Assignment 3

Research and compare SDLC models suitable for engineering projects. Present findings on Waterfall, Agile, Spiral, and V-Model approaches, mphasizing their advantages, disadvantages, and applicability in different engineering contexts.

Comparison of SDLC Models for Engineering Projects

1.Waterfall Model

Description: The Waterfall model is a linear and sequential approach where each phase must be completed before the next one begins. It follows a predefined set of steps: Requirement Gathering, Design, Implementation, Testing, Deployment, and Maintenance.

Advantages:

Simplicity and ease of use.

Well-documented process with clear milestones.

Easy to manage due to its rigid structure.

Works well for projects with well-defined requirements.

Disadvantages:

Inflexible to changes once the process is underway.

High risk and uncertainty as issues found late can be costly.

Not suitable for complex or high-risk projects.

Poor adaptability to evolving requirements.

Applicability:

Best suited for projects with clearly defined requirements, minimal changes expected, and where understanding of the full scope is required upfront. Commonly used in construction and manufacturing projects.

2. Agile Model

Description: The Agile model emphasizes iterative development, where requirements and solutions evolve through collaboration between crossfunctional teams. It is characterized by small, incremental releases and flexibility to adapt to changes.

Advantages:

High flexibility and adaptability to changes.

Improved customer satisfaction through regular updates and feedback.

Continuous delivery of useful software.

Encourages collaboration and communication.

Disadvantages:

Requires experienced and highly skilled team members.

Can be challenging to predict time and cost due to its iterative nature.

Documentation can be neglected.

Less control over the project scope.

Applicability: Ideal for projects with dynamic requirements, where user feedback is crucial, and rapid delivery of partial solutions is beneficial. Commonly used in software development, product development, and startups.

3. Spiral Model

Description: The Spiral model combines iterative development (prototyping) and the systematic aspects of the Waterfall model. It involves repeating cycles (spirals) through four main phases: Planning, Risk Analysis, Engineering, and Evaluation.

Advantages:

Focus on risk assessment and mitigation.

Allows for iterative refinement and incremental release.

Flexible to changes in requirements.

Suitable for large, complex, and high-risk projects.

Disadvantages:

Can be complex and costly to implement.

Requires expertise in risk management.

Not suitable for small or low-risk projects.

Difficulty in time management due to repeated cycles.

Applicability: Best for large, complex projects with significant risk elements, such as defense, aerospace, and large-scale software applications where risk analysis is critical.

4. V-Model (Verification and Validation Model)

Description: The V-Model is an extension of the Waterfall model, emphasizing verification and validation. Each development phase has a corresponding testing phase, forming a V shape that represents the association between development and testing activities.

	sting and validation at	t each stage.			
Clear and stru	ctured approach.				
Easy to manage due to its predefined stages.					
Reduces risk o	f defects by integratin	g testing early and ofte	n.		
Disadvantage	es:				
Inflexible and	challenging to accomn	nodate changes.			
Similar to Wate misundersto		certainty if requirement	s are		
Can be costly	and time-consuming.				
Not suitable fo	r projects with frequer	ntly changing requireme	ents.		
and fixed, and automotive, ar					
***************************************			••••••		

Advantages: