University of Colorado at Boulder

ASEN 5044 - STATISTICAL STATE ESTIMATION FOR DYNAMICAL SYSTEMS

FALL 2024

Professor: Dr. Nisar Ahmed

Final Project (Cooperative Air-Ground Robot Localization)

TEAM MEMBERS:

NICHOLAS MARTINEZ
WHIT WHITTALL
MICHAEL BERNABEI

November 24, 2024

Part I: Deterministic System Analysis

Part 1.

We are given the Equation Of Motion (EOM) for the Unmanned Ground Vehicle (UGV). The EOM is,

$$\begin{split} \dot{\xi_g} &= v_g \cos \theta_g + \tilde{w}_{x,g} \\ \dot{\eta_g} &= v_g \sin \theta_g + \tilde{w}_{y,g} \\ \dot{\theta_g} &= \frac{v_g}{L} \tan \phi_g + \tilde{w}_{\omega,g} \end{split}$$

and for the Unmanned Aerial Vehicle (UAV) we have the following EOM,

$$\begin{split} \dot{\xi_a} &= v_a \cos \theta_a + \tilde{w}_{x,a} \\ \dot{\eta_a} &= v_a \sin \theta_a + \tilde{w}_{y,a} \\ \dot{\theta_a} &= \frac{v_a}{L} \tan \phi_a + \tilde{w}_{\omega,a} \end{split}$$

where $\tilde{w}_a = [\tilde{w}_{x,a}, \tilde{w}_{y,a}, \tilde{w}_{\omega,a}]^T$ and $\tilde{w}_g = [\tilde{w}_{x,g}, \tilde{w}_{y,g}, \tilde{w}_{\omega,g}]^T$ are the process noise for the UAV And UGV respectively. We are also given the following sensing model,

$$y(t) = \begin{bmatrix} \arctan\left(\frac{\eta_a - \eta_g}{\xi_a - \xi_g}\right) - \theta_g \\ \sqrt{(\xi_g - \xi_a)^2 + (\eta_g - \eta_a)^2} \\ \arctan\left(\frac{\eta_g - \eta_a}{\xi_g - \xi_a}\right) - \theta_a \\ \xi_a \\ \eta_a \end{bmatrix} + \tilde{\mathbf{v}}(t)$$

where $\tilde{\mathbf{v}}(t) \in \mathbb{R}^5$ is the sensor error vector. Finally, we are given the combined states, control inputs, and disturbance inputs as,

$$\mathbf{x}(t) = \begin{bmatrix} \xi_g & \eta_g & \theta_g & \xi_a & \eta_a & \theta_a \end{bmatrix}^T,$$

$$\mathbf{u}(t) = \begin{bmatrix} \mathbf{u}_g & \mathbf{u}_a \end{bmatrix}^T,$$

$$\tilde{\mathbf{w}}(t) = \begin{bmatrix} \tilde{\mathbf{w}}_{\mathbf{g}} & \tilde{\mathbf{w}}_{\mathbf{a}} \end{bmatrix}^T$$

The state is $x = [\xi_g \ \eta_g \ \theta_g \ \xi_a \ \eta_a \ \theta_a]^T = [x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6]^T$ and our inputs $u = [\mathbf{u}_g \ \mathbf{u}_a]^T = [v_g \ \phi_g \ v_a \ \phi_a]^T = [u_1 \ u_2 \ u_3 \ u_4]^T$. We then have the following after substituting in our state and input variables,

$$\dot{x} = \begin{bmatrix} \dot{\xi}_g \\ \dot{\eta}_g \\ \dot{\theta}_g \\ \dot{\xi}_a \\ \dot{\eta}_a \\ \dot{\theta}_a \end{bmatrix} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \\ \dot{x}_5 \\ \dot{x}_6 \end{bmatrix} = \begin{bmatrix} \mathcal{F}_1(x, u) \\ \mathcal{F}_2(x, u) \\ \mathcal{F}_3(x, u) \\ \mathcal{F}_4(x, u) \\ \mathcal{F}_5(x, u) \\ \mathcal{F}_6(x, u) \end{bmatrix} = \begin{bmatrix} u_1 \cos x_3 \\ u_1 \sin x_3 \\ u_1 \sin x_3 \\ u_2 \cos x_6 \\ u_3 \cos x_6 \\ u_3 \sin x_6 \\ u_3 \sin x_6 \\ u_4 \end{bmatrix}$$

$$y = \begin{bmatrix} \arctan\left(\frac{x_5 - x_2}{x_4 - x_1}\right) - x_3\\ \sqrt{(x_1 - x_4)^2 + (x_2 - x_5)^2}\\ \arctan\left(\frac{x_2 - x_5}{x_1 - x_4}\right) - x_6\\ x_4\\ x_5 \end{bmatrix}$$

We now need to compute the partials with respect to x,

$$\frac{\partial \mathcal{F}_1}{\partial x_1} = 0 \qquad \frac{\partial \mathcal{F}_2}{\partial x_1} = 0 \qquad \frac{\partial \mathcal{F}_3}{\partial x_1} = 0 \qquad \frac{\partial \mathcal{F}_4}{\partial x_1} = 0 \qquad \frac{\partial \mathcal{F}_5}{\partial x_1} = 0 \qquad \frac{\partial \mathcal{F}_6}{\partial x_1} = 0$$

$$\frac{\partial \mathcal{F}_1}{\partial x_2} = 0 \qquad \frac{\partial \mathcal{F}_2}{\partial x_2} = 0 \qquad \frac{\partial \mathcal{F}_3}{\partial x_2} = 0 \qquad \frac{\partial \mathcal{F}_4}{\partial x_2} = 0 \qquad \frac{\partial \mathcal{F}_5}{\partial x_2} = 0$$

$$\frac{\partial \mathcal{F}_1}{\partial x_3} = -u_1 \sin x_3 \qquad \frac{\partial \mathcal{F}_2}{\partial x_3} = u_1 \cos x_3 \qquad \frac{\partial \mathcal{F}_3}{\partial x_3} = 0 \qquad \frac{\partial \mathcal{F}_4}{\partial x_3} = 0 \qquad \frac{\partial \mathcal{F}_5}{\partial x_3} = 0$$

$$\frac{\partial \mathcal{F}_1}{\partial x_4} = 0 \qquad \frac{\partial \mathcal{F}_2}{\partial x_4} = 0 \qquad \frac{\partial \mathcal{F}_3}{\partial x_4} = 0 \qquad \frac{\partial \mathcal{F}_4}{\partial x_4} = 0$$

$$\frac{\partial \mathcal{F}_5}{\partial x_4} = 0 \qquad \frac{\partial \mathcal{F}_5}{\partial x_5} = 0 \qquad \frac{\partial \mathcal{F}_6}{\partial x_5} = 0$$

$$\frac{\partial \mathcal{F}_5}{\partial x_5} = 0 \qquad \frac{\partial \mathcal{F}_5}{\partial x_5} = 0 \qquad \frac{\partial \mathcal{F}_5}{\partial x_5} = 0$$

$$\frac{\partial \mathcal{F}_5}{\partial x_5} = 0 \qquad \frac{\partial \mathcal{F}_5}{\partial x_5} = 0 \qquad \frac{\partial \mathcal{F}_6}{\partial x_5} = 0$$

and with respect to u,

$$\frac{\partial \mathcal{F}_1}{\partial u_1} = \cos x_3 \quad \frac{\partial \mathcal{F}_2}{\partial u_1} = \sin x_3 \quad \frac{\partial \mathcal{F}_3}{\partial u_1} = \frac{\tan u_2}{L} \qquad \frac{\partial \mathcal{F}_4}{\partial u_1} = 0 \qquad \frac{\partial \mathcal{F}_5}{\partial u_1} = 0 \qquad \frac{\partial \mathcal{F}_6}{\partial u_1} = 0$$

$$\frac{\partial \mathcal{F}_1}{\partial u_2} = 0 \qquad \frac{\partial \mathcal{F}_2}{\partial u_2} = 0 \qquad \frac{\partial \mathcal{F}_3}{\partial u_2} = \frac{u_1}{L} \sec^2 u_2 \quad \frac{\partial \mathcal{F}_4}{\partial u_2} = 0 \qquad \frac{\partial \mathcal{F}_5}{\partial u_2} = 0 \qquad \frac{\partial \mathcal{F}_6}{\partial u_2} = 0$$

$$\frac{\partial \mathcal{F}_1}{\partial u_3} = 0 \qquad \frac{\partial \mathcal{F}_2}{\partial u_3} = 0 \qquad \frac{\partial \mathcal{F}_3}{\partial u_3} = 0 \qquad \frac{\partial \mathcal{F}_4}{\partial u_3} = \cos x_6 \quad \frac{\partial \mathcal{F}_5}{\partial u_3} = \sin x_6 \quad \frac{\partial \mathcal{F}_6}{\partial u_3} = \frac{\tan u_4}{L}$$

$$\frac{\partial \mathcal{F}_1}{\partial u_4} = 0 \qquad \frac{\partial \mathcal{F}_2}{\partial u_4} = 0 \qquad \frac{\partial \mathcal{F}_3}{\partial u_4} = 0 \qquad \frac{\partial \mathcal{F}_4}{\partial u_4} = 0 \qquad \frac{\partial \mathcal{F}_5}{\partial u_4} = 0 \qquad \frac{\partial \mathcal{F}_6}{\partial u_4} = \frac{u_3}{L} \sec^2 u_4$$

Part II: Stochastic Nonlinear Filtering