

Licenciatura Engenharia Informática e Multimédia Instituto Superior de Engenharia de Lisboa Ano letivo 2022/2023

Sensores e Atuadores

Relatório: Trabalho Lab02

Turma: 11N

Grupo: 0

Nome: Diogo Rodrigues Número: 50776

Nome: Rodrigo Coelho Número: 50251

Nome: Tatiana Damaya Número: 50299

Data: 21 de Outubro 2022

Preparação teórica (anterior ao lab)

2.1

Através da lei de Ohm e de divisão de tensões e correntes calculamos os valores teóricos para cada resistência em cada estado de S1 e S2. E validamos os resultados com as leis dos nós, tensões e de conservação da energia.

S1 Aberto, S2 Aberto

R1

Tensão =
$$VDC = 5 V$$

Corrente =
$$5 \text{ V} / 1 \text{k} = 5 \text{ mA}$$

S1 Aberto, S2 Fechado

 R_1

Tensão =
$$VDC = 5 V$$

Corrente =
$$5 \text{ V} / 1 \text{k} = 5 \text{ mA}$$

Potência =
$$5 \text{ V} \times 5 \text{ mA} = 0.025 \text{ w}$$

S1 Fechado, S2 Aberto

R1

Tensão = VDC = 5 V

Corrente = 5 V / 1 k = 5 mA

Potência = $5 \text{ V} \times 5 \text{ mA} = 0.025 \text{ w}$

R2

Tensão = $(2.2k / (2.2k + 4.7k + 10k)) \times VDC = 0.65 V$

Corrente = 0.65 V / 2.2 K = 0.296 mA

Potência = $0.65 \text{ V} \times 0.296 \text{ mA} = 0.192 \text{ w}$

R3

Tensão = $(4.7k / (2.2k + 4.7k + 10k)) \times VDC = 1.39 V$

Corrente = 1.39 V / 4.7 k = 0.296 mA

Potência = $1.39 \text{ V} \times 0.296 \text{ mA} = 0.411 \text{ w}$

R4

Tensão = (10k / (2.2k + 4.7k + 10k)) = 2.96 V

Corrente = 2.96 V / 10 k = 0.296 mA

Potência = $2.96 \text{ V} \times 0.296 \text{ mA} = 0.876 \text{ w}$

S1 Fechado, S2 Fechado

R1

Tensão = VDC = 5 V

Corrente = 5 V / 1 k = 5 mA

Potência = $5 \text{ V} \times 5 \text{ mA} = 0.025 \text{ w}$

R2

Tensão = VDC = 5 V

Corrente = 5 V / 2.2 k = 2.27 mA

Potência = 5 V x 2.27 mA = 0.011 w

Tarefas:

1- Com o VDC corretamente configurado nós verificamos como demonstrado na aula prática a tensão e corrente de cada resistência e o potencial de cada nó e ligamos há breadboard.

Foto da breadboard ligado ao VDC

2- Medindo os resultados, concluinos que estavam dentro do esperado, que é comprovado pelas seguintes tabelas de excel:

S1 fechado, S2 fechado

Corrente

S1 fechado S2 fechado			
Corrente	Valor Teórico(mA)	Valor Prático(mA)	Erro relativo (%)
r1	5.000	4.910	1.8
r2	2.270	2.120	6.6
r3	0	0.027	
r4	0	0.013	

Tensão

Tensão	Valor Teórico(V)	Valor Prático(V)	Erro relativo (%)
r1	5.000	4.810	3.8
r2	0.650	0.639	1.7
r3	1.390	1.330	4.3
r4	2.960	2.930	1.0

Este foi o único que mostrou resultados diferentes dos esperados pois na medição da corrente de r3 e r4, houve uma surpresa em que teoricamente. Aqui teoricamente o valor das correntes deveria ser 0, contudo como é apresentado a corrente é proxima do valor.

Isto deve - se ao facto da espessura dos fios ser pelo qual foi comprovado ao testar — mos com diferentes fios e os mais espressos, ou seja, com maior área tinham valores mais próximos de 0 sendo o que usamos o mais imediato ao valor e que corresponde ao componente com maior área.

S1 aberto, S2 fechado = S1, aberto, S2 aberto

Tensão e corrente

Corrente	Valor Teórico(mA)	Valor Prático(mA)	Erro relativo (%)
r1	5.000	4.890	2.2
Tensão	Valor Teórico(mA)	Valor Prático(mA)	Erro relativo (%)
r1	5.000	4.875	2.5

S1 fechado, S2 aberto

Corrente

Corrente	Valor Teórico(mA)	Valor Prático(mA)	Erro relativo (%)
r1	5.000	4.790	4.2
r2	0.296	0.293	1.0
r3	0.296	0.294	0.7
r4	0.296	0.294	0.7

Tensão

Tensão	Valor Teórico(V)	Valor Prático(V)	Erro relativo (%)
r1	5.000	4.810	3.8
r2	0.650	0.639	1.7
r3	1.390	1.330	4.3
r4	2.960	2.930	1.0

Índice de comentários

- 2.1 do quê?
- 2.2 Para todas as situações, faltam os parâmetros da fonte Vdc.
- 2.3 maiúsculo

E os outros componentes?

- 3.1 mW
- 4.1 E quanto a R3 e R4?
- 6.1 Um pouco confuso...
- 7.1 Conclusões?