

NOTATKA ROBOCZA

Sterowniki i Regulatory

Zajęcia nr 7 – liczenie nastaw PID, regulacja PID dmuchawy, web server

Skład grupy:	Aleksander Łyskawa 275462 Daniel Malczyk 275424
Wydział i kierunek studiów:	W12N, Automatyka i Robotyka
Termin zajęć:	wtorek 17:05 – 18:35
Prowadzący:	dr inż. Włodzimierz Solnik
Data:	19.11.2024

1 Web Server na sterowniku s7-1200

Na początku zajęć utworzono oraz skonfigurowano web server na sterowniku Siemens SI-MATIC S7-1200. Udostępniono użytkownikowi możliwość monitorowania oraz modyfikacja zmiennych wejściowych bloczka PID - ManualEnable oraz ManualValue.

Rysunek 1: blok PID ze zmiennymi użytymi w web serwerze

Rysunek 2: Aktywacja serwera

Rysunek 3: Konfiguracja możliwości użytkownika serwera

Rysunek 4: Konfiguracja możliwości użytkownika serwera

2 Ręczne wyliczenie nastaw PID

Na podstawie instrukcji obliczono nastawy PID -zgodnie z wyznaczaniem parametrów odpowiedzi skokowej obiektu koniecznych do obliczenia parametrów modelu wg Strejca.

Rysunek 5: Model do wyliczenia parametrów

n	T2/T	T1/T	T1/T2	ti/T	Фі
1	1	0	0	0	0
2	2,718	0,282	0,104	1	0,264
3	3,695	0,805	0,218	2	0,323
4	4,463	1,425	0,319	3	0,353
5	5,119	2,100	0,410	4	0,371
6	5,699	2,811	0,493	5	0,384
7	6,226	3,549	0,570	6	0,394
8	6,711	4,307	0,642	7	0,401
9	7,164	5,081	0,709	8	0,407
10	7,590	5,869	0,773	9	0,413

Rysunek 6: Tabela do wyznaczenia parametrów

	Кр	Tn	Tv
Regulator PI			
$R(s) = K_p (1 + \frac{1}{T_n s})$	$\frac{1}{4k} \frac{n+2}{n-1}$	$\frac{T}{3}(n+2)$	
Regulator PID			
$R(s) = K_p (1 + \frac{1}{T_n s} + T_v s)$	$\frac{1}{16k} \frac{7n+16}{n-2}$	$\frac{T}{15}(7n+16)$	$T\frac{n^2+4n+3}{7n+16}$

Rysunek 7: Wzory do wyliczenia parametrów

Rysunek 8: Model oraz wyliczenia z zajęć

Wyliczone parametry:

- Kp = 0.65
- Tn=4,20
- Tv=1,19
- n=7

3 Testowanie parametrów

Niestety nie wystarczyło czasu na przetestowanie wyliczonych przez naszą grupę parametrów. Przedstawiam zdjęcia z zachowania układu regulacji z nastawami dobranymi przez kolegów.

Rysunek 9: Nastawy PID

Rysunek 10: Odpowiedź skokowa

Rysunek 11: Reakcja na zakłócenia

4 Wnioski

- Ręcznie obliczone nastawy PID dają zadowalające wyniki.
- Web serwer jest przydatną funkcjonalnością sterowników S7-1200.
- Web serwer pozwala na kontrolę układu automatyki przez użytkowników sieci w zakresie, na jaki im pozwolimy.