Problem Set 0 Solution

Hyungmo Gu

March 10, 2020

Question 1

• Solution complete. Please see above

Question 2

- CSC 165
- Mathematical Expression and Reasoning for Computer Science
- David Liu

Question 3

•
$$S_1 = \{ x \mid x \in \mathbb{Z}, x < 30 \}$$

 $S_2 = \{ 0, 1, 9, 10, 11, 19, 20, 21, 29, 30, 31 \dots \}$
So,
 $S_1 \cap S_2 = \{ 0, 1, 9, 10, 19, 20, 21, 29 \}$

Question 4

p	q	r	$ \neg q$	$p \vee \neg q$	$p \iff r$	$(p \lor \neg q) \Rightarrow (p \iff r)$
Т	T	Τ	F	Т	Т	T
Τ	$\mid T \mid$	F	F	T	F	\mathbf{F}
Τ	F	Τ	Γ	Т	Γ	${ m T}$
F	$\mid T \mid$	Τ	F	F	F	${ m T}$
T	F	F	Γ	T	F	F
F	$\mid T \mid$	F	F	F	Γ	${ m T}$
F	F	Т	Γ	T	F	F
F	F	F	Γ	T	Γ	T

Question 5

i)

$$\sum_{i=0}^{n-1} (2i+5) = 5n + \frac{2n \cdot (n-1)}{2}$$

$$\sum_{i=0}^{n-1} (2i+5) = 5n + \frac{2n^2 - 2n}{2}$$

$$\sum_{i=0}^{n-1} (2i+5) = n^2 + 5n - n$$

$$\sum_{i=0}^{n-1} (2i+5) = n^2 + 4n$$

ii) Since we know $\sum_{i=0}^{n-1} (2i+5) = n^2 + 4n$ and want to find smallest positive integer n satisfying $\sum_{i=0}^{n-1} (2i+5) \ge 165165$,

$$n^{2} + 4n \ge 165165$$

$$n^{2} + 4n + 4 \ge 165169$$

$$(n+2)^{2} \ge 165169$$

$$n \ge \sqrt{165169} - 2$$

$$n \ge 404.409891612$$

$$n \ge 405$$