GENERAL & ANALYTICAL CHEMISTRY I CHMG-141

With Dr. Bailey

Recitation Week 8 Part 1: Molecular geometry

Complete the following table:

Central	Total	Number of	Number of	Lowes Dot	Electron pair	Bond	Molecular
atom	Number of	bonding	nonbonding	Structure	geometry of	angles	geometry of
	"charged	"charge	electron	around central	central atom	angles	central atom
	clouds"	clouds" in	pairs on	atom	central atom	1	central atom
	(electron	central	central atom	atom		-	
	groups) in	atom	central atom				
	central atom	atom					
P	4	3	1		77 4 7 1 1		
_	j '		1	— <u>P</u> —	Tetrahedral	<109.5°	Trigonal
•				••		1 104 -	pyramidal
P	4	4				(~107.5)	
I ^r	4	4	0	-P-	Tetrahedral	109.5	Tetrahedral
-							
P	5	5	0	-'P:	Trigonal-	90;	Trigonal-
				1	bipyramid	120	bipyramid
S	6	6	0	\./	Octahedral	90	Octahedral
				- <u>\$</u> -			
S	6	4	2		Octahedral	/90	Square-
				155			planar
S	5	4	1		Triponal	00	
			1	-,5.	Trigonal-	90;	Seesaw
S	5			• 0	biругатіd	120	
3	3	3	2	: 6		ζ90	T-shaped
				_*, 1	bipyramid		
S	4	2	2	- : -	Tetrahedral		Bent
				- 3 -		<109.5°	
S	3	2	1	44	Trigonal	<120°	Bent
				= Š-	planar	120	Delit
0	4	2	2	1 €	*		
		-	2	- D -	Tetrahedral	<109.5°	Bent
				04		(104.50)	
С	2	2	0	O- OR	Linear	180	Linear
	<u> </u>			- C = =c=			
Xe	5	2	3		Trigonal-	180	Linear
				Xe	bipyramid	100	Dirical
				. 1	pJimiid		

PART A 1. Mole conversions. Answer the questions, show solutions:

a. How many moles of hydrogen peroxide [H₂O₂] are in 7.35 grams? molle mass 4202 = 2.(1.008) g + 2.(16.00) g = 34.00 mole 7.359 μ_{2} 0 × $\frac{1 \text{ mole}}{34.009 \mu_{2}0} = 0.216 \text{ mole } \mu_{2} \sigma_{2}$ b. 9.80 moles of CuSO₄ are how many grams?

MM Caso4 = 1. (63.55) g + 1. (32.07) + 4. (16.00) = 159. 6 9 mole 9.80 mole Cuso x 159.63 = 15609 = [1.56 × 1039]

c. How many moles of NH₃ are in 5.00X10²² molecules?

5.00 × 10 molecul. × 1 mole = 0.0831 mole NH3.

d. What is the mass of 37.5X10²⁷ CO molecules?

MMCD = 12.01 + 16.00g = 28.00 8/mole

[37.5 × 10 mole. × Imole 6.022×10 mole.] × 28.004 = 1.74×10 g

CO

e. There are how many atoms of hydrogen are in 4.20 moles of water?

4.20 mole $\times \frac{6.022 \times 10^{23} \text{ molecul.}}{1 \text{ molent.}} \times \frac{2 \text{ atoms } H}{1 \text{ molent.}} = 5.06 \times 10^{24} \text{ atoms.}$

f. How many atoms (total) are in 62.0 g SO₂? $MM_{SO_2} = 32.06bg + 12.\overline{(16.00)}g = 64.05 g/mol$ $62.09SO_2 \times \frac{1 mole}{64.05 g} \times \frac{6.022 \times 10^{23} mole}{1 mole} \times \frac{3 atoms}{1 moleul}$ 24

Chemical Equations

Because the same atoms are present in a reaction at the beginning and at the end, the amount of matter in a system does not change.

- The Law of the Conservation of Matter
- An equation must be balanced.
- The numbers in the front are called

stoichiometric coefficients

$$4 \text{ Al(s)} + 3 O_2(g) \longrightarrow 2 \text{ Al}_2O_3(s)$$

@1997. West Educational Publishing.

 $2HgO(s) ---> 2 Hg(liq) + O_2(g)$

5 - 1

MARGUE!

Balance the equations:

a)
$$2S + 3O_2 \rightarrow 2SO_3$$

b)
$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

c)
$$VCl_3 + 3Na + 6CO \rightarrow V(CO)_6 + 3NaCl$$

d) Rul3 +
$$\mathbf{J}$$
CO + \mathbf{J} Ag \rightarrow Ru(CO)5 + \mathbf{J} Agl

e)
$$2$$
CoS + 8 CO + 4 Cu \rightarrow Co2(CO)8 + 2 Cu2S

f)
$$3Pb(NO_3)_2(aq) + 2K_3PO_4(aq) \rightarrow Pb_3(PO_4)_2(s) + 6KNO_3(aq)$$