

UNIVERSIDADE FEDERALDE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DCC511 – Lógica de Predicados (2021.2) Prof. Msc. Thais Oliveira Almeida

AULA 7:

SEMÂNTICA NA LÓGICA DE PREDICADOS

Semântica na Lógica de Predicados

- Associa significados semânticos aos símbolos sintáticos;
- Interpretações são mais elaboradas;
 - Devido à presença de quantificadores, variáveis, funções e predicados.
- +H=(\forall x)(\exists y)p(x,y)
 - De que depende a interpretação da fórmula acima?
 - Em 1º lugar, do significado do símbolo de predicado p.
- ❖Suposição: se I[p]= < ("menor que")</p>
- ♦ Então: $I[p(x,y)] = T ⇒ I[x] < I[y] ⇒ x_i < y_i$

- Interpretando informalmente os quantificadores, temos que:
 - I[H] = "para todo x_i", "existe um y_i", tal que x_i<y_i
- ❖I[H] é verdadeira ou falsa??
 - Depende dos valores das variáveis.
- Ainda não dá pra determinar...
 - Que números x_i e y_i estão sendo considerados?
 - Ou seja, qual o domínio U dos números x_i e y_i?

- **\$**Se U =[0,∞)
 - Então I[H]=T.
 - "Para todo x_i ", $x_i \in U$, "existe um y_i ", $y_i \in U$, tal que $x_i < y_i$.

- ◆E a interpretação J, com U=(-∞,0], J[p]= <.</p>
 - J[H]=???
 - Falsa!
 - Porque se $x_1=0$, não existe y_1 tal que $y_1 \in U$ e $x_1 < y_1$;

Não é preciso ter as interpretações de x₁ e y₁ para se ter I[H] ou J[H];

❖Por que?

- Porque x e y não são <u>símbolos livres</u> em H;
- Neste caso, é necessário definir apenas a interpretação do <u>símbolo</u> <u>livre</u> p.

- $G=(\forall x)p(x,y)$
 - J[G]=???
- ❖ Para determinar J[G]:
 - Quais os valores de J[p] e J[y]?
 - y é um símbolo livre;
 - $U = (-\infty, 0]$
 - Se $J[p] = \le e J[y] = -5$:
 - "para todo x_i ", $x_i \in U$, então $(x_i \le -5)$
 - J[G]= F
 - Porém, se y₁=0, então J[G]=T.

- ❖ Para interpretar uma fórmula H com quantificadores, é necessário observar:
 - Domínio de interpretação;
 - Valor das interpretações dos símbolos livres.

Formalização

- Extensão da interpretação proposicional;
- Há interpretações para termos e expressões;
- ❖Se U é um conjunto não-vazio, uma interpretação I na Lógica de Predicados é uma função tal que:
 - O domínio de I é o conjunto de símbolos de função, predicados e expressões;
 - Para toda variável x, se I[x]=x₁, então x₁∈ U;
 - Para todo símbolo de função n-ário f, se I[f]=f_I, então f_I é uma função n-ária em U:
 - f_i: U**n → U.

Interpretação de Fórmulas – Não Quantificadas

- ❖Se E é uma expressão, I uma interpretação sobre o domínio U. I[E] é dada por:
 - Se E = false, I[E] = I[false] = F (o mesmo com true);
 - Se E = $f(t_1, ..., t_n)$, um termo, então:
 - $I[E] = I[f(t_1, ..., t_n)] = f_I(t_{1I}, ..., t_{nI})$, onde $I[f] = f_I$ e para todo termo t_i , $I[t_i] = t_{iI}$.
 - Se E = $p(t_1, ..., t_n)$, um átomo, então:
 - $I[E] = I[p(t_1, ..., t_n)] = p_I(t_{1I}, ..., t_{nI})$, onde $I[p] = p_I$ e para todo termo t_i , $I[t_i] = t_{II}$

Interpretação de Fórmulas – Não Quantificadas

- ❖Se H é uma fórmula e E = ¬H, então:
 - I[E]=I[¬H]=T se I[H]=F e
 - I[E]=I[¬H]=F se I[H]=T
- ❖Se H e G são fórmulas, e E = (H v G), então:
 - I[E]=I[H ^ G]=T se I[H]=T e/ou I[G]=T e
 - I[E]=I[H v G]=F se I[H]=F e I[G]=F

Domínio de Interpretação

- ❖ Seja I uma interpretação sobre N onde:
 - $I[a]=25, I[b]=5, I[f(x,y)]=x_1/y_1;$
 - I interpreta a constante "a" como 25, "b" como 5;
 - I interpreta "f" como a função divisão;
 - Desta forma, f(a, b)=5. Então I[f(a,b)]=5, pois $I[f]=f_I$, onde $fI: U*U \rightarrow U$.

- ❖ Porém, se I[c]=0, I[f(x,c)] não está definida! Então o domínio de f é NxN* → Q (racionais);
- ❖Se o domínio de I for N, não se pode definir I[f] como a função divisão.

❖ Dados:

- $H = \neg p(x,y,a,b) \rightarrow r(f(x), g(y))$
- \circ G = p(x,y,a,b) \rightarrow (q(x,y) $^{\land}$ r(y,a))
- A interpretação I, onde U=[0,∞), tal que:
 - I[x]=3, I[y]=2, I[a]=0, I[b]=1
 - $I[p(x,y,a,b)] = T \stackrel{\leftarrow}{\rightarrow} x_1^* y_1 > a_1^* b_1$
 - \circ I[q(x,y)] = T \leftrightarrows x₁ < y₁
 - $I[r(y,a)] = T \leftrightarrows y_1 > a_1$
 - \circ I[f(x)] = x₁ + 1
 - $| I[g(x)] = x_1 2$
 - $I[g(y)] = y_1 2$

$$Arr H = \neg p(x,y,a,b) \rightarrow r(f(x), g(y))$$

- A interpretação I, onde U=[0,∞), tal que:
 - I[x]=3, I[y]=2, I[a]=0, I[b]=1
 - $I[p(x,y,a,b)] = T \stackrel{\leftarrow}{\rightarrow} x_1^* y_1 > a_1^* b_1$
 - $I[p(x,y,a,b)] = T \implies 3*2 > 0*1 = 6 > 0 = T$
 - $\neg p(x,y,a,b) = \neg T = F$

$$Arr H = \neg p(x,y,a,b) \rightarrow r(f(x), g(y))$$

- A interpretação I, onde U=[0,∞), tal que:
 - I[x]=3, I[y]=2, I[a]=0, I[b]=1
 - $I[q(x,y)] = T \stackrel{\longleftarrow}{\rightarrow} x_1 < y_1$
 - $I[r(y,a)] = T \leftrightarrows y_1 > a_1$
 - $| [f(x)] = x_1 + 1 = 3 + 1 = 4$
 - $| I[g(x)] = x_1 2$
 - $I[g(y)] = y_1 2 = 2 2 = 0$
 - \circ r(f(x), g(y)) = r(4, 0) = 4 > 0 = T

$$Arr H = \neg p(x,y,a,b) \rightarrow r(f(x), g(y))$$

$$\Rightarrow \neg p(x,y,a,b) = \neg T = F$$

$$r(f(x), g(y)) = r(4, 0) = 4 > 0 = T$$

❖ Dados:

- \circ G = p(x,y,a,b) \rightarrow (q(x,y) \wedge r(y,a))
- A interpretação I, onde U=[0,∞), tal que:
 - I[x]=3, I[y]=2, I[a]=0, I[b]=1
 - $I[p(x,y,a,b)] = T \stackrel{\leftarrow}{\rightarrow} x_1^* y_1 > a_1^* b_1$
 - $I[q(x,y)] = T \stackrel{\longleftarrow}{\rightarrow} x_1 < y_1$
 - $I[r(y,a)] = T \leftrightarrows y_1 > a_1$
 - $I[f(x)] = x_1 + 1$

 - $I[g(y)] = y_1 2$

- ❖ Observe que I[x]=3, I[y]=2,..., I[H]=T, I[G]=F;
- ❖ As interpretações de f e g são elementos do domínio de I (N);
- ❖ As interpretações de H e G e dos átomos p(x,y,a,b), q(x,y) e r(y,a) são valores de verdade.

Sintaxe	X	у	a	b	p(x,y,a,b)	f(x)	g(y)	q(x,y)	r(y,a)	Н	G
Semântica	3	2	0	1	T	4	0	F	T	T	F

Interpretação de Fórmulas Quantificadas

- ❖Se H é uma fórmula, "x" uma variável, I uma interpretação sobre um domínio U:
 - ∘ $I[(\forall x)H]=T \leftrightarrows \forall d \in U; \langle x \leftarrow d \rangle I[H]=T$

 - The equation $\mathbf{E} = \mathbf{E} = \mathbf{E}$ The $\mathbf{E} = \mathbf{E}$ The $\mathbf{E} = \mathbf{E}$
 - ∘ $I[(\exists x)H] = F \leftrightarrows \forall d \in U; \langle x \leftarrow d \rangle I[H] = F$
 - Onde <x ← d> significa "interpretação de x como d" ou
 - \circ <x \leftleftharpoonup d> I[x]=d.

Exemplo

- ❖I é uma interpretação sobre o conjunto de alunos-CC, tal que:
 - $I[p(x)]=T \leftrightarrows x_l \text{ \'e inteligente}$
- Arrow H₁= (∇ x)p(x). O que é I[H₁]=T?
 - Todo aluno de Ciência da Computação é inteligente.

$$I[H_1]=T \Rightarrow I[(\forall x)p(x)]=T$$

- \circ \leftrightarrows \forall d ∈ aluno-CC; $p_i(d)$ =T
- \circ \leftrightarrows \forall d ∈ aluno-CC; <x \leftarrow d>I[p(x)]=T
- ❖ \forall d ∈ aluno-CC, se x é interpretado como d, então p(x) é interpretado como T.

Exemplo

- $| \cdot | [H_1] = F?$
 - Significa dizer que é falso que todo aluno de CC é inteligente. Isto significa que existe algum aluno burro.
- $I[H_1]=F \leftrightarrows I[(\forall x)p(x)]=F$

 - \circ \leftrightarrows **∃** d \in aluno-CC; $p_I(d)=F$
 - \circ \leftrightarrows **∃** d \in aluno-CC; <x \leftarrow d>I[p(x)]=F
- Nem todo aluno-CIn é inteligente
 - $\exists d \in \text{aluno-CC}; \langle x \leftarrow d \rangle I[p(x)] = F$
- ❖ \exists d ∈ aluno-CC, se x é interpretado como d, então p(x) é interpretado como F.

- Seja I uma interpretação sobre domínio dos números naturais N, tal que:
 - I[x]=3, I[a]=5, I[y]=4, I[f]=+, I[p]=<
 - Considere: $G=(\forall x)p(x,y)$
 - Prove que I[G]=F, para todo número natural x, x<4.

- Seja I uma interpretação sobre os números naturais N, tal que I[a] = 1, I[x] = 1, I[p] = <, $I[f] = f_I$, onde $f_I(d) = d + 1$, $I[q(x)] = T \leftrightarrow x_I$ é par. Além disso, o valor de I[y] é desconhecido.
- Seja J uma interpretação sobre os números inteiros Z, tal que: J[a] = 0, J[x] = -1, J[y] = 0, $J[p] = < e J[f] = f_i(d) = d + 1$.
- Determine, quando for possível, as interpretações da fórmula a seguir conforme l e J.

$$(\forall y)(p(y, a) \lor p(f(y), y))$$