```
    # Import some helpful packages for loading and plotting data
    using CSV , Dates , DataFrames , Gadfly , GLM , Statistics
```

	Time	Replicate	OD
1	11:06:00	"H"	0.013
2	11:06:00	"S"	0.027
3	11:11:00	"1"	0.031
4	11:11:00	"2"	0.031
5	11:16:00	"3"	0.034
6	11:16:00	"4"	0.032
7	11:21:00	"5"	0.032
8	11:21:00	"6"	0.031
9	11:28:00	"H"	0.009
10	11:28:00	"S"	0.039
r	more		
96	15:04:00	"6"	5.1

```
begin

# Load CSV into a DataFrame

csvfile = "Growth Curve Data.csv"

df = DataFrame(CSV.File(csvfile))

end
```

	Time	Replicate	OD
1	0	"H"	0.013
2	0	"S"	0.027
3	5	"1"	0.031
4	5	"2"	0.031
5	10	"3"	0.034
6	10	"4"	0.032
7	15	"5"	0.032
8	15	"6"	0.031
9	22	"H"	0.009
10	22	"S"	0.039
r	nore		
96	238	"6"	5.1

```
begin
    # Normalise times and convert to minutes
    start = df[1, :Time]
    pdf = transform(df, :Time => ByRow(t -> Dates.value(Minute(t - start))) => :Time)
    end
```

Growth Curve Data

Given that OD is proportional to cell count (when properly diluted so that readings don't exceed 0.6), it can be used to track the growth of cells.

On a linear scale, this growth curve is an exponential, but be later made linear by applying a logarithmic transformation.

V. Natriegens Growth Curves Replicate H S Minutes

```
    # Construct a line-scatter plot, grouping by biological replicate
    plot(pdf, x=:Time, y=:OD, color=:Replicate, Scale.color_discrete_hue,
    Guide.xlabel("Minutes"), Guide.ylabel("OD<sub>600</sub>"),
    Guide.title("<i>V. Natriegens</i> Growth Curves"))
```

A log transformation reveals that the region between 60 and 120 minutes can be safely said to be linear

V. Natriegens Growth Curves $2^{2.5}$ 20.0 Replicate ■ H S **1** 2-2.5 **3 5 6** 2-5.0 2-7.5 50 100 200 250 150 Minutes

```
    # Replot, but on a log-scale so that we can pick out the exponential growth region
    plot(pdf, x=:Time, y=:OD, color=:Replicate,
    Scale.color_discrete_hue, Scale.y_log2,
    Guide.xlabel("Minutes"), Guide.ylabel("OD<sub>600</sub>"),
    Guide.title("<i>V. Natriegens</i> Growth Curves"))
```

hlogdf	=
--------	---

	Time	Replicate	OD
1	0	"H"	0.013
2	22	"H"	0.009
3	42	"H"	0.008
4	62	"H"	0.017
5	82	"H"	0.026
6	103	"H"	0.036
7	123	"H"	0.054
8	143	"H"	0.07
9	163	"H"	0.08
10	183	"H"	0.14
11	203	"H"	0.117
12	223	"H"	0.143

```
• # Isolate the H media
```

[•] hlogdf = filter(:Replicate => r -> r == "H", pdf)

V. Natriegens Growth Curves

- # Replot, but the isolated values so that we can pick out the exponential growth region
- plot(hlogdf, x=:Time, y=:OD, color=:Replicate,
- Scale.color_discrete_hue, Scale.y_log2,
- Guide.xlabel("Minutes"), Guide.ylabel("OD600"),
- **Guide**.title("<i>V. Natriegens</i> Growth Curves"))

thlogdf =		Time	Replicate	OD
	1	62	"H"	0.017
	2	82	"H"	0.026
	3	103	"H"	0.036
	4	123	"H"	0.054

- # Trim the data to take a closer look at log-phase
- thlogdf = filter(:Time => t -> 60 <= t <= 123, hlogdf)</pre>

	Time	Replicate	OD
1	62	"H"	-5.87832
2	82	"H"	-5.26534
3	103	"H"	-4.79586
4	123	"H"	-4.2109

- # Log-transform the OD data
- transform!(thlogdf, :OD => ByRow(log2) => :OD)

hols =

StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.DensePredCho

OD \sim 1 + Time

Coefficients:

	Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper 95%
(Intercept) Time					-7.97025 0.0220528	

- 4 |
 - # Perform and ordinary least-squares regression for a linear model
 - hols = lm(@formula(OD ~ Time), thlogdf)

[-5.85523, -5.31908, -4.75613, -4.21998]

- # Insert a new column into our dataframe representing the model predictions
- thlogdf[!,:Model] = predict(hols)


```
# And then plot it on a log-scale
plot(thlogdf, x=:Time, y=:OD, color=:Replicate,

Scale.color_discrete_hue, Geom.point,
Guide.xlabel("Minutes"), Guide.ylabel("OD600"),
Guide.title("<i>E. Coli</i> Growth Curves"),
# With the line-of-best-fit superimpoosed
layer(x=:Time, y=:Model, Geom.line))
```

Calculating Doubling-Time From Our Model

We can start with a fundamental equation that models the growth of microbes undergoing binary fission:

$$N=N_02^{rac{t}{g}}$$

Where N is the current number of cells, N_0 is the initial number of cells, t is time, and g is generation or doubling-time. We want to rearrange this equation to fit the model OD \sim Time after calculating the \log_2 of all ODs.

Let's start by applying the log_2 to both sides of the equation:

$$\log_2 N = \log_2 N_0 + rac{t}{g}$$

Ignoring the intercept and separating terms, we get an expression that matches our model:

$$\log_2 N = rac{1}{g} t$$

Therefore we can conclude that g is equal to the reciprocal of our regression gradient.

The doubling time for H was ~37.3 minutes, with a growth rate of 0.0268

```
begin
# Calculate doubling-time
g = 1/coef(hols)[2]
# Format it into a nice string
md"The doubling time for H was ~$(round(g, sigdigits=3)) minutes, with a growth rate of $(round(coef(hols)[2], sigdigits=3))"
end
```

S	l n	Ø	11	=
_		0,	~ .	

	Time	Replicate	OD
1	0	"S"	0.027
2	22	"S"	0.039
3	42	"S"	0.086
4	62	"S"	0.183
5	82	"S"	0.46
6	103	"S"	1.05
7	123	"S"	1.72
8	143	"S"	2.43
9	163	"S"	3.05
10	183	"S"	3.28
11	203	"S"	3.41
12	223	"S"	3.68

```
• # Isolate the S media
```

slogdf = filter(:Replicate => r -> r == "S", pdf)

V. Natriegens Growth Curves 22 20 Replicate 2-4 2-6 0 50 100 150 200 250 Minutes

```
    # Replot, but the isolated values so that we can pick out the exponential growth region
    plot(slogdf, x=:Time, y=:OD, color=:Replicate,
    Scale.color_discrete_hue, Scale.y_log2,
    Guide.xlabel("Minutes"), Guide.ylabel("OD<sub>600</sub>"),
    Guide.title("<i>V. Natriegens</i> Growth Curves"))
```

	Time	Replicate	OD	
1	22	"S"	0.039	
2	42	"S"	0.086	
3	62	"S"	0.183	
4	82	"S"	0.46	
	2	1 22 2 42 3 62	1 22 "S" 2 42 "S" 3 62 "S"	

```
    # Trim the data to take a closer look at log-phase
    tslogdf = filter(:Time => t -> 20 <= t <= 82, slogdf)</li>
```

	Time	Replicate	OD
1	22	"S"	-4.68038
2	42	"S"	-3.53952
3	62	"S"	-2.45008
4	82	"S"	-1.12029

- # Log-transform the OD data
- transform!(tslogdf, :OD => ByRow(log2) => :OD)

sols =

StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.DensePredCho

OD \sim 1 + Time

Coefficients:

	Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper 95%
(Intercept) Time		0.102749 0.00181523			-6.44979 0.0510382	

- \triangleleft
- # Perform and ordinary least-squares regression for a linear model
- sols = lm(@formula(OD ~ Time), tslogdf)

[-4.71302, -3.53605, -2.35909, -1.18212]

- # Insert a new column into our dataframe representing the model predictions
- tslogdf[!,:Model] = predict(sols)

The doubling time for S was ~17.0 minutes, with a growth rate of 0.0588

```
    begin
    # Calculate doubling-time
    sg = 1/coef(sols)[2]
    # Format it into a nice string
    md"The doubling time for S was ~$(round(sg, sigdigits=3)) minutes, with a growth rate of $(round(coef(sols)[2], sigdigits=3))"
    end
```

			•	
nσ	l Os	Σď	t	=
	,	5 ~		

	Time	Replicate	OD
_	_	114 11	0.074
1	5	"1"	0.031
2	5	"2"	0.031
3	10	"3"	0.034
4	27	"1"	0.048
5	27	"2"	0.029
6	32	"3"	0.039
7	47	"1"	0.081
8	47	"2"	0.088
9	52	"3"	0.086
10	67	"1"	0.19
ı	nore		
36	233	"3"	4.39

 [#] Isolate the no glucose media
 nglogdf = filter(:Replicate => r -> r in ["1", "2", "3"], pdf)


```
    # Replot, but the isolated values so that we can pick out the exponential growth region
    plot(nglogdf, x=:Time, y=:OD, color=:Replicate,
    Scale.color_discrete_hue, Scale.y_log2,
    Guide.xlabel("Minutes"), Guide.ylabel("OD600"),
    Guide.title("<i>V. Natriegens</i> Growth Curves"))
```

		Time	Replicate	OD
1	1	47	"1"	0.081
2	2	47	"2"	0.088
3	3	52	"3"	0.086
4	4	67	"1"	0.19
5	5	67	"2"	0.216
e	5	72	"3"	0.201
7	7	87	"1"	0.73
8	3	87	"2"	0.71
g	9	92	"3"	0.84

Trim the data to take a closer look at log-phase
 tnglogdf = filter(:Time => t -> 47 <= t <= 92, nglogdf)

	Time	Replicate	OD
	47	114 11	7 60507
1	47	"1"	-3.62593
2	47	"2"	-3.50635
3	52	"3"	-3.53952
4	67	"1"	-2.39593
5	67	"2"	-2.2109
6	72	"3"	-2.31473
7	87	"1"	-0.454032
8	87	"2"	-0.494109
9	92	"3"	-0.251539

```
• # Log-transform the OD data
```

ngols =

StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.DensePredCho

OD \sim 1 + Time

Coefficients:

	Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper 95%
(Intercept) Time		0.364521 0.00516165		<1e-06 <1e-05	-8.28184 0.0654417	-6.55793 0.0898524

- # Perform and ordinary least-squares regression for a linear model
- ngols = lm(@formula(OD ~ Time), tnglogdf)

[-3.77047, -3.77047, -3.38223, -2.21753, -2.21753, -1.82929, -0.664586, -0.664586, -0.2763]

- # Insert a new column into our dataframe representing the model predictions
- tnglogdf[!,:Model] = predict(ngols)

⁻ transform!(tnglogdf, :OD => ByRow(log2) => :OD)

The doubling time for no glucose was ~12.9 minutes, with a growth rate of 0.0776

```
    begin
    # Calculate doubling-time
    ngg = 1/coef(ngols)[2]
    # Format it into a nice string
    md"The doubling time for no glucose was ~$(round(ngg, sigdigits=3)) minutes, with a growth rate of $(round(coef(ngols)[2], sigdigits=3))"
    end
```

gΊ	lο	gd	f	=
0		- 0		

	Time	Replicate	OD
1	10	"4"	0.032
2	15	"5"	0.032
3	15	"6"	0.031
4	32	"4"	0.043
5	37	"5"	0.046
6	37	"6"	0.042
7	52	"4"	0.099
8	57	"5"	0.101
9	57	"6"	0.095
10	72	"4"	0.221
ı	more		
36	238	"6"	5.1

```
• # Isolate the glucose media
```

[•] glogdf = filter(:Replicate => r -> r in ["4", "5", "6"], pdf)

• # Replot, but the isolated values so that we can pick out the exponential growth region

"5"

"6"

0.86

0.65

97

97

9

- plot(glogdf, x=:Time, y=:OD, color=:Replicate,
- Scale.color_discrete_hue, Scale.y_log2,
- Guide.xlabel("Minutes"), Guide.ylabel("OD600"),
- Guide.title("<i>V. Natriegens</i></i></i>

tglogdf =		Time	Replicate	OD
1	1	52	"4"	0.099
2	2	57	"5"	0.101
3	3	57	"6"	0.095
4	4	72	"4"	0.221
5	5	77	"5"	0.252
6	6	77	"6"	0.235
7	7	92	"4"	0.69

- # Trim the data to take a closer look at log-phase
- tglogdf = filter(:Time => t -> 52 <= t <= 97, glogdf)</pre>

	Time	Replicate	OD
1	52	"4"	-3.33643
2	57	"5"	-3.30757
3	57	"6"	-3.39593
4	72	"4"	-2.17788
5	77	"5"	-1.9885
6	77	"6"	-2.08927
7	92	"4"	-0.535332
8	97	"5"	-0.217591
9	97	"6"	-0.621488

```
• # Log-transform the OD data
```

gols =

StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.DensePredCho

OD \sim 1 + Time

Coefficients:

	Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper 95%
(Intercept) Time						

- # Perform and ordinary least-squares regression for a linear model
- gols = lm(@formula(OD ~ Time), tglogdf)

[-3.62151, -3.26619, -3.26619, -2.20022, -1.84489, -1.84489, -0.778921, -0.423597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597, -0.42597

- # Insert a new column into our dataframe representing the model predictions
- tglogdf[!,:Model] = predict(gols)

⁻ transform!(tglogdf, :OD => ByRow(log2) => :OD)

The doubling time for no glucose was ~14.1 minutes, with a growth rate of 0.0711

```
    begin
    # Calculate doubling-time
    gg = 1/coef(gols)[2]
    # Format it into a nice string
    md"The doubling time for no glucose was ~$(round(gg, sigdigits=3)) minutes, with a growth rate of $(round(coef(gols)[2], sigdigits=3))"
    end
```

comparedf =

	Time	Replicate	OD
1	5	"1"	0.031
2	5	"2"	0.031
3	10	"3"	0.034
4	10	"4"	0.032
5	15	"5"	0.032
6	15	"6"	0.031
7	27	"1"	0.048
8	27	"2"	0.029
9	32	"3"	0.039
10	32	"4"	0.043
1	more		
72	238	"6"	5.1

^{• #} Isolate the with / without glucose media

comparedf = filter(:Replicate => r -> isdigit(r[1]) , pdf)

- # Replot, but the isolated values so that we can pick out the exponential growth region
- plot(comparedf, x=:Time, y=:OD, color=:Replicate,
- Scale.color_discrete_hue, Scale.y_log2,
- Guide.xlabel("Minutes"), Guide.ylabel("OD600"),
- Guide.title("<i>V. Natriegens</i> Growth Curves"))