数学字体

1. Asana Math	. 1
2. AuroraMath	. 1
3. Cambria Math	. 2
4. CEF Fonts Mathematique	. 2
5. Concrete Math	. 2
6. Erewhon Math	. 2
7. Euler Math	. 3
8. Fira Math	. 3
9. Garamond-Math	. 3
10. GFS Neohellenic Math	. 3
11. IBM Plex Math	. 3
12. KpMath	. 4
13. Latin Modern Math	. 4
14. Lato Math	. 4
15. Lete Sans Math	. 4
16. Libertinus Math	. 4
17. Nagwa TK Math	. 5
18. Neo Euler	. 5
19. New Computer Modern Math	. 5
20. Noto Sans Math	. 5
21. OldStandard-Math	. 6
22. STIX Math	. 6
23. STIX Two Math	. 6
24. TeX Gyre Bonum Math	. 6
25. TeX Gyre DejaVu Math	. 6
26. TeX Gyre Pagella Math	. 7
27. TeX Gyre Schola Math	. 7
28. TeX Gyre Termes Math	. 7
29. XCharter Math	. 7
30. XITS Math	. 7

1. Asana Math

$$2\pi i \left[\operatorname{Res} f(i) + \operatorname{Res} f(-i) \right] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i \right]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot a) \, \mathrm{d}V = \oiint_S a \cdot \mathrm{d}S$$

$$\operatorname{curl} a = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) e_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) e_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right) e_z = \nabla \times a$$

2. AuroraMath

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$
 curl $\boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e_z} = \nabla \times \boldsymbol{a}$

3. Cambria Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S}$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

4. CEF Fonts Mathematique

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot a) \, \mathrm{d}V = \oiint_S a \cdot \mathrm{d}S$$

$$\operatorname{curl} a = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) e_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) e_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) e_z = \nabla \times a$$

5. Concrete Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

6. Erewhon Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

7. Euler Math

$$\begin{split} 2\pi \mathrm{i}[\text{Res } f(\mathrm{i}) + \text{Res } f(-\mathrm{i})] &= \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1)+2\pi\mathrm{i}]^2}{x^2+1} \, \mathrm{d}x \\ & \iiint (\boldsymbol{\nabla} \cdot \boldsymbol{\alpha}) \, \mathrm{d}V = \oiint_S \boldsymbol{\alpha} \cdot \mathrm{d}S \\ & \text{curl } \boldsymbol{\alpha} = \left(\frac{\partial \alpha_z}{\partial y} - \frac{\partial \alpha_y}{\partial z}\right) \! \boldsymbol{e}_x + \left(\frac{\partial \alpha_x}{\partial z} - \frac{\partial \alpha_z}{\partial x}\right) \! \boldsymbol{e}_y + \left(\frac{\partial \alpha_y}{\partial x} - \frac{\partial \alpha_x}{\partial y}\right) \! \boldsymbol{e}_z = \boldsymbol{\nabla} \times \boldsymbol{\alpha} \end{split}$$

8. Fira Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}\mathbf{S}$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e_z} = \nabla \times \boldsymbol{a}$$

9. Garamond-Math

$$2\pi i \left[\operatorname{Res} f(i) + \operatorname{Res} f(-i) \right] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i \right]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S}$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

10. GFS Neohellenic Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\mathbf{\nabla} \cdot \mathbf{a}) \, \mathrm{d}V = \oiint_S \mathbf{a} \cdot \mathrm{d}\mathbf{S}$$

$$\operatorname{curl} \mathbf{a} = \left(\frac{\partial \mathbf{a}_z}{\partial y} - \frac{\partial \mathbf{a}_y}{\partial z}\right) \mathbf{e}_{\mathbf{x}} + \left(\frac{\partial \mathbf{a}_x}{\partial z} - \frac{\partial \mathbf{a}_z}{\partial x}\right) \mathbf{e}_{\mathbf{y}} + \left(\frac{\partial \mathbf{a}_y}{\partial x} - \frac{\partial \mathbf{a}_x}{\partial y}\right) \mathbf{e}_{\mathbf{z}} = \mathbf{\nabla} \times \mathbf{a}$$

11. IBM Plex Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e_z} = \boldsymbol{\nabla} \times \boldsymbol{a}$$

12. KpMath

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot a) \, \mathrm{d}V = \oiint_S a \cdot \mathrm{d}S$$

$$\operatorname{curl} a = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) e_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) e_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) e_z = \nabla \times a$$

13. Latin Modern Math

$$2\pi i [\operatorname{Res} \, f(i) + \operatorname{Res} \, f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\boldsymbol{\nabla} \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S}$$

$$\operatorname{curl} \, \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e_z} = \boldsymbol{\nabla} \times \boldsymbol{a}$$

14. Lato Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot a) \, \mathrm{d}V = \oiint_{S} a \cdot \mathrm{d}S$$

$$\operatorname{curl} a = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) e_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) e_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) e_z = \nabla \times a$$

15. Lete Sans Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \mathbf{a}) \, \mathrm{d}V = \oiint_{S} \mathbf{a} \cdot \mathrm{d}\mathbf{S}$$

$$\operatorname{curl} \mathbf{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \mathbf{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \mathbf{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \mathbf{e}_z = \nabla \times \mathbf{a}$$

16. Libertinus Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, dV = \bigoplus_{S} \boldsymbol{a} \cdot dS$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_{z}}{\partial y} - \frac{\partial a_{y}}{\partial z}\right) \boldsymbol{e}_{x} + \left(\frac{\partial a_{x}}{\partial z} - \frac{\partial a_{z}}{\partial x}\right) \boldsymbol{e}_{y} + \left(\frac{\partial a_{y}}{\partial x} - \frac{\partial a_{x}}{\partial y}\right) \boldsymbol{e}_{z} = \nabla \times \boldsymbol{a}$$

17. Nagwa TK Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, dx - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, dx$$

$$\iiint (\nabla \cdot \mathbf{a}) \, dV = \oiint_{\mathcal{S}} \mathbf{a} \cdot d\mathbf{S}$$

$$\operatorname{curl} \mathbf{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \mathbf{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \mathbf{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \mathbf{e_z} = \nabla \times \mathbf{a}$$

18. Neo Euler

$$\begin{split} 2\pi i \big[\text{Res } f(i) + \text{Res } f(-i) \big] &= \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\big[\ln(x+1) + 2\pi i \big]^2}{x^2+1} \, \mathrm{d}x \\ & \iiint (\boldsymbol{\nabla} \cdot \boldsymbol{\alpha}) \, \mathrm{d}V = \oiint_S \boldsymbol{\alpha} \cdot \mathrm{d}S \end{split}$$

$$\text{curl } \boldsymbol{\alpha} &= \bigg(\frac{\partial \alpha_z}{\partial y} - \frac{\partial \alpha_y}{\partial z} \bigg) \boldsymbol{e}_x + \bigg(\frac{\partial \alpha_x}{\partial z} - \frac{\partial \alpha_z}{\partial x} \bigg) \boldsymbol{e}_y + \bigg(\frac{\partial \alpha_y}{\partial x} - \frac{\partial \alpha_x}{\partial y} \bigg) \boldsymbol{e}_z = \boldsymbol{\nabla} \times \boldsymbol{\alpha} \end{split}$$

19. New Computer Modern Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\boldsymbol{\nabla} \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \boldsymbol{\nabla} \times \boldsymbol{a}$$

20. Noto Sans Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \mathbf{a}) \, \mathrm{d}V = \oiint_{\mathbf{S}} \mathbf{a} \cdot \mathrm{d}\mathbf{S}$$

$$\operatorname{curl} \mathbf{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \mathbf{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \mathbf{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \mathbf{e}_z = \nabla \times \mathbf{a}$$

21. OldStandard-Math

$$\begin{split} 2\pi i [\operatorname{Res}\,f(i) + \operatorname{Res}\,f(-i)] &= \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \,\mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \,\mathrm{d}x \\ & \iiint \left(\nabla \cdot \boldsymbol{a} \right) \mathrm{d}V = \oiint_{S} \, \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S} \end{split}$$

$$\operatorname{curl}\,\boldsymbol{a} &= \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) \boldsymbol{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) \boldsymbol{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right) \boldsymbol{e_z} = \nabla \times \boldsymbol{a} \end{split}$$

22. STIX Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

23. STIX Two Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

24. TeX Gyre Bonum Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S}$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e_z} = \nabla \times \boldsymbol{a}$$

25. TeX Gyre DejaVu Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\boldsymbol{\nabla} \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S}$$

$$\text{curl } \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right)\boldsymbol{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right)\boldsymbol{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right)\boldsymbol{e_z} = \boldsymbol{\nabla} \times \boldsymbol{a}$$

26. TeX Gyre Pagella Math

$$2\pi i \left[\operatorname{Res} f(i) + \operatorname{Res} f(-i) \right] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i \right]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot a) \, \mathrm{d}V = \oiint_S a \cdot \mathrm{d}S$$

$$\operatorname{curl} a = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) e_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) e_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right) e_z = \nabla \times a$$

27. TeX Gyre Schola Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S}$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e_z} = \nabla \times \boldsymbol{a}$$

28. TeX Gyre Termes Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

29. XCharter Math

$$2\pi i \left[\operatorname{Res} f(i) + \operatorname{Res} f(-i) \right] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i \right]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

30. XITS Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \boldsymbol{\nabla} \times \boldsymbol{a}$$