Федеральное государственное автономное образовательное учреждение высшег	O
образования «Национальный исследовательский университет ИТМО»	

Факу	льтет П	Ірограммной	Инженерии	и и Компью	этерной Техники
------	---------	-------------	-----------	------------	-----------------

Лабораторная работа №3	

По Основам Профессиональной Деятельности

Вариант 9009

Выполнил:

Ларионов Владислав Васильевич

Группа Р3109

Практик:

Ткешелашвили Н. М.

Содержание

Задание	3
Выполнение задания	4
2.1 Текст исходной программы	4
2.2 Описание программы	7
2.3 Получение новых чисел	8
2.4 Таблица трассировки	9
Вывод:	10

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

558:	056E	566:	0200
559:	A000	567:	0280
55A:	E000	568:	2EF2
55B:	E000	569:	0400
55C: ·	+ 0200	56A:	EEF0
55D:	EEFD	56B:	855A
55E:	AF04	56C:	CEF5
55F:	EEFA	56D:	0100
560:	AEF7	56E:	0000
561:	EEF7	56F:	0000
562:	AAF6	570:	0000
563:	F002	571:	F800
564:	0300	ĺ	
565:	0380	ĺ	
		-	

Рис. 1 - Задание

Выполнение задания

1.1 Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарий		
558	056E	FirstIndex	Адрес первого элемента		
559	A000	LastIndex	Адрес текущего элемента		
55A	E000	ArrayLen	Количество элементов массива		
55B	E000	Result	Результат вычислений		
55C	0200	CLA	Очистить аккумулятор $0 ext{ -> } AC$		
55D	EEFD	ST IP-2	Прямая относительная AC -> 55B		
55E	AF04	LD #04	Прямая загрузка 0004 -> AC		
55F	EEFA	ST IP-5	Прямая относительная AC -> 55A		
560	AEF7	LD IP-8	Прямая относительная 558 -> AC		
561	EEF7	ST IP-8	Прямая относительная AC -> 559		

562	AAF6	LD (IP-9)+	Косвенная автоинкрементная MEM (559)+1 -> AC
563	F002	BEQ IP+(2+1)	Если Z==1, IP+3 -> IP
564	0300	CLC	Обнулить C 0 -> C
565	0380	CMC	Инвертировать С (^C) -> C
566	0200	CLA	Очистить аккумулятор $0 ext{ -> } AC$
567	0280	NOT	Инвертировать АС (^AC) -> AC
568	2EF2	AND IP-13	Прямая относительная 55В & AC -> AC
569	0400	ROL	AC и C сдвигается влево AC15 -> C, C -> AC0
56A	EEF0	ST IP-15	Прямая относительная AC -> 55B
56B	855A	LOOP 55A	MEM (55A)-1 -> MEM (55A) IF MEM (55A) < 0 : IP+1 -> IP
56C	CEF5	JUMP IP-10	Прямая относительная IP-10 -> IP
56D	0100	HLT	Остановка программы

56E	0000	Array[0]	Элемент массива
56F	0000	Array[1]	Элемент массива
570	0000	Array[2]	Элемент массива
571	F800	Array[3]	Элемент массива

Таблица 1 – Текст исходной программы

1.2 Описание программы

Предназначение программы:

Программа проходит по элементам массива и записывает в Result битовую маску по следующим правилам:

- 1) если элемент равен 0, то в Result записывается 0
- 2) если элемент не равен 0, то в Result записывается 1

Область представления программы:

FirstIndex – 11-разрядное

ArrayLen - 8-разрядное, знаковое

Result – 16-разрядное, беззнаковое (битовая маска)

Array[0], Array[1], Array[2], ... Array[ArrayLen] – 16-разрядные, знаковые

Область допустимых значений программы:

FirstIndex \in [0; 558 – ArrayLen] \vee [56E; 7FF]

ArrayLen $\in [1; 2^4]$

Result $\in [0; 2^{16}]$

Array[0], Array[1], Array[2] ... Array[ArrayLen] $\in [-2^{15}; 2^{15} - 1]$

1.3 Получение новых чисел

$$Adress = 550$$

$$N = 4$$

Array =
$$[0, 0, 182, -66]$$

Result = 0011 (предполагаемый результат)

1.4 Таблица трассировки

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знчн
55C	0200	55C	0000	000	0000	000	0000	0000	0100	, ,1	
55C	0200	55D	0200	55C	0200	000	055C	0000	0100		
55D	EEFD	55E	EEFD	55B	0000	000	FFFD	0000	0100	55B	0000
55E	AF04	55F	AF04	55E	0004	000	0004	0004	0000		
55F	EEFA	560	EEFA	55A	0004	000	FFFA	0004	0000	55A	0004
560	AEF7	561	AEF7	558	0550	000	FFF7	0550	0000	3071	
561	EEF7	562	EEF7	559	0550	000	FFF7	0550	0000	559	0550
562	AAF6	563	AAF6	550	0000	000	FFF6	0000	0100	559	0551
563	F002	566	F002	563	F002	000	0002	0000	0100	000	0001
566	0200	567	0200	566	0200	000	0566	0000	0100		
567	0280	568	0280	567	0280	000	0567	FFFF	1000		
568	2EF2	569	2EF2	55B	0000	000	FFF2	0000	0100		
569	0400	56A	0400	569	0400	000	0569	0000	0100		
56A	EEF0	56B	EEF0	55B	0000	000	FFF0	0000	0100	55B	0000
56B	855A	56C	855A	55A	0003	000	0002	0000	0100	55A	0003
56C	CEF5	562	CEF5	56C	0562	000	FFF5	0000	0100	33A	0003
562	AAF6	563	AAF6	551	0000	000	FFF6	0000	0100	559	0552
563	F002	566	F002	563	F002	000	0002	0000	0100	339	0332
566	0200	567	0200	566	0200	000	0566	0000	0100		
567	0200	568	0200	567	0280	000	0567	FFFF	1000		
568	2EF2	569	2EF2	55B	0000	000	FFF2	0000	0100		
569	0400	569 56A	0400	569	0400	000	0569	0000	0100		
						+	ł	0000	0100	55B	0000
56A	EEF0	56B	EEF0	55B	0000	000	FFF0			-	
56B	855A	56C	855A	55A	0002	000	0001	0000	0100	55A	0002
56C	CEF5	562	CEF5	56C	0562	000	FFF5	0000	0100	550	0550
562	AAF6	563	AAF6	552	00B6	000	FFF6	00B6	0000	559	0553
563	F002	564	F002	563	F002	000	0563	00B6	0000		
564	0300	565	0300	564	0300	000	0564	00B6	0000		
565	0380	566	0380	565	0380	000	0565	00B6	0001		
566	0200	567	0200	566	0200	000	0566	0000	0101		
567	0280	568	0280	567	0280	000	0567	FFFF	1001		
568	2EF2	569	2EF2	55B	0000	000	FFF2	0000	0101		
569	0400	56A	0400	569	0400	000	0569	0001	0000	550	2004
56A	EEF0	56B	EEF0	55B	0001	000	FFF0	0001	0000	55B	0001
56B	855A	56C	855A	55A	0001	000	0000	0001	0000	55A	0001
56C	CEF5	562	CEF5	56C	0562	000	FFF5	0001	0000	550	255.1
562	AAF6	563	AAF6	553	FFBE	000	FFF6	FFBE	1000	559	0554
563	F002	564	F002	563	F002	000	0563	FFBE	1000	-	
564	0300	565	0300	564	0300	000	0564	FFBE	1000	-	
565	0380	566	0380	565	0380	000	0565	FFBE	1001		
566	0200	567	0200	566	0200	000	0566	0000	0101		
567	0280	568	0280	567	0280	000	0567	FFFF	1001		
568	2EF2	569	2EF2	55B	0001	000	FFF2	0001	0001		
569	0400	56A	0400	569	0400	000	0569	0003	0000		
56A	EEF0	56B	EEF0	55B	0003	000	FFF0	0003	0000	55B	0003

Таблица 2 – трассировка

Вывод:

Во время выполнения данной лабораторной работы я научился работать с циклами и ветвлениями в БЭВМ. Разобрался, как использовать разные режимы адресаций в программе. Увидел, как можно работать с массивами в БЭВМ.