

ISOMAP

Advanced Institute for Artificial Intelligence – Al2

https://advancedinstitute.ai

Introdução

A técnica *Isometric Feature Mapping* (ISOMAP) é um algoritmo para redução não linear de dimensionalidade que baseia-se no arcabouço de **aprendizado de variedades** (*manifold* learning). A principal diferença desse método para outros do tipo PCA (KPCA) e LDA/MDA (KFDA) é que aqui construimos uma relação de adjacência entre as amostras.

<u>Ideia geral</u>: construir um grafo unindo os vizinhos mais próximos, calcular os menores caminhos entre cada par de vértices e encontrar um mapeamento para o plano que preserve essas distâncias.

 $\underline{\text{Hipótese}}$: caminhos mínimos em um grafo podem aproximar bem as distâncias geodésicas em espaços não Euclidianos (variedades).

Aprendizado de métricas: métodos lineares falham em aprender uma medida de distância adequada na presença de não linearidades nos dados.

O algoritmo do ISOMAP pode ser resumidos em três passos:

- Induzir o grafo k-nn a partir do conjunto de dados $\mathcal{X} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\}$, em que $\boldsymbol{x}_i \in \mathbb{R}^n$ e $y \in \mathcal{Y}$ tal que $\mathcal{Y} = \{\omega_1, \omega_2, \dots, \omega_c\}$ e k < n. Para amostras que não são vizinhas, utilizamos o valor $+\infty$ como distância entre elas.
- ② Criar a matriz de distâncias ponto a ponto $D \in \mathbb{R}^{m \times m}$ entre as amostras de \mathcal{X} . Desta forma, D_{ij} representa o menor caminho entre as amostras x_i e x_j .
- **3** Encontrar o conjunto de pontos $\hat{\mathcal{X}}$ no espaço \mathbb{R}^p tal que as distâncias originais sejam "preservadas". Esta etapa é realizada pela técnica MDS (*Multidimensional Scaling*).

Trata-se, portanto, de uma abordagem **global**, pois utiliza todas as amostras para calcular as distâncias. A técnica é baseada em um teorema que diz que caminhos mínimos em grafos k-nn são boas aproximações para as distâncias geodésicas (distâncias que respeitam as variedades).

Como podemos calcular essas distâncias geodésicas? Seja $\mathcal{G}=(\mathcal{V},\mathcal{E},w)$ um grafo tal que $\mathcal{V}=\{\boldsymbol{v}_1,\boldsymbol{v}_2,\ldots,\boldsymbol{v}_m\}$ e \mathcal{E} representam os conjuntos de vértices e arestas, respectivamente, e $w:\mathcal{V}\times\mathcal{V}\to\mathbb{R}^+$ uma função que calcula a distância entre dois nós. Note que os nós do grafos são compostos pelas amostras em \mathcal{X} , ou seja, $\boldsymbol{v}_i=\boldsymbol{x}_i$.

Temos que um caminho $P^*_{m{v}_1,m{v}_m}$ é dito ser ótimo se o seu custo C é o menor possível, ou seja:

$$C(P_{\mathbf{v}_1,\mathbf{v}_m}^*) = \sum_{i=1}^{m-1} w(\mathbf{v}_i,\mathbf{v}_{i+1}) = w(\mathbf{v}_2,\mathbf{v}_2) + w(\mathbf{v}_2,\mathbf{v}_3) + \ldots + w(\mathbf{v}_{n-1},\mathbf{v}_m),$$
(1)

em que $C(P_{\boldsymbol{v}_1,\boldsymbol{v}_m}^*)$ se aproxima da distância geodésica entre \boldsymbol{v}_1 e \boldsymbol{v}_m .

Uma técnica bastante conhecida para calcular caminhos mínimos em grafos é chamada de **Algoritmo de Dijkstra**. Existe um teorema que mostra que este algoritmo sempre calcula a distância geodésica entre um nó **fonte** e demais nós do grafo. Vejamos as seguinte definições:

- ullet $\lambda(oldsymbol{v})$: menor custo até o momento de alguma amostra s até $oldsymbol{v}$.
- ullet $\pi(oldsymbol{v})$: predecessor de $oldsymbol{v}$ no caminho de custo ótimo.
- Q: fila de prioridades dos vértices.

Vejamos, agora, o algoritmo do Dijkstra.

$$\begin{array}{l} \mathsf{Dijkstra}(\mathcal{G},\,s) \\ \mathsf{for} \; \mathsf{each} \; v \in \mathcal{V} \; \mathsf{do} \\ & \;\;\; \lambda(v) \leftarrow +\infty \\ & \;\;\; \pi(v) \leftarrow nil \\ & \;\;\; \lambda(s) \leftarrow 0 \\ & \;\;\; \pi(s) \leftarrow nil \\ & \;\;\; \mathcal{Q} \leftarrow \mathcal{V}, \; \mathcal{S} \leftarrow \emptyset \\ \mathsf{while} \; \mathcal{Q} \neq \emptyset \; \mathsf{do} \\ & \;\;\; u \leftarrow Remove(\mathcal{Q}) \\ & \;\;\; \mathcal{S} \leftarrow \mathcal{S} \cup u \\ & \;\;\; \mathsf{for} \; \mathsf{each} \; v \in \mathcal{N}(u) \; \mathsf{do} \\ & \;\;\; \mathsf{if} \;\; \lambda(v) > \lambda(u) + w(u,v) \\ & \;\;\; \mathsf{then} \\ & \;\;\; \lambda(v) \leftarrow \lambda(u) + w(u,v) \\ & \;\;\; \pi(v) \leftarrow u \end{array}$$

Multidimensional Scaling

Como fazemos o mapeamento para o espaço \mathbb{R}^k (k é escolhido pelo usuário)? Assim, dada a nossa matriz de distâncias geodésicas calculadas pelo algoritmo de Dijkstra, o objetivo é encontrar um novo mapeamento das amostras de tal forma que suas distâncias originais sejam preservadas. A solução para este problema é dada pela técnica MDS. Lembrando que a distância D_{ij} entre dois vetores x_i e x_j é dada por:

$$D_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|^2 = (\mathbf{x}_i - \mathbf{x}_j)^T (\mathbf{x}_i - \mathbf{x}_j).$$
 (2)

Note que a matriz de distâncias ${m D}$ já foi calculada anteriormente.

O método MDS baseia-se na solução de dois subproblemas:

- $oldsymbol{0}$ Encontrar a matriz $oldsymbol{B} \in \mathbb{R}^{m imes m}$ a partir de $oldsymbol{D}$ e
- $oldsymbol{\circ}$ Recuperar (mapear) as coordenadas dos novos pontos a partir de $oldsymbol{B}$.

Note que \boldsymbol{B} corresponde à matriz de produtos internos entre todas as amostras, ou seja, $B_{ij} = \boldsymbol{x}_i^T \boldsymbol{x}_j$. Vejamos, então, como resolver cada um dos subproblemas.

Subproblema 1: encontrar \boldsymbol{B} a partir de \boldsymbol{D} .

Hipótese: a média $\mu \in \mathbb{R}^n$ dos dados é nula, ou seja:

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i = 0.$$
 (3)

Assumimos essa hipótese pois, caso contrário, teremos infinitas soluções para o problema (diferentes versões do espaço que estão transladadas, por exemplo). Ademais, aplicando a operação distributiva na Equação 2, temos que:

$$D_{ij} = \boldsymbol{x}_i^T \boldsymbol{x}_i - 2 \boldsymbol{x}_i^T \boldsymbol{x}_j + \boldsymbol{x}_j^T \boldsymbol{x}_j. \tag{4}$$

A partir da matriz D, podemos calcular a média de uma coluna s da seguinte maneira:

$$M_{s} = \frac{1}{m} \sum_{i=1}^{m} D_{is} = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - 2\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{s} + \boldsymbol{x}_{s}^{T} \boldsymbol{x}_{s})$$

$$= \frac{1}{m} \left(\sum_{i=1}^{m} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - 2 \sum_{i=1}^{m} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{s} + \sum_{i=1}^{m} \boldsymbol{x}_{s}^{T} \boldsymbol{x}_{s} \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - \frac{2}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{s} + \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{s}^{T} \boldsymbol{x}_{s}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - 2\boldsymbol{x}_{s} \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i} + \frac{1}{m} m(\boldsymbol{x}_{s}^{T} \boldsymbol{x}_{s})$$

$$= \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} + \boldsymbol{x}_{s}^{T} \boldsymbol{x}_{s}.$$

$$(5)$$

Analogamente, podemos calcular a média da linha r da matriz D da seguinte maneira:

$$M_{r} = \frac{1}{m} \sum_{j=1}^{m} D_{rj} = \frac{1}{m} \sum_{j=1}^{m} (\mathbf{x}_{r}^{T} \mathbf{x}_{r} - 2\mathbf{x}_{r}^{T} \mathbf{x}_{j} + \mathbf{x}_{j}^{T} \mathbf{x}_{j})$$

$$= \frac{1}{m} \left(\sum_{j=1}^{m} \mathbf{x}_{r}^{T} \mathbf{x}_{r} - 2 \sum_{j=1}^{m} \mathbf{x}_{r}^{T} \mathbf{x}_{j} + \sum_{j=1}^{m} \mathbf{x}_{j}^{T} \mathbf{x}_{j} \right)$$

$$= \frac{1}{m} \sum_{j=1}^{m} \mathbf{x}_{r}^{T} \mathbf{x}_{r} - \frac{2}{m} \sum_{j=1}^{m} \mathbf{x}_{r}^{T} \mathbf{x}_{j} + \frac{1}{m} \sum_{j=1}^{m} \mathbf{x}_{j}^{T} \mathbf{x}_{j}$$

$$= \frac{1}{m} m(\mathbf{x}_{r}^{T} \mathbf{x}_{r}) - 2\mathbf{x}_{r} \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{j}^{T} \mathbf{x}_{j} = \mathbf{x}_{r}^{T} \mathbf{x}_{r} + \frac{1}{m} \sum_{j=1}^{m} \mathbf{x}_{j}^{T} \mathbf{x}_{j}.$$
(6)

Finalmente, podemos calcular a média \bar{M} dos elementos da matriz $m{D}$ da seguinte forma:

$$\bar{M} = \frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} D_{ij} = \frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} (\mathbf{x}_{i}^{T} \mathbf{x}_{i} - 2\mathbf{x}_{i}^{T} \mathbf{x}_{j} + \mathbf{x}_{j}^{T} \mathbf{x}_{j})$$

$$= \frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \frac{2}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} \mathbf{x}_{i}^{T} \mathbf{x}_{j} + \frac{1}{m^{2}} \sum_{j=1}^{m} \mathbf{x}_{j}^{T} \mathbf{x}_{j}$$

$$= \frac{1}{m^{2}} m \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \frac{2}{m^{2}} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \sum_{j=1}^{m} \mathbf{x}_{j} + \frac{1}{m^{2}} m \sum_{j=1}^{m} \mathbf{x}_{j}^{T} \mathbf{x}_{j}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - \frac{2}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \frac{1}{m} \sum_{j=1}^{m} \mathbf{x}_{j} + \frac{1}{m} \sum_{j=1}^{m} \mathbf{x}_{j}^{T} \mathbf{x}_{j}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{x}_{i} + \frac{1}{m} \sum_{j=1}^{m} \mathbf{x}_{j}^{T} \mathbf{x}_{j} = \frac{2}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{x}_{i}.$$
termos iguais

Podemos definir o elemento B_{ij} da matriz de produtos internos \boldsymbol{B} da seguinte forma por meio da Equação 4:

$$B_{ij} = \boldsymbol{x}_i^T \boldsymbol{x}_j = -\frac{1}{2} \left(D_{ij} - \boldsymbol{x}_i^T \boldsymbol{x}_i - \boldsymbol{x}^T \boldsymbol{x}_j \right). \tag{8}$$

Da Equação 6, podemos isolar o termo $-\boldsymbol{x}_r^T\boldsymbol{x}_r$. Tornando r=i, temos que:

$$-\mathbf{x}_{i}^{T}\mathbf{x}_{i} = \frac{1}{m}\sum_{j=1}^{m}\mathbf{x}_{j}^{T}\mathbf{x}_{j} - \frac{1}{m}\sum_{j=1}^{m}D_{ij}.$$
(9)

Da Equação 5, podemos isolar o termo $-\boldsymbol{x}_s^T\boldsymbol{x}_s$. Tornando s=j, temos que:

$$-\mathbf{x}_{j}^{T}\mathbf{x}_{j} = \frac{1}{m}\sum_{i=1}^{m}\mathbf{x}_{i}^{T}\mathbf{x}_{i} - \frac{1}{m}\sum_{i=1}^{m}D_{ij}.$$
(10)

Somando-se as Equações 9 e 10, temos que:

$$-\mathbf{x}_{i}^{T}\mathbf{x}_{i} + (-\mathbf{x}_{j}^{T}\mathbf{x}_{j}) = \frac{1}{m} \sum_{j=1}^{m} \mathbf{x}_{j}^{T}\mathbf{x}_{j} - \frac{1}{m} \sum_{j=1}^{m} D_{ij} + \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T}\mathbf{x}_{i} - \frac{1}{m} \sum_{i=1}^{m} D_{ij}$$

$$= -\frac{1}{m} \sum_{j=1}^{m} D_{ij} - \frac{1}{m} \sum_{i=1}^{m} D_{ij} + \frac{2}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T}\mathbf{x}_{i}$$
(11)

Da Equação 7, podemos escrever:

$$\frac{2}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{x}_{i} = \frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} D_{ij}.$$
(12)

16

Lembrando que o nosso objetivo é reescrever os termos b_{ij} da matriz de produtos internos \boldsymbol{B} utilizando D_{ij} .

Assim sendo, podemos reescrever a Equação 8:

$$B_{ij} = \mathbf{x}_{i}^{T} \mathbf{x}_{j} = -\frac{1}{2} \left(D_{ij} - \overline{\mathbf{x}_{i}^{T} \mathbf{x}_{i}} - \overline{\mathbf{x}^{T} \mathbf{x}_{j}} \right)$$

$$= -\frac{1}{2} \left(D_{ij} - \frac{1}{m} \sum_{j=1}^{m} D_{ij} - \frac{1}{m} \sum_{i=1}^{m} D_{ij} + \underbrace{\frac{2}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{x}_{i}}_{\text{Equação 12}} \right)$$

$$= -\frac{1}{2} \left(D_{ij} - \frac{1}{m} \sum_{j=1}^{m} D_{ij} - \frac{1}{m} \sum_{i=1}^{m} D_{ij} + \frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} D_{ij} \right)$$
(13)

2022 Mateus Roder - ISOMAP 17

Aplicando-se a operação distributiva na Equação 13, podemos criar a matriz $A \in \mathbb{R}^{m \times m}$ e, fazendo $A_{ij} = -\frac{1}{2}D_{ij}$, temos as seguintes definições:

- $\bar{A}_{i.}=rac{1}{m}\sum_{i=1}^{m}A_{ij}$ (média na linha i)
- $\bar{A}_{.j} = \frac{1}{m} \sum_{i=1}^{m} A_{ij}$ (média na coluna j)
- ullet $ar{M}=rac{1}{m^2}\sum_{i=1}^m\sum_{j=1}^m A_{ij}$ (média da matriz $oldsymbol{A}$)

Desta forma, podemos reescrever a Equação 13 da seguinte forma:

$$B_{ij} = -\frac{1}{2} \left(D_{ij} - \frac{1}{m} \sum_{j=1}^{m} D_{ij} - \frac{1}{m} \sum_{i=1}^{m} D_{ij} + \frac{1}{m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} D_{ij} \right)$$

$$= A_{ij} - \bar{A}_{i.} - \bar{A}_{.j} + \bar{M}.$$
(14)

Podemos mostrar, ainda, que:

$$B = HAH, (15)$$

em que

$$\boldsymbol{H} = \boldsymbol{I} - \frac{1}{m} \mathbf{1} \mathbf{1}^T, \tag{16}$$

tal que $I \in \mathbb{R}^{m \times m}$ é a matriz identidade e $1 \in \mathbb{R}^m$ é um vetor com todos os elementos iguais à 1.

Temos, então, que:

$$U = \mathbf{1}\mathbf{1}^{T} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix}$$
 (17)

tal que $U \in \mathbb{R}^{m \times m}$. Note que a Equação 15 nada mais é do que a forma matricial da Equação 14, ou seja:

$$B = HAH = \left(I - \frac{1}{m}U\right)A\left(I - \frac{1}{m}U\right) = \left(A - \frac{1}{m}UA\right)\left(I - \frac{1}{m}U\right)$$
$$= A - A\frac{1}{m}U - \frac{1}{m}UA + \frac{1}{m^2}UAU.$$
(18)

Conseguimos, então, resolver o subproblema 1, ou seja, encontrar a matriz B. Falta, agora, resolvermos o subproblema 2, ou seja, recuperar as coordenadas $\hat{x}_i \in \mathbb{R}^p$ a partir da matriz B, $\forall x_i \in \mathcal{X}$.

Como B é a matriz dos produtos internos, podemos reescrevê-la da seguinte maneira:

$$B = XX^T, (19)$$

em que $X \in \mathbb{R}^{m \times n}$ é a matriz dos pontos em \mathbb{R}^n . A matriz B é simétrica, positiva semidefinida e possui rank p=n, possuindo p autovalores não negativos (linhas/colunas linearmente independentes). A sua decomposição espectral é dada como segue:

$$B = V\Lambda V^T, \tag{20}$$

em que $\Lambda \in \mathbb{R}^{m \times m}$ é a matriz diagonal dos autovalores e $V \in \mathbb{R}^{m \times m}$ é a matriz dos autovetores.

Sem perda de generalidade, podemos considerar $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m$. Considerando apenas os p maiores autovalores, podemos reescrever a Equação 20 da seguinte forma:

$$B = V' \Lambda' V'^T, \tag{21}$$

em que $\Lambda' \in \mathbb{R}^{p \times p}$ é a matriz diagonal dos autovalores e $V' \in \mathbb{R}^{m \times p}$ denota a matriz dos autovetores. Da Equação 19, temos que:

$$\boldsymbol{B} = \hat{\boldsymbol{X}}\hat{\boldsymbol{X}}^{T} = \boldsymbol{V}'\boldsymbol{\Lambda}'\boldsymbol{V}'^{T} = \underbrace{\boldsymbol{V}'\boldsymbol{\Lambda}'^{1/2}}_{\hat{\boldsymbol{X}}}\widehat{\boldsymbol{\Lambda}'^{1/2}}\boldsymbol{V}'^{T},$$
(22)

em que ${f \Lambda}'^{1/2}$ equivale à aplicação da raiz quadrada em todos os elementos de ${f \Lambda}'$.

Desta forma, a matriz dos elementos projetados pode ser obtida da seguinte forma:

$$\hat{X} = V' \Lambda'^{1/2}. \tag{23}$$

Vejamos, agora, o algoritmo MDS.

- Construir o grafo k-nn e aplicar o algoritmo de Dijkstra m vezes mudando o nó fonte para calcular a matriz D.
- $\textbf{2} \; \mathsf{Faça} \; \boldsymbol{A} = -\frac{1}{2} \boldsymbol{D}.$
- $oldsymbol{3}$ Faça $oldsymbol{H} = oldsymbol{I} rac{1}{m} oldsymbol{1} oldsymbol{1}^T.$
- Calcule B = HAH.
- $oldsymbol{\circ}$ Encontrar os autovalores e autovetores de B.
- **6** Tomar os p autovetores associados aos p maiores autovalores de ${m B}$ para montar ${m V}'$ e ${m \Lambda}'$.
- Calcular $\hat{X} = V' \Lambda'^{1/2}$.

Vejamos algumas limitações do ISOMAP:

- Não é supervisionado.
- Em dados não convexos, ou seja, quando temos "buracos"nas variedades, o ISOMAP pode não funcionar adequadamente.