Applying the resolution of recurrences: Divide and Conquer

Algorithms

Alberto Valderruten, Elena Hernández Pereira, José M. Casanova

Computer Science and Information Technologies Department Faculty of Computer Science

- 1 Resolution of recurrences theorem: Divide and Conquer
 - Theorem
 - O rules
- Maximum subsequence sum
- Binary search

Given the recurrence

$$T(n) = \ell T(n/b) + cn^k, n > n_0$$
 (1)

with $\ell > 1$, b > 2, k > 0, $n_0 > 1 \in \mathbb{N}$ y $c > 0 \in \mathbb{R}$, when n/n_0 is an exact power of b $(n \in \{bn_0, b^2n_0, b^3n_0 \dots \})$.

• Divide and Conquer theorem:

If a recurrence is of the form (1), we apply:

$$T(n) = \begin{cases} \theta(n^k) & \text{si } \ell < b^k \\ \theta(n^k \log n) & \text{si } \ell = b^k \\ \theta(n^{\log_b \ell}) & \text{si } \ell > b^k \end{cases}$$
(2)

In analysis of algorithms, inequalities are commonly used:

$$T(n) \le \ell T(n/b) + cn^k, n > n_0 \text{ with } n/n_0 \text{ an exact power of b}$$

$$\Rightarrow T(n) = \begin{cases} O(n^k) & \text{si } \ell < b^k \\ O(n^k \log n) & \text{si } \ell = b^k \\ O(n^{\log_b \ell}) & \text{si } \ell > b^k \end{cases}$$

- **1** Elemental operation $= 1 \leftrightarrow \mathsf{Computational} \; \mathsf{model}$
- **2** sequence: $S_1 = O(f_1(n)) \land S_2 = O(f_2(n))$

$$\Rightarrow \boxed{S_1; S_2} = O(f_1(n) + f_2(n)) = O(\max(f_1(n), f_2(n)))$$

- With Θ too
- **3** condition: $B = O(f_B(n)) \land S_1 = O(f_1(n)) \land S_2 = O(f_2(n))$
 - \Rightarrow if B then S_1 else S_2 = $O(max(f_B(n), f_1(n), f_2(n)))$
 - Si $f_1(n) \neq f_2(n)$ y $max(f_1(n), f_2(n)) > f_B(n) \leftrightarrow Worst$ case
 - ¿Middle case? $\rightarrow f(n)$: average of f_1 y f_2 weighted with the frequencies of each branch $\rightarrow O(max(f_B(n), f(n)))$
- iteration: $B; S = O(f_{B,S}(n)) \land \text{ num. iter} = O(f_{iter}(n))$
 - \Rightarrow while B do S = $O(f_{B,S}(n) * f_{iter}(n))$

iff each iteration cost does not change, else: \sum individual costs.

 \Rightarrow **for** $i \leftarrow x$ **to** y **do** S = $O(f_S(n)*$ num. iter)

iff each iteration cost does not change, else: \sum individual costs.

• B is a two integer comparison = O(1); num. iter = y - x + 1

Problem Pseudocode Exercise

- Resolution of recurrences theorem: Divide and Conquer
- 2 Maximum subsequence sum
 - Problem
 - Pseudocode
 - Exercise
- Binary search

- $a_1,...,a_n \to \sum_{k=i}^J a_k$ to be maximum
 - Example: MSS(-2, 11, -4, 13, -5, -2) = 20[2..4]
- MSS recursive: Divide and Conquer strategy
 - ullet Divide the input in halves o Two recursive solutions
 - \bullet Conquer using the two solutions \to Solution for the original input
 - The MSS can be
 - in the first half
 - in the second half
 - between the two halves
 - The first two solutions are the ones obtained recursively
 - The third solution is obtained summing
 - the MSS of the first half which includes the right end, and
 - the MSS of the second half which includes the left end

MSS recursive

```
function MSS (a[1..n]): value /* interface function */
  return MSSRecursive(a,1,n)
end function
function MSSRecursive(var a[1..n], left, right): value
   if left = right then
    if a[left] > 0 then
{2}
         return a[left] /*base case: if >0 is MSS */
{3}
       else
{4}
         return 0
       end if
     else
       middle := (left + right)/2;
{5}
{6}
       FirstSolution := MSSRecursive(a, left, middle);
       SecondSolution := MSSRecursive(a, middle+1, right);
```

MSS recursive (II)

```
{8}
        MaxLeftSum := 0; LeftSum := 0;
 { 9 }
        for i := middle to left step -1 do
          LeftSum := LeftSum + a[i];
 { 10 }
          if LeftSum > MaxLeftSum then
 {11}
 {12}
            MaxLeftSum := LeftSum
        end for:
 { 13}
        MaxSumRight := 0; RightSum := 0;
 {14}
        for i := middle+1 to right step 1 do
 { 15 }
          RightSum := RightSum + a[i];
          if RightSum > MaxRightSum then
 {16}
 {17}
            MaxRightSum := RightSum
        end for:
 { 18}
        return max(FirstSolution, SecondSolution,
                MaxLeftSum+MaxRightSum)
  end if
                                         ◆□▶ ◆圖▶ ◆量▶ ◆量▶
end function
```

- Understand and execute the MSS recursive algorithm with an example and write the recursive tree
- Analyse the MSS algorithm setting out the recurrence relation and applying the resolution recurrence theorem divide and conquer

- Resolution of recurrences theorem: Divide and Conquer
- 2 Maximum subsequence sum
- Binary search
 - Problem
 - Pseudocode
 - Analysis
 - Sources of information

- Example of a logarithmic algorithm
- Given x and an ordered array $a_1, a_2, \dots a_n$ of integer,

return:
$$\begin{cases} i \text{ if } \exists a_i = x \\ \text{"element not found"} \end{cases}$$

- \rightarrow Compare x and a_{middle} , with middle = (i + j)div2, being $a_i...a_j$ the search space:

 - 2 $x > a_{middle}$: continue searching in $a_{middle+1}..a_j$
 - $3 \times a_{middle}$: continue searching in $a_i...a_{middle-1}$
- inumber of iterations? \leftrightarrow size d evolution in the search space

Invariant:
$$d = j - i + 1$$

¿How is d decreasing?
$$\begin{cases} i \leftarrow \textit{middle} + 1 \\ j \leftarrow \textit{middle} - 1 \end{cases}$$

 Worst case: the normal termination of the loop is reached ≡ i > j

```
function Binary Search (x, a[1..n]): position
      {a: ordered array with no decreasing ordered }
      i := 1; j := n; {search space: i...j}
\{1\}
     while i \le j do
{2}
{3}
          middle := (i + j) div 2 ;
          if a[middle] < x then</pre>
{5}
             i := middle + 1
{6}
          else if a[middle] > x then
{ 7}
           i := middle - 1
          else return middle { the loop stops}
{8}
      end while:
{ 9}
      return "element not found" { normal loop end}
    end function
```

... worst case

• Being $\langle d, i, j \rangle$ iteration $\langle d', i', j' \rangle$:

$$\begin{array}{l} \textbf{1} & i \leftarrow \textit{middle} + 1: \\ & i' = (i+j) \textit{div} 2 + 1 \\ & j' = j \\ & d' = j' - i' + 1 \\ & \leq j - (i+j) \textit{div} 2 - 1 + 1 \\ & \leq j - (i+j-1)/2 \\ & = (j-i+1)/2 \\ & = d/2 \\ \hline & \rightarrow d' \leq d/2 \\ \hline \end{array}$$

... worst case

• $\xi T(n)$? Being d_i : d after the l-th iteration

$$\begin{cases} d_0 = n \\ d_l \leq d_{l-1}/2 \ \forall l \geq 1 \end{cases} \quad \text{(induction)} \rightarrow d_l \leq n/2^l \\ \text{until } d < 1 \rightarrow l = \lceil log_2 n \rceil + 1 = O(logn) \text{ iterations} \\ \text{Each iteration is } \Theta(1) \text{ (rules)} \Rightarrow T(n) = O(logn) \end{cases}$$

• Alternative reasoning: thinking in a recursive version

$$T(n) = \begin{cases} 1 & \text{if } n = 0, 1 \\ T(n/2) + 1 & \text{if } n > 1 \end{cases}$$

Theorem Divide and Conquer: $l=1, b=2, c=1, k=0, n_0=1$ Case $l=b^k \Rightarrow T(n) = \Theta(n^k log n) \rightarrow T(n) = \Theta(log n)$

- Conclusions:
 - Think about a recursive version would be useful
 - is Divide and Conquer? \rightarrow Reduction algorithms (I = 1)
 - $T(n) = \Theta(logn) \leftrightarrow data$ is in memory (Computational model)

Exercise:

- Design a recursive version of the binary search algorithm
- Analyse the resulting recursive algorithm applying the recurrence resolution theorem Divide and Conquer

* Brassard, G. and Bratley, P. Fundamentals of algorithmics. Prentice Hall, 1996.