HAX501X – Groupes et anneaux 1

CM2 08/09/2023

Clément Dupont

Rappel de l'épisode précédent

- Division euclidienne.
- ▶ Notion de congruence, notion d'inversibilité modulo un entier.
- ► Sous-groupes de Z, classification.

Théorème

Soit H un sous-groupe de \mathbb{Z} . Il existe un unique $n \in \mathbb{N}$ tel que $H = n\mathbb{Z}$.

Démonstration. Ingrédient : la division euclidienne. Revoyez ça !

- ▶ PGCD et PPCM : $a\mathbb{Z} + b\mathbb{Z} = (a \land b)\mathbb{Z}$ et $a\mathbb{Z} \cap b\mathbb{Z} = (a \lor b)\mathbb{Z}$.
- ▶ Lemme de Gauss (et sa variante), lemme d'Euclide.
- ▶ Factorisation en produit de nombres premiers.

Théorème (Factorisation en produit de nombres premiers)

Tout entier $n \in \mathbb{N}^*$ peut s'écrire comme un produit de nombres premiers, de manière unique à l'ordre des facteurs près.

Démonstration. Ingrédient : le lemme d'Euclide. Revoyez ça !

Le théorème de Bézout

Théorème (Théorème de Bézout)

Soient $a, b \in \mathbb{Z}$, et soit $d \in \mathbb{N}$. On a équivalence entre les deux assertions

- (i) $d=a\wedge b$; (ii) d|a, d|b, et il existe $u,v\in\mathbb{Z}$ tels que au+bv=d.

Théorème (Théorème de Bézout, cas particulier)

Soient $a, b \in \mathbb{Z}$. Alors a et b sont premiers entre eux si et seulement s'il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1.

 On trouve une relation de Bézout par divisions euclidiennes successives. C'est l'algorithme d'Euclide étendu.

Application à l'inversion modulo n

Proposition

Soit $a\in\mathbb{Z}$. Alors a est inversible modulo n si et seulement si $a\wedge n=1$. Dans ce cas-là, si au+nv=1 est une relation de Bézout pour a et n, on a que u est un inverse de a modulo n.

Le théorème chinois des restes

Théorème (Théorème chinois des restes)

Soient $m,n\in\mathbb{N}$ tels que $m\wedge n=1$. Soient $a,b\in\mathbb{Z}$. Alors le système

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

a une solution $x_0 \in \mathbb{Z}$. De plus, l'ensemble des solutions est l'ensemble des entiers congrus à x_0 modulo mn.

Remarque

Si m et n ne sont pas premiers entre eux, il se peut que le système n'ait même pas de solution. Par exemple, le système suivant n'a aucune solution $x \in \mathbb{Z}$:

$$\begin{cases} x \equiv 2 \pmod{6} \\ x \equiv 1 \pmod{4} \end{cases}$$

En effet, si $x \equiv 2 \pmod 6$ alors x est pair... et si $x \equiv 1 \pmod 4$ alors x est impair !

Le petit théorème de Fermat

Théorème (Petit théorème de Fermat)

Soit p un nombre premier. Pour tout $a \in \mathbb{Z}$ on a :

 $a^p \equiv a \pmod{p}$.

Théorème (Petit théorème de Fermat, variante)

Soit p un nombre premier. Pour tout $a \in \mathbb{Z}$, si a n'est pas un multiple de p alors :

 $a^{p-1} \equiv 1 \pmod{p}.$

Comment montre-t-on le petit théorème de Fermat ?

Proposition

Soit p un nombre premier. Pour tout $k \in \{1, \dots, p-1\}$, p divise le coefficient binomial $\binom{p}{k}$.

▶ Implique (grâce à la formule du binôme de Newton) la congruence, pour tous $x,y \in \mathbb{Z}$:

$$(x+y)^p \equiv x^p + y^p \pmod{p}.$$

▶ Permet de montrer le petit théorème de Fermat par récurrence.

Exercices

▶ Les exercices du chapitre 1 du poly sont à préparer pour le premier TD (semaine prochaine).

2 – Étude de $\mathbb{Z}/n\mathbb{Z}$

- 1. Relations d'équivalence et quotient
- 1.1 Définitions
- 1.2 Classes d'équivalence
- 1.3 Quotient par une relation d'équivalence
- 1.4 Définir une application sur un quotient

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

1. Relations d'équivalence et quotient

- 1.1 Définitions
- 1.2 Classes d'équivalence
- 1.3 Quotient par une relation d'équivalence
- 1.4 Définir une application sur un quotient

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- $2.2~~\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

1. Relations d'équivalence et quotient

1.1 Définitions

- 1.2 Classes d'équivalence
- 1.3 Quotient par une relation d'équivalence
- 1.4 Définir une application sur un quotient

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

Relation d'équivalence

▶ Une relation binaire sur un ensemble E est une partie $\mathcal{R} \subset E \times E$. On utilise la notation $x \mathcal{R} y$ à la place de $(x,y) \in \mathcal{R}$.

Définition

Soit E un ensemble. Une **relation d'équivalence** sur E est une relation binaire \sim sur E qui est réflexive, symétrique, et transitive, c'est-à-dire telles que les propriétés suivantes sont vérifiées.

- Réflexivité : $\forall x \in E, x \sim x$;
- Symétrie : $\forall x, y \in E$, $x \sim y \implies y \sim x$;
- Transitivité : $\forall x, y, z \in E$, $(x \sim y \text{ et } y \sim z) \implies x \sim z$.

Exemple

Soit $n \in \mathbb{N}^*$. La relation \sim sur l'ensemble $E = \mathbb{Z}$ définie par

$$a \sim b \iff a \equiv b \pmod{n}$$

est une relation d'équivalence.

Un exercice

Exercice 13

On définit une relation $\sim \operatorname{sur} \mathbb{R}^2$ par :

$$\vec{u} \sim \vec{v} \iff \exists \lambda > 0 , \ \vec{u} = \lambda \vec{v}.$$

Montrer que c'est une relation d'équivalence.

1. Relations d'équivalence et quotient

- 1.1 Définitions
- 1.2 Classes d'équivalence
- 1.3 Quotient par une relation d'équivalence
- 1.4 Définir une application sur un quotient

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

Classes d'équivalence

Définition

La classe d'équivalence d'un élément $x \in E$ est l'ensemble

$$\overline{x} = \{ y \in E \mid y \sim x \}.$$

Exemple

Pour la relation de congruence modulo 7 on a

$$\overline{0} = \{\dots, -7, 0, 7, 14, 21, 28, 35, \dots\},$$

$$\overline{3} = \{\dots, -4, 3, 10, 17, 24, 31, \dots\},\$$

On remarque que :

$$\overline{24} = \overline{3}$$
.

Une proposition importante

Proposition

Pour $x_1, x_2 \in E$ on a :

$$\overline{x_1} = \overline{x_2} \iff x_1 \sim x_2.$$

Définition

Soit $C \subset E$ une classe d'équivalence. Un élément $x \in C$ est appelé un représentant de la classe d'équivalence C.

Exemple

Pour la relation de congruence modulo 7, 20 est un représentant de la classe d'équivalence $\overline{34}$.

Partition en classes d'équivalences

Proposition

Les classes d'équivalence forment une partition de E, c'est-à-dire que tout élément de E est dans une et une seule classe d'équivalence.

Exemple

Pour la relation de congruence modulo 2, la partition en classes d'équivalence est :

$$\mathbb{Z} = \overline{0} \sqcup \overline{1} = \{ \text{entiers pairs} \} \sqcup \{ \text{entiers impairs} \}.$$

Exercice 14

Dans le contexte de l'exercice précédent, quelle est la classe d'équivalence de (1,0) ? de (1,2) ? de (0,0) ? Décrire la partition de \mathbb{R}^2 en classes d'équivalence.

1. Relations d'équivalence et quotient

- 1.1 Définitions
- 1.2 Classes d'équivalence
- 1.3 Quotient par une relation d'équivalence
- 1.4 Définir une application sur un quotient

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- $2.2 \ \mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

Quotient par une relation d'équivalence

Définition

L'ensemble des classes d'équivalence est appelé quotient de E par la relation d'équivalence \sim et noté E/\sim .

- ▶ Un élément de l'ensemble quotient E/\sim est une classe d'équivalence \overline{x} , pour un $x\in E.$
- ▶ On a égalité $\overline{x_1} = \overline{x_2}$ dans E/\sim si et seulement $x_1 \sim x_2$ dans E.

Remarque

Le quotient est la manière mathématique d'identifier certains éléments de E entre eux. En effet, on décrète que des éléments qui sont équivalents (pour \sim) dans E sont maintenant égaux dans E/\sim .

L'application de quotient

Définition

L'application

$$\pi: E \longrightarrow E/\sim, x \mapsto \overline{x}$$

est appelée application de quotient.

▶ Il est clair que π est surjective, par définition.

1. Relations d'équivalence et quotient

- 1.1 Définitions
- 1.2 Classes d'équivalence
- 1.3 Quotient par une relation d'équivalence
- 1.4 Définir une application sur un quotient

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

Définir une application sur un quotient

Définition

Soit une application

$$f: E \longrightarrow F$$
.

▶ On dit que f passe au quotient par ~ si f prend la même valeur sur tous les éléments d'une même classe d'équivalence, c'est-à-dire si :

$$\forall x, x' \in E, \ x \sim x' \implies f(x) = f(x').$$

lacktriangle Si f passe au quotient par \sim alors on peut définir l'application

$$g: E/\sim \longrightarrow F$$
, $\overline{x}\mapsto f(x)$

qui à une classe d'équivalence associe la valeur prise par f sur n'importe quel élément de cette classe d'équivalence.

▶ On dit que g est l'application induite par f sur le quotient E/\sim .

Un exercice

Exercice 15

Les applications suivantes passent-elles au quotient par la relation de congruence modulo 6 ?

$$f_1: \mathbb{Z} \longrightarrow \mathbb{Z}, \ n \mapsto (-1)^n;$$

$$f_2: \mathbb{Z} \longrightarrow \mathbb{Z}, \ n \mapsto n^2 - 1.$$

Version à plusieurs variables

Remarque

On considérera aussi des applications définies non pas sur E mais sur le produit cartésien de E avec lui-même :

$$f: E \times E \longrightarrow F$$
.

Dans ce cas-là on dit que f passe au quotient si elle passe au quotient "en chaque variable", c'est-à-dire si le résultat de $f(x_1,x_2)$ ne dépend que des classes d'équivalence $\overline{x_1}$ et $\overline{x_2}$, ou plus formellement si

$$\forall x_1, x_2, x_1', x_2' \in E, (x_1 \sim x_1' \text{ et } x_2 \sim x_2') \implies f(x_1, x_2) = f(x_1', x_2').$$

Dans ce cas-là on peut définir

$$g: (E/\sim) \times (E/\sim) \longrightarrow F, (\overline{x_1}, \overline{x_2}) \mapsto f(x_1, x_2).$$

- Relations d'équivalence et quotient
- 1.1 Définitions
- 1.2 Classes d'équivalence
- 1.3 Quotient par une relation d'équivalence
- 1.4 Définir une application sur un quotient

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- $2.2~~\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

1. Relations d'équivalence et quotient

- 1.1 Définitions
- 1.2 Classes d'équivalence
- 1.3 Quotient par une relation d'équivalence
- 1.4 Définir une application sur un quotient

2. Étude de $\mathbb{Z}/n\mathbb{Z}$

- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

Définition

On fixe dans cette partie un entier $n \in \mathbb{N}^*.$ On a vu que la relation de congruence modulo n,

$$a \sim b \iff a \equiv b \pmod{n}$$
,

est une relation d'équivalence sur l'ensemble $\ensuremath{\mathbb{Z}}.$

Définition

On définit $\mathbb{Z}/n\mathbb{Z}$ comme le quotient de l'ensemble \mathbb{Z} par la relation de congruence modulo n. Pour un entier $k \in \mathbb{Z}$, on note donc \overline{k} sa classe d'équivalence dans $\mathbb{Z}/n\mathbb{Z}$.

▶ On a donc, pour $a, b \in \mathbb{Z}$:

$$\overline{a} = \overline{b} \quad \mathsf{dans} \ \ \mathbb{Z}/n\mathbb{Z} \qquad \Longleftrightarrow \qquad a \equiv b \ \ (\bmod \ n).$$

▶ Notamment, pour $a \in \mathbb{Z}$:

$$\overline{a} = \overline{0} \quad \text{dans} \quad \mathbb{Z}/n\mathbb{Z} \qquad \Longleftrightarrow \qquad n|a.$$

Description de $\mathbb{Z}/n\mathbb{Z}$

Proposition

L'ensemble $\mathbb{Z}/n\mathbb{Z}$ a n éléments : $\overline{0}$, $\overline{1},\ldots,\overline{n-1}$.

Démonstration. Par division euclidienne, pour tout $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$, il existe un unique $r \in \{0,\dots,n-1\}$ tel que $\overline{a} = \overline{r}$ dans $\mathbb{Z}/n\mathbb{Z}$. C'est exactement ce que dit la proposition.

ightharpoonup Dit autrement, la partition de $\mathbb Z$ en classes d'équivalence pour la relation de congruence modulo n est :

$$\mathbb{Z} = \overline{0} \sqcup \overline{1} \sqcup \cdots \sqcup \overline{n-1}.$$

Exemple

Dans $\mathbb{Z}/7\mathbb{Z}$ on a $\overline{3}=\overline{10}=\overline{73}=\overline{-4}$, qui est l'ensemble des entiers $a\equiv 3\pmod{7}$, c'est-à-dire l'ensemble des $a\in\mathbb{Z}$ dont le reste dans la division euclidienne par 7 est 3, ou encore l'ensemble $\{7k+3\,,\,k\in\mathbb{Z}\}$.

- 1. Relations d'équivalence et quotient
- 1.1 Définitions
- 1.2 Classes d'équivalence
- 1.3 Quotient par une relation d'équivalence
- 1.4 Définir une application sur un quotient

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- $2.2~\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

$\mathbb{Z}/12\mathbb{Z}$ est une horloge

- 1. Relations d'équivalence et quotient
- 1.1 Définitions
- 1.2 Classes d'équivalence
- 1.3 Quotient par une relation d'équivalence
- 1.4 Définir une application sur un quotient

- 2. Étude de $\mathbb{Z}/n\mathbb{Z}$
- 2.1 Définition
- 2.2 $\mathbb{Z}/12\mathbb{Z}$ est une horloge
- 2.3 L'anneau $\mathbb{Z}/n\mathbb{Z}$

Les lois + et \times dans $\mathbb{Z}/n\mathbb{Z}$

Proposition

L'addition dans $\mathbb Z$ passe au quotient et induit une loi + dans $\mathbb Z/n\mathbb Z$ définie par

$$\overline{a} + \overline{b} = \overline{a + b}.$$

La multiplication dans $\mathbb Z$ passe au quotient et induit une loi \times dans $\mathbb Z/n\mathbb Z$ définie par

$$\overline{a} \times \overline{b} = \overline{a \times b}.$$

 ${\it D\'{e}monstration}.$ C'est une traduction du fait que la relation de congruence modulo n est compatible à la somme et au produit.

- ▶ En effet, pour montrer que la somme + dans $\mathbb{Z}/n\mathbb{Z}$ est bien définie, il faut montrer que le résultat $\overline{a+b}$ ne dépend pas du choix des représentants a et b.
- ▶ Dit autrement, on veut montrer que si $a \equiv a' \pmod{n}$ et $b \equiv b' \pmod{n}$ alors $\overline{a+b} = \overline{a'+b'}$ dans $\mathbb{Z}/n\mathbb{Z}$, c'est-à-dire que $a+b \equiv a'+b' \pmod{n}$.
- C'est exactement la compatibilité de la relation de congruence avec la somme.
- ▶ Il en va de même pour le produit.

Une remarque

Remarque

De manière plus formelle, on vient de "faire passer au quotient" l'application

$$f: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} , \ (a,b) \mapsto \overline{a+b}$$

(et de même pour le produit).

Exemples (addition)

Exemple

Dans $\mathbb{Z}/2\mathbb{Z}=\{\overline{0},\overline{1}\}$ on a

$$\overline{1} + \overline{1} = \overline{1+1} = \overline{2} = \overline{0}.$$

L'égalité " $\overline{1} + \overline{1} = \overline{0}$ " veut dire : "la somme d'un nombre impair avec un nombre impair est un nombre pair".

Exemple

Dans $\mathbb{Z}/7\mathbb{Z}$ on a $\overline{3}+\overline{6}=\overline{3+6}=\overline{9}=\overline{2}.$

Exercice 16

Écrire la table d'addition de $\mathbb{Z}/7\mathbb{Z}$.

Illustration

lackbox Voici une illustration de l'addition dans $\mathbb{Z}/12\mathbb{Z}$, vu comme une horloge.

