Exercise 1

- 1. \subseteq is a partial order on any set, to prove it is a lattice, we show that $sup\{a,b\}$ and $inf\{a,b\}$ exits. $sup\{a,b\} = a \cup b$ and clearly $a \cup b \in Su(A)$. Since $a \subseteq a \cup b$ and $b \subseteq a \cup b$ it is an upper bound for $\{a,b\}$. To prove it is the least upper bound, assume that there is some set $c \in Su(A)$ such that $a \subseteq c, b \subseteq c$, and $c \subseteq a \cup b$, it means there is some k in a or b, such that $k \notin c$, a contradiction. $inf\{a,b\} = a \cap b$ can be proved similarly.
- **2.** L1:(a) $a \lor b = \sup\{a, b\} = \sup\{b, a\} = b \lor a$.
 - (b) $a \wedge b = \inf\{a, b\} = \inf\{b, a\} = b \wedge a$.
- L2: (a) Let $t = \sup\{a, \sup\{b, c\}\}$ and $k = \sup\{\sup\{a, b\}, c\}$, then t is greater than a and $\sup\{b, c\}$, which means t is also greater than b, c, thus $\sup\{a, b\} \leq t$, therefore $\sup\{\sup\{a, b\}, c\} \leq t$, or $k \leq t$. $k = \sup\{\sup\{a, b\}, c\}$ implies $c \leq k$ and $\sup\{a, b\} \leq k$, which means $a \leq k$ and $b \leq k$. Now we can say that $\sup\{b, c\} \leq k$, therefore $\sup\{a, \sup\{b, c\}\} \leq k$. From $t \leq k$ and $k \leq t$ we conclude t = k.
 - (b) Can be proved similarly.
 - L3: (a) and (b) follows from $\inf\{a, a\} = \sup\{a, a\} = a$.
- L4: (a) Let $t = \sup\{a, \inf\{a, b\}\}$ then $a \le t$. Since $\inf\{a, b\} \le a$, we get $\sup\{a, \inf\{a, b\}\} \le \sup\{a, a\} = a$, thus $t \le a$ and finally a = t.
- (b) Let $t = \inf\{a, \sup\{a, b\}\}\$, then $t \le a$, and since $a \le \sup\{a, b\}$ we have $a = \inf\{a, a\} \le \inf\{a, \sup\{a, b\}\}\$, thus $a \le t$.
- **3.** From L4(b) we have $x \approx x \wedge (x \vee x)$, replace $x \vee x$ for y in the formula L4(a), we get $x \approx x \vee [x \wedge (x \vee x)]$, replacing the first formula in it, we get $x \approx x \vee x$. Similarly, replace y by $x \wedge x$ in L4(b), we get $x \approx x \wedge [x \vee (x \wedge x)]$, from L4(a) we have $x \approx x \vee (x \wedge x)$. Therefore $x \approx x \wedge x$.
- **5.** Since each item in L1,.., L4 has two symmetric axioms for \vee and \wedge , the result trivially follows.
- **9.** (Note: we write $(a, b) \in R$ instead of aRb) Consider the following collection:

 $O = \{ \preceq \subseteq A \times A : \preceq \text{ is a partial order on } A \}$

Clearly, (O, \subseteq) is a poset and $\leq \in O$, we show that every chain in it has an upper bound. Let $C \subseteq O$ be a chain, clearly $\bigcup C \subseteq A \times A$, we show it is a partial order: reflexive. Let $a \in A$, then for every $\leq C$ we have $(a, a) \in \leq$ (since every partial order is reflexive), thefeore $(a, a) \in \bigcup C$. antisymmetric. Consider $(a, b), (b, a) \in \bigcup C$, then for some $\leq C$ we have $(a, b) \in \leq$ and for some $\leq C$, $(b, a) \in \leq$. Since C is a chain we have either $\leq C \subseteq \leq$, in either case since they are antisymmetric we get a = b. transitive. Suppose $(a, b), (b, c) \in \bigcup C$, then for some $\leq, \leq' \in C$ we have $(a, b) \in \leq$ and $(b, c) \in \leq'$, again, since C is chain one of the orders is superset of another, without loss of generality assume $\leq' \subseteq \leq$, then by transitivity of \leq we get $(a, c) \in \leq$, thus $(a, c) \in \bigcup C$. We proved any chain C of C, C is in C, thus any chain has an upper bound in it. By Zorn's Lemma (see item (e) on page 2) C has a maximal member, denote it by \leq *. Since c is have if c by then c is c.

Assume that \leq^* is not a total order, then there are some a, b such that $a \not\leq^* b$ and $b \not\leq^* a$. Define a relation R such that xRy iff $x \leq^* a$ and $b \leq^* y$. You can check that $\bigcup R$ is partial order on A (tedious but trivial) and $\bigcup R \neq \leq^*$ but $\leq^* \subseteq \bigcup R$. It contradicts the fact that \leq^* is a maximal element.

10. Let S be the set of elements a of L such that there is no $a_1 \vee \cdots \vee a_n$ in L such that $a = a_1 \vee \cdots \vee a_n$ and each a_i is join irreducible. This set is non-empty, let b be a minimal element of it (it exists because L is finite). Notice that b is not join irreducible, otherwise we could have $b = b \vee b$. Since it is not join-irreducible there must be some element $c, d \in L$ such that $b = c \vee d$ but $b \neq c$ and $b \neq d$. On the other hand c and d are less than b, but b is minimal element so $c, d \notin S$, thus we have $c = a_i \vee \cdots \vee a_n$ and $d = a'_i \vee \cdots \vee a'_m$ for some $a_i, i \leq n$ and $a'_j, j \leq m$ such that each a_i and a_j are join irreducible. Now we have $b = c \vee d = a_i \vee \cdots \vee a_n \vee a'_i \vee \cdots \vee a'_m$ which contradicts the fact that $b \in S$.