1.		tualizace klíče se vzájemnou autentizací protokolem AKEP2 (Authenticated Key Exchange tocol 2) je založena na:
	V	Algoritmu MAC (Message Authentication Code)
		Generátorech passcode
		Bezklíčových kryptografických hašovacích funkcích
		Digitálních podpisech
2.	Det	tekcí narušení se u čipových karet myslí:
	V	Vlastnost části systému umožňující detekovat fyzický útok.
		Po narušení jsou stopy narušení obtížně odstranitelné.
		Při zjištění narušení je automaticky provedena chráněnou části obranná akce.
		Odolnost proti pokusům o zjištění robustnosti vůči fyzickým útokům.
3.	Jed	nosměrnost u kryptografických hašovacích funkcí znamená
		Pro dané h(y) nelze v rozumném čase najít x tak, aby h(x)=h(y)
		V rozumném čase nejsme schopni najít x, y tak, aby h(x)=h(y)
	V	Pro dané y nelze v rozumném čase najít x tak, aby h(x)=y
		Pro dané y lze v rozumném čase najít x tak, aby h(x)=y
4.		eré z uvedených typů autentizačních kalkulátorů se používají v IT bezpečnosti?
	~	Kalkulátor s tajnou informací.
	✓	Kalkulátor s hodinami.
		Kalkulátor s vestavěným budíkem (z angl. embedded alarm).
	~	Kalkulátor bez vstupní klávesnice.
5.	Při	hašování hesel pro autentizaci uživatelů pomocí hesel:
	V	Při ukládání můžeme využít techniky "solení"
		Ukládáme pouze haš hesla s možností rekonstrukce hesla v otevřené podobě
	~	Ukládáme pouze haš hesla a rekonstrukce otevřené podoby není možná
6.	Κč	emu se používá CAPTCHA
		K testu uživatelů, zda chtějí luštit text v obrázku a opisovat jej
		Je to dynamicky se měnící designový prvek www stránek
		K odlišení chytrých robotů od robotů první generace
	~	K odlišení uživatelů od robotů

7	PIN	10
/.		
		Kombinace čísel a písmen (A-F) pro potřeby autentizace
	V	Kombinace čísel pro potřeby autentizace
		Osobně sdílená informace
		Veřejně známá informace
8.	Sou	bor /etc/passwd může obsahovat
		Informaci o délce hesla
	V	Informaci o tom, že haše hesel jsou v souboru /etc/shadow
		Datum a čas posledního úspěšného přihlášení do systému
		Počet zbývajících neúspěšných pokusů o zadání hesla
	V	Haše hesel uživatelů
9.	Jak	é jsou obecné výhody tokenů?
	V	Rychlé zjištění ztráty.
		Nikdy je nelze zneužít po náhodném nálezu.
	V	Většinou nejsou jednoduše kopírovatelné.
	V	Mohou zpracovávat a přenášet další informace.
10	. Jal	ké vlastnosti mají magneto-optické čipové karty?
	ma	Neumožňují provádění kryptografických operací i přesto, že obsahují sofistikovanější agneto-optický proužek.
	int	Umožňují snímání čárových kódů zobrazovaných na monitoru při vstupu do ernetového bankovnictví a jejich okamžité zpracování v čipu.
	□ pře	Poskytují magneto-optické rozhraní pro vysokorychlostní a prokazatelně bezpečný enos dat.
	V	Žádná z výše uvedených odpovědí.
11	. V	dobrých autentizačních protokolech se typicky
		Heslo posílá v otevřené podobě
	V	Heslo neposílá vůbec
	V	Heslo posílá v hašované podobě

12. Sou	abor /etc/shadow obsahuje
~	Haše hesel uživatelů
	Počet neúspěšných pokusů o zadání hesla
	Datum a čas posledního úspěšného přihlášení do systému
	Informaci o délce hesla
	Informaci o tom, že haše hesel jsou v souboru /etc/passwd
13. Jak	á je správná sekvence operací při ověřování PINu odolná proti přerušení napájení?
□ při	Test čítače pokusů větší než 0, zvýšení čítače, ověření korektnosti PINu, zvýšení čítače dobrém PINu.
□ PIN	Test čítače pokusů větší než 0, ověření korektnosti PINu, snížení čítače při špatném Ju.
p ři	Test čítače pokusů větší než 0, snížení čítače, ověření korektnosti PINu, zvýšení čítače dobrém PINu.
při	Zvýšení čítače, test čítače pokusů větší než 0, ověření korektnosti PINu, zvýšení čítače dobrém PINu.
14. Úto	ok na hesla může být
V	Hrubou silou
	Matrixovou metodou
V	Na základě určitých znalostí o uživateli
V	Slovníkový
~	Pomocí sociálního inženýrství
15. K č	emu slouží soubor .rhosts?
	Uchování informací o adresách autentizovaných počítačů připojených k serveru.
	K uchování RSA klíče(ů) serveru.
	K uchování uživatelů s právem číst (read).
V	K nastavení adres počítačů s povoleným přihlášením bez další autentizace .
16. V t	iketu používaném v systému Kerberos se objevuje:
	Soukromý klíč
	Náhodná výzva
V	Časové razítko
~	Identifikátor alespoň jedné ze stran

	ro-knowledge protokoly (protokoly s nulovým rozšířením znalostí) umožňují, poctivým anám vždy dosáhnout úspěšného výsledku. Tato vlastnost se nazývá:
	Korektnost (soundness)
	Úplné uspokojení (complete satisfaction)
	Částečné uspokojení (partial satisfaction)
V	Úplnost (completeness)
_	čemu slouží autentizační agent u ssh?
~	Opakované požadavky vyžadující heslo řeší agent po prvním zadání automaticky.
	Automaticky autentizuje server vůči uživateli bez nutnosti zadávat opakovaně heslo.
	K autentizaci dat přenášených mezi serverem a uživatelem.
	Autentizační agent se u ssh nepoužívá, neboť je použita asymetrická kryptografie.
	nezajišťuje protokol ssh?
~	Ochranu proti analýze provozu.
V	Ochranu proti distribuovanému odmítnutí služby.
	Autentizaci uživatele.
	Autentizaci serveru.
20. Kt	eré z uvedených útoků na čipové karty nepatří mezi logické útoky?
	Časová analýza
	Útok přes aplikační rozhraní
~	Preparace čipu
V	Ozařování čipu
21. Út	ok na čipové karty pomocí časové analýzy využívá:
	Závislost průběhu odběru proudu na prováděné instrukci.
~	Délka operace v závislosti na zpracovávaných datech.
~	Délka operace v závislosti na vykonané větvi kódu.
	Závislost průběhu odběru proudu na zpracovávaných datech.

22. C	o je to zaručený elektronický podpis
	Elektronický podpis, za který se dokážeme nějak důvěryhodně zaručit
~	Podpis vytořený pomocí kryptografických prostředků
	Podpis, který má záruky srovnatelné jako elektronický podpis
V	Jednoznačně ověřitelný podpis
23. K	teré z níže uvedených typů protokolů existují?
~	Protokoly pro ustavení klíče
~	Autentizační protokoly bez ustavení klíče
~	Neautentizované protokoly pro ustavení klíče
~	Autentizované protokoly pro ustavení klíče
	Zero-knowledge protokoly (protokoly s nulovým rozšířením znalostí) pro ustavení klíče.
24. K	teré z uvedených možností nezajišťuje protokol IPsec?
	Integrita a autentizace původu dat.
~	Nepopiratelnost přijetí dat.
~	Ochranu proti analýze šifrovaného provozu na síťové vrstvě.
	Důvěrnost dat, ochrana proti přehrání.
	a jakém problému je založena bezpečnost RSA
~	Faktorizace čísel
	Eliptické křivky
	Obchodní cestující
	Diskrétní logaritmus
	o znamená pojem elektronický podpis ve smyslu zákona o elektronickém podpisu?
	Takový pojem zákon neobsahuje
	Ručně psaný podpis
V	Libovolná identifikující informace připojená ke zprávě
	To stejné, co digitální podpis
_	roč je u tokenů založených na hodinách potřeba řešit otázku posuvu hodin?
	Zadna z vyse uvedenych odpovedi.
V	Nutnost synchronizace drobných odchylek mezi serverem a tokenem.
	Pravým důvodem je přechod na letní/zimní čas a přestupné roky.

28.	Pro	autentizaci obrazovou informací platí
		Uživatel musí správně vybarvit předložený obrázek
		Uživatel musí systému slovně popsat obrázek sloužící k autentizaci
	V	Uživatel musí vybrat správný obrázek nebo jeho část
		Uživatel musí do systému nahrát správný obrázek
2 9.		k na čipové karty pomocí odběrové analýzy využívá:
	V	Závislost průběhu odběru proudu na prováděné instrukci.
	V	Závislost průběhu odběru proudu na ukládaných datech do paměti EEPROM.
	~	Závislost průběhu odběru proudu na zpracovávaných datech.
		Data získaná odběrem vzorku paměti EEPROM.
30.	Jak	zajistíme integritu veřejného klíče
		Utajením soukromé části veřejného klíče
		Pomocí párového privátního klíče
		Částečným utajením veřejného klíče
		Pomocí klíčované hašovací funkce
	~	Pomocí certifikátu veřejného klíče
31.	_	ré z uvedených režimů podporuje IPsec:
		Dynamický virtuální režim.
	V	Transportní režim.
	V	Tunelovací režim.
		Překladový režim.
32.	Kte	rá tvrzení platí pro elektronickou značku
	V	Technologicky jde o totéž co zaručený elektronický podpis
		Ověření elektronické značky je obtížnější než ověření elektronického podpisu
	V	Elektronická značka je ke zprávě připojena tak, že je možné detekovat následné změny
		zprávě
	ide	Elektronické značky jsou jednoznačně spojené s označující osobou a umožňují její ntifikaci prostřednictvím kvalifikovaného systémového certifikátu

33. Odpovědí na narušení se u čipových karet myslí:			
	Akce provedená bezpečnostním administrátorem po zjištění pokusu o narušení.		
	Vlastnost části systému umožňující detekovat fyzický útok.		
~	Automatická akce provedená chráněnou částí při detekci pokusu o narušení.		
	Po úspěšném provedení narušení jsou stopy narušení odstraněny.		
34. Po	kud ukládáme hesla šifrovaně		
	Nesmí být použit šifrovací algoritmus DSA		
~	Šifrovací klíč musí být přístupný autentizační službě		
V	Musíme věřit administrátorovi		
	Musíme znát (jako uživatelé) šifrovací klíč		
35. IP	spoofing označuje:		
	Zachycení IP odesílatele.		
~	Podvržení IP adresy odesílatele.		
	Podvržení IP adresy příjemce.		
	Zachycení IP adresy odesílatele i příjemce.		
36. Jal	ké jsou typické velikosti pamětí u současných čipových karet?		
	< 100KB RAM, < 100KB ROM, > 1MB EEPROM		
V	< 10KB RAM, ~100KB ROM, < 100KB EEPROM		
	~128KB RAM, ~512KB ROM, ~512KB EEPROM		
	> 256KB RAM, ~100KB ROM, < 100KB EEPROM		
37. Př	používání digitálního podpisu používáme		
V	Privátní a veřejný klíč		
	Digitální klíč		
	Sdílené symetrické klíče mezi všemi komunikujícími partnery		
	Digitální pečetě		
38. Jal	38. Jaké jsou možnosti prevence padělání tokenů?		
	Čestné prohlášení všech uživatelů systému.		
V	Kontrola a licence souvisejících živností.		
~	Utajení některých informací nutných ke konstrukci tokenu.		
~	Omezení dostupnosti potřebného vybavení.		

	Modifikace dostupného vybavení (modifikace vybraných barev u kopírky, vkládání entifikátoru).	
	Utajení všech informací nutných ke konstrukci tokenu.	
39.	jakém druhu kryptografie je založena základní verze Kerbera? Symetrická Asymetrická Hybridní	
40.	erá z následujících tvrzení jsou platná pro protokol SSL/TLS? SSL/TLS protokol zajišťuje integritu a autenticitu dat. Po úvodní Handshake protokolu je komunikace šifrována veřejným klíčem příjemce. Po průběhu Handshake protokolu je komunikace šifrována symetrickým klíčem. Autentizace komunikujících stran je založena na symetrické kryptografii.	
41.	ké jsou obecné nevýhody tokenů? Bez tokenu není autorizovaný uživatel rozpoznán. Cena tokenů je příliš vysoká pro komerční využití. Ztráta tokenu vede většinou ke kompromitaci celého systému. Ke kontrole je obvykle třeba speciální čtečka nebo vycvičená osoba.	
	erá z uvedených tvrzení pro Encapsulated Security Payload (ESP) nejsou pravdivá? ESP zajišťuje integritu, autenticitu a důvěrnost dat, nezajišťuje však obranu proti útok chráním. ESP nemá zajištěnu integritu a autenticitu dat, zajišťuje pouze důvěrnost dat. ESP zajišťuje obranu proti analýze šifrovaného provozu na úrovni síťové vrstvy. ESP zajišťuje integritu, autenticitu a důvěrnost dat.	ru
	učasné čipové karty: Neumožňují provádění kryptografických operací. Umožňují provádění kryptografických operací symetrické a asymetrické kryptografie užitím koprocesoru. Umožňují pouze provádění kryptografických operací symetrické kryptografie. Umožňují pouze provádění kryptografických operací asymetrické kryptografie.	S

44. Kte	eré časově proměnné parametry se používají v kryptografických protokolech?
	Náhodné sekvence
	Náhodná komplexní čísla
	Monoliticky rostoucí sekvence
~	Náhodná čísla
	Náhodná časová razítka
~	Časová razítka
	erá z následujících tvrzení jsou platná pro protokol SSL/TLS?
~	Implicitně je autentizace serveru povinná, autentizace klienta je volitelná.
	Implicitně je autentizace serveru a klienta povinná.
V	SSL/TLS protokol neprovádí elektronické podepisování dat.
	Implicitně je autentizace serveru i klienta vypnuta.
46. Jak	ré jsou nevýhody autentizace hašovaným heslem?
~	Útok přehráním
	Náchylnost ke slovníkovému útoku
roz	Příliš snadná transformace na zero-knowledge protokoly (protokoly s nulovým šířením znalostí)
	Možnost impersonace
47. Pro	oti jakým útokům brání protokol ssh?
	Odposlech hesla a pozdější přehrání (na uživatelově PC)
	Analýza šifrovaného provozu na síťové vrstvě
~	DNS/IP/Routing spoofing
~	Odposlech hesla a pozdější přehrání (na síťové vrstvě)
_	je to Chaffing and winnowing
V	"Oddělení zrna od plev"
▽ zpr	Pro každý bit zprávy vytvoříme dvě zprávy (správný, chybný MAC), příjemce si ponechá ávu se správným MAC
	Zprávu rozdělíme na jednotlivé bity a ty šifrujeme z využitím MAC každý zvlášť
chy	Každý bit zprávy zkopírujeme několikrát za sebe, aby se předešlo chybám v důsledku bovosti MAC komunikačního kanálu

49.	Kte kart	rá z uvedených tvrzení o uživatelově PINu jsou pravdivá (při standardním nastavení ty)?
	V	Při změně zablokovaného PINu je třeba zadat odblokovací PIN a nový uživatelský PIN.
		Při změně zablokovaného PINu je třeba zadat starý i nový uživatelský PIN.
	V	Při změně nezablokovaného PINu je třeba zadat starý i nový uživatelský PIN.
		Při změně nezablokovaného PINu stačí zadat nový uživatelský PIN.
50.	_	emu slouží CRC (Cyclic redundancy check)
		K ověření autenticity dat
		Ke kompresi dat
	V	K detekci chyb při přenosu dat
		K zašifrování dat
51.		ré z uvedených útoků na čipové karty nepatří mezi fyzické útoky?
		Ozařování čipu
	V	Časová analýza
	V	Odběrová analýza
		Preparace čipu
52.		kombinaci šifrování veřejným klíčem a podpisu dokumentu se doporučuje operace vést v následujícím pořadí:
52.		vést v následujícím pořadí:
52.	pro	vést v následujícím pořadí: Podpis, šifrování
52.	pro	vést v následujícím pořadí: Podpis, šifrování Šifrování, podpis
52.	pro	vést v následujícím pořadí: Podpis, šifrování Šifrování, podpis Podpis, šifrování, podpis
52.	pro	vést v následujícím pořadí: Podpis, šifrování Šifrování, podpis
	pro	vést v následujícím pořadí: Podpis, šifrování Šifrování, podpis Podpis, šifrování, podpis Na pořadí operací nezáleží
	pro	vést v následujícím pořadí: Podpis, šifrování Šifrování, podpis Podpis, šifrování, podpis Na pořadí operací nezáleží Šifrování, podpis, šifrování
	prov	vést v následujícím pořadí: Podpis, šifrování Šifrování, podpis Podpis, šifrování, podpis Na pořadí operací nezáleží Šifrování, podpis, šifrování je to odpověď na narušení?
	prov	vést v následujícím pořadí: Podpis, šifrování Šifrování, podpis Podpis, šifrování, podpis Na pořadí operací nezáleží Šifrování, podpis, šifrování je to odpověď na narušení? Reakce chráněné části systému na probíhající pokus o útok.
	prov	vést v následujícím pořadí: Podpis, šifrování Šifrování, podpis Podpis, šifrování, podpis Na pořadí operací nezáleží Šifrování, podpis, šifrování je to odpověď na narušení? Reakce chráněné části systému na probíhající pokus o útok. Reakce nechráněné části systému na potencionální útok. Služba internetového bankovnictví umožňující automaticky detekovat a upozornit na ivní nebezpečný software v počítači.
	prov	vést v následujícím pořadí: Podpis, šifrování Šifrování, podpis Podpis, šifrování, podpis Na pořadí operací nezáleží Šifrování, podpis, šifrování je to odpověď na narušení? Reakce chráněné části systému na probíhající pokus o útok. Reakce nechráněné části systému na potencionální útok. Služba internetového bankovnictví umožňující automaticky detekovat a upozornit na

54. Z j	akých šifrovacích algoritmů se obvykle tvoří hašovací funkce?
	Proudová symetrická šifra
	Asymetrická šifra
	Hašovací funkci nelze vytvořit z žádného šifrovacího algoritmu
~	Bloková symetrická šifra
55. Kte	erá z uvedených tvrzení o tokenech založených na hodinách jsou pravdivá:
	Přístup k využití tokenu s hodinami musí být vždy chráněn PINem.
~	Je potřeba řešit otázku synchronizace hodin mezi serverem a tokenem.
~	Autentizační hodnota je vygenerována na základě aktuálního času a tajné informace.
	Token s hodinami nelze použít bez přítomnosti klávesnice.
56. Zaj	jistit autentizaci digitálních dat a zpráv lze
V	Pomocí zaručeného elektronického podpisu
	Pomocí MAC
	Pomocí parciálně zaručeného elektronického podpisu
	Pomocí klasického (ručního) podpisu
	Pomocí klíčované hašovací funkce
57. Kte	eré z uvedených režimů nepodporuje IPsec:
	Transportní režim.
	Tunelovací režim.
~	Dynamický virtuální režim.
~	Překladový režim.
58. Jak	zá je nevýhoda digitálního podepisování prováděného až po zašifrování dat
	Výrazné urychlení kryptoanalýzy
~	Možnost snadného odstranění digitálního podpisu
	Žádná, naopak výhodou je možnost snadné verifikace podpisu ještě před dešifrováním
	Žádná, naopak, výhodou je možnost několikanásobného podepsání zašifrovaných dat
59. Jak	zý mechanismus je použit pro zajištění bezpečnosti v autentizační hlavičce IPsec?
	Message Authentication Code s náhodným číslem.
V	Message Authentication Code se sekvenčním číslem.

	Diffie-Hellman autentizace bez klíčů.
	Digitální podpis využívající RSA nebo DSA.
60. K1	reré z uvedených možností autentizace klienta vůči serveru podporuje protokol ssh? RSA autentizaci klienta. Využitím protokolu pro nulové rozšíření znalosti. Stroje uvedené v souborech .rhosts nebo hosts.equiv. Heslem uživatele bez autentizace serveru.
61. Z ₈	Autorizuje podepisující osobu ve vztahu k datové zprávě Je spojen s dostatečnou finanční zárukou Umožňuje identifikaci podepisující osoby ve vztahu k datové zprávě Je jednoznačně ověřitelný Umožňuje detekci změn ve zprávě, ke které je připojen Je jednoznačně spojen s podepisující osobou
ze se	avděpodobnost, že se nepoctivý útočník může úspěšně vydávat za jinou stranu je u ro-knowledge protokolů (protokoly s nulovým rozšířením znalostí) mizivá. Tato vlastnost nazývá: Úplné uspokojení (complete satisfaction) Korektnost (soundness) Úplnost (completeness) Částečné uspokojení (partial satisfaction)
63. Úg	spěšnost útoku hrubou silou se dá odhadnout podle vzorce (délka hesla * počet odhadů za jednotku času)/(velikost abecedy)^(čas platnosti) (čas platnosti * počet odhadů za jednotku času)/(velikost abecedy)^(délka hesla) (počet odhadů za jednotku času * délka hesla)/(čas platnosti)^(velikost abecedy) (velikost abecedy * délka hesla)/(počet odhadů za jednotku času)^(čas platnosti)

54. Při	autentizaci tajnou informací je nutné dodržet
	Z tajné informace se musí nejprve vytvořit inicializační vektor
~	Prostor, ze kterého vybíráme hodnotu tajné informace musí být rozsáhlý
~	Tajnou informaci musí vědět jen oprávněný uživatel
sys	Tajnou informaci musíme sdělit administrátorovi pro případně admin. zásahy v našem stému
65. Út	ok na čipové karty přes aplikační rozhraní (API) je založen na:
V	Nezamýšleném dopadu zpracování útočníkem zaslaných specifických vstupních dat.
	Nedostupnosti aplikačního rozhraní vnitřnímu prostředí karty.
	Využití indukce chyb do zpracování dat zaslaných přes aplikační rozhraní.
~	Využití chyby v návrhu rozhraní.
	ybové hlášení o změně integritního součtu veřejného klíče serveru u SSH může být ůsobeno
~	Podvržením serveru útočníkovým strojem
~	Změnou souboru s veřejným klíčem serveru na uživatelově PC
	Chybějícím záznamem veřejného klíče v souboru známých serverů
V	Změnou dlouhodobého klíče serveru jeho administrátorem
67. Kt	eré z uvedených typů karet se používají v IT bezpečnosti?
	Karty s bezkontaktním magnetickým proužkem.
~	Kontaktní karty s čipem.
~	Bezkontaktní karty s čipem.
V	SIM karty v mobilních telefonech.
68. Jal	xé typy záznamů lze používat na čipové kartě?
~	Lineární záznamy s pevnou nebo variabilní délkou.
	Exponenciální záznam s pevnou délkou.
~	Cyklické záznamy.
V	Nestrukturovaná data.
69. Uk	ládání hesel lze realizovat
V	V otevřené podobě
~	Hašovaně

70.	Kte	Hlasovaně Šifrovaně Impulzně rá z uvedených tvrzení o řízení přístupu k datům na čipových kartách jsou pravdivá? Každý soubor má přiřazenu hlavičku s přístupovými právy. Založeno především na řízení přístupu k souborům. Data jsou uchována na magnetickém proužku a před použitím v čipu kontrolována. Data na kartě nemohou být po zápisu nikdy čtena ani měněna.
71.		olností vůči narušení se u čipových karet myslí: Vlastnost části systému umožňující detekovat fyzický útok. Ochrana proti útoku rušením radiového signálu (RFID). Vlastnost části systému chráněné proti neautorizované modifikaci podstatně lépe než dá část systému. Automatická akce provedená chráněnou částí při zjištění pokusu o narušení.
72.	Co bitti	je to hašovací funkce? Funkce, která mapuje libovolně velký vstup na výstup s délkou 128, 192, 256 nebo 512 Funkce, která mapuje libovolně velký vstup na výstup fixní délky a není prostá Funkce, která mapuje libovolně velký vstup na výstup fixní délky a je prostá Funkce, která mapuje vstup fixní délky na výstup variabilní délky (podle entropie vstupu) Šifrovací funkce se schopností deprese vstupních dat
73.	Z ja	akého důvodu se používá Server key namísto Host key pro vlastní autentizaci u SSH? Zrychlení procesu autentizace serveru vůči klientovi. Pro zajištění kompatibility s protokolem telnet. Zrychlení procesu autentizace klienta vůči serveru. Ochrana dlouhodobého klíče Host key před kompromitováním.

74. Který z následujících protokolů je součásti SSL/TLS protokolu?		
		IPSec protokol.
	V	Handshake protokol.
		Kerberos protokol.
	V	Record Layer protokol.
75.	Přís	stupová hesla můžeme rozlišit na
	V	Skupinová
	V	Jednorázová
	V	Unikátní pro danou osobu
		Původně neveřejná
		Jednocestná
		Veřejná
76.	Jak	eliminujeme útoky hrubou silou na PINy?:
		Pravidelnou změnou hodnoty PINu
		Školením uživatelů
	V	Omezením počtu pokusů o zadání PINu
77. Slabá bezkoliznost u hašovacích funkcí znamená		
		V rozumném čase nejsme schopni nalézt x, y (x=y) tak, že h(x)!=h(y)
	V	Pro dané x nejsme schopni v rozumném čase najít y!=x tak, že h(x)=h(y)
		Pro dané x nejsme schopni v rozumném čase najít y!=x tak, že h(x)=y
		Pro dané x nejsme schopni v rozumném čase najít y!=x tak, že x=h(y)
78.	Jak	ý je u ssh rozdíl mezi Server key a Host key?
		Server key je krátkodobý klíč použitý pro odvození Host key.
		Host key je krátkodobý klíč použitý pro vlastní autentizaci serveru.
	V	Server key je krátkodobý klíč použitý pro vlastní autentizaci serveru.
	V	Host key je dlouhodobý klíč.
7 9.		itální podpis může vytvořit
	V	Pouze osoba vlastnící soukromý klíč
		Pouze osoba vlastnící sdílený klíč
		Pouze osoba vlastnící veřejný klíč

	Pouze osoba vlastnící certifikovaný klíč
□ •	V případě malých dokumentů celou zprávu, v případě velkých dokumentů jejich haš Pouze haš podepisovaného dokumentu Vždy přímo celý dokument teré z uvedených možností jsou proveditelnými útoky při provedení autentizace
	vrácení podvržené IP adresy po dotazu na DNS server.
	Data nebyla autorizovaně předána Data nebyla neautorizovaně změněna pouze v průběhu přenosu nezabezpečeným análem Data v původní podobě lze obnovit i přesto, že byla modifikována Data nebyla neautorizovaně změněna
	 aždá z dvou komunikujících stran má svůj symetrický klíč. Kolik zpráv se vymění ve hamirově protokolu bez klíčů, aby obě strany sdílely stejný klíč? žádná z těchto odpovědi není správná 2 3 4
d¹	vou lidí větší než 50 % Pravděpodobnost nalezení stejného data narození k pevně zvolenému datu je při 23 dech větší než 50 %

85.	85. Digitální podpis ověříme pomocí		
	V	Veřejného klíče podepisující osoby	
		Soukromého klíče podepisující osoby	
		Privátního klíče podepisující osoby	
		Klíče sdíleného s podepisující osobou	
	V	Certifikátu veřejného klíče podepisující osoby	
96	Via		
60.		eré z následujících nejsou hašovací funkce MD4	
		MD5	
	•	SHA-1	
	V	RSA	
	V	RC4	
	•	AES	
87.	87. Co patří mezi bezpečnostní problémy používání bankovních karet s čipem?		
		Špatná průkaznost nelegitimní autorizace platby pomocí PINu.	
		Výpočetní výkon nepostačuje pro kryptografické zabezpečení transakcí.	
	~	Možnost odpozorování PINu na frekventovaných místech.	
		Velká obtížnost kopírování karty.	
88.	Kte	eré časově konstantní parametry se používají v kryptografických protokolech?	
		V omezeném čase monoliticky rostoucí sekvence (zabraňují tzv. borcení časové osy)	
		Náhodná časová razítka (platná po určitou dobu - typicky několik desítek hodin)	
		Komplexní čísla s fixní imaginární i reálnou složkou	
		Sekvenční číslo (jeho hodnota závisí na implementaci)	
	V	Žádné z uvedených	
		XOR hodnotou "-1" pro modifikaci náhodné výzvy (tzv. keksík)	
89.	Kte	eré z uvedených kategorií čipových karet podle technologie komunikace rozlišujeme?	
		Hybridní karty.	
	V	Bezkontaktní karty.	
		Polymorfní karty.	
	~	Konktaktní karty.	

90.	Κč	emu slouží MAC (Message authentication code)
		K ověření zprávy síťové karty
	~	K detekci chyb při přenosu dat
		K transformaci hašovací funkce
	V	K zajištění důvěrnosti
	~	K zajištění integrity
91.	Pro	pojem výpočetní bezpečnost platí následující tvrzení.
		Ani jedno z uvedených tvrzení neplatí
	▽ výp	Časová náročnost prolomení určitého algoritmu mnohonásobně převyšuje dostupný očetní výkon
	nale	Algoritmus jako takový nemusí být považován za neprolomitelný, dosud pouze nebyl ezen efektivní způsob řešení/výpočtu
		Výsledek náročného výstupu je podepsaný, z důvodu zaručení integrity
92.	Na	jaké vrstvě funguje protokol SSL/TLS?
		na linkové vrstvě
		na síťové vrstvě
	V	mezi aplikační a datovou vrstvou
		na datové vrstvě
93.	Kte	rá z následujících tvrzení jsou platná pro protokol SSL/TLS?
		SSL/TLS protokol nezajišťuje důvěrnost dat.
		Implicitně je autentizace serveru a klienta je povinná.
	V	SSL/TLS protokol umožňuje vzájemnou autentizaci serveru a klienta.
	~	Autentizace komunikujících stran je založena na asymetrické kryptografii.
94.	Kte	ré z uvedených odpovědí jsou pravdivé?
	V	Cena výroby jednoho kusu tokenu klesá při výrobě mnohakusové série.
		Cena padělání jednoho kusu klesá při uplatnitelnosti mnohakusové série padělku.
		Cena padělání typicky nezávisí na počtu padělaných kusů.
		Relativní cena padělání se zvyšuje s každým dalším padělkem.

95. Protokol Kerberos zajišťuje		tokol Kerberos zajišťuje
		Akumulaci
	~	Autentizaci
		Autokracii
		Aprobaci
96.	Úto	k na čipové karty pomocí indukce chyb je založen na:
	cho	Využití indukce chyb po prudkém ovlivnění vnějších podmínek k testování změny vání algoritmu.
	tajn	Využití chybného běhu algoritmu po prudkém ovlivnění vnějších podmínek k získání ých dat.
	□ vně	Využití opravných kódů pro automatické odstranění chyby po prudkém ovlivnění jších podmínek.
		Jako první krok útoku je provedeno fyzického poškození.
97.	Zjis	stitelností narušení se u čipových karet myslí:
	V	Po narušení jsou stopy narušení obtížně odstranitelné.
		Odolnost proti pokusům o zjištění robustnosti vůči fyzickým útokům.
		Vlastnost části systému umožňující reagovat na fyzický útok.
		Při zjištění narušení je automaticky provedena chráněnou částí obranná akce.
98.	Jak	ý je vztah mezi chybovou analýzou a útoky na a přes API?
		API mnohdy obsahuje četné chyby hodné důkladné analýzy.
		Chybová analýza je nezbytná součást každého útoku na a přes API.
		Každý útok na a přes API je nezbytnou součástí chybové analýzy.
	V	Chybová analýza s útoky na a přes API nijak nesouvisí.
99.	Kte	ré z uvedených možností zajišťuje protokol IPsec?
	V	Důvěrnost dat, ochrana proti útoku přehráním.
	V	Podporu správy klíčů.
		Nepopiratelnost přijetí dat.
	V	Autentizace a integrita původu dat.
100). Fy	zickou bezpečností se u čipových karet myslí:
		Ochrana proti fyzickému zkoušení PINu hrubou silou.

	□ ▼	Fyzická překážka kolem čipu karty ztěžující neutorizovaný přístup. Odolnost proti útokům vyžadujícím fyzický přístup ke kartě. Ochrana proti hloubkové odběrové analýze na úrovni procesoru.
	roz	eré z uvedených kategorií čipových karet podle technologie uchování a práce s daty lišujeme? Procesorové karty. Paměťové karty se speciální logikou. Paměťové karty. Karty s magnetickým proužkem.
102.	Kte	eré protokoly umožňují vytvoření sdíleného tajemství? Silné autentizační protokoly Protokoly pro ustavení klíče Zero-knowledge protokoly (protokoly s nulovým rozšířením znalostí) Protokoly implementované v Kerberu
103.	Co	zajišťujeme použitím náhodných čísel? Nezvratnost Čerstvost Odolnost proti uváznutí a stárnutí Aktuálnost Jedinečnost Stálost a stabilitu
104.		je to semi-invazivní časová analýza? Žádná z výše uvedených odpovědí. Metrika sloužící k určení a vyhodnocení efektivnosti semi-invazivních útoků. Speciální semi-invazivní útok na autentizační kalkulátor s hodinami. Druh semi-invazivního útoku zneužívající u mnohých čipových karet možnost ovlivnění upního hodinového cyklu.

105. P	rotokoly výzva-odpověď mohou být založeny na:
V	symetrickém šifrování
V	MAC kódu, resp. funkci
V	klíčované hašovací funkci
V	digitálním podpisu
106. L	autentizace pomocí hesel
V	Musíme řešit aspekt zapamatovatelnosti vs. bezpečnosti
S;	Musí uživatel prokázat, že si dokáže zapamatovat alespoň 10 náhodně zvolených ymbolů
	Musíme řešit aspekt bezpečnosti bez ohledu na zapamatovatelnost
ro	eho lze dosáhnout zopakováním zero-knowledge protokolu (protokol s nulovým ozšířením nalostí)?
	Niceno - nezvysi se zaruka, ze nedojde k rozsireni zadnych znaiosti
v	Zvýšení bezpečnosti - sníží se pravděpodobnost, že nepoctivý útočník se může úspěšně ydávat za jinou stranu
	Zvýšení bezpečnosti - zvýší se záruka, že nedojde k rozšíření žádných znalostí
	Ničeho - ke spolehlivé autentizaci stačí 1 kolo protokolu
	Senerátory passcode slouží pro
V	Realizaci chanenge-response (vyzva-oupoved) protokoru
V	Bezpečné uložení dlouhodobých klíčů
	Urychlení generování sekvenčních čísel
	Personalizaci elektronických pasů
109. P	ro bezpečné používání digitálního podpisu
	Je nutile zajistit integritu parcianino knee
V	Je nutne udrzet privatni kile v tajnosti
V	Je nutné zajistit integritu veřejného klíče
	Je nutné udržet veřejný klíč v tajnosti
110. K	terá z uvedených tvrzení jsou pravdivá:
a	Autentizace pomocí IP adresy je výrazně bezpečnější než autentizace pomocí MAC dresy.

		Autentizace pomocí IP adresy může být použita pouze v kombinaci s MAC adresou.
	~	Autentizace pomocí IP adresy není spolehlivá, protože IP může být změněna.
		Autentizace pomocí IP adresy je výrazně méně bezpečná než autentizace pomocí MAC
	adresy.	
111.	Kte	eré protokoly zaručují určitou míru jistoty o identitě jiné strany?
	~	Autentizační protokoly
	~	Zero-knowledge protokoly (protokoly s nulovým rozšířením znalostí)
	~	Protokoly implementované v Kerberu
		Protokoly pro ustavení klíče
112.	Kte	eré z protokolů se v současnosti v běžných aplikacích využívají více?
		Zero-knowledge protokoly (protokoly s nulovým rozšířením znalostí)
	~	Challenge-response protokoly (protokoly výzva-odpověď)
113.	Jak	ý typ pamětí je typicky používán u současných čipových karet?
		GRAM
		DRAM
	~	SRAM
	~	EEPROM
114.	Jak	é jsou používané algoritmy při digitálním podepisování
		CBC
	~	El-Gamal
		AES
	~	RSA
	~	DSA
115.		patří mezi bezpečnostní problémy používání bankovních karet pouze s magnetickým užkem?
	V	Přítomný hologram se obtížně automatizovaně kontroluje.
		Malá odolnost proti chybové analýze.
	V	Relativně jednoduše se kopírují.
		Autentizační podpis je součástí karty.

116. Vh	odná tajná informace pro autentizaci je
~	Fráze (passphrase)
~	PIN
~	Heslo
	Tel. číslo, pokud není uvedeno ve Zlatých stránkách
	Rodné příjmení matky
117. Me	ezi obecné výhody tokenů nepatří:
	Snadné zjištění ztráty.
	Obtížná kopírovatelnost.
~	Snadná detekce a odpověď na narušení.
V	Možnost zpracovávání informací.
118. Kte	eré z příkladů autentizace počítačů jsou možné:
~	Kombinace IP adresy a tajného klíče symetrické kryptografie.
~	Tajným klíčem symetrické kryptografie.
~	Kombinace IP, MAC, GUID (global unique identifier).
V	Privátním klíčem asymetrické kryptografie.
119. Co	je to heslo založené na frázi?
	Heslo založené na veřejně známé frázi, aby si jej všichni snadno zapamatovali
	Heslo, které lze jednoduše přečíst
	Heslo, které obsahuje pouze malá písmena
~	Pomůcka pro zapamatování složitého hesla
120. Au	tentizace dat znamená
	Totéž co integrita
~	Potvrzení, že data nebyla neautorizovaně změněna od doby vytvoření
	Data nemohl odeslat nikdo jiný než jejich původce
~	Potvrzení, že data pochází od určitého subjektu
121. Jak	zé vlastnosti má Shamirův protokol bez klíčů (Shamir's no-key protocol)
~	Vyžaduje komutativní šifrovací algoritmus
	Umožňuje vzájemnou autentizaci
	Prokazuje, že P!=NP

	☐ ▼	Funguje obzvláště dobře (a prokazatelně bezpečně) jen při použití One-Time Pad Nevyžaduje žádné ustavení sdílených klíčů
122.		rá z uvedených tvrzení o autentizačních kalkulátorech jsou pravdivá?
	V	Pracují na principu protokolu výzva/odpověď s využitím tajné informace.
	V	Přístup k využití kalkulátoru může být chráněn PINem.
	~	Výzva je zadávána manuálně nebo automaticky načtena z vhodného média.
		Kalkulátor nelze zneužít i při znalosti PINu.
123.	"So	lení" hesel
		Je dodatečná technika při ukládání hesel pro určitou formu identifikace
		Je dnes již jen velmi zřídka používaná technika
	V	Zajistí delší efektivní heslo
	~	Pomůže vyřešit situaci, kdy mají uživatelé stejná hesla
124	. Sil	lná bezkoliznost u hašovacích funkcí znamená
		V rozumném čase nejsme schopni nalézt x, y (x=y) tak, že h(x)=h(y)
		V rozumném čase nejsme schopni nalézt x, y (x=y) tak, že h(x)!=h(y)
	~	V rozumném čase nejsme schopni nalézt x, y (x!=y) tak, že h(x)=h(y)
		V rozumném čase nejsme schopni nalézt x, y (x!=y) tak, že h(x)!=h(y)