FORMULACIÓ I NOMENCLATURA DE QUÍMICA INORGÀNICA

Per formular i anomenar els compostos inorgànics és necessari conèixer els símbols químics dels elements, la qual cosa es pot fer a partir de la taula periòdica. Cada element químic es representa per un símbol format per una o dues lletres.

De la mateixa forma que els símbols representen els elements, les fórmules representen la composició química dels compostos. Les fórmules indiquen la quantitat de cada element present al compost químic.

1.- Nombre d'oxidació (estat d'oxidació)

A cada element del compost se li assigna un nombre, anomenat nombre d'oxidació. Aquest nombre no correspon a un concepte físic o químic rigorós, sinó que és un concepte empíric. És una representació del nombre d'electrons guanyats, perduts o cedits per cada element com a conseqüència de formar el compost

La VALÈNCIA representa la capacitat d'aquest element per combinar-se amb l'hidrogen. En general, els nombres d'oxidació d'un element coincideixen amb les seves valències. El signe de la valència dependrà de la seva relació d'electronegativitat amb els altres elements que formen el compost.

1.1.- Determinació del nombre d'oxidació

Per determinar el nombre d'oxidació d'un àtom tindrem en compte les següents regles:

- La suma dels nombres d'oxidació de tots els àtoms d'un compost ha de ser zero si és una substància neutra o el valor de la càrrega si és un ió.
- Els àtoms tenen un estat d'oxidació zero quan es troben en el seu estat elemental.
- L'oxigen combinat té número d'oxidació –II. En els peròxids és formalment –I.
- ➤ L'hidrogen combinat té nombre d'oxidació +1 excepte en els hidrurs que és -1.
- > Els ions monoatòmics tenen un nombre d'oxidació igual a la seva càrrega.

1.2.- Principals estats d'oxidació dels elements

	E.O.
Li	
Na	
K	1
Rb	1
Cs	
Fr	
	Na K Rb Cs

	Beril⋅li	Be	
	Magnesi	Mg	
-	Calci	Ca	2
	Estronci	Sr	2
	Bari	Ba	
	Radi	Ra	

Bor	В	
Alumini	Αl	3
Gal⋅li	Ga	3
Indi	In	
Tal·li	TI	1, 3

Carboni	С	
Silici	Si	4
Germani	Ge	
Estany	Sn	2. 4
Plom	Pb	۷, 4

Nitrogen	Ν	
Fòsfor	Ρ	
Arsènic	As	3, 5
Antimoni	Sb	
Bismut	Bi	

Element		E.O.
Oxigen	0	-2
Sofre	S	
Seleni	Se	-2,4,6
Tel·luri	Te	

Fluor	F	-1
Clor	CI	-1, 1,
Brom	Br	3, 5,
lode	I	7

Coure	Cu	2
Plata	Ag	1
Or	Au	1, 3

Zinc	Zn	2
Cadmi	Cd	2
Mercuri	Hg	1,2

Escandi	Sc	
Itri	Υ	3
Lantani	La	3
Actini	Ac	

Element		E.O.
Titani	Ti	3, 4
Zirconi	Zr	4
Hafni	Hf	4

Vanadi	V	3, 4, 5
Niobi	Nb	5
Tàntal	Ta	3

Crom	Cr	2, 3, 6
Molibdè	Мо	4, 5, 6
Tungstè	W	4, 5, 0

Manganès	Mn	2, 4, 7
Tecneci	Tc	4, 6, 7
Reni	Re	4, 0, 7

Ferro	Fe	2, 3
Ruteni	Ru	2, 3, 4
Osmi	Os	2, 3, 4

Cobalt	Со	2, 3
Rodi	Rh	1, 3
Iridi	lr	1, 3, 4

Niquel Pal·ladi	Ni Pd	2
Platí	Pt	2, 4

Els elements no metalls són aquells que tenen la tendència a guanyar electrons i per tant podran tenir nombre d'oxidació negatiu. S'anomenen *electronegatius*. Els elements anomenats metàl·lics són aquells que tenen tendència a perdre electrons, i per tant, tendiran a formar ions positius.

Per exemple, el fluor, l'oxigen i el nitrogen són elements electronegatius. Els metalls dels grups 1 i 2 de la part baixa de la taula són, en canvi, electropositius.

2.- Elements o substàncies simples

Les substàncies simples estan formades per una única classe d'àtoms, de manera que quan s'agrupen per formar molècules aquestes estaran formades per àtoms idèntics.

En general, els elements gasosos es troben en forma de molècules amb dos àtoms (diatòmiques). Una excepció seria l'ozó (O₃), la molècula del qual té 3 àtoms.

Veiem alguns exemples de substàncies simples:

Nom	Fórmula
Hidrogen	H ₂
Fluor	F ₂
Clor	Cl ₂
Brom	Br ₂

Nom	Fórmula
lode	l 2
Nitrogen	N ₂
Oxigen	O ₂
Ozó	О3

2.1.- lons monoatòmics

Els ions són àtoms que han perdut o guanyat electrons. Aguí tractem només dels ions formats per un àtom individual i mes endavant es formularan els ions poliatòmics.

Per la nomenclatura i formulació dels ions monoatòmics, hem de diferenciar els positius dels negatius. Normalment, formen ions positius els elements metàl·lics i formen ions negatius els àtoms no metàl·lics, si bé aquesta diferenciació no pot ser absoluta.

Veiem a continuació com es formulen i com s'anomenen:

lons positius (cations)

El nom es forma amb la paraula ió seguida del nom del metall. Si l'element pot formar més d'un ió, s'indica el seu estat d'oxidació amb xifres romanes entre parèntesi:

Na⁺ ió sodi Zn²⁺ ió zinc Cu⁺ ió coure (I) Cu²⁺ ió coure (II)

Hi ha un grup de cations poliatòmics que es poden considerar com l'addició d'un protó a una espècie neutra, i s'anomenen afegint la terminació -oni al prefix indicatiu de la molècula d'on provenen:

H₃O⁺ ió oxoni NH₄⁺ ió amoni

PH₄⁺ ió fosfoni

Ions negatius (anions)

El nom es forma amb la paraula ió seguida de l'element acabat en -ur.

L'oxigen és una excepció s'anomena òxid.

S²⁻ ió sulfur Br ió bromur N³⁻ ió nitrur H ió hidrur O²⁻ ió òxid O_2^{2-} ió peròxid

3.- Compostos Binaris: AB

S'anomenen: radical de l'element B acabat en -ur + de + nom de l'element A.

Per exemple: NaCl és el clorur de sodi.

Es formulen escrivint, l'element més electronegatiu a la dreta i el menys electronegatiu a

l'esquerra.

3.1.- HIDRURS

Combinacions binàries de l'hidrogen amb un altre element

3.1.1 Hidrurs de metalls

Formulació: MH_m

Nomenclatura: Hidrur de + nom del metall

Exemples:

Formulació	Nomenclatura
LiH	
CaH ₂	Hidrur de calci
CrH ₂	Hidrur de calci Hidrur de crom (II) dihidrur de crom
CrH ₃	Hidrur de crom (III) trihidrur de crom

3.1.2 Hidrurs de no-metalls (B, Si, C, Bi, Sb, As, P, N) Tots aquests compostos reben noms particulars.

Formulació Nomenclatura	
NH_3	Amoníac
PH_3	Fosfina
AsH ₃	Arsina
SbH ₃	Estibina
BiH ₃	Bismutina
CH ₄	Metà
SiH ₄	Silà (tetrahidrur de silici)
BH_3	Borà (trihidrur de bor)

3.1.3 Hidrurs de no-metalls de caràcter àcid (Te, Se, S, At, I, Br, Cl, O, F)

Nomenclatura
Fluorur d'hidrogen
Aigua
Clorur d'hidrogen
Bromur d'hidrogen
lodur d'hidrogen
Sulfur d'hidrogen
Sel·lenur d'hidrogen
Tel·lerur d'hidrogen

3.1.4 Hidracids

- Són els compostos d'aquest grup (F, Cl, Br, I, S, Se, Te) quan estan en dissolució aquosa. Aquestes dissolucions són àcides, alliberen protons i formen l'anió corresponent. Per exemple:

$$HCI (aq) \rightarrow H^+ (aq) + CI^- (aq)$$

L'àcid s'anomena amb l'arrel del nom de l'element i el sufix **-hídric**. L'anió s'anomena amb l'arrel del nom de l'element i el sufix **-ur**.

Hidràcid	Nom	Anió	Nom
HF (aq)	Àcid fluorhídric	F ⁻	ló fluorur
HCI (aq)	Àcid clorhídric	Cl	ló clorur
HBr (aq)	Àcid bromhídric	Br⁻	ló bromur
HI (aq)	Àcid iodhídric	1	ló iodur
H ₂ S (aq)	Àcid sulfhídric	S ²⁻	ló sulfur
H₂Se (aq)	Àcid selenhídric	Se ²⁻	ló seleniür
H ₂ Te (aq)	Àcid tel·lurhídric	Te ²⁻	ló tel·leriür

Pot ser que els tres darrers hidràcids, en ionitzar-se, només alliberin un sol protó; per tant, l'anió corresponent encara mantindrà un àtom d'hidrogen. Aquests anions s'anomenen amb la paraula **hidrogen-**com a prefix del nom de l'anió:

Fórmula	Nom	Fórmula	Nom
HS	ló hidrogensulfur	HSe ⁻	ló hidrogenseleniür
HTe ⁻	ló hidrogentel·leriür		_

La fórmula d'un hidràcid és la mateixa que la de l'hidrur corresponent. L'àcid és quan l'hidrur està en dissolució aquosa. Per distingir l'àcid de l'hidrur, s'afegeix el subíndex (aq).

3.2.- **ÒXIDS**:

Combinacions binàries de l'oxigen amb qualsevol altre element, excepte el fluor; ja que el fluor és més electronegatiu que l'oxigen ($OF_2 \rightarrow Fluorur d'oxigen$). En els òxids, l'oxigen té nombre d'oxidació -2.

3.2.1 Òxids de metalls i no metalls

Formulació: E₂O_e Nomenclatura òxids de metalls: Òxid de + nom de l'element (nombre d'oxidació) Nomenclatura òxids de no metalls: òxid amb el prefix grec del nombre d'àtoms d'oxigen + de + nom de l'element amb el prefix grec

Exemples:

Formulació	Nomenclatura
K ₂ O	Òxid de potassi
CuO	Òxid de coure (II)
PbO_2	Òxid de plom(IV)
NO	Monòxid de nitrogen
N_2O	Òxid de dinitrogen
N_2O_3	Triòxid de dinitrogen
NO_2	Diòxid de nitrogen
SO_2	Diòxid de sofre
SO_3	Triòxid de sofre
P_2O_5	Pentòxid de fosfor
CO	Monóxid de carboni
CO_2	Diòxid de carboni
SiO ₂	Diòxid de silici

3.2.2 Peròxids

Combinacions binàries de l'oxigen, que actua com a O_2^{2-} , amb els metalls alcalins i alcalinoterris. Nomenclatura: Peròxid de + nom del metall

Exemples:

Formulació	Nomenclatura
Na ₂ O ₂	Peròxid de sodi
BaO_2	Peròxid de bari
H_2O_2	Peròxid d'hidrogen (aigua oxigenada)

□ 3.3.- COMPOSTOS BINARIS ENTRE NO-METALLS

Nomenclatura: S'anomena primer el no-metall més electronegatiu amb el prefix grec del nombre d'atoms i el sufix —ur + de + nom de l'altre no-metall.

Exemples:

Formulació	Nomenclatura
PCI ₃	Triclorur de fòsfor
PCI ₅	Pentaclorur de fòsfor
CS_2	Disulfur de carboni
NCI ₃	Triclorur de nitrogen

3.4.- COMPOSTOS BINARIS ENTRE METALLS I NO-METALLS

Són els que habitualment anomenem **sals**. Es formen substituint l'ió hidrogen (o varis ions hidrògens) dels hidràcids i d'alguns hidrurs per cations metàl·lics (o amb el ió amoni). Nomenclatura: Nom de l'anió + de + nom del catió metàl·lic.

Exemples:

Formulació	Nomenclatura
NaCl	Clorur de sodi
	Bromur de calci
Fe_2S_3	Sulfur de ferro (III)
	Sulfur de plom (IV)
NiCl ₂	Clorur de níquel (II)

3.5.- COMPOSTOS PSEUDOBINARIS

3.5.2 Hidròxids (bases)

Compostos iònics formats per l'anió hidròxid (OH) i un catió metàl·lic. Formulació: M(OH)m Nomenclatura: Hidròxid de + nom del metall.

Exemples:

Formulació	Nomenclatura
	Hidròxid de sodi
Mg(OH) ₂	Hidròxid de magnesi
Fe(OH) ₂	Hidròxid de ferro (II)
Fe(OH) ₃	Hidròxid de ferro(III)

4.- Compostos no binaris

4.1.- ÀCIDS (Oxoàcids)

Són àcids que contenen oxigen en la seva composició, a més de l'hidrogen i d'un altre element, que pot ser un no metall o bé un element de transició d'elevat nombre d'oxidació (Cr, Mn, B, C, Si, N, P, As, S, Se, Te, Cl, Br, I).

Formulació: H_mX_xO_n (fórmula general)

Normalment els oxoàcids s'obtenen a partir del seu òxid corresponent i se l'hi afegeix una molècula d'aigua.

Si l'element té dos estats d'oxidació, el més baix s'anomena **-os** i el més elevat **-ic**, per exemple:

$$\begin{split} &N(III)\ N_2O_3 + H_2O \rightarrow H_2N_2O_4 \rightarrow HNO_2\ (acid\ nitrós) \\ &N(V)\ N_2O_5 + H_2O \rightarrow H_2N_2O_6 \rightarrow HNO_3\ (acid\ nitric) \\ &S(IV)\ SO_2 + H_2O \rightarrow H_2SO_3\ (acid\ sulfurós) \\ &S(VI)\ SO_3 + H_2O \rightarrow H_2SO_4\ (acid\ sulfuric) \end{split}$$

Si l'element té més estats d'oxidació, com els halògens, que tenen 1,3,5,7 s'anomenen hipo-os, -os, -ic, per-ic, respectivament:

$$\begin{split} &\text{CI(I)} \quad \text{CI}_2\text{O} + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CI}_2\text{O}_2 & \rightarrow \text{HCIO} & (\text{\`acid hipoclor\'os}) \\ &\text{CI(III)} \quad \text{CI}_2\text{O}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CI}_2\text{O}_4 & \rightarrow \text{HCIO}_2 & (\text{\'acid clor\'os}) \\ &\text{CI(V)} \quad \text{CI}_2\text{O}_5 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CI}_2\text{O}_6 & \rightarrow \text{HCIO}_3 & (\text{\'acid cl\'oric}) \\ &\text{CI(VII)} \quad \text{CI}_2\text{O}_7 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{Br}_2\text{O}_8 & \rightarrow \text{HCIO}_4 & (\text{\'acid percl\'oric}) \\ \end{split}$$

4.2.- Orto, tio i diàcids

Alguns oxoàcids es poden formar amb diferent número de molècules d'aigua, rebent diferents noms

$$\begin{array}{lll} B(III) & B_2O_3 + H_2O & \rightarrow H_2B_2O_4 \rightarrow HBO_2 \ (acid metaboric) \\ B(III) & HBO_2 + H_2O & \rightarrow H_2BO_3 \ (acid ortoboric) \\ P(V) & P_2O_5 + H_2O & \rightarrow H_2P_2O_6 \rightarrow HPO_3 \ (acid metafosforic) \\ P(V) & HPO_3 + H_2O & \rightarrow H_3PO_4 \ (acid ortofosforic) \\ \end{array}$$

Normalment, orto- s'anomenen només l'àcid bòric i l'àcid fosfòric.

Quan es substitueix un O per un S s'anomena **tio** : Per exemple: a partir de l'oxoàcid H_2SO_4 (àcid sufuric), substituïm un O per un S, obtenint l'àcid tiosulfúric: $H_2S_2O_3$

Quan s'ajunten dues molècules d'àcid amb pèrdua d'una molècula d'aigua s'anomena **di-**: Per exemple:

 $H_2CrO_4\text{: àcid cròmic. 2 }H_2CrO_4=H_4\ Cr_2O_8 \xrightarrow{\quad -\ H_2O} \ H_2Cr_2O_7\ \text{àcid }\textbf{di}\text{cròmic}$

 $\text{H}_2\text{SO}_4\text{: àcid sulfúric. 2 H}_2\text{SO}_4 \ = \text{H}_4\text{S}_4\text{O}_8 \xrightarrow{\ -\ \text{H}_2\text{O}} \ \text{H}_2 \ \text{S}_2\text{O}_7 \ \text{àcid } \text{\textit{di}}\text{sulfuric}$

Sufix	Significat
meta	poca aigua
orto	més aigua
di	resultat de l'eliminació d'una molècula d'aigua entre dues molècules
	de l'oxoàcid corresponent.
tio	cas en que un àtom de sofre en substitueix un d'oxigen

NOM TRADICIONAL DELS ÀCIDS MÉS USUALS			
Formulació	Nom tradicional	Formulació	Nom tradicional
H ₃ BO ₃	àcid ortobòric (àc. bòric)	H ₂ SO ₃	Àcid sulfurós
HBO ₂	àcid metabòric	H_2SO_4	Àcid sulfúric
H ₂ CO ₃	àcid carbònic	$H_2S_2O_5$	Àcid disulfurós
HCIO	Àcid hipoclorós	$H_2S_2O_7$	Àcid disulfúric
HCIO ₂	Àcid clorós	$H_2S_2O_3$	àcid tiosulfúric
HCIO ₃	Àcid clòric	H ₂ SeO ₃	àcid seleniós
HCIO ₄	Àcid perclòric	H2SeO4	àcid selènic
HBrO	Àcid hipobromós	H_3PO_4	àcid ortofosfòric (àc. fosfòric)
HBrO ₂	Àcid bromós	HPO ₃	àcid metafosfòric
HBrO ₃	Àcid bròmic	$H_4P_2O_7$	àcid difosfòric
HBrO ₄	Àcid perbròmic	H_3AsO_3	àcid ortoarseniós (àc. arseniós)
HIO	Àcid hipoiodós	H_3AsO_4	àcid ortoarsènic (àc. arsènic)
HIO2	Àcid iodós	H_4SiO_4	àcid ortosilícic (àcid sílicic)
HIO ₃	Àcid iòdic	H_2SiO_3	àcid metasilícic
HIO ₄	Àcid periòdic	H_2CrO_4	àcid cròmic
HNO ₂	Àcid nitrós	$H_2Cr_2O_7$	àcid dicròmic
HNO ₃	Àcid nítric	HMnO ₄	àcid permangànic
		H_2MnO_4	àcid mangànic

Els anions corresponents a cada oxoàcid s'anomenen amb el sufix -it, si el nom de l'àcid duia el sufix -ós, o bé amb el sufix -at, quan el nom de l'àcid es feia amb el sufix -ic.

Oxoàcid	Anió
-ós	-it
-ic	-at

4.3.- ALTRES SALS:

4.3.1 Sals dels oxoàcids

Quan l'anió d'un oxoàcid es combina amb un catió metàl·lic (o amb l'ió amoni).

Nomenclatura: Nom de l'anió + de + nom del catió metàl·lic

Exemples:

Formulació	Nomenclatura
AgNO ₃	Nitrat de plata
Cu_2CO_3	Carbonat de coure (I)
LiNO ₂	Nitrit de liti
$ZnSO_3$	Sulfit de zinc
$Fe(IO_4)_3$	Periodat de ferro (III)
$Ca_3(PO_4)_2$	Fosfat de calci
Na ₂ CO ₃	Carbonat de sodi
$KMnO_4$	Permanganat de potassi

4.3.2 Sals àcides dels hidràcids i del oxoàcids

Són aquelles sals en les quals no tots els hidrògens de l'àcid del qual deriven han estat substituïts per cations metàl·lics. Nomenclatura: Nom de l'anió (amb prefix hidrogen-) + de + nom del catió metàl·lic.

Exemples:

Formulació	Nomenclatura
NaHS	Hidrogensulfur de sodi
$Ba(HSO_3)_2$	Hidrogensulfit de bari
NaHCO ₃	Hidrogencarbonat de sodi
KH ₂ PO ₄	Dihidrogenfosfat de potassi

4.3.3 Sals hidratades

Nomenclatura: Nomenclatura de la sal + monohidratat (dihidratat, trihidratat, etc) Exemple:

Formulació	Nomenclatura
	Clorur de cobalt (II) hexahidratat
Cu(OH) ₂ .2H ₂ O	hidròxid de coure (II) dihidratat