PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 7 (Mar 7 – Mar 14)

- 1 (10) Let $K = \mathbb{Q}$, $M = \mathbb{Q}(2^{1/3})$ and $L = \mathbb{Q}(2^{1/3}, \sqrt{3}, i)$. Prove that L : K and L : M are normal but M : K is not normal.
- **2** (10+5) a) Let K-L be algebraic, $\alpha \in L$ and $\sigma : K \to \overline{K}$ be a homomorphism. Prove that μ_{α}^{K} is separable over K iff $\sigma(\mu_{\alpha}^{K})$ is separable over $\sigma(K)$.
 - b) Let L: K be a splitting filed for $f \in K[t]$. Prove that if f is separable, then L: K is separable.
- **3** (10) Let L: K be a splitting field extension for a polynomial $f \in K[t]$. Then L: K is separable iff f is separable over K.
- 4 (15) Let K-M-L be an algebraic extension. Prove that K-L is separable iff K-M and M-L are separable.