EE618 (Zele)

CMOS Analog VLSI Design: Homework - 2 (30 - Marks)

Submission Deadline: 25th Aug 2019 11:55PM

- All problems are based on Cadence simulations
- The submission must contain appropriate plots labelled clearly.
- The submission must contain the theoretical calculations wherever it is applicable.
- Submission must be in *Teamname_Rollnumber_Yourname_Assignment2.pdf* format.
- Submissions after deadline with not be accepted under any circumstances
- All MOSFET models should be used from SCL 180 nm library.
- MOSFETS in schematics must be annotated with all required parameters. Ex: Width, Length, Fingers, Multipliers.
- Report all values preferably in tabular format wherever it is appropriate.

Question 1 [10 Marks]

Design the amplifier in Figure 1 for gain \geq 18 dB.

Given $V_{OUT}=0.9$ V, $R_B=100$ k Ω , DC Power Consumption ≤ 1.8 mW, $C_L=100 fF$, $C_{1,2}=10 pF$, $I_B=10$ μA , L= 0.18 μm and unit finger width =1 μm .

Figure 1: CS amplifier with resistive load

- a) Show the step by step design procedure. [3 Marks] Yout=464.0)**
- b) Report the values of components: R_L , fingers, multipliers, aspect ratio of M_1 and M_2 . [1 Marks]
- c) Perform a DC operating point analysis and annotate the voltages at each node. [1 Marks]
- d) Perform ac analysis and plot gain from 10 kHz to 10 GHz. Mark clearly (through markers/cursors) the maximum gain and the 3-db bandwidth. [1 Marks]
- e) Perform a transient analysis with a 2 mV sinusoidal input at 10 MHz. Plot the input and the output wave forms and clearly mark the peak-to-peak values. [1 Marks]
- f) Tabulate the simulated gain and bandwidth values. [1 Marks]

	Simulated
Gain (dB)	
Bandwidth (Hz)	

Question 2 [10 Marks]

Replace the load resistor in Figure 1 with PMOS current source load as shown in Figure 2. Maintain the DC current in M1 same as that of in Question 1.

- a) Show the step by step design procedure. [4 Marks].
- b) Report the values of components: fingers, multipliers, aspect ratio of all transistors. [2 Marks].
- c) Perform a DC operating point analysis and annotate the voltages at each node $(g_m, i_{ds}, \text{ region of op.}, v_{gs})$. [1 Marks].
- d) Perform ac analysis and plot gain from 10 kHz to 10 GHz. Mark clearly (through markers/cursors) the maximum gain and the 3-db bandwidth. [1 Marks]
- e) Compare the ac response with that of Question 1 and write your observations. [2 Marks]
- f) Perform a transient analysis with a 2 mV sinusoidal input at 10 MHz. Plot the input and the output wave forms and clearly mark the peak-to-peak values. [1 Marks]
- g) Tabulate the simulated gain and bandwidth values. [1 Marks]

Figure 2: CS amplifier with PMOS current source load

	Simulated
Gain (dB)	
Bandwidth (Hz)	

Question 3 [10 Marks]

Design the high-swing cascode current mirror shown in Figure 3 to get $I_{out}=200~\mu\text{A}~(\pm 2.5~\mu A)$ with $V_B=450~\text{mV}$. Given $V_{dd}=1.8~\text{V},\,C_{1,2}\leq 10pF,\,I_B=10~\mu\text{A},\,L=1~\mu\text{m}$ and maintain same unit finger width for each mirroring pair.

- Sweep voltage V_B from 0 V to 1.8 V and plot the following with appropriate markers and report your observations with reasons.
 - a) Plot I_{out} vs V_B . [2 Marks]
 - b) Plot regions of M_5 and M_7 vs V_B (overlay both). [2 Marks]
 - c) Plot V_X vs V_B . [2 Marks]
 - d) Tabulate the minimum required voltage (V_{Bmin}) for $I_{out} = 200\mu\text{A}$, voltages at which operating regions of M_5 and M_7 change (if any) [1 Marks]
- Tabulate the values of components: R_B , fingers, multipliers, and aspect ratio of all transistors. [2 Marks]
- Perform a DC operating point analysis and annotate the voltages and currents at $V_B = 450$ mV. [1 Marks]

Figure 3: High-swing cascode current mirror

Let's amplify! ◎