Chapter 3: Welfare

Ch 33 in H. Varian 8th Ed.

Slides by Mariona Segú, CYU Cergy Paris Université
Inspired by Michael D. Robinson, Mount Holyoke College

Introduction

Until now...

- → Allocations were evaluated according to efficiency
- → BUT, there are other characteristics of the allocations that might be important. Ex: welfare distribution, fairness
- → THIS CHAPTER: technics used to formalize the idea of welfare distribution
- → How can a society choose among different Pareto efficient allocations?
- → How can individual preferences be "aggregated" into a social preference over all possible economic states?

Introduction

Main focus of this chapter: the welfare function

- → A way to "add together" different consumers' utility
- → A way to rank different distributions of utility among consumers

To do so, first we need to

→ Go from individual preferences to social preferences

Outline

- 1. Aggregating Preferences
- 2. Social Welfare Functions
- 3. Welfare Maximization
- 4. Fair Allocations

Individual preferences

- → Assume they are transitive, as always. We have 3 agents; Bill, Bertha and Bob.
- → Instead of goods, the preferences are now over allocations. Ex: x, y, z denote different allocations.

Social preference

- → Aggregate individual preferences into a social preference
- → Use simple majority voting to decide a state? Use a rank-order vote?

Bill	Bertha	Bob	More preferred
X	У	Z	
У	Z	X	
Z	X	у	
			Less preferred

Bill	Bertha	Bob
X	y	Z
У	Z	X
Z	X	у

Majority Vote Results

x beats y

Bill	Bertha	Bob
X	y	Z
У	Z	X
Z	X	у

Majority Vote Results

x beats y

y beats z

Bill	Bertha	Bob
X	y	Z
У	Z	X
Z	X	у

Majority Vote Results

x beats y

y beats z

z beats x

Bill	Bertha	Bob
X	y	Z
У	Z	X
Z	X	у

Majority Vote Results

x beats y y beats z z beats x No socially best alternative!

Bill	Bertha	Bob
X	y	Z
У	Z	X
Z	X	у

Majority Vote Results

x beats y
y beats z
z beats x

No
socially
best
alternative!

Majority voting does not always aggregate transitive individual preferences into a transitive social preference.

Bill	Bertha	Bob
X	y	Z
У	Z	X
Z	X	У

Majority Vote Results

Solution: vote 2 by 2

- 1) Vote on x vs y \rightarrow x wins
- 2) Vote on x vs z \rightarrow z wins

BUT, the order matters!

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	x(3)	y(3)

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	x(3)	y(3)

Rank-order vote results (low score wins).

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	x(3)	y(3)

Rank-order vote results (low score wins).

x-score = 6

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	x(3)	y(3)

Rank-order vote results (low score wins).

x-score = 6

y-score = 6

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	x(3)	y(3)

Rank-order vote results (low score wins).

x-score = 6

y-score = 6

z-score = 6

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	x(3)	y(3)

Rank-order vote results (low score wins).

x-score = 6

y-score = 6

z-score = 6

No

state is

selected!

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	x(3)	y(3)

Rank-order vote results (low score wins).

x-score = 6

y-score = 6

z-score = 6

No

state is

selected!

Rank-order voting is indecisive in this case.

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	x(3)	y(3)

Possible solution: add an additional option

These are truthful preferences.

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	x(3)	y(3)

Possible solution: add an additional option

These are truthful preferences.

Bob introduces a new alternative

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	$\alpha(3)$	y(3)
α(4)	x(4)	α(4)

Possible solution: add an additional option

These are truthful preferences.

Bob introduces a new alternative

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	x(2)
z(3)	α (3)	y(3)
α(4)	x(4)	$\alpha(4)$

Possible solution: add an additional option

These are truthful preferences.

Bob introduces a new alternative **then lies**

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	α(2)
z(3)	$\alpha(3)$	x(3)
α(4)	x(4)	y(4)

Possible solution: add an additional option

These are truthful preferences.

Bob introduces a new alternative

Rank-order vote results x-score = 8

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	α(2)
z(3)	$\alpha(3)$	x(3)
α(4)	x(4)	y(4)

Possible solution: add an additional option

These are truthful preferences.

Bob introduces a new alternative

Rank-order vote results

x-score = 8

y-score = 7

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	α(2)
z(3)	$\alpha(3)$	x(3)
α(4)	x(4)	y(4)

Possible solution: add an additional option

These are truthful preferences.

Bob introduces a new alternative

Rank-order vote results

x-score = 8

y-score = 7

Z-score = 6

Bill	Bertha	Bob
x(1)	y(1)	z(1)
y(2)	z(2)	α(2)
z(3)	$\alpha(3)$	x(3)
α(4)	x(4)	y(4)

Possible solution: add an additional option

These are truthful preferences.

Bob introduces a new alternative

Rank-order vote results

x-score = 8

y-score = 7

z-score = 6

z wins!!

 α -score = 9

- → These 2 voting schemes can be **manipulated**:
- → Majority voting: manipulated by changing the order on which things are voted
- → Rank-order voting: manipulated by introducing new alternatives that change the final ranks
 - I.e. one individual can cast an "untruthful" vote to improve the social outcome for himself.

Desirable Voting Rule Properties

What social decision mechanisms are immune to manipulation?

- 1. If all individuals' preferences are complete, reflexive and transitive, then so should be the social preference created by the voting rule.
- 2. If all individuals rank x before y then so should the voting rule.
- Social preference between x and y should depend on individuals' preferences between x and y only.

- → Kenneth Arrow's Impossibility Theorem: The only voting rule with all of properties 1, 2 and 3 is **dictatorial**.
- → Implication is that a nondictatorial voting rule requires giving up at least one of properties 1, 2 or 3.

Desirable Voting Rule Properties

But, it is hard to find a system that satisfies all the conditions.

In fact...

Kenneth Arrow's Impossibility Theorem:

- → The only voting rule with all of properties 1, 2 and 3 is dictatorial.
- → Implication is that a nondictatorial voting rule requires giving up at least one of properties 1, 2 or 3.

2. Social Welfare Functions

- If all individuals' preferences are complete, reflexive and transitive, then so should be the social preference created by the voting rule.
- 2. If all individuals rank x before y then so should the voting rule.
- Social preference between x and y should depend on individuals' preferences between x and y only.

Give up which one of these?

Social Welfare Functions

- If all individuals' preferences are complete, reflexive and transitive, then so should be the social preference created by the voting rule.
- 2. If all individuals rank x before y then so should the voting rule.
- Social preference between x and y should depend on individuals' preferences between x and y only.

Give up which one of these?

Social Welfare Functions

- If all individuals' preferences are complete, reflexive and transitive, then so should be the social preference created by the voting rule.
- 2. If all individuals rank x before y then so should the voting rule.

There is a variety of voting procedures with both properties 1 and 2.

Social Welfare Functions

- \rightarrow u_i(x) is individual i's utility from overall allocation x.
 - A welfare function is an increasing function of each agent's utility
- 1. Utilitarian: add up individual utilities $W = \sum_{i=1}^{n} u_i(x)$.
- 2. Weighted-sum: $W = \sum_{i=1}^{n} a_i u_i(x)$ with each $a_i > 0$.

i=1

- Each weight indicates how important each individual is to the overall social welfare.
- 3. Minimax or Rawlsian: $W = \min\{u_1(x), \dots, u_n(x)\}$.
 - The social welfare depends only on the utility of the worst off agent

Each welfare function represents a different ethical judgement

3. Welfare maximization

→ Find the feasible allocation that maximizes social welfare

Properties of the optimal allocation

- Any social optimal allocation must be Pareto optimal.
 - Why?
 - If not, then somebody's utility can be increased without reducing anyone else's utility;

social suboptimality \Rightarrow inefficiency.

Utility Possibilities

Utilitarian

Weighted sum of utilities

Rawlsian

- → If the Utility Possibility Frontier is convex, then every point of the frontier is a Pareto efficient allocation for a weighted-sum of utilities welfare function.
- → Every welfare maximum is a Pareto efficient allocation, and every Pareto efficient allocation is a welfare maximum

Welfare function is not useful in deciding what ethical judgments are more reasonable

- → Some Pareto efficient allocations are "unfair".
 - E.g. one consumer eats everything is efficient, but "unfair".

Definition of fair allocation

- → An allocation is fair if it is
 - Pareto efficient
 - Envy free (equitable): no agent prefers any other agent's bundle of goods to his or her own

Can competitive markets guarantee that a "fair" allocation can be achieved?

- → Must equal endowments create fair allocations?
 - No. Why not?

Example 1

- → 3 agents, same endowments.
- → Agents A and B have the same preferences. Agent C does not.
- \rightarrow Agents B and C trade \Rightarrow agent B achieves a more preferred bundle.
- \rightarrow Therefore agent A must envy agent B \Rightarrow unfair allocation.

Example 2

- → 2 agents, equal division endowments.
- → Now trade is conducted in competitive markets (according to 1st Welfare Theorem, this leads to a Pareto efficient allocation.
- → Must the post-trade allocation be fair?
 - Why?

- \rightarrow Endowment of each is (ω_1, ω_2) .
- → Post-trade bundles are

$$(x_1^A, x_2^A)$$
 and (x_1^B, x_2^B) .

Then
$$p_1x_1^A + p_2x_2^A = p_1\omega_1 + p_2\omega_2$$
 and $p_1x_1^B + p_2x_2^B = p_1\omega_1 + p_2\omega_2$.

With
$$\omega_1 = \omega_1^A = \omega_1^B = \frac{\overline{\omega}}{2}$$

Let's suppose that the result of trade is not equitable. This means:

→ Suppose agent A envies agent B.

$$\rightarrow$$
 I.e. $(x_1^B, x_2^B) \succ_A (x_1^A, x_2^A)$.

$$\rightarrow$$
 Then, for agent A, $p_1x_1^{\mathrm{B}}+p_2x_2^{\mathrm{B}}>p_1x_1^{\mathrm{A}}+p_2x_2^{\mathrm{B}}$ $=p_1\omega_1+p_2\omega_2.$

- \rightarrow Contradiction (x_1^B, x_2^B) is not affordable for agent A.
 - A and B started with exactly the same bundle, since they started from an equal division. If A can't afford B's bundle, then B can't afford it either!

→ This proves that:

If every agent's endowment is identical, then trading in competitive markets results in a fair allocation.

A does not envy B's post-trade allocation. B does not envy A's post-trade allocation.

Post-trade allocation is Pareto-efficient and envy-free; hence it is fair.