

MOSFET

OptiMOS[™] Power-MOSFET, 60 V

Features

- Optimized for synchronous rectification
- 100% avalanche testedSuperior thermal resistance
- N-channel

- Qualified according to JEDEC¹⁾ for target applications
 Pb-free lead plating; RoHS compliant
 Halogen-free according to IEC61249-2-21
 Higher solder joint reliability due to enlarged source interconnection

Table 1 **Key Performance Parameters**

Parameter	Value	Unit	
V _{DS}	60	V	
R _{DS(on),max}	1.6	mΩ	
I _D	225	A	
Qoss	81	nC	
Q _G (0V10V)	71	nC	

Type / Ordering Code	Package	Marking	Related Links
BSC016N06NS	TDSON-8 FL	016N06NS	-

OptiMOS[™] Power-MOSFET, 60 V BSC016N06NS

Table of Contents

escription	1
1aximum ratings	3
hermal characteristics	3
lectrical characteristics	4
lectrical characteristics diagrams	6
ackage Outlines	0
evision History	3
rademarks	3
nisclaimer	3

OptiMOS[™] Power-MOSFET, 60 V BSC016N06NS

1 Maximum ratings at T_j =25 °C, unless otherwise specified

Table 2 Maximum ratings

Damamatan	0	Values				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Continuous drain current ¹⁾	I _D	- - -	- - -	225 143 30	A	$V_{\rm GS}$ =10 V, $T_{\rm C}$ =25 °C $V_{\rm GS}$ =10 V, $T_{\rm C}$ =100 °C $V_{\rm GS}$ =10 V, $T_{\rm A}$ =25 °C, $R_{\rm thJA}$ =50 K/W ²⁾
Pulsed drain current ³⁾	$I_{D,pulse}$	-	-	900	Α	<i>T</i> _C =25 °C
Avalanche energy, single pulse ⁴⁾	E _{AS}	-	-	380	mJ	$I_{\rm D}$ =50 A, $R_{\rm GS}$ =25 Ω
Gate source voltage	V _{GS}	-20	-	20	V	-
Power dissipation	P _{tot}	-	-	139 2.5	W	T _C =25 °C T _A =25 °C, R _{thJA} =50 K/W
Operating and storage temperature	T _j , T _{stg}	-55	-	150	°C	IEC climatic category; DIN IEC 68-1: 55/150/56

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition	
Farameter	Symbol	Min.	Тур.	Max.	Ollit	Note / Test Condition	
Thermal resistance, junction - case, bottom	R _{thJC}	-	0.5	0.9	K/W	-	
Thermal resistance, junction - case, top	R _{thJC}	-	-	20	K/W	-	
Device on PCB, 6 cm² cooling area²)	R _{thJA}	-	-	50	K/W	-	

¹⁾ Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature at 25°C. For higher case temperature please refer to Diagram 2. De-rating will be required based on the actual environmental conditions. $^{2)}$ Device on 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm 2 (one layer, 70 μ m thick) copper area for drain

connection. PCB is vertical in still air.

3) See figure 3 for more detailed information

4) See figure 13 for more detailed information

OptiMOS[™] Power-MOSFET, 60 V BSC016N06NS

Electrical characteristics

at T_j=25 °C, unless otherwise specified

Static characteristics Table 4

D	0		Value	s	1114		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	60	-	-	V	V _{GS} =0 V, I _D =1 mA	
Gate threshold voltage	V _{GS(th)}	2.1	2.8	3.3	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=95\ \mu {\rm A}$	
Zero gate voltage drain current	I _{DSS}	-	0.5 10	1 100	μΑ	V _{DS} =60 V, V _{GS} =0 V, T _j =25 °C V _{DS} =60 V, V _{GS} =0 V, T _j =125 °C	
Gate-source leakage current	I _{GSS}	-	10	100	nA	V _{GS} =20 V, V _{DS} =0 V	
Drain-source on-state resistance	R _{DS(on)}	-	1.4 1.9	1.6 2.4	mΩ	V _{GS} =10 V, I _D =50 A V _{GS} =6 V, I _D =12.5 A	
Gate resistance ¹⁾	R _G	-	1.9	2.9	Ω	-	
Transconductance	g fs	70	140	-	S	$ V_{DS} > 2 I_D R_{DS(on)max}, I_D = 50 A$	

Dynamic characteristics¹⁾ Table 5

Davamatav	Crossball	Values			11	Nata / Tant Candition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	C _{iss}	3900	5200	6500	pF	V _{GS} =0 V, V _{DS} =30 V, <i>f</i> =1 MHz
Output capacitance	Coss	900	1200	1500	pF	V _{GS} =0 V, V _{DS} =30 V, <i>f</i> =1 MHz
Reverse transfer capacitance	C _{rss}	14	48	96	pF	V _{GS} =0 V, V _{DS} =30 V, <i>f</i> =1 MHz
Turn-on delay time	$t_{\sf d(on)}$	-	19	38	ns	$V_{\rm DD}$ =30 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =1.6 Ω
Rise time	t _r	-	9	18	ns	$V_{\rm DD}$ =30 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =1.6 Ω
Turn-off delay time	$t_{\sf d(off)}$	-	35	70	ns	$V_{\rm DD}$ =30 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =1.6 Ω
Fall time	t _f	-	9	18	ns	$V_{\rm DD}$ =30 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =1.6 Ω

Table 6 Gate charge characteristics²⁾

Downwooden	Or made at		Values	S	11	N (7 10 10)
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	16	22	30	nC	$V_{\rm DD}$ =30 V, $I_{\rm D}$ =50 A, $V_{\rm GS}$ =0 to 10 V
Gate charge at threshold	$Q_{g(th)}$	10	14	19	nC	$V_{\rm DD}$ =30 V, $I_{\rm D}$ =50 A, $V_{\rm GS}$ =0 to 10 V
Gate to drain charge	Q _{gd}	8.8	13	20	nC	$V_{\rm DD}$ =30 V, $I_{\rm D}$ =50 A, $V_{\rm GS}$ =0 to 10 V
Switching charge	Q _{sw}	14	21	30	nC	$V_{\rm DD}$ =30 V, $I_{\rm D}$ =50 A, $V_{\rm GS}$ =0 to 10 V
Gate charge total	Qg	58	71	95	nC	$V_{\rm DD}$ =30 V, $I_{\rm D}$ =50 A, $V_{\rm GS}$ =0 to 10 V
Gate plateau voltage	V _{plateau}	3.7	4.3	4.9	V	$V_{\rm DD}$ =30 V, $I_{\rm D}$ =50 A, $V_{\rm GS}$ =0 to 10 V
Gate charge total, sync. FET	Q _{g(sync)}	49	62	86	nC	V _{DS} =0.1 V, V _{GS} =0 to 10 V
Output charge	Q _{oss}	60	81	102	nC	V _{DD} =30 V, V _{GS} =0 V

¹⁾ Defined by design. Not subject to production test Defined by design. Not subject to production test. See "Gate charge waveforms" for parameter definition

OptiMOSTM Power-MOSFET, 60 V BSC016N06NS

Table 7 Reverse diode

Douglaston	Complete		Values		11111111	Nata / Tank On a distant	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Diode continuous forward current	Is	-	-	102	Α	T _C =25 °C	
Diode pulse current	I _{S,pulse}	-	-	900	Α	T _C =25 °C	
Diode forward voltage	V _{SD}	-	0.9	1.2	V	V _{GS} =0 V, I _F =50 A, T _j =25 °C	
Reverse recovery time ¹⁾	t _{rr}	24	61	98	ns	V _R =30 V, I _F =50A, d <i>i</i> _F /d <i>t</i> =100 A/μs	
Reverse recovery charge ¹⁾	Qrr	39	78	156	nC	V _R =30 V, I _F =50A, d <i>i</i> _F /d <i>t</i> =100 A/μs	

4 Electrical characteristics diagrams

5 Package Outlines

1) EXCLUDING MOLD FLASH
2) REMOVAL ON MOLD GATE
INTRUSION 0.1 MM
PROTRUSION 0.1 MM
LEAD LENGTH UP TO ANTI FLASH LINE
ALL METAL SURFACES ARE PLATED, EXCEPT AREA OF CUT

DIMENSION	MILLIM	ETERS			
DIMENSION	MIN.	MAX.			
Α	0.90	1.20			
A1	0.15	0.35			
b	0.26	0.54			
D	4.80	5.35			
D1	3.70	4.40			
D2	0.02	0.23			
E	5.70	6.10			
E1	5.90	6.42			
E2	3.88	4.42			
е	1.27				
L	0.69	0.90			
М	0.45	0.69			

DOCUMENT NO. Z8B000193699
REVISION 03
SCALE 10:1
0 1 2 3mm
EUROPEAN PROJECTION
ISSUE DATE 19.06.2019
19.00.2019

Figure 1 Outline TDSON-8 FL, dimensions in mm

Figure 2 Outline Boardpads (TDSON-8 FL)

Figure 3 Outline Tape (TDSON-8 FL)

OptiMOS TM Power-MOSFET, 60 V BSC016N06NS

Revision History

BSC016N06NS

Revision: 2020-03-17, Rev. 2.5

Previous Revision

Revision	Date	Subjects (major changes since last revision)
2.0	2012-06-18	Release of final version
2.3	2014-11-11	Added RthJC_typ and footprint drawing, insert footnote "Define by design"
2.4	2019-10-17	Update package drawings
2.5	2020-03-17	Update current rating

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2020 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.