2021-2022 第二学期高等数学 A(二)试卷 A 参考答案

- 一、选择题(每题3分,共15分)
 - C.
- 2. C. 3. D. 4. A.

- 二、填空题(每题3分,共15分)

 - 6. 5. 7. $\frac{xdy ydx}{x^2 + y^2}$. 8. $\frac{1}{2}$. 9. 4π 10. $\frac{\pi^2}{2}$.

- 三、计算题(每题9分,共63分)
- **11. 解:** 令 $F(x, y, z) = x^2 + y^2 z$,于是该曲面在点 (1,1,2) 处切平面的法向量为 $\vec{n} = (F_x, F_y, F_z)|_{(1.1.2)} = (2x, 2y, -1)|_{(1.1.2)} = (2, 2, -1),$

故所求切平面方程为

$$2(x-1)+2(y-1)-(z-2)=0,$$

即

$$2x + 2y - z = 2.$$

故所求法线方程为

$$\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{-1}.$$

12. **解**: 在方程两边关于 x 求偏导数得 $1 - \frac{\partial z}{\partial r} = e^z \frac{\partial z}{\partial r}$,

当(x,y) = (1,**时**, z=0, 代入上式,得 $\frac{\partial z}{\partial x}$ = $\frac{1}{2}$. 类似可得 $\frac{\partial z}{\partial y}$ = $\frac{1}{2}$.

两边关于 y 求偏导数得 $-\frac{\partial^2 z}{\partial x \partial y} = e^z \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} + e^z \frac{\partial^2 z}{\partial x \partial y}$, 代入 x = 1, y = 0, z = 0, $\frac{\partial z}{\partial x} \Big|_{x=0} = \frac{1}{2} \mathcal{D} \frac{\partial z}{\partial y} \Big|_{x=$

解得 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{z=0} = -\frac{1}{8}$.

或者: 计算得 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = \frac{1}{1+e^z}$, $\frac{\partial^2 z}{\partial x \partial y} = \frac{-e^z}{(1+e^z)^3}$, 同理可得 $\frac{\partial^2 z}{\partial x \partial y} = -\frac{1}{8}$.

13. 解: 令
$$\begin{cases} f_x'(x,y) = -2x + 6 = 0, \\ f_y'(x,y) = 3y^2 - 12 = 0, \end{cases}$$
 得驻点(3,2), (3,-2). 又

$$f''_{xx}(x, y) = -2$$
, $f''_{xy}(x, y) = 0$, $f''_{yy}(x, y) = 6y$

在驻点(3,2)处, $A = f_{xx}''(3,2) = -2$, $B = f_{xy}''(3,2) = 0$, $C = f_{yy}''(3,2) = 12$,

 $AC-B^2 = -24 < 0$, 故(3,2) 不是极值点;

在驻点(3,-2)处,
$$A = f_{xx}''(3,-2) = -2$$
, $B = f_{xy}''(3,-2) = 0$, $C = f_{yy}''(3,-2) = -12$,

 $AC-B^2=24>0$,且A<0,故(3,-2)是极大值点,且极大值为f(3,-2)=-18.

14.
$$M: D = D_1 \cup D_2$$
, $A = D_1 : 0 \le x \le 1$, $A = D_2 : 0 \le x \le$

$$I = \iint_{D_1} + \iint_{D_2} = \int_0^1 dx \int_{x^2}^1 (y - x^2) dy + \int_0^1 dx \int_0^{x^2} (x^2 - y) dy$$
$$= \int_0^1 (\frac{1}{2} - x^2 + \frac{1}{2} x^4) dx + \int_0^1 \frac{1}{2} x^4 dx = \frac{4}{15} + \frac{1}{10} = \frac{11}{30}.$$

15. M:
$$\diamondsuit P = 2 + xe^{2y}$$
, $O = x^2e^{2y} - 1$,

$$\frac{\partial P}{\partial y} = 2xe^{2y} = \frac{\partial Q}{\partial x}$$
, 故积分与路径无关,

取路径 $OA: y = 0, x: 0 \rightarrow 4$

$$I = \int_{0.04} (2 + xe^{2y}) dx + (x^2 e^{2y} - 1) dy = \int_0^4 (2 + x) dx = 16.$$

16. 解法一:补充曲面 $\Sigma_1: z = \mathbf{1}(x^2 + y^2 \le 1)$,取上侧; $\Sigma_2: z = \mathbf{0}(x^2 + y^2 \le 1)$,取下侧,则 $\Sigma, \Sigma_1, \Sigma_2$ 构成封闭曲面,取外侧,它们所围区域记为 Ω .

由高斯公式可得,
$$\bigoplus_{\Sigma+\Sigma_1+\Sigma_2} = \iiint_{\Omega} (2xy+2y\sin x+2z) dV$$
,

根据奇偶对称性可知 $\iint_{\Omega} 2xydV = \iint_{\Omega} 2y \sin xdV = 0$,所以

$$\bigoplus_{\Sigma+\Sigma_1+\Sigma_2} = 2 \iiint_{\Omega} z dV = 2 \iint_{x^2+y^2 \le 1} dx dy \int_0^1 z dz = \pi.$$

$$\overline{\text{mi}} \iint_{\Sigma_1} = \iint_{\Sigma_1} z^2 \mathrm{d}x \mathrm{d}y = \iint_{x^2 + y^2 \le 1} 1^2 \mathrm{d}x \mathrm{d}y = \pi \; , \quad \iint_{\Sigma_2} = \iint_{\Sigma_2} z^2 \mathrm{d}x \mathrm{d}y = - \iint_{x^2 + y^2 \le 1} 0^2 \mathrm{d}x \mathrm{d}y = 0,$$

所以
$$I = \bigoplus_{\Sigma + \Sigma_1 + \Sigma_2} - \iint_{\Sigma_1} - \iint_{\Sigma_2} = \pi - \pi - 0 = 0.$$

解法二: 由于
$$\iint_{\Sigma} z^2 dxdy = 0$$
, 所以 $I = \iint_{\Sigma} x^2 y dydz + y^2 \sin x dz dx$.

补充曲面 $\Sigma_1: z=1(x^2+y^2\leq 1)$,取上侧; $\Sigma_2: z=0(x^2+y^2\leq 1)$,取下侧,则 $\Sigma, \Sigma_1, \Sigma_2$ 构成封闭曲面,所围区域为 Ω ,取外侧.

由高斯公式可得,
$$\bigoplus_{\Sigma+\Sigma_1+\Sigma_2} = \iiint_{\Omega} (2xy+2y\sin x) dV$$
,

根据奇偶对称性可知
$$\iint_{\Omega} 2xy dV = \iint_{\Omega} 2y \sin x dV = 0$$
, 所以 $\iint_{\Sigma+\Sigma_1+\Sigma_2} = 0$.

而
$$\iint\limits_{\Sigma_1} x^2 y \mathrm{d}y \mathrm{d}z + y^2 \mathrm{sin}x \mathrm{d}z \mathrm{d}x = \iint\limits_{\Sigma_2} x^2 y \mathrm{d}y \mathrm{d}z + y^2 \mathrm{sin}x \mathrm{d}z \mathrm{d}x = 0, \ \text{所以 } I = 0.$$

17. 解. 收敛半径
$$R = \lim_{n \to \infty} \frac{2n+1}{2n+3} = 1$$
, 故收敛区间为 $(-1,1)$ 。

显然 $x=\pm 1$ 的时候,原级数发散,从而收敛域为(-1,1)

ਪੁੱਧ
$$S(x) = \sum_{n=0}^{\infty} (2n+1)x^n, x \in (-1,1)$$

$$\sum_{n=0}^{\infty} (2n+1)x^{n} = 2\sum_{n=0}^{\infty} nx^{n} + \sum_{n=0}^{\infty} x^{n}$$

对
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 逐项求导得 $\sum_{n=0}^{\infty} nx^{n-1} = \frac{1}{(1-x^2)}$,

故
$$\sum_{n=0}^{\infty} nx^n = x \sum_{n=0}^{\infty} nx^{n-1} = \frac{x}{(1-x)^2}$$
,

于是
$$S(x) = \sum_{n=0}^{\infty} (2n+1)x^n = \frac{2x}{(1-x)^2} + \frac{1}{1-x} = \frac{1+x}{(1-x)^2}, x \in (-1,1).$$

四、证明题(本题7分)

18. 证明: 设
$$\sum_{n=1}^{\infty} (b_{n+1} - b_n) = s$$
.

由于其前 n 项部分和 $s_n = b_2 - b_1 + b_3 - b_2 + \cdots + b_{n+1} - b_n = b_{n+1} - b_1$,

所以 $\lim_{n\to\infty} s_n = \lim_{n\to\infty} (b_{n+1} - b_1) = s$, 得 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} b_{n+1} = s + b_1$, 从而数列 $\{b_n\}$ 有界.

不妨令 $|b_n| \le M$,则 $0 \le |a_n b_n| \le Ma_n$.因为 $\sum_{n=1}^{\infty} Ma_n$ 收敛,所以由正项级数的比较判别法可知

$$\sum_{n=1}^{\infty} |a_n b_n|$$
 收敛,即 $\sum_{n=1}^{\infty} a_n b_n$ 绝对收敛.