RH 1.4

MATH 5, Jones

Tejas Patel

1

Refrigerator Homework

13

$$\begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix} \text{ becomes the system } \begin{bmatrix} 3 & -5 & 0 \\ -2 & 6 & 4 \\ 1 & 1 & 4 \end{bmatrix} \text{ and can be solved using row reduction}$$

$$R_2 + = 2R_3 \to \begin{bmatrix} 3 & -5 & 0 \\ 0 & 8 & 12 \\ 1 & 1 & 4 \end{bmatrix}$$

$$R_1 - = 3R_3 \rightarrow \begin{bmatrix} 0 & -8 & -12 \\ 0 & 8 & 12 \\ 1 & 1 & 4 \end{bmatrix}$$

$$R_1 + = R_2 \to \begin{bmatrix} 0 & 0 & 0 \\ 0 & 8 & 12 \\ 1 & 1 & 4 \end{bmatrix}$$

$$R_2/=8 \rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1.5 \\ 1 & 1 & 4 \end{bmatrix}$$
 From here, $X_2=1.5, X_1+1.5=4$, so $X_1=2.5$

Answer: Yes, and the solution is $X_1 = 2.5$, $X_2 = 1.5$

15

Part a: Counterexample:
$$b_1 = 0$$
, $b_2 = 1$
Part b: $\begin{bmatrix} 2 & -1 & b_1 \end{bmatrix} \rightarrow B_{1*} = -3 \rightarrow \begin{bmatrix} -6 & 3 & -3b_1 \end{bmatrix}$

Part a: Counterexample: $b_1 = 0$, $b_2 = 1$ Part b: $\begin{bmatrix} 2 & -1 & b_1 \\ -6 & 3 & b_2 \end{bmatrix} \to R_1 * = -3 \to \begin{bmatrix} -6 & 3 & -3b_1 \\ -6 & 3 & b_2 \end{bmatrix}$

this shows the system is consistent for all possibilities where $b_2 = -3b_1$

18

$$\begin{bmatrix} 1 & 3 & -2 & 2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix} \rightarrow R_1 - = R_3 \& R_4 + = 2R_3 \rightarrow \begin{bmatrix} 0 & 1 & 1 & -5 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ 0 & -4 & -4 & 13 \end{bmatrix} \rightarrow R_2 - = R_1 \rightarrow \begin{bmatrix} 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & -3 & 7 \\ 0 & -4 & -4 & 13 \end{bmatrix}$$

By Theorem 1.4, since there is no pivot in all 4 rows, it it not possible for matrix B to span \mathbb{R}^4

20

Part a: No, also by Theorem 1.4, since B does not span \mathbb{R}^4 , not all vectors in \mathbb{R}^4 can be written as a linear combination of the colum of B

Part b:
$$\begin{bmatrix} 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & -3 & 7 \\ 0 & -4 & -4 & 13 \end{bmatrix} \rightarrow R_4 + = 4R_1 \rightarrow \begin{bmatrix} 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & -3 & 7 \\ 0 & 0 & 0 & -7 \end{bmatrix} \rightarrow R_4 / = -7 \rightarrow \begin{bmatrix} 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & -3 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_3 - = 2R_1 \rightarrow \begin{bmatrix} 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -5 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow R_3 - = 3R_4 & R_1 + = 5R_4 \rightarrow \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rearrange the rows: $\begin{bmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

No, it does not span all of \mathbb{R}^3 and the counterexample is $\{5, -1, 1, 0\}$

23

False. It's a Matrix Equation. That's the title of this section.

32

True. Distributing the \mathbf{x} out and tacking on the b into the end of the new matrix, you will end up with a system that is in the form of an augmented matrix

33

True. By Theorem 1.4, if it is inconsistent for any b then it is not true that there is a pivot in every row.

43

Computer Homework