

Evaluierung von KI-basierten Modellen zur automatisierten Schwachstellenanalyse im Rahmen von Penetrationstests

Katharina Erler

hs-mittweida.de

Agenda

- 🕦 Problem & Motivation & Ziel der Arbeit
- Methodik
- Praxistests & Ergebnisse
- 4 Vergleich & Bewertung
- Fazit & Ausblick

1. Problem & Motivation

Problem & Motivation

Problem:

- Pentests: teuer & zeitaufwendig
- Wachsende Angriffsflächen (Cloud, Microservices, DevOps)

Motivation:

- Prozesse automatisieren
- Abläufe beschleunigen

Ziel der Arbeit

Forschungsfrage

Wie können KI-gestützte Modelle typische Pentest-Aufgaben unterstützen, beschleunigen oder automatisieren?

Ziele:

- Realitätsnahe Praxistests durchführen
- Stärken & Schwächen vergleichen
- Bewertungsrahmen entwickeln

3. Methodik

Welche Tools wurden getestet?

RamiGPT

- ► Fokus: Privilege Escalation (Linux/Windows)
- ► Kombination von KI-Logik & klassischen Tools (LinPEAS, BeRoot)

PentestGPT (CLI)

- Open Source (Projekt GreyDGL)
- Strukturierte Workflows, textbasiert in der Konsole

PentestGPT (Web)

- Kommerziell (HackerAl LLC)
- Dialogorientiert, direkt im Browser nutzbar

Alle getesteten Tools nutzen LLMs GPT-Modelle (z. B. GPT-40)

4. Praxistests: RamiGPT-Privilege

Escalation

Was ist Privilege Escalation?

- Ziel: Unberechtigter Root/Admin-Zugriff
- Post-Exploitation-Phase
- Typische Techniken (nach MITRE ATT&CK):
 - Exploitation von Systemschwachstellen (T1068)
 - Missbrauch von Sudo/SetUID (T1548)
 - Manipulation von Zugriffstokens (T1134)
 - Nutzung gültiger, privilegierter Accounts (T1078)

RamiGPT - Testumgebung

- **Ziel:** Root-Rechte über rootbash
- **Setup:** Ubuntu-VM mit absichtlich fehlerhafter SetUID
- API: OpenAI (API-Key) erforderlich)

© 16. September 2025 Hochschule Mittweida

Szenario 1: Full-Al-Modus (Fehlschlag)

- Startet sudo-Befehle
- Bleibt bei Passwort hängen
- rootbash nicht erkannt

Ergebnis: Full-Al scheitert

Szenario 2: Halb-automatischer Ablauf (1/2)

- Nutzerhilfe: ls → Kontext
- RamiGPT findet rootbash
- Führt aber nicht selbst aus

Halb-automatischer Ablauf (2/2)

- Nutzer: ls -la → Datei mit SetUID erkannt
- Tool startet ./rootbash
- Ergebnis: Root-Rechte (uid=0/root)

Fazit: Erfolg nur mit Nutzerhilfe

4. Praxistests: PentestGPT (CLI)

Grundlagen OWASP Top 10 (A01–A03)

- **A01:** Zugriffskontrollen umgehen (JWT, IDOR)
- A02: Schwache / unsichere Kryptografie
- A03: Unsichere Eingaben (SQLi, XSS)

OWASP Top 10 — 2021

A01:2021	Broken Access Control		
A02:2021	Cryptographic Failures		
A03:2021	Injection		
A04:2021	Insecure Design (New)		
A05:2021	Security Misconfiguration		
A06:2021	Vulnerable and Outdated Components		
A07:2021	Identification and Authentication Failures		
A08:2021	Software and Data Integrity Failures		
A09:2021	Security Logging and Monitoring Failures		
A10:2021	Server-Side Request Forgery		

PentestGPT (CLI) - Szenarien

- Zielsystem: OWASP Juice Shop
- Interaktion:
 - Prompt (z. B. SQLi)
 - CLI-Befehl next
 - Ausführung im Zielsystem
 - Feedback & nächsten Schritt

Beispiel - Exploit-Vorschlag

- Vorschläge für konkrete Exploits (z. B. SQLi)
- Liefert fertige Payloads wie' OR '1'='1

```
**Possible Tasks:**

4. Exploit Identification -

4.1 Test for Reflected XSS in Customer Feedback Feature -

4.2 Test for Stored XSS in Customer Feedback Feature -

4.3 Test for Stol Injection in Customer Feedback Feature -

4.4 Evaluate Access Controls in Customer Feedback Feature -

5. Troubleshooting and Resolution -

5.10 Diagnose and Resolve Tool Malfunction -

5.1.1 Review Tool Configurations -

5.1.2 Examine System and Tool Logs -

5.1.3 Verify Connectivity and Dependencies -

5.1.4 Seek Additional Resources or Support -

**Favored Sub-task**: 4.3 Test for SQL Injection in Customer Feedback Feature -

**Explanation**:

**Manually input typical SQL injection payloads such as '" OR '1" '" OR 's -

into the input fields in the customer feedback form. Observe responses and any changes in application behavior, such as retrieving more data than expected, to identify if SQL injection undersabilities exist.
```

PentestGPT (CLI) - Ergebnisse

Stärken:

- valide Payloads
- strukturierte Tests

Schwächen:

- keine Automatisierung
- Kein Reporting-Export, nur Logfiles
- Fazit: gutes Assistenztool für Ausbildung & strukturierte Tests

4. Praxistests: PentestGPT (WEB)

PentestGPT (Web) - Szenarien

- Zielsystem: OWASP Juice Shop
- Schwachstellen: A01–A03
- Interaktion:
 - Chat-ähnlich (Dialog)
 - Prompts DE/EN
 - Ad-hoc-Analysen im Browser

PentestGPT (Web) - Ergebnisse

Stärken:

- Schnelle & präzise Antworten (inkl. Exploits)
- Keine Installation, einfache Bedienung
- Kontextsensitiv (Deutsch/Englisch)

Schwächen:

- Keine Automatisierung ohne Abo
- Kein Reporting (nur Chat)
- Voller Funktionsumfang kostenpflichtig
- Fazit: Praktisch für schnelle Analysen, weniger für strukturierte Tests

Vergleich & Evaluierung der Tools

Vergleich der Tools

Bewertung nach 6 Kriterien (0-2 Punkte, max. 12):

Kriterium	RamiGPT	PentestGPT (CLI)	PentestGPT (Web)
Schwachstellenabdeckung	•	•	•
Exploit-Vorschlag	•	•	•
Automatisierungsgrad	•	•	•
Kontextverständnis	•	•	•
Reporting & Protokollierung	•	0	•
Kosten-Nutzen-Verhältnis	•	•	•
Gesamtpunkte	5	8	7

Ergebnisse im Überblick

- RamiGPT → unreif, nur für Privilege Escalation interessant
- PentestGPT (CLI) → methodisch klar, gute Payloads, aber viel Interaktion
- PentestGPT (Web) → schnell & flexibel, aber limitiert ohne Abo

Fazit & Ausblick

Fazit

- KI = Unterstützung, kein Ersatz
- Nutzen:
 - Effizienzsteigerung bei Routineaufgaben
 - Unterstützung in Ausbildung & Training
- Grenzen:
 - Keine vollständige Automatisierung
 - Grenzen in komplexen Szenarien

Ausblick

- Integration in DevSecOps
 - → kontinuierliche Sicherheitsprozesse
- Technische Weiterentwicklung
 - → größere Kontexte, spezialisierte Modelle,
- Ausbildung
 - → KI als interaktiver Trainingspartner
- Langfristig
 - → KI erweitert Pentests
 - → skalierbar & adaptiv

Quellen / Tools

- RamiGPT (GitHub): https://github.com/M507/RamiGPT
- PentestGPT CLI (GitHub): https://github.com/GreyDGL/PentestGPT
- SentestGPT Web: https://pentestgpt.ai/
- OWASP Juice Shop (GitHub): https://github.com/juice-shop/juice-shop
- Burp Suite (PortSwigger): https://portswigger.net/burp/ documentation/desktop/getting-started/download-and-install

Hochschule Mittweida

University of Applied Sciences Technikumplatz 17 | 09648 Mittweida Angewandte Computer- und Biowissenschaften

hs-mittweida.de