Network Security (NS) MTech(CLIS) Jan-Jun 2024 Lab Assignment-3, Deadline-24th Jan, 2024.

Improve the MAC function that you designed in the last assignment in the following way:-

The structure of a file is now changed. A file (F) is divided into n consecutive blocks, i.e., $F = < b_1, b_2, ..., b_n >$

Each block $(b_i; 1 \le i \le n)$ consists of m number of consecutive sectors, i.e.,

$$b_i = < s_{i1}, s_{i2}, ..., s_{im} >$$

Note that the size of each sector (s_{ij}) is 1-byte. The structure of a file is shown below:-

Block 1 (<i>b</i> ₁)	S_{1m}		s ₁₂	s ₁₁
Block 2 (<i>b</i> ₂)	S_{2m}		s ₂₂	s ₂₁
			-	
	•	•	-	-
	•	•	-	-
Block $n(b_n)$	S_{nm}		S_{n2}	S_{n1}

Structure of a File F divided in Blocks and Sectors

The secret key (α) used for the calculation of the MAC value is now a k-dimensional vector : $\alpha = <\alpha_1, \alpha_2, ..., \alpha_k>$. Where, each is α_l ; $1 \le l \le k$ is of size 1-byte.

The MAC digest of the file (F) is computed as an *n*-dimensional vector σ , i.e., $\sigma = < \sigma_1, \sigma_2, \dots, \sigma_n >$

where each block-digest σ_i ; $1 \le i \le n$ is a k-dimensional vector calculated as shown below:-

$$\sigma_i = \mathit{MAC}_{\alpha}(b_i) = \langle \mathit{MAC}_{\alpha_1}(b_i), \mathit{MAC}_{\alpha_2}(b_i), ..., \mathit{MAC}_{\alpha_k}(b_i) \rangle$$

where each $MAC_{\alpha_i}(b_i)$; $1 \le l \le k$ is calculated as shown below:-

$$MAC_{\alpha_{l}}(b_{i}) = (s_{i1}.\alpha_{l} + s_{i2}\alpha_{l}^{2} + ... + s_{i2}\alpha_{l}^{m})$$

Expected Program: You are required to design a Function ' $MACSIG(F, \alpha)$ ' which will take :-

- reference to the input File F
- reference to the secret key string α

The output of the above function is the MAC-digest of the file (σ) . Note that α is essentially a k-bytes binary string and the MAC-digest of the file would be an (n*k)-bytes binary string.

Note that the values of m and k are defined by the user. However, the value of n depends on the file size. You do not need to take the values of m and k from the user during runtime rather, you should make these variable by defining these with the help of #define statements.

Finally, place your function and the corresponding #define statements etc. inside a header file 'MyCryptoLib.h'. Your C/C++ program includes the header and calls the function from main(). The main() function takes the input file F and the secret key (α) from the user, calls the $MACSIG(F, \alpha)$ function, displays the output MAC-digest as a HEX string (of n*2k digits) on the monitor, and then stores the output in an output file as binary data.

END