AWS で NFT の開発を始めるための 3つのポイント

石尾 千晶

技術統括本部 ソリューションアーキテクト アマゾン ウェブ サービス ジャパン合同会社

深津 颯騎

技術統括本部 ブロックチェーン プロトタイプ エンジニア アマゾン ウェブ サービス ジャパン合同会社

スピーカー紹介

石尾 千晶

技術統括本部 ソリューション アーキテクト

深津 颯騎

技術統括本部 ブロックチェーン プロトタイプ エンジニア

好きなAWSサービス: AWS Lambda

好きなAWSサービス: AWS CloudFormation

目次

- NFT とは?
- NFT の開発におけるポイントとは?
- AWS を活用して開発を進めるには?
- 関連事例・リソースご紹介

このセッションでは、

- ブロックチェーン技術の基礎
- NFT のビジネス活用方法 については扱いません。 あらかじめ、ご了承ください。

NFT とは?

- NFT = Non-Fungible Token (非代替性トークン)
- トークン:既存のブロックチェーン技術を使って発行された権利証
- NFT の例:デジタルアート、コレクション、サービス会員権
- 取引の改竄防止・なりすまし防止のために、公開鍵暗号などの 暗号技術を活用

NFT とは?

Fungible Token

代替できる (同じトークンが存在する)

Non-Fungible Token

代替できない (同じトークンは存在しない)

NFT とは?

Fungible Token

取引された数量を記録 ERC 20 などの規格がある

送信元	送信先	数量
А	В	1
В	С	3

Non-Fungible Token

トークンの識別子・メタデータも記録 ERC 721, 1155 などの規格がある

送信元	送信先	識別子	メタデータ
С	D	0001	{"name": "item A", "desc":,}
•			

NFT を活用したシステムの構成例

ゲームのアイテム購入機能 デジタルコンテンツ販売システム

バックエンドの要件に ブロックチェーンが <u>本当に適して</u>いるか? 外部システム

分析用システム

フロントエンド

リクエスト 受付・処理

アイテム購入処理

バックエンド

- アイテム・ユーザ情報の管理
- アイテムの元データの保管

NFT を活用したシステムの構成例

ゲームのアイテム購入機能 デジタルコンテンツ販売システム

外部システム

NFT を活用したシステムの構成例

外部システム ゲームのアイテム購入機能 ブロックチェーンを デジタルコンテンツ販売システム どのように実装・運用 するか? フロントエンド バックエンド 分析用システム ブロックチェーン P2P ネットワーク アイテム・ リクエスト コンテンツ 受付・処理 保存用 ストレージ ユーザ・アイテム等 管理用 DB ブロックチェーン内に 秘密鍵の紛失を 保存するデータと、

そうでないデータの

線引きは?

防ぐには?

NFT の開発を始めるための3つのポイント

ブロックチェーンに *何の*データを保存する?

秘密鍵の紛失を 防ぐには?

課題①ブロックチェーンの実装と運用

- ネットワーク構築に必要なリソースの購入の判断
- ブロックチェーンを構成するサーバ・ストレージの拡張性確保
- 各ノードの管理やメンテナンス

課題②データの保管方法

	オンチェーン	オフチェーン
データの保管場所	P2P ネットワーク上に 記録されるデータ	P2P ネットワークから 切り離されたストレージ上に記録 されるデータ
データサイズ	大きなデータは取り扱いにくい	大きなデータも取り扱える
データ検索	データの検索がしにくい	データの検索がしやすい
データの永続性	管理者がいなくなっても データは残る	管理者がいなくなったらデータに アクセスできなくなる可能性あり

課題③ 秘密鍵の管理

- NFT などの暗号資産の管理をすることは、秘密鍵の管理に相当
- 取引の送金元の本人であることを示すために、秘密鍵で署名する

秘密鍵を紛失すると、暗号資産に一切アクセスできなくなる上に、 再発行ができない

マネージドサービスによる運用負荷の軽減

Amazon Managed Blockchain

ノード管理不要

ストレージの自動拡張

P2P ネットワーク管理が不要

複雑なセットアップが不要

オンチェーンとオフチェーンの使い分け

オンチェーン

ブロックチェーンを使った処理

- 他者と共有する必要のあるデータ、 手続き
- 耐改竄性が求められるデータ
- リアルタイム性が必要な参照系処理

オフチェーン

ブロックチェーンを使わない処理

- フロントエンド、アプリケーション
- 他者と共有しないデータ
- 拡張性の高いストレージ
- 分析、検索
- イベントドリブンな他システム連携

オフチェーンでストレージ活用

大容量データの保存

NFT保有者のみアクセス可能

コンテンツの維持はサービス 提供者

オフチェーンでストレージ活用

大容量データの保存

コンテンツ自体の改竄耐性を 求める場合

コンテンツの維持はNFT所有者

IPFS (InterPlanetary File System)

オフチェーンでデータ分析、検索

Amazon OpenSearch Service

Amazon Relational Database Service

Amazon QuickSight

ブロックチェーン内のデータの検索、分析は難しい 一度RDBMSやNoSQLにコピーしてから行う

ブロックチェーンと外部システム連携

ブロックチェーンのデータを 外部に送信

外部のデータを ブロックチェーンに送信

ユースケース:

- ブロックチェーンのデータをDBに記録
- NFTの売買結果を経理システムへ反映
- ゲームの進捗に応じてブロックチェーンに記録

Amazon Elastic Container Service

AWS Lambda

AWS の鍵管理サービス

AWS Key Management Service (AWS KMS)

AWS CloudHSM

AWS Key Management Service

AWS Key Management Service (AWS KMS)

- 鍵の用意: KMS でキーペア(公開鍵と秘密鍵)を生成
- 署名には <u>Sign API</u>, 検証には <u>Verify API</u> を用いる
- 権限: 署名するアプリの実行基盤(EC2 インスタンス)に アタッチする IAM Role には上記 2 つが実行できる権限のみ を付与
- ・メリット
 - 秘密鍵は KMS 上でのみ利用される
 - 鍵が AWS 上で一元管理される
 - 鍵管理インフラストラクチャの運用が不要
 - secp256k1の鍵形式に対応

AWS CloudHSM

- AWS CloudHSM クライアントで以下を操作
 - 既に所有しているキーペア(公開鍵と秘密鍵)を AWS CloudHSM にインポート
 - 署名には <u>Sign</u>, 検証には <u>Verify</u> を用いる
- 権限: IAM ではなく<u>CloudHSM ユーザー</u>に対してアクセス許可を設定
- 暗号化アルゴリズム: インポートした鍵の暗号化方式
- ・メリット
 - 秘密鍵は CloudHSM 上でのみ利用できるように設定可能
 - 鍵が AWS 上で一元管理される
 - Bring Your Own Key (BYOK)が可能
 - secp256k1の鍵形式に対応

3つのポイントを抑えたアーキテクチャ

シンプレクス株式会社様 スケーラブルでセキュアなNFTサービスを迅速に構築

Simplex Inc.

ブランドの世界観を体現したデザインを効率的に 実現するNFTプラットフォーム

コンサルティング・UXデザイン・システム提供・運用改善までワンストップで導入可能

ファンサイトは突発的な高負荷時でもユーザビリティを損なわない高可用性を実現し、インフラコストを最適化

Amazon Managed Blockchainの活用によりノードの構築や運用にかかるリソースを40%削減。

秘密鍵の漏洩や紛失への対策、構築からサービス提供までオンプレミス環境と比較して80%期間を短縮

double jump.tokyo様 複数人で秘密鍵管理できるビジネス向けNFT管理サービス

ワークフロー機能で 秘密鍵の使用を管理

秘密鍵の共有管理機能で 作業の属人化を解消

秘密鍵での署名が必要な 様々な操作に対応

https://www.nsuite.io/ja

本日のまとめ

NFTを活用したサービスに必要なブロックチェーンノードをどのように運用するか
→ マネージドサービスを活用して運用負荷を減らす

ブロックチェーンに保存するデータは?

- → ブロックチェーンだけではサービスは作れない。オフチェーンも活用する。
- → オンチェーンは「他者との共有」「改竄耐性」が必要なデータが適している オフチェーンは、検索や分析など参照系の処理、大容量データの保存が適している

秘密鍵の紛失を防ぐには?

- → ユーザーだけでなく、サービス提供者側の秘密鍵も守る
- → 鍵管理サービスを活用 管理者であっても秘密鍵が見られないようにする

サンプルコード

- Simple NFT Marketplace
- 「NFTの発行」「マーケットで販売」 「2次流通の際に知財保有者へ ロイヤリティの支払い」を実装した サンプルコード

https://github.com/aws-samples/simple-nft-marketplace

Thank you!

石尾 千晶 (Chiaki Ishio)

深津 颯騎 (Satsuki Fukazu)

Twitter: @hkiridera

Appendix

ワークショップ

QLDBワークショップ

https://qldbimmersionday.workshop .aws/

Track-and-Trace Blockchain Workshop

https://track-and-trace-blockchain.workshop.aws/

お役立ち情報集

本日紹介した各サービスへのリンク <u>Amazon Managed Blockchain</u> <u>AWS Key Management Service(KMS)</u> <u>AWS CloudHSM</u>

ブログ

How to sign Ethereum EIP-1559 transactions using AWS KMS

サンプルコード

<u>aws-samples/aws-kms-ethereum-accounts</u> <u>aws-samples/simple-nft-marketplace</u>

