

BIOMEDICAL SIGNAL AND IMAGE PROCESSING

Master degree, 1st / 2nd year

Lecturer: Prof. Franc Jager, PhD Assistant: As. Žiga Pirnar, MSc

Course description

- The course introduces techniques and procedures for analysis of biomedical signals and images like:
 - Cardiology signals
 - * electrocardiogram ECG
 - Neurophysiology signals
 - * electromyogram EMG (electrohysterogram EHG)
 - * (electroencephalogram EEG; See course: Human-Computer Interaction)
 - Medical images

Course: 63514

* computed tomography images - CT images

with the emphasis on problems of biomedical researches.

Course description

- We will recognize how we can automatically detect and classify heart beats and then, non-invasive and punctually, within 24-hour electrocardiogram signals, detect transient ischaemic disease, which is one of the most terrible heart diseases, and if we do not discover it punctually, it may lead to heart infarct.
- We will recognize how we can, using some non-linear signal processing techniques, analyze electromyograms recorded from the abdomen of a pregnant women early during pregnancy (23 week), estimate, or try to predict, danger of pre-term birth.
- We will also recognize techniques of analysis of 2- and 3-dimensional tomographic images with the aim of extraction and visualization of anatomic structures of human body organs.

Course syllabus

- Introduction to Biomedical Signal and Image Processing
- Data Acquisition
- Digital Filters
- Fourier Transform
- The Z Transform
- Frequency-Domain Analysis of Digital Filters
- Electrocardiogram (ECG) and Detecting Transient Ischaemia
- Feature Extraction, Shape Representation and Processing of the ECG
- Spectral Analysis

- Electromyogram (EMG) and Predicting Pre-Term Delivery
- Non-Linear Signal Processing Techniques

Course syllabus

- Image Filtering and Enhancement
- Edge Detection and Segmentation of Images
- Computed Tomography (CT) and Visualization of Human Organs
- Algorithms to Detect Transient ST Segment Episodes
- Performance Measures and Evaluation
- (Semi-Automatic Graphic Editing Tools to Annotate Ambulatory ECG Records)
- (Selected topics)

Topics

- The topics cover:
 - Representation of international standardized databases of signals and images (MIT/BIH DB, LTST DB, TPEHG DB, TPEHGT DS, CTIMG DB)
 - Techniques for noise extraction
 - Spectral analysis, modeling
 - Techniques for feature extraction from signals and images (filtering techniques, principal components, Karhunen-Loeve transform, sample entropy, edge detection, contour extraction)
 - Analysis and visualization of diagnostic and morphology feature-vector time series, and anatomic structures
 - Event detection, clustering, classifications
 - Metrics, techniques and protocols for performance and robustness evaluation of biomedical computer systems

Environments, sites, and tools for laboratory sessions

- Web classroom
- PhysioNet site, http://www.physionet.org (source of resources in the field of biomedical signal and image processing)
 - Databases: MIT/BIH DB, LTST DB, TPEHGT DS
 - Software: ATM tools, wfdb library, lightWAVE, gnuplot
- Home pages of Laboratory for Biomedical Computer Systems and Imaging (LBCSI), http://lbcsi.fri.uni-lj.si
 - Databases: LTST DB, TPEHG DB, TPEHGT DS, CTIMG DB
- Ubuntu 18.04 (LTS), Linux
- C, (C++)
- Matlab

Literature

- Sornmo Leif, Laguna Pablo, Bioelectrical Signal Processing in Cardic and Neurological Applications, 2005, Elsevier Inc.
- Clifford Gari D, Azuaje F, McSharry Patrick E (Editors), Advanced Methods and Tools for ECG Data Analysis, 2006, Artech House Inc.
- Proakis J G, Manolakis D G, Digital Signal Processing, 2014, Prentice Hall Inc. (in our library)
- Gonzales Rafael C, Woods Richard E, Digital Image Processing, 3rd Edition, 2008, Pearson Prentice Hall.

Gonzales Rafael C, Woods Richard E, Digital Image Processing, 4th Edition, 2018, Pearson Prentice Hall.

- Oppenheim Alan V, Schafer Ronald W, Discrete-Time Signal Processing, Third Edition, 2014, Pearson Education Limited. (in our library)
- Lyons Richard G, Understanding Digital Signal Processing, Third Edition, 2011, Pearson Education, Inc. (in our library)

Laboratory sessions, quiz, exam, grading

- Laboratory assignments (each assignment has to be submitted and explained ongoing):
 - 1. Analysis of electrocardiogram (ECG) signals and analysis of electromyogram (EMG) signals (Max: 45 55 points)
 - 2. Analysis of computed tomography (CT) images (Max: 55 65 points)
 - → Obligatory: 50 points; Max: 120 points
- Quiz during the semester (by your choice) → Max: 20 points
- Exam at the end of semester: → Obligatory: 50 points; Max: 100 points
- How the preliminary grade (5 10) will be composed?

```
Total score = round ((Laboratory points + Quiz + Exam)/2)
```

```
Total score ≤ 49 \rightarrow 5

50 ≤ Total score ≤ 59 \rightarrow 6

60 ≤ Total score ≤ 69 \rightarrow 7

70 ≤ Total score ≤ 79 \rightarrow 8

80 ≤ Total score ≤ 89 \rightarrow 9

90 ≤ Total score \rightarrow 10
```

Oral exam is obligatory.

Physionet / Computing in Cardiology Challenges

- Physionet / 2014 Computing in Cardiology Challenge
 - Robust Detection of Heart Beats in Multimodal Data
 - Students at this course participated at the prototype challenge
 - The actual challenge started on January 2014 and ended on January 2015
 - Urška Pangerc (student at this course) obtained the 2nd, 3rd, 6th, and the final 1st place during the phases I, II, III, and the follow-up phase (end of February 2015) of the competition of the actual challenge (which was not student competition) among 47 international teams (http://physionet.org/challenge/2014)

PhysioNet / 2014 Computing in Cardiology Challenge

Focus issue entry	Score (%)
Pangerc and Jager (2015)	93.64
Johnson et al (2015)	91.50
Antink et al (2015)	90.70
DeCooman et al (2015)	90.02
Galeotti et al (2015)	89.73
*Vollmer M	89.55
Pimentel et al (2015)	89.13
Mollakazemi et al (2015)	88.85
*Krug J	88.34
Gieraltowski et al (2015)	88.07
C-code sample entry	87.38
M-code sample entry	85.04

Source: Silva I, Moody B, Behar J, Johnson A, Oster J, Clifford GD, Moody GB, Editorial: Robust Detection of Heart Beats in Multimodal Data, Physiological Measurement, 36:1629–1644, 2015. (http://iopscience.iop.org/0967-3334/36/8/1629)

11

Physionet / Computing in Cardiology Challenges

- Physionet / 2020 Computing in Cardiology Challenge
 - The topic has not been decided yet
- Participating at the topics from the past challenges is possible (see: http://physionet.org/challenge/)