EE8591

DIGITAL SIGNAL PROCESSING

L T P C 2 2 0 3

OBJECTIVES: To impart knowledge about the following topics:

- Signals and systems & their mathematical representation.
- Discrete time systems.
- · Transformation techniques & their computation.
- Filters and their design for digital implementation.
- Programmability digital signal processor & quantization effects.

UNIT I INTRODUCTION

6+6

Classification of systems: Continuous, discrete, linear, causal, stability, dynamic, recursive, time variance; classification of signals: continuous and discrete, energy and power; mathematical representation of signals; spectral density; sampling techniques, quantization, quantization error, Nyquist rate, aliasing effect.

UNIT II DISCRETE TIME SYSTEM ANALYSIS

6+6

Z-transform and its properties, inverse z-transforms; difference equation – Solution by z-transform, application to discrete systems - Stability analysis, frequency response – Convolution – Discrete Time Fourier transform, magnitude and phase representation.

UNIT III DISCRETE FOURIER TRANSFORM & COMPUTATION

6+6

Discrete Fourier Transform- properties, magnitude and phase representation - Computation of DFT using FFT algorithm - DIT &DIF using radix 2 FFT - Butterfly structure.

UNIT IV DESIGN OF DIGITAL FILTERS

6+6

FIR & IIR filter realization – Parallel & cascade forms. FIR design: Windowing Techniques – Need and choice of windows – Linear phase characteristics. Analog filter design – Butterworth and Chebyshev approximations; IIR Filters, digital design using impulse invariant and bilinear transformation Warping, pre warping.

UNIT V DIGITAL SIGNAL PROCESSORS

6+6

Introduction – Architecture – Features – Addressing Formats – Functional modes - Introduction to Commercial DS Processors.

TOTAL: 60 PERIODS

OUTCOMES:

- Ability to understand the importance of Fourier transform, digital filters and DS Processors.
- Ability to acquire knowledge on Signals and systems & their mathematical representation.
- Ability to understand and analyze the discrete time systems.
- Ability to analyze the transformation techniques & their computation.
- Ability to understand the types of filters and their design for digital implementation.
- Ability to acquire knowledge on programmability digital signal processor & quantization effects.

TEXT BOOKS:

1. J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithms

- and Applications', Pearson Education, New Delhi, PHI. 2003.
- S.K. Mitra, 'Digital Signal Processing A Computer Based Approach', McGraw Hill Edu, 2013.
- 3. Lonnie C.Ludeman ,"Fundamentals of Digital Signal Processing", Wiley, 2013

REFERENCES

- Poorna Chandra S, Sasikala. B ,Digital Signal Processing, Vijay Nicole/TMH,2013.
- Robert Schilling & Sandra L.Harris, Introduction to Digital Signal Processing using Matlab", Cengage Learning, 2014.
- B.P.Lathi, 'Principles of Signal Processing and Linear Systems', Oxford University Press, 2010 3. Taan S. ElAli, 'Discrete Systems and Digital Signal Processing with Mat Lab', CRC Press, 2009.
- **4.** SenM.kuo, woonseng...s.gan, "Digital Signal Processors, Architecture, Implementations & Applications, Pearson, 2013
- DimitrisG.Manolakis, Vinay K. Ingle, applied Digital Signal Processing, Cambridge, 2012