# Functionnal data analysis applied to neurology

Clément Bonvoisin, Pierre Ludmann

CMLA (ENS Cachan), Cognac-G (Paris V)

01/04/2014

## Outline

- Familiar with the problem
- Windowed approach
- CUSUM algorithm

- Familiar with the problem
  - Experiment
  - Data display
- Windowed approach
- 3 CUSUM algorithm

## Patient path:

- about 6 secondes idle
- 10-metre walk
- about-turn
- 10-metre walk

### Data acquisition by two inertial measurement units :

- set on the back and the right foot
- accelerations and angular velocities
- recorded at 20 Hz
- deliver in the frame of reference (anteroposterior, mediolateral, vertical)

#### Filename extension is .txt or .csv

Need procedures to import to MATLAB .mat format

## Display function

- Different phasis are apparent without modification need
- → Automatic segmentation must be fast and accurate, as much as the eye

# Example of back IMU record



# Example of foot IMU record



- Familiar with the problem
- Windowed approach
  - With Fourier
  - With statistics
- CUSUM algorithm

Ref. Classification of periodic activities using the Wasserstein distance, L. Oudre, J. Jakubowicz, P. Bianchi, C. Simon Frequency spectrum bandwidthed from 0.5 to 5 Hz on a window Wasserstein distance is less shift-sensitive, used in image and music signal processing

$$d_W(g,h) = \int_0^{\pi} \left| \int_0^{x} g(t) - h(t) dt \right| dx$$

Point to point distance

$$d(x,y) = d_W(\frac{x}{||x||_1}, \frac{y}{||y||_1}) + \mu \cdot \left| ||x||_1 - ||y||_1 \right|$$

# Application back angular velocities: 16 and 32-sampled windows, 75% overlap





Many proposed features in literature :

- $a_{ML} + a_V$ ,  $a_{AP}$  and  $a_V$  means;
- $a_{AP} + a_V$  and  $a_{ML}$  standard-deviations;
- a<sub>V</sub> median;
- *a<sub>ML</sub>* 95-percentile; *etc*

Good results with kurtosis

Issue on window length : accuracy/smooth trade-off, hard under 100 Hz



- Familiar with the problem
- Windowed approach
- CUSUM algorithm
  - Working
  - First results

Ref. Detection of Abrupt Changes: Theory and Application, M. Basseville, I. V. Nikiforov (1993)

Proposed by E. S. Page in 1954

Based on maxima of likelihood estimated

$$\tilde{\Lambda}_1^N(k) = \inf_{\tilde{\theta}_0} \sup_{\theta_0} \sup_{\theta_1} \ln \left[ \frac{\prod_{i=1}^{k-1} p_{\theta_0}(y_i) \cdot \prod_{i=k}^{N} p_{\theta_0}(y_i)}{\prod_{i=1}^{N} p_{\tilde{\theta}_0}(y_i)} \right]$$

$$\hat{t}_0 = \arg\max_{1 \leq k \leq N} \tilde{\Lambda}_1^N(k)$$

Assume independent signals under normal distribution Applied on acceleration norms and yaw by dichotomy

