Grid WAR+

Ryan Brill

July 15, 2023

Adjusting for opposing offensive quality

Suppose we knew p_i , the probability that batting team i with a randomly drawn defense defeats a randomly drawn opposing team. For an average offensive team, $p_i = 1/2$. Then

$$dp_i := p_i - 1/2 \tag{0.1}$$

is offense *i*'s win probability above that of an average offense. Then a starting pitcher's Grid WAR in a game, adjusted for the offensive quality of the opposing team *i* is

$$GWAR + := GWAR + dp_i \times \frac{I}{9}, \qquad (0.2)$$

where *I* is the starter's number of innings pitched in that game. The better the opposing offensive team, the more WAR credited to the starter.

We need to estimate $\{p_i\}$. To do so, suppose we knew μ_i , the mean runs scored in a game by team i against a randomly drawn defense. Given μ_i , we model

$$p_{i} = \frac{1}{29} \sum_{j \neq i} \left\{ \mathbb{P} \left(\text{Poisson}(\mu_{i}) > \text{Poisson}(\mu_{j}) \right) + \frac{1}{2} \mathbb{P} \left(\text{Poisson}(\mu_{i}) = \text{Poisson}(\mu_{j}) \right) \right\}, \tag{0.3}$$

which is explicitly computable using the Skellam distribution. To estimate $\{\mu_i\}$, we use ridge regression. Our dataset consists of all half-innings in a given season, each datapoint (row) j represents a half-inning, the response column y_j is the actual runs scored in that half inning, we use the park factor $\hat{\alpha}$ as an offset term (estimated previously), and we use fixed effects for the offense and defensive team. We tune the ridge parameter λ using cross validation.