THE FINITE LATTICE REPRESENTATION PROBLEM AND INTERVALS IN SUBGROUP LATTICES PART I

William DeMeo

 $\verb|williamdemeo@gmail.com||\\$

joint work with

Ralph Freese, Peter Jipsen, Bill Lampe, J.B. Nation

University of South Carolina

Algebra & Logic Seminar September 21, 2012

These slides and other resources are available at $\label{eq:http://www.math.sc.edu/~demeow/FLRP.html} \longrightarrow$

CONGRUENCE DECOMPOSITIONS

CONGRUENCE RELATIONS REVEAL STRUCTURAL CHARACTERISTICS.

The shape/structure of **Con A** tells us whether and how the algebra can be decomposed.

CONGRUENCE DECOMPOSITIONS

CONGRUENCE RELATIONS REVEAL STRUCTURAL CHARACTERISTICS.

The shape/structure of **Con A** tells us whether and how the algebra can be decomposed.

THE FINITE LATTICE REPRESENTATION PROBLEM

There is essentially no restriction on the shape of a congruence lattice of an arbitrary algebra.

THEOREM (GRÄTZER-SCHMIDT, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

What if the algebra is finite?

Problem: Given a finite lattice L, does there exist a *finite* algebra A such that $Con A \cong L$?

DEFINITION

We call a finite lattice **representable** if it is isomorphic to the congruence lattice of a finite algebra.

THE FINITE LATTICE REPRESENTATION PROBLEM

There is essentially no restriction on the shape of a congruence lattice of an arbitrary algebra.

THEOREM (GRÄTZER-SCHMIDT, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

What if the algebra is finite?

Problem: Given a finite lattice L, does there exist a *finite* algebra A such that $Con A \cong L$?

DEFINITION

We call a finite lattice **representable** if it is isomorphic to the congruence lattice of a finite algebra.

THE FINITE LATTICE REPRESENTATION PROBLEM

There is essentially no restriction on the shape of a congruence lattice of an arbitrary algebra.

THEOREM (GRÄTZER-SCHMIDT, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

What if the algebra is finite?

Problem: Given a finite lattice L, does there exist a *finite* algebra A such that $\operatorname{Con} A \cong L$?

DEFINITION

We call a finite lattice *representable* if it is isomorphic to the congruence lattice of a finite algebra.

- \mathcal{L}_0 = all finite lattices
- \mathcal{L}_1 = lattices isomorphic to sublattices of finite partition lattices
- $\mathscr{L}_2 =$...strong congruence lattices of finite partial algebras
- $\mathcal{L}_3 =$...congruence lattices of finite algebras
- $\mathscr{L}_4 =$...intervals in subgroup lattices of finite groups
- ullet $\mathscr{L}_5 = \dots$ subgroup lattices of finite groups

• \mathcal{L}_0 = all finite lattices

• \mathcal{L}_1 = lattices isomorphic to sublattices of finite partition lattices

• $\mathcal{L}_2 =$...strong congruence lattices of finite partial algebras

• $\mathscr{L}_3 =$...congruence lattices of finite algebras

• $\mathscr{L}_4 =$...intervals in subgroup lattices of finite groups

 \bullet $\mathscr{L}_5 =$ subgroup lattices of finite groups

• Fact: $\mathcal{L}_0 \supseteq \mathcal{L}_1 \supseteq \mathcal{L}_2 \supseteq \mathcal{L}_3 \supseteq \mathcal{L}_4 \supseteq \mathcal{L}_5$.

- \mathcal{L}_0 = all finite lattices
- \mathcal{L}_1 = lattices isomorphic to sublattices of finite partition lattices
- $\mathscr{L}_2 =$...strong congruence lattices of finite partial algebras
- ullet $\mathscr{L}_3 =$...congruence lattices of finite algebras
- $\mathscr{L}_4 =$...intervals in subgroup lattices of finite groups
- $\mathcal{L}_5 =$...subgroup lattices of finite groups
- Fact: $\mathcal{L}_0 \supseteq \mathcal{L}_1 \supseteq \mathcal{L}_2 \supseteq \mathcal{L}_3 \supseteq \mathcal{L}_4 \supseteq \mathcal{L}_5$.
- Does equality hold in each case?

- \mathcal{L}_0 = all finite lattices
- \mathcal{L}_1 = lattices isomorphic to sublattices of finite partition lattices
- $\mathscr{L}_2 =$...strong congruence lattices of finite partial algebras
- $\mathscr{L}_3 =$...congruence lattices of finite algebras
- $\mathscr{L}_4 =$...intervals in subgroup lattices of finite groups
- $\mathcal{L}_5 =$...subgroup lattices of finite groups
- Fact: $\mathcal{L}_0 \supseteq \mathcal{L}_1 \supseteq \mathcal{L}_2 \supseteq \mathcal{L}_3 \supseteq \mathcal{L}_4 \supseteq \mathcal{L}_5$.
- Does equality hold in each case?
- $\mathcal{L}_0 = \mathcal{L}_1$
 - (Birkhoff, 1935) Is every lattice \cong a sublattice of a partition lattice?
 - (Whitman, 1946) Yes, but proof requires infinite partition lattices.
 - (Pudlák and Tůma, 1980) Yes, $\mathcal{L}_0 = \mathcal{L}_1$.

- \mathcal{L}_0 = all finite lattices
- \mathcal{L}_1 = lattices isomorphic to sublattices of finite partition lattices
- $\mathcal{L}_2 =$...strong congruence lattices of finite partial algebras
- $\mathcal{L}_3 =$...congruence lattices of finite algebras
- $\mathscr{L}_4 =$...intervals in subgroup lattices of finite groups
- $\mathcal{L}_5 =$...subgroup lattices of finite groups
- Fact: $\mathcal{L}_0 \supseteq \mathcal{L}_1 \supseteq \mathcal{L}_2 \supseteq \mathcal{L}_3 \supseteq \mathcal{L}_4 \supseteq \mathcal{L}_5$.
- Does equality hold in each case?
- $\mathcal{L}_0 = \mathcal{L}_1$
 - (Birkhoff, 1935) Is every lattice \cong a sublattice of a partition lattice?
 - (Whitman, 1946) Yes, but proof requires infinite partition lattices.
 - (Pudlák and Tůma, 1980) Yes, $\mathcal{L}_0 = \mathcal{L}_1$.
- Main problem: Is $\mathcal{L}_0 = \mathcal{L}_3$ true?

- \mathcal{L}_0 = all finite lattices
- \mathcal{L}_1 = lattices isomorphic to sublattices of finite partition lattices
- $\mathscr{L}_2 =$...strong congruence lattices of finite partial algebras
- $\mathscr{L}_3 =$...congruence lattices of finite algebras
- $\mathscr{L}_4 =$...intervals in subgroup lattices of finite groups
- $\mathcal{L}_5 =$...subgroup lattices of finite groups
- Fact: $\mathcal{L}_0 \supseteq \mathcal{L}_1 \supseteq \mathcal{L}_2 \supseteq \mathcal{L}_3 \supseteq \mathcal{L}_4 \supseteq \mathcal{L}_5$.
- Does equality hold in each case?
- $\mathcal{L}_0 = \mathcal{L}_1$
 - (Birkhoff, 1935) Is every lattice \cong a sublattice of a partition lattice?
 - (Whitman, 1946) Yes, but proof requires infinite partition lattices.
 - (Pudlák and Tůma, 1980) Yes, $\mathcal{L}_0 = \mathcal{L}_1$.
- Main problem: Is $\mathcal{L}_0 = \mathcal{L}_3$ true?
- (Pálfy and Pudlák, 1980) $\mathcal{L}_0 = \mathcal{L}_3$ if and only if $\mathcal{L}_0 = \mathcal{L}_4$.

- \mathcal{L}_0 = all finite lattices
- \mathcal{L}_1 = lattices isomorphic to sublattices of finite partition lattices
- $\mathscr{L}_2 =$...strong congruence lattices of finite partial algebras
- $\mathcal{L}_3 =$...congruence lattices of finite algebras
- $\mathscr{L}_4 =$...intervals in subgroup lattices of finite groups
- $\mathcal{L}_5 =$...subgroup lattices of finite groups
- Fact: $\mathcal{L}_0 \supseteq \mathcal{L}_1 \supseteq \mathcal{L}_2 \supseteq \mathcal{L}_3 \supseteq \mathcal{L}_4 \supseteq \mathcal{L}_5$.
- Does equality hold in each case?
- $\mathcal{L}_0 = \mathcal{L}_1$
 - (Birkhoff, 1935) Is every lattice \cong a sublattice of a partition lattice?
 - (Whitman, 1946) Yes, but proof requires infinite partition lattices.
 - (Pudlák and Tůma, 1980) Yes, $\mathcal{L}_0 = \mathcal{L}_1$.
- Main problem: Is $\mathcal{L}_0 = \mathcal{L}_3$ true?
- (Pálfy and Pudlák, 1980) $\mathcal{L}_0 = \mathcal{L}_3$ if and only if $\mathcal{L}_0 = \mathcal{L}_4$.

This does **not** say $\mathcal{L}_3 = \mathcal{L}_4$. It's possible that $\mathcal{L}_0 \supsetneq \mathcal{L}_3 \supsetneq \mathcal{L}_4$.

RECAP

THEOREM (PUDLÁK AND TŮMA, 1980)

Every finite lattice can be embedded in Eq(X) with X finite.

In other words, $\mathcal{L}_0 = \mathcal{L}_1$.

THEOREM (PÁLFY AND PUDLÁK, 1980)

The following statements are equivalent:

- Every finite lattice is isomorphic to the congruence lattice of a finite algebra.
- (II) Every finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.

In other words, $\mathcal{L}_0 = \mathcal{L}_3$ if and only if $\mathcal{L}_0 = \mathcal{L}_4$.

METHOD 1 (USE CLOSURE PROPERTIES)

The class \mathcal{L}_3 is closed under the following operations:

- lattice duals (Kurzweil and Netter, 1986)
- interval sublattices (follows from Kurzweil-Netter)
- direct products (Tůma, 1986)
- ordinal sums (McKenzie, 1984; Snow, 2000)
- parallel sums (Snow, 2000)
- certain sublattices of lattices in \mathcal{L}_3 (Snow, 2000) (namely, those obtained as a union of a filter and ideal)

METHOD 2 (USE A GALOIS CORRESPONDENCE)

• Fix $\theta \subseteq X \times X$, $f: X^n \to X$.

Say that f *respects* θ and write $f(\theta) \subseteq \theta$ provided

$$(x_i, y_i) \in \theta \Rightarrow (f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \theta.$$

METHOD 2 (USE A GALOIS CORRESPONDENCE)

• Fix $\theta \subseteq X \times X$, $f: X^n \to X$.

Say that f *respects* θ and write $f(\theta) \subseteq \theta$ provided

$$(x_i, y_i) \in \theta \Rightarrow (f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \theta.$$

• For $L \subseteq \text{Eq}(X)$ define

$$\lambda(L) = \{ f \in X^X \mid (\forall \theta \in L) \ f(\theta) \subseteq \theta \},\$$

the set of unary maps on X which respect all relations in L.

METHOD 2 (USE A GALOIS CORRESPONDENCE)

• Fix $\theta \subseteq X \times X$, $f: X^n \to X$.

Say that f *respects* θ and write $f(\theta) \subseteq \theta$ provided

$$(x_i, y_i) \in \theta \Rightarrow (f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \theta.$$

• For $L \subseteq \text{Eq}(X)$ define

$$\lambda(L) = \{ f \in X^X \mid (\forall \theta \in L) \ f(\theta) \subseteq \theta \},\$$

the set of unary maps on X which respect all relations in L.

• For $F \subseteq X^X$ define

$$\rho(F) = \{ \theta \in \text{Eq}(X) \mid (\forall f \in F) \ f(\theta) \subseteq \theta \},\$$

the set of equivalence relations on X respected by all $f \in F$.

METHOD 2 (USE A GALOIS CORRESPONDENCE)

• Fix $\theta \subseteq X \times X$, $f: X^n \to X$.

Say that f *respects* θ and write $f(\theta) \subseteq \theta$ provided

$$(x_i, y_i) \in \theta \Rightarrow (f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \theta.$$

• For $L \subseteq \text{Eq}(X)$ define

$$\lambda(L) = \{ f \in X^X \mid (\forall \theta \in L) \ f(\theta) \subseteq \theta \},\$$

the set of unary maps on X which respect all relations in L.

• For $F \subseteq X^X$ define

$$\rho(F) = \{ \theta \in \text{Eq}(X) \mid (\forall f \in F) \ f(\theta) \subseteq \theta \},\$$

the set of equivalence relations on X respected by all $f \in F$.

 Then L ⊆ ρλ(L) and ρλ is a closure operator on Sub[Eq(X)]. (idempotent, extensive, order preserving)

METHOD 2 (USE A GALOIS CORRESPONDENCE)

• Fix $\theta \subseteq X \times X$, $f: X^n \to X$.

Say that f *respects* θ and write $f(\theta) \subseteq \theta$ provided

$$(x_i, y_i) \in \theta \Rightarrow (f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \theta.$$

• For $L \subseteq \text{Eq}(X)$ define

$$\lambda(L) = \{ f \in X^X \mid (\forall \theta \in L) \ f(\theta) \subseteq \theta \},\$$

the set of unary maps on X which respect all relations in L.

• For $F \subseteq X^X$ define

$$\rho(F) = \{ \theta \in \text{Eq}(X) \mid (\forall f \in F) \ f(\theta) \subseteq \theta \},\$$

the set of equivalence relations on X respected by all $f \in F$.

- Then L ⊆ ρλ(L) and ρλ is a closure operator on Sub[Eq(X)].
 (idempotent, extensive, order preserving)
- If a lattice $L \leq \text{Eq}(X)$ is *closed*, i.e. $\rho \lambda(L) = L$, then

$$L = \operatorname{Con} \langle X, \lambda(L) \rangle$$

METHOD 3 (SUBGROUP LATTICE INTERVAL)

Find *L* as an interval in a subgroup lattice of a finite group.

If $H \leqslant G$ are finite groups, then the interval above H in Sub(G),

$$[H,G]:=\{K\mid H\leqslant K\leqslant G\},$$

is isomorphic to $Con \langle G/H, G \rangle$.

METHOD 4 (FILTER+IDEAL)

Find *L* as the union of a filter and ideal in a representable lattice.

Suppose $L_0 \cong \operatorname{Con} \langle A, F \rangle$, $\alpha, \beta \in L_0 \setminus \{0, 1\}$.

METHOD 4 (FILTER+IDEAL)

Find *L* as the union of a filter and ideal in a representable lattice.

Suppose $L_0 \cong \operatorname{Con} \langle A, F \rangle$, $\alpha, \beta \in L_0 \setminus \{0, 1\}$. Consider $L = \alpha^{\uparrow} \cup \beta^{\downarrow}$.

METHOD 4 (FILTER+IDEAL)

Find *L* as the union of a filter and ideal in a representable lattice.

Suppose $L_0 \cong \operatorname{Con} \langle A, F \rangle$, $\alpha, \beta \in L_0 \setminus \{0, 1\}$.

Consider $L = \alpha^{\uparrow} \cup \beta^{\downarrow}$.

Then there exists a set $F' \subset A^A$ such that

$$L \cong \operatorname{Con} \langle A, F \cup F' \rangle$$
.

LATTICES WITH AT MOST 6 ELEMENTS ARE REPRESENTABLE.

Theorem: Every lattice with at most 6 elements is an interval in the subgroup lattice of a finite group.

Are all lattices with at most 7 elements representable?

Are all lattices with at most 7 elements representable?

...AS INTERVALS IN SUBGROUP LATTICES

...AS INTERVALS IN SUBGROUP LATTICES

SmallGroup(288,1025)

$$|G:H| = 48$$

- The group $G = (A_4 \times A_4) \rtimes C_2$ has a subgroup $H \cong S_3$ such that $[H, G] \cong L_{17}$.
- ...so the dual L_{16} is also representable.

...AS INTERVALS IN SUBGROUP LATTICES

SmallGroup (288, 1025)

$$|G:H| = 48$$

- The group $G = (A_4 \times A_4) \times C_2$ has a subgroup $H \cong S_3$ such that $[H, G] \cong L_{17}$.
- ...so the dual L_{16} is also representable.

• The group $G = (C_2 \times C_2 \times C_2 \times C_2) \times A_5$ has a subgroup $H \cong A_4$ such that $[H, G] \cong L_{13}$.

...USING SUBGROUP LATTICE INTERVALS AND THE FILTER+IDEAL LEMMA.

...USING SUBGROUP LATTICE INTERVALS AND THE FILTER+IDEAL LEMMA.

SmallGroup(288,1025)

- Let $G = (A_4 \times A_4) \rtimes C_2$.
- G has a subgroup $H \cong C_6$ with $[H, G] \cong N_5$.
- Let $[H, G] = \{H, \alpha, \beta, \gamma, G\} \cong N_5$.

...USING SUBGROUP LATTICE INTERVALS AND THE FILTER+IDEAL LEMMA.

- Let $G = (A_4 \times A_4) \rtimes C_2$.
- G has a subgroup $H \cong C_6$ with $[H, G] \cong N_5$.
- Let $[H, G] = \{H, \alpha, \beta, \gamma, G\} \cong N_5$.
- Sub(G) is a congruence lattice, so if there exists a subgroup K > 1, below β and not below γ, then

$$L_{11}\cong K^{\downarrow}\cup H^{\uparrow}.$$

...USING SUBGROUP LATTICE INTERVALS AND THE FILTER+IDEAL LEMMA.

SmallGroup(288,1025)

• Let
$$G = (A_4 \times A_4) \rtimes C_2$$
.

- G has a subgroup $H \cong C_6$ with $[H, G] \cong N_5$.
- Let $[H, G] = \{H, \alpha, \beta, \gamma, G\} \cong N_5$.
- Sub(G) is a congruence lattice, so if there exists a subgroup K > 1, below β and not below γ, then

$$L_{11} \cong K^{\downarrow} \cup H^{\uparrow}$$
.

- Sub(A₄) is a congruence lattice (of A₄ acting regularly on itself).
- Therefore,

$$L_{17}\cong V_4^{\downarrow}\cup P^{\uparrow}$$

is a congruence lattice.

Are all lattices with at most 7 elements representable?

Are all lattices with at most 7 elements representable?

SEVEN ELEMENT LATTICES: SUMMARY

SEVEN ELEMENT LATTICES: SUMMARY

HAS ANYONE SEEN THIS LATTICE?

Given a lattice L with n elements, are there finite groups H < G such that $L \cong$ the lattice of subgroups between H and G?

If there is no restriction on n, this is a famous <u>open problem</u>. I'm wondering if any recent work has been done for small n > 6. 1 believe the question is answered (positively) for n = 6 by Watatani (1996) $\frac{MR1409040}{2000}$ and Aschbacher (2008) $\frac{MR2393428}{2000}$. 1 believe we can answer it for n = 7, with one possible exception. The exceptional case is shown below.

So my two questions are these:

1) Does anyone know of recent work on this special case of the problem (specifically for n=7 or n=8)?

2) Has anyone found a finite group ${\cal G}$ with a subgroup ${\cal H}$ such that the interval

$$[H,G] = \{K : H \le K \le G\}$$

is the lattice shown above?

Welcome to MathOverflow

A place for mathematicians to ask and answer questions.

tagged
finite-groups × 343
open-problem × 216
lattices × 157
universal-algebra × 55
congruences × 7
asked
O mantha ana

8 months ago

viewed 468 times

 L₇ cannot be obtained using the overalgebra construction.

- L₇ cannot be obtained using the overalgebra construction.
- A minimal representation of L₇ must come from a transitive G-set.

- L₇ cannot be obtained using the overalgebra construction.
- A minimal representation of L₇ must come from a transitive G-set.
- Suppose L₇ ≅ [H, G] for some finite groups H < G.
 What can we say about the group G?

- L₇ cannot be obtained using the overalgebra construction.
- A minimal representation of L₇ must come from a transitive G-set.
- Suppose L₇ ≅ [H, G] for some finite groups H < G.
 What can we say about the group G?
- If we prove G must have certain properties, then FLRP has a positive answer iff every finite lattice is an interval in the subgroup lattice of a group satisfying all of these properties.

- L₇ cannot be obtained using the overalgebra construction.
- A minimal representation of L₇ must come from a transitive G-set.
- Suppose L₇ ≅ [H, G] for some finite groups H < G.
 What can we say about the group G?
- If we prove G must have certain properties, then FLRP has a positive answer iff every finite lattice is an interval in the subgroup lattice of a group satisfying all of these properties.

THEOREM

Suppose H < G, $\operatorname{core}_G(H) = 1$, $L_7 \cong [H, G]$.

- L₇ cannot be obtained using the overalgebra construction.
- A minimal representation of L₇ must come from a transitive G-set.
- Suppose L₇ ≅ [H, G] for some finite groups H < G.
 What can we say about the group G?
- If we prove G must have certain properties, then FLRP has a positive answer iff every finite lattice is an interval in the subgroup lattice of a group satisfying all of these properties.

THEOREM

Suppose H < G, $\operatorname{core}_G(H) = 1$, $L_7 \cong [H, G]$.

- (I) G is a primitive permutation group.
- (II) If $N \triangleleft G$, then $C_G(N) = 1$.
- (III) G contains no non-trivial abelian normal subgroup.
- (IV) G is not solvable.
- (V) G is subdirectly irreducible.
- (VI) With the possible exception of at most one maximal subgroup, all proper subgroups in the interval [H, G] are core-free.

Let *U* and *H* be subgroups of a finite group.

• By *UH* we mean the set $\{uh \mid u \in U, h \in H\}$.

- By UH we mean the $set \{uh \mid u \in U, h \in H\}$.
- $U \lor V = \langle U, H \rangle$ means the group generated by U and H.

- By UH we mean the $set \{uh \mid u \in U, h \in H\}$.
- $U \lor V = \langle U, H \rangle$ means the group generated by U and H.
- $UH \subseteq \langle U, H \rangle$ and equality holds iff U and H permute:

$$UH = \langle U, H \rangle \Leftrightarrow UH = HU.$$

- By UH we mean the $set \{uh \mid u \in U, h \in H\}$.
- $U \lor V = \langle U, H \rangle$ means the group generated by U and H.
- $UH \subseteq \langle U, H \rangle$ and equality holds iff U and H permute:

$$UH = \langle U, H \rangle \Leftrightarrow UH = HU.$$

- By UH we mean the $set \{uh \mid u \in U, h \in H\}$.
- $U \lor V = \langle U, H \rangle$ means the group generated by U and H.
- $UH \subseteq \langle U, H \rangle$ and equality holds iff U and H permute:

$$UH = \langle U, H \rangle \quad \Leftrightarrow \quad UH = HU.$$

 $\bullet \ \ \text{If} \ H \leqslant \langle \textit{U}, \textit{H} \rangle \text{, then} \ \textit{UH} = \langle \textit{U}, \textit{H} \rangle \ \ \text{and} \ \ [\textit{U}_0, \textit{U}] \cong [\textit{H}, \textit{UH}].$

- $\bullet \ \ \text{If} \ H \leqslant \langle \textit{U}, \textit{H} \rangle \text{, then} \ \textit{UH} = \langle \textit{U}, \textit{H} \rangle \ \ \text{and} \ \ [\textit{U}_0, \textit{U}] \cong [\textit{H}, \textit{UH}].$
- Instead of $H \leqslant \langle U, H \rangle$, assume only $UH = \langle U, H \rangle$ and define

$$[U_0, U]^H := \{V \in [U_0, U] \mid VH = HV\},$$

the *H-permuting subgroups*.

- If $H \leq \langle U, H \rangle$, then $UH = \langle U, H \rangle$ and $[U_0, U] \cong [H, UH]$.
- Instead of $H \leq \langle U, H \rangle$, assume only $UH = \langle U, H \rangle$ and define

$$[U_0, U]^H := \{ V \in [U_0, U] \mid VH = HV \},$$

• If $U \triangleleft UH$, define

the *H*-permuting subgroups.

the *H*-invariant subgroups:
$$V^h = V$$
 ($\forall h \in H$).

 $[U_0, U]_H := \{ V \in [U_0, U] \mid H \leqslant N_{UH}(V) \},$

- If $H \leq \langle U, H \rangle$, then $UH = \langle U, H \rangle$ and $[U_0, U] \cong [H, UH]$.
- Instead of $H \leqslant \langle U, H \rangle$, assume only $UH = \langle U, H \rangle$ and define

$$[U_0, U]^H := \{V \in [U_0, U] \mid VH = HV\},$$

the *H-permuting subgroups*.

• If $U \leqslant UH$, define

$$[U_0, U]_H := \{ V \in [U_0, U] \mid H \leqslant N_{UH}(V) \},$$

the *H*-invariant subgroups: $V^h = V \ (\forall h \in H)$.

LEMMA

- **●** $[H, UH] \cong [U_0, U]^H \leqslant [U_0, U]$
- If $U \leq UH$, then $[U_0, U]_H = [U_0, U]^H \leq [U_0, U]$.
- If $H \leq UH$, then $[U_0, U]_H = [U_0, U]^H = [U_0, U]$.

- If $H \leqslant \langle U, H \rangle$, then $UH = \langle U, H \rangle$ and $[U_0, U] \cong [H, UH]$.
- Instead of $H \leqslant \langle U, H \rangle$, assume only $UH = \langle U, H \rangle$ and define

$$[U_0, U]^H := \{V \in [U_0, U] \mid VH = HV\},$$

the *H-permuting subgroups*.

• If $U \leqslant UH$, define

$$[U_0, U]_H := \{ V \in [U_0, U] \mid H \leqslant N_{UH}(V) \},$$

the *H*-invariant subgroups: $V^h = V \ (\forall h \in H)$.

LEMMA

- **●** $[H, UH] \cong [U_0, U]^H \leqslant [U_0, U]$
- If $U \leq UH$, then $[U_0, U]_H = [U_0, U]^H \leq [U_0, U]$.
- If $H \leq UH$, then $[U_0, U]_H = [U_0, U]^H = [U_0, U]$.

• Consider $G \cong C_3 \times S_3$, say,

$$G = \langle a, b, c \mid a^2, b^3, c^3, [b, a], [c, b], c^{-1}a^{-1}a^c \rangle$$

• Consider $G \cong C_3 \times S_3$, say,

$$G = \langle a, b, c \mid a^2, b^3, c^3, [b, a], [c, b], c^{-1}a^{-1}a^c \rangle$$

The subgroups

$$U = \langle a, b \rangle \cong C_6, \qquad H = \langle bc \rangle \cong C_3$$

permute (UH = HU) but neither one normalizes the other.

• Consider $G \cong C_3 \times S_3$, say,

$$G = \langle a, b, c \mid a^2, b^3, c^3, [b, a], [c, b], c^{-1}a^{-1}a^c \rangle$$

The subgroups

$$U=\langle a,b\rangle\cong C_6, \qquad H=\langle bc\rangle\cong C_3$$

permute ($\mathit{UH} = \mathit{HU}$) but neither one normalizes the other.

ullet Consider $G\cong C_3 imes S_3$, say,

$$G = \langle a, b, c \mid a^2, b^3, c^3, [b, a], [c, b], c^{-1}a^{-1}a^c \rangle$$

The subgroups

$$U = \langle a, b \rangle \cong C_6, \qquad H = \langle bc \rangle \cong C_3$$

permute (UH = HU) but neither one normalizes the other.

Three of the four subgroups of *U* permute with *H*.
 As the lemma predicts, *U* ∩ ⟨*b*, *c*⟩ = ⟨*b*⟩.

• The group S_4 has subgroups $U \cong D_8$ and $H \cong C_3$ that permute but neither one normalizes the other.

• The group S_4 has subgroups $U \cong D_8$ and $H \cong C_3$ that permute but neither one normalizes the other.

• Only four subgroups of *U* permute with *H*

• The group S_4 has subgroups $U \cong D_8$ and $H \cong C_3$ that permute but neither one normalizes the other.

• Only four subgroups of *U* permute with *H*, including

$$U \cap A_4 \cong C_2 \times C_2$$
, $U \cap S_3 \cong C_2$.

THEOREM

Suppose H < G, $\operatorname{core}_G(H) = 1$, and $L_7 \cong [H, G]$. Then

- (I) G is a primitive permutation group.
- (II) If $N \triangleleft G$, then $C_G(N) = 1$.
- (III) G contains no non-trivial abelian normal subgroup.
- (IV) G is not solvable.
- (v) G is subdirectly irreducible.
- (VI) With the possible exception of at most one maximal subgroup, M_1 or M_2 , all proper subgroups in the interval [H, G] are core-free.

Claim: J_1 and J_2 are core-free subgroups of G.

Proof:

Claim: J_1 and J_2 are core-free subgroups of G.

Proof:

• If $N \triangleleft G$ then NH permutes with each subgroup containing H.

Claim: J_1 and J_2 are core-free subgroups of G.

Proof:

- If $N \triangleleft G$ then NH permutes with each subgroup containing H.
- If $1 \neq N \leqslant J_1$, then $NH = J_1$, so J_1 and K permute.

Claim: J_1 and J_2 are core-free subgroups of G.

Proof:

- If $N \triangleleft G$ then NH permutes with each subgroup containing H.
- If $1 \neq N \leqslant J_1$, then $NH = J_1$, so J_1 and K permute.
- Since $J_1K = G$ and $J_1 \cap K = H$, our lemma yields

$$[J_1,G]\cong [H,K]^{J_1}=\{X\in [H,K]\mid J_1X=XJ_1\}.$$

Claim: J_1 and J_2 are core-free subgroups of G.

Proof:

- If $N \triangleleft G$ then NH permutes with each subgroup containing H.
- If $1 \neq N \leqslant J_1$, then $NH = J_1$, so J_1 and K permute.
- Since $J_1K = G$ and $J_1 \cap K = H$, our lemma yields

$$[J_1,G]\cong [H,K]^{J_1}=\{X\in [H,K]\mid J_1X=XJ_1\}.$$

Impossible!

ASCHBACHER-O'NAN-SCOTT THEOREM

Let *G* be a primitive permutation group of degree *d*, and let $N := Soc(G) \cong T^m$ with $m \ge 1$. Then one of the following holds.

- N is regular and
 - (Affine type) T is cyclic of order p, so $|N| = p^m$. Then $d = p^m$ and G is permutation isomorphic to a subgroup of the affine general linear group AGL(m, p).
 - (Twisted wreath product type) $m \ge 6$, the group T is nonabelian and G is a group of twisted wreath product type, with $d = |T|^m$.
- N is non-regular, non-abelian, and
 - (Almost simple type) m = 1 and $T \leqslant G \leqslant \operatorname{Aut}(T)$.
 - (Product action type) m ≥ 2 and G is permutation isomorphic to a subgroup of the product action wreath product P \(\cap S_{m/I}\) of degree d = nm/I. The group P is primitive of type 2.(a) or 2.(c), P has degree n and Soc(P) \(\simes T^I\), where I \(\geq 1\) divides m.
 - (Diagonal type) $m \ge 2$ and $T^m \le G \le T^m$.(Out(T) $\times S_m$), with the diagonal action. The degree $d = |T|^{m-1}$.

ASCHBACHER-O'NAN-SCOTT THEOREM

For some interesting history, see Peter Cameron's blog at

http://cameroncounts.wordpress.com/tag/onan-scott-theorem/

 We have new methods for building new finite algebras out of old so that the congruence lattice changes in predictable ways. (Tune in next week!)

Conclusions

- We have new methods for building new finite algebras out of old so that the congruence lattice changes in predictable ways. (Tune in next week!)
- We have representations for all finite lattices with at most 7 elements with one exception, thus idetifying the unique smallest lattice for which there's no known representation.

- We have new methods for building new finite algebras out of old so that the congruence lattice changes in predictable ways. (Tune in next week!)
- We have representations for all finite lattices with at most 7 elements with one exception, thus idetifying the unique smallest lattice for which there's no known representation.
- We want to further explore the idea of finding restrictions on groups that have certain lattices as intervals in their subgroup lattices (next week).

- We have new methods for building new finite algebras out of old so that the congruence lattice changes in predictable ways. (Tune in next week!)
- We have representations for all finite lattices with at most 7 elements with one exception, thus idetifying the unique smallest lattice for which there's no known representation.
- We want to further explore the idea of finding restrictions on groups that have certain lattices as intervals in their subgroup lattices (next week).
- The lattice L₇ puts many restrictions on the class of groups which could possibly represent it. Perhaps this lattice, or a modified version of it, will enable us to restrict to the class of almost simple groups.

- We have new methods for building new finite algebras out of old so that the congruence lattice changes in predictable ways. (Tune in next week!)
- We have representations for all finite lattices with at most 7 elements with one exception, thus idetifying the unique smallest lattice for which there's no known representation.
- We want to further explore the idea of finding restrictions on groups that have certain lattices as intervals in their subgroup lattices (next week).
- The lattice L₇ puts many restrictions on the class of groups which could possibly represent it. Perhaps this lattice, or a modified version of it, will enable us to restrict to the class of almost simple groups.
- Future work: Explore "interval enforceable properties of finite groups" and try to restrict to almost simple groups. Then solve the problem using the CFSG Theorem.

