Matplotlib's math rendering engine

Matplotlib's math rendering engine
$$u_1 u_2^{2\beta} = u_2^{2\beta} u_3^{2\beta} = u_3^{2\beta} = u_3^{2\beta} u_3^{2\beta} = u_3$$

$$W_{\delta_{1}\rho_{1}\sigma_{2}}^{3\beta} = U_{\delta_{1}\rho_{1}}^{3\beta} + \frac{1}{8\pi^{2}} \int_{\alpha_{2}}^{\alpha_{2}} d\alpha_{2}' \left[\frac{U_{\delta_{1}\rho_{1}}^{2\beta} - \alpha_{2}' U_{\rho_{1}\sigma_{2}}^{1\beta}}{U_{\rho_{1}\sigma_{2}}^{0\beta}} \right]$$

Roman, *Italic*, Typewriter or *CALLIGRAPHY*

Subscripts and superscripts:

$$\alpha_i > \beta_i, \ \alpha_{i+1}^j = \sin(2\pi f_i t_i) e^{-5t_i/\tau}, \ \dots$$

Fractions, binomials and stacked numbers:
$$\frac{3}{4}$$
, $\binom{3}{4}$, $\frac{3}{4}$, $\binom{5-\frac{1}{x}}{4}$, ...

Radicals:
$$\sqrt{2}$$
. $\sqrt[3]{X}$

Fonts:

Accents:
$$\stackrel{.}{a}$$
, \bar{a} , $\stackrel{.}{a}$

Greek, Hebrew:

$$\alpha$$
, β , χ , δ , λ , μ , Δ , Γ , Ω , Φ , Π , Y , ∇ , \aleph , \beth , \urcorner , \beth ,

Delimiters, functions and Symbols: