Integers

'20H2

송 인 식

Outline

- Representing information as bits
- Bit-level manipulations
- Integers
- Representations in memory, pointers, strings

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bi-stable elements
 - Reliably transmitted on noisy and inaccurate wires

For example, can count in binary

- Base 2 Number Representation
 - Represent 15213₁₀ as 11101101101101₂
 - Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
 - Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

- Byte = 8 bits
 - Binary 00000000₂ to 11111111₂
 - Decimal: 010 to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimal Binary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Outline

- Representing information as bits
- Bit-level manipulations
- Integers
- Representations in memory, pointers, strings

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

A&B = 1 when both A=1 and B=1

& 0 10 0 01 0 1

Not

■ ~A = 1 when A=0

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

A | B = 1 when either A=1 or B=1

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $-a_i = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - 76543210
 - 01010101 { 0, 2, 4, 6 }
 - 76543210

Operations

- &	Intersection	01000001	{ 0, 6 }
-	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
_ ^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
_ ~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type)
 - ~0x41 → 0xBE
 - $\sim 01000001_2 \rightarrow 101111110_2$
 - $\sim 0 \times 000 \rightarrow 0 \times FF$
 - $\sim 00000000_2 \rightarrow 111111111_2$
 - $-0x69 & 0x55 \rightarrow 0x41$
 - $01101001_2 \otimes 01010101_2 \rightarrow 01000001_2$
 - 0x69 | 0x55 → 0x7D
 - $01101001_2 \mid 01010101_2 \rightarrow 011111101_2$

Hex Decimaly

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Contrast: Logic Operations in C

- Contrast to Bit-level Operators
 - Logical Operators: &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Examples (char data type)
 - $!0x41 \rightarrow 0x00$
 - $!0x00 \rightarrow 0x01$
 - $!!0x41 \rightarrow 0x01$
 - 0x69 && 0x55 → 0x01
 - 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)...
Super common C programming pitfall!

Shift Operations

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ word size

Argument x	<mark>0</mark> 1100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	<i>11</i> 101000

Outline

- Representing information as bits
- Bit-level manipulations
- Integers
- Representations in memory, pointers, strings

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

Sign Bit

C short 2 bytes long

	Decimal	Hex Binary	
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two-complement: Simple Example

$$-16$$
 8 4 2 1
 $10 = 0$ 1 0 1 0 8+2 = 10

$$-16$$
 8 4 2 1
 -10 = 1 0 1 1 0 $-16+4+2 = -10$

Two's Complement Encoding Example (Cont.)

```
x = 15213: 00111011 01101101

y = -15213: 11000100 10010011
```

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

15213 -**15213** Integers

Numeric Ranges

Unsigned Values

- UMin = 0
- UMax = $2^w 1$
 - 111...1

Two's Complement Values

- $TMin = -2^{w-1}$
 - 100...0
- $TMax = 2^{w-1} 1$
 - 011...1

Other Values

- Minus 1
 - 111...1

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 00000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	0000000 00000000	

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- |TMin | = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1
 - Question: abs(TMin)?

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG MAX
 - LONG_MAX
 - LONG MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	- 3
1110	14	-2
1111	15	-1

Equivalence

 Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

• → Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Mapping Between Signed & Unsigned

Maintain Same Bit Pattern

 Mappings between unsigned and two's complement numbers:

Keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Relation between Signed & Unsigned

Large negative weight becomes

Large positive weight

Conversion Visualized

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix
 - 0U, 4294967259U

Casting

- Explicit casting between signed & unsigned same as U2T and T2U
 - int tx, ty;
 - unsigned ux, uy;
 - tx = (int) ux;
 - uy = (unsigned) ty;
- Implicit casting also occurs via assignments and procedure calls
 - tx = ux;
 - uy = ty;

Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
 - Including comparison operations <, >, ==, <=, >=
 - Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Constant ₁	Constant ₂	Relation	Evaluation
0	OU	==	unsigned
-1	0	<	signed
-1	0U	<	signed
2147483647	-2147483647-1	<	signed
2147483647U	-2147483647-1	<	signed
-1	-2	<	signed
(unsigned)-1	-2	<	signed
2147483647	2147483648U	<	signed
2147483647	(int) 2147483648U	<	signed
	Integers		27

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Sign Extension

- Task:
 - − Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make k copies of sign bit:

Sign Extension: Simple Example

Positive number

Negative number

Sign Extension Example

```
short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;
```

	Decimal	Нех	Binary
X	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Truncation

Task:

- Given k+ w-bit signed or unsigned integer X
- Convert it to w-bit integer X' with same value for "small enough" X

• Rule:

– Drop top k bits:

Truncation: Simple Example

No sign change

$$2 \mod 16 = 2$$

$$-16$$
 8 4 2 1 -6 = 1 1 0 1 0

$$-6 \mod 16 = 26U \mod 16 = 10U = -6$$

-6 =

Sign change

$$-16$$
 8 4 2 1 $10 = 0$ 1 0 1 0

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $10 \mod 16 = 10U \mod 16 = 10U = -6$

$$-16$$
 8 4 2 1 -10 = 1 0 1 1 0

33

$$-10 \mod 16 = 22U \mod 16 = 6U = 6$$

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Standard Addition Function

- Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_{\nu}(u, \nu) = u + \nu \mod 2^{\nu}$$

Hex Decimenary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Integers

35

Visualizing (Mathematical) Integer Addition

Integer Addition

- − 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

- Wraps Around
 - If true sum ≥ 2^{w}
 - At most once

Two's Complement Addition

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

TAdd Overflow

Functionality

- True sum requiresw+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

Visualizing 2's Complement Addition

- Values
 - 4-bit two's comp.
 - Range from -8 to +7
- Wraps Around
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum < -2^{w-1}
 - Becomes positive
 - At most once

Characterizing TAdd

Functionality

- True sum requires w+1
 bits
- Drop off MSB
- Treat remaining bits as2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \end{cases}$$

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for (TMin_w)²
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{\nu}(u, \nu) = u \cdot \nu \mod 2^{\nu}$$

Signed Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication

 Lower bits are the same 			1110	1001		E 9		-23
	*		1101	0101	*	D5	*	-43
	0000	0011	1101	1101	0	3DD		989
			1101	1101		DD		-35

Power-of-2 Multiply with Shift

- Operation
 - $-\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * 2^{\mathbf{k}}$
 - Both signed and unsigned

Operands: w bits

u

Examples

$$- u << 3 == u * 8$$

$$- (u << 5) - (u << 3) == u * 24$$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $-\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil x \mid 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Negation: Complement & Increment

Negate through complement and increase
 ~x + 1 == -x

Example

- Observation:
$$\sim x + x == 1111...111 == -1$$
 $\begin{array}{rcl} & \times & 100111101 \\ & + & \sim \times & 01100010 \\ \hline & & -1 & 11111111 \end{array}$

$$x = 15213$$

	Decimal	Hex		Binary		
x	15213	3B	6D	00111011	01101101	
~x	-15214	C4	92	11000100	10010010	
~x+1	-15213	C4	93	11000100	10010011	
У	-15213	C4	93	11000100	10010011	

Negation: Complement & Increment

x = 0

	Decimal	Hex	Binary
0	0	00 00	0000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

x = TMin

	Decimal	Binary	
x	-32768	80 00	10000000 00000000
~x	32767	7F FF	01111111 11111111
~x+1	-32768	80 00	10000000 00000000

Canonical counter example

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

• Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension
- Do Use In System Programming
 - Bit masks, device commands,...

Outline

- Representing information as bits
- Bit-level manipulations
- Integers
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address
- Note: system provides private address spaces to each "process"
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

Big Endian		0x100	0x101	0x102	0x103	
		01	23	45	67	
Little Endiar	า	0x100	0x101	0x102	0x103	
		67	45	23	01	

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Two's complement representation

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;

0x7fffb7f71dbc 6d

0x7fffb7f71dbd 3b

0x7fffb7f71dbe 00

0x7fffb7f71dbf 00
```

Representing Pointers

int
$$B = -15213;$$

int *P = &B

Different compilers & machines assign different locations to objects Even get different results each time run program

Representing Strings

• Strings in C

- char S[6] = "18213";
- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0
- Compatibility
 - Byte ordering not an issue

Reading Byte-Reversed Listings

- Disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code
- Example Fragment

Address	Instruction Code)	Assembly Rendition				
8048365:	5 b		pop	% ebx			
8048366:	81 c3 ab 12 0	0 00	add	\$0x12ab, %ebx			
804836c:	83 bb 28 00 t	0 00 00	cmpl	\$0x0,0x28(%ebx)			
•	ing Numbers						
Value:			0x	12ab			
Pad to 3	2 bits:		0 x 0000	12ab			
Split into	bytes:		00 00 1	2 ab			
Reverse:			ab 12 0	0 00			

Integer C Puzzles

$$x < 0$$
 \Rightarrow $((x*2) < 0)$
 $ux >= 0$
 $x & 7 == 7$ \Rightarrow $(x<30) < 0$
 $ux > -1$
 $x > y$ \Rightarrow $-x < -y$
 $x * x >= 0$
 $x > 0 & y > 0$ \Rightarrow $x + y > 0$
 $x >= 0$ \Rightarrow $-x <= 0$
 $x <= 0$ \Rightarrow $-x >= 0$
 $(x|-x)>>31 == -1$
 $ux >> 3 == ux/8$
 $x & (x-1) != 0$

Initialization

```
#include <stdio.h>
int main ()
{
   unsigned i;

   for (i = 10; i >= 0; i--)
      printf ("%u\n", i);
}
```

```
#include <stdio.h>
#define DELTA sizeof(int)
int main ()
{
   int i;

   for (i = 10; i - DELTA >= 0; i -= DELTA)
        printf ("%d\n", i);
}
```

```
#include <string.h>
int strlonger (char *s, char *t)
{
    return (strlen(s) - strlen(t)) > 0;
}
```

```
int sum_array (int a[], unsigned
len)
{
   int i;
   int result = 0;

   for (i = 0; i <= len - 1; i++)
      result += a[i];

   return result;
}</pre>
```

Summary

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- · Representations in memory, pointers, string

Questions?