Calculation of Output Resistance for MOSFET in the Saturation Region

Problem Setup and Definitions

For a MOSFET, the output resistance r_o in the saturation region is defined by:

$$r_o = \frac{1}{\frac{\partial I_D}{\partial V_{DS}}} \tag{1}$$

where r_o is the reciprocal of the slope of the I_D vs. V_{DS} curve in the saturation region. In this region, the drain current I_D becomes nearly constant as the drain-to-source voltage V_{DS} increases.

Given Data:

- Gate-to-source voltage: $V_{GS} = 3.5 \,\mathrm{V}$
- Measured data points for I_D vs. V_{DS} in the table below:

V_{DS} (V)	$I_D \text{ (mA)}$
1.85	2.05
2.05	2.07
2.25	2.08
2.45	2.08
:	i i
5.0	2.12

The goal is to calculate r_o based on the data in the saturation region, identified as the point where I_D stabilizes with increasing V_{DS} .

Step-by-Step Calculation of r_o

Step 1: Identify the Saturation Region

The saturation region begins at approximately $V_{DS} = 1.85 \,\text{V}$, where I_D becomes almost constant with increasing V_{DS} . This is shown by the values:

V_{DS}	(V)	$I_D(\mathrm{mA})$
3.0	5	2.09
5.0)	2.12

Thus, we select these points within the saturation region for calculating the slope $\frac{\Delta I_D}{\Delta V_{DS}}.$

Step 2: Calculate ΔI_D and ΔV_{DS}

Using Point 1 ($V_{DS}=3.05\,\mathrm{V},\,I_D=2.09\,\mathrm{mA}$) and Point 2 ($V_{DS}=5.0\,\mathrm{V},\,I_D=2.12\,\mathrm{mA}$):

$$\Delta I_D = 2.12 \,\mathrm{mA} - 2.09 \,\mathrm{mA} = 0.03 \,\mathrm{mA}$$

$$\Delta V_{DS} = 5.0 \,\mathrm{V} - 3.05 \,\mathrm{V} = 1.95 \,\mathrm{V}$$

Step 3: Calculate the Slope $\frac{\Delta I_D}{\Delta V_{DS}}$

The slope in the saturation region is:

$$\frac{\Delta I_D}{\Delta V_{DS}} = \frac{0.03 \,\text{mA}}{1.95 \,\text{V}} = 0.0154 \,\text{mA/V}$$

Step 4: Compute Output Resistance r_o

The output resistance r_o is the reciprocal of this slope:

$$r_o = \frac{1}{\frac{\Delta I_D}{\Delta V_{DS}}} = \frac{1}{0.0154 \,\text{mA/V}} = \frac{1}{0.0000154 \,\text{A/V}}$$
 (2)

$$r_o \approx 64935\,\Omega \approx 64.9\,\mathrm{k}\Omega$$

Conclusion

The calculated output resistance r_o in the saturation region for $V_{GS}=3.5\,\mathrm{V}$ is approximately:

$$r_o \approx 64.9 \,\mathrm{k}\Omega$$

This result was obtained by identifying the saturation region, selecting stable data points within that region, calculating the slope, and applying the reciprocal relationship to find r_o .