圭

ТЕСТ МОЖНО СДАТЬ ТОЛЬКО 1 РАЗ, НАЖАВ НА КНОПКУ "Сохранить решение"

Оптимизационная задача метода опороных векторов:

$$egin{cases} rac{1}{2}w^Tw + C\sum_{i=1}^N \xi_i
ightarrow \min_{w,w_0,\xi} \ y_i\left(w^ op x_i + w_0
ight) = M\left(x_i,y_i
ight) \geq 1 - \xi_i, i = 1,2,\dots N \ \xi_i \geq 0, i = 1,2,\dots N \end{cases}$$

Величины нарушений: ξ . Параметр C - коэффициент при штрафах за нарушения ограничений. N - число объектов обучающей выборки.

Гибкость модели- выразительная способность модели

В тестовых заданиях первая галочка — правильный ответ, вторая галочка — выбранный ответ. Цвет обозначает, правильно ли в данном пункте поставлена галочка. Если все пункты верные (галочки совпадают / все пункты зеленые), то за задание ставится полный балл, в противном случае ставится 0 баллов.

противном случ	чае ставится 0 баллов.	,
опорных вект по кросс-вал объектов), у векторов при	ениваем число ошибок метода торов методом leave-one-out (т.е. идации с числом блоков=числу которого М-число опорных и настройке по всей обучающей гда число ошибок leave-one-out	
🗌 🗌 всегда	больше или равно М	
может	быть и больше, и меньше М	
не мен	њше M	
✓ ✓ не пре	восходит М	
Балл: 2.0		
Комментари	ій к правильному ответу:	
поменяется,	мативном объекте ошибки точно нет, а п поэтому ошибки тоже не будет. Получае опорных объектов.	ри его исключении решение не ется, ошибки могут возникать только при
2. Решение в м	етоде опорных векторов будет	

зависеть только от ооъектов
🔲 🔲 с отступом меньше или равным нуля

от всех объектов

🔲 🔲 с отступом строго больше нуля

_	_	
=		

с отступом строго больше единицы

Балл: 2.0

Комментарий к правильному ответу:

- 3. Пусть С коэффициент при штрафах за нарушение ограничений (он же при ф-ции потерь в прямой задаче оптимизации) в методе опорных векторов. Пусть вы хотите уменьшить число ошибок на обучающей выборке. Для этого вам нужно
 - увеличить С
 - параметр С не влияет на гибкость модели
 - уменьшить С

Балл: 2.0

Комментарий к правильному ответу:

4. Рассмотрим RBF ядро в методе опорных векторов с множителем при норме, равным а:

$$K(x,z)=e^{-a||x-z||^2}$$

- . Пусть вы хотите повысить гибкость модели (способность адаптироваться под обучающую выборку), чтобы уменьшить число ошибок на обучающей выборке. Для этого вам нужно
- увеличить а
- 🔲 🔲 параметр а не влияет на гибкость модели
- уменьшить а

Балл: 2.0

Комментарий к правильному ответу:

- 5. Решение для метода опорных векторов численными методами из случайного начального приближения приводит к
 - □ Глобальному минимуму критерия без использования ядер Мерсера и лишь к локальному (не обязательно глобальному) - при их использовании
 - 🕜 🦳 глобальному минимуму критерия
 - 🤲 🔲 локальному минимуму критерия, не обязательно совпадающим с глобальным

圭

Балл: 2.0

Комментарий к правильному ответу:

Построение разделяющей гиперплоскости, максимизирующей зазор (ширину) между объектами разных классов в обучающей выборке при бинарной классификации позволяет:
🔲 🔲 сделать обучение устойчивым к наличию выбросов
повысить ожидаемую точность классификации на тестовой выборке
ускорить процесс построения прогнозов
🦳 🔲 ускорить процесс обучения модели
Балл: 2.0
Комментарий к правильному ответу:
Выберите условия, при который линейный классификатор будет проводить разделяющую гиперплоскость, чтобы максимизировать зазор (ширину) между объектами разных классов в обучающей выборке при бинарной классификации:
🔲 🔲 логистическая функция потерь, без регуляризации
□ функция потерь hinge+L1 регуляризация
☑
□ Погистическая функция потерь+L1 регуляризация
□ Погистическая функция потерь+L2 регуляризация
□ функция потерь hinge, без регуляризации
Балл: 2.0 Комментарий к правильному ответу:

8. Пусть D-число признаков, N-число объектов в обучении, M-число опорных объектов в методе опорных векторов. Минимальная вычислительная сложность, с которой можно строить прогноз при уже настроенной модели, в случае решения прямой задачи для метода опорных векторов (без использования ядер) равна

=	□ O(D*M)
	□ ○ O(D*M*M)
	□ □ O(M)
	□ O(D*N)
	□ □ O(N)
	□ O(D*N*N)
	✓ O(D)
	Бапп: 2.0

Комментарий к правильному ответу: