Tema 2: INTEGRALES

CÁLCULO

(Grado en Ingeniería Informática - UMU)

Curso 2019/20

Contenidos del tema

- 1 Regla de Barrow. Primitivas.
- Integrales impropias.
- Interpolación.
- Integración numérica.

Contenidos del tema

- 1 Regla de Barrow. Primitivas.
- Integrales impropias.
- Interpolación.
- Integración numérica.

Interpretación geométrica de la integral

Si
$$f(x) \ge 0$$
 entonces $\int_a^b f(x) dx$ es — la curva $y = f(x)$ el área del recinto limitado por — el eje OX

$$- la curva y = f(x)$$

- el eje *OX*
- las rectas x = a y x = b

Definición (Sumas inferiores y superiores)

Sean $f:[a,b]\to\mathbb{R}$ una función continua y $n\in\mathbb{N}$. Escribimos

$$x_k = a + k \frac{b-a}{n}, \quad k = 0, 1, \dots, n.$$

Definición (Sumas inferiores y superiores)

Sean $f:[a,b]\to\mathbb{R}$ una función continua y $n\in\mathbb{N}$. Escribimos

$$x_k=a+k\frac{b-a}{n}, \quad k=0,1,\ldots,n.$$

Se llama *n*-ésima **suma inferior** de *f* al número

$$I_n(f) = \frac{b-a}{n} \sum_{k=1}^n \min f([x_{k-1}, x_k]).$$

Definición (Sumas inferiores y superiores)

Sean $f:[a,b]\to\mathbb{R}$ una función continua y $n\in\mathbb{N}$. Escribimos

$$x_k=a+k\frac{b-a}{n}, \quad k=0,1,\ldots,n.$$

Se llama n-ésima suma superior de f al número

$$S_n(f) = \frac{b-a}{n} \sum_{k=1}^n \max_{k=1} f([x_{k-1}, x_k]).$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos integral de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \acute{o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \leq \int_a^b f \leq S_n(f) \quad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos integral de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \leq \int_a^b f \leq S_n(f) \quad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos **integral** de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \leq \int_a^b f \leq S_n(f) \qquad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos **integral** de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \le \int_a^b f \le S_n(f) \quad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos **integral** de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \le \int_a^b f \le S_n(f) \quad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos **integral** de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \le \int_a^b f \le S_n(f) \quad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos **integral** de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \le \int_a^b f \le S_n(f) \quad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos **integral** de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \le \int_a^b f \le S_n(f) \quad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos **integral** de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \le \int_a^b f \le S_n(f) \quad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos integral de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \le \int_a^b f \le S_n(f) \quad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos **integral** de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \le \int_a^b f \le S_n(f) \quad \forall n \in \mathbb{N}.$$

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces las sucesiones $I_n(f)$ y $S_n(f)$ son convergentes y se cumple

$$\lim_{n\to\infty}I_n(f)=\lim_{n\to\infty}S_n(f).$$

Llamamos **integral** de f en [a, b] a dicho límite, que se representa mediante

$$\int_a^b f \qquad \text{\'o} \qquad \int_a^b f(x) \, dx.$$

$$I_n(f) \le \int_a^b f \le S_n(f) \quad \forall n \in \mathbb{N}.$$

Propiedades básicas de la integral

Linealidad de la integral

Si $f,g:[a,b] \to \mathbb{R}$ son funciones continuas y $\alpha,\beta \in \mathbb{R}$, entonces

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

Aditividad de la integral

Si $f:[a,b] \to \mathbb{R}$ es una función continua y $c \in (a,b)$, entonces

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

PREGUNTA

Dada una función continua $f:[a,b] \to \mathbb{R}$,

ii cómo podemos calcular $\int_{a}^{b} f$??

Posibilidades

- Mediante la regla de Barrow, calculando previamente una primitiva.
- 2 Mediante métodos numéricos, obteniendo un valor aproximado.

Definición (Primitiva)

Sean $f, F : [a, b] \to \mathbb{R}$ dos funciones.

Decimos que F es una **primitiva** de f en [a,b] si F es continua en [a,b], F es derivable en (a,b) y se cumple:

$$F'(x) = f(x)$$
 $\forall x \in (a, b).$

Si F es primitiva de f en algún intervalo, escribimos:

$$\int f(x) dx = F(x) + C$$

Teorema (Regla de Barrow)

Sean $f:[a,b] \to \mathbb{R}$ una función continua y F una primitiva de f en [a,b]. Entonces

$$\int_a^b f = F(b) - F(a)$$

Ejemplo

Cálculo de
$$\int_{1}^{2} x^{3} dx$$

- ▶ Integramos la función $f(x) = x^3$
- $F(x) = \frac{x^4}{4}$ es **primitiva** de f
- ► Por la Regla de Barrow:

$$\int_{1}^{2} x^{3} dx = F(2) - F(1) = \frac{15}{4}$$

Algunas primitivas inmediatas

$$\int \frac{1}{x} dx = \log|x| + C$$

$$\int \alpha^{x} dx = \frac{\alpha^{x}}{\log \alpha} + C \text{ si } \alpha > 0$$

$$\int \frac{1}{1+x^2} dx = \arctan x + C$$

Linealidad de las primitivas

Por ejemplo. . .

$$\int (2 \operatorname{sen} x - \cos x) \, dx$$

$$= 2 \int \operatorname{sen} x \, dx - \int \cos x \, dx = -2 \cos x - \operatorname{sen} x + C$$

Método de sustitución o cambio de variable

RECUERDA (regla de la cadena):

Si F(t) y g(x) son funciones derivables, entonces la **función** compuesta F(g(x)) es derivable, y su derivada es F'(g(x))g'(x).

Fórmula del CAMBIO DE VARIABLE

$$\int F'(g(x))g'(x)\,dx = F(g(x)) + C$$

Ejemplos

(A)
$$\int e^{2x} dx$$
 (B) $\int x \operatorname{sen}(x^2) dx$ (C) $\int \frac{1}{x \log x} dx$

Método de integración por partes

RECUERDA (cómo se deriva un producto de funciones):

Si f(x) y g(x) son funciones derivables, entonces la **función producto** f(x)g(x) es derivable, y su derivada es f'(x)g(x) + f(x)g'(x).

Fórmula de INTEGRACIÓN POR PARTES

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

Ejemplos

(A)
$$\int x \cos x \, dx$$
 (B) $\int xe^x \, dx$ (C) $\int x^2 \sin x \, dx$

Contenidos del tema

- 1 Regla de Barrow. Primitivas.
- 2 Integrales impropias.
- Interpolación.
- Integración numérica.

Interpretación geométrica de las integrales impropias


```
Si f(x) \ge 0 entonces \int_a^\infty f(x) dx es 
el área del recinto limitado por ....... - la curva y = f(x) 
- el eje OX 
- la recta x = a
```

Integrales impropias en intervalos $[a, \infty)$

Definición

Sea $f:[a,\infty)\to\mathbb{R}$ una función continua.

Decimos que la integral impropia $\int_a^\infty f(x) dx$ es...

Integrales impropias en intervalos $[a, \infty)$

Definición

Sea $f:[a,\infty)\to\mathbb{R}$ una función continua.

Decimos que la integral impropia $\int_{0}^{\infty} f(x) dx$ es...

1 CONVERGENTE si existe el límite $\lim_{b\to\infty} \int_a^b f(x) dx = L \in \mathbb{R}$.

$$\lim_{b\to\infty}\int_a^b f(x)\,dx=L\in\mathbb{R}\;.$$

En tal caso, se define
$$\int_{a}^{\infty} f(x) dx = L$$
.

Integrales impropias en intervalos $[a, \infty)$

Definición

Sea $f:[a,\infty)\to\mathbb{R}$ una función continua.

Decimos que la integral impropia $\int_{0}^{\infty} f(x) dx$ es...

1 CONVERGENTE si existe el límite $\lim_{b\to\infty}\int_a^b f(x)\,dx=L\in\mathbb{R}$.

$$\lim_{b\to\infty}\int_a^b f(x)\,dx=L\in\mathbb{R}\;.$$

En tal caso, se define
$$\int_{a}^{\infty} f(x) dx = L$$
.

2 DIVERGENTE si el límite $\lim_{b\to\infty} \int_{-\infty}^{b} f(x) dx$ no existe o es infinito.

ii Es convergente
$$\int_0^\infty e^{-x} dx$$
 ??

ii Es convergente $\int_0^\infty e^{-x} dx$??

ii Es convergente
$$\int_0^\infty e^{-x} dx$$
 ??

ii Es convergente
$$\int_0^\infty e^{-x} dx$$
 ??

► Aplicando la Regla de Barrow:

$$\int_0^b e^{-x} dx = \left[-e^{-x} \right]_0^b = 1 - e^{-b}$$

para todo b > 0.

ii Es convergente
$$\int_0^\infty e^{-x} dx$$
 ??

► Aplicando la Regla de Barrow:

$$\int_0^b e^{-x} dx = \left[-e^{-x} \right]_0^b = 1 - e^{-b}$$

para todo b > 0.

► Tomando límites:

$$\lim_{b \to \infty} \int_0^b e^{-x} \, dx = \lim_{b \to \infty} (1 - e^{-b}) = 1$$

ii Es convergente
$$\int_0^\infty e^{-x} dx$$
 ??

► Aplicando la Regla de Barrow:

$$\int_0^b e^{-x} dx = \left[-e^{-x} \right]_0^b = 1 - e^{-b}$$

para todo b > 0.

► Tomando límites:

$$\lim_{b\to\infty}\int_0^b e^{-x}\,dx = \lim_{b\to\infty}(1-e^{-b}) = 1$$

Por tanto ...

Esta integral impropia es **convergente** y

$$\int_0^\infty e^{-x} dx = 1$$

Ejemplo importante

La integral impropia

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

converge si p > 1 y diverge si $p \le 1$.

Criterio de Comparación

Sean $f,g:[a,\infty) \to \mathbb{R}$ dos funciones continuas **no negativas** tales que existe:

$$C = \lim_{x \to \infty} \frac{f(x)}{g(x)} \in \mathbb{R} \cup \{\infty\}$$

Criterio de Comparación

Sean $f,g:[a,\infty) \to \mathbb{R}$ dos funciones continuas **no negativas** tales que existe:

$$C = \lim_{x \to \infty} \frac{f(x)}{g(x)} \in \mathbb{R} \cup \{\infty\}$$

① Si
$$C = 0$$
 y $\int_{a}^{\infty} g(x) dx$ converge $\implies \int_{a}^{\infty} f(x) dx$ converge.

Criterio de Comparación

Sean $f,g:[a,\infty) \to \mathbb{R}$ dos funciones continuas **no negativas** tales que existe:

$$C = \lim_{x \to \infty} \frac{f(x)}{g(x)} \in \mathbb{R} \cup \{\infty\}$$

- ① Si C = 0 y $\int_{a}^{\infty} g(x) dx$ converge $\implies \int_{a}^{\infty} f(x) dx$ converge.
- 2 Si $C = \infty$ y $\int_a^\infty f(x) dx$ converge $\implies \int_a^\infty g(x) dx$ converge.

Criterio de Comparación

Sean $f,g:[a,\infty) \to \mathbb{R}$ dos funciones continuas **no negativas** tales que existe:

$$C = \lim_{x \to \infty} \frac{f(x)}{g(x)} \in \mathbb{R} \cup \{\infty\}$$

- Si C = 0 y $\int_{a}^{\infty} g(x) dx$ converge $\implies \int_{a}^{\infty} f(x) dx$ converge.
- 2 Si $C = \infty$ y $\int_{a}^{\infty} f(x) dx$ converge $\implies \int_{a}^{\infty} g(x) dx$ converge.
- 3 Si $C \in (0, \infty)$ entonces

$$\int_{a}^{\infty} f(x) dx \text{ converge } \iff \int_{a}^{\infty} g(x) dx \text{ converge.}$$

Criterio de Comparación

Sean $f,g:[a,\infty) \to \mathbb{R}$ dos funciones continuas **no negativas** tales que existe:

$$C = \lim_{x \to \infty} \frac{f(x)}{g(x)} \in \mathbb{R} \cup \{\infty\}$$

Se cumple:

1 Si
$$C = 0$$
 y $\int_a^\infty g(x) dx$ converge $\implies \int_a^\infty f(x) dx$ converge.

② Si
$$C = \infty$$
 y $\int_{a}^{\infty} f(x) dx$ converge $\implies \int_{a}^{\infty} g(x) dx$ converge.

③ Si
$$C \in (0, \infty)$$
 entonces

$$\int_{a}^{\infty} f(x) dx \text{ converge } \iff \int_{a}^{\infty} g(x) dx \text{ converge.}$$

$$\int_{1}^{\infty} \frac{x}{x^4 + 1} \, dx$$
 es convergente.

Criterio de Comparación

Sean $f,g:[a,\infty) \to \mathbb{R}$ dos funciones continuas **no negativas** tales que existe:

$$C = \lim_{x \to \infty} \frac{f(x)}{g(x)} \in \mathbb{R} \cup \{\infty\}$$

Se cumple:

- **1** Si C = 0 y $\int_{-\infty}^{\infty} g(x) dx$ converge $\implies \int_{-\infty}^{\infty} f(x) dx$ converge.
- ② Si $C = \infty$ y $\int_{0}^{\infty} f(x) dx$ converge $\implies \int_{0}^{\infty} g(x) dx$ converge.
- 3 Si $C \in (0, \infty)$ entonces

$$\int_{0}^{\infty} f(x) dx \text{ converge } \iff \int_{0}^{\infty} g(x) dx \text{ converge.}$$

Ejemplo

$$\int_{1}^{\infty} \frac{x}{x^4 + 1} dx$$
 es convergente.

$$\int_{1}^{\infty} \frac{x}{x^2 + x + 1} dx$$
 es divergente.

Integrales impropias en intervalos $(-\infty, b]$

Definición

Sea $f:(-\infty,b]\to\mathbb{R}$ una función continua.

Decimos que la integral impropia $\int_{-\infty}^{b} f(x) dx$ es...

Integrales impropias en intervalos $(-\infty, b]$

Definición

Sea $f: (-\infty, b] \to \mathbb{R}$ una función continua.

Decimos que la integral impropia $\int_{-\infty}^{b} f(x) dx$ es...

1 CONVERGENTE si existe el límite $\lim_{a \to -\infty} \int_a^b f(x) \, dx = L \in \mathbb{R}$

En tal caso, se define $\int_{-\infty}^{b} f(x) dx = L$

Integrales impropias en intervalos $(-\infty, b]$

Definición

Sea $f: (-\infty, b] \to \mathbb{R}$ una función continua.

Decimos que la integral impropia $\int_{-\infty}^{b} f(x) dx$ es...

1 CONVERGENTE si existe el límite $\lim_{a \to -\infty} \int_a^b f(x) \, dx = L \in \mathbb{R}$

En tal caso, se define
$$\int_{-\infty}^{b} f(x) dx = L$$

2 **DIVERGENTE** si el límite $\lim_{a \to -\infty} \int_a^b f(x) dx$ no existe o es infinito.

ii Es convergente
$$\int_{-\infty}^{-1} \frac{1}{x} dx$$
 ??

it Es convergente
$$\int_{-\infty}^{-1} \frac{1}{x} dx$$
 ??

ii Es convergente
$$\int_{-\infty}^{-1} \frac{1}{x} dx$$
 ??

ii Es convergente
$$\int_{-\infty}^{-1} \frac{1}{x} dx$$
 ??

► Aplicando la Regla de Barrow:

$$\int_{a}^{-1} \frac{1}{x} dx = \left[\log(-x) \right]_{a}^{-1} = -\log(-a)$$

para todo a < -1.

ii Es convergente
$$\int_{-\infty}^{-1} \frac{1}{x} dx$$
 ??

► Aplicando la Regla de Barrow:

$$\int_{a}^{-1} \frac{1}{x} dx = \left[\log(-x) \right]_{a}^{-1} = -\log(-a)$$

para todo
$$a < -1$$
.

► Tomando límites:

$$\lim_{a \to -\infty} \int_{a}^{-1} \frac{1}{x} dx = \lim_{a \to -\infty} -\log(-a) = -\infty$$

ii Es convergente $\int_{-\infty}^{-1} \frac{1}{x} dx$??

► Aplicando la Regla de Barrow:

$$\int_{a}^{-1} \frac{1}{x} dx = \left[\log(-x) \right]_{a}^{-1} = -\log(-a)$$

para todo a < -1.

▶ Tomando límites:

$$\lim_{a \to -\infty} \int_{a}^{-1} \frac{1}{x} dx = \lim_{a \to -\infty} -\log(-a) = -\infty$$

Por tanto ...

Esta integral impropia es divergente.

Integrales impropias en el intervalo $(-\infty,\infty)$

Definición

Sea $f: (-\infty, \infty) \to \mathbb{R}$ una función continua.

Decimos que la integral impropia $\int_{-\infty}^{\infty} f(x) dx$ es...

Integrales impropias en el intervalo $(-\infty, \infty)$

Definición

Sea $f:(-\infty,\infty)\to\mathbb{R}$ una función continua.

Decimos que la integral impropia $\int_{-\infty}^{\infty} f(x) dx$ es...

1 CONVERGENTE si las integrales impropias $\int_{0}^{\infty} f(x) dx$ y

$$\int_{-\infty}^{0} f(x) \, dx$$

$$\int_0^\infty f(x) \, dx$$
 son convergentes.

En tal caso, se define
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx.$$

Integrales impropias en el intervalo $(-\infty, \infty)$

Definición

Sea $f:(-\infty,\infty)\to\mathbb{R}$ una función continua.

Decimos que la integral impropia $\int_{-\infty}^{\infty} f(x) dx$ es...

1 CONVERGENTE si las integrales impropias $\int_{0}^{\infty} f(x) dx$ y

$$\int_{-\infty}^{0} f(x) dx$$

$$\int_0^\infty f(x) \, dx$$
 son convergentes.

En tal caso, se define
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx.$$

O DIVERGENTE en caso contrario.

ii Es convergente
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$
 ??

ii Es convergente
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$
 ??

ii Es convergente
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx ??$$

ii Es convergente
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$
 ??

► Aplicando la Regla de Barrow:

$$\int_0^b \frac{1}{1+x^2} dx = \left[\arctan x\right]_0^b = \arctan b$$

para todo b > 0.

ii Es convergente
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx ??$$

► Aplicando la Regla de Barrow:

$$\int_0^b \frac{1}{1+x^2} \, dx = \left[\arctan x\right]_0^b = \arctan b$$

para todo b > 0.

► Tomando límites:

$$\lim_{b \to \infty} \int_0^b \frac{1}{1 + x^2} \, dx = \lim_{b \to \infty} \arctan b = \frac{\pi}{2}$$

ii Es convergente
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx ??$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C$$

► Aplicando la Regla de Barrow:

$$\int_0^b \frac{1}{1+x^2} \, dx = \left[\arctan x\right]_0^b = \arctan b$$

para todo b > 0.

▶ Tomando límites:

$$\lim_{b \to \infty} \int_0^b \frac{1}{1 + x^2} \, dx = \lim_{b \to \infty} \arctan b = \frac{\pi}{2}$$

ii Es convergente
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx ??$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C$$

► Aplicando la Regla de Barrow:

$$\int_0^b \frac{1}{1+x^2} \, dx = \left[\arctan x\right]_0^b = \arctan b$$

para todo b > 0.

▶ Tomando límites:

$$\lim_{b \to \infty} \int_0^b \frac{1}{1 + x^2} dx = \lim_{b \to \infty} \arctan b = \frac{\pi}{2}$$

ii Es convergente
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx ??$$

► Aplicando la Regla de Barrow:

$$\int_0^b \frac{1}{1+x^2} \, dx = \left[\arctan x\right]_0^b = \arctan b$$

para todo b > 0.

► Tomando límites:

$$\lim_{b \to \infty} \int_0^b \frac{1}{1 + x^2} \, dx = \lim_{b \to \infty} \arctan b = \frac{\pi}{2}$$

Por tanto ...

La integral impropia es **convergente** y vale $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \pi$.

Contenidos del tema

- 1 Regla de Barrow. Primitivas.
- Integrales impropias.
- Interpolación.
- 1 Integración numérica.

Polinomio interpolador de Lagrange

Teorema

Se consideran n+1 puntos del plano con abscisas distintas dos a dos:

$$(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n).$$

Entonces existe un único polinomio P(x) de grado $\leq n$ tal que

$$P(x_i) = y_i$$
 para todo $i = 0, 1, \dots, n$.

Polinomio interpolador de Lagrange

Teorema

Se consideran n+1 puntos del plano con abscisas distintas dos a dos:

$$(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n).$$

Entonces existe un único polinomio P(x) de grado $\leq n$ tal que

$$P(x_i) = y_i$$
 para todo $i = 0, 1, \dots, n$.

Dicho polinomio se llama **polinomio interpolador** en los puntos dados y se puede calcular mediante la fórmula

$$P(x) = \sum_{i=0}^{n} y_i L_i(x)$$

donde

$$L_i(x) = \prod_{\substack{j=0 \ i \neq i}}^n \frac{x - x_j}{x_i - x_j} \quad \text{para todo } i = 0, 1, \dots, n.$$

Polinomio interpolador en los puntos

$$(0,-1), (1,2), (2,-7), (3,1).$$

Definición

Sea f(x) una función definida, al menos, en $\{x_0, x_1, \ldots, x_n\} \subset \mathbb{R}$. Llamamos **polinomio interpolador** de f(x) en los puntos de abscisas $\{x_0, x_1, \ldots, x_n\}$ al polinomio interpolador en los puntos

$$(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)).$$

Definición

Sea f(x) una función definida, al menos, en $\{x_0, x_1, \ldots, x_n\} \subset \mathbb{R}$. Llamamos **polinomio interpolador** de f(x) en los puntos de abscisas $\{x_0, x_1, \ldots, x_n\}$ al polinomio interpolador en los puntos

$$(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)).$$

Ejemplo

Polinomio interpolador de $f(x) = \operatorname{sen} x + x^4$ en los puntos de abscisas $\{-\frac{\pi}{2}, 0, \frac{\pi}{4}\}.$

COTA DEL ERROR del polinomio interpolador de Lagrange

Sean:

- $\triangleright x_0 < x_1 < \cdots < x_n$ números reales
- $\triangleright f(x)$ una función de clase \mathcal{C}^{n+1} en el intervalo $[x_0,x_n]$
- $\triangleright P(x)$ su polin. interpolador en los puntos de abscisas $\{x_0, x_1, \dots, x_n\}$.

COTA DEL ERROR del polinomio interpolador de Lagrange

Sean:

- $\triangleright x_0 < x_1 < \cdots < x_n$ números reales
- $\triangleright f(x)$ una función de clase C^{n+1} en el intervalo $[x_0, x_n]$
- $\triangleright P(x)$ su polin. interpolador en los puntos de abscisas $\{x_0, x_1, \dots, x_n\}$.

Si M>0 cumple $|f^{(n+1)}(x)|\leq M$ para todo $x\in [x_0,x_n]$ entonces

$$\left| \left| f(x) - P(x)
ight| \leq rac{M}{(n+1)!} \prod_{i=0}^n \left| x - x_i
ight| \quad \mathsf{para todo} \; x \in [x_0, x_n].$$

COTA DEL ERROR del polinomio interpolador de Lagrange

Sean:

- $\triangleright x_0 < x_1 < \cdots < x_n$ números reales
- $\triangleright f(x)$ una función de clase C^{n+1} en el intervalo $[x_0, x_n]$
- $\triangleright P(x)$ su polin. interpolador en los puntos de abscisas $\{x_0, x_1, \dots, x_n\}$.
- Si M>0 cumple $\left|f^{(n+1)}(x)\right|\leq M$ para todo $x\in [x_0,x_n]$ entonces

$$\left| \left| f(x) - P(x)
ight| \leq rac{M}{(n+1)!} \prod_{i=0}^n |x-x_i|
ight|$$
 para todo $x \in [x_0,x_n].$

Ejemplo

El polinomio interpolador de $f(x) = \operatorname{sen} x$ en los puntos de abscisas $\left\{-\frac{\pi}{4}, 0, \frac{\pi}{8}\right\}$ cumple lo siguiente:

$$|f(x) - P(x)| < 0.182$$
 para todo $x \in \left[-\frac{\pi}{4}, \frac{\pi}{8} \right]$.

Interpolación a trozos

Definición

Sean $x_0 < x_1 < \cdots < x_n$ números reales y f(x) una función definida, al menos, en el intervalo $[x_0, x_n]$.

Interpolación a trozos

Definición

```
Sean x_0 < x_1 < \cdots < x_n números reales y f(x) una función definida, al menos, en el intervalo [x_0, x_n].
```

Llamamos función interpoladora lineal a trozos de f(x) en los puntos de abscisas $\{x_0, x_1, \dots, x_n\}$ a la función $\ell(x)$ definida en $[x_0, x_n]$ tal que

```
\ell(x) coincide en el intervalo [x_{i-1}, x_i] con el polinomio interpolador de f(x) en los puntos de abscisas \{x_{i-1}, x_i\} [ es decir, la recta que pasa por (x_{i-1}, f(x_{i-1})) y (x_i, f(x_i)) ]
```

```
para cada i = 1, 2, ..., n.
```

Interpolación a trozos

Definición

Sean $x_0 < x_1 < \cdots < x_n$ números reales y f(x) una función definida, al menos, en el intervalo $[x_0, x_n]$.

Llamamos **función interpoladora lineal a trozos** de f(x) en los puntos de abscisas $\{x_0, x_1, \dots, x_n\}$ a la función $\ell(x)$ definida en $[x_0, x_n]$ tal que

 $\ell(x)$ coincide en el intervalo $[x_{i-1}, x_i]$ con el polinomio interpolador de f(x) en los puntos de abscisas $\{x_{i-1}, x_i\}$ [es decir, la recta que pasa por $(x_{i-1}, f(x_{i-1}))$ y $(x_i, f(x_i))$]

para cada i = 1, 2, ..., n.

Ejemplo

Para $f(x) = \cos x$ y las abscisas $\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi\}$:

$$f(0.2) = 0.98006...$$

$$\ell(0.2) = 0.92541...$$

COTA DEL ERROR de la función interpoladora lineal a trozos

Sean

- $\triangleright x_0 < x_1 < \cdots < x_n$ números reales
- $\triangleright f(x)$ una función de clase C^2 en el intervalo $[x_0, x_n]$
- $\triangleright \ell(x)$ su función interp. lineal a trozos en las abscisas $\{x_0, x_1, \dots, x_n\}$.

COTA DEL ERROR de la función interpoladora lineal a trozos

Sean

- $\triangleright x_0 < x_1 < \cdots < x_n$ números reales
- $\triangleright f(x)$ una función de clase C^2 en el intervalo $[x_0, x_n]$
- $\triangleright \ell(x)$ su función interp. lineal a trozos en las abscisas $\{x_0, x_1, \dots, x_n\}$.

Si M > 0 cumple $|f''(x)| \le M$ para todo $x \in [x_0, x_n]$ entonces

$$\left|\left|f(x)-\ell(x)
ight|\leq rac{M}{8}\max_{i=1,\dots,n}\left(x_i-x_{i-1}
ight)^2
ight|$$
 para todo $x\in[x_0,x_n].$

COTA DEL ERROR de la función interpoladora lineal a trozos

Sean

- $\triangleright x_0 < x_1 < \cdots < x_n$ números reales
- $\triangleright f(x)$ una función de clase C^2 en el intervalo $[x_0, x_n]$
- $\triangleright \ell(x)$ su función interp. lineal a trozos en las abscisas $\{x_0, x_1, \dots, x_n\}$.

Si M > 0 cumple $|f''(x)| \le M$ para todo $x \in [x_0, x_n]$ entonces

$$\left| \left| f(x) - \ell(x) \right| \leq \frac{M}{8} \max_{i=1,\dots,n} \left(x_i - x_{i-1} \right)^2 \right| \quad \mathsf{para todo} \ x \in [x_0, x_n].$$

Ejercicio

Se dispone de una tabla de valores de la función $f(x) = e^{-x} + \cos x$ en los puntos de abscisas $\{0, 0.5, \dots, 3.5, 4\}$.

Da una cota superior del error cometido al aproximar f(x) mediante interpolación lineal a trozos, para cualquier $x \in [0, 4]$.

Contenidos del tema

- 1 Regla de Barrow. Primitivas.
- Integrales impropias.
- Interpolación.
- **Integración numérica.**

Vamos a estudiar dos métodos para calcular **aproximadamente** la integral

$$\int_{a}^{b} f(x) \, dx$$

de una función continua $f:[a,b] \to \mathbb{R}$.

- Método del trapecio.
- Método de Simpson.

MÉTODO DEL TRAPECIO

• Fijamos $n \in \mathbb{N}$. Dividimos el intervalo [a, b] en n subintervalos $[x_{k-1}, x_k]$ de longitud $\frac{b-a}{n}$, $x_k = a + k \cdot \frac{b-a}{n}$ (k = 0, 1, ..., n)

- Fijamos $n \in \mathbb{N}$. Dividimos el intervalo [a, b] en n subintervalos $[x_{k-1}, x_k]$ de longitud $\frac{b-a}{n}$, $x_k = a + k \cdot \frac{b-a}{n}$ (k = 0, 1, ..., n)
- Para cada $k=1,2\ldots,n$ aproximamos la integral por el área del trapecio de bases $f(x_{k-1})$ y $f(x_k)$, y altura $\frac{b-a}{n}$,

$$\int_{x_{k-1}}^{x_k} f(x) dx \approx \frac{b-a}{n} \left(\frac{f(x_{k-1}) + f(x_k)}{2} \right)$$

- Fijamos $n \in \mathbb{N}$. Dividimos el intervalo [a, b] en n subintervalos $[x_{k-1}, x_k]$ de longitud $\frac{b-a}{n}$, $x_k = a + k \cdot \frac{b-a}{n}$ (k = 0, 1, ..., n)
- Para cada $k=1,2\ldots,n$ aproximamos la integral por el área del trapecio de bases $f(x_{k-1})$ y $f(x_k)$, y altura $\frac{b-a}{n}$,

$$\int_{x_{k-1}}^{x_k} f(x) \, dx \approx \frac{b-a}{n} \left(\frac{f(x_{k-1}) + f(x_k)}{2} \right) = \frac{b-a}{2n} \left(f(x_{k-1}) + f(x_k) \right)$$

1.8

sin(x^2)+1

- Fijamos $n \in \mathbb{N}$. Dividimos el intervalo [a, b] en n subintervalos $[x_{k-1}, x_k]$ de longitud $\frac{b-a}{n}$, $x_k = a + k \cdot \frac{b-a}{n}$ (k = 0, 1, ..., n)
- Para cada $k=1,2\ldots,n$ aproximamos la integral por el área del trapecio de bases $f(x_{k-1})$ y $f(x_k)$, y altura $\frac{b-a}{n}$,

$$\int_{x_{k-1}}^{x_k} f(x) \, dx \approx \frac{b-a}{n} \left(\frac{f(x_{k-1}) + f(x_k)}{2} \right) = \frac{b-a}{2n} \left(f(x_{k-1}) + f(x_k) \right)$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} \Big(f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b) \Big)$$

- Fijamos $n \in \mathbb{N}$. Dividimos el intervalo [a, b] en n subintervalos $[x_{k-1}, x_k]$ de longitud $\frac{b-a}{n}$, $x_k = a + k \cdot \frac{b-a}{n}$ (k = 0, 1, ..., n)
- Para cada $k=1,2\ldots,n$ aproximamos la integral por el área del trapecio de bases $f(x_{k-1})$ y $f(x_k)$, y altura $\frac{b-a}{n}$,

$$\int_{x_{k-1}}^{x_k} f(x) \, dx \; \approx \; \frac{b-a}{n} \Big(\frac{f(x_{k-1}) + f(x_k)}{2} \Big) = \frac{b-a}{2n} \Big(f(x_{k-1}) + f(x_k) \Big)$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} \Big(f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b) \Big)$$

- Fijamos $n \in \mathbb{N}$. Dividimos el intervalo [a, b] en n subintervalos $[x_{k-1}, x_k]$ de longitud $\frac{b-a}{n}$, $x_k = a + k \cdot \frac{b-a}{n}$ (k = 0, 1, ..., n)
- Para cada $k=1,2\ldots,n$ aproximamos la integral por el área del trapecio de bases $f(x_{k-1})$ y $f(x_k)$, y altura $\frac{b-a}{n}$,

$$\int_{x_{k-1}}^{x_k} f(x) \, dx \; \approx \; \frac{b-a}{n} \Big(\frac{f(x_{k-1}) + f(x_k)}{2} \Big) = \frac{b-a}{2n} \Big(f(x_{k-1}) + f(x_k) \Big)$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} \Big(f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b) \Big)$$

- Fijamos $n \in \mathbb{N}$. Dividimos el intervalo [a, b] en n subintervalos $[x_{k-1}, x_k]$ de longitud $\frac{b-a}{n}$, $x_k = a + k \cdot \frac{b-a}{n}$ (k = 0, 1, ..., n)
- Para cada $k=1,2\ldots,n$ aproximamos la integral por el área del trapecio de bases $f(x_{k-1})$ y $f(x_k)$, y altura $\frac{b-a}{n}$,

$$\int_{x_{k-1}}^{x_k} f(x) \, dx \approx \frac{b-a}{n} \left(\frac{f(x_{k-1}) + f(x_k)}{2} \right) = \frac{b-a}{2n} \left(f(x_{k-1}) + f(x_k) \right)$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} \Big(f(a) + 2f(x_{1}) + \cdots + 2f(x_{n-1}) + f(b) \Big)$$

- Fijamos $n \in \mathbb{N}$. Dividimos el intervalo [a, b] en n subintervalos $[x_{k-1}, x_k]$ de longitud $\frac{b-a}{n}$, $x_k = a + k \cdot \frac{b-a}{n}$ (k = 0, 1, ..., n)
- Para cada $k=1,2\ldots,n$ aproximamos la integral por el área del trapecio de bases $f(x_{k-1})$ y $f(x_k)$, y altura $\frac{b-a}{n}$,

$$\int_{x_{k-1}}^{x_k} f(x) \, dx \approx \frac{b-a}{n} \left(\frac{f(x_{k-1}) + f(x_k)}{2} \right) = \frac{b-a}{2n} \left(f(x_{k-1}) + f(x_k) \right)$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} \Big(f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b) \Big)$$

- Fijamos $n \in \mathbb{N}$. Dividimos el intervalo [a, b] en n subintervalos $[x_{k-1}, x_k]$ de longitud $\frac{b-a}{n}$, $x_k = a + k \cdot \frac{b-a}{n}$ (k = 0, 1, ..., n)
- Para cada $k=1,2\ldots,n$ aproximamos la integral por el área del trapecio de bases $f(x_{k-1})$ y $f(x_k)$, y altura $\frac{b-a}{n}$,

$$\int_{x_{k-1}}^{x_k} f(x) \, dx \; \approx \; \frac{b-a}{n} \Big(\frac{f(x_{k-1}) + f(x_k)}{2} \Big) = \frac{b-a}{2n} \Big(f(x_{k-1}) + f(x_k) \Big)$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} \Big(f(a) + 2f(x_{1}) + \cdots + 2f(x_{n-1}) + f(b) \Big)$$

- Fijamos $n \in \mathbb{N}$. Dividimos el intervalo [a, b] en n subintervalos $[x_{k-1}, x_k]$ de longitud $\frac{b-a}{n}$, $x_k = a + k \cdot \frac{b-a}{n}$ (k = 0, 1, ..., n)
- Para cada $k=1,2\ldots,n$ aproximamos la integral por el área del trapecio de bases $f(x_{k-1})$ y $f(x_k)$, y altura $\frac{b-a}{n}$,

$$\int_{x_{k-1}}^{x_k} f(x) \, dx \approx \frac{b-a}{n} \left(\frac{f(x_{k-1}) + f(x_k)}{2} \right) = \frac{b-a}{2n} \left(f(x_{k-1}) + f(x_k) \right)$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} \Big(f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b) \Big)$$

La aproximación de la integral

$$\int_{a}^{b} f(x) \, dx$$

que se obtiene mediante el **método del trapecio** con *n* subintervalos es:

Trapecio_n
$$(f) = \frac{b-a}{2n} \Big(f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b) \Big).$$

La aproximación de la integral

$$\int_a^b f(x) \, dx$$

que se obtiene mediante el **método del trapecio** con *n* subintervalos es:

Trapecio_n
$$(f) = \frac{b-a}{2n} \Big(f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b) \Big).$$

Ejemplo

Aproximación de la integral

$$\int_{1}^{2} \frac{1}{x} dx$$

La aproximación de la integral

$$\int_a^b f(x) \, dx$$

que se obtiene mediante el **método del trapecio** con *n* subintervalos es:

Trapecio_n
$$(f) = \frac{b-a}{2n} \Big(f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b) \Big).$$

Ejemplo

Aproximación de la integral

$$\int_{1}^{2} \frac{1}{x} dx$$

$$ightharpoonup$$
 Trapecio₃ $(f) = 0.7$

La aproximación de la integral

$$\int_{a}^{b} f(x) \, dx$$

que se obtiene mediante el **método del trapecio** con *n* subintervalos es:

Trapecio_n
$$(f) = \frac{b-a}{2n} \Big(f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b) \Big).$$

Ejemplo

Aproximación de la integral

$$\int_{1}^{2} \frac{1}{x} dx$$

- ightharpoonup Trapecio₃(f) = 0.7
- ► Trapecio₅ $(f) = \frac{1753}{2520} = 0.695...$

La aproximación de la integral

$$\int_a^b f(x) \, dx$$

que se obtiene mediante el **método del trapecio** con *n* subintervalos es:

Trapecio_n
$$(f) = \frac{b-a}{2n} \Big(f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b) \Big).$$

Ejemplo

Aproximación de la integral

$$\int_{1}^{2} \frac{1}{x} dx$$

- ightharpoonup Trapecio₃(f) = 0.7
- ► Trapecio₅ $(f) = \frac{1753}{2520} = 0.695...$
- ightharpoonup Valor exacto = log(2) = 0.69314718055995...

Preguntas

1 Podemos dar una cota superior del error absoluto

$$\left| \int_a^b f(x) \, dx - \text{Trapecio}_{\mathbf{n}}(f) \right|$$

para valores concretos de n ?

Preguntas

1 Podemos dar una cota superior del error absoluto

$$\left| \int_a^b f(x) \, dx - \operatorname{Trapecio}_{\mathbf{n}}(f) \right|$$

para valores concretos de n?

2 Fijado cualquier $\varepsilon > 0$, ξ podemos determinar un número n de subintervalos para que dicho error absoluto sea menor que ε ?

Preguntas

1 Podemos dar una cota superior del error absoluto

$$\left| \int_a^b f(x) \, dx - \operatorname{Trapecio}_{\mathbf{n}}(f) \right|$$

para valores concretos de n ?

② Fijado cualquier $\varepsilon > 0$, ξ podemos determinar un número n de subintervalos para que dicho error absoluto sea menor que ε ?

COTA DEL ERROR en el método del trapecio

Fijamos $n \in \mathbb{N}$ y escribimos $h = \frac{b-a}{n}$.

Si f es de clase C^2 en [a,b] y M>0 es una constante que cumple $|f''(x)| \leq M \quad \forall x \in [a,b]$ entonces

$$\left| \int_a^b f(x) \, dx - \text{Trapecio}_{\mathbf{n}}(f) \right| \leq \frac{(b-a)M}{12} \cdot h^2$$

Fijamos $n \in \mathbb{N}$ y escribimos $h = \frac{b-a}{n}$.

Si f es de clase C^2 en [a,b] y M>0 es una constante que cumple $|f''(x)| \leq M \quad \forall x \in [a,b] \quad \text{entonces}$

$$\left| \int_a^b f(x) \, dx - \text{Trapecio}_{\mathbf{n}}(f) \right| \leq \frac{(b-a)M}{12} \cdot h^2$$

Ejemplo

i Qué número n de subintervalos necesitamos para aproximar

$$\int_{1}^{2} \frac{1}{x} dx$$

mediante el método del trapecio con error absoluto menor que 10⁻⁴ ?

Fijamos $n \in \mathbb{N}$ y escribimos $h = \frac{b-a}{n}$.

Si f es de clase C^2 en [a,b] y M>0 es una constante que cumple $|f''(x)| \leq M \quad \forall x \in [a,b]$ entonces

$$\left| \int_a^b f(x) \, dx - \operatorname{Trapecio}_{\mathbf{n}}(f) \right| \leq \frac{(b-a)M}{12} \cdot h^2$$

Ejemplo

i Qué número n de subintervalos necesitamos para aproximar

$$\int_{1}^{2} \frac{1}{x} dx$$

mediante el método del trapecio con error absoluto menor que 10^{-4} ?

$$n = 41$$

Fijamos $n \in \mathbb{N}$ y escribimos $h = \frac{b-a}{n}$.

Si f es de clase C^2 en [a,b] y M>0 es una constante que cumple $|f''(x)| \leq M \quad \forall x \in [a,b] \quad \text{entonces}$

$$\left| \int_a^b f(x) \, dx - \text{Trapecio}_{\mathbf{n}}(f) \right| \leq \frac{(b-a)M}{12} \cdot h^2$$

Ejemplo

i Qué número n de subintervalos necesitamos para aproximar

$$\int_{1}^{2} \frac{1}{x} dx$$

mediante el método del trapecio con error absoluto menor que 10^{-4} ?

- n = 41
- ► Trapecio₄₁(f) = 0.693184...

Fijamos $n \in \mathbb{N}$ y escribimos $h = \frac{b-a}{n}$.

Si f es de clase C^2 en [a, b] y M > 0 es una constante que cumple $|f''(x)| \le M$ $\forall x \in [a, b]$ entonces

$$\left| \int_a^b f(x) \, dx - \text{Trapecio}_{\mathbf{n}}(f) \right| \leq \frac{(b-a)M}{12} \cdot h^2$$

Ejemplo

i Qué número n de subintervalos necesitamos para aproximar

$$\int_{1}^{2} \frac{1}{x} dx$$

mediante el método del trapecio con error absoluto menor que 10^{-4} ?

- n = 41
- ightharpoonup Trapecio₄₁(f) = 0.693184...
- ightharpoonup Valor exacto = log(2) = 0.69314718055995...

Fijamos $n \in \mathbb{N}$ y escribimos $h = \frac{b-a}{n}$.

Si f es de clase C^2 en [a,b] y M>0 es una constante que cumple $|f''(x)| \leq M \quad \forall x \in [a,b] \quad \text{entonces}$

$$\left| \int_a^b f(x) \, dx - \text{Trapecio}_n(f) \right| \leq \frac{(b-a)M}{12} \cdot h^2$$

Ejemplo

i Qué número n de subintervalos necesitamos para aproximar

$$\int_0^1 \operatorname{sen}(x^2) \, dx$$

mediante el método del trapecio con error absoluto menor que 10⁻³ ?

Fijamos $n \in \mathbb{N}$ y escribimos $h = \frac{b-a}{n}$.

Si f es de clase C^2 en [a,b] y M>0 es una constante que cumple $|f''(x)| \leq M \quad \forall x \in [a,b] \quad \text{entonces}$

$$\left| \int_a^b f(x) \, dx - \operatorname{Trapecio}_{\mathbf{n}}(f) \right| \leq \frac{(b-a)M}{12} \cdot h^2$$

Ejemplo

¿ Qué número n de subintervalos necesitamos para aproximar

$$\int_0^1 \operatorname{sen}(x^2) \, dx$$

mediante el método del trapecio con error absoluto menor que 10⁻³ ?

$$n = 23$$

Fijamos $n \in \mathbb{N}$ y escribimos $h = \frac{b-a}{n}$.

Si f es de clase C^2 en [a,b] y M>0 es una constante que cumple $|f''(x)| \leq M$ $\forall x \in [a,b]$ entonces

$$\left| \int_a^b f(x) \, dx - \text{Trapecio}_{\mathbf{n}}(f) \right| \leq \frac{(b-a)M}{12} \cdot h^2$$

Ejemplo

i Qué número n de subintervalos necesitamos para aproximar

$$\int_0^1 \operatorname{sen}(x^2) \, dx$$

mediante el método del trapecio con error absoluto menor que 10^{-3} ?

- n = 23
- ightharpoonup Trapecio₂₃(f) = 0.3104...

MÉTODO DE SIMPSON

Interpolación cuadrática

Llamamos función interpoladora cuadrática a trozos de f en los nodos

$$a = x_0 < x_1 < \cdots < x_{2n} = b$$

- a la función $C:[a,b] o \mathbb{R}$ definida a trozos que
 - es cuadrática en cada intervalo $[x_{2k-2}, x_{2k}]$ y
 - cumple $C(x_i) = f(x_i)$ para cada $i = 0, 1, \dots, 2n$.

Interpolación cuadrática

Llamamos función interpoladora cuadrática a trozos de f en los nodos

$$a = x_0 < x_1 < \cdots < x_{2n} = b$$

- a la función $C:[a,b] o \mathbb{R}$ definida a trozos que
 - es cuadrática en cada intervalo $[x_{2k-2}, x_{2k}]$ y
 - cumple $C(x_i) = f(x_i)$ para cada $i = 0, 1, \dots, 2n$.

Método de Simpson - simple

Se usa la función interpoladora cuadrática a trozos en los nodos

$$x_0 = a,$$
 $x_1 = \frac{a+b}{2},$ $x_2 = b.$

$$\int_{a}^{b} f(x) dx \approx \operatorname{Simpson}_{1}(f) = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

Dado $n \in \mathbb{N}$, se usa la función interp. cuadrática a trozos en los 2n+1 nodos

$$x_j = a + jh$$
 con $j = 0, 1, \dots, 2n$ siendo $h = \frac{b-a}{2n}$.

$$\int_{a}^{b} f(x) dx \approx \operatorname{Simpson}_{n}(f) = \frac{b-a}{6n} \left(f(a) + 4 \sum_{k=1}^{n} f(x_{2k-1}) + 2 \sum_{k=1}^{n-1} f(x_{2k}) + f(b) \right)$$

Dado $n \in \mathbb{N}$, se usa la función interp. cuadrática a trozos en los 2n + 1 nodos

$$x_j = a + jh$$
 con $j = 0, 1, \dots, 2n$ siendo $h = \frac{b-a}{2n}$.

$$\int_{a}^{b} f(x) dx \approx \operatorname{Simpson}_{n}(f) = \frac{b-a}{6n} \left(f(a) + 4 \sum_{k=1}^{n} f(x_{2k-1}) + 2 \sum_{k=1}^{n-1} f(x_{2k}) + f(b) \right)$$

Dado $n \in \mathbb{N}$, se usa la función interp. cuadrática a trozos en los 2n + 1 nodos

$$x_j = a + jh$$
 con $j = 0, 1, \dots, 2n$ siendo $h = \frac{b-a}{2n}$.

$$\int_{a}^{b} f(x) dx \approx \operatorname{Simpson}_{n}(f) = \frac{b-a}{6n} \left(f(a) + 4 \sum_{k=1}^{n} f(x_{2k-1}) + 2 \sum_{k=1}^{n-1} f(x_{2k}) + f(b) \right)$$

Dado $n \in \mathbb{N}$, se usa la función interp. cuadrática a trozos en los 2n + 1 nodos

$$x_j = a + jh$$
 con $j = 0, 1, \dots, 2n$ siendo $h = \frac{b-a}{2n}$.

$$\int_{a}^{b} f(x) dx \approx \operatorname{Simpson}_{n}(f) = \frac{b-a}{6n} \left(f(a) + 4 \sum_{k=1}^{n} f(x_{2k-1}) + 2 \sum_{k=1}^{n-1} f(x_{2k}) + f(b) \right)$$

Dado $n \in \mathbb{N}$, se usa la función interp. cuadrática a trozos en los 2n+1 nodos

$$x_j = a + jh$$
 con $j = 0, 1, \dots, 2n$ siendo $h = \frac{b-a}{2n}$.

$$\int_{a}^{b} f(x) dx \approx \operatorname{Simpson}_{n}(f) = \frac{b-a}{6n} \left(f(a) + 4 \sum_{k=1}^{n} f(x_{2k-1}) + 2 \sum_{k=1}^{n-1} f(x_{2k}) + f(b) \right)$$

Dado $n \in \mathbb{N}$, se usa la función interp. cuadrática a trozos en los 2n+1 nodos

$$x_j = a + jh$$
 con $j = 0, 1, \dots, 2n$ siendo $h = \frac{b-a}{2n}$.

$$\int_{a}^{b} f(x) dx \approx \operatorname{Simpson}_{n}(f) = \frac{b-a}{6n} \left(f(a) + 4 \sum_{k=1}^{n} f(x_{2k-1}) + 2 \sum_{k=1}^{n-1} f(x_{2k}) + f(b) \right)$$

Dado $n \in \mathbb{N}$, se usa la función interp. cuadrática a trozos en los 2n+1 nodos

$$x_j = a + jh$$
 con $j = 0, 1, \dots, 2n$ siendo $h = \frac{b-a}{2n}$.

$$\int_{a}^{b} f(x) dx \approx \operatorname{Simpson}_{n}(f) = \frac{b-a}{6n} \left(f(a) + 4 \sum_{k=1}^{n} f(x_{2k-1}) + 2 \sum_{k=1}^{n-1} f(x_{2k}) + f(b) \right)$$

Dado $n \in \mathbb{N}$, se usa la función interp. cuadrática a trozos en los 2n + 1 nodos

$$x_j = a + jh$$
 con $j = 0, 1, \dots, 2n$ siendo $h = \frac{b-a}{2n}$.

$$\int_{a}^{b} f(x) dx \approx \operatorname{Simpson}_{n}(f) = \frac{b-a}{6n} \left(f(a) + 4 \sum_{k=1}^{n} f(x_{2k-1}) + 2 \sum_{k=1}^{n-1} f(x_{2k}) + f(b) \right)$$

Fórmula del método de Simpson

La aproximación de la integral

$$\int_a^b f(x) \, dx$$

que se obtiene mediante el método de Simpson con n parábolas es:

$$\operatorname{Simpson}_{\mathbf{n}}(f) = \frac{b-a}{6n} \Big(f(a) + 4 \sum_{k=1}^{n} f(x_{2k-1}) + 2 \sum_{k=1}^{n-1} f(x_{2k}) + f(b) \Big).$$

Fórmula del método de Simpson

La aproximación de la integral

$$\int_a^b f(x) \, dx$$

que se obtiene mediante el método de Simpson con n parábolas es:

$$\operatorname{Simpson}_{\mathbf{n}}(f) = \frac{b-a}{6n} \Big(f(a) + 4 \sum_{k=1}^{n} f(x_{2k-1}) + 2 \sum_{k=1}^{n-1} f(x_{2k}) + f(b) \Big).$$

Ejemplo

Si calculamos aproximadamente $\log(2) = \int_1^2 \frac{1}{x} dx$ mediante el método de Simpson con 2 y 4 parábolas, obtenemos

$$Simpson_{2}(f) = 0.69325...$$
 y $Simpson_{4}(f) = 0.69315...$

El valor "exacto" de log(2) es 0.69314718055995...

Observamos que la aproximación $\operatorname{Simpson}_2(f)$ (con 5 evaluaciones) ya es bastante mejor que la aproximación $\operatorname{Trapecio}_5(f)$ (con 6 evaluaciones).

COTA DEL ERROR en el método de Simpson

Fijamos $n \in \mathbb{N}$ y escribimos $h = \frac{b-a}{2n}$.

Si f es de clase \mathcal{C}^4 en [a,b] y M>0 es una constante tal que $|f^{(4)}(x)|\leq M$ para todo $x\in[a,b]$, entonces

$$\left| \int_a^b f(x) \, dx - \operatorname{Simpson}_{\mathbf{n}}(f) \right| \, \leq \, \frac{(b-a)M}{180} \cdot h^4$$

COTA DEL ERROR en el método de Simpson

Fijamos $n \in \mathbb{N}$ y escribimos $h = \frac{b-a}{2n}$.

Si f es de clase \mathcal{C}^4 en [a,b] y M>0 es una constante tal que $|f^{(4)}(x)|\leq M$ para todo $x \in [a, b]$, entonces

$$\left| \int_a^b f(x) \, dx - \operatorname{Simpson}_{\mathbf{n}}(f) \right| \, \leq \, \frac{(b-a)M}{180} \cdot h^4$$

Ejemplo: $f(x) = x \operatorname{sen} x$, a = 0, $b = \pi$

Representación de $\frac{1}{n^4}$ y

$$error(n) = \left| \int_a^b f(x) dx - \operatorname{Simpson}_{\mathbf{n}}(f) \right|$$

para n = 1, 2, ..., 100.

