Теорема о полноте исчисления предикатов

Общая идея доказательства

- 1. Надо справиться со слишком большим количеством вариантов. Модель задаётся как $\langle D, F, P, X \rangle$.
- 2. Для оценки в модели важно только какие формулы истинны. Модели \mathcal{M}_1 и \mathcal{M}_2 «похожи», если $[\![\varphi]\!]_{\mathcal{M}_1} = [\![\varphi]\!]_{\mathcal{M}_2}$ при всех φ .
- 3. Поступим так:
 - 3.1 построим эталонное множество моделей \mathfrak{M} , каждая модель соответствует списку истинных формул, *но им не является*;
 - 3.2 докажем полноту \mathfrak{M} : если каждая $\mathcal{M}\in\mathfrak{M}$ предполагает $\mathcal{M}\models\varphi$, то $\vdash\varphi$;
 - 3.3 заметим, что если $\models \varphi$, то каждая $\mathcal{M} \in \mathfrak{M}$ предполагает $\mathcal{M} \models \varphi$.
- 4. В ходе доказательства нас ждёт множество технических препятствий.

Непротиворечивое множество формул

Определение

 Γ — непротиворечивое множество формул, если $\Gamma \not\vdash \alpha \& \neg \alpha$ для любого α

Примеры:

- непротиворечиво:
 - $ightharpoonup \Gamma = \{A \rightarrow B \rightarrow A\}$
- противоречиво:
 - ► $\Gamma = \{P \rightarrow \neg P, \neg P \rightarrow P\}$ так как $P \rightarrow \neg P, \neg P \rightarrow P \vdash \neg P \& \neg \neg P$
- ▶ пусть $D=\mathbb{Z}$ и $P(x)\equiv (x>0)$, аналогом для этой модели будет $\Gamma=\{P(1),P(2),P(3),\dots\}$

Полное непротиворечивое множество формул

Определение

- Г полное непротиворечивое множество замкнутых бескванторных формул, если:
 - 1. Г содержит только замкнутые бескванторные формулы;
 - 2. если α некоторая замкнутая бескванторная формула, то либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$.

Определение

- Г полное непротиворечивое множество замкнутых формул, если:
 - 1. Г содержит только замкнутые формулы;
 - 2. если α некоторая замкнутая формула, то либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$.

Пополнение непротиворечивого множества формул

Теорема

Пусть Г — непротиворечивое множество замкнутых (бескванторных) формул. Тогда, какова бы ни была замкнутая (бескванторная) формула φ , хотя бы Г \cup $\{\varphi\}$ или Г \cup $\{\neg\varphi\}$ — непротиворечиво

Доказательство.

Пусть это не так и найдутся такие Γ , φ и α , что

$$\Gamma, \varphi \vdash \alpha \& \neg \alpha
\Gamma, \neg \varphi \vdash \alpha \& \neg \alpha$$

Тогда по лемме об исключении гипотезы

$$\Gamma \vdash \alpha \& \neg \alpha$$

То есть Г не является непротиворечивым. Противоречие.

Дополнение непротиворечивого множества формул до полного

Теорема

Пусть Γ — непротиворечивое множество замкнутых (бескванторных) формул. Тогда найдётся полное непротиворечивое множество замкнутых (бескванторных) формул Δ , что $\Gamma \subseteq \Delta$

Доказательство.

- 1. Занумеруем все формулы (их счётное количество): $\varphi_1, \varphi_2, \dots$
- 2. Построим семейство множеств $\{\Gamma_i\}$:

$$\Gamma_0 = \Gamma$$
 $\Gamma_{i+1} = \left\{ egin{array}{ll} \Gamma_i \cup \{arphi_i\}, & ext{если } \Gamma_i \cup \{arphi_i\} \ \Gamma_i \cup \{\neg arphi_i\}, & ext{иначе} \end{array}
ight.$

3. Итоговое множество

$$\Delta = \bigcup_i \Gamma_i$$

Дополнение. . . (завершение доказательства)

- 4. Δ непротиворечиво:
 - 4.1 Пусть Δ противоречиво, то есть

$$\Delta \vdash \alpha \& \neg \alpha$$

4.2 Доказательство конечной длины и использует конечное количество гипотез $\{\delta_1, \delta_2, \dots, \delta_n\} \subset \Delta$, то есть

$$\delta_1, \delta_2, \ldots, \delta_n \vdash \alpha \& \neg \alpha$$

4.3 Пусть $\delta_i \in \Gamma_{d_i}$, тогда

$$\Gamma_{d_1} \cup \Gamma_{d_2} \cup \cdots \cup \Gamma_{d_n} \vdash \alpha \& \neg \alpha$$

4.4 Но $\Gamma_{d_1} \cup \Gamma_{d_2} \cup \dots \cup \Gamma_{d_n} = \Gamma_{\max(d_1,d_2,\dots,d_n)}$, которое непротиворечиво, и потому

$$\Gamma_{d_1} \cup \Gamma_{d_2} \cup \cdots \cup \Gamma_{d_n} \not\vdash \alpha \& \neg \alpha$$

Модель для множества формул

Определение

Моделью для множества формул F назовём такую модель \mathcal{M} , что при всяком $\varphi \in F$ выполнено $[\![\varphi]\!]_{\mathcal{M}} = \mathcal{U}$. Альтернативное обозначение: $\mathcal{M} \models \varphi$.

Модели для непротиворечивых множеств замкнутых бескванторных формул

Теорема

Любое непротиворечивое множество замкнутых бескванторных формул имеет модель.

Конструкция для модели

Определение

Пусть M — полное непротиворечивое множество замкнутых бескванторных формул. Тогда модель $\mathcal M$ задаётся так:

- 1. D множество всевозможных предметных выражений без предметных переменных и дополнительная строка "ошибка!"
- 2. $[f(\theta_1,...,\theta_n)] = "f("+[\theta_1]] + "," + ... + "," + [\theta_n]] + ")"$
- 3. $\llbracket P(\theta_1,\ldots,\theta_n) \rrbracket = \left\{ egin{array}{ll} \mathcal{N}, & \textit{если } P(\theta_1,\ldots,\theta_n) \in \mathcal{M} \\ \mathcal{N}, & \textit{иначе} \end{array} \right.$
- 4. [x] = "ошибка!", так как формулы замкнуты.

Доказательство корректности

Лемма

Пусть φ — бескванторная формула, тогда $\mathcal{M} \models \varphi$ тогда и только тогда, когда $\varphi \in M$.

Доказательство (индукция по длине формулы φ).

- 1. База. φ предикат. Требуемое очевидно по определению \mathcal{M} .
- 2. Переход. Пусть $\varphi = \alpha \star \beta$ (или $\varphi = \neg \alpha$), причём $\mathcal{M} \models \alpha$ $(\mathcal{M} \models \beta)$ тогда и только тогда, когда $\alpha \in M$ $(\beta \in M)$. Тогда покажем требуемое для каждой связки в отдельности. А именно, для каждой связки покажем два утверждения:
 - 2.1 если $\mathcal{M} \models \alpha \star \beta$, то $\alpha \star \beta \in M$.
 - 2.2 если $\mathcal{M} \not\models \alpha \star \beta$, то $\alpha \star \beta \notin M$.

Доказательство утверждений для связок

Если $\varphi=\alpha \to \beta$ и для любой формулы ζ , более короткой, чем φ , выполнено $\mathcal{M}\models \zeta$ тогда и только тогда, когда $\zeta\in M$, тогда:

- 1. если $\mathcal{M} \models \alpha \rightarrow \beta$, то $\alpha \rightarrow \beta \in M$;
- 2. если $\mathcal{M} \not\models \alpha \to \beta$, то $\alpha \to \beta \notin M$.

Доказательство (разбором случаев).

- 1. $\mathcal{M} \models \alpha \to \beta$: $[\![\alpha]\!] = \mathcal{N}$. Тогда по предположению $\alpha \notin M$, потому по полноте $\neg \alpha \in M$. И, поскольку в ИВ $\neg \alpha \vdash \alpha \to \beta$, то $M \vdash \alpha \to \beta$. Значит, $\alpha \to \beta \in M$, иначе по полноте $\neg (\alpha \to \beta) \in M$, что делает M противоречивым.
- 2. $\mathcal{M} \models \alpha \rightarrow \beta$: $[\![\alpha]\!] = \mathsf{M}$ и $[\![\beta]\!] = \mathsf{M}$. Рассуждая аналогично, используя $\alpha, \beta \vdash \alpha \rightarrow \beta$, приходим к $\alpha \rightarrow \beta \in M$.
- 3. $\mathcal{M} \not\models \alpha \to \beta$. Тогда $\llbracket \alpha \rrbracket = \mathsf{M}$, $\llbracket \beta \rrbracket = \mathsf{Л}$, то есть $\alpha \in M$ и $\neg \beta \in M$. Также, $\alpha, \neg \beta \vdash \neg (\alpha \to \beta)$, отсюда $M \vdash \neg (\alpha \to \beta)$. Предположим, что $\alpha \to \beta \in M$, то $M \vdash \alpha \to \beta$ отсюда $\alpha \to \beta \notin M$.

Доказательство теоремы о существовании модели

Доказательство.

Пусть M — непротиворечивое множество замкнутых бескванторных формул.

По теореме о пополнении существует M' — полное непротиворечивое множество замкнутых бескванторных формул, что $M\subseteq M'$.

По лемме M' имеет модель, эта модель подойдёт для M.

Формулировка и схема доказательства теоремы Гёделя о полноте

Теорема (Гёделя о полноте исчисления предикатов)

Если M — непротиворечивое множество замкнутых формул, то оно имеет модель.

Схема доказательства.

Поверхностные кванторы (предварённая форма)

Определение

Формула φ имеет поверхностные кванторы (находится в предварённой форме), если соответствует грамматике

$$\varphi ::= \forall x. \varphi \mid \exists x. \varphi \mid \tau$$

где au — формула без кванторов

Теорема

Для любой замкнутой формулы ψ найдётся такая формула φ с поверхностными кванторами, что $\vdash \psi \to \varphi$ и $\vdash \varphi \to \psi$

Доказательство.

Индукция по структуре, применение теорем о перемещении кванторов.

Построение M^*

- Пусть М полное непротиворечивое множество замкнутых формул с поверхностными кванторами (очевидно, счётное). Построим семейство непротиворечивых множеств замкнутых формул M_k .
- ▶ Пусть d_i^k семейство *свежих* констант, в M не встречающихся.
- ightharpoonup Индуктивно построим M_k :
 - ▶ База: M₀ = M
 - ▶ Переход: положим $M_{k+1} = M_k \cup S$, где множество S получается перебором всех формул $\varphi_i \in M_k$.
 - 1. φ_i формула без кванторов, пропустим;
 - 2. $\varphi_i = \forall x.\psi$ добавим к S все формулы вида $\psi[x:=\theta]$, где θ всевозможные замкнутые термы, использующие символы из M_k ;
 - 3. $\varphi_i = \exists x. \psi$ добавим к S формулу $\psi[x := d_i^{k+1}]$, где d_i^{k+1} некоторая свежая, ранее не использовавшаяся в M_k , константа.

Непротиворечивость M_k

Лемма

Если M непротиворечиво, то каждое множество из M_k — непротиворечиво

Доказательство.

Доказательство по индукции, база очевидна ($M_0 = M$). Переход:

- ▶ пусть M_k непротиворечиво, но M_{k+1} противоречиво: $M_k, M_{k+1} \setminus M_k \vdash A \& \neg A$.
- ▶ Тогда (т.к. доказательство конечной длины): $M_k, \gamma_1, \gamma_2, \dots, \gamma_n \vdash A \& \neg A$, где $\gamma_i \in M_{k+1} \setminus M_k$.
- ▶ По теореме о дедукции: $M_k \vdash \gamma_1 \to \gamma_2 \to \cdots \to \gamma_n \to A \& \neg A$.
- ► Научимся выкидывать первую посылку: $M_k \vdash \gamma_2 \to \cdots \to \gamma_n \to A \& \neg A$.
- ▶ И по индукции придём к противоречию: $M_k \vdash A \& \neg A$.

Устранение посылки

Лемма

Если
$$M_k \vdash \gamma \to W$$
 и $\gamma \in M_{k+1} \setminus M_k$, то $M_k \vdash W$.

Доказательство.

Покажем, как дополнить доказательство до $M_k \vdash W$, в зависимости от происхождения γ :

ightharpoonup Случай $\forall x. \varphi \colon \gamma = \varphi[x := \theta]$. Допишем в конец доказательства:

```
orall x. arphi (гипотеза) (orall x. arphi) \rightarrow (orall x. arphi) (сх. акс. 11) \gamma (M.P.) (M.P.)
```

Случай $\exists x. \varphi$

- $\gamma = \varphi[x := d_i^{k+1}]$
- ▶ Перестроим доказательство $M_k \vdash \gamma \to W$: заменим во всём доказательстве d_i^{k+1} на y. Коллизий нет: под квантором d_i^{k+1} не стоит, переменной не является.
- lacktriangle Получим доказательство $M_k \vdash \gamma[d_i^{k+1} := y] o W$ и дополним его:

$$\varphi[x:=y]\to W \qquad \qquad \varphi[x:=d_i^{k+1}][d_i^{k+1}:=y]$$
 $(\exists y.\varphi[x:=y])\to W \qquad \qquad y$ не входит в W $(\exists x.\varphi)\to (\exists y.\varphi[x:=y])$ доказуемо (упражнение) ... $(\exists x.\varphi)\to W \qquad \qquad$ доказуемо как $(\alpha\to\beta)\to (\beta\to\gamma)\vdash G$ $\exists x.\varphi$ гипотеза W

Построение $M^{\mathsf{Б}}$

Определение

$$M^* = \bigcup_k M_k$$

Теорема

 M^* непротиворечиво.

Доказательство.

От противного: доказательство противоречия конечной длины, гипотезы лежат в максимальном M_k , тогда M_k противоречив.

Определение

 M^{5} — множество всех бескванторных формул из M^{*} .

По непротиворечивому множеству M можем построить M^{G} и для него построить модель $\mathcal{M}.$ Покажем, что эта модель годится для M^* (и для M, так как $M \subset M^*$).

Модель для M^*

Лемма

 \mathcal{M} есть модель для M^* .

Доказательство.

Покажем, что при $\varphi\in M^*$ выполнено $\mathcal{M}\models \varphi$. Докажем индукцией по количеству кванторов в φ .

- ightharpoonup База: arphi без кванторов. Тогда $arphi \in \mathit{M}^{\mathsf{D}}$, отсюда $\mathcal{M} \models arphi$ по построению \mathcal{M} .
- Переход: пусть утверждение выполнено для всех формул с n кванторами. Покажем, что это выполнено и для n+1 кванторов.
 - Рассмотрим $\varphi = \exists x. \psi$, случай квантор всеобщности аналогично.
 - Раз $\exists x.\psi \in M^*$, то существует k, что $\exists x.\psi \in M_k$.
 - ightharpoonup Значит, $\psi[x := d_i^{k+1}] \in M_{k+1}$.
 - ▶ По индукционному предположению, $\mathcal{M} \models \psi[x := d_i^{k+1}]$ в формуле n кванторов.
 - ightharpoonup Но тогда $[\![\psi]\!]^{x:=[\![d_i^{k+1}]\!]}=\mathsf{N}.$
 - ightharpoonup Отсюда $\mathcal{M} \models \exists x. \psi$.

Теорема Гёделя о полноте исчисления предикатов

Теорема (Гёделя о полноте исчисления предикатов)

Если M — замкнутое непротиворечивое множество формул, то оно имеет модель.

Доказательство.

- ightharpoonup Построим по M множество формул с поверхностными кванторами M'.
- ▶ По M' построим непротиворечивое множество замкнутых бескванторных формул M^{D} ($M^{\mathsf{D}} \subseteq M^*$, теорема о непротиворечивости M^*).
- ightharpoonup Дополним его до полного, построим для него модель $\mathcal M$ (теорема о существовании модели).
- $ightharpoonup \mathcal{M}$ будет моделью и для M' ($M' \subseteq M^*$, лемма о модели для M^*), и, очевидно, для M.

Полнота исчисления предикатов

Следствие (из теоремы Гёделя о полноте)

Исчисление предикатов полно.

Доказательство.

- ▶ Пусть это не так, и существует формула φ , что $\models \varphi$, но $\not\vdash \varphi$.
- lacktriangle Тогда рассмотрим $M = \{ \neg \varphi \}$.
- ▶ M непротиворечиво: если $\neg \varphi \vdash A \& \neg A$, то $\vdash \varphi$ (упражнение).
- ▶ Значит, у M есть модель \mathcal{M} , и $\mathcal{M} \models \neg \varphi$.
- ▶ Значит, $\llbracket \neg \varphi \rrbracket = \mathsf{И}$, поэтому $\llbracket \varphi \rrbracket = \mathsf{Л}$, поэтому $\not\models \varphi$. Противоречие.

Непротиворечивость исчисления предикатов

Теорема

Если у множества формул M есть модель \mathcal{M} , оно непротиворечиво.

Доказательство.

Пусть противоречиво: $M \vdash A \& \neg A$, в доказательстве использованы гипотезы $\delta_1, \delta_2, \dots, \delta_n$. Тогда $\vdash \delta_1 \to \delta_2 \to \dots \to \delta_n \to A \& \neg A$, то есть $\llbracket \delta_1 \to \delta_2 \to \dots \to \delta_n \to A \& \neg A \rrbracket = \mathsf{M}$ (корректность). Поскольку все $\llbracket \delta_i \rrbracket_{\mathcal{M}} = \mathsf{M}$, то и $\llbracket A \& \neg A \rrbracket_{\mathcal{M}} = \mathsf{M}$ (анализ таблицы истинности импликации). Однако $\llbracket A \& \neg A \rrbracket = \mathsf{\Pi}$. Противоречие.

Следствие

Исчисление предикатов непротиворечиво

Доказательство.

Рассмотрим $M=\varnothing$ и любую классическую модель.

Доказательства опираются на непротиворечивость метатеории.