FALL 2018 Course Project: 64bit Memory System Design

Three part submission

Assistant Professor Shaloo Rakheja Electrical and Computer Engineering, NYU

Grade distribution

- Homework + project = 40%
- Homework = 16%
- Project = 24%

Design of 64-bit SRAM + layout of SRAM array Project will be done in groups of 4 each. Please choose your project partners.

Project components

Project Part	Due Date*
Part-1 Address decoder, address/data registers, read+write peripherals	Nov. 25 (heavy deliverable)
Part-2 SRAM cell + layout	Dec. 08
Part-3 SRAM array + layout = full report	Dec. 21 (after final exam)

In addition to these deliverables, we will have one more homework.

^{*}All due dates are 11:55 PM on the date specified.

Project grading (i)

- Project deliverables are distributed in three parts with specific deadlines.
- Each submission is 8% of the total project weight (24%).
- In each submission, 2% goes toward meeting the deadline and 6% goes toward technical contents: (i) style of presentation, (ii) clever design styles, (iii) meeting the specifications.
- You will receive a letter grade with each submission instead of points.
- At the end of the final report, I will collect your letter grades from all the submissions and average them out.

Project grading (ii)

- With each submission, make sure you submit ALL of your CADENCE schematics on white background. All simulation results must be submitted on white background. A good option is to transfer the data from Cadence into a plotting tool for better readability.
- Show clear calculations for power dissipation, timing, functionality (wherever applicable.)
- Write as coherently as possible. I should be able to follow your design from the submitted report.

ONLY ONE REPORT PER PROJECT GROUP.

CLEARLY STATE ON THE COVER PAGE EACH TEAM

MEMBER's CONTRIBUTION.

Memory (SRAM) System

Configurations

- Address: 4 bit
 - Stored in 4-bit register (4 Master-Slave Flip Flops)
- Data: 4 bit
 - Stored in 4-bit register (4 Master-Slave Flip Flops)
- SRAM array: 64 bit
 - 16 rows, 1 column (data width = 4 bits)
 - 4 bit row decoding
- Column circuits
 - Read and write circuits

Specifications

- Technology: FreePDK45 CMOS
 - Min. length = 50 nm, min. width = 90 nm
- Supply voltage: 0.75V
- Target clock frequency: 2.5 GHz
- SRAM cell area < 0.8 μm²
- Connect body of PMOS to V_{DD} and the body of NMOS to ground always. This is important for Transmission Gate Design Styles.

Functionality

 Functional testing: We will keep A1=A2 and see whether design gives D1=D2

Timing

 We will test whether the array functions correctly (i.e. you write and read data correctly) at a frequency of 2.5GHz at 0.75V?

Project Plan

Part-I:

- Decoder Logic and WL generation and address regs.
- Peripherals (R/W circuitry)
 - Schematic level design by Nov. 25

Part-II:

- Design and layout of the SRAM cell
 - Schematic level design and cell layout <u>Dec. 08</u>

Part-III:

- Layout of the array (DRC and LVS clean)+ all Cadence files (<u>Dec. 21</u>)
- Project report (Dec. 21)

PART I SUBMISSION: PERIPHERAL CIRCUITS

November 25 deliverable

Your design should have all the components present in the RED BOXES

Problem 4: Timing path completed Peripheral

PART I Submission NOV. 25

Part-I submission	Nov. 25
Problem 1	Row Decoder
Problem 2	Address and data registers
Problem 3	Write circuitry
Problem 4	Read circuitry
Problem 5	Full peripheral

Problem-1: Decoder logic

- At the rising edge of the CLK, the address will be assigned to the Decoders.
- Row decoder:
 - Decode 4 bits (A_0, A_3) .
 - All the WL will be initially low.
 - The WL corresponding to the decoded address will make a low-to-high transition only after the decoding is complete.
 - The selected WL will make a high-to-low transition:
 - either at the falling edge of CLK (i.e. CLK high-time = WL turn on time + decoder delay)
 - or after a time interval equal (from the rising edge of WL) to the 50% of clock period (i.e. CLK high-time = WL turn on time)

Timing details: Option 1

- You may decide to synchronize the falling edge of the WL with falling edge of the CLK
 - Pros: Simple logic for WL generation
 - Cons: Tighter timing for SRAM cell

Timing details: Option 2

- You may decide to delay the falling edge of the WL so that WL turn on time is same as the CLK high time
 - Pros : Less stringent timing for SRAM cell
 - Cons: Little more complex logic for WL generation

You are free to choose any options

Other timing details

- Pre-charge (PRE) is synchronized with WL.
- Remember there are 16 WL signals but one pre-charge signals.
- You need to generate pre-charge signal from CLK and synchronize with all WL signals.
- SAE also needs to be generated from CLK and synchronized with PRE.
- If you use option (1), you can synchronize SAE and PRE with CLK as falling edge of the WL is synchronized with CLK.

Problem-1: Tasks

- Design the row decoder
 - Row decoder delay should be less than 25%-35% of CLK high time
- Ensure the logical functionality and timing of the WL signal for the chosen option.

Problem 1: Tasks

- Since we have not done the layout we do not know the exact capacitance of the WLs.
- For this part we will assume a 12 fF (possibly overestimation) capacitive load at each WL.

Example: 2-4 Decoder

S0	S1	10	I1	I2	I3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- Depending on the input conditions only 'one' output will be high and others will be low.
- You can also have only one output low and others high.
- Bottom line: only one output should be at a different state than the others.

Example: 2-4 Decoder STATIC LOGIC STYLE

What to submit with homework on Nov. 25

- A printout of the top-level schematic of the decoder from cadence
- A printout of the schematic which implements the WL logic
- A printout of the waveform of operation
 - Consider two successive CLK cycles (400 ps to 800ps) and (800ps to 1200ps). Assume CLK is zero from 0 – 400 ps
 - Show waveform of WLs corresponding to a) A0 A1 A2 A3 = [0 0 0 0] and b) A0 A1 A2 A3 = [0 1 0 0]
 - Waveform should show the correct operation for the option you have chosen

Report:

- Delay from rising edge of the CLK to the rising edge of WL
- Delay from falling edge of the CLK to the falling edge of the WL
- Average Power dissipation

PROBLEM 2: ADDRESS AND DATA REGISTERS

Problem 2: Registers

- Design the 4 bit registers (you need to first design single flipflop and then connect 4 of the flip-flops in parallel). Ensure that the design satisfies the following constraints
 - Target CLK period = 400ps
 - Setup time < 15% of CLK period
 - CLK-Q delay < 10% of CLK period
- Do not unnecessarily upsize devices as it will increase power dissipation

Problem 2: What to submit with homework on Nov. 25

- Cadence schematic of the single flip/flop
- Describe the design style you have used
- Show waveform of operation for a single flip/flop
 - Apply data to D and show it changes state in Q
 - Point the CLK-Q-Delay in the waveform
 - Show two cases one just satisfying setup requirement and one just violating the setup requirement
 - Report the setup time in your waveform and in your written solution
 - What is the hold time for your flip flop design?
 - What is the average power dissipation of the address register?

Problem 3: Write circuitry

- Design the Write circuit to apply the data to the bit-lines (you will need an additional input signal that tells whether a memory access operation is read or write)
 - Design the data drivers
 - Connect the write circuit to the column and implement the read/write control
 - Ensure that data driver will be connected to the columns if and only if write operation is selected
 - Assume that the bitlines have a capacitive load of 40 fF
- Connect the one bit of the data register to the write circuitry

What to submit with the homework on Nov. 25

- Cadence schematic
- Testing strategy
 - How will you verify the circuit? Draw the waveform that shows the circuit is working correctly.
 - Which delay(s) are important to ensure proper write operation?
 - Describe the global synchronization requirement for the entire system to ensure write operation
 - Remember you want the write data to arrive at the bitline before the WL signal goes high.
 - What should be the expected timing for Pre-charge, Column select arrival, data arrival at bitline, and WL arrival?
- Cadence waveform
- Report the delays that characterize the write circuit.

Problem 4: Read circuitry

- Describe the read circuit
 - Sense amplifiers
 - Ensure the sense-amplifier delay < 15%-20% of the CLK period (Assume 10 fF capacitance at the output)
 - Assume 10% worst-case mismatch in the width of senseamplifier devices and find out the minimum bit-differential that can be correctly sensed.
- Ensure during read operation, write path is disconnected.
- Consider the global timing and synchronization requirements.

What to submit with HW on Nov. 25

- Cadence schematic
- Testing strategy
 - How will you verify the circuit? Draw the waveforms that will tell you the circuit is functioning correctly.
 - Which delay(s) in the sense amplifier are important to ensure proper read operations?
 - Describe the global synchronization/timing requirement for the entire system to ensure read operation (draw simple waveform to explain this)
 - What happens to bitlines after WL goes high?
 - What happens to the bitlines when sense-amplifier (SAE) gets enabled?
 - When the sensed data arrives at the output and gets latched at the data register?
- Show the waveform from CADENCE
- Report the delay that characterizes the read circuit.

PROBLEM 5: COMPLETE PERIPHERAL

Problem 5: Complete peripheral

- Complete the row circuits
 - Connect the 4- bit row address registers to Row decoders (with WL generation logic).
- Complete the column circuits
 - Assume 16 bitlines (bl and !bl) each with a cap.
 of 40fF
 - Connect the output of the bitlines to the read/write circuitry

Problem 5: Peripheral

Your design should have all the components present in the RED BOXES

What to submit with homework on Nov. 25

- Block level Cadence schematic
- Waveform
 - Operation of Path (1): i.e. show row addr. gets
 propagated to the WL
 - Show waveforms verifying operation of Timing
 Path (3)
 - Read : Assume that VBL = VDD and !VBL = VDD \triangle for the column and show that if read operation is selected the sense-amp output latches the correct value
 - Write: Assume d = 1 and !d = 0 and show the bitlines for the column gets proper value

What to submit with homework on Nov. 25

- Report total delay for
 - Timing path (1): Positive CLK edge to positive WL edge
 - Timing path (2) read: Positive edge at SAE to data arrival at the latch output
 - Timing path (2) write: Positive edge at CLK to the change in the bitlines voltages (assume before the positive edge arrives all the bitlines are pre- charged to VDD)

PART II SUBMISSION: SRAM CELL AND ARRAY (DEC. 08)

- Create the schematic of SRAM cell with precharge transistors and 40fF bitline capacitances in Cadence
 - ✓ Assume $W_p = W_{min}$, $W_{access} = 1.5W_p$, $W_{pd} = 2W_p$.
- Simulate the cell to perform read and write operations
 - ✓ Connect the cell to one WL (with 40fF cap) output of the row decoder circuits
 - ✓ Connect the column circuits to the cell.
 - ✓ Use worst-case Δ_{BIT} obtained previously for senseamplifier firing. If you did not solve it use $\Delta_{BIT} = 100$ mV.

- SRAM cell design
- Do not worry about cell access delay at this point
 - let it be whatever it is for the assumed sizing.
 - At this point aim is to set-up schematic and simulation setup.
- Include the waveform showing the operations

- SRAM cell design: size the different transistors of the SRAM cell to achieve the following cell parameters
 - ✓ Read margin > 25% of V_{DD}
 - ✓ Write margin > 35% of V_{DD}
 - ✓ Cell access time (assuming 40fF bit line capacitances) is such that, total time required to obtain a bit-differential of Δ_{BIT} from the rising edge of the CLK < 200ps (i.e. CLK-q-delay of latch + row decoder + cell access time).
 - ✓ Cell area < $0.8 \mu m^2$

- Use the methods described in lecture notes for read margin and write margin measurements.
- For access time estimation you can use either a simple read current based method or full transient simulation
- You can develop a simple formula for computing cell area from device widths (assuming L = 50 nm for all devices).
- Show the intermediate read margin, write margin, and cell access time values for different sizes you tried.
 - For read and write margins, give plots with respect to beta ratios (width ratio for you) as discussed in class.
 - For access time, plot the values as a function of device widths directly.

Problem 3 (solve concurrently with Problem 2)

- Draw the layout of the optimized cell from problem 2 in Cadence and estimate the total area.
- Perform DRC and LVS and include your DRC/LVS reports in your submission. Your design must be DRC?LVS clean to receive credit.
 - Remember you need to include the substrate and N-well contact even for the single cell to pass DRC.
 - Include it now, but later when you will create the SRAM array, you will delete them and create contacts at the higher level.

- Solve Problem-1 again with the optimized cell designed in Problem-2.
- Report the final "schematic-level" timing:
 - (a) CLK to WL
 - (b) cell access time
 - (c) sense-amplifier
 - (d) latch
- Show the maximum frequency at which you can read your array (schematic level).

- Create the schematic for the 16x4 array and connect it to the full-decoder and column circuits.
- This should complete the entire schematic level design of the entire memory system.
- Include the top level block diagram with your submission.

Array layout

- Make the layout of the full 16x4 SRAM array
- You need to add the pre-charge transistors to each column
 - Think about where you will place them
- Do not forget to include the substrate and the n0well contact
- Attach the power supply grid to the array
- Make it DRC and LVS clean
 - Remember to run LVS with 16x4 cell, pre-charge devices

- Make the layout of the full 16x4 SRAM array
- You need to add the pre-charge transistors to each column
 - Think about where you will place them
- Do not forget to include the substrate and the n0well contact
- Attach the power supply grid to the array
- Make it DRC and LVS clean
 - Remember to run LVS with 16x4 cell, pre-charge devices

- IEEE Double-Column Format
- One report per group
- Present a block-diagram of the system and identify the critical components in the delay path
- Discuss the key design concept that you have used to design each components and interconnect them
 - The key concepts only: Do not include the width of every transistors
 - If you have used any interesting technique this is the place to clearly mention it
 - Circuits are better understood from figures (not cadence printouts) – so figures to explain your trick
- Present the schematic (with width of different transistors clearly readable - width numbers in Cadence printouts are normally not readable) and layout of the single SRAM cell
 - Include the layout as a figure in the word-file

- Make a Table where you present the value of key properties of different components of your design
 - Latch -> setup time and CLK-Q delay
 - Decoder -> row-decoder delay and column decoder delay (mention delay before array layout and after)
 - SRAM cell -> Read margin, write margin, area, and cell access time
 - Sense-amplifier -> worst-case delay and offset voltage
 - Write-circuit -> Delay to discharge a bitline from V_{dd} to 0
- Show waeform (include only CLK, WL, cell nodes, bitlines, and final read-outs) of read and write operation
 - Make sure the waveforms are readable
 - You will be given credit if you include the waveform as a figure in your report (not as a separate printout) – use the print-to-file option to create a picture, annotate it properly to indicate different signals

- Report your total read access delay (CLK-edge to read-out signal) and write delay (CLK-edge to cell node)
- Report the maximum clock frequency till which you could run the system
- The maximum length (shorter the better) of the report is

4 pages

Additional pages will not only increase your effort it will also reduce your marks

4 page is a lot of space if you only report the important stuff - the top design conferences allow only 2-pages to explain a microprocessor design