Clase 4

Tema

Expresión Resumida de los datos - Medidas de formas Medidas de Asimetría

Distribución Simétrica:

Se dice que una distribución es simétrica cuando se distribuyen la misma cantidad de datos a ambos lados de la media de la distribución. Gráficamente esta distribución se dice que es normal y se la conoce como campana de Gauss o da Laplace del siguiente modo:

También se puede medir a través de indicadores como ser:

Coeficiente de Pearson

Ap = ((M(X) - Mdna(X)) / DS

El coeficiente de Pearson varía entre -3 y 3,

Si As = 0	Simétrica
Si As > 0	Asimetría Positiva
Si As = 0	Simétrica

Dónde:

M(X) = Media de XMdna (X) = Mediana de X DS = Desviación Estándar de X

Distribución Asimétrica Negativa:

En este caso la distribución presenta una menor cantidad de datos hacia la izquierda de la misma, es decir presenta un sesgo o "cola" hacia la izquierda de la distribución, del siguiente modo:

Distribución Asimétrica positiva:

En este caso la distribución presenta una menor cantidad de datos hacia la derecha de la misma, es decir presenta un sesgo o "cola" hacia la derecha de la distribución, del siguiente modo:

Coeficiente de Asimetría de Fisher

 $Af = \sum (Xi - M(X))^3 / n*DS^3$

Dónde:

Af> 0 Asimetría Positiva

Af< 0 Asimetría Negativa

Af = 0 Simétrica

Ejercicio

Con los siguientes datos: 6,9,9,12,12,12,15,17. Calcule por Pearson y por Fisher la asimetría de estos datos.

Curtosis o apuntamiento

Mide el grado de achatamiento o concentración alrededor de la media de una distribución respecto de la distribución considerada normal

Tipos de curtosis

- Lectocúrtica: Elevada Concentración
- Mesocúrtica: Concentración Normal
- Platicúrtica: Baja Concentración

Medida de Curtosis

 $Cf = \sum (Xi - M(X))^4 / n*DS^4$

Dónde

Cf > 3 Lectocúrtica

Cf = 3 Mesocúrtica

Cf < 3 Platicurtica

Clase 5

Tema

Probabilidad

Definición de Probabilidad

La teoría de la probabilidad es la parte de las matemáticas que se encarga del estudio de los fenómenos o experimentos aleatorios

Experimento aleatorio

Es un experimento que cuando se le repite bajo las mismas condiciones iniciales, el resultado que se obtiene no siempre es el mismo Ejemplos

Espacio Muestral

Se llama espacio muestral (Ω) asociado a un experimento aleatorio, el conjunto de todos los resultados posibles de dicho experimento. Ejemplos:

A. Lanzamiento de una moneda

 $\Omega = (C, S)$

B. Lanzamiento de un dado

 $\Omega = (1, 2, 3, 4, 5, 6)$

Ejemplos a resolver

- C. Lanzamiento: defina el espacio muestral del lanzamiento de tres monedas en forma conjunta
- D. La suma de dos dados arrojados simulataneamente

Evento

Se llama evento a todo subconjunto de un espacio muestral.

Ejemplo en el espacio muestral = (1, 2, 3, 4, 5, 6) del lanzamiento de un dado, los siguientes son eventos:

- 1. Obtener un número impar A = (1, 3, 5)
- 2. Obtener un número par B = (2, 4, 6)
- 3. Obtener un número menor o igual a 4 C = (1, 2, 3, 4)

Eventos Complementarios

Si A B = v A B = E_{r} se dice que A v B son eventos complementarios: A^{c} $= B y B^{c} = A$

Enfoques Conceptuales de Probabilidad Enfoque clásico

De acuerdo con este enfoque si existen N casos favorables o posibles de un determinado evento y y existe un espacio Muestral determinado y todos los casos son igualmente posibles, luego:

P (A) = Casos Favorables / Casos Posibles

Ejemplo

Probabilidad de elegir un rey en un mazo de cartas españolas

Enfoque de Frecuencia Relativa o Empírico

En este se determina la probabilidad con base en la proporción de veces que ocurre un caso favorable en un determinado número de observaciones o experimentos. No hay implícito ningún supuesto de previo de igualdad de probabilidades

P (A) = casos favorables / Casos Posibles

Ejemplo

Estimación de posibles resultados de un determinado candidato en las próximas elecciones

Enfoque Subjetivo

Es el grado de confianza de una persona de que un evento ocurra, y esa confianza está construida en base a toda la evidencia disponible. Ejemplo

La probabilidad de que ocurra una crisis económica como la que ocurrió en el año 2001 en nuestro país

Axiomas de Probabilidad

Los axiomas de probabilidad son las reglas que deben cumplirse respecto a un conjunto de sucesos para que pueda definirse su función de probabilidad.

$$P(A) \ge 0$$

 $P(\Omega) = 1$
Si A1, A2, A3,....An, es un conjunto de eventos mutuamente excluyentes, entoces
 $P(A1UA2UA3,....UAn) = P(A1) + P(A2) + P(A3) ++$
 $P(An) = \sum P(Ai)$ para i que va de 1 a n

Tablas de contingencia, Diagramas de Venn y árboles de decisión

Sabemos que de los 20 alumnos de estadística y exploración de datos I, 5 son mujeres y 15 son hombres, además de los resultados de la primera evaluación de la materia resulta que 8 están en situación de promoción de la materia, 7 están regularizando la misma y 5 no asistieron al examen.

Con esta información vamos a incorporar 3 herramientas de análisis que nos van a ser de gran utilidad.

A. Tablas de Contingencia

Alumnos	Promocional	Regular	No Asistió	Total
Mujer	2	1	2	5
Hombre	6	6	3	15
Total	8	7	5	20

Cálculo de probabilidades simples o marginales

- a) Probabilidad de elegir un alumno mujer
- b) Probabilidad de elegir un alumno hombre
- c) Probabilidad de elegir un alumno que no asistió al examen

Cálculo de probabilidades conjuntas

- a) Probabilidad de elegir una mujer y promocional
- b) Probabilidad de elegir un hombre regular
- c) Probabilidad de elegir un hombre y que no asistió

B. Arboles de decisión

También podemos representar el problema anterior mediante la utilización del árbol de decisión

Aquí también podríamos calcular las probabilidades del ejemplo anterior

C. Diagramas de Venn

Se podría utilizar exactamente el mismo ejemplo anterior mediante los diagramas de Venn, sin embargo vamos a simplificar el problema y analizar solamente los alumnos que promocionaron, regularizaron y los que no asistieron al examen, del siguiente modo

Eventos mutuamente excluyentes y No excluyentes

Dos eventos son **mutuamente excluyentes** si no pueden ocurrir en forma simultánea, esto es, si y sólo si su intersección es vacía.

Ejemplo, en el lanzamiento de un dado los eventos B = (2) y C = (5, 6) son mutuamente excluyentes por cuanto B y C = ()

En tanto que **no son mutuamente excluyente** cuando pueden ocurrir simultáneamente, lo cual no indica que deban ocurrir necesariamente en forma conjunta. Ejemplo: supongamos el evento sacar un as y un segundo evento sacar una espada en un mazo de cartas españolas de 40 naipes. Estos eventos no son mutuamente excluyentes porque una carta determinada puede ser un as y al mismo tiempo de espadas, pero no necesariamente.

Reglas de adicción

Se utilizan estas reglas cuando se quiere determinar la probabilidad de que ocurra un evento u otro en una observación

Existen dos alternativas

A. En Eventos mutuamente excluyentes

P (A O B) = P (A) U P (B) = P (A) + P (B) Gráficamente

B. En Eventos no Mutuamente Excluyentes

 $P(A \cap B) = P(A) \cup P(B) = P(A) + P(B) - P(A \cap B)$ Gráficamente

Eventos Dependientes, Independientes y Probabilidad Condicional

A. Eventos independientes

Dos eventos son independientes cuando la ocurrencia o no ocurrencia de uno no tienen ningún efecto sobre la ocurrencia del otro. Ejemplo: Lanzamiento de una moneda dos veces consecutivas, lo que salga en la primera tirada no condiciona lo que vaya a salir en la segunda

B. Eventos Dependientes

Dos eventos son dependientes cuando la ocurrencia o no ocurrencia de uno si afecta la probabilidad de ocurrencia del segundo. Ejemplo: la extracción sin reemplazo de una mazo de cartas españolas, lo que salga en la primera extracción condiciona la probabilidad de ocurrencia de la segunda extracción

Probabilidad Condicional

P(B/A) = P(A Y B) / P(A)

Reglas de la multiplicación

Se refieren a la probabilidad de ocurrencia conjunta de dos eventos A y

Existen dos casos:

A. Eventos Independientes

$$P(AYB) = P(A \cap B) = P(A) * P(B)$$

B. Eventos Dependientes

$$P(A Y B) = P(A) * P(B/A)$$