

Компютърна графика и ГПИ

Алгоритми за Визуализация

Визуализация

Визуализация

Построяване на изображение съответстващо на модел.

Операция по преобразуване на представяне на двумерни/тримерни обекти в графично изображение.

Класификация

- Алгоритми работещи в обектното пространство;
- Алгоритми работещи в екранното пространство;
- Алгоритми работещи в екранното и в обектното пространство.
- Отстраняване на невидимите линии и повърхности;
- Построяване на реалистични изображения.

Алгоритми за визуализация

ВИЗУАЛИЗАЦИЯ

В обектното п-во:

От сцената напред към камерата/наблюдателя.

(Пример: Z-буфер)

В екранното п-во:

От камерата назад към сцената/геометрията.

(Пример: Ray tracing)

Алгоритми за Визуализация

- Алгоритъм на плаващият хоризонт;
- Алгоритъм на Робъртс;
- Алгоритъм на Варнок;
- Разбиване на криволинейни повърхности;
- Алгоритъм, използващ Z-буфер;
- Алгоритъм, използващ списък на приоритетите;
- Алгоритми за поредово сканиране;
- Интервален алгоритми за поредово сканиране;
- * Radiosity;
- ❖ Трасиране на лъчи (Ray Tracing);

Алгоритъмът на плаващият хоризонт се използва най-често за отстраняването на невидимите линии при тримерно представяне на функции, описващи повърхности във вида F(x,y,z)=0

Основната идея е да се визуализират последователно сечения на функцията с различни равнини (например z=const), започвайки от найблизката до наблюдателя.

Всяко сечение е крива, която се визуализира по *х*, като се показват само тези точки, за които *у* не е помалко от това на предишните сечения.

За целта се използва масив съхраняващ максималните стойности на *у* за всяко *х* до момента.

Това е така нареченият хоризонт.

Пример

Пример 2

Основната идея е за тримерните тела (изпъкнали многостени, описани чрез стените си) да се пресметнат ъглите между посоката на гледане на наблюдателя и нормалните вектори на всички стени.

Това става чрез **скаларно** произведение на вектора на посоката на гледане и всеки от нормалните вектори на стените.

L. Roberts

Телата трябва да са изпъкнали. Нормалните вектори да сочат в посока "навън" от тялото. Определят се кои стени не са видими.

Определят се кои стени не са видими в зависимост от ъглите. В зависимост от видимостта на стените ребрата може да се класифицират като:

- ❖ Видими;
- ***** Контурни;
- **❖** Невидими.

За всички видими се прави проверка за закриване от всички други тела и се определят видимите части.

Визуализират се всички без невидимите.

Идеята е че за обработката на области, съдържащи малко информация, се изразходват малко време и усилие.

Използва се свойството на изображението **кохерентност**.

J. Warnock

По-голямата част от времето и труда се ангажират от области с високо информационно съдържание.

Обхващащ, ако прозореца се намира изцяло вътре в многоъгълника.

Пресичащ, ако вътрешността и границата на многоъгълника имат общи точки с вътрешността и границата на прозореца.

Вътрешен, ако той се намира изцяло вътре в прозореца.

Външен, ако той се намира изцяло извън прозореца.

Алгоритъм, използващ *Z-буфер*

Алгоритъм, използващ Z-буфер

- Това е един от най-простите алгоритми за отстраняване на невидими повърхности;
- За пръв път той е предложен от Кетмул;
- Алгоритъмът работи в обектното пространството. Идеята за Z-буфер е просто обобщение на идеята за буфер на кадъра.

Ed. Catmull

Алгоритъм, използващ Z-буфер

M

Цветовете, които съответстват на всеки пиксел се записват в матрица МхN, която наричаме буфер на кадъра (Frame buffer или Color buffer).

N

Алгоритъм, използващ Z-буфер

M

Цветовете, които съответстват на всеки пиксел се записват в матрица MxN, която наричаме буфер на кадъра (Color Buffer).

Използва се втори буфер — на дълбочината (Depth Buffer), в който се записва найблизкото до наблюдателя разстояние.

N

Буфер на цвета (Color Buffer)

Алгоритъм, използващ списък на приоритетите

(Алгоритъм на художника)

Алгоритъм, използващ списък на приоритетите

Основната идея е многоъгълниците да се наредят по някакъв критерии (например по отдалеченост от наблюдателят) и да се изрисуват в обратна посока.

Този алгоритъм още се нарича Алгоритъм на художника.

Проблеми

Циклично припокриване

Проникване

Интервален алгоритъм за Поредово сканиране

Поредово сканиране (интервален алгоритъм)

Radiosity

Локално срещу Глобално осветяване

Radiosoty

Геометрията на сцената се разбива на много малки повърхности, след което се пресмята пренасянето на светлината между всеки две от тях.

Ray Tracing

Въпроси?

apenev@uni-plovdiv.bg

