EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES

LORENZO LAZZARINO, HUSSAM AL DAAS, YUJI NAKATSUKASA

Mathematical Institute - University of Oxford

Computational Mathematics Theme - STFC UKRI

30th Biennial Conference on Numerical Analysis, 25th June 2025

OXFORD Mathematical Institute

EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES

- PROBLEM SETTING
- 2 CLASSICAL APPROACHES
- 3 TECHNIQUES FROM (RANDOMIZED) LOW-RANK APPROXIMATIONS
- 4 EXTRACTING SINGULAR VALUES WITH GN
- 6 ANALYSIS AND COMPARISON

PROBLEM SETTING

1

$$A = U\Sigma V^*$$

Given \tilde{U} and/or \tilde{V} (orthonormal) approximations of the leading singular subspaces of A

$$n \begin{bmatrix} r \\ \tilde{V} \end{bmatrix}, m \begin{bmatrix} r+\ell \\ \tilde{U} \end{bmatrix}$$

<u>AIM:</u> Approximate the leading singular values $\{\sigma_i(A)\}_{i=1}^r$

$$A = U\Sigma V^*$$

Given \tilde{U} and/or \tilde{V} (orthonormal) approximations of the leading singular subspaces of A

$$n \left[egin{array}{c} r \\ ilde{V} \end{array}
ight], \quad m \left[egin{array}{c} ilde{U} \end{array}
ight]$$

AIM: Approximate the leading singular values $\{\sigma_i(A)\}_{i=1}^r$

$$A = U\Sigma V^*$$

Given \tilde{U} and/or \tilde{V} (orthonormal) approximations of the leading singular subspaces of A

$$n \left[egin{array}{c} r \\ ilde{V} \end{array}
ight], \quad m \left[egin{array}{c} ilde{U} \end{array}
ight]$$

<u>AIM:</u> Approximate the leading singular values $\{\sigma_i(A)\}_{i=1}^r$

CLASSICAL APPROACHES

CLASSICAL APPROACHES > Rayleigh Ritz and (one-sided) SVD approximations

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- Single-pass
- ightharpoonup 1 multiplication by A

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- ▶ Single-pass
- ▶ 1 multiplication by A

$$Q_1 = egin{bmatrix} ilde{U} & ilde{U}_\perp \end{bmatrix}, \quad Q_2 = egin{bmatrix} ilde{V} & ilde{V}_\perp \end{bmatrix}$$

CLASSICAL APPROACHES > Rayleigh Ritz and (one-sided) SVD approximations

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- Single-pass
- ▶ 1 multiplication by A

$$Q_1 = egin{bmatrix} ilde{U} & ilde{U}_\perp \end{bmatrix}, \quad Q_2 = egin{bmatrix} ilde{V} & ilde{V}_\perp \end{bmatrix}$$

$$\bar{A} = Q_1^* A Q_2$$

$$\sigma_i(A_{RR,\tilde{V},\tilde{U}}) = \sigma_i(\bar{A}_{RR,\begin{bmatrix} l_1 \\ 0 \end{bmatrix},\begin{bmatrix} l_{1+\ell} \\ 0 \end{bmatrix}})|$$

$$=\sigma_i(ar{A}_{11})=\sigma_i\left(egin{bmatrix}ar{A}_{11}&0\0&0\end{bmatrix}
ight)$$

Rayleigh Ritz (RR)

 $\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$

(Dax, 2012) (Saad, 2011) (Xin-guo, 1992)

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- Single-pass
- ▶ 1 multiplication by A

$$Q_1 = egin{bmatrix} ilde{U} & ilde{U}_ot \end{bmatrix}, \quad Q_2 = egin{bmatrix} ilde{V} & ilde{V}_ot \end{bmatrix}$$

$$\begin{split} \bar{A} &= Q_1^* A Q_2 \\ \sigma_i(A_{RR,\tilde{V},\tilde{U}}) &= \sigma_i(\bar{A}_{RR,\left[\begin{smallmatrix} I_r \\ 0 \end{smallmatrix}\right],\left[\begin{smallmatrix} I_r+\ell \\ 1 \end{smallmatrix}\right]})| \end{split}$$

$$=\sigma_i(ar{A}_{11})=\sigma_i\left(egin{bmatrix}ar{A}_{11} & 0 \ 0 & 0\end{bmatrix}
ight)$$

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

(Dax, 2012) (Saad, 2011) (Xin-guo, 1992)

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- ▶ Single-pass
- ▶ 1 multiplication by A

$$ightharpoonup N_r + \mathcal{O}(mr^2)$$

- Single-pass
- ▶ 1 multiplication by A

$$extit{Q}_1 = egin{bmatrix} ilde{U} & ilde{U}_\perp \end{bmatrix}, \quad extit{Q}_2 = egin{bmatrix} ilde{V} & ilde{V}_\perp \end{bmatrix}$$

$$\bar{A} = Q_1^* A Q_2$$

$$\sigma_i(A_{RR,\tilde{V},\tilde{U}}) = \sigma_i(\bar{A}_{RR,\begin{bmatrix} l'_1 \\ 0 \end{bmatrix},\begin{bmatrix} l'_{r+\ell} \\ 0 \end{bmatrix}})|$$

$$=\sigma_i(\bar{A}_{11})=\sigma_i\left(\begin{bmatrix}\bar{A}_{11} & 0\\ 0 & 0\end{bmatrix}\right)$$

CLASSICAL APPROACHES > Rayleigh Ritz and (one-sided) SVD approximations

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

(Dax, 2012) (Saad, 2011) (Xin-guo, 1992)

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

- $N_r + \mathcal{O}(mr^2) + \mathcal{O}(r^3)$
- Single-pass
- ▶ 1 multiplication by A

- $ightharpoonup N_r + \mathcal{O}(mr^2)$
- Single-pass
- ▶ 1 multiplication by A

$$\begin{aligned} Q_1 &= \begin{bmatrix} \tilde{U} & \tilde{U}_\perp \end{bmatrix}, \quad Q_2 &= \begin{bmatrix} \tilde{V} & \tilde{V}_\perp \end{bmatrix} \\ \tilde{A} &= Q_1^* A Q_2 & \tilde{A} &= A Q_2 &= \begin{bmatrix} \tilde{A}_1 & \tilde{A}_2 \end{bmatrix} \\ \sigma_i(A_{RR,\tilde{V},\tilde{U}}) &= \sigma_i(\bar{A}_{RR,\begin{bmatrix} I_r \\ 0 \end{bmatrix},\begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix})| & \sigma_i(A_{SVD,\tilde{V}}) &= \sigma_i(\tilde{A}_{SVD,\begin{bmatrix} I_r \\ 0 \end{bmatrix}) \\ &= \sigma_i(\bar{A}_{11}) &= \sigma_i\left(\begin{bmatrix} \bar{A}_{11} & 0 \\ 0 & 0 \end{bmatrix}\right) &= \sigma_i([\tilde{A}_1 & 0]) \end{aligned}$$

CLASSICAL APPROACHES > Rayleigh Ritz and (one-sided) SVD approximations > Accuracy

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

CLASSICAL APPROACHES > Rayleigh Ritz and (one-sided) SVD approximations > Accuracy

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

(one-sided) SVD approximations

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

Not bad...

Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

(one-sided) SVD approximations

$$\sigma_i(A) \approx \sigma_i(A\tilde{V}) =: \sigma_i(A_{SVD,\tilde{V}})$$

Not bad...

BUT, what if we could have this?

TECHNIQUES FROM (RANDOMIZED) LOW-RANK APPROXIMATIONS

RANDOMIZED SVD (HMT)

Randomized SVD

$$A \approx (A\Omega)(A\Omega)^{\dagger}A =: A_{HMT,\Omega}$$

(Clarkson, Woodruff, 2017) (Halko, Martinsson, Tropp, 2011) (Rokhlin, Szlam, Tygert, 2009)

1. Choose
$$\Omega \in \mathbb{R}^{n \times r}$$

2. Sketch:
$$X=A\Omega$$

3.
$$[\mathsf{Q},\sim]=\mathsf{qr}(X,0)$$

1. Choose
$$\Omega \in \mathbb{R}^{n \times r}$$
 2. Sketch: $X = A\Omega$ 3. $[Q, \sim] = qr(X, 0)$ 4. $A_{HMT,\Omega} = Q(Q^*A)$

RANDOMIZED SVD (HMT)

Randomized SVD

$$A \approx (A\Omega)(A\Omega)^{\dagger}A =: A_{HMT,\Omega}$$

(Clarkson, Woodruff, 2017) (Halko, Martinsson, Tropp, 2011) (Rokhlin, Szlam, Tygert, 2009)

- 1. Choose $\Omega \in \mathbb{R}^{n \times r}$ 2. Sketch: $X = A\Omega$ 3. $[Q, \sim] = qr(X, 0)$ 4. $A_{HMT, \Omega} = Q(Q^*A)$

- $N_r + \mathcal{O}(mr^2) + \tilde{N}_r$
- Double-pass
- ▶ 2 multiplications by A

$$A \approx A\Omega_1(\Omega_2^*A\Omega_1)^\dagger\Omega_2^*A =: A_{GN,\Omega_1,\Omega_2}$$

(Clarkson, Woodruff, 2009) (Nakatsukasa, 2020) (Woolfe, Liberty, Rokhlin, Tygert, 2008)

1. Choose
$$\Omega_1 \in \mathbb{R}^{n \times r}, \Omega_2 \in \mathbb{R}^{m \times (r+\ell)}$$
 2. Two-side Sketch: $X = A\Omega_1$ and $Y = \Omega_2^* A$ 3. $[Q,R] = qr(Y\Omega_1,0)$ 4. $A_{GN,\Omega_1,\Omega_2} = (XR^{-1})(Q^*Y)$

GENERALIZED NYSTRÖM APPROXIMATION

Generalized Nyström

$$A \approx A\Omega_1(\Omega_2^*A\Omega_1)^{\dagger}\Omega_2^*A =: A_{GN,\Omega_1,\Omega_2}$$

(Clarkson, Woodruff, 2009) (Nakatsukasa, 2020) (Woolfe, Liberty, Rokhlin, Tygert, 2008)

- 1. Choose $\Omega_1 \in \mathbb{R}^{n \times r}$, $\Omega_2 \in \mathbb{R}^{m \times (r+\ell)}$
- 2. Two-side Sketch: $X = A\Omega_1$ and $Y = \Omega_2^* A$

3.
$$[Q,R] = qr(Y\Omega_1,0)$$

3.
$$[Q,R] = qr(Y\Omega_1,0)$$
 4. $A_{GN,\Omega_1,\Omega_2} = (XR^{-1})(Q^*Y)$

$$N_{2r+\ell} + \mathcal{O}(r^3 + (m+n)r^2)$$

- Single-pass
- ▶ 2 multiplications by A

EXTRACTING SINGULAR VALUES WITH GN

$$\sigma_i(A) pprox \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^\dagger \tilde{U}^* A \right) =: \sigma_i^{GN}$$

$$N_{2r+\ell}$$

$$\sigma_i(A) pprox \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^\dagger \tilde{U}^* A \right) =: \sigma_i^{GN}$$

$$N_{2r+\ell} + \mathcal{O}((m+n)r^2)$$

$$\sigma_i(A) \approx \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^{\dagger} \tilde{U}^* A \right) =: \sigma_i^{GN}$$

$$N_{2r+\ell} + \mathcal{O}((m+n)r^2)$$

$$\sigma_i(A) \approx \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^{\dagger} \tilde{U}^* A \right) =: \sigma_i^{GN}$$

$$\sigma_i($$
 R_L R_p^{\dagger} R_p^{*} R_R^{*}

$$N_{2r+\ell} + \mathcal{O}((m+n)r^2)$$

Single-pass methods

$$\bullet \ \sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

$$lacksquare \sigma_i^{\mathsf{GN}} = \sigma_i \left(A ilde{V} (ilde{U}^* A ilde{V})^\dagger ilde{U}^* A
ight)$$

GN and Orthogonal Transformations

Consider T_1 and T_2 orthogonal matrices, then

$$T_1^*(M_{GN,\tilde{V},\tilde{U}})T_2 = (T_1^*MT_2)_{GN,T_2^*\tilde{V},T_1^*\tilde{U}}$$

For any orthonormal \tilde{V} and \tilde{U} , we can:

- **1.** Define $Q_1 = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}$ $Q_2 = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$;
- 2. Consider the transformed matrix: $Q_1^*AQ_2$;
- 3. Consider the transformed GN approximation:

$$Q_1^*A_{GN,\tilde{V},\tilde{U}}Q_2 = (Q_1^*AQ_2)_{GN,Q_2^*\tilde{V},Q_1^*\tilde{U}} = (Q_1^*AQ_2)_{GN,{r_0 \brack 0},{r_{r+\ell} \brack 0}}.$$

GN and Orthogonal Transformations

Consider T_1 and T_2 orthogonal matrices, then

$$T_1^*(M_{GN,\tilde{V},\tilde{U}})T_2 = (T_1^*MT_2)_{GN,T_2^*\tilde{V},T_1^*\tilde{U}}$$

For any orthonormal \tilde{V} and \tilde{U} , we can:

- **1.** Define $Q_1 = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}$ $Q_2 = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$;
- **2.** Consider the transformed matrix: $Q_1^*AQ_2$;
- 3. Consider the transformed GN approximation:

$$Q_1^*A_{GN,\tilde{V},\tilde{U}}Q_2 = (Q_1^*AQ_2)_{GN,Q_2^*\tilde{V},Q_1^*\tilde{U}} = (Q_1^*AQ_2)_{GN,\left[{r_r\atop 0}\right],\left[{r_r+\ell\atop 0}\right]}.$$

$$\rightarrow \quad |\sigma_i(A) - \sigma_i(A_{GN,\tilde{V},\tilde{U}})| = |\sigma_i(Q_1^*AQ_2) - \sigma_i((Q_1^*AQ_2)_{GN,\begin{bmatrix} I_r \\ 0 \end{bmatrix},\begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix})|$$

$$\tilde{V} := \begin{bmatrix} r & r + \ell & r & n - r \\ r + \ell & I_{r+\ell} & r + \ell & r + \ell & A_{11} & A_{12} \\ -1 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \\ 0 &$$

(Tropp, Webber, 2023)

$$A_{GN,\tilde{V},\tilde{U}} = A\tilde{V} (\tilde{U}^*A\tilde{V})^{\dagger} \tilde{U}^*A$$

$$\tilde{V} := \begin{bmatrix} r \\ l_r \\ 0 \end{bmatrix}, \quad \tilde{U} := \begin{bmatrix} r+\ell \\ l_{r+\ell} \\ - \\ 0 \end{bmatrix}, \quad A := \begin{bmatrix} r+\ell \\ l_{r+\ell} \\ - \\ 0 \end{bmatrix}, \quad A := \begin{bmatrix} r+\ell \\ l_{r+\ell} \\ - \\ - \\ m-(r+\ell) \end{bmatrix}$$

$$A_{GN,\tilde{V},\tilde{U}} = \left[egin{array}{c} A_{11} \\ - \\ A_{21} \end{array}
ight] (\tilde{U}^*A\tilde{V})^\dagger \, \tilde{U}^*A$$

$$\tilde{V} := \begin{bmatrix} r \\ l_r \\ 0 \end{bmatrix}, \quad \tilde{U} := \begin{bmatrix} r+\ell \\ l_{r+\ell} \\ - \\ 0 \end{bmatrix}, \quad A := \begin{bmatrix} r+\ell \\ l_{r+\ell} \\ - \\ 0 \end{bmatrix}, \quad A := \begin{bmatrix} r+\ell \\ l_{r+\ell} \\ - \\ - \\ m-(r+\ell) \end{bmatrix}$$

$$A_{GN,\tilde{V},\tilde{U}} = \left[egin{array}{c} A_{11} \\ - \\ A_{21} \end{array} \right] (\tilde{U}^*A\tilde{V})^{\dagger} \left[A_{11} \mid A_{12} \end{array} \right]$$

$$\tilde{V} := \begin{bmatrix} r & r + \ell & r + \ell \\ I_r \\ - \\ 0 \end{bmatrix}, \quad \tilde{U} := m - (r + \ell) \begin{bmatrix} r + \ell & r + \ell \\ I_{r+\ell} \\ - \\ 0 \end{bmatrix}, \quad A := m - (r + \ell) \begin{bmatrix} r & n - r \\ A_{11} & | A_{12} \\ - & - & - \\ | & | \\ A_{21} & | A_{22} \\ | & | \\$$

$$A_{GN,\tilde{V},\tilde{U}} = \left[egin{array}{c} A_{11} \\ - \\ A_{21} \end{array}
ight] (A_{11})^{\dagger} \left[A_{11} \mid A_{12} \end{array}
ight]$$

$$\tilde{V} := \begin{pmatrix} r & r + \ell & r + \ell$$

$$MM^{\dagger}M = M$$

$$A_{GN,\tilde{V},\tilde{U}} = \begin{bmatrix} A_{11} \\ - \\ A_{21} \end{bmatrix} (A_{11})^{\dagger} \begin{bmatrix} A_{11} \mid A_{12} \end{bmatrix} = \begin{bmatrix} A_{11}A_{11}^{\dagger}A_{11} & | & A_{11}A_{11}^{\dagger}A_{12} \\ - - - - - & - & - - - - \\ & | & | & \\ A_{21}A_{11}^{\dagger}A_{11} & | & A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix}$$

$$\tilde{V} := \prod_{n-r}^{r} \begin{bmatrix} r & r+\ell & r+\ell & r+\ell & r-r \\ I_{r+\ell} & -r & -r & -r \\ I_{r} & -r & -r & -r \\ I_{r} & -r & -r & -r \\ I_{r+\ell} & -r & -r \\ I_{r+\ell}$$

M has linearly independent columns $\implies M^{\dagger}M = M^{-1}M = M$

$$A_{GN,\tilde{V},\tilde{U}} = \begin{bmatrix} A_{11} \\ - \\ A_{21} \end{bmatrix} (A_{11})^{\dagger} \begin{bmatrix} A_{11} \mid A_{12} \end{bmatrix} = \begin{bmatrix} A_{11} A_{11}^{\dagger} A_{11} & A_{11} A_{11}^{\dagger} A_{12} & A_{11} A_{11}^{\dagger} A_{12} & A_{11} A_{11}^{\dagger} A_{12} & A_{11} A_{11}^{\dagger} A_{12} & A_{11} A_{11}^{\dagger} & A_{11} A_{12}^{\dagger} & A_{11}^{\dagger} & A_{11}^{\dagger} A_{12}^{\dagger} & A_{11}^{\dagger} & A_{11}^{\dagger} & A_{12}^{\dagger} & A_{11}^{\dagger} & A_{12}^{\dagger} & A_{11}^{\dagger} & A$$

GN AND MATRIX PERTURBATION THEORY \rightarrow Express A_{GN} as a perturbation of the original matrix A

$$\tilde{V} := \prod_{n-r}^{r} \begin{bmatrix} r & r+\ell & r+\ell & r+\ell & r+\ell & A_{11} & A_{12} & A_{12} & A_{13} & A_{14} & A_{15} & A_{15$$

$$A_{GN,\tilde{V},\tilde{U}} = \begin{bmatrix} A_{11} \\ - \\ A_{21} \end{bmatrix} (A_{11})^{\dagger} \begin{bmatrix} A_{11} \mid A_{12} \end{bmatrix} = \begin{bmatrix} A_{11} & | & A_{11}A_{11}^{\dagger}A_{12} \\ ----- & - & ---- \\ | & | & | \\ A_{21}A_{11}^{\dagger}A_{11} & | & | & A_{21}A_{11}^{\dagger}A_{12} \\ | & | & | & | & | \end{bmatrix}$$

GN AND MATRIX PERTURBATION THEORY \rightarrow Express A_{GN} as a perturbation of the original matrix A

$$A_{GN,\tilde{V},\tilde{U}} = A - \begin{bmatrix} 0 & | & A_{12} - A_{11}A_{11}^{\dagger}A_{12} \\ - - - - - - & - & - - - - \\ | & | & | \\ 0 & | & A_{22} - A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix} =: A - E_{GN}$$

GN AND MATRIX PERTURBATION THEORY \rightarrow Express A_{GN} as a perturbation of the original matrix A

No-oversample (
$$\ell=0$$
) $\rightarrow A_{12}-A_{11}A_{11}^{\dagger}A_{12}=0$, $\underline{\text{but}}$ change of block sizes!

$$A_{GN,\tilde{V},\tilde{U}} = A - \begin{bmatrix} 0 & | & 0 \\ ----- & - & ----- \\ | & | & \\ 0 & | & A_{22} - A_{21}A_{11}^{\dagger}A_{12} \\ | & | & \end{bmatrix} =: A - E_{GN}$$

Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$

Cor. 7.3.5 (Horn, Johnson, 2012)

Cor. I.4.31 (Stewart, 1998)

GN AND MATRIX PERTURBATION THEORY > Weyl's bound

Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$

Cor. 7.3.5 (Horn, Johnson, 2012) Cor. 1.4.31 (Stewart, 1998)

$$|\sigma_i(A) - \sigma_i(A_{GN,\tilde{V},\tilde{U}})|$$

GN AND MATRIX PERTURBATION THEORY > Weyl's bound

Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$

Cor. 7.3.5 (Horn, Johnson, 2012) Cor. I.4.31 (Stewart, 1998)

$$|\sigma_i(A) - \sigma_i(A_{GN,\tilde{V},\tilde{U}})| \le ||E_{GN}||_2$$

ANALYSIS AND COMPARISON

RESULT ON SYMMETRIC MATRICES

Consider the $n \times n$ symmetric matrices

$$H := \begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H} := H + \begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix} =: H + E.$$

Theorem 3.2 (Nakatsukasa, 2012)

OXFORD athematical

RESULT ON SYMMETRIC MATRICES

Consider the $n \times n$ symmetric matrices

$$H := \begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H} := H + \begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix} =: H + E.$$

Theorem 3.2 (Nakatsukasa, 2012)

Define

$$\tau_i = \left(\frac{\|H_{21}\|_2 + \|E_{21}\|_2}{\min_j |\lambda_i(H) - \lambda_j(H_{22})| - 2\|E\|_2}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\lambda_i(H) - \lambda_i(\hat{H})| \le ||E_{11}||_2 + 2||E_{21}||_2\tau_i + ||E_{22}||_2\tau_i^2,$$

XFORD athematical

RESULT ON SYMMETRIC MATRICES

Consider the $n \times n$ symmetric matrices

$$H:=\begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H}:=H+\begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix}=:H+E.$$

Theorem 3.2 (Nakatsukasa, 2012)

Define

$$\tau_i = \left(\frac{\|H_{21}\|_2 + \|E_{21}\|_2}{\min_j |\lambda_i(H) - \lambda_j(H_{22})| - 2\|E\|_2}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\lambda_i(H) - \lambda_i(\hat{H})| \le ||E_{11}||_2 + 2||E_{21}||_2\tau_i + ||E_{22}||_2\tau_i^2,$$

- $au_i < 1$ necessary to be better than Weyl
- If $||E_{11}||_2 \ll ||E||_2$ and λ_i is far from the spectrum of H_{22} then $\tau_i \ll 1$
- ▶ If $E_{11} = E_{21} = 0$ and H_{21} is small, then λ_i is particularly insensitive to the perturbation E_{22} \rightarrow bound proportional to $\|E_{22}\|_2\|H_{21}\|_2^2$

XFORD thematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary

Apply symmetric Result

Transform back

General Result

Generalize (Nakatsukasa, 2012) to the 2×2 block matrix:

$$G:=egin{bmatrix} G_1 & B \ C & G_2 \end{bmatrix},$$

and its perturbation:

$$\hat{G} := G + \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} =: G + F.$$

Strategy: Use a technique in (Li, Li, 2005)

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Thm. 7.3.3 (Horn, Johnson, 2012) Thm. I.4.2 (Stewart, Sun. 1990)

Jordan-Wielandt (JW) Theorem

Let $\{\sigma_i(M)\}_{i=1}^n$ be the singular values of a matrix $M\in\mathbb{C}^{m\times n}$, with $m\geq n$. Then, the symmetric matrix

$$\begin{bmatrix} 0 & M \\ M^* & 0 \end{bmatrix} \tag{1}$$

has eigenvalues $\pm \sigma_1(M), \ldots, \pm \sigma_n(M)$ and m-n zeros eigenvalues.

XFORD thematical

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Thm. 7.3.3 (Horn, Johnson, 2012) Thm. I.4.2 (Stewart, Sun. 1990)

Jordan-Wielandt (JW) Theorem

Let $\{\sigma_i(M)\}_{i=1}^n$ be the singular values of a matrix $M\in\mathbb{C}^{m\times n}$, with $m\geq n$. Then, the symmetric matrix

$$\begin{bmatrix} 0 & M \\ M^* & 0 \end{bmatrix} \tag{1}$$

has eigenvalues $\pm \sigma_1(M), \ldots, \pm \sigma_n(M)$ and m-n zeros eigenvalues.

$$G
ightarrow G_{JW} := \left[egin{array}{c|ccc} 0 & | & G \ - & - & - \ G^* & | & 0 \end{array}
ight] = \left[egin{array}{c|ccc} 0 & 0 & | & G_1 & B \ 0 & 0 & | & C & G_2 \ - & - & - & - & - \ G_1^* & C^* & | & 0 & 0 \ B^* & G_2^* & | & 0 & 0 \end{array}
ight]$$

OXFORD

FROM THE SYMMETRIC TO THE GENERAL RESULT

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

OXFORD Wathematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

OXFORD Wathematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

OXFORD

FROM THE SYMMETRIC TO THE GENERAL RESULT

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

OXFORD Viathematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

$$\begin{bmatrix} 0 & G_1 & | & 0 & B \\ G_1^* & 0 & | & C^* & 0 \\ - & - & - & - & - \\ 0 & C & | & 0 & G_2 \\ B^* & 0 & | & G_2^* & 0 \end{bmatrix} =: G_2$$

Note:
$$\lambda_i(G_p) = \lambda_i(G_{JW}) \stackrel{JW}{=} \pm \sigma_i(G)$$

OXFORD

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Obtain a matrix similar to G_{JW} suitable for (Nakatsukasa, 2012) and with blocks reasonably related to the blocks of G

$$G_p = \begin{bmatrix} 0 & G_1 & | & 0 & B \\ G_1^* & 0 & | & C^* & 0 \\ - & - & - & - & - \\ 0 & C & | & 0 & G_2 \\ B^* & 0 & | & G_2^* & 0 \end{bmatrix}$$

$$\hat{G}_{p} = G_{p} + \begin{bmatrix} 0 & F_{11} & | & 0 & F_{12} \\ F_{11}^{*} & 0 & | & F_{21}^{*} & 0 \\ - & - & - & - & - \\ 0 & F_{21} & | & 0 & F_{22} \\ F_{2}^{*} & 0 & | & F_{2}^{*} & 0 \end{bmatrix} =: G_{p} + F_{p}.$$

OXFORD (athematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

1

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Then, for each i, if $\tau_i > 0$:

$$|\lambda_i(G_p) - \lambda_i(\hat{G}_p)| \le \left\| \begin{bmatrix} 0 & F_{11} \\ F_{11}^* & 0 \end{bmatrix} \right\|_2 + 2 \left\| \begin{bmatrix} 0 & F_{21} \\ F_{12}^* & 0 \end{bmatrix} \right\|_2 \tau_i + \left\| \begin{bmatrix} 0 & F_{22} \\ F_{22}^* & 0 \end{bmatrix} \right\|_2 \tau_i^2,$$

OXFORD tathematical

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

$$\| \begin{bmatrix} 0 & M_1 \\ M_2 & 0 \end{bmatrix} \|_2 = \max\{ \|M_1\|_2, \|M_2\|_2 \};$$

▶ Jordan-Wielandt theorem

$$\implies |\lambda_i(G_p) - \lambda_i(\hat{G}_p)| = |\sigma_i(G) - \sigma_i(\hat{G})|,$$

for i = 1, ..., n;

• By Jordan-Wielandt theorem and by construction of F_p :

$$||F_p||_2 = ||F||_2$$

FROM THE SYMMETRIC TO THE GENERAL RESULT > Generalization of (Nakatsukasa, 2012)

General case

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Theorem 4.1 (L.,Al Daas, Nakatsukasa,2024)

Consider the matrices

$$G:=\begin{bmatrix}G_1 & B\\ C & G_2\end{bmatrix}, \quad \hat{G}:=G+\begin{bmatrix}F_{11} & F_{12}\\ F_{21} & F_{22}\end{bmatrix}=:G+F,$$

and define

$$\tau_i = \left(\frac{\max\{\|B\|_2, \|C\|_2\} + \max\{\|F_{12}\|_2, \|F_{21}\|_2\}}{\min_j |\sigma_i(G) - \sigma_j\left(G_2\right)| - 2 \, \|F\|_2}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\sigma_i(G) - \sigma_i(\hat{G})| \le ||F_{11}||_2 + 2 \max\{||F_{12}||_2, ||F_{21}||_2\}\tau_i + ||F_{22}||_2\tau_i^2,$$

OXFORD Authomatical

FROM THE SYMMETRIC TO THE GENERAL RESULT > Generalization of (Nakatsukasa, 2012)

General case

Theorem 4.1 (L.,Al Daas, Nakatsukasa,2024)

Transform to symmetric

Obtain necessary structure

Apply symmetric Result

Transform back

General Result

Consider the matrices

$$G:=\begin{bmatrix}G_1 & B\\ C & G_2\end{bmatrix},\quad \hat{G}:=G+\begin{bmatrix}F_{11} & F_{12}\\ F_{21} & F_{22}\end{bmatrix}=:G+F,$$

and define

$$\tau_{i} = \left(\frac{\max\{\|B\|_{2}, \|C\|_{2}\} + \max\{\|F_{12}\|_{2}, \|F_{21}\|_{2}\}}{\min_{j} |\sigma_{i}(G) - \sigma_{j}\left(G_{2}\right)| - 2\|F\|_{2}}\right).$$

Then, for each i, if $\tau_i > 0$, then

$$|\sigma_i(G) - \sigma_i(\hat{G})| \leq \|F_{11}\|_2 + 2\max\{\|F_{12}\|_2, \|F_{21}\|_2\}\tau_i + \|F_{22}\|_2\tau_i^2,$$

• Generalization to Block Tridiagonal: A Singular Value is insensitive to blockwise perturbation if it is well-separated from the spectrum of the diagonal blocks near the perturbed blocks.

BOUND ON GN APPROXIMATION FRROR > Derivation

•
$$A, \tilde{V}, \tilde{U} \rightarrow A_{GN} = A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A$$

Define

$$\bar{A} = [\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}], \quad \bar{A}_{GN} = \left([\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}] \right)_{GN, \begin{bmatrix} I_r \\ 0 \end{bmatrix}, \begin{bmatrix} I_r \\ 0 \end{bmatrix}}$$

$$\implies \bar{A}_{GN} = \bar{A} - \begin{bmatrix} 0 & 0 \\ 0 & \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \end{bmatrix} =: \bar{A} - E_{GN}$$

BOUND ON GN APPROXIMATION ERROR > Derivation

•
$$A, \tilde{V}, \tilde{U} \rightarrow A_{GN} = A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A$$

Define

$$\bar{A} = [\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}], \quad \bar{A}_{GN} = \left([\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}] \right)_{GN, \begin{bmatrix} I_r \\ 0 \end{bmatrix}, \begin{bmatrix} I_r \\ 0 \end{bmatrix}}$$

 $\implies \bar{A}_{GN} = \bar{A} - \begin{vmatrix} 0 & 0 \\ 0 & \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12} \end{vmatrix} =: \bar{A} - E_{GN}$

С

Corollary 5.1 (L., Al Daas, Nakatsukasa, 2024)

Define

$$\tau_i = \frac{\max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}}{\min_j |\sigma_i(\bar{A}) - \sigma_j\left(\bar{A}_{22}\right)| - 2 \|E_{GN}\|_2}.$$

Then, for each i, if $\tau_i > 0$

$$|\sigma_i(A) - \sigma_i(A_{GN})| = |\sigma_i(\bar{A}) - \sigma_i(\bar{A}_{GN})| \le \|\bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_2 \tau_i^2$$

• $au_i < 1$ necessary to be better than Weyl. If $\sigma_i(ar{A})$ is far from the spectrum of $ar{A}_{22}$ then $au_i \ll 1$

•
$$\ell = 0$$

•
$$A \in \mathbb{R}^{1000 \times 1000}$$

- Uex, Vex Haar Matrices
- $\sigma_i(A)$ exponentially decaying

•
$$[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$$

•
$$[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$$

- $\tilde{V} \in \mathbb{R}^{1000 \times 200}$
- $\tilde{U} \in \mathbb{R}^{1000 \times 200}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$

BOUND ON GN APPROXIMATION ERROR > Numerical illustration

•
$$A \in \mathbb{R}^{1000 \times 1000}$$

- Uex, Vex Haar Matrices
- $\sigma_i(A)$ exponentially decaying

•
$$[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$$

•
$$[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$$

- $ilde{V} \in \mathbb{R}^{1000 imes 200}$
- $\tilde{U} \in \mathbb{R}^{1000 \times 200}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$

Single-pass methods

$$\bullet \ \sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

$$ullet$$
 $\sigma_i^{GN} = \sigma_i \left(A ilde{V} (ilde{U}^* A ilde{V})^\dagger ilde{U}^* A
ight)$

Single-pass methods

$$\bullet \ \sigma_i^{SVD} = \sigma_i(A\tilde{V})$$

$$\qquad \qquad \bullet \ \sigma_i^{GN} = \sigma_i \left(A \tilde{V} (\tilde{U}^* A \tilde{V})^\dagger \tilde{U}^* A \right)$$

- Similar results for oversampling case
- ▶ Different approximate singular subspaces
- ▶ Idea on how to modify bound to make it computable

Future work:

- ▶ More on the difference between oversampled and non-oversampled cases
- Use bounds to formally characterize the differences in behaviors of the different techniques: GN, HMT, Rayleigh-Ritz;

THANK YOU!

EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES

LORENZO LAZZARINO, HUSSAM AL DAAS, YUJI NAKATSUKASA

[1] MATRIX PERTURBATION ANALYSIS OF METHODS FOR EXTRACTING SINGULAR VALUES FROM APPROXIMATE SINGULAR SUBSPACES, L.L., H. AL DAAS, Y. NAKATSUKASA, 2024, ARXIV

•
$$r + \ell = 1.5r$$

•
$$A \in \mathbb{R}^{1000 \times 1000}$$

•
$$\sigma_i(A)$$
 exponentially decaying

•
$$[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$$

•
$$[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$$

•
$$\tilde{V} \in \mathbb{R}^{1000 imes 200}$$

•
$$\tilde{U} \in \mathbb{R}^{1000 \times 300}$$

Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$

•
$$r + \ell = 1.5r$$

•
$$A \in \mathbb{R}^{1000 \times 1000}$$

•
$$\sigma_i(A)$$
 exponentially decaying

•
$$[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$$

•
$$[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$$

•
$$\tilde{V} \in \mathbb{R}^{1000 \times 200}$$

•
$$\tilde{U} \in \mathbb{R}^{1000 \times 300}$$

Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$

HEURISTIC BOUND FOR GN WITH OVERSAMPLE

A

HEURISTIC BOUND FOR GN WITH OVERSAMPLE

Α

 \rightarrow

HEURISTIC BOUND FOR GN WITH OVERSAMPLE

 $ilde{V} \in \mathbb{R}^{1000 imes 200} \ ilde{U} \in \mathbb{R}^{1000 imes 300}$

Size of $\tilde{A}_{11}: 200 \times 200$

$$\begin{aligned} Q_1 &= \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}, \quad Q_2 = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix} \\ & \bullet \ \sigma_i^{RR} = \sigma_i (\tilde{U}^* A \tilde{V}) \\ & \bar{A} = Q_1^* A Q_2 \\ \\ \sigma_i (A_{RR,\tilde{V},\tilde{U}}) &= \sigma_i (\bar{A}_{RR,\begin{bmatrix} I_r \\ 0 \end{bmatrix},\begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix}) | = \sigma_i (\bar{A}_{11}) = \sigma_i \left(\begin{bmatrix} \bar{A}_{11} & 0 \\ 0 & 0 \end{bmatrix} \right) \end{aligned}$$

$$Q_1 = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}, \quad Q_2 = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$$

$$\sigma_i^{RR} = \sigma_i (\tilde{U}^* A \tilde{V})$$

$$\bar{A} = Q_1^* A Q_2$$

$$\sigma_i(A_{RR,\tilde{V},\tilde{U}}) = \sigma_i(\bar{A}_{RR,\begin{bmatrix} I_r \\ 0 \end{bmatrix},\begin{bmatrix} I_r+\ell \\ 0 \end{bmatrix}})| = \sigma_i(\bar{A}_{11}) = \sigma_i\left(\begin{bmatrix} \bar{A}_{11} & 0 \\ 0 & 0 \end{bmatrix}\right)$$

$$\tau_i^{RR} := \frac{2 \max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}}{(\min_k |\sigma_i - \sigma_k (\bar{A}_{22})| - 2 \|E_{RR}\|_2)} > 0$$

Then, for each i, if $au_i > 0$

$$\begin{split} |\sigma_{i} - \sigma_{i}^{RR}| &\leq 4 \frac{\max\{\|\bar{A}_{12}\|_{2}, \|\bar{A}_{21}\|_{2}\}^{2}}{\min\limits_{k} |\sigma_{i} - \sigma_{k}\left(\bar{A}_{22}\right)| - 2 \|E_{RR}\|_{2}} \\ &+ \|\bar{A}_{22}\|_{2} \frac{4 \max\{\|\bar{A}_{12}\|_{2}, \|\bar{A}_{21}\|_{2}\}^{2}}{\min\limits_{k} |\sigma_{i} - \sigma_{k}\left(\bar{A}_{22}\right)| - 2 \|E_{RR}\|_{2}})^{2} \end{split}$$

$$Q_{1} = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}, \quad Q_{2} = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$$

$$\bullet \ \sigma_{i}^{RR} = \sigma_{i} (\tilde{U}^{*} A \tilde{V})$$

$$\bar{A} = Q_{1}^{*} A Q_{2}$$

$$\tilde{A} = Q_{1}^{*} A Q_{2}$$

$$\tilde{A} = A Q_{2} = \begin{bmatrix} \tilde{A}_{1} & \tilde{A}_{2} \end{bmatrix}$$

$$\sigma_{i} (A_{RR, \tilde{V}, \tilde{U}}) = \sigma_{i} (\bar{A}_{RR, \begin{bmatrix} I_{r} \\ 0 \end{bmatrix}}, \begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix}) | = \sigma_{i} (\bar{A}_{11}) = \sigma_{i} (\begin{bmatrix} \bar{A}_{11} & 0 \\ 0 & 0 \end{bmatrix})$$

$$\sigma_{i} (A_{SVD, \tilde{V}}) = \sigma_{i} (\tilde{A}_{SVD, [\frac{I_{r}}{0}]}) = \sigma_{i} ([\tilde{A}_{1} & 0])$$

$$\tau_i^{RR} := \frac{2 \max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}}{(\min_k |\sigma_i - \sigma_k(\bar{A}_{22})| - 2\|E_{RR}\|_2)} > 0$$

Then, for each i, if $au_i > 0$

$$\begin{split} |\sigma_{i} - \sigma_{i}^{RR}| &\leq 4 \frac{\max \{ \|\bar{A}_{12}\|_{2}, \|\bar{A}_{21}\|_{2} \}^{2}}{\min |\sigma_{i} - \sigma_{k} (\bar{A}_{22})| - 2 \|E_{RR}\|_{2}} \\ &+ \|\bar{A}_{22}\|_{2} \frac{4 \max \{ \|\bar{A}_{12}\|_{2}, \|\bar{A}_{21}\|_{2} \}^{2}}{(\min \atop \min |\sigma_{i} - \sigma_{k} (\bar{A}_{22})| - 2 \|E_{RR}\|_{2})^{2}} \end{split}$$

$$Q_{1} = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}, \quad Q_{2} = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$$

$$\bullet \ \sigma_{i}^{RR} = \sigma_{i} (\tilde{U}^{*} A \tilde{V})$$

$$\bar{A} = Q_{1}^{*} A Q_{2}$$

$$\tilde{A} = Q_{1}^{*} A Q_{2}$$

$$\tilde{A} = A Q_{2} = \begin{bmatrix} \tilde{A}_{1} & \tilde{A}_{2} \end{bmatrix}$$

$$\sigma_{i} (A_{RR, \tilde{V}, \tilde{U}}) = \sigma_{i} (\bar{A}_{RR, \begin{bmatrix} I_{r} \\ 0 \end{bmatrix}}, \begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix}) | = \sigma_{i} (\bar{A}_{11}) = \sigma_{i} (\begin{bmatrix} \bar{A}_{11} & 0 \\ 0 & 0 \end{bmatrix})$$

$$\sigma_{i} (A_{SVD, \tilde{V}}) = \sigma_{i} (\bar{A}_{SVD, [\frac{I_{r}}{0}]}) = \sigma_{i} ([\tilde{A}_{1} & 0])$$

$$\tau_i^{RR} := \frac{2 \max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}}{(\min_k |\sigma_i - \sigma_k(\bar{A}_{22})| - 2\|E_{RR}\|_2)} > 0$$

Then, for each i, if $\tau_i > 0$

$$\begin{split} |\sigma_i - \sigma_i^{RR}| &\leq 4 \frac{\max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}^2}{\min_{k} |\sigma_i - \sigma_k\left(\bar{A}_{22}\right)| - 2\|E_{RR}\|_2} \\ &+ \|\bar{A}_{22}\|_2 \frac{4 \max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\}^2}{\left(\min_{k} |\sigma_i - \sigma_k\left(\bar{A}_{22}\right)| - 2\|E_{RR}\|_2\right)^2} \end{split}$$

Define

$$au_i^{SVD} := \frac{2\|\tilde{A}_2\|_2}{\sigma_i - 2\|E_{SVD}\|_2} > 0$$

Then, for each i, if $\tau_i > 0$

$$|\sigma_i - \sigma_i^{SVD}| \le 4 \frac{\|\tilde{A}_2\|_2^2}{\sigma_i - 2\|E_{SVD}\|_2}$$

$$\sigma_i(A) = (\tfrac{1}{i})^4$$

Without oversample ($\ell = 0$)

With oversample $(r + \ell = 1.5r)$

$$\text{For } \tau_i > 0, \quad |\sigma_i(A) - \sigma_i(A_{GN})| \leq 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^\dagger \bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^\dagger \bar{A}_{12} \right\|_2 \tau_i^2$$

$$\tau_{i} = \frac{\max\{\|\bar{A}_{12}\|_{2}, \|\bar{A}_{21}\|_{2}\} + \left\|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\right\|_{2}}{\min_{j} |\sigma_{i}(\bar{A}) - \sigma_{j}\left(\bar{A}_{22}\right)| - 2 \|E_{GN}\|_{2}}$$

For
$$\tau_i > 0$$
, $|\sigma_i(A) - \sigma_i(A_{GN})| \le 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i^2$

For
$$au_i > 0$$
, $|\sigma_i(A) - \sigma_i(A_{GN})| \leq 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^\dagger \bar{A}_{12} \right\|_2 au_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^\dagger \bar{A}_{12} \right\|_2 au_i^2$

$$\text{(Backward Bound)} \quad \bar{A} = \bar{A}_{GN} + E_{GN} \implies \tau_i = \frac{\max\{\|\bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_2, \|\bar{A}_{12}\|_2\} + \|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_2}{\min_j |\sigma_i(\bar{A}_{GN}) - \sigma_j(\bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12})| - 2 \|E_{GN}\|_2}$$

For
$$au_i > 0$$
, $|\sigma_i(A) - \sigma_i(A_{GN})| \leq 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i^2$

$$\tau_{i} = \underbrace{\frac{=\|\bar{A}_{12}\|_{2}}{\max\{\|\bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}, \|\bar{A}_{12}\|_{2}\} + \|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}}_{\min_{j}|\sigma_{i}(\bar{A}_{GN}) - \sigma_{j}(\bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12})| - 2\,\|E_{GN}\|_{2}}^{\leq \|\bar{A}_{12}\|_{2}}$$

For
$$\tau_i > 0$$
, $|\sigma_i(A) - \sigma_i(A_{GN})| \le 2 \|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_2 \tau_i + \|\bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_2 \tau_i^2$

$$\tau_{i} = \frac{\prod_{\substack{\bar{A}_{12} \parallel_{2} \\ \text{max}\{\|\bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}, \|\bar{A}_{12}\|_{2}\} + \|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}}}{\min_{j} |\sigma_{i}(\bar{A}_{GN}) - \sigma_{j}(\bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12})| - 2 \|E_{GN}\|_{2}}}$$

