ЛА и ФНП, ИУ-РЛ-БМТ (кроме ИУ9), Модуль 1

Домашнее задание 1: "Линейные и евклидовы пространства" 1-я задача, 1 балл.

ВАРИАНТ 1.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис ${\bf i}$, ${\bf j}$, ${\bf k}$. Этот базис поворачивается вокруг вектора ${\bf i}$ на угол $\phi=45^0$ в положительном направлении (от ${\bf j}$ к ${\bf k}$, если смотреть со стороны конца ${\bf i}$), а затем вокруг нового положения вектора ${\bf k}$ на угол $\psi=135^0$ в положительном направлении. В результате получается новый базис ${\bf i'}$, ${\bf j'}$, ${\bf k'}$. Найти матрицу перехода из старого базиса в новый.

ВАРИАНТ 2.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{j} на угол $\phi = 135^0$ в положительном направлении (от \mathbf{k} к \mathbf{i} , если смотреть со стороны конца \mathbf{j}), а затем вокруг нового положения вектора \mathbf{i} на угол $\psi = 30^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 3.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{i} на угол $\phi = 30^0$ в положительном направлении (от \mathbf{j} к \mathbf{k} , если смотреть со стороны конца \mathbf{i}), а затем вокруг нового положения вектора \mathbf{j} на угол $\psi = 135^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 4.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{j} на угол $\phi = 150^0$ в положительном направлении (от \mathbf{k} к \mathbf{i} , если смотреть со стороны конца \mathbf{j}), а затем вокруг нового положения вектора \mathbf{i} на угол $\psi = 60^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 5.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис ${\bf i}$, ${\bf j}$, ${\bf k}$. Этот базис поворачивается вокруг вектора ${\bf i}$ на угол $\phi=60^0$ в положительном направлении (от ${\bf j}$ к ${\bf k}$, если смотреть со стороны конца ${\bf i}$), а затем вокруг нового положения вектора ${\bf j}$ на угол $\psi=150^0$ в положительном направлении. В результате получается новый базис ${\bf i'}$, ${\bf j'}$, ${\bf k'}$. Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 6.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{j} на угол $\phi = 45^0$ в отрицательном направлении (от \mathbf{i} к \mathbf{k} , если смотреть со стороны конца \mathbf{j}), а затем вокруг нового положения вектора \mathbf{i} на угол $\psi = 150^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 7.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{i} на угол $\phi = 150^0$ в положительном направлении (от \mathbf{j} к \mathbf{k} , если смотреть со стороны конца \mathbf{i}), а затем вокруг нового положения вектора \mathbf{j} на угол $\psi = 45^0$ в отрицательном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 8.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{i} на угол $\phi = 45^0$ в отрицательном направлении (от \mathbf{k} к \mathbf{j} , если смотреть со стороны конца \mathbf{i}), а затем вокруг нового положения вектора \mathbf{k} на угол $\psi = 60^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 9.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{k} на угол $\phi = 60^0$ в положительном направлении (от \mathbf{i} к \mathbf{j} , если смотреть со стороны конца \mathbf{k}), а затем вокруг нового положения вектора \mathbf{i} на угол $\psi = 45^0$ в отрицательном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 10.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{j} на угол $\phi = 60^0$ в положительном направлении (от \mathbf{k} к \mathbf{i} , если смотреть со стороны конца \mathbf{j}), а затем вокруг нового положения вектора \mathbf{k} на угол $\psi = 150^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 11.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис ${\bf i}$, ${\bf j}$, ${\bf k}$. Этот базис поворачивается вокруг вектора ${\bf k}$ на угол $\phi=150^0$ в положительном направлении (от ${\bf i}$ к ${\bf j}$, если смотреть со стороны конца ${\bf k}$), а затем вокруг нового положения вектора ${\bf j}$ на угол $\psi=60^0$ в положительном направлении. В результате получается новый базис ${\bf i}'$, ${\bf j}'$, ${\bf k}'$. Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 12.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис ${\bf i}$, ${\bf j}$, ${\bf k}$. Этот базис поворачивается вокруг вектора ${\bf i}$ на угол $\phi=30^0$ в положительном направлении (от ${\bf j}$ к ${\bf k}$, если смотреть со стороны конца ${\bf i}$), а затем вокруг нового положения вектора ${\bf j}$ на угол $\psi=45^0$ в положительном направлении. В результате получается новый базис ${\bf i}'$, ${\bf j}'$, ${\bf k}'$. Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 13.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{j} на угол $\phi = 30^0$ в положительном направлении (от \mathbf{k} к \mathbf{i} , если смотреть со стороны конца \mathbf{j}), а затем вокруг нового положения вектора \mathbf{k} на угол $\psi = 45^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 14.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{k} на угол $\phi = 30^0$ в положительном направлении (от \mathbf{i} к \mathbf{j} , если смотреть со стороны конца \mathbf{k}), а затем вокруг нового положения вектора \mathbf{i} на угол $\psi = 45^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 15.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{i} на угол $\phi = 45^0$ в положительном направлении (от \mathbf{j} к \mathbf{k} , если смотреть со стороны конца \mathbf{i}), а затем вокруг нового положения вектора \mathbf{j} на угол $\psi = 60^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 16.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{i} на угол $\phi = 45^0$ в отрицательном направлении (от \mathbf{k} к \mathbf{j} , если смотреть со стороны конца \mathbf{i}), а затем вокруг нового положения вектора \mathbf{j} на угол $\psi = 60^0$ в отрицательном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 17.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{k} на угол $\phi = 15^0$ в отрицательном направлении, а затем вокруг нового положения вектора \mathbf{i} на угол $\psi = 30^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 18.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{k} на угол $\phi = 45^0$ в отрицательном направлении, а затем вокруг нового положения вектора \mathbf{i} на угол $\psi = 75^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 19.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{j} на угол $\phi = 30^0$ в положительном направлении, а затем вокруг нового положения вектора \mathbf{k} на угол $\psi = 150^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 20.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис ${\bf i}$, ${\bf j}$, ${\bf k}$. Этот базис поворачивается вокруг вектора ${\bf i}$ так, что вектор ${\bf j}$ занимает новое положение $\left(0;\frac{1}{\sqrt{10}};\frac{3}{\sqrt{10}}\right)^T$, а затем вокруг нового положения вектора ${\bf k}$ на угол $\psi=60^0$ в положительном направлении. В результате получается новый базис ${\bf i}'$, ${\bf j}'$, ${\bf k}'$. Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 21.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{i} в положительном направлении на угол $\phi = 300^0$ а затем вокруг нового положения вектора \mathbf{j} так, что вектор \mathbf{k} принимает положение $\left(\frac{1}{\sqrt{5}}; 0; \frac{2}{\sqrt{5}}\right)^T$, (сохраняется правая ориентация базиса). В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 22.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{k} на угол $\phi = 30^0$ в положительном направлении (от \mathbf{i} к \mathbf{j} , если смотреть со стороны конца \mathbf{k}), а затем вокруг нового положения вектора \mathbf{i} на угол $\psi = 120^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 23.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{j} на угол $\phi = 120^0$ в положительном направлении (от \mathbf{k} к \mathbf{i} , если смотреть со стороны конца \mathbf{j}), а затем вокруг нового положения вектора \mathbf{k} на угол $\psi = 45^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 24.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{k} на угол $\phi = 225^0$ в положительном направлении (от \mathbf{i} к \mathbf{j} , если смотреть со стороны конца \mathbf{k}), а затем вокруг нового положения вектора \mathbf{j} на угол $\psi = 60^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 25.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{j} на угол $\phi = 60^{0}$ в положительном направлении (от \mathbf{k} к \mathbf{i} , если смотреть со стороны конца \mathbf{j}), а затем вокруг нового положения вектора \mathbf{i} на угол $\psi = 150^{0}$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 26.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{i} на угол $\phi = 135^0$ в положительном направлении (от \mathbf{j} к \mathbf{k} , если смотреть со стороны конца \mathbf{i}), а затем вокруг нового положения вектора \mathbf{k} на угол $\psi = 240^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 27.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис ${\bf i}$, ${\bf j}$, ${\bf k}$. Этот базис поворачивается вокруг вектора ${\bf j}$ на угол $\phi=30^0$ в положительном направлении (от ${\bf k}$ к ${\bf i}$, если смотреть со стороны конца ${\bf j}$), а затем вокруг нового положения вектора ${\bf k}$ на угол $\psi=120^0$ в отрицательном направлении. В результате получается новый базис ${\bf i'}$, ${\bf j'}$, ${\bf k'}$. Найти матрицу перехода из старого базиса в новый.

ВАРИАНТ 28.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{k} на угол $\phi = 135^0$ в отрицательном направлении (от \mathbf{j} к \mathbf{i} , если смотреть со стороны конца \mathbf{k}), а затем вокруг нового положения вектора \mathbf{j} на угол $\psi = 30^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 29.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{i} на угол $\phi = 60^0$ в положительном направлении (от \mathbf{j} к \mathbf{k} , если смотреть со стороны конца \mathbf{i}), а затем вокруг нового положения вектора \mathbf{j} на угол $\psi = 120^0$ в отрицательном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 30.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{k} на угол $\phi = 150^0$ в отрицательном направлении (от \mathbf{j} к \mathbf{i} , если смотреть со стороны конца \mathbf{k}), а затем вокруг нового положения вектора \mathbf{i} на угол $\psi = 45^0$ в положительном направлении. В результате получается новый базис \mathbf{i}' , \mathbf{j}' , \mathbf{k}' . Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 31.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис \mathbf{i} , \mathbf{j} , \mathbf{k} . Этот базис поворачивается вокруг вектора \mathbf{j} на угол $\phi = 120^0$ в положительном направлении (от \mathbf{k} к \mathbf{i} , если смотреть со стороны конца \mathbf{j}), а затем вокруг нового положения вектора \mathbf{k} на угол $\psi = 150^0$ в отрицательном направлении. В результате получается новый базис $\mathbf{i'}$, $\mathbf{j'}$, $\mathbf{k'}$. Найти матрицу перехода от старого базиса к новому.

ВАРИАНТ 32.

Постановка задачи. В линейном пространстве V_3 свободных векторов выбран правый ортонормированный базис ${\bf i}$, ${\bf j}$, ${\bf k}$. Этот базис поворачивается вокруг вектора ${\bf i}$ на угол $\phi=45^0$ в отрицательном направлении (от ${\bf k}$ к ${\bf j}$, если смотреть со стороны конца ${\bf i}$), а затем вокруг нового положения вектора ${\bf j}$ на угол $\psi=240^0$ в положительном направлении. В результате получается новый базис ${\bf i'}$, ${\bf j'}$, ${\bf k'}$. Найти матрицу перехода от старого базиса к новому.