

GUÍA DE Nº7 DE CÁLCULO I

Integral Indefinida: Antiderivada

La función f es la Antiderivada de f' para todo x, por ejemplo:

- ✓ La función $f(x) = x^3$ es la Antiderivada de $f'(x) = 3x^2$
- ✓ La función $g(x) = x^3 + 5$ es la Antiderivada de $g'(x) = 3x^2$

Para encontrar la función f teniendo f' es necesario efectuar el proceso inverso al de la derivación. A este proceso se lo denomina integración y se denota:

$$f(x) = \int f'(x) \ dx$$

La Antiderivada o Integral es utilizada para resolver diversos problemas, por ejemplo:

- ✓ Determinar la distancia recorrida de un objeto cuando se sabe la rapidez que lleva.
- ✓ Determinar la cantidad de habitantes, al tener como dato la tasa de crecimiento de la población.
- ✓ Cuando se tiene la aceleración de un objeto se puede determinar la rapidez
- ✓ Si se tiene la corriente que pasa por un artefacto, se puede calcular la cantidad de carga en un tiempo determinado
- ✓ Si se tiene la densidad lineal se puede determinar la masa del objeto

I Integrales de Funciones Elementales.

Tipo de Función	Expresión Algebraicas	Integral (c es un valor constante)
Constante	$f(x) = A$ donde $c \in \Re$	$\int A \cdot dx = Ax + c$
Potencia	$f(x) = x^n$ donde $n \in \Re y$ $n \neq (-1)$	$\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + c$
	$f(x) = x^{-1} = \frac{1}{x} x \neq 0$	$\int \frac{1}{x} \cdot dx = \ln(x) + c$
Exponencial	$f(x) = a^x donde a > 0$	$\int a^x \cdot dx = \frac{a^x}{\ln(a)} + c$
	$f(x) = e^x$	$\int e^x \cdot dx = e^x + c$
	$f(x) = e^{a \cdot x}$	$\int e^{a \cdot x} \cdot dx = \frac{1}{a} e^{a \cdot x} + c$

1. Complete el siguiente cuadro

Función	Tipo de Función	Integral
a) $f(x) = x^3$		
b) $f(x) = 5$		
$c) f(x) = 5^x$		
$d) f(x) = e^x$		
e) $f(x) = 1$		
$f) f(x) = \frac{1}{x}$		

- g) $f(t) = \sqrt[3]{t}$
- h) $f(x) = e^{5x}$
- $i) \quad g(x) = \left(\frac{5}{3}\right)^x$
- j) $g(x) = x^{-5}$
- k) $h(x) = x^{-1}$
- $h(x) = \frac{1}{\sqrt{x}}$
- m) $f(x) = e^{-3x}$
- n) $f(x) = \frac{1}{\sqrt{2}}$
- o) $f(x) = t^{\frac{3}{4}}$
- p) $f(x) = 2^x$
- 2. A continuación identifique el tipo de función y luego integre.

a)
$$g(x) = \frac{4}{5}$$

b)
$$f(x) = x^{-17}$$

c)
$$f(x) = \sqrt[3]{x^5}$$

$$d) f(x) = x$$

e)
$$f(x) = e^{4x}$$

f)
$$h(x) = 9^x$$

II Álgebra de Integrales.

Operación de Funciones Elementales		Integral
Multiplicación por una constante	$h(x) = A \cdot f(x)$	$\int h(x) \cdot dx = A \cdot \int f(x) \cdot dx$
suma o resta	$h(x) = f(x) \pm g(x)$	$\int h(x) \cdot dx = \int f(x) \cdot dx \pm \int g(x) \cdot dx$

3. Complete el siguiente cuadro:

	Funciones	Operación	Derivada
a)	$f(x) = 5$ $g(x) = x^6$	$h(x) = f \cdot g$ $h(x) =$	$\int h(x)dx =$
b)	$f(x) = 5^x$ $g(x) = e^x$	h(x) = f - g $h(x) =$	$\int h(x)dx =$
c)	$f(x) = x^4$ $g(x) = e^{6x}$	h(x) = f + g $h(x) =$	$\int h(x)dx =$

4. Determine:

a)
$$\int (3+x+x^2)dx$$

$$b) \int \left(3x + 7 - \frac{1}{x}\right) dx$$

c)
$$\int \left(\sqrt{x} + 5x - 8\right) dx$$

d)
$$\int \left(3x^2 + e^x\right) dx$$

Determinar Antiderivada f(x) bajo la condición dada:

a)
$$f'(x) = 2x + 5$$

$$f(0) = 2$$

b)
$$f'(x) = -20$$

$$f(1) = -15$$

a)
$$f'(x) = 2x + 5$$
 ; $f(0) = 2$ b) $f'(x) = -20$; $f(1) = -15$ c) $f'(x) = e^x + 3x^2 - 6x$; $f(0) = 3$ d) $\frac{dy}{dx} = -6x + \frac{2}{x}$; $f(1) = 4$

$$d) \frac{dy}{dx} = -6x + \frac{2}{x}$$

;
$$f(1) = 4$$

e)
$$\frac{dy}{dx} = 2^x$$

;
$$f(0) = 7,443$$

a)
$$A'(x) = 6x - 12$$
 ; $A(20) = 1040$

$$A(20) = 1040$$

SIGUE PRACTICANDO:

6. Integra las siguientes funciones bajo la condición dada:

b)
$$f'(t) = -0.44t^3 - 57.82t + 271.85$$
 ; $f(5) = 667.75$

$$f(5) = 667,75$$

c)
$$C'(x) = 1 + 0.002x$$

;
$$C(8) = 8$$

d)
$$T'(t) = 7 e^{-0.35 t}$$

;
$$T(0) = -15$$

e)
$$V'(t) = 125e^{0.8t}$$

;
$$V(0) = 341,25$$