回帰分析

回帰モデルの考え方と推定

村田 昇

講義概要

・ 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の考え方

回帰分析

• ある変量を別の変量で説明する関係式を構成する

• 関係式: 回帰式 (regression equation)

- 説明される側:目的変数,被説明変数,従属変数,応答変数

- 説明する側: 説明変数, 独立変数, 共変量

• 説明変数の数による分類

- 一つの場合: **単回帰** (simple regression)

- 複数の場合: **重回帰** (multiple regression)

一般の回帰の枠組

• 説明変数: $x_1, ..., x_p$ (p 次元)

• 目的変数: y(1次元)

• 回帰式: y を $x_1,...,x_p$ で説明するための関係式

$$y = f(x_1, \dots, x_p)$$

• 観測データ: n 個の $(y, x_1, ..., x_p)$ の組

$$\{(y_i, x_{i1}, \dots, x_{ip})\}_{i=1}^n$$

線形回帰

- 任意の f では一般的すぎて分析に不向き
- f として**1次関数** を考える

ある定数 $\beta_0, \beta_1, \ldots, \beta_p$ を用いた式:

$$f(x_1,\ldots,x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

- 1 次関数の場合:線形回帰 (linear regression)
- 一般の場合: 非線形回帰 (nonlinear regression)
- 非線形関係は新たな説明変数の導入で対応可能
 - 適切な多項式: $x_i^2, x_j x_k, x_j x_k x_l, \ldots$
 - その他の非線形変換: $\log x_i, x_i^{\alpha}, \dots$
 - 全ての非線形関係ではないことに注意

回帰係数

• 線形回帰式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- $-\beta_0,\beta_1,\ldots,\beta_p$: 回帰係数 (regression coefficients)
- β₀: 定数項 / 切片 (constant term / intersection)
- 線形回帰分析 (linear regression analysis)
 - 未知の回帰係数をデータから決定する分析方法
 - 決定された回帰係数の統計的な性質を診断

回帰の確率モデル

- 回帰式の不確定性
 - データは一般に観測誤差などランダムな変動を含む
 - 回帰式がそのまま成立することは期待できない
- 確率モデル : データのばらつきを表す項 ϵ_i を追加

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

- $-\epsilon_1,\ldots,\epsilon_n$: 誤差項 / 撹乱項 (error / disturbance term)
 - * 誤差項は独立な確率変数と仮定
 - * 多くの場合, 平均 0, 分散 σ^2 の正規分布を仮定
- 推定 (estimation): 観測データから回帰係数を決定

回帰係数の推定

残差

- 残差 (residual): 回帰式で説明できない変動
- 回帰係数 $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_n)^\mathsf{T}$ を持つ回帰式の残差

$$e_i(\beta) = y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_D x_{iD})$$
 $(i = 1, \dots, n)$

• 残差 $e_i(\beta)$ の絶対値が小さいほど当てはまりがよい

最小二乗法

• 残差平方和 (residual sum of squares)

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} e_i(\boldsymbol{\beta})^2$$

• 最小二乗推定量 (least squares estimator)

残差平方和 $S(\beta)$ を最小にする β

$$\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)^{\mathsf{T}} = \arg\min_{\boldsymbol{\beta}} S(\boldsymbol{\beta})$$

行列の定義

• デザイン行列 (design matrix)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

ベクトルの定義

• 目的変数, 誤差, 回帰係数のベクトル

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

- y, ϵ は n 次元ベクトル
- β は p+1 次元ベクトル

行列・ベクトルによる表現

• 確率モデル

$$y = X\beta + \epsilon$$

• 残差平方和

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解の条件

• 解 β では残差平方和の勾配は零ベクトル

$$\nabla S(\boldsymbol{\beta}) = \left(\frac{\partial S}{\partial \beta_0}(\boldsymbol{\beta}), \frac{\partial S}{\partial \beta_1}(\boldsymbol{\beta}), \dots, \frac{\partial S}{\partial \beta_p}(\boldsymbol{\beta})\right)^{\mathsf{T}} = \mathbf{0}$$

• 成分 (j = 0,1,...,p) ごとの条件式

$$\frac{\partial S}{\partial \beta_j}(\boldsymbol{\beta}) = -2\sum_{i=1}^n \left(y_i - \sum_{k=0}^p \beta_k x_{ik}\right) x_{ij} = 0$$

ただし
$$x_{i0} = 1$$
 $(i = 1, ..., n)$

正規方程式

正規方程式

• 正規方程式 (normal equation)

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}\boldsymbol{y}$$

- X^TX : **Gram** 行列 (Gram matrix)
 - (p+1)×(p+1) 行列(正方行列)
 - 正定対称行列(固有値が非負)

正規方程式の解

- 正規方程式の基本的な性質
 - 正規方程式は必ず解をもつ(一意に決まらない場合もある)
 - 正規方程式の解は最小二乗推定量であるための必要条件
- 解の一意性の条件
 - Gram 行列 X^TX が **正則**
 - X の列ベクトルが独立(後述)
- 正規方程式の解

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{v}$$

実習

R:線形モデルの推定

• 関数 stats::lm() による推定

lm(formula, data, subset, weights, na.action,
 method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
 singular.ok = TRUE, contrasts = NULL, offset, ...)

#' formula: 目的変数名 ~ 説明変数名 (複数ある場合は + で並べる)

#' data: 目的変数, 説明変数を含むデータフレーム

#' subset: 推定に用いるデータフレームの部分集合を指定(指定しなければ全て)

#' na.action: 欠損の扱いを指定 (既定値は option("na.action") で設定された処理) #' model,x,y,qr: 返値に model.frame,model.matrix,目的変数,QR 分解を含むか指定

データセットの準備

- 回帰分析では以下のデータセットを使用する
 - https://www.statlearning.com/s/Advertising.csv

広告費 (TV,radio,newspapers) と売上の関係を調べたもの

* 参考: https://www.statlearning.com

"Datasets in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani"

- tokyo_weather.csv(配付)

気象庁より取得した東京の気候データを回帰分析用に整理したもの

*参考:https://www.data.jma.go.jp/gmd/risk/obsdl/index.php

練習問題

- 前掲のデータセットを用いて回帰式を構成しなさい
 - 広告費と売上データ

```
#' formula (R言語における式) として以下の書式で与えればよい
formula = sales ~ TV
formula = sales ~ radio
formula = sales ~ TV + radio
```

- 東京の8月の気候データ

formula = temp ~ solar + press

最小二乗推定量の性質

解析の上での良い条件

- 最小二乗推定量がただ一つだけ存在する条件
 - X^TX が正則
 - X^TX の階数が p+1
 - X の階数が p+1
 - X の列ベクトルが 1 次独立

これらは同値条件

解析の上での良くない条件

- 説明変数が 1 次従属: **多重共線性** (multicollinearity)
- 多重共線性が強くならないように説明変数を選択
 - X の列 (説明変数) の独立性を担保する
 - 説明変数が互いに異なる情報をもつように選ぶ
 - 似た性質をもつ説明変数の重複は避ける

推定の幾何学的解釈

• あてはめ値 / 予測値 (fitted values / predicted values)

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}} = \hat{\beta}_0 X_{\text{\tiny $\hat{\mathfrak{g}}$ \tiny 0 }} + \dots + \hat{\beta}_p X_{\text{\tiny $\hat{\mathfrak{g}}$ \tiny p }}$$

図 1: n = 3, p + 1 = 2 の場合の最小二乗法による推定

- 最小二乗推定量 ŷ の幾何学的性質
 - L[X]: X の列ベクトルが張る \mathbb{R}^n の線形部分空間
 - -X の階数が p+1 ならば L[X] の次元は p+1 (解の一意性)
 - $-\hat{y}$ は y の L[X] への直交射影
 - 残差 (residuals) $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} に直交

$$\hat{\boldsymbol{\epsilon}} \cdot \hat{\boldsymbol{y}} = 0$$

線形回帰式と標本平均

- $x_i = (x_{i1}, ..., x_{ip})^{\mathsf{T}}$: i 番目の観測データの説明変数
- 説明変数および目的変数の標本平均

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$

• $\hat{\pmb{\beta}}$ が最小二乗推定量のとき以下が成立

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}$$

実習

R:推定結果からの情報の取得

• 関数 lm() の出力には様々な情報が含まれる

```
#' lmの出力を引数とする関数の例
coef(lmの出力) # 推定された回帰係数
fitted(lmの出力) # あてはめ値
resid(lmの出力) # 残差
model.frame(lmの出力) # model に必要な変数の抽出 (データフレーム)
model.matrix(lmの出力) # デザイン行列
```

R:行列とベクトル

- データフレーム以外の重要なデータ構造
 - ベクトル (vector): 1 次元の配列
 - 行列 (matrix): 2 次元の同じデータ型の配列
- 必要であれば明示的に変換できる

```
as.vector(データフレーム [列名]) # base::as.vector()
as_vector(データフレーム [列名]) # purrr::as_vector()
as.matrix(データフレーム) # base::as.matrix()
#' データフレームを行列に変換する場合は全て同じデータ型でなくてはならない
```

R:行列とベクトルの計算

• 行列 A, B の積 AB およびベクトル a, b の内積 $a \cdot b$

```
A %*% B # 行列の大きさは適切である必要がある
a %*% b # ベクトルは同じ長さである必要がある
```

• 正方行列 A の逆行列 A-1

```
solve(A) #他にもいくつか関数はある
```

• X^TY および X^TX の計算

```
      crossprod(X, Y) # cross product の略

      #' X: 行列 (またはベクトル)

      #' Y: 行列 (またはベクトル)

      crossprod(X) # 同じものを掛ける場合は引数は 1 つで良い
```

練習問題

- 前間の推定結果を用いて最小二乗推定量の性質を確認しなさい
 - 推定された係数が正規方程式の解

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

となること

- あてはめ値と残差が直交すること
- 回帰式が標本平均を通ること

残差の分解

最小二乗推定量の残差

• 観測値と推定値 **Ĝ** による予測値の差

$$\hat{\epsilon}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_n x_{in}) \quad (i = 1, \dots, n)$$

- 誤差項 $\epsilon_1, \ldots, \epsilon_n$ の推定値
- 全てができるだけ小さいほど良い
- 予測値とは独立に偏りがないほど良い
- 残差ベクトル

$$\hat{\boldsymbol{\epsilon}} = \boldsymbol{y} - \hat{\boldsymbol{y}} = (\hat{\epsilon}_1, \hat{\epsilon}_2, \dots, \hat{\epsilon}_n)^{\mathsf{T}}$$

平方和の分解

- $\bar{\mathbf{y}} = \bar{\mathbf{y}}\mathbf{1} = (\bar{\mathbf{y}}, \bar{\mathbf{y}}, \dots, \bar{\mathbf{y}})^{\mathsf{T}}$:標本平均のベクトル
- いろいろなばらつき
 - $S_v = (\mathbf{y} \bar{\mathbf{y}})^\mathsf{T} (\mathbf{y} \bar{\mathbf{y}})$:目的変数のばらつき
 - $S = (\mathbf{y} \hat{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} \hat{\mathbf{y}}) : 残差のばらつき (\hat{\boldsymbol{\epsilon}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}})$
 - $S_r = (\hat{\mathbf{y}} \bar{\mathbf{y}})^\mathsf{T} (\hat{\mathbf{y}} \bar{\mathbf{y}})$: あてはめ値 (回帰) のばらつき
- 3 つのばらつき (平方和) の関係

$$(\mathbf{y} - \bar{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \bar{\mathbf{y}}) = (\mathbf{y} - \hat{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \bar{\mathbf{y}})^{\mathsf{T}} (\hat{\mathbf{y}} - \bar{\mathbf{y}})$$

$$S_{v} = S + S_{r}$$

実習

練習問題

- 前問の結果を用いて残差の性質を確認しなさい
 - 以下の分解が成り立つこと

$$(\mathbf{y} - \bar{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \bar{\mathbf{y}}) = (\mathbf{y} - \hat{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \bar{\mathbf{y}})^{\mathsf{T}} (\hat{\mathbf{y}} - \bar{\mathbf{y}})$$

$$S_y = S + S_r$$

決定係数

回帰式の寄与

• ばらつきの分解

$$S_v$$
 (目的変数) = S (残差) + S_r (あてはめ値)

• 回帰式で説明できるばらつきの比率

(回帰式の寄与率) =
$$\frac{S_r}{S_v}$$
 = $1 - \frac{S}{S_v}$

• 回帰式のあてはまり具合を評価する代表的な指標

決定係数 $(R^2$ 値)

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正している

実習

練習問題

- 決定係数を用いてモデルの比較を行いなさい
 - 広告費と売上データ

```
sales ~ TV
sales ~ radio
sales ~ TV + radio
```

東京の8月の気候データ

```
temp ~ solar
temp ~ solar + press
temp ~ solar + press + cloud
```

次回の予定

• 第1回:回帰モデルの考え方と推定

• 第2回:モデルの評価

・ 第3回: モデルによる予測と発展的なモデル