

Universidad Tecnológica de la Mixteca

Clave DGP 509394

Ingeniería en Diseño

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Métodos Numéricos		

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto Semestre	035045	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer las técnicas para resolver problemas matemáticos, realizando algoritmos y programación funcional, con el fin de interpretar sus resultados.

TEMAS Y SUBTEMAS

1. Introducción a los métodos numéricos

- 1.1. Introducción breve al software que se va a utilizar en el curso.
 - 1.1.1. Sintaxis del programa.
 - 1.1.2. Representación gráfica 2D y 3D.
- 1.2. Aproximación numérica a la solución real.
 - 1.2.1. Errores de propagación.
 - 1.2.2. Errores de redondeo: error absoluto, error relativo, error porcentual.
 - 1.2.3. Series de Taylor y errores de truncamiento.
- 1.3. Problemas de aplicación.

2. Soluciones de ecuaciones algebraicas y no lineales

- 2.1. Método iterativo
- 2.2. Método del punto fijo.
- 2.3. Método de la bisección.
- 2.4. Método de Newton Raphson
- 2.5. Método de la secante.
- 2.6. Método de la falsa posición.
- 2.7. Método híbrido: bisección, Newton.

3. Solución de sistemas de ecuaciones lineales y no lineales

- 3.1. Solución de ecuaciones lineales.
 - 3.1.1. Métodos directos
 - 3.1.1.1 Método de Cramer (con determinantes)
 - 3.1.1.2. Eliminación Gausiana. (con o sin pivoteo
 - 3.1.1.2 Gauss-Jordan
 - 3.1.1.4 Inversión de matrices
 - 3.1.1.5 Choleski
 - 3.1.1.6 Doolitle
- 3.2 Soluciones de ecuaciones no lineales.
 - 3.2.1 Newton clásico.
 - 3.2.2 Newton modificado.
- 3.3 Problemas de aplicación

4. Interpolación y ajuste a curvas

- 4.1. Interpolación
 - 4.1.1. directa.
 - 4.1.2. Newton
- 4.2. Ajustes a curvas con mínimos cuadrados
 - 4.2.1. Introducción
 - 4.2.2. Modelo polinomial (recta, parábola, cúbica, etc)
 - 4.2.3. Modelo exponencial $(y=ae^{bx})$
 - 4.2.4. Modelo de potencia $(y=abx^{bx})$
 - 4.2.5. Lagrange

5. Trazadores cúbicos

- 5.1 Integración numérica
- 5.2 Regla del rectángulo
- 5.3 Regla del trapecio
- 5.4 Regla del trapecio mejorado
- 5.5 Regla de Simpson 1/3
- 5.6 Regla de Simpson 3/8

- 5.7 Método de Romberg
- 5.8 Cuadratura Gaussiana.

6. Soluciones de ecuaciones diferenciales ordinarias

- 6.1 Ecuaciones diferenciales ordinarias de orden 1 con valores iniciales
- 6.2 Método d Euler
- 6.3 Método de Taylor
- 6.4. Método de Runge Kutta de orden 4

ACTIVIDADES DE APRENDIZAJE

Enseñar un lenguaje de cálculo numérico.

Proporcionar en cada unidad problemas de aplicación, que coadyuven a alcanzar objetivo de la materia.

Se sugiere realizar proyectos que le permitan al estudiante interpretar resultados de algunos problemas matemáticos en la ingeniería.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor deberá indicar el procedimiento de evaluación, que deberá comprender, evaluaciones parciales que tendrán una equivalencia del 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%.

Las evaluaciones podrán ser escritas y/o prácticas y cada una consta de un examen teórico-práctico, tareas y proyectos. La parte práctica de cada evaluación deberá estar relacionada con la ejecución exitosa y la documentación de la solución de problemas sobre temas del curso.

Pueden ser consideradas otras actividades como: el trabajo extra clase y la participación durante las sesiones del curso. El examen tendrá un valor mínimo de 50%, las tareas, proyectos y otras actividades, un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica

- 1. S. Chapra & Canale, Numerical Methods for Engineers, SIXTH EDITION, 2010.
- 2. S. Nakamura, *Métodos numéricos aplicados con software*, Primera edición, Pearson. 1992
- 3. A. Nieves, Métodos numéricos aplicados a la ingeniería, Ed. 4 Patria, 2014

De Consulta

- 1. O.C. Zienkiewicz, The Finite Element Method, Volume 1: The Basis, Fifth edition, Butterworth-Heinemann, 2000.
- 2. R. Hibberle, Análisis estructural, Tercera edición, Prentice Hall, 1997.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Maestría en Matemáticas o en Matemáticas Aplicadas.

Vo.Bo. Autorizó

I.D. Eruvid Cortés Camacho Jefe de Carrera Dr. Agustín Santiago Alvarado Vice-Rector Académico