将此路径顺时针旋转 90°, 180°, 270° 即可得到其它 3 条路径。把 $v_{11}, v_{18}, v_{81}, v_{88}$ 连上去,会产生 2 条回路 C_1, C_2 ,如图 7 所示(虽然这个结果和我们的预期还有差距,不过已经很接近了)。

解决方案: 找两条边, $(w_{11},w_{12})\in C_1, (w_{21},w_{22})\in C_2$ 且 $(w_{11},w_{21})\in G, (w_{12},w_{22})\in G$,则 $(C_1-(w_{11},w_{12}))\cup (C_2-(w_{21},w_{22}))\cup (w_{11},w_{21})\cup (w_{21},w_{22})$ 即为所得,图 8 为一个解。

8.16

证明: 必要性是显然的。下面证充分性。

反设 G 不是哈密顿图。由于 $G\cup (u,v)$ 是哈密顿图,所以存在哈密顿回路 $C\subseteq G\cup (u,v)$ 。显然, $(u,v)\in E(C)$ (否则就有 $C\subseteq G$,与假设 "G 不是哈密顿图"矛盾)。从 C 中删除边 (u,v),得到一条哈密顿通路 $\Gamma=v_1v_2\cdots v_n$,不妨设 $u=v_1,v=v_n$ 。注意到,对任意 $v_i(2\le i\le n-1)$,若 v_i 与 u 相邻,则 v_{i-1} 必不与 v 相邻(否则, $v_1v_2\cdots v_{i-1}v_nv_{n-1}\cdots v_i$ 就是 G 中的一条哈密顿