DS289 NSDE Project - ODE Module Group - 01 Chemical kinetics of hydrogen combustion

Aswin Kumar A Deepti Sahu Surya Datta Sudhakar

CDS, Indian Institute of Science

January 31, 2025

Governing Equations

- ▶ Detailed chemical kinetics by Li¹ with 9 species and 21 reactions
- Species: H₂, H, O₂, O, OH, HO₂, H₂O, H₂O₂, N₂

$$\frac{dX_k}{dt} = \frac{W}{\rho} \dot{\omega}_k$$

where
$$k = 1, ..., N_s$$

 $\dot{\omega}_k$: net production rate of species k

¹J. Li et al., An updated comprehensive kinetic model of hydrogen combustion, IJCK, 2004

Objectives

Assigned Objectives:

- Use of adaptive time stepping (explicit schemes)
- ► Effect of precision on capturing physics

Exploratory Objectives:

- Studying effect of free parameters like tolerance
- Computational time vs Accuracy by varying the local error term using two different reference schemes
- Exploring implicit adaptive time stepping

Methodology

- \triangleright Determine Δt based on local error
- Schemes
 - 1. Main scheme: Lower order
 - 2. "Reference" scheme: Higher order
- Performance / Analysis metrics
 - 1. Δt_{min} for adaptive time stepping
 - 2. Use of Δt_{min} as constant time step (comparison metric)
 - Effect of precision (double vs single vs half) on auto-ignition problem by comparing
 - 3.1 Ignition delay time
 - 3.2 Minor species evolution
- Programming language
 - Python (cantera library for chemical kinetics)
- LLM tools
 - ► ChatGPT, Copilot, Gemini, DeepSeek

Expected Outcomes

- Adaptive time stepping expected to be faster than traditional solver
- ▶ Sensitive quantities are expected to be affected by precision

Plots generated with cantera constant volume reactor

