

reviewer3@nptel.iitm.ac.in ▼

Courses » Computational Systems Biology

Announcements Course Ask a Question **Progress** Mentor FAQ

Unit 5 - Week 1

Course outline	Assignment 1		
How to access the portal	The due date for submitting this assignment has passed. Due on 2018-08-15, 23 As per our records you have not submitted this assignment.	:59 IST.	
Pre-requisite Assignment	1) Which of the following is true regarding Michaelis-Menten kinetics?	1 point	
MATLAB Access and Introduction	It gives the final rate of product formation, for a given substrate concentration It is an example of a stochastic model		
MATLAB Learning Modules	$lue{}$ A low value of K_M (Michelis-Menten constant) indicates that the binding of the enzyme with the substrate is high		
Week 1	the $ u_{max}$ for a reaction remains unchanged on doubling enzyme concentration		
	the equation is unchanged when inhibitors are present		
01 - Introduction	No, the answer is incorrect.		
02 - Introduction to Modelling	Score: 0 Accepted Answers:		
03 - Introduction to Modelling	A low value of K_M (Michelis–Menten constant) indicates that the binding of the enzyme with the substrate is high		
04 - Fundamentals of Mathematical Modelling	2) The Hill equation is used to depict the binding of ligand to a macromolecule such a		
 05 - Fundamentals of Mathematical Modelling 	protein. This equation, which was formulated by Archibald Hill was used to describe equilibrium relationship between the oxygen tension and the saturation of haemog Ever since, the Hill equation has been used to study the reaction kinetics that show		
 06 - Fundamentals of Mathematical Modelling 	sigmoidal behaviour. This can be described as follows: $v = \frac{v_{max}[L]^n}{(K_{0.5})^n + [L]^n}$	nat snov	
07 - SomeExample Models	where v is the velocity of the reaction		
08 - Representation of Biological Networks	v_{max} is the maximum velocity of the reaction L is the concentration of free unbound ligand $K_{0.5}$ is the concentration of ligand at which velocity of the reaction is half the maxin is the Hill coefficient, which is the measure of cooperativity of ligand binding to the second seco		
09 - Lab: MATLAB Basics	protein, a value of n > 1 indicates positive cooperative binding, n < 1 indicates negative cooperative binding, n = 1 indicates noncooperative binding, n of oxygen binding to		
10 - Lab: MATLAB Basics	haemoglobin is within the range of 1.7-3.2.	Jinamig t	
• 11 - Lab: MATLAB Basics	This equation is, and the Variable(s), Parameter(s) and Constant(s) in this equivalence is/are:		

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -In association with

A project of

12 - Lab: MATLAB

Funded by

Powered by

Mr. d. O	Nonlinear, Variables - v, n, L Parameters $-K_{0.5}$, v_{max} Constant – This equation has	
Week 2	Develo no constants	
Week 3	Linear, Variables - v, L Parameters $-K_{0.5}$, v_{max} , n Constant – This equation has no constants	
Week 4		
Week 5	No, the answer is incorrect. Score: 0	
Week 6	Accepted Answers: Nonlinear, Variables - v, L Parameters $-K_{0.5}$, v_{max} , n Constant – This equation has	
Week 7	no constants	
Week 8	3) Which of the following is true for a mathematical model: 1 point	
Week 9	All models are wrong, practically	
Week 10	Only true for the assumptions that we make	
Week 11	Never overfits if you consider large data	
Week 11	Complex models always perform better than a simple model	
Week 12	Simple models may be preferable under some circumstances	
DOWNLOAD	No, the answer is incorrect. Score: 0	
VIDEOS	Accepted Answers:	
	All models are wrong, practically	
	Only true for the assumptions that we make Simple models may be preferable under some circumstances	
	4) You are asked to build a model to predict max and min temperature for the 1 point city of New Delhi. Data collected from the year 2000 to 2015 is given to you, which	
	measures different parameters such as humidity, solar radiation, pollution, air	
	velocity, pressure, etc. You use a polynomial regression model by reducing the Root Mean Square Error. The model you have built is:	
	Mathematical	
	Deterministic	
	Stochastic	
	Discontinuous	
	☐ Empirical	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers:	
	Mathematical Deterministic	
	Empirical	
	5) 1 point	
	We have discussed the SIR model for spread of infectious diseases where S represent	
	people susceptible to disease, I are infected patients and R are patients who hav	
	recovered. The complexity of the SIR model is dependent on the assumptions we make	
	and the parameters we consider. The rate of susceptible people is likely dependent on	
	☐ The birth rate of the population	
	The genetic resistance found in the population	
	Environmental factors that found to correlated with disease	
	Availability of medical resources such as vaccines	
	Geographical location	
	No, the answer is incorrect. Score: 0	

```
Accepted Answers:
 The birth rate of the population
 The genetic resistance found in the population
 Environmental factors that found to correlated with disease
 Availability of medical resources such as vaccines
 Geographical location
 6) Biological systems are mostly
                                                                             1 point
   Sensitive
   Stable
   Consistent
   Complex
   Homogeneous
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 Stable
 Complex
 7) Which of the following expressions will evaluate to zero in MATLAB?
                                                                             1 point
   0.1+0.2-0.3
   sqrt(9)-(3/sqrt(9))
   sqrt(3)-sqrt(3)
   10^500-10^500
   7-21/3
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 sqrt(3)-sqrt(3)
 7-21/3
 8) Consider the function add test below. The function will return a value of
                                                                             1 point
zero, for
                    function val = add_test(f)
               2
               3 - val = 0;
                    for k = 1:10
               5 -
                          val = val + f;
                    end
               7 - | for k = 1:10 |
                          val = val - f;
                    end
   all real values of f
   all integer values of f
   all negative powers of 2, e.g. 0.5, 0.25, 0.125
   any exact binary floating-point number, e.g.
   0.100000001490116119384765625
   \Box f = NaN
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
```

```
all integer values of f
  all negative powers of 2, e.g. 0.5, 0.25, 0.125
  any exact binary floating-point number, e.g. 0.100000001490116119384765625
 9) Suppose you have a matrix A = \text{rand}(1000,1000). Which of the following are 1 point
ways to set all values in the matrix that are (strictly) greater than 0.5 to 0?
    \Box A(A>0.5)=0
   \Box A(find(A>0.5)) = 0
    [i,j] = find(A>0.5) 
       for v = 1:length(i)
         A(v(i),v(j)) = 0;
       end
   \triangle A=A-A(A>0.5)
   \triangle A>0.5=0
  No, the answer is incorrect.
  Score: 0
  Accepted Answers:
 A(A>0.5)=0
 A(find(A>0.5)) = 0
 10)What is the output of the following code, for n = 11? The output for n = 8 is
exactly "8 4 2 1" (note the spaces!). You must solve this question without using
MATLAB, to gain the habit of understanding code and "dry running" it.
              function collatz(n)
        2 -
             x = n;
        3
              while (n\sim=1)
                   if (mod(n,2)==0)
        4 -
        5 -
                         n = n/2;
        6 -
                   else
        7
                         n = 3*n + 1;
        8
                   end
        9
                   x = [x n];
       10 -
              end
             fprintf('%d ',x)
       11 -
  No, the answer is incorrect.
  Score: 0
  Accepted Answers:
  (Type: String) 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
                                                                                   1 point
      Previous Page
                                                                             End
```