ACÁMICA

Agenda

Repaso: Numpy, bitácora y challenge.

Explicación: Máscara, Pandas.

Break.

Hands-on training: Pandas

Cierre.

TEMA DEL DÍA

Estadística y Pandas

Hoy repasaremos algunos conceptos estadísticos, en particular Estadística Descriptiva. Luego, veremos cómo hacemos en Python para trabajar con conjuntos de datos usando Pandas.

REPASO

Repaso del encuentro pasado

Numpy: nuestra primer librería

Nuestra primera librería:

- Fundamental para hacer cálculo numérico con Python
- Muy buena <u>documentación</u>
- Como muchas librerías, trae una estructura de datos propia: los arrays o arreglos.

Numpy: arrays

array: a primer orden, es como una lista. De hecho, se pueden crear a partir de una lista.

```
Importamos la librería
(numpy) y le ponemos un
nombre (np)

[1]: import numpy as np
arreglo = np.array([1,2,3,4,5])
arreglo
[1]: array([1, 2, 3, 4, 5])

[2]: print(arreglo)
[1 2 3 4 5]
```

Numpy: arrays

¿Qué hacen cada una de estas instrucciones?

- np.arange()
- np.linspace()
- np.zeros()
- np.ones()

¿Qué hacen cada una de estas instrucciones?

- np.arange()
- np.linspace()
- np.zeros()
- np.ones()

```
[2]: arreglo = np.arange(3,21,2)
arreglo

[2]: array([ 3,  5,  7,  9, 11, 13, 15, 17, 19])
```

10

¿Qué hacen cada una de estas instrucciones?

- np.arange()
- np.linspace()
- np.zeros()
- np.ones()

¿Qué hacen cada una de estas instrucciones?

- np.arange()
- np.linspace()
- np.zeros()
- np.ones()

¿Qué hacen cada una de estas instrucciones?

- np.arange()
- np.linspace()
- np.zeros()
- np.ones()

¿Qué cambia?

Operaciones lógicas

Un tipo importante de operación en programación son las **operaciones lógicas**. Estas pueden realizarse sobre **variables booleanas**.

```
In [27]: variable_1 = True
    variable_2 = False
    print(variable_1 or variable_2)
    True

In [28]: print(not(variable_1))
    False
```

El resultado es también una **variable booleana**.

	858	5000 BB00000
Α	В	A & B
False	False	False
False	True	False
True	False	False
True	True	True
		·
Α	В	A or B
False	False	False
False	True	True
True	False	Ture
True	True	True
<u> </u>		
Α	A!	
False	True	
True	False	
True A False	True A! True	

CONDICIONALES - if / elif / else

Además del **if** y el **else**, uno puede agregar más condiciones a través de condicional **elif** (else if). De esta forma se puede agregar un número arbitrario de condiciones.

```
In [80]: edad = 20

if edad < 18:
    print('Esta persona tiene menos de 18 años')
elif edad > 18:
    print('Esta persona tiene mas de 18 años')
else:
    print('Esta persona tiene justo 18 años')
```

Esta persona tiene mas de 18 años

REPASO

EJERCICIO DEL ENCUENTRO PASADO

¡Muéstranos qué hiciste!

¿Qué cosas te costaron más del ejercicio? ¿Cómo las resolviste?

¿Cuál el principal aprendizaje que te llevas?

Si tuvieras que hacerle alguna recomendación a alguien que va a hacer el ejercicio por primera vez, ¿qué le dirías?

REPASO

EJERCICIO DEL ENCUENTRO PASADO

¿Alguien hizo algo diferente que quiera mostrar?

Repaso de la bitácora

REPASO

TEMAS BITÁCORA

Probabilidad y Estadística

Probabilidad y Estadística

Tenemos dos dados. Suponemos que uno está cargado. ¿Cómo nos damos cuenta cuál?

Probabilidad y Estadística

Tenemos dos dados. Suponemos que uno está cargado. ¿Cómo nos damos cuenta cuál?

Tipos de valores estadísticos:

Media: es el valor promedio estándar (lo que siempre conocimos por promedio).

Mediana: es el valor medio exacto en un conjunto de datos ordenados. Es decir, el 50% de los valores son menores que la media y el 50% son mayores.

Moda: el valor con mayor frecuencia en un conjunto de datos.

Ejemplo

Muestra: {5, 6, 7, 6, 7, 8, 6, 5, 6}

Media = 6.22

Mediana = 6
 5, 5, 6, 6, 6, 6, 7, 7, 8

Moda = 6
 5, 5, 6, 6, 6, 6, 7, 7, 8

Mide la variabilidad o dispersión de un conjunto de números (muestra).

$$Var = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

Mide la variabilidad o dispersión de un conjunto de números (muestra).

$$Var = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$
 Promedio de la muestra

Mide la variabilidad o dispersión de un conjunto de números (*muestra*).

Mide la variabilidad o dispersión de un conjunto de números (*muestra*).

El símbolo de sumatoria nos indica que debemos sumar sobre todos los valores del conjunto

Mide la variabilidad o dispersión de un conjunto de números (muestra).

El símbolo de sumatoria nos indica que debemos sumar sobre todos los valores del conjunto

Cantidad de elementos en la muestra

Veamos un ejemplo:

Muestra: {5, 10, 8, 20}

- Nes 4
- El promedio, \bar{X} es 10,75

$$Var = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}$$

$$Var = \frac{(5-10.75)^2 + (10-10,75)^2 + (8-10,75)^2 + (20-10,75)^2}{4-1}$$

REPASO

CHALLENGE BITÁCORA

- 1. ¿Qué es cuartil?¿Y un percentil?¿Por qué hay variabilidad en los datos?
- 2. ¿Resolviste el challenge del notebook?

REPASO

CHALLENGE BITÁCORA

¿Alguien hizo algo diferente que quiera mostrar?

Máscaras

Máscaras - Filtros Booleanos

```
[66]: arreglo2d = np.arange(30).reshape(6,5) arreglo2d

[66]: array([[ 0,  1,  2,  3,  4],  [ 5,  6,  7,  8,  9],  [10, 11, 12, 13, 14],  [15, 16, 17, 18, 19],  [20, 21, 22, 23, 24],  [25, 26, 27, 28, 29]])
```

Máscaras - Filtros Booleanos

```
[66]: arreglo2d = np.arange(30).reshape(6,5)
                                                                 [67]: mask = arreglo2d < 20</pre>
     arreglo2d
                                                                       mask
                                               Creamos la
[66]: array([[0, 1, 2, 3, 4],
                                                 máscara
                                                                 [67]: array([[ True, True, True, True, True],
           [5, 6, 7, 8, 9],
                                                                              [ True, True, True, True, True],
           [10, 11, 12, 13, 14],
                                                                              [ True, True, True, True, True],
           [15, 16, 17, 18, 19],
                                                                              [ True, True, True, True, True],
           [20, 21, 22, 23, 24],
                                                                              [False, False, False, False],
            [25, 26, 27, 28, 29]])
                                                                              [False, False, False, False, False]])
```

Máscaras - Filtros Booleanos

17, 18, 19])

```
[67]: mask = arreglo2d < 20</pre>
    [66]: arreglo2d = np.arange(30).reshape(6,5)
          arreglo2d
                                                                           mask
                                                    Creamos la
                                                     máscara
    [66]: array([[0, 1, 2, 3, 4],
                                                                     [67]: array([[ True, True, True, True, True],
                [5, 6, 7, 8, 9],
                                                                                  [ True, True, True, True, True],
                [10, 11, 12, 13, 14],
                                                                                  [ True, True, True, True, True],
                [15, 16, 17, 18, 19],
                                                                                  [ True, True, True, True, True],
                [20, 21, 22, 23, 24],
                                                                                  [False, False, False, False],
                [25, 26, 27, 28, 29]])
                                                                                  [False, False, False, False, False]])
                                                                                        Y seleccionamos aquellos
                                                                                        elementos que cumplen la
                                                                                        condición que representa
                                                                                        la máscara
[68]: arreglo2d[mask]
[68]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
```

Pandas

DATASET

Es el conjunto de datos que utilizaremos en el workflow de data science. Los podemos generar, obtener de terceros o simular.

datasets **estructurados**

similar a planilla de cálculo. Información pre-procesada. Suelen venir en .txt, .csv, .xlsx, .json, etc.

audio, imágenes, texto en crudo humanos / redes neuronales

DATASET

datasets **estructurados**

similar a planilla de cálculo. Información pre-procesada. Suelen venir en .txt, .csv, .xlsx, .json, etc.

Para trabajar con datasets estructurados (y bueno, más), la librería estándar de Python es:

ARGENTINA DATASET

<u>División Política,</u> <u>Superficie y</u> <u>Población</u>

IRIS DATASET

Famoso dataset introducido por Ronald Fisher (padre de la estadística) en 1936.

Iris Versicolor

Iris Setosa

Iris Virginica

Pandas: Instalación

- 1. Activar el ambiente: "conda activate datascience"
- 2. Instalar Pandas: "conda install pandas"

Hands-on training

Hands-on training

Buenas prácticas de un data scientist

Buenas prácticas de un data scientist programador

PEP-20: The Zen of Python

Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one -and preferably only one- obvious way to do it. Although that may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

Namespaces are one honking idea --let's do more of those!

If the implementation is easy to explain, it may be a good idea.

Recursos

Probabilidad y Estadística

 <u>https://seeing-theory.brown.edu/basic-probability/index.html</u> - Este recurso no aparece en la bitácora, pero pueden mirarlo si tienen tiempo.

Pandas

Python Data Science Handbook - Capítulo 3, "Data Manipulation With Pandas".

encuesta "INICIO"

¡Queremos escucharte!

encuesta "INICIO"

Para la próxima

- Termina el notebook de hoy
- Lee la bitácora 05 y carga las dudas que tengas al Trello
- Resuelve el Challenge.

En el encuentro que viene uno/a de ustedes será seleccionado/a para mostrar cómo resolvió el challenge de la bitácora. De esta manera, ¡aprendemos todos/as de (y con) todas/as, así que vengan preparados/as.

ACAMICA