HPC - Exercise 1

Performance Evaluation of OpenMPI Collective Operations

Donninelli Adriano

Objective:

Performance comparison between different OpenMPI algorithms:

- Broadcast (default / binary tree / pipeline)
- Scatter (default / linear / binomial)

Experimental Setup

ORFEO cluster

- 2 EPYC nodes -> 256 cores.
- Tasks distributed evenly across the two nodes
- Varying data sizes
- map-by core policy
- bash + python for job setup

Experiments - 1

Comparing different algorithms:

- Cores from 1 to 128 per node
- ullet Message sizes from 1 to 2^{19} bytes

3D Heatmaps for visualization

Experiments - 2

Building performance models:

- Cores from 1 to 128 per node
- Message size fixed to 4 bytes

2D Plot for visualization

Performance models

Different latencies in p2p communication depending on binding:

Region	Latency
Same CCX	0.15e-6
Same CCD, Diff. CCX	0.31e-6
Same NUMA	0.34e-6
Same SOCKET	0.36e-6
Diff. SOCKET	0.65e-6
Diff. NODE	1.82e-6

Pipeline broadcast:

linear unidirectional propagation from root to leaves, left to right.

$$T_{pipeline} = \sum_{i=0}^{i=N-1} T_{pt2pt}(i,i+1).$$

- ullet N is number of cores
- ullet $T_{pt2pt}(i,i+1)$ is the pt2pt latency between core i and core i+1

Binary tree broadcast Binomial scatter:

$$T_{tree} = \gamma(N) + \sum_{i=1}^{i=H} T_{pt2pt}(i) \; (1 + f_{overlap}(i)).$$

- N number of cores
- H is the height of the tree,
- ullet $T_{pt2pt}(i)$ max pt2pt latency on layer i
- ullet $f_{overlap}(i)$ and $\gamma(N)$ penalty factors

