

FISH & RICHARDSON P.C.

02 .14.00 SQ Listing

225 Franklin Street Boston, Massachusetts 02110-2804

Telephone 617 542-5070 617 542-890 Web Site www.fr.com

Frederick P. Fish 1855-1930

W.K. Richardson 1859-1951 February 11, 2000

Attorney Docket No.: 06501-056001

Box Patent Application

Assistant Commissioner for Patents Washington, DC 20231

Presented for filing is a new continuation-in-part patent application of:

BOSTON

DELAWARE

NEW YORK

SILICON VALLEY

SOUTHERN CALIFORNIA
TWIN CITIES

· WASHINGTON, DC

Applicant: SHIN-ICHI FUNAHASHI AND SHOJI MIYATA

Title:

PROTEIN HAVING PDZ DOMAIN SEQUENCE

Enclosed are the following papers, including those required to receive a filing date under 37 CFR § 1.53(b):

	Pages
Specification	63
Claims	4
Abstract	1

[To be Filed at a Later Date] Declaration

Drawing(s)

26

Enclosure:

— Postcard.

This application is a continuation-in-part (and claims the benefit of priority under 35 USC 120) of PCT/JP98/03603, filed August 12, 1998. The disclosure of the prior application is considered part of (and is incorporated by reference in) the disclosure of this application.

CERTIFICATE OF MAILING BY EXPRESS MAIL

Express Mail Label No.	EL228025793US

I hereby certify under 37 CFR §1.10 that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

February 11, 2000

Date of Deposit

Signature

Typed or Printed Name of Person Signing Certificate

FISH & RICHARDSON P.C.

Assistant Commissioner for Patents February 11, 2000 Page 2

Basic filing fee	\$690
Total claims in excess of 20 times \$18	\$252
Independent claims in excess of 3 times \$78	\$234
Fee for multiple dependent claims	\$0
Total filing fee:	\$1176

A check for the filing fee is enclosed. Please apply any other required fees or any credits to Deposit Account No. 06-1050, referencing the attorney docket number shown above.

If this application is found to be incomplete, or if a telephone conference would otherwise be helpful, please call the undersigned at (617) 542-5070.

Kindly acknowledge receipt of this application by returning the enclosed postcard.

Please send all correspondence to:

JANIS K. FRASER, PH.D., J.D. Fish & Richardson P.C. 225 Franklin Street Boston, MA 02110-2804

Respectfully submitted,

Janis K. Fraser, Ph.D., J.D.

Reg. No. 34,819

Enclosures

/kjp

20026262.doc

APPLICATION

FOR

UNITED STATES LETTERS PATENT

TITLE: PROTEIN HAVING PDZ DOMAIN SEQUENCE

APPLICANT: SHIN-ICHI FUNAHASHI AND SHOJI MIYATA

CERTIFICATE OF MAILING BY EXPRESS MAIL

Express Mail Label No	EL228025793US	
•		

I hereby certify under 37 CFR §1.10 that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

	February 11, 2000	
Date of Deposit	Dal Be	
Signature	Paul Bea	
Typed or Printed	Name of Person Signing Certificate	

10

15

20

25

30

PROTEIN HAVING PDZ DOMAIN SEQUENCE

This is a continuation-in-part of PCT/JP98/03603 filed August 12, 1998, and claims priority from Japanese Patent Application Nos. 9/230356, filed August 12, 1997, and 10/189944, filed June 18, 1998.

Technical Field

The present invention relates to novel proteins having the PDZ domain sequence and also to gene encoding the proteins.

Background Art

Proteins such as PSD-95, hDlg, ZO-1, p55, Dsh, LIN-7, InaD, and PTPL1/FAP1 are known to possess the PDZ domain and are called the PDZ family. A structure having approximately 80 to 90 amino acid residues, repeated three times and each containing a conserved "Gly-Leu-Gly-Phe (GLGF)" 4 amino acid motif (Neuron 9:929-942 (1992)), was initially identified in the 95 KDa post-synaptic density protein, PSD-95. The same domain structure was later found in the Drosophila lethal (1) discs large-1 tumor suppressor protein, DlgA (Cell 66:451-464 (1991)), and in the tight junction protein, ZO-1 (J. Cell Biol. 121:491-502 (1993)). The repeat sequence was therefore named the "PDZ domain" by combining the initials of PSD-95, DlgA, and ZO-1. (It is also called the "GLGF repeat" or "DHR (DlgA homology region) domain.") A protein having the PDZ domain is known to bind to other proteins by means of the sequence of this PDZ domain. For example, the PSD-95 protein is known to bind to the NMDA receptor 2B (Kornau, H. C., et al., Science 269:1737-1740 (1995)) and the Shaker-type K^{+} channel (Kim, E., et al., Nature 378:85-88 (1995)). The hDlg

10

15

20

25

30

protein has been reported to bind directly to the protein encoded by the adenomatous polyposis coli tumor suppressor gene/APC (Matsumine et al., Science 272:1020-1023 (1996)), and the Dsh protein has been reported to bind directly to the Notch protein (Axelrod, J. D., et al., Science 271:1826-1832 (1996)). Furthermore, the InaD protein has been reported to bind to a Ca2+ channel protein, TRP, that functions in the Drosophila visual signal transduction cascade (Shieh, B. H. and Zhu, M. Y., Neuron 16:991-998 (1996)). The structure of proteins having the PDZ domain varies because some of the proteins contain only one domain (p55 and Dsh), while others contain two (SIP-1: Yanagisawa, J., et al., J. Biol. Chem. 272:7167-7172 (1997)), three (PSD-95 and hDlg), five (InaD and PTPL1/FAP1), seven (GRIP: Dong, H., et al., Nature 386:279-284 (1997)), or thirteen (Ullmer, C., et al., FEBS Letters 424:63-68 (1998)). Also a recently reported mouse gene lacks a region encoding an N-terminal peptide of the protein, but which encodes a peptide having four PDZ domains within this incomplete genetic region (Recorded to GenBank on May 18, 1997; accession number AF000168). Although there are a few exceptions, proteins having the PDZ domain are known to bind to other proteins that have a hydrophobic amino acid region consisting of three amino acids represented by "Thr/Ser-Xaa-Val" (Xaa being an arbitrary amino acid residue) at their C-terminus. Most of these proteins are transmembrane proteins and are presumed to function in signal transduction within the cell (TIBS 21:455-458 (1996), Yanagisawa, J., et al., J. Biol. Chem. 272:7167-7172 (1997)).

Since the above proteins having the PDZ domain and proteins that interact with these proteins are involved in

10

15

20

25

30

neural transmission, apoptosis, and malignant conversion, they have recently drawn attention as targets for developing pharmaceuticals.

Disclosure of the Invention

An objective of the present invention is to provide a novel protein having the PDZ domain sequence and a DNA encoding the protein. Another objective of the present invention is to provide a vector containing the DNA, a transformant harboring the DNA in which the DNA can be expressed, and a method of producing the recombinant protein utilizing the transformant. A further objective of the present invention is to provide an antisense DNA against the DNA and antibody that binds to the protein. Still another objective of the present invention is to provide a screening method for proteins that bind to the PDZ-domain protein.

While analyzing the changes of gene expression in human umbilical vascular endothelial cells by ${\tt TNF}\alpha$, the present inventors isolated a gene whose expression was increased by ${\tt TNF}\alpha$ stimulation. Screening was performed using the gene as a probe, and, as a result, a gene encoding novel proteins was isolated. The present inventors analyzed the structure of the proteins encoded by the isolated gene and found that the proteins contain within the molecule the PDZ domain sequence that plays an important role in the interactions with other proteins involved in neural transmission, apoptosis, and malignant conversion. The present inventors also found that the single gene produces at least five different transcriptional products through the differences in transcription initiation sites and in splicing.

10

15

20

25

The present inventors succeeded in preparing the proteins encoded by the gene as recombinant proteins by incorporating the isolated gene into an expression vector, and by transfecting it into *E. coli* cells and culturing the cells. In addition, by immunizing rabbits with the proteins thus prepared, the present inventors succeeded in preparing antibodies that bind to the proteins.

The present invention relates to a group of novel proteins having the PDZ domain sequence within the molecule and to their gene, and more specifically, to

- (1) a protein comprising the amino acid sequence described in SEQ ID NOs: 1, 2, 82, 83, or 84;
- (2) a protein comprising the amino acid sequence described in SEQ ID NOs: 1, 2, 82, 83, or 84, in which one or more amino acids have been substituted, deleted, and/or added, and having affinities to other proteins characteristic to the PDZ domain;
- (3) a fusion protein comprising the protein described in (1) or (2) and a protein or a peptide containing at least one antibody recognition site;
- (4) a DNA encoding the protein of any one of (1)
 through (3);
- (5) an antisense DNA against the DNA or a part thereof whose nucleotide sequence is described in SEQ ID NO: 2;
 - (6) a vector containing the DNA of (4);
- (7) a transformant harboring the DNA of (4), in which the DNA can be expressed;
- (8) a method of producing the protein of any one of 30 (1) through (3), comprising the process of culturing the transformants described in (7);

10

15

20

25

30

- (9) a screening method for proteins that bind to the protein of (1) or (2), comprising the process of selecting the proteins that bind to the proteins by contacting sample proteins with the proteins of any one of (1) through (3);
- (10) a screening method for genes encoding the proteins that bind to the proteins of (1) or (2), comprising the process of selecting the genes corresponding to the gene products that bind to the proteins of (1) or (2) by contacting the gene products of the sample genes with the protein of (1) or (2);
- (11) a protein that binds to the protein of (1) or (2);
- (12) the protein of (11) that can be isolated by the method of (9);
- (13) a gene encoding a protein that bind to the protein of (1) or (2);
- (14) the gene of (13) that can be isolated by the method of (10); and
- (15) an antibody that bind to the protein of (1) or (2).

In the present invention, the "PDZ domain sequence" refers to a sequence having 80 to 90 amino acids, containing the four amino acid motif that consists of "Gly-Leu-Gly-Phe" or similar amino acids (cf. TIBS 20:102-103 (1995)).

The present invention relates to novel proteins having the PDZ domain sequence. Although there are a few exceptions, proteins having the PDZ domain are known to interact with other proteins that have a hydrophobic amino acid region at their C-terminal ends. The other proteins are transmembrane proteins and are presumed to function in signal transduction within the cell (TIBS 21: 455-458

10

15

20

25

30

(1996), Yanagisawa, J., et al., J. Biol. Chem. 272:7167-7172 (1997)).

The present inventors have discovered five different transcription products among those that encode proteins having the PDZ domain. These products are thought to arise from a single gene through differences in transcription initiation sites and in splicing. The amino acid sequences of the proteins encoded by these transcription products are shown in SEQ ID NOs: 1, 2, 82, 83, and 84.

The protein having the amino acid sequence described in SEQ ID NO: 1, which is included in the proteins of the present invention, possesses nine PDZ domains that correspond to amino acid positions 69 to 158 (SEQ ID NO: 4), positions 371 to 461 (SEQ ID NO: 5), positions 520 to 615 (SEQ ID NO: 6), positions 649 to 734 (SEQ ID NO: 7), positions 782 to 865 (SEQ ID NO: 8), positions 928 to 1013 (SEQ ID NO: 9), positions 1024 to 1108 (SEQ ID NO: 10), positions 1161 to 1249 (SEQ ID NO: 11), and positions 1286 to 1373 (SEQ ID NO: 12) (see Figure 8).

Similarly, the protein having the amino acid sequence described in SEQ ID NO: 2, which is also included in the proteins of the present invention, corresponds to amino acids 369 to 1373 of the sequence described in SEQ ID NO: 1. The difference between the structures of these proteins is considered to arise from the difference in the mRNA transcription initiation sites.

The protein described in SEQ ID NO: 2 possesses a total of eight PDZ domain sequences, corresponding to amino acids 3 to 93, 152 to 247, 281 to 366, 414 to 497, 560 to 645, 656 to 740, 793 to 881, and 918 to 1005. However, it does not possess the first PDZ domain found in the protein described in SEQ ID NO: 1. Although its biological

10

15

20

25

30

significance is not clear, considering the specific expression of the mRNA corresponding to the protein described in SEQ ID NO: 2 in the liver (Example 5) and the fact that the PDZ domain plays an important role in protein-protein interactions, the protein described in SEQ ID NO: 2, by lacking this domain, may be involved in controlling the signal in the liver differently from the other tissues.

The protein having the amino acid sequence described in SEQ ID NO: 82 (the 32-8-la protein), which is also included in the proteins of the present invention, consists of 2,000 amino acids. These amino acids are predicted by combining sequences of two cDNAs. One cDNA was discovered in the search for a cDNA derived from the human brain and contains a 5' upstream region of a cDNA encoding a protein having the amino acid sequence described in SEQ ID NO: 1. The other cDNA (SEQ ID NO: 3) encodes the protein having the amino acid sequence described in SEQ ID NO: 1. The 32-8-la protein possesses a total of 13 PDZ domain sequences, corresponding to amino acids 133 to 222, 253 to 335, 373 to 461, 549 to 632, 696 to 784, 1004 to 1087, 1147 to 1240, 1276 to 1361, 1409 to 1492, 1555 to 1640, 1651 to 1735, 1788 to 1870, and 1913 to 2000 (Figure 25).

Similarly, the amino acid sequences of the proteins encoded by the two splicing variants that are thought to result from the different splicing from the transcription product encoding the 32-8-1a protein and are also included in the proteins of the present invention, are shown in SEQ ID NO: 83 (the 32-8-1b protein) and in SEQ ID NO: 84 (the 32-8-1c protein). The 32-8-1b protein, similar to the 32-8-1a protein, consists of 2,070 amino acids, possessing 13 PDZ domains. The PDZ domains of the 32-8-1b protein exist

10

15

20

25

30

at positions 133 to 222, 253 to 335, 373 to 461, 549 to 632, 696 to 784, 1004 to 1087, 1147 to 1241, 1346 to 1431, 1479 to 1562, 1625 to 1710, 1721 to 1805, 1858 to 1946, and 1983 to 2070 of its amino acid sequence.

In contrast, the 32-8-1c protein has a shorter chain length than 32-8-1a or 32-8-1b because of the termination codon created by the splicing, and consists of 1,239 amino acids, possessing seven PDZ domains. The PDZ domains of the 32-8-1c protein exist at positions 133 to 222, 253 to 335, 373 to 461, 549 to 632, 696 to 784, 1004 to 1087, and 1147 to 1239 of its amino acid sequence.

It is clinically very significant that these proteins of the present invention are all of human origin, as opposed to being derived from other animals. In particular, proteins derived from other organisms (e.g., mice or rats) cause serious side effects such as reduction or loss of therapeutic effects by generating antibodies or by inducing serum sickness and anaphylactic shock, due to the immunogenicity when they are used to treat humans. Therefore, it is desirable to use proteins of human origin as therapeutic materials for humans.

The proteins of the present invention can be prepared from natural proteins, but they can also be prepared as recombinant proteins using recombinant genetics technology. The natural proteins can be isolated from such sources as the human umbilical vascular endothelial cells (HUVEC) by means of methods well-known to persons skilled in the art. For example, they can be isolated as described below, with an affinity column in which an antibody against the protein of the present invention has been bound to an appropriate support. The affinity column can be constructed, for example, according to the method described by Wilchek et

10

15

20

25

30

al. (Wilchek et al., Methods Enzymol. 104:3-55 (1984)). Furthermore, the recombinant protein can be prepared by culturing the cells transformed with the DNA encoding the protein of the present invention, as will be described later.

The proteins of the present invention also include functional derivatives of the proteins having the amino acid sequences described in SEQ ID NOs: 1, 2, 82, 83, and A "functional derivative" means a protein that differs from the amino acid sequences described in SEQ ID NOs: 1, 2, 82, 83, and 84 by one or more amino acid residues through substitution, deletion, or addition, but that still maintains the affinity to the other proteins characteristic of the PDZ domain. This affinity normally arises from the affinity to a hydrophobic amino acid region that exists in the C-terminal ends of the other proteins. The hydrophobic amino acid region contains a hydrophobic amino acid motif represented by "Thr/Ser-Xaa-Val" (Xaa being an arbitrary amino acid residue) (cf. Science 269:1737 (1995), Nature 378:85 (1995), Science 277:1511 (1997), Neuron 20:693 (1998), Oncogene 16:643 (1998), J. Biol. Chem. 273:1591 (1998), Science 272:1020 (1996), Proc. Natl. Acad. Sci. USA 94:6670 (1997), Proc. Natl. Acad. Sci. USA 94:11612 (1997), J. Neurosci. 18:128 (1998), J. Neurosci. 16:7407 (1996), Nature Biotech. 15:336 (1997), FEBS Letters 409:53 (1997), Nature 386:284 (1997), Nature 386:279 (1997), Nature Structure Biol. 5:19 (1998), J. Neurosci. 16:24 (1996), J. Biol. Chem. 272:24191 (1997), Science 271:1826 (1996), TIBS 21:455 (1996), Cell 85:195 (1996), Neuron 18:95 (1997), Proc. Natl. Acad. Sci. USA 94:12682 (1997), J. Biol. Chem. 272:8539 (1997), J. Biol. Chem. 272:24333 (1997), J. Biol. Chem. 272:7167 (1997), Proc. Natl. Acad. Sci. USA 94:13683

10

15

20

25

30

(1997), Nature 392:6676 (1998), J. Biol. Chem. 272:32019 (1997), Mol. Biol. Cell 9:671 (1998)).

Functional derivatives occur naturally or can be produced artificially; both of these are included in the present invention. Methods to alter amino acids, which are well known to persons skilled in the art, include the methods developed by Kunkel et al. (Methods Enzymol. 85:2763-2766 (1988)) and those that utilize polymerase chain reaction (PCR). In the Kunkel method, uracil is incorporated by using dut or ung E. coli as a host when preparing the single-stranded DNA to be used as the template. Primers containing the desired mutations are annealed to this template containing uracil, and ordinary DNA synthesis is performed in vitro. When the doublestranded DNA thus produced with the uracil-containing DNA is introduced into ordinary E. coli cells, the uracilcontaining DNA strand becomes degraded, and DNA synthesis proceeds with the mutated DNA strand as the template. As a result, DNA into which mutations have been introduced can be obtained with a very high efficiency. An example of the methods of introducing mutations using PCR follows. sets of primers are prepared. One of the primers in each set encompasses the region into which the mutation will be introduced, and the other contains a restriction enzyme recognition site or a sequence just outside of it. A region containing appropriate restriction enzyme sites is thus targeted. PCR reactions are then performed with the two sets of primers. After the products of the two PCR reactions are mixed, the DNA is amplified using primers having sequences corresponding to the recognition sites of the two restriction enzymes or the sequences just outside The product is next digested with appropriate of them.

10

15

20

25

30

restriction enzymes so that the resultant fragment contains the region into which the mutation has been introduced. The fragment thus obtained is substituted for the said region in the original DNA (Saiki et al., Science 239:487-491 (1988), Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley - Interscience Publishing, Unit 8.5.1-8.5.10 (1997), Supplement to Jikken Igaku (Experimental Medicine) "Shin Idenshi Kogaku Handbook (New Genetic Engineering Handbook)," Yohdosha, pp251-261). The desired number of amino acids to be substituted in a functional derivative is generally 10 or less, more preferably 6 or less, and still more preferably 3 or less.

The term "substantially pure" as used herein in reference to a given polypeptide means that the polypeptide is substantially free from other biological macromolecules. The substantially pure polypeptide is at least 75% (e.g., at least 80, 85, 95, or 99%) pure by dry weight. Purity can be measured by any appropriate standard method, for example, by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.

A "conservative amino acid substitution" is one in which an amino acid residue is replaced with another residue having a chemically similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), betabranched side chains (e.g., threonine, valine, isoleucine)

10

15

20

25

30

and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).

The present invention also relates to the DNA encoding the proteins of the present invention described above. The DNA encoding the proteins of the present invention can be cDNA, genomic DNA, or synthetic DNA. The DNA of the present invention can be used, for example, to produce the proteins of the present invention as recombinant proteins. More specifically, the proteins of the present invention can be prepared as recombinant proteins by inserting the DNA encoding the proteins of the present invention into appropriate expression vectors, culturing the transformants obtained by introducing the said vectors into appropriate cells, and purifying the expressed proteins.

By hybridization under "stringent conditions" is meant hybridization at 37°C , 1 X SSC, followed by washing at 42°C , 0.5 X SSC.

The "percent identity" of two amino acid sequences or of two nucleic acids is determined using the algorithm of Karlin and Altschul (Proc. Natl. Acad. Sci. USA 87:2264-2268, 1990), modified as in Karlin and Altschul (Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al. (J. Mol. Biol. 215:403-410, 1990). BLAST nucleotide searches are performed with the NBLAST program, score = 100, wordlength = 12. BLAST protein searches are performed with the XBLAST program, score = 50, wordlength = 3. Where gaps exist between two sequences, Gapped BLAST is utilized as described in Altschul et al. (Nucleic Acids Res. 25:3389-3402, 1997). When utilizing BLAST and Gapped BLAST programs, the default

10

15

20

25

30

parameters of the respective programs (e.g., XBLAST and NBLAST) are used. See http://www.ncbi.nlm.nih.gov.

An "isolated nucleic acid" is a nucleic acid the structure of which is not identical to that of any naturally occurring nucleic acid or to that of any fragment of a naturally occurring genomic nucleic acid spanning more than three separate genes. The term therefore covers, for example, (a) a DNA which has the sequence of part of a naturally occurring genomic DNA molecule but is not flanked by both of the coding sequences that flank that part of the molecule in the genome of the organism in which it naturally occurs; (b) a nucleic acid incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (c) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (d) a recombinant nucleotide sequence that is part of a hybrid gene, i.e., a gene encoding a fusion protein. Specifically excluded from this definition are nucleic acids present in mixtures of different (i) DNA molecules, (ii) transfected cells, or (iii) cell clones: e.g., as these occur in a DNA library such as a cDNA or genomic DNA library.

The cells to be used for producing the recombinant proteins include, but are not limited to, animal cells such as Chinese hamster ovary (CHO) cells, COS cells (a cell line obtained by transforming monkey CV-1 fibroblasts by the SV40 virus lacking the replication origin), mouse NIH3T3 cells, human HeLa cells, and human lymphoid Namalva cells (Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley - Interscience Publishing,

10

15

20

25

30

Unit 16.12-16.14 (1991)). As the vectors, pSV2neo, pcDNAI, pCD8, pRcRSV, pREP4, pCEP4 (Invitrogen), pMAM, pMAMneo (Clontech), pCI-neo mammalian expression vector, pSI-neo $\hbox{\tt mammalian expression vector, pTARGET$^{\tt mammalian expression}$}$ vector (Promega), and the like can be used. Both plasmid vectors and recombinant viruses can be constructed for producing the recombinant protein. Recombinant adenoviruses using the pAdex vector (Supplement to Jikken Igaku (Experimental Medicine) "Shin Idenshi Kogaku Handbook (New Genetic Engineering Handbook), "Yohdosha, pp238-244), the LN and LXSN vector series, the pBabe vector series (a modified version of the preceding series), recombinant retroviruses using such vectors as the MFG vectors (Supplement to Jikken Igaku (Experimental Medicine) "Shin Idenshi Kogaku Handbook (New Genetic Engineering Handbook)," Yohdosha, pp245-250, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley -Interscience Publishing, Unit 9.10.1-9.14.3 (1992)), Sindbis viruses, and vaccinia viruses (Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley - Interscience Publishing, Unit 16.15.1-16.19.9 (1992)) can also be used to produce the recombinant proteins. It is also possible to produce the recombinant proteins by utilizing baculoviruses, and silkworm larvae. Alternatively, cultured cell lines such as SF21, SF9, and High Five $^{\text{\tiny{IM}}}$ cells can be used as the host (Supplement to Jikken Igaku (Experimental Medicine) "Bio Manual Series 7: Bunshi Seibutsu Kenkyu No Tame No Tanpakushitsu Jikken Hou (Protein Experimentation Methods for Molecular Biology Research), "Yohdosha, pp167-171 (1994), OReilly, D. R. et al., "Baculovirus Expression Vectors, A Laboratory Manual," Oxford University Press (1992)). As the baculovirus

10

15

20

25

30

expression vectors, pBacPAK8, 9, pBacPAK-His 1/2/3, pAcUW31 (Clontech), pBlueBac (Invitrogen), pBAC, pBACgus (Novagen), etc., can be used.

The promoters utilized to express the proteins efficiently in animal cells include, for example, the SV40 early promoter (Rigby In Williamson (ed.), Genetic Engineering, Vol. 3, Academic Press, London, pp83-141 (1982)), the EF-1 α promoter (Kim et al., Gene 91:217-223 (1990)), the CAG promoter (Niwa et al., Gene 108:193-200 (1991)), the RSV LTR promoter (Cullen, Methods in Enzymology 152:684-704 (1987)), the SR α promoter (Takabe et al., Mol. Cell. Biol. 8:466 (1988)), the CMV early promoter (Seed and Aruffo, Proc. Natl. Acad. Sci. USA 84:3365-3369 (1987)), the SV40 late promoter (Gheysen and Fiers, J. Mol. Appl. Genet. 1:385-394 (1982)), the Adenovirus late promoter (Kaufman et al., Mol. Cell. Biol. 9:946 (1989)), the HSV TK promoter, and inducible expression promoters. The MMTV promoter induced by glucocorticoids, the MT (metallothionein) II promoter induced by phorbol esters or heavy metals, the Tet-On/Off system that can be turned on and off by tetracycline (Clontech), the expression system that can be induced by ecdysone (Invitrogen), and the Lac Switch expression system induced by IPTG are preferred examples of the inducible expression promoters.

It is also possible to use yeast cells to produce the proteins. Protease-deficient cell lines such as BJ2168, BJ926, and CB023, and cell lines for secretion vectors, such as 20B-12, can be used as hosts (Supplement to Jikken Igaku (Experimental Medicine) "Bio Manual Series 4: Idenshi Donyu To Hatsugen Kaisekihou (Gene Introduction and Expression Analysis Methods)," Yohdosha, pp166-176 (1994)). The expression vectors include pYEUra3 (Clontech), pYEXTM-

10

15

20

25

30

BX, and pYEXM-S1. It is also possible to express the protein in fission yeast SP-Q01, using fission yeast expression vector pESP-1 (Stratagene). The PGK promoter and the ADH1 promoter, which are constitutive; the CUP1 promoter, which is inducible by copper ions; the Gal1-Gal10 promoter, which is induced by galactose and repressed by glucose; and the PHO5 promoter, which is induced by a reduction in phosphate concentrations and repressed by high phosphate concentrations are preferable as promoters that efficiently express the protein in the yeast cells. In fission yeast, promoters such as the nmt1 promoter are preferable.

Four broad categories of expression promoters can be used to produce recombinant proteins using E. coli cells. The λPL promoter is regulated by the clts857 repressor and is induced by heat shock. N4830-1 and M5219 can be used as the host, and vectors such as pPL-lambda, pKC30, and pRIT2T can be used for expression. The tac promoter is regulated by the lacl q repressor and is induced by adding isopropyl $\beta\text{-D-thiogalactoside}$ (IPTG). JM105 and XL1-Blue can be used as the host, and vectors such as pDR540, pKK233-3, pGEX-3X, and pMAL-c2 can be used for expression. The trp promoter is regulated by the trp repressor and is induced by adding β indole acrylic acid (IAA). HB101 and the like can be used as the host; vectors such as pBTrp2 can be used for expression. The T7 phage promoter is recognized for expression by only the T7RNA polymerase. Therefore, the BL21(DE3) strain can be used as the host. This strain can be prepared by lysogenizing the $E.\ coli$ BL21 strain with λ phage DE3, into which the lacI gene and a DNA fragment containing the T7RNA polymerase gene under the control of the lacUV5 promoter are inserted within its int gene. The

10

15

20

25

30

inducible expression directed by the T7 promoter becomes possible by adding IPTG, which induces the T7RNA polymerase. The vectors include pET-3c and pET-8c. BL21(DE3)pLysS contains, in addition to the above plasmid, a plasmid producing the T7 lysozyme. This lysozyme is a natural inhibitor that binds to the T7RNA polymerase and inhibits its transcription, in order to suppress the basal level T7RNA polymerase activity. Therefore, BL21(DE3)pLysS can also be used as the host. pET-11c, pET-11d, and the like, which possess the T7lac promoter with the lac operator sequence inserted downstream of the T7 promoter transcription initiation site, can also be used as the expression vector (Studier, F., et al., J. Mol. Biol. 189:113-130 (1996), Studier, F., et al., Methods Enzymol. 185:60-8 (1990)).

Methods of introducing the vector into the host include the electroporation method (Chu, G., et al., Nucl. Acids Res. 15:1311-1326 (1987)), the calcium phosphate method (Chen, C. and Okayama, H., Mol. Cell. Biol. 7:2745-2752 (1987)), the DEAE dextran method (Lopata, M. A., et al., Nucl. Acids Res. 12:5707-5717 (1984); Sussman, D. J. and Milman, G., Mol. Cell. Biol. 4:1642-1643 (1985)), and the lipofectin method (Derijard, B., Cell 7:1025-1037 (1994); Lamb, B. T., et al., Nature Genetics 5:22-30 (1993); Rabindran, S. K., et al., Science 259:230-234 (1993)), but any method can be used.

The recombinant protein can be purified from the transformant thus obtained by means of the gel filtration method, ion exchange chromatography, affinity chromatography, reverse phase chromatography, hydroxyapatite chromatography, hydrogen bonding chromatography, and chelating columns (Deutscher, M. P.,

10

15

20

25

30

ed., Methods Enzymol. 182, Guide to Protein Purification, 1990; Principles and Methods Series: Gel Filtration, Ion Exchange chromatography, and Affinity chromatography. Pharmacia). Antibodies against the protein of the present invention are prepared as described below, and the protein can be highly purified by means of affinity chromatography using the antibodies.

Persons skilled in the art can, by using the prepared protein of the present invention, easily prepare the antibodies that bind to it. The antibodies of the present invention can be obtained by expressing the gene of the present invention using an appropriate E. coli expression vector; purifying the product; and immunizing rabbits, mice, rats, goats, or chickens with it. It is also possible to synthesize peptides that correspond to appropriate regions of the protein encoded by the gene of the present invention, and to immunize the animals described above, thereby obtaining the antibodies to the gene product. Methods to establish mouse or rat hybridomas can be used to produce monoclonal antibodies (Kohler and Milstein, Nature 256:495-497 (1975)). Specifically, mice, rats, or Armenian hamsters are first immunized with the prepared protein of the present invention. The antibodyproducing cells are then collected from the spleen or the lymph nodes and fused in vitro with myeloma cells, and clones are selected through screening using the antigen (Harlow, E. and Lane, D., Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York The mouse myeloma cells include p3-x63-Ag8-U1(1988)). (P3-U1), P3-NSI/1-Ag4-1 (NS-1), and SP2/0-Ag14 (AP2/0), and the rat myeloma cells include YB2/3HL.P2G11.16Ag20 (YB2/0). The cells can be fused using polyethylene glycol or

10

15

20

25

30

electric pulses. Monoclonal antibodies, such as that contained in the cultured supernatant of the hybridomas and that contained in the ascites of the mouse treated with an immunosuppressant and with the mass-cultured hybridoma injected into its abdominal cavity, can be purified by, for example, protein A-Sepharose (Pharmacia). Furthermore, monoclonal antibodies can also be purified using an affinity column having the protein of the present invention immobilized onto the support (Harlow, E. and Lane, D., Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1988)).

When the antibodies thus obtained are administered to humans, it is beneficial to use a human or humanized antibody in order to reduce the immunogenicity. methods to humanize antibodies include the CDR graft method, in which the antibody gene is cloned from the monoclonal antibody producing cells and the antigen determining region is transplanted to a known human antibody (Immunology Methods Manual 1: pp98-107, Academic Human antibodies can also be produced by Press). immunizing a mouse that has its immune system replaced with the human immune system, following a procedure similar to the one used with regular monoclonal antibodies. B cell hybridoma method (Kozbor, et al., Immunology Today 4:72 (1983)), and the Epstein-Barr virus (EBV) - Hybridoma method (Cole, et al. in Monoclonal Antibodies and Cancer Therapy, Ala R. Liss, Inc. pp77-96 (1985)) can also be used to produce monoclonal antibodies.

The antibodies thus obtained can be used not only to detect the proteins of the present invention and as antibody therapies, but also to screen the proteins

10

15

20

25

30

described below that interact with the proteins of the present invention.

The present invention also relates to the methods used to screen for the proteins that bind to the proteins of the present invention. The group of proteins having the PDZ domain, such as those of the present invention, share a common property of interacting with other proteins having the region of hydrophobic amino acids on the C-terminus. These and other binding proteins can be isolated by the screening methods of the present invention. These screening methods include the process to select the proteins that bind to the proteins of the present invention. In such a process, the sample proteins are brought into contact with the proteins of the present invention in the form of lysates from the cells or tissues that are expected to contain the target proteins.

An example of the specific methods is the immunoprecipitation method. The immunoprecipitation method is the most common method used to detect protein-protein binding. In immunoprecipitation, biological samples, such as lysates from cells or tissues, for example, cell lysates prepared by dissolving cells such as human umbilical vascular endothelial cells with Triton X-100 or sodium deoxycholate, are usually brought into contact with the proteins of the present invention. The antibodies are then applied to the complex thus formed between the proteins of the present invention with their binding proteins. The immune complexes thus formed are then precipitated (Supplement to Jikken Igaku (Experimental Medicine) "Shin Idenshi Kogaku Handbook (New Genetic Engineering Handbook)," Yohdosha, pp304-308 (1996)).

10

15

20

25

30

The immune complex can be precipitated by, for example, using protein A-Sepharose or protein G-Sepharose when the antibody is a mouse IgG antibody. General methods can be found, for example, in "Antibodies" (Harlow, E. and Lane, D., Antibodies. pp511-552, Cold Spring Harbor Laboratory Publications, New York (1988)). Moreover, methods based on those described above can generally be used even in the case of antibodies from other animal species.

The proteins of the present invention, which are used in the immunoprecipitation, can have a recognition site (epitope) for the monoclonal antibody, whose specificity has been well characterized, that is introduced into the N-terminus or the C-terminus of the proteins. The proteins have thus been made into fusion proteins with the epitope, and the immune complexes can be formed by reacting the antibody to the epitope.

A variety of epitope-antibody systems are commercially available, and these can also be used (Jikken Igaku (Experimental Medicine) 13:85-90 (1995)). Some commercially available vectors can express relatively large fusion proteins, such as those with β -galactosidase, maltose-binding protein, glutathione S-transferase, and Green fluorescent protein, by incorporating the DNA encoding the desired protein through multi-cloning sites. In order to minimize the changes in the properties of the desired protein due to fusing, methods have been reported in which only a small epitope portion having several to a dozen or so amino acids is inserted. For example, the epitopes in poly-histidine (His-tag), influenza hemagglutinin HA, human c-myc, FLAG, vesicular stomatitis virus glycoprotein (VSV-GP), T7 gene 10 protein (T7-tag),

10

15

20

25

30

human herpes simplex virus glycoprotein (HSV-tag), E-tag (an epitope on a monoclonal phage), etc., and their corresponding antibodies that recognize the epitopes can be used (Jikken Igaku 13: 85-90 (1995)). Any other epitopeantibody system can be used, as long as it can detect the fusion protein. It should be noted that the fusion proteins that bind to the proteins of the present invention can be isolated by means of affinity chromatography, without using antibodies. For example, the glutathione—Sepharose 4B column can be used for a GST-fusion protein.

SDS-PAGE is generally used to analyze the immunoprecipitated proteins. In this method, gel of an appropriate concentration is used according to the molecular weights of the proteins so that the bound proteins can be analyzed. It is generally difficult to detect the bound proteins with ordinary staining methods for proteins (e.g., the Coomassie Brilliant Blue (CBB) staining method or the silver staining method). However, the cells can be cultured in a medium to which $^{35}\mathrm{S-methionine}$ or $^{35}\mathrm{S-cysteine}$ has been added to label the proteins, in order to increase the detection sensitivity. Once the molecular weight of a protein becomes known, it is possible to purify the protein directly from the SDS-polyacrylamide gel and to determine its sequence. addition to the immunoprecipitation method described above, it is also possible to prepare the proteins by running the culture supernatant or the cellular extracts of the cells expected to express the proteins that bind to the proteins of the present invention through an affinity column having the proteins of the present invention immobilized onto it, then purifying the proteins that specifically bound to the column.

10

15

20

25

30

It is also possible to directly screen for the genes encoding the proteins that bind by using the proteins of the present invention. In this screening method, the gene products of the sample genes are brought into contact with the proteins of the present invention, thereby selecting the genes corresponding to the gene products that bind to the proteins of the present invention. There are no restrictions on the sample genes, but cDNA libraries prepared from the cells expected to express the proteins that bind to the proteins of the present invention are preferable. A specific example of the method utilizes the yeast 2 hybrid system (Fields, S. and Song, O., Nature 340:245-247 (1989)). Namely, one can express the proteins of the present invention within the yeast cells by fusing them with the SRF binding region, GAL4 binding region, or LexA binding region. One can then introduce the cDNA libraries prepared from the cells expected to express the proteins that bind to the proteins of the present invention into the above yeast cells so that the proteins are expressed in a form fused with the VP16, GAL4 transcription activation domain, or the E. coli B42 peptide. Finally, one can isolate the library-derived cDNA from the positive (When a protein that binds to the protein of the present invention is expressed within the yeast cell, the binding between these proteins activates the reporter gene, enabling the detection of the positive clone.)

The vectors and expression libraries to be used in this system can be purchased from several sources (Clontech, MATCHMAKER Two-Hybrid System; Stratagene, HybriZAP II Two-Hybrid System). For the specific method, one can follow the manufacturer's manual. The genes encoding the proteins that bind to the proteins of the

10

15

20

25

30

present invention can be obtained directly by this method. In fact, the bindings between APC and hDLG (Matsumine, A., et al., Science 272:1020-1023 (1996)), between GRIP and the AMPA receptor (Dong, H., et al., Nature 386:279-284 (1997)), between Homer and the glutamate receptor (Brakeman, P. R., et al., Nature 386:284-288 (1997)), and between SRY and SIP-1 (Poulat, F., et al. J. Biol. Chem. 272:7167-7172 (1997)) were confirmed and the target proteins of the proteins having the PDZ domain were identified using this yeast 2 hybrid system.

It is also possible to screen the proteins by the "west-western blotting method" (Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fischer, R., Drepps, A., Ullrich, A., and Schlessinger, J., Cloning of PI3 kinaseassociated p85 utilizing a novel method for expression/ cloning of target proteins for receptor tyrosine kinases. Cell 65:83-90 (1991)). In this method, a cDNA library is prepared using a phage vector (such as Agt11 and ZAP) from the cells expected to express the proteins that bind to the proteins of the present invention (e.g., human umbilical vascular endothelial cells). The protein is then expressed on an LB-agarose, and the expressed proteins are fixed onto a filter with which the protein of the present invention that has been biotin-labeled or purified as a fusion protein with the GST protein is reacted. The plaques expressing the binding proteins are detected with streptavidin or an anti-GST antibody. It is then also possible to introduce the isolated genes from the above procedure into E. coli or other cells to express them and to prepare the proteins encoded by the genes.

It should be possible to determine the signal transduction pathways mediated by the protein-protein

10

15

20

25

30

interaction by using the proteins of the present invention to isolate and analyze their binding proteins and the genes encoding them. Furthermore, as the relationship between the signal transduction and diseases becomes clearer, it will be possible to develop pharmaceuticals targeted at the proteins of the present invention and the proteins that interact with them.

It is also expected that treatments using antisense DNA against the DNA encoding these proteins will become possible. In the present invention, "antisense DNA" refers to the DNA encoding the RNA that is complementary to the transcription product of the target gene, thereby employing the activity to suppress the expression of the target gene. Antisense DNA does not have to be perfectly complementary to the transcription product of the target gene, as long as it can effectively block the expression of the target gene. It preferably possesses 90% or more, and more preferably 95% or more, complementarity. The chain length of the antisense DNA is 15 nucleotides or more, preferably 100 nucleotides or more, and more preferably 500 nucleotides or more. Various modified antisense oligonucleotides are being utilized as antisense DNA. For example, phosphorothioates (S-oligos) are preferable in terms of stability and solubility. The methods for introducing antisense DNA include direct administration, lipofection, the HVJ method, and the HVJ-liposome method. It is also possible to perform the treatment with antisense RNA using vectors. In this case, the gene therapy is achieved by inserting the DNA of the present invention backwards into the vector used in the recombinant protein production in animal cells described above. The DNA is

then expressed within the body by introducing it through direct administration, lipofection, the HVJ method, the HVJ-liposome method, etc. It is also possible to employ the methods of gene introduction using virus vectors such as adeno-associated virus, Adenovirus, human herpes simplex virus, vaccinia virus, and Fowlpox virus, in order to express the antisense RNA within the body. Treatments using ribozymes, instead of antisense DNA, are also possible.

10

15

20

25

30

5

Brief Description of the Drawings

Figure 1. Sequence comparisons between "32-8-1" (top) and "AF00168" (bottom) are shown.

Figure 2. Sequence comparisons between "32-8-1" (top) and "AJ001319" (bottom) are shown.

Figure 3 Sequence comparisons between "32-8-1" (top) and "AJ001320" (bottom) are shown.

Figure 4. Continuation of Figure 3, sequence comparisons between "32-8-1" (top) and "AJ001320" (bottom) are shown.

Figure 5. Photograph of the electrophoresis showing the results of northern blot analysis of the "32-8-1 gene" is shown. The BamHI-XbaI fragment was used as the probe.

"H" in the figure indicates the results with the Human Multiple Tissue Northern (MTN) Blot (Clontech #7760-1).

The lanes are 1. Heart, 2. Brain, 3. Placenta, 4. Lung, 5. Liver, 6. Skeletal muscle, 7. Kidney, and 8. Pancreas.

"H4" indicates the results with the Human Multiple Tissue Northern (MTN) Blot IV (Clontech #7766-1), and the lanes are 1. Spleen, 2. Thymus, 3. Prostate, 4. Testis, 5. Uterus, 6. Small intestine, 7. Colon, and 8. Peripheral Blood Leukocyte. "F2" indicates the results with the Human

20

30

5

Fetal Multiple Tissue Northern (MTN) Blot II (Clontech #7756-1), and the lanes are 1. Fetal brain, 2. Fetal lung, 3. Fetal liver, and 4. Fetal kidney.

Figure 6. Photograph of the electrophoresis showing the results of northern blot analysis of the "32-8-1 gene" is shown. The NdeI 1.2 kb-#1 probe was used. "H" in the figure indicates the results with the Human Multiple Tissue Northern (MTN) Blot (Clontech #7760-1), and the lanes are 1. Heart, 2. Brain, 3. Placenta, 4. Lung, 5. Liver,

10 6. Skeletal muscle, 7. Kidney, and 8. Pancreas. "H4" indicates the results with the Human Multiple Tissue Northern (MTN) Blot IV (Clontech #7766-1), and the lanes are 1. Spleen, 2. Thymus, 3. Prostate, 4. Testis, 5. Uterus, 6. Small intestine, 7. Colon, and 8. Peripheral

Blood Leukocyte. "F2" indicates the results with the Human Fetal Multiple Tissue Northern (MTN) Blot II (Clontech #7756-1), and the lanes are 1. Fetal brain, 2. Fetal lung, 3. Fetal liver, and 4. Fetal kidney. "Mu" indicates the

results with the Human Muscle Multiple Tissue Northern (MTN) Blot (Clontech #7765-1), and the lanes are

1. Skeletal muscle, 2. Uterus, 3. Colon, 4. Small intestine, 5. Bladder, 6. Heart, 7. Stomach, and

8. Prostate. "C" indicates the results with the Human Cancer Cell Line Multiple Tissue Northern (MTN) Blot

(Clontech #7757-1), and the lanes are 1. Promyelocytic leukemia HL-60 cells, 2. HeLa S3 cells, 3. Chronic myelogenous leukemia K-562 cells, 4. Lymphoblastic leukemia MOLT-4 cells, 5. Burkitt's lymphoma Raji cells,

6. Colorectal adenocarcinoma SW480 cells, 7. Lung carcinoma A549 cells, and 8. Melanoma G361 cells.

Figure 7. Positional relationships among various clones isolated by the present inventors are presented.

15

20

25

30

These are the "32-8-1" cDNA clone; the heart cDNA derived "686-1-2" and "686-1-4" clones. The fetal liver cDNA derived "FL #5," "#12," and "#6" clones are also shown. The PDZ domains encoded by the 32-8-1 gene are indicated by circles. The translation initiation site at nucleotide 292 and the translation termination site at nucleotide 4410 are also indicated in the figure. The positions of the probes, NdeI 1.2 kb-#1 and BamHI-XbaI, are also shown.

Figure 8. PDZ domain sequences of the protein (SEQ ID NO: 1) encoded by the 32-8-1 gene are shown. The PDZ domain sequences that exist within the protein encoded by the 32-8-1 gene are aligned.

Figure 9. Four colonies of *E. coli* transformants expressing GST-PDZ56 were picked, and the expression was compared depending on the presence or absence of the isopropyl thiogalactoside (IPTG) induction. Transformants with pGST-2TK were used as a control. The samples from each clone were analyzed on a 10% to 20% SDS-polyacrylamide gel, with even-numbered lanes before the IPTG induction and odd-numbered lanes three hours after the IPTG induction. Lanes 2 and 3 correspond to the pGST-2TK transformants, and lanes 4 through 11 correspond to clone 1 through 4 of the *E. coli* transformants expressing GST-PDZ56. Lane 1 shows molecular weight markers. The bands corresponding to the induced expression of GST-PDZ56 are indicated with an arrow.

Figure 10. The same samples used in the experiment shown in Figure 9 were analyzed by western blot. Bands (indicated with an arrow) corresponding to the induced expression of the 55 kDa protein were detected with the anti-GST antibody. The bands near 30 kDa seen in the samples three hours after the IPTG induction are

. 10

15

20

25

30

interpreted to represent the degradation of the GST-PDZ56 protein.

Figure 11. The expression of GST-PDZ14 from the *E. coli* transformants three hours after the IPTG induction was analyzed by Coomassie blue staining. Lanes 2 and 6 correspond to the samples prior to the IPTG induction; lanes 3 through 6 correspond to clones 1, 2, 3, and 4 of the *E. coli* HB101 transformants; and lanes 8 through 11 correspond to clones 1, 2, 3, and 4 of the *E. coli* JM109 transformants, showing the results of GST-PDZ14 expression after the IPTG induction (arrow). Lane 1 shows molecular weight markers.

Figure 12. The purification process of PDZ56 is shown. Coomassie blue staining was used. Lane 1 shows molecular weight markers. Lane 2 corresponds to the culture media; lane 3, to the sonicated sample; lane 4, to the fraction unbound to the glutathione-Sepharose column; lanes 5 through 7, to the washes; and lanes 8 and 9, to the PDZ56 protein not containing the GST protein portion, which has come off the glutathione-Sepharose column after digestion by thrombin. Bands at approximately 30 kDa can be clearly seen (arrow indicates PDZ56). Lane 10 corresponds to the GST protein portion bound to the glutathione-Sepharose column, which was eluted after digestion by thrombin (arrow indicates GST). Lanes 11 and 12 show the GST-PDZ56 fusion protein that was eluted without thrombin digestion in a regular elution buffer containing glutathione (arrow indicates GST-PDZ56).

Figure 13. The results of western blotting performed with anti-GST antibody using a filter onto which the same samples used in the experiment shown in Figure 12 were blotted are shown. Comparing lanes 8 and 9 with lane 10

10

15

20

25

30

(arrow: GST) clearly shows that the 55kDa GST-PDZ56 fusion protein (arrow indicates GST-PDZ56) shown in lanes 11 and 12 has been cleaved by thrombin to yield only PDZ56 that does not contain the GST portion. Bands in lanes 8 and 9 of Figure 12 cannot be detected by the GST antibody used in Figure 13 because they do not contain GST.

Figure 14. The purification process of PDZ14, similar to that in Figure 9, is shown. Lane 1 shows molecular weight markers. Lane 2 corresponds to the culture media; lane 3, to the sonicated sample; lane 4, to the fraction unbound from the glutathione-Sepharose column; lanes 5 through 8, to the washes; and lanes 9, 10, and 11, to the PDZ14 protein not containing the GST protein portion, which came off the glutathione-Sepharose column after digestion by thrombin. Bands at 65 kDa can be clearly seen (arrow indicates PDZ14). However, degradation products of the PDZ14 protein were also detected at 28 kDa and 37 kDa (arrows indicate 37 kDa and 28 kDa).

Figure 15. Out of the Protein Medley (Clontech), the filters blotted with 100mg each of the cell lysates from human testis (T), skeletal muscle (Sk), liver (Lv), heart (H), and brain (B) were reacted with the antisera from the rabbits immunized with peptide 32-8-1-17, PDZ14, or PDZ56 for western blotting. The filters were reacted sequentially with the 5,000-fold diluted rabbit antiserum, the 1,000-fold diluted biotin-labeled anti-rabbit Ig antibody, and the 2,500-fold diluted horseradish peroxidase (HRP)-labeled streptavidin-biotin complex (Amersham). The results of detection by chemiluminescence of the proteins that react with the rabbit antisera are shown. In the liver tissue, the present inventors were able to detect a

20

25

30

5

band at around 130 kDa. This band is expected to have been derived from the 32-8-1 protein (arrow).

Figure 16. The results of an analysis of the tissue specificity of the 32-8-1 gene expression by RT-PCR are shown. The 24-types of first strand cDNAs used were

- 1. brain, 2. heart, 3. kidney, 4. liver, 5. lung,
- 6. pancreas, 7. placenta, 8. skeletal muscle, 9. colon,
- 10. ovary, 11. peripheral leukocyte, 12. prostate,
- 13, small intestine, 14. spleen, 15. testis, 16. thymus,
- 10 17. fetal brain, 18. fetal heart, 19. fetal kidney,
 - 20. fetal liver, 21. fetal lung, 22. fetal skeletal muscle,
 - 23. fetal spleen, and 24. fetal thymus. Single bands at
 - 650 bp were detected in panel A, and three bands (750 bp,
 - 850 bp, and 950 bp) were detected in panel B.

Figure 17. The comparisons among the sequences of FH750, FH850, and FH950 are shown.

Figure 18. The continuation of Figure 17 showing the comparisons among the sequences of FH750, FH850, and FH950 is shown.

Figure 19. A photograph of an electrophoresis presenting the results of detection of the 32-8-1b protein by western blotting is shown. Lanes 1 and 2 were detected with the antisera against the 32-8-1-17 peptide, and lanes 3 and 4 were detected with the antisera against PDZ56. Cell lysates from neuroblastoma cells SH-SY5Y (lanes 1 and 3) and the NT-N cells (lanes 2 and 4), which are neurons differentiated from NT-2 by the retinoic acid stimulation, were separated on an SDS-polyacrylamide gel. Bands that are expected to correspond to the 32-8-1b protein were detected with a size of 250 kDa or more.

Figure 20. Sequence comparisons between "32-8-1b" (top) and "AF00168" (bottom) are shown.

10

15

20

25

30

Figure 21. Sequence comparisons between "32-8-1b" (top) and "AJ001319" (bottom) are shown.

Figure 22. Sequence comparisons between "32-8-1b" (top) and "AJ001320" (bottom) are shown.

Figure 23. The continuation of Figure 22, which presents sequence comparisons between "32-8-1b" and "AJ001320," is shown.

Figure 24. The continuation of Figure 23, which presents sequence comparisons between "32-8-1b" and "AJ001320," is shown.

Figure 25. The sequences of the PDZ domains in the protein (SEQ ID NO: 83) encoded by the 32-8-1b gene are shown. The sequences of the PDZ domains that exist within the protein encoded by the 32-8-1b gene are aligned.

Figure 26. The positional relationships among the various clones isolated by the present inventors are shown. These are the "32-8-1" cDNA clone; the heart cDNA derived "686-1-2" clone, "686-1-4" clone, and "FH950" clone; the fetal liver cDNA derived "FL#5," "#12," and "#6" clones; and the brain derived "1.2 kb #33" clone and "D-2" clone are shown. The PDZ domains encoded by the "32-8-1b" gene are indicated by rectangles.

Best Mode for Implementing the Invention

Embodiments of the present invention are exemplified below. However, the present invention shall in no way be limited by these examples.

Example 1 Cloning of genes

(1) Differential display

The human umbilical vascular endothelial cells (HUVEC) were obtained from Morinaga Biochemistry Research Institute

10

15

20

25

30

and cultured by using the Normal Human Vascular Endothelial Cell Culturing kit (Catalog #680051). When the cells became subconfluent, 10 ng/ml Recombinant Human Tumor Necrosis Factor- α (TNF α , Catalog #300-01A, PEPROTECH Inc.) was added, and the cells were cultured for another 24 hours. expressed genes were compared with those from the cells without the addition of TNFa. Cells were detached from the plate with trypsin-EDTA, precipitated by centrifugation at 1,000 rpm for 5 minutes, and washed once with PBS. total RNA was then recovered by using an RNAeasy Total RNA kit (OIAGEN). Using 0.2 µg of the recovered total RNA, the present inventors synthesized cDNA by means of the H-T11G anchor primer. The conditions were based on those given in the manual for the RNAimage kit (GenHunter). Genes were randomly amplified using the TAKARA Taq polymerase through 40 cycles of polymerase chain reaction (PCR). Each cycle consisted of 94°C for 30 seconds, 40°C for 2 minutes, and 72°C for 30 seconds, for each of the eight kinds of arbitrary primers H-AP1 through H-AP8. The reaction mixture contained $\alpha^{-32}P$ dATP. The products were separated on sequencing gels, and those genes whose bands were intensified by the TNF α stimulation, that is, the genes whose mRNA expression was increased as compared to the case with no stimulation, were amplified again with the same conditions. The primer DNA was then removed from the reaction mixture using a Qiaquick Spin PCR Purification kit. The nucleotide sequence information of "DDEST32" shown in SEQ ID NO: 13 was obtained by analyzing the products with a Dye Terminator Cycle Sequencing FS Ready Reaction kit (Perkin Elmer, Catalog #402122) using the same primers used for amplification.

10

15

20

25

30

(2) Construction of cDNA library

A cDNA library was constructed using a ZAP-cDNA synthesis kit (Stratagene). A 10×1^{st} strand buffer (5 μ l), 3 μ l of 1st strand methyl nucleotides mix, 2 μ l of linker-primer (1.4 $\mu g/\mu l$), 1 ml of RNase Block ribonuclease inhibitor (40 U/ μ l), 10 μ l of TNF α -stimulated HUVEC poly A⁺ mRNA (0.5 μ g/ μ l), and 24 μ l of diethyl pyrocarbonate (DEPC) - treated water were gently mixed and allowed to stand at room temperature for 10 minutes. SuperScript II reverse transcriptase (5 μ l, 200 U/μ l, GIBCO-BRL) was mixed with the cDNA library. The mixture was incubated at 37°C for 40 minutes then at 45°C for 70 minutes. The reaction mixture was put on ice, and 20 μ l of 10 x 2nd strand buffer, 6 μ l of 2nd strand nucleotide mix, 115.9 μ l of sterilized distilled water, RNase H (1.5 $U/\mu l$), and 11.1 μl of DNA polymerase I (9 $U/\mu l$) were mixed into 45 μ of the reacted mixture by vortexing, and the mixture was incubated at 16°C for 150 minutes. After the reaction, 23 µl of blunting dNTP mix and 2 μ l of cloned Pfu DNA polymerase (2.5 U/μ l) were added, and the mixture was incubated at 72°C for 30 minutes. The mixture was then sequentially extracted with 200 µl of phenol/chloroform, and with chloroform, and further precipitated by adding 20 µl of 3M sodium acetate and 400 µl of 100% ethanol. After overnight incubation at -20°C, the mixture was centrifuged at 15,000 rpm for 60 minutes (4°C), and the precipitate was washed with 500 ul of 70% ethanol and dried. The precipitate was dissolved in 9 μ l of 0.4 μ g/ μ l EcoRI adapter and incubated at 4°C for 45 minutes. 10 x ligase buffer (1 μ l), 1 μ l of 10 mM ATP, and 1 µl of T4 DNA ligase (4 U/µl) were then added to the above, and the ligation reaction was performed overnight at 8°C. The mixture was incubated at 70°C for

10

15

20

25

30

30 minutes to inactivate the enzyme, spun down to collect the solution on the bottom of the tube, and let sit for 5 minutes at room temperature. To the mixture were added 1 μl of 10 x ligase buffer, 2 μl of ATP, 6 μl of sterilized water, and 1 μ l of T4 polynucleotide kinase (10 U/μ l). mixture was incubated at 37°C for 30 minutes then incubated again at 70°C for 30 minutes to inactivate the enzyme. XhoI buffer supplement (28 μ l) and 3 μ l of XhoI (40 U/ μ l) were added to the above, and the mixture was reacted at 37°C for 90 minutes. The mixture was cooled to room temperature, then 5 µl of 10 x STE buffer was added. The mixture was then applied to a Sephacryl S-500 column and eluted twice with 60 µl of 1 x STE buffer. Ethanol (120 ml) was then added to the mixture, and the mixture was allowed to stand at -20°C overnight. It was then centrifuged at 15,000 rpm for 60 minutes (4°C) to obtain the precipitate. The precipitate was washed with 200 μl of 80% ethanol and dried. It was then dissolved with 6 μ l of sterilized water, and 2.5 µl of it was used for the ligation reaction with the vector. To 2.5 µl of the cDNA, 1 μ l of Uni-ZAP XR vector (1 μ g), 0.5 μ l of 10 x ligase buffer, 0.5 µl of 10 mM ATP, and 0.5 µl of T4 DNA ligase (4 U/μl) were added and reacted at 12°C overnight. ligation mixture (1 µl) was added to the GigapackIII Gold Packaging extract, mixed well, and incubated for two hours at room temperature. SM buffer (500 µl; 5.8 g NaCl, 2.0 g $MgSO_4-7H_2O$, 50 ml 1 M Tris-HCl (pH 7.5), and 5 ml 2% (w/v) gelatin, brought up to 1 L with deionized water) was added to the above, and after 20 µl of chloroform was added, it was gently mixed. The mixture was then centrifuged, and the supernatant was transferred to another tube and stored at 4°C. The phage titer was measured using 0.1 μ l and 1 μ l

10

15

20

25

of the packaging reaction. Since approximately 300 plaques were obtained from 0.1 μ l, the titer was estimated to be 3,000 PFU (plaque-forming units) per microliter. XL1 Blue MRF' was used as the host E. coli. It was cultured in 20 ml LB/ 10 mM MgSO₄/ 0.2% maltose at 37° C for 6 hours, placed on ice for 5 minutes before the OD600 became 1.0, and centrifuged at 500 x g for 10 minutes. To resuspend the precipitated cells, 10 ml of 10 mM MgSO4 was added, and cells were diluted with 10 mM MgSO₄ so that the OD₆₀₀ became 0.5. The packaging reaction (17 µl) was added to 600 µl of the freshly prepared XL-1 Blue MRF', and incubated at 37°C for 15 minutes. NZY top agar (6.5 ml; made by adding 0.7% (w/v) agarose to the NZY medium and autoclaving it), which had been incubated at 45°C, was added to the above and plated onto NZY agar plates. The plates were prepared as NaCl (5 g), $MgSO_4-7H_2O$ (2.0 g), yeast extracts follows. (5 g), NZ amines (10 g), and agar (15 g) were dissolved in deionized water to make the total volume 1 L. The solution pH was adjusted with NaOH to 7.5, after which the solution was autoclaved and poured into sterilized culture plates. After culturing at 37°C for six hours, the plaques were transferred onto a Hybond N⁺ filter (Amersham, RPN203B) by placing the filter on the plate, denatured with 1.5 M NaCl-0.5 M NaOH for 7 minutes, neutralized by treating with 1.5 M NaCl-0.5 M Tris-HCl (pH 7.2) / 1 mM EDTA for 5 minutes, and finally rinsed with 2 x SSC. After the filter was dried, the plagues were fixed onto the filter by StrataLinker (Stratagene).

30 (3) Screening of the cDNA library

The "DDEST32" DNA fragment was isolated on a 2%

agarose gel, and recovered from an agarose gel slice with a

10

15

20

25

30

QIAEX II gel extraction kit (QIAGEN). The fragment was labeled by random labeling so it could be used as the probe. Using a Megaprime kit (Amersham, RPN1607), 5 µl of primer solution was added to 25 ng of the probe DNA, and incubated at 95°C for 5 minutes. After the solution was incubated at room temperature, 10 µl of labeling buffer, 18 μ l of water, 5 μ l of α^{32} P dCTP (-3000ci/mmol; Amersham), and 2 µl of Klenow fragment were added to it, and the mixed solution was incubated at 37°C for 30 minutes. reaction was stopped by adding 2 μl of 0.5 M EDTA, and the free $\alpha^{-32}P$ dCTP was removed with a Pharmacia ProbeQuant G-50 column. After prehybridization at 60°C in the Rapid hybri buffer (Amersham, RPN1636), the labeled probe was heatdenatured at 95°C, rapidly chilled on ice, and added to the hybridization buffer. Hybridization was then performed by shaking at 60°C for two hours. The probe was used at a concentration of 2×10^6 cpm/ml. The filter was washed three times in 2 x SSC/ 0.05% SDS at room temperature for ten minutes each, and twice more in 0.1 x SSC/ 0.1% SDS at 60°C for 20 minutes each. The phage collected from positive plagues was diluted in SM buffer and plated onto 10-cm plates so that approximately 100 plaques were formed per plate. The secondary and tertiary screenings were performed similarly. As a result, clone "#32-8-1" was obtained as the positive clone. The gene that had been cloned in the Uni-ZAP vector was recovered as ordinary plasmid DNA by the in vivo excision method.

Example 2 Sequence determination of the "32-8-1" gene
(1) Preparation of the cDNA library for RACE
The cDNA for RACE was synthesized using a Marathon

cDNA amplification kit (Clontech). The total RNA (1 µg)

10

15

20

25

30

obtained from the $\text{TNF}\alpha\text{-stimulated HUVEC}$ cells was used for the experiment. Oligo dT primer (1 μ l, 10 μ M) was added to the above, the total volume was brought to $5 \mu l$, and the mixture was incubated at 70°C for 2 minutes and then placed on ice for 2 minutes. Two microliters of 5 x $1^{\rm st}$ strand buffer, 1 μ l of 10 mM dNTP mix, and 1 μ l of 100 U/ μ l MMLV reverse transcriptase were added to the above, and the total volume was made 10 μ l. The mixture was then incubated at 42°C for 1 hour to synthesize the first strand cDNA. Sixteen microliters of 5 x 2^{nd} strand buffer, 1.6 μ l of 10 mM dNTP mix, and 4 μ l of 20 x 2nd strand enzyme cocktail were next added to the mixture, the total volume was adjusted to 80 µl with water, and the mixture was incubated at 16°C for 90 minutes. T4 DNA polymerase (2 µl, 5 $U/\mu l)$ was then added, and the reaction was performed at 16°C for 45 minutes. After 4 µl of 20 x EDTA/ glycogen was added to the mixture, it was deproteinized with equal volumes of phenol/chloroform, and isoamyl alcohol/chloroform.

Ethanol precipitation was done with 35 μ l of 4 M ammonium acetate and 263 μ l of 95% ethanol, and the precipitate was washed with 80% ethanol and spontaneously dried for 10 minutes. The dried precipitate was dissolved in 10 μ l of deionized water, and 7.5 μ l was used for the adapter ligation reaction. Marathon cDNA adapter (3 μ l, 10 μ M), 3 μ l of 5 x DNA ligation buffer, and 1.5 μ l of T4 DNA ligase (1 U/ μ l) were added to the above and reacted overnight at 16°C. The enzyme was inactivated by incubation at 70°C for 5 minutes, and the total volume was adjusted to 150 μ l by using 135 μ l of Tricine-EDTA buffer contained in the kit.

10

(2) cDNA cloning by RACE and sequence determination
Clone #32-8-1 was subcloned by utilizing the
restriction enzyme recognition sites within the gene (PstI,
XbaI, BamHI, and EcoRI), and the nucleotide sequence was
determined by the cycle sequence method using a Dye
Terminator Cycle Sequencing FS Ready Reaction kit (Perkin
Elmer, Catalog #402122).

The sequences of the primers used are shown in Table

1. "C" indicates a primer for the complementary DNA
strand.

Table 1

Primer #		DNA sequence	SEQ ID NO:
106	С	CTCCCCATCCCTCGTCCACC	14
XE	С	CTCTGACTCTGACTGACTGG	15
EX		ATGAGTTTGGTTACAGCTGG	16
402		TCAGAGAGCGTTATGGAACC	17
XER		AGTCTTGCTGGGAACAAAGA	18
801		ACTGTTACTACTTCTGATGC	19
1192-1161		TCTGATGGTCCCACAGTCTG	20
1282	С	GTTGTTTCGCAGCCAGGGAT	21
1524		CTGAGCATCGTTGGGGGTTC	22
1449	С	CCTCATCTCTGTAGAGTGTC	23
1683		TGTTAGCCCCCTCACTAAGG	24
1803		GCTATGTGCTAGGAAATACG	25
2116		TAGGGAGAAGGATCAGAGCG	26
607-93		ACAGATTTCTGACTCACTGG	27
128		TGGAAATAGGCATTCTTCAG	28
607-462		ATACAAAGACGGTCTAATCC	29
2920	С	CCGCTTTCCCATCTTTAGAAAC	30
3121		TATCTCGTGTGGAAGATGTG	31
2266-107	С	ACATAAATGTTGCTATCACC	32
3361		TGCCACTTAGTAGCCGAGTG	33
3615		GCATTGCATTACAGTTGAGC	34
1301	С	TCCTCCTTTGACAATGTCTG	35
BXR	С	CATTTCGACTGTTCTTAATC	36
XB	C	TCAGTGGATGTGCCACAGAT	37
4221	С	CAGTAGGTTAACTGCTTCGG	38
BX		AGTTCCAGTCTTTCTTTCGG	39
4335		TTTCTTTCACTGGGCTGAAGTC	40
XBR		CCTCTGAAGACGGACGTCTG	41

10

15

20

25

30

Accordingly, a nucleotide sequence of 5,146 bp was determined. When the first G of the EcoRI recognition site was counted as nucleotide 1, the PDZ domain started at nucleotide 468. A stop codon immediately followed three repeated stretches of approximately 80 amino acids. The sequence in the 3' region of the gene also contained three PDZ domains at a distance of approximately 2 kb from the stop codon described above. (An experiment conducted later revealed that clone #32-8-1 contains a sequence of approximately 2 kb. This sequence has been derived from an intron, transcribed and inserted, thereby introducing the stop codon immediately after the first three PDZ domains.)

Therefore, the present inventors performed 5' Rapid Amplification of cDNA Ends (RACE) starting from the position of the three PDZ domains found in the latter half. Using 5 µl of the cDNA described above, 5' RACE was performed according to the manual contained in the kit. The reaction mixture consisted of 5 µl of cDNA, 5 µl of 10 x Advantage™ KlenTag buffer (which came with the kit), 4 μl of 2.5 mM dNTP, 1 μl of 10 μM AP1 primer (CCATCCTAATACGACTCACTATAGGGC (SEQ ID NO: 42)), 1 µl of 10 µM 32-8-1 5' RACE primer #22(TTGGGGTGGGGAGAGGGTAGATTGC (SEQ ID NO: 43)), 1 µl of Advantage™ KlenTag polymerase mix (Tovobo, CLK8417-1), and 33 µl of deionized water to make the total 50 µl. PCR reaction was performed using a Perkin Elmer Thermal Cycler 2400. A reaction consisting of 94°C for 1 minute, five cycles of 94°C for 5 seconds and 72°C for 2 minutes, five cycles of 94°C for 5 seconds and 70°C for 2 minutes, followed by 25 cycles of 94°C for 5 seconds and 68°C for 2 minutes did not produce clearly detectable By performing nested PCR under the same conditions, the present inventors were able to obtain a band of

approximately 1.8 kb. Here the AP2 primer (ACTCACTATAGGGCTCGAGCGGC (SEQ ID NO: 44)) and 32-8-1 5' RACE primer #1034 (GCACATCACCAAGTGGGCTGCCTACTC (SEQ ID NO: 45)) were used as primers, and 5 µl of the 50-fold dilution of the initial PCR product was used. Also, the original 25 cycles of 94°C for 5 seconds and 68°C for 2 minutes was reduced to 15 cycles. As a result, cDNA clone "32-8-1/5R3," which does not contain the 2 kb gap, was obtained.

Next, the present inventors determined the sequence of clone 32-8-1/5R3. The sequences of the primers used for the sequence determination of 32-8-1/5R3 are shown in Table 2. "C" indicates a primer for the complementary DNA strand.

15

20

10

5

Table 2

Primer #		DNA sequence	SEQ ID NO:
EX		ATGAGTTTGGTTACAGCTGG	46
456	С	AATCTAATGCAGCTCGCCTG	47
XER		AGTCTTGCTGGGAACAAAGA	48
678	С	TCACTTTAGAAGGGGCACAT	49
801		ACTGTTACTACTTCTGATGC	50
1192-1161		TCTGATGGTCCCACAGTCTG	51
1282	С	GTTGTTTCGCAGCCAGGGAT	52
1524		CTGAGCATCGTTGGGGGTTC	53
1449	С	CCTCATCTCTGTAGAGTGTC	54
2116		TAGGGAGAAGGATCAGAGCG	55
1301	С	TCCTCCTTTGACAATGTCTG	56
839		TTTCATCATCTACAGCCAGT	57
1389		TGACACCCTCACTATTGAGC	58

The nucleotide sequence of 2,819 bp, which was determined by combining the sequences of clones #32-8-1 and 32-8-1/5R3, is shown in SEQ ID NO: 59.

10

15

20

Example 3 Cloning of a cDNA clone corresponding to the 5' upstream region of the 32-8-1/5R3 cDNA clone by RACE

The present inventors attempted to isolate the upstream cDNA located 5' to the 32-8-1/5R3 clone by the 5' Rapid Amplification of cDNA Ends (RACE) method. A human heart cDNA library and a human fetal liver cDNA library were used as cDNA sources. Two clones, 2.8 kb and 1.2 kb in size, were obtained from the human heart cDNA library. One 1.1 kb clone was obtained from the human fetal liver cDNA library. The cloning procedure is described below.

The present inventors used cDNA Library Human Heart (Takara Shuzo, Catalog #9604) for the human heart cDNA library. The XL1 Blue-MRF' E. coli cells transformed with the plasmid DNA containing the cDNA inserted into the pAP3neo vector (Genbank Accession No.AB003468) were cultured by the usual method, the plasmid DNA was recovered by the alkaline method, and the cDNA clone containing the 5' upstream region was obtained by PCR using 10 ng of the plasmid DNA as the template. The reaction mixture consisted of 10 ng of the cDNA, 5 µl of 10 x Advantage™ KlenTag buffer (which came with the kit), 4 µl of 2.5 mM dNTP, 1 µl of 10 µM AP3neo5' primer (which came with the kit; 5'-GCCCTTAGGACGCGTAATACGACTC-3' (SEQ ID NO: 60)), 1 μl of 10 µM 32-8-1 5' RACE primer #686

(5'-AGCCAGTATCTGATCTCCGACTTTG-3' (SEQ ID NO: 61)), and 1 μ l 25 of Advantage™ KlenTag polymerase mix (Toyobo, CLK8417-1). These were mixed with deionized water to make the total 50 µl. PCR reaction was performed using a Perkin Elmer Thermal Cycler 2400. A reaction consisting of 94°C for 30

1 minute, 5 cycles of 94°C for 5 seconds and 72°C for

4 minutes, and 5 cycles of 94°C for 5 seconds and 70°C for

4 minutes, followed by 25 cycles of 94°C for 5 seconds and

10

15

20

25

30

68°C for 4 minutes, yielded the bands of 2.8 kb and 1.2 kb. The products were separated on a 0.8% agarose gel. The corresponding bands were excised and purified with the QIAquick gel extraction kit (QIAGEN, 28706) and were subjected to TA cloning according to the manual for the pGEM-T Vector System I (Promega, A3600). The present inventors designated the two clones as 686-1-4 (2.8 kb) and 686-1-2 (1.2 kb). The sequence of clone 686-1-2 is contained in that of 686-1-4 (sequence 686-1-4), and ranges from nucleotide 1585 to nucleotide 2793 of SEQ ID NO: 3 (Figure 7).

The present inventors performed 5' RACE using Marathon Ready human fetal liver cDNA (Clontech) as the human fetal liver cDNA library. The reaction mixture consisted of 5 µl of the cDNA, 5 µl of 10 x Advantage™ KlenTaq buffer (which came with the kit), 4 µl of 2.5 mM dNTP, 1 µl of 10 µM AP1 primer (which came with the kit:
5'-CCATCCTAATACGACTCACTATAGGGC-3' (SEQ ID NO: 42)), 1 µl of 10 µM 32-8-1 5' RACE primer #686
(5'-AGCCAGTATCTGGATCTCCGACTTTG-3' (SEQ ID NO: 61)), and 1 ml of Advantage™ KlenTaq polymerase mix (Toyobo, CLK8417-1).
These were mixed with 33 µl of deionized water to make the total 50 µl. PCR reaction was performed using a Perkin Elmer Thermal Cycler 2400. A reaction consisting of 94°C

Elmer Thermal Cycler 2400. A reaction consisting of 94°C for 1 minute, 5 cycles of 94°C for 5 seconds and 72°C for 6 minutes, 5 cycles of 94°C for 5 seconds and 70°C for 6 minutes, and 25 cycles of 94°C for 5 seconds and 68°C for 6 minutes did not produce clearly detectable bands. The reaction mixture was then diluted 50 fold, 5 μml of which was mixed with 5 μml of 10 x Advantage™ KlenTaq buffer (which came with the kit), 4 μl of 2.5 mM dNTP, 1 μl of 10 μM AP2 primer (which came with the kit;

10

15

20

25

5'- ACTCACTATAGGGCTCGAGCGGC-3 (SEO ID NO: 44)), 1 µl of 10 µM 32-8-1 5' RACE nested primer #FLN (5'-ATTTTCACTTTAGAAGGGGCACAT-3'(SEQ ID NO: 62)), 1 µl of Advantage™ KlenTag polymerase mix (Toyobo, CLK8417-1), and 33 μ l of deionized water to make the total 50 μ l. PCR was performed at 94°C for 1 minute, 5 cycles of 94°C for 5 seconds and 72°C for 6 minutes, 5 cycles of 94°C for 5 seconds and 70°C for 6 minutes, and 15 cycles of 94°C for 5 seconds and 68°C for 6 minutes, which produced a band of approximately 1.1 kb. The products were separated on a 0.8% agarose gel. The corresponding bands were then excised and purified with a QIAquick gel extraction kit (OIAGEN, 28706) and were subjected to TA cloning according to the manual for the pGEM-T Vector System I (Promega, A3600). Three different clones were thus obtained and designated HFL#5, HFL#12, and HFL#6. HFL#5 and HFL#12 started from nucleotide 1357 of SEQ ID NO: 3, while HFL#6 started from nucleotide 1377 of SEO ID NO: 3. Of course, all three contained the sequence up to that of primer #FLN, which was used in the RACE (Figure 7).

The nucleotide sequences were determined as described above, by means of the cycle sequence method using a Dye Terminator Cycle Sequencing FS Ready Reaction kit (Perkin Elmer, Catalog #402122). The combined sequence of the previously determined one and the newly determined one is shown in SEQ ID NO: 3. Figure 8 shows the sequences of nine PDZ domains aligned. The primers used for the cycle sequencing method are listed in Table 3.

15

20

25

Table 3

Primer #	DNA sequence	SEQ ID NO:
686A	GGCATAACTTTACTTACTTG	63
686B	ATCTACTAAGTCAGCATCAT	64
686C	ATTTGCAGGTGTGTAGTCAT	65
686D	TTCCTTCTGTGCTACCCGAT	66
686E	GGACTATCTTCCAGAACATG	67

5 Example 4 Search for proteins having homology to the protein encoded by the "38-2-1" gene

The BLASTN search and the BLASTP search detected "Mus musculus 90RF binding protein 1 (9BP-1) mRNA, partial cds." (LOCUS: MMAF000168, ACCESSION: AF000168) that consists of 2703 bp as a gene having homology to the "32-8-1" gene. This gene was recorded toGenBank on 18 MAY 1997. The amino acid sequence of the protein encoded by the "32-8-1" gene (the sequence after amino acid 847 of SEQ ID NO: 1) and that of AF000168 are aligned and shown in Figure 1. In the figure, the amino acid 847 of SEQ ID NO: 1 was regarded as the "first" amino acid, and comparisons are shown with the amino acid sequence thereafter.

In addition, "Rattus norvegius mRNA for multi PDZ domain protein" (LOCUS: RNMUPP1, ACCESSION: AJ001320) consisting of 7516 bp, and "Homo sapiens mRNA for multi PDZ domain protein" (LOCUS: HSMUPP1, ACCESSION: AJ001319) consisting of 1768 bp were detected as genes having homology. These genes were registered on 26 MAR 1998. The amino acid sequence of the protein encoded by the "32-8-1" gene (the sequence after amino acid 921 of SEQ ID NO: 1) and that of AJ001319 are aligned and shown in Figure 2. The amino acid sequence of the protein encoded

10

15

20

25

30

by the "32-8-1" gene (the sequence of SEQ ID NO: 1) and that of AJ001320 are aligned and shown in Figures 3 and 4.

Example 5 Analysis of tissue specificity of expression by northern blotting

Clontech Human Multiple Tissue Northern (MTN) Blot (Catalog #7760-1), Human MTN Blot IV(Catalog #7766-1), Human Fetal MTN Blot II (#7756-1), Human Muscle MTN Blot (#7765-1) and Human Cancer Cell Line MTN Blot (#7757-1) were used to analyze the tissue specificity of gene expression. Northern blot was performed according to the standard method, using the BamHI-XbaI fragment (from position 3709 to position 4337 of SEQ ID NO: 3) as the probe (see Figure 7 for the position of the probe), and 25 ng of the DNA fragment was labeled with $\alpha - ^{32}P$ dCTP using a Megaprime DNA labeling kit (Amersham, Catalog RPN1607). These MTN Blots were prehybridized in 5 ml of the ExpressHyb hybridization solution (Clontech, Catalog #8015-2) at 68°C for 30 minutes, and then hybridized with 1 \times $10^7 \, \mathrm{cpm}$ of the labeled probe also in 5 ml of the <code>ExpressHyb</code> hybridization solution (2 x 106 cpm/ml) at 68°C for The filters were washed three times in $2 \times SSC$ (0.3 M NaCl, 0.03 M sodium citrate (pH 7.0))/ 0.05% SDS at room temperature for 10 minutes each, washed twice more in 0.1 x SSC/ 0.1% SDS at 50°C for 15 minutes each, exposed on FUJI imaging plates overnight, and analyzed by a FUJI BAS2000. As shown in Figure 5, strong expression of the approximately 8 kb transcription product was detected in the heart, placenta, skeletal muscle, fetal brain, fetal lung, fetal kidney, small intestine, bladder, stomach, prostate, HeLa S3 cells, lung cancer A549 cells, and melanoma G361 cells. However, the expression was either

10

15

20

25

30

protein interactions

absent or weak in the lung, lymphoid tissues (spleen and thymus), and cell lines (lanes 1, 3, 4, 5, and 6 of blot C). In the heart, liver, kidney, and fetal liver, a 5.5 kb transcription product was expressed.

Similarly, northern blot analysis was performed using the NdeI 1.2 kb-#1 probe (from position 1 to position 1091 of SEQ ID NO: 3) (see Figure 7 for the position of the probe). However, the band corresponding to the 5.5 kb transcription product was not detected (Figure 6). Considering this and the fact that the cDNAs cloned by 5' RACE from the fetal liver only contained the 5' sequences 1,357 and 1,377 nucleotides downstream from the 5' end of the transcription product expressed in the heart (Figure 7), it can be deduced that the difference of the transcription initiation sites in the heart and liver caused the difference in the lengths of the transcription products. Therefore, the peptide encoded by the 32-8-1 gene that is expressed in the liver is expected to start with the first methionine encoded by the ATG codon beginning with the 1396th nucleotide. This results in the transcription product from the liver consisting of 1,005 amino acids, compared with that from the heart consisting of 1,373 amino acids. Consequently, it does not contain PDZ domain E and is shorter by 368 amino acids. the biological significance of not having PDZ domain E is unclear at present, it is highly possible that this protein, by lacking this portion, is involved in a different signal regulation in the liver cells than in the other tissues since PDZ domains are important for protein-

10

15

20

25

30

Example 6 Expression of the 32-8-1 protein in $E.\ coli$ (1) Construction of the expression vector

In order to express the 32-8-1 protein in E. coli as a fusion protein with the glutathione-S-transferase (GST) protein, part of the 32-8-1 gene was ligated to the carboxyl terminus of the GST gene in Pharmacia's pGEX-2TK (Genbank Accession U13851). The vector was constructed based on the method of W. Dietmaier et al. for the di-/trinucleotide sticky end cloning described in the PCR Application Manual (Boehringer Mannheim). pGEX-2TK (1 µg) was reacted in a mixture of 2 ml of 10 x High buffer and 20 units each of restriction enzymes EcoRI and BamHI in a total volume of 20 µl at 37°C for 3 hours. Proteins were removed by using a QIAquick column (QIAGEN) according to the manual, and the purified DNA was eluted with 30 ul of distilled water. 10 x Klenow buffer (3 µl; 100 mM Tris-HCl (pH 7.5), 70 mM MgCl₂, 1 mM DTT), which comes with Takara's Klenow enzyme, and 1.5 µl of 2 mM dGTP were mixed with 27 µl of the above. Four units of Klenow enzyme were then added, and the reaction was allowed to proceed at room temperature for 15 minutes. After the enzyme was inactivated by heating at 75°C for 15 minutes, the DNA was purified by deproteinizing with a QIAquick column (QIAGEN) according to the manual.

The region of the 32-8-1 gene to be expressed, which encodes amino acids 1112 to 1373, was amplified by PCR using 50 ng of #32-8-1 DNA as the template. The amplification reaction was done by adding 5 μ l of 10 x Reaction buffer #1 for KOD DNA polymerase (Toyobo), 5 μ l each of 10 μ M primer 502-508 (5'-ATCGGGTCCATTCCATTCAGAGAGG-3' (SEQ ID NO: 68)) and 10 μ M primer 758-763E

10

15

20

25

30

(5'-AATTGTCAAGAGAGAACCATCAAAGTGG-3'(SEQ ID NO: 69)), 4 μl of 2.5 mM dNTP, 2 µl of 25 mM MgCl₂, and 27 µl of sterilized 2.5 µl of KOD DNA polymerase was then mixed into the solution, which was then incubated at 94°C for 2 minutes and subjected to 25 cycles of 98°C for 15 seconds, 65°C for 2 seconds, and 74°C for 30 seconds. Using the QIAquick PCR purification kit, the 798 bp PCR product was purified according to the manual. The purified PCR fragment (2 µl) was mixed with 7 µl of the Boehringer's 5 x T4 DNA polymerase buffer (330 mM Tris-acetate, pH 8.0; 660 mM potassium acetate; 100 mM magnesium acetate; and 5 mM DTT), 1.5 µl of 2 mM dCTP, and 21.5 µl of sterilized water. Three units of T4 DNA polymerase were then added, and the solution was reacted at 12°C for 30 minutes. present inventors inactivated the enzyme by incubation at 80°C for 15 minutes and purified the mixture with the OIAquick PCR purification kit according to the manual. pGEX-2TK plasmid, which had been digested with restriction enzymes EcoRI and BamHI and modified with Klenow, and the T4 polymerase-treated PCR product were ligated by one unit of T4 DNA ligase (Promega) using the attached buffer (30 mM Tris-HCl (pH 7.8), 10 mM MgCl₂, 10 mM DTT, and 1 mM ATP) at 15°C overnight. The reaction mixture was then used to transform E. coli DH5 alpha. The recombinant protein expressed by the transformant was designated GST-PDZ56.

Similarly, a PCR product encoding the amino acids from position 611 to position 1142 of SEQ ID NO: 1 was prepared by the above described method with primer 1-7 (5'-ATCGATGGGTAGTAATCACACACAG-3' (SEQ ID NO: 70)) and primer 527-532E (5'-AATTGCTATACTGGATCCAGAGAGTGG-3' (SEQ ID NO: 71)), using clone 32-8-1/5R3 as the template. The preparation was treated with T4 polymerase under the same

10

15

20

25

30

conditions as before, purified with the EcoRI and BamHI-digested and Klenow-treated pGEX-2TK, and ligated. The reaction mixture was used to transform *E. coli* DH5 alpha. The recombinant protein expressed by the transformant was designated GST-PDZ14.

The E. coli transformants that express GST-PDZ56 were selected by the following method. Four colonies of the E. coli transformants obtained from the above were shakecultured at 37°C overnight in 2 ml of the LB medium (5 q of Bacto-yeast extract (DIFCO), 10 g of Bacto-trypton (DIFCO), and 10 g of NaCl made to 1 L by dissolving them in distilled water) containing 100 µg/ml ampicillin. solution was then diluted 100 fold in the medium of the same composition, and isopropyl thiogalactoside (IPTG) was added to a final concentration of 0.1 mM. The solution was then shake-cultured at 37°C for 3 hours. A 100 µl sample was precipitated by centrifugation at 15,000 rpm for 10 seconds and analyzed on a 10% to 20% SDS-polyacrylamide The subsequent Coomassie staining easily detected the IPTG-induced expression of the approximately 55 kDa GST fusion protein from every transformant (Figure 9). Furthermore, western blotting with an anti-GST antibody also confirmed the induced expression of the 55 kDa protein band (Figure 10). For detection, the proteins in the samples separated on the 10% to 20% SDS-polyacrylamide gel were transferred onto Immobilon-P (Millipore) using a Semidry blotter (Bio-Rad) according to the methods described in the manual. The filter was then blocked at 4°C overnight with 5% skim milk (DIFCO), 2.5% bovine serum albumin (Sigma, A5940), and T-TBS (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 0.05% Tween 20). It was next reacted at room temperature for 1 hour with the anti-sheep GST

10

15

20

25

30

antibody (Pharmacia) diluted 1,000 fold in the antibody dilution buffer (1% skim milk, 0.5% bovine serum albumin, T-TBS), then reacted at room temperature for 1 hour with the alkaline phosphatase-labeled anti-sheep IgG antibody diluted 1,000 fold in the antibody dilution buffer. Finally, the protein was detected by a GST Detection Module (Pharmacia).

The GST-PDZ14 was similarly expressed. However, E. coli HB101 and JM109 were used as hosts because E.coli DH5 did not produce an efficient IPTG-induced expression. The results shown in Figure 11 indicate that E. coli HB101 did not produce very large amounts of expression products, but that the GST-PDZ14-derived band near 90 kDa was highly induced in E.coli JM109. E. coli JM109 was subsequently used to express and purify the fusion protein.

(2) Expression and purification of the GST 32-8-1 fusion protein

The present inventors followed the method for preparing fusion proteins described on page 217 of the Supplement to Jikken Igaku (Experimental Medicine) "Shin Idenshi Kogaku Handbook (New Genetic Engineering Handbook) edited by Masami Muramatsu, et. al." published by Yohdosha to express and purify the GST fusion proteins. GST-PDZ14 and GST-PDZ56 were each cultured at 37°C for 1 hour in 2 L of LB medium to which IPTG was added to achieve a final concentration of 0.1 mM, then shake-cultured at 25°C for 5 hours. The cells were collected at 7,000 rpm for 10 minutes, resuspended in a sonication buffer consisting of PBS and 1% Triton X-100, and sonicated 1 minute for five times while chilling. The supernatant was obtained by centrifugation at 10,000 rpm for 15 minutes. It was then

10

15

20

25

30

applied onto a glutathione-Sepharose column, washed well with PBS, and purified with the GST Purification Module elution buffer (Pharmacia Biotech).

The 32-8-1 gene was inserted into the multi-cloning site of the pGEX-2TK expression vector (Pharmacia). vector has a region encording the string of amino acids "Leu-Val-Pro-Arg-Gly-Ser" recognized by thrombin protease in frame after GST protein gene, so the GST protein portion can be separated from GST-32-8-1 fusion protein by applying the thrombin protease that recognizes this sequence and digesting the protein. This is useful for preparing antibodies against the protein encoded by the 32-8-1 gene (the 32-8-1 protein). Because the glutathione-Sepharose column binds to the GST protein, it was possible to purify the PDZ14 and PDZ56 portions only as the fractions not binding to the glutathione-Sepharose (Figures 12, 13, and 14) by applying the protein solution that had been digested with the thrombin protease onto the glutathione-Sepharose The 55 kDa GST-PDZ56 protein bands seen in Figure 12 (lanes 11 and 12) were digested by thrombin into the 25 kDa GST protein and the 30 kDa PDZ56 protein (lane 10). Furthermore, the results of western blotting using the anti-GST antibody indicated that the anti-GST antibody reacted only with the 55 kDa and 25 kDa proteins, both of which contained the GST protein (Figure 13). Together, these confirmed that the PDZ56 protein portion was cut off as the 30 kDa band (lanes 8 and 9). to GST-PDZ14, the 90 kDa GST-PDZ14 can be separated by thrombin digestion into the 25 kDa GST protein and the 65 kDa PDZ14 protein portion, as shown in Figure 14. Therefore, the protein was purified according to the following procedure. The present inventors used the method

10

15

20

25

30

described in the Supplement to Jikken Igaku (Experimental Medicine) "Shin Idenshi Kogaku Handbook (New Genetic Engineering Handbook) edited by Masami Muramatsu, et. al" published by Yohdosha to culture E. coli cells. used the supernatant of the sonicated cells to digest the proteins by thrombin. The detailed method followed the procedure described under Thrombin Cleavage on page 16 of the GST Gene Fusion System (Pharmacia). They next added 10 µl (10 cleavage units) of thrombin per 1 mg of the fusion protein and incubated the mixture at room temperature for 16 hours to separate the PDZ14 protein or the PDZ56 protein portion from the GST portion. By letting the cleaved GST protein portion bind to the glutathione-Sepharose column (Pharmacia), they recovered 0.56 mg of the PDZ14 or 3.5 mg of the PDZ56 protein portion as the flowthrough from the column.

(3) Preparation of polyclonal antibodies using the antigens expressed in *E. coli*

The present inventors obtained polyclonal antibodies by immunizing two rabbits each with the purified PDZ14 or PDZ56 antigen. The initial immunization was done by subcutaneously injecting 0.5 mg of PDZ56 or 0.22 mg of PDZ14 bound with the carrier protein per animal as an antigen emulsion mixed with an equal amount of Freund's complete adjuvant (FCA) by the standard method. Booster injections of 0.25 mg of PDZ56 or PDZ14 were given subcutaneously as an antigen emulsion mixed with an equal amount of Freund's incomplete adjuvant (FICA) three times at two-week intervals. The proteins used as antigens were separated by SDS-PAGE and transferred onto a PVDF membrane

10

15

20

25

30

(Immobilon-P, Millipore); the reactivity was confirmed by western blotting.

(4) Preparation of polyclonal antibodies using a peptide Iwaki Glass synthesized Peptide 32-8-1-17 (SEQ ID NO: 72) consisting of 21 amino acids under contract. The Keyhole limpet hemocyanin (KLH) protein was coupled to the peptide as a carrier protein by the Sulfo-MBS method, and two rabbits were immunized with the product. The initial immunization was done by subcutaneously injecting 0.4 mg of the 32-8-1-17 peptide bound with the carrier protein per animal as an antigen emulsion mixed with an equal amount of Freund's complete adjuvant (FCA) by the standard method. The second through the fifth immunizations were given at two-week intervals by subcutaneously injecting 0.2 mg of the 32-8-1-17 peptide bound with the carrier protein as an antigen emulsion mixed with an equal amount of Freund's incomplete adjuvant (FICA). The antibody titers were measured using an ELISA plate coated with the 32-8-1-17 peptide; the antisera were obtained when the titer had risen sufficiently.

(5) Reactivity of the polyclonal antibodies

Antisera were obtained by immunizing the rabbits with peptide 32-8-1-17 or with PDZ14 or PDZ56 protein expressed as a GST-fusion protein and then digested with thrombin to retain only the 32-8-1 gene product. The reactivity of the antisera was detected by western blotting using Protein Medley manufactured by Clontech. More specifically, 100 μ g each of the cell lysates of the tissues from the human Testis (T), Skeletal Muscle (Sk), Liver (Lv), Heart (H), and Brain (B) of the Protein Medley manufactured by

10

15

20

Clontech was separated on a 10% to 20% SDS-polyacrylamide gel. The cell lysates were then transferred onto Immobilon-P (Millipore) using the Semidry blotter (Bio-Rad) according to the methods described in the manual. filter was then blocked at 4°C overnight with 5% skim milk (DIFCO), 2.5% bovine serum albumin (Sigma, A5940), and T-TBS (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 0.05% Tween 20). The filter was next reacted at room temperature for 1 hour with the individual rabbit antisera diluted 5,000 fold in the antibody dilution buffer (1% skim milk, 0.5% bovine serum albumin, and T-TBS). It was then reacted at room temperature for 1 hour with the biotin-labeled anti-rabbit Ig diluted 1,000 fold in the antibody dilution buffer. Finally, the filter was further reacted at room temperature for 15 minutes with the horseradish peroxidase (HRP) -labeled streptavidin-biotin complex (Amersham) diluted 2,500 fold in the antibody dilution buffer and washed well with T-TBS. The reacting bands were detected by chemiluminescence using an ECL detection kit (Amersham) according to the manual. Consequently, as shown in Figure 15, a band that reacted with every antibody and is presumed to be derived from the 32-8-1 protein was detected in the liver tissue sample near the 130 kDa.

Example 7 Cloning of an upstream cDNA of 686-1-4 by RACE

The present inventors attempted to obtain a cDNA clone
5' upstream of 686-1-4, which was cloned from the human
heart, by the 5' Rapid Amplification of cDNA Ends (RACE)
method. The details follow.

30

10

15

20

25

30

(1) Cloning of cDNA clone D-2 by RACE

The present inventors performed 5' Rapid Amplification of cDNA Ends (RACE) by using the Marathon Ready human brain cDNA (Clontech, #7400-1) as the adult human brain cDNA library. The 5'RACE mixture consisted of 5 μ l of the Marathon Ready adult human brain cDNA, 1 µl each of 10 µM primer #878 (5'-TTTGTGCCCACCAGAGCCAAGTCAG-3' (SEO ID NO: 73)) and 10 µM AP1 primer (which came with the kit: 5'-CCATCCTAATACGACTCACTATAGGGC-3' (SEQ ID NO: 42)), 1 µl of Advantage™ KlenTag polymerase mix (Toyobo, CLK8417-1), and 33 µl of deionized water to make the total 50 µl. A PCR reaction using the Thermal Cycler (95°C for 1 minute, five cycles of 95°C for 5 seconds and 72°C for 4 minutes, five cycles of 95°C for 5 seconds and 70°C for 4 minutes, and 25 cycles of 95°C for 5 seconds and 68°C for 4 minutes) did not produce clearly detectable bands. Therefore, the reaction mixture was diluted 50 fold, and 5 µl of this was mixed with 5 µl of 10 x Advantage™ KlenTag buffer (which came with the kit), 4 µl of 2.5 mM dNTP, 1 µl of 10 µM AP2 primer (which came with the kit; 5' ACTCACTATAGGGCTCGAGCGGC-3 (SEQ ID NO: 44)), 1 µl of 10 μM 32-8-1 5' RACE nested primer #757 (5'-GTGAAAGGGGTAAAGGCTTAGCAAC-3' (SEQ ID NO: 74)), 1 µl of Advantage™ KlenTaq polymerase mix (Toyobo, CLK8417-1), and 33 µl of deionized water to make the total 50 µl. Nested PCR was performed at 95°C for 1 minute, five cycles of 95°C for 5 seconds and 72°C for four minutes, and five cycles of 95°C for 5 seconds and 70°C for 4 minutes. Subsequent treatment of 15 cycles at 95°C for 5 seconds and 68°C for 4 minutes produced a band of 1.8 kb. The products were separated on a 0.8% agarose gel. The corresponding band was excised and purified with the QIAquick gel extraction

10

15

20

25

30

kit (QIAGEN, 28706) and subjected to TA cloning according to the manual for the pGEM-T Vector System I (Promega, A3600). The resulting clone was designated D-2.

The nucleotide sequence determination was done as previously described, and the nucleotide sequence of 1,776 base pairs was determined by means of the cycle sequence method using the Dye Terminator Cycle Sequencing FS Ready Reaction kit (Perkin Elmer, Catalog #402122). The nucleotide sequence thus determined was found to encode 590 amino acids (SEQ ID NO: 75).

(2) Cloning of cDNA clone 1.2 kb#33 by RACE

The open reading frame that exists within the sequence of Clone D-2 is a sequence upstream of the 781st nucleotide of SEQ ID NO: 3. This open reading frame is not closed, that is, it does not have a stop codon, so it was assumed that the open reading frame continues further upstream. Thus the present inventors prepared a new primer and performed 5' RACE. By using the Marathon Ready human brain cDNA (Clontech, #7400-1) as the template, the present inventors performed 5' Rapid Amplification of cDNA Ends The 5'RACE mixture consisted of 5 μ l of the Marathon Ready adult human brain cDNA, 1 µl each of 10 µM primer B5R-1 (5'-GCAGATGGAGAACGGGAAACTATGG-3' (SEQ ID NO: 76)) and 10 mM AP1 primer (which came with the kit; 5'-CCATCCTAATACGACTCACTATAGGGC-3' (SEQ ID NO: 42)), 5 µl of 10 x Advantage™ KlenTag buffer (which came with the kit), 4 μl of 2.5 mM dNTP, 1 μl of Advantage™ KlenTaq polymerase mix (Toyobo, CLK8417-1), and 33 µl of deionized water to make a total of 50 µl. A PCR reaction using the Thermal Cycler (95°C for 1 minute, five cycles of 95°C for 5 seconds and 72°C for 3 minutes, and five cycles of 95°C

10

15

20

25

30

for 5 seconds and 70°C for 3 minutes, followed by 25 cycles of 95°C for 5 seconds and 68°C for 3 minutes) did not produce detectable bands. Therefore, the reaction mixture was diluted 50 fold, and 5 µl of this was used as the template to perform nested PCR. The template was mixed with 5 µl of 10 x Advantage™ KlenTaq buffer (which came with the kit), 4 μ l of 2.5 mM dNTP, 1 μ l of 10 μ M AP2 primer (which came with the kit; 5'-ACTCACTATAGGGCTCGAGCGGC-3 (SEQ ID NO: 44)), 1 µl of 10 µM primer B5R-2 (5'-GAACGGGAAACTATGGGGCTGACAA-3' (SEQ ID NO: 77)), 1 µl of Advantage™ KlenTag polymerase mix (Toyobo, CLK8417-1), and 33 µl of deionized water to make the total 50 µl. A reaction consisting of 95°C for 1 minute, five cycles of 95°C for 5 seconds and 72°C for 3 minutes, five cycles of 95°C for 5 seconds and 70°C for 3 minutes, followed by 15 cycles of 95°C for 5 seconds and 68°C for 3 minutes produced a band of 0.8 kb. The products were separated on a 0.8% agarose gel, the corresponding band was excised and purified with the QIAquick gel extraction kit (QIAGEN, 28706). It was then subjected to TA cloning according to the manual for the pGEM-T Vector System I (Promega, A3600). The resulting clone was designated 1.2 kb#33. The results of the nucleotide sequence determination (conducted as described before) revealed that the ATG codon starting with the 71st nucleotide corresponded to the first methionine, and that the clone encoded 235 amino acids. The last amino acid, arginine, corresponded to the arginine encoded by the nucleotides from position 108 to position 110 of clone D-2, and the nucleotides from position 1 to position 110 of the clone D-2 sequence overlapped with clone 1.2 kb#33.

Therefore, the present inventors concluded that all the

10

15

20

25

30

upstream sequences of the deduced open reading frame were cloned.

(3) Analysis of the difference in amounts of expression in tissues

Amounts of mRNA expression in 24 types of tissues, including those that were examined by the northern blot above, were compared by RT-PCR. Human MTC panel I (K1402-1), human MTC panel II (K1421-1), and human fetal MTC panel I (K1425-1), which are commercially available from Clontech, were used as the cDNA. Results of the PCR reaction with the following reaction conditions are shown in Figure 16-A. PreMixTaq (10 µl; ExTaq TM Version) (Takara, PR003A), 2 µl of 2 µM 686D primer (SEQ ID NO: 66, corresponding to positions 2970 to 2989 of SEQ ID NO: 83, and to positions 1 to 20 of Figure 17), 2 μ l of 2 μ M 686E primer (SEQ ID NO: 67, corresponding to positions 3635 to 3654 of SEQ ID NO: 83, and to positions 666 to 685 of Figure 17), 1 μ l of the first strand cDNA, and 5 μ l of deionized water were mixed to make a total of 20 µl and reacted. Reaction of 94°C for 5 minutes, and 30 cycles of a three-step PCR reaction consisting of 94°C for 15 seconds, 50°C for 30 seconds, and 72°C for 30 seconds, followed by an extension reaction of 72°C for 7 minutes were performed.

As a result, high degrees of expression were seen in the brain (1), placenta (7), skeletal muscle (8), ovary (10), spleen (14), testis (15), fetal heart (18), fetal kidney (19), and fetal skeletal muscle (22). In addition, 15 µl of PreMixTaq (ExTaq TM Version) (Takara, PR003A), 3 µl of 2 µM 686D primer (SEQ ID NO: 66), 3 µl of 2 µM XE primer (SEQ ID NO: 15, which corresponds to

10

15

20

25

30

positions 3915 to 3934 of SEQ ID NO: 83, and to positions 946 to 965 of Figure 17), 1 μ l of the first strand cDNA, and 8 μ l of deionized water were mixed to make a total of 30 µl and reacted. Reaction of 94°C for 5 minutes, and 30 cycles of a three-step PCR reaction consisting of 94°C for 15 seconds, 50°C for 30 seconds, and 72°C for 1 minute, followed by an extension reaction of 72°C for 7 minutes were performed. As shown in Figure 16-B, bands of 750 bp, 850 bp, and 950 bp, which are presumed to be derived from three types of transcription products, were detected. Since the experiments in Figure 16-A and 16-B both used the same 686D primer, three types of splicing should take place within the sequences that exist in between the 686E primer and the XE primer, producing the transcription products of different lengths. The three types of PCR products were cloned from those of the fetal heart that showed the highest expression. Cloning was done by excising the corresponding bands and purifying them using the QIAquick gel extraction kit (QIAGEN, 28706), and by following the manual for the pGEM-T Vector System I (Promega, A3600).

(4) Analysis of the gene sequences of clones FH750, FH850, and FH950

The nucleotide sequences for the cloned PCR products were determined according to the method described above. The determined nucleotide sequences of FH750, FH850, and FH950 are shown in SEQ ID NO: 79, 80, and 81, respectively. The sequences of the three kinds of DNA are aligned and shown in Figures 17 and 18. Although the sequences of the three kinds of DNA are identical up to sequence position 731, FH850 diverges from FH950 beginning with the 819th nucleotide, which suggests that splicing takes place at

10

15

20

25

30

some sequence immediately preceding this position. As a result of this splicing, FH850 generates a stop codon with the sequence from position 819 to position 821, and the translation is expected to terminate at this position.

In FH750, positions 732 to 941 of the FH950 sequence are spliced out, creating a 210 bp deletion of the gene. However, the protein encoded by the transcription product of the FH750 type splicing is predicted to lack 70 amino acids compared with FH950 type splicing since the sequences before and after the deleted region are expected to be translated in the same frame as in those of FH950.

The sequence obtained by combining 1.2 kb#33 (SEO ID NO: 78), D-2 (SEQ ID NO: 75), and SEQ ID NO: 3 (Figure 26) was bordered by primer 686D and primer XE derived from the 686-1-4 sequence and was identical to FH750. The clone corresponding to the transcription product expected to be generated by the FH750 type splicing was designated 32-8-1a. (The amino acid sequence of the protein is shown in SEQ ID NO: 82, and the nucleotide sequence of the cDNA is shown in SEQ ID NO: 85.) Clone 32-8-1a can code for 2,000 amino acids. The clone corresponding to the transcription product expected to be generated by the FH950 type splicing was designated 32-8-1b. (The amino acid sequence of the protein is shown in SEQ ID NO: 83, and the nucleotide sequence of the cDNA is shown in SEQ ID NO: 86.) Code 32-8-1b can code for 2,070 amino acids. These two genes possess 13 PDZ domains. Furthermore, the transcription product generated by the FH850 type splicing will contain a stop codon in this region, and it can only code for 1,239 amino acids. This means that it possesses only seven PDZ The clone corresponding to this transcription product was designated 32-8-1c. (The amino acid sequence

10

15

20

25

30

of the protein is shown in SEQ ID NO: 84, and the nucleotide sequence of the cDNA is shown in SEQ ID NO: 87.)

Sequence comparisons between "32-8-1b" and "AF00168" (Mus musculus 90RF binding protein 1 (9BP-1) mRNA, partial cds.) are shown in Figure 20; between "32-8-1b" and "AJ001319" (Homo sapiens mRNA for multi PDZ domain protein), in Figure 21; and between "32-8-1b" and "AJ001320" (Rattus norvegius mRNA for multi PDZ domain protein), in Figures 22 through 24. The PDZ domain sequences of the protein encoded by the 32-8-1b gene (SEQ ID NO: 83) are also shown in Figure 25.

(6) Identification of the 32-8-1b high molecular weight protein by western blotting

Human neuroblastoma SH-SY5Y cells and human

teratocarcinoma NT-2 cells stimulated by retinoic acid to differentiate into neurons were directly dissolved into SDS-PAGE sample buffer and separated on a 7.5% SDSpolyacrylamide gel by electrophoresis. The proteins were transferred onto Immobilon-P (Millipore) using the Semidry blotter (Bio-Rad) according to the methods described in the manual. The filter was then blocked at 4°C overnight with 5% skim milk (DIFCO), 2.5% bovine serum albumin (Sigma, A5940), and T-TBS (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 0.05% Tween 20). It was next reacted at room temperature for 1 hour with the individual rabbit antisera diluted 5,000 fold in the antibody dilution buffer (1% skim milk, 0.5% bovine serum albumin, and T-TBS). It was then reacted at room temperature for 1 hour with the biotinlabeled anti-rabbit Ig diluted 1,000 fold in the antibody dilution buffer. Finally, it was reacted at room temperature for 15 minutes with the horseradish peroxidase

(HRP)-labeled streptavidin-biotin complex (Amersham) diluted 2,500 fold in the antibody dilution buffer and washed well with T-TBS. The reacting bands were then detected by chemiluminescence using an ECL detection kit (Amersham) according to the manual. As shown in Figure 19, a protein whose molecular weight exceeds 250 kDa was detected in both SH-SY5Y and NT-N with either rabbit antisera #1 raised against peptide 32-8-1-17 or rabbit antisera #3D raised against PDZ56 that had been expressed as a GST fusion protein and digested with thrombin to retain only the 32-8-1 gene product. The assumption that the full-length 32-8-1b protein consists of 2,070 amino acids agrees with the molecular weight observed.

15

20

25

30

5

10

Industrial Applicability

By utilizing the proteins and the gene of the present invention, it has become possible to isolate the proteins and their genes that bind to the PDZ domains of the proteins of the present invention. It has been reported that proteins having the PDZ domain interact with the proteins that bind to them and function in the signal transduction related to cell proliferation, cell cycle, malignant conversion, apoptosis, cell adhesion, etc. Therefore, if the relationships between the proteins of the present invention and the proteins that interact with them, as well as the related signal transduction pathways, can be clarified, it should be possible to treat and diagnose disorders related to cell proliferation and others described above by targeting these proteins or their genes. These proteins and their genes are therefore useful for developing therapeutic medicines and diagnostic medicines.

What is claimed is:

- 1. A substantially pure polypeptide comprising an
- 2 amino acid sequence at least 85% identical to any one of
- 3 SEQ ID NOs:1, 2, 82, 83, or 84, wherein the polypeptide
- 4 contains a PDZ domain sequence.
- 1 2. The polypeptide of claim 1, wherein the amino acid
- 2 sequence is at least 90% identical to any one of SEQ ID
- 3 NOs: 1, 2, 82, 83, or 84.
- 1 3. A substantially pure polypeptide comprising the
- 2 sequence of any one of SEQ ID NOs: 1, 2, 82, 83, or 84.
- 1 4. A substantially pure polypeptide comprising the
- 2 amino acid sequence of any one of SEQ ID NOs: 1, 2, 82, 83,
- 3 or 84, with up to 50 conservative amino acid substitutions,
- 4 wherein the polypeptide contains a PDZ domain sequence.
- 1 5. A substantially pure polypeptide encoded by a
- 2 nucleic acid that hybridizes under high stringency
- 3 conditions to a probe the sequence of which consists of any
- 4 one of SEQ ID NOs:3, 59, 75, 78, 79, 80, 81, 85, 86, or 87,
- 5 wherein the polypeptide contains a PDZ domain sequence.
- 1 6. An isolated nucleic acid encoding the polypeptide
- 2 of claim 1.
- 1 7. An isolated nucleic acid encoding the polypeptide
- 2 of claim 3.
- 1 8. An isolated nucleic acid encoding the polypeptide
- 2 of claim 4.

- 9. An isolated nucleic acid comprising a strand that
- 2 hybridizes under stringent conditions to a single stranded
- 3 probe, the sequence of which consists of any one of SEQ ID
- 4 NOs: 3, 59, 75, 78, 79, 80, 81, 85, 86, or 87, or the
- 5 complement of any one of SEQ ID NOs: 3, 59, 75, 78, 79, 80,
- 6 81, 85, 86, or 87.
- 1 10. The isolated nucleic acid of claim 9, wherein the
- 2 nucleic acid encodes a polypeptide that contains a PDZ
- 3 domain.
- 1 11. The nucleic acid of claim 10, wherein the amino
- 2 acid sequence of the polypeptide comprises any one of SEQ
- 3 ID NOs:1, 2, 82, 83, or 84.
- 1 12. The nucleic acid of claim 9, wherein the strand
- 2 is at least 15 nucleotides in length.
- 1 13. The nucleic acid of claim 12, wherein the nucleic
- 2 acid is an antisense nucleic acid that inhibits expression
- 3 of a polypeptide comprising any one of SEQ ID NOs:1, 2, 82,
- 4 83, or 84.
- 1 14. A vector comprising the nucleic acid of claim 6.
- 1 15. A vector comprising the nucleic acid of claim 7.
- 1 16. A vector comprising the nucleic acid of claim 8.
- 1 17. A vector comprising the nucleic acid of claim 9.
- 1 18. A vector comprising the nucleic acid of claim 10.

- 1 A cultured host cell comprising the nucleic acid 2 of claim 6.
- 1 A cultured host cell comprising the nucleic acid of claim 7. 2
- 1 A cultured host cell comprising the nucleic acid of claim 8. 2
- 1 A cultured host cell comprising the nucleic acid of claim 9. 2
- A cultured host cell comprising the nucleic acid 1 2 of claim 10.
- 1 An antibody that specifically binds to the polypeptide of claim 1.
- 25. A method of producing a polypeptide, the method 1 comprising isolating the polypeptide from the cultured host 2 cell of claim 19. 3
- A method of screening for a compound that 1 specifically binds to a polypeptide, the method comprising 2 contacting a test compound with the polypeptide of claim 1, 3 and comparing the extent to which the test compound binds 4 5 to the polypeptide with the extent to which a reference compound binds to the polypeptide, wherein a test compound 6
- binding to the polypeptide to a greater extent than the 7
- reference compound indicates that the test compound 8
- specifically binds to the polypeptide. 9

- 1 27. The method of claim 26, wherein the test compound
- 2 is a test polypeptide.
- 1 28. The method of claim 27, further comprising
- 2 identifying the gene that encodes the test polypeptide.
- 1 29. A compound that binds to the polypeptide of
- 2 claim 1.
- 1 30. The compound of claim 29, wherein the compound is
- 2 a polypeptide.
- 1 31. A gene encoding the compound of claim 30.
- 1 32. The nucleic acid of claim 12, wherein the nucleic
- 2 acid is an antisense nucleic acid that inhibits expression
- 3 of a polypeptide comprising any one of SEQ ID NOs:1, 2, 82,
- 4 83, or 84.
- 1 33. A fusion protein comprising any one of SEQ ID
- 2 NOs:1, 2, 82, 83, or 84 and another amino acid sequence.
- 1 34. The fusion protein of claim 33, wherein the other
- 2 amino acid sequence is specifically bound by an antibody.

PROTEIN HAVING PDZ DOMAIN SEQUENCE

Abstract of the Disclosure

While analyzing changes in gene expression by TNF α in human umbilical vascular endothelial cells, a gene showing enhanced expression due to stimulation with TNF α was isolated. After screening with this gene as a probe, a gene encoding a protein was isolated. Analysis of the protein encoded by this isolated gene revealed that this novel protein has never been reported and has a PDZ domain in its molecule that plays an important role in protein-protein interactions.

20025339.doc

Figure 1

848 FISLLKTAKMTVKLTIHAENPDSQAVPSAAGAASGEKKNSSQSLMVPQSG	
2 FISLLKTAKATVKLIVRAENPACPAVPSSAVTVSGERKDNSQTPAVP	48
898 SPEPESIRNTSRSSTPAIFASDPATCPIIPGCETTIEISKGRTGLGLSIV	
49 APDLEPIPSTSRSSTPAVFASDPATCPIIPGCETTIGVSKGQTGLGLSIV	98
948 GGSDTLLGAFIIHEVYEEGAACKDGRLWAGDQILEVNGIDLRKATHDEAI	997
99 GGSDTLLGAIIIHEVYEEGAACKDGRLWAGDQILEVNGIDLRKATHDEAI	148
998 NVLRQTPQRVRLTLYRDEAPYKEEEVCDTLTIELQKKPGKGLGLSIVG	
149 NVLRQTPQRVRVTLYRDEAPYKEEDVCDTFTIELQLQKRPGKGLGLSIVG	198
1046 KRNDTGVFVSDIVKGGIADPDGRLIQGDQILLVNGEDVRNASQEAVAALL	
199 KRNDTGVFVSDIVKGGIADADGRLMQGDQILMVNGEDVRHATQEAVAALL	248
1096 KCSLGTVTLEVGRIKAGPFHSERRPSQTSQVSEGSLSSFTFPLSGSSTSE	1145
249 KCSLGAVTLEVGRVKAAPFHSERRPSQSSQVSESSLSSFTPPLSGINTSE	
1146 SLESSSKKNALASEIQGLRTVEMKKGPTDSLGISIAGGVGSPLGDVPIFI	
1196 AMMHPTGYAAQTQKLRVGDRIVTICGTSTEGMTHTQAVNLLKNASGSIEM	
1246 QVVAGGDVSVVTGHHQEPASSSLSFTGLTSTSIFQDDLGPPQCKSITLER	1295
399 QVVAGGDVSVVTGHQQELANPCLAFTGLTSSSIFPDDLGPPQSKTITLDR	448
1296 GPDGLGFSIVGGYGSPHGDLPIYVKTVFAKGAASEDGRLKRGDQIIAVNG	1345
1346 QSLEGVTHEEAVAILKRTKGTVTLMVLS 1373	

921	ATCPIIPGCETTIEISKGRTGLGLSIVGGSDTLLGAFIIHEVYEEGAACK	970
1	ATCPIIPGCETTIEISKGRTGLGLSIVGGSDTLLGAIIIHEVYEEGAACK	50
971	DGRLWAGDQILEVNGIDLRKATHDEAINVLRQTPQRVRLTLYRDEAPYKE	1020
51	DGRLWAGDQILEVNGIDLRKATHDEAINVLRQTPQRVRLTLYRDEAPYKE	100
1021	EEVCDTLTIELQKKPGKGLGLSIVGKRNDTGVFVSDIVKGGIADPDGRLI	1070
101	EEVCDTLTIELQKKPGKGLGLSIVGKRNDTGVFVSDIVKGGIADADGRLM	150
1071	QGDQILLVNGEDVRNASQEAVAALLKCSLGTVTLEVGRIKAGPFHSERRP	1120
	QGDQILMVNGEDVRNATQEAVAALLKCSLGTVTLEVGRIKAGPFHSERRP	
	SQTSQVSEGSLSSFTFPLSGSSTSESLESSSKKNALASEIQGLRTVEMKK	
	SQSSQVSEGSLSSFTFPLSGSSTSESLESSSKKNALASEIQGLRTVEMKK	
	GPTDSLGISIAGGVGSPLGDVPIFIAMMHPTGVAAQTQKLRVGDRIVTIC	
	GPTDSLGISIAGGVGSPLGDVPIFIAMMHPTGVAAQTQKLRVGDRIVTIC	
	GTSTEGMTHTQAVNLLKNASGSIEMQVVAGGDVSVVTGHHQEPASSSLSF	
301	TGLTSTSIFQDDLGPPQCKSITLERGPDGLGFSIVGGYGSPHGDLPIYVK	
	TVFAKGAASEDGRLKRGDQIIAVNGQSLEGVTHEEAVAILKRTKGTVTLM	
	VLS 1373	

1 MVCCRRTVPPTTQSELDSLDLCDIELTEKPHVDLGEFIGSSETEDPVLAM 50	401 GLGMIVRSIIHGGAISRDGRIAIGDCILSINEESTISVTNAQARAMLRRH 450 -
51 TDAGQSTEEVQAPLAMWEAGIQHIELEKGSKGLGFSILDYQDPIDPASTV 100 	451 SLIGPDIKITYVPAEHLEEFKISLGQQSGRVMALDIFSSYTGRDIPELPE 500
101 IIIRSLVPGGIAEKDGRLLPGDRLMFVNDVNLENSSLEEAVEALKGAPSG 150 :	501 REEGEGEESELQNTAYSNWNQPRRVELWREPSKSLGISIVGGRGMGSRLS 550
151 TVRIGVAKPLPLSPEEGYVSAKEDSFLYPPHSCEEAGLADKPLFRADLAL 200 	551 NGEVWRGIFIKHVLEDSPAGKNGTLKPGDRIVE583
201 VGTNDADLVDESTFESPYSPENDSIYSTQASILSLHGSSCGDGLNYGSSL 250 :	584APSQSESEPEKAPLCSVPPPPSAFAEMGSDHTQSSASKISQDVDKE 630
251 PSSPPKDVIENSCDPVLDLHMSLEELYTQNLLERQDENTPSVDISMGPAS 300	631 DEFGYSWKNIRERYGTLTGELHMIELEKGHSGLGLSLAGNKDRSRMSVFI 680
301 GFTINDYTPANAIEQQYECENTIVWTESHLPSEVISSAELPSVLPDSAGK 350	681 VGIDPNGAAGKDGRLQIADELLEINGQILYGRSHQNASSIIKCAPSKVKI 730
351 GSEHLLEQSSLACNAECVMLQNVSKESFERTINIAKGNSSLGMTVSANKD 400 :	731 IFIRNKDAVNQMAVCPGNAVEPLPSNSENLQNKETEPTVTTSDAAVDLSS 780

781 FKNVQHLELPKDQGGLGIAISEEDTLSGVIIKSLTEHGVAATDGRLKVGD 830	1181 AGGVGSPLGDVPIFIAMMHPTGVAAQTQKLRVGDRIVTICGTSTEGMTHT 1230
831 QILAVDDEIVVGYPIEKFISLLKTAKMTVKLTIHAENPDSQAVPSAAGAA 880	1231 QAVNLLKNASGSIEMQVVAGGDVSVVTGHHQEPASSSLSFTGLTSTSIFQ 1280
	:
881 SGEKKNSSQSLMVPQSGSPEPESIRNTSRSSTPAIFASDPATCPIIPGCE 930	1281 DDLGPPQCKSITLERGPDGLGFSIVGGYGSPHGDLPIYVKTVFAKGAASE 1330
:	:
931 TTIEISKGRTGLGLSIVGGSDTLLGAFIIHEVYEEGAACKDGRLWAGDQI 980	1331 DGRLKRGDQIIAVNGQSLEGVTHEEAVAILKRTKGTVTLMVLS 1373
981 LEVNGIDLRKATHDEAINVLRQTPQRVRLTLYRDEAPYKEEEVCDTLTIE 1030 	
1031 LQKKPGKGLGLSIVGKRNDTGVFVSDIVKGGIADPDGRLIQGDQILLVNG 1080 :	
1081 EDVRNASQEAVAALLKCSLGTVTLEVGRIKAGPFHSERRPSQTSQVSEGS 1130 	
1131 LSSFTFPLSGSSTSESLESSSKKNALASEIQGLRTVEMKKGPTDSLGISI 1180 	

Figure 5

Figure 6

	1				50
PDZ-E	AGIQHIELE.	KGSKGLGFSI	LDYQD	PIDPASTVII	IRSLVPGGIA
PDZ-F	QNVSKESFER	TINIAKGNSS	LGMTV	SANKDGLGMI	VRSIIHGGAI
PDZ-G	NQPRRYELWR	EPSKSLGISI	VGGRGMGSRL	SNGEVMRGIF	IKHVLEDSPA
PDZ-H	GELHMIELEK	GHS. GLGLSL	AGNKD	RSR.MSVF	IVGIDPNGAA
PDZ-I	KNVQHLELPK	DQG. GLGIAI	• • • • • • • • • • •	SEEDTLSGVI	IKSLTEHGVA
PDZ-J	GCETTIEISK	GRT. GLGLSI	VGGSD	TLL.GAFI	IHEVYEEGAA
PDZ-K	CDTLTIELQK	KPGKGLGLSI	VGKRN	DTGVF	VSDIVKGGIA
PDZ-L	QGLRTVEMKK	GPTDSLGISI	AGGVG	SPL. GDVPIF	IAMMHPTGVA
PDZ-M	PQCKSITLER	GP.DGLGFSI	VGGYG	SPH. GDLPIY	VKTVFAKGAA
	51				96
PDZ-E	51 EKDGRLLPGD	RLMFVNDVNL	ENSSLEEAVE	ALKGAPSGTV	96 RIGVAK
PDZ-E PDZ-F		RLMFVNDVNL CILSINEEST	ENSSLEEAVE ISVTNAQARA	ALKGAPSGTV MLRRHSLIGP	
	EKDGRLLPGD				RIGVAK
PDZ-F	EKDGRLLPGD SRDGRIAIGD	CILSINEEST	ISVTNAQARA	MLRRHSLIGP	RIGVAK DIKITY
PDZ-F PDZ-G	EKDGRLLPGD SRDGRIAIGD GKNGTLKPGD	CILSINEEST RIVEAPSQSE	ISVTNAQARA SEPEKAPLCS	MLRRHSLIGP VPPPPPSAFA	RIGVAK DIKITY EMGSDH
PDZ-F PDZ-G PDZ-H	EKDGRLLPGD SRDGRIAIGD GKNGTLKPGD GKDGRLQIAD	CILSINEEST RIVEAPSQSE ELLEINGQIL	ISVTNAQARA SEPEKAPLCS YGRSHQNASS	MLRRHSLIGP VPPPPPSAFA IIKCAP.SKV	RIGVAK DIKITY EMGSDH KIIFIR
PDZ-F PDZ-G PDZ-H PDZ-I	EKDGRLLPGD SRDGRIAIGD GKNGTLKPGD GKDGRLQIAD ATDGRLKVGD	CILSINEEST RIVEAPSQSE ELLEINGQIL QILAVDDEIV	ISVTNAQARA SEPEKAPLCS YGRSHQNASS VGYPIEKFIS	MLRRHSLIGP VPPPPPSAFA IIKCAP.SKV LLKTAKM.TV	RIGVAK DIKITY EMGSDH KIIFIR KLTIHA
PDZ-F PDZ-G PDZ-H PDZ-I PDZ-J	EKDGRLLPGD SRDGRIAIGD GKNGTLKPGD GKDGRLQIAD ATDGRLKVGD CKDGRLWAGD	CILSINEEST RIVEAPSQSE ELLEINGQIL QILAVDDEIV QILEVNGIDL	ISVTNAQARA SEPEKAPLCS YGRSHQNASS VGYPIEKFIS RKATHDEAIN	MLRRHSLIGP VPPPPPSAFA IIKCAP.SKV LLKTAKM.TV VLRQTP.QRV	RIGVAK DIKITY EMGSDH KIIFIR KLTIHA RLTLYR

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

351	401	451 ACACTGGCAG AGACATTCCA GAATTACCAG AGCGAGAGA GGGAGAGGGT ACACTGGCAG AGACATTCCA GAATTACCAG AGCGAGAAGA GGCAGAGGGT ACACTGGCAG AGACATTCCA GAATTACCAG AGCGAGAAGA GGGAGAGGGT	501	600	601	651
ATAAAAATTA CTTATGTGCC TGCAGAACAT TTGGAAGAGT TCAAAATAAG	CITGGGACAA CAATCTGGAA GAGTAATGGC ACTGGATAIT TITTCTTCAT		GAAGAAAGCG AACTTCAAAA CACAGCATAT AGCAATTGGA ATCAGCCCAG	GCGGTGGAA CTCTGGAGAG AACCAAGCAA ATCCTTAGGC ATCACCATTG	TTGCTGGACG AGGGATGGGG ACTCGGCTAA GCAATGGAGA AGTGATGAGG	GCCATITICA TCAAACATGT TCTGGAAGAT AGTCCAGCTG GCAAAAATGG
ATAAAAATTA CTTATGTGCC TGCAGAACAT TTGGAAGAGT TCAAAATAAG	CITGGGACAA CAATCTGGAA GAGTAATGGC ACTGGATAIT TITTCTTCAT		GAAGAAAGCG AACTTCAAAA CACAGCATAT AGCAATTGGA ATCAGCCCAG	GCGGGTGGAA CTCTGGAGAG AACCAAGCAA ATCCTTAGGC ATCAGCATTG	TTGCTGGACG AGGGATGGGG ACTCGGCTAA GCAATGGAGA AGTGATGAGG	GGCATITICA TCAAACATGT TCTGGAAGAT AGTCCAGCTG GCAAAAATGG
ATAAAAATTA CTTATGTGCC TGCAGAACAT TTGGAAGAGT TCAAAATAAG	CITGGGACAA CAATCTGGAA GAGTAATGGC ACTGGATAIT TITTCTTCAT		GAAGAAAGCG AACTTCAAAA CACAGCATAT AGCAATTGGA ATCAGCCCAG	GCGGGTGGAA CTCTGGAGAG AACCAAGCAA ATCCTTAGGC ATCAGCATTG	TTGCTGGACG AGGGATGGGC AGTCGGCTAA GCAATGGAGA AGTGATGAGG	GGCATTITCA TCAAACATGT TCTGGAAGAT AGTCCAGCTG GCAAAAATGG
FH750	FH750	FH750	FH750	FH750	FH750	FH750 (FH850 (FH950 (FH950) (FH95
FH850	FH850	FH850	FH850	FH850	FH850	
FH950	FH950	FH950	FH950	FH950	FH950	
55 TT	100 ITGT ITGT	150 CTA CTA CTA	8 E E E	50 11 11 17	90 Y. Y. Y. Y. Y. Y	O. O. O.
1	51	101	151	201	251	301 ATGCCCAGGC ACGAGCTATG TTGAGAAGAC ATTCTCTCAT TGGCCCTGAC ATGCCCAGGC ACGAGCTATG TTGAGAAGAC ATTCTCTCAT TGGCCCTGAC ATGCCCAGGC ACGAGCTATG TTGAGAAGAC ATTCTCTCAT TGGCCCTGAC
TICCITCTGT GCTACCGGAT TCAGCTGGAA AGGGCTCTGA GTACCTGCTT	GAACAGAGCT CCCTGGCCTG TAATGCTGAG TGTGTCATGC TTCAAAATGT	ATCTAAAGAA TCTTTTGAAA GGACTATTAA TATAGCAAAA GGCAATTCTA	GCCTAGGAAT GACAGTTAGT GCTAATAAAG ATGGCTTGGG GATGATCGTT	CGAAGCATTA TTCATGGAGG TGCCATTAGT CGAGATGGCC GGATTGCCAT	TGGGACTGC ATCTTGTCCA TTAATGAAGA GTCTACCATC AGTGTAACCA	
TTCCTTCTGT GCTACCCGAT TCAGCTGGAA AGGGCTCTGA GTACCTGCTT	GAACAGAGCT CCCTGGCCTG TAATGCTGAG TGTGTCATGC TTCAAAATGT	ATCTAAAGAA TCTTTTGAAA GGACTATTAA TATAGCAAAA GGCAATTCTA	GCCTAGGAAT GACAGTTAGT GCTAATAAAG ATGGCTTGGG GATGATCGTT	CGAAGCATTA TTCATGGAGG TGCCATTAGT CGAGATGGCC GGATTGCCAT	TGGGACTGC ATCTTGTCCA TTAATGAAGA GTCTACCATC AGTGTAACCA	
TTCCTTCTGT GCTACCCGAT TCAGCTGGAA AGGGCTCTGA GTACCTGT	GAACAGAGCT CCCTGGCCTG TAATGCTGAG TGTGTCATGC TTCAAAATGT	ATCTAAAGAA TCTTTTGAAA GGACTATTAA TATAGCAAAA GGCAATTCTA	GCCTAGGAAT GACAGTTAGT GCTAATAAAG ATGGCTTGGG GATGATCGTT	CGAAGCATTA TTCATGGAGG TGCCATTAGT CGAGATGGCC GGATTGCCAT	TGGGGACTGC ATCTTGTCCA TTAATGAAGA GTCTACCATC AGTGTAACCA	
FH750	FH750	FH750	FH750	FH750	FH750	FH750
FH850	FH850	FH850	FH850	FH850	FH850	FH850
FH950	FH950	FH950	FH950	FH950	FH950	FH950

AACCTTGAAA CCTGGAGATA GAATGGTAGA GAACCTTGAAA CCTGGAGATA GAATGGTAGA GGTGGATGGA ATGGACCTCAAACCTTGAAA CCTGGAGATA GAATGGTAGA GGTGGATGGA ATGGACCTCAAACCTTGAAA CCTGGAGATA GAATGGTAGA GGTGGATGGA ATGGACCTCA	GAGATGCAAG CCATGAACAA GCTGTGGAAG CCATTCGGAA AGCAGGCAAC GAGATGCAAG CCATGAACAA GCTGTGGAAG CCATTCGGAA AGCAGGCAAC	CCTGTAGTCT TTATGGTACA GAGCTTTATT ACAGACCAAG GCCCCCCCCCC	TTTGCCTTCC TTGCTGCACA ACCTTTACCC TAAGTACAAC TTCAGCAGCA	950 ———————————————————————————————————	965 AGACT CAGAG AGACT CAGAG
701 AACCTTGAAA CCT AACCTTGAAA CCT AACCTTGAAA CCT	751 GAGATCCAAG CCA' GAGATCCAAG CCA'	801 CCTGTAGTCT TTA' CCTGTAGTCT TTA'	851 ————————————————————————————————————	901	951 CAGTCAGAGT CAG CAGTCAGAGT CAG
FH750 FH850 FH950	FH750 FH850 FH950	FH750 FH850 FH950	FH750 FH850 FH950	FH750 FH850 FH950	FH750 FH850 FH850

Figure 19

1545 FISLLKTAKATYKLTIHAENPDSQAVPSAAGAASGEKKNSSQSLAVPQSG 1594

2 FISLLKTAKATYKLIVRAENPACPAVPSSAVTVSGERKDNSQTPAVP... 48

49 APDLEPIPSTSRSSTPAVFASDPATCPLIPGCETTIGVSKQQTGLGLSIV 98

1893 AAMEPTGVAAQTQKILKVGDRIVTICGTSTEGATHTQAVNELKNASGSIEM 1942

440 AMMERNGVAAQTQKI.RVCDRIVTICGTSTDGATHTQAVALMKNASGSIEV 398

2018 TVFAKGAASEDGRLKRGDQIIAVNGQSLEGVTHEEAVAILKRTKGTVTLM 2067

401 TVFAKGAASEDGRLARGDQIIAVNGQSLECVTHEEAVAILKRTKGTVTLM 450

2068 VLS 2070

451 VLS 453

1668 DGRLWAGDQILEVNGIDLRKATHDEAINVLRQTPQRVRLTLYRDEAPYKE 1717

1718 EEVCDTLTIELQKKPGKGLGLSIVGKRNDTGVFVSDIVKGGIADPDGRLI 1767

1768 QCDQIILLVNGEDVRNASQEAVAALLKCSLGTVTLEVGRIKAGPFHSERRP 1817

101 EEVCDTLTIELQKKPGKGLGLSIVGKRNDTGVFVSDIVKGGIADADGRLM 150

1818 SQTSQVSECSLSSFTFPLSGSSTSESLESSSKKNALASEIQGLRTVEAKK 1867

151 QCDQILAYNGEDVRNATQEAVAALLKCSLCTVTLEVGRIKAGPFHSERRP 200

51 DCRLWAGDQILEVNGIDLRKATHDEAINVIRQTPQRVRLTLYRDEAPVKE 100

1918 GTSTEGMTHTQAVNLLKNASGSIEMQVVAGGDVSVVTCHHQEPASSSLSF 1967

GTSTEGMTHTQAVNLLKNASGSIEMQVVAGGDVSVVTGHQQEPASSSLSF 350

1968 TCLTSTSIFQDDLGPPQCKSITLERGPDGLGFSIVGGYGSPHGDLPIYVK 2017

TGLTSSSIFQDDLGPPQCKSITLERGPDGLGFSIVGGYGSPHGDLPIYVK 400 351

800 EDSFLYPPHSCEEAGLADKPLFRADLALVCTNDADLVDESTFESPYSPEN 849

792 EDTFLCSPHTCKEMGLSDKALFRADLALIDTPDAESVAESRFESQFSPDN 841

742 RLMFYNDINLENSTLEEAVEALKGAPSGMYRIGVAKPLPLSPEEGYVSAK 791

DHILKIGDTDLAGMSSEQVAQVLRQCGNRVKLMIARGAVEETPAPSSLGI 350

33

350 TLSSSPTSTPELRVDASTQKGEESETFDVELTKNVQGLGITIAGYIGDKK 399

351 TLSSS. TSTSEMRVDASTQKNEESETFDVELTKNVQCLGITIAGYIGDKK 399

400 LEPSGIFVKSITKSSAVEHDGRIQIGDQIIAVDGTNLQGFTNQQAVEVLR 449

	400 1 FPSCIFIXKSTXKSSAVELICATION (111111111111111111111111111111111111
1 MLEAIDKNRALHAAERLQTKLRERGDVANEDKLSLLKSVLQSPLFSQ1LS 50	450 HTGQTVLLTLARRGAKQEAELAKSREDVTKDADLSPVNASIIKENYEKDED 499
1 MLETIDKARALQAAERLQSKIKERGDVANEDKI.SILIKSVLQSPLFSQII.S 50	
51 LQTSVQQLKDQVNIATSATSNIEVAHVPHLSPAVIPTLQNESFLLSPNNC 100	
	500 FLSSTRNTNILPTEEECYPLLSAEIEEIEDAQKQEAALLTWWQRIMCINY 549
51 LQTSLQQLKDQVNVATLATANADHAHTPQFSSA11SNLQSESLLLSFSNC 100	493 SLSLKRSTSILPIEEEGYPLLSTELEETEDVQ. QEAALLTKWQRIMOINY 541
101 NLEALTGPGI. PHINGKPACDEFDQLIKNMAQGRHVEVFELLKPPSGGLG 149	
	550 EIVVAHVSKFSENSGLGISLEATVGHHFIRSVLPEGPVGHSGKLFSGDEL 599
101 NLEAISGPGAPPANDGRPACEELDQLIKSMAQGRIVEIFELLKPPCGCLG 150	
	542 EIVVAHVSKESENSGLGISLEATVGHHFIRSVLPEGFVGHSGRLFSGDEL 591
150 FSVVCLRSENRGELGIFVQEIQEGSVAIRDGRLAETDQILAINGQALDQT 199	. O D D D D D D D D D D D D D D D D D D
TEL ECHNICI DESIMONE CITAMENTONI CONTROLLA POLICIA INTERPREDIA ANCONTRA POLICIA POLICI	000 LEVROLLEGGERANGER INTEREST LEVIES CONTRIBUTION OF STATE OF STA
ובסגגמדערטבאנעמפרסדנגללפמסגעזועמערשפינאלודעזואמלנדעלי כמס	592 LEVNCINLLGENHQDVVNILKELPIDVTMVCCRRTVPPTALSEVDSLDIH 641
200 ITHQAISILQKAKDTVQLVIARGSLPQLVSPIVSRSPSAASTISAHSNP 249	
	650 DIELTEKPHVDLGEFIGSSEPEDPVLANTDAGQSTEEVQAPLAMNEAGIQ 699
201 ITHQQAISILQKAKDTIQLVIARGSLPHISSPRISRSPSAASTVSAHSNP 250	
	642 DLELTEKPHIDLGEFIGSSETEDPMLAMSDYDQNAEEIQTPLAMWEAGIQ 691
250 YHRQHMETIELVNINGSGLGFGIIGGKATGVINYTILPGGVADQHGRLGSG 299	
	700 HIMLEKGSKGLGFSILDVQDPIDPASTVIIIRSLVPGGIAEKDKKLLPGD 749
251 THROHNETIELVNDGSGLGFGIIGGKATGVIVKTILPGGVADQHGRLCSG 300	
	692 AIELEKGSRGLGFSILDYQDPIDPANIVIVIKSLYFGGIAERDGKLFFGD 741
300 DHILKIGDTDIAGMSSEQVAQVLRQCQNRVRAMIARSAIEERTAPTALGI 349	
	750 RIMFYNDVNLENSSLEEAVEALKGAPSGTVRIGVAKPLPLSPEEGYVSAK 799
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

068	949 940	986	1049 1036	1099	1149	1199	1249 1236	1299 1286
850 DSIYSTQASILSLHGSSCCDGLAYGSSLPSSPPKDVIENSCDPVLDLHMS 88 	900 LEELYTQNLLERQDENTPSVDISMCPASGFTINDYTPANAIEQQYECENT 9- 	950 IVWTESHLPSEVISSAELPSVLPDSAGKGSEYLLEQSSLACNAECYMLQN 9 : 11   111 : 1.   1   1   1   1   1   11   1	1000 VSKESFERTINIAKGNSSLGMTVSANKDGLGMIVRSIIHGGAISRDGRIA 1 . L. LILLE LIL	1050 IGDCILSINEESTISYTNAQARAMLRRHSLIGPDIKITTYVPAEHLEEFKI 1 :	1100 SLGQQSGRVMALDIFSSYTGRDIPELPEREEGEGEESELQNTAYSNWNQP	1150 RRVELFREPSKSLGISIVGCRGMGSRLSNGEVARGIFIKHVLEDRPAGKN 	1200 GTLKPGDRIVEVDGADLRDASHEQAVEAIRKAGNPVVFAVQSIINRPRKS 1101 HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1250 PLPSLLHNLYPKYNFSSTNPFADSLQINADKAPSQSESEPEKAPLCSVPP 

1550 KTAKNITVALTIHAENPDSQAVPSAAGAASGEKKNISSQSLAVPQSGSPEPE 1599 

1537 KTAKTTVKL,TVGAENPGCQAVPSAAVTASGERKOSSQTPAVP...APDLE 1583

1584 PIPSTSRSSTPAIFASDPATCPIIPGCETTIEISKGQTGLGLSIVGGSDT 1633 1600 SIRNTSRSSTPAIFASDPATCPIIPGCETTIEISKGRTGLGLSIVGGSDT 

1649

1650 LLGAFIIHEVYEEGAACKDGRLWAGDQILEVNGIDLRKATHDEAINVLRQ 1699 

1934 VSVVTGHQQELANPCLAFTGLTSSTIFPDDLGPPQSKT1TLDRGPDGLGF 1983 2000 SIVGGYGSPHGDLPIYVKTVFAKGAASEDGRLKRGDQIIAVNGQSLEGVT 2049 1984 SIVGCYGSPHGDLPIYVKTVFAKGAAÆDGRLKRGDQIIAVNGQSLEGVT 2033 1850 KNALASELQGLRTVEMRKGPTDSLGISIAGGVGSPLGDVPIFIAMAHPTG 1899 1834 KNALASEIQGLRTVEIKKGPADALGLSIAGGVGSPLGDVPIFIAMAÆPNG 1883 1900 VAAQTQKLRVGDRIVTICGTSTEGMIHTQAVNLLKNASGSIEMQVVAGGD 1949 1884 VAAQTQKI.RVGDRIVTICGTSTDGKIHTQAVNLAKNASGSIEVQVVAGGD 1933 1950 VSVYTGHIQEPASSSLSFTGLTSTSIFQDDLGPPQCKSITLERGPDGLGF 1999 1750 FVSDIVKGGIADPDGRLIQGDQILLVNGEDVRNASQEAVAALLKCSLGTV 1799 1734 FVSDIVKGGIADADGRLMQCDQILLNVNGEDVRNATQEAVAALLKCSLGTV 1783 1800 TLEVGRIKAGPFHSERRPSQTSQVSEGSLSSFTFPLSGSSTSESLESSSK 1849 1784 TLEVGRIKAAPFHSERRPSQSSQVSESSLSSFSLPRSGIHTSESSESSAK 1833 2050 HEEAVAILKRTKGTVTLMVLS 2070 

2034 HEEAVAILKRTKGTVTLMVLS 2054

1		50
PDZ-A	RHVEVFELLK . PPSGGLGFS	VVGLRS ENRGEL.GI FVQEIQEGSV
PDZ-B	QHMETIEL. V . NDGSGLGFG	IIGGK ATGV IVKTILPGGV
PDZ-C	SETFDVELTK . N. VQGLGIT	IAGYIG DKKLEPSGI FVKSITKSSA
PDZ-D	YEIVVAHVSK FSENSGLGIS	LEATVGHH FIRSVLPEGP
PDZ-E	AGIQHIMLEK . G. SKGLGFS	ILDYQDPIDPASTVI IIRSLVPGGI
PDZ-F	SFERTINIAK .G. NSSLGMT	VSANKDGLGM IVRSIIHGGA
PDZ-G	NQPRRVELWR . EPSKSLGIS	IVGGRGMGSR LSNGEVMRGI FIKHVLEDRP
PDZ-H	GELHMIELEK . G. HSGLGLS	LAG NKDRSRMSV FIVGIDPNGA
PDZ-I	KNVQHLELPK . D. QGGLGIA	IS EEDTLSGV IIKSLTEHGV
PDZ-J		IVG GSDTLLGAF IIHEVYEEGA
PDZ-K	CDTLTIELQK . KPGKGLGLS	IVGKRN DTGV FVSDIVKGGI
PDZ-L	=	IAGGVGSPLGDV.PI FIAMMHPTGV
PDZ-M	PQCKSITLER .GP.DGLGFS	IVGGYGSPHGDL.PI YVKTVFAKGA
	51	97
PDZ-A	AHRDGRLKET DQILAINGQA	LDQTITHQQA ISILQKAKDT VQLVIAR
PDZ-A PDZ-B	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR
	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD VEHDGRIQIG DQIIAVDGTN	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR L.QGFTNQQA VEVLRHTGQT VLLTLMR
PDZ-B	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD VEHDGRIQIG DQIIAVDGTN VGHSGKLFSG DELLEVNGIT	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR L.QGFTNQQA VEVLRHTGQT VLLTLMR LL.GENHQDV VNILKELPIE VTMVCCR
PDZ-B PDZ-C	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD VEHDGRIQIG DQIIAVDGTN VGHSGKLFSG DELLEVNGIT	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR L.QGFTNQQA VEVLRHTGQT VLLTLMR
PDZ-B PDZ-C PDZ-D	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD VEHDGRIQIG DQIIAVDGTN VGHSGKLFSG DELLEVNGIT AEKDGRLLPG DRLMFVNDVN ISRDGRIAIG DCILSINEES	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR L.QGFTNQQA VEVLRHTGQT VLLTLMR LL.GENHQDV VNILKELPIE VTMVCCR L.ENSSLEEA VEALKGAPSG TVRIGVA TI.SVTNAQA RAMLRRHSLI GPDIKIT
PDZ-B PDZ-C PDZ-D PDZ-E	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD VEHDGRIQIG DQIIAVDGTN VGHSGKLFSG DELLEVNGIT AEKDGRLLPG DRLMFVNDVN ISRDGRIAIG DCILSINEES AGKNGTLKPG DRIVEVDGMD	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR L.QGFTNQQA VEVLRHTGQT VLLTLMR LL.GENHQDV VNILKELPIE VTMVCCR L.ENSSLEEA VEALKGAPSG TVRIGVA TI.SVTNAQA RAMLRRHSLI GPDIKIT LRD.ASHEQA VEAIRKAGNP VVFMVQS
PDZ-B PDZ-C PDZ-D PDZ-E PDZ-F	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD VEHDGRIQIG DQIIAVDGTN VGHSGKLFSG DELLEVNGIT AEKDGRLLPG DRLMFVNDVN ISRDGRIAIG DCILSINEES AGKNGTLKPG DRIVEVDGMD AGKDGRLQIA DELLEINGQI	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR L.QGFTNQQA VEVLRHTGQT VLLTLMR LL.GENHQDV VNILKELPIE VTMVCCR L.ENSSLEEA VEALKGAPSG TVRIGVA TI.SVTNAQA RAMLRRHSLI GPDIKIT LRD.ASHEQA VEAIRKAGNP VVFMVQS L.YGRSHQNA SSIIKCAPSK VKIIFIR
PDZ-B PDZ-C PDZ-D PDZ-E PDZ-F PDZ-G	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD VEHDGRIQIG DQIIAVDGTN VGHSGKLFSG DELLEVNGIT AEKDGRLLPG DRLMFVNDVN ISRDGRIAIG DCILSINEES AGKNGTLKPG DRIVEVDGMD AGKDGRLQIA DELLEINGQI AATDGRLKVG DQILAVDDEI	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR L.QGFTNQQA VEVLRHTGQT VLLTLMR LL.GENHQDV VNILKELPIE VTMVCCR L.ENSSLEEA VEALKGAPSG TVRIGVA TI.SVTNAQA RAMLRRHSLI GPDIKIT LRD.ASHEQA VEAIRKAGNP VVFMVQS L.YGRSHQNA SSIIKCAPSK VKIIFIR V.VGYPIEKF ISLLKTAKMT VKLTIHA
PDZ-B PDZ-C PDZ-D PDZ-E PDZ-F PDZ-G PDZ-H	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD VEHDGRIQIG DQIIAVDGTN VGHSGKLFSG DELLEVNGIT AEKDGRLLPG DRLMFVNDVN ISRDGRIAIG DCILSINEES AGKNGTLKPG DRIVEVDGMD AGKDGRLQIA DELLEINGQI AATDGRLKVG DQILAVDDEI ACKDGRLWAG DQILEVNGID	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR L.QGFTNQQA VEVLRHTGQT VLLTLMR LL.GENHQDV VNILKELPIE VTMVCCR L.ENSSLEEA VEALKGAPSG TVRIGVA TI.SVTNAQA RAMLRRHSLI GPDIKIT LRD.ASHEQA VEAIRKAGNP VVFMVQS L.YGRSHQNA SSIIKCAPSK VKIIFIR V.VGYPIEKF ISLLKTAKMT VKLTIHA L.RKATHDEA INVLRQTPQR VRLTLYR
PDZ-B PDZ-C PDZ-D PDZ-E PDZ-F PDZ-G PDZ-H PDZ-I	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD VEHDGRIQIG DQIIAVDGTN VGHSGKLFSG DELLEVNGIT AEKDGRLLPG DRLMFVNDVN ISRDGRIAIG DCILSINEES AGKNGTLKPG DRIVEVDGMD AGKDGRLQIA DELLEINGQI AATDGRLKVG DQILAVDDEI ACKDGRLWAG DQILEVNGID ADPDGRLIQG DQILLVNGED	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR L.QGFTNQQA VEVLRHTGQT VLLTLMR LL.GENHQDV VNILKELPIE VTMVCCR L.ENSSLEEA VEALKGAPSG TVRIGVA TI.SVTNAQA RAMLRRHSLI GPDIKIT LRD.ASHEQA VEAIRKAGNP VVFMVQS L.YGRSHQNA SSIIKCAPSK VKIIFIR V.VGYPIEKF ISLLKTAKMT VKLTIHA L.RKATHDEA INVLRQTPQR VRLTLYR VR.NASQEAV AALLKCSLGT VTLEVGR
PDZ-B PDZ-C PDZ-D PDZ-E PDZ-F PDZ-G PDZ-H PDZ-I PDZ-J	AHRDGRLKET DQILAINGQA ADQHGRLCSG DHILKIGDTD VEHDGRIQIG DQIIAVDGTN VGHSGKLFSG DELLEVNGIT AEKDGRLLPG DRLMFVNDVN ISRDGRIAIG DCILSINEES AGKNGTLKPG DRIVEVDGMD AGKDGRLQIA DELLEINGQI AATDGRLKVG DQILAVDDEI ACKDGRLWAG DQILEVNGID ADPDGRLIQG DQILLVNGED AAQTQKLRVG DRIVTICGTS	LDQTITHQQA ISILQKAKDT VQLVIAR LA.GMSSEQV AQVLRQCGNR VKLMIAR L.QGFTNQQA VEVLRHTGQT VLLTLMR LL.GENHQDV VNILKELPIE VTMVCCR L.ENSSLEEA VEALKGAPSG TVRIGVA TI.SVTNAQA RAMLRRHSLI GPDIKIT LRD.ASHEQA VEAIRKAGNP VVFMVQS L.YGRSHQNA SSIIKCAPSK VKIIFIR V.VGYPIEKF ISLLKTAKMT VKLTIHA L.RKATHDEA INVLRQTPQR VRLTLYR



#### COMBINED DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled <u>PROTEIN HAVING PDZ DOMAIN SEQUENCE</u>, the specification of which:

[X]	is attached hereto.	
[]	was filed on _ as Application Serial No and was amended on	
[]	was described and claimed in PCT International Application No.	_ filed on
	and as amended under PCT Article 19 on	

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose all information I know to be material to patentability in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose all information I know to be material to patentability as defined in Title 37, Code of Federal Regulations, §1.56(a) which became available between the filing date of the prior application and the national or PCT international filing date of this application:

U.S. Serial No.	Filing Date	Status
PCT/JP98/03603	August 12, 1998	Pending

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed:

Country	Application No.	Filing Date	Priority Claimed
Japan	9/230356	August 12, 1997	[X] Yes [] No
Japan	10/189944	June 19, 1998	[X] Yes [] No

I hereby appoint the following attorneys and/or agents to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

Janis K. Fraser, Reg. No. 34,819 Eldora L. Ellison, Reg. No. 39,967
J. Peter Fasse, Reg. No. 32,983 John W. Freeman, Reg. No. 29,066
Timothy A. French, Reg. No. 30,175 John T. Li, Reg. No. 40,210
Anita L. Meiklejohn, Reg. No. 35,283 Ralph A. Mittelberger, Reg. No. 33,195

Address all telephone calls to JANIS K. FRASER at telephone number (617) 542-5070.

Attorney's Docket No.: 06501-056001 Client's Ref. No.: C2-905DP1PCT-US

20026222.doc

#### **Combined Declaration and Power of Attorney**

Page 2 of 2 Pages

Address all correspondence to JANIS K. FRASER at:

FISH & RICHARDSON P.C. 225 Franklin Street Boston, MA 02110-2804

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patents issued thereon.

Full Name of Inventor:	SHIN-ICHI FUNAHASHI		
Inventor's Signature:		Date:	
Residence Address:	153-2, Nagai, Niihari-mura, Niihari-gun Ibaraki 300-4101 Japan		
Citizenship:	Japan		
Post Office Address:	153-2, Nagai, Niihari-mura, Niihari-gun Ibaraki 300-4101 Japan		
Full Name of Inventor:	SHOJI MIYATA		
Inventor's Signature:		Date:	
Residence Address:	153-2, Nagai, Niihari-mura, Niihari-gun Ibaraki 300-4101 Japan		
Citizenship:	Japan		
Post Office Address:	153-2, Nagai, Niihari-mura, Niihari-gun Ibaraki 300-4101 Japan		

#### SEQUENCE LISTING

<110> CHUGAI RESEARCH INSTITUTE FOR MOLECULAR MEDICINE, INC.

<120> PROTEIN HAVING PDZ DOMAIN SEQUENCE

<130> C2-905DP1PCT

<140>

<141>

<150> JP 09-230356

JP 10-189944

<151> 1997-8-12

1998-6-19

<160> 87

<170> PatentIn version 2.0

<210> 1

<211> 1373

<212> PRT

<213> Homo sapience

<400> 1

Met Val

Cys Cys Arg Arg Thr Val Pro Pro Thr Thr Gln Ser Glu Leu Asp Ser Leu Asp Leu Cys Asp Ile Glu Leu Thr Glu Lys Pro His Val Asp Leu Gly Glu Phe Ile Gly Ser Ser Glu Thr Glu Asp Pro Val Leu Ala Met Thr Asp Ala Gly Gln Ser Thr Glu Glu Val Gln Ala Pro Leu Ala Met Trp Glu Ala Gly Ile Gln His Ile Glu Leu Glu Lys Gly Ser Lys Gly Leu Gly Phe Ser Ile Leu Asp Tyr Gln Asp Pro Ile Asp Pro Ala Ser Thr Val Ile Ile Ile Arg Ser Leu Val Pro Gly Gly Ile Ala Glu Lys Asp Gly Arg Leu Leu Pro Gly Asp Arg Leu Met Phe Val Asn Asp Val Asn Leu Glu Asn Ser Ser Leu Glu Glu Ala Val Glu Ala Leu Lys Gly Ala Pro Ser Gly Thr Val Arg Ile Gly Val Ala Lys Pro Leu Pro Leu Ser Pro Glu Glu Gly Tyr Val Ser Ala Lys Glu Asp Ser Phe Leu Tyr Pro Pro His Ser Cys Glu Glu Ala Gly Leu Ala Asp Lys Pro Leu Phe Arg Ala Asp Leu Ala Leu Val Gly Thr Asn Asp Ala Asp Leu Val Asp Glu Ser Thr Phe Glu Ser Pro Tyr Ser Pro Glu Asn Asp Ser Ile Tyr

, 4

				215					220					225	
Ser	Thr	Gln	Ala	Ser	Ile	Leu	Ser	Leu	His	Gly	Ser	Ser	Cys	Gly	Asp
			230					235					240		
Gly	Leu	Asn	Tyr	Gly	Ser	Ser	Leu	Pro	Ser	Ser	Pro	Pro	Lys	Asp	Val
		245					250					255			
Ile	Glu	Asn	Ser	Cys	Asp	Pro	Val	Leu	Asp	Leu	His	Met	Ser	Leu	Glu
	260					265					270				
Glu	Leu	Tyr	Thr	Gln	Asn	Leu	Leu	Glu	Arg	Gln	Asp	Glu	Asn	Thr	Pro
275					280					285					290
Ser	Val	Asp	Ile	Ser	Met	Gly	Pro	Ala	Ser	Gly	Phe	Thr	Ile	Asn	Asp
				295					300					305	
Tyr	Thr	Pro	Ala	Asn	Ala	Ile	Glu	Gln	Gln	Tyr	Glu	Cys	Glu	Asn	Thr
			310					315					320		
Ile	Val	Trp	Thr	Glu	Ser	His	Leu	Pro	Ser	Glu	Val	Ile	Ser	Ser	Ala
		325					330					335			
Glu	Leu	Pro	Ser	Val	Leu	Pro	Asp	Ser	Ala	Gly	Lys	Gly	Ser	Glu	His
	340					345					350				
Leu	Leu	Glu	Gln	Ser	Ser	Leu	Ala	Cys	Asn	Ala	G1u	Cys	Val	Met	Leu
355					360					365			/		370
Gln	Asn	Val	Ser	Lys	Glu	Ser	Phe	Glu	Arg	Thr	Ile	Asn	Ile	Ala	Lys
				375					380					385	
Gly	Asn	Ser	Ser	Leu	Gly	Met	Thr	Val	Ser	Ala	Asn	Lys	Asp	Gly	Leu
			390					395					400		
Gly	Met	Ile	Val	Arg	Ser	Ile	Ile	His	Gly	Gly	Ala	Ile	Ser	Arg	Asp
		405					410					415			
Gly	Arg	Ile	Ala	Ile	Gly	Asp	Cys	Ile	Leu	Ser	Ile	Asn	Glu	Glu	Ser
	420					425					430				

Thr	Ile	Ser	Val	Thr	Asn	Ala	Gln	Ala	Arg	Ala	Met	Leu	Arg	Arg	His
435					440					445					450
Ser	Leu	Ile	Gly	Pro	Asp	Ile	Lys	Ile	Thr	Tyr	Val	Pro	Ala	Glu	His
				455					460					465	
Leu	Glu	Glu	Phe	Lys	Ile	Ser	Leu	Gly	Gln	Gln	Ser	Gly	Arg	Val	Met
			470					475					480		
Ala	Leu	Asp	Ile	Phe	Ser	Ser	Tyr	Thr	Gly	Arg	Asp	Ile	Pro	Glu	Leu
		485					490					495			
Pro	Glu	Arg	Glu	Glu	Gly	Glu	Gly	Glu	Glu	Ser	Glu	Leu	G1n	Asn	Thr
	500					505					510				
Ala	Tyr	Ser	Asn	Trp	Asn	Gln	Pro	Arg	Arg	Val	Glu	Leu	Trp	Arg	Glu
515					520					525					530
Pro	Ser	Lys	Ser	Leu	Gly	Ile	Ser	Ile	Val	Gly	Gly	Arg	Gly	Met	Gly
				535					540					545	
Ser	Arg	Leu	Ser	Asn	Gly	Glu	Val	Met	Arg	Gly	Ile	Phe	Ile	Lys	His
			550					555					560		
Val	Leu	Glu	Asp	Ser	Pro	Ala	Gly	Lys	Asn	Gly	Thr	Leu	Lys	Pro	Gly
		565					570					575			
Asp	Arg	Ile	Val	Glu	Ala	Pro	Ser	Gln	Ser	Glu	Ser	Glu	Pro	Glu	Lys
	580					585					590				
Ala	Pro	Leu	Cys	Ser	Val	Pro	Pro	Pro	Pro	Pro	Ser	Ala	Phe	Ala	Glu
595					600					605					610
Met	Gly	Ser	Asp	His	Thr	Gln	Ser	Ser	Ala	Ser	Lys	Ile	Ser	Gln	Asp
				615					620					625	
Val	Asp	Lys	G1u	Asp	Glu	Phe	Gly	Tyr	Ser	Trp	Lys	Asn	Ile	Arg	Glu
			630					635					640		
Aro	Tur	G1 v	Thr	Len	Thr	C1 w	C 1 11	Lou	u; c	Ma+	110	01	Ι	C 1	7

		645					650					655			
Gly	His	Ser	Gly	Leu	Gly	Leu	Ser	Leu	Ala	Gly	Asn	Lys	Asp	Arg	Ser
	660					665					670				
Arg	Met	Ser	Val	Phe	Ile	Val	Gly	Ile	Asp	Pro	Asn	Gly	Ala	Ala	Gly
675					680					685					690
Lys	Asp	Gly	Arg	Leu	Gln	Ile	Ala	Asp	Glu	Leu	Leu	Glu	Ile	Asn	Gly
				695					700					705	
Gln	Ile	Leu	Tyr	Gly	Arg	Ser	His	Gln	Asn	Ala	Ser	Ser	Ile	Ile	Lys
			710					715					720		
Cys	Ala	Pro	Ser	Lys	Val	Lys	Ile	Ile	Phe	Ile	Arg	Asn	Lys	Asp	Ala
		725					730					735			
Val	Asn	Gln	Met	Ala	Val	Cys	Pro	G1y	Asn	Ala	Val	Glu	Pro	Leu	Pro
	740					745					750				
Ser	Asn	Ser	Glu	Asn	Leu	Gln	Asn	Lys	Glu	Thr	Glu	Pro	Thr	Val	Thr
755					760					765					770
Thr	Ser	Asp	Ala	Ala	Val	Asp	Leu	Ser	Ser	Phe	Lys	Asn	Val	Gln	His
				775					780					785	
Leu	G1u	Leu	Pro	Lys	Asp	Gln	Gly	Gly	Leu	Gly	Ile	Ala	Ile	Ser	Glu
			790					795					800		
Glu	Asp	Thr	Leu	Ser	Gly	Val	Ile	Ile	Lys	Ser	Leu	Thr	Glu	His	Gly
		805					810			,		815			
Val	Ala	Ala	Thr	Asp	Gly	Arg	Leu	Lys	Val	Gly	Asp	Gln	Ile	Leu	Ala
	820					825					830				
Val	Asp	Asp	Glu	Ile	Val	Val	Gly	Tyr	Pro	I1e	Glu	Lys	Phe	Ile	Ser
835					840					845					850
Leu	Leu	Lys	Thr	Ala	Lys	Met	Thr	Val	Lys	Leu	Thr	Ile	His	Ala	Glu
				855					860					865	

Asn	Pro	Asp	Ser	Gln	Ala	Val	Pro	Ser	Ala	Ala	Gly	Ala	Ala	Ser	Gly
			870					875					880		
Glu	Lys	Lys	Asn	Ser	Ser	Gln	Ser	Leu	Met	Val	Pro	Gln	Ser	Gly	Ser
		885					890					895			
Pro	Glu	Pro	Glu	Ser	Ile	Arg	Asn	Thr	Ser	Arg	Ser	Ser	Thr	Pro	Ala
	900					905					910				
Ile	Phe	Ala	Ser	Asp	Pro	Ala	Thr	Cys	Pro	Ile	Ile	Pro	Gly	Cys	Glu
915					920					925					930
Thr	Thr	Ile	Glu	Ile	Ser	Lys	Gly	Arg	Thr	Gly	Leu	Gly	Leu	Ser	Ile
				935					940					945	
Val	Gly	Gly	Ser	Asp	Thr	Leu	Leu	Gly	Ala	Phe	Ile	Ile	His	Glu	Val
			950					955					960		
Tyr	Glu	Glu	Gly	Ala	Ala	Cys	Lys	Asp	Gly	Arg	Leu	Trp	Ala	Gly	Asp
		965					970					975			
Gln	Ile	Leu	Glu	Val	Asn	Gly	Ile	Asp	Leu	Arg	Lys	Ala	Thr	His	Asp
	980					985					990				
Glu	Ala	Ile	Asn	Val	Leu	Arg	Gln	Thr	Pro	Gln	Arg	Val	Arg	Leu	Thr
995					1000	)				1005	<b>j</b>				1010
Leu	Tyr	Arg	Asp	Glu	Ala	Pro	Tyr	Lys	Glu	Glu	G1u	Val	Cys	Asp	Thr
				1015	5				1020	)				1025	i
Leu	Thr	Ile	Glu	Leu	Gln	Lys	Lys	Pro	Gly	Lys	Gly	Leu	Gly	Leu	Ser
			1030	)				1035	5				1040	)	
Ile	Val	Gly	Lys	Arg	Asn	Asp	Thr	Gly	Val	Phe	Val	Ser	Asp	Ile	Val
		1048	ភ				1050	)				1055	i		
Lys	Gly	Gly	Ile	Ala	Asp	Pro	Asp	Gly	Arg	Leu	Ile	G1n	Gly	Asp	Gln
	1060	)				1068	5				1070	)			
Ile	Leu	Leu	Val	Asn	Gly	Glu	Asp	Val	Arg	Asn	Ala	Ser	Gln	Glu	Ala

107	5				108	0				108	5				1090	
Val	Ala	Ala	Leu	Leu	Lys	Cys	Ser	Leu	Gly	Thr	Val	Thr	Leu	Glu	Val	
				109	5				1100	0			5			
Gly	Arg	Ile	Lys	Ala	Gly	Pro	Phe	His	Ser	Glu	Arg	Arg	Pro	Ser	Gln	
			111	0				1118	5				1120	)		
Thr	Ser	Gln	Val	Ser	Glu	Gly	Ser	Leu	Ser	Ser	Phe	Thr	Phe	Pro	Leu	
		112	5				1130	)				1135	i			
Ser	Gly	Ser	Ser	Thr	Ser	Glu	Ser	Leu	Glu	Ser	Ser	Ser	Lys	Lys	Asn	
	114	0				1148	i				1150	)				
Ala	Leu	Ala	Ser	Glu	Ile	Gln	Gly	Leu	Arg	Thr	Val	Glu	Met	Lys	Lys	
115	õ				1160	)				1165	j				1170	
Gly	Pro	Thr	Asp	Ser	Leu	Gly	Ile	Ser	Ile	Ala	Gly	Gly	Val	Gly	Ser	
				1178	i				1180	)				1185		
Pro	Leu	Gly	Asp	Val	Pro	Ile	Phe	Ile	Ala	Met	Met	His	Pro	Thr	Gly	
			1190	)				1195					1200			
Val	Ala	Ala	Gln	Thr	Gln	Lys	Leu	Arg	Val	Gly	Asp	Arg	Ile	Val	Thr	
		120	5				1210	)				1215				
Ile	Cys	Gly	Thr	Ser	Thr	Glu	Gly	Met	Thr	His	Thr	Gln	Ala	Val	Asn	
	1220	)				1225	i				1230	1				
Leu	Leu	Lys	Asn	Ala	Ser	Gly	Ser	Ile	Glu	Met	Gln	Val	Val	Ala	Gly	
1235	5				1240	)				1245					1250	
Gly	Asp	Val	Ser	Val	Val	Thr	Gly	His	His	Gln	Glu	Pro	Ala	Ser	Ser	
				1255				1	260				1	265		
Ser	Leu	Ser	Phe	Thr	Gly	Leu	Thr	Ser	Thr	Ser	Ile	Phe	Gln	Asp	Asp	
			1270	l				1275					1280			
Leu	Gly	Pro	Pro	Gln	Cys	Lys	Ser	Ile	Thr	Leu	Glu	Arg	Gly	Pro	Asp	
		1285	i				1290					1295				

Gly Leu Gly Phe Ser Ile Val Gly Gly Tyr Gly Ser Pro His Gly Asp Leu Pro Ile Tyr Val Lys Thr Val Phe Ala Lys Gly Ala Ala Ser Glu Asp Gly Arg Leu Lys Arg Gly Asp Gln Ile Ile Ala Val Asn Gly Gln Ser Leu Glu Gly Val Thr His Glu Glu Ala Val Ala Ile Leu Lys Arg Thr Lys Gly Thr Val Thr Leu Met Val Leu Ser <210> 2 <211> 1005 <212> PRT <213> Homo sapience <400> 2 Met Leu Gln Asn Val Ser Lys Glu Ser Phe Glu Arg Thr Ile Asn Ile Ala Lys Gly Asn Ser Ser Leu Gly Met Thr Val Ser Ala Asn Lys Asp Gly Leu Gly Met Ile Val Arg Ser Ile Ile His Gly Gly Ala Ile Ser Arg Asp Gly Arg Ile Ala Ile Gly Asp Cys Ile Leu Ser Ile Asn Glu

Glu Ser Thr Ile Ser Val Thr Asn Ala Gln Ala Arg Ala Met Leu Arg

Ar	g Hi	s Se	r Le	u Ile	e Glj	y Pr	o As	p Ile	e Ly	s Il	e Thi	т Туі	r Val	Pro	Ala
				85					90					95	
G 1	u His	s Le	u Gli	u Glı	ı Phe	Lys	s Ile	e Ser	Lei	ı G1;	y Glr	a Glr	ı Ser	Gly	Arg
			100	)				105					110		
Va:	l Met	t Ala	a Lei	ı Asp	Ile	Phe	e Ser	Ser	Туг	Thr	Gly	Arg	Asp	Ile	Pro
		118					120					125			
Gli	ı Let	Pro	o Glu	ı Arg	Glu	Glu	ı Gly	Glu	Gly	Glu	ı Glu	Ser	Glu	Leu	Gln
	130					135					140				
Asn	Thr	Ala	ı Tyr	Ser	Asn	Trp	Asn	Gln	Pro	Arg	Arg	Val	G1u	Leu	Trp
145					150					155					160
Arg	Glu	Pro	Ser	Lys	Ser	Leu	Gly	Ile	Ser		Val	Gly	Gly	Arg	
				165					170			•	•	175	
Met	Gly	Ser	Arg	Leu	Ser	Asn	Gly	Glu		Met	Arg	Glv	Ile		He
			180					185					190		
Lys	His	Val	Leu	Glu	Asp	Ser	Pro		G1v	Lvs	Asn	Glv		Len	Lve
		195			-		200		•	-, -		205		D C C	цуз
Pro	Gly		Arg	Ile	Val	Glu		Pro	Ser	Gln	Ser		Sar	6111	Dno
	210	_				215			001	0111	220	ulu	561	uıu	110
Glu		Ala	Pro	Leu	Cvs		V a 1	Pro	Dro	Dno		Dno	C	41.	DL.
225	-,-			204	230	501	, 41	110	IIV		FFO	Pro	şer		
	Gln	Wet	Glv	San.		п÷с	ጥኤኤ	C1-	0	235					240
	UI W	not	Gly	245	nsp	птъ	1111			ser	Ala	Ser			Ser
C1n	400	V = 1			0.1				250	_				255	
GIII	veh	Vail	Asp	гуѕ	GIU	ASP	Glu		Gly	Tyr	Ser			Asn	Ile
	~ •		260					265					270		
Arg	Glu		Tyr	Gly	Thr			Gly	Glu	Leu	His	Met	Ile	Glu	Leu
		275					280					285			
Glu	Lys	Gly	His	Ser	Gly	Leu	Gly	Leu	Ser	Leu	Ala	Gly	Asn	Lys	Asp

	290					295					300				
Arg	Ser	Arg	Met	Ser	Val	Phe	Ile	Val	Gly	I1e	Asp	Pro	Asn	Gly	Ala
305					310					315					320
Ala	Gly	Lys	Asp	Gly	Arg	Leu	Gln	Ile	Ala	Asp	Glu	Leu	Leu	Glu	Ile
				325					330					335	
Asn	Gly	Gln	lle	Leu	Tyr	Gly	Arg	Ser	His	G1n	Asn	Ala	Ser	Ser	Ile
			340					345					350		
Ile	Lys	Cys	Ala	Pro	Ser	Lys	Val	Lys	Ile	Ile	Phe	Ile	Arg	Asn	Lys
		355					360					365			
Asp	Ala	Val	Asn	Gln	Met	Ala	Val	Cys	Pro	Gly	Asn	Ala	Val	G1 u	Pro
	370					375					380				
Leu	Pro	Ser	Asn	Ser	Glu	Asn	Leu	Gln	Asn	Lys	Glu	Thr	Glu	Pro	Thr
385					390					395					400
Val	Thr	Thr	Ser	Asp	Ala	Ala	Val	Asp	Leu	Ser	Ser	Phe	Lys	Asn	Val
				405					410					415	
Gln	His	Leu	Glu	Leu	Pro	Lys	Asp	Gln	Gly	Gly	Leu	Gly	Ile	Ala	Ile
			420					425					430		
Ser	Glu	Glu	Asp	Thr	Leu	Ser	Gly	Val	Ile	I 1 e	Lys	Ser	Leu	Thr	Glu
		435					440					445			
His	Gly	Val	Ala	Ala	Thr	qsA	Gly	Arg	Leu	Lys	Val	Gly	Asp	Gln	Ile
	450					455					460				
Leu	Ala	Val	Asp	Asp	Glu	I1e	Val	Val	Gly	Tyr	Pro	Ile	Glu	Lys	Phe
465					470					475					480
Ile	Ser	Leu	Leu	Lys	Thr	Ala	Lys	Met	Thr	Val	Lys	Leu	Thr	Ile	His
				485					490					495	
Ala	G1u	Asn	Pro	Asp	Ser	G1n	Ala	Val	Pro	Ser	Ala	Ala	Gly	Ala	Ala
			500					505					510		

DE	1 61	y GI	и гу	з гу	S ASI	n Se	r Sei	r Gli	n Se	r Le	u Me	t Va	l Pr	o Gl	n Ser
		51	5				520	)				525	5		
G 1 ;	y Se	r Pr	o Gli	ı Pr	o Glu	ı Sei	r Ile	Arg	Asi	n Th	r Se	r Ar	g Sei	r Se	r Thr
	530	0				535	i				540	)			
Pr	o Ala	a II:	e Phe	Ala	a Ser	as As r	Pro	Ala	Th	r Cys	s Pro	ılı	e Ile	e Pro	o Gly
549	ō				550	}				555					560
Cys	s Glu	ı Thi	r Thr	· 11	e Glu	ı Ile	Ser	Lys	Gly	/ Arg	Thr	· G13	/ Lev	ı Gly	/ Leu
				565	;				570	l				575	
Ser	· Ile	Va.l	Gly	Gly	Ser	Asp	Thr	Leu	Leu	ı Gly	Ala	Phe	lle	lle	His
			580					585					590		
Glu	Val	Туг	Glu	Glu	Gly	Ala	Ala	Cys	Lys	Asp	Gly	Arg	: Leu	Trp	Ala
		595					600					605			
Gly	Asp	Gln	Ile	Leu	Glu	Val	Asn	Gly	Ile	Asp	Leu	Arg	Lys	Ala	Thr
	610					615					620				
His	Asp	Glu	Ala	Ile	Asn	Val	Leu	Arg	G1n	Thr	Pro	Gln	Arg	Val	Arg
625					630					635					640
Leu	Thr	Leu	Tyr	Arg	Asp	Glu	Ala	Pro	Туг	Lys	Glu	Glu	G1u	Val	Cys
				645					650					655	
Asp	Thr	Leu	Thr	Ile	Glu	Leu	Gln	Lys	Lys	Pro	Gly	Lys	Gly	Leu	Gly
			660					665					670		
Leu	Ser	Ile	Val	Gly	Lys	Arg	Asn	Asp	Thr	Gly	Val	Phe	Val	Ser	Asp
		675					680					685			
Ile	Val	Lys	Gly	Gly	Ile	Ala	Asp	Pro	Asp	Gly	Arg	Leu	Ile	Gln	Gly
	690					695					700				
Asp	Gln	Ile	Leu	Leu	Val	Asn	Gly	Glu	Asp	Val	Arg	Asn	Ala	Ser	G1n
705					710					715					720
Glu	Ala	Val	Ala	Ala	Len	Ī. e 11	Lve	Cvc	902	T a n	C1	<b>π</b> L -	17 - 1	<b>Μ</b> Ł	<b>T</b>

				725					730					735	
G 1 u	Val	Gly	Arg	Ile	Lys	Ala	G 1 y	Pro	Phe	His	Ser	Glu	Arg	Arg	Pro
			740					745					750		
Ser	Gln	Thr	Ser	Gln	Val	Ser	Glu	Gly	Ser	Leu	Ser	Ser	Phe	Thr	Phe
		755					760					765			
Pro	Leu	, Ser	Gly	Ser	Ser	Thr	Ser	Glu	Ser	Leu	Glu	Ser	Ser	Ser	Lys
	770					775					780				
Lys	Asn	Ala	Leu	Ala	Ser	Glu	Ile	Gln	Gly	Leu	Arg	Thr	Val	Glu	Met
785					790					795					800
Lys	Lys	Gly	Pro	Thr	Asp	Ser	Leu	Gly	Ile	Ser	Ile	Ala	Gly	Gly	Val
				805					810					815	
Gly	Ser	Pro	Leu	Gly	Asp	Val	Pro	Ile	Phe	Ile	Ala	Met	Met	His	Pro
			820					825					830		
Thr	Gly	Val	Ala	Ala	Gln	Thr	Gln	Lys	Leu	Arg	Val	Gly	Asp	Arg	Ile
		835					840					845			
Val	Thr	Ile	Cys	Gly	Thr	Ser	Thr	Glu	Gly	Met	Thr	His	Thr	Gln	Ala
	850					855					860				
Val	Asn	Leu	Leu	Lys	Asn	Ala	Ser	Gly	Ser	Ile	Glu	Met	Gln	Val	Val
865					870					875					880
Ala	Gly	Gly	Asp	Val	Ser	Val	Val	Thr	Gly	His	His	Gln	Glu	Pro	Ala
				885					890					895	
Ser	Ser	Ser	Leu	Ser	Phe	Thr	Gly	Leu	Thr	Ser	Thr	Ser	Ile	Phe	Gln
			900					905					910		
Asp	Asp	Leu	Gly	Pro	Pro	Gln	Cys	Lys	Ser	Ile	Thr	Leu	Glu	Arg	Gly
		915					920					925			
Pro	Asp	Gly	Leu	Gly	Phe	Ser	Ile	Val	Gly	Gly	Tyr	Gly	Ser	Pro	His
	030					025					040				

Gly	Asp	Leu	Pro	Ile	Tyr	Val	Lys	Thr	Val	Phe	Ala	Lys	Gly	Ala	Ala
945					950					955					960
Ser	Glu	Asp	Gly	Arg	Leu	Lys	Arg	Gly	Asp	Gln	Ile	Ile	Ala	Val	Asn
,				965					970					975	
Gly	Gln	Ser	Leu	Glu	Gly	Val	Thr	His	G1 u	Glu	Ala	Val	Ala	Ile	Leu
			980					985					990		
Lys	Arg	Thr	Lys	Gly	Thr	Val	Thr	Leu	Met	Val	Leu	Ser			
		995					1000					1005			

<210> 3

<211> 4880

<212> DNA

<213> Homo sapience

<220>

<221> CDS

<222> (292)...(4410)

<400> 3

cccgggcccg ggcgacagtg ggacatcatt ttatccgatc tgttctacca gagggtcctg 60

ttggacacag cgggaagctc ttcagtggag acgagctatt ggaaaataag taacgcattc 120

agatgtttaa aatcacagag aatacaaaga taaagaatgg aaaagggtct ccttcctgtc 180

ccaattcatc cagttctcat cacccttcat taggtaaatg gcataacttt acttgggaa 240

aat	cacc	aag	atgt	ggtg	aa t	atct.	taaa	a ga	actg	ccta	tag	aagt	gac	a at	g gtg	297
														Мe	t Val	
															1	
tgc	tgt	cgt	cga	act	gtg	cca	ccc	acc	acc	caa	tca	gaa	ttg	gat	agc	345
Cys	Cys	Arg	Arg	Thr	Val	Pro	Pro	Thr	Thr	Gln	Ser	Glu	Leu	Asp	Ser	
		5					10					15				
ctg	gac	tta	tgt	gat	att	gag	cta	aca	gaa	aag	cct	cac	gta	gat	cta	393
Leu	Asp	Leu	Cys	Asp	Ile	Glu	Leu	Thr	Glu	Lys	Pro	His	Val	Asp	Leu	
	20					25					30					
ggt	gag	ttc	atc	ggg	tca	tca	gag	aca	gag	gat	cca	gtg	ctg	gcg	atg	441
Gly	Glu	Phe	Ile	Gly	Ser	Ser	Glu	Thr	Glu	Asp	Pro	Val	Leu	Ala	Met	
35					40					45					50	
act	gat	gcg	ggt	cag	agt	aca	gaa	gag	gtt	caa	gca	cct	ttg	gcc	atg	489
Thr	Asp	Ala	Gly	Gln	Ser	Thr	Glu	Glu	Val	Gln	Ala	Pro	Leu	Ala	Met	
				55					60					65		
tgg	gag	gct	ggc	att	cag	cac	ata	gag	ctg	gag	aaa	ggg	agc	aaa	gga	537
Trp	Glu	Ala	Gly	Ile	Gln	His	Ile	Glu	Leu	Glu	Lys	Gly	Ser	Lys	Gly	
			70					75					80			
ctt	ggt	ttt	agc	att	tta	gat	tat	cag	gat	cca	att	gat	cca	gca	agc	585
									Asp							
		85					90					95				

act	gtg	att	ata	ıatt	cgt	tct	ttg	gtg	cct	ggo	ggc	att	gct	gaa	aag	633
Thr	Val	Ile	· Ile	lle	Arg	Ser	Leu	Val	Pro	Gly	Gly	Ile	Ala	ı Glu	Lys	
	100	I				105					110					
			-													
gat	gga	cga	ctt	ctt	cct	ggt	gac	cga	ctc	atg	ttt	gta	aac	gat	gtt	681
Asp	Gly	Arg	Leu	Leu	Pro	Gly	Asp	Arg	Leu	Met	Phe	Val	Asn	Asp	Val	
115					120					125					130	
aac	ttg	gaa	aac	agc	agt	ctt	gag	gaa	gct	gta	gaa	gca	ctg	aag	gga	729
Asn	Leu	G1 u	Asn	Ser	Ser	Leu	Glu	Glu	Ala	Val	Glu	Ala	Leu	Lys	Gly	
				135					140					145		
gca	ccg	tca	ggg	act	gtg	aga	ata	gga	gtt	gct	aag	cct	tta	ccc	ctt	777
Ala	Pro	Ser	Gly	Thr	Val	Arg	Ile	Gly	Val	Ala	Lys	Pro	Leu	Pro	Leu	
			150					155					160			
tca	cca	gaa	gaa	ggt	tat	gtt	tct	gct	aag	gag	gat	tcc	ttt	ctc	tac	825
Ser	Pro	Glu	Glu	Gly	Tyr	Val	Ser	Ala	Lys	Glu	Asp	Ser	Phe	Leu	Tyr	
		165					170					175				
cca	cca	cac	tcc	tgt	gag	gaa	gca	ggg	ctg	gct	gac	aaa	ccc	ctc	ttc	873
Pro	Pro	His	Ser	Cys	Glu	Glu	Ala	Gly	Leu	Ala	Asp	Lys	Pro	Leu	Phe	
	180					185					190					
agg	gct	gac	ttg	gct	ctg	gtg	ggc	aca	aat	gat	gct	gac	tta	gta	gat	921
				Ala												

tac aca cet gea aat get att gaa caa caa tat gaa tgt gaa aac aca

gaa too aca ttt gag tot coa tac tot cot gaa aat gac ago ato tac Glu Ser Thr Phe Glu Ser Pro Tyr Ser Pro Glu Asn Asp Ser Ile Tyr

Tyr	Thr	Pro	Ala	Asn	Ala	116	GIU	GIN	GIN	Tyr	Glu	cys	Glu	Asn	Thr	
			310					315					320			
ata	gtg	tgg	act	gaa	tct	cat	tta	cca	agt	gaa	gtt	ata	tca	agt	gca	1305
Ile	Val	Trp	Thr	Glu	Ser	His	Leu	Pro	Ser	Glu	Val	Ile	Ser	Ser	Ala	
		325					330					335				
gaa	ctt	cct	tct	øtø	cta	ccc	gat	tca	øct.	gga	2 A F	gge	tet	g 2 g	cac	1353
			Ser													1000
uru		riu	261	141	nea		nsp	261	AIA	uly		uly	261	GIU	1112	
	340					345					350					
ctg	ctt	gaa	cag	agc	tcc	ctg	gcc	tgt	aat	gct	gag	tgt	gtc	atg	ctt	1401
Leu	Leu	Glu	Gln	Ser	Ser	Leu	Ala	Cys	Asn	Ala	Glu	Cys	Val	Met	Leu	
355					360					365					370	
caa	aat	gta	tct	aaa	gaa	tct	ttt	gaa	agg	act	att	aat	ata	gca	aaa	1449
Gln	Asn	Val	Ser	Lys	Glu	Ser	Phe	Glu	Arg	Thr	Ile	Asn	Ile	Ala	Lys	
				375					380					385		
													-			
ggc	aat	tct	agc	cta	gga	atg	aca	gtt	agt	gct	aat	aaa	gat	ggc	ttg	1497
Gly	Asn	Ser	Ser	Leu	Gly	Met	Thr	Val	Ser	Ala	Asn	Lys	Asp	Gly	Leu	
			390					395					400			
a & w	a t re	a t a	a++	0 6 0	9 64 9	a + +	2++	00+	m ca ^	a a t	d C C	2++	2 10 4	000	mat	1515
			gtt													1545
Gly	Met		Val	Arg	Ser	ile		His	Gly	Gly	Ala		Ser	Arg	Asp	
		405					410					415				

ggc	cgg	att	gcc	att	ggg	gac	tgc	atc	ttg	tcc	att	aat	gaa	gag	tct	1593
Gly	Arg	Ile	Ala	Ile	Gly	Asp	Cys	Ιlе	Leu	Ser	· Ile	Asn	Glu	Glu	Ser	
	420					425					430					
acc	atc	agt	gta	acc	aat	gcc	cag	gca	cga	gct	atg	ttg	aga	aga	cat	1641
Thr	Ιle	Ser	Val	Thr	Asn	Ala	Gln	Ala	Arg	Ala	Met	Leu	Arg	Arg	His	
435					440					445					450	
tct	ctc	att	ggc	cct	gac	ata	aaa	att	act	tat	gtg	cct	gca	gaa	cat	1689
Ser	Leu	Ile	Gly	Pro	Asp	Ile	Lys	Ile	Thr	Tyr	Val	Pro	Ala	Glu	His	
				455					460					465		
ttg	gaa	gag	ttc	aaa	ata	agc	ttg	gga	caa	caa	tct	gga	aga	gta	atg	1737
Leu	Glu	Glu	Phe	Lys	Ile	Ser	Leu	Gly	Gln	Gln	Ser	Gly	Arg	Val	Met	
			470					475					480			
gca	ctg	gat	att	ttt	tet	tca	tac	act	ggc	aga	gac	att	cca	gaa	tta	1785
Ala	Leu	Asp	Ile	Phe	Ser	Ser	Tyr	Thr	Gly	Arg	Asp	Ile	Pro	Glu	Leu	
		485					490					495				
cca	gag	cga	gaa	gag	gga	gag	ggt	gaa	gaa	agc	gaa	ctt	caa	aac	aca	1833
Pro	Glu	Arg	Glu	Glu	Gly	Glu	Gly	Glu	Glu	Ser	Glu	Leu	Gln	Asn	Thr	
	500					505					510					
gca	tat	agc	aat	tgg	aat	cag	ccc	agg	cgg	gtg	gaa	ctc	tgg	aga	gaa	1881
Ala																
515					520					525					530	

	450	aua		cca	550	acc	agu	alt	БСС	881	gga	cga	888	atg	RRR	1929
Pro	Ser	Lys	Ser	Leu	Gly	Ile	Ser	Ile	Val	Gly	Gly	Arg	Gly	Met	Gly	
				535					540					545		
agt	cgg	cta	agc	aat	gga	gaa	gtg	atg	agg	ggc	att	ttc	atc	aaa	cat	1977
Ser	Arg	Leu	Ser	Asn	Gly	Glu	Val	Met	Arg	Gly	Ile	Phe	Ile	Lys	His	
			550					555					560			
gtt	ctg	gaa	gat	agt	сса	gct	ggc	aaa	aat	gga	acc	ttg	aaa	cct	gga	2025
Val	Leu	Glu	Asp	Ser	Pro	Ala	Gly	Lys	Asn	Gly	Thr	Leu	Lys	Pro	Gly	
		565					570					575				
gat	aga	atc	gta	gag	gca	ccc	agt	cag	tca	gag	tca	gag	cca	gag	aag	2073
Asp	Arg	Ile	Val	Glu	Ala	Pro	Ser	Gln	Ser	Glu	Ser	Glu	Pro	Glu	Lys	
	580					585					590					
gct	cca	ttg	tgc	agt	gtg	ссс	cca	ccc	cct	cct	tca	gcc	ttt	gcc	gaa	2121
Ala	Pro	Leu	Cys	Ser	Val	Pro	Pro	Pro	Pro	Pro	Ser	Ala	Phe	Ala	Glu	
595					600					605					610	
atg	ggt	agt	gat	cac	aca	cag	tca	tct	gca	agc	aaa	atc	tca	caa	gat	2169
			Asp													
				615					620		•			625	•	
									- *							
gtg	gac	aaa	gag	gat	gag	ttt	ggt	tac	agc	tee	аая	aat.	atc	ลฐล	gas	2217
			Glu													<i></i>
	F	- , -		F		0		- , -	201	P	4,0		110	6	JIU	

630	635	640
	***	070

cgt	tat	gga	acc	cta	. aca	ggc	gag	ctg	cat	atg	att	gaa	ctg	gag	aaa	2265
Arg	Туг	G13	Thr	Leu	Thr	Gly	Glu	Leu	His	Met	I l e	Glu	ı Leu	Glu	Lys	
		645	i				650					655				
ggt	cat	agt	ggt	ttg	ggc	cta	agt	ctt	gct	ggg	aac	aaa	gac	cga	tcc	2313
Gly	His	Ser	Gly	Leu	Gly	Leu	Ser	Leu	Ala	Gly	Asn	Lys	Asp	Arg	Ser	
	660					665					670					
agg	atg	agt	gtc	ttc	ata	gtg	ggg	att	gat	cca	aat	gga	gct	gca	gga	2361
Arg	Met	Ser	Val	Phe	Ile	Val	Gly	Ile	Asp	Pro	Asn	Gly	Ala	Ala	Gly	
675					680					685					690	
aaa	gat	ggt	cga	ttg	caa	att	gca	gat	gag	ctt	cta	gag	atc	aat	ggt	2409
Lys	Asp	Gly	Arg	Leu	Gln	Ile	Ala	Asp	G1u	Leu	Leu	Glu	Ile	Asn	Gly	
				695					700					705		
cag	att	tta	tat	gga	aga	agt	cat	cag	aat	gcc	tca	tca	atc	att	aaa	2457
G1n	Ile	Leu	Tyr	Gly	Arg	Ser	His	Gln	Asn	Ala	Ser	Ser	Ile	Ile	Lys	
			710					715					720			
tgt	gcc	cct	tct	aaa	gtg	aaa	ata	att	ttt	atc	aga	aat	aaa	gat	gca	2505
Cys	Ala	Pro	Ser	Lys	Val	Lys	Ile	Ile	Phe	Ile	Arg	Asn	Lys	Asp	Ala	
		725				,	730					735				

gtg aat cag atg gcc gta tgt cct gga aat gca gta gaa cct ttg cct

7 0,	1 45	11 13 11	ıne	t Ala	ıvaı	Cys	Pro	) 613	7 Asn	Ala	ı Val	Gli	ı Pr	o Le	u Pro	
	740	)				745					750					
+ 0 +	- 000	. +		4												
															t act	2601
Ser	' Asr	ser Ser	Glu	ı Asn	Leu	Gln	Asn	Lys	Glu	Thr	Glu	Pro	Thi	· Vai	Thr	
755	i				760					765					770	
act	tct	gat	gca	gct	gtg	gac	ctc	agt	tca	ttt	aaa	aat	gtg	caa	cat	2649
									Ser							
				775		_			780		-, -		, 41			
				.,,					700					785		
ctg	gag	ctt	ccc	aag	gat	cag	ggg	ggt	ttg	ggt	att	gct	atc	agc	gaa	2697
Leu	Glu	Leu	Pro	Lys	Asp	Gln	G1y	Gly	Leu	G 1 y	Ile	Ala	Ιle	Ser	Glu	
			790					795				-	800			
gaa	gat	aca	ctc	agt	gga	gtc	atc	ata	aag	agr	tta	202	o* 2 o*	00+	~~~	2715
																2745
414	пор		reu	261	dly			116	Lys	Ser	Leu	Thr	Glu	His	Gly	
		805					810					815				
													•			
gta	gca	gcc	acg	gat	gga	cga	ctc	aaa	gtc	gga	gat	cag	ata	ctg	gct	2793
Val	Ala	Ala	Thr	Asp	Gly	Arg	Leu	Lys	Val	Gly	Asp	Gln	Ile	Leu	Ala	
	820					825					830					
æŧ.	m o +	~ ·	<b>-</b>	_ 4 4	_4.											
									cct							2841
Val	Asp	Asp	Glu	Ile	Val	Val	Gly	Tyr	Pro	Ile	Glu	Lys	Phe	Ile	Ser	
835					840				1	345					850	

ctt	ctg	aag	aca	gca	aag	atg	aca	gta	aaa	ctt	acc	atc	cat	gct	gag	2889
Leu	Leu	Lys	Thr	Ala	Lys	Met	Thr	Val	Lys	Leu	Thr	Ile	His	Ala	Glu	
				855					860					865		
aat	cca	gat	tcc	cag	gct	gtt	cct	tca	gca	gct	ggt	gca	gcc	agt	gga	2937
Asn	Pro	Asp	Ser	Gln	Ala	Val	Pro	Ser	Ala	Ala	Gly	Ala	Ala	Ser	Gly	
			870					875					880			
gaa	aaa	aag	aac	agc	tcc	cag	tct	ctg	atg	gtc	cca	cag	tct	ggc	tcc	2985
Glu	Lys	Lys	Asn	Ser	Ser	Gln	Ser	Leu	Met	Val	Pro	Gln	Ser	Gly	Ser	
		885					890					895				
cca	gaa	ccg	gag	tcc	atc	cga	aat	aca	agc	aga	tca	tca	aca	cca	gca	3033
Pro	Glu	Pro	Glu	Ser	Ile	Arg	Asn	Thr	Ser	Arg	Ser	Ser	Thr	Pro	Ala	
	900					905					910					
att	ttt	gct	tct	gat	cct	gca	acc	tgc	ссс	att	atc	cct	ggc	tgc	gaa	3081
Ile	Phe	Ala	Ser	Asp	Pro	Ala	Thr	Cys	Pro	Ile	I1e	Pro	Gly	Cys	G1u	
915					920					925					930	
aca	acc	atc	gag	att	tcc	aaa	ggg	cga	aca	ggg	ctg	ggc	ctg	agc	atc	3129
Thr	Thr	Ile	Glu	Ile	Ser	Lys	Gly	Arg	Thr	Gly	Leu	Gly	Leu	Ser	Ile	
				935					940					945		
gtt	ggg	ggt	tca	gac	acg	ctg	ctg	ggt	gcc	ttt	att	atc	cat	gaa	gtt	3177
Val	Gly	Gly	Ser	Asp	Thr	Leu	Leu	Gly	Ala	Phe	I1e	Ile	His	Glu	Val	
			950					955					960			

tat	gaa	gaa	gga	gca	gca	tgt	aaa	gat	gga	aga	ctc	tgg	gct	gga	gat	3225
Tyr	Glu	Glu	Gly	Ala	Ala	Cys	Lys	Asp	Gly	Arg	Leu	Trp	Ala	Gly	Asp	
		965					970					975			٠	
cag	atc	tta	gag	gtg	aat	gga	att	gac	ttg	agg	aag	gcc	aca	cat	gat	3273
Gln	Ile	Leu	Glu	Val	Asn	Gly	Ile	Asp	Leu	Arg	Lys	Ala	Thr	His	Asp	
	980					985					990					
gaa	gca	atc	aat	gtc	ctg	aga	cag	acg	cca	cag	aga	gtg	cgc	ctg	aca	3321
Glu	Ala	Ile	Asn	Val	Leu	Arg	Gln	Thr	Pro	Gln	Arg	Val	Arg	Leu	Thr	
995					1000	)				1005					1010	
ctc	tac	aga	gat	gag	gcc	cca	tac	aaa	gag	gag	gaa	gtg	tgt	gac	acc	3369
Leu	Tyr	Arg	Asp	Glu	Ala	Pro	Tyr	Lys	Glu	Glu	G1u	Val	Cys	Asp	Thr	
				1015	i				1020					1025		
				1015	i				1020					1025		
ctc	act	att	gag			aag	aag	ccg			ggc	cta	gga			3417
				ctg	cag	aag Lys			gga	aaa				tta	agt	3417
				ctg Leu	cag				gga Gly	aaa		Leu		tta Leu	agt	3417
			Glu	ctg Leu	cag			Pro	gga Gly	aaa		Leu	Gly	tta Leu	agt	3417
Leu	Thr	Ile	Glu 1030	ctg Leu	cag Gln		Lys	Pro 1035	gga Gly	aaa Lys	Gly	Leu	Gly 1040	tta Leu	agt Ser	3417 3465
Leu	Thr	Ile	Glu 1030 aaa	ctg Leu aga	cag Gln aac	Lys	Lys	Pro 1035 gga	gga Gly gta	aaa Lys ttt	Gly gtg	Leu	Gly 1040 gac	tta Leu	agt Ser gtc	
Leu	Thr	Ile	Glu 1030 aaa Lys	ctg Leu aga	cag Gln aac	Lys	Lys	Pro 1035 gga Gly	gga Gly gta	aaa Lys ttt	Gly gtg	Leu	Gly 1040 gac Asp	tta Leu	agt Ser gtc	
Leu	Thr	Ile ggt Gly	Glu 1030 aaa Lys	ctg Leu aga	cag Gln aac	Lys	Lys act Thr	Pro 1035 gga Gly	gga Gly gta	aaa Lys ttt	Gly gtg	Leu tca Ser	Gly 1040 gac Asp	tta Leu	agt Ser gtc	
Leu att Ile	Thr gtt Val	ggt Gly	Glu 1030 aaa Lys	ctg Leu aga Arg	cag Gln aac Asn	Lys	Lys act Thr	Pro 1035 gga Gly	gga Gly gta Val	aaa Lys ttt Phe	Gly gtg Val	tca Ser 1055	Gly 1040 gac Asp	tta Leu att	agt Ser gtc Val	

1060 1065 1070

ata	ı tta	. ttg	gtg	aat	ggg	gaa	gac	gtt	cgt	aat	gcc	tcc	caa	gaa	gcg	3561
Ile	Leu	Leu	Val	Asn	Gly	Glu	Asp	Val	Arg	Asn	Ala	Ser	Gln	Glu	Ala	
107	5				108	0				108	5				1090	
gtt	gcc	gct	ttg	cta	aag	tgt	tcc	cta	ggc	aca	gta	acc	ttg	gaa	gtt	3609
Val	Ala	Ala	Leu	Leu	Lys	Cys	Ser	Leu	Gly	Thr	Val	Thr	Leu	Glu	Val	
				109	5				1100	)				1108	i	
gga	aga	atc	aaa	gct	ggt	cca	ttc	cat	tca	gag	agg	agg	сса	tet	caa	3657
						Pro										330,
			1110		Ť			1115			6	6	1120		VIII	
													1140			
acc	agc	cag	gtg	agt	gaa	ggc	agr	r t or	tet	tot	++0	ant	+++		2+2	2705
						Gly										3705
1111	501			pei	U I U				ser.	ser	rne			Pro	Leu	
		1125	)			1130						1135	į			
						gag										3753
Ser	Gly	Ser	Ser	Thr	Ser	G1 u	Ser	Leu	Glu	Ser	Ser	Ser	Lys	Lys	Asn	
	1140	)				1145					1150					
gca	ttg	gca	tet	gaa	ata	cag	gga	tta	aga	aca	gtc	gaa	atg	aaa	aag	3801
Ala	Leu	Ala	Ser	Glu	Ile	G1n	Gly	Leu	Arg	Thr	Val	Glu	Met	Lys	Lys	
1155	i				1160					1165					1170	

ggc cct act gac tea etg gga atc agc atc gct gga gga gta ggc agc

ulj	110	1111	nsþ	201	n e u	. uly	116	26 L	116	Ala	Gly	GIY	vaı	GLY	Ser	
				117	5				118	0				118	5	
сса	ctt	ggt	gat	gtg	cct	ata	ttt	att	gca	atg	atg	cac	cca	act	gga	3897
Pro	Leu	Gly	Asp	Val	Pro	Ile	Phe	Ile	Ala	Met	Met	His	Pro	Thr	Gly	
			119	0				119	5				120	0		
													-			
gtt	gca	gca	cag	acc	caa	aaa	ctc	aga	gtt	ggg	gat	agg	att	gtc	acc	3945
Val	Ala	Ala	Gln	Thr	Gln	Lys	Leu	Arg	Val	Gly	Asp	Arg	Ile	Val	Thr	
		120	5				1210	)				121	5			
atc	tgt	ggc	aca	tcc	act	gag	ggc	atg	act	cac	acc	caa	gca	gtt	aac	3993
Ile	Cys	Gly	Thr	Ser	Thr	Glu	Gly	Met	Thr	His	Thr	Gln	Ala	Val	Asn	
	1220	)				1225	i				1230	)				
cta	ctg	aaa	aat	gca	tct	ggc	tcc	att	gaa	atg	cag	gtg	gtt	gct	gga	4041
Leu	Leu	Lys	Asn	Ala	Ser	Gly	Ser	Ile	Glu	Met	Gln	Val	Val	Ala	Gly	
1235	5				1240	)				1245	i				1250	
gga	gac	gtg	agt	gtg	gtc	aca	ggt	cat	cat	cag	gag	cct	gca	agt	tcc	4089
Gly	Asp	Val	Ser	Val	Val	Thr	Gly	His	His	Gln	Glu	Pro	Ala	Ser	Ser	
				1255	i				1260					1265		
agt	ctt	tct	ttc	act	ggg	ctg	acg	tca	acc	agt	ata	ttt	cag	gat	gat	4137
Ser	Leu	Ser	Phe	Thr	Gly	Leu	Thr	Ser	Thr	Ser	Ile	Phe	Gln	Asp	Asp	

tta gga c	ct cct	caa tgt	aag to	t att	aca ct	a gag	cga gga	cca gat	4185
Leu Gly P	ro Pro	Gln Cys	Lys Se	r Ile	Thr Le	u Glu	Arg Gly	Pro Asp	
1	285		12	90			1295		
ggc tta g	gc ttc	agt ata	gtt gg	a gga	tat gg	c agc	cct cat	gga gac	4233
Gly Leu G	ly Phe	Ser Ile	Val Gl	y Gly	Tyr G1	y Ser	Pro His	Gly Asp	
1300			1305			1310	)		
tta ccc a	tt tat	gtt aaa	aca gt	g ttt	gca aa	g gga	gca gcc	tct gaa	4281
Leu Pro I	le Tyr	Val Lys	Thr Va	l Phe	Ala Ly	s Gly	Ala Ala	Ser Glu	
1315		1320	)		13.	25		1330	
gac gga c	gt ctg	aaa agg	ggc ga	t cag	atc at	t gct	gtc aat	ggg cag	4329
Asp Gly A									
		1335		•	1340			1345	
		2000						10.10	
agt cta g		oto aco	nat da	a d'aa	act at	t acc	ato ott	222 000	4377
									1011
Ser Leu G			nis Gi			1 Ala			
	1350			135	)		1360	U	
aca aaa g	gc act	gtc act	ttg at	g gtt	ctc tc	t tgaa	attggct	gccagaattg	4430
Thr Lys G	ly Thr	Val Thr	Leu Me	t Val	Leu Se	r			
1	365		13	70					
aaccaaccc	a acccc	taget ca	icctcct	ac tg	taaagag	a atgo	cactggt	cctgacaatt	4490
tttatecte	t gttca	gccgg gi	cttcaa	aa ct	gtagggg	g gaas	ataacac	ttaagtttct	4550

ttttctcatc tagaaatgct ttccttactg acaacctaac atcattttc ttttcttctt 4610
gcattttgtg aacttaaaga gaaggaatat ttgtgtaggt gaatctcgtt tttatttgtg 4670
gagatatcta atgttttgta gtcacatggg caagaattat tacatgctaa gctggttagt 4730
ataaagaaag ataattctaa agctaaccaa agaaaatgc ttcagtaagt taggatgaaa 4790
aatgaaaata taaaataaag aagaaaatct cggggagttt aaaaaaaaatg cctcaatttg 4850
gcaatctacc tcctctcccc accccaaact

<210> 4

<211> 90

<212> PRT

<213> Homo sapience

<400> 4

Ala Gly Ile Gln His Ile Glu Leu Glu Lys Gly Ser Lys Gly Leu Gly

1 5 10 1

Phe Ser Ile Leu Asp Tyr Gln Asp Pro Ile Asp Pro Ala Ser Thr Val

20 25 3

Ile Ile Ile Arg Ser Leu Val Pro Gly Gly Ile Ala Glu Lys Asp Gly

40 45

Arg Leu Leu Pro Gly Asp Arg Leu Met Phe Val Asn Asp Val Asn Leu

50

35

55

Glu Asn Ser Ser Leu Glu Glu Ala Val Glu Ala Leu Lys Gly Ala Pro
65
70
75
80
Ser Gly Thr Val Arg Ile Gly Val Ala Lys
85
90

<210> 5

<211> 91

<212> PRT

<213> Homo sapience

<400> 5

Gln Asn Val Ser Lys Glu Ser Phe Glu Arg Thr Ile Asn Ile Ala Lys

1 5 10 15

Gly Asn Ser Ser Leu Gly Met Thr Val Ser Ala Asn Lys Asp Gly Leu
20 25 30

Gly Met Ile Val Arg Ser Ile Ile His Gly Gly Ala Ile Ser Arg Asp
35 40 45

Gly Arg Ile Ala Ile Gly Asp Cys Ile Leu Ser Ile Asn Glu Glu Ser
50 55 60

Thr Ile Ser Val Thr Asn Ala Gln Ala Arg Ala Met Leu Arg Arg His
65 70 75 80

Ser Leu Ile Gly Pro Asp Ile Lys Ile Thr Tyr

85 90

<210> 6

<211> 96

<212> PRT

<213> Homo sapience

20

<400> 6

Asn Gln Pro Arg Arg Val Glu Leu Trp Arg Glu Pro Ser Lys Ser Leu

10

Gly Ile Ser Ile Val Gly Gly Arg Gly Met Gly Ser Arg Leu Ser Asn

25 Gly Glu Val Met Arg Gly Ile Phe Ile Lys His Val Leu Glu Asp Ser

30

35 40 45

Pro Ala Gly Lys Asn Gly Thr Leu Lys Pro Gly Asp Arg Ile Val Glu

50 55 60

Ala Pro Ser Gln Ser Glu Ser Glu Pro Glu Lys Ala Pro Leu Cys Ser

65 70 75 80

Val Pro Pro Pro Pro Ser Ala Phe Ala Glu Met Gly Ser Asp His

85 90 95

<210> 7

<211> 86

<212> PRT

<213> Homo sapience

20

<400> 7

Gly Glu Leu His Met Ile Glu Leu Glu Lys Gly His Ser Gly Leu Gly

1 10

Leu Ser Leu Ala Gly Asn Lys Asp Arg Ser Arg Met Ser Val Phe Ile

25 30

Val Gly Ile Asp Pro Asn Gly Ala Ala Gly Lys Asp Gly Arg Leu Gln

35 40 45

Ile Ala Asp Glu Leu Leu Glu Ile Asn Gly Gln Ile Leu Tyr Gly Arg

50 55 60

Ser His Gln Asn Ala Ser Ser Ile Ile Lys Cys Ala Pro Ser Lys Val
65 70 75 80

Lys Ile Ile Phe Ile Arg

85

<210> 8

<211> 84

<212> PRT

<213 > Homo sapience

<400> 8

Lys Asn Val Gln His Leu Glu Leu Pro Lys Asp Gln Gly Gly Leu Gly

1 5 10

Ile Ala Ile Ser Glu Glu Asp Thr Leu Ser Gly Val Ile Ile Lys Ser

20 25 30

15

Leu Thr Glu His Gly Val Ala Ala Thr Asp Gly Arg Leu Lys Val Gly

35 40

Asp Gln Ile Leu Ala Val Asp Asp Glu Ile Val Val Gly Tyr Pro Ile

50 55 60

Glu Lys Phe Ile Ser Leu Leu Lys Thr Ala Lys Met Thr Val Lys Leu

65 70 75 80

Thr Ile His Ala

<210> 9

<211> 86 <212> PRT <213> Homo sapience <400> 9 Gly Cys Glu Thr Thr Ile Glu Ile Ser Lys Gly Arg Thr Gly Leu Gly 10 15 Leu Ser Ile Val Gly Gly Ser Asp Thr Leu Leu Gly Ala Phe Ile Ile 20 25 30 His Glu Val Tyr Glu Glu Gly Ala Ala Cys Lys Asp Gly Arg Leu Trp 35 40 Ala Gly Asp Gln Ile Leu Glu Val Asn Gly Ile Asp Leu Arg Lys Ala 50 55 60 Thr His Asp Glu Ala Ile Asn Val Leu Arg Gln Thr Pro Gln Arg Val 65 70 75 80 Arg Leu Thr Leu Tyr Arg 85 <210> 10 <211> 85 <212> PRT <213 > Homo sapience <400> 10 Cys Asp Thr Leu Thr Ile Glu Leu Gln Lys Lys Pro Gly Lys Gly Leu 10 15

Gly Leu Ser Ile Val Gly Lys Arg Asn Asp Thr Gly Val Phe Val Ser

Asp Ile Val Lys Gly Gly Ile Ala Asp Pro Asp Gly Arg Leu Ile Gln Gly Asp Gln Ile Leu Leu Val Asn Gly Glu Asp Val Arg Asn Ala Ser Gln Glu Ala Val Ala Ala Leu Leu Lys Cys Ser Leu Gly Thr Val Thr Leu Glu Val Gly Arg <210> 11 <211> 89 <212> PRT <213> Homo sapience <400> 11 Gln Gly Leu Arg Thr Val Glu Met Lys Lys Gly Pro Thr Asp Ser Leu Gly Ile Ser Ile Ala Gly Gly Val Gly Ser Pro Leu Gly Asp Val Pro lle Phe Ile Ala Met Met His Pro Thr Gly Val Ala Ala Gln Thr Gln Lys Leu Arg Val Gly Asp Arg Ile Val Thr Ile Cys Gly Thr Ser Thr Glu Gly Met Thr His Thr Gln Ala Val Asn Leu Leu Lys Asn Ala Ser 

Gly Ser Ile Glu Met Gln Val Val Ala

<210> 12

<211> 88

<212> PRT

<213> Homo sapience

<400> 12

1

Pro Gln Cys Lys Ser Ile Thr Leu Glu Arg Gly Pro Asp Gly Leu Gly

5 10 15

Phe Ser Ile Val Gly Gly Tyr Gly Ser Pro His Gly Asp Leu Pro Ile

20 25 30

Tyr Val Lys Thr Val Phe Ala Lys Gly Ala Ala Ser Glu Asp Gly Arg

35 40 45

Leu Lys Arg Gly Asp Gln Ile Ile Ala Val Asn Gly Gln Ser Leu Glu

50 55 60

Gly Val Thr His Glu Glu Ala Val Ala Ile Leu Lys Arg Thr Lys Gly

65 70 75 80

Thr Val Thr Leu Met Val Leu Ser

85

<210> 13

<211> 184

<212> DNA

<213> Homo sapience

<400> 132

gctattttga aaatatattt atatctacga aaagaattgg gaaaacaaat atttaatcag	g 60
agaattattc cttaaagatt taaaatgtat ttagttgtac attttatatg ggttcacccc	120
agcacatgaa gtataatggt cagatttatt tngtatttat ttactattat aaccacttt	180
tagg	184
<210> 14	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 14	
ctccccatcc ctcgtccacc	20
<210> 15	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 15	
ctctgactct gactgactgg	20

<210> 16	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 16	
atgagtttgg ttacagctgg	20
<210> 17	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 17	
tcagagagcg ttatggaacc	20
<210> 18	
<211> 20	
<212> DNA	
<213> Artificial Sequence	

<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 18	
agtcttgctg ggaacaaaga	20
<210> 19	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 19	
actgttacta cttctgatgc	0.0
	20
<210> 20	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 20	
tctgatggtc ccacagtctg	20

```
<210> 21
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Artificially Synthesized Primer Sequence
 <400> 21
gttgtttcgc agccagggat
                                                                          20
<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially Synthesized Primer Sequence
<400> 22
{\tt ctgagcatcg\ ttgggggttc}
                                                                         20
<210> 23
<211> 20
<212> DNA
<213 > Artificial Sequence
```

```
<220>
 <223> Artificially Synthesized Primer Sequence
 <400> 23
 cctcatctct gtagagtgtc
                                                                        20
<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially Synthesized Primer Sequence
<400> 24
tgttagcccc ctcactaagg
                                                                       20
<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially Synthesized Primer Sequence
<400> 25
```

gctatgtgct aggaaatacg	20
<210> 26	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 26	
tagggagaag gatcagagcg	20
<210> 27	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
- and the state of a substitute of a substitut	
<400> 27	
acagatttct gactcactgg	20
<210> 28	
<211> 20	
2010\ DN4	

## <213> Artificial Sequence <220> <223> Artificially Synthesized Primer Sequence <400> 28 20 tggaaatagg cattcttcag <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Artificially Synthesized Primer Sequence <400> 29 20 atacaaagac ggtctaatcc <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220>

<223> Artificially Synthesized Primer Sequence

<400> 30	
cegettteee atetttagaaa e	21
<210> 31	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 31	
tatctcgtgt ggaagatgtg	20
<210> 32	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 32	
acataaatgt tgctatcacc	20
<210> 33	
<211> 20	

```
<212> DNA
 <213> Artificial Sequence
<220>
<223> Artificially Synthesized Primer Sequence
<400> 33
tgccacttag tagccgagtg
                                                                        20
<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially Synthesized Primer Sequence
<400> 34
gcattgcatt acagttgagc
                                                                       20
<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially Synthesized Primer Sequence
```

<210> 38

<400> 35	
teeteetttg acaatgtetg	20
<210> 36	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 36	
catttcgact gttcttaatc	20
<210> 37	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 37	
tcagtggatg tgccacagat	20

```
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223 > Artificially Synthesized Primer Sequence
<400> 38
cagtaggtta actgcttcgg
                                                                        20
<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223 > Artificially Synthesized Primer Sequence
<400> 39
agttccagtc tttctttcgg
                                                                        20
<210> 40
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
```

## <223> Artificially Synthesized Primer Sequence <400> 40 tttctttcac tgggctgaagt c 21 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Artificially Synthesized Primer Sequence <400> 41 cctctgaaga cggacgtctg 20 <210> 42 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Artificially Synthesized Primer Sequence <400> 42

27

ccatcctaat acgactcact atagggc

<210> 43	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 43	
ttggggtggg gagaggaggt agattgc	27
<210> 44	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 44	
actcactata gggctcgagc ggc	23
<210> 45	
<211> 27	
<212> DNA	
<213> Artificial Sequence	

<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 45	
gcacatcacc aagtgggctg cctactc	27
•	
<210> 46	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 46	
atgagtttgg ttacagctgg	20
	20
<210> 47	20
<210> 47 <211> 20	20
<210> 47 <211> 20 <212> DNA	20
<210> 47 <211> 20	20
<210> 47 <211> 20 <212> DNA <213> Artificial Sequence	20
<210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220>	20
<210> 47 <211> 20 <212> DNA <213> Artificial Sequence	20
<210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220>	20

aatctaatgc agctcgcctg

<210> 48	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 48	
agtcttgctg ggaacaaaga	20
<210> 49	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 49	
tcactttaga aggggcacat	20
<210> 50	
<211> 20	
<212> DNA	
<213> Artificial Sequence	

<400> 52

<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 50	
actgttacta cttctgatgc	20
<210> 51	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 51	
tctgatggtc ccacagtctg	20
<210> 52	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
.000	
<220>	
<223> Artificially Synthesized Primer Sequence	

gttgtttcgc agccagggat	20
<210> 53	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 53	
ctgagcatcg ttgggggttc	20
<210> 54	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
·	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 54	
cctcatctct gtagagtgtc	20
.040. 77	
<210> 55	
<211> 20	
2919× DNA	

<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 55	
tagggagaag gatcagagcg	20
<210> 56	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 56	
tcctcctttg acaatgtctg	20
•	
<210> 57	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	

```
<400> 57
tttcatcatc tacagccagt
                                                                       20
<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially Synthesized Primer Sequence
<400> 58
tgacaccctc actattgagc
                                                                       20
<210> 59
<211> 2819
<212> DNA
<213> Homo sapience
<220>
<221> CDS
<222> (43)...(2331)
<400> 59
accaccgcct ccgcggcacc ccctccttca gcctttgccg aa atg ggt agt aat
                                                                      54
```

Met Gly Ser Asn

cac	aca	cag	tca	tct	gca	agc	aaa	atc	tca	caa	gat	gtg	gac	aaa	gag	102
His	Thr	Gln	Ser	Ser	Ala	Ser	Lys	Ile	Ser	Gln	Asp	Val	Asp	Lys	Glu	
5					10					15					20	
gat	gag	ttt	ggt	tac	agc	tgg	aaa	aat	atc	aga	gag	cgt	tat	gga	acc	150
Asp	Glu	Phe	Gly	Tyr	Ser	Trp	Lys	Asn	Ιlе	Arg	G1u	Arg	Tyr	Gly	Thr	
				25					30					35		
cta	aca	ggc	gag	ctg	cat	atg	att	gaa	ctg	gag	aaa	ggt	cat	agt	ggt	198
Leu	Thr	Gly	G1u	Leu	His	Met	Ile	Glu	Leu	Glu	Lys	Gly	His	Ser	Gly	
			40					45					50			
ttg	ggc	cta	agt	ctt	gct	ggg	aac	aaa	gac	cga	tcc	agg	atg	agt	gtc	246
Leu	Gly	Leu	Ser	Leu	Ala	Gly	Asn	Lys	Asp	Arg	Ser	Arg	Met	Ser	Val	
		55					60					65				
ttc	ata	gtg	ggg	att	gat	cca	aat	gga	gct	gca	gga	aaa	gat	ggt	cga	294
Phe	Ile	Val	Gly	Ile	Asp	Pro	Asn	Gly	Ala	Ala	Gly	Lys	Asp	Gly	Arg	
	70					75					80					
ttg	caa	att	gca	gat	gag	ctt	cta	gag	atc	aat	ggt	cag	att	tta	tat	342
Leu	Gln	Ile	Ala	Asp	Glu	Leu	Leu	Glu	Ile	Asn	Gly	Gln	Ile	Leu	Tyr	
85					90					95					100	
gga	aga	agt	cat	cag	aat	gcc	tca	tca	atc	att	aaa	tgt	gcc	cct	tct	390
Gly	Arg	Ser	His	Gln	Asn	Ala	Ser	Ser	Ile	Ile	Lys	Cys	Ala	Pro	Ser	

aaa gtg aaa ata att ttt atc aga aat aaa gat gca gtg aat cag atg

Lys Val Lys Ile Ile Phe Ile Arg Asn Lys Asp Ala Val Asn Gln Met gcc gta tgt cct gga aat gca gta gaa cct ttg cct tct aac tca gaa Ala Val Cys Pro Gly Asn Ala Val Glu Pro Leu Pro Ser Asn Ser Glu aat ctt caa aat aag gag cca gag cca act gtt act act tct gat gca Asn Leu Gln Asn Lys Glu Pro Glu Pro Thr Val Thr Thr Ser Asp Ala get gtg gac etc agt tea ttt aaa aat gtg caa cat etg gag ett ecc Ala Val Asp Leu Ser Ser Phe Lys Asn Val Gln His Leu Glu Leu Pro aag gat cag ggg ggt ttg ggt att gct atc agc gaa gaa gat aca ctc Lys Asp Gln Gly Gly Leu Gly Ile Ala Ile Ser Glu Glu Asp Thr Leu agt gga gtc atc ata aag agc tta aca gag cat ggg gta gca gcc acg 

Ser Gly Val Ile Ile Lys Ser Leu Thr Glu His Gly Val Ala Ala Thr

gat gga cga ctc aaa gtc gga gat cag ata ctg gct gta gat gat gaa

Asp	Gly	Arg	Leu	Lys	Val	Gly	Asp	Gln	I 1 e	Leu	Ala	Val	Asp	Asp	Glu	
		215					220					225				
att	gtt	gtt	ggt	tac	cct	att	gaa	aag	ttt	att	agc	ctt	ctg	aag	aca	774
Ile	Val	Val	Gly	Tyr	Pro	Ile	Glu	Lys	Phe	Ile	Ser	Leu	Leu	Lys	Thr	
	230					235					240					
gca	aag	atg	aca	gta	aaa	ctt	acc	atc	cat	gct	gag	aat	cca	gat	tcc	822
		Met														
245	•				250					255				-	260	
020	got	gtt	oot	toa	d o a	or o t	ar ar t	<b></b>	or or o	a or t	<b>.</b>	<b>0</b> 22	222	220	aar	870
		Val														010
U 1 11	Ala	141	110	961	niu	Alu	ulj	nia	n i u	001	uly	uru	<i>D</i> , 3	D , U	11011	
				265					270					275		
				265					270					275		
																010
		cag		ctg					tct					ccg		918
		cag Gln	Ser	ctg				Gln	tct				Glu	ccg		918
				ctg					tct					ccg		918
Ser	Ser	Gln	Ser 280	ctg Leu	Met	Val	Pro	G1n 285	tct Ser	Gly	Ser	Pro	G1u 290	ccg Pro	Glu	
Ser	Ser		Ser 280	ctg Leu	Met	Val	Pro	G1n 285	tct Ser	Gly	Ser	Pro	G1u 290	ccg Pro	Glu	918
Ser	Ser	Gln	Ser 280 aat	ctg Leu aca	Met	Val	Pro tca	Gln 285 tca	tct Ser aca	Gly	Ser	Pro	G1u 290 ttt	ccg Pro	Glu tct	
Ser	Ser	Gln cga	Ser 280 aat	ctg Leu aca	Met	Val	Pro tca	Gln 285 tca	tct Ser aca	Gly	Ser	Pro	G1u 290 ttt	ccg Pro	Glu tct	
Ser	Ser	Gln cga Arg	Ser 280 aat	ctg Leu aca	Met	Val	Pro tca Ser	Gln 285 tca	tct Ser aca	Gly	Ser	Pro att	G1u 290 ttt	ccg Pro	Glu tct	
Ser tcc Ser	Ser atc Ile	Gln cga Arg	Ser 280 aat Asn	ctg Leu aca Thr	Met agc Ser	Val aga Arg	tca Ser 300	Gln 285 tca Ser	tct Ser aca Thr	Gly cca Pro	Ser gca Ala	Pro att Ile 305	Glu 290 ttt Phe	ccg Pro gct Ala	Glu tct Ser	
Ser tcc Ser	atc Ile	Gln cga Arg 295	Ser 280 aat Asn	ctg Leu aca Thr	Met agc Ser	Val aga Arg	tca Ser 300	Gln 285 tca Ser	tct Ser aca Thr	Gly cca Pro	gca Ala	att Ile 305	Glu 290 ttt Phe	ccg Pro gct Ala	Glu tct Ser	966

att	tcc	aaa	ggg	cga	aca	ggg	ctg	ggc	ctg	agc	atc	gtt	ggg	ggt	tca	1062
Ile	Ser	Lys	Gly	Arg	Thr	G1y	Leu	Gly	Leu	Ser	Ile	Val	Gly	Gly	Ser	
325					330					335					340	
gac	acg	ctg	ctg	ggt	gcc	ttt	att	atc	cat	gaa	gtt	tat	gaa	gaa	gga	1110
Asp	Thr	Leu	Leu	Gly	Ala	Phe	Ile	Ile	His	G1u	Val	Tyr	Glu	Glu	Gly	
				345					350					355		
gca	gca	tgt	aaa	gat	gga	aga	ctc	tgg	gct	gga	gat	cag	atc	tta	gag	1158
	Ala															
		0,0	360			0		365					370		~ 2 ~	
			000					000					010			
			. 4 4							4				. 4 .	4	1006
	aat															1206
Vai	Asn		lle	Asp	Leu	Arg		Ala	Thr	His			Ala	lle	Asn	
		375					380					385				
gtc	ctg	aga	cag	acg	сса	cag	aga	gtg	cgc	ctg	aca	ctc	tac	aga	gat	1254
Val	Leu	Arg	Gln	Thr	Pro	Gln	Arg	Val	Arg	Leu	Thr	Leu	Tyr	Arg	Asp	
	390					395					400					
gag	gcc	cca	tac	aaa	gag	gag	gaa	gtg	tgt	gac	acc	ctc	act	att	gag	1302
Glu	Ala	Pro	Tyr	Lys	Glu	Glu	Glu	Val	Cys	Asp	Thr	Leu	$Th\mathbf{r}$	Ile	Glu	
405					410					415					420	
ctg	cag	aag	aag	ccg	gga	aaa	ggc	cta	gga	tta	agt	att	gtt	ggt	aaa	1350
Leu	Gln	Lys	Lys	Pro	Gly	Lys	Gly	Leu	Gly	Leu	Ser	Ile	Val	Gly	Lys	
				425					430					435		

aga aac gat act gga gta ttt gtg tca gac att gtc aaa gga gga att

aga	aac	540	act	554	gua		5 . 5	uca	544	acc	800	aaa	554	554	act	1330
Arg	Asn	Asp	Thr	Gly	Val	Phe	Val	Ser	Asp	I 1 e	Val	Lys	Gly	Gly	Ile	
			440			-		445					450			
gca	gat	ссс	gat	gga	aga	ctg	atc	cag	gga	gac	cag	ata	tta	ttg	gtg	1446
					Arg											
	пор		пор	u.,	6	204		4111	41,	мор	<b>U111</b>		204	100	141	
		455					460					465				
aat	ggg	gaa	gac	gtt	cgt	aat	gcc	tcc	caa	gaa	gcg	gtt	gcc	gct	ttg	1494
Asn	Gly	Glu	Asp	Val	Arg	Asn	Ala	Ser	Gln	Glu	Ala	Val	Ala	Ala	Leu	
	470					475					480					
cta	aag	tgt	tcc	cta	ggc	aca	gta	acc	ttg	gaa	gtt	gga	aga	atc	aaa	1542
Leu	Lys	Cys	Ser	Leu	Gly	Thr	Val	Thr	Leu	Glu	Val	Gly	Arg	Ile	Lys	
485					490					495					500	
gct	ggt	cca	ttc	cat	tca	gag	agg	agg	сса	tct	caa	acc	agc	cag	gtg	1590
					Ser											
	41,	110	1110		501	<b></b>		5		•	4111		001		741	
				505					510					515		
agt	gaa	ggc	agc	ctg	tct	tct	ttc	act	ttt	сса	ctc	tct	gga	tcc	agt	1638
Ser	G1u	Gly	Ser	Leu	Ser	Ser	Phe	Thr	Phe	Pro	Leu	Ser	Gly	Ser	Ser	
			520					525					530			
aca	tct	gag	tca	ctg	gaa	agt	agc	tca	aag	aag	aat	gca	ttg	gca	tct	1686
Thr	Ser	Glu	Ser	Leu	G1u	Ser	Ser	Ser	Lys	Lys	Asn	Ala	Leu	Ala	Ser	

535 540 545

gaa	ata	cag	gga	tta	aga	aca	gtc	gaa	atg	aaa	aag	ggc	cct	act	gac	1734
Glu	Ile	Gln	Gly	Leu	Arg	Thr	Val	Glu	Met	Lys	Lys	Gly	Pro	Thr	Asp	
	550				_	555					560					
tca	ctg	gga	atc	agc	atc	gct	gga	gga	gta	ggc	agc	cca	ctt	ggt	gat	1782
Ser	Leu	Gly	Ile	Ser	Ile	Ala	Gly	Gly	Val	G1y	Ser	Pro	Leu	Gly	Asp	
565					570					575					580	
gtg	cct	ata	ttt	att	gca	atg	atg	cac	cca	act	gga	gtt	gca	gca	cag	1830
Val	Pro	I l e	Phe	Ile	Ala	Met	Met	His	Pro	Thr	Gly	Val	Ala	Ala	Gln	
				585					590					595		
acc	caa	aaa	ctc	aga	gtt	ggg	gat	agg	att	gtc	acc	atc	tgt	ggc	aca	1878
Thr	Gln	Lys	Leu	Arg	Val	Gly	Asp	Arg	Ile	Val	Thr	Ile	Cys	Gly	Thr	
			600					605					610			
tcc	act	gag	ggc	atg	act	cac	acc	caa	gca	gtt	aac	cta	ctg	aaa	aat	1926
Ser	Thr	Glu	Gly	Met	Thr	His	Thr	Gln	Ala	Val	Asn	Leu	Leu	Lys	Asn	
		615					620					625				
gca	tct	ggc	tcc	att	gaa	atg	cag	gtg	gtt	gct	gga	gga	gac	gtg	agt	1974
						Met										
	630					635					640					

gtg gtc aca ggt cat cat cag gag cct gca agt tcc agt ctt tct ttc

Val Val Thr Gly His His Gln Glu Pro Ala Ser Ser Ser Leu Ser Phe

act ggg ctg acg tca acc agt ata ttt cag gat gat tta gga cct cct

Thr Gly Leu Thr Ser Thr Ser Ile Phe Gln Asp Asp Leu Gly Pro Pro

gtc act ttg atg gtt ctc tct tgaattggct gccagaattg aaccaaccca

## Val Thr Leu Met Val Leu Ser

760

acccctagct	cacctcctac	tgtaaagaga	atgcactggt	cctgacaatt	tttatgctgt	2421
gttcagccgg	gtcttcaaaa	ctgtaggggg	gaaataacac	ttaagtttct	ttttctcatc	2481
tagaaatgct	ttccttactg	acaacctaac	atcatttttc	ttttcttctt	gcattttgtg	2541
aacttaaaga	gaaggaatat	ttgtgtaggt	gaatctcgtt	tttatttgtg	gagatatota	2601
atgttttgta	gtcacatggg	caagaattat	tacatgctaa	gctggttagt	ataaagaaag	2661
ataattotaa	agctaaccaa	agaaaatggc	ttcagtaagt	taggatgaaa	aatgaaaata	2721
taaaataaag	aagaaaatct	cggggagttt	aaaaaaaatg	cctcaatttg	gcaatctacc	2781
tectetecee	accccaaact	aaaaaaaaa	aaaaaaa			2819

<210> 60

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<400> 60	
gcccttagga cgcgtaatac gactc	25
<210> 61	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 61	
agccagtatc tgatctccga ctttg	25
<210> 62	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 62	
attttcactt tagaaggggc acat	25
<210> 63	
<211> 20	

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	63	
ggcat	aactt tacttacttg	20
<210>	6 4	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	64	
atctac	ctaag tcagcatcat	20
<210>	65	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Artificially Synthesized Primer Sequence	

<210> 68

<400> 65	
atttgcaggt gtgtagtcat	20
<210> 66	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 66	
tteettetgt gctacccgat	20
<210> 67	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 67	
ggactatett ecagaacatg	20

```
<211> 25
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Artificially Synthesized Primer Sequence
 <400> 68
 atcgggtcca ttccattcag agagg
                                                                        25
<210> 69
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially Synthesized Primer Sequence
<400> 69
aattgtcaag agagaaccat caaagtgg
                                                                       28
<210> 70
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
```

## <223> Artificially Synthesized Primer Sequence <400> 7 atcgatgggt agtaatcaca cacag 25 <210> 71 <211> 27 <212> DNA <213> Artificial Sequence <220> <223 > Artificially Synthesized Primer Sequence <400> 71 aattgctata ctggatccag agagtgg 27 <210> 72 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> Artificially Synthesized Peptide Sequence <400> 72 Val Asp Lys Glu Asp Glu Phe Gly Tyr Ser Trp Lys Asn Ile Arg Glu

10

15

```
Arg Tyr Gly Cys Gly
             20
<210> 73
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially Synthesized Primer Sequence
<400> 73
                                                                         25
tttgtgccca ccagagccaa gtcag
<210> 74
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially Synthesized Primer Sequence
```

.

gtgaaagggg taaaggctta gcaac

25

<210> 75

<400> 74

<211> 1776

<212> DNA

<213 > Homo sapience

<4(	)0> '	75														
c a	att	aca	cat	cag	cag	gct	atc	agc	atc	ctg	cag	aaa	gcc	aaa	gat	47
	Ile	Thr	His	Gln	G1n	Ala	Ile	Ser	Ιlе	Leu	Gln	Lys	Ala	Lys	Asp	
	1				5					10					15	
acc	gto	cag	; cta	gtt	att	gcc	aga	ggc	tca	ttg	cct	cag	ctt	gtc	agc	95
Thr	Val	Gln	Leu	Val	Ile	Ala	Arg	Gly	Ser	Leu	Pro	Gln	Leu	Val	Ser	
				20					25					30		
ccc	ata	gtt	tcc	cgt	tct	cca	tct	gca	gcc	agc	aca	att	tca	gct	cac	143
			Ser													
			35					40					45			
tct	aat	ccg	gtt	cac	tgg	caa	cac	atg	gaa	acg	att	gaa	ttg	gtg	aat	191
			Val													101
		50					5 5					60				
gat	gga	tct	ggt	ttg	gga	ttt	ggc	atc	ata	gga	gga	aaa	gca	act	ggt	239
Asp	Gly	Ser	Gly	Leu	Gly	Phe	Gly	Ile	Ile	Gly	Gly	Lys	Ala	Thr	Gly	
	65					70					75					

gtg ata gta aaa acc att ctg cct gga gga gta gct gat cag cat ggg 287

Val Ile Val Lys Thr Ile Leu Pro Gly Gly Val Ala Asp Gln His Gly

80 95

cgt	ııa	ıgı	agı	554	gac	Cac	ali	Cla	aag	all	88 L	gac	aca	gai	Cla	330
Arg	Leu	Cys	Ser	G1y	Asp	His	Ile	Leu	Lys	Ιlе	Gly	Asp	Thr	Asp	Leu	
				100					105					110		
gca	gga	atg	agc	agt	gag	caa	gta	gca	caa	gtc	ctt	agg	caa	tgt	gga	383
Ala	Gly	Met	Ser	Ser	Glu	Gln	Val	Ala	Gln	V a 1	Leu	Arg	Gln	Cys	Gly	
			115					120					125			
aat	aga	gtt	aag	ttg	atg	att	gca	aga	agt	gcc	ata	gaa	gaa	cgt	aca	431
Asn	Arg	Val	Lys	Leu	Met	Ile	Ala	Arg	Ser	Ala	Ile	Glu	Glu	Arg	Thr	
		130					135					140				
gca	ccc	act	gct	ttg	ggc	atc	acc	ctc	tcc	tca	tcc	cca	act	tca	acg	479
Ala	Pro	Thr	Ala	Leu	Gly	Ile	Thr	Leu	Ser	Ser	Ser	Pro	Thr	Ser	Thr	
	145					150					155					
cca	gag	ttg	cgg	gtt	gat	gct	tct	act	cag	aaa	ggt	gaa	gaa	agt	gag	527
Pro	Glu	Leu	Arg	Val	Asp	Ala	Ser	Thr	Gln	Lys	Gly	Glu	Glu	Ser	Glu	
160					165					170					175	
aca	ttt	gat	gta	gaa	ctc	act	aaa	aat	gtc	caa	gga	tta	gga	att	acc	575
Thr	Phe	Asp	Val	Glu	Leu	Thr	Lys	Asn	Val	Gln	Gly	Leu	Gly	Ile	Thr	
				180					185					190		
att	gct	ggc	tac	att	gga	gat	aaa	aaa	ttg	gaa	cct	tca	gga	atc	ttt	623
						Asp										

			195	i				200					205			
gta	aag	ago	att	aca	aaa	agc	agt	gcc	gtt	gag	cat	gat	gga	aga	atc	671
Val	Lys	Ser	Ile	Thr	Lys	Ser	Ser	Ala	Val	Glu	His	Asp	Gly	Arg	Ile	
		210					215					220				
caa	att	gga	gac	caa	att	ata	gca	gta	gat	ggc	aca	aac	ctt	cag	ggt	719
Gln	Ile	Gly	Asp	Gln	Ile	Ιle	Ala	Val	Asp	Gly	Thr	Asn	Leu	Gln	G 1 y	
	225					230					235					
ttt	act	aat	cag	caa	gca	gta	gag	gta	ttg	cga	cat	aca	gga	caa	act	767
Phe	Thr	Asn	Gln	Gln	Ala	Val	Glu	Val	Leu	Arg	His	Thr	Gly	Gln	Thr	
240					245					250					255	
				cta												815
Val	Leu	Leu	Thr	Leu	Met	Arg	Arg	Gly	Met	Lys	Gln	Glu	Ala	Glu	Leu	
				260					265					270		
				gac												863
Met	Ser	Arg		Asp	Val	Thr	Lys	Asp	Ala	Asp	Leu	Ser	Pro	Val	Asn	
			275					280					285			
				aaa -												911
Ala	Ser	lle	Ile	Lys	Glu	Asn	Tyr	Glu	Lys	Asp	Glu	Asp	Phe	Leu	Ser	

tcg acg aga aac acc aac ata tta cca act gaa gaa gaa ggg tat cca

Ser Thr Arg Asn Thr Asn Ile Leu Pro Thr Glu Glu Glu Gly Tyr Pro tta ctg tca gct gag ata gaa gaa ata gaa gat gca caa aaa caa gaa Leu Leu Ser Ala Glu Ile Glu Glu Ile Glu Asp Ala Gln Lys Gln Glu gct gct ctg ctg aca aaa tgg caa agg att atg gga att aac tat gaa Ala Ala Leu Leu Thr Lys Trp Gln Arg Ile Met Gly Ile Asn Tyr Glu ata gtg gtg gcc cat gtg agc aag ttt agt gag aac agt gga ttg ggg Ile Val Val Ala His Val Ser Lys Phe Ser Glu Asn Ser Gly Leu Gly ata ago ctg gaa gcg aca gtg gga cat cat ttt atc cga tct gtt cta Ile Ser Leu Glu Ala Thr Val Gly His His Phe Ile Arg Ser Val Leu cca gag ggt cct gtt gga cac agc ggg aag ctc ttc agt gga gac gag Pro Glu Gly Pro Val Gly His Ser Gly Lys Leu Phe Ser Gly Asp Glu cta ttg gaa gta aat ggc ata act tta ctt ggg gaa aat cac caa gat 

Leu Leu Glu Val Asn Gly Ile Thr Leu Leu Gly Glu Asn His Gln Asp

:

gtg	gtg	aat	atc	tta	aaa	gaa	ctg	cct	ata	gaa	gtg	aca	atg	gtg	tgc	1295
Val	Val	Asn	I 1 e	Leu	Lys	Glu	Leu	Pro	Ιlе	Glu	Val	Thr	Met	Val	Cys	
				420					425					430		
tgt	cgt	cga	act	gtg	cca	ссс	acc	acc	caa	tca	gaa	ttg	gat	agc	ctg	1343
Cys	Arg	Arg	Thr	Val	Pro	Pro	Thr	Thr	Gln	Ser	Glu	Leu	Asp	Ser	Leu	
			435					440					445			
gac	tta	tgt	gat	att	gag	cta	aca	gaa	aag	cct	cac	gta	gat	cta	ggt	1391
Asp	Leu	Cys	Asp	Ile	Glu	Leu	Thr	Glu	Lys	Pro	His	Val	Asp	Leu	Gly	
		450					455					460				
gag	ttc	atc	ggg	tca	tca	gag	cca	gag	gat	cca	gtg	ctg	gcg	atg	act	1439
Glu	Phe	Ile	Gly	Ser	Ser	Glu	Pro	Glu	Asp	Pro	Val	Leu	Ala	Met	Thr	
	465					470					475					
gat	gcg	ggt	cag	agt	aca	gaa	gag	gtt	caa	gca	cct	ttg	gcc	atg	tgg	1487
Asp	Ala	Gly	Gln	Ser	Thr	Glu	Glu	Val	Gln	Ala	Pro	Leu	Ala	Met	Trp	
480					485					490					495	
gag	gct	ggc	att	cag	cac	ata	atg	ctg	gag	aaa	ggg	agc	aaa	gga	ctt	1535
	_					Ile										
				500					505					510		
ggt	ttt	agc	att	tta	gat	tat	cag	gat	cca	att	gat	cca	gca	agc	act	1583
						Tyr										
•			515		F	- , -		520	•		F	•	525			
			2.10					200					270			

gtg att ata att cgt tct ttg gtg cct ggc ggc att gct gaa aag gat 1631 Val Ile Ile Ile Arg Ser Leu Val Pro Gly Gly Ile Ala Glu Lys Asp 530 535 540 gga cga ctt ctt cct ggt gac cga ctc atg ttt gta aac gat gtt aac 1679 Gly Arg Leu Leu Pro Gly Asp Arg Leu Met Phe Val Asn Asp Val Asn 545 550 555 ttg gaa aac agc agt ctt gag gaa gct gta gaa gca ctg aag gga gca 1727 Leu Glu Asn Ser Ser Leu Glu Glu Ala Val Glu Ala Leu Lys Gly Ala 560 570 565 575 ccg tca ggg act gtg aga ata gga gtt gct aag cct tta ccc ctt tc 1774 Pro Ser Gly Thr Val Arg Ile Gly Val Ala Lys Pro Leu Pro Leu 580 585 590

ac 1776

<210> 76

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<400> 76	
gcagatggag aacgggaaac tatgg	76
<210> 77	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially Synthesized Primer Sequence	
<400> 77	
gaacgggaaa ctatggggct gacaa	25
<210> 78	
<211> 777	
<212> DNA	
<213> Homo sapience	
<400> 78	
ttctcagtca cgcagttcca ttttaattgc tgttaatcat ttcagagaag aacactgaac	60
tttgaaaaaa atg ttg gaa gcc att gac aaa aat cgg gcc ctg cat gca	109
Met Leu Glu Ala Ile Asp Lys Asn Arg Ala Leu His Ala	

gca	gag	cgc	ttg	caa	acc	aag	ctg	cga	gaa	cgt	ggg	gat	gta	gca	aat	157
Ala	Glu	Arg	Leu	Gln	Thr	Lys	Leu	Arg	Glu	Arg	Gly	Asp	Val	Ala	Asn	
	15					20					25					
gaa	gac	aaa	ctg	agc	ctt	ctg	aag	tca	gtc	ctg	cag	agc	cct	ctc	ttc	205
Glu	Asp	Lys	Leu	Ser	Leu	Leu	Lys	Ser	Val	Leu	Gln	Ser	Pro	Leu	Phe	
30					35					40					45	
agt	cag	att	ctg	agc	ctt	cag	act	tct	gta	cag	cag	ctg	aaa	gac	cag	253
Ser	Gln	Ile	Leu	Ser	Leu	Gln	Thr	Ser	Val	Gln	Gln	Leu	Lys	Asp	Gln	
				50					55					60		
gta	aat	att	gca	act	tca	gca	act	tca	aat	att	gaa	tat	gcc	cac	gtt	301
Val	Asn	Ile	Ala	Thr	Ser	Ala	Thr	Ser	Asn	Ile	Glu	Tyr	Ala	His	Val	
			65					70					75			
cct	cat	ctc	agc	cca	gct	gtg	att	cct	act	ctg	caa	aat	gaa	tcg	ttt	349
Pro	His	Leu	Ser	Pro	Ala	Val	Ile	Pro	Thr	Leu	G1n	Asn	Glu	Ser	Phe	
		80					85					90				
tta	tta	tcc	cca	aac	aat	ggg	aat	ctg	gaa	gca	ctt	aca	gga	cct	ggt	397
Leu	Leu	Ser	Pro	Asn	Asn	Gly	Asn	Leu	Glu	Ala	Leu	Thr	Gly	Pro	Gly	
	95					100					105					
att	cca	cac	att	aat	ggg	aaa	cct	gct	tgt	gat	gaa	ttt	gat	cag	ctt	445
Ile	Pro	His	Ile	Asn	Gly	Lys	Pro	Ala	Cys	Asp	Glu	Phe	Asp	Gln	Leu	
110					115					120					125	

atc	aaa	aat	atg	gcc	cag	ggt	cgc	cat	gta	gaa	gtt	ttt	gag	ctc	ctc	493
Ile	Lys	Asn	Met	Ala	Gln	Gly	Arg	His	Val	Glu	Val	Phe	Glu	Leu	Leu	
				130					135					140		
aaa	cct	cca	tct	gga	ggc	ctt	ggg	ttt	agt	gtt	gtg	gga	cta	aga	agt	541
Lys	Pro	Pro	Ser	Gly	Gly	Leu	Gly	Phe	Ser	Val	Val	Gly	Leu	Arg	Ser	
			145					150					155			
gaa	aac	aga	gga	gag	ctg	gga	ata	ttt	gtt	caa	gag	ata	caa	gag	ggc	589
Glu	Asn	Arg	Gly	Glu	Leu	Gly	Ile	Phe	Val	Gln	Glu	Ile	Gln	Glu	Gly	
		160					165					170				
agt	gtg	gcc	cat	aga	gat	gga	aga	ttg	aaa	gaa	act	gat	caa	att	ctt	637
Ser	Val	Ala	His	Arg	Asp	Gly	Arg	Leu	Lys	G 1 u	Thr	Asp	Gln	Ile	Leu	
	175					180					185					
gct	atc	aat	gga	cag	gct	ctt	gat	cag	aca	att	aca	cat	cag	cag	gct	685
Ala	Ile	Asn	Gly	Gln	Ala	Leu	Asp	Gln	Thr	Ile	Thr	His	Gln	Gln	Ala	
190					195					200					205	
atc	agc	atc	ctg	cag	aaa	gcc	aaa	gat	act	gtc	cag	cta	gtt	att	gcc	733
Ile	Ser	Ile	Leu	Gln	Lys	Ala	Lys	Asp	Thr	Val	Gln	Leu	Val	Ile	Ala	
				210					215					220		
aga	ggc	tca	ttg	cct	cag	ctt	gtc	agc	ccc	ata	gtt	tcc	cgt			775
Arg	Glv	Ser	Leu	Pro	Gln	Len	Val	Ser	Pro	Ile	Va1	Ser	Arg			

tc

225

777

47

95

143

191

<210> 79 <211> 755 <212> DNA <213> Homo sapience <400> 79 tt cct tct gtg cta ccc gat tca gct gga aag ggc tct gag tac ctg Pro Ser Val Leu Pro Asp Ser Ala Gly Lys Gly Ser Glu Tyr Leu 1 5 10 15 ctt gaa cag agc tcc ctg gcc tgt aat gct gag tgt gtc atg ctt caa Leu Glu Gln Ser Ser Leu Ala Cys Asn Ala Glu Cys Val Met Leu Gln 20 25 30

Asn Val Ser Lys Glu Ser Phe Glu Arg Thr Ile Asn Ile Ala Lys Gly

35 40 45

aat gta tot aaa gaa tot ttt gaa agg act att aat ata gca aaa ggc

aat tot ago ota gga atg aca gtt agt got aat aaa gat ggo ttg ggg
Asn Ser Ser Leu Gly Met Thr Val Ser Ala Asn Lys Asp Gly Leu Gly
50 55 60

atg	atc	gtt	cga	agc	att	att	cat	gga	ggt	gcc	att	agt	cga	gat	ggc	239
Met	Ile	Val	Arg	Ser	Ile	Ile	His	Gly	Gly	Ala	Ile	Ser	Arg	Asp	Gly	
	65					70				_	75					
cgg	att	gcc	att	ggg	gac	tgc	atc	ttg	tcc	att	aat	gaa	gag	tct	acc	287
Arg	Ile	Ala	Ile	Gly	Asp	Cys	Ile	Leu	Ser	Ile	Asn	Glu	G1u	Ser	Thr	
80					85					90					95	
atc	agt	gta	acc	aat	gcc	cag	gca	cga	gct	atg	ttg	aga	aga	cat	tct	335
Ile	Ser	Val	Thr	Asn	Ala	Gln	Ala	Arg	Ala	Met	Leu	Arg	Arg	His	Ser	
				100					105					110		
ctc	att	ggc	cct	gac	ata	aaa	att	act	tat	gtg	cct	gca	gaa	cat	ttg	383
Leu	Ile	Gly	Pro	Asp	Ile	Lys	Ile	Thr	Tyr	Val	Pro	Ala	Glu	His	Leu	
			115					120					125			
gaa	gag	ttc	aaa	ata	agc	ttg	gga	caa	caa	tct	gga	aga	gta	atg	gca	431
Glu	Glu	Phe	Lys	Ile	Ser	Leu	Gly	Gln	Gln	Ser	Gly	Arg	Val	Met	Ala	
		130					135					140				
ctg	gat	att	ttt	tct	tca	tac	act	ggc	aga	gac	att	cca	gaa	tta	cca	479
Leu	Asp	Ile	Phe	Ser	Ser	Tyr	Thr	Gly	Arg	Asp	Ile	Pro	Glu	Leu	Pro	
	145					150					155					
gag	cga	gaa	gag	gga	gag	ggt	gaa	gaa	agc	gaa	ctt	caa	aac	aca	gca	527
					Glu											
160					165					170					175	

tat	agc	aat	tgg	aat	cag	ccc	agg	cgg	gtg	gaa	ctc	tgg	aga	gaa	cca	575
Туг	Ser	Asn	Trp	Asn	Gln	Pro	Arg	Arg	Val	Glu	Leu	Trp	Arg	Glu	Pro	
				180					185					190		
agc	aaa	tcc	tta	ggc	atc	agc	att	gtt	ggt	gga	cga	ggg	atg	ggg	agt	623
Ser	Lys	Ser	Leu	Gly	Ile	Ser	Ile	Val	Gly	Gly	Arg	Gly	Met	Gly	Ser	
			195					200					205			
cgg	cta	agc	aat	gga	gaa	gtg	atg	agg	ggc	att	ttc	atc	aaa	cat	gtt	671
Arg	Leu	Ser	Asn	Gly	Glu	Val	Met	Arg	Gly	Ile	Phe	Ile	Lys	His	Val	
		210					215					220				
ctg	gaa	gat	agt	cca	gct	ggc	aaa	aat	gga	acc	ttg	aaa	cct	gga	gat	719
Leu	Glu	Asp	Ser	Pro	Ala	Gly	Lys	Asn	Gly	Thr	Leu	Lys	Pro	Gly	Asp	
	225					230					235					
aga	atc	gta	gag	gca	ссс	agt	cag	tca	gag	tca	gag					755
Arg	Ile	Val	Glu	Ala	Pro	Ser	Gln	Ser	Glu	Ser	G1u					
240					245					250						
<210	)> 80	)														
<211	> 86	35														

<400> 80

<212> DNA

<213> Homo sapience

tt	cct	tct	gtg	cta	ccc	gat	tca	gct	gga	aag	ggc	tct	gag	tac	ctg	47
	Pro	Ser	Val	Leu	Pro	Asp	Ser	Ala	Gly	Lys	Gly	Ser	Glu	Tyr	Leu	
	1				5					10					15	
ctt	gaa	cag	ago	tec	ctg	gcc	tgt	aat	gct	gag	tgt	gto	atg	ctt	caa	9 5
Leu	Glu	Gln	Ser	Ser	Leu	Ala	. Cys	Asn	Ala	Glu	Cys	Val	Met	Leu	Gln	
				20					25					30		
aat	gta	tct	aaa	gaa	. tct	ttt	gaa	agg	act	att	aat	ata	gca	aaa	ggc	143
Asn	Val	Ser	Lys	Glu	Ser	Phe	Glu	Arg	Thr	Ile	Asn	Ile	Ala	Lys	Gly	
			35					40					45			
					atg											191
Asn	Ser		Leu	Gly	Met	Thr	Val	Ser	Ala	Asn	Lys	Asp	Gly	Leu	Gly	
		50					55					60				
					att											239
Met		Val	Arg	Ser	Ile		His	Gly	Gly	Ala		Ser	Arg	Asp	Gly	
	65					70					75					
000	a++	***	. + +			<b>.</b>	_4_	44			4					
					gac											287
80	116	nia	116	ary	Asp	cys	116	Leu	ser		Asn	Glu	Glu	Ser		
00					85					90					95	
atc	agt	gta	acc	aat	ac.c	r a of	<b>d</b> n a	000	or a t	a t œ	++~	0.00	0.01.0		4.4	005
					gcc Ala											335
				100		- II		*** 6	105	1100	шeu	WI P	VI.R	110	261.	
									100					110		

ctc	att	ggc	cct	gac	ata	aaa	att	act	tat	gtg	cct	gca	gaa	cat	ttg	383
Leu	I 1 e	Gly	Pro	Asp	Ile	Lys	I 1 e	Thr	Tyr	Val	Pro	Ala	Glu	His	Leu	
			115					120					125			
gaa	gag	ttc	aaa	ata	agc	ttg	gga	caa	caa	tct	gga	aga	gta	atg	gca	431
Glu	Glu	Phe	Lys	Ile	Ser	Leu	Gly	Gln	Gln	Ser	Gly	Arg	Val	Met	Ala	
		130					135					140				
ctg	gat	att	ttt	tct	tca	tac	act	ggc	aga	gac	att	cca	gaa	tta	cca	479
Leu	Asp	Ile	Phe	Ser	Ser	Tyr	Thr	Gly	Arg	Asp	Ile	Pro	Glu	Leu	Pro	
	145					150					155					
gag	cga	gaa	gag	gga	gag	ggt	gaa	gaa	agc	gaa	ctt	caa	aac	aca	gca	527
Glu	Arg	Glu	Glu	Gly	Glu	Gly	G1u	Glu	Ser	Glu	Leu	Gln	Asn	Thr	Ala	
160					165					170					175	
tat	agc	aat	tgg	aat	cag	ccc	agg	cgg	gtg	gaa	ctc	tgg	aga	gaa	cca	575
Tyr	Ser	Asn	Trp	Asn	Gln	Pro	Arg	Arg	Val	Glu	Leu	Trp	Arg	Glu	Pro	
				180					185					190		
agc	aaa	tcc	tta	ggc	atc	agc	att	gtt	ggt	gga	cga	ggg	atg	ggg	agt	623
Ser	Lys	Ser	Leu	Gly	Ile	Ser	Ile	Val	Gly	Gly	Arg	Gly	Met	Gly	Ser	
			195					200					205			
cgg	cta	agc	aat	gga	gaa	gtg	atg	agg	ggc	att	ttc	atc	aaa	cat	gtt	671
Arg	Leu	Ser	Asp	Glv	Glo	Va 1	Met	Arg	Glv	Ile	Phe	He	Lvs	His	Val	

270

47

285

ctg gaa gat agt cca gct ggc aaa aat gga acc ttg aaa cct gga gat 719 Leu Glu Asp Ser Pro Ala Gly Lys Asn Gly Thr Leu Lys Pro Gly Asp 225 230 235 aga atc gta gag gtg gat gga atg gac ctc aga gat gca agc cat gaa 767 Arg Ile Val Glu Val Asp Gly Met Asp Leu Arg Asp Ala Ser His Glu 240 250 255 245 caa gct gtg gaa gcc att cgg aaa gca ggc aac cct gta gtc ttt atg 815 Gln Ala Val Glu Ala Ile Arg Lys Ala Gly Asn Pro Val Val Phe Met

215

gta tag agc ttt att aca gac caa ggg cac cca gtc agt cag agt cag 863
Val

280

265

ag . 865

<210> 81

<211> 965

<212> DNA

<213> Homo sapience

260

275

210

<400> 81

tt cct tct gtg cta ccc gat tca gct gga aag ggc tct gag tac ctg

	Pro	Ser	Val	Leu	Pro	Asp	Ser	Ala	Gly	Lys	Gly	Ser	Glu	Tyr	Leu	
	1				5					10					15	
ctt	gaa	cag	ago	tcc	ctg	gcc	tgt	aat	gct	gag	tgt:	gto	atg	ctt	caa	95
					Leu											
				20			·		25					30	•••	
									20					00		
aat	gta	tct	aaa	gaa	tct	ttt	gaa	agg	act	att	aat	ata	gca	aaa	gge	143
					Ser											110
			35					40					45	2,5	uly	
													10			
aat	tet	a ም c	cta	gga	atg	303	ort t	a or t	a o t	22+	000	<b>40</b> +	~~~	44		101
					Met											191
	001	50	шси	ulj	nec	1111	55	261	nia	ASII	гìя		gry	Leu	GIŞ	
		00					33					60				
a + a	0+0	<b>~</b> ++			-44	- 4 4	4		1							
					att											239
met		vai	Arg	Ser	Ile		His	Gly	Gly	Ala		Ser	Arg	Asp	Gly	
	65					70					75					
cgg	att	gcc	att	ggg	gac	tgc	atc	ttg	tcc	att	aat	gaa	gag	tct	acc	287
Arg	Ile	Ala	Ile	Gly	Asp	Cys	Ile	Leu	Ser	Ile	Asn	Glu	Glu	Ser	Thr	
80					85					90					95	
atc	agt	gta	acc	aat	gcc	cag	gca	cga	gct	atg	ttg	aga	aga	cat	tct	335
Ile	Ser	Val	Thr	Asn	Ala	G1 n	Ala	Arg	Ala	Met	Leu	Arg	Arg	His	Ser	
				100					105					110		

cto	att	ggc	cct	gac	ata	aaa	att	act	tat	gtg	cct	gca	gaa	cat	ttg	383
Leu	Ile	Gly	Pro	Asp	Ile	Lys	Ile	Thr	Туг	Val	Pro	Ala	Glu	His	Leu	
			115					120					125			
gaa	gag	ttc	aaa	ata	agc	ttg	gga	caa	caa	tct	gga	aga	gta	atg	gca	431
Glu	Glu	Phe	Lys	Ile	Ser	Leu	Gly	Gln	Gln	Ser	Gly	Arg	Val	Met	Ala	
		130					135					140				
ctg	gat	att	ttt	tct	tca	tac	act	ggc	aga	gac	att	cca	gaa	tta	cca	479
Leu	Asp	Ile	Phe	Ser	Ser	Tyr	Thr	Gly	Arg	Asp	Ile	Pro	Glu	Leu	Pro	
	145					150					155					
gag	cga	gaa	gag	gga	gag	ggt	gaa	gaa	agc	gaa	ctt	caa	aac	aca	gca	527
Glu	Arg	Glu	Glu	Gly	Glu	Gly	Glu	Glu	Ser	Glu	Leu	Gln	Asn	Thr	Ala	
160					165					170					175	
tat	agc	aat	tgg	aat	cag	ccc	agg	cgg	gtg	gaa	ctc	tgg	aga	gaa	cca	575
Туr	Ser	Asn	Trp	Asn	Gln	Pro	Arg	Arg	Val	Glu	Leu	Trp	Arg	Glu	Pro	
				180					185					190		
ago	aaa	tcc	tta	ggc	atc	agc	att	gtt	ggt	gga	cga	ggg	atg	ggg	agt	623
Ser	Lys	Ser	Leu	Gly	Ile	Ser	Ile	Val	Gly	Gly	Arg	Gly	Met	Gly	Ser	
			195					200					205			
cgg	cta	agc	aat	gga	gaa	gtg	atg	agg	ggc	att	ttc	atc	aaa	cat	gtt	671
Arg	Leu	Ser	Asn	Gly	Glu	Val	Met	Arg	Gly	Ile	Phe	Ile	Lys	His	Val	
		210					215					220				

ctg	gaa	gat	agt	сса	gct	ggc	aaa	aat	gga	acc	ttg	aaa	cct	gga	gat	719
Leu	Glu	Asp	Ser	Pro	Ala	Gly	Lys	Asn	Gly	Thr	Leu	Lys	Pro	Gly	Asp	
	225					230					235					
aga	atc	gta	gag	gtg	gat	gga	atg	gac	ctc	aga	gat	gca	agc	cat	gaa	767
Arg	Ile	Val	Glu	Val	Asp	Gly	Met	Asp	Leu	Arg	Asp	Ala	Ser	His	Glu	
240					245					250					255	
caa	gct	gtg	gaa	gcc	att	cgg	aaa	gca	ggc	aac	cct	gta	gtc	ttt	atg	815
Gln	Ala	Val	Glu	Ala	Ile	Arg	Lys	Ala	Gly	Asn	Pro	Val	Val	Phe	Met	
				260					265					270		
gta	cag	agc	att	ata	aac	aga	cca	agg	aaa	tcc	cct	ttg	cct	tcc	ttg	863
Val	Gln	Ser	Ile	Ile	Asn	Arg	Pro	Arg	Lys	Ser	Pro	Leu	Pro	Ser	Leu	
			275					280					285			
ctg	cac	aac	ctt	tac	cct	aag	tac	aac	ttc	agc	agc	act	aac	cca	ttt	911
Leu	His	Asn	Leu	Tyr	Pro	Lys	Tyr	Asn	Phe	Ser	Ser	Thr	Asn	Pro	Phe	
		290					295					300				
gct	gac	tct	cta	caa	atc	aac	gcc	gac	aag	gca	ссс	agt	cag	tca	gag	959
Ala	Asp	Ser	Leu	Gln	I 1 e	Asn	Ala	Asp	Lys	Ala	Pro	Ser	Gln	Ser	Glu	
	305					310					315					
tca	gag															965
car.	C I 11															

<210> 82

<211> 2000

<212> PRT

<213> Homo sapience

<400> 82

Met Leu Glu Ala Ile Asp Lys Asn Arg Ala Leu His Ala

Ala Glu Arg Leu Gln Thr Lys Leu Arg Glu Arg Gly Asp Val Ala Asn

Glu Asp Lys Leu Ser Leu Leu Lys Ser Val Leu Gln Ser Pro Leu Phe

3.0

Ser Gln Ile Leu Ser Leu Gln Thr Ser Val Gln Gln Leu Lys Asp Gln

Val Asn Ile Ala Thr Ser Ala Thr Ser Asn Ile Glu Tyr Ala His Val

Pro His Leu Ser Pro Ala Val Ile Pro Thr Leu Gln Asn Glu Ser Phe

Leu Leu Ser Pro Asn Asn Gly Asn Leu Glu Ala Leu Thr Gly Pro Gly

Ile Pro His Ile Asn Gly Lys Pro Ala Cys Asp Glu Phe Asp Gln Leu

Ile Lys Asn Met Ala Gln Gly Arg His Val Glu Val Phe Glu Leu Leu

Lys Pro Pro Ser Gly Gly Leu Gly Phe Ser Val Val Gly Leu Arg Ser

			145	i				150	)				155		
Glι	ı Asn	Arg	Gly	Glu	ı Leu	Gly	ı Ile	Phe	e Va.l	Glr	Glu	ı Ile	e Glr	ı Glu	e Gly
		160	I				165					170			
Ser	Val	Ala	. His	Arg	Asp	Gly	Arg	Leu	Lys	Glu	Thr	Asp	Gln	Ile	Leu
	175					180					185				
Ala	. Ile	Asn	Gly	Gln	Ala	Leu	Asp	G1n	Thr	· Ile	Thr	His	Gln	Gln	Ala
190					195					200					205
Ile	Ser	Ile	Leu	Gln	Lys	Ala	Lys	Asp	Thr	Val	Gln	Leu	Val	Ile	Ala
				210					215					220	
Arg	Gly	Ser	Leu	Pro	Gln	Leu	Val	Ser	Pro	Ile	Val	Ser	Arg	Ser	Pro
			225					230					235		
Ser	Ala	Ala	Ser	Thr	Ile	Ser	Ala	His	Ser	Asn	Pro	Val	His	Trp	Gln
		240					245					250			
His	Met	Glu	Thr	Ile	Glu	Leu	Val	Asn	Asp	Gly	Ser	Gly	Leu	Gly	Phe
	255					260					265				
Gly	Ile	Ile	Gly	Gly	Lys	Ala	Thr	Gly	Val	Ile	Val	Lys	Thr	Ile	Leu
270					275					280					285
Pro	Gly	Gly	Val	Ala	Asp	Gln	His	Gly	Arg	Leu	Cys	Ser	Gly	Asp	His
				290					295				•	300	
Ile	Leu	Lys	Ile	Gly	Asp	Thr	Asp	Leu	Ala	Gly	Met	Ser	Ser	Glu	G1n
			305					310					315		
Val	Ala	Gln	Val	Leu	Arg	Gln	Cys	Gly	Asn	Arg	Val	Lys	Leu	Met	Ile
		320					325					330			
Ala	Arg	Ser	Ala	Ile	Glu	Glu	Arg	Thr	Ala	Pro	Thr	Ala	Leu	Gly	Ile
	335					340					345				
Thr	Leu	Ser	Ser	Ser	Pro	Thr	Ser	Thr	Pro	Glu	Leu	Arg	Val	Asp	Ala
350					355					360					365

Ser	Thr	Gln	Lys	Gly	Glu	Glu	Ser	Glu	Thr	Phe	Asp	Val	Glu	Leu	Thr
				370					375					380	
Lys	Asn	Val	Gln	Gly	Leu	Gly	Ile	Thr	Ile	Ala	Gly	Tyr	Ile	Gly	Asp
			385					390					395		
Lys	Lys	Leu	Glu	Pro	Ser	Gly	Ile	Phe	Val	Lys	Ser	Ile	Thr	Lys	Ser
		400					405					410			
Ser	Ala	Val	Glu	His	Asp	Gly	Arg	I1e	Gln	I 1 e	Gly	Asp	Gln	Ile	Ile
	415					420					425				
Ala	Val	Asp	Gly	Thr	Asn	Leu	Gln	Gly	Phe	Thr	Asn	Gln	G1n	Ala	Val
430					435					440					445
Glu	Val	Leu	Arg	His	Thr	Gly	Gln	Thr	Val	Leu	Leu	Thr	Leu	Met	Arg
				450					455					460	
Arg	Gly	Met	Lys	Gln	Glu	Ala	Glu	Leu	Met	Ser	Arg	Glu	Asp	Val	Thr
			465					470					475		
Lys	Asp	Ala	Asp	Leu	Ser	Pro	Val	Asn	Ala	Ser	Ile	Ile	Lys	Glu	Asn
		480					485					490			
Tyr	Glu	Lys	Asp	Glu	Asp	Phe	Leu	Ser	Ser	Thr	Arg	Asn	Thr	Asn	Ile
	495					500					505				
Leu	Pro	Thr	Glu	Glu	Glu	Gly	Tyr	Pro	Leu	Leu	Ser	Ala	Glu	Ile	Glu
510		,	. ,		515					520					525
Glu	Ile	Glu	Asp	Ala	Gln	Lys	Gln	Glu	Ala	Ala	Leu	Leu	Thr	Lys	Trp
				530					535					540	
Gln	Arg	Ile	Met	Gly	Ile	Asn	Tyr	Glu	Ile	Val	Val	Ala	His	Val	Ser
			545					550					555		
Lys	Phe	Ser	Glu	Asn	Ser	Gly	Leu	Gly	Ile	Ser	Leu	Glu	Ala	Thr	Val
		560					565					570			
Glv	His	His	Phe	Ile	Arg	Ser	Val	Len	Pro	G I u	Glv	Pro	Va1	Glv	His

	575					580					585				
Ser	Gly	Lys	Leu	Phe	Ser	Gly	Asp	Glu	Leu	Leu	Glu	Val	Asn	Gly	I 1 e
590					595					600					605
Thr	Leu	Leu	Gly	Glu	Asn	His	Gln	Asp	Val	Val	Asn	Ile	Leu	Lys	Glu
				610					615					620	
Leu	Pro	Ile	Glu	Val	Thr	Met	Val	Cys	Cys	Arg	Arg	Thr	Val	Pro	Pro
			625					630					635		
Thr	Thr	Gln	Ser	Glu	Leu	Asp	Ser	Leu	Asp	Leu	Cys	Asp	Ile	G1 u	Leu
		640					645					650			
Thr	Glu	Lys	Pro	His	Val	Asp	Leu	Gly	Glu	Phe	Ile	Gly	Ser	Ser	G1u
	655					660			-		665				
Pro	G1u	Asp	Pro	Val	Leu	Ala	Met	Thr	Asp	Ala	Gly	Gln	Ser	Thr	Glu
670					675					680					685
Glu	Val	Gln	Ala	Pro	Leu	Ala	Met	Trp	Glu	Ala	Gly	Ile	Gln	His	Ile
				690					695					700	
Met	Leu	Glu	Lys	Gly	Ser	Lys	Gly	Leu	Gly	Phe	Ser	Ile	Leu	Asp	Tyr
			705				-	710					715		
Gln	Asp	Pro	Ile	Asp	Pro	Ala	Ser	Thr	Val	I 1 e	Ile	Ile	Arg	Ser	Leu
		720					725					730			
Val	Pro	Gly	Gly	Ile	Ala	Glu	Lys	Asp	Gly	Arg	Leu	Leu	Pro	Gly	Asp
	735					740					745				
Arg	Leu	Met	Phe	Val	Asn	Asp	Val	Asn	Leu	Glu	Asn	Ser	Ser	Leu	Glu
750					755					760					765
Glu	Ala	Val	Glu	Ala	Leu	Lys	Gly	Ala	Pro	Ser	Gly	Thr	Val	Arg	Ile
				770					775					780	
Gly	Val	Ala	Lys	Pro	Leu	Pro	Leu	Ser	Pro	Glu	Glu	Gly	Tyr	Val	Ser
			705					700					705		

Ala	Lys	Glu	Asp	Ser	Phe	Leu	Tyr	Pro	Pro	His	Ser	Cys	Glu	Glu	Ala
		800					805					810			
Gly	Leu	Ala	Asp	Lys	Pro	Leu	Phe	Arg	Ala	Asp	Leu	Ala	Leu	Val	Gly
	815					820					825				
Thr	Asn	Asp	Ala	Asp	Leu	Val	Asp	Glu	Ser	Thr	Phe	Glu	Ser	Pro	Tyr
830					835					840					845
Ser	Pro	Glu	Asn	Asp	Ser	Ile	Tyr	Ser	Thr	Gln	Ala	Ser	Ile	Leu	Ser
				850					855					860	
Leu	His	Gly	Ser	Ser	Cys	G1y	Asp	Gly	Leu	Asn	Tyr	Gly	Ser	Ser	Leu
			865					870					875		
Pro	Ser	Ser	Pro	Pro	Lys	Asp	Val	Ile	Glu	Asn	Ser	Cys	Asp	Pro	Val
		880					885					890			
Leu	Asp	Leu	His	Met	Ser	Leu	Glu	G1u	Leu	Tyr	Thr	Gln	Asn	Leu	Leu
	895					900					905				
Glu	Arg	Gln	Asp	Glu	Asn	Thr	Pro	Ser	Val	Asp	Ile	Ser	Met	Gly	Pro
910					915					920					925
Ala	Ser	Gly	Phe	Thr	Ile	Asn	Asp	Tyr	Thr	Pro	Ala	Asn	Ala	Ile	G1u
				930					935					940	
Gln	Gln	Tyr	Glu	Cys	Glu	Asn	Thr	Ile	Val	Trp	Thr	Glu	Ser	His	Leu
			945					950					955		
Pro	Ser	Glu	Val	Ile	Ser	Ser	Ala	Glu	Leu	Pro	Ser	Val	Leu	Pro	Asp
		960					965					970			
Ser	Ala	Gly	Lys	Gly	Ser	Glu	His	Leu	Leu	Glu	G1n	Ser	Ser	Leu	Ala
	975					980					985				
Cys	Asn	Ala	Glu	Cys	Val	Met	Leu	Gln	Asn	Val	Ser	Lys	Glu	Ser	Phe
990					995					1000	)				1005
C1	4	ጥሎ	11.	4	11.	41.	T	C 1		C	0	T	C1	W.+	<b>Th.</b>

				101	0				101	5				102	0
Val	Ser	Ala	Asn	Lys	Asp	Gly	Leu	Gly	Met	Ιlε	Val	Arg	Ser	Ile	Ile
			102	5				103	0				103	5	
His	Gly	Gly	Ala	Ile	Ser	Arg	Asp	Gly	Arg	Ile	Ala	Ile	Gly	Asp	Cys
		104	0				104	5				105	0		
Ile	Leu	Ser	Ile	Asn	G1u	Glu	Ser	Thr	Ile	Ser	Val	Thr	Asn	Ala	Gln
	105	5				106	0				106	5			
Ala	Arg	Ala	Met	Leu	Arg	Arg	His	Ser	Leu	Ile	Gly	Pro	Asp	Ile	Lys
107	0				107	5				108	0				1088
Ile	Thr	Tyr	Val	Pro	Ala	Glu	His	Leu	Glu	Glu	Phe	Lys	Ile	Ser	Leu
				109	0				109	ō				1100	)
Gly	Gln	Gln	Ser	Gly	Arg	Val	Met	Ala	Leu	Asp	Ile	Phe	Ser	Ser	Tyr
			110	5				1110	0				1118	j	
Thr	Gly	Arg	Asp	Ile	Pro	Glu	Leu	Pro	Glu	Arg	Glu	Glu	Gly	Glu	Gly
		112	0				1125	5				1130	)		
Glu	Glu	Ser	Glu	Leu	Gln	Asn	Thr	Ala	Tyr	Ser	Asn	Trp	Asn	Gln	Pro
	1138	i				1140	)				1145	i			
Arg	Arg	Val	Glu	Leu	Trp	Arg	Glu	Pro	Ser	Lys	Ser	Leu	Gly	Ile	Ser
115(	)				1155	i				1160	)				1165
Ile	Val	Gly	Gly	Arg	G1y	Met	Gly	Ser	Arg	Leu	Ser	Asn	Gly	Glu	Val
				1170	)				1175	i				1180	
Met	Arg	Gly	Ile	Phe	Ile	Lys	His	Val	Leu	Glu	Asp	Ser	Pro	Ala	Gly
			1185	i				1190	)				1195		
Lys	Asn	Gly	Thr	Leu	Lys	Pro	Gly	Asp	Arg	Ile	Val	Glu	Ala	Pro	Ser
		1200	)				1205					1210			
Gln	Ser	Glu	Ser	Glu	Pro	Glu	Lys	Ala	Pro	Leu	Cys	Ser	Val	Pro	Pro
	1215					1220					1995				

Pro	Pro	Pro	Ser	Ala	Phe	Ala	Glu	Met	Gly	Ser	Asp	His	Thr	Gln	Ser
123	0				123	5				124	0				1245
Ser	Ala	Ser	Lys	Ile	Ser	Gln	Asp	Val	Asp	Lys	Glu	Asp	Glu	Phe	Gly
				125	0				125	5				1260	)
Tyr	Ser	Trp	Lys	Asn	Ile	Arg	Glu	Arg	Tyr	Gly	Thr	Leu	Thr	Gly	Glu
			126	5				1270	)				1275	i	
Leu	His	Met	Ile	Glu	Leu	Glu	Lys	Gly	His	Ser	Gly	Leu	Gly	Leu	Ser
		128	0				128	5				1290	)		
Leu	Ala	Gly	Asn	Lys	Asp	Arg	Ser	Arg	Met	Ser	Val	Phe	Ile	Val	Gly
	129	õ				1300	)				1305	i			
Ile	Asp	Pro	Asn	Gly	Ala	Ala	Gly	Lys	Asp	Gly	Arg	Leu	G1n	Ile	Ala
1310	)				1318	5				1320	)				1325
Asp	Glu	Leu	Leu	Glu	Ile	Asn	Gly	Gln	Ile	Leu	Tyr	G1y	Arg	Ser	His
				1330	)				1335	j				1340	1
Gln	Asn	Ala	Ser	Ser	Ile	Ile	Lys	Cys	Ala	Pro	Ser	Lys	Val	Lys	Ile
			1345	j .				1350	)				1355		
Ile	Phe	Ile	Arg	Asn	Lys	Asp	Ala	Val	Asn	Gln	Met	Ala	Val	Cys	Pro
		136	)				1365	j				1370	<b>†</b>		
Gly	Asn	Ala	Val	Glu	Pro	Leu	Pro	Ser	Asn	Ser	Glu	Asn	Lęu	Gln	Asn
	1375	i				1380	)				1385				
Lys	Glu	Thr	Glu	Pro	Thr	Val	Thr	Thr	Ser	Asp	Ala	Ala	Val	Asp	Leu
1390	)				1395	i				1400	1				1405
Ser	Ser	Phe	Lys	Asn	Val	Gln	His	Leu	G1u	Leu	Pro	Lys	Asp	Gln	Gly
				1410	)				1415					1420	
Gly	Leu	Gly	Ile	Ala	Ile	Ser	Glu	Glu	Asp	Thr	Leu	Ser	Gly	Val	Ile
			1425	i				1430	1				1435		
Ile	Lvs	Ser	Len	Thr	Glo	His	Glv	Val	412	4 l a	Thr	Aen	G1 v	Aro	Lau

		1440	)				1445	i				1450			
Lys	Val	Gly	Asp	Gln	Ile	Leu	Ala	Val	Asp	Asp	Glu	Ile	Val	Val	Gly
	1455	i				1460	)				1465				
Tyr	Pro	Ile	Glu	Lys	Phe	Ile	Ser	Leu	Leu	Lys	Thr	Ala	Lys	Met	Thr
1470	)				1475	j				1480	)				1485
Val	Lys	Leu	Thr	Ile	His	Ala	Glu	Asn	Pro	Asp	Ser	Gln	Ala	Val	Pro
				1490	)				1495	i				1500	
Ser	Ala	Ala	Gly	Ala	Ala	Ser	Gly	G1u	Lys	Lys	Asn	Ser	Ser	Gln	Ser
			1505	j.				1510	l				1515	i	
Leu	Met	Val	Pro	Gln	Ser	Gly	Ser	Pro	Glu	Pro	G1u	Ser	Ile	Arg	Asn
	Ų	1520	)				1525	;				1530			
Thr	Ser	Arg	Ser	Ser	Thr	Pro	Ala	Ile	Phe	Ala	Ser	Asp	Pro	Ala	Thr
	1535	i				1540	)				1545				
Cys	Pro	Ile	Ile	Pro	Gly	Cys	Glu	Thr	Thr	Ile	Glu	Ile	Ser	Lys	Gly
155(	)				1555	i				1560	1				1565
Arg	Thr	Gly	Leu	Gly	Leu	Ser	Ile	Val	Gly	Gly	Ser	Asp	Thr	Leu	Leu
				1570	,				1575					1580	
Gly	Ala	Phe	Ile	Ile	His	Glu	Val	Tyr	Glu	Glu	Gly	Ala	Ala	Cys	Lys
			1585	i				1590	)				1595	i	
Asp	Gly	Arg		Trp	Ala	Gly	Asp	Gln	Ile	Leu	Glu	Val	Asn	Gly	Ile
		1600					1605	i				1610	1		
Asp	Leu	Arg	Lys	Ala	Thr	Hiș	Asp	Glu	Ala	Ile	Asn	Val	Leu	Arg	Gln
	1618	i .				1620	)				1625	i			
Thr	Pro	G1n	Arg	Val	Arg	Leu	Thr	Leu	Tyr	Arg	Asp	G1u	Ala	Pro	Tyr
1630	)				1635	i				1640	)				164
Lys	Glu	Glu	Glu	Val	Cys	Asp	Thr	Leu	Thr	Ile	Glu	Leu	Gln	Lys	Lys
				1650	1				1655	;				1660	1

Pro	Gly	Lys	Gly	Leu	Gly	Leu	Ser	ile	Val	Gly	Lys	Arg	Asn	Asp	Thr
			1668	5				1670	)				1675	i	
Gly	Val	Phe	Val	Ser	Asp	Ile	Val	Lys	Gly	Gly	Ile	Ala	Asp	Pro	Asp
		1680	)				1685	5				1690	)		
Gly	Arg	Leu	Ile	Gln	Gly	Asp	Gln	Ile	Leu	Leu	Val	Asn	Gly	Glu	Asp
	1695	5				1700	)				1705	i			
Val	Arg	Asn	Ala	Ser	Gln	Glu	Ala	Val	Ala	Ala	Leu	Leu	Lys	Cys	Ser
1710	)				1715	j .				1720	)				1725
Leu	Gly	Thr	Val	Thr	Leu	Glu	Val	Gly	Arg	Ile	Lys	Ala	Gly	Pro	Phe
				1730	)				1735	i				1740	
His	Ser	Glu	Arg	Arg	Pro	Ser	Gln	Thr	Ser	Gln	Val	Ser	Glu	Gly	Ser
			1745	i				1750	)				1755	!	
Leu	Ser	Ser	Phe	Thr	Phe	Pro	Leu	Ser	Gly	Ser	Ser	Thr	Ser	Glu	Ser
		1760	)				1765	;				1770	•		
Leu	G1u	Ser	Ser	Ser	Lys	Lys	Asn	Ala	Leu	Ala	Ser	Glu	Ile	Gln	Gly
	1775	j				1780	)				1785	i			
Leu	Arg	Thr	Val	Glu	Met	Lys	Lys	Gly	Pro	Thr	Asp	Ser	Leu	Gly	Ile
1790	)				1795	5				1800	)				1805
Ser	Ile	Ala	Gly	Gly	Val	Gly	Ser	Pro	Leu	Gly	Asp	Val	Pro	Ile	Phe
				1810	)				1815	j				1820	
Ile	Ala	Met	Met	His	Pro	Thr	Gly	Val	Ala	Ala	Gln	Thr	Gln	Lys	Leu
			1825	i				1830	)				1835	I	
Arg	Val	Gly	Asp	Arg	Ile	Val	Thr	Ile	Cys	Gly	Thr	Ser	Thr	Glu	Gly
		1840	)				1845	<b>j</b>				1850	<b>;</b>		
Met	Thr	His	Thr	Gln	Ala	Val	Asn	Leu	Leu	Lys	Asn	Ala	Ser	Gly	Ser
	1855	,				1860	)				1865	i			
Ile	Glu	Met	Gln	Val	Val	Ala	Gly	Gly	Asp	Val	Ser	Val	Val	Thr	Gly

His His Gln Glu Pro Ala Ser Ser Ser Leu Ser Phe Thr Gly Leu Thr Ser Thr Ser Ile Phe Gln Asp Asp Leu Gly Pro Pro Gln Cys Lys Ser Ile Thr Leu Glu Arg Gly Pro Asp Gly Leu Gly Phe Ser Ile Val Gly Gly Tyr Gly Ser Pro His Gly Asp Leu Pro Ile Tyr Val Lys Thr Val Phe Ala Lys Gly Ala Ala Ser Glu Asp Gly Arg Leu Lys Arg Gly Asp Gln Ile Ile Ala Val Asn Gly Gln Ser Leu Glu Gly Val Thr His Glu Glu Ala Val Ala Ile Leu Lys Arg Thr Lys Gly Thr Val Thr Leu Met Val Leu Ser <210> 83 <211> 2070 <212> PRT <213> Homo sapience

<400> 83

Met Leu Glu Ala Ile Asp Lys Asn Arg Ala Leu His Ala

1 5 10

Ala Glu Arg Leu Gln Thr Lys Leu Arg Glu Arg Gly Asp Val Ala Asn

	15					20					25				
Glu	Asp	Lys	Leu	Ser	Leu	Leu	Lys	Ser	Val	Leu	Gln	Ser	Pro	Leu	Phe
30					35					40					45
Ser	Gln	Ile	Leu	Ser	Leu	Gln	Thr	Ser	Val	Gln	Gln	Leu	Lys	Asp	Gln
				50					55					60	
Val	Asn	Ile	Ala	Thr	Ser	Ala	Thr	Ser	Asn	l l e	Glu	Tyr	Ala	His	Val
			65					70					75		
Pro	His	Leu	Ser	Pro	Ala	Val	Ile	Pro	Thr	Leu	G1n	Asn	G1u	Ser	Phe
		80					85					90			
Leu	Leu	Ser	Pro	Asn	Asn	Gly	Asn	Leu	Glu	Ala	Leu	Thr	Gly	Pro	Gly
	95					100					105				
Ile	Pro	His	Ile	Asn	Gly	Lys	Pro	Ala	Cys	Asp	Glu	Phe	Asp	Gln	Leu
110					115					120					125
Ile	Lys	Asn	Met	Ala	Gln	Gly	Arg	His	Val	Glu	Val	Phe	Glu	Leu	Leu
				130					135					140	
Lys	Pro	Pro	Ser	Gly	Gly	Leu	Gly	Phe	Ser	Val	Val	Gly	Leu	Arg	Ser
			145					150					155		
Glu	Asn	Arg	Gly	Glu	Leu	Gly	Ile	Phe	Val	Gln	Glu	Ile	Gln	Glu	Gly
		160					165					170			
Ser	Val	Ala	His	Arg	Asp	Gly	Arg	Leu	Lys	G1u	Thr	Asp	Gln	Ile	Leu
	175					180					185				
Ala	Ile	Asn	Gly	Gln	Ala	Leu	Asp	Gln	Thr	Ile	Thr	His	Gln	Gln	Ala
190					195					200					205
Ile	Ser	Ile	Leu	Gln	Lys	Ala	Lys	Asp	Thr	Val	Gln	Leu	Val	Ile	Ala
				210					215					220	
Arg	Gly	Ser	Leu	Pro	Gln	Leu	Val	Ser	Pro	Ile	Val	Ser	Arg	Ser	Pro
			225					230					225		

Ser	Ala	Ala	Ser	Thr	Ile	Ser	Ala	His	Ser	Asn	Pro	Val	His	Trp	Gln
		240					245					250			
His	Met	Glu	Thr	Ile	Glu	Leu	Val	Asn	Asp	Gly	Ser	Gly	Leu	Gly	Phe
	255					260					265				
Gly	Ile	Ile	Gly	Gly	Lys	Ala	Thr	Gly	Val	Ile	Val	Lys	Thr	Ile	Leu
270					275					280					285
Pro	Gly	Gly	Val	Ala	Asp	Gln	His	Gly	Arg	Leu	Cys	Ser	Gly	Asp	His
				290					295					300	
Ile	Leu	Lys	Ile	Gly	Asp	Thr	Asp	Leu	Ala	Gly	Met	Ser	Ser	Glu	Gln
			305					310					315		
Val	Ala	Gln	Val	Leu	Arg	Gln	Cys	Gly	Asn	Arg	Val	Lys	Leu	Met	Ile
		320					325					330			
Ala	Arg	Ser	Ala	Ile	Glu	Glu	Arg	Thr	Ala	Pro	Thr	Ala	Leu	Gly	Ile
	335					340					345				
Thr	Leu	Ser	Ser	Ser	Pro	Thr	Ser	Thr	Pro	Glu	Leu	Arg	Val	Asp	Ala
350					355					360					365
Ser	Thr	Gln	Lys	Gly	Glu	Glu	Ser	Glu	Thr	Phe	Asp	Val	Glu	Leu	Thr
				370					375					380	
Lys	Asn	Val	Gln	Gly	Leu	Gly	Ile	Thr	Ile	Ala	Gly	Tyr	I,l e	Gly	Asp
		٠.	385					390					395		
Lys	Lys	Leu	Glu	Pro	Ser	Gly	Ile	Phe	Val	Lys	Ser	Ile	Thr	Lys	Ser
		400					405					410			
Ser	Ala	Val	Glu	His	Asp	Gly	Arg	Ile	Gln	Ile	Gly	Asp	Gln	Ile	Ile
	415					420					425				
Ala	Val	Asp	Gly	Thr	Asn	Leu	Gln	Gly	Phe	Thr	Asn	Gln	Gln	Ala	Val
430					435					440					445
Glu	Val	Leu	Arg	His	Thr	Gly	Gln	Thr	Val	Leu	Leu	Thr	Leu	Met	Arg

				450	1				455					460	
Arg	Gly	Met	Lys	Gln	Glu	Ala	Glu	Leu	Met	Ser	Arg	Glu	Asp	Val	Thr
			465					470					475		
Lys	Asp	Ala	. Asp	Leu	Ser	Pro	Val	Asn	Ala	Ser	Ile	Ile	Lys	Glu	Asn
		480	)				485					490			
Tyr	Glu	Lys	Asp	Glu	Asp	Phe	Leu	Ser	Ser	Thr	Arg	Asn	Thr	Asn	Ile
	495					500					505				
Leu	Pro	Thr	G1u	Glu	G1u	Gly	Tyr	Pro	Leu	Leu	Ser	Ala	Glu	Ile	Glu
510					515					520					525
Glu	Ιle	Glu	Asp	Ala	Gln	Lys	Gln	Glu	Ala	Ala	Leu	Leu	Thr	Lys	Trp
				530					535					540	
Gln	Arg	Ile	Met	Gly	Ile	Asn	Tyr	Glu	Ile	Val	Val	Ala	His	Val	Ser
			545					550					555		
Lys	Phe	Ser	Glu	Asn	Ser	Gly	Leu	Gly	Ile	Ser	Leu	Glu	Ala	Thr	Val
		560					565					570			
Gly	His	His	Phe	Ile	Arg	Ser	Val	Leu	Pro	G1u	Gly	Pro	Val	Gly	His
	575					580					585				
Ser	Gly	Lys	Leu	Phe	Ser	Gly	Asp	Glu	Leu	Leu	Glu	Val	Asn	Gly	Ile
590					595					600					605
Thr	Leu	,	Gly	Glu	Asn	His	Gln	Asp	Val	Val	Asn	Ile	Leu	Lys	Glu
		ž.		610					615					620	
Leu	Pro	Ile	Glu	Val	Thr	Met	Val	Cys	Cys	Arg	Arg	Thr	Val	Pro	Pro
			625					630					635		
Thr	Thr	Gln	Ser	Glu	Leu	Asp	Ser	Leu	Asp	Leu	Cys	Asp	Ile	Glu	Leu
		640					645					650			
<b>Thr</b>	Glu	Lys	Pro	His	Val	Asp	Leu	Gly	Glu	Phe	Ile	Gly	Ser	Ser	G1u
	655					660					665				

Pro	Glu	Asp	Pro	Val	Leu	Ala	Met	Thr	Asp	Ala	Gly	Gln	Ser	Thr	Glu	
670					675					680					685	
Glu	Val	Gln	Ala	Pro	Leu	Ala	Met	Trp	Glu	Ala	Gly	Ile	Gln	His	Ile	
				690					695					700		
Met	Leu	Glu	Lys	Gly	Ser	Lys	Gly	Leu	G1 y	Phe	Ser	Ile	Leu	Asp	Tyr	
			705					710					715			
Gln	Asp	Pro	Ile	Asp	Pro	Ala	Ser	Thr	Val	Ile	Ile	Ile	Arg	Ser	Leu	
		720					725					730				
Val	Pro	Gly	Gly	Ile	Ala	Glu	Lys	Asp	Gly	Arg	Leu	Leu	Pro	Gly	Asp	
	735					740					745					
Arg	Leu	Met	Phe	Val	Asn	Asp	Val	Asn	Leu	Glu	Asn	Ser	Ser	Leu	Glu	
750					755					760					765	
Glu	Ala	Val	Glu	Ala	Leu	Lys	Gly	Ala	Pro	Ser	Gly	Thr	Val	Arg	Ile	
				770					775					780		
Gly	Val	Ala	Lys	Pro	Leu	Pro	Leu	Ser	Pro	Glu	Glu	Gly	Tyr	Val	Ser	
			785					790					795			
Ala	Lys	Glu	Asp	Ser	Phe	Leu	Tyr	Pro	Pro	His	Ser	Cys	Glu	Glu	Ala	
		800					805					810				
Gly	Leu	Ala	Asp	Lys	Pro	Leu	Phe	Arg	Ala	Asp	Leu	Ala	Leu	Val	Gly	
	815					820					825					
Thr	Asn	Asp	Ala	Asp	Leu	Val	Asp	Glu	Ser	Thr	Phe	Glu	Ser	Pro	Tyr	
830					835					840					845	
Ser	Pro	Glu	Asn	Asp	Ser	Ιlе	Tyr	Ser	Thr	Gln	Ala	Ser	Ile	Leu	Ser	
				850					855					860		
Leu	His	G1 y	Ser	Ser	Cys	Gly	Asp	Gly	Leu	Asn	Tyr	Gly	Ser	Ser	Leu	
			865					870					875			
Pro	Ser	Ser	Pro	Pro	Lys	Asp	Val	Ile	Glu	Asn	Ser	Cys	Asp	Pro	Val	

		880					885					890			
Leu	Asp	Leu	His	Met	Ser	Leu	G1u	Glu	Leu	Tyr	Thr	Gln	Asn	Leu	Leu
	895					900					905				
Glu	Arg	Gln	Asp	G1u	Asn	Thr	Pro	Ser	Val	Asp	Ile	Ser	Met	Gly	Pro
910					915					920					925
Ala	Ser	Gly	Phe	Thr	Ile	Asn	Asp	Туг	Thr	Pro	Ala	Asn	Ala	Ile	G 1 u
				930					935					940	
Gln	Gln	Tyr	Glu	Cys	Glu	Asn	Thr	Ile	Val	Trp	Thr	Glu	Ser	His	Leu
			945					950					955		
Pro	Ser	Glu	Val	Ile	Ser	Ser	Ala	Glu	Leu	Pro	Ser	Val	Leu	Pro	Asp
		960					965					970			
Ser	Ala	Gly	Lys	Gly	Ser	Glu	Tyr	Leu	Leu	Glu	Gln	Ser	Ser	Leu	Ala
	975					980					985				
Cys	Asn	Ala	Glu	Cys	Val	Met	Leu	Gln	Asn	Val	Ser	Lys	Glu	Ser	Phe
990					995					1000	)				1005
Glu	Arg	Thr	Ile	Asn	Ile	Ala	Lys	Gly	Asn	Ser	Ser	Leu	Gly	Met	Thr
`				1010	)				1015	i				1020	ı
Val	Ser	Ala	Asn	Lys	Asp	Gly	Leu	Gly	Met	Ile	Val	Arg	Ser	Ile	Ile
			1025	i				1030	)				1035	!	
His	Gly	Gly	Ala	Ile	Ser	Arg	Asp	Gly	Arg	Ile	Ala	Ile	Gly	Asp	Cys
		1040	)				1045	,				1050	)		
Ile	Leu	Ser	Ile	Asn	Glu	Glu	Ser	Thr	Ile	Ser	Val	Thr	Asn	Ala	Gln
	1055	5				1060	)				1065	i			
Ala	Arg	Ala	Met	Leu	Arg	Arg	His	Ser	Leu	Ile	Gly	Pro	Asp	Ile	Lys
1070	)				1078	5				1080	)				1085
Ile	Thr	Tyr	Val	Pro	Ala	Glu	His	Leu	Glu	Glu	Phe	Lys	Ile	Ser	Leu
				1090	1				1095					1100	1

Gly	Gln	Gln	Ser	Gly	Arg	Val	Met	Ala	Leu	Asp	Ile	Phe	Ser	Ser	Tyr
			110	5				111	0				1118	ō	
Thr	Gly	Arg	Asp	Ιlе	Pro	Glu	Leu	Pro	Glu	Arg	Glu	Glu	Gly	Glu	Gly
		112	0				112	5				113	0		
Glu	Glu	Ser	Glu	Leu	Gln	Asn	Thr	Ala	Туг	Ser	Asn	Trp	Asn	Gln	Pro
	113	5				114	0				114	ō '			
Arg	Arg	Val	G1u	Leu	Trp	Arg	Glu	Pro	Ser	Lys	Ser	Leu	Gly	Ile	Ser
115	0				115	ŏ				1160	)				1165
Ile	Val	Gly	Gly	Arg	Gly	Met	Gly	Ser	Arg	Leu	Ser	Asn	Gly	Glu	Val
				1170	)				1178	í				1180	)
Met	Arg	Gly	Ile	Phe	Ile	Lys	His	Val	Leu	Glu	Asp	Arg	Pro	Ala	Gly
			1188	5				1190	)				1195	i	
Lys	Asn	Gly	Thr	Leu	Lys	Pro	Gly	Asp	Arg	Ile	Val	Glu	Val	Asp	Gly
		1200	0				1208	5				1210	)		
Met	Asp	Leu	Arg	Asp	Ala	Ser	His	Glu	Gln	Ala	Val	Glu	Ala	Ile	Arg
	1215	i				1220	)				1225	i			
Lys	Ala	Gly	Asn	Pro	Val	Val	Phe	Met	Val	Gln	Ser	Ile	Ile	Asn	Arg
1230	)				1235	i				1240	)				1245
Pro	Arg	Lys	Ser	Pro	Leu	Pro	Ser	Leu	Leu	His	Asn	Leu	Tyr	Pro	Lys
				1250	)				1255	;				1260	
Tyr	Asn	Phe	Ser	Ser	Thr	Asn	Pro	Phe	Ala	Asp	Ser	Leu	Gln	Ile	Asn
			1265	i				1270	)				1275		
Ala	Asp	Lys	Ala	Pro	Ser	Gln	Ser	G1u	Ser	Glu	Pro	Glu	Lys	Ala	Pro
		1280	)				1285					1290			
Leu	Cys	Ser	Val	Pro	Pro	Pro	Pro	Pro	Ser	Ala	Phe	Ala	Glu	Met	Gly
	1295					1300	)				1305				
Ser	Asp	His	Thr	G1n	Ser	Ser	Ala	Ser	Lys	Ile	Ser	Gln	Asp	Val	Asp

131	0				131	5				132	0				1325
Lys	Glu	Asp	Glu	Phe	Gly	Tyr	Ser	Trp	Lys	Asn	Ile	Arg	Glu	Arg	Tyr
				133	0				133	5				134	0
Gly	Thr	Leu	Thr	Gly	Glu	Leu	His	Met	Ile	Glu	Leu	Glu	Lys	Gly	His
			134	5				135	0				135	5	
Ser	Gly	Leu	Gly	Leu	Ser	Leu	Ala	Gly	Asn	Lys	Asp	Arg	Ser	Arg	Met
		136	0				136	5				1370	)		
Ser	Val	Phe	Ile	Val	Gly	Ile	Asp	Pro	Asn	Gly	Ala	Ala	Gly	Lys	Asp
	137	5				1380	)				1388	5			
Gly	Arg	Leu	G1n	Ile	Ala	Asp	Glu	Leu	Leu	Glu	Ile	Asn	Gly	G1n	Ile
139	0				1398	5				1400	)				1405
Leu	Tyr	Gly	Arg	Ser	His	Gln	Asn	Ala	Ser	Ser	Ile	Ile	Lys	Cys	Ala
				1410	)				1415	5				1420	}
Pro	Ser	Lys	Val	Lys	Ile	Ile	Phe	Ile	Arg	Asn	Lys	Asp	Ala	Val	Asn
			1425	i				1430	)				1435	i	
Gln	Met	Ala	Val	Cys	Pro	Gly	Asn	Ala	Val	Glu	Pro	Leu	Pro	Ser	Asn
		1440	)				1448	5				1450	1		
Ser	Glu	Asn	Leu	Gln	Asn	Lys	Glu	Thr	Glu	Pro	Thr	Val	Thr	Thr	Ser
	145	i				1460	)				1465				
Asp	Ala	Ala	Val	Asp	Leu	Ser	Ser	Phe	Lys	Asn	Val	Gln	His	Leu	Glu
1470	)				1475	i				1480	ı				1485
Leu	Pro	Lys	Asp	Gln	Gly	Gly	Leu	Gly	Ile	Ala	Ile	Ser	Glu	Glu	Asp
				1490					1495					1500	
Thr	Leu	Ser	Gly	Val	Ile	Ile	Lys	Ser	Leu	Thr	Glu	His	Gly	Val	Ala
			1505					1510					1515		
Ala	Thr	Asp	Gly	Arg	Leu	Lys	Val	Gly	Asp	Gln	Ile	Leu	Ala	Val	Asp
		1520					1525					1530			

Asp	Glu	lle	Val	Val	Gly	Tyr	Pro	116	GIU	Lys	rne	116	26L	ren	Leu
	1535	i				1540	)				1545				
Lys	Thr	Ala	Lys	Met	Thr	Val	Lys	Leu	Thr	Ile	His	Ala	Glu	Asn	Pro
1550	)				1555	j				1560	)				1565
Asp	Ser	Gln	Ala	Val	Pro	Ser	Ala	Ala	Gly	Ala	Ala	Ser	Gly	Glu	Lys
				1570	)				1575	i				1580	
Lys	Asn	Ser	Ser	Gln	Ser	Leu	Met	Val	Pro	Gln	Ser	Gly	Ser	Pro	Glu
			1585	i				1590	)				1595		
Pro	Glu	Ser	Ile	Arg	Asn	Thr	Ser	Arg	Ser	Ser	Thr	Pro	Ala	Ile	Phe
		1600	)				1605	i				1610	1		
Ala	Ser	Asp	Pro	Ala	Thr	Cys	Pro	Ile	Ile	Pro	Gly	Cys	Glu	Thr	Thr
	1615	j				1620	)				1625	;			
Ile	G1u	Ile	Ser	Lys	Gly	Arg	Thr	Gly	Leu	Gly	Leu	Ser	Ile	Val	Gly
1630	)				1635	5				1640	)				1645
Gly	Ser	Asp	Thr	Leu	Leu	Gly	Ala	Phe	Ile	Ile	His	Glu	Val	Tyr	Glu
				1650	)				1655	i				1660	)
Glu	Gly	Ala	Ala	Cys	Lys	Asp	Gly	Arg	Leu	Trp	Ala	Gly	Asp	Gln	Ile
			1668	i				1670	)				1675	;	
Leu	Glu	Val	Asn	Gly	Ile	Asp	Leu	Arg	Lys	Ala	Thr	His	Asp	Glu	Ala
		1680	)				1685	5				1690	)		
Ile	Asn	Val	Leu	Arg	Gln	Thr	Pro	Gln	Arg	Val	Arg	Leu	Thr	Leu	Tyr
	1698	j .				1700	0				1708	i			
Arg	Asp	Glu	Ala	Pro	Tyr	Lys	Glu	Glu	Glu	Val	Cys	Asp	Thr	Leu	Thr
171	0				171	õ				1720	)				1725
Ile	Glu	Leu	Gln	Lys	Lys	Pro	Gly	Lys	Gly	Leu	Gly	Leu	Ser	Ile	Val
				173	0				173	5		-	-	1740	)
Gly	Lys	Arg	Asn	Asp	Thr	Gly	Val	Phe	Val	Ser	Asp	Ile	Val	Lys	Gly

			1748	5				1750	)				1755		
Gly	Ile	Ala	Asp	Pro	Asp	Gly	Arg	Leu	Ile	Gln	Gly	Asp	Gln	Ile	Leu
		1760	)				1768	i				1770	<b>)</b>		
Leu	Val	Asn	Gly	Glu	Asp	Val	Arg	Asn	Ala	Ser	Gln	Glu	Ala	Val	Ala
	1775	i				1780	)				1785	i			
Ala	Leu	Leu	Lys	Cys	Ser	Leu	Gly	Thr	Val	Thr	Leu	Glu	Val	Gly	Arg
1790	)				1795	i				1800	)				1805
Ile	Lys	Ala	Gly	Pro	Phe	His	Ser	Glu	Arg	Arg	Pro	Ser	Gln	Thr	Ser
				1810	)				1815	i				1820	1
Gln	Val	Ser	Glu	Gly	Ser	Leu	Ser	Ser	Phe	Thr	Phe	Pro	Leu	Ser	Gly
			1825	j				1830	)				1835		
Ser	Ser	Thr	Ser	Glu	Ser	Leu	Glu	Ser	Ser	Ser	Lys	Lys	Asn	Ala	Leu
		1840	)				1845	i				1850	)		
Ala	Ser	Glu	Ile	Gln	Gly	Leu	Arg	Thr	Val	G1u	Met	Lys	Lys	Gly	Pro
	1855	i				1860	)				1865	i			
Thr	Asp	Ser	Leu	Gly	Ile	Ser	Ile	Ala	Gly	Gly	Val	Gly	Ser	Pro	Leu
1870	)				1875	i				1880	)				1885
Gly	Asp	Val	Pro	Ile	Phe	Ile	Ala	Met	Met	His	Pro	Thr	Gly	Val	Ala
				1890	)				1895	i				1900	)
Ala	Gln	Thr	Gln	Lys	Leu	Arg	Val	Gly	Asp	Arg	Ile	Val	Thr	Ile	Cys
			1908	5				1910	)				1915	;	
Gly	Thr	Ser	Thr	G1u	Gly	Met	Thr	His	Thr	Gln	Ala	Val	Asn	Leu	Leu
		1920	)				1925	j				1930	)		
Lys	Asn	Ala	Ser	Gly	Ser	Ile	Glu	Met	Gln	Val	Val	Ala	Gly	Gly	Asp
	1935	5				1940	)				1945	i			
Val	Ser	Val	Val	Thr	Gly	His	His	Gln	Glu	Pro	Ala	Ser	Ser	Ser	Leu
1050	١				1056					1066	1				1065

Ser Phe Thr Gly Leu Thr Ser Thr Ser Ile Phe Gln Asp Asp Leu Gly Pro Pro Gln Cys Lys Ser Ile Thr Leu Glu Arg Gly Pro Asp Gly Leu Gly Phe Ser Ile Val Gly Gly Tyr Gly Ser Pro His Gly Asp Leu Pro Ile Tyr Val Lys Thr Val Phe Ala Lys Gly Ala Ala Ser Glu Asp Gly Arg Leu Lys Arg Gly Asp Gln Ile Ile Ala Val Asn Gly Gln Ser Leu Glu Gly Val Thr His Glu Glu Ala Val Ala Ile Leu Lys Arg Thr Lys Gly Thr Val Thr Leu Met Val Leu Ser <210> 84 <211> 1239

<212> PRT

<213> Homo sapience

<400> 84

Met Leu Glu Ala Ile Asp Lys Asn Arg Ala Leu His Ala Ala Glu Arg Leu Gln Thr Lys Leu Arg Glu Arg Gly Asp Val Ala Asn Glu Asp Lys Leu Ser Leu Leu Lys Ser Val Leu Gln Ser Pro Leu Phe 

Ser	Gln	Ile	Leu	Ser	Leu	Gln	Thr	Ser	Val	Gln	Gln	Leu	Lys	Asp	Gln
				50					55					60	
Val	Asn	Ile	Ala	Thr	Ser	Ala	Thr	Ser	Asn	Ile	Glu	Tyr	Ala	His	Val
			65					70					75		
Pro	His	Leu	Ser	Pro	Ala	Val	Ile	Pro	Thr	Leu	Gln	Asn	Glu	Ser	Phe
		80				r	85					90			
Leu	Leu	Ser	Pro	Asn	Asn	Gly	Asn	Leu	Glu	Ala	Leu	Thr	Gly	Pro	Gly
	95					100					105				
I 1 e	Pro	His	Ile	Asn	Gly	Lys	Pro	Ala	Cys	Asp	Glu	Phe	Asp	Gln	Leu
110					115					120					125
Ile	Lys	Asn	Met	Ala	Gln	Gly	Arg	His	Val	Glu	Val	Phe	Glu	Leu	Leu
				130					135					140	
Lys	Pro	Pro	Ser	Gly	Gly	Leu	Gly	Phe	Ser	Val	Val	Gly	Leu	Arg	Ser
			145					150					155		
Glu	Asn	Arg	Gly	Glu	Leu	Gly	Ile	Phe	Val	Gln	Glu	Ile	Gln	Glu	Gly
		160					165					170			
Ser	Val	Ala	His	Arg	Asp	Gly	Arg	Leu	Lys	Glu	Thr	Asp	Gln	Ile	Leu
	175					180					185				
Ala	Ile	Asn	Gly	Gln	Ala	Leu	Asp	Gln	Thr	Ile	Thr	His	G1n	Gln	Ala
190					195					200					205
Ile	Ser	Ile	Leu	Gln	Lys	Ala	Lys	Asp	Thr	Val	Gln	Leu	Val	Ile	Ala
				210					215					220	
Arg	Gly	Ser	Leu	Pro	Gln	Leu	Va1	Ser	Pro	Ile	Val	Ser	Arg	Ser	Pro
			225					230					235		
Ser	Ala	Ala	Ser	Thr	Ile	Ser	Ala	His	Ser	Asn	Pro	Val	His	Trp	Gln
		240					245					250			
His	Met	Glu	Thr	Ile	Glu	Leu	Va1	Asn	Asp	Gly	Ser	Gly	Leu	Gly	Phe

	255	i				260					265				
Gly	Ile	Ile	Gly	Gly	Lys	Ala	Thr	Gly	Val	Ile	Val	Lys	Thr	Ile	Leu
270					275					280					285
Pro	Gly	Gly	Val	Ala	Asp	Gln	His	Gly	Arg	Leu	Cys	Ser	Gly	Asp	His
				290					295					300	
Ile	Leu	Lys	Ile	Gly	Asp	Thr	Asp	Leu	Ala	Gly	Met	Ser	Ser	Glu	Gln
			305					310					315		
Val	Ala	Gln	Val	Leu	Arg	Gln	Cys	Gly	Asn	Arg	Val	Lys	Leu	Met	Ile
		320					325					330			
Ala	Arg	Ser	Ala	Ile	Glu	Glu	Arg	Thr	Ala	Pro	Thr	Ala	Leu	G1y	Ile
	335					340					345				
Thr	Leu	Ser	Ser	Ser	Pro	Thr	Ser	Thr	Pro	Glu	Leu	Arg	Val	Asp	Ala
350					355					360					365
Ser	Thr	Gln	Lys	Gly	Glu	Glu	Ser	Glu	Thr	Phe	Asp	Val	Glu	Leu	Thr
				370					375					380	
Lys	Asn	Val	Gln	Gly	Leu	Gly	Ile	Thr	Ile	Ala	Gly	Tyr	Ile	Gly	Asp
			385					390					395		
Lys	Lys	Leu	Glu	Pro	Ser	Gly	Ile	Phe	Val	Lys	Ser	Ile	Thr	Lys	Ser
		400					405					410			
Ser	Ala	Val	Glu	His	Asp	Gly	Arg	Ile	Gln	Ile	Gly	Asp	Gln	Ile	Ile
	415					420					425				
Ala	Val	Asp	Gly	Thr	Asn	Leu	Gln	Gly	Phe	Thr	Asn	Gln	Gln	Ala	Val
430					435					440					445
Glu	Val	Leu	Arg	His	Thr	Gly	Gln	Thr	Val	Leu	Leu	Thr	Leu	Met	Arg
				450					455					460	
Arg	Gly	Met	Lys	Gln	G1u	Ala	Glu	Leu	Met	Ser	Arg	Glu	Asp	Val	Thr
			465					470					475		

Lys	Asp	Ala	Asp	Leu	Ser	Pro	Val	Asn	Ala	Ser	Ile	Ile	Lys	Glu	Asn
		480					485					490			
Tyr	Glu	Lys	Asp	Glu	Asp	Phe	Leu	Ser	Ser	Thr	Arg	Asn	Thr	Asn	Ile
	495					500					505				
Leu	Pro	Thr	Glu	Glu	Glu	Gly	Tyr	Pro	Leu	Leu	Ser	Ala	Glu	Ile	Glu
510					515					520					525
Glu	Ile	Glu	Asp	Ala	Gln	Lys	Gln	Glu	Ala	Ala	Leu	Leu	Thr	Lys	Trp
				530					535					540	
Gln	Arg	Ile	Met	Gly	Ile	Asn	Tyr	Glu	Ile	Val	Val	Ala	His	Val	Ser
			545					550					555		
Lys	Phe	Ser	Glu	Asn	Ser	Gly	Leu	Gly	Ile	Ser	Leu	Glu	Ala	Thr	Val
		560					565					570			
Gly	His	His	Phe	Ile	Arg	Ser	Val	Leu	Pro	Glu	Gly	Pro	Val	Gly	His
	575					580					585				
Ser	Gly	Lys	Leu	Phe	Ser	Gly	Asp	Glu	Leu	Leu	Glu	Val	Asn	Gly	Ile
590					595					600					605
Thr	Leu	Leu	Gly	Glu	Asn	His	Gln	Asp	Val	Val	Asn	Ile	Leu	Lys	Glu
				610					615					620	
Leu	Pro	Ile	Glu	Val	Thr	Met	Val	Cys	Cys	Arg	Arg	Thr	Val	Pro	Pro
		, 57%	625					630					635		
Thr	Thr	Gln	Ser	Glu	Leu	Asp	Ser	Leu	Asp	Leu	Cys	Asp	Ile	Glu	Leu
		640					645					650			
Thr	Glu	Lys	Pro	His	Val	Asp	Leu	Gly	Glu	Phe	Ile	Gly	Ser	Ser	Glu
	655					660					665				
Pro	Glu	Asp	Pro	Val	Leu	Ala	Met	Thr	Asp	Ala	Gly	Gln	Ser	Thr	Glu
670					675					680					685
G 1 11	Val	Gln	Ala	Pro	Leu	Ala	Met	Trn	G1 u	Ala	G1 v	116	Gln	Hie	Ile

				690					695					700	
Met	Leu	Glu	Lys	Gly	Ser	Lys	Gly	Leu	G1 y	Phe	Ser	Ile	Leu	Asp	Tyr
			705					710					715		
Gln	Asp	Pro	Ile	Asp	Pro	Ala	Ser	Thr	Val	Ile	Ile	Ile	Arg	Ser	Leu
		720					725					730			
Val	Pro	Gly	Gly	Ile	Ala	Glu	Lys	Asp	G1 y	Arg	Leu	Leu	Pro	Gly	Asp
	735					740					745				
Arg	Leu	Met	Phe	Val	Asn	Asp	Val	Asn	Leu	Glu	Asn	Ser	Ser	Leu	Glu
750					755					760					765
Glu	Ala	Val	Glu	Ala	Leu	Lys	Gly	Ala	Pro	Ser	Gly	Thr	Val	Arg	Ile
				770					775					780	
Gly	Val	Ala	Lys	Pro	Leu	Pro	Leu	Ser	Pro	Glu	Glu	Gly	Tyr	Val	Ser
			785					790					795		
Ala	Lys	Glu	Asp	Ser	Phe	Leu	Tyr	Pro	Pro	His	Ser	Cys	Glu	Glu	Ala
		800					805					810			
Gly	Leu	Ala	Asp	Lys	Pro	Leu	Phe	Arg	Ala	Asp	Leu	Ala	Leu	Val	Gly
	815					820					825				
Thr	Asn	Asp	Ala	Asp	Leu	Val	Asp	Glu	Ser	Thr	Phe	Glu	Ser	Pro	Tyr
830					835					840					845
Ser	Pro	Glu	Asn	Asp	Ser	Ile	Tyr	Ser	Thr	Gln	Ala	Ser	Ile	Leu	Ser
				850					855					860	
Leu	His	Gly	Ser	Ser	Cys	Gly	Asp	Gly	Leu	Asn	Tyr	Gly	Ser	Ser	Leu
			865					870					875		
Pro	Ser	Ser	Pro	Pro	Lys	Asp	Val	Ile	Glu	Asn	Ser	Cys	Asp	Pro	Val
		880					885					890			
Leu	Asp	Leu	His	Met	Ser	Leu	Glu	Glu	Leu	Tyr	Thr	Gln	Asn	Leu	Leu
	005					000					005				

Glu	Arg	Gln	Asp	Glu	Asn	Thr	Pro	Ser	Val	Asp	He	Ser	Met	Gly	Pro
910					915					920					925
Ala	Ser	Gly	Phe	Thr	Ile	Asn	Asp	Tyr	Thr	Pro	Ala	Asn	Ala	Ile	Glu
				930					935					940	
Gln	G1n	Tyr	Glu	Cys	G1u	Asn	Thr	Ile	Val	Trp	Thr	Glu	Ser	His	Leu
			945					950					955		
Pro	Ser	Glu	Val	Ile	Ser	Ser	Ala	Glu	Leu	Pro	Ser	Val	Leu	Pro	Asp
		960					965					970			
Ser	Ala	G1y	Lys	Gly	Ser	Glu	His	Leu	Leu	Glu	Gln	Ser	Ser	Leu	Ala
	975					980					985				
Cys	Asn	Ala	Glu	Cys	Val	Met	Leu	Gln	Asn	Val	Ser	Lys	Glu	Ser	Phe
990					995					1000					1005
G l u	Arg	Thr	Ile	Asn	Ile	Ala	Lys	Gly	Asn	Ser	Ser	Leu	Gly	Met	Thr
				1010	)				1015	i				1020	l
Val	Ser	Ala	Asn	Lys	Asp	Gly	Leu	Gly	Met	Ile	Val	Arg	Ser	Ile	Ile
			1025	5				1030	)				1035	İ	
His	Gly	G1 y	Ala	Ile	Ser	Arg	Asp	Gly	Arg	Ile	Ala	Ile	Gly	Asp	Cys
		1040	)				1045	i				1050	)		
Ile	Leu	Ser	Ile	Asn	Glu	Glu	Ser	Thr	Ile	Ser	Val	Thr	-Asn	Ala	Gln
	105	5				1060	)				1065	j			
Ala	Arg	Ala	Met	Leu	Arg	Arg	His	Ser	Leu	Ile	Gly	Pro	Asp	Ile	Lys
107	0				107	ō				1080	)				1085
Ile	Thr	Tyr	Val	Pro	Ala	G1 u	His	Leu	G1u	Glu	Phe	Lys	Ile	Ser	Leu
				109	0				109	5				1100	)
Gly	Gln	Gln	Ser	Gly	Arg	Val	Met	Ala	Leu	Asp	Ile	Phe	Ser	Ser	Tyr
			110	5				1110	)				111	ó	
Thr	Gly	Arg	Asp	Ile	Pro	Glu	Leu	Pro	Glu	Arg	Glu	Glu	Gly	Glu	Gly

1125 1130 1120 Glu Glu Ser Glu Leu Gln Asn Thr Ala Tyr Ser Asn Trp Asn Gln Pro 1140 1135 1145 Arg Arg Val Glu Leu Trp Arg Glu Pro Ser Lys Ser Leu Gly Ile Ser 1150 1155 1160 1165 Ile Val Gly Gly Arg Gly Met Gly Ser Arg Leu Ser Asn Gly Glu Val 1170 1175 1180 Met Arg Gly Ile Phe Ile Lys His Val Leu Glu Asp Ser Pro Ala Gly 1190 1195 1185 Lys Asn Gly Thr Leu Lys Pro Gly Asp Arg Ile Val Glu Val Asp Gly 1200 1205 1210 Met Asp Leu Arg Asp Ala Ser His Glu Gln Ala Val Glu Ala Ile Arg 1215 1220 1225 Lys Ala Gly Asn Pro Val Val Phe Met Val 1230 1235

<210> 85

<211> 6540

<212> DNA

<213> Homo sapience

<220>

<221> CDS

<222> (71)...(6070)

<400> 85

ttt	gaaa	aaa	atg	ttg	gaa	gcc	att	gac	aaa	aat	cgg	gcc	ctg	cat	gca	109
			Met	Leu	G1u	Ala	Ile	Asp	Lys	Asn	Arg	Ala	Leu	His	Ala	
			1				5					10				
gca	gag	cgo	ttį	g caa	aco	aag	ctg	cga	gaa	. cgt	ggg	gat	gta	gca	aat	157
Ala	Glu	Arg	Lei	ı G1n	Thr	Lys	Leu	Arg	G1u	Arg	Gly	Asp	Val	Ala	Asn	
	15					20					25					
		-														
gaa	gac	aaa	cte	agc	ctt	ctg	aag	tca	gtc	ctg	cag	ago	cct	ctc	ttc	205
Glu	Asp	Lys	Leu	Ser	Leu	Leu	Lys	Ser	Val	Leu	Gln	Ser	Pro	Leu	Phe	
30					35					40					45	
agt	cag	att	ctg	agc	ctt	cag	act	tct	gta	cag	cag	ctg	aaa	gac	cag	253
Ser	Gln	Ile	Leu	Ser	Leu	Gln	Thr	Ser	Val	Gln	Gln	Leu	Lys	Asp	Gln	
				50					55					60		
gta	aat	att	gca	act	tca	gca	act	tca	aat	att	gaa	tat	gcc	cac	gtt	301
Val	Asn	Ile	Ala	Thr	Ser	Ala	Thr	Ser	Asn	Ile	Glu	Tyr	Ala	His	Val	
			65					70					75			
				c c a									_	tcg		349
Pro	His	Leu	Ser	Pro	Ala	Val	Ile	Pro	Thr	Leu	Gln	Asn	Glu	Ser	Phe	
		80					85					90				
tta	tta	tcc	cca	aac	aat	ggg	aat	ctg	gaa	gca	ctt	aca	gga	cct	ggt	397
Leu	Leu	Ser	Pro	Asn	Asn	Gly	Asn	Leu	G1 u	Ala	Leu	Thr	Gly	Pro	Gly	

8	ıtt	cca	cac	att	aat	ggg	aaa	cct	gct	tgt	gat	gaa	ttt	gat	cag	ctt		445
1	lle	Pro	His	Ile	Asn	Gly	Lys	Pro	Ala	Cys	Asp	Glu	Phe	Asp	Gln	Leu		
1	10					115					120					125		
é	ıtc	aaa	aat	atg	gcc	cag	ggt	cgc	cat	gta	gaa	gtt	ttt	gag	ctc	ctc		493
]	1e	Lys	Asn	Met	Ala	Gln	Gly	Arg	His	Val	Glu	Val	Phe	Glu	Leu	Leu		
					130					135					140			
â	ıaa	cct	cca	tct	gga	ggc	ctt	ggg	ttt	agt	gtt	gtg	gga	cta	aga	agt		541
I	ys	Pro	Pro	Ser	Gly	Gly	Leu	Gly	Phe	Ser	Val	Val	Gly	Leu	Arg	Ser		
				145					150					155				
Ę	aa	aac	aga	gga	gag	ctg	gga	ata	ttt	gtt	caa	gag	ata	caa	gag	ggc		589
(	llu	Asn	Arg	Gly	Glu	Leu	Gly	Ile	Phe	Val	Gln	Glu	Ile	Gln	Glu	Gly		
			160					165					170					
â	ıgt	gtg	gcc	cat	aga	gat	gga	aga	ttg	aaa	gaa	act	gat	caa	att	ctt		637
5	er	Val	Ala	His	Arg	Asp	Gly	Arg	Leu	Lys	Glu	Thr	Asp	Gln	Ile	Leu		
		175					180					185						
																	ı	
٤	ct	atc	aat	gga	cag	gct	ctt	gat	cag	aca	att	aca	cat	cag	cag	gct		685
		Ile	Asn	Gly	Gln	Ala	Leu	Asp	Ģln	Thr		Thr	His	Gln	Gln			
1	90					195					200					205		

atc agc atc ctg cag aaa gcc aaa gat act gtc cag cta gtt att gcc

1	16	ser	rre	Leu	GIN	rìs	Ala	гуя	ASP	ınr	vaı	GIN	Leu	Vai	116	Ala	
					210					215					220		
aı	ga	ggc	tca	ttg	cct	cag	ctt	gtc	agc	ccc	ata	et.t.	tee	cet	tet	cca	781
																	102
n.	. 5	uly	261		rro	GIII	Leu	Val		Fru	116	4 ST	ser		ser	rro	
				225					230					235			
t	ct	gca	gcc	agc	aca	att	tca	gct	cac	tct	aat	ccg	gtt	cac	tgg	caa	829
S	er	Ala	Ala	Ser	Thr	Ile	Ser	Ala	His	Ser	Asn	Pro	Val	His	Trp	Gln	
			240					245					250				
e i	9.0	ator	<b>.</b>	200	2++	or a a	ttg	a+ a	22+	or a t	## a	tat	aa+	++ ~	## a	+++	877
																	011
n	ıs		GIU	Thr	IIe	GIU	Leu	vai	Asn	ASP	Gly		GIY	Leu	GIY	Pne	
		255					260					265					
g	gc	atc	ata	gga	gga	aaa	gca	act	ggt	gtg	ata	gta	aaa	acc	att	ctg	925
G I	l y	Ile	Ile	Gly	Gly	Lys	Ala	Thr	Gly	Va1	Ile	Val	Lys	Thr	Ile	Leu	
27	70					275					280					285	
c	• t	g g a	7 <b>7</b> \$	eta	øct	gat	cag	nat	<b>~~</b>	røt	tta	tor	aot	<b>.</b>	<b>g</b> ar	cac	973
																	310
Pı	0	Gly	GLY	Val		Asp	Gln	HIS	Gly		Leu	Cys	Ser	Gly		His	
					290					295					300		
a.t	tt	cta	aag	att	ggt	gac	aca	gat	cta	gca	gga	atg	agc	agt	gag	caa	1021
I	l e	Leu	Lys	Ile	Gly	Asp	Thr	Asp	Leu	Ala	Gly	Met	Ser	Ser	G1u	Gln	
				305					310					315			

gta	gca	caa	gtc	ctt	agg	caa	tgt	gga	aat	aga	gtt	aag	ttg	atg	att	1069
Val	Ala	Gln	Val	Leu	Arg	Gln	Cys	Gly	Asn	Arg	Val	Lys	Leu	Met	Ile	
		320					325					330				
gca	aga	agt	gcc	ata	gaa	gaa	cgt	aca	gca	ccc	act	gct	ttg	ggc	atc	1117
Ala	Arg	Ser	Ala	Ile	Glu	G1 u	Arg	Thr	Ala	Pro	Thr	Ala	Leu	Gly	Ile	
	335					340					345					
acc	ctc	tcc	tca	tcc	c c a	act	tca	acg	cca	gag	ttg	cgg	gtt	gat	gct	1168
Thr	Leu	Ser	Ser	Ser	Pro	Thr	Ser	Thr	Pro	Glu	Leu	Arg	Val	Asp	Ala	
350					355					360					365	
tct	act	cag	aaa	ggt	gaa	gaa	agt	gag	aca	ttt	gat	gta	gaa	ctc	act	1213
Ser	Thr	Gln	Lys	Gly	Glu	Glu	Ser	Glu	Thr	Phe	Asp	Val	Glu	Leu	Thr	
				370					375					380		
aaa	aat	gtc	caa	gga	tta	gga	att	acc	att	gct	ggc	tac	att	gga	gat	1261
Lys	Asn	Val	Gln	Gly	Leu	Gly	Ile	Thr	Ile	Ala	Gly	Tyr	Ile	Gly	Asp	
			385					390					395			
aaa	aaa	ttg	gaa	cct	tca	gga	atc	ttt	gta	aag	agc	att	aca	aaa	agc	1309
Lys	Lys	Leu	G1u	Pro	Ser	Gly	Ile	Phe	Val	Lys	Ser	Ile	Thr	Lys	Ser	
		400					405					410				
agt	gcc	gtt	gag	cat	gat	gga	aga	atc	caa	att	gga	gac	caa	att	ata	1357
Ser	Ala	Val	Glu	His	Asp	Gly	Arg	Ile	Gln	Ile	Gly	Asp	Gln	Ile	Ile	
	415					420					125					

gca	gta	gat	ggc	aca	aac	ctt	cag	ggt	ttt	act	aat	cag	caa	gca	gta	1405
Ala	Val	Asp	Gly	Thr	Asn	Leu	Gln	Gly	Phe	Thr	Asn	Gln	Gln	Ala	Val	
430					435					440					445	
					,											
gag	gta	ttg	cga	cat	aca	gga	caa	act	gtg	ctc	ctg	aca	cta	atg	agg	1453
Glu	Val	Leu	Arg	His	Thr	Gly	Gln	Thr	Val	Leu	Leu	Thr	Leu	Met	Arg	
				450					455					460		
aga	gga	atg	aag	cag	gaa	gcc	gag	ctc	atg	tca	agg	gaa	gac	gtc	aca	1501
Arg	Gly	Met	Lys	Gln	Glu	Ala	Glu	Leu	Met	Ser	Arg	Glu	Asp	Val	Thr	
			465					470					475			
aaa	gat	gca	gat	ttg	tct	cct	gtt	aat	gcc	agc	ata	atc	aaa	gaa	aat	1549
Lys	Asp	Ala	Asp	Leu	Ser	Pro	Val	Asn	Ala	Ser	Ile	Ile	Lys	Glu	Asn	
		480					485					490				
tat	gaa	aaa	gat	gaa	gat	ttt	tta	tct	tcg	acg	aga	aac	acc	aac	ata	1597
Tyr	Glu	Lys	Asp	Glu	Asp	Phe	Leu	Ser	Ser	Thr	Arg	Asn	Thr	Asn	Ile	
	495					500					505					
tta	cca	act	gaa	gaa	gaa	ggg	tat	cca	tta	ctg	tca	gct	gag	ata	gaa	1645
Leu	Pro	Thr	Glu	Glu	Glu	Gly	Tyr	Pro	Leu	Leu	Ser	Ala	Glu	Ile	Glu	
510					515					520					525	
gaa	ata	gaa	gat	gca	caa	aaa	caa	gaa	gct	gct	ctg	ctg	aca	aaa	tgg	1693
G1u	Ile	Glu	Asp	Ala	Gln	Lys	Gln	Glu	Ala	Ala	Leu	Leu	Thr	Lys	Trp	

530 535 540

caa	agg	att	atg	gga	att	aac	tat	gaa	ata	gtg	gtg	gcc	cat	gtg	agc	1741
Gln	Arg	Ile	Met	Gly	Ile	Asn	Tyr	Glu	Ile	Val	Val	Ala	His	Val	Ser	
			545					550					555			
aag	ttt	agt	gag	aac	agt	gga	ttg	ggg	ata	agc	ctg	gaa	gcg	aca	gtg	1789
Lys	Phe	Ser	Glu	Asn	Ser	Gly	Leu	Gly	Ile	Ser	Leu	Glu	Ala	Thr	Val	
		560					565					570				
gga	cat	cat	ttt	atc	cga	tct	gtť	cta	cca	gag	ggt	cct	gtt	gga	cac	1837
Gly	His	His	Phe	Ile	Arg	Ser	Val	Leu	Pro	Glu	Gly	Pro	Val	Gly	His	
	575					580					585					
agc	ggg	aag	ctc	ttc	agt	gga	gac	gag	cta	ttg	gaa	gta	aat	ggc	ata	1885
Ser	Gly	Lys	Leu	Phe	Ser	Gly	Asp	Glu	Leu	Leu	Glu	Val	Asn	Gly	Ile	
590					595					600					605	
ct	tta	ctt	ggg	gaa	aat	cac	caa	gat	gtg	gtg	aat	atc	tta	aaa	gaa	1933
hr	Leu	Leu	Gly	Glu	Asn	His	Gln	Asp	Val	Val	Asn	Ile	Leu	Lys	Glu	
				610					615					620		
tg	cct	ata	gaa	gtg	aca	atg	gtg	tgc	tgt	cgt	cga	act	gtg	cca	ccc	1981
eu	Pro	Ile	Glu	Val	Thr	Met	Val	Cys	Cys	Arg	Arg	Thr	Val	Pro	Pro	
			625					630					635			

acc acc caa toa gaa ttg gat agc ctg gac tta tgt gat att gag cta

2029

Thr	Thr	Gln	Ser	Glu	Leu	Asp	Ser	Leu	Asp	Leu	Cys	Asp	Ile	Glu	Leu	
		640					645					650				
aca	gaa	aag	cct	cac	gta	gat	cta	ggt	gag	ttc	atc	ggg	tca	tca	gag	2077
Thr	Glu	Lys	Pro	His	Val	Asp	Leu	Gly	Glu	Phe	Ile	Gly	Ser	Ser	Glu	
	655					660					665					
cca	gag	gat	cca	gtg	ctg	gcg	atg	act	gat	gcg	ggt	cag	agt	aca	gaa	2125
Pro	Glu	Asp	Pro	Val	Leu	Ala	Met	Thr	Asp	Ala	Gly	Gln	Ser	Thr	Glu	
670					675					680					685	
gag	gtt	caa	gca	cct	ttg	gcc	atg	tgg	gag	gct	ggc	att	cag	cac	ata	2173
Glu	Val	Gln	Ala	Pro	Leu	Ala	Met	Trp	Glu	Ala	Gly	Ile	Gln	His	Ile	
				690					695					700		
atg	ctg	gag	aaa	ggg	agc	aaa	gga	ctt	ggt	ttt	agc	att	tta	gat	tat	2221
Met	Leu	Glu	Lys	Gly	Ser	Lys	Gly	Leu	Gly	Phe	Ser	Ile	Leu	Asp	Tyr	
			705					710					715			
cag	gat	cca:	att	gat	cca	gca	agc	act	gtg	att	ata	att	cgt	tct	ttg	2269
Gln	Asp	Pro	Ile	Asp	Pro	Ala	Ser	Thr	Val	Ile	Ile	Ile	Arg	Ser	Leu	
		720					725					730				
gtg	cct	ggc	ggc	att	gct	gaa	aag	gat	gga	cga	ctt	ctt	cct	ggt	gac	2317
Val	Pro	Gly	Gly	Ile	Ala	G1u	Lys	Asp	Gly	Arg	Leu	Leu	Pro	Gly	Asp	
	735					740					745					

cga	ctc	atg	ttt	gta	aac	gat	gtt	aac	ttg	gaa	aac	agc	agt	ctt	gag	2365
Arg	Leu	Met	Phe	Val	Asn	Asp	Val	Asn	Leu	Glu	Asn	Ser	Ser	Leu	G1u	
750					755					760					765	
gaa	gct	gta	gaa	gca	ctg	aag	gga	gca	ccg	tca	ggg	act	gtg	aga	ata	2413
Glu	Ala	Val	G 1 u	Ala	Leu	Lys	Gly	Ala	Pro	Ser	Gly	Thr	Val	Arg	Ile	
				770					775					780		
gga	gtt	gct	aag	cct	tta	ccc	ctt	tca	cca	gaa	gaa	ggt	tat	gtt	tct	2461
Gly	Val	Ala	Lys	Pro	Leu	Pro	Leu	Ser	Pro	Glu	Glu	Gly	Tyr	Val	Ser	
			785					790					795			
gct	aag	gag	gat	tcc	ttt	ctc	tac	cca	cca	cac	tcc	tgt	gag	gaa	gca	2509
Ala	Lys	G1u	Asp	Ser	Phe	Leu	Tyr	Pro	Pro	His	Ser	Cys	Glu	Glu	Ala	
		800					805					810				
ggg	ctg	gct	gac	aaa	ccc	ctc	ttc	agg	gct	gac	ttg	gct	ctg	gtg	ggc	2557
										Asp						
•	815		•	- • -		820		•		•	825				•	
						-										
aca	aat	gat	get	gar	tta	ert a	gat	gaa	tee	aca	ttt	<b>929</b>	tet	CCS	tac	2605
										Thr						2000
	Von	иор	AIG	изр		V & I	nsp	uru	961	840	1110	014	501	110	845	
830					835					040					040	
																0050
										caa						2653
Ser	Pro	Glu	Asn		Ser	Ile	Tyr	Ser		Gln	Ala	Ser	Ile		Ser	
				850					855					860		

ctt	cat	ggc	agt	tct	tgt	ggt	gat	ggc	ctg	aac	tat	ggt	tct	tcc	ctt	2701	
Leu	His	Gly	Ser	Ser	Cys	Gly	Asp	Gly	Leu	Asn	Tyr	Gly	Ser	Ser	Leu		
			865					870					875				
cca	tca	tct	cct	cct	aag	gat	gtt	att	gaa	aat	tct	tgt	gat	cca	gta	2749	
Pro	Ser	Ser	Pro	Pro	Lys	Asp	Val	Ile	Glu	Asn	Ser	Cys	Asp	Pro	Val		
		880					885					890					
ett	gat	cte	cat	ate	tet	ctg	gag	gaa	cta	tat	acc	cag	aat	ctc	ctg	2797	
										Tyr							
поц		200			501	900					905	•					
	895					300					300						
gaa	aga	cag	gat	gag	aat	aca	cct	tcg	gtg	gac	ata	agt	atg	ggg	cct	2845	
Glu	Arg	Gln	Asp	Glu	Asn	Thr	Pro	Ser	Val	Asp	Ile	Ser	Met	Gly	Pro		
910					915					920					925		
gct	tct	ggc	ttt	act	ata	aat	gac	tac	aca	cct	gca	aat	gct	att	gaa	2893	
Ala	Ser	Gly	Phe	Thr	Ile	Asn	Asp	Tyr	Thr	Pro	Ala	Asn	Ala	Ile	Glu		
				930					935					940			
caa	caa	tat	gaa	tgt	gaa	aac	aca	ata	gtg	tgg	act	gaa	tct	cat	tta	2941	
										Trp							
411		-,-						950		•			955				
			945					300					<b></b>				
													_			0000	
										cct						2989	
Pro	Ser	Glu	Val	Ile	Ser	Ser	Ala	Glu	Leu	Pro	Ser	Val	Leu	Pro	Asp		

960 965 970

tca	gct	gga	aag	ggc	tct	gag	cac	ctg	ctt	gaa	cag	agc	tcc	ctg	gcc	3037
Ser	Ala	Gly	Lys	Gly	Ser	Glu	His	Leu	Leu	Glu	Gln	Ser	Ser	Leu	Ala	
	975					980					985					
tgt	aat	gct	gag	tgt	gtc	atg	ctt	caa	aat	gta	tct	aaa	gaa	tct	ttt	3085
Cys	Asn	Ala	Glu	Cys	Val	Met	Leu	Gln	Asn	Val	Ser	Lys	Glu	Ser	Phe	
990					995					100	)				1005	
gaa	agg	act	att	aat	ata	gca	aaa	ggc	aat	tct	agc	cta	gga	atg	aca	3133
Glu	Arg	Thr	Ile	Asn	Ile	Ala	Lys	Gly	Asn	Ser	Ser	Leu	Gly	Met	Thr	
				1010	)				1015	;				1020	}	
			aat													3181
Val	Ser	Ala	Asn		Asp	Gly	Leu	Gly	Met	Ile	Val	Arg	Ser	Ile	Ile	
			1025					1030	i				1035	j		
			gcc													3229
His	GIÀ			116	Ser			Gly	Arg	Ile				Asp	Cys	
		1040	,				1045					1050				
atr	tta	too	2++	a a t	# A A		+ - +			4	-4-					
Ile :															cag	3277
	1055		116	11		uiu 1060	9 <u>6 1</u> .	1111	116		vai 1065	101	ASN	AIA	uln	
	• •										1009					

gca cga gct atg ttg aga aga cat tct ctc att ggc cct gac ata aaa

viq	WI P	VI G	nec	nen	VI.E	AI E	1115	ser	reu	116	GIA	FFU	ASP	116	Lys	
1070	)				1078	5				1080	)				1085	
att	act	tat	gtg	cct	gca	gaa	cat	ttg	gaa	gag	ttc	aaa	ata	agc	ttg	3373
Ile	Thr	Tyr	Val	Pro	Ala	Glu	His	Leu	Glu	Glu	Phe	Lys	Ile	Ser	Leu	
				1090	)				1095	i				1100	)	
gga	caa	caa	tct	gga	aga	gta	atg	gca	ctg	gat	att	ttt	tct	tca	tac	3421
Gly	Gln	G1n	Ser	Gly	Arg	Val	Met	Ala	Leu	Asp	Ile	Phe	Ser	Ser	Tyr	
			110	j .				1110	)				1115	i		
act	ggc	aga	gac	att	cca	gaa	tta	cca	gag	cga	gaa	gag	gga	gag	ggt	3469
Thr	Gly	Arg	Asp	Ile	Pro	Glu	Leu	Pro	G1u	Arg	Glu	Glu	Gly	Glu	Gly	
		1197	`				1125					1130	1			
		1120	,				1120	,				1100				
		1120	,				1120	,				1100				
gaa	gaa			ctt	caa	aac			tat	agc	aat			cag	ccc	3517
		agc	gaa	ctt Leu			aca	gca				tgg	aat			3517
		agc Ser	gaa				aca Thr	gca				tgg Trp	aat			3517
	Glu	agc Ser	gaa			Asn	aca Thr	gca			Asn	tgg Trp	aat			3517
Glu	Glu 1135	agc Ser	gaa Glu		Gln	Asn 1140	aca Thr	gca Ala	Tyr	Ser	Asn 1145	tgg Trp	aat Asn	Gln	Pro	3517 3565
Glu	Glu 1135 cgg	agc Ser	gaa Glu gaa	Leu	Gln tgg	Asn 1140 aga	aca Thr	gca Ala	Tyr	Ser	Asn 1145 tcc	tgg Trp	aat Asn	Gln	Pro	
Glu	Glu 1135 cgg Arg	agc Ser	gaa Glu gaa	Leu	Gln tgg	Asn 1140 aga Arg	aca Thr	gca Ala	Tyr	Ser	Asn 1145 tcc Ser	tgg Trp tta	aat Asn	Gln	Pro	
Glu agg Arg	Glu 1135 cgg Arg	agc Ser	gaa Glu gaa	Leu	Gln tgg Trp	Asn 1140 aga Arg	aca Thr	gca Ala	Tyr	Ser aaa Lys	Asn 1145 tcc Ser	tgg Trp tta	aat Asn	Gln	Pro agc Ser	
Glu agg Arg 1150	Glu 1135 cgg Arg	agc Ser gtg	gaa Glu gaa Glu	Leu	tgg Trp	Asn 1140 aga Arg	aca Thr gaa Glu	gca Ala cca Pro	Tyr agc Ser	Ser aaa Lys 1160	Asn 1145 tcc Ser	tgg Trp tta Leu	aat Asn ggc Gly	Gln atc Ile	Pro agc Ser 1165	
agg Arg 1150	Glu 1135 cgg Arg	agc Ser gtg Val	gaa Glu gaa Glu	Leu ctc Leu	tgg Trp 1155	Asn 1140 aga Arg	aca Thr gaa Glu	gca Ala cca Pro	Tyr agc Ser	Ser  aaa  Lys  1160  cta	Asn 1145 tcc Ser	tgg Trp tta Leu	aat Asn ggc Gly	Gln atc Ile	Pro agc Ser 1165	3565

		itc aaa cat				
Met Arg Gl	y Ile Phe I	le Lys His	Val Leu Gl	lu Asp Ser	Pro Ala	Gly
	1185		1190		1195	,
aaa aat gg	a acc ttg a	iaa cct gga	gat aga at	tc gta gag	gca ccc	agt 3709
Lys Asn Gl	y Thr Leu L	ys Pro Gly	Asp Arg Il	le Val Glu	Ala Pro	Ser
12	00	1205	i	1210		
cag tca ga	g toa gag o	ca gag aag	get eca tt	tg tgc agt	gtg ccc	cca 3757
Gln Ser Gl	u Ser Glu P	ro Glu Lys	Ala Pro Le	eu Cys Ser	Val Pro	Pro
1215		1220		1225		
ccc cct cc	t tca gcc t	tt gcc gaa	atg ggt ag	gt gat cac	aca cag	tca 3805
Pro Pro Pr	o Ser Ala P	he Ala Glu	Met Gly Se	er Asp His	Thr Gln	Ser
1230	1	235	12	240		1245
tct gca ag	c aaa atc t	ca caa gat	gtg gac aa	aa gag gat	gag ttt	ggt 3853
Ser Ala Se	r Lys Ile S	Ser Gln Asp	Val Asp Ly	ys Glu Asp	Glu Phe	Gly
	1250		1255		1260	
~	e General General					
tac age tg	्रि <mark>aaa aat</mark> a	atc aga gag	cgt tat gg	ga acc cta	aca ggc	gag 3901
Tyr Ser Tr	p Lys Asn I	le Arg Glu	Arg Tyr Gl	ly Thr Leu	Thr Gly	Glu
	1265		1270		1275	
ctg cat at	g att gaa o	ctg gag aaa	ggt cat ag	gt ggt ttg	ggc cta	agt 3949
Leu His Me	t Ile Glu I	Leu Glu Lys	Gly His Se	er Gly Leu	Gly Leu	Ser
12	80	1285	j.	1290		

ctt	gct	ggg	aac	aaa	gac	cga	tcc	agg	atg	agt	gtc	ttc	ata	gtg	ggg	3997
Leu	Ala	G1y	Asn	Lys	Asp	Arg	Ser	Arg	Met	Ser	Val	Phe	Ile	Val	Gly	
	1295	<b>i</b>				1300					1305					
att	gat	cca	aat	gga	gct	gca	gga	aaa	gat	ggt	cga	ttg	caa	att	gca	4045
Ile	Asp	Pro	Asn	Gly	Ala	Ala	Gly	Lys	Ašp	Gly	Arg	Leu	Gln	Ile	Ala	
1310	)				1315	i				1320	ŧ				1325	
gat	gag	ctt	cta	gag	atc	aat	ggt	cag	att	tta	tat	gga	aga	agt	cat	4093
Asp	Glu	Leu	Leu	G1u	Ile	Asn	Gly	Gln	Ile	Leu	Tyr	Gly	Arg	Ser	His	
				1330	)				1335					1340		
cag	aat	gcc	tca	tca	atc	att	aaa	tgt	gcc	cct	tct	aaa	gtg	aaa	ata	4141
Gln	Asn	Ala	Ser	Ser	Ile	Ile	Lys	Cys	Ala	Pro	Ser	Lys	Val	Lys	Ile	
			1345	i				1350	)				1355			
att	ttt	atc	aga	aat	aaa	gat	gca	gtg	aat	cag	atg	gcc	gta	tgt	cct	4189
Ile	Phe	Ile	Arg	Asn	Lys	Asp	Ala	Val	Asn	Gln	Met	Ala	Val	Cys	Pro	
		1369	)				1365	i				1370				
			; <b>,</b>													
gga	aat	gca	gta	gaa	cct	ttg	cct	tct	aac	tca	gaa	aat	ctt	caa	aat	4237
Gly	Asn	Ala	Val	Glu	Pro	Leu	Pro	Ser	Asn	Ser	Glu	Asn	Leu	Gln	Asn	
	1378	5				1380	)				1385	i				
aag	gag	aca	gag	cca	act	gtt	act	act	tct	gat	gca	gct	gtg	gac	ctc	4285
Lys	Glu	Thr	Glu	Pro	Thr	Val	Thr	Thr	Ser	Asp	Ala	Ala	Val	Asp	Leu	

agt toa ttt aaa aat gtg caa cat ctg gag ctt ccc aag gat cag ggg Ser Ser Phe Lys Asn Val Gln His Leu Glu Leu Pro Lys Asp Gln Gly 

aaa gtc gga gat cag ata ctg gct gta gat gat gaa att gtt ggt Lys Val Gly Asp Gln Ile Leu Ala Val Asp Asp Glu Ile Val Val Gly

tac cct att gaa aag ttt att agc ctt ctg aag aca gca aag atg aca Tyr Pro Ile Giu Lys Phe Ile Ser Leu Leu Lys Thr Ala Lys Met Thr 

gta aaa ctt acc atc cat gct gag aat cca gat tcc cag gct gtt cct Val Lys Leu Thr Ile His Ala Glu Asn Pro Asp Ser Gln Ala Val Pro 

tca gca gct ggt gca gcc agt gga gaa aaa aag aac agc tcc cag tct 

S	er	Ala	Ala	Gly	Ala	Ala	Ser	Gly	Glu	Lys	Lys	Asn	Ser	Ser	Gln	Ser	
				1505	i				1510	)				1515			
С	tg	atg	gtc	cca	cag	tct	ggc	tcc	cca	gaa	ccg	gag	tcc	atc	cga	aat	4669
L	eu	Met	Val	Pro	Gln	Ser	Gly	Ser	Pro	Glu	Pro	Glu	Ser	Ile	Arg	Asn	
		•	1520	)				1525	j				1530	)			-
a	ca	agc	aga	tca	tca	aca	cca	gca	att	ttt	gct	tct	gat	cct	gca	acc	4717
T	hr	Ser	Arg	Ser	Ser	Thr	Pro	Ala	Ile	Phe	Ala	Ser	Asp	Pro	Ala	Thr	
		1535	i				1540	)				1545	,				
t	gc	ccc	att	atc	cct	ggc	tgc	gaa	aca	acc	atc	gag	att	tcc	aaa	ggg	4765
C	ys	Pro	Ile	Ile	Pro	Gly	Cys	Glu	Thr	Thr	Ile	Glu	Ile	Ser	Lys	Gly	
1	550	)				1555	5				1560	)				1565	

cga	aca	ggg	ctg	ggc	ctg	agc	atc	gtt	ggg	ggt	tca	gac	acg	ctg	ctg	4813
Arg	Thr	Gly	Leu	Gly	Leu	Ser	Ile	Val	Gly	Gly	Ser	Asp	Thr	Leu	Leu	
				1570	)				1575	i				1580	)	

ggt	gcc	ttt	att	atc	cat	gaa	gtt	tat	gaa	gaa	gga	gca	gca	tgt	aaa	4861
Gly	Ala	Phe	Ile	Ile	His	Glu	Val	Tyr	Glu	Glu	Gly	Ala	Ala	Cys	Lys	
			1588	5				1590	)				1595			

gat	gga	aga	ctc	tgg	gct	gga	gat	cag	atc	tta	gag	gtg	aat	gga	att	4909
Asp	Gly	Arg	Leu	Trp	Ala	Gly	Asp	Gln	Ile	Leu	Glu	Val	Asn	Gly	Ile	
		1600	0				1605	i				1610	)			

540	UUS	455	445	guu	ava	cat	gai	gaa	gua	att	aat	gic	ctg	aga	cag	4957
Asp	Leu	Arg	Lys	Ala	Thr	His	Asp	Glu	Ala	I 1 e	Asn	Val	Leu	Arg	Gln	
	161	5				162	)				162	5				
acg	cca	cag	aga	gtg	cgc	ctg	aca	ctc	tac	aga	gat	gag	gcc	cca	tac	5005
Thr	Pro	Gln	Arg	Val	Arg	Leu	Thr	Leu	Tyr	Arg	Asp	G1u	Ala	Pro	Tyr	
163	0				163	5				1640	)				1645	
aaa	gag	gag	gaa	gtg	tgt	gac	acc	ctc	act	att	gag	ctg	cag	aag	aag	5053
Lys	Glu	Glu	Glu	Val	Cys	Asp	Thr	Leu	Thr	Ile	Glu	Leu	G1n	Lys	Lys	
				1650	כ				165	5				1660	)	
ccg	gga	aaa	ggc	cta	gga	tta	agt	att	gtt	ggt	aaa	aga	aac	gat	act	5101
Pro	Gly	Lys	Gly	Leu	Gly	Leu	Ser	Ile	Val	Gly	Lys	Arg	Asn	Asp	Thr	
			1665	j				1670	)				1675	i		
gga	gta	ttt	gtg	tca	gac	att	gtc	aaa	gga	gga	att	gca	gat	ccc	gat	5149
Gly	Val	Phe	Val	Ser	Asp	Ile	Val	Lys	Gly	Gly	Ile	Ala	Asp	Pro	Asp	
		1680	)				1685	i				1690				
gga	aga	ctg	atc	cag	gga	gac	cag	ata	tta	ttg	gtg	aat	ggg	gaa	gac	5197
Gly	Arg	Leu	Ile	Gln	Gly	Asp	Gln	Ile	Leu	Leu	Val	Asn	Gly	G1u	Asp	
	1695	i				1700					1705	;				
												,				
gtt	cgt	aat	gcc	tcc	caa	gaa	gcg	gtt	gcc	gct	ttg	cta	aag	tgt	tcc	5245
Val	Arg	Asn	Ala	Ser	Gln	Glu	Ala	Val	Ala	Ala	Leu	Leu	Lys	Cys	Ser	
1710	)				1715					1720					1725	

	ggc	aca	gta	acc	ttg	gaa	gtt	gga	aga	atc	aaa	gct	ggt	cca	ttc	5293
Leu	Gly	Thr	Val	Thr	Leu	Glu	Val	Gly	Arg	Ile	Lys	Ala	Gly	Pro	Phe	
				1730	)				1735	i				1740		
cat	tca	gag	agg	agg	cca	tct	caa	acc	agc	cag	gtg	agt	gaa	ggc	agc	5341
His	Ser	Glu	Arg	Arg	Pro	Ser	Gln	Thr	Ser	Gln	Val	Ser	Glu	Gly	Ser	
			1748	5				1750	)				1755	;		
ctg	tct	tct	ttc	act	ttt	cca	ctc	tct	gga	tcc	agt	aca	tct	gag	tca	5389
Leu	Ser	Ser	Phe	Thr	Phe	Pro	Leu	Ser	Gly	Ser	Ser	Thr	Ser	Glu	Ser	
		1760	)				1765	i				1770				
ctg	gaa	agt	agc	tca	aag	aag	aat	gca	ttg	gca	tct	gaa	ata	cag	gga	5437
Leu	Glu	Ser	Ser	Ser	Lys	Lys	Asn	Ala	Leu	Ala	Ser	Glu	Ile	Gln	Gly	
															·	
	1775	5				1780	)				1785				·	
	1778	i				1780	)								·	
tta			gtc	gaa	atg			ggc			1785		ctg	gga		5485
	aga	aca		gaa Glu		aaa	aag		cct	act	1785 gac	tca			atc	5485
	aga Arg	aca				aaa Lys	aag		cct	act	1785 gac Asp	tca			atc	5485
Leu	aga Arg	aca			Met	aaa Lys	aag		cct	act Thr	1785 gac Asp	tca			atc Ile	5485
Leu 1790	aga Arg	aca Thr	Val		Met 1795	aaa Lys	aag Lys	Gly	cct Pro	act Thr 1800	gac Asp	tca Ser	Leu	Gly	atc Ile 1805	5485 5533
Leu 1790 agc	aga Arg )	aca Thr	Val gga	G1u	Met 1795 gta	aaa Lys i	aag Lys agc	Gly	cct Pro	act Thr 1800	gac Asp	tca Ser gtg	Leu	Gly	atc Ile 1805	
Leu 1790 agc	aga Arg )	aca Thr	Val gga	Glu	Met 1795 gta Val	aaa Lys i	aag Lys agc	Gly	cct Pro	act Thr 1800 ggt Gly	gac Asp	tca Ser gtg	Leu	Gly	atc Ile 1805 ttt Phe	
Leu 1790 agc	aga Arg )	aca Thr	Val gga	Glu gga Gly	Met 1795 gta Val	aaa Lys i	aag Lys agc	Gly	cct Pro	act Thr 1800 ggt Gly	gac Asp	tca Ser gtg	Leu	Gly ata	atc Ile 1805 ttt Phe	
Leu 1790 agc Ser	aga Arg ) atc	aca Thr gct Ala	Val gga Gly	Glu gga Gly	Met 1795 gta Val	aaa Lys ggc Gly	aag Lys agc Ser	Gly cca Pro	cct Pro ctt Leu 1815	act Thr 1800 ggt Gly	gac Asp gat Asp	tca Ser gtg Val	cct Pro	Gly ata Ile 1820	atc Ile 1805 ttt Phe	

atg act cac acc caa gca gtt aac cta ctg aaa aat gca tct ggc tcc Met Thr His Thr Gln Ala Val Asn Leu Leu Lys Asn Ala Ser Gly Ser 

att gaa atg cag gtg gtt gct gga gga gac gtg agt gtg gtc aca ggt Ile Glu Met Gln Val Val Ala Gly Gly Asp Val Ser Val Val Thr Gly 

cat cat cag gag cct gca agt tcc agt ctt tct ttc act ggg ctg acg His His Gln Glu Pro Ala Ser Ser Ser Leu Ser Phe Thr Gly Leu Thr 

tca acc agt ata ttt cag gat gat tta gga cct cct caa tgt aag tct Ser Thr Ser Tie Phe Gln Asp Asp Leu Gly Pro Pro Gln Cys Lys Ser 

att aca cta gag cga gga cca gat ggc tta ggc ttc agt ata gtt gga Ile Thr Leu Glu Arg Gly Pro Asp Gly Leu Gly Phe Ser Ile Val Gly 

gga tat ggc agc cct cat gga gac tta ccc att tat gtt aaa aca gtg

Gly	Tyr	Gly	Ser	Pro	His	Gly	Asp	Leu	Pro	I 1 e	Tyr	Val	Lys	Thr	Val		
	193	5				1940	)				1945	5					
ttt	gca	aag	gga	gca	gcc	tct	gaa	gac	gga	cgt	ctg	aaa	agg	ggc	gat		5965
Phe	Ala	Lys	Gly	Ala	Ala	Ser	Glu	Asp	Gly	Arg	Leu	Lys	Arg	Gly	Asp		
1950	0				1958	i				1960	)				1965		
cag	atc	att	gct	gtc	aat	ggg	cag	agt	cta	gaa	gga	gtc	acc	cat	gaa	6	013
Gln	Ile	Ile	Ala	Val	Asn	Gly	Gln	Ser	Leu	Glu	Gly	Val	Thr	His	Glu		
				1970	)				1975	i				1980	)		
gaa	gct	gtt	gcc	atc	ctt	aaa	cgg	aca	aaa	ggc	act	gtc	act	ttg	atg	€	061
Glu	Ala	Val	Ala	Ile	Leu	Lys	Arg	Thr	Lys	G1y	Thr	Val	Thr	Leu	Met		
			1985	i				1990	ı				1995	i			
																*	
gtt	ctc	tct	tgaa	ttgg	ct g	ccag	aatt	g aa	ccaa	LCCCa	acc	ccta	gct			6	110
Val	Leu	Ser															
		2000	i														
cacc	tect	ac t	gtaa	agag	a at	gcac	teet	cct	gaca	att	ttta	teci	et s	ettes	gccgg	6	170
		,	<b>Q</b>								0000		'6 ° '	50000		·	1110
øtc+	+022	22 0	+ + + =	~~~	er re					+ - +		4			atget	c	090
5000	, e c a a	.a.a. U	свеа	6565	, в ва	aala	acac		agii			ссса	itc	tagaa	latget	0	230
ttcc	ttac	tg a	caac	ctaa	c at	catt	tttc	ttt	tctt	ctt	gcat	tttg	tg	aactt	aaaga	6	290
gaag	gaat	at t	tgtg	tagg	t ga	atct	cgtt	ttt	attt	gtg	gaga	tato	ta a	atgtt	ttgta	6	350

gicacatggg caagaattat tacatgctaa gciggitagi ataaagaaag ataatictaa	0410
agctaaccaa agaaaatggc ttcagtaagt taggatgaaa aatgaaaata taaaataaag	6470
aagaaaatet eggggagttt aaaaaaaatg eeteaatttg geaatetace teeteteece	6530
accccaaact	6540
.010. 00	
<210> 86	
<211> 6750	
<212> DNA	
<213> Homo sapience	
<220>	
<221> CDS	
<222> (71)(6280)	
<222> (11)(020U)	
<400> 86	
ttctcagtca egcagttcca ttttaattgc tgttaatcat ttcagagaag aacactgaac	60
tttgaaaaaa atg ttg gaa goc att gac aaa aat cgg goc ctg cat goa	109
Met Leu Glu Ala Ile Asp Lys Asn Arg Ala Leu His Ala	
1 5 10	
•	
gca gag cgc ttg caa acc aag ctg cga gaa cgt ggg gat gta gca aat	157
Ala Glu Arg Leu Gln Thr Lys Leu Arg Glu Arg Gly Asp Val Ala Asn	
15 20 25	

gaa	gac	aaa	ctg	agc	ctt	ctg	aag	tca	gtc	ctg	cag	agc	cct	ctc	ttc	205
Glu	Asp	Lys	Leu	Ser	Leu	Leu	Lys	Ser	Val	Leu	Gln	Ser	Pro	Leu	Phe	
30					35					40					45	
agt	cag	att	ctg	agc	ctt	cag	act	tct	gta	cag	cag	ctg	aaa	gac	cag	253
Ser	G1n	Ile	Leu	Ser	Leu	G1n	Thr	Ser	Val	G1n	Gln	Leu	Lys	Asp	G1n	
				50					55					60		
gta	aat	att	gca	act	tca	gca	act	tca	aat	att	gaa	tat	gcc	cac	gtt	301
Val	Asn	Ile	Ala	Thr	Ser	Ala	Thr	Ser	Asn	Ile	Glu	Tyr	Ala	His	Val	
			65					70					75			
cct	cat	ctc	agc	cca	gct	gtg	att	cct	act	ctg	caa	aat	gaa	tcg	ttt	349
Pro	His	Leu	Ser	Pro	Ala	Val	Ile	Pro	Thr	Leu	Gln	Asn	Glu	Ser	Phe	
		80					85					90				
tta	tta	tcc	cca	aac	aat	ggg	aat	ctg	gaa	gca	ctt	aca	gga	cct	ggt	397
Leu	Leu	Ser	Pro	Asn	Asn	Gly	Asn	Leu	Glu	Ala	Leu	Thr	Gly	Pro	Gly	
	95	ň				100					105					
att	cca	cac	att	aat	ggg	aaa	cct	gct	tgt	gat	gaa	ttt	gat	cag	ctt	445
I l e	Pro	His	Ile	Asn	Gly	Lys	Pro	Ala	Cys	Asp	Glu	Phe	Asp	Gln	Leu	
110					115					120					125	
atc	aaa	aat	atg	gcc	cag	ggt	cgc	cat	gta	gaa	gtt	ttt	gag	ctc	ctc	493
						G1y										

130	135	140

aaa	cct	cca	tct	gga	ggc	ctt	ggg	ttt	agt	gtt	gtg	gga	cta	aga	agt	541
Lys	Pro	Pro	Ser	Gly	Gly	Leu	Gly	Phe	Ser	Val	Val	Gly	Leu	Arg	Ser	
			145					150					155			
gaa	aac	aga	gga	gag	ctg	gga	ata	ttt	gtt	caa	gag	ata	caa	gag	ggc	589
Glu	Asn	Arg	Gly	Glu	Leu	Gly	Ile	Phe	Val	Gln	Glu	Ile	Gln	Glu	Gly	
		160					165					170				
agt	gtg	gcc	cat	aga	gat	gga	aga	ttg	aaa	gaa	act	gat	caa	att	ctt	637
Ser	Val	Ala	His	Arg	Asp	Gly	Arg	Leu	Lys	Glu	Thr	Asp	Gln	Ile	Leu	
	175					180					185					
gct	atc	aat	gga	cag	gct	ctt	gat	cag	aca	att	aca	cat	cag	cag	gct	685
Ala	Ile	Asn	Gly	Gln	Ala	Leu	Asp	G1n	Thr	I1e	Thr	His	Gln	Gln	Ala	
190					195					200					205	
atc	agc	atc	ctg	cag	aaa	gcc	aaa	gat	act	gtc	cag	cta	gtt	att	gcc	733
Ile	Ser	H	Leu	Gln	Lys	Ala	Lys	Asp	Thr	Val	Gln	Leu	Val	Ile	Ala	
		₹ <u>`</u>	٠,	210					215					220		
aga	ggc	tca	ttg	cct	cag	ctt	gtc	agc	ccc	ata	gtt	tcc	cgt	tct	cca	781
Arg	Gly	Ser	Leu	Pro	Gln	Leu	Val	Ser	Pro	Ile	Val	Ser	Arg	Ser	Pro	
			225					230					235			
tct	gca	gcc	agc	aca	att	tca	gct	cac	tct	aat	ccg	gtt	cac	tgg	caa	829

Ser	Ala	Ala	Ser	Thr	Ile	Ser	Ala	His	Ser	Asn	Pro	Val	His	Trp	Gln	
		240					245					250				
cac	atg	gaa	acg	att	gaa	ttg	gtg	aat	gat	gga	tct	ggt	ttg	gga	ttt	877
His	Met	Glu	Thr	Ile	Glu	Leu	Val	Asn	Asp	Gly	Ser	Gly	Leu	Gly	Phe	
	255					260					265					
ggc	atc	ata	gga	gga	aaa	gca	act	ggt	gtg	ata	gta	aaa	acc	att	ctg	925
Gly	Ile	Ile	Gly	Gly	Lys	Ala	Thr	Gly	Val	Ile	Val	Lys	Thr	Ile	Leu	
270					275					280					285	
cct	gga	gga	gta	gct	gat	cag	cat	ggg	cgt	tta	tgc	agt	gga	gac	cac	973
Pro	Gly	Gly	Val	Ala	Asp	G1n	His	Gly	Arg	Leu	Cys	Ser	Gly	Asp	His	
				290					295					300		
att	cta	aag	att	ggt	gac	aca	gat	cta	gca	gga	atg	agc	agt	gag	caa	1021
Ile	Leu	Lys	Ile	Gly	Asp	Thr	Asp	Leu	Ala	Gly	Met	Ser	Ser	Glu	Gln	
			305					310					315			
gta	gca	caa	gtc	ctt	agg	caa	tgt	gga	aat	aga	gtt	aag	ttg	atg	att	1069
Val	Ala	Gln	Val	Leu	Arg	G1n	Cys	Gly	Asn	Arg	Val	Lys	Leu	Met	Ile	
		320					325					330				
gca	aga	agt	gcc	ata	gaa	gaa	cgt	aca	gca	ссс	act	gct	ttg	ggc	atc	1117
Ala	Arg	Ser	Ala	Ile	Glu	Glu	Arg	Thr	Ala	Pro	Thr	Ala	Leu	Gly	Ile	
	335					340					345					

acc	ctc	tcc	tca	tcc	cca	act	tca	acg	cca	gag	ttg	cgg	gtt	gat	gct	1165
Thr	Leu	Ser	Ser	Ser	Pro	Thr	Ser	Thr	Pro	Glu	Leu	Arg	Val	Asp	Ala	
350					355					360					365	
tct	act	cag	aaa	ggt	gaa	gaa	agt	gag	aca	ttt	gat	gta	gaa	ctc	act	1213
Ser	Thr	Gln	Lys	Gly	Glu	Glu	Ser	Glu	Thr	Phe	Asp	Val	G1u	Leu	Thr	
				370					375					380		
aaa	aat	gtc	caa	gga	tta	gga	att	acc	att	gct	ggc	tac	att	gga	gat	1261
Lys	Asn	Val	Gln	Gly	Leu	Gly	Ile	Thr	Ile	Ala	G1y	Tyr	Ile	Gly	Asp	
			385					390					395			
aaa	aaa	ttg	gaa	cct	tca	gga	atc	ttt	gta	aag	agc	att	aca	aaa	agc	1309
Lys	Lys	Leu	Glu	Pro	Ser	Gly	Ile	Phe	Val	Lys	Ser	Ile	Thr	Lys	Ser	
		400					405					410				
agt	gcc	gtt	gag	cat	gat	gga	aga	atc	caa	att	gga	gac	caa	att	ata	1357
Ser	Ala	Val	Glu	His	Asp	Gly	Arg	Ile	Gln	Ile	Gly	Asp	Gln	Ile	Ile	
	415					420					425					
gca	gta	gat	ggc	aca	aac	ctt	cag	ggt	ttt	act	aat	cag	caa	gca	gta	1405
Ala	Val	Asp	Gly	Thr	Asn	Leu	Gln	Gly	Phe	Thr	Asn	Gln	Gln	Ala	Val	
430					435					440					445	
gag	gta	ttg	cga	cat	aca	gga	caa	act	gtg	ctc	ctg	aca	cta	atg	agg	1453
Glu	Val	Leu	Arg	His	Thr	Gly	Gln	Thr	Val	Leu	Leu	Thr	Leu	Met	Arg	
				450					455					460		

aga	gga	atg	aag	cag	gaa	gcc	gag	ctc	atg	tca	agg	gaa	gad	gto	aca	150
Arg	Gly	Met	Lys	G l n	Glu	Ala	Glu	Leu	Met	Ser	Arg	: G1 v	ı Asp	Val	Thr	
			465					470					475			
aaa	gat	gca	gat	ttg	tct	cct	gtt	aat	gcc	agc	ata	atc	aaa	gaa	aat	1549
Lys	Asp	Ala	Asp	Leu	Ser	Pro	Val	Asn	Ala	Ser	Ile	Ile	Lys	Glu	Asn	
		480					485					490				
tat	gaa	aaa	gat	gaa	gat	ttt	tta	tct	tcg	acg	aga	aac	acc	aac	ata	1597
Tyr	Glu	Lys	Asp	Glu	Asp	Phe	Leu	Ser	Ser	Thr	Arg	Asn	Thr	Asn	Ile	
	495					500					505					
tta	cca	act	gaa	gaa	gaa	ggg	tat	cca	tta	ctg	tca	gct	gag	ata	gaa	1645
Leu	Pro	Thr	Glu	Glu	Glu	Gly	Tyr	Pro	Leu	Leu	Ser	Ala	Glu	Ile	Glu	
510					515					520					525	•
gaa	ata	gaa	gat	gca	caa	aaa	caa	gaa	gct	gct	ctg	ctg	aca	aaa	tgg	1693
Glu	Ile	Glu	Asp	Ala	Gln	Lys	Gln	G1u	Ala	Ala	Leu	Leu	Thr	Lys	Trp	
				530					535					540		
caa	agg	att	atg	gga	att	aac	tat	gaa	ata	gtg	gtg	gcc	cat	gtg	agc	1741
								Glu								
			545					550					555			
								•					J			
aag	ttt	agt	gag	aac	agt.	gga	ttø	ggg	ata	200	cto	o* o o	<b>0</b> 0 0	200	at a	1700
								Gly								1789
• -					~ ~ 4			2 + 7	0	201	ar tritt	ara	uia	THL	v a i	

gga cat cat ttt atc cga tct gtt cta cca gag ggt cct gtt gga cac Gly His His Phe Ile Arg Ser Val Leu Pro Glu Gly Pro Val Gly His age ggg aag ete tte agt gga gae gag eta ttg gaa gta aat gge ata Ser Gly Lys Leu Phe Ser Gly Asp Glu Leu Leu Glu Val Asn Gly Ile act tta ctt ggg gaa aat cac caa gat gtg gtg aat atc tta aaa gaa Thr Leu Leu Gly Glu Asn His Gln Asp Val Val Asn Ile Leu Lys Glu ctg cct ata gaa gtg aca atg gtg tgc tgt cgt cga act gtg cca ccc Leu Pro Ile Glu Val Thr Met Val Cys Cys Arg Arg Thr Val Pro Pro acc acc caa tca gaa ttg gat agc ctg gac tta tgt gat aft gag cta Thr Thr Gln Ser Glu Leu Asp Ser Leu Asp Leu Cys Asp Ile Glu Leu aca gaa aag cet cae gta gat eta ggt gag tte ate ggg tea tea gag Thr Glu Lys Pro His Val Asp Leu Gly Glu Phe Ile Gly Ser Ser Glu 

cca gag gat cca gtg ctg gcg atg act gat gcg ggt cag agt aca gaa

Pro	GIU	ASP	Pro	Vai	Leu	Ala	met	Inr	Asp	Ala	Gly	Gin	Ser	Thr	Glu	
670					675					680					685	
er a er	a++	000	<b></b>		++~	<b>400</b>	.+.	<b>.</b>				- 4.4			. 4 .	0170
										gct						2173
Glu	Val	Gln	Ala	Pro	Leu	Ala	Met	Trp	Glu	Ala	Gly	Ile	Gln	His	Ile	
				690					695					700		
atg	ctg	gag	aaa	ggg	agc	aaa	gga	ctt	ggt	ttt	agc	att	tta	gat	tat	2221
Met	Leu	Glu	Lys	Gly	Ser	Lys	Gly	Leu	Gly	Phe	Ser	Ile	Leu	Asp	Tyr	
			705					710					715	-	•	
													110			
												-				
cag	gat	cca	att	gat	cca	gca	agc	act	gtg	att	ata	att	cgt	tct	ttg	2269
G1n	Asp	Pro	Ile	Asp	Pro	Ala	Ser	Thr	Val	Ile	Ile	Ile	Arg	Ser	Leu	
		720					725					730				
gtg	cct	ggc	ggc	att	gct	gaa	aag	gat	gga	cga	ctt	ctt	cct	ggt	gac	2317
										Arg						
							-,0		01,			Dou.		41,	Кор	
	735					740					745					
		3 . 1 * 4 *	· ·													
cga	ctc	ate	ttt	gta	aac	gat	gtt	aac	ttg	gaa	aac	agc	agt	ctt	gag	2365
Arg	Leu	Met	Phe	Val	Asn	Asp	Va1	Asn	Leu	Glu	Asn	Ser	Ser	Leu	Glu	
750					755					760					765	
gaa	get	gta	g* a a	a.c.a	n t ø	220	<b>.</b>	orn a		tca	a a a	20+	ate	900	a + a	2413
																4419
GIU								414								
	Ala	Val	GIU	Ala	ren	Lys	GIY	Ala	rro	26L	GLY	Thr	val	Arg	116	

gga	gtt	gct	aag	cct	tta	ccc	ctt	tca	c c a	gaa	gaa	ggt	tat	gtt	tct	2461
Gly	Val	Ala	Lys	Pro	Leu	Pro	Leu	Ser	Pro	Glu	Glu	Gly	Tyr	Val	Ser	
			785					790					795			
gct	aag	gag	gat	tcc	ttt	ctc	tac	cca	cca	cac	tcc	tgt	gag	gaa	gca	2509
Ala	Lys	G1u	Asp	Ser	Phe	Leu	Tyr	Pro	Pro	His	Ser	Cys	Glu	Glu	Ala	
		800					805					810				
ggg	ctg	gct	gac	aaa	ccc	ctc	ttc	agg	gct	gac	ttg	gct	ctg	gtg	ggc	2557
Gly	Leu	Ala	Asp	Lys	Pro	Leu	Phe	Arg	Ala	Asp	Leu	Ala	Leu	Val	Gly	
	815					820					825					
aca	aat	gat	gct	gac	tta	gta	gat	gaa	tcc	aca	ttt	gag	tct	cca	tac	2605
Thr	Asn	Asp	Ala	Asp	Leu	Val	Asp	Glu	Ser	Thr	Phe	Glu	Ser	Pro	Tyr	
830					835					840					845	
tct	cct	gaa	aat	gac	agc	atc	tac	tct	act	caa	gcc	tct	att	tta	tct	2653
Ser	Pro	Glu	Asn	Asp	Ser	Ile	Tyr	Ser	Thr	G1n	Ala	Ser	Ile	Leu	Ser	
				850					855					860		
		;÷,	} }													
ctt	cat	ggc	agt	tct	tgt	ggt	gat	ggc	ctg	aac	tat	ggt	tct	tcc	ctt	2701
Leu	His	Gly	Ser	Ser	Cys	Gly	Asp	Gly	Leu	Asn	Tyr	Gly	Ser	Ser	Leu	
			865					870					875			
cca	tca	tct	cct	cct	aag	gat	gtt	att	gaa	aat	tct	tgt	gat	cca	gta	2749
Pro	Ser	Ser	Pro	Pro	Lys	Asp	Val	Ile	Glu	Asn	Ser	Cys	Asp	Pro	Val	
		880					885					890				

ctt	gat	ctg	cat	atg	tct	ctg	gag	gaa	cta	tat	acc	cag	aat	ctc	ctg	2797
Leu	Asp	Leu	His	Met	Ser	Leu	Glu	Glu	Leu	Tyr	Thr	G1n	Asn	Leu	Leu	
	895					900					905					
gaa	aga	cag	gat	gag	aat	aca	cct	tcg	gtg	gac	ata	agt	atg	ggg	cct	2845
Glu	Arg	Gln	Asp	Glu	Asn	Thr	Pro	Ser	Val	Asp	Ile	Ser	Met	Gly	Pro	
910					915					920					925	
gct	tct	ggc	ttt	act	ata	aat	gac	tac	aca	cct	gca	aat	gct	att	gaa	2893
Ala	Ser	Gly	Phe	Thr	I1e	Asn	Asp	Tyr	Thr	Pro	Ala	Asn	Ala	Ile	Glu	
				930					935					940		
caa	caa	tat	gaa	tgt	gaa	aac	aca	ata	gtg	tgg	act	gaa	tct	cat	tta	2941
Gln	Gln	Tyr	Glu	Cys	Glu	Asn	Thr	Ile	Val	Trp	Thr	Glu	Ser	His	Leu	
			945					950					955			
cca	agt	gaa	gtt	ata	tca	agt	gca	gaa	ctt	cct	tct	gtg	cta	ccc	gat	2989
Pro	Ser	Glu	Val	Ile	Ser	Ser	Ala	Glu	Leu	Pro	Ser	Val	Leu	Pro	Asp	
		960					965					970				
tca	gct	gga	aag	ggc	tct	gag	tac	ctg	ctt	gaa	cag	agc	tcc	ctg	gcc	3037
Ser	Ala	G1y	Lys	Gly	Ser	Glu	Tyr	Leu	Leu	Glu	Gln	Ser	Ser	Leu	Ala	
	975					980					985					
tgt	aat	gct	gag	tgt	gtc	atg	ctt	caa	aat	gta	tct	aaa	gaa	tct	ttt	3085
Cys	Asn	Ala	Glu	Cys	Val	Met	Leu	Gln	Asn	Val	Ser	Lys	Glu	Ser	Phe	

Gly	Gln	Gln	Ser	Gly	Arg	Val	Met	Ala	Leu	Asp	Ile	Phe	Ser	Ser	Tyr	
			110	5				1110	)				1115	i		
act	ggc	aga	gac	att	cca	gaa	tta	cca	gag	cga	gaa	gag	gga	gag	ggt	3469
Thr	Gly	Arg	Asp	lle	Pro	Glu	Leu	Pro	Glu	Arg	Glu	Glu	Gly	Glu	Gly	
		1120	)				1125	i				1130	ł			
gaa	gaa	agc	gaa	ctt	caa	aac	aca	gca	tat	agc	aat	tgg	aat	cag	ccc	3517
Glu	Glu	Ser	Glu	Leu	Gln	Asn	Thr	Ala	Tyr	Ser	Asn	Trp	Asn	Gln	Pro	
	1138	j			•	1140	)				1145					
agg	cgg	gtg	gaa	ctt	tgg	aga	gaa	cca	agc	aaa	tcc	tta	ggc	atc	agc	3565
Arg	Arg	Val	Glu	Leu	Trp	Arg	G1u	Pro	Ser	Lys	Ser	Leu	Gly	Ile	Ser	
1150	)				1155	i				1160	ŀ				1165	
1150	)				1158	i				1160	)				1165	
		ggt	gga	cga			ggg	agt	cgg			aat	gga	gaa		3613
att	gtt			cga Arg	ggg	atg				cta	agc				gtg	3613
att	gtt				ggg Gly	atg				cta Leu	agc				gtg Val	3613
att Ile	gtt Val	Gly	Gly	Arg	ggg Gly	atg Met	Gly	Ser	Arg 1175	cta Leu	agc Ser	Asn	G1y	Glu 1180	gtg Val	3613
att Ile	gtt Val	Gly	Gly	Arg	ggg Gly	atg Met	Gly	Ser	Arg 1175	cta Leu	agc Ser	Asn	G1y	Glu 1180	gtg Val	3613 3661
att Ile	gtt Val	Gly	Gly	Arg	ggg Gly	atg Met aaa	Gly	Ser gtt	Arg 1175 ctg	cta Leu gaa	agc Ser gat	Asn	Gly	Glu 1180 gct	gtg Val	
att Ile	gtt Val	Gly	Gly	Arg 1170 ttc Phe	ggg Gly	atg Met aaa	Gly	Ser gtt	Arg 1175 ctg Leu	cta Leu gaa	agc Ser gat	Asn	Gly	Glu 1180 gct Ala	gtg Val	
att Ile	gtt Val	Gly	Gly att	Arg 1170 ttc Phe	ggg Gly	atg Met aaa	Gly	Ser gtt Val	Arg 1175 ctg Leu	cta Leu gaa	agc Ser gat	Asn	Glycca Pro	Glu 1180 gct Ala	gtg Val	
att Ile atg Met	gtt Val agg Arg	Gly Gly gga	Gly Lite Lie List acc	Arg 1170 ttc Phe	ggg Gly atc Ile	atg Met aaa Lys	Gly cat His	gtt Val 1190	Arg 1175 ctg Leu	cta Leu gaa Glu	agc Ser gat Asp	agg Arg	Gly  cca Pro 1195	Glu 1180 gct Ala	gtg Val ggc Gly	
att Ile atg Met	gtt Val agg Arg	Gly Gly gga	Gly  Ile  1185	Arg 1170 ttc Phe	ggg Gly atc Ile	atg Met aaa Lys	Gly cat His	gtt Val 1190	Arg 1175 ctg Leu	cta Leu gaa Glu	agc Ser gat Asp	agg Arg	Gly  cca Pro 1195	Glu 1180 gct Ala	gtg Val ggc Gly	3661

atg	gac	ctc	aga	gat	gca	agc	cat	gaa	caa	gct	gtg	gaa	gcc	att	cgg	3757
Met	Asp	Leu	Arg	Asp	Ala	Ser	His	G1u	Gln	Ala	Val	Glu	Ala	Ile	Arg	
	1215	i				1220	)				1225	;				
aaa	gca	ggc	aac	cct	gta	gtc	ttt	atg	gta	cag	agc	att	ata	aac	aga	3805
Lys	Ala	Gly	Asn	Pro	Val	Val	Phe	Met	Val	Gln	Ser	Ile	I1e	Asn	Arg	
1230					1235	i				1240	)				1245	
cca	agg	aaa	tcc	cct	ttg	cct	tcc	ttg	ctg	cac	aac	ctt	tac	cct	aag	3853
Pro .	Arg	Lys	Ser	Pro	Leu	Pro	Ser	Leu	Leu	His	Asn	Leu	Tyr	Pro	Lys	
				1250	)				1255	i				1260	ı	
tac	aac	ttc	agc	agc	act	aac	cca	ttt	gct	gac	tct	cta	caa	atc	aac	3901
Tyr .	Asn	Phe	Ser	Ser	Thr	Asn	Pro	Phe	Ala	Asp	Ser	Leu	Gln	Ile	Asn	
			1265	•				1270	)				1275	i		
gcc	gac	aag	gca	ccc	agt	cag	tca	gag	tca	gag	cca	gag	aag	gct	cca	3949
Ala.	Asp	Lys	Ala	Pro	Ser	Gln	Ser	Glu	Ser	Glu	Pro	Glu	Lys	Ala	Pro	
		1280					1285	;				1290	)			
ttg	tgc	agt	gtg	ccc	cca	ccc	cct	cct	tca	gcc	ttt	gcc	gaa	atg	ggt	3997
Leu	Cys	Ser	Val	Pro	Pro	Pro	Pro	Pro	Ser	Ala	Phe	Ala	Glu	Met	Gly	
	1295					1300	)				1305	i				
agt																4045
Ser .	Asp	His	Thr	Gln	Ser	Ser	Ala	Ser	Lys	lle	Ser	Gln	Asp	Val	Asp	
1310					1315	j				1320	)				1325	

aaa	gag	gat	gag	ttt	ggt	tac	agc	tgg	aaa	aat	atc	aga	gag	cgt	tat	4093
Lys	Glu	Asp	Glu	Phe	Gly	Tyr	Ser	Trp	Lys	Asn	Ile	Arg	Glu	Arg	Tyr	
				1330	)				1335	j				1340	•	
gga	acc	cta	aca	ggc	gag	ctg	cat	atg	att	gaa	ctg	gag	aaa	ggt	cat	4141
Gly	Thr	Leu	Thr	Gly	Glu	Leu	His	Met	Ile	Glu	Leu	Glu	Lys	Gly	His	
			1348	5				1350	)				1355	i		
agt	ggt	ttg	ggc	cta	agt	ctt	gct	ggg	aac	aaa	gac	cga	tcc	agg	atg	4189
Ser	Gly	Leu	Gly	Leu	Ser	Leu	Ala	G1y	Asn	Lys	Asp	Arg	Ser	Arg	Met	
		1360	)				1365	i				1370	)			
agt	gtc	ttc	ata	gtg	ggg	att	gat	cca	aat	gga	gct	gca	gga	aaa	gat	4237
Ser	Val	Phe	Ile	Val	Gly	lle	Asp	Pro	Asn	Gly	Ala	Ala	Gly	Lys	Asp	
	137	i				1380	)				1385	i				
						•										
ggt	cga	ttg	caa	att	gca	gat	gag	ctt	cta	gag	atc	aat	ggt	cag	att	4285
Gly	Arg	Leu	Gln	Ile	Ala	Asp	Glu	Leu	Leu	Glu	Ile	Asn	Gly	Gln	Ile	
1390	)		rig Pali Sap		1398	i				1400	)				1405	~
		,	₹.													
tta	tat	gga	aga	agt	cat	cag	aat	gcc	tca	tca	atc	att	aaa	tgt	gcc	4333
Leu	Tyr	Gly	Arg	Ser	His	Gln	Asn	Ala	Ser	Ser	Ile	Ile	Lys	Cys	Ala	
				1410	)				1415	;				1420	)	
cct	tct	aaa	gtg	aaa	ata	att	ttt	atc	aga	aat	aaa	gat	gca	gtg	aat	4381
Pro	Ser	Lys	Val	Lys	Ile	Ile	Phe	Ile	Arg	Asn	Lys	Asp	Ala	Val	Asn	

cag atg gcc gta tgt cct gga aat gca gta gaa cct ttg cct tct aac Gln Met Ala Val Cys Pro Gly Asn Ala Val Glu Pro Leu Pro Ser Asn tca gaa aat ctt caa aat aag gag aca gag cca act gtt act act tct Ser Glu Asn Leu Gln Asn Lys Glu Thr Glu Pro Thr Val Thr Thr Ser gat gca gct gtg gac ctc agt tca ttt aaa aat gtg caa cat ctg gag Asp Ala Ala Val Asp Leu Ser Ser Phe Lys Asn Val Gln His Leu Glu ctt ccc aag gat cag ggg ggt ttg ggt att gct atc agc gaa gaa gat Leu Pro Lys Asp Gln Gly Gly Leu Gly Ile Ala Ile Ser Glu Glu Asp aca ctc agt gga gtc atc ata aag agc tta aca gag cat ggg gta gca Thr Leu Ser Gly Val Ile Ile Lys Ser Leu Thr Glu His Gly Val Ala gcc acg gat gga cga ctc aaa gtc gga gat cag ata ctg gct gta gat Ala Thr Asp Gly Arg Leu Lys Val Gly Asp Gln Ile Leu Ala Val Asp 

gat gaa att gtt gtt ggt tac cct att gaa aag ttt att agc ctt ctg

Ası	Glu	i II:	e Val	Va.	l Gly	Туі	Pro	Ile	Glu	Lys	Phe	lle	Ser	Leu	Leu		
	153	5				154	0				154	5					
aag	aca	g ca	ı aag	ate	aca	gta	aaa	ctt	acc	atc	cat	gct	gag	aat	cca		4765
												Ala					
155			•		155		-,-						414	. ASII			
-00	•				100	U				156	U				1565		
	ı																
												agt				4	4813
Asp	Ser	Gln	Ala	Val	Pro	Ser	Ala	Ala	Gly	Ala	Ala	Ser	Gly	G1 u	Lys		
				157	0				157	5				1580	)		
aag	aac	agc	tcc	cag	tct	ctg	atg	gtc	cca	cag	tct	ggc	tcc	cca	gaa	4	1861
Lys	Asn	Ser	Ser	Gln	Ser	Leu	Met	Val	Pro	Gln	Ser	Gly	Ser	Pro	Glu		
			158					1590					1598				
r r a	<b></b>	taa	2 + 0	0.00					4								
												cca				4	1909
Pro	GIU			Arg	Asn	Thr	Ser	Arg	Ser	Ser	Thr	Pro	Ala	Ile	Phe		
		160	0				1605	i				1610	ı				
gct	tct	gat	cct	gca	acc	tgc	ccc	att	atc	cct	ggc	tgc	gaa	aca	acc	4	957
Ala	Ser	Asp	Pro	Ala	Thr	Cys	Pro	I1e	Ile	Pro	Gly	Cys	G1u	Thr	Thr		
	1615					1620					1625						
atc	gag	att	tee	922	0 0 0	n et a	202	<i>a.a.</i>	a t ~		a <b>4</b>		- <b>4</b> -	-4.4		_	005
												agc				5	005
116	GIU	116	26L	Lys	Gly	Arg	Thr	Gly	Leu	Gly	Leu	Ser	Ile	Val	Gly		

ggt	tca	gac	acg	ctg	ctg	ggt	gcc	ttt	att	atc	cat	gaa	gtt	tat	gaa	5053
Gly	Ser	Asp	Thr	Leu	Leu	Gly	Ala	Phe	Ile	Ile	His	Glu	Val	Tyr	Glu	
				1650	)				1655	5				1660	)	
gaa	gga	gca	gca	tgt	aaa	gat	gga	aga	ctc	tgg	gct	gga	gat	cag	atc	5101
Glu	Gly	Ala	Ala	Cys	Lys	Asp	Gly	Arg	Leu	Trp	Ala	Gly	Asp	Gln	Ile	
			1668	ō				1670	)				1675	i		
tta	gag	gtg	aat	gga	att	gac	ttg	agg	aag	gcc	aca	cat	gat	gaa	gca	5149
Leu	Glu	Val	Asn	Gly	Ile	Asp	Leu	Arg	Lys	Ala	Thr	His	Asp	Glu	Ala	
		1680	)				1685	5				1690	1			
atc	aat	gtc	ctg	aga	cag	acg	cca	cag	aga	gtg	cgc	ctg	aca	ctc	tac	5197
Ile	Asn	Val	Leu	Arg	Gln	Thr	Pro	Gln	Arg	Val	Arg	Leu	Thr	Leu	Tyr	
	1698	i				1700	)				1705	i				
aga	gat	gag	gcc	cca	tac	aaa	gag	gag	gaa	gtg	tgt	gac	acc	ctc	act	5245
Arg	Asp	Glu	Ala	Pro	Tyr	Lys	Glu	Glu	Glu	Val	Cys	Asp	Thr	Leu	Thr	
1710	)				1718	5				1720	)		•		1725	
att	gag	ctg	cag	aag	aag	ccg	gga	aaa	ggc	cta	gga	tta	agt	att	gtt	5293
Ile	Glu	Leu	Gln	Lys	Lys	Pro	Gly	Lys	Gly	Leu	Gly	Leu	Ser	Ile	Val	
				1730	)				1735	;				1740	F	
ggt	aaa	aga	aac	gat	act	gga	gta	ttt	gtg	tca	gac	att	gtc	aaa	gga	5341
Gly	Lys	Arg	Asn	Asp	Thr	Gly	Val	Phe	Va1	Ser	Asp	I 1 e	Val	Lys	Gly	
			1745	i				1750	)				1755	i		

		gca														5389
uly	116	Ala 1760		rru	ASP	ara	1768		116	GIU	ary	1770		116	Leu	
ttg	gtg	aat	ggg	gaa	gac	gtt	cgt	aat	gcc	tcc	caa	gaa	gcg	gtt	gcc	5437
Leu	Val	Asn	Gly	Glu	Asp	Val	Arg	Asn	Ala	Ser	Gln	Glu	Ala	Val	Ala	
	1779	5				1780	)				1785	i				
		cta.														5485
		Leu	Lys	Cys			Gly	Thr	Val			Glu	Val	Gly	Arg	
1790	)				1795	j				1800	)				1805	
atc	aaa	gct	ggt	cca	ttc	cat	tca	gag	agg	agg	cca	tct	caa	acc	agc	5533
Ile	Lys	Ala	Gly	Pro	Phe	His	Ser	Glu	Arg	Arg	Pro	Ser	Gln	Thr	Ser	
				1810	•				1815					1820		
cag	gtg	agt	gaa	ggc	agc	ctg	tct	tct	ttc	act	ttt	cca	ctc	tct	gga	5581
Gln	Val	Ser	Glu	Gly	Ser	Leu	Ser	Ser	Phe	Thr	Phe	Pro	Leu	Ser	Gly	
		تر. وا ع حرا	1825	i				1830					1835			
		-														
tcc	agt	aca	tct	gag	tca	ctg	gaa	agt	agc	tca	aag	aag	aat	gca	ttg	5629
Ser	Ser	Thr	Ser	Glu	Ser	Leu	Glu	Ser	Ser	Ser	Lys	Lys	Asn	Ala	Leu	
		1840					1845					1850				
																c 0 mm
gca	tct	gaa	ata	cag	gga	tta	aga	aca	gtc	gaa	atg	aaa	aag	ggc	CCT	5677

act gac tca ctg gga atc agc atc gct gga gga gta ggc agc cca ctt Thr Asp Ser Leu Gly Ile Ser Ile Ala Gly Gly Val Gly Ser Pro Leu ggt gat gtg cct ata ttt att gca atg atg cac cca act gga gtt gca Gly Asp Val Pro Ile Phe Ile Ala Met Met His Pro Thr Gly Val Ala gca cag acc caa aaa ctc aga gtt ggg gat agg att gtc acc atc tgt Ala Gln Thr Gln Lys Leu Arg Val Gly Asp Arg Ile Val Thr Ile Cys ggc aca tee act gag ggc atg act cae ace caa gca gtt aac eta etg Gly Thr Ser Thr Glu Gly Met Thr His Thr Gln Ala Val Asn Leu Leu aaa aat gca tot ggc toc att gaa atg cag gtg gtt gct gga gga gac Lys Asn Ala Ser Gly Ser Ile Glu Met Gln Val Val Ala Gly Gly Asp gtg agt gtg gtc aca ggt cat cat cag gag cct gca agt tcc agt ctt 

Val Ser Val Val Thr Gly His His Gln Glu Pro Ala Ser Ser Ser Leu

tet tte act ggg etg acg tea ace agt ata ttt cag gat gat tta gga

261	Phe	Thr	Gly	Leu	Thr	Ser	Thr	Ser	Ile	Phe	Gln	Asp	Asp	Leu	Gly		
				1970	)				1978	5				1980	)		
cct	cct	caa	tgt	aag	tct	att	aca	cta	gag	cga	gga	cca	gat	ggc	tta		6061
Pro	Pro	Gln	Cys	Lys	Ser	Ile	Thr	Leu	Glu	Arg	Gly	Pro	Asp	Gly	Leu		
			1985	5				1990	)				1995	i			
ggc	ttc	agt	ata	gtt	gga	gga	tat	ggc	agc	cct	cat	gga	gac	tta	ccc		6109
Gly	Phe	Ser	Ile	Val	Gly	Gly	Tyr	Gly	Ser	Pro	His	Gly	Asp	Leu	Pro		
		2000	)				200	15				20	10				
att	tat	gtt	aaa	aca	gtg	ttt	gca	aag	gga	gca	gcc	tct	gaa	gac	gga		6157
I 1 e	Tyr	Val	Lys	Thr	Val	Phe	Ala	Lys	Gly	Ala	Ala	Ser	Glu	Asp	Gly		
	2015	i				202	20				20	25					
	2010	•				202					20	20					
	2010					202					20	20					
cgt			agg	ggc	gat			att	gct	gtc			cag	agt	cta		6205
	ctg	aaa		ggc Gly		cag	atc				aat	ggg					6205
	ctg Leu	aaa				cag Gln	atc			Val	aat	ggg			Leu	045	6205
Arg	ctg Leu	aaa			Asp	cag Gln	atc			Val	aat Asn	ggg			Leu	045	6205
Arg 2030	ctg Leu	aaa Lys	Arg		Asp 203	cag Gln	atc	Ile	Ala	Va.1	aat Asn 40	ggg Gly	Gln	Ser	Leu 2	045	6205
Arg 2030 gaa	ctg Leu	aaa Lys	Arg	Gly	Asp 203	cag Gln 55	atc Ile	Ile gtt	Ala	Val 20	aat Asn 40	ggg Gly aaa	Gln	Ser	Leu 2	045	
Arg 2030 gaa	ctg Leu	aaa Lys	Arg	Gly	Asp 203 gaa Glu	cag Gln 55	atc Ile	Ile gtt	Ala	Val 20 atc Ile	aat Asn 40	ggg Gly aaa	Gln	Ser aca Thr	Leu 2	045	
Arg 2030 gaa	ctg Leu	aaa Lys	Arg	Gly cat His	Asp 203 gaa Glu	cag Gln 55	atc Ile	Ile gtt	Ala gcc Ala	Val 20 atc Ile	aat Asn 40	ggg Gly aaa	Gln	Ser aca Thr	Leu 24 aaa Lys	045	
Arg 2030 gaa Glu	ctg Leu ) gga Gly	aaaa Lys gtc Val	Arg acc Thr	Gly cat His	Asp 203 gaa Glu	cag Gln 55 gaa Glu	atc Ile gct Ala	Ile gtt Val	gcc Ala 205	Val 20 atc Ile	aat Asn 40 ctt Leu	ggg Gly aaa Lys	Gln cgg Arg	aca Thr	Leu 24 aaa Lys	045	
Arg 2030 gaa Glu ggc	ctg Leu gga Gly	aaaa Lys gtc Val	acc Thr	Gly cat His	Asp 203 gaa Glu atg	cag Gln 55 gaa Glu gtt	atc Ile gct Ala	Ile gtt Val	gcc Ala 205	Val 20 atc Ile	aat Asn 40 ctt Leu	ggg Gly aaa Lys	Gln cgg Arg	aca Thr	Leu 24 aaa Lys	045	6253

aaccaaccca	acccctagct	cacctcctac	tgtaaagaga	atgcactggt	cctgacaatt	6360
tttatgctgt	gttcagccgg	gtcttcaaaa	ctgtaggggg	gaaataacac	ttaagtttct	6420
ttttctcatc	tagaaatgct	ttccttactg	acaacctaac	atcatttttc	ttttcttctt	6480
gcattttgtg	aacttaaaga	gaaggaatat	ttgtgtaggt	gaatotogtt	tttatttgtg	6540
gagatatota	atgttttgta	gtcacatggg	caagaattat	tacatgctaa	gctggttagt	6600
ataaagaaag	ataattctaa	agctaaccaa	agaaaatggc	ttcagtaagt	taggatgaaa	6660
aatgaaaata	taaaataaag	aagaaaatct	cggggagttt	aaaaaaaatg	cctcaatttg	6720
gcaatctacc	tectetecee	accccaaact				6750

<210> 87

<211> 6666

<212> DNA

<213> Homo sapience

<220>

<221> CDS

<222> (71)...(3787)

<400> 87

ttctcagtca cgcagttcca ttttaattgc tgttaatcat ttcagagaag aacactgaac

ttt	gaaa	aaa	atg	ttg	gaa	gcc	att	gac	aaa	aat	cgg	gcc	ctg	cat	gca	109
			Met	Leu	Glu	Ala	Ile	Asp	Lys	Asn	Arg	Ala	Leu	His	Ala	
			1				5					10				
gca	gag	cgc	t t t	g caa	acc	aag	ctg	cga	gaa	. cgt	ggg	gat	gta	gca	aat	157
Ala	Glu	Arg	; Le	u Gln	Thr	Lys	Leu	Arg	Glu	Arg	Gly	Asp	Val	Ala	Asn	
	15					20					25					
gaa	gac	aaa	cti	g ago	ctt	ctg	aag	tca	gtc	ctg	cag	agc	cct	ctc	ttc	205
Glu	Asp	Lys	Lei	ı Ser	Leu	Leu	Lys	Ser	Val	Leu	Gln	Ser	Pro	Leu	Phe	
30					35					40					45	
agt	cag	att	cti	g ago	ctt	cag	act	tct	gta	cag	cag	ctg	aaa	. gac	cag	253
				ı Ser												
				50					55				•	60		
gta	aat	att	gca	a act	tca	gca	act	tca	. aat	att	gaa	tat	gcc	cac	ett	301
				a Thr												
		2	68	_				70					75			
		- 14 - 14 - 15						10					10			
cct	cat	ctc	ago	cca	gct	gtg	att	cct	act	ctg	caa	. aat	gaa	. tcg	ttt	349
Pro	His	Leu	Sea	r Pro	Ala	. Val	Ile	Pro	Thr	Leu	Gln	Asn	Glu	Ser	Phe	
		80					85					90				
tta	tta	tcc	cca	a aac	aat	ggg	aat	ctg	gaa	gca	ctt	aca	gga	cct	ggt	397
				Asn												

95	100

att	cca	cac	att	aat	ggg	aaa	cct	gct	tgt	gat	gaa	ttt	gat	cag	ctt	445
Ile	Pro	His	Ile	Asn	Gly	Lys	Pro	Ala	Cys	Asp	Glu	Phe	Asp	Gln	Leu	
110					115					120					125	
atc	aaa	aat	atg	gcc	cag	ggt	cgc	cat	gta	gaa	gtt	ttt	gag	ctc	ctc	493
Ile	Lys	Asn	Met	Ala	Gln	Gly	Arg	His	Val	Glu	Val	Phe	Glu	Leu	Leu	
				130					135					140		
aaa	cct	cca	tct	gga	ggc	ctt	ggg	ttt	agt	gtt	gtg	gga	cta	aga	agt	541
Lys	Pro	Pro	Ser	Gly	Gly	Leu	Gly	Phe	Ser	Val	Val	Gly	Leu	Arg	Ser	
			145					150					155			
gaa	aac	aga	gga	gag	ctg	gga	ata	ttt	gtt	caa	gag	ata	caa	gag	ggc	589
Glu	Asn	Arg	Gly	Glu	Leu	Gly	Ile	Phe	Val	Gln	Glu	Ile	Gln	Glu	Gly	
		160					165					170				
agt	gtg	gcc ૂ	cat	aga	gat	gga	aga	ttg	aaa	gaa	act	gat	caa	att	ctt	637
Ser	Val	Ale	lis	Arg	Asp	Gly	Arg	Leu	Lys	Glu	Thr	Asp	Gln	Ile	Leu	
	175					180					185					
gct	atc	aat	gga	cag	gct	ctt	gat	cag	aca	att	aca	cat	cag	cag	gct	685
Ala	Ile	Asn	Gly	Gln	Ala	Leu	Asp	Gln	Thr	Ile	Thr	His	Gln	Gln	Ala	
190					195					200					205	
atc	agc	atc	ctg	cag	aaa	gcc	aaa	gat	act	gtc	cag	cta	gtt	att	gcc	733

	501	110	Dou	OIL	цуо	NI a	nyo	nap	1 11 1	141	UIII	pen	Val	116	Ala	
				210					215					220		
aga	ggc	tca	ttg	cct	cag	ctt	gtc	agc	ccc	ata	gtt	tcc	cgt	tct	cca	781
Arg	Gly	Ser	Leu	Pro	G1n	Leu	Val	Ser	Pro	I1e	Val	Ser	Arg	Ser	Pro	
			225					230					235			
tct	gca	gcc	agc	aca	att	tca	gct	cac	tct	aat	ccg	gtt	cac	tgg	caa	829
Ser	Ala	Ala	Ser	Thr	Ile	Ser	Ala	His	Ser	Asn	Pro	Val	His	Trp	Gln	
		240					245					250				
cac	atg	gaa	acg	att	gaa	ttg	gtg	aat	gat	gga	tct	ggt	ttg	gga	ttt	877
His	Met	Glu	Thr	Ile	Glu	Leu	Val	Asn	Asp	Gly	Ser	Gly	Leu	Gly	Phe	
	255					260					265					
ggc	atc	ata	gga	gga	aaa	gca	act	ggt	gtg	ata	gta	aaa	acc	att	ctg	925
Gly	Ile	Ile	Gly	G1y	Lys	Ala	Thr	Gly	Val	Ile	Val	Lys	Thr	Ile	Leu	
270					275					280					285	
		À	*													
		880	e e													973
Pro	Gly	Gly	Val	Ala	Asp	Gln	His	Gly	Arg	Leu	Cys	Ser	Gly	Asp	His	
				290					295					300		
		aag														1021
Ile	Ĺeu	Lys		Gly	Asp	Thr	Asp		Ala	Gly	Met			Glu	Gln	
			305					310					315			

gta	gca	caa	gtc	ctt	agg	caa	tgt	gga	aat	aga	gtt	aag	ttg	atg	att	1069
Val	Ala	Gln	Val	Leu	Arg	Gln	Cys	Gly	Asn	Arg	Val	Lys	Leu	Met	Ile	
		320					325					330				
gca	aga	agt	gcc	ata	gaa	gaa	cgt	aca	gca	ccc	act	gct	ttg	ggc	atc.	1117
Ala	Arg	Ser	Ala	Ile	Glu	Glu	Arg	Thr	Ala	Pro	Thr	Ala	Leu	Gly	-I1e	
	335					340					345					
acc	ctc	tcc	tca	tcc	cca	act	tca	acg	cca	gag	ttg	cgg	gtt	gat	gct	1165
Thr	Leu	Ser	Ser	Ser	Pro	Thr	Ser	Thr	Pro	Glu	Leu	Arg	Val	Asp	Ala	
350					355					360					365	
tct	act	cag	aaa	ggt	gaa	gaa	agt	gag	aca	ttt	gat	gta	gaa	ctc	act	1213
Ser	Thr	Gln	Lys	Gly	Glu	Glu	Ser	Glu	Thr	Phe	Asp	Val	Glu	Leu	Thr	
				370					375					380		
aaa	aat	gtc	caa	gga	tta	gga	att	acc	att	gct	ggc	tac	att	gga	gat	1261
Lys	Asn	Val	Gln	Gly	Leu	Gly	Ile	Thr	Ile	Ala	Gly	Tyr	Ile	Gly	Asp	
			385					390					395			
aaa	aaa	ttg	gaa	cct	tca	gga	atc	ttt	gta	aag	agc	att	aca	aaa	agc	1309
Lys	Lys	Leu	Glu	Pro	Ser	Gly	Ile	Phe	Val	Lys	Ser	Ile	Thr	Lys	Ser	
		400					405					410				
			-													
agt	gcc	gtt	gag	cat	gat	gga	aga	atc	caa	att	gga	gac	caa	att	ata	1357
Ser	Ala	Val	Glu	His	Asp	Gly	Årg	Ile	G1n	Ile	Gly	Asp	Gln	Ile	Ile	
	415					420					425					

gca	gta	gat	gg	e aca	aad	ctt	cag	ggt	ttt	act	taat	t cas	caa	e gca	a gta	1405
Ala	Val	Asp	G13	Thi	Ası	ı Let	G1n	Gly	Phe	Thr	Ası	ı Glr	Gli	a Ala	a Val	
430					435	i				440					445	
gag	gta	. ttg	cga	cat	aca	gga	caa	act	gtg	ctc	cte	aca	cta	ate	agg	1453
Glu	Val	Leu	Arg	His	Thr	Gly	Gln	Thr	Val	Leu	Leu	Thr	Leu	Met	Arg	
				450					455					460		
aga	gga	atg	aag	cag	gaa	gcc	gag	ctc	atg	tca	agg	gaa	gac	gtc	aca	1501
Arg	Gly	Met	Lys	Gln	Glu	Ala	Glu	Leu	Met	Ser	Arg	Glu	Asp	Val	Thr	
			465					470					475			
aaa	gat	gca	gat	ttg	tct	cct	gtt	aat	gcc	agc	ata	atc	aaa	gaa	aat	1549
Lys	Asp	Ala	Asp	Leu	Ser	Pro	Val	Asn	Ala	Ser	Ile	Ile	Lys	Glu	Asn	
		480					485					490				
tat	gaa	aaa	gat	gaa	gat	ttt	tta	tct	tcg	acg	aga	aac	acc	aac	ata	1597
Tyr	Glu	Lys	Asp	Glu	Asp	Phe	Leu	Ser	Ser	Thr	Arg	Asn	Thr	Asn	Ile	
	495	, -ti	_ L, .			500					505					
		*,	•													
tta	cca	act	gaa	gaa	gaa	ggg	tat	cca	tta	ctg	tca	gct	gag	ata	gaa	1645
Leu	Pro	Thr	Glu	Glu	Glu	Gly	Tyr	Pro	Leu	Leu	Ser	Ala	Glu	Ile	Glu	
510					515					520					525	
gaa	ata	gaa	gat	gca	caa	aaa	caa	gaa	gct	gct	ctg	ctg	aca	aaa	tgg	1693
31u	Ile	G1u	Asp	Ala	Gln	Lys	G1n	Glu	Ala	Ala	Leu	Leu	Thr	Lvs	Trn	

530	535	540

caa	agg	att	atg	gga	att	aac	tat	gaa	ata	gtg	gtg	gco	cat	gtg	agc	1741
Glr	Arg	Ile	Met	Gly	Ile	Asn	Tyr	G1u	Ile	Val	Val	Ala	. His	. Val	Ser	
			545					550					555			
aag	ttt	agt	<b>797</b>	920	20+	o o o	++~		a t a		.+.	***				1700
															gtg	1789
гуя	rne			ASN	Ser	Gly	Leu	Gly	lle	Ser	Leu	Glu	Ala	Thr	Val	
		560					565					570				
gga	cat	cat	ttt	atc	cga	tct	gtt	cta	cca	gag	ggt	cct	gtt	gga	cac	1837
Gly	His	His	Phe	Ile	Arg	Ser	Val	Leu	Pro	Glu	Gly	Pro	Val	Gly	His	
	575					580					585					
agc	ggg	aag	ctc	ttc	agt	gga	gac	eae	cta	tte	gaa	øta	aat	<b>6</b> 6 6	ata	1885
						Gly										1000
590		-, -	200	1 110		uly	пор	VIU	Deg		aru	Val	ASII	GIY		
990					595					600					605	
act	tta	ctt	888	gaa	aat	cac	caa	gat	gtg	gtg	aat	atc	tta	aaa	gaa	1933
Thr	Leu	Leu	Gly	Glu	Asn	His	Gln	Asp	Val	Val	Asn	Ile	Leu	Lys	Glu	
			¥	610					615					620		
ctg	cct	ata	gaa	gtg	aca	atg	gtg	tgc	tgt	cgt	cga	act	gte	cca	ccc	1981
						Met										- 3 - 2
	_		625					630	-, 0	5	5			110	410	
			J 2 J					0 <b>3</b> U					635			

acc acc caa toa gaa ttg gat agc ctg gac tta tgt gat att gag cta

2029

Thr	Thr	Gln	Ser	Glu	Leu	Asp	Ser	Leu	Asp	Leu	Cys	Asp	Ile	Glu	Leu		
		640					645					650					
aca	gaa	aag	cct	cac	gta	gat	cta	ggt	gag	ttc	atc	ggg	tca	tca	gag	201	77
					Val												• •
	655	-, -			,		200	ulj	014	Inc		u i y	261	261	dia		
	000					660					665						
cca	gag	gat	cca	gtg	ctg	gcg	atg	act	gat	gcg	ggt	cag	agt	aca	gaa	212	25
Pro	G1u	Asp	Pro	Val	Leu	Ala	Met	Thr	Asp	Ala	Gly	Gln	Ser	Thr	Glu		
670					675					680					685		
gag	gtt	caa	gca	cct	ttg	gcc	atg	tgg	gag	gct	ggc	att	cag	cac	ata	217	73
Glu	Val	Gln	Ala	Pro	Leu	Ala	Met	Trp	Glu	Ala	Gly	Ile	Gln	His	Ile		
				690					695					700			
a + æ	a + #	<b></b>						_ 4.4				- 1 4				0.0.0	
					agc											222	; 1
Met	Leu	Glu	Lys	Gly	Ser	Lys	Gly	Leu	Gly	Phe	Ser	Ile	Leu	Asp	Tyr		
			705					710					715				
			ي. اي.														
cag	gat	cca	att	gat	cca	gca	agc	act	gtg	att	ata	att	cgt	tct	ttg	226	9
G1n	Asp	Pro	l l e	Asp	Pro	Ala	Ser	Thr	Val	Ile	Ile	Ile	Arg	Ser	Leu		
		720					725					730					
gtø	eet	ggc	ppr	att	gct	g 2 2	996	ost	g g a	000	c++	0++	00+	a e +	# a A	991	7
																231	ſ
A ST	rro	пIЯ	uly	iie	Ala	GIU	Lys	Asp	uly	Arg	Leu	Leu	Pro	Gly	Asp		

cga	ctc	atg	ttt	gta	aac	gat	gtt	aac	ttg	gaa	aac	agc	agt	ctt	gag	2365
Arg	Leu	Met	Phe	Val	Asn	Asp	Val	Asn	Leu	Glu	Asn	Ser	Ser	Leu	Glu	
750					755					760					765	
gaa	gct	gta	gaa	gca	ctg	aag	gga	gca	ccg	tca	ggg	act	gtg	aga	ata	2413
Glu	Ala	Val	Glu	Ala	Leu	Lys	Gly	Ala	Pro	Ser	Gly	Thr	Val	Arg	Ile	
				770					775					780		
gga	gtt	gct	aag	cct	tta	ccc	ctt	tca	cca	gaa	gaa	ggt	tat	gtt	tct	2461
Gly	Val	Ala	Lys	Pro	Leu	Pro	Leu	Ser	Pro	Glu	Glu	Gly	Tyr	Val	Ser	
			785					790					795			
gct	aag	gag	gat	tcc	ttt	ctc	tac	cca	cca	cac	tcc	tgt	gag	gaa	gca	2509
Ala	Lys	Glu	Asp	Ser	Phe	Leu	Tyr	Pro	Pro	His	Ser	Cys	Glu	Glu	Ala	
		800					805					810				
ggg	ctg	gct	gac	aaa	ccc	ctc	ttc	agg	gct	gac	ttg	gct	ctg	gtg	ggc	2557
					Pro											
	815					820					825					
aca	aat	gat	gct	gac	tta	gta	gat	gaa	tcc	aca	ttt	gag	tct	cca	tac	2605
Thr	Asn	Asp	Ala		Leu											
830		•			835					840			•		845	
					000					010					010	
t.c+	cct	<b>799</b>	22t	g a n	200	ata	ton	tot	ant	000	<b></b>	+ c +	9++	++^	tot	2652
					agc											2653
ner.	rru	alu	ASN		Ser	116	ıyr			UIN	Ala	zer	116		96L	
				850					855					860		

	ctt	cat	ggc	agt	tct	tgt	ggt	gat	ggc	ctg	aac	tat	ggt	tct	tcc	ctt	2701
	Leu	His	Gly	Ser	Ser	Cys	Gly	Asp	Gly	Leu	Asn	Tyr	Gly	Ser	Ser	Leu	
				865					870					875			
	cca	tca	tct	cct	cct	aag	gat	gtt	att	gaa	aat	tct	tgt	gat	cca	gta	2749
1	Pro	Ser	Ser	Pro	Pro	Lys	Asp	Val	Ile	Glu	Asn	Ser	Cys	Asp	Pro	Val	
			880					885					890				
	ctt	gat	ctg	cat	atg	tct	ctg	gag	gaa	cta	tat	acc	cag	aat	ctc	ctg	2797
1	Leu	Asp	Leu	His	Met	Ser	Leu	Glu	G1u	Leu	Tyr	Thr	Gln	Asn	Leu	Leu	
		895					900					905		٠			
ı	gaa	aga	cag	gat	gag	aat	aca	cct	tcg	gtg	gac	ata	agt	atg	ggg	cct	2845
1	Glu	Arg	G1n	Asp	Glu	Asn	Thr	Pro	Ser	Val	Asp	Ile	Ser	Met	Gly	Pro	
!	910					915					920					925	
1	gct	tct	ggc	ttt	act	ata	aat	gac	tac	aca	cct	gca	aat	gct	att	gaa	2893
,	Ala	Ser	G1 y	Phe	Thr	Ile	Asn	Asp	Tyr	Thr	Pro	Ala	Asn	Ala	Ile	Glu	
			**************************************		930					935					940		
4	caa	caa	tat	gaa	tgt	gaa	aac	aca	ata	gtg	tgg	act	gaa	tct	cat	tta	2941
(	Gln	Gln	Tyr	Glu	Cys	Glu	Asn	Thr	Ile	Va1	Trp	Thr	Glu	Ser	His	Leu	
				945					950					955			
+	cca	agt	gaa	gtt	ata	tca	agt	gca	gaa	ctt	cct	tct	gtg	cta	ccc	gat	2989
1	Pro	Ser	Glu	Val	Ile	Ser	Ser	Ala	Glu	Leu	Pro	Ser	Val	Leu	Pro	Asp	

960

tca	gct	gga	aag	ggc	tct	gag	cac	ctg	ctt	gaa	cag	agc	tcc	ctg	gcc	3037
Ser	Ala	Gly	Lys	Gly	Ser	G1u	His	Leu	Leu	Glu	G1n	Ser	Ser	Leu	Ala	
	975					980					985					
tgt	aat	gct	gag	tgt	gtc	atg	ctt	caa	aat	gta	tct	aaa	gaa	tct	ttt	3085
Cys	Asn	Ala	Glu	Cys	Val	Met	Leu	Gln	Asn	Val	Ser	Lys	Glu	Ser	Phe	
990					995					1000	)				1005	
gaa	agg	act	att	aat	ata	gca	aaa	ggc	aat	tct	agc	cta	gga	atg	aca	3133
Glu	Arg	Thr	Ile	Asn	Ile	Ala	Lys	Gly	Asn	Ser	Ser	Leu	Gly	Met	Thr	
				1010	)				1015	1				1020	)	
gtt	agt	gct	aat	aaa	gat	ggc	ttg	ggg	atg	atc	gtt	cga	agc	att	att	3181
Val	Ser	Ala	Asn	Lys	Asp	Gly	Leu	Gly	Met	Ile	Val	Arg	Ser	Ile	Ile	
			1025	i				1030					1035	į,		
cat	gga	ggt	gcc	att	agt	cga	gat	ggc	cgg	att	gcc	att	ggg	gac	tgc	3229
His	Gly	GL _y .	Ala	Ile	Ser	Arg	Asp	Gly	Arg	Ile	Ala	Ile	Gly	Asp	Cys	
		1040	) · · · ·				1045					1050				
atc	ttg	tcc	att	aat	gaa	gag	tct	acc	atc	agt	gta	acc	aat	gcc	cag	3277
Ile	Leu	Ser	Ile	Asn	Glu	G1u	Ser	Thr	I1e	Ser	Val	Thr	Asn	Ala	Gln	
	1055	i				1060					1065					
gca	cga	gct	atg	ttg	aga	aga	cat	tct	ctc	att	ggc	cct	gac	ata	aaa	3325

Ala	Arg	Ala	Met	Leu	Arg	Arg	His	Ser	Leu	Ile	Gly	Pro	Asp	Ile	Lys	
107	0				107	5				108	0				1085	
att	act	tat	gtg	cct	gca	gaa	cat	ttg	gaa	gag	ttc	aaa	ata	agc	ttg	3373
Ile	Thr	Tyr	Val	Pro	Ala	Glu	His	Leu	Glu	G1u	Phe	Lys	Ile	Ser	Leu	
				109	0				109	5				110	0	
gga	caa	caa	tct	gga	aga	gta	atg	gca	ctg	gat	att	ttt	tct	tca	tac	3421
Gly	Gln	Gln	Ser	Gly	Arg	Val	Met	Ala	Leu	Asp	Ile	Phe	Ser	Ser	Tyr	
			110	ő				1110	)				1118	5		
act	ggc	aga	gac	att	cca	gaa	tta	cca	gag	cga	gaa	gag	gga	gag	ggt	3469
Thr	Gly	Arg	Asp	Ile	Pro	Glu	Leu	Pro	Glu	Arg	G1u	Glu	Gly	Glu	Gly	
		1120	)		,		1125	i				1130				
		1120	)		^		1125	i				1130				
gaa	gaa			ctt	caa	aac			tat	agc	aat			cag	ccc	3517
		agc	gaa				aca	gca		agc Ser		tgg	aat			3517
		agc Ser	gaa		Gln		aca Thr	gca		Ser		tgg Trp	aat			3517
	Glu	agc Ser	gaa		Gln	Asn	aca Thr	gca		Ser	Asn	tgg Trp	aat			3517
Glu	Glu 1135	agc Ser	gaa Glu	Leu	Gln	Asn 1140	aca Thr	gca Ala	Tyr	Ser	Asn 1145	tgg Trp	aat Asn	G1n	Pro	3517 3565
Glu	Glu 1135	agc Ser	gaa Glu gaa	Leu ctc	Gln tgg	Asn 1140 aga	aca Thr	gca Ala	Tyr	Ser	Asn 1145 tcc	tgg Trp	aat Asn	Gln atc	Pro	
Glu	Glu 1135 cgg Arg	agc Ser	gaa Glu gaa	Leu ctc	Gln tgg	Asn 1140 aga Arg	aca Thr	gca Ala	Tyr	Ser	Asn 1145 tcc Ser	tgg Trp	aat Asn	Gln atc	Pro	
Glu agg Arg	Glu 1135 cgg Arg	agc Ser	gaa Glu gaa	Leu ctc	Gln tgg Trp	Asn 1140 aga Arg	aca Thr	gca Ala	Tyr	Ser aaa Lys	Asn 1145 tcc Ser	tgg Trp	aat Asn	Gln atc	Pro agc Ser	
Glu agg Arg	Glu 1135 cgg Arg	agc Ser stg. Val	gaa Glu gaa Glu	Leu ctc Leu	Gln tgg Trp 1155	Asn 1140 aga Arg	aca Thr gaa Glu	gca Ala cca Pro	Tyr agc Ser	Ser aaa Lys	Asn 1145 tcc Ser	tgg Trp tta Leu	aat Asn ggc Gly	Gln atc Ile	Pro agc Ser 1165	
Glu agg Arg 1150	Glu 1135 cgg Arg	agc Ser sts Val	gaa Glu gaa Glu	Leu ctc Leu cga	tgg Trp 1155	Asn 1140 aga Arg	aca Thr gaa Glu	gca Ala cca Pro	Tyr agc Ser	Ser aaa Lys 1160	Asn 1145 tcc Ser	tgg Trp tta Leu	aat Asn ggc Gly	Gln atc Ile	Pro agc Ser 1165	3565

atg agg ggc att ttc atc aaa cat gtt ctg gaa gat agt cca gct ggc	3661
Met Arg Gly Ile Phe Ile Lys His Val Leu Glu Asp Ser Pro Ala Gly	
1185 1190 1195	
• ,	
aaa aat gga acc ttg aaa cct gga gat aga atc gta gag gtg gat gga	3709
Lys Asn Gly Thr Leu Lys Pro Gly Asp Arg Ile Val Glu Val Asp Gly	
1200 1205 1210	
atg gac ctc aga gat gca agc cat gaa caa gct gtg gaa gcc att cgg	3757
Met Asp Leu Arg Asp Ala Ser His Glu Gln Ala Val Glu Ala Ile Arg	
1215 1220 1225	
aaa gca ggc aac cct gta gtc ttt atg gta tagagcttta ttacagacca	3807
Lys Ala Gly Asn Pro Val Val Phe Met Val	
1230 1235	
	,
agggcaccca gtcagtcagt cagagtcaga gtcagagtca gagccagaga aggctcca	tt 3867
	2007
gtgcagtgtg cccccaccc ctccttcage ctttgccgaa atgggtagtg atcacaca	ca 3927
	1007
gtcatctgca agcaaaatct cacaagatgt ggacaaagag gatgagtttg gttacagc	tg 3987
gaaaaatatc agagagogtt atggaacoot aacaggogag otgcatatga ttgaactg	ga 4047
Saaaaatatu agagagugti atggaauuut aauaggugag utguatatga iigaautg	5a 4041
gaaaggtcat agtggtttgg gcctaagtct tgctgggaac aaagaccgat ccaggatg	ag 4107
	ub TIVI
tgtcttcata gtggggattg atccaaatgg agctgcagga aaagatggtc gattgcaa	at 4167
obootoota bibbbbaits alucaaalby agulyuagga aaagalggiu gallyua	a,, 4101

tgcagatgag	cttctagaga	tcaatggtca	gattttatat	ggaagaagtc	atcagaatgc	4227
ctcatcaatc	attaaatgtg	ccccttctaa	agtgaaaata	atttttatca	gaaataaaga	4287
tgcagtgaat	cagatggccg	tatgtcctgg	aaatgcagta	gaacctttgc	cttctaactc	4347
agaaaatett	caaaataagg	agacagagcc	aactgttact	acttctgatg	cagctgtgga	4407
cctcagttca	tttaaaaaatg	tgcaacatct	ggagcttccc	aaggatcagg	ggggtttggg	4467
tattgctatc	agcgaagaag	atacactcag	tggagtcatc	ataaagagct	taacagagca	4527
tggggtagca	gccacggatg	gacgactcaa	agtcggagat	cagatactgg	ctgtagatga	4587
tgaaattgtt	gttggttacc	ctattgaaaa	gtttattagc	cttctgaaga	cagcaaagat	4647
gacagtaaaa	cttaccatcc	atgctgagaa	tccagattcc	caggctgttc	cttcagcagc	4707
tggtgcagcc	agtggagaaa	aaaagaacag	ctcccagtct	ctgatggtcc	cacagtctgg	4767
ctccccagaa	ccggagtcca	teegaaatae	aagcagatca	tcaacaccag	caatttttgc	4827
ttctgatcct	gcaacctgcc	ccattatccc	tggctgcgaa	acaaccatcg	agatttccaa	4887
agggcgaaca	gggctgggcc	tgagcatcgt	tgggggttca	gacacgctgc	tgggtgcctt	4947

tattatccat	gaagtttatg	aagaaggagc	agcatgtaaa	gatggaagac	tctgggctgg	5007
agatcagatc	ttagaggtga	atggaattga	cttgaggaag	gccacacatg	atgaagcaat	5067
caatgtcctg	agacagacgc	cacagagagt	gcgcctgaca	ctctacagag	atgaggcccc	5127
atacaaagag	gaggaagtgt	gtgacaccct	cactattgag	ctgcagaaga	agccgggaaa	5187
aggcctagga	ttaagtattg	ttggtaaaag	aaacgatact	ggagtatttg	tgtcagacat	5247
tgtcaaagga	ggaattgcag	atcccgatgg	aagactgatc	cagggagacc	agatattatt	5307
ggtgaatggg	gaagacgttc	gtaatgcctc	ccaagaagcg	gttgccgctt	tgctaaagtg	5367
ttccctaggc	acagtaacct	tggaagttgg	aagaatcaaa	gctggtccat	tecattcaga	5427
gaggaggcca	tctcaaacca	gccaggtgag	tgaaggcagc	ctgtcttctt	tcacttttcc	5487
actctctgga	tccagtacat	ctgagtcact	ggaaagtagc	tcaaagaaga	atgcattggc	5547
atctgaaata	cagggattaa	gaacagtcga	aatgaaaaag	ggccctactg	actcactggg	5607
aatcagcatc	gctggaggag	taggcagccc	acttggtgat	gtgcctatat	ttattgcaat	5667
gatgcaccca	actggagttg	cagcacagac	ccaaaaactc	agagttgggg	ataggattgt	5727
caccatctgt	ggcacatcca	ctgagggcat	gactcacacc	caagcagtta	acctactgaa	5787

a.a	atgc	atct	ggctccattg	aaatgcaggt	ggttgctgga	ggagacgtga	gtgtggtcac	5847
ag	gtca	tcat	caggageetg	caagttccag	tetttettte	actgggctga	cgtcaaccag	5907
ta	ıtatt	tcag	gatgatttag	gacctcctca	atgtaagtct	attacactag	agcgaggacc	5967
ag	atgg	ctta	ggcttcagta	tagttggagg	atatggcagc	cctcatggag	acttacccat	6027
tt	atgt	taaa	acagtgtttg	caaagggagc	agcctctgaa	gacggacgtc	tgaaaagggg	6087
c g	atca	gatc	attgctgtca	atgggcagag	tctagaagga	gtcacccatg	aagaagctgt	6147
tg	ccat	ectt	aaacggacaa	aaggcactgt	cactttgatg	gttctctctt	gaattggctg	6207
сc	agaai	ttga	accaacccaa	cccctagctc	acctcctact	gtaaagagaa	tgcactggtc	6267
c t	gacaa	ittt	ttatgctgtg	ttcagccggg	tcttcaaaac	tgtagggggg	aaataacact	6327
ta	agtti	ctt	tttctcatct	agaaatgctt	teettaetga	caacctaaca	tcatttttct	6387
t t	tette	ttg	cattttgtga	acttaaagag	aaggaatatt	tgtgtaggtg	aatctcgttt	6447
t t :	atttg	tgg	agatatotaa	tgttttgtag	tcacatgggc	aagaattatt	acatgctaag	6507
c t	ggtta	gta	taaagaaaga	taattctaaa	gctaaccaaa	gaaaatggct	tcagtaagtt	6567

aggatgaaaa atgaaaatat aaaataaaga agaaaatctc ggggagttta aaaaaaatgc 6627
ctcaatttgg caatctacct cctctcccca ccccaaact 6666