

TUTORATO 8

Trasmissione del calore: irraggiamento

(link registrazione)

Corso di Fisica Tecnica 2019-2020

Francesco Lombardi

Dipartimento di Energia, Politecnico di Milano

10.2 – Intermedio

10.2. [intermedio] Una superficie di un emettitore diffuso ha una temperatura di 1600 K e un coefficiente di emissione monocromatico emisferico che dipende dalla lunghezza d'onda con la seguente distribuzione spettrale:

$$\epsilon_1 = 0.4;$$
 $0 < \lambda \le 2 \mu m$

$$\varepsilon_2 = 0.8;$$
 $2 < \lambda \le 5 \,\mu\text{m}$

$$\varepsilon_3 = 0;$$
 $\lambda > 5 \ \mu m$

Determinare il coefficiente di emissione integrale emisferico, il potere emissivo della superficie e la lunghezza d'onda a cui è massima la radiazione emessa

10.2 - Intermedio

EMETITIONE DIFFUSO WA E = E() A INTERVALU.

MOTAL DISTURDENCE SPETTANG, IL WEFF, DIEMISSIONE LATEURING EMISTELLE SI CALCOLA
A MASTRE DAMA VANUTA FORE DEM FINERA DEL POTERE EMISSIONE F THE WESTERN CONSIDERATION À!

$$T = 1600 \text{ L} \rightarrow \text{E}_1 = 0.5 \quad 0 < \lambda \leqslant 2 \mu \text{m}$$
 $E_2 = 0.8 \quad 2 < \lambda \leqslant 5 \mu \text{m}$
 $E_3 = 0 \quad \lambda > 5 \mu \text{m}$

δ 0,18 9,4 2

coefficiente di emissione monocromatico emisferico

$$\varepsilon_{\lambda} = \frac{E_{\lambda}}{E_{\lambda}^{n}} = \varepsilon_{\lambda}(\lambda, T)$$

10.2 - Intermedio

il potere emissivo integrale della superficie reale può scriversi:

$$E = \int_{0}^{\infty} \varepsilon_{\lambda} E_{\lambda}^{n} d\lambda \qquad \longrightarrow$$

$$F_{(0-\lambda)} = \frac{\int_0^{\lambda} E_{\lambda}^n d\lambda}{\sigma_0 T^4}$$

$$\underline{E}(T) = \epsilon(T) \sigma_0 T^4 \qquad \qquad \xi = \frac{\xi}{\sigma^{14}}$$

$$\varepsilon = \varepsilon_1 F_{(0-\lambda_1)} + \varepsilon_2 F_{(\lambda_1 - \lambda_2)} + \varepsilon_3 F_{(\lambda_2 - \infty)}$$

10.2 – Intermedio

$$F_{(\lambda_1 - \lambda_2)} = F_{(0 - \lambda_2)} - F_{(0 - \lambda_1)}$$

	λΤ (μmK)	$\mathbf{F}_{(0 \to \lambda)}$	λΤ (μmK)	$\mathbf{F}_{(0\to\lambda)}$	λT (μmK)	$\mathbf{F}_{(0 o\lambda)}$
	200	0.000000	4107	0.500000	11000	0.931890
	400	0.000000	4500	0.564280	12000	0.945098
	600	0.000000	5000	0.633747	15000	0.969981
	800	0.000016	5500	0.690715	20000	0.980859
	1000	0.000321	6000	0.737818	30000	0.994329
	2000	0.066728	6500	0.776216	40000	0.997607
	2500	0.161155	7000	0.808109	50000	0.998775
->	3000	0.273232	8000	0.856288	75000	0.999637
-	3500	0.382870	9000	0.890029	100000	0.999847
	4000	0.480877	10000	0.914199		

10.2 – Intermedio

$$\lambda_1 = 2 \mu m$$
 $\lambda_1 T = 3200 \mu m K$

 $F_{(0-\lambda 1)}$ si determina interpolando i valori nell'intervallo:

•
$$\lambda T = 3000 \ \mu mK$$
 $F_{(0-\lambda)} = 0.273232$

•
$$\lambda T = 3000 \ \mu mK$$
 $F_{(0-\lambda)} = 0,273232$
• $\lambda T = 3500 \ \mu mK$ $F_{(0-\lambda)} = 0,382870$

$$\frac{F_{(3200)} - F_{(3000)}}{F_{(3500)} - F_{(3000)}} = \frac{\lambda_1 T(3200) - \lambda T(3000)}{\lambda T(3500) - \lambda T(3000)}$$

$$F_{(3200)} = F_{(3000)} + \left(F_{(3500)} - F_{(3000)}\right) \frac{\lambda_1 T(3200) - \lambda T(3000)}{\lambda T(3500) - \lambda T(3000)}$$

da cui si ricava:
$$F_{(0-\lambda_1)} = 0.273232 + (0.38287) \frac{3200 - 3000}{3500 - 3000}$$

$$F_{(0-\lambda_1)} = 0.317087$$

10.2 - Intermedio

$$\lambda_2 = 5 \mu m$$
 $\lambda_2 T = 8000 \mu m K$

$$F_{(0-\lambda 2)} = 0.856288$$

da cui si ricava:

$$F_{(\lambda_1 - \lambda_2)} = F_{(0 - \lambda_2)} - F_{(0 - \lambda_1)}$$

$$F_{(\lambda_1 - \lambda_2)} = 0.856288 - 0.317087 = 0.539201$$

$$F_{(\lambda_2 - \infty)} = 1 - F_{(0 - \lambda_2)}$$
 $F_{(\lambda_2 - \infty)} = 1 - 0.856288 = 0.143712$

10.2 - Intermedio

Si ottiene:

$$\varepsilon = \varepsilon_1 F_{(0-\lambda_1)} + \varepsilon_2 F_{(\lambda_1 - \lambda_2)} + \varepsilon_3 F_{(\lambda_2 - \infty)}$$

$$\varepsilon = 0,558$$

Il potere emissivo è:

$$E = \varepsilon \cdot \sigma_0 T^4$$

$$E = 0.558 \cdot 5.67 \cdot 10^{-8} \cdot 1600^4 = 207.4 \text{ kW/m}^2$$

La lunghezza d'onda a cui è massima la radiazione si determina con la legge di Wien:

$$λmaxT = 2897,8 μm·K$$
 da cui si ottiene $λmax = 1,81 μm$

Irraggiamento Esercizio extra – Intermedio

Determinare la temperatura e la potenza scambiata da una sferetta di 16.8 mm² posta all'interno di un contenitore, le cui pareti sono alla temperatura di 300 °C (superficie di 40 dm²), sapendo che il coefficiente di emissione totale della sferetta è di 0.8 (corpo grigio) e che il suo potere emissivo monocromatico è massimo per una lunghezza d'onda di 0.9 µm. Determinare anche il coefficiente di assorbimento e quello di riflessione.

Esercizio extra – Intermedio

$$DATI$$
 $A_1 = 16, 8.10^{-6} \text{ m}^2$
 $A_2 = 40.10^{-2} \text{ m}^2$
 $E_1 = 0, 8 \rightarrow \text{CORRO GRAGIO}$
 $A_{max} = 0, 9 \text{ mm}$
 $A_{max} = 0, 9 \text{ mm}$
 $A_{max} = 0, 9 \text{ mm}$

Esercizio extra - Intermedio

$$\hat{Q}_{12} = \frac{\sigma(\tau, -\tau,)}{\frac{1-\epsilon_1}{\epsilon_1 A_1} + \frac{1-\epsilon_2}{\epsilon_2 A_2}} = \frac{\sigma(\tau, -\tau,)}{\frac{1-\epsilon_2}{\epsilon_1 A_1} + \frac{1-\epsilon_2}{\epsilon_2 A_2}} = \frac{\sigma(\tau, -\tau,)}{\frac{1-\epsilon_1}{\epsilon_1 A_1} + \frac{1-\epsilon_2}{\epsilon_1 A_2}} = \frac{\sigma(\tau, -\tau,)}{\frac{1-\epsilon_1}{\epsilon_1 A_1} + \frac{1-\epsilon_2}{\epsilon_1 A_1}} = \frac{\sigma(\tau, -\tau,)}{\frac{1-\epsilon_1}{\epsilon_1 A_1} + \frac{1-\epsilon_2}{\epsilon_1 A_1}$$

Esercizio extra – Intermedio

$$\dot{Q}'' = 5.61 \cdot 10^{-1} \cdot 0.8 \cdot 1618 \cdot 10^{-1} \cdot \left(3219,6^{4} - 513^{4}\right) = \left(8118\right)$$

Corre 6 PAGO:
$$E = \alpha = 0.8$$

$$A + p = 4 = 0.2$$

Irraggiamento Esercizio extra – Intermedio

Del caffè caldo è conservato in un thermos (diametro interno D_i = 7 cm, altezza H=30) che, come ben noto, è costituito da due recipienti cilindrici di vetro, con le superfici a specchio (coefficiente di riflessione ρ =0.92), separati da una intercapedine (spessore ρ = 8 mm) in cui è stato effettuato il vuoto. Nel caso le temperature delle superfici interna ed esterna siano rispettivamente σ = 75 °C e σ = 35 °C, supponendo che la potenza dispersa attraverso il fondo ed il tappo del thermos sia trascurabile, determinare la potenza inizialmente dispersa dal caffè.

Esercizio extra – Intermedio

$$D_{ATI}$$
 $D_{i} = 0,007$
 $M = 0,3$
 $D_{i} = 0,92$
 $C_{i} = 0,008$
 $C_{i} = 75^{\circ}$
 $C_{i} = 35^{\circ}$

IN COGNITE

Esercizio extra – Intermedio

$$\dot{Q}_{12} = \frac{GA_{1}(T_{1}^{4} - T_{2}^{4})}{\frac{1-\xi_{1}}{\xi_{1}} + \frac{1}{\xi_{12}} + \frac{1-\xi_{2}}{\xi_{2}} \cdot \frac{A_{1}}{A_{2}}} = \frac{G\pi D_{1} \cdot H}{\frac{1-\xi_{1}}{\xi_{1}} + \frac{1-\xi_{2}}{\xi_{2}} \cdot \frac{A_{1}}{A_{2}}}$$

$$\alpha + \not= + p = 1$$
 $\rightarrow \alpha = 1 - \beta = 0.08$

$$c. oPaco$$

$$= \varepsilon \left(\Delta T \leq 100 \, K\right)$$