Topology and Groupoids Exercises Chapter 2, Section 2

David Melendez

July 2, 2018

Problem 1. What are the open sets of X hen X is discrete, that is, has the discrete topology?, is indiscrete, that is, has the indescrete topology? What is the closure of $\{x\}, x \in X$, in these cases?

Solution. Recall that under the discrete topology, a set $N \subseteq X$ is a neighborhood of a point $x \in X$ if and only if $x \in N$; that is, Int N = N. Hence, under the discrete topology, every set is open.

On the other hand, under the indescrete toplogy, a set $N \subseteq X$ is a neighborhood of a point $x \in X$ if and only if N = X and $x \in N$. Here, the only open sets are and X itself.

Problem 2. Let X be a topological space and let $A \subseteq X$. Prove that Int A is the union of all open sets U such that $U \subseteq A$ and \overline{A} is the intersection of all closed sets C such that $A \subseteq C$.

Proof. First, note that $x \in \text{Int } A$ if and only if there exists some $U \subseteq A$ such that $x \in U$, if and only if $x \in \mathcal{U}$, where \mathcal{U} is the family of all open sets containing A.

For closed sets, first suppose $x \in \overline{A}$, and so every neighborhood of x meets A. If C is a closed subset of X containing A, then every neighborhood of x must also meet C, implying $x \in \overline{C} = C$ since C is closed. Hence x is in the intersection of all closed sets containing A, completing the inclusion in one direction.

Conversely, if $x \notin \overline{A}$, then \overline{A} itself is a closed set containing A that does not contain x, so x is certainly not in the intersection of all closed sets containing A. Thus, \overline{A} is the intersection of all closed sets in X that contain A as a subset.

The previous result essentially means that the interior of A is the largest open set within A, and the closure of A is the smallest closed set containing A.

Problem 3. Let X be a topological space, and let $A \subseteq X$. A point $x \in X$ is called a *limit* point of A if each neighborhood of x contains points of A other than x. The set of limit points of A is written \widehat{A} . Prove that $\overline{A} = A \cup \widehat{A}$, and that A is closed iff $\widehat{A} \subseteq A$. Give examples of non-empty subsets A of \mathbb{R} such that:

- (i) $\widehat{A} = \emptyset$
- (ii) $\widehat{A} \neq \emptyset$ and $\widehat{A} \subseteq A$

- (iii) A is a proper subset of \widehat{A}
- (iv) $\widehat{A} \neq \emptyset$ but $A \cap \widehat{A} = \emptyset$

Solution. First we will prove that $\overline{A} = A \cup \widehat{A}$.

Proof. First suppose that $x \in \overline{A}$. Then, by definition, every neighborhood of x meets A. If x is not in A, then that every neighborhood of x meets A means that every neighborhood of x contains points of A that aren't x, meaning $x \in \widehat{A}$. Hence $\overline{A} \subseteq A \cup \widehat{A}$.

Conversely, suppose $x \in A \cup \widehat{A}$. If $x \in A$, then every neighborhood of x contains $x \in A$. If $x \in \widehat{A}$, then every neighborhood of x contains a point in A. Hence $A \cup \widehat{A} \subseteq \overline{A}$, and so $\overline{A} = A \cup \widehat{A}$.

Next, we will prove that A is closed iff $\widehat{A} \subseteq A$.

Proof. A is closed iff $A = \overline{A}$, meaning $A = A \cup \widehat{A}$, whence $\widehat{A} \subseteq A$.

Now, we produce each of the examples requested:

- (i) Let A be the singleton set $\{0\}$. Obviously every neighborhood of 0 contains 0, so 0 is not a limit point of A. If $x \neq 0$, then the open interval (x |x|, x + |x|) does not contain 0, so x is not a limit point of A.
- (ii) Let $A = [0,1] \cup \{2\}$. Then $\widehat{A} = [0,1] \subseteq A$.
- (iii) Let A = (0, 1). Then $\widehat{A} = [0, 1] \supset A$.
- (iv) Let $A = \{1/n \mid n \in \mathbb{N}\}$. Then for any $1/n \in A$, the interval $\left(\frac{1}{n} \delta, \frac{1}{n} + \delta\right)$ with $\delta = \frac{1}{n} \frac{1}{n+1}$ contains only $1/n \in A$, and so $A \cap \widehat{A} = \emptyset$. However, by the Archimedean property of the real numbers, there exists for every $\varepsilon > 0$ an $m \in \mathbb{N}$ such that $\frac{1}{m} < \varepsilon$. Hence every open interval containing 0 also contains a point in A, and so $0 \in \widehat{A}$.

Problem 4. Let X be a topological space and let $A \subseteq B \subseteq X$. We say that A is *dense* in B if $B \subseteq \overline{A}$, and A is *dense* if $\overline{A} = X$. Prove that if A is dense in X and U is open then

$$U\subseteq \overline{A\cap U}.$$

Proof. Recall from the previous exercise that $\overline{A} = A \cup \widehat{A}$. Since A is dense in X, we then know from this that $X = A \cup \widehat{A}$. With this in mind, we proceed to consider the two cases for any $x \in U \subseteq X$:

If $x \in A$, then of course $x \in U \cap A \subseteq \overline{U \cap A}$.

Otherwise, suppose $x \in \widehat{A}$, and let N be any neighborhood of x. Since U is open, we know that $N \cap U$ is also a neighborhood of x, and because $x \in \widehat{A}$, we know that $N \cap U$ meets A; that is, there exists an $a \in N \cap U \cap A$ with $a \neq x$. Clearly, then, this a is also an element of $U \cap A$, allowing us to conclude that every neighborhood of x meets $U \cap A$, and so $x \in \overline{U \cap A}$, as desired.

Problem 5. Let $\mathbb{I} = [0, 1]$. Define an order relation \leq on $\mathbb{I}^2 = \mathbb{I} \times \mathbb{I}$ by

$$(x,y) \le (x',y') \Leftrightarrow y < y' \text{ or } (y=y' \text{ and } x \le x').$$

The television topology on \mathbb{I}^2 is the order topology with respect to \leq . Let A be the set of points $(1/2, 1 - n^{-1})$ for positive integral n. Prove that in the television topology on \mathbb{I}^2 ,

$$\overline{A} = A \cup \{(0,1)\}.$$

Solution. (Sketch) Note that an interval of a point $p=(x,y)\in\mathbb{I}^2$ (with respect to the television order) which also contains the point $(x',y')\in\mathbb{I}^2$ for y'< y will contain the "vertical interval" $\mathbb{I}\times]y',y[$, where]y',y[is an open interval with respect to the usual order topology on \mathbb{R} .

Since $p = (x, y) \le (0, 1)$ if and only if y < 1, we then know that any neighborhood of p contains the open \mathbb{I}^2 -interval $\mathbb{I}^2 \times]r, 1[$ for some real number $0 \le r < 1$. By the Archimedean propoerty of the reals, there exists some positive integral n such that $n^{-1} < 1 - r$, whence $1 - n^{-1} > r$, and so the point $(1/2, 1 - n^{-1})$ is contained in the neighborhood in question. Hence the point (0,1) is in \overline{A} .

Points (x, y) with y < 1 are not contained in \overline{A} since A will contain some points above \mathbb{I}^2 -neighborhoods about (x, y) that don't stretch to the top of \mathbb{I}^2 . Neither will points with x > 0, since there exist \mathbb{I}^2 -neighborhoods about this point which only contain points of one y-value.

Problem 7. Prove that if A is the closure of an open set, then $A = \overline{\text{Int } A}$.

Proof. First, suppose that $x \in A = \overline{U}$, where $U \subset X$ is open. By definition, this means that every neighborhood of x meets $U = \operatorname{Int} U$. Since the interior operator preserves inclusions, we know that $U \subseteq \overline{U}$ implies $\operatorname{Int} U \subseteq \operatorname{Int} \overline{U}$, and so, continuing our previous line of reasoning, every neighborhood of x meets $\operatorname{Int} \overline{U}$, meaning $x \in \operatorname{Int} \overline{U} = \operatorname{Int} A$, by the definition of closure. Therefore, $A \subseteq \operatorname{Int} A$.

Conversely, suppose $x \in \overline{\operatorname{Int} A}$. Then, by the definition of closure, every neighborhood of x meets Int A, and so every neighborhood of x meets A, whence $x \in \overline{A}$, which equals A since A is closed. Thus $\overline{\operatorname{Int} \overline{A}} \subseteq A$, and so $\overline{\operatorname{Int} \overline{A}} = A$, completing the proof.

Problem 9. A topological space H (the *half-open topology*) is defined as follows. The underlying set of H is \mathbb{R} , and for each $x \in H$ and $N \subseteq H$, N is a neighborhood of x iff there are real numbers a and b such that

$$x \in [a, b[\subseteq N.$$

Prove hat H is a topological space and that:

- 1. Each interval [a, b] is both open and closed
- 2. H is separable
- 3. If $A \subseteq H$, then $A \setminus \widehat{A}$ is countable

Solution. To begin, we verify that H is a topological space using the neighborhood topology axioms.

First, if N is a neighborhood of x, then there exist a, b in \mathbb{R} such that $x \in [a, b] \subseteq N$, meaning $x \in N$.

Next, if $N \subseteq \mathbb{R}$ contains a neighborhood M of x, then there exists an interval [a, b[with $x \in [a, b[\subseteq M \subseteq N,$ whence M is a neighborhood of x.

Next, suppose N_1 and N_2 are neighborhoods of x so that $x \in [a_1, b_1] \subseteq N_1$, and $x \in [a_2, b_2] \subseteq N_2$. We then have $x \in [\max(a_1, a_2), \min(b_1, b_2)] \subseteq N_1 \cap N_2$, and so $N_1 \cap N_2$ is a neighborhood of x.

Finally, let N be a neighborhood of x, and let $I = [a, b] \subseteq N$ be an interval containing x. Then I itself is a subset of N containing x such that N is a neighborhood of every point of I. Now we prove each of the additional statements:

1. Each interval [a, b] is both open and closed.

Proof. Note that if $x \in [a, b[$, then [a, b[is itself a half-open interval within [a, b[containing x, and so Int [a, b[= [a, b[is open. Additionally, $H \setminus [a, b[$ = $] - \infty, a[\cup [b, \infty[$, which is the union of two open sets, and hence is open. Therefore [a, b[is also closed.

2. H is separable.

Proof. Consider the rationals $\mathbb{Q} \subseteq H$. Since half open intervals [a, b[cannot contain a single element, every neighborhood of an irrational number contains a rational number, and so $\overline{\mathbb{Q}} = H$. Hence H is separable.

4