Vector Compression Cheatsheet

What is Vector Compression?

compression Vector vector databases refers to the process of reducing the size of high-dimensional without significantly data vector compromising its quality or the ability to perform similarity searches efficiently.

- **Objective:** Maintain data quality and perform efficient similarity searches.
- Importance: Essential for managing large-scale vector data.
- Applications: Crucial in machine learning and AI, where data volume is immense.

Why Vector Compression?

High-dimensional vector data can take up a lot of **storage space. Compression** reduces the **storage** requirements, making it feasible to handle larger datasets within the available resources.

How Vector Compression Works?

- 1. Identify High-Dimensional Vectors: Start with your high-dimensional data (e.g., text, images).
- 2. Choose a Technique: Select a dimensionality reduction method, such as Principal Component Analysis (PCA) or autoencoders.
- **3. Apply Dimensionality Reduction:**
 - a. PCA: Compute principal components and project data onto them.
 - b. Autoencoders: Train a neural network to compress and reconstruct the data.
- 4. Transform Vectors: Use the trained model to convert highdimensional vectors into lower-dimensional ones.
- 5. **Retain Essential Information:** Ensure the lower-dimensional vectors maintain key relationships and distances.
- 6. Store Compressed Vectors: Save the compressed vectors for efficient storage and faster searches.

Famous Quantization Methods

Types of Vector Compression

efficient storage and

processing.

Application of Vector Compression

Vector Database

but may reduce accuracy in

similarity searches.