$11n_{167} (K11n_{167})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -22089881u^{18} - 37947869u^{17} + \dots + 242489462b + 98525885, \\ &- 61574971u^{18} + 98525885u^{17} + \dots + 242489462a + 1067204433, \ u^{19} - 8u^{17} + \dots - 5u + 1 \rangle \\ I_2^u &= \langle 1.77398 \times 10^{18}u^{23} + 2.26651 \times 10^{18}u^{22} + \dots + 4.24873 \times 10^{18}b - 7.44747 \times 10^{18}, \\ &- 1.90928 \times 10^{19}u^{23} - 2.27388 \times 10^{19}u^{22} + \dots + 2.12437 \times 10^{19}a + 1.14920 \times 10^{20}, \ u^{24} + u^{23} + \dots - 8u + 10^{18}u^{24} + u^{24}u^{24} + u^{24}u^{24} + u^{24}u^{24} + u^{24}u^{24} + u^{24}u^{24}u^{24} + u^{24}u$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 55 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -2.21 \times 10^7 u^{18} - 3.79 \times 10^7 u^{17} + \dots + 2.42 \times 10^8 b + 9.85 \times 10^7, \ -6.16 \times 10^7 u^{18} + 9.85 \times 10^7 u^{17} + \dots + 2.42 \times 10^8 a + 1.07 \times 10^9, \ u^{19} - 8u^{17} + \dots - 5u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.253928u^{18} - 0.406310u^{17} + \dots - 1.98160u - 4.40103 \\ 0.0910963u^{18} + 0.156493u^{17} + \dots + 3.28548u - 0.406310 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.253928u^{18} - 0.406310u^{17} + \dots - 0.981600u - 4.40103 \\ 0.0910963u^{18} + 0.156493u^{17} + \dots + 3.28548u - 0.406310 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.406310u^{18} + 0.0910963u^{17} + \dots + 3.28548u - 0.406310 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.406310u^{18} + 0.0910963u^{17} + \dots + 3.13139u + 1.25393 \\ -0.156493u^{18} - 0.188283u^{17} + \dots - 0.0491713u + 0.0910963 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.610280u^{18} - 0.343192u^{17} + \dots + 10.3730u - 2.60824 \\ 0.370173u^{18} + 0.142628u^{17} + \dots + 4.39116u - 0.749502 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.240107u^{18} - 0.200564u^{17} + \dots + 4.39116u - 0.749502 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.655534u^{18} - 0.200564u^{17} + \dots + 4.39116u - 0.749502 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.655534u^{18} - 0.0971700u^{17} + \dots - 12.7360u + 2.59475 \\ -0.0593229u^{18} - 0.229893u^{17} + \dots + 0.633751u - 0.564438 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.21860u^{18} + 0.176434u^{17} + \dots - 14.2029u + 4.08632 \\ 0.00607376u^{18} - 0.198103u^{17} + \dots - 1.60256u - 0.249224 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.365855u^{18} - 0.499533u^{17} + \dots + 6.52297u - 1.24903 \\ 0.418084u^{18} - 0.0169879u^{17} + \dots + 6.52297u - 1.24903 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.365855u^{18} - 0.499533u^{17} + \dots + 6.52297u - 1.24903 \\ 0.418084u^{18} - 0.0169879u^{17} + \dots + 6.52297u - 1.24903 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{261922646}{121244731}u^{18} + \frac{40889015}{121244731}u^{17} + \dots + \frac{452208248}{121244731}u + \frac{720534416}{121244731}u$$

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^{19} + 8u^{18} + \dots + 13u + 2$
c_2, c_3, c_7	$u^{19} - 8u^{17} + \dots - 5u + 1$
c_4, c_{10}	$u^{19} + 8u^{17} + \dots + 4u + 1$
c_6, c_9	$u^{19} + 2u^{18} + \dots + 11u + 2$
c_{8}, c_{11}	$u^{19} + 7u^{18} + \dots + 47u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{19} - 4y^{18} + \dots - 27y - 4$
c_2, c_3, c_7	$y^{19} - 16y^{18} + \dots + 19y - 1$
c_4, c_{10}	$y^{19} + 16y^{18} + \dots - 12y - 1$
c_6, c_9	$y^{19} - 16y^{18} + \dots + 81y - 4$
c_{8}, c_{11}	$y^{19} + 7y^{18} + \dots + 1025y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.953283 + 0.590186I		
a = 0.497813 - 0.825854I	-3.36214 + 0.48881I	-6.63793 - 2.65665I
b = -0.30300 + 1.61317I		
u = -0.953283 - 0.590186I		
a = 0.497813 + 0.825854I	-3.36214 - 0.48881I	-6.63793 + 2.65665I
b = -0.30300 - 1.61317I		
u = 0.978082 + 0.672701I		
a = 1.070170 - 0.278653I	5.37613 - 7.26815I	-2.70960 + 5.48443I
b = 0.071909 - 0.595075I		
u = 0.978082 - 0.672701I		
a = 1.070170 + 0.278653I	5.37613 + 7.26815I	-2.70960 - 5.48443I
b = 0.071909 + 0.595075I		
u = -1.124820 + 0.396400I		
a = 0.225058 - 0.730978I	-3.09782 + 0.05780I	-6.02643 + 0.15389I
b = -0.72235 + 1.40708I		
u = -1.124820 - 0.396400I		
a = 0.225058 + 0.730978I	-3.09782 - 0.05780I	-6.02643 - 0.15389I
b = -0.72235 - 1.40708I		
u = -1.054220 + 0.617800I		
a = -1.066300 + 0.064508I	4.51703 - 0.89042I	-2.37683 + 0.17113I
b = -0.360174 - 0.818216I		
u = -1.054220 - 0.617800I		
a = -1.066300 - 0.064508I	4.51703 + 0.89042I	-2.37683 - 0.17113I
b = -0.360174 + 0.818216I		
u = 0.741245 + 0.208527I		
a = -0.51834 - 1.73606I	-2.65661 + 3.10000I	-6.27419 - 4.22218I
b = 0.466823 + 1.247140I		
u = 0.741245 - 0.208527I		
a = -0.51834 + 1.73606I	-2.65661 - 3.10000I	-6.27419 + 4.22218I
b = 0.466823 - 1.247140I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.46886 + 0.25961I		
a = 0.273323 - 0.690530I	-8.71916 - 2.37470I	-12.53850 - 4.28279I
b = 0.37094 + 1.49448I		
u = 1.46886 - 0.25961I		
a = 0.273323 + 0.690530I	-8.71916 + 2.37470I	-12.53850 + 4.28279I
b = 0.37094 - 1.49448I		
u = -0.477001		
a = -0.253883	-0.803589	-12.4280
b = -0.419235		
u = -1.39506 + 0.83246I		
a = -0.053021 - 0.851335I	3.02325 + 5.91409I	-2.64836 - 3.66933I
b = 0.64874 + 1.77620I		
u = -1.39506 - 0.83246I		
a = -0.053021 + 0.851335I	3.02325 - 5.91409I	-2.64836 + 3.66933I
b = 0.64874 - 1.77620I		
u = 1.38951 + 0.89919I		
a = -0.052745 - 0.891369I	2.6009 - 14.2087I	-4.30199 + 7.64083I
b = -0.77871 + 2.03128I $u = 1.38951 - 0.89919I$		
	0.0000 + 14.00071	4 90100 7 640091
a = -0.052745 + 0.891369I	2.6009 + 14.2087I	-4.30199 - 7.64083I
b = -0.77871 - 2.03128I $u = 0.188175 + 0.151731I$		
a = -4.24902 + 1.30686I	1.89777 + 1.11232I	4.22795 - 4.88598I
	1.09777 + 1.112321	4.22190 - 4.000901
b = 0.315435 + 0.378179I $u = 0.188175 - 0.151731I$		
a = -4.24902 - 1.30686I	1.89777 - 1.11232I	4.22795 + 4.88598I
b = 0.315435 - 0.378179I	1.00111 1.112021	4.22130 4.000301

$$II. \\ I_2^u = \langle 1.77 \times 10^{18} u^{23} + 2.27 \times 10^{18} u^{22} + \cdots + 4.25 \times 10^{18} b - 7.45 \times 10^{18}, \ -1.91 \times 10^{19} u^{23} - 2.27 \times 10^{19} u^{22} + \cdots + 2.12 \times 10^{19} a + 1.15 \times 10^{20}, \ u^{24} + u^{23} + \cdots - 8u + 2 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.898752u^{23} + 1.07038u^{22} + \dots + 12.0912u - 5.40961 \\ -0.417531u^{23} - 0.533456u^{22} + \dots - 3.66675u + 1.75287 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{23} + \frac{1}{2}u^{22} + \dots + 8u - 4 \\ -0.398752u^{23} - 0.570379u^{22} + \dots - 3.09123u + 1.40961 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.704807u^{23} - 1.10356u^{22} + \dots - 6.67794u + 2.54722 \\ -0.244696u^{23} - 0.273474u^{22} + \dots - 2.26972u + 0.601506 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.24995u^{23} + 1.72388u^{22} + \dots + 14.2509u - 5.98658 \\ -0.507773u^{23} - 0.801281u^{22} + \dots - 2.45122u + 1.52483 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.742173u^{23} + 0.922597u^{22} + \dots + 11.7997u - 4.46175 \\ -0.507773u^{23} - 0.801281u^{22} + \dots - 2.45122u + 1.52483 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.239284u^{23} + 0.478472u^{22} + \dots + 1.7997u - 4.46175 \\ -0.596088u^{23} - 0.741810u^{22} + \dots - 5.97824u + 2.40135 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.359990u^{23} + 0.826922u^{22} + \dots + 1.48988u - 0.206011 \\ -0.282468u^{23} - 0.307556u^{22} + \dots - 2.91950u + 1.66220 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2.18922u^{23} + 3.04082u^{22} + \dots + 25.5796u - 11.0724 \\ -0.844038u^{23} - 1.26644u^{22} + \dots - 5.33860u + 3.13224 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2.18922u^{23} + 3.04082u^{22} + \dots + 25.5796u - 11.0724 \\ -0.844038u^{23} - 1.26644u^{22} + \dots - 5.33860u + 3.13224 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $\frac{4484056006391387816}{2124366145116320153}u^{23} + \frac{6874045510728739710}{2124366145116320153}u^{22} + \cdots +$ $\begin{array}{l} \textbf{(iii) Cusp Shapes} = \frac{19962270314208126262}{2124366145116320153}u \\ -\frac{19962270314208126262}{2124366145116320153}u - \frac{11397374893510619150}{2124366145116320153} \end{array}$

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^{12} - 3u^{11} + \dots - 3u + 1)^2$
c_2, c_3, c_7	$u^{24} + u^{23} + \dots - 8u + 2$
c_4, c_{10}	$u^{24} + u^{23} + \dots - 60u + 10$
c_6, c_9	$u^{24} + 3u^{23} + \dots + 192u + 17$
c_8, c_{11}	$(u^{12} - 3u^{11} + \dots - 5u + 3)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^{12} - y^{11} + \dots + 3y + 1)^2$
c_2, c_3, c_7	$y^{24} - 3y^{23} + \dots - 36y^2 + 4$
c_4, c_{10}	$y^{24} + 21y^{23} + \dots + 3560y + 100$
c_{6}, c_{9}	$y^{24} - 21y^{23} + \dots - 16090y + 289$
c_8, c_{11}	$(y^{12} + 7y^{11} + \dots + 35y + 9)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.787408 + 0.597220I		
a = 0.219391 - 0.993794I	5.39798 + 5.66008I	-4.22997 - 6.14268I
b = 1.46372 + 2.07332I		
u = -0.787408 - 0.597220I		
a = 0.219391 + 0.993794I	5.39798 - 5.66008I	-4.22997 + 6.14268I
b = 1.46372 - 2.07332I		
u = -0.600013 + 0.769421I		
a = -0.539028 + 1.257780I	-0.77344 + 4.75233I	-0.57550 - 5.65227I
b = -0.117110 - 0.655487I		
u = -0.600013 - 0.769421I		
a = -0.539028 - 1.257780I	-0.77344 - 4.75233I	-0.57550 + 5.65227I
b = -0.117110 + 0.655487I		
u = 0.920865 + 0.478649I		
a = 0.235557 + 1.372650I	-3.09418 - 6.13442I	-10.3699 + 10.2596I
b = -0.02624 - 1.98543I		
u = 0.920865 - 0.478649I		
a = 0.235557 - 1.372650I	-3.09418 + 6.13442I	-10.3699 - 10.2596I
b = -0.02624 + 1.98543I		
u = 0.839992 + 0.703903I		
a = -0.124749 - 0.804667I	5.86114 + 1.98712I	-2.94340 + 1.27592I
b = -1.49997 + 1.70732I		
u = 0.839992 - 0.703903I		
a = -0.124749 + 0.804667I	5.86114 - 1.98712I	-2.94340 - 1.27592I
b = -1.49997 - 1.70732I		
u = 1.169280 + 0.449583I		
a = -0.145064 + 1.055900I	-0.77344 - 4.75233I	-0.57550 + 5.65227I
b = 0.67915 - 1.84712I		
u = 1.169280 - 0.449583I		
a = -0.145064 - 1.055900I	-0.77344 + 4.75233I	-0.57550 - 5.65227I
b = 0.67915 + 1.84712I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.418416 + 0.516472I		
a = 0.80019 + 1.21965I	-4.41600 - 1.23001I	-6.02056 + 5.25591I
b = -1.146740 - 0.284708I		
u = 0.418416 - 0.516472I		
a = 0.80019 - 1.21965I	-4.41600 + 1.23001I	-6.02056 - 5.25591I
b = -1.146740 + 0.284708I		
u = -1.09051 + 0.92826I		
a = -0.389136 + 0.931266I	-3.09418 + 6.13442I	-10.3699 - 10.2596I
b = -0.83707 - 1.57150I		
u = -1.09051 - 0.92826I		
a = -0.389136 - 0.931266I	-3.09418 - 6.13442I	-10.3699 + 10.2596I
b = -0.83707 + 1.57150I		
u = 0.488121 + 0.138133I		
a = -1.77306 + 0.99449I	1.95930 - 1.10762I	2.13937 + 5.92060I
b = 0.399018 - 0.436599I		
u = 0.488121 - 0.138133I		
a = -1.77306 - 0.99449I	1.95930 + 1.10762I	2.13937 - 5.92060I
b = 0.399018 + 0.436599I		
u = -0.57462 + 1.39073I		
a = -0.586220 - 0.089711I	5.86114 + 1.98712I	-2.94340 + 1.27592I
b = 0.043111 - 0.376940I		
u = -0.57462 - 1.39073I		
a = -0.586220 + 0.089711I	5.86114 - 1.98712I	-2.94340 - 1.27592I
b = 0.043111 + 0.376940I		
u = -0.123712 + 0.457725I		
a = 0.06216 + 2.17412I	1.95930 + 1.10762I	2.13937 - 5.92060I
b = 0.253968 + 0.291137I		
u = -0.123712 - 0.457725I		
a = 0.06216 - 2.17412I	1.95930 - 1.10762I	2.13937 + 5.92060I
b = 0.253968 - 0.291137I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.58682 + 1.60527I		
a = 0.586529 - 0.047705I	5.39798 + 5.66008I	-4.22997 - 6.14268I
b = 0.432171 - 0.614303I		
u = 0.58682 - 1.60527I		
a = 0.586529 + 0.047705I	5.39798 - 5.66008I	-4.22997 + 6.14268I
b = 0.432171 + 0.614303I		
u = -1.74722 + 0.05067I		
a = 0.153439 + 0.533057I	-4.41600 + 1.23001I	-6.02056 - 5.25591I
b = -0.14400 - 2.11524I		
u = -1.74722 - 0.05067I		
a = 0.153439 - 0.533057I	-4.41600 - 1.23001I	-6.02056 + 5.25591I
b = -0.14400 + 2.11524I		

III.
$$I_3^u = \langle -u^7 + u^6 + 2u^5 - u^3 - u^2 + b - 2u - 1, \ -u^6 + u^5 + u^4 + a - 2, \ u^8 - 2u^6 - 2u^5 + u^3 + 3u^2 + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} - u^{5} - u^{4} + 2 \\ u^{7} - u^{6} - 2u^{5} + u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{6} - u^{5} - u^{4} - u + 2 \\ u^{7} - u^{6} - 2u^{5} + 2u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{7} - u^{6} - u^{5} - u^{2} + 2u + 1 \\ -u^{7} + 2u^{5} + 2u^{4} - 2u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} + 2u^{6} - u^{3} - 2u + 1 \\ u^{7} - u^{6} - u^{5} - u^{4} + u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{6} - u^{5} - u^{4} - u^{3} + u^{2} + u + 2 \\ u^{7} - u^{6} - u^{5} - u^{4} + u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{7} - u^{6} - 4u^{5} - 2u^{4} + 2u^{3} + 2u^{2} + 5u + 3 \\ u^{2} - u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{7} - u^{6} - 4u^{5} - 2u^{4} + 2u^{3} + 2u^{2} + 5u + 3 \\ -u^{6} + 2u^{4} + 2u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{7} - u^{6} - 4u^{5} - u^{4} + 2u^{3} - 5u + 1 \\ 2u^{7} - 2u^{6} - 3u^{5} - u^{4} + 2u^{3} + u^{2} + 4u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{7} + 3u^{6} + u^{5} + u^{4} - 2u^{3} - 5u + 1 \\ 2u^{7} - 2u^{6} - 3u^{5} - u^{4} + 2u^{3} + u^{2} + 4u + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-5u^7 + u^6 + 12u^5 + 9u^4 4u^3 6u^2 18u 18u^2 + 18u^2 -$

Crossings	u-Polynomials at each crossing
c_1	$u^{8} + 5u^{7} + 10u^{6} + 10u^{5} + 5u^{4} + 3u^{3} + 4u^{2} + 2u + 1$
c_2	$u^8 - 2u^6 + 2u^5 - u^3 + 3u^2 - 3u + 1$
c_3, c_7	$u^8 - 2u^6 - 2u^5 + u^3 + 3u^2 + 3u + 1$
c_4	$u^8 + 2u^6 - u^5 + 2u^4 + 2u^3 + 4u^2 + 2u + 1$
<i>C</i> 5	$u^8 - 5u^7 + 10u^6 - 10u^5 + 5u^4 - 3u^3 + 4u^2 - 2u + 1$
c_6	$u^8 + 2u^7 - 2u^6 - 6u^5 + 5u^3 + u^2 - u + 1$
c ₈	$u^8 + 4u^7 + 9u^6 + 12u^5 + 9u^4 + 2u^3 - 2u^2 - u + 1$
c_9	$u^8 - 2u^7 - 2u^6 + 6u^5 - 5u^3 + u^2 + u + 1$
c_{10}	$u^8 + 2u^6 + u^5 + 2u^4 - 2u^3 + 4u^2 - 2u + 1$
c_{11}	$u^8 - 4u^7 + 9u^6 - 12u^5 + 9u^4 - 2u^3 - 2u^2 + u + 1$

Crossings	Riley Polynomials at each crossing		
c_1, c_5	$y^8 - 5y^7 + 10y^6 - 22y^5 + 27y^4 + 11y^3 + 14y^2 + 4y + 1$		
c_2, c_3, c_7	$y^8 - 4y^7 + 4y^6 + 2y^5 - 6y^4 + 7y^3 + 3y^2 - 3y + 1$		
c_4, c_{10}	$y^8 + 4y^7 + 8y^6 + 15y^5 + 26y^4 + 20y^3 + 12y^2 + 4y + 1$		
c_{6}, c_{9}	$y^8 - 8y^7 + 28y^6 - 54y^5 + 62y^4 - 41y^3 + 11y^2 + y + 1$		
c_8, c_{11}	$y^8 + 2y^7 + 3y^6 - 2y^5 + 7y^4 + 2y^3 + 26y^2 - 5y + 1$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.047355 + 0.955386I		
a = 0.250346 - 0.387349I	5.86099 + 3.83824I	-2.61527 - 2.77290I
b = 0.145540 - 1.330730I		
u = 0.047355 - 0.955386I		
a = 0.250346 + 0.387349I	5.86099 - 3.83824I	-2.61527 + 2.77290I
b = 0.145540 + 1.330730I		
u = -0.923072 + 0.606984I		
a = -0.288078 + 1.324400I	-2.20821 + 5.58533I	-2.91572 - 6.03344I
b = -0.42170 - 1.57032I		
u = -0.923072 - 0.606984I		
a = -0.288078 - 1.324400I	-2.20821 - 5.58533I	-2.91572 + 6.03344I
b = -0.42170 + 1.57032I		
u = -0.595163 + 0.229046I		
a = 1.91573 + 0.00857I	1.46644 - 0.78325I	-8.36606 - 3.84221I
b = 0.014742 + 0.290671I		
u = -0.595163 - 0.229046I		
a = 1.91573 - 0.00857I	1.46644 + 0.78325I	-8.36606 + 3.84221I
b = 0.014742 - 0.290671I		
u = 1.47088 + 0.19586I		
a = -0.377996 + 0.744591I	-8.40909 - 2.81417I	-3.60294 + 7.34570I
b = -0.23859 - 1.56042I		
u = 1.47088 - 0.19586I		
a = -0.377996 - 0.744591I	-8.40909 + 2.81417I	-3.60294 - 7.34570I
b = -0.23859 + 1.56042I		

IV. $I_4^u = \langle -u^3 - u^2 + b - 1, \ u^3 + 2u^2 + 2a + u, \ u^4 + 2u^3 - u^2 - 2u + 2 \rangle$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{3} - u^{2} - \frac{1}{2}u \\ u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{3} - u^{2} + \frac{1}{2}u + 1 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} - \frac{1}{2}u - 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{3} - u^{2} + \frac{1}{2}u + 1 \\ u^{3} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} + \frac{1}{2}u \\ u^{3} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} - \frac{1}{2}u - 1 \\ -u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u^{3} + u^{2} - u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2	$u^4 - 2u^3 - u^2 + 2u + 2$
c_3, c_7	$u^4 + 2u^3 - u^2 - 2u + 2$
c_4	$u^4 + 3u^2 - 2u + 2$
c_5	$(u+1)^4$
c_6, c_8, c_9 c_{11}	$(u^2+1)^2$
c_{10}	$u^4 + 3u^2 + 2u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y-1)^4$
c_2, c_3, c_7	$y^4 - 6y^3 + 13y^2 - 8y + 4$
c_4, c_{10}	$y^4 + 6y^3 + 13y^2 + 8y + 4$
c_6, c_8, c_9 c_{11}	$(y+1)^4$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.693897 + 0.418797I		
a = -0.637550 - 1.056350I	-4.93480	-12.0000
b = 1.27510 + 1.11269I		
u = 0.693897 - 0.418797I		
a = -0.637550 + 1.056350I	-4.93480	-12.0000
b = 1.27510 - 1.11269I		
u = -1.69390 + 0.41880I		
a = 0.137550 - 0.556347I	-4.93480	-12.0000
b = -0.27510 + 2.11269I		
u = -1.69390 - 0.41880I		
a = 0.137550 + 0.556347I	-4.93480	-12.0000
b = -0.27510 - 2.11269I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{4}(u^{8} + 5u^{7} + 10u^{6} + 10u^{5} + 5u^{4} + 3u^{3} + 4u^{2} + 2u + 1)$ $\cdot ((u^{12} - 3u^{11} + \dots - 3u + 1)^{2})(u^{19} + 8u^{18} + \dots + 13u + 2)$
c_2	$(u^{4} - 2u^{3} - u^{2} + 2u + 2)(u^{8} - 2u^{6} + 2u^{5} - u^{3} + 3u^{2} - 3u + 1)$ $\cdot (u^{19} - 8u^{17} + \dots - 5u + 1)(u^{24} + u^{23} + \dots - 8u + 2)$
c_3, c_7	$(u^{4} + 2u^{3} - u^{2} - 2u + 2)(u^{8} - 2u^{6} - 2u^{5} + u^{3} + 3u^{2} + 3u + 1)$ $\cdot (u^{19} - 8u^{17} + \dots - 5u + 1)(u^{24} + u^{23} + \dots - 8u + 2)$
c_4	$ (u^{4} + 3u^{2} - 2u + 2)(u^{8} + 2u^{6} - u^{5} + 2u^{4} + 2u^{3} + 4u^{2} + 2u + 1) $ $ \cdot (u^{19} + 8u^{17} + \dots + 4u + 1)(u^{24} + u^{23} + \dots - 60u + 10) $
c_5	$(u+1)^4(u^8 - 5u^7 + 10u^6 - 10u^5 + 5u^4 - 3u^3 + 4u^2 - 2u + 1)$ $\cdot ((u^{12} - 3u^{11} + \dots - 3u + 1)^2)(u^{19} + 8u^{18} + \dots + 13u + 2)$
c_6	$ (u^{2} + 1)^{2}(u^{8} + 2u^{7} - 2u^{6} - 6u^{5} + 5u^{3} + u^{2} - u + 1) $ $ \cdot (u^{19} + 2u^{18} + \dots + 11u + 2)(u^{24} + 3u^{23} + \dots + 192u + 17) $
<i>c</i> ₈	$ (u^{2}+1)^{2}(u^{8}+4u^{7}+9u^{6}+12u^{5}+9u^{4}+2u^{3}-2u^{2}-u+1) $ $ \cdot ((u^{12}-3u^{11}+\cdots-5u+3)^{2})(u^{19}+7u^{18}+\cdots+47u+4) $
c_9	$ (u^{2} + 1)^{2}(u^{8} - 2u^{7} - 2u^{6} + 6u^{5} - 5u^{3} + u^{2} + u + 1) $ $ \cdot (u^{19} + 2u^{18} + \dots + 11u + 2)(u^{24} + 3u^{23} + \dots + 192u + 17) $
c_{10}	$(u^{4} + 3u^{2} + 2u + 2)(u^{8} + 2u^{6} + u^{5} + 2u^{4} - 2u^{3} + 4u^{2} - 2u + 1)$ $\cdot (u^{19} + 8u^{17} + \dots + 4u + 1)(u^{24} + u^{23} + \dots - 60u + 10)$
c_{11}	$(u^{2}+1)^{2}(u^{8}-4u^{7}+9u^{6}-12u^{5}+9u^{4}-2u^{3}-2u^{2}+u+1)$ $\cdot ((u^{12}-3u^{11}+\cdots-5u+3)^{2})(u^{19}+7u^{18}+\cdots+47u+4)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y-1)^{4}(y^{8} - 5y^{7} + 10y^{6} - 22y^{5} + 27y^{4} + 11y^{3} + 14y^{2} + 4y + 1)$ $\cdot ((y^{12} - y^{11} + \dots + 3y + 1)^{2})(y^{19} - 4y^{18} + \dots - 27y - 4)$
c_2, c_3, c_7	$(y^{4} - 6y^{3} + 13y^{2} - 8y + 4)$ $\cdot (y^{8} - 4y^{7} + 4y^{6} + 2y^{5} - 6y^{4} + 7y^{3} + 3y^{2} - 3y + 1)$ $\cdot (y^{19} - 16y^{18} + \dots + 19y - 1)(y^{24} - 3y^{23} + \dots - 36y^{2} + 4)$
c_4, c_{10}	$(y^{4} + 6y^{3} + 13y^{2} + 8y + 4)$ $\cdot (y^{8} + 4y^{7} + 8y^{6} + 15y^{5} + 26y^{4} + 20y^{3} + 12y^{2} + 4y + 1)$ $\cdot (y^{19} + 16y^{18} + \dots - 12y - 1)(y^{24} + 21y^{23} + \dots + 3560y + 100)$
c_6, c_9	$(y+1)^4(y^8 - 8y^7 + 28y^6 - 54y^5 + 62y^4 - 41y^3 + 11y^2 + y + 1)$ $\cdot (y^{19} - 16y^{18} + \dots + 81y - 4)(y^{24} - 21y^{23} + \dots - 16090y + 289)$
c_8, c_{11}	$(y+1)^{4}(y^{8} + 2y^{7} + 3y^{6} - 2y^{5} + 7y^{4} + 2y^{3} + 26y^{2} - 5y + 1)$ $\cdot ((y^{12} + 7y^{11} + \dots + 35y + 9)^{2})(y^{19} + 7y^{18} + \dots + 1025y - 16)$