Теорема

Если множество вещественных чисел содержит хотя бы один элемент и ограничено сверху/снизу, то у этого множества существует его точная верхняя/нижняя грань.

Доказательство

(Для верхней грани, для нижней — аналогично)

Если множество M ограничено сверху, существует непустое множество $\overline{M} \neq \oslash$ — множество всех верхних граней множества M . По аксиоме о непрерывности множества вещественных чисел:

 $\forall m \in M, \overline{m} \in \overline{M} \ \exists \varepsilon : m \le \varepsilon \le \overline{m} \ \text{Отсюда следует, что } \varepsilon$ — верхняя грань множества M и то, что эта верхняя грань — наименьшая, т.е. ε — точная верхняя грань. $\varepsilon = \sup M$, теорема доказана.

Доказательство (по Барменкову)

(Для верхней грани, для нижней — аналогично)

Пусть X — числовое множество, ограниченное сверху, непустое. Т.е. $\exists M: \forall x \in X \Rightarrow x \leq M$ Возможны случаи:

- 1) Среди элементов множества X есть хотя бы одно неотрицательное вещественное число
- 2) Все элементы X отрицательные вещественные числа

В силу ограниченности множества X, все целые части чисел $x \in X$ будут меньше или равны М. Это значит, что среди целых частей $x \in X$ найдется наибольшая. Обозначим ее $\bar{x_0}$. Далее выберем числа вида $\bar{x_0}.x_1x_2...$ — числа, целая часть которых совпадает с $\bar{x_0}$. Среди этих чисел можно найти числа с наибольшим $x_1 = \bar{x_1}$. Аналогично выбираем наибольшее $x_2, x_3...$

Получили конструктивный процесс нахождения наибольшего числа. Будем считать, что $\exists \bar{x} = \bar{x_0}.\bar{x_1}\bar{x_2}\bar{x_2}...$

Остается доказать, что $\sup X = \bar{x}$

Для этого нужно проверить условия: $\{\forall x \in X \Rightarrow x \leq \bar{x}\}$ и $\{\forall x' \in X, x' < \bar{x} \exists \bar{x'} \in X : x' < \bar{x'}\}$

Первое условие почти очевидно, т.к. \bar{x} — наибольший элемент X .

Для второго условия рассмотрим вышеописанные два случая:

1) В X есть хотя бы одно неотрицательное число.

Обозначим это число за x'.

По определению: $x' < \bar{x'} \Leftrightarrow x_0' = \bar{x_0}', \ x_1' = \bar{x_1}' \dots x_n' < \bar{x_n}'$

Этот \bar{x}' будет таким, что второе условие доказано.

2) Все элементы X — отрицательные вещественные числа вида $-x_0.x_1x_2...x_n$

Тогда из того, что $x_0 > 0 \Rightarrow \exists \bar{x}_{0_{\text{many}}}$ из X.

Можно найти наименьшее число $\bar{x_0}.\bar{x_1}\bar{x_2}...$

Тогда во $\sup X = -x_0 \cdot x_1 x_2 \cdot ...$