PROJECT WORK

Dispersing Unit Design

Bachelor's thesis

Valkeakoski Campus Electrical and Automation Engineering

2018

Hieu Nguyen Duc Nguyen

Electrical and Automation Engineering Valkeakoski

Author Nguyen Trung Hieu, Nguyen Quang Duc Year 2018

Subject Dispersing Unit Design

Supervisor(s) Timo Väisänen

ABSTRACT

Based on the P&I diagram which was given by the supervisor, the objective of the project is to identify the symbols of components in the drawing and select the most suitable devices for the system of the project. In addition, the purpose of the project was also to design the cabinet for the control room, the wiring system, cable connection and software for PLC.

In the beginning, this project was instructed by the supervisor with the explanation and the plan to do the project. There are the computer tools supporting the project work which were taught and applied by the supervisor and other HAMK teachers. These tools were mainly for designing the system and software for PLC. Furthermore, the questions emerging during working on the project were answered or suggested by the supervisor. Other sources were electrical and automation manufacturers' websites. These websites were used to choose the suitable devices and motors for the system.

In total, the project work was accomplished with fourteen types of documents such as the system drawings, cabinet layout, cable list, motor list, instruments list, etc. The design of the system met the requirement of the project and 95% of the project work could be used to build the real system in real life.

The project instructs and helps students to get familiar with real work in a professional environment and it is necessary to promote the students' skills. These skills are suggested to be reinforced and tested more exactly by adding one more part to the project. That is to have a sample of a real system to test the students' work in real life.

Keywords Dispersing Unit Design, P&I diagram, cabinet, system design.

Pages 37 pages including appendices 1 pages

CONTENTS

1	INTR	ODUCT	TION	. 1
2	TECH	HNICAL	DOCUMENTATION	. 1
	2.1	Pipe a	nd Instrumentation diagram	. 2
	2.2		ption of process operation	
	2.3	Descri	ption of circuit operation	. 7
	2.4	Definit	ion of control system	. 7
		2.4.1	Transformer	. 7
		2.4.2	Protection circuit breaker	. 7
		2.4.3	PLC CX5010	. 7
		2.4.4	Digital input EL1808	. 8
		2.4.5	Digital output EL2808	. 8
		2.4.6	Analog input EL3058	. 8
		2.4.7	Analog Output EL4028	. 8
		2.4.8	Motor 1: 3GAA112320-ADJ	. 9
		2.4.9	Motor 2: 3GAA082614-BSJ	. 9
		2.4.10	Motor 2: 3GAA102530-ASJ	. 9
		2.4.11	Solenoid valve	10
	2.5	Descri	ption of application software	10
	2.6	Instrur	ment list	11
	2.7	Motor	list	12
	2.8	IO list.		12
	2.9	Circuit	s diagrams	13
	2.10	Loop p	rogramming charts	18
	2.11	Cabine	t layout image	26
	2.12	Hook ι	up drawings	26
	2.13	Table o	of name plates	32
	2.14	Cable l	ist	35
3	CON	CLUSIO	N	36

Appendices

Appendix 1 Name of appendix

1 INTRODUCTION

The project work's purpose is to help students to get familiar and started with basic steps and ways of working in professional environment when implementing a small plant like an automation system and making its technical documentation. With the P&I diagram given from the supervisor, the project work was done with following documentation:

Hieu Nguyen:

- Motor list
- I/O list
- Circuit diagrams
- Cable list
- Description of circuit operation
- Definition of control circuit
- Cabinet layout

Duc Nguyen:

- Instrument list
- Loop Programming charts
- Description of Process operation
- Description of application software
- Hook-up drawings
- Table of name plates

2 TECHNICAL DOCUMENTATION

2.1 Pipe and Instrumentation diagram

Figure 1. P&I diagram

2.2 Description of process operation

The operation of the dispersing unit process:

There are 4 main parts in this process:

- 1 powder distributing tank with the conveyor motor
- 1 mixing tank with the stirring motor
- 1 storage tank
- 1 pump with the speed drive

At the beginning, both the NaOH liquid and the water are conducted into the mixing tank simultaneously through the DN15 and DN25 alternately. To control the flow rate in each pipe, there are two hand valve HS-511 and HS-510 corresponded to DN15 and DN25 which are also managed in the control room. Besides that, the pressure relief valve with the pressure indicator PIC-101 and flow meter FI-100 are located on the pipe DN25 controlling on the field individually.

Figure 2. Beginning of the process

Concurrently the powder from the powder tank is dispatched by the conveyor motor MO-01 with the mixing liquid NaOH and water into the mixing tank. On the side of the power tank, the low-level switch alarm LSA-513 is adjusted for operating the powder level.

Figure 3. Powder tank with dispatching conveyor

The following stage of the process is all the materials is leaded into the mixing tank and stirred by the stirring motor MO-02. The temperature transmitter TI-517 for the set point range 0-100°Cand the hydrostatic low-level transmitter LI-512 for the set point range 0-2000mmH $_2$ O are merged on the side of the tank indicating the temperature and level of the mixed liquid to the control room.

Figure 4. Mix tank with stirring motor

After the mixing stage, the result liquid is released into the storage tank via the pipe DN50 with the control of the hand valve HS-514. Concerning the storage tank, also the temperature transmitter for the set point range 0-100°C TI-518 and hydrostatic low-level transmitter LI-515 for the set point range 0-5000mmH₂O are attached on the side of the tank indicating the temperature and level of the liquid mixture to the control room.

Figure 5. Storage tank

There is the pump motor MO-03 connected with the speed drive SC-520 drains the liquid mixture from the storage tank through the pipe DN50 to the pipe DN32. Based on the database signal from the FIC-516 flow transmitter measures the flow rate in the pipe DN32 indicating to the control room, the speed drive is adjusted to control the pump motor speed reasonably.

Figure 6. Pump motor with speed drive control

On the pipe DN32 to the next stage, the hand valve HS-519 commanded from the control room is combined. Another direction flow is the displacement of liquid back to the storage tank via the pipe DN25 and operated by the hand valve HIV-518.

Figure 7. Mixture direction

2.3 Description of circuit operation

There are two main parts in the circuit operation: main power distribution circuit diagram (sheet 1, 2) and control circuit diagram (sheet 3, 4, 5). The first circuit supports power for the second circuit. The first circuit operates with a three-phase load with protection devices. Main power distribution circuit also has two power supply for 24VDC. The second circuit operates with 24VDC. The first 24VDC power supply gives power for PLC, all I/O cards and other instruments except sensors with the limit current not exceeding 5A. The other one gives power for all sensors.

2.4 **Definition of control system**

2.4.1 Transformer

These Schneider transformers (ABL8REM24030 and ABL8REM24050) from the manufacturer are designed for basic use in industrial applications. They provide a 24VDC power supply with different current (3A and 5A) for multiple purposes, especially when the PLC requires minimum 4A. With the input voltage from 100 to 240 V AC single phase, the transformers supply the output voltage 24VDC. Another advantage of these transformer is integrated fuse for more protection. Despite that advantage, two circuit breakers are also used to protect these transformers.

2.4.2 Protection circuit breaker

The Siemens protection devices (5SJ4108-7HG40) are miniature circuit breaker with current limiting. There are two different tripping mechanisms in these devices, the delayed thermal tripping mechanism for overload protection and the electro mechanic tripping mechanism for short circuit protection. The breaking capacity is up to 14kA at 230/400 VAC and rated currents up to 8A.

2.4.3 PLC CX5010

The PLC are Embedded PCs from the CX5000 series with Intel® Atom™ processors and differ only by the CPU version from Beckhoff manufacturer. With the installed TwinCAT runtime environment, the CX5010 can be programmed for implementation of PLC or Automation projects. With large program memory, the PLC satisfies demanding requirements:

1. For multisector automation tasks in the construction of series machines, special machines and plants.

- 2. Used as a central controller on production lines with central and distributed I/O.
- 3. High processing performance in binary and floating-point arithmetic.
- 4. PROFIBUS DP master/slave interface.
- 5. For extensive I/O configurations.
- 6. For setting up distributed I/O structures.
- 7. Comprehensive integrated system diagnosis.

2.4.4 Digital input EL1808

Manufacturer: Beckhoff

- 1. Digital input
- 2. 500V isolation
- 3. 8 inputs
- 4. 24VDC
- 5. Direct plug-in technique
- 6. IP20 protection class

2.4.5 Digital output EL2808

Manufacturer: Beckhoff

- 1. Digital output
- 2. 500V isolation
- 3. 8 outputs
- 4. 0.5 A max output current
- 5. 24VDC
- 6. Direct plug-in technique
- 7. IP20 protection class

2.4.6 Analog input EL3058

Manufacturer: Beckhoff

- 1. Analog input
- 2. 500V isolation
- 3. 8 inputs
- 4. 4...20 mA signal current
- 5. 24VDC
- 6. 1.25 ms
- 7. 12 bits resolution (16 bits including signal)
- 8. IP20 protection class

2.4.7 Analog Output EL4028

Manufacturer: Beckhoff
1. Analog output

- 2. 500V isolation
- 3. 8 outputs
- 4. 4...20 mA signal current
- 5. 24VDC
- 6. $400 \mu s$
- 7. IP20 protection class

2.4.8 Motor 1: 3GAA112320-ADJ

Manufacturer: ABB

1. Power: 4kW at 400V/415V/690V 50 Hz

2. In: 8.6 A

Speed: 1451 rpm
 Mounting: IM B3

- Protection device Schneider: circuit breaker GV2-ME14, contactor LC1D09BD
 - a. 4 kW at 440 V AC 50/60 Hz, 4...5.5 kW at 500 V AC 50/60 Hz, 3...4 kW at 400/415 V AC 50/60 Hz
 - b. Magnetic Protection Adjustment Range (138 A).
 - c. Thermal Protection Adjustment Range (6...10 A).
 - d. Rated Breaking Capacity (Iq 50 kA at 400/415 V conforming to IEC60947-4-1, Iq 6 kA at 500 V conforming to IEC60947-4-1, Iq 15 kA at 440 V conforming to IEC60947-4-1).

2.4.9 Motor 2: 3GAA082614-BSJ

Manufacturer: ABB

1. Power: 0.75kW at 400V/415V/230V 50 Hz

2. In: 1.9 A

Speed: 1437 rpm
 Mounting: IM V1

- Protection device Schneider: circuit breaker GV2-ME10, contactor LC1D09BL
 - a. 2.2...3 kW at 440 V AC 50/60 Hz, 3 kW at 500 V AC 50/60 Hz, 2.2 kW at 400/415 V AC 50/60 Hz
 - b. Magnetic Protection Adjustment Range (78 A).
 - c. Thermal Protection Adjustment Range (4...6.3 A).
 - d. Rated Breaking Capacity (Iq 50 kA at 400/415 V conforming to IEC60947-4-1, Iq 50 kA at 500 V conforming to IEC60947-4-1, Iq 50 kA at 440 V conforming to IEC60947-4-1).

2.4.10 Motor 3: 3GAA102530-ASJ

Manufacturer: ABB

Power: 2.2kW at 400V/415V/230V 50 Hz

- 2. In: 4.6 A
- 3. Speed: 1455 rpm
- 4. Mounting: IM B3
- Protection device Schneider: circuit breaker GV2-ME10, contactor LC1D09BL
 - a. 2.2...3 kW at 440 V AC 50/60 Hz, 3 kW at 500 V AC 50/60 Hz, 2.2 kW at 400/415 V AC 50/60 Hz
 - b. Magnetic Protection Adjustment Range (78 A).
 - c. Thermal Protection Adjustment Range (4...6.3 A).
 - d. Rated Breaking Capacity (Iq 50 kA at 400/415 V conforming to IEC60947-4-1, Iq 50 kA at 500 V conforming to IEC60947-4-1, Iq 50 kA at 440 V conforming to IEC60947-4-1).

2.4.11 Solenoid valve

NITRA pneumatic directional control solenoid valve, 5-port (4-way), 2-position, spool valve with aluminium body, optional manifold mounting, 1/8-inch NPT female ports, Cv=0.67, 24VDC double solenoid, 9.4mm DIN style wiring connector with LED indication

2.5 **Description of application software**

The process programs are designed for 2 level indicators, 2 temperature indicators, 1 flow indicator, 1 level switch alarm, 1 conveyor motor, 1 stirring motor, 1 pump motor, 1 speed drive and 4 hand valves.

Level indicators and temperature indicators measure the value via the hydrostatic level transmitter and the temperature transmitter thus shown on the screen in the control room. The program illustrates 1 analog input signal which is the measurement value.

The electro-magnetic flow transmitter adjusts the value which is also represented in the control room and simultaneously based on that to control speed drive. There is 1 analog input signal which is shown as the measurement value from the flow transmitter. Program gets 1 output into the speed drive and 1 output for the positioning state. Besides that, there is the binary signal for controlling mode.

The speed drive manages the pump motor frequency. It receives the binary input as the frequency unit on/off and another binary input is to set mode as manual/auto. The program obtains 1 binary output signal to adjust the start/stop of the speed drive.

The level switch alarm which has a level transmitter checks the level value inside the powder tank and alarm in case of lower level limit. The

input signal is as the level value, 1 output signal for setting alarm off whenever the switch alarm is triggered and 1 output signal for positioning state.

Each hand valve controls the flow rate in its pipe. The open limit state and close limit state are displayed in the control room. The program reads 2 binary input signals as the state being used and 1 output to control the valve.

The control valve has a sensor in the field for characterizing and representing the state position of the valve to the control room. There is 1 input signal into the program as the sensing value of position, 1 output for managing the valve and 1 output for the position feedback.

The conveyor motor shifts the powder from the powder tank to the mixing tank, otherwise the stirring motor blends the mixture. There is 1 input as the run state and 1 input as the electric centre fault. Program sets 1 output to control motor and 1 output for manual/auto mode.

The pump motor is governed by the motor drive. There is also 1 input as the run state and 1 input as the electric centre fault. The other is the input of frequency from motor drive for operating motor speed.

2.6 Instrument list

Table 1. Valve list

			VALVE L	IST				
Tag numbe ▼	Loop numbe 🔻	Service description	Production type	Location v	I/O Typ€ ▼	Range or set point	Size (DN)	Manufacturer 🔻
HS-510	H 510	Ball valve with pneumatic actuator	K60D-25-DA52	Field	IO Type	0 - 40 bar	25	AVS
110-510	11 510	Limit switch	SB 01205	Field	BI	50mA - 3A	23	AVS
		Solenoid valve		Control Cabinet		1.5 - 8.0 bar		
TTO 511	TT 511		AVS-5121-24D		DO.		15	AVS
HS-511	H 511	Ball valve with pneumatic actuator	K60D-15-DA32	Field		0 - 40 bar	15	AVS
		Limit switch	SB 01205	Field	BI	50mA - 3A		AVS
		Solenoid valve	AVS-5121-24D	Control Cabinet	ВО	1.5- 8.0 bar		AVS
HS-514	H 514	Ball valve with pneumatic actuator	K60D-50-DA75	Field		0 - 40 bar	50	AVS
		Limit switch	SB 01205	Field	BI	50mA - 3A		AVS
		Solenoid valve	AVS-5121-24D	Control Cabinet	ВО	1.5 - 8.0 bar		AVS
HS-519	H 519	Ball valve with pneumatic actuator	K60D-32-DA63	Field		0 - 40 bar	32	AVS
		Limit switch	SB 01205	Field	BI	50mA - 3A		AVS
		Solenoid valve	AVS-5121-24D	Control Cabinet	ВО	1.5 - 8.0 bar		AVS
HIV-521	H 521	Control valve with pneumatic actuator	Axiom AX	Field	AO	4-20mA	25	Metso's Neles
		Limit switch	SB 01205	Field	BI	50mA - 3A		AVS
		Solenoid valve	AVS-5121-24D	Control Cabinet	ВО	1.5 - 8.0 bar		AVS
LSA-513	L 513	Level switch alarm	Liquipoint FTW23	Field	BI	0 - 16 bar		Endress+Hauser

Table 2. Transmitter list

			TRANSMITTE	R LIST				
Tag numbe 🔻	Loop numbe 🔻	Service description	Production type	Location -	І/О Тур€ ▼	Range or set point	Size (DN)	Manufacturer 🔻
LI-512	L 512	Level transmitter	Deltapilot FMB70	Field	AI/AO	420mA/ 0.1 - 10 bar/ 100m H2O		Endress+Hauser
LI-515	L 515	Level transmitter	Deltapilot FMB70	Field	AI/AO	420mA/ 0.1 - 10 bar/ 100m H2O		Endress+Hauser
TI-517	T 517	Temperature transmitter	iTHERM TrustSens TM372	Field	AI/AO	420mA/0 - 6.0 bar/ -40 to +160 °C		Endress+Hauser
TI-518	T 518	Temperature transmitter	iTHERM TrustSens TM372	Field	AI/AO	420mA/ 0 - 6.0 bar/ -40 to +160 °C		Endress+Hauser
FIC-516	F 516	Flow transmitter	Promag P 200	Field	AI/AO	420mA/ 0.01 - 10 m/s / -20 to +150 °C		Endress+Hauser

2.7 Motor list

Table 3. Motor list

Electrical position	Device desciption	Tec	hnical de	tails				Manufacturer	Motor type	Production code	Control place	MCC- type	Protection device	Contactor	Attn!
Electrical position	Device desciption	Department	P(kW)	r/min	U(V)	In(A)	Mounting code								
M001	POWDER CONVEYOR		4	1451	400	8,6	IM B3	ABB	M3AA 112MB 4	3GAA112320-ADJ	PLC	ND	GV2-ME14	LC1D09BD	GVAE11 ADD
M002	MIXING TANK MIXER		0,75	1437	400	1,9	IM V1	ABB	M3AA 80ME 4	3GAA082614-BSJ	PLC	RD	GV2-ME10	LC1D09BL	
M003	STORAGE TANK FEED		2,2	1455	400	4,6	IM B3	ABB	M3AA 100LC 4	3GAA102530-ASJ	PLC	SC	GV2-ME10	LC1D09BD	AC\$355-03X-05A6-4

2.8 **IO list**

Table 4. I/O list

Loop Tag	Loop Desc 1	Loop Desc 2	# Device Tag	DCS Range	DCS Unit	Device Name	FBC slot	Card	I/O Address	AA'	Al 🚽	AC_	BI	BC	Signal	Supply
HS-511	MIXING TANK	NaOH VALVE	1 ZSO_511	-		OPEN LIMIT	2	0	2.0.0.0				1		NO	
HS-511	MIXING TANK	NaOH VALVE	2 ZSC_511	-		CLOSED LIMIT	2	0	2.0.0.1				1		NO	
HS-511	MIXING TANK	NaOH VALVE	3 GSV_511	-		SOLENOID VALVE	2	3	2.0.3.0					1		6 Bar
HS-510	MIXING TANK	WATER VALVE	1 ZSO_510	-		OPEN LIMIT	2	0	2.0.0.2				1		NO	
HS-510	MIXING TANK	WATER VALVE	2 ZSC_510	-		CLOSED LIMIT	2	0	2.0.0.3				1		NO	
HS-510	MIXING TANK	WATER VALVE	3 GSV_510	-		SOLENOID VALVE	2	3	2.0.3.1					1		6 Bar
LI-512	MIXING TANK	LEVEL	1 LT-512	0-2000	mm	LEVEL SENSOR	3	0	3.0.0.0		1				4-20mA	
TI-517	MIXING TANK	TEMPERATURE	1 TT-517	0-100	°C	TEMPERATURE SENSOR	3	0	3.0.0.1		1				4-20mA	
HS-514	STORAGE TANK	MIXING TANK	1 ZSO_514	-		OPEN LIMIT	2	0	2.0.0.4				1		NO	
HS-514	STORAGE TANK	MIXING TANK	2 ZSC_514	-		CLOSED LIMIT	2	0	2.0.0.5				1		NO	
HS-514	STORAGE TANK	MIXING TANK	3 GSV_514	-		SOLENOID VALVE	2	3	2.0.3.2					1		6 Bar
TI-518	STORAGE TANK	TEMPERATURE	1 TT-518	0-100	°C	TEMPERATURE SENSOR	3	0	3.0.0.2		1				4-20mA	
LI-515	STORAGE TANK	LEVEL	1 LT-515	0-5000	mm	LEVEL SENSOR	3	0	3.0.0.3		1				4-20mA	
LSA-513	POWDER TANK	LEVEL	1 LT-513	0-100	%	LEVEL SENSOR	3	0	3.0.0.4		1				4-20mA	
LSA-513	POWDER TANK	LEVEL	2 LA-513	-	-	LOW LEVEL ALARM	2	2	2.0.2.0				1		NO	
HS-519	PROCESS	PUMP	1 ZSO_519	-		OPEN LIMIT	2	0	2.0.0.6				1		NO	
HS-519	PROCESS	PUMP	2 ZSC_519	-		CLOSED LIMIT	2	0	2.0.0.7				1		NO	
HS-519	PROCESS	PUMP	3 GSV_519	-		SOLENOID VALVE	2	3	2.0.3.3					1		6 Bar
FIC-516	PUMP	FLOW	1 FT-516	0.01-10	m/s	FLOW SENSOR	3	0	3.0.0.5		1				4-20mA	
HIV-521	STORAGE TANK	PUMP	1 CV 521	0-100	%	CONTROL VALVE	3	1	3.0.1.0			1			4-20mA	
HIV-521	STORAGE TANK	PUMP	2 PF_521	0-100	%	POSITION FEEDBACK	3	0	3.0.0.6		1				4-20mA	
HIV-521	STORAGE TANK	PUMP	3 ZSO 521	-		OPEN LIMIT	2	1	2.0.1.0				1		NO	
HIV-521	STORAGE TANK	PUMP	4 ZSC_521	-		CLOSED LIMIT	2	1	2.0.1.1				1		NO	
HIV-521	STORAGE TANK	PUMP	5 GSV 521	-		SOLENOID VALVE	2	3	2.0.3.4					- 1		6 Bar
M001	MIXING TANK	POWDER FEED	1 M001_ST			M001 START	2	3	2.0.3.6					1		
M001	MIXING TANK	POWDER FEED	2 M001_RUN			M001 RUNNING	2	1	2.0.1.4				1		NO	
M001	MIXING TANK	POWDER FEED	3 M001_FAULT			M001 FAULT	2	1	2.0.1.5				1		NO	
M002	MIXING TANK	MIXER	1 M002_ST			M002 START	2	3	2.0.3.7					- 1		
M002	MIXING TANK	MIXER	2 M002_RUN			M002 RUNNING	2	1	2.0.1.6				1		NO	
M002	MIXING TANK	MIXER	3 M002_FAULT			M002 FAULT	2	1	2.0.1.7				1		NO	
M003	STORAGE TANK	PUMP	1 M003_ST			M003 START	2	3	2.0.3.5					1		
M003	STORAGE TANK	PUMP	2 M003_RUN			M003 RUNNING	2	1	2.0.1.2				1		NO	
M003	STORAGE TANK	PUMP	3 M003_FAULT			M003 FAULT	2	1	2.0.1.3				1		NO	
											7	1	17	8		

2.9 Circuits diagram

Figure 8. Sheet 1: Main power distribution and transformer

Figure 9. Sheet 2: Motors and their protection devices

Figure 10.

Control system

Figure 11. Control system

Figure 12. Sensors

2.10 Loop programming charts

Figure 13. Hand valve control loop

Figure 14. Hand valve control loop

Figure 15. Hand valve control loop

Figure 16. Hand valve control loop

Figure 17. Hand valve control loop

Figure 18. Flow indicating control loop

Figure 19. Level measurement in mixing tank

Figure 20. Level measurement in storage tank

Figure 21. Level switch alarm in powder tank

Figure 22. Temperature measurement in mixing tank

Figure 23. Temperature measurement in storage tank

Figure 24. Powder conveyor motor loop

Figure 25. Mixing tank mixer motor loop

Figure 26. Storage tank feed motor loop

Figure 27. Speed drive loop

Figure 28. Control valve loop

2.11 Cabinet layout image

Figure 29. Cabinet layout

2.12 Hook up drawings

Figure 30.

Level measurement with flanged transmitter

Figure 31. Level measurement, level switch

Figure 32. switch

On/off valve with solenoid valve and limit

Figure 33. connection

Temperature measurement flanged process

Figure 34. transmitter

Flow measurement electro-magnetic flow

2.13 Table of name plates

Table 5. Hydrostatic level transmitter

Hydrostatic Lev	Hydrostatic Level Transmitter					
Tag number	Manufacturer	Spec				
LT-512	Endress+Hauser	Deltapilot FMB70				
Measuring ranges		Output				
0,1 - 10 bar		4 - 20 mA				

Table 6. Hydrostatic level transmitter

Hydrostatic Lev	Hydrostatic Level Transmitter					
Tag number	Manufacturer	Spec				
LT-515	Endress+Hauser	Deltapilot FMB70				
Measuring ranges		Output				
0,1 - 10 bar		4 - 20 mA				

Table 7. Temperature transmitter

Temperature '		
Tag number	Manufacturer	Spec
TT-518	Endress+Hauser	iTHERM TrustSens TM372
Measuring ranges		Output
0 - 6.0 bar		4 - 20 mA

Table 8. Temperature transmitter

Temperature '	Transmitter	
Tag number	Manufacturer	Spec
TT-518	Endress+Hauser	iTHERM TrustSens TM372
Measuring ranges		Output
0 - 6.0 bar		4 - 20 mA

Table 9. Flow transmitter

Flow Tran	Flow Transmitter					
Tag number	Tag number Manufacturer					
FT-516	Endress+Hauser	Spec Promag P 200				
Measuring ranges	Measuring ranges Pressure rating					
0.01 to 10 m/s	100 mbar	4 - 20 mA				

Table 10. Powder conveyor motor

Powder Conv	eyor Motor	
Tag number	Manufacturer	Spec
M-001	ABB	M3AA 112MB 4
Operating voltage	AMPS	R.P.M
400V	8.6	1451
Power		
4 kW		

Table 11. Mixing tank mixer motor

MIXING TANK N	MIXING TANK MIXER MOTOR							
Tag number	Manufacturer	Spec						
M-002	ABB	M3AA 80ME 4						
Operating voltage	AMPS	R.P.M						
400V	1.9	1437						
Power								
0.75 kW	1							

Table 12. Storage tank feed motor

STORAGE TANK		
Tag number	Manufacturer	Spec
M-003	ABB	M3AA 100LC 4
Operating voltage	AMPS	R.P.M
400V	4.6	1455
Power		
2.2 kW		

Table 13. Hand valve

HAND VALVE		
Tag position	Manufacturer	Type
HV-510	AVS	K60D-25-DA52
Operating ranges	Size	
0 - 40 bar	25 DN	

Table 14. Hand valve

HAND VALVE		
Tag position	Manufacturer	Type
HV-511	AVS	K60D-15-DA32
Operating ranges	Size	
0 - 40 bar	15 DN	

Table 15. Hand valve

HAND VALVE		
Tag position	Manufacturer	Туре
HV-514	AVS	K60D-50-DA75
Operating ranges	Size	
0 - 40 bar	50 DN	

Table 16. Hand valve

HAND VALVE		
me se	35 6 4	T.
Tag position	Manufacturer	Туре
HV-519	AVS	K60D-32-DA63
Operating ranges	Size	
0 - 40 bar	32 DN	

Table 17. Control valve

CONTROL VALVE		
Tag position	Manufacturer	Туре
HV-521	Metso's Neles	Axiom AX
Operating ranges	Size	
2.7 - 7.5 bar	25 DN	

Table 18. Level switch

LEVEL SWITCH		
Tag number	Manufacturer	Spec
LS-513	Endress+Hauser	Liquipoint FTW23
Measuring ranges		Output
0 - 16 bar		4 - 20 mA

2.14 Cable list

Table 19. Cable list

			1
NUMBER	TYPE	FROM	то
JB1 W1	ÖLFLEX CLASSIC 100 CY 5G6	=100+JB1	
PC1	MCMK 3x4/4	=100+JB1-X0	=100+JB1-Q01
PC10	MCMK 3x4/4	=100+JB1- <supply></supply>	=100+JB1-F100
PC11	MCMK 3x4/4	=100+JB1-F100	=100+JB1-K100
PC12	MCMK 3x4/4	=100+JB1-K100	=100+JB1-X100
PC13	MCMK 3x4/4	=100+JB1-X100	=100+JB1-Q100
PC14	MCMK 3x4/4	=100+JB1-Q100	=100-M001
PC15	ESUY 16	=100+JB1- <supply></supply>	=100-M001
PC16	MCMK 3x1.5/1.5 R100	=100+JB1- <supply></supply>	=100+JB1-F101
PC17	MCMK 3x1.5/1.5 R100	=100+JB1-F101	=100+JB1-K101
PC18	MCMK 3x1.5/1.5 R100	=100+JB1-K101	=100+JB1-X101
PC19	MCMK 3x1.5/1.5 R100	=100+JB1-X101	=100+JB1-Q101
PC2	MCMK 3x4/4	=100+JB1-S1	=100+JB1-Q01
PC20	ESUY 16	=100+JB1- <supply></supply>	=100-M002
PC21	MCMK 3x1.5/1.5 R100	=100+JB1- <supply></supply>	=100+JB1-F102
PC22	MCMK 3x1.5/1.5 R100	=100+JB1-F102	=100+JB1-K102
PC23	MCMK 3x1.5/1.5 R100	=100+JB1-K102	=100+JB1-U1
PC24	ESUY 16	=100+JB1- <supply></supply>	=100+JB1-U1
PC25	MCMK 3x1.5/1.5 R100	=100+JB1-U1	=100+JB1-Q102
PC26	MCMK 3x1.5/1.5 R100	=100+JB1-Q102	=100-M003
PC27	ESUY 16	=100+JB1- <supply></supply>	=100-M003
PC28	NOMAK-E 8x2x0.5+0.5	=100+JB1-D03	100 1100
PC29	NOMAK-E 4x2x0.5+0.5	=100+JB1-D03	=100+JB1-V2
PC3	MCMK 3x4/4	=100+JB1- <supply></supply>	=100+JB1-Q01
PC30	NOMAK-E 8×2×0.5+0.5	=100+JB1-D03	=100+JB1-V3
PC31	NOMAK-E 4x2x0.5+0.5	=100+JB1-D03	=100+JB1-V4
PC32	NOMAK-E 8×2×0.5+0.5	=100+JB1-D03	=100+JB1-V5
PC33	NOMAK-E 8x2x0.5+0.5	=100+JB1-D03	=100-M001
PC34	NOMAK-E 8x2x0.5+0.5	=100+JB1-D03	=100-M001
PC35	NOMAK-E 8x2x0.5+0.5	-1001001 000	=100+JB1-DI1
PC36	NOMAK-E 2×2×0.5+0.5		=100+JB1-PLC
PC37	ESUY 16	=100+JB1- <supply></supply>	=100+JB1-PLC
PC38	JAMAK-C 8x(2+1)x0.5	-1007081-33011212	=100+JB1-AI0
PC39	NOMAK-E 12×2×0.5+0.5		=100+061-Al0
PC4	MCMK 1x1.5+1.5	=100+JB1- <supply></supply>	=100+JB1-F1
PC40	JAMAK-C 2x(2+1)x0.5	=100-LSA-513	=100+381-11 =100+381-DI2
PC41	JAMAK-C 2x(2+1)x0.5	-100-E3X-313	=100+JB1-U1
PC42	JAMAK-C 4x(2+1)x0.5		=100+051=01 =100-HIV-521
PC42	MCMK 2x1.5/1.5	=100+JB1-X0	=100-HIV-321 =100+JB1- <supply></supply>
PC43	NOMAK-E 2×2×0.5+0.5	=100+JB1-X0 =100+JB1-T1	-100+061-130FFE17
PC44	NOMAK-E 2x2x0.5+0.5	=100+JB1-T2	
PC5	MCMK 2x1.5/1.5	=100+JB1-{SUPPLY>	=100+JB1-T1
F-0-0	MOMR 2x1.3/1.3	-100T0B1-\30FFL12	-1007081-11
PC6	MCMK 1x1.5+1.5	=100+JB1-F1	=100+JB1-T1
PC7	MCMK 1x1.5+1.5	=100+JB1- <supply></supply>	=100+JB1-F2
PC8	MCMK 1x1.5+1.5	=100+JB1-F2	=100+JB1-T2
PC9	MCMK 2x1.5/1.5	=100+JB1- <supply></supply>	=100+JB1-T2
. 00	momn ZATIO/TIO	00+001-\30FFE12	-1007001-12

CONCLUSION

In conclusion, the project work prepares students skills and knowledges for doing a plant in real world. From understanding the requirement of the plant to searching for suitable instruments and devices makes students to know more intimately and how the process works. With all documentations from hardware selection to software programming, the project is like an assignment for an engineering in professional environment.

APPENDIX HEADING