Shifting and Resetting in the Calculus of Constructions

Youyou Cong Kenichi Asai

June 11, 2018

Motivation

Dependent Types + Control Operators increase convenience

→ Efficient implementation of safe programs?

Challenge 1: Logical consistency

Herbelin '05: Σ + equality + call/cc = \bot

- Proofs may have different witnesses
- Need to restrict dependency to pure terms (Herbelin '12)

Challenge 2: CPS semantics

Barthe & Uustalu '02: Standard CPS fails

- CPS changes interface to values $e: A \leadsto v: A \stackrel{\text{CPS}}{\longrightarrow} \lambda \, k. \, e: \neg \neg A \leadsto ???$
- Need tricks for value-extraction (Bowman et al. '18)

This work

Calculus of Constructions + shift/reset

- What restrictions do we need?
- How do we obtain a type-preserving CPS?

shift and reset

shift (S) and reset $(\langle \rangle)$

$$egin{aligned} E[(\lambda\,x.\,e)\,\,v] &\leadsto E[e\,[v/x]] \ E[\langle\,F[\,\mathcal{S}k.\,e\,]\,
angle] &\leadsto E[\langle\,e\,[\lambda\,x.\,\langle\,F[\,x\,]\,
angle/k]
angle] \end{aligned}$$

E.g.,
$$1+\langle 2+|\mathcal{S}k.k|(k|3)|\rangle$$
 $\rightsquigarrow^* 1+\langle 2+(2+3)\rangle$
 $\rightsquigarrow^* 8$

Pure and impure terms

Pure	Impure
$\lambda x. x$	$\mathcal{S}k.y$
$\langle \mathcal{S}k. x angle$	$(\lambdax.x)\;(\mathcal{S}k.y)$
$(\lambda x. x) \; y$	$(\lambdax.\mathcal{S}k.x)\;y$

Pure and impure terms

Pure	Impure
$\lambda x.x$	$\mathcal{S}k.y$
$\langle \mathcal{S}k. x\rangle$	$(\lambdax.x)\;(\mathcal{S}k.y)$
$(\lambda x. x) \; y$	$(\lambdax.\mathcal{S}k.x)\;y$
$\Gamma \vdash_p e : A$	$\Gamma dash_{i(lpha,eta)} e : A$

 $CC^{s/r}$: a shift/reset-extension of CC

The language

Key result: Need 3 restrictions on type dependency

1. Types do not depend on impure terms

$$\mathsf{Vec}\; \mathbb{N}\; \langle \mathcal{S}k.\, 1
angle : \checkmark \qquad \mathsf{Vec}\; \mathbb{N}\; (\mathcal{S}k.\, 1) : imes$$

Reason: Impure indices are not informative $(\mathsf{What}\;\mathsf{is}\;\mathsf{the}\;\mathsf{length}\;\mathsf{of}\;v:\mathsf{Vec}\;\mathbb{N}\;(\mathcal{S}k.\,1)?)$

2. Continuations are non-dependent functions

Must not have type $\Pi\,x:A.\,lpha$

Reason: No closed lpha for $\Gamma \vdash_{i(lpha,eta)} \mathcal{S}k.\,e:A$

Cf. call/cc: ((A o ot) o A) o A

3. Answers do not depend on continuations

$$\mathcal{S}k.\,e$$
 \uparrow
Must not depend on k

Reason: No closed
$$m{eta}$$
 for $\Gamma \vdash_{i(lpha,eta)} m{\mathcal{S}k.}\, e: A$ Cf. call/cc: $((A
ightarrow oldsymbol{oldsymbol{\beta}})
ightarrow A)
ightarrow A$

$$\frac{\Gamma \vdash_{p} e_{0}: \Pi \, x: A.\, B \quad \Gamma \vdash_{p} e_{1}: A}{\Gamma \vdash_{p} e_{0} e_{1}: B\left[e_{1}/x\right]} \; \text{(E-APP1)}$$

$$\frac{\Gamma \vdash_{p} e_{0} : A \to B \quad \Gamma \vdash_{i(\alpha,\beta)} e_{1} : A}{\Gamma \vdash_{i(\alpha,\beta)} e_{0} e_{1} : B}$$
(E-APP2)

$$\frac{\Gamma \vdash_{p} e_{0} : \Pi x : A.B \quad \Gamma \vdash_{p} e_{1} : A}{\Gamma \vdash_{p} e_{0} e_{1} : B [e_{1}/x]}$$
(E-APP1)

$$\frac{\Gamma \vdash_{p} e_{0}: A \to B \quad \Gamma \vdash_{i(\alpha,\beta)} e_{1}: A}{\Gamma \vdash_{i(\alpha,\beta)} e_{0} e_{1}: B}$$
(E-APP2)

$$\frac{\Gamma \vdash_{p} e_{0} : \Pi x : A.B \quad \Gamma \vdash_{p} e_{1} : A}{\Gamma \vdash_{p} e_{0} e_{1} : B [e_{1}/x]} \text{ (E-APP1)}$$

$$\frac{\Gamma \vdash_{p} e_{0}: A \to B \quad \Gamma \vdash_{i(\alpha,\beta)} e_{1}: A}{\Gamma \vdash_{i(\alpha,\beta)} e_{0} e_{1}: B}$$
(E-APP2)

$$\frac{\Gamma \vdash_{p} e_{0} : \Pi x : A.B \quad \Gamma \vdash_{p} e_{1} : A}{\Gamma \vdash_{p} e_{0} e_{1} : B [e_{1}/x]} \text{ (E-APP1)}$$

$$\frac{\Gamma \vdash_{p} e_{0} : A \to B \quad \Gamma \vdash_{i(\alpha,\beta)} e_{1} : A}{\Gamma \vdash_{i(\alpha,\beta)} e_{0} e_{1} : B}$$
(E-App2)

$$\frac{\Gamma \vdash_{p} e_{0} : \Pi x : A.B \quad \Gamma \vdash_{p} e_{1} : A}{\Gamma \vdash_{p} e_{0} e_{1} : B [e_{1}/x]}$$
(E-APP1)

$$\frac{\Gamma \vdash_{p} e_{0} : A \to B \quad \Gamma \vdash_{i(\alpha,\beta)} e_{1} : A}{\Gamma \vdash_{i(\alpha,\beta)} e_{0} e_{1} : B}$$
 (E-App2)

This work

Calculus of Constructions + shift/reset

- What restrictions do we need?
- How do we obtain a type-preserving CPS?

CPS for (pure) CC

 $e_0 \; e_1 \leadsto \lambda \, k. \, e_0 \ \dot{}^{\div} \; (\lambda \, v_0. \, e_1 \ \dot{}^{\div} \; (\lambda \, v_1. \, v_0 \; v_1 \; k))$

CPS for (pure) CC

$$e_0 \; e_1 \leadsto \lambda \, k. \, e_0 \ \dot{}^{\div} \; (\lambda \, v_0. \, e_1 \ \dot{}^{\div} \; (\lambda \, v_1. \, \color{red} v_0 \, \, \color{red} v_1 \, \, \color{red} k))$$

Problem:

$$k:
eg (B\left[e_{1}/x
ight])^{+}, \; v_{0} \; v_{1}:
eg
eg B^{+}\left[v_{1}/x
ight]$$

CPS for (pure) CC

$$e_0 \; e_1 \leadsto \lambda \, k. \, e_0 \stackrel{\div}{\cdot} \; (\lambda \, v_0. \, e_1 \stackrel{\div}{\cdot} \; (\lambda \, v_1. \, \textcolor{red}{v_0} \, \textcolor{red}{v_1} \, \textcolor{red}{k}))$$

Problem:

$$k:
eg(B\left[e_1/x
ight])^+,\; v_0\;v_1:
eg
eg^+\left[v_1/x
ight] \ v_1\;=\; \mathsf{value}\;\mathsf{of}\; e_1\ \dot{}^{\div}\;=\; e_1\ \dot{}^{\div}\;\mathsf{id}$$

CPS for (pure) CC

$$e_0 \; e_1 \leadsto \lambda \, k. \, e_0 \stackrel{\div}{\cdot} \; (\lambda \, v_0. \, e_1 \stackrel{\div}{\cdot} \; (\lambda \, v_1. \, \textcolor{red}{v_0} \, \textcolor{red}{v_1} \, \textcolor{red}{k}))$$

Problem:

$$k:
eg(B\left[e_1/x
ight])^+,\; v_0\;v_1:
eg
eq B^+\left[v_1/x
ight] \ v_1\;=\; \mathsf{value}\;\mathsf{of}\;e_1^{\ \dot{\div}}\;=\;e_1^{\ \dot{\div}}\;\mathsf{id}\;\;\;\mathsf{(ill-typed)}$$

CPS for (pure) CC

$$e_0 \; e_1 \leadsto \lambda \, k. \, e_0 \ \dot{\overline{}} \ (\lambda \, v_0. \, e_1 \ \dot{\overline{}} \ (\lambda \, v_1. \, v_0 \, v_1 \, k))$$

Problem:

$$k:
eg(B\left[e_1/x
ight])^+, \ v_0 \ v_1:
eg
eg B^+\left[v_1/x
ight] \ v_1 = ext{value of } e_1
decorate $\vdots = e_1
dots ext{id}$ (ill-typed)$$

Solution (Bowman et al. '18):

- $\bullet \ e^{\div}:\Pi \ \alpha:*. \ (A o lpha) o lpha$
- New equivalence/typing rules

Finding a "better" translation

Bowman et al.:

- CPS as a compiler pass
- Need make control flow explicit everywhere

Our work:

- CPS as a shift/reset-elimination
- Only need to translate impure terms

Selective CPS translation

- Impure terms into CPS
- Type preservation for free

$$e_0 \; e_1 \leadsto \lambda \, k. \, e_0 \ \dot{\overline{}} \; (\lambda v_0. \, v_0 \; e_1 \ ^+ \; k)$$
 impure pure

$$k: \lnot_lpha (B\,[e_1/x])^+,\ v_0\ e_1{}^+: \lnot_eta\lnot_lpha B^+\,[e_1{}^+/x]$$
 where $\lnot_lpha A\stackrel{
m def}{\equiv} A olpha$

Takeaway

Let's make dependently typed programming more fun with shift and reset!

- 3 restrictions on type dependency
- Selective CPS translation