Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

SOLUCIONES.

Ejercicio 1.

Sea φ la indicatriz de Euler y consideremos el conjunto $A = \{m \in \mathbb{Z}^+ : \varphi(m) | m-1\}.$

- a) A contiene al conjunto de los números primos (por el Teorema de Fermat).
- b) Por absurdo, supongamos que $m \in A$ y que $p^2|m$ con p primo, tenemos que $p|\varphi(m)$ (utilizar la fórmula para φ), pero dado que $m \in A$ también tendríamos que p|m-1, lo cual es absurdo pues p|m.
- c) Si $m = pq \in A$ entonces $\varphi(m) = (p-1)(q-1)|pq-1 = m-1$, por lo tanto $q-1 \equiv pq-1 \equiv 0$ (mód p-1) y $p-1 \equiv pq-1 \equiv 0$ (mód q-1) asi que q-1 = p-1 y por lo tanto p=q absurdo.

Ejercicio 2.

- a) Los factores primos de n, p y q son muy cercanos y por lo tanto n puede factorizarse facilmente utilizando el Método de Fermat.
- b) Debemos primero resolver $ed \equiv 1 \pmod{\varphi(n)}$, como $24623 \cdot 6803 26892 \cdot 6229 = 1$ tenemos que $24623 \cdot 6803 \equiv 1 \pmod{26892}$ asi que d = 6803. Los valores de los bloques son $THG = 20 \cdot 31^2 + 7 \cdot 31 + 6 = 19443$ y $S!H = 19 \cdot 31^2 + 29 \cdot 31 + 7 = 19165$. Para desencriptar el primer bloque debemos calcular $19443^{6803} \pmod{27221}$.

$$\begin{cases} x \equiv 19443^{6803} \equiv 71^{6803} \equiv 71^{-3} \equiv (71^3)^{-1} \equiv 30^{-1} \pmod{167} \\ y \equiv 19443^{6803} \equiv 46^{6803} \equiv 46^{-1} \pmod{163} \end{cases}$$

donde se ha usado que $6803 \equiv -3 \pmod{166}, \, 6803 \equiv -1 \pmod{162}$ y el Teorema de Fermat. Así que

$$\begin{cases} 30x \equiv 1 \pmod{167} \\ 46y \equiv 1 \pmod{163} \end{cases}$$

De las ecuaciones $30 \cdot 39 - 7 \cdot 167 = 1$ y $46 \cdot 39 - 11 \cdot 163 = 1$ tenemos que x = 39 e y = 39. Luego $X = 19443^{6803}$ verifica el sistema de congruencias

$$\begin{cases} X \equiv 39 \pmod{167} \\ X \equiv 39 \pmod{163} \end{cases}$$

Otra solución evidente es X=39 asi que $19443^{6803}\equiv 39\pmod{27221}$. Tenemos que $39=1\cdot 31+8=BI$.

Para desencriptar el segundo bloque debemos calcular 19165^{6803} (mód 27221).

$$\begin{cases} x \equiv 19165^{6803} \equiv 127^{6803} \equiv 127^{-3} \equiv (127^3)^{-1} \equiv 128^{-1} \pmod{167} \\ y \equiv 19165^{6803} \equiv 94^{6803} \equiv 94^{-1} \pmod{163} \end{cases}$$

donde se ha usado que $6803 \equiv -3 \pmod{166}, \, 6803 \equiv -1 \pmod{162}$ y el Teorema de Fermat. Así que

$$\begin{cases} 128x \equiv 1 \pmod{167} \\ 94y \equiv 1 \pmod{163} \end{cases}$$

De las ecuaciones $128 \cdot 137 - 105 \cdot 167 = 1$ y $94 \cdot 137 - 79 \cdot 163 = 1$ tenemos que x = 137 e y = 137. Luego $X = 19165^{6803}$ verifica el sistema de congruencias

$$\left\{ \begin{array}{ll} X \equiv 137 \pmod{167} \\ X \equiv 137 \pmod{163} \end{array} \right.$$

Otra solución evidente es X=137 asi que $19443^{6803}\equiv 137\pmod{27221}$. Tenemos que $137=4\cdot 31+13=EN$.

Por lo tanto el mensaje original era BIEN.

Ejercicio 3.

- a i. Tenemos que $\varphi(m) \in S$ por el Teorema de Fermat-Euler, así que S es no vacio.
 - ii. Sea n = sq + r con $0 \le r < s$ entonces $a^n = (a^s)^q a^r \equiv a^r \pmod{p}$ pues $s \in S$, pero como $n \in S$ tenemos que $a^r \equiv a^n \equiv 1 \pmod{p}$, luego por la minimalidad de s tenemos r = 0.
- b) i. Sea $s = \min\{n \in \mathbb{Z}^+ : a^n \equiv 1 \pmod{p}\}$, por hipótesis y usando la parte anterior tenemos que s|q donde q es primo, asi que s=1 ó s=q. Pero como $a^1 \not\equiv 1 \pmod{p}$ se tiene que $s \not\equiv 1$ asi que s=q.
 - ii. Por el Teorema de Fermat $a^{p-1} \equiv 1 \pmod{p}$ (por hipótesis a no es múltiplo de p), luego por las partes anteriores se tiene que q|p-1.
- c) i. Vemos que $a_1^8 = (a_1^2)^4 \equiv a_2^4 = (a_2^2)^2 \equiv a_3^2 \equiv a_1 \pmod{p}$. Como $a_1 \not\equiv 0 \pmod{p}$ con p primo, podemos dividir ambos lados de la congruencia por a_1 obteniendo que $a_1^7 \equiv 1 \pmod{p}$, luego por la parte b tenemos que 7|p-1 o equivalentemente $p \equiv 1 \pmod{7}$.
 - ii. Por la parte b, tenemos que $p \equiv 1 \pmod{7}$ y como $700 \le p \le 725$, tenemos que $p \in \{701, 708, 715, 722\}$. Pero 708 y 722 son pares y 5|715 asi que el único primo es p = 701. Haciendo la tablita de exponenciación rápida se observa que los números $361^{2^n} \pmod{701}$ se repiten periódicamente con período 3, como $361 \equiv 1 \pmod{3}$ resulta que $361^{2^{361}} \equiv 361^{2^1} \equiv 636 \pmod{701}$.