Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Test 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{2}{5} \cdot \left(\frac{2}{3} + 1\right) - \left(2 - \frac{4}{3}\right) = \frac{2}{5} \cdot \frac{2 + 3}{3} - \frac{6 - 4}{3} =$	2p
	$= \frac{2}{5} \cdot \frac{5}{3} - \frac{2}{3} = \frac{2}{3} - \frac{2}{3} = 0$	3 p
2.	$f(2) = 5 \Leftrightarrow 2^2 - 2m + 3 = 5$	3 p
	2m=2, deci $m=1$	2 p
3.	$x+4=(x+2)^2 \Rightarrow x^2+3x=0$	2p
	x = -3, care nu convine sau $x = 0$, care convine	3 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 9 numere care au cifrele egale, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	1p
5.	$m_{AB} = -1$	2p
	$m_{AC} = \frac{a-1}{5}$, deci punctele A, B și C sunt coliniare $\Leftrightarrow m_{AB} = m_{AC} \Leftrightarrow a = -4$	3 p
6.	MN = 6	2p
	$P_{MNPQ} = 4MN = 24$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A - B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow \det(A - B) = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = 0 \cdot 0 - (-1) \cdot 1 =$	3p
	=0-(-1)=1	2p
b)	$C = A \cdot A + B \cdot B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$	3p
	$\det C = \begin{vmatrix} 2 & 2 \\ 2 & 2 \end{vmatrix} = 0$, deci matricea C nu este inversabilă	2p
c)	$A \cdot X = \begin{pmatrix} 1+x & 2+y \\ x & y \end{pmatrix}, \ X \cdot B = \begin{pmatrix} 3 & 2 \\ x+y & y \end{pmatrix}$, pentru orice numere reale x și y	2p
	$\begin{pmatrix} 1+x & 2+y \\ x & y \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ x+y & y \end{pmatrix}, \text{ deci } x=2 \text{ si } y=0, \text{ care convin}$	3p

2.a)	$1*1 = \frac{1 \cdot 1 + 1}{1 + 1} =$	3p
	$=\frac{2}{2}=1$	2p
b)	$\frac{2x+1}{x+2} = \frac{3}{2} \Leftrightarrow 4x+2 = 3x+6$	3p
	x = 4, care convine	2 p
c)	$x*1=1$, unde $x \in M$	2p
	$\lg 2 * \lg 4 * \lg 6 * \lg 8 * \lg 10 = (\lg 2 * \lg 4 * \lg 6 * \lg 8) * \lg 10 = (\lg 2 * \lg 4 * \lg 6 * \lg 8) * 1 = 1$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.0)	(2020)	
1.a)	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \left(x^{2020} + 1 \right) = 2$	2n
	$x \rightarrow 1$	2p
	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x+1}{x} = 2 \text{si, cum} f(1) = 2 \text{obținem} \lim_{x \to 1} f(x) = f(1) \text{deci funcția} f \text{este}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3p
	continuă în $x_0 = 1$	
b)	$\binom{1}{1}$	
	x + 1 $x + 1$ $x + 1$ $x + 1$ $x + 1$	3р
	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x+1}{x} = \lim_{x \to +\infty} \frac{x\left(1+\frac{1}{x}\right)}{x} = \lim_{x \to +\infty} \left(1+\frac{1}{x}\right) = 1$	~ P
	Dreapta de ecuație $y = 1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2n
		2p
c)	Pentru $x \in (1, +\infty)$, $f'(x) = -\frac{1}{x^2}$, deci $f''(x) = \frac{2}{x^3}$	3 p
	x^2 x^3	- 1
	$f''(x) > 0$, pentru orice $x \in (1, +\infty)$, deci funcția f' este crescătoare pe $(1, +\infty)$	2p
2.a)	2 2 2	
	$\int x f(x) dx = \int e^x dx = e^x \Big _{=}$	3р
	$\int_{1}^{2} x f(x) dx = \int_{1}^{2} e^{x} dx = e^{x} \Big _{1}^{2} =$	•
	$=e^2-e=e(e-1)$	2p
1.		- P
(b)	$\int_{a}^{e^{2}} \frac{g(x)}{xe^{x}} dx = \int_{a}^{e^{2}} \frac{1}{x} \ln x dx = \frac{1}{2} \ln^{2} x \bigg _{e}^{e^{2}} =$	
	$\int \frac{\partial x}{\partial x} dx = \int \frac{1}{x} \ln x dx = \frac{1}{2} \ln^2 x \Big =$	3 p
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$1_{(2^2-12)}$ 3	
	$=\frac{1}{2}(2^2-1^2)=\frac{3}{2}$	2p
c)	e e x e e x	
	$\int_{1}^{e} (f(x) + g(x)) dx = \int_{1}^{e} \frac{e^{x}}{x} dx + \int_{1}^{e} e^{x} \ln x dx = \int_{1}^{e} \frac{e^{x}}{x} dx + e^{x} \ln x \Big _{1}^{e} - \int_{1}^{e} \frac{1}{x} e^{x} dx =$	3р
	$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	_
	$=e^e \ln e - e^1 \ln 1 = e^e$	2p
		ľ