Bot Friends 2

Input file: standard input
Output file: standard output

Time limit: 3 seconds

Memory limit: 1024 megabytes

Little Cyan Fish is commanding your favorite bot friends on a map. The map is represented as a connected undirected graph with n vertices and m edges. The vertices are labeled from 1 to n, and the i-th vertex has weight a_i . The edges are labeled from 1 to m, and the i-th edge has weight w_i .

Initially, there are n bots, one on each vertex: the i-th bot is placed on vertex i. On each day, Little Cyan Fish may perform any number of the following operations:

- Choose a bot x currently on vertex u, and an incident edge (u, v) with weight w. Move the bot from u to v. This operation costs w dollars.
- Choose two bots x and y currently on the same vertex u. Merge them into a single bot. This operation costs a_u dollars.

Little Cyan Fish really wants to make you happy, but... Well, you only love one bot. Therefore, Little Cyan Fish must merge all bots into a single bot. Help him find the minimum total cost of operations required to achieve this!

Input

There are multiple test cases in a single test file. The first line of the input contains an integer T ($T \ge 1$) indicating the number of test cases. For each test case:

The first line of the input contains two integers n and m $(n \ge 1)$, indicating the number of vertices and the number of edges.

The next line of the input contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^{12})$, indicating the weight of each vertex.

The next m lines of the input describe all the edges. The i-th line of these lines contains three integers u_i , v_i , and w_i ($1 \le u_i$, $v_i \le n$, $1 \le w_i \le 10^9$, $u_i \ne v_i$), indicating an edge connecting the vertex u_i and v_i . It is guaranteed that the graph is connected, but there might be multiple edges connecting the same pair of vertices.

It is guaranteed that the sum of n over all test cases will not exceed 5×10^5 , and the sum of m over all test cases will not exceed 10^6 .

Output

For each test case, output a single line containing a single integer, indicating the minimum total cost required to merge all the bots into a single bot you love.

It can be proven that there will always be a valid plan under the constraints of the problem.

Example

standard input	standard output
3	12
4 4	43214
2 3 7 1	0
1 2 3	
1 3 1	
2 3 2	
3 4 2	
5 4	
100000 100000 100000 100000 1	
1 2 10	
2 3 100	
3 4 1000	
4 5 10000	
1 0	
100000000	