

Complex Systems

Educational subject description sheet

Basic information

Field of study

Computer Science

Speciality

ΑII

Department

Faculty of Computer Science, Electronics and Telecommunications

Study level

Second-cycle (engineer) programme

Study form

Full-time studies

Education profile

General academic

Didactic cycle

2022/2023

Subject code

IINF2S.IIi2K.b957c7b1f02205095009da598c0ce61d.22

Lecture languages

Polish

Mandatory

Elective

Block

Core Modules

Subject related to scientific research

Yes

Subject coordinator	Witold Dzwinel
Lecturer	Witold Dzwinel, Paweł Topa, Radosław Łazarz

Period Semester 2	Examination Assessment	Number of ECTS points 3.0
	Activities and hours Lecture: 14, Laboratory classes: 14, Project classes: 16	

Goals

C1

Celem kształcenia jest zaznajomienie studentów z metodologią modelowania i symulacji systemów złożonych. Dotyczy to zarówno algorytmów jak i narzędzi związanych z modelowaniem komputerowym, a w szczególności powiązania podejść formalnych ze współczesnymi algorytmami sztucznej inteligencji i uczenia maszynowego.

Subject learning outcomes

Code	Outcomes in terms of	Directional learning outcomes	Examination methods
Knowledg	e - Student knows and understands:		
M_W001	He knows the basic paradigms of computer modeling. He knows what the basic features of dynamic systems are.	INF2A_W01, INF2A_W03, INF2A_W04, INF2A_W08	Activity during classes, Execution of a project, Execution of laboratory classes
M_W002	He knows the basic formalisms that can be applied to the modeled and simulated phenomenon. He knows his numerical implementation. He knows the rules for the construction of a supermodel from sub-models.	INF2A_W01	Activity during classes, Participation in a discussion
M_W003	He knows the paradigm, cellular automata, interacting particles, knows the methods of adapting parameters to models.	INF2A_W01	Activity during classes, Execution of a project, Execution of laboratory classes
Skills - St	udent can:		
M_U001	He can choose the right paradigm for the modeled phenomenon. He can build his numerical model.	INF2A_U01, INF2A_U03, INF2A_U04, INF2A_U05, INF2A_U07	Participation in a discussion, Execution of a project, Project, Presentation, Completion of laboratory classes
M_U002	He knows how to choose the right algorithm to perform the simulation task and implement it in a parallel environment.	INF2A_U01, INF2A_U03, INF2A_U04, INF2A_U05, INF2A_U07	Activity during classes, Execution of a project, Execution of laboratory classes
Social con	npetences - Student is ready to:		
M_K001	While performing a laboratory or group project, he learns how to interact in a team, acquire information and present it	INF2A_K02	Participation in a discussion, Project, Report, Presentation

Programme content that ensure achieving learning outcomes for the module

Applies to modeling and simulation of discrete complex systems in the context of machine adaptation and learning problems. Familiar with the methods of assimilation of data models.

Calculation of ECTS points

Activity form	Average amount of hours* needed to complete each activity form
Lecture	14
Laboratory classes	14
Project classes	16
Preparation for classes	20
Realization of independently performed tasks	20

Contact hours	5
Student workload	Hours 89
Workload involving teacher	Hours 44

^{*} hour means 45 minutes

Study content

No.	Course content	Subject learning outcomes	Activities
1.	Final project (example): Example of a projectRealize a simple 2-D mobile cellular development in which the "good" and "evil" on the NxN grid would be modeled. The initial number of individuals M on this grid is given as well as the total amount of energy E = NxN (drawn between individuals according to some distribution or, in a special case, equal to E / M). We assume that individuals move on the 2-D grid in accordance with certain rules (eg random walking). Every 1 time step the individual loses energy unit. The energy DE = M lost in the set step is accumulated globally in a certain battery. At each time step we have and collisions. At the time of collision with other individuals, all participants collisions are received for the division of DE / I energy units. The energy of the system equal to the amount of energy stored in the battery and in the population is constant. 2. Individuals reproduce according to the assumed pattern (eg, if the energy of the individual is greater than some value, more of them arise). 3. Individuals die when energy drops to 0. 4. How depends on the life span of a population from M (for a given N) in case when at the moment of a collision the division of DE / I energy into collision participants is the same "fair". 5. Model other collision scenarios. For example, in which there is an "evil" population in which all DE / I energy is taken by the strongest person involved in the collision; "Very bad" in which the strongest individual takes not only the energies delivered from the battery, but all the energy from other participants in the collision sin each participant), etc. Consider other scenarios e.g. populations composed of "good" and "bad" individuals. 6. Answering the question: how should be constructed an optimal (giving the longest survival time of the population) collision scenario for different M. 7. You can use existing modeling tools in the network using mobile phones.	M_W001, M_W003, M_U001, M_K001	Project classes

2.	Laboratory exercises (tutorials): 1. DEVS - discrete events system (1 hour seminar) (2 people)Bond Graphs (https://www.ram.ewi.utwente.nl/bnk/papers/BondGraphsV2.pdf) 2. Vensim PLE → a tool for modeling complex systems (2 people) http://vensim.com/vensim-software/Chaotic systems →1. Lorenz and Rossler attractors2. Coupled maps (Logistic Equation and Henon Map) 3. Open Modelica → a tool for modeling complex systems (3 people)1. Mechanical systems2. Predator-Prey model 4. NetLogo (https://ccl.northwestern.edu/netlogo/) as a mathematical modeling system. Cellular automata. Model of good and evil. (2) 5. Prusinkiewicz and Lindemyer systems - L-systems generator, e.g. http://www.kevs3d.co.uk/dev/lsystems/,http://nolandc.com/sandbox/fractals/, http://hardlikesoftware.com/projects/lsystem/lsystem.html (2) 6. Hudini or Blender - Particle modeling (2)	M_W001, M_W002, M_U001, M_K001	Laboratory classes
3.	deterministic chaos: 1. Complex systems and chaos. Fractals. Complexity problems. Is the chaotic system a complex system? Dynamic systems - mathematics Mathematics and calculations, Properties of dynamic systems Chaos of space-time systems	M_W001, M_U002	Lecture
4.	2. Simple models of complex systems: Logistic equation, predator-pray equation, spatial models of evolving systems, biological models (Gompertz model)	M_W001, M_W002, M_U001	Lecture
5.	Power laws.: 1. Where do power laws come from? 2. Power laws in natural phenomena. 3. Examples of phenomena described by power laws.	M_W001, M_W002	Lecture
6.	Cellular automata: 1. Theory - based on the New Kind of Science 2. Well-known cellular automata - taxonomy. 3. Examples of applications 4. Grid gas, Boltzman's grid gas. 5. Percolation. 6. Aggregation.	M_W002, M_U001	Lecture
7.	Herring methods and interacting particles,: Formulating the problem. Theory. Examples: traffic modeling and crowd dynamics	M_W002, M_U001, M_U002	Lecture
8.	Composite networks: Characteristics, analysis and dynamics of complex networks.	M_W002, M_U001	Lecture
9.	Modeling processes in many spatio-temporal scales.: Renormalization methods and coarse graining models. Coarse cellular machine models.	M_W001, M_W002, M_W003, M_U001	Lecture
10.	Reverse problems, sensitivity analysis, model validation and data assimilation problems.: Machine learning methods and data adaptation - ABS (Approximated Bayesian Computations)	M_W001, M_W002, M_U001	Lecture
11.	Supermodels and machine learning.: Supermodels and their construction methods. Supermodels in Lorenzo systems. Examples of the supermodel in meteorology, atmospheric and oceanic model.	M_W001, M_W002, M_W003, M_U001	Lecture

Biological applications of complex automata: Definition of a complex machine. Examples of the use of a complex machine in modeling blood dynamics, tumor growth and pathogen development.	M_W002, M_U001	Lecture
---	----------------	---------

Course advanced

Teaching methods:

Lectures, Laboratory classes, Multimedia presentation, Discussion, Project, Brainstorming

Activities	Examination methods	Credit conditions
Lecture	Activity during classes, Participation in a discussion, Execution of laboratory classes	ustna relacja odn. wykonanych projektów
Lab. classes	Participation in a discussion, Execution of a project, Project, Report, Presentation, Completion of laboratory classes	zaliczenie wszystkich elementów zajęć
Project classes	Participation in a discussion, Execution of a project, Project, Report, Presentation, Completion of laboratory classes	prezentacja wyników rpojektu

Method of calculating the final grade

1. To obtain a positive final grade, it is necessary to obtain a positive grade fromlaboratory and lecture exam. 2. We calculate the weighted average of laboratory grades (30%) and lectures (70%) obtained in all dates. 3. The assessment takes into account the activity in the classroom (increasing the score by a maximum of 0.5) 4. Set a final grade based on: if sr>4.75 then OK:=5.0 else Absence in laboratory classes requires, in addition to supplementing the exercises outside the classes, a verbal colloquium written before the lecturer with the program content related to the above-mentioned laboratory exercise. if sr>4.25 then OK:=4.5 else if sr>3.75 then OK:=4.0 else if sr>3.25 then OK:=3.5 else OK:=3.5. If a positive grade from the laboratory and passing the lecture was obtained on the first dateand the final grade is less than 5.0, the final mark is raised by 0.5

Entry requirements

- 1. Knowledge of basic algorithms of numerical methods.
- 2. Good knowledge of algorithms.

Attendance requirements for particular classes, with indication whether student attendance is compulsory

Lectures: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego. Laboratory classes: Studenci wykonują ćwiczenia laboratoryjne zgodnie z materiałami udostępnionymi przez prowadzącego. Student jest zobowiązany do przygotowania się w przedmiocie wykonywanego ćwiczenia, co może zostać zweryfikowane kolokwium w formie ustnej lub pisemnej. Zaliczenie zajęć odbywa się na podstawie zaprezentowania rozwiązania postawionego problemu. Zaliczenie modułu jest możliwe po zaliczeniu wszystkich zajęć laboratoryjnych. Project classes: Studenci wykonują prace praktyczne mające na celu uzyskanie kompetencji zakładanych przez syllabus. Ocenie podlega sposób wykonania projektu oraz efekt końcowy.

Literature

Obligatory

- 1. 1. Wolfram S., New Kind of Science, 2001 http://www.wolframscience.com/
- 2. 2. Chopard B, Droz M, Cellular Automata Modelling of Physical Systems, 1998, Cambradge Univ. Press.
- 3. 3. Haile JM., Molecular Dynamics Simulation Elementary Methods, 1992, J. Wiley
- 4. 4. Barabasi A.L., Network Science, Cambridge University Press, 2016
- 5. 5. Goodson, G.R., Chaotic Dynamics, Cambridge University Press, 2017

Optional

1. 6. Eberhardr R., Shi, Y., Computational Intelligence, Elsevier 2007

Research and publications

Publications

- 1. 1. Dzwinel, W., Wcisło, R., Yuen, DA., Miller, S., PAM: Particle Automata in modeling of multi-scale biological systems, ACM Transactions on Modeling and Computer Simulation, 26(3), A20:1-21, 2016 IF=1.00
- 2. 2. Wcisło R., Miller S., Dzwinel W., PAM: Particle Automata Model in simulation of Fusarium graminearum pathogen expansion. Journal of Theoretical Biology. 389, 110-122, 2016. IF=2.11
- 3. 3. Magiera, K., Dzwinel, W., Irreducible elementary cellular automata found, Journal of Computational Science, 11, 300–308, 2015. IF=1.078
- 4. 4. Czech, W., Dzwinel, W., Goryczka S., Arodź, T., Dudek, A.Z., Exploring biological networks with Graph Investigator research application, Computing and Informatics, 30, 1001–1031, 2011 IF =0.239
- 5. 5. Dzwinel W., Spatially extended populations reproducing logistic map, Central European Journal of Physics, 8(1), 33-41, 2010 IF = 0.70
- 6. 6. Wcisło R., Dzwinel, W., Yuen, D.A., Dudek, A.Z., A new model of tumor progression based on the concept of complex automata driven by particle dynamics, Journal of Molecular Modeling, 15(12), 1517 –1539, 2009 IF =2.336
- 7. 7. Dzwinel. W., Kłusek, A., Wcisło, R., Panuszewska, M., Topa, P., Continuous and discrete models of melanoma progression simulated in multi-GPU environment, PPAM 2017, Lublin 10-13 September 2017, Lecture Notes in Computer Science, LNCS, 10777, 505-518, 2018
- 8. 8. Topa, P., Kuźniar, M., Dzwinel, W., Graph of Cellular Automata as a Metaphor of Fusarium Graminearum Growth Implemented in GPGPU CUDA Computational Environment, PPAM, Wrocław, 13-16 September 2011, Lecture Notes in Computer Science, LNCS 7204, 578-587, 2012
- 9. 9. Topa P., Dzwinel W., Yuen, D.A., A multiscale cellular automata model for simulating complex transportation systems, Int. J. Modern Phys. C, 17/10, 1437-60, 2006.
- 10. Łoś, M, Kłusek, A., Hassaan, M., A., Pingali, K., Dzwinel, W., Paszyński, M., Parallel fast isogeometric L2 projection solver with GALOIS system for 3D tumor growth simulations, Computer Methods in Applied Mechanics and Engineering, 343, 1-22, 2019, IF = 4.44
- 11. Kłusek, A., Łoś, M., Paszyński, M., Dzwinel, W., Efficient model of tumor progression simulated in multi-GPU environment, International Journal of High-Performance Computing Applications, 33(3), 489-506, 2019, IF =2.015
- 12. Dzwinel, W., Klusek, A., Paszynski M., A concept of a prognostic system for personalized anti-tumor therapy based on supermodeling, International Conference of Computational Science, ICCS 2017, Zurich, 11-14.06.2017. Procedia of Computer Science, 108C (2017) 1832–1841

Directional learning outcomes

Code	Content
INF2A_K02	ma świadomość roli społecznej absolwenta uczelni technicznej, rozumie potrzebę formułowania i przekazywania społeczeństwu informacji i opinii dotyczących osiągnięć informatyki, wagi profesjonalnego zachowania i przestrzegania zasad etyki zawodowej, prawidłowo identyfikuje i rozstrzyga dylematy związane z wykonywaniem zawodu
INF2A_U01	potrafi pozyskiwać informacje z literatury, baz danych i innych źródeł, integrować uzyskane informacje, dokonywać ich interpretacji i krytycznej oceny, wyciągać wnioski oraz formułować i wyczerpująco uzasadniać opinie, a także określić kierunki dalszego uczenia się i realizować proces samokształcenia
INF2A_U03	potrafi formułować i testować hipotezy związane z problemami inżynierskimi i prostymi problemami badawczymi, w szczególności potrafi opracować specyfikację projektową złożonego oprogramowania, z uwzględnieniem aspektów prawnych oraz innych aspektów pozatechnicznych, z uwzględnieniem norm i standardów, zaprojektować oprogramowanie adekwatnie do specyfikacji wymagań, opracować szczegółową dokumentację wyników, a także przygotować i i przedstawić prezentację oraz przeprowadzić dyskusję wyników
INF2A_U04	potrafi pracować indywidualnie i w zespole, ocenić czasochłonność zadania, opracować i zrealizować harmonogram prac oraz kierować małym zespołem w sposób zapewniający realizację zadania w założonym terminie
INF2A_U05	potrafi wykorzystać poznane metody i modele do tworzenia różnego rodzaju programów o charakterze użytkowym i naukowym, z uwzględnieniem specyfiki specjalności
INF2A_U07	potrafi dokonać analizy wymagań oraz analizy ryzyka związanych z budową systemu informatycznego, projektować oprogramowanie zgodnie z wybraną metodyką, dobierać modele i procesy wytwarzania i testowania oprogramowania, a także skonfigurować system komputerowy, w szczególności w zakresie funkcji i narzędzi związanych ze specjalnością
INF2A_W01	ma pogłębioną wiedzę w zakresie przedmiotów ścisłych, pozwalającą na formułowanie i rozwiązywanie złożonych zadań z zakresu informatyki
INF2A_W03	ma szczegółową wiedzę w zakresie wybranych języków, paradygmatów i technik programowania z uwzględnieniem specyfiki specjalności
INF2A_W04	ma podbudowaną teoretycznie wiedzę w zakresie inżynierii oprogramowania z uwzględnieniem specyfiki specjalności, w szczególności w zakresie budowy narzędzi i systemów informatycznych, etapów i metod projektowania, rozwoju i analizy oprogramowania, oraz stosowanych modeli procesu wytwarzania oprogramowania z zakresu specjalności
INF2A_W08	ma wiedzę w zakresie prowadzenia działalności gospodarczej, ochrony i zarządzania własnością intelektualną oraz prawa patentowego