## Orceedy Algoreithm Pseudogode

Algoreithm Gineedy (a,n)

forc i= 1 to n do

x=selec+(a);

if Feasible (x) Then

solution = solution + oc:

COST GATE GATEGO माह्य स्मिपिहकार् ALEA and ENDE solution 2601

\* It is an algorithm that finds a solution

to a problem in the shoretest time possible

\* It involvese making the locally optional

choice at each stage with the hope of

finding the global optimal.

# Easy to implement and understand

\* Feosible solution

\* Feosible

\* Feosible

\* optimal solution (Min cost, Max Pro-fit,

Min Risk)

| *Greedy techniques Greedy Method                                | Vs Dynamic Programming                                                                           |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1) Make our decisions<br>based on the best<br>current situation | in every step                                                                                    |
| 2) There is no assurance of obtaining the optimal solution      | Solding                                                                                          |
| 3) Follows Top-down                                             | and top-down                                                                                     |
| backtracking thus making it more efficient in terems of memory  | 4) uses memorization due to which the memory complexity imarreases and making it less efficient. |
| 5) Fastore than dynamic                                         | 5) Comparcatively slowers.                                                                       |

Harming much got-\* Applications Oknapsack problem escala decimients (1) Minimum spanning tree (11) Activity selection problem ballout plansme 1 Huffman coding that a oute hear iens -land adt on be Dijastran's algoresthm. water of it is a read to Gireedy charcae-tercisties: on el pared 1 local optimicity crostales lacortqo 1 not back treacking mot always the best Activity Selection Problem numbers of activities sected s-teps 1 Soret the finishing (1) find compatible activity solution





Pseucheode Greed activity (si, fi) n ( rength (s) A <- 313 do 9+ 51>+fj then A + Au siz recturen A; complexity T= O(n) + O(n logn). fore soreling algorithm



| object | 1                          | 2          | 3             |
|--------|----------------------------|------------|---------------|
| 1      | 25                         | 24         | 15            |
|        | 18                         | 15         | 10            |
|        | object<br>profit<br>Weight | preofit 25 | preofit 25 24 |

Pseudocode:

For 
$$i=1$$
 ton

if  $(M>0)$  and  $wi \leq M$ .

 $M=M-wi;$ 
 $P=P+Pi;$ 

if  $(M>0)$ 
 $P=P+Pi \times (\frac{M}{wi})$ 
 $P=P+Pi \times (\frac{M}{wi})$ 

Time complexity

 $T=O(n)+O(n\log n)+O(n)$ 
 $T=O(n\log n)$ 





25th sep 0/1 Krapsack Problem (0-Absent) (1-present) 02 03 101 60 25 P 20 8 4 . 2 w - matercials 212160 2601 = 10 Su. p pose erros 010 loumn of weight AT 03 01

By using dynamic method it should be 0-> not count solved. 1 -> court 5मझन उपादगाक charet दक मिराहे नावि 0 11->60+25=85 W highest 100->20 101-> 20+60=80 110-> 20+25=45 1 11 -> 20+X अयव 60,25 profit us weight stom sum 4.06 m m2 8+4=12 लार्ड उपादवाक छाउटक 02 त्रेश 03 bucelif क्रेड materials from fill up mar ATGOI Question copy greedy algorithm fail here?

Dynamic TSP (Travelling Sales Piercon Problem) Question Greaph / Matrix 2201642 STERS Greath Ch 3मा भारवित्य or matrix की नेपामें कारें easier 2641 20 15 0 Example 10 9 5 2 12 10 3 0

foremula  $g(i,s) = \min_{j \in s} \{C_{ij} + g(j, s - ij)\}$  g(i,s) is the shoretest path starting from I and going through all the vertex in s and terminate at 1





$$g(2, \{u\}) = c_{24} + g(u, \varphi) = 10 + 3 = 19$$

$$g(u, \{2\}) = c_{42} + g(u, \varphi) = 3 + 5 = 13$$

$$g(3, \{2\}) = c_{32} + g(2, \varphi) = 13 + 5 = 18$$

$$g(2, \{3\}) = c_{23} + g(3, \varphi) = 9 + 6 = K$$

$$g(2, \{3\}) = c_{23} + g(3, \{4\}) = 9 + 20 = 29$$

$$g(2, \{3\}, \{4\}) = \begin{cases} c_{23} + g(3, \{4\}) = 9 + 20 = 29 \\ c_{24} + g(4, \{3\}) = 10 + 15 = 25 \end{cases}$$

$$g(3, \{2, 4\}) = \begin{cases} c_{32} + g(3, \{4\}) = 13 + 18 - 31 \\ c_{34} + g(4, \{2\}) = 12 + 13 = 25 \end{cases}$$

$$g(4, \{3, 2\}) = \begin{cases} c_{43} + g(4, \{2\}) = 12 + 13 = 25 \\ c_{42} + g(2, \{3\}) = 27 \end{cases}$$

$$g(4, \{3, 2\}) = \begin{cases} c_{42} + g(2, \{3\}) = 23 \\ c_{42} + g(2, \{3\}) = 23 \end{cases}$$

$$g(1, \{2, 3, 4\}) = \begin{cases} c_{12} + g(2, \{3\}, \{4\}) = 15 + 25 = 40 \\ c_{13} + g(4, \{2, 3\}) = 20 + 23 = 43 \end{cases}$$

$$g(4, \{2, 3, 4\}) = \begin{cases} c_{12} + g(4, \{2, 3, \{4\}) = 15 + 25 = 40 \\ c_{14} + g(4, \{2, 3, \{4\}) = 20 + 23 = 43 \end{cases}$$

$$g(4, \{2, 3, \{4\}) = \frac{1}{2} + \frac{1}{2$$







@ Perceivere 17 377) Bit 264?

Total bit = Total size + Total charcoelere

xactual numbers of
bits

+ Total numbers of bits

Fixed = 300 +6×8 +18 = 366

Holfman = 224 + 6x8 + 18 = 290

200

CS CamScanner



## strongly connected greath:

# Staret to end path 90; end to staret path
must stared



weakly connected graph



A to D path origh; Dto A path Gaz (A > c > D)

## Disjoint Grouph









Queue (FIFO, enqueue, dequeue) | Diff Stack (LIFO, push, Pop) Treave use Greath visited the explore ventices 2 tways 1) BFs & 11) DES BES Queue fesult Opening L. J. 0,1,3,2,5,6,4



Backtracking 672



DFS

Back-freaking WIBY

Pseudocode BFS BFS (G1, 5) a=queue(); q. enqueue (s); cohile (!a. empty ()) for all u dej adju

for all u dej adju

fif (u is not visited)

far. enqueue (a);

7133

CS CamScanner

DFS

6, 4, 5, 2, 3, 1, 0

5
6
9
Pesult
0, 1, 3, 2, 4, 6, 5

## Pseudocode

visited [v]=true;

fore each u adj tov

if (visited [v] = = false)

DFs(u);

3

