

UFFS – Universidade Federal da Fronteira Sul Curso de Ciência da Computação

Disciplina: Organização de Computadores

Professor: Luciano L. Caimi Data: 15/05/2024

Aluno:	Nota:	

- 1. **(1.0)** Apresente e descreva as proposições de Von Neumann para a construção de computadores digitais.
- 2. **(2.5)** Utilizando o conjunto de instruções do RISC-V implemente a <u>função</u> qtd_comparação que recebe em a0 o endereço inicial de um vetor de inteiros, em a1 o tamanho deste vetor e em a2 um numero inteiro. A função deve retornar em a0 a quantidade de elementos do vetor cujo valor é menor que o número inteiro a2. Valendo um ponto extra: retornar em a1 o índice do elemento com a maior diferença.
- 3. **(2.0)** Sabendo que A, B, C e S são endereços de memória e considerando o conjunto de instruções e o programa apresentado, faça o que se pede:

Conjunto de Instruções		Programa
POP op; (op) ← topo	1	PUSHI 4
		PUSH C
PUSHI op ; topo ← op	3 4	ADD PUSHI 10
PUSH op; topo \leftarrow (op)	5	PUSH B
POW ; topo ← topo ^ topo ₋₁	6	SUB
ADD ; topo ← topo + topo ₋₁	7	PUSHI 3
, 1 1 1 - I	8	PUSH A
SUB ; topo ← topo - topo ₋₁	9	POW
MUL ; topo ← topo * topo ₋₁	10	DIV
, , , , , -1	11	POW
DIV ; topo \leftarrow topo / topo ₋₁	12	POP S

- a) Apresente o "valor" presente na pilha ao final da execução das linhas 6, 9 e 11.
- b) Apresente o "valor" presente no endereço de memória S ao final do programa.
- 4. **(2.0)** Considere o formato das instruções do processador RISC-V, sabendo que a chamada da função ret_posicao foi realizada a partir do endereço de memória 820, e que a função está armazenada a partir do endereço de memória 600, responda, justificando as respostas?

```
ret_posicao:
    add a7, zero, zero
laco:
    beq zero, a3, out_laco
    addi a7, a7, 4
    addi a3, a3, -1
    j laco
out_laco:
    add a3, zero, a7
```

ret

- a) Qual o valor associado aos rótulos (labels) ret_posição, laco e out_laco?
- b) Qual o valor presente no campo "imm" da instrução BEQ?
- c) Qual o valor presente no campo "imm" da instrução J?
- d) Qual o valor que será colocado no PC quando a instrução RET for executada?

5. **(2.5)** Considere os seguintes valores presentes na memória de programa e no banco de registradores:

End – Instrução

200 - ADDI t1, t0, 7

204 - ADD t2, s0, t1

208 - SW t2, 0 (sp)

212 - BEQ t2, zero, FIM

Apresente os valores presentes nas posições A, B... nos dois próximos ciclos de instrução, do processador RISC-V monociclo , considerando que o valor atual de PC é 204 (PC = 204).

posição	PC atual	Próximo PC
	i o ataar	1 10/11110 1 0
Α		
В		
С		
D		
Е		
F		
G		
Н		
J		

Banco de registradores

zero	0x00000000
ra	0x00000000
sp	0x7ffffff0
gp	0x10000000
tp	0x00000000
t0	0x00000000
t1	0x00000007
t2	0x00000000
s0	0x00000013
s1	0x00000000
a0	0x00000010
al	0x00000000
a2	0x00000000
а3	0x00000000
a4	0x00000000
	ra sp gp tp t0 t1 t2 s0 s1 a0 a1 a2 a3

