Kaki Ramesh

Specialize in Industrial Automation
BITS Pilani, Hyderabad Campus

∠ <u>kakir39@gmail.com</u>

In LinkedIn Profile

EDUCATION

•Purdue University 2024 – Present

Visiting Scholar, West Lafayette

·BITS Pilani, Hyderabad Campus 2020 - Present

Ph.D, Hyderabad

·VNR Vignan Jyothi Institute of Engineering and Technology 2020

Master of Technology, Hyderabad.

·St, Martins Engineering College

Bachelor of Technology, Hyderabad.

·Govt. Polytechnic College, Narsapur

Diploma, Hyderabad

Experience

·Visiting Scholar, Purdue University

2024 – Present

Augmented Reality assembly tasks using simulation software

 Addressing industrial challenges by resolving assembly area issues. Creating a versatile system to provide realtime guidance and instructions for assembly tasks. The process begins with workspace simulation, Analysis on HCI & Robotics and then the developed model is integrated into augmented reality platforms.

Nexa Digital Engineering Services

Jan - Apr 2024

Process extraction from PID Drawings

·Senior Research Fellow, BITS Pilani, Hyderabad Campus

Oct 2022-Present

 $Artificial\ Intelligence-based\ Assembly\ Areas\ Inspection\ (Quality\ Assurance)\ detection$

- I led a groundbreaking R&D project in aerospace assembly component alignment. Our integrated image acquisition system harmonized deep learning, image processing, and machine learning for precise object detection and data segmentation. I converted pixel measurements into real-world dimensions for comprehensive analysis, showcasing innovation and precision.

·Junior Research Fellow, BITS Pilani, Hyderabad Campus

Oct 2020-Sep 2022

Computer Vision-based Assembly Components Features Identification

- Led the development of a high-quality image acquisition system to capture assembly component images, overcoming challenges like shadow and reflection. Achieved 100% accurate component classification with deep learning and conducted precise dimension calculations. Demonstrated a research-driven approach to real-world mechanical component analysis.

PROJECTS

-Machine Vision-Based Automatic Assembly Component Feature Identification, Position Identification, and Alignment Systems in Assembly Area for Aerospace and Automobile Vehicles oct 2020 – July 2024

Automated identification of assembly components, their positions, and alignments using computer vision. Overcame challenges like shadows and reflections for accurate assembly component identification.

- Tools & technologies used: Computer Vision, Deep Learning, CNN, ResNet50, YOLOv5, Image Processing, OpenCV, Python, pytorch, TensorFlow, TensorBoard, Ultralytics, GUI, Django, MongoDB, RaspberryPI.
- Designed image acquisition setups, curated datasets, employed deep learning techniques, and developed image processing algorithms. Also contributed to system optimization and documentation.
- Visualization experiment and machine learning modeling for falling-film systems

Feb - Mar 2022

 $\label{lem:eq:local_explored} Explored flow characteristics in falling-film columns above horizontal tubes using machine learning and image processing to understand fluid dynamics.$

- Tools & technologies used: Computer Vision, Machine Learning, Regression algorithms, Image Processing, OpenCV, Python, Excel, High-Speed Camera, Data Analysis Tools.
- •Thermal conductivity prediction of titania-water nanofluid: A case study using different machine learning algorithms

 Sep-Oct 2021

Predicted thermal conductivity of a titania-water nanofluid using five machine learning algorithms, including the introduction of nanoparticle shape as a parameter.

- Tools & technologies used: Machine Learning, Neural Network, Regression algorithms, Python, Statistical

·Machine Learning Approach for Surface Defects Identification of Shielded Metal Arc Welding

Jan 2019-May 2020

Captured images of shielded metal arc welding (SMAW) weldments, applied advanced image processing techniques, and built machine learning models to classify surface defects.

- Tools & technologies used: Machine Learning, Neural Networks, Image Processing, OpenCV, Python, Statistical Analysis, Data Preprocessing.

TECHNICAL SKILLS and Interests

Engineering Tools: AutoCAD, CATIA, CNC Train, Master CAM, FLEXSIM, Automation Studio, Unity, AR

Programming Languages: Python, C/C++ (Basic knowledge of C language)

AI and Machine Learning: Computer Vision, Artificial Intelligence, Machine Learning, Deep Learning, GenAI

Web Development: GUI, Django, GitHub **Databases:** MongoDB, SQL, Postgres

Deep Learning Frameworks: Pytorch, Tensorflow, Tensorboard

Computer Vision Tools: OpenCV, Matplotlib **Operating Systems:** Linux, Windows, MAC

Cloud Platforms: Microsoft Azure **Version Control:** GitHub, GitLab

Software Proficiency: MS-Office Applications (MS Word, MS Powerpoint, MS Excel)

ACHIEVEMENTS

- Qualified in GATE 2018
- DIAT Online Certification Course on AI and ML
- NPTEL Course Certification on JOY OF COMPUTING USING PYTHON
- Trained on Hyperform software in Altair HyperWorks at Pune
- Internship in HMT Praga Tools Limited
- Selected by AIRBUS GmbH, Germany, under the scheme of IGSTC Industrial Fellowship
- Selected by PURDUE University, US, under the scheme of Overseas Visiting Doctoral Fellowship

PUBLICATIONS AND PATENTS

Conference Publications [2]

- **Kaki, Ramesh**, Samarth Soni, Sandip Deshmukh, Tathagata Ray, and Chandu Parimi. "A Novel Approach to Generate Dataset for Object Detection in Assembly Lines." DOI: https://www.academia.edu/download/111485969/251.pdf
- Ramesh, K., E. V. Ramana, L. Srikanth, C. Sri Harsha, and N. Kiran Kumar. "Identification of SMAW Surface Weld Defects Using Machine Learning." In Recent Advances in Materials Processing and Characterization: Select Proceedings of ICMPC 2021, pp. 339-350. Singapore: Springer Nature Singapore, 2022. DOI: https://doi.org/10.1007/978-981-19-5347-7 28

Journal Publications [6]

- **Ramesh, Kaki**, Faisel Mushtaq, Sandip Deshmukh, Tathagata Ray, Chandu Parimi, Ali Basem, and Ammar Elsheikh. "An investigation of deep learning approaches for efficient assembly component identification." Beni-Suef University Journal of Basic and Applied Sciences 13, no. 1 (2024): 79. DOI: https://doi.org/10.1186/s43088-024-00537-2
- Jain, Toshit, Faisel Mushtaq, **Kaki Ramesh**, Sandip Deshmukh, Tathagata Ray, Chandu Parimi, Praveen Tandon, and Pramod Kumar Jha. "Development of Machine Vision Approach for Mechanical Component Identification based on its Dimension and Pitch." arXiv preprint arXiv:2310.01995 (2023). DOI: https://doi.org/10.48550/arXiv.2310.01995
- Kandukuri, Prudviraj, **Ramesh Kaki**, Sandip Deshmukh, and Supradeepan Katiresan. "Visualization experiment and machine learning modeling for falling-film systems." Chemical Engineering Research and Design (2023). DOI: https://doi.org/10.1007/978-981-19-5347-7_28
- Mushtaq Faisel, Kaki Ramesh, Sandip Deshmukh, Tathagata Ray, Chandu Parimi, Praveen Tandon, and Pramod Kumar Jha. "Nuts&bolts: YOLO-v5 and image processing based component identification system." Engineering Applications of Artificial Intelligence 118 (2023): 105665. DOI: https://doi.org/10.1016/j.engappai.2022.105665
- Sharma, K. Ramesh, R. Parameshwaran, and Sandip S. Deshmukh. "Thermal conductivity prediction of titania-water nanofluid: A case study using different machine learning algorithms." Case Studies in Thermal Engineering 30 (2022): 101658. DOI: https://doi.org/10.1016/j.csite.2021.101658
- **K. Ramesh**, K. Ruthvik Reddy, E. V. Ramana & N. Kiran Kumar "Machine Learning Approach for Surface Defects Identification of Shielded Metal Arc Welding" International Journal of Mechanical and Production Engineering Research and Development 10 (2020): 8415-8424

Patents [2]

- "Machine Vision Based Assembly Line Components Identification System" Published in India (*Patent No. 202111054493*).
- "Assembly Inspection Method and System" Filed in India (*Patent No. 202211031628*).