Chapter 3 Inverter Review

summary

- CMOS static behavior
 - VTC, noise margin, threshold voltage
- CMOS dynamic behavior
 - Capacitance mosaic, delay
 - Ratio pMOS/nMOS:3.5,2.4,1.6
 - Optimizing inverter sizing
- Power
 - Power mosaic
 - Optimizing dynamic power
 - Short power consideration

CMOS Inverter Load Characteristics

Digital IC 3/45

CMOS Inverter VTC

Summary of CMOS inverter operation						
Region	Condition	P-device	N-device	output		
Α	$[0,V_{tn}]$	linear	cutoff	V_{DD}		
В	$[V_{tn}, V_{DD}/2]$	linear	saturated	V _{DD} /2		
С	=V _{DD} /2	saturated	saturated	X drop		
D	$[V_{DD}/2, V_{DD}- V_{TP}]$	saturated	linear	<v<sub>DD/2</v<sub>		
E	$[V_{DD}- V_{TP} , V_{DD}]$	cutoff	linear	0		

Digital IC 4/45

CMOS properties

- High noise margins, the voltage swing is equal to the supply voltage
- Ratioless circuit structure
- Low output impedance
- High input resistance
- Low power

Digital IC 5/45

CMOS inverter static behavior

- Threshold Voltage
- Noise Margin
- Gain
- DC robust

Digital IC 6/45

$$I_{ds} = \mu_n C_{ox} \frac{W}{L} \left((V_{gs} - V_T) V_{dsat} - \frac{V_{dsat}^2}{2} \right) \qquad k_n = \beta_n = \mu_n C_{ox} \frac{W}{L}$$

$$k_n\bigg(\big(V_{gsn}-V_{Tn}\big)V_{dsat_n}-\frac{V_{dsat_n}^2}{2}\bigg)+k_p\bigg(\big(V_{gsp}-V_{Tp}\big)V_{dsat_p}-\frac{V_{dsat_p}^2}{2}\bigg)=0$$

$$k_n \left((V_M - V_{Tn}) V_{dsat_n} - \frac{V_{dsat_n}^2}{2} \right) + k_p \left((V_M - V_D - V_{Tp}) V_{dsat_p} - \frac{V_{dsat_p}^2}{2} \right) = 0$$

$$V_{M} = \frac{\left(V_{Tn} + \frac{V_{dsat_{n}}}{2}\right) + \gamma(V_{DD} + V_{Tp} + \frac{V_{dsat_{p}}}{2})}{1 + \gamma} \approx \frac{\gamma V_{DD}}{1 + \gamma}$$

$$\gamma = \frac{k_p V_{dsat_p}}{k_n V_{dsat_n}} = \frac{W_p v_{dsat_p}}{W_n v_{dsat_n}} \qquad V_{sat} \approx V_c = LE_c = L \frac{2v_{sat}}{\mu_{eff}}$$

Digital IC 8/45

Switching Threshold as a function of Transistor Ratio

$$\begin{split} I_{ds} &= \mu_n C_{ox} \frac{W}{L} \bigg((V_{gs} - V_T) V_{dsat} - \frac{V_{dsat}^2}{2} \bigg) \\ k_n \bigg((V_{gsn} - V_{Tn}) V_{dsat_n} - \frac{V_{dsat_n}^2}{2} \bigg) + k_p \bigg((V_{gsp} - V_{Tp}) V_{dsat_p} - \frac{V_{dsat_p}^2}{2} \bigg) = 0 \\ k_n \bigg((V_M - V_{Tn}) V_{dsat_n} - \frac{V_{dsat_n}^2}{2} \bigg) + k_p \bigg((V_M - V_D - V_{Tp}) V_{dsat_p} - \frac{V_{dsat_p}^2}{2} \bigg) = 0 \end{split}$$

$$\frac{W_p/L_p}{W_n/L_n} = \approx \frac{k'_n V_{dsat_n} \left(V_M - V_{Tn} - \frac{V_{dsat_n}}{2}\right)}{k'_p V_{dsat_p} \left(V_{DD} - V_M + V_{Tp} + \frac{V_{dsat_p}}{2}\right)}$$

Switching threshold of CMOS inverter

Parameters for manual model of generic 0.25um CMOS process(minimum length device)

	V _{T0} (V)	γ(V ^{0.5})	V _{DSAT} (V)	k'(A/V ²))	λ(V-1)
NMOS	0.43	0.4	0.63	115X10- ⁶	0.06
PMOS	-0.4	-0.4	-1	-30X10- ⁶	-0.1

Assuming $W_p/W_n=8$, calculating $V_M=?$

$$r = \frac{k_p' W_p L_p V_{DSAT_p}}{k_n' W_n L_n V_{DSAT_n}} = \frac{-30 * (-1)}{115 * 0.63} * 8 = 3.3$$

$$V_M = \frac{(V_{Tn} + \frac{V_{DSAT_n}}{2}) + r(V_{DD} + V_{Tp} + \frac{V_{DSAT_p}}{2})}{1 + r}$$

$$= \frac{(0.43 + \frac{0.63}{2}) + 3.3(2.5 - 0.4 - \frac{0.4}{2})}{1 + 3.3} = \frac{0.75 + 3.3 * 1.9}{1 + 3.3} = 1.63V$$
Digital IC

11/45

Switching threshold of CMOS inverter

Parameters for manual model of generic 0.25um CMOS process(minimum length device)

2 <u> </u>	V _{T0} (V)	γ(V ^{0.5})	V _{DSAT} (V)	k'(A/V ²))	λ(V-1)
NMOS	0.43	0.4	0.63	115X10- ⁶	0.06
PMOS	-0.4	-0.4	-1	-30X10- ⁶	-0.1

$$\frac{(W/L)_p}{(W/L)_n} = \frac{k'_n V_{DSAT_n} (V_M - V_{Tn} - \frac{V_{DSAT_n}}{2})}{-k'_p V_{DSAT_p} (V_{DD} - V_M + V_{Tp} + \frac{V_{DSAT_p}}{2})} = \frac{115 \times 10^{-6} \times 0.63 \times (1.25 - 0.43 - \frac{0.63}{2})}{30 \times 10^{-6} \times 1 \times (1.25 - 0.4 - \frac{1}{2})} = 3.5$$

This rate let $V_M = V_{dd}/2!$

Digital IC 12/45

CMOS inverter static behavior

- Threshold Voltage
- Noise Margin
- Gain
- DC robust

Digital IC 13/45

Determining V_{IH} and V_{IL}

Determining V_{IH} and V_{IL}

Digital IC 15/45

Example

g=-30, $V_{dd}=2.5V$, $V_{M}=1.0V$ Please estimate NM_{H} and NM_{L}

$$V_{IH} = V_{M} - V_{M}/g = 1.0*(1+1/30) = 1.03V$$

$$V_{IL} = (V_{DD} - V_M)/g + V_M = -1.5/30 + 1.0 = 0.95V$$

$$NM_H = V_{OH} - V_{IH} = 2.5 - 1.03 = 1.47V$$

$$NM_L = V_{IL} - V_{OL} = 0.95V$$

Digital IC 16/45

CMOS inverter static behavior

- Threshold Voltage
- Noise Margin
- Gain
- DC robust

Digital IC 17/45

Inverter Gain

Inverter Gain

$$g = \frac{dV_{out}}{dV_{in}}\bigg|_{V_{in}=V_{M}}$$

$$= -\frac{k_{n}V_{DSATn}(1 + \lambda_{n}V_{out}) + k_{p}V_{DSATp}(1 + \lambda_{p}V_{out} - \lambda_{p}V_{DD})}{\lambda_{n}k_{n}V_{DSATn}\left(V_{in} - V_{Tn} - \frac{V_{DSATn}}{2}\right) + \lambda_{p}k_{p}V_{DSATp}\left(V_{in} - V_{DD} - V_{Tp} - \frac{V_{DSATp}}{2}\right)\bigg|_{V_{in}}}$$

$$\approx -\frac{k_{n}V_{DSATn}(1 + \lambda_{n}V_{out}) + k_{p}V_{DSATp}(1 + \lambda_{p}V_{out} - \lambda_{p}V_{DD})}{k_{n}V_{DSATn}\left(V_{in} - V_{Tn} - \frac{V_{DSATn}}{2}\right)(\lambda_{n} - \lambda_{p})}$$

$$= -\frac{1 + \gamma}{\left(V_{M} - V_{Tn} - \frac{V_{DSATn}}{2}\right)(\lambda_{n} - \lambda_{p})}$$
Ratio increase Gain increase

Ratio increase, Gain increase

$$\gamma = \frac{k_p' \frac{W_p}{L_p} V_{DSATp}}{k_n' \frac{W_n}{L_n} V_{DSATn}}$$

homework1

An inverter in the generic 0.25um CMOS technology designed with a PMOS-to-NMOS ratio of 64 and with the NMOS transistor minimum size (W=0.375um, L=0.25um, **W/L=1.5**), Vdd=2.5V, Please give the gain of V_M , and V_{II}, V_{IH}, NM_I, NM_H, VTC curve

Parameters for manual model of generic 0.25um CMOS process(minimum length device)

2	V _{T0} (V)	γ(V ^{0.5})	V _{DSAT} (V)	k'(A/V²))	λ(V-1)
NMOS	0.43	0.4	0.63	115X10- ⁶	0.06
PMOS	-0.4	-0.4	-1	-30X10 ⁻⁶	-0.1

$$V_{M} = \frac{\left(V_{Tn} + \frac{V_{DSATn}}{2}\right) + \gamma(V_{DD} + V_{Tp} + \frac{V_{DSATp}}{2})}{1 + \gamma}$$

$$= \frac{(0.43 + 0.63/2) + 26.4 * (2.5 - 0.4 - 1/2)}{1 + 26.4} \qquad \gamma = \frac{k'_{p} \frac{W_{p}}{L_{p}} V_{DSATp}}{k'_{n} \frac{W_{n}}{L_{n}} V_{DSATn}} = \frac{-30 * (-1)}{115 * 0.63} * 64 = 26.4$$

$$= \frac{0.745 + 26.4 * 1.6}{1 + 26.4} = 1.57$$

$$g = -\frac{1 + 26.4}{\left(V_{M} - V_{Tn} - \frac{V_{DSATn}}{2}\right) \left(\lambda_{n} + \lambda_{p}\right)} = -\frac{1 + 26.4}{\left(1.57 - 0.43 - \frac{0.63}{2}\right) (0.06 + 0.1)}$$

$$= -\frac{27.4}{0.824 * 0.16} = -208$$

$$V_{IH} = V_M - V_M/g = 1.57*(1+1/208) = 1.58V$$

$$V_{IH} = V_M - V_M/g = 1.57*(1+1/208) = 1.58V$$
 $V_{IL} = (V_{DD} - V_M)/g + V_M = -0.93/208 + 1.57 = 1.57V$

$$NM_H = V_{OH} - V_{IH} = 2.5 - 1.58 = 0.92V$$

$$NM_L = V_{IL} - V_{OL} = 1.57V$$

Cinverter dynamic characteristic

- Capacitances mosaic
- Propagation delay
- Optimizing inverter sizing

Computing the Capacitances

Capacitance model

$$C_{GS} = C_{GSO} + C_{GCS}$$

 $C_{GD} = C_{GDO} + C_{GCD}$
 $C_{GB} = C_{GCB}$
 $C_{SB} = C_{Sdiff}$
 $C_{DB} = C_{Ddiff}$

The Miller Effect

"A capacitor experiencing identical but opposite voltage swings at both its terminals can be replaced by a capacitor to ground, whose value is two times the original value."

Computing the Capacitances

Computing the Capacitances

capacitor	expression	Value(fF) (H->L)	Value(fF) (L->H)
C _{gd1}	2C _{GDOn} *Wn	0.23	0.23
C _{gd2}	2C _{GDOp} *Wp	0.61	0.61
C _{db1}	KeqnADnCJ+KeqwnPDnCJSW	0.66	0.90
C _{db2}	$K_{eqn}AD_nC_J+K_{eqwn}PD_nC_{JSW}$	1.5	1.15
C _{g3}	$(C_{GD0n}+C_{GSOn})W_n+C_{ox}W_nL_n$	0.76	0.76
C _{g4}	$(C_{GD0p}+C_{GSOp})W_p+C_{ox}W_pL_p$	2.28	2.28
Cw		0.12	0.12
CL		6.1	6.0

$$C_{j} = \frac{dQ_{j}}{dV_{D}} = \frac{C_{j_{0}}}{(1 - V_{D}/\Phi_{0})^{m}}$$

$$C_L = W_n C_n + W_p C_p + C_w$$

Cinverter dynamic characteristic

- Capacitances mosaic
- Propagation delay
- Optimizing inverter sizing

Define NMOS-to-PMOS ratio

$$C_L = W_n C_n + W_p C_p + C_w$$

$$t_{pHL} = ln2C_LR_{eqn} \approx \frac{C_L}{2\left(\frac{W}{L}\right)_n k_n'V_{dsatn}} \approx \frac{C_n}{2k_n'V_{dsatn}} + \frac{\beta C_p}{2k_n'V_{dsatn}}$$

$$t_{pLH} = ln2C_LR_{eqp} \approx \frac{C_L}{2\left(\frac{W}{L}\right)_p k_p'V_{dsatp}} \approx \frac{C_p}{2k_p'V_{dsatp}} + \frac{C_n}{2\beta k_p'V_{dsatp}}$$
In order to create an inverter with $\gamma = \frac{R_{eq_p}}{R_{eq_n}} = \frac{(W_L)_n k_n'V_{DSAT_n}}{(W_L)_p k_p'V_{DSAT_p}} = 1$
a symmetrical propagate delays
Also create symmetrical VTC

Parameters for manual model of generic 0.25 process (minimum length device)

Parameters for manual model of generic 0.25um CMOS process(minimum length device)

	V _{T0} (V)	γ(V ^{0.5})	V _{DSAT} (V)	k'(A/V ²))	λ(V-1)
NMOS	0.43	0.4	0.63	115X10 ⁻⁶	0.06
PMOS	-0.4	-0.4	-1	-30X10⁻ ⁶	-0.1

Which point is optimal delay?

Design for Performance

- Reduce C_L
 - internal diffusion capacitance of the gate itself, keep the drain diffusion as small as possible
 - interconnect capacitance
 - fanout
- Increase V_{DD}
 - can trade-off energy for performance
 - increasing V_{DD} above a certain level yields only very minimal improvements
- Increase W/L ratio of the transistor
 - the most powerful and effective performance optimization tool in the hands of the designer
 - watch out for self-loading! when the intrinsic capacitance dominates the extrinsic load

Which point is optimal delay?

$$C_{L} = \left(C_{d_{n1}} + C_{d_{p1}}\right) + 2\left(C_{g_{n3}} + C_{g_{p4}}\right) + C_{w} = (1 + \beta)\left(C_{d_{n1}} + 2C_{g_{n3}}\right) + C_{w}$$

$$= (1 + \beta)C_{s} + C_{w}$$

$$C_{s} = C_{d_{n1}} + 2C_{gn3}$$

$$\beta = \frac{(W/L)_{p}}{(W/L)_{n}}$$

$$V_{DD}$$

Which point is optimal delay?

Table 3.3 Equivalent resistance R_{eq} (W/L= 1) of NMOS and PMOS transistors in 0.25 μ m CMOS process (with $L = L_{min}$). For larger devices, divide R_{eq} by W/L.

∂t_p	_	0
$\partial \beta$	_	U

V_{DD} (V)	1	1.5	2	2.5
NMOS (kΩ)	35	19	15	13
PMOS (kΩ)	115	55	38	31

$$\frac{\partial [0.345((1+\beta)C_{s} + C_{W})R_{eq_{n}}(1+\frac{\gamma}{\beta})]}{\partial \beta} = 0$$

$$\beta = \sqrt{\gamma(1 + \frac{C_{\text{w}}}{C_{\text{s}}})} \approx \sqrt{\gamma} = \sqrt{\frac{31}{13}} \Big|_{\substack{Vdd = 2.5V \\ 0.25um}} = 1.5$$

This r is different from before! It is the resistor rate of the NMOS and PMOS

Summary of Ratio

Beta=1.5, we have minimum delay

$$\beta = \sqrt{\gamma} \approx \sqrt{\frac{k'_n V_{DSat_n}}{k'_p V_{DSat_p}}}$$

Beta=2.4, we have equal delay $t_{phl}=t_{plh}$

$$\beta = \gamma = \frac{k'_n V_{DSat_n}}{k'_p V_{DSat_p}}$$

Beta=3.5, we have $V_M = V_{dd}/2$

$$\frac{(W/L)_p}{(W/L)_n} = \frac{k'_n V_{DSAT_n} (V_M - V_{Tn} - \frac{V_{DSAT_n}}{2})}{-k'_p V_{DSAT_p} (V_{DD} - V_M + V_{Tp} + \frac{V_{DSAT_p}}{2})} = \frac{115 \times 10^{-6} \times 0.63 \times (1.25 - 0.43 - \frac{0.63}{2})}{30 \times 10^{-6} \times 1 \times (1.25 - 0.4 - \frac{1}{2})} = 3.5$$

Cinverter dynamic characteristic

- Capacitances mosaic
- Propagation delay
- Optimizing inverter sizing

Increasing inverter performance by sizing the NMOS and PMOS

$$\begin{aligned} t_{p} &= 0.69 R_{eq} (C_{int} + C_{ext}) = 0.69 R_{eq} C_{int} (1 + C_{ext} / C_{int}) \\ &= 0.69 \left(R_{ref} / S \right) \left(S C_{iref} \right) \left(1 + C_{ext} / S C_{iref} \right) \\ &= t_{p0} + t_{p0} \left(\frac{C_{ext}}{S C_{iref}} \right) &= t_{p0} (1 + \frac{C_{2}}{C_{1}}) \end{aligned}$$

If no load

S>>0 will eliminate the impact of any external load

Intrinsic delay is independent of the sizing of the gate

Device Sizing

Apply to Inverter Chain

In Out
$$t_{p} = t_{p1} + t_{p2} + \dots + t_{pN}$$

$$t_{pj} \sim R_{unit}C_{unit} \left(1 + \frac{C_{gin,j+1}}{\gamma C_{gin,j}}\right)$$

$$t_{p} = \sum_{j=1}^{N} t_{p,j} = t_{p0} \sum_{i=1}^{N} \left(1 + \frac{C_{gin,j+1}}{\gamma C_{gin,j}}\right), C_{gin,N+1} = C_{L}$$

Optimal Tapering for Given N

- Delay equation has N 1 unknowns, $C_{gin,2} C_{gin,N}$
- Minimize the delay, find N 1 partial derivatives

Result:
$$C_{gin,j+1}/C_{gin,j} = C_{gin,j}/C_{gin,j-1}$$

- Size of each stage is the geometric mean of two neighbors $C_{gin,\,i} = \sqrt{C_{gin,\,i-1}C_{gin,\,i+1}}$
- each stage has the same effective fanout (C_{out}/C_{in})
- each stage has the same delay

Optimum size for fixed Number of Stages

When each stage is sized by f and has

same eff. fanout
$$f$$
: $f^N = F = C_L / C_{gin,1}$

Effective fanout of each stage:

$$f = \sqrt[N]{F}$$

Minimum path delay

$$t_p = Nt_{p0} \left(1 + \sqrt[N]{F} / \gamma \right)$$

Where Does Power Go in CMOS?

- Dynamic Power Consumption
 - Charging and Discharging Capacitors
- Short Circuit Currents
 - Short Circuit Path between Supply Rails during Switching
- Leakage
 - Leaking diodes and transistors

Dynamic Power Consumption

- (dis)charge process
 - C_L is charged through pMOS on-resistance
 - C_L is discharged through nMOS on-resistance
- Power distribution
 - Charge processing: One part of Supply power is dissipated in the pMOS transistor, another part is dissipated in the charge C_L
 - Discharge processing:all dissipated in the nMOS transistor

Precise measure of dynamic power consumption

$$E_{V_{dd}} = \int_{0}^{\infty} i_{V_{dd}}(t) V_{dd} dt = V_{dd} \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} dt$$

$$= C_{L} V_{dd} \int_{0}^{V_{dd}} dv_{out} = C_{L} V_{dd}^{2}$$

$$V_{out} E_{C} = \int_{0}^{\infty} i_{V_{dd}}(t) v_{out} dt = \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} v_{out} dt$$

$$= C_{L} \int_{0}^{V_{dd}} v_{out} dv_{out} = \frac{C_{L} V_{dd}^{2}}{2}$$

CMOS Energy & Power Equations

$$E = C_{L} V_{DD}^{2} P_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} + V_{DD} I_{leakage} 1/f_{clock}$$

$$f_{0\rightarrow 1} = P_{0\rightarrow 1} * f_{clock}$$

$$P = C_{L} V_{DD}^{2} f_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} f + V_{DD} I_{leakage}$$

Dynamic power

Short-circuit power

Leakage power

Lowering Dynamic Power

Capacitance: Function of fan-out, wire length, transistor sizes Supply Voltage:
Has been dropping with
successive generations

 $P_{dyn} = C_L V_{DD}^2 P_{0 \to 1} f$

Activity factor: How often, on average, do wires switch? Clock frequency: Increasing...

Short Circuit Power Consumption

Finite slope of the input signal causes a direct current path between V_{DD} and GND for a short period of time during switching when both the NMOS and PMOS transistors are conducting.

Short Circuit power consumption

Energy of ever switch activity

$$E_{dp} = V_{dd} \frac{I_{peak}}{2} t_{rise} + V_{dd} \frac{I_{peak}}{2} t_{f}$$

Average power

$$P_{dp} = \frac{t_{rise} + t_{fall}}{2} V_{dd} I_{peak} f$$

$$t_{sc} = \frac{V_{DD} - 2V_T}{V_{DD}} t_s \approx \frac{V_{DD} - 2V_T}{V_{DD}} \times \frac{t_{r(f)}}{0.8}$$

An example

- Assume rise/fall time both are 300ps
- Short circuit power:

$$300ps\times5V\times0.14mA=0.21pJ$$

Dynamic power
 30pF × 5V × 5V=0.75pJ

Impact of C₁ on P_{sc}

Large capacitive load

Small capacitive load

Output fall time significantly Output fall time substantially larger than input rise time. smaller than the input rise time.

I_{peak} as a Function of C_L

When load capacitance is small, I_{peak} is large.

Short circuit dissipation is minimized by matching the rise/fall times of the input and output signals - slope engineering.

500 psec input slope

P_{sc} as a Function of Rise/Fall Times

Digital IC

When load capacitance is small $(t_{sin}/t_{sout} > 2 \text{ for } V_{DD} > 2V) \text{ the power is dominated by } P_{sc}$

If $V_{DD} < V_{Tn} + |V_{Tp}|$ then P_{sc} is eliminated since both devices are never on at the same time.

 $W/L_p = 1.125 \ \mu m/0.25 \ \mu m$ $W/L_n = 0.375 \ \mu m/0.25 \ \mu m$ $C_l = 30 \ fF$

normalized wrt zero input rise-time dissipation

Leakage (Static) Power Consumption

Sub-threshold current is the dominant factor.

All increase exponentially with temperature!

Technology Scaling Models

- Full scaling(constant electrical)
 - Ideal model –dimensions and voltage scale together by the same factor S
- Fixed voltage scaling
 - Most common model until recently- only dimensions scale, voltages remain constant
- General scaling
 - Most realistic for today's situation-voltages and dimensions scale with different factors

Scaling Relationships for Long Channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD} , V_{T}		1/S	1/U	1
N _{SUB}	V/W _{depl} ²	S	S ² /U	S ²
Area/Device	WL	1/S ²	1/S ²	1/S ²
Cox	1/t _{ox}	S	S	S
$\mathrm{C}_{\mathbf{L}}$	CoxWL	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	S
I _{av}	$k_{n,p} V^2$	1/S	S/U ²	S
t _p (intrinsic)	C _L V / I _{av}	1/S	U/S ²	1/S ²
Pav	$C_L V^2 / t_p$	1/S ²	S/U ³	s
PDP	C_LV^2	1/S ³	1/SU ²	1/S

Difference between long and short channels

$$I_{Dsat} = \frac{k_n'}{2} \frac{W}{L} (V_{GS} - V_T)^2$$

$$I_{D}|_{V_{DS}=V_{DSAT}} = \mu_{n} C_{ox} \frac{W}{L} \left[(V_{GS} - V_{T}) V_{DSAT} - \frac{V_{DSAT}^{2}}{2} \right]$$

$$= v_{sat} C_{ox} W (V_{GT} - \frac{V_{DSAT}}{2})$$

Transistor Scaling (velocity-saturated devices)

	Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling
	W , L , $t_{\rm ox}$		1/S	1/S	1/S
	V_{DD} V_{T}		1/ <i>S</i>	1/U	1
√ -	$N_{\scriptscriptstyle SUB}$	V/W_{depl}^{2}	S	S^2/U	S^2
	Area/Device	WL	$1/S^2$	$1/S^2$	$1/S^2$
	C_{ox}	$1/t_{\rm ox}$	S	S	S
	$C_{\it gate}$	$C_{ox}WL$	1/S	1/S	1/S
	k_{n} k_{p}	$C_{ox}W/L$	S	S	S
	I_{sat}	$C_{\rm ox}WV$	1/ <i>S</i>	1/U	1
	Current Density	I _{sat} /Area	S	S^2/U	S^2
-	Ron	V/I _{sat}	1	1	1
	Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/S	1/S
$\sqrt{}$	P	$I_{sat}V$	1/S ²	$1/U^2$	1
	Power Density	P/Area	1	S^2/U^2	S^2