Computer Architecture & Organization (CSE2003)

(Fall 2019-20)

Prof. Anand Motwani

Faculty, SCSE,

email-id: anand.motwani@vitbhopal.ac.in

Contents

- Fixed Point Representation of Numbers (Fixed Point Format) (10)
- Floating Point Representation (11)

- Numerical Exercise
- Quiz / Problems

Session Objectives

At the end of this session student will understand:

- to represent fixed and floating point numbers in the computers
- to perform arithmetic operations with them.

Fixed Point Representation of Numbers

- We learnt the fundamental concepts of how binary could be used to represent real numbers.
- When it comes to storing these numbers though there are two major approaches in modern computing. These are
- Fixed Point Notation and
- Floating Point Notation.

Fixed Point Representation

• **Fixed Point Notation** is a representation of our fractional number as it is stored in memory. In Fixed Point Notation, the number is stored as a signed integer in two's complement format.

Signed Magnitude Method / representation

+7	0 111	-7	1 111
+6	0 110	-6	1 110
+5	0 101	-5	1 101
+4	0 100	-4	1 100
+3	0 011	-3	1 011
+2	0 010	-2	1 010
+1	0 001	-1	1 001
+0	0 000	-0	1 000

- Signed Magnitude Method / representation
- Drawback of this method:
 - There are two representation of 0.
- Formula of Range:
 - $-(2^{(k-1)}-1)$ To $(2^{(k-1)}-1)$

- 1's Complement Method: Positive nos. Are represented in same way as in sign magnitude.
- Negative nos. are represented using 1's complement.

+7	0 111	-7	1 000
+6	0 110	-6	1 001
+5	0 101	-5	1 010
+4	0 100	-4	1 011
+3	0 011	-3	1 100
+2	0 010	-2	1 101
+1	0 001	-1	1 110
+0	0 000	-0	1 111

- 1's Complement Method:
- Drawback:
 - There are two representation of 0.
- Formula of Range:
 - $-(2^{(k-1)}-1) \text{ To } (2^{(k-1)}-1)$

- 2's Complement Method: Positive nos. Are represented in same way as in sign magnitude.
- Negative nos. are represented using 2's complement.

+7	0 111	-8	1 000
+6	0 110	-7	1 001
+5	0 101	-6	1 010
+4	0 100	-5	1 011
+3	0 011	-4	1 100
+2	0 010	-3	1 101
+1	0 001	-2	1 110
0	0 000	-1	1 111

- 2's Complement Method:
- Advantage:
 - There is only representation of 0.
- Formula of Range:

$$-(2^{(k-1)}) \text{ To } (2^{(k-1)} - 1)$$

$$-(2^{(k-1)})$$
 to $(2^{(k-1)}-1)$

Conclusion

- Fixed point is a simple yet very powerful way to represent fractional numbers in computer.
- By reusing all integer arithmetic circuits of a computer, fixed point arithmetic is orders of magnitude faster than floating point arithmetic.
- This is the reason why it is being used in many game and DSP applications.
- On the other hand, it lacks the range and precision that floating point number representation offers. You, as a programmer or circuit designer, must do the trade-off.

• Next Slides are added for developing more understanding.

Signed Integer Representation

- The conversions we have so far presented have involved only unsigned numbers.
- To represent signed integers, computer systems allocate the high-order bit to indicate the sign of a number.
 - The high-order bit is the leftmost bit. It is also called the most significant bit.
 - 0 is used to indicate a positive number; 1 indicates a negative number.
- The remaining bits contain the value of the number (but this can be interpreted different ways)

Signed Integer Representation (2)

- There are three ways in which signed binary integers may be expressed:
 - Signed magnitude
 - One's complement
 - Two's complement
- In an 8-bit word, signed magnitude representation places the absolute value of the number in the 7 bits to the right of the sign bit.

Two's complement

- To express a value in two's complement representation:
 - If the number is positive, just convert it to binary and you're done.
 - If the number is negative, find the one's complement of the number and then add 1.

• Example:

- In 8-bit binary, 3 is: 00000011

- -3 using one's complement representation is: 111111100

- Adding 1 gives us -3 in two's complement form: 11111101.

Two's Complement

- +3 = 00000011
- +2 = 00000010
- \bullet +1 = 00000001
- +0 = 00000000
- -1 = 11111111
- · -2 = 11111110
- -3 = 111111101

How to: 2's Complement

- +2 = 0010
- reverse numbers 1101
- Then add 1 (binary)
 1110
- So 1110 = -2
- Can positive 8, be represented in 4 bits?

No, because –8 is 1000 Called an Overflow!

• -7 = 1001 0110 (reversed) 0111 (add 1)

+7 = 0111

Benefits

- One representation of zero
- Arithmetic works easily
- Negating is fairly easy
 - -3 = 00000011
 - Boolean complement gives 11111100
 - Add 1 to LSB 11111101

Solution to Assignment

Bit Pattern			Number Represented (n)	n / 2	
1	1	1	1	-1	-0.5
1	1	1	0	-2	-1
1	1	0	1	-3	-1.5
1	1	0	0	-4	-2
1	0	1	1	-5	-2.5
1	0	1	0	-6	-3
1	0	0	1	-7	-3.5
1	0	0	0	-8	-4
0	1	1	1	7	3.5
0	1	1	0	6	3
0	1	0	1	5	2.5
0	1	0	0	4	2
0	0	1	1	3	1.5
0	0	1	0	2	1
0	0	0	1	1	0.5
0	0	0	0	0	0

Entry-Ticket: Quiz

• For 5 bits register, positive largest number that can be stored is ____ and negative lowest number that can be stored is ____.

Floating Point (Real Numbers) Representation

- Two's complement representation deal with signed integer values only.
- Without modification, these formats are not useful in scientific or business applications that deal with real number values.
- Floating-point representation solves this problem.

Floating-Point Representation

- If we are clever programmers, we can perform floatingpoint calculations using any integer format.
- This is called *floating-point emulation*, because floating point values aren't stored as such; we just create programs that make it seem as if floating-point values are being used.
- Most of today's computers are equipped with specialized hardware that performs floating-point arithmetic with no special programming required.
 - Not embedded processors!

Floating-Point Representation

- Floating-point numbers allow an arbitrary number of decimal places to the right of the decimal point.
 - For example: $0.5 \times 0.25 = 0.125$
- They are often expressed in scientific notation.
 - For example:

$$0.125 = 1.25 \times 10^{-1}$$

$$5,000,000 = 5.0 \times 10^6$$

Floating-Point Representation

- Computers use a form of scientific notation for floatingpoint representation
- Numbers written in scientific notation have three components:

Floating Point Representation

Floating point is represented in the form M * r^e

Floating Point Representation

- Only the Mantissa and exponent are physical represented in Register (including sign)
- A floating point number is represented in similar manner except the base 2 for exponent.
- Sign bit $0 \sim +$ and $1 \sim -$
- Mantissa stores fraction part.
- Exponent stored in bias form.

Floating Point Representation

- Exponent stored in bias form.
- The bias is calculated as:
- If k bits are used to represent exponent then:
 - Bias no. = $(2^{(k-1)} 1)$
 - Range of exponent = $(2^{(k-1)} 1)$ to $2^{(k-1)}$

- Example: 7 bits are used for storing the exponent then bias = ?, Range =
- Note: here we always store exponent in positive.

- Biased number is also called excess no.
- Since exponent is stored in biased form so bias number is added to the actual exponent of the given no.
- Actual no. Can be calculated from the contents of the registers by using following formula:
- Actual Number = (-1) s (1+m) * $2^{(e-bias)}$
- s is sign bit, m is mantissa and e is exponent.

Numerical Problem

- Question: Represent +0.125 if 5 bits are used to represent exponent and 6 bits for mantissa.
- Solution steps:
- 1. Calculate bias
- 2. Calculate binary of given decimal no.
- 3. Normalize the binary no.
- 4. Calculate exponent.
- 5. Calculate Mantissa
- Represent the no. With as positive (i.e. Use 0 as sign bit)

Solution

- 1. Bias = 15
- 2. Binary no. = $(0.001)_2$
- 3. Normalized value = $1.0 * 2^{-3}$
- Calculate exponent: $-3 + 15 = 12 \sim 1100$
- Mantissa: No. to right of binary point is 0. So, mantissa is 0.
- No. is positive so sign bit is 0.
- Answer =

- Q. Represent 52.21875 in 32-bit binary floating point format.
- 52.21875 = 110100.00111 =
- $.11010000111 \times 2^6$.
- As excess representation is being used for exponent, it is equal to 127 + 6 = 133.
- Thus the representation is $52.21875 = 0.11010000111 \times 2^{133} = 0.110100000111 \times 2^{10000101}$.
- The 32-bit string used to store 52.21875 in a computer will thus be

•	0	10000101	1101000011100000000000
---	---	----------	------------------------

The solution as per IEEE 754 standard

- Q. Represent 52.21875 in 32-bit binary floating point format.
- 52.21875 = 110100.00111 =
- 1.1010000111×2^5 .
- Normalized 23 bit mantissa = .1010000111 000000000000.
- As excess representation is being used for exponent, it is equal to 127 + 5 = 132.
- Thus the representation is $52.21875 = 0.1010000111 \times 2^{132} = 0.10100000111 \times 2^{10000100}$.
- The 32-bit string used to store 52.21875 in a computer will thus be

0	10000100	101000011100000000000
---	----------	-----------------------

