Définition : On considère une série statistique de p valeurs résumée par un tableau

Valeur	x_1	x_2		x_p
Effectif	n_1	n_2	• • •	n_p

où $n_1+n_2+\ldots+n_p=N$ est l'effectif total de la série. La moyenne pondérée de cette série est donnée par la formule :

$$\overline{x} = rac{n_1x_1 + n_2x_2 + \ldots + n_px_p}{N}$$

El On considère la série statistique suivante

$$4-1-4-5-4-1-4-4-4-1$$

$$4-2-1-2-4-5-5-1-5-5$$

On a commencé à résumer les informations dans le tableau suivant :

Valeur	1	2	5
Effectif	5	2	5

- a. Combien de valeurs possède cette série ?
- **b.** Combien de valeurs différentes possède cette série ?
- ${f c.}$ Combien de fois la valeur 1 apparaît-elle dans cette série ?
- d. Complétez le tableau.
- e. Recopiez et complétez avec les valeurs la formule de la moyenne pondérée de cette série :

$$\overline{x} = \frac{\ldots \times \ldots + \ldots \times \ldots + \ldots \times \ldots}{\ldots}$$

f. Calculez la moyenne de cette série de deux façons.

On souhaite construire une feuille de calculs pour calculer la moyenne de la série statistique résumée par le tableau suivant :

	Α	В	С	D	E
1	Valeur	1	2	4	5
2	Effectif	5	2	7	3

- **a.** Sur la troisième ligne, nous voudrions calculer les $n_i \times x_i$ pour chaque valeur de i. Quelle formule à recopier sur toute la ligne devons-nous écrire dans la cellule B3 ?
- b. Quelle formule devons-nous écrire dans la cellule F2 pour obtenir la somme des valeurs de la troisième ligne ?
- c. Quelle formule devons-nous écrire dans la cellule F3 pour obtenir la moyenne pondérée de la série ?
- d. Calculez à la main la moyenne de cette série.

Définition : La **variance** d'une série statistique est la moyenne des carrés des écarts à la moyenne donnée par la formule :

$$V=rac{n_1(x_1-\overline{x})^2+n_2(x_2-\overline{x})^2+\ldots+n_p(x_p-\overline{x})^2}{N}$$

On considère une série statistique de 4 valeurs résumée par le tableau suivant :

Valeur	4	7	13	16
Effectif	4	6	10	2

- **a.** Vérifiez que la moyenne \overline{x} de cette série est 10.
- **b.** On souhaite calculer à la main la variance. Nous allons procéder en plusieurs étapes. Complétez le tableau suivant.

Valeur	4	7	13	16
Effectif	4	6	10	2
$x_i - \overline{x}$	-6		3	
$(x_i-\overline{x})^2$	36			
$n_i(x_i-\overline{x})^2$	144	54		

 ${f c.}$ Montrez que la variance de cette série est environ égale à 16.

On considère une série statistique de 3 valeurs résumée par le tableau suivant :

Valeur	-2	3	7
Effectif	2	3	5

a. Recopiez et complétez la formule de la moyenne pondérée de cette série :

$$\overline{x} = \frac{\dots \times \dots + \dots \times \dots + \dots \times \dots}{\dots}$$

- b. Calculez la moyenne de cette série.
- **c.** Recopiez et complétez la formule de la variance de cette série :

$$V = \frac{\cdots \times (\cdots - \cdots)^2 + \cdots \times (\cdots - \cdots)^2 + \cdots \times (\cdots - \cdots)}{\cdots}$$

d. Calculez la variance

Définition : L'**écart-type** d'une série statistique est la racine carrée de la variance. L'écart-type est noté σ et est donné par la formule :

$$\sigma = \sqrt{V}$$

On considère une série statistique de 4 valeurs résumée par le tableau suivant :

Valeur	-2	-1	2	9
Effectif	2	3	4	1

- a. Calculez la moyenne de cette série.
- **b.** Calculez la variance
- c. Calculez l'écart-type de cette série.