	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{ ext{#2}}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1}^{\#2}$ α
$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2 (1+k^2)(2 r_3+r_5)}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2 (1+k^2)(2 r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_1^{\!\scriptscriptstyle \# 1}\dagger^lpha$	0	0	0	$\frac{2}{k^2(r_3+2r_5)}$	0	0	0
$\sigma_1^{\#2} \uparrow^{\alpha}$	0	0	0	0	0	0	0
$ au_1^{\#1} \dagger^{lpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	0	0	0	0

0	0	0	$\frac{1}{k^2 r_2 + t_2}$
0	0	0	0
0	0	0	0
0	0	0	0
$\sigma_{0}^{\#1}\dagger$	$\tau_0^{\#1}\dagger$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ †
	$\sigma_{0}^{\#1}$ † 0 0 0 0 0	1 + 0 0 0 0 + 1	t 0 0 0 0 t 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_2^{\#_1} \dagger^{\alpha\beta\chi}$	0	0	0
· ·			

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0}^{\#1}$ †	0	0	0	0
$f_{0}^{#1} \dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#_1}$ †	0	0	0	$k^2 r_2 + t_2$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\sharp 1} \dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_2^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	0

	#	1	1	1	٣	\sim	ϵ	Э	2	2	25
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0}^{\#1} == 0$	$\sigma_{0+}^{\#1} == 0$	$\tau_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#2\alpha} == 0$	$t_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} = 0$	$\sigma_{2}^{\#1}\alpha\beta\chi==0$	$\tau_{2+}^{\#1}\alpha\beta==0$	Total #:

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}lphaeta}^{\#2}$	$f_{1}^{\#1}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1}^{\#1}{}_{\alpha}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	3	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	$-\frac{1}{3} \bar{l} k t_2$	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\sharp 1} {\dagger}^{lpha}$	0	0	0	$\frac{1}{2} k^2 (r_3 + 2 r_5)$	0	0	0
$\omega_1^{\#2} \uparrow^{lpha}$	0	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	0	0	0	0

Lagrangian density $\frac{2}{4}$
$\frac{1}{3}t_2 \omega_1''' \omega_{k\lambda}' + \frac{1}{3}t_2 \omega_{k\lambda}' \omega_{k\lambda}'' - \frac{1}{2}r_3 \partial_1 \omega_{k\lambda}'' \partial_1 \omega_{k\alpha}'' - \frac{1}{2}r_3 \partial_1 \omega_{k\lambda}'' \partial_1 \omega_{k\lambda}'' \partial_1 \omega_{k\lambda}'' - \frac{1}{2}r_3 \partial_1 \omega_{k\lambda}'' \partial_1 \omega_{k\lambda}''$
$r_5 \partial_i \omega^{\kappa \lambda}_{\ \ \kappa} \partial^i \omega_{\lambda}^{\ \alpha} + \tfrac{2}{3} r_2 \partial^\beta \omega^{\theta \alpha}_{\ \ \kappa} \partial_\theta \omega_{\alpha \beta}^{\ \ \kappa} - \tfrac{1}{3} r_2 \partial_\theta \omega_{\alpha \beta}^{\ \ \kappa} \partial_\kappa \omega^{\alpha \beta \theta} -$
$\frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{} \partial_\kappa \omega^{\theta\alpha\beta} + \frac{1}{2} r_3 \partial_\alpha \omega_\lambda^{\alpha} \partial_\kappa \omega^{\theta\kappa\lambda} - r_5 \partial_\alpha \omega_\lambda^{\alpha} \partial_\kappa \omega^{\theta\kappa\lambda} -$
$\frac{1}{2} r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$
$r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\frac{1}{6}t_2\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} + \frac{1}{6}t_2\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\alpha\lambda} +$
$\frac{1}{3}t_{2} \omega_{l\theta k} \partial^{k} f^{l\theta} - \frac{2}{3}t_{2} \omega_{lk\theta} \partial^{k} f^{l\theta} - \frac{1}{3}t_{2} \omega_{\theta lk} \partial^{k} f^{l\theta} + \frac{2}{3}t_{2} \omega_{\theta k l} \partial^{l}$
$\frac{1}{6}t_2\partial^\alpha f^\lambda_{}\partial^\kappa f_{\lambda\alpha} - \frac{1}{6}t_2\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\beta}^{\theta} + \frac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\beta}^{\theta} +$
$\frac{1}{3}r_2\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta} + \frac{2}{3}r_2\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta} - \frac{2}{3}r_2\partial^\beta\omega_{\alpha}^{\ \alpha\lambda}\partial_\lambda\omega_{\alpha\beta}^{\ \ \prime} -$
$\frac{2}{3}r_{2}\partial^{\beta}\omega_{\lambda}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}-4r_{3}\partial^{\beta}\omega_{\lambda}^{\prime\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}-\frac{1}{2}r_{3}\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\partial}\omega_{\kappa}^{\prime}+$
$r_5 \partial_{lpha} \omega_{\lambda}^{\ \ lpha} \partial^{eta} \omega^{eta \kappa}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Added source term: $\left f^{a\beta} \ au_{a\beta} + \omega^{a\beta\chi} \ \sigma_{a\beta\chi} \right $

. ?	$\frac{1}{5}$. ?	$\frac{1}{k^{\mu}}$		j - U - dI j)
Polarisations: 2	Quadratic pole	Spin: Parity:	Square mass:	Polarisations:	Pole residue:	Massive particle
3 (2 r3 +r5)	1	Odd	v v arity		$\frac{-1}{r_2} > 0$	
2r ₅) _p ²	,		0 &&1			

Unitarity conditions

 $r_2 < 0 \&\& r_3 < 0 \&\& r_5 < -\frac{r_3}{2} \&\& t_2 > 0 \parallel r_2 < 0 \&\& r_3 < 0 \&\& r_5 > -2 \, r_3 \&\& t_2 > 0 \, \parallel$ $r_2 < 0 \&\& r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2} \&\& t_2 > 0$