Activité expérimentale : A la découverte de la réfraction

Lorsqu'elle passe d'un milieu à un autre, la lumière est **réfractée** : sa direction de propagation change. C'est ce phénomène qui est à l'origine des déformations apparentes que l'on constate lorsque l'on regarde un objet plongé dans l'eau.

figure 1 : Un crayon dans un verre d'eau.

Comment décrire mathématiquement le phénomène de réfraction?

Objectifs:

- Réaliser et exploiter une série de mesure
- Connaitre et exploiter la loi de Snell-Descartes en réfraction

A. Réalisation d'une série de mesures

On réalise le montage schématisé ci-dessous.

- Ouvrir sur internet l'animation disponible sur le lien suivant :
 https://www.pccl.fr/physique_chimie_college_lycee/lycee/seconde/refraction_loi_descartes_optique_seconde_lycee.htm
- Cliquer sur « plexiglas ».
- A l'aide du rapporteur gradué, faire varier l'angle d'incidence (angle i₁) entre 0 et 60° par pas de 5°.
- Mesurer pour chaque valeur de l'angle i₁, la valeur de l'**angle de réfraction** (angle i₂) correspondant.
- Consigner ces mesures dans le tableau ci-dessous.

angle d'incidence i ₁ (°)	0	5	10	15	20	25	30	35	40	45	50	55	60
angle de réfraction i ₂ (°)	0	3	7	10	13	16	19	22	25	28	30	33	35

B. Exploitation d'une série de mesure

- Ouvrir le tableur *Courbe_Snell_Descarte*.
- Immédiatement, cliquer sur Fichier/Enregistrer Sous et enregistrer le fichier sous le nom : *Courbe_Snell_Descartes-Nom-Prénom-Classe.*
- Compléter la colonne i2(°) avec les valeurs des angles que vous avez mesurés.
- Le tableur calcule les valeurs des sinus des différents angles i₁ et i₂.
- Le graphe qui s'affiche donne la valeur de $sin(i_2)$ en fonction de $sin(i_1)$ pour les valeurs des angles mesurés.
- Noter l'équation de la droite qui s'affiche à côté du graphe dans le cadre ci-dessous.

On trouve une équation de la forme : $y = 0.6592 \times (valeur du coefficient directeur variable selon les mesures réalisées par chacun).$

Lire attentivement le **document 1** puis répondre aux questions.

Depuis près de 2000 ans, des savants se sont penchés sur le phénomène de réfraction.

- > Ptolémée (vers 90-168) s'intéresse au passage de la lumière de l'air à l'eau et en conclut que l'angle de réfraction i₂ augmente avec l'angle d'incidence i₁.
- > Kepler (1571-1630) affine le modèle en proposant que l'angle d'incidence i_1 et l'angle de réfraction i_2 sont proportionnels.
- > Snell (1580-1626) et Descartes (1596-1650) continuent de perfectionner le modèle en énonçant que $sin(i_2)$ est proportionnel à $sin(i_1)$.

document 1 : La construction d'un modèle de l'Antiquité au XVII° siècle

1. Le graphe obtenu vous permet-il d'affirmer que $sin(i_2)$ est proportionnel à $sin(i_1)$ (*lire le coup de pouce mathématiques ci-dessous si besoin*) ?

Coup de pouce mathématique

Deux grandeurs sont **proportionnelles** si le **graphique** représentant une des grandeurs en fonction de l'autre est une **droite passant par l'origine du repère**. Ces deux grandeurs (x et y par exemple) sont alors reliées par l'égalité $y=k \times x$, avec k qui est une constante (coefficient directeur de la droite linéaire).

 $sin(i_2)$ est proportionnel à $sin(i_1)$. En effet, on obtient une droite qui passe par l'origine du repère.

2. Quelle relation peut-on alors écrire entre $sin(i_2)$ et $sin(i_1)$ (cf. coup de pouce mathématiques) ?

D'après le coup de pouce mathématiques, on peut écrire que $sin(i_2) = k \times sin(i_1)$ avec k coefficient directeur de la droite.

<u>Courbe obtenue avec les mesures</u> (NB : Il peut y avoir quelques variations en fonction des valeurs choisies lors des mesures.)

