- Decision tree is a type of supervised learning algorithm that is mostly used in classification problems.
- Decision tress often mimic the human level thinking so its so simple to understand the data and make some good interpretations.

x	Y	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

Important Terminology

- Root Node: It represents entire population or sample
- Splitting: It is a process of dividing a node into two or more sub-nodes.
- Decision Node: When a sub-node splits into further sub-nodes, then it is called decision node.
- Leaf/ Terminal Node: Nodes do not split is called Leaf or Terminal node.

Note:- A is parent node of B and C.

Example: bank loan application

Example: Restaurent

How it works?

- Suppose, you like to play tennis.
- On a particular day how would you decide whether or not you would play?
- Perhaps you would look outside and check to see if it's cloudy or raining.
- Maybe also see how hot (or cold) it is.
- Then, you'd use all of this information to inform your decision.
- Suppose you recorded the choices you made on different days into a table like the one in next slide:

How it works?

Day	Outlook	Temp.	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

How it works?

- With this table, other people would be able to use your intuition to decide whether they should play tennis.
- A decision tree would be a great way to represent data like this.

 A decision tree for this data allows you to make a decision by following a graph, rather than by looking up your particular situation in a table.

15 August 2023 Decision tree 10

Information Gain

• We need to split the data in table using the input variable that gives maximum information gain.

11

Calculating information gain

- Information gain is a statistical property that measures how well a given attribute separates the training examples according to their target classification.
- We can see that an attribute with low information gain splits the data such that it doesn't bring us any closer to a decision.
- Whereas, an attribute with high information gain splits the data such that it helps in separating the two from each other.

12

Entropy

• Entropy is the measure of homogeneity in the data. Its value is ranges from 0 to 1.

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

22-10-2018