Required Problems

1. Consider the following matrices:

$$A = \begin{bmatrix} 2 & 8 \\ 3 & 0 \\ 5 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 0 \\ 3 & 8 \end{bmatrix} \qquad C = \begin{bmatrix} 7 & 2 \\ 6 & 3 \end{bmatrix}$$

(a) Calculate AB.

$$AB = \begin{bmatrix} 2 & 8 \\ 3 & 0 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 8 \end{bmatrix}$$
$$= \begin{bmatrix} (4+24) & (0+64) \\ (6+0) & (0+0) \\ (10+3) & (0+8) \end{bmatrix}$$
$$AB = \begin{bmatrix} 28 & 64 \\ 6 & 0 \\ 13 & 8 \end{bmatrix}$$

(b) Calculate CB.

$$CB = \begin{bmatrix} 7 & 2 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 8 \end{bmatrix}$$
$$= \begin{bmatrix} (14+6) & (0+16) \\ (12+9) & (0+24) \end{bmatrix}$$
$$CB = \begin{bmatrix} 20 & 16 \\ 21 & 24 \end{bmatrix}$$

(c) Is it true that CB = BC? Justify your response

$$BC = \begin{bmatrix} 2 & 0 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} 7 & 2 \\ 6 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} (14+0) & (4+0) \\ (21+48) & (6+24) \end{bmatrix}$$
$$BC = \begin{bmatrix} 14 & 4 \\ 69 & 30 \end{bmatrix}$$

Matrix multiplication does not have commutativity property; clearly, the matrix we calculated for BC is not equal to the matrix we found for CB in part (b).

2. Find the determinant of each of the following matrices.

(a)
$$A = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$$

Employing the formula for a 2×2 determinant:

$$|A| = (2)(-1) - (1)(3)$$

 $|A| = -5$

(b)
$$B = \begin{bmatrix} 8 & 1 & 3 \\ 4 & 0 & 1 \\ 6 & 0 & 3 \end{bmatrix}$$

Performing the Laplace expansion using the second column:

$$|B| = -(1) \begin{vmatrix} 4 & 1 \\ 6 & 3 \end{vmatrix} + (0) \begin{vmatrix} 8 & 3 \\ 6 & 3 \end{vmatrix} - (0) \begin{vmatrix} 8 & 3 \\ 4 & 1 \end{vmatrix}$$
$$= -1[12 - 6]$$
$$|B| = -6$$

3. Find the inverse of the following matrix:

$$A = \begin{bmatrix} 5 & 2 \\ 0 & 1 \end{bmatrix}$$

Using the formula for an inverse of a 2×2 matrix:

$$A^{-1} = \frac{1}{5 - 0} \begin{bmatrix} 1 & -2\\ 0 & 5 \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} \frac{1}{5} & -\frac{2}{5}\\ 0 & 1 \end{bmatrix}$$

4. Find the eigenvalues and eigenvectors associated with the matrix:

$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}$$

Recall the characteristic formula equation $|A - I_2\lambda| = 0$:

$$0 = \begin{vmatrix} 4 - \lambda & 2 \\ 2 & 3 - \lambda \end{vmatrix}$$
 (the characteristic polynomial)
$$0 = (4 - \lambda)(3 - \lambda) - 4$$
 (taking the determinant)
$$0 = 12 - 3\lambda - 4\lambda + \lambda^2 - 4$$
 (expanding)
$$0 = \lambda^2 - 7\lambda + 8$$
 (simplifying)

This does not factor; employing the quadratic equation obtains for us two roots:

$$\lambda_1 = \frac{7 + \sqrt{17}}{2}$$
 (root 1)
$$\lambda_2 = \frac{7 - \sqrt{17}}{2}$$
 (root 2)

Finding the first eigenvector \mathbf{v}_1 , associated with λ_1 , i.e., a vector that satisfies $(A - I_n \lambda_1)\mathbf{v} = \mathbf{0}$:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 - \frac{7 + \sqrt{17}}{2} & 2 \\ 2 & 3 - \frac{7 + \sqrt{17}}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (plugging in λ_1)
$$0 = 2x_1 + 3x_2 - \frac{7 + \sqrt{17}}{2}x_2$$
 (from the second row)
$$x_1 = \left(\frac{1}{4} + \frac{\sqrt{17}}{4}\right)x_2$$
 (solving for x_1)

A non-normalized vector \mathbf{u}_1 that would satisfy this equation is:

$$\mathbf{u}_{1} = \begin{bmatrix} \frac{1}{4}(1+\sqrt{17}) \\ 1 \end{bmatrix}$$
 (from the equation above)
$$\mathbf{v}_{1} = \sqrt{\frac{8}{17+\sqrt{17}}} \begin{bmatrix} \frac{1}{4}(1+\sqrt{17}) \\ 1 \end{bmatrix}$$
 (normalizing)

Finding the second eigenvector \mathbf{v}_2 , associated with λ_2 :

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 - \frac{7 - \sqrt{17}}{2} & 2 \\ 2 & 3 - \frac{7 - \sqrt{17}}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (plugging in λ_2)
$$0 = 2x_1 + 3x_2 - \frac{7 - \sqrt{17}}{2}x_2$$
 (from the second row)
$$x_1 = \left(\frac{1}{4} - \frac{\sqrt{17}}{4}\right)x_2$$
 (solving for x_1)

A non-normalized vector \mathbf{u}_2 that would satisfy this equation is:

$$\mathbf{u}_2 = \begin{bmatrix} \frac{1}{4}(1 - \sqrt{17}) \\ 1 \end{bmatrix}$$
 (from the equation above)
$$\mathbf{v}_2 = \sqrt{\frac{8}{17 - \sqrt{17}}} \begin{bmatrix} \frac{1}{4}(1 - \sqrt{17}) \\ 1 \end{bmatrix}$$
 (normalizing)

Practice Problems

5. Consider the following column vectors:

$$\mathbf{v}_1 = \begin{bmatrix} 4 \\ -2 \\ 3 \\ 1 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ -3 \\ 1 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 2 \\ 6 \\ 0 \\ 2 \end{bmatrix} \qquad \mathbf{v}_4 = \begin{bmatrix} 1 \\ -5 \\ 3 \\ 2 \end{bmatrix}$$

Are these vectors linearly independent? Justify your response.

Form a 4×4 by concatenating the vectors, then perform row operations to determine if the matrix is of full rank:

$$\mathbf{V} = \begin{bmatrix} 4 & -1 & 2 & 1 \\ -2 & 0 & 6 & -5 \\ 3 & -3 & 0 & 3 \\ 1 & 1 & 2 & 2 \end{bmatrix} \rightarrow \text{interchanging } R_1 \text{ and } R_4 \rightarrow \begin{bmatrix} 1 & 1 & 2 & 2 \\ -2 & 0 & 6 & -5 \\ 3 & -3 & 0 & 3 \\ 4 & -1 & 2 & 1 \end{bmatrix}$$

Replacing R_2 with $R_2 + 2R_1$, R_3 with $R_3 - 3R_1$, and R_4 with $R_4 - 4R_1$:

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 2 & 10 & -1 \\ 0 & -6 & -6 & -3 \\ 0 & -5 & -6 & -7 \end{bmatrix} \rightarrow \begin{array}{l} \text{replacing } R_3 \text{ with } R_3 + 2R_2 \\ \text{and } R_4 \text{ with } R_4 + 2.5R_2 \end{array} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 2 & 10 & -1 \\ 0 & 0 & 24 & -6 \\ 0 & 0 & 19 & -9.5 \end{bmatrix}$$

Replacing R_4 with $R_4 - 19/24R_3$:

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 2 & 10 & -1 \\ 0 & 0 & 24 & -6 \\ 0 & 0 & 0 & -4.75 \end{bmatrix} \rightarrow \text{scaling each row} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 5 & -1/2 \\ 0 & 0 & 1 & -1/4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The matrix is now in echelon form (with a leading ones in each row). There are four leading ones, which implies the matrix is of full rank, equivalent to the vectors being linearly independent.

6. Find the determinanat of the following matrix:

$$A = \begin{bmatrix} 1 & 2 & 0 & 9 \\ 2 & 3 & 4 & 6 \\ 1 & 6 & 0 & -1 \\ 0 & -5 & 0 & 8 \end{bmatrix}$$

Performing the Laplace expansion using the third column:

$$|A| = (0) \begin{vmatrix} 2 & 3 & 6 \\ 1 & 6 & -1 \\ 0 & -5 & 8 \end{vmatrix} - (4) \begin{vmatrix} 1 & 2 & 9 \\ 1 & 6 & -1 \\ 0 & -5 & 8 \end{vmatrix} + (0) \begin{vmatrix} 1 & 2 & 9 \\ 2 & 3 & 6 \\ 0 & -5 & 8 \end{vmatrix} - (0) \begin{vmatrix} 1 & 2 & 9 \\ 2 & 3 & 4 \\ 1 & 6 & -1 \end{vmatrix}$$
$$|A| = -(4) \begin{vmatrix} 1 & 2 & 9 \\ 1 & 6 & -1 \\ 0 & -5 & 8 \end{vmatrix}$$

Performing the Laplace expansion using the first column of the 3×3 :

$$|A| = -(4) \left[(1) \begin{vmatrix} 6 & -1 \\ -5 & 8 \end{vmatrix} - (1) \begin{vmatrix} 2 & 9 \\ -5 & 8 \end{vmatrix} + (0) \begin{vmatrix} 2 & 9 \\ 6 & -1 \end{vmatrix} \right]$$
$$= (-4) \left[(1) \left(48 - 5 \right) - (1) \left(16 + 45 \right) \right]$$
$$|A| = 72$$

7. Find the inverse of each of the following the matrices.

(a) $B = \begin{bmatrix} -1 & 0 \\ 9 & 2 \end{bmatrix}$ Using the formula for the inverse of a 2 × 2 matrix:

$$\mathbf{B}^{-1} = \frac{1}{-2 - 0} \begin{bmatrix} 2 & 0 \\ -9 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ \frac{9}{2} & \frac{1}{2} \end{bmatrix}$$

(b)
$$C = \begin{bmatrix} 4 & 1 & -1 \\ 0 & 3 & 2 \\ 3 & 0 & 7 \end{bmatrix}$$

Note that the determinant of the matrix is |C| = 99, so it is invertible. The cofactor matrix is

$$C_C = \begin{bmatrix} \begin{vmatrix} 3 & 2 \\ 0 & 7 \end{vmatrix} & - \begin{vmatrix} 0 & 2 \\ 3 & 7 \end{vmatrix} & \begin{vmatrix} 0 & 3 \\ 3 & 0 \end{vmatrix} \\ - \begin{vmatrix} 1 & -1 \\ 0 & 7 \end{vmatrix} & \begin{vmatrix} 4 & -1 \\ 3 & 7 \end{vmatrix} & - \begin{vmatrix} 4 & 1 \\ 3 & 0 \end{vmatrix} \\ \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} & - \begin{vmatrix} 4 & -1 \\ 0 & 2 \end{vmatrix} & \begin{vmatrix} 4 & 1 \\ 0 & 3 \end{vmatrix} \end{bmatrix}$$
 (the cofactor matrix of C)
$$C_c = \begin{bmatrix} 21 & 6 & -9 \\ -7 & 31 & 3 \\ 5 & -8 & 12 \end{bmatrix}$$
 (simplifying)

Recall that the adjoing matrix is the transpose of the cofactor matrix:

$$adj(C) = \begin{bmatrix} 21 & -7 & 5\\ 6 & 31 & -8\\ -9 & 3 & 12 \end{bmatrix}$$
 (the adjoint)

Using our formula for the inverse:

$$C^{-1} = \frac{1}{99} \begin{bmatrix} 21 & -7 & 5\\ 6 & 31 & -8\\ -9 & 3 & 12 \end{bmatrix}$$

- 8. Consider the linear system given by $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where \mathbf{Y} and $\boldsymbol{\varepsilon}$ are $n \times 1$ vectors, \mathbf{X} is a $n \times k$ matrix of full rank, and $\boldsymbol{\beta}$ is a $k \times 1$ vector.
 - (a) Suppose that ε is orthogonal to each of the columns in X (i.e., $X'\varepsilon = 0$). Using matrix algebra, solve for β .

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \qquad \qquad \text{(given)}$$

$$\mathbf{X}'\mathbf{Y} = \mathbf{X}'\mathbf{X}\boldsymbol{\beta} + \mathbf{X}'\boldsymbol{\varepsilon} \qquad \qquad \text{(premultiplying by } \mathbf{X}')$$

$$\mathbf{X}'\mathbf{Y} = \mathbf{X}'\mathbf{X}\boldsymbol{\beta} + \mathbf{0} \qquad \qquad \text{(by } \boldsymbol{\varepsilon} \perp \mathbf{X})$$

$$\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{Y} \qquad \qquad \text{(rearranging)}$$

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \qquad \qquad \text{(premultiplying by } (\mathbf{X}'\mathbf{X})^{-1})$$

$$\mathbf{I}_{k}\boldsymbol{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \qquad \qquad \text{(by def. of the inverse)}$$

$$\boldsymbol{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \qquad \qquad \text{(simplifying)}$$

(b) Further, suppose that β is 2×1 and the matrix X is $n \times 2$, such that:

$$oldsymbol{eta} = egin{bmatrix} eta_1 \ eta_2 \end{bmatrix} \qquad \mathbf{X} = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ 1 & x_3 \ dots & dots \ 1 & x_n \end{bmatrix}$$

In addition, assume that $\sum_{i=1}^{n} x_i = 0$. Find expressions for β_1 and β_2 .

Start by calculating each piece of our $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ matrix from (a):

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix}$$
 (multiplying matrices)

$$= \begin{bmatrix} n & 0 \\ 0 & \sum x_i^2 \end{bmatrix}$$
 (by $\sum x_i = 0$)

$$(\mathbf{X}'\mathbf{X})^{-1} = \frac{1}{n \sum x_i^2} \begin{bmatrix} \sum x_i^2 & 0 \\ 0 & n \end{bmatrix}$$
 (inverting)

The second piece of the formula:

$$\mathbf{X}'\mathbf{Y} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}$$
 (multiplying matrices)

Employing the formula from part (a)

$$\beta = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \qquad \text{(from above)}$$

$$= \frac{1}{n\sum x_i^2} \begin{bmatrix} \sum x_i^2 & 0 \\ 0 & n \end{bmatrix} \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix} \qquad \text{(plugging in matrices)}$$

$$= \frac{1}{n\sum x_i^2} \begin{bmatrix} (\sum y_i) (\sum x_i^2) \\ n (\sum x_i y_i) \end{bmatrix} \qquad \text{(multiplying)}$$

$$\beta = \begin{bmatrix} \frac{\sum y_i}{n} \\ \frac{\sum x_i y_i}{\sum x_i^2} \end{bmatrix} \qquad \text{(simplifying)}$$

Thus, $\beta_1 = \bar{y}$ and $\beta_2 = \frac{\sum x_i y_i}{\sum_i x_i^2}$.

9. Use Cramer's rule to solve the following equation systems:

(a)
$$8x_1 - x_2 = 16$$

 $2x_2 + 5x_3 = 5$

 $2x_1 + 3x_3 = 7$

Define a matrix of coefficients and a vector of constants:

$$A = \begin{bmatrix} 8 & -1 & 0 \\ 0 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix} \qquad \mathbf{k}_a = \begin{bmatrix} 16 \\ 5 \\ 7 \end{bmatrix}$$

Using Cramer's rule:

$$x_1^* = \frac{\begin{vmatrix} 16 & -1 & 0 \\ 5 & 2 & 5 \\ 7 & 0 & 3 \end{vmatrix}}{\begin{vmatrix} 8 & -1 & 0 \\ 0 & 2 & 5 \\ 2 & 0 & 3 \end{vmatrix}} = \frac{76}{38}$$
 (replacing column 1)

$$x_2^* = \frac{\begin{vmatrix} 8 & 16 & 0 \\ 0 & 5 & 5 \\ 2 & 7 & 3 \end{vmatrix}}{\begin{vmatrix} 8 & -1 & 0 \\ 0 & 2 & 5 \\ 2 & 0 & 3 \end{vmatrix}} = \frac{0}{38}$$
 (replacing column 2)

$$x_3^* = \frac{\begin{vmatrix} 8 & -1 & 16 \\ 0 & 2 & 5 \\ 2 & 0 & 7 \end{vmatrix}}{\begin{vmatrix} 8 & -1 & 0 \\ 0 & 2 & 5 \\ 2 & 0 & 3 \end{vmatrix}} = \frac{38}{38}$$
 (replacing column 3)

Thus, $x_1^* = 2$, $x_2^* = 0$, and $x_3^* = 1$

(b)
$$-x_1 + 3x_2 + 2x_3 = 24$$

 $x_1 + x_3 = 6$
 $5x_2 - x_3 = 8$

Define an augemented matrix of coefficients and the left-hand-side constants:

$$\begin{bmatrix} -1 & 3 & 2 & 24 \\ 1 & 0 & 1 & 6 \\ 0 & 5 & -1 & 8 \end{bmatrix} \rightarrow \text{Interchanging } R_1 \text{ and } R_2 \rightarrow \begin{bmatrix} 1 & 0 & 1 & 6 \\ -1 & 3 & 2 & 24 \\ 0 & 5 & -1 & 8 \end{bmatrix}$$

Replacing R_2 with $R_2 + R_1$:

$$\begin{bmatrix} 1 & 0 & 1 & | & 6 \\ 0 & 3 & 3 & | & 30 \\ 0 & 5 & -1 & | & 8 \end{bmatrix} \rightarrow \text{Scaling } R_2 \text{ by } 1/3: \rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 6 \\ 0 & 1 & 1 & | & 10 \\ 0 & 5 & -1 & | & 8 \end{bmatrix}$$

Replacing R_3 with $R_3 - 5R_2$:

$$\begin{bmatrix} 1 & 0 & 1 & | & 6 \\ 0 & 1 & 1 & | & 10 \\ 0 & 0 & -6 & | & -42 \end{bmatrix} \rightarrow \text{Scaling } R_3 \text{ by } -1/6: \rightarrow \qquad \begin{bmatrix} 1 & 0 & 1 & | & 6 \\ 0 & 1 & 1 & | & 10 \\ 0 & 0 & 1 & | & 7 \end{bmatrix}$$

Replacing R_1 with $R_1 - R_3$ and R_2 with $R_2 - R_3$:

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 7
\end{array}\right]$$

Thus, $x_1^* = -1$, $x_2^* = 3$, and $x_3^* = 7$

(c)
$$4x + 3y - 2z = 1$$

 $x + 2y = 6$
 $3x + z = 4$

Solving this equation via matrix inversion:

$$C = \begin{bmatrix} 4 & 3 & -2 \\ 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
 (the coefficient matrix)
$$|C| = (3) \begin{vmatrix} 3 & -2 \\ 2 & 0 \end{vmatrix} + (1) \begin{vmatrix} 4 & 3 \\ 1 & 2 \end{vmatrix}$$
 (the determinant)
$$|C| = 17$$
 (simplifying)
$$C_C = \begin{bmatrix} \begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} & - \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} \\ - \begin{vmatrix} 3 & -2 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 4 & -2 \\ 3 & 1 \end{vmatrix} & - \begin{vmatrix} 4 & 3 \\ 3 & 0 \end{vmatrix} \\ \begin{vmatrix} 3 & -2 \\ 2 & 0 \end{vmatrix} & - \begin{vmatrix} 4 & -2 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 4 & 3 \\ 1 & 2 \end{vmatrix} \end{bmatrix}$$
 (the cofactor matrix)

$$C_C = \begin{bmatrix} 2 & -1 & -6 \\ -3 & 10 & 9 \\ 4 & -2 & 5 \end{bmatrix}$$
 (simplifying)

$$adj(C) = \begin{bmatrix} 2 & -3 & 4 \\ -1 & 10 & -2 \\ -6 & 9 & 5 \end{bmatrix}$$
 (the adjoint)

Employing the inverse formula (dividing the adjoing by the determinant):

$$C^{-1} = \frac{1}{17} \begin{bmatrix} 2 & -3 & 4 \\ -1 & 10 & -2 \\ -6 & 9 & 5 \end{bmatrix}$$
 (the inverse)

Recall that there is a unique solution $\mathbf{x} = C^{-1}b$:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{17} \begin{bmatrix} 2 & -3 & 4 \\ -1 & 10 & -2 \\ -6 & 9 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$$
 (plugging in matrices)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{17} \begin{bmatrix} (2 - 18 + 16) \\ (-1 + 60 - 8) \\ (-6 + 54 + 20) \end{bmatrix}$$
 (multiplying)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$$
 (simplifying)

Thus, $x^* = 0$, $y^* = 3$, and $z^* = 4$

(d)
$$-x + y + z = a$$

 $x - y + z = b$
 $x + y - z = c$

Define a matrix of coefficients and a vector of constants:

$$\mathbf{D} = \begin{bmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{bmatrix} \qquad \qquad \mathbf{k}_d = \begin{bmatrix} a\\b\\c \end{bmatrix}$$

Using Cramer's rule:

$$x^* = \frac{\begin{vmatrix} a & 1 & 1 \\ b & -1 & 1 \\ c & 1 & -1 \end{vmatrix}}{\begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}} = \frac{2(b+c)}{4}$$
 (replacing column 1)
$$y^* = \frac{\begin{vmatrix} -1 & a & 1 \\ 1 & b & 1 \\ 1 & c & -1 \end{vmatrix}}{\begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}} = \frac{2(a+c)}{4}$$
 (replacing column 2)
$$z^* = \frac{\begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}}{\begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}} = \frac{2(a+b)}{4}$$
 (replacing column 3)

Thus,
$$x^* = \frac{b+c}{2}$$
, $y^* = \frac{a+c}{2}$, and $z^* = \frac{a+b}{2}$

10. Suppose there is a perfectly competitive firm with a production function $y = f(x_1, x_2)$, increasing in both arguments. The firm sells output y at the market price p. The firm purchases an input x_1 and price w_1 ; x_2 , however, represents the entrepreneur's input and is limited to \bar{x}_2 . Thus, the firms maximization problem, framed as a Lagrangian is given by

$$\mathcal{L} = p \cdot f(x_1, x_2) - w_1 \cdot x_1 + \lambda(\bar{x}_2 - x_2)$$

This yields the first order conditions:

$$\mathcal{L}_1 = p \cdot f_1(x_1, x_2) - w_1 = 0$$

$$\mathcal{L}_2 = p \cdot f_2(x_1, x_2) - \lambda = 0$$

$$\mathcal{L}_{\lambda} = \bar{x}_2 - x_2 = 0$$

(a) What is the sufficient second order condition?

The bordered Hessian for this problem is:

$$\bar{\mathbf{H}} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & pf_{11}(\cdot) & pf_{12} \\ 1 & pf_{12} & pf_{22} \end{bmatrix}$$

Since this is a constrained profit-maximization problem, we'd like this matrix to be negative definite. Unfortunately, $\bar{\mathbf{H}}$ is not negative definite (nor is it negative semi-definite). This is because the maximization doesn't really have two variables; from the FOC, we can see $x_2 = \bar{x}_2$, i.e., we're only choosing x_1 . As a result, the only second-order condition we need for a maximum is that $pf_{11}(\cdot) < 0$.

Given that the profit-maximizing levels of x_1 , x_2 , and λ have been found as functions of p, w_1 , and \bar{x}_2 , e.g., $x_1^* = g(p, w_1, \bar{x}_2)$, the solutions may be plugged back into the first order conditions yielding:

$$pf_1(x_1^*, x_2^*) - w_1 \equiv 0$$
$$pf_2(x_1^*, x_2^*) - \lambda^* \equiv 0$$
$$\bar{x}_2 - x_2^* \equiv 0$$

(b) Use Cramer's Rule to find a comparative statics prediction for $\frac{\partial x_1^*}{\partial w_1}$ (Hint: use the chain rule on the system of identities, differentiating w.r.t. w_1).

Differentiating the system w.r.t. w_1 yields:

$$pf_{11}(\cdot)\frac{\partial x_1^*}{\partial w_1} + pf_{12}(\cdot)\frac{\partial x_2^*}{\partial w_1} - 1 = 0$$
$$pf_{12}(\cdot)\frac{\partial x_1^*}{\partial w_1} + pf_{22}(\cdot)\frac{\partial x_2^*}{\partial w_1} - \frac{\partial \lambda^*}{\partial w_1} = 0$$
$$-\frac{\partial x_2^*}{\partial w_1} = 0$$

Rewriting this in matrix notation:

$$\begin{bmatrix} pf_{11}(\cdot) & pf_{12}(\cdot) & 0\\ pf_{12}(\cdot) & pf_{22}(\cdot) & -1\\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial x_1^*}{\partial w_1}\\ \frac{\partial x_2^*}{\partial w_1}\\ \frac{\partial \lambda^*}{\partial w_1} \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$$

Note the similarity to the bordered Hessian from part (a)—the coefficient matrix here is just two row operations away from $\bar{\mathbf{H}}$. Using Cramer's Rule to find $\frac{\partial x^*}{\partial w_1}$:

$$\frac{\partial x_1^*}{\partial w_1} = \frac{\begin{vmatrix} 1 & pf_{12}(\cdot) & 0 \\ 0 & pf_{22}(\cdot) & -1 \\ 0 & -1 & 0 \end{vmatrix}}{\begin{vmatrix} pf_{11}(\cdot) & pf_{12}(\cdot) & 0 \\ pf_{12}(\cdot) & pf_{22}(\cdot) & -1 \\ 0 & -1 & 0 \end{vmatrix}} = \frac{1}{pf_{11}(\cdot)}$$

If our second order condition from part (a) holds, then $\frac{1}{pf_{11}(\cdot)} < 0$, implying that $\frac{\partial x_1^*}{\partial w_1} < 0$. In other words, the demand for input x_1 slopes down.

11. Find the eigenvalues and eigenvectors for each of the following matrices:

(a)
$$A = \begin{bmatrix} -2 & 2 \\ 2 & -4 \end{bmatrix}$$

Finding the eigenvalues:

$$0 = \begin{vmatrix} -2 - \lambda & 2 \\ 2 & -4 - \lambda \end{vmatrix}$$
 (the characteristic polynomial)

$$0 = (-2 - \lambda)(-4 - \lambda) - 4$$
 (taking the determinant)

$$0 = 8 + 4\lambda + 2\lambda + \lambda^2 - 4$$
 (expanding)

$$0 = \lambda^2 + 6\lambda + 4$$
 (simplifying)

Once again employing the quadratic equation to find roots:

$$\lambda_1 = -3 - \sqrt{5} \tag{root 1}$$

$$\lambda_2 = \sqrt{5} - 3 \tag{root 2}$$

Finding the first eigenvector \mathbf{v}_1 , associated with λ_1 :

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 - (-3 - \sqrt{5}) & 2 \\ 2 & -4 - (-3 - \sqrt{5}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (plugging in λ_1)

$$0 = 2x_1 - x_2 + \sqrt{5}x_2 \qquad \text{(from the second row)}$$

$$x_1 = \left(\frac{1}{2} - \frac{\sqrt{5}}{2}\right) x_2 \tag{solving for } x_1)$$

A non-normalized vector that would satisfy this equation is:

$$\mathbf{u}_1 = \begin{bmatrix} \frac{1}{2}(1 - \sqrt{5}) \\ 1 \end{bmatrix}$$
 (from the equation above)

$$\mathbf{v}_1 = \sqrt{\frac{2}{5 - \sqrt{5}}} \begin{bmatrix} \frac{1}{2}(1 - \sqrt{5}) \\ 1 \end{bmatrix}$$
 (normalizing)

Finding the second eigenvector \mathbf{v}_2 , associated with λ_2 :

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 - (\sqrt{5} - 3) & 2 \\ 2 & -4 - (\sqrt{5} - 3) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (plugging in λ_2)

$$0 = 2x_1 + -x_2 - \sqrt{5}x_2$$
 (from the second row)

$$x_1 = \left(\frac{1}{2} + \frac{\sqrt{5}}{2}\right) x_2 \tag{solving for } x_1)$$

A non-normalized vector that would satisfy this equation is:

$$\mathbf{u}_2 = \begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) \\ 1 \end{bmatrix}$$
 (from the equation above)
$$\mathbf{v}_2 = \sqrt{\frac{2}{5+\sqrt{5}}} \begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) \\ 1 \end{bmatrix}$$
 (normalizing)

(b)
$$\mathbf{C} = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

Finding the eigenvalues:

$$0 = \begin{vmatrix} 3 - \lambda & 2 & 4 \\ 2 & -\lambda & 2 \\ 4 & 2 & 3 - \lambda \end{vmatrix}$$
 (the characteristic polynomial)
$$0 = (3 - \lambda) \begin{vmatrix} -\lambda & 2 \\ 2 & 3 - \lambda \end{vmatrix} - 2 \begin{vmatrix} 2 & 2 \\ 4 & 3 - \lambda \end{vmatrix} + 4 \begin{vmatrix} 2 & -\lambda \\ 4 & 2 \end{vmatrix}$$
 (taking the determinant)
$$0 = (3 - \lambda) \left[-\lambda(3 - \lambda) - 4 \right] - 2 \left[2(3 - \lambda) - 8 \right] + 4 \left[4 + 4\lambda \right]$$
 (multiplying)
$$0 = -\lambda^3 + 6\lambda^2 + 15\lambda + 8$$
 (simplifying)
$$0 = (1 + \lambda)(1 + \lambda)(8 - \lambda)$$
 (factoring)

Thus, the roots of the polynomial are:

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = 8$$
(root 1)
$$(\text{root } 2)$$

$$(\text{root } 3)$$

Finding the first two eigenvectors, associated with $\lambda_1 = \lambda_2 = -1$:

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 - (-1) & 2 & 4 \\ 2 & -(-1) & 2 \\ 4 & 2 & 3 - (-1) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 (plugging in λ_1)

$$0 = 2x_1 + x_2 + 2x_3 (from row 2)$$

Setting $x_2 = 0$, we get:

$$x_1 = -x_3$$
 (solving for x_1)

A non-normalized vector that would satisfy this equation is:

$$\mathbf{u}_1 = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$$
 (from the equation above)
$$\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \end{bmatrix}^T$$
 (normalizing)

Setting $x_3 = 0$, we get:

$$x_2 = -2x_1 (solving for x_2)$$

A non-normalized vector that would satisfy this equation is:

$$\mathbf{u}_2 = \begin{bmatrix} 1 & -2 & 0 \end{bmatrix}^T$$
 (from the equation above)
 $\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{5} & -2/\sqrt{5} & 0 \end{bmatrix}^T$ (normalizing)

Finding the third eigenvector \mathbf{v}_3 , associated with λ_3 :

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3-8 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & 3-8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 (plugging in λ_3)
$$0 = -5x_1 + 2x_2 + 4x_3$$
 (from row 1)

A non-normalized vector that would satisfy this equation is:

$$\mathbf{u}_3 = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^T$$
 (from the equation above)
 $\mathbf{v}_3 = \begin{bmatrix} 2/3 & 1/3 & 2/3 \end{bmatrix}^T$ (normalizing)

12. Given a quadratic form x'Ax, where A is a symmetric 2×2 matrix:

$$\mathbf{A} = \begin{bmatrix} a & d \\ d & b \end{bmatrix}$$

Show that the following are true (Hint: use the quadratic equation):

(a) Both eigenvalues must be real (i.e., they cannot involve $\sqrt{-1}$)

$$0 = \begin{vmatrix} a - \lambda & d \\ d & b - \lambda \end{vmatrix}$$
 (the characteristic equation)

$$0 = (a - \lambda)(b - \lambda) - d^2$$
 (taking the determinant)

$$0 = ab - (a + b)\lambda + \lambda^2 - d^2$$
 (expanding)

$$0 = \lambda^2 - (a + b)^2 + (ab - d^2)$$
 (rearranging)

$$\lambda = \frac{(a + b) \pm \sqrt{(a + b)^2 - 4(ab - d^2)}}{2}$$
 (the quadratic equation)

To ensure that the roots are real, we only need to focus on the terms under the radical sign:

$$(a+b)^2 - 4(ab-d^2) = a^2 + 2ab + b^2 - 4ab + 4d^2$$
 (expanding)
= $a^2 - 2ab + b^2 + 4d^2$ (simplifying)
= $(a-b)^2 + 4d^2$ (factoring)

Thus, the terms under the radial sign must be non-negative (we're summing values that are raised to the second power). As a result, the eigenvalues must be real.

(b) A has repeated roots if and only if it is of the form $\mathbf{A} = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$

The determinant of $(\mathbf{A} - \mathbf{I}\lambda)$ will be $(c - \lambda)(c - \lambda)$, so it's clear that matrices of this form will have repeated roots. To show that if we have repeated roots then we must have a matrix of this form, we can look at the quadratic equation for the general symmetric 2×2 (from above):

$$\lambda = \frac{(a+b) \pm \sqrt{(a+b)^2 - 4(ab - d^2)}}{2}$$

Repeated roots implies that the terms under the radical sign sum to zero:

$$(a+b)^2 = 4(ab-d^2)$$

$$a^2 + 2ab + b^2 = 4ab - 4d^2$$
 (expanding)
$$a^2 - 2ab + b^2 = -4d^2$$
 (rearranging)
$$(a-b)^2 = -4d^2$$
 (factoring)

The left hand side must be non-negative; the right hand side must be non-positive. The only for this equality to hold is if both are zero, i.e., d = 0 and a = b.

13. Let A be a $m \times n$ matrix. Show that $(A^T)^T = A$.

Let A be a $n \times m$ matrix, such that:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$

Taking the transpose, the element in the *i*th row and *j*th column in A becomes the element in the *i*th column and *j*th row in A^T :

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{bmatrix}$$

Again, taking the transpose, the element in the *i*th row and *j*th column in A^T becomes the element in the *i*th column and *j*th row in $(A^T)^T$:

$$(A^T)^T = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$

Which is our original matrix A.

14. Let B and C be $m \times n$ matricies. Show that k(A+B) = kA + kB

Let A and B be $n \times m$ matrices and let $k \in \mathbb{R}$. Consider the matrix k(A+B). $k(a_{ij}+b_{ij})$ is its (i,j)th element. As a result:

$$k(A+B) = \begin{bmatrix} k(a_{11} + b_{11}) & k(a_{12} + b_{12}) & \dots & k(a_{1m} + b_{1m}) \\ k(a_{21} + b_{21}) & k(a_{22} + b_{22}) & \dots & k(a_{2m} + b_{2m}) \\ \vdots & \vdots & \ddots & \vdots \\ k(a_{n1} + b_{n1}) & k(a_{n2} + b_{n2}) & \dots & k(a_{nm} + b_{nm}) \end{bmatrix}$$

By the distributive property of addition:

$$k(A+B) = \begin{bmatrix} ka_{11} + kb_{11} & ka_{12} + kb_{12} & \dots & ka_{1m} + kb_{1m} \\ ka_{21} + kb_{21} & ka_{22} + kb_{22} & \dots & ka_{2m} + kb_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{n1} + kb_{n1} & ka_{n2} + kb_{n2} & \dots & ka_{nm} + kb_{nm} \end{bmatrix}$$

But ka_{ij} is the (i, j)th element of kA, while kb_{ij} is the (i, j)th element of kB. Thus, $ka_{ij} + kb_{ij}$ is the corresponding element in the matrix kA + kB. As a result:

$$k(A+B) = kA + kB$$

15. Let D be a $n \times n$ invertible matrix. Show that D^{-1} is unique.

Let D be an $n \times n$ invertible matrix $\implies \exists D^{-1} \ni D^{-1}D = DD^{-1} = I_n$ (by def. of the inverse) Suppose D^{-1} is not unique (towards a contradiction) Let $B \neq D^{-1}$ be another inverse for D $\implies BD = DB = I_n$ (by def. of the inverse) DB = BD(by def. of the inverse) $D^{-1}DB = D^{-1}DB$ (pre-multiplying by D) $(D^{-1}D)B = D^{-1}(DB)$ (by the associative property) $I_n B = D^{-1} I_n$ (by def. of the inverse) $B = D^{-1}$ (by def. of the identity matrix) But this violates our assumption of non-uniqueness Thus, a contradiction

16. Let E be a $n \times n$ matrix. Show that if E is idempotent, I - E is idempotent as well.

Let
$$E$$
 be an $n \times n$ idempotent matrix (by hypothesis)
$$\implies EE = E$$
 (by idempotence)
$$= I_n I_n - EI_n - EI_n + EE$$
 (expanding)
$$= I_n - E - E + EE$$
 (by def. of the identity matrix)
$$= I_n - E - E + E$$
 (by idempotence of E)
$$= I_n - E$$
 (simplifying)

Thus, if E is idempotent then I - E is idempotent as well.

17. Show that for any 2×2 matrix A

 $\implies D^{-1}$ is unique

$$|A| = \frac{1}{2} \begin{vmatrix} \operatorname{tr}(A) & 1 \\ \operatorname{tr}(A^2) & \operatorname{tr}(A) \end{vmatrix}$$

To show the desired result, we will need to invoke three theorems. For an 2×2 matrix A, let λ_1 and λ_2 be its eigenvalues. Then for the left hand side of the equation, we have the theorem regarding the determinant's relationship to the eigenvalues:

$$|A| = \lambda_1 \lambda_2$$

Further, we have two theorems regarding the trace of A and the eigenvalues:

$$tr(A) = \lambda_1 + \lambda_2$$
$$tr(AA) = \lambda_1^2 + \lambda_2^2$$

If we can show that the left hand side also equals $\lambda_1\lambda_2$, we will have shown the result. Manipulating the right hand side of the equation:

$$\frac{1}{2} \begin{vmatrix} \operatorname{tr}(A) & 1 \\ \operatorname{tr}(A^2) & \operatorname{tr}(A) \end{vmatrix} = \frac{1}{2} \begin{vmatrix} (\lambda_1 + \lambda_2) & 1 \\ (\lambda_1^2 + \lambda_2^2) & (\lambda_1 + \lambda_2) \end{vmatrix}
= \frac{1}{2} \left[(\lambda_1 + \lambda_2)^2 - (\lambda_1^2 + \lambda_2^2) \right]
= \frac{1}{2} \left[\lambda_1^2 + 2\lambda_1\lambda_2 + \lambda_2^2 - \lambda_1^2 - \lambda_2^2 \right]
\frac{1}{2} \begin{vmatrix} \operatorname{tr}(A) & 1 \\ \operatorname{tr}(A^2) & \operatorname{tr}(A) \end{vmatrix} = \lambda_1\lambda_2$$

Thus, the relationship holds for 2×2 matrices.

18. State whether each of the following statements is true or false. If it is false, provide a counterexample.

(a) No system of linear equations can have exactly k solutions for any $k \geq 2$.

True. Systems will have zero, one, or infinite solutions.

(b) Any system of n linear equations in n unknowns has at least one solution.

False. Consider $x_1 + x_2 = 1$ and $x_1 + x_2 = 2$. This is an inconsistent system with no solution.

(c) Any system of n linear equations in n unknowns has at most one solution.

False. $2x_1 + x_2 = 1$ and $4x_2 + 2x_2 = 2$. This has infinite solutions.

(d) If Ax = 0 has a solution, then Ax = b has a solution.

False. We will always have the trivial solution to Ax = 0, so it implies nothing about a solution to Ax = b. If the question had read "a non-trival solution exists to Ax = 0", this would imply a unique solution exists for Ax = b.

(e) If an $n \times n$ matrix A is invertible, then $A\mathbf{x} = \mathbf{0}$ has the unique solution $\mathbf{x} = \mathbf{0}$.

True. This is actually an if and only if statement.

(f) If an $n \times n$ matrix A is full rank, then Ax = b has a solution.

True. This actually implies that there is a unique solution.

(g) If an $n \times n$ matrix A has rank less than n, then Ax = b has no solution.

False. It's possible to have infinite solutions. See the counterexample in (c).