### Automatismes en premiére 2019/2020

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

11 novembre 2020



- Dérivation locale
- 2 Dérivation Globale
- 3 Suites numériques
- 4 Application du produit scalaire

### Automatisme 1 thème : dérivation locale

Soit f la fonction définie sur  $]-\infty$ ; 0[ par  $f(x) = \frac{1}{x}$ .

- Soit un réel a < 0 et un réel  $h \neq 0$  tel que a + h < 0, démontrer que  $\frac{f(a+h)-f(a)}{h} = \frac{-h}{(a+h)a}$ .
- En déduire que f est dérivable en tout réel a < 0 et déterminer l'expression de f'(a).
- Déterminer une équation de la tangente à la courbe de f au point d'abscisse -2.

- Dérivation locale
- 2 Dérivation Globale
- 3 Suites numériques
- 4 Application du produit scalaire

### Automatisme 2 thème : dérivation

Déterminer une expression de la fonction dérivée pour la fonction f dérivable sur l'intervalle I.

• 
$$f: x \mapsto \frac{x^3-1}{5x^2+1}$$
 sur  $\mathbb{R}$ ;

• 
$$f: x \mapsto x^2 \sqrt{x} \text{ sur } ]0; +\infty[;$$

• 
$$f: x \mapsto (8-3x)^7 \text{ sur } ]0; +\infty[;$$

• 
$$f: x \mapsto 4x - \frac{1}{x-3} \text{ sur } ]3; +\infty[.$$

### Automatisme 3 thème : dérivation

Soit f une fonction dérivable sur [-8; 6] dont on donne le tableau de variation ci-dessous.

| X    | -8 | -5       | 2             | 3                | 6 |
|------|----|----------|---------------|------------------|---|
| f(x) | 4  | <b>0</b> | <b>→</b> -1 - | → 0 <sup>-</sup> |   |

- Dresser le tableau de signes de la fonction dérivée f' de f sur l'intervalle [-8; 6].
- ② Dresser le tableau de variations d'une fonction F dérivable sur l'intervalle [-8;6] et dont la dérivée est f.

### Automatisme 4 thème : dérivation

Déterminer une expression de la fonction dérivée pour la fonction f dérivable sur l'intervalle I.

• 
$$f: x \mapsto \sqrt{3x+1} \text{ sur } ]-\frac{1}{3}; +\infty[;$$

• 
$$f: x \mapsto (5x-3)\sqrt{x} \text{ sur } ]0; +\infty[;$$

• 
$$f: x \mapsto (605x - 3)^{607} \text{ sur } \mathbb{R};$$

• 
$$f: x \mapsto \frac{1}{3} - \frac{2}{3-x} \text{ sur } ]3; +\infty[.$$

- Dérivation locale
- Dérivation Globale
- Suites numériques
- 4 Application du produit scalaire

### Automatisme 5 thème : suites

- Soit la suite  $(u_n)$  définie pour tout entier naturel n par  $u_n = n^2 n$ . Calculer  $u_4$  et  $u_7$ .
- Soit la suite  $(u_n)$  définie pour tout entier naturel n par  $u_0 = 4$  et  $u_{n+1} = 2u_n 1$ . Calculer  $u_1$ ,  $u_2$  et  $u_3$ .
- Soit la suite  $(u_n)$  définie pour tout entier naturel n par  $u_0 = 1$  et  $u_n = u_{n-1} n + 1$ . Calculer  $u_1$ ,  $u_2$  et  $u_3$ .

### Automatisme 6 thème : suites

```
#On définit la suite (Un) par Un=f(n)
def f(n):
   if n==0:
     return 1
   else:
     return 1/n**2
# n**2 signifie le carré de n
```

#### Interpréteur en ligne :

https://repl.it/@Reformelycee/suite-explicite.

- $u_0 = 1$  Vrai ou Faux?
- $u_1 = 0.5 \text{ Vrai ou Faux}$ ?
- $u_{50} = 0,0004$  Vrai ou Faux?
- La suite n'est pas définie en 0. Vrai ou Faux?

- Dérivation locale
- Dérivation Globale
- 3 Suites numériques
- 4 Application du produit scalaire

# Automatisme 7 thème : Application du produit scalaire

On se place dans un repère orthonormé. Dans chacun des cas suivants, dire si les vecteurs  $\vec{u}$  et  $\vec{v}$  sont orthogonaux.

$$\mathbf{a}. \overrightarrow{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

**b.** 
$$\vec{u} \begin{pmatrix} -5 \\ 2 \end{pmatrix}$$
 et  $\vec{v} \begin{pmatrix} 6 \\ 15 \end{pmatrix}$ 

c. 
$$\vec{u} \begin{pmatrix} \sqrt{10} \\ -2 \end{pmatrix}$$
 et  $\vec{v} \begin{pmatrix} \sqrt{2} \\ \sqrt{5} \end{pmatrix}$ 

### Automatisme 8 thème : Application du produit scalaire

Dans le repère orthonormé ci-dessous, les points A, B, C et D ont des coordonnées entières.

Les droites (AB) et (CD)sont-elles perpendiculaires ?



# Automatisme 9 thème : Application du produit scalaire

Soit 
$$\overrightarrow{ABC}$$
 un triangle tel que  $\overrightarrow{AB} = 4$ ,  $\overrightarrow{AC} = 5$  et  $\overrightarrow{BAC} = 60^{\circ}$ .

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \dots$$

# Automatisme 10 thème : Application du produit scalaire

### QCM une seule réponse exacte

ABCD est un rectangle de centre O tel que AB = 4 et AD = 2.



$$\overrightarrow{CO} \cdot \overrightarrow{AB}$$
 vaut :

(a) 8

$$(c) - 4\sqrt{5}$$

# Automatisme 11 thème : Application du produit scalaire

#### **VRAI ou FAUX**

ABCD est un carré de centre O et de côté 1. Indiquer si les égalités suivantes sont vraies ou fausses.

$$\overrightarrow{OB} \cdot \overrightarrow{OD} = 0$$

$$\overrightarrow{BD} = 0$$

$$\overrightarrow{AC} \cdot \overrightarrow{AD} = 1$$



# Automatisme 12 thème : Application du produit scalaire

Calculer la valeur exacte de la longueur BC.



# Automatisme 13 thème : Application du produit scalaire

### QCM une seule réponse exacte

A et B sont deux points distincts.

L'ensemble des points M vérifiant  $\overrightarrow{AB} \cdot \overrightarrow{BM} = 0$ :

- a est une droite;
- **b** est un cercle;
- c n'est ni une droite ni un cercle.

# Automatisme 14 thème : Application du produit scalaire

### QCM une seule réponse exacte

A et B sont deux points distincts.

L'ensemble des points M vérifiant  $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0$ :

- a est une droite;
- **b** est un cercle;
- (c) n'est ni une droite ni un cercle.