MATH 450 Seminar in Proof

Prove that $f: A \to P(A)$ is not onto. Note that A is an infinite set and P(A) is the power set of A. Hint: consider the set $\{a \in A : a \notin f(a)\}$

Proof. Let us proceed by contradiction. Let $f:A\to P(A)$ be onto. Then f[A]=P(A). Let $B=\{a\in A: a\notin f(a)\}$. Thus $B\subseteq A$ and also $B\in f[A]$. Since f is onto, we know that B has a pre-image in A. Let f(a)=B, where $a\in A$. Thus, there are now two possibilities, $a\in B$ or $a\notin B$. If $a\in B$ then by definition $a\notin f(a)$ but then since f(a)=B there is a contradiction. If $a\notin B$ then by definition $a\in f(a)$ but then since f(a)=B then again there is a contradiction. Thus f is not onto.