# Sequential Convolutional Neural Network for Opinion Target Extraction

Víctor Martínez Morant

#### Index

- 1) Task Description
  - a) Dataset
- 2) Preprocessing
  - a) Data Format
  - b) Sliding Window
- 3) Model
- 4) Experiments
- 5) Conclusion
  - a) Comparison to the official results
  - b) Future work

## Task Description

"The food was delicious"

"The pizza was great and the service was attentive"

"Awesome decoration but the price was too expensive"

## Task Description

"The food was delicious"

"The pizza was great and the service was attentive"

"Awesome decoration but the price was too expensive"

### DataSet

#### SemEval-2015: Task 12: Aspect Based Sentiment Analysis

| Restaurant Domain         | Training | Test |
|---------------------------|----------|------|
| Reviews                   | 254      | 96   |
| Sentences                 | 1315     | 685  |
| Opinion Target Expression | 1654     | 845  |

## Preprocessing

#### **Data Format**

```
Apply IOB-2 Format -> Really Good for Sequential Labelling Tasks

Review [

Sentence [(The, O) (food, B) (was, O) (delicious, O)]

Sentence [(The, O) (live, B) (music, I) (was, O) (awesome, O) (too, O)]

]
```

## Sliding Window

Using Context Words to predict whether the word in the middle is an OTE

| PADDING | 0   | В    | О   | 0         | PADDING |
|---------|-----|------|-----|-----------|---------|
| 6677    | The | food |     |           |         |
|         | The | food | was |           |         |
|         |     | food | was | delicious |         |
|         |     |      | was | delicious | 4433    |

#### Model

Convolutional Neural Network with the following layers

- 1) Word Embedding
- 2) Convolutions
- 3) Max-pooling
- 4) Dropout
- 5) Output

## Model



## Hyperparameters

| Hyperparameters     | Description                                                |
|---------------------|------------------------------------------------------------|
| Embedding Dimension | The dimension of the vectors coming from word2vec          |
| Filter Sizes        | Defines the dimension of the filters.                      |
| Filter Amount       | Number of filters per size                                 |
| Dropout Probability | Percentage of cells to be kept for the classification      |
| Word Context        | Number of past and future words to be taken as the context |

# Experiments

| Word Context | Filters         | Filter Amount | Precision | Recall | F1    |
|--------------|-----------------|---------------|-----------|--------|-------|
| 1            | [1,2]           | 50            | 0.535     | 0.549  | 0.542 |
| 1            | [2,3]           | 100           | 0.613     | 0.57   | 0.595 |
| 2            | [3,4]           | 100           | 0.656     | 0.42   | 0.594 |
| 2            | [1,2,3,4,5]     | 100           | 0.602     | 0.570  | 0.586 |
| 3            | [1,2,3,4,5,6,7] | 100           | 0.595     | 0.539  | 0.566 |
| 3            | [1,2,3,4]       | 50            | 0.519     | 0.435  | 0.474 |
| 3            | [6,7]           | 100           | 0.59      | 0.555  | 0.572 |

## Comparison with the Official Results

| Team      | F1    |
|-----------|-------|
| IHS-RD    | 63.12 |
| Lsislif   | 62.22 |
| NLANGPL   | 61.49 |
| Our Model | 59.59 |

| Team      | F1    |
|-----------|-------|
| wnlp      | 57.63 |
| UMDuluthC | 50.36 |
| UMDuluthT | 50.36 |
| CU-BDDA   | 36.01 |

#### **Future Work**

 Add more features to the input: frequency name lists, word clustering, name lists extracted from external resources

2) Input Overlapping: weighted word embedding with respect to the word in the middle

3) Used pre-trained word embedding: GloVe and Google word2vec