Compuertas lógicas

Compuerta lógica

Es un dispositivo que implementa una función lógica simple. Traduce un conjunto de entradas en **una sola salida**.

A	В	A^B
0	0	0
0	1	0
1	0	0
1	1	1

A	В	AVB
0	0	0
0	1	1
1	0	1
1	1	1

A	¬A
0	1
1	0

Casos:

¿Qué son los circuitos?

- Compuertas conectadas entre sí.
- Traduce un conjunto de entradas en un conjunto de salidas, de acuerdo a una o más funciones lógicas.
- Cada salida es función de las entradas.
- Las salidas se actualizan de inmediato al cambiar las entradas.

Los circuitos pueden obtenerse a partir de...

- Una fórmula
- Una tabla de verdad
- Un enunciado (en lenguaje natural)

Los circuitos pueden obtenerse a partir de...

- Una fórmula (como en el ejemplo anterior)
- Una tabla de verdad

 Fórmula
- Un enunciado (en lenguaje natural) Tabla
 Fórmula

Diseñar un circuito

- 3 entradas
- Que calcule la función mayoría:
 - Si dos o más entradas valen 1, la salida es 1.
 - De lo contrario, la salida es 0.

Lenguaje Natural Tabla de verdad

- 3 entradas, 1 salida
- Que calcule la función mayoría:
 - Si dos o más entradas valen 1, la salida es 1.
 - De lo contrario, la salida es 0.

EO	E1	E2	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Tabla de verdad Fórmula Booleana (SoP)

-			
EO	E1	E2	S
0	0	0	0
0	0	1	0
0	T	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- Construir la tabla de verdad
- Plantear la fórmula correspondiente a cada caso donde la salida vale "1"
- Unir los casos con disyunción

Tabla de verdad Fórmula Booleana (SoP)

ΕO	E1	E2	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	$1 \ (\overline{E}_0 \cdot E_1 \cdot E_2)$
1	0	0	0
1	0	1	$1 (E_0 \cdot \overline{E}_1 \cdot E_2)$
1	1	0	$1 (E_0 \cdot E_1 \cdot \overline{E}_2)$
1	1	1	$1 (E_0 \cdot E_1 \cdot E_2)$
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

- Construir la tabla de verdad
- Plantear la fórmula correspondiente a cada caso donde la salida vale "1"
- Unir los casos con disyunción

$$S = (\overline{E}_0 \cdot E_1 \cdot E_2) + (E_0 \cdot \overline{E}_1 \cdot E_2) + (E_0 \cdot E_1 \cdot \overline{E}_2) + (E_0 \cdot E_1 \cdot E_2)$$

Se obtiene la "Suma de productos" (SoP)

$$S = (\overline{E}_0 \cdot E_1 \cdot E_2) + (E_0 \cdot \overline{E}_1 \cdot E_2) + (E_0 \cdot E_1 \cdot \overline{E}_2) + (E_0 \cdot E_1 \cdot E_2)$$

SoP (Suma de Productos)

Fórmula booleana compuesta por disyunciones (v / +) entre "minitérminos", que son términos que contienen todas las variables booleanas de la tabla (negada o no) unidas por conjunciones (\wedge / ·)

