Streamline Your Workflow: Integrating SAS, LaTeX, and R into a Single Reproducible Document A 538 Star Wars Example

Lucy D'Agostino McGowan

February 28, 2017

1 Introduction

I obtained data from a 538 Star Wars Survey (found here: https://github.com/fivethirtyeight/data/tree/master/star-wars-survey) and will read it into SAS in order to analyze whether age, gender, or education level are associated with incorrectly believing that Greedo shot first.

```
libname data "/folders/myshortcuts/report-example/data";
filename reffile
  '/folders/myshortcuts/report-example/data/star-wars-survey-538.csv';
proc import datafile=reffile
dbms=csv
replace
out=data.starwars;
getnames=yes;
run;
data data;
 set data.starwars;
  if Jar\_Jar\_Binks in (" ", "Unfamiliar (N/A)")
    then wrong_jar_jar = " ";
  else if Jar_Jar_Binks in ("Very favorably", "Somewhat favorably")
    then wrong_jar_jar = 1;
    else wrong_jar_jar = 0;
  if shot_first = "Han"
    then wrong_han = 0;
  if shot_first = "Greedo"
    then wrong_han = 1;
```

```
if education in ("Bachelor degree", "Graduate degree")
   then college = "College degree";
if education in ("Some college or Associate degree",
   "High school degree", "Less than high school degree")
   then college = "No college degree";
run;

ods graphics on;

proc freq data = data;
table wrong_han wrong_jar_jar;
run;
ods graphics off;
```

Figure 1: Wrong about who shot first

	The FREQ Procedure			
wrong_han	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	325 197	62.26 37.74	325 522	62.26 100.00
	Freq	uency Missin	g = 664	

Figure 2: Wrong aboud Jar Jar Binks

	wrong_ jar_ jar	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
	0	470	66.01	470	66.01	
	1	242	33.99	712	100.00	
Frequency Missing = 474						

```
ods graphics on;
proc logistic data = data plots = oddsratio;
  class age (ref = FIRST) gender college Star_Trek_fan;
  model wrong_han(event = "1") = age gender college Star_Trek_fan;
run;
```

```
ods graphics off;
ods graphics on;
proc logistic data = data plots = oddsratio;
class age (ref = FIRST) gender college Star_Trek_fan;
model wrong_jar_jar(event = "1") = age gender college Star_Trek_fan;
run;
ods graphics off;
```

Figure 3: Wrong about who shot first Odds Ratio

	The LOGISTIC Proceed	lure			
Odds Ratio Estimates					
		Point	95% W	ald	
Effect		Estimate	Confidenc	e Limits	
Age	30-44 vs 18-29	1.566	0.941	2.605	
Age	45-60 vs 18-29	1.232	0.730	2.079	
Age	> 60 vs 18-29	2.190	1.218	3.936	
Gender	Fema vs Male	1.402	0.970	2.026	
college	College degree vs No college deg	1.027	0.705	1.497	
Star_Trek_far	No vs Yes	1.194	0.818	1.742	

 $\label{eq:Figure 5: Wrong about who shot first Odds Ratio} Figure 5: Wrong about who shot first Odds Ratio$

The LOGISTIC Procedure					
Odds Ratio Estimates					
		Point	95% W	ald	
Effect		Estimate	Confidenc	e Limits	
Age	30-44 vs 18-29	0.939	0.587	1.501	
Age	45-60 vs 18-29	1.608	1.016	2.546	
Age	> 60 vs 18-29	1.630	1.001	2.654	
Gender	Fema vs Male	1.694	1.224	2.343	
college	College degree vs No college deg	0.566	0.407	0.787	
Star_Trek_fai	n No vs Yes	1.095	0.785	1.528	


```
proc export data=data.starwars
  outfile =
    '/folders/myshortcuts/report-example/data/starwars_sasedit.csv'
  replace
  dbms = dlm;
  delimiter = ',';
run;
```

2 Test

```
filename = "../data/starwars_sasedit.csv"
if (file.exists(filename)){
  #load libraries
 library('dplyr')
 library('rphylopic')
 library('png')
 library('ggplot2')
  #read in data
  starwars <- read.csv(filename)</pre>
  #load some cute pics
  chewie <- readPNG("../data/img/chewie.png")</pre>
  stormtrooper <- readPNG("../data/img/storm_trooper.png")</pre>
 starwars %>%
    filter(shot_first %in% c("Han", "Greedo")) %>%
    select(shot_first,The_Phantom_Menace,
           Attack_of_the_Clones, Revenge_of_the_Sith,
           A_New_Hope, The_Empire_Strikes_Back,
           Return_of_the_Jedi) %>%
    group_by(shot_first) %>%
    summarise_each(funs(mean(., na.rm = TRUE)))  %>%
    tidyr::gather("film","rank",2:7) %>%
    mutate(film = gsub("_", " ", film)) %>%
    data.frame() -> plot_data
 plot_data$film <- reorder(plot_data$film, rep(1:6, each = 2))</pre>
 p <- ggplot(plot_data,aes(film, rank, group = shot_first)) +</pre>
   geom_line(aes(color = shot_first)) +
   scale_colour_manual(values = c("black","brown")) +
   ylim(0,6)
   for (i in 1:6) {
   p <- p + add_phylopic(chewie, 1, i,
                          plot_data[plot_data$shot_first=="Han",
                                    "rank"][i],
                          ysize = 1)
   for (i in 1:6) {
   p <- p + add_phylopic(stormtrooper, 1, i,</pre>
                          plot_data[plot_data$shot_first=="Greedo",
                                    "rank"][i],
                          ysize = 1)
 p +
```

```
ggtitle("Star Wars Film Rankings by Who Shot First") +
  theme(axis.text.x = element_text(angle = 60, hjust = 1))
}
```

Star Wars Film Rankings by Who Shot First

