Other applications of RNA-Seq data

A non-comprehensive list...

- Evaluating/comparing expression of small RNA
- Identifying the protein interaction sites on RNA molecules:

HITS-CLIP, PAR-CLIP, ICLIP

Identifying translation status of genes:

Ribo-Seq (Ribosomal Profiling)

Understanding expression profiles of cells starting with single cells

Figure 1: Basic principle of CLIP. Covalent bonds are formed between proximal proteins and RNA upon exposure to ultraviolet light. These bonds only occur at the sites of direct contact and preserve RNA-protein interactions.

https://en.wikipedia.org/wiki/CLIP#/media/File:Basic_Principle_of_CLIP.jpg

CLIP-Seq

Ribo-Seq

Ribo-Seq

Sequence reads **FASTQ** Quality control (+reference genome index) **FASTQ** (+known GTF, optional) Alignment to Genome: Tophat2, STAR multiple BAMs (+known GTF) Count reads associated with genes: htseq-count, featureCounts **Count Matrix** DGE with R: DESeq2, EdgeR, limma:voom

Ribo-Seq

Types of analyses

Within cell type

- · Stochasticity, variability of transcription
- Regulatory network inference
- Allelic expression patterns
- Scaling laws of transcription

Between cell types

- Identify biomarkers
- (Post)-transcriptional differences

Between tissues

- Cell-type compositions
- Altered transcription in matched cell types

scRNA-Seq

Sequence reads **FASTQ** Quality control (+reference genome index) **FASTQ** (+known GTF, optional) Alignment to Genome: Tophat2, STAR multiple BAMs (+known GTF) Count reads associated with genes: htseq-count, featureCounts **Count Matrix** Statistical Analysis:

Clustering, differential gene expression, count imputation, etc.

scRNA-Seq