Logic Evaluation Engine (LEE) – Grant Handover

Abstract

The Logic Evaluation Engine (LEE) is a novel inference framework built on phase-geometry logic, enabling counterfactual reasoning and high-fidelity diagnostic evaluation. It integrates discrete logical primitives — Alive, Jam, Mem, Vac — derived from material implication, mapped into rotational phase space. LEE produces reproducible, measurable metrics that quantify reasoning stability and contradiction dynamics.

Key Innovations

- **Original Contributions** (Alexander Patterson):
- Phase-geometry mapping from material implication truth tables.
- Identity of conjugate quantities in logical systems.
- StressIndex, Winding, and Resistance metrics for system stability.
- **Externally Inspired Refinements**:
- Logical Bianchi Identity v2: conservation law analogue adapted from external research, with explicit attribution.

Demonstrated Capabilities

- **StressIndex**: Quantifies strain in logical flow.
- **Resistance**: Measures persistence of strain.
- **Bianchi Residual**: Validates conservation of contradiction current.
- All metrics are automatically computed from run logs.

Applications & Impact

- **Medical**: Early-warning systems in diagnostics by modeling logical manifold distortions.

- **Legal**: Evaluating consistency and integrity of case reasoning.
- **Al Safety**: Stress-testing reasoning engines for stability under contradiction.

Current Status

- Codebase and documentation are complete enough for demonstration.
- Provenance logging and metrics computation are automated.
- Example run and outputs included in repository.

Next Steps if Funded (6-12 months)

- 1. Full integration of time-weighted StressIndex.
- 2. Expansion of manifold distortion analysis.
- 3. Applied pilots in medical diagnostics and legal review.

^{*}Author: Alexander Patterson*

^{*}This work includes original research by the author and an attributed external contribution (Logical Bianchi Identity v2).*