Programação Inteira, 2023.1

Relaxação Lagrangiana

DEMA/UFC

Entrada: problema (P) Saída: solução inteira x^*

1. Iniciar estrutura de armazenamento de subproblemas:

$$Q = \{\emptyset\}$$

- 2. Enquanto $Q \neq emptyset$:
 - Tome s ∈ 0
 - $(z^R, x^R) := \text{relaxação}(P) \text{ satisfazendo s}$
 - Se relaxação for inviável, continue
 - Se $x^* \neq \emptyset$ e $z^R \leq z(x^*)$, senão continue
 - Se x^R é solução inteira, considere atualizar x^* , senão:
 - Considere produzir solução inteira viável e atualizar x*
 - Escolha x^R_i variável fracionária
 - $Q := Q \cup \{s \cup \{x_j \leq \lfloor x_i^R \rfloor\}, s \cup \{x_j \geq \lceil x_i^R \rceil\}\}$
- 3. Retorne x*.

Relaxação Lagrangiana

(P)
$$z = \max c^{\top} x$$
 (1) s.a:

$$Dx \leq d$$

$$0x \le d$$
 (2)

$$x \in X$$
, (3)

$$(LR(u))$$
 $z(u) = \max_{\mathbf{c}} \mathbf{c}^{\top} x + u^{\top} (d - Dx)$ (4)
s.a:

$$x \in X$$
. (5)

(LD)
$$W_{LD} = \min\{z(u) : u \ge 0\}.$$
 (6)

$$w_{LD} = \min_{u>0} \left\{ \max\{c^{\top}x^i + u^{\top}(d - Dx^i) : i = 1, \dots, t\} \right\}.$$
 (7)

$$W_{LD} = \min \qquad \qquad q \tag{8}$$

s.a:

$$q \ge c^{\top} x^i + u^{\top} (d - Dx^i), \quad i = 1, \dots, t$$
 (9)

$$q \in \mathbb{R}, \quad u \in \mathbb{R}_+^m.$$
 (10)

Um vetor $y \in \mathbb{R}^m$ é um subgradiente de uma função convexa f no ponto \overline{x} se

$$f(x) \ge f(\overline{x}) + y^{\top}(x - \overline{x}).$$

Vamos aplicar esta ideia à função z(u).

Dado \hat{u} , seja \hat{x} a solução ótima de $(LR_{\hat{u}})$ com valor $z(\hat{u})$. Podemos afirmar que $y=d-D\hat{x}$ é um subgradiente de z(u) no ponto \hat{u} :

$$z(\hat{u}) + y^{\top}(u - \hat{u}) = z(\hat{u}) + (d - D\hat{x})^{\top}(u - \hat{u})$$

$$= c^{\top}\hat{x} + \hat{u}^{\top}(d - D\hat{x}) + (d - D\hat{x})^{\top}u - (d - D\hat{x})^{\top}\hat{u}$$

$$= c^{\top}\hat{x} + (d - D\hat{x})^{\top}u$$

$$\leq \max\{c^{\top}x + (d - Dx)^{\top}u : x \in X\}$$

$$= z(u).$$

Algoritmo de subgradientes

- 1. Escolha u^0 como multiplicadores iniciais
- 2. Para k = 0, ..., K 1:
 - Resolver (LR_{u^k}) ; seja x^k a solução ótima e $z(u^k)$ seu valor
 - Calcular subgradiente $(d Dx^k)$
 - Calcular passo $t^k = \frac{\lambda^k \left(z(u^k) + \underline{Z} \right)}{\|Dx^k d\|^2}$
 - Definir $u^{k+1} = \left[u^k + t^k \left(Dx^k d\right)\right]_+$
- $0 < \lambda^k \le 2$ é um parâmetro que tipicamente inicia como $\lambda^0 = 2$ e é reduzido pela metade sempre que o valor de $z(u^k)$ não é reduzido ao longo de certo número de iterações;
- A notação [a]₊ = max(a, 0) denota a "parte positiva" de a. No algoritmo, estamos nos certificando de que componentes negativas do vetor são substituídas por zero;
- <u>Z</u> é um limite inferior para o valor ótimo de (P), obtido, por exemplo, via uma heurística.

Algoritmo de subgradientes

- 1. Como o dual lagrangeano é de minimização, calculamos u^{k+1} usando o subgradiente multiplicado por -1, isto é, $(Dx^k d)$ em vez de $(d Dx^k)$.
- 2. A não ser que obtenhamos u^k tal que $z(u^k)$ seja igual ao valor de uma solução viável de (P), não podemos provar a otimalidade de uma solução obtida pelo algoritmo de subgradientes.
- 3. Há certas garantias que asseguram a convergência do algoritmo (por exemplo, $\lim_{k\to\infty}t^k=0$ e $\sum_{i=1}^kt^i\to\infty$) mas o algoritmo anterior que mostramos costuma apresentar melhor desempenho prático.
- Se usarmos uma heurística para produzir soluções viáveis a partir da solução do problema relaxado, temos o que é chamado de uma heurística lagrangiana.