Informed (heuristic) search

Assign a cost to each action/rule/arc

• Heuristic function:

h(n) = estimated cost of the cheapest path from the state at node n to a goal state.

Example: 8-puzzle

Initial node $n_{\rm I}$

5	4	
6	1	8
7	3	2

Goal node $n_{\rm G}$

1	2	3
8		4
7	6	5

h(n) = number of tiles out of place in node n

$$h(n_{\rm I}) = 7$$

$$h(n_{\rm I}) = 7$$
$$h(n_{\rm G}) = 0$$

Example: 8-puzzle

Initial node $n_{\rm I}$

5	4	
6	1	8
7	3	2

Goal node $n_{\rm G}$

1	2	3
8		4
7	6	5

h(n) = sum of Manhattan distance of tiles out of place

$$h(n_{\rm I}) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18$$

 $h(n_{\rm G}) = 0$

Greedy search algorithm

```
L ← [start nodes]
while L ≠ empty do

remove node with lowest h(n) value from L, call it p
if p is a goal node, return(success)
generate all successor states of p, and add them to L
endwhile
return(fail)
```

Greedy search algorithm

- Not guaranteed to find optimal path
- May not terminate

A* search: Minimizing total path cost

• Let

$$f^*(n) = g^*(n) + h^*(n)$$

be the cost of an optimal path going through node n, where

 $g^*(n)$ is cost of an optimal path from initial node to n, $h^*(n)$ is cost of an optimal path from n to a goal node

• But $f^*(n)$ is difficult to know, so we *estimate*

A* search: Minimizing total path cost

• Let

$$f(n) = g(n) + h(n)$$

be the cost of a path going through node *n* to a goal node, where

g(n) is cost of path from initial state to n that was found, h(n) is a heuristic estimate of cost from n to a goal

Algorithm A* for searching a tree

```
L ← [start nodes]
while L ≠ empty do

remove node with lowest f(n) value from L, call it p
if p is a goal node, return(success)
generate all successor states of p, and add them to L
endwhile
return(fail)
```

Admissible heuristics

Definition: A heuristic function h(n) is *admissible* if $h(n) \le h^*(n)$, for all n

Theorem: If h(n) is admissible, the A* algorithm is guaranteed to find an optimal path to a goal node

Dominating heuristics

Definition: Given admissible heuristics $h_1(n)$ and $h_2(n)$, $h_2(n)$ dominates if $h_1(n)$ if, for all nodes n, $h_2(n) \ge h_1(n)$, and there exists a node n' such that $h_2(n') > h_1(n')$

Theorem: A* with $h_1(n)$ expands at least as many nodes as A* with $h_2(n)$, if $h_2(n)$ dominates $h_1(n)$

Complexity results for A*

• Good news:

- A* is complete, optimal, and optimally efficient
- no algorithm with the same information can do better

• Bad news:

- assume a single goal, search a tree, and each action is reversible
- time complexity of A* is exponential,

$$O((b^{\varepsilon})^d) = O(b^{\varepsilon d})$$

where ε is the maximum relative error $(h^*(n) - h(n)) / h^*(n)$

b is the branching factor

d is the depth of the goal node

Iterative-deepening A*

- Amount of memory needed is a problem for A*
- IDA*
 - each iteration is a complete DFS with a cutoff (so, no priority queue)
 - branch is cutoff (node is not added to L) if f(n) exceeds some threshold
 - next iteration sets threshold to be minimum of values that exceeded old threshold
 - time complexity depends strongly on number of different values the heuristic can take on