Applications of Scale-Varying Functional Data Analysis to Biological Species Distribution Modelling

Allan Roberts, robera64@mcmaster.ca

Department of Biology, McMaster University, Hamilton, Ontario, Canada

INTRODUCTION

Types of functional data that are relevant to ecological modelling include observations of time-varying or distance-varying phenomena; for example a habitat characteristic may be observed as a function of time (e.g. temperature observed as a function of day of the year), or as a function of spatial scale (e.g. a landscape attribute observed as a function of distance). Such situations are often handled by identifying a single spatial or temporal scale at which to represent an explanatory variable; however, an alternative is to use a functional data approach that allows habitat characteristics to be regarded as functions of scale, rather than as values observed at a single particular scale. For example, Sims et al. (2007) uses time-varying functional models; a distancevarying method is used by Cornulier et al. (2015). One way to model datasets that include functional observations is with generalized additive models (GAMs). A GAM is a type of statistical model that allows the concurrent estimation of response curves for multiple environmental predictor variables and is a tool that is commonly used for species distribution modelling. R syntax (R Core Team, 2024) for including functional terms in a GAM is described in Wood (2017); however, such scale-varying functional terms are currently used rather infrequently in ecological modelling.

SCALE-VARYING RESOURCE USE

Fig. 1. This hypothetical landscape was generated with Gaussian random fields, using the R package fields (Nychka et al. 2021). This plot, and some others shown on this poster were made with the R package ggplot2 (Wickham 2016). Numbers show species counts simulated from a Poisson distribution with a mean that is a function of the landscape.

Fig. 2. Contour lines in Panel A show an explanatory variable that is the least distance to a particular resource type. Panel B illustrates the concept of a distance-varying *function* being observed at each location; such a distance-varying method is used by Cornulier et al. (2015) to model the distribution of Montagu's harrier *Circus pygargus*.

Fig. 3. Smoothers for the functional terms of a GAM fit to the simulated data shown in Fig. 1.

Fig. 4. Model performance compared for 98 landscapes with resources simulated on a 20x20 grid, surrounded by a buffer of width 10; 2 cases were omitted because of model fitting failure. MSE_A is the mean squared error for a nearest resource model; MSE_B is the mean squared error for a GAM with distance-varying functional terms, fit to the same data.

It is widely recognized that species distribution can be influenced by scale-dependent landscape attributes; however, this can result in attempts at finding a single best scale for modelling; treating a landscape attribute as a flexible function of distance is an alternative.

DISPERSAL KERNEL ESTIMATION

Gibson and Austin (1996) describe the spread of the Citrus tristeza virus in an orchard, with trees planted on an orthogonal lattice. For the sake of illustrating the use of a scale-varying functional smoother, we will consider a loosely analogous scenario. We will imagine a linear orchard, and discrete time steps, and we will consider not only local dispersal, but also distant dispersal that results in a probability a of immigration, to each location at each timestep. Furthermore, for the simulations run here, it is assumed that a tree recovers in the next time step, unless it is re-infected (perhaps by itself). In this example, observations are simulated mechanistically, but are fit using a regression-type model; a motivation for this is that we might think of a process as being mechanistic, but it might sometimes be more feasible to fit a regression-type model; on this point, see for example, Ovaskainen and Abrego (2020).

Fig. 5. A few examples of the simulated binomial outcomes (n=200). Each iteration is independent of the others. The initial condition is a single presence at location x=1, at time =1. The function used for the probability of dispersal at distance d was $f(d)=0.4(0.4^d)$, and the probability used to simulate immigration to a location from outside the local habitat is a=0.01.

Fig. 6. Panel A shows mean outcomes, $\sum \left(\frac{y_{x,t}}{n}\right)$, across n=200 simulated iterations; panel B shows the same means, transformed to better show local contrast.

Fig. 7. In both panels A and B, the solid red curve shows the true dispersal kernel used to simulate the observations. In panel A, each blue curve shows the dispersal kernel estimated from a single iteration. In Panel B, the dashed blue curve shows the pointwise means of the estimated dispersal kernel functions; the dotted blue curves show pointwise quantiles.

DISCUSSION

Potential benefits of using scale-varying functional terms in species distribution models implemented with GAMs include improved interpretability and prediction accuracy; however, the increase in model complexity associated with the use of scale-varying functional terms may tend to increase computation time, and could perhaps sometimes result in decreased prediction accuracy in cases where a model becomes overly complex.

References

Cornulier, T., and A. Villers, 2015. Modelling Resource Selection Across Multiple Spatial Scales Using Varying Coefficient Regression. Conference: Spatial Statistics 2015 - Emerging patterns - 9-12 June 2015.

Gibson, G. J., and E. J. Austin, 1996. Fitting and Testing Spatio-Temporal Stochastic Models with Application in Plant Epidemiology. Plant Pathology 45 (2): 172–84.

Nychka, R. F., J. Paige, and S. Sain, 2021. fields: Tools for spatial data. R package version 15.2

Ovaskainen, O., and N. Abrego, 2020. Joint Species Distribution Modelling: with Applications in R. Cambridge University Press: Cambridge.

R Core Team, 2024. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Sims, M., D. A. Elston, A. Larkham, D. H. Nussey, and S. D. Albon, 2007. Identifying when weather influences life-history traits of grazing herbivores. Journal of Animal Ecology. 76, 761–770

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag: New York.

Wood, S., 2017. Generalized Additive Models: An Introduction with R, 2nd Edition. CRC Press.

Acknowledgement

Prof. Ben Bolker, McMaster University, provided feedback on early drafts of some of the material presented in this poster.

