Übungen zur Algebraischen Zahlentheorie I

Wintersemester 2021/22

Universität Heidelberg Mathematisches Institut Prof. A. Schmidt Dr. K. Hübner

Blatt 5

Abgabetermin: Freitag, 26.11.2013, 09.30 Uhr

Aufgabe 1 (6 Punkte).

- (a) Seien Γ, Γ' mit $\Gamma' \subset \Gamma$ vollständige Gitter im \mathbb{R}^n . Zeigen Sie: $(\Gamma : \Gamma')$ ist endlich, und $\operatorname{vol}(\Gamma') = (\Gamma : \Gamma') \cdot \operatorname{vol}(\Gamma)$.
- (b) Sei $\Gamma \subset \mathbb{R}^n$ ein Gitter. Zeigen Sie: Γ ist genau dann vollständig, wenn \mathbb{R}^n/Γ mit der Faktorraumtopologie kompakt ist.

Aufgabe 2 (8 Punkte). Sei ζ_3 eine primitive dritte Einheitswurzel in \mathbb{C} und $R = \mathbb{Z}[\zeta_3]$. Zeigen Sie:

- (a) Sei $p \in \mathbb{N}$ eine Primzahl. Dann ist p genau dann ein Primelement in R, wenn $p \equiv 2 \pmod{3}$ gilt.
- (b) Es gilt $R^{\times} = \{r \in R, |r| = 1\} = \{1, -1, \zeta_3, -\zeta_3, \zeta_3^2, -\zeta_3^2\}.$
- (c) Für alle $r \in R$ existiert ein $u \in R^{\times}$ mit $ur \in \mathbb{Z}[\sqrt{-3}]$.
- (d) Für eine Primzahl $p \in \mathbb{N}$ existieren genau dann $a, b \in \mathbb{Z}$ mit $p = a^2 + 3b^2$, wenn p = 3 oder $p \equiv 1 \pmod 3$ gilt.

Aufgabe 3 (4 Punkte). Sei $\Gamma \subset \mathbb{R}^n$ ein Gitter und seien $x_1, \ldots, x_m \in \Gamma$. Zeigen Sie: x_1, \ldots, x_m sind linear unabhängig über \mathbb{R} genau dann, wenn sie linear unabhängig über \mathbb{Z} sind.

Aufgabe 4 (6 Punkte). Sei $p \equiv 1 \mod 4$ eine Primzahl und $u \in \mathbb{Z}$ mit $u^2 \equiv -1 \mod p$.

(a) Zeigen Sie, dass

$$\Gamma := \{ (x, y) \in \mathbb{Z}^2 \mid y \equiv ux \bmod p \}$$

ein vollständiges Gitter im \mathbb{R}^2 mit vol $(\Gamma) = p$ ist.

(b) Sei $r := \sqrt{2p}$ und $K_r(0)$ die offene Kreisscheibe mit Radius r um $0 \in \mathbb{R}^2$. Man zeige: $K_r(0) \cap \Gamma \neq \{0\}$. Folgern Sie damit, dass p Summe zweier Quadratzahlen ist.