Shukai Du Curriculum Vitae

Visiting Assistant Professor Email: sdu49@wisc.edu

Department of Mathematics Website: https://shukaidu.github.io

University of Wisconsin-Madison

RESEARCH INTERESTS

- Scientific machine learning and data-driven methods
- Computational inverse and ill-posed problems
- Finite element and discontinuous Galerkin methods
- Numerical methods for radiative transfer
- Electromagnetic and elastic/viscoelastic waves

EDUCATION

University of Delaware

• Ph.D in Applied Mathematics

May 2020

Advisor: Dr. Francisco-Javier Sayas

Thesis: Generalized projection-based error analysis of hybridizable discontinuous Galerkin methods

Wuhan University

• M.S. in Computational Mathematics

2015

• B.S. in Pure Mathematics

2012

PUBLICATIONS

Submitted

15. **S. Du**, and S. N. Stechmann. Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer. arXiv: 2308.02467.

Peer-reviewed

- 14. **S. Du**, and S. N. Stechmann. Inverse radiative transfer with goal-oriented hp-adaptive mesh refinement: adaptive-mesh inversion. *Inverse Probl. 39 (2023), no. 11*. DOI: 10.1088/1361-6420/acf785
- 13. B. Cockburn, **S. Du**, M. A. Sánchez. A priori error analysis of new semidiscrete, Hamiltonian HDG methods for the time-dependent Maxwell's equations. *ESAIM: M2AN 57* (2023), no.4, 2097 2129.

DOI: 10.1051/m2an/2023048

- 12. **S. Du**, and S. N. Stechmann. Fast, low-memory numerical methods for radiative transfer via hp-adaptive mesh refinement. *J. Comput. Phys.* 480 (2023). DOI: 10.1016/j.jcp.2023.112021
- 11. **S. Du**, and S. N. Stechmann. A universal predictor-corrector approach for minimizing artifacts due to mesh refinement. *J. Adv. Model. Earth Syst.* 15 (2023). DOI: 10.1029/2023MS003688

10. B. Cockburn, **S. Du**, M. A. Sánchez. Combining finite element space-discretization with symplectic time-marching schemes for linear hamiltonian systems. *Front. Appl. Math. Stat. 9* (2023).

DOI: 10.3389/fams.2023.1165371

9. M. A. Sánchez, **S. Du**, B. Cockburn, N.-C. Nguyen, J. Peraire. Symplectic Hamiltonian finite element methods for electromagnetics. *Comput. Methods Appl. Mech. Engrg.* 396 (2022).

DOI: 10.1016/j.cma.2022.114969

8. B. Cockburn, M. A. Sánchez, **S. Du**. Discontinuous Galerkin methods with time-operators in their numerical traces for time-dependent electromagnetics. *Comput. Meth. Appl. Math.* (2022).

DOI: 10.1515/cmam-2021-0215

7. **S. Du**, and F.-J. Sayas. A note on devising HDG+ projections on polyhedral elements. *Math. Comp. 90 (2021), 65-79*.

DOI: 10.1090/mcom/3573

6. **S. Du**. HDG methods for Stokes equation based on strong symmetric stress formulations. *J. Sci. Comput.* 85, 8 (2020).

DOI: 10.1007/s10915-020-01309-7

5. **S. Du**, and F.-J. Sayas. A unified error analysis of hybridizable discontinuous Galerkin methods for the static Maxwell equations. *SIAM J. Numer. Anal.* 58 (2020), no. 2, 1367–1391.

DOI: 10.1137/19M1290966

4. **S. Du**, and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. *Math. Comp. 89* (2020), 1745-1782.

DOI: 10.1090/mcom/3499

3. **S. Du**, and N. Du. A factorization of least-squares projection schemes for ill-posed problems. *Comput. Meth. Appl. Math. 20 (2020), no. 4, 783-798*. DOI: 10.1515/cmam-2019-0173

2. T.S. Brown, **S. Du**, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave propagation. *Appl. Math. Nonlin. Sci. 3* (2018), no. 1, 55-96.

DOI: 10.21042/AMNS.2018.1.00006

Books

1. **S. Du**, and F.-J. Sayas. An invitation to the theory of the Hybridizable Discontinuous Galerkin Method. *SpringerBriefs in Mathematics* (2019).

DOI: 10.1007/978-3-030-27230-2

GRANTS

- NSF (DMS-2324368): Breaking the 1D Barrier in Radiative Transfer: Fast, Low-Memory Numerical Methods for Enabling Inverse Problems and Machine Learning Emulators. Senior personnel. \$498,832 total, \$350,000 at UW (2023–2026).
- NSF (AGS-2326631): Convective Processes in the Tropics Across Scales. Senior personnel. \$768,471 total, \$471,155 at UW (2024-2026).

PRESENTATION

Invited talks

23.	ement learning: a systematic approach of accelerating finite element-type method		
	with applications to radiative transfer	N. 0000	
	University of Electronic Science and Technology of China	Nov 2023	
22.	ement learning: a systematic approach of accelerating finite element-type		
	via machine learning, with applications to radiative transfer		
	Scientific Computing Seminars, University of Houston	Nov 2023	
21.	Element learning: a systematic approach of accelerating finite element-type	e methods	
	via machine learning, with applications to radiative transfer		
	Applied Math seminar, University of Louisiana at Lafayette	Oct 2023	
20.	ment learning: a systematic approach of accelerating finite element-type m		
	with applications to radiative transfer		
	Numerical analysis and PDE seminar, University of Delaware	Sep 2023	
19.	Energy-conserving discontinuous Galerkin methods with time-operators in	their traces	
	for time-dependent electromagnetics		
	17th UCNCCM, Albuquerque, NM	July 2023	
18.	ow-memory methods for radiative transfer through hp-adaptive mesh refi		
	ment		
	13th AIMS meeting, Wilmington, NC	June 2023	
17.	Unified analysis of HDG methods for the static Maxwell equations		
	CILAMCE-PANACM 2021, Brazil	Nov 2021	
16.	Generalized projection-based error analysis of hybridizable discontinuou	ıs Galerkin	
	(HDG) methods		
	CEDYA2021, Spain	June 2021	
15.	Projection-based analysis of hybridizable discontinuous Galerkin (HDG) m	ethods	
	Wenbo Li Prize Talk, U of Delaware	Feb 2020	
14.	Unified analysis of HDG methods for the static Maxwell equations		
	SIAM CSE2021, Virtual Meeting	Mar 2021	
13.	New analysis techniques of HDG+ method		
	SIAM Sectional Meeting, Iowa State U	Oct 2019	
12.	Uniform-in-time optimal convergent HDG method for		
	transient elastic waves with strong symmetric stress formulation		
	WAVES2019, TU Wien, Vienna	Aug 2019	
11.	Hybridizable Discontinuous Galerkin schemes for elastic waves	C	
	ICIAM2019, Valencia	July 2019	
10.	HDG for transient elastic waves	·	
	WONAPDE2019, U of Concepcion	Jan 2019	
_			
	ributed talks		
9.	Element learning: accelerating finite element methods via operator learning	-	
•	FEM Circus, U of Notre Dame	Oct 2023	
8.	Three-dimensional radiative transfer: fast, low-memory numerical method		
_	Collective Madison Meeting, Madison, WI	Aug 2022	
7.	Projection-based analysis of HDG methods with reduced stabilization		
_	DelMar Num Day 2019, U of Maryland	May 2019	
6.	Projection-based error analysis of HDG methods for transient elastic waves		
_	FEM Circus, U of Delaware	Nov 2018	
5.	Devising a tailored projection for a new HDG method in linear elasticity		
	FEM Circus, U of Tennessee	Mar 2018	

4. A new HDG projection and its applications *Mid-Atlantic Numerical Analysis Day, Temple U*

Nov 2017

Poster presentation

3. Fast, low-memory numerical methods for radiative transfer: forward and inverse problems

New Trends in Computational and Data Sciences, Caltech

Dec 2022

2. Hybridizable Discontinuous Galerkin methods in transient elastodynamics *FACM2018*, *New Jersey Institute of Technology*

Aug 2018

1. Building a computational code for 3D viscoelastic wave simulation *Mid-Atlantic Numerical Analysis Day, Temple U*

Nov 2016

TEACHING

Instructor

• Linear Algebra and Differential Equations (Math320)

Spring 2023

2018 Fall

Teaching Assistant

Analytic Geometry and Calculus C (Math243)
 Analytic Geometry and Calculus B (Math242)
 Calculus I (Math221)
 2018 Spring

 Review of Advanced Mathematical Problems (summer courses offered to incoming graduate students)

MENTORING ACTIVITIES

Graduate mentorship

• Jason Torchinsky (co-mentored with Samuel N. Stechmann) 2022 – 2023

Undergraduate mentorship

WISCERS project at the University of Wisconsin-Madison
 a research-focused mentorship program for undergraduate students

• GEMS summer research project at the University of Delaware Fall 2016

JOURNAL REFEREE

Journal of Scientific Computing

SIAM Multiscale Modelling and Simulation

ESAIM: Mathematical Modelling and Numerical Analysis

Computers and Mathematics with Applications

Frontiers in Applied Mathematics and Statistics

AWARDS AND HONORS

Wenbo Li Prize	2020
University Doctoral Fellowship Award at the University of Delaware	2019
ICIAM2019 travel grant	2019
Graduate Enrichment Fellowship at the University of Delaware	2018
GEMS project fund at the University of Delaware	Summer 2016
National Scholarship for Graduate Students of China	2013
People's Scholarship of Wuhan University	2011
Outstanding Student of Wuhan University	2009-2011

CODING PROJECTS

Fast, low-memory methods for radiative transfer

2020 - 2022

- Build a cell-based structured adaptive mesh refinement (AMR) data structure
- Implement discontinuous Galerkin (DG) methods with hp-adaptivity for the full radiative transfer equation

Hybridizable Discontinuous Galerkin (HDG) methods

2016 - 2020

(based on HDG3D library: github.com/team-pancho/HDG3D)

- Build Matlab codes of high order HDG methods on computing cluster for transient elastic/viscoelastic waves and Maxwell equations
- Write documentation with detailed implementation procedures for HDG methods for Maxwell equations

Finite Element Method (FEM)

2016

(based on Team Pancho FEM library: team-pancho.github.io)

• Build Matlab codes of high order FEM methods on computing cluster for simulation of viscoelastic waves.

Multiscale modeling

2013 - 2015

• Implement algorithms to calculate Cauchy stress tensor based on micro-scale molecular dynamics information

COMPUTER SKILLS

Theory

Data Structures • Algorithm • Object Oriented Programming

Languages & Software

Matlab • Python • C • C++ • Fortran • openMPI • LISP • Linux Shell