

10/541260

JC14 Rec'd PCT/PTO 30 JUN 2005

x16758M.ST25.txt
SEQUENCE LISTING

<110> Watkins, Jeffry D.
Vasserot, Alain P.
Marquis , David
Huse , William D.
<120> TNF-alpha Binding Molecules
<130> X-16758M
<140> PCT/US04/00290
<141> 2004-01-08
<150> 10/338,552
<151> 2003-01-08
<150> 10/338,627
<151> 2003-01-08
<160> 114
<170> PatentIn version 3.3
<210> 1
<211> 107
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 1

Glu Ile Val Leu Thr Gln Ser Pro Asp Phe Gln Ser Val Thr Pro Lys
1 5 10 15

Glu Lys Val Thr Ile Thr Cys Arg Ala Ser Gln Phe Val Gly Ser Ser
20 25 30

Ile His Trp Tyr Gln Gln Lys Pro Asp Gln Ser Pro Lys Leu Leu Ile
35 40 45

Lys Tyr Ala Ser Glu Ser Met Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Glu Ala
65 70 75 80

Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Ser His Ser Trp His Phe
85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 2
<211> 321

x16758M.ST25.txt

<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 2

gaaattgtgc tgactcagtc tccagacttt cagtcgtga ctccaaaaga gaaagtacc 60
atcacctgca gggccagtca gttcggtggc tcaaggcatcc actggtagca gcagaagcca 120
gatcagtctc caaagctcct catcaagtat gcttctgagt ctatgtctgg ggtcccctcg 180
aggttcagtg gcagtggatc tggacagat ttcaccctca ccatcaatag cctggaagct 240
gaagatgctg ccacgtattt ctgtcaacaa agtcatactt ggcatttcac gttcgccaa 300
gggaccaagg tggaaatcaa a 321

<210> 3

<211> 120

<212> PRT

<213> Artificial

<220>
<223> Synthetic Construct

<400> 3

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn His
20 25 30

Trp Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Gly Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu
50 55 60

Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Ser
65 70 75 80

Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr
85 90 95

Tyr Cys Ala Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp His Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 4
<211> 360

X16758M.ST25.txt

<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 4

gaggtgcagc tgggtggagtc tgggggaggc ttgggtccagc ctggagggtc cctgagactc 60
tcctgtgcag cctctggatt cacttcagt aaccactgga tgaactgggt ccgccaggct 120
ccagggaaagg ggctggagtg ggttggcgaa attagatcaa aatctattaa ttctgcaaca 180
cattatgcgg agtctgtgaa agggagattc accatctcaa gagatgattc aaagaactca 240
ctgtacctgc agatgaacag cctgaaaacc gaggacacgg ccgtgtatta ctgtgttaga 300
aattactacg gtagtaccta cgaccattgg ggccaaggga ccctggcac cgtccctca 360

<210> 5

<211> 107

<212> PRT

<213> Artificial

<220>
<223> Synthetic Construct

<400> 5

Glu Ile Val Leu Thr Gln Ser Pro Asp Phe Gln Ser Val Thr Pro Lys
1 5 10 15

Glu Lys Val Thr Ile Thr Cys Arg Ala Ser Gln Phe Val Gly Tyr Ser
20 25 30

Ile His Trp Tyr Gln Gln Lys Pro Asp Gln Ser Pro Lys Leu Leu Ile
35 40 45

Lys Tyr Ala Ser Glu Ser Arg Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Glu Ala
65 70 75 80

Glu Asp Ala Ala Thr Tyr Cys Gln Gln Ser His Ser Trp His Phe
85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 6

<211> 321

<212> DNA

<213> Artificial

<220>

x16758M.ST25.txt

<223> Synthetic Construct

<400> 6
gaaattgtgc tgactcagtc tccagactt cagtctgtga ctccaaaaga gaaagtcacc 60
atcacctgca gggccagtc tatagcatcc actggtagca gcagaagcca 120
gatcagtctc caaagctcct catcaagtat gttctgagt ctaggtctgg ggtccccctcg 180
aggttcagtg gcagtggatc tggacagat ttcaccctca ccatcaatag cctgaaagct 240
gaagatgctg ccacgtattt ctgtcaacaa agtcatact ggcatttcac gttcggccaa 300
gggaccaagg tggaaatcaa a 321

<210> 7
<211> 120

<212> PRT

<213> Artificial

<220>
<223> Synthetic Construct

<400> 7

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Lys Phe Ser Asn His
20 25 30

Trp Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Gly Glu Ile Arg Ser Lys Ser Met Asn Ser Ala Thr His Tyr Ala Glu
50 55 60

Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Ser
65 70 75 80

Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr
85 90 95

Tyr Cys Ala Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp His Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 8
<211> 360

<212> DNA

<213> Artificial

<220>

x16758M.ST25.txt

<223> Synthetic Construct

<400> 8

gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggagggtc cctgagactc 60
tcctgtgcag cctctggatt cccttcagt aaccactgga tgaactgggt ccgccaggct 120
ccagggaaagg ggctggagtg gtttgcgaa attagatcaa aatctatgaa ttctgcaaca 180
cattatgcgg agtctgtgaa agggagattc accatctcaa gagatgattc aaagaactca 240
ctgtacctgc agatgaacag cctgaaaacc gaggacacgg ccgtgttata ctgtgctaga 300
aattactacg gtagtaccta cgaccattgg ggccaaggga ccctggtcac cgtctcctca 360

<210> 9

<211> 11

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 9

Arg Ala Ser Gln Phe Val Gly Ser Ser Ile His
1 5 10

<210> 10

<211> 33

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 10

agggccagtc agttcggtgg ctcaagcatc cac

33

<210> 11

<211> 11

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 11

Arg Ala Ser Gln Phe Val Gly Leu Ser Ile His
1 5 10

<210> 12

<211> 33

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

x16758M.ST25.txt

<400> 12
agggccagtc agttcggtgg ccttagcatc cac

33

<210> 13
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 13

Arg Ala Ser Gln Phe Val Gly Met Ser Ile His
1 5 10

<210> 14
<211> 33
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 14
agggccagtc agttcggtgg catgagcatc cac

33

<210> 15
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 15

Arg Ala Ser Gln Phe Val Gly Tyr Ser Ile His
1 5 10

<210> 16
<211> 33
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 16
agggccagtc agttcggtgg ctatagcatc cac

33

<210> 17
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

X16758M.ST25.txt

<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> The residue in this position could be any amino acid

<400> 17

Arg Ala Ser Gln Phe Val Gly Xaa Ser Ile His
1 5 10

<210> 18
<211> 33
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> misc_feature
<222> (22)..(24)
<223> The residues in these positions could be any amino acid

<400> 18
agggccagtc agttcggtgg cnnnagcatc cac

33

<210> 19
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 19

Tyr Ala Ser Glu Ser Met Ser
1 5

<210> 20
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 20
tatgcttctg agtctatgtc t

21

<210> 21
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

x16758M.ST25.txt

<400> 21

Tyr Ala Ser Glu Tyr Met Ser
1 5

<210> 22

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 22

tatgcttctg agtatatgtc t

21

<210> 23

<211> 7

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> The residue in this position could be any amino acid

<400> 23

Tyr Ala Ser Glu xaa Met Ser
1 5

<210> 24

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<220>

<221> misc_feature

<222> (13)..(15)

<223> The residues in these positions could be any amino acid

<400> 24

tatgcttctg agnnnatgtc t

21

<210> 25

<211> 7

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

X16758M.ST25.txt

<400> 25

Tyr Ala Ser Glu Ser Arg Ser
1 5

<210> 26

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 26

tatgcttctg agtcttaggtc t

21

<210> 27

<211> 7

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 27

Tyr Ala Ser Glu Ser Lys Ser
1 5

<210> 28

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 28

tatgcttctg agtctaaggc t

21

<210> 29

<211> 7

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> The residue in this position could be any amino acid

<400> 29

Tyr Ala Ser Glu Ser Xaa Ser
1 5

X16758M.ST25.txt

<210> 30
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> misc_feature
<222> (16)..(18)
<223> The residues in these positions could be any amino acid

<400> 30
tatgcttctg agtctnnntc t

21

<210> 31
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> MISC_FEATURE
<222> (5)..(6)
<223> The residues in these positions could be any amino acid

<400> 31

Tyr Ala Ser Glu xaa xaa Ser
1 5

<210> 32
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> misc_feature
<222> (13)..(18)
<223> The residues in these positions could be any amino acid

<400> 32
tatgcttctg agnnnnnnntc t

21

<210> 33
<211> 9
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

X16758M.ST25.txt

<400> 33

Gln Gln Ser His Ser Trp His Phe Thr
1 5

<210> 34

<211> 27

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 34

caacaaagtc atagctggca tttcacg

27

<210> 35

<211> 10

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 35

Gly Phe Thr Phe Ser Asn His Trp Met Asn
1 5 10

<210> 36

<211> 30

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 36

ggattcactt tcagtaacca ctggatgaac

30

<210> 37

<211> 10

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 37

Gly Phe Lys Phe Ser Asn His Trp Met Asn
1 5 10

<210> 38

<211> 30

<212> DNA

<213> Artificial

<220>

x16758M.ST25.txt

<223> Synthetic Construct

<400> 38

ggattcaagt tcagtaacca ctggatgaac

30

<210> 39

<211> 10

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 39

Gly Phe Pro Phe Ser Asn His Trp Met Asn
1 5 10

<210> 40

<211> 30

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 40

ggattccctt tcagtaacca ctggatgaac

30

<210> 41

<211> 10

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> The residue in this position could be any amino acid

<400> 41

Gly Phe Xaa Phe Ser Asn His Trp Met Asn
1 5 10

<210> 42

<211> 30

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<220>

<221> misc_feature

<222> (7)..(9)

x16758M.ST25.txt

<223> The residues in these positions could be any amino acid

<400> 42

ggattcnnt tcagtaacca ctggatgaac

30

<210> 43

<211> 19

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 43

Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu Ser
1 5 10 15

Val Lys Gly

<210> 44

<211> 57

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 44

gaaatttagat caaaatctat taattctgca acacattatg cggagtctgt gaaaggg

57

<210> 45

<211> 19

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 45

Glu Ile Arg Ser Lys Ser Met Asn Ser Ala Thr His Tyr Ala Glu Ser
1 5 10 15

Val Lys Gly

<210> 46

<211> 57

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 46

gaaatttagat caaaatctat gaattctgca acacattatg cggagtctgt gaaaggg

57

x16758M.ST25.txt

<210> 47
<211> 19
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> MISC_FEATURE
<222> (7)..(7)

<223> The residue in this position could be any amino acid

<400> 47

Glu Ile Arg Ser Lys Ser Xaa Asn Ser Ala Thr His Tyr Ala Glu Ser
1 5 10 15

Val Lys Gly

<210> 48
<211> 57
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> misc_feature
<222> (19)..(21)

<223> The residues in these positions could be any amino acid

<400> 48

gaaatttagat caaaatctnn naattctgca acacattatg cggagtctgt gaaaggg

57

<210> 49
<211> 19
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 49

Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Arg Ser
1 5 10 15

Val Lys Gly

<210> 50
<211> 57

x16758M.ST25.txt

<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 50

gaaatttagat caaaatctat taattctgca acacattatg cgcgttctgt gaaaggg

57

<210> 51
<211> 19
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<220>

<221> MISC_FEATURE

<222> (15)..(15)

<223> The residue in this position could be any amino acid

<400> 51

Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala xaa Ser
1 5 10 15

Val Lys Gly

<210> 52
<211> 57
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<220>

<221> misc_feature

<222> (43)..(45)

<223> The residues in these positions could be any amino acid

<400> 52

gaaatttagat caaaatctat taattctgca acacattatg cgnntctgt gaaaggg

57

<210> 53
<211> 9
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 53

Asn Tyr Tyr Gly Ser Thr Tyr Asp His
1 5

x16758M.ST25.txt

<210> 54
<211> 27
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 54
aattactacg gtagtaccta cgaccat

27

<210> 55
<211> 19
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 55

Glu Ile Arg Ser Lys Ser Met Asn Ser Ala Thr His Tyr Ala Arg Ser
1 5 10 15

Val Lys Gly

<210> 56
<211> 57
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 56
gaaatttagat caaaatctat gaattctgca acacattatg cgcgttctgt gaaaggg

57

<210> 57
<211> 23
<212> PRT
<213> Homo sapiens

<400> 57

Glu Ile Val Leu Thr Gln Ser Pro Asp Phe Gln Ser Val Thr Pro Lys
1 5 10 15

Glu Lys Val Thr Ile Thr Cys
20

<210> 58
<211> 15
<212> PRT
<213> Homo sapiens

X16758M.ST25.txt

<400> 58

Trp Tyr Gln Gln Lys Pro Asp Gln Ser Pro Lys Leu Leu Ile Lys
1 5 10 15

<210> 59

<211> 32

<212> PRT

<213> Homo sapiens

<400> 59

Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr
1 5 10 15

Leu Thr Ile Asn Ser Leu Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys
20 25 30

<210> 60

<211> 10

<212> PRT

<213> Homo sapiens

<400> 60

Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
1 5 10

<210> 61

<211> 69

<212> DNA

<213> Homo sapiens

<400> 61

gaaatttgtgc tgactcagtc tccagacttt cagtctgtga ctccaaaaga gaaagtcacc 60

atcacacctgc

69

<210> 62

<211> 45

<212> DNA

<213> Homo sapiens

<400> 62

tggtaccaggc agaagccaga tcagtctcca aagctcctca tcaag

45

<210> 63

<211> 96

<212> DNA

<213> Homo sapiens

<400> 63

ggggtcccct cgaggttcag tggcagtgga tctggacag atttcaccct caccatcat 60

agccttggaaag ctgaagatgc tgccacgtat tactgt 96

<210> 64

x16758M.ST25.txt

<211> 30
<212> DNA
<213> Homo sapiens

<400> 64
ttcggccaag ggaccaagggt ggaaatcaaa

30

<210> 65
<211> 25
<212> PRT
<213> Homo sapiens

<400> 65

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser
20 25

<210> 66
<211> 14
<212> PRT
<213> Homo sapiens

<400> 66

Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Gly
1 5 10

<210> 67
<211> 32
<212> PRT
<213> Homo sapiens

<400> 67

Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Ser Leu Tyr Leu Gln
1 5 10 15

Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg
20 25 30

<210> 68
<211> 11
<212> PRT
<213> Homo sapiens

<400> 68

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
1 5 10

<210> 69
<211> 75
<212> DNA
<213> Homo sapiens

x16758M.ST25.txt

<400> 69
gaggtgcagc tgggtggagtc tgggggaggc ttggtccagc ctggagggtc cctgagactc 60
tcctgtgcag cctct 75

<210> 70
<211> 42
<212> DNA
<213> Homo sapiens

<400> 70
tgggtccgcc aggctccagg gaaggggctg gagtggttg gc 42

<210> 71
<211> 96
<212> DNA
<213> Homo sapiens

<400> 71
agattcacca tctcaagaga tgattcaaag aactcaactgt acctgcagat gaacagcctg 60
aaaaccgagg acacggccgt gtattactgt gctaga 96

<210> 72
<211> 33
<212> DNA
<213> Homo sapiens

<400> 72
tggggccaag ggacccttgtt caccgtctcc tca 33

<210> 73
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 73

Arg Ala Pro Gln Phe Val Gly Ser Ser Ile His
1 5 10

<210> 74
<211> 33
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 74
agggccccctc agttcggtgg ctcaagcatc cac 33

<210> 75
<211> 11

x16758M_ST25.txt

<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> The residue in this position could be any amino acid

<400> 75

Arg Ala Xaa Gln Phe Val Gly Ser Ser Ile His
1 5 10

<210> 76
<211> 33
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> misc_feature
<222> (7)..(9)
<223> The residues in these positions could be any amino acid

<400> 76
agggccnnnc agttcggtgg ctcaaggcatc cac

33

<210> 77
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 77

Arg Ala Ser Gln Phe Val Tyr Ser Ser Ile His
1 5 10

<210> 78
<211> 33
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 78
agggccagtc agttcggtta ttcaaggcatc cac

33

<210> 79
<211> 11

x16758M.ST25.txt

<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> The residue in this position could be any amino acid

<400> 79

Arg Ala Ser Gln Phe Val Xaa Ser Ser Ile His
1 5 10

<210> 80
<211> 33
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> misc_feature
<222> (19)..(21)
<223> The residues in these positions could be any amino acid

<400> 80
aggcccaagtc agttcgtnn ntcaaggatc cac

33

<210> 81
<211> 9
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 81

Gln Gln Ser His Trp Trp His Phe Thr
1 5

<210> 82
<211> 27
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 82
caacaaagtc attgggtggca tttcacg

27

<210> 83
<211> 9

x16758M.ST25.txt

<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> The residue in this position could be any amino acid

<400> 83

Gln Gln Ser His Xaa Trp His Phe Thr
1 5

<210> 84
<211> 27
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<220>
<221> misc_feature
<222> (13)..(15)
<223> The residues in these positions could be any amino acid

<400> 84
caacaaagtc atnnnntggca tttcacg

27

<210> 85
<211> 357
<212> DNA
<213> Homo sapiens

<400> 85
tcagccctcca ccaaggcccc atcggtcttc cccctggcac ctcctccaa gagcacctct 60
gggggcacag cggccctggg ctgcctggtc aaggactact tccccgaacc ggtgacggtg 120
tcgttgaact caggcgccct gaccagcggc gtgcacacacct tcccgctgt cctacagtcc 180
tcaggactct actcccttag cagcgtggtg accgtgccct ccagcagctt gggcacccag 240
acctacatct gcaacgtgaa tcacaagccc agcaacacca aggtggacaa gaaagcagag 300
cccaaatctt ctactagtgt tctctaccca tatgtatgtac ctgattatgc atcatag 357

<210> 86
<211> 324
<212> DNA
<213> Homo sapiens

<400> 86
cgaactgtgg ctgcaccatc tgtcttcatc ttcccgccat ctgatgagca gttgaaatct 60
ggaactgcct ctgttgtgtg cctgctgaat aacttctatc ccagagaggc caaagtacag 120

X16758M.ST25.txt

tggaagggtgg ataacgccct ccaatcggt aactcccagg agagtgtcac agagcaggac	180
agcaaggaca gcacctacag cctcagcgc accctgacgc tgagcaaagc agactacgag	240
aaacacaaag tctacgcctg cgaagtcacc catcagggcc tgagctcgcc cgtcacaaag	300
agttcaaca ggggagagtc tttag	324
<210> 87	
<211> 39	
<212> DNA	
<213> Artificial	
<220>	
<223> Synthetic Construct	
<400> 87	
tggctccag gtgccaaatg taaaatttg ctgactcag	39
<210> 88	
<211> 21	
<212> DNA	
<213> Artificial	
<220>	
<223> Synthetic Construct	
<400> 88	
tggctccag gtgccaaatg t	21
<210> 89	
<211> 21	
<212> DNA	
<213> Artificial	
<220>	
<223> Synthetic Construct	
<400> 89	
gacagatggt gcagccacag t	21
<210> 90	
<211> 39	
<212> DNA	
<213> Artificial	
<220>	
<223> Synthetic Construct	
<400> 90	
ctctccacag gtgtccactc ccaggtccaa ctgcaggc	39
<210> 91	
<211> 21	
<212> DNA	
<213> Artificial	
<220>	

x16758M.ST25.txt

<223> Synthetic Construct

<400> 91

ctctccacag gtgtccactc c

21

<210> 92

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 92

gaagaccgat gggcccttgg t

21

<210> 93

<211> 11

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 93

Val Thr Thr Gln Phe Val Gly Tyr Ala Ile His
1 5 10

<210> 94

<211> 33

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 94

gttactactc agttcggtgg ctatgctatc cac

33

<210> 95

<211> 7

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 95

Tyr Ala Ser Ser Ser Arg Ser
1 5

<210> 96

<211> 21

<212> DNA

<213> Artificial

<220>

x16758M.ST25.txt

<223> Synthetic Construct

<400> 96

tatgcttctt cgtcttaggtc t

21

<210> 97

<211> 9

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 97

Gln Gln Ser His Gly Trp Pro Phe Thr
1 5

<210> 98

<211> 27

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 98

caacaaagtc atgggtggcc tttcacg

27

<210> 99

<211> 10

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 99

Gly Phe Lys Phe Arg Asn His Trp Met Asn
1 5 10

<210> 100

<211> 30

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 100

ggattcaagt tccgtaacca ctggatgaac

30

<210> 101

<211> 10

<212> PRT

<213> Artificial

<220>

x16758M.ST25.txt

<223> Synthetic Construct

<400> 101

Gly Phe Asp Phe Arg Asn His Trp Met Asn
1 5 10

<210> 102

<211> 30

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 102

ggattcgatt tccggaacca ctggatgaac

30

<210> 103

<211> 19

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 103

Glu Ile Arg Ser Lys Ser Met Asn Ser Ala Thr Phe Tyr Ala Glu Ser
1 5 10 15

Val Lys Gly

<210> 104

<211> 57

<212> DNA

<213> Artificial

<220>

<223> Synthetic Construct

<400> 104

gaaatttagat caaaaatctat gaattctgca acattttatg cggagtctgt gaaaggg

57

<210> 105

<211> 11

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 105

Ala Ala Ser Gln Phe Val Gly Gln Ala Ile His
1 5 10

x16758M.ST25.txt

<210> 106
<211> 33
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 106
gcggcttctc agttcggtgg ccaggcgatc cac 33

<210> 107
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 107
Tyr Ala Asn Glu Ser Arg Ser
1 5

<210> 108
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 108
tatgctaattg agtcttaggtc t 21

<210> 109
<211> 39
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 109
tggctcccaag gtgccaaatg tgaatttgtc ctgactcag 39

<210> 110
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 110
tggctcccaag gtgccaaatg t 21

<210> 111
<211> 21

x16758M.ST25.txt

<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 111
gacagatggt gcagccacag t

21

<210> 112
<211> 39
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 112
ctctccacag gtgtccactc ccaggtccaa ctgcaggtc

39

<210> 113
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 113
ctctccacag gtgtccactc c

21

<210> 114
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Synthetic Construct

<400> 114
gaagaccgat gggccttgg t

21