- (1) $\phi(x) = x', \phi(y) = x't$ なので、 $\phi(y^2 6x^2) = X^2(T^2 6) \in (X^2 6)$ となり、well-defined. $f \in \mathbb{Z}[X,Y]/(Y^2 6x^2) \setminus \{0\}$ の代表元を $f_0 \in \mathbb{Z}[X,T]$ とする. このとき、 $\deg_Y f_0 \leq 1$ と仮定してよいので、ある $g,h \in \mathbb{Z}[X]$ が存在して、 $f_0 = gY + h$ と表せる. このとき、 $\phi(f_0) = gXT + h$ であって、 $gXT + h \in (T^2 6)$ と仮定すれば、 $\mathbb{Z}[X,T]$ は整域であって、1,T は $\mathbb{Z}[X]$ 上線形独立なので、gX = h = 0 となる. さらに、 $\mathbb{Z}[X]$ も整域なので、g = h = 0 となるが、 $f_0 \neq 0$ に反するので、 ϕ は単射である.
- (2) A/P_1 が整域であることを示す。まず, $A=\mathbb{Z}[X,Y]/(Y^2-6X^2)$ のイデアルは (Y^2-6X^2) を含む $\mathbb{Z}[X,Y]$ のイデアルと対応しており,ある $I_1\subseteq\mathbb{Z}[X,Y]$ が存在して, $P_1=I_1/(Y^2-6X^2)$ と表せる.このとき, $(X,Y,5)\subset I_1$ なので, $(X,Y,5)+(Y^2-6X^2)\subset I_1$ となる.ここで,

$$P_1 \subseteq ((X, Y, 5) + (Y^2 - 6X^2))/(Y^2 - 6X^2) \subseteq I_1/(Y^2 - 6X^2) = P_1$$

なので,

$$P_1 = ((X, Y, 5) + (Y^2 - 6X^2))/(Y^2 - 6X^2)$$

であり,

$$(X, Y, 5) + (Y^2 - 6X^2) = (X, Y, 5)$$

も成り立つので,

$$A/P_1 = (\mathbb{Z}[X,Y]/(Y^2 - 6X^2))/((X,Y,5)/(Y^2 - 6X^2)) = \mathbb{Z}[X,Y]/(X,Y,5) = \mathbb{Z}/5\mathbb{Z}$$

となる. これは整域なので, P_1 は素イデアルである.

次に、 A/P_2 が整域であることを示す。 A/P_1 の場合と同様にして、

$$P_2 = ((X - Y, 5) + (Y^2 - 6X^2))/(Y^2 - 6X^2)$$

であり,

$$(X - Y, 5) + (Y^2 - 6X^2) = (X - Y, 5)$$

なので,

$$A/P_2 = (\mathbb{Z}[X,Y]/(Y^2 - 6X^2))/((X - Y, 5)/(Y^2 - 6X^2)) = \mathbb{Z}[X,Y]/(X - Y, 5) = \mathbb{Z}/5\mathbb{Z}[X]$$

となる. これは整域なので、 P_2 は素イデアルである.

 $A/P_1 \neq A/P_2$ より, $P_1 \neq P_2$ であって, $P_2 \subseteq P_1$ は明らかに成り立つので, $P_2 \subseteq P_1$ となる.

(3) B/Q_1 が整域であることを示す. (2) と同様にして、

$$B/Q_1 = (\mathbb{Z}[X,T]/(T^2-6))/((X,T+1)+(T^2-6)/(T^2-6))$$

であって,

$$(X, T+1) + (T^2 - 6) = (X, T+1, 5)$$

なので,

$$B/Q_1 = \mathbb{Z}[X,T]/(X,T+1,5) = \mathbb{Z}/5\mathbb{Z}$$

となる. これは整域なので, Q_1 は素イデアルである.

また, (2) で示したことから, P_1 は特に極大イデアルであって, $Q_1 \neq 1$ なので, $P_1 \subseteq Q_1 \cap A$ を示せば十分である. $\phi(X) \in Q_1$ は明らかであり,

$$\phi(Y) = TX = X(T+1) - X \in Q_1$$

と,

$$\phi(5) = 5 = -(T^2 - 6) + (T - 1)(T + 1) \in Q_1$$

も成り立つので, $P_1 \subseteq Q_1 \cap A$ が成り立つ. これより, $P_1 = Q_1 \cap A$ となる.

(4) \mathbb{Z} がネーターであることから, $\mathbb{Z}[X,T]=2$ であり, $\mathbb{Z}[X,T]$ において

$$0 \subsetneq (T^2 - 6) \subsetneq (X, T + 1) = Q_1$$

が成り立つこととイデアルの対応関係から, B の素イデアルであって, Q_1 に真に含まれる素イデアルは 0 しか存在しないが, $P_2 \neq 0$ なので, 条件を満たす Q_2 は存在しない.