Pannon Egyetem Mérnöki Kar

SEGÉDLET

Műszaki hőtan elméleti kérdések

Műszaki hőtan Műszaki áramlástan és hőtan II. Műszaki áramlás- és hőtan

Tartalomjegyzék

Al	apadatok	2
	A tárgy adatai	2
	A segédlet célja	2
	Ajánlott szakirodalom	2
1.	Hőtani alapfogalmak	3
2.	A tökéletes (ideális) gáz és állapotváltozásai	4
3.	Valóságos gázok és gőzök, halmazállapot-változás	5
4.	Hőkörfolyamatok	6
5.	Nem visszafordítható folyamatok	8
6.	Hűtőgépek, hűtőkörfolyamatok	9
7.	Hőterjedés	10
8.	A hőcserélők felépítése	11

Alapadatok

A tárgy adatai

Név: Műszaki hőtan Kód: VEMKGEB242H

Kreditérték: 2 (1 elmélet, 1 gyakorlat)

Követelmény típus: vizsga

Szervezeti egység: Gépészmérnöki Intézet

Előadás látogatása: kötelező Gyakorlat látogatása: kötelező

Számonkérés: a félév végén zárthelyi, írásbeli és szóbeli vizsga

A segédlet célja

A segédlet célja.

A segédlet kidolgozása még folyamatban van.

Ajánlott szakirodalom

- Dr. Pleva László, Zsíros László: Műszaki hőtan, Pannon Egyetemi Kiadó (ebből kimarad: 59-62; 66-69; 100-104; 114-209; 237-245; 280-309 oldalak)
- M. A. Mihajev: A hőátadás számításának gyakorlati alapjai, Tankönyvkiadó, Budapest, 1990.

Hőtani alapfogalmak

A tökéletes (ideális) gáz és állapotváltozásai

Valóságos gázok és gőzök, halmazállapot-változás

Hőkörfolyamatok

Túlhevítés nélküli Rankine-Clausius-körfolyamat

Név	Rupert Balázs
Szak	Gépészmérnöki alapszak
Félév	2019/2020 II. (tavaszi) félév

4.1. ábra. A túlhevítő nélküli körfolyamat ábrája

4.2. ábra. A túlhevítő nélküli körfolyamat diagramja

Bevezetett hő számítása

$$q_{BE} = h_3 - h_1 (4.1)$$

Kondenzátorban elvont hő

$$q_K = -q_{4,1} = h_4 - h_1 \tag{4.2}$$

Munka számítása

A turbinából kivehető munka értéke.

$$w_t = w_{t_{3,4}} = h_3 - h_4 (4.3)$$

Termikus hatásfok

A termikus hatásfok megegyezik a kivett munka, és a bevezetett hő hányadosával. Célunk, hogy ez az érték minél nagyobb legyen, mert akkor a veszteségünk arányosan kevesebb.

$$\eta_T = \frac{w}{q_{BE}} = \frac{w_t}{q_{BE}} \tag{4.4}$$

Nem visszafordítható folyamatok

Hűtőgépek, hűtőkörfolyamatok

Hőterjedés

A hőcserélők felépítése