Predicting Drug-Target Interaction for New Drugs Using Enhanced Similarity Measures and Super-Target Clustering

Jian-Yu Shi (NWPU)

Siu-Ming Yiu (HKU)

Yiming Li (HKU)

Henry C.M. Leung (HKU)

Francis Y.L. Chin (HKU)

神農

(shen nong; "divine farmer")

Shen Nong's Organs

Drug

Schizophrenia (a disease)

Drug discovery:

Predicting drug-target interaction is the key!

Input

Drug similarity Target similarity

drugs

Target similarity targets

Drug-target interaction

	t ₁	t_2	t ₃	t ₄	t ₅
d_1	0	1	0	0	0
d_2	1	0	1	1	0
d_3	0	0	1	0	1
d_4	0	0	0	0	1

drugs

Drug similarity Target similarity

targets

Train a model for prediction

> Problem with training data: missing interactions

Drug-target interaction

	t ₁	t ₂	t ₃	t ₄	t ₅
d_1	0	1	0	0	0
d_2	1	0	1	1	0
d_3	0	0	1	0	1
d_4	0	0	0	0	1

Existing method #1: WNN-GIP

Weighted nearest neighbor – Gaussian interaction profile (PloS One 2013)

Drug-target interaction

Biased!

Only uses positive samples to build the model

	t ₁	t_2	t ₃	t ₄	t ₅
d_1	0	1	0	0	0
d_2	1	0	1	1	0
d_3	0	0	1	0	1
d_4	0	0	0	0	1

Existing method #2: KBMF2K

Kernelized Bayesian matrix factorization

(Bioinformatics 2012) t_2 t_5 **Drug-target** d_1 interaction score matrix Problem with training data: missing interactions **Target** Target Drug Drug latent feature" similarity "latent featur similarity targets drugs features targets lard to targets

Limitations of the existing methods

WNN-GIP and KBMF2K

- Missing interactions
- The similarity measure
 - Only based on the chemical structure of drugs and protein sequences of targets

Drug-target interaction prediction as probabilistic events

The neighbor idea

- A drug's *neighbors*: the drugs most similar to it
- Predict a new drug's behavior by its neighbors' behavior

The probability

- Event A: to be predicted
 (New) drug d interacts with target t
- Event B: the observation
 # of d's neighbors interacting with target t

We calculate Pr(A|B) by

$$\frac{\Pr(AB)}{\Pr(AB) + \Pr(A^CB)}$$

Probability of how likely *d* interacts with *t* given the observed number of interactions of *d*'s neighbors with *t*

Our contribution #1

"Super-targets"

Cluster targets using similarities; Cluster = Super-target

st_2

st = super-targets

	t ₁	t_2	t_3	t ₄	t ₅
d_1	0	1	0	0	0
d_2	1	0	1	1	0
d_3	0	0	1	0	1
d_4	0	0	0	0	1
		st	1 5	st ₂	
	d_1	1		0	
	d_2	1		1	
	d_3	0		1	
	d_4	0		1	

st = super-targets

st = super-targets

Sx: Prob(d_2 interacts with st_1)

 $\left(d_{4}\right)$

If we only use Sx, we are assuming all the targets in st_1 are equivalent.

Aim:

?

 t_2

For new drugs it is the same!

st = super-targets

St₂

Sx: Prob(d_2 interacts with st_1)

 $S_{Y|X}$: Prob(d_2 interacts with $t_2 \mid d_2$ interacts with st_1)

SxSyx: Prob(d_2 interacts with t_2 in st_1)

Cluster targets using similarities; Cluster = Super-target

st = super-targets

		t_1	t_2	t_3	t ₄	_t ₅ _
t_1	d_1	0	1	0	0	0
d_1	d_2	1	0	1	1	0
$t_2 \mid st_1$	d_3	0	0	1	0	1
d_2	d_4	0	0	0	0	1
t_4						

Cluster targets using similarities; Cluster = Super-target

st = super-targets

	t ₁	t ₂	t ₃	t ₄	_t ₅
d_1	0	1	0	0	0
d_2	1	0	1	1	0
d_3	0	0	1	0	1
d_4	0	0	0	0	1

A new target could be clustered into one of the super-targets

*t*₅ For new drugs it is the same!

Our contribution #2

Enhanced similarity measures for drugs and targets

Existing similarity measures

Drugs: aligning the 2D chemical structures

Targets: aligning the protein sequences

They have low structural similarity (0.275) but share many targets

^{* 2}D chemical structures extracted from KEGG.

They have low structural similarity (0.275) but share many targets

Non-structural similarity measures are needed!

* 2D chemical structures extracted from KEGG.

Anatomical Therapeutic Chemical Classification System

Anatomical Therapeutic Chemical Classification System

<u>D</u> <u>05</u> B B 01

D 05 A X 05

structural similarity

First two levels are the same! ATC code similarity = 2/5 = 0.4 > 0.275

Functional categories of proteins

- Non-structural
- Describing their functions

Our new similarity measure

Drugs

2D chemical structure similarity + ATC code similarity 2

Targets

protein sequence + category code similarity 2

Using new similarity measures and "super-targets"

Our performance

AUC A is better than B AUPR

	Actual +ve	Actual -ve
Predicted +ve	TP	FP
Predicted -ve	FP	TN

	Actual +ve	Actual -ve
Predicted +ve	TP	FP
Predicted -ve	FN	TN

AUC A is better than B AUPR

Overall performance

,	Enzyme		Ion channel		GPCR		Nuclear receptor		Total
	AUC	AUPR	AUC	AUPR	AUC	AUPR	AUC	AUPR	running time
KBMF2K	0.812	0.287	0.802	0.245	0.840	0.347	0.810	0.354	115.4 min
WNN-GIP	0.861	0.280	0.775	0.233	0.872	0.311	0.839	0.456	$190.9 \min$
Ours	0.812	0.385	0.811	0.367	0.875	0.414	0.871	0.533	5.5 min

With and without new similarity measures

	Enzyme		Ion channel		GPCR		Nuclear receptor	
	AUC	AUPR	AUC	AUPR	AUC	AUPR	AUC	AUPR
Without new	0.805	0.332	0.776	0.296	0.854	0.304	0.860	0.476
With new	0.812	0.385	0.811	0.367	0.875	0.414	0.871	0.533

New drug, new target

- Remove known interactions from the data set to create "new" drugs and targets
- Consider if the removed interactions could be predicted
- The mis-prediction error measures the fraction of "new" drugs with a wrong prediction

New drug, new target

				· ·
	Enzyme	Ion Channel	GPCR	Nuclear Receptor
KBMF2K	0.774	0.600	0.654	0.600
WNN-GIP	0.931	0.600	0.692	0.600
Ours	0.657	0.500	0.500	0.600

The numbers are mis-prediction errors.

The smaller the mis-prediction error, the better the performance.

Conclusions

- Non-structural-based similarities
- "Super-targets"

My e-mail: liym1018@hku.hk

Thank you for listening.

References

- 1. E. E. Bolton, Y. Wang, P. A. Thiessen et al., "PubChem: integrated platform of small molecules and biological activities," Annual Reports in Computational Chemistry, vol. 4, pp. 217–241, 2008.
- 2. M. Hurle, L. Yang, Q. Xie et al., "Computational drug repositioning: from data to therapeutics," Clin. Pharmacol. Ther., vol. 93, no. 4, pp. 335–341, 2013.
- 3. M. A. Yıldırım, K.-I. Goh, M. E. Cusick et al., "Drug-target network," Nat. Biotechnol., vol. 25, no. 10, pp. 1119–1126, 2007.
- 4. F. Cheng, C. Liu, J. Jiang et al., "Prediction of drug-target interactions and drug repositioning via network-based inference," PLoS Comput. Biol., vol. 8, no. 5, p. e1002503, 2012.
- 5. D.-S. Cao, S. Liu, Q.-S. Xu et al., "Large-scale prediction of drug-target interactions using protein sequences and drug topological structures," Anal. Chim. Acta., vol. 752, pp. 1–10, 2012.
- 6. L. Jacob and J.-P. Vert, "Protein-ligand interaction prediction: an improved chemogenomics approach," Bioinformatics, vol. 24, no. 19, pp. 2149–2156, 2008.
- 7. Y. Yamanishi, M. Araki, A. Gutteridge et al., "Prediction of drug-target interaction networks from the integration of chemical and genomic spaces," Bioinformatics, vol. 24, no. 13, pp. i232–i240, 2008.
- 8. J.-P. Mei, C.-K. Kwoh, P. Yang et al., "Drug–target interaction prediction by learning from local information and neighbors," Bioinformatics, vol. 29, no. 2, pp. 238–245, 2013.
- 9. T. van Laarhoven, S. B. Nabuurs, and E. Marchiori, "Gaussian interaction profile kernels for predicting drug–target interaction," Bioinformatics, vol. 27, no. 21, pp. 3036–3043, 2011.
- T. van Laarhoven and E. Marchiori, "Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile," PloS One, vol. 8, no. 6, p. e66952, 2013.
- 11. M. Gonen, "Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization," Bioinformatics, vol. 28, no. 18, pp. 2304–2310, 2012.
- 12. Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, vol. 42, no. 8, pp. 30–37, 2009.
- 13. M. Kanehisa and S. Goto, "KEGG: Kyoto encyclopedia of genes and genomes," Nucleic Acids Res., vol. 28, no. 1, pp. 27–30, 2000.
- 14. "ATC structure and principles," http://www.whocc.no/atc/structure and principles/, accessed: 2014-06-30.
- 15. M.-L. Zhang and Z.-H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recogn., vol. 40, no. 7, pp. 2038–2048, 2007.
- 16. K. Bleakley and Y. Yamanishi, "Supervised prediction of drug-target interactions using bipartite local models," Bioinformatics, vol. 25, no. 18, pp. 2397–2403, 2009.
- 17. M. Hattori, Y. Okuno, S. Goto et al., "Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways," J. Am. Chem. Soc., vol. 125, no. 39, pp. 11 853–11 865, 2003.
- 18. T. F. Smith and M. S. Waterman, "Identification of common molecular subsequences," J. Mol. Biol., vol. 147, no. 1, pp. 195–197, 1981.
- 19. M. Tsuji, "Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily," J. Struct. Biol., vol. 185, no. 3, pp. 355–365, 2014.
- 20. I. Letunic, T. Doerks, and P. Bork, "SMART 7: recent updates to the protein domain annotation resource," Nucleic Acids Res., vol. 40, no. D1, pp. D302–D305, 2012.
- 21. J. Davis and M. Goadrich, "The relationship between Precision-Recall and ROC curves," in Proceedings of the 23rd international conference on Machine learning. ACM, 2006, pp. 233–240.
- 22. F. J. Azuaje, L. Zhang, Y. Devaux et al., "Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs," Scientific Reports, vol. 1, 2011.
- 23. G. Tsoumakas, I. Katakis, and I. Vlahavas, "Mining multi-label data," in Data Mining and Knowledge Discovery Handbook. Springer, 2010, pp. 667–685.

Image sources

- Shen Nong. http://upload.wikimedia.org/wikipedia/commons/c/c5/Shennong3.jpg
- Herb. https://c2.staticflickr.com/6/5046/5366857952_6c04ec9b35_b.jpg
- Zyprexa. http://da.wikipedia.org/wiki/Olanzapin#mediaviewer/File:Zyprexa.PNG
- Schizophrenia patient artwork.
 - http://upload.wikimedia.org/wikipedia/commons/b/b2/Cloth_embroidered_by_a_schizophrenia_sufferer.jpg
- D2R. http://en.wikipedia.org/wiki/Dopamine_receptor_D2#mediaviewer/File:Protein_DRD2_PDB_1I15.png
- Yellow and blue pills. http://commons.wikimedia.org/wiki/File:Pharmaceuticals.jpg
- Aspirin 2D structure. http://commons.wikimedia.org/wiki/File:Aspirin-skeletal.png
- Prozac 2D structure. http://commons.wikimedia.org/wiki/File:Fluoxetine_structure.svg
- FOXP2 structure. http://en.wikipedia.org/wiki/FOXP2
- Protein structure #1.
 - http://upload.wikimedia.org/wikipedia/commons/8/86/Argonne's_Midwest_Center_for_Structural_Genomics_deposits_1,00_0th_protein_structure.jpg
- Protein structure #2.
 - http://upload.wikimedia.org/wikipedia/commons/8/86/Argonne's_Midwest_Center_for_Structural_Genomics_deposits_1,00
 Oth_protein_structure.jpg
- Tablets. http://pixabay.com/en/medications-cure-tablets-pharmacy-342462/
- Doxycycline. http://en.wikipedia.org/wiki/Doxycycline#mediaviewer/File:Doxycycline_100mg_capsules.jpg
- Orange tablets in yellow cup. http://pixabay.com/en/tablets-pills-medicine-disease-193666/
- Furosemide. http://upload.wikimedia.org/wikipedia/commons/thumb/5/51/Furosemide (1).JPG/768px-Furosemide
- My neighbor Totoro. http://helixaspersa.deviantart.com/art/My-Neighbor-Totoro-in-Autumm-137190257

^{*} All the images used are labeled for non-commercial reuse by Google image search.

Supplementary #1

Estimating Pr(A) and Pr(A^C)

$$\Pr[a(x,j) = 1] \approx \left[1 + \sum_{i=1}^{m} A(i,j)\right] / (m+2);$$

$$\Pr[a(x,j) = 0] = 1 - \Pr[a(x,j) = 1]$$

- Event A: (New) drug d interacts with target t
- Event B: c drugs in the set of d's K nearest neighbors interacts with target t

Supplementary #1

Estimating Pr(B|A) and Pr(B|A^C)

$$\frac{1 + \sum_{i} Ind[A(i,j) = b \& n(i,j,K) = c]}{(K+1) + \sum_{c'=0}^{K} \sum_{i} Ind[A(i,j) = b \& n(i,j,K) = c']}$$

- Event A: (New) drug d interacts with target t
- Event B: c drugs in the set of d's K nearest neighbors interacts with target t

Supplementary #2

All the methods with new similarity measures

	Enzyme		Ion C	Ion Channel		GPCR		Nuclear Receptor	
	AUC	AUPR	AUC	AUPR	AUC	AUPR	AUC	AUPR	
KBMF2K	0.870	0.391	0.833	0.330	0878	0.414	0.860	0.403	
WNN-GIP	0.846	0.323	0.813	0.263	0.888	0.403	0.864	0.497	
Ours	0.849	$\bf 0.432$	0.817	0.370	0.888	$\boldsymbol{0.422}$	0.882	$\boldsymbol{0.521}$	