Лабораторная работа №7

Отчет

Зубов Иван Александрович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Самостоятельная работа	13
5	Выводы	16

Список иллюстраций

3.1	Заполняем файл	7
3.2	Запускаем файл и смотрим на его работу	8
3.3	Редактируем файл	8
3.4	Запускаем файл и смотрим на его работу	8
3.5	Редактируем файл	9
3.6	Проверяем, сошелся ли наш вывод с данным в условии выводом .	9
3.7	Заполняем файл	10
3.8	Смотрим, что получается	10
3.9	Создаем файл листинга	10
3.10	Изучаем файл	11
3.11	Удаляем операндум из файла	12
3.12	Транслируем файл	12
4.1	Пишем программу	13
4.2	Смотрим, что все получилось	14
4.3	Пишем программу	14
4.4	Смотрим, что все получилось	15

Список таблиц

1 Цель работы

Изучение команд условного и безусловного переходов. Приобретение навыков написания программ с использованием переходов. Знакомство с назначением и структурой файла листинга.

2 Задание

Написать программы для решения выражений.

3 Выполнение лабораторной работы

Создаем каталог для программам лабораторной работы N^{o} 7 с помощью команды mkdir, перейдем в него и создадим файл lab7-1.asm с помощью команды touch. Откроем файл в Midnight Commander и заполняем его в соответствии с листингом 7.1

Рис. 3.1: Заполняем файл

Создаем исполняемый файл и запускаем его

```
iazubov@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm iazubov@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o iazubov@fedora:~/work/arch-pc/lab07$ ./lab7-1 Сообщение № 2 Сообщение № 3 iazubov@fedora:~/work/arch-pc/lab07$
```

Рис. 3.2: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и изменяем его в соответствии с листингом 7.2

Рис. 3.3: Редактируем файл

Создаем исполняемый файл и запускаем его

```
iazubov@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm iazubov@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o iazubov@fedora:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 1
```

Рис. 3.4: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и изменяем его, чтобы произошел данный вывод

Рис. 3.5: Редактируем файл

Создаем исполняемый файл и запускаем его

```
iazubov@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
iazubov@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
iazubov@fedora:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
iazubov@fedora:~/work/arch-pc/lab07$
```

Рис. 3.6: Проверяем, сошелся ли наш вывод с данным в условии выводом

Создаем новый файл с помощью команды touch, открываем файл в Midnight Commander и заполняем его в соответствии с листингом 7.3

Рис. 3.7: Заполняем файл

Создаем исполняемый файл и проверяем его работу, вводя разные значения В

```
iazubov@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
iazubov@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
iazubov@fedora:~/work/arch-pc/lab07$ ./lab7-2

20
iazubov@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
iazubov@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
iazubov@fedora:~/work/arch-pc/lab07$ ./lab7-2

11
20
iazubov@fedora:~/work/arch-pc/lab07$
```

Рис. 3.8: Смотрим, что получается

Создаем файл листинга дла программы lab7-2.asm

```
iazubov@fedora:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm
iazubov@fedora:~/work/arch-pc/lab07$ mcedit lab7-2.lst
```

Рис. 3.9: Создаем файл листинга

Открываем файл листинга с помощью команды mcedit и изучаем его

Рис. 3.10: Изучаем файл

Строка 5 - 00000001 89C3 mov ebx, eax 00000001 - адрес в сегменте кода 89C3 - машинный код для инструкции mov ebx,eax - присваивание переменной ebx значения, хранящееся в регистре eax Строка 26 - 00000012 50 push eax 00000012 - адрес в сегменте кода 50 - машинный код для инструкции push eax - значение из регистра eax помещается в стек Строка 53 - 0000003B E8CFFFFFFF call sprint 0000003B - адрес в сегменте кода E8CFFFFFFF - машинный код для инструкции call sprint - вызов функции sprint, которая выводит данные на экран

Открываем файл и удаляем один операндум

```
iazubov@fedora:-/work/arch-pc/lab07

GNU nano 7.2 /home/iazubov/work/arch-pc/lab07/lab7-2.asm

Winclude 'in_out.asm'
section .data
    msgl db '',0h
    msg2 db "",0h
    A dd '20'
    C dd '50'
section .bss
    max resb 10
    B resb 10
section .text
    global_start
__startst

mov eax,msgl
    call sprint
    mov ecx,B
    mov edw
    call sread
    mov eax,B
    call atoi
    mov [B],eax
    mov eax,B
    call atoi
    mov [max],ecx

check_B:
    mov eax,max
    call atoi
    mov [max],eax
    mov ecx,[max]
    cmp ecx,[B]
    jg fin
    mov ecx,[B]
    mov ecx,[B]
```

Рис. 3.11: Удаляем операндум из файла

Транслируем с получением файла листинга

```
iazubov@fedora:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm
lab7-2.asm:l6: error: invalid combination of opcode and operands
iazubov@fedora:~/work/arch-pc/lab07$ ls
in_out.asm lab7-1 lab7-1.asm lab7-1.o lab7-2 lab7-2.asm lab7-2.lst
iazubov@fedora:~/work/arch-pc/lab07$
```

Рис. 3.12: Транслируем файл

При трансляции файла, выдается ошибка, но создаются исполнительный файл lab7-2 и lab7-2.lst

4 Самостоятельная работа

Вариант 13

Напишите программу нахождения наименьшей из 3 целочисленных переменных □,□ и . Значения переменных выбрать из табл. 7.5 в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу.

Создаем новый файл,открываем его и пишем программу, которая выберет наименьшее число из трех

Рис. 4.1: Пишем программу

Транслируем файл и смотрим на работу программы

```
iazubov@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-3.asm
iazubov@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-3 lab7-3.o
iazubov@fedora:~/work/arch-pc/lab07$ ./lab7-3
Наименьшее значение: 32
```

Рис. 4.2: Смотрим, что все получилось

2) Напишите программу, которая для введенных с клавиатуры значений □ и □ вычисляет значение заданной функции □(□) и выводит результат вычислений. Вид функции □(□) выбрать из таблицы 7.6 вариантов заданий в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу для значений □ и □ из 7.6.

Создаем новый файл в каталоге, открываем его и пишем программу, которая решит систему уравнений, при известных данных

Рис. 4.3: Пишем программу

Транслируем файл и проверяем его работу при х=3 и а=9, при х=6 и а=4

```
iazubov@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-4.asm
iazubov@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o
iazubov@fedora:~/work/arch-pc/lab07$ ./lab7-4

Введите х: 3
Введите а: 9
Результат системы: 2
iazubov@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-4.asm
iazubov@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o
iazubov@fedora:~/work/arch-pc/lab07$ ./lab7-4

Введите х: 6
Введите х: 6
Введите а: 4
Результат системы: 24
```

Рис. 4.4: Смотрим, что все получилось

5 Выводы

Мы познакомились с структурой файла листинга, изучили команды условного и безусловного перехода.