Program Structure and Algorithms

Sid Nath

Lecture 14

Agenda

- Administrative
 - Please check your scores and report any discrepancies by April 20, 2025 11:59pm!
- Lecture
 - Final Review
- Quiz

Final Exam Details

- Closed book/notes, only two A4-sized cheatsheets and calculator allowed!
- ~3 hours
- Q1: Short answers
- Q2: Dijkstra execution
- Q3: Greedy execution
- Q4: Greedy algorithm development
- Q6: DP algorithm development
- Q7 (Bonus): DP algorithm development

Be concise, to the point, answer what is asked

Greedy Review

• Greedy choice

Problem	Type: min/max	Greedy choice
Dijkstra's	Min path length	Shortest distance from every visited edge
Huffman's coding	Min symbols	Smallest freq character first
Interval scheduling / activity selection	Max #activities for a resource	Earliest finish times
Interval partitioning	Min #classrooms / resources	Earliest start times
Minimum spanning trees	Min cost tree	Lightest edge first
Coin change (US currency)	Min #coins	Highest denomination first
Fractional knapsack	Max value in knapsack	Highest value/weight ratio first

DP: Chain of Thought

- What are my subproblems?
- What are the decisions to solve each subproblem?
- Recursive formulation
 - Base case
- How many subproblems? What is the running time per subproblem?
- What is the overall running time?

DP: Common Subproblems

Finding the right subproblem takes creativity and experimentation. Some standard choices below

- Template #1: Input is $x_1, x_2, ..., x_n$, (or, x[1:n]) and a subproblem is $x_1, x_2, ..., x_i$ (or, x[1:i])
 - Number of subproblems is linear
- Template #2: Input is $x_1, x_2, ..., x_n$, and a subproblem is $x_i, x_{i+1}, ..., x_j$ (or, x[i:j])
 - #subproblems is quadratic $O(n^2)$
- Template #3: Inputs are $x_1, x_2, ..., x_n$, and $y_1, y_2, ..., y_m$; a subproblem is $x_1, x_2, ..., x_i$ and $y_1, y_2, ..., y_j$
 - #subproblems is quadratric O(mn)

DP: Useful Tricks for Template #1

- Template #1: Input is $x_1, x_2, ..., x_n$, (or, x[1:n]) and a subproblem is $x_1, x_2, ..., x_i$ (or, x[1:i])
 - Number of subproblems is linear
 - Trick in the knapsack problem is to define subproblems based on max value for a smaller weight constraint
 - Trick in the share trading problem is to define subproblems based on max profit achieved on day of selling
 - Trick in the weighted interval scheduling problem is to preprocess ordering of dependent inputs and then define subproblems based on max weight subset on mutually compatible previous jobs

DP Problem #1

You are given a string *s* and a pattern *p*. Both *s* and *p* contain lowercase English letters, but *p* contains two extra characters "." and "*".

- "." matches any single character
- "*" matches zero or more occurrences of the element just before it

Your task is to check if *p* can match the entire string *s*. Devise an efficient algorithm for this task?

Examples

```
s = "abb", p = "a.b" or "ab*" \rightarrow True s = "aab", p = "ab." or "ab*" \rightarrow False s = "bad", p = "a*b.*d"???
```

RegEx Matching using DP

This is **not** an optimization problem, but we can formulate it as DP

Consider the $s[1:i] = s_i$ and $p[1:j] = p_j$ characters

Substructure intuition

- p[j] = " * "
 - Pattern without "*" (i.e., zero occurrences), look at p[j-2] with s[i]
 - Pattern with "*", valid only when either s[i] = p[j-1] or p[j-1] == "."
- p[j] = "."
 - Continue with s[i-1] and p[j-1]
- s[i] = p[j], continue with s[i-1] and p[j-1]
- s[i]! = p[j], return False

RegEx Matching using DP

```
Subproblem: rem[i, j] = True \text{ if } s[1:i] \text{ can be constructed}
from p[1:j], False otherwise
Decisions: (from previous slide)
      rem[i, j]
     = \begin{cases} rem[i, j-2] \ if \ don't \ use \ p[j] == "*" \\ OR \\ rem[i-1, j] \ if \ use \ p[j] == "*" \ and \\ conditions \ on \ p[j-1] \ apply \\ rem[i-1, j-1] \ if \ s[i] == p[j] \ OR \ p[j] == "." \\ False, otherwise \end{cases}
```

Base case:

rem[0,0] = True, rem[i,0] = FalseRunning time: $O(mn) \times O(1) = O(mn)$

Regex Matching using DP

$$s = \text{``bad''}, p = \text{``a*b.*d''}???$$

DP Problem #2

Given n coins $(C_1, C_2, ..., C_n)$ and their respective probabilities $(p_1, p_2, ..., p_n)$ of getting a head in a random toss. Some of the coins may be biased, that is, $p_i \neq 0.5$. You are also given a positive integer k.

Suppose you toss coins in order $(C_1, C_2, ..., C_n)$, what is probability of obtaining exactly k heads in n tosses? Devise a DP algorithm to solve this problem.

Small Example

Let n = 3, probabilities $\{1/3, \frac{1}{2}, \frac{3}{4}\}$ and k = 2.

How to get exactly 2 heads in 3 tosses?

HHT, HTH, THH

If p_i is probability of head, then probability of tail is $(1 - p_i)$

$$HHT = 1/3 * \frac{1}{2} * (1-3/4) = 1/24$$

$$HTH = 1/3 * (1-1/2) * \frac{3}{4} = \frac{3}{24}$$

THH =
$$(1-1/3) * \frac{1}{2} * \frac{3}{4} = \frac{6}{24}$$

Total: 10/24 = 5/12

Brute Force Algorithm?

Enumerate all possible ways of obtaining exactly k heads in n tosses = $C(n, k) \sim O(2^n)$

DP Approach?

Subproblems

- We need to track two things -- # tosses and #heads so need two variables
- P(i, j) = prob of obtaining exactly j heads in the first i tosses of $(C_1, C_2, ..., C_i)$

• Decisions?

- If ith toss is a H, then we need exactly (j-1) heads in prev (i-1) tosses; $P(i-1, j-1) \cdot p_i$
- If ith toss is a T, then we need exactly j heads in prev (i-1) tosses; $P(i-1,j) \cdot (1-p_i)$

Recursion

$$-P(i,j) = P(i-1,j-1) \cdot p_i + P(i-1,j) \cdot (1-p_i) \text{ if } j >= 1$$

$$P(i-1,j) \cdot (1-p_i) \text{ if } j = 0$$

DP Approach?

Recursion

$$-P(i,j) = P(i-1,j-1) \cdot p_i + P(i-1,j) \cdot (1-p_i) \text{ if } j >= 1$$

$$P(i-1,j) \cdot (1-p_i) \text{ if } j = 0$$

Base cases

- P(0,j) = 0 for $j \le i$ else 1; P(0,0) = 1
- $P(1, j) = p_1$ for j = 1 else $(1 p_1)$
- P(i, j) = 0 j > i

Running time

- #subproblems: nk
- Running time per subproblem: O(1)
- Total running time: O(nk)

Lecture 14 summary

• Final Review

• All the best!!!