

TEAM

Introduction

Frame

Shel

Propulsion

I-Beam Stabilizatio

Braking

Weight

Levitation

Electronics

Controls

Power

Scalabilit

Production

INTRODUCTION

- Follow along at ucsbhyperloop.com/texas
- 21 senior engineering undergraduates working to build and test a pod at Competition Weekend
- Emphasizing cost-effectiveness, scalability, and feasibility
- Estimated cost to complete design: \$40,000
 - Funding/resources already raised:
 - \$5,000 from Ingersoll Rand
 - \$5,000 from Raytheon
 - \$5,000 from private donors
 - Electronics donated by NXP Semiconductors
 - ~\$25,000 to be raised

Introduction

⁻rame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

POD OVERVIEW

Introduction

Frame

Shel

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalabilit

Production

FRAME

- 13'7" (length) x 3'4" (width) x 2'7" (height)
- Divided into front, base, and rear frame
 - Lightweight, wooden front frame reinforces shell
 - Aluminum base frame supports all major subsystems
 - Steel tube rear frame interfaces with SpaceX pusher

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

SHELL

- Tapered bullet shape
- E-Glass reinforced polyester
 - Quasi-isotropic material dissipates force evenly in all directions
- Withstands tube pressure breach with a factor of safety of 4000

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

WIND TUNNEL TESTING

- 3-D printed ABS plastic pod model
- Reynolds number in evacuated tube is 8.5×10^3
- Estimated drag coefficient = 1.5 lbs
 - Drag force = 6.6 N

Pod model mounted in wind tunnel

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalabilit

Production

TRAJECTORY

- Top speed of 218 mph (320 fps)
- Total run time of 29.16 s
 - Acceleration 4.98 s
 - Coasting 3.75 s
 - Braking 20.43 s

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalabilit

Production

SERVICE WHEELS

- Powered service wheels for transport and potential pod recovery
- Wheels extend 1/8" below hover engines
- Motorized rear-left support wheel

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

I-BEAM STABILIZATION

- Benchmarked from roller coaster design and car/motorcycle suspension systems
- Spring-damper resists movement from the parallel linkage
 - Handles lateral forces

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalabilit

Production

BRAKING

- Pneumatic braking assembly with four actuated brake pads
 - Brake pads clamp onto the I-beam
 - Located at rear of pod

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

BRAKING

• Pressurized air tank provides pneumatic brake force

Introduction

Frame

Shell

Propulsion

I-Beam Stabilizatior

Braking

Weight

Levitation

Flectronics

Controls

Power

Scalabilit

Production

BRAKING

- Braking automatically activated by solenoid valves if power fails
- Ball valve manually disengages the brakes

Introduction

Frame

Shel

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalabilit

Production

POD WEIGHT —

Subsystem	Weight
Frame	66 lbs
Shell	83 lbs
Service propulsion wheels	96 lbs
I-Beam Stabilization	60 lbs
Braking	27 lbs
Maglev Engines	60 lbs
Battery and electronics	63 lbs
Total Weight	455 lbs

Introduction

Frame

Shel

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

MAGLEV LEVITATION

- System utilizes four Arx Pax Magnetic Field Architecture (MFA) hover engines
- Ground clearance
 - 0.20" (5mm)
- Four engine payload
 - 550 lbs

Introduction

Frame

Shel

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

MAGLEV LEVITATION

- Best chance of success for competition while still adhering to the future scalability of the Hyperloop
 - Levitation + Propulsion + Braking + Control
 - Operate at high speeds and in low-pressure environments

Arx Pax HE3.0 Hover Engine

Introduction

Frame

Shel

Propulsion

I-Beam Stabilization

Braking

Weigh

Levitation

Electronics

Controls

Power

Scalability

Production

MAGLEV PROTOTYPING

Introduction

Frame

Shel

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

MAGLEV PROTOTYPING

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalabilit

Production

PRINTED CIRCUIT BOARD

- 8.1" x 8.1" printed circuit board
 - (2) LPC NXP4088 microcontrollers
 - Actuate maglev engines, braking, and service wheels
 - Interface with sensors
 - Communicate telemetry at 1 Hz
 - Interfaces with SpaceX
 Network Access Panel
 - Execute pod-stop command
 - Manage control systems
- Already fabricated and awaiting assembly

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

SENSORS

- Consolidated Board: Adafruit 10-DOF IMU Breakout (2)
 - Positioned at front and back of the pod
 - Combines four sensors:
 - Accelerometer
 - Gyroscope
 - Barometer
 - Thermometer

- Telemetry and navigation
- Positioned at top of pod
- Detects reflective strips on the top half of the tube

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalabilit

Production

SENSORS

- Short range: Sharp GP2Y0A51SK0F (4)
 - Telemetry and stability system
 - Positioned at four bottom corners of pod
 - Determines height relative to the bottom of the tube

- Long range: Sharp GP2Y0A02YK (4)
 - Telemetry
 - Positioned at pod's left and right sides
 - Gives position relative to sides of the tube

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

SENSOR LOCATIONS

Introduction

⁻rame

Shell

Propulsion

I-Beam Stabilization

Braking

Weigh

Levitation

Electronics

Controls

Power

Scalability

Production

PROTOTYPING

- Currently prototyping sensors on LPC NXP4088 Developer's Kit
- Testing cabling constraints on a full-sized model

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

3raking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

CONTROL SYSTEMS

- Navigation
 - Double integrate accelerometer
 - Recalibrate with diffuse-reflective photoelectric sensor
- Stability
 - 2 gyroscopes at front and back of pod
 - 4 ranging sensors at bottom corners of pod
 - Correct each engine's levitation to maintain stability and correct disturbances
- Braking
 - Microcontroller activates/disengages brake system solenoid valve to apply/release brakes
 - Automatically applied if connection lost for >5 secs

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalabilit

Production

POWER SYSTEM

- Battery Bank 1
 - Onboard electronics, NAP, braking, service propulsion
- Battery Bank 2
 - Magnetic levitation system

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronic

Controls

Power

Scalabilit

Production

BATTERY BANK 1

Introduction

Frame

Shel

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Flectronics

Controls

Power

Scalabilit

Production

BATTERY BANK 2

- Independent power supply for each engine
 - 20Ahr total capacity for 26.2 min of levitation

Protection circuit to prevent battery over-discharge

Motor controller communicates with System PCB

introductio

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronic

Controls

Power

Scalabilit

Production

BATTERY SELECTION

- Lithium polymer (LiPo)
 - Battery of choice for quadcopter/drone applications
 - Optimal capacity/weight ratio
 - High discharge rating
 - Easily obtainable off-shelf packs
 - Fire safety
 - Fireproof bags encase each battery bank
 - Stainless steel LiPo charge box to prevent battery puncture in the event of a crash

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalabilit

Production

SCALABILITY

- 1/5 of pod weight (87 lbs) relates to the I-Beam
 - I-Beam stability assembly (60 lbs)
 - Pneumatic brakes (27 lbs)
- Maglev engines vs air bearings
 - Tilting the maglev engines can provide braking and propulsion
 - Highly scalable controls software architecture

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

PRODUCTION SCHEDULE

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

CONCLUSION

- Work began in October 2015
 - With school schedules—effectively 12 weeks of work
- Accomplishments
 - Raised \$15,000—need \$25,000 to reach goal of \$40,000
 - Printed Circuit Board is in assembly
 - Prototyping sensors with NXP Developer's Kit
 - 3D printed model
 - Used for extensive wind tunnel testing
 - Magnetic levitation testing & prototyping
 - Styrofoam and PVC pipe model of frame completed
 - Beginning to work with cabling
 - Established a finance/marketing team

Introduction

⁻rame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Productio

CONCLUSION

- Thank you to our mentors and our sponsors.
- Please find us at Booth 64 or contact us:
 - ucsbhyperloop.com
 - ucsbhyperloop@gmail.com
 - @UCSBHyperloop

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weigh

Levitation

Electronics

Controls

Power

Scalability

Productio

