МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №6 по дисциплине «Искусственные нейронные сети»

Тема: Прогноз успеха фильмов по обзорам

Студентка гр. 7382	Еременко А.
Преподаватель	Жукова Н.А.

Санкт-Петербург 2020

Цель работы.

Прогноз успеха фильмов по обзорам (Predict Sentiment From Movie Reviews).

Порядок выполнения работы.

- 1. Ознакомиться с задачей регрессии.
- 2. Изучить способы представления текста для передачи в ИНС.
- 3. Достигнуть точность прогноза не менее 95%.

Требования к выполнению задания.

- 1. Построить и обучить нейронную сеть для обработки текста.
- 2. Исследовать результаты при различном размере вектора представления текста.
- 3. Написать функцию, которая позволяет ввести пользовательский текст (в отчете привести пример работы сети на пользовательском тексте).

Основные теоретические положения.

Датасет IMDb состоит из 50 000 обзоров фильмов от пользователей, помеченных как положительные (1) и отрицательные (0). Это пример бинарной или двуклассовой классификации, важный и широко применяющийся тип задач машинного обучения.

- 1. Рецензии предварительно обрабатываются, и каждая из них кодируется последовательностью индексов слов в виде целых чисел.
- 2. Слова в обзорах индексируются по их общей частоте появления в датасете. Например, целое число «2» кодирует второе наиболее частое используемое слово.
- 3. 50 000 обзоров разделены на два набора: 25 000 для обучения и 25 000 для тестирования.

Ход работы.

- 1. Была построена и обучена нейронная сеть для обработки текста. Код предоставлен в приложении А. С архитектурой:
 - Оптимизатор adam, скорость обучения = 0.001.
 - Epochs = 2, batch_size = 500, loss = binary_crossentropy
 - Мах кол. слов в обзоре 500, тах. размер словаря слов 10000.
 - Модель:

Данная архитектура дает точность: на тренировочных $\sim 89,1\%$, на валидационных $\sim 89\%$. Графики точности и ошибки предоставлены на рис. 1 и рис. 2 соответственно.

Рисунок 1 – График точности при размере словаря 10 тыс. обзоров

Рисунок 2 – График потерь при размере словаря 10 тыс. обзоров

2. Исследуем результаты при различном размере вектора представлении текста.

При изменении максимального размера словаря с 10 тыс. до 1 тыс.. Точность: на тренировочных упала $\sim 86,8\%$, на валидационных также уменьшилась $\sim 86\%$. Графики точности и ошибки предоставлены на рис. 3 и рис. 4 соответственно.

Рисунок 3 – График точности при размере словаря 1 тыс. обзоров

Рисунок 4 – График потерь при размере словаря 1 тыс. обзоров

При изменении максимального размера словаря до 500 тыс.. Точность: на тренировочных упала $\sim 83,3\%$, на валидационных также уменьшилась до $\sim 82,2\%$. Графики точности и ошибки предоставлены на рис. 5 и рис. 6 соответственно.

Рисунок 5 – График точности при размере словаря 500 тыс. обзоров

Рисунок 6 – График потерь при размере словаря 500 тыс. обзоров

Из графиков на рис. 1, 3, 5, можно сделать вывод, что точность падает с уменьшением размера словаря, так как мы убираем часть слов из обзоров, и оставляем только самые часто употребляемые. Из-за этого эмоциональная окраска некоторых обзоров меняется, поэтому сеть не может их точно классифицировать.

3. Напишем функцию, которая позволяет ввести пользовательский текст.

```
def gen_custom_x(custom_x, word_index):
    def get_index(a, index):
        new_list = a.split()
        for i, v in enumerate(new_list):
            new_list[i] = index.get(v)
        return new_list
    for i in range(len(custom_x)):
        custom_x[i] = get_index(custom_x[i], word_index)
    return custom_x
```

При помощи данной функции можно получить из массива строк (обзоров) массив представлений в виде индексов слов в imdb датасете и подготовленные для прогона через модель. График точности оценки фильма, при прогоне через написанный датасет из 5 обзоров (см. рис. 7), предоставлена на рис. 8.

```
custom_x = [
    "It is very boring film",
    "it's very good",
    "it's very boring",
    "fantastic film, wonderful casting, good job, creators",
    "beautiful picture, good scenario, it's amazing"
]
custom_y = [0., 1., 0., 1., 1.]
```

Рисунок 7 – Пользовательский текст

Рисунок 8 – График точности оценки фильма

Из графика на рис. 8 видно, что точность оценки фильма ~ 70%, т.е. 3/5.

Выводы.

В ходе работы была изучена задача классификация обзоров из датасета IMDB. Подобрана архитектура, дающая точность 89,1%. Проведя исследование, было выяснено, что при уменьшении максимального размера словаря было точность уменьшается, что логично, так как мы убираем часть «словарного запаса». Функция для подготовки вручную введенных обзоров, продемонстрировала точность в ~70%

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
import matplotlib.pyplot as plt
import numpy as np
from keras import Sequential, regularizers
from keras.datasets import imdb
from keras.layers import Dense, Dropout
from keras.optimizers import Adam
(X_train, y_train), (X_test, y_test) = imdb.load_data()
(training data, training targets), (testing data, testing targets) =
imdb.load_data(num_words=500)
data = np.concatenate((training data, testing data), axis=0)
targets = np.concatenate((training_targets, testing_targets), axis=0)
index = imdb.get word index()
reverse index = dict([(value, key) for (key, value) in index.items()])
decoded = " ".join( [reverse index.get(i - 3, "#") for i in data[0]] )
print(decoded)
def plot loss(loss, v loss):
    plt.figure(1, figsize=(8, 5))
    plt.plot(loss, 'b', label='train')
    plt.plot(v loss, 'r', label='validation')
    plt.title('Loss')
    plt.ylabel('loss')
    plt.xlabel('epochs')
    plt.legend()
    plt.show()
    plt.clf()
def plot_acc(acc, val_acc):
    plt.plot(acc, 'b', label='train')
    plt.plot(val acc, 'r', label='validation')
    plt.title('accuracy')
    plt.ylabel('accuracy')
    plt.xlabel('epochs')
```

```
plt.legend()
    plt.show()
    plt.clf()
def vectorize(sequences, dimension=10000):
    results = np.zeros((len(sequences), dimension))
    for i, sequence in enumerate(sequences):
        results[i, sequence] = 1
    return results
custom_x = [
        "It is very boring film",
        "it's very good",
        "it's very boring",
        "fantastic film, wonderful casting, good job, creators",
        "beautiful picture, good scenario, it's amazing"
1
custom_y = [0., 1., 0., 1., 1.]
def gen custom x(custom x, word index):
    def get_index(a, index):
        new list = a.split()
        for i, v in enumerate(new list):
            new_list[i] = index.get(v)
        return new_list
    for i in range(len(custom x)):
        custom_x[i] = get_index(custom_x[i], word_index)
    return custom x
custom_x = gen_custom_x(custom_x, imdb.get_word_index())
for index_j, i in enumerate(custom_x):
    for index, value in enumerate(i):
        if value is None:
            custom x[index j][index] = 0
data = vectorize(data)
targets = np.array(targets).astype("float32")
custom_y = np.asarray(custom_y).astype("float32")
```

```
test x = data[:10000]
test_y = targets[:10000]
train x = data[10000:]
train y = targets[10000:]
model = Sequential()
model.add(Dense(50, activation="relu", input_shape=(10000,)))
model.add(Dropout(0.2, noise_shape=None, seed=None))
model.add(Dense(50,
                                                    activation="linear",
kernel_regularizer=regularizers.12()))
model.add(Dropout(0.5, noise shape=None, seed=None))
model.add(Dense(100,
                                                      activation="relu",
kernel_regularizer=regularizers.12()))
model.add(Dropout(0.5, noise shape=None, seed=None))
model.add(Dense(50, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
model.compile(Adam(),
                                             loss='binary crossentropy',
metrics=['accuracy'])
history = model.fit(
history = model.fit(
            train x,
            train y,
            batch size=500,
            epochs=2,
            verbose=1,
            validation data=(test x, test y)
        )
H = history
plot_loss(H.history['loss'], H.history['val_loss'])
plot_acc(H.history['accuracy'], H.history['val_accuracy'])
a, acc = model.evaluate(test_x, test_y)
print('Test', acc)
custom_x = vectorize(custom_x)
```

```
custom_loss, custom_acc = model.evaluate(custom_x, custom_y)
print('custom_acc:', custom_acc)
preds = model.predict(custom_x)
plt.figure(3, figsize=(8,5))
plt.title("Custom dataset predications")
plt.plot(custom_y, 'r', marker='v', label='truth')
plt.plot(preds, 'b', marker='x', label='pred')
plt.legend()
plt.show()
plt.clf()ccuracy'])
```