	Department of Microbiology
1	B.D. College, Palma-1 BSC. Past T. Tracan-
	Biochemiston IMB Enzyme Kinetics" By Deepak Kumas
	By Deepak Kumas
	Engyme Kinetics: Engyme Kinetics
	is the study of chemical reaction
	that are catalysed by enzymes. The
	Frate of reaction is measured and
	the effects of different condition of
	reaction ore investigated.
	Imboxtance'
	Enzymes are biológical catalysts which in creases the rate of reaction without taking part init.
	in creases the rate of reaction without
	taking part init.
	=> En 1,100 are substitute specific and
	form on enzyme-substitute complete
	hobre to ming a product
	12 Ninghill 18 me 1500g of reaction.
	that means Scale of from your of Pounduct
	Is engume has a kigh offinity for the
	transition state as the substrate winds
	I it quickly form the transition state of
	Enzyme-Substrate Complex and which results in the formation of Products
	which suxums on
	Engyme Substrate Engyme Substrate complex
	SUDXITULE C. 13911 16 AUSKIE COMPlex

B.D. College E+S K ES Ke>E+P Where Ki, K., and Ky represent the hate constant for the individuals. During Equilibrium glate: Based on Michalis-Menton Alsumption. Rate of formation - According to First Order Deaction K, [E][S] → (1) Where K, is drate constant [] - Concentration Rate of Break down. K-1[ES] -> (2) D'uring Equi l'brium State: Rate of Formation = Rate of Breakdown KICEICSI = K-ICESI $\frac{[E][S]}{[ES]} = \frac{K-1}{K_1} \left(\frac{K-1}{K_1} = \frac{K_8}{K_8} \right)$ (Ks is Dissociation constant) [E][S] = Ks = (3) [E0] = Total concentration of Enzyme (E)= concentration of force enzyme [Es] = Concentration of Bound Enzyme

Butting the value of (E) in ear -(3)
we get

$$= \frac{1}{(ES)} - \frac{1}{(ES)} = KS$$

$$\frac{[ES]}{K_8 + [S]} = \frac{[Eo][S]}{K_8 + [S]} > 5$$

This governe (controls the reate of bormation of broduct.

(ES) =
$$\frac{V_0}{K_2}$$
 Rate concentration

Of formation of Broduct

Putting the value of (ES I in ea (5) we get

B.D. College vo = (E0)[8] K2 K3+[3] Vo = K2 [Fo][8] →(6) K2+[3] When [8] is very high; all the enzyme Phesent as [ES] and vo reaches Vmax Putting the value of vman in es(6) Vo = V mase (S) Kg + [8] Significance of MI-MI Equation? 3) One enzyme binds with single substrate and it is substrate specific. -> from ation of single intermediate Porocluct Vo Vman 1 1 Vmasi $[S] \rightarrow$ Km

4