香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九八七年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1987

附加數學(卷二) ADDITIONAL MATHEMATICS (Paper II)

評 卷 巻 考 MARKING SCHEME

這份內部文件,只限閱卷員參閱,不得以任何形式翻印。

This is a restricted document.

It is meant for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited.

請在學校任效之閱卷員特別留意

本評卷參考並非標準答案,故極不 宜落於學生手中,以免引起誤會。

遇有學生求取此文件時,閱卷員應嚴予拒絕。閱卷員在任何情况下披露 本評卷參考內容,均有違閱卷員守則 及「一九七七年香港考試局法例」。

Special Note for Teacher Markers

It is highly undesirable that this marking scheme should fall into the hands of students. They are likely to regard it as a set of model answers, which it certainly is not

Markers should therefore resist pleas from their students to have access to this document. Making it available would constitute misconduct on the part of the marker and is, moreover, in breach of the 1977 Hong Kong Examinations Authority Ordinace.

⑥ 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1987

SOLUTIONS	MARKS	REMARKS
1. $(1 + x + x^2)^n$		
$= [1 + x(1 + x)]^n$	1M	
$= 1 + nx(1 + x) + \frac{n(n-1)}{2} (x^2)(1 + x)^2 + \dots$		
Coeff. of $x^2 = n + \frac{n(n-1)}{2}$	2A	
= 21		
$n^2 + n - 42 = 0$ (n - 6)(n + 7) = 0	1 A	
n = 6 or -7 (rejected)	lA	
_	5	
2. For n = 1, L.H.S. = 1/4 R.H.S. = 1/4 = L.H.S	1	
Assume equality holds for some integer k .	1	
For $n = k + 1$,		
L.H.S. = $\frac{1}{(1)(4)} + \frac{1}{(4)(7)} + \ldots + \frac{1}{(3k-2)(3k+1)} + \frac{1}{(3k+1)(3)}$	k+4)	
$= \frac{k}{3k+1} + \frac{1}{(3k+1)(3k+4)}$ $= \frac{3k^2 + 4k + 1}{(3k+1)(3k+4)}$	1	
$= \frac{(3k+1)(3k+4)}{3k+4}$	1	
= R.H.S.		
Therefore equality holds also for n = k + 1. mathematical induction, equality holds for all positive integers n.	1	Award this mark only if the
	5	candidate has scored the firs four marks.
3. Let the slope of the required line be $\mathfrak m$.		`
$\frac{m-3}{1+(m)(3)} = \pm \frac{1}{2}$ $2(m-3) = 3m+1 \text{or} 2(m-3) = -(3m+1)$	1A+1	lA for formula (excl. ±) l for ±
m = -7 or $m = 1$	1A+1A	
$\frac{y-2}{x-1} = -7$ $\frac{y-2}{x-1} = 1$		
7x + y - 9 = 0 $x - y + 1 = 0$	1A 5	For both equations

SOLUTIONS	MARKS	REMARKS
4. Put $x = \sin\theta$		
$dx = cos\theta d\theta$. 1A	
$x = 0, \theta = 0$	1,4	
$x = \frac{1}{2}, \ \theta = \frac{\pi}{6} $. 1A	
$\int_0^{\frac{1}{2}} \frac{2x^2}{\sqrt{1-x^2}} dx = \int_0^{\frac{\pi}{6}} \frac{2\sin^2\theta}{\sqrt{1-\sin^2\theta}} \cos\theta d\theta$		
$= \int_{0}^{\pi} \frac{1}{6} 2 \sin^2 \theta \ d\theta \dots$. 1A)
$= \int_{0}^{\frac{\pi}{6}} (1 - \cos 2\theta) d\theta$	1A	for integrand
$= \left[\theta - \frac{1}{2} \sin 2\theta\right]_0^{\frac{\pi}{6}} \dots$	1.A	
$=\frac{\pi}{6}-\frac{\sqrt{3}}{4}$ (0.0906)	1A	
6 4 (0,000)	6	
5. $y = \int (3x^2 - 2)(x^3 - 2x + 1)^{\frac{1}{3}} dx$	1M	3
put $u = x^3 - 2x + 1$ $du = (3x^2 - 2) dx$	1A	
$y = \int u^{\frac{1}{3}} du$	1A	
$y = \frac{3}{4} u^{\frac{2}{3}} + c$		
$y = \frac{3}{4}(x^3 - 2x + 1)^{\frac{4}{3}} + c$	1A	
sub. $x = 0$, $y = 0$	1M	Do not award this mark if c
$c = -\frac{3}{4}$	1A 6	is missing.
. sin30 = sin20cos0 + cos20sin0	1A	$(\cos\theta + i\sin\theta)^3$
= $2\sin\theta\cos^2\theta + (1 - 2\sin^2\theta)\sin\theta$		$= \cos 3\theta + i\sin 3\theta $ 1A
$= 3\sin\theta - 4\sin^3\theta$	1 A	:
Put $x = \sin\theta$	1M	$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$ 1A
$8x^3 - 6x + 1 = 0$		
$8\sin^3\theta - 6\sin\theta + 1 = 0$		
$2(4\sin^3\theta - 3\sin\theta) + 1 = 0$		
$2\sin 3\theta = 1$		
$\sin 3\theta = \frac{1}{2} \qquad \dots$	1A	
$3\theta = 180n^{\circ} + (-1)^{\circ}30^{\circ}$		
$\theta = 60n^{\circ} + (-1)^{n}10^{\circ}$		
= 10°, 50°, 130°, 170°, 250°,		
x = sinl0°, sin50°, sin250° = 0.17, 0.77, -0.94	14,14	2
- 0.17, 0.77, -0.34		2 correct answers IA 3 correct answers 2A
	5	

SOLUTIONS	MARKS	REMARKS
7. Tangents are of the form $y = 2x + k$	1A	Alternative Solution:
Sub. in $x^2 - y^2 = 3$	IM	Diff. $x^2 - y^2 = 3$ 1M
$x^2 - (2x + k)^2 = 3$		2x - 2yy' = 0 1A
$-3x^2 - 4kx - k^2 = 3$		$y' = \frac{x}{y}$
$3x^2 + 4kx + k^2 + 3 = 0$	1 A	$\frac{x}{y} = 2$ 1A
For tangents, $\lambda = 0$		x = 2y
$16k^2 - 4(3)(k^2 + 3) = 0$	1M	Sub. in $x^2 - y^2 = 3$ 1M
$k^2 = 9$		$3y^2 = 3$
$k = \pm 3$	lA+lA	$y = \pm 1$ $x = \pm 2$
quations of tangents $y = 2x + 3$ and $y = 2x - 3$	6	y = 2x-3 and $y = 2x+3$ 1A+1A
Alternative Solution:		
Eqt. of tangent: $x_1x - y_1y = 3$	1 A	
$slope = \frac{x_1}{y_1}$	lA	
$\frac{x_1}{y_1} = 2$	1A	
etc.		

8, ADD MATHS II

SOLUTIONS	MARKS	REMARKS
8. (a) $du = \sec^2 x dx$,	1A	
$\int \tan^{n-2} x \sec^2 x dx = \int u^{n-2} du$ $= \frac{\tan^{n-1} x}{2^{n-1}} + c$	1A	14 6
11 - 1	4 4	1A for c
(b) (i) $\int_{0}^{\frac{\pi}{4}} \tan^{n} x dx = \int_{0}^{\frac{\pi}{4}} \tan^{n-2} x \tan^{2} x dx$		
$= \int_0^{\frac{\pi}{4}} \tan^{n-2}x (\sec^2x - 1) dx$	1A	
$= \int_{0}^{\frac{\pi}{4}} \tan^{n-2}x \sec^{2}x dx - \int_{0}^{\frac{\pi}{4}} \tan^{n-2}x dx$	x 1M	
$= \left[\frac{\tan^{n-1} x}{(n-1)} \right]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} \tan^{n-2} x dx$! 1M	lM for using (a)
$= \frac{1}{n-1} - \int_0^{\frac{\pi}{4}} \tan^{n-2}x dx$	1	Alternative Solution:
(ii) $I_0 = \int_0^{\frac{\pi}{4}} dx = \frac{\pi}{4} \text{ or } I_2 = 1 - \frac{\pi}{4}$	1A	$\int_{0}^{\frac{\pi}{4}\tan^{6}x} dx$
$I_6 = \int_0^{\frac{\pi}{4}} \tan^6 x dx = (\frac{1}{5} - I_4)$	2A	$= \int_{0}^{\frac{\pi}{4}} \tan^{4} x (\sec^{2} x - 1) dx \qquad 1A$
$I_4 = \left(\frac{1}{3} - I_2\right)$	1A	:
$I_6 = \left[\frac{1}{5} - \frac{1}{3} + 1 - I_0 \right]$		$= \left[\frac{1}{5} \tan^5 x - \frac{1}{3} \tan^3 x + (\tan x - x)\right]_0^{\frac{1}{4}}$
$= \left(\frac{13}{15} - \frac{\pi}{4} \right) \text{ or } 0.0813$	1A	$= \frac{13}{15} - \frac{\pi}{4} \qquad \qquad \text{IA+IA+IA}$
	9	
(c) Putting x = -v	Í	$\frac{\text{Alternative Solution:}}{\int_{0}^{0}}$
dx = -dv	1A	$\int_{-\frac{\pi}{4}}^{0} \tan^{6}x dx$
x = 0, v = 0)	1A	$= \left[\frac{1}{5} \tan^{5} x - \frac{1}{3} \tan^{3} x + (\tan x - x)\right] - \frac{\pi}{4}$ $= \frac{13}{15} - \frac{\pi}{4} \qquad \qquad 1A$
		$= \frac{13}{14} - \frac{\pi}{14}$
$\int_{-\frac{\pi}{4}}^{0} \tan^{6}x dx = \int_{\frac{\pi}{4}}^{0} \tan^{6}(-v)(-dv) $ $= \int_{0}^{\frac{\pi}{4}} \tan^{6}v dv $)	1	$= \int_{0}^{\frac{\pi}{4}} \tan^6 x dx \qquad 1$
$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^{6}x dx = \int_{-\frac{\pi}{4}}^{0} \tan^{6}x dx + \int_{0}^{\frac{\pi}{4}} \tan^{6}x dx$	I.A	
$= 2 \begin{cases} \frac{\pi}{4} \\ 0 \end{cases} \tan^6 x dx \qquad \dots$	1A	
$= 2(\frac{13}{15} - \frac{\pi}{4}) \text{ or } 0.163$	1 <u>A</u> 7	

	SOLUTIONS	MARKS	REMARKS
9. (a)	Area of region $I = \int_0^s x^2 dx$	1A	
	$= \begin{bmatrix} \frac{x^3}{3} \end{bmatrix}^{s}$ $= \frac{s^3}{3}$	14	
	Area of (shaded region + I + II)		Alternative Solution:
	•		$ST : \frac{y - s^2}{x - s} = \frac{s^2 - t^2}{s - (-t)}$
	$= \frac{1}{2}(s + t)(s^2 + t^2)$	1A	y = (s - t)x + st 1A
	Area of region II = $\frac{t^3}{3}$	1 A	Shaded area
-	Shaded area = $\frac{1}{2}$ (s + t)(s ² + t ²) - $\frac{1}{3}$ s ³ - $\frac{1}{3}$ t ³	1M+1A	$= \int_{-t}^{s} [(s-t)x+st-x^2] dx 1M+1A$
*	$= \frac{1}{6}(s^3 + 3s^2t + 3st^2 + t^3)$	1	$ \begin{vmatrix} \int -t & t(x) & t(x)$
	$=\frac{1}{6}(s+t)^3$		
			$ = \frac{1}{6}(s^3 + 3s^2t + 3st^2 + t^3) $ $ = \frac{1}{4}(s + t)^3 $
(b)	(i) S, H, T are collinear.		,
	$\frac{s^2 - 1}{s - 0} = \frac{t^2 - 1}{-t - 0}$	lM	Sub. (0, 1) in eqt. of ST 1M 1 = st
	$-s^2t + t = st^2 - s$		$t = \frac{1}{s} \dots 1$
	s + t = st(t + s)		S
	st = 1		·
	$t = \frac{1}{s}$	1	
_	$c - \frac{1}{s}$		
	(ii) Shaded area A = $\frac{1}{6}(s + \frac{1}{s})^3$	1A	
	$\frac{dA}{ds} = \frac{1}{6}(3) (s + \frac{1}{s})^2 (1 - \frac{1}{s^2}) \dots$	1A	
	= 0	1M	
	s = 1 or -1 (rejected)		
	: s = 1	1A	
			$d^2A = 1_{2(2+1)(1-1)^2}$
	$s < 1, \frac{dA}{ds} < 0$) $s > 1, \frac{dA}{ds} > 0$)	1M	$\frac{d^2A}{ds^2} = \frac{1}{2} 2(s + \frac{1}{s})(1 - \frac{1}{s^2})^2 + \frac{1}{2} (s + \frac{1}{s})^2 (\frac{2}{s^3})$
	\cdot s = 1 corresponds to a minimum A .		When $s = 1$, $\frac{d^2A}{ds^2} > 0$ 1M

		9.0	27
_			- 5
D	2		
٦.	٠	- 1	.,

		_		
	SOLUTIONS	MARKS	REMARKS	
9. (c)	For s = 1, ST is horizontal.			
	Volume generated by region $I = \int_{0}^{1} \pi y^{2} dx$	1M	For $\int_{a}^{b} \pi y^{2} dx$	•
	$= \pi \int_{0}^{1} x^{4} dx$	1A		
	$= \pi \left[\frac{x^5}{5} \right]_0^1$			
	$=\frac{1}{5}\pi \dots$	lA		
	Volume of cylinder = $T(1)^2(2)$	1A		
	Required volume = $\pi(1)^2(2) - \frac{1}{5}\pi - \frac{1}{5}\pi$	1M		
-	$=\frac{811}{5}$ (or 5.03)	1A 6		•
	·	-		
	Alt. Solution	1M+1M	b 21	
	Volume generated =	IM+IM	$ \text{IM for } \begin{cases} b \\ \pi y^2 dx \\ a \end{cases} $	
	$= 2 \int_{0}^{1} \pi (1 - x^{4}) dx$	2A		
	$= 2\pi \left[x - \frac{x^5}{5}\right]_0^1$	1A		
	$=\frac{8\pi}{5}$ (or 5.03)	1A		

	SOLUTIONS	MARKS	REMARKS
	$\sqrt{(x-1)^2 + y^2} = x + 1$	1M+1A	1A for L.S.
(:	$(x - 1)^2 + y^2 = (x + 1)^2$ $y^2 = 4x$	$\begin{vmatrix} +1A \\ -\frac{1}{4} \end{vmatrix}$	lA for R.S.
(b) (i) $y = 2t$ $x = t^2$	1A	
(i:	i)(1) PN // x-axis and PR bisects \mathcal{L} SPN.		Alternative Solution:
	$\therefore \mathcal{L} PRS = \mathcal{L} RPS$ $SR = SP$		PR intersects SN at M
	= PN		M is the mid-point of SN 3F
	$= t^2 + 1 \dots$	2A	M is the point (0, t) 2A
_	$\therefore OR = SR - SO$ $= t^2 \dots$	1A	$PR : \frac{y - t}{x - 0} = \frac{2t - t}{t^2 - 0}$
	R is the point $(-t^2, 0)$ \therefore the equation of PR is	2A	$x - ty + t^2 = 0 \dots 1$
	$y = \frac{2t - 0}{t^2 - (-t^2)} (x + t^2)$	1M	
	i.e. $x - ty + t^2 = 0$	1	
	Alternative Solution:		
	$PS : \frac{y - 0}{x - 1} = \frac{2t}{t^2 - 1}$	1M	
	$2tx + (1 - t^2)y - 2t = 0$	1 A	
	PN : y = 2t PR is the angle bisector.	1A	
	Its equation is	0.01	
_	$\frac{y-2t}{\sqrt{1^2+0^2}} = \frac{2tx + (1-t^2)y - 2t}{\sqrt{(2t)^2 + (1-t^2)^2}}$ $y-2t = \frac{2tx + (1-t^2)y - 2t}{1+t^2}$	2M+1A	
	$\begin{cases} x - ty + t^2 = 0 \end{cases}$	1	
	(2) Sub. $x = ty - t^2$ in $y^2 = 4x$	1M	Alternative Solution:
	$4(ty - t^2) = y^2$		Differentiating $y^2 = 4x$ 1M
	$y^2 - 4ty + 4t^2 = 0$	1A	$y' = \frac{2}{y}$, slope of tangent at $P = \frac{1}{t}$ 1A
	$\Delta = (-4t)^2 - 4(4t^2)$ 1M $(y - 2t)^2 = 0$	2A	Eqt. of tangent at P:
	= 0 1A		$y - 2t = \frac{1}{t}(x - t^2)$ 1M
	: it touches $y^2 = 4x$ at P.		$x - ty + t^2 = 0$ 1A
	(3) R is the point (-t ² , 0) P is the point (t ² , 2t) Mid-point of PR is (0, t)	1A 1A	which is the eqt. of PR.
	Equation of locus is $x = 0$.	2A 16	\therefore PR touches $y^2 = 4x$ at P

		SOLUTIONS	MARKS	REMARKS
11.(a)	(i)	$x^2 + y^2 - 16x - 4y + 64 = 0$		Centre = (8, 2))
		Put $y = 0$,	1M	radius = 2)
		$x^{2} - 16x + 64 = 0$ $(x - 8)^{2} = 0 \text{ or } \Delta = (-16)^{2} - 4(64) = 0$ x = 8	1A	Distance from centre to x-axis = radius 1
		Therefore C_1 touches the x-axis at A	-	C ₁ touches the x-axis at A
	(ii)	Let equation of OH be $y = mx$	1A	Alternative Solution: OH: y = mx 1.
		Sub. in equation of C_1 $x^2 + m^2x^2 - 16x - 4mx + 64 = 0$		C ₁ : centre = (8,2) radius = 2
		$(1 + m^2)x^2 - 4(m + 4)x + 64 = 0$	1A	$\frac{8m-2}{\sqrt{1+m^2}} = \pm 2$ (± optional) 1M+1.
_		For tangents,		$(4m - 1)^2 = 1 + m^2$
		$16(m + 4)^{2} - (4)(64)(1 + m^{2}) = 0$	1M	$15m^2 - 8m = 0$
		$m^2 + 8m + 16 - 16m^2 - 16 = 0$		$m = 0 \text{or} \frac{8}{15}$
		$15m^2 - 8m = 0$	1A	OH: $y = \frac{8}{15} x$ 1.
		$m = 0 \text{or} \frac{8}{15}$		
		OH : $y = \frac{8}{15} x$	1A	
	Alt	ernative Solution: Eqt. of OH: y = mx	1A	
		$\tan\theta = \frac{2}{8} = \frac{1}{4}$	1A	
		m = tan LAOH		
-		$= \tan 2\theta$	1A	2.74 3.4
	0	$\frac{\theta}{A} = \frac{2\tan\theta}{1 - \tan^2\theta}$	1M	19
		$=\frac{8}{15}$	1A	
	(iii	.)Let coordinates of H be $(8, y_1)$	1A	Alternative Solution: By symmetry or $L \text{ HOB} = L \text{ OBH}$.
		Sub. in equation of OH	1 M	Slope of BH = $tan(180^{\circ}- LBOH)$
4		$y_1 = \frac{64}{15}$	1A	= - tan L BOH
		Equation of BH: $\frac{y-0}{x-16} = \frac{\frac{64}{15} - 0}{8-16}$	1 M	$= -\frac{8}{15}$ BH: $\frac{y-0}{x-16} = -\frac{8}{15}$
		$\frac{y}{x - 16} = -\frac{8}{15}$ $y = -\frac{8}{15} x + \frac{128}{15}$	1 A	8x + 15y - 128 = 0 1.3
		8x + 15y - 128 = 0		
			12	

	SOLUTIONS	MARKS	REMARKS	
11.(b) (i) Sub. (8, 0) in equation of C_2	1M	Put $y = 0$ in eqt. of C_2	
	64 - 128 + c = 0		$x^2 - 16x + c = 0$	
	c = 64	1A	$\Delta = 16^2 - 4c = 0 \dots$	1
	C_2 touches $4x + 3y = 0$	-	c = 64	1
	Sub. in C ₂			
	$x^2 + \frac{16}{9} x^2 - 16x - \frac{8f}{3} x + 64 = 0$			
	$25x^2 - (144 + 24f)x + (9)(64) = 0$	-	Alternative Solution:	
	For tangents,	:	OK is tangent.	
	$(144 + 24f)^2 - 4(25)(9)(64) = 0$	1M	Centre of $C_2 = (8, -f)$ radius = f	
	f = 4 or -16	1A	$\frac{4(8) - 3(f)}{\sqrt{4^2 + 3^2}} = \pm f$	11
	Rejecting $f = -16$,		, , , ,	J. 4
	f = 4 ,	1A	$32 - 3f = \pm 5f$ f = 4 or -16	1.
			Rejecting $f = -16$ f = 4	1.
	A OPH - 1 (OP) (AU)		Alt. Solution:	
(1:	i) $\frac{\Delta \text{ OBH}}{\Delta \text{ OBK}} = \frac{\frac{1}{2}(\text{OB})(\text{AH})}{\frac{1}{2}(\text{OB})(\text{AK})}$		K = (8, k)	
	$= \frac{AH}{AK}$		Sub. in $4x+3y = 0$	13
	$= \frac{AH/OA}{AK/OA} $	1M	$k = -\frac{32}{3}$	
	$=\frac{8/15}{4/3}$		$\frac{\Delta \text{ OBH}}{\Delta \text{ OBK}} = \frac{\text{AH}}{\text{AK}}$	
	$=\frac{2}{5}$	2A 8	$\Delta OBK = AK = \frac{64/15}{32/3}$	
			$= \frac{32/3}{5} \dots$	2.4
A	lternative Solution:		3	
-	Δ OBH = $\frac{1}{2}$ (16) ($\frac{64}{15}$)	1A		
	$A OBK = \frac{1}{2} (16) (\frac{32}{3})$	1A		
i	$\frac{\Delta \text{ OBH}}{\Delta \text{ OBK}} = \frac{2}{5}$	1A		
	A UBK D			

		SOLUTIONS	MARKS	REMARKS	
12.(a)	(i)	$7\sin\theta - 24\cos\theta$		Alternative Solutions: rsin(0 - A)	
		$= \sqrt{7^2 + 24^2} \left(\frac{7}{\sqrt{7^2 + 24^2}} \sin \theta - \frac{24}{\sqrt{7^2 + 24^2}} \cos \theta \right)$	lA	= rsin0cosA - rcos0sinA	1.
		$= \sqrt{7^2 + 24^2} \sin(\theta - A)$	l lA	$= 7\sin\theta - 24\cos\theta$	17
		$r = \sqrt{7^2 + 24^2}$	""		
		= 25	1A	rcosA = 7) rsinA = 24)	1A
		$A = \tan^{-1} \frac{24}{7}$		r = 25	14
		₹ 73.7° (73°42' or 1.29 rad.)	1A	A = 73.7°	12
	(ii)	$y = 2(7\sin\theta - 24\cos\theta) + 14$			
		$= 2[25\sin(\theta - 73.7^{\circ})] + 14$	2М	Alternative Solution:	
		$-1 \leqslant \sin(\theta - 73.7^{\circ}) \leqslant 1$	lM+1M	$y' = 50\cos(\theta - 1.29) = 0$	1M
		-36 ≤ y ≤ 64	1A+1A	$y'' = -50\sin(\theta - 1.29)$	1M
		When $y = 64$,		Max. $y = 64$	1 A
		$\sin(\theta - 73.7^{\circ}) = 1$		Min. $y = -36$	ιA
		$\theta - 73.7^{\circ} = 180n^{\circ} + (-1)^{n} 90^{\bullet} \text{ or } 360n^{\circ} + 90^{\circ}$	1A		
		$\theta = 180 \text{n}^{\circ} + (-1)^{10} 90^{\circ} + 73.7^{\circ} \text{ or } 360 \text{n}^{\circ} + 163.7^{\circ}$	1A 12		
(b)	cos	$ \cos \beta = \frac{1}{6} $	1		
	cos	$4 + \cos \beta = \frac{5}{6}$	1		
	(cos	$\frac{\mathbf{d} + \mathbf{\beta}}{2} + \cos \frac{\mathbf{d} - \mathbf{\beta}}{2})^2 = (2\cos \frac{\mathbf{\alpha}}{2} \cos \frac{\mathbf{\beta}}{2})^2$	2A		
	= (2	$\cos^2\frac{\alpha}{2}$) $(2\cos^2\frac{\beta}{2})$	1 A		
	= (1	+ coso()(1 + cos/3)	l A		
_	= 1	+ cos x cos \beta + cos \dot + cos \beta	1A		
	= 1	$+\frac{1}{6}+\frac{5}{6}$	1M		
	= 2		8		
	cos ·	$\frac{\alpha + \beta}{2} + \cos \frac{\alpha - \beta}{2} = \sqrt{2}$			
	Alt	ernative Solution:			
	(co.	$s \frac{\Delta + \beta}{2} + cos \frac{\Delta - \beta}{2})^2$		g	
	= 0	$\cos^2 \frac{2 + \beta}{2} + \cos^2 \frac{2 - \beta}{2} + 2\cos \frac{2 + \beta}{2} \cos \frac{2 - \beta}{2}$	IA		
	$=\frac{1}{2}$	$[1 + \cos(\alpha + \beta)] + \frac{1}{2}[1 + \cos(\alpha - \beta)] + \cos\alpha + \cos\beta$	1A+1A		
	= 1 = 1	+ $\cos \alpha$ + $\cos \beta$ + $\frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$ + $\cos \alpha$ + $\cos \beta$ + $\cos \alpha \cos \beta$	2A		
	1	$+\frac{1}{6}+\frac{5}{6}$	1M		
	= 2 cos	$\frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} = \sqrt{2}$			