Hochschule Merseburg (FH)

Fachbereich Ingenieur- und Naturwissenschaften

Lehrgebiet Analytik

Gruppe: .2.... Namen: Row

Roman tanh W.M. Menoschynick

Praktikum:

O BAC/2.Sem.: "Analytik"

BCUC/4.Sem.: "Analytik"

O BCUU/4.Sem.: "Analytik"

O BWIWU/4.Sem.: "Analytik"

O Protokoll genehmigt O Protokoll korrigieren

O Rücksprache erbetenO Protokoll registriert

PROTOKOLL

Versuch: Volumetrische Methoden/ Fällungstitration/ Argentometrie 1.2 Chloridbestimmung (konduktometrisch, potentiometrisch)

Analysenproben:

A1k: Letimorwans konduktometrisch

Alp: Lestingswanes potentiometrisch

A2:

Kalibrierung:

Messgerät: Kalibrierung entfällt

Maßlösung: **0,01 mol** l⁻¹ **AgNO**3; f_{STÖCH}: 0,3545 mg ml⁻¹ Cl; f_{KORR}: 100.7.

Messergebnisse:

Verbrauch V der Maßlösung (ml) und Gehalt X_G (mg l^{-1})												
Vorlage _{VTEST}			Teilprobe 2 v2 x _{G,2}		Teilprobe 3		\overline{x} G					
100 ml	7,137	25,304	7,113	25,219	7,110	25,206	25,243					
50 ml	3,664	25,579	3,646	25,855	3,659	25,943	25,926					
			mandaret annannon discher en		namenta a citarida de la salaberia que di Pirti insuediació is periodistrado comunica							
	Vorlage VTEST	Verbrauch Vorlage Teil VTEST V1 100 ml 7/137	Verbrauch V der Maßle Vorlage Teilprobe 1 VTEST V1 XG,1 100 ml 7/137 25,304	Verbrauch V der Maßlösung (ml) Vorlage Teilprobe 1 Teilprobe 1 v2 100 ml 7/137 25,304 7,113	Verbrauch V der Maßlösung (ml) und Gehalt 2 Vorlage Teilprobe 1 Teilprobe 2 VTEST V1 $x_{G,1}$ v_2 $x_{G,2}$ 100 ml $7/37$ $25/304$ $7/133$ $25/219$	Verbrauch V der Maßlösung (ml) und Gehalt X_G (mg l ⁻¹) Vorlage Teilprobe 1 Teilprobe 2 Teilprobe v_{TEST} V1 v_{TEST} V2 v_{TEST} V3 v_{TEST} V3 v_{TEST} V3 v_{TEST} V4 v_{TEST} V5 v_{TEST} V6 v_{TEST} V7 v_{TEST} V7 v_{TEST} V8 v_{TEST} V9 v_{TEST}	Verbrauch V der Maßlösung (ml) und Gehalt X_G (mg I^{-1}) Vorlage Teilprobe 1 Teilprobe 2 Teilprobe 3 V_{TEST} V1 $V_{SG,1}$ V2 $V_{SG,2}$ V3 $V_{SG,3}$ 100 ml $V_{SG,1}$ V2 $V_{SG,2}$ V3 $V_{SG,3}$					

Analysenergebnisse und statistische Bewertung

Statistik der mittleren Chloridgehalte \overline{x} G, mg l ⁻¹											
Probe	N	\overline{v}	\bar{x}_{G}	±s _G	$\operatorname{cnf}(\overline{x}_{G})$	\overline{x} GRENZ	t _{EMP}	tcrit	Entscheidung		
A1k	3	7,120	25,243	0,05	+ 0,09	250	-7297	-2,92	Grenzwett eingchalter		
A1p	3	3,656	25,926	0,06	+ 0,10	250	-6096	-2,92	Grenzwet einzehalten		
A2	-						Section Control of Section Control of Section Control				

Signifikanz im statistischen Test durch Sternsymbol (*) bei tcrit anzeigen; Testergebnis unter "Entscheidung" kommentieren.