Bus lines, multilines approach

notes GG

March 29, 2022

1 Formalism

1.1 Network definition

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a oriented graph and \mathbf{A} its adjacency matrix, representing a multimodal transportation network between $|\mathcal{V}| = n$ stops and possessing l lines. Each stop belong to only one line, i.e. $\mathcal{V} = \bigcup_{k=1}^{l} \mathcal{V}_k$ and $\bigcap_{k=1}^{l} \mathcal{V}_k = \emptyset$, where \mathcal{V}_k represents the set of nodes in line k. The edge set \mathcal{E} , can also be decomposed with $\mathcal{E} = \left(\bigcup_{k=1}^{l} \mathcal{E}_k\right) \cup \mathcal{E}_{\mathrm{trsf}}$, where \mathcal{E}_k contains edges connecting node inside transportation line k, and $\mathcal{E}_{\mathrm{trsf}}$ contains edges permitting transfer between different transportation lines. We suppose that edges belong to only a unique set, i.e. $\mathbf{A} = \sum_{k=1}^{l} \mathbf{A}_k + \mathbf{A}_{\mathrm{trsf}}$, and there are an uniquely define route inside lines, i.e. $a_{i\bullet}^k \leq 1$ and $a_{\bullet i}^k \leq 1 \ \forall i,k$. Transfer edges also define a subset of nodes $\mathcal{V}_{\mathrm{f}} \subset \mathcal{V}$, containing free nodes, i.e. nodes connected to a transfer edge. We have $i \in \mathcal{V}_{\mathrm{f}} \iff a_{i\bullet}^{\mathrm{trsf}} + a_{\bullet i}^{\mathrm{trsf}} > 0$.

1.2 Flow definition

A matrix $\mathbf{N} = (n_{ij})$, verifying:

1.
$$n_{ij} \ge 0$$

2.
$$a_{ij} = 0 \Rightarrow n_{ij} = 0$$

is a flow matrix defined on \mathcal{G} . Again, we can decompose this matrix with

$$\mathbf{N} = \mathbf{N}_{\mathrm{W}} + \mathbf{N}_{\mathrm{B}} \qquad \mathbf{N}_{\mathrm{W}} := \sum_{k=1}^{l} \mathbf{N}_{k} \tag{1}$$

where the flow \mathbf{N}_{W} is the flow inside the lines, \mathbf{N}_{B} the flow between lines, and \mathbf{N}_{l} the flow inside line l.

Suppose that we possess two *n*-length vectors $\mathbf{l}_{in} = (l_i^{in})$ and $\mathbf{l}_{out} = (l_i^{out})$, representing ,respectively, the flow entering the line associated with stop i and going out of this line at stop i. These vectors can in fact be expressed with:

$$\mathbf{l}_{\rm in} = \boldsymbol{\sigma}_{\rm in} + \tag{2}$$