GPIO MICROCONTROLADORES ARM

DESCRIPCION EL GPIO

(Entrada/Salida de propósito general)

CARACTERISTICAS

- Cada puerto tiene hasta 16 pines.
- Estados de salida: push-pull/open drain + pull-up/pull-down.
- Selección de velocidad para cada pin E/S.
- Estados de entrada: Floating, pullup/pull-down y analógico.
- Registros de entrada/salida de función alternativa(10 Afs por pin).

(Entrada/Salida de propósito general)

Analog

(Entrada/Salida de propósito general)

CONFIGURACION DE ENTRADA \rightarrow GPIO \times MODER

(Entrada/Salida de propósito general)

CONFIGURACION DE SALIDA → GPIOx MODER

MICRO-CONTRO-LADORES ARM

(Entrada/Salida de propósito general)

CONFIGURACION DE SALIDA → GPIOx MODER

PUSH-PULL → GPIOx_OTYPER

(Entrada/Salida de propósito general)

CONFIGURACION DE SALIDA → GPIOx MODER

OPEN-DRAIN → GPIOx_OTYPER

(Entrada/Salida de propósito general)

CONFIGURACION DE SALIDA → GPIOx MODER

OPEN-DRAIN

(Entrada/Salida de propósito general)

CONFIGURACION DE FUNCION ALTERNATIVA \rightarrow GPIOx MODER

(Entrada/Salida de propósito general)

CONFIGURACION DE FUNCION ALTERNATIVA -> GPIOx_AFLR/GPIOx_AFHR

(Entrada/Salida de propósito general)

ENTRADA ANALOGICA → GPIOx MODER

REGISTROS DEL GPIO

(Entrada/Salida de propósito general)

REGISTROS DE CONTROL

Cada puerto GPIOx cuenta con registros de control de 32-bits (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) para configurar los pines de manera individual.

REGISTROS DE DATOS

Cada puerto GPIOx cuenta con dos registros de datos de 16-bits (GPIOx_IDR and GPIOx_ODR).

REGISTRO DE MANEJO DE DATOS BIT A BIT

Cada puerto cuenta con un registro que permite restablecer y establecer cada bit de manera individual.

REGISTROS DE BLOQUEO

Registro de bloqueo que bloquea los registros(GPIOx_MODER, GPIOx_OTYPER, GPIOx OSPEEDR, GPIOx PUPDR, GPIOx AFRL and GPIOx AFRH)

(Entrada/Salida de propósito general)

AHB2

	0x4800 2000 - 0x4FFF FFFF	~127 MB	Reserved
AHB2	0x4800 1C00 - 0x4800 1FFF	1 KB	GPIOH
	0x4800 1400 - 0x4800 1BFF	2 KB	Reserved
	0x4800 1000 - 0x4800 13FF	1 KB	GPIOE ^{(2) (3)}
	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD ⁽²⁾
	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~127 MB	Reserved

(Entrada/Salida de propósito general)

GPIO port mode register (GPIOx MODER) (x = A..E and H)

Address offset:0x00

Reset value:

- 0xABFF FFFF (for port A)
- 0xFFFF FEBF (for port B)
- 0xFFFF FFFF for ports C..E
- 0x0000 000F (for port H)

	PIN	15															
ſ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	MODER	R15[1:0]	MODE	R14[1:0]	MODE	R13[1:0]	MODE	R12[1:0]	MODE	R11[1:0]	MODER	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]	
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	1 /
	MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]	
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Bits 2y:2y+1 **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

PB3 → SALIDA DIGITAL
PA0 → ENTRADA DIGITAL

GPIOB->MODER &=~ GPIO_MODER_MODE3;
GPIOB->MODER |= 0x1U<<2*3;
GPIOA->MODER &=~ GPIO_MODER_MODE0;

(Entrada/Salida de propósito general)

GPIO port output type register (GPIOx OTYPER)

Address offset: 0x04
Reset value: 0x0000 0000

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OTy**: Port x configuration bits (y = 0..15)

These bits are written by software to configure the output type of the I/O port.

0: Output push-pull (reset state)

1: Output open-drain

PB3 → PUSH PULL

/*tipo de salida*/
GPIOB->OTYPER &=~ 0x1U<<3;</pre>

(Entrada/Salida de propósito general)

GPIO port output speed register (GPIOx OSPEEDR)

Address offset: 0x08

Reset value: 0x0C00 0000 (for port A)

Reset value: 0x0000 0000 (for the other ports)

Bits 2y:2y+1 **OSPEEDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output speed.

00: Low speed

01: Medium speed

10: High speed

11: Very high speed

Note: Refer to the product datasheets for the values of OSPEEDRy bits versus V_{DD} range and external load.

PB3 → VERY HIGH SPEED

/*Velocidad de conmutacion*/
GPIOB->OSPEEDR |= 0x3U<<2*3;</pre>

(Entrada/Salida de propósito general)

GPIO port output speed register (GPIOx_OSPEEDR)

(Entrada/Salida de propósito general)

GPIO port pull-up/pull-down register (GPIOx PUPDR)

Address offset: 0x0C

Reset values:

• 0x6400 0000 for port A

• 0x0000 0100 for port B

• 0×0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDF	R14[1:0]	PUPDF	R13[1:0]	PUPDF	R12[1:0]	PUPDF	R11[1:0]	PUPDF	R10[1:0]	PUPDI	R9[1:0]	PUPD	R8[1:0]
rw	rw	rw	rw	rw	rw										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDI	R7[1:0]	PUPDI	R6[1:0]	PUPDI	R5[1:0]	PUPDI	R4[1:0]	PUPDI	R3[1:0]	PUPD	R2[1:0]	PUPDI	R1[1:0]	PUPD	R0[1:0]
rw	rw	rw	rw	rw	rw										
			•						•	•	•			•	

Bits 2y:2y+1 **PUPDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up

10: Pull-down

11: Reserved

PB3 → NO PULL/DOWN
PA0 → PULL-DOWN

/*resistencia pull up/down*/
GPIOB->PUPDR &=~ GPIO_MODER_MODE3;
GPIOA->PUPDR &=~ GPIO_PUPDR_PUPD0;
GPIOA->PUPDR |= 0x2U<<2*0;</pre>

(Entrada/Salida de propósito general)

GPIO port output data register (GPIOx_ODR) (x = A..E and H)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reser	ved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
		•					•				•	•			

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy**: Port output data (y = 0..15)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the $GPIOx_BSRR$ register (x = A..E and H).

PB3 → SET/CLEAR

PIN 0

```
/*PB3->SET*/
GPIOB->ODR |= 1U<<3;
/*PB3->CLEAR*/
GPIOB->ODR &=~1U<<3;
```


(Entrada/Salida de propósito general)

GPIO port input data register (GPIOx_IDR) (x = A..E and H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							Res	served								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ار ا
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
	•		•	•			•	•	•	•	•	•	•	•		

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDRy**: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input value of the corresponding I/O port.

PA0 → LECTURA

uint8_t PA0_Value;
PA0_Value = (GPIOA->IDR>>0 & 0x1);

PIN 0

(Entrada/Salida de propósito general)

GPIO port bit set/reset register (GPIOx BSRR) (x = A..E and H)

Address offset: 0x18
Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	W	w	W	w	W	W	W	W	W	W	W	W	W	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	W	W	W	W	W	W	W	W	W	W	w	W	w	w	W

Bits 31:16 **BRy:** Port x reset bit y (y = 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x set bit y (y = 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit

PB3 → SET/CLEAR

```
/*PB3-> SET*/
GPIOB->BSRR |= 1<<3;
/*PB3-> CLEAR*/
GPIOB->BSRR |= 1<<(16 + 3);
```


PROGRAMANDO DESDE REGISTROS

(Entrada/Salida de propósito general)

MODER(i) [1:0]	OTYPER(i)	OSPEEDR(i) [B:A]		DR(i) :0]	I/O conf	iguration	
	0		0	0	GP output	PP	
	0		0	1	GP output	PP + PU	
	0		1	0	GP output	PP + PD	
01	0	SPEED	1	1	Reserved		
01	1	[B:A]	0	0	GP output	OD	
	1		0	1	GP output	OD + PU	
	1		1	0	GP output	OD + PD	
	1		1	1	Reserved (GP output OD)		

MODER(i) [1:0]	OTYPER(i)	1	EEDR(i) B:A]		DR(i) :0]	I/O cor	nfiguration
	0			0	0	AF	PP
	0			0	1	AF	PP + PU
	0			1	0	AF	PP + PD
10	0	SP	EED	1	1	Reserved	
10	1	[E	3:A]	0	0	AF	OD
	1			0	1	AF	OD + PU
	1			1	0	AF	OD + PD
	1		•	1	1	Reserved	
	Х	х	х	0	0	Input	Floating
00	Х	х	Х	0	1	Input	PU
00	Х	х	Х	1	0	Input	PD
	Х	х	х	1	1	Reserved (input	t floating)
	Х	х	Х	0	0	Input/output	Analog
11	Х	х	Х	0	1		
	Х	х	Х	1	0	Reserved	
	Х	х	х	1	1		

RCC PERI. CLOCK ENABLE REGISTER

arm

MICRO-CONTRO-LADORES ARM

RCC PERI. CLOCK ENABLE REGISTER

AHB2 peripheral clock enable register (RCC_AHB2ENR)

Address offset: 0x4C Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral registers read or write access is not

Supported

Available on STM32L42xxx, STM32L44xxx and STM32L46xxx devices only.

Bit 0 GPIOAEN: IO port A clock enable

Set and cleared by software.

0: IO port A clock disabled

1: IO port A clock enabled

RCC->AHB2ENR |= RCC_AHB2ENR_GPIOAEN;

(Entrada/Salida de propósito general)

```
#include "stm32f4xx.h"
                                            // Device header
 3 #define GPIOA Base
                           0x40020000U
 4 #define GPIOA MODER *((volatile uint32 t*)(GPIOA Base + 0x00))
 5 #define GPIOA OTYPER
                          *((volatile uint32 t*)(GPIOA Base + 0x04))
 6 #define GPIOA OSPEEDR
                          *((volatile uint32 t*)(GPIOA Base + 0x08))
 7 #define GPIOA PUPDR
                           *((volatile uint32 t*)(GPIOA Base + 0x0C))
    #define GPIOA ODR
                           *((volatile uint32 t*)(GPIOA Base + 0x14))
    #define GPIOA BSRR
                           *((volatile uint32 t*)(GPIOA Base + 0x18))
   void delayMs(uint32 t delay);
13 ⊟int main (void) {
     /*HABILITAR EL RELOJ*/
      RCC->AHBIENR |= RCC AHBIENR GPIOAEN;
     /*CONFIGURAR EL PA5 COMO SALIDA*/
      GPIOA MODER &=~(1U<<(11) | 1U<<10);
      GPIOA MODER |= 1U<<10;
                                       //salida de proposito general
      GPIOA OTYPER &=~(1U<<5);
                                       //PUSH-PULL
      GPIOA OSPEEDR |= 1U<<10;
                                       //MEDIUM SPEED
      GPIOA PUPDR &=~(1U<<(11) | 1U<<10);//no pull/down
24
      while(1){
        GPIOA ODR |=1<<5;
        delayMs(100);
      GPIOA ODR &=~(1U<<5);
      delayMs(200);
      GPIOA BSRR |= 1<<5;
        delayMs(200);
        GPIOA BSRR |= 1 << (16 + 5);
33
        delayMs(200);
35
38 -void delayMs(uint32 t delay) {
      uint32 t i;
      SysTick->LOAD = SystemCoreClock/1000;
      SysTick->VAL = 0;
      SysTick->CTRL |= 1<<2 | 1<<0;
43 for (i = 0; i < delay; i++) {
       while(!(SysTick->CTRL & 1<<16));</pre>
45
46 }
```


USANDO POR COMPLETO LA CMSIS

```
#include "stm32f4xx.h"
                                          // Device header
void delayMs(uint32 t delay);
∃int main(void){
   /*HALITTAR EL RELOJ*/
   RCC->AHBIENR |= RCC AHBIENR GPIOAEN;
   /*CONFIGURACION PA5*/
   GPIOA->MODER &=~(1U<<(11) | 1U<<10);
   GPIOA->MODER |= 1U<<10;
                                     //salida de proposito general
   GPIOA->OTYPER &=~(1U<<5);
                                     //PUSH-PULL
   GPIOA->OSPEEDR |= 1U<<10;
                                     //MEDIUM SPEED
  GPIOA->PUPDR &=~(1U<<(11) | 1U<<10);//no pull/down
   while(1){
    GPIOA->ODR \mid = 1<<5;
     delayMs(100);
     GPIOA->ODR &=~(1U<<5);
     delayMs(100);
void delayMs(uint32 t delay) {
   uint32 t i;
   SysTick->LOAD = SystemCoreClock/1000;
   SysTick->VAL = 0;
   SysTick->CTRL |= 1<<2 | 1<<0;
   for(i = 0;i<delay;i++){</pre>
    while(!(SysTick->CTRL & 1<<16));</pre>
```


(Entrada/Salida de propósito general)

USANDO POR COMPLETO LA CMSIS

```
#include <stdint.h>
#include "stm3214xx.h"
int main(void)
    uint8 t PA0 Value;
    RCC->AHB2ENR |= RCC_AHB2ENR_GPIOAEN;
    /*configuracion de modo*/
    GPIOB->MODER &=~ GPIO_MODER_MODE3;
    GPIOB->MODER = 0 \times 1 U << 2 \times 3;
    GPIOA->MODER &=~ GPIO_MODER_MODE0;
    /*tipo de salida*/
    GPIOB->OTYPER &=~ 0x1U<<3;
    /*Velocidad de conmutacion*/
    GPIOB->OSPEEDR = 0 \times 3 U < 2 \times 3;
    /*resistencia pull up/down*/
    GPIOB->PUPDR &=~ GPIO_MODER_MODE3;
    GPIOA->PUPDR &=~ GPIO PUPDR PUPD0;
    GPIOA->PUPDR = 0 \times 2U << 2 \times 0;
    /*PB3->SET*/
    GPIOB \rightarrow ODR = 1U << 3;
    /*PB3->CLEAR*/
    GPIOB->ODR &=~1U<<3;
    /*READ VALUE PAO*/
    PAO Value = (GPIOA - > IDR > > 0 & 0 \times 1);
    /*PB3-> SET*/
    GPIOB->BSRR |= 1<<3;
    /*PB3-> CLEAR*/
    GPIOB->BSRR = 1 << (16 + 3);
    /* Loop forever */
    for(;;);
```


MANEJO DE DISPLAY DE 7 SEGMENTOS

DISPLAY 7 SEGMENTOS CATADO COMUN

HEX					n	mu	Có	Cátodo	
	a	b	С	d	е	f	g	Número	Común*
0 x 3 F	1	1	1	1	1	1	0	0	GND
0x06	0	1	1	0	0	0	0	1	GND
0 x 5B	1	1	0	1	1	0	1	2	GND
0x4F	1	1	1	1	0	0	1	3	GND
0x66	0	1	1	0	0	1	1	4	GND
0x6D	1	0	1	1	0	1	1	5	GND
0x7D	1	0	1	1	1	1	1	6	GND
0x07	1	1	1	0	0	0	0	7	GND
0x7F	1	1	1	1	1	1	1	8	GND
0x67	1	1	1	1	0	1	1	9	GND

DISPLAY 7 SEGMENTOS CATADO COMUN

MULTIPLEXACION

UVAKER CENTRO DE CAPACITACIÓN DE DESARROLLO TECNOLÓGICO