DFA & NFA

Every DFA can be re-defined as a NFA by replacing $\delta: Q \times S \to Q$ by $\delta': Q \times S \to \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in Q \in \mathcal{P}(Q) := \delta'(q, a) = \{\delta(q, a)\} \ \forall a \in \mathbb{Z}. \ \forall q \in \mathbb{Z}. \$

$$\begin{split} \textbf{Theorem} & \ \, \forall \mathsf{NFA} \ \mathsf{M} = \big(Q, \Sigma, \delta, q_0, F\big). \, \exists \mathsf{DFA} \ \widehat{\mathsf{M}} = \big(\widehat{Q}, \Sigma, \widehat{\delta}, \widehat{q_0}, \widehat{F}\big) \, \mathsf{s.\,t.} \, \mathcal{L}(\mathsf{M}) = \mathcal{L}\big(\widehat{\mathsf{M}}\big) \\ \mathsf{Proof} & \ \, \mathsf{Let} \ \mathsf{M} = \big(Q, \Sigma, \delta, q_0, F\big) \, \mathsf{be} \, \mathsf{an} \, \mathsf{arbitrary} \, \mathsf{NFA}. \\ \mathsf{Let} \ \widehat{\mathsf{M}} = \big(\widehat{Q}, \Sigma, \widehat{\delta}, \widehat{q_0}, \widehat{F}\big) \, \mathsf{where} \\ & \ \, \widehat{Q} = \mathcal{P}(Q), \\ & \ \, \widehat{q_0} = \big\{q_0\big\}, \\ & \ \, \widehat{\delta}(Q', \mathsf{a}) = \cup_{\big\{\delta(q, \mathsf{a}) \mid q \in Q'\big\}} \, \, \forall Q' \in \widehat{Q}. \, \, \forall \mathsf{a} \in \Sigma \\ & \ \, \widehat{F} = \big\{Q' \in \widehat{Q} \ \big| \ Q' \cap F \neq \emptyset\big\} \\ \\ \mathsf{Example} & \ \, \mathsf{L} = \mathcal{L}\big((0+1)^*1(0+1)\big) \end{split}$$

Proof $\forall w \in \Sigma^*$. Let $P(w) \coloneqq \forall q \in Q$. $\hat{\delta}^*(q_0, w) = \delta^*(q_0, w)$ Base case: $\hat{\delta}^*(q_0, \lambda) = q_0 = \delta^*(q_0, \lambda)$ Constructor case: Let $w \in \Sigma^*$ be arbitrary, assume P(w)Consider $wx \in \Sigma^*$, where $x \in \Sigma$ $\hat{\delta}^*(q_0, wx) = \hat{\delta}(\hat{\delta}^*(q_0, w), a) = \bigcup_{\{\delta(q, a) | q \in \hat{\delta}^*(q_0, w)\}}$ By induction hypothesis, $\hat{\delta}^*(q_0, w) = \delta^*(q_0, w)$ $\bigcup_{\{\delta(q, a) | q \in \hat{\delta}^*(q_0, w)\}} = \bigcup_{\{\delta(q, a) | q \in \delta^*(q_0, w)\}}$ Hence $\delta^*(q_0, wa) = \delta(\delta^*(q_0, w), w) = \bigcup_{\{\delta(q, a) | q \in \delta^*(q_0, w)\}} = \hat{\delta}^*(q_0, wx)$

Variants of NFA

- 1. NFA with multiple start states $M = (Q, \Sigma, \delta, Q_0, f) Q_0 \subseteq Q$ instead of $q_0 \in Q$ $x \in \mathcal{L}(A)$ IFF \exists path from some start state to some final state s.t. x represents the path
- 2. NFA with λ transitions $\delta: Q \times \{\Sigma \cup \{\lambda\}\} \to \mathcal{P}(Q)$ $\forall q \in Q$. Let $E(q) = \{q' \mid q' \text{can be reached from } q \text{ by a path labelled } \lambda\}$. $\forall q \in Q$. $q \in E(q)$ $M' = (Q, \Sigma, \delta', Q_0, f) \text{ where } \delta'(q, \lambda) = \cup_{\{E(q') \mid q' \in \delta(q, a)\}}$. $\forall q \in Q$. $\forall a \in \Sigma$

