

Model Optimization and Tuning Phase Report

Date	06-06-2024
Team ID	739972
Project Title	DETECTION OF PHISHING WEBSITE FROM URLS
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
LOGISTICS REGRESSIO N		-
Random Forest	_	-


```
knn_classifier = KNeighborsClassifier()
                                                                                                                                                                                                  # Evaluate the performance of the tuned model accuracy = accuracy_score(y_test, y_pred) print(f'Optimal Hyperparameters: (best_params)') print(f'Accuracy on Test Set: {accuracy}')
                                                         # Define the hyperparameters and their possible values for tuning
                                                         param_grid = {
KNN
                                                                'n_neighbors': [3, 5, 7, 9],
'weights': ['uniform', 'distance'],
'p': [1, 2]
                                                                                                                                                                                                  Optimal Hyperparameters: {'n_neighbors': 9, 'p': 1, 'weights': 'distance']
Accuracy on Test Set: 0.7218934911242604
                                                        # Define the Gradient Boosting classifier
                                                        gb_classifier = GradientBoostingClassifier()
                                                        \ensuremath{\mathtt{\#}} Define the hyperparameters and their possible values for tuning
                                                                                                                                                                                                 # Evaluate the performance of the tuned model accuracy = accuracy_score(y_test, y_gred) print(f'Optimal Myperparameters: (best_params)') print(f'Accuracy on Test Set: (accuracy)')
                                                       param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.2],
Gradient
                                                                                                                                                                                                  Optical Hyperparenters: ("Learning rate": 8.1, "kan joseth": 5, "kin jamples joset": 2, "kin jamples joslit": 5, 'n jestimators': 100, 'habasmples': 8.8)
Konrang om Test Sett: 8.70209980208020
                                                                'max_depth': [3, 4, 5],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4],
Boosting
                                                                'subsample': [0.8, 1.0]
```

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric				
	<pre>print(classification_report(y_test,y_pred))</pre>				
		precision	recall	f1-score	support
	Loan will be Approved	0.67	0.68	0.68	75
	Loan will not be Approved	0.74	0.73	0.74	94
	accuracy			0.71	169
Decision Tree	macro avg	0.71	0.71	0.71	
	weighted avg	0.71	0.71	0.71	169
	confusion_matrix(y_test,y_ array([[51, 24],	pred)			

	<pre>print(classification_report(y_test,y_pred))</pre>				
		precision	recall	f1-score	support
	Loan will be Approved Loan will not be Approved	0.71 0.84	0.83 0.73	0.77 0.78	75 94
Random Forest	accuracy macro avg weighted avg	0.78 0.78	0.78 0.78	0.78 0.77 0.78	169 169 169
	<pre>confusion_matrix(y_test,y_</pre>	_pred)			
	array([[62, 13], [25, 69]])				
	print(classification_repor	t(v test v r	ned))		
	p. Inc(classification_repor	precision		f1-score	support
	Loan will be Approved Loan will not be Approved	0.73 0.72	0.59 0.83	0.65 0.77	75 94
KNN	accuracy macro avg	0.72 0.72	0.71 0.72	0.72 0.71 0.72	169 169 169
	weighted avg	0.72	0.72	0.72	169
	confusion_matrix(y_test,y_	pred)			
	array([[44, 31], [16, 78]])				
	<pre>print(classification_report(y_test,y_pred))</pre>				
		precision			
	Loan will be Approved Loan will not be Approved	0.73 0.86	0.85 0.74		75 94
Gradient Boosting	accuracy macro avg weighted avg	0.80 0.80	0.80 0.79	0.79 0.79 0.79	169 169 169
	5				
	confusion_matrix(y_test,y_	_pred)			
	array([[64, 11], [24, 70]])				

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Gradient Boosting	The Gradient Boosting model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model.