

TD 9 : THÉORIE DES LANGAGES CORRIGÉ DE QUELQUES EXERCICES

Exercice 1. Trouvez un automate fini qui reconnaît :

a. $\{0, 11\}$

b. $\{0, 11, 000\}$

Exercice 2. Construisez une machine à états finis qui modifie les bits en position d'indice pair, en commençant par le deuxième bit, d'une chaîne d'entrée, et qui ne modifie pas les autres lettres.

Exercice 3. Soit $V = \{S, A, B, a, b\}$ et $T = \{a, b\}$. Trouvez le langage produit par la grammaire $\{V, T, S, P\}$ lorsque l'ensemble P des productions est composé de :

- a. $S \to AB$, $A \to ab$, $B \to bb$ Réponse : $L = \{abbb\}$
- b. $S \to AB$, $S \to aA$, $A \to a$, $B \to ba$ Réponse : $L = \{aba, aa\}$
- c. $S \to AB$, $S \to AA$, $A \to aB$, $A \to ab$, $B \to b$ Réponse : $L = \{abb, abab\}$
- d. $S \to AA$, $S \to B$, $A \to aaA$, $A \to aa$, $B \to bB$, $B \to b$ Réponse : $L = \{b^{n+1}, a^{2n+2m+4}\}$
- e. $S \to AB$, $A \to aAb$, $B \to bBa$, $A \to \lambda$, $B \to \lambda$ Réponse : $L = \{a^nb^{n+m}a^m\}$

Exercice 4. Construisez une grammaire syntagmatique pour l'ensemble de toutes les fractions de la forme a/b, où a est un entier signé en notation décimale et b est un entier positif. Construisez un arbre de dérivation pour +311/17 dans cette grammaire.

Exercice 5. Pour chacun des automates ci-après, donnez un automate déterministe correspondant.

Exercice 6. Déterminez si 1011 appartient à cheun des ensembles réguliers ci-après.

```
a. 10*1* - Réponse : Oui.
```

b.
$$0*(10 \cup 11)*$$
 - Réponse : Oui.

TD 9 : THÉORIE DES LANGAGES

c.
$$0(01)*1* - Réponse : Non.$$

d.
$$1*01(0 \cup 1)$$
 - Réponse : Oui.

e.
$$(10)^*(11)^*$$
 - Réponse : Oui.

f.
$$1(00)^*(11)^*$$
 - Réponse : Non.

h.
$$(1 \cup 00)(01 \cup 0)1^*$$
 - Réponse : Oui.

Exercice 7. Trouvez le langage reconnu par chacun des automates finis non déterministes.

Exercice 8. Minimisez les automates :

Exercice 9. Donnez des grammaires syntagmatiques pour produire chacun des ensembles suivants :

1.
$$\{01^n\}$$

$$S \rightarrow 0A$$

$$A \rightarrow 1A, \lambda$$

2.
$$\{0^n 1^{2n}\}$$

$$S \rightarrow 0A11, \lambda$$

$$A \rightarrow 0A11, \lambda$$

3.
$$\{0^{n}1^{m}0^{n}\}\$$

 $S \to \lambda, \ 0A0, \ 1B$
 $A \to 0A0, \ 0B0$
 $B \to 1B, \ \lambda$

Exercices supplémentaires (livre de Rosen) Exercices numéros 11 (page 625); 10, 17 (page 634); 8 (page 655).