Bilkent University Computer Science

CS224 Spring 2021

Design Report Lab6

Section: 2

Arman Engin Sucu

ID: 21801777

26.04.2021

Part 1)

1)

No.	Cache Size KB	N way cache	Word Size in bits	Block size(no. of words)	No. Of sets	Tag size in bits	Index size(Set No.) in bits	Word block offset size in bits ¹	Byte offset size in bits ²	Block Replacement Policy Needed(Yes/No)
1	8	1	8	8	2 ¹⁰	19	10	3	0	No
2	8	2	16	8	2 ⁸	20	8	3	1	Yes
3	8	4	16	4	2 ⁸	21	8	2	1	Yes
4	8	Full	16	4	2 ⁰	29	0	2	1	Yes
9	32	1	16	2	2 ¹³	17	13	1	1	No
10	32	2	16	2	2 ¹²	18	12	1	1	Yes
11	32	4	8	8	2 ¹⁰	19	10	3	0	Yes
12	32	Full	8	8	2 ⁰	29	0	3	0	Yes

2)

a)

Instruction	Iteration No.							
	1	2	3	4	5			
lw \$t1 0xA4(\$0)	Compulsory	Hit	Hit	Hit	Hit			
lw \$t2 0xA8(\$0)	Hit	Hit	Hit	Hit	Hit			
lw \$t3 0xAC(\$0)	Hit	Hit	Hit	Hit	Hit			

b)

MIPS memory = $4GB = 2^{32}$ bits

Instruction length = $Log_2(2^{32})$ = 32 bits

Cache is a direct map since N = 1

Number of blocks = 8/4 = 2

Since it is a direct map and number of blocks are 2, number of sets = 2

Index size = $Log_2(2^1) = 1$ bit

Block size =
$$4 = 2^2$$

Block offset =
$$Log_2(2^2)$$
 = 2 bits

1 word = 32 bits =
$$2^2$$
 bytes

Byte offset =
$$Log_2(2^2)$$
 = 2 bits

Tag size =
$$32 - 1 - 2 - 2 = 27$$
 bits

- Set size = 1(valid) + 27(tag) + (4 x 32(word)) = 156 bits
- Cache size = 2 x 156 = 312 bits

c) Hardware for the specified cache

- 1 32 bit 4:1 MUX to choose words within the block
- 1 Comparator to check if tag bit is the searched tag bit
- 1 AND Gate to check valid bit and the result of the comparator

3)

a)

Instruction	Iteration No.							
	1	2	3	4	5			
lw \$t1 0xA4(\$0)	Compulsory	Capacity	Capacity	Capacity	Capacity			
lw \$t2 0xA8(\$0)	Compulsory	Capacity	Capacity	Capacity	Capacity			
lw \$t3 0xAC(\$0)	Capacity	Capacity	Capacity	Capacity	Capacity			

b)

MIPS memory = $4GB = 2^{32}$ bits Instruction length = $Log_2(2^{32}) = 32$ bits

Cache is 2 way associative, since N = 2

number of sets = 1, since it is a 2 way associative cache and the capacity is 2 words

number of blocks in each way = (2(capacity)/1(block size))/2(N) = 1

Since there is 1 set and 1 block in each way, index size= 0 bit, block offset = 0 bit

1 word = 32 bits =
$$2^2$$
 bytes

Byte offset = $Log_2(2^2)$ = 2 bits

Tag size =
$$32 - 0 - 0 - 2 = 30$$
 bits

- Set size = 2(N=2) x (1(valid) + 30(tag) + 32(word)) = 126 bits
- Cache size = set size = 126 bits

c) Hardware for the specified cache

- 1 32 bit 2:1 MUX to choose the way
- 2 Comparator to check if tag bit is the searched tag bit
- 2 AND Gate 1 OR Gate to check valid bit and the result of the comparator in order to determine the hit