Lecture - 04 Thursday, 2 December 2021 8:23 AM * Classification of Signals * (Periodic) signals and sinusoids * Formier Series (FS) representation for periodic signals period (T) signal: $\chi(t+T) = \chi(t) + t$ Frequency: fo = 1 For ANY periodic signal n(t) we have, $\pi(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(2\pi k f_0 t) + \sum_{k=1}^{\infty} b_k \sin(2\pi k f_0 t)$ kth Harmonics (freq. = kfo) {ak, bk } -> FS coefficients a(t) (FS) {ax, bx } Q. $\cos(t) + \cos(2\pi t) = \pi(t) = \pi(t+\tau)$ if periodic for Some T cos (t+T) + cos (277 (++T)) T = 2TK (2TT = ZTN) cannot be true simultaneasly! * FS (Analysis) given periodic (T) x(t), find its FS coefficients $\pi Lt) \longrightarrow \{a_k, b_k\}$

#FS (Synthesis): given FS coefficients, synthesize / reconstruct the periodic signal x (+) * partial reconstruction: use $\{a_k, b_k\}$, k = 0, 1, 2, --- k. $\pi(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(2\pi k \delta t) + \sum_{k=1}^{\infty} b_k \sin(2\pi k \delta t)$ reconstruction error: $e(t) = \chi(t) - \hat{\chi}(t)$ # How to do FS analysis? * detour into vector algebra Ex. $\overline{V} = 3\hat{c}_1 + 4\hat{c}_2$ $3\hat{i} + 4\hat{j}$ $\hat{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\hat{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ \vec{v} using $\hat{f_1} = 2\hat{e_1}$ & $\hat{f_2} = 3\hat{e_2}$ $\overline{\vee} = \left(\frac{3}{2}\right)\left(2\hat{e}\right) + \left(\frac{4}{3}\right)\left(3\hat{e}\right)$ $\overline{V} \equiv (3,4)$ $\overline{V} \equiv \left(\frac{3}{2}, \frac{4}{3}\right)$ {ê, ê, y basis ¿fi,fi y basis w = a, e, + o, e, find a, & a,. * Inner product $\langle \overline{\omega}, \widehat{e_i} \rangle = (q_1 \hat{e_i} + q_2 \hat{e_c}) \cdot \hat{e_i}$

=>	$= \langle \overline{\omega}, \hat{e}_{1}, \hat{e}_{2} \rangle + \langle \hat{e}_{1}, \hat{e}_{1} \rangle$ $= \langle \overline{\omega}, \hat{e}_{1} \rangle$ $= \langle \hat{e}_{1}, \hat{e}_{2} \rangle$	t de (ez, ê.) orthogonal vectors
	Similarly Find	A 2
* Ortho	ζ ā,	are orthogunal if $\delta > 0$
* Extending	vector algebra to signals	Signals can be thought of as infinite dimensional vectors!
	oduct of signds:	
く f (+)	$(g(+)) = \int_{a}^{b} f(+)$	g (t) at definition
* Orthogor	nal Signals > < F,	3) = 0
c on sider	cos (211 k, fo t) 1 c	COS (271 Kz.F. L)
Q. are	they or thogonal in	$\begin{bmatrix} -\frac{T}{2} & , & \frac{T}{2} & 1 & 2 \\ & & & & & & & & & \end{bmatrix}$
	(27/k, fo t), cos (27/k, fo t) T/2 Cos /27/k, fo t)	10 T

$$k_{1} \neq k_{L} \implies \int \cos\left(2\pi k_{1} \cdot k_{2} \cdot t\right) \cos\left(2\pi k_{1} \cdot k_{2} \cdot t\right) dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] + \cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] + \cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] + \cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] + \cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] + \cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] + \cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] + \cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] + \cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt}{\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt}$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt} dt$$

$$= \frac{1}{2} \int \left(\cos\left[2\pi (k_{1} \cdot k_{2}) \cdot t\right] dt}$$

										C				_		0											
		_	*	(9m	\	=	2	2 T	\	26	f)	202	(2	11 m	to.	f)	4 f		,	n	1 =	1,2,		. øØ		
										S KT																	
			.1.	1		_				,																	
		51	mill	arly	G	ue	CON	n S	nor	, t	than t																
(н. и	v.)	_&			h.		=	2		(2	1 <i>(</i> }	7 5	in	12 τ	[m	C +	ر (1		221	= 1	.2.		_	S)		
C.	••)				<i>-</i> 74	١		٦	τ.			, _		<u> </u>))		İ	1 - 1					
								_	_	(Τ	>																
						\																					
				no	ta	ti o	ባ :		(τ	\rangle	_	ব	ny	re	gio	ກ (of		eng	th	Т						
															·												
												e.g.	[$\frac{1}{2}$, $\frac{1}{2}$		σ	r [- O, -	τ]	σ	r [-	- 27	· , - '	7	, etc.	
								١	٢		. / \"		,														
		#	×	C	10	=	-	- T	1	71	ίt) d-	t														
								`	<t< td=""><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	>																	