Database Management System (DBMS) Lecture-16

Dharmendra Kumar September 7, 2020

The Union Operation

Union operation will be applied if we have to find elements which are belong into either of one relation.

For a union operation $r \cup s$ to be valid, we require that two conditions hold:

- 1. The relations r and s must be of the same arity. That is, they must have the same number of attributes.
- 2. The domains of the i^{th} attribute of r and the i^{th} attribute of s must be the same, for all i.

Example: Find the names of all bank customers who have either

an account or a loan or both.

Solution: $\Pi_{customer}(depositer) \cup \Pi_{customer}(borrower)$

Adams Curry Hayes Jackson Jones Smith Williams Lindsay Johnson Turner

The Set Difference Operation

The set difference operation, denoted by -, allows us to find tuples that are in one relation but are not in another. The expression r - s produces a relation containing those tuples in r but not in s.

Example: Find all customers of the bank who have an account

but not a loan.

Solution: $\Pi_{customer}(depositer) - \Pi_{customer}(borrower)$

Johnson Lindsay Turner

As with the union operation, we must ensure that set differences are taken between compatible relations. Therefore, for a set difference operation r - s to be valid, we require that the relations r and s be of the same arity, and that the domains of the i^{th} attribute of r and the i^{th} attribute of s be the same.

The Cartesian-Product Operation

The Cartesian-product operation, denoted by a cross (), allows us to combine information from any two relations. We write the Cartesian product of relations r_1 and r_2 as r_1 r_2 .

customer-name	borrower. loan-number	loan. loan-number	branch-name	amount
Adams	L-16	L-11	Round Hill	900
Adams	L-16	L-14	Downtown	1500
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300 1000
Adams	L-16	L-17		
Adams	L-16	L-23	Redwood	2000
Adams	L-16	L-93	Mianus	500
Curry	L-93	L-11	Round Hill	900
Curry	L-93	L-14	Downtown	1500
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Curry	L-93	L-17	Downtown	1000
Curry	L-93	L-23	Redwood	2000
Curry	L-93	L-93	Mianus	500
Hayes	L-15	L-11		900
Hayes	L-15	L-14		1500
Hayes	L-15	L-15		1500
Hayes	L-15	L-16		1300
Hayes	L-15	L-17		1000
Hayes	L-15	L-23		2000
Hayes	L-15	L-93		500
Smith	L-23	L-11	Round Hill 90	
Smith	L-23	L-14	Downtown	1500
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Smith	L-23	L-17	Downtown	1000
Smith	L-23	L-23	Redwood	2000
Smith	L-23	L-93	Mianus	500
Williams	L-17	L-11	Round Hill	900
Williams	L-17	L-14	Downtown	1500
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge	1300
Williams	L-17	L-17	Downtown	1000
Williams	L-17	L-23	Redwood	2000
Williams	L-17	L-93	Mianus	500
· · · · · · · · · · · · · · · · · · ·	_ 1/			0.00

borrower x loan

Example: Find the names of all customers who have a loan at the Perryridge branch.

Solution: $\Pi_{customer-name}(\sigma_{(borrower.loan-no=loan.loan-no}) \land (branch-name="Perryridge")(borrower <math>\times loan)$

	borrower.	loan.		
customer-name	loan-number	loan-number	branch-name	amount
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Haves	L-15	L-15	Perryridge	1500
Haves	L-15	L-16	Perryridge 13	
Jackson	L-14	L-15	Perryridge	1500
Jackson	L-14	L-16	Perryridge	1300
Jones	L-17	L-15	Perryridge	1500
Jones	L-17	L-16	Perryridge	1300
Smith	L-11	L-15	Perryridge 150	
Smith	L-11	L-16	Perryridge 130	
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge	1300

Result of $\sigma_{branch-name = "Perryridge"}$ (borrower \times loan).

Final answer of the query is

customer-name

Adams Hayes

Example: Consider the following tables S_1 , S_2 and R_1 : Compute the following operations. (a) $S_1 \cup S_2$ (b) $S_1 \cap S_2$ (c) $S_1 - S_2$ (d) $S_1 \times S_2$

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	Lubber	8	55.5
44	guppy	5	35.0
58	Rusty	10	35.0

Instance S₁ of sailors

Instance S₂ of sailors

sid	bid	day
22	101	10/10/96
58	103	11/12/96

Instance R₁ of Reserves

Solution: Result of all the operations are shown as the following:-

sid	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.0
28	yuppy	9	35.0
44	guppy	5	35.0

$$S_{\scriptscriptstyle 1} \cup S_{\scriptscriptstyle 2}$$

	sid	sname	rating	age
ĺ	31	Lubber	8	55.5
	58	Rusty	10	35.0

$$S_1 \cap S_2$$

sid	sname	rating	age
22	Dustin	7	45.0

$$S_1 - S_2$$

(sid)	sname	rating	age	(sid)	bid	day
22	Dustin	7	45.0	22	101	10/10/96
22	Dustin	7	45.0	58	103	11/12/96
31	Lubber	8	55.5	22	101	10/10/96
31	Lubber	8	55.5	58	103	11/12/96
58	Rusty	10	35.0	22	101	10/10/96
58	Rusty	10	35.0	58	103	11/12/96

The Rename Operation

Unlike relations in the database, the results of relational-algebra expressions do not have a name that we can use to refer to them. It is useful to be able to give them names; the rename operator, denoted by the lowercase Greek letter rho (ρ) .

Given a relational-algebra expression E, the expression

$$\rho_{x}(E)$$

returns the result of expression E under the name x.

A second form of the rename operation is as follows. Assume that a relational algebra expression E has arity n. Then, the expression

$$\rho_{\mathsf{X}(\mathsf{A}_1,\mathsf{A}_2,\ldots,\mathsf{A}_n)}(\mathsf{E})$$

returns the result of expression E under the name x, and with the attributes renamed to $A_1, A_2, ..., A_n$.

Example: Find the largest account balance in the bank.

Solution: Our strategy is to (1) compute first a temporary relation consisting of those balances that are not the largest and (2) take the set difference between the relation $\Pi_{balance}(account)$ and the temporary relation just computed, to obtain the result.

$$\Pi_{balance}(account) - \Pi_{account.balance}(\sigma_{account.balance} < d.balance \\ (account \times \rho_d(account)))$$

balance
500
400
700
750
350

Figure 1: Result of

 $\Pi_{\textit{account.balance}}(\sigma_{\textit{account.balance} < \textit{d.balance}}(\textit{account} \times \rho_{\textit{d}}(\textit{account})))$

Figure 2: Largest balance

Example: Find the names of all customers who live on the same street and in the same city as Smith.

Solution: In this query, first we find Smith's street and city. Second, we match Smith's street and city with other customer street and city. If match found then we select that customer.

```
\begin{split} &\Pi_{customer-name}(\sigma_{customer-customer-street=smith.street \land customer-customer-city=smith.city} \\ &(\text{customer} \times \rho_{smith(street,city)}(\Pi_{customer-street,customer-city} \\ &(\sigma_{customer-name="Smith"}(customer))))) \end{split}
```

