DIFERENCIAÇÃO

/x x n x
x n x ¹ x
n x
X
$\sec^2 x$
x.tgx
sec x . cotg x
$\sqrt{1-x^2}$
$\sqrt{1-x^2}$
$(1+x^2)$
$(1+x^2)$
$(x\sqrt{x^2-1})$
$(x\sqrt{x^2-1})$
и.и'
n u . u'
u . u'
sec² u . u'
u.tgu.u'
sec u . cotg u . u'
$\sqrt{1-u^2}$
$\sqrt{1-u^2}$
$1+u^2)$
$(1+u^2)$
(1 (4)
$u\sqrt{u-1}$
2

<u>INTEGRAÇÃO</u>

e ⁿ	$e^x + c$
dx/x	$\operatorname{Ln} x + \mathbf{c}$
sen x dx	$-\cos x + c$
cos x dv	sen x + c
$\sec^2 x dx$	tg x + c
cosec ² x dx	$-\cot x + c$
sec x . tg x dx	$\sec x + c$
$\csc x \cdot \cot x dx$	$-\csc x + c$
tg x dx	$-\operatorname{Ln}\left[\cos x\right]+c$
cotg x dx	$\operatorname{Ln}[\operatorname{sen} x] + c$
sec x dx	$\operatorname{Ln}\left[\sec x + \operatorname{tg} x\right] + \operatorname{c}$
cosec x dx	$\operatorname{Ln}\left[\operatorname{cosec} x - \operatorname{cotg} x\right] + \operatorname{c}$
$sen^2 x dx$	½x - ¼ sen 2x + c
$\cos^2 x dx$	$\frac{1}{2}x + \frac{1}{4} \sin 2x + c$
$du / \sqrt{a^2 - u^2}$	arc sen (u/a) + c
$du/(a^2+u^2)$	(1/a) arc tg (u/a) + c
$du/(u\sqrt{u^2-u^2})$	(1/a) arc sec u/a +c

INTEGRAÇÃO POR PARTES

$$\int u \, d \, v = u \, v - \int v \, d \, u + c$$

SUBSTITUIÇÃO TRIGONOMÉTRICA

INTEGRANDO	SUBSTITUIÇÃO	IDENT, UTILIZADA
(a) $\sqrt{a^2 - x^2}$	$x = a \cdot sen \theta$	$1 - \sin^2 \theta = \cos^2 \theta$
(b) $\sqrt{a^2 + x^2}$	$x = a \cdot tg \theta$	$1 + tg^2 \theta = \sec^2 \theta$
(c) $\sqrt{x^2 - a^2}$	$x = a \cdot \sec \theta$	$\sec^2\theta - 1 = tg^2\theta$

<u>TRIGONOMETRIA</u>

$\operatorname{sen}^2 t + \cos^2 t = 1$
$1 + tg^2 t = \sec^2 t$
$1 + \cot^2 t = \csc^2 t$
tg t = sen t / cos t
$\cot g t = \cos t / \sin t$
$tg t \cdot cotg t = 1$
$\operatorname{sen} t \cdot \operatorname{cosec} t = 1$
$\cos t \cdot \sec t = 1$
sen 2t = 2sen t . cos t
$\cos 2t = \cos^2 t - \sin^2 t$
$\cos^2 t = \frac{1}{2} \left(1 + \cos 2t \right)$
$\operatorname{sen}^2 t = \frac{1}{2} (1 - \cos 2t)$

Aluno (a):____

Professora: MAGALI