CLASSE: TLE C

MATIERE: MATHS TLE C

NIVEAU DE DIFFICULTES : DIFFICILE

TYPE D'EXERCICE : EVALUATION DES COMPETENCES

LECONS: nombres complexes, arithmétiques, fonctions logarithmiques, fonctions exponentielles et probabilités.

EXERCICE 1

 (\mathcal{C}) est le cercle dont une équation cartésienne est: $x^2+y^2-x-y=0$; $(D),(D_1)$ et (D_2) sont des droites d'équations respectives : y=-x+1; x-2y-4=0 et x=-y.

1. Déterminer les coordonnées du centre J et la valeur du rayon du cercle (\mathcal{C}) .[0,5 Pt]

2. Ecrire une équation cartésienne de la tangente au cercle (\mathcal{C}) au point I(1;0) avec $I\in (\mathcal{C})$.[0,5 Pt]

3.a calculer la distance du point J à chacune des trois droites.[0,75 Pt]

b. En déduire la position de chacune des trois droites par rapport au cercle (\mathcal{C}).[0,75 Pt]

4. Donner une représentation paramétrique du cercle (\mathcal{C}).[0,5 Pt]

5.a vérifier que le point K(-1;-1) n'appartient pas au cercle $(\mathcal{C}).$ [0,25 Pt]

b. Déterminer les équations des tangentes au cercle (\mathcal{C}) passant par le point K.

Différentes Injections	Dosage plasmatique	Période		
	Taux			
Composition	plasmatique	$ m de\ FSH\ en\ ng/ml$	m de~LH~en~ng/ml	
	obtenu			
Estrogènes	0	> 15	> 50	1
Progestérone	0			
Estrogènes	$70 \mathrm{pg/ml}$	env. 6	env. 4	2
Progestérone	0			
Estrogènes	$300 \mathrm{pg/nij}$	env. 12	env. 40	3
Progestérone	0			
Estrogènes	$300 \mathrm{pg/ml}$	< 4	< 3	4
Progestérone	$4 \mathrm{ng/ml}$			4

1) Déterminons les coordonnées du centre et la valeur du rayon de (C).

Par une simple factorisation, nous avons : $x^2-x+y^2-y=0 \Leftrightarrow \left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\left(\frac{\sqrt{2}}{2}\right)^2$ De ce fait les coordonnées de J sont : $\left(\frac{1}{2};\frac{1}{2}\right)$ et la valeur du rayon est : $\frac{\sqrt{2}}{2}$.

2) Equation de la tangente à (C) au point I(1;0).

 $I\in (C)$. Soit $\mathrm{M}(\mathbf{x};\mathbf{y})$ appartenant à la tangente (T). Alors, $\overrightarrow{JI}\cdot\overrightarrow{IM}=0$ c'est-à-dire $-\frac{1}{2}(x-1)+\frac{1}{2}y=0$ soit (T):y=x-1.

3) a) Déterminons les distances.

$$d(J,(D)) = \tfrac{|0,5\times -1 + 0,5\times -1 + 1|}{\sqrt{(-1)^2 + (-1)^2}} = 0; d\left(J,(D_1)\right) = \tfrac{|0,5\times 1 + 0,5\times -2 - 4|}{\sqrt{(1)^2 + (-2)^2}} = \tfrac{9\sqrt{5}}{10} \text{ et } d\left(J,(D_2)\right) = \tfrac{|0,5\times 1 + 0,5\times 1|}{\sqrt{(1)^2 + (1)^2}} = \tfrac{\sqrt{2}}{2}.$$

- b) Position des droites par rapport à (C):
- (D) coupe (C) en deux point passant par I;
- (D_1) est disjoint de (C) de $rac{9\sqrt{5}}{10}-rac{\sqrt{2}}{2}=rac{2\sqrt{5}}{5};$
- (D_2) est une tangente à (C).
- 4) Représentation paramétrique de (C).

$$\exists t \in IR \ \mathsf{tel} \ \mathsf{que} \ \begin{cases} x = rac{1}{2} + \ \mathrm{cost} \ y = rac{1}{2} + \sin t \end{cases}.$$

5) a) Vérifions que $K \notin (C)$.

En effet,
$$(-1)^2 + (-1)^2 + 1 + 1 = 4 \neq 0$$
. D'où $K \notin (C)$.

b) Equations des tangentes.

 $K \notin (C)$ alors, il existe deux tangentes à (C) passant par K. De la représentation, la première est (D) et la seconde (D_1) .

CORRIGE:

- (\mathcal{C}) est le cercle dont une équation cartésienne est: $x^2+y^2-x-y=0$; $(D),(D_1)$ et (D_2) sont des droites d'équations respectives : y=-x+1; x-2y-4=0 et x=-y.
- 1. Déterminer les coordonnées du centre J et la valeur du rayon du cercle $(\mathcal{C}).$ [0,5 Pt]
- 2. Ecrire une équation cartésienne de la tangente au cercle (\mathcal{C}) au point I(1;0) avec $I\in (\mathcal{C})$.[0,5 Pt]
- 3.a calculer la distance du point J à chacune des trois droites.[0,75 Pt]
- b. En déduire la position de chacune des trois droites par rapport au cercle (\mathcal{C}) .[0,75 Pt]

4. Donner une représentation paramétrique du cercle (\mathcal{C}) .[0,5 Pt]

5.a vérifier que le point K(-1;-1) n'appartient pas au cercle $(\mathcal{C}).$ [0,25 Pt]

b. Déterminer les équations des tangentes au cercle (\mathcal{C}) passant par le point K.

Différentes Injections	Dosage plasmatique	Période		
	Taux			
Composition	${ m plasmatique}$	$ m de\ FSH\ en\ ng/ml$	m de~LH~en~ng/ml	
	obtenu			
Estrogènes	0	> 15	> 50	1
Progestérone	0			
Estrogènes	$70 \mathrm{pg/ml}$	env. 6	env. 4	2
Progestérone	0			
Estrogènes	$300 \mathrm{pg/nij}$	env. 12	env. 40	3
Progestérone	0			
Estrogènes	$300 \mathrm{pg/ml}$	< 4	< 3	4
Progestérone	$4 \mathrm{ng/ml}$			-1

1) Déterminons les coordonnées du centre et la valeur du rayon de (C).

Par une simple factorisation, nous avons : $x^2-x+y^2-y=0 \Leftrightarrow \left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\left(\frac{\sqrt{2}}{2}\right)^2$ De ce fait les coordonnées de J sont : $\left(\frac{1}{2};\frac{1}{2}\right)$ et la valeur du rayon est : $\frac{\sqrt{2}}{2}$.

2) Equation de la tangente à (C) au point I(1;0).

 $I\in (C)$. Soit $\mathrm{M}(\mathbf{x};\mathbf{y})$ appartenant à la tangente (T). Alors, $\overrightarrow{JI}\cdot\overrightarrow{IM}=0$ c'est-à-dire $-\frac{1}{2}(x-1)+\frac{1}{2}y=0$ soit (T):y=x-1.

3) a) Déterminons les distances.

$$d(J,(D)) = \tfrac{|0,5\times -1 + 0,5\times -1 + 1|}{\sqrt{(-1)^2 + (-1)^2}} = 0; d\left(J,(D_1)\right) = \tfrac{|0,5\times 1 + 0,5\times -2 - 4|}{\sqrt{(1)^2 + (-2)^2}} = \tfrac{9\sqrt{5}}{10} \text{ et } d\left(J,(D_2)\right) = \tfrac{|0,5\times 1 + 0,5\times 1|}{\sqrt{(1)^2 + (1)^2}} = \tfrac{\sqrt{2}}{2}.$$

- b) Position des droites par rapport à (C):
- (D) coupe (C) en deux point passant par I;
- (D_1) est disjoint de (C) de $\frac{9\sqrt{5}}{10}-\frac{\sqrt{2}}{2}=\frac{2\sqrt{5}}{5}$;
- (D_2) est une tangente à (C).
- 4) Représentation paramétrique de (C).

$$\exists t \in IR \ \mathrm{tel} \ \mathrm{que} \left\{ egin{align*} x = rac{1}{2} + \ \mathrm{cost} \ y = rac{1}{2} + \sin t \end{array}
ight.$$

5) a) Vérifions que $K \notin (C)$.

En effet, $(-1)^2+(-1)^2+1+1=4
eq 0$. D'où $K
ot\in (C)$.

b) Equations des tangentes.

 $K \notin (C)$ alors, il existe deux tangentes à (C) passant par K. De la représentation, la première est (D) et la seconde (D_1) .

