CS 7641 Machine Learning Assignment 3

Philip Bale pbale3

Due Sunday April 1st, 2018 11:59pm

Introduction

This assignment explores unsupervised learning and dimensitonality reduction. It begins by examining clustering algorithms, specifically k-means and expectation maximization. It then proceeds to cover four dimensionality reduction algorithms: principal components analysis, individual components analysis, randomized projections, and random forests. After running these six algorithms on the original datasets and observing the results, the results are then piped into a neural network learner for further examination.

Datasets chosen

The datasets chosen were the same datasets chosen for assignment 1. The first dataset is the US permanent visa dataset. This dataset is interesting due to its potential to aid in the visa application process from a cost and time savings potential. It could also enable confidence in those interested in applying for a US permanent visa but doubting their chances of acceptance. At the end of the day, the goal is it to try to determine the application result before time, money, nd other resources are spent.

The second dataset is a home sale price prediction dataset taken from an ongoing Kaggle competition. This dataset is interesting for two primary reasons: real-world applicability and participating in a Kaggle challenge. First, modeling home prices is both a difficult and lucrative task. If one can successfully model home sale prices on large sets of data, he/she can make large amounts of money investing in real estate when he/she detects outliers in listed price vs. what it is expected to sell for. This applies to flipping, investing, and remodeling. Second, the dataset is part of an ongoing Kaggle competition that does not have a winning solution yet. By taking part of the competition, the dataset presents the opportunity to work towards a winning solution and advance ones algorithms over time.

Part 1: Clustering Algorithms

Introduction

K-means clustering is the first algorithm applied to the datasets and expectation maximization is the second. Both algorithms work by clustering: gathering groups of instances together based upon their features. The rationale is that similar instances will likely be labeled the same way—such as identical visa applications obtaining the same outcome.

1) k-means clustering

Overview

K-means works by clustering n instances into k-clusters of similarity using least-squares Euclidean distance between the instances. In practice, the algorithm converges on 'mean' for each cluster that is representative of the members of that cluster. A variety of cluster sizes were tested to find the best parameters possible.

Housing Sum of Square Errors for Clus- Housing Log Liklihood vs. # Compo- Housing Scoring for k-means and expecters vs. # Clusters nents tation maximization

Perm Visa Sum of Square Errors for Clus- Perm Visa Log Liklihood vs. # Compo- Perm Visa Scoring for k-means and exters vs. # Clusters nents pectation maximization

k-Means Analysis

Text

Clusters	2	5	10	15	20	25	30	35	40	50	60	70
PERM VISA			•				•			•		
SSE	108717	71834	47453	37701	31090	27611	25517	23874	22410	20267	18532	17331
Log Liklihood	-9.44	2.67	9.57	13.25	13.90	16.01	15.78	15.29	17.56	19.12	20.04	20.47
k-Means AMI	0.022	0.008	0.005	0.005	0.004	0.005	0.004	0.004	0.004	0.004	0.004	0.004
k-Means ACC	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865
EM AMI	0.022	0.007	0.005	0.005	0.006	0.005	0.006	0.007	0.006	0.006	0.007	0.007
EM ACC	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865
HOUSING												
	1.40.40	10015	0005	7050	aron.	0100	F.0.0 7	F000	F000	4500	4070	4004
SSE	14840	10217	8265	7256	6589	6106	5687	5339	5063	4589	4276	4024
k-Means AMI	0.105	0.134	0.120	0.103	0.091	0.080	0.086	0.090	0.086	0.081	0.083	0.081
k-Means ACC	0.628	0.634	0.695	0.702	0.694	0.688	0.695	0.704	0.705	0.715	0.719	0.726
EM AMI	0.010	0.065	0.073	0.073	0.078	0.073	0.081	0.085	0.077	0.078	0.065	0.064
EM ACC	0.628	0.631	0.631	0.644	0.657	0.666	0.682	0.688	0.686	0.677	0.673	0.679

Table of Housing Data Results for Cluster

2) Expectation Maximization

Overview

Expectation Maximization is the second algorithm applied to the datasets and, similar to k-means, is a clustering algorithm. Expectation Maximization works by iteratively finding the maximum liklihood of parameters leading to a labeling of an instance despite possibly not having all data or parameters. For our examples, we used Scikit-learn's Gaussian mixture

models to implement the Expectation Maximization algorithm. A varying number of mixture components were used to determine the best possible parameters for the clustering.
Expectation Maximization Analysis
Text
Part 2. Dimensionality Reduction Algorithms

Part 2: Dimensionality Reduction Algorithms

Introduction

Text

1) Principal Components Analysis (PCA)

Overview

Text

Analysis

IText

2) Independent Components Analysis (ICA)

Overview

Text

Analysis

IText

3) Randomized Projections

Overview

Text

Analysis

IText

4) TODO Choose

Overview

Text

Analysis

IText

Conclusion

Todo conclusion