Introducción a la librería Pytorch

Diego Andrade Canosa Roberto López Castro

Índice

- Introducción al curso
- Conceptos básicos de Redes de Neuronas Profundas (repaso)
- Introducción a Pytorch
- Lab1: Entorno del curso
- Referencias y materiales adicionales

- Curso de Introducción a Pytorch (no a Machine Learning)
- Impartido por:
 - Diego Andrade Canosa (CITIC+UDC)
 - Roberto López Castro (CITIC+UDC)
 - Miembros de un grupo de arquitectura de computadores y HPC
 - Usamos Pytorch para investigación sobre la confluencia del HPC con ML
 - AutoML+HPC
 - Performance-aware pruning techniques and kernels

- Duración (12 horas)
 - 2, 3 y 4 de julio de 9 a 13
- Contenidos básicos:
 - Día 1:
 - Conceptos clave de Pytorch: Tensores, Variables, Gradientes, Autograd
 - Conjuntos de datos y cargadores de datos
 - Día 2:
 - Creación y composición de la arquitectura de red
 - Día 3:
 - Carga y almacenamiento de modelos
 - Casos de uso de Pytorch

- Conceptos clave de Pytorch (Diego) DÍA 1
 - Tensores
 - Transformaciones
 - Variables y gradientes
 - Diferenciación automática
- Conjuntos de datos y cargadores de datos (Roberto)
- Creación y composición de la arquitectura de red (Diego) DÍA 2
 - o Los módulos nn. Module y nn. Sequential de Pytorch
 - o Tipos de capas en Pytorch
 - Optimizadores y funciones de pérdida
 - Bucles de entrenamiento
 - Pasada Forward
 - Backpropagation
- Carga y almacenamiento de modelos (Roberto) DÍA 3
- Casos de uso (Diego y Roberto)
 - Redes CNN
 - Redes RNN
 - Transformers

Conceptos básicos de RNP

Conceptos básicos RNP

- Artificial Intelligence (AI) es una disciplina que basada en emular, mediante un computador, la inteligencia humana
- Machine Learning (ML) es una rama de la Inteligencia Artificial (IA) que permite aprender a realizar una tarea que requiere cierto grado de inteligencia sin una programación explícita de la misma
 - Para ello se utiliza el concepto de Red de Neuronas (RN) artificiales
 - Concepto fundacional: perceptrón multicapa
 - Por ejemplo, no se consideran ML los sistemas expertos basados en reglas
- Deep Learning (DL) es un subconjunto de ML que usa redes profundas (con muchas capas ocultas)
 - Permite procesar datos <u>no estructurados</u>
 - Extrae patrones de los datos
 - Basado en representation learning

Razones del auge del DL

- El Perceptrón Multicapa, por ejemplo, data de 1969
- El auge actual data de:
 - Año 1990: Se acuña el concepto de DL -> https://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-1991.html
 - Año 2009: Artículo de Imagenet -> https://ieeexplore.ieee.org/document/5206848
- Razones del auge:
 - Big data
 - HPC Hardware: GPUs, Supercomputers, Clusters, Cloud
 - Software accesible: Google Colab, Kaggle, Tensorflow, Pytorch

El proceso de ML

- Debemos entender el problema que queremos resolver
 - · Qué salida proporcionará el modelo
 - En base a qué entradas
- Lo anterior nos permitirá definir...
 - Los datos que consideramos relevantes para el modelo
 - La representación más apropiada de estos datos

El proceso de representation learning

- Con representation learning se pueden aprender:
 - Las características (features) relevantes de las entradas
 - Cómo relacionar esas características con cada una de las salidas posibles

El perceptrón

Forward propagation

"=" citio

Funciones de activación

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

tanh

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

$$\max(0, x)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Funciones de activación

- Sigmoid: Rango de salida [0,1]. Problema vanishing gradient
 - Tanh: Rango de salida [0,1] Valores más próximos a o. Vanishing gradient.
- ReLU (*Rectified Linear Unit*): Rango de salida [0,n]. Es lineal y no satura. Atenúa *vanishing gradient*, pero tiene el problema de *dying RELU*
- Leaking RELU: Rango de salida [-1,n]. Solventa el problema del dying RELU, proporcionando una salida pequeña negativa cuando el valor es negativo
- SoftMax: Rango de salida [0,1]. Se utiliza en la salida de problemas de clasificación. Convierte las salidas en probabilidades que suman o

Funciones de activación

- Problemas comunes:
 - Vanishing gradient: En redes profundas, al realizar la backpropagation los gradientes pueden ser muy pequeños en las primeras capas
 - Problema común de activaciones que manejan rangos de valores pequeños ej.
 [0,1]
 - Dying RELU: Cuando se usan activaciones con rangos de salida amplios [o,n], se podrían generar gradientes altos que al fluir hacia atrás en la red podría "matar" neuronas
 - Las neuronas podrían no volver a activarse nunca más.
 - Tienen valores muy negativos y la salida de la activación es o, lo cual provoca gradientes nulos
 - Por eso, activaciones con salidas [-1,n] atenúan el problema

Perceptrón multicapa

Fuente: https://towards datascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f

Componentes básicos de un modelo de DL

- Tres bloques de capas identificables:
 - Capa de entrada
 - Capas ocultas (intermedias)
 - Capa de salida
- Cada capa está compuesta de neuronas, interconectadas entre si, cuya señal se caracteriza por:
 - Peso
 - Bias
 - Función de activación

Conceptos clave: Repaso

- Inferencia, Entrenamiento
- Conjunto de datos (dataset):
 - Conjunto de entrenamiento
 - Conjunto de validación
- Función de activación
- Función de pérdida
 - Optimización de la función de pérdida
 - Algoritmos de *Gradient Descent*
 - SGD, Adam, Adadelta, Adagrad, RMSProp

Otros conceptos a revisar relacionados con el entrenamiento

- Minibatches
 - Asociado al concepto de Stochastic Gradiente Descent (SGD)
 - Los gradientes de los pesos se calculan procesando a la vez *minibatches* de elemento del conjunto de datos
 - Permite acelerar el entrenamiento
 - Mediante paralelización
- Learning rate
 - Son adaptativos a la pendiente observada
- Overfitting
- Regularización
 - Mejora la capacidad de generalización de nuestro modelo
 - Mejora el rendimiento de nuestro modelo en datos no vistos
 - Su capacidad de generalización

Batches y minibatches

- batch_size=total_samples -> El conjunto de datos se procesa por completa antes de actualizar los pesos
 - Batch Gradient Descent
- batch_size=n -> El conjunto de entrenamiento se procesa en batches de n samples. Después de procesar cada batch se actualizan los gradientes
 - Minibatch Gradient Descent
- batch_size=1 -> Los gradientes se actualizan después de procesar cada sample
 - Stochastic Gradient Descent

Epoch y step

- Cada procesado del conjunto de datos completo se conoce como epoch
- El procesado de los *batch_size* samples requeridos para actualizar los gradientes, produce que una *epoch* se divida en *total_samples/batch_size*

Métodos de regularización

- *Dropout*: Técnica que consiste en poner algunos pesos a cero aleatoriamente
 - Alrededor del 50%
- Early Stopping: Parar un entrenamiento prematuramente
 - Una forma de evitar overfitting

Por tipo de aprendizaje

- Aprendizaje supervisado: El sistema se entrena con un conjunto de datos que contiene pares formados por una entrada y su correspondiente salida correcta (*ground-truth*)
- Semi-supervisado: Una parte del conjunto de datos de entrenamiento está etiquetado y otra no
 - La parte no etiquetada se etiqueta usando el modelo ya entrenado con la parte etiquetada
- Aprendizaje no-supervisado: El conjunto de entrenamiento está compuesto de datos no etiquetados
 - Concepto de clustering
- Aprendizaje auto-supervisado: El conjunto de entrenamiento usa datos no etiquetados. Debe usar técnicas creativas para identificar la ground-truth. Ejemplos:
 - Denoising: Se usan imágenes completas, se corrompe una parte de la imagen, y se usa el conocimiento de la imagen original (sin corromper) para entrenar el modelo
 - Autoregresión: Se quiere predecir el siguiente valor de una secuencia, se pueden usar distintas "ventanas" de esa secuencia para predecir el siguiente valor
 - Aprendizaje de embedding: En modelos de lenguaje la representación numérica de los tokens se suele aprender y promueve que los tokens con significados similares tengan valores numéricos parecidos

Por el tipo de tarea que aprende el modelo

- Modelos de regresión: Aprenden a predecir un valor
- Modelos de clasificación: Aprenden a clasificar la entrada en una de entre varias categorías
 - Binaria: Si las categorías son 2
 - Multiclase: Si las categorías son más que 2
- Modelos de clustering: Aprenden a agrupar los datos de entrada en varias categorías, o clústeres
- Aprendizaje por refuerzo: Aprenden a tomar decisiones que se evalúan en base a una función que calcula la recompensa de la decisión adoptada

Por tipo de arquitectura de red

- Perceptrón Multicapa
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)
 - Long Short-Term Memory (LSTM)
- Generative Adversarial Networks (GAN)
- Autoencoders
- Transformers

Clasificaciones de modelos de DL

- Por tipo de aplicación:
 - Modelado de secuencia. Predicciones (RNNs)
 - Procesamiento de lenguaje natural (LSTMs)
 - Traductores
 - Asistentes/conversadores virtuales
 - Reconocimiento de voz
 - Visión por computador (CNNs)
 - Seguimiento de objetos
 - Identificación de imágenes
 - Conducción autónoma (LIDAR)
 - Modelos generativos (Autoencoders)
 - Imágenes. Prompt models
 - Vídeos
 - Texto

•

Introducción a la librería Pytorch

Pytorch: Génesis

- Librería creada en el año 2016 por FAIR (Facebook AI Research Lab)
 - Proyecto Adam Paszke (Internship)
 - Sucesor de la librería torch (basada en Lua)
 - Influenciado por la librería chainer
- Cronograma
 - Año 2016: Versión inicial
 - Año 2018: Versión 1.0 (fusión con Caffe)
 - Año 2019: Pytorch Lightning
 - Año 2023 (marzo!): Pytorch 2.0

Fortalezas

- Gran penetración en la comunidad investigadora
- Ventaja conceptual: Dynamic Computation Graph
- Facilidad de uso
- Flexibilidad
- Mucha base de código abierto en:
 - Visión por Computador
 - Procesado de Lenguaje Natural
 - Sistemas recomendadores
 - Procesado de señal

Ecosistema Pytorch

- Conjunto de herramientas y librerías que enriquecen y complementan al núcleo principal de Pytorch
- https://pytorch.org/ecosystem/
 - Domain-specific
 - NeMO
 - Diffusers
 - PennyLane
 - Transformers
 - HPC
 - Lightning
 - DeepSpeed
 - FairScale https://github.com/facebookresearch/fairscale
 - Accelerate
 - Ray
 - Other
 - TorchMetrics

Principios de diseño

• Principio 1: Usable antes que rápido

• Principio 2: Simple antes que fácil

• Principio 3: Python primero

Dynamic Computation Graph (DCG)

- Aproximación dinámica "define by run", (vs "define and run", estática)
- Más intuitivo y flexible que la aproximación estática (static computation graph)
- Menos posibilidades de optimización del cómputo
- Es una diferencia básica respecto a TF (<2.0)

Estructura de módulos de Pytorch

Pytorch: Uso

Abstracciones

- Tensores: estructura de datos multidimensional donde se almacena los diversos elementos del modelo: parámetros (pesos), bias, entradas, salidas
- Contenedores: estructuras a las que se asocian los distintos componentes de un modelo, así como su operación
- Optimizadores: artefacto que permite calcular los gradientes de los pesos en función de la salida de la función de pérdida
- Autograd: mecanismo que crea el DCG y permite calcular las derivadas parciales

Bloques constructores

- API Python
 - torch
 - torch.nn
- Librerías secundarias
 - Torchtext (Texto)
 - Torchaudio (Audio)
 - Torchvision (Visión por computador)
 - Torcharrow (Data frame, tabular data)
 - TorchData (Pipelines de procesado de datos)
 - TorchRec (Sistemas recomendadores)
 - TorchServe (Servidores)
 - Torchx (Lanzador para aplicaciones Pytorch)

torch

- Tensores
 - Definición, Creación, Indexación, Transformación, Random sampling, Serialización, Operadores matemáticos (aritméticos, lógicos, espectrales, Blas/lapack, operaciones foreach, otros)
- Utilidades
- Optimizaciones
- · Configuración del engine

https://pytorch.org/docs/stable/torch.html

torch.nn

- Definición de capas
 - Convolucionales, Pooling, Padding, Normalization, Recurrent, Dropout...
- Contenedores (containers)
 - Module, Sequential
- Funciones
 - Distance, Loss, Quantized

https://pytorch.org/docs/stable/nn.html

TorchVision

- Paquete orientado a la resolución de problemas de visión por computador
- Proporciona:
 - Técnicas para transformar y aumentar imágenes (Geometría, color, composición, conversión, auto-augmentation)
 - Datapoints (Imágenes, Vídeo)
 - Modelos (RESNET, Mobilenet, Yolo, Inception, VGG, etc...)
 - Datasets (CIFAR, MNIST, ...)
 - Utilidades
 - Entrada/Salida (para imágenes y vídeos)
 - Extracción de características

TorchAudio

- Paquete que agrupa varias utilidades relacionadas con el procesamiento de audio y de señal en general
- Proporciona:
 - Modelos (Conformer, HuBERT, DeepSpeech, etc...)
 - Datasets (CMU, GTZAN, LibriSpeech, etc...)
 - Pipelines: permiten usar modelos preentrenados para realizar tareas específicas
 - Componentes para la Entrada/Salida (StreamReader, StreamWriter, play_audio)

TorchText

- Paquete que agrupa varias utilidades realizadas con el procesamiento de lenguaje
 - Es un desarrollo incipiente basado en la filosofía de otros paquetes más longevos como torchaudio y torchvision
- Proporciona:
 - Modelos (Roberta)
 - Utilidades (extraer archivo, descargar de url,...)
 - Transformaciones
 - Vocab (mapeado de palabras a índices)
 - Datasets
 - Elementos funcionales
 - Contenedores específicos (MultiheadAttentionContainer)

TorchArrow

- Conjunto de utilidades para el procesado de datos tabulares (Data Frame)
- Proporciona:
 - DataFrame (Creación, Inspección, Transformación, Estadísticas, Artimética)
 - Column: Estructura de datos unidimensional con datos de un único tipo de datos (numérico, string, list)

TorchData

- Paquete con componentes que permiten la construcción de pipelines para la carga de datos
- Proporciona:
 - Pipelines iterables (accesibles elemento a elemento)
 - Pipeline Map-style (accesibles clave-valor)
 - Utilidades
 - DataLoader2: Versión alternativa de torch.utils.data.DataLoader

TorchRec

• Paquete que contiene varias utilidades para construir sistemas recomendadores

TorchServe

- Paquete que contiene utilidades para la creación de servidores de modelos
- Proporciona:
 - API de gestión de modelos
 - API de inferencia
 - Soporte para distintas soluciones tecnológicas (Sagemaker, Mlflow, Kubeflow, etc...)

torchx

Lanzador para Pytorch Tipo srun o qsub

Funciona con Slurm, Ray, AWS, Docker, Kubernetes, etc...

Permite ejecución local, remota y distribuida

• Clona el repositorio de github con los materiales prácticos del curso

En FT3: cd \$STORE

git clone https://github.com/diegoandradecanosa/Cesga2023Courses

- Instalación del entorno. Opción 1: En una instalación local de python con pip
 - Instala a través de pip los siguientes paquetes:
 - pip3 install torch==2.0.1
 - pip3 install torchvision torchtext jupyter
- Comprueba la instalación de pytorch

python -c "import torch; print(torch.__version___)"
python -c "import torch; print(torch.cuda.is_available()"

- Instalación del entorno. Opción 2: En ft3 con conda unpack
 - Conectarse a ft3
 - Conectarse a login1 (ssh login1)
 - Desde cd \$STORE

```
mkdir –p mytorch
tar –xzf /tmp/mytorch.tar.gz –C mytorch
(Lleva tiempo)

source mytorch/bin/activate
python
conda-unpack
```


- Instalación del entorno. Opción 2: En ft3 con conda
 - pip install ipykernel
 - python -m ipykernel install --user --name=mytorch
 - cd Cesga2023Courses/pytorch
 - jupyter notebook –ip `hostname –i`
 - Entrar en jupyter con el navegador local y seleccionar el kernel mytorch
 - Ejecutar la única celda del notebook bootstrap.ipynb para comprobar la instalación

- Instalación del entorno. Opción 3: En ft3 con conda
 - Desde cd \$STORE

conda deactivate

conda activate mytorch

```
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh sh Miniconda3-latest-Linux-x86_64.sh conda config --set auto_activate_base false conda create -n mytorch --solver classic conda activate mytorch conda install conda-libmamba-solver --solver classic compute --gpu
```

conda install pytorch torchvision torchaudio torchtext jupyter pytorch-cuda=11.7 -c pytorch -c nvidia --solver libmamba

- Instalación del entorno. Opción 3: En ft3 con conda
 - pip install ipykernel
 - python -m ipykernel install --user --name=mytorch
 - cd Cesga2023Courses/pytorch
 - jupyter notebook –ip `hostname –i`
 - Entrar en jupyter con el navegador local y seleccionar el kernel mytorch
 - Ejecutar la única celda del notebook bootstrap.ipynb para comprobar la instalación

Referencias y materiales adicionales

Introducción al Deep Learning

- https://developer.nvidia.com/blog/deep-learning-nutshell-core-concepts/
- https://mlu-explain.github.io
- https://aws.amazon.com/es/machine-learning/mlu/

Referencias

- Pytorch Internals: http://blog.ezyang.com/2019/05/pytorch-internals/
- Pytorch Design Philosophy: https://pytorch.org/docs/stable/community/design.html
- Pytorch: https://se.ewi.tudelft.nl/desosa2019/chapters/pytorch/
- A Tour of Pytorch Internals (Part I): https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
- Pytorch CheatSheet: https://pytorch.org/tutorials/beginner/ptcheat.html
- Pytorch Deep Learning Framework: Speed+Usability: https://syncedreview.com/2019/12/16/pytorch-deep-learning-framework-speed-usability/

