

Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher Go to next item

1.	Using Image Generator, how do you label images? TensorFlow figures it out from the contents	1 / 1 point
	O It's based on the file name O It's based on the file name	
	You have to manually do it	
	It's based on the directory the image is contained in	
	 ✓ Correct That's right! The directory of the image is the label. 	
2.	What method on the Image Generator is used to normalize the image?	1/1 point
	O normalize	
	O normalize_image	
	○ Rescale_image	
	rescale	
	○ Correct You've got it! This is the correct method for normalizing images.	
3.	How did we specify the training size for the images?	1/1 point
	The training_size parameter on the validation generator	
	The training_size parameter on the training generator	
	The target_size parameter on the training generator	
	The target_size parameter on the validation generator	
	○ Correct Exactly! target_size specifies the image training size	
4.	When we specify the input_shape to be (300, 300, 3), what does that mean?	1/1 point
	There will be 300 horses and 300 humans, loaded in batches of 3	
	Every Image will be 300x300 pixels, with 3 bytes to define color	
	There will be 300 images, each size 300, loaded in batches of 3	
	Every Image will be 300x300 pixels, and there should be 3 Convolutional Layers	
	Correct Nailed it! input_shape specifies image resolution.	
	If your training data is close to 1.000 accuracy, but your validation data isn't, what's the risk here?	1/1 point
	You're overfitting on your training data	
	You're overfitting on your validation data	

	O INO LISK, CHALS A BICALTESUIL	
	O You're underfitting on your validation data	
	 Correct Great job! The analysis corresponds too closely to the training data, and may therefore fail to fit additional data. 	
6.	Convolutional Neural Networks are better for classifying images like horses and humans because:	1/1 point
	There's a wide variety of horses	
	Correct Way to go! CNNs are better in this case as they are independent from prior knowledge and human intervention in feature extraction.	
	✓ There's a wide variety of humans	
	Correct You've got it! CNNs are better in this case as they are independent from prior knowledge and human intervention in feature extraction.	
	In these images, the features may be in different parts of the frame	
	Correct Correct! The receptive fields of different neurons partially overlap such that they cover the entire visual field.	
7.	After reducing the size of the images, the training results were different. Why?	1/1 point
	There was less information in the images	
	There was more condensed information in the images	
	The training was faster	
	We removed some convolutions to handle the smaller images	
	✓ CorrectYes! Removing some convolutions modifies the training results.	