Label Embedding Based on Multi-Scale Locality Preservation

Cheng-Lun Peng, An Tao, Xin Geng

Reporter: Cheng-Lun Peng

Date: July 17, 2018

Outline

- 1 Background
- 2 Proposed Method: MSLP
- 3 Experiment
- 4 Conclusion

1 Background: LE & LDL

☐ Label Embedding (LE): A Learning Strategy

♦ Usual Steps

encoding process (encoder) learning process (predictor) decoding process (decoder)

Label Space

☐ Label Distribution Learning (LDL): A Learning Paradigm

□ Our Work

Propose a specially designed LE Method named MSLP for LDL, which is the first attempt of applying LE in LDL

1 Background: The Meaning of Our Work

☐ Why Apply LE in LDL

- ◆ The labels in LDL may encounter problems (e.g., redundancy, noise, ...)
- ◆ Effective exploitation of the label correlations is crucial for the success for LDL.
- ◆ LE owns advantages in addressing problematic labels and capturing latent correlation between labels.

■ What's The Challenges of Applying LE in LDL

- ◆ There are no LE method for LDL proposed yet. Most existing LE methods are designed for SLL and MLL, i.e., focusing on the binary labels (0/1).
- ◆ Two main issues
 - a) How to exploit the information of label distributions efficiently.
 - b) How to design a decoder that restricts the recovered label vector to satisfy the constraints of the label distribution.

1 Background: Symbol Definition

□ Symbol Definition

$$S = \{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$
 : Dataset

$$\boldsymbol{x_i} \in \mathbb{X} = R^M$$
 : i-th instance

$$m{y}_i \in \mathbb{Y} = R^L$$
 : i-th label vector $y_i^c \in [0,1]$ $\sum_{c=1}^L y_i^c = 1$

$$X_{N*M} = [x_1, ..., x_N]^t$$
 and $Y_{N*L} = [y_1, ..., y_N]^t$

$$oldsymbol{y_i'} \in \mathbb{Y}' = \mathbb{R}^l$$
 : i-th embedded label vector

$$Y'_{N*l} = [y'_1, ..., y'_N]^t$$

2 MSLP: Motivation

■ Motivation

♦ Locality Preserving Embedding for The Label Space

Inspired by Laplacian Eigenmaps [Belkin and Niyogi, 2002], MSLP aims to make the data points with similar label distributions close to each other in the embedding space.

$$\min_{\boldsymbol{Y'}} \ \frac{1}{2} \sum_{i,j} \parallel \boldsymbol{y'_i} - \boldsymbol{y'_j} \parallel^2 \boldsymbol{W_{y,ij}^+}$$

s.t.
$$\mathbf{Y'}^T \mathbf{D}^+ \mathbf{Y'} = \mathbf{I}$$

$$Nei_{\mathbf{y}}(i) = \psi_{\mathbf{y}}(\mathbf{p}_i, k^+, \{\mathbf{p}_j \mid \mathbf{p}_j \neq \mathbf{p}_i \land \mathbf{p}_j \in S\}).$$

$$D_{ii}^+ = \sum_j W_{y,ij}^+, Y_{N*l}' = [y_1', ..., y_N']^t$$

$$\boldsymbol{W}_{\boldsymbol{y},ij}^{+} = \begin{cases} exp(-\frac{dis(\boldsymbol{y}_{i},\boldsymbol{y}_{j})}{\sigma}), i \in Nei_{\boldsymbol{y}}(j) \text{ or } j \in Nei_{\boldsymbol{y}}(i) \\ 0, & otherwise \end{cases}$$

Find k^+ nearest neighbors for data point p_i in the label space among the given point set

2 MSLP: Explicit Assumption

□ Explicit Assumption

Assume an explicit mapping from the features to the embedded labels

$$\min_{oldsymbol{Y'}} \; rac{1}{2} \sum_{i,j} \parallel oldsymbol{y_i'} - oldsymbol{y_j'} \parallel^2 oldsymbol{W_{oldsymbol{y},ij}^+}$$

$$s.t. \mathbf{Y'}^T \mathbf{D}^+ \mathbf{Y'} = \mathbf{I}$$

Advantage:

- Makes the process of label embedding feature-aware
- igoplus Omits the additional learning process from \mathbb{X} to \mathbb{Y}' after completing embedding.

$$\min_{\boldsymbol{V}} \ \frac{1}{2} \sum_{ij} \parallel \boldsymbol{V}^T \boldsymbol{x}_i - \boldsymbol{V}^T \boldsymbol{x}_j \parallel^2 \boldsymbol{W}_{\boldsymbol{y},ij}^+ + \lambda \parallel \boldsymbol{V} \parallel_F^2$$
 s.t. $\boldsymbol{V}^T \boldsymbol{X}^T \boldsymbol{D}^+ \boldsymbol{X} \boldsymbol{V} = \boldsymbol{I}$ L2 Regularization

2 MSLP: Explicit Assumption

□ Problem of Explicit Linear Assumption

$$\min_{\boldsymbol{V}} \ \frac{1}{2} \sum_{ij} \| \boldsymbol{V}^T \boldsymbol{x}_i - \boldsymbol{V}^T \boldsymbol{x}_j \|^2 \boldsymbol{W}_{\boldsymbol{y},ij}^+ + \lambda \| \boldsymbol{V} \|_F^2$$

The solution for V will tend to be dominated by the large feature distances of data pairs where $W_{u,ij}^+ \neq 0$.

Data pairs which keep very close in the label space, but keep far away from each other in the feature space.

2 MSLP: Restriction

☐ Multi-Scale Locality Preservation

$$Nei_{\mathbf{y}}(i) = \psi_{\mathbf{y}}(\mathbf{p}_i, k^+, Nei_{\mathbf{x}}(i))$$

$$Nei_{\boldsymbol{x}}(i) = \psi_{\boldsymbol{x}}(\boldsymbol{p}_i, \ \alpha k^+, \ \{\boldsymbol{p}_j \mid \boldsymbol{p}_j \neq \boldsymbol{p}_i \land \boldsymbol{p}_j \in S\})$$

 $\alpha \geq 1$

Restriction:

The k^+ nearest neighbors of one data point in label space should be found

within

its ak^+ nearest neighbors in feature space.

That is, utilizing different locality granularity in the label space and the feature space, the locality information of data points in both spaces are integrated.

2 MSLP: Robust to Noise

☐ Smoothness Assumption [Chapelle *et al.*,2006]

Neighboring data points in feature space are more likely to share the similar labels.

☐ Hetero-neighbors

Data pairs which keep very close in the feature space, but keep far away from each other in the label space.

$$HNei(i) = \psi_{\boldsymbol{x}}(\boldsymbol{p}_i, k^-, Nei_{\boldsymbol{x}}(i)) \cap \psi_{\boldsymbol{y}}(\boldsymbol{p}_i, -k^-, Nei_{\boldsymbol{x}}(i)),$$

$$Nei_{\boldsymbol{x}}(i) = \psi_{\boldsymbol{x}}(\boldsymbol{p}_i, \alpha k^+, \{\boldsymbol{p}_j \mid \boldsymbol{p}_j \neq \boldsymbol{p}_i \wedge \boldsymbol{p}_j \in S\})$$

$$\max \sum_{ij} \| \boldsymbol{V}^T \boldsymbol{x}_i - \boldsymbol{V}^T \boldsymbol{x}_j \|^2 \boldsymbol{W}_{ij}^-$$

$$W_{ij}^{-} = \begin{cases} 1, & i \in HNei(j) \text{ or } j \in HNei(i) \\ 0, & otherwise \end{cases}.$$

2 MSLP: Objective

□ The objective of MSLP

$$\min_{\mathbf{V}} \frac{\beta}{2} \sum_{ij} \| \mathbf{V}^T \mathbf{x}_i - \mathbf{V}^T \mathbf{x}_j \|^2 \mathbf{W}_{\mathbf{y},ij}^+ - \frac{(1-\beta)}{2} \sum_{ij} \| \mathbf{V}^T \mathbf{x}_i - \mathbf{V}^T \mathbf{x}_j \|^2 \mathbf{W}_{ij}^- + \lambda \| \mathbf{V} \|_F^2$$

$$s.t. \ \mathbf{V}^T \mathbf{X}^T \mathbf{D}^+ \mathbf{X} \mathbf{V} = \mathbf{I}$$

 $\beta \in [0,1]$ balances the importance of the first two terms

2 MSLP: Solution

$$\min_{\boldsymbol{V}} \ \frac{\beta}{2} \sum_{ij} \parallel \boldsymbol{V}^T \boldsymbol{x}_i - \boldsymbol{V}^T \boldsymbol{x}_j \parallel^2 \boldsymbol{W}_{\boldsymbol{y},ij}^+ - \ \frac{(1-\beta)}{2} \sum_{ij} \parallel \boldsymbol{V}^T \boldsymbol{x}_i - \boldsymbol{V}^T \boldsymbol{x}_j \parallel^2 \boldsymbol{W}_{ij}^- + \lambda \parallel \boldsymbol{V} \parallel_F^2$$

$$\frac{\beta}{2} \sum_{ij} tr[\mathbf{V}^{T}(\mathbf{x}_{i} - \mathbf{x}_{j})(\mathbf{x}_{i} - \mathbf{x}_{j})^{T} \mathbf{V}] \mathbf{W}_{\mathbf{y},ij}^{+}$$

$$= \beta \sum_{i} tr[\mathbf{V}^{T} \mathbf{x}_{i} \mathbf{D}_{ii}^{+} \mathbf{x}_{i}^{T} \mathbf{V}] - \beta \sum_{ij} tr[\mathbf{V}^{T} \mathbf{x}_{i} \mathbf{W}_{\mathbf{y},ij}^{+} \mathbf{x}_{j}^{T} \mathbf{V}]$$

$$= \beta tr[\mathbf{V}^{T}(\sum_{i} \mathbf{x}_{i} \mathbf{D}_{ii}^{+} \mathbf{x}_{i}^{T} - \sum_{ij} \mathbf{x}_{i} \mathbf{W}_{\mathbf{y},ij}^{+} \mathbf{x}_{j}^{T}) \mathbf{V}]$$

$$= \beta tr[\mathbf{V}^{T} \mathbf{X}^{T} (\mathbf{D}^{+} - \mathbf{W}^{+}) \mathbf{X} \mathbf{V}]$$

Through similar computing,

$$(1-\beta)tr[\mathbf{V}^T\mathbf{X}^T(\mathbf{D}^--\mathbf{W}^-)\mathbf{X}\mathbf{V}]$$
, where $\mathbf{D}_{ii}^- = \sum_j \mathbf{W}_{ij}^-$.

$$\min_{\mathbf{V}} tr[\mathbf{V}^T (\mathbf{X}^T (\beta \mathbf{M}^+ - (1 - \beta) \mathbf{M}^-) \mathbf{X} + \lambda \mathbf{I}) \mathbf{V}]$$
where $\mathbf{M}^+ = \mathbf{D}^+ - \mathbf{W}^+$ and $\mathbf{M}^- = \mathbf{D}^- - \mathbf{W}^-$.

2 MSLP: Solution

$$\min_{\mathbf{V}} tr[\mathbf{V}^{T}(\mathbf{X}^{T}(\beta \mathbf{M}^{+} - (1 - \beta)\mathbf{M}^{-})\mathbf{X} + \lambda \mathbf{I})\mathbf{V}]$$
s.t.
$$\mathbf{V}^{T}\mathbf{X}^{T}\mathbf{D}^{+}\mathbf{X}\mathbf{V} = \mathbf{I}$$

Applying the Lagrangian method, the problem can be transfered into a general eigen-decomposition problem.

$$(X^T M X + \lambda I)v = \eta(X^T D^+ X)v$$
, where $M = \beta M^+ - (1 - \beta)M^-$

The optimal V consists of the first l normalized eigenvectors corresponding to the top l smallest eigenvalues.

2 MSLP: Decoder

□ Testing Phrase

For an unseen instance x_u , we first compute its corresponding embedded label vector $\hat{y}'_u = V^T x_u$. Then, the *knn*-based decoder recovers the predicted label distribution \hat{y}_u by averaging the label distributions of k nearest neighbors of \hat{y}'_u among the embedded label matrix Y'.

3 Experiment: Configuration

□ Compared Methods

- ◆ Eight popular LDL methods: IIS-LDL, CPNN, BFGS-LDL, LDSVR, AA-BP, AA-KNN, PT-SVM, PT-Bayes
- Four typical Feature Embedding methods: CCA, NPE, PCA, LPP (The Linear version of Laplacian Eigenmaps) The compared FE methods are allowed to be extended to their kernel version with the rbf kernel, which gives them full chances to beat MSLP.

□ Widely-used Metrics in LDL

- ◆ Four distance metrics: Chebyshev, Clark, Kullback-Leibler, Canberra
- ◆ Two similarity metrics: Cosine and Intersection

□ Other Settings

- ◆ the embedding ratio of the dimensionality ranges over {10%, 20%, ..., 100%}
- ◆ Running each method with the best tuned parameters
- ◆ 10-fold cross validation
- ◆ Pairwise t-tests at 90% significance level

3 Experiment: Datasets

Datasets	#S	#Lab el	#Feat ure	Domain
s-JAFEE	213	6	243	facial expression recognition
s-BU- 3DEF	250 0	6	243	facial expression recognition
SCUT-FBP	150 0	5	300	facial beauty sense
M^2B	124 0	5	250	facial beauty sense
Nature_Sc ene	200	9	294	natural scene annotation

3 Experiment: Visualization

Figure 7: Embedding results on the s-JAFFE.

◆ Different colors are used to display images according to the highest description degree of the basic emotions

3 Experiment: Quantitative Results

Datasets	SCUT-FBP					Multi-Modality Beauty (M ² B)						
Metrics	Cheb ↓	Cla↓	Can ↓	KL↓	Cos ↑	Inter ↑	Cheb ↓	Cla↓	Can ↓	KL↓	Cos ↑	Inter ↑
CPNN	0.4436	1.5943	3.2116	1.1801	0.5759	0.4918	0.3726	1.3012	2.6129	0.5649	0.7082	0.5584
LDSVR	0.2694	1.4280	2.7575	0.5684	0.8341	0.7121	0.3611	1.2704	2.5457	0.5363	0.7235	0.5781
BFGS-LDL	0.3517	1.5321	2.9985	0.8572	0.6905	0.5557	0.3720	1.2180	2.4166	0.6898	0.6759	0.5698
IIS-LDL	0.6493	1.8615	3.9359	3.2270	0.3593	0.2985	0.3790	1.3136	2.6368	0.5864	0.6970	0.5522
AA-BP	0.2538	1.4002	2.5981	0.4157	0.8372	0.6948	0.3781	1.3142	2.6356	0.5851	0.6992	0.5529
AA-KNN	0.2148	1.2761	2.2953	0.3602	0.8691	0.7435	0.3754	1.2204	2.4190	0.6884	0.6711	0.5600
PT-SVM	0.4184	1.5736	3.1111	1.1354	0.5784	0.5080	0.4139	1.3576	2.7366	0.8057	0.5990	0.5004
PT-Bayes	0.3836	1.5376	3.0516	1.1328	0.6779	0.5156	0.6905	2.0668	4.4951	11.832	0.4474	0.3044
LPP	0.2202	1.3219	2.4098	0.3256	0.8667	0.7358	0.3675	1.2557	2.5167	0.5893	0.6987	0.5662
NPE	0.2133	1.3057	2.3630	0.2854	0.8784	0.7446	0.3645	1.2688	2.5295	0.5643	0.7095	0.5695
PCA	0.2144	1.3082	2.3701	0.3144	0.8717	0.7435	0.3688	1.2433	2.4858	0.6151	0.6902	0.5666
CCA	0.2141	1.2938	2.3404	0.2927	0.8724	0.7473	0.3559	1.2382	2.4690	0.5476	0.7192	0.5811
MSLP	0.2046	1.2602	2.2477	0.2813	0.8823	0.7608	0.3549	1.2095	2.4058	0.5684	0.7127	0.5844

Table 2: Experimental results on facial beauty sense.

3 Experiment: Quantitative Results

Across all metrics, MSLP ranks 1st in 93.3% cases.

Datasets	Natural_Scene (NS)								
Metrics	Cheb ↓	Cla↓	Can ↓	KL↓	Cos ↑	Inter ↑			
CPNN	0.3136	2.4720	6.8613	0.9022	0.6847	0.4908			
LDSVR	0.4082	2.3884	6.7650	1.1158	0.6372	0.5093			
BFGS-LDL	0.3342	2.3956	6.5829	0.9310	0.6979	0.5416			
IIS-LDL	0.3569	2.4737	6.8221	0.9437	0.6649	0.4618			
AA-BP	0.3387	2.4593	6.7762	0.8925	0.6898	0.4907			
AA-KNN	0.3055	2.2548	5.8358	0.7919	0.7309	0.5567			
PT-SVM	0.4282	2.5696	7.2756	1.5533	0.4583	0.3497			
PT-Bayes	0.4047	2.5206	7.1398	2.2363	0.5601	0.3305			
LPP	0.3113	2.2959	6.0166	0.8307	0.7178	0.5390			
NPE	0.3021	2.2324	5.7596	0.7910	0.7359	0.5619			
PCA	0.3048	2.2512	5.8199	0.7913	0.7310	0.5577			
CCA	0.3188	2.3139	6.1598	0.8361	0.7243	0.5319			
MSLP	0.2927	2.2198	5.7214	0.7849	0.7406	0.5696			

Table 3: Experimental results on natural scene annotation.

4 Conclusion

□ Conclusion

- ◆ The **first attempt** of embedding LE into LDL.
- ◆ MSLP is **insensitive** to the presence of hetero-neighbors and **integrates** the locality structure of points in **both spaces** with different granularity.
- ◆ Experiments reveal the **effectiveness** of MSLP **in** gathering points with similar label distributions in the embedding space.

☐ Future Work

- ◆ Explore if there exist better ways to utilize the structure information described by the label distributions.
- ◆ Shift MSLP to some other learning paradigms (e.g., multi-output regression) which own numerical labels.

Thank you

Q & A