SESSION 2018

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l'Industrie et du Développement Durable

ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX

Coefficient 8 – Durée 4 heures

Aucun document autorisé - Calculatrice autorisée

Le tramway de Reims

Constitution du sujet

	D :	, ·			· · · · · ·	
•	Dossier suiet	(mise en	situation e	enoiteaun te	a traiter nar	' le candidat)

- Documents techniquesPages 10 à 17

Le sujet comporte 20 pages numérotées de 1/20 à 20/20.

Le dossier sujet comporte deux parties indépendantes qui peuvent être traitées dans un ordre indifférent.

Les documents réponse DR1 à DR4 (pages 18 à 20) seront à rendre agrafés avec vos copies.

Mise en situation

Aujourd'hui, la voiture laisse peu à peu la place aux modes de transports collectifs et le tramway connaît, depuis quelques années, un renouveau. Ce mode de transport s'est imposé au fil des années, car il répond à une logique de réaménagement urbain, de planification des transports et de préoccupations environnementales. C'est un choix politique : il s'ancre dans une logique de développement durable, permet de repenser la mobilité urbaine et les projets d'urbanisation.

La ville de Reims a choisi de remettre en service un tramway dont l'utilisation était abandonnée depuis 1939.

Le tracé de la ligne de tramway a été défini selon la fréquentation des lignes de bus. Le tramway remplace notamment la ligne H, ainsi que les lignes A et C dans le quartier *Orgeval*. Le remplacement de la ligne H par une ligne à très haute capacité était un enjeu important, car celle-ci était saturée depuis plusieurs années. Bien que cadencée avec une fréquence de 5 minutes

Le réseau des transports en commun rémois

incompressibles et exploitée avec des bus articulés, elle était, malgré ces moyens, incapable de soutenir la charge : la plupart des véhicules étaient toujours pleins, et il n'était pas rare d'en voir deux se suivre aux heures de pointe.

La fréquentation estimée est de 45 000 voyageurs par jour.

Les rames

Le matériel retenu est le Citadis 302 d'Alstom (5 caisses, longueur 32,40 m, largeur standard 2,40 m, plancher 100 % plat, 160 places). Les rames sont également compatibles avec l'APS (alimentation par le sol), mise en place sur une distance d'environ 2 kilomètres en centre-ville entre les stations *Boulingrin* et *Comédie*.

PARTIE 1 – Analyse du fonctionnement d'une rame de tramway Citadis 302

La mobilité urbaine nécessaire au développement économique et à la liberté des personnes dans les métropoles doit apporter un service de qualité tout en limitant les impacts sur l'environnement et la santé. Nous nous proposons de vérifier que le tramway, et plus particulièrement celui de Reims, est un mode de déplacement bénéfique pour les usagers et la population rémoise.

Question 1.1

DT1

À partir du diagramme du cas d'utilisation, **donner** le nom des acteurs principaux et des acteurs secondaires non humains.

Justifier la relation « *include* » entre le cas d'utilisation : *autoriser le déplacement* et le cas d'utilisation : *stopper la rame*.

Analyse de l'impact du tramway sur l'agglomération de Reims et ses habitants

Question 1.2

DT2, DT3

Citer, à partir des coupures de presse, les apports du tramway en termes de développement durable selon les trois axes traitant des aspects environnemental, social et économique.

Consommation en énergie du tramway entre deux stations

L'objectif de cette partie est de calculer la quantité d'énergie nécessaire pour un trajet type d'un kilomètre.

Un trajet type comporte une phase d'accélération de 14 secondes jusqu'à la vitesse de 38 km.h⁻¹, une phase à vitesse constante puis une phase de décélération avec récupération d'énergie. Le temps d'arrêt à chaque station est estimé à 15 s et le trajet ne comporte pas de dénivellation. Le profil de puissance mise en jeu dans ces différentes phases est représenté sur le document technique DT4.

Question 1.3

DT4

Calculer la quantité d'énergie électrique fournie à la rame pour la durée du déplacement à vitesse constante V = 38 km.h⁻¹. Dans cette phase, la puissance absorbée par la rame est de 214 kW.

En dehors du déplacement à vitesse constante on a :

énergie au démarrage

 $E_{DEM} = 5495 \text{ kJ} = 1,52 \text{ kWh}$;

- énergie récupérée au freinage

 $E_{FRFIN} = -1650 \text{ kJ} = -0.45 \text{ kWh}.$

Question 1.4 **Calculer** la quantité d'énergie électrique fournie à la rame sur la totalité du trajet type.

Émissions en CO₂ d'un tramway à motorisation électrique

L'objectif de cette partie est de déterminer les rejets en CO₂ d'un trajet type.

Les tramways n'émettent pas directement de gaz à effet de serre GES. Toutefois, ce mode de déplacement utilise une quantité d'énergie importante sous forme d'électricité. La production de cette énergie génère des émissions de CO₂ dont la quantité est liée à la constitution du mix énergétique du pays concerné.

Émissions de la production d'électricité de CO₂ par pays en 2013 (source Ademe).

Pays	Kg équivalent C02 par kWh
Electricité en France	0,069
Electricité en Allemagne	0,141
Electricité en Autriche	0,056
Electricité en Belgique	0,073
Electricité au Danemark	0,091
Electricité en Espagne	0,117
Electricité en Finlande	0,069
Electricité en Grèce	0,222
Electricité en Irlande	0,176
Electricité en Italie	0,139
Electricité au Luxembourg	0,083
Electricité aux Pays-Bas	0,120
Electricité au Portugal	0,137
Electricité au Royaume-Uni	0,124
Electricité en Suède	0,012
Electricité, moyenne européenne	0,096
Electricité aux USA	0,158
Electricité au Japon	0,115

Il est alors possible de calculer la valeur des émissions de CO₂.

Émission de CO_2 = (Consommation en kWh) x (facteur d'émission du pays).

Question 1.5 **Relever**, dans le tableau des facteurs d'émissions de CO₂, la valeur correspondant au mix énergétique de la France et **calculer** les émissions de CO₂ correspondant au trajet.

Le choix du mode de transport influence fortement le niveau d'émission de CO₂ sur un trajet.

Question 1.6 À partir du rejet de CO₂ sur le trajet type, du profil des lignes et du taux d'occupation, le niveau de rejet de CO₂ par km et par passager est estimé à 53 g pour le réseau de tramways de Reims. **Conclure** en comparant les différents modes de transport.

Motorisation d'une rame

L'objectif de cette partie est de déterminer l'efficacité énergétique de la motorisation d'un tramway.

Question 1.7

DT5, DT6 DR1 **Compléter** le diagramme de blocs internes de la chaîne d'énergie allant du réseau ERDF jusqu'à la roue en caractérisant les formes de l'énergie. **Préciser** s'il s'agit d'énergie électrique alternative, d'énergie électrique continue ou d'énergie mécanique.

Au démarrage, pour éviter le patinage des roues sur les rails, l'effort fourni par un essieu moteur aux jantes est limité à une valeur maximale. Cette valeur est définie par la masse de la rame et le coefficient d'adhérence roue-rail. Celui-ci est de 0,3 dans le cas le plus défavorable. Dans notre étude, le démarrage de la rame nécessite la transmission aux jantes d'une force de 80 kN.

Question 1.8

DR2

Indiquer sur le graphique du document réponse DR2 pour la phase de démarrage le point de fonctionnement correspondant à la motorisation de la rame Citadis 302 et **justifier** le nombre de moteurs choisi.

La transmission de puissance à un essieu moteur est caractérisée par le schéma-bloc suivant :

La transmission du couple nécessite l'usage d'un réducteur.

Lorsque la rame se déplace à vitesse constante à 38 km·h⁻¹, la force s'opposant au déplacement de la rame est de 14,2 kN.

Question 1.9 Calculer la puissance notée P_m que doit fournir un moteur dans la phase $V = 38 \text{ km} \cdot \text{h}^{-1}$. On rappelle qu'il y a quatre moteurs sur une rame.

Question 1.10

La puissance électrique consommée pour un moteur étant de 47,4 kW, **calculer** le rendement d'un moteur.

Avant l'implantation de la ligne de tramway, les transports en commun se faisaient exclusivement en bus. La source d'énergie de ces véhicules est le gazole.

Question 1.12 À partir de la lecture du schéma-bloc ci-dessus, **comparer** l'efficacité énergétique d'un bus à celle d'un tramway.

Assurer la sécurité des matériels

Lors du fonctionnement de la rame, le conducteur et le centre de maintenance sont informés en permanence des conditions de fonctionnement des organes principaux (climatisation, éclairage, moteurs, freins, etc.).

Une supervision embarquée permet la surveillance et l'enregistrement des paramètres dans chacune des cabines de pilotage.

On donne ci-après le schéma synoptique de la supervision embarquée.

Acquérir l'information

La mesure de la température des moteurs s'effectue à l'aide du capteur de température LM92 - (voir DT7).

Question 1.13 **Déterminer** la plage de fonctionnement en température du capteur de température LM92.

Question 1.14

DT7

DT7

Déterminer la valeur du bit D15 pour une température à convertir positive.

Question 1.15

Déterminer la valeur de la température convertie pour le registre de température ci-dessous.

Registre de température

Bits de données température										Bit	s d'éta	ıts			
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
signe	MSB	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Χ	Х	Х
0	0 0 0 1 1 1 0 1 0 1 0 0										Bit	s d'éta	ıts		

D0-D2 : bits d'états, D3-D15 : bits de données température.

Un « Low Significant Bit » représente 0,0625 °C.

Transmettre l'information

Le bus CAN *(Control Area Network)* est un bus de communication série, principalement conçu pour mettre en réseau diverses cartes électroniques.

Il est utilisé dans divers moyens de transport (dont les tramways) pour faire dialoguer les divers systèmes de contrôle ou de commande.

La transmission des données est effectuée sur une paire filaire différentielle.

La transmission des bits sur le bus CAN se fait en mode bande de base suivant un codage NRZ (non return to zéro).

Le bit à l'état 1 est représenté par un état +V et le bit à l'état 0 est représenté par un état -V.

Question 1.17 **Déterminer** le débit en bits·s⁻¹ de la transmission sachant que la période du signal $T = 2 \mu s$.

Afin d'éviter d'éventuelles erreurs de transmission (détection de coupure de ligne) le bus CAN utilise la méthode du « bit-stuffing » (changement d'état au bout de cinq bits identiques consécutifs).

Cette méthode consiste, dès que l'on a émis 5 bits de même polarité sur le bus, à insérer un bit de polarité contraire pour casser des chaînes trop importantes de bits identiques. On obtient ainsi dans le message un plus grand nombre de transitions ce qui permet de faciliter la synchronisation entre l'émission et la réception.

Question1.19 **Conclure** sur la performance de la solution technique choisie pour informer des conditions de fonctionnement en toute sécurité.

Synthèse de la partie 1

Question 1.20 À partir des études précédentes, **conclure** sur le respect des différentes problématiques énoncées dans la partie 1.

PARTIE 2 - Ligne de contact pour l'alimentation en énergie

Validation du dimensionnement du rétreint

Le document DT9 présente le support de caténaire, constitué du **fût (0)** en liaison encastrement avec le sol, sur lequel est monté le **rétreint (2)** qui assure le maintien en position du **bras (1)**.

L'objectif de cette partie est de vérifier que la sécurité des usagers est garantie, ainsi que la continuité de la chaîne d'énergie.

Données :

- le poids des pièces sera négligé, sauf celui du bras (environ 850 N);
- les liaisons mécaniques sont supposées parfaites ;
- l'accélération de la pesanteur est g = 9,81 m.s⁻²;
- les liaisons mécaniques en A. B et C sont de type pivot.

Question 2.1

DT8

Calculer la valeur correspondant au poids de la caténaire, entre deux supports de caténaire.

Question 2.2

птα

Justifier l'écriture du torseur de l'action mécanique extérieure de la caténaire sur le bras (1) au point D.

Question 2.3

DT9

Justifier pourquoi la direction des actions mécaniques appliquées au rétreint (2) est confondue avec la droite (AC).

Question 2.4

DT9 et DR4

Déterminer graphiquement sur le document réponse DR4 l'intensité des efforts exercés aux points C et B.

Question 2.5

DR4

Préciser la nature de la sollicitation mécanique qui s'exerce sur le rétreint.

Question 2.6

DT9

Indiquer la valeur de la contrainte maximale relevée dans le rétreint en mégapascal (Mpa).

Question 2.7

DT9

En utilisant la valeur de la limite élastique du rétreint, calculer le coefficient de sécurité qui lui est appliqué.

Question 2.8

Conclure quant à la valeur du coefficient de sécurité obtenue, par rapport à la sécurité des usagers.

DT1: diagramme SysMI « cas d'utilisation »

DT2: dossier de presse

La dangerosité des émissions des véhicules diesel est confirmée par l'organisation mondiale de la santé qui vient de classer cancérogènes les particules fines émises par ce carburant.

Un risque accru de cancer

Le centre international de recherche sur le cancer (CIRC), une agence de l'OMS a annoncé, ce mercredi 13 juin 2012, que les gaz d'échappement des moteurs diesel seront désormais classés parmi les cancérogènes. Auparavant, ces émissions étaient recensées comme cancérogènes probables. Selon les experts du CIRC, qui ont passé une semaine à examiner plusieurs résultats d'études épidémiologiques, l'exposition aux fumées de diesel est associée à un risque accru de cancer du poumon.

Joël Ignace, Sciences et Avenir, juin 2012

DT3: dossier de presse

Reims Métropole Magazine : le tramway 2009

Vers une ville plus verte

Avec le respire: tramway, on entièrement alimenté l'énergie par électrique, il ne rejette aucun gaz toxique dans l'atmosphère. Il est silencieux, économe en espace, sa réalisation s'accompagne de plantations d'arbre, de de fleurs. et nouvelles aires engazonnées. Il manifeste la volonté d'un meilleur respect de l'environnement et inscrit résolument l'agglomération dans l'avenir

RETOMBÉES ÉCONOMIQUES

LA RÉALISATION DU TRAMWAY VA AVOIR DES CONSÉQUENCES TRÈS POSITIVES SUR L'ÉCONOMIE DE L'AGGLOMÉRATION. C'EST LE SECTEUR DES TRAVAUX PUBLICS QUI SERA LE PREMIER BÉNÉFICIAIRE DE CE CHANTIER, SECTEUR DONT ON CONNAÎT L'EFFET D'ENTRAÎNEMENT SUR L'ÉCONOMIE.

PUIS, APRÈS SA MISE EN SERVICE, TOUTE L'AGGLO-MÉRATION BÉNÉFICIERA DU TRAM, GRÂCE À UNE MEILLEURE FLUIDITÉ DES CIRCULATIONS, DES ÉCHANGES, À UNE MEILLEURE IMAGE DE LA VILLE ET DE SON ÉCONOMIE.

DANS LES RUES TRAVERSÉES, L'ACTIVITÉ CONNAÎTRA UN COUP D'ACCÉLÉRATEUR. LE PHÉNOMÈNE S'EST VÉRIFIÉ PARTOUT OÙ LE TRAMWAY A ÉTÉ ADOPTÉ.

LA DIMINUTION DE LA CIRCULATION ET DU BRUIT AINSI QUE LA CRÉATION DE ZONES PIÉTONNES ONT RENDU LA VILLE PLUS AGRÉABLE À FRÉQUENTER.

objectif: 42 millions de voyages

avec l'arrivée du tramway, ce sont tous les transports collectifs qui progressent. Le réseau de bus est optimisé, l'offre kilométrique est sensiblement augmentée et les dessertes significativement renforcées. L'ambition est d'accroître la fréquentation du réseau de transports collectifs, qui stagne depuis des années. La société MARS s'engage sur une forte croissance de la fréquentation du réseau. Aujourd'hui, on recense 30 millions de voyages par an ; l'objectif à atteindre se situe à 42 millions de voyages, soit une hausse de 40 % de la fréquentation.

nouveau mobilier urbain et de d'arbres plantées... Moyen de n véritable outil d'aménagement d'urbanisme de qualité dans les prepenser le territoire et les

DT4 : vitesse et puissance sur un trajet type

DT5 : schéma simplifié de l'alimentation d'une rame

Du réseau à la ligne aérienne

De la ligne aérienne au moteur

DT6: les convertisseurs statiques fondamentaux

Redresseur fixe	~~=	11 12 13	Entrée Mono ou Tri Sortie CC - Tension fixe
Redresseur contrôlé	-~=	11 12 13	Entrée Mono ou Tri Sortie CC -Tension variable
Hacheur		+ -	Entrée CC - Tension fixe Sortie CC - Tension variable
Onduleur	= <u>U</u> ,f	± 12 13	Entrée CC - Tension fixe Sortie Mono ou Tri

DT7 : caractéristiques techniques du capteur de température I2C LM92

Ce capteur de température permet la conversion de la température en un nombre binaire codé sur 12 bits et un bit de signe (température positive ou négative). La sortie de données numériques s'effectue sur la broche notée SDA.

Tableau des données en sortie en fonction de la température

Température	Nombre en so	ortie	
	Binaire	Hexadécimal	
+130 °C	0 1000 0010 0000	08 20H	
+80 °C	0 0101 0000 0000	05 00H	
+25 °C	0 0001 1001 0000	01 90H	
+0,0625 °C	0 0000 0000 0001	00 01H	→ LSB ou quantum
0 °C	0 0000 0000 0000	00 00H	
-0,0625 °C	1 1111 1111 1111	1F FFH	
-55 °C	1 1100 1001 0000	1C 90H	

Registre de température

Bits de données température										Bits d'états					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
signe	MSB	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Х	Х	Х
											Bit	s d'éta	ats		

DT8 : la caténaire

Les caractéristiques des différents types de caténaire :

Ligne de contact	Porteur	Fil de contact	Section équivalente cuivre	Masse au mètre linéaire
« tramway »		cuivre dur 107 mm²	107 mm²	1,52 kg
1500 V compound	Principal: bronze - Sn 116 mm² Auxiliaire: 143 mm²	cuivre dur 2 × 150 mm²	480 mm²	5,309 kg
3000 V simple	Cuivre 120 mm²	cuivre dur 2 × 100 mm²	320 mm ²	2,85 kg
15 kV	Acier-cuivre 92 mm²	cuivre 1 × 107 mm²	189 mm²	1,85 kg
25 kV	Al + acier 36 mm ²	cuivre – Mg (ou Sn) 1 × 150 mm ²	147 mm²	1,334 kg

DT9 : le support de caténaire

Support de caténaire avec un rétreint

Rétreint D Bras Fût

Modélisation du support de caténaire

Simulation des contraintes internes du rétreint en résistance des matériaux

DR1 : Ibd Bloc « chaîne d'énergie »

DR2: adhérence roue-rail

Force à la roue (kN) en fonction du coefficient d'adhérence roue-rail

DR3: liaison série par bus CAN

Question 1.19

Question 1.21

Trame avant stuffing

DR4: statique graphique

Echelle des tracés : 1 cm pour 200 N

Isolement du bras (1)

Un poids de **1230 N** est appliqué au point **G**, centre de gravité de l'ensemble « **caténaire** + **bras** ».

