情報処理工学第6回

藤田一寿

公立小松大学保健医療学部臨床工学科

論理回路

■ 論理回路

- ・ 論理演算を回路で表したものを論理回路とよぶ.
- コンピュータは論理回路により様々な処理を実現している.

- ・ 論理回路を構成する素子のことを論理素子と言う.
- ・論理回路は1と0を扱う。1と0はそれぞれ真と偽、T(True)とF(False)、 もしくはH(High)とL(Low)と呼ばれることもある。

論理素子

ANDゲート

• 論理積(AND),論理和(OR),否定(NOT),排他的論理和

NOTゲート

 $\overline{A} - V$

$A \cdot$	B =	: Y	A -	+B	=Y
Α	В	Υ	Α	В	Υ
0	0	0	0	0	0
			_		

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

ORゲート

$\Lambda - I$		11 (- <i>1</i>		
				А	В	Υ
	Α	Υ		0	0	0
	0	1		0	1	1
	1	0		1	0	1
				1	1	0

XORゲート

 $A \oplus B = Y$

NAND回路,NOR回路

• 論理積の否定および論理和の否定を出力する回路を、それぞれNAND 回路、NOR回路と呼ぶ。

• NOT回路の三角の部分は省略できるので、それぞれの回路は次のように描くことができる、

論理式から論理回路へ

■ 論理式から論理回路を作る

• 論理式で用いる論理演算に対応する論理素子がそれぞれあるので、論 理式は論理回路に変換することができる.

・次の論理式を論理回路に直せ.

$$Y = \overline{A} + \overline{B}$$

$$Y = (A + B) + A \cdot B$$

• 次の論理式を論理回路に直せ.

$$Y = \overline{A} + \overline{B}$$

$$Y = (A + B) + A \cdot B$$

・次の論理式を論理回路に直せ.

$$Y = \overline{A} + \overline{B}$$

$$Y = (A + B) + A \cdot B$$

• 次の論理式を論理回路に直せ.

$$Y = \overline{A} + \overline{B}$$

$$Y = (A + B) + A \cdot B$$

注意:線が接続している部分は黒丸で描く。

• 次の論理式を論理回路に直せ.

$$Y = \overline{A} + \overline{B}$$

$$Y = (A + B) \oplus A \cdot B$$

注意:線が接続している部分は黒丸で描く。

論理式の簡略化と論理回路

• 論理式を論理回路にするとき、論理式はなるべく簡単化した後に論理 回路にする.

$$Y = (A + B) + A \cdot B$$
$$= A + B$$

演習

・次の論理式を論理回路に直せ.

$$Y = A \cdot B + \overline{A} \cdot \overline{B}$$

・ 次の論理式を論理回路に直せ.

AND OR NOT =D- =D-

論理回路から論理式へ

論理回路を論理式に変換する.

この回路を論理式に変換してみる.

まず,入力に近い回路から論理式に変換する.

論理回路から論理式を作る

出力を計算するAND回路は、 入力に接続されている回路 の出力を受け取る.

$$Y = (A + B) \cdot (A \cdot B)$$

論理回路の簡略化

• 先の例の論理回路から得られた論理式を見ると, 論理式を簡単化する ことができることが分かる.

$$Y = (A + B) \cdot (A \cdot B)$$

簡単化可能

論理回路の簡略化

例題で扱った回路は、簡略化するとAND回路となった.

論理回路から真理値表へ

論理回路から真理値表を作る.

• 論理回路の動作は、論理式だけではなく真理値表でも表現することができる。

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

論理回路から真理値表を作る.

・論理回路の動作は、論理式だけではなく真理値表でも表現することができる。

А	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

論理回路から真理値表を作る.

- 論理回路から真理値表に変換する一番簡単な方法
 - 一つ一つ値を代入して出力を求める.

Α	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

Α	В	С	Χ	Υ
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Α	В	С	Χ	Υ
0	0	0	0	0
0	0	1	0	0
0	1	0	0	1
0	1	1	0	0
1	0	0	0	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

演習

演習

A	[3]	7
0	0	0
0		0
	0	0
	\	

真理値表から論理回路へ

■ 真理値表から論理回路を作る

- 論理回路を用い,何かの機能を実現するとき,まず真理値表を作成する.
- 論理回路は作成した真理値表を元に作成する.
- では、どうすれば真理値表から論理回路を作れるのか?

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

この真理値表から論理回路をどう作る?

■ 真理値表から論理回路を作る

- 真理値表から論理回路を作ることは非常に難しい.
- 真理値表から論理回路を作るには、次の手順を踏む.

真理值表

真理値表に基づき, 論理式を作る

論理式に基づき, 論理回路を作る

■ 真理値表から論理式を作る

・出力が1のときに着目する.

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

■ 真理値表から論理式を作る

・図のように論理式を作る.

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

- 出力が1の部分は入 力の掛け算に
- 入力が0のところは 否定に

■ 真理値表から論理式を作る

- 先程の手順で作成した論理式を足す.
- できた論理式を簡単化して完成.

Α	В	Υ	
0	0	0	
0	1	1	$\overrightarrow{A} \cdot \overrightarrow{B} \rightarrow \overline{A} \cdot B + A \cdot \overline{B}$
1	0	1	\wedge
1	1	0	

XORの式になった

■ 真理値表から論理回路を作る

• 完成した論理式から、論理回路を作成すればよい.

Α	В	Υ	
0	0	0	
0	1	1	$\overline{A} \cdot B + A \cdot \overline{B}$
1	0	1	
1	1	0	
			B B

演習 演習

• 次の真理値表を論理式で表わせ. ただし、論理式はできるだけ簡単化せよ.

А	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

・次の真理値表を論理式で表わせ.ただし、論理式はできるだけ簡単化せよ.

А	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

• 次の真理値表を論理式で表わせ. ただし、論理式はできるだけ簡単化せよ.

А	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

• 次の真理値表を論理式で表わせ. ただし、論理式はできるだけ簡単化せよ.

Α	В	Υ		
0	0	1	A·B	
0	1	0		Ā·B +A·B
1	0	0		71 0 173 1
1	1	1	A·B	

演習

• 図の回路の出力Xを表す真理値表で正しいのはどれか.

入力 A B 0 0 0 1		出力
A	В	X
0	0	0
0	1	0
1	0	0
1	1	1

	カ	出力
Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

3.	入力 A B 0 0 0 1 1 0		出力
		В	X
	0	0	1
	0	1	0
	1	0	0
	1	1	1

1.	入力 A B 0 0 0 1		出力
	A	В	X
	0	0	0
	0	1	1
	1	0	1
	1	1	1

・図の回路の出力Xを表す真理値表で正しいのはどれか.

回路を論理式で表すと

$$A \cdot B + \overline{A + B}$$

となる. $A \cdot B$ と $\overline{A + B}$ を足した真理値表は3となる.

入力 A B		出力
Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

2.	入力 A B 0 0		出力
	Α	В	Х
	0	0	0
	0	1	1
	1	0	1
	1	1	0
		1	

3.	入力		出力
	A	В	Х
	0	0	1
	0	1	0
	1	0	0
	1	1	1

4.	入力		出力
	A	В	X
	0	0	0
	0	1	1
	1	0	1
	1	1	1

■ 中間試験

- 第8回(11月30日)講義の後半に実施
- 時間は30分
- ・ 範囲は第1回から第7回の講義で取り扱った内容
- 国家試験、ME2種の過去問を改変したものを出題
- 持ち込みあり

- 不合格となった学生がいた場合は、再試の連絡を掲示板する.
- 定期試験ができると国家試験もできるようになるので頑張ろう.