Scenario Analysis and it's Solution

Scenario-8: Restaurant Management System.

Requirements:

A restaurant chain needs a database system to manage menu items, customer orders, and staff schedules. The system should store details about menu items, including name, description, price, ingredients, and category (e.g., appetizer, main course, dessert).

Customer orders should be tracked, recording details such as order date, items ordered, table number, and total amount. The system should also manage customer profiles, including personal details, contact information, and order history.

Staff schedules need to be maintained, recording shift timings, assigned tasks, and attendance. The restaurant wants to monitor staff performance, manage payroll, and handle leave requests.

Additionally, the system should support inventory management functions like tracking ingredient stock levels, generating purchase orders, and monitoring waste. The ability to generate reports on sales performance, popular menu items, and customer feedback is also essential.

Questions:

- Find the menu item with the highest sales revenue.
- Calculate the average order value for each customer.
- Retrieve the minimum quantity of any ingredient in stock.
- Find the staff member who worked the most hours in the last month.
- List the top 5 most ordered menu categories.

<u>Tables required for this scenario:</u> As per our analysis 11 tables are required which are given below:

- Menu_Items (item_id (Primary Key), name, description, price, ingredients, category)
- 2. **Orders**(order_id (Primary Key),order_date,customer_id (Foreign Key referencing Customers),table_number,total_amount)
- 3. **Order_Items**(order_item_id (Primary Key), order_id (Foreign Key referencing Orders), item_id (Foreign Key referencing Menu_Items), quantity)
- 4. **Customers**(customer_id (Primary Key), name, contact_info, order_history)
- 5. **Staff**(staff_id (Primary Key), name,contact_info, position)
- 6. **Staff_Schedules**(schedule_id (Primary Key), staff_id (Foreign Key referencing Staff), shift date, shift start time, shift end time, assigned tasks, attendance)
- 7. **Inventory**(ingredient_id (Primary Key), name, quantity_in_stock, unit, reorder_level)
- 8. **Purchase_Orders**(purchase_order_id (Primary Key), ingredient_id (Foreign Key referencing Inventory), quantity_ordered, order_date, supplier_id (Foreign Key referencing Suppliers))
- 9. **Suppliers**(supplier_id (Primary Key), name, contact_info)
- 10. **Payroll**(payroll_id (Primary Key), staff_id (Foreign Key referencing Staff), pay_period, hours_worked, pay_amount, leave_requests)
- 11. **Customer_Feedback**(feedback_id (Primary Key), customer_id (Foreign Key referencing Customers), order_id (Foreign Key referencing Orders), feedback,rating)

Create all tables:

ii. CREATE TABLE Orders (order_id INT PRIMARY KEY AUTO_INCREMENT, order_date DATE NOT NULL, customer_id INT, table_number INT, total_amount DECIMAL(10, 2) NOT NULL, FOREIGN KEY (customer_id) REFERENCES Customers (customer id));

iii. CREATE TABLE Order_Items (order_item_id INT PRIMARY KEY AUTO_INCREMENT,

order_id INT,
item_id INT,
quantity INT NOT NULL,
FOREIGN KEY (order_id) REFERENCES
Orders(order_id),
FOREIGN KEY (item_id) REFERENCES
Menu_Items(item_id));

- iv. CREATE TABLE Customers (customer_id INT PRIMARY KEY

 AUTO_INCREMENT,

 name VARCHAR(255) NOT NULL,

 contact_info VARCHAR(255));
- v. CREATE TABLE Staff (staff_id INT PRIMARY KEY AUTO_INCREMENT, name VARCHAR(255) NOT NULL, contact_info VARCHAR(255), position VARCHAR(100));

vi. CREATE TABLE Staff_Schedules (schedule_id INT PRIMARY KEY AUTO_INCREMENT,

staff_id INT,
shift_date DATE NOT NULL,
shift_start_time TIME NOT NULL,
shift_end_time TIME NOT NULL,
assigned_tasks TEXT,
attendance BOOLEAN,
FOREIGN KEY (staff_id) REFERENCES
Staff(staff_id));

vii. CREATE TABLE Inventory (ingredient_id INT PRIMARY KEY

AUTO_INCREMENT,

name VARCHAR(255) NOT NULL,

quantity_in_stock DECIMAL(10, 2) NOT NULL,

unit VARCHAR(50),

reorder level DECIMAL(10, 2));

viii. CREATE TABLE Purchase_Orders (purchase_order_id INT PRIMARY KEY AUTO_INCREMENT,

ix. CREATE TABLE Suppliers (supplier_id INT PRIMARY KEY
AUTO_INCREMENT,
name VARCHAR(255) NOT NULL,
contact_info VARCHAR(255));

x. CREATE TABLE Payroll (payroll_id INT PRIMARY KEY AUTO_INCREMENT,

staff_id INT,
pay_period DATE NOT NULL,
hours_worked DECIMAL(10, 2),
pay_amount DECIMAL(10, 2),
leave_requests TEXT,
FOREIGN KEY (staff_id) REFERENCES
Staff(staff_id));

xi. CREATE TABLE Customer_Feedback (feedback_id INT PRIMARY KEY AUTO INCREMENT,

Five questions and their answers:

1. Find the menu item with the highest sales revenue.

Ans:

SELECT m.name, SUM(oi.quantity * m.price) AS total_revenue FROM Order_Items oi JOIN Menu_Items m ON oi.item_id = m.item_id GROUP BY m.name ORDER BY total_revenue DESC LIMIT 1;

2. Calculate the average order value for each customer.

Ans:

```
SELECT c.name, AVG(o.total_amount) AS average_order_value FROM Orders o

JOIN Customers c ON o.customer_id = c.customer_id

GROUP BY c.name;
```

3. Retrieve the minimum quantity of any ingredient in stock.

Ans:

```
SELECT name, MIN(quantity_in_stock) AS min_stock FROM Inventory;
```

4. Find the staff member who worked the most hours in the last month.

Ans:

```
SELECT s.name, SUM(TIMESTAMPDIFF(HOUR, ss.shift_start_time, ss.shift_end_time)) AS total_hours
FROM Staff_Schedules ss
JOIN Staff s ON ss.staff_id = s.staff_id
WHERE ss.shift_date BETWEEN DATE_SUB(CURDATE(), INTERVAL 1
MONTH) AND CURDATE()
GROUP BY s.name
ORDER BY total_hours DESC
LIMIT 1:
```

5. List the top 5 most ordered menu categories.

Ans:

```
SELECT m.category, COUNT(oi.item_id) AS order_count FROM Order_Items oi JOIN Menu_Items m ON oi.item_id = m.item_id GROUP BY m.category ORDER BY order_count DESC LIMIT 5;
```