Lecture 2

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

September 10, 2021

Equations

Matrices and System of Linear

Properties of product

Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be matrices and $\alpha \in \mathbb{R}$. Then one can easily see that $\mathbf{A}(\mathbf{B}+\mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}, \ (\mathbf{A}+\mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$ and $(\alpha\mathbf{A})\mathbf{B} = \alpha(\mathbf{A}\mathbf{B}) = \mathbf{A}(\alpha\mathbf{B})$ provided sums and products are well defined.

Theorem

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$ and $\mathbf{C} \in \mathbb{R}^{p \times q}$. Then $(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$.

Proof. Let $A = [a_{ij}]$, $B = [b_{ij}]$ and $C = [c_{ij}]$. Suppose $(AB)C = [\alpha_{ij}]$ and $A(BC) = [\beta_{ij}]$. Now,

$$\alpha_{ij} = \sum_{l=1}^{p} \left(\sum_{k=1}^{n} a_{ik} b_{kl} \right) c_{lj} = \sum_{k=1}^{n} a_{ik} \left(\sum_{l=1}^{p} b_{kl} c_{lj} \right) = \beta_{ij} \forall i, j.$$

Theorem

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$. Then $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$.

Matrix multiplication revisited

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} = \mathbb{R}^{n \times p}$. Let $\mathbf{a}_i = [a_{i1}, \dots, a_{in}]$ be the *i*th row of \mathbf{A}

and
$$\mathbf{b}_j = \begin{bmatrix} b_{1j}, \\ \vdots \\ b_{mj} \end{bmatrix}$$
 j th column of \mathbf{B} . Then $\mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{A}\mathbf{b}_1 & \mathbf{A}\mathbf{b}_2 & \dots & \mathbf{A}\mathbf{b}_n \end{bmatrix}$

and

$$\mathbf{AB} = \begin{bmatrix} \mathbf{a}_1 \mathbf{B} \\ \mathbf{a}_2 \mathbf{B} \\ \vdots \\ \mathbf{a}_m \mathbf{B} \end{bmatrix}$$

Summary: jth column of AB = A[jth column vector of B], and ith row of AB = [ith row vector of A]B

Product of matrices as a linear combination

Let $\mathbf{A}_1, \dots, \mathbf{A}_r \in \mathbb{R}^{m \times n}$ and $c_1, \dots, c_r \in \mathbb{R}$. Then an expression is of the form $c_1 \mathbf{A}_1 + \dots + c_r \mathbf{A}_r$ is called a *linear combination* of $\mathbf{A}_1, \dots, \mathbf{A}_r$ and c_1, \dots, c_r .

Example

$$1\begin{bmatrix} 2\\ -4 \end{bmatrix} + 2\begin{bmatrix} 0\\ 3 \end{bmatrix} + 3\begin{bmatrix} 5\\ 0 \end{bmatrix} = \begin{bmatrix} 17\\ 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 5\\ -4 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$

Theorem

If \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is $n \times 1$. Then \mathbf{AB} can be written as linear combination of columns of \mathbf{A} in which scalars are the entries of \mathbf{B} .

Thus, columns of product of matrices AB can be seen as linear combination of columns of A with coefficients are the entries of B.

Example

$$\mathbf{AB} = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 & 4 \\ 0 & -1 & 3 \\ 2 & 7 & 5 \end{bmatrix} = \begin{bmatrix} 12 & 27 & 30 \\ 8 & -4 & 26 \end{bmatrix}. \text{ Also note that}$$
$$\begin{bmatrix} 12 \\ 8 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 6 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 27 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - 1 \begin{bmatrix} 2 \\ 6 \end{bmatrix} + 7 \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 30 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$$

$$\begin{bmatrix} 30\\26 \end{bmatrix} = 4 \begin{bmatrix} 1\\2 \end{bmatrix} + 3 \begin{bmatrix} 2\\6 \end{bmatrix} + 5 \begin{bmatrix} 4\\0 \end{bmatrix}$$

Inverse of a square matrix

Let **A** be a square matrix of size n. Then **A** is called *invertible* if there exists a square matrix **B** of size n such that $\mathbf{AB} = I = \mathbf{BA}$, and B is called an *inverse* of **A**, where I is the identity matrix.

Example

Let
$$\mathbf{A} = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$
. Then \mathbf{A} is invertible, since for matrix $\mathbf{B} = \begin{bmatrix} 1/5 & 0 \\ 0 & 1/3 \end{bmatrix}$

we have $\mathbf{A}\mathbf{B} = I = \mathbf{B}\mathbf{A}$.

Now. let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
. Let $\mathbf{B} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then $\mathbf{AB} = \begin{bmatrix} a+c & b+d \\ 0 & 0 \end{bmatrix} \neq I$ for all $a,b,c,d \in \mathbb{R}$. Hence A is not invertible.

Properties of Inverse

Proposition

Let A be an invertible matrix. Then A has a unique inverse.

Proof. Suppose A has two inverse, say B and C. Now

$$\mathbf{B} = I\mathbf{B} = (\mathbf{C}\mathbf{A})\mathbf{B} = \mathbf{C}(\mathbf{A}\mathbf{B}) = \mathbf{C}I = \mathbf{C}.$$

Hence A has a unique inverse.

If **A** is invertible, then inverse of *A* is denoted by \mathbf{A}^{-1} .

Proposition

Let **A** be a square matrix. Then **A** is invertible if and only \mathbf{A}^T is invertible. Further, $(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$.

Proposition

Let **A** and **B** be invertible matrices. Then **AB** also invertible and $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.

Linear equation

- A line in xy-coordinate system can be represented by an equation ax + by = c, where $a, b, c \in \mathbb{R}$ and both a, b are not zero.
- A plane in xyz-coordinate system can be represented by an equation ax + by + cz = d, where $a, b, c, d \in \mathbb{R}$ and a, b, c all are not zero.

Note that equation of line is a linear equation in two variable, and equation of plane is a linear equation in three variable. More generally, a *linear equation* in *n*-variable is of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b,$$

where $a_i \in \mathbb{R}$ for all $i, b \in \mathbb{R}$ and atleast one of a_i should be nonzero. In the above equation, if b = 0, then we say that *homogeneous linear equation* in n variables.

Examples.

- $2\sqrt{x} + 3y 4z = 5$ is not a linear equation.
- sin(x) = y is not a linear equation.
- $x^2 + y = 0$ is not a linear equation.
- $2x_1 + 3x_4 + 5x_3 = 5$ is linear equation but not homogeneous.
- x = y is homogeneous linear equation.

A finite set of linear equations is known as *linear system of equation*. A general system of linear equations of n-unknowns x_1, \ldots, x_n can be written

$$a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m}$$
(1)

If $b_i = 0$ for all i, then the above system is known as system of homogeneous linear equations.

Solution of Linear system of equation

- A solution to the system of linear equation (1) in n-unknown is a sequence of numbers s_1, s_2, \ldots, s_n such that substitution of $x_i = s_i$ for all i satisfies (1). This solution can be written as (s_1, s_2, \ldots, s_n) .
- Solution in two variable:

No solution.

$$x + y = 3$$

$$2x + 2y = 8$$

One solution.

$$x + y = 3$$

$$2x + y = 8$$

Infinite solutions.

$$x + y = 3$$

$$2x + 2y = 6$$

Solution in Three variables

• No solution:

- One solution:
- Infinite solutions:

Question

How to solve a linear system in *n*-variables?

• Write system of linear equation (1) in matrix form $\mathbf{A}\mathbf{x} = \mathbf{b}$, where

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

- The matrix [A|b] is called augmented matrix associated to linear system (1).
- We need to define some operations on matrix to solve the linear system.

Two Variable

$$a_1 X + b_1 Y = c_1 (2)$$

$$a_2X + b_2Y = c_2 \tag{3}$$

How to find the solution of above system?

Assume $a_1 \neq 0$. Multiply (2) equation by a_2/a_1 and subtract from (3). We get

$$0X + \frac{a_1b_2 - a_2b_1}{a_1}Y = \frac{a_1c_2 - a_2c_1}{a_1}$$

We get a new system of equation

$$a_1X + b_1Y = c_1 \tag{4}$$

$$0X + \frac{a_1b_2 - a_2b_1}{a_1}Y = \frac{a_1c_2 - a_2c_1}{a_1} \tag{5}$$

The augmented matrix associated to original system is

$$\begin{bmatrix} a_1 & b_1 & : c_1 \\ a_2 & b_2 & : c_2 \end{bmatrix}$$

The augmented matrix associated to a new system is

$$\begin{bmatrix} a_1 & b_1 & : & c_1 \\ 0 & \frac{a_1b_2 - a_2b_1}{a_1} & : & \frac{a_1c_2 - a_2c_1}{a_1} \end{bmatrix}$$

Note that we can obtain the second matrix from the first matrix if we multiply the first row of first matrix by a_2/a_1 and subtract from 2nd row.

Elementary Row Operations

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. We can transformed the matrix \mathbf{A} using the following process:

- Interchange ith and jth rows of A
- Multiply ith row of A by non-zero scalar
- Add a scalar multiple of ith row of A to jth row of A.

These three operations are known as elementary row operations.

Example

$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & -3 & 6 \end{bmatrix} \qquad \xrightarrow{R_2 \to R_2 - 2R_1} \qquad \begin{bmatrix} 1 & 3 & 5 \\ 0 & -9 & -4 \end{bmatrix}$$

Reduced Row Echelon Form

- The first non-zero entry of a non-zero row is called the pivot.
- A matrix **A** is said to be in *row reduced echelon form* if it satisfy the following:
 - The non-zero rows of A precede the zero rows of A.
 - Suppose A has r non-zero rows and the pivot of ith row is in k_i th column. Then $k_1 < k_2 < \cdots < k_r$.
 - All pivots of A are equal to 1.
 - All the entries above pivots are zero.

Examples

Not in row echelon form.

$$\begin{bmatrix} 0 & \boxed{1} & 2 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & \boxed{1} & 2 \\ 0 & 0 & 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Not in row echelon form

$$\begin{bmatrix} 0 & \boxed{1} & 2 & 0 & 0 & 4 \\ 0 & 0 & 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & \boxed{1} & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Row Reduced echelon form