T(n)= 8 (n2)

(6)
$$T(n) = eT(n/2) + ndag n$$
 $a = e^2$, $b = e^2$, $f(n) = ndag n$
 $n dg d^2 = h dg^2 = n$

Now $f(n) > n$

According to markow $T(n) = 0$ (ndeg n)

$$T(n) = eT(\frac{n}{2}) + \frac{n}{dg n}$$
 $a = e^2$, $b = e^2$, $f(n) = \frac{n}{dg n}$
 $n dg d^2 = n dg d^2 = n$
 $n > f(n)$

According to markow thereone $T(n) = 0$ (n)

(7) $T(n) = eT(\frac{n}{n}) + n^{0.51}$
 $a = e^2$, $b = e^2$, $f(n) = n^{0.51}$
 $n dg d^2 = n dg d^2 = n^{0.5}$
 $n^{0.5} < f(n)$

According to markow Theorem $T(n) = 0$ (n)

(9) $T(n) = 0.5 T(n/2) + \frac{1}{n}$
 $T(n) = 16 T(n/4) + n!$
 $a = 16$, $b = 4$, $f(n) = n!$
 $a = 16$, $b = 4$, $f(n) = n!$
 $a = 16$, $b = 4$, $f(n) = n!$
 $a = 16$, $b = 4$, $f(n) = n!$
 $a = 16$, $b = 4$, $f(n) = n!$
 $a = 16$, $b = 4$, $f(n) = n!$
 $a = 16$, $b = 4$, $f(n) = n!$
 $a = 16$, $b = 4$, $f(n) = n!$

T(n) =
$$3T(n/q) + n\log n$$
 $a = 3$, $b = 4$, $f(n) = n\log n$
 $n \log 3^9 = n\log 3^2 = no \cdot 79$
 $n \log 3^9 = n\log 3^2 = no \cdot 79$
 $T(n) = 3T(n/s) + n/s$
 $a = 3$, $b = 3$, $f(n) = n$
 $n \log b^n = n\log 3^2 = n$
 $a = 6$, $b = 3$, $f(n) = n^2 \log n$
 $a = 6$, $b = 3$, $f(n) = n^2 \log n$
 $a = 6$, $b = 3$, $f(n) = n^2 \log n$
 $a = 6$, $b = 3$, $f(n) = n^2 \log n$
 $a = 6$, $a = 3$, $a = 6$, $a = 6$, $a = 3$, $a = 3$, $a = 6$, $a = 3$, $a = 3$, $a = 6$, $a = 3$, $a = 6$, $a = 3$, $a = 3$, $a = 6$, $a = 3$, $a = 3$, $a = 6$, $a = 3$, $a = 6$, $a = 3$, $a = 3$, $a = 6$, $a = 3$, $a = 6$, $a = 3$, $a = 3$, $a = 6$, $a = 3$, $a =$

T(n) = 64+ (n/8)-n2-logn

Master's thrown is not applicable as P(n) is not increasing fruition.

(E)

 $T(n) = 7T(n/3) + n^2$ a = 7, b = 3, $p(n) = n^2$ a = 7, b = 3, $p(n) = n^2$ a = 7, a =

... Allowding to mouters, $T(n) = O(n^2)$

(22)

T(n) = T(n/2)+n(2-asn)

In Marties theorem is not applicable since regularity condition is isockated in cone 3.