Abou Bakr Belkaïd University-University of Tlemcen Faculty of Science Department of Informatic

Worksheet $N^{\circ}2$ The complex numbers LMD 1st year 2024-2025

Exercise 1

1. Write in the "algebraic" form (a+ib) the following complex numbers

$$\frac{1}{2+2i}$$
, $i(1+i)(1-i)^2$, $\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$

2. Write in the polar $(r(\cos\theta + i\sin\theta))$ and the exponential polar form $(re^{i\theta})$, the following complex numbers and there conjugate

$$\frac{1}{2+2i}$$
, $\sqrt{3}+i$, $-1+i\sqrt{3}$ (Optional).

3. Prove that

Prove that
$$\frac{\sqrt{2}(\cos(\frac{\pi}{12}) + i\sin(\frac{\pi}{12}))}{1+i} = \frac{\sqrt{3} - i}{2}.$$

$$(1-i) \times (\cos(\frac{\pi}{5}) + i\sin(\frac{\pi}{5})) \times (\sqrt{3} - i) = 2\sqrt{2} \times (\cos(\frac{13\pi}{60}) - i\sin(\frac{13\pi}{60})).$$
 (Optional)

4. Linéarize the following expressions $(\cos x)^3$ and $((\sin x)^4$ (Optional)).

Exercise 2

Let $a = \sqrt{3} + i$ and $b = \sqrt{3} - 1 + i(\sqrt{3} + 1)$ be two complex numbers,

- 1. Check that b = (1+i)a.
- 2. Deduce that $|b| = 2\sqrt{2}$ and $\arg(b) = \frac{5\pi}{12}$ [2 π].
- 3. Deduce from the above that: $\cos(\frac{5\pi}{12}) = \frac{\sqrt{6} \sqrt{2}}{4}$.

Exercise 3

1. Find the squar roots for a complex number

$$-1, \quad i, \quad 1+i, \quad \frac{\sqrt{3}+i}{2} \quad (\textbf{Optional})$$

2. Find $z \in \mathbb{C}$ such that

$$z^{2}-(3+4i)z-1+5i=0,$$
 $z^{2}=\frac{\sqrt{3}}{2}+i\frac{1}{2},$ $z^{3}+8=0,$ $z^{4}+i=0.$

1

Exercise 4

1. Let 'f' be a function defined from $\mathbb C$ to $\mathbb C$, by

$$\forall z \in \mathbb{C}, \qquad z \neq -i, \qquad f(z) = \frac{1-z}{1-iz}$$

- (a) Find $z \in \mathbb{C}$ such that $f(z) \in \mathbb{R}$, and $f(z) \in i \times \mathbb{R}$.
- 2. (**Optional**) Determine in each case, the set of points M(x, y), with affix z = x + iy such that:

$$|z - (2 - i)| = \sqrt{2},$$
 $|z - 1 - 2i| = |z + 2 - i|,$ $|\overline{z} - 2i| = |z + 2|.$