Getting to the Basics: Dimensão VC e Generalização em Machine Learning

Peng Yaohao e Mateus Hiro Nagata

LAMFO

Outline

- 1 Introduction
 - Aprendizagem
- 2 Bem-vindo à Terra Incógnita
 - Aprendizagem Estatística
- 3 Generalização
- 4 Dilema Viés-Variância

Framework da Aprendizagem

Machine Learning: queremos uma resposta

- $\blacksquare \ \, \mathsf{Existe} \ \mathsf{função} \ \mathsf{ideal} \mathsf{:} \mathsf{variáveis} \ \mathsf{explicativas} \, \to \, \mathsf{resposta}.$
- Disponibilidade dos dados: temos dados que informam tanto as variáveis explicativas como sua respectiva resposta.
- 3 Objetivo: Usar certas hipóteses e escolher um algoritmo que aproxima àquela função ideal

A Prova

- Função ideal
- 2 Disponibilidade dos dados
- 3 Objetivo

Tal como temos várias questões de provas anteriores e suas respostas. Precisamos APRENDER o padrão e GENERALIZÁ-lo para a prova. Essa nos dá perguntas nunca vistas antes, mas aprendemos o padrão. O âmago da questão é sabermos responder as perguntas novas da prova.

A Matemática da Aprendizagem

- lacksquare Função ideal f: $\mathcal{X}
 ightarrow \mathcal{Y}$
- Dados de treinamento $\mathcal{D} = (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
- lacksquare Função aprendida h: $\mathcal{X}
 ightarrow \mathcal{Y}$
- Queremos f \approx h nos dados de treinamento (good fitting) \Leftrightarrow $E_{in}(h) \approx 0$
- Queremos f \approx h fora dos dados de treinamento (generalização) $\Leftrightarrow E_{out}(h) \approx E_{out}(f)$

Desafios

Desafios

- Dados com ruído
- 2 Amostra não representa a população
- 3 Algoritmo não generaliza bem

Desafios

Desafios

- 1 Dados com ruído → Temos que lidar
- **2** Amostra não representa a população \rightarrow Estatística!
- $oxed{3}$ Algoritmo não generaliza bem ightarrow Overfitting

Outline

- 1 Introduction
 - Aprendizagem
- 2 Bem-vindo à Terra Incógnita
 - Aprendizagem Estatística
- 3 Generalização
- 4 Dilema Viés-Variância

Inferindo sobre o Inexplorado

Dados Ruins: amostra que informa muito pouco sobre a população

- Precisamos de uma garantia
- lacksquare $E_{\mathsf{in}}\left(h
 ight) = \mathsf{Erro}\;\mathsf{da}\;\mathsf{função}\;\mathsf{h}\;\mathsf{dentro}\;\mathsf{dos}\;\mathsf{dados}\;\mathsf{de}\;\mathsf{treino}$
- lacksquare $E_{\mathsf{out}}\left(h
 ight) = \mathsf{Erro}\;\mathsf{da}\;\mathsf{função}\;\mathsf{h}\;\mathsf{fora}$
- ullet ϵ = Tolerância do erro
- N = Tamanho amostral

CUIDADO

ATENÇÃO! O PRÓXIMO SLIDE CONTÉM MATEMÁTICA

Desigualdade de Hoeffding

$$\mathbb{P}\left[\left|E_{\mathsf{in}}\left(h\right) - E_{\mathsf{out}}\left(h\right)\right| > \epsilon\right] \leq 2\exp\left(-2\epsilon^2 N\right)$$

Desigualdade de Hoeffding

$$\mathbb{P}\left[|E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon\right] \le 2\exp\left(-2\epsilon^2 N\right)$$

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{1}{2N}\ln\frac{2}{\delta}}$$

Desigualdade de Hoeffding

$$\mathbb{P}\left[\left|E_{\mathsf{in}}\left(h\right) - E_{\mathsf{out}}\left(h\right)\right| > \epsilon\right] \leq 2\exp\left(-2\epsilon^2 N\right)$$

"Avaliando uma hipótese, quando o tamanho amostral N aumenta, torna-se exponencialmente improvavél que $E_{in}(h)$ e $E_{out}(h)$ se distem mais que ϵ "

Analogia da Prova

Teste

$$\mathbb{P}\left[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \epsilon\right] \le 2\exp\left(-2\epsilon^2 N\right)$$

- \blacksquare E_{in} é o quão bem você foi na prova
- \blacksquare E_{out} o quão bem você entendeu o conteúdo (generalizou)
- Quanto mais questões na prova (N), mais próximo

Analogia da Prova

Teste

$$\mathbb{P}\left[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \epsilon\right] \le 2\exp\left(-2\epsilon^2 N\right)$$

Treino

$$\mathbb{P}\left[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \epsilon\right] \le 2 \cdot M \cdot \exp\left(-2\epsilon^2 N\right)$$

- \blacksquare E_{in} é o quão bem você foi nos treinos
- E_{out} o quão bem você entendeu o conteúdo
- Treino contaminado! Memorizou algumas questões, então discrepância entre resultado e conteúdo é maior que no teste
- Preco pago = O quanto você explorou! Quantidade de hipóteses que são possíveis M!

Dicotomias 2^N

Problemas Binários

Quantidade de possíveis resultados: 2^N Dicotomias:

$$\mathcal{H}\left(\mathbf{x}_{1},\cdots,\mathbf{x}_{N}\right)=\left\{ \left(h\left(\mathbf{x}_{1}\right),\cdots,h\left(\mathbf{x}_{N}\right)\right)|h\in\mathcal{H}\right\}$$

Growth Function:

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|$$

Número Máximo de Dicotomias:

$$m_{\mathcal{H}}(N) \le 2^N$$

Dicotomias em Perceptron

Outline

- 1 Introduction
 - Aprendizagem
- 2 Bem-vindo à Terra Incógnita
 - Aprendizagem Estatística
- 3 Generalização
- 4 Dilema Viés-Variância

Generalização

000000

Dimensão VC

Definição. A **Dimensão VC** de um conjunto de hipóteses H, escrito d_{vc} , é o maior valor de N que $m_{\mathcal{H}}(N)=2^N$.

 Quantidade de bolinhas que a gente pode usar sem criar dicotomias impossíveis

Generalização

000000

Exemplos

Examples

• \mathcal{H} is positive rays:

$$d_{
m VC}=1$$

 \bullet \mathcal{H} is 2D perceptrons:

$$d_{\rm VC}=3$$

• H is convex sets:

$$d_{ ext{VC}} = \infty$$

Creator: Yaser Abu-Mostafa - LFD Lecture 7

5/24

Generalização 000000

O Teorema Mais Importante da Aprendizagem Estatística

$$m_{\mathcal{H}}(N) \leq N^{d_{\text{vc}}} + 1$$

Teorema. Para qualquer tolerância $\delta > 0$,

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}}$$

com probabilidade $> 1 - \delta$.

Então, com dados suficientes, toda e qualquer hipótese no \mathcal{H} infinito com dimensão VC finita vai generalizar.

Dimensão VC

 d_{vc} finito \Rightarrow função aprendida g vai generalizar!!

- Independente do algoritmo
- Independente da distribuição
- Independente da função ideal

Desigualdade de Hoeffding Atualizada

$$\mathbb{P}\left[|E_{\mathsf{in}} - E_{\mathsf{out}}| > \epsilon\right] \le 2Me^{-2\epsilon^2 N}$$

1

$$\mathbb{P}\left[\left|E_{\mathsf{in}}\left(g\right) - E_{\mathsf{out}}\left(g\right)\right| > \epsilon\right] \le 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^{2}N}$$

Outline

- 1 Introduction
 - Aprendizagem
- 2 Bem-vindo à Terra Incógnita
 - Aprendizagem Estatística
- 3 Generalização
- 4 Dilema Viés-Variância

Dilema Viés-Variância

Dilema Viés-Variância

- **1** Modelo complexo ($\uparrow d_{vc}$) $\rightarrow E_{in}(g) \approx 0$
- 2 Modelo simples $(\downarrow d_{vc}) \rightarrow E_{in}(g) \approx E_{out}(g)$
- 3 O bom seria um nível intermediário que resulta em mínimo erro no dado teste

O Bom Intermediário

O Pavor do Overfitting

Quantidade de Dados	\uparrow	Overfitting	\downarrow
Ruído	\uparrow	Overfitting	\uparrow
Complexidade Alvo	\uparrow	Overfitting	\uparrow

- Soluções: Bagging, Boosting, Regularization
- Validação
- Feature Transform
- Começar com modelo simples e ir aumentando a complexidade

Getting to the Basics: Dimensão VC e Generalização em Machine Learning

Peng Yaohao e Mateus Hiro Nagata

LAMFO

