Laborversuch Robuste Regelung eines Gleichstrommotors

Daniel Winz

Ervin Mazlagić

11. Februar 2015

Inhaltsverzeichnis

1	Blockschaltbild	2
2	Blockschaltbild mit Vorsteuerung	3
3	Wirkungsplan	4
4	Übertragungsfunktionen	5
5	Vereinfachte Übertragungsfunktionen	6
6	Sprungantworten	7
7	Parameterbestimmung	8
8	P-Regler	9
9	PID-Regler nach Kuhn	10
10	Robuster PI-Regler mit SISO-Tool	11
11	Regler mit Sättigung	12
12	Test des Reglers	13
13	Vorsteuerung	14

1 Blockschaltbild

2 Blockschaltbild mit Vorsteuerung

3 Wirkungsplan

4 Übertragungsfunktionen

Gegeben sind die folgenden Gleichungen für u(t) und $\omega(t)$

$$u(t) = R \cdot i(t) + L \frac{di(t)}{dt} + K_{\omega} \cdot \omega(t)$$

$$J\frac{d\omega(t)}{dt} = K_{\omega} \cdot i(t) - M_l - \alpha \cdot \omega(t)$$

Aus der zweiten Gleichung lässt sich die Funktion für i(t) explizit aufstellen.

$$i(t) = \frac{J \cdot \frac{d\omega(t)}{dt} + M_l + \alpha \cdot \omega(t)}{K_{\omega}}$$

Dieses i(t) lässt sich nun in die erste Gleichung einsetzen, somit ergibt sich

$$u(t) = R \cdot \frac{J}{K_{\omega}} \cdot \frac{d\omega(t)}{dt} + R \cdot \frac{M_l}{K_{\omega}} + R \cdot \frac{\alpha}{K_{\omega}} \cdot \omega(t) + L \cdot \frac{J}{K_{\omega}} \cdot \frac{d^2\omega(t)}{dt^2} + L \cdot \frac{\alpha}{K_{\omega}} \cdot \frac{d\omega(t)}{dt} + K_{\omega}\omega(t)$$

Diese Funktion für die Spannung u(t) kann nun in den Bildbereich überführt werden mit der Laplace-Transformation.

$$U(s) = R \cdot \frac{J}{K_{\omega}} \cdot \Omega(s) + \underbrace{R \cdot \frac{M_{l}}{K_{\omega}}}_{\bullet} + R \cdot \frac{\alpha}{K_{\omega}} \cdot \Omega(s) + L \cdot \frac{J}{K_{\omega}} \cdot \Omega(s) \cdot s^{2} + L \cdot \frac{\alpha}{K_{\omega}} \cdot \Omega(s) \cdot s + K_{\omega} \cdot \Omega(s)$$

Der Term

$$R \cdot \frac{M_l}{K_{cl}}$$

beschreibt eine Störgrösse und hat nichts mit dem Eingangssignal zu tun. Somit darf dieser Term gestrichen werden für die Übertragungsfunktion. Die resultierende Funktion kann nun in eine günstige Form ungestellt werden, damit der Quotient aufgestellt werden kann von Ausgangs- und Eingangssignal.

$$U(s) = \Omega(s) \cdot \left(\frac{L \cdot J}{K_{\omega}} \cdot s^2 + \frac{R \cdot J + L \cdot \alpha}{K_{\omega}} \cdot s + \frac{R \cdot \alpha}{K_{\omega}} + K_{\omega}\right)$$

Die Übertragungsfunktion lautet somit

$$G_1(s) = \frac{1}{\frac{L \cdot J}{K_{\omega}} \cdot s^2 + \frac{R \cdot J + L \cdot \alpha}{K_{\omega}} \cdot s + \frac{R \cdot \alpha}{K_{\omega}} + K_{\omega}}$$

${\bf 5}\quad {\bf Vereinfachte}\ \dot{\bf U}bertragungsfunktionen$

6 Sprungantworten

7 Parameterbestimmung

8 P-Regler

9 PID-Regler nach Kuhn

10 Robuster PI-Regler mit SISO-Tool

11 Regler mit Sättigung

12 Test des Reglers

13 Vorsteuerung