Dataset	CIFAR-10			CIFAR-100			STL-10			Im	ImageNet-10			ImageNet-Dogs			Tiny-ImageNet		
Metrics	NMI	ACC	ARI	NMI	ACC	ARI	NMI	ACC	ARI	NMI	ACC	ARI	NMI	ACC	ARI	NMI	ACC	ARI	
K-means	0.087	0.229	0.049	0.084	0.130	0.028	0.125	0.192	0.061	0.119	0.241	0.057	0.055	0.105	0.020	0.065	0.025	0.005	
SC [52]	0.103	0.247	0.085	0.090	0.136	0.022	0.098	0.159	0.048	0.151	0.274	0.076	0.038	0.111	0.013	0.063	0.022	0.004	
AC [14]	0.105	0.228	0.065	0.098	0.138	0.034	0.239	0.332	0.140	0.138	0.242	0.067	0.037	0.139	0.021	0.069	0.027	0.005	
NMF [4]	0.081	0.190	0.034	0.079	0.118	0.026	0.096	0.180	0.046	0.132	0.230	0.065	0.044	0.118	0.016	0.072	0.029	0.005	
AE [2]	0.239	0.314	0.169	0.100	0.165	0.048	0.250	0.303	0.161	0.210	0.317	0.152	0.104	0.185	0.073	0.131	0.041	0.007	
DAE [42]	0.251	0.297	0.163	0.111	0.151	0.046	0.224	0.302	0.152	0.206	0.304	0.138	0.104	0.190	0.078	0.127	0.039	0.007	
DCGAN [37]	0.265	0.315	0.176	0.120	0.151	0.045	0.210	0.298	0.139	0.225	0.346	0.157	0.121	0.174	0.078	0.135	0.041	0.007	
DeCNN [51]	0.240	0.282	0.174	0.092	0.133	0.038	0.227	0.299	0.162	0.186	0.313	0.142	0.098	0.175	0.073	0.111	0.035	0.006	
VAE [27]	0.245	0.291	0.167	0.108	0.152	0.040	0.200	0.282	0.146	0.193	0.334	0.168	0.107	0.179	0.079	0.113	0.036	0.006	
JULE [50]	0.192	0.272	0.138	0.103	0.137	0.033	0.182	0.277	0.164	0.175	0.300	0.138	0.054	0.138	0.028	0.102	0.033	0.006	
DEC [46]	0.257	0.301	0.161	0.136	0.185	0.050	0.276	0.359	0.186	0.282	0.381	0.203	0.122	0.195	0.079	0.115	0.037	0.007	
DAC [7]	0.396	0.522	0.306	0.185	0.238	0.088	0.366	0.470	0.257	0.394	0.527	0.302	0.219	0.275	0.111	0.190	0.066	0.017	
ADC [16] †	-	0.325	-	-	0.160	-	-	0.530	-	-	-	-	-	-	-	-	-		
DDC [6]	0.424	0.524	0.329	-	-	-	0.371	0.489	0.267	0.433	0.577	0.345	-	-	-	-	-	-	
DCCM [44]	0.496	0.623	0.408	0.285	0.327	0.173	0.376	0.482	0.262	0.608	0.710	0.555	0.321	0.383	<u>0.182</u>	0.224	0.108	0.038	
IIC [24] [†]	-	0.617	-	-	0.257	-	-	0.610	-	-	-	-	-	-	-	-	-		
PICA: (Mean)	0.561	0.645	0.467	0.296	0.322	0.159	0.592	0.693	0.504	0.782	0.850	0.733	0.336	0.324	0.179	0.277	0.094	0.016	
PICA: (Best) †	0.591	0.696	0.512	0.310	0.337	0.171	0.611	0.713	0.531	0.802	0.870	0.761	0.352	0.352	0.201	0.277	0.098	0.040	
	Table 1. The clustering performance on six challenging object image benchmarks. The 1 st /2 nd best results are indicated in red/ <u>blue</u> . The														olue. The				
results of previou	s meth	ods are	e taken	from	[44, 24	J. ': T	ne best	result	among	g multı	ple tri	als.							