Naïve Bayes

Naïve Bayes

Probability basics

- Estimating parameters from data
 - Maximum likelihood (ML)
 - Maximum a posteriori estimation (MAP)

Naïve Bayes

Contents

Probability basics

- Estimating parameters from data
 - Maximum likelihood (ML)
 - Maximum a posteriori estimation (MAP)

Naive Bayes

Random Variables

- A random variable x takes on a defined set of values with different probabilities.
 - For example, if you roll a die, the outcome is random (not fixed) and there are 6 possible outcomes, each of which occur with probability one-sixth.
 - For example, if you poll people about their voting preferences, the percentage of the sample that responds "Yes on Proposition 100" is a also a random variable (the percentage will be slightly differently every time you poll).
- Roughly, <u>probability</u> is how frequently we expect different outcomes to occur if we repeat the experiment over and over ("frequentist" view)

Random variables can be discrete or continuous

- Discrete random variables have a countable number of outcomes
 - <u>Examples</u>: Dead/alive, treatment/placebo, dice, counts, etc.
- **Continuous** random variables have an infinite continuum of possible values.
 - Examples: blood pressure, weight, the speed of a car, the real numbers from 1 to 6.

Probability functions

- A probability function maps the possible values of x against their respective probabilities of occurrence, p(x)
- p(x) is a number from 0 to 1.0.
- The area under a probability function is always 1.

Visualizing probability P(A)

Sample space

Area = 1

P(A) = Area of the blue circle

Visualizing probability $P(A) + P(\sim A)$

$$P(A) + P(\sim A) = 1$$

Visualizing probability P(A)

$$P(A) = P(A^B) + P(A^\sim B)$$

Visualizing conditional probability

$$P(A|B) = P(A^B)/P(B)$$

Corollary: The chain rule

$$P(A,B) = P(A|B)P(B)$$

Bayes rule

Thomas Bayes

$$P(A|B) = \frac{P(A,B)}{P(B)}$$
$$= \frac{P(B|A)P(A)}{P(B)}$$

Corollary: The chain rule

$$P(A,B) = P(A|B)P(B) = P(B)P(A|B)$$

Other forms of Bayes rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B,X) = \frac{P(B|A,X)P(A,X)}{P(B,X)}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

Applying Bayes rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

- A = you have the flu
 B = you just coughed
- Assume:
 - P(A) = 0.05
 - P(B|A) = 0.8
 - $P(B|\sim A) = 0.2$

 $P(A|B) = \frac{0.8 \times 0.05}{0.8 \times 0.05 + 0.2 \times 0.95} \sim 0.17$

$$=0.17$$

Why we are learning this?

Joint distribution

Making a joint distribution of M variables

1. Make a truth table listing all combinations

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

- 2. For each combination of values, say how probable it is
- 3. Probability must sum to 1

Using joint distribution

 Once you have the JD you can ask for the probability of any logical expression involving these variables

•
$$P(E) = \sum_{\text{rows matching E}} P(\text{row})$$

•
$$P(E_1|E_2) = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2} P(\text{row})}{\sum_{\text{rows matching } E_2} P(\text{row})}$$

Using the Joint

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

P(Poor Male) = 0.4654
$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Inference with the Joint

$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2} P(\text{row})}{\sum_{\text{rows matching } E_2} P(\text{row})}$$

Learning and the Joint Distribution

Suppose we want to learn the function f: $\langle G, H \rangle \rightarrow W$

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

The solution to learn P(Y|X)?

• Main problem: learning P(Y|X) may require more data than we have

• Say, learning a joint distribution with 100 attributes

• # of rows in this table? $2^{100} \ge 10^{30}$

• # of people on earth? 10^9

What should we do?

- Be smart about how we estimate probabilities from sparse data
 - Maximum likelihood estimates (ML)
 - Maximum a posteriori estimates (MAP)

- 2. Be smart about how to represent joint distributions
 - Bayes network, graphical models

Probability basics

- Estimating parameters from data
 - Maximum likelihood (ML)
 - Maximum a posteriori (MAP)

Naive Bayes

Estimating the probability

- Flip the coin repeatedly, observing
 - It turns heads α_1 times
 - It turns tails α_0 times
- Your estimate for P(X = 1) is?

- Case A: 100 flips: 51 Heads (X = 1), 49 Tails (X = 0)P(X = 1) = ?
- Case B: 3 flips: 2 Heads (X = 1), 1 Tails (X = 0)P(X = 1) = ?

Two principles for estimating parameters

• Maximum Likelihood Estimate (MLE) Choose θ that maximizes probability of observed data $\widehat{\boldsymbol{\theta}}^{\text{MLE}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(Data|\boldsymbol{\theta})$

• Maximum a posteriori estimation (MAP) Choose θ that is most probable given prior probability and data

$$\widehat{\boldsymbol{\theta}}^{\text{MAP}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta}|D) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \frac{P(Data|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(Data)}$$

Two principles for estimating parameters

Maximum Likelihood Estimate (MLE)

Choose θ that maximizes $P(Data|\theta)$

$$\widehat{\boldsymbol{\theta}}^{\text{MLE}} = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

• Maximum a posteriori estimation (MAP) Choose θ that maximize $P(\theta|Data)$

$$\widehat{\boldsymbol{\theta}}^{\text{MAP}} = \frac{(\alpha_1 + \text{\#halluciated 1s})}{(\alpha_1 + \text{\#halluciated 1s}) + (\alpha_0 + \text{\#halluciated 0s})}$$

Maximum likelihood estimate

• Each flip yields Boolean value for X $X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{1 - X}$

$$X = 1 X = 0$$

$$P(X = 1) = \theta$$

$$P(X = 0) = 1 - \theta$$

• Data set D of independent, identically distributed (iid) flips, produces α_1 ones, α_0 zeros

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

$$\widehat{\boldsymbol{\theta}} = \underset{\theta}{\operatorname{argmax}} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Maximum Likelihood Estimation

- Goal: Find the parameter p that maximizes the likelihood of seeing all training samples.
- Example: 6H, 4T
- P(H) = p, P(T) = 1-p

•
$$L(p) = p^6(1-p)^4$$

• logL(p) = 6 log(p) + 4 log(1-p)

• d(logL(p))/dp = 6/p - 4/(1-p) = 0

•
$$P = 6/10$$

Find the total likelihood

Take log likelihood

Take derivative

Solve

Classification by likelihood

- Suppose we have two classes C₁ and C₂.
- Compute the likelihoods $P(D|C_1)$ and $P(D|C_2)$.
- To classify test data D' assign it to class C_1 if $P(D|C_1)$ is greater than $P(D|C_2)$ and C_2 otherwise.

Gaussian models

• Assume that class likelihood is represented by a Gaussian distribution with parameters μ (mean) and σ (standard deviation) $(x-m)^2$

deviation)
$$P(x \mid C_1) = \frac{1}{\sqrt{2\rho}S_1} e^{-\frac{(x-m_1)^2}{2S_1^2}} \qquad P(x \mid C_2) = \frac{1}{\sqrt{2\rho}S_2} e^{-\frac{(x-m_2)^2}{2S_2^2}}$$

• We find the model (in other words mean and variance) that maximize the likelihood (or equivalently the log likelihood). Suppose we are given training points $x_1, x_2, ..., x_{n1}$ from class C_1 . Assuming that each datapoint is drawn independently from C_1 the sample log likelihood is

$$P(x_1, x_2, ..., x_{n1} | C_1) = P(x_1 | C_1)P(x_2 | C_1)...P(x_{n1} | C_1) = \frac{1}{\sqrt[n]{2\rho S_1}} e^{-\frac{\sum_{i=1}^{n_1} (x_i - m_i)^2}{2S_1^2}}$$

Beta prior distribution $P(\theta)$

•
$$P(\theta) = Beta(\beta_1, \beta_0) = \frac{1}{B(\beta_1, \beta_0)} \theta^{\beta_1 - 1} (1 - \theta)^{\beta_0 - 1}$$

• β makes the probability integrated up to one and a well formed distribution function(a constant and a kind of normalization)

Slide credit: Tom Mitchell

Maximum A Posteriori estimate

• Data set D of iid flips, produces α_1 ones, α_0 zeros

$$P(Data|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

- Assume prior (Conjugate prior: Closed form representation of posterior)
- Conjugate prior: $P(\theta)$ is the conjugate prior for likelihood function $P(Data|\theta)$ if the forms of $P(\theta)$ and $P(\theta|Data)$ are the same

$$P(\theta) = Beta(\beta_1, \beta_0) = \frac{1}{B(\beta_1, \beta_0)} \theta^{\beta_1 - 1} (1 - \theta)^{\beta_0 - 1}$$

$$\widehat{\boldsymbol{\theta}} = \arg\max_{\theta} P(D|\theta) P(\theta) = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 - 1)}$$

Some terminology

- Likelihood function $P(Data|\theta)$
- Prior $P(\theta)$
- Posterior $P(\theta|Data)$

Conjugate prior:

Prior $P(\theta)$ is the <u>conjugate prior</u> for a <u>likelihood function</u> $P(Data|\theta)$ if the <u>prior</u> $P(\theta)$ and the <u>posterior</u> $P(\theta|Data)$ have the same form.

- Example (coin flip problem)
 - Prior $P(\theta)$: $Beta(\beta_1, \beta_0)$ Likelihood $P(Data|\theta)$: Binomial $\theta^{\alpha_1}(1-\theta)^{\alpha_0}$
 - Posterior $P(\theta|Data)$: $Beta(\alpha_1 + \beta_1, \alpha_0 + \beta_0)$

How many parameters?

• Suppose $X = [X_1, \dots, X_n]$, where X_i and Y are Boolean random variables

To estimate $P(Y|X_1, \dots, X_n)$

When n = 2 (Gender, Hours-worked)?

When n = 30?

Let's learn classifiers by learning P(Y|X)

Consider Y=Wealth, X=<Gender, HoursWorked>

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
M	>40.5	.38	.62

Slide credit: Tom Mitchell

Can we reduce paras using Bayes rule?

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

• How many parameters for $P(X_1, \dots, X_n | Y)$? $(2^n - 1) \times 2$

• How many parameters for P(Y)?

Contents

Probability basics

- Estimating parameters from data
 - Maximum likelihood (ML)
 - Maximum a posteriori estimation (MAP)

Naive Bayes

Naïve Bayes

Assumption:

$$P(X_1, \dots, X_n | Y) = \prod_{j=1}^n P(X_j | Y)$$

• i.e., X_i and X_j are conditionally independent given Y for $i \neq j$

Conditional independence

• **Definition**: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z_k)$$

$$P(X|Y,Z) = P(X|Z)$$

Example:

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Applying conditional independence

• Naïve Bayes assumes X_i are conditionally independent given Y e.g., $P(X_1|X_2,Y)=P(X_1|Y)$

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$
 (chain rule)
= $P(X_1|Y)P(X_2|Y)$

General form: $P(X_1, \dots, X_n | Y) = \prod_{j=1}^n P(X_j | Y)$ How many parameters to describe $P(X_1, \dots, X_n | Y)$? P(Y)?

- Without conditional indep assumption? 2(2ⁿ-1)+1
- With conditional indep assumption? 2n+1

Naïve Bayes classifier

• Bayes rule:

$$P(Y = y_k | X_1, \dots, X_n) = \frac{P(Y = y_k) P(X_1, \dots, X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1, \dots, X_n | Y = y_j)}$$

• Assume conditional independence among X_i 's:

$$P(Y = y_k | X_1, \dots, X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

Pick the most probable Y

$$\hat{Y} \leftarrow \underset{y_k}{\operatorname{argmax}} P(Y = y_k) \Pi_i P(X_i | Y = y_k)$$

Naïve Bayes algorithm – discrete X_i

• For each value y_k Estimate $\pi_k = P(Y = y_k)$ (Prior Prob.) For each value x_{ij} of each attribute X_i Estimate $\theta_{ijk} = P(X_i = x_{ijk} | Y = y_k)$

Classify X^{test}

$$\hat{Y} \leftarrow \underset{y_k}{\operatorname{argmax}} P(Y = y_k) \Pi_i P(X_i^{\text{test}} | Y = y_k)$$

$$\hat{Y} \leftarrow \underset{y_k}{\operatorname{argmax}} \pi_k \Pi_i \theta_{ijk}$$

Estimating parameters: discrete Y, X_i

Maximum likelihood estimates (MLE)

$$\hat{\pi}_{k} = \hat{P}(Y = y_{k}) = \frac{\#D\{Y = y_{k}\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_{i} = x_{ij} | Y = y_{k}) = \frac{\#D\{X_{i} = x_{ij} \land Y = y_{k}\}}{\#D\{Y = y_{k}\}}$$

Where D = Number of items in data set D for which Y= y_k

Example

• Example: Play Tennis

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Example

Learning Phase

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=No
High	3/9	4/5
Normal	6/9	1/5

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

$$P(\text{Play=}Yes) = 9/14$$
 $P(\text{Play=}No) = 5/14$

Example

Test Phase

Given a new instance,

x'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Look up tables

```
P(Outlook=Sunny | Play=Yes) = 2/9 \qquad P(Outlook=Sunny | Play=No) = 3/5 \\ P(Temperature=Cool | Play=Yes) = 3/9 \qquad P(Temperature=Cool | Play==No) = 1/5 \\ P(Huminity=High | Play=Yes) = 3/9 \qquad P(Huminity=High | Play=No) = 4/5 \\ P(Wind=Strong | Play=Yes) = 3/9 \qquad P(Wind=Strong | Play=No) = 3/5 \\ P(Play=Yes) = 9/14 \qquad P(Play=No) = 5/14
```

MAP rule

```
 \begin{array}{l} \textbf{P(Yes | \textbf{x}'):} \ [P(Sunny | Yes)P(Cool | Yes)P(High | Yes)P(Strong | Yes)]P(Play=Yes) = \\ 0.0053 \\ \textbf{P(No | \textbf{x}'):} \ [P(Sunny | No) P(Cool | No)P(High | No)P(Strong | No)]P(Play=No) = \\ 0.0206 \end{array}
```

How to classify the new record X = (Refund='Yes', Status = 'Single', Taxable Income = 80K)

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example of Naïve Bayes Classifier

Given a Test Record:

```
X = (Refund = Yes, Status = Single, Income = 80K)
```

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single | No) = 2/7
P(Marital Status=Divorced | No)=1/7
P(Marital Status=Married | No) = 4/7
P(Marital Status=Single | Yes) = 2/7
P(Marital Status=Divorced | Yes)=1/7
P(Marital Status=Married | Yes) = 0
For taxable income:
If class=No:
             sample mean=110
              sample variance=2975
             sample mean=90
If class=Yes:
              sample variance=25
```

```
P(X|Class=No) = P(Refund=Yes|Class=No)
                     × P(Married | Class=No)
                     × P(Income=120K| Class=No)
                 = 3/7 * 2/7 * 0.0062 = 0.00075
   P(X|Class=Yes) = P(Refund=No| Class=Yes)
                   × P(Married | Class=Yes)
                   × P(Income=120K| Class=Yes)
                  = 0 * 2/3 * 0.01 = 0
• P(No) = 0.3, P(Yes) = 0.7
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
      => Class = No
```

Naïve Bayes: Subtlety #1

• Often the X_i are not really conditionally independent

- Naïve Bayes often works pretty well anyway
 - Often the right classification, even when not the right probability [Domingos & Pazzani, 1996])
- What is the effect on estimated P(Y|X)?
 - What if we have two copies: $X_i = X_k$

$$P(Y = y_k | X_1, \dots, X_n) \propto P(Y = y_k) \prod_i P(X_i | Y = y_k)$$

Naïve Bayes: Subtlety #2

MLE estimate for $P(X_i|Y=y_k)$ might be zero. (for example, X_i = birthdate. X_i = Feb_4_1995)

- Why worry about just one parameter out of many? $P(Y=y_k|X_1,\cdots,X_n) \propto P(Y=y_k)\Pi_i P(X_i|Y=y_k)$
- What can we do to address this?
 - MAP estimates (adding "imaginary" examples)

Estimating parameters: discrete Y, X_i

Maximum likelihood estimates (MLE)

$$\hat{\pi}_{k} = \hat{P}(Y = y_{k}) = \frac{\#D\{Y = y_{k}\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_{i} = x_{ij}|Y = y_{k}) = \frac{\#D\{X_{i} = x_{ij}, Y = y_{k}\}}{\#D\{Y = y_{k}\}}$$

MAP estimates (Dirichlet priors):

$$\hat{\pi}_{k} = \hat{P}(Y = y_{k}) = \frac{\#D\{Y = y_{k}\} + (\beta_{k} - 1)}{|D| + \sum_{m}(\beta_{m} - 1)}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_{i} = x_{ij} | Y = y_{k}) = \frac{\#D\{X_{i} = x_{ij}, Y = y_{k}\} + (\beta_{k} - 1)}{\#D\{Y = y_{k}\} + \sum_{m}(\beta_{m} - 1)}$$

What if we have continuous X_i

• Gaussian Naïve Bayes (GNB): assume

$$P(X_i = x | Y = y_k) = \frac{1}{\sqrt{2\pi}\sigma_{ik}} \exp(-\frac{(x - \mu_{ik})^2}{2\sigma_{ik}^2})$$

- Additional assumption on σ_{ik} :
 - Is independent of $Y(\sigma_i)$
 - Is independent of X_i (σ_k)
 - Is independent of X_i and $Y(\sigma_k)$

Naïve Bayes algorithm — continuous X_i

• For each value y_k Estimate $\pi_k = P(Y = y_k)$ For each attribute X_i estimate Class conditional mean μ_{ik} , variance σ_{ik}

Classify X^{test}

$$\hat{Y} \leftarrow \underset{y_k}{\operatorname{argmax}} P(Y = y_k) \Pi_i P(X_i^{\text{test}} | Y = y_k)$$

$$\hat{Y} \leftarrow \underset{y_k}{\operatorname{argmax}} \pi_k \Pi_i \quad Normal(X_i^{\text{test}}, \mu_{ik}, \sigma_{ik})$$

Things to remember

Probability basics

- Estimating parameters from data
 - Maximum likelihood (ML) maximize $P(\text{Data}|\theta)$
 - Maximum a posteriori estimation (MAP) maximize $P(\theta|\text{Data})$

• Naive Bayes $P(Y = y_k | X_1, \dots, X_n) \propto P(Y = y_k) \prod_i P(X_i | Y = y_k)$