

Katarina Šupe

Zagreb, 5. svibnja 2020.

Sadržaj

1	Limes niza u ℝ	1
2	Derivacija	2
3	Riemannov Integral	2
4	Kvadratna funkcija	3
5	Domaća zadaća	3
6	Literatura	3

1 Limes niza u $\mathbb R$

Definicija 1. Niz realnih brojeva $(a_n)_n$ konvergira ili teži k realnom broju $a \in \mathbb{R}$ ako za svaki otvoreni interval polumjera ε oko točke a sadrži gotovo sve članove niza, tj.

$$(\forall \varepsilon > 0)(\exists n_{\varepsilon} \in \mathbb{N})(\forall n \in \mathbb{N}) ((n > n_{\varepsilon}) \Rightarrow (|a_n - a| < \varepsilon))$$

Tada a zovemo granična vrijednost ili limes niza $(a_n)_n$ i pišemo $a = \lim_{n \to \infty} a_n$ ili $a = \lim_n a_n$. Ako niz ne konvergira, onda kažemo da divergira.

Teorem 2. Za konvergentan niz vrijede sljedeće tvrdnje:

- 1. Konvergentan niz u \mathbb{R} ima samo jednu graničnu vrijednost.
- 2. Konvergentan niz u \mathbb{R} je ograničen.

Dokaz. 1. Pretpostavimo da konvergentan niz $(a_n)_n$ ima dvije granične vrijednosti $a,b\in\mathbb{R},\ a\neq b$. Tada bi za $\varepsilon=|a-b|>0$ postojali $n_a,n_b\in\mathbb{N}$ takvi da vrijedi

$$(n > n_a) \Rightarrow \left(|a_n - a| < \frac{\varepsilon}{2} \right) i$$

 $(n > n_b) \Rightarrow \left(|a_n - b| < \frac{\varepsilon}{2} \right)$

Sada za $n_{\varepsilon} = \max\{n_a, n_b\}$ imamo

$$(n > n_{\varepsilon}) \Rightarrow \left(|a - b| \le |a - a_n| + |a_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon = |a - b| \right)$$

što je očita neistina. Dakle, limes mora biti jedinstven.

2. U formuli (\clubsuit) uzmimo $\varepsilon=1$, pa postoji $n_{\varepsilon}\in\mathbb{N}$ tako da $(n>n_{\varepsilon})\Rightarrow (|a_n-a|<1)$. Sada za $n>n_{\varepsilon}$ imamo

$$|a_n| \le |a_n - a| + |a| \le 1 + |a|$$

Neka je $M = \max\{|a_1|, \dots, |a_{n_{\varepsilon}}|, 1 + |a|\}$. Tada vrijedi

$$|a_n| \leq M$$
, za sve $n \in \mathbb{N}$,

tj. niz je ograničen.

2 Derivacija

Definicija 3. Kažemo da je funkcija $f\colon I\to\mathbb{R}$ diferencijabilna ili derivabilna u točki c otvorenog intervala $I\subseteq\mathbb{R}$, ako postoji $\lim_{x\to c}\frac{f(x)-f(c)}{x-c}$. Taj broj zovemo derivacija (izvod) funkcije f u točki c i pišemo

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 (1)

Primjer 4. Koristeći definiciju 3 nađi derivaciju konstantne funkcije $f(x)=\alpha, \forall x\in\mathbb{R}$ u točki $c\in\mathbb{R}$. Vrijedi

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{\alpha - \alpha}{x - c} = 0$$

 \leadsto funkcija f ima derivaciju 0 u svim realnim brojevima.

3 Riemannov Integral

Definicija 5. Broj \mathcal{I}_* zovemo *donji Riemannov integral* funckije f na segmentu [a, b], a broj \mathcal{I}^* zovemo *gornji Riemannov integral* funkcije f na segmentu [a, b].

Definicija 6. Za funkciju $f:[a,b] \to \mathbb{R}$ ograničenu na segmentu [a,b] kažemo da je integrabilna u Riemannovom smislu ili R-integrabilna na segmentu [a,b] ako je

$$\mathcal{I}_*(f;a,b) = \mathcal{I}^*(f;a,b) \tag{2}$$

Tada se broj $\mathcal{I}=\mathcal{I}_*=\mathcal{I}^*$ naziva integral ili R-integral funkcije f na segmentu [a,b] i označava jednom od sljedećih oznaka

$$\mathcal{I} = \int_{[a,b]} f(t) dt = \int_{a}^{b} f(x) dx = \int_{[a,b]} f = \int_{a}^{b} f$$
 (3)

4 Kvadratna funkcija

Definicija 7. Neka su $a, b, c \in \mathbb{R}$, $a \neq 0$. Kvadratna funkcija je funkcija $f: \mathbb{R} \to \mathbb{R}$ zadana formulom $f(x) = ax^2 + bx + c$.

Nadopunjavanjem do potpunog kvadrata dolazimo do formule koja određuje nultočke kvadratne funkcije

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{4}$$

Napomena 8. Kvadratna jednadžba se može shvatiti kao poseban slučaj kvadratne funkcije y=f(x) za vrijednost funkcije y=0, gdje tada rješenja kvadratne jednadžbe predstavljaju nutočke kvadratne funkcije.

5 Domaća zadaća

Zadatak 1. Matematičkom indukcijom dokažite

$$1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$$

za svaki prirodan broj n. Nadalje, dokažite da za dani $x \neq 1$ vrijedi

$$1 + x + x^{2} + x + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

Zadatak 2. Neka su $a,b,c,d,k,l\in\mathbb{Z}$, te neka je p prost broj. Pokažite da sustav kongruencija ima jedinstveno rješenje $(x,y)\in\{1,2,\ldots,p\}\times\{1,2,\ldots,p\}$ ako i samo ako za determinantu sustava vrijedi $\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| \not\equiv 0 \, (\mathrm{mod} \, p).$

6 Literatura

https://web.math.pmf.unizg.hr/~guljas/skripte/MATANALuR.pdf

https://web.math.pmf.unizg.hr/nastava/em/EM1/kolokviji/EM1-kol2.pdf

https://web.math.pmf.unizg.hr/~gmuic/predavanja/uum.pdf

https://hr.wikipedia.org/wiki/Kvadratna_jednad%C5%BEba