Matrix Analysis Homework 7

龙肖灵 Xiaoling Long Student ID.:81943968 email:longxl@shanghaitech.edu.cn

November 21, 2017

Problem 1:

Let A,B be positive-semidefinite matrices. Show that all eigenvalues of AB are non-negative. Is it true that AB is positive-semidefinite? Justify your answer.

Proof.

i) Pick an eigenpair (x, λ) of AB. We have that

$$ABx = \lambda x$$

$$x^T B^T (ABx) = \lambda x^T B^T x$$

$$(Bx)^T A(Bx) = \lambda x^T Bx$$

$$(x')^T Ax' = \lambda x^T Bx$$

And we know that A and B are positive-semidefinite matrix, for all $x \in R^n$ and $x' \in R^n$, such that $x^T B x \ge 0$ and $(x')^T A x' \ge 0$. So $\lambda x^T B x \ge 0 \Rightarrow \lambda \ge 0$. So, all eigenvalues of AB are non-negative.

ii) Not always true that AB is positive-semidefinite. $(AB)^T = B^T A^T = BA \neq AB$. Since there isn't enought condition to ensure that AB is a symmetric matrix.

Done. \Box

Problem 2:

Let A,B be positive-semidefinite matrices. Show that $||A - B||_2 \le \max\{||A||_2, ||B||_2\}$.

Proof.

Let C be a positive-semidefinite matrix, pick an eigenpair (x, λ) of C. Then,

$$Cx = \lambda x$$

$$C^{T}Cx = \lambda Cx$$

$$C^{T}Cx = \lambda \lambda x$$

$$C^{T}Cx = \lambda^{2}x$$

So the eigenvalues of C^TC equal the eigenvalues of C power 2. And all eigenvalues of C are nonnegative, so $\|C\|_2 = \sqrt{\lambda_{\max}(C^TC)} = \max|\lambda(C)|$. Since $(A-B)^T = A-B$, so there are two cases

i)
$$|\lambda_{\max}(A - B)| \ge |\lambda_{\min}(A - B)|$$
:
 $|||A - B|||_2 = \max_{\|x\|_2 = 1} x^T (A - B) x = \max_{\|x\|_2} (x^T A x - x^T B x) \le \max_{\|x\|_2} x^T A x = \lambda_{\max}(A) = |||A|||_2$

ii)
$$|\lambda_{\max}(A - B)| < |\lambda_{\min}(A - B)|$$
:
 $||A - B||_2 = \max_{\|x\|_2 = 1} x^T (B - A) x = \max_{\|x\|_2} (x^T B x - x^T A x) \le \max_{\|x\|_2} x^T B x = \lambda_{\max}(B) = |||B|||_2$

Finally, we can say that

$$|||A - B|||_2 \le \max\{|||A|||_2, |||B|||_2\}$$

Done. \Box

Problem 3:

Show that the set of all positive-semidefinite matrices of size $n \times n$ is a convex cone of $\mathbb{R}^{n \times n}$ (you need to read up the definition of "convex cone").

Proof. Terminology: A cone C is a convex cone if $\alpha x + \beta y$ belongs to C, for any positive scalars α , β , and any x, y in C.

For all A and B in the set of all positive-semidefinite matrices \mathcal{C} of size $n \times n$. We have that for all $x \in \mathbb{R}^n$, such that $x^T A x \geq 0$ and $x^T B x \geq 0$.

For any positive scalars α and β .

$$x^{T}Ax \ge 0 \quad x^{T}Bx \ge 0$$

$$\alpha x^{T}Ax \ge 0 \quad \beta x^{T}Bx \ge 0$$

$$x^{T}\alpha Ax \ge 0 \quad x^{T}\beta Bx \ge 0$$

$$x^{T}\alpha Ax + x^{T}\beta Bx \ge 0$$

$$x^{T}(\alpha A + \beta B)x \ge 0$$

It means that for all $x \in R^n$ for any positive scalars α and β , for any A, B in C, $x^T(\alpha A + \beta B)x \ge 0$ always remains. So $\alpha A + \beta B$ belongs to C.

So \mathcal{C} is a convex cone of $\mathbb{R}^{n \times n}$.

Done. \Box

Problem 4:

Let $A \in \mathbb{R}^{n \times n}$ be positive-semidefinite. Let $B \in \mathbb{R}^{n \times k}$ be any matrix. Show that the matrix B^TAB is positive-semidefinite.

Proof.

Since $A \ge 0$, so we can say that $\exists C \in R_{n \times n}$ such that $A = C^T C$. So we can do these as following,

$$x^{T}B^{T}ABx = x^{T}B^{T}C^{T}CBx$$
$$= (CBx)^{T}CBx$$
$$= ||CBx||_{2}$$
$$> 0$$

Finally, we get that $x^T B^{TAB} x \ge 0$. So the matrix $B^T AB$ is positive-simidefinite.

Problem 5:

Let $A \in \mathbb{R}^{n \times n}$ be positive-semidefinite. Show that for every distinct $i \neq j$ we have that $a_{ii}a_{jj} \geq a_{ij}^2$.

Proof.

Since $A \geq 0$, so we know that every principal minor of A is greater than or equal to 0. So When we remove all columns and rows whose indices not equal to i and j. The principal will be $A(i,j) = \begin{pmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{pmatrix}$. And $det(A(i,j)) \geq 0$, then we can get that $a_{ii}a_{jj} - a_{ij}a_{ji} \neq 0$. That $A \geq 0$ implies that $A = A^T$ which means that $a_{ij} = a_{ji}$. Finally we can get that

$$a_{ii}a_{jj} \geq a_{ij}^2$$

Done. \Box

Problem 6:

Let $A \in \mathbb{R}^{n \times n}$ be symmetric, strictly diagonally dominant, and suppose that $a_{ii} > 0$. Prove that A is positive-definite.

Proof.

From Gerschgorin Circles theorem, all $\lambda_i \in \sigma A$ are in the i-th Gerschgorin Circle defined by

$$|z - a_{ii}| \le \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}|$$

And A is strict diagonally dominant. It means that $a_{ii} > \sum_{\substack{j=1\\i\neq i}}^{n} |a_{ij}|$ and $a_{ii} > 0$.

$$|z - a_{ii}| \le \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}|$$

$$\Rightarrow -\sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}| < z - a_{ii} < \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}|$$

$$\Rightarrow a_{ii} - \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}| < z < a_{ii} + \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}|$$

It implies that all elements in the circle are greater than 0. It also implies that $\lambda_i > 0$. And we also can get these

$$Ax = \lambda x$$
$$x^T A x = \lambda x^T x$$
$$= \lambda ||x||_2$$

For all $x^Tx \neq 0$, we always get that $x^TAx = \lambda ||x||_2 > 0$, and A also is symmetric matrix. So A is positive-definite.

Done.