Student name (Student ID): Lai Siu Kwok (12354991)

Problem Definition

Heart failure is a serious disease that is difficult to cope with due to its sudden onset and there are many people who die of heart failure every year. In view of this, the aim of this project is to use machine learning techniques such as tests with different algorithms, to find out which algorithms perform well which is the highest accuracy, in this case. Therefore, the best algorithms can be used to predict the survival of patients with heart failure in order to help people who need the medication the most for reducing the number of deaths from heart failure.

Introduction

We will use K-fold cross-validation to compare 4 algorithms, respectively are logistic regression (LR), K Nearest Neighbors (KNN) Naive Bayes (NB), and K-Mean (KM). First, we will divide the dataset into training and testing set as a ratio of 7:3. Second, the normalization techniques will be deployed because of the different types of features. Third, the feature selection will be performed for finding the most significant two features in order to suit the algorithms. Forth, the visualization techniques of the output will give a clearer image for the explanation. Finally, The cross-validation (CV) scores obtained can then be used as criteria for choosing the best parameter of the models, also the model selection for future work in the end.

Library

```
In [1]: from pandas import read csv
        import numpy as np
        import pandas as pd
        import seaborn as sns
        from matplotlib import pyplot
        from sklearn.model_selection import KFold
        from sklearn.model selection import cross val score
        from sklearn.linear_model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive bayes import GaussianNB
        from sklearn.model selection import train test split
        from sklearn.metrics import classification report
        from sklearn.model selection import GridSearchCV
        from scipy.stats import skew
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import accuracy score
        %matplotlib inline
```

Dataset import

```
In [2]: df = pd.read_csv('heart_failure_clinical_records_dataset.csv')
    del df['time'] #The column 'time' is day/time property, not a useful fe
    ature
    print("Dimention: ", df.shape)

Dimention: (299, 12)
```

Find if missing values is present

```
In [3]: print(df.isnull().sum())
        print("\nNo missing value in dataset")
                                      0
        age
                                      0
        anaemia
        creatinine_phosphokinase
        diabetes
        ejection fraction
        high_blood_pressure
                                     0
        platelets
        serum_creatinine
        serum sodium
                                     0
        sex
                                     0
        smoking
        DEATH EVENT
                                     0
        dtype: int64
        No missing value in dataset
```

Data Description

In [4]: df.head()

Out[4]:

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_p
0	75.0	0	582	0	20	1
1	55.0	0	7861	0	38	0
2	65.0	0	146	0	20	0
3	50.0	1	111	0	20	0
4	65.0	1	160	1	20	0

In [5]: df.describe()

Out[5]:

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fractic
count	299.000000	299.000000	299.000000	299.000000	299.000000
mean	60.833893	0.431438	581.839465	0.418060 38.083612	
std	11.894809	0.496107	970.287881	0.494067	11.834841
min	40.000000	0.000000	23.000000	0.000000	14.000000
25%	51.000000	0.000000	116.500000	0.000000	30.000000
50%	60.000000	0.000000	250.000000	0.000000	38.000000
75%	70.000000	1.000000	582.000000	1.000000	45.000000
max	95.000000	1.000000	7861.000000	1.000000	80.000000

```
In [6]: sns.countplot(x="DEATH_EVENT", data = df)
    pyplot.title("Distribution of DEATH_EVENT")
```

Out[6]: Text(0.5,1,'Distribution of DEATH EVENT')

In [7]: pyplot.style.use('ggplot')
 pyplot.title("Distribution of age")
 pyplot.hist(df['age'], bins=30)
 print()


```
In [8]: sns.countplot(x="anaemia", data = df)
    pyplot.title("Distribution of anaemia")
    print()
```



```
In [10]: sns.countplot(x="diabetes", data = df)
    pyplot.title("Distribution of diabetes")
    print()
```



```
In [12]: sns.countplot(x="high_blood_pressure", data = df)
    pyplot.title("Distribution of high_blood_pressure")
    print()
```



```
In [14]: pyplot.style.use('ggplot')
    pyplot.hist(df['serum_creatinine'], bins=30)
    pyplot.title("Distribution of serum_creatinine")
    print()
```



```
In [16]: sns.countplot(x="sex", data = df)
    pyplot.title("Distribution of sex")
    print()
```


Correlation matrix

```
In [18]: corr = df.corr()
    corr.style.background_gradient(cmap='coolwarm').set_precision(2)
```

Out[18]:

	age	anaemia	creatinine_phosphokinase	diabetes	eject
age	1	0.088	-0.082	-0.1	0.06
anaemia	0.088	1	-0.19	-0.013	0.032
creatinine_phosphokinase	-0.082	-0.19	1	-0.0096	-0.04
diabetes	-0.1	-0.013	-0.0096	1	-0.00
ejection_fraction	0.06	0.032	-0.044	-0.0049	1
high_blood_pressure	0.093	0.038	-0.071	-0.013	0.024
platelets	-0.052	-0.044	0.024	0.092	0.072
serum_creatinine	0.16	0.052	-0.016	-0.047	-0.01
serum_sodium	-0.046	0.042	0.06	-0.09	0.18
sex	0.065	-0.095	0.08	-0.16	-0.15
smoking	0.019	-0.11	0.0024	-0.15	-0.06
DEATH_EVENT	0.25	0.066	0.063	-0.0019	-0.27

Interpretation

From the above plots, we can see there are no any abnormal phenomenon and distribution about the features. On the other hand, the correlation plot indicates that most of the features have a correlation relationship to the target. Therefore, we can go for conducting our proposed algorithms.

Preprocessing

Normalization

Out[19]:

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_bloc
0	0.636364	0.0	0.071319	0.0	0.090909	1.0
1	0.272727	0.0	1.000000	0.0	0.363636	0.0
2	0.454545	0.0	0.015693	0.0	0.090909	0.0
3	0.181818	1.0	0.011227	0.0	0.090909	0.0
4	0.454545	1.0	0.017479	1.0	0.090909	0.0

Split data into training / testing set

```
In [20]: array = df_feat.values
    X = array[:,:]
    Y = df['DEATH_EVENT']

    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.
    3, random_state=0)

    print('Training set shape: ', X_train.shape, y_train.shape)
    print('Testing set shape: ', X_test.shape, y_test.shape)

Training set shape: (209, 11) (209,)
    Testing set shape: (90, 11) (90,)
```

Feature selection

Interpretation

From the result of feature selection, in order to fit the algorithms, we have to get two most important features. Then, we can notice that the features of 'ejection_fraction' and 'serum_creatinine' having the highest mark from the two criteria. Thus, 'ejection_fraction' and 'serum_creatinine' will be selected.

Remap the X set with correlated features

Algorithm implementation

Logistic Regression

Logistic Regression with Cross-Validation

Logistic Regression with best C

```
In [25]: from sklearn import metrics
   import seaborn as sn

logreg_fit = LogisticRegression(C=float(clf.C_), max_iter=1000)
   logreg_fit = logreg_fit.fit(X_train, y_train)
   y_pred = logreg_fit.predict(X_test)
```

Model Evaluation

```
In [26]: scores = []
for i in range(1, 1000):
    logreg = LogisticRegression(C=float(clf.C_), max_iter=i)
    logreg_trained = logreg.fit(X_train, y_train)
    scores.append(logreg_trained.score(X_test, y_test))

pyplot.plot(range(1, 50), scores[1:50], marker='o')
pyplot.title("Detail of iter")
pyplot.xlabel('Number iter')
pyplot.ylabel('Accuracy')
pyplot.tight_layout()
pyplot.show()
print("The graph indicates that the # of iter is within the range")
```


The graph indicates that the # of iter is within the range

```
In [27]: import matplotlib.pyplot as plt
         logreg best = LogisticRegression(C=float(clf.C), max iter=1000)
         logreg fit = logreg best.fit(X train, y train)
         h = .02
         X_{\min}, X_{\max} = X[:, 4].min() - .05, X[:, 4].max() + .05
         y_{min}, y_{max} = X[:, 7].min() - .05, X[:, 7].max() + .05
         xx, yy = np.meshgrid(np.arange(X min, X max, h), np.arange(y min, y ma
         x, h))
         Z = logreg.predict(np.c [xx.ravel(), yy.ravel()])
         # Put the result into a color plot
         Z = Z.reshape(xx.shape)
         plt.figure(1, figsize=(6, 4))
         plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
         # Plot also the training points
         plt.scatter(X[:, 4], X[:, 7], c=Y, edgecolors='k', cmap=plt.cm.Paired)
         plt.xlabel('ejection fraction')
         plt.ylabel('serum creatinine')
         plt.title('Decision boundaries with Logistic Regression')
         plt.xlim(xx.min(), xx.max())
         plt.ylim(yy.min(), yy.max())
         plt.xticks(())
         plt.yticks(())
         plt.show()
```

Decision boundaries with Logistic Regression

support	f1-score	recall	precision	
62 28	0.84		0.76 0.71	0 1
90	0.73	0.76	0.75	avg / total

KNN

KNN with Cross-Validation

```
In [29]: error rate = []
         acc = []
         scoresCV = []
         for i in range(1,40,2): # 1,3,5,7,9 ..... Law of thumb
             knn = KNeighborsClassifier(n neighbors=i)
             knn.fit(X train,y train)
             pred i = knn.predict(X test)
             error rate.append(np.mean(pred i != y test))
             #cross val score(knn, X train, y train, cv=10, scoring='accuracy')
             scores = metrics.accuracy score(y test, pred i)
             acc.append(scores.mean())
         pyplot.figure(figsize=(10,6))
         pyplot.plot(range(1,40,2),error rate,color='blue', linestyle='dashed',
         marker='o',
                  markerfacecolor='red', markersize=10)
         pyplot.title('Error Rate vs. K Value')
         pyplot.xlabel('K')
         pyplot.ylabel('Error Rate')
         pyplot.figure(figsize=(10,6))
         pyplot.plot(range(1,40,2),acc,color='blue', linestyle='dashed', marker=
         '0',
                  markerfacecolor='red', markersize=10)
         pyplot.title('Accuracy vs. K Value')
         pyplot.xlabel('K')
         pyplot.ylabel('Accuracy')
         print("Error Rate suggests : 7, 11, 13")
         print("Accuracy Rate suggests : 7, 11, 13")
```

Error Rate suggests : 7, 11, 13
Accuracy Rate suggests : 7, 11, 13

Hyperparameter Tuning

```
In [30]: n neighbors = [7,11,13]
         grid_params = { 'n_neighbors' : n_neighbors,
                        'metric' : ['minkowski', 'euclidean', 'manhattan']}
         gs = GridSearchCV(KNeighborsClassifier(), grid params, verbose = 1, cv=
         10, n jobs = -1)
         g_res = gs.fit(X_train, y train)
         print(g res.best score )
         print(g res.best params )
         #print(g_res.best_index_)
         # use the best hyperparameters
         knn best = KNeighborsClassifier(n_neighbors=n_neighbors[int(g_res.best_
         index )], metric = 'minkowski')
         knn best.fit(X train, y train)
         print("The best K is", n neighbors[int(g res.best index )])
         Fitting 10 folds for each of 9 candidates, totalling 90 fits
         0.7751196172248804
         {'metric': 'minkowski', 'n neighbors': 7}
         The best K is 7
         [Parallel(n jobs=-1)]: Done 90 out of 90 | elapsed: 3.1s finishe
```

Model Evaluation

KNN with best K

```
In [31]: y_pred = knn_best.predict(X_test)
    print(classification_report(y_test, y_pred))

confusion_matrix = pd.crosstab(y_test, y_pred, rownames=['Actual'], col names=['Predicted'])
    sn.heatmap(confusion_matrix, annot=True)
    pyplot.show()

KNN_acc = metrics.accuracy_score(y_test, y_pred)
    print('Testing set accuracy: ', KNN_acc)
```

	precision	recall	f1-score	support
0 1	0.82 0.70	0.89 0.57	0.85	62 28
avg / total	0.78	0.79	0.78	90

Testing set accuracy: 0.7888888888888889

Naïve Bayes Classifier

```
In [32]: model = GaussianNB()
    trained_model = model.fit(X_train, y_train)
    y_pred = trained_model.predict(X_test)
```

Model Evaluation

	precision	recall	f1-score	support
0 1	0.73 0.75	0.97 0.21	0.83 0.33	62 28
avg / total	0.74	0.73	0.68	90

K-means Clustering

```
In [34]: colors=np.array(["red", "blue"])
    plt.xlabel('ejection_fraction')
    plt.ylabel('serum_creatinine')
    plt.title('Distrubution')

plt.scatter(X[:, 4], X[:, 7], c=colors[Y], s=50)
    for label, c in enumerate(colors):
        plt.scatter([], [], c=c, label=str(label))
    plt.legend();
```


Model fitting

```
In [35]:
         from sklearn.cluster import KMeans
         km = KMeans(n clusters=2,
                     init='random',
                     n init=100,
                     max_iter=300,
                     tol=1e-04, # stop criteria
                     random state=0)
         km_fit = km.fit(X_train,y_train)
         km pred = km fit.predict(X test)
         #print(help(km_pred))
         #print(km_fit.inertia_)
         print("Centroid 1:{}\nCentroid 2:{}".format(km_fit.cluster_centers_[0],
         km_fit.cluster_centers_[1]))
         print("# of Iter:",km_fit.n_iter_)
         Centroid 1:[0.27977892 0.10716557]
         Centroid 2:[0.59909091 0.07361798]
         # of Iter: 12
```

```
In [36]: y km = km.fit predict(X train)
         plt.scatter(X_train[y_km == 0, 0],
                      X_{train}[y_km == 0, 1],
                      s=50, c='lightgreen',
                      marker='s', edgecolor='black',
                      label='cluster 1')
         plt.scatter(X train[y km == 1, 0],
                      X_{train[y_km == 1, 1],
                      s=50, c='orange',
                      marker='o', edgecolor='black',
                      label='cluster 2')
         plt.scatter(km.cluster centers [:, 0],
                      km.cluster centers [:, 1],
                      s=250, marker='*',
                      c='red', edgecolor='black',
                      label='centroids')
         plt.legend(scatterpoints=1)
         plt.grid()
         plt.tight layout()
         plt.show()
```


Model Evaluation

support	f1-score	recall	precision	
62	0.68	0.68	0.69	0
28	0.32	0.32	0.31	1
90	0.57	0.57	0.57	avg / total

Testing set accuracy: 0.5666666666666667

Algorithm Comparison

```
In [38]: names = ['LR','KNN','NB','KM']
         models = []
         models.append(('LR', logreg best))
         models.append(('KNN', knn best))
         models.append(('NB', GaussianNB()))
         models.append(('KM', km))
         results = []
         scoring = 'accuracy'
         for name, model in models:
             model fit = model.fit(X train, y train)
             cv_results = cross_val_score(model_fit, X_test, y_test, cv=10, scor
         ing=scoring)
             results.append(cv results)
             names.append(name)
             pt = "%s:\tMean:%f\tStd:%f" % (name, cv results.mean(), cv results.
         std())
             print(pt)
         fig = pyplot.figure()
         fig.suptitle('Algorithm Comparison')
         ax = fig.add subplot(111)
         pyplot.boxplot(results)
         ax.set xticklabels(names)
         pyplot.show()
```

LR: Mean:0.712222 Std:0.044777
KNN: Mean:0.645278 Std:0.143942
NB: Mean:0.712222 Std:0.066889
KM: Mean:0.444444 Std:0.157135

Algorithm Comparison

Reference

- 1. Kevin(2016). A Complete Guide to K-Nearest-Neighbors with Applications in Python and R. Retrieved from https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/ (https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/)
- 2. Arvai(2020). K-Means Clustering in Python: A Practical Guide. Retrieved from https://realpython.com/k-means-clustering-python/)

 (https://realpython.com/k-means-clustering-python/)
- 3. scikit-learn.org(2020). Confusion matrix. Retrieved from https://scikit-learn.org/stable/auto_examples/model_selection_matrix.html)
- 4. Tutorial 4, 5, 6, 7
- 5. UCL dataset: https://archive.ics.uci.edu/ml/datasets//datasets