Informationsübertragung in vernetzten IT-Systemen

Architekturen, Topologien und Protokolle

Gliederung

- 1 Grundkomponenten in Netzwerken
- 2 Computerrollen und Netzwerkarchitekturen
 - 2.1 Peer-to-Peer Architektur
 - 2.2 Client-Server Architektur
- 3 Netzwerktopologien
 - 3.1 Bus-Topologie
 - 3.2 Ring-Topologie
 - 3.3 Stern-Topologie
 - 3.4 Mischformen
 - 3.5 Netzwerktypen
- 4 wichtige Übertragungsprotokolle

1 Grundkomponenten in Netzwerken

IP-Phone

Wireless-Router

Hosts

 Endgeräte im Netzwerk, denen eine logische Adresse zugewiesen werden kann

Koppelelemente

verbinden Hosts, Netzwerksegmente oder Netzwerke

Netzwerk

Hub

PC

Medien

stellen die Verbindung zwischen Hosts und Koppelelementen her

Bridge

Server

Switch

Drucker

Router

2 Computerrollen und Netzwerkarchitekturen

 Die Organisation der Kommunikation zwischen Hosts in einem Netzwerk wird als Netzwerkarchitektur bezeichnet.

Client

 fordert Dienste oder Services von einem anderen Host an (Webbrowser, E-Mail-Client)

Server

- stellt Dienste oder Services f
 ür andere Hosts bereit (Druckserver, Fileserver)
- Hosts können im Netzwerk Client, Server oder gleichzeitig Client und Server sein.
- Die Vernetzung von Hosts wird als Peer-to-Peer-Architektur oder Client-Server-Architektur organisiert.

2.1 Peer-to-Peer-Architektur

- gleichberechtigte Verbindung von mindestens zwei Hosts im Netzwerk
- alle Hosts können untereinander Daten, Systemressourcen oder Dienste anbieten bzw. anfordern

Vorteile:

 einfach und kostengünstig zu realisieren (keine dedizierten Server, wenig komplex)

Nachteile:

 keine zentrale Verwaltung, unsicher, nicht skalierbar, eingeschränkte Performance

2.2 Client-Server-Architektur

 durch Zugriffsrechte geregelte Verbindung von Clients (fordern Dienste an) und Servern (bieten Dienste an)

Vorteile:

 zentrale Administration, hohe Performance durch dedizierte Serverdienste, sicher, skalierbar

Nachteile:

kostenintensiv (Fat-Client, Thin-Client, Server, Koppelelmente)

3 Netzwerktopologien

Topologie

 beschreibt den physischen Aufbau und die logische Struktur eines Netzwerkes

Physische Topologie

- beschreibt den physischen Bauplan des Netzes
- bezeichnet das graphische Aussehen eines Netzes (wie ist das Netzwerk verkabelt, Koppelelemente, Hosts)

Logische Topologie

 beschreibt den logischen Weg, den ein Datenpaket beim Passieren der Netzwerkknoten verfolgt (in welcher Beziehung stehen die Hosts zueinander, logische Adressen, Anwendungen)

3 Netzwerktopologien - physische Topologie

3 Netzwerktopologien - logische Topologie

3.1 Bus-Topologie

- Die Übertragungsstationen sind an ein gemeinsames Übertragungsmedium (Bus) angeschlossen
- älterer Ethernet-Standard, Zugriffsverfahren: CSMA/CD
- Koaxialkabel (Thinnet, RG58, 10 Base-2, BNC-Stecker), üblicherweise bis 10 Mbit/s, pro Netzsegment 185 m
- Vorteile:
 - einfach zu installieren, kostengünstig
- Nachteile:
 - störanfälliges Medium, Kollisionen, aufwendige Fehlersuche

3.2 Ring-Topologie

- Das Übertragungsmedium bildet einen geschlossenen Ring
- jede Station verfügt über Eingangs- und Ausgangsleitung (meist logischer Ring als physischer Stern ausgeführt), Zugriffsverfahren: Token-Passing
- bis 200 m bei Kupferkabel (Thicknet), 4 Mbit/s oder 16 Mbit/s,
- bis 200 km bei Glasfaserkabel (FDDI im Backbonebereich), bis 100 MBit/s
- Vorteile
 - hohe Ausfallsicherheit, größere Entfernungen
- Nachteile:

 Installationsaufwand, kostenintensiv (Ringleitungsverteiler, Media Access Units)

3.3 Stern-Topologie

- Die Übertragungsstationen sind sternförmig an einen zentralen Knoten angeschlossen
- Ethernet-Standard, Zugriffsverfahren: CSMA/CD (CSMA/CA im WLAN)
- Twisted-Pair-Kabel (RJ45 Stecker) oder Glasfaser, üblicherweise bis 100Mbit/s (Fastethernet) bis Gigabit-Ethernet, pro Netzsegment 100 m
- Vorteile:
 - hohe Ausfallsicherheit, große Bandbreiten, zentrale Koppelemente
- Nachteile:

 hoher Kabel- und Installationsaufwand, kostenintensiv

3.4 Mischformen

 die Baumtopologie und die vermaschte Topologie stellen Mischformen der besprochenen Topologien dar

- vermaschte Topologie

- vollvermaschte Topologie

- Baumtopologie

3.5 Netzwerktypen

- Netzwerke werden auch nach ihrer räumlichen Ausdehnung unterteilt:
 - LAN (Local Area Network) Rechner in einem Raum, Gebäude oder Industriegelände, 10m bis einige km
 - auch Bezeichnung für private oder Unternehmensnetzwerke
 - MAN (Metropolitan Area Network) Rechner in der selben Stadt, 10 km bis 100 km
 - WAN (Wide Area Network) Rechner in dem gleichen Land oder auf dem gleichen Kontinent, 10 km bis 1000 km
 - auch Bezeichnung für Netzwerke die von ISPs (Internet Service Provider) oder global tätigen Unternehmen betrieben werden
 - GAN (Global Area Network) Verbund mehrerer WAN

4 wichtige Übertragungsprotokolle

- NetBIOS (Network Basic Input Output System)
 - proprietäres Transportprotokoll von IBM, nicht routingfähig, arbeitet vorwiegend mit Broadcasts
- NetBEUI (NetBIOS Extended User Interface)
 - Bestandteil des Microsoft Protokollstack bis Windows 2000, basiert auf NetBIOS
- Apple Talk
 - proprietäres Transportprotokoll von Apple, routingfähig, wird nicht mehr entwickelt
- IPX/SPX (Internet Package Exchange / Sequenced Package Exchange)
 - proprietäres Transportprotokoll von Novell, routingfähig, verliert zunehmend an Bedeutung

4 wichtige Übertragungsprotokolle

- TCP/IP (Transmission Control Protocol / Internet Protocol)
 - ist eine Protokollfamilie
 - hat sich als Industriestandard und für die Vernetzung des Internets durchgesetzt
 - IPv4 (32 Bit)
 - IPv6 (128 Bit)
 - im OSI-Referenzmodell und TCP/IP Modell beschrieben

4 wichtige Übertragungsprotokolle

ISO/OSI Referenzmodell	PDU	Protokolle	Geräte	TCP/IP Modell
7 Application Layer (Anwendungsschicht) Verbindung zwischen dem Resourcenteilung, Fernzugriff, Anwendungsprogramm und dem Directory Services, Netzwerk Netzwerk Management	Data	HTTP, SMTP, POP, DNS, NTP	Gateway, Content- Switch, Layer 4-7 Switch	Application
6 Presentation Layer (Darstellungsschicht) Codierung und Decodierung der Übersetzung von Dateiformaten, Datenformate Verschlüsselung, Kompression,		JPEG, ASCII, GIF, MP3		
5 Session Layer (Sitzungsschicht) Steuerung der Kommunikation zwischen unterschiedlichen Systemen Sitzungsaufbau, -management und -abbau, Sicherheit, Logging		Port- nummern		
4 Transport Layer (Transportschicht) Verbindungsaufbau, -freigabe und -abbau, Segmentierung, Empfangs- steuern des Datenfluss bestätigung, Flußkontrolle, Multiplexing		TCP, UDP		Transport
3 Network Layer (Vermittlungsschicht) Auswahl und Steuerung des Weges von Paketen Routing, Subnetting,	Packet	IP, IPX, ICMP	Router, Layer 3 Switch	Internet
2 Data Link Layer (Sicherungsschicht) Organisation und Erzeugung von Datenrahmen, Zugriff auf das Übertragungsmedium Übertragungsmedium Übertragungsmedium	Frame	rame Ethernet, PPP, Frame-Relay Bit	Switch, Bridge	Network Access
1 Physical Layer (Bitübertragungsschicht) Senden von Signalen über das Übertragungsmedium Bitübertragung, Übertragungstechnik	Bit		Hub, Repeater	

Quellen

- http://www.cisco.com/web/about/ac50/ac47/2.html (26.09.2011)
- Kracke, Peter A., Beilschmidt, Linus : IT-Basiswissen : Bildungsverlag EINS GmbH, 2009