Adopted Levels, Gammas

	Hi	story	
Type	Author	Citation	Literature Cutoff Date
Update	E. Browne, J. K. Tuli		1-Dec-2013

 $Q(\beta^{-})=-6128.0 \ 16$; $S(n)=11387.73 \ 5$; $S(p)=9532.38 \ 20$; $Q(\alpha)=-6291.0 \ 3$ 2012Wa38

Datasets given as xref=k and l, both from XUNDL, based on 2013Sc08 and 2013Sc20 ⁶⁰Ni3c were included after the publication of this evaluation in Nuclear Data Sheets. This dataset has been revised accordingly.

Others:

Nuclear Structure.

2012Bh08, 2012Ca27, 2012Do04, 2012Gu16, 2012Ni03, 2011Gu20, 2011Kh10, 2011Mi12, 2011Ni21, 2011Qu04, 2010Gu13, 2010So04, 2010Lo03, 2009Ku13, 2008Ma17, 2006An27, 2003Sa08, 2002Be59, 2002De27, 2002Ma64.

Level energies and densities.

2011Ba39, 2011Be41, 2011Bh06, 2011Na02, 2007Te10, 2004Sa40, 2003Na24, 2003Pe07, 2002No08.

Compilations of B(E2) values: 2012Go17, 2012Pr08. Mass measurements: 2007Gu09, 2005Gu36, 2004He32.

Nuclear Reactions: 2012Fu04, 2012Sc01, 2011Ch57, 2011Gu15, 2010Gu03, 2010Pr07, 2008Av03, 2007Po09, 2005Ha54.

⁶⁰Ni(d,d): 2012Ku21, 2006Ch28.

⁶⁰Ni(p,p'): 2011Mu10, 2010Be11, 2009Ku13, 2008Li05, 2004Ko34, 2002Sa49.

⁶⁰Ni(³He, ³He): 2010Ha19.

⁶⁰Ni(α , α'): 2010Sa34, 2006Lu01.

⁶¹Ni(p,d): 2009Le14.

⁶⁰Ni(¹⁷O,¹⁷O'): 2006Ha54, 2006Lu08.

⁶⁰Ni(¹⁸O, ¹⁸O'): 2009Pe14, 2002Al01, 2002Ro29.

⁶⁰Ni(n,n): 2006Hu14. ⁵⁹Co(d,p): 2007Vo08.

⁵⁸Ni(¹⁸O, ¹⁶O): 2006Pe02, 2005Al03, 2002Al01.

Discovery of ⁶⁰Ni: 2012Ga06.

1998Go18: Measured photon rates and energy spectra from radiative muon capture.

Some L-values and arguments for J^π assignments

 $\gamma(\theta)$ and lin pol in L(p,t)E(level) $L(^3He,d)@$ L(p,d)& ($^{7}Li,2np\gamma$) 0ther Adopted L(t,p)Target $J^{\pi}=$ $7/2^{-}$ $3/2^{-}$ 0 0 3 1 f 0+ a,k 2+ 2+ 1332 2 1+3 1 f b 2158 2 2+ 2+ 1 3 g e 2284 0 3 1 1 0^+ 4+ 2505 4 1+3 3 g C 4^{+} 3+ 3+ 3 g 2626 1+3e 4+ 3119 4 1 1+3 d,h,q 3124 1+ 3194 1+3 1+3 d,h,u 2 2+ 3269 1+3 e,h 0^+ 3318 1 j?,1 2+ 3393 1+3 e.h 3588 k?,1 0^+ 4^+ (4^{+}) 1 3670 (3) m 3700 4+ p 3736 1 1+3 2+ e,h 3875 1+3 e,h 2+,3+ 3925 1 e 2+ 4007 1 + 3e,h,t 4020 1+ 1 d,h,t 4039 3 4 3- $1^{+}, 2^{+}$ 4078 1+3 d,h

 $^{^{56}}$ Fe(α,γ): 1974Fo03 for splitting of GDR, 1978KeZQ threshold effects.

4112			1+3		s,h,v	2+
4165		1		5 ⁺		5 ⁺
4265				6+		6 ⁺
4319		1?	1+3		e,h	2+
4335					v,e,h	2
4341	(0)					(0 ⁺)
4355			1+3			$1^+, 2^+, 3^+$
4493		1+3?	1+3		d,h,p	2+
4535			1+3		v,e,h	2+
4548					d,h	1^+ , 2^+
4579	2				e	2+
4760					e,h	1,2
Some	L-values	and arguments	for J^{π}	assignments	(continue	ed)

			γ	$\gamma(\theta)$ and			
	L(p,t)			in pol in			
E(level)	L(t,p)	$L(^3He,d)@$	L(p,d)&	$(^7 \text{Li}, 2 \text{np} \gamma)$		Other	Adopted
Target J^{π} =	0+	$7/2^{-}$	3/2-				
4844					e,h	1,2	
4849					е	1,2,3	
4958	4			(c+ c+)		4+	
4985				$(6^+, 8^+)$	i	(6 ⁺)	
5015	4				р	(5-)	
5048	(1)				e,h	1,2	
5069	(1)					(1-)	
5110					r	8-	
5120	4				p	4+	
5244	4					4+	
5348	•			7-		7-	
5396	3				p	3-	
5449	2					2+	
5530	(0,2)				W	(2 ⁺)	
5662				5,7		5,7	
5785				(7 ⁺)		(7 ⁺)	
5800					p	2+	
5973					p	5-	
6181	(1)					(1-)	
6331					p	2+	
6810				5-,7-,9-		5-,7-,9-	
7550					n	8-	
8280	_				0	(1 ⁺)	
8430	3					3-	
8433					n	8-	
8959					n	8-	
9208	•				n	8-	
11207	2					2+	
11620					0	(1 ⁺)	
11860					0	(1 ⁺)	
12333					n	8-	
12515					n	8-	
13908					n	8-	
14817					n	8-	
15499					n	8-	
16110					n 	8-	

Question marks signify uncertain identification with E(level). @ J^{π} of $^{59}\text{Co(g.s.)}$ is $7/2^-$. & J^{π} of $^{61}\text{Ni(g.s.)}$ is $3/2^-$.

a. 0^+ from g.s. of even-even nucleus. b. 1,2,3 from β^- decay of $^{60}\text{Co}(2^+)$ with logft=7.25 6. c. 3^- ,4,5,6,7 $^-$ from β^- decay of $^{60}\text{Co}(5^+)$ with logft=7.510 1. d. 1^+ ,2 $^+$,3 $^+$ from ε decay of $^{60}\text{Cu}(2^+)$ with logft<5.9. e. 1,2,3 from ε decay of $^{60}\text{Cu}(2^+)$ with 5.9<logft<7.4.

f. J of transferred neutron is 3/2 from (pol p,d).

```
g. J of transferred neutron is 5/2 from (pol p,d).
h. Not 3^+ from \gamma decay to g.s.
i. 8^+ excluded from branch to 4^+ 2505 level.
j. 0^+ from \sigma(\theta) in ^{56}Fe(^6Li,d).
                       in 58 Fe(^3He,n).
k. 0^+ from \sigma(\theta)
1. \mathrm{O}^+ from pair conversion and no corresponding \gamma (1981Pa10).
m. 4^+ from L(d, ^6Li)=4
                                                in ^{60}Ni(e,e').
                                 and \sigma(\theta)
n. 8 from <sup>60</sup>Ni(e,e').
                          and A(\theta) in <sup>60</sup>Ni(p,p'),
o. (1^+) from \sigma(\theta)
p. From L(\alpha, \alpha')
q. Not 1^+ from \gamma decay from 5244, 4^+ level.
r. From \sigma(\theta)
                  in ^{60}Ni(\pi^+,\pi^{+\prime}),
s. Not 1^+ from \gamma decay to 2506, 4^+
t. From (\gamma, \gamma')
u. From (n,n'\gamma), Hauser-Feshbach-Moldauer calculations
v. \gamma to 4<sup>+</sup>
W. \gamma to 3^+
```

⁶⁰Ni Levels

For properties of 15 resonances in the range E(n)=0-18 keV from 59 Ni(n, γ), see 1981MuZQ. Level configurations given in comments are from 58 Ni(α , 2 He) and 60 Ni(pol p,p') reactions.

Cross Reference (XREF) Flags

```
^{59}Co(\alpha,t)
                           <sup>60</sup>Co β<sup>-</sup> decay (1925.28 d)
                   Α
                                                                                                                      Others:
                           ^{60}Co β^- decay (10.467 min)
                                                                              ^{59}Co(^{3}He,d\gamma)
                                                                                                                               <sup>56</sup>Fe(<sup>16</sup>O, <sup>12</sup>C)
                   В
                                                                      0
                                                                                                                      AA
                           ^{60}Cu \varepsilon decay
                                                                              ^{58}Ni(\alpha,2p\gamma)
                                                                                                                               ^{60}Ni(n,n'\gamma)
                   C
                                                                                                                      AB
                           <sup>60</sup>Ni(p,p'), (pol p,p')
                                                                              ^{60}Ni(e,e')
                   D
                                                                                                                               ^{60}Ni(\pi^+,\pi^{+\prime}), (\pi^-,\pi^{-\prime})
                                                                      Q
                                                                                                                      AC
                           ^{28}Si(^{36}Ar,4p\gamma)
                                                                              ^{60}Ni(d,d'), (pol d,d')
                   Ē
                                                                                                                               ^{64}Zn(d,^{6}Li)
                                                                                                                      AD
                                                                              ^{60}Ni(\alpha, \alpha')
                           ^{59}Ni(n,\gamma) E=thermal
                                                                                                                               <sup>58</sup>Fe(<sup>16</sup>O, <sup>14</sup>C)
                   F
                                                                      S
                                                                                                                      ΑE
                           ^{60}Ni(p,p'\gamma)
                                                                              <sup>56</sup>Fe(<sup>6</sup>Li,d)
                                                                                                                               ^{60}Ni(\gamma, \gamma')
                   G
                                                                      Т
                                                                                                                      AF
                           ^{59}\mathrm{Co}(\mathrm{p,}\gamma)
                                                                              ^{56}Fe(^{7}Li,^{2}np\gamma)
                                                                                                                               ^{60}\mathrm{Ni}(\mathrm{n,n'})
                   Н
                                                                      П
                                                                                                                      AG
                           ^{28}Si(^{35}Cl,3p\gamma)
                                                                              ^{58}Ni(\alpha, ^{2}He), (\alpha, ^{2}p)
                                                                                                                               ^{61}Ni(^{3}He,\alpha)
                                                                      ٧
                   Ι
                                                                                                                      ΑH
                                                                              <sup>58</sup>Ni(<sup>12</sup>C, <sup>10</sup>C)
                                                                                                                               ^{60}Ni(^{3}He,^{3}He')
                           <sup>58</sup>Ni(t,p), (pol t,p)
                                                                      W
                   J
                                                                                                                      ΑI
                                                                              60Ni(16O,16O'), (6Li,6Li')
                           <sup>61</sup>Ni(p,d), (pol p,d)
                   K
                                                                      X
                                                                                                                      ΑJ
                                                                                                                               Coulomb excitation
                                                                              ^{50}Cr(^{12}C,2p\gamma)
                           62Ni(p,t)
                                                                      Y
                                                                                                                               ^{60}Ni(pol \gamma, \gamma'):res
                   L
                                                                                                                      AK
                           ^{59}Co(^{3}He,d)
                                                                      Z
                                                                              ^{51}V(^{12}C,2npy)
                                                                                                                      AL
                                                                                                                               ^{60}Ni(\gamma, \gamma'),(pol \gamma, \gamma'):XUNDL-6
                                                                     XREF
                                                                                                                                       Comments
                                                                                                    XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI,
                             stable
                                                   ABCDEFGHIJKLMNOPQRSTUVWXYZ
                                                                                                        AJ, AK, AL
1332.514<sup>l</sup> 4
                                                                                                    XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI,
                              0.735 ps 21
                                                   ABCDEFGHIJKLMNOPQRSTUVWXYZ
                                                                                                       AJ, AK, AL
                                                                                                    \mu=+0.32 6 (2001Ke02,2011StZZ); Q=+0.03 5
                                                                                                       (1974Le13,2011StZZ)
                                                                                                    Configuration=(\nu p_{3/2})^2.
                                                                                                    T_{1/2}: From 2008Or02, recommended value based on all
                                                                                                       known measurements. T_{1/2}=0.77 4 Wt. av.: 0.90 ps
                                                                                                        +21-14 in (n,n'\gamma), 0.91 ps 2 from DSA in Coul. ex.
                                                                                                       (2001Ke08), 0.715 ps 16 in ^{60}Ni(\gamma,\gamma') (1970Me08),
                                                                                                       0.9 ps 3 \gamma \gamma(t) (1976Kl04), 0.77 ps 6 from
                                                                                                       B(E2)=0.087 7 (1974Si01), 0.73 ps 2 from
                                                                                                       B(E2)=0.0928 20 (1974Li13), 0.69 ps 5 DSA
                                                                                                       (1973Fi15).
```

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
				 μ: other: 0.18 24 from transient field integral PAC (1978Ha13). Q: from Coulomb excitation reorientation (1989Ra17,2011StZZ). Other value: -0.104 18 from electron scattering (1972Li12).
2158.632 ^l 18	2+	0.59 ps <i>17</i>	ABCDEFGHIJKLMNOPQRSTU XYZ	XREF: Others: AA, AB, AG, AH, AJ, AK, AL $T_{1/2}$: calculated from measured $B(E2)\uparrow$ in $^{60}Ni(e,e')$.
2284.80 4	0+	>1.5 ps	CD FG JKLM O RST	$T_{1/2}$: >1.0 ps (1989Ko54) in (n,n' γ). XREF: Others: AB, AG, AK, AL $T_{1/2}$: >0.69 ps (1989Ko54) in (n,n' γ).
2505.753 ^l 4	4+	3.3 ps <i>10</i>	A CDEFGHIJKLMNOPQRSTUVWXYZ	XREF: Others: AA, AB, AD, AE, AG, AJ $T_{1/2}$: from Coul. ex. (2001Ke08). Others: 1.1 ps 3 from B(E4)=0.00165 30 (from (e,e'), average of 0.0015 3 (1969To08), 0.0018 3(1961Cr01)) and $I\gamma(2506\gamma)=2.0\times10^{-6}$ 4 (1978Fu05)). Others (from DSA): 0.9 ps +12-4 (1979Mo06), 3.3 ps 5 (1975Iv04), 0.5 ps +19-3 (1973Ro20), \leq 4 ps (1980Ke06), 0.4 ps +4-2 (1989Ko54). J^{π} : configuration=((ν p _{3/2})(ν f _{5/2})).
2626.06 ^l 5	3+	≈0.6 ps	CDEFGHIJKLM OP R U YZ	XREF: Others: AB, AG, AH $T_{1/2}$: from ≤ 0.7 ps in 56 Fe(7 Li,2np γ) and >0.5 ps in 60 Ni(p,p' γ), DSA. Other: 0.6 ps $+5-3$ (1989Ko54) in (n,n' γ).
3119.87 ^l 7	4+	0.24 ps <i>10</i>	EFGHIJ LMnOPQR TU WXYZ	XREF: Others: AA, AB $T_{1/2}$: from 56 Fe(7 Li,2np γ), DSA; 0.04 ps <i>1</i> (1989Ko54) in (n,n' γ).
3123.698 25	2+	0.23 ps +17-10	CD FG K M P S U	XREF: Others: AA, AB, AF, AK, AL $T_{1/2}$: From $(p,p'\gamma)$,
3185.98 ⁿ 6	$(3^+)^k$	0.14 ps <i>4</i>	CdEFGHIjk no U	XREF: Others: AB $T_{1/2}$: others: 1.6 ps 7 from 56 Fe(7 Li,2np γ), DSA, 0.12 ps +5-2 (1989Ko54) in (n,n' γ). J^{π} : J^{π} =3 ⁺ in 28 Si(35 Cl,3p γ), (p, γ).
3193.87 <i>3</i>	1 ⁺ <i>k</i>	53 fs <i>14</i>	Cd FG jk M o	XREF: Others: AB, AF, AK, AL $T_{1/2}$: other: 19 fs 7 From ⁶⁰ Ni(γ,γ').
3269.19 10	2+	71 fs 2 <i>1</i>	CD FGH JKLM O TU	XREF: Others: AB, AF, AK, AL $T_{1/2}$: other: 0.10 ps +3-2 (1989Ko54) in (n,n' γ).
3317.829 25	0+	0.24 ps +28-11	D FG J M R T x	XREF: Others: AA, AB, AE, AK $T_{1/2}$: 0.10 ps 3 (1989Ko54) in (n,n' γ).
3381 <i>5</i> 3393.14 <i>3</i>	2+	0.23 ps +35-11 0.13 ps +6-4	G N R X CD FGH JKLM S	XREF: Others: AB, AK, AL XREF: S(3350).
3587.72 ^a 3	0+	<40 ps	CD FG T	$T_{1/2}$: 0.08 ps 6 (1989Ko54) in (n,n' γ). XREF: Others: AA, AB $T_{1/2}$: from ⁶⁰ Ni(p,p' γ), p γ (t).
3619.46 <i>9</i> 3671.16 ^{<i>m</i>} <i>11</i>	3 ⁺ k 4 ⁺	0.2 ps +5-1 0.06 ps 4	CDEFGH K O U BCDE GHI K MNOPQ U	XREF: Others: AB XREF: Others: AA, AB $T_{1/2}$: 0.11 ps +7-3 (1989Ko54) in (n,n' γ).
3702.9 ^b 10	4+		O RS X	XREF: Others: AB J^{π} : also L(16 O, 16 O')=4 for E=3690. 6+ in $(n,n'\gamma)$.
3730.82 ⁿ 8 3734.44 6	4+ <i>k</i> 2+	0.21 ps +29-9 0.11 ps 4	DE GHIjk M O C FG jkL	XREF: Others: AB XREF: Others: AB, AK $T_{1/2}$: 0.10 ps 2 (1989Ko54) in (n,n' γ).
			Continued on next page (footnote	es at end of table)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
3798.0 <i>10</i>	1	118 fs <i>15</i>		XREF: Others: AL
3871.050 22	2^{+k}	>3.0 ps	CD FG JK	XREF: Others: AB, AK
3671.030 22	2	>3.0 ps	CD 1.0 JK	$T_{1/2}$: 0.21 ps +16-9 in (p,p' γ), 0.04 ps 1
	1_			$(1989\text{Ko}54) \text{ in } (n,n'\gamma).$
3887.36 7	2^{+k}	0.07 ps +7-4	C FG 1	XREF: Others: AB
3895 <i>4</i>		59 fs 25	$ exttt{D} exttt{G} exttt{1} exttt{r}$	
3908 <i>3</i>	1	27 fs 5		XREF: Others: AL
3925.18 9	$2^{+},3^{+}$	0.19 ps +19-8	CD FGH M r	$T_{1/2}$: also from $(p,p'\gamma)$: 0.09 ps +16-12.
4006.444 <i>24</i>	2+	21 fs 7	CD FG JK N	XREF: Others: AF, AK, AL
				J^{π} , $T_{1/2}$: from 60 Ni(γ , γ').
				$T_{1/2}$: 28 fs 5 (1989Ko54) in (n,n' γ), 20 fs 10 in
4010.006.24	1.4	10.6.2	CD 77 77	$(p,p'\gamma)$.
4019.886 <i>24</i>	1+	12 fs <i>3</i>	CD F K	XREF: Others: AF, AK, AL
1025 1		05.6.14		$T_{1/2}$, J^{π} : from ⁶⁰ Ni(γ , γ').
4035 4	2-	25 fs 14	G	VDEE OIL ALAD
4039.89 <i>6</i>	3-	22 fs 10	ABCD FGH JKLM QRST VWX	XREF: Others: AA, AB
				$T_{1/2}$: 33 fs +15-12 from (p,p' γ), 38 fs 11 in
4077.00.5	1+,2+	> 12 fo	CD ECH V	$(n,n'\gamma)$.
4077.99 5	1 ,2	>12 fs	CD FGH K	XREF: Others: AB $T_{1/2}$: 14 fs 7 (1989Ko54) in $(n,n'\gamma)$.
4111.96 9	2+		D FG K	11/2. 14 18 / (1969R034) III (II,II <i>y</i>).
4165.50 ^m 8	5 ⁺	0.8 ps 4	DE GHI K M OP U	XREF: Others: AB
1103.50	5	0.0 ps 1	DE GIT K II OI	$T_{1/2}$: from ⁵⁶ Fe(⁷ Li,2np γ), DSA. 1.4 ps +14–6
				from 58 Ni(α ,2p γ), DSA, 0.09 ps +9-3
				(1989Ko54) in $(n,n'\gamma)$, DSA.
4186.19 <i>24</i>	(4^{+})		E	(1787K034) III (II,II), DSA.
4191.2 10	(+)		D G O	
$4265.00^{l} 8$	6 ⁺	0.45 ps +11-21		$T_{1/2}$: from ⁵¹ V(¹² C,2np γ), DSA. 0.5 ps 3 from
4203.00 8	O	0.43 ps +11-21	DE P U YZ	⁵⁶ Fe(⁷ Li,2npγ), DSA.
4294.5 3			D H M	re(LI,ZIIpy), DSA.
4300.8^{b} 7				Iπ. I (/) 2+4 I (3II- I) 1 f Ε 4200.
4300.8 /			0 S X	J^{π} : L(α,α')=2+4 and L(3 He,d)=1 for E=4300;
1210 50 5	2+		CD EC 1V V	$L(^{16}O, ^{16}O') = 4$ for E=4320.
4318.58 <i>5</i> 4335.52 <i>4</i>	2		CD FG JK X C F	XREF: Others: AK
4333.32 4 4341 <i>4</i>	(0^+)	29 fs +31-21	D G L N	
4355.56 14	2+	45 fs + 26 - 18	CD G JK R	
4400.0 7	_	15 15 120 10	0	
4407.46 ⁿ 8	5+ <i>j</i>		D HI M P	
4450.7 7	5 0		0	
4493.16 5	2+	16 fs <i>14</i>	CD FG K MNO S	
4534.14 <i>14</i>	2+		CD F K R X	J^{π} : L(¹⁶ O, ¹⁶ O')=4 for E=4540 multiplet. G to 0 ⁺
	-			and 4^+ .
4547.96 <i>3</i>	$1^+, 2^+$		CD FG 0	
4577.45 6	2+	<18 fs	CD FG JK M	
4579.0 <i>5</i>	(4^{+})		E	
4613 ^c 7			D K R	
4760.23 9	1,2		C F H	
4768 <i>4</i>		0.05 ps +6-3	D G T	
4779.13 ^b 6			D F m O	
4800.0 5			D H mN	
4843.93 8	2+	6.9 fs 21	Cd F jK	XREF: Others: AL
40.40.0				J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
4848.9 6	1,2,3		Cd H j M QR	
4859 <i>4</i>			G X	
4891 <i>10</i>			D	
				1 (411)
			Continued on next page (footnote	es at end of table)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
4928.98 <i>14</i> 4953.36 <i>7</i> 4958 <i>4</i>	4+	61 fs 2 <i>I</i>	D F F D FG L	
4970.6 <i>10</i>		0.06 ps +5-3	D G K M O	
4986.00 ^m 8 5014.45 8	(6^+) $(5^-)^{j}$	$1.0^{\textcircled{0}} \text{ ps } +25-7$	DE HI P UW DE IJ NPRS	J^{π} : from $L(\alpha, \alpha') = 5$ but $J^{\pi} = 4^{+}$ in $(\alpha, 2p\gamma)$.
3014.43 0	(3)		DE 13 N F K3	T _{1/2} : 0.21 ps +256–1 from ⁵⁸ Ni(α ,2p γ), DSA.
5048.3 7	1,2		CD Q	XREF: Q(?). J^{π} : J^{π} (5050 100)=4+,6+ in (e,e').
5065.02 6	(1-)	2.98 fs 28	b D F J T	XREF: Others: AL $T_{1/2}$: From (γ, γ') , (pol γ, γ').
5091.1 <i>10</i> 5106 <i>4</i>		0.03 ps +5-3	b O X D G	,
51004 $5110^{f} 20$	8-	0.03 ps +3-3	A	
5120.7 ^b 7	4+		LMNO S	
5127.16 <i>17</i> 5133 <i>5</i>			F D G r	E(level): 5120 keV and 5132 keV might be the same level.
5148.51 ⁿ 8	6^+		DE I Pr	same teven
5174 <i>5</i> 5191.7 <i>8</i>			D G D I	XREF: I(5192).
5205 5		16 fs <i>16</i>	D G T	MLI. 1(3172).
5236.20 <i>10</i>	5 ⁽⁺⁾	0.05	E	
5244 <i>5</i> 5264 ^c <i>10</i>	4+	0.05 ps +5-3	D G J l D l RS	J^{π} : L(α, α')=2 for E=5250.
5288.55 <i>14</i>			D F w	
5307 8 5318 5			d K w d G	
5348.79 7	7-	250 ps 21	DE IJ P U YZ	$T_{1/2}$: from 56 Fe(7 Li,2np γ), DSA. 290 ps 50 from 51 V(12 C,2np γ), RDM.
5379 <i>5</i>	2-		D G K M	
5396 ^c 10 5410.8 10	3-		D J S 0	
5428 10			D	50
5446.98 <i>11</i> 5449.5 <i>4</i>	2 ⁺ 6 ⁺		D FGH JKL R E	E(level): 59 Co(p, γ) gives 5444.6 <i>10</i> keV.
5476.04 21			D F N	
5530 <i>4</i>	(2^{+})	20 fs <i>14</i>	D GH JKL	J^{π} : L(p,t)=(2) for E=5510 30. γ to 3 ⁺ .
5612.40 <i>4</i> 5642 ^c 10			D F S T	J^{π} : $L(\alpha, \alpha')=3$ for E=5600.
5650 <mark>b</mark>			МО	
5663.03 ^m 11 5672.36 7	7+	$0.7^{\textcircled{0}}$ ps $+21-3$	DE I PRUX	
5710.79 <i>4</i>			F A D F	
5741 <i>10</i>			D CH I O	III I () (() C) 1 1 1 4 5770 20
5780.5 <i>5</i> 5785.1 <i>4</i>	(7 ⁺)		D GH L O D M U	J^{π} : L(p,t)=(6) for a multiplet at 5770 <i>30</i> .
5799 <i>4</i>	2+		D G S	
5830.8 ^d 7 5859.9 5			D G O R	
5878.05 <i>9</i>			D F M F	
5901.69 <i>10</i>	6-		E	
5902.44 <i>7</i> 5918.54 <i>21</i>			D F N D F JKL	J^{π} : L(p,t)=4 for a level at 5920 30.
,, - 				4,77

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	S		XREF	7		Comments
5931.1 <i>11</i>	1	21 fs 6						XREF: Others: AL
5946 ^c 10 5967.8 3 5973 ^c 10 5992 ^c 10 6028 10 6054 ^c 10	5-			D F B D D D D	M J jK	R T		$J^{\pi}, T_{1/2}$: From (γ, γ') , (pol γ, γ').
6066.72 11 6076.6 ^c 9 6111.5 ^c 10 6112.43 ⁿ 15	(8) ^j 7 ⁺			F D D E	Ij L IJ			J^{π} : L(p,t)=(4) for E=6070 30. XREF: I(6112).
6142 ^c 10 6181.0 ^c 7	1-	1.80 fs 28		D D	J JK	S R T		J^{π} : $L(\alpha, \alpha')=3$ for E=6160. XREF: Others: AL $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
6192 ^c 10 6229.3 11	(2+)	20 fs 4	0.023 5	D	K	Q		XREF: Others: AL J^{π} : assignment is tentative.
6239.2 <i>3</i> 6278.34 <i>11</i> 6292 ^c <i>10</i>	(6-)			A D F DE D	J N L J			
6327.21 ^c 15 6362.05 ^c 17 6382.4 4	2+	12 fs <i>3</i>		D F D F D F	J J	S		XREF: Others: AL
6403 ^c 10	1	12 18 3		D	L			T _{1/2} : From (γ, γ') , $(\text{pol } \gamma, \gamma')$. J ^{π} : L(p,t)=(3) for E=6400 30.
6431 <i>10</i> 6461.10 ^m <i>14</i> 6465.25 <i>16</i>	8+ <i>j</i> 1-	1.2 [@] ps +16-5 1.7 fs 5		D E D F	IJ	P	W	XREF: Others: AL J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
6489.28 <i>22</i> 6515.0 <i>9</i>	1+	3.0 fs 5		D F	N		W	XREF: Others: AL J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
6516.72 <i>23</i> 6551 ^c <i>10</i> 6567.33 <i>20</i>				D F D D F	K	S		J^{π} : $L(\alpha, \alpha') = 3$ for E=6530.
6587.6 <i>6</i> 6610 ^{<i>c</i>} 10	1-	1.25 fs 28		D	J	т		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
6610 10 6623 10 6647.17 9 6658 10				D D D F D	K	Т		
6672.4 <i>9</i> 6687 <i>10</i>	(9) <i>j</i>			D	I			
6718.5 10	1-	6.7 fs <i>13</i>		D				XREF: Others: AL XREF: D(6708). E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
6736.5 10	(1)	6 fs <i>3</i>		D				XREF: Others: AL XREF: D(6728). E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
6756.4 <i>3</i> 6761.39 <i>14</i> 6765 ^c <i>10</i> 6791 <i>10</i>	7 ⁽⁺⁾			D F E DE D	N L			J^{π} : L(p,t)=(3) for E=6770 30.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #				XRE	EF				Comments
6810.95 <i>16</i>	9- <i>j</i>	0.55 ps 28	DE		Ι		PQ	τ	J ,	YZ	$T_{1/2}$: from 56 Fe(7 Li,2np γ), DSA. 0.6 ps +4-2 from 58 Ni(α ,2p γ), DSA.
6834.92 ^c 19 6835.18 24			D F		K						11(4,277), 2011.
6837.2 <i>3</i> 6859 ^c 10	8-	0.6 [@] ps +5-2	DE D		Ι		P Q	T	W		
6892 ^c 10 6911.93 9	1+	1.46 fs 28	A D F	,							XREF: Others: AL XREF: AL(6913.7). J^{π} , $T_{1/2}$: From (g, γ') , $(\text{pol } \gamma, \gamma')$.
6950.4 <i>13</i> 6996.86 <i>20</i> 7027.83 ⁿ <i>15</i>	(10) ^j 8 ⁺		F E		Ι			S			$J^{\pi}: L(\alpha, \alpha') = (3,4).$
7038.7 7	1-	1.3 fs 4	E								XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7056.27 <i>14</i> 7101.4 <i>13</i>	$\frac{j}{(10)^{j}}$		F		I I						
7110 ^h 30 7207.6 3 7222.80 11 7250.0 4	8+		F F E			L N	Q	T			J^{π} : $L(p,t)=(2)$.
7290 30 7316.13 16 7339.68 25	0		F F			L		T	W		
7360.97 24 7380.3 5 7414.16 23	(8) 8 ⁺		E E F	•							
7433.45 ^m 16 7465.66 25 7473.49 24	9+ <i>j</i> (7-) 1+	2.1 fs <i>3</i>	E E F		Ι		P				XREF: Others: AL
7495.2 <i>4</i> 7531.4 <i>4</i>	8+		F E	•							J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7550 ^e 8 7552.0 <i>3</i> 7559.5 8	8 ⁻ 1 ⁻	6.5 fs 22	F			N	Q				XREF: Q(7522). XREF: Others: AL
≈7570 ^g	1	0.5 15 22	A					Т			E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7590 <i>50</i> 7627.4 <i>17</i>	<i>j</i> 1 ⁻	0.27 fs <i>3</i>			Ι				W		XREF: Others: AK, AL
7647.4 7											XREF: AK(7650). E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7657.6 8 7684.1 <i>4</i>	1+	0.97 fs <i>14</i>	F	,							XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7690.0 3	1-	0.208 fs 28	F								XREF: Others: AL J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
7691.4 <i>3</i> 7732.5 <i>4</i> 7747.6 <i>5</i>	(9 ⁻) ^j 8 ⁺ 1 ⁻	0.55 fs 21	E		I						XREF: Others: AL
7760.33 <i>18</i> 7761.8 <i>3</i>	8 ⁻ 1 ⁺	1.7 fs <i>4</i>	E F		Ι		0				E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ'). J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments	
7798.9 <i>3</i>			F		
7813.5 <i>13</i> 7818.02 <i>13</i>	j		I F		
7850.3 10	1+	1.66 fs 28	-	XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').	
7880.4 12	1+	2.6 fs 6		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
7926.7 17	1+	8.2 fs <i>36</i>		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
7950.93 24	1+	0.76 fs <i>14</i>	F	XREF: Others: AL J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
7980.81 <i>21</i>	9+		E	7 1/2	
8042.6 <i>16</i>	1+	7.7 fs 28		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
8044.26° 17 8074.4 4	9- <i>j</i> 8+	$0.04^{\textcircled{0}}$ ps $+31-4$	E I L P E	, , , , , , , , , , , , , , , , , , ,	
8086.0 5	1-	0.201 fs <i>35</i>	_	XREF: Others: AK , AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').	
8111.8 <i>12</i>	1+	3.0 fs 7		W XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
8126.6 7	1-	0.45 fs 6		XREF: Others: AK, AL XREF: AK(8124). E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').	
8189.1 7	1	1.04 fs 21		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
8261.5 8	1-	0.40 fs 6		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
8272.09 19	10-		E	E(10,01), 0, 11/2. From $(7,7), (por 7,7).$	
8286.3 <i>3</i>	(1 ⁺)		D F	Configuration= $((\nu f_{7/2})^{-1}(\nu f_{5/2}))1^+$.	
8294.0 8	1-	0.76 fs 28		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
8351.8 <i>13</i>	1+	2.4 fs 6		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
8359.3 <i>15</i>	1+	3.4 fs <i>11</i>		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
8389.9 <i>4</i>	9-		E	=(************************************	
8407 4	1-	6.3 fs <i>37</i>		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
8426.69 <i>12</i> 8430 <i>30</i>	9- 3-		E L	, , , , , , , , , , , , , , , , , , ,	
8433 ⁱ 10	8-		L N Q	XREF: N(8445).	
8451.5 <i>16</i>	1	2.3 fs 6		XREF: Others: AK, AL XREF: ak(6460).	
8464.0 <i>13</i>	1-	2.7 fs 7		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$. XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.	
8485.50 ^r 24 8504.7 3	9-		E F	E(rever), \mathbf{J} , $\mathbf{I}_{1/2}$. Profit (y,y) , $(\text{pot } y,y)$.	
8515.2 9	1-	0.69 fs <i>14</i>	•	XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	
8521.11° 17 8565.60 18 8638.5 3	10 ^{-j}	0.5 [@] ps +6-2	E I P F F	W W	
8655.4 9	1-	1.32 fs 28	•	XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').	

E(level) [†]	$J^{\pi \ddagger}$	${{ m T}_{1/2}}^{\#}$				XRE	EF		Comments
8656.8 8	1+	0.7 fs 6							XREF: Others: AL
0666 21 22				_					E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
8666.21 <i>22</i> 8688.4 <i>13</i>	1+	2.6 fs 7		F		L			XREF: Others: AL
0000.113		2.0 15 /							E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8688.92 ^m 23	10 ⁺			E	Ι				,
8747.0 <i>12</i>	1-	0.90 fs <i>21</i>							XREF: Others: AL
8768 <i>4</i>	1+	8 fs 8							E(level),J ^{π} ,T _{1/2} : From (γ,γ') ,(pol γ,γ'). XREF: Others: AK , AL
0,00	-	0 10 0							XREF: AK(8760).
0==0 < 10									E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8778.6 10	1+	1.25 fs <i>35</i>							XREF: Others: AL
8781.6 <i>10</i>	1-	1.25 fs <i>35</i>							E(level),J ^{π} ,T _{1/2} : From (γ,γ') ,(pol γ,γ'). XREF: Others: AL
0,0110 10									E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8793.6 9	1+	1.11 fs <i>35</i>							XREF: Others: AL
8846.5 <i>14</i>	1+	1.5 fs 4							E(level),J ^{π} ,T _{1/2} : From (γ,γ') ,(pol γ,γ'). XREF: Others: AL
0040.5 14	1	1.5 15 7							E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8871.7 <i>16</i>	1+	1.6 fs 4							XREF: Others: AL
0000 5 12	1+	0.02.5.21							E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
8890.5 12	1+	0.83 fs 21							XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8924.1 10	1-	0.36 fs 6							XREF: Others: AL
									E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
8959 ⁱ 10	8-	79 keV	Α			N	Q		XREF: N(8994).
9010.5 19	1-	2.1 fs 7							$T_{1/2}$: from (α,t) . XREF: Others: AL
7010.3 17	1	2.1 15 /							E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
9045.20 24		206.12		F					WRITE OIL
9053.3 24	1-	2.9 fs <i>12</i>							XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9060 <i>50</i>								W	E(iever), y , y
9068.9 <i>13</i>	1+	1.04 fs 28							XREF: Others: AL
0076 66 17									E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9076.66 <i>17</i> 9092.3 <i>8</i>	1-	0.132 fs 28		F					XREF: Others: AK, AL
									XREF: AK(9110).
0100 01 01	10-			_					E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
9123.01 ^r 21 9132.2 15	10 ⁻ 1 ⁻	0.90 fs 21		E					XREF: Others: AL
7132.2 13		0.90 13 21							E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9132.27 <mark>0</mark> 20	11- <i>j</i>	$0.18^{\textcircled{0}} \text{ ps } +10-8$		E	I		P		, , , , , , , , , , , , , , , , , , ,
9149 <i>3</i>	1-	0.69 fs <i>35</i>							XREF: Others: AL
9208 ^e 10	8-	127 keV	Α			N	Q		E(level),J ^{π} ,T _{1/2} : From (γ,γ') ,(pol γ,γ'). XREF: Q(9172).
<i>9200 10</i>	O	127 RC V	А			IN	Q		$T_{1/2}$: from (α,t) .
9256.0 25	1-	1.5 fs 7							XREF: Others: AL
9264.30 24	11-			E					E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9264.50 24 9266.5 24	1-	1.4 fs 7		Ľ					XREF: Others: AL
									E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
9274.7 15	1	2.6 fs <i>19</i>							XREF: Others: AL
9301.2 <i>15</i>	1+	0.55 fs 21							E(level),J ^{π} ,T _{1/2} : From (γ,γ') ,(pol γ,γ'). XREF: Others: AL

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
9308.3 14	1-	0.49 fs 21		E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ'). XREF: Others: AK, AL XREF: AK(9310).
9346.82 18			F	E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9352.6 2 <i>1</i>	1-	1.9 fs 8	r	XREF: Others: AL
		0.00 0.00		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9395.5 <i>15</i>	1-	0.83 fs <i>35</i>		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9410.7 <i>17</i>	1-	1.2 fs 5		XREF: Others: AL
0426.2.4	10+			E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9426.2 <i>4</i> 9453.1 <i>16</i>	10 ⁺ 1 ⁺	1.0 fs 4	Е	XREF: Others: AL
7133.1 10	1			E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9463.9 11	1-	0.21 fs 2 <i>I</i>		XREF: Others: AL
9468 <i>4</i>	1+	1.9 fs <i>12</i>		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$. XREF: Others: AL
,				E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
9504.9 <i>17</i>	1-	10 fs 4		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9599.0 <i>15</i>	1-	0.62 fs 28		XREF: Others: AL
_				E(level), J^{π} , $T_{1/2}$: From (γ, γ') ,(pol γ, γ').
9622.5 ^t 8	10-	2.0 f- 26	E	VDEE: Oderson Al
9640.2 <i>21</i>	1-	3.0 fs 26		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9659.3 8	1-	0.049 fs 14		XREF: Others: AK, AL
				XREF: AK(9663).
9665.67 ^v 22	10 ⁺		E	E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9701.4 <i>15</i>	1-	0.8 fs 5		XREF: Others: AL
0714 0 4	(10±)		E	E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9714.9 <i>4</i> 9718.27 22	(10 ⁺) 11 ⁻		E E	
9721.0 <i>18</i>	1-	1.2 fs 8		XREF: Others: AL
9751.5 23	1-	4.2 fs <i>35</i>		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$. XREF: Others: AL
9131.3 23	1	4.2 18 33		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , (pol γ, γ').
9760.42 24	11-		E	
9774.8 20	1-	1.9 fs <i>14</i>		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9807.5 19	1-	1.6 fs 10		XREF: Others: AL
0021 4	1+	1266		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9831 <i>4</i>	1+	1.3 fs 6		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9832.0 <i>21</i>	1-	1.3 fs 6		XREF: Others: AL
0071 2 20	1-	0.0.0		E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9871.3 20	1-	0.8 fs 6		XREF: Others: AL E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9887.9 <i>4</i>	10 ⁺		E	
9893.5 <i>17</i>	1-	0.49 fs 28		XREF: Others: AL
9953.7 <i>3</i>			F	E(level), J^{π} , $T_{1/2}$: From (γ, γ') , $(\text{pol } \gamma, \gamma')$.
9960.14 ^r 23	11-		E	
9989.27° 24	$(12^{-})^{j}$	$0.21^{\textcircled{0}}$ ps $+21-7$	E I P	
10029.02 <i>17</i>			F	W

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
10054.23 25	(11-)	E	
10158.6 <i>3</i>	(12^{-})	E	
10241.7 5	(11^{-})	E	
10697.3 3	12-	E	
10788.66 ^r 22	12-	E	
10825.23 25	11+	E	
10872.60 24	11 ⁺ 11 ⁺	E E	
10977.68 <i>23</i> ≈10985	11	H H	
11030.60 21	11 ⁺	E	
11044.14 ^v 24	12+	E H	
11079.1 4	(12^{-})	E	
11112.8° 3	13 ⁻ <i>j</i>	E I	
11120.6 ^t 9	12-	E L	
≈11138		H	
≈11149		Н	
≈11158		Н	(0)
≈11207&	2+	H L	Possible IAS of ⁶⁰ Co, 58-keV level, ⁶² Ni(p,t).
11224.9 ^q 5	(11^{+})	ЕН	
11255.23 ^p 20 (11387.700 17)	12 ⁺ (1 ⁻ ,2 ⁻)	E F	E(level): S(n)=11387.73 5 (2012Wa38).
≈11429	(1 ,2)	Н	E(16ve1). 5(11)–11361.73 3 (2012 wa36).
11443.40 ^s 25	13-	E H	
11493.6 5	(12^{+})	E	
11553.3 ^r 3	13-	E	
≈11599	(4.4s)	H	
11620 20	(1^{+})	D	
≈11647 ≈11702		H H	
≈11702 ≈11732		H	
11750 ^h 30		H L	J^{π} : L(p,t)=(2).
11785.6 ^q 5	(12^{+})	E	$\mathbf{J} \cdot \mathbf{E}(\mathbf{p},t) - (2)$.
11851.17 ^p 23	13+	E	
11860 ^a 20	(1^+)	D	Configuration= $((\nu f_{7/2})^{-1}(\nu f_{5/2}))1^+$.
11878.0 5	(13)	E H	
≈11932		H	TT T () (1)
11950 <i>30</i>		H L	J^{π} : L(p,t)=(4).
≈12130		Н	Possible IAS of ⁶⁰ Co, 1006-keV level, ⁶² Ni(p,t).
≈12130 12273.7° 4	14 ⁻ <i>j</i>		
$12273.7^{\circ}4$ $12333^{i}10$	8-	I	VDEE. N/19205\
≈12355? 10 ≈12355?	δ	E N Q H	XREF: N(12305).
≈12465		H	
12486.2 ^q 5	(13^{+})	E H	
12515 ^e 16	8-	H N Q	XREF: Q(12505).
12578.4 ^p 3	14+	E	
12742.1 5	13+	E	
12774.7 ^v 4 12859.3 6	14 ⁺	E	No information about a decay of this level
12859.3 6 13037.5 ⁸ 10	13 ⁺ 14 ⁻	E E	No information about γ decay of this level.
13037.3 10 13246.3 4	13 ⁺	E	
13282.3^{w} 5	(14^{+})	E	
13353.0 ^q 6	(14+)	E	

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$			XREI	7	Comments
13615.4 ^s 5	15-			E			
13662.2 ^p 4	15 ⁺			E			
13760 <i>30</i>					L		J^{π} : L(p,t)=(0).
13810.0° 5	(15^{-})			E			***
13908 ⁱ 10	8-		Α		N	Q	XREF: N(13883).
14201.0 9 6	(15^{+})			E			
14463.7 ^u 4	15 ⁺			E			
14645.5 ^v 5	16 ⁺			E			
14670 <i>30</i>					L		J^{π} : L(p,t)=(4).
14803.2 ^p 4	16 ⁺			E			
14817 ^e 10	8-	64 keV			N	Q	XREF: Q(14840).
							$T_{1/2}$: from (α,t) .
14933.9 ^w 5	16+			E			
15164.8 ^q 7	(16^+)			E			
15281.5 ^t 11	(16 ⁻)			E			
15499 ⁱ 10	8-				N	Q	XREF: N(15483).
16026.6 ^u 5	17+			E E			
16098.1 ^P 4	(17^{+})			E			
16110 23	8-				N		
16194.4 ^s 8	17-			E			
16242.0? 9 13	(17^{+})			E			
16842.4 ^v 7	18+			E			
17235.8 ^W 8	18 ⁺			E E E			
17911.6 ^u 7	19+						
18131.4 ^t 13	(18 ⁻)			E			
19238.4 ^s 11	(19-)			E			
19504.4 ^v 10 20017.9 ^w 11	20^{+}			E E			
20017.5 ^u 9	(20 ⁺) 21 ⁺			E E			
20177.5^{v} 9 22863.5^{v} 13	(22^{+})			E E			
22996.5 ^u 12	23+			E			
22770.J 12	23			E			

[†] Calculated from adopted gammas, except as noted.

 $^{^{\}ddagger}$ Spin/parity and single-particle configuration assignments for levels de-excited by γ rays are based on band structure, γ -ray multipolarities and angular distributions. See separate table for comments to individual levels.

[#] From 60 Ni(p,p' γ) p γ coin DSA, except as noted.

[@] From ⁵⁸Ni(α ,2p γ), DSA.

[&]amp; From 59 Ni(α ,2p γ), DSA. & From 59 Co(p, γ). ^a From 59 Ni(n, γ) E=thermal. ^b From 59 Co(3 He,d γ). ^c From 60 Ni(p,p'), (pol p,p').

^d From 60 Ni(p,p' γ).

^e From 59 Co(α ,t).

^f From ⁶⁰Ni($\pi^+,\pi^{+\prime}$), ($\pi^-,\pi^{-\prime}$).

From ${}^{68}\text{Ni}(\pi^{+},\pi^{+})$, 8 From ${}^{56}\text{Fe}({}^{6}\text{Li,d})$.

h From ${}^{62}\text{Ni}(\text{p,t})$.

i From ${}^{60}\text{Ni}(\text{e,e'})$.

j From ${}^{28}\text{Si}({}^{35}\text{Cl,3p})$.

- ^k From comparison with Hauser-Feshbach-Moldauer calculations in $(n,n'\gamma)$.
- ¹ Band(A): γ cascade based on g.s..
- ^m Band(B): $\Delta J=1$ structure based on 3671, 4⁺.
- ⁿ Band(C): $\Delta J=1$ structure based on 3186, 3⁺.
- ^o Band(D): Magnetic-dipole rotational band-1. Band based on 8044, 9^- state. Configuration= $\pi[1f_{7/2}^{-1}(fp)^1]\otimes \nu[1g_{9/2}^1(fp)^3]$.
- p Band(E): Magnetic-dipole rotational band-2. Band based on 11255, 12⁺ state. Configuration= π [1f⁻¹_{7/2}(fp)¹]⊗ ν [1g²_{9/2}(fp)²] or π [1f⁻¹_{7/2}1g¹_{9/2}]⊗ ν [1g¹_{9/2}(fp)³].
- ^q Band(F): Magnetic-dipole rotational band-3. Band based on 11225, (11⁺) state. Configuration= π [1f_{7/2}⁻¹(fp)¹]⊗ν[1g_{9/2}²(fp)²] or π [1f_{7/2}⁻¹1g_{9/2}¹]⊗ν[1g_{9/2}¹(fp)³].
- ^r Band(G): Magnetic-dipole rotational band-4. Band based on 8485, 9⁻ state. Configuration= $\pi[1f_{7/2}^{-1}(fp)^1]$ ⊗ $\nu[1g_{9/2}^{-1}(fp)^3]$.
- ^s Band(H): $\Delta J=2$ band based on 11443, 13⁻. Configuration= $\pi[1f_{7/2}^{-2}(fp)^2]⊗ν[1g_{9/2}^{1}(fp)^3]$.
- $^{t} \ \, \text{Band(h): } \Delta J = 2 \ \, \text{band based on } 11120, \ \, 12^{-}. \ \, \text{Configuration} = \pi [1f_{7/2}^{-2}(\text{fp})^{2}] \otimes \nu [1g_{9/2}^{1}(\text{fp})^{3}].$
- ${}^{u} \ Band(I): \ \Delta J=2 \ band \ based \ on \ 13246, \ 13^{+}. \ Configuration = \pi [1f_{7/2}^{-3}(1g_{9/2}^{1}(fp)^{2}] \otimes \ \nu [1g_{9/2}^{1}(fp)^{3}].$
- $^{\nu}$ Band(J): ΔJ =2 band based on 9665, 10^+ . Two forked spin sequences, one based on 9665, 10^+ and the other on 13282, (14⁺). Configuration= $\pi[1f_{7/2}^{-2}(1g_{9/2}^1(fp)^1]\otimes \nu[1g_{9/2}^1(fp)^3]$.
- ^w Band(j): ΔJ =2 band based on 13282, (14⁺). Two forked spin sequences, one based on 9665, 10⁺ and the other on 13282, (14⁺). Configuration= π [1f_{7/2}⁻²(1g_{9/2}¹(fp)¹]⊗ ν [1g_{9/2}¹(fp)³].

All γ data from ($^{36}\text{Ar,4p}\gamma)$ where Ey is from this reaction.

$E_i(level)$	\mathbf{J}_i^{π}	$\mathbb{E}_{\gamma}^{\ddagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{\dagger}	$I_{(\gamma+ce)}$	Comments
1332.514	2+	1332.501 ^b 5	100 ^b	0.0	0+	E2		0.0001625 23		α =0.0001625 23; α (K)=0.0001137 16; α (L)=1.108×10 ⁻⁵ 16; α (M)=1.560×10 ⁻⁶ 22 α (N)=6.73×10 ⁻⁸ 10; α (IPF)=3.61×10 ⁻⁵ 5 B(E2)(W.u.)=13.1 4
2158.632	2+	826.06 ^{&} 3	100.0 ^{&} 24	1332.514	2+	M1+E2	+0.9 3	0.000337 18		α =0.000337 18; α (K)=0.000303 17; α (L)=2.97×10 ⁻⁵ 17; α (M)=4.18×10 ⁻⁶ 23; α (N+)=1.80×10 ⁻⁷ 10 B(M1)(W.u.)=0.031 13; B(E2)(W.u.)=7.E+1 4 δ: av of +0.67 21 from ⁶⁰ Ni(p,p'γ), and +1.2 3 from ⁶⁰ Cu ε decay. Poor agreement with +0.03 +1-25 from ⁵⁶ Fe(⁷ Li,2npγ)0.2 2 from DCO (2008To15).
		2158.57 ^{&} 10	17.6 ^{&} 24	0.0	0+	(E2)		0.000439 7		B(E2)(W.u.)=0.22 7 α =0.000439 7; α (K)=4.45×10 ⁻⁵ 7; α (L)=4.32×10 ⁻⁶ 6; α (M)=6.08×10 ⁻⁷ 9; α (N+)=0.000390 6 α (N)=2.64×10 ⁻⁸ 4; α (IPF)=0.000389 6 Mult.: $\Delta \pi$ =no from J^{π} 's of connecting levels.
2284.80	0+	952.4 ^a 2 2284.87	100 ^a	1332.514	2 ⁺ 0 ⁺	ЕО			0.016	$I_{(\gamma+ce)}$: $I(E\pm)$ from 1961Pa10 is given. Ice(K)(2285)/Ice(K)(952)=0.074 16, Ice(K)(2285)/I(pair)=0.130 28, $B(E0)/B(E2)=0.027$ 4, $\rho^2<0.028$ (1981Pa10).
2505.753	4+	347.14 ^b 7	0.0076 ^b 5	2158.632	2+	E2		0.00557 8		α =0.00557 8; α (K)=0.00499 7; α (L)=0.000503 7; α (M)=7.06×10 ⁻⁵ 10; α (N+)=2.90×10 ⁻⁶ 4 α (N)=2.90×10 ⁻⁶ 4 B(E2)(W.u.)=0.19 6 Mult.: From DCO (2008To15).
		1173.228 ^b 3	100.00 ^b 3	1332.514	2+	E2(+M3)	-0.0025 22	0.0001722 25		α =0.0001722 25; α (K)=0.0001500 21; α (L)=1.465×10 ⁻⁵ 21; α (M)=2.06×10 ⁻⁶ 3 α (N)=8.88×10 ⁻⁸ 13; α (IPF)=5.42×10 ⁻⁶ 8 B(E2)(W.u.)=(5.5 17); B(M3)(W.u.)=(1.8×10 ² +32-18)

						$\underline{\gamma}$	(60Ni) (continued)	•	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{ \ddagger}$	${ m I}_{\gamma}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{ extbf{@}}$	$lpha^\dagger$	Comments
0505 552	-	2505 (02.5	20.10-6.4		<u> </u>			0.62.10=5.12	Additional information 1. δ : from 60 Co β^- decay (1925.28 d). Others: $-0.09 + 50 - 30$ from 58 Ni(α ,2p γ), $+0.02 + 18 - 2$ from 56 Fe(1,2np γ).
2505.753	4 ⁺	2505.692 5	2.0×10 ⁻⁶ 4	0.0	0+	[E4]		8.63×10 ⁻⁵ 12	α =8.63×10 ⁻⁵ 12; α (K)=7.76×10 ⁻⁵ 11; α (L)=7.58×10 ⁻⁶ 11; α (M)=1.069×10 ⁻⁶ 15; α (N+)=4.62×10 ⁻⁸ 7 α (N)=4.62×10 ⁻⁸ 7 B(E4)(W.u.)=1.8 7 E _{γ} : from E(level). Mult.: from J^{π} 's of connecting levels. Additional information 2. B(E4)(W.u.): 4.8 10 from measured B(E4)↑ in 60 Ni(e,e').
2626.06	3 ⁺	120.5 ^a 3	5.5 ^a 5	2505.753	4+	M1+E2		0.15 13	$\alpha(K)=0.14$ 12; $\alpha(L)=0.015$ 13; $\alpha(M)=0.0021$ 18; $\alpha(N+)=8.E-5$ 7 $\alpha(N)=8.E-5$ 7
		467.3 ^a 2	100 ^a 5	2158.632	2+	M1(+E2)	+0.02 +11-27	0.00102 7	α =0.00102 7; α (K)=0.00091 6; α (L)=9.0×10 ⁻⁵ 6; α (M)=1.27×10 ⁻⁵ 8; α (N+)=5.4×10 ⁻⁷ 4 α (N)=5.4×10 ⁻⁷ 4 B(M1)(W.u.)≈(0.23); B(E2)(W.u.)≈(0.76) δ : +0.38 18 (2008To15).
		1293.7 ^a 2	53 ^a 5	1332.514	2+	M1+E2	-3.1 +4-6	0.0001595 23	α =0.0001595 23; α (K)=0.0001198 18; α (L)=1.168×10 ⁻⁵ 17; α (M)=1.646×10 ⁻⁶ 24 α (N)=7.10×10 ⁻⁸ 11; α (IPF)=2.63×10 ⁻⁵ 5 B(M1)(W.u.)≈0.00053; B(E2)(W.u.)≈5.6 Mult.: from 1989Ko54 in (n,n' γ) and (36 Ar,4p γ). δ: from (n,n' γ); +0.11 15 (2008To15).
3119.87	4+	493.90 ^{&} 20	8.7 ^{&} 22	2626.06	3+	M1+(E2)	+0.25 40	0.00094 20	α =0.00094 20; α (K)=0.00085 18; α (L)=8.4×10 ⁻⁵ 18; α (M)=1.18×10 ⁻⁵ 25; α (N+)=5.1×10 ⁻⁷ 11 α (N)=5.1×10 ⁻⁷ 11 B(M1)(W.u.)=0.06 3; B(E2)(W.u.)=(3.E+1+9-3) δ : From DCO (2008To15).
		1787.20 ^{&} 10	100.0 ^{&} 22	1332.514	2+	E2		0.000281 4	α =0.000281 4; α (K)=6.30×10 ⁻⁵ 9; α (L)=6.12×10 ⁻⁶ 9; α (M)=8.62×10 ⁻⁷ 12; α (N+)=0.000211 3 α (N)=3.73×10 ⁻⁸ 6; α (IPF)=0.000211 3 B(E2)(W.u.)=9 4 Mult.: From DCO=1.10 5 (2008To15).

γ (60Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
3123.698	2+	497.9 ^a 2 613.7 3 839.2 ^a 4 965.2 ^a 3	3.68 ^a 20 4.4 11 1.01 ^a 16 0.66 ^a 14	2626.06 3+ 2284.80 0+ 2158.632 2+				Mult.: d not consistent with ΔJ^{π} .
		965.2 ^a 3 1791.6 ^a 3	$100^a 5$	1332.514 2+	M1+E2	-0.21 4	0.000237 4	α =0.000237 4; α (K)=5.93×10 ⁻⁵ 9; α (L)=5.75×10 ⁻⁶ 8; α (M)=8.10×10 ⁻⁷ 12; α (N+)=0.000171 3 α (N)=3.52×10 ⁻⁸ 5; α (IPF)=0.000171 3 B(M1)(W.u.)=0.013 +6-10; B(E2)(W.u.)=0.34 +20-28 Mult., δ : from $\gamma\gamma(\theta)$ in ⁶⁰ Cu ε decay.
		3124.1 ^a 3	10.5 ^a 6	$0.0 0^{+}$				viait.,o. Hom //(o) in Ca o accay.
3185.98	(3+)	680.30 ^{&} 15	86 ^{&} 14	2505.753 4+	M1+E2		0.00055 11	α =0.00055 11; α (K)=0.00050 10; α (L)=4.9×10 ⁻⁵ 10; α (M)=6.9×10 ⁻⁶ 14; α (N+)=2.9×10 ⁻⁷ 6 α (N)=2.9×10 ⁻⁷ 6
		1027.33 ^{&} 8	100 ^{&} 14	2158.632 2+	M1+E2	-6.1 +9-10	0.000226 4	α =0.000226 4; α (K)=0.000203 3; α (L)=1.99×10 ⁻⁵ 3; α (M)=2.80×10 ⁻⁶ 4; α (N+)=1.200×10 ⁻⁷ 17 α (N)=1.200×10 ⁻⁷ 17 B(M1)(W.u.)=0.0014 6; B(E2)(W.u.)=9.E+1 3 Mult., δ : from 1989Ko54 in (n,n' γ).
		1853.8 ^{&} 3	92 ^{&} 14	1332.514 2+	M1+E2		0.00028 3	α =0.00028 3; α (K)=5.72×10 ⁻⁵ 18; α (L)=5.55×10 ⁻⁶ 18; α (M)=7.82×10 ⁻⁷ 25; α (N+)=0.000218 24 α (N)=3.39×10 ⁻⁸ 11; α (IPF)=0.000218 24
3193.87	1+	909.2 ^a 2	42.6 <mark>a</mark> 19	2284.80 0+				a(-,) -1
		1035.2 ^a 2	78 <mark>a</mark> 4	2158.632 2+				
		1861.6 ^a 3	100 ^a 6	1332.514 2+				
2260.10	2+	3194.1 ^a 3	42.6 ^a 19	$0.0 0^{+}$				
3269.19	2+	643.2 ^a 3 984.5 ^a 6	44.0 ^a 24 3.6 ^a 20	2626.06 3 ⁺ 2284.80 0 ⁺	[E2]		0.000251 4	α =0.000251 4; α (K)=0.000225 4; α (L)=2.21×10 ⁻⁵ 4; α (M)=3.11×10 ⁻⁶ 5; α (N+)=1.334×10 ⁻⁷ 19 α (N)=1.334×10 ⁻⁷ 19 B(E2)(W.u.)=10 6
		1110.5 ^a 4	48 ^a 8	2158.632 2 ⁺				B(E2)(W.u.)=10 0
		1936.9 ^a 3 3269.4 ^a 3	100 ^a 4 35.2 ^a 20	1332.514 2 ⁺ 0.0 0 ⁺	[E2]		0.000920 13	α =0.000920 13; α (K)=2.22×10 ⁻⁵ 4; α (L)=2.14×10 ⁻⁶ 3; α (M)=3.02×10 ⁻⁷ 5; α (N+)=0.000895 13 α (N)=1.314×10 ⁻⁸ 19; α (IPF)=0.000895 13 B(E2)(W.u.)=0.23 7
	0^{+}	1159.09 ⁱ 13	1.18 ⁱ 11	2158.632 2+				

γ (60Ni) (continued)

						/(- 1.5) (- 1.5)		
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbb{E}_f]	J_f^{π} Mult.#	$lpha^\dagger$	$I_{(\gamma+ce)}$	Comments
3317.829	0+	3318.6		0.0	+ E0		0.064	$I_{(\gamma+ce)}$: I(E±) from 1961Pa10 is given. I(pair)(3318)/Ice(K)(1986)=11.5 12, B(E0)/B(E2)=0.49 8, ρ^2 =0.077 42 (1981Pa10).
3381		1222 ^c 5	100 ^c	2158.632 2	+			$\rho = 0.07742 (17011410).$
3393.14	2+	1234.51 ⁱ 7	12.6 ⁱ 7	2158.632 2				
	_	2060.58 ⁱ 3	100.0^{i} 23	1332.514 2				
		3393.05 ⁱ 20	7.4 ⁱ 7	0.0		0.000968 14		$\alpha = 0.000968 \ 14; \ \alpha(K) = 2.09 \times 10^{-5} \ 3; \ \alpha(L) = 2.02 \times 10^{-6} \ 3;$ $\alpha(M) = 2.85 \times 10^{-7} \ 4; \ \alpha(N+) = 0.000945 \ 14$ $\alpha(N) = 1.239 \times 10^{-8} \ 18; \ \alpha(IPF) = 0.000945 \ 14$
2505.52	0.4	20274	32.7 ⁱ 8	2102.07	_			B(E2)(W.u.)=0.043 +14-21
3587.72	0+	393.76 ⁱ 6	$32.7^{i} 8$ $100^{i} 2$	3193.87 1				
		1429.07^{i} 3 2255.18^{i} 5		2158.632 2				
		2255.18° 5 3588	46.4 ⁱ 15	1332.514 2			0.13	$I_{(\gamma+ce)}$: I(E±) from 1961Pa10 is given.
		3366		0.0 0	LU		0.13	I(y+ce). R(E2) from 19011 at 0 is given. I(pair)(3588)/Ice(K)(2256)=68 11, B(E0)/B(E2)(1429)=0.13 3, B(E0)/B(E2)(2256)=2.9 5 (1981Pa10).
3619.46	3+	993.46 ⁱ 10	100 ⁱ	2626.06 3				
		1113.9 ⁱ 3	33 ⁱ 4	2505.753 4	+			
		1460 ^{dk}		2158.632 2	+			
3671.16	4+	1165.2 2	100	2505.753 4	+ M1+E2	0.000162 12		α =0.000162 <i>12</i> ; α (K)=0.000142 <i>11</i> ; α (L)=1.39×10 ⁻⁵ <i>11</i> ; α (M)=1.96×10 ⁻⁶ <i>15</i> ; α (N+)=4.0×10 ⁻⁶ <i>7</i> α (N)=8.4×10 ⁻⁸ <i>6</i> ; α (IPF)=3.9×10 ⁻⁶ <i>7</i>
		1512.1 6	1.6	2158.632 2	+ [E2]	0.000189 3		α =0.000189 3; α (K)=8.75×10 ⁻⁵ 13; α (L)=8.51×10 ⁻⁶ 12; α (M)=1.199×10 ⁻⁶ 17; α (N+)=9.16×10 ⁻⁵ 13 α (N)=5.18×10 ⁻⁸ 8; α (IPF)=9.15×10 ⁻⁵ 13 B(E2)(W.u.)=1.3 9
3702.9	4+	583 1	100	3119.87 4	+			E_{γ} : from $(n,n'\gamma)$.
3730.82	4+	545.0 <i>1</i>	27 9	3185.98 (3	3 ⁺) M1+E2	0.0010 3		α =0.0010 3; α (K)=0.00089 25; α (L)=8.8×10 ⁻⁵ 25; α (M)=1.2×10 ⁻⁵ 4; α (N+)=5.3×10 ⁻⁷ 15 α (N)=5.3×10 ⁻⁷ 15
		610.9 <i>3</i>	27 9	3119.87 4	+ D			
		1105.0 4	45 9	2626.06 3	⁺ M1+E2	0.000178 <i>15</i>		α =0.000178 15; α (K)=0.000159 13; α (L)=1.56×10 ⁻⁵ 13; α (M)=2.19×10 ⁻⁶ 18; α (N+)=9.3×10 ⁻⁷ 17
		10040.3	(0.10	2505 552	+ 5			$\alpha(N)=9.5\times10^{-8} 8; \alpha(IPF)=8.4\times10^{-7} 16$
		1224.9 2 2398.4 <i>3</i>	63 <i>18</i> 100 <i>18</i>	2505.753 4 ² 1332.514 2 ²		0.000547 8		α =0.000547 8; α (K)=3.70×10 ⁻⁵ 6; α (L)=3.58×10 ⁻⁶ 5;
								$\alpha(M)=5.05\times10^{-7}$ 7; $\alpha(N+)=0.000506$ 7 $\alpha(N)=2.19\times10^{-8}$ 3; $\alpha(IPF)=0.000506$ 7 B(E2)(W.u.)=0.9 +5-9
3734.44	2+	611 <i>ak</i>	≤3 ^a	3123.698 2	+			D(D2)(11.u.)-0.7 TJ-7
3/34.44	4	1451.4 ^a 5	22^{a} 4	2284.80 0		0.0001754 25		α =0.0001754 25; α (K)=9.51×10 ⁻⁵ 14; α (L)=9.26×10 ⁻⁶ 13;

								γ ⁽⁶⁰ Ni) (contin	ued)	28 ^{N1} 32 ⁻¹⁹
	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments	
	3734.44	2+	2403.3 ^a 6	100 ^a 11	1332.514	2+			$\alpha(M)=1.304\times10^{-6} \ 19; \ \alpha(N+)=6.98\times10^{-5}$ $\alpha(N)=5.63\times10^{-8} \ 8; \ \alpha(IPF)=6.97\times10^{-5} \ 10$ B(E2)(W.u.)=10 5	_
	3734.44	2	3735.6 ^a 13	3.4 ^a 12			[E2]	0.001096 16	α =0.001096 16; α (K)=1.80×10 ⁻⁵ 3; α (L)=1.742×10 ⁻⁶ 25; α (M)=2.45×10 ⁻⁷ 4; α (N+)=0.001076 15 α (N)=1.068×10 ⁻⁸ 15; α (IPF)=0.001076 15 B(E2)(W.u.)=0.014 7	
	3798.0	1	3797.9 ^j 10	100 ^j	0.0	0+	j		B(B2)(Wal) 0.0117	
	3871.050	2+	677.17 ⁱ 5	16.7 ⁱ 4		1+				
			747.33 ⁱ 3	100^{i} 2	3123.698					
			751.9 ⁱ 4	3.2^{i} 7	3119.87					
			1244.93 ⁱ 22	2.6 ⁱ 5	2626.06					
			1712.30 ⁱ 9	91 ⁱ 2	2158.632					
			2538.53 ⁱ 4	55 ⁱ 1	1332.514					т
			3870.94 ⁱ 7	43.5 ⁱ 15		0^{+}				ron
	3887.36	2+	569.5 ⁱ 4	7 ⁱ 3	3317.829	0^{+}				From ENSDF
			693.57 ⁱ 11	30 ⁱ 3	3193.87	1+				SN
			1381.8 ⁱ 3	$28^{i} 5$	2505.753	4+				DF
			2554.69 ⁱ 10	100 ⁱ 4	1332.514					
	3895		1269 ^c 5	67 ^c	2626.06					
			2563° 5	100°	1332.514					
	3908	1	3908 ^j 3	100^{j}		U	j			
	3925.18	$2^+,3^+$	305.7 ⁱ 3	30 ⁱ 6		3 ⁺				
			739.2 ⁱ 3	57 <mark>i</mark> 10		(3^{+})				
			805.6 ⁱ 4	21 ⁱ 6		4+				
			1419.40 ⁱ 10	100 ⁱ 8	2505.753					
			1766.5 ⁱ 3	55 ⁱ 8	2158.632					
	4006.444	2+	883.1 ⁱ 3	$1.0^{i}_{.}$ 2	3123.698					
			1380.4 ⁱ 3	2.8 ⁱ 4	2626.06					
			2673.86 ⁱ 4	100 ⁱ 2	1332.514					
			4006.30 ⁱ 4	75 ⁱ 2	0.0	0+	E2	0.001190 <i>17</i>	α =0.001190 17; α (K)=1.622×10 ⁻⁵ 23; α (L)=1.566×10 ⁻⁶ 22; α (M)=2.21×10 ⁻⁷ 3; α (N+)=0.001172 α (N)=9.60×10 ⁻⁹ 14; α (IPF)=0.001172 17	
									B(E2)(W.u.)=0.8 3 Mult.: From (γ, γ') ,(pol γ, γ').	
	4019.886	1+	431.9 ⁱ 4	0.5 ⁱ 2	3587.72	0^{+}			110th (1,1),(pot 1,1).	281
	1017.000	1	702.11^{i}	1.5^{i} 2	3317.829					13 ₂
			896.23 ⁱ 6	7.1^{i} 3	3123.698					28N1 ₃₂ -19
•			1734.98 ⁱ 11	9.3^{i} 5	2284.80					,

$\gamma(^{60}\text{Ni})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{\dagger}	Comments
4019.886	1+	2687.33 ⁱ 4 4019.74 ⁱ 5	$42^{i} 1$ $100^{i} 3$	1332.514	2 ⁺ 0 ⁺	M1		0.001087 16	α =0.001087 16; α (K)=1.568×10 ⁻⁵ 22; α (L)=1.513×10 ⁻⁶ 22; α (M)=2.13×10 ⁻⁷ 3; α (N+)=0.001069 α (N)=9.29×10 ⁻⁹ 13; α (IPF)=0.001069 15 Mult.: From (γ, γ') ,(pol γ, γ').
4035		2703 ^c 5 4035 ^c 5	100 ^c 100 ^c	1332.514 0.0	2 ⁺ 0 ⁺				
4039.89	3-	853.8 ⁱ 4	$10^{i} 2$	3185.98	(3^{+})				
		1881.15 ⁱ 12	51 ⁱ 4	2158.632	2+	[E1]		0.000586 9	α =0.000586 9; α (K)=3.21×10 ⁻⁵ 5; α (L)=3.11×10 ⁻⁶ 5; α (M)=4.37×10 ⁻⁷ 7; α (N+)=0.000550 8 α (N)=1.90×10 ⁻⁸ 3; α (IPF)=0.000550 8 B(E1)(W.u.)=0.0010 5
		2707.44 ⁱ 8	$100^{i} 4$	1332.514	2+	[E1]		0.001103 16	α =0.001103 <i>16</i> ; α (K)=1.91×10 ⁻⁵ <i>3</i> ; α (L)=1.84×10 ⁻⁶ <i>3</i> ; α (M)=2.59×10 ⁻⁷ <i>4</i> ; α (N+)=0.001082 <i>16</i> α (N)=1.127×10 ⁻⁸ <i>16</i> ; α (IPF)=0.001082 <i>16</i> B(E1)(W.u.)=0.0006 <i>3</i>
4077.99	$1^+, 2^+$	1451.88 ⁱ 16	14 ⁱ 2	2626.06	3 ⁺				
		1919.28 ⁱ 7	55 ⁱ 3	2158.632	2+				
		2745.47 ⁱ 6	100 ⁱ 3	1332.514	2+				
		4077.6 ⁱ 9	9 ⁱ 2	0.0	0_{+}				
4111.96	2+	992 ^c 5	92 ^c	3119.87					
		1485.94 ⁱ 19	46 ⁱ 5	2626.06					
		1606.10 ⁱ 14	70 ⁱ 6	2505.753					
		2779.42 ⁱ 14	100 ⁱ 6	1332.514					
		4111.6 ⁱ 8	49 ⁱ 9		0+				
4165.50	5+	494.4 2	9 2	3671.16	4+	M1+E2		0.0013 5	α =0.0013 5; α (K)=0.0012 4; α (L)=0.00012 4; α (M)=1.6×10 ⁻⁵ 6; α (N+)=6.9×10 ⁻⁷ 22 α (N)=6.9×10 ⁻⁷ 22
		1044.4 2	14 4	3119.87	4+	M1+E2		0.000200 18	α =0.000200 18; α (K)=0.000180 16; α (L)=1.76×10 ⁻⁵ 16; α (M)=2.48×10 ⁻⁶ 23; α (N+)=1.07×10 ⁻⁷ 1 α (N)=1.07×10 ⁻⁷ 10
		1539.0 <i>3</i>	14 4	2626.06	3+				
		1659.6 <i>3</i>	100 9	2505.753	4+	M1+E2	-1.7 4	0.000224 6	α =0.000224 6; α (K)=7.15×10 ⁻⁵ 12; α (L)=6.94×10 ⁻⁶ 12; α (M)=9.78×10 ⁻⁷ 16; α (N+)=0.000145 5 α (N)=4.24×10 ⁻⁸ 7; α (IPF)=0.000145 5 B(M1)(W.u.)=0.0011 7; B(E2)(W.u.)=2.2 12 δ : other: -1.0 +5-4 from ⁵⁸ Ni(α ,2p γ), -1.1 +8-9 in (³⁶ Ar,4p γ).
4186.19	(4^{+})	515 <i>I</i>	67 33		4+	(D)			****
		1560.2 4	100 33	2626.06	3+	(M1+E2)		0.000186 <i>17</i>	α =0.000186 <i>17</i> ; α (K)=7.9×10 ⁻⁵ 4; α (L)=7.7×10 ⁻⁶ 4; α (M)=1.08×10 ⁻⁶ 5; α (N+)=9.8×10 ⁻⁵ <i>13</i> α (N)=4.69×10 ⁻⁸ <i>19</i> ; α (IPF)=9.8×10 ⁻⁵ <i>13</i>

γ (60Ni) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f .	J_f^{π} N	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
4191.2		462 ^{dk}		3730.82	 1 ⁺				
.1, 1,2		520 ^g			1 ⁺				
		572 ^c 5	75 ^c		3+				
		1565 ^c 5	100 ^c		3+				_
4265.00	6+	1145.67 ^e 15	5.4 ^e 8	3119.87	4 ⁺ E2	2		0.000179 3	α =0.000179 3; α (K)=0.0001583 23; α (L)=1.546×10 ⁻⁵ 22; α (M)=2.18×10 ⁻⁶ 3; α (N+)=3.06×10 ⁻⁶ 5 α (N)=9.37×10 ⁻⁸ 14; α (IPF)=2.96×10 ⁻⁶ 5 B(E2)(W.u.)=2.3 +12-7
		1759.21 ^e 15		2505.753	4+ E2	2(+M3)	-0.08 +3-7	0.000270 4	α =0.000270 4; α (K)=6.57×10 ⁻⁵ 22; α (L)=6.39×10 ⁻⁶ 21; α (M)=9.0×10 ⁻⁷ 3; α (N+)=0.000197 4 α (N)=3.89×10 ⁻⁸ 13; α (IPF)=0.000197 4 B(E2)(W.u.)=(5.0 +24-13); B(M3)(W.u.)=(7.E+4+7-6) δ : other: -0.1 +4-2 from ⁵⁸ Ni(α ,2p γ).
4294.5		1788.9 <mark>&</mark> 4	67 <mark>&</mark> 17	2505.753	1 ⁺				
		2961.8 <mark>&</mark> 4	100 <mark>&</mark> <i>17</i>	1332.514	2+				
4300.8		1181 <mark>8</mark>		3119.87					
		1795 <mark>8</mark>		2505.753					
4318.58	2+	1692.45 ⁱ 8	37 ⁱ 2	2626.06	3 ⁺				
		1813.5 ⁱ 5	21 ⁱ 2	2505.753	1 ⁺				
		2985.97 ⁱ 7	100 ⁱ 3	1332.514	2+				
		4318.52 ⁱ 11	41 ⁱ 2	0.0)+				
4335.52	2	1829.9 ⁱ 4	6^{i} 2	2505.753	1 ⁺				
		2176.84 ⁱ 4	100 ⁱ 3	2158.632	2+				
		3002.5 ⁱ 4	9 ⁱ 2	1332.514	2+				
		4335.37 ⁱ 23	31 ⁱ 3)+				
4341	(0^+)	1217 ^c 5	43 ^c	3123.698					
		2182 ^c 5	100 ^c	2158.632	2+				
4355.56	2+	3024 ^{ak}	100 <mark>a</mark>	1332.514 2	2+				
4400.0		700 <mark>gk</mark>		3702.9	1 ⁺				
		1130 ^g		3269.19	2+				
		1895 <mark>8</mark>		2505.753					
4407.46	5+	241.8 <i>I</i>	45 6		5 ⁺ D				
		676.6 2	100 10	3730.82	l ⁺ M	1+E2		0.00056 11	α =0.00056 11; α (K)=0.00050 10; α (L)=4.9×10 ⁻⁵ 10; α (M)=7.0×10 ⁻⁶ 14; α (N+)=3.0×10 ⁻⁷ 6 α (N)=3.0×10 ⁻⁷ 6
		736.4 4	61 10	3671.16	1 ⁺ M	[1+E2		0.00045 8	α =0.00045 8; α (K)=0.00041 7; α (L)=4.0×10 ⁻⁵ 7; α (M)=5.6×10 ⁻⁶ 10; α (N+)=2.4×10 ⁻⁷ 4 α (N)=2.4×10 ⁻⁷ 4
		1288.3 4	13 <i>3</i>	3119.87	1 ⁺ M	1+E2		0.000151 11	
		1200.5 1	155	5117.07	. 171			0.000131 11	a 0.000151 11, a(11)=0.000110 /, a(1)=1.15×10 /,

						Adopted	Levels, Gamn	nas (continued)
							γ ⁽⁶⁰ Ni) (conti	nued)
$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
								$\alpha(M)=1.59\times10^{-6}\ 10;\ \alpha(N+)=2.2\times10^{-5}\ 4$ $\alpha(N)=6.9\times10^{-8}\ 4;\ \alpha(IPF)=2.2\times10^{-5}\ 4$
4407.46	5+	1781.3 <i>3</i>	29 3	2626.06	3 ⁺	E2	0.000278 4	$\alpha(N)=6.9\times10^{-6}$ 4; $\alpha(IPF)=2.2\times10^{-6}$ 4 $\alpha=0.000278$ 4; $\alpha(K)=6.34\times10^{-5}$ 9; $\alpha(L)=6.16\times10^{-6}$ 9; $\alpha(M)=8.68\times10^{-7}$ 13; $\alpha(N+)=0.000208$ 3 $\alpha(N)=3.76\times10^{-8}$ 6; $\alpha(IPF)=0.000208$ 3
		1901.70 <i>15</i>	48 6	2505.753				<i>u</i> (N)=5.70×10 0, <i>u</i> (IFF)=0.000208 3
4450.7		1945 ⁸ 3118 ⁸		2505.753 1332.514				
4493.16	2+	758.5 ⁱ 4	8 ⁱ 2	3734.44				
4473.10	2	1306.5^{i} 5	7^{i} 2	3185.98				
		2334.4^{i} 3	12^{i} 2	2158.632				
		3160.60 ⁱ 6	100 ⁱ 3	1332.514				
		4494.0 <mark>a</mark> 7	6.8 ^a 14	0.0	0_{+}			
4534.14	2+	2028.5 ⁱ 5	63 ⁱ 17	2505.753				
		2375.6 ⁱ 3	100 ⁱ 14	2158.632				
		3203 <i>ak</i>	54 ^a 18	1332.514				
		4536 <i>ak</i>	$\leq 10^a$	0.0	0+			
4547.96	1+,2+	813.48 ⁱ 7	20^{i} 1	3734.44	2+			
		$1154.82^{i} 12$ $1354.08^{i} 9$	13 ⁱ 1 19 ⁱ 2	3393.14 3193.87	2+			
		1334.08^{i} 9 1424.24^{i} 4	72 ⁱ 2	3123.698				
		2263.17^{i} 4	$100^{i} 2$	2284.80				
		2389.25^{i} 5	86 ⁱ 2	2158.632				
		3215.27 ⁱ 8	35^{i} 2	1332.514				
		4548.2^{i} 3	47 ⁱ 5	0.0	0+			
4577.45	2+	1308.16^{i} 25	29 ⁱ 4	3269.19				
	_	2418.65 ⁱ 20	28 ⁱ 4	2158.632				
		3244.90 ⁱ 9	100 ⁱ 4	1332.514				
		4577.37 ⁱ 14	95 ⁱ 6	0.0	0^{+}			
4579.0	(4 ⁺)	1952.9 5	100	2626.06	3+	M1+E2	0.00032 3	α =0.00032 3; α (K)=5.21×10 ⁻⁵ 15; α (L)=5.05×10 ⁻⁶ 15; α (M)=7.11×10 ⁻⁷ 21; α (N+)=0.00026 3 α (N)=3.09×10 ⁻⁸ 9; α (IPF)=0.00026 3
4760.23	1,2	1491.5 ⁱ 3	31 ⁱ 6	3269.19	2+			(,,
	-	1636.42 ⁱ 13	85 ⁱ 6	3123.698				
		2601.5 ⁱ 4	26 ⁱ 6	2158.632				
		3428.0 ⁱ 4	100 ⁱ 3	1332.514				
		4760.1 ⁱ 4	56 ⁱ 7	0.0				
4768		1644 ^c 5 2142 ^c 5	100 ^c 82 ^c	3123.698 2626.06				
•		4144 J	04	2020.00	5			•

667.4ⁱ 5

4779.13

4111.96 2+

γ (60Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
4779.13		1385.97 ⁱ 14	28 ⁱ 4	3393.14	2+			
		1585.33 ⁱ 13	54 ⁱ 4	3193.87				
		2493.8 ⁱ 3	26 ⁱ 2	2284.80				
		2620.40 ⁱ 8	100 ⁱ 4	2158.632				
		3446.77 ⁱ 17	65 ⁱ 6	1332.514				
4800.0		2641.3 ^{&k} 5	100 <mark>&</mark>	2158.632				
4843.93	2+	3511.07 ⁱ 18	45 ⁱ 2	1332.514				
1010.55	-	4843.76 ⁱ 9	100 ⁱ 4	0.0	0+	E2	0.001458 21	α =0.001458 21; α (K)=1.228×10 ⁻⁵ 18; α (L)=1.185×10 ⁻⁶ 17; α (M)=1.669×10 ⁻⁷ 24 α (N)=7.27×10 ⁻⁹ 11; α (IPF)=0.001444 21
10.10.0			10.1020	2260.40				Mult.: From (γ, γ') , (pol γ, γ').
4848.9	1,2,3	1579.5 ^a 6 3518 ^a 2	$1.0 \times 10^{2a} 4$ $2. \times 10^{1a} 1$	3269.19				
4859		3518 ^a 2 3527 ^c 5	2.×10 ¹⁴ 1 61 ^c	1332.514 1332.514				
4037		4859 ^c 5	100°C	0.0	0+			
4928.98		1194.4 ⁱ 5	38 ⁱ 13	3734.44				
1,720.70		2770.5^{i} 3	98 ⁱ 13	2158.632				
		3596.4 ⁱ 4	100 ⁱ 15	1332.514				
4953.36		841.2 ⁱ 3	14 ⁱ 3	4111.96	2+			
4733.30		913.63 ⁱ 14	$40^{i} 4$		3-			
		1684.4 ⁱ 3	26^{i} 5	3269.19	2+			
		3620.64^{i} 14	100 ⁱ 7	1332.514				
4958	4+	2452 ^c 5	100°/	2505.753				
1750	•	3626 ^c 5	67 ^c	1332.514				
4970.6		1299 ^c 5	25 ^c	3671.16				
		2344 ^c 5	100 ^c	2626.06				
		3638 ^g		1332.514				
4986.00	(6 ⁺)	578.3 3	17 <i>4</i>	4407.46	5 ⁺	M1+E2	0.00084 22	α =0.00084 22; α (K)=0.00076 20; α (L)=7.5×10 ⁻⁵ 20; α (M)=1.1×10 ⁻⁵ 3; α (N+)=4.5×10 ⁻⁷ 11 α (N)=4.5×10 ⁻⁷ 11
		720.9 2	51 4	4265.00	6+	D		
		820.5 2	13.2 19	4165.50	5+	M1+E2	0.00035 5	α =0.00035 5; α (K)=0.00031 5; α (L)=3.1×10 ⁻⁵ 5; α (M)=4.3×10 ⁻⁶ 7; α (N+)=1.9×10 ⁻⁷ 3 α (N)=1.9×10 ⁻⁷ 3
		1255.8 2	9.4 19	3730.82	4+	E2	0.0001623 23	α =0.0001623 23; α (K)=0.0001291 18; α (L)=1.260×10 ⁻⁵ 18; α (M)=1.774×10 ⁻⁶ 25 α (N)=7.64×10 ⁻⁸ 11; α (IPF)=1.88×10 ⁻⁵ 3 B(E2)(W.u.)=0.5 +4-5
		1314.5 2	34 4	3671.16	4+	E2	0.0001619 23	α =0.0001619 23; α (K)=0.0001170 17; α (L)=1.141×10 ⁻⁵ 16; α (M)=1.606×10 ⁻⁶ 23

$E_i(level)$	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
4986.00	(6 ⁺)	1867.0 <i>3</i>	11.3 19	3119.87	4+	E2	0.000312 5	$\alpha(N)=6.93\times10^{-8}\ 10;\ \alpha(IPF)=3.18\times10^{-5}\ 5$ B(E2)(W.u.)=1.5 +11-15 $\alpha=0.000312\ 5;\ \alpha(K)=5.80\times10^{-5}\ 9;\ \alpha(L)=5.63\times10^{-6}\ 8;$ $\alpha(M)=7.94\times10^{-7}\ 12;\ \alpha(N+)=0.000248\ 4$ $\alpha(N)=3.44\times10^{-8}\ 5;\ \alpha(IPF)=0.000248\ 4$
		2480.6 <i>3</i>	100 6	2505.753	4+	E2	0.000584 9	B(E2)(W.u.)=0.09 +7-9 α =0.000584 9; α (K)=3.49×10 ⁻⁵ 5; α (L)=3.38×10 ⁻⁶ 5; α (M)=4.76×10 ⁻⁷ 7; α (N+)=0.000546 8 α (N)=2.07×10 ⁻⁸ 3; α (IPF)=0.000546 8
5014.45	(5-)	749.5 3	3 3	4265.00	6+	E1	0.000189 3	B(E2)(W.u.)=0.18 +13-18 α =0.000189 3; α (K)=0.0001700 24; α (L)=1.655×10 ⁻⁵ 24; α (M)=2.33×10 ⁻⁶ 4; α (N+)=1.002×10 ⁻⁷ α (N)=1.002×10 ⁻⁷ 14
		828.3 3	6 3	4186.19	(4+)	(E1)	0.0001528 22	α =0.0001528 22; α (K)=0.0001375 20; α (L)=1.337×10 ⁻⁵ 19; α (M)=1.88×10 ⁻⁶ 3 α (N)=8.11×10 ⁻⁸ 12
		848.9 <i>I</i>	3 3	4165.50	5+	E1	0.0001452 <i>21</i>	α =0.0001452 21; α (K)=0.0001307 19; α (L)=1.271×10 ⁻⁵ 18; α (M)=1.79×10 ⁻⁶ 3 α (N)=7.71×10 ⁻⁸ 11
		1283.8 4	9 3	3730.82	4+	E1	0.0001733 25	α =0.0001733 25; α (K)=5.97×10 ⁻⁵ 9; α (L)=5.78×10 ⁻⁶ 9; α (M)=8.14×10 ⁻⁷ 12; α (N+)=0.0001070 1 α (N)=3.52×10 ⁻⁸ 5; α (IPF)=0.0001070 16
		1343.3 2	55 6	3671.16	4+	E1	0.000208 3	α =0.000208 3; α (K)=5.52×10 ⁻⁵ 8; α (L)=5.35×10 ⁻⁶ 8; α (M)=7.53×10 ⁻⁷ 11; α (N+)=0.0001466 21 α (N)=3.26×10 ⁻⁸ 5; α (IPF)=0.0001465 21
		1894.7 3	100 10	3119.87	4+	E1	0.000595 9	α =0.000595 9; α (K)=3.18×10 ⁻⁵ 5; α (L)=3.07×10 ⁻⁶ 5; α (M)=4.33×10 ⁻⁷ 6; α (N+)=0.000560 8 α (N)=1.88×10 ⁻⁸ 3; α (IPF)=0.000560 8
		2508.7 4	87 10	2505.753	4+	E1	0.000989 14	α =0.000989 14; α (K)=2.12×10 ⁻⁵ 3; α (L)=2.05×10 ⁻⁶ 3; α (M)=2.88×10 ⁻⁷ 4; α (N+)=0.000966 14 α (N)=1.251×10 ⁻⁸ 18; α (IPF)=0.000966 14
5048.3	1,2	2889.6 ^a 7	1.0×10 ² <i>a</i> 4	2158.632	2+			α(11)-1.231×10 10, α(111)-0.000200 14
	-	3716 ^{ak}	≤35 ^a	1332.514	2+			
5065.02	(1=)	5048 ^a 3 3732.23 ⁱ 22	9 ^a 5 30 ⁱ 3	0.0	0 ⁺			
5065.02	(1-)	5064.79 ⁱ 7	$30^{i} \ 3$ $100^{i} \ 3$	1332.514 0.0	0 ⁺			
5091.1		2465 ^f	100 f	2626.06	-			
5106		1435 ^c 5	100°C	3671.16	4+			
5120.7	4+	2600 ^c 5 2615 ^g 3788 ^g	82 ^c	2505.753 2505.753 1332.514	4+			

							<i>y</i> (1 v .	i) (continued)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	$lpha^\dagger$	Comments
5127.16		1392.3 ⁱ 5	18 ⁱ 7	3734.44	2+				
3127.10		3794.8^{i} 4	100^{i} 13	1332.514					
5133		3800° 5	100°13	1332.514					
5148.51	6+	740.9 2	100 10	4407.46		M1+E2	+0.4 1	0.000391 11	α =0.000391 11; α (K)=0.000351 10; α (L)=3.44×10 ⁻⁵ 10; α (M)=4.84×10 ⁻⁶ 14; α (N+)=2.09×10 ⁻⁷ 6 α (N)=2.09×10 ⁻⁷ 6
		883.5 <i>1</i>	28.6 24	4265.00	6+	D			
		982.9 3	11.9 24	4165.50	5+	M1+E2		0.000229 23	α =0.000229 23; α (K)=0.000206 21; α (L)=2.01×10 ⁻⁵ 21; α (M)=2.8×10 ⁻⁶ 3; α (N+)=1.22×10 ⁻⁷ 12 α (N)=1.22×10 ⁻⁷ 12
		1477.3 4	4.8 24	3671.16	4+	E2		0.000181 3	α =0.000181 3; α (K)=9.17×10 ⁻⁵ 13; α (L)=8.92×10 ⁻⁶ 13; α (M)=1.257×10 ⁻⁶ 18; α (N+)=7.87×10 ⁻⁵ 12 α (N)=5.43×10 ⁻⁸ 8; α (IPF)=7.86×10 ⁻⁵ 12
		2029.0 5	7.1 24	3119.87	4+	E2		0.000381 6	α =0.000381 6; α (K)=4.98×10 ⁻⁵ 7; α (L)=4.83×10 ⁻⁶ 7; α (M)=6.80×10 ⁻⁷ 10; α (N+)=0.000326 5 α (N)=2.95×10 ⁻⁸ 5; α (IPF)=0.000326 5
		2643.0 4	60 7	2505.753	4+	E2		0.000657 10	α =0.000657 10; α (K)=3.14×10 ⁻⁵ 5; α (L)=3.04×10 ⁻⁶ 5; α (M)=4.28×10 ⁻⁷ 6; α (N+)=0.000622 9 α (N)=1.86×10 ⁻⁸ 3; α (IPF)=0.000622 9
5174		2548 ^c 5	100 ^C	2626.06	3+				$u(11)-1.00 \times 10^{-3}$, $u(111)-0.000022$
5191.7		927^{h}	100	4265.00					
5205		2699° 5	100°C	2505.753					
5236.20	5(+)	2116.0 <i>I</i>	100	3119.87		D+Q			
5244	4+	2120° 5	100 ^C	3123.698					
5288.55		1248.86 ⁱ 15	100 ⁱ 12	4039.89	3-				
		3955.2 ⁱ 6	69 ⁱ 17	1332.514	2+				
		5287.8 ⁱ 7	61 ⁱ 14	0.0	0^{+}				
5318		2812 ^c 5	100 ^C	2505.753	4+				
5348.79	7-	200.2 1	5.3 4	5148.51		E1		0.00621 9	α =0.00621 9; α (K)=0.00558 8; α (L)=0.000547 8; α (M)=7.67×10 ⁻⁵ 11; α (N+)=3.22×10 ⁻⁶ 5 α (N)=3.22×10 ⁻⁶ 5 B(E1)(W.u.)=8.7×10 ⁻⁶ 10
		334.2 1	16.9 8	5014.45	(5 ⁻)	E2		0.00636 9	α =0.00636 9; α (K)=0.00570 8; α (L)=0.000575 8; α (M)=8.06×10 ⁻⁵ 12; α (N+)=3.30×10 ⁻⁶ 5 α (N)=3.30×10 ⁻⁶ 5
		362.8 1	7.6 6	4986.00	(6 ⁺)	E1		0.001128 <i>16</i>	B(E2)(W.u.)=4.9 5 α =0.001128 16; α (K)=0.001014 15; α (L)=9.92×10 ⁻⁵ 14; α (M)=1.395×10 ⁻⁵ 20; α (N+)=5.93×10 ⁻⁷ α (N)=5.93×10 ⁻⁷ 9
		1083.6 2	100.0 4	4265.00	6+	E1		9.00×10 ⁻⁵ 13	B(E1)(W.u.)= $2.10 \times 10^{-6} 25$ $\alpha = 9.00 \times 10^{-5} 13$; α (K)= $8.10 \times 10^{-5} 12$; α (L)= 7.86×10^{-6}
		1005.0 2	100.0 4	4203.00	U	EI		7.00X10 13	$\alpha = 3.00 \land 10$ 13, $\alpha(\mathbf{K}) = 6.10 \land 10$ 12, $\alpha(\mathbf{L}) = 7.80 \land 10$

							γ ⁽⁶⁰ Ni) (continued	d)		⁶⁰ ₂₈ Ni ₃₂ -26
	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{ \ddagger}$	I_{γ}	E_f J	\int_{f}^{π} Mult.#	$\delta^{ extit{@}}$	$lpha^\dagger$	Comments	01
	5348.79	7-	2843.0 1	3.7 4	2505.753 4+	E3		0.000528 8	11; $\alpha(M)=1.106\times10^{-6}$ 16; $\alpha(N+)=4.78\times10^{-8}$ 7 $\alpha(N)=4.78\times10^{-8}$ 7 B(E1)(W.u.)=1.04×10 ⁻⁶ 9 α =0.000528 8; $\alpha(K)=4.11\times10^{-5}$ 6; $\alpha(L)=3.99\times10^{-6}$ 6; $\alpha(M)=5.62\times10^{-7}$ 8; $\alpha(N+)=0.000482$ 7 $\alpha(N)=2.44\times10^{-8}$ 4; $\alpha(IPF)=0.000482$ 7 B(E3)(W.u.)=0.42 6	
	5379 5410.8	2+	2255c 5 2905f 1091.42i 9	100 ^c 100 ^f 94 ⁱ 5	3123.698 2 ⁺ 2505.753 4 ⁺					
	5446.98	2+	1091.42^{i} 9 1575.84^{i} 13 3288.5^{i} 3 4114.4^{i} 6	$94^{i} \ 3$ $100^{i} \ 7$ $27^{i} \ 7$ $99^{i} \ 12$	4355.56 2 ⁺ 3871.050 2 ⁺ 2158.632 2 ⁺ 1332.514 2 ⁺					
	5449.5	6+	2944.4 7	100	2505.753 4 ⁺			0.000787 11	α =0.000787 11; α (K)=2.62×10 ⁻⁵ 4; α (L)=2.54×10 ⁻⁶ 4; α (M)=3.58×10 ⁻⁷ 5; α (N+)=0.000758 11 α (N)=1.554×10 ⁻⁸ 22; α (IPF)=0.000758 11	Fro
96	5476.04		$1888.4^{i} \ 3$ $2282.0^{i} \ 3$	100 ⁱ 13 81 ⁱ 13	3587.72 0 ⁺ 3193.87 1 ⁺				22, 4(22)	From ENSDF
	5530	(2+)	2904 ^c 5 3371 ^c 5	67 ^c 100 ^c	2626.06 3 ⁺ 2158.632 2 ⁺					DF
	5612.40		851.9 ⁱ 3 1064.2 ⁱ 4 1592.53 ⁱ 4 1741.3 ⁱ 5 1878.0 ⁱ 4 2488.73 ⁱ 10 3453.67 ⁱ 11 4279.8 ⁱ 4 5611.8 ⁱ 4	4.5 ⁱ 7 4.8 ⁱ 9 100 ⁱ 3 3.0 ⁱ 9 5 ⁱ 1 20 ⁱ 1 30 ⁱ 1 7.7 ⁱ 14 8.2 ⁱ 12	4760.23 1,2 4547.96 1 ⁺ 4019.886 1 ⁺ 3871.050 2 ⁺ 3734.44 2 ⁺ 3123.698 2 ⁺ 2158.632 2 ⁺ 1332.514 2 ⁺ 0.0 0 ⁺	,2 ⁺				
	5663.03	7+	514.4 2	11.1 19	5148.51 6+	M1+E2		0.0012 4	α =0.0012 4; α (K)=0.0010 4; α (L)=0.00010 4; α (M)=1.5×10 ⁻⁵ 5; α (N+)=6.2×10 ⁻⁷ 18 α (N)=6.2×10 ⁻⁷ 18	
			677.7 2	100 7	4986.00 (6	M1+E2	+0.18 +17-16	0.000454 19	α =0.000454 19; α (K)=0.000408 17; α (L)=4.00×10 ⁻⁵ 17; α (M)=5.63×10 ⁻⁶ 23; α (N+)=2.43×10 ⁻⁷ 1 α (N)=2.43×10 ⁻⁷ 10 B(M1)(W.u.)=0.048 +21-48; B(E2)(W.u.)=6 +12-6	
			1255.1 3	22.2 19	4407.46 5+	E2		0.0001624 23	α =0.0001624 23; α (K)=0.0001293 19; α (L)=1.261×10 ⁻⁵ 18; α (M)=1.776×10 ⁻⁶ 25 α (N)=7.65×10 ⁻⁸ 11; α (IPF)=1.86×10 ⁻⁵ 3 B(E2)(W.u.)=2.0 +9-20	⁶⁰ ₂₈ Ni ₃₂ -26
			1397.7 2	69 <i>6</i>	4265.00 6+	M1(+E2)	-0.12 13	0.0001438 23	$\alpha = 0.0001438 \ 23; \ \alpha(K) = 9.35 \times 10^{-5} \ 14;$	5

 $E_i(level)$

 \mathbf{J}_i^{π}

 E_{γ}^{\ddagger}

 I_{γ}

 \mathbf{J}_{f}^{π}

Mult.#

 $\delta^{@}$

 α^{\dagger}

Comments

 $\alpha(L)=9.08\times10^{-6}\ 14;\ \alpha(M)=1.280\times10^{-6}\ 19;$ $\alpha(N+..)=3.99\times10^{-5}$

From ENSDF

γ (60Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
5663.03	7+	1498.0 4	3.7 19	4165.50	5+	E2		0.000185 3	$\alpha(N)=5.56\times10^{-8} \ 9; \ \alpha(IPF)=3.98\times10^{-5} \ 9$ B(M1)(W.u.)=(0.0038 +17-38); B(E2)(W.u.)=(0.05 +12-5); \$\alpha=0.000185 \ 3; \ \alpha(K)=8.91\times10^{-5} \ 13; \ \alpha(L)=8.67\times10^{-6} \ 13; \$\alpha(M)=1.222\times10^{-6} \ 18; \ \alpha(N+)=8.62\times10^{-5} \ 13\$ \$\alpha(N)=5.28\times10^{-8} \ 8; \ \alpha(IPF)=8.62\times10^{-5} \ 13\$ B(E2)(W.u.)=0.14 +10-14
5672.36		2478.42 ⁱ 7	100 ⁱ 4	3193.87	1+				2(22)(····al) 0.11 · · 10 11
		3046.7 ⁱ 7	13 ⁱ 4	2626.06	3 ⁺				
		3513.6 ⁱ 3	56 ⁱ 6	2158.632	2+				
5710.79		1632.99 ⁱ 18	15 ⁱ 1	4077.99	$1^+, 2^+$				
		2317.65 ⁱ 20	13 ⁱ 2	3393.14	2+				
		2392.6 ⁱ 3	11 ⁱ 1	3317.829	0^{+}				
		2517.00 ⁱ 9	68 ⁱ 2	3193.87	1+				
		2586.98 ⁱ 12	20^{i} 1	3123.698	2+				
		3426.3 ⁱ 5	26 ⁱ 7	2284.80	0^{+}				
		3551.94 ⁱ 14	36 ⁱ 2	2158.632	2+				
		5710.52 ⁱ 10	100 ⁱ 4	0.0	0_{+}				
5780.5		3153.6 <mark>&</mark> 7	82 <mark>&</mark> 13	2626.06	3+				
		3275.4 <mark>&</mark> 7	100 & <i>13</i>	2505.753	4+				
5785.1	(7^{+})	799.0 <mark>ek</mark> 2	100 ^e	4986.00	(6^{+})	D(+Q)	-0.07 + 9 - 27		
5799	2+	3293^{d} 5		2505.753	4+				
		4467 ^d 5		1332.514					
5830.8		2711 ⁸		3119.87					
5050.0		4498 <i>g</i>	100	1332.514					
5859.9		3700.9 ⁱ 9	100 ⁱ	2158.632					
5878.05		2684.19 ⁱ 12 4545.9 ⁱ 5	100 ⁱ 5 45 ⁱ 9	3193.87					
5901.69	6-	4545.9° 5 1637.0 <i>1</i>	45° 9 38 8	1332.514 4265.00		E1		0.000411 6	α =0.000411 6; α (K)=3.98×10 ⁻⁵ 6; α (L)=3.86×10 ⁻⁶ 6;
3901.09	O	1037.0 1	36 0	4203.00	O	EI		0.000411 0	α =0.000411 6, α (K)=5.98×10 6, α (L)=5.80×10 6, α (M)=5.43×10 ⁻⁷ 8; α (N +)=0.000366 6 α (N)=2.35×10 ⁻⁸ 4; α (IPF)=0.000366 6
		1736.0 <i>I</i>	100 8	4165.50	5+	E1		0.000483 7	α =0.000483 7; α (K)=3.63×10 ⁻⁵ 5; α (L)=3.52×10 ⁻⁶ 5; α (M)=4.95×10 ⁻⁷ 7; α (N+)=0.000442 7 α (N)=2.15×10 ⁻⁸ 3; α (IPF)=0.000442 7
5902.44		2633.3 ⁱ 3	18 ⁱ 3	3269.19	2+				
		3276.32 ⁱ 20	24 ⁱ 3	2626.06	3 ⁺				
		3743.71 ⁱ 13	100 ⁱ 5	2158.632					
5918.54		1562.8 ⁱ 3	100 ⁱ 10	4355.56					

$\gamma(^{60}\text{Ni})$ (continued)

							/()	(**************************************	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{\dagger}	Comments
5918.54		2525.4^{i} 3	83 ⁱ 15	3393.14	2+				
5931.1	1	5930.8 ^j 11	100 ^j	0.0	0^{+}	j			
5967.8		1474.6 ⁱ 3	100 ⁱ 13	4493.16	2+				
		5967.5 ⁱ 8	29 ⁱ 11	0.0	0^{+}				
6066.72		1532.65 ⁱ 12	60 ⁱ 6	4534.14	2+				
		2797.7 ⁱ 5	23 ⁱ 6	3269.19	2+				
		3440.37 ⁱ 17	100 ⁱ 9	2626.06	3 ⁺				
		6067.2 ⁱ 8	15 ⁱ 6	0.0	0^{+}				
6076.6	(8)	727 ^h		5348.79	7-				
6111.5	(-)	963 ^h		5148.51	6+				
6112.43	7+	963.7 3	100 7	5148.51	6+	M1+E2	+0.3 2	0.000219 7	α =0.000219 7; α (K)=0.000197 6; α (L)=1.92×10 ⁻⁵ 6; α (M)=2.70×10 ⁻⁶ 9; α (N+)=1.17×10 ⁻⁷ 4 α (N)=1.17×10 ⁻⁷ 4
		1847.2 5	61 7	4265.00	6+	M1+E2		0.00028 3	α =0.00028 3; α (K)=5.76×10 ⁻⁵ 18; α (L)=5.59×10 ⁻⁶ 18; α (M)=7.87×10 ⁻⁷ 25; α (N+)=0.000215 24 α (N)=3.42×10 ⁻⁸ 11; α (IPF)=0.000215 24
		1946.6 5	29 4	4165.50	5+	E2		0.000346 5	α =0.000346 5; α (K)=5.37×10 ⁻⁵ 8; α (L)=5.21×10 ⁻⁶ 8; α (M)=7.34×10 ⁻⁷ 11; α (N+)=0.000286 4 α (N)=3.18×10 ⁻⁸ 5; α (IPF)=0.000286 4
6181.0	1-	4848.4 <i>14</i>	10 4	1332.514	2+				a(1) 3.10×10 3, a(111) 0.000200 7
		6180.6 7	100 <i>I</i>	0.0	0_{+}	E1			$\alpha(IPF) = 0.00233 \ 4$
6229.3	(2^{+})	6229.0 ^j 11	100 <i>j</i>	0.0	0_{+}	$(E2)^{j}$			$\alpha(IPF) = 0.00180 \ 3$
6239.2		4906.1 ⁱ 5	100 ⁱ	1332.514					
6278.34	(6-)	1042.0 <i>I</i>	75 33	5236.20	5 ⁽⁺⁾	(E1)		9.68×10 ⁻⁵ <i>14</i>	α =9.68×10 ⁻⁵ 14; α (K)=8.71×10 ⁻⁵ 13; α (L)=8.46×10 ⁻⁶ 12; α (M)=1.191×10 ⁻⁶ 17; α (N+)=5.14×10 ⁻⁸ 8 α (N)=5.14×10 ⁻⁸ 8
		1264.0 ^g 1	100 33	5014.45	(5 ⁻)	(M1+E2)		0.000151 11	α =0.000151 <i>11</i> ; α (K)=0.000120 <i>8</i> ; α (L)=1.17×10 ⁻⁵ <i>8</i> ; α (M)=1.65×10 ⁻⁶ <i>11</i> ; α (N+)=1.8×10 ⁻⁵ <i>3</i> α (N)=7.1×10 ⁻⁸ <i>5</i> ; α (IPF)=1.8×10 ⁻⁵ <i>3</i>
6327.21	2+	1568.0 ⁱ 5	14 ⁱ 3	4760.23	1,2				
		2320.7 ⁱ 4	25 ⁱ 4	4006.444	2+				
		3058.0 ⁱ 7	16 ⁱ 4	3269.19	2+				
		4168.32 ⁱ 19	100 ⁱ 8	2158.632	2+				
6362.05		749.7 ⁱ 3	100 ⁱ 12	5612.40					
		3167.7 ⁱ 4	90 ⁱ 10	3193.87	1+				
6382.4	1	6382.3 ⁱ 5	100 <i>i</i>	0.0	0^{+}				
6461.10	8+	348.7 2	9 3	6112.43	7+	M1+E2		0.0037 18	α =0.0037 18; α (K)=0.0034 16; α (L)=0.00034 16; α (M)=4.7×10 ⁻⁵ 23; α (N+)=2.0×10 ⁻⁶ 9 α (N)=2.0×10 ⁻⁶ 9
		798.1 2	100 5	5663.03	7+	M1+E2	+0.45 5	0.000335 6	α =0.000335 6; α (K)=0.000301 6; α (L)=2.94×10 ⁻⁵ 6;

${\bf Adopted\ Levels,\ Gammas\ (continued)}$

γ (60Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
(4(1.10	0+	1212 4 4	27.3	5148.51	C +	F2	0.0001618.22	$\alpha(M)=4.15\times10^{-6} 8; \ \alpha(N+)=1.79\times10^{-7} 3$ $\alpha(N)=1.79\times10^{-7} 3$ $\alpha(M)=1.79\times10^{-7} 3$ $\alpha(M)=1.79\times10^{-7} 3$ $\alpha(M)=1.79\times10^{-7} 3$ $\alpha(M)=1.79\times10^{-7} 3$
6461.10	8+	1312.4 4	27 3	3148.31	0.	E2	0.0001618 23	α =0.0001618 23; α (K)=0.0001174 17; α (L)=1.145×10 ⁻⁵ 16; α (M)=1.612×10 ⁻⁶ 23 α (N)=6.95×10 ⁻⁸ 10; α (IPF)=3.13×10 ⁻⁵ 5 B(E2)(W.u.)=1.5 +7-15
		1475.0 4	16 <i>I</i>	4986.00	(6 ⁺)	E2	0.000180 3	α =0.000180 3; α (K)=9.20×10 ⁻⁵ 13; α (L)=8.95×10 ⁻⁶ 13; α (M)=1.261×10 ⁻⁶ 18; α (N+)=7.79×10 ⁻⁵ 11 α (N)=5.45×10 ⁻⁸ 8; α (IPF)=7.78×10 ⁻⁵ 11 B(E2)(W.u.)=0.49 +21-49
		2195.9 5	6 1	4265.00	6+	E2	0.000456 7	α =0.000456 7; α (K)=4.32×10 ⁻⁵ 6; α (L)=4.18×10 ⁻⁶ 6; α (M)=5.89×10 ⁻⁷ 9; α (N+)=0.000408 6 α (N)=2.56×10 ⁻⁸ 4; α (IPF)=0.000408 6 B(E2)(W.u.)=0.025 +12-25
6465.25	1-	1621.2 ⁱ 5	19 ⁱ 6	4843.93	2+			
		2578.2 ⁱ 5	16 ⁱ 5	3887.36	2+			
		5132.6 ⁱ 5	31 ⁱ 7	1332.514	2+			
		6464.9 ⁱ 3	100 ⁱ 6	0.0	0+	E1		α (IPF)=0.00240 4 Mult.: From (γ, γ') ,(pol γ, γ').
6489.28		3369.4 ⁱ 4	46 ⁱ 8	3119.87	4+			
		3983.6 ⁱ 4	100 ⁱ 12	2505.753	4+			
		4204.0 ⁱ 7	42 ⁱ 12	2284.80	0^{+}			
6515.0	1+	6514.6 ^j 9	100 ^j	0.0	0^{+}	M1 ^j		$\alpha(IPF) = 0.001745 \ 25$
6516.72		2198.1 ⁱ 4	100 ⁱ 19	4318.58	2+			
		2496.9 ⁱ 3	70 ⁱ 12	4019.886	1+			
6567.33		2547.35 ⁱ 21	100 ⁱ	4019.886	1+			
6587.6	1-	4302.0 ^j 11	30 ^j 6	2284.80	0^{+}	j		
		5254.7 ^j 10	19 ^j 6	1332.514	2+	j		
		6587.6 ^j 8	100 ^j 3	0.0	0_{+}	E1 <i>j</i>		$\alpha(IPF) = 0.00243 \ 4$
6647.17		2607.10 ⁱ 22	55 ⁱ 7	4039.89	3-			
		2627.4 ⁱ 3	39 ⁱ 6	4019.886	1+			
		3027.86 ⁱ 16	100 ⁱ 8	3619.46	3+			
		4021.4 ⁱ 5	100 ⁱ 11	2626.06	3+			
6672.4	(9)	595 ^h		6076.6	(8)			
6718.5	1-	6718.1 ^j 10	100 ^j	0.0	0^{+}	E1 ^j		$\alpha(IPF) = 0.00246 \ 4$
6736.5	(1)	4577.7 ^j 13	100 ^j 21	2158.632		j		
		6736.1 ^{<i>j</i>} 16	85 ^j 21	0.0	0_{+}	j		
6756.4		2831.3 ⁱ 6	78 ⁱ 22	3925.18	$2^+,3^+$			
		3487.1 ⁱ 4	100 ⁱ 22	3269.19	2+			

γ (60Ni) (continued)

 $E_i(level)$

7038.7

7056.27

7101.4

7207.6

7222.80

7250.0

7316.13

7339.68

7360.97

7380.3

7414.16

7433.45

7465.66

8+

8+

9+

$\gamma(^{60}\text{Ni})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
7473.49	1+	2938.6 ⁱ 4	80 ⁱ 17	4534.14	2+			
		7473.0 ⁱ 8	100 ⁱ 20	0.0	0+	M1		α (IPF)=0.00193 3 Mult.: from (γ, γ') ,(pol γ, γ').
7495.2		6162.5 ⁱ 6	100.0 ⁱ	1332.514	2+			Mate. Hom (7,7),(por 7,7).
7531.4	8+	1418.9 4	75 25	6112.43		M1+E2	0.000158 <i>13</i>	α =0.000158 13; α (K)=9.5×10 ⁻⁵ 5; α (L)=9.3×10 ⁻⁶ 5; α (M)=1.30×10 ⁻⁶ 7; α (N+)=5.2×10 ⁻⁵ 8
								$\alpha(N)=5.6\times10^{-8} \ 3; \ \alpha(IPF)=5.2\times10^{-5} \ 8$
		3266.9 8	100 25	4265.00	6+	E2	0.000919 13	α =0.000919 13; α (K)=2.22×10 ⁻⁵ 4; α (L)=2.15×10 ⁻⁶ 3; α (M)=3.02×10 ⁻⁷ 5; α (N+)=0.000894 13
					- 1			$\alpha(N)=1.315\times10^{-8} \ 19; \ \alpha(IPF)=0.000894 \ 13$
7552.0		5393.3 ⁱ 3	100.0^{i}	2158.632				
7559.5 7627.4	1-	7559.0 ^{<i>j</i>} 8 677	100 <i>j</i>	0.0 6950.4	0^{+} (10)	E1 <i>j</i>		$\alpha(IPF) = 0.00262 \ 4$
7647.4	1-	7646.9 <i>7</i>	100	0.0	0+	E1		$\alpha(IPF) = 0.00264 \ 4$
7657.6	1+	7657.1 ^j 8	100 ^j	0.0	0+	M1 <i>j</i>		$\alpha(IPF)=0.00196 \ 3$
7684.1		6351.2 ⁱ 4	100.0 ⁱ	1332.514	2+			, , , , , , , , , , , , , , , , , , ,
7690.0	1-	3354.5 ⁱ 4	100 ⁱ 11	4335.52	2			
		6358.8 ^j 16	2 <i>j</i> 1	1332.514		j		
		7689.5 ⁱ 5	90 ⁱ 13	0.0	0+	E1		α (IPF)=0.00265 4 Mult.: from (γ, γ') ,(pol γ, γ').
7691.4	(9^{-})	2500 ^h		5191.7				
7732.5	8+	2586.2 6	75 25	5148.51	6+	E2	0.000632 9	α =0.000632 9; α (K)=3.25×10 ⁻⁵ 5; α (L)=3.15×10 ⁻⁶ 5; α (M)=4.44×10 ⁻⁷ 7; α (N+)=0.000595 9 α (N)=1.93×10 ⁻⁸ 3; α (IPF)=0.000595 9
		3465.8 8	100 25	4265.00	6+	E2	0.000995 14	α =0.000995 14; α (K)=2.02×10 ⁻⁵ 3; α (L)=1.96×10 ⁻⁶ 3; α (M)=2.76×10 ⁻⁷ 4; α (N+)=0.000972 14 α (N)=1.199×10 ⁻⁸ 17; α (IPF)=0.000972 14
7747.6	1-	5461.9 ^j 11	20 ^j 4	2284.80	0+	j		$u(11)-1.1797\times 10$ 17, $u(1111)-0.000972$ 14
//-/.0	1	5590.1^{j} 10	$16.7^{\frac{j}{l}}$ 19	2158.632		j		
		6413.8^{j} 9	$50^{j} 6$	1332.514		j		
		7747.3 ^j 8	100 ^j 8	0.0	0+	E1 <i>j</i>		$\alpha(IPF)=0.00266 \ 4$
7760.33	8-	294.7 2	20 10	7465.66	(7-)	(M1+E2)	0.006 4	α =0.006 4; α (K)=0.006 4; α (L)=0.0006 4; α (M)=8.E-5 5; α (N+)=3.4×10 ⁻⁶ 18 α (N)=3.4×10 ⁻⁶ 18
		948.5 <i>3</i>	20 10	6810.95	9-	M1+E2	0.00025 3	α =0.00025 3; α (K)=0.000223 24; α (L)=2.18×10 ⁻⁵ 24; α (M)=3.1×10 ⁻⁶ 4; α (N+)=1.32×10 ⁻⁷ 14 α (N)=1.32×10 ⁻⁷ 14
		1648.0 <i>4</i>	40 10	6112.43	7+	E1	0.000419 6	α =0.000419 6; α (K)=3.94×10 ⁻⁵ 6; α (L)=3.82×10 ⁻⁶ 6; α (M)=5.37×10 ⁻⁷ 8; α (N+)=0.000375 6 α (N)=2.33×10 ⁻⁸ 4; α (IPF)=0.000375 6
I		1860.4 5	10 10	5901.69	6-	E2	0.000310 5	$\alpha(N)=2.33\times10^{-6} 4$; $\alpha(IPF)=0.0003/5 6$ $\alpha=0.000310 5$; $\alpha(K)=5.84\times10^{-5} 9$; $\alpha(L)=5.67\times10^{-6} 8$; $\alpha(M)=7.99\times10^{-7}$

γ (60Ni) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{\dagger}	Comments
7760.33	8-	2411.4 6	100 10	5348.79	7-	M1+E2		0.00051 4	12; α (N+)=0.000245 4 α (N)=3.46×10 ⁻⁸ 5; α (IPF)=0.000245 4 α =0.00051 4; α (K)=3.60×10 ⁻⁵ 9; α (L)=3.48×10 ⁻⁶ 9; α (M)=4.91×10 ⁻⁷ 12; α (N+)=0.00047 4 α (N)=2.13×10 ⁻⁸ 5; α (IPF)=0.00047 4
7761.8	1+	1399.4 ⁱ 4	37 ⁱ 12	6362.05					
		4492.3 ⁱ 6	81 ⁱ 15	3269.19	2+				
		7761.6 ⁱ 8	100 ⁱ 23	0.0	0+	M1			$\alpha(\text{IPF})=0.00198 \ 3$ Mult.: from (γ, γ') , (pol γ, γ').
7798.9		1472.6 ⁱ 6	$1.0 \times 10^{2i} \ 3$	6327.21	2+				
		5640.4 ⁱ 7	95 ⁱ 24	2158.632	2+				
7813.5		1141 ^h		6672.4	(9)				
7818.02		4693.6 ⁱ 5	100.0 ⁱ	3123.698	2+				
7850.3	1+	7849.7 ^j 10	100 ^j	0.0	0_{+}	$M1^{j}$			$\alpha(IPF)=0.00200 \ 3$
7880.4	1+	7879.8 ^j 12	100 ^j	0.0	0_{+}	M1 ^{<i>j</i>}			$\alpha(IPF)=0.00200 \ 3$
7926.7	1+	7926.1 ^j <i>17</i>	100 ^j	0.0	0_{+}	M1 ^j			$\alpha(IPF) = 0.00201 \ 3$
7950.93	1+	3632.4 ⁱ 6	89 ⁱ 23	4318.58	2+				
		4080.0 ⁱ 7	100 ⁱ 23	3871.050	2+				
		7951.4 ⁱ 8	93 ⁱ 23	0.0	0_{+}	M1			$\alpha(IPF) = 0.00201 \ 3$
7000 01	9+	547.0.4	7.7	7422.45	9+	D			Mult.: from (γ, γ') , (pol γ, γ').
7980.81	9.	547.2 <i>4</i> 1519.9 <i>4</i>	7 <i>7</i> 100 <i>36</i>	7433.45 6461.10	-	D M1+E2		0.000176 15	α =0.000176 15; α (K)=8.3×10 ⁻⁵ 4; α (L)=8.1×10 ⁻⁶ 4;
		1317.7 4	100 30	0401.10	0	WITEL		0.000170 15	$\alpha(M)=1.14\times10^{-6} 5; \alpha(N+)=8.3\times10^{-5} 12$ $\alpha(N)=4.94\times10^{-8} 21; \alpha(IPF)=8.3\times10^{-5} 12$
		2317.5 3	71 <i>21</i>	5663.03	7+	E2		0.000511 8	α =0.000511 8; α (K)=3.93×10 ⁻⁵ 6; α (L)=3.80×10 ⁻⁶ 6; α (M)=5.36×10 ⁻⁷ 8; α (N+)=0.000467 7 α (N)=2.33×10 ⁻⁸ 4; α (IPF)=0.000467 7
8042.6	1+	8042.0 ^j 16	100 <i>j</i>	0.0	0^{+}	M1 ^j			((1)) 2.00 (11) 1, (((11)) 0.000 10)
8044.26	9-	283.9 2	27 4	7760.33		M1+E2		0.007 4	α =0.007 4; α (K)=0.007 4; α (L)=0.0007 4; α (M)=9.E-5 6; α (N+)=3.8×10 ⁻⁶ 21 α (N)=3.8×10 ⁻⁶ 21
		352.9 2	44 6	7691.4	(9-)	M1+E2		0.0036 17	α =0.0036 17; α (K)=0.0032 15; α (L)=0.00032 16; α (M)=4.5×10 ⁻⁵ 22; α (N+)=1.9×10 ⁻⁶ 9 α (N)=1.9×10 ⁻⁶ 9
		683.3 2	2.1 2	7360.97	(8)	(D+Q)			α(1N)-1.9×10 ° 9
		1207.0 3	100 10	6837.2	8-	M1+E2	+0.37 4	0.0001471 22	α =0.0001471 22; α (K)=0.0001257 18; α (L)=1.223×10 ⁻⁵ 18; α (M)=1.724×10 ⁻⁶ 25
									$\alpha(N)=7.47\times10^{-8} \ 11; \ \alpha(IPF)=7.37\times10^{-6} \ 13$
		1000 0 0	22.4	6010.05	0-	D			B(M1)(W.u.)=0.10 +11-10; B(E2)(W.u.)=18 +19-18
		1233.0 <i>3</i> 1583.3 <i>4</i>	23 <i>4</i> 13 2	6810.95 6461.10	9- 8+	D E1		0.000370 6	α =0.000370 6; α (K)=4.20×10 ⁻⁵ 6; α (L)=4.07×10 ⁻⁶ 6;
		1303.3 4	13 2	0401.10	o	EI		0.000370 0	α -0.000570 0, $\alpha(K)$ =4.20×10 0, $\alpha(L)$ =4.07×10 0,

$\gamma(^{60}\text{Ni})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
								$\alpha(M)=5.73\times10^{-7} 8$; $\alpha(N+)=0.000324 5$ $\alpha(N)=2.48\times10^{-8} 4$; $\alpha(IPF)=0.000323 5$
								B(E1)(W.u.)=0.00013 +14-13
8044.26	9-	2696.1 6	60 4	5348.79	7-	E2	0.000680 10	α =0.000680 10; α (K)=3.03×10 ⁻⁵ 5; α (L)=2.94×10 ⁻⁶ 5; α (M)=4.14×10 ⁻⁷ 6; α (N+)=0.000646 9 α (N)=1.80×10 ⁻⁸ 3; α (IPF)=0.000646 9
	- 1				- 1			B(E2)(W.u.)=1.6 16
8074.4	8+	3807.8 9	100	4265.00	6 ⁺	E2	0.001123 16	α =0.001123 16; α (K)=1.752×10 ⁻⁵ 25; α (L)=1.692×10 ⁻⁶ 24; α (M)=2.38×10 ⁻⁷ 4; α (N+)=0.001104 α (N)=1.037×10 ⁻⁸ 15; α (IPF)=0.001104 16
8086.0	1-	5800.8 ^j 8	16.0 ^j 25	2284.80	0^{+}	j		
		6752.3 ^{<i>j</i>} 13	7.4^{j} 25	1332.514		j		
		8085.7 ^j 7	$100^{j} 25$	0.0	0+	E1 <i>j</i>		
8111.8	1+	8111.2 <i>12</i>	100	0.0	0^{+}	M1		
8126.6	1-	8126.0 7	100 .	0.0	0_{+}	E1		
8189.1	1	8188.5 ^j 7	100^{j}	0.0	0_{+}	<i>j</i>		
8261.5	1-	8260.9 ^{<i>j</i>} 8	100 ^j	0.0	0_{+}	E1 ^{<i>j</i>}		
8272.09	10-	1435.0 4	18 2	6837.2	8-	E2	0.0001726 25	α =0.0001726 25; α (K)=9.73×10 ⁻⁵ 14; α (L)=9.48×10 ⁻⁶ 14; α (M)=1.335×10 ⁻⁶ 19; α (N+)=6.44×10 ⁻⁵ α (N)=5.76×10 ⁻⁸ 8; α (IPF)=6.44×10 ⁻⁵ 10
		1461.6 <i>4</i>	100 15	6810.95	9-	M1+E2	0.000164 14	α =0.000164 14; α (K)=9.0×10 ⁻⁵ 5; α (L)=8.7×10 ⁻⁶ 5; α (M)=1.23×10 ⁻⁶ α (N+)=6.4×10 ⁻⁵ 9
								$\alpha(N)=5.33\times10^{-8} \ 24; \ \alpha(IPF)=6.4\times10^{-5} \ 9$
8286.3	(1^{+})	2613.9 ⁱ 3	100 ⁱ 16	5672.36				
		5659.9 ⁱ 8	58 ⁱ 16	2626.06				
8294.0	1-	6135.5 ^j 11	54 ^{<i>j</i>} 8	2158.632		<i>J</i> :		
		8293.0 ^j 10	100^{j} 7	0.0	0+	E1 ^j		
8351.8	1+	8351.2 ^j 13	100 ^j	0.0	0+	M1 ^j		
8359.3	1+	8358.7 ^j 15	100 ^j	0.0	0 ⁺	M1 ^j	0.000027.12	0.000000 10 (17) 0.40 (10=5 4 (2) 0.41 (10=6 4 (2) 0.12 (10)
8389.9	9-	3039.2 7	100	5348.79	7-	E2	0.000826 12	α =0.000826 12; α (K)=2.49×10 ⁻⁵ 4; α (L)=2.41×10 ⁻⁶ 4; α (M)=3.40×10 ⁻⁷ 5; α (N+)=0.000799 12 α (N)=1.476×10 ⁻⁸ 21; α (IPF)=0.000799 12
8407	1-	8406 <i>4</i>	100	0.0	0^{+}	E1		α(11)-1.110/10 21, α(111)-0.000179 12
8426.69	9-	3077.8 1	100	5348.79	7-	E2	0.000842 12	α =0.000842 12; α (K)=2.44×10 ⁻⁵ 4; α (L)=2.36×10 ⁻⁶ 4; α (M)=3.33×10 ⁻⁷ 5; α (N+)=0.000815 12
0.451.5	1	0.450.01.15	100 j	0.0	0+	j		$\alpha(N)=1.447\times10^{-8} \ 21; \ \alpha(IPF)=0.000815 \ 12$
8451.5	1	8450.9 ^{<i>j</i>} 16	100^{j}	0.0	0+			
8464.0 8485.50	1- 9-	8463.4 ^{<i>j</i>} 13 1648.2 4	100 ^j 86 <i>14</i>	0.0 6837.2	0 ⁺	E1 ^j M1+E2	0.000211 20	α =0.000211 20; α (K)=7.1×10 ⁻⁵ 3; α (L)=6.9×10 ⁻⁶ 3; α (M)=9.7×10 ⁻⁷ 4; α (N+)=0.000132 17
								$\alpha(N)=4.23\times10^{-8}$ 16; $\alpha(IPF)=0.000132$ 17

38

1+

8778.6

8777.9^j 10

 100^{j}

 0^{+}

0.0

 $M1^{j}$

							/ \	, (
E_i (level) J	π i	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{\dagger}	Comments
8781.6 1 ⁻	-	8780.9 ^j 10	100 <i>j</i>	0.0	0^{+}	E1 <i>j</i>			
8793.6 1 ⁺	+	7459.5 ^j 11	100 ^j 20	1332.514	2+	j			
		8795.2 ^j 16	82 ^j 19	0.0	0^+	$M1^{j}$			
8846.5 1+	+	8845.8 ^j 14	100 <i>j</i>	0.0	0_{+}	M1 ^j			
8871.7 1+	+	8871.0 ^j <i>16</i>	100 <i>j</i>	0.0	0_{+}	$M1^{j}$			
8890.5 1+	+	8889.8 ^j 12	100 <i>j</i>	0.0	0_{+}	M1 ^j			
8924.1 1	-	8923.4 ^j 10	100 ^j	0.0	0_{+}	E1 ^j			
9010.5	-	9009.8 ^j 19	100 ^j	0.0	0_{+}	E1 ^j			
9045.20		5173.6 ⁱ 3	100 ⁱ	3871.050	2+				
9053.3	-	9052.6 ^j 24	100 <i>j</i>	0.0	0_{+}	E1 ^j			
9068.9	+	9068.2 ^j 13	100 ^j	0.0	0_{+}	$M1^{j}$			
9076.66		5759.1 ⁱ 7	100 ⁱ 21	3317.829	0_{+}				
		5952.4 ⁱ 5	100 ⁱ 21	3123.698					
9092.3	-	7761.2 19	25 8	1332.514		E1			$\alpha(IPF) = 0.00266 \ 4$
0122 01 10	n-	9091.2 8 601.6 2	100 25 11 6	0.0 8521.11	0 ⁺ 10 ⁻	E1			
9123.01 10	J	637.5 2	100 6	8485.50	9 ⁻	D M1+E2		0.00065 15	α =0.00065 15; α (K)=0.00059 13; α (L)=5.8×10 ⁻⁵ 13;
		037.3 2	100 0	6465.50	9	WII+EZ		0.00003 13	α =0.00003 17, α (R)=0.00039 13, α (L)=3.8×10 13, α (M)=8.1×10 ⁻⁶ 18; α (N+)=3.5×10 ⁻⁷ 8 α (N)=3.5×10 ⁻⁷ 8
		2311.8 6	28 5	6810.95	9-	M1+E2		0.00047 4	α =0.00047 4; α (K)=3.87×10 ⁻⁵ 10; α (L)=3.75×10 ⁻⁶ 10; α (M)=5.28×10 ⁻⁷ 13; α (N+)=0.00043 4 α (N)=2.29×10 ⁻⁸ 6; α (IPF)=0.00043 4
9132.2	_	9131.5 ^j 15	100 <i>j</i>	0.0	0^{+}	E1 <i>j</i>			u(1) 2.25/10 0, u(11) 0.00015 /
9132.27 11		611.5 2	100 3	8521.11	10-	M1+E2	+0.08 7	0.000561 10	α =0.000561 10; α (K)=0.000504 9; α (L)=4.94×10 ⁻⁵ 9;
									$\alpha(M)=6.96\times10^{-6} \ 12; \ \alpha(N+)=3.00\times10^{-7} \ 5$ $\alpha(N)=3.00\times10^{-7} \ 5$ $\alpha(M)=0.52 +23-29; \ \beta(E2)(W.u.)=2.E+1 +3-2$
		1088.2 3	2.8 4	8044.26	9-	E2		0.000198 3	α =0.000198 3; α (K)=0.0001780 25; α (L)=1.741×10 ⁻⁵ 25; α (M)=2.45×10 ⁻⁶ 4; α (N+)=1.054×10 ⁻⁷ α (N)=1.054×10 ⁻⁷ 15 B(E2)(W.u.)=4.0 +19-24
9149 1	-	9148.7 ^j 30	100 <i>j</i>	0.0	0^{+}	E1 <i>j</i>			
9256.0 1	-	9255.2 ^j 25	100 <i>j</i>	0.0	0^{+}	E1 <i>j</i>			
9264.30 11	1-	874.1 <i>3</i>	99	8389.9	9-	E2		0.000337 5	α =0.000337 5; α (K)=0.000303 5; α (L)=2.97×10 ⁻⁵ 5; α (M)=4.18×10 ⁻⁶ 6; α (N+)=1.79×10 ⁻⁷ 3 α (N)=1.79×10 ⁻⁷ 3
		2452.2 6	100 9	6810.95	9-	E2		0.000571 8	α =0.000571 8; α (K)=3.56×10 ⁻⁵ 5; α (L)=3.45×10 ⁻⁶ 5; α (M)=4.86×10 ⁻⁷ 7; α (N+)=0.000532 8 α (N)=2.11×10 ⁻⁸ 3; α (IPF)=0.000532 8
9266.5 1	-	9265.7 ^j 24	100 ^j	0.0	0+	E1 <i>j</i>			a(1), 2.11.110

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
9274.7	1	9273.9 ^j 15	100 ^j	0.0	0+	\overline{j}			
9301.2	1+	9300.4 ^j 15	100 ^j	0.0	0^{+}	M1 ^j			

 $^{60}_{28}\mathrm{Ni}_{32}$ -41

 α =0.00044 4; α (K)=4.11×10⁻⁵ 11; α (L)=3.98×10⁻⁶ 10; α (M)=5.60×10⁻⁷

 $\alpha(N)=2.69\times10^{-8}$ 4; $\alpha(IPF)=0.000378$ 6

 $\alpha(N)=2.43\times10^{-8}$ 6; $\alpha(IPF)=0.00039$ 4

Comments

 $\alpha = 0.00034$ 3; $\alpha(K) = 5.02 \times 10^{-5}$ 14; $\alpha(L) = 4.87 \times 10^{-6}$ 14; $\alpha(M) = 6.86 \times 10^{-7}$

 α =0.000496 7: α (K)=4.03×10⁻⁵ 6: α (L)=3.90×10⁻⁶ 6: α (M)=5.49×10⁻⁷ 8:

0.000718 10 α =0.000718 10; α (K)=2.87×10⁻⁵ 4; α (L)=2.78×10⁻⁶ 4; α (M)=3.92×10⁻⁷

 α =0.000211 3; α (K)=7.90×10⁻⁵ 11; α (L)=7.68×10⁻⁶ 11;

 α =0.000340 5; α (K)=5.43×10⁻⁵ 8; α (L)=5.27×10⁻⁶ 8; α (M)=7.43×10⁻⁷

 α =0.000428 6: α (K)=4.54×10⁻⁵ 7: α (L)=4.40×10⁻⁶ 7: α (M)=6.20×10⁻⁷ 9:

 $\alpha(N+..)=0.000451 7$

 $\alpha(N)=2.38\times10^{-8}$ 4; $\alpha(IPF)=0.000451$ 7

 α =0.000555 8; α (K)=3.65×10⁻⁵ 6; α (L)=3.54×10⁻⁶ 5; α (M)=4.98×10⁻⁷ 7;

 α (N+..)=0.000515 8

20; $\alpha(N+..)=0.00028$ 3

6; $\alpha(N+...)=0.000686$ 10

11; $\alpha(N+..)=0.000280$ 4

 α (N+..)=0.000378 6

15; $\alpha(N+..)=0.00039$ 4

 $\alpha(N)=1.703\times10^{-8}$ 24; $\alpha(IPF)=0.000686$ 10

 $\alpha(M)=1.082\times10^{-6}$ 16; $\alpha(N+..)=0.0001237$ $\alpha(N)=4.68\times10^{-8}$ 7; $\alpha(IPF)=0.0001236$ 18

 $\alpha(N)=3.22\times10^{-8}$ 5; $\alpha(IPF)=0.000280$ 4

 $\alpha(N)=2.98\times10^{-8}$ 9: $\alpha(IPF)=0.00028$ 3

 $\alpha(N)=2.16\times10^{-8}$ 3; $\alpha(IPF)=0.000515$ 8

 α =0.001180 17; α (K)=1.777×10⁻⁵ 25; α (L)=1.715×10⁻⁶ 24;

 $\alpha(M)=2.41\times10^{-7}$ 4; $\alpha(N+..)=0.001160$

 $\alpha(N)=1.049\times10^{-8}$ 15: $\alpha(IPF)=0.001160$ 17

3204.6 7

 E_{ν}^{\ddagger}

9307.5 14

5306.7ⁱ 4

9351.8^j 21

9394.7*j* 15

9409.9^j 17

9452.3^j 16

7303.2^j 16

9464.5^j 15

9466.8^j 35

9504.1^j 17

9598.2^j 15

9639.4^j 21

8326.0 16

9658.5 9

1590.9 4

1934.0 5

2134.4 5

2233.0 5

2284.9 6

2416.3 6

2854.4 7

2785.2 7

1992.9 5

 $E_i(level)$

9308.3

9346.82

9352.6

9395.5

9410.7

9426.2

9453.1

9463.9

9468

9504.9

9599.0

9622.5

9640.2 9659.3

9665.67

 10^{+}

1+

1-

 10^{-}

1-

 10^{+}

 I_{γ}

100

100.0¹

100^J

100*j*

 100^{j}

100

100^j

100^j

100^j

 100^{j}

100

100^j

11 4

100 23

33 7

27 7

27 7

20 7

20 7

47 7

100 13

 $61^{j} 20$

 $1.0 \times 10^2 j$ 3

 \mathbf{E}_f

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

8074.4

7732.5

7531.4

7433.45

7380.3

7250.0

6810.95

1332.514 2+

6837.2

2158.632 2+

7433.45

4039.89

 0^{+}

3-

 0^{+}

 0^{+}

 0^{+}

9+

 0^{+}

 0^{+}

 0^{+}

 0^{+}

 0^{+}

8-

 0^{+}

 0^{+}

8+

8+

8+

9+

8+

8+

9-

13 7

E2

6461.10 8+

0.000893 13

Adopted Levels, Gammas (continued)

 γ (60Ni) (continued)

 α^{\dagger}

0.00034 3

0.000211 3

0.000340.5

0.000428 6

0.00044 4

0.000496 7

0.000555 8

0.001180 17

Mult.#

E1

E1^J

E1*j*

E1^j

 $M1^{j}$

 $E1^{j}$

 $M1^{j}$

E1^j

E1*j*

E2

E1^j

E1

E2

E2

E2

E2

E2

E1

M1+E2

M1+E2

 α =0.000893 13; α (K)=2.29×10⁻⁵ 4; α (L)=2.21×10⁻⁶ 4; α (M)=3.12×10⁻⁷

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
								5; α(N+)=0.000868 <i>13</i>
								$\alpha(N)=1.356\times10^{-8} \ 19; \ \alpha(IPF)=0.000868 \ 13$
9701.4	1-	9700.6 ^j 15	100 ^j	0.0	0_{+}	E1 <i>j</i>		
9714.9	(10^+)	1287.9 4	100	8426.69	9-	(E1)	0.0001757 25	α =0.0001757 25; α (K)=5.93×10 ⁻⁵ 9; α (L)=5.75×10 ⁻⁶ 8; α (M)=8.10×10 ⁻⁷ 12; α (N+)=0.0001098 1
9718.27	11-	454.0 2	9 9	9264.30	1.1-	M1	0.001084 16	$\alpha(N)=3.50\times10^{-8}$ 5; $\alpha(IPF)=0.0001098$ 16 $\alpha=0.001084$ 16; $\alpha(K)=0.000974$ 14; $\alpha(L)=9.59\times10^{-5}$ 14; $\alpha(M)=1.351\times10^{-5}$
9/10.2/	11	434.0 2	99	9204.30	11	IVII	0.001064 10	$a = 0.001084 \ 10, \ a(\text{K}) = 0.000974 \ 14, \ a(\text{L}) = 9.39 \times 10^{-7} \ 19; \ \alpha(\text{N}+) = 5.81 \times 10^{-7} \ \alpha(\text{N}) = 5.81 \times 10^{-7} \ 9$
		1196.8 <i>3</i>	65 6	8521.11	10-	M1+E2	0.000157 12	$\alpha(N)=5.81\times10^{-7}$ 9 $\alpha=0.000157$ 12; $\alpha(K)=0.000135$ 10; $\alpha(L)=1.31\times10^{-5}$ 10; $\alpha(M)=1.85\times10^{-6}$
		1190.0 3	05 0	0,521.11	10	WII+L2	0.000137 12	13 ; $\alpha(N+)=7.2\times10^{-6}$ 13 $\alpha(N)=8.0\times10^{-8}$ 6 ; $\alpha(IPF)=7.2\times10^{-6}$ 13
		1447.1 <i>4</i>	41 6	8272.09	10-	M1+E2	0.000162 14	$\alpha(N)=8.0\times10^{-6}$ 6; $\alpha(IPF)=7.2\times10^{-6}$ 13 $\alpha=0.000162$ 14; $\alpha(K)=9.2\times10^{-5}$ 5; $\alpha(L)=8.9\times10^{-6}$ 5; $\alpha(M)=1.25\times10^{-6}$ 6;
		1447.1 4	41 0	6272.09	10	WII+E2	0.000102 14	$\alpha(N+)=6.0\times10^{-5} 9$
		2005.0.7	100 6	6010.05	0-	E2	0.000770 11	$\alpha(N)=5.43\times10^{-8}\ 25$; $\alpha(IPF)=6.0\times10^{-5}\ 9$ $\alpha=0.000770\ 11$; $\alpha(K)=2.68\times10^{-5}\ 4$; $\alpha(L)=2.59\times10^{-6}\ 4$; $\alpha(M)=3.65\times10^{-7}\ 6$;
		2905.9 7	100 6	6810.95	9-	E2	0.000770 11	$\alpha = 0.0007/0 \ 11; \ \alpha(K) = 2.08 \times 10^{-9} \ 4; \ \alpha(L) = 2.59 \times 10^{-9} \ 4; \ \alpha(M) = 3.05 \times 10^{-9} \ 0;$ $\alpha(N+) = 0.000740 \ 11$ $\alpha(N) = 1.588 \times 10^{-8} \ 23; \ \alpha(IPF) = 0.000740 \ 11$
9721.0	1-	9720.2 ^j 18	100 ^j	0.0	0^{+}	E1 <i>j</i>		$u(N)=1.300\times 10^{-2}$ 23, $u(N)=0.000740$ 11
9721.0	1-	9720.2^{j} 18 9750.6^{j} 23	100^{j}	0.0	0+	E1 ^j		
9751.3	11-	1239.0 3	44 5	8521.11	10 ⁻	M1+E2	0.000152 11	α =0.000152 11; α (K)=0.000125 8; α (L)=1.22×10 ⁻⁵ 8; α (M)=1.72×10 ⁻⁶ 12;
9700.42	11	1239.0 3	44 3	0321.11	10	WII+E2	0.000132 11	α =0.000132 11, α (K)=0.000123 8, α (L)=1.22×10 8, α (N)=1.72×10 12, α (N+)=1.33×10 ⁻⁵ 23 α (N)=7.4×10 ⁻⁸ 5; α (IPF)=1.33×10 ⁻⁵ 22
		2948.8 7	100 9	6810.95	9-	E2	0.000789 11	$\alpha(N)=7.4\times10^{-5}$; $\alpha(N)=1.55\times10^{-5}$ 22 $\alpha=0.000789$ 11; $\alpha(K)=2.62\times10^{-5}$ 4; $\alpha(L)=2.53\times10^{-6}$ 4; $\alpha(M)=3.57\times10^{-7}$ 5;
		2940.0 7	100 9	0810.93	9	E2	0.000789 11	$\alpha(N+)=0.000759 \ 11$ $\alpha(N)=1.550\times10^{-8} \ 22; \ \alpha(IPF)=0.000759 \ 11$
9774.8	1-	9773.9 ^j 20	100 <i>j</i>	0.0	0^{+}	E1 j		$u(11)-1.550\times 10^{-22}$, $u(111)-0.000757$ 11
9807.5	1-	9806.6^{j} 19	100^{j}	0.0	0 ⁺	E1 ^j		
9831	1+	9830 ^j 4	100^{j}	0.0	0+	$M1^{j}$		
9832.0	1-	9831.1 ^j 21	100 ^j	0.0	0+	E1 <i>j</i>		
9871.3	1-	9870.4 j 20	100^{j}	0.0	0+	E1 ^j		
9871.3 9887.9	1 10 ⁺	2638.4 <i>6</i>	1005	7250.0	8 ⁺	E1 ³	0.000655 10	α =0.000655 10; α (K)=3.15×10 ⁻⁵ 5; α (L)=3.04×10 ⁻⁶ 5; α (M)=4.29×10 ⁻⁷ 6;
,007.5	10	2000	100 00	, 200,0		_ _	0.000000	$\alpha(N+)=0.000620$ 9 $\alpha(N)=1.86\times10^{-8}$ 3; $\alpha(IPF)=0.000620$ 9
		3079.0 7	100 50	6810.95	9-	E1	0.001289 18	α (N)=1.80×10 3, α (IFF)=0.000020 9 α =0.001289 18; α (K)=1.607×10 ⁻⁵ 23; α (L)=1.550×10 ⁻⁶ 22; α (M)=2.18×10 ⁻⁷ 3; α (N+)=0.001271 α (N)=9.49×10 ⁻⁹ 14; α (IPF)=0.001271 18
9893.5	1-	9892.6 ^j 17	100 <i>j</i>	0.0	0+	E1 <i>j</i>		u(11)-2.12/10 17, u(111)-0.0012/1110
9953.7	1	5933.3 ⁱ 7	100 ⁱ	4019.886	-	D1-		
9960.14	11-	827.8 6	15 8	9132.27	11-	M1	0.000293 5	α =0.000293 5; α (K)=0.000264 4; α (L)=2.57×10 ⁻⁵ 4; α (M)=3.63×10 ⁻⁶ 6; α (N+)=1.569×10 ⁻⁷ 22

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
9960.14	11-	836.4 3	100 8	9123.01 10-	M1+E2		0.00033 5	α =0.00033 5; α (K)=0.00030 4; α (L)=2.9×10 ⁻⁵ 4; α (M)=4.1×10 ⁻⁶ 6; α (N+)=1.77×10 ⁻⁷ 24 α (N)=1.77×10 ⁻⁷ 24
		1438.6 4	38 8	8521.11 10-	M1+E2		0.000160 13	α =0.000160 13; α (K)=9.3×10 ⁻⁵ 5; α (L)=9.0×10 ⁻⁶ 5; α (M)=1.27×10 ⁻⁶ 7; α (N+)=5.7×10 ⁻⁵ 9 α (N)=5.5×10 ⁻⁸ 3; α (IPF)=5.7×10 ⁻⁵ 9
9989.27	(12-)	856.9 <i>3</i>	100 5	9132.27 11-	M1(+E2)	+0.13 15	0.000274 6	α =0.000274 6; α (K)=0.000247 6; α (L)=2.41×10 ⁻⁵ 6; α (M)=3.39×10 ⁻⁶ 8; α (N+)=1.47×10 ⁻⁷ 4 α (N)=1.47×10 ⁻⁷ 4 B(M1)(W.u.)=(0.16 +6-16); B(E2)(W.u.)=(7 +16-7)
		1468.3 4	4.2 8	8521.11 10 ⁻	E2		0.000179 3	α =0.000179 3; α (K)=9.28×10 ⁻⁵ 13; α (L)=9.04×10 ⁻⁶ 13; α (M)=1.273×10 ⁻⁶ 18; α (N+)=7.55×10 ⁻⁵ 11 α (N)=5.50×10 ⁻⁸ 8; α (IPF)=7.55×10 ⁻⁵ 11 B(E2)(W.u.)=1.1 +5-11
10029.02	(11=)	5184.9 5	100	4843.93 2+	0.51)		0.000224.5	0.000004.5 (#) 0.000001.4 (#) 0.04 10-5 4
10054.23	(11 ⁻)	789.4 <i>3</i>	33 33	9264.30 11	(M1)		0.000324 5	α =0.000324 5; α (K)=0.000291 4; α (L)=2.84×10 ⁻⁵ 4; α (M)=4.01×10 ⁻⁶ 6; α (N+)=1.733×10 ⁻⁷ 25 α (N)=1.733×10 ⁻⁷ 25
		3243.4 7	100 33	6810.95 9	(E2)		0.000909 13	α =0.000909 13; α (K)=2.25×10 ⁻⁵ 4; α (L)=2.17×10 ⁻⁶ 3; α (M)=3.06×10 ⁻⁷ 5; α (N+)=0.000884 13 α (N)=1.331×10 ⁻⁸ 19; α (IPF)=0.000884 13
10158.6	(12 ⁻)	894.1 3	100	9264.30 11	(M1+E2)		0.00028 4	α =0.00028 4; α (K)=0.00026 3; α (L)=2.5×10 ⁻⁵ 3; α (M)=3.5×10 ⁻⁶ 5; α (N+)=1.51×10 ⁻⁷ 18 α (N)=1.51×10 ⁻⁷ 18
10241.7	(11-)	3428.9 8	100	6810.95 9	(E2)		0.000981 14	α =0.000981 14; α (K)=2.06×10 ⁻⁵ 3; α (L)=1.99×10 ⁻⁶ 3; α (M)=2.80×10 ⁻⁷ 4; α (N+)=0.000959 14 α (N)=1.219×10 ⁻⁸ 17; α (IPF)=0.000959 14
10697.3	12-	936.7 3	100 25	9760.42 11-	M1+E2		0.00026 3	α =0.00026 3; α (K)=0.00023 3; α (L)=2.2×10 ⁻⁵ 3; α (M)=3.2×10 ⁻⁶ 4; α (N+)=1.36×10 ⁻⁷ 15 α (N)=1.36×10 ⁻⁷ 15
		979.1 <i>3</i>	75 25	9718.27 11	M1+E2		0.000231 24	α =0.000231 24; α (K)=0.000208 21; α (L)=2.03×10 ⁻⁵ 21; α (M)=2.9×10 ⁻⁶ 3; α (N+)=1.23×10 ⁻⁷ 12 α (N)=1.23×10 ⁻⁷ 12
10788.66	12-	734.1 2	40 20	10054.23 (11	M1+E2		0.00046 8	α =0.00046 8; α (K)=0.00041 7; α (L)=4.0×10 ⁻⁵ 7; α (M)=5.7×10 ⁻⁶ 10; α (N+)=2.4×10 ⁻⁷ 4 α (N)=2.4×10 ⁻⁷ 4
		828.5 3	100 20	9960.14 11-	M1+E2		0.00034 5	α =0.00034 5; α (K)=0.00031 5; α (L)=3.0×10 ⁻⁵ 5; α (M)=4.2×10 ⁻⁶ 6; α (N+)=1.81×10 ⁻⁷ 25 α (N)=1.81×10 ⁻⁷ 25
		1028.0 9	80 20	9760.42 11-	M1+E2		0.000207 19	α =0.000207 19; α (K)=0.000186 17; α (L)=1.82×10 ⁻⁵ 18; α (M)=2.57×10 ⁻⁶ 24; α (N+)=1.11×10 ⁻⁷ 1 α (N)=1.11×10 ⁻⁷ 10

$\gamma(^{60}\text{Ni})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$lpha^\dagger$	Comments
10788.66	12-	1657.5 4	60 20	9132.27 11-	M1+E2	0.000214 20	α =0.000214 20; α (K)=7.0×10 ⁻⁵ 3; α (L)=6.8×10 ⁻⁶ 3; α (M)=9.6×10 ⁻⁷ 4; α (N+)=0.000136 17
10825.23	11+	1398.8 9	33 <i>33</i>	9426.2 10+	M1+E2	0.000156 <i>13</i>	$\alpha(N)=4.18\times10^{-8}\ I5;\ \alpha(IPF)=0.000136\ I7$ $\alpha=0.000156\ I3;\ \alpha(K)=9.8\times10^{-5}\ 5;\ \alpha(L)=9.5\times10^{-6}\ 5;\ \alpha(M)=1.34\times10^{-6}\ 7;$ $\alpha(N+)=4.7\times10^{-5}\ 7$ $\alpha(N)=5.8\times10^{-8}\ 3;\ \alpha(IPF)=4.7\times10^{-5}\ 7$
		2135.8 5	100 33	8688.92 10+	M1+E2	0.00040 4	α =0.00040 4; α (K)=4.44×10 ⁻⁵ 12; α (L)=4.30×10 ⁻⁶ 12; α (M)=6.06×10 ⁻⁷ 16; α (N+)=0.00035 4
		2844.8 7	100 33	7980.81 9+	E2	0.000744 11	$\alpha(N)=2.63\times10^{-8}$ 7; $\alpha(IPF)=0.00035$ 4 $\alpha=0.000744$ 11; $\alpha(K)=2.78\times10^{-5}$ 4; $\alpha(L)=2.69\times10^{-6}$ 4; $\alpha(M)=3.78\times10^{-7}$ 6; $\alpha(N+)=0.000713$ 10
		3390.8 8	33 <i>33</i>	7433.45 9+	E2	0.000968 14	$\alpha(N)$ =1.644×10 ⁻⁸ 23; $\alpha(IPF)$ =0.000713 10 α =0.000968 14; $\alpha(K)$ =2.10×10 ⁻⁵ 3; $\alpha(L)$ =2.02×10 ⁻⁶ 3; $\alpha(M)$ =2.85×10 ⁻⁷ 4; $\alpha(N+)$ =0.000944 14
10872.60	11+	1446.6 <i>4</i>	33 33	9426.2 10+	M1+E2	0.000162 14	$\alpha(N)=1.241\times10^{-8}$ 18; $\alpha(IPF)=0.000944$ 14 $\alpha=0.000162$ 14; $\alpha(K)=9.2\times10^{-5}$ 5; $\alpha(L)=8.9\times10^{-6}$ 5; $\alpha(M)=1.26\times10^{-6}$ 6; $\alpha(N+)=6.0\times10^{-5}$ 9
		2184.4 5	67 33	8688.92 10+	M1+E2	0.00042 4	$\alpha(N)=5.44\times10^{-8}\ 25;\ \alpha(IPF)=6.0\times10^{-5}\ 9$ $\alpha=0.00042\ 4;\ \alpha(K)=4.27\times10^{-5}\ 11;\ \alpha(L)=4.13\times10^{-6}\ 11;\ \alpha(M)=5.82\times10^{-7}\ 15;$ $\alpha(N+)=0.00037\ 4$
		2891.7 7	67 33	7980.81 9+	E2	0.000764 11	$\alpha(N)=2.53\times10^{-8}$ 7; $\alpha(IPF)=0.00037$ 4 $\alpha=0.000764$ 11; $\alpha(K)=2.70\times10^{-5}$ 4; $\alpha(L)=2.61\times10^{-6}$ 4; $\alpha(M)=3.68\times10^{-7}$ 6; $\alpha(N+)=0.000734$ 11
		3439.2 8	100 33	7433.45 9+	E2	0.000985 14	$\alpha(N)=1.601\times10^{-8}\ 23;\ \alpha(IPF)=0.000734\ 11$ $\alpha=0.000985\ 14;\ \alpha(K)=2.05\times10^{-5}\ 3;\ \alpha(L)=1.98\times10^{-6}\ 3;\ \alpha(M)=2.79\times10^{-7}\ 4;$ $\alpha(N+)=0.000962\ 14$
10977.68	11+	2289.1 6	<17	8688.92 10 ⁺	M1+E2	0.00046 4	$\alpha(N)=1.213\times10^{-8}\ 17;\ \alpha(IPF)=0.000962\ 14$ $\alpha=0.00046\ 4;\ \alpha(K)=3.93\times10^{-5}\ 10;\ \alpha(L)=3.81\times10^{-6}\ 10;\ \alpha(M)=5.37\times10^{-7}\ 14;$ $\alpha(N+)=0.00042\ 4$
		2705.8 6	17 <i>17</i>	8272.09 10	E1	0.001102 16	$\alpha(N)=2.33\times10^{-8} 6$; $\alpha(IPF)=0.00042 4$ $\alpha=0.001102 16$; $\alpha(K)=1.91\times10^{-5} 3$; $\alpha(L)=1.84\times10^{-6} 3$; $\alpha(M)=2.60\times10^{-7} 4$; $\alpha(N+)=0.001081 16$
		2996.6 7	100 50	7980.81 9+	E2	0.000809 12	$\alpha(N)=1.128\times10^{-8}\ 16$; $\alpha(IPF)=0.001081\ 16$ $\alpha=0.000809\ 12$; $\alpha(K)=2.55\times10^{-5}\ 4$; $\alpha(L)=2.47\times10^{-6}\ 4$; $\alpha(M)=3.47\times10^{-7}\ 5$; $\alpha(N+)=0.000780\ 11$
		3544.2 8	83 17	7433.45 9+	E2	0.001022 15	$\alpha(N)=1.511\times10^{-8}$ 22; $\alpha(IPF)=0.000780$ 11 $\alpha=0.001022$ 15; $\alpha(K)=1.96\times10^{-5}$ 3; $\alpha(L)=1.89\times10^{-6}$ 3; $\alpha(M)=2.66\times10^{-7}$ 4; $\alpha(N+)=0.001000$ 14
11030.60	11+	2341.7 6	100 50	8688.92 10+	M1+E2	0.00048 4	$\alpha(\text{N})=1.158\times10^{-8}\ 17;\ \alpha(\text{IPF})=0.001000\ 14$ $\alpha=0.00048\ 4;\ \alpha(\text{K})=3.78\times10^{-5}\ 9;\ \alpha(\text{L})=3.66\times10^{-6}\ 9;\ \alpha(\text{M})=5.16\times10^{-7}\ 13;$ $\alpha(\text{N}+)=0.00044\ 4$ $\alpha(\text{N})=2.24\times10^{-8}\ 6;\ \alpha(\text{IPF})=0.00044\ 4$

$\gamma(^{60}\text{Ni})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{\dagger}	Comments
11030.60	11+	3048.4 7	50 50	7980.81	9+	E2		0.000830 12	α =0.000830 <i>12</i> ; α (K)=2.48×10 ⁻⁵ 4; α (L)=2.40×10 ⁻⁶ 4; α (M)=3.38×10 ⁻⁷ 5; α (N+)=0.000802 <i>12</i> α (N)=1.469×10 ⁻⁸ 21; α (IPF)=0.000802 <i>12</i>
		3596.7 8	50 50	7433.45	9+	E2		0.001041 15	α =0.001041 <i>15</i> ; α (K)=1.91×10 ⁻⁵ <i>3</i> ; α (L)=1.85×10 ⁻⁶ <i>3</i> ; α (M)=2.60×10 ⁻⁷ <i>4</i> ; α (N+)=0.001020 <i>15</i>
11044.14	12+	1156.8 <i>3</i>	12 2	9887.9	10+	E2		0.0001760 25	$\begin{array}{l} \alpha({\rm N}){=}1.132{\times}10^{-8}\ 16;\ \alpha({\rm IPF}){=}0.001020\ 15\\ \alpha{=}0.0001760\ 25;\ \alpha({\rm K}){=}0.0001548\ 22;\ \alpha({\rm L}){=}1.513{\times}10^{-5}\ 22;\\ \alpha({\rm M}){=}2.13{\times}10^{-6}\ 3 \end{array}$
		1283.0 4	3 2	9760.42	11-	E1		0.0001728 25	$\alpha(N)=9.17\times10^{-8}\ 13;\ \alpha(IPF)=3.83\times10^{-6}\ 6$ $\alpha=0.0001728\ 25;\ \alpha(K)=5.97\times10^{-5}\ 9;\ \alpha(L)=5.79\times10^{-6}\ 9;$ $\alpha(M)=8.15\times10^{-7}\ 12;\ \alpha(N+)=0.0001065\ 1$
		1329.0 4	1.5 15	9714.9	(10 ⁺)	(E2)		0.0001623 23	$\alpha(N)=3.53\times10^{-8}$ 5; $\alpha(IPF)=0.0001064$ 16 $\alpha=0.0001623$ 23; $\alpha(K)=0.0001143$ 16; $\alpha(L)=1.114\times10^{-5}$ 16; $\alpha(M)=1.569\times10^{-6}$ 22
		1378.7 4	100 3	9665.67	10 ⁺	E2		0.0001655 24	$\alpha(N)=6.77\times10^{-8}\ 10;\ \alpha(IPF)=3.53\times10^{-5}\ 5$ $\alpha=0.0001655\ 24;\ \alpha(K)=0.0001058\ 15;\ \alpha(L)=1.030\times10^{-5}\ 15;$ $\alpha(M)=1.451\times10^{-6}\ 21$
		1911.4 5	3 1	9132.27	11-	E1		0.000607 9	$\alpha(N)=6.26\times10^{-8} 9$; $\alpha(IPF)=4.79\times10^{-5} 7$ $\alpha=0.000607 9$; $\alpha(K)=3.14\times10^{-5} 5$; $\alpha(L)=3.03\times10^{-6} 5$; $\alpha(M)=4.27\times10^{-7} 6$; $\alpha(N+)=0.000572 8$
11079.1	(12 ⁻)	837.1 3	100 50	10241.7	(11-)	(M1+E2)		0.00033 5	$\alpha(N)=1.85\times10^{-8}$ 3; $\alpha(IPF)=0.000572$ 8 $\alpha=0.00033$ 5; $\alpha(K)=0.00030$ 4; $\alpha(L)=2.9\times10^{-5}$ 4; $\alpha(M)=4.1\times10^{-6}$ 6; $\alpha(N+)=1.77\times10^{-7}$ 24
		1025.1 3	100 50	10054.23	(11-)	(M1+E2)		0.000209 20	$\alpha(N)=1.77\times10^{-7} 24$ $\alpha=0.000209 \ 20; \ \alpha(K)=0.000188 \ 18; \ \alpha(L)=1.83\times10^{-5} \ 18;$ $\alpha(M)=2.58\times10^{-6} \ 25; \ \alpha(N+)=1.11\times10^{-7} \ I$
11112.8	13-	954.1 3	1.7 <i>17</i>	10158.6	(12-)	(M1+E2)		0.00024 3	$\alpha(N)=1.11\times10^{-7}\ 10$ $\alpha=0.00024\ 3;\ \alpha(K)=0.000220\ 24;\ \alpha(L)=2.15\times10^{-5}\ 24;$ $\alpha(M)=3.0\times10^{-6}\ 4;\ \alpha(N+)=1.31\times10^{-7}\ 14$
		1123.4 3	100 7	9989.27	(12-)	M1+E2	+0.13 7	0.0001597 24	$\alpha(N)=1.31\times10^{-7}$ 14 $\alpha=0.0001597$ 24; $\alpha(K)=0.0001426$ 21; $\alpha(L)=1.388\times10^{-5}$ 21; $\alpha(M)=1.96\times10^{-6}$ 3
		1981.1 5	7 2	9132.27	11-	E2		0.000360 5	$\alpha(N)=8.48\times10^{-8}\ 13;\ \alpha(IPF)=1.168\times10^{-6}\ 23$ $\alpha=0.000360\ 5;\ \alpha(K)=5.20\times10^{-5}\ 8;\ \alpha(L)=5.04\times10^{-6}\ 7;$ $\alpha(M)=7.10\times10^{-7}\ 10;\ \alpha(N+)=0.000303\ 5$
11120.6	12-	1498.1 <i>4</i>	100	9622.5	10-	E2		0.000185 3	$\alpha(N)=3.08\times10^{-8}$ 5; $\alpha(IPF)=0.000303$ 5 $\alpha=0.000185$ 3; $\alpha(K)=8.91\times10^{-5}$ 13; $\alpha(L)=8.67\times10^{-6}$ 13; $\alpha(M)=1.222\times10^{-6}$ 18; $\alpha(N+)=8.63\times10^{-5}$ 13
11224.9	(11+)	2705 2	50 50	8521.11	10-	(E1)		0.001102 16	$\alpha(N)=5.28\times10^{-8} 8$; $\alpha(IPF)=8.62\times10^{-5} 13$ $\alpha=0.001102 16$; $\alpha(K)=1.91\times10^{-5} 3$; $\alpha(L)=1.84\times10^{-6} 3$; $\alpha(M)=2.60\times10^{-7} 4$; $\alpha(N+)=0.001080 16$ $\alpha(N)=1.128\times10^{-8} 16$; $\alpha(IPF)=0.001080 16$

								_	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{\dagger}	Comments
11224.9	(11+)	3792.5 9	100 50	7433.45	9+	(E2)		0.001118 16	α =0.001118 <i>16</i> ; α (K)=1.763×10 ⁻⁵ 25; α (L)=1.702×10 ⁻⁶ 24; α (M)=2.40×10 ⁻⁷ 4; α (N+)=0.001098 α (N)=1.044×10 ⁻⁸ <i>15</i> ; α (IPF)=0.001098 <i>16</i>
11255.23	12+	224.6 1	14 5	11030.60	11+	M1+E2	-0.12 <i>10</i>	0.0061 7	α =0.0061 7; α (K)=0.0055 6; α (L)=0.00055 7; α (M)=7.7×10 ⁻⁵ 9; α (N+)=3.3×10 ⁻⁶ 4 α (N)=3.3×10 ⁻⁶ 4
		278.0 2	100 5	10977.68	11+	M1(+E2)	-0.03 5	0.00344 7	α =0.00344 7; α (K)=0.00309 7; α (L)=0.000307 7; α (M)=4.32×10 ⁻⁵ 9; α (N+)=1.85×10 ⁻⁶ 4 α (N)=1.85×10 ⁻⁶ 4
		382.8 2	33 5	10872.60	11+	M1+E2	-0.05 4	0.00161 3	α =0.00161 3; α (K)=0.001447 24; α (L)=0.0001430 24; α (M)=2.01×10 ⁻⁵ 4; α (N+)=8.64×10 ⁻⁷ 14 α (N)=8.64×10 ⁻⁷ 14
		429.9 2	43 5	10825.23	11+	M1(+E2)	-0.04 4	0.001230 19	α =0.001230 <i>19</i> ; α (K)=0.001105 <i>17</i> ; α (L)=0.0001089 <i>17</i> ; α (M)=1.535×10 ⁻⁵ 24 α (N)=6.59×10 ⁻⁷ <i>10</i>
		1293.4 4	29 5	9960.14	11-	E1		0.000179 3	α =0.000179 3; α (K)=5.89×10 ⁻⁵ 9; α (L)=5.71×10 ⁻⁶ 8; α (M)=8.04×10 ⁻⁷ 12; α (N+)=0.0001135 17 α (N)=3.48×10 ⁻⁸ 5; α (IPF)=0.0001135 17
		1590.3 4	33 5	9665.67	10 ⁺	E2		0.000211 3	α =0.000211 3; α (K)=7.91×10 ⁻⁵ 11; α (L)=7.69×10 ⁻⁶ 11; α (M)=1.083×10 ⁻⁶ 16; α (N+)=0.0001234 α (N)=4.68×10 ⁻⁸ 7; α (IPF)=0.0001234 18
		2123.4 5	4.8 5	9132.27	11-	E1		0.000751 11	α =0.000751 11; α (K)=2.68×10 ⁻⁵ 4; α (L)=2.59×10 ⁻⁶ 4; α (M)=3.65×10 ⁻⁷ 6; α (N+)=0.000722 11 α (N)=1.586×10 ⁻⁸ 23; α (IPF)=0.000722 11
(11387.700)	$(1^-,2^-)$	1358.67 <i>18</i>	0.126 19	10029.02					
		1434.0 <i>3</i>	0.084 19	9953.7					
		2040.85 19	0.223 23	9346.82					
		2311.00 18	0.223 23	9076.66					
		2341.9 4	0.107 19	9045.20					
		2721.59 25	0.177 23	8666.21					
		2749.5 <i>4</i> 2822.3 <i>3</i>	0.121 23	8638.5					
		2822.3 3 2883.0 4	0.186 <i>23</i> 0.172 <i>23</i>	8565.60 8504.7					
		3101.2 6	0.172 23	8286.3	(1 ⁺)				
		3436.9 <i>3</i>	0.35 3	7950.93					
		3569.53 <i>13</i>	0.409 23	7818.02	-				
		3589.0 <i>3</i>	0.24 4	7798.9					
		3625.6 4	0.16 3		1+				
		3697.7 6	0.15 3		1-				
		3703.4 8	0.18 5	7684.1					
		3836.1 5	0.15 3	7552.0					
		3892.4 5	0.20 3	7495.2					

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}
(11387.700)	$(1^-,2^-)$	3913.7 <i>3</i>	0.19 3	7473.49	1+
, ,		3973.4 5	0.19 3	7414.16	
		4048.2 <i>4</i>	0.22 3	7339.68	
		4071.49 22	0.34 4	7316.13	
		4164.75 <i>11</i>	0.90 4	7222.80	
		4180.5 7	0.084 18	7207.6	
		4331.24 <i>15</i>	0.53 3	7056.27	
		4390.4 <i>3</i>	0.19 2	6996.86	
		4475.58 10	0.70 3	6911.93	1+
		4553.0 <i>3</i>	0.33 3	6834.92	
		4631.2 5	0.17 3	6756.4	
		4740.48 <i>12</i>	1.05 5	6647.17	
		4819.9 6	0.15 3	6567.33	
		4871.7 8	0.11 3	6516.72	
		4898.4 <i>4</i>	0.30 3	6489.28	
		4922.34 25	0.72 5	6465.25	1-
		5005.5 7	0.14 3	6382.4	1
		5025.43 25	0.43 4	6362.05	
		5059.8 6	0.19 3	6327.21	2+
		5148.1 3	0.29 2	6239.2	
		5320.69 18	0.44 3	6066.72	
		5419.5 6	0.12 2	5967.8	
		5468.5 6	0.13 2	5918.54	
		5485.02 8	1.75 4	5902.44	
		5509.46 11	1.04 4	5878.05	
		5527.4 <i>5</i> 5676.64 <i>4</i>	0.16 2 4.35 8	5859.9 5710.70	
		5714.96 <i>18</i>	4.33 6 0.74 <i>4</i>	5710.79 5672.36	
		5775.08 6	3.32 7	5612.40	
		5911.3 8	0.074 23	5476.04	
		5940.5 <i>3</i>	0.34 3	5446.98	2+
		6099.4 3	0.29 3	5288.55	2
		6260.19 20	0.23 3	5127.16	
		6322.29 11	2.59 7	5065.02	(1^{-})
		6434.01 10	1.04 3	4953.36	(1)
		6458.42 18	0.46 3	4928.98	
		6543.44 18	2.7 1	4843.93	2+
		6608.29 <i>15</i>	1.36 6	4779.13	-
		6627.12 19	0.59 4	4760.23	1,2
		6809.91 9	1.55 6	4577.45	2+
		6839.38 12	5.6 3	4547.96	$1^+,2^+$
		6894.23 11	1.28 5	4493.16	2+
		7051.67 12	1.02 4	4335.52	2
		7068.67 8	1.93 6	4318.58	2+

$\gamma(^{60}\text{Ni})$ (continued)

Adopted Levels, Gammas (continued)

$E_i(level)$	${\rm J}_i^\pi$	$\mathrm{E}_{\gamma}^{\ddagger}$	${ m I}_{\gamma}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	$lpha^\dagger$	Comments
(11387.700)	$(1^-,2^-)$	7275.9 9	0.09 2	4111.96	2+				
(,	() /	7309.22 14	0.99 5	4077.99					
		7367.31 5	9.1 2	4019.886	1+				
		7380.77 4	11.3 <i>3</i>	4006.444					
		7499.4 <i>4</i>	0.35 3	3887.36					
		7516.17 <i>4</i>	9.5 2	3871.050					
		7652.88 8	2.00 5	3734.44	2+				
		7799.40 6	3.20 7	3587.72	0^{+}				
		7993.95 10	1.44 5	3393.14	2+				
		8069.26 4	14.8 <i>3</i>	3317.829	0^{+}				
		8117.6 9	0.20 6	3269.19	2+				
		8193.24 <i>4</i>	8.8 2	3193.87	1+				
		8200.88 17	0.96 4	3185.98	(3^+)				
		8263.35 5	7.4 2	3123.698					
		9102.10 4	41.1 7	2284.80					
		9228.19 9	5.3 2	2158.632					
		10054.14 7	38.2 7	1332.514					
		11386.50 9	100 4	0.0	0^{+}				
11443.40	13-	654.9 2	29 7	10788.66	12-	M1+E2		0.00061 13	α =0.00061 13; α (K)=0.00055 12; α (L)=5.4×10 ⁻⁵ 12; α (M)=7.6×10 ⁻⁶ 16; α (N+)=3.2×10 ⁻⁷ 7 α (N)=3.2×10 ⁻⁷ 7
		1683.2 4	100 7	9760.42	11-	E2		0.000242 4	α =0.000242 4; α (K)=7.07×10 ⁻⁵ 10; α (L)=6.87×10 ⁻⁶ 10; α (M)=9.68×10 ⁻⁷ 14; α (N+)=0.0001639 2 α (N)=4.19×10 ⁻⁸ 6; α (IPF)=0.0001638 23
		1724.9 <i>4</i>	79 <i>7</i>	9718.27	11-	E2		0.000257 4	α =0.000257 4; α (K)=6.74×10 ⁻⁵ 10; α (L)=6.55×10 ⁻⁶ 10; α (M)=9.23×10 ⁻⁷ 13; α (N+)=0.000182 3 α (N)=4.00×10 ⁻⁸ 6; α (IPF)=0.000182 3
11493.6	(12+)	2361.4 9	100	9132.27	11-	(E1)		0.000901 13	α =0.000901 13; α (K)=2.31×10 ⁻⁵ 4; α (L)=2.23×10 ⁻⁶ 4; α (M)=3.14×10 ⁻⁷ 5; α (N+)=0.000876 13 α (N)=1.362×10 ⁻⁸ 19; α (IPF)=0.000876 13
11553.3	13-	764.2 3	100	10788.66	12-	M1+E2		0.00041 7	$\alpha(N)=1.362\times10^{-5}$ P ; $\alpha(PF)=0.0008/6$ P 3 $\alpha=0.00041$ P 3; $\alpha(K)=0.00037$ P 5; $\alpha(L)=3.6\times10^{-5}$ P 5; $\alpha(M)=5.1\times10^{-6}$ P 9; $\alpha(N+)=2.2\times10^{-7}$ P 9 $\alpha(N)=2.2\times10^{-7}$ P 9 $\alpha(N)=2.$
11785.6	(12 ⁺)	560.8 2	50 25	11224.9	(11+)	M1+E2		0.00092 25	α =0.00092 25; α (K)=0.00082 22; α (L)=8.1×10 ⁻⁵ 22; α (M)=1.1×10 ⁻⁵ 3; α (N+)=4.9×10 ⁻⁷ 13 α (N)=4.9×10 ⁻⁷ 13
		2654.2 6	100 25	9132.27	11-	(E1)		0.001073 15	α =0.001073 15; α (K)=1.96×10 ⁻⁵ 3; α (L)=1.89×10 ⁻⁶ 3; α (M)=2.66×10 ⁻⁷ 4; α (N+)=0.001051 15
11851.17	13 ⁺	596.0 2	100 5	11255.23	12+	M1(+E2)	-0.03 4	0.000591 9	$\alpha(N)=1.158\times10^{-8}\ I7;\ \alpha(IPF)=0.001051\ I5$ $\alpha=0.000591\ 9;\ \alpha(K)=0.000531\ 8;\ \alpha(L)=5.21\times10^{-5}\ 8;$ $\alpha(M)=7.34\times10^{-6}\ II;\ \alpha(N+)=3.17\times10^{-7}\ 5$ $\alpha(N)=3.17\times10^{-7}\ 5$

							$\gamma^{(00}\text{N}_1)$ (co	ontinued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ \ddagger}$	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^π	Mult.#	$\delta^{@}$	$lpha^\dagger$	Comments
11851.17	13+	872.6 3	4.5 15	10977.68	11+	E2		0.000338 5	α =0.000338 5; α (K)=0.000304 5; α (L)=2.99×10 ⁻⁵ 5; α (M)=4.20×10 ⁻⁶ 6; α (N+)=1.80×10 ⁻⁷ 3 α (N)=1.80×10 ⁻⁷ 3
		1862.9 5	4.5 15	9989.27	(12-)	E1		0.000573 8	α =0.000573 8; α (K)=3.26×10 ⁻⁵ 5; α (L)=3.15×10 ⁻⁶ 5; α (M)=4.44×10 ⁻⁷ 7; α (N+)=0.000537 8 α (N)=1.93×10 ⁻⁸ 3; α (IPF)=0.000536 8
11878.0 12273.7	(13) 14 ⁻	1180.7 <i>3</i> 1160.8 <i>3</i>	100 100 <i>12</i>	10697.3 11112.8	12 ⁻ 13 ⁻	(D+Q) M1+E2	+0.11 6	0.0001515 22	α =0.0001515 22; α (K)=0.0001336 19; α (L)=1.300×10 ⁻⁵ 19; α (M)=1.83×10 ⁻⁶ 3 α (N)=7.95×10 ⁻⁸ 12; α (IPF)=2.94×10 ⁻⁶ 5
		2284.6 6	15 4	9989.27	(12-)	E2		0.000496 7	α =0.000496 7; α (K)=4.03×10 ⁻⁵ 6; α (L)=3.90×10 ⁻⁶ 6; α (M)=5.50×10 ⁻⁷ 8; α (N+)=0.000451 7 α (N)=2.39×10 ⁻⁸ 4; α (IPF)=0.000451 7
12486.2	(13+)	700.8 2	100 25	11785.6	(12+)	M1+E2		0.00051 10	α =0.00051 10; α (K)=0.00046 9; α (L)=4.5×10 ⁻⁵ 9; α (M)=6.4×10 ⁻⁶ 12; α (N+)=2.7×10 ⁻⁷ 5 α (N)=2.7×10 ⁻⁷ 5
		2495.3 6	75 25	9989.27	(12-)	(E1)		0.000981 14	α =0.000981 14; α (K)=2.13×10 ⁻⁵ 3; α (L)=2.06×10 ⁻⁶ 3; α (M)=2.90×10 ⁻⁷ 4; α (N+)=0.000958 14 α (N)=1.261×10 ⁻⁸ 18; α (IPF)=0.000958 14
12578.4	14+	727.1 2	100 6	11851.17	13+	M1(+E2)	+0.03 5	0.000385 6	α =0.000385 6; α (K)=0.000346 5; α (L)=3.38×10 ⁻⁵ 5; α (M)=4.77×10 ⁻⁶ 7; α (N+)=2.06×10 ⁻⁷ 3 α (N)=2.06×10 ⁻⁷ 3
		1025.1 3	4 2	11553.3	13-	E1		9.99×10 ⁻⁵ 14	α =9.99×10 ⁻⁵ 14; α (K)=8.99×10 ⁻⁵ 13; α (L)=8.73×10 ⁻⁶ 13; α (M)=1.229×10 ⁻⁶ 18; α (N+)=5.31×10 ⁻⁸ 8 α (N)=5.31×10 ⁻⁸ 8
		1323.9 4	6 2	11255.23	12+	E2		0.0001621 23	α =0.0001621 23; α (K)=0.0001152 17; α (L)=1.123×10 ⁻⁵ 16; α (M)=1.582×10 ⁻⁶ 23 α (N)=6.82×10 ⁻⁸ 10; α (IPF)=3.40×10 ⁻⁵ 5
12742.1	13+	1956.0 <i>12</i>	100 50	10788.66	12-	E1		0.000638 9	α =0.000638 9; α (K)=3.03×10 ⁻⁵ 5; α (L)=2.93×10 ⁻⁶ 5; α (M)=4.12×10 ⁻⁷ 6; α (N+)=0.000604 9 α (N)=1.79×10 ⁻⁸ 3; α (IPF)=0.000604 9
		2753.2 7	50 <i>50</i>	9989.27	(12-)	E1		0.001128 <i>16</i>	α =0.001128 16; α (K)=1.87×10 ⁻⁵ 3; α (L)=1.80×10 ⁻⁶ 3; α (M)=2.54×10 ⁻⁷ 4; α (N+)=0.001107 16 α (N)=1.102×10 ⁻⁸ 16; α (IPF)=0.001107 16
12774.7	14+	1281.1 4	1 <i>I</i>	11493.6	(12+)	(E2)		0.0001616 23	α =0.0001616 23; α (K)=0.0001236 18; α (L)=1.206×10 ⁻⁵ 17; α (M)=1.698×10 ⁻⁶ 24 α (N)=7.32×10 ⁻⁸ 11; α (IPF)=2.41×10 ⁻⁵ 4
		1730.4 4	100 5	11044.14	12+	E2		0.000259 4	α =0.000259 4; α (K)=6.70×10 ⁻⁵ 10; α (L)=6.51×10 ⁻⁶ 10; α (M)=9.17×10 ⁻⁷ 13; α (N+)=0.000185 3 α (N)=3.97×10 ⁻⁸ 6; α (IPF)=0.000185 3

$\gamma(^{60}\text{Ni})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^π	Mult.#	$lpha^\dagger$	Comments
13037.5	14-	1916.9 5	100	11120.6	12-	E2	0.000333 5	α =0.000333 5; α (K)=5.52×10 ⁻⁵ 8; α (L)=5.36×10 ⁻⁶ 8; α (M)=7.55×10 ⁻⁷ 11; α (N+)=0.000272 4 α (N)=3.27×10 ⁻⁸ 5; α (IPF)=0.000272 4
13246.3	13+	2202.3 5	100 50	11044.14	12+	M1+E2	0.00042 4	α =0.00042 4; α (K)=4.21×10 ⁻⁵ 11; α (L)=4.08×10 ⁻⁶ 11; α (M)=5.74×10 ⁻⁷ 15; α (N+)=0.00038 4 α (N)=2.49×10 ⁻⁸ 7; α (IPF)=0.00038 4
		2456.4 6	100 50	10788.66	12-	E1	0.000958 14	α =0.000958 14; α (K)=2.18×10 ⁻⁵ 3; α (L)=2.11×10 ⁻⁶ 3; α (M)=2.97×10 ⁻⁷ 5; α (N+)=0.000934 13 α (N)=1.288×10 ⁻⁸ 18; α (IPF)=0.000934 13
13282.3	(14+)	1839.1 5	100 20	11443.40	13-	(E1)	0.000556 8	α =0.000556 8; α (K)=3.32×10 ⁻⁵ 5; α (L)=3.22×10 ⁻⁶ 5; α (M)=4.53×10 ⁻⁷ 7; α (N+)=0.000519 8 α (N)=1.96×10 ⁻⁸ 3; α (IPF)=0.000519 8
		2238.1 9	40 20	11044.14	12+	(E2)	0.000475 7	α =0.000475 7; α (K)=4.17×10 ⁻⁵ 6; α (L)=4.05×10 ⁻⁶ 6; α (M)=5.70×10 ⁻⁷ 8; α (N+)=0.000428 6 α (N)=2.47×10 ⁻⁸ 4; α (IPF)=0.000428 6
13353.0	(14 ⁺)	866.8 <i>3</i>	100	12486.2	(13+)	M1+E2	0.00031 4	α =0.00031 4; α (K)=0.00027 4; α (L)=2.7×10 ⁻⁵ 4; α (M)=3.8×10 ⁻⁶ 5; α (N+)=1.63×10 ⁻⁷ 21 α (N)=1.63×10 ⁻⁷ 21
13615.4	15-	2061.2 5	13 7	11553.3	13-	E2	0.000395 6	$\alpha(N)=1.03\times 10^{-21}$ $\alpha=0.000395$ 6; $\alpha(K)=4.84\times 10^{-5}$ 7; $\alpha(L)=4.69\times 10^{-6}$ 7; $\alpha(M)=6.61\times 10^{-7}$ 10 ; $\alpha(N+)=0.000342$ 5 $\alpha(N)=2.87\times 10^{-8}$ 4; $\alpha(IPF)=0.000342$ 5
		2172.9 5	100 7	11443.40	13-	E2	0.000445 7	α =0.000445 7; α (K)=4.40×10 ⁻⁵ 7; α (L)=4.26×10 ⁻⁶ 6; α (M)=6.01×10 ⁻⁷ 9; α (N+)=0.000397 6 α (N)=2.61×10 ⁻⁸ 4; α (IPF)=0.000397 6
13662.2	15 ⁺	1083.9 <i>3</i>	100 8	12578.4	14+	M1+E2	0.000185 16	α =0.000185 16 ; α (K)=0.000166 14 ; α (L)=1.62×10 ⁻⁵ 14 ; α (M)=2.28×10 ⁻⁶ 20 ; α (N+)=9.9×10 ⁻⁸ 8 α (N)=9.9×10 ⁻⁸ 8
		1811.0 <i>5</i>	11 3	11851.17	13+	E2	0.000290 4	$\alpha(N)=9.9 \times 10^{-8}$ or $\alpha=0.000290$ 4; $\alpha(K)=6.15 \times 10^{-5}$ 9; $\alpha(L)=5.97 \times 10^{-6}$ 9; $\alpha(M)=8.41 \times 10^{-7}$ 12; $\alpha(N+)=0.000222$ 4 $\alpha(N)=3.64 \times 10^{-8}$ 6; $\alpha(IPF)=0.000222$ 4
13810.0	(15 ⁻)	1536.2 4	100 33	12333	8-	(M1+E2)	0.000180 <i>16</i>	α =0.000180 16; α (K)=8.1×10 ⁻⁵ 4; α (L)=7.9×10 ⁻⁶ 4; α (M)=1.12×10 ⁻⁶ 5; α (N+)=8.9×10 ⁻⁵ 12
		2697.2 6	67 33	11112.8	13-	(E2)	0.000680 10	$\alpha(N)=4.83\times10^{-8} \ 20; \ \alpha(IPF)=8.9\times10^{-5} \ 12$ $\alpha=0.000680 \ 10; \ \alpha(K)=3.03\times10^{-5} \ 5; \ \alpha(L)=2.93\times10^{-6} \ 5; \ \alpha(M)=4.13\times10^{-7}$ $6; \ \alpha(N+)=0.000646 \ 9$
14201.0	(15 ⁺)	848.0 <i>3</i>	100	13353.0	(14+)	M1+E2	0.00032 5	$\alpha(N)=1.80\times10^{-8}$ 3; $\alpha(IPF)=0.000646$ 9 $\alpha=0.00032$ 5; $\alpha(K)=0.00029$ 4; $\alpha(L)=2.8\times10^{-5}$ 4; $\alpha(M)=4.0\times10^{-6}$ 6; $\alpha(N+)=1.71\times10^{-7}$ 23
14463.7	15+	1217.1 3	56 12	13246.3	13+	E2	0.0001653 24	$\alpha(N)=1.71\times10^{-7}$ 23 $\alpha=0.0001653$ 24; $\alpha(K)=0.0001383$ 20; $\alpha(L)=1.350\times10^{-5}$ 19; $\alpha(M)=1.90\times10^{-6}$ 3 $\alpha(N)=8.19\times10^{-8}$ 12; $\alpha(IPF)=1.153\times10^{-5}$ 17

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$lpha^\dagger$	Comments
16194.4	17-	2578.9 6	100	13615.4 15-	E2	0.000628 9	α =0.000628 9; α (K)=3.27×10 ⁻⁵ 5; α (L)=3.16×10 ⁻⁶ 5; α (M)=4.46×10 ⁻⁷ 7; α (N+)=0.000592 9 α (N)=1.94×10 ⁻⁸ 3; α (IPF)=0.000592 9
16242.0?	(17 ⁺)	1077 ^k 1		15164.8 (16 ⁺)	(M1+E2)	0.000187 16	α =0.000187 16; α (K)=0.000168 14; α (L)=1.64×10 ⁻⁵ 15; α (M)=2.32×10 ⁻⁶ 20; α (N+)=1.00×10 ⁻⁷ 9 α (N)=1.00×10 ⁻⁷ 9
16842.4	18+	2196.9 5	100	14645.5 16 ⁺	E2	0.000456 7	α =0.000456 7; α (K)=4.31×10 ⁻⁵ 6; α (L)=4.18×10 ⁻⁶ 6; α (M)=5.89×10 ⁻⁷ 9; α (N+)=0.000408 6 α (N)=2.56×10 ⁻⁸ 4; α (IPF)=0.000408 6
17235.8	18+	2301.9 6	100	14933.9 16 ⁺	E2	0.000504 7	α =0.000504 7; α (K)=3.97×10 ⁻⁵ 6; α (L)=3.85×10 ⁻⁶ 6; α (M)=5.42×10 ⁻⁷ 8; α (N+)=0.000459 7
17911.6	19 ⁺	1884.9 5	100	16026.6 17 ⁺	E2	0.000320 5	$\alpha(N)=2.35\times10^{-8}$ 4; $\alpha(IPF)=0.000459$ 7 $\alpha=0.000320$ 5; $\alpha(K)=5.70\times10^{-5}$ 8; $\alpha(L)=5.53\times10^{-6}$ 8; $\alpha(M)=7.79\times10^{-7}$ 11; $\alpha(N+)=0.000256$ 4
18131.4	(18-)	2849.9 7	100	15281.5 (16-)	(E2)	0.000746 11	$\alpha(N)=3.38\times10^{-8}$ 5; $\alpha(IPF)=0.000256$ 4 $\alpha=0.000746$ 11; $\alpha(K)=2.77\times10^{-5}$ 4; $\alpha(L)=2.68\times10^{-6}$ 4; $\alpha(M)=3.77\times10^{-7}$ 6; $\alpha(N+)=0.000715$ 10
19238.4	(19-)	3043.9 7	100	16194.4 17-	(E2)	0.000828 12	$\alpha(N)=1.639\times10^{-8}\ 23;\ \alpha(IPF)=0.000715\ 10$ $\alpha=0.000828\ 12;\ \alpha(K)=2.49\times10^{-5}\ 4;\ \alpha(L)=2.40\times10^{-6}\ 4;\ \alpha(M)=3.39\times10^{-7}\ 5;$ $\alpha(N+)=0.000801\ 12$
19504.4	20+	2661.9 6	100	16842.4 18+	E2	0.000665 10	$\alpha(N)=1.473\times10^{-8}\ 21;\ \alpha(IPF)=0.000801\ 12$ $\alpha=0.000665\ 10;\ \alpha(K)=3.10\times10^{-5}\ 5;\ \alpha(L)=3.00\times10^{-6}\ 5;\ \alpha(M)=4.23\times10^{-7}\ 6;$ $\alpha(N+)=0.000630\ 9$
20017.9	(20 ⁺)	2782.0 7	100	17235.8 18 ⁺	(E2)	0.000717 10	$\alpha(N)=1.84\times10^{-8}$ 3; $\alpha(IPF)=0.000630$ 9 $\alpha=0.000717$ 10; $\alpha(K)=2.88\times10^{-5}$ 4; $\alpha(L)=2.79\times10^{-6}$ 4; $\alpha(M)=3.93\times10^{-7}$ 6; $\alpha(N+)=0.000685$ 10
20177.5	21+	2265.9 6	100	17911.6 19 ⁺	E2	0.000487 7	$\alpha(N)=1.706\times10^{-8}\ 24;\ \alpha(IPF)=0.000685\ 10$ $\alpha=0.000487\ 7;\ \alpha(K)=4.08\times10^{-5}\ 6;\ \alpha(L)=3.96\times10^{-6}\ 6;\ \alpha(M)=5.58\times10^{-7}\ 8;$ $\alpha(N+)=0.000442\ 7$
22863.5	(22 ⁺)	3359.0 8	100	19504.4 20 ⁺	(E2)	0.000955 14	$\alpha(N)=2.42\times10^{-8}$ 4; $\alpha(IPF)=0.000442$ 7 $\alpha=0.000955$ 14; $\alpha(K)=2.13\times10^{-5}$ 3; $\alpha(L)=2.05\times10^{-6}$ 3; $\alpha(M)=2.89\times10^{-7}$ 4; $\alpha(N+)=0.000932$ 13
22996.5	23 ⁺	2818.9 7	100	20177.5 21+	E2	0.000733 11	$\alpha(N+)=0.000932\ 13$ $\alpha(N)=1.259\times10^{-8}\ 18;\ \alpha(IPF)=0.000932\ 13$ $\alpha=0.000733\ 1I;\ \alpha(K)=2.82\times10^{-5}\ 4;\ \alpha(L)=2.73\times10^{-6}\ 4;\ \alpha(M)=3.84\times10^{-7}\ 6;$ $\alpha(N+)=0.000701\ 10$ $\alpha(N)=1.669\times10^{-8}\ 24;\ \alpha(IPF)=0.000701\ 10$

[†] Additional information 3. [‡] From (36 Ar,4pγ), unless given otherwise. For additional γ's from unbound states, see 59 Co(p,γ). # Multipolarity from $\gamma(\theta)$ in 56 Fe(7 Li,2npγ); character (E or M) from RUL or ΔJ^{π} , except as noted.

- $^{@}$ From 56 Fe(7 Li,2np γ), except as noted. $^{\&}$ From 59 Co(p, γ).
- ^a From 60 Cu ε decay.
- ^b From 60 Co β^- decay (1925.28 d).
- ^c From 60 Ni(p,p' γ).
- ^d From 60 Ni(p,p' γ).
- ^e From 56 Fe(7 Li,2np γ).
- ^f From ⁵⁹Co(³He,d γ). E γ deduced from level separation and not included in energy fit.
- ^g From ⁵⁹Co(³He,d γ). E γ deduced from level separation and not included in energy fit.
- ^h From ${}^{28}\text{Si}({}^{35}\text{Cl},3\text{p})$. ⁱ From ${}^{59}\text{Ni}(\text{n},\gamma)$ E=thermal.
- ^j From (γ, γ') , (pol γ, γ').
- ^k Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{60}_{28}{\rm Ni}_{32}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

28^{1N1}32

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Level Scheme (continued)

$$^{60}_{28}{\rm Ni}_{32}$$