Проверка статистических гипотез

- 1. Понятие статистической гипотезы
- 2. Статистический критерий проверки нулевой гипотезы
- 3. Определение критической области
- 4. Мощность критерия
- 5. Примеры проверки статистических гипотез

1. Статистической называют гипотезу о виде неизвестного распределения или о параметрах известных распределений.

Примеры гипотез:

- математическое ожидание нормально распределенной случайной величины равно 10;
- элемент откажет в следующем испытании;
- генеральная совокупность распределена по закону Пуассона;
- дисперсии двух генеральных совокупностей равны;
- на Марсе есть жизнь.

Все ли они являются статистическими?

Наряду с выдвинутой гипотезой рассматривают и противоречащую ей гипотезу. Если выдвинутая гипотеза при проверке будет отвергнута, то имеет место противоречащая гипотеза.

Нулевой (основной) называется выдвинутая гипотеза H_0 .

Конкурирующей (альтернативной) называется гипотеза H_1 , которая противоречит основной.

Нулевая гипотеза H_0 : a=10. В чем состоит альтернативная?

Простой называют гипотезу, содержащую только одно предположение.

Сложной называют гипотезу, которая состоит из конечного или бесконечного числа простых гипотез.

Примеры:

 H_0 : $\lambda = 10$, где λ – параметр показательного распределения;

 $H_0: \lambda > 10, \lambda$ – параметр показательного распределения;

 H_0 : a = 10, где a – параметр нормального распределения (σ известно);

 H_0 : a = 10, a - параметр нормального распределения (σ неизвестно);

Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки. Поскольку проверку производят статистическими методами, ее называют *статистической*.

В итоге статистической проверки гипотезы в двух случаях могут быть допущены ошибки двух родов, последствия которых важно анализировать.

Ошибка первого рода – будет отвергнута правильная гипотеза.

Ошибка второго рода – будет принята неправильная гипотеза.

Правильное решение может быть принято тоже в двух случаях:

- 1) гипотеза принимается, причем и в действительности она правильная;
- 2) гипотеза отвергается, причем и в действительности она неверна.

Вероятность совершить ошибку первого рода называется *уровнем* 3 *значимости* α .

Наиболее часто уровень значимости принимают равным 0,05 или 0,01.

2. Статистический критерий проверки нулевой гипотезы

Для проверки нулевой гипотезы используют специально подобранную случайную величину, распределение которой известно:

- *Z*, если она распределена нормально
- F по закону Фишера-Снедекора
- Т по закону Стьюдента
- χ^2 по закону «хи квадрат»

Пусть эта величина обозначена в целях общности через К.

Статистическим критерием (*критерием*) называется случайная величина *K*, которая служит для проверки нулевой гипотезы.

<u>Пример 2.1</u> При проверке гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей в качестве критерия *К* принимается отношение исправленных выборочных дисперсий:

$$F = \frac{s_1^2}{s_2^2}$$

*Наблюдаемым значением К*_{набл} называется значение критерия, вычисленное по выборке.

После выбора критерия множество его значений разбивается на два непересекающихся подмножества: одно из них содержит значения критерия, при которых нулевая гипотеза отвергается, другое – при которых принимается

Критической областью называется совокупность значений критерия, при которых нулевую гипотезу отвергают.

Область принятия гипотезы (область допустимых значений) – совокупность значений критерия, при которых гипотезу принимают.

Критические точки (границы) k_{\text{кр}} — точки, разделяющие критическую область и область принятия гипотезы.

Правосторонней называют критическую область, определяемую неравенством $K > k_{\mbox{\tiny KD}}$ где $k_{\mbox{\tiny KD}}$ – положительное число.

Левосторонней называют критическую область, определяемую неравенством $K < k_{\rm кp}$ где $k_{\rm kp}$ – отрицательное число.

Односторонней называют правостороннюю или левостороннюю критическую область.

Двусторонней называют критическую область, определяемую неравенствами $K < k_1, \ K > k_2, \ k_1 < k_2.$

Как определяется критическая область, если критические точки симметричны относительно нуля?

<u>Основной принцип проверки статистических гипотез</u>: если наблюдаемое значение критерия принадлежит критической области, то гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы — гипотезу принимают.

Рисунок 2.1 – Правосторонняя, левосторонняя и двусторонняя критические области

3. Определение критической области

Пусть надо найти правостороннюю критическую область. Для этого:

- 1) задается уровень значимости α .
- 2) по таблицам определяется критическая точка, исходя из требования: при условии справедливости нулевой гипотезы вероятность того, что критерий K примет значение, большее $k_{\rm kp}$, равна уровню значимости:

$$P(K > k_{KP}) = \alpha$$

3) когда критическая точка найдена, вычисляется наблюдаемое значение критерия по данным выборок. Если $K_{\rm набл}>k_{\rm кp}$, нулевая гипотеза отвергается, в противном случае нет оснований ее отвергнуть.

Наблюдаемое значение критерия может оказаться большим $k_{\rm кp}$ в силу ряда причин (малый объем выборки, недостатки метода проведения эксперимента). В этом случае, отвергнув правильную нулевую гипотезу, совершают ошибку первого рода. Чему равна вероятность этой ошибки?

Приняв нулевую гипотезу, ошибочно полагать, что она доказана, поэтому корректнее говорить «данные наблюдений согласуются с нулевой гипотезой». Отвергают гипотезу более категорично, чем принимают.

Определение левосторонней критической области проводится аналогично, взяв за основу выражение

$$P(K < k_{\rm Kp}) = \alpha$$

Двусторонняя критическая область определяется двумя неравенствами. Критические точки находятся исходя из требования:

$$P(K < k_1) + P(K > k_2) = \alpha$$

Если распределение критерия симметрично относительно нуля, то

$$P(K < -k_{\text{kp}}) = P(K > k_{\text{kp}})$$
$$P(|K| > k_{\text{kp}}) = \frac{\alpha}{2}$$

Критические точки находятся по соответствующим таблицам.

4. Мощностью критерия называется вероятность попадания критерия в критическую область при условии справедливости альтернативной гипотезы (вероятность того, что нулевая гипотеза будет отвергнута, если верна альтернативная гипотеза).

Пусть для проверки гипотезы принят определенный уровень значимости и выборка имеет фиксированный объем. Обозначим вероятность ошибки второго рода через β , тогда мощность равна $1-\beta$. Если мощность возрастает, вероятность β совершить ошибку второго рода уменьшается. Таким образом, чем мощность больше, тем вероятность ошибки второго рода меньше.

Критическую область следует строить так, чтобы мощность критерия была максимальной.

Мощность критерия – вероятность того, что не будет допущена ошибка второго рода.

Очевидно, что чем меньше вероятности ошибок первого и второго рода, тем критическая область «лучше». Однако при заданном объеме выборки если уменьшить α , то β будет возрастать. Например, при $\alpha=0$ будут приниматься все гипотезы, в том числе и неправильные, то есть возрастает вероятность β ошибки второго рода.

Выбор α зависит от «тяжести последствий» ошибок для каждой конкретной задачи. Например, если ошибка первого рода повлечет большие потери, а второго рода — малые, следует принять возможно меньшее α .

Увеличение объема выборок является способом одновременного уменьшения вероятностей ошибок первого и второго рода.

5.1 Сравнение двух дисперсий нормальных генеральных совокупностей

Пусть генеральные совокупности X и Y распределены нормально. По извлеченным из этих совокупностей независимым выборкам с объемами, соответственно равными n_1 и n_2 , найдены исправленные выборочные дисперсии s_1^2 и s_2^2 . Требуется по исправленным дисперсиям при заданном уровне значимости α проверить нулевую гипотезу:

$$H_0$$
: $D(X) = D(Y)$

В качестве критерия проверки нулевой гипотезы о равенстве генеральных дисперсий принимается отношение большей исправленной дисперсии к меньшей, то есть случайная величина

$$F = \frac{s_1^2}{s_2^2}$$

Величина F при условии справедливости нулевой гипотезы имеет распределение Фишера — Снедекора со степенями свободы $k_1=n_1-1$, $k_2=n_2-1$, где n_1 и n_2 — соответственно объемы выборок, по которым вычислены большая и меньшая исправленные дисперсии.

Критическая область строится в зависимости от вида конкурирующей гипотезы.

а) конкурирующая гипотеза $H_1: D(X) > D(Y)$

Строится <u>правосторонняя</u> критическая область, исходя из требования, чтобы вероятность попадания критерия F в эту область в предположении справедливости нулевой гипотезы была равна уровню значимости α :

$$P[F > F_{KP}(\alpha, k_1, k_2)] = \alpha$$

Критическая область определяется неравенством $F > F_{\rm kp}$, а область принятия нулевой гипотезы — неравенством $F < F_{\rm kp}$.

Критическая точка $F_{\rm kp}(\alpha,k_1,k_2)$ находится по таблице критических точек распределения Фишера – Снедекора.

По данным выборок находится значение $F_{\text{набл}}$.

Если $F_{\rm набл} < F_{\rm кp}$, нет оснований отвергнуть нулевую гипотезу, в противном случае гипотеза отвергается.

Если отношение $\frac{S_1^2}{S_2^2}$ больше критической точки, то дисперсии различаются между собой с вероятностью $p = 1 - \alpha$.

Рисунок 5.1 – Критическая точка распределения Фишера

б) конкурирующая гипотеза $H_1: D(X) \neq D(Y)$

Строится <u>двусторонняя</u> критическая область, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна уровню значимости α .

Левая F_1 и правая F_2 границы определяются из соотношения:

$$P(F < F_1) = \frac{\alpha}{2}, \qquad P(F > F_2) = \frac{\alpha}{2}$$

Вероятности попадания критерия как в «правую», так и «левую» части критической области равны $\alpha/2$. Вероятность попадания критерия во всю двустороннюю критическую область равна $\alpha/2+\alpha/2=\alpha$. Почему?

Для проверки гипотезы H_0 при конкурирующей гипотезе H_1 : $D(X) \neq D(Y)$ достаточно найти правую критическую точку $F_2 = F_{\rm kp}(\frac{\alpha}{2}, k_1, k_2)$.

Если $F_{\rm набл} < F_{\rm кp}$, нет оснований отвергнуть нулевую гипотезу, в противном случае гипотеза отвергается.

<u>Пример 5.1</u>. По двум независимым выборкам объемов $n_1 = 12$, $n_2 = 15$, извлеченным из нормальных генеральных совокупностей X и Y, найдены исправленные выборочные дисперсии $s_1^2 = 11,41$, $s_2^2 = 6,52$. При уровне значимости 0,05 проверить нулевую гипотезу $H_0: D(X) = D(Y)$ при конкурирующей гипотезе а) $H_1: D(X) > D(Y)$; б) $H_1: D(X) \neq D(Y)$.

Решение.

$$F_{\text{набл}} = \frac{s_1^2}{s_2^2} = \frac{11,41}{6,52} = 1,75$$

Уровень значимости $\alpha = 0.05$, степени свободы: $k_1 = 11$, $k_2 = 14$

а) критическая точка для уровня значимости $\alpha = 0.05$:

$$F_{\text{KD}}(0.05; 11; 14) = 2.565$$

б) критическая точка для уровня значимости $\alpha = 0.025$:

$$F_{\text{Kp}}(0.025; 11; 14) = 3.095$$

В обоих случаях $F_{\text{набл}} < F_{\text{кр}} \Longrightarrow$ нет оснований отвергнуть гипотезу H_0 .

Решить задачу при $s_1^2 = 17.8$.

5.2 Проверка гипотезы о значимости выборочного коэффициента корреляции

Пусть двумерная генеральная совокупность (X, Y) распределена нормально. Из этой совокупности извлечена выборка объема n и по ней найден выборочный коэффициент корреляции $r_{xy} \neq 0$.

Так как выборка сформирована случайным образом, это еще не означает, что коэффициент корреляции генеральной совокупности $\rho_{xy} \neq 0$

При заданном уровне значимости α проверить нулевую гипотезу:

$$H_0$$
: $\rho_{xy} = 0$

при конкурирующей гипотезе:

$$H_1: \rho_{xy} \neq 0$$

Если нулевая гипотеза отвергается, то выборочный коэффициент корреляции значимо отличается от нуля (или значим), а *X* и *Y* коррелированы, то есть связаны линейной зависимостью.

В качестве критерия проверки нулевой гипотезы принимается случайная величина

$$T = \frac{r_{xy}\sqrt{n-2}}{\sqrt{1-r_{xy}^2}}$$

Величина T при справедливости нулевой гипотезы имеет распределение Стьюдента с k=n-2 степенями свободы.

Поскольку конкурирующая гипотеза имеет вид $ho_{xy} \neq 0$, критическая область – двусторонняя.

Критическая точка $t_{\rm kp}(\alpha,k)$ для заданного уровня значимости α и числа степеней свободы k=n-2 определяется по таблице критических точек распределения Стьюдента.

По выборочным данным вычисляется значение критерия $T_{\text{набл}}$.

Если $|T_{\rm набл}| < t_{\rm кp}$, то нет оснований отвергнуть нулевую гипотезу, в противном случае гипотеза отвергается.

Рисунок 5.2 — Распределение Стьюдента (правосторонняя, певосторонняя и двусторонняя критическая область)

<u>Пример 5.2</u> По выборке объема n=122, извлеченной из нормальной двумерной совокупности, найден выборочный коэффициент корреляции $r_{xy}=0.4$. При $\alpha=0.05$ проверить нулевую гипотезу H_0 : $\rho_{xy}=0$ при конкурирующей гипотезе H_1 : $\rho_{xy}\neq 0$.

Решение.

$$T_{\text{набл}} = \frac{r_{xy}\sqrt{n-2}}{\sqrt{1-r_{xy}^2}} = \frac{0.4 \cdot \sqrt{122-2}}{\sqrt{1-0.16}} = 4.78$$

Уровень значимости $\alpha = 0.05$, число степеней свободы k = 120.

$$t_{\text{KD}}(0.05; 120) = 1.98$$

Так как $T_{\rm набл} > t_{\rm кp}$, нулевая гипотеза отвергается.

Иначе говоря, выборочный коэффициент корреляции r_{xy} значимо отличается от нуля. Это означает, что величины X и Y коррелированы.

5.3 Проверка гипотезы о нормальном распределении генеральной совокупности. Критерий согласия Пирсона

<u>Критерием согласия</u> называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Пусть по выборке объема n получено эмпирическое распределение. Допустим, что в предположении нормального распределения генеральной совокупности вычислены теоретические частоты n_i'

Варианты, x_i	x_1	x_2	 x_s
Эмпирические частоты, n_i	n_1	n_2	 n_s
T еоретические частоты, n_i'	n_1'	n_2'	 n_s'

При уровне значимости α требуется проверить нулевую гипотезу H_0 : генеральная совокупность распределена нормально.

В качестве критерия проверки используется случайная величина

$$\chi^2 = \sum_{i=1}^{s} \frac{(n_i - n_i')^2}{n_i'}$$

При $n \to \infty$ закон распределения указанной случайной величины стремится к закону распределения χ^2 с k степенями свободы независимо от того, какому закону распределения подчинена генеральная совокупность. Поэтому критерий называется критерием согласия «хи квадрат».

Число степеней свободы определяется по формуле:

$$k = s - 1 - r$$

s – число групп (частичных интервалов) выборки,

r – число параметров предполагаемого распределения.

Строится правосторонняя критическая область исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна α:

$$P\left[\chi^2 > \chi^2_{\text{Kp}}(\alpha, k)\right] = \alpha$$

По выборочным данным вычисляется значение критерия $\chi^2_{_{\mathrm{Hafn}}}$.

Если $\chi^2_{\rm набл} < \chi^2_{\rm кp}$, нет оснований отвергнуть нулевую гипотезу, в противном случае нулевая гипотеза отвергается.

Замечания

- 1. Объем выборки должен быть достаточно велик (не менее 50). Каждая группа должна содержать не менее 5-8 вариант; малочисленные группы следует объединять в одну, суммируя частоты.
- 2. Поскольку возможны ошибки первого и второго рода, особенно если теоретические и эмпирические частоты подозрительно близки, следует проявлять осторожность. Можно повторить опыт, увеличить число наблюдений, воспользоваться другими критериями, построить график распределения, вычислить асимметрию и эксцесс.
- 3. Для контроля вычислений используют формулу

$$\chi^2_{\text{набл}} = \left(\sum_{i=1}^s \frac{n_i^2}{n_i'}\right) - n$$

5.4 Методика вычисления теоретических частот нормального распределения

1. Весь интервал наблюдаемых значений X (выборки объема n) делят на s частичных интервалов (x_i, x_{i+1}) одинаковой длины. Находят середины частичных интервалов

$$x_i^* = \frac{(x_i + x_{i+1})}{2}$$

В качестве частоты n_i варианты x_i^* принимают число вариант, которые попали в i-й интервал. Получается последовательность равноотстоящих вариант и соответствующих им частот:

x_1^*	x_2^*	 χ_S^*
n_1	n_2	 n_s

$$\sum_{i=1}^{S} n_i = n$$

- 2. Вычисляют выборочную среднюю \bar{x}^* и выборочное среднее квадратическое отклонение σ^* .
 - 3. Нормируют случайную величину X:

$$Z = \frac{(X - \bar{x}^*)}{\sigma^*}$$

и вычисляют концы интервалов (z_i, z_{i+1}) :

$$z_i = \frac{(x_i - \bar{x}^*)}{\sigma^*}, \qquad z_{i+1} = \frac{(x_{i+1} - \bar{x}^*)}{\sigma^*},$$

причем её наименьшее значение $z_1 = -\infty$, а наибольшее $z_s = \infty$,

4. Вычисляют вероятности p_i попадания X в интервалы (x_i, x_{i+1}) :

$$p_i = \Phi(z_{i+1}) - \Phi(z_i)$$

где Ф – функция Лапласа

5. Находят искомые теоретические частоты:

$$n_i' = np_i$$

<u>Пример 5.3</u> Найти теоретические частоты по заданному интервальному распределению выборки объема n=200, предполагая, что генеральная совокупность распределена нормально.

Номер	Границы		Частота	Номер	Гра	ницы	Частота
интервала	интервала			интервала	инте	рвала	
i	x_i	x_{i+1}	n_i	i	x_i	x_{i+1}	n_i
1	4	6	15	6	14	16	21
2	6	8	26	7	16	18	24
3	8	10	25	8	18	20	20
4	10	12	30	9	20	22	13
5	12	14	26				$\Sigma n_i = 200$

Решение

1. Определение середин частичных интервалов:

					13				
n_i	15	26	25	30	26	21	24	20	13

2. Вычисление средней и СКО: $\bar{x}^* = 12,63, \ \sigma^* = 4,695$

3. Нормирование случайной величины X:

i	x_i	x_{i+1}	$x_i - \overline{x}^*$	$x_{i+1} - \overline{x}^*$	$z_i = \frac{(x_i - \overline{x}^*)}{\sigma^*}$	$z_{i+1} = \frac{(x_{i+1} - \overline{x}^*)}{\sigma^*}$
1	4	6	_	-6,63	$-\infty$	-1,41
2	6	8	-6,63	-4,63	-1,41	-0,99
3	8	10	-4,63	-2,63	-0,99	-0,56
4	10	12	-2,63	-0,63	-0,56	-0,13
5	12	14	-0,63	1,37	-0,13	0,29
6	14	16	1,37	3,37	0,29	0,72
7	16	18	3,37	5,37	0,72	1,14
8	18	20	5,37	7,37	1,14	1,57
9	20	22	7,37	_	1,57	+∞

4. Определение вероятностей p_i и теоретических частот n_i :

i	Zi	<i>Zi</i> +1	$\Phi(z_i)$	$\Phi(z_{i+1})$	$p_i = \Phi(z_{i+1}) -$	$n_i'=np_i$	n_i
					$-\Phi(z_i)$		
1	$-\infty$	-1,41	-0,5	-0,421	0,079	15,79	15
2	-1,41	-0,99	-0,421	-0,338	0,083	16,62	26
3	-0,99	-0,56	-0,338	-0,212	0,126	25,13	25
4	-0,56	-0,13	-0,212	-0,053	0,159	31,79	30
5	-0,13	0,29	-0,053	0,115	0,168	33,63	26
6	0,29	0,72	0,115	0,264	0,149	29,76	21
7	0,72	1,14	0,264	0,374	0,110	22,02	24
8	1,14	1,57	0,374	0,442	0,068	13,63	20
9	1,57	+∞	0,442	0,5	0,058	11,65	13

5. Критерий Пирсона:

$$\chi^2_{\text{набл}} = \sum_{i=1}^{s} \frac{(n_i - n_i')^2}{n_i'} = 13,07, \qquad \chi^2_{\text{кр}} = 12,59$$

 $\chi^2_{{
m Hafn}} < \chi^2_{{
m Kp}}$, то есть данные наблюдений согласуются с нулевой гипотезой.