DESENVOLVIMENTO DE UMA FERRAMENTA PARA GERAÇÃO DE FRACTAIS DEFINIDOS POR L-SISTEMAS

Wellington Sérgio Martiniano Santos¹, Silvio do Lago Pereira²

¹Tecnólogo em Análise e Desenvolvimento de Sistemas – FATEC-SP

²Prof. Dr. do Departamento de Tecnologia da Informação – FATEC-SP

wellsergioms@gmail.com, slago@pq.cnpq.br

Resumo

L-sistema é um formalismo originalmente proposto para modelar e simular o crescimento de plantas em estudos botânicos. Porém, usando esse formalismo, também é possível construir estruturas fractais (i.e., fractais geométricos), pela sucessiva substituição de partes de uma estrutura por subestruturas com a mesma forma da estrutura original. Fractais geométricos têm diversas aplicações práticas como, por exemplo, criação de elementos para decoração de cenários virtuais na indústria de jogos eletrônicos e criação de padronagem de tecidos para a indústria têxtil. Nesse trabalho, o objetivo é criar uma ferramenta que possibilite o uso de L-sistemas para modelar e gerar fractais geométricos, bem como relatar resultados interessantes obtidos com essa ferramenta.

1. Introdução

L-sistema é um formalismo, originalmente proposto por *Aristid Lindenmayer* [1], para modelar e simular o crescimento de plantas em estudos na área de botânica. Porém, usando esse formalismo, também é possível construir estruturas fractais (i.e., *fractais geométricos*), pela sucessiva substituição de partes de uma estrutura por subestruturas com a mesma forma da estrutura original.

Fractais geométricos têm diversas aplicações práticas como, por exemplo, criação de elementos para decoração de cenários virtuais na indústria de jogos eletrônicos [2], produção de texturas a serem aplicadas em modelagem 3D e criação de padronagem de tecidos para a indústria têxtil, conforme ilustrado na Figura 1.

Figura 1 – Padronagens de tecidos com fractais.

Ademais, segundo Nunes [3], "A geometria fractal permite a integração de diversos temas da matemática e de outras áreas, desde as ciências naturais às econômicosociais e à tecnologia. Quando incluída no ensino, permite desenvolver o espírito experimental dos alunos de forma a entender a geometria de objetos não tradicionais e de estabelecer modelos matemáticos para auxiliar os estudos dos fenômenos naturais.".

Nesse contexto, o objetivo principal desse artigo é descrever a implementação de uma ferramenta que gera fractais geométricos modelados por L-sistemas. Com essa ferramenta, pretende-se contribuir para a disseminação do conhecimento sobre fractais e L-sistemas.

O restante desse artigo está organizado da seguinte forma: a Seção 2 introduz o conceito de L-sistema e discute como esse formalismo pode ser usado para modelar e gerar estruturas fractais; a Seção 3 descreve sucintamente a ferramenta desenvolvida e sua funcionalidade; a Seção 4 apresenta alguns resultados interessantes obtidos com a ferramenta desenvolvida e, finalmente, a Seção 5 apresenta as conclusões finais do trabalho.

2. L-sistemas e Fractais Geométricos

L-sistema [1] é um formalismo que possibilita definir uma estrutura complexa a partir de sucessivas substituições de partes de uma estrutura mais simples.

O L-sistema mais simples, denominado *D0L-sistema*, é definido por uma tupla $\langle \Sigma, \omega, \Pi \rangle$, onde Σ é um *alfabeto*, $\omega \in \Sigma^+$ é um *axioma* e Π é um conjunto de *regras de produção* da forma $\alpha \rightarrow \beta$, indicando que a subestrutura α deve ser substituída pela subestrutura β . Um D0L-sistema é uma gramática determinística e livre de contexto cujas regras de produção são aplicadas simultaneamente em todas as partes do axioma. Por exemplo, a evolução do L-sistema $\mathcal{K} = \langle \{F,+,-\}, F, \{F \rightarrow F + F - F + F\} \rangle$ gera uma sequência infinita de estruturas, cujas três primeiras são:

```
0: F
1: F+F--F+F
2: F+F--F+F+F--F+F--F+F--F+F
```

A Figura 2 descreve detalhadamente o processo de geração dessas estruturas. Observe que, pela regra de produção $F \rightarrow F + F - F + F$, especificada no L-sistema \mathcal{K} , cada símbolo F deve ser substituído pela sequência F + F - F + F. Os símbolos para os quais não há regra de produção em \mathcal{K} (i.e., + e -) são simplesmente copiados para a nova estrutura.

Figura 2 – Evolução do L-sistema X.

Um fato interessante sobre L-sistemas é que a interpretação geométrica das estruturas geradas por eles resulta em *fractais geométricos*. Por exemplo, a interpretação geométrica do L-sistema $\mathcal K$ resulta no fractal conhecido como *Curva de Koch*, apresentado na Figura 3.

Figura 3 – Interpretação geométrica do L-sistema K.

A interpretação geométrica de uma estrutura (*cadeia*) gerada por um L-sistema é baseada no método *turtle graphics* [4], que supõe que uma tartaruga traça linhas à medida que se desloca pelo plano cartesiano. O estado da tartaruga é dado por uma tupla $\langle (x,y),\alpha\rangle$, onde (x,y) é a sua posição no plano e α é um ângulo que indica a direção para a qual ela está voltada. Dados um passo σ e um incremento angular δ fixos, a tartaruga pode responder aos seguintes comandos básicos:

- F (*um passo à frente*): o estado da tartaruga muda para $\langle (x', y'), \alpha \rangle$, onde $x' = x + \sigma .\cos \alpha$ e $y' = y + \sigma .\sin \alpha$, e uma reta é traçada entre os pontos (x, y) e (x', y').
- + (*vire para a esquerda*): o estado da tartaruga muda para $\langle (x,y), \alpha + \delta \rangle$.
- – (*vire para a direita*): o estado da tartaruga muda para $\langle (x, y), \alpha \delta \rangle$.

A Figura 4 mostra como a cadeia F+F--F+F é interpretada pela tartaruga, supondo $\delta=60^\circ$: em (a), a tartaruga, representada pelo ponto preto, está na origem com orientação de 0° ; em (b), ela dá um passo à frente; em (c), ela gira 60° à esquerda; em (d), ela dá um passo à frente; em (e), ela gira 60° à direita; em (f), ela gira 60° à direita; em (g), ela dá um passo à frente; em (h), ela gira 60° à esquerda; em (i), ela dá um passo à frente; em (f), o desenho especificado pela cadeia está pronto.

Figura 4 – Interpretação geométrica de F+F--F+F.

Além desses comandos básicos, outros comandos podem ser definidos. Ademais, também é possível definir L-sistemas e interpretações geométricas que sejam capazes de produzir fractais em 3D.

3. A Ferramenta Desenvolvida

Uma ferramenta para modelagem, geração e exibição de fractais geométricos, chamada *L-System Viewer*, foi desenvolvida na versão 2.7 da linguagem *Python* [5]. Uma janela dessa ferramenta é apresentada na Figura 5.

O L-System Viewer é um ambiente que integra:

- Um editor de textos, que permite ao usuário modelar um fractal usando um L-sistema;
- Um interpretador, que analisa o modelo do fractal, cria um L-sistema correspondente e gera o desenho do fractal modelado;
- Um painel gráfico no qual a interpretação geométrica do fractal modelado é apresentada.

Figura 5 – Janela de execução da ferramenta.

Além disso, a ferramenta oferece opções que permitem ao usuário criar novos modelos de fractais, abrir e editar modelos criados anteriormente, salvar modificações feitas num modelo, bem como visualizar os fractais modelados e imprimi-los em formato *postscript*.

A linguagem de modelagem aceita pelo interpretador da ferramenta inclui os seguintes comandos:

- generations: indica por quantas gerações o axioma do L-sistema deve evoluir, antes que sua interpretação geométrica seja exibida no painel gráfico.
- scale: indica a escala de uma imagem, em relação à imagem criada na geração anterior (o valor default para esse parâmetro é 1).
- color: indica a cor da linha traçada pela tartaruga, que pode ser red, blue, green, lightblue, darkgreen, gold, yellow, darkblue, darkred, gray, lightgreen, orange ou purple (o valor default é red).
- heading: indica a direção (ângulo em graus) para o qual a tartaruga está voltada inicialmente (o valor default para esse parâmetro é 0°).
- origin: indica o ponto onde a tartaruga encontra-se inicialmente no plano cartesiano (o valor *default* para esse parâmetro é o ponto (0,0)).
- step: indica o tamanho do passo da tartaruga.
- angle: indica quantos graus a tartaruga gira em torno de si mesma ao executar os comandos + e (girar para a esquerda e direita, respectivamente).
- axiom: indica o axioma do L-sistema modelado.
- prule: indica uma regra de produção do L-sistema.

O alfabeto usado na definição do axioma e das regras de produção de um L-sistema inclui os seguintes comandos para a tartaruga:

- F: faz a tartaruga dar um passo à frente (como definido pelo comando step), trançando uma linha.
- f: faz a tartaruga dar um passo à frente (como definido pelo comando step), sem trançar linha.
- +: faz a tartaruga girar para a esquerda, de acordo com o ângulo definido pelo comando angle.
- -: faz a tartaruga girar para a direita, de acordo com o ângulo definido pelo comando angle.
- [: marca um ponto de retrocesso para a tartaruga (i.e., salva sua posição corrente em uma pilha).
-]: transporta a tartaruga para o último ponto de retrocesso marcado para ela (i.e., restaura sua posição corrente com a posição existente no topo pilha).

Na próxima seção, alguns fractais geométricos interessantes, modelados por L-sistemas e gerados com essa ferramenta, são apresentados. Como será visto, a ferramenta (disponível em www.ime.usp.br/~slago/lsv.zip) é bastante versátil, se mostrando como um recurso didático que estimula bastante a experimentação.

4. Resultados Experimentais

Os experimentos realizados com a ferramenta desenvolvida nesse trabalho tiveram como finalidade verificar sua funcionalidade e efetividade na modelagem de fractais geométricos.

Os experimentos, executados em um *ultrabook*, com processador *Intel Core i5 2537M* de 1.4 GHz, com 4 GB de memória, foram divididos em três grupos distintos: primeiramente, foi investigada a possibilidade de usar o *L-System Viewer* para modelar estruturas geométricas de contorno (não necessariamente fractais); em seguida, foi investigada a possibilidade de modelar estruturas fractais de cobertura de superfície; e, finalmente, foi investigada a possibilidade de modelar estruturas fractais de plantas. Além desses resultados experimentais, considerações sobre as complexidades de tempo e espaço necessários para a geração das estruturas são apresentadas no final dessa seção.

4.1. Estruturas Geométricas de Contorno

A modelagem de estruturas geométricas de contorno se mostrou simples e intuitiva com o uso da ferramenta.

Qualquer polígono regular de n lados pode ser facilmente modelado do seguinte modo: defina o ângulo como 360/n e o axioma como a cadeia formada por n comandos F, intercalados por (n-1) comandos +. Nesse caso, uma única geração é suficiente para criar a figura, pois o axioma descreve diretamente o polígono desejado. A Figura 6 mostra um exemplo em que um triângulo é modelado e exibido pelo L-System Viewer.

Polígonos irregulares (i.e., com lados e/ou ângulos de tamanhos distintos) não podem ser facilmente modelados com a ferramenta, uma vez que o ângulo e o passo definidos no modelo se mantêm fixos durante a interpretação geométrica das estruturas geradas pelo L-sistema. Assim, a geração desse tipo de estrutura geométrica requer modelos um pouco mais elaborados. As Figuras 7 e

8 mostram exemplos de polígonos irregulares com relação à medida de seus lados e ângulos, respectivamente.

Figura 6 – Modelagem de um triângulo.

Figura 7 – Modelagem de um retângulo.

Figura 8 – Modelagem de um losango.

A modelagem de um círculo também é possível; porém é menos intuitiva. Como ilustrado na Figura 9, um círculo pode ser modelado por um passo e um ângulo pequenos (no modelo da figura, o passo é 2 e o ângulo é de 1°), um axioma F e uma regra de produção que substitua um F por pelo menos dois comandos F, intercalados por um comando + (no modelo da figura, a regra de produção é F→F+F). Nesse caso, 9 gerações foram necessárias para formar o círculo.

Figura 9 – Modelagem de um círculo.

Estruturas geométricas de contorno com dimensão fractal, ainda menos intuitivas que o círculo, também podem ser modeladas com a ferramenta. A Figura 10 mostra um exemplo desse tipo de estrutura (*Ilha de Koch*).

Figura 10 – Modelagem de um contorno fractal.

Para gerar estruturas de contorno com dimensão fractal, é preciso especificar uma escala entre 0 e 1 e um passo suficientemente grande (no modelo da Figura 10, a escala é 1/3 e o passo é 150).

4.2. Estruturas Fractais de Cobertura

A descoberta de curvas que cobrem uma superfície foi muito importante para o desenvolvimento do conceito de dimensão. Em 1891, *Peano* e *Hilbert* questionaram a existência dessas curvas que desafiam a percepção intuitiva [3], i.e., dada uma parte de um plano (bidimensional), há uma curva (unidimensional) que encontra, pelo menos uma vez, todos os pontos desse plano durante o seu percurso? Como resposta a essa questão, cada um deles propôs uma estrutura fractal capaz de resolver o problema de cobertura de superfície. Os experimentos realizados mostraram que essas estruturas também podem ser modeladas com a ferramenta desenvolvida.

As Figuras 11 e 12 apresentam as curvas propostas por Peano e Hilbert, respectivamente. A cobertura completa da superfície é obtida quando o número de gerações do L-sistema para essas estruturas tende a infinito.

Figura 11 – Modelagem da cobertura de Peano.

Figura 12 – Modelagem da cobertura de Hilbert.

Além dessas estruturas clássicas de cobertura completa, outras formas de cobertura foram investigadas. As Figuras 13, 14 e 15, mostram alguns dos padrões interessantes descobertos nos experimentos realizados. Esses padrões são capazes de cobrir uma superfície parcialmente, encaixando várias cópias de uma mesma figura

geométrica. Note, porém, que a cobertura feita por esses padrões não pode ser completa, uma vez que a escala *default* usada em seus modelos é 1.

Figura 13 – Modelagem de cobertura por triângulos.

Figura 14 – Modelagem de cobertura por losangos.

Figura 15 – Modelagem de cobertura por paralelogramos.

Nos padrões de cobertura de Peano e Hilbert, que têm escala entre 0 e 1, quando o número de gerações aumenta, a área da superfície coberta se mantém constante e, portanto, mais pontos da mesma área são cobertos. Assim, para um número infinito de gerações, a cobertura é completa. Por outro lado, nos padrões descobertos, que têm escala igual a 1, quando o número de gerações aumenta, a área da superfície coberta também aumenta e, portanto, mesmo após um número infinito de gerações, a cobertura continua sendo apenas parcial.

4.3. Estruturas Fractais de Plantas

Nos experimentos anteriores, todas as estruturas geométricas são sequências contínuas de segmentos de linha. Para criar estruturas fractais de plantas, porém, é preciso usar um mecanismo de ramificação implementado pelos comandos [e]. A Figura 16 ilustra o funcionamento desses comandos, durante a interpretação geométrica da cadeia F[+F]-F, com orientação inicial de 90°.

Observando-se a Figura 16, pode-se ver que: em (a), a tartaruga encontra-se com orientação de 90°; em (b), ela dá um passo à frente; em (c), sua posição corrente é marcada como ponto de retrocesso; em (d), ela gira para a esquerda; em (e), ela dá mais um passo à frente; em (f), a tartaruga é transportada de volta ao último ponto

de retrocesso marcado, e essa marca é removida da pilha de controle; em (g), ela gira para a direita; e, finalmente, em (h), ela dá um último passo à frente. Como resultado final, uma estrutura ramificada é criada. A capacidade de criar essas estruturas ramificadas é essencial para a geração de estruturas fractais de plantas com a ferramenta desenvolvida.

Figura 16 – Interpretação geométrica de F[+F]-F.

As Figuras 17 a 20 mostram algumas plantas fractais interessantes geradas nos experimentos realizados.

Figura 17 – Modelagem de planta fractal 1.

Figura 18 – Modelagem de planta fractal 2.

Figura 19 – Modelagem de planta fractal 3.

Figura 20 – Modelagem de planta fractal 4.

4.4. Considerações sobre Tempo e Espaço

Seja $\mathcal{L} = \langle \Sigma, \omega_0, \Pi \rangle$ um L-sistema e seja ω_n a cadeia resultante da evolução do axioma ω_0 por $n \ge 1$ gerações. Então, há dois casos a considerar:

Se £ não contém regras de produção (i.e., Π=∅), então, independentemente do valor n, o axioma ω₀ não se altera ao longo das gerações. Logo, o espaço para armazenamento da cadeia ωₙ, bem como o tempo necessário para exibição de sua interpretação geométrica, se mantém constante em toda geração. Portanto, as complexidades de tempo e espaço em relação a n são ambas O(1). De fato, como se pode observar na Figura 21, é justamente isso que acontece para as estruturas de contorno poligonais, cujos L-sistemas não possuem regras de produção. Note, porém, que o mesmo não se verifica para círculo e Ilha de Koch, já que os modelos para essas estruturas contêm regras de produção.

Figura 21 – Evolução do axioma para contornos.

■ Por outro lado, se \mathcal{L} contém regras de produção (i.e., $\Pi \neq \emptyset$), para cada geração $1 \le i \le n$, o comprimento de ω_i é no mínimo o dobro do comprimento de ω_{i-1} (supondo que as regras de produção em Π não sejam triviais, i.e., da forma $\sigma \rightarrow \sigma$). Portanto, nesse

caso, as complexidades de tempo e espaço em relação a n são ambas $O(2^n)$. De fato, como se pode observar nas Figuras 22 e 23, o tamanho das cadeias ao longo das gerações cresce exponencialmente (note que os valores no eixo y desses gráficos estão em escala logarítmica). Apesar dessa complexidade, em todos os experimentos realizados, a ferramenta foi capaz de gerar e exibir as estruturas geométricas em menos de 10s.

Figura 22 – Evolução do axioma para coberturas.

Figura 23 – Evolução do axioma para plantas.

5. Conclusões

Este artigo descreve o desenvolvimento e as funcionalidades de um programa denominado *L-System Viewer*, que consiste numa ferramenta para modelagem e exibição de fractais geométricos, com base no formalismo de *L-*sistemas.

Para avaliar a eficácia dos recursos oferecidos pela ferramenta, bem como a sua eficiência, foram realizados diversos tipos de experimentos. Nesses experimentos, buscou-se verificar a possibilidade de usar a ferramenta para a geração de diversos tipos de estruturas geométricas. Os experimentos mostraram que a ferramenta pode ser usada para modelar desde estruturas geométricas simples, como polígonos regulares, até estruturas geométricas mais complexas, como curvas fractais de contorno e cobertura de superfícies e estruturas ramificadas de plantas artificiais. Os experimentos também mostraram que, apesar da complexidade exponencial do problema de geração de estruturas geométricas fractais, a ferramenta tem um bom desempenho.

Embora o objetivo principal desse trabalho seja descrever a implementação da ferramenta proposta, esperase também que essa ferramenta possa ser usada como um recurso didático para o ensino de geometria fractal, estimulando o espírito de experimentação nos alunos.

Agradecimentos

Ao CNPq, pela bolsa de produtividade em pesquisa concedida ao segundo autor desse artigo, conforme o processo 305484/2012-5.

Referências Bibliográficas

- [1] P. Prusinkiewicz; A. Lindenmayer. **The Algorithmic Beauty of Plants**, Springer-Verlag, 1996.
- [2] G. Martin *et al.* The Use of L-Systems for Scenario Generation in Serious Games, PC Games, 2010.
- [3] R. S. R. Nunes. **Geometria Fractal e Aplicações**, Univ. do Porto, Dissertação de Mestrado, 2006.
- [4] H. Abelson. Turtle Geometry: The Computer as a Medium for Exploring Mathematics, MIT Press, 1986.
- [5] W. McGugan. **Beginning Game Development in Python and Pygame**, Apress, 2007.