Fundamentos de análisis y diseño de algoritmos

Camino más corto 1 a muchos

Camino más corto muchos a muchos

Problema: encontrar el camino de menor costo entre un vértice s y todos los demás vértices

- •G=(V, E)
- ·w es una función que asigna los pesos a las aristas
- ·s es el vértice

	A	В	С	D	E	F
d						
	Α	В	C	D	Е	F
π						

_	Α	В	С	D	E	F
d	0	1	3	5	2	3

	A	В	С	D	E	F
π	nil	A	A	С	В	E

• Dado un grafo dirigido G=(V,E), el peso de un camino $p=\langle v_0, v_1, v_2, ... v_k \rangle$ es la suma de los pesos de las aristas que lo constituyen

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Problema del camino más corto de un origen a muchos destinos:

·Dado un grafo G=(V,E), encontrar un camino más corto desde un vértice origen ($s \in V$) a cada vértice $v \in V$

Estrategia voraz: de las aristas de un vértice v, seleccionar aquella con menor peso

```
INITIALIZE-SINGLE-SOURCE(G,s) for each v \in V[G] do d[v] \leftarrow \infty \pi[v] \leftarrow \text{nil} d[s] \leftarrow 0
```

```
INITIALIZE-SINGLE-SOURCE(G,s) for each v \in V[G]
```

do d[v]←∞

 $\pi[v] \leftarrow nil$

 $d[s] \leftarrow 0$

 $T=\Theta(|V|)$

```
DIJKSTRA(G,s)
  INITIALIZE-SINGLE-SOURCE(G,s)
  S←{ }
  Q \leftarrow V[G]
  while Q<>{}
      do u \leftarrow EXTRACT-MIN(Q)
         S←S∪{u}
         foreach v \in Adj[u]
              do if d[v]>d[u] + w(u,v)
                then d[v] = d[u] + w(u,v)
                      \pi[v] \leftarrow u
```

DIJKSTRA(G,s)

```
INITIALIZE-SINGLE-SOURCE(G,s)
S←{ }
                                Q es una cola de prioridad, donde
                                 la prioridad es el valor en d. Se
Q \leftarrow V[G]
                                extrae el vértice con menor valor
while Q<>{ }
     do u \leftarrow EXTRACT-MIN(Q)
        S←S∪{u}
        for each v \in Adj[u]
            do if d[v]>d[u] + w(u,v)
               then d[v] = d[u] + w(u,v)
                     \pi[v] \leftarrow u
```

```
DIJKSTRA(G,s)
  INITIALIZE-SINGLE-SOURCE(G,s)
  S←{ }
                                              T=\Theta(|V|^2)
  Q \leftarrow V[G]
  while Q<>{ }
       do u \leftarrow EXTRACT-MIN(Q)
          S←S∪{u}
          foreach v \in Adj[u]
              do if d[v]>d[u] + w(u,v)
                 then d[v] = d[u] + w(u,v)
                       \pi[v] \leftarrow u
```


	A	В	С	D	E	F
d						
	Α	В	С	D	Ε	F
π						

	Α	В	С	D	Ε	F
d	0	8	8	8	8	∞

	A	В	C	D		<u> </u>
π	nil	nil	nil	nil	nil	nil

_	Α	В	С	D	E	F
	0	∞	8	8	∞	∞
-	Α	В	С	D	Ε	F
	nil	nil	nil	nil	nil	nil

Programación voraz

http://evaluacioncursos.univalle.edu.co