รายวิชา 09131201 ระเบียบวิธีเชิงตัวเลขทางด้านคอมพิวเตอร์ (Numerical Methods for Computers) บทที่ 5 การประมาณค่าในช่วง (Interpolation)

ผศ.ดร.วงศ์วิศรุต เชื่องสตุ่ง

สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

(B) (B) (E) (E) E 900

Outline

a 1919 E pass severa piera (Intermediation)

- 1.1 U
 - 1.2 การประมาณค่าในช่วงด้วยวิธีนิวตัน (Newton Divided Difference Interpolating Polynomials)
 - 1.3 การประมาณค้าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating
 - 1.4 แบบฝึกหัด 5

Table of Contents

1.4 แบบฝึกหัด 5

บทที่ 5 การประมาณค่าในช่วง (Interpolation) 1.1 บทน้ำ 1.2 การประมาณค่าในช่วงด้วยวิธีนิวตัน (Newton Divided Difference Interpolating Polynomials) 1.3 การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials) 1.4 แบบฝึกหัด 5 1011/00/12/12/12/12/12/19/00 Outline บทที่ 5 การประมาณค่าในช่วง (Interpolation) 1.1 บทน้ำ 1.2 การประมาณค่าในช่วงด้วยวิธีนิวตัน (Newton Divided Difference Interpolating Polynomials) 1.3 การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials)

มทนำ	
บทน้ำ	
.อฮะ.ะ. ะ ๑๑๓ บทนำ	
ถ้าหากคาดว่าชุดข้อมูลถูกต้อง และมีความต้องการได้เส้นสมการที่มีค่าต่อ เนื่องเหมาะสมที่ผ่านทุกๆ จุดของข้อมูล วิธีการทาเส้นสมการที่เหมาะสมนี้ เรียกว่า การประมาณค่าในช่วง (Interpolation)	
เรียกว่า การประมาณค่าในช่วง (Interpolation)	

400 480 480 480 8 990

ๆ เขาๆ เ๊า

การประมาณค่าในช่วงหรือการหาเส้นโค้งในช่วง คือการสร้างสมการพหุนาม ที่ผ่านทุกจุดของข้อมูล รูปทั่วไปของสมการพหุนามอันดับที่ n (Order Polynomial) คือ

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
(1.1)

สมการพหุนามอันดับที่ n คือสมการ (1.1) เพียงสมการเดียวที่ผ่านจุดข้อมูล ครบทั้ง n+1 จุด

(B) (B) (E) (E) E 090

บทนำ

บทนำ	
การประมาณค่าในช่วงมีดังนี้ 1. การประมาณค่าในช่วงด้วยวิธีนิวตัน (Newton Divided Difference Interpolating Polynomials) 2. การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials) 3. การประมาณค่าในช่วงด้วยวิธีสไปน์ (Spline Interpolation)	
การประมาณค่าในช่วงด้วยวิธีนิวตัน (Newton Divided Difference Interpolating Polynomials)	
การประมาณค่าในช่วงด้วยวิธีนิวตัน (Newton Divided Difference Interpolating Polynomials)	

การประมาณค่าในช่วงด้วยวิธีนิวตัน (Newton Divided Difference Interpolating Polynomials)

การประมาณค่าในช่วงด้วยวิธีนิวตัน แบ่งได้ดังนี้

- 1. การประมาณค่าเชิงเส้นตรง (Linear Interpolation)
- การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)
- รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)

(0) (8) (2) (2) 2 990

1. การประมาณค่าเชิงเส้นตรง (Linear Interpolation)

การประมาณค่าเชิงเส้นตรง ให้พิจารณารูปทั่วไปของสมการเส้นตรง คือ $f(x)=a_0+a_1x$ ซึ่งจะพบว่าอันดับสูงสุดของสมการ คืออันดับหนึ่ง ดังนั้นการสร้างสมการเส้นตรงจะต้องผ่านจุดทั้งหมด 2 จุด ดังนั้

 $\sqrt[3]{0}$ 2: Graphical depiction of linear interpolation. The shaded areas indicate the similar triangles used to derive the linear-interpolation formula.

จากรูป โดยกฎของสามเหลี่ยมคล้าย จะได้

$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

ดังนั้น

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$
 (1.2)

ซึ่งเรียก (1.2) ว่า linear-interpolation formula

1. การประมาณค่าเชิงเส้นตรง (Linear Interpolation)

ตัวอย่างที่ 1.1

กำหนดให้ $f(x) = \ln x$ จงหาค่าโดยประมาณของ $\ln 2$ โดยใช้การประมาณ ค่าเชิงเส้นตรง เบื่อ

- 1. กำหนดให้ $\ln 1 = 0, \ln 6 = 1.7917595$
- 2. กำหนดให้ $\ln 1 = 0$, $\ln 4 = 1.3862944$

เมื่อค่าจริงของ $\ln 2 = 0.69314718$

1011/001/02/12/12/12/12/12/19/09

$$f_1(2)=f(1)+\frac{f(6)-f(1)}{6-1}(2-1)$$

$$=0+\frac{1.791759-0}{6-1}(2-1)$$

$$=0.3583519$$
 และ
$$\epsilon_t=\frac{|0.69314718-0.3583519|}{0.69314718}\times 100\%=48.3\%$$
 1. การประมาณค่าเชิงเส้นตรง (Linear Interpolation) วิธีทำ (2) กำหนดให้ $x_0=1$ และ $x_1=4$ เนื่องจาก $f(x)=\ln x$ จะได้
$$f(1)=\ln 1=0, \qquad f(4)=\ln 4=1.3862944$$
 จากสมการ (1.2) จะได้
$$f_1(2)=f(1)+\frac{f(4)-f(1)}{4-1}(2-1)$$

$$=0+\frac{1.3862944-0}{4-1}(2-1)$$

$$=0.4620981$$
 และ
$$\epsilon_t=\frac{|0.69314718-0.4620981|}{0.69314718}\times 100\%=33.3\%$$

(1) กำหนดให้ $x_0=1$ และ $x_1=6$ เนื่องจาก $f(x)=\ln x$ จะได้ $f(1)=\ln 1=0,$ $f(6)=\ln 6=1.7917595$

วิสีทำ

จากสมการ (1.2) จะได้

รูปที่ 3: ค่าโดยประมาณของ $\ln 2$ ในกรณีที่ 1 เมื่อ $\ln 1 = 0, \ln 6 = 1.7917595$

1. การประมาณค่าเชิงเส้นตรง (Linear Interpolation)

รูปที่ 4: ค่าโดยประมาณของ $\ln 2$ ในกรณีที่ 2 เมื่อ $\ln 1 = 0, \ln 4 = 1.3862944$

40 + 40 + 42 + 42 + 2 4940

รูปที่ 5: Two linear interpolations to estimate $\ln 2$. Note how the smaller interval provides a better estimate.

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

รูปทั่วไปของสมการพหุนามอันดับสอง คือ $f_2(x)=a_0+a_1x+a_2x^2$ ถ้ามีข้อมูล 3 จุด คือ $(x_0,f(x_0)),(x_1,f(x_1)),(x_2,f(x_2))$ จะเขียนแทนเส้น โค้งผ่านจุดทั้ง 3 ด้วยสมการพหุนามอันดับสอง โดย พิจารณาจาก

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$
 (1.3)

จะได้

$$\begin{split} f_2(x) &= b_0 + b_1(x-x_0) + b_2(x-x_0)(x-x_1) \\ &= b_0 + b_1x - b_1x_0 + b_2x^2 + b_2x_0x_1 - b_2xx_0 - b_2xx_1 \\ &= (b_0 - b_1x_0 + b_2x_0x_1) + (b_1 - b_2x_0 - b_2x_1)x + b_2x^2 \end{split}$$

2.	การประมาณค่าด้วยสมการพหุนามอันดับสอง	(Quadratic
	terpolation)	

หรือสามารถเขียนอยู่ในรูป

$$f_2(x) = a_0 + a_1x + a_2x^2$$

เมื่อ

$$a_0 = b_0 - b_1 x_0 + b_2 x_0 x_1,$$

 $a_1 = b_1 - b_2 x_0 - b_2 x_1,$
 $a_2 = b_2$

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic

Interpolation)

เมื่อทั้ง 3 จุด สอดคล้องกับ
$$f_2(x)=b_0+b_1(x-x_0)+b_2(x-x_0)(x-x_1)$$
 นั่นคือ $f_2(x_0)=f(x_0), f_2(x_1)=f(x_1), f_2(x)=f(x_2)$
1. เมื่อ $x=x_0$ จากสมการ (1.3) จะได้ $f_2(x_0)=f(x_0)=b_0$ นั่นคือ

$$b_0 = f(x_0)$$

2. เมื่อ
$$x=x_1$$
 และ $b_0=f(x_0)$ จากสมการ (1.3) จะได้

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_2} \tag{1.5}$$

(1.4)

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

1. แทนค่าสมการ (1.4) และ สมการ (1.5) ในสมการ (1.3) เมื่อ $x=x_2$ จะได้

$$b_2 = \frac{f(x_2) - f(x_1)}{\frac{x_2 - x_1}{x_2 - x_0}} - \frac{f(x_1) - f(x_0)}{\frac{x_1 - x_0}{x_2 - x_0}}$$
(1.6)

(B) (B) (E) (E) (E) 990

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

ตัวอย่างที่ 1.2

จงหาค่าประมาณของ ln 2 โดยใช้การประมาณค่าด้วยสมการพหุนามอันดับ

สอง เมื่อกำหนดข้อมูล 3 จุด ดังนี้

 $\ln 1 = 0, \ln 4 = 1.386294, \ln 6 = 1.791759$ เมื่อค่าจริงของ $\ln 2 = 0.69314718$

$$x_0 = 1$$
, $f(x_0) = 0$

$$x_1 = 4$$
, $f(x_1) = 1.386294$

$$x_1 = 4$$
, $f(x_1) = 1.380294$
 $x_2 = 6$, $f(x_2) = 1.791759$

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

- 1. จากสมการ (1.4) จะได้ $b_0=0$
- 2. จากสมการ (1.5) จะได้

$$b_1 = \frac{f(1) - f(0)}{4 - 1} = \frac{1.386294 - 0}{4 - 1} = 0.4620981$$

3. จากสมการ (1.6) จะได้

$$\begin{split} b_2 &= \frac{\underbrace{f(x_2) - f(x_1)}_{x_2 - x_1} - \underbrace{f(x_1) - f(x_0)}_{x_1 - x_0}}{x_2 - x_0} \\ &= \underbrace{\left(\frac{1.791759 - 1.386294}{6 - 4}\right) - \left(\frac{1.386294 - 0}{4 - 1}\right)}_{6 - 1} = -0.0518731 \end{split}$$

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

$$f_2(x) = 0 + 0.4620981(x - 1) - 0.0518731(x - 1)(x - 4)$$

เมื่อ
$$r=2$$
 จะได้

$$f_2(2) = 0.5658444$$

และ

$$\epsilon_t = \frac{|0.5658444 - 0.4620981|}{0.5658444} \times 100\% = 18.4\%$$

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

40 48 42 48 40 990

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

รูปที่ 7: The use of quadratic interpolation to estimate $\ln 2$. The linear interpolation from x=1 to 4 is also included for comparison.

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)

รูปทั่วไปของสมการพหุนามอันดับที่ n ผ่านจุดข้อมูล n+1 จุด คือ

$$\begin{array}{c} f_n(x) = b_0 + b_1(x-x_0) + b_2(x-x_0)(x-x_1) + \cdots + b_n(x-x_0)(x-x_1) \cdots (x-x_{n-1}) \\ & (1.7) \end{array}$$

 Retrif

โดย

$$b_0 = f(x_0)$$

 $b_1 = f[x_1, x_0]$
 $b_2 = f[x_2, x_1, x_0]$
 \vdots
 $b_n = f[x_n, x_{n-1}]$

+ D > + (B > + (

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)

เมื่อ f[·] แทนผลต่างจากการแบ่งย่อยจำกัด (finite divided differences) นั่นคือ

- ▶ $f[x_i,x_j]$ คือ ผลต่างจากการแบ่งย่อยอันดับที่ 1 (first finite divided difference) นิยามโดย
- $f[x_i, x_j] = \frac{f(x_i) f(x_j)}{x_i x_i}$
- $f[x_i, x_j, x_k]$ คือ ผลต่างจากการแบ่งย่อยอันดับที่ 2 (second finite divided difference) นิยามโดย

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k}$$

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)

▶ $f(x_n,x_{n-1},...,x_1,x_0)$ คือ ผลต่างจากการแบ่งย่อยอันดับที่ n (nth finite divided difference) นิยามโดย

$$f[x_n,x_{n-1},...,x_1,x_0] = \frac{f[x_n,x_{n-1},...,x_2,x_1] - f[x_{n-1},x_{n-2},...,x_1,x_0]}{x_n - x_0}$$

จะได้สูตรการประมาณค่าในช่วงพหุนามอันดับที่ n ของนิวตัน ดังนี้

$$f_n(x) = b_0 + (x - x_0)f[x_1, x_0] + (x - x_0)(x - x_1)f[x_2, x_1, x_0]$$

$$+ \cdots + (x - x_0)(x - x_1) \cdots (x - x_{n-1})f[x_n, x_{n-1}, ..., x_1, x_0]$$
(1.8)

ซึ่งเรียก (1.8) ว่า Newton's divided-difference interpolating polynomial

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)

ซึ่งสามารถแสดงผลต่างจากการแบ่งย่อยอันดับต่างๆ ได้ดังตารางต่อไปนี้

i	x_i	$f(x_i)$	First	Second	Third
0	X ₀	fixal	≥ f[x1, x0]	f[x2, x1, x0]	_ ≱ f(x ₃ , x ₂ , x ₁ , x ₀
1	×ı	fixi1	≥ f[x2, x1] -	⋠ [x₂, x₁, x₀] ⋠ [x₃, x₂, x₁]	
2	×2	fl×21	→ f(x3, x3) —		
3	X3	flxs]			

รูปที่ 8: Graphical depiction of the recursive nature of finite divided differences

ค่าคลาดเคลื่อนของสมการพหุนามด้วยวิธีนิวตัน (Error of Newton's Interpolating Polynomials)

การหาค่าคลาดเคลื่อนของสมการพหุนามอันดับ n ด้วยวิธีนิวตัน(nth Order Newton's Interpolating Polynomial) สามารถหาได้โดยการ ประมาณด้วยค่าอนุพันธ์อันดับที่ n+1 ที่จุด x_{n+1} คือ

$$R_n = f[x_n, x_{n-1}, ..., x_1, x_0](x - x_0)(x - x_1) \cdot \cdot \cdot (x - x_n)$$

40 + 45 + 45 + 45 + 5 + 940

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)

ตัวอย่างที่ 1.3

จงหาค่าประมาณของ $\ln 2$ โดยใช้การประมาณค่าในช่วงด้วยวิธีนิวดันอันดับ ที่ 3 เมื่อกำหนดข้อมูล 4 จุด ดังนี้ $\ln 1=0, \ln 4=1.386294, \ln 5=1.609438, \ln 6=1.791759$

วิธีทำ กำหนดให้ $x_0=1,\,x_1=4,\,x_2=5$ และ $x_3=6$ จะได้ $f(x_0)=\ln 1=0,$

$$f(x_1) = \ln 4 = 1.386294$$
.

$$f(x_2) = \ln 5 = 1.609438,$$

$$f(x_3) = \ln 6 = 1.791759$$

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)

สมการพหุนามอันดับที่ 3 คือ

$$f_3(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + b_3(x - x_0)(x - x_1)(x - x_2)$$
(1.9)

i	x_i	$f(x_i)$	First	Second	Third
0					
1					
2					
3					

D) (8) (8) (8) (9)

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)

จากตารางจะได้

$$b_2 =$$

$$b_3 =$$

ดังนั้น

 $f_3(x) = 0 + 0.4620981(x-1) - 0.05187311(x-1)(x-4) - 0.007865529(x-1)(x-4)(x-6) \\$

เพราะฉะนั้น เมื่อ x=2 จะได้ $f_3(2)=0.6287686$ และ $arepsilon_t=9.3\%$

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)

รูปที่ 9: The use of cubic interpolation to estimate ln 2.

การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials)

การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials)

การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials)

การประมาณค่าในช่วงด้วยวิธีลากรองจ์ คือการประมาณค่าในช่วงที่เปลี่ยน รูปมาจากการหาสมการพหุนามด้วยวิธีนิวตัน และสามารถเขียนได้ด้วย

$$f_n(x) = \sum_{i=0}^{n} L_i(x) f(x_i)$$
 (1.10)

เมื่อ

$$L_{i}(x) = \prod_{\substack{j=0\\i\neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$
(1.11)

(\prod = "product of.")

การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials)

ตัวอย่างเช่น พหนนามอันดับที่ 1 :

$$f_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

พหนุนามอันดับที่ 2 :

$$\begin{split} f_2(x) &= \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_2)(x_1-x_2)}f(x_1) \\ &\quad + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2) \end{split}$$

จะสังเกตเห็นว่าแต่ละพจน์ของ $L_i(x)$ จะเป็น 1 เมื่อ $x=x_i$ และมีค่า เท่ากับศูนย์ เมื่อ $x=x_i$; $i\neq j$

ค่าคลาดเคลื่อนของการประมาณค่าในช่วงด้วยวิธีลากรองจ์	
(Error of Lagrange Interpolating Polynomials)	
ค่าคลาดเคลื่อนของการประมาณค่าในช่วงตัวยวิธีลากรองจ์ สามารถ ประมาณค่าได้ตัวย	
$R_n \approx f[x,x_n,x_{n-1},,x_1,x_0] \prod_{i=0}^n (x-x_i)$	
<i>i</i> −0	
্লা (ট) (ই) (ই) ই পুর্	
การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials)	
ตัวอย่างที่ 1.4 จงหาค่าประมาณของ In 2 โดยใช้การประมาณค่าในช่วงด้วยวิธีลากรองจ์ อันดับที่ 1 และ ลากรองจ์อันดับที่ 2 เมื่อกำหนดข้อมูล 3 จุด ดังนี้	
$\ln 1 = 0, \ln 4 = 1.386294, \ln 6 = 1.791759$	

บบฝึกหัด 5	
1. จงหาค่าใกล้เคียงของ $\log 4$ โดยวิธีการประมาณค่าเชิงเส้นตรงด้วยวิธีนิ วดัน 0.1 เมื่อกำหนด $\log 3 = 0.4771213, \log 5 = 0.6989700$ 0.2 เมื่อกำหนด $\log 3$ และ $\log 4.5 = 0.6532125$ 0.3 จงหาร้อยละของค่าคลาดเคลื่อนสัมพัทธ์ในชื่อ 1.1 และ 1.2 เมื่อค่าจริง ของ $\log 4 = 0.6020600$	
บบฝึกหัด 5	
 จากโจทย์ข้อ 1 จงหาค่า log 4 โดยวิธีการประมาณค่าด้วยสมการพหุ นามอันดับสองด้วยวิธีนิวตัน และร้อยละของค่าคลาดเคลื่อนสัมพัทธ์ (กำหนด log 3, log 4.5, log 5) 	

400 480 480 480 8 990

แบบฝึกหัด 5

- 3. จากโจทย์ข้อ 1 จงหาค่า log 4 โดยวิธีการประมาณค่าด้วยสมการพหุ นามอันดับสามด้วยวิธีนิวตัน เมื่อกำหนดเพิ่มอีก 1 จุด คือ log 3.5 = 0.5440680 และค่าคลาดเคลื่อนสัมพัทธ์ (กำหนด log 3, log 3.5, log 4.5, log 5)
- 4. จากโจทย์ข้อ 1-3 โดยวิธีการประมาณค่าในช่วงด้วยวิธีลากรองจ์

แบบฝึกหัด 5

Given these data

X	1.6	2	2.5	3.2	4	4.5
f(x)	2	8	14	15	8	2
			รปที่	10		

Calculate f(2.8) using Newton's interpolating polynomials of order 1 through 3. Choose the sequence of the points for your estimates to attain the best possible accuracy.

6. Repeat Prob. 4. using Lagrange polynomials of order 1 through 3.