Specialeforsvar

Johannes Jensen

Aarhus Universitet

23. juni 2022

Sætning 2

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5

2/8

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis.

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis. Hvis punkterne i P alle ligger på den samme linje, så giver Sætning 1 at $Vor_G(P)$ opfylder de angivne øvre grænser.

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis. Hvis punkterne i P alle ligger på den samme linje, så giver Sætning 1 at $Vor_G(P)$ opfylder de angivne øvre grænser.

Antag nu at punkterne i P ikke alle ligger på den samme linje.

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis. Hvis punkterne i P alle ligger på den samme linje, så giver Sætning 1 at $Vor_G(P)$ opfylder de angivne øvre grænser.

Antag nu at punkterne i P ikke alle ligger på den samme linje. Vi vil benytte Eulers formel, som for en plan graf med

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis. Hvis punkterne i P alle ligger på den samme linje, så giver Sætning 1 at $Vor_G(P)$ opfylder de angivne øvre grænser.

Antag nu at punkterne i P ikke alle ligger på den samme linje. Vi vil benytte Eulers formel, som for en plan graf med V knuder,

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis. Hvis punkterne i P alle ligger på den samme linje, så giver Sætning 1 at $Vor_G(P)$ opfylder de angivne øvre grænser.

Antag nu at punkterne i P ikke alle ligger på den samme linje. Vi vil benytte Eulers formel, som for en plan graf med V knuder, E kanter

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n-5 og antallet af kanter er højst 3n-6.

Bevis. Hvis punkterne i P alle ligger på den samme linje, så giver Sætning 1 at $Vor_G(P)$ opfylder de angivne øvre grænser.

Antag nu at punkterne i P ikke alle ligger på den samme linje. Vi vil benytte Eulers formel, som for en plan graf med V knuder, E kanter og F sideflader

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis. Hvis punkterne i P alle ligger på den samme linje, så giver Sætning 1 at $Vor_G(P)$ opfylder de angivne øvre grænser.

Antag nu at punkterne i P ikke alle ligger på den samme linje. Vi vil benytte Eulers formel, som for en plan graf med V knuder, E kanter og F sideflader siger at

$$V-E+F=2.$$

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n-5 og antallet af kanter er højst 3n-6.

Bevis. Hvis punkterne i P alle ligger på den samme linje, så giver Sætning 1 at $Vor_G(P)$ opfylder de angivne øvre grænser.

Antag nu at punkterne i P ikke alle ligger på den samme linje. Vi vil benytte Eulers formel, som for en plan graf med V knuder, E kanter og F sideflader siger at

$$V - E + F = 2$$
.

Vi har dog det problem at $Vor_G(P)$ ikke er en plan graf i ovenstående forstand, da den har nogle uendelige kanter.

Sætning 2

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n-5 og antallet af kanter er højst 3n-6.

Bevis. Hvis punkterne i P alle ligger på den samme linje, så giver Sætning 1 at $Vor_G(P)$ opfylder de angivne øvre grænser.

Antag nu at punkterne i P ikke alle ligger på den samme linje. Vi vil benytte Eulers formel, som for en plan graf med V knuder, E kanter og F sideflader siger at

$$V - E + F = 2.$$

Vi har dog det problem at $Vor_G(P)$ ikke er en plan graf i ovenstående forstand, da den har nogle uendelige kanter. Vi laver nu en transformation af $Vor_G(P)$ som gør at vi kan benytte formlen.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad v_1, v_2, \ldots, v_k være knuderne i $Vor_G(P)$.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad v_1, v_2, \ldots, v_k være knuderne i $Vor_G(P)$. Lad

$$p = \frac{1}{k}(v_1 + v_2 + \cdots + v_k) \in \mathbb{R}^2$$

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad v_1, v_2, \ldots, v_k være knuderne i Vor_G(P). Lad

$$p = \frac{1}{k}(v_1 + v_2 + \cdots + v_k) \in \mathbb{R}^2$$

og

$$r = 1 + \max\{\operatorname{dist}(p, v_1), \ldots, \operatorname{dist}(p, v_k)\}.$$

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n-5 og antallet af kanter er højst 3n-6.

Bevis fortsat. Lad v_1, v_2, \ldots, v_k være knuderne i Vor_G(P). Lad

$$p = \frac{1}{k}(v_1 + v_2 + \cdots + v_k) \in \mathbb{R}^2$$

og

$$r = 1 + \max\{\operatorname{dist}(p, v_1), \dots, \operatorname{dist}(p, v_k)\}.$$

Vi har så at $v_1, \ldots, v_k \in B_r(p)$

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n-5 og antallet af kanter er højst 3n-6.

Bevis fortsat. Lad v_1, v_2, \ldots, v_k være knuderne i Vor_G(P). Lad

$$p = \frac{1}{k}(v_1 + v_2 + \cdots + v_k) \in \mathbb{R}^2$$

og

$$r = 1 + \max\{\operatorname{dist}(p, v_1), \dots, \operatorname{dist}(p, v_k)\}.$$

Vi har så at $v_1, \ldots, v_k \in B_r(p)$ og enhver kant i $Vor_G(P)$ som er en stråle skærer $\partial B_r(p)$ i et entydigt punkt

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n-5 og antallet af kanter er højst 3n-6.

Bevis fortsat. Lad v_1, v_2, \ldots, v_k være knuderne i Vor_G(P). Lad

$$p = \frac{1}{k}(v_1 + v_2 + \cdots + v_k) \in \mathbb{R}^2$$

og

$$r = 1 + \max\{\operatorname{dist}(p, v_1), \dots, \operatorname{dist}(p, v_k)\}.$$

Vi har så at $v_1, \ldots, v_k \in B_r(p)$ og enhver kant i $Vor_G(P)$ som er en stråle skærer $\partial B_r(p)$ i et entydigt punkt, kald disse punkter s_1, s_2, \ldots, s_t .

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n-5 og antallet af kanter er højst 3n-6.

Bevis fortsat. Lad v_1, v_2, \ldots, v_k være knuderne i Vor_G(P). Lad

$$p = \frac{1}{k}(v_1 + v_2 + \cdots + v_k) \in \mathbb{R}^2$$

og

$$r = 1 + \max\{\operatorname{dist}(p, v_1), \dots, \operatorname{dist}(p, v_k)\}.$$

Vi har så at $v_1, \ldots, v_k \in B_r(p)$ og enhver kant i $Vor_G(P)$ som er en stråle skærer $\partial B_r(p)$ i et entydigt punkt, kald disse punkter s_1, s_2, \ldots, s_t . Definér så v_∞ som et vilkårligt element i $\mathbb{R}^2 \setminus \overline{B_r(p)}$.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad v_1, v_2, \ldots, v_k være knuderne i Vor_G(P). Lad

$$p = \frac{1}{k}(v_1 + v_2 + \cdots + v_k) \in \mathbb{R}^2$$

og

$$r = 1 + \max\{\operatorname{dist}(p, v_1), \dots, \operatorname{dist}(p, v_k)\}.$$

Vi har så at $v_1,\ldots,v_k\in B_r(p)$ og enhver kant i ${\rm Vor}_{\sf G}(P)$ som er en stråle skærer $\partial B_r(p)$ i et entydigt punkt, kald disse punkter s_1,s_2,\ldots,s_t . Definér så v_∞ som et vilkårligt element i $\mathbb{R}^2\setminus\overline{B_r(p)}$. Vi kan så forbinde enhver uendelig kant til v_∞

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad v_1, v_2, \ldots, v_k være knuderne i Vor_G(P). Lad

$$p = \frac{1}{k}(v_1 + v_2 + \cdots + v_k) \in \mathbb{R}^2$$

og

$$r = 1 + \max\{\operatorname{dist}(p, v_1), \dots, \operatorname{dist}(p, v_k)\}.$$

Vi har så at $v_1,\ldots,v_k\in B_r(p)$ og enhver kant i ${\rm Vor}_{\sf G}(P)$ som er en stråle skærer $\partial B_r(p)$ i et entydigt punkt, kald disse punkter s_1,s_2,\ldots,s_t . Definér så v_∞ som et vilkårligt element i $\mathbb{R}^2\setminus\overline{B_r(p)}$. Vi kan så forbinde enhver uendelig kant til v_∞ , ved at forbinde s_i til v_∞ med en sti

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad v_1, v_2, \ldots, v_k være knuderne i Vor_G(P). Lad

$$p = \frac{1}{k}(v_1 + v_2 + \cdots + v_k) \in \mathbb{R}^2$$

og

$$r = 1 + \max\{\mathsf{dist}(p, v_1), \dots, \mathsf{dist}(p, v_k)\}.$$

Vi har så at $v_1,\ldots,v_k\in B_r(p)$ og enhver kant i $\mathrm{Vor}_{\mathsf{G}}(P)$ som er en stråle skærer $\partial B_r(p)$ i et entydigt punkt, kald disse punkter s_1,s_2,\ldots,s_t . Definér så v_∞ som et vilkårligt element i $\mathbb{R}^2\setminus\overline{B_r(p)}$. Vi kan så forbinde enhver uendelig kant til v_∞ , ved at forbinde s_i til v_∞ med en sti, og vi gør det i rækkefølge, startende med det s_i som ligger tættest på v_∞ .

Et eksempel på denne konstruktion er givet her:

Et eksempel på denne konstruktion er givet her:

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$. Vi kan nu anvende Eulers formel på G.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$. Vi kan nu anvende Eulers formel på G. Lad n_v betegne antallet af knuder i $Vor_G(P)$, og lad n_e betegne antallet af kanter.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$. Vi kan nu anvende Eulers formel på G. Lad n_v betegne antallet af knuder i $Vor_G(P)$, og lad n_e betegne antallet af kanter. Antallet af sideflader er n, da vi har én Voronoi celle for hvert site.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$. Vi kan nu anvende Eulers formel på G. Lad n_v betegne antallet af knuder i $Vor_G(P)$, og lad n_e betegne antallet af kanter. Antallet af sideflader er n, da vi har én Voronoi celle for hvert site. Vi har kun tilføjet en enkelt knude, så ved indsættelse i Eulers formel får vi

$$(n_v + 1) - n_e + n = 2.$$
 (1)

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$. Vi kan nu anvende Eulers formel på G. Lad n_v betegne antallet af knuder i $Vor_G(P)$, og lad n_e betegne antallet af kanter. Antallet af sideflader er n, da vi har én Voronoi celle for hvert site. Vi har kun tilføjet en enkelt knude, så ved indsættelse i Eulers formel får vi

$$(n_{v}+1)-n_{e}+n=2. (1)$$

Bemærk så, at enhver knude v i G har $deg(v) \ge 3$

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$. Vi kan nu anvende Eulers formel på G. Lad n_v betegne antallet af knuder i $Vor_G(P)$, og lad n_e betegne antallet af kanter. Antallet af sideflader er n, da vi har én Voronoi celle for hvert site. Vi har kun tilføjet en enkelt knude, så ved indsættelse i Eulers formel får vi

$$(n_{v}+1)-n_{e}+n=2. (1)$$

Bemærk så, at enhver knude v i G har $\deg(v) \geq 3$, for ellers ville der være en $\mathcal{V}(p_i)$ som ikke er konveks.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$. Vi kan nu anvende Eulers formel på G. Lad n_v betegne antallet af knuder i $Vor_G(P)$, og lad n_e betegne antallet af kanter. Antallet af sideflader er n, da vi har én Voronoi celle for hvert site. Vi har kun tilføjet en enkelt knude, så ved indsættelse i Eulers formel får vi

$$(n_v + 1) - n_e + n = 2.$$
 (1)

Bemærk så, at enhver knude v i G har $\deg(v) \geq 3$, for ellers ville der være en $\mathcal{V}(p_i)$ som ikke er konveks. Dvs.

$$\sum_{v \in V(G)} \deg(v)$$

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$. Vi kan nu anvende Eulers formel på G. Lad n_v betegne antallet af knuder i $Vor_G(P)$, og lad n_e betegne antallet af kanter. Antallet af sideflader er n, da vi har én Voronoi celle for hvert site. Vi har kun tilføjet en enkelt knude, så ved indsættelse i Eulers formel får vi

$$(n_v + 1) - n_e + n = 2.$$
 (1)

Bemærk så, at enhver knude v i G har $\deg(v) \geq 3$, for ellers ville der være en $\mathcal{V}(p_i)$ som ikke er konveks. Dvs.

$$\sum_{v \in V(G)} \deg(v) \ge 3 \, |V(G)|$$

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$. Vi kan nu anvende Eulers formel på G. Lad n_v betegne antallet af knuder i $Vor_G(P)$, og lad n_e betegne antallet af kanter. Antallet af sideflader er n, da vi har én Voronoi celle for hvert site. Vi har kun tilføjet en enkelt knude, så ved indsættelse i Eulers formel får vi

$$(n_v + 1) - n_e + n = 2.$$
 (1)

Bemærk så, at enhver knude v i G har $\deg(v) \geq 3$, for ellers ville der være en $\mathcal{V}(p_i)$ som ikke er konveks. Dvs.

$$\sum_{v \in V(G)} \deg(v) \ge 3 |V(G)| = 3(n_v + 1).$$

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Lad G være grafen der fremkommer ved at transformere $Vor_G(P)$. Vi kan nu anvende Eulers formel på G. Lad n_v betegne antallet af knuder i $Vor_G(P)$, og lad n_e betegne antallet af kanter. Antallet af sideflader er n, da vi har én Voronoi celle for hvert site. Vi har kun tilføjet en enkelt knude, så ved indsættelse i Eulers formel får vi

$$(n_v + 1) - n_e + n = 2.$$
 (1)

Bemærk så, at enhver knude v i G har $\deg(v) \geq 3$, for ellers ville der være en $\mathcal{V}(p_i)$ som ikke er konveks. Dvs.

$$\sum_{v \in V(G)} \deg(v) \ge 3 |V(G)| = 3(n_v + 1).$$

Vi finder nu et udtryk for venstresiden.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Bemærk at deg(v) tæller antallet af kanter som rører v

6 / 8

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Bemærk at deg(v) tæller antallet af kanter som rører v, og i G så rører hver kant ved præcis 2 knuder

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Bemærk at $\deg(v)$ tæller antallet af kanter som rører v, og i G så rører hver kant ved præcis 2 knuder, så $\sum_{v \in V(G)} \deg(v) = 2n_e$.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Bemærk at $\deg(v)$ tæller antallet af kanter som rører v, og i G så rører hver kant ved præcis 2 knuder, så $\sum_{v \in V(G)} \deg(v) = 2n_e$. Dvs.

$$2n_e \ge 3(n_v + 1).$$
 (2)

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Bemærk at $\deg(v)$ tæller antallet af kanter som rører v, og i G så rører hver kant ved præcis 2 knuder, så $\sum_{v \in V(G)} \deg(v) = 2n_e$. Dvs.

$$2n_e \ge 3(n_v + 1).$$
 (2)

$$2(n_v + 1) - 2n_e + 2n = 4$$
 (Gang (1) med 2)

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Bemærk at $\deg(v)$ tæller antallet af kanter som rører v, og i G så rører hver kant ved præcis 2 knuder, så $\sum_{v \in V(G)} \deg(v) = 2n_e$. Dvs.

$$2n_e \ge 3(n_v + 1). \tag{2}$$

$$2(n_v + 1) - 2n_e + 2n = 4$$
 (Gang (1) med 2)
 $\iff 2n_e = (2n_v + 1) + 2n - 4$ (Isolér $2n_e$)

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Bemærk at $\deg(v)$ tæller antallet af kanter som rører v, og i G så rører hver kant ved præcis 2 knuder, så $\sum_{v \in V(G)} \deg(v) = 2n_e$. Dvs.

$$2n_e \ge 3(n_v + 1). \tag{2}$$

$$2(n_v + 1) - 2n_e + 2n = 4$$
 (Gang (1) med 2)
 $\iff 2n_e = (2n_v + 1) + 2n - 4$ (Isolér $2n_e$)
 $\implies 3(n_v + 1) \le 2(n_v + 1) + 2n - 4$ (Anvend (2))

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Bemærk at $\deg(v)$ tæller antallet af kanter som rører v, og i G så rører hver kant ved præcis 2 knuder, så $\sum_{v \in V(G)} \deg(v) = 2n_e$. Dvs.

$$2n_e \ge 3(n_v + 1). \tag{2}$$

$$2(n_v + 1) - 2n_e + 2n = 4 \quad (Gang (1) med 2)$$

$$\iff 2n_e = (2n_v + 1) + 2n - 4 \quad (Isolér 2n_e)$$

$$\implies 3(n_v + 1) \le 2(n_v + 1) + 2n - 4 \quad (Anvend (2))$$

$$\implies n_v \le 2n - 5.$$

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Bemærk at $\deg(v)$ tæller antallet af kanter som rører v, og i G så rører hver kant ved præcis 2 knuder, så $\sum_{v \in V(G)} \deg(v) = 2n_e$. Dvs.

$$2n_e \ge 3(n_v + 1).$$
 (2)

Vi får så:

$$2(n_v + 1) - 2n_e + 2n = 4 \quad (Gang (1) med 2)$$

$$\iff 2n_e = (2n_v + 1) + 2n - 4 \quad (Isolér 2n_e)$$

$$\implies 3(n_v + 1) \le 2(n_v + 1) + 2n - 4 \quad (Anvend (2))$$

$$\implies n_v \le 2n - 5.$$

Altså er antallet af knuder højst 2n - 5.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

$$3(n_v + 1) - 3n_e + 3n = 6 \pmod{1} \mod 3$$

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

$$3(n_v + 1) - 3n_e + 3n = 6$$
 (Gang (1) med 3)
 $\iff 3(n_v + 1) = 3n_e - 3n + 6$ (Isoler $3(n_v + 1)$)

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

$$3(n_v + 1) - 3n_e + 3n = 6$$
 (Gang (1) med 3)
 $\iff 3(n_v + 1) = 3n_e - 3n + 6$ (Isoler $3(n_v + 1)$)
 $\implies 2n_e \ge 3n_e - 3n + 6$ (Anvend (2))

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

$$3(n_v + 1) - 3n_e + 3n = 6$$
 (Gang (1) med 3)
 $\iff 3(n_v + 1) = 3n_e - 3n + 6$ (Isoler $3(n_v + 1)$)
 $\implies 2n_e \ge 3n_e - 3n + 6$ (Anvend (2))
 $\implies n_e \le 3n - 6$.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Mht. kanterne har vi:

$$3(n_v + 1) - 3n_e + 3n = 6$$
 (Gang (1) med 3)
 $\iff 3(n_v + 1) = 3n_e - 3n + 6$ (Isoler $3(n_v + 1)$)
 $\implies 2n_e \ge 3n_e - 3n + 6$ (Anvend (2))
 $\implies n_e \le 3n - 6$.

Altså er antallet af kanter højst 3n - 6.

For $n \ge 3$ er antallet af knuder i $Vor_G(P)$ højst 2n - 5 og antallet af kanter er højst 3n - 6.

Bevis fortsat. Mht. kanterne har vi:

$$3(n_v + 1) - 3n_e + 3n = 6$$
 (Gang (1) med 3)
 $\iff 3(n_v + 1) = 3n_e - 3n + 6$ (Isoler $3(n_v + 1)$)
 $\implies 2n_e \ge 3n_e - 3n + 6$ (Anvend (2))
 $\implies n_e \le 3n - 6$.

Altså er antallet af kanter højst 3n - 6. **QED.**

Vi har altså set at selvom vi har $\mathcal{O}(n^2)$ bisectors, så har vi kun $\mathcal{O}(n)$ kanter.

Vi har altså set at selvom vi har $\mathcal{O}(n^2)$ bisectors, så har vi kun $\mathcal{O}(n)$ kanter. Vi vil nu karakterisere hvornår en del af en bisector faktisk udgør en knude eller kant i $\operatorname{Vor}_{\mathsf{G}}(P)$.