True or false: Let (x,d) be a metric space and suppose that, for each $n \in \mathbb{Z}^+$, $E_n \subset X$ is compact. Then $\bigcap_{n=1}^\infty E_n$ is compact.

Theorem: Let (x,d) be a metric space and let E(X). Then E is compact iff every sequence contained in E has a subsequence that converges to a point n E.

Proof: Suppose first that E is compact. Then, by an earlier theorem, each intivity subset of E has a limit point in E. If the set $\{x_n \mid n \in \mathbb{Z}^+\}$ has infinitely many elements, then it has a limit point $x \in E$ and, by an earlier lenance, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to x$. If the set $\{x_n \mid n \in \mathbb{Z}^+\}$ has only fixitely many elements, then there exists some $x \in E$ and an increasing sequence $\{n_k\}$ in \mathbb{Z}^+ such that $x_{n_k} = x$ for all $k \in \mathbb{Z}^+$. But then $x_{n_k} \to x$.

Conversely, suppose every sequence in E his a subsequence that conveyes to a point of E. Let S be any infinite subject of E. Then there exists a subsequence [xn] in S with distinct terms. Then there exists a subsequence {xn} of [xn] and xe E such that xn, -x. It follows immediately that x is a limit point of S. Since every infinite subject of E has a limit point in E, it follows that E is compact.

Theorem: Let (x,d) be a metric space and let {xn} be a segrece in X. Then the set of all subsequential limits of [xn] is closed.

Proof: Let 5 be the set of all subsequential limits of §xn] and suppose $x \in S^{C}$. Then, since x is not a subsequential limit of §xn], there exists r > 0 such that $B_{r}(x)$ contains no term of §xn] other than possibly x itself. But then, since $B_{r}(x)$ is open, for each $y \in B_{r}(x)$, there exists $r_{y} > 0$ such that $B_{ry}(y) \subset B_{r}(x)$, and hence $B_{ry}(y)$ contains no term of $\{x_{n}\}$. Thus each $y \in B_{r}(x)$ is not a subsequential limit of $\{x_{n}\}$, and it follows that $B_{r}(x) \subset S^{C}$. Therefore, S^{C} is open and hence S is closed.

Cauchy sequences

The following definition describes a sequence that "aught" to converge or "looks like" it is converging. The only questin is whether the limit exists in X.

Definition: Let (x,d) be a metric space and let {xn} be a sequence in X. We say that {xn} is <u>Cauchy</u> iff

 $\forall \epsilon > 0 \exists N \in \mathbb{Z}^+ (m, n \ge N \Rightarrow d(x_n, x_n) < \epsilon).$

Example: Let an equal the rational number defined by the first in digital of IT:

 $X_1 = 3.1$, $X_2 = 3.14$, $X_3 = 3.141$, $X_4 = 3.1415$,...

Note that

m, n > N => 1xm-xn < 10.

It follows that {du} is Cauchy. If we regard {du} as a sequence in Q, it is Cauchy but not converget. Clearly, though, in an intuitor sense, {du} "acts like" a converget sequence.

Lemma: Let (X,d) be a metric space and let Fxn) he a Cauchy Sequence in X. Then Fxn) is bounded.

Proof: Since $\{x_n\}$ is Cauchy, there exists $N \in \mathbb{Z}^+$ such that $m,n \geq N \Rightarrow d(x_m,x_n) \leq 1$.

In particular,

n > N => d(x,x,x) < 1.

Defore

R=max {d(x,,x,,), ---, d(x,,x,), !}.

Thin

d(xn,xN) = R Yne Z+

and hence {xn} is bounded.

Theorem:

- 1. If (X,d) is a metric space and [xu] is a convergent sequence in X, then {xn} is Cauchy.
- 2. If (x,d) is a compact metric space and {xn} is a Cauchy sequence in X, then {xn} converges to a point of X.
 - 3. If $k \in \mathbb{Z}^+$ and $\{x_n\}$ is a Canchy sequence in \mathbb{R}^k , then $\{x_n\}$ converges to a point of \mathbb{R}^k .

Proof:

1. Suppose $x_n \rightarrow x$ in X. Let \$>0 be give. Then there exists NEZt such that

$$n \ge N \Rightarrow d(x_n,x) < \frac{\varepsilon}{2}$$

But then

 $m, n \ge N \Rightarrow d(x_m, x_n) \le d(x_m, x) + d(x_m, x)$ (by the triangle the property) $< \frac{\xi}{2} + \frac{\xi}{2} = \xi$.

Thus [xn] is Cauchy.

2. Now suppose that X is compact and [xn] is Cauchy. Then there exists a subsequence [xn] of [xn] that converges to a point XEX, (Either [xn] ne It) is infinite, in which case it has a limit point in X, or it is finite, in which case Xn = x for some xeX and infinitely many ke It.) Let ExO. Since [xn] is Cauchy, there exists NE It such that

 $m,n \geq N \Rightarrow d(x_m,x_n) < \frac{\varepsilon}{2}$

Since $x_{n_k} \to x$ and $n_k \to \infty$, there exists $K \in \mathbb{Z}^+$ such that $k \geq K \Rightarrow \left(\frac{d(x_{n_k}, x)}{2} \right) \leq \frac{\varepsilon}{2}$ and $n_k \geq N$.

For any n≥N, we have

 $d(x_{n,X}) \leq d(x_{n,X_{n_K}}) + d(x_{n_K},X) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Thus Xn -> X.

3. If $\{x_n\}\subset \mathbb{R}^k$ is Cauchy, then it is also bounded and here belongs to a k-cell C. Since every k-cell is compact, it follows from part 2 that $\{x_n\}$ converges.

Definition: Let (X,d) he a metric space. We say that X is complete iff every Cauchy sequence in X converges to a point of X.

By the previous theorem, IR is complete for all ke It; in particular, IR is complete. Obviously Q (or Qh) is not complete.