Operator precedence parsing

Operator precedence grammar is kinds of shift reduce parsing method. It is applied to a small class of operator grammars.

A grammar is said to be operator precedence grammar if it has two properties:

- o No R.H.S. of any production has a∈.
- o No two non-terminals are adjacent.

Operator precedence can only established between the terminals of the grammar. It ignores the non-terminal.

There are the three operator precedence relations:

a > b means that terminal "a" has the higher precedence than terminal "b".

a < b means that terminal "a" has the lower precedence than terminal "b".

a = b means that the terminal "a" and "b" both have same precedence.

Precedence table:

	+	*	()	id	S
+	⊳	<	<	≥	<	⊳
*	⊳	>	<	>	<	⊳
(< .	<	<	=	<	X
)	⊳	>	X	⇒	X	⊳
id	⊳	>	X	≥	X	⊳
S	<	< −	<	X	<	X

Parsing Action

- o Both end of the given input string, add the \$ symbol.
- Now scan the input string from left right until the > is encountered.
- Scan towards left over all the equal precedence until the first left most <
 is encountered.
- o Everything between left most < and right most > is a handle.
- o \$ on \$ means parsing is successful.

Example

Grammar:

1.
$$E \rightarrow E+T/T$$

2.
$$T \rightarrow T*F/F$$

3.
$$F \rightarrow id$$

Given string:

1.
$$w = id + id * id$$

Let us consider a parse tree for it as follows:

On the basis of above tree, we can design following operator precedence table:

	Е	T	F	id	+	*	\$
E	X	X	X	X	÷	X	⊳
T	X	X	X	X	⊳	=	⊳
F	X	X	X	Х	⊳	⊳	⊳
id	X	X	X	X	>	⊳	⊳
+	X	±	<	<	X	X	X
*	X	X	=	<	X	X	X
\$	<	<	<	<	X	X	X

Now let us process the string with the help of the above precedence table:

$$4 \le id1 > + id2 * id3$$

$$4 \le F > + id2 * id3$$

$$4 < T > + id2 * id3$$

$$\$ \lessdot E \doteq + \lessdot id2 > * id3 \$$$

$$\$ \lessdot E \doteq + \lessdot F > * id3 \$$$

$$\$ \lessdot E \doteq + \lessdot T \doteq * \lessdot id3 > \$$$

$$\$ \lessdot E \doteq + \lessdot T \doteq * \doteq F > \$$$

$$\$ \lessdot E \doteq + \doteq T > \$$$

$$\$ \lessdot E \doteq + \doteq T > \$$$

$$\$ \lessdot E > \$$$

Accept.