Примеры решения задач линейного программирования симплекс-методом

Александр Катруца

Здесь использованы материалы из книги [1].

1. Решить задачу табличным симплекс методом:

$$\min_{\mathbf{x}} -10x_1 - 12x_2 - 12x_3$$
s.t. $x_1 + 2x_2 + 2x_3 \le 20$
 $2x_2 + x_2 + 2x_3 \le 20$
 $2x_1 + 2x_2 + x_3 \le 20$
 $x_{1,2,3} \ge 0$

Решение: по виду задачи ясно, что она не в канонической форме. Введём дополнительные переменные и запишем её в канонической форме:

$$\min_{\mathbf{x}} -10x_1 - 12x_2 - 12x_3$$
s.t. $x_1 + 2x_2 + 2x_3 + x_4 = 20$
 $2x_2 + x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + x_3 + x_6 = 20$
 $x_{1,2,3,4,5,6} \ge 0$

Заметим, что матрица $\mathbf{A} \in \mathbb{R}^{m \times n}$, где m=3 и n=6. Теперь нужно найти угловую точку допустимого множества, то есть такую точку, чтобы она лежала в множестве и существовало множество индексов $\mathcal{B} \subset \{1,\ldots,n\}$ мощностью $|\mathcal{B}|=m=3$, что матрица из столбцов матрицы \mathbf{A} с индексами из множества \mathcal{B} была невырождена, и координаты угловой точки с индексами не из множества \mathcal{B} были нулевыми. В данном случае достаточно очевидно, что $\mathbf{x}_0=(0,0,0,20,20,20), \mathcal{B}_0=\{4,5,6\}$ и матрица базиса $\mathbf{B}_0=\mathbf{I}_m$ невырождена. Если начальная угловая точка не так очевидна, необходимо выполнить двухфазный симплекс-метод или \mathbf{M} -метод. Такой пример будет приведён ниже.

Теперь составим таблицу симплекс-метода, модифицируя которую получим решение поставленной задачи.

Список литературы

[1] Dimitris Bertsimas and John N. Tsitsiklis. *Introduction to linear optimization*, Belmont, MA: Athena Scientific, 1997, 5th edition

	x_1	x_2	x_3	x_4	x_5	x_6
$-\mathbf{c}_{\mathcal{B}_0}^{T}\mathbf{x}_{\mathcal{B}_0}=0$	-10	-12	-12	0	0	0
$x_4 = 20$	1	2	2	1	0	0
$x_5 = 20$	2	1	2	0	1	0
$x_6 = 20$	2	2	1	0	0	1