ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО **МАТЕМАТИКА**

17 май 2010 г. – <u>Вариант 1</u>

УВАЖАЕМИ ЗРЕЛОСТНИЦИ,

Тестът съдържа 28 задачи.

Първите 20 задачи (от 1. до 20. включително) в теста са от затворен тип с четири възможни отговора, обозначени с главни букви от А до Γ, от които само един е верен. Отговорите на тези задачи отбелязвайте с черен цвят на химикалката в **листа за отговори**, а не върху тестовата книжка. За да отбележите верния отговор, зачертайте със знака кръгчето с буквата на съответния отговор. Например:

Ако след това прецените, че първоначалният отговор не е верен и искате да го поправите, запълнете кръгчето с грешния отговор и зачертайте буквата на друг отговор, който приемате за верен. Например:

За всяка задача трябва да е отбелязан не повече от един действителен отговор. Като действителен отговор на съответната задача се приема само този, чиято буква е зачертана със знака .

Отговорите на **задачите със свободен отговор** (**от 21.** д**о 28.** вкл.) запишете в предоставения **свитък за свободните отговори**, като за задачи **от 26.** д**о 28.** вкл. запишете пълните решения с необходимите обосновки.

Чертежите в теста са само за илюстрация. Те не са начертани в мащаб и не са предназначени за директно измерване на дължини на страни и мерки на ъгли.

ПОЖЕЛАВАМЕ ВИ УСПЕШНА РАБОТА!

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

- 1. Кое от посочените числа е най-голямо?
- A) $\sqrt[4]{32}$
- Б) $\sqrt[5]{32}$
- **B**) $(2^5)^{\frac{1}{2}}$
- $\Gamma) \ 2^{-\frac{5}{2}}$
- **2.** Изразът $(\sqrt{7} 2\sqrt{2})^{-1}$ е равен на:
- **A)** $\sqrt{7} + 2\sqrt{2}$ **B)** $\frac{1}{\sqrt{7}} \frac{1}{2\sqrt{2}}$ **B)** $-\sqrt{7} 2\sqrt{2}$ Γ) $2\sqrt{2} \sqrt{7}$
- 3. Изразът $\frac{x-4}{16-x^2}$: $\frac{x(x-1)}{x^2-4}$ е дефиниран при:
- A) $x \neq \pm 4$
- **b**) $x \neq \pm 4, x \neq \pm 2$
- **B)** $x \neq \pm 4, x \neq \pm 2, x \neq 1$
- Γ) $x \neq \pm 4$, $x \neq \pm 2$, $x \neq 1$, $x \neq 0$
- 4. Решенията на неравенството $x^2 4x + 3 < 0$ са:
- **A)** $x \in (-\infty;1) \cup (3;+\infty)$ **B)** $x \in (1;3)$
- **B**) $x \in \phi$ Γ) $x \in (-\infty; +\infty)$
- **5.** Графиката на функцията $y = 6 x x^2$ е:

- **6.** Каква е функцията $f(x) = x^2 7x + 5$ в интервала (3;4)?
- А) само растяща

Б) само намаляваща

В) константа

- Г) намаляваща и растяща
- 7. Решенията на уравнението $|x+1|\sqrt{x-1} = 0$ са:
- **A)** camo 1
- **Б**) само -1 **В**) -1 и 1
- Γ) $x \in \phi$
- 8. Стойността на израза $\log_2 32 \log_{\frac{1}{2}} 9 + \lg 0,001$ е равна на:
- **A**) 0
- **Б**) 4
- **B**) 6
- **Г**) 10

- 9. Стойността на израза $1 + \cos(180^{\circ} \alpha) + \sin(90^{\circ} + \alpha) + \sin^2 75^{\circ} + \cos^2 75^{\circ}$ е:
- **A)** 1
- **Б**) 2
- **B**) 0
- Γ) 3
- 10. Стойността на израза $\frac{\cos 30^{\circ} \cos 15^{\circ} \sin 30^{\circ} \sin 15^{\circ}}{\sin 30^{\circ} \cos 75^{\circ} \cos 30^{\circ} \sin 75^{\circ}}$ е:
- $\mathbf{A)} \quad \frac{\sqrt{2}}{2}$
- **Б**) 1
- **B**) 0
- **Γ**) –1
- 11. Ако $\div a_1, a_2, a_2, \dots$ и $a_4 + a_{13} = 49$, то сборът $a_1 + a_6 + a_{11} + a_{16}$ е:
- **A)** 49
- **Б**) 98
- **B**) 147
- **Г**) 196
- **12.** Ако средноаритметичното на числата $a_1, a_2, ..., a_6, a_7$ е равно на 1, а средноаритметичното на числата $a_1, a_2, ..., a_6$ е равно на -1, то числото a_7 е равно на:
- **A**) 0
- **Б**) 1
- **B**) 8
- **Г**) 13
- **13.** Решенията на системата $\begin{vmatrix} x^2 + y^2 = 41 \\ x + y = 9 \end{vmatrix}$ са:
- A)(-4;-5);(-5;-4)
- **Б**) (4;-5); (-5;4)
- **B**)(-4;5); (5;-4)
- Γ) (4;5); (5;4)
- **14.** В трапец ABCD ($AB \parallel CD$) диагоналите се пресичат в точка O и AC : OC = 5 : 2. Ако AB = 30 сm, то CD е:

- **A)** 12 cm
- **Б**) 15 cm
- **B)** 20 cm
- Γ) 24 cm
- 15. Даден е $\triangle ABC$ със страни AB=12 и AC=15. Построена е ъглополовящата $AL\left(L\in BC\right)$ и през точка L е построена права $LP(P\in AB)$ и $LP\parallel AC$. Отношението $S_{\triangle LPB}:S_{\triangle ABC}$ е равно на:

- $A)\frac{4}{5}$
- \mathbf{E}) $\frac{4}{9}$
- **B**) $\frac{16}{25}$
- Γ) $\frac{16}{81}$

16. На чертежа CH е височината към хипотенузата ABна правоъгълен триъгълник ABC. Ако AH = 36 и HB = 64, дължината на катета АС е равна на:

A) 80

b) 60

B) 48

F) 30

17. За триъгълника на чертежа е дадено, че $\sin \alpha : \sin \beta = \sqrt{2} : 2$.

За дължините на страните a и b е изпълнено:

$$\mathbf{A)} \ a = 2b$$

b)
$$a = \sqrt{2}b$$

A)
$$a = 2b$$
 B) $a = \sqrt{2}b$ **C)** $a = \frac{1}{2}b$

$$\Gamma$$
) $a = \frac{1}{2}b$

18. В успоредник ABCD AB = 8 cm, AD = 7 cm. Ако $\angle BAD = 60^{\circ}$, то дължината на диагонала АС е:

A)
$$\sqrt{57}$$
 cm

$$\Gamma$$
) $\sqrt{337}$ cm

19. В $\triangle ABC \ll BAC = 60^{\circ}$, а AB = 3 cm. Ако радиусът на описаната около триъгълника окръжност е $\frac{7\sqrt{3}}{3}$ cm, дължината на страната AC е равна на:

- **A)** 5 cm
- **b**) 7 cm
- **B)** 8 cm Γ) $\sqrt{79}$ cm

20. Окръжност с радиус 4 ст е вписана в равнобедрен трапец. Ако малката основа на трапеца е равна на радиуса на окръжността, лицето на трапеца е:

- **A)** 80 cm^2
- **Б**) 96 cm²
- **B**) 160 cm^2 Γ) 192 cm^2

Отговорите на задачите от 21. до 25. включително запишете в свитъка за свободните отговори!

21. За членовете на геометрична прогресия е дадено, че $a_3.a_4.a_5 = 2^9$. Намерете четвъртия член на прогресията.

22. В равнобедрен $\triangle ABC(AC = BC)$, за който $\cos \angle BAC = \frac{1}{5}$, е вписана окръжност с радиус r = 1 cm. Намерете лицето на $\triangle ABC$.

- **23.** Да се намери лицето на успоредник със страни $3\,\mathrm{cm}$ и $5\,\mathrm{cm}$ и $5\,\mathrm{cm}$ и $5\,\mathrm{cm}$ между лиагоналите 45^o .
- **24.** Намерете номера n на най-големия член на редицата, зададена с формулата $a_n = 6n n^2 5$.
- 25. На една полица има 20 книги, като между тях са и два тома от събрани съчинения на един автор. Намерете вероятността, при случайно подреждане на книгите, двата тома да са един до друг.

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. включително</u> запишете в свитъка за свободните отговори!

- **26.** Да се намерят сборът и произведението на реалните корени на уравнението $\left(\frac{x^2}{x-1}+1\right)^2-9\left(\frac{x^2}{x-1}+1\right)=10$.
- 27. Иван е забравил паролата на компютъра на брат си. Той помни, че тя се записва само с първите две букви на азбуката и съдържа шест, седем или осем символа. Ако всеки път Иван опитва различна парола, то колко най-много опити може да направи той, за да открие паролата на брат си?
- **28.** Даден е равнобедрен $\triangle ABC$ (AC=BC). Построена е височината AK ($K \in BC$). Нека точката O е центърът на описаната около триъгълника окръжност. Да се намери $S_{\triangle AOK}$, ако AB=6, а $\sphericalangle BAC=75^\circ$.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0$$
 $x_{1,2}=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ $ax^2+bx+c=a(x-x_1)(x-x_2)$ Формули на Виет $x_1+x_2=-rac{b}{a}$ $x_1x_2=rac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \ne 0$ е парабола с връх точката $(-\frac{b}{2a}; -\frac{D}{4a})$

Корен. Степен и логаритъм

$$\sqrt[2k]{a^{2k}} = |a| \qquad \qquad 2^{k+1}\sqrt{a^{2k+1}} = a \; ; \qquad \text{при } k \in \mathbb{N}$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad \qquad \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \qquad \sqrt[nk]{a} = \sqrt[nk]{a} \; ; \; \text{при} \quad a > 0 \; , \; n \ge 2 \; , \; k \ge 2 \; \text{ и } n, \; m, \; k \in \mathbb{N}$$

$$\log_a b = x \Leftrightarrow a^x = b \quad \log_a a^x = x \qquad a^{\log_a b} = b \; ; \quad \text{при} \quad b > 0, \; a > 0, \; a \ne 1$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = 1.2.3...(n-1)n = n!$ Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$ Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{1.2.3...(k-1)k}$

Вероятност $P(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}} 0 \le P(A) \le 1$

Прогресии

Аритметична прогресия:
$$a_n = a_1 + (n-1)d$$
 $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$ Геометрична прогресия: $a_n = a_1.q^{n-1}$ $S_n = \frac{a_n q - a_1}{q-1} = a_1 \cdot \frac{q^n - 1}{q-1}$ Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$h_c^{\ 2}=a_1b_1 \qquad r=\frac{a+b-c}{2} \qquad \sin\alpha=\frac{a}{c} \qquad \cos\alpha=\frac{b}{c} \qquad \operatorname{tg}\alpha=\frac{a}{b} \qquad \operatorname{cotg}\alpha=\frac{b}{a}$$
 Произволен триъгълник:
$$a^2=b^2+c^2-2bc\cos\alpha \qquad \qquad b^2=a^2+c^2-2ac\cos\beta$$

Произволен триъгълник:
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$
 $b^2 = a^2 + c^2 - 2ac \cos \beta$

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma \qquad \frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

Формула за медиана:
$$m_a^2 = \frac{1}{4} \left(2b^2 + 2c^2 - a^2 \right)$$
 $m_b^2 = \frac{1}{4} \left(2a^2 + 2c^2 - b^2 \right)$

$$m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$$

Формула за ъглополовяща:
$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - nm$$

Формули за лице

Триъгълник:
$$S = \frac{1}{2}ch_c \qquad S = \frac{1}{2}ab\sin\gamma \qquad S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$S = pr \qquad S = \frac{abc}{4R}$$

Успоредник:
$$S = ah_a$$
 $S = ab \sin \alpha$

Четириъгълник:
$$S = \frac{1}{2} d_1 d_2 \sin \varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

$lpha^{\scriptscriptstyle 0}$	0_{0}	30^{0}	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	$90^{\circ} - \alpha$	$90^{\circ} + \alpha$	$180^{\circ} - \alpha$
sin	$-\sin \alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$
tg	$-tg\alpha$	$\cot \alpha$	$-\cot \alpha$	$-tg\alpha$
cotg	$-\cot \alpha$	$\operatorname{tg} \alpha$	$-tg\alpha$	$-\cot \alpha$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \pm \alpha)}{\cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \alpha)}{\cot(\alpha \pm \beta)} \pm \frac{\cot(\alpha \pm \beta)}{\cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \alpha) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО, МЛАДЕЖТА И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

математика- 17 май 2010 г.

ВАРИАНТ № 1

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос №	Верен отговор	Брой точки
1.	В	2
2.	В	2
3.	Γ	2
4.	Б	2
5.	Γ	2
6.	Γ	2
7.	A	2
8.	Б	2
9.	Б	2
10.	Γ	2
11.	Б	2
12.	Γ	2
13.	Γ	2
14.	В	2
15.	Γ	2
16.	Б	2
17.	В	2
18.	Б	2
19.	В	2
20.	A	2
21.	8	3
22.	$3\sqrt{6}$ cm ²	3
23.	8 cm ²	3
24.	n = 3	3
25.	$\frac{P_2.P_{19}}{P_{20}} = \frac{2!.19!}{20!} = \frac{2.19!}{20.19!} = \frac{1}{10}$	3

Въпрос №	Верен отговор	Брой точки
26.	$x_1 + x_2 + x_3 + x_4 = 7$ $x_1 x_2 x_3 x_4 = -18$	15
27.	$2^6 + 2^7 + 2^8 = 64 + 128 + 256 = 448$	15
28.	$\frac{9}{2}\left(\sqrt{3}+1\right)$	15

Въпроси със свободен отговор

26. Критерии за оценяване на задача 26.

1. Полагане
$$t = \frac{x^2}{x-1} + 1, x \neq 1$$
. (2 m.)

2. Получаване на квадратно уравнение спрямо $t: t^2 - 9t - 10 = 0$ c корени $t_1 = -1$ и $t_2 = 10$. (2 m.)

3. Получаване на уравненията
$$\frac{x^2}{x-1}+1=-1$$
 и $\frac{x^2}{x-1}+1=10$,

m.e.
$$x^2 + 2x - 2 = 0$$
 u $x^2 - 9x + 9 = 0$. (2 m.)

4. Нека x_1 и x_2 са реалните корени на уравнението

$$x^2 + 2x - 2 = 0$$
 $(D > 0, x_{1,2} \neq 1)$. Torasa $x_1 + x_2 = -2$ u $x_1x_2 = -2$. (3 m.)

5. Нека x_3 и x_4 са реалните корени на уравнението

$$x^2 - 9x + 9 = 0$$
 $(D > 0, x_{3,4} \ne 1)$ To casa $x_3 + x_4 = 9$ u $x_3 x_4 = 9$. (3 m.)

6. Torasa
$$x_1 + x_2 + x_3 + x_4 = -2 + 9 = 7$$
 u $x_1 x_2 x_3 x_4 = -2.9 = -18$. (3 m.)

Забележка: За намерени само корените
$$x_1, x_2, x_3 u x_4$$
 (4 m.)

27. Критерии за оценяване на задача 27.

- 1. Всички шестсимволни пароли са $2.2.2.2.2.2 = 2^6$ на брой (4 m.)
- 2. Всички седемсимволни пароли са $2.2.2.2.2.2.2 = 2^7$ на брой (4 m.)
- 3. Всички осемсимволни пароли са $2.2.2.2.2.2.2.2 = 2^8$ на брой (4 m.)
- 4. Броят на всички възможности е $2^6 + 2^7 + 2^8 = 64 + 128 + 256 = 448$ (3 m.)

28. Критерии за оценяване на задача 28.

1. Определяне на дължината на височината АК в правоъгълния $\triangle ABK$, $AK = 6 \sin 75^{\circ}$

2. Определяне на
$$\sin 75^{\circ} = \sin \left(45^{\circ} + 30^{\circ}\right) = \frac{\sqrt{2}}{4} \left(\sqrt{3} + 1\right)$$
 (3 m.)

3. Намиране на отсечката АО като радиус на описаната

окръжност около
$$\triangle ABC$$
, $AO = \frac{1}{2} \frac{AB}{\sin 30^{\circ}} = 6$ (3 m)

5. Определяне на мярката на $∠OAK = 45^{\circ}$ (3 m.)

6. Определяне на
$$S_{\triangle AOK} = \frac{1}{2} AO.AK \sin \angle OAK = \frac{9}{2} (\sqrt{3} + 1)$$
 (2 m.)

Забележка: Ако е прескочена стъпка 2 и лицето е изразено $S_{\Delta AOK} = \frac{1}{2} AO.AK \sin \angle OAK$

$$S_{\Delta AOK} = \frac{1}{2}6.6.\sin 75^{\circ}.\sin 45^{\circ} = 9(\cos 30^{\circ} - \cos 120^{\circ}) = \frac{9}{2}(\sqrt{3} + 1)$$
 (5 m.)