UNIVERSIDAD NACIONAL DE INGENIERÍA

Facultad de Ingeniería Económica, Estadística y CC. SS.

SÍLABO-MODELO CURSO: ESTADÍSTICA MULTIVARIADA

I. INFORMACIÓN GENERAL

CODIGO : FSM71 Estadística Multivariada

CICLO : 7 CREDITOS : 5

HORAS POR SEMANA: 6 (Teoría – Práctica)

PRERREQUISITOS : FSM61
CONDICION : Obligatorio
ÁREA ACADÉMICA : Ciencias Básicas

PROFESOR : Luis Huamanchumo E-MAIL : lhuamanchumo@uni.edu.pe

II. SUMILLA DEL CURSO

El curso desarrolla los fundamentos teóricos y técnicas básicas del análisis estadístico multivariado que permitirá al estudiante analizar los fenómenos sociales y de la ingeniería en su naturaleza multivariada. La primera mitad del curso desarrolla aspectos teóricomatemáticos presentes en el estudio de la geometría muestral, muestreo multivariado y distribución normal multivariada con el fin de sentar las bases para el estudio de la inferencia multivariada, MANOVA y la aplicación de las técnicas multivariadas. En la segunda parte, se desarrolla los fundamentos estadísticos del análisis factorial, clasificación y de agrupamiento.

III. COMPETENCIAS

El estudiante:

- 1. Formula, valida y analiza desde la perspectiva estadística multivariada los fenómenos de la ciencia y tecnología.
- 2. Posee la capacidad para el tratamiento del componente aleatorio en el análisis estadístico multivariado.
- 3. Reconoce la distribución normal multivariada como base empírica para la implementación de las técnicas multivariados.
- Maneja de manera prudente e inteligente el computador en el análisis estadístico multivariado.

IV. UNIDADES DE APRENDIZAJE

1. GEOMETRÍA DE LA MUESTRA Y MUESTREO MULTIVARIADO / 14 HORAS

Introducción / Geometría de la Muestra / Distancia y Relación / Transformaciones Lineales de Escala, Mahalanobis y Componentes Principales / Dualidad de Espacios Variables e Individuos / Propiedades / Matrices Normales / Teoremas de Independencia Multivariada / Estimadores de μ y Σ .

F02-silabo-FIEECS 1

2. ANÁLISIS DE COMPONENTES PRINCIPALES

Análisis de Componentes Principales (ACP) / Perspectiva cuantitativa / Análisis geométrico del ACP. Casos prácticos.

3. INFERENCIA MULTIVARIADA / 14 HORAS

Distribución Wishart / T² de Hotelling / Testes de Razón de Verosimilitud y de T² de Hotelling / Distribución Normal Multivariada / Estimación Máximo Verosímil / Verificando Suposiciones de Normalidad / Transformaciones a la Normalidad / MANOVA / Análisis de los Supuestos MANOVA / Regiones de Confianza de la Media / Comparaciones Simultáneas de Medias Multivariadas / Aplicación en las Ciencias Sociales.

4. ANÁLISIS FACTORIAL / 12HORAS

El Modelo Factorial Ortogonal / Métodos de Estimación: Componentes Principales (CP), Máxima Verosimilitud (MV), Mínimos Cuadrados Ponderados (MCP) y Regresión (MR).

5. ESCALAMIENTO MULTIDIMENSIONAL (MDS)

Modelos del MDS. Proximidades. Escalamiento multidimensional métrico. Escalamiento clásico. Escalamiento mínimos cuadrados ordinarios. Escalamiento multidimensional no métrico.

6. DISCRIMINACIÓN Y CLASIFICACIÓN / 10 HORAS

Clasificación en Poblaciones Normales / Función de Clasificación / Función de Discriminación de Fisher.

7. AGRUPAMIENTO / 10 HORAS

Similaridad y Disimilaridad / Métodos Jerárquicos / Métodos No Jerárquicos.

V. LABORATORIOS Y EXPERIENCIAS PRÁCTICAS

Las sesiones en laboratorio se desarrollarán con datos ad hoc para complementar los conocimientos teóricos del análisis factorial, discriminatorio y agrupamiento.

VI. METODOLOGÍA

El contenido teórico del curso requiere que el estudiante sea evaluado permanentemente en el manejo de los modelos estadístico-matemáticos mediante un examen escrito parcial y final. Los aspectos prácticos y cálculos por computadora son evaluados en las prácticas calificadas. El curso combina la clase magistral con la utilización de tutoriales desde una plataforma virtual.

VII. FÓRMULA DE EVALUACIÓN

Sistema de Evaluación "I". Cálculo del Promedio Final: PF = (EP + EF + 2 PP) / 4 EP: Examen Parcial EF: Examen Final PP: Promedio de prácticas

VIII. BIBLIOGRAFÍA

- 1. **RICHARD JOHNSON Y DEAN W. WICHERN.** Applied Multivariate Statistical Analysis. 5th Ed., 2002.
- K.V. MARDIA, J.T. KENT Y J.M. BIBBY. Multivariate Analysis, Academic Press, Inc. 4rd. Ed. 1982.