```
In [14]: # dummy variables
          import matplotlib.pyplot as plt
          import pandas as pd
          import numpy as np
          import statsmodels.api as sm
          import statsmodels.formula.api as smf
In [15]: #Example: automobile data
         #https://www.kaggle.com/toramky/automobile-dataset
          carsdata=pd.read_csv('Automobile_data.csv')
          carsdata.sample(5)
Out[15]:
                                                              num-
                         normalized-
                                              fuel-
                                                                        bodv-
                                                                                drive-
               symboling
                                       make
                                                    aspiration
                                                                of-
                              losses
                                              type
                                                                         style wheels loc
                                                              doors
          141
                       0
                                 102 subaru
                                                          std
                                                                four
                                                                        sedan
                                                                                  fwd
                                               gas
           37
                       0
                                 106
                                      honda
                                                                two hatchback
                                                                                  fwd
                                                          std
                                               gas
           97
                       1
                                 103
                                      nissan
                                                          std
                                                                                  fwd
                                               gas
                                                                four
                                                                        wagon
           39
                       0
                                  85
                                      honda
                                               gas
                                                          std
                                                                four
                                                                        sedan
                                                                                  fwd
          203
                      -1
                                  95
                                       volvo diesel
                                                        turbo
                                                                four
                                                                        sedan
                                                                                  rwd
         5 rows × 26 columns
In [16]: # categorical variables: fuel-type
         carsdata['city-mpg'].replace('?', np.nan, inplace= True)
          carsdata['fuel-type'].replace('?', np.nan, inplace= True)
          cars=carsdata.dropna()
         #check the summary of 'fuel-type': two levels: gas and diesel
          print(cars['fuel-type'].value counts())
                    20
        diesel
        Name: fuel-type, dtype: int64
In [19]: # regression city-mpg~fuel-type, names wouldn't be recogonized in smf.ols
          cars['citympg']=cars['city-mpg']
          cars['fueltype']=cars['fuel-type']
          reg = smf.ols('citympg ~ fueltype', data=cars).fit()
          reg.summary() =
          # in the summary it only showed 1 level: gas
```

Out[19]:

OLS Regression Results

Dep. Variable:	citympg	R-squared:	0.066
Model:	OLS	Adj. R-squared:	0.061
Method:	Least Squares	F-statistic:	14.23
Date:	Mon, 20 Sep 2021	Prob (F-statistic):	0.000212
Time:	14:11:04	Log-Likelihood:	-668.48
No. Observations:	205	AIC:	1341.
Df Residuals:	203	BIC:	1348.
Df Model:	1		
Covariance Type:	nonrobust		

Covariance Type: nonrobust

Omnibus: 17.025 **Durbin-Watson:** 0.846 **Prob(Omnibus):** 0.000 **Jarque-Bera (JB):** 18.937 Skew: 0.668 **Prob(JB):** 7.73e-05 **Kurtosis:** 3.658 Cond. No. 6.25

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [17]: #similarly, drivewheels has 3 levels
         cars['drivewheels']=cars['drive-wheels']
         print(cars['drivewheels'].value_counts())
        fwd
               120
        rwd
                76
        4wd
        Name: drivewheels, dtype: int64
In [20]: reg1 = smf.ols('citympg ~ drivewheels', data=cars).fit()
         reg1.summary()
         #two levels: fwd, rwd showed up, 4wd as the baseline level doesn't show
```

```
Out[20]:
```

OLS Regression Results

Dep. Variable:	citympg	R-squared:	0.324
Model:	OLS	Adj. R-squared:	0.317
Method:	Least Squares	F-statistic:	48.38
Date:	Mon, 20 Sep 2021	Prob (F-statistic):	6.81e-18
Time:	14:11:09	Log-Likelihood:	-635.31
No. Observations:	205	AIC:	1277.
Df Residuals:	202	BIC:	1287.
Df Model:	2		
Covariance Type:	nonrobuet		

Covariance Type: nonrobust

(hy)	coef	std err	t	P> t	[0.025	0.975]
Intercept	23.1111	1.802	12.825	0.000	19.558	26.664
drivewheels[T.fwd]	5.2056	1.868	2.786	0.006	1.522	8.890
drivewheels[T.rwd]	- 2.5322	1.906	- 1.329	0.185	-6.290	1.225

1.175	Durbin-Watson:	15.581	Omnibus:
19.666	Jarque-Bera (JB):	0.000	Prob(Omnibus):
5.36e-05	Prob(JB):	0.537	Skew:
10.2	Cond. No.	4.072	Kurtosis:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [22]: sm.stats.anova_lm(reg1, typ=2) #in anova, it's analysis as a whole # reduce: null model # full: y~drivewheels_fwd+ drivewheels_rwd # notice: df of drivewheels is 2, since there are two parameters to estimate
```

```
        Out [22]:
        sum_sq
        df
        F
        PR(>F)

        drivewheels
        2827.740080
        2.0
        48.379345
        6.809467e-18

        Residual
        5903.381871
        202.0
        NaN
        NaN
```

```
In [23]: # same for MLR with categorical variables
    cars['enginesize']=cars['engine-size']
    reg2 = smf.ols('citympg ~ enginesize+ drivewheels + fueltype', data=cars).fi
    reg2.summary()
```

Out[23]:

OLS Regression Results

Dep. Variable:	citympg	R-squared:	0.599
Model:	OLS	Adj. R-squared:	0.591
Method:	Least Squares	F-statistic:	74.59
Date:	Mon, 20 Sep 2021	Prob (F-statistic):	1.36e-38
Time:	14:16:28	Log-Likelihood:	-581.84
No. Observations:	205	AIC:	1174.
Df Residuals:	200	BIC:	1190.
Df Model:	4		
Covariance Type:	nonrobust		V

coef std err [0.025 0.975] P>|t| Intercept \(\) 38.9139 35.060 42.768 1.954 19.911 0.000 drivewheels[T.fwd] 4.5714 1.449 3.156 0.002 7.428 1.715 -2.813 drivewheels[T.rwd] 0.2171 1.537 0.141 0.888 3.247 fueltype[T.gas] \[-7.0471 0.994 -7.090 0.000 -9.007 -5.087 -0.0795 0.009 0.000 -0.096 enginesize -9.319 -0.063

1.095	Durbin-Watson:	33.046	Omnibus:
84.717	Jarque-Bera (JB):	0.000	Prob(Omnibus):
4.02e - 19	Prob(JB):	0.689	Skew:
1.19e+03	Cond. No.	5.832	Kurtosis:

parallel stormers

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.19e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [24]: sm.stats.anova_lm(reg2, typ=2)

Out[24]:

	sum_sq	df	F	PR(>F)
drivewheels	699.332669	2.0	19.958355	1.250114e-08
fueltype	880.634747	1.0	50.265123	2.260697e - 11
enginesize	1521.368276	1.0	86.837095	2.213074e - 17
Residual	3503.959410	200.0	NaN	NaN

```
sm.stats.anova_lm(reg2, typ=2)
In [10]:
Out[10]:
                                                 F
                          sum_sq
                                     df
                                                         PR(>F)
          drivewheels
                      699.332669
                                     2.0 19.958355 1.250114e-08
             fueltype
                       880.634747
                                         50.265123 2.260697e-11
           enginesize
                                     1.0 86.837095 2.213074e-17
                     1521.368276
             Residual 3503.959410 200.0
                                              NaN
                                                           NaN
In [13]: # when the variable is categorical, but the levels are incidated as numbers
         # or if you want to analyze an ordinal variable as categorical
         # we can "force" it to be categorical using "C()" in smf.ols
          credit = pd.read_csv("Credit.csv")
          credit.sample(5)
Out[13]:
               Unnamed:
                                  Limit Rating Cards Age Education Gender Student Ma
                          Income
          358
                                  4336
                    359
                           30.111
                                           339
                                                    1
                                                        81
                                                                  18
                                                                        Male
                                                                                  No
          165
                     166
                          25.383
                                  4527
                                           367
                                                        46
                                                    4
                                                                  11
                                                                        Male
                                                                                  No
          283
                    284
                          49.927
                                  6396
                                           485
                                                        75
                                                                  17
                                                                      Female
                                                    3
                                                                                  No
           92
                      93
                          30.733
                                  2832
                                           249
                                                    4
                                                        51
                                                                  13
                                                                        Male
                                                                                   No
                                                        62
          184
                     185 158.889 11589
                                           805
                                                    1
                                                                  17
                                                                      Female
                                                                                  No
In [12]: # example: number of cards
         # without changing anything, it will be analyzed as numeric
          reg3= smf.ols('Balance~Cards', data=credit).fit()
          reg3.summary()
```

```
#not a perfect example since there are too many levels, but you get the idea
# then we see compared to having just one card, if there's significant chang
```

Out[12]:

OLS Regression Results

Dep. Variable:	Balance	R-squared:	0.007
Model:	OLS	Adj. R-squared:	0.005
Method:	Least Squares	F-statistic:	2.997
Date:	Mon, 26 Oct 2020	Prob (F-statistic):	0.0842
Time:	16:22:31	Log-Likelihood:	-3017.9
No. Observations:	400	AIC:	6040.
Df Residuals:	398	BIC:	6048.
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	434.2861	54.569	7.958	0.000	327.006	541.566
Cards	28.9869	16.743	1.731	0.084	-3.929	61.903

1.957	Durbin-Watson:	28.964	Omnibus:
26.603	Jarque-Bera (JB):	0.000	Prob(Omnibus):
1.67e-06	Prob(JB):	0.566	Skew:
8.37	Cond. No.	2.437	Kurtosis:

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [13]: #change it to categorical
  reg3= smf.ols('Balance~C(Cards)', data=credit).fit()
  reg3.summary()
```

((-)

Out[13]:

OLS Regression Results

Dep. Variable:	Balance	R-squared:	0.023
Model:	OLS	Adj. R-squared:	0.003
Method:	Least Squares	F-statistic:	1.144
Date:	Mon, 26 Oct 2020	Prob (F-statistic):	0.332
Time:	16:22:31	Log-Likelihood:	-3014.7
No. Observations:	400	AIC:	6047.
Df Residuals:	391	BIC:	6083.
Df Model:	8		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	531.1373	64.286	8.262	0.000	404.748	657.527
C(Cards)[T.2]	-58.1720	77.236	-0.753	0.452	-210.023	93.679
C(Cards)[T.3]	-39.0742	77.663	-0.503	0.615	-191.763	113.615
C(Cards)[T.4]	45.2794	84.024	0.539	0.590	-119.916	210.475
C(Cards)[T.5]	- 8.1373	101.645	-0.080	0.936	-207.977	191.702
C(Cards)[T.6]	149.6809	152.622	0.981	0.327	-150.381	449.743
C(Cards)[T.7]	497.6127	238.379	2.087	0.037	28.947	966.278
C(Cards)[T.8]	106.8627	463.574	0.231	0.818	-804.547	1018.272
C(Cards)[T.9]	-149.1373	463.574	-0.322	0.748	-1060.547	762.272

 Omnibus:
 28.038
 Durbin-Watson:
 1.928

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 26.387

 Skew:
 0.568
 Prob(JB):
 1.86e-06

 Kurtosis:
 2.459
 Cond. No.
 22.5

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []:

What is an interaction tem? Y= stylish Score X = casual pink shirt X2 = fancy brown parts J=BotB 1 (X=pink) + B2 I (X= bown puts) + B3 1(x=pink)2(x=brown) Giora Simchoni @GioraSimchoni Finding new ways for explaining interaction is a passion of mine. You look terrible. That's a nice shirt. Those are nice pants. 7:08 AM · Apr 29, 2020

Y= mpg = drive wheels (YUD, FND, PWD) X>= gastype (Diesel, Gas) if I want to model an interaction, now many Bis do I need? Y = Bot B, I(+ND) + B2 I(RWD) + B3 I (Gas) + By I(FWD) LGAS) + BS I (PWD) (GAS) + E. FWD 多十多 Diesel

V= cal in a cup of coffee (low, med, high) level = of all Don't do (1,2,3) ksassm alout linearity Y=dot 017(M)+027(H) (2) dummy