Implementación de un modelo Deep Learning para la traducción de lenguaje de señas para personas con discapacidades del habla

Adrian Gómez Sánchez

Realidad Problemática

Las discapacidades del habla afectan la comunicación verbal clara y fluida de las personas, pero el lenguaje de señas se presenta como una herramienta vital para expresar pensamientos y emociones. Sin embargo, las dificultades en la comunicación pueden llevar a la exclusión social y laboral de las personas con discapacidades del habla. El uso de modelos de Deep Learning para traducir el lenguaje de señas puede mejorar significativamente la comunicación entre personas con y sin discapacidades del habla, promoviendo la inclusión y el entendimiento mutuo.

Problema General / Específicos

¿De qué manera el uso de un modelo Deep Learning podría facilitar la comunicación para personas con discapacidades del habla para interactuar con personas que no conocen el lenguaje de señas? ¿De qué manera la falta de conjuntos de datos de lenguaje de señas de cada idioma afectar al modelo Deep Learning?

¿De qué manera el modelo Deep Learning pueden diferenciar entre los distintos tipos de lenguajes de señas?

¿Qué métricas son las más adecuadas para la precisión y rendimiento de un modelo de traducción de lenguaje de señas?

¿Cuáles son las técnicas más adecuadas para el preprocesamiento y normalización de la base de datos de lenguaje de señas?

Objetivos General / Específicos

Desarrollar un modelo Deep Learning que se utilizará como medio para la traducción de lenguaje de señas, permitiendo la comunicación entre personas con discapacidades del habla y personas sin conocimiento del lenguaje de señas.

Evaluar y comparar diferentes enfoques en los aumentos de datos para mejorar la representación de los conjuntos de datos de lenguaje de señas.

Utilizar técnicas de aprendizaje automático para mejorar la precisión del modelo en la diferenciación entre los distintos tipos de lenguajes de señas.

Evaluar diferentes métricas de evaluación de modelos Deep Learning, como Accuracy, Recall, F1-Score para la determinación del modelo más adecuado para la traducción adecuada de lenguaje de señas.

Realizar comparaciones entre diferentes técnicas de preprocesamiento y normalización de datos de lenguaje de señas, como normalización de iluminación, corrección de gestos ambiguos.

Hipótesis General / Específicos

Mediante el desarrollo de un modelo de traducción de lenguaje de señas basado en Deep Learning se logrará mejorar la comunicación para personas con discapacidades del habla con personas que no conocen el lenguaje de señas, mejorando así su accesibilidad y calidad de vida.

Mediante el uso diferentes enfoques de técnicas de aumento de datos, sea posible mejorar la representación de los conjuntos de datos disponibles y compensar en parte la falta de datos específicos para el español peruano, lo que resultará en un mejor rendimiento del modelo de traducción de lenguaje de señas.

El modelo Deep Learning aumentará su precisión significativa con lo que respecta de lenguaje de señas, lo que demuestra la eficacia de las técnicas de aprendizaje automático en este contexto.

La implementación de métricas de evaluación en los modelos Deep Learning aumentará las diferencias significativas entre los diferentes modelos evaluados, lo que permitirá la identificación del modelo más adecuado para la traducción de lenguaje de señas.

La implementación de técnicas de preprocesamiento, mejoren la calidad de los datos de lenguaje de señas y con ello aumentar el rendimiento del modelo Deep Learning para la traducción de lenguaje de señas.

Matriz de Consistencia

Problemas	Objetivos	Hipótesis		Variables	Indicadores	Indice
Problema General ¿De qué manera el uso de un modelo Deep Learning podría faoilitar la comunicación para personas con discapacidades del habla para interactura con personas que no conocen el lenguaje de señas?	como medio para la traducción de lenguaje de señas, permitiendo la comunicación entre personas con discapacidades del habla y personas sin conocimiento del lenguaje de señas.	Hipótesis General Mediante el desarrollo de un modelo de traducción de lenguaje de señas basado en Deep Learning se logrará mejorar la comunicación para personas con discapacidades del habla con personas que no conocen ellenguaje de señas, mejorando así su accesibilidad y calidad de vida.	×	Uso de un modelo Deep Learning	Proporción de gestos y signos correctamente interpretados por el modelo de Deep Learning	Gestos y signos correctamente interpretados Total de gestos y signos
			Υ	Mejora en la accesibilidad y calidad de vida de las personas con discapacidades del habla	Nivel de satisfacción percibido por las personas con discapacidades del habla al utilizar el modelo de traducción de lenguaje de señas.	Nivel de satisfacción percibido Máximo nivel de satisfacción posible
Problema Específico ¿De qué manera la falta de conjuntos de datos de lenguaje de señas de cada idioma afectar al modelo Deep Learning?	Objetivo Específico Evaluar y comparar diferentes enfoques en los aumentos de datos para mejorar la representación de los conjuntos de datos de lenguaje de señas.	Hipótesis Específica Mediante el uso diferentes enfoques de técnicas de aumento de datos, sea posible mejorar la representación de los conjuntos de datos disponibles y compensar en parte la falta de datos específicos para el español peruano, lo que resultará en un mejor rendimiento del modelo de traducción	X1	Impacto de la falta de conjuntos de datos de Ienguaje de señas	Porcentaje de gestos y signos correctamente interpretados por el modelo	Gestos y signos correctamente interpretados Total de gestos y signos
			Y1	Mejora en la representación y rendimiento del modelo	Proporción de mejora en la precisión de la interpretación de gestos y signos después de aplicar técnicas de aumento de datos	Precisión después de aplicar técnicas de aumento de datos Precisión antes de aplicar técnicas de aumento de datos
Problema Específico ¿De qué manera el modelo Deep Learning pueden diferenciar entre los distintos tipos de lenguajes de señas?		Hipótesis Específica El modelo Deep Learning aumentará su predisión significativa con lo que respecta de lenguaje de señas, lo que demuestra la eficacia de las técnicas de aprendizaje automático en este contexto.	X2	Deep Learning para diferenciar entre distintos tipos de	Porcentaje de correcta diferenciación entre distintos tipos de lenguajes de señas por el modelo Deep Learning	Correcta diferenciación entre lenguajes de señas Total de diferenciaciones intentadas
			Y2	Precisión del modelo en la diferenciación entre los distintos tipos de lenguajes de señas	Precisión del modelo en la diferenciación entre los distintos tipos de lenguajes de señas	No aplica
Problema Específico ¿Qué métricas son las más adecuadas para la precisión y rendimiento de un modelo de traducción de lenguaje de señas?	Objetivo Específico Evaluar diferentes métricas de evaluación de modelos Deep Learning, como Accuracy, Recall, F1-Score para la determinación del modelo más adecuado para la traducción adecuada de lenguaje de señas.	Hipótesis Específica La implementación de métricas de evaluación en los modelos Deep Learning aumentará las diferencias significativas entre los diferentes modelos evaluados, lo que permitirá la identificación del modelo más	ХЗ	Métricas de evaluación de modelos Deep Learning	Valor numérico de la precisión	Número de predicciones correctas Número total de predicciones
			Y3	Rendimiento del modelo de traducción de lenguaje de señas	Valor numérico de la precisión obtenida por el modelo	No aplica
Problema Específico ¿Cuáles son las técnicas más adecuadas para el preprocesamiento y normalización de la base de datos de lenguaje de señas?	Objetivo Específico Realizar comparaciones entre diferentes técnicas de preprocesamiento y normalización de datos de lenguaje de señas, como normalización de iluminación, corrección de gestos ambiguos.	Hipótesis Específica La implementación de técnicas de preprocesamiento, mejoren la calidad de los datos de lenguaje de señas y con ello aumentar el rendimiento del modelo Deep Learning para la traducción de lenguaje de señas.	×4	Técnicas de preprocesamiento	Número total de técnicas de preprocesamiento seleccionadas	Número total de técnicas de preprocesamiento seleccionadas
			Y4	Calidad de los datos	Porcentaje de mejora en la calidad de los datos	$\left(\frac{\text{Mejora en la calidad de los datos} + \text{Aumento en el readimiento del modelo}}{2}\right)$

Using Deep Learning in Sign Language Translation to Text

Objetivos:

 Desarrollar un sistema de traducción de lenguaje de signos en tiempo real que pueda ejecutarse en plataformas móviles utilizando cámaras de profundidad integradas.

Metodología:

 Redes neuronales convolucionales (CNN)

Resultados:

- Precisión de entrenamiento del 99.24%.
- Precisión de validación del 98.85% utilizando el optimizador Adam.