.S. Geological Survey.

PREVIOUS INVESTIGATIONS

The ground-water resources of the Brunswick and Lockatong Formations in Berks and Montgomery Counties were described very briefly by Hall (1934) who made a reconnaissance investigation of the ground-water resources of southeastern Pennsylvania. Rima (1955) investigated the ground-water resources of the Brunswick Formation in the vicinity of

Lansdale. Greenman (1955) described the ground-water resources of the Brunswick and Lockatong Formations in adjoining Bucks County. Barksdale and others (1958) prepared a report covering the ground-water resources in the tri-state region adjacent to the lower Delaware River, which discussed the water-bearing properties of the Brunswick and Lockatong Formations.

The geology of the Quakertown and Doylestown 15-minute quadrangle was described and mapped by Bascom and others (1931). Bascom and Stose (1938) described the geology of the Phoenixville 15-minute quadrangle. Since 1932, D. B. McLaughlin has written many articles describing the geology of the Brunswick and Lockatong Formations in southeastern Pennsylvania. These articles are summarized in the report on the geology of the Mesozoic rocks in Bucks County (McLaughlin, 1959) which describes in detail the geology of the Brunswick and Lockatong Formations in southeastern Pennsylvania.

ACKNOWLEDGMENTS

The writers acknowledge with appreciation the cooperation and assistance received from well drillers, industries, home owners, water companies, and local, state, and federal governmental agencies.

Appreciation is expressed to Leeds and Northrup Co., North Wales, who permitted their wells to be used for water-level measurements, assisted in aquifer tests, and supplied drillers logs of wells. Nice Ball Bearing Co., Kulpsville; Kawecki Chemical Co., Boyertown; Douglassville Development Corp., Douglassville; Pennhurst State School, Spring City; and Charles Johnson County Home, Royersford; permitted their wells to be used in pumping tests and made available sites for additional test wells. Acknowledgment is made to Souderton Borough for providing sites for water-level recorders and permitting the use of their wells in aquifer tests.

Most of the data for the geologic map (Pl. 1) was obtained from unpublished geologic maps by Dr. Dean B. McLaughlin, University of Michigan.

WELL-NUMBERING SYSTEM

All wells used in this report have an identification number and a location number. The identification number consists of two parts. The first part is a two-letter symbol that identifies the county in which the well is located. For example, wells in Montgomery County are identified by the symbol Mg and those in Berks County are identified by the letters Be. The second part of the identification number is a serial number that was assigned at the time the well was first visited during the field investigation.

Each well identified in the manner described is located by means of a three-part well-location number. The first two parts are obtained by super-

imposing a grid network on the area of investigation. The network is constructed of 1-minute parallels of latitude and meridians of longitude. Thus, it consists of a series of 1-minute quadrangles each of which can be identified by two three-digit numbers. The first number, which identifies the latitude bounding the quadrangle on the south, is formed by the last digit used in the number of degrees latitude and the two digits used in the number of minutes. The second three-digit number is obtained in a similar way by using the degrees and minutes of the longitude bordering the quadrangle on the east. The third part is a serial number assigned to distinguish the wells from others in the same quadrangle.

For example, a well in Montgomery County given identification number Mg-633 bears the location number 015-520-10. This well is located in the 1-minute quadrangle that is bounded on the south by latitude 40°15′ and on the east by longitude 75°20′. The serial number 10 indicates that this well was the tenth well visited within that 1-minute quadrangle.

CLIMATE

Pennsylvania has a humid climate and moderate temperatures. Most of the weather disturbances that affect Pennsylvania are carried from the interior of the continent by prevailing westerly winds. However, coastal storms occasionally affect day-to-day weather in the southeastern part of the state (Kauffman, 1960, p. 2). Differences in elevation within the area in this report are not great enough to cause any major differences in climate.

Temperatures in southeastern Pennsylvania generally range from O°F to 100°F. The summers are long, and daily temperatures reach 90°F or above on an average of 25 days during the summer. The winters are mild, and the minimum temperatures go below 32°F an average of less than 100 days a year. The average annual temperature for the report area, based on data for Phoenixville, is 54.3°F. Mean monthly temperatures at Phoenixville range from 33.1°F in February to 76.7°F in July. (Data from U.S. Weather Bureau climatic summaries.) The freeze-free season usually ranges from 170 to 200 days.

ranges from 170 to 200 days.

The average annual precipitation from 1931 to 1955, based on records from several stations within the area, was about 44 inches. The minimum annual precipitation recorded within the report area is 26.45 inches at Pottstown in 1930. The maximum annual precipitation recorded for the area is 71.32 inches at Pottstown in 1889.

Precipitation is fairly well distributed throughout the year, but occasionally dry spells persist for several months with very little rainfall. The average seasonal snowfall is about 30 inches; the ground is covered by snow about one-third of the time during the winter.

Occasional severe coastal storms have caused a normal 1-month rainfall to occur within a period of 48 hours. Floods have been caused by these

coastal storms and by melting snow and heavy rain in the spring. Major flooding occurred along the Schuylkill River in 1902, 1935, 1942, and 1955.

GEOLOGY

NEWARK GROUP

Rocks of Triassic age occupy a series of disconnected, downfaulted basins that extend from Nova Scotia to North Carolina. These rocks, known as the Newark Group, often have a reddish color and consist principally of conglomerate, arkose, sandstone, siltstone, argillite, and shale. They are interbedded with basaltic lava flows and are intruded by diabase dikes and sills.

McLaughlin (1957, p. 1492-1493) believes that the Newark Group is of Late Triassic age. Paleontologic data support this conclusion (Wherry, 1959, p. 124). Rocks of the group overlie Paleozoic and Precambrian rocks unconformably, and in New Jersey the Newark Group is overlain unconformably by Cretaceous rocks.

The Triassic rocks of Montgomery and Berks Counties are part of the largest Triassic basin in the eastern United States. This basin extends from the Hudson River in southeastern New York, across New Jersey, southeastern Pennsylvania, Maryland, and into northern Virginia. In Pennsylvania the width of the basin ranges from about 30 miles in eastern Montgomery County to about 4 miles southeast of Lebanon, Pa.

In southeastern Pennsylvania and western New Jersey the Newark Group has been divided, proceeding from the oldest sediments to the youngest, into the Stockton, Lockatong, and Brunswick Formations. (See Pl. 1.) These formations were described at the type locality in New Jersey by Kummel (1897). The Stockton Formation is composed of interbedded arkosic sandstone and conglomerate, red shale, and red siltstone. The Stockton is overlain to the north by the Lockatong Formation, which is made up principally of dark gray argillite. The Lockatong is overlain to the north by the Brunswick Formation, which consists chiefly of red shale and siltstone although there is some interbedded sandstone and conglomerate near the north border of the outcrop. The Brunswick Formation is equivalent to the Gettysburg Shale in Adams, York, and Lancaster Counties, Pa., the two formations having been deposited almost contemporaneously.

Although the sum of the thicknesses of the individual formations in the Newark Group is about 18,000 feet, the total thickness of the Newark Group present at any one place in southeastern Pennsylvania probably does not exceed the 12,000 feet believed to be present at the center of the basin (McLaughlin and Willard, 1949, p. 43). The absence of the total

GEOLOGY 7

thickness at any one place is postulated because the floor of the basin probably shelved northward and deposition did not start along the northern edge of the basin until several thousand feet of sediments had accumulated in the central part of the basin. This theory is supported by the fact that the Brunswick Formation was deposited directly upon Paleozoic and Precambrian rocks along part of the northern border of the Triassic basin in Pennsylvania.

LOCKATONG FORMATION

The Lockatong Formation occurs principally in a single continuous belt along the southern edge of the Brunswick Formation. The width of this belt in Montgomery and Berks Counties varies from 4 miles at the Bucks County-Montgomery County line to 1½ miles at the Schuylkill River. This main body of Lockatong Formation underlies an area of 46 square miles in Montgomery County. A few relatively thin tongues of Lockatong occur well up-section (northward) in the Brunswick Formation, and although most of these tongues do not extend far to the west of the Bucks County line, some of them can be traced for about 30 miles westward to the Schuylkill River.

The Lockatong Formation in Montgomery County consists principally of medium-to dark-gray argillite interbedded with thin beds of gray to black shale, siltstone, and marlstone. Bedding is principally massive. Van Houten (1960, p. 666) indicates that the Lockatong contains a large percentage of analcime (up to 40 percent) along with dolomite, feldspar, and clay. Quartz is a very minor constituent of the Lockatong Formation. Pyrite is scattered throughout the formation and calcite is common, especially in joints.

In the area of this investigation the Lockatong Formation attains its maximum stratigraphic thickness at the Bucks County line. A stratigraphic section measured by McLaughlin (1959, p. 88) at this locality shows a thickness of slightly over 4,000 feet. The Lockatong Formation thins rapidly to the west and is only about 1,500 feet thick at the Schuylkill River (Bascom and Stose, 1938, p. 72).

The Lockatong Formation overlies the Stockton Formation conformably, and probably there is some interfingering of the two formations (McLaughlin, 1959, p. 77). The Lockatong is overlain conformably by the Brunswick Formation, and there is considerable interfingering between these formations—especially in eastern Montgomery County. Where there is interfingering, the percentage of red beds in the section increases upward in the stratigraphic column until the red beds of the Brunswick Formation predominate over the gray shale and argillite of the Lockatong.

The Lockatong Formation grades westward along strike into the typical red shale, mudstone, and siltstone of the Brunswick Formation. This

gradation and thinning westward continues until the Lockatong Formation disappears a few miles west of Phoenixville.

BRUNSWICK FORMATION

In Montgomery and Berks Counties, the Brunswick Formation, together with the associated diabase intrusives, occupies an area of 301 square miles. Two large areas of Brunswick, one of about 25 square miles (lying mostly in Upper Hanover Township, Montgomery County) and the other of 50 square miles (lying mostly in Douglass and New Hanover Townships, Montgomery County) are separated from the main body of the Brunswick Formation by diabase intrusives.

The Brunswick Formation consists typically of reddish-brown shale, mudstone, and siltstone. A few very thin beds of green shale and brown shale are present in the Brunswick, and in some places they can be used as marker beds for distances up to 1 mile. Van Houten (1960, p. 669) indicates that the Brunswick Formation consists chiefly of feldspar, illite, chlorite, quartz, and calcite. Some beds are finely micaceous. Joints in the Brunswick Formation commonly are partly filled with calcite and quartz. Occasionally barite and pyrite are present as joint filling, and very small crystals of pyrite may be disseminated throughout the rock.

The total apparent thickness of the Brunswick Formation in Bucks

The total apparent thickness of the Brunswick Formation in Bucks County is about 9,000 feet (McLaughlin, 1959, p. 99). The maximum thickness is greater to the west and is about 16,000 feet near Pottstown, Pa. (Bascom and Stose, 1938, p. 76).

Near the base of the Brunswick much of the rock is tough thick-bedded red argillite and is interbedded with dark-gray argillite of the Lockatong Formation. This red argillite grades upward and also along strike into red shale, mudstone, and siltstone. Near the north border of the Triassic basin, the typical shales, mudstones, and siltstones of the Brunswick Formation are interbedded with and grade laterally into sandstone and fanglomerate.

There are many excellent exposures of the Brunswick Formation—esspecially along streams and railroad cuts. For detailed geologic sections the reader is referred to McLaughlin (1933) and Bascom and Stose (1938). Table 7 contains seven sample logs that illustrate the relatively uniform character of the Brunswick Formation. Some of them (Be-125 for example) show that beds of gray argillite typical of the Lockatong are present also in the Brunswick Formation.

FANGLOMERATES

Fanglomerates occupy about 6 square miles along the northern border of the area of investigation. These fanglomerates were deposited as alluvial fans by streams flowing into the basin from the north. They are mostly limestone breccias consisting of angular gray limestone pebbles in a red-

GEOLOGY 9

dish-brown or buff, fine-grained, sandy-to-argillaceous matrix. Some pebbles of quartzite and other rocks are also present.

These fanglomerates occur at several locations along the northern border and are extensively interbedded with typical shale and siltstone of the Brunswick. The beds of limestone breccia grade along strike into reddish-brown sandstone and then into reddish-brown shale.

Outcrops of fanglomerate are very scarce in Montgomery County; however, in Berks County the area of fanglomerate that crosses the Schulykill River south of Reading is exposed in many places.

The fanglomerates are some of the youngest beds within the Brunswick Formation. However, west of the Schuylkill River, fanglomerates were deposited throughout most of the period of deposition of the Brunswick Formation. Several tongues of fanglomerate extend eastward towards the Schulykill River, and are represented at the river by a few thin sandstone beds.

The areas mapped as fanglomerate on Plate 1 are areas in which breccia and conglomerate are more prevalent than the interbedded shale, siltstone, and mudstone.

METAMORPHISM

Near the diabase intrusives the shales of the Brunswick Formation are altered to dark, tough hornfels. These hornfels closely resemble the Lockatong Formation because of the change of color caused by the reduction of ferric to ferrous oxide. The effect of the metamorphism on the color of the sediments is gradational, the first effect being the change from red to purplish red. With increased baking the beds change from purple to dark gray or blue black.

The width of the altered zone differs greatly from place to place. Adjacent to the smaller dikes the zone is usually between 40 and 100 feet wide, and in the vicinity of the larger intrusives the altered zone may be more than 1 mile wide. The rocks near the outer limit of the altered zone show very little change in lithology.

DIABASE

The Brunswick Formation has been intruded by many diabase dikes and sills in southeastern Pennsylvania. The dikes are generally 5 to 100 feet thick, and their outcrops may extend for several miles. The diabase in these narrow dikes is black, dense, very fine-grained, and consists of 90 to 95 percent labradorite and augite.

The sills, with few exceptions, are much thicker than the dikes. The largest sills in the area are more than 1,000 feet thick. The diabase in the larger intrusives, except in the chilled border zone, is medium to coarse grained, greenish gray, and also consists of 90 to 95 percent labradorite and augite (Ryan, 1959, p. 155).

STRUCTURE

The average dip of the beds in the Brunswick and Lockatong Formations is to the north and northwest at about 20°. Several broad synclines and anticlines, whose axes trend about N. 60° W., are superimposed on this homocline.

The Brunswick and Lockatong Formations have been cut by many faults, most of which are relatively small. Some of these small faults may be observed in the railroad cut south of North Wales. McLaughlin (1942) gives the location of several faults.

The largest fault observed in Berks and Montgomery Counties passes between Hatfield and Souderton in an east-west direction. It has a throw of about 3,000 feet at the Bucks County-Montgomery County line (McLaughlin, 1959, p. 129). The Brunswick Formation is in fault contact with the underlying Paleozoic and Precambrian rocks along part of the northern border of the Triassic basin.

Joint systems are well developed in many of the beds in the Brunswick Formation. A very small set of joints strikes about N. 30° E., and one or both of two additional, less well-developed sets may be observed at most outcrops. These additional sets strike about N. 45° W. and N. 75° E. All of the joints are nearly vertical, and the average distance between joints in most sets is about 6 inches. The strike of the Joint sets appears to be independent of the dip and strike of the beds.

HYDROLOGY

PRINCIPLES

Ground water is the subsurface water in that part of the zone of saturation in which all the interconnected pores, crevices, and voids in the rock are filled with water under pressure equal to or greater than atmospheric. Precipitation is the source of ground water in southeastern Pennsylvania. Although most of the water that reaches the land surface from the atmosphere either runs off as overland flow or is returned to the atmosphere by evaporation and transpiration, some infiltrates downward through the soil to the zone of saturation, where it becomes recharge to the main groundwater body. Upon reaching the zone of saturation, it begins to move downward and laterally toward lower elevations, and eventually it may return to the surface either naturally (through springs) or artificially (through wells). Under natural conditions and over long periods of time, the amount of water that leaves the zone of saturation as discharge is balanced by the amount of water that enters it as recharge.

Ground water may be roughly divided into two classes: (1) that which occurs in the shallow formations, mostly under nonartesian conditions, and (2) that which occurs in the deeper formations, under artesian condi-

tions. Nonartesian conditions are those in which ground water is unconfined, so that its upper surface (the water table) is free to rise and fall. Artesian conditions are those in which the ground water is confined in a permeable formation that is overlain by a relatively impermeable formation, so that the upper surface of the confined water is not free to rise and fall, and the water is under sufficient pressure to rise above the top of the formation that contains it where that formation is penetrated by wells. The imaginary surface to which water will rise in tightly cased wells tapping the artesian aquifer is called the piezometric surface.

In humid areas, such as southeastern Pennsylvania, the water table stands at or near the land surface in valleys and rises toward adjacent topographic divides. The slope of the water table is generally less than that of the land surface; hence, the depth to the water table below the land surface is usually greatest beneath topographic highs and least beneath topographic lows.

ly greatest beneath topographic highs and least beneath topographic lows. The water table does not remain in a fixed position but fluctuates in response to additions to and withdrawals from the zone of saturation. As the seasonal variation in precipitation in southeastern Pennsylvania is small, the dominant factor controlling the fluctuation of the water table in areas remote from pumped wells is the seasonal variation in the rate of evaporation and transpiration. Thus the water table generally declines throughout the warm growing season (April to October) and rises throughout the remainder of the year.

Within the zone of saturation, the rocks of the earth's crust differ greatly in their capacity to store and transmit ground water. Rocks that are capable of yielding usable quantities of ground water to wells are called aquifers. An aquifer may consist of all or part of a geologic formation or group of formations.

Most of ground water, like water in other phases of the hydrologic cycle, is continually in motion. It flows by gravity from intake or recharge areas, where hydraulic potentials are high, through permeable zones or aquifers to points of discharge, where hydraulic potentials are low.

OCCURRENCE OF GROUND WATER IN THE BRUNSWICK FORMATION

The Brunswick Formation is composed of very fine-grained rocks. The pore spaces within the rock matrix are very small and offer great resistance to the flow of ground water. Therefore, the permeability due to the primary porosity of the Brunswick Formation is small.

Most of the ground-water movement within these rocks follows secondary openings that were developed by external forces, following deposition of the beds. Some of these openings are fractures that parallel the bedding planes. They are usually narrow and probably contribute little to the permeability. The most important openings are nearly vertical joint

planes that cross each other at various angles throughout the beds. These vertical joints provide an interconnected series of channels through which ground water can flow.

The number and width of secondary openings and, consequently, the permeability differ from one bed to another. In a series of beds 100 feet thick there may be only one or two beds in which the secondary openings are well developed. These beds range in thickness from a few inches to a few feet; the average thickness is about 2 feet.

Because of conditions under which the rocks of the Brunswick Formation were deposited, lateral changes in the lithology take place within the formation. The rocks are a series of overlapping lens-shaped beds that are discontinuous in all directions along the plane of bedding. Examination of rock outcrops in the area indicates, however, that many of these lens-shaped beds extend for several thousand feet along strike.

The Brunswick Formation is generally a reliable source of small to moderate supplies of ground water, and in many places wells yield more than 100 gpm.

Analysis of data from 199 wells, which obtain water from only the Brunswick Formation in Montgomery and Berks Counties, indicates that there is a significant relationship between well yields and well depths. (See Fig. 2.) If yields of 100 gpm or more are desired, wells should be drilled at least 200 feet deep. According to the data shown on Figure 2, wells drilled to depths between 200 and 550 feet deep are most likely to obtain maximum yields.

For example, of 35 wells less than 185 feet deep, only 1 well yields more than 100 gpm, and only 5 yield more than 50 gpm. But 45 percent (68 of 151) of the wells between 185 feet and 550 feet deep yield more than 100 gpm, and about 75 percent (115 of 151) of them yield more than 50 gpm.

Thirty-two wells yield 200 gpm or more, and all but two of these wells are between 185 and 545 feet deep. Only seven wells yield more than 300 gpm, and all but one of these are between 200 and 510 feet deep.

Data were obtained for only 14 wells more than 550 feet deep; so, the yields of wells more than 550 feet deep are perhaps not evaluated conclusively in this report.

Data such as these can be misleading if the use of the wells is not considered, because wells drilled for domestic purposes commonly show lower yields than wells drilled for industrial use or public supply. Presumably this is because domestic water needs are small and the drilling of such wells is stopped when a small but adequate water supply is obtained. Also, many domestic wells may not be tested rigorously to determine their maximum yield. This effect of domestic wells is not believed to be significant in the data here discussed, as 174 of the 199 wells shown in Figure 2, and 24 of the 34 less than 185 feet deep, are either used as industrial or public-supply

Figure 2. Diagram showing the relation between yields and depths of wells in the Brunswick Formation.

Figure 3. Logarithmic graph of drawdown in a theoretical aquifer.

wells or were tested for such use. The data contained in this report, therefore are believed to fairly represent the relationship of well yields versus

depth of wells.

The sharply defined increase in the yield of wells at a depth of about 200 feet is believed to be the result of a rather abrupt change in the nature of rock weathering at depth. In the area of this investigation it appears that the zone of greatest decomposition—where the rock voids are believed to be partly plugged with residual clay—lies above a depth of 200 feet. Similar depths of intense weathering in the Brunswick Formation were reported by Barksdale and others (1958, p. 86).

OCCURRENCE OF GROUND WATER IN THE LOCKATONG FORMATION

The lithology and structure of the Lockatong Formation is similar to that of the Brunswick Formation. It consists of interbedded dark-gray argillite and shale that dip to the northwest at an average angle of 20° . The rock is fine grained and well cemented. As in the Brunswick Formation, the interconnected pore spaces are very narrow and most of the ground-water flow is confined to a system of interconnected vertical joints and bedding-plane fractures. However, the fractures are narrower and more widely spaced than those in the Brunswick Formation. Yields of 15 wells that tap the Lockatong Formation ranged from 4 to 40 gpm, and the median yield was 10 gpm.

PUMPING TESTS

When a well is pumped, water levels in the area are lowered and a cone of depression is formed in the piezometric surface or the water table. As pumping continues, the cone of depression enlarges until one of the following conditions exist: (1) The recharge of the aquifer has been increased by an amount equal to the pumping rate, (2) the natural discharge from the aquifer has been decreased by an amount equal to the pumping rate. (3) The sum of the increased recharge and decreased natural discharge is equal to the pumping rate.

Line AC on Figure 3 is a theoretical plot of drawdown against time in a well pumping at a constant rate from a homogeneous isotropic aquifer of infinite areal extent and uniform thickness. Other assumptions made in constructing the theoretical curve are: (1) the discharge well has an infinitesimal diameter and completely penetrates the aquifer; (2) no recharge to the aquifer occurs; (3) the water withdrawn from storage in the aquifer is discharged instantaneously with decline in head; and (4) the coefficient of transmissibility is constant at all places and all times.

A plot of recovery against time would coincide with a plot of drawdown against time. If flow occurs under conditions different from those stated in

the assumptions, the plotted curve will deviate from the theoretical curve. For example, line AD in Figure 3 is one path the plotted data may follow if the cone of depression expands to a recharge boundary and induces recharge from some outside source. The slope of this curve decreases from that of the theoretical curve, indicating that drawdown has been diminished due to the inflow of recharge. If the slope of the plotted curve increases from that of the theoretical curve, as in line AB, the cone of depression has expanded to an impermeable boundary—that is, an area that is less permeable than the part of the aquifer near the pumping well. Many boundary conditions can cause this. For example, the cone of depression reaches the end of the aquifer and lateral expansion of the cone is stopped or retarded. The presence of this type of boundary may be caused by a marked decrease in the permeability of the aquifer at some distance from the well.

By means of a graphical technique that involves matching a theoretical curve to plots of drawdown in wells versus time, it is possible to compute the coefficients of transmissibility and storage for an aquifer.

The coefficient of transmissibility is a measure of the ability of the aquifer to transmit water. It is defined as the quantity of water, in gallons per day, that will flow through a vertical section of the aquifer 1-foot wide and extending the full height of the aquifer under a unit hydraulic gradient at the prevailing temperature of the water.

The coefficient of storage of an aquifer is the volume of water it releases from or takes into storage per unit surface area of the aquifer per unit change in the component of head normal to that surface. Under water-table conditions, the water released from storage is obtained by draining a part of the aquifer. However, under artesian conditions, water is released from storage by compression of the network of openings within the aquifer in response to a decrease in head at a well. For this reason the coefficient of storage of an artesian aquifer is many times smaller than that of a water-table aquifer. The coefficients of storage for artesian aquifers range from 0.00001 to 0.001, and those of water-table aquifers range from 0.05 to 0.30.

Systematic aquifer tests to determine the hydraulic properties of the Brunswick Formation were made at the following locations: Kulpsville, North Wales, Spring City, Douglassville, Souderton, and Royersford. At each of these sites one well was pumped at a constant rate for a period ranging from several hours to several days while water levels were measured in the pumped well and in one or more adjacent observation wells. After pumping ceased, water levels in all these wells were measured again for an equal length of time. Results of these tests, including the coefficients of transmissibility and storage and the total drawdown during pumping, are shown in Table 1.

Table 1. Summary of pumping tests with observation wells in the Brunswick Formation.

Area	Observation well	Date	Pumping rate (gpm)	Pumping Duration of rate pumping (gpm) (hours)	Transmissibility T (gpd/ft)	Storage coefficient S	Boundary type	lotal drawdown (feet)	Distance from pumped well
Kulpsville	Mo-6311	1	140	48	5,000		Recharge	:	:
au bauma	Mo-632		140	48	43,000	$10x10^{-5}$	Impermeable	10.6	730
	Mo-633		140	84	180,000	$12x10^{-5}$	Impermeable	4.4	730
North Wales	Mo-561		127	4	1,100	:	Recharge	64.4	:
TABLE HERES	Μο-180		127	4	56,000	$9x10^{-5}$	Impermeable	1.2	1,200
	Mø-223		127	4	000,69	$10x10^{-5}$	Impermeable	1.1	1,700
	$M_{2}-223^{1}$	Oct. 1960	180	101		:		79	:
	Mg-56		180	101	56,000	$12x10^{-5}$	Impermeable	7.4	1,700
	Mg-180		180	101	82,000	$9x10^{-5}$	Impermeable	13.8	575
	Mo-1671		152	4		:		26.8	•
	Mg-179		152	4	51,000	$6x10^{-5}$	Impermeable	3.5	400
Spring City	Ch-181 ¹		225	72	1,000	:	Recharge	107.9	•
(g	Ch-144		225	72	6,000	:	Impermeable	6.5	830
	Ch-145		225	72	13,000	29x10·5	Impermeable	10.3	1,650
	Ch-147		225	72		:	•	0.0	1,850
Donelassville	Be-1151		30	29	100	:	Recharge	112.2	:
	Be-125		30	29	009	3.8×10^{-5}	Recharge	14.9	200
	Be-125 ¹		21	4.5	1,100	:	None	18.9	:
	Be-115		21	4.5	1,500	3.3×10^{-5}	None	7.3	200
Sonderton	Mg-6651		150	69	3,500	:	Recharge	80.5	:
	$M_{\rm g}$ -679		150	69	9,000	$4x10^{-5}$	Impermeable	27.6	400
Roversford	$M_{\rm g}$ -5421		55	33	•	:		:	
	Mg-541	Jan. 1962	55	3	30,000	6x10-5	Impermeable	.61	1,200

Because hydrologic conditions in the Brunswick Formation do not fulfill the assumptions for an ideal aquifer, the coefficients of transmissibility and storage calculated from these tests do not truly represent the aquifers tested. Calculated transmissibility at a pumped well may be lower than the actual transmissibility of the aquifer because of well entrance losses during the test. On the other hand, excessively high transmissibilities computed at observation wells for almost all the pumping tests show clearly the poor hydraulic connection between the pumped wells and the observation wells. Despite this poor hydraulic connection, the measurement of water levels in in observation wells and the calculation of transmissibility and storage coefficients are useful for estimating the effect of pumping upon nearby wells—where the effect is controlled by recognizable geologic or topographic features.

Tests at Kulpsville.—In August 1960 well Mg-631, at Kulpsville, was pumped for 48 hours at a constant rate of 140 gpm and wells Mg-632 and Mg-633 were used for observation. Coefficients of transmissibility and storage calculated from these tests are shown in Table 1. Observation well Mg-632 is 730 feet from the pumped well in a direction parallel to the strike of the beds, whereas observation well Mg-633 is the same distance from the pumped well along a line perpendicular to the strike. Consequently, well Mg-632 penetrates the same strata as the pumped well, but well Mg-633 penetrates entirely different strata.

Analysis of data from these wells indicates coefficients of transmissibility of 5,000 gpd per foot at the pumped well (Mg-631), 40,000 gpd per foot at the observation well along strike (Mg-632), and 180,000 gpd per foot at the observation well perpendicular to strike (Mg-633). Poor hydraulic connection between the pumped well and the observation wells is indicated by these high transmissibilities calculated from the observation-well data. A poor hydraulic connection is especially evident at observation well Mg-633, perpendicular to the strike from the pumped well. Drawdown in this observation well is caused by leakage from beds penetrated by the observation well to beds tapped by the pumped well.

The response in observation wells Mg-632 and Mg-633 to pumping at well Mg-631 is shown in Figure 4. The graph shows that drawdown began much sooner and drawdown was much greater in the observation well (Mg-632) penetrating the same strata as the pumped well than in the observation well (Mg-633) penetrating different strata. In both observation wells water levels declined more steeply than the theoretical curve, indicating the presence of an impermeable boundary. Drawdown in the pumped well (not shown) declined more slowly than the theoretical curve, indicating the presence of a recharging boundary.

Tests at North Wales.—Three pumping tests were made in North Wales.

Figure 5. Logarithmic graph of drawdown in wells Mg-180 and Mg-223.

Coefficients of transmissibility and storage calculated from these tests are shown in Table 1. In September 1960, well Mg-56 was pumped for 4 hours at a constant rate of 127 gpm. Water levels were observed in wells Mg-167, Mg-179, Mg-180, and Mg-223.

Analysis of data from the pumped well (Mg-56) indicates a coefficient of transmissibility of 1,100 gpd per foot, which is probably lower than the actual transmissibility of the aquifer because of entrance losses at the well.

No drawdown took place at wells Mg-167 and Mg-179, which are more than 2,500 feet from the pumped well and do not penetrate the same strata as the pumped well.

The coefficient of transmissibility at observation well Mg-180, which is 1,200 feet from the pumped well, is 56,000 gpd per foot. At observation well Mg-223, which is 1,700 feet from the pumped well, the coefficient of transmissibility is 69,000 gpd per foot. The high transmissibilities at the observation wells suggest imperfect hydraulic connection with the pumped well—even though observation well Mg-223 penetrates many of the same strata as the pumped well, and well Mg-180 penetrates some of the same strata. The plots of drawdown in wells Mg-180 and Mg-223 (Fig. 5) show that drawdown started later in well Mg-223 than in well Mg-180, which was nearer to the pumped well. However, after 4 hours of pumping the drawdowns in both wells were almost identical—1.2 feet in Mg-180 and 1.1 feet in Mg-223. The drawdown plot in both observation wells indicated the presence of a discharging boundary, whereas a recharging boundary was observed in the plot of data from the pumped well, Mg-56.

In October 1960, well Mg-223 was pumped at a rate of 180 gpm for 101 hours, and wells Mg-56 and Mg-180 were used as observation wells. The calculated transmissibility was 82,000 gpd per foot at observation well Mg-180 and 56,000 gpd per foot at observation well Mg-180 and 56,000 gpd per foot at observation well Mg-56. Drawdown started earlier in well Mg-180, nearest the pumped well, and total drawdown was greater at this well (13.8 feet) then at well Mg-56 (7.4 feet). Drawdown data at both observation wells showed the effects of discharging boundaries.

A third pumping test conducted in October 1960, consisted of pumping well Mg-167 at a constant rate of 152 gpm for 4 hours. Water levels were measured at observation well Mg-179, which is 400 feet from the pumped well and penetrates many of the same strata. Analysis of data from observation well Mg-179 indicates a coefficient of transmissibility of 51,000 gpd per foot. The data from the pumped well were unsuitable for analysis.

Tests in Spring City.—Well Ch-181, at the Pennhurst State School in Spring City, was pumped at a constant rate of 225 gpm for 72 hours in April 1963. Water levels were measured at observation wells Ch-144, Ch-145, and Ch-147.

Logarithmic graph of recovery in well Be-115 when used as the pumped well and when used as an observation well. Figure 6.

Analysis of data from the pumped well (Ch-181) indicates a coefficient of transmissibility of 2,000 gpd per foot. Data from observation well Ch-144, which is 830 feet from the pumped well and penetrates many of the same strata, indicates a transmissibility of 6,000 gpd per foot. Data from observation well Ch-145, which is 1,650 feet from the pumped well and penetrates partly the same strata indicates a transmissibility of 13,000 gpd per foot.

The water level was not drawn down in Ch-147, although this well penetrates many of the same strata as the pumped well. This indicates the complexity of the hydrology in this area.

Drawdown commenced considerably earlier and was greater in observation well Ch-145, which was farthest from the pumped well, than in observation well Ch-144. The most distant well (Ch-145) penetrates the same strata as the lower part of the pumped well, whereas well Ch-144 penetrates the same strata as the upper part of the pumped well.

Tests at Douglassville.—Two pumping tests were conducted at Douglassville. In July 1962, well Be-115 was pumped at a rate of 30 gpm for 67 hours, and water levels were observed in wells Be-115 and Be-125. The two wells are 200 feet apart along the strike of the beds and are both 300 feet deep; hence, both wells penetrate the same strata. Analysis of data from these wells indicated a cofficient of transmissibility of 100 gpd per foot at the pumped well (Be-115) and 600 gpd per foot at observation well Be-125. However, when Be-125 was pumped at a rate of 21gpm for 4½ hours in June 1963, analysis of data indicated a transmissibility of 1,100 gpd per foot at Be-125 and 1,500 gpd per foot at observation well Be-115. These determinations of transmissibility are not consistent—but they do indicate a transmissibility of low magnitude.

When well Be-115 was pumped, data for both the pumped well and observation well Be-125 showed recharging boundaries. However, when well Be-125 was pumped, the data plot indicated no boundary conditions for either well. Figure 6 shows two plots of the recovery of water-level in well Be-115—one when the well was used as an observation well, and the other when it was used as the pumped well.

Tests at Souderton.—Well Mg-665, in Souderton, was pumped at a rate of 150 gpm for 69 hours in March 1961. Water levels were measured in well Mg-665 and in observation well Mg-679, 400 feet away. Analysis of data from this test indicated coefficients of transmissibility of 3,500 gpd per foot at well Mg-665 and 9,000 gpd per foot at well Mg-679.

per foot at well Mg-665 and 9,000 gpd per foot at well Mg-679.

Although these two wells are only 400 feet apart, a dip of 60° measured in a nearby outcrop suggests that the two wells do not penetrate the same strata. However, because all other dips measured in the Brunswick Forma-

tionare considerably less than 60°, this dip of 60° is anomalous and possibly misleading. The relatively large drawdown in the observation well (27.6 feet at the end of 69 hours), the relatively low transmissibility at the observation well as compared with transmissibilities of observation wells at other pumping sites, and the fact that the water level commenced dropping less than 1 minute after pumping began all indicate that these wells probably penetrate the same water-bearing strata.

Another pumping test was made in June 1961 when well Mg-665 was again pumped at 150 gpm for 69 hours, and well Mg-679 was again the observation well. Drawdowns in both wells were considerably greater in June than in March. Drawdown in the pumped well (Mg-665) after 69 hours pumping was 17.5 feet more in June than in March. In the observation well (Mg-679) drawdown after 69 hours was 8.1 feet greater in June than in March. A possible explanation for these differences in drawdown may be the effect of recharge from Skippack Creek, which is less than 100 feet from the wells. In March, Skippack Creek was flowing and was a possible source of induced recharge, but in June, Skippack Creek was dry and was no longer a source of recharge.

Test at Royersford.—Well Mg-542 at the Charles Johnson County Home, Royersford was pumped for 3 hours at a constant rate of 55 gpm in January 1962. Water-level measurements were made at observation well Mg-541, 1,200 feet northwest of the pumped well. Analysis of data from the observation well indicated a transmissibility of 30,000 gpd per foot and the occurrence of an impermeable boundary. At the end of 3 hours of pumping the water level had lowered only 0.61 feet. Because the data obtained from the pumped well was unsuitable, it was not used for analysis.

Miscellaneous tests in the Brunswick Formation.—In addition to the tests that involved the use of observation wells, nine pumping tests were conducted on wells which had no nearby observation wells. The results of these tests are given in Table 2. Calculated coefficients of transmissibility are generally quite low. They range from 150 to 4,000 gpd per foot and the median is 600 gpd per foot. Eight of the nine transmissibilities are less than 1,000 gpd per foot.

Data plots of six tests indicated recharge boundaries, and only one indicated a discharge boundary. One of the tests showed no boundaries, and another test showed drawdown data too irregular for determination of the boundary conditions.

Miscellaneous tests in the Lockatong Formation.—Pumping-test data are available from six wells tapping the Lockatong Formation. (See Table 2.) Five of these wells are in Bucks County, Pa., but results from these tests

Table 2. Summary of pumping tests without observation wells in the Brunswick and Lockatong Formations

Well	Date	Pumping rate (gpm)	Duration of pumping (hours)	Transmissibility T (gpd/ft)	Boundary type
		Brunsv	vick Formation		
Be-101	June 1963	13.8	4	670	Recharge
113	June 1963	20	4	900	Impermeable
114	June 1963	8.6	4	150	
Mg-581	June 1963	17.7	4	600	Recharge
695	June 1963	3.4	1	180	Recharge
696	June 1961	5.1	1	750	Recharge
703	June 1963	22.2	4	500	Recharge
725	July 1962	136	1.25	4,000	None
729	Aug. 1963	14.6	3	140	Recharge
		Locka	tong Formation		
 Mg-699	June 1961	3.9	1	180	None
Bk-807	April 1961	2.0	1	70	Impermeable
814	May 1961	30	1.2	2,000	Impermeable
812	May 1961	5.5	1	60	Impermeable
822	May 1961	4.1	1	140	None
832	May 1961	2.6	1	160	None

are believed to be representative of the Lockatong Formation in the area covered by this report. Coefficients of transmissibility are extremely low—they range from 60 to 2,000 gpd per foot and the median is 150 gpd per foot. Five of the six wells have transmissibilities of less than 200 gpd per foot.

Discharge boundaries were encountered in three of the pumping tests. In the remaining three tests no boundary conditions were indicated.

Discussion of pumping-test results.—Because the Brunswick and Lockatong Formations are not ideal aquifers, coefficients of transmissibility and storage computed by matching pumping test data to the theoretical curve are not reliable. However, the pumping-tests in these formations do demonstrate the effect of pumping upon water levels in the pumped well and in nearby wells.

The high transmissibilities computed from the observation-well data reflect imperfect hydraulic connection between pumped wells and nearby wells, but they are useful for estimating the effect other pumping wells will have on water levels in their vicinities. They indicate also that interfer-

ence between wells during brief periods of pumping may be somewhat less in the Brunswick Formation than in an ideal aquifer. However, because impermeable boundaries appeared in the test data of almost all observation wells, water levels in wells near a pumping well will probably draw down to a greater extent than predicted by a transmissibility based on data from the early part of a pumping test.

Wells located on a line perpendicular to the strike of the beds will generally show much less interference than wells located on a line parallel to the strike, because the former generally do not penetrate the same strata, but the latter do. Drawdown in observation wells not penetrating the same strata as a pumped well is caused by leakage from beds penetrated by the observation wells to beds tapped by the pumped well.

QUALITY OF WATER

All ground waters contain dissolved minerals; some contain suspended particles and pathogenic organisms. These ground-water constituents are important because if they are present in excessive amounts they may limit the usefulness of the water for some purposes and may necessitate treatment of the water.

The chemicals dissolved in ground water are obtained from many sources. Rain and snow, from which ground water is derived, absorb small amounts of carbon dioxide and other gases in the atmosphere. In addition, small particles of mineral matter in the form of dust are caught and carried along with the precipitation; the quantity of material absorbed in this way, however, is very small.

Upon reaching the land surface the water leaches mineral matter from the organic residue of plants, from agricultural fertilizers, animal and human wastes and from solid and semisolid refuse. The waters percolating downward through the soil zone leach out the soluble products of soil weathering. The quantity of mineral matter dissolved depends primarily on the composition of the soil and of the percolating water which may carry chemicals that stimulate dissolution. For example, carbon dioxide absorbed from the atmosphere and decayed vegetable matter forms carbonic acid, which aids in dissolving minerals from the soil. Other factors controlling the quantity of matter dissolved are the length of time the water is in contact with the soil, the surface drainage structure, the amount of precipitation, and the temperature of the water.

Most of the mineral matter in ground water is dissolved from the rocks through which it flows, because the water remains in contact with this material for a longer time than with the atmosphere and soil. The contact time is dependent on the ground-water velocity and the distance of the ground water from the recharge area. High ground-water velocity occurs in

rocks of high permeability or is associated with flow caused by steep hydraulic gradients—a factor often influenced by the topography. Groundwater velocity tends to decrease as depth below land surface increases, so that the quantity of dissolved solids in the ground water at great depth is usually much greater than that near the surface. The distance of the water from the recharge area is controlled by the geology and physiographic features.

Another major factor controlling the quantity of mineral matter dissolved by the ground water is the composition and texture of the rock itself. Igneous rocks generally contain material less soluble than that in sedimentary rocks. Fine-grained rocks having high porosity tend to increase the opportunity for solvent action because the surface area of rock exposed to solution is very large.

The mineral matter in ground water occurs in very small quantities and exists either as electrically charged particles known as ions or as oxides in the collodial state. Calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K) are commonly occurring positively charged ions or cations. Bicarbonate (HCO₃), carbonate (CO₃), sulfate (SO₄), chloride (C1), fluoride (F), and nitrate (NO₃) are common negatively charged ions or anions. In addition to these ionized substances, small amounts of colloidal matter—including silica (SiO₂), iron (Fe), and manganese (Mn)—are usually present.

To determine the chemical constitutents of the ground water in the Brunswick and Lockatong Formations in Berks and Montgomery Counties, water samples from 36 wells in the Brunswick and 6 wells in the Lockatong were collected and analyzed. The results of these analyses are shown in Tables 3 and 4.

The chemical character of the ground water in the two formations is classified graphically on the trilinear diagrams of Figures 7 and 8.

In these diagrams the cations in solution are assumed to be calcium, magnesium, sodium, and potassium, and the anions are assumed to be bicarbonate, carbonate, sulfate, and chloride. Any minor constituents present are summed with the major constituents to which they are chemically related.

The concentration of any cation or anion in a solution, in parts per million (ppm) by weight, divided by its equivalent or combining weight yields the equivalent weight of the ion per million parts by weight of the solution and is generally termed equivalents per million (epm). Figures 7 and 8 show the percentage composition of the major cations and anions in percentage equivalents per million.

In the diamond-shaped sections of Figures 7 and 8, points plotted in the upper quarter of the diamond represent waters in which calcium and magnesium are the principal cations and sulfate and chloride are the

Figure 7. Diagram showing the chemical character of ground water in the Brunswick Formation in Berks and Montgomery Counties, Pa.

principal anions. Those points in the left quarter of the diamond represent waters in which calcium and magnesium are the principal cations and carbonate and bicarbonate are the principal anions.

Figures 7 and 8 show that calcium and magnesium are the major cations in the ground water of both the Brunswick and Lockatong Formations. Except for two samples from the Brunswick Formation, the percentage equivalents per million of calcium plus magnesium exceeds 80 percent of the total cations present. Bicarbonate is the major anion in most of the samples in the Brunswick Formation and in all the samples in the Lockatong Formation. The percentage equivalents per million of bicarbonate exceeds 50 percent in 26 of the 36 samples from the Brunswick.

In all samples except two—those from Mg-739 in the Lockatong Formation and well Mg-631 in the Brunswick Formation—the percentage

QUALITY OF WATER

Figure 8. Diagram showing the chemical character of ground water in the Lockatong Formation in Montgomery County, Pa.

PERCENTAGE EQUIVALENTS

PER MILLION

CATIONS

ANIONS

equivalents per million of calcium plus magnesium exceeds the percentage of bicarbonate. Therefore, some noncarbonate hardness (calcium or magnesium sulfates and chlorides) exists in all samples except these two. The relative amount of noncarbonate hardness present is indicated by the numerical difference between the percentage of calcium plus magnesium and the percentage of bicarbonate. The noncarbonate hardness for each sample is given in Tables 3 and 4.

A comparison of the chemical quality of the ground water in the two formations is shown in Table 5. The minimum, maximum, and median values were computed from the 36 Brunswick analyses and the 6 Lockatong analyses shown in Tables 3 and 4, respectively. Because the number of water samples from the Lockatong Formation in Montgomery County is small in comparison to the number from the Brunswick Formation, five

Concentration of Calcium (Ca) and carbonate hardness as CaCO_3 ,

Relation of calcium content and carbonate hardness as CaCO₃ to dissolved-solids Figure 9.

analyses of ground water from the Lockatong Formation in Bucks County were also studied. The minimum, maximum and median values of all eleven Lockatong analyses (Table 5) do not differ significantly from those of the six analyses from Montgomery County.

The median values of chemical constituents generally are similar in water from the Lockatong and Brunswick Formations. However, maximum concentrations of several constituents—calcium, sodium, sulfate, dissolved solids, and hardness—are considerably higher in water from the Brunswick Formation than in water from the Lockatong Formation.

Certain of the chemical constituents in the ground water of the Brunswick and Lockatong Formations are directly related to the total dissolved-solids content. In Figure 9 both the calcium content and carbonate hardness as CaCO₃ are plotted against the dissolved-solids content. Figure 10 shows the relation of magnesium content to dissolved solids. Figure 11 is a plot of the sodium content against the dissolved solids. The relation of bicarbonate and sulfate content to dissolved solids is shown in Figure 12.

In Figure 9 a single straight line was fitted to the plot of data showing the relation of calcium content to dissolved solids. The calcium content apparently increases linearly as the dissolved-solids content increases.

Appearing also on Figure 9 is a plot showing the relation of carbonate hardness to dissolved-solids content. Carbonate hardness can be seen to increase as dissolved-solids content increases.

Figure 10, a plot of magnesium content against dissolved solids shows that magnesium content increases rapidly as the dissolved solids rise from 200 ppm to 350 ppm. Beyond this concentration, the magnesium content does not show any clear relation to the dissolved-solids content.

Sodium content, as illustrated in Figure 11, tends to increase as dissolved-solids content increases. Figure 12 shows also that the three water samples from the limestone fanglomerate of the Brunswick Formation contain a much smaller amount of sodium than all other samples that contain comparable quantities of dissolved solids.

Figures 9, 10, and 11 illustrate that the cations responsible for increases in dissolved-solids content are calcium, magnesium, and sodium. However, because the calcium content increases much faster than the magnesium and sodium content as the dissolved solids increase, calcium is the major cation causing the increase of dissolved solids.

Figure 13 is a plot of both the bicarbonate and sulfate content against dissolved-solids concentration. The bicarbonate content does not appear to bear any significant relation to the dissolved-solids content. The sulfate content, however, increases linearly as dissolved solids increase throughout the range of dissolved solids shown. Figure 12 shows that bicarbonate is the major anion in waters containing less than 500 ppm dissolved solids,

Figure 10. Relation of magnesium content to dissolved-solids content.

Figure 11. Relation of sodium content to dissolved-solids content.

Figure 12. Relation of bicarbonate and sulfate content to dissolved-solids content.

Figure 13. Relation of specific conductance to dissolved-solids content.

whereas sulfate is the major anion in waters containing more than 500 ppm dissolved solids.

The concentration of other ions present—including potassium, chloride, fluoride, and nitrate—bears no relation to the dissolved-solids content. Graphs of these constituents are not shown.

Figure 13 is a plot of the specific conductance against the dissolved-solids concentration of water from the Brunswick and Lockatong Formations. Two straight lines intersecting near 400 ppm dissolved solids were constructed to represent the relation of these two variables.

Specific conductance is defined as the electrical conductance of a cube of material one centimeter on a side and is commonly expressed as micromhos per centimeter. Specific conductance varies with temperature and is, therefore, usually referenced to the standard temperature of 25°C. Because ground-water is a dilute solution containing ionized substances, it is slightly conductive. The specific conductance of such a solution is related to the quantity of dissolved solids that it contains.

The specific conductances used in Figure 13 were determined in a laboratory. However, with suitable portable equipment the specific conductance can be quickly and accurately measured in the field. The corresponding value of dissolved-solids content can then be estimated by using Figure 13. When the dissolved-solids content is known, the probable concentration of several major ionized constituents of most ground-water samples obtained from the Brunswick and Lockatong Formations can be approximated from Figures 9, 10, 11, and 12.

CONCLUSIONS

The yield of wells in the Brunswick Formation depends on the number, thickness, and permeability of beds penetrated. Changes in the lithology from place to place are responsible for variations encountered in well yields. Because of the erratic nature of these changes, the location and extent of the best water-bearing zones cannot be predicted; however, if yields of more than 100 gpm are desired, wells should be drilled at least 200 feet deep—as the highest yields are obtained generally from wells ranging in depth from 200 to 550 feet.

Water sufficient for domestic purposes can be obtained at almost any location, but yields large enough for industrial and municipal purposes are more difficult to obtain. To assure an adequate supply over long periods of time, consideration must be given to factors that influence both the natural and artificially induced flow of ground water. For example, the water table is generally nearer the land surface in valleys than on ridges; hence, the available drawdown at wells of equal depth is greatest for wells in valleys. As natural flow from the aquifer is generally discharged into surface

streams, the opportunity to reduce the natural discharge or to induce flow from a stream to the aquifer by means of wells is greatest in stream valleys.

Unless ground water is recovered by either reducing natural discharge, or inducing additional recharge, water withdrawn from a well reduces the quantity in storage in the aquifer. Wells that draw water from storage over long periods of time cause large cones of depression to develop. Where several pumping wells are closely spaced, the cones of depression overlap. As the total decline in water level at any well equals the sum of the draw-downs produced by each well the interference may be so great that the yield of each well is reduced. This effect is particularly severe at wells oriented along lines parallel to the strike of the beds, because these wells generally penetrate the same beds. Wells should be spaced sufficiently far apart to reduce the effect of interference to an acceptable level. Because geologic hydrologic, and pumping conditions within the Brunswick Formation are complex and variable, the best spacing of wells will differ from place to place. Wells less than 2,000 feet apart in the Brunswick Formation have generally shown some interference.

Yields greater than those required for domestic purposes are not generally available from wells in the Lockatong Formation. Furthermore, because the Lockatong Formation is very resistant to erosion, it underlies areas of high elevation which are generally remote from surface streams. Few situations exist, therefore, where ground water can readily be diverted from points of natural discharge to nearby wells in the Lockatong.

One of the best ways to improve the yield of a well in the Lockatong, or any other aquifer of low permeability, is to increase the volume of water stored in the well bore by enlarging its diameter or drilling to greater

One of the best ways to improve the yield of a well in the Lockatong, or any other aquifer of low permeability, is to increase the volume of water stored in the well bore by enlarging its diameter or drilling to greater depth. Such a well permits the well operator to satisfy his need for water during short periods of peak demand. For example, the volume of storage in 100 feet of 6-inch diameter borehole is approximately 150 gallons, but the volume of storage in 100 feet of a 10-inch diameter well is more than 400 gallons. By installing the pump intake pipe near the bottom of the well, most of the water stored in the well bore can be withdrawn. During periods when water is not being withdrawn, ground water flowing into the well will replenish the stored volume—if given enough time.

The cone of depression developed by pumping wells in the Lockatong Formation is rarely extensive. For this reason interference between wells is not a severe problem.

SELECTED REFERENCES

- Barksdale, H. C. and others (1958), Ground-water resources in the tri-state region adjacent to the lower Delaware River, New Jersey Dept. of Conserv. and Econ. Devel., Div. Water Policy and Supply Special Rept. 13, 190 p.
- Bascom, Florence and others (1931), Geology of the Quakertown-Doylestown district, Pennsylvania and New Jersey, U.S. Geol. Survey Bull. 828, 62 p.
- and Stose, G. W. (1938), Geology and mineral resources of the Honeybrook and Phoenixville quadrangles, Pennsylvania, U.S. Geol. Survey Bull. 891, 145 p.
- Buckwalter, T. V. (1959), Precambrian geology of the Boyertown quadrangle, Pennsylvania Geol. Survey, 4th Ser., Atlas 197, 15p.
- Graham, J. B. (1945), Occurrence of ground water in the Triassic area of Pennsylvania as influenced by geology, Pennsylvania Water Works Operators' Assoc. Jour., v. 17, p. 86-98.
- Greenman, D. W. (1955), Ground-water resources of Bucks County, Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Bull. W-11, 67 p.
- Hall, G. M. (1934), Ground water in southeastern Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Bull. W-2, 255 p.
- Kauffman, N. M. (1960), Climates of the States, Pennsylvania, U.S. Dept. of Commerce, 16 p.
- Kummel, H. B. (1897), *The Newark system*, New Jersey Geol. Survey Ann. Rept. State Geol. 1896, p. 27-88.
- McLaughlin, D. B. (1933), A note on the stratigraphy of the Brunswick Formation (Newark) in Pennsylvania, Michigan Acad. Sci., Arts, and Letters, Papers, v. 18, 1932, p. 421-435.
- Formations of North America exclusive of Canada, Geol. Soc. America Bull., v. 68, p. 1491-1494.
- of Bucks County, Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Bull. C-9, p. 55-114 and p. 126-153.
- McLaughlin, D. B., and Willard, Bradford (1949), Triassic Facies in the Delaware Valley, Pennsylvania Acad. Sci. proc., v. 23, p. 34-44.
- Rima, D. R. (1955), Ground-water resources of the Landsdale area, Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Prog. Rept. 146, 24 p.
- Meisler, Harold, and Longwill, Stanley (1942), Geology and hydrology of the Stockton Formation in southeastern Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Bull. W-14, 111 p.
- Ryan, J. D. (1959), in Willard, Bradford and others, Geology and mineral resources of Bucks County, Pennsylvania, Pennsylvania Geol. Survey 4th Ser., Bull. C-9, p. 154-162.
- U.S. Department of Commerce (1962), Climatological data, Pennsylvania.
- Van Houten, F. B. (1960), Composition of Upper Triassic Lockatong Argillite, west-central New Jersey, Jour. Geology, v. 68, no. 6, p. 666-669.

- Van Houten, F. B. (1962), Cyclic sedimentation and the origin of analcime-rich Upper Triassic Lockatong Formation, west-central New Jersey and adjacent Pennsylvania, Am. Jour. Sci., v. 260, p. 561-576.
- Wherry, E. T. (1959), in Willard, Bradford, Geology and mineral resources of Bucks County Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Bull. C-9, p. 114-125.
 - Geologic map of the Triassic rocks of the Boyertown quadrangle, Pennsylvania, unpublished map on file with Pennsylvania Geol. Survey.

40 Table 3. Chemical analyses of ground water in the Brunswick Formation in Berks and Montgomery Counties, Pennsylvania

(Results in parts per million except as indicated)

	15	С	3	3	က	3	m	7	7		Color	
	7.3	7.8	7.4	7.8	7.8	7.3	7.6	8.9	7.8		Hq	
	641	1010	1660	926	495	379	335	476	941		Specific cond tance (micron (D°22 ta m)	/soqu
	57	315	755	293	119	26	56	107	54		Non- carbonate	cess as
	350	200	892	480	307	189	154	212	229		Calcium, muisəngam	Hardness CaCO ₃
	391	775	1340	710	318	224	216	334	645		Dissolved sol (residue at 180° C)	sbil
	7.2	1.7	4.8	3.6	33	19	21	34	2.7		Vitrate (NO3)	
	0.1	0.5	0.0	0.3	0.0	0.0	0.1	0.2	0.3		Fluoride (F)	
	13	5.8	5.2	35	6.3	7.5	8.8	13	7.5		Chloride (Cl)	
	43	378	788	298	78	14	20	68	298		Sulfate (sO2)	
Montgomery County	358	226	168	228	229	198	156	128	214	ounty	Bicarbonate (HCO ₃)	
ntgomer	1.5	2.0	2.0	1.0	0.5	2.0	1.0	1.5	3.5	Berks County	Potassium (X)	
Mor	8.9	44	29	35	5.4	4.1	10	15	135		muibo? (kN)	
	33	30	64	31	20	15	15	6.1	20		muisəngaM (gM)	
	98	151	252	141	90	51	37	75	59		Calcium (Ca)	
	.24	60.	.02	.02	.05	.01	.02	.02	.03		egnem letoT (nM)	nese
	1.6	.37	.12	.23	80.	.13	.03	.03	92.		nori IstoT (54)	
	10	25	28	15	14	12	56	56	15		Silica (SiO ₂)	
	200	360	300	528	130	112	300	119	375		Depth of wel	[]
	1-30-62	1-31-62	7-19-62	2- 5-62	3- 3-61	3-3-61	3- 2-61	3- 1-61	3- 2-61		Date of colle	noito
	118	116	115	111	107	106	105	103	Be-102		Location	

								Mon	Montgomery	/ County										1
Mg- 52	9-25-25	350	18	90.	:	47	17	9.4	2.1	194	23	13	:	7.5	232	187	28		:	1
62*	9-28-25	388	32	.05	:	36	15	11	1.8	173	15	∞	:	2.5	201	152	10	:	:	
92	2-21-52	387	21	.01	:	24	20	9	1.0	150	22	S	:	0.4	:	142	19	321	6.4 2	
111	5-10-62	219	30	.37	00.	57	18	13	0.7	171	69	16	0.1	4.9	317	216	92	457	6.6 2	

							2006	months county										
350	18	90.	:	47	17	9.4	2.1	194	23	13	:	7.5	232	187	28	:	:	:
388	32	.05	:	36	15	11	1.8	173	15	∞	:	2.5	201	152	10	:	:	:
387	21	.01	:	24	20	9	1.0	150	22	S	:	0.4	:	142	19	321	6.4	2
219	30	.37	00.	57	18	13	0.7	171	69	16	0.1	4.9	317	216	9/	457	9.9	2
205	13	.26	:	57	28	13	1.0	242	28	18	0.0	6.6	327	257	59	555	7.3	2
373	17	.07	00.	45	5.4	12	1.0	134	56	10	0.1	13.0	200	135	25	313	7.5	3
202	22	.04	00.	55	23	14	1.0	256	19	17	0.1	7.7	285	232	22	480	7.6	3
009	20	44.	.02	116	51	22	8.0	163	370	11	0.1	11	732	500	366	959	7.3	3
300	22	.05	00.	39	8.3	10	1.0	120	24	7.4	0.1	20	192	132	33	295	7.7	2
450	19	.26	.01	47	0.6	14	1.0	179	12	9.3	0.0	18	214	155	∞	351	7.8	2
																		1

4- 7-53 2- 7-62 2- 8-62 4- 9-62 3- 2-61 3- 1-61

146 148 190 540 541 551

8.9	7.4	7.5	0.00	7.7	7.9	7.7	7.5	7.6	7.6	8.2	7.4	7.7	7.6	6.9		: :
378	1090	392	378	747	695	322	447	838	536	490	478	359	565	429		
67	433	21	0	240	123	6	11	300	89	9	54	36	63	21	∞	26
172	581	183	109	373	301	155	217	430	261	250	219	160	283	194	158	218
252	805	242	239	534	426	204	283	620	344	302	307	236	360	255	209	252
13	2.8	12	3.7	2.7	5.6	8.0	0.2	0.5	36	20	19	8.8	3.1	4.0	0.88	14
0.1	0.2	0.0	0.0	0.2	0.1	0.0	0.1	9.0	0.1	0.1	0.2	0.2	0.1	0.0	:	:
5.8	18	7.0	3.5	0.9	89	4.2	4.2	16	20	5.1	18	13	6.4	13	12	19
69	420	23	48	248	84	17	37	300	32	9.7	40	59	83	27	13	6.4
128	180	198	173	162	217	178	252	158	236	298	202	152	268	211	183	234
8.0	1.0	1.4	0.5	1.8	1.5	1.0	1.0	2.5	1.5	1.0	2.2	3.0	1.5	1.5	3.0	1.2
12	27	11	45	19	30	8.3	15	19	12	12	14	11	17	15	12	12
12	32	13	8.2	36	30	14	17	28	21	34	20	17	36	15	11	24
49	180	52	30	90	71	39	29	126	70	44	55	36	54	53	45	48
.17	6	:	.03	.03	90.	.04	.38	.05	0.	00.	00.	00.	00.	.12	:	:
00.	3.9	.17	.38	.02	.21	90:	.70	.02	.14	.05	.20	.07	1.6	3.0	4.9	0.15
24	28	20	16	28	17	24	28	32	23	23	22	33	21	19	23	25
210	916	100	200	312	300	300	200	300	123	80	100	81	157	133	111	110
4- 9-62	3- 2-61	4-21-49	2-28-61	3- 1-61	2-27-61	3- 1-61	3- 1-61	3- 1-61	2- 5-62	2- 8-62	2- 8-62	2- 8-62	2- 5-62	4- 9-62	9-30-25	9-30-25
557	603	616	631	642	662	829	089	689	208	400	710	711	712	718	736	738

* Composite sample from 3 wells (Mg-62, 63, 64).

Table 4. Chemical analyses of ground water in the Lockatong Formation in Montgomery County, Pennsylvania (Results in parts per million except as indicated)

	Color		:	3	3	3		:
	Hq		:	7.8	7.3	7.7	:	:
soqu	Specific cond tance (micror Cm at 25°C)						:	•
as	Non- carbonate		6	85	70	42	51	0
Hardness CaCO ₃	Calcium, magnesium		162	249	188	200	259	212
sbi	Dissolved sol (residue at 180° C)		199	303	253	246	320	283
	Nitrate (NO3)		5.2	0.7	26	2.8	16	.21
	Fluoride (F)			0.2	0.1	0.0	:	:
	Chloride (Cl)		8.9	36	16	14	22	7.0
	Sulfate (SO,		13	48	38	36	37	3.8
	Bicarbonate (HCO ₃)	Montgomery County	187	200	144	193	254	283
	Potassium (K)	ntgome	1.7	1.5	8.0	1.0	2.7	1.9
	muibo2 (sN)	Mo	8.6	9.5	8.6	9.2	15	22
	Magnesium (Mg)		15	32	17	17	23	23
	Calcium (Ca)		40	47	47	52	99	47
əsəu	regnem letoT (nM)		:	00.	00.	00.	:	:
_	Total iron (Fe)		.07	.32	.02	00.	.27	17
	Silica SiO ₂)		25	16	16	15	13	13
I	Depth of wel		157	312	140	200	80	490
noito	Date of colle		9-28-25	2- 9-62	4- 9-62	4-10-62	9-28-25	9-30-25
	Location		Mg- 49	713	715	716	737	739

Brunswick Formation Montgomery County (Results in parts per million) Lockatong Formation Montgomery County Montgomery County Montgomery County Montgomery County Montgomery County Montgomery County

	Br	Brunswick Formation	ation	Z	Lockatong Formation		Lockatong Formation	ckatong Form	ation
	W	ontgomery Cc	unty	Z	fontgomery Co.		Bucks an	d Montgomer	y Counties
	Min.	Max.	Median	Min.	Мах.	Median	Min.	Max.	Median
Dissolved solids									
(residue at 180°C)	192	1340	302	199	320	268	199	320	253
(SiO_2)	10	33	22	13	25	16	11	25	15

.07

17

00:

4.9

Total manganese

Calcium

Ca)

Total iron

.02

252

30

Magnesium

(Mg) Sodium

64

135

00.

.03

00:

2.7

283

120

196

283

144

188

358

120

Bicarbonate

(HCO3) Sulfate

(Na) Potassium

3.5

38

788

6.4

Chloride

(SO₄)

Fluoride

(C)

Nitrate (NO₃)

89

36

48

61

36

8.9

36

8.9

32

9.8

22

32

99

1.6

2.7

187

259

162

892

Calcium, magnesium

Hardness

Non-carbonate

Hardness

755

36

Analyses from 11 wells

Analyses from 6 wells

Analyses from 36 wells

Table 6. Record of wells

Jse: D, domestic: I, industrial; O, observation; PS, public supply; R, recharge; T, test; U, unused; X, destroyed.

Method of construction: Drl, drilled.
Aquifer: Trd, diabase; Trbf, Brunswick Fanglomerate; Trb, Brunswick Formation; Trl
Lockatong Formation.

EL, H, FA; 27 ft. dd. in 4 hrs. EL, FA; 35 ft. dd. in 4 hrs. CA; 106 ft. dd. in 67 hrs. CA EL, H, FA; 13 ft. dd. in 3 hrs. EL, H, SL; 18 ft. dd. in 4 hrs. 60 ft. dd. in 3 hrs. 108 ft. dd. in 72 hrs. Remarks: CA, complete chemical analysis; dd, drawdown: EL, electric log available; FA, field chemical analysis available; H, hydrograph available; SL, sample log, 218 ft. dd. in 3 hrs. 40 ft. dd. in 3 hrs. Remarks 31 ft. dd. in 6 hrs. 75 ft. dd. in 7 hrs. EL CA, EL, J PS L PRANCE PRODUCE PROCE 9sU 75 50 8 8 8 20 20 20 45 445 10 10 10 10 10 74 68 68 140 140 10 86 30 30 10 200 Yield (gpm) 24 42 42 49 45 135 37 37 Depth below land surface (feet) Static water level 52 190 236 115 212 130 7-31-58 8- ?-54 $\begin{array}{c} 1-31-62\\ 1959\\ 1-25-62\\ 4-10-62 \end{array}$ 6- 7-48 1 - 31 - 621-23-563-12-636 - 4 - 638 - 12 - 556 - 3 - 638 - 12 - 631959 Date measured Tab Tab Tab Tab Tab Tab The contract of the contract o Aquifer name Depth to bottom of casing (feet) 46 67 116 116 128 138 138 138 138 138 440 440 440 40 40 74 350 250 85 85 55⁺ 55⁺ 141 1150 300 1112 Total depth (feet) 12 6-10 Diameter of casing (inches) construction Method of Altitude above sea level (feet) 24145 24 939 954 958 958 958 958 954 959 959 961 957 958 958 953 953 962 1963 Date completed C. S. Garber F. L. Bollinger F. L. Bollinger do. Ira Petersheim Driller C. S. Garber C. S. Garber C. S. Garber Kohl Bros. Garber Kohl Bros. do. do. do. do. C.S. St. Gabriel's Episcopal Church Soyertown Packaging Service Hub Tool Mfg. Machine Co. Forest Hills Memorial Park Daniel Boone Homestead Douglassville Water Co. Pennhurst State School Kawecki Chemical Co. Colorado Fuel & Iron Colebrookdale School Pennsburg Water Co. Pendora Tool & Die Exeter Twp. School Pine Forge Institute Pine Forge Institute J. S. Geol. Survey Owner Clarence C. Kline Y. Shaner ohn Bell 9999999 ф. do. 015-543-3 $\begin{array}{c} 017 - 551 - 2 \\ 020 - 537 - 1 \\ 020 - 536 - 2 \end{array}$ 020-536-3 020-536-4 $015-544-2 \\ 016-542-2$ $\begin{array}{c} 016-548-1 \\ 017-547-1 \\ 019-538-1 \\ 026-533-1 \end{array}$ 026 - 533 - 2011 - 533 - 2015 - 544 - 1011 - 534 - 2018 - 551 - 1018 - 544 - 1017 - 551 - 1020 - 536 - 7016 - 544 - 1015 - 543 - 1011 - 534 - 1018 - 553 - 1016 - 542 - 1Location number 1 Well number

H 84 ft. dd. in 24 hrs. 49 ft. dd. in 24 hrs. 40 ft. dd. in 4 hrs. 99 ft. dd. in 24 hrs. CA	J_ 000	129 ft, dd. in 48 hrs. CA	69 ft. dd. in 48 hrs. 2 ft. dd. in 14 hrs.	76 ft. dd. in 40 hrs. 90 ft. dd. in 24 hrs.	CA	CA CA; 110 ft. dd. in 24 hrs 60 ft. dd. in 1 hr.
	ESSCOCCESS AND SERVICE OF SERVICE	ar de Ress		00		22-1
125 200-240 150 125 148 100	240 240 8 8 118 779 39	139 128 50 240 165	150 76 50 125 140	115 210 210 72 48 71 71 220	60+ 15 90 90 15 130 395	190 227 60 80
288 288 249 115 115 26	0 76 78 78 83 132 83 73	24427 4238 4238 4338 4338	20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	2444 4444 200 200 200 200 200 200 200 20	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	98 98 101
10-28-31 10-28-47 10-27-47 4-13-50 10-31-35 5-643 9-2-47 12-28-47	4-23-45 8-6-54 8-6-54 8-6-54 3-1-4-3 11-4-54 3-1-47 1-31-47					9-16-56 8- 4-54 5- ?-54 1- ?-54
Tab Tab Tab Tab Tab Tab Tab	TRO, TRI TRO TRO TRO TRO TRO			TRD TRD TRD TRD TRD	Trb Trb Trb Trb, Trl Trb	Tro Tro Tro
4.844 4.85 4.85 4.85		36 44 37 46	100			33
22 30 275 250 250 357 357				230 545 90 00-320 00-320 00-320 00-320 300	199 112 219 300 300 300	203 203 400
84422 88128 88188 89188	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10-8 12-10 8 8 8 8	- ဘတတတတတတ		6 6 6 6 10–6 12–10	01 8 8 01 10
b0 b0 b0						
140 170 195 195 195 190 210 391	328 328 328 328 328 328 328	421 353 341 341 350 375	190 175 175 150	135 135 155 155 155 155 145	150 170 165 165 362 352	420 225 365 365
1752 1936 1942 1947 1906	945 1892 1908 1910 1923 1935	9937 9948 9949 934 951	913 1932 1926 1935 1937	943 951 937 1937 1940	930 941 941 951 942	928 1929 1954
				iaa aaaaaa	əəəəə ;	그 본 관 관
Honenberger Kohl Bros. do. do. Ridpath & Potter	do. F. L. Bollinger do. William Stothoff	do. do. do. F. L. Bollinger Philadelphia Drilling Co.	Penrose Keller do. C. S. Garber Groff Groff Groff & Kohl Bros	C. S. Garber do. Penrose Keller Joseph Smith do. do. do. C. S. Garber	Joseph Smith C. S. Garber do. Charles Merritt F. L. Bollinger Charles Lauman	Kidpath & Potter Kohl Bros.
State Penitentiary re Manor Ott Ile-Trappe Joint Water Works ales Water Authority	do. do. Lansdale Municipal Authority do. Lansdale Municipal Authority do. do.	do. do. do. Lansdale Forest Products Co. Lansdale Tee & Storage Lansdale Tube Co.	Joseph Trince Schulz Baking Co. Raymond Nester Clover Leaf Dairy do. Pottstown Warehouse & Cold Stor. Co.	tor Co.	Cleaners Inc. tr Block Co. Products Co. Dohme	Tellord Borough Collegeville-Trappe Joint Water Works American Encaustic Tile Co. do.
013-526-1 014-539-2 014-527-1 011-528-1 011-528-3 011-528-4 011-528-4 011-528-4	012-516-3 012-517-1 014-516-1 014-516-2 014-516-3 014-516-4 014-517-1 014-517-2	014-516-8 013-516-1 014-515-5 013-516-2 014-517-4 014-517-5 014-517-5	014-538-18 014-538-19 014-538-1 014-538-15 014-538-16 014-538-17 014-538-13	014-538-20 014-538-21 014-538-7 014-538-9 014-538-10 014-538-10 014-538-10 014-538-10	014-538-6 014-541-1 014-541-2 014-541-3 012-518-1 013-518-3	019-519-2 $012-528-1$ $015-516-1$ $015-516-3$
M 2 2 2 3 3 4 4 6 9 9 9	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	745 747 75 88 88 88 88 88 88 88 88 88 88 88 88 88	999 999 999 999	100 101 102 103 103 104 105 106	108 110 112 123 124 128	146 148 152 153

Table 6. Record of wells-Continued

Ӄєшзіка	EL, H EL, H SA t. dd. in 72 hrs. 22 ft. dd. in 5 hrs. 22 ft. dd. in 5 hrs. FA; 81 ft. dd. in 48 hrs. 11 ft. dd. in 73 hrs. 11 ft. dd. in 24 hrs. 87 ft. dd. in 24 hrs. CA	0.A. 120 tu shi in ma tere
əsU	ZSZSZSZSZSZSZSZSZSZSZSZSZSZSZSZSZSZSZS	
(mqg) bləiY	200 1000 1100 1100 1135 1100 1100 1100 11	101
Depth below land	10 10 10 10 10 10 10 10 10 10 10 10 10 1	N
Date measured beausesured Topic measured Depth below land October 1 and 1	2-7-60 1-17-55 1-17	10-30
эшва тэйирА	Tab	-171462
Depth to bottom of casing (feet)	25 22 28 28 28 28 28 28 28 28 28 28 28 28	000
Total depth (feet)	288 1266 1276 1288 450 1296 1206 1300 13	000
Diameter of (sədəni) gnizsə	16-10 16-10 10	0
Method of construction		
Altitude above sea level (feet)	200 200 200 200 200 200 200 200 200 200	
Date completed	1954 1954 1955 1955 1955 1955 1956 1956 1956 1949 1949 1949 1949 1949 1949 1955 1955	-
Driller	Ridpath & Potter J. T. Campbell Kohl Bros. Philadelphia Drilling Co. Kohl Bros. Ridpath & Potter George Lauman Michael Kuszyk Kohl Bros. do. do. A. W. Dorn Parente Bros. Charles Lauman do. Go. William Stothoff F. L. Bollinger do. do. Artessan Well Drilling F. L. Bollinger do.	
ТЭПЖО	Leeds & Northrup Co. do. do. Hatfield Borough North Wales Water Authority Precision Tube Co. Krasley Bleach & Dye Leeds & Northrup Co. C. W. MacMullin Oth F. Gerber Pottstown Metal Welding Co. Superior Tube Co. do. do. Horace W. Longacre Saratoga Trailer Park Variety Club Camp P. W. Bookhermer B. Bev F. McClure E. W. Carlson W. A. Garlson W. Garlson W. Ga	
Tedmun noitseod	012-516-1 012-516-1 013-517-2 013-517-2 011-532-3 011-532-4 011-532-4 011-526-2 011-526-2 011-526-3 011-521-2 011-521-2 011-521-2 011-518-3 011-526-3 011-526-3 011-526-3 011-526-3 011-526-3 011-526-3 011-526-3 011-526-3 011-526-3 011-526-3	
Well number	Mg 1167 1180 1180 1180 1180 1202 1202 1202 1202	

.8								47
FA; 125 ft. dd. in 24 hrs. FA FA	FA FA CA FA	FA FA CA	152 ft. dd. in 21 hrs. FA FA FA	सिस द द	r A EL	EL, H, FA	FA 67 ft. dd. in 24 hrs.	190 ft. dd. in 48 hrs. FA 8 ft. dd. in 2 hrs. FA
	arore	900	0_000	SSSOO			PS I	Recerr
191 60 ⁺ 40	09 90 30 40 90	25 40 15 95 225 107 10 55 213	226	20 20 20 20 20	180 193 73 61	193 62 94 170 108	20 12 12 67	200 17 30 12 90
37	11 63 21	50 72 69	15	∞ ∞	52	79	36	1111 23 32 152 90 8
8-10-56	6- 8-60 3-30-60 3-30-60	3-30-60 3-30-60 6-9-60 8-20-56	3-17-60	3-30-60	9-22-61	6- 1-60	6-23-60	9- ?-59 4-18-60 4-27-60 1957 4- 3-62
Tropian Tropia	Trb Trb Trb		Tro Tro Tro Tro Tro	Tab Tab Tab	Tab Tab Tab	Trb, Trl Trb Trb Trb Trb	Trb, Trl Trb, Trl Trb, Trl Trb, Trl Trb, Trl	Tab Tab Tab Tab
60 42	21	38 12 21 21	45 50 50 25	25 25 25 25 25	23.55 25.55	525445		
400 120 223 172 100+	201 225 235 450	$\begin{array}{c} 102\\ 154\\ 156\\ 190\\ 394\\ 328\\ 145\\ 179\\ 365\\ 200+ \end{array}$	98 330 135 110 79	195 90 19	140 351 402 342 494 976	394 394 355 406 266	820 300 400 235	492 135 210 220 262
16-10 10 6 6	ဓာတဓာတက	0 0 10 10 10 10 10	6 6 6 6 6	ထေလာက္လ	0 14-10 14-10 14-10	441444 44144 14410 14410	6 6 6 12–8	12-8 6 10 6 6 8
110 115 115 227 120	160 175 187 265 265	260 285 285 285 285 115 115 115 125 125	127 280 267 255 255	195 181 176 178 270	210 152 153 147	130 130 165 186	430 430 425 390	320 185 265 275 310 150
1956 1947 1959	1959 1925 1941	1959 1959 1959 1934 1934 1934 1934 1934	1959 1960 1943 1940	1948	1940 1947 1942 1947 1947	1 1 9 4 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	1951	1958 1925 1955 1943 1958 1954
Ridpath & Potter C. S. Garber do.	C. S. Garber Kohl Bros. do.	A. w. Dorn A. Miller Pump Service C. S. Garber do. do. do. do. do. do.	Wallace Reigner F. L. Bollinger	Patrick Flaherty do. do.	Farente Bros. C. S. Garber do. do.	ું હું હું હું હું હું	Walter Emert do. William Stothoff Walter Emert	Kohl Bros. Thomas G. Keyes Parente Bros. C. S. Gaber do.
Diamond Glass Co. Spring Ford Foundry & Machine Co. Bush Bros. Potts Bros. Poversford Foundry & Machine Co.	Bankers Bar Nelsons Ice Cream Inc. Cann & Saul Steel Co. O.J. Hymes	John Nast Natalie Schmitt McCormic Air Services S. A. Wetty & Sons Kinsey Distilling Corp. do. do. do. do.	do. Martin Century Farms C. V. Hollis C. W. Bosler	Fischers Pool & Cottages do. do. do. John Gregory	Anna Lewandowski Firestone Tire & Rubber Co. do. do.	တို့ ဝဲ့ ဝဲ့ ဝဲ့ ဝဲ့ ဝဲ့ ဝဲ့ ဝဲ့ ဝဲ့ ဝဲ့ ဝဲ	Picolet Dye Works Inc. do. do. Lansdale Borough	Lansdale Municipal Authority H. H. Becker Pa. Turnpike Lansdale Interchange Robert Aldefer Pottstown Airport Sunnybrook Enterprises
010-532-1 010-532-2 010-532-3 011-532-1 010-532-4	010-532-5 010-532-5 011-531-1 012-522-1	012-525-1 012-525-2 012-532-1 012-532-1 012-534-1 012-534-2 012-534-4 012-534-4 012-534-6 012-534-6	012-534-9 013-518-5 013-521-1 013-521-2	013-521-4 013-521-5 013-521-6 013-521-7 013-521-7	013-524-2 013-536-1 013-536-2 013-536-3 013-536-4	013-536-5 013-536-6 013-536-7 013-536-8 014-536-1	014-515-1 014-515-2 014-515-2 014-515-4 014-516-7	014-518-3 $014-520-1$ $014-520-2$ $014-525-1$ $014-536-3$
544 544 545 546	548 550 551	2000 2000 2000 2000 2000 2000 2000 200	565 567 568 568	570 571 572 573 574	575 577 578 579	582 582 584 584	588 589 591 591	593 594 595 597 598

Table 6. Record of wells—Continued

s _Ą ,	Remar	FA	CA	FA	67 ft, dd. in 2 hrs.	FΑ	$_{ m CA}$		FA; 50 ft. dd. in 24 hrs. EL	FA FA	;	EL, H, SL EL, H, SL EA	AAAA.	FA	CA
	9gU					2		> (Sann	ם חם			2000		PS
(wd3)	Yield (160 130 ⁺ 125	90 200 200	150 120	147 200 255	15	30	100+	55 200 9	186	60 200	125	40+	80	20
below land (1991)	Depth surface	30	25 25	100	63 86 96		7	- 60 52 - 44 82	24 41 105	30 49	5522	62 55	49	135	120
Static water level below land below land level	Date D	1- 7-42		1958	1958 1958 1958		0 0	3-28-58 1957	$10^{-9-57} \\ 12^{-18-62} \\ 1958$	4- 3-60 4- 1-60 4- 1-60	3-31-60 8-10-59 3-29-60	8-29-63 8-29-63 4- 4-60	4- 1-60 4- 1-60	1960	1960
ម្រាស់ពេះ	əliupA	Trb Trb Trb	Trop data	Trb Trb	Trb Trb	Trop Large	Tro Jan	Trb	Trb Trb Trb	Trb Trb	Trb Trb	Tro	Tap Tap	Trop date	Trb
mottod ot (1991) ga			850		35 82 36			116	100 97 85	62	09	32	16		
(teet) dtqeb	Total	385 287 540	425 916 200 200	184 201	200 244 350	320 120	330	8004	600 507 504	384 125 84	101 130 500	200 198 198	167 105 100	35 503 913	312
to retical (sales)	Diame	80 10 80	သမာထသ	œ	∞ ∞ ∞	9	9	10	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	899	986 1086	မ ာ	သောကလော	ος υ	>00
	Metho constri	7 7 7 7 7 7	5555	555	777 777		552		555		===;	EEE.	5555	Dri	E E
de above sea (teet)	outitlA i) ləvəl	155 155 160	150 145 145	165 165 150	145 145	370 375	360 360	380 335	297 330 315	320 320	782 782 782 782 782	270 310	250 232 232 232 232 232	240 238 288 260	250
pəşəldwo	Date c	1941	1941 1942 1916 1916	1917 1932 1910	1945 1947 1948		1958	1955	1956 1957 1958	1958	1959	1962	1930 1958	1940	
	Driller	Joseph Smith	do. Kohl Bros.	Joseph Smith	Kohl Bros. do. do.	Walter Emert do.	R. L. Knieriem	William Stothoff	Miller Pump Service William Stothoff F. L. Bollinger	do.	A. W. Dorn Ridpath & Potter	C. S. Garber & Kohl Bros.	Miller Pump Service Patrick Flaherty	F. L. Bollinger	F. L. Bollinger
	1эпжО	Dana Corp. ' do. do.	do. do. Bethlehem Steel Co. do	a Dairy . Flagg Inc.		Lock Seam Tube Inc. Picolet Dye Works Inc. do.	Eugene D. Rutter Penndale Inc.	American Encausing The Co. do.	A. M. Kulp School Lansdale Municipal Authority J. W. Rex Inc.	do. Paul Clemens M. L. Dickinson	Christopher Dock Mennonite H. S. do. Nice Ball Bearing Co.	U. S. Geol. Survey do. Elwell Davies	John Felver William Delp Abram Ziegler Frank Wambold	William Delp Schwenksville Water Co.	do.
по питрет	itsood	014-537-1 014-537-2 014-537-3	014-537-4 014-537-5 014-538-1 014-538-2	014-538-3 $014-538-4$ $014-540-3$	014-540-1 $014-540-2$ $014-540-4$	015-514-1 $015-515-1$ $015-515-2$	013-522-1 015-516-4	015-516-6 015-516-6 015-516-7	015-516-8 $015-517-9$ $015-517-13$	$\begin{array}{c} 015-517-14 \\ 015-519-1 \\ 015-519-2 \\ \end{array}$	015-520-1 015-520-2 015-520-3	015-520-11 015-520-10 015-520-4	015-520-5 015-520-6 015-520-7 015-520-8	015-520-9 015-528-1 015-598-3	015-528-3
19qun	Well n	g 599 600 601	6000 6003 5004 605	606 607 608	609 610 611						629 631 631	633 634 74	636 637 638	639 640 641	642

rks.	Use		J EL 2S EL, SL; 135 ft. dd. in 40 hrs.			D CA D CA			CA	FA	PS EL, SL I 154 ft. dd. in 8 hrs.	.0	K EL; EL; 191 ft. dd. in 24 hrs.			U CA PS 114 ft. dd. in 1 hr. PS 151 ft. dd. in 2 hrs. PS
(10)			40 135			702			20	 		7 080 080 080		, 20 1		20 1 13 1 13 1
e (feet)																
below land	Depth					80.7		·	53 53	7.0	14 56				1102 1103	
State of the control	Date 1					2 - 5 - 62 1956				10 - 7 - 44 $10 - 13 - 58$	7-30-62		9-25-62			9- 5-63 8-23-63
er name	ołiupA	Trb Trb	Tab	Trb	Tab	Trb Trl	Tra	EE.	Trb Trb	Trb Trb	Trb	TT Tage	Trb Trb, Trl	TRO TRO	Tag Tag Tag	Trd
nottom of itset)			803			8 0 4 0	30			$\frac{15}{29}$	30 52	21	14			
depth (feet)	Total	405 300	400	123	100+	157 312	138	280	133 300	325 328	300	300 1300 1000	400	403 42 125	111 80 110	511 415 359 250
eter of (inches)		99	6 14–10	900	909	999	999	⊅ ∞	99	∞ ∞ ·	D 00 O	999	· • • • •	x တေတ		9999
od of socion	Metho	Drl			E E	555		II.	ī Ā		- - - - - - - - - - - - - - - - - - -		125	E E E	5555	2222
de above sea (feet)	utitlA) level	320 310	315 310	480 495 330	430	260 450	300	410	295 230	200 395	395 145 185	320 340 340	315	350 420 275	275 115 445 305	425 320 230 290
completed	Date 0	1957 1961	1961 1962	1957	1950	1940 1956	1951	1927	$1950 \\ 1955$	1944 1958	1962 1961	1961 1961 1907	1962	1962		1960 1947 1940
ı.	Drille	Kohl. Bros. C. S. Garber	do. F. L. Bollinger	C. S. Garber Hunsicker Storer	C. S. Garber	W. W. Wonsturer C. S. Garher Miller Pump Service		Charles Lauman	Tenney Kohl Bros.	do. A. W. Dorn	F. L. Bollinger C. S. Garber	do. do.	Thomas G. Keyes	do. Joseph Mayer		F. L. Bollinger do. do.
1	Эмме	Kawecki Chemical Co.	do. Lansdale Municipal Authority	Upper Hanover Twp. H. J. Beitler S. P. Codeboll	Frank Seal	A. I. Goadby E. F. Barndt N. T. Cummings	Ferro-Phos Co. Stanley Slemmer	Florence A. Flummer do.	Fred Tyson Bechtel's Dairy	do. H. W. Longacre	do. Schwenksville Water Co. American Telephone & Telegraph Co.	do. Kawecki Chemical Co. Porkiomen School	Kawecki Chemical Co. Hunter Spring Co.	do. E. E. Endy Delmont Scout Reservation	do. Linwood Yost John Wright Timerick School	Eggleville Sanatorium Upper Perkionen Valley Park do.
тэбшип поі	Locati	020-536-1 020-536-5	020 - 536 - 6 $015 - 517 - 15$	024-528-1 022-534-1 010-533-1	018-527-1			010 - 523 - 1 $010 - 523 - 2$	013 - 531 - 1 $011 - 530 - 2$	011-530-1 $018-521-3$	$018-521-4 \\ 015-527-1 \\ 014-536-4$	014-536-5 020-536-8 023-530-1	020-536-9 $017-517-2$	$017-517-3 \\ 020-525-1 \\ 020-526-1$	$020-526-2 \\ 011-526-5 \\ 014-514-3 \\ 013-531-9$	009-524-1 019-529-1 020-529-1 020-529-2
лэфши	Mell n	g 701 702	703	705 708 700	710	712 713	714	717	718 720	721	724 725 726	727 728 790	730	732 733 734	735 737 737	739 740 741 742

4 ft. dd. in 3 hrs.	6 ft. dd. in 3 hrs.	3 ft. dd. in 3 hrs.			150 ft dd in 18 hrs.	
ļ-Ω	QC	20	Ω=	ρQ	Ω,	
3U 5	ကက	ာက	0.3	0.1	200	
31	25	3 60	17	14	30	3
12- r-61 8-22-63	8-22-63	8-30-63	8-28-63	8-19-63	3-25-53	00-1-0
Tab	Trd	Trd	Trd	Trd	Tab	1 100
42				20	35	Ŧ
235	800	132	110	313	106	csc
99	9	စ စ	9	9	9	2
L C	E C	55	Į.	55	Ę.	Uri
210	340	320 320	420	190	275	190
1961 210	340	250 350			1952 275	
	340	250				
C. S. Garber 1961		J. L. Beek P. 1-1 I. 350	1963	1963 Michael Kuszuk 1963	Philadelphia Drilling Co. 1952	Kohl Bros. 1963
Techalloy Co. C. S. Garber 1961	K. B. Brooks M. H. Gulack		Joseph Kulp	do. 1963	Atlantic Refining Co. Philadelphia Drilling Co. 1952	Stanley G. Flagg Inc. Kohl Bros. 1963
012-527-1 Techalloy Co. C. S. Garber 1961	019-530-1 K. B. Brooks 020-530-1 M. H. Gulack	J. L. Beck	020-535-1 reatput review 1963 020-532-1 Joseph Kulp	020-532-2 do. 1953	016-52/-1 John Lesner 1952 017-515-1 Atlantic Refining Co. Philadelphia Drilling Co. 1952	014-540-6 Stanley G. Flagg Inc. Kohl Bros. 1963

Table 7. Sample logs of wells in the Brunswick Formation in Berks and Montgomery Counties, Pa.

Well Be-125

Owner: U.S. Geological Survey

	Depth
Description	(feet)
Soil, red	0 — 2
	$\begin{array}{ccc} 0 & & 2 \\ 2 & & 30 \end{array}$
Shale, red	30 - 35
Shale, red, slightly calcareous; calcite and quartz joint filling	35 — 38
Shale red	38 — 50
Shale, red	50 — 55
Shale, red, moderately calcareous	55 — 60
Shale, red, moderately calcareous; calcite and quartz joint filling	60 — 70
Shale, red, slightly calcareous	70 — 75
Shale, red, slightly calcareous	75 — 80
Shale, red; calcite joint filling	80 — 90
Shale, red, slightly calcareous; calcite joint filling	90 - 105
Shale, red, moderately calcareous; calcite joint filling	105 — 110
Shale, purplish-gray, slightly calcareous	110 — 115
Shale, red; calcite joint filling	115 - 120
Shale, red, slightly calcareous; calcite joint filling	120 — 125
Shale, red, slightly calcareous	125 — 130
Shale, red, slightly calcareous; calcite and quartz joint filling	130 — 135
Shale, red, moderately calcareous; calcite joint filling	135 — 140
Shale, red, slightly calcareous; calcite and quartz joint filling Shale, red, slightly calcareous; calcite joint filling	140 — 145
Siltstone, red, slightly calcareous	143 — 130
Shale, red, slightly calcareous; calcite and quartz joint filling; pyrite	145 — 150 150 — 155 155 — 160
Shale, red, slightly calcareous; calcite joint filling	160 - 165
Shale, red, moderately calcareous; calcite joint filling	165 - 170
Shale, red, slightly calcareous	
Argillite, light gray, moderately calcareous; calcite joint filling; pyrite	170 — 175 175 — 178
Shale, red, slightly calcareous; calcite and quartz joint filling	178 — 182
Shale, red, slightly calcareous; calcite joint filling; pyrite	182 — 185
Shale, red, slightly calcareous; calcite joint filling	185 — 190
Shale, red, moderately calcareous; calcite joint filling; pyrite and	
goethite	190 — 195
Shale, red, slightly calcareous; calcite joint filling	195 — 200
Shale, red, slightly calcareous; calcite and quartz joint filling	200 205
Shale, red; calcite joint filling	205 — 215
Shale, red, slightly calcareous	215 — 220
Argillite, purple and a few streaks of brown and green; calcite and quartz joint filling; goethite	220 — 225
Shale, red, slightly calcareous; calcite joint filling	
Shale, red, slightly calcareous; calcite and quartz joint filling	225 — 227 227 — 230
Shale, red, slightly calcareous; calcite joint filling	230 - 240
Shale, red, moderately calcareous; calcite joint filling	240 — 243
Shale, red, slightly calcareous; calcite joint filling	243 - 265
Shale, red, slightly calcareous; calcite joint filling pyrite and goethite	265 — 273
Shale, red, slightly calcareous; calcite joint filling	273 - 280
Shale, gray-brown, moderately calcareous; calcite joint filling; goethite	280 - 282
Argillite, blue-gray, moderately calcareous; calcite joint filling; goethite	282 — 285
Argillite, greenish-gray, moderately calcareous; calcite joint filling;	
goethite; very fine grained sandstone, yellow, moderately calcareous	285 — 287

Well Be-125—Continued

Argillite, greenish-gray, moderately calcareous; calcite joint filling;	
pyrite	– 288
Argillite, purplish-brown; goethite	- 290
Shale, red, moderately calcareous; calcite joint filling	- 292
Shale, red, slightly calcareous; calcite joint filling 292 –	- 294
Shale, red	
Shale, red, slightly calcareous; calcite joint filling 296 –	-300

Well Mg-632

Owner: U.S. Geological Survey

Well Mg-632—continued Shale, red, slightly calcareous 300 - 310310 --- 315 Shale, red, slightly calcareous; quartz and calcite joint filling 315 - 320Siltstone, buff, moderately calcareous; red shale; quartz joint filling ... 320 - 325Shale, red, slightly calcareous, micaceous; calcite joint filling Shale, red, slightly calcareous, micaceous; calcite and quartz joint 325 - 330330 - 335Shale, red, slightly calcareous; calcite joint filling 335 — 340 Shale, red, micaceous; calcite and quartz joint filling Shale, red moderately calcareous; calcite and quartz joint filling 340 - 345Shale, red, moderately calcareous; calcite joint filling 345 - 350Shale, red, slightly calcareous; calcite joint filling 350 --- 360 360 — 363 363 — 370 Shale, red, micaceous; calcite and quartz joint filling Shale, red, moderately calcareous; calcite joint filling 370 — 375 Shale, red, slightly calcareous Shale, red, slightly calcareous; calcite joint filling 375 - 379Shale, green, moderately calcareous 379 - 381Shale, red, slightly calcareous; calcite joint filling 381 - 385385 — 405 Shale, red, slightly calcareous 405 — 425 425 — 450 Shale, red, slightly calcareous; calcite joint filling Shale, red, slightly calcareous Shale, red, slightly calcareous; calcite joint filling 450 - 460460 - 465Shale, red, slightly calcareous; calcite and quartz joint filling 465 - 470Shale, red, slightly calcareous Shale, red, slightly calcareous; calcite joint filling 470 - 475Shale, red, moderately calcareous; calcite joint filling 475 - 480480 — 490 Shale, red, slightly calcareous

Well Mg-633

490 — 500

Shale, red, moderately calcareous; calcite joint filling

Owner: U.S. Geological Survey

	Depth
Description	(feet)
Shale, red; quartz joint filling	0 — 5
Shale, red, slightly calcareous, calcite joint filling	5 — 20
Shale, red, moderately calcareous; calcite joint filling	20 — 25
Shale, red, slightly calcareous; calcite joint filling	25 — 30
Shale, red, moderately calcareous	30 — 35
Shale, red, moderately calcareous; calcite joint filling	35 — 40
Shale, red; calcite joint filling	40 — 45
Shale, red, slightly calcareous; calcite joint filling	45 — 55
Shale, red, slightly calcareous; goethite	55 — 60
Shale, red, slightly calcareous; calcite joint filling	60 - 70
Shale, red, slightly calcaerous	70 — 90
Shale, red, moderately calcareous; calcite joint filling	90 - 100
Shale, red; calcite joint filling	100 105
Shale, red, slightly calcareous; abundant quartz and calcite joint filling.	
Quartz is in crystals up to half an inch long	105 - 108
Shale, red, slightly calcareous; calcite joint filling	108 - 110
Shale, red, slightly calcareous; abundant calcite joint filling	110 - 112
Shale, red, slightly calcareous; calcite and quartz joint filling and	
goethite	112 — 115

Well Mg-633—continued

TABLE 7

Shale, red; calcite joint filling	113 — 118
Shale, red	118 — 120
Shale, red, slightly calcareous	120 — 123
Shale, red	123 — 125
Shale, red, moderately calcareous; calcite joint filling	125 - 128
Shale red slightly calcareous	128 — 138
Shale, red, slightly calcareous; calcite joint filling	138 - 140
Shale, red, slightly calcareous; calcite joint filling Shale, red, slightly calcareous Shale, red, slightly calcareous; calcite joint filling Shale, red, slightly calcareous; calcite joint filling	140 — 142
Shale red slightly calcareous: calcite joint filling	142 — 148
Shale red slightly calcareous	148 — 150
Shale, red, slightly calcareous	150 — 152
Shale, red, slightly calcareous; calcite joint filling	152 — 165
Shale, red, slightly calcareous	165 — 168
Shale, red, slightly calcareous; calcite joint filling	
	168 — 170 170 — 172
Shale, red; calcite joint filling	172 - 175
Shale, red	175 - 178
Shale, red, moderately calcareous	
Shale, red, moderately calcareous; calcite joint filling	178 — 185
Shale, red; calcite joint filling	185 — 205 205 — 210
Shale, red, slightly calcareous; calcite joint filling	
Shale, red; calcite joint filling	210 — 212
Shale, red, slightly calcareous; calcite joint filling	212 — 215
Shale, red, slightly calcareous; calcite and quartz joint filling	215 — 220
Shale, red, slightly calcareous; calcite joint filling	220 — 225
Shale, red; calcite joint filling	225 - 230
Shale, red: calcite and quartz joint filling and goethite	230 — 232
Shale, red, moderately calcareous; quartz and calcite joint filling	232 - 233
Shale, red; calcite joint filling	233 — 235
Shale, red, moderately calcareous; calcite joint filling	235 — 237
Shale, red; calcite joint filling	237 — 240
Shale, red, slightly calcareous; calcite joint filling	240 - 243
Shale, red, slightly calcareous	243 — 245
Shale, red; calcite joint filling	245 — 263
Shale, red, slightly calcareous; calcite joint filling	263 - 270
Shale, red	270 — 275
Shale, red, slightly calcareous; calcite joint filling	275 — 278
Siltstone, red, moderately calcareous; calcite joint filling	278 - 280
Shale, red, slightly calcareous; calcite joint filling	280 - 283
Shale, red; calcite joint filling	283 - 288
Shale, red, slightly calcareous; calcite joint filling	288 - 290
Shale, red, slightly calcareous	290 - 295
Shale, red; calcite joint filling	295 - 300
Shale, red	300 — 302
Shale, red; calcite joint filling	302 — 307
Shale, red, slightly calcareous; calcite joint filling	307 — 310
Shale, red, moderately calcareous; calcite joint filling	310 — 312
Shale, red, slightly calcareous	312 — 314
Shale, red, slightly calcareous; calcite joint filling	314 — 325
Shale, red, slightly calcareous; quartz joint filling	325 — 327
Shale, red, slightly calcareous	327 - 330
Shale, red	330 - 335
Shale, red; calcite joint filling	335 - 348
Shale, red, slightly calcareous; calcite joint filling	
Shale, red, slightly calcareous	348 — 350 350 — 355
Shale, red, slightly calcareous; calcite joint filling	355 - 358
onaic, rea, siightly calcareous, calcife joint minig	555 556

Well Mg-633—Continued Shale, red; calcite joint filling 358 - 360Shale, red, moderately calcareous 360 - 362362 — 365 Shale, red, slightly calcareous; calcite and quartz joint filling 365 - 380Shale, red; calcite joint filling Shale, red, moderately calcareous 380 - 383Shale, red, moderately calcareous, micaceous 383 - 385385 — 390 Shale, red, slightly calcareous; calcite joint filling 390 - 392Shale, red, slightly calcareous Shale, red 392 - 395395 - 402Shale, red, slightly calcareous 402 - 405Shale, red, moderately calcareous; calcite joint filling Shale, red, slightly calcareous; calcite and quartz joint filling 405 - 408408 — 410 Shale, red, moderately calcareous Shale, red, slightly calcareous 410 - 412Shale, red, slightly calcareous; calcite joint filling 412 - 415Shale, red, moderately calcareous; calcite joint filling 415 - 417 417 — 420 Shale, red, slightly calcareous; calcite joint filling, pyrite and goethite 420 - 422Shale, red, slightly calcareous Shale, red, slightly calcareous; calcite joint filling 422 - 428Shale, red, slightly calcareous 428 - 430430 — 432 Shale, red Shale, red, slightly calcareous; calcite joint filling 432 - 435435 — 437 Shale, red, moderately calcareous; calcite joint filling 437 - 460Shale, red, slightly calcareous; calcite joint filling Shale, red; calcite joint filling 460 - 465Shale, red; calcite joint filling, pyrite and goethite 465 - 467Shale, red, slightly calcareous; calcite and quartz joint filling 467 - 470Shale, red, slightly calcareous 470 — 473 473 — 497 Shale, red, slightly calcareous; calcite joint filling 497 — 500

Well Mg-679

Owner: Souderton Borough

Description	Depth (feet)
Shale, red	0 — 40
Shale, red, moderately calcareous; calcite joint filling	40 — 100
Shale, dark reddish-gray, slightly calcareous	100 — 110
Shale, red, slightly calcareous; calcite joint filling and pyrite	110 - 120
Shale, red, slightly calcareous; calcite joint filling	120 - 130
Shale, dark red, moderately calcareous	130 - 140
Shale, red, slightly calcareous; calcite joint filling	140 — 180
Argillite, blue-gray, slightly calcareous; calcite joint filling. Thin beds	
of red shale are in this interval	180 — 190
Argillite, blue-gray, moderately calcareous; calcite and quartz joint	
filling. About 4 feet of this interval is red shale	190 — 200
Sandstone, gray, very fine grained; calcite joint filling and pyrite	200 - 210
Argillite, blue-gray, moderately calcarous; calcite joint filling and	
pyrite	210 - 230
Argillite, blue-gray, slightly calcareous; pyrite and geothite	230 - 260

Well Mg-679—Continued

Siltstone, blue-gray, slightly calcareous; pyrite	260 - 270
Argillite, blue-gray, moderately calcareous; pyrite. Red shale, moder-	
ately calcareous; calcite joint filling and pyrite	270 - 278
Argillite, blue-gray, moderately calcareous; pyrite	278 - 285
Shale, reddish-brown, moderately calcareous; About 4 feet of this	
interval is blue-gray, moderately calcarous argillite	285 — 308

Well Mg-700

Owner: Stanley G. Flagg, Inc.

Description	Depth (feet)
Fill	0 — 20
Sandstone, buff, fine grained. About half of this interval is red shale	20 — 30
Shale, red, micaceous	30 — 60
Shale, red	60 — 90
Shale, red, slightly calcareous; quartz joint filling	90 - 100
Shale, red, slightly calcareous	100 - 130
Shale, red, slightly calcareous	130 - 140
Shale, red, slightly calcareous	140 - 150
Shale, red, moderately calcareous	150 - 160
Shale, red; calcite joint filling	160 - 170
Shale, red, slightly calcareous	170 - 190
Shale, red, moderately calcareous	190 - 200
Shale, red, moderately calcareous, micaceous; calcite joint filling	200 - 250
Shale, red, micaceous; calcite joint filling	250 - 260
Shale, red, slightly calcareous; calcite joint filling	260 - 280
Shale, gray-brown, slightly calcareous; micaceous; calcite joint filling	280 - 290
Shale, red, slightly calcareous; calcite joint filling	290 - 330
Siltstone, red, slightly calcareous; calcite joint filling	330 — 340 340 — 350
Shale, red, moderately calcareous	340 - 350
Shale, red, moderately calcareous; calcite joint filling	350 — 360
Siltstone, red, moderately calcareous; calcite joint filling	360 - 370
Shale, red, moderately calcareous; calcite joint filling	370 — 390
Shale, red, moderately calcareous; calcite and quartz joint filling	390 — 400
Shale, red, moderately calcareous; calcite joint filling	400 — 456
Sandstone, white, fine grained	456 — 461
Shale, red, moderately calcareous; calcite joint filling	461 — 480
Argillite, blue-gray, moderately calcareous, interbedded with about 3	
feet of buff sandstone	480 — 500
Sandstone, light-brown, fine grained	500 — 510
Sandstone, light-brown, medium grained	510 — 520
Shale, brown, slightly calcareous, micaceous; calcite joint filling	520 — 530
Shale, brown, slightly calcareous, micaceous; quartz joint filling	530 — 540
Shale, red, moderately calcareous; calcite joint filling	540 — 560
Shale, red, moderately calcareous; calcite and quartz joint filling	560 — 600
Shale, red, slightly calcareous; calcite joint filling	600 — 610
Shale, red, moderately calcareous; calcite joint filling. About 1 foot	
of this interval is buff, fine grained sandstone	610 - 620
Shale, red, moderately calcareous; calcite joint filling	620 - 640

Table 7. Sample logs of wells in the Brunswick Formation—Continued

Well Mg-704

Owner: Lansdale Municipal Authority

Description	Depth (feet)
Shale, red	0 — 10
Shale, red, slightly calcareous; calcite joint filling	10 — 20
Shale, red	20 — 40
Shale, red, slightly calcareous	40 — 50
Shale, red, slightly calcareous; calcite joint filling	50 — 70
Shale, red, moderately calcareous; calcite joint filling	70 — 80
Shale, red, slightly calcareous; calcite joint filling	80 - 140
Shale, red, moderately calcareous; calcite joint filling	140 - 190
Shale, red, slightly calcareous; calcite joint filling	190 - 200
Shale, red, slightly calcareous; calcite joint filling and pyrite	200 - 210
Shale, red, slightly calcareous; calcite joint filling	210 - 220
Siltstone, red, slightly calcareous; goethite	220 - 230
Argillite, blue-gray to greenish-gray, slightly calcareous; calcite joint	
filling and goethite	230 - 240
Shale, gray-brown, slightly calcareous; calcite joint filling and goethite	240 - 250
Shale, red, moderately calcareous; calcite joint filling and goethite	250 - 260
Shale, red, moderately calcareous; calcite joint filling	260 - 290
Shale, red, slightly calcareous; calcite joint filling, pyrite and goethite	290 - 310
Shale, red, slightly calcareous; calcite joint filling	310 — 330
Argillite, blue-gray, moderately calcareous; calcite joint filling and	
pyrite	330 — 360
Argillite, blue-gray, moderately calcareous; calcite joint filling and	0.60 0.50
goethite	360 — 370

Well Mg-725

Owner: Schwenksville Water Co.

Shale, red, slightly calcareous; calcite joint filling 0—	20
Shale, red, slightly calcareous; quartz joint filling, pyrite and goethite 20—	
Shale, red, moderately calcareous; calcite joint filling, pyrite and	50
goethite 30—	40
Shale, red, slightly calcareous; joint filling	50
Shale, red, a few green spots, moderately calcareous	60
Shale, red, moderately calcareous. About 4 feet of this interval is	
purplish-brown	
Shale, red, slightly calcareous; calcite joint filling 70—	80
Shale, red, moderately calcareous; calcite and quartz joint filling 80 —	90
Shale, red, slightly calcareous; quartz joint filling	100
Shale, red, moderately calcareous; calcite joint filling	10
Shale, red, slightly calcareous; calcite and quartz joint filling 110 — 1	120
Shale, red, slightly calcareous; calcite joint filling 120 — 1	50
Shale, red, slightly calcareous	60
Shale, red, slightly calcareous; calcite joint filling 160 — 1	80

TABLE 7 59

Table 7. Sample logs of wells in the Brunswick Formation—Continued

Well Mg-725—Continued

Shale, red, slightly calcareous; calcite and quartz joint filling	180 190
Shale, red, slightly calcareous; calcite joint filling	190 - 200
Shale, red, moderately calcareous; calcite and quartz joint filling	200 - 210
Shale, red, moderately calcareous; calcite joint filling	210 - 220
Shale, red, slightly calcareous; calcite joint filling	220 - 240
Shale, red; calcite joint filling	240 - 250
Shale, red, slightly calcareous; calcite joint filling	250 - 290

