Algebra/Geometrie II, Übungsblatt 3

Bitte geben Sie die Lösungen in Ihrer Übungsgruppe entweder am 4.5. oder am 6.5. ab. Jede Aufgabe ist 4 Punkte wert.

Aufgabe 1. Beweisen Sie, dass die hermiteschen $n \times n$ -Matrizen einen **reellen** Vektorraum bilden und finden eine Basis für diesen Raum.

Aufgabe 2. Seien A und B positiv definite hermitesche Matrizen ($A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ ist positiv definit $\iff \bar{v}^t A v > 0$ für alle $v \in \mathbb{C}^n$, $v \neq \bar{0}$). Bestimmen Sie, welche der folgenden Matrizen ebenfalls hermitesch und positiv definit sind: A^2 , A^{-1} , AB, A + B.

Aufgabe 3. Finden Sie für die hermitesche Matrix $A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$ eine unitäre Matrix C, s.d. \bar{C}^tAC Diagonalform hat.

Aufgabe 4. Finden Sie zu jeder der folgenden Matrizen A jeweils eine reelle orthogonale Matrix C, s.d. C^tAC Diagonalform hat.

$$(a) \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right), \quad (b) \left(\begin{array}{cc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right), \quad (c) \left(\begin{array}{cc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right).$$