Topologia FME Resum de teoria i llista de problemes

Curs 2019/2020

31 de gener de 2020

3 Construcció de nous espais

Definició 3.1 (Subespai) Sigui (X, \mathcal{T}) un espai topològic. Un subespai topològic de X és un subconjunt $S \subseteq X$ amb la topologia $\mathcal{T}_S \subseteq \mathcal{P}(S)$ obtinguda restringint els oberts:

$$\mathscr{T}_S = \{ U \cap S : S \in \mathscr{T} \}.$$

Proposició 3.2 (Subespais i continuïtat) Sigui $S \subseteq X$ un subespai topològic i Y un altre espai topològic.

- 1. L'aplicació d'inclusió $\iota \colon S \hookrightarrow X$ és contínua.
- 2. Una aplicació $f: Y \to S$ és contínua si, i només si, ho és $\iota \circ f$.

Proposició 3.3 (Bases i subbases) Sigui $S \subseteq X$ un subespai topològic.

- 1. Si \mathscr{B} és una base de X aleshores $\mathscr{B}_S := \{B \cap S : B \in \mathscr{B}\}$ és una base de S.
- 2. Si \mathscr{S} és una subbase de X aleshores $\mathscr{S}_S := \{U \cap S : U \in \mathscr{S}\}$ és una subbase de S.

Exemples 3.4 Intervals a \mathbb{R} ; boles obertes i tancades a \mathbb{R}^n ; circumferència $\mathbb{S}^1 \subset \mathbb{R}^2$; esfera $\mathbb{S}^2 \subset \mathbb{R}^3$, tor $\mathbb{T}^2 \subset \mathbb{R}^3$; i banda de Möbius $\mathbb{M} \subset \mathbb{R}^3$.

Definició 3.5 (Producte finit) Siguin (X, \mathcal{T}_X) i (Y, \mathcal{T}_Y) dos espais topològics. L'espai producte és el conjunt producte cartesià $X \times Y$ amb la topologia producte, que té per base els productes d'oberts:

$$\mathscr{B} = \{ U \times V : U \in \mathscr{T}_X, V \in \mathscr{T}_Y \}.$$

El producte d'un nombre finit d'espais es defineix de manera anàloga, o recursivament a partir del producte de dos espais.

Exemples 3.6 Amb les topologies euclidianes en els factors i en el producte $\mathbb{R} \times \cdots \times \mathbb{R}$ és l'espai \mathbb{R}^n . En canvi el producte $\mathbb{R}_{\mathsf{cf}} \times \mathbb{R}_{\mathsf{cf}}$ no és l'espai $(\mathbb{R}^2)_{\mathsf{cf}}$.

En canvi, el producte d'una família no necessàriament finita es defineix com:

Definició 3.7 (Producte arbitrari) Sigui $(X_i, \mathcal{T}_i)_{i \in I}$ una família d'espais topològics. L'espai producte és el conjunt producte cartesià $\prod_{i \in I} X_i$ amb la topologia producte, que té per base els productes d'oberts gairebé sempre iguals a tot l'espai:

$$\mathcal{B} = \left\{ \prod_{i \in I} U_i : U_i \in \mathcal{T}_i, \ U_i = X_i \ gaireb\'{e} \ per \ a \ tot \ \'{index} \ i \in I \right\}$$

$$= \left\{ \prod_{j \in J} U_j \times \prod_{i \notin J} X_i : \ U_j \in \mathcal{T}_j, \ J \subseteq I, \ |J| < \infty \right\}.$$

$$(1)$$

Proposició 3.8 (Producte i continuïtat) Sigui $X = \prod X_i$ un producte d'espais topològics i Y un altre espai topològic.

- 1. Les projeccions $\pi_i \colon X \to X_i$ en les components són contínues.
- 2. $f: Y \to X$ és contínua si, i només si, cada $\pi_i \circ f$ ho és.

Les aplicacions $f_i := \pi_i \circ f$ són les *components* de f: per a cada $y \in Y$ la seva imatge per f és l'element $f(y) = (f_i(y))_{i \in I} \in X$ que té components $f_i(y) \in X_i$. El segon punt permet definir aplicacions contínues que prenen valors en un producte cartesià a partir de components que siguin contínues.

Proposició 3.9 (Bases i subbases) Sigui $X = \prod X_i$ un producte d'espais topològics.

1. Si \mathcal{B}_i és una base de X_i per a cada i, aleshores

$$\mathscr{B} := \left\{ \prod_{j \in J} B_j \times \prod_{i \notin J} X_i : \ B_j \in \mathscr{B}_j, \ J \subseteq I, \ |J| < \infty \right\}$$

és una base de l'espai X.

2. Si \mathcal{S}_i és una subbase de X_i per a cada i, aleshores

$$\mathscr{S} := \left\{ S_j \times \prod_{i \neq j} X_i : j \in I, \ S_j \in \mathscr{S}_j \right\}$$

és una subbase de X.

Definició 3.10 (Quocient) Sigui (X, \mathcal{T}) un espai topològic. Sigui \sim una relació d'equivalència en X i sigui $\pi \colon X \twoheadrightarrow X/\sim$ la projecció canònica en el conjunt quocient. L'espai quocient de X per la relació \sim és el conjunt X/\sim de classes d'equivalència amb la topologia

$$\{U\subseteq X/\!\!\sim:\pi^{-1}(U)\in\mathscr{T}\}.$$

El conjunt quocient X/\sim per una relació d'equivalència està format per les classes d'equivalència $[x] = \{y \in X : y \sim x\}$. L'aplicació canònica envia cada element a la seva classe: $\pi : X \to X/\sim$ definida per $\pi(x) = [x]$.

Donar una relació d'equivalència en un conjunt X equival a donar una aplicació exhaustiva $\pi \colon X \twoheadrightarrow Q$ en un conjunt Q. Donada la relació \sim el conjunt Q és X/\sim i π és la projecció canònica. Donada π la relació es defineix posant $x \sim y \Leftrightarrow \pi(x) = \pi(y)$.

Així, donats un espai topològic (X, \mathcal{T}) i una aplicació exhaustiva $\pi \colon X \to Q$, es defineix la topologia quocient en el conjunt Q com la topologia $\{U \subseteq Q \colon \pi^{-1}(U) \in \mathcal{T}\}.$

Proposició 3.11 (Quocient i continuïtat) Siguin $Q = X/\sim$ un espai topològic quocient i Y un altre espai topològic.

- 1. La projecció canònica $\pi: X \to Q$ és contínua.
- 2. Una aplicació $f: Q \to Y$ és contínua si, i només si, ho és $f \circ \pi$.

El segon punt permet definir aplicacions contínues per pas al quocient: donada una aplicació contínua $f: X \to Y$ i una relació d'equivalència \sim en X que sigui compatible amb l'aplicació: $x \sim y \Rightarrow f(x) = f(y)$, aleshores l'aplicació $[x] \mapsto f(x): Q \to Y$ induïda en el quocient $Q = X/\sim$ està ben definida i és contínua.

Exemples 3.12 (Exemples d'espai quocient) Identificació de dos punts; col·lapse d'un subespai; identificació de costats d'un rectangle: cilindre, banda de Möbius, esfera, tor, pla projectiu, ampolla de Klein; espai projectiu; encolament d'espais.

Exercicis de repàs i/o discutits a classe de teoria

- **3.1.** Relacions entre producte cartesià i àlgebra de conjunts. Demostreu que el producte cartesià de subconjunts satisfà les propietats següents:
 - 1. $A_1 \subseteq A_2$ i $B_1 \subseteq B_2 \Rightarrow A_1 \times B_1 \subseteq A_2 \times B_2$ (és cert el recíproc? sempre???);
 - 2. $(A_1 \times B_1) \cup (A_2 \times B_2) \subseteq (A_1 \cup A_2) \times (B_1 \cup B_2);$ $\cup_{i \in I} (A_i \times B_i) \subseteq (\cup_{i \in I} A_i) \times (\cup_{i \in I} B_i);$ $(\cup_{i \in I} A_i) \times (\cup_{j \in J} B_j) = \cup_{(i,j) \in I \times J} (A_i \times B_j);$
 - 3. $(A_1 \times B_1) \cap (A_2 \times B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2);$ $\cap_{i \in I} (A_i \times B_i) = (\cap_{i \in I} A_i) \times (\cap_{i \in I} B_i);$ $(\cap_{i \in I} A_i) \times (\cap_{j \in J} B_j) = \cap_{(i,j) \in I \times J} (A_i \times B_j);$
 - 4. $(A \times B)^c = (A^c \times Y) \cup (X \times B^c) \supseteq A^c \times B^c$;
 - 5. $(A_1 \setminus A_2) \times (B_1 \setminus B_2) \subseteq (A_1 \times B_1) \setminus (A_2 \times B_2)$.
- **3.2.** Parametrització de la banda de Möbius. Dibuixeu la superfície parametritzada de la manera següent:

$$(u,v) \mapsto \left(\left(1 + v \cos \frac{u}{2} \right) \cos u, \left(1 + v \cos \frac{u}{2} \right) \sin u, v \sin \frac{u}{2} \right), \ u \in [0, 2\pi), \ v \in \left[-\frac{1}{2}, \frac{1}{2} \right].$$

Estudieu les imatges dels segments horitzontals i verticals.

3.3. Equació implícita del tor. Siguin r, R nombres reals amb 0 < r < R. Comproveu que la superfície de revolució generada per la circumferència d'equació $(X - R)^2 + Y^2 = r^2$ en girar al voltant de l'eix de les Y és la superfície de \mathbb{R}^3 definida per l'equació

$$(X^2 + Y^2 + Z^2 + R^2 - r^2)^2 = 4R^2(X^2 + Z^2).$$

3.4. Parametrització del tor. Comproveu que la superfície parametritzada per

$$(\alpha, \beta) \mapsto ((R + r\cos\alpha)\cos\beta, r\sin\alpha, (R + r\cos\alpha)\sin\beta), \qquad (\alpha, \beta) \in [0, 2\pi)^2$$

és el tor amb equació implícita donada al problema anterior.

Problemes

3.5. Lema d'enganxament. Sigui $X = \bigcup_{i \in I} X_i$ un recobriment d'un espai topològic X per una família de subespais X_i . Sigui $f: X \to Y$ una aplicació de X en un espai topològic Y. Es denoten $f_i: X_i \to Y$ les restriccions als subespais X_i .

Demostreu que l'afirmació "f és contínua si, i només si, ho és cada f_i " es compleix en els casos següents:

- 1. tots els X_i són oberts de X;
- 2. I és finit i tots els X_i són tancats,

però no es compleix en general només amb una de les hipòtesi següents:

- 1. I és finit;
- 2. I és finit i cada X_i és obert o és tancat;
- 3. tots els X_i són tancats.
- **3.6.** Compatibilitat de subespais i productes. Siguin $A \subseteq X$, $B \subseteq Y$ subespais. Demostreu que la topologia producte en $A \times B$ coincideix amb la topologia induïda en aquest conjunt $A \times B$ com a subespai de l'espai topològic producte a $X \times Y$.
- **3.7.** Compareu les tres topologies següents en el conjunt \mathbb{R}^2 :
 - 1. ordinària euclidiana;
 - 2. producte $\mathbb{R}_{dis} \times \mathbb{R}$;
 - 3. de l'ordre lexicogràfic;
 - 4. producte $\mathbb{R}_{\mathsf{cf}} \times \mathbb{R}_{\mathsf{cf}}$;
 - 5. $(\mathbb{R}^2)_{cf}$.
- **3.8.** Siguin A, B, C, D espais topològics.
 - 1. Demostreu que, si $f: A \to B$ i $g: C \to D$ són dues aplicacions contínues, aleshores l'aplicació $f \times g: A \times C \to B \times D$ definida posant $(f \times g)(a,c) = (f(a),g(c))$ és contínua.
 - 2. Demostreu que $A \cong B, C \cong D \Rightarrow A \times C \cong B \times D$. És cert el recíproc?
 - 3. La gràfica d'una aplicació $f: A \to B$ és el subespai del producte $A \times B$ definit per $\operatorname{graf}(f) = \{(x,y) \in A \times B : y = f(x)\}$. Demostreu que si f és continua aleshores $A \cong \operatorname{graf}(f)$.
- **3.9.** Sigui $\Delta \colon X \to X \times X$ l'aplicació diagonal: $\Delta(x) = (x, x)$. Comproveu que Δ és contínua i que X és de Hausdorff si, i només si, $\Delta(X) \subseteq X \times X$ és tancat.
- **3.10.** Sigui $X = \prod_{i \in I} X_i$ un producte d'espais. Discutiu si les projeccions $\pi_j \colon X \to X_j$ són aplicacions obertes i si són aplicacions tancades.

3.11. Producte cartesià i tipus de subconjunts. Siguin $A \subseteq X$, $B \subseteq Y$. Demostreu que $\overline{A \times B} = \overline{A} \times \overline{B}$, $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$, $\partial (A \times B) = (\partial A \times \overline{B}) \cup (\overline{A} \times \partial B)$, $(A \times B)' \subseteq A' \times B'$, $(A \times B)^{\mathsf{a}} = A^{\mathsf{a}} \times B^{\mathsf{a}}$.

En el cas dels productes arbitraris l'adherència del producte és el producte de les adherències però que l'interior del producte no sempre coincideix amb el producte dels interiors.

- **3.12.** Sigui $Y = X/\sim$ un espai topològic quocient i sigui $\pi \colon X \to Y$ l'aplicació canònica. Siguin $\mathscr{B}_X \subseteq \mathscr{P}(X)$ i $\mathscr{B}_Y \subseteq \mathscr{P}(Y)$ bases de les topologies \mathscr{T}_X i \mathscr{T}_Y dels dos espais. Discutiu si les afirmacions següents són certes o falses:
 - 1. $\{\pi(B): B \in \mathcal{B}_X\}$ és una base de Y;
 - 2. $\{\pi^{-1}(B): B \in \mathscr{B}_Y\}$ és una base de X;
 - 3. $\{B \subseteq Y : \pi^{-1}(B) \in \mathscr{B}_X\}$ és una base de Y;
 - 4. $\{B \subseteq X : \pi(B) \in \mathscr{B}_Y\}$ és una base de X;
 - 5. $\mathscr{T}_Y = \{\pi(U) : U \in \mathscr{T}_X\};$
 - 6. $\mathscr{T}_X = \{\pi^{-1}(U) : U \in \mathscr{T}_Y\};$
 - 7. $\mathscr{T}_Y = \{ U \subseteq Y : \pi^{-1}(U) \in \mathscr{T}_X \};$
 - 8. $\mathscr{T}_X = \{ U \subseteq X : \pi(U) \in \mathscr{T}_Y \}.$
- **3.13.** Topologia de les caixes. Donada una família $((X_i, \mathscr{T}_i))_{i \in I}$ d'espais topològics demostreu que els conjunts $\{\prod U_i : U_i \in \mathscr{T}_i\}$ són una base d'una topologia en el conjunt producte cartesià $X = \prod X_i$. Aquesta topologia s'anomena la topologia de les caixes en aquest conjunt i és en general més fina que la topologia producte quan la família és infinita.

Relacioneu aquestes topologies amb les dues mètriques definides en un producte numerable d'espais mètrics.

3.14. Es considera l'aplicació exhaustiva $e: \mathbb{R} \to \mathbb{S}^1$ definida per $e(t) = (\cos t, \sin t)$. La restricció $e|_{[0,2\pi)}$ a l'interval $[0,2\pi) \subset \mathbb{R}$ també és exhaustiva.

Compareu les topologies quocient induïdes en \mathbb{S}^1 per e i per $e|_{[0,2\pi)}$ amb la topologia en \mathbb{S}^1 com a subespai de \mathbb{R}^2 . Compareu-les també amb la topologia induïda per la restricció $e|_{[0,2\pi]}$.

3.15. Sigui (X, \mathcal{T}) un espai topològic. Sigui $f: X \to Y$ una aplicació exhaustiva en un conjunt Y. Siguin $A \subseteq X$ un subconjunt i $B = f(A) \subseteq Y$. Es té un diagrama:

$$X \xrightarrow{f} Y$$

$$\downarrow incl$$

$$A \xrightarrow{f|_A} B$$

En el conjunt B es consideren les topologies següents:

- $\mathscr{T}_1 =$ topologia induïda per $f|_A$ de la topologia del subespai $A \subseteq X$.
- \mathcal{T}_2 = topologia del subespai $B \subseteq Y$, on Y té la topologia induïda per f.

Demostreu que \mathcal{T}_1 és més fina que \mathcal{T}_2 i que aquestes topologies no sempre coincideixen.

- **3.16.** Demostreu que en identificar els extrems de l'interval unitat $\mathbb{I} = [0, 1]$ s'obté la circumferència \mathbb{S}^1 . Fent servir això demostreu que el tor $\mathbb{T}^2 = \mathbb{I}^2/\{(0, t) \sim (1, t), (s, 0) \sim (s, 1)\}$ és homeomorf a $\mathbb{S}^1 \times \mathbb{S}^1$.
- **3.17.** Demostreu que el quocient de \mathbb{R}^2 per la relació d'equivalència $(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow x_2 x_1 = 2\pi n$ i $y_2 y_1 = 2\pi m$ per a enters $n, m \in \mathbb{Z}$, que es denota $\mathbb{R}^2/(2\pi\mathbb{Z})^2$, és homeomorf al tor \mathbb{T}^2 .
- **3.18.** Sigui el disc unitat $\mathbb{D}^2 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$. Demostreu que el quocient $\mathbb{D}^2/\mathbb{S}^1$ obtingut en col·lapsar la frontera $\partial \mathbb{D}^2 = \mathbb{S}^1$ a un punt és un espai homeomorf a \mathbb{S}^2 .
- **3.19.** Coordenades polars. Demostreu que en considerar coordenades polars es té un homeomorfisme entre l'espai quocient $Q = (\mathbb{S}^1 \times [0, \infty))/(\mathbb{S}^1 \times \{0\})$ obtingut identificant la circumferència que tanca inferiorment un cilindre semi-infinit amb l'espai euclidià \mathbb{R}^2 .
- **3.20.** Espai projectiu. Comproveu que els tres espais quocient següents són homeomorfs:
 - 1. $(\mathbb{R}^{n+1} \setminus \{(0,\ldots,0)\})/\sim$ amb $x \sim y \iff y = \lambda x$ per a algun $\lambda \in \mathbb{R}^*$,
 - 2. $\mathbb{S}^n/\{p \sim -p : p \in \mathbb{S}^n\},\$
 - 3. $\mathbb{D}^n/\{p \sim -p : p \in \partial \mathbb{D}^n = \mathbb{S}^{n-1}\}.$

L'espai definit de qualsevol d'aquestes tres maneres, llevat d'homeomorfisme, és l'espai projectiu n-dimensional \mathbb{P}^n .

3.21. Recta projectiva. Demostreu que la recta projectiva \mathbb{P}^1 és homeomorfa a la circumferència \mathbb{S}^1 . En dimensions més grans això ja no és cert.

Problemes complementaris i/o d'ampliació

3.22. Continuïtat d'aplicacions en varies variables. La continuïtat d'una aplicació $\prod X_i \to Y$ no es redueix fàcilment a l'estudi de funcions en cadascuna de les variables corresponents a les components X_i .

Sigui $X = X_1 \times X_2$ un producte d'espais topològics i Y un espai topològic. Sigui $f \colon X \to Y$ una aplicació tal que per a tot punt $p \in X_1$ l'aplicació $y \mapsto f(p,y) \colon X_2 \to Y$ és contínua i per a tot punt $q \in X_2$ l'aplicació $x \mapsto f(x,q) \colon X_1 \to Y$ és contínua. És cert que l'aplicació f ha de ser contínua?

- **3.23.** Demostreu que en un producte d'espais topològics el producte de tancats és tancat i que la família dels productes de tancats és una base de tancats de la topologia producte.
- **3.24.** No simplificació en productes cartesians.
 - 1. Demostreu que $[0,1] \times [0,1) \simeq (0,1) \times [0,1)$.
 - 2. Deduïu que la implicació $X \times Z \simeq Y \times Z \Rightarrow X \simeq Y$ és falsa.
 - 3. Donats espais X i Y trobeu un Z tal que $X \times Z \simeq Y \times Z$.
 - 4. Trobeu un espai X tal que $X \times X \simeq X$.
- **3.25.** Es consideren els dos subespais topològics de \mathbb{R}^2 següents:

$$X = \bigcup_{n \in \mathcal{N}} L_n, \qquad L_n = \{(x, n) : x \in \mathbb{R}\},$$

$$Y = \bigcup_{n \in \mathcal{N}} L'_n, \qquad L'_n = \{(x, nx) : x \in \mathbb{R}\},$$

i l'aplicació exhaustiva $f: X \to Y$ definida per f((x,n)) = (x,nx). Demostreu que la topologia induïda per f en el conjunt Y no és la mateixa que la seva topologia com a subespai del pla euclidià.

3.26. Sigui $Z = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$ el subconjunt de \mathbb{R}^2 format pels eixos de coordenades. Es considera l'aplicació exhaustiva

$$f \colon \mathbb{R}^2 \twoheadrightarrow Z$$
 definida per $f(x,y) = \begin{cases} (x,0), & \text{si } x \neq 0, \\ (0,y), & \text{si } x = 0. \end{cases}$

- 1. Demostreu que Z amb la topologia quocient induïda per f no és de Hausdorff.
- 2. Considerant Z com a subespai de \mathbb{R}^2 , és contínua l'aplicació f?
- **3.27.** Immersions euclidianes del pla projectiu i l'ampolla de Klein. Comproveu que cadascuna de les aplicacions $X \to Y$ següents indueixen una immersió de l'espai quocient X/\sim en l'espai Y:
 - 1. aplicació $\mathbb{S}^2 \to \mathbb{R}^4$ definida per

$$(x, y, z) \mapsto (x^2 - y^2, xy, xz, yz),$$

on l'espai quocient és el pla projectiu obtingut identificant punts antipodals;

8

2. aplicació $[0,2\pi] \times [0,2\pi] \to \mathbb{R}^5$ definida per

$$(x,y) \mapsto \left(\cos x, \cos y, \sin y, \sin x \cos \frac{y}{2}, \sin x \sin \frac{y}{2}\right)$$

on l'espai quocient és l'ampolla de Klein obtinguda identificant costats del quadrat;

3. aplicació $[0,2\pi] \times [0,2\pi] \to \mathbb{R}^5$ definida per

$$(x,y) \mapsto \left((2 + \cos x) \cos y, (2 + \cos x) \sin y, \sin x \cos \frac{y}{2}, \sin x \sin \frac{y}{2} \right),$$

on l'espai quocient és l'ampolla de Klein.

- **3.28.** Topologies inicial i final. Sigui (X, \mathcal{T}) un espai topològic (resp. $((X_i, \mathcal{T}_i))_{i \in I}$ una família d'espais). Sobre un conjunt Y es defineixen la
 - topologia inicial induïda per una aplicació $f: Y \to X$ (resp. una família d'aplicacions $f_i: Y \to X_i$) com la menys fina que fa contínua f (resp. totes les f_i);
 - topologia final induïda per una aplicació $f: X \to Y$ (resp. una família d'aplicacions $f_i: X_i \to Y$) com la més fina que fa contínua f (resp. totes les f_i).

Demostreu que

1. la topologia inicial induïda per $f: Y \to X$ és

$$\{f^{-1}(U)\subseteq Y:U\in\mathscr{T}\};$$

2. la topologia inicial induïda per una família $f_i \colon Y \to X_i$ és

$$\langle f_i^{-1}(U_i) : U_i \in \mathscr{T}_i \rangle_{i \in I};$$

3. la topologia final induïda per $f: X \to Y$ és

$$\{U\subseteq Y: f^{-1}(U)\in\mathscr{T}\};$$

4. la topologia final induïda per una família $f_i \colon X_i \to Y_i$ és

$$\{U \subseteq Y : f_i^{-1}(U) \in \mathscr{T}_i \text{ per a tot } i \in I\};$$

5. si $\mathscr{B} \subseteq \mathscr{T}$ és una base de la topologia de X, aleshores

$$\{f^{-1}(B) \subseteq Y : B \in \mathscr{B}\}\$$

és una base de la topologia inicial induïda per $f: Y \to X$ i

$$\{U \subseteq Y : f^{-1}(U) \in \mathscr{B}\}\$$

una base de la topologia final induïda per $f: X \to Y$;

Interpreteu els subespais, espais producte i espais quocient en termes de topologies inicials i finals.

- **3.29.** Reunió disjunta. Donats conjunts X_1, X_2 la seva reunió disjunta es denota $X = X_1 \sqcup X_2$. Es tenen inclusions $j_i \colon X_i \to X$. De manera anàloga es pot considerar la reunió disjunta d'una família arbitraria de conjunts i les inclusions corresponents. Es defineix la reunió disjunta d'espais topològics com l'espai format pel conjunt reunió disjunta amb la topologia inicial induïda per les inclusions.
 - 1. Descriviu els oberts de la reunió disjunta.
 - 2. Relacioneu bases i subbases dels espais i de la reunió disjunta.
 - 3. Caracteritzeu quan una aplicació $f \colon \sqcup X_i \to Y$ és contínua.