```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]: df=pd.read_csv("19_nuclear_explosions.csv")
    df.fillna(0,inplace=True)
    df
```

Out[2]:

ody	Data.Magnitude.Surface	Location.Cordinates.Depth	Data.Yeild.Lower	Data.Yeild.Upper	Data.Pur
0.0	0.0	-0.10	21.0	21.0	
0.0	0.0	-0.60	15.0	15.0	Cc
0.0	0.0	-0.60	21.0	21.0	Cc
0.0	0.0	-0.20	21.0	21.0	
0.0	0.0	0.03	21.0	21.0	
5.3	0.0	0.00	3.0	12.0	
5.3	0.0	0.00	0.0	20.0	
0.0	0.0	0.00	0.0	1.0	
0.0	0.0	0.00	0.0	35.0	
5.0	0.0	0.00	0.0	18.0	

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2046 entries, 0 to 2045
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	WEAPON SOURCE COUNTRY	2046 non-null	object
1	WEAPON DEPLOYMENT LOCATION	2046 non-null	object
2	Data.Source	2046 non-null	object
3	Location.Cordinates.Latitude	2046 non-null	float64
4	Location.Cordinates.Longitude	2046 non-null	float64
5	Data.Magnitude.Body	2046 non-null	float64
6	Data.Magnitude.Surface	2046 non-null	float64
7	Location.Cordinates.Depth	2046 non-null	float64
8	Data.Yeild.Lower	2046 non-null	float64
9	Data.Yeild.Upper	2046 non-null	float64
10	Data.Purpose	2046 non-null	object
11	Data.Name	2046 non-null	object
12	Data.Type	2046 non-null	object
13	Date.Day	2046 non-null	int64
14	Date.Month	2046 non-null	int64
15	Date.Year	2046 non-null	int64
dtvn	os: $float64(7)$ int64(3) object	+(6)	

dtypes: float64(7), int64(3), object(6)

memory usage: 255.9+ KB

In [4]: df.describe()

Out[4]:

tes.Longitude	Data.Magnitude.Body	Data.Magnitude.Surface	Location.Cordinates.Depth	Data.Yeild.L
2046.000000	2046.000000	2046.000000	2046.000000	2046.00
-36.015037	2.145406	0.356696	-0.490829	208.44
100.829355	2.625453	1.203569	10.981072	1641.96
- 169.320000	0.000000	0.000000	-400.000000	0.00
-116.051500	0.000000	0.000000	0.000000	0.00
-116.000000	0.000000	0.000000	0.000000	0.00
78.000000	5.100000	0.000000	0.000000	20.00
179.220000	7.400000	6.000000	1.451000	50000.00
•				>

In [5]: sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x28249786640>

In [7]: sns.displot(df['Data.Yeild.Upper'])

Out[7]: <seaborn.axisgrid.FacetGrid at 0x2825b6faaf0>

In [8]: df1=df.drop(['WEAPON SOURCE COUNTRY'],axis=1)
df1

Out[8]:

	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Da
0	Alamogordo	DOE	32.54	-105.57	
1	Hiroshima	DOE	34.23	132.27	
2	Nagasaki	DOE	32.45	129.52	
3	Bikini	DOE	11.35	165.20	
4	Bikini	DOE	11.35	165.20	
2041	Lop Nor	HFS	41.69	88.35	
2042	Pokhran	HFS	27.07	71.70	
2043	Pokhran	NRD	27.07	71.70	
2044	Chagai	HFS	28.90	64.89	
2045	Kharan	HFS	28.49	63.78	
2046 rows × 15 columns					

In [9]: sns.heatmap(df1.corr())

Out[9]: <AxesSubplot:>

In [10]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

```
In [11]: y=df['Data.Yeild.Upper']
          x=df1.drop(['WEAPON DEPLOYMENT LOCATION', 'Data.Source', 'Data.Purpose', 'Data.Nam
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
          print(x_train)
                Location.Cordinates.Latitude Location.Cordinates.Longitude \
          1315
                                         49.920
          407
                                          2.000
                                                                         -157.00
                                        -22.000
                                                                         -139.00
          761
          1030
                                        -22.000
                                                                         -139.00
          131
                                        50.000
                                                                            78.00
          . . .
                                            . . .
                                                                              . . .
          1242
                                         37.200
                                                                         -116.20
          202
                                         11.350
                                                                          165.20
          98
                                         50.000
                                                                            78.00
          1874
                                         37.225
                                                                         -116.08
          482
                                         16.450
                                                                         -169.32
                Data.Magnitude.Body Data.Magnitude.Surface Location.Cordinates.Depth
          1315
                                  5.8
                                                            6.0
                                                                                        0.000
          407
                                  0.0
                                                            0.0
                                                                                        0.000
          761
                                  0.0
                                                            0.0
                                                                                        0.000
          1030
                                  0.0
                                                            0.0
                                                                                        0.000
          131
                                  0.0
                                                            0.0
                                                                                        0.000
          . . .
                                  . . .
                                                             . . .
                                                                                          . . .
                                  5.0
          1242
                                                            0.0
                                                                                        0.000
          202
                                  0.0
                                                            0.0
                                                                                       -0.001
          98
                                  0.0
                                                            0.0
                                                                                        0.000
          1874
                                  0.0
                                                            0.0
                                                                                        0.000
          482
                                  0.0
                                                            0.0
                                                                                        0.000
                                                       Date.Day
                                                                   Date.Month
                Data.Yeild.Lower Data.Yeild.Upper
                                                                                Date.Year
          1315
                                                150.0
                              20.0
                                                               29
                                                                            10
                                                                                      1975
          407
                              50.0
                                                 50.0
                                                               11
                                                                             5
                                                                                      1962
                               0.0
                                                200.0
                                                                             7
          761
                                                               19
                                                                                     1966
                                                                             5
          1030
                               0.0
                                               1000.0
                                                               22
                                                                                      1970
                                                                3
                                                                             4
          131
                              42.0
                                                 42.0
                                                                                      1957
          . . .
                               . . .
                                                  . . .
                                                                                      . . .
                                                              . . .
                                                                           . . .
          1242
                               0.0
                                                 20.0
                                                              19
                                                                             6
                                                                                      1974
          202
                                               1360.0
                                                                             5
                            1360.0
                                                               11
                                                                                      1958
          98
                              14.0
                                                 14.0
                                                               16
                                                                             3
                                                                                      1956
          1874
                               0.0
                                                 20.0
                                                                3
                                                                             2
                                                                                     1987
                                                                2
          482
                                                 75.0
                              75.0
                                                                            10
                                                                                      1962
          [1432 rows x 10 columns]
In [12]:
         model=LinearRegression()
          model.fit(x_train,y_train)
          model.intercept_
```

```
Out[12]: -3.956301952712238e-11
```

```
In [13]: coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
coeff
```

Out[13]:

	Coefficient
Location.Cordinates.Latitude	1.270081e-14
Location.Cordinates.Longitude	-2.864375e-14
Data.Magnitude.Body	2.073151e-13
Data.Magnitude.Surface	1.605360e-13
Location.Cordinates.Depth	1.811745e - 14
Data.Yeild.Lower	6.161738e - 15
Data.Yeild.Upper	1.000000e+00
Date.Day	7.631070e-14
Date.Month	-5.972978e-14
Date.Year	1.812179e-14

```
In [14]: prediction=model.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[14]: <matplotlib.collections.PathCollection at 0x2826015dbb0>


```
In [15]: model.score(x_test,y_test)
```

Out[15]: 1.0

```
In [16]: from sklearn.linear_model import Ridge,Lasso
```

```
In [17]: rr = Ridge(alpha=10)
    rr.fit(x_train,y_train)
```

Out[17]: Ridge(alpha=10)

```
In [18]: |rr.score(x_test,y_test)
Out[18]: 1.0
In [19]:
         la = Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[19]: Lasso(alpha=10)
In [20]: la.score(x_test,y_test)
Out[20]: 0.999999927707098
In [21]:
         from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
         print(en.coef_)
         print(en.intercept )
         print(en.predict(x_test))
         print(en.score(x_test,y_test))
         from sklearn import metrics
         print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,prediction))
         print("Mean Squared Error:", metrics.mean squared error(y test, prediction))
         print("Root Mean Squared Error:",np.sqrt(metrics.mean squared error(y test,pred
           υ. υυυυυυυυς του υ. υυυυυυυυς του ]
         -0.000947414896245391
                                           1.99917400e+01 1.49987197e+02
         [ 1.49980247e+03 2.00023813e+01
           1.49983902e+02 1.49971766e+01
                                           2.00023870e+01 1.99917328e+01
           1.40064758e+01 -4.22391883e-03
                                           7.99077040e+00 -1.22346316e-03
           1.49976549e+02 2.00023999e+01
                                           1.99906671e+01 4.90578450e+00
           2.00023758e+01 1.99979618e+02 1.49987222e+02 2.00036368e+01
                                           2.00023758e+01 6.01233382e-03
           5.99649298e+00 1.49976512e+02
           1.01061795e+01 3.94806618e-01
                                           1.99917290e+01 2.00023868e+01
           1.99979605e+02 8.09963156e+01
                                           1.99979605e+02 2.34794464e-01
           2.00023758e+01 1.59012911e+03
                                           1.10062479e+01 2.00023857e+01
           8.49668288e+00 1.49976502e+02 2.00023758e+01 9.89552825e+00
           3.99990757e+01 2.00023759e+01
                                           9.99263012e+00
                                                           1.49976501e+02
           2.09915907e+01 1.99917477e+01
                                           1.99917383e+01 2.99209839e+00
           2.00023758e+01 1.99930667e+01
                                           1.99979606e+02 1.99930298e+01
           1.99917526e+01 2.00023785e+01
                                           5.35746322e-03 2.34794464e-01
                                           2.00036203e+01 2.00023758e+01
           1.99917400e+01 2.00023758e+01
           1.99917252e+01 2.55009533e+02
                                           2.00023758e+01 1.19662179e+00
           1.09909983e+01 1.99916832e+01
                                           1.69492467e+00 1.99917509e+01
           1.20063238e+01
                           1.99979607e+02
                                           1.49976508e+02
                                                           1.60011767e+03
         import pickle
In [24]:
         filename='prediction'
         pickle.dump(model,open(filename,'wb'))
         model = pickle.load(open(filename, 'rb'))
         real = [[10,20,30,40,50,60,70,80,90,100],[12,13,21,43,12,12,34,53,56,12]]
         result = model.predict(real)
         result
Out[24]: array([70., 34.])
```

In []: