Regresión Linear

https://goo.gl/VjSvKF

Aprendizaje Supervisado

Aprendizaje Supervisado

- Problema más común
- Damos datasets diciendo x (features/entradas) y y (lo que queremos predecir).
- Regresión
 - Predice un valor continuo
 - Estimar probabilidad que a partir del tamaño de un tumor sea maligno.
- Clasificación
 - Predice un valor discreto
 - Ejemplo: Clasificación binaria.
 - El tumor es maligno o no es maligno.

¿Qué preguntas responde el aprendizaje supervisado?

- ¿Cuánto dinero haremos invirtiendo X dinero en publicidad?
- ¿Este aplicante a un préstamo pagará de vuelta?
- ¿Cómo se comportará el mercado mañana?

Problemas de Aprendizaje Supervisado

- Tenemos un dataset con training samples que tienen su labels asociados.
- Ejemplo: reconocer dígitos escritos a mano

$$Y = f(X) + \epsilon$$

- Un modelo es una abstracción del mundo real.
- Este modelo predice es salario anual a partir del número de estudios.

¿Qué es x?

$$Y = f(X) + \epsilon$$

- Un modelo es una abstracción del mundo real.
- Este modelo predice es salario anual a partir del número de estudios.

¿Qué es x? El input. Años de estudios

¿Qué es Y?

$$Y = f(X) + \epsilon$$

- Un modelo es una abstracción del mundo real.
- Este modelo predice es salario anual a partir del número de estudios.

¿Qué es x? Años de estudios

¿Qué es Y? El output - el salario anual.

¿Qué es f?

$$Y = f(X) + \epsilon$$

- Un modelo es una abstracción del mundo real.
- Este modelo predice es salario anual a partir del número de estudios.

¿Qué es x? Años de estudios

¿Qué es Y? El output - el salario anual.

¿Qué es f? Una función que describe la relación entre X y Y.

¿Qué es E?

$$Y = f(X) + \epsilon$$

- Un modelo es una abstracción del mundo real.
- Este modelo predice es salario anual a partir del número de estudios.

¿Qué es x? Años de estudios

¿Qué es Y? El output - el salario anual.

¿Qué es f? Una función que describe la relación entre X y Y.

¿Qué es E?

$$Y = f(X) + \epsilon$$

- Un modelo es una abstracción del mundo real.
- Este modelo predice es salario anual a partir del número de estudios.

¿Qué es x? Años de estudios

¿Qué es Y? El output - el salario anual.

¿Qué es f? Una función que describe la relación entre X y Y.

¿Qué es E? Un error aleatorio con promedio de 0.

¿Cómo pueden predecir el salario a partir de años de educación

¿Cómo pueden predecir el salario a partir de años de educación

• Yo estimo que por cada año de educación, el promedio aumenta \$5,000.

• Este modelo no es perfecto. Rara vez un modelo lo es.

```
income = ($5,000 * years_of_education) + baseline_income
```

 En este método nosotros diseñamos la solución. Nosotros hicimos la ingeniería de la solución. Es diferente a una solución en la que se aprende.

¿Cómo pueden predecir el salario a partir de años de educación

• Si completó su carrera, agrega un multiplicador de 1.5x.

Utilizar reglas explícitas no suele funcionar bien.

¿Por qué?

Reto

• ¿Cómo programarían un programa que puede detectar la cara de una persona con programación convencional a partir de los pixeles?

• ¿Qué pasa si hay luz diferente?

¿Qué pasa si la cabeza está inclinada con un ángulo?

Aprendizaje Supervisado

- La computadora hará el trabajo por ti.
- El modelo genera heurísticas encontrando los patrones en la información.
- La computadora utiliza labeled training data a través de un algoritmo de aprendizaje para aprender una función. Una vez entrenado, podemos utilizar esta función para nuevos casos (unlabeled testing data).
- Objetivo: Predecir Y con la mayor precisión posible cuando se dan nuevos ejemplos de X donde Y no es conocida.

Supervised Learning

Regresión

Regresión

- Predecir un valor real (continuo)
- Training set
 - m = # de training samples
 - x = variables de entrada o features
 - y = variable de salida
 - (x, y) un ejemplo de entrenamiento
 - $(x^{(i)}, y^{(i)})$ i^{th} training sample

Features para predecir salario

- Feature
 - Atributos.
 - Las entradas (X).
 - Pueden ser numéricos o categóricos

• ¿Cuáles son nuestros features?

Features para predecir salario

Feature

- Atributos.
- Las entradas (X).
- Pueden ser numéricos o categóricos

¿Cuáles son nuestros features?

- Años de educación.
- Nombre de la universidad (con un id para identificarlo).
- Carrera que estudió.

Retos

- Para que funcione, necesitamos un número alto de observaciones de entrenamiento.
- Entrenamiento (training set)
 - Tenemos los valores de X y los valores de Y.
- Pruebas (testing set)
 - Tenemos los valores de X y no tenemos los valores de Y.
 - Nos permite saber que nuestro modelo puede generalizar para nuevos casos

Supervised Learning: Regression

training set	Observation #	Years of Higher Education (X)	Income (Y)
	1	4	\$80,000
	2	5	\$91,500
	3	0	\$42,000
	4	2	\$55,000
	N	6	\$100,000

test set

Regresión Linear

Regresión Linear "Draw the line. Yes, this counts as machine learning."

Regresión Linear con una variable

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

¿Cómo elegimos los parámetros?

- Proponemos diferentes hipótesis
- Vienen del training set
 - o Propón valores qué sean un buen fit.
 - \circ Elegirá θ₀ y θ₁ de manera que h_θ(x) se acerque a la y real en nuestros ejemplos de entrenamiento (x,y)
 - Es un problema de optimización.
 - Buscamos parámetros que minimicen el error.

Problema

 $X_{train} = [4, 5, 0, 2, ..., 6]$

Y_train = [80, 91.5, 42, 55, ..., 100]

- Problema de optimización.
- Método paramétrico: Asume la función que relaciona X con Y.

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 Objetivo: Aprender los parámetros del modelo que minimicen el error de las predicciones del modelo.

¿Cómo elegimos los parámetros

- Definimos una función de pérdida (Loss Function) o de pérdida que va a medir qué tan inexacto es nuestro modelo.
- Encontramos los parámetros que minimicen la pérdida (hagan nuestro modelo lo más exacto posible).

Dimensiones

- Si tenemos dos dimensiones, usamos una línea.
- Si tenemos tres dimensiones, usamos un plano.
- Normalmente tenemos muchos features (muchas dimensiones) y coeficientes. Los mismos principios en dos dimensiones rigen para más.
- Por simplicidad trabajamos el caso que tenemos un feature (años de estudios).

Loss Function (1)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}_i - y_i \right)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x_i) - y_i \right)^2$$

- Objetivo: Elegir θ_0 y θ_1 de manera que $h_{\theta}(x)$ se acerque a la y real en nuestros ejemplos de entrenamiento (x,y), es decir, que minimicen la función de pérdida J.
- En este caso usamos Mean Squared Error, pero hay otras.
- Lo podemos hacer con cálculo para un problema sencillo, pero las funciones de error aumentan en complejidad. Esto motiva un procedimiento iterativo que vaya minimizando el error.

Gradient Descent

Gradient Descent

- Tenemos una función $J(\theta_0 y \theta_1)$
- Algoritmo
 - Inicia con parámetros iniciales (se suelen iniciar en 0)
 - Se cambian los parámetros para reducir J hasta llegar a un mínimo.

Gradient Descent (2)

- Tenemos una función $J(\theta_0 y \theta_1)$
- Algoritmo
 - Inicia con parámetros iniciales (se suelen iniciar en 0)
 - Se cambian los parámetros para reducir J hasta llegar a un mínimo.
- Repetir hasta converger para cada parámetro:

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

}

Gradient Descent

Loss Function - Linear Regression - Convex Function

¿Qué implica el algoritmo?

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}_i - y_i \right)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x_i) - y_i \right)^2$$

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

}

Derivadas parciales

 ¿Cuánto cambia la función de pérdida si hacemos un cambio muy pequeño en el parámetro?

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

}

Learning Rate

- Tenemos un learning rate.
- El learning rate es qué tan rápido o lento aprende nuestro modelo.
- ¿Qué pasa cuando el learning rate es muy grande?

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

}

Learning Rate

- Tenemos un learning rate.
- El learning rate es qué tan rápido o lento aprende nuestro modelo.
- ¿Qué pasa cuando el learning rate es muy chico?

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

ł

Learning Rate

Gradient Descent

Sobre la derivada...

• ¿Es positiva o negativa?

Problemas con Gradient Descent

Las matemáticas de Gradient Descent (3 y 4)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}_i - y_i \right)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x_i) - y_i \right)^2$$

$$\frac{\partial}{\partial \mathbf{m}} = \frac{2}{N} \sum_{i=1}^{N} -x_i (y_i - (mx_i + b))$$

$$\frac{\partial}{\partial \mathbf{b}} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))$$

Overfitting

Conceptos

- **Overfitting:** Tu explicación es muy específica para este caso.
 - Su error con el training set es muy bajo.
 - Su error en el training set es alto.
 - o Aprende la función perfectamente. Es como memorizar en vez de aprender.
 - No generaliza para nuevos casos.

• **Regularization:** No compliques las cosas de más. Te castigaré por ir más allá de lo que debías.

Overfitting y Underfitting

Overfitting y Underfitting

- Bias: Error introducido por aproximar un fenómeno real con un modelo simple.
- Variance: Qué tanto cambia el error en el testing set cuando cambiamos la información de entrenamiento

Overfitting y Underfitting

- Si nuestro error en el training set es 0, normalmente es porque aprendió perfecto.
- Recuerden, el objetivo es generalizar para casos que nuestro modelo nunca ha visto.
- Para combatirlo
 - Usa más información de entrenamiento
 - Usa técnicas de **regularización** para combatirlo. Esto es una penalización en la función de pérdida por construir un modelo que da mucha importancia a un feature específico.

$$Cost = \frac{\sum_{1}^{n} ((\beta_{1}x_{i} + \beta_{0}) - y_{i})^{2}}{2 * n} + \lambda \sum_{i=0}^{1} \beta_{i}^{2}$$

Resumen

- Supervised Learning
- Regresión vs Clasificación
- Regresión Lineal un algoritmo paramétrico
- Gradient Descent
- Overfitting y Regularización