Optimal Review Scheduling for Human Learning

Siddharth Reddy, Igor Labutov, Siddhartha Banerjee, Thorsten Joachims

{sgr45, iil4, sbanerjee}@cornell.edu, tj@cs.cornell.edu

- Evaluation of human memory models on log data from Mnemosyne project
- New mathematical framework for designing spaced repetition systems; Formalize the Leitner system an algorithm for human memorization of flashcards using ideas from queueing theory
- Validation of our model via experiments on Mechanical Turk

Validating Human Memory Models

• Assume the **exponential forgetting curve**, which predicts **binary recall**:

Probability of recall
$$= \exp\left(-\text{item difficulty} \cdot \frac{\text{delay since previous review}}{\text{memory strength}}\right)$$

- Evaluate model on **binary classification task**: predict held-out outcomes in log data from the Mnemosyne spaced repetition software http://mnemosyne-proj.org
- ullet Random sample of logs: 859,591 interactions, 2,742 users, 88,892 items, overall recall rate of 0.56

	Probability of recall	Item difficulty	Delay	Strength	Model
3	$\phi({\sf user\ ability-item\ difficulty})$				1PL item response theory
5	$\exp\left(-\theta \cdot d_{ij}/n_{ij}\right)$	Global	Time elapsed	Number of reviews	Exp. forgetting curve
6	$\exp\left(-\theta \cdot d_{ij}\right)$	Global	Time elapsed	Constant	
7	$\exp\left(-\theta/n_{ij}\right)$	Global	Constant	Number of reviews	
8	$\exp\left(-\theta \cdot d_{ij}/q_{ij}\right)$	Global	Time elapsed	Leitner deck	
9	$\exp\left(-\theta/q_{ij}\right)$	Global	Constant	Leitner deck	
10	$\exp\left(-\theta_i \cdot d_{ij}/n_{ij}\right)$	Item-specific	Time elapsed	Number of reviews	
11	$\exp\left(-\theta_i \cdot d_{ij}\right)$	Item-specific	Time elapsed	Constant	
12	$\exp\left(-\theta_i/n_{ij}\right)$	Item-specific	Constant	Number of reviews	
13	$\exp\left(-\theta_i \cdot d_{ij}/q_{ij}\right)$	Item-specific	Time elapsed	Leitner deck	
14	$\exp\left(-\theta_i/q_{ij}\right)$	Item-specific	Constant	Leitner deck	

Leitner Queue Network

Mean-recall approximation \rightarrow tractable **static planning problem** for designing review schedules:

Experiments

- 300 turkers reviewed Japanese and American Sign Language vocabulary flash-cards for 15 minutes
- ullet Observed a **phase transition** in throughput as arrival rate λ_{ext} increased

Ongoing Work

- Even for low arrival rates, a **positive feedback loop** can lead to instability
- Intervention: limit the maximum number of items in the system at any given time

