- 1. Determine whether each of the following is true or false.
 - (a) $\emptyset \subseteq \emptyset$

True. Everyset is a subset of itself

(b) $\emptyset \in \emptyset$

False. As an empty set cannot contain another set, in this case \emptyset .

(c) $\emptyset \in \{\emptyset\}$

True. As the set has the element \emptyset

(d) $\emptyset \subseteq \{\emptyset\}$

True. Emptyset is the subset of every set.

(e) $\{a,b\} \in \{a,b,c,\{a,b\}\}$

True. The set contains both elements a and b.

(f) $\{a,b\} \subseteq \{a,b,\{a,b\}\}$

True. As the set $\{a,b\}$ has elements a, b from $\{a,b,\{a,b\}\}$ making it a subset.

(g) $\{a,b\} \subseteq 2^{\{a,b,\{a,b\}\}}$

False. Power set is a set of sets and it doesn't have elemtns a and b.

(h) $\{\{a,b\}\}\in 2^{\{a,b,\{a,b\}\}}$

True. The power set does have a element that is a set of set containing elemetrs a and b.

(i) $\{a, b, \{a, b\}\} - \{a, b\} = \{a, b\}$

False. After the operation on the left hand side we are left with $\{\{a,b\}\}$ which is not equal to $\{a,b\}$

- 2. What are these sets? Write them using brackets, commas and numerals only.
 - (a) $(\{1,3,5\} \cup \{3,1\}) \cap \{3,5,7\} = \{3,5\}$
 - (b) $\cup \{\{3\}, \{3, 5\}, \cap \{\{5, 7\}, \{7, 9\}\}\} = \{3, 5, 7\}$
 - (c) $(\{1,2,5\} \{5,7,9\}) \cup (\{5,7,9\} \{1,2,5\}) = \{1,2,7,9\}$
 - (d) $2^{\{7,8,9\}} 2^{\{7,9\}} = \{\{8\}, \{7,8\}, \{8,9\}, \{7,8,9\}\}\$
 - (e) $2^{\emptyset} = \{\emptyset\}$

- 3. Prove each of the following
 - (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Let,

$$L = A \cup (B \cap C)$$
 and $R = (A \cup B) \cap (A \cup C)$

We are to show that L=R. We do this by showing (i) $L\subseteq R$ and (ii) $R\subseteq L$

- i. Let x be an element of L. Then either, $x \in A$ or $x \in (B \cap C)$ if $x \in A$, then this emplies, $x \in (A \cup B)$ and $x \in (A \cup C)$. And therefore, $x \in ((A \cup B) \cap (A \cup C))$. Similarly, if $x \in (B \cap C)$, this emplies that $x \in B$ and $x \in C$. Thus, $x \in (A \cup B)$ and $x \in (A \cup C)$. And hence, $x \in ((A \cup B) \cap (A \cup C))$. Therefore $L \subseteq R$.
- ii. Let $x \in R$, then x in an element of both $A \cup B$ or $A \cup C$. If, $x \in A$, then $x \in L$. Similarly, if $x \notin A$, then x must be in both B and C. i.e $x \in B$ and $x \in C$. Then $xin(B \cap C)$ and thus $x \in L$. Therefore $R \subseteq L$.

Hence we established L = R

(b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Let,

$$L = A \cap (B \cup C)$$
 and $R = (A \cap B) \cup (A \cap C)$

We are to show that L = R. We do this by showing (i) $L \subseteq R$ and (ii) $R \subseteq L$

- i. Let x is an element of L; then $x \in A$ and $x \in (B \cup C)$. x must be in A but can be a member of either B or C.
 - Let $x \in B$, then $xin(A \cap B)$ and thus $x \in (A \cap B) \cup (A \cap C)$. Similarly, let $x \in C$, then $xin(A \cap C)$ and thus, $x \in (A \cap B) \cup (A \cap C)$. Therefore $L \subseteq R$.
- ii. Let $x \in R$. Then $x \in (A \cap B)$ or $x \in (A \cap C)$. If, $x \in (A \cap B)$, then $x \in A$ and $x \in B$. With this, $x \in A \cap (B \cup C)$. Similarly, it $x \in (A \cap C)$ then $x \in A$ and $x \in C$. This emplies $x \in A \cap (B \cup C)$. Therefore $R \subset L$.

Hence we established L = R

(c) $A \cap (A \cup B) = A$

Let, x in $A \cap (A \cup B)$, then because of intersection $x \in A$. Similarly, let $x \in A$ then, $x \in (A \cup C)$ and thus, $x \in A \cap (B \cup C)$.

(d) $A \cup (A \cap B) = A$

Let $x \in A \cup (A \cap B)$, with this we can say, $x \in A$.

Similarly, let $x \in A$, then by $x \in A \cup (A \cap B)$.

(e)
$$A - (B \cap C) = (A - B) \cup (A - C)$$

Let, $L = A - (B \cap C)$ and $R = (A - B) \cup (A - C)$

Let, $x \in L$, then $x \in A$ and $x \notin (B \cap C)$. Thus x cannot be in B and C both. When $x \in B$ implies, $x \in (A - C)$ and thus $x \in R$. Similarly, when $x \in C$ implies $x \in (A - B)$ and thus $x \in R$. When x is not in both B and C, then too $x \in R$. Thus $L \subseteq R$.

Similarly, let $x \in R$, then $x \in A$, similarly $x \notin (B \cap C)$. Thus, $x \in L$. And $R \subseteq L$. From this we have L = R.

- 4. Let $S = \{a, b, c, d\}$.
 - (a) What partitions of S has the fewest numbers? The most members? The partition of S that has the fewest members is {{a, b, c, d}}, a set containing S. Similarly, the partition of S has the most members when it is a set of subsets of S such that each has one element of S, that is {{a}, {b}, {c}, {d}}.
 - (b) List all the partitions of S with exactly two members.
 They are:
 {{a, b}, {c, d}}, {{a, c}, {b, d}}, {{a, d}, {b, c}}, {{a}, {b, c, d}}, {{b}, {a, c, d}}, {{c}, {a, b, d}}, {{d}}, {{d}}, {{a, b, c}}