

Discrete Mathematics - Operations on Sets

Disjoint Sets and Symmetric Difference

 \bullet Theorem. Sets A and B are disjoint if and only if $A \cup B \,=\, A \, \Delta \, B$

Proof.

Notice first that $A \triangle B \subseteq A \cup B$. Suppose A and B are disjoint. To prove the equality, it suffices to show that $A \cup B = A \triangle B$.

show that $A \cup B \subseteq A \triangle B$. Take $x \in A \cup B$. It belongs to A or B, but $x \notin A \cap B$, as the intersection is empty. Therefore, $x \in A \triangle B$.

We prove by contraposition. Assume $A\cap B\neq\varnothing$. Say $x\in A\cap B$ Then $x\in A\cup B$.

However, from $x \in A \cap B$ we conclude that $x \notin A \Delta B$.

Therefore, $A \cup B \neq A \Delta B$.

Q.E.D.

Symmetric Difference

 \bullet The symmetric difference of sets A and B, denoted by A Δ B, is the set that contains those elements that are either in A or in B, but not in both.

Example {Jan.,Feb.,Mar.} ∆ {Dec.,Jan.,Feb.} = {Dec.,Mar.}

Discrete Mathematics - Operations on Sets

Complement

 Let A be a set and U a universe, A ⊆ U. The complement of A, denoted by A
 , is the set that comprises all elements of U that do not belong to A.

 $\overline{A} = \{x \mid x \in U \text{ and } x \notin A\} = \{x \mid x \notin A\}$

- Let the universe be the set of all integers, and A = {x | ∃y x=2y}
 Then Ā is the set of all odd numbers
- The universe is the Latin alphabet, A = { a,e,l,o,u,y }.
 Then \(\overline{A} = \{ b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,z \}.

Discrete Mathematics - Operations on Sets

Difference

 The difference of sets A and B (or relative complement of B in A), denoted by A – B, is the set containing those elements that are in A, but not in B.

 $A - B = \{x \mid x \in A \land x \notin B\}.$

A – B

• Clearly, $\overline{A} = U - A$.

Discrete Mathematics - Operations on Se

. . .

Laws of Set Theory

- Similar to logic connectives and formulas, expressions built from set operations and sets also satisfy some laws.
- $\blacksquare \quad \text{Theorem.} \quad \overline{A \cap B} = \overline{A} \cup \overline{B}$

 $\begin{array}{ll} \text{Proof.} & \overline{\text{We will show that }} \overline{A \cap B} \subseteq \overline{A} \cup \overline{B} \text{ and }} \overline{A \cap B} \supseteq \overline{A} \cup \overline{B} \\ \text{Prove that }} \overline{A \cap B} \subseteq \overline{A} \cup \overline{B} \text{ . Take }} x \in \overline{A \cap B}. \end{array}$

By the definition, $x \notin A \cap B$. Therefore, $x \notin A$ or $x \notin B$. Hence $x \in \overline{A}$ or $x \in \overline{B}$. Thus, $x \in \overline{A} \cup \overline{B}$

Now we prove that $\overline{A \cap B} \supseteq \overline{A} \cup \overline{B}$. Take $x \in \overline{A} \cup \overline{B}$. By definition, $x \in \overline{A}$ or $x \in \overline{B}$. Therefore, $x \notin A$ or $x \notin B$. This implies $x \notin A \cap B$. And, finally, $x \in \overline{A \cap B}$.

Q.E.D.

Discrete Mathematics - Operations on Sets

12-12

Another Proof

 Another way to prove equalities for sets is to use the set builder construction and some logic.

 $\overline{A \cap B} = \{x \mid x \notin A \cap B\}$ by definition of complement = $\{x \mid \neg(x \in A \cap B)\}$ by definition of does not belong symbol

= $\{x \mid \neg(x \in A \land x \in B)\}$ by definition of intersection

 $= \{x \mid \neg(x \in A \land x \in B)\}$ by definition of intersection $= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$ by De Morgan's law

= $\{x \mid (x \notin A) \lor (x \notin B)\}$ by def. of does not belong symbol

- (x | (x \in A) \quad (x \in B)) by defi. of does not belong symbol

 $= \{ x \mid (x \in \overline{A}) \lor (x \in \overline{B}) \}$ by definition of complement $= \{ x \mid x \in \overline{A} \cup \overline{B} \}$ by definition of union

 $= \overline{A} \cup \overline{B}$

Q.E.D.

Sets and Logic

If we look closer at the second proof, we notice that there is a very tight connection between set operations and logic connectives

— corresponds to complement

∨ corresponds to union ∪

∧ corresponds to intersection ∩

⊕ corresponds to symmetric difference Δ

O (false) corresponds to the empty set ∅

1 (truth) corresponds to the universe U

Discrete Mathematics - Operations on Sets More Laws of Set Theory $A \cup \emptyset = A$ Identity laws $A \cap U = A$ $A \cup U = U$ Domination laws $A \cap \emptyset = \emptyset$ $A \cup A = A$ Idempotent laws $A \cap A = A$ $\overline{(A)} = A$ Complementation law $A \cup B = B \cup A$ Commutative laws $A \cap B = B \cap A$ $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$ Associative laws

More Laws of Set Theory (cntd) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$ De Morgan's laws $A \cap (A \cup B) = A$ $A \cup (A \cap B) = A$ $A \cup$

Discrete Mathematics – Operations on Sets

Homework

Exercises from the Book:

No. 1, 4, 6, 8bc, 16, 17bc (page 146 – 147)