MATH 322 FINAL EXAM

- Print your name clearly in the space provided.
- You may use your textbook, one linear algebra book, and class notes only.
- You may not consult with anyone other than me.

HONOR STATEMENT:

I have neither given nor received help on this exam, and all of the answers are my own.

	Signature

Question	Points	Score
1	15	
2	30	
3	10	
4	20	
5	15	
6	15	
7	10	
8	35	
Total:	150	

- 1. [15 points] Consider a right triangle ABC with M the midpoint of line segment \overline{AB} . If AM = MC (that is, the length of the line segment from A to M) show that angle \overline{ACB} is a right angle. Conclude that if the vertices of triangle ABC lie on a circle and \overline{AB} is a diameter, then angle ACB is a right angle.
- 2. Consider the following set of axioms:
 - 1. There exists at least one line.
 - 2. There are exactly three points on every line.
 - 3. Not all points are on the same line.
 - 4. There is exactly one line on any two distinct points.
 - 5. For each line ℓ and each point P not on ℓ , there exists exactly one line on P which is not on any point of ℓ .

Show that

- (a) [15 points] For every point, there is a line not on that point.
- (b) [15 points] For every point, there are at least four lines on that point.
- 3. [10 points] Compute the rotation index of the following figure:

4. [20 points] A (filled in) triangle whose vertices are elements of $\mathbb{Z} \times \mathbb{Z}$ (called integral vertices) and which does not contain any other points of $\mathbb{Z} \times \mathbb{Z}$ is called **elementary**. Using linear algebra, it can be shown that the area of such a triangle is always $\frac{1}{2}$. Use this fact and Euler's theorem to deduce the following Theorem:

The area of any polygon P in \mathbb{R}^2 with integral vertices is given by $A = v_i + \frac{1}{2}v_b - 1$ where v_i is the number of integral points on the interior of P and v_b is the number of integral points on the boundary of P.

Hints: Write $v = v_i + v_b$ and $e = e_i + e_b$ for the number of vertices on the boundary and interior, respectively, and edges of the boundary and interior, respectively. Triangulate the polygon using the lattice points. Find a formula for the area in terms of the number of faces, and then find a formula for the number of faces in terms of e_i and e_b . Use algebra and Euler's theorem to prove the result.

- 5. [15 points] What is the largest possible angle sum for a triangle in spherical geometry? Justify and illustrate your answer.
- 6. [15 points] Explain why the concept of similar triangles (with the same angles but different side lengths) does not make sense in spherical geometry.

- 7. [10 points] Let \vec{u} be a unit vector in \mathbb{R}^3 and p any point in \mathbb{R}^3 . Using the matrix formula for a rotation of p about \vec{u} , show that if $\theta = 2n\pi$ where $n \in \mathbb{Z}$, then the image of p under the rotation is p. For extra credit, either prove or give a counterexample to the converse.
- 8. Consider a rectangular box with unitless dimensions 2×2 on each end and 2×4 on the top, bottom, and sides.
 - (a) [10 points] Find the shortest path on this surface from the center of one end to the center of the other end.
 - (b) [10 points] Find the shortest path on this surface from one corner to the opposite corner.
 - (c) [15 points] Find the shortest path on this surface from the point A halfway up one edge to the point B halfway up the opposite edge.