材料科学基础(双语)考试(二)试卷答案

2016~2017 学年第二学期

A 卷选择和判断答案

一、

1-10 dbaab cdacb 11-20 cbacb ddcad 21-30 cbdbd bcaad

_,

1-10 FTFFT FFTTT 11-20 FFFFF FTFFF

B 卷选择和判断答案

一、

1-10 daaab cdacb 11-20 cbabb ddcad 21-30 cbdbd bcaad

_,

1-10 FTFFT FFTTT 11-20TFFFF FTFFT

填空和大题答案

三、

1. Isotropic

2. $2\sqrt{5}R$

3.Crystalline

4.Growth

5.Cations Anions

6. Graphite diamond

7.Polymorphism aolltropy

8.Smallest Translational

A	D
Productions $-\frac{3}{3}a$ $\frac{1}{2}b$ oc interms of $\frac{2}{5}$ $\frac{1}{2}$ 0 Reductions -4 3 0 Enclosure [430]	X
$ \begin{array}{c ccccc} & X & Y & Z \\ \hline & \frac{2}{3}\alpha & -b & \frac{2}{3}C \\ \hline & \frac{2}{3} & - & \frac{2}{3} \\ \hline & 2 & -3 & 2 \\ \hline & [232] \end{array} $	A [430] B [232] C [133]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D [137]

	1		X	t	1	2
Interd	cepts	1	a	26	1	- ½C
	m of &	-	13	1/2		- ½
Recip	rocals	3	3	2		-2
	uctions		3	2		-2
Enclo	sure			(3 2	2)	
Plane	and the state of					
Plane	В			y	1200	Z
	X	a		y	1,747	ž ŽC
Intercepts	X			y ∞6 ∞	1,74%	1
Intercepts in term of 2	X	a L			(74)	1
Plane Intercepts in term of ? Pecciprocals Peductions	X -½ -½	a		00	1,74%	±c

Plane A (327)Plane B (202)

5.

五、

2. Titanium has an HCP crystal structure and a density of 4.51 g/cm³.

(1) What is the volume of its unit cell in cubic meters?

(2) If the c/a ratio is 1.58, compute the values of c and a. (6 points)

Solution

(1) According to the density equation

$$V_{c} = \frac{nA}{\rho \cdot N_{A}} = \frac{(6 \text{ atoms } |\text{unit cell}|) \times (41.87g/mol)}{(4.51g/cm^{3}) \times (6.92 \times 10^{3} \text{ atom} |\text{mol}|)} = 1.057 \times 10^{-22} \text{ cm}^{3}/\text{unit cell}}$$

(2) $V = 3V_{para} = 3 \times (\alpha \times \frac{\sqrt{3}}{2} \alpha \times c) = \frac{3\sqrt{3}}{2} \times 1.58 \times \alpha^{3} = 1.057 \times 10^{-22} \text{ cm}^{3}/\alpha^{3}$

(a)
$$\frac{\Gamma_{A^{+}}}{\Gamma_{X^{-}}} = \frac{0.125 \text{nm}}{0.145 \text{nm}} = 0.862 + (0.732, 1)$$

Thurs, the coordination number for each A^+ is 8.

(b). The crystal structure for Axx should be similar to Fluorite.

6.

Mgo has the same crystal struction of Nacl

Ionic radius of Mgt: 0.072 nm 02: 0.140 nm

$$= \frac{(\frac{1}{8} \times 8 + \frac{1}{2} \times 6) \times \frac{4}{3} \pi R_{o}^{3} + (\frac{1}{4} \times 12 + 1) \times \frac{4}{3} \pi R_{o}^{3}}{(2 \Gamma_{o}^{3} + 2 \Gamma_{o}^{2})^{3}}$$

$$= \frac{\frac{16}{3}\pi \left[(0.072nm)^3 + (0.140nm)^3 \right]}{(2\times0.072nm + 2\times0.140nm)^3}$$

$$= \frac{2\pi \left[3.79 \times 10^{-4} \text{nm}^3 + 2.744 \times 10^{-3} \text{nm}^3\right]}{3 \times \left(9.528 \times 10^{-3} \text{nm}^3\right)}$$

Atomic radii of Si: 0-118 pm

O Si

Solution

The crystal structure of Si is similar to ZnS.

(1,0,1)(1,0,0)(0,1,1),(1,1,1)

The coordinations of Si: (0,0,0). (0,0,1). (0,1,0). (1,1,0),

($\frac{1}{2}$,0, $\frac{1}{2}$). ($\frac{1}{2}$, $\frac{1}{2}$,0). (0, $\frac{1}{2}$, $\frac{1}{2}$). ($\frac{1}{2}$, $\frac{1}{2}$).

Thus, along the [111], there are two atoms in total.

$$LD_{L113} = \frac{2 \text{ atoms}}{\sqrt{3} \, \alpha} = \frac{2 \text{ atoms}}{\sqrt{3} \times \frac{2R}{4}} = \frac{1}{4R} = \frac{1}{4 \times 0.118 \text{ nm}} = 2.119 \text{ nm}^{-1}$$

