## Magnetic Resonance Spectroscopy: It's maddeningly sensitive!

11.30.2017
Brendon Nacewicz MD PhD
Assistant Professor of Psychiatry
bmnacewi@wisc.edu

Med Physics 710



## Biology Riddle: How do I measure multiple chemicals longitudinally?

(Especially brain, but any organ will do)

## Biology Riddle: How do I measure multiple chemicals longitudinally?

- PET
  - Mostly indirect (displacement)
  - Relative (mean scaled)
  - Rarely >2 tracers
- Microcanulation + HPLC
  - Extracellular only
  - Bad temporal resolution
- Histology/flourescence
  - Obviously not longitudinal
  - Rarely >3 targets
- In situ

hybridization/gene chip

- Low sensitivity and specificity
- Not longitudinal

**Longitudinal Brain Biopsy?** 



### Magnetic Resonance Spectroscopy

- Measures many chemicals and cellular processes directly (or indirectly)
- Non-invasive and no radiation exposure
- No contrast agents or chemistry\*
- Reliable for longitudinal study

Outline

- · Basics of single voxel MRS
- Major sources error/variation
- Other nuclei 13C and 31P
- Specialized sequences for coupled peaks
- Emerging applications & improvements

Please ask questions throughout!

Localization & Sequence













### Resolution

- Classic brain voxel is 8cc (2cm isotropic)
- Small voxel is 3.38cc (1.5cm isotropic)
- With anatomical considerations push 2.5cc
- Group averaged 0.5cc
- This makes fMRI and DTI look like hi-def!





















# Meet the Family — n-acetylaspartate (NAA) Brain specific Made in neurons by mitochondria Healthy neuropil density Canavan's disease: Cannot breakdown NAA Myelin fails Reatate transport to oligodendrocytes Neurotransmitter role?



# You now know all the major MRS used clinically

Giant peaks, averaged over large regions Choline, Creatine, Lactate and NAA

### What makes for a reliable estimate?

- 3 main characteristics of spectral quality
  - Signal to noise ratio (SNR)
  - Frequency resolution (linewidth or fullwidth at half max)
  - Baseline fit (short echo only)



### Paradox of SNR vs Age



Why is spectroscopy easier in young children???

Nacewicz et al Neurolmage 2012

# Good Shim – line width and 1-week reliability



Note: 2-D and 3-D Spectroscopic Imaging (CSI) always has worse  ${\rm shim}^*$ 

### Disturbingly Insensitive to Motion



- Left magnet halfway through scan!
- Only hint is lower SNR!
- Many people do not trust MRS

# Disturbingly Insensitive to Motion c) ROL in Insula Putamen b) ROL in Insula Putamen d) Kreis 2004

### Motion/Frequency Drift Compensation

- Prospective Motion Correction

   (Navigators vs Camera)
- Frequency & Phase Adjustment



### Coil heating -> Frequency Drift

- Worse w/small volumes
- Worse if far from isocenter
- "Hot" topic right now



Rowland et al, J Neuroimaging 2016

### Concentrations are I.U. or A.U.!

- T2 and T1 of each metabolite vary by region
- T2 and T1 of water varies
- Even modeling both of these
  - Contribution of peak shape at different echo times!
- Absolute quantitation only if same Rx on phantom immediately
- Ex-vivo T1 greatly affects estimates



Xin et al NMR Biomed 2008

Scheenen et al MRM 2008

### **Promising New NMR Approaches**



84 12: 192 20: 300 MHz <sup>1</sup>H T<sub>2</sub> measurements on 75 mM clarithromycin in dimershysializatio-4c, (a) and (b), spoxtra obtained using the sequences of Fig. 1a and 5 respectively with a delay τ = 8 ms and a total exho time of 4er = 128 ms (n = 4), (c) and (d), corresponding results for the two doublets between 4.3 and 4.5 rem as a function of total exho time 4er.

812 | Chem. Commun., 2012, 48, 811-813

- "Perfect Echo" or PROJECT
- Ex Vivo NMR only right
- Broad decoupling
- Discovered 2010
  - Not ported yet though

Torres et al, Magn Reson Chem 2010 Aguilar et al Chem Comm 2012 Castanar et al J Mag Res 2014

# New Technique Taking over the Field Adiabatic pulses: see http://triton.iqfr.csic.es/guide/eNMR/eNMRcomp/adiabatic.html Or http://www.mri.jhmi.edu/~rouwerke/adiabatics.html#Anchor-The-47857

### Even with good spectral quality

- NAA, choline, and creatine test-retest reliability is decent but not great
- Glutamate+Glutamine (Glx, since inseparable) not reliable
- (myo)Inositol not reliable
- Lactate not reliable
- GABA not reliable

### BUT Studies of neurotransmitters and lactate have shown sensitivity to

- Smoking (smoker vs nonsmoker & recency)
- Drinking (EtOH peak also massively visible)
- Exercise (increases lactate and "Glx")
- Hypoventilation
- Migraine
- Anxiety disorders
- Depression
- So how can it be unreliable in test-retest?

Too sensitive to physiology?



### Anatomy Rules!

• Previous work showed some GM/WM effects





We found every millimeter of medial and inferior amygdala included affected estimates more than all other factors

Nacewicz et al Neurolmage 2012







A brief foray into non-1H MRS

### Paradox of measuring cellular energy

- Major interest in sleep research: does sleep affect intracellular energy efficiency?
  - Problem: If you kill mouse, cells use energy
  - Neurotransmitters are chewed up
  - Have gone to great lengths to stop this process



## 31P MRS allows direct measurement of cellular energy molecules

- 31P more abundant than 13C but still much weaker than 1H
- Sparser spectrum
- Can measure cellular energy in terms of ATP vs AMP and phosphocreatine vs creatine
- Can also measure specific phospholipids



Luyten et al NMR Biomed 1989

### What about 13C NMR?

- Remember from organic chemistry?
- Too rare for good signal H2O>>1HMRS>>12C(nospin)>>13C
- Ex-vivo excite 1H->13C->1H readout
- Run in as 13C label on glucose or TCA intermediate and track metabolism
- No absolute/baseline
- · Similar to PET but more chemicals

# 13C MRS reveals that 80% of resting brain metabolism is glutamate recycling ORDER OF THE STREET OF

## Wouldn't it be great to see neurotransmitters in vivo with 1HMRS?

With reasonable sensitivity... In a short acquisition...

# • Main neurotransmitter in brain • Most abundant brain chemical • Higher concentration than NAA • Why can't we see it? Hancu & Port NMR Biomed 2011

# J-coupled peaks: Glutamate, Glutamine, GABA and Inositol

- Remember AUC of peak: [metabolite]\*(# of protons)
- But peaks split by neighboring protons
- Multiplets look like noise and overlap!
- This is why analysis package cost \$14k – basis sets for each TE on each scanner!
- Even these are incomplete!



# Solution 1: Spectral editing w/Adiabatic Pulse • Frequency specific inversion at 3.0ppm GABA

Only possible with TE = 68 ms due to coupling frequency

Mullins et al Neurolmage 2013





















Favorite new area: fMRS!

Super short echo fMRS

• Adaptation of STEAM sequence for 12ms echo at 7T

\*\*Time Imini Finger tapping blocks\*\*

Schaller et al Neurolmage 2014

Block design is useless in regions that habituate rapidly















### Conclusions

- IF you can use specific anatomical boundaries
- AND get a good shim (or use semi-LASER)
- AND your patient can hold still long enough
- AND you use a deconvolution model
- Magnetic resonance spectroscopy can measure cells and subcellular processes in ~realtime
- If interested, I recommend biochem 800

800 PRACTICAL NUCLEAR MAGNETIC RESONANCE THEORY

Fall: 2 cr. Lectures. Multiplie pulse NMR, off-resonance effects, composite and shaped pulses, product operators, coherence transfer, multi-dimensional NMR, phase cycling, multiple quantum coherence, and cross relaxation. Prerequisite: Consent

