VE203 Discrete Math Spring 2022 — HW1 Solutions

JOINT INSTITUTE 交大窓面根学院

March 6, 2022

Exercise 1.1.1

a	b	$a \wedge b$	$\neg(a \land b)$	$\neg a$	$\neg b$	$\neg a \lor \neg b$	
0	0	0	1	1	1	1	1
0	1	0	1	1	0	1	1
1	0	0	1	0	1	1	1
1	1	1	0	0	0	0	1

$$\Rightarrow \neg(a \land b) \Leftrightarrow \neg a \lor \neg b$$

a	b	$a \vee b$	$\neg(a \vee b)$	$\neg a$	$\neg b$	$\neg a \land \neg b$	$\neg(aVb) \leftrightarrow \neg a \land \neg b$
0	0	0	1	1	1	1	1
0	1	1	0	1	0	0	1
1	0	1	0	0	1	0	1
1	1	1	0	0	0	0	1

$$\Rightarrow \neg (a \lor b) \Leftrightarrow \neg a \land \neg b$$

Exercise 1.1.2

For sets $A, B \subset M$, we write out them in terms of predicates $P_1(x)$ and $P_2(x)$ as $A = \{x \in M \mid P_1(x)\}$ and $B = \{x \in M \mid P_2(x)\}$ Therefore, $A \cap B = \{x \in M \mid P_1|x \mid \land P_2(x)\}$, $A \cup B = \{x \in M \mid P_1(x) \lor P_2(x)\}$

$$M - A = \{x \in M \mid \neg P_1(x)\}, \quad M - B = \{x \in M \mid \neg P_2(x)\}$$

 $M - (A \cap B) = \{x \in M \mid \neg (P_1(x) \land P_2(x))\}, M - (A \cup B) = \{x \in M \mid \neg (P_1(x)VP_2 \mid x))\}$ Applying de Morgan's rules,

$$M - (A \cap B) = \{x \in M \mid \neg P_1(x) \lor \neg P_2(x)\} = (M - A) \cup (M - B)$$

$$M - (A \cup B) = \{x \in M \mid \neg P_1(x) \land \neg P_2(x)\} = (M - A) \cap (M - B)$$

Exercise 1.2.1

A	В	С	$A \to (B \to C)$	$B \to (A \to C)$	$(A \to (B \to C)) \to (B \to (A \to C))$
1	1	1	1	1	1
1	1	0	0	0	1
1	0	1	1	1	1
1	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
0	0	0	1	1	1

Exercise 1.2.2

Since φ is tautology, we simply write the disjunctive normal form of φ as

$$\varphi = A \vee \neg A$$

where A is a predicate.

Exercise 1.2.3

Since φ is tautology, we simply write the conjunctive normal form of φ as

$$\varphi = (A \vee \neg A)$$

where A is a predicate.

Exercise 1.3.1

$$\varphi_{0}: p \land \neg p$$

$$\varphi_{1}: p \land q$$

$$\varphi_{2}: p \land \neg q$$

$$\varphi_{3}: p$$

$$\varphi_{4}: \neg p \land q$$

$$\varphi_{5}: q$$

$$\varphi_{6}: (p \land \neg q) \lor (\neg p \land q)$$

$$\varphi_{7}: p \lor q$$

$$\varphi_{8}: \neg (p \lor q)$$

$$\varphi_{9}: (p \land q) \lor \neg (p \lor q)$$

$$\varphi_{10}: \neg q$$

$$\varphi_{11}: p \lor \neg q$$

$$\varphi_{12}: \neg p$$

$$\varphi_{13}: \neg p \lor q$$

$$\varphi_{14}: \neg (p \land q)$$

$$\varphi_{15}: p \lor \neg p$$

Exercise 1.3.2

$$\varphi_{0}: p \land \neg p$$

$$\varphi_{1}: p \land q$$

$$\varphi_{2}: p \land \neg q$$

$$\varphi_{3}: p$$

$$\varphi_{4}: \neg p \land q$$

$$\varphi_{5}: q$$

$$\varphi_{6}: \neg(\neg(p \land \neg q)) \land \neg(\neg p \land q)$$

$$\varphi_{7}: \neg(\neg p \land \neg q)$$

$$\varphi_{8}: \neg p \land \neg q$$

$$\varphi_{9}: \neg(\neg(p \land q) \land \neg(\neg p \land \neg q))$$

$$\varphi_{10}: \neg q$$

$$\varphi_{11}: \neg(\neg p \land q)$$

$$\varphi_{12}: \neg p$$

$$\varphi_{13}: \neg(p \land \neg q)$$

$$\varphi_{14}: \neg(p \land q)$$

$$\varphi_{15}: \neg(\neg p \land p)$$

Exercise 1.3.3

$$\varphi_{0}: \neg(\neg p \lor p)$$

$$\varphi_{1}: \neg(\neg p \lor \neg q)$$

$$\varphi_{2}: \neg(\neg p \lor q)$$

$$\varphi_{3}: p$$

$$\varphi_{4}: \neg(p \lor \neg q)$$

$$\varphi_{5}: q$$

$$\varphi_{6}: \neg(\neg p \lor q) \lor \neg(p \lor \neg q)$$

$$\varphi_{7}: p \lor q$$

$$\varphi_{8}: \neg(p \lor q)$$

$$\varphi_{9}: \neg(\neg p \lor \neg q) \lor \neg(p \lor q)$$

$$\varphi_{10}: \neg q$$

$$\varphi_{11}: p \lor \neg q$$

$$\varphi_{12}: \neg p$$

$$\varphi_{13}: \neg p \lor q$$

$$\varphi_{14}: \neg p \lor \neg q$$

$$\varphi_{15}: p \lor \neg p$$

Exercise 1.3.4 Assume that $\{\lor, \land\}$ is functionally complete Then their combination can express φ_{12} , which is $\neg p$ The following will prove $\{\land, \lor\}$ is self-closed, which means they cannot generate other functions, including \neg Consider all possible combinations with only

one input p. Combinations of $\{0,1\}$ with $\{\land,\lor\}$ obviously cannot generate \neg .

$$p \lor p \Leftrightarrow p$$

$$p \lor 1 \Leftrightarrow 1 \lor p \Leftrightarrow 1$$

$$p \lor 0 \Leftrightarrow 0 \lor p \Leftrightarrow p$$

$$p \land p \Leftrightarrow p$$

$$p \land 1 \Leftrightarrow 1 \lor p \Leftrightarrow p$$

$$p \land 0 \Leftrightarrow 0 \lor p \Leftrightarrow 0$$

They also cannot generate \neg , so all combinations of $\{\land,\lor\}$ cannot generate \neg , which contradicts. So $\{\lor,\land\}$ is not functionally complete.

Exercise 1.4.1

A	В	$A \wedge B$	$A \vee B$	$A \mid B$	$A \downarrow B$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	1	0
1	1	1	1	0	0

Exercise 1.4.2

$$A \downarrow A \Leftrightarrow \neg (A \lor A)$$

$$\Leftrightarrow \neg A$$

$$(A \downarrow B) \downarrow (A \downarrow B) \Leftrightarrow \neg (A \downarrow B)$$

$$\Leftrightarrow A \lor B$$

Exercise 1.4.3 By $A \downarrow A \Leftrightarrow \neg A$, $\{\neg\}$ can be expressed by $\{\downarrow\}$ By $(A \downarrow B) \downarrow (A \downarrow B) \Leftrightarrow A \lor B$, $\{\lor\}$ can be expressed by $\{\downarrow\}$ Since we previously proved that $\{\neg,\lor\}$ is functionally complete, \downarrow is functionally complete

Exercise 1.4.4

$$\oplus = (A \vee B) \wedge (\neg A \vee \neg B) = (A \downarrow B) \downarrow ((A \downarrow A) \downarrow (B \downarrow B))$$

Exercise 1.4.5 We here prove | can denote \downarrow that is functionally complete.

$$A \mid B = \neg(\neg A \downarrow \neg B) = ((A \downarrow A) \downarrow (B \downarrow B)) \downarrow ((A \downarrow A) \downarrow (B \downarrow B))$$

Exercise 1.4.6 Here we can raise a counter-example:

Therefore, associate law does not apply to \downarrow .

Exercise 1.5.1 For any X that satisfies $X \in 2^A \cap 2^B$,

$$X \in 2^{A} \cap 2^{B} \Rightarrow X \in 2^{A} \land X \in 2^{B}$$
$$\Rightarrow X \subset A \land X \subset B$$
$$\Rightarrow X \subset A \cap B$$
$$\Rightarrow X \in 2^{A \cap B}$$
$$2^{A} \cap 2^{B} \subset 2^{A \cap B}$$

For any Y that satisfies $Y \in 2^{A \cap B}$,

$$\begin{split} Y \in 2^{A \cap B} &\Rightarrow Y \subset A \cap B \\ &\Rightarrow Y \subset A \wedge Y \subset B \\ &\Rightarrow Y \in 2^A \wedge Y \in 2^B \\ &\Rightarrow Y \in 2^{A \cap B} \\ 2^{A \cap B} \subset 2^A \cap 2^B \end{split}$$

Since $2^A \cap 2^B \subset 2^{A \cap B}$ and $2^A \cap 2^B \supset 2^{A \cap B}, 2^A \cap 2^B = 2^{A \cap B}$ is proved.

Exercise 1.5.2 For any Z that satisfies $Z \in 2^A \cup 2^B$,

$$\begin{split} Z \in 2^A \cup 2^B &\Rightarrow Z \in 2^A \vee Z \in 2^B \\ &\Rightarrow Z \subset A \vee Z \subset B \\ &\Rightarrow Z \subset A \cup B \\ &\Rightarrow Z \in 2^{A \cup B} \\ 2^A \cup 2^B \subset 2^{A \cup B} \end{split}$$

Exercise 1.6.1

$$\begin{split} X\Delta Y &= (X-Y) \cup (Y-X) \\ &= (X \cup Y - Y) \cup (X \cup Y - X), \text{ apply de Morgan's rules:} \\ &= (X \cup Y) - (X \cap Y) \end{split}$$

Exercise 1.6.2

$$(M - X)\Delta(M - Y)$$
=(M - X) - (M - Y)) \cup ((M - Y) - (M - X))
=(Y - X) \cup (X - Y) = (X - Y) \cup (Y - X) = X\Delta Y

Exercise 1.6.3

X	Y	Z	$X\Delta Y$	$(X\Delta Y)\Delta Z$	$Y\Delta Z$	$X\Delta(Y\Delta Z)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	0	0	0
1	0	0	1	1	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	1	0	1	0	1

Exercise 1.6.4

X	Y	Z	$X\Delta Y$	$(X\Delta Y)\Delta Z$	$Y\Delta Z$	$X\Delta(Y\Delta Z)$	$X \cap (Y\Delta Z)$	$X \cap Y$	$X \cap Z$	$(X \cap Y)\Delta(X \cap Z)$
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	1	0	0	0	0
0	1	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0	0	0
1	0	1	1	0	1	0	1	0	1	1
1	1	0	0	0	1	0	1	1	0	1
1	1	1	0	1	0	1	0	1	1	0

Exercise 1.6.5 $X\Delta Y = Z\Delta W \Leftrightarrow X\Delta Z = Y\Delta W$ if $x \in X\Delta Z. x \in X - Z$ or Z - x. suppose $x \in X - Z$. prove $x \in Y - w$ or W - Y. if $x \in X \cap Y$. then $x \notin X\Delta Y$. so $x \notin Z\Delta W$. as $x \notin z$, x can't $\in W$. so $x \in Y$, $x \notin w$. $x \in Y\Delta w$ So for $x \in X\Delta Z$ we know $x \in Y\Delta W$. Similarly if $x \in Y\Delta \omega$ we can get $x \in X\Delta Z$. So $X\Delta Y = Z\Delta \omega \Rightarrow X\Delta Z = Y\Delta \omega$ Substitude Yand Z, we get the inverse and therefore $X\Delta Y = Z\Delta W \Leftrightarrow X\Delta Z = Y\Delta W$.

Exercise 1.6.6

Figure 1: problem 1.6.6

Exercise 1.7.1

$$\varrho(A,B) = 0 \Leftrightarrow A\Delta B = \phi$$

$$\Leftrightarrow (A-B) \cup (B-A) = \phi$$

$$\Leftrightarrow (A-B) = \phi, (B-A) = \phi \quad \Leftrightarrow A = B$$

Proved.

Exercise 1.7.2

$$\varrho(A,B) = |A\Delta B| = |B\Delta A| = \varrho(B,A)$$

Proved.

Exercise 1.7.3 let a = A - B - C, b = B - A - C, c = C - A - B, $ab = A \cap B$, $bc = B \cap C$, $ac = A \cap C$, $abc = A \cap B \cap C$. $\varrho(A, C) = |A\Delta C| = |a \cup c \cup ab \cup bc|$ Also $\varrho(A, B) + \varrho(B, C) = |A\Delta B| + |B\Delta C| = |a \cup b \cup ac \cup bc| + |b \cup c \cup ab \cup ac|$ Since $|a \cup b \cup ac \cup bc| + |b \cup c \cup ab \cup ac| \ge |a \cup c \cup ab \cup bc|$ Then $\varrho(A, C) \le \varrho(A, B) + \varrho(B, C)$ Proved.