${\bf Vorlesung smitschrift}$

DIFF II

Prof. Dr. Dorothea Bahns

Henry Ruben Fischer

Auf dem Stand vom 9. Juli 2020

Disclaimer

Nicht von Professor Bahns durchgesehene Mitschrift, keine Garantie auf Richtigkeit ihrerseits.

Inhaltsverzeichnis

1.	Metris	che Räume	6	
	1.I.	Charakterisierung topologischer Grundbegriffe in metrischen Räumen .	17	
	1.II.	Vollständigkeit	19	
	1.III.	Betrachtungen in vollständigen metrischen Räumen		
	1.IV.	Stetige Abbildungen auf metrischen Räumen	27	
	1.V.	Kompaktheit	30	
	1.VI.	Äquivalenz von Metriken		
2.	Normi	erte Vektorräume	38	
	2.I.	Stetige Abbildungen in normierten Vektorräumen	44	
	2.	I.1. Lineare Abbildungen	44	
	2.II.	Vektorräume mit Skalarprodukt	49	
3.	Differe	enzierbarkeit in \mathbb{R}^n	55	
	3.I.	Geometrische Anschauung, partielle Ableitung	59	
	3.II.	Beispiele und Erläuterungen	63	
	3.III.	Implizite Funktionen	72	
	3.IV.	Der Satz von der Umkehrabbildung		
	3.V.	Lokale Extrema unter Nebenbedingungen	88	
	3.VI.	Höhere Ableitungen, Taylorformel	92	
	3.VII.	Der Laplace-Operator		
	3.VIII.			
	3.IX.	Lokale Extrema	103	
4.	Unterr	mannigfaltigkeiten des \mathbb{R}^n	109	
	4.I.	Tangential- und Normalraum	130	
	4.II.	Flächenbemessung auf Untermannigfaltigkeiten	138	
5.	Differentialgleichungen			
	5.I.	Geometrische Interpretation	143	
	5.II.	Existenz- und Eindeutigkeitssatz	145	
	5.III.	Lineare Differentialgleichungen		
	5 IV	Lineare DGL-Systeme mit konstanten Koeffizienten		

In halts verzeichn is

6.	Lebesg	ue-Integration	182			
	6.I.	Etwas Maßtheorie	190			
	6.II.	Weitere Folgerungen	192			
	6.III.	Messbare Funktionen	196			
	6.IV.	Zum Verhältnis von Lebesgue- / Riemann-Integral	197			
	6.V.	Produkt-Maße	200			
	6.VI.	Der Transformationssatz	207			
7.	Integra	ntion auf Untermannigfaltigkeiten	215			
	7.I.	Der Integralsatz von Gauß	221			
Ind	Index					

Vorlesungsverzeichnis

1.	Mo 20.04. 10:15	6
2.	Do 23.04. 10:15	16
3.	Mo 27.04. 10:15	25
4.	Do 30.04. 10:15	36
5.	Mo 04.05. 10:15	44
6.	Do 07.05. 10:15	55
7.	Mo 11.05. 10:15	63
8.	Do 14.05. 10:15	74
9.	Mo 17.05. 10:15	80
10.	Do 21.05. 10:15	88
11.	Mo 25.05. 10:15	100
12.	Do 28.05. 10:15	109
13.	Do 04.06. 10:15	122
14.	Mo 08.06. 10:15	130
15.	Do 11.06. 10:15	143
16.	Mo 15.06. 10:15	153
17.	Do 18.06. 10:15	162
18.	Mo 15.06. 10:15	171
19.	Do 25.10. 10:15	182
20.	Mo 29.06. 10:15	190
21.	Do 02.07. 10:15	199
22.	Mo 06.07. 10:15	207
23	Do 09 07 10:15	214

Vorlesung 23

Do 09.07. 10:15

Kapitel 7.

Integration auf Untermannigfaltigkeiten

Erinnerung (14. Vorlesung). Flächeninhalt von $\varphi(\mathcal{R}) \approx \sqrt{\det -g_{\varphi}(t_0)}$ Fläche (\mathcal{R}) . (det $-g_{\varphi}(t_0)$ heißt Gramsche Determinante) mit dem metrischen Tensor g_{φ}

$$\begin{split} \langle v,v\rangle_a &= \sum_i \sum_j v_i w_j \underbrace{\langle \partial_i \varphi(t_0), \partial_j \varphi(t_0) \rangle_{\mathbf{E}}}_{:=(g_\varphi)_{ij}(t_0)} \\ \langle v,w\rangle_a &= \langle v,w\rangle_{\mathbf{E}} \quad \text{für } a \in M \cap U, \ v,w \in \operatorname{Ta} M. \end{split}$$

Lemma 4.18:
$$\det g(t_0) = \sum_{i_1} \left(\det D \begin{pmatrix} \varphi_{i_1} \\ \vdots \\ \varphi_{i_d} \end{pmatrix} (t_0) \right)^2$$
.

??: Unter Parameterwechsel (vgl. 4.9) verhält sich der metrische Tensor wi folgt

$$g_{\psi} = (D\Phi(s))^T g_{\varphi} D\Phi(s)$$
bzgl. $\psi \colon \tilde{V} \to M \cap \text{WzglerechVet} \to M \cap U$ berechnet

$$\mathrm{mit}\ \Phi = \varphi^{-1} \circ \psi \colon \psi^{-1}(M \cap U \cap \tilde{U}) \to \varphi^{-1}(M \cap U \cap \tilde{U}).$$

Definition 7.1. Sei $M \subset \mathbb{R}^n$ eine d-dimensionale Untermannigfaltigkeit. Es sei

- a) $\varphi\colon V\to\mathbb{R}^n$ eine globale Parametisierung von $M=\varphi(V)$ und $f\colon M\to\mathbb{R}$ eine Funktion, oder
- b) $\varphi \colon V \to \mathbb{R}^n$ eine lokale Parametisierung von $M \cap U$ und $f \colon M \to \mathbb{R}$ eine Funktion mit

$$\operatorname{supp} f = \overline{\{x \in M \mid f(x) \neq 0\}} \subset \varphi(V).$$

Dann heißt f über M integrierbar, falls

$$t \mapsto f \circ \varphi(t) \sqrt{\det g_{\varphi}(t)}$$

über V integrierbar ist, und man setzt

$$\int_{M} f(x) dS(x) := \int_{V} f \circ \varphi(t) \sqrt{\det g_{\varphi}(t)} dt.$$

Bemerkung. Mit der Transformationsformel und ?? sieht man schnell, das die Definition unabhängig von der gewählten Parametisierung ist.

Folgerung 7.2. Das Integral ist auf einer Untermannigfaltigkeiten definiert (ohne die Einschränkungen a) und b) in Definition 7.1).

$$\int_{\varphi^{-1}(A)} f \circ \varphi(t) \sqrt{\det g_{\varphi}(t)} \, dt = \int_{\psi^{-1}(A)} f \circ \psi(t) \sqrt{\det g_{\psi}(t)} \, dt.$$

Wir schreiben daher $\int_M f dS$, auch wenn a) und b) nicht erfüllt sind.

Berechnung des Integrals:

Sei $\{\rho_j\}_j$ eine Zerlegung der Eins, also

$$\sum_{j=1}^{\infty} \rho_j(a) = 1 \quad \forall a \in M, \quad \rho_j \in C^{\infty}, \ \rho_j \geqslant 0$$

s. d. für jedes j gilt supp $\rho_j \subset \text{ein Kartengebiet in } M$. Existenz: Existenz von Abschneidefunktionen ψ in $\mathbb{R} \implies$ Existenz von Abschneidefunktionen in \mathbb{R}^n

$$\Psi(x) := \psi(\|x\|_{\mathcal{E}}), \quad x \in \mathbb{R}^n \tag{7.1}$$

 \implies Wenn M durch $(\varphi_i: U_i \to V_i)_{i \in I}$ beschrieben wird, also $\forall a \in M \exists i \in I \text{ s.d.}$ $a \in \varphi_i(U_i)$, betrachte Partition der Eins $\{\tilde{\rho}_j\}_{j \in J}$ mit: Zu $j \exists i \in I$ s. d. supp $\tilde{\rho}_j \subset U_i$ und setze $\rho_j = \tilde{\rho}_j \circ \varphi_i^{-1}$.

Dann ist

$$\int_{M} f \, dS = \sum_{j \in J} \int_{M} \rho_{j} f(x) \, dS.$$

1) Sei zunächst $M\subset \mathbb{R}^n$ offen. $\rho_j f$ auf Mintegrierbar $\iff \rho_j |f|$ auf Ergänzung. M integrierbar. Sei also $\rho_i|f|$ auf M integrierbar. Es ist

$$\sum_{j=1}^{K} \rho_j |f| \nearrow |f|.$$

Ist $\sum_{j=1}^{\infty} \int \rho_j |f| dS < \infty$, können wir mit Beppo-Levi schließen, dass |f| integrierbar ist.

Wegen $\left|\sum_{j=1}^{K} \rho_{j} f\right| \leq |f|$ (\triangle -Ungleichung) folgt mit Lebesgue, dass $f = \sum_{j=1}^{\infty} \rho_{j} f$ integrierbar ist und gilt

$$\int_{M} f \, dx = \sum_{j=1}^{\infty} \int_{M} \rho_{j} f \, dx.$$

Das zeigt auch gleich die Unabhängigkeit von der Wahl der Teilung der Eins.

12:06

16:30 \rightarrow weitere Erklärungen im Audio

- 2) Ist $\varphi \colon U \to M$ globale Parametisierung von M betrachte $F \coloneqq f \circ \varphi \sqrt{\det g_{\varphi}}$. Es ist F auf U integrierbar $\iff f$ auf M integrierbar.
- 3) Mithilfe von $\tilde{\rho}_j = \rho_j \circ \phi_{i(j)}$ ziehen wir das oben bewiesene auf die verschiedenen Koordinatenbereiche zurück: $\rho_j f$ auf M integrierbar $\iff \tilde{\rho}_j F$ auf $U_{i(j)}$ integrierbar.

Beispiel (das ohne Zerlegung der Eins auskommt). $M=\emptyset$, $M=\varphi(D)$, $D=\{x^2+y^2<1\}$, $\varphi(x,y)=(x,y,\sqrt{1-x^2,y^2})^T$.

 $f(a) = 1 \quad \forall a \in M \implies \text{Wir berechnen die Oberfläche.}$

$$g_{\varphi}(a) = \begin{pmatrix} 1 - x^2 & xy \\ xy & 1 - y^2 \end{pmatrix} \frac{1}{1 - x^2 - y^2}, \ \det g_{\varphi} = 1,$$

$$\partial_1 \varphi = \left(1, 0, \frac{-x}{\sqrt{1 - x^2 - y^2}}\right), \quad \partial_2 \varphi = \left(0, 1, \frac{-y}{\sqrt{1 - x^2 - y^2}}\right),$$

$$\int_M dS = \int_D d(x, y) \stackrel{?}{=} 2\pi = \int_{\text{Schules, unter.}} d(x, y) = 2 \int_0^1 \int_{-\sqrt{1 - y^2}}^{\sqrt{1 - y^2}} dx \, dy.$$

Alternativ: $\varphi \colon (0, 2\pi) \times (0, \frac{\pi}{2}) \to \mathbb{R}^3$,

$$\varphi(a,\theta) = \begin{pmatrix} \cos \alpha \sin \alpha \\ \sin \alpha \sin \theta \\ \cos \theta \end{pmatrix}, \quad g_{\varphi}(\alpha,\theta) = \begin{pmatrix} \sin^2 \theta & 0 \\ 0 & 1 \end{pmatrix}$$
$$\int_{M} dS = \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \sin \theta \, d\theta \, d\alpha = 2\pi.$$

Definition 7.3. Sei $d \in \mathbb{R}_{>0}$. Eine Teilmenge $N \subset \mathbb{R}^n$ heißt Nullmenge zur Dimension d (d-Nullmenge), falls $\forall \varepsilon > 0 \exists$ Würfel W_1, W_2, \ldots mit Kantenlängen r_1, r_2, \ldots , s. d. $N \subset \bigcup W_j$ und $\sum r_j^d < \varepsilon$.

Bemerkungen 7.4. i) Ist d = n, liegt eine Nullmenge im Sinne von Definition 6.1 vor.

ii) Eine Teilmenge von $\mathbb{R}^d \times \{ 0 \} \subset \mathbb{R}^n$ ist genau dann d-Nullmenge in \mathbb{R}^n , wenn sie Nullmenge in \mathbb{R}^d ist (im Sinne von Definition 6.1), wobei hier $N = \tilde{N} \times \{ 0 \} \simeq \tilde{N}$, $\mathbb{R}^d \times \{ 0 \} \simeq \mathbb{R}^d$.

Beweis. " \Longrightarrow " Setze $W_j^0 := W_j \cap \mathbb{R}^d \times \{0\}$

25:45

- iii) $M \subset N$, N d-Nullmenge $\implies M$ ist d-Nullmenge.
- iv) Abzählbare Vereinigungen von d-nullmengen sind d-Nullmengen.
- v) Eine d-Nullmenge ist auch d'-Nullmenge für $d' \ge d$.
- vi) Ist Φ lokal Lipschitz-stetig. $\Phi \colon N \to \mathbb{R}^m, \ N \subset \mathbb{R}^n$ d-Nullmenge, so ist $\Phi(N)$ d-Nullmenge.

Beweis. Der Beweis von Lemma 6.34 überträgt sich direkt. \square

vii) **Folgerung.** Jede d-dimensionale Untermannigfaltigkeit ist (d+1)-Nullmenge. denn: $\exists \Phi \colon U \cap M \to V \times \{0\}^{n-d}$ Diffeomorphismus.

Satz 7.5. Seien $f,g\colon M\to\mathbb{R},\ M$ d-dimensionale Untermannigfaltigkeit $\subset\mathbb{R}^n$. Gelte f(x)=g(x) außer auf einer d-Nullmenge N und sei f über M integrierbar. Dann ist auch g über M integrierbar und es gilt

$$\int_{M} f \, dS = \int_{N} g \, dS.$$

Beweis. Betrachte zunächst nur eine Parametisierung $\varphi \colon \to M \cap U$. Dann stimmen die Funktionen $f \circ \varphi \sqrt{\det g_{\varphi}}$ und $g \circ \varphi \sqrt{\det g_{\varphi}}$ außerhalb von $\varphi^{-1}(N) \subset V \subset \mathbb{R}^d$ miteinander überein. 7.4.vi) $\implies \varphi^{-1}(N)$ ist d-Nullmenge (denn φ^{-1} ist wieder C^1 , also lokal Lipschitz-stetig).

Mit Hilfe einer Partition der Eins wie in 7.2 folgt die Behauptung, da auch $\rho_j \cdot f$ außerhalb von N mit $\rho_j \cdot g$ übereinstimmt.

Folgerung. Ist N d-Nullmenge $\subset \mathbb{R}^n$ und M d-dimensionale Untermannigfaltigkeit $\subset \mathbb{R}^n$ so ist

$$\int_{M} f \, dS = \int_{M \setminus N} f \, dS.$$

Dies erklärt unsere Ergebnisse aus dem Beispiel unter Folgerung 7.2.

33:00

Beispiel (Rotationsflächen). Sei $r: I \to [0, \infty)$ stetig, I Intervall. Sei r zudem außerhalb einer endlichen Menge von Punkte in I C^1 , z.B.

Wir berechnen die Oberfläche (ohne "Deckel" + "Boden") von

$$M := \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = r^2(z) \}.$$

O.B.d.A. betrachte nur glatte Abschnitte (denn die Kreise) sind 2-Nullmengen.

$$A = \int 1 dS = 2\pi \int_{h_0}^{h_1} r(z) \sqrt{r'(z)^2 + 1} dz,$$

denn:

$$\varphi \colon (0, 2\pi) \times (0, h) \to \mathbb{R}^3$$

$$\varphi(\alpha, z) = (r(z)\cos\alpha, r(z)\sin\alpha, z)$$

$$g_{\varphi}(a, z) = \begin{pmatrix} r(z)^2 & 0\\ 0 & r'(z)^2 + 1 \end{pmatrix}$$

$$\sqrt{\det g_{\varphi}} = r(z)\sqrt{r'(z)^2 + 1}$$

Beispiel.
$$r(z) = \sqrt{z^2 + 1}, r'(z) = \frac{z}{\sqrt{z^2 + 1}}$$

$$A = 2\pi \int_{-h}^{h} \sqrt{2z^2 + 1} \, dz = 2\pi \left(\sqrt{2h^2 + 1}h + \frac{1}{\sqrt{2}\arcsin(\sqrt{2}h)} \right).$$

37:10

7.I. Der Integralsatz von Gauß

Integralsätze der Vektoranalysis sind von der Form

$$\int_{V} \dots = \int_{\partial V} \dots,$$

wobei V z.B. eine Untermannigfaltigkeit und ∂V ihr Rand (mal der topologische mal der geometrische).

Erinnerung. Sei $G \subset \mathbb{R}^n$ wegzusammenhängende, beschränkte n-dimensionale Untermannigfaltigkeit mit Rand. In diesem Fall stimmen der topologische Rand und der geometrische Rand miteinander überein. Sei $h \colon U \to \mathbb{R}^n$ eine lokale Beschreibung von G bei $a \in \partial G$, also

$$G \cap U = \{ x \in U \mid h(x) \leqslant 0 \},\$$

wobei

$$\partial G \cap U = \{ x \mid h(x) = 0 \},\$$

(also ∂G ist (n-1)-dimensionale Untermannigfaltigkeit) (Alternative zu $\ref{eq:space}$).

Betrachte den äußeren Einheitsnormalenvektor

$$n_a \coloneqq \frac{\operatorname{grad} h(a)}{\|\operatorname{grad} h(a)\|}$$

im Punkt a.

Beispiel. $G = \{ x \in \mathbb{R}^n \mid ||x||_{\mathcal{E}} \leq 1 \}$ Vollkugel. $\partial G = \mathbb{S}^{n-1}, h(x) = ||x||_{\mathcal{E}}^2 - 1, n_a = \frac{a}{||a||}$

Verwende eine lokale Beschreibung von ∂G als Graph einer C^1 -Funktion φ

$$\partial G \cap V = \{ (x_1, \dots, x_{n-1}, \varphi(x_1, \dots, x_{n-1})) \mid (x_1, \dots, x_{n-1}) \in \tilde{U} \}.$$

Dann ist (nach eventueller Umnummerierung)

$$h(x', x_n) = x_n - \varphi(x') \quad x' \in \tilde{U} \subset \mathbb{R}^{n-1}$$

und

$$n_a = \begin{pmatrix} -\operatorname{grad}\varphi(a')\\ 1 \end{pmatrix} \frac{1}{\sqrt{1 + \|\operatorname{grad}\varphi(a')\|^2}} \quad a = (a', a_n)$$

und $\sqrt{\det g_{\Phi}(x')} = \sqrt{1 + \|\operatorname{grad} \varphi(x')\|^2}$

$$\Phi(x') = (x', \varphi(x')) \quad x' \in \tilde{U}$$

$$\partial_j \Phi = e_j + \partial_j \varphi e_n \quad 1 \leqslant j \leqslant n - 1.$$

Satz 7.6 (Integralsatz von Gauß). Sei $G \subset \mathbb{R}^n$ wegzusammenhängende, beschränkte n-dimensionale Untermannigfaltigkeit mit Rand. Sei $n \colon \partial G \to \mathbb{R}^n$ das äußere Einheitsnormalenvektorfeld (das stetig ist). Sei $U \supset G$ offen. Dann gilt für jedes C^1 -Vektorfeld $X \colon U \to \mathbb{R}^n$

$$\int_{G} \underbrace{\operatorname{div} X(x)}_{=\sum_{j=1}^{n} \partial_{j} X_{j}(x)} dx = \int_{\partial G} \langle X(x), n(x) \rangle dS(x).$$

47:35

div X misst die Quellstärke, denn: DX misst wie sich X verändert. Eigenwerte von $DX(x_0)$:

Eigenwerte positiv →in Richtung des zugehörigen Eigenvektors anwachsend (Quelle)

 $\textbf{Eigenwerte negativ} \ \rightarrow \text{in Richtung des zugehörigen Eigenvektors schrumpfend (Senke)}$

Summe aller Eigenwerte = Maß für Quellstärke

$$= \operatorname{Spur}(DX(x_0)) = \sum_{i=1}^n \partial_i X_i(x_0).$$

Index

 $d\mbox{-Nullmenge},\,219$ Integralsatz von Gauß, 222

Integration auf Untermannigfaltigkeiten, 216