STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2019

Dr. Shivon Sue-Chee

February 14, 2019

STA 303/1002: Week 6- Case Study III Inference

Binary Logistic Regression Example

- ► Case Study III Inference: The Donner Party Example
 - Confidence interval for Odds Ratio
 - Testing/comparing models
 - Wald vs Likelihood Ratio Tests
 - Other Model Fit Statistics
- ► In R:
 - Effect Plots
 - Related R packages and functions
- ▶ Joke: "I asked a statistician for her phone number... and she gave me an estimate." (www.workjoke.com)

WALD CHI-SQUARE PROCEDURES

Logistic Regression: Inference on a single β

▶ Hypotheses: $H_0: \beta_j = 0$ (X_j has no effect on log-odds)

 $H_a: \beta_j \neq 0$ $\blacktriangleright \text{ Test Statistic: } z = \frac{\widehat{\beta}_j}{SE(\widehat{\beta}_j)}$

- \triangleright $\widehat{\beta}_{i}$ maximum likelihood (ML) estimate and
- $SE(\widehat{\beta}_i)$ estimated standard error from the numerical procedure that generated the MLE.
- By standard large-sample results, MLE's are normally distributed. Thus, for large n, under H_0 , z is an observation from an approx. $\mathcal{N}(0,1)$ distribution.

$$\bigcirc$$
 95% Confidence interval: $\widehat{\beta}_j \pm 1.96SE(\widehat{\beta}_j)$

Examples: Inference on single β 's

logit (t) = M

Using R output ('coefficients'):

	Age	Sex
Test statistic	$(-0.078/0.0373)^2$	
P-value	0.036	•
Cl for β	$-0.078 \pm 1.96 (0.0373)$	
	=(-0.15, -0.0049)	•
CI for Odds ratio	$(e^{-0.15}, e^{-0.0049}) = (0.86, 0.995)$	
Conclusion	For the same sex, the odds	
•	ratio for a 1-year increase in	•
	age is between 86 and 0.995	

 $- \frac{\lambda}{\beta} + 1965E(\beta_j)$

Recall the relationship between $\mathcal{N}(0,1)$ and Chi-square distribution:

Examples: Inference on single β 's

Using R output:

		· · · · · · · · · · · · · · · · · · ·	-) • -
		Age	Sex
	Test statistic	$(-0.078/0.0373)^2$	4.47 = 2-114
	P-value	0.036	0.0345
	95% CI for β	$-0.078 \pm 1.96 (0.0373)$	
		=(-0.15, -0.0055)	(0.117, 3.078)
	CI for Odds ratio	$(e^{-0.15}, e^{-0.0055}) = (0.86, 0.995)$	(1.124, 21.72)
	Conclusion	For the same sex, the odds	
1		ratio for a 1-year increase in	
1		age is between .86 and 0.995.	

- ▶ Note: Both marginal p-values are less that 0.05 and the confidence intervals for the odds ratios do not include 1.
- Hence, we have moderate evidence that both *Age* and *Sex* have an effect on survival over and above each other.
 - ▶ Recall: If $Z \sim \mathcal{N}(0,1)$, then $Z^2 \sim \chi_1$.

Additional CI Examples

Using R output:

▶ Q: Find a 95% CI for the change in odds of survival for a 40-yr old to 20-yr old of the same sex.

► A:

► The log odds change by -0.078*(40-20)=-1.56.

▶ 95% CI for the change in log odds is 20*(-0.15, -0.0055) =(-3.0, -0.11). 2 - monotone

▶ 95% CI for the odds ratio is (0.05, 0.896).

▶ The odds of survival of a 40-yr old woman were $e^{-1.56} = 0.21$ times the odds of survival for a 20-yr old.

Note that it is not appropriate to compute CI for π since $0 \le \pi \le 1$ and it is not normally distributed.

Model Assumptions for Binary Logistic Regression

- 1. Underlying probability model for response is Bernoulli.
- 2. Observations are independent.

- 3. The form of the model is correct.
 - ▶ Linear relationship between logits and explanatory variables
 - ► All relevant variables are included; irrelevant ones excluded
- 4. Sample size is large enough for valid inference-tests and Cls. (Recall large-sample properties of MLEs.)

Binary Logistic Regression vs Linear Regression

- lacksquare Both utilize MLE's for the eta's
- Less assumptions to check for than in linear (least squares) regression
 - ▶ No need to check for outliers since *Y* is either 0 or 1.
- No residual plots; No meaning can be inferred from residuals
 - Variance is not constant

Case Study III: Testing model assumptions

Independence: We know that there were families within Donner's party, so we have concerns that the observations were not independent!

Form of the model: Test higher-order terms such as Age^2 - non-linear (quadratic) in X

Sex * Age interaction, and

Age^2 * Sex interaction.

other factors: health stades

nested

Comparing models: Likelihood Ratio Test

- ▶ Idea: Compare likelihood of data under FULL (F) model, \mathcal{L}_F to likelihood under REDUCED (R) model, \mathcal{L}_R of same data.
 - Likelihood ratio : $\frac{\mathcal{L}_R}{\mathcal{L}_F}$, where $\mathcal{L}_R \leq \mathcal{L}_F$
- ▶ Hypotheses: $H_0: \beta_1 = \cdots = \beta_k = 0$

(Reduced model is appropriate; fits data as well as Full model)

 H_a : at least one $\beta_1, \dots, \beta_k \neq 0$

(Full model is better)

Test Statistic: Deviance (residual),

$$G^2 = -2\log \mathcal{L}_R - (-2\log \mathcal{L}_F) = -2\log \left(\frac{\mathcal{L}_R}{\mathcal{L}_F}\right)$$

▶ For large n, under H_0 , G^2 is an observation from a chi-square distribution with k df.

Case Study III Exercise: Comparing models

Using R output,

Q: Determine whether a model with the 3 higher-order polynomial terms and/or interaction terms is an improvement over the additive model.

Model | Ho: Additive model is better, logit (T) = of tot Age.

Ha: Model 2 is better, logit (+)= \$11, Age+ \$1=+1

Model 2

► Test Statistic:

G= Deviance= 51.256-45.361=5.895 ~ χ²₃

▶ Distribution of TS:

► P-value: $P(x_3^2 > 5.875) = 0.1168$

► Conclusion:

Evidence that the additive model is a better lit compared to the

Binary Logistic Regression II higher order model.

Testing β 's: Wald versus LRT test

		Wald	LRT	
\rightarrow	Testing whether a single $\beta{=}0$	~		Can compare
	Comparing nested models			,
	Small to moderate sample sizes β near boundary of parameter space			

MLE's mathematical poundary of parameters of parameters of the service of the service of parameters of parameters

Case Study III Exercise: Comparing models

Using R output,

Q: Determine whether the effect of Age on the odds of survival differ with Sex.

Hs: (ngi+(f))=2, +2, Age+3, 1_F
Ha: (ngi+(f))=2, +6, Age+B, 1_F+ B, Age×1_F Hypotheses:

► Test Statistic:

P-value:

$$C^{2} = 51.256 - 47.346$$
 $= 3.91 - \frac{1}{2}$
 $P(X^{2}, > 3.91) = 0.048$

Inanchusire evidence that the Additive model is better.

Comparing models: 'Global' LRT

any of the ordictors.

- ▶ Idea: Compares Fitted model to NULL [logit(π) = β_0] model
- ▶ Hypotheses: $H_0: \beta_1 = \cdots = \beta_p = 0$

(NULL model is appropriate)

 H_a : at least one $\beta_1, \dots, \beta_p \neq 0$

(Fitted model is better)

 $logit(\pi) = \beta_0 + \beta_1 \times_1 + \beta_2 \times_2 + \cdots + \beta_p \times_p$

Case Study III Exercise: 'Global' LRT

Using R output,

Q: Determine whether or not the additive model fits better than the Null model.

- Hypotheses: Ha: Additive is bester It
- ► Test Statistic: $G^2 = 61-827-51-266=10.571$

Distribution of TS: χ^2 P-value: $P(\chi^2 > 10.571) = 0.005$ Conclusion:

Strong evidence that the Itted model is better than the NULL model

Plot

Q: How would the plot of estimated probabilities change if we modelled probability of death rather than survival?

Over 50yrs

Q: Should one be reluctant to draw conclusions about the ratio of male and female odds of survival for the Donner Party members over 50?

Jes; no females sloke than 50.

Other Model Fit Statistics

- ► Two popular fit statistics: AIC and BIC; combines log-likelihood with a penalty.
- Useful for comparing models with same response and same data
- Extends from normal regression to GLMs
 - 1. Akaike's Information Criterion (AIC)

$$AIC = -2\log \mathcal{L} + 2(p+1)$$

2. Schwarz's (Bayesian Information) Criterion (BIC)

$$BIC = -2 \log \mathcal{L} + (p+1) \log N$$

where

p-number of explanatory variables, and

► N=sample size

- smaller es better

When is A1 (=31c?)

If
$$\log N = 2$$
 $N = e^{2}$
 $= 1.3$

0. W : BK >AC

Model Fit Statistics: AIC and BIC

- Smaller is better!
- ▶ BIC applies stronger penalty for model complexity than AIC
- ► AIC Rule of Thumb:
 - ▶ One model fits **better** than another if difference in AIC's > 10
 - ► One model model is essentially **equivalent** to another if the difference in AIC's < 2

Using AIC: Case Study III Example

- Fitted models are based on same response and data.
- ▶ Based on AIC, choose a 'best' model.

Model	Variables	AIC	BIC
1	{age,sex}	57.256	62.676
2	{age,sex,age*sex,age2,age2*sex}	57.361	68.201
3	{age,sex,age*sex,age ² }	55.830	64.863
4	{age,sex,age*sex}	55.346	62.573

Results:

- ▶ Difference in AIC between 1 and 3 is within 2
- ▶ There is some indication that 2 is worse than 3 and 4.
- Choose Model 1 (the simplest)

Related R packages and functions

- ► Packages:
 - aod: analysis of over-dispersed data
 - ▶ ggplot2: graphics
 - ▶ Sleuth3: data sets for Ramsey and Schafer's text
 - effects: effects displays for GLM and other models
- ► Functions:
 - create a factor: as.factor()
 - cross Tabulations: xtabs()
 - specifying the reference level: relevel()
 - generalized linear models: glm()
 - ▶ find deviance: deviance()
 - confidence interval: confint()
 - ▶ model coefficients: coef()
 - variance-covariance matrix: vcov()
 - wald.test()
 - ► AIC()
 - ► BIC()