Assignment - 2

Roll No: 241110035 Name: Khushwant Kaswan

CS724: SENSING COMMUNICATIONS AND NETWORKING FOR SMART WIRELESS DEVICES

IIT Kanpur

MTech CSE

Question 1: Spectrogram of Audio File

(a)

Recorded audo file of .wav format saying "My name is Khushwant Kaswan" and saved as "audio.wav"

(b)

Used numpy and Fourier Transform (numpy.fft) to create a spectogram and plotted using matplotlib.

To verify this, I plotted an direct spectogram of the audio file using scipy.

(c)

- Both spectograms(self and scipy generated) are completly same except the color difference.
- Horizontal lines or bands represent frequencies that remain constant during a particular time interval.
- Changes in frequency patterns over time (e.g., the appearance and disappearance of frequency bands) typically correspond to different spoken words or sounds in the audio.
- Each "block" of the spectrogram reflects the frequency content of the audio at that time ie individual words as they are spoken ie "My name is Khushwant Kaswan".
- So, the spectrogram indeed shows the time-frequency structure of speech, with each "spectrum" corresponding to a word or sound.

Question 2: Human Posture Detection

(a)

Used the Physics Toolbox app to record the accelerometer samples while sitting, standing and lying down straight.

Plotting them using python plotly.

Time V/S Accelerometer Readings for Sleeping.csv

(b)

Find out among these three human postures to which each data belongs to.

Created a test.csv containg 416 different test examples and we are going to classify them to "Sitting" "Sleeping" "Standing" and "Unknown".

We have used 3 different methods

- Using normal thresholding with threshold chosen as (min---max) values of the acceleration-axis.
- Using normal thresholding with threshold chosen as (mean-2*SD---mean+2SD*) values of the acceleration-axis.
- Using Random Forest Classifier based Machine Learning Approach.

Using the statistics of already available data, we have mean standard-deviation min max.

M1.

For each posture, we create a x,y,z thresholds using minimum and maximum value of that axis.

```
Thresholds using minmax:

X_SLEEP_THRESHOLD: (np.float64(-0.07601262981030535), np.float64(0.0688093308412332))

Y_SLEEP_THRESHOLD: (np.float64(-0.07622638670892268), np.float64(0.07004576815222166))

Z_SLEEP_THRESHOLD: (np.float64(-0.09945091017177374), np.float64(0.08130204419239229))

X_SITTING_THRESHOLD: (np.float64(-0.28559974872550026), np.float64(0.28449795946108675))

Y_SITTING_THRESHOLD: (np.float64(-0.14868076454295825), np.float64(0.15608235500021472))

Z_SITTING_THRESHOLD: (np.float64(-0.3549421168684677), np.float64(0.3283246218386467))

X_STANDING_THRESHOLD: (np.float64(-0.1745053045858415), np.float64(0.16223690631744322))

Y_STANDING_THRESHOLD: (np.float64(-0.13258737650349064), np.float64(0.15792720334331747))

Z_STANDING_THRESHOLD: (np.float64(-0.16315753219843665), np.float64(0.1403280949689994))
```

For each posture, we create a x,y,z thresholds between mean-2SD to mean+2SD for all axis.

```
def create_thresholds_mean_sd(lying_stats, sitting_stats, standing_stats):
   ·*# · mean · ± · 2 · * · SD .
  thresholds = {
   ·····'X_SLEEP_THRESHOLD': (lying_stats['mean']['ax'] - ·2 ·*·lying_stats['std']['ax'],
                            ·····lying_stats['mean']['ax']···2·*·lying_stats['std']['ax']),
      'Y_SLEEP_THRESHOLD': (lying_stats['mean']['ay'] - 2 * lying_stats['std']['ay'],

lying_stats['mean']['ay'] + 2 * lying_stats['std']['ay']),

'Z_SLEEP_THRESHOLD': (lying_stats['mean']['az'] - 2 * lying_stats['std']['az'],
                     ·······lying_stats['mean']['az']·+·2·*·lying_stats['std']['az']),
  ······'X_SITTING_THRESHOLD': (sitting_stats['mean']['ax']--2-*-sitting_stats['std']['ax'],
                                       sitting_stats['mean']['ax'] + 2 * sitting_stats['std']['ax']),
         'Y_SITTING_THRESHOLD': (sitting_stats['mean']['ay'] - 2 * sitting_stats['std']['ay'],
                                       sitting_stats['mean']['ay'] + 2 * sitting_stats['std']['ay']),
      ···'Z_SITTING_THRESHOLD': (sitting_stats['mean']['az'] - 2 * sitting_stats['std']['az'],
                        sitting_stats['mean']['az'] + 2 * sitting_stats['std']['az']),
  ·····'X_STANDING_THRESHOLD': (standing_stats['mean']['ax'] - - 2 * standing_stats['std']['ax'],
                              ······standing_stats['mean']['ax']·+·2·*·standing_stats['std']['ax']),
         'Y_STANDING_THRESHOLD': (standing_stats['mean']['ay'] - 2 * standing_stats['std']['ay'],

'Z_STANDING_THRESHOLD': (standing_stats['mean']['ay'] + 2 * standing_stats['std']['ay']),

'Z_STANDING_THRESHOLD': (standing_stats['mean']['az'] - 2 * standing_stats['std']['az'],
                        standing_stats['mean']['az'] + 2 * standing_stats['std']['az']),
  return thresholds
```

```
Thresholds using meansd:

X_SLEEP_THRESHOLD: (np.float64(-0.6956), np.float64(0.6881))

Y_SLEEP_THRESHOLD: (np.float64(-0.421), np.float64(0.6074))

Z_SLEEP_THRESHOLD: (np.float64(-0.5984), np.float64(0.9153))

X_SITTING_THRESHOLD: (np.float64(-0.1936), np.float64(0.1597))

Y_SITTING_THRESHOLD: (np.float64(-0.2346), np.float64(0.1765))

Z_SITTING_THRESHOLD: (np.float64(-0.1791), np.float64(0.6119))

X_STANDING_THRESHOLD: (np.float64(-0.5145), np.float64(1.117))

Y_STANDING_THRESHOLD: (np.float64(-0.7421), np.float64(0.4199))

Z_STANDING_THRESHOLD: (np.float64(-0.9244), np.float64(0.6869))
```

Testing using M1 and M2

If all the x,y,z value lies betwee the threhold only then we classify the posture else Unknown.

Using	g minmax th	resholds				g meansd th			
SNo	ax	ay	az	Posture	SNo	ax	ay	az ========	Posture
====: 1	0.0031	 -0.0253	0.1412	Sitting	1	0.0031	-0.0253	0.1412	Standing
2	0.4193	-4.9210	-0.8440	Unknown	2	0.4193	-4.9210	-0.8440	Unknown
3	-0.3709	-1.1664	0.9668	Unknown	3	-0.3709	-1.1664	0.9668	Unknown
4	2.7903	0.4226	1.3831	Unknown	4	2.7903	0.4226	1.3831	Unknown
5	1.1368	0.0837	0.4272	Unknown	5	1.1368	0.0837	0.4272	Unknown
6	2.6244	0.1059	-1.6480	Unknown	6	2.6244	0.1059	-1.6480	Unknown
7	4.8386	-2.2122	4.5807	Unknown	7	4.8386	-2.2122	4.5807	Unknown
8	3.4710	1.0699	-1.5718	Unknown	8	3.4710	1.0699	-1.5718	Unknown
9	0.9477	2.1898	-1.9411	Unknown	9	0.9477	2.1898	-1.9411	Unknown
10	-1.1141	0.7250	-0.2694	Unknown	10	-1.1141	0.7250	-0.2694	Unknown
11	-0.1970	-0.6247	1.2076	Unknown	11	-0.1970	-0.6247	1.2076	Unknown
12	-2.5819	0.1456	-0.6227	Unknown	12	-2.5819	0.1456	-0.6227	Unknown
13	-1.7483	-2.2014	-0.0227 -0.0063	Unknown	13	-1.7483	-2.2014	-0.0063	Unknown
13 14	-3.1802	-2.3740	-0.0003 0.4016	Unknown	14	-3.1802	-2.3740	0.4016	Unknown
1 4 15	-2.9738	-2.3740 -3.9254	-0.0971	Unknown	15	-2.9738	-3.9254	-0.0971	Unknown
16	-2.9736 -2.8121	-3.8173	0.9375	Unknown	16	-2.8121	-3.8173	0.9375	Unknown
16 17					17	-3.0900	-1.7953	1.3963	Unknown
	-3.0900	-1.7953	1.3963	Unknown	18	-1.5236	0.6277	2.6021	Unknown
18	-1.5236	0.6277	2.6021	Unknown	19	-1.4895	-0.4611	1.8119	Unknown
19	-1.4895	-0.4611	1.8119	Unknown	20	0.9882	-0.9263	-0.6596	Unknown
20	0.9882	-0.9263	-0.6596	Unknown	21	5.8187	0.9201	-0.9798	Unknown
21	5.8187	0.9201	-0.9798	Unknown	22	6.3257	-0.0642	-0.2200	Unknown
22	6.3257	-0.0642	-0.2200	Unknown	23	2.2127	1.2019	-1.0511	Unknown
23	2.2127	1.2019	-1.0511	Unknown	24	-0.9703	0.3318	0.0132	Unknown
24	-0.9703	0.3318	0.0132	Unknown	25	-0.0382	-2.3205	0.7462	Unknown
25	-0.0382	-2.3205	0.7462	Unknown	26	-4.1653	-4.4957	0.2054	Unknown
26	-4.1653	-4.4957	0.2054	Unknown	27	-0.1614	-1.2996	0.1153	Unknown
27	-0.1614	-1.2996	0.1153	Unknown	28	-0.2621	-0.8977	0.7754	Unknown
28	-0.2621	-0.8977	0.7754	Unknown	29	0.0797	-1.3104	1.1307	Unknown
29	0.0797	-1.3104	1.1307	Unknown	30	0.1608	-0.3590	1.1070	Unknown
30	0.1608	-0.3590	1.1070	Unknown	31	-0.0952	-0.1178	0.1607	Standin
31	-0.0952	-0.1178	0.1607	Sitting	32	-0.1310	-0.0464	0.0808	Standin
32	-0.1310	-0.0464	0.0808	Standing	33	0.0031	0.0071	-0.0119	Standin
33	0.0031	0.0071	-0.0119	Standing	34	0.0039	-0.0066	0.0094	Standing
34	0.0039	-0.0066	0.0094	Standing	35	-0.0079	0.0070	-0.0397	Standin
					36	0.0691	-0.1229	0.1577	Standing
					~-				

M3.

Using Random Forest Based Machine Learning Classifier.

- Add posture labels to the each dataset
- Combine all 3 datasets into one dataset
- Split the data into training and validation sets
- Train a Random Forest classifier
- Predict on validation data to check performance
- For each prediction, if the prediction confidence is below the threshold(0.7), assign "Unknown"
- Predict on the test.csv data
- For each test prediction, assign "Unknown" if prediction confidence is below the threshold(0.7)
- Show the classification report and test data with predicted postures

Line	ах	ay	az	Posture
1	======== 0.0031	 -0.0253	======== 0.1412	====== Standing
2	0.4193	-4.9210	-0.8440	Standing
3	-0.3709	-1.1664	0.9668	Unknown
4	2.7903	0.4226	1.3831	Standing
5	1.1368	0.4220	0.4272	Standing
6	2.6244	0.1059	-1.6480	Standing
7	4.8386	-2.2122	4.5807	Unknown
8	3.4710	1.0699	-1.5718	Unknown
9	3.4710 0.9477	2.1898	-1.9411	Unknown
9 10	-1.1141	0.7250	-1.9411 -0.2694	
	-1.1141 -0.1970			Unknown
11		-0.6247	1.2076	Unknown
12	-2.5819	0.1456	-0.6227	Standing
13	-1.7483	-2.2014	-0.0063	Unknown
14	-3.1802	-2.3740	0.4016	Unknown
15	-2.9738	-3.9254	-0.0971	Unknown
16	-2.8121	-3.8173	0.9375	Unknown
17	-3.0900	-1.7953	1.3963	Unknown
18	-1.5236	0.6277	2.6021	Unknown
19	-1.4895	-0.4611	1.8119	Unknown
20	0.9882	-0.9263	-0.6596	Standing
21	5.8187	0.9201	-0.9798	Unknown
22	6.3257	-0.0642	-0.2200	Standing
23	2.2127	1.2019	-1.0511	Unknown
24	-0.9703	0.3318	0.0132	Unknown
25	-0.0382	-2.3205	0.7462	Unknown
26	-4.1653	-4.4957	0.2054	Unknown
27	-0.1614	-1.2996	0.1153	Unknown
28	-0.2621	-0.8977	0.7754	Unknown
29	0.0797	-1.3104	1.1307	Unknown
30	0.1608	-0.3590	1.1070	Unknown
31	-0.0952	-0.1178	0.1607	Unknown
32	-0.1310	-0.0464	0.0808	Standing
33	0.0031	0.0071	-0.0119	Sitting
34	0.0039	-0.0066	0.0094	Sitting
35	-0.0079	0.0070	-0.0397	Unknown
36	0.0691	-0.1229	0.1577	Standing
37	-0.5145	-0.0446	0.1915	Standing
38	0.2884	-0.0869	0.1279	Standing
39	-0.0882	0.0098	0.0538	Standing
40	-0.0326	0.0393	0.0065	Unknown
41	-0.0275	-0.1219	-0.0138	Sitting