Metrologia Elétrica

Gean Marcos Geronymo

27 de julho de 2023

Sumário

1.	ntrodução .1 Sistema Internacional de Unidades - SI
2 P	Padronização
2.	.1 Resistência Elétrica
2.	.2 Capacitância e Indutância
	2.2.1 Circuitos em corrente alternada
2.	.3 Tensão Elétrica
2.	.4 Transferência AC-DC

ii SUMÁRIO

Lista de Figuras

iv LISTA DE FIGURAS

Lista de Tabelas

1.1	Constantes definidoras do SI	3
1.2	Unidades de base do SI	3
1.3	Fatores de multiplicação	4

vi LISTA DE TABELAS

Parte I Noções de Metrologia Elétrica

Capítulo 1

Introdução

1.1 Sistema Internacional de Unidades - SI

O Sistema Internacional de Unidades (SI) [1, 2] é a base da metrologia moderna. Antes da redefinição em 2019, o SI era definido através de sete unidades de base, a partir das quais as unidades derivadas eram obtidas através de operações matemáticas de multiplicação e potenciação, combinando as unidades de base. Após a redefinição do SI, com a fixação dos valores numéricos de sete constantes definidoras, em princípio essa distinção não é mais necessária, já que tanto as unidades de base quanto as unidades derivadas podem ser expressas diretamente em função das constantes definidoras. Entretanto, o conceito de unidades base e unidades derivadas foi mantido por razões históricas e por compatibilidade com normas estabelecidas.

A definição formal do SI desde 2019 [1, 2] é baseada em sete constantes definidoras, apresentadas na Tabela 1.1. O valor numérico das constantes definidoras possui incerteza nula. As unidades das constantes definidoras, hertz (Hz), joule (J), coulomb (C), lumen (lm) e watt (W) são relacionadas às unidades de base (ver Tabela 1.2) segundo (s), metro (m), kilograma (kg), ampere (A), kelvin (K), mole (mol) e candela (cd) de acordo com:

- $Hz = s^{-1}$
- $J = kg m^2 s^{-2}$
- C = A s
- $lm = cd m^2 m_{-2} = cd sr (onde sr é o ângulo sólido)$
- $W = m^2 s^{-3}$

Tabela 1.1: Constantes definidoras do SI.

Constante	Símbolo	Valor numérico	Unidade
frequência de transição hiperfina do Cs	$\Delta \nu_{Cs}$	9 192 631 770	$_{\mathrm{Hz}}$
velocidade da luz no vácuo	c	$299\ 792\ 458$	${ m m~s^{-1}}$
constante de Planck	h	$6,626\ 070\ 15 \times 10^{-34}$	Jѕ
carga elementar	e	$1,602\ 176\ 634 \times 10^{-19}$	$^{\mathrm{C}}$
constante de Boltzmann	k	$1,380 649 \times 10^{-23}$	$ m J~K^{-1}$
constante de Avogadro	N_A	$6,022\ 140\ 76 \times 10^{23}$	mol $^{-1}$
eficácia luminosa	K_{cd}	683	lm W ⁻¹

Tabela 1.2: Unidades de base do SI.

Tabela 1.2: Unidades	de base do l	51.
$\operatorname{Grandeza}$	Unidade	Símbolo
tempo	segundo	S
comprimento	$_{ m metro}$	\mathbf{m}
massa	kilograma	kg
corrente elétrica	ampere	A
temperatura termodinâmica	kelvin	K
quantidade de matéria	mole	mol
intensidade luminosa	candela	cd

A Tabela 1.3 apresenta os fatores de multiplicação das unidades do SI. Os fatores de multiplicação mais utilizados em Metrologia Elétrica estão destacados em negrito.

Tabela 1.3: Fatores de multiplicação.

Fator	Nome	Símbolo
10^{24}	yotta	Y
10^{21}	zeta	${f Z}$
10^{18}	exa	${f E}$
10^{15}	peta	P
10^{12}	$_{ m tera}$	${f T}$
10^9	\mathbf{giga}	${f G}$
10^6	mega	${f M}$
10^3	kilo	\mathbf{k}
10^{2}	hecto	h
10^{1}	deka	da
10^{-1}	deci	d
10^{-2}	centi	$^{\mathrm{c}}$
10^{-3}	\mathbf{mili}	\mathbf{m}
10^{-6}	\mathbf{micro}	μ
10^{-9}	nano	\mathbf{n}
10^{-12}	pico	\mathbf{p}
10^{-15}	femto	f
10^{-18}	atto	\mathbf{a}
$10^{-21} \\ 10^{-24}$	zepto	${f z}$
10-24	yocto	у

Capítulo 2

Padronização

2.1 Resistência Elétrica

Segundo a Lei de Ohm, a resistência elétrica R de um condutor, em ohms (Ω) , é a razão da diferença de potencial V, em volts (V), aplicada a esse condutor, e da corrente elétrica I em amperes (A) fluindo através do mesmo condutor:

$$R = \frac{V}{I} \tag{2.1}$$

A resistência elétrica também pode ser determinada em função das características do material, através da equação:

$$R = \rho \cdot \frac{l}{A} \tag{2.2}$$

onde ρ é a resistividade elétrica do condutor, em ohm-metro $(\Omega \cdot m)$, l é o comprimento do condutor, em metros, e A é área da seção transversal do condutor, em metros quadrados.

Entretanto, experimentos mais precisos mostram que a resistência elétrica também é função da temperatura e até mesmo da presença de tensão mecânica no condutor [3]. Com base nesses fenômenos, foram desenvolvidos trandutores¹ para a medição de temperatura, pequenos deslocamentos, pressão em líquidos, dentre outros. Além disso, a corrente elétrica, que é uma grandeza de base do SI, normalmente é medida através da diferença de potencial em um resistor conhecido. De fato, uma grande parte das grandezas elétricas é medida usando métodos que envolvem de alguma forma a medição de resistência.

2.2 Capacitância e Indutância

- 2.2.1 Circuitos em corrente alternada
- 2.3 Tensão Elétrica
- 2.4 Transferência AC-DC

¹Transdutor é um dispositivo utilizado em conversão de energia de uma natureza para outra. São muito utilizados para converter grandezas como posição, velocidade, temperatura, luz, pressão, etc. em sinais elétricos.

Capítulo 3

Calibração de Medidores e Fontes

Referências Bibliográficas

- [1] BIPM, Le Système international d'unités / The International System of Units ('The SI Brochure'). Bureau international des poids et mesures, 9a. ed., 2019.
- [2] BIPM, Sistema Internacional de Unidades (SI) / Tradução do Grupo de Trabalho luso-brasileiro do Inmetro e IPQ. Inmetro / IPQ, 9a. ed., 2021.
- [3] Fluke, Calibration: Philosophy in Practice. Fluke, 2a. ed., 1994.