Matthew C. Brennan

Harvard University Department of Earth & Planetary Sciences 20 Oxford Street Cambridge, MA 02138 mcbrennan@g.harvard.edu (914) 346–0291 mcbrennan.github.io

Education

	Harvard University
2017 –	Ph.D. candidate in Earth & Planetary Sciences
2020	M.A. in Earth & Planetary Sciences
	University of Chicago
2017	B.S. with Honors in Geophysical Sciences
2017	B.S. in Environmental Sciences

Research Positions

Graduate student
Laboratory for Mineral Physics, Harvard University
Advisor: Dr. Rebecca A. Fischer
Synchrotron user
GSECARS & HP-CAT, Advanced Photon Source, Argonne National Laboratory
Beamline 12.2.2, Advanced Light Source, Berkley National Laboratory
Laboratory technician
Laboratory for Mineral Physics, University of Chicago
Advisor: Dr. Andrew J. Campbell
Thesis: "Molten Iron – Solid Silicate Interactions in Earth's Deep Interior"
Department of Energy Summer Undergraduate Laboratory Intern (SULI)
Energy Systems Division, Argonne National Laboratory
Advisor: Dr. May Wu

Project: "Water Use for Power Generation in the United States"

Publications

In review	"Water storage capacity of the Martian mantle through time" Dong, J.,
	Fischer, R. A., Stixrude, L., Lithgow-Bertelloni, C., Eriksen, Z. & Brennan, M. C.
In press	"Timing of Martian Core Formation from Models of Hf–W Evolution
	Coupled with N-body Simulations." Brennan, M. C., Fischer, R. A., Nimmo, F.,
	& O'Brien, D. P. (2021) Geochimica et Cosmochimica Acta.
2021	"High-Pressure deformation of iron-nickel-silicon alloys and implications
	for Earth's inner core." Brennan, M. C., Fischer, R. A., Couper, S., Miyagi, L.,
	Antonangeli, D., & Morard, G. (2021). Journal of Geophysical Research: Solid
	Earth, 126, e2020JB021077.

2020	"Equation of state of TiN at high pressures and temperatures: A possible
	host for nitrogen in planetary mantles." Daviau, K., Fischer, R.A., Brennan, M.
	C., Dong, J., Suer, TA., Couper, S., Meng, Y., & Prakapenka, V.B. (2020).
	Journal of Geophysical Research: Solid Earth, 126, e2020JB020074.
2019	"Core formation and geophysical properties of Mars." Brennan, M. C.,
	Fischer, R. A., & Irving, J. C. (2019). Earth and Planetary Science Letters, 530,
	115923.

Presentations and Proposals

2021	"Strength and texturing of iron alloys at high pressures and temperatures" Synchrotron Proposal (Beamline 12.2.2, Advanced Light Source)
2020	"High pressure deformation and texturing of Fe–Ni–Si alloys"
2020	Oral Presentation (COMPRES Annual Meeting)
2010	ζ,
2019	"Martian Core Formation: Implications from the Hf–W System."
	Poster Presentation (Goldschmidt Conference)
2019	"Physical properties of iron alloys with implications for inner core
	anisotropy"
	Fellowship Proposal (NSF Graduate Research Fellowship)
2019	"Using Core Formation and Geophysical Modelling to Predict the Core
	Radius and Seismic Properties of Mars."
	Oral Presentation (Lunar and Planetary Science Conference)
2018	"A Core Formation Model with Implications for the Properties of the
	Martian Interior."
	Oral Presentation (AGU Fall Meeting)
2018	"The Composition and Seismic Properties of the Martian Interior."
	Oral Presentation (Goldschmidt Conference)
2018	"Mantle Melting Temperatures of the Earth and Mars"
	Synchrotron Proposal (GSECARS, Advanced Photon Source)
2017	"Deep-Earth Partitioning between Molten Iron Alloys and Solid Silicates."
	Poster Presentation (AGU Fall Meeting)

Teaching

Fall 2021	Head Teaching Fellow: EPS 10 (A Brief History of the Earth)
Spring 2021	Teaching Fellow: ASTRON 16 (Stellar and Planetary Astronomy)
Fall 2020	Teaching Fellow: EPS 10 (A Brief History of the Earth)
Fall 2019	Teaching Fellow: EPS 142 (Mineralogy)

Honors and Awards

2021	Derek Bok Center Teaching Certificate
2019 –	National Science Foundation Graduate Research Fellow
2019 - 2020	Associate Member of Sigma Xi Honor Society

2017 Departmental Honors in Geophysical Sciences

University of Chicago

2014 – 2017 **Dean's List**

University of Chicago

Service and Outreach

2021	Program leader
	EPS Summer Short-Term Student Program
2020 –	Peer reviewer
	Nature Communications, Nature Reviews: Earth & Environment, Physics and
	Chemistry of Minerals
2020	Student panelist
	COMPRES Annual Meeting
2020	Science Education Partner
	Harvard Museum of Natural History
2018 - 2020	Museum volunteer trainer
	Harvard Museum of Natural History
2018 - 2019	Graduate Outreach Chair
	Department of Earth & Planetary Sciences, Harvard University
2018	Volunteer tutor
	Cambridge School Volunteers, Cambridge Public Schools
2017 –	Laboratory Safety Officer
	Department of Environmental Health & Safety, Harvard University
2017 - 2018	Gallery guide
	Harvard Museum of Natural History

Skills

Experiment Diamond anvil cell

(assembly, sample loading, ruby fluorescence, laser heating, Raman spectroscopy)

Synchrotron X-ray diffraction

(axial and radial geometries, beamline operation, diffraction analysis)

Scanning electron microscopy

(focused ion beam, backscattered electron detector, EDS analysis)

Optical telescope

(celestial coordinates, image acquisition, image analysis)

Piston-cylinder press

(stack assembly, hydraulic operation, thermocouple operation, sample recovery)

Computation **Programming**

(Python, Keras, MATLAB, Mathematica, LATEX, HTML)

X-ray diffraction

(DIOPTAS, MAUD, BEARTEX, FIT2D, APEX3, Olex²)