

Обзор Архитектур нейронных сетей (VGG,ResNet и др) Автокодировщики

Преподаватель: Герард Костин

Основные элементы CNN - Сверточные слои

Сверточный слой состоит из набора сверточных ядер, где каждый нейрон действует как ядро.

Сверточное ядро работает путем разделения изображения на маленькие кусочки, обычно известные как рецептивные поля. Разделение изображения на мелкие блоки помогает в извлечении характерных паттернов.

Основные элементы CNN - Pooling

Мотивы признаков, которые возникают в результате операции свертки, могут встречаться в разных местах изображения. Как только объекты извлечены, их точное местоположение становится менее важным, пока сохраняется его приблизительное положение относительно других

Основные элементы CNN - Функция активации

Функция активации служит функцией принятия решения и помогает в изучении сложных шаблонов. Выбор подходящей функции активации может ускорить процесс обучения

ReLU Layer

Filter 1 Feature Map

9	3	5	0
0	2	0	1
1	3	4	1
3	0	5	1

Основные элементы CNN - BatchNormalization

Пакетная нормализация используется для решения проблем, связанных с внутренним ковариационным сдвигом в картах признаков. Внутренний ковариационный сдвиг - это изменение в распределении значений скрытых нейронов, которое замедляет сходимость (за счет уменьшения скорости обучения до небольшого значения)

A visual comparison of various normalization methods

Основные элементы CNN - Dropout

Dropout вводит регуляризацию в сети, что в конечном итоге улучшает обобщение за счет случайного пропуска некоторых нейронов или весов с определенной вероятностью. В Нейронных сетях нейроны иногда просто стараются запоминать данные, что приводит к переобучению.

(a) Standard Neural Network

(b) Network after Dropout

Обзор Архитектур

Как меняются архитектуры

- Более широкая сеть означает больше карт функций (фильтров) в сверточных слоях.
- Более глубокая сеть означает больше сверточных слоев

• Сеть с более высоким разрешением означает, что она обрабатывает входные изображения с

большей шириной и глубиной (пространственное разрешение).

LeNET

AlexNet

VGG

Softmax	
FC 1000	
FC 4096	
FC 4096	
Pool	
3x3 conv. 256	
3x3 conv. 384	
Pool	
3x3 conv. 384	
Pool	
5x5 conv, 256	
11x11 conv. 98	
Input	

FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 FC 4096 Pool Pool Pool Pool Pool Pool Pool Input Input

AlexNet

VGG16

VGG19

ResNet

Original

Proposed

Inception V3

Meta-pseudo Labels

Stochastic depth

Общая статистика

Название Модели	Кол-во нейронов [Millions]	ImageNet Top 1 Accuracy	Год
AlexNet	60 M	63.3 %	2012
Inception V1	5 M	69.8 %	2014
VGG 16	138 M	74.4 %	2014
VGG 19	144 M	74.5 %	2014
Inception V2	11.2 M	74.8 %	2015
ResNet-50	26 M	77.15 %	2015
ResNet-152	60 M	78.57 %	2015
Inception V3	27 M	78.8 %	2015
DenseNet-121	8 M	74.98 %	2016
DenseNet-264	22M	77.85 %	2016
BiT-L (ResNet)	928 M	87.54 %	2019
NoisyStudent EfficientNet-L2	480 M	88.4 %	2020
Meta Pseudo Labels	480 M	90.2 %	2021

Автокодировщики

Автокодировщикиприменение

Поиск Аномалий - Anomaly Detection

