University of British Columbia Department of Mechanical Engineering

MECH366 Modeling of Mechatronic Systems Final exam

Examiner: Dr. Ryozo Nagamune December 10 (Monday), 2018, 3:30-6pm

Last name, First name	
Name:	Student #:
Signature:	

Exam policies

- Allowed: one-page letter-size hand-written cheat-sheet (both sides).
- Not-allowed: laptop, calculator.
- Write all your answers on this booklet. No extra sheet will be provided.
- Motivate your answers properly. (No chance to defend your answers orally.)
- 50 points in total.

Before you start ...

- Use washroom before the exam.
- Turn off your mobile phone.
- No eating.
- Questions are NOT allowed.

If you finish early ...

• If you would like to leave the room **before 5:50pm**, raise your hand with **this booklet**, and wait at your seat until an invigilator comes to you and collects your exam booklet.

To be filled in by the instructor/marker

Problem #	Mark	Full mark
1		10
2		10
3		10
4		10
5		10
Total		50

		_			_	
1	Amarran	+ h a	following	questions	a a maria a l	+ +
Ι.	Answei	ине	10110W1116	questions	concise	V
				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•/

(2pt each)

(a) Explain what the "model validation" is.

Write your answer here.

(b) Using the constitutive relation for the thermal capacitor, prove that the thermal energy is C_tT , where C_t is the thermal capacitance and T is the temperature.

Write your answer here.

(c) Obtain the Laplace transform of the function $y(t) = e^{-t+1}u(t-2)$. Here, u(t) is the unit step function. (Hint: No complicated calculations are necessary.)

(d) Is the following statement true or false? Motivate your answer (i.e., 'true' or 'false') properly.

"For an s-domain function $Y(s) = \frac{-1}{s(s-1)}$, its corresponding time-domain function y(t) will converge to 1 due to the Final Value Theorem."

Write your answer here.

(e) Suppose that a state-space model is represented as

$$\dot{x} = Ax + Bu,
y = Cx + Du,$$

where

- the number of states x is four (4),
- \bullet the number of inputs u is three (3), and
- the number of outputs y is two (2).

What are the sizes of the matrices A, B, C and D?

2. Consider the following non-interacting two-tank fluid system.

Notations in the figure are given in the table below. Fluid inertances are assumed to be negligible.

Symbol	Meaning	
C_1 and C_2	fluid capacitances of Tank 1 and Tank 2	
R_t and R_o	fluid resistances at the outlets of Tank 1 and Tank 2	
$P_0 = P_o$	ambient pressure	
Q_i and Q_o	input and output volume flow rates	
Q_t	volume flow rate into Tank 2	
P_1 and P_2	P_1 and P_2 pressures at the bottom of Tank 1 and Tank 2	
ρ	mass density of the fluid	
g	acceleration due to the gravity	
H_1 and H_2	fluid heights of Tank 1 and Tank 2	

(a) For Tank 1 (upper tank), with the volume flow rate Q_i as an input, derive the state equation by using the linear graph. Here, take the state variable as $P_{10} := P_1 - P_0$. (4pt)

(b) For Tank 2 (lower tank), with the volume flow rate Q_t as an input, derive the state equation by using the linear graph. Here, take the state variable as $P_{20} := P_2 - P_0$. (4pt)

- (c) Obtain the state-space model of the two-tank system with:
 - one input: the volume flow rate Q_i , and
 - three outputs: the heights H_1 and H_2 , and volume flow rate Q_o .

(In this question, you do not need to draw the linear graph.) (2pt)

3. Consider the DC motor block diagram below, where all the constants which appear in the blocks $(L_a, R_a, K_i, J_m, B_m \text{ and } K_b)$ are positive.

- (a) Obtain the following transfer functions:
 - i. from the motor voltage E_a to the rotor speed Ω_m . (2pt)
 - ii. from the motor current I_a to the rotor speed Ω_m . (2pt)

- (b) By finding the poles of the transfer functions, discuss the stability of the following transfer functions:
 - i. from the motor voltage E_a to the rotor speed Ω_m . (2pt)
 - ii. from the motor voltage E_a to the rotor position Θ_m . (2pt)

(c) When we apply the unit step voltage E_a and the unit step load torque T_L simultaneously, what value does the rotor speed converge? In other words, what is $\lim_{t\to\infty} \omega_m(t)$? (Here, $\omega_m(t) = \mathcal{L}^{-1}\{\Omega_m(s)\}$.) (2pt)

- 4. Answer the following modeling questions based on experimental data.
 - (a) For an unknown system, we applied a noisy square-wave input signal with the period 6 seconds, and obtained a noisy output signal, as shown below. Estimate the transfer function of the system. (5pt)

Write your answer here.

(b) For an unknown system, we took the experimental frequency response and plotted the Bode plot as below. Estimate the transfer function of the system. (5pt)

Write your answer here.

5. Consider the magnetic-ball suspension system in the figure below. Here, the **input** is the applied voltage v, and the **output** is the displacement z of the ball, as indicated in the figure.

Forces applied to the magnetic ball are indicated in the figure, where Mg is the gravitational force (downward force) and i^2/z is the electromagnetic force (upward force).

- (a) Obtain the state-space model. (6pt)
- (b) Around the equilibrium point $z = z_0$ (positive constant displacement), obtain the linearized state-space model. (4pt)

— End of Exam Questions —

Extra page. Write the problem number before writing your answer.

Extra page. Write the problem number before writing your answer.

Extra page. Write the problem number before writing your answer.