EPITA / S1		Janvier 2016
<u>NOM</u> :	PRENOM:	<u>GROUPE</u> :

Partiel n°1 de Physique

Les calculatrices et les documents ne sont pas autorisés.

Réponses exclusivement sur le sujet				
Exercice 1 Cinématique (7 points)				
Partie A				
On cherche à retrouver les expressions de vitesse et d'accélération dans la base de Frenet (\vec{u}_T, \vec{u}_N) .				
L'abscisse curviligne élémentaire en base de Frenet est donnée par $dS = Rd\theta$, où R est le rayon de courbure en un point M quelconque de la trajectoire.				
1- Exprimer le vecteur vitesse \vec{V} dans la base de Frenet (\vec{u}_T, \vec{u}_N) .				
2- En déduire dans la base de Frenet les composantes a_T et a_N du vecteur accélération \vec{a} .				

<u>Partie B</u>

Un objet supposé ponctuel décrit à vitesse angulaire constante ω , la courbe en spirale d'équation en coordonnées polaires : $\rho(t) = a.\exp(\omega t)$, où a et ω sont des constantes positives.

$$\theta = \omega t$$
, avec $\dot{\theta} = \omega$.

I - Donner le vecteur position $O\overline{M}$ en coordonnées polaires.	

2- Déterminer le vecteur vitesse de ce mouvement sachant qu'en coordonnées polaires, on a :

$$\vec{V} = \stackrel{\bullet}{\rho} \vec{u}_{\rho} + \rho \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$

3- En déduire le vecteur accélération \bar{a} , sachant qu'en coordonnées polaires, on a :

$$\vec{a} = (\rho - \rho(\theta)^2)\vec{u}_{\rho} + (2\rho\theta + \rho\theta)\vec{u}_{\theta}$$

Exercice 2 Système en équilibre (7 points)

Une barre homogène AB de longueur L est en équilibre comme l'indique la figure ci-dessous. La barre fait un angle $\alpha = 30^{\circ}$ avec le mur vertical. La masse de la barre est m= 10 kg et g = 10m.s⁻².

1- Faire le bilan des forces extérieures qui s'exercent sur la barre en équilibre. Représenter ces forces,
sachant qu'il n'y a des frottements qu'au point de contact B. Commenter la direction de la réaction \vec{R}_B .
2- On suppose que la barre est susceptible d'être en mouvement de rotation autour d'un axe passant par
le point B et perpendiculaire à la feuille. Utiliser la condition d'équilibre de rotation pour calculer la
norme de la force exercée en A par le mur sur la barre.
On donne: $tang(30^\circ) = \frac{1}{\sqrt{3}}$
3- a) Utiliser la condition d'équilibre de translation pour exprimer les composantes R_{Bx} et R_{By} de la
réaction \bar{R}_B . Faire le calcul numérique.

h) Calculer la	norme de la réaction	$ec{R}$
		TCB
c) En déduire	la valeur du coefficier	nt de frottement statique μ_s au point B.
Exercice 3	Cinématique (6 p	points)
Un point mate cartésiennes (x	ériel M de masse m s, y, z) telles que :	est repéré dans un référentiel fixe (Oxyz) par ses coordonnée
	$x(t) = R \cos(\omega t)$	
	$y(t) = R \sin(\omega t)$ $z(t) = H\omega .t$	Où ω, R et H sont des constantes positives.
1- Donner l'éq du mouvement	uation et la nature de t sur l'axe (Oz). En de	la trajectoire du mouvement dans le plan (xoy). Préciser la nature éduire la nature du mouvement total.

EPITA / S1	Janvier 2016
2- Exprimer le vecteur position $O\vec{M}$ en coord	onnées cylindriques de base $(\vec{u}_{ ho},\vec{u}_{ heta},\vec{u}_{z})$.
3- Exprimer le vecteur vitesse en coordonnées	cylindriques de base $(\vec{u}_{\rho}, \vec{u}_{\theta}, \vec{u}_{z})$, en déduire sa norme

- Exprime iorme.	r le vecteu	r accélération	1 en coordonné	es cylindriques	de base	$(\vec{u}_{\rho}, \vec{u}_{\theta}, \vec{u}_{z})$. Er	déduire :
				.,,			