Azzolini Riccardo 2020-12-03

# PDA — Computazioni e linguaggio accettato

#### 1 Descrizione istantanea

Dato un PDA  $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ , le informazioni che caratterizzano l'automa a un certo punto della computazione sono tre:

- lo stato dell'automa;
- la parte della stringa di input che non è ancora stata letta;
- il contenuto dello stack.

Formalmente, tali informazioni sono caratterizzate dalla **descrizione istantanea** (**ID**, Instantaneous Description) dell'automa P, che è una tripla  $(q, w, \gamma) \in Q \times \Sigma^* \times \Gamma^*$  in cui:

- w è l'input residuo;
- $\gamma$  è il contenuto dello stack.

## 2 Passo di computazione

Si consideri un PDA  $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ , supponendo che la sua descrizione istantanea sia attualmente  $(q, aw, X\beta)$ , con  $q \in Q$ ,  $a \in \Sigma_{\epsilon}$ ,  $w \in \Sigma^*$ ,  $X \in \Gamma$  e  $\beta \in \Gamma^*$ :

- l'automa si trova nello stato q;
- la stringa da leggere è aw, che in particolare inizia con il simbolo a (oppure si può porre  $a = \epsilon$ , quando l'automa deve eseguire una transizione spontanea, indipendente dai simboli della stringa in input);
- il contenuto dello stack è  $X\beta$ , dunque in particolare il simbolo in cima è X.

In base a q,  $a \in X$ , la funzione di transizione stabilisce i passi che l'automa può compiere, dando come risultato un insieme di coppie. Se una di queste coppie è  $(p, \alpha)$ , allora il passo di computazione di P rispetto alla scelta di tale coppia porta l'automa alla situazione caratterizzata dalla descrizione istantanea  $(p, w, \alpha\beta)$ :

- lo stato passa da q a p;
- il simbolo in input a viene consumato (se  $a \neq \epsilon$ , altrimenti  $\epsilon w = w$ ), quindi rimane solo la stringa w;
- lo stack viene modificato sostituendo X con  $\alpha$ .

Formalmente, un passo di computazione di P è definito come una relazione tra le descrizioni istantanee prima e dopo il passo: se  $(p, \alpha) \in \delta(q, a, X)$ , allora, per tutte le stringe  $w \in \Sigma^*$  e  $\beta \in \Gamma^*$ ,

$$(q, aw, X\beta) \vdash (p, w, \alpha\beta)$$

## 3 Computazione

Dato  $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ , una **computazione** di P è una sequenza (possibilmente di lunghezza 0) di passi di computazione di P. In generale, date due descrizioni istantanee I e J, si scrive  $I \stackrel{*}{\vdash} J$  se e solo se esiste una sequenza di ID  $K_1, K_2, \ldots, K_n$  (con  $n \ge 1$ ) tale che

- $I = K_1$ ,
- $J=K_n$ ,
- per ogni i = 1, 2, ..., n 1 si ha  $K_i \vdash K_{i+1}$ ,

cioè, complessivamente:

$$I = K_1 \vdash K_2 \vdash \cdots \vdash K_n = J$$

Come caso particolare, se n = 1, allora  $I = K_1$  e  $J = K_1$ , ovvero si ha una computazione I 
ightharpoonup J in zero passi se e solo se I = J, ed è quindi sempre vero che I 
ightharpoonup J.

#### 3.1 Esempi

Si consideri l'automa  $P_{ww^R}$  visto in precedenza, che riconosce il linguaggio dei palindromi di lunghezza pari su  $\{0,1\}$ :



(in questo diagramma sono state numerate le varie transizioni, per farvi riferimento nei seguenti esempi di computazione).

Si supponga di partire dalla descrizione istantanea  $(q_0, 0110, Z_0)$ . A prima vista, gli elementi rilevanti per la funzione di transizione potrebbero essere  $q_0$ , 0 e  $Z_0$ , ma siccome sono ammesse le  $\epsilon$ -mosse, c'è anche la possibilità di considerare invece  $q_0$ ,  $\epsilon$  e  $Z_0$  (cioè  $\epsilon$  invece di 0). Allora, le mosse possibili in questa situazione sono  $\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}$  e  $\delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}$ . Scegliendo la prima di queste due, corrispondente alla transizione (1) nel diagramma, si ottiene il passo di computazione:

$$(q_0, 0110, Z_0) \vdash (q_0, 110, 0Z_0)$$

Adesso, al secondo passo, si ha nuovamente una scelta, tra  $\delta(q_0, 1, 0) = \{(q_0, 1Z_0)\}$  e  $\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$ . Se questa volta si sceglie l' $\epsilon$ -mossa, ovvero la transizione (8), il passo compiuto è

$$(q_0, 110, 0Z_0) \vdash (q_1, 110, 0Z_0)$$

nel quale non viene consumato input e non viene modificato lo stack: cambia solo lo stato (da  $q_0$  a  $q_1$ ). Adesso, le transizioni possibili sono  $\delta(q_1,1,0)=\varnothing$  e  $\delta(q_1,\epsilon,0)=\varnothing$ , cioè nessuna, quindi la computazione è bloccata. Siccome la stringa in input non è stata consumata per intero, essa non è sicuramente accettata tramite questa computazione.

Una computazione alternativa è quella in cui al secondo passo si sceglie la mossa data da  $\delta(q_0, 1, 0) = \{(q_0, 1Z_0)\}$ , corrispondente alla transizione (5):

$$(q_0, 0110, Z_0) \vdash (q_0, 110, 0Z_0)$$
 (1)  
 $\vdash (q_0, 10, 10Z_0)$  (5)

Da qui, scegliendo opportunamente le transizioni, si può proseguire

$$\vdash (q_1, 10, 10Z_0) \qquad (9) 
\vdash (q_1, 0, 0Z_0) \qquad (11) 
\vdash (q_1, \epsilon, Z_0) \qquad (10) 
\vdash (q_2, \epsilon, Z_0) \qquad (12)$$

fino a giungere alla situazione caratterizzata dall'ID  $(q_2, \epsilon, Z_0)$ , in cui l'automa è nello stato finale  $q_2$  e ha consumato tutto l'input: come si vedrà in seguito, questa sarà la condizione di accettazione.

## 4 Configurazione iniziale

Dato un PDA  $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ , la **configurazione iniziale** di P su input  $w \in \Sigma^*$  è la descrizione istantanea  $(q_0, w, Z_0)$ . Intuitivamente, essa è l'ID da cui partono le computazioni dell'automa, nella quale:

- l'automa si trova nel suo stato iniziale  $q_0$ ;
- la stringa in input è w;
- lo stack contiene solo il simbolo iniziale di stack  $Z_0$ .

### 5 Accettazione

A differenza degli automi a stati finiti, nel caso di un PDA  $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$  si hanno due possibili nozioni di accettazione:

• Il linguaggio accettato da P per stato finale è

$$L(P) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \stackrel{*}{\vdash} (p, \epsilon, \alpha) \text{ con } p \in F \}$$

cioè l'insieme delle stringhe sull'alfabeto di input per le quali esiste una computazione che, partendo dalla configurazione iniziale, arriva in un'ID  $(p, \epsilon, \alpha)$  nella quale tutto l'input è stato consumato (l'input "rimanente" è  $\epsilon$ ) e lo stato p è finale.

• Il linguaggio accettato da P per stack vuoto è

$$N(P) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \stackrel{*}{\vdash} (p, \epsilon, \epsilon) \}$$

cioè l'insieme delle stringhe sull'alfabeto di input per le quali esiste una computazione che, partendo dalla configurazione iniziale, arriva in un'ID  $(p, \epsilon, \epsilon)$  nella quale tutto l'input è stato consumato e lo stack è vuoto (sia l'input rimanente che lo stack sono  $\epsilon$ ). Non è richiesto che lo stato p sia finale.

Osservazione: Nel caso di accettazione per stack vuoto, l'insieme F degli stati finali è irrilevante, quindi potrebbe essere omesso dalla definizione di PDA, indicando solo i primi sei elementi:  $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0 \rangle$ .

Sebbene la nozione di accettazione per stato finale possa risultare in qualche modo più naturale, in quanto analoga all'accettazione negli automi a stati finiti, quella per stack vuoto renderà più facile la dimostrazione dell'equivalenza tra PDA e CFG.

In generale, dato un qualche PDA P, le due nozioni di accettazione danno luogo a linguaggi diversi,  $L(P) \neq N(P)$ , ma esse sono equivalenti in un altro senso:

- per ogni PDA P, esiste un PDA P' tale che N(P') = L(P);
- per ogni PDA P, esiste un PDA P' tale che L(P') = N(P).

## 6 Proprietà delle computazioni

Dati  $q, p \in Q, x, y \in \Sigma^*$  e  $\alpha, \beta \in \Gamma^*$ , valgono le seguenti proprietà (che non verranno dimostrate, ma lo si farebbe per induzione sulla lunghezza delle computazioni):

- (P1) Se  $(q, x, \alpha) \stackrel{*}{\vdash} (p, y, \beta)$  allora, per ogni  $w \in \Sigma^*$ ,  $(q, xw, \alpha) \stackrel{*}{\vdash} (p, yw, \beta)$ .
- (P2) Se  $(q, x, \alpha) \stackrel{*}{\vdash} (p, y, \beta)$  allora, per ogni  $\gamma \in \Gamma^*$ ,  $(q, x, \alpha\gamma) \stackrel{*}{\vdash} (p, y, \beta\gamma)$ .
- (P3) Per ogni  $w \in \Sigma^*$ , se  $(q, xw, \alpha) \stackrel{*}{\vdash} (p, yw, \beta)$  allora  $(q, x, \alpha) \stackrel{*}{\vdash} (p, y, \beta)$ .

Le proprietà (P1) e (P3) affermano in sostanza che le computazioni di un PDA dipendono soltanto dalla parte di input che è stata letta, mentre la (P2) afferma, analogamente, che la computazione dipende solo dalla parte di stack che è stata letta.

<sup>&</sup>lt;sup>1</sup>Esistono particolari PDA per cui L(P) = N(P), ma questo non vale in generale.