Capitolo 1

cWB: proprietà dell'algoritmo per la rivelazione e la ricostruzione di segnali di onde gravitazionali

I metodi coerenti le statistiche vengono calcolate come somma coerente delle risposte dei detector singoli. Gli algoritmi che sfruttano questi metodi devono risultare più efficienti, devono cioè avere una probabilità di falso allarme più bassa, rispetto alle statistiche calcolate sulle risposte di ogni detector singolarmente.

L'algoritmo che si utilizza, Coherent WaveBurst (cWB), differisce dai metodi tradizionali che identificano gli eventi nei detector singolarmente usando statistiche di eccesso di potenza e poi verificano la coerenza tra i segnali nei vari detector. Esso utilizza infatti i dati di tutti i detector in un'unica statistica coerente costituita da una analisi della massima likelihood. I vantaggi di questo tipo di analisi sono molteplici: innanzitutto la sensibilità del metodo non sarà limitata dal detector meno sensibile nel network, in quanto la likelihood utilizzata nei metodi coerenti rappresenta il rapporto segnale su rumore (SNR) totale del segnale ricostruito/rivelato dal network. Inoltre questo metodo permette di costruire altre statistiche coerenti, come il null stream o il coefficiente di correlazione del network, per distinguere segnali che effettivamente hanno una controparte fisica rispetto a eccessi di rumore ambientale o strumentale. Infine è possibile ricostruire la posizione celeste della sorgente.

1.1 Analisi coerente

La pipeline di cWB per rivelare e ricostruire segnali utilizza un metodo basato sul funzionale rapporto di verosimiglianza, che, in un'ipotesi idealistica di rumore gaussiano quasi stazionario, può essere scritto nel dominio di wavelet (in un piano tempo-frequenza) come

$$\mathcal{L} = \sum_{k=1}^{K} \sum_{i,i=1}^{N} \left(\frac{w_k^2[i,j]}{\sigma_k^2[i,j]} - \frac{(w_k[i,j] - \xi_k[i,j])^2}{\sigma_k^2[i,j]} \right)$$
(1.1)

dove K è il numero di detector nel network, $w_k[i,j]$ è il campione di dati del detector (l'indice i itera sui tempi, mentre l'indice j itera sulle frequenze) e infine $\xi_k[i,j]$ è la risposta del detector k-esimo. Il rumore del detector è è caratterizzato dalla deviazione standard $\sigma_k[i,j]$ che può variare lungo il piano tempo-frequenza. Le risposte del network sono scritte come

$$\xi_k[i,j] = F_{+,k}h_{+}[i,j] + F_{\times,k}h_{\times}[i,j] \tag{1.2}$$

dove $F_{+,k}(\theta,\phi)$ e $F_{\times,k}(\theta,\phi)$ sono gli antenna pattern del detector k-esimo

Antenna pattern. The radiation pattern or antenna pattern is the graphical representation of the radiation properties of the antenna as a function of space. That is, the antenna's pattern describes how the antenna radiates energy out into space (or how it receives energy). It is important to state that an antenna radiates energy in all directions, at least to some extent, so the antenna pattern is actually three-dimensional. It is common, however,

to describe this 3D pattern with two planar patterns, called the principal plane patterns. These principal plane patterns can be obtained by making two slices through the 3D pattern through the maximum value of the pattern or by direct measurement. It is these principal plane patterns that are commonly referred to as the antenna patterns.

Introduzione sull'algoritmo fatta nel paragrafo precedente, magari riprenderla velocemente.

Coherent analysis, significato e descrizione della likelihood: spiega quindi bene la differenza con gli algoritmi classici di confronto con segnali già modellati.

regolatori, antenna pattern

algoritmi utilizzati: wavelet transformation, (linear predicion error), mappa verosimiglianza, mappa energia coerente (con piccoli grafici esemplificativi)

(cenni sulla trasformazione di fase)

Figura 1.1: Prospetti [Abbott et al., 2020]

Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

[Abbott et al., 2017].

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

[Klimenko et al., 2008].

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

[Klimenko et al., 2016].

Bibliografia

- [Abbott et al., 2017] Abbott, B., Abbott, R., Abbott, T., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R., Adya, V., and et al. (2017). Gw170817: Observation of gravitational waves from a binary neutron star inspiral. *Physical Review Letters*, 119(16).
- [Abbott et al., 2020] Abbott, B. P., Abbott, R., Abbott, T. D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adya, V. B., Affeldt, C., and et al. (2020). Prospects for observing and localizing gravitational-wave transients with advanced ligo, advanced virgo and kagra. *Living Reviews in Relativity*, 23(1).
- [Klimenko et al., 2016] Klimenko, S., Vedovato, G., Drago, M., Salemi, F., Tiwari, V., Prodi, G., Lazzaro, C., Ackley, K., Tiwari, S., Da Silva, C., and et al. (2016). Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. *Physical Review D*, 93(4).
- [Klimenko et al., 2008] Klimenko, S., Yakushin, I., Mercer, A., and Mitselmakher, G. (2008). A coherent method for detection of gravitational wave bursts. *Classical and Quantum Gravity*, 25(11):114029.