Renormalization of Symmetry Improved 2PIEA gap equations at 2 loops

Supplement to chapter 4 of thesis by Michael J. Brown.

Mathematica notebook to compute couter-terms for two loop truncations of the effective action as described in Chapter 4.

Sunset

NOTE: this uses some of the same variable names as the Hartree-Fock code! Be careful not to clobber what you need to keep.

ClearAll[geom, neom, intrules, regularisedtadpoles, mg2soln, cteq, δ m, $\delta\lambda$, $\delta\lambda$, $\delta\lambda$, $\delta\lambda$);

Equations of motion

Goldstone equation of motion. Quantities in reference to the paper are:

p is the four-momentum flowing through the propagators Δ_G^{-1} and Δ_N^{-1} ,

mg2 is the Goldstone mass squared m_G^2 ,

Z and $Z\Delta$ are the wavefunction a propagator renormalization constants,

 m^2 is the (renormalized) Lagrangian mass parameter, δm_1^2 is its counter-term,

 λ is the (renormalized) four point coupling,

 $\delta\lambda_{1a}$, $\delta\lambda_{2a}$, $\delta\lambda_{2b}$ are the independent coupling counter-terms,

v is the scalar field vacuum expectation value,

ħ is the reduced Planck constant,

n is the number of fields in the O(n) symmetry group,

t∞g, t∞n are the divergent tadpole integrals for the Goldstone, Higgs resp.,

tfing, tfinn are the finite parts of the tadpoles for the Goldstone, Higgs resp.

Additional variables relative to the Hartree-Fock case:

Ing is the sunset integral $I_{NG}(p)$

Ifingp is the finite sunset integral $I_{NG}^{fin}(p)$,

Ifing 0 is $I_{NG}^{fin}(m_G)$,

Ifingn is $I_{NG}^{fin}(m_N)$,

 $\delta\lambda$ is the sunset graph coupling counter-term,

 $I\mu$, $t\mu$ and $c\mu$ are the auxiliary integrals I_{μ} , T_{μ} and c_{μ} respectively.

$$\begin{split} &\text{geom} = p^2 - mg2 + i \hbar \; \left(\frac{(\lambda) \; \mathbf{v}}{3}\right)^2 \; \left(\text{Ifingp-Ifing0}\right) = \\ &\text{Z} \; \text{Z} \Delta \; p^2 - m^2 - \delta m_1^2 - \text{Z} \Delta \; \frac{\lambda + \delta \lambda_{1\,a}}{6} \; \mathbf{v}^2 - \frac{\hbar}{6} \; \left(\left(n+1\right) \; \lambda + \left(n-1\right) \; \delta \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b}\right) \; \text{Z} \Delta^2 \; \left(\text{tg}\right) - \\ &\frac{\hbar}{6} \; \left(\lambda + \delta \lambda_{2\,a}\right) \; \text{Z} \Delta^2 \; \left(\text{tn}\right) + i \hbar \; \left(\frac{(\lambda + \delta \lambda) \; \mathbf{v}}{3}\right)^2 \; \text{Z} \Delta^3 \; \text{Ing} \\ &\text{neom} = p^2 - mn2 + \frac{i \hbar}{2} \; \left(\frac{(\lambda) \; \mathbf{v}}{3}\right)^2 \; \left(n-1\right) \; \left(\text{Ifinggp-Ifinggn}\right) + \frac{i \hbar}{2} \; \left(\lambda\right)^2 \; \mathbf{v}^2 \; \left(\text{Ifinhhp-Ifinhhn}\right) = \\ &\text{Z} \; \text{Z} \Delta \; p^2 - m^2 - \delta m_1^2 - \text{Z} \Delta \; \frac{3 \; \lambda + \delta \lambda_{1\,a} + 2 \; \delta \lambda_{1\,b}}{6} \; \mathbf{v}^2 - \frac{\hbar}{6} \; \left(3 \; \lambda + \delta \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b}\right) \; \text{Z} \Delta^2 \; \text{tn} \; - \\ &\frac{\hbar}{6} \; \left(\lambda + \delta \lambda_{2\,a}\right) \; \text{Z} \Delta^2 \; \left(n-1\right) \; \text{tg} \; + \frac{i \hbar}{2} \; \left(\frac{(\lambda + \delta \lambda) \; \mathbf{v}}{3}\right)^2 \; \text{Z} \Delta^3 \; \left(n-1\right) \; \text{Igg} + \frac{i \hbar}{2} \; \left(\lambda + \delta \lambda\right)^2 \; \mathbf{v}^2 \; \text{Z} \Delta^3 \; \text{Ihh} \end{split}$$

Divergent parts subtracted with auxiliary integrals and MSbar

intrules =
$$\left\{ \text{Ing} \rightarrow \text{I}\mu + \text{Ifingp}, \text{Igg} \rightarrow \text{I}\mu + \text{Ifinggp}, \text{Ihh} \rightarrow \text{I}\mu + \text{Ifinhhp}, \right.$$

$$tg \rightarrow t\mu - i \left(\text{mg2} - \mu^2 \right) \text{I}\mu + \hbar \left(\frac{(\lambda + \delta \lambda) \text{ v}}{3} \right)^2 c\mu + \text{tfing},$$

$$tn \rightarrow t\mu - i \left(\text{mn2} - \mu^2 \right) \text{I}\mu + \hbar \left(\frac{(\lambda + \delta \lambda) \text{ v}}{3} \right)^2 c\mu + \text{tfinn} \right\}$$

regularisedtadpoles =

$$\left\{\text{I}\mu \to \text{c2} \, \text{Log} \Big[\frac{\Lambda^2}{\mu^2}\Big] \,, \,\, \text{t}\mu \to \text{c0} \, \Lambda^2 + \text{c1} \, \mu^2 \, \text{Log} \Big[\frac{\Lambda^2}{\mu^2}\Big] \,, \,\, \text{c}\mu \to \text{a0} \, \text{Log} \Big[\frac{\Lambda^2}{\mu^2}\Big]^2 + \text{a1} \, \text{Log} \Big[\frac{\Lambda^2}{\mu^2}\Big] \right\}$$

Sub everything in, eliminate mn2 and solve for mg2

{mg2soln, mn2soln} = (Solve[{geom, neom} /. intrules, {mg2, mn2}] // ExpandAll // Simplify)[[1]] Check solutions

$$\begin{split} \left(\mathbf{p}^2 - m\mathbf{g}\mathbf{2} + \mathbf{i}\,\,\tilde{\hbar}\,\, \left(\frac{(\lambda)\,\,\mathbf{v}}{3} \right)^2 \, \left(\mathbf{Ifingp} - \mathbf{Ifing0} \right) - \\ \left(\mathbf{Z}\,\,\mathbf{Z}\Delta\,\,\mathbf{p}^2 - \mathbf{m}^2 - \delta\mathbf{m_1}^2 - \mathbf{Z}\Delta\,\,\frac{\lambda + \delta\lambda_{1\,a}}{6}\,\,\mathbf{v}^2 - \frac{\hbar}{6}\,\left(\left(\mathbf{n} + \mathbf{1} \right)\,\lambda + \left(\mathbf{n} - \mathbf{1} \right)\,\delta\lambda_{2\,a} + 2\,\delta\lambda_{2\,b} \right) \,\mathbf{Z}\Delta^2 \, \left(\mathbf{tg} \right) - \\ \frac{\hbar}{6}\,\, \left(\lambda + \delta\lambda_{2\,a} \right) \,\mathbf{Z}\Delta^2 \, \left(\mathbf{tn} \right) + \mathbf{i}\,\,\tilde{\hbar}\,\, \left(\frac{(\lambda + \delta\lambda)\,\,\mathbf{v}}{3} \right)^2 \,\mathbf{Z}\Delta^3 \,\mathbf{Ing} \right) \Big) \, / \,. \,\, \mathbf{intrules} \, / \,. \end{split}$$

mn2soln /. mg2soln /. regularisedtadpoles // Simplify

$$\begin{split} \left(p^2-mn2+\frac{i \hbar}{2} \frac{\hbar}{2} \left(\frac{(\lambda) \ v}{3}\right)^2 \left(n-1\right) \ (\text{Ifinggp-Ifinggn}) \ + \\ \frac{i \hbar}{2} \left(\lambda\right)^2 v^2 \ (\text{Ifinhhp-Ifinhhn}) - \left(Z \ Z\Delta \ p^2-m^2-\delta m_1^2-Z\Delta \ \frac{3 \ \lambda+\delta \lambda_{1\,a}+2 \ \delta \lambda_{1\,b}}{6} \right. v^2 - \\ \frac{\hbar}{6} \left(3 \ \lambda+\delta \lambda_{2\,a}+2 \ \delta \lambda_{2\,b}\right) \ Z\Delta^2 \ tn - \frac{\hbar}{6} \left(\lambda+\delta \lambda_{2\,a}\right) \ Z\Delta^2 \left(n-1\right) \ tg \ + \\ \frac{i \hbar}{2} \left(\frac{(\lambda+\delta \lambda) \ v}{3}\right)^2 \ Z\Delta^3 \left(n-1\right) \ \text{Igg} + \frac{i \hbar}{2} \left(\lambda+\delta \lambda\right)^2 v^2 \ Z\Delta^3 \ \text{Ihh}\right) \Big) \ / \ . \ intrules \ / \ . \end{split}$$
 mn2soln /. mg2soln /. regularisedtadpoles // Simplify

Gather kinematically distinct divergences for Goldstone EOM

$$\left(\left(p^2 - mg2 + i \hbar \left(\frac{(\lambda) v}{3} \right)^2 \left(Ifingp - Ifing0 \right) - \left(p^2 - m^2 - \frac{\lambda}{6} v^2 - \frac{\hbar}{6} \left(\left(n + 1 \right) \lambda \right) \right) \right) - \frac{\hbar}{6} (\lambda) (tfinn) + i \hbar \left(\frac{(\lambda) v}{3} \right)^2 (Ifingp) \right) / . intrules / .$$
 mn2soln /. mg2soln /. regularisedtadpoles // Simplify //

CoefficientList[#, {p, v, tfing, tfinn, Ifingp, Ifinggp, Ifinhhp}] & // Flatten // Simplify // DeleteDuplicates

cteq = (cteq /. regularisedtadpoles // Simplify // DeleteDuplicates)

Solve for counter-terms from Goldstone EOM

Note there are two solutions differing by a sign for $\delta\lambda$.

cts = Solve[cteq,
$$\{\delta m_1, \delta \lambda_{1a}, \delta \lambda_{1b}, \delta \lambda_{2a}, \delta \lambda_{2b}, \delta \lambda, Z, Z\Delta\}$$
] // DeleteDuplicates; $\{\delta m_1^2, \delta \lambda_{1a}, \delta \lambda_{1b}, \delta \lambda_{2a}, \delta \lambda_{2b}, \delta \lambda, Z, Z\Delta\}$ /. cts // DeleteDuplicates

Gather kinematically distinct divergences for Higgs EOM

```
cteq2 =
                    \left( \left| \left( \left| \left( \left| mn2 - \left( \frac{\lambda v^2}{3} \right) - m^2 - \frac{\lambda}{6} v^2 - \frac{\hbar}{6} \left( \left( n+1 \right) \lambda \right) \right) \right| \right) \right| + \left| \frac{\hbar}{6} \left( \lambda \right) \right| \right) \right| + \left| \frac{\hbar}{6} \left( \lambda \right) \right| + \left| \frac{\hbar}{6} \left( 
                                                                                                                                                                                                                                                                                                                                                                                  neom, mn2][[1]] /. mg2soln /. cts // FullSimplify //
                                                                                                                                                                                                                                                DeleteDuplicates /. {tfing \rightarrow 0, tfinn \rightarrow 0} // Expand //
                                                                                                                                                    CoefficientList[#, {p, v, tfing, tfinn, Ifingp}] & // Flatten //
                                                                                                                Simplify // DeleteDuplicates = 0 // Thread
```

Solve for counter-terms from Higgs EOM

```
cts2 = Solve[cteq2[[2]], {Z}\Delta}]
Both equations should have the same solution:
(Z\Delta /. Solve[cteq2[[3]], {Z\Delta}][[1]]) - (Z\Delta /. cts2[[1]]) = 0
```

Final Counterterms

```
(\{\delta m_1^2, \delta \lambda_{1a}, \delta \lambda_{2a}, \delta \lambda_{2b}, \delta \lambda, Z, Z\Delta\} /. cts /. cts 2 // Simplify)[[1]] //
     DeleteDuplicates;
\texttt{counterterms} = \texttt{Thread} \left[ \left\{ \delta \mathtt{m_1}^2 \,,\; \delta \lambda_{\texttt{1a}} \,,\; \delta \lambda_{\texttt{2a}} \,,\; \delta \lambda_{\texttt{2b}} \,,\; \delta \lambda \,,\; \mathtt{Z} \,,\; \mathtt{Z} \Delta \right\} \, \rightarrow \, \$ \left[ \, [1] \, \, \right] \, \right]
The should be momentum independent:
(\{\delta m_1^2, \delta \lambda_{1a}, \delta \lambda_{2a}, \delta \lambda_{2b}, \delta \lambda, Z, Z\Delta\} /. counterterms // DeleteDuplicates // D[#, p] &) [[
       1]] == 0 // Thread
\{\delta m_1^2, \delta \lambda_{1a}, \delta \lambda_{2a}, \delta \lambda_{2b}, \delta \lambda, Z, Z\Delta\} /. counterterms // DeleteDuplicates //
            D[#, Ifingp] & [[1]] = 0 // Thread
```