Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 7G Fractals and Shape Grammars

Fractals

- Fractal gallery
 - http://www.mhri.edu.au/~pdb/fractals/fractalgallery
 - Site does not appear to be active: searches for Fractal Gallery lead to many others, like this: https://scratch.mit.edu/studios/33129

Fractal Geometry

- Fractal geometry term defined by Benoit Mandelbrot
 - Euclidean geometry is insufficient to describe natural objects which have irregular or fragmented features
 - In computer graphics: the term fractal has been generalized to include objects and techniques outside Mandelbrot's original definition
- Properties of fractal objects
 - Infinite detail at every point
 - Self similarity
 - Precise definition requires statistical self-similarity at all levels of detail
- Classification of fractals
 - Self-similar fractals
 - Have parts that are scaled down versions of the entire objects
 - Self-affine fractals
 - Have parts that are formed with different scaling parameters in different directions
 - Can include random variations to obtain statistically self-affine fractals

Successive Refinement

- Complex curves can be constructed by repeatedly "refining" a simple curve
- von Koch snowflake is such a construction
 - Exhibits self similarity
 - Start with a line segment with a bump on it
 - Replace each segment of the line with a figure exactly like the original line
 - Repeat the process
 - If the process is repeated infinite times the object becomes self similar
 - Entire object is similar to a sub-portion of itself

Replace each line with this pattern

Fractal Dimension

- Fractal dimension is associated with self-similarity
 - Related to intuitive notion of dimension
 - Line segment is one dimensional with self similarity
 - Can be divided into N equal parts each scaled down 1/n from the whole
 - Square is two dimensional
 - Can be divided into N identical parts each scaled by N^{1/2}
 - Cube can be divided into N smaller cubes each scaled by N^{1/3}
 - D-dimensional self-similar object can be divided into N smaller copies of itself each scaled down by factor r = 1/N 1/D
- Fractal or similarity dimension is given by
 - D = log(N) / log(1/r)
 - Need not be an integer
 - von Koch snowflake: any segment is composed of 4 sub-segments each scaled down by a factor of
 1/3 from its parent
 - Fractal dimension is D = log(4) / log(3) = 1.26
 - Non-integer dimension can be interpreted as:
 - Fills more of space than line (1-D) but less than Euclidean area of plane (2-D)

Statistical Self-Similarity

- Objects in nature rarely exhibit exact self- similarity
 - Often exhibit statistical self-similarity
- Example is a coastline
 - Closer one looks at a coastline the more detail one sees
 - Measuring length of coastline the more carefully the small wiggles are followed the longer the coastline becomes
 - Each small section of the coastline looks similar (but not exactly like) a larger portion
- Concept of statistical self-similarity can also be quantified in terms of fractal dimension
 - Using a ruler size r times the number of steps taken of size r, N(r) taken in tracing the coast:
 - Length = r * N(r)
 - N(r) varies on the average as 1/r^D
 - Coastlines can be characterized by fractal dimensions of 1.15 to 1.25
 - Terrain has fractal dimension of 2.15 to 2.25

Julia and Mandelbrot Sets

- The two most famous fractal objects are the Julia set and the Mandelbrot set
- Objects are generated from the study of the rule $x->x^2 + c$
 - x is a complex number: x = a + bi
 - Modulus < 1, repeated squaring will approach 0
 - Modulus is the real number (a² + b²)^{1/2}
 - Modulus > 1, repeated squaring will approach infinity
 - Modulus = 1, repeated squaring stays at 1
 - Julia sets plot set of points going to 0, infinity, or neither for various complex numbers c
 - Shape of the set depends on the complex number c chosen
 - Generally plot regions of space that approach 0 vs those that approach infinity by performing an iteration $x->x^2+c$ a specified number of times
 - Can choose colors based on how rapidly the point diverges
 - This produces the pretty graphs of regions of the Julia or Mandelbrot set

Some Uses of Fractals

- Fractal terrain generation or coastline generation is common
- Fractals have also been used to generate other objects
 - Clouds, water, trees, feathers, surface textures
 - Distributing craters on lunar landscape
 - Creating a fractal planet: surface generated by Brownian motion or random walk on a sphere
 - Brownian motion is a form of random walk describes erratic movement of gas particles
 - Given a starting position generate a straight line segment in a random direction with random distance - then repeat
 - Fractal flakes and clouds
 - Fractal music
 - Many others including producing pretty patterns

Shape Grammars

L-system plant geometry to model a shrub

Grammar-Based Modeling

- Grammar based modeling techniques have mainly been used to model trees and plants
 - Also called shape grammars
 - Generally use parallel graph grammar languages called L-grammars or L-systems
 - Invented by A. Lindenmayer for modeling plants and trees
 - Foley and van Dam have a good description of the technique
 - Primarily used where object being modeled exhibits regularity
- Sets of production rules applied to an initial object
 - Add layers of detail that are harmonious with initial shape
 - Can alter geometry or surface color/texture
- Given a set of production rules a shape designer can experiment and apply different rules at each step of the transformation
 - Rules can be described graphically showing initial and final shapes
 - Trees: can be written as Tree:: = branch + tree
 - 'Tree is a branch with a tree on the end of it'

