Title Circular Coordinates under Different Cost Functions

Group 8 Project

F. Author¹ S. Another²

ICERM August 2019

Applied Mathematical Modeling with Topological Techniques

Problem Setup

- We have a (simplicial) complex K from the dataset X, we can consider the homology and cohomology with a fixed coefficient field K.
- Homology and boundary operator: $\partial: C_k(K) \to C_{k-1}(K)$. e.g. $[1,2,3] \mapsto [1,2] + [2,3] + [3,1]$
- Cohomology and coboundary operator: $\delta: C^k(K) \to C^{k+1}$. e.g. $\{1,2,3\} \mapsto [1,2,3]$
- Intuition: If you think of boundary operators as "differentiation", then the coboundary operator is like "anti-derivation".
- Problem (Circular Coordinates): Given a cochain $f \in C^k(K)$, can we find a cohomologous cochain z such that the norm (when the representative element function f and z is regarded as an \mathbb{K} -vector) $\|f \delta z\|_{L^2}$ is minimized?

Interpretation of Different Cost Functions

- Problem (New): How about we change the cost function $||x||_{L^2} := (\sum_i x_i^2)^{1/2}$ into:
 - $||x||_{L^1} := (\sum_i |x_i|)$ L1-norm It may introduce sparsity across coordinates instead of smoothness.
 - $(1-\lambda)\|x\|_{L^1} + \lambda \|x\|_{L^2}$ elastic net It may find a balance between L1 and L2 norms.
 - $\|x\|_{L^1} + \lambda \|x\|_{L^p}$ It may produces some other kind of smoothness.
 - Localized penalty. Only take a penalty norm for some subvector of x.
 - In addition, we can penalized not only $x=f-\delta z$ but also
 - $x = \delta z$ (minimize edits?)
 - x = z or $x = z \mod 1$ (smaller values for functions as $X \to S^1$?)

Optimization Problem: Gradient Descent

- Generic matrix optimization without Jacobian estimate: Slow and inefficient.
- Matrix optimization using Gradient Descent with Jacobian.
 - Example 1: Annulus.

• L2 norm $(x = f - \delta z \text{ and } x = z \text{ mod } 1)$

• L1 norm $(x = f - \delta z \text{ and } x = z \text{ mod } 1)$

Another Example

- Matrix optimization using Gradient Descent with Jacobian.
- Example 2: Double Annulus.

• Mixed L2 norm $(\|f - \delta z\|_{L^2} + \|\delta z\|_{L^2})$

