

Hidrodinámica de ríos

Ludwig Alvarado Becerra 25 de febrero de 2025 — Universidad Jorge Tadeo Lozano

Introducción

Introducción

¿Qué es?

- La hidrodinámica estudia la dinámica de los fluidos a través de métodos matemáticos en forma diferencial de ecuaciones de continuidad y aceleración de fluidos.[2]
- Tiene aplicaciones en ingeniería civil y ambiental para minimizar el impacto del hombre en un ecosistema.

Figura: Simulación de Ven Te Chow Hydrosystems Lab [7].

Inspiración y motivación

Inspiración y motivación

- Sistemas 1D y 2D.
- Fomentar interdisciplinariedad en el proyecto.
- Manejo de datos geoespaciales.
- Mi novia.

Figura: Ejemplo de modelamiento [3].

Objetivos

Objetivos

- Apicar los conceptos de la clase de Sistemas Dinámicos en un proyecto con enfoque en datos geoespaciales.
- Un aplicativo interactivo que permita realizar simulaciones sobre la dinámica de un río específico.
- Expandir el conocimiento de problemáticas y situaciones medioambientales del autor.

Figura: Algunas Rutas hídricas de Colombia. Datos de OpenStreetMap[8].

Revisión bibliográfica

Revisión bibliográfica

Using dynamics for environmental modelling: Lessons learnt from six case studies[5]

- Revisión de algunos casos de aplicación de sistemas dinámicos en problemáticas ambientales.
- Aplicación de un juego interactivo.

International Environmental Modelling and Software Society (IEMSs, 2012 International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany R. Seppelt, A.A. Voinov, S. Lange, D. Bankamp (Eds., http://www.iemss.org/society/index.php/iemss-2012-proceeding Using system dynamics for environmental modelling: Lessons learnt from six case Sondoss ElSawah¹, Dagmar Haase², Hedwig van Delden³, Suzanne Pierce⁴, Amgad ElMahdi⁵, Alexey A. Voinoy⁶, Anthony J. Jakeman National Centre for Groundwater Research and Training & Integrated, Catchment Assessment and Management Centre, The Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory Australia ²Humboldt University Berlin and Helmholtz Centre for Environmental Research, ³Research Institute for Knowledge Systems, Maastricht, The Netherlands ⁴Center for International Energy and Environmental Policy, Jackson School of Geosciences, The University of Texas, Austin, USA ⁵Climate and Water Division, Bureau of Meteorology-Australia Faculty of Geo-Information Science and Earth Observation (ITC). University of Twente, Enschede, The Netherlands sondoss.elsawah@anu.edu.au Abstract: System dynamics modelling includes a set of conceptual and numerical methods that are used to understand the structure and behaviour of complex systems, such as socio-ecological systems. A system dynamics model represents the causal relationships, feedback loops, and delays that are thought to generate the system behaviour. System dynamics is widely used for developing environmental models and decision support systems. However, little attention has been given to reflecting on modelling exercises in terms of the utility of system dynamics, its strengths and limitations, experienced during modelling and implementation challenges. These practical lessons are useful for guiding

Revisión bibliográfica

Dynamic modeling of environmental systems[1]

- Modelado mediante Sistemas Dinámicos con diferentes aplicaciones ambientales.
- Capítulo dedicado a hidrodinámica de ríos.
- Ejemplo de aplicación para el río Altamaha.

Otros recursos encontrados

- Introduction to depth averaged modeling and user's manual[6].
- An Introduction to Hydrodynamics and Water Waves[4].
- Theory and Practice of Hydrodynamic Reconstruction in Plain River Networks
- Computational river dynamics[9].
- River mechanics[2].

Datasets

Datasets I

- Modelo Digital de Elevación. Colombia http://www.colombiaenmapas.gov.co/?e=-75.21433704101813,4.250807726576179,-65.21677844727078,10.458355638020791,4686&b=igac&l=159&u=0&t=23&servicio=159
- Datos de ríos en Colombia htts://www.openstreetmap.org
- Obtener coeficientes de rugosidad de Mannings a través de publicaciones científicas.

Ludwig Alvarado Becerra UJTL 13/18

Referencias

Referencias I

- [1] Michael Deaton y James J Winebrake. *Dynamic modeling of environmental systems*. Springer Science & Business Media, 1999.
- [2] Pierre Y Julien. River mechanics. Cambridge University Press, 2018.
- [3] KU Leuven Hydraulics Research. *Urban River Research*. n.d. URL: https://bwk.kuleuven.be/hydr/Research/urban-river/River.
- [4] Bernard Le Méhauté. An introduction to hydrodynamics and water waves. Springer Science & Business Media, 2013.

Referencias II

- [5] Sondoss El-Sawah et al. "Using system dynamics for environmental modelling: Lessons learnt from six case studies". En: 6th International Congress on Environmental Modelling and Software 2012: Managing Resources of a Limited Planet: Pathways and Visions under Uncertainty. International Environmental Modelling y Software Society (iEMSs). 2012, págs. 1367-1374.
- [6] Peter Steffler y Julia Blackburn. "Introduction to depth averaged modeling and user's manual". En: *University of Alberta, Edmonton, Alta* (2002).
- [7] Ven Te Chow Hydrosystems Laboratory. *Modeling of River Hydrodynamics*. 2016. URL: https://publish.illinois.edu/ventechowlab/2016/03/18/modeling-of-river-hydrodynamics/.

Referencias III

- [8] Waterway Map Project. Waterway Map. n.d. URL: https://waterwaymap.org/#map=8/4.876/-73.791.
- [9] Weiming Wu. Computational river dynamics. Crc Press, 2007.

