



CIROH 1st Annual Training and Developers Conference 2023
Hands-On Demo of the CIROH Integrated Evaluation System Prototype Workshop
Wednesday, May 17th at 1:30 PM

Katie van Werkhoven Matthew Denno John Park Chris Townsend



## Background and Motivation



# What is Evaluation?







## What types of evaluation are we talking about?

An assessment of the quality of hydrologic forecasts, or *component* of the forecast process, with respect to some baseline



### A few specific examples

- Hydrologic model component development (snow, land surface, subsurface, reservoir, channel...)
- Flood inundation model/methods
- Operational forecasting methods/approaches (DA method, forecast forcing, ensemble methods...)



- Hydro forecast performance assessment
- Hydro model performance assessment
- FIM performance assessment



- Hydrologic reforecast/hindcast trends
- Current model condition assessment





## Why a CIROH Evaluation System?

## Foster Consistency and Community Development



#### Need for Flexible, Scalable, Exploratory Evaluation Tools





#### Two Parallel Goals

1) Establish **evaluation standards** in collaboration with OWP, CIROH and broader hydrologic forecasting community → How will we judge 'improvements'



#### **Workshop Focus**

2) Create a **set of tools** for hydrologic model and forecast evaluation that are scalable and flexible for the wide range of use cases and users, that enable **highly exploratory evaluation**, and that foster open community development



### Envisioned Strategy for Goal #1

## Collaboration across CIROH and OWP



e.g., CIROH Evaluation Working Group

## Converge on some standards for performance assessment and comparisons across research



ILAMB Example https://www.ilamb.org/





### Strategy for Goal #2



<u>Tools for Exploratory Evaluation</u> in <u>Hydrologic Research</u>

- Still in early stages of development
- Tiered (see what we did there) levels of use, interaction and contribution
- Seeking feedback on needs for different CIROH projects and use cases (today and afterwards)





#### Tiered Levels of Use







Notebook Templates





Python Package

workshop









 Post-event evaluation tools needed by OWP-ISED



#### Goals

<u>Goal again</u>: Create a **set of tools** for hydrologic model/forecast evaluation that are scalable and flexible for the wide range of use cases and users, that enable **highly exploratory evaluation**, and that foster open community development

<u>Status</u>: This is a CIROH funded research project. We are 9 months (~6 months of working time) into the project. We have a **prototype level** set of tools built and are figuring out what works and what doesn't. There is lots of work to do; we are open to feedback.





#### Objectives

- Easy to use tools that will form the backbone of exploratory forecast and simulation evaluation and visualization.
- Target audience is data scientists, hydrologists, researchers, maybe building a dashboard for a less technical audience.
- Use familiar tooling (Python, Pandas, Xarray, etc. -> Pangeo)
- Engage with the **community**; clean code, good documentation and well documented examples.
- Make the library fast, efficient, scalable to meet needs of different users and use cases.
- Not directly tied to any specific data source (NWM, USGS, etc.)
- There is so much great work by others; don't reinvent the wheel, keep a narrow focus and scope of our work





## Technical Agenda Items

- Data Models
- Study Cache Structure
- Fetching and Loading Data
- Querying
- Visualization







#### Too many to list...





































Apache Parquet is an open source, columnoriented data **file format** designed for efficient data storage and retrieval. It provides efficient data compression and encoding schemes with enhanced performance to handle complex data in bulk.



DuckDB is an in-process SQL OLAP database management system.

With respect to TEEHR objectives, <u>Parquet</u> files and <u>DuckDB</u> provide a powerful way to store large amounts of timeseries data with a small storage footprint while still allowing relatively fast access via SQL queries. <u>DuckDB</u> can query <u>Parquet</u> files directly, including files stored in a cloud bucket.



#### Login to AWI CIROH JupyterLab



r: 2i2c | Funded by: National Oceanic and Atmospheric Administration | Designed

Log in to continue

- 1. Login to your GitHub account
- Accept invitation to join the AlabamaWaterInstitute GitHub organization (in GitHub)
- 3. Go to: <a href="https://ciroh.awi.2i2c.cloud/hub/login">https://ciroh.awi.2i2c.cloud/hub/login</a>
- 4. Authorize 2i2c-org to access your GitHub account.





- 1. Open "Launcher" it not already open:
  - i. File > New Launcher
- 2. Open "Terminal" and run:
- 📜 \$ git clone https://github.com/AlabamaWaterInstitute/teehr-may-2023-workshop.git







#### Future Work...too much to list

- Work with the community to identify standards, etc...
- Enhance the tools to work with cloud storage
- Add additional queries and metrics
- Access data remotely instead of downloading, query direct from bucket, etc.
- Research how to better utilize Parquet file strengths (i.e. wider tables)
- Tightly integrated visualization components
- Possibly prepare and stage commonly needed datasets, for example this could include, USGS gages and associated hydrologic attributes, HUC2-HUC12 polygons and weights files, etc.
- Tighter integration with NextGen
- Speed, speed, speed
- Data validation for the cache
- https://github.com/RTIInternational/teehr/discussions/32



