Tree Equation

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Tired of solving mathematical equations, DreamGrid starts to solve equations related to rooted trees.

Let A and B be two two arbitrary rooted trees and r(T) denotes the root of T. DreamGrid has defined two basic operations:

- Addition. T = A + B is built by merging the two roots r(A), r(B) into a new root r(T). That is the subtrees of A and B (if any) become the subtrees of r(T).
- Multiplication. $T = A \cdot B$ is built by merging r(B) with each vertex $x \in A$ so that all the subtrees of r(B) become new subtrees of x.

The following picture may help you understand the operations.

Given three rooted trees A, B and C, DreamGrid would like to find two rooted trees X and Y such that $A \cdot X + B \cdot Y = C$.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains three integers n_a , n_b and n_c ($2 \le n_a, n_b \le n_c \le 10^5$) – the number of vertices in rooted tree A, B and C, respectively.

The second line contains n_a integers $a_1, a_2, \ldots, a_{n_a}$ $(0 \le a_i < i)$ – where a_i is the parent of the *i*-th vertex in tree A.

The third line contains n_b integers $b_1, b_2, \ldots, b_{n_b}$ $(0 \le b_i < i)$ – where b_i is the parent of the *i*-th vertex in tree B.

The fourth line contains n_c integers $c_1, c_2, \ldots, c_{n_c}$ $(0 \le c_i < i)$ – where c_i is the parent of the *i*-th vertex in tree C.

Note that if $a_i = 0$ ($b_i = 0$ or $c_i = 0$), then the *i*-th vertex is the root of the tree A (B or C).

It is guaranteed that the sum of all n_c does not exceed 2×10^6 .

Output

For each test case, if you can not find a solution, output "Impossible" (without quotes) in the first line.

Otherwise, output two integers n_x and n_y $(1 \le n_x, n_y \le 10^5)$ denoting the number of vertices in rooted tree X and Y in the first line.

Then in the second line, output n_x integers x_1, x_2, \dots, x_{n_x} $(0 \le x_i < i)$ – where x_i is the parent of the *i*-th vertex in tree X.

Then in the third line, output n_y integers $y_1, y_2, \ldots, y_{n_y}$ $(0 \le y_i < i)$ – where y_i is the parent of the *i*-th vertex in tree Y.

If there are multiple solutions, print any of them.

Examples

standard input	standard output
2	Impossible
2 3 10	2 1
0 1	0 1
0 1 2	0
0 1 1 3 4 3 6 3 1 9	
4 3 10	
0 1 2 2	
0 1 2	
0 1 1 3 4 3 6 3 1 9	
1	5 5
5 5 49	0 1 2 3 4
0 1 1 3 1	0 1 1 3 3
0 1 2 1 2	
0 1 2 3 4 1 6 7 8 9 1 11 12 13 14 11	
16 17 18 19 1 21 22 23 24 1 26 26 1 1	
30 31 31 30 30 35 36 36 35 30 40 41	
41 40 1 45 46 46 45	