Aufgabe 1

(a) Geben Sie einen deterministischen endlichen Automaten (DEA) mit minimaler Anzahl an Zuständen an, der dieselbe Sprache akzeptiert wie folgender deterministischer endlicher Automat. Dokumentieren Sie Ihr Vorgehen geeignet.

flaci.com/Aj5aei652

z_0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
z_1	*3	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
z_2	*3	*4	Ø	Ø	Ø	Ø	Ø	Ø	Ø
z_3		*3	*3	Ø	Ø	Ø	Ø	Ø	Ø
z_4	*3	*4		*3	Ø	Ø	Ø	Ø	Ø
z_5	*3	*4		*3		Ø	Ø	Ø	Ø
z_6	*2	*2	*2	*2	*2	*2	Ø	Ø	Ø
<i>z</i> ₇	*2	*2	*2	*2	*2	*2	*2	Ø	Ø
z ₈	*1	*1	*1	*1	*1	*1	*1	*1	Ø
	z_0	z_1	z_2	<i>z</i> ₃	<i>z</i> ₄	<i>z</i> ₅	<i>z</i> ₆	<i>z</i> ₇	z ₈

- *¹ Paar aus End-/ Nicht-Endzustand kann nicht äquivalent sein.
- *² Test, ob man mit der Eingabe zu einem bereits markiertem Paar kommt.
- *³ In weiteren Iterationen markierte Zustände.

Übergangstabelle

Zustandspaar	0	1
(z_0, z_1)	(z_2, z_5)	$(z_1, z_7) *^3$
(z_0, z_2)	(z_2,z_3)	$(z_1, z_7) *^3$
(z_0, z_3)	(z_2, z_5)	(z_1,z_1)
(z_0, z_4)	(z_2,z_3)	$(z_1, z_7) *^3$
(z_0, z_5)	(z_2,z_0)	$(z_1, z_7) *^3$
(z_0, z_6)	(z_2, z_8)	$(z_1, z_4) *^2$
(z_0, z_7)	(z_2, z_6)	$(z_1, z_8) *^2$
(z_1, z_2)	(z_5,z_3)	$(z_7, z_7) *^4$
(z_1, z_3)	(z_5, z_5)	$(z_7, z_1) *^3$
(z_1, z_4)	(z_5, z_3)	$(z_7, z_7) *^4$
(z_1, z_5)	(z_5,z_0)	$(z_7, z_7) *^4$
(z_1, z_6)	(z_5, z_8)	$(z_7, z_4) *^2$
(z_1, z_7)	(z_5, z_6)	$(z_7, z_8) *^2$
(z_2, z_3)	(z_3,z_5)	$(z_7, z_1) *^3$
(z_2, z_4)	(z_3,z_3)	(z_7,z_7)
(z_2, z_5)	(z_3,z_0)	(z_7,z_7)
(z_2, z_6)	(z_3, z_8)	$(z_7, z_4) *^2$
(z_2, z_7)	(z_3, z_6)	$(z_7, z_8) *^2$
(z_3, z_4)	(z_5,z_3)	$(z_1, z_7) *^3$
(z_3, z_5)	(z_5,z_0)	$(z_1, z_7) *^3$
(z_3, z_6)	(z_5, z_8)	$(z_1, z_4) *^2$
(z_3, z_7)	(z_5, z_6)	$(z_1, z_8) *^2$
(z_4, z_5)	(z_3,z_0)	(z_7,z_7)
(z_4, z_6)	(z_3, z_8)	$(z_7, z_4) *^2$
(z_4, z_7)	(z_3, z_6)	$(z_7, z_8) *^2$
(z_5, z_6)	(z_0,z_8)	$(z_7, z_4) *^2$
(z_5, z_7)	(z_0,z_6)	$(z_7, z_8) *^2$
(z_6, z_7)	(z_8, z_6)	$(z_4, z_8) *^2$

- (b) Beweisen oder widerlegen Sie für folgende Sprachen über dem Alphabet $\Sigma = \{a, b, c\}$, dass sie regulär sind.
 - (i) $L_1 = \{ a^i c u b^j v a c^k \mid u, v \in \{a, b\}^* \text{ und } i, j, k \in \mathbb{N}_0 \}$
 - (ii) $L_2 = \{ a^i c u b^j v a c^k \mid u, v \in \{a, b\}^* \text{ und } i, j, k \in \mathbb{N}_0 \text{ mit } k = i + j \}$
- (c) Sei L eine reguläre Sprache über dem Alphabet Σ . Für ein festes Element $a \in \Sigma$ betrachten wir die Sprache $L_a = \{aw \mid w \in \Sigma^*, wa \in L\}$. Zeigen Sie, dass L_a regulär ist.