rametpts.	Name:(1p	ts.`)
-----------	----------	------	---

CE 3372 Water Systems Design Fall 2016 ¹

1. ((1	pts.)	The	hydr	aulic	radius	in	\mathbf{a}	conduit	containing	a	flowing	liquid	is
------	----	-------	-----	------	-------	--------	----	--------------	---------	------------	---	---------	--------	----

- (A) the mean radius from the center of flow to the wetted side of the conduit
- (B) the ratio of the cross-sectional area of the conduit and the wetted perimeter
- (C) the ratio of the wetted perimeter and the cross-sectional area of the conduit
- (D) the ratio of the cross-sectional area of flow and the wetted perimeter
- 2. (5 pts.) The rational runoff coefficient for a 14.31 acre parcel property is 0.85. The rainfall intensity is 6.54 inches per hour. The peak discharge from this property is anticipated to be about
 - (A) 23.82 cfs
 - (B) 28.41 cfs
 - (C) 33.01 cfs
 - (D) 48.18 cfs
 - (E) 57.86 cfs
 - (F) 65.90 cfs
 - (G) 80.18 cfs
- 3. (8 pts.) A storm sewer (reinforced concrete pipe) is 400-feet long and 36-inches in diameter. The sewer flows from a junction box (invert elevation 101.00 feet) to a lift station sump (invert elevation 100.00 feet). Assuming Manning's roughness coefficient is 0.015 for all flow depths, the sewer maximum flow capacity without surcharge is about
 - (A) 17.8 cfs
 - (B) 19.2 cfs
 - (C) 20.6 cfs
 - (D) 22.1 cfs
 - (E) 28.9 cfs
 - (F) 31.2 cfs
 - (G) 33.4 cfs
 - (H) 35.9 cfs

REVISION A:: Page 1 of 17

¹For partial credit show work

4. (8 pts.) What is the discharge in the storm sewer above if it is flowing at $\frac{3}{4}$ full?

- (A) $Q_{75\%} = 16.2 \text{ cfs}$
- (B) $Q_{75\%} = 18.7 \text{ cfs}$
- (C) $Q_{75\%} = 22.6 \text{ cfs}$
- (D) $Q_{75\%} = 23.6 \text{ cfs}$
- (E) $Q_{75\%} = 24.3 \text{ cfs}$
- (F) $Q_{75\%} = 26.4 \text{ cfs}$
- (G) $Q_{75\%} = 29.9 \text{ cfs}$
- (H) $Q_{75\%} = 30.4 \text{ cfs}$
- 5. (11 pts.) A pipe with a diameter of 2.4 meters is depicted in Figure 1. The pipe is flowing partially full.

Figure 1: Circular channel flowing partially full.

What is the hydraulic radius of flow in the circular section?

- (A) 0.21 m
- (B) 0.44 m
- (C) 1.30 m
- (D) 1.39 m
- (E) 1.44 m
- (F) 1.68 m
- (G) 1.80 m
- (H) 2.80 m

6. (12 pts.) A smooth concrete channel (n=0.012) is depicted in Figure 2. The channel's dimensionless slope in the direction of flow is 0.005. If the flow width at the surface is 2-meter, what is the flow rate in the channel using Manning's equation?

Figure 2: Triangular channel.

- (A) 0.24 cms (cubic meters per second)
- (B) 0.31 cms
- (C) 3.52 cms
- (D) 3.91 cms
- (E) 4.41 cms
- (F) 4.45 cms
- (G) 5.83 cms
- (H) 6.66 cms

Name:_____(1pts.)

7. (19 pts.) A 24-inch diameter sewer pipe, with Manning's n of 0.015 is laid on slope $S_0 = 0.01$ as shown in Figure 3.

Figure 3: Sewer pipe sketch

Use Manning's equation and the depth-area, and the depth-perimeter equations on the equation sheet to complete Table 1.

Table 1: Depth-Area, Depth-Perimeter, Depth-Hyd. Radius, and Discharge for Circular Sewer

y(ft)	$A(ft^2)$	P_w (ft)	R_h (ft)	$Q(ft^3/sec)$
1.00				
2.00				

REVISION A :: Page 4 of 17

8. (8 pts.) Figure 4 is a sketch of a 24 inch line with Manning's n of 0.015, on a slope of 0.01, connecting to a 48 inch line (also at 0.01) at a junction box. The flowlines (invert elevations) match at the junction box. The downstream boundary conditions cause the flow depth in the 48-inch line to be 12-inches deep.

Figure 4: Sewer pipes connected at a junction box. Matching flow line elevations.

- (A) The likely flow depth in the 24 inch line (at the junction box) is
 - i) 12.0-inches
 - ii) 18.0-inches
 - iii) 24.0-inches
 - iv) 36.0-inches
 - v) 48.0-inches
- (B) The discharge in the 24 inch line, assuming normal flow at the flow depth in the junction box is
 - i) 0.00 cfs
 - ii) 2.45 cfs
 - iii) 4.92 cfs
 - iv) 9.83 cfs
 - v) 19.66 cfs
 - vi) 39.32 cfs

Name: (1pts	(1pts.)
-------------	---------

- (C) The full-pipe discharge in the 24 inch line, assuming normal flow, is
 - i) 0.00 cfs
 - ii) 2.45 cfs
 - iii) 4.92 cfs
 - iv) 9.83 cfs
 - v) 19.66 cfs
 - vi) 39.32 cfs
- (D) What is the unused flow capacity (in cfs) in the 24 inch line?

REVISION A :: Page 6 of 17

9. (8 pts.) Figure 5 is a sketch of a 24 inch line with Manning's n of 0.015, on a slope of 0.01, connecting to a 48 inch line (also at 0.01) at a junction box. The soffit(crown) elevations match at the junction box. The downstream boundary conditions cause the flow depth in the 48 line to be 36 inches deep.

Figure 5: Sewer pipes connected at a junction box. Matching soffit elevations.

- (A) The likely flow depth in the 24 inch line (at the junction box) is
 - i) 12.0-inches
 - ii) 18.0-inches
 - iii) 24.0-inches
 - iv) 36.0-inches
 - v) 48.0-inches
- (B) The discharge in the 24 inch line, assuming normal flow at the flow depth in the junction box is
 - i) 0.00 cfs
 - ii) 2.45 cfs
 - iii) 4.92 cfs
 - iv) 9.83 cfs
 - v) 19.66 cfs
 - vi) 39.32 cfs

Name:(1pts

- (C) The full-pipe discharge in the 24 inch line, assuming normal flow, is
 - i) 0.00 cfs
 - ii) 2.45 cfs
 - iii) 4.92 cfs
 - iv) 9.83 cfs
 - v) 19.66 cfs
 - vi) 39.32 cfs
- (D) What is the unused flow capacity (in cfs) in the 24 inch line?

REVISION A :: Page 8 of 17

10. (8 pts.) Figure 6 is a sketch of a 24 inch line with Manning's n of 0.015, on a slope of 0.01, connecting to a 48 inch line (also at 0.01) at a junction box. The soffit(crown) elevations match at the junction box. The downstream boundary conditions cause the flow depth in the 48 line to be 36 inches deep.

Figure 6: Sewer pipes connected at a junction box. Matching flow line elevations.

- (A) The likely flow depth in the 24 inch line (at the junction box) is
 - i) 12.0-inches
 - ii) 18.0-inches
 - iii) 24.0-inches
 - iv) 36.0-inches
 - v) 48.0-inches
- (B) The discharge in the 24 inch line, assuming normal flow at the flow depth in the pipe is
 - i) 0.00 cfs
 - ii) 2.45 cfs
 - iii) 4.92 cfs
 - iv) 9.83 cfs
 - v) 19.66 cfs
 - vi) 39.32 cfs
 - vii) 49.32 cfs

Name: (1pts	(1pts.)
-------------	---------

- (C) The full-pipe discharge in the 24 inch line, assuming normal flow, is
 - i) 0.00 cfs
 - ii) 2.45 cfs
 - iii) 4.92 cfs
 - iv) 9.83 cfs
 - v) 19.66 cfs
 - vi) 39.32 cfs
 - vii) 49.32 cfs
- (D) What is the unused flow capacity (in cfs) in the 24 inch line?

REVISION A :: Page 10 of 17

11. (46 pts.) An EPA-NET simulation model for a reservoir-pump-network was constructed and operated for four (4) different operational scenarios. Figure 7 is a depiction of the network. The numbers next to the nodes are Node_ID values in the reports that follow, and the numbers next to the pipes are the Link_ID values. The network is supplied from a reservoir through a booster pump, both are depicted on Figure 7.

Figure 7: EPA-NET system topology.

Figure 8 is the a portion of the summary report for simulation 1. Figure 9 is the a portion of the summary report for simulation 2. Figure 10 is the a portion of the summary report for simulation 3. Figure 11 is the a portion of the summary report for simulation 4.

These four simulation represent different demand scenarios for the same system.

Interpret these reports, to answer the following questions:

(a) Complete the table below. Q_{pump} is the discharge in gallons-per-minute through the pump station, H_{Supply} is the head at the supply reservoir, H_{Node2} is the head at Node 2, and ΔH_{pump} is the added head supplied by the pump.

Table 2: Pump Discharge and Supplied Head								
Simulation #	Q_{pump}	H_{Supply}	H_{Node2}	ΔH_{pump}				
1								
2								
3								
4								

REVISION A :: Page 11 of 17

(b) Complete the table below. Q_{pump} is the discharge in gallons-per-minute through the pump station, $\Delta H_{Node2-to-5}$ is head loss in the system from Node 2 to Node 5.

Table 3: System Discharge and Head Loss

Simulation #	Q_{pump}	H_{Node2}	H_{Node5}	$\Delta H_{Node2-to-5}$
1				
2				
3				
-				
4				

(c) If the pump performance curve has the mathematical structure: $H_{pump} = H_{shutoff} - K_{pipe} \times Q^2$, estimate the values of $H_{shutoff}$ and K_{pipe} .

(d) If the system frictional loss curve has the mathematical structure: $H_{pipe} = K_{loss} \times Q^2$, estimate the value of K_{loss}

(e) What effect would removing the pipe joining nodes 3 and 4 have on the system performance? Explain your reasoning.

(f) Estimate the flow distribution and head losses the the system if the the pipe joining nodes 3 and 4 are removed, and the pipe joining node 4 and 5 is removed if the nodal demands are the same as SIMULATION 2.

REVISION A :: Page 13 of 17

Page 1					016 5:35:54 PM					
*	******	EPAN		******	_					
*	Плудка			- 17	*					
*	· ·	Hydraulic and Water Quality Analysis for Pipe Networks								
*	Allaly	Version 2	-	•	*					
	******			******	·					
Input File: e Link - Node T	xam1-gpm.net									
Link	 Start	End		Length	Diameter					
ID	Node	Node		ft	in					
1	2	3		3280	5					
2	3	5		3280	5					
3	2	4		3280	5					
4	4	5		3280	5					
5	3	4		1000	5					
6	1	2		#N/A	#N/A Pump					
Node Results:										
Node	Demand	Head	Pressure	Quality						
ID	GPM	ft	psi							
2	0.00	65.60	28.42	0.00						
3	0.00	65.60	28.42	0.00						
4	0.00	65.60	28.42	0.00						
5	0.00	65.60	28.42	0.00						
1	0.00	0.00	0.00	0.00	Reservoir					
Link Results:										
Link	Flow	VelocityU	nit Headlos	s Stat	tus					
ID	GPM	fps	ft/Kft							
1	0.06	0.00	0.00	Open						
2	-0.06	0.00	0.00	Open						
3	-0.06	0.00	0.00	Open						
4	0.06	0.00	0.00	Open						
5	0.11	0.00	0.00	Open						
6	0.00	0.00	-65.60	Open	Pump					

Figure 8: EPA-NET Summary Report, Simulation #1

REVISION A :: Page 14 of 17

Page 1				10/28/20	016 5:34:44 PM
******	******			******	*********
*		E P A N			:
*	•		ater Quality	I	:
*	Analy		pe Networks		:
*		Version 2	.0		
********** Input File: e Link - Node T		******	******	******	******
Link	Start	End		Length	Diameter
ID	Node	Node		ft	in
1	2	3		3280	5
2	3	5		3280	5
3	2	4		3280	5
4	4	5		3280	5
5	3	4		1000	5
6	1	2		#N/A	#N/A Pum
Node Results:					
Node	Demand	Head	Pressure	Quality	
ID	GPM	ft	psi		
2	0.00	61.46	26.63	0.00	
3	15.78	60.87	26.37	0.00	
4	15.78	60.87	26.37	0.00	
5	15.78	60.78	26.34	0.00	
1	-47.34	0.00	0.00	0.00	Reservoir
ink Results:					
Link	Flow	VelocityU	nit Headloss	s Stat	tus
ID	GPM	fps	ft/Kft 		
1	23.67	0.39	0.18	Open	
2	7.89	0.13	0.03	Open	
3	23.67	0.39	0.18	Open	
4	7.89	0.13	0.03	Open	
5	0.00	0.00	0.00	Open	
6	47.34	0.00	-61.46	_	Pump

Figure 9: EPA-NET Summary Report, Simulation #2

REVISION A :: Page 15 of 17

Page 1	****** *	******* *	· ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		016 5:35:15 PM			
*	*****	E P A N		• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	*			
*	Undra		ater Qualit	77	*			
*	· · · · · · · · · · · · · · · · · · ·			•	*			
*	marysts for ripe networks							
*******	*********			******				
Input File: ex								
Link - Node Ta								
Link	Start	End		Length	Diameter			
ID	Node	Node		ft	in			
1	2	3		3280	5			
2	3	5		3280	5			
3	2	4		3280	5			
4	4	5		3280	5			
5	3	4		1000	5			
6	1	2		#N/A	#N/A Pump			
Node Results:								
Node	Demand	Head	Pressure	Quality				
ID	GPM	ft	psi					
2	0.00	56.15	24.33	0.00				
3	31.56	54.01	23.40	0.00				
4	31.56	54.01	23.40	0.00				
5	31.56	53.72	23.28	0.00				
1	-94.68	0.00	0.00	0.00	Reservoir			
Link Results:								
Link	Flow	VelocitvU	nit Headlos	s Sta	tus			
ID		fps						
1	47.34	0.77	0.65	Open				
2	15.78	0.26	0.09	Open				
3	47.34	0.77	0.65	Open				
4	15.78	0.26	0.09	Open				
5	0.00	0.00	0.00	Open				
6	94.68	0.00	-56.15	Open	Pump			

Figure 10: EPA-NET Summary Report, Simulation #3

REVISION A :: Page 16 of 17

Page 1	· ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	. ᠰ ᠰ ᠰ ᠰ ᠰ ᠰ ᠰ ᠰ ᠰ	· ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		016 5:33:57 PM				
*	• * * * * * * * * * * * * * * * * * * *	E P A N		• • • • • • • • • • • • • • • • • • •	*				
*	Hydra	Hydraulic and Water Quality							
*	Hydraulic and Water Quality * Analysis for Pipe Networks *								
*	Andry	Version 2	_	,	*				
********	*********			k******					
Input File: exa	m1-gpm.net								
Link - Node Tab									
Link	Start	End		Length	Diameter				
ID	Node	Node		ft	in				
1	2	3		3280	5				
2	3	5		3280	5				
3	2	4		3280	5				
4	4	5		3280	5				
5	3	4		1000	5				
6	1	2		#N/A	#N/A Pump				
Node Results:									
Node	Demand	Head	Pressure	Quality					
ID	GPM	ft	psi						
2	0.00	44.34	19.21	0.00					
3	47.34	39.73	17.22	0.00					
4	47.34	39.73	17.22	0.00					
5	47.34	39.14	16.96	0.00					
1	-142.02	0.00	0.00	0.00	Reservoir				
Link Results:									
Link	Flow	VelocityU	nit Headlos	ss Stat	tus				
ID	GPM	fps	ft/Kft						
1	71.01	1.16	1.41	Open	 _				
2	23.67	0.39	0.18	Open					
3	71.01	1.16	1.41	Open					
4	23.67	0.39	0.18	Open					
5	0.01	0.00	0.00	Open					
6	142.02	0.00	-44.34	Open	Pump				

Figure 11: EPA-NET Summary Report, Simulation #4

REVISION A :: Page 17 of 17