Colle **1**Raisonnements

- ▶ Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à me rendre la semaine prochaine.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Raisonnements par analyse-synthèse

Exercice 1.1

Déterminer les solutions sur $\mathbb R$ de l'équation

$$\sqrt{2-x}=x$$
.

Exercice 1.2

Soient u, v > 0.

Déterminer tous les couples $(x,y) \in (\mathbb{R}^*)^2$ tels que

$$\begin{cases} xy = u \\ \frac{x}{v} = v. \end{cases}$$

Exercice 1.3

Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction.

La fonction f est dite paire lorsque

$$\forall x \in \mathbb{R}, \quad f(-x) = f(x).$$

Montrer que f est paire si, et seulement si, il existe une unique fonction $g: \mathbb{R}_+ \longrightarrow \mathbb{R}$ telle que

$$\forall x \in \mathbb{R}, \quad f(x) = g(x^2).$$

Exercice 1.4

Déterminer toutes les fonctions $f:\mathbb{R}\longrightarrow\mathbb{R}$ telles que

$$\forall x, y \in \mathbb{R}, \quad f(x)f(y) - f(xy) = x + y.$$

Exercice 1.5

Déterminer toutes les fonctions $f:\mathbb{R}\longrightarrow\mathbb{R}$ dérivables telles que

$$\forall x, y \in \mathbb{R}, \quad f(x+y) = f(x) + f(y).$$

Exercice 1.6

1. Déterminer les solutions r_1 , r_2 de l'équation

$$x^2 + 5x - 14 = 0.$$

2. Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}, \ u_{n+2} = -5u_{n+1} + 14u_n.$$

Montrer que

1

$$\exists \lambda, \mu \in \mathbb{R} : \forall n \in \mathbb{N}, u_n = \lambda r_1^n + \mu r_2^n.$$

Autres exercices

Exercice 1.7

Soient $a, b \in \mathbb{R}$ tels que $a + b \notin \mathbb{Q}$. Les nombres a et b peuvent-ils être rationnels?

Exercice 1.8

Existe-t-il $x, y \notin \mathbb{Q}$ tels que $x^y \in \mathbb{Q}$?

Exercice 1.9

Soit $n \in \mathbb{N}$. On suppose que n est le carré d'un entier.

Le nombre 2n peut-il être le carré d'un entier?

Exercice 1.10

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$. Montrer que

$$1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}>\frac{3n}{2n+1}.$$

Exercice 1.11

Soit $a \in [0,1]$. Montrer que

$$\forall n \in \mathbb{N}^*, \quad a^n \leqslant n! \leqslant n^n.$$

Exercice 1.12

On définit la suite $(u_n)_{n\in\mathbb{N}}$ comme suit :

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \sqrt{\frac{1 + u_n}{2}}. \end{cases}$$

Montrer que

$$\forall n \in \mathbb{N}^*, \quad \frac{1}{\sqrt{2}} \leqslant u_n \leqslant 1.$$