Finite Differences

Let y=f(x) be the given function of x. Let y_0,y_1,y_2,\ldots,y_n be the values of y corresponding to the values x_0, x_1, x_2,\ldots,x_n . The values of y are called entries and the values of x are called arguments. Usually the arguments x_0, x_1, x_2,\ldots,x_n are in general not equally spaced. If we subtract each value of y from the proceeding value (except y_0), we get y_1-y_0 , y_2-y_1 , y_3-y_2 , etc., The results obtained are known as first differences of y and it is denoted by y_0 . Here y_0 denotes an operation called forward difference operator. $y_0=y_1-y_0$, $y_0=y_1-y_0$,

Forward difference operator: Forward difference operator Δ is defined as

$$\Delta f(x) = f(x+h) - f(x)$$
. Hence $\Delta f(x_0) = f(x_0+h) - f(x_0)$ i.e., $\Delta y_0 = y_1 - y_0$.

$$\Delta f(x_1) = f(x_1 + h) - f(x_1)$$
, i.e., $\Delta y_1 = y_2 - y_1$ Similarly $\Delta y_2 = y_3 - y_2$ and so on.,

Second forward difference is defined as $\Delta^2 f(x) = \Delta(\Delta f(x)) = \Delta(f(x+h) - f(x))$

$$\Delta^2 y_0 = \Delta(\Delta y_0) = \Delta(y_1 - y_0) = \Delta y_1 - \Delta y_0$$

$$\Delta^2 y_1 = \Delta(\Delta y_1) = \Delta(y_2 - y_1) = \Delta y_2 - \Delta y_1$$

$$\Delta^2 y_2 = \Delta(\Delta y_2) = \Delta(y_3 \text{- } y_2) = \Delta y_3 \text{ - } \Delta y_2$$
 and so on

$$\Delta^2 y_{n\text{-}1} = \Delta (\Delta y_{n\text{-}1}) = \Delta (y_{n}\text{-}\ y_{n\text{-}1}) = \Delta y_n$$
 - $\Delta y_{n\text{-}1}$

Third Forward difference

$$\Delta^3 y_0 = \Delta(\Delta^2 y_0) = \Delta(\Delta y_1 \text{-} \Delta y_0) = \Delta^2 y_1 \text{-} \Delta^2 y_0$$

$$\Delta^3 y_1 = \Delta(\Delta^2 y_1) = \Delta(\Delta y_2 - \Delta y_1) = \Delta^2 y_2 - \Delta^2 y_1$$

$$\Delta^3 y_2 = \Delta(\Delta^2 y_2) = \Delta(\Delta y_3 - \Delta y_2) = \Delta^2 y_3 - \Delta^2 y_2$$
 and so on

$$\Delta^3 y_{n\text{-}1} = \Delta(\Delta^2 y_{n\text{-}1}) = \Delta(\Delta y_{n\text{-}} \ \Delta y_{n\text{-}1}) = \Delta^2 y_n$$
 - $\Delta^2 y_{n\text{-}1}$

Backward difference operator (∇)

Backward difference operator (∇) is defined as ∇ f(x) = f(x) – f(x – h)

$$\nabla f(x_1) = f(x_1) - f(x_1 - h)$$
; i.e., $\nabla y_1 = y_1 - y_0$

$$\nabla f(x_2) = f(x_2) - f(x_2 - h)$$
; i.e., $\nabla y_2 = y_2 - y_1$ Similarly $\nabla y_3 = y_3 - y_2$ and so on.

$$\nabla f(x_n) = f(x_n) - f(x_n - h); \quad i.e., \ \nabla y_n = y_n - y_{n-1}$$

Shifting (OR) Translation (OR) Displacement Operator (E)

Displacement operator E is defined as Ef(x) = f(x + h) i.e., $Ey_x = y_{x+h}$

$$E^{2}f(x) = E(Ef(x)) = Ef(x+h) = f(x+2h)$$
 i.e., $E^{2}y_{x} = y_{x+2h}$

$$E^{3}f(x) = E(E^{2}f(x)) = Ef(x + 2h) = f(x + 3h)$$
 i.e., $E^{3}y_{x} = y_{x+3h}$

In general $E^n f(x) = f(x+nh)$ i.e., $E^n y_x = y_{x+nh}$

Inverse operator E⁻¹ is defined as $E^{-1}f(x) = f(x-h)$

$$E^{-r}f(x) = f(x - rh)$$

Central difference operator (δ)

Central difference operator δ is defined as $\delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$

i.e.,
$$\delta y_x = y_{x+(h/2)} - y_{x-(h/2)}$$

Averaging operator (µ)

Averaging operator μ is defined as $\mu f(x) = \frac{1}{2} \left[f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right) \right]$

Unit operator (1)

Unit operator 1 is defined as 1.f(x) = f(x)

Differential operator (D)

Differential operator D is defined as Df(x) = f'(x)

Properties

1. The operators Δ , ∇ , E, δ and μ are linear.

Forward difference operator Δ is linear i.e., $\Delta(af(x) \pm bg(x)) = a\Delta f(x) \pm b \Delta g(x)$, where 'a' and 'b' are constants, f(x) and g(x) are any two functions of x.

If
$$a = b = 1$$
, then $\Delta(f(x) \pm g(x)) = \Delta f(x) \pm \Delta g(x)$

If
$$b = 0$$
 then $\Delta(af(x)) = a\Delta f(x)$

Relation between operators

1. Relation between forward difference operator (Δ) and shifting operator (E)

$$\Delta f(x) = f(x+h) - f(x) = Ef(x) - f(x) = Ef(x) - 1.f(x) = (E-1) f(x)$$

$$\Delta f(x) = (E - 1) f(x)$$

$$\Delta = E - 1$$

This implies that $E = 1 + \Delta$

2. Relation between backward difference operator (∇) and shifting operator (E)

$$\nabla f(x) = f(x) - f(x - h) = f(x) - E^{-1}f(x) = 1.f(x) - E^{-1}f(x) = (1 - E^{-1}) f(x)$$

$$\nabla f(\mathbf{x}) = (1 - \mathbf{E}^{-1}) f(\mathbf{x})$$

$$\nabla = 1 - E^{-1}$$

This implies that $E^{-1} = 1 - \nabla$

3. Relation between central difference operator (δ) and shifting operator (E)

$$\delta f(x) = E^{(1/2)} f(x) - E^{(-1/2)} f(x) = (E^{(1/2)} - E^{(-1/2)}) f(x)$$

$$\delta = E^{(1/2)} - E^{(-1/2)} = E^{\frac{1}{2}} (1 - E^{-1}) = E^{\frac{1}{2}} \nabla$$

$$\delta = E^{\frac{-1}{2}}(E-1) = E^{\frac{-1}{2}}\Delta$$

4. Relation between Averaging operator (μ) and shifting operator (E)

$$\mu f(x) = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{\frac{-1}{2}} \right] f(x)$$

$$\mu = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{\frac{-1}{2}} \right]$$

5. Relation between Differential operator (D) and shifting operator (E)

Wkt
$$Ef(x) = f(x + h)$$

By Taylor's series E
$$f(x) = f(x) + \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \dots$$

$$= f(x) + \frac{h}{1!}Df(x) + \frac{h^2}{2!}D^2f(x) + \frac{h^3}{3!}D^3f(x) + \dots$$

$$= \left[1 + \frac{h}{1!}D + \frac{h^2}{2!}D^2 + \frac{h^3}{3!}D^3 + \dots \right] f(x)$$

Since
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$Ef(x) = e^{hD} f(x)$$

$$E = e^{hD}$$

$$Log \ E = log \ e^{hD}$$

$$hD = log E = log (1 + \Delta)$$
 (since $E = 1 + \Delta$)

$$D = \frac{1}{h} \log (1 + \Delta) = \frac{1}{h} \left[\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots \right]$$

Results

1. If f(x) and g(x) are any two functions of x, then

$$\Delta(f(x)g(x)) = f(x+h) \Delta g(x) + g(x) \Delta f(x)$$

- 2. If f(x) and g(x) are any two functions of x, then $\Delta \frac{f(x)}{g(x)} = \frac{g(x)\Delta f(x) g(x)\Delta f(x)}{g(x+h)g(x)}$
- 3. The nth forward differences of a nth degree polynomial are constants.

$$\Delta(k) = k - k = 0$$
 where 'k' is constant

1. Find $\Delta^n(e^{ax+b})$

Sol: Wkt
$$\Delta f(x) = f(x+h) - f(x)$$

$$\Delta(e^{ax+b}) = e^{a(x+h)+b} - e^{ax+b}$$

$$= e^{ax+b} (e^{ah} - 1)$$

$$\begin{split} \Delta^2(e^{ax+b}) &= \Delta(\Delta(e^{ax+b})) = \Delta(e^{ax+b}(e^{ah-1})) = e^{ah-1} \; \Delta(e^{ax+b}) = e^{ah-1} \; e^{ah-1} \, e^{ax+b} \\ &= (e^{ah-1})^2 e^{ax+b} \end{split}$$

Similarly
$$\Delta^{3}(e^{ax+b}) = (e^{ah-1})^{3}e^{ax+b}$$

In general,
$$\Delta^{n}(e^{ax+b}) = (e^{ah-1})^{n}e^{ax+b}$$