week9_LIU JIAJI

Task 1: Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

December 3 | 16:00 | Piacenza, PC, Italy.

```
P = 102.5 kPa;

Φ = 69%;

T = 8 C or T = 281 K;

P_g = 1.079 kPa;

Considering Aula A as 10m*8m*5m
```

We need to determine:

- 1) the absolute humidity ω
- 2) the wet-bulb temperature T_wet bulb
- 3) the mass of water vapor in the air m

The absolute humidity formula:

$$\omega = 0.622 \frac{P_v}{P_a}$$

$$\omega = 0.622 \frac{0.744}{101.756} = \mathbf{0.0045} \ \mathbf{k} \mathbf{g}_v / \mathbf{k} \mathbf{g}_a$$

$$\phi = \frac{m_v}{m_g} = \frac{P_v}{P_g}$$

$$P_v = P_g * \phi = 1.079 * 0.69 = \mathbf{0.744 \, kPa}$$

$$P_a = P - P_v = 102.5 - 0.744 = \mathbf{101.756 \, kPa}$$

$$m_a = \frac{P_a V_a}{R_a T} = \frac{101.756 * (10 * 8 * 5)}{0.287 * 281} = \mathbf{504.69 \, kg}$$

$$m_v = \frac{P_v V_a}{R_v T} = \frac{0.744 * (10 * 8 * 5)}{0.4615 * 281} = 2.29 \, kg$$

Task 2: Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Table 5 Typical IDF Values, L/(s·cm²)									
H, m	Heating Design Temperature, °C					Cooling Design Temperature, °C			
	-40	-30	-20	-10	0	10	30	35	40
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074

Internal gains

Q_(ig_sensible)=136+2.2 *A_cf+22 N_oc=136+2.2*200+22*2= **620 W** Q_(ig_latent)=20+0.22*A_cf+12 N_oc=20+0.22*200+12*2= **88 W**

```
IDF_heating=0.063 L/(s.cm^2 )
IDF_cooling=0.031 L/(s.cm^2 )

V_(infiltration_heating )=A_L×IDF= 481.6*0.063=30.34 L/s

V_(infiltration_cooling )=A_L×IDF= 481.6*0.31=14.92 L/s

V_ventilation=0.05 A_cf+3.5 (N_br+1)= 0.05*200+ 3.5* 2 = 17 L/S

V_(inf-ventilation_heating )= 30.34+17=47.34 L/s

V_(inf-ventilation_cooling )=14.92+17=31.92 L/s
```

C_sensible=1.23, C_latent=3010

```
Q _(inf-ventilation_(cooling_sensible ) )=C_sensible V \DeltaT_Cooling=1.23 * 31.92*7.1=278 W Q _(inf-ventilation_(cooling_(latent ) ) )= C_latent V \Delta\omega_Cooling=3010 * 31.92 * 0.0039=374 W
```

Q'_(inf-ventilation_(heatingg_sensible))=C_sensible V Δ T_heating=1.23 *47.34*15.9=**925.28 W**