Universidad de la República

Tesis de Maestría

Coding of Multichannel Signals with Irregular Sampling Rates and Data Gaps (Appendix)

Autor:
Pablo Cerveñansky

Supervisores: Álvaro Martín Gadiel Seroussi

Núcleo de Teoría de la Información Facultad de Ingeniería

Introduction

This document includes each plot figure generated from the experimental results obtained in our work. In **Appendix A** we present the figures corresponding to Section 4.2 (Comparison of Masking and Non-Masking Variants). In **Appendix B** we present the figures corresponding to Section 4.3 (Window Size Parameter). Finally, in **Appendix C** we present the figures corresponding to Section 4.4 (Algorithm Compression Performance).

Table of Contents

Introduction	ii
Table of Contents	
List of Figures	
A Figures: Comparison of Masking and Non-Masking Variants	1
B Figures: Window Size Parameter	23
C Figures: Algorithm Compression Performance	49

List of Figures

A.1	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "VWC" of the dataset IRKIS
A.2	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "SST" of the dataset SST. In the RD plot for algorithm PCA we highlight with a red circle the marker for the maximum value (50.78%) obtained for all the tested CAIs.
A.3	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Velocity" of the dataset ADCP.
A.4	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "GHI" of the dataset Solar
A.5	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "DNI" of the dataset Solar
A.6	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "DHI" of the dataset Solar.
A.7	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Latitude" of the dataset ElNino
A.8	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Longitude" of the dataset ElNino
A.9	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Zon. Wind" of the dataset ElNino
A.10	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Mer. Wind" of the dataset ElNino
A.11	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Humidity" of the dataset ElNino
A.12	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Air Temp." of the dataset ElNino
A.13	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Sea Temp." of the dataset ElNino
A.14	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Latitude" of the dataset Hail
A.15	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Longitude" of the dataset Hail
A.16	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Size" of the dataset Hail
A.17	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Latitude" of the dataset Tornado
A.18	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Longitude" of the dataset Tornado. In the RD plot for algorithm APCA we highlight with a blue circle the marker for the minimum value (-0.29%)
A.19	obtained for all the tested CAIs
A.20	data type "Latitude" of the dataset Wind
	data type "Longitude" of the dataset Wind

List of Figures

A.21	CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Speed" of the dataset Wind
B.1	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "VWC" of the file "irkis-1202.csv" of the dataset IRKIS
B.2	Plots of w^*_{global} , w^*_{local} , and the RD between $c_{\langle a_v, w^*_{global}, e \rangle}$ and $c_{\langle a_v, w^*_{local}, e \rangle}$, as a function of the error parameter e , obtained for the data type "VWC" of the file "irkis-1203.csv" of the dataset IRKIS. In the RD plot for variant PCA _M we highlight with a red circle the marker for the maximum value (10.6%) obtained
B.3	for all the tested CAIs
B.4	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "VWC" of the file "irkis-1205.csv" of the dataset IRKIS
B.5	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "VWC" of the file "irkis-222.csv" of the dataset IRKIS
B.6	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "VWC" of the file "irkis-333.csv" of the dataset IRKIS
B.7	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "VWC" of the file "irkis-SLF2.csv" of the dataset IRKIS
B.8	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "SST" of the file "sst-01-2017.csv" of the dataset SST
B.9	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "SST" of the file "sst-02-2017.csv" of the dataset SST
B.10	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "SST" of the file "sst-03-2017.csv" of the dataset SST
B.11	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "Velocity" of the file "adcp-01-2015.csv" of the dataset SST
B.12	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "Velocity" of the file "adcp-02-2015.csv" of the dataset SST
B.13	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "Velocity" of the file "adcp-03-2015.csv" of the dataset SST
B.14	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "GHI" of the file "solar-2011.csv" of the dataset Solar
B.15	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "DNI" of the file "solar-2011.csv" of the dataset Solar
B.16	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "DHI" of the file "solar-2011.csv" of the dataset Solar

List of Figures vi

B.17	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "GHI" of the file "solar-2012.csv" of the dataset Solar	40
B.18	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "DNI" of the file "solar-2012.csv" of the dataset Solar	41
B.19	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "DHI" of the file "solar-2012.csv" of the dataset Solar	42
B.20	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "GHI" of the file "solar-2013.csv" of the dataset Solar	43
B.21	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "DNI" of the file "solar-2013.csv" of the dataset Solar	44
B.22	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "DHI" of the file "solar-2013.csv" of the dataset Solar	45
B.23	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "GHI" of the file "solar-2014.csv" of the dataset Solar	46
B.24	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "DNI" of the file "solar-2014.csv" of the dataset Solar	47
B.25	Plots of w_{global}^* , w_{local}^* , and the RD between $c_{\langle a_v, w_{global}^*, e \rangle}$ and $c_{\langle a_v, w_{local}^*, e \rangle}$, as a function of the error parameter e , obtained for the data type "DHI" of the file "solar-2014.csv" of the dataset Solar.	48
C.1	CR and window size parameter plots for every evaluated algorithm, for the data type "VWC" of the dataset IRKIS	50
C.2	CR and window size parameter plots for every evaluated algorithm, for the data type "SST" of the dataset SST	51
C.3	CR and window size parameter plots for every evaluated algorithm, for the data type "Velocity" of the dataset ADCP	52
C.4	CR and window size parameter plots for every evaluated algorithm, for the data type "GHI" of the dataset Solar.	53
C.5	CR and window size parameter plots for every evaluated algorithm, for the data type "DNI" of the dataset Solar.	54
C.6	CR and window size parameter plots for every evaluated algorithm, for the data	
C.7	type "DHI" of the dataset Solar	55
C.8	type "Latitude" of the dataset ElNino	56
C.9	type "Longitude" of the dataset ElNino	57
C.10	type "Zon. Wind" of the dataset ElNino	58
	type "Mer. Wind" of the dataset ElNino	59
	type "Humidity" of the dataset ElNino	60
O.12	type "Air Temp" of the dataset ElNino	61

List of Figures vii

C.13	CR and window size parameter plots for every evaluated algorithm, for the data	
	type "Sea Temp." of the dataset ElNino. For each error parameter $e \in E$, we	
	use blue circles to highlight the markers for the minimum CR value and the best	
	window size (in the respective plots corresponding to the best coding variant)	62
C.14	CR and window size parameter plots for every evaluated algorithm, for the data	
	type "Latitude" of the dataset Hail	63
C.15	CR and window size parameter plots for every evaluated algorithm, for the data	
	type "Longitude" of the dataset Hail	64
C.16	CR and window size parameter plots for every evaluated algorithm, for the data	
	type "Size" of the dataset Hail	65
C.17	CR and window size parameter plots for every evaluated algorithm, for the data	
	type "Latitude" of the dataset Tornado	66
C.18	CR and window size parameter plots for every evaluated algorithm, for the data	
	type "Longitude" of the dataset Tornado	67
C.19	CR and window size parameter plots for every evaluated algorithm, for the data	
	type "Latitude" of the dataset Wind	68
C.20	CR and window size parameter plots for every evaluated algorithm, for the data	
	type "Longitude" of the dataset Wind	69
C.21	CR and window size parameter plots for every evaluated algorithm, for the data	
	type "Speed" of the dataset Wind	70

Appendix A

Figures: Comparison of Masking and Non-Masking Variants

FIGURE A.1: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "VWC" of the dataset IRKIS.

FIGURE A.2: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "SST" of the dataset SST. In the RD plot for algorithm PCA we highlight with a red circle the marker for the maximum value (50.78%) obtained for all the tested CAIs.

FIGURE A.3: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Velocity" of the dataset ADCP.

FIGURE A.4: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "GHI" of the dataset Solar.

Figure A.5: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "DNI" of the dataset Solar.

FIGURE A.6: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "DHI" of the dataset Solar.

FIGURE A.7: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Latitude" of the dataset ElNino.

Figure A.8: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Longitude" of the dataset ElNino.

FIGURE A.9: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Zon. Wind" of the dataset ElNino.

FIGURE A.10: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Mer. Wind" of the dataset ElNino.

Figure A.11: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Humidity" of the dataset ElNino.

FIGURE A.12: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Air Temp." of the dataset ElNino.

FIGURE A.13: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Sea Temp." of the dataset ElNino.

FIGURE A.14: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Latitude" of the dataset Hail.

FIGURE A.15: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Longitude" of the dataset Hail.

FIGURE A.16: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Size" of the dataset Hail.

FIGURE A.17: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Latitude" of the dataset Tornado.

FIGURE A.18: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Longitude" of the dataset Tornado. In the RD plot for algorithm APCA we highlight with a blue circle the marker for the minimum value (-0.29%) obtained for all the tested CAIs.

FIGURE A.19: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Latitude" of the dataset Wind.

FIGURE A.20: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Longitude" of the dataset Wind.

FIGURE A.21: CR and RD plots for variants a_M and a_{NM} , for each algorithm $a \in A_M$, for the data type "Speed" of the dataset Wind.

Appendix B

Figures: Window Size Parameter

FIGURE B.1: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "VWC" of the file "irkis-1202.csv" of the dataset IRKIS.

FIGURE B.2: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "VWC" of the file "irkis-1203.csv" of the dataset IRKIS. In the RD plot for variant PCA_M we highlight with a red circle the marker for the maximum value (10.6%) obtained for all the tested CAIs.

FIGURE B.3: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "VWC" of the file "irkis-1204.csv" of the dataset IRKIS.

FIGURE B.4: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "VWC" of the file "irkis-1205.csv" of the dataset IRKIS.

FIGURE B.5: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "VWC" of the file "irkis-222.csv" of the dataset IRKIS.

FIGURE B.6: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "VWC" of the file "irkis-333.csv" of the dataset IRKIS.

FIGURE B.7: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "VWC" of the file "irkis-SLF2.csv" of the dataset IRKIS.

FIGURE B.8: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "SST" of the file "sst-01-2017.csv" of the dataset SST.

FIGURE B.9: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "SST" of the file "sst-02-2017.csv" of the dataset SST.

FIGURE B.10: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "SST" of the file "sst-03-2017.csv" of the dataset SST.

FIGURE B.11: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "Velocity" of the file "adcp-01-2015.csv" of the dataset SST.

FIGURE B.12: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "Velocity" of the file "adcp-02-2015.csv" of the dataset SST.

FIGURE B.13: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "Velocity" of the file "adcp-03-2015.csv" of the dataset SST.

FIGURE B.14: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{\langle a_v, w^*_{global}, e \rangle}$ and $c_{\langle a_v, w^*_{local}, e \rangle}$, as a function of the error parameter e, obtained for the data type "GHI" of the file "solar-2011.csv" of the dataset Solar.

FIGURE B.15: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{\langle a_v, w^*_{global}, e \rangle}$ and $c_{\langle a_v, w^*_{local}, e \rangle}$, as a function of the error parameter e, obtained for the data type "DNI" of the file "solar-2011.csv" of the dataset Solar.

FIGURE B.16: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{\langle a_v, w^*_{global}, e \rangle}$ and $c_{\langle a_v, w^*_{local}, e \rangle}$, as a function of the error parameter e, obtained for the data type "DHI" of the file "solar-2011.csv" of the dataset Solar.

FIGURE B.17: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "GHI" of the file "solar-2012.csv" of the dataset Solar.

FIGURE B.18: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{\langle a_v, w^*_{global}, e \rangle}$ and $c_{\langle a_v, w^*_{local}, e \rangle}$, as a function of the error parameter e, obtained for the data type "DNI" of the file "solar-2012.csv" of the dataset Solar.

FIGURE B.19: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{\langle a_v, w^*_{global}, e \rangle}$ and $c_{\langle a_v, w^*_{local}, e \rangle}$, as a function of the error parameter e, obtained for the data type "DHI" of the file "solar-2012.csv" of the dataset Solar.

FIGURE B.20: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{\langle a_v, w^*_{global}, e \rangle}$ and $c_{\langle a_v, w^*_{local}, e \rangle}$, as a function of the error parameter e, obtained for the data type "GHI" of the file "solar-2013.csv" of the dataset Solar.

FIGURE B.21: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{\langle a_v, w^*_{global}, e \rangle}$ and $c_{\langle a_v, w^*_{local}, e \rangle}$, as a function of the error parameter e, obtained for the data type "DNI" of the file "solar-2013.csv" of the dataset Solar.

FIGURE B.22: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "DHI" of the file "solar-2013.csv" of the dataset Solar.

FIGURE B.23: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{\langle a_v, w^*_{global}, e \rangle}$ and $c_{\langle a_v, w^*_{local}, e \rangle}$, as a function of the error parameter e, obtained for the data type "GHI" of the file "solar-2014.csv" of the dataset Solar.

FIGURE B.24: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{\langle a_v, w^*_{global}, e \rangle}$ and $c_{\langle a_v, w^*_{local}, e \rangle}$, as a function of the error parameter e, obtained for the data type "DNI" of the file "solar-2014.csv" of the dataset Solar.

FIGURE B.25: Plots of w^*_{global} , w^*_{local} , and the RD between $c_{< a_v, w^*_{global}, e>}$ and $c_{< a_v, w^*_{local}, e>}$, as a function of the error parameter e, obtained for the data type "DHI" of the file "solar-2014.csv" of the dataset Solar.

Appendix C

Figures: Algorithm Compression Performance

 $\label{eq:control_control} \mbox{Figure C.1: CR and window size parameter plots for every evaluated algorithm, for the data type "VWC" of the dataset IRKIS.}$

Figure C.2: CR and window size parameter plots for every evaluated algorithm, for the data type "SST" of the dataset SST.

 $\label{eq:control_control_control} \mbox{Figure C.3: CR and window size parameter plots for every evaluated algorithm, for the data type "Velocity" of the dataset ADCP.}$

 $\label{eq:control_control_control} Figure~C.4:~CR~and~window~size~parameter~plots~for~every~evaluated~algorithm,~for~the~data type~"GHI"~of~the~dataset~Solar.$

Figure C.5: CR and window size parameter plots for every evaluated algorithm, for the data type "DNI" of the dataset Solar.

 $\label{eq:condition} \mbox{Figure C.6: CR and window size parameter plots for every evaluated algorithm, for the data type "DHI" of the dataset Solar.}$

 $\label{eq:Figure C.7:CR} Figure \ C.7: \ CR \ and \ window \ size \ parameter \ plots \ for \ every \ evaluated \ algorithm, for the \ data \ type \ ``Latitude'' \ of \ the \ dataset \ ElNino.$

 $\label{eq:condition} \mbox{Figure C.8: CR and window size parameter plots for every evaluated algorithm, for the data type "Longitude" of the dataset ElNino.}$

 $\label{eq:condition} \mbox{Figure C.9: CR and window size parameter plots for every evaluated algorithm, for the data type "Zon. Wind" of the dataset ElNino.}$

 $\label{eq:condition} \mbox{Figure C.10: CR and window size parameter plots for every evaluated algorithm, for the data type "Mer. Wind" of the dataset ElNino.}$

 $\label{eq:control_control_control} \mbox{Figure C.11: CR and window size parameter plots for every evaluated algorithm, for the data type "Humidity" of the dataset ElNino.}$

 $\label{eq:condition} \mbox{Figure C.12: CR and window size parameter plots for every evaluated algorithm, for the data type "Air Temp." of the dataset ElNino.}$

FIGURE C.13: CR and window size parameter plots for every evaluated algorithm, for the data type "Sea Temp." of the dataset ElNino. For each error parameter $e \in E$, we use blue circles to highlight the markers for the minimum CR value and the best window size (in the respective plots corresponding to the best coding variant).

 $\label{eq:condition} \mbox{Figure C.14: CR and window size parameter plots for every evaluated algorithm, for the data type "Latitude" of the dataset Hail.}$

 $\label{eq:condition} \mbox{Figure C.15: CR and window size parameter plots for every evaluated algorithm, for the data type "Longitude" of the dataset Hail.}$

 $\label{eq:condition} \mbox{Figure C.16: CR and window size parameter plots for every evaluated algorithm, for the data type "Size" of the dataset Hail.}$

 $\label{eq:control_control_control} \mbox{Figure C.17: CR and window size parameter plots for every evaluated algorithm, for the data type "Latitude" of the dataset Tornado.}$

 $\label{eq:condition} \mbox{Figure C.18: CR and window size parameter plots for every evaluated algorithm, for the data type "Longitude" of the dataset Tornado.}$

 $\label{eq:condition} \mbox{Figure C.19: CR and window size parameter plots for every evaluated algorithm, for the data type "Latitude" of the dataset Wind.}$

 $\label{eq:condition} \mbox{Figure C.20: CR and window size parameter plots for every evaluated algorithm, for the data type "Longitude" of the dataset Wind.}$

 $\label{eq:control_control_control} \mbox{Figure C.21: CR and window size parameter plots for every evaluated algorithm, for the data type "Speed" of the dataset Wind.}$