

c) irregular (ill-posed problem) $\|x_i - \sum_{j} w_j x_j\|^2 + \lambda \sum_{j} w_{ij}^2$ Af = F fe F) rejulavization train a generator that is able to produce samples generator vs. discriminator high questity autificient samples conditioned GAN info or GAN. cycle GAN,

We still need to show the optimal solution (gt, d*) is the unique global optimum of V For all g, $V(g^*, d^*) \leq V(g, d_g^*)$ if and only if $g = g^*$ Step 2, fix dixriminator, apdate generator: V(g, d*) = $\int_{X} P_{\text{olata}}(x) \log \frac{P_{\text{olata}}(x)}{P_{\text{olata}}(x) + P_{\text{g}}(x)} + P_{\text{g}}(x) \log \left(1 - \frac{P_{\text{gas}}(x)}{P_{\text{olata}}(x) + P_{\text{g}}(x)}\right)$ = Jx Polata(x) log Polata(x) + Pg(x) tog Polata(x) + Pg(x) day

Polata(x) + Pg(x) tog Polata(x) + Pg(x) day log ab = let a+lab $\int x \left[\frac{1}{2} \operatorname{Polata}(x) \right] \frac{1}{2} \operatorname{Polata}(x) + \operatorname{Pg}(x) + \operatorname{Pg}(x) + \operatorname{Pg}(x) + \operatorname{Pg}(x) \right] dx$ = \int \left[\rightarrow \frac{1}{2} \right] \text{Pdotta(K)} + \text{Pdotta(K)} \left|\rightarrow \frac{1}{2} \left(\right) \frac{1}{2} \left(\righ + $\int_{x} \left[lg \frac{1}{2} \cdot p_{g}(x) dx + p_{g}(x) lg \frac{p_{g}(x)}{\frac{1}{2}(pdexta(x))} \right]$ $= -2 \log 2 + \int P data(x) \log \frac{1}{2} (P data(x)) dx + \int P g(x) dx + \int P g(x) dx$ $= -2 \log 2 + \int P data(x) \log \frac{1}{2} (P data(x)) dx + \int P g(x) \log \frac{1}{2} (P data(x)) dx$ = - 2 hog 2 + De PKL (Polata | Polata + Pg) + DKL (Pg | Polata + Pg) = -2 ly 2 + 2 DJS (Polate # Pg) = -2 log 2 + 0 = -2 log 2 arg min V(g, dgt) = - 2 hug 2 if and only if Polata = Pg ie g = g*

