W8 -The Natural Logarithm

MHF4U

SOLUTIONS

1) Use a calculator to approximate each to the nearest thousandth

d)
$$e^5$$

2) Expand each logarithm

a)
$$\ln x^2$$

b)
$$\ln \sqrt[3]{x}$$

$$= |v(x)|_{1/3}$$

c)
$$\ln \frac{u^3}{wv^4}$$

3) Condense each expression to a single logarithm

b)
$$\ln 10 - 5 \ln 7$$

c)
$$3 \ln x + 3 \ln y$$

$$= \ln \left(\chi^3 y^3 \right)$$

4) Solve each equation. Round your answer to 4 decimal places if necessary.

a)
$$e^{x} = 2$$

$$X(1) = \ln 2$$

c)
$$e^{k+7} = 26$$

b)
$$e^{-3n} = 83$$

d)
$$9e^{1.4p-10} - 10 = 17$$

n~-1.4729

e)
$$\ln x = -5$$

$$e^{-5} = \gamma c$$

g)
$$\ln(-m) = \ln(m+10)$$

 $-m = m+1.0$
 $-10 = 2m$
 $m = -5$

i)
$$\ln(1-8x) - 10 = -7$$

 $\ln(1-8x) = 3$
 $e^3 = 1-8x$
 $\frac{e^3 - 1}{-8} = x$

f) 7.316 =
$$e^{\ln(2x)}$$

 $\ln(7.316) = \ln(e)^{\ln(2x)}$
 $\ln(7.316) = \ln(2x) \ln(e)$
 $e^{\ln(7.316)} = 2x$
 $x = e^{\ln(7.316)}$
 $x = 3.656$
h) $\ln(9x + 1) = \ln(x^2 + 9)$

h)
$$\ln(9x + 1) = \ln(x^2 + 9)$$

 $9x+1 = x^2 + 9$
 $0 = x^2 - 9x + 8$
 $0 = (x-8)(x-1)$
 $x_2 = 8$
 $x_3 = 8$

j)
$$\ln(5-2x^2) + \ln 9 = \ln 43$$

 $\ln \left((5-2x^2)(9) \right) = \ln (43)$
 $9(5-2x^2)(9) = 10(43)$
 $9(5-2x^2) = 43$
 $9(5-2x^2) = 43$