Propositional Logic: Semantics (1/3) CS402, Spring 2016

Shin Yoo

Overview

- Boolean Operators
- Propositional Formulas
- Interpretations

Propositions: a proposition is a declarative sentence. That is, it *can* be declared to be or false. Examples:

- The sum of the numbers 3 and 5 is equal to 8.
- Jane reacted violently to Jack's accusations.
- Every even natural number greater than 2 is the sum of two prime numbers.
- All Martians like pepperoni on their pizza.

Propositionals are <u>atomic</u> and <u>indecomposable</u>. We use distinct symbols, p.q.r..., to represent propositions.

Boolean Operators: since propositions are of Boolean type, there are 2^{2^n} *n*-ary polean operators. Each of the *n* operands can be either true or false, resulting in 2^n Boolean tuples of operands. For each of 2^n tuples, the result of the operation can again be true or false. Hence 2^{2^n} .

For example, the following is the all possible <u>unary</u> Boolean opeartors, o_1, \ldots, o_4 .

х	01	02	03	04
Т	T	Т	F	F
F	T	F	Τ	F

Operators o_1 and o_4 are constant, and do not operate on the operand; o_2 is the identity operator. Only o_3 is nontrivially interesting, and is called *negation*.

Binary Boolean Operators: there are 16 binary Boolean operators.

<i>x</i> ₁	<i>X</i> ₂	01	02	03	04	<i>0</i> 5	06	07	08
T	Т	T	T	T	T	T	T	T	T
Τ	F	T	Τ	Τ	T	F	F	F	F
F	Τ	T	Τ	F	F	T	T	F	F
F	F	T	Т Т Т F	T	F	T	F	T	F

x_1	<i>x</i> ₂	09	010	o_{11}	012	013	014	015	016
T	Т	F	F	F	F	F	F	F	F
T	F	T	Τ	T	Τ	F	F	F	F
F	T	T	T	F	F	T	T	F	F
F	F	T	F T T F	T	F	T	F	T	F

<u>Trivial operators</u>: o_1 and o_{16} (constant), o_4 and o_6 (projection), o_{11} and o_{13} (negated projection).

Interesting Operators

ор	name	symbol	ор	name	symbol
02	disjunction	\vee	015	nor	\
08	<u>co</u> njunction	\wedge	<i>0</i> 9	nand	\uparrow
05	plication	\rightarrow	012		
03	reverse implication	\leftarrow	014		
07	equivalence	\leftrightarrow	010	exclusive or	\oplus

X	У	\wedge	V	\rightarrow	\leftrightarrow	\oplus	\uparrow	\downarrow
T	Т	Т	Т	Т	Т	F	F	F
Τ	F	F	T	F	F	Τ	T	F
F	Τ	F	T	Τ	F	Τ	T	F
F	F	F	F	T F T T	Τ	F	Τ	Τ

But this also means that $p \to q$ is equivalent to $\neg p \lor q$.

But this also means that $p \to q$ is equivalent to $\neg p \lor q$. "2 is an odd number \to 2 is an even number" is true.

But this also means that $p \to q$ is equivalent to $\neg p \lor q$. "2 is an odd number \to 2 is an even number" is true.

The more philosophical branch of logic still has a problem with this. Outside mathematics, it is still easy to accept that when (p,q) is (T,F), $p\to q$ is also false. For cases (T,T), (F,T) and (F,F), different accounts of the relationship accept that $p\to q$ is sometimes true, but they deny that the conditional is always true in each of these cases.

Redundancy: the first five binary operators $(\lor, \land, \rightarrow, \leftarrow, \leftrightarrow)$ can all be defined in terms of any one of them plus negation (\neg) . For example:

X	y	$x \wedge y$	$ \neg y$	$x \rightarrow \neg y$	$\neg(x \rightarrow \neg y)$
T	Т	T	F	F	Т
Τ	F	F	T	T	F
F	Τ	F	F	T	F
F	F	F	T	T	F

X	У	$x \lor y$	$\neg x$	$\neg x \rightarrow y$
T	Т	T	F	Т
Τ	F	T	F	T
F	T	T	T	T
F	F	F	T	F

Redundancy: the choice of an interesting set of operators depends on the application.

- In digital circuit design, NAND(↑), NOR(↓), and NOT(¬) are commonly used to represent all Boolean formulas, mainly because these are more straightforward to implement at the physical, transistor level.
- In mathematics, we are generally interested in one-way logical deductions (from axioms to their implications), so we choose implication and negation.

Definition 1 (2.1) \bigcirc

Propositional Formula: a formula $fml \in \mathcal{F}$ is a word that can be derived from the following grammar, starting from the initial non-terminal fml:

- 2 $fml := \neg fml$

Each derivation of a formula from a grammar can be represented by a <u>derivation tree</u> that displays the application of the grammar rules to the non-terminals.

- Non-terminals: symbols that occur on the left-hand side of a rule
- Terminals: symbols that occur on only the right-hand side of a rule

From the derivation tree we can obtain a <u>formation tree</u> by replacing an fml non-terminal by the child that is an operator or an atom.

fml

- fml
- \bigcirc fml \leftrightarrow fml

- fml

- fml

- fml
- \bigcirc fml \leftrightarrow fml

- **6** $p \rightarrow q \leftrightarrow fml \rightarrow fml$
- $oldsymbol{o}$ $p \rightarrow q \leftrightarrow \neg fml \rightarrow fml$

Derivation Tree: represents how non-terminals are expanded using which rules.

Formation Tree: shows the structure of the formula $p \rightarrow q \leftrightarrow \neg p \rightarrow \neg q$.

Removing <u>Ambiguity:</u> formation trees are unique, linear representation such as $p \to q \leftrightarrow \neg p \to \neg q$ are not. There are a few ways to resolve this ambiguity.

- Polish Notation: essentially, formulate linear <u>representation</u> <u>by visiting the formation tree depth-first preorder</u> (i.e. starting from the root, visit the current node, visit the left subtree, visit the right subtree, recursively).
 - $\bullet \; \longleftrightarrow \to pq \to \neg p \neg q$
 - $\bullet \ \to p \leftrightarrow q \neg \to \neg p \neg q$
- Use parentheses: change the grammar slightly so that fml ::= p for any $p \in P$, $fml ::= (\neg fml)$, and $fml ::= (fml \ op \ fml) \dots$, etc.
 - $\bullet \ ((p \to q) \leftrightarrow ((\neg p) \to (\neg q)))$
 - $(p \rightarrow (q \leftrightarrow (\neg(p \rightarrow (\neg q)))))$
- Define precedence and associativity: parentheses are needed only when the formula deviates from the precedence.

Removing Ambiguity: formation trees are unique, linear representation such as $p \to q \leftrightarrow \neg p \to \neg q$ are not. There are a few ways to resolve this ambiguity.

- Define **precedence** and **associativity**: parentheses are needed only when the formula deviates from the precedence. We naturally recognize a*b*c+d*e as (((a*b)*c)+(d*e)). Similarly.
 - From high to low precedence: $\neg, \land, \uparrow, \lor, \downarrow, \rightarrow, \leftrightarrow$
 - Assume right associativity, i.e. $a \lor b \lor c$ means $(a \lor (b \lor c))$.

With minimal use of parentheses, the previous two formulation trees can be represented as:

•
$$p \rightarrow q \leftrightarrow \neg p \rightarrow \neg q$$

$$\bullet \ \ p \to (q \leftrightarrow \neg (p \to \neg q))$$

Structural induction

Theorem 1 (2.5)

Theorem 2.5. To show property(A) for all formulas $A \in \mathcal{F}$, it suffices to show:

- Base case: property(p) holds for all atoms $p \in \mathcal{P}$
- Induction step:
 - Assuming property(A), the property($\neg A$) holds.
 - Assuming property(A_1) and property(A_2), then property(A_1 op A_2) hold, for each of the binary operators.

Exercise: Prove that every propositional formula can be equivalently expressed using only \uparrow .

Interpretations

Definition 2 (2.6)

An assignment ν function $\nu : \mathcal{P} \to \{T, F\}$.

- In other words, ν assigns one of the truth values, T or F to every atom.
- From now on, we use two new syntax terms, "true" and "false", which are *syntactic tokens*.
- On the other hand, T and F are truth values.
- fml ::= true | false where $\nu(true) = T$ and $\nu(false) = F$.

Combining this with inductive definition, we can extend the assignment to functions, i.e. $\nu: \mathcal{F} \to \{T, F\}$. In other words, we inductively decide whether a propositional formula is true or false. In this case, ν is called an **interpretation**.

Interpretations

Theorem 2 (2.9)

An assignment can be extended to **exactly one** interpretation.

Theorem 3 (2.10)

Let $\mathcal{P}'=\{p_1,\ldots,p_n\}\subseteq\mathcal{P}$ be the atoms appearing in $A\in\mathcal{F}$. Let ν_1 and ν_2 be assignments that agrees on \mathcal{P}' , that is, $\nu_1(p_i)=\nu_2(p_i)$ for all p_i in \mathcal{P}' . Then, the interpretations ν_1 and ν_2 agree on A, i.e. $\nu_1(A)=\nu_2(A)$.

- $\nu(\neg q) = F$

- $\nu(\neg q) = F$

Let $A=(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$ and let ν the assignment such that $\nu(p)=F$ and $\nu(q)=T$, and $\nu(p_i)=T$ for all other $p_i \in \mathcal{P}$. Extend ν to an interpretation of A.

- $\nu(\neg q) = F$

Example 2 (2.8)

 $\nu(p \to (q \to p)) = T$, but $\nu((p \to q) \to p) = F$. This shows that $p \to q \to p$ is ambiguous.

