Kapitel PTS:III

III. Kombinatorik

- Permutationen und Kombinationen
- □ Kombinatorik für Laplace-Wahrscheinlichkeiten
- Urnenmodell

Einführung

- Modelle dienen der Lösung statistischer Problemstellungen.
- Sie sind einfacher und durchschaubarer als die Wirklichlichkeit.
- Sie bilden idealerweise alle wichtigen Charakteristika ab.
- Das Urnenmodell eignet sich zur Modellierung vieler realer Begebenheiten.

PTS:III-82 Kombinatorik ©HAGEN/POTTHAST/STEIN 2021

Einführung

Aufbau:

- \Box Urne mit N Kugeln.
- $\supset K$ Kugeln sind schwarz, und N-K rot.

[Feuerpfeil/Heigel 1999]

□ Die Kugeln sind gleichartig: gleich groß, gleich schwer, einwandfrei rund, usw. O.B.d.A.: Zur Vereinfachung der Notation denken wir uns die Kugeln nummeriert.

Einführung

Aufbau:

- \Box Urne mit N Kugeln.
- $\ \square \ K$ Kugeln sind schwarz, und N-K rot.

[Feuerpfeil/Heigel 1999]

□ Die Kugeln sind gleichartig: gleich groß, gleich schwer, einwandfrei rund, usw. O.B.d.A.: Zur Vereinfachung der Notation denken wir uns die Kugeln nummeriert.

Zufallsexperiment:

- □ Ziehen von *n* Kugeln nacheinander und Feststellung ihrer jeweiligen Farben. Vor einer bzw. jeder Ziehung werden die Kugeln in der Urne sorgfältig durchmischt.
- \Box Ergebnis eines Experiments sind n Kugelfarben, k schwarze und n-k rote.

Einführung

Aufbau:

- \Box Urne mit N Kugeln.
- $\ \square \ K$ Kugeln sind schwarz, und N-K rot.

[Feuerpfeil/Heigel 1999]

□ Die Kugeln sind gleichartig: gleich groß, gleich schwer, einwandfrei rund, usw. O.B.d.A.: Zur Vereinfachung der Notation denken wir uns die Kugeln nummeriert.

Zufallsexperiment:

- □ Ziehen von *n* Kugeln nacheinander und Feststellung ihrer jeweiligen Farben. Vor einer bzw. jeder Ziehung werden die Kugeln in der Urne sorgfältig durchmischt.
- \Box Ergebnis eines Experiments sind n Kugelfarben, k schwarze und n-k rote.

Arten der Ziehung:

□ Ziehen ohne Zurücklegen Eine gezogene Kugel wird vor Abschluss der n Ziehungen nicht in die Urne zurückgelegt.

Ziehen mit Zurücklegen
 Eine gezogene Kugel wird vor der nächsten Ziehung in die Urne zurückgelegt.

Einführung

Beispiel: Qualitätsprüfung einer Lieferung

- \Box Eine Lieferung von N gleichartigen Produkten (Bauteile, Lebensmittel, ...) enthält einen unbekannten Anteil "Ausschuss", also fehlerhafte Einheiten.
- □ Wie lässt sich der Anteil an Ausschuss abschätzen (um die Lieferung ggf. abzulehnen), wenn die Kapazität nicht ausreicht, alle N Produkte zu prüfen?

Einführung

Beispiel: Qualitätsprüfung einer Lieferung

- □ Eine Lieferung von N gleichartigen Produkten (Bauteile, Lebensmittel, ...) enthält einen unbekannten Anteil "Ausschuss", also fehlerhafte Einheiten.
- Wie lässt sich der Anteil an Ausschuss abschätzen (um die Lieferung ggf. abzulehnen), wenn die Kapazität nicht ausreicht, alle N Produkte zu prüfen?
- Vorgehen:
 - Stichprobe: Auswahl von n Einheiten aus der Lieferung von N Produkten.
 - Prüfung: Feststellung der Anzahl X fehlerhafter Einheiten.
 - Entscheidung: Wenn X einen vorher festgelegten Schwellwert c nicht überschreitet ($X \le c$), wird die Lieferung angenommen, sonst abgelehnt.

Einführung

Beispiel: Qualitätsprüfung einer Lieferung (Fortsetzung)

- \Box Da der tatsächliche Anteil an Ausschuss nicht ermittelt werden wird, unterliegt X unvermeidbar statistischen Schwankungen.
- □ Es können daher nur Wahrscheinlichkeitsaussagen über die Annahme bzw. Zurückweisung der Lieferung getroffen werden.

Einführung

Beispiel: Qualitätsprüfung einer Lieferung (Fortsetzung)

- □ Da der tatsächliche Anteil an Ausschuss nicht ermittelt werden wird, unterliegt X unvermeidbar statistischen Schwankungen.
- Es können daher nur Wahrscheinlichkeitsaussagen über die Annahme bzw.
 Zurückweisung der Lieferung getroffen werden.
- Was ist die Wahrscheinlichkeit für die Annahme der Lieferung?
- und rote als "fehlerfreie", ist der tatsächliche Ausschussanteil $\frac{K}{N}$.
- \Box Zufallsexperiment: Die Wahrscheinlichkeit P(X = k) kann so berechnet werden, also beim Ziehen von n Kugeln genau k schwarze zu erhalten.
- □ Damit lässt sich auch die Frage nach $P(X \le c)$ beantworten. $X \le c$ entspricht dem Ereignis "Annahme der Lieferung".

Beispiel: Ziehen ohne Zurücklegen

Zufallsexperiment und interessierendes Ereignis:

- □ Urne mit 3 schwarzen und 2 roten Kugeln
- Ziehung dreier Kugeln ohne Zurücklegen

[Feuerpfeil/Heigel 1999]

- \supset Sei X die Anzahl der gezogenen schwarzen Kugeln.
- ullet Was ist die Wahrscheinlichkeit P(X=2)? ("genau 2 schwarze Kugeln gezogen")

Beispiel: Ziehen ohne Zurücklegen

Zufallsexperiment und interessierendes Ereignis:

- □ Urne mit 3 schwarzen und 2 roten Kugeln
- Ziehung dreier Kugeln ohne Zurücklegen

[Feuerpfeil/Heigel 1999]

- \supset Sei X die Anzahl der gezogenen schwarzen Kugeln.
- \Box Was ist die Wahrscheinlichkeit P(X=2)? ("genau 2 schwarze Kugeln gezogen")

(a) Ergebnisraum und Ereigniszerlegung bei Beachtung der Reihenfolge:

- $\square \quad \Omega = \{(\mathbf{s}_1; \mathbf{s}_2; \mathbf{s}_3); (\mathbf{s}_2; \mathbf{s}_1; \mathbf{s}_3); \dots; (\mathbf{r}_5; \mathbf{r}_4; \mathbf{s}_3)\} \quad (\mathbf{s} \text{ steht für schwarz, } \mathbf{r} \text{ für rot)}$
- $|\Omega| = 5 \cdot 4 \cdot 3$ (3-Permutationen aus der 5-Menge)
- \square "X=2" = ssr \cup srs \cup rss, wobei z.B. ssr = $\{(\mathbf{s}_1;\mathbf{s}_2;\mathbf{r}_4);\ldots;(\mathbf{s}_3;\mathbf{s}_2;\mathbf{r}_5)\}$)
- $|ssr| = |srs| = |rss| = 3 \cdot 2 \cdot 2$

Beispiel: Ziehen ohne Zurücklegen (vgl. mit Zurücklegen)

Zufallsexperiment und interessierendes Ereignis:

- □ Urne mit 3 schwarzen und 2 roten Kugeln
- Ziehung dreier Kugeln ohne Zurücklegen

[Feuerpfeil/Heigel 1999]

- \neg Sei X die Anzahl der gezogenen schwarzen Kugeln.
- \Box Was ist die Wahrscheinlichkeit P(X=2)? ("genau 2 schwarze Kugeln gezogen")

(a) Ergebnisraum und Ereigniszerlegung bei Beachtung der Reihenfolge:

- $\square \quad \Omega = \{(\mathbf{s}_1; \mathbf{s}_2; \mathbf{s}_3); (\mathbf{s}_2; \mathbf{s}_1; \mathbf{s}_3); \dots; (\mathbf{r}_5; \mathbf{r}_4; \mathbf{s}_3)\} \quad (\mathbf{s} \text{ steht für schwarz, } \mathbf{r} \text{ für rot})$
- $|\Omega| = 5 \cdot 4 \cdot 3$ (3-Permutationen aus der 5-Menge)
- \square "X = 2" = ssr \cup srs \cup rss, wobei z.B. ssr = $\{(s_1; s_2; r_4); \ldots; (s_3; s_2; r_5)\}$)
- $|ssr| = |srs| = |rss| = 3 \cdot 2 \cdot 2$

Daraus folgt:

$$P(X=2) = \frac{3 \cdot 2 \cdot 2}{5 \cdot 4 \cdot 3} \cdot 3 = \frac{1}{5} \cdot 3 = 0.6$$

Bemerkung:

 \square Zwei schwarze Kugeln lassen sich auf $\binom{3}{2}=3$ Arten auf drei Plätze verteilen (ssr, srs, rss); dies ist also eigentlich der Faktor 3 in der Gleichung.

PTS:III-93 Kombinatorik © HAGEN/POTTHAST/STEIN 2021

Beispiel: Ziehen ohne Zurücklegen

Baumdiagramm:

- Darstellung eines mehrstufigen Zufallsexperiments
- □ Knoten: Ereignis (hier: s oder r)
- Kanten: mögliche Ereignisse der nächsten Ziehung
- Kantenbeschriftung:
 Wahrscheinlichkeit gemäß Anteilsregel

Beispiel: Ziehen ohne Zurücklegen (vgl. mit Zurücklegen)

Beispiel: Ziehen ohne Zurücklegen

Zufallsexperiment und interessierendes Ereignis:

- □ Urne mit 3 schwarzen und 2 roten Kugeln
- Ziehung dreier Kugeln ohne Zurücklegen

[Feuerpfeil/Heigel 1999]

- \neg Sei X die Anzahl der gezogenen schwarzen Kugeln.
- ullet Was ist die Wahrscheinlichkeit P(X=2)? ("genau 2 schwarze Kugeln gezogen")

PTS:III-100 Kombinatorik ©HAGEN/POTTHAST/STEIN 2021

Beispiel: Ziehen ohne Zurücklegen

Zufallsexperiment und interessierendes Ereignis:

- □ Urne mit 3 schwarzen und 2 roten Kugeln
- Ziehung dreier Kugeln ohne Zurücklegen

[Feuerpfeil/Heigel 1999]

- \supset Sei X die Anzahl der gezogenen schwarzen Kugeln.
- ullet Was ist die Wahrscheinlichkeit P(X=2)? ("genau 2 schwarze Kugeln gezogen")

(b) Ergebnisraum und Ereigniszerlegung ohne Beachtung der Reihenfolge:

- $\square \ \Omega = \{ \{ \mathbf{s}_1; \mathbf{s}_2; \mathbf{s}_3 \}; \{ \mathbf{s}_1; \mathbf{s}_2; \mathbf{s}_4 \}; \dots; \{ \mathbf{s}_3; \mathbf{s}_4; \mathbf{s}_5 \} \}$
- \square $|\Omega| = {5 \choose 3}$ (3-Teilmengen aus der 5-Menge)
- \square "X=2" entspricht $\binom{3}{2}$ Möglichkeiten, zwei schwarze Kugeln auszuwählen, und $\binom{2}{1}$ Möglichkeiten, eine rote auszuwählen.

Beispiel: Ziehen ohne Zurücklegen

Zufallsexperiment und interessierendes Ereignis:

- □ Urne mit 3 schwarzen und 2 roten Kugeln
- Ziehung dreier Kugeln ohne Zurücklegen

[Feuerpfeil/Heigel 1999]

- \neg Sei X die Anzahl der gezogenen schwarzen Kugeln.
- \Box Was ist die Wahrscheinlichkeit P(X=2)? ("genau 2 schwarze Kugeln gezogen")

(b) Ergebnisraum und Ereigniszerlegung ohne Beachtung der Reihenfolge:

- $\square \ \Omega = \{ \{ \mathbf{s}_1; \mathbf{s}_2; \mathbf{s}_3 \}; \{ \mathbf{s}_1; \mathbf{s}_2; \mathbf{s}_4 \}; \dots; \{ \mathbf{s}_3; \mathbf{s}_4; \mathbf{s}_5 \} \}$
- \square $|\Omega| = {5 \choose 3}$ (3-Teilmengen aus der 5-Menge)
- \square "X=2" entspricht $\binom{3}{2}$ Möglichkeiten, zwei schwarze Kugeln auszuwählen, und $\binom{2}{1}$ Möglichkeiten, eine rote auszuwählen.

Daraus folgt:

$$P(X=2) = \frac{\binom{3}{2}\binom{2}{1}}{\binom{5}{3}} = 0.6$$
.

Beispiel: Ziehen mit Zurücklegen

Zufallsexperiment und interessierendes Ereignis:

- □ Urne mit 3 schwarzen und 2 roten Kugeln
- Ziehung dreier Kugeln mit Zurücklegen

[Feuerpfeil/Heigel 1999]

- \supset Sei X die Anzahl der gezogenen schwarzen Kugeln.
- ullet Was ist die Wahrscheinlichkeit P(X=2)? ("genau 2 schwarze Kugeln gezogen")

PTS:III-103 Kombinatorik ©HAGEN/POTTHAST/STEIN 2021

Beispiel: Ziehen mit Zurücklegen

Zufallsexperiment und interessierendes Ereignis:

- □ Urne mit 3 schwarzen und 2 roten Kugeln
- Ziehung dreier Kugeln mit Zurücklegen

[Feuerpfeil/Heigel 1999]

- \neg Sei X die Anzahl der gezogenen schwarzen Kugeln.
- ullet Was ist die Wahrscheinlichkeit P(X=2)? ("genau 2 schwarze Kugeln gezogen")

Ergebnisraum und Ereigniszerlegung bei Beachtung der Reihenfolge:

- $\square \quad \Omega = \{(\mathbf{s}_1; \mathbf{s}_1; \mathbf{s}_1); (\mathbf{s}_1; \mathbf{s}_1; \mathbf{s}_2); \dots; (\mathbf{r}_5; \mathbf{r}_5; \mathbf{s}_5)\} \quad (\mathbf{s} \text{ steht für schwarz, } \mathbf{r} \text{ für rot})$
- \square $|\Omega| = 5 \cdot 5 \cdot 5$ (3-Tupel aus der 5-Menge)
- $\neg X = 2$ = ssr \cup srs \cup rss, wobei z.B. ssr = $\{(s_1; s_1; r_4); \dots; (s_3; s_3; r_5)\}$
- $|ssr| = |srs| = |rss| = 3 \cdot 3 \cdot 2$

Beispiel: Ziehen mit Zurücklegen (vgl. ohne Zurücklegen)

Zufallsexperiment und interessierendes Ereignis:

- □ Urne mit 3 schwarzen und 2 roten Kugeln
- Ziehung dreier Kugeln mit Zurücklegen

[Feuerpfeil/Heigel 1999]

- \neg Sei X die Anzahl der gezogenen schwarzen Kugeln.
- \Box Was ist die Wahrscheinlichkeit P(X=2)? ("genau 2 schwarze Kugeln gezogen")

Ergebnisraum und Ereigniszerlegung bei Beachtung der Reihenfolge:

- $\square \quad \Omega = \{(\mathbf{s}_1; \mathbf{s}_1; \mathbf{s}_1); (\mathbf{s}_1; \mathbf{s}_1; \mathbf{s}_2); \dots; (\mathbf{r}_5; \mathbf{r}_5; \mathbf{s}_5)\} \quad (\mathbf{s} \text{ steht für schwarz, } \mathbf{r} \text{ für rot})$
- \square $|\Omega| = 5 \cdot 5 \cdot 5$ (3-Tupel aus der 5-Menge)
- \square "X=2" = ssr \cup srs \cup rss, wobei z.B. ssr = $\{(s_1;s_1;r_4);\ldots;(s_3;s_3;r_5)\}$)
- $|ssr| = |srs| = |rss| = 3 \cdot 3 \cdot 2$

Daraus folgt:

$$P(X=2) = \frac{3 \cdot 3 \cdot 2}{5 \cdot 5 \cdot 5} \cdot 3 = 0.432$$
.

Beispiel: Ziehen mit Zurücklegen (vgl. ohne Zurücklegen)

Verallgemeinerung

Zufallsexperiment:

- \Box Urne mit N nummerierten Kugeln, davon K schwarz und N-K rot
- \Box Ziehung von n Kugeln mit Zurücklegen; davon X schwarze
- \Box Was ist die Wahrscheinlichkeit P(X = k), exakt k schwarze Kugeln zu ziehen?

Verallgemeinerung

Zufallsexperiment:

- \Box Urne mit N nummerierten Kugeln, davon K schwarz und N-K rot
- \Box Ziehung von n Kugeln mit Zurücklegen; davon X schwarze
- \Box Was ist die Wahrscheinlichkeit P(X = k), exakt k schwarze Kugeln zu ziehen?

Mächtigkeiten:

- Berücksichtigung der Reihenfolge nicht notwendig.
- \square Ω ist die Menge der n-Teilmengen aus der N-Menge $\{1,2,\ldots,N\}$: $|\Omega|=\binom{N}{n}$
- \Box Zahl der k-Teilmengen aus der K-Menge schwarzer Kugeln: $\binom{K}{k}$
- \Box Zahl der (n-k)-Teilmengen aus der (N-K)-Menge roter Kugeln: $\binom{N-K}{n-k}$
- \Box Gemäß Zählprinzip gibt es $\binom{K}{k} \cdot \binom{N-K}{n-k}$ Möglichkeiten, n-Teilmengen mit k schwarzen und (n-k) roten Kugeln zu bilden.

Verallgemeinerung

Zufallsexperiment:

- \Box Urne mit N nummerierten Kugeln, davon K schwarz und N-K rot
- □ Ziehung von n Kugeln mit Zurücklegen; davon X schwarze
- $\ \square$ Was ist die Wahrscheinlichkeit P(X=k), exakt k schwarze Kugeln zu ziehen?

Mächtigkeiten:

- Berücksichtigung der Reihenfolge nicht notwendig.
- \square Ω ist die Menge der n-Teilmengen aus der N-Menge $\{1,2,\ldots,N\}$: $|\Omega|=\binom{N}{n}$
- \square Zahl der k-Teilmengen aus der K-Menge schwarzer Kugeln: $\binom{K}{k}$
- figspace Zahl der (n-k)-Teilmengen aus der (N-K)-Menge roter Kugeln: $\binom{N-K}{n-k}$
- \Box Gemäß Zählprinzip gibt es $\binom{K}{k} \cdot \binom{N-K}{n-k}$ Möglichkeiten, n-Teilmengen mit k schwarzen und (n-k) roten Kugeln zu bilden.

Daraus folgt:

$$P(X=k) = \frac{\binom{K}{k} \cdot \binom{N-K}{n-k}}{\binom{N}{n}} \qquad (0 \le k \le n, \, k \le K, \, n-k \le N-K) \; .$$

Verallgemeinerung

Zufallsexperiment:

- \Box Urne mit N nummerierten Kugeln, davon K schwarz und N-K rot
- \square Ziehung von n Kugeln ohne Zurücklegen; davon X schwarze
- $\ \square$ Was ist die Wahrscheinlichkeit P(X=k), exakt k schwarze Kugeln zu ziehen?

Mächtigkeiten:

- Berücksichtigung der Reihenfolge zunächst zweckmäßig.
- \square Ω ist die Menge der n-Tupel aus der N-Menge $\{1,2,\ldots,N\}$: $|\Omega|=N^n$
- \Box Jeder Platz einer schwarzen Kugel kann auf K Arten belegt werdern: K^k
- \Box Jeder Platz einer roten Kugel kann auf (N-K) Arten belegt werden: $(N-K)^{n-k}$
- □ Genau k schwarze Kugeln können auf $\binom{n}{k}$ Arten auf die Positionen 1 bis n eines n-Tupels verteilt werden.

Daraus folgt:

$$P(X=k) = \frac{\binom{n}{k} \cdot K^k \cdot (N-K)^{n-k}}{N^n} = \binom{n}{k} \cdot \left(\frac{K}{N}\right)^k \cdot \left(1 - \frac{K}{N}\right)^{n-k}.$$

Verallgemeinerung

Satz 12

Zieht man aus einer Urne mit N Kugeln, von denen K schwarz sind, n Kugeln ohne Zurücklegen, so gilt für die Anzahl X der gezogenen schwarzen Kugeln

$$P(X=k) = \frac{\binom{K}{k} \cdot \binom{N-K}{n-k}}{\binom{N}{n}} \qquad (0 \le k \le n, \, k \le K, \, n-k \le N-K) \ .$$

Sei $\frac{K}{N} = p$ der Anteil schwarzer Kugeln.

Satz 13

Der Anteil der schwarzen Kugeln in einer Urne mit gleichartigen Kugeln sei p. Zieht man aus dieser Urne n Kugeln mit Zurücklegen, so gilt für die Anzahl X der gezogenen schwarzen Kugeln

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$
 $(k = 0, 1, \dots, n)$.

Bemerkungen:

- Anwendungsmöglichkeiten des alternativen Urnenmodells ohne Zurücklegen sind beispielsweise Meinungsumfragen oder Qualitätskontrollen. Es werden dabei ja jeweils "Objekte" entnommen (Befragte oder Produktproben), die üblicherweise nicht mehrmals befragt oder kontrolliert werden.
- Ist in der Qualitätskontrolle der Stichprobenumfang eher klein (bspw. höchstens 10% und damit $n \leq 0, 1 \cdot N$), so bleibt der Anteil p der defekten Stücke bei der Entnahme der Stichprobe meist quasi unverändert. Man kann dann zur näherungsweisen Bestimmung der Wahrscheinlichkeit oft ohne zu große Ungenauigkeit die rechnerisch aufwändige Formel aus Satz 12 durch die einfachere Formel von Satz 13 ersetzen, obwohl Qualitätskontrolle ja eigentlich ohne Zurücklegen durchgeführt wird.
- \Box Satz 13 behält auch dann seinen Sinn, wenn p nicht rational ist, wenn man sich also gar nicht mehr auf das alternative Urnenmodell beziehen kann. Mehr dazu im Abschnitt zur Binomialverteilung.
- □ Eine ganz andere Frage ist es noch, vom in einer Stichprobe beobachteten "Ausschussanteil" auf den tatsächlichen Ausschussanteil in der Grundgesamtheit zurückzuschließen. Mehr dazu im Abschnitt zum Hypothesentesten.

Beispiel: Qualitätskontrolle einer Lieferung 2

- □ Annahme: Man weiß, dass 8 von 25 Einheiten einer Lieferung defekt sind.
- Wie groß sind die Wahrscheinlichkeiten, dass von 6 zufällig ausgewählten Bauteilen (a) mindestens 4 funktionieren, (b) höchstens 2 defekt sind?

Beispiel: Qualitätskontrolle einer Lieferung 2

- □ Annahme: Man weiß, dass 8 von 25 Einheiten einer Lieferung defekt sind.
- Wie groß sind die Wahrscheinlichkeiten, dass von 6 zufällig ausgewählten Bauteilen (a) mindestens 4 funktionieren, (b) höchstens 2 defekt sind?
- (a) und (b) unterscheiden sich nur in der Formulierung, die gesuchte Wahrscheinlichkeit ist dieselbe.
- □ Die Stichprobengröße ist eher groß → Satz 12
- \square Sei X die Zahl der defekten Einheiten der Stichprobe.

Beispiel: Qualitätskontrolle einer Lieferung 2

- □ Annahme: Man weiß, dass 8 von 25 Einheiten einer Lieferung defekt sind.
- Wie groß sind die Wahrscheinlichkeiten, dass von 6 zufällig ausgewählten Bauteilen (a) mindestens 4 funktionieren, (b) höchstens 2 defekt sind?
- (a) und (b) unterscheiden sich nur in der Formulierung, die gesuchte Wahrscheinlichkeit ist dieselbe.
- $exttt{ iny}$ Die Stichprobengröße ist eher groß o Satz 12
- Sei X die Zahl der defekten Einheiten der Stichprobe.
- Dann gilt:

$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$
$$= \sum_{k=0}^{2} \frac{\binom{8}{k} \cdot \binom{25-8}{6-k}}{\binom{25}{6}} \approx 0.73.$$