Introducción

En la clase de hoy, estudiaremos los llamados conjuntos infinitos numerables, que son conjuntos similares al conjunto $\mathbb N$ de los números naturales. Los conjuntos infinitos numerables son los conjuntos infinitos más simples. Demostraremos entonces que $\mathbb Z$ y $\mathbb Q$ son numerables, pero $\mathbb R$ no lo es.

Conjuntos equipotentes

Decimos que dos conjuntos X e Y son equipotentes, si existe una biyección $f:X\longrightarrow Y$. Diremos entonces que X e Y tienen el mismo cardinal (o el mismo tamaño), y escribiremos |X|=|Y|. Obsérvese que si f es una biyección de X en Y, entonces f^{-1} es una biyección de Y en X.

Hemos clasificado los conjuntos en dos tipos: conjuntos finitos y conjuntos infinitos. Por ejemplo, sabemos que \mathbb{N} , \mathbb{Z} , \mathbb{Q} y \mathbb{R} son conjuntos infinitos. En los conjuntos finitos, el concepto de cardinal de un conjunto está asociado al número de elementos del conjunto, de manera que si X es un conjunto finito e Y es un subconjunto propio de X, X e Y no son equipotentes, ya que al no tener X e Y el mismo número de elementos, no existe una biyección de X en Y. Sin embargo, esta propiedad deja de ser cierta en los conjuntos infinitos. Por ejemplo, si consideramos en $\mathbb N$ el conjunto A de los números naturales que son cuadrado de algún número natural, es decir $A = \{0, 1, 4, 9, 16, \dots\}$, se tiene que $|A| = |\mathbb{N}|$, ya que la aplicación f de \mathbb{N} en A definida por $f(n) = n^2$ es biyectiva.

Conjuntos numerables

Decimos que un conjunto X es infinito numerable, si \mathbb{N} y X son equipotentes, es decir, si existe una biyección $f: \mathbb{N} \longrightarrow X$.

Y decimos que un conjunto X es numerable, si X es finito o es infinito numerable.

Claramente, $\mathbb N$ es numerable, ya que la aplicación $id_\mathbb N:\mathbb N\longrightarrow\mathbb N$ es una biyección.

Teorema 1

 \mathbb{Z} es numerable.

Definimos la aplicación $g: \mathbb{Z} \longrightarrow \mathbb{N}$ por:

- (1) $g(n) = 2n \text{ si } n \in \mathbb{N}$,
- (2) g(-n) = 2n 1 si $n \in \mathbb{N} \setminus \{0\}$.

Observamos que $g(\mathbb{N})=\{x\in\mathbb{N}:x \text{ es par }\}$ y $g(\mathbb{Z}\setminus\mathbb{N})=\{x\in\mathbb{N}:x \text{ es impar }\}.$ Se comprueba entonces fácilmente que $g:\mathbb{Z}\longrightarrow\mathbb{N}$ es una aplicación biyectiva. Por tanto, $g^{-1}:\mathbb{N}\longrightarrow\mathbb{Z}$ es también una biyección. Luego, \mathbb{Z} es numerable. \square

Para poder demostrar que $\mathbb Q$ es numerable, necesitamos probar algunos teoremas previos.

Teorema de caracterización de los conjuntos numerables

Teorema 2

Para todo conjunto $A \neq \emptyset$, son equivalentes las siguientes condiciones:

- (1) A es numerable.
- (2) Existe una aplicación inyectiva $f: A \longrightarrow \mathbb{N}$.
- (3) Existe una aplicación exhaustiva $h: \mathbb{N} \longrightarrow A$.

Para demostrar el Teorema 2, lo haremos de forma circular, es decir, probaremos que $(1) \Rightarrow (2)$, $(2) \Rightarrow (3)$ y $(3) \Rightarrow (1)$.

Demostramos $(1) \Rightarrow (2)$. Supongamos que A es numerable. Distinguimos los siguientes dos casos:

Caso 1. A es finito.

Sean x_1, \ldots, x_n los elementos de A. Sea $f: A \longrightarrow \mathbb{N}$ definida por $f(x_1) = 1, \ldots, f(x_n) = n$. Claramente, f es inyectiva.

Caso 2. A es infinito numerable.

Entonces, existe una aplicación biyectiva $g:\mathbb{N}\longrightarrow A$. Por tanto, $g^{-1}:A\longrightarrow \mathbb{N}$ es también biyectiva, y en particular es inyectiva.

Demostramos ahora $(2)\Rightarrow (3)$. Supongamos que existe una aplicación inyectiva $f:A\longrightarrow \mathbb{N}$. Sea $x_0\in A$. Definimos $h:\mathbb{N}\longrightarrow A$ por:

$$h(n) = \begin{cases} f^{-1}(n), & \text{si } n \in f(A). \\ x_0, & \text{si } n \notin f(A). \end{cases}$$

Se tiene entonces que h es exhaustiva. Para demostrarlo, consideremos un elemento $z\in A$. Sea x=f(z). Tenemos que $x\in f(A)$. Entonces, $h(x)=f^{-1}(x)=f^{-1}(f(z))=z$.

Por último, demostramos que $(3)\Rightarrow (1).$ Supongamos que existe una aplicación exhaustiva $h:\mathbb{N}\longrightarrow A.$ Si A es finito, A es numerable, ya que por la definición de conjunto numerable, todo conjunto finito es numerable. Supongamos entonces que A es infinito. Definimos entonces la aplicación $f:\mathbb{N}\longrightarrow A$ de la siguiente manera:

$$f(0) = h(0).$$

Para todo $n \in \mathbb{N}$, f(n+1) = h(x) donde $x = \text{el menor } m \in \mathbb{N}$ tal que $h(m) \not\in \{f(0), \dots, f(n)\}$.

Por ejemplo, si tenemos que
$$h(0)=2,\ h(1)=2,\ h(2)=3,$$
 $h(3)=4,\ h(4)=0,\ h(5)=2,\ h(6)=7,\ h(7)=3,$ $h(8)=14,\ldots,$

tendremos que
$$f(0) = 2$$
, $f(1) = 3$, $f(2) = 4$, $f(3) = 0$, $f(4) = 7$, $f(5) = 14$,

Se tiene entonces que $\mathrm{rec}(f) = \mathrm{rec}(h)$, pero en el recorrido de f no hay repeticiones. Como $\mathrm{rec}(f) = \mathrm{rec}(h)$ y h es exhaustiva, se tiene que f es exhaustiva.

Demostramos ahora que f es inyectiva. Sean $k,m\in\mathbb{N}$ tales que $k\neq m$. Supongamos que k< m. Sea $n\in\mathbb{N}$ tal que m=n+1. Por la definición de f(m)=f(n+1), tenemos que $f(m)\not\in\{f(0),\ldots,f(m-1)\}$, y por tanto $f(m)\neq f(k)$. Y si m< k, se procede de forma análoga. \square

Consecuencias del Teorema 2

Como consecuencia inmediata del Teorema 2, obtenemos el siguiente resultado.

Corolario 1

Para todo conjunto $A \neq \emptyset$, A es numerable si y sólo si existe una aplicación exhaustiva $h: \mathbb{N} \longrightarrow A$.

Entonces, si $h:\mathbb{N}\longrightarrow A$ es una aplicación exhaustiva, diremos que la sucesión

$$h(0), h(1), \ldots, h(n), \ldots$$

es una enumeración del conjunto A.

Por tanto, el que un conjunto A sea numerable significa que A tiene una enumeración.

Consecuencias del Teorema 2

Como consecuencia inmediata del Teorema 2, obtenemos también el siguiente resultado.

Corolario 2

Si A es numerable y $B \subseteq A$, entonces B es numerable.

Si $B=\emptyset$, la condición es inmediata, ya que todo conjunto finito es numerable por definición. Supongamos entonces que $B\neq\emptyset$. Como A es un conjunto numerable, por el apartado (2) del Teorema 2, existe una aplicación inyectiva $f:A\longrightarrow \mathbb{N}$. Sea g la restricción de f al conjunto B. Entonces, $g:B\longrightarrow \mathbb{N}$ es una aplicación inyectiva. Aplicando entonces el Teorema 2, deducimos que B es numerable. \square

Teoremas para conjuntos numerables

Teorema 3

Sea $\{A_n:n\in\mathbb{N}\}$ una familia de conjuntos no vacíos tal que A_n es numerable para todo $n\in\mathbb{N}$. Entonces, $\bigcup\{A_n:n\in\mathbb{N}\}$ es numerable

Demostramos el Teorema 3. Consideremos $n\in\mathbb{N}$. Como A_n es numerable, por el Teorema 2, existe una aplicación exhaustiva $h^n:\mathbb{N}\longrightarrow A_n$. Sea $a_i^n=h^n(i)$ para todo $i\in\mathbb{N}$. Por tanto, $A_n=\{a_o^n,a_1^n,a_2^n,\ldots\}$.

Así pues, tenemos:

```
A_0: a_0^0 a_1^0 a_2^0 a_3^0 \dots A_1: a_0^1 a_1^1 a_2^1 a_3^1 \dots A_2: a_0^2 a_1^2 a_2^2 a_3^2 \dots A_3: a_0^3 a_1^3 a_2^3 a_3^3 \dots
```

Sea $A=\bigcup\{A_n:n\in\mathbb{N}\}$. Tomamos la siguiente enumeración de A. En primer lugar, consideramos a_0^0 . A continuación, consideramos los elementos de la diagonal a_0^1 , a_1^0 . A continuación, consideramos los elementos de la diagonal a_0^2 , a_1^1 , a_2^0 . A continuación, consideramos los elementos de la diagonal a_0^3 , a_1^2 , a_2^1 , a_2^0 . Y así sucesivamente.

Por tanto, obtenemos la siguiente enumeración de A:

$$a_0^0$$
, a_0^1 , a_1^0 , a_0^2 , a_1^1 , a_2^0 , a_0^3 , a_1^2 , a_2^1 , a_3^1 ,

Definimos entonces $h:\mathbb{N}\longrightarrow A$ como h(n)=n-ésimo elemento de la enumeración de A para todo $n\in\mathbb{N}$. Por tanto, $h(0)=a_0^0$, $h(1)=a_0^1$, $h(2)=a_0^1$, $h(3)=a_0^2$,

Como h es exhaustiva, por el Teorema 2, A es numerable. \square

Teoremas para conjuntos numerables

Corolario 3

Si A y B son conjuntos numerables, entonces $A \cup B$ es numerable.

Si $A=\emptyset$ o $B=\emptyset$, entonces $A\cup B=A$ o $A\cup B=B$ o $A\cup B=\emptyset$, y por tanto $A\cup B$ es numerable. Supongamos entonces que A y B son distintos del conjunto vacío. Definimos $A_0=A$ y $A_n=B$ para todo $n\in\mathbb{N}\setminus\{0\}$. Entonces, $\bigcup\{A_n:n\in\mathbb{N}\}=A\cup B$ es numerable por el Teorema 3. \square

Teorema 4

Q es numerable.

Sean $X=\{x\in\mathbb{Q}:x\geq 0\}$, $Y=\{x\in\mathbb{Q}:x\leq 0\}$. Claramente $Q=X\cup Y$.

Demostramos que X es numerable. Tenemos que

$$X = \bigcup \{A_n : n \in \mathbb{N} \setminus \{0\}\}\$$

donde $A_n=\{\frac{m}{n}: m\in \mathbb{N}\}$ para todo $n\in \mathbb{N}\setminus\{0\}$. Se tiene que A_n es numerable, porque la aplicación $f_n: \mathbb{N} \longrightarrow A_n$ definida por $f_n(m)=m/n$ es una biyección. Por tanto, X es una unión numerable de conjuntos numerables. Aplicando entonces el Teorema 3, deducimos que X es numerable.

Demostramos ahora que Y es numerable.

Tenemos que

$$Y = \bigcup \{B_n : n \in \mathbb{N} \setminus \{0\}\}.$$

donde $B_n=\{\frac{-m}{n}: m\in \mathbb{N}\}$ para todo $n\in \mathbb{N}\setminus \{0\}$. Se tiene que B_n es numerable, porque la aplicación $g_n: \mathbb{N} \longrightarrow B_n$ definida por $g_n(m)=-m/n$ es una biyección. Por tanto, Y es una unión numerable de conjuntos numerables. Aplicando entonces el Teorema 3, deducimos que Y es numerable.

Así pues, tenemos que $\mathbb{Q}=X\cup Y$ y X e Y son numerables. Aplicando entonces el Corolario 3, deducimos que \mathbb{Q} es numerable.

Teoremas para conjuntos numerables

Sin embargo, tenemos el siguiente resultado.

Teorema 5

 \mathbb{R} no es numerable.

Para demostrar el Teorema 5, procedemos por reducción al absurdo. Supongamos que $\mathbb R$ es numerable. Sea

$$x_0, x_1, \ldots, x_n \ldots$$

una enumeración de \mathbb{R} . Por tanto, dicha enumeración es el recorrido de una aplicación biyectiva $h:\mathbb{N}\longrightarrow\mathbb{R}$, de manera que $x_n=h(n)$ para todo $n\in\mathbb{N}$.

Para todo $n \in \mathbb{N}$ sea u_n la parte entera del número real x_n . Por tanto, x_n es de la forma

$$x_n = u_n.x_0^n x_1^n....x_k^n....$$

donde x_k^n es el k-ésimo dígito decimal de x_n para todo $k \in \mathbb{N}$. Por tanto, $x_k^n \in \{0, \dots, 9\}$ para todo $n, k \in \mathbb{N}$.

Así pues, tenemos:

Ahora, para llegar a una contradicción, construimos un numero real que no está en la lista. Definimos entonces:

$$z = 0.z_1 z_2 \dots z_m \dots$$

donde:

$$z_m = \begin{cases} 1, & \text{si } x_m^m \neq 1. \\ 2, & \text{si } x_m^m = 1. \end{cases}$$

Entonces, para todo $n \in \mathbb{N}$, tenemos que $z \neq x_n$, porque $z_n \neq x_n^n$. Así pues, $z \neq x_n$ para todo $n \in \mathbb{N}$, lo cual es imposible ya que $z \in (0,1)$, y por tanto $z \in \mathbb{R}$. \square

Una consecuencia del Teorema 5

Sea $\mathbb{I}=\{x\in\mathbb{R}:x \text{ es irracional}\}$. El siguiente resultado es una consecuencia del Teorema 5.

Teorema 6

I no es numerable.

Supongamos que $\mathbb I$ es numerable. Por el Teorema 4, tenemos que $\mathbb Q$ es numerable. Entonces, como $\mathbb R=\mathbb Q\cup\mathbb I$, deducimos por el Corolario 3 que $\mathbb R$ es numerable, lo que contradice al Teorema 5. Por tanto, $\mathbb I$ no es numerable. \square