浙江理工大学 2020—2021 学年第 一 学期

《编译原理(双语)》期末试卷(A)卷

(试题共5页)

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名:	类号.	班级:	
から八型つ・	77;		

- 1. (10 points) Write English description for the languages generated by following regular expression:
- 1) 0+(0|1)1+

2) 0*(100*)*1*

- (12 points)
- a. Please check out which strings can be generated by the regular expression (ab|b)*cc? abbc, abab, bcc, babcc, aaabc
- b. Please check out which strings can be generated by the regular expression (b | a)b+(ba)*? aba, abb, ababa, aab, bbb
- c. please determine which strings can be accepted by the NFA. aab, bab, bbab, aaabb, abababab

 (12 points) Consider the following regular expression from the alphabet (a,b): b*a bb Use Thompson's construction to make an NFA from the regular expression (show it as a state diagram).
b, Use subset construction to create a DFA equivalent to the NFA you gave for part A.
4. (6 points) Given the grammar:
E→T E+T E-T
$T \rightarrow F T^*F T/F$
$F \rightarrow (E) i$
Please list all non-terminals and terminals in this grammar, and give the start symbol of the grammar.
5. (10 points) Given the grammar
$exp \rightarrow exp + term \mid exp - term \mid term$
term → term * factor term / factor factor

- 6. (25 point) Consider the following grammar:
- $S \rightarrow Sb$ $S \rightarrow Ab$ $S \rightarrow b$ $A \rightarrow Aa$ $A \rightarrow a$
- a. remove the left recursion. (5 point)
- b. Construct First and Follow sets for the nonterminals of the resulting grammar. (6 point)
- c. Construct the LL(1) parsing table for the resulting grammar. (6 point)
- d. show the action of LL(1) parser that used the parsing table to recognize the following string: aaabb. (8 point)

number→digit number | digit

digit $\rightarrow 0|1|2|3|4|5|6|7|8|9$

8. (15 point)Consider the following grammar with numbered productions

- 1) E --> E x T
- 2) E --> E x
- 3) E -> y T
- 4) T --> y T
- 5) T \rightarrow z

Construct the SLR parsing tables for the grammar. In particular, show the following:

- a. The augmented grammar
- b. The DFA to recognize viable prefixes, including the set of items for each state.
- c. The action and goto tables

浙江理工大学 2020—2021 学年第一学期 《编译原理(双语)》 期末试卷(A)卷标准答案和评分标准

1.Sol: (10 points)

1) 001, 011, 0001, 0011; any string of length 3 or greater that is one or more 0's are followed by one or more 1's.

2) 0, 1, 01, 0101; any string that has no substring 110

2. Sol:(12 points)

- a) abbe abab bcc babcc anabe
- b) aba, abb, ababa, aab, bbb
- c) anb bab- bbab aaabb abababab

3. Sol: (12 points)

Thompson's Construction

part B. Use subset construction to create a DFA equivalent to the NFA you gave for part A. Show your work. Show it as a state table, using the sets from the NFA as the names for the new states, as we did in examples in lecture.

Start state: [1]

$$mov(3 4 5,b)=[4]$$

ε closure[4]=[345]

		A	В
L	[12357]	[6 10]	[3458]
M*	[6 10]		-
N	[3458]	[6 10]	[3459 10]
0	[3459 10]	[6 10]	[345]
P	[345]	[6 10]	[345]

^{*}Indicates Final state

JE DIAGRAM

4. Solu: (6 points)

5. 10 points

The leftmost derivations for the expression 3*(6-5) and 16*6/4:

Exp => term * factor => factor * factor => num * (num * (exp) => num*(exp - term) => num*(factor - term) => num*(num - term) => num*(num - factor)=>num*(num - factor)

6.solu:

for the grammar G:

Rowritten the grammar as:

- a) S > bs' s > Abs' s' > bs' s' > c A > aA' A' > aA' A' > c
- b) First and follow sets

S
$$\rightarrow$$
 First(S)={ b, a } Follow(S)={ \$ }
S' \rightarrow First(S')={ b, \(\epsilon\)} Pollow(S')={ \$ } }
A \rightarrow First(A)={ a } Follow(A)={ b }
A' \rightarrow First(A')={ a, \(\epsilon\)} Follow(A')={ b } }

c) LL(1) Parsing table:

	a	b	\$
S	s→Aps.	S→pS,	
S'		s,→ps,	S'→ t
A	A→aA'		
A'	A' → a A'	A'→ ε	

d)

Parsing stack	Input string	Action
\$ S	aaabb\$	S→AbS'
\$ S'bA	aaabb\$	A→aA'
\$S'bA'a	aaabb\$	match
\$ S'bA'	aabb\$	A→aA'
\$S'bA'a	aabb\$	match
\$ S'bA'	abb\$	A→aA'
\$ S'bA'a	abb\$	match
\$ S'bA'	bb\$	$A' \rightarrow \epsilon$
\$ S*b	bb\$	match
\$ S'	b\$	S'→bS'
\$ S ⁻ b	bS	match
\$ S'	\$	accept

7. sol:

Grammar Rule	Semantic Rules
Numberl -> number2 digit	number1.val = number2.val*10+digit.val
Number > digit	number.val= digit.val
र्वाञ्च →0	digit.val = 0
ம்ஹ்→1	digit val = 1.
digit→2	digit.val = 2
dignt→3	digit val = 3.
<u>ஞ்</u> ன்→4	digit.val = 4
र्क्षा → 5	digit.val = 5
dign→6	digit.val = 6.
digit→7	digit val = 7.
<u>dign</u> →8	digit val = 8
dign→9	digit val = 9-

But here is an LALR(I) DFA for the grammar. Because state 8 contains a reduce-reduce conflict, the grammar is not LALR(I).

But here is an LALR(1) DFA for the grammar. Because state 8 contains a reduce-reduce conflict, the grammar is not LALR(1).

