Uppsala Universitet Matematiska Institutionen

Prov i matematik Reell analys, 1MA226 2020-08-19

Andreas Strömbergsson

Duration: 8.00 - 13.00. The exam consists of 8 problems, each worth 5 points. Solutions may be written in Swedish or English, and should contain detailed arguments. Permitted aids: Course material, lecture notes, old problems and solutions.

- 1. Give an example of a sequence of nonempty compact subsets C_1, C_2, \ldots of \mathbb{R}^2 (equipped with its standard metric) such that the union $\bigcup_{n=1}^{\infty} C_n$ is an open set. Prove your claim.
- **2.** Find the $\limsup_{n\to\infty}$ and $\liminf_{n\to\infty}$ of the following sequences:

(a).
$$x_n = \left(1 + \cos\left(\frac{\pi n}{2}\right)\right) 2^n + (-1)^n$$
.

(b).
$$x_n = \left(1 + \frac{(-1)^n}{n}\right)^{n^2} - e^n$$
.

- **3.** Prove that the series $F(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^3 + x^4}$ converges for all $x \in \mathbb{R}$, and that the function $F : \mathbb{R} \to \mathbb{R}$ is C^1 .
- **4.** For the following two sequences (f_n) in C([0,1]), determine if (f_n) converges uniformly on [0,1]:

(a)
$$f_n(x) = \frac{xn+1}{x+n}$$
.

(b)
$$f_n(x) = \sin(\pi x^n)$$
.

5. Prove that there exists a unique function $f \in C([0,1])$ satisfying

$$f(x) = 2x + \frac{1}{3}f(x^2) + \int_0^1 (y - x)f(y) \, dy.$$

6. The system

$$\begin{cases} uvw = 1\\ e^{u-v} + e^{v-w} = 2 \end{cases}$$

is satisfied at the point (u, v, w) = (1, 1, 1). Show that u and v can be solved in a neighbourhood of (1, 1, 1) as a function of w. Calculate also u'(1) and v'(1), where u and v are regarded as functions of w.

Also see next page / se även nästa sida!

7. Give an example of an *unbounded*, continuous, real-valued function f on $[0, \infty)$ such that the limit

$$\lim_{b \to +\infty} \int_0^b f(x) \, dx$$

exists. Prove your claim.

8. Let F be an equicontinuous family of functions from [0,1] to \mathbb{R} . Prove that for every $\varepsilon > 0$ there exists some $N \in \mathbb{Z}^+$ such that for all $n, m \geq N$ and all $f \in F$, we have

$$\left| \frac{1}{2^n} \sum_{k=1}^{2^n} f\left(\frac{k}{2^n}\right) - \frac{1}{2^m} \sum_{j=1}^{2^m} f\left(\frac{j}{2^m}\right) \right| < \varepsilon.$$

LYCKA TILL / GOOD LUCK!