Reinforcement Learning 1 Basic concepts, Bandit algorithm

Pekka Marttinen

Aalto University

Markov decision process (MDP)

- At step t the agent is in state S_t .
 - Executes action A_t
 - Receives reward R_{t+1}
 - Moves to state S_{t+1}

Multiple steps form a trajectory:

$$S_0$$
, A_0 , R_1 , S_1 , A_1 , R_2 , S_2 ,

Dynamics of the MDP

 Dynamics (or Model) specifies how the reward and next state depend on the action and current state:

$$p(s', r|s, a) = Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\},$$

for all s', $s \in \mathcal{S}$, $r \in \mathcal{R}$, and $a \in \mathcal{A}(s)$.

State-transition probabilities:

$$p(s'|s,a) = \Pr\{S_t = s' | S_{t-1} = s, A_{t-1} = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a).$$

Reward function:

$$r(s, a) = E[R_t | S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r | s, a)$$

Example, simple gridworld

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

 $R_t = -1 \ ext{on all transitions}$

- Simulate trajectories
 - Start at state 5, denote the terminal state as 15.
 - Select actions uniformly at random.
 - Example state sequences:
 - (5,1,1,5,6,2,2,1,15), Total reward = -8
 - (5,4,5,4,4,8,4,5,9,8,9,10,14,14,13,14,15), Total reward = -16

Episodic and continuing tasks

- In the simple gridworld, the task was completed when the *terminal state* 15 was entered.
- Tasks with a terminal state are called episodic
 - Let T denote the step of entering the terminal state.
 - Sequence of steps 1, ..., T is called an episode
 - T often varies between episodes.
 - Examples: winning or losing in chess, exiting a maze.
- ullet In continuing tasks there is no clear terminal state $(T=\infty)$
 - Examples:
 - on-going process control
 - a robot with a long life span

Returns, discounting

 Return G_t is a function of the rewards after step t, and for episodic tasks it can be define as:

$$G_t = R_{t+1} + R_{t+2} + \ldots + R_T.$$

• For continuing tasks discounting is used:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

where γ is the discount rate.

• With discounting and constant reward, the return stays finite. For example if reward is always +1, then

$$G_t = \sum_{k=0}^{\infty} \gamma^k = \frac{1}{1-\gamma}.$$

Example: Pole balancing

- Formulate as an episodic task:
 - ullet Reward +1 for every time step on which failure did not occur
- Formulate as a continuing task, using discounting.
 - Reward -1 on each failure and zero at all other times.
 - The return at each step would then be related to $-\gamma^{K-1}$, where K is the number of steps before failure.
- Either way, the return is maximized by keeping the pole balanced for as long as possible.

Value function and policy

• State-value function for policy π , $v_{\pi}(s)$, specifies how much return the agent can expect when starting in a state s, following a policy π .

$$v_\pi(s) = E_\pi[G_t|S_t = s] = E_\pi\left[\sum_{k=0}^\infty \gamma^k R_{t+k+1}|S_t = s\right], \quad \text{for all } s.$$

• Policy $\pi(a|s)$ is a mapping from states s to probabilities of different actions a that the agent uses to select the next action.

Example: simple gridworld

- Multiple simulated episodes from state 5:
 - (5,1,1,5,6,2,2,1,15), Return = -8
 - (5,4,5,4,4,8,4,5,9,8,9,10,14,14,13,14,15), Return = -16
 - ..
- Average return ≈ -18 . Therefore $v_{\pi}(s_5) = -18$ for a random policy π .

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Value function, random policy.

Bellman Equation

 A recursive relationship between the value of any state s and its possible successor states s':

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right].$$

$$u_{\pi}(s_5) = -18 = \frac{1}{4} * (-1 - 14)$$

$$+ \frac{1}{4} * (-1 - 14) + \frac{1}{4} * (-1 - 20)$$

$$+ \frac{1}{4} * (-1 - 20).$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Value function, random policy.

Optimal policy and value function

- A policy π is better than and π' iff $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$. An optimal policy is better than or equal to all other policies.
- ullet There always exists at least one optimal policy, denoted by $\pi_*.$
- Optimal state-value function $v_*(s) \equiv \max_{\pi} v_{\pi}(s)$.

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Value function, random policy.

			\leftarrow
†	Ţ	Ţ	→
1	₽	Ļ	→
₽	\rightarrow	\rightarrow	

Optimal policy

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

Optimal value function

Bellman optimality equation

• For optimal policy π_*

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right].$$

- Maximization instead of expectation in Bellman equation.
- $v_*(s_5) = \max\{-1 + v_*(s_1), -1 + v_*(s_4), -1 + v_*(s_6), -1 + v_*(s_9)\} = -2.$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

Optimal value function

From optimal value function to optimal action

- Once the optimal value function v_{*} is estimated or approximated somehow, selecting the optimal action is easy:
 - Choose action that leads to the maximum in the Bellman optimality equation, e.g., UP or LEFT for state s_5 .
- The expected return (long-term consequence) is maximized by deciding the short-term action using v_* .
 - From s_5 all 4 actions give reward -1 (short-term consequence)
 - Only actions UP or LEFT give return -2 (optimal long-term consequence)

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

Optimal value function

Prediction vs. Control

- Prediction: evaluate the future, given a policy.
 - What is the value function for a random policy?

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Value function a random policy.

- **Control**: optimise the future.
 - What is the optimal policy and value function?

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

Optimal value function

Learning vs. planning

- Reinforcement learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - a.k.a. introspection, thought, search
 - For example the simple grid world above.

Game of Go

- A strategy board game for two players.
- Goal: surround more territory than the opponent.
- Extremely complex: number of legal board positions approximately 2.1 × 10¹⁷⁰

Source: Wikipedia.

Evolution of modern of Go programs

- AlphaGo, 2016.
 - Deep NNs to evaluate states and policies.
 - Tree search to select a move to play.
 - Supervised learning with human moves and RL with self-play.
- AlphaGo Zero, 2017.
 - Training uses no human knowledge, just RL with self-play.
 - Rules of the game are assumed known.
- AlphaZero, 2018
 - A general RL algorithm for chess, shogi and Go.
- MuZero, 2020
 - Rules not supplied, but the model is learned.

Policy iteration

- Policy iteration, iterate between:
 - Policy evaluation: estimate the value function of the current policy
 - Policy improvement: use the current value function to generate a better policy

AlphaGo Zero on high-level (1)

 A combined convolutional neural network f_θ to predict the policy and value:

$$(\mathbf{p},\mathbf{v})=f_{\theta}(\mathbf{s}).$$

- s: current state of the game
- **p**: a policy, $p_a = \Pr(a|s)$
- v value, probability of winning from state s.
- The network f_{θ} is used to search moves during self-play.

Silver et al. (2017). Nature

AlphaGo Zero on high-level (2)

- Self-play: create a 'training set'
 - The best current player plays 25,000 games against itself
 - Moves are selected using Monte Carlo Tree Search (MCTS)
 - For each state s, store search probabilities π , and the eventual winner z.

Silver et al. (2017). Nature.

AlphaGo Zero on high-level (3)

Retrain network:

- Pick a mini-batch of 2048 states from the last 500,000 games.
- Retrain the current $(\mathbf{p}, \mathbf{v}) = f_{\theta}(s)$ with these states s.

Loss function:

$$I = (z - v)^{2} - \boldsymbol{\pi}^{\top} \log \mathbf{p} + c \|\boldsymbol{\theta}\|^{2}$$

- Compares predictions (\mathbf{p}, v) from the NN with search probabilities π and actual winner z.
- Rationale: search probabilities π are decided by looking ahead from the current state; hence that's a better policy than the NN policy p predicted using current state only.

• Evaluate the new network before updating:

- Play 400 games against the current best player.
- Must win 55% of games to become the new best player.

Monte-Carlo tree search

- A search tree for deciding the next move to play.
 - Nodes=states
 - Edges=actions.
 - Root node=current state.
- Each edge stores:
 - N number of times action has been selected from state s during search.
 - W total value of the next state
 - Q mean value of the next state.
 - p the prior for selecting action a.

Silver et al. (2017).
Nature.

Monte-Carlo tree search

All of this is planning, i.e., happens 'in the head'!

Monte-Carlo tree search - move selection details

Start at the root node

- Choose action that maximizes the UCB Q + U
 - Q: mean value of the next state (Q = 0, if action has not yet been selected)
 - U: confidence bound that depends on how often the action has been chosen
 - Early in the simulation, U dominates (exploration), later Q dominates (exploitation)
- In detail:

$$U(s, a) = c \underbrace{P(s, a)}_{\text{prior}} \underbrace{\frac{\sqrt{\sum_b N(s, b)}}{1 + N(s, a)}}.$$

Playing a move

• After MCTS, calculate search probabilities π for root node s_0 :

$$\pi(a|s_0) = \frac{N(s_0, a)^{1/\tau}}{\sum_b N(s_0, b)^{1/\tau}}.$$

- τ : temperature to control exploration
- Use π to **select** the next move to play.

Results

- AlphaGo Lee defeated World Champ Lee Sedol in 2016.
- (left) AlphaGo Zero won AlphaGo Lee just after 30h of self-play RL
- (right) ...using moves different from human players.

Monte Carlo tree search for planning

- Leaf evaluation can be done using rollouts.
 - Rapid play until the end using a simple policy.

MCTS Applications

- Games: chess, poker, real-time video games, ...
- Robotics: path planning, multi-robot planning, task allocation,...
- Chemical synthesis
- Scheduling
- Vehicle routing
- Etc.¹