National University of Computer and Emerging Sciences, Lahore Campus

Design & Analysis of Algorithms Course: Program:

BS (Computer Science)

60 Minutes 21-Mar-22 Midterm 1

Duration:

Exam:

Name

Paper Date:

Course Code: Semester: **Total Marks:**

CS-2009 Spring 2022

Section: **ALL** Page(s): 8 **Roll Number**

Instruction/Notes:

Weightage of the exam is Section Specific (i.e., for each section the weightage would be as per the announcement done in that regard).

Do NOT un-staple your exam, otherwise it might be cancelled.

Ample space is provided for rough work; NO EXTRA sheets will be provided.

				•	
Question	1	2	3	4	Total
Marks	10	, .	,_		
	/3	/4	/5	/7	/19

Question 1: [3] Marks

Arrange the function $(1.5)^n$, n^{100} , $(\log n)^3$, $\sqrt{n} \log n$, 10^n , $(n!)^2$, and $n^{99} + n^{98}$ in a list so that each function is big-O of the next function. [hint: increasing order]

Question 2: 4 Marks

Consider the following algorithm

```
NoIdea ( n )
    if n > 1
        print 'A'
        NoIdea ( n /3 )
    for i = 1 to n
        print 'B'
        NoIdea ( n /3 )
```

Write down the time-complexity of the above algorithm in recursive form (*only write the recursive equation, you are not required to solve the recurrence*).

Question 3: 5 Marks

What would be the output of MyAlgo(A,1,10), where A is given as below:

$$A = \langle 3, 7, 2, 6, 1, 8, 5, 4, 0, 9 \rangle$$

Note: Show complete working to claim for any partial credit.

```
MyAlgo(A,p,r)
if p < r
    q=DoSomething(A, p, r)
    MyAlgo(A, p, q - 1)
    MyAlgo(A, q, r - 1)
//----//
DoSomething(A, p, r)
```

```
x=A[r]
i=p-1
for j=p to r-1
     if A[j] \leq x
          i=i+1
          exchange A[i] with A[j]
```

return i+1

[Contents of A when the Algorithm terminates]

A =

[Next page is left blank for this question]

Let $A[1 \dots n]$ be an array of n numbers such that

$$A[i] \le A[i+2]$$

$$\forall 1 \le i \le n-2$$

i) Write an instance of A for n = 10 (your array must not be already sorted).

ii) Give an algorithm that sorts A in non-decreasing order i.e., the output of your algorithm should be the array A such that

$$A[i] \le A[i+1]$$
 $\forall 1 \le i \le n-1$

$$\forall 1 \le i \le n-1$$

Your algorithm must run in O(n) worst-case time.

Hint: Some modification to the Merge procedure could be helpful in this scenario.

[Next page is left blank for this question]

Extra space for Rough work	
FAST School of Computing	Page 6

Extra space for Rough work	
FAST School of Computing	Da = 2 7
ras i school of computing	Page 7