

Analytics Zoo: Building Analytics and Al Pipelines for Apache Spark with BigDL

Michael Pittaro, Dell EMC Radhika Rangarajan, Intel

THE JOURNEY TO PRODUCTION AI

TOTAL TIME TO SOLUTION (TTS)

DEEP LEARNING IN PRACTICE

Time-to-solution is more significant than time-to-train

Source: Intel customer engagements

ARE YOU SEEING THE BIG PICTURE?

Supporting infrastructure is more significant than ML code

BIGDL: AI ON SPARK SOLUTION

High Performance Deep Learning on Apache Spark* on CPU Infrastructure¹

BigDL is a distributed deep learning library for Apache Spark* that can run directly on top of existing Spark or Apache Hadoop* clusters with direct access to stored data and tool/workflow consistency!

No need to deploy costly accelerators, duplicate data, or suffer through scaling headaches!

Feature Parity
with Caffe*/Torch*/
Tensorflow*

improved ease of use with existing infrastructure

Deep Learning on Big Data Platform, Enabling Efficient Scale-Out

¹Open-source software is available for download at no cost; 'free' is also contingent upon running on existing idle CPU infrastructure where the operating cost is treated as a 'sunk' cost

WHAT'S INSIDE BIGDL?

Deep Learning Building Blocks Layers, Optimizers, Criterion Deep Learning Models

Scala* and Python* support
Spark ML Pipeline integration
Jupyter* notebook integration
Tensorboard* integration
OpenCV* support
Model Interoperability
(Caffe*/TensorFlow*/Keras*)

ENABLING END TO END DL PIPELINES

How to Run Deep Leaning Workloads Directly on Big Data Platform?

- Integrated with Big Data ecosystem
- Massively distributed, shared-nothing
- Scale-out
- Send compute to data
- Fault tolerance
- Elasticity
- Incremental scaling
- Dynamic resource sharing

٠.,

Operationalizing deep learning at scale is as challenging as big data was a decade ago: steep learning curves due to complex APIs, expensive GPU infrastructures and disconnected operational/analytics feedback loop.

The combination of open source frameworks such as Spark and BigDL can make a real difference in simplifying Al adoption complexity across the enterprise.

BIGDL WORKLOADS....ACROSS THE INDUSTRY

CONSUMER

CALL CENTER ROUTING IMAGE SIMILARITY SEARCH SMART JOB SEARCH HEALTH

ANALYSIS OF 3D MRI MODELS FOR KNEE DEGRADATION **FINANCE**

FRAUD DETECTION
RECOMMENDATION
CUSTOMER/MERCHANT
PROPENSITY

RETAIL

IMAGE FEATURE EXTRACTION

MANUFACTURING

STEEL SURFACE DEFECT DETECTION

SCIENTIFIC COMPUTING

WEATHER FORECASTING

AND OTHER EMERGING USAGES...

BIGDL...IT'S CATCHING ON...

BUT IT TAKES MORE THAN A FRAMEWORK...

AI IN PRODUCTION IS JUST BEGINNING...

AI ON SPARK IS STILL IN ITS INFANCY...

- API Documentation is not enough
- Most real world examples involve proprietary trade secrets
- Research is great, but doesn't always map to production
- Where are the examples based on the real world?

We know what to do, but how do we do it?

ANALYTICS ZOO STACK

Reference Use Cases	Anomaly detection, sentiment analysis, fraud detection, chatbot, sequence prediction, etc.
Built-In Algorithms and Models	Image classification, object detection, text classification, recommendations, GAN, etc.
Feature Engineering and Transformations	Image, text, speech, 3D imaging, time series, etc.
High-Level Pipeline APIs	DataFrames, ML Pipelines, Autograd, Transfer Learning, etc.
Runtime Environment	Spark, BigDL, Python, etc.

Making it easier to build end-to-end analytics + AI applications

DIGGING DEEPER INTO THE ZOO

- High level pipeline APIs
 - *nnframes*: native deep learning support in Spark DataFrames and ML Pipelines
 - autograd: building custom layer/loss using auto differentiation operations
 - *Transfer learning*: customizing pre-trained model for feature extraction or fine-tuning
- Built-in deep learning models
 - Object detection API
 - Image classification API
 - Text classification API
 - Recommendation API
- **Reference use cases:** a collection of end-to-end *reference use cases* (e.g., anomaly detection, sentiment analysis, fraud detection, image augmentation, object detection, variational autoencoder, etc.)

Using high level pipeline APIs, users can easily build complex deep learning pipelines in just a few lines...

1. Load images into DataFrames using NNImageReader

```
from zoo.common.nncontext import *
from zoo.pipeline.nnframes import *
sc = get_nncontext()
imageDF = NNImageReader.readImages(image_path, sc)
```

2. Process loaded data using DataFrames transformations

3. Process images using built-in feature engineering operations

```
from zoo.feature.image import *
transformer = RowToImageFeature() \
    -> ImageResize(64, 64) \
    -> ImageChannelNormalize(123.0, 117.0, 104.0) \
    -> ImageMatToTensor() \
    -> ImageFeatureToTensor())
```

4. Load an existing model (pre-trained in Caffe), remove the last few layers and freeze the first few layers

```
from zoo.pipeline.api.net import *
full_model = Net.load_caffe(model_path)

# Remove layers after pool5/drop_7x7_s1
model = full_model.new_graph(["pool5/drop_7x7_s1"])

# freeze layers from input to pool4/3x3_s2 inclusive
model.freeze_up_to(["pool4/3x3_s2"])
```

5. Add a few new layers (using *Keras-style API* and custom *Lambda* layer)

```
from zoo.pipeline.api.autograd import *
from zoo.pipeline.api.keras.layers import *
from zoo.pipeline.api.keras.models import *

def add_one_func(x):
    return x + 1.0

input = Input(name="input", shape=(3, 224, 224))
    inception = model.to_keras()(input)
    flatten = Flatten()(inception)
    lambda = Lambda(function=add_one_func)(flatten)
    logits = Dense(2)(lambda)
    newModel = Model(inputNode, logits)
```

6. Train model using Spark ML Pipelines

ANALYTICS ZOO: BUILT IN MODELS

OBJECT DETECTION API

- 1. Download object detection models in Analytics Zoo pre-trained on PASCAL VOC and COCO dataset
- 2. Load the image data and object detection model

```
from zoo.common.nncontext import get_nncontext from zoo.models.image.objectdetection import *
```

```
spark = get_nncontext()
image_set = ImageSet.read(img_path, spark)
model = ObjectDetector.load_model(model_path)
```

ANALYTICS ZOO: BUILT IN MODELS

3. Use Object Detection API for off-the-shelf inference and visualization

COMMUNITY REQUESTS

- Model serving pipelines
 - Web server, Spark Stream, Apache Storm, etc.
- Feature engineering
 - 3D imaging, text, etc.
- Built-in deep learning models
 - Sequence-to-sequence, GAN, etc.

THE ZOO CALLS...

https://github.com/intel-analytics/analytics-zoo

https://github.com/intel-analytics/BigDL

software.intel.com/bigdl

UPCOMING SESSIONS...

JUNE 5th, TUESDAY @ 5.00 PM

<u>Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL Maurice Nsabimana (World Bank)Jiao Wang (Intel)</u>

•DEEP LEARNING TECHNIQUES ROOM# 2009-2011 - 30 MINS

JUNE 6th, WEDNESDAY @ 11.00 AM

<u>Building Deep Reinforcement Learning Applications on Apache Spark with Analytics Zoo using BigDL Yuhao Yang (Intel)</u>

DEEP LEARNING TECHNIQUES ROOM# 2009-2011 - 30 MINS

JUNE 6th, WEDNESDAY @ 4.20 PM

<u>Using BigDL on Apache Spark to Improve the MLS Real Estate Search Experience at Scale Sergey Ermolin (Big Data Technologies, Intel Corp)Dave Wetzel (MLS Listings)</u>
SPARK EXPERIENCE AND USE CASES ROOM# 2006-2008 - 30 MINS

