feneralizaciones de modelo de Boltzmman $h'(\tau) = \sum_{j=1}^{\infty} W_{ij} S_{j}(\tau)$ Si = ± 1 Wij = Wji $P(S_i(t+1)=t1)=e^{t-\beta h_i(t)}$ VISIBLES e Bhitt) + e-Bhit) n unidades arsives to unidodes ocultos OCUITAGE el objetime es que les estades de los neuronas visibles una distribución de procobicidod P(151) = e-BE(951) 2 = \(\sigma \) e - B \(\varphi \) \(1 \) \ E(151) = 1 [Wij S; Sj $< \times (151) > = \sum \times (15:1) = (55:1)$ cuse of funcion que dependo de estado de ristema induomos estodos por xp: esto de testal S; N neuronas visitues 2^{N} estodos $\longrightarrow x = 1,...,2^{N}$ Exp = - 1 & Wij Si Sj k neuronos acultos 2 ª esto dos - p = 1, ..., 2 k $P(|S|) \longrightarrow P^{AP} = e^{-E_{AP}/T}$ $\sum_{\alpha, D} e^{-E_{AP}/T}$ Pa = D Pap = D e Exp/7 queremos que rea es mos porecida porible a una prot objetiro ra De quiere encontros wij / Px = Tx

En el espocio de proeto. evoy una dist que consieve minimizas: $D = \sum_{\alpha} R_{\alpha} \log \left(\frac{R_{\alpha}}{P_{\alpha}} \right)$ Di Ra = Pa > D=0 DEO $\log x \ge 1 - \frac{1}{x}$ $\omega g \times = \int_{1}^{2} \frac{d\tau}{t} = 1 - \frac{1}{2}$ decreciente con voeos maximom =) $\log \left(\frac{Rn}{\rho_A}\right) = 1 - \frac{\rho_A}{RA}$ $=) D \geq \sum_{\alpha} R_{\alpha} \left(1 - \frac{P_{\alpha}}{R_{\alpha}}\right)$ $= \sum_{\alpha} R_{\alpha} - \sum_{\beta} P_{\alpha}$ = 1 = 1(son proeolicidodes) \exists D > 0 $\nabla M^{ij} = -\sqrt{\frac{9M^{ij}}{9D}}$ aprendizaje = - 1 I Ra 2Pd d Pd OWij $= \sum_{p} \left(\frac{1}{T}\right) e^{-E_{A}p/T}$ Si de Sjap = 1 [[Pap 5, 5, 5] - Pu [Pap 5, 5]

almoce nomiento	de securcia
	conor es objetos estáticos
	ente de misita hoy endencia de que si potuenes ordenados : es mos sociel memorizar
Wij = 1 2	x; Mx, W + D D ti M+1 x; M
Pongomos w	mo condinicial X ¹
S j (0) = Xj	1
S:(1) = 0	g (I wij Sj (0))
= 00	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$y(x_1^2 + R_+ x_1^2 + R')$
= n	g (xi ¹ + dxi ² + R") Hopfield manual
	$\sum_{i} \lambda < 1 \Rightarrow 2g(x_i^{-1} + \lambda x_i^{-2}) = x_i^{\frac{1}{2}}$
	$d>1=)$ $g(x_i^1+dx_i^2)=x_i^2$ en coda pore de tiempre re posa de un estado
(MI) m	a otro
	a association
	la recurria os demositado rápida
	no voy tiempo pora conegir eos