SOUTENANCE DE MÉMOIRE DE MASTER OPTION: ALGÈBRE COMMUTATIVE ET CRYPTOGRAPHIE SPÉCIALITÉ: THÉORIE DES FILTRATIONS

Présenté par M. KABLAM Edjabrou Ulrich Blanchard

Université NANGUI ABROGOUA Unité de Formation et de Recherche des Sciences Fondamentales et Appliquées

<u>THÈME</u>: DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES

Directeur de Mémoire : M. ASSANE Abdoulaye, Maître de Conférences Encadrant scientifique : M. BROU Kouadjo Pierre, Maître Assistant

PLAN DE PRÉSENTATION

- PRÉLIMINAIRES
- ② DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION

FILTRATIONS

$$f=(I_n)_{n\in\mathbb{Z}}\in\mathbb{F}(A)$$
 si:

- (i) $I_0 = A$;
- (ii) $I_{n+1} \subset I_n, \forall n \in \mathbb{Z}$;
- (iii) $I_pI_q \subset I_{p+q}, \forall p, q \in \mathbb{Z}$.

Exemple

- (1) On pose $A = \frac{\mathbb{Z}}{4\mathbb{Z}}$, $I_0 = A$, $I_1 = I_2 = (\overline{2})$, $I_n = (\overline{0})$ pour tout $n \ge 1$. Ainsi $f = (I_n)_{n \in \mathbb{N}}$ est une filtration;
- (2) On pose $A = \mathbb{Z}[X]$, $I_0 = A$, $I_{2n} = I_{2n-1} = I^n = (X)^n$ pour tout $n \ge 1$. Ainsi $f = (I_n)_{n \in \mathbb{N}}$ est une filtration.

PRÉLIMINAIRES FILTRATIONS

Remarque

On peut remarquer que pour tout $n \le 0$, $I_n = A$.

En effet, en utilisant la décroissance des idéaux (ii) et que $I_0 = A$ (i), il vient $I_n = A$, $n \le 0$ car pour tout $n \in \mathbb{Z}$, les I_n sont des idéaux de A.

Ainsi au lieu d'étudier la famille $f=(I_n)_{n\in\mathbb{Z}}$ nous pouvons nous ramener à étudier la famille $f=(I_n)_{n\in\mathbb{N}}$.

CLASSES DES FILTRATIONS

f I — adique	$I_n = I^n, \forall n \in \mathbb{N}^*.$ (1)
f I — bonne	$\forall n \in \mathbb{Z}, II_n \subset I_{n+1} \text{ et } \exists n_0 \in \mathbb{N}, II_n = I_{n+1}, \forall n \geqslant n_0. $ (2)
f A.P.	$\exists (k_n)_{n \in \mathbb{N}}, \ \forall \ n,m \in \mathbb{N}, \ I_{mk_n} \subset I_n^m \ et \ \lim_{n \longrightarrow +\infty} \frac{k_n}{n} = 1. \ (3)$
f f.A.P.	$\exists k \geqslant 1, \forall n \in \mathbb{N}, \ I_{nk} = I_k^n. \ (4)$
f noeth.	son anneau de Rees $R(A, f) = \bigoplus I_n X^n$ est noethérien. (5)
	$n \in \mathbb{N}$
f f. noeth.	$\exists k \geqslant 1, \forall m, n \in \mathbb{Z}, \ m, n \geqslant k, I_m I_n = I_{m+n}. \ (6)$
f E.P	$\exists N \geqslant 1, \forall n \geqslant N, \ I_n = \sum_{p=1}^N I_{n-p} I_p. $ (7)

Table: Classification des Filtrations

PROPRIÉTÉ DES FILTRATIONS I-BONNES

ÉLÉMENT ENTIER ET RÉDUCTION

(i) Un élément x de A est dit entier sur f s'il existe un entier $m \in \mathbb{N}$ tel que :

$$x^{m} + a_{1}x^{m-1} + \dots + a_{m} = x^{m} + \sum_{i=1}^{m} a_{i}x^{m-i} = 0,$$
 (8)

 $m \in \mathbb{N}^*$ où $a_i \in I_i$, pour tout $i = 1, \dots, m$.

- (ii) f est une β -réduction de g si :
 - a) $f \le g$; (9)
 - b) $\exists k \geq 1 \text{ tel que } J_{n+k} = I_n J_k, \forall n \geq k.$ (10)

FILTRATIONS SUR UN MODULE

Soit M un A-module. On appelle filtration de M toute famille $\varphi=(M_n)_{n\in\mathbb{Z}}$ de sous-modules de M telle que :

- (a) $M_0 = M$;
- (b) Pour tout $n \in \mathbb{Z}, M_{n+1} \subset M_n$. (11)

La filtration $f=(I_n)_{n\in\mathbb{Z}}$ de A et la filtration $\varphi=(M_n)_{n\in\mathbb{Z}}$ du A-module M sont dites compatibles si :

PRÉLIMINAIRES FILTRATIONS F-BONNES

Soient
$$\varphi = (M_n)_{n \in \mathbb{Z}} \in \mathbb{F}(M)$$
, f – compatible, avec $f \in \mathbb{F}(A)$.

(a) φ est f- bonne s'il existe un entier naturel N \geqslant 1 tel que :

$$\forall n > N, M_n = \sum_{p=1}^{N} I_{n-p} M_p.$$
 (13)

RELATION ENTRE ÉLÉMENT ENTIER, RÉDUCTION ET FILTRATION I-ADIQUE

Proposition

Soient A un anneau, I un idéal de A et $x \in A$.

x est entier sur I si et seulement si I est une réduction de I + (x) = I + xA.

(i) Supposons que x est entier sur I. Alors il existe $n \in \mathbb{N}^*$ tel que

$$x^{n} = \sum_{i=1}^{n} (-a_{i})x^{n-i}$$
, avec $a_{i} \in I^{i}, i = 1, \cdots, n$.

Ainsi
$$x^n = \sum_{i=1}^n (-a_i) x^{n-i} \in \sum_{i=1}^n I^i x^{n-i} = I \sum_{i=0}^{n-1} I^i x^{n-1-i}$$
. (14)

Alors $x^n \in I(I + (x))^{n-1}$.

Montrons que I est une réduction de I + (x). C'est à dire que $(I + (x))^n = I(I + (x))^{n-1}$ (15).

On rappelle que pour tout $n \in \mathbb{N}$, nI = I.

Ainsi :
$$(I + (x))^n = I(I + (x))^{n-1} + (x)(I + (x))^{n-1}$$
. (16)

En prouvant que
$$(x)(I+(x))^{n-1} \subset I(I+(x))^{n-1}$$
 (17) on aura :
$$(I+(x))^n = I(I+(x))^{n-1}.$$
 (18)

$$(x)(I+(x))^{n-1} = (x)^n + I \sum_{i=0}^{n-2} I^i(x)^{n-1-i} \subset (x)^n + \sum_{i=0}^{n-1} I^i(x)^{n-1-i}.$$
(19)
D'où $(x)(I+(x))^{n-1} \subset (x)^n + I(I+(x))^{n-1}.$ (20)
En somme $(x)(I+(x))^{n-1} \subset I(I+(x))^{n-1}.$ (21)
D'où $(I+(x))^n = I(I+(x))^{n-1}.$ (22)
Par conséquent I est une réduction de $I+(x)$.

14 / 20

(ii) Supposons que
$$I$$
 est une réduction de $I + (x)$.
Alors il existe $n \in \mathbb{N}^*$ tel que $(I + (x))^{n+1} = I(I + (x))^n$. (23)
On a : $x^{n+1} \in (I + (x))^{n+1} = I(I + (x))^n$. (24)
Alors $x^{n+1} \in I \sum_{i=0}^n I^i(x)^{n-i} = \sum_{i=0}^n I^{i+1}(x)^{n-i}$. (25)
D'où $x^{n+1} \in \sum_{i=1}^{n+1} I^i(x)^{n+1-i}$. (26)
Alors $x^{n+1} = \sum_{i=1}^{n+1} a_i x^{n+1-i}$, avec $a_i \in I^i$. (27)

Ainsi x est donc entier sur 1.

- PRÉLIMINAIRES
- DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION

DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATION BONNE

Résultats

Soient A noethérien, $f=(I_n)_{n\in\mathbb{N}}\leq g=(J_n)_{n\in\mathbb{N}}\in\mathbb{F}(A)$.

Si f est fortement noethérienne et g est noethérienne alors les assertions sont équivalentes et dans ce cas g est fortement noethérienne :

- (i) f est une réduction de g.
- (ii) g est entière sur f.
- (iii) g est f bonne.
- (iv) P(f) = P(g)

- PRÉLIMINAIRES
- ② DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION

CONCLUSION

BILAN ET PERSPECTIVES

- Propriétés des filtrations I bonnes.
- 2 Réduction minimale des filtrations bonnes.
- Étendre ces résultats aux autres classes de filtrations (noethériennes,...).
- Étendre ces résultats à des objets algébriques qui ne respectent pas forcement la décroissance.

MERCI POUR VOTRE AIMABLE ATTENTION

