Fall-22 (Paging Math)

(Paging 11 dan)
(2) a) RAM size =
$$2GB = 2 \times 2^{30} B$$
.

Process 11 = $128 \text{ mB} = 120 \times 2^{20} B = 2^7 \times 2^{20} \cdot B$

Frame size = page size = $128 \text{ KB} = 120 \times 2^7 \times 2^{10} B$; offer = 17 Bits .

No. of Frames =
$$\frac{RAM \text{ size}}{Frame \text{ size}} = \frac{2^{31} \text{ B}}{2^{17} \text{ B}} = 2^{14} \text{ B} = 14 \text{ Bits}$$

No. of pages =
$$\frac{Process \ size}{Page \ size} = \frac{9^{27} \ B}{2^{17} \ B} = 2^{10} B = 10Bits$$

Spring-2022

3 0 Given, Ram size =
$$4GB = 2^2 \times 2^{30} = 2^{32}B$$

Process II = $256MB = 2^8 \times 2^{20} = 2^{18}B$.

- (S) Avg process size = 32mB = 25x 220 = 225 B.
- (e) An entray page = 4 bytes = 22 Bytes.

(e) An entroy page = 1 syrth we know, Frame size = Page size =
$$\sqrt{2Se} = \sqrt{2 \cdot 8 \cdot 2^{25} \times 2^2}$$
 B

= $\sqrt{2^{28} \cdot 8} = 2^{14} \cdot 8$.

Given, France localism =
$$(111111)_2$$
 [ans-93 10 gm riayled]

page 11 = $(1010)_2$.

offset = $(5246)_{10}$ = $(10100011111110)_2$

Fall-2021

Fall-2021

(4) a) RAM size = 32 mB =
$$2^5 \times 2^{20} B = 2^{25} B = 225 B$$
.

Process II = $64 \text{ mB} = 2^6 \times 2^{20} B = 2^{26} B = 225 B$.

Process II = $64 \text{ mB} = 2^6 \times 2^{20} B = 2^{26} B = 2^{25} B$. [offset = 15 Bits]

page size = frame size = $32 \text{ KB} = 2^5 \times 2^{10} B = 2^{15} B$. [offset = 15 Bits]

Nois frames =
$$\frac{RAM \text{ size}}{\text{frame size}} = \frac{2^{25}}{2^{15}} B = 2^{10} B = 10 B \text{ its}$$

No. of page = $\frac{AW \cos s}{\text{page size}} = \frac{2^{26}}{2^{15}} B = 2^{11} B = 11 b \text{ its}$

Given, Frame location (28)
$$_{10} = (11100)_2$$

page " (130) $_{10} = (10000010)_2$
offset = (1110)

Size =
$$768 \text{ KB} + 16 \text{ TB} + 256 \text{ PB}$$

= $768 \text{ KB} + 2^{20} \text{ KB} + (16 \times 2^{36}) \text{ KB} + (256 \times 2^{40}) \text{ KB}$
= $2.81 \times 10^{14} \text{ KB}$.

File location mechanism:

Fall-2022

melalinten.

(2) c) Block size = $8 \text{ KB} = 2^3 \times 2^{10} \text{ B} = 2^{13} \text{ B}$ Pointer size = 2 B. Pointer no. = $\frac{2^{13}}{2} = 2^{12} \text{ B}$.

size linuit= 96 KB + 32 MB + 128 GB + 512 TB. = 96 KB + (32×210) KB + (128×220) KB + (512×230) KB

Compararison:

$$LRU = \frac{31}{36} \times 100 = 86.1.1$$

Thus optimal better incase of page fault reduction but not implementable it requests one not known.

Optimal sees the future requests and make an estimation keeping a requests that will be needed in future while LRU takes history in accounts.

(3) 6) Que = 12,61,3,1,52,19,80,70,37,62,142,29,10,390,79,310.

CLOOK is botten.

= 466.

Bankers Algo:

Spring 22.

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B Z

A B

	Allocation					
P	3	9	0			
10	2	0	0			
R	3	0	2			
B	2	1				
S	0	l	1_			

MAX		
A B Z	(= (E) + (1,1 + 1) =	
P 7 9 2	$\left(\lambda_{i},F_{i}\right) =$	
R 3 3 2		
D 4 2 3 8 3 3 3		
31(0110) 21	whose is real to the Tell	D.Y

We know, Need = Allocation.

•	1	Ne	ad	
So,		A	В	2
	P	4	0	2
	a	1	2	2
	R	0	3	10
	10	$\frac{1}{3}$	12	12

also, Available = & Total regource - Allocated.

$$A = 10 - (3 + 2 + 3 + 2 + 0) = 0$$

$$B = 14 - (9 + 1 + 1) = 3$$

$$c = 7 - (2+1+1) = 3$$

Ī	hus

(3.4.0) + (1110) :

A	voila	ole	1
A	В	C	
0	.3	3	1

(C, O, P &) = [4] Seer

1 ** Check if Available, 2000 Need 2000

> yes > Available = (Max-Need) + old Available
> NO > iterate