Section 7

The adjoint of a transformation and self-adjoint transformations

Throughout this section, V is a finite-dimensional inner product space over a field F (where, as before, $F = \mathbb{R}$ or \mathbb{C}) with inner product $\langle \cdot, \cdot \rangle$.

Definition 7.1 Let $T: V \to V$ be a linear transformation. The *adjoint* of T is a map $T^*: V \to V$ such that

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle$$
 for all $v, w \in V$.

Remark: More generally, if $T \colon V \to W$ is a linear map between inner product spaces, the adjoint $T^* \colon W \to V$ is a map satisfying the above equation for all $v \in V$ and $w \in W$. Appropriate parts of what we describe here can be done in this more general setting.

Lemma 7.2 Let V be a finite-dimensional inner product space and let $T: V \to V$ be a linear transformation. Then there is a unique adjoint T^* for T and, moreover, T^* is a linear transformation.

PROOF: We first show that if T^* exists, then it is unique. For if $S\colon V\to V$ also satisfies the same condition, then

$$\langle v, T^*(w) \rangle = \langle T(v), w \rangle = \langle v, S(w) \rangle$$

for all $v, w \in V$. Hence

$$\langle v, T^*(w) \rangle - \langle v, S(w) \rangle = 0,$$

that is,

$$\langle v, T^*(w) - S(w) \rangle = 0$$
 for all $v, w \in V$.

Let us fix $w \in V$ and take $v = T^*(w) - S(w)$. Then

$$\langle T^*(w) - S(w), T^*(w) - S(w) \rangle = 0.$$

The axioms of an inner product space tell us

$$T^*(w) - S(w) = \mathbf{0}$$

SO

$$S(w) = T^*(w)$$
 for all $w \in V$,

as claimed.

It remains to show that such a linear map T^* actually exists. Let $\mathscr{B} = \{e_1, e_2, \ldots, e_n\}$ be an orthonormal basis for V. (The Gram–Schmidt Process guarantees that this exists.) Let $A = [\alpha_{ij}]$ be the matrix of T with respect to \mathscr{B} . Define $T^* \colon V \to V$ be the linear map whose matrix is the conjugate transpose of A with respect to \mathscr{B} . Thus

$$T^*(e_j) = \sum_{i=1}^n \bar{\alpha}_{ji} e_i$$
 for $j = 1, 2, ..., n$.

(Here we are using Proposition 2.7 to guarantee that this determines a unique linear transformation T^* .) Note also that

$$T(e_j) = \sum_{i=1}^{n} \alpha_{ij} e_i$$
 for $j = 1, 2, ..., n$.

Claim: $\langle T(v), w \rangle = \langle v, T^*(w) \rangle$ for all $v, w \in V$.

Write $v = \sum_{j=1}^{n} \beta_j e_j$ and $w = \sum_{k=1}^{n} \gamma_k e_k$ in terms of the basis \mathscr{B} . Then

$$\langle T(v), w \rangle = \left\langle T\left(\sum_{j=1}^{n} \beta_{j} e_{j}\right), \sum_{k=1}^{n} \gamma_{k} e_{k} \right\rangle$$

$$= \left\langle \sum_{j=1}^{n} \beta_{j} T(e_{j}), \sum_{k=1}^{n} \gamma_{k} e_{k} \right\rangle$$

$$= \left\langle \sum_{j=1}^{n} \beta_{j} \sum_{i=1}^{n} \alpha_{ij} e_{i}, \sum_{k=1}^{n} \gamma_{k} e_{k} \right\rangle$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} \beta_{j} \alpha_{ij} \bar{\gamma}_{k} \langle e_{i}, e_{k} \rangle$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \beta_{j} \alpha_{ij} \bar{\gamma}_{i},$$

while

$$\langle v, T^*(w) \rangle = \left\langle \sum_{j=1}^n \beta_j e_j, T^* \left(\sum_{k=1}^n \gamma_k e_k \right) \right\rangle$$

$$= \left\langle \sum_{j=1}^n \beta_j e_j, \sum_{k=1}^n \gamma_k T^*(e_k) \right\rangle$$

$$= \left\langle \sum_{j=1}^n \beta_j e_j, \sum_{k=1}^n \gamma_k \sum_{i=1}^n \bar{a}_{ki} e_i \right\rangle$$

$$= \sum_{j=1}^n \sum_{k=1}^n \sum_{i=1}^n \beta_j \bar{\gamma}_k a_{ki} \langle e_j, e_i \rangle$$

$$= \sum_{j=1}^n \sum_{k=1}^n \beta_j \bar{\gamma}_k a_{kj}$$

$$= \langle T(v), w \rangle.$$

Hence T^* is indeed the adjoint of T.

We also record what was observed in the course of this proof:

If $A = \operatorname{Mat}_{\mathscr{B},\mathscr{B}}(T)$ is the matrix of T with respect to an *orthonormal basis*, then

$$\operatorname{Mat}_{\mathscr{B},\mathscr{B}}(T^*) = \bar{A}^{\mathrm{T}}$$

(the *conjugate transpose* of A).

Definition 7.3 A linear transformation $T: V \to V$ is *self-adjoint* if $T^* = T$.

Interpreting this in terms of the matrices (using our observation above), we conclude:

- **Lemma 7.4** (i) A real matrix A defines a self-adjoint transformation if and only if it is symmetric: $A^{T} = A$.
 - (ii) A complex matrix A defines a self-adjoint transformation if and only if it is Hermitian: $\bar{A}^{T} = A$.

The most important theorem concerning self-adjoint transformation is the following:

Theorem 7.5 A self-adjoint transformation of a finite-dimensional inner product space is diagonalisable.

Interpreting this in terms of matrices gives us:

Corollary 7.6 (i) A real symmetric matrix is diagonalisable.

(ii) A Hermitian matrix is diagonalisable.

We finish the course by establishing Theorem 7.5. First we establish the main tools needed to prove that result.

Lemma 7.7 Let V be a finite-dimensional inner product space and $T: V \to V$ be a self-adjoint transformation. Then the characteristic polynomial is a product of linear factors and every eigenvalue of T is real.

PROOF: Any polynomial is factorisable over \mathbb{C} into a product of linear factors. Thus it is sufficient to show all the roots of the characteristic polynomial are real.

Let W be an inner product space over \mathbb{C} with the same dimension as V and let $S \colon W \to W$ be a linear transformation whose matrix A with respect to an orthonormal basis is the same as that of T with respect to an orthonormal basis for V. Then S is also self-adjoint since $\bar{A}^T = A$ (because $T^* = T$). (Essentially this process deals with the fact that V might be a vector space over \mathbb{R} , so we replace it by one over \mathbb{C} that in all other ways is the same.)

Let $\lambda \in \mathbb{C}$ be a root of $c_S(x) = \det(xI - A) = c_T(x)$. Then λ is an eigenvalue of S, so there exists an eigenvector $v \in W$ for S:

$$S(v) = \lambda v.$$

Therefore

$$\langle S(v), v \rangle = \langle \lambda v, v \rangle = \lambda ||v||^2,$$

but also

$$\langle S(v), v \rangle = \langle v, S^*(v) \rangle = \langle v, S(v) \rangle = \langle v, \lambda v \rangle = \bar{\lambda} ||v||^2.$$

Hence

$$\lambda \|v\|^2 = \bar{\lambda} \|v\|^2$$

and since $v \neq \mathbf{0}$, we conclude $\lambda = \bar{\lambda}$. This shows that $\lambda \in \mathbb{R}$ and the lemma is proved.

Lemma 7.8 Let V be an inner product space and $T: V \to V$ be a linear map. If U is a subspace of V such that $T(U) \subseteq U$ (i.e., U is T-invariant), then $T^*(U^{\perp}) \subseteq U^{\perp}$ (i.e., U^{\perp} is T^* -invariant).

PROOF: Let $v \in U^{\perp}$. Then for any $u \in U$, we have

$$\langle u, T^*(v) \rangle = \langle T(u), v \rangle = 0,$$

since $T(u) \in U$ (by assumption) and $v \in U^{\perp}$. Hence $T^*(v) \in U^{\perp}$.

These two lemmas now enable us to prove the main theorem about diagonalisation of self-adjoint transformations.

PROOF OF THEOREM 7.5: We proceed by induction on $n = \dim V$. If n = 1, then T is represented by a 1×1 matrix, which is already diagonal.

Consider the characteristic polynomial $c_T(x)$. By Lemma 7.7, this is a product of linear factors. In particular, there exists some root $\lambda \in F$. Let v_1 be an eigenvector with eigenvalue λ . Let $U = \operatorname{Span}(v_1)$ be the 1-dimensional subspace spanned by v_1 . By Theorem 6.16,

$$V = U \oplus U^{\perp}$$
.

Now as $T(v_1) = \lambda v_1 \in U$, we see that U is T-invariant. Hence U^{\perp} is also T-invariant by Lemma 7.8 (since $T^* = T$).

Now consider the restriction $S = T|_{U^{\perp}} \colon U^{\perp} \to U^{\perp}$ of T to U^{\perp} . This is self-adjoint, since

$$\langle T(v), w \rangle = \langle v, T(w) \rangle$$
 for all $v, w, \in U^{\perp}$

tells us

$$(T|_{U^{\perp}})^* = T|_{U^{\perp}}.$$

By induction, $S = T|_{U^{\perp}}$ is diagonalisable. Hence there is a basis $\{v_2, \ldots, v_n\}$ for U^{\perp} of eigenvectors for T. Then as $V = U \oplus U^{\perp}$, we conclude that $\{v_1, v_2, \ldots, v_n\}$ is a basis for V consisting of eigenvectors for T. Hence T is diagonalisable and the proof is complete.