日本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 5月 8日

出 願 番 号 Application Number:

特願2003-129677

[ST. 10/C]:

[JP2003-129677]

出 願 人
Applicant(s):

株式会社日立製作所

株式会社日立エルジーデータストレージ

2003年11月26日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

D03002481A

【あて先】

特許庁長官殿

【国際特許分類】

G11B 7/00

【発明者】

【住所又は居所】

神奈川県横浜市戸塚区吉田町292番地 株式会社日立

製作所デジタルメディア開発本部内

【氏名】

西村 孝一郎

【発明者】

【住所又は居所】

神奈川県横浜市戸塚区吉田町292番地 株式会社日立

製作所デジタルメディア開発本部内

【氏名】

榑林 正明

【発明者】

【住所又は居所】

神奈川県横浜市戸塚区吉田町292番地 株式会社日立

製作所デジタルメディア開発本部内

【氏名】

戸田 剛

【発明者】

【住所又は居所】

東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日

立製作所研究開発本部内

【氏名】

峯邑 浩行

【特許出願人】

【識別番号】

000005108

【氏名又は名称】

株式会社 日立製作所

【特許出願人】

【識別番号】

501009849

【氏名又は名称】 株式会社 日立エルジーデータストレージ

【代理人】

【識別番号】

100075096

【弁理士】

【氏名又は名称】 作田 康夫

【手数料の表示】

【予納台帳番号】

013088

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9902691

【包括委任状番号】 0103264

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 光情報記録方法、情報記録媒体、情報記録装置、および、記録 動作制御方法

【特許請求の範囲】

【請求項1】

レーザーパルスが照射され、記録層にマークが形成されることにより情報が記録される記録媒体に情報を記録する光情報記録方法であって、

少なくとも、前記記録媒体上に集光されるレーザースポット径の1倍以上のマークを記録するためのレーザーパルスのタイミングが記録線速度と略比例関係となることを特徴とする光情報記録方法。

【請求項2】

レーザーパルスが照射され記録層にマークが形成されることにより情報が記録 される記録媒体に情報を記録する光情報記録方法であって、

少なくとも、前記記録媒体上に集光されるレーザースポット径の1倍以上のマークを記録するためのレーザパルスのタイミングのうち、該マークの前エッジ、後ろエッジのタイミングが記録線速度と略比例関係となるように該レーザーパルスを制御することを特徴とする光情報記録方法。

【請求項3】

レーザーパルスが照射され記録層にマークが形成されることにより情報が記録 される記録媒体に情報を記録する光情報記録方法であって、

記録される情報のクロック周期をTとするとき、少なくとも6T以上のマークを記録するためのレーザーパルスのタイミングが記録線速度と略比例関係となるように該レーザーパルスを制御するパことを特徴とする光情報記録方法。

【請求項4】

レーザーパルスが照射され記録層にマークが形成されることにより情報が記録 される記録媒体に情報を記録する光情報記録方法であって、

記録される情報のクロック周期をTとするとき、少なくとも6T以上のマークを形成するパラメータの少なくとも該マークの前エッジ、後ろエッジのタイミングが記録線速度と略比例関係となるように上記レーザーパルスを制御することを

特徴とする光情報記録方法。・

【請求項5】

レーザーパルスを照射して記録層にマークを形成することにより情報の記録を 行う記録媒体に対する光情報記録方法であって、

該記録媒体上に集光されるレーザースポット径の1倍以上のマークを記録し、 該マークを所定の線速度で再生して得られる電気信号波形の時間幅をTmとしたとき該波形の前エッジからTm/2の時間位置から時間軸方向に前後Ts(但しTs<Tm/2)の間の電圧値の変化量が何れの記録線速度でも略一定となるように、少なくとも該記録媒体上に集光されるレーザースポット径の1倍以上のマークを記録するためのレーザーパルスタイミングを制御するパラメータを決定することを特徴とする光情報記録方法。

【請求項6】

レーザパルスを照射して記録層にマークを形成することにより情報の記録を行 う記録媒体に対する光情報記録方法であって、

記録される情報のクロック周期をTとするとき6T以上のマークを記録し、

該マークを所定の線速度で再生して得られる電気信号波形の時間幅をTmとしたとき該波形の前エッジからTm/2の時間位置から時間軸方向に前後Ts(但しTs<Tm/2)の間の電圧値の変化量が何れの記録線速度でも略一定となるように少なくとも6 T以上のマークを記録するためのレーザーパルスのタイミングを制御するパラメータを決定することを特徴とする光情報記録方法。

【請求項7】

請求項5または6に記載の光情報記録方法において、

該波形の前エッジからTm/2の時間位置から時間軸方向に前後Ts(但しTs<Tm/2)の間の電圧値の変化量が略ゼロとなることを特徴とする光情報記録方法。

【請求項8】

請求項5または6記載の光情報記録方法において、

該波形の前エッジからTm/2の時間位置から時間軸方向に前後Ts(但しTs<Tm/2)の間の電圧値の変化量の代わりに該波形の前エッジからTm/2

3/

の時間位置から時間軸方向に前後Ts(但しTs<Tm/2)の間の電圧値の平均値を用いることを特徴とする光情報記録方法。

【請求項9】

請求項1から8記載の光情報記録方法を用いて決定された、記録媒体に情報を 記録するためのレーザーパルスを制御するパラメータが、該媒体に記載されてい ることを特徴とする記録媒体。

【請求項10】

請求項1から8記載の光情報記録方法を用いて決定された、記録媒体に情報を 記録するためのレーザーパルスを制御するパラメータが、該媒体に記載されてい ることを示す識別情報が該媒体に記載されていることを特徴とする記録媒体。

【請求項11】

逐次的、または段階的に記録線速度の変化する連続記録を行うためのレーザー パルスを制御するパラメータが記録媒体に記載されていることを示す識別情報が 該媒体に記載されていることを特徴とする記録媒体。

【請求項12】

記録媒体に異なる複数の記録速度で情報を記録するためのレーザーパルスを制 御するパラメータが記載された記録媒体において、

該パラメータのなかで該記録媒体上に集光されるレーザースポット径の1倍以上のマークを形成するパラメータの該マークの前エッジ、後ろエッジの時間制御情報が、記録線速度に対して略比例であることを識別可能な識別情報が該媒体に記載されていることを特徴とする記録媒体。

【請求項13】

記録媒体に異なる複数の記録速度で情報を記録するためのレーザーパルスを制 御するパラメータが記載された記録媒体において、

該パラメータのなかで該記録媒体上に集光されるレーザースポット径の1倍以上のマークを記録するためのレーザーパルスのタイミングを制御する情報が記録 線速度に対して略比例であることを識別可能な識別情報が該媒体に記載されていることを特徴とする記録媒体。

【請求項14】

記録媒体に異なる複数の記録速度で情報を記録するためのレーザーパルスを制御するパラメータが記載された記録媒体において、記録される情報のクロック周期をTとするとき、該パラメータのなかで少なくとも6T以上のマークを形成するパラメータの該マークの前エッジ、後ろエッジの時間制御情報が記録線速度に対して略比例であることを識別可能な識別情報が該媒体に記載されていることを特徴とする記録媒体。

【請求項15】

記録媒体に異なる複数の記録速度で情報を記録するためのレーザーパルスを制 御するパラメータが記載された記録媒体において、

記録される情報のクロック周期をTとするとき、該パラメータのなかで少なくとも6T以上のマークを記録するためのレーザーパルスのタイミングを制御する情報が記録線速度に対して略比例であることを識別可能な識別情報が該媒体に記載されていることを特徴とする記録媒体。

【請求項16】

請求項1から8記載の光情報記録方法を用いて、記録媒体に情報を記録するためのレーザーパルスを制御するパラメータを決定し、該パラメータを用いて逐次的、または段階的に記録線速度の変化する連続記録を行うことを特徴とする光ディスク装置。

【請求項17】

請求項1·0から15記載の記録媒体に情報を記録する際に、前記識別情報から 該媒体に記載されているレーザーパルス制御パラメータを用いて逐次的、または 段階的に記録速度の変化する連続記録が可能であると判断された場合に、該媒体 に記載されているレーザーパルス制御パラメータを用いて逐次的、または段階的 に記録線速度の変化する連続記録を行うことを特徴とする光ディスク装置。

【請求項18】

請求項10から15記載の記録媒体に情報を記録する際に、前記識別情報から 該媒体に記載されているレーザーパルス制御パラメータを用いて逐次的、または 段階的に記録速度の変化する連続記録が不可能であると判断された場合に、請求 項1から8記載の光情報記録方法のいずれかを用いてレーザーパルス制御パラメ

5/

ータを決定し、該パラメータを用いて逐次的、または段階的に記録線速度の変化 する連続記録を行うことを特徴とする光ディスク装置。

【請求項19】

記録媒体に情報を記録する際に、請求項10から15記載の識別情報が記録媒体に記載されているかどうかを判断し、該識別情報が記載されている場合において、該識別情報により該媒体に記載されているレーザーパルス制御パラメータを用いて逐次的、または段階的に記録速度の変化する連続記録が可能であると判断された場合には該媒体に記載されているレーザーパルス制御パラメータを用いて逐次的、または段階的に記録線速度の変化する連続記録を行い、該識別情報により該媒体に記載されているレーザーパルス制御パラメータを用いて逐次的、または段階的に記録速度の変化する連続記録が不可能であると判断された場合には、請求項1から8記載の光情報記録方法のいずれか、もしくはそれらを含む複数の方法を用いて該媒体に情報を記録するためのレーザーパルスを制御するパラメータを決定して該パラメータを用いて逐次的、または段階的に記録線速度の変化する連続記録を行い、該パラメータが決定できない場合は記録線速度が一定の記録を行うことを特徴とする記録動作制御方法。

【請求項20】

記録媒体に情報を記録する際に、請求項10から15記載の識別情報が記録媒体に記載されているかどうかを判断し、該識別情報が記載されている場合において、該識別情報により該媒体に記載されているレーザーパルス制御パラメータを用いて逐次的、または段階的に記録速度の変化する連続記録が可能であると判断された場合には該媒体に記載されているレーザーパルス制御パラメータを用いて逐次的、または段階的に記録線速度の変化する連続記録を行い、該識別情報により該媒体に記載されているレーザーパルス制御パラメータを用いて逐次的、または段階的に記録速度の変化する連続記録が不可能であると判断された場合には、記録線速度が一定の記録を行うことを特徴とする記録動作制御方法。

【請求項21】

記録媒体に情報を記録する際に、請求項10から15記載の識別情報が記録媒体に記載されているかどうかを判断し、該識別情報が記載されていない場合には

請求項1から8記載の光情報記録方法のいずれか、もしくはそれらを含む複数の 方法を用いて該媒体に情報を記録するためのレーザーパルスを制御するパラメー タを決定して該パラメータを用いて逐次的、または段階的に記録線速度の変化す る連続記録を行い、該パラメータが決定できない場合は記録線速度が一定の記録 を行うことを特徴とする記録動作制御方法。

【請求項22】

記録媒体に情報を記録する際に、請求項10から15記載の識別情報が記録媒体に記載されているかどうかを判断し、該識別情報が記載されていない場合には記録線速度が一定の記録を行うことを特徴とする記録動作制御方法。

【請求項23】

レーザーパルスを照射して記録媒体に情報を記録する情報記録手段と、

前記記録媒体上に集光されるレーザースポット径の1倍以上のマークを記録するためのレーザーパルスのタイミングが記録線速度と略比例関係となるように該レーザーパルスを制御するレーザーパルス制御手段と、

を具備することを特徴とする光ディスク装置。

【請求項24】

レーザーパルスを照射して記録媒体に情報を記録する情報記録手段と、

前記記録媒体上に集光されるレーザースポット径の1倍以上のマークを記録するためのレーザパルスのタイミングのうち、該マークの前エッジ、後ろエッジのタイミングが記録線速度と略比例関係となるように該レーザーパルスを制御するレーザーパルス制御手段と、

を具備することを特徴とする光ディスク装置。

【請求項25】

レーザーパルスを照射して記録媒体に情報を記録する情報記録手段と、

記録される情報のクロック周期をTとするとき、少なくとも6T以上のマークを 記録するためのレーザーパルスのタイミングが記録線速度と略比例関係となるよ うに該レーザーパルスを制御するレーザーパルス制御手段と、

を具備することを特徴とする光ディスク装置。

【請求項26】

レーザーパルスを照射して記録媒体に情報を記録する情報記録手段と、

記録される情報のクロック周期をTとするとき、少なくとも6T以上のマークを形成するパラメータの少なくとも該マークの前エッジ、後ろエッジのタイミングが記録線速度と略比例関係となるように上記レーザーパルスを制御するレーザーパルス制御手段と、

を具備することを特徴とする光ディスク装置。

【請求項27】

レーザーパルスを照射して記録媒体に情報を記録する情報記録手段と、

記録媒体上のレーザースポット径の1倍以上のマークを所定の線速度で再生して得られる電気信号波形の時間幅をTmとしたとき該波形の前エッジからTm/2の時間位置から時間軸方向に前後Ts(但しTs<Tm/2)の間の電圧値の変化量を検出する変化量検出手段と、

該変化量検出手段により検出される変化量が何れの記録線速度でも略一定となるように、少なくとも該記録媒体上に集光されるレーザースポット径の1倍以上のマークを記録するためのレーザーパルスタイミングを制御するレーザーパルス制御手段と、

を具備することを特徴とする光ディスク装置。

【請求項28】

レーザーパルスを照射して記録媒体に情報を記録する情報記録手段と、

記録される情報のクロック周期をTとして記録媒体上の6 T以上のマークを所定の線速度で再生して得られる電気信号波形の時間幅をTmとしたとき該波形の前エッジからTm/2 の時間位置から時間軸方向に前後Ts (但しTs < Tm/2) の間の電圧値の変化量を検出する変化量検出手段と、

該変化量検出手段により検出される変化量が何れの記録線速度でも略一定となるように、少なくとも該記録媒体上に集光されるレーザースポット径の1倍以上のマークを記録するためのレーザーパルスタイミングを制御するレーザーパルス制御手段と、

を具備することを特徴とする光ディスク装置。

【請求項29】

8/

請求項27または28に記載の光ディスク装置において、

該波形の前エッジからTm/2の時間位置から時間軸方向に前後Ts(但しTs < Tm/2)の間の電圧値の変化量が略ゼロとなるようにレーザーパルスタイミングを制御するレーザーパルス制御手段と、

を具備することを特徴とする光ディスク装置。

【請求項30】

請求項23から29に記載の光ディスク装置であって、逐次的、または段階的 に記録線速度の変化する連続記録を行うことを特徴とする光ディスク装置。

【請求項31】

レーザーパルスを照射して記録媒体に情報を記録する情報記録手段と、

記録媒体から前記レーザーパルス制御に関する情報を取得する情報取得手段と

該情報を用いて該記録媒体に記載されているレーザーパルス制御パラメータを用いた、逐次的、または段階的に記録速度の変化する連続記録の可否を判断する情報判断手段と、

を具備することを特徴とする光ディスク装置。

【請求項32】

請求項31に記載の光ディスク装置であって、

記録媒体に記載されているレーザーパルス制御パラメータを用いて逐次的、また は段階的に記録速度の変化する連続記録が可能であると判断された場合に、該媒 体に記載されているレーザーパルス制御パラメータを用いて、逐次的、または段 階的に記録線速度の変化する連続記録を行うことを特徴とする光ディスク装置。

【請求項33】

請求項23から30に記載の光ディスク装置であって、

記録媒体から前記レーザーパルス制御に関する情報を取得する情報取得手段と、 該情報を用いて該記録媒体に記載されているレーザーパルス制御パラメータを用 いた、逐次的、または段階的に記録速度の変化する連続記録の可否を判断する情 報判断手段と、

を具備することを特徴とする光ディスク装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、レーザー光線などを利用して光ディスクに情報を記録する技術に関する。

[0002]

【従来の技術】

DVD-RAM、DVD-RW、CD-RW等の書き換え可能な光ディスク、およびDVD-R、CD-Rなどの追記可能な光ディスクでは、ディスクの記録面上にレーザー光を照射して情報を記録する。光ディスクの記録面上に記録マークを形成するためのレーザー光の照射方法としては、CD-R等のように記録マークの長さに応じた時間幅を有する記録パルスを照射して記録マークを形成する方法、DVD-RAM等のように記録マーク形成途中のパルスをくし型にすることにより熱の蓄積を制御し最適な記録マークを形成する方法などがある。このような記録マークを最適にするような記録パルスの波形をライトストラテジと呼ぶ。

[0003]

図1に書き換え可能な光ディスクの1種である4.7GB容量のDVD-RAM(以降単にDVD-RAMと記す)のライトストラテジの模式図を示す。図は11T(Tは記録クロック周期)マーク記録時のライトストラテジを示したものである。図に示すように、DVD-RAMのライトストラテジはTSFP、TEFP、TFPで定義される先頭パルス、TMPで定義される繰り返しパルス(マルチパルスともいう)、TSLP、TELP、TLPで定義される後端パルスから構成されている。なお、レーザーパワーレベルは2値および3値のものがあるが、ここでは簡単化のために2値のものを示してある。

[0004]

本ストラテジの先頭パルスは「TSFP、TEFPで波形の立ち上がり、立下り端部の 絶対時間を定義する方法」または「TSFP、TFPで立ち上がりエッジの絶対時間と パルス時間幅で定義する方法」の2つの定義方法がある。

[0005]

また、終端パルスにおいても、「TSLP、TELPで各エッジの絶対時間を定義する

方法」または「TELP 、TLPで立ち下がりエッジの絶対時間とパルス時間幅で定義する方法 | の2つの定義方法がある。

[0006]

先頭パルスの前エッジの時間位置を決める値であるTSFP、および、後端パルスの後ろエッジの時間位置を決めるTELPについては記録マーク長さとその前後のスペース長さにより値を変化させる。これはマークを記録する際のレーザー光による熱蓄積および熱拡散の影響が、記録マークの長さ、およびその前後のスペースの長さによって異なることによる。

[0007]

図 2 にTSFP、TELPの調整テーブルの一例を示す。TSFPテーブルの縦方向の3T、4T、5T、 \geq 6T(6T以上)は記録マーク直前のスペース長を示し、横方向の3T、4T、5T、6T \geq (6T以上)は記録対象のマーク長を示す。同様に、TELPテーブルの縦方向の3T、4T、5T、6T \geq (6T以上)は記録マーク直後のスペース長を示し、横方向の3T、4T、5T、6T \geq (6T以上)は記録対象のマーク長を示す。調整テーブル中の値はTSFP、TELPで決定されるライトストラテジのエッジをシフトさせることから、以降これらのテーブルをまとめてシフトテーブルと呼ぶ。また、図1に記載したTSFPなどの記録波形のエッジタイミングを決める値、および上記のシフトテーブル等をあわせて、以降では記録パラメータ群と呼ぶ。

[0008]

このように記録マーク、スペースの長さの関係によりライトストラテジを変更する方法は、DVD-RAMのみでなく、その他の書き換え可能な相変化系媒体であるDVD-RW、CD-RW、追記可能な色素系媒体であるDVD-R、CD-Rなどでも広く採用されている。

[0009]

従来、記録パラメータ群は媒体製造者が線速度一定の条件の下で最適と考える値を媒体に記録して提供してきた。これは、パワーレベル、タイミングを含めたライトストラテジの形態、およびシフトテーブルなどの記録パラメータ群の最適値が、記録媒体の組成、材料等により大きく異なるため、媒体製造者がライトストラテジを提案するのが好適であると考えられたためである。例えば、DVD-RAM

では内周のLead in areaに設けられたControl Data Zone内部のPhysical format information (PFI)エリアに、上記パラメータが記載されている。なお、上記に示した従来技術については特許文献 1、および 2 に詳細が記載されている。

[0010]

【特許文献1】

特開2003-85753号公報

【特許文献2】

特開2002-260226号公報

 $[0\ 0\ 1\ 1]$

【発明が解決しようとする課題】

全ての光ディスク記録装置(以降ドライブと記す)にとって、媒体製造者より 提供される記録パラメータが最適であるとは限らない。特に、媒体製造者が想定 した線速度以外の線速度で記録する場合においては、その線速度での最適パラメ ータをドライブ側で決定しなければならないが、最適パラメータをドライブが求 める方法については、上記に示されるような従来技術を用いた記録パラメータを 記載した媒体に関しては、全く考慮されていなかった。

[0012]

本発明の第一の目的は、媒体製造者が提供する記録パラメータを決定する方法 を規定し、このパラメータを使用して、媒体製造者が想定した線速度以外の線速 度での記録パラメータを求める方法を提供するものである。

[0013]

記録マークの前端での熱拡散量は記録線速度に比例し、記録マークの後端での熱蓄積量は記録線速度の平方根に比例する。記録パワー、消去パワーなどのパワーレベルは単位面積辺りのレーザー光照射パワーに依存し、記録速度に略比例する。しかし、異なる記録速度での記録マークの形状が異なる場合、上記の熱拡散量、熱蓄積量、記録レーザーパワーと記録速度との比例関係が崩れる。これにより、CAV(Constant Angler Velocity)方式の記録などで、媒体製造者から提供された記録パラメータ以外の記録パラメータを内挿、もしくは外挿でパラメータを求めることが困難になり、CAV記録のような可変速記録の実現が困難になる。

[0014]

これらの記録パラメータ群は上記に示した記録パラメータに大きく依存するため、ドライブによる学習等でのシフトテーブルの変更による改善効果はあまり期待できない。さらに、例えばDVD-RAMのように6T以上の記録マーク、スペースのシフトテーブルが媒体製造者からの提供値で固定されている場合、このような長マーク、長スペースの記録品質の改善が行えないことになる。

[0015]

このように複数種類の提供された記録パラメータ群に従って、1つの媒体に異なる記録速度で記録を行った場合、異なる記録パラメータ群に従って記録された記録マークが近接する場合もありうる。このとき両記録マーク形状に違いがあると、各記録マークに対するイコライズ、群遅延などの再生パラメータの最適値が異なるため、連続的に再生した場合の再生品質が劣化する要因となる。

[0016]

本発明の第2の目的は、記録パラメータ群の連続性を確保することで、記録マーク形状の連続性を確保し、再生品質を向上させることである。

$[0\ 0\ 1\ 7]$

【課題を解決するための手段】

上記課題は、レーザー光を照射して記録層にマークを形成することにより情報の記録を行う記録媒体に情報を記録するためのレーザーパルスを制御するパラメータを決定する際に、該記録媒体上に集光されるレーザースポット径の1倍以上のマークを形成するパラメータの少なくとも該マークの前エッジ、後ろエッジのタイミングが記録線速度と略比例関係にあるように上記レーザーパルスを制御するパラメータを決定することで改善される。

[0018]

また、レーザー光を照射して記録層にマークを形成することにより情報の記録を行う記録媒体に情報を記録するためのレーザーパルスを制御するパラメータを決定する際に、該記録媒体上に集光されるレーザースポット径の1倍以上のマークを記録するためのレーザーパルスのタイミングと記録線速度が略比例関係となるように上記レーザーパルスを制御するパラメータを決定することで改善される

[0019]

0

さらに、レーザー光を照射して記録層にマークを形成することにより情報の記録を行う記録媒体に情報を記録するためのレーザーパルスを制御するパラメータを決定する際に、記録される情報のクロック周期をTとするとき6T以上のマークを形成するパラメータの少なくとも該マークの前エッジ、後ろエッジのタイミングが記録線速度と略比例関係となるように上記レーザーパルスを制御するパラメータを決定することで改善される。

[0020]

さらに、光ディスク装置において、本発明に記載された識別情報から記録媒体に記載されているレーザーパルスタイミングの制御パラメータを用いて逐次的、または段階的に記録速度の変化する連続記録が可能であるか判断を行い、可能な場合は該パラメータを用いて逐次的、または段階的に記録線速度の変化する連続記録を行い、不可能である場合は本発明に記載されたレーザーパルスタイミングを制御するパラメータの決定方法を用いてパラメータを決定し、該パラメータを用いて逐次的、または段階的に記録線速度の変化する連続記録を行うか、もしくは一定線速度の記録を行うことで改善される。

[0021]

【発明の実施の形態】

以下DVD-RAMを例として第1の実施例を説明する。先に述べたようにDVD-RAMでは、記録パラメータは媒体製造者から提供される。ここで、現在DVD-RAM規格として、2x記録規格、3x記録規格がリリース済みであり、5x記録規格のリリースも予定されてる。すなわち、5x記録対応ディスク(以下DVD-RAM 5x媒体と記す)には下位装置での互換性確保の観点から2x記録、3x記録に対応する記録パラメータも記録して提供されるものと考えられる。また、5x記録ドライブでは最内周で2x、最外周で5xの記録速度となるCAV記録も可能となる。以下各々の記録速度での記録パラメータの決定手順の一例を示す。

手順1.記録パラメータの暫定

CAV記録などの可変速記録に対応するには、提供する記録パラメータと記録速

度の間に線形性が必要である。このことから、まず提供する各記録速度、この場合2x、3x、5xでの記録パラメータ群を記録速度の線形値に暫定的に設定する。 手順2. 長マーク再生波形調整および基本記録パラメータ線形性確認

手順1設定した暫定記録パラメータを使って各記録速度で6T以上の長マークを記録し、一定速度で再生を行ったときの再生波形の比較を行う。一般に光ディスクの再生では、スポット径とほぼ同等以上のマークを再生する場合、再生信号の振幅レベルは飽和し、スポット形状の違いによる波形のシフトの差の発生量も小さい。本実施例でのDVD-RAMの場合、再生時のビームの直径は、0.86μmのものを用いており、ビーム径とほぼ等しい0.84μmの長さに相当する6T信号以上の振幅値はほぼ一定となる。従って、6T以上の長マークでの波形を基準として記録パラメータの初期調整を行い、その後、短マーク形成のための記録パラメータを調整する。この再生速度は媒体で規定されている最低再生速度であっても良い。

[0022]

図3はDVD-RAMにおいてある記録速度で記録を行った長マークの再生波形を示す。同図は10T波形の例であり、波形の低い部分が暗部(マーク部)を示す。また、再生速度は2x、再生系のパラメータはDVD-RAM規格に記載された標準パラメータで再生している。図3の右図は左図の波形を模式的に取り出したものである。ここで、記録マーク波形の中心、この場合は5Tの位置302に対して波形を前後に分け、前半部分の波形の最低値303と後半部分の波形の最低値304を取り出し、この両者の波形位置を結ぶ直線305の傾きA2xを算出する。3x、5x記録での傾きも算出し、それぞれをA3x、A5xとする。媒体製造者は提供する記録パラメータを決定する際に、A2x、A3x、A5xの値が略一致(望ましくは±10%の範囲内)となるように各速度の記録パラメータ群を調整する。

[0023]

この調整時に、媒体の規格においてドライブでの調整を行わないことが推奨されている記録パラメータ(以降これを基本記録パラメータと呼ぶ)について、記録速度に対する線形性の確認を行う。本実施例のDVD-RAMでは以下がこの基本記録パラメータに相当する。

- 1) TFP, TMP, TLP, TCL, TEFP, TSLP
- 2) 6T以上のスペースの次に6T以上のマークが続く時のTSFP (図2の201)
- 3) 6T以上のマークの次に6T以上のスペースが続く時のTELP (図2の202)

先に述べたように、上記の基本記録パラメータはいずれも記録速度に対して理論的に線形の関係を持つように設定することが可能である。但し、記録パラメータの決定手順、および数値の丸め込みにより各記録パラメータ値で若干の誤差が生じることが考えられる。

[0024]

そのため、図4に示すように最高記録速度(本例の場合5x記録)で求められた記録パラメータ値401と最低記録速度(本例の場合2x記録)で求められた記録パラメータ値402から、その間で媒体製造者が記録パラメータを提供する速度(本例の場合3x記録)の記録パラメータ値404を算出し、その値と上記1から3の手順で求められた上記速度、本例の場合3x記録のパラメータ値403との差 Δ Pt406を算出する。

[0025]

この ΔPt とあらかじめ定義した各記録パラメータに対する誤差許容値を比較し、ΔPtが誤差許容値以下であれば調整終了とする。誤差許容値以上の誤差がある場合は再度長マーク再生波形による記録パラメータの調整を行う。その結果、上記で定義した長マークの再生波形の各記録速度での傾きおよび基本記録パラメータの線形性が所定の条件を満足できない場合は、記録媒体の組成、材料の見直し等による記録媒体の改善を行う。

[0026]

なお、上記における記録パラメータの条件抽出は、記録波形の再生時のデータ toクロックジッタ(以降単にジッタと記す)、再生波形アシンメトリなどの規格 値との比較を同時に行いながら進める。

手順3.シフトテーブル、パワーレベル調整

記録パラメータの調整後、各記録速度において上記手順2で調整した基本記録パラメータ以外の記録パラメータの調整を行う。本実施例ではシフトテーブル図2の201、202以外の領域、および記録パワーレベルの調整がこれに相当す

る。なお、手順2で調整した基本記録パラメータは変更しない。これは手順2での長マーク再生波形の形状および記録パラメータの記録速度に対する線形性を保存するためである。手順3における調整方法は例えば再生ジッタを最小にするなどの方法があり、例えばDVD-RAMのように媒体の規格において定義されている手法を採用してもよい。

手順4. 記録パラメータ線形性確認

上記手順3で抽出された各記録速度での記録パラメータについて、記録速度に対する線形性を調べる。本例のDVD-RAMでは図1に示す各記録パラメータ、および図2に示すTSFP、TELPの各シフトテーブルについて記録速度に対する線形性を確認する。

[0027]

上記手順2で基本記録パラメータの線形性が保証されている場合、これらの記録パラメータはいずれも記録速度に対して理論的に線形の関係を持つように設定することが可能である。ただし、手順2と同様に各記録パラメータ値で丸め込みなどによる誤差を持つことが考えられるため、手順2と同様に各記録パラメータに対して許容誤差値を設定し、線形性の確認を行う。

手順5. 可変速記録対応フラグの設定

記録媒体の膜組成、および材料によっては手順1から4による調整を満足できないものも考えられる。これらの媒体についてはCAV記録などの可変速記録について対応不可であるため、手順1から4による調整を満足したものとの区別を行う必要がある。そのため、記録媒体において媒体製造者から提供される情報を記録するエリアに上記手順による調整の有無の判定フラグを設けることにより、差別化を行う。本例のDVD-RAMでは例えば、媒体製造者から提供される記録パラメータ群が記録されたPFI 1セクタ内部の613ビット以降がリザーブ(空きビット)となっており、ここに1ビットの上記判定フラグを設けることで区別を行なうことができる。

[0028]

ドライブでは例えば媒体挿入時に上記ビットの判定を行い、ビットが1の場合 は可変速記録対応媒体であることから、媒体の最低記録速度と最高記録速度の間 の記録速度においては、前記最低記録速度と最高記録速度に対して媒体製造者から提供されている記録パラメータから線形補間した記録パラメータを用いて記録を行う。本例のDVD-RAM5x記録対応媒体の場合は、2x記録と5x記録に対して媒体製造者より提供された記録パラメータから、その間の例えば2.5x、3x、4x等の記録速度での記録パラメータを算出する。

[0029]

本実施例に示す手順を用いることにより、媒体製造者から提供される記録パラメータが定義されている記録速度以外の記録速度における記録パラメータを媒体製造者から提供される記録パラメータから容易に算出することができ、例えば記録速度が逐次的に変化するCAV記録などにおいて連続記録動作を行う場合、常に最適な記録パラメータを算出することができる。

また、このように本手順の採用を示すフラグを設けることにより、媒体製造者はドライブおよび市場に対して可変速記録対応を謳うことができ、今後の記録速度の高速化において、内周回転速度制約のため主流になると思われるCAV記録方式への対応を通して市場の拡大を図ることができる。また、ドライブ製造者にとっては、CAV記録による高速記録を実現する際にライトストラテジの設定方法を簡便化でき、ドライブ開発時間の短縮、およびドライブにおけるライトストラテジ調整時の学習時間の短縮を図ることができる。また本実施例の光ディスクにより高い品質でのCAV記録が保証されることなり、ユーザは高速で高品質のデータ記録を行なうことができる。

[0030]

更に、異なる記録速度で記録した領域が隣接した場合においても、再生波形の 形状が一致するため、安定した再生を行うことができる。

[0031]

次に第2の実施例を説明する。本実施例では、第1の実施例と同様に記録パラメータのを設定するが、再生信号の品質向上のため、長マーク再生波形調整を行う。以下本実施例の手順2について説明する。

[0032]

第1の実施例における手順2では速度の異なる各記録パラメータを用いて記録

した6T以上の長マークの再生波形をモニタし、そのマーク部の傾きを各記録速度の間で略一致させるものであったが、本実施例では6T以上の長マークの再生波形の傾きと6T以上の長スペース部、もしくは未記録領域での再生波形の傾きとの比較を行い最適な記録パラメータを決定するものである。

[0033]

例えばスペース部であれば図5に示すようにスペース部の波形の中心501、10Tスペースの場合は5Tの部分の前後の領域に対して、各領域のピーク502、503を結んだ直線504の傾きを基準値Aspとする。あるいは、未記録領域の1トラック内における任意の2領域間の平均電位を計測し、その差から未記録領域の波形傾き基準値Anwを算出する。例えばDVD-RAMでは、図6に示すようにPID(Physical ID)領域の前後mセクタの<math>nセクタ(m、nは任意の数)の平均電位 V01、V02から傾き01を算出し、基準値01のとする。

[0034]

次に、第一の実施例で求めたように、マーク部での傾きAx2、Ax3、Ax5を求める。本実施例では、マーク部でのAx2、Ax3、Ax5を、スペース部での傾き、Asp、Anwとを略一致させるように、記録パラメータを設定する。図7には、実際の調整後のマーク部の再生波形を示す。第1の実施例と同様に長マーク再生波形のマーク部の傾きを中心点701、その左右のピーク702、703とし、求めた傾き704を各速度に対してAx2、Ax3、Ax5として定義した場合、これらの傾き値Ax2、Ax3、Ax5とAsp、Anwの差が図7の704に示すように略ゼロとなるとなるように記録パラメータの調整を行っている。

[0035]

本実施例の手順により記録パラメータの調整を行うことにより、第1の実施例の長マークと比較してマークの形状が均一な楕円に近くなり、オーバーライト時の消去特性およびクロストーク特性の改善、さらには書き換えに対するディスクの耐性を向上させることができる。

[0036]

次に第3の実施例を説明する。本実施例では、記録パラメータの設定方法、および可変速記録対応ビットなどについては第1の実施例と同様であるが、手順2

、4での記録パラメータ線形性確認の方法が異なる。以下本実施例の手順2、4 について説明する。

[0037]

[0038]

これを図4に当てはめると、401が基本記録パラメータA、402が基本記録パラメータB,404が基本記録パラメータCとなる。次に基本パラメータC の適応記録速度において基本パラメータCを用いて記録された領域を所定の再生速度、例えばDVD-RAMであれば2xで再生し、再生ジッタを求める。このときのジッタ値 σ が、あらかじめ設定した所定の許容ジッタ値 σ rに対して σ < σ rの場合は調整を終了し、 σ > σ rの場合は第1の実施例と同様に、「長マーク再生波形による記録パラメータの再調整」「記録媒体の組成、材料の見直し等による記録媒体の改善」等を行う。

[0039]

手順4についても手順2と同様に媒体の最高記録速度と最低記録速度で求められた記録パラメータからその間の記録速度で媒体製造者より提供される記録パラメータを補間し、その記録パラメータにより記録を行った結果の再生ジッタ σ s あらかじめ設定した所定の許容ジッタ値 σ r s との比較から、記録パラメータの線形性の確認を行う。

[0040]

本実施例の手順では、最高記録速度、最低記録速度以外での基本記録パラメー

タおよびその他の記録パラメータの抽出を行う必要がないため、基本記録パラメ ータ、および記録パラメータ決定時間の短縮を図ることができる。

[0041]

また、本実施例では基本記録パラメータ、およびその他の記録パラメータの補間を行うために、媒体で規定されている最高記録速度と最低記録速度での基本記録パラメータ、およびその他の記録パラメータを求めたが、媒体製造者より提供される2つ以上の任意の異なる速度における基本記録パラメータ、およびその他の記録パラメータから内挿、外挿により補間を行っても良い。

[0042]

次に本発明の第4の実施例として、ドライブにおける本発明の実施形態の一例を以下に説明する。複数の記録速度に対して媒体製造者の推奨ライトストラテジの記録パラメータが記載されたディスクに対して、ドライブで可変速記録を行う場合の手順の一例を図10に示す。

[0043]

ドライブの構成を図11に示す。本実施例のドライブでは、ピックアップ11 0上に搭載されたレーザー駆動ドライバ(LDD)112により、レーザーダイオード111を駆動し、対物レンズ113からレーザー光を出射する。このレーザー発光タイミングはDSP105内の波形パラメータ制御部で制御される。なお本実施例では、波形制御部がDSPに内蔵された構成をとっているが、これが別チップであっても、またLDDに搭載されるような構成であっても、いずれでも可能である。

[0044]

再生信号は、ピックアップからRF F/E LSI104を通して、DSP 内部の波形取り込み部および波形解析部により波形処理される。波形取り込み部では、取り込んだ波形データをA/D変換しデジタルデータとして、波形解析部におくる。また一部は直接マイコン106がデータを取り込みマイコンで波形解析を行う。更に、DSP内部には、可変速記録対応フラグ検出機能があり、このフラグの有無を判定する。なお、フラグの有無は、マイコンにより判別することも可能であり、必ずしもDSP内部にある必要は無い。

手順1. 可変速記録対応フラグの確認

媒体において本発明の第1の実施例で示した可変速記録対応フラグの確認を行う。可変速記録フラグが立っている(可変速記録に対応した媒体である)媒体に対しては、媒体製造者より提供された記録パラメータを基に、それ以外の部分の記録パラメータの値を線形演算により求めて可変速記録を行う。

手順2. 媒体製造者推奨記録パラメータの線形性の確認

可変速記録フラグが立っていない、もしくは可変速記録フラグそのものが設定されていない場合は、媒体に記録された媒体製造者推奨の記録パラメータのうち、ドライブにおいて変更しないことが推奨されている基本記録パラメータと、記録速度との線形性の確認を行う。この基本記録パラメータは例えばDVD-RAMにおいては以下の記録パラメータを指す。

- 1) TFP, TMP, TLP, TCL, TEFP, TSLP
- 2) 6T以上のスペースの次に6T以上のマークが続く時のTSFP (図2の 2 0 1)
- 3) 6T以上のマークの次に6T以上のスペースが続く時のTELP (図2の 2 0 2)

確認の方法としては、例えば所定の記録パラメータ誤差値を定義する本発明の 第1の実施例の手順2に示した方法、または所定のジッタ許容値を定義する本発明 の第2の実施例の手順2に示した方法などがある。

[0045]

確認の結果、線形性が確認できた場合は、これら媒体から読み出した記録パラメータから各線速度における記録パラメータを補間しながらCAV記録などの可変速記録を行う。

[0046]

線形性が確認されない場合は、媒体に記録された記録パラメータの一部を用いて、基本記録パラメータおよびその他の記録パラメータの抽出を行う。

手順3. 長マーク波形による基本記録パラメータの抽出と線形性の確認

媒体製造者から提供される複数の記録速度での記録パラメータを用いて、各記録速度で6T以上の長マーク、長スペースの記録を行う。それらを記録した領域において6T以上の長マークの再生波形を抽出し、本発明の第1の実施例で定義したものと同様に一定速度で再生を行った場合の長マーク再生波形の傾きを測定する

。その結果において、各記録速度における長マーク再生波形の傾きが略一致するように、6T以上の長マーク、長スペースに対する記録パラメータを調整する。この記録パラメータは本発明の第1の実施例における基本記録パラメータに相当する。

[0047]

長マークの再生波形傾きの測定方法としては、例えばDVD-RAMの場合ドライブにおいてシンクパターンである14Tを抽出し、図8に示すように14Tマーク再生波形に対して802、803に示すようなサンプルパルスを生成する。シンクパターンは同じタイミングで繰り返し現れるため、このようなサンプルパルスの生成は可能である。このサンプルパルスは14Tマーク再生波形の中心から両側に等しい位置に等しい幅だけウインドウを生成する。サンプルパルス802、803のウインドウ期間のみホールドされたホールド信号804、805の電圧値V1、V2の差分ΔVを計算し、この値を長マーク再生波形の傾きとして定義する。

[0048]

また、他の手法として図9に示すように再生波形901を例えば再生クロック 周期TでAD変換し、得られたサンプリング系列において、所定の長マーク再生 波形、本例の場合14T再生波形を抽出し、この長マーク波形の時間中心から等し い時間幅だけ離れた部分において等しいサンプル数のサンプル値902、903 の平均値を算出し、得られた平均値の差分を長マーク再生波形の傾きとして定義 する手法なども考えられる。以上の方法により、線形性のパラメータを決定する

[0049]

更に、確認のため、上記で得られた各記録速度における基本記録パラメータについて、実際に記録を行って、線形性の確認を行なう。確認は第1および第2の実施例で述べた手順3の方法などを用いることができる。本手順において基本記録パラメータの線形性が確認されない場合は、手順2に戻って長マーク再生波形の傾きを変更するなどの手段をとる。それでも基本記録パラメータの線形性が確認されない場合はCLV記録などの定速度記録のみの実施とする。

[0050]

これらの基本記録パラメータの抽出および線形性の確認と同時に、記録波形の再生時のデータtoクロックジッタ(以降単にジッタと記す)、再生波形アシンメトリなどの規格値との比較を行いながら進める。

手順4.シフトテーブル、パワーレベル調整

記録パラメータの調整後、各記録速度において手順2で調整した基本記録パラメータ以外の記録パラメータの調整を行う。このとき、第1の実施例と同様に手順2で調整した基本記録パラメータは変更しない。調整方法はさまざまな手法が提案されているが、例えばDVD-RAMのように媒体の規格において定義されている手法を採用してもよい。

手順5. 記録パラメータ線形性確認

上記手順3で抽出された各記録速度での記録パラメータについて、記録速度に対する線形性を調べる。この場合も、本発明の第1の実施例と同様に手順2と同様に各記録パラメータ値で丸め込みなどによる誤差を持つことが考えられるため、手順2と同様に各記録パラメータに対して許容誤差値を設定し、線形性の確認を行う。

[0051]

以上の手順を用いたドライブでは、以下の利点がある。

- 1. 可変速記録フラグを参照することにより可変速記録をサポートしている媒体の判別が容易に行える。
- 2. 可変速記録をサポートしている媒体であることが判別された場合、CAV等の可変速記録を行う際のライトストラテジ設定が容易になり、ライトストラテジ学習時間を短縮することができる。
- 3. 可変速記録フラグを参照することにより可変速記録をサポートしていない媒体において、媒体製造者から提供された記録パラメータを用いて可変速記録を行った場合の記録不良を未然に防ぐことができる。
- 4. 上記手順により媒体製造者から可変速記録に対応した記録パラメータが提供されていない媒体においても、可変速記録に対応したライトストラテジおよび記録パラメータを求めてCAV記録などの可変速記録を実現することができる。

[0052]

また、本手順により得られた記録パラメータをドライブ内部の例えばEEPR OMなどに保持することにより、以降同じ媒体がドライブに挿入された場合速や かに記録パラメータを設定することができ、記録パラメータ学習時間の低減など の効果が得られる。

[0053]

なお、上記実施例に記載した6 T以上の長マーク、長スペースは、再生時の波形のマーク部分、スペース部分の電圧がその前後のマーク、スペースに影響されないマーク、スペースの長さを意図したものであり、これを記録媒体上に集光されるレーザースポット径の1倍以上のマーク、スペースと定義してもよい。これは例えばDVD-RAM記録装置でのレーザースポット径を1 μ mとした場合、これは記録チャネルクロックをTとしたときの7.14 Tの長さに相当する。

[0054]

【発明の効果】

本発明により、異なる記録速度で記録した領域が隣接した場合においても、再生波形の形状が一致するため、安定した再生を行うことができる。また、媒体製造者から提供される記録パラメータが定義されている記録速度以外の記録速度における記録パラメータを媒体製造者から提供される記録パラメータから容易に算出することができ、例えば記録速度が逐次的に変化するCAV記録などにおいて連続記録動作を行う場合、好適な記録パラメータを算出することができる。

さらに、媒体製造者はドライブおよび市場に対して可変速記録対応を謳うことができ、今後の記録速度の高速化において、内周回転速度制約のため主流になると思われるCAV記録方式への対応を通して市場の拡大を図ることができる。また、ドライブ製造者にとっては、CAV記録による高速記録を実現する際にライトストラテジの設定方法を簡便化でき、ドライブ開発時間の短縮、およびドライブにおけるライトストラテジ調整時の学習時間の短縮を図ることができる。

[0055]

また、ドライブにおいても本発明の手順を用いることにより、媒体製造者から 可変速記録に対応した記録パラメータが提供されていない媒体においても、可変 速記録に対応したライトストラテジおよび記録パラメータを求めてCAV記録など の可変速記録を実現することができる。さらに可変速記録フラグを参照すること により可変速記録をサポートしている媒体の判別が容易に行え、可変速記録を行 う際のライトストラテジ学習時間を短縮することができる。

【図面の簡単な説明】

- 【図1】4.7GB DVD-RAMの11Tマーク記録波形の模式図
- 【図2】記録パラメータ制御テーブルの一例を示す図
- 【図3】10Tマーク再生波形の一例とその模式図
- 【図4】記録速度と記録パラメータの関係の一例を示す模式図
- 【図5】10Tスペース再生波形の一例とその模式図
- 【図6】4.7GB DVD-RAM未記録領域の波形図
- 【図7】調整後の10Tマーク再生波形の一例とその模式図
- 【図8】14Tマーク再生波形とサンプルパルスの一例を示す模式図
- 【図9】14Tマーク再生波形とそのサンプル系列の一例を示す模式図
- 【図10】ドライブの動作シーケンスを示すフローチャート
- 【図11】本発明を適用したドライブのブロック図

【符号の説明】

- 201:6T以上の長スペースに続く6T以上の長マーク記録時の先頭パルスパラメ ータ
- 202:6T以上の長マークに続く6T以上の長スペース記録時の後端パルスパラメ ータ
- 301:10Tマーク再生波形
- 302:10Tマーク再生波形の時間軸中心
- 3 0 5 : 10Tマーク再生波形の傾き
- 501:10Tスペース再生波形
- 801、901:14Tマーク再生波形
- 802、803:サンプルパルス
- 902、903:再生波形サンプリングデータ

【図2】

						5	201
mark	>=6T	8	8	1-			
	5T	-8	-8	-1	-1		
	4T	9-	5	4 -	-4		
	3T	-2	-2	-1	-1		
	Tsfp	3T	4T	5T	>=6T		
	space						

【図3】

図 3

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

図 11

【書類名】 要約書

【要約】

【課題】

逐次的に記録速度を変化させながら適切な形状のマークを記録することが可能 な記録装置及び該記録装置で記録可能な記録媒体を提供する。

【解決手段】

1つの記録媒体に対して複数の記録速度での記録パラメータを決定する際に、該記録媒体上に集光されるレーザースポット径の2倍以上のマークを形成するパラメータの少なくとも該マークの前エッジ、後ろエッジの時間制御情報が記録線速度に対して略比例となるように記録パラメータを決定する。また、上記の際に該記録媒体上に集光されるレーザースポット径の2倍以上のマークを記録し、該マークを所定の線速度で再生して得られる電気信号波形の時間幅をTmとしたとき該波形の前エッジからTm/2の時間位置から時間軸方向に前後Ts(但しTs<Tm/2)の間の電圧値の変化量が記録線速度の変化に対して略一定となるように情報を記録するためのレーザーパルスを制御するパラメータを決定する。

【選択図】 図4

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-129677

受付番号

50300756083

書類名

特許願

担当官

第八担当上席 0097

作成日

平成15年 5月 9日

<認定情報・付加情報>

【提出日】

平成15年 5月 8日

次頁無

特願2003-129677

出願人履歴情報

識別番号

[000005108]

1. 変更年月日

1990年 8月31日

[変更理由]

新規登録

住 所

東京都千代田区神田駿河台4丁目6番地

氏 名

株式会社日立製作所

特願2003-129677

出願人履歴情報

識別番号

[501009849]

1. 変更年月日 [変更理由]

2000年12月27日

住 所 氏 名 新規登録 東京都港区虎ノ門一丁目 2 6 番 5 号

株式会社日立エルジーデータストレージ

2. 変更年月日 [変更理由]

2003年 3月 5日

住所変更

住 所

東京都港区海岸三丁目22番23号

氏 名 株式会社日立エルジーデータストレージ