Matgeo Presentation

Arjun Pavanje, EE24BTECH11005, IIT Hyderabad.

January 9, 2025

Table of Contents

Problem

Solution

Theoretical Solution

Matrix Equation

Points of Intersection

Area

Codes

Problem

Problem Statement

Solve the differential equation

$$(y''')^2 + (y'')^3 + (y')^4 + (y)^5 = 0$$
 (2.1)

with initial conditions

$$y''(x) = 0, y'(x) = 0, y(x) = 1$$
 (2.2)

Solution

Theoretical Solution

An exact theoretical solution using known methods of solving differential equations was not found; however, it can be approximated to a pretty good degree of precision. Euler's method will be used to obtain a plot of the solution

By first principle of derivatives,

$$y'(t) = \lim_{h \to 0} \frac{y(t+h) - y(t)}{h}$$
 (3.1)

$$y(t + h) = y(t) + hy'(t)$$
 (3.2)

Let y^i be the i^{th} derivative of the function, m be the order of the differential equation. Set $y_1=y,y_2=y^1,y_3=y^2\dots$ so on. We obtain the system,

$$\begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ y_{m-1}' \end{pmatrix} = \begin{pmatrix} y_2 \\ y_3 \\ \vdots \\ y_m \end{pmatrix}$$

$$(3.3)$$

$$y'_m = f(x, y_1, y_2, \dots, y_m)$$
 (3.4)

Generalizing the system according to Euler's form

$$\begin{pmatrix} y_{1}(x+h) \\ \vdots \\ y_{m-1}(x+h) \\ y_{m}(x+h) \end{pmatrix} = \begin{pmatrix} y_{1}(x) \\ \vdots \\ y_{m-1}(x) \\ y_{m}(x) \end{pmatrix} + h \begin{pmatrix} y_{2}(x) \\ \vdots \\ y_{m}(x) \\ f(x,y_{1},y_{2},\dots,y_{m}) \end{pmatrix}$$
(3.5)
$$\mathbf{y}(x+h) = \mathbf{y}(x) + h \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 & \frac{f(x,y_{1},y_{2},\dots,y_{m})}{y_{m}(x)} \end{pmatrix} \mathbf{y}(x)$$

$$\mathbf{y}(x+h) = \begin{pmatrix} 1 & h & 0 & 0 & \dots & 0 & & 0 \\ 0 & 1 & h & 0 & \dots & 0 & & 0 \\ 0 & 0 & 1 & h & \dots & 0 & & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & & h \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 + \frac{f(x, y_1, y_2, \dots, y_m)}{y_m(x)} \end{pmatrix} \mathbf{y}(x) \quad (3.7)$$

Discretizing the steps we get,

$$\mathbf{y}_{n+1} = \begin{pmatrix} 1 & h & 0 & 0 & \dots & 0 & & 0 \\ 0 & 1 & h & 0 & \dots & 0 & & 0 \\ 0 & 0 & 1 & h & \dots & 0 & & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & & h \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 + \frac{f(x, y_1, y_2, \dots, y_m)}{(y_m)_n} \end{pmatrix} \mathbf{y}_n$$
(3.8)

Where,

$$\mathbf{y}_{n} = \begin{pmatrix} y_{1} (x_{n}) \\ y_{2} (x_{n}) \\ \vdots \\ y_{m} (x_{n}) \end{pmatrix}$$

$$(3.9)$$

$$x_{n+1} = x_n + h (3.10)$$

Smaller values of step size h will give more precise plots. We obtain points to plot by iterating repeatedly.

Given differential equation can be written as,

$$y'''(x) = \pm \sqrt{-\left((y''(x))^3 + (y'(x))^4 + (y(x))^5\right)}$$
(3.11)

Here, order m is 3, there are two possible functions so we need to take two cases. On substituting given initial conditions we see that we only get valid values for $y'''(x) = +\sqrt{-\left((y'')^3 + (y')^4 + (y)^5\right)}$. In the other case we observe that we get imaginary values.

$$\mathbf{y}_{n+1} = \begin{pmatrix} 1 & h & 0 \\ 0 & 1 & h \\ 0 & 0 & 1 + \frac{\sqrt{-((y_3)_n^3 + (y_2)_n^4 + (y_1)_n^5)}}{(y_3)_n} \end{pmatrix} \mathbf{y}_n$$
(3.12)

Note, here the vector \mathbf{y} is not to be confused with y_i which represents a function, namely the $i+1^{th}$ derivative of y(x) Below is the plot for given curve based on initial conditions, obtained by iterating through the above equation.

