Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 2.1.6

по курсу общей физики на тему: «Эффект Джоуля-Томсона»

> Работу выполнил: Баринов Леонид (группа Б02-827)

Долгопрудный 2019

1 Аннотация

В работе будет определено изменение температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры

Будет произведено вычисление по результатам опытов коэффициентов Вандер-Ваальса «a» и «b».

2 Теоретические сведения

2.1 Эффект Джоуля-Томсона

Эффектом Джоуля-Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля-Томсона демонстрирует отличие исследуемого газа от идеального.

2.2 Определение величины эффекта Джоуля-Томсона

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (Рис. 1). Трубка 1 хорошо тепло-изолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля-Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1моль углекислого газа; μ — его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1 , P_1 , U_1 и V_2 , P_2 , U_2 . Для того чтобы ввести в трубку объем V_1 над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right) \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu (v_2^2 - v_1^2)$$
 (2)

Рис. 1. Схема установки для изучения эффекта Джоуля-Томсона

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля-Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля-Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. Поэтому мы отложим на некоторое время обсуждение вопроса о правой части (2), а пока будем считать, что энтальпия газа не меняется.

Воспользуемся выражением:

$$\mu_{\text{\tiny \mathcal{I}-T}} = \frac{\Delta T}{\Delta P} \approx \frac{(2a/RT) - b}{C_p} \tag{3}$$

Из формулы (3) видно, что эффект Джоуля-Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0$$

т.е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

 $\frac{\Delta T}{\Delta P} < 0$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля-Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших а велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

При температуре $T_{\text{инв}}$ эффект Джоуля-Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{д-т}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{д-т}} < 0$, газ нагревается).

$$T_{\text{инв}} = \frac{27}{4} T_{\text{кр}} \tag{4}$$

Сравним изменение температуры, происходящее вследствие эффекта Джоуля-Томсона, с изменением температуры, возникающим из-за изменения кинетической энергии газа. Увеличение кинетической энергии газа вызывает заметное и приблизительно одинаковое понижение его температуры как у реальных, так и у идеальных газов. Поэтому при оценках нет смысла пользоваться сложными формулами для газа Ван-дер-Ваальса

Заменяя в формуле (2) U через $C_V T$ и PV через RT, найдем

$$(R + C_V)(T_1 - T_2) = \mu(v_2^2 - v_1^2)/2$$

или

$$\Delta T = \frac{\mu}{2C_p} (v_2^2 - v_1^2)$$

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10~{\rm cm}^3/{\rm c}$, а диаметр трубки равен 3 мм. Поэтому

$$v \leqslant \frac{4Q}{\pi d^2} = \frac{4 \cdot 10 \text{ cm}^3/\text{c}}{3.14 \cdot (0.3)^2 \text{ cm}^2} \approx 140 \text{ cm/c}$$

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из нее как давление P_2 относится к P_1 . В нашей установке $P_1 = 4$ атм, а $P_2 = 1$ атм, поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = \frac{1 \text{ atm}}{4 \text{ atm}} \cdot 140 \text{ cm/c} = 35 \text{ cm/c}$$

Для углекислого газа $\mu=44$ г/моль, $C_{\rm p}=40$ Дж/(моль · K); имеем

$$\Delta T = \frac{\mu}{2C_p} (\upsilon_2^2 - \upsilon_1^2) = \frac{44 \cdot 10^{-3}}{2 \cdot 40} (1.4^2 - 0.28^2) = 7 \cdot 10^{-4} \text{ K}$$

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

4 Оборудование

3 Оборудование

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

Экспериментальная установка. Схема установки для исследования эффекта Джоуля-Томсона в углекислом газе представлена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P \leqslant 4$ атм (расход газа составляет около $10~{\rm cm}^3/{\rm c}$); при этом в результате эффекта Джоуля-Томсона создается достаточная разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$, помещенным в термостате. Требуемая температура воды устанавливается и поддерживается во время эксперимента при помощи контактного термометра $T_{\rm K}$.

Давление газа в трубке измеряется манометром М и регулируется вентилем В (при открывании вентиля В, т. е. при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр М измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$

Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь — константан. Константановая проволока диаметром 0,1мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

4 Результаты измерений и обработка результатов

Исследуем зависимость изменения температуры ΔT от изменения давления ΔP . Результаты занесем в Таблицу 1.

$T_1 = 20.2^{\circ}C$		$T_2 = 25,1^{\circ}C$			$T_3 = 30.1^{\circ}C$			$T_4 = 35,1^{\circ}C$			
P_1 ,	U_1 ,	ΔT_1 ,	P_2 ,	U_2 ,	ΔT_2 ,	P_3 ,	U_3 ,	ΔT_3 ,	P_4 ,	U_4 ,	ΔT_4 ,
кПа	мкВ	K	кПа	мкВ	K	кПа	мкВ	K	кПа	мкВ	K
382,2	182	4,47	382,2	187	4,59	382,2	185	4,45	392,0	178	4,28
343,0	160	3,93	343,0	172	4,23	343,0	169	4,06	343,0	163	3,92
294,0	140	3,44	294,0	153	3,76	294,0	146	3,51	294,0	145	3,49
245,0	120	2,95	235,2	129	3,17	245,0	124	2,98	245,0	127	3,05
196,0	99	2,43	196,0	114	2,80	196,0	105	2,52	196,0	113	2,72
156,8	84	2,06	147,0	91	2,24	147,0	87	2,09	147,0	95	2,28
98,0	65	1,60	98,0	75	1,84	98,0	71	1,71	98,0	78	1,88
$T_5 = 40.1^{\circ}C$		$T_6 = 45,1^{\circ}C$			$T_7 = 50,1^{\circ}C$			$T_8 = 60,2^{\circ}C$			
P_5 ,	U_5 ,	ΔT_5 ,	P_6 ,	U_6 ,	ΔT_6 ,	P_7 ,	U_7 ,	ΔT_7 ,	P_8 ,	U_8 ,	ΔT_8 ,
кПа	мкВ	K	кПа	мкВ	K	кПа	мкВ	K	кПа	мкВ	K
401,8	181	4,26	401,8	168	3,95	401,8	144	3,33	401,8	153	3,84
343,0	158	3,72	343,0	145	3,41	343,0	124	2,86	343,0	135	3,39
294,0	141	3,32	294,0	129	3,04	294,0	108	2,49	294,0	124	3,12
245,0	126	2,96	245,0	115	2,71	245,0	94	2,17	245,0	111	2,79
196,0	106	2,49	196,0	99	2,33	196,0	80	1,85	196,0	98	2,46
147,0	88	2,07	147,0	85	2,00	147,0	66	1,52	147,0	83	2,09
98,0	73	1,72	98,0	70	1,65	98,0	53	1,22	98,0	74	1,86

Таблица 1. Зависимость изменения температуры ΔT_i от изменения давления ΔP_i при начальной температуре T_i

По данным Таблицы 1 построим график $\Delta T(\Delta P)$. Определим коэффициент Джоуля-Томсона по углу наклона функции. Результаты занесем в Таблицу 2.

Для поиска коэффициентов «a» и «b» в уравнении состояния газа построим график зависимости коэффициента Джоуля-Томсона $\mu_{д$ -т от величины, обратной к температуре 1/T по результатам в Таблице 2 (Рис. 3).

Исходя из графика на (Рис. 3) и формулы (3) получаем:

$$a = (1.4 \pm 0.2) \frac{\text{H} \cdot \text{м}^4}{\text{моль}^2}$$

$$b = (77 \pm 15) \cdot 10^{-5} \frac{\text{Дж}}{\Pi_{\text{а·моль}}}$$

Определим температуру инверсии $T_{\text{инв}}$:

$$T_{\text{\tiny MHB}} = (437 \pm 106) \text{ K}$$

Рис. 2. График зависимости изменения температуры ΔT от изменения давления ΔP при заданной температуре T

Рис. 3. График зависимости коэффициента Джоуля-Томсона $\mu_{\text{д-т}}$ от величины, обратной к температуре 1/T

$T,^{\circ}C$	$1/T$, $10^{-3} \cdot \mathrm{K}^{-1}$	$\mu_{\text{д-т}},$ $10^{-6} \cdot \text{K/\Pi a}$	$\sigma_{\mu_{\text{\tiny д-T}}}, 10^{-6} \cdot \text{K/\Pi a}$
20,15	3,411	10,00	0,30
25,02	3,355	9,83	0,13
30,10	3,299	9,79	0,26
35,10	3,246	8,20	0,10
40,10	3,194	8,38	0,12
45,10	3,144	7,46	0,16
50,10	3,095	6,91	0,14
60,20	3,001	6,91	0,14

Таблица 2. Зависимость коэффициента Джоуля-Томсона $\mu_{\text{д-т}}$ от величины, обратной к температуре 1/T

5 Обсуждение результатов и выводы

В работе было определено значение дифференциального эффекта Джоуля-Томсона в зависимости от начальной температуры. Результаты в Таблице 2.

Были вычислены значения «a» и «b» в уравнении Ван-дер-Ваальса и температура инверсии для углекислого газа.

$$a = (1.4 \pm 0.2) \; rac{ ext{H·M}^4}{ ext{MOЛЬ}^2} \ b = (77 \pm 15) \cdot 10^{-5} rac{ ext{Дж}}{ ext{Па·МОЛЬ}} \ T_{ ext{ИНВ}} = (437 \pm 106) \; ext{K}$$

Значения сильно отличаются от табличных. Это может быть связано с неточностью установки и недостаточным временем ожидания установления равновесия изменения температуры при изменении давления.

Табличные значения:

$$a = 0.365 \; rac{ ext{H} \cdot ext{M}^4}{ ext{моль}^2} \ b = 42.79 \; rac{ ext{cm}^3}{ ext{моль}} \ T_{ ext{инв}} = 2052 \; ext{K}$$

1. alskfja;k

kladfja

lskjf