

deeplmageJ

Bridging Deep Learning to ImageJ

deepimagej.github.io/deepimagej/

E. Gómez-de-Mariscal¹, C. García-López de Haro¹, A. Muñoz-Barrutia¹, D. Sage²

¹Bioeng. and Aerospace Eng. Dept., Universidad Carlos III de Madrid (UC3M) Instituto de Investigación Sanitaria Gregorio Marañón, Spain

> 20 20 10

CHALLENGE FOR DL SOLUTIONS:

Integration of image analysis pipelines

user friendly

+

Open source tools

Run Deep Learning models in Images

Functional

- Integrate new models
- Process new data

General

- Compatible with different CNN architectures

Easy-to-use!

- Imagej's plugin-like: macro recordable
- unifying interface for TensorFlow Pytorch models

Ready out-of-the-box!

- One-click installation
- Runs on a laptop/CPU/GPU
- Proof of concept for a Model-Repository >

Make your models accessible!

- Easy model sharing
- Ready to use models
- Gui to build the bundled model

Developer meets the user

Model developer

Bundled model

Share the model

Model developer

Bundled model

Share the model

deepimagej.github.io/deepimagej/

Model user

Install deepImageJ

update site:

https://sites.imagej.net/DeepImageJ/

Download the model

Developer meets the user

Model user

Install deeplmageJ

update site:

https://sites.imagej.net/DeepImageJ/

Download the model =

Model developer

Bundled model

Share the model

Developer meets the user

Model user

Install deeplmageJ

update site:

https://sítes.ímagej.net/DeepImageJ/

Download the model 8

Model developer

Bundled model

Share the model

install the model

1. Unzíp

3. Process your image with deeplmageJ

use deeplmageJ as a standard plugin

Preprocessing

Postprocessing

Java code

ZERO-CODE SOLUTION

Hey! Let's try it

The magic is in the configuration file

config.xml

```
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <ModelInformation>
        <Name>U-Net Hela Cell Segmentation</Name>
        <Author>João Soares Lopes</Author>
        <URL>n/a</URL>
        <Credit>Biomedical Imaging Group, School of Engineering, Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland</Credit>
       <Version>n/a</Version>
        <Date>2019</Date>
        <Reference>n/a</Reference>
    </ModelInformation>
    <ModelTest>
        <InputSize>256x256</InputSize>
        <OutputSize>256x256</OutputSize>
        <MemoryPeak>268.0 Mb</MemoryPeak>
        <Runtime> 5.5 s</Runtime>
    </ModelTest>
    <ModelCharacteristics>
        <ModelTag>tf.saved model.tag constants.SERVING</ModelTag>
<SignatureDefinition>tf.saved model.signature constants.DEFAULT SERVING SIGNATURE
DEF KEY</SignatureDefinition>
        <InputTensorDimensions>,-1,256,256,1,</InputTensorDimensions>
        <NumberOfInputs>1</NumberOfInputs>
        <InputNames0>input</InputNames0>
        <InputOrganization0>NHWC</InputOrganization0>
        <NumberOfOutputs>1</NumberOfOutputs>
        <OutputNames0>output</OutputNames0>
        <OutputOrganization0>NHWC</OutputOrganization0>
        <Channels>1</Channels>
        <FixedPatch>true</FixedPatch>
        <MinimumSize>1</MinimumSize>
        <PatchSize>256</PatchSize>
        <FixedPadding>true/FixedPadding>
        <Padding>64</Padding>
        <PreprocessingFile>preprocessing.txt</PreprocessingFile>
        <PostprocessingFile>postprocessing.txt</PostprocessingFile>
        <slices>1</slices>
    </ModelCharacteristics>
</Model>
```


After you worked on it for a while...

The Big umbrella by Amy June Bates

You see the combined effort of the whole community to democratize Deep Learning

and more!

Hackathon on Bioimage Analysis, Dresden, 2019

"how to build bridges among the worlds of Java, C++, Python, and JavaScript."

The magic is in the configuration file...

... which in the universal language is the YAML file

https://bioimage.io/

Call for trained models for image processing

Further tutorials and documentation

- E. Gómez-de-Maríscal, C. García-López-de-Haro, et al., bíorxív, 2019. https://doi.org/10.1101/799270
- Deepimagej web page: https://deepimagej/
- 1. Arganda-Carreras, NEUBIAS Analyst School 2020: https://github.com/miura/NEUBIAS_AnalystSchool2020/tree/master/Ignacio
- 1. Arganda-Carreras, Intro to Machine Learning-DeepLearning-Deepimagej NEUBIASAcademy@Home: https://youtu.be/ovTbs08Vnuo
- E. Gómez de Maríscal, et al., Neubías Sprínger Book 2021 (https://gíthub.com/NEUBIAS/neubías-sprínger-book-2021/tree/master/Ch03 Building a Bioimage Analysis Workflow using Deep Learning)

uc3m

Universidad Carlos III de Madrid

Daniel Sage

Arrate Muñoz-Barrutía

Fundación **BBVA**

- Spanish Ministry of Economy and Competitiveness (TEC2015-73064-EXP, TEC2016-78052-R)
- Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation
- Program "Short Term Scientific Missions" of Neubias (COST)
- Initiative Imaging EPFL: Imaging@epfl
- **NVIDIA** Corporation

Imaging@EPFL

The Big umbrella by Amy June Bates

- Donatí, Laurène, EPFL
- Unser, Michael, EPFL
- Soares Lopes, João Luís, EPFL student
- Pengo, Thomas, University of Minnesota
- M. Gordalíza, Pedro, UC3M
- Arganda-Carreras, Ignacio, Univ. del País Vasco
- M. Douglass, Kyle, EPFL, Switzerland
- Yair Rivenson, UCLA
- Hongda, Wang, UCLA
- Schmidt, Deborah, MPI, Dresden,
- Jug, Florian MPI, Dresden
- Eglinger, Jan, FMI Basel
- Renden, Curtis LOCI Lab
- Ouyang, Wei Scilifelab, KTH
- Henríques, Ricardo, Instituto Gulbenkian de Ciência, Portugal
- F. Laine, Romain, UCL (MRC-LMCB), England
- Tosí, Sébastien, IRB Barcelona, Spain

