1.4 The Matrix Equation Ax = b

McDonald Fall 2018, MATH 2210Q 1.4~&1.5 Slides

1.4 Homework: Read section and do the reading quiz. Start with practice problems, then do

• Hand in: 1, 3, 13, 17, 19, 22, 23, 25

 \bullet Extra Practice: 4, 7, 9, 11, 31

The definition below lets us rephrase some of the concepts from Section 1.3 by viewing linear combinations of vectors as the product of a matrix and a vector

Definition 1.4.1. If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and \mathbf{x} is in \mathbb{R}^n , then the **product of** A **and** \mathbf{x} , denoted by $A\mathbf{x}$, is the linear combination of the columns of A using the corresponding entries in \mathbf{x} as weights:

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n.$$

Remark 1.4.2. $A\mathbf{x}$ is only defined the number of columns of A equals the number of entries in \mathbf{x} .

1

Example 1.4.3. Find the following products:

(a)
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 9 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Example 1.4.4. Compute A**x**, where $A = \begin{bmatrix} 2 & 3 & 4 \\ -1 & 5 & -3 \\ 6 & -2 & 8 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Procedure 1.4.5 (Row Vector Rule). If $A\mathbf{x}$ is defined, then the *i*th entry in $A\mathbf{x}$ is the sum of the products of corresponding entries from row i of A and from the vector \mathbf{x} .

Example 1.4.6. Compute

(a)
$$\begin{bmatrix} 2 & -3 \\ 8 & 0 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Example 1.4.7. Write the system below as $A\mathbf{x} = \mathbf{b}$ for some A and \mathbf{b} .

$$x_1 + 2x_2 - x_3 = 4$$
$$-5x_2 + 3x_3 = 1$$

Definition 1.4.8. The equation $A\mathbf{x} = \mathbf{b}$ is called a matrix equation.

Theorem 1.4.9. If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and \mathbf{b} is in \mathbb{R}^m , then $A\mathbf{x} = \mathbf{b} \ (with \ \mathbf{x} \ in \ \mathbb{R}^n)$

has the same solutions as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

which has the same solutions as the system of linear equations with augmented matrix $\left[\begin{array}{cccc} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{array}\right].$

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$$

Corollary 1.4.10. The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Example 1.4.11. Let $A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ is $A\mathbf{x} = \mathbf{b}$ consistent for all b_1, b_2, b_3 ?

Theorem 1.4.12. Let A be an $m \times n$ matrix. Then the following statements are either all true, or all false.

- (a) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (b) Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- (c) The columns of A span \mathbb{R}^m .
- (d) A has a pivot position in every row.

Example 1.4.13. If
$$A = \begin{bmatrix} 2 & 0 & -2 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2 \\ 11 \\ 3 \end{bmatrix}$, for what \mathbf{x} is $A\mathbf{x} = \mathbf{b}$ consistent?

We end this section with some important properties of $A\mathbf{x}$, which we will use throughout the course.

Theorem 1.4.14. If A is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and c is a scalar:

- (a) $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v};$
- (b) $A(c\mathbf{u}) = c(A\mathbf{u})$.

1.5 Solutions Sets of Linear Systems

1.5 Homework: Read section and do the reading quiz. Start with practice problems, then do

• *Hand in:* 5, 11, 15, 19, 23, 30, 32

• Extra Practice: 2, 6, 18, 22, 27

In this section, we will use vector notation to give explicit and geometric descriptions of solution sets of linear systems. We begin by defining a special type of system.

Definition 1.5.1. A system of linear equations is said to be **homogeneous** if it can be written in the form $A\mathbf{x} = \mathbf{0}$, where A is an $m \times n$ matrix, and $\mathbf{0}$ is the zero vector in \mathbb{R}^m .

Remark 1.5.2. The equation $A\mathbf{x} = \mathbf{0}$ always has at least one solution, namely $\mathbf{x} = \mathbf{0}$, called the **trivial solution**. We will be interested in finding **non-trivial solutions**, where $\mathbf{x} \neq \mathbf{0}$.

Example 1.5.3. Determine if the following homogeneous system has a nontrivial solution, and describe the solution set.

$$3x_1 + 5x_2 - 4x_3 = 0$$

$$-3x_1 - 2x_2 + 4x_3 = 0$$

$$6x_1 + x_2 - 8x_3 = 0$$

Proposition 1.5.4. The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.

Example 1.5.5. Describe all solutions to the homogeneous system

$$10x_1 - 3x_2 - 2x_3 = 0.$$

Definition 1.5.6. The answers in 1.5.3 and 1.5.5 are **parametric vector equations**. Sometimes, to emphasize that the parameters vary over all real numbers, we write

$$\mathbf{x} = s\mathbf{u} + t\mathbf{v} \text{ for } s, t \in \mathbb{R}.$$

In both examples, we say that the solution is in **parametric vector form.**

Example 1.5.7. Describe all solutions of

$$3x_1 + 5x_2 - 4x_3 = 7$$

$$-3x_1 - 2x_2 + 4x_3 = -1$$

$$6x_1 + x_2 - 8x_3 = -4$$

Definition 1.5.8. We can think of vector addition as *translation*. Given \mathbf{p} and \mathbf{v} in \mathbb{R}^2 or \mathbb{R}^3 , the effect of adding \mathbf{p} to \mathbf{v} is to *move* v in a direction parallel to the line through \mathbf{p} and $\mathbf{0}$. We say that \mathbf{v} is **translated by** \mathbf{p} to $\mathbf{v} + \mathbf{p}$. If each point on a line L is translated by a vector \mathbf{p} , the result is a line parallel to L.

For $t \in \mathbb{R}$, we call $\mathbf{p} + t\mathbf{v}$ the equation of the line parallel to \mathbf{v} through \mathbf{p} .

Example 1.5.9. Use this observation to describe the relationships between the solutions to $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{x} = \mathbf{b}$ using the A and b from Examples 1.5.3 and 1.5.7.

Theorem 1.5.10. Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Procedure 1.5.11. To write a solution set in parametric vector form

- 1. Row reduce the augmented matrix to RREF
- 2. Express each basic variable in terms of any free variables
- 3. Write **x** as a vector whose entries depend on the free variables (if there are any)
- 4. Decompose \mathbf{x} into a linear combination of vectors using free variables as parameters

Example 1.5.12. Describe and compare the solution sets of $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$ if

$$A = \begin{bmatrix} 1 & 3 & -5 \\ 1 & 4 & -8 \\ -3 & -7 & 9 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 4 \\ 7 \\ -6 \end{bmatrix}.$$