697B Midterm exam, 28 October 2010

Show all your work and justify your answers carefully.

- (1) Let X be the algebraic curve given by $X=(y^2+2xy+x^4=0)\subset\mathbb{C}^2$ and $\overline{X}\subset\mathbb{P}^2_{\mathbb{C}}$ its closure in $\mathbb{P}^2_{\mathbb{C}}$.
 - (a) Find all the points in $\overline{X} \setminus X$.
 - (b) Find all the singular points of \overline{X} .
 - (c) Which of the singular points are nodes?
- (2) Let X be the algebraic curve defined by $X=(y^3+y+x^2=0)\subset\mathbb{C}^2$ and $\overline{X}\subset\mathbb{P}^2_{\mathbb{C}}$ its closure in $\mathbb{P}^2_{\mathbb{C}}$. Then \overline{X} is a compact Riemann surface. Let f be the meromorphic function on \overline{X} given by f=x/y.
 - (a) Find the zeroes and poles of f on \overline{X} and their multiplicities.
 - (b) The meromorphic function $f: \overline{X} \dashrightarrow \mathbb{C}$ extends to a holomorphic map $F: \overline{X} \to \mathbb{C} \cup \{\infty\}$. What is $F^{-1}(0)$ and $F^{-1}(\infty)$? What is the degree of F? [Hint: This follows easily from part (a).]
- (3) Let X be the algebraic curve defined by $X=(y^5=x^4+1)\subset\mathbb{C}^2_{x,y}$ and $\overline{X}\subset\mathbb{P}^2_{\mathbb{C}}$ its closure in $\mathbb{P}^2_{\mathbb{C}}$. Then \overline{X} is a compact Riemann surface. Let ω be the meromorphic differential on \overline{X} defined by $\omega=dx/y^4$.
 - (a) Find the zeroes and poles of ω on \overline{X} and their multiplicities.
 - (b) Use the Poincaré-Hopf theorem to determine the genus of \overline{X} .
- (4) Let \overline{X} be the projective algebraic curve of degree d defined by

$$\overline{X} = (X^d + Y^d + Z^d = 0) \subset \mathbb{P}^2_{\mathbb{C}}$$

and $F \colon \overline{X} \to \mathbb{P}^1_{\mathbb{C}}$ the holomorphic map given by $(X : Y : Z) \mapsto (Y : Z)$.

- (a) Show that \overline{X} is a smooth curve.
- (b) Find the degree of F, the ramification points of F, and the ramification indices.
- (c) Use the Riemann–Hurwitz formula to determine the genus of \overline{X} .