Ficha 3 Outubro

Primitivas imediatas

1. Usando a fórmula $Pf'(x).f^n(x) = \frac{f^{n+1}(x)}{n+1} + C, n \neq -1$ e as propriedades das primitivas, determine a primitiva das funções, válidas no seu domínio:

a)
$$P(x+\sqrt{x})$$

a)
$$P(x + \sqrt{x})$$
 b) $P(\frac{3}{\sqrt{x}} + \frac{x\sqrt[3]{x}}{4})$

c)
$$P(\frac{1}{x^2} + \frac{1}{x\sqrt{x}})^2$$
 d) $P(x^2 + 1)^3$

e)
$$P(-5x-1)^6$$

f)
$$P\sqrt[3]{-5x-1}$$

g)
$$Px\sqrt{x^2+1}$$

(g)
$$Px\sqrt{x^2+1}$$
 h) $P\frac{1}{(2x-1)^2}$

i)
$$P \frac{1}{\sqrt[5]{1-2x}}$$

i)
$$P \frac{1}{\sqrt[5]{1-2x}}$$
 j) $P \frac{3}{\sqrt[5]{(-5x-1)^3}}$

k)
$$Px^3(5x^4-1)^6$$

k)
$$Px^3(5x^4-1)^6$$
 l) $P\frac{\exp x}{(3-\exp x)^3}$

$$m) P \sin x \cos^7 x$$

n)
$$P \cosh(2x+1) \sinh(2x+1)$$
 o) $P \tan x \sec^2 x$ p) $P \frac{\cos x}{\sin^3 x}$

o)
$$P \tan x \sec^2 x$$

$$p) P \frac{\cos x}{\sin^3 x}$$

q)
$$P \sin x \sqrt{1 - \cos x}$$
 r) $P \frac{3}{x(\ln x + 5)^8}$

r)
$$P \frac{3}{x(\ln x + 5)^8}$$

s)
$$P \frac{\arctan^5 x}{1 + x^2}$$

2. Usando a fórmula $P\frac{f'(x)}{f(x)} = \ln|f(x)| + C$, e as propriedades das primitivas, determine a primitiva das funções, válidas no seu domínio:

(a)
$$P \frac{1}{9x-5}$$
 b) $P \frac{3x}{9x^2-5}$

b)
$$P \frac{3x}{9x^2 - 5}$$

$$\frac{\mathbf{c}}{\mathbf{r}} P \frac{\exp x}{3 - \exp x} \qquad \mathbf{d}) P \tan x$$

d)
$$P \tan x$$

e)
$$P \frac{\tan \sqrt{x}}{\sqrt{x}}$$

e)
$$P \frac{\tan \sqrt{x}}{\sqrt{x}}$$
 f) $P \frac{1}{4} \cot(2x)$

g)
$$P \cot(1-5x)$$
 h) $P \frac{3}{x(\ln x + 5)}$

$$h) P \frac{3}{x(\ln x + 5)}$$

i)
$$P \frac{1}{x(\ln x^2)}$$
 j) $P \frac{3}{(1+x^2)(\arctan x+10)}$

3. Usando a fórmula $P\frac{f'(x)}{1+f^2(x)} = \arctan f(x) + C$, e as propriedades das primitivas, determine a primitiva das funções, válidas no seu domínio:

a)
$$P \frac{1}{1+9x^2}$$
 b) $P \frac{1}{5+x^2}$ c) $P \frac{3x}{1+x^4}$ d) $P \frac{1}{4+9x^2}$

(b)
$$P \frac{1}{5+x^2}$$

c)
$$P \frac{3x}{1+x^4}$$

d)
$$P \frac{1}{4 + 9x^2}$$

e)
$$P \frac{x^3}{x^8 + 1}$$

f)
$$P \frac{\sin x}{1 + \cos^2 x}$$

e)
$$P \frac{x^3}{x^8 + 1}$$
 f) $P \frac{\sin x}{1 + \cos^2 x}$ g) $P \frac{3}{x(1 + \ln^2 x)}$ h) $P \frac{3 \exp x}{1 + \exp(2x)}$

h)
$$P \frac{3\exp x}{1+\exp(2x)}$$

i)
$$P \frac{\exp x}{4 + \exp(2x)}$$

4. Usando a fórmula $P\frac{f'(x)}{\sqrt{1-f^2(x)}} = \arcsin f(x) + C$, e as propriedades das primitivas, determine a primitiva das funções, válidas no seu domínio:

(a)
$$P \frac{1}{\sqrt{1-9x^2}}$$
 (b) $P \frac{1}{\sqrt{4-x^2}}$ (c) $P \frac{3x}{\sqrt{1-x^4}}$ (d) $P \frac{x}{\sqrt{1-2x^4}}$

e)
$$P \frac{1}{\sqrt{4 - 9x^2}}$$
 f) $P \frac{\sin x}{\sqrt{1 - \cos^2 x}}$ g) $P \frac{3}{x\sqrt{1 - \ln^2 x}}$ h) $P \frac{3 \exp x}{\sqrt{1 - \exp(2x)}}$

5. Usando a fórmula $P\frac{f'(x)}{\sqrt{f^2(x)+1}} = \operatorname{argsh} f(x) + C$, e as propriedades das primitivas, determine a primitiva das funções, válidas no seu domínio:

a)
$$P \frac{1}{\sqrt{1+9x^2}}$$
 b) $P \frac{1}{\sqrt{4+x^2}}$ c) $P \frac{3x}{\sqrt{x^4+1}}$ d) $P \frac{x}{\sqrt{2x^4+1}}$

e)
$$P \frac{1}{\sqrt{4+9x^2}}$$
 f) $P \frac{\sin x}{\sqrt{1+\cos^2 x}}$ g) $P \frac{3}{x\sqrt{1+\ln^2 x}}$ h) $P \frac{3\exp x}{\sqrt{1+\exp(2x)}}$

6. Determinar a família de primitivas das seguintes funções, num intervalo adequado:

1) 4 2)
$$2x + 3$$
 3) $6x^4 + 4 - 5x$ 4) $2x^{-4}$, $x \neq 0$

5)
$$x^{1/2} - \frac{2}{\sqrt[3]{x^2}} + \frac{2}{5x^3}$$
 6) $x^3(1 - 5x^4)^7$ 7) $\sqrt{7 - 8x}$ 8) $x\sqrt{1 - x^2}$

9)
$$\frac{ax^2 + bx + c}{dx^2}$$
, $a, b, c, d \in \mathbb{R} \setminus \{0\}$ 10) $x(\sqrt{x} + x)$ 11) $\frac{x}{\sqrt{2 - 5x^2}}$ 12) $\frac{1}{2x}$

13)
$$\frac{1}{2x^3}$$
 14) $\frac{2}{3x-1}$ 15) $\frac{4x^2}{1-5x^3}$ 16) $\frac{x}{x+5}$

17)
$$3 \exp(x)$$
 18) $5 \exp(-3x+8)$ 19) $x \cdot \exp(3x^2-5)$ 20) $\frac{\exp^{\sqrt{x}}}{\sqrt{x}}$

21)
$$x^2 e^{-2x^3 - 7}$$
 22) $\sin x e^{\cos x}$ 23) $\frac{1}{x^2} e^{\frac{1}{x}}$ 24) $\frac{\ln x}{x}$

25)
$$\frac{1}{x \ln x}$$
 26) $\sin(5x)$ 27) $3\cos(1-x)$ 28) $\tan x$

29)
$$\cos x \sin^5 x$$
 30) $\frac{1}{\cos^2 x}$ 31) 2^x 32) $3^{\sin^2 x} \sin(2x)$

$$33)e^{x+3}$$
 $34) x. \sin x^2$ $35)x^2. \sinh(x^3+5)$ $36) \frac{\sin \sqrt{x}}{\sqrt{x}}$

37)
$$\cos(-2x)$$
 38) $\cosh(3x+4)$ 39) $\frac{\cos(\ln x)}{x}$ 40) $\sinh(-2x)$

41)
$$x^2 \cosh(-2x^3)$$
 42) $\frac{1}{\sqrt{1+x^2}}$ 43) $\frac{x+1}{1+x^2}$ 44) $\frac{1}{\sin^2(2x)}$

45)
$$\frac{x^2}{x^2+2}$$
 46) $\frac{2x^4-3x^2+x-1}{x^2}$ 47) $\frac{2x+3}{2x+1}$

- 7. Resolva os seguintes problemas de valores iniciais:

 - a) f'(x) = 4, f(1) = -1 b) f'(x) = 2x + 3, f(-3) = 8

 - c) f'(x) = 4 5x, f(2) = 6 d) $f'(x) = 2x^{-4}$, $x \neq 0$, f(1) = 6
 - e) $f'(x) = 3x^2 7$, f(2) = -1
- 8. Determina F tal que F'(x) = 1 4x e F(1) = 0.
 - Esboça os gráficos de y = F(x), y = F(x) 2 e y = F(x) + 4.
- 9. Um carro quando trava efectua uma desaceleração constante de $22m/s^2$. Supondo que o carro quando começou a travar ia a uma velocidade de 88m/s, que distância percorreu o carro até travar completamente?
- 10. Supõe que a taxa de crescimento populacional numa determinada cidade é de $4 + 5t^{2/3}$ por mês t. Se neste momento, a cidade tem 2000 pessoas, quantas terá daqui a 8 meses?

Primitivação por partes

- 1. Determine a família de primitivas das seguintes funções:
 - a) $f(x) = x \exp(-x)$ b) $f(x) = x \sin(2x)$
- c) $f(x) = x \ln x$

- d) $f(t) = \exp t \sin t$ e) $f(x) = x^2 \ln x$ f) $f(x) = x^2 \sin x$
- g) $f(x) = \arcsin x$ h) $f(t) = \exp(2t)\sin(3t)$

Primitivas de potências de funções trigonométricas e de funções racionais

- 1. Determinar a família de primitivas das seguintes funções:
 - a) $\sin x \cdot \cos^2 x$ b) $\sin^2 x$

- c) $\cos^3 x$ d) $\sin^2 x \cdot \cos^3 x$ e) $\sin^2 x \cdot \cos^2 x$

- f) $\sec^2 x \cdot \tan^3 x$ g) $\frac{\sec^2 x + \sec x \tan x}{\tan x + \sec x}$ h) $\sec x$ i) $\sec^4 x$
- i) $\tan^2 x$ 1) $\tan^3 x$
- 2. Determinar a família de primitivas das seguintes funções:

- a) $\frac{x}{x^2+2}$ b) $\frac{4x-1}{x+2}$ c) $\frac{x-1}{x^2-5x-6}$ d) $\frac{x^2+2}{(x-1)^2(x+2)}$ e) $\frac{2x^3-2x^2+11x}{x^2+4}$

- f) $\frac{1}{(x^2+1)(x-1)}$ g) $\frac{1}{x^2+2x+2}$ h) $\frac{x}{x^2+2x+2}$