OSNOVNA PRAVILA, FORMULE I ZADACI IZ ANALITIČKE GEOMETRIJE Jednačina prave $\,p\,$

 $\overrightarrow{OM} = \overrightarrow{r} = \overrightarrow{r}_{\scriptscriptstyle M}$ označava da je $\overrightarrow{r} = \overrightarrow{r}_{\scriptscriptstyle M}$ predstavnik vektora čija početna tačka je koordinatni početak O = O(0,0,0).

Neka je $\vec{r}_M = \vec{r} = (x, y, z)$ vektorska promenljiva i $A(x_1, y_1, z_1) \in p \parallel \vec{p} = (p_1, p_2, p_3)$. Tada je

$$M(x,y,z) \in p \Leftrightarrow \overrightarrow{AM} || \overrightarrow{p} \Leftrightarrow \overrightarrow{r}_{\scriptscriptstyle M} - \overrightarrow{r}_{\scriptscriptstyle A} || \overrightarrow{p} \Leftrightarrow \overrightarrow{r} - \overrightarrow{r}_{\scriptscriptstyle A} = t \overrightarrow{p}, \text{ odnosno } \boxed{p: \overrightarrow{r} = \overrightarrow{r}_{\scriptscriptstyle A} + t \overrightarrow{p}} \Leftrightarrow \boxed{p: \frac{x-x_1}{p_1} = \frac{y-y_1}{p_2} = \frac{z-z_1}{p_3} = t} \Leftrightarrow \boxed{p: x = x_1 + t p_1 \ \land \ y = y_1 + t p_2 \ \land \ z = z_1 + t p_3} \Leftrightarrow \boxed{p: (\overrightarrow{r} - \overrightarrow{r}_{\scriptscriptstyle A}) \times \overrightarrow{p} = 0} \Leftrightarrow \boxed{p: \overrightarrow{r} \times \overrightarrow{p} = \overrightarrow{r}_{\scriptscriptstyle A} \times \overrightarrow{p}}$$

Jednačina ravni α

Neka je $\vec{r}_M = \vec{r} = (x,y,z)$ vektorska promenljiva i $Q(x_1,y_1,z_1) \in \alpha \perp \vec{n} = (A,B,C) = A\vec{i} + B\vec{j} + C\vec{k}$. Tada je $M(x,y,z) \in \alpha \Leftrightarrow \overrightarrow{QM} \perp \vec{n} \Leftrightarrow \overrightarrow{QM} \vec{n} = 0 \Leftrightarrow (\vec{r}_M - \vec{r}_Q)\vec{n} = 0 \Leftrightarrow \vec{n}\vec{r} = \vec{n}\vec{r}_Q \Leftrightarrow Ax + By + Cz + D = 0$ $\Leftrightarrow A(x-x_1) + B(y-y_1) + C(z-z_1) = 0$ gde je $\vec{n} = A\vec{i} + B\vec{j} + C\vec{k} = (A,B,C)$ vektor normalan na ravan α , Q proizvoljna fiksna tačka ravni α , \vec{r} promenljivi (tekući) vektor čiji vrh uvek pripada ravni α ako mu je početak u tački O(0,0,0), A,B,C,D su realni brojevi za koje važi da je $A^2 + B^2 + C^2 \neq 0$ i $D = -\vec{n}\vec{r}_Q$. Normalna projekcija vektora \vec{x} na pravac vektora \vec{a} je vektor $\mathbf{pr}_{\vec{a}}(\vec{x}) = \frac{\vec{a}\vec{x}}{|\vec{a}|} \frac{\vec{a}}{|\vec{a}|} (|\mathbf{pr}_{\vec{a}}(\vec{x})| = \frac{|\vec{a}\vec{x}|}{|\vec{a}|})$ Normalna algebarska projekcija vektora \vec{x} na pravac vektora \vec{a} je skalar (broj) $\pm |\mathbf{pr}_{\vec{a}}(\vec{x})| = \frac{\vec{a}\vec{x}}{|\vec{a}|}$ Za $|\vec{q}| = 1$, $\mathbf{pr}_{\vec{q}}(\vec{x}) = (\vec{q}\vec{x})\vec{q}$, a algebarska projekcija na pravac vektora \vec{q} je $\vec{q}\vec{x}$.

Za svaki vektor \vec{a} koji ima isti pravac kao i vektor \vec{b} , važi da je $\vec{a} = \pm |\vec{a}| \frac{\vec{b}}{|\vec{b}|}$, gde se uzima znak + ako su vektori \vec{a} i \vec{b} istog smera i znak – ako su suprotnog smera. Drugim rečima, svaki vektor se može napisati kao njegov intezitet puta jedinični vektor njegovoga pravca.

Deoba duži u datoj razmeri Ako je $\overrightarrow{AM} = \lambda \overrightarrow{MB}$ ($\lambda : 1 = AM : MB$), tada je $\overrightarrow{r}_M = \frac{\overrightarrow{r}_A + \lambda \overrightarrow{r}_B}{1 + \lambda}$. Prodor prave kroz ravan

Zajednička tačka P ravni $\alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ i prave $a: \vec{r} = \vec{r}_A + t\vec{a}$ dobija se tako što $\vec{r} = \vec{r}_A + t\vec{a}$ uvrstimo u $\vec{n}\vec{r} = \vec{n}\vec{r}_Q$ i rešimo dobijenu jednačinu po t. Tako dobijamo da je $t = \frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}$. Ako sada tako dobijeno t uvrstimo u $\vec{r} = \vec{r}_A + t\vec{a}$, tada promenljvi (tekući) vektor \vec{r} postaje \vec{r}_P , pa sledi da formula za \vec{r}_P tj. za prodor P, prave $a: \vec{r} = \vec{r}_A + t\vec{a}$ kroz ravan $\alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ tj. $\{P\} = \alpha \cap a$ je $|\vec{r}_P = \vec{r}_A + \frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}\vec{a}$.

Sve projekcije i kose i ortogonalne (normalne), na pravu i na ravan, dobijaju se kao posledice formule prodora!

Svaki vektor $\vec{x} \neq 0$ može se na jedinstven način napisati kao zbir vektora \vec{p} i \vec{q} tako da je \vec{p} paralelan sa datom pravom $a: \vec{r} = \vec{r}_A + t\vec{a}$ i \vec{q} paralelan sa datom ravni $\pi: \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ i ako je $a \not \mid \pi$. Tada mora biti $\vec{p} = \mathbf{pr}_{\vec{a},\pi}(\vec{x}) = \frac{\vec{n}\vec{x}}{\vec{n}\vec{a}}\vec{a}$ i $\vec{q} = \mathbf{pr}_{\pi,\vec{a}}(\vec{x}) = \vec{x} - \frac{\vec{n}\vec{x}}{\vec{n}\vec{a}}\vec{a}$, gde $\mathbf{pr}_{\pi,\vec{a}}(\vec{x})$ zovemo projekcija vektora \vec{x} na ravan π u pravcu vektora \vec{a} i $\mathbf{pr}_{\vec{a},\pi}(\vec{x})$ zovemo projekcija vektora \vec{x} na pravac vektora \vec{a} u "prvcu ravni π " tj. $\mathbf{pr}_{\vec{a},\pi}(\vec{x})$ je kosa projekcija vektora \vec{x} na ravan π u prvcu vektora \vec{a} .

Projekcija (ortogonalna) tačke na pravu

Neka je prava a određena tačkom A koja joj pripada i vektorom \vec{a} sa kojim je paralelna. Projekcija M' tačke M na pravu $a: \vec{r} = \vec{r}_A + t\vec{a}$ dobija se tako što postavimo ravan α kroz tačku M normalno na na pravu a i tražimo prodor parave a kroz ravan α po prethodnoj formuli. Tako dobijamo da je $\vec{r}_{M'} = \vec{r}_A + \frac{(\vec{r}_M - \vec{r}_A)\vec{a}}{\vec{a}\vec{a}} \vec{a}$.

Projekcija (ortogonalna) tačke na ravan

Projekcija M' tačke M na ravan $\alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ dobija se tako što kroz tačku M postavimo pravu normalnu na ravan α i prodorna tačka te prave kroz ravan α biće tražena tačka M' $\boxed{\vec{r}_{M'} = \vec{r}_M + \frac{(\vec{r}_Q - \vec{r}_M)\vec{n}}{\vec{n}\vec{n}} \ \vec{n}.}$

Osnovna pravila za rešavanje zadataka iz analitičke geometrije.

- 1. Jedinični vektor bilo kojega pravca (ili prave p) se dobija kada **bilo koji** vektor \vec{p} paralelan sa pravom (pravcem) p, podelimo sa njegovim sopstvenim intezitetom tj. jedinični vektor je $\frac{\vec{p}}{|\vec{p}|}$.
- 2. Svaki vektor je proizvod njegovog inteziteta i jediničnog vektora paralelnog i istog smera sa njim.
- 3. U većini zadataka, potreban vektor u rešavanju, dobija se kao vektorski proizvod neka dva data nekolinearna vektora koji su oba normalna na traženi vektor.
- **4.** Dati su vektori $\vec{r}_A, \vec{a}, \vec{b}, \vec{c}$ i realni brojevi $|\overrightarrow{AB}| = d_1, |\overrightarrow{BC}| = d_2$ i $|\overrightarrow{CD}| = d_3$, tako da je $\vec{a} \parallel AB, \vec{b} \parallel BC$ i $\vec{c} \parallel CD$. Tada \vec{r}_D izražen u zavisnosti od datoga je $\vec{r}_D = \vec{r}_A \pm d_1 \frac{\vec{a}}{|\vec{a}|} \pm d_2 \frac{\vec{b}}{|\vec{b}|} \pm d_3 \frac{\vec{c}}{|\vec{c}|}$, gde se ispred sabiraka uzimaju znaci + ako su vektori $\vec{a}, \vec{b}, \vec{c}$ istog smera sa redom vektorima $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD}$, a u suprotnom znaci -

Primeri:

- 1. Odrediti temena A i B jednakostraničnog trougla ABO, gde tačke A i B pripadaju pravoj $p: \vec{r} = \vec{r}_P + t\vec{p}$ i $O(0,0,0) \notin p$. Rešenje: Neka je S projekcija koordinatnog početka O(0,0,0) na pravu p. Tada je $\vec{r}_S = \vec{r}_P + \frac{((0,0,0) \vec{r}_P)\vec{p}}{\vec{p}\vec{p}}\vec{p} = \vec{r}_P \frac{\vec{r}_P\vec{p}}{\vec{p}\vec{p}}\vec{p}$ i $\vec{r}_{A,B} = \vec{r}_S \pm \frac{|\vec{r}_S|}{\sqrt{3}}\frac{\vec{p}}{|\vec{p}|}$
- **1.4.** Odrediti temena A, B i C kvadrata OABC, ako A i B pripadaju pravoj $p: \vec{r} = (-9, -9, 0) + t(8, 1, 4), \vec{r}_A \perp p$ i $\overrightarrow{AB} \cdot (8, 1, 4) > 0$. **Rešenje:** Tačka A je projekcija koordinatnog početka O(0, 0, 0) na pravu p, pa je $\vec{r}_A = (-9, -9, 0) + \frac{((0,0,0)-(-9,-9,0))(8,1,4)}{(8,1,4)(8,1,4)}(8,1,4) = (-1,-8,4), \ \vec{r}_B = \vec{r}_A + |\vec{r}_A| \frac{(8,1,4)}{|(8,1,4)|} = (7,-7,8)$ i $\vec{r}_C = (8,1,4)$.
- **1B.** Izraziti vektore pložaja \vec{r}_A , \vec{r}_C i \vec{r}_B temena A, C i B kvadrata OACB u zavisnosti od $\vec{r}_P = (-17, -10, -4)$ i $\vec{p} = (-8, -1, -4)$, ako dijagonala AB pripada pravoj $p : \vec{r} = \vec{r}_P + t\vec{p}$. **Rešenje:**

Presek S dijagonala OC i AB kvadrata OACB je projekcija koordinatnog početka O(0,0,0) na pravu p,

$$\vec{r}_{\scriptscriptstyle S} = \vec{r}_{\scriptscriptstyle P} + \frac{(\vec{r}_{\scriptscriptstyle O} - \vec{r}_{\scriptscriptstyle P})\vec{p}}{\vec{p}\vec{p}} \ \vec{p} = (-17, -10, -4) + \frac{\left((0,0,0) - (-17,-10,-4)\right)(-8,-1,-4)}{(-8,-1,-4)(-8,-1,-4)} (-8,-1,-4) = (-1,-8,4), \\ \vec{r}_{\scriptscriptstyle A,B} = \vec{r}_{\scriptscriptstyle S} \pm |\vec{r}_{\scriptscriptstyle S}| \frac{(-8,-1,-4)}{|(-8,-1,-4)|} =, \ \text{pa je } \ \vec{r}_{\scriptscriptstyle A} = (7,-7,8), \ \vec{r}_{\scriptscriptstyle B} = (-9,-9,0) \ \text{i} \ \vec{r}_{\scriptscriptstyle C} = 2\vec{r}_{\scriptscriptstyle S} = \vec{r}_{\scriptscriptstyle A} + \vec{r}_{\scriptscriptstyle B} - \vec{r}_{\scriptscriptstyle O} = (-2,-16,8).$$

- **2.** Odrediti \vec{r}_C u zavisnosti od \vec{r}_A i \vec{r}_B , tako da trougao ABC bude jednakostraničan i da tačke OABC budu komplanarne, gde je O koordinatni početak. **Rešenje:** $\vec{r}_C = \frac{1}{2}(\vec{r}_A + \vec{r}_B) \pm \frac{\sqrt{3}}{2} |\overrightarrow{AB}|_{|\overrightarrow{dl}|}$, gde je $\overrightarrow{d} = (\vec{r}_A \times \overrightarrow{AB}) \times \overrightarrow{AB}$
- **3.** Odrediti \vec{r}_{C} i \vec{r}_{D} u zavisnosti od \vec{r}_{A} i \vec{r}_{B} , tako da ravan kvadrata \overrightarrow{ABCD} sadrži O(0,0,0). **Rešenje:** $\vec{r}_{C} = \vec{r}_{B} \pm |\overrightarrow{AB}| \frac{\vec{d}}{|\overrightarrow{d}|}$ i $\vec{r}_{D} = \vec{r}_{A} \pm |\overrightarrow{AB}| \frac{\vec{d}}{|\overrightarrow{d}|}$, gde je $\vec{d} = (\vec{r}_{A} \times \overrightarrow{AB}) \times \overrightarrow{AB}$ i $\overrightarrow{AB} = \vec{r}_{B} \vec{r}_{A}$
- **4.** Neka je ravan α definisana sa α : $\vec{n}\vec{r}=\vec{n}\vec{r}_{\scriptscriptstyle Q}$ i neka su tačke A i C određene sa svojim vektorima položaja $\vec{r}_{\scriptscriptstyle A}$ i $\vec{r}_{\scriptscriptstyle C}$, tako da je $\overrightarrow{AC} \not \parallel \vec{n}$. U zavisnosti od vektora $\vec{n},\vec{r}_{\scriptscriptstyle Q},\vec{r}_{\scriptscriptstyle A}$ i $\vec{r}_{\scriptscriptstyle C}$ izraziti vektore položaja tačaka B i D temena kvadrata ABCD, gde je ACnjegova dijagonala i ravan kvadrata ABCD normalna na ravan α .
- **Rešenje:** Neka je β ravan kvadrata ABCD tj. normalna na α i prolazi kroz AC. Tada vektor normale ravni β je $\vec{n}_{\beta} = \overrightarrow{AC} \times \vec{n}$ i vektor paralelan sa BD je $\vec{d} = \overrightarrow{AC} \times (\overrightarrow{AC} \times \vec{n})$, pa je $\vec{r}_{B,D} = \frac{1}{2}(\vec{r}_A + \vec{r}_C) \pm \frac{1}{2}|\vec{r}_A \vec{r}_C|\frac{\vec{d}}{|\vec{d}|}$.
- **5.** Ravan α sadrži tačku Q i normalna je na vektor \vec{n} , a prava p sadrži tačku P i paralelna je sa vektorom \vec{p} , pri čemu je $p \not\parallel \alpha$ i $Q \not\in p$. U funkciji od \vec{r}_Q , \vec{n} , \vec{r}_P i \vec{p} izraziti temena A,B,C jednakostraničnog trougla ABC ivice 1, čija sva temena leže u ravni α , težište T trougla pripada i pravoj p, a teme A je maksimalno udaljeno od tačke Q.
- **Rešenje:** Težište T trougla je presek prave p i ravni α , te je $\vec{r}_T = \vec{r}_P + \frac{(\vec{r}_Q \vec{r}_P) \cdot \vec{n}}{\vec{n} \cdot \vec{p}} \vec{p}$. Ako je A_1 sredina stranice BC, tada je $TA = \frac{2}{3} \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}$ i $TA_1 = \frac{1}{2\sqrt{3}}$. Kako je teme A je maksimalno udaljeno od tačke Q, sledi da su
- $A,Q,T \text{ kolinearne i } T \text{ je između } A \text{ i } Q, \text{ pa je } \vec{r_{\scriptscriptstyle A}} = \vec{r_{\scriptscriptstyle T}} + \frac{1}{\sqrt{3}} \frac{\overrightarrow{QT}}{|\overrightarrow{QT}|}, \ \vec{r_{\scriptscriptstyle A_1}} = \vec{r_{\scriptscriptstyle T}} + \frac{1}{2\sqrt{3}} \frac{\overrightarrow{TQ}}{|\overrightarrow{TQ}|}, \ \vec{r_{\scriptscriptstyle B,C}} = \vec{r_{\scriptscriptstyle A_1}} \pm \frac{1}{2} \frac{\overrightarrow{AT} \times \vec{n}}{|\overrightarrow{AT} \times \vec{n}|}.$
- **6***. Neka su mimoilazne prave a i b određene redom svojim jednačinama $\vec{r} = \vec{r}_A + t\vec{a}$ i $\vec{r} = \vec{r}_B + t\vec{b}$ i neka je $\vec{a} \perp \vec{b}$ tj. $\vec{a}\vec{b} = 0$. (a) Naći vektore položaja temena pravilnog tetraedra MNPQ u zavisnosti od \vec{r}_A , \vec{a} , \vec{r}_B , \vec{b} , ako se temena nalaze na pravama a i b. (b) Izračunati koordinate temena M, N, P, Q tetraedra ako je $\vec{r}_A = (-4, 1, 4)$, $\vec{a} = (1, 1, 0)$, $\vec{r}_B = (-7, 11, -15)$, $\vec{b} = (-7, 7, -8)$.
- Rešenje (a) Neka ravan α sadrži pravu a i neka je normalna na pravu b. Takva ravan α postoji samo zato što je $a \perp b$. Presečna tačka prave b i ravni α je tačka S čiji vektor položaja je $\vec{r}_S = \vec{r}_B + \frac{(\vec{r}_A \vec{r}_B)\vec{b}}{\vec{b}\vec{b}}\vec{b}$. Ako zamenimo uloge pravama a i b u predhodnom računanju dobija se tačka $\vec{r}_T = \vec{r}_A + \frac{(\vec{r}_B \vec{r}_A)\vec{a}}{\vec{a}\vec{a}}\vec{a}$. Znači da je ST zajednička normala pravih a i b, pri čemu je $S \in b$ i $T \in a$. Sada je dalje očevidno $\vec{r}_{M,N} = \vec{r}_T \pm |\vec{r}_T \vec{r}_S| \frac{\sqrt{2}}{2} \frac{\vec{a}}{|\vec{a}|}$ i $\vec{r}_{P,Q} = \vec{r}_S \pm |\vec{r}_T \vec{r}_S| \frac{\sqrt{2}}{2} \frac{\vec{b}}{|\vec{b}|}$. (b) $\vec{r}_T = (-\frac{1}{2}, \frac{9}{2}, 4)$, $\vec{r}_S = (\frac{7}{2}, \frac{1}{2}, -3)$, $\vec{r}_M = (4, 9, 4)$, $\vec{r}_N = (-5, 0, 4)$, $\vec{r}_P = (0, 4, 1)$,
- 7. Neka ravan $\alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ nije normalna na z osu i neka tačka $A \notin \alpha$ je određena sa \vec{r}_A . U zavisnosti od $\vec{r}_Q, \vec{r}_A, \vec{n}$ izraziti $\vec{r}_B, \vec{r}_C, \vec{r}_D$ tako da je ABCD kvadrat, $AB \perp \alpha, B \in \alpha$ i BC paralelno sa xOy ravni.
- **Rešenje** $\vec{r}_B = \vec{r}_A + \frac{(\vec{r}_Q \vec{r}_A)\vec{n}}{\vec{n}\vec{n}}\vec{n}$, $\vec{r}_C = \vec{r}_B \pm |\overrightarrow{AB}| \frac{\vec{n} \times \vec{k}}{|\vec{n} \times \vec{k}|}$, gde je $\overrightarrow{AB} = \vec{r}_B \vec{r}_A$ i $\vec{k} = (1, 0, 0)$.
- 8. Dokazati da je trouga
o $ABC\,$ jednakostraničan ako i samo ako važi
 $2\vec{r}_C-\vec{r}_A-\vec{r}_B=\pm\sqrt{3}\;\vec{n}\times(\vec{r}_B-\vec{r}_A),$ gde je vektor \vec{n} jedinični vektor i normalan na ravan trougla
 $ABC\,$ tj. $\vec{n}=\frac{\overrightarrow{AB}\times\overrightarrow{AC}}{|\overrightarrow{AB}\times\overrightarrow{AC}|}.$ 9. Neka tačka $V\,$ određena sa vektorom položaja $\vec{r}_V\,$ ne pripada pravoj
 p: $\vec{r}=\vec{r}_P+t\vec{p}.\,$ U zavisnosti
- 9. Neka tačka V određena sa vektorom položaja \vec{r}_V ne pripada pravoj $\vec{p}: \vec{r} = \vec{r}_P + t\vec{p}$. U zavisnosti od \vec{r}_V , \vec{r}_P i \vec{p} naći vektore položaja \vec{r}_A , \vec{r}_B , \vec{r}_C i \vec{r}_D temena prave pravilne četvorostrane piramide VABCD, ako temena A i C pripadaju pravoj p i dijagonala AC osnove ABCD je jednaka visini piramide.

 Rešenje Neka je tačka T projekcija tačke V na pravu p. Tada je

 $\vec{r}_{_T} = \vec{r}_{_P} + \frac{(\vec{r}_{_V} - \vec{r}_{_P})\vec{p}}{\vec{p}\vec{p}}\vec{p} \qquad \vec{r}_{_{A,C}} = \vec{r}_{_T} \pm \frac{1}{2}|\vec{r}_{_V} - \vec{r}_{_T}|\frac{\vec{p}}{|\vec{p}|} \qquad \vec{r}_{_{B,D}} = \vec{r}_{_T} \pm \frac{1}{2}|\vec{r}_{_V} - \vec{r}_{_T}|\frac{(\vec{r}_{_V} - \vec{r}_{_T})\times\vec{p}}{|(\vec{r}_{_V} - \vec{r}_{_T})\times\vec{p}|}.$ 10. Neka tačka V ne pripada pravoj $p: \vec{r} = \vec{r}_{_P} + t\vec{p}$. U zavisnosti od $\vec{r}_{_V}, \vec{r}_{_P}$ i \vec{p} naći vektore položaja $\vec{r}_{\!\scriptscriptstyle A},\vec{r}_{\!\scriptscriptstyle B},\vec{r}_{\!\scriptscriptstyle C}$ temena pravilnog tetraedra VABC, ako $A\in p$ i $T\in p,$ gde je T težište trougla ABC.

 ${\bf Rešenje}$ Neka je tačka T projekcija tačke $\,V\,\,$ na pravu $p\,$ iS sredina od BC. Tada je

 $\vec{r}_{\scriptscriptstyle T} = \vec{r}_{\scriptscriptstyle P} + \frac{(\vec{r}_{\scriptscriptstyle V} - \vec{r}_{\scriptscriptstyle P}^{\scriptscriptstyle T})\vec{p}}{\vec{p}\vec{p}}\vec{p}, \ \vec{r}_{\scriptscriptstyle A} = \vec{r}_{\scriptscriptstyle T} \pm \frac{\sqrt{2}}{2}|\vec{r}_{\scriptscriptstyle V} - \vec{r}_{\scriptscriptstyle T}|\frac{\vec{p}}{|\vec{p}|}, \ \vec{r}_{\scriptscriptstyle S} = \vec{r}_{\scriptscriptstyle T} \mp \frac{\sqrt{2}}{4}|\vec{r}_{\scriptscriptstyle V} - \vec{r}_{\scriptscriptstyle T}|\frac{\vec{p}}{|\vec{p}|}, \ \vec{r}_{\scriptscriptstyle B,C} = \vec{r}_{\scriptscriptstyle S} \pm \frac{1}{2}\frac{\sqrt{3}}{\sqrt{2}}|\vec{r}_{\scriptscriptstyle V} - \vec{r}_{\scriptscriptstyle T}|\frac{(\vec{r}_{\scriptscriptstyle V} - \vec{r}_{\scriptscriptstyle T}) \times \vec{p}}{|(\vec{r}_{\scriptscriptstyle V} - \vec{r}_{\scriptscriptstyle T}) \times \vec{p}|}.$

11. U zavisnosti od \vec{r}_A i \vec{n} napisati vektore položaja temena B, C, D kvadrata ABCD koji pripada ravni α koja je normalna na jedinični vektor \vec{n} i sadrži tačku A, a teme C je najbliže kordinatnom početku.

Rešenje Tačka C je normalna projekcija koordinatnog početka O na ravan α , pa je

$$\vec{r}_{\scriptscriptstyle C} = \frac{\vec{r}_{\scriptscriptstyle A} \vec{n}}{\vec{n} \vec{n}} \vec{n}, \quad \vec{r}_{\scriptscriptstyle B, D} = \frac{1}{2} (\vec{r}_{\scriptscriptstyle A} + \vec{r}_{\scriptscriptstyle C}) \pm \frac{1}{2} |\overrightarrow{AC}| \frac{\vec{n} \times \overrightarrow{AC}}{|\vec{n} \times \overrightarrow{AC}|} = \frac{1}{2} (\vec{r}_{\scriptscriptstyle A} + \vec{r}_{\scriptscriptstyle C}) \pm \frac{1}{2} |\overrightarrow{AC}| \frac{\vec{n} \times \overrightarrow{AC}}{|\vec{n}| |\overrightarrow{AC}|} = \frac{1}{2} (\vec{r}_{\scriptscriptstyle A} + \vec{r}_{\scriptscriptstyle C}) \pm \vec{n} \times \overrightarrow{AC}.$$

12. Neka datoj ravani $\alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ pripada kvadratna osnova ABCD prave pravilne četvorostrane piramide VABCD, gde je V dati vrh piramide i T težište osnove ABCD. U zavisnosti od \vec{n}, \vec{r}_{v} i \vec{r}_{o} , izraziti vektore položaja temena ABCD, ako je teme A kolinearno sa koordinatnim početkom O i tačkom $V \notin \alpha$.

Rešenje T je projekcija tačke V na ravan α , a tačku A presek prave p = p(O, V) i ravni α odnosno $\vec{r}_{\scriptscriptstyle T} = \vec{r}_{\scriptscriptstyle V} + \frac{(\vec{r}_{\scriptscriptstyle Q} - \vec{r}_{\scriptscriptstyle V})\vec{n}}{\vec{n}\vec{n}}\vec{n} \ \ \text{i} \ \ \vec{r}_{\scriptscriptstyle A} = \vec{r}_{\scriptscriptstyle V} + \frac{(\vec{r}_{\scriptscriptstyle Q} - \vec{r}_{\scriptscriptstyle V})\vec{n}}{\vec{r}_{\scriptscriptstyle V}\vec{n}}\vec{r}_{\scriptscriptstyle V}. \ \ \text{Dalje je} \ \ \vec{r}_{\scriptscriptstyle C} = 2\vec{r}_{\scriptscriptstyle T} - \vec{r}_{\scriptscriptstyle A} \ \ \text{i} \ \ \vec{r}_{\scriptscriptstyle B, \scriptscriptstyle D} = \vec{r}_{\scriptscriptstyle T} \pm |\vec{r}_{\scriptscriptstyle T} - \vec{r}_{\scriptscriptstyle A}| \cdot \frac{(\vec{r}_{\scriptscriptstyle A} - \vec{r}_{\scriptscriptstyle T}) \times \vec{n}}{|(\vec{r}_{\scriptscriptstyle A} - \vec{r}_{\scriptscriptstyle T}) \times \vec{n}|}.$

- 13. Data je prava $p: \vec{r} = \vec{r}_P + t\vec{p}$ i vektor $\vec{n} \perp \vec{p}$. (a) Odrediti temena pravilnog šestougla \vec{ABCDEF} čije teme A pripada pravoj p, centar je koordinatni početaku O i ravan šestougla jenormalna na \vec{n} . (b) Za $\vec{r}_{\scriptscriptstyle P}=(5,5,8),\, \vec{p}=(-3,1,1)$ i $\vec{n}=(-3,0,20)$ izračunati koordinate tačke A. Rešenje (a) Jednačina ravni α šestougla je $\alpha: \vec{r}\vec{n} = 0$. Pa je $A = \alpha \cap p$, odnosno $\vec{r}_A = \vec{r}_P + \frac{-\vec{r}_P\vec{n}}{\vec{n}\vec{p}}\vec{p}$. Iz $\overrightarrow{OA} = -\overrightarrow{OD}$ sledi $\vec{r}_D = -\vec{r}_A$. Neka je Q projekacija tačke B i tačke F na duž AO, a R projekacija tačke C i tačke E na duž OD. Tada je $\vec{r}_Q = \frac{1}{2}\vec{r}_A$ i $\vec{r}_R = \frac{1}{2}\vec{r}_D$. Vektori \overrightarrow{QB} , \overrightarrow{QF} , \overrightarrow{RC} i \overrightarrow{RE} su normalni i na \vec{n} i na $\vec{r}_A \parallel \overrightarrow{AD}$, tj. paralelni su sa $\vec{m} = \vec{r}_A \times \vec{n}$, te je $\vec{r}_{B,F} = \vec{r}_Q \pm \frac{\sqrt{3}}{2} |\vec{r}_A|_{|\vec{m}|}^{\vec{m}}$ i $\vec{r}_{C,E} = \vec{r}_R \pm \frac{\sqrt{3}}{2} |\vec{r}_A|_{|\vec{m}|}^{\vec{m}}$. (b) Uvrštavanjem datih vektora dobijamo $\vec{r}_A = (20,0,3)$.
- **14.** Data je ravan $\alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ i prava $a: \vec{r} = \vec{r}_L + t\vec{\ell}$, pri čemu je $\vec{\ell}\vec{n} \neq 0$ i $\vec{\ell} \times \vec{n} \neq 0$. U zavisnosti od $\vec{r}_L, \vec{r}_Q, \vec{r}_Q$ ℓ i \vec{n} odrediti vektore položaja temena kocke $ABCDA_1B_1C_1D_1$ ivice dužine 5, ako teme A pripada preseku prave i ravni, teme B pripada pravi i ravan kvadrata ABCD je normalna na ravan α . Koliko ima rešenja?

Rešenje A je prodor prave a kroz α , te je $\vec{r}_A = \vec{r}_L + \frac{(\vec{r}_Q - \vec{r}_L)\vec{n}}{\vec{\ell}\vec{n}}\vec{\ell}$, a zbog $B \in a$ sledi $\vec{r}_B = \vec{r}_A \pm 5\frac{\vec{\ell}}{|\vec{\ell}|}$. Vektor \vec{m} normale ravni kvadrata \overrightarrow{ABCD} mora biti normalan i na \vec{n} i na $\vec{\ell}$, te je $\vec{m} = \vec{n} \times \vec{\ell}$, a vektori \overrightarrow{AD} i \overrightarrow{BC} moraju biti paralelni sa $\vec{p} = \vec{m} \times \vec{\ell}$, te je $\vec{r}_D = \vec{r}_A \pm 5 \frac{\vec{p}}{|\vec{p}|}$ i $\vec{r}_C = \vec{r}_B \pm 5 \frac{\vec{p}}{|\vec{p}|}$. $\vec{r}_{A_1,B_1,C_1,D_1} = \vec{r}_{A,B,C,D} \pm 5 \frac{\vec{m}}{|\vec{m}|}$. Ima 8 rešenja.

15*. Date su tačke A i C i vektor \vec{n} normalan na ravan pravougaonoka ABCD čiji odnos stranica je $\sqrt{2}$. Odrediti \vec{r}_B i \vec{r}_D u zavisnosti od \vec{r}_A , \vec{r}_C i \vec{n} . Rešenje Neka je npr. $AB:BC=\sqrt{2}:1$ tj. $AB=\sqrt{2}BC$, i neka je tačka Q projekcija tačke B na duž AC. Iz sličnosti trouglova ABC i BQC sledi da je $\frac{BC}{AC} = \frac{QC}{BC}$, odakle sledi da je $QC = \frac{BC^2}{AC}$, gde je $AC^2 = AB^2 + BC^2 = 2BC^2 + BC^2 = 3BC^2$ odnosno $BC^2 = \frac{1}{3}AC^2$, odakle sledi $QC = \frac{\frac{1}{3}AC^2}{AC} = \frac{1}{3}AC$. Sledi $\vec{r}_Q = \vec{r}_C + \frac{1}{3}\overrightarrow{CA} = \frac{1}{3}\vec{r}_A + \frac{2}{3}\vec{r}_C$. Kako je $QB = \sqrt{BC^2 - QC^2} = \sqrt{\frac{1}{3}AC^2 - \frac{1}{9}AC^2} = \sqrt{\frac{1}{3}AC^$

 $\frac{\sqrt{2}}{3}AC, \text{ sledi da je } \vec{r}_{\scriptscriptstyle B,D_1} = \vec{r}_{\scriptscriptstyle Q} + \overrightarrow{QB} = \vec{r}_{\scriptscriptstyle Q} \pm \frac{\sqrt{2}}{3} \left| \overrightarrow{AC} \right| \frac{\overrightarrow{AC} \times \vec{n}}{\left| \overrightarrow{AC} \times \vec{n} \right|}. \text{ Iz } \overrightarrow{CD} = \overrightarrow{BA} \text{ sledi } \vec{r}_{\scriptscriptstyle D,B_1} = \vec{r}_{\scriptscriptstyle A} - \vec{r}_{\scriptscriptstyle B} + \vec{r}_{\scriptscriptstyle C}.$

Za $AB:BC=\sqrt{2}:1$ rešenje je A,B,C,D, a za $AB^{'}:BC\stackrel{'}=1:\sqrt{2}$ rešenje je $A,B_1,C,D_1.$

- 16. Data je prava $p: \vec{r} = \vec{r_p} + t\vec{p}$ i tačka $A \notin p$. U zavisnosti od vektora $\vec{r_A}$, $\vec{r_P}$ i \vec{p} izraziti vektore položaja temena kocke $ABCDA_1B_1C_1D_1$, tako da dijagonala BD osnove ABCD pripada pravoj p. **Rešenje:** Tačku S, presek dijagonala kvadrata ABCD, dobijamo kao projekciju tačke A na pravu p tj. $\vec{r}_S = \vec{r}_P + \frac{(\vec{r}_A - \vec{r}_P)\vec{p}}{\vec{p}\vec{p}}\vec{p}$. Dalje sledi da je $\vec{r}_{B,D} = \vec{r}_S \pm |\overrightarrow{AS}|\frac{\vec{p}}{|\vec{p}|}$, pa iz $\overrightarrow{AS} = \overrightarrow{SC}$ dobijamo $\vec{r}_C = 2\vec{r}_S - \vec{r}_A$. Kako je $\vec{n} = \frac{\vec{p} \times \overrightarrow{AC}}{\vec{p} \times \overrightarrow{AC}}$ jedinični vektor normale ravni ABCD, sledi $\vec{r}_{A_1,B_1,C_1,D_1} = \vec{r}_{A,B,C,D} \pm |\overrightarrow{AB}|\vec{n}$. Ima dva rešenja $\vec{r} \times \overrightarrow{AC}$ 17*. Data je ravan $\alpha : \vec{n}\vec{r} = \vec{n}\vec{r}_Q$, prava $p : \vec{r} = \vec{r}_P + t\vec{p}$, tačka $A, p \not\models \alpha, A \not\in p$ i $A \not\in \alpha$. U zavisnosti od \vec{n}, \vec{p} , $\vec{r} = \vec{r}_A =$
- \vec{r}_A , \vec{r}_O i \vec{r}_P izraziti vektore položaja temena jednakokrakog trougla ABC čije teme B pripada pravoj p, teme C pripada ravni α i stranica AB je osnovica trougla koja je paralelna sa ravni α pri čemu ravan trougla ABC zaklapa sa ravni α ugao od $\frac{\pi}{4}$. Rešenje Iz $B \in p$ i $AB \parallel \alpha$ sledi da tačku B možemo dobiti kao prodor prave p kroz ravan koja sadrži tačku A i paralelna je sa α , pa je $\vec{r}_{\scriptscriptstyle B} = \vec{r}_{\scriptscriptstyle P} + \frac{(\vec{r}_{\scriptscriptstyle A} - \vec{r}_{\scriptscriptstyle P})\vec{n}}{\vec{p}\vec{n}}\vec{p}$. Ako je S sredina duži ABtada je $\vec{r}_S = \frac{1}{2}(\vec{r}_A + \vec{r}_B)$. Ako je tačka T projekcija tačke S na ravan α , tada je $\vec{r}_T = \vec{r}_S + \frac{(\vec{r}_Q - \vec{r}_S)\vec{n}}{\vec{n}\vec{n}}\vec{n}$. Kako

je ABC jednakokraki trougao sa kracima AC i BC, teme C treba, osim ravni α , da pripada i simetralnoj ravni osnovice AB, odnosno treba da pripada pravoj m koja leži u ravni α , sadrži tačku T, a pravac joj je normalan na pravac prave AB. Vektor pravca prave m je $\vec{m} = \vec{n} \times A\vec{B}$. Iz uslova da ravan trougla treba sa

ravni α da zaklapa ugao $\frac{\pi}{4}$ sledi da je STC jednakokraki pravougli trougao sa pravim uglom kod temena T, što znači da je ST=TC, te tako dobijamo $\vec{r}_{C_{1,2}}=\vec{r}_{\scriptscriptstyle T}\pm |\overrightarrow{ST}|\frac{\vec{m}}{|\vec{m}|}$.

18. U zavisnosti od vektora \vec{n} i vektora položaja \vec{r}_A i \vec{r}_B susednih temena A i B kocke $ABCDA_1B_1C_1D_1$, izraziti vektore položaja temena kocke $ABCDA_1B_1C_1D_1$ kod koje je ravan dijagonalnog preseka ABC_1D_1 normalna na vektor \vec{n} . Rešenje Kako su $\overrightarrow{BC_1}$ i $\overrightarrow{AD_1}$ vektori dijagonala kvadrata omotača kocke normalni na vektore \vec{n} i \overrightarrow{AB} , sledi $\vec{r}_{C_1,D_1} = \vec{r}_{B,A} \pm \sqrt{2} |\overrightarrow{AB}| \frac{\overrightarrow{AB} \times \overrightarrow{n}}{|\overrightarrow{AB} \times \overrightarrow{n}|}$ Tačke $\vec{r}_S = \frac{1}{2} (\vec{r}_{C_1} + \vec{r}_B)$ i $\vec{r}_T = \frac{1}{2} (\vec{r}_{D_1} + \vec{r}_A)$ su sredine duži BC_1 i AD_1 , te sledi da je $\vec{r}_{B_1,C} = \vec{r}_S \pm \frac{\sqrt{2}}{2} |\overrightarrow{AB}| \frac{\overrightarrow{n}}{|\overrightarrow{n}|}$ i $\vec{r}_{A_1,D} = \vec{r}_T \pm \frac{\sqrt{2}}{2} |\overrightarrow{AB}| \frac{\overrightarrow{n}}{|\overrightarrow{n}|}$.

TESTOVI

- 1. Koje od tvrđenja je tačno ako je $\vec{a} \neq 0$. 1) $p r_{\vec{a}} \vec{b} = \vec{c} \Rightarrow \vec{a} \perp \vec{c}$ 2) $p r_{\vec{a}} \vec{b} = \vec{c} \Rightarrow \vec{a} \perp (\vec{b} \vec{c})$ 3) $p r_{\vec{a}} \vec{b} = \vec{c} \Leftrightarrow \vec{a} \vec{b} = |\vec{a}| \vec{c}$ 4) $p r_{\vec{a}} \vec{b} = \vec{c} \Rightarrow \vec{a} \vec{b} = \vec{a} \vec{c}$ 5) $p r_{\vec{a}} \vec{b} = \vec{c} \Leftrightarrow \vec{a} \vec{b} = \vec{a} \vec{c}$ 6) $p r_{\vec{a}} \vec{b} = \vec{c} \Rightarrow \vec{a} \parallel \vec{c}$
- 2. Ako je $\vec{n} \neq 0$, tada važi: 1) $\alpha \vec{n} = \beta \vec{n} \Rightarrow \alpha = \beta$ 2) $\alpha \vec{n} = \beta \vec{n} \Leftarrow \alpha = \beta$ 3) $\alpha \vec{n} = \beta \vec{n} \Leftrightarrow \alpha = \beta$
- 3. Za svaki vektor \vec{n} , važi: 1) $\alpha \vec{n} = \beta \vec{n} \Rightarrow \alpha = \beta$ 2) $\alpha \vec{n} = \beta \vec{n} \Leftarrow \alpha = \beta$ 3) $\alpha \vec{n} = \beta \vec{n} \Leftrightarrow \alpha = \beta$
- 4. Ako su \vec{a} i \vec{b} nekolinearni vektori, tada važi: 1) $\alpha \vec{a} + \beta \vec{b} = 0 \Rightarrow \alpha = \beta = 0$ 2) $\alpha \vec{a} + \beta \vec{b} = 0 \Leftrightarrow \alpha = \beta = 0$ 3) $\alpha \vec{a} + \beta \vec{b} = 0 \Leftrightarrow \alpha = \beta = 0$
- 5. Za sve nenula vektore \vec{a} i \vec{b} , važi: 1) $\alpha \vec{a} + \beta \vec{b} = 0 \Rightarrow \alpha = \beta = 0$ 2) $\alpha \vec{a} + \beta \vec{b} = 0 \Leftrightarrow \alpha = \beta = 0$ 3) $\alpha \vec{a} + \beta \vec{b} = 0 \Leftrightarrow \alpha = \beta = 0$
- 6. Funkcija $\mathbf{pr}_{\vec{a}}: V \to \{\alpha \vec{a} | \alpha \in \mathbb{R}\}, \ \mathbf{pr}_{\vec{a}}(\vec{x}) = \frac{\vec{a}\vec{x}}{\vec{a}\vec{a}}\vec{a}, \ \vec{a} \neq 0 \ (V \text{skup svih slobodnih vektora})$ je:

 1) dobro definisana
 2) injektivna
 3) sirjektivna
 4) bijektivna
 5) projektovanje na pravu
- 1) dobro definisana 2) injektivna 3) sirjektivna 4) bijektivna 5) projektovanje na pravu 8. Funkcija $\mathbf{pr}_{\pi}: V \to V, \ \mathbf{pr}_{\pi}(\vec{x}) = \vec{x} \mathbf{pr}_{\vec{n}}(\vec{x}) = \vec{x} \frac{\vec{n}\vec{x}}{\vec{n}\vec{n}}\vec{n}, \ \vec{n} \neq 0 \ (V \text{skup svih slobodnih vektora})$ je:

7. Funkcija $\mathbf{pr}_{\vec{a}}:V\to V,\ \mathbf{pr}_{\vec{a}}(\vec{x})=\frac{\vec{a}\vec{x}}{\vec{a}\vec{a}}\vec{a},\ \vec{a}\neq0$ (V- skup svih slobodnih vektora) je:

- 1) dobro definisana 2) injektivna 3) sirjektivna 4) bijektivna 5) projektovanje na ravan 9. Ako je Ax+By+C=0 jednačina prave u ravni xOy i $A \neq B$, tada vektori paralelni sa tom pravom su: a) (A,B) b) (A,-B) c) (-A,B) d) (B,A) e)(B,-A) f) (-A,-B) g) (-B,-A) h) (-B,A)
- 10. Ako je Ax+By+C=0 jednačina prave u ravni xOy i $A \neq B$, tada vektori normalni na tu pravu su: **a)** (A,B) **b)** (A,-B) **c)** (-A,B) **d)** (B,A) **e)**(B,-A) **f)** (-A,-B) **g)** (-B,-A) **h)** (-B,A)
- 11. Za prave $m: \frac{x-2}{3} = \frac{y-1}{-2} = \frac{z}{5}$ i $n: \frac{x-5}{-6} = \frac{y+1}{4} = \frac{z-5}{-10}$ važi: **a)** mimoilazne su $(m \cap n = \emptyset \land m \not\parallel n)$ **b)** paralelne su i različite $(m \parallel n \land m \neq n)$ **c)** poklapaju se (m = n) **d)** seku se $(m \cap n = \{M\})$
- 12. Za prave $m: \frac{x-2}{3} = \frac{y-1}{-2} = \frac{z}{5}$ i $n: \frac{x-5}{-6} = \frac{y+1}{4} = \frac{z-4}{-10}$ važi: **a)** mimoilazne su $(m \cap n = \emptyset \land m \not\parallel n)$ **b)** paralelne su i različite $(m \parallel n \land m \neq n)$ **c)** poklapaju se (m = n) **d)**seku se $(m \cap n = \{M\})$
- 13. Za prave $m: \frac{x-2}{3} = \frac{y-1}{-2} = \frac{z}{5}$ i $n: \frac{x-5}{-6} = \frac{y+1}{4} = \frac{z-5}{-1}$ važi: **a)** mimoilazne su $(m \cap n = \emptyset \land m \not\parallel n)$ **b)** paralelne su i različite $(m \parallel n \land m \neq n)$ **c)** poklapaju se (m = n) **d)** seku se $(m \cap n = \{M\})$
- 14. Za prave $m: \frac{x-2}{3} = \frac{y-1}{-2} = \frac{z}{5}$ i $n: \frac{x-4}{-6} = \frac{y+2}{4} = \frac{z-4}{-1}$ važi: **a)** mimoilazne su $(m \cap n = \emptyset \land m \not\mid n)$ **b)** paralelne su i različite $(m \mid\mid n \land m \neq n)$ **c)** poklapaju se (m = n) **d)** seku se $(m \cap n = \{M\})$
- 15. Neka su dati vektori \vec{r}_A i \vec{a} i realan broj d. Ako je $\overrightarrow{AB} \parallel \vec{a}$, $|\overrightarrow{AB}| = d$ i $\overrightarrow{AB} \vec{a} < 0$ tada je:

 1) $\vec{r}_B = \vec{r}_A + d \cdot \frac{\vec{a}}{|\vec{a}|}$ 2) $\vec{r}_B = \vec{r}_A + d \cdot \vec{a}$ 3) $\vec{r}_B = \vec{r}_A d \cdot \frac{\vec{a}}{|\vec{a}|}$ 4) $\vec{r}_B = \vec{r}_A d \cdot \vec{a}$ 5) $\vec{r}_B = \vec{r}_A \pm d \cdot \frac{\vec{a}}{|\vec{a}|}$
- 16. Neka su dati vektori \vec{r}_A i \vec{a} i realan broj d. Ako je $\overrightarrow{AB} \parallel \vec{a}$, $|\overrightarrow{AB}| = d$, $|\vec{a}| = 1$ i $\overrightarrow{AB} \vec{a} < 0$ tada je:

 1) $\vec{r}_B = \vec{r}_A + d \cdot \frac{\vec{a}}{|\vec{a}|}$ 2) $\vec{r}_B = \vec{r}_A + d \cdot \vec{a}$ 3) $\vec{r}_B = \vec{r}_A d \cdot \frac{\vec{a}}{|\vec{a}|}$ 4) $\vec{r}_B = \vec{r}_A d \cdot \vec{a}$ 5) $\vec{r}_B = \vec{r}_A \pm d \cdot \frac{\vec{a}}{|\vec{a}|}$
- 17. Neka su dati vektori \vec{r}_A i \vec{a} i realan broj d. Ako je $\overrightarrow{AB} \parallel \vec{a}, |\overrightarrow{AB}| = d, |\vec{a}| = 0, 5$ i $\overrightarrow{AB} \vec{a} < 0$ tada je:

 1) $\vec{r}_B = \vec{r}_A + d \cdot \frac{\vec{a}}{|\vec{a}|}$ 2) $\vec{r}_B = \vec{r}_A + 2d \cdot \vec{a}$ 3) $\vec{r}_B = \vec{r}_A d \cdot \frac{\vec{a}}{|\vec{a}|}$ 4) $\vec{r}_B = \vec{r}_A 2d \cdot \vec{a}$ 5) $\vec{r}_B = \vec{r}_A \pm d \cdot \frac{\vec{a}}{|\vec{a}|}$
- 18. Jednačina x + y = 1, $x \in \mathbb{R}$, $y \in \mathbb{R}$ jeste jednačina: 1) samo prave 2) samo ravni 3) prve i ravni 4) ili prave ili ravni, zavisno od još nekih uslova