Set Theory2

Yao

2022年2月24日

目录

1	集合的宇宙		1
	1.1	数理逻辑	1
	1.2	层垒的谱系	4
	1.3	Exercise	5
1	集	合的宇宙	

1.1 数理逻辑

在 ZFC 下证明 ZFC \vdash CH,希望将 "ZFC \vdash CH" 表述为一阶句子 一般而言,给定一个 \mathcal{L} -理论 T 和一个 \mathcal{L} -句子 δ ," $T \vdash \sigma$ " 不能用一个 \mathcal{L} -句子表示,只能用元语言表述

我们需要在 ZFC 中编码"元语言"

在 ZFC 中可以定义 $\mathcal{N} = (\mathbb{N}, +, \times, 0, 1)$

即存在集合论语言 $\mathcal{L}=\{\in\}$ 中的 **公式**,在 **ZFC** 的任意模型中可以定义 $\mathbb{N},+,\times,0,1$,以上公式与模型无关

用「0[¬],「1[¬],「2[¬]...表示 ZFC 中的"自然数",以区别元语言中的自然数

Theorem 1.1. 如果 $R \subseteq \mathbb{N}^n$ 是一个递归关系。 $T \subseteq \operatorname{Th}(\mathcal{N})$ 是包含数论的适

当丰富的理论,则存在公式 $\varphi(x_1,...,x_n)$ 使得对任意自然数 $m_1,...,m_n$ 有

如果
$$(m_1,\ldots,m_n)\in R$$
则 $T\vdash \varphi(\lceil m_1\rceil,\ldots,\lceil m_n\rceil)$ 如果 $(m_1,\ldots,m_n)\notin R$ 则 $T\vdash \neg \varphi(\lceil m_1\rceil,\ldots,\lceil m_n\rceil)$

Remark. 1. $T \subseteq \text{Th}(\mathcal{N}) \subseteq \text{ZFC}$

- 2. φ 是语言 $\{+, \times, 0, 1\}$ 上的公式
- 3. φ 可以还原为一个 {∈} 上的公式
- 4. $\varphi(\lceil m_1 \rceil, \dots, \lceil m_n \rceil)$ 是一个闭语句

编码

编码函数 $f: X \to \mathbb{N}$

存在解码函数 g,h,对 $a=a_0,\ldots,a_n\in X$, h(f(a))=n+1, $g(f(a),k)=a_k$ (分量)

性质: 以上三种函数 f, g, h 均是递归函数 \Rightarrow 都是可表示的

性质: "公式集"的编码集是递归的

性质: 如果 $T \subseteq ZFC$ 是可公理化的,则 T 的证明集的编码集是递归的

Corollary 1.2. 存在一个公式 ψ 和 θ 使得

ZFC
$$\vdash \psi(n) \Leftrightarrow n \text{ is a formula}$$

ZFC $\vdash \neg \psi(n) \Leftrightarrow n \text{ is not a formula}$

 $\mathsf{ZFC} \vdash \theta(n) \Leftrightarrow n \text{ is a proof in } \mathsf{ZFC}$

 $\mathsf{ZFC} \vdash \neg \theta(n) \Leftrightarrow n \text{ is not a proof in } \mathsf{ZFC}$

$$\mathsf{FORM} = \{\lceil \varphi \rceil \mid \varphi \; \mathsf{formula}\} \subseteq \mathbb{N}$$

如果 $T \subseteq \mathsf{ZFC}$ 是可公理化的,则"T 是一致的"是一个一阶表述式"不存在一个有穷的证明序列 $D = (\varphi_1, \dots, \varphi_n)$ 使得 φ_n 形如 $\varphi \land \neg \varphi$,记作 $\mathsf{Con}(T)$

Theorem 1.3 (第二不完全). 如果T是包含ZFC的一个递归公理集,且T一致,则

$$T \not\vdash Con(T)$$

特别地, ZFC ⊬ Con(ZFC)

Theorem 1.4. 对任意可公理化的理论 T, $ZFC \vdash Con(T)$ 当且仅当存在 $M \vDash T$

即不能在 ZFC 里证明 ZFC 有一个模型

需要可公理化来写出 Con(T),因此因为 ZFC
ot = Con(T),我们只能假设这么一个模型

集合论的模型跟集合论没什么关系,就是一个集合带一个二元关系,是 关于集合论语言的结构

Definition 1.5. 设 (M, E) 是集合论模型

1. 对任意公式 $\varphi(\bar{x},y)$, 定义 M^n 上的函数

$$h_{\omega}:M^n\to M$$

满足条件

$$M \vDash \exists y \varphi(\bar{a},y) \Rightarrow M \vDash \varphi(\bar{a},h_{\varphi}(\bar{a}))$$

称 h_{φ} 为 φ 的 Skolem 函数(依赖于选择公理,不同的变量选择有不同的函数)

2. 令 $\mathcal{H}=\{h_{\varphi}\mid \varphi \text{ formula}\}$ 为 Skolem 函数集合,设 S 是 M 的任意子集,则 $\mathcal{H}(S)$ 表示包含 S 且对 \mathcal{H} 封闭的最小集合,称之为 S 的 Skolem 壳

Lemma 1.6. 令 N 是集合论模型, $S \subseteq N$, 如果 $M = \mathcal{H}(S)$, 则 $M \prec N$

证明. Induction

对任意 $\bar{a} \in M^n$,有 $M \models \varphi(\bar{a}) \Leftrightarrow N \models \varphi(\bar{a})$

1. 不含量词,显然成立

2. φ 形如 $\exists y \psi(\bar{x},y)$, $N \vDash \exists y \psi(\bar{a},y) \Rightarrow N \vDash \psi(\bar{a},h_{\psi}(\bar{a}))$, by IH, $M \vDash \psi(\bar{a},h_{\varphi}(\bar{a})) \Rightarrow M \vDash \exists y \psi(\bar{a},y)$

Theorem 1.7 (Löwenheim-Skolem Theorem).

1.2 层垒的谱系

工作于 ${\sf ZF}^-$: ${\sf ZF}$ — 基础公理 $\alpha\mapsto V_\alpha$ 是 On 到 WF 的 1-1 映射,而 On 是真类

Lemma 1.8. For any ordinal α

- 1. V_{α} is transitive
- 2. $\xi \leq \alpha \Rightarrow V_{\xi} \subseteq V_{\alpha}$
- 3. if κ is inaccessible, then $|V_{\kappa}| = \kappa$

Definition 1.9. For any $x \in WF$, rank of x is

$$\mathrm{rank}(x) = \min\{\beta \mid x \in V_{\beta+1}\}$$

$$\operatorname{rank}(x) = \alpha \Rightarrow x \in V_{\alpha+1} \land x \not\in V_\alpha$$

 $\textbf{Lemma 1.10.} \qquad 1. \ \ V_{\alpha} = \{x \in \mathrm{WF} \mid \mathit{rank}(x) < \alpha\}$

- 2. WF is transitive
- 3. $\forall x, y \in WF$, $x \in y \Rightarrow rank(x) < rank(y)$
- 4. $\forall y \in WF$, $rank(y) = \sup\{rank(x) + 1 \mid x \in y\}$

1.3 Exercise

Exercise 1.3.1. 1.
$$V_{\alpha} = \{x \in WF \mid rank(x) < \alpha\}$$

- 2. WF is transitive
- 3. $\forall x, y \in WF, x \in y \Rightarrow rank(x) < rank(y)$
- 4. $\forall y \in WF$, $rank(y) = sup\{rank(x) + 1 \mid x \in y\}$
- 证明. 1. by definition, $x\in V_{\mathrm{rank}(x)+1}\setminus V_{\mathrm{rank}(x)}$, $\mathrm{rank}(x)<\alpha\Rightarrow x\in V_{\mathrm{rank}(x)+1}\subseteq V_{\alpha}$ $\mathrm{rank}(x)\geq\alpha\Rightarrow x\notin V_{\alpha}$
 - 2. WF is the "union" of transitive sets
 - $3. \ y \in V_{\mathrm{rank}(y)+1} \setminus V_{\mathrm{rank}(y)}, \ y \subseteq V_{\mathrm{rank}(y)}, \ x \in y \Rightarrow x \in V_{\mathrm{rank}(y)} \Rightarrow \mathrm{rank}(x) < \mathrm{rank}(y)$
 - 4. by 3, $\sup\{\operatorname{rank}(x) + 1 \mid x \in y\} \le \operatorname{rank}(y)$. induction on $\operatorname{rank}(y) \le \sup\{\operatorname{rank}(x) + 1 \mid x \in y\}$
 - $\operatorname{rank}(y) = 0$
 - $$\begin{split} \bullet \ \, & \operatorname{rank}(y) = \beta + 1, y \in V_{\beta + 2} \smallsetminus V_{\beta + 1} \\ & y \in V_{\beta + 2} \Rightarrow y \subseteq V_{\beta + 1}. \ \, y \notin V_{\beta + 1} \Rightarrow y \not\subseteq V_{\beta} \Rightarrow y \smallsetminus V_{\beta} \text{ nonempty.} \\ & \operatorname{Let} \, x \in y \smallsetminus V_{\beta}, \operatorname{rank}(x) \geq \beta, \sup \{ \operatorname{rank}(x) + 1 \mid x \in y \} \geq \beta + 1 = \operatorname{rank}(y) \end{split}$$
 - $\begin{array}{l} \bullet \ \, \mathrm{rank}(y) = \gamma \, \mathrm{for \, some \, limit, \, then} \, y \subseteq V_{\gamma} \, \mathrm{and \, for \, any} \, \xi < \gamma, y \not\subseteq V_{\xi}, \\ \mathrm{let} \, X_{\xi} \in y \smallsetminus V_{\xi}, \, \mathrm{then \, rank}(X_{\xi}) \geq \xi, \, \mathrm{sup}\{\mathrm{rank}(x) + 1 \mid x \in y\} \geq \\ \mathrm{sup}\{\xi + 1 \mid \xi < \mathrm{rank}(y)\} \geq \mathrm{rank}(y) \end{aligned}$