

10/501841
DT12 Rec'd PCT/PTO 14 JUL 2004

SEQUENCE LISTING

<110> Gaiger, Alexander
Algaté, Paul A.
Mannion, Jane
Clapper, Jonathan David
Wang, Aijun
Ordonez, Nadia
Carter, Lauren
McNeill, Patricia Dianne
Corixa Corporation

<120> Compositions and Methods for the Detection, Diagnosis
and Therapy of Hematological Malignancies

<130> 014058-014402PC

<140> WO PCT/US03/02353
<141> 2003-01-22

<150> US 10/057,475
<151> 2002-01-22

<160> 124

<170> PatentIn Ver. 2.1

<210> 1
<211> 2672
<212> DNA
<213> Homo sapiens

<400> 1
cttccagaga gcaatatggc tggttccccca acatgcctca ccctcatcta tatcccccgg 60
cagctcacag ggtcagcagc ctctggaccc gtgaaagagc tggtcggttc cgttgggtgg 120
gccgtgactt tccccctgaa gtccaaagta aagcaagttg actctatttg ctggaccccttc 180
aacacaaccc ctcttgcac catacagcca gaagggggca ctatcatagt gacccaaat 240
cgtaataggg agagagtaga cttcccagat ggaggctact ccctgaagct cagcaaactg 300
aagaagaatg actcaggat ctactatgtg gggatataca gctcatcaact ccagcagccc 360
tccaccagg agtacgtgct gcatgtctac gggcacctgt caaaggctaa agtaccatg 420
ggtctcaga gcaataagaa tggcacctgt gtgaccaatc tgacatgtg catggAACAT 480
ggggaaaggagg atgtgattt tacotggaa gcccctggggc aagcagccaa tgagtcccat 540
aatgggtcca tcctcccat ctccctggaga tggggagaaa gtgatatgac ttcatctgc 600
gttgcagga accctgtcag cagaaacttc tcaagccccca tccttgccag gaagctctgt 660
gaaggtgctg ctgatgaccc agattcctcc atggcctcc tggcgtctcgt gttgggtggccc 720
ctcctgctca gtctctttgt actggggcta tttcttttgt ttctgaagag agagagacaa 780
gaagagtaca ttgaagagaa gaagagatgt gacatttgc gggaaactcc taacatatgc 840
ccccattctg gagagaacac agatgtacac acaatccctc acactaatag aacaatccctaa 900
aaggaaagatc cagcaaatac ggttactcc actgtggaaa taccggaaaa gatggAAAAT 960
ccccactcac tgctcacat gccagacaca ccaaggctat ttgcctatga gaatgttac 1020
tagacagcag tgcactcccc taagtctctg ctcaaaaaaaaaaa aaacaattct cggccaaag 1080
aaaacaatca gaagaattca ctgatTTGAC tagaaacatc aaggaagaat gaagaacgtt 1140
gacttttttc caggataaat tatctctgat gcttcttttag atttaagagt tcataattcc 1200
atccactgct gagaatctc ctcaaaacca gaaggTTAA tcacttcattc ccAAAAATGG 1260
gattgtgaat gtcagcaaac cataaaaaaa gtgcttagaa gtattcctat agaaatgtaa 1320
atgcaaggatc acacatatta atgacagcct gttgtattaa tgatggctcc aggtcagtgt 1380
ctggagtttc atccatccc agggcttggg tgtaaggatt ataccaagag tcttgcctacc 1440
aggaggccaa gaagacaaaa acagacagac aagtccagca gaagcagatg cacctgacaa 1500
aaatggatgt attaattggc tctataaact atgtgcccag cactatgtg agcttacact 1560
aattggtcag acgtgctgatc tgccctcatg aaattggctc caaatgaatg aactacttcc 1620
atgagcagtt gtagcaggcc tgaccacaga ttcccagagg gccaggtgtg gatccacagg 1680

acttgaaggt caaaatccac aaagatgaag aatcagggtta gctgaccatg tttggcagat 1740
 actataatgg agacacagaa gtgtgcattgg cccaaggaca aggacctcca gccaggcttc 1800
 atttatgcac ttgtgctgca aaagaaaaagt ctaggttta aggctgtgcc agaacccatc 1860
 ccaataaaga gaccgagtc gaagtcacat tgtaaatcta gtgttaggaga cttggagtca 1920
 ggcagtgaga ctggtggggc acggggggca gtgggtactt gtaaaacctt aaagatggtt 1980
 aattcattca atagatattt attaagaacc tatgcggccc ggcattgtgg ctcacacctg 2040
 taatcccagc actttggag gccaagggtgg gtgggtcatc tgaggtcagg agttcaagac 2100
 cagcctggcc aacatggta aaccccatct ctactaaaga tacaaaaatt tgctgagcgt 2160
 ggtggtgtgc acctgttaatc ccagctactc gagaggccaa ggcattgagaa tcgcttgaac 2220
 ctgggagggtg gaggttgcag tgagctgaga tggcaccact gcactccgcg ctaggcaacg 2280
 agagcaaaac tccaatacaa acaaacaac aaacacctgt gctaggtcag tctggcacgt 2340
 aagatgaaca tccctaccaa cacagagctc accatctt atacttaatg gaaaaacatg 2400
 gggaaaggga aaggggaaatg gctgctttt atatgttccc tgacacatat cttgaatgga 2460
 gacccctca ccaagtatg aaagtgttga aaaacttaat aacaaatgt tgttggcaa 2520
 gaatgggatt gaggattatc ttctctcaga aaggcattgt gaaggaattg agccagatct 2580
 ctctccctac tgcaaaaacc tattgttagta aaaaagtctt ctttactatc ttaataaaaac 2640
 agatattgtg agattcaaaa aaaaaaaaaaa aa 2672

<210> 2
 <211> 335
 <212> PRT
 <213> Homo sapiens

<400> 2			
Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp Gln			
1	5	10	15
Leu Thr Gly Ser Ala Ala Ser Gly Pro Val Lys Glu Leu Val Gly Ser			
20	25	30	
Val Gly Gly Ala Val Thr Phe Pro Leu Lys Ser Lys Val Lys Gln Val			
35	40	45	
Asp Ser Ile Val Trp Thr Phe Asn Thr Thr Pro Leu Val Thr Ile Gln			
50	55	60	
Pro Glu Gly Gly Thr Ile Ile Val Thr Gln Asn Arg Asn Arg Glu Arg			
65	70	75	80
Val Asp Phe Pro Asp Gly Gly Tyr Ser Leu Lys Leu Ser Lys Leu Lys			
85	90	95	
Lys Asn Asp Ser Gly Ile Tyr Tyr Val Gly Ile Tyr Ser Ser Ser Leu			
100	105	110	
Gln Gln Pro Ser Thr Gln Glu Tyr Val Leu His Val Tyr Glu His Leu			
115	120	125	
Ser Lys Pro Lys Val Thr Met Gly Leu Gln Ser Asn Lys Asn Gly Thr			
130	135	140	
Cys Val Thr Asn Leu Thr Cys Cys Met Glu His Gly Glu Glu Asp Val			
145	150	155	160
Ile Tyr Thr Trp Lys Ala Leu Gly Gln Ala Ala Asn Glu Ser His Asn			
165	170	175	
Gly Ser Ile Leu Pro Ile Ser Trp Arg Trp Gly Glu Ser Asp Met Thr			
180	185	190	

Phe Ile Cys Val Ala Arg Asn Pro Val Ser Arg Asn Phe Ser Ser Pro
 195 200 205
 Ile Leu Ala Arg Lys Leu Cys Glu Gly Ala Ala Asp Asp Pro Asp Ser
 210 215 220
 Ser Met Val Leu Leu Cys Leu Leu Leu Val Pro Leu Leu Leu Ser Leu
 225 230 235 240
 Phe Val Leu Gly Leu Phe Leu Trp Phe Leu Lys Arg Glu Arg Gln Glu
 245 250 255
 Glu Tyr Ile Glu Glu Lys Lys Arg Val Asp Ile Cys Arg Glu Thr Pro
 260 265 270
 Asn Ile Cys Pro His Ser Gly Glu Asn Thr Glu Tyr Asp Thr Ile Pro
 275 280 285
 His Thr Asn Arg Thr Ile Leu Lys Glu Asp Pro Ala Asn Thr Val Tyr
 290 295 300
 Ser Thr Val Glu Ile Pro Lys Lys Met Glu Asn Pro His Ser Leu Leu
 305 310 315 320
 Thr Met Pro Asp Thr Pro Arg Leu Phe Ala Tyr Glu Asn Val Ile
 325 330 335

<210> 3
 <211> 834
 <212> DNA
 <213> Homo sapiens

<400> 3
 ttgttaagata ttacttgc ttccaggctg ttctttctgt agctcccttg ttttcttttt 60
 gtgatcatgt tgcagatggc tggcgagtgc tcccaaattg aatattttga cagtttgg 120
 catgcttgca taccttgca acttcgtatgt tcttctaata ctccctcctct aacatgtcag 180
 cgttattgtat atgcaagtgt gaccattca gtgaaaggaa cgaatgcgtat tctctggacc 240
 tgtttggac tgagcttaat aatttctttg gcagtttgc tgctaatgtt tttgctaagg 300
 aagataagct ctgaaccatt aaaggacgag tttaaaaaca caggatcagg tctcctggc 360
 atggcttaaca ttgacctgga aaagagcagg actgggtatg aaattattct tccgagaggc 420
 ctcgagtaca cggtgtgaaga atgcacctgt gaagactgca tcaagagcaa accgaaggc 480
 gactctgacc attgctttcc actcccagct atggagaaag ggcacaccat tcttgcacc 540
 acgaaaacga atgactattg caagacgctg ccagctgtt tgagtgtac ggagatagag 600
 aaatcaattt ctgcttaggtt attaaccatt tcgactcgag cagtgcact taaaaatct 660
 tttgtcagaa tagatgtatgt gtcagatctc ttttaggtga ctgtatttt cagttgccga 720
 tacagctttt tgcctctaa ctgtggaaac tcttatgtt agatatattt ctcttaggtt 780
 ctgttggag cttaatggta gaaacctctt tggttcttat gattaaagtc tttt 834

<210> 4
 <211> 184
 <212> PRT
 <213> Homo sapiens

<400> 4
 Met Leu Gln Met Ala Gly Gln Cys Ser Gln Asn Glu Tyr Phe Asp Ser
 1 5 10 15
 Leu Leu His Ala Cys Ile Pro Cys Gln Leu Arg Cys Ser Ser Asn Thr
 20 25 30

<210> 5
<211> 1339
<212> DNA
<213> Homo sapiens

<210> 6
<211> 390
<212> PRT
<213> Homo sapiens

<400> 6
Met Asp Phe Trp Leu Trp Pro Leu Tyr Phe Leu Pro Val Ser Gly Ala
1 5 10 15

Leu Arg Ile Leu Pro Glu Val Lys Val Glu Gly Glu Leu Gly Gly Ser
20 25 30

Val Thr Ile Lys Cys Pro Leu Pro Glu Met His Val Arg Ile Tyr Leu
35 40 45

Cys Arg Glu Met Ala Gly Ser Gly Thr Cys Gly Thr Val Val Ser Thr
50 55 60

Thr Asn Phe Ile Lys Ala Glu Tyr Lys Gly Arg Val Thr Leu Lys Gln
65 70 75 80

Tyr Pro Arg Lys Asn Leu Phe Leu Val Glu Val Thr Gln Leu Thr Glu
85 90 95

Ser Asp Ser Gly Val Tyr Ala Cys Gly Ala Gly Met Asn Thr Asp Arg
100 105 110

Gly Lys Thr Gln Lys Val Thr Leu Asn Val His Ser Glu Tyr Glu Pro
115 120 125

Ser Trp Glu Glu Gln Pro Met Pro Glu Thr Pro Lys Trp Phe His Leu
130 135 140

Pro Tyr Leu Phe Gln Met Pro Ala Tyr Ala Ser Ser Ser Lys Phe Val
145 150 155 160

Thr Arg Val Thr Thr Pro Ala Gln Arg Gly Lys Val Pro Pro Val His
165 170 175

His Ser Ser Pro Thr Thr Gln Ile Thr His Arg Pro Arg Val Ser Arg
180 185 190

Ala Ser Ser Val Ala Gly Asp Lys Pro Arg Thr Phe Leu Pro Ser Thr
195 200 205

Thr Ala Ser Lys Ile Ser Ala Leu Glu Gly Leu Leu Lys Pro Gln Thr
210 215 220

Pro Ser Tyr Asn His His Thr Arg Leu His Arg Gln Arg Ala Leu Asp
225 230 235 240

Tyr Gly Ser Gln Ser Gly Arg Glu Gly Gln Gly Phe His Ile Leu Ile
245 250 255

Pro Thr Ile Leu Gly Leu Phe Leu Leu Ala Leu Leu Gly Leu Val Val
260 265 270

Lys Arg Ala Val Glu Arg Arg Lys Ala Leu Ser Arg Arg Ala Arg Arg
275 280 285

Leu Ala Val Arg Met Arg Ala Leu Glu Ser Ser Gln Arg Pro Arg Gly
 290 295 300
 Ser Pro Arg Pro Arg Ser Gln Asn Asn Ile Tyr Ser Ala Cys Pro Arg
 305 310 315 320
 Arg Ala Arg Gly Ala Asp Ala Ala Gly Thr Gly Glu Ala Pro Val Pro
 325 330 335
 Gly Pro Gly Ala Pro Leu Pro Pro Ala Pro Leu Gln Val Ser Glu Ser
 340 345 350
 Pro Trp Leu His Ala Pro Ser Leu Lys Thr Ser Cys Glu Tyr Val Ser
 355 360 365
 Leu Tyr His Gln Pro Ala Ala Met Met Glu Asp Ser Asp Ser Asp Asp
 370 375 380
 Tyr Ile Asn Val Pro Ala
 385 390

<210> 7
<211> 2007
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Ly1452 open
reading frame His tag fusion

<400> 7
atgcagcata accaccatca ccacgtgtca caatctacag tcaggcagga ttctccctgtg 60
gagccctggg aagggtacag cgatcactt ggcattattt atgggtcgcc cagactcctg 120
aacactgacc atccctcattt ccaatttagac atcaggctca tgagggcaca agctgtctgg 180
attaaccccc aggtatgtca gcaacagccg caggacttgc aatctcagggt gcccggcaca 240
ggaaacagtg ggacccattt tgtgacagat gtcgtcttc cttcaggccc ttcacccctcg 300
tgccctgggg actccctggc agagacaacg ttgtctgagg ataccacaga ctccgttggc 360
agcgcttctc cccatggctc gagtgaaaag agtagcact tctctctgtc ctcaacagag 420
gtacacatgg tccgcccagg atactctcat cgggtgtctc tgcccaacaag ccctgggatt 480
ttggccacact cccatatacc tgagactgac agtgcctttt ttgagccctc ccatctgaca 540
tctgctgctg atgaagggtgc tggtcaagtc agtagaagaa ccatttcttc gaattccctc 600
tcaccagagg tatttgtgtc gcctgttgc gttagaaaaagg aaaatgcaca ctttatgtt 660
gcagatatga ttatatacgc aatggagaaa atgaagtgtc acattcttag tcaacagcag 720
acagagagct ggagtaaaga agtcagtggg ttacttggga gtgatcagcc tgactctgaa 780
atgacttttgc ataccaacat aaagcaagag tctgggtctt ctacttcttc atacagtggc 840
tatgaagggt gtgtctgtt acaggtcagc ccagtgcactg aaacacgtac ttaccatgt 900
gtgaaagaga ttgcaaattt cgtatgttgc gaattttgtt ttttagagct tggagatttt 960
aatgatatac cagaaacctg tagctgttcc tgcagctcct ctaagagtgt cacttatgag 1020
ccagacttca attctgcaga actattagcc aaagagctgt accgcgttgc ccagaagtgc 1080
tggatactgt cagtagttaa ttctcagctg gcaggttccc tgagtgcagc tggctcgata 1140
gtcgtaaatg aagagtgtgt ccgaaaaagac tttgaatcca gtatgaatgt agtacaggaa 1200
attaaattta agtcttaggt cagagggact gaagactggg ctccctcttag atttcaaattc 1260
atatattaata ttcatccacc actcaagagg gaccttgttgg tggcagccca gaatttttc 1320
tgtgccggct gtggaactcc agtagagcct aagtttgta agcggctccg gtactgcgaa 1380
taccttaggaa agtatttctg tgactgtgc cactcatatg cagagtcgtg catccctgccc 1440
cgaatcttgc tgatgtggg cttcaagaag tactacgtca gcaatttctc caaacagctg 1500
ctcgacacgca tatggcacca gccattttc aatttgcata gcatggcca aagcctgtat 1560
gcgaaagcca aggagctgga cagagtgaag gaaattcagg agcagctttt ccatatcaag 1620
aagctgttgc agacctgttag gtttgcatac agtgcattaa aggagttcga gcaggtgccc 1680
ggacacttgc ctgtatqagct ccacctgttc tcccttgagg acctggtcag gatcaagaaa 1740

gggctgctgg cacccttact caaggacatt ctgaaagctt cccttcacat tgtggctggc 1800
tgtgagctgt gtcaaggaaa gggtttatt tgtgaatttt gccagaatac gactgtcatc 1860
ttcccatttc agacagcaac atgtagaaga tgttcagcgt gcagggcttg cttcacaaaa 1920
cagtgcctcc agtcctccga tgccccccgg tgtgcgagga tcacagcgag gagaaaactt 1980
ctggaaagtg tggcctctgc agcaaca 2007

<210> 8
<211> 669
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Ly1452 open
reading frame His tag fusion

<400> 8
Met Gln His His His His His Val Ser Gln Ser Thr Val Arg Gln
1 5 10 15

Asp Ser Pro Val Glu Pro Trp Glu Gly Ile Ser Asp His Ser Gly Ile
20 25 30

Ile Asp Gly Ser Pro Arg Leu Leu Asn Thr Asp His Pro Pro Cys Gln
35 40 45

Leu Asp Ile Arg Leu Met Arg His Lys Ala Val Trp Ile Asn Pro Gln
50 55 60

Asp Val Gln Gln Gln Pro Gln Asp Leu Gln Ser Gln Val Pro Ala Ala
65 70 75 80

Gly Asn Ser Gly Thr His Phe Val Thr Asp Ala Ala Ser Pro Ser Gly
85 90 95

Pro Ser Pro Ser Cys Leu Gly Asp Ser Leu Ala Glu Thr Thr Leu Ser
100 105 110

Glu Asp Thr Thr Asp Ser Val Gly Ser Ala Ser Pro His Gly Ser Ser
115 120 125

Glu Lys Ser Ser Ser Phe Ser Leu Ser Ser Thr Glu Val His Met Val
130 135 140

Arg Pro Gly Tyr Ser His Arg Val Ser Leu Pro Thr Ser Pro Gly Ile
145 150 155 160

Leu Ala Thr Ser Pro Tyr Pro Glu Thr Asp Ser Ala Phe Phe Glu Pro
165 170 175

Ser His Leu Thr Ser Ala Ala Asp Glu Gly Ala Val Gln Val Ser Arg
180 185 190

Arg Thr Ile Ser Ser Asn Ser Phe Ser Pro Glu Val Phe Val Leu Pro
195 200 205

Val Asp Val Glu Lys Glu Asn Ala His Phe Tyr Val Ala Asp Met Ile
210 215 220

Ile Ser Ala Met Glu Lys Met Lys Cys Asn Ile Leu Ser Gln Gln
225 230 235 240

Thr Glu Ser Trp Ser Lys Glu Val Ser Gly Leu Leu Gly Ser Asp Gln
 245 250 255

 Pro Asp Ser Glu Met Thr Phe Asp Thr Asn Ile Lys Gln Glu Ser Gly
 260 265 270

 Ser Ser Thr Ser Ser Tyr Ser Gly Tyr Glu Gly Cys Ala Val Leu Gln
 275 280 285

 Val Ser Pro Val Thr Glu Thr Arg Thr Tyr His Asp Val Lys Glu Ile
 290 295 300

 Cys Lys Cys Asp Val Asp Glu Phe Val Ile Leu Glu Leu Gly Asp Phe
 305 310 315 320

 Asn Asp Ile Thr Glu Thr Cys Ser Cys Ser Cys Ser Ser Lys Ser
 325 330 335

 Val Thr Tyr Glu Pro Asp Phe Asn Ser Ala Glu Leu Leu Ala Lys Glu
 340 345 350

 Leu Tyr Arg Val Phe Gln Lys Cys Trp Ile Leu Ser Val Val Asn Ser
 355 360 365

 Gln Leu Ala Gly Ser Leu Ser Ala Ala Gly Ser Ile Val Val Asn Glu
 370 375 380

 Glu Cys Val Arg Lys Asp Phe Glu Ser Ser Met Asn Val Val Gln Glu
 385 390 395 400

 Ile Lys Phe Lys Ser Arg Ile Arg Gly Thr Glu Asp Trp Ala Pro Pro
 405 410 415

 Arg Phe Gln Ile Ile Phe Asn Ile His Pro Pro Leu Lys Arg Asp Leu
 420 425 430

 Val Val Ala Ala Gln Asn Phe Phe Cys Ala Gly Cys Gly Thr Pro Val
 435 440 445

 Glu Pro Lys Phe Val Lys Arg Leu Arg Tyr Cys Glu Tyr Leu Gly Lys
 450 455 460

 Tyr Phe Cys Asp Cys Cys His Ser Tyr Ala Glu Ser Cys Ile Pro Ala
 465 470 475 480

 Arg Ile Leu Met Met Trp Asp Phe Lys Lys Tyr Tyr Val Ser Asn Phe
 485 490 495

 Ser Lys Gln Leu Leu Asp Ser Ile Trp His Gln Pro Ile Phe Asn Leu
 500 505 510

 Leu Ser Ile Gly Gln Ser Leu Tyr Ala Lys Ala Lys Glu Leu Asp Arg
 515 520 525

 Val Lys Glu Ile Gln Glu Gln Leu Phe His Ile Lys Lys Leu Leu Lys
 530 535 540

 Thr Cys Arg Phe Ala Asn Ser Ala Leu Lys Glu Phe Glu Gln Val Pro
 545 550 555 560

Gly His Leu Thr Asp Glu Leu His Leu Phe Ser Leu Glu Asp Leu Val
 565 570 575
 Arg Ile Lys Lys Gly Leu Leu Ala Pro Leu Leu Lys Asp Ile Leu Lys
 580 585 590
 Ala Ser Leu Ala His Val Ala Gly Cys Glu Leu Cys Gln Gly Lys Gly
 595 600 605
 Phe Ile Cys Glu Phe Cys Gln Asn Thr Thr Val Ile Phe Pro Phe Gln
 610 615 620
 Thr Ala Thr Cys Arg Arg Cys Ser Ala Cys Arg Ala Cys Phe His Lys
 625 630 635 640
 Gln Cys Phe Gln Ser Ser Glu Cys Pro Arg Cys Ala Arg Ile Thr Ala
 645 650 655
 Arg Arg Lys Leu Leu Glu Ser Val Ala Ser Ala Ala Thr
 660 665

<210> 9
 <211> 3604
 <212> DNA
 <213> Homo sapiens

<400> 9
 gggagcctat agggttcaat aacttgcagt gtgggtgggg cttatggatg ctggatgaag 60
 ataagtgagg gaggtttaca gggacagcat catgtcaggc cttgagggca agaatagctc 120
 tccagacccc cagctggcca tgtggtgagt tcagggccca aatcaagttag taccagcaat 180
 cagggaaactc ctatctgtt tgaatggatt cacaccagcc acaagcctgg aaagatggtg 240
 tcacaatcta cagtcaggca ggattctctt gtggagccct gggaaaggat cagcgatcac 300
 tctggcatta ttgatggttc gccagactc ctgaacactg accatcctcc ttgccaattta 360
 gacatcaggc tcatgaggca caaagctgtc tggattaacc cccaggatgt gcagcaacag 420
 ccgcaggact tgcaatctca ggtgccagca gcagggaaaca gtgggaccca ttttgtgaca 480
 gatgtgcct ctccctcagg cccttcaccc tcgtgcctcg gggactccct ggcagagaca 540
 acgttgtctg aggataccac agactccgtt ggcagcgctt ctccccatgg ctcgagtgaa 600
 aagagtagca gtttctctt gtcctcaaca gaggtacaca tggccggccc aggatactct 660
 catcgggtgt ctctgcccac aagccctggg attttgccca cctcccccata tcctgagact 720
 gacagtgcctt ttttgagcc ttcccatctg acatctgcgt ctgtatggg tgctgttcaa 780
 gtcagtagaa gaaccatttc ttogaattcc ttctcaccag aggtattttgt gtcgcctgtt 840
 gatgtagaaa aggaaaatgc ccacttttat gttgcagata tgattatatc agcaatggag 900
 aaaatgaagt gtaacattct gagtcaacag cagacagaga gctggagtaa agaagtcagt 960
 gggttacttg ggagtgatca gcctgactct gaaatgactt ttgatcacaa cataaagcaa 1020
 gagtctgggt cttctacttc ttcatacagt ggctatgaag gttgtgctgt gttacaggtc 1080
 agcccagtga ctgaaacacg tacttaccat gatgtgaaag agatttgcaa atgcgatgtt 1140
 gatgaatttg ttatttaga gcttggagat ttatgtata tcacagaaac ctgtagctgt 1200
 tcctgcagct cctctaagag tgcacttat gagccagact tcaattctgc agaacttata 1260
 gccaaagagc tgtaccgcgt gttccagaag tgctggatac tgcgtatgt taattctcag 1320
 ctggcagggtt ccctgagtc agctggctcg atagtcgtaa atgaagagtg tgcggaaaa 1380
 gactttgaat ccagtatgaa tgtgtacag gaaattaaat ttaatgtata gatcagaggg 1440
 actgaagact gggctcctcc tagatttcaa atcatattta atattcatcc accactcaag 1500
 agggaccttg tggtggcagc ccagaatttt ttctgtgcgg gctgtgaaac tccagtagag 1560
 cctaaatgggt tgaagcggtt ccggtaactgc gaataacctg ggaagtattt ctgtgactgc 1620
 tgccactcat atgcagatgc gtgcattccccc gcccgaatcc tgatgtatgt ggacttcaag 1680
 aagtactacg tcagcaattt ctccaaacacg ctgcgtcgaca gcatatggca ccagccatt 1740
 ttcaatttgc tgagcatcg ccggtaactgc tatgcgaaag ccaaggagct ggacagagtg 1800
 aaggaaattc aggagcagct cttccatatac aagaagctgt tgaagacctg taggtttgct 1860
 aacagtgcattaaaggagtt cgagcaggtt ccgggacact tgactgtatgt gctccaccc 1920
 ttctcccttg aggacctggc caggatcaag aaagggtgc tggcaccctt actcaaggac 1980

attctgaaag cttcccttgc acatgtggct ggctgtgagc ttgtcaagg aaaggcctt 2040
 atttgtgaat tttgccagaa tacgactgtc atcttccat ttcagacagc aacatgtaga 2100
 agatgttcag cgtgcaggc ttgcttcac aaacagtgc tccagtcctc cgagtgc(cc 2160
 cggtgtgcga gatatcacagc gaggagaaaa cttctgaaa gtgtggcctc tgcagcaaca 2220
 ttagtgc(cct gagaactgtg aaaaagactg ttcaacatgc ctatgataa caccgatttg 2280
 tgtctattat tgggtacatt gtttagata ttgggtattg tatattaagg aaaaagatgg 2340
 tctatattct cttaatttgcata tacttaat gttcaaaag aatgcagatt ctgtgtttaa 2400
 gcacaggcgt gatagttgtg gtttggctt caaatgtct gtttggctg ctattggttt 2460
 tttaaagagg tttttatac ttttgtattt gaataggat gtttcaactga tgctgagcca 2520
 gtttgtatgt gtgtcatat atgtgaactg taactgacaa gatgaattac tcagtttctc 2580
 tttctctaaa gtttggcttga tgaaactggc tggcccttc agtgaacaaa aatatgaccc 2640
 caaatctgtt tgctctggct tttatttctt caggaagcag acttccactt aaatgccatt 2700
 ttgtgattgt gtcaatcata cacattttat ttacttcaga gtttgaataag agagtacaca 2760
 tttctctgc agatttattt catgatgagt ttgagttgct tagcaggcg tgggtccc 2820
 gttgaagtgc agtttgaagc aactgcttct agatggcact ctttcaggtg gcacaaattg 2880
 aacctgtatt tggcatctct gttccacaca ctgcaatgtc aaggatgca gaagttagta 2940
 gaattccatc cctgccctg aggatctgc tttaacagat gtaaaactga acataaggta 3000
 tttcagatt taaacgaact gggggaaata atgaacagtg tgattctagt aataacatta 3060
 aaatcataga cattgactaa taaggttaaa tgaatcacaa aacctttatg aatttctttt 3120
 ttctaatagt tcttatatgt tttctgaaa catgtgagcc tattctttt tcttctactt 3180
 tctatatact ttctccact tgagaaaggg gccttgaggc tgggtccctt catggtatac 3240
 cttagactg aacggtttgc aacctaggc ttggcatta cattccctgg gattcacatg 3300
 ccctaactaa acctacctt atttctcag acagcacagg caggcaataa agcgtcacag 3360
 attgtccctt aaccccatcc agccatgtgt atgagttgtt ttattcaat gggatagttac 3420
 tgagcacatg aaagaaatga atgacttctg tcaatctctt ttcatcagt ttctcattc 3480
 tgtcaattgt tttctcatcc gcagtgccctc tgccagaact gtgctcacat ccattattha 3540
 agccagatct ttcttaagta ttatagaagt gtagaggc ac atagaataaa taaaaccaga 3600
 ctcc 3604

<210> 10
 <211> 662
 <212> PRT
 <213> Homo sapiens

<400> 10
 Met Val Ser Gln Ser Thr Val Arg Gln Asp Ser Pro Val Glu Pro Trp
 1 5 10 15

Glu Gly Ile Ser Asp His Ser Gly Ile Ile Asp Gly Ser Pro Arg Leu
 20 25 30

Leu Asn Thr Asp His Pro Pro Cys Gln Leu Asp Ile Arg Leu Met Arg
 35 40 45

His Lys Ala Val Trp Ile Asn Pro Gln Asp Val Gln Gln Gln Pro Gln
 50 55 60

Asp Leu Gln Ser Gln Val Pro Ala Ala Gly Asn Ser Gly Thr His Phe
 65 70 75 80

Val Thr Asp Ala Ala Ser Pro Ser Gly Pro Ser Pro Ser Cys Leu Gly
 85 90 95

Asp Ser Leu Ala Glu Thr Thr Leu Ser Glu Asp Thr Thr Asp Ser Val
 100 105 110

Gly Ser Ala Ser Pro His Gly Ser Ser Glu Lys Ser Ser Ser Phe Ser
 115 120 125

Leu Ser Ser Thr Glu Val His Met Val Arg Pro Gly Tyr Ser His Arg
 130 135 140
 Val Ser Leu Pro Thr Ser Pro Gly Ile Leu Ala Thr Ser Pro Tyr Pro
 145 150 155 160
 Glu Thr Asp Ser Ala Phe Phe Glu Pro Ser His Leu Thr Ser Ala Ala
 165 170 175
 Asp Glu Gly Ala Val Gln Val Ser Arg Arg Thr Ile Ser Ser Asn Ser
 180 185 190
 Phe Ser Pro Glu Val Phe Val Leu Pro Val Asp Val Glu Lys Glu Asn
 195 200 205
 Ala His Phe Tyr Val Ala Asp Met Ile Ile Ser Ala Met Glu Lys Met
 210 215 220
 Lys Cys Asn Ile Leu Ser Gln Gln Gln Thr Glu Ser Trp Ser Lys Glu
 225 230 235 240
 Val Ser Gly Leu Leu Gly Ser Asp Gln Pro Asp Ser Glu Met Thr Phe
 245 250 255
 Asp Thr Asn Ile Lys Gln Glu Ser Gly Ser Ser Thr Ser Ser Tyr Ser
 260 265 270
 Gly Tyr Glu Gly Cys Ala Val Leu Gln Val Ser Pro Val Thr Glu Thr
 275 280 285
 Arg Thr Tyr His Asp Val Lys Glu Ile Cys Lys Cys Asp Val Asp Glu
 290 295 300
 Phe Val Ile Leu Glu Leu Gly Asp Phe Asn Asp Ile Thr Glu Thr Cys
 305 310 315 320
 Ser Cys Ser Cys Ser Ser Ser Lys Ser Val Thr Tyr Glu Pro Asp Phe
 325 330 335
 Asn Ser Ala Glu Leu Leu Ala Lys Glu Leu Tyr Arg Val Phe Gln Lys
 340 345 350
 Cys Trp Ile Leu Ser Val Val Asn Ser Gln Leu Ala Gly Ser Leu Ser
 355 360 365
 Ala Ala Gly Ser Ile Val Val Asn Glu Glu Cys Val Arg Lys Asp Phe
 370 375 380
 Glu Ser Ser Met Asn Val Val Gln Glu Ile Lys Phe Lys Ser Arg Ile
 385 390 395 400
 Arg Gly Thr Glu Asp Trp Ala Pro Pro Arg Phe Gln Ile Ile Phe Asn
 405 410 415
 Ile His Pro Pro Leu Lys Arg Asp Leu Val Val Ala Ala Gln Asn Phe
 420 425 430
 Phe Cys Ala Gly Cys Gly Thr Pro Val Glu Pro Lys Phe Val Lys Arg
 435 440 445

Leu Arg Tyr Cys Glu Tyr Leu Gly Lys Tyr Phe Cys Asp Cys Cys His
 450 455 460
 Ser Tyr Ala Glu Ser Cys Ile Pro Ala Arg Ile Leu Met Met Trp Asp
 465 470 475 480
 Phe Lys Lys Tyr Tyr Val Ser Asn Phe Ser Lys Gln Leu Leu Asp Ser
 485 490 495
 Ile Trp His Gln Pro Ile Phe Asn Leu Leu Ser Ile Gly Gln Ser Leu
 500 505 510
 Tyr Ala Lys Ala Lys Glu Leu Asp Arg Val Lys Glu Ile Gln Glu Gln
 515 520 525
 Leu Phe His Ile Lys Lys Leu Leu Lys Thr Cys Arg Phe Ala Asn Ser
 530 535 540
 Ala Leu Lys Glu Phe Glu Gln Val Pro Gly His Leu Thr Asp Glu Leu
 545 550 555 560
 His Leu Phe Ser Leu Glu Asp Leu Val Arg Ile Lys Lys Gly Leu Leu
 565 570 575
 Ala Pro Leu Leu Lys Asp Ile Leu Lys Ala Ser Leu Ala His Val Ala
 580 585 590
 Gly Cys Glu Leu Cys Gln Gly Lys Gly Phe Ile Cys Glu Phe Cys Gln
 595 600 605
 Asn Thr Thr Val Ile Phe Pro Phe Gln Thr Ala Thr Cys Arg Arg Cys
 610 615 620
 Ser Ala Cys Arg Ala Cys Phe His Lys Gln Cys Phe Gln Ser Ser Glu
 625 630 635 640
 Cys Pro Arg Cys Ala Arg Ile Thr Ala Arg Arg Lys Leu Leu Glu Ser
 645 650 655
 Val Ala Ser Ala Ala Thr
 660

<210> 11
 <211> 2494
 <212> DNA
 <213> Homo sapiens

<400> 11
 ctttctgctg ttaccggag cgccgtggcc acggaacgct gcccggagcc gcgcgaggga 60
 ggaccggacg cgccggcgttt acccagcgca gcgttccacc gctcgggttt ggctggaata 120
 gctctccaga cccccagctg gccatgtggt gagttcaggg cccaaatcaa gtagtaccag 180
 caatcagggc actccttatct gtttgaatg gattcacacc agccacaagc ctggaaaagat 240
 ggtgtcacaa tctacagtca ggcaggattc tcctgtggag ccctggaaag ggatcagcga 300
 tcactctggc attattgatg gttcgccag actcctgaac actgaccatc ctccctgcc 360
 attagacatc aggctcatga ggcacaaaagc tgtctgatt aaccccccagg atgtgcagca 420
 acagccgcag gacttgcaat ctcaggtgcc agcagcaggg aacagtggga cccattttgt 480
 gacagatgct gcctctccct caggcccttc accttcgtgc ctcggggact ccctggcaga 540
 gacaacgttg tctgaggata ccacagactc cgttggcagc gcttctcccc atggctcgag 600
 tgaaaagagt agcagcttct ctctgtcctc aacagaggtta cacatggtcc gcccaggata 660
 ctctcatcgg gtgtctctgc ccacaagccc tgggatttg gccacctccc catatcctga 720

gactgacagt gcttttttg agccttccca tctgacatct gctgctgatg aagggtctgt 780
 tcaagtcatg agaagaacca tttcttcgaa ttccctctca ccagaggtat ttgtgctgcc 840
 tggttatgtta gaaaaggaaa atgcccactt ttatgttgca gatatgatta tatcagcaat 900
 ggagaaaaatg aagtgttaaca ttctgagtca acagcagaca gagagctgga gtaaagaagt 960
 cagttgggtt cttggggatg atcagcctga ctctgaaatg acttttgcata ccaacataaa 1020
 gcaagagtct gggcttctca cttcttcata cagtggctat gaagggttgg ctgtgttaca 1080
 ggtcagccca gtgactgaaa cacgtactta ccatgatgtg aaagagatg gcaaattgcga 1140
 tggttatgttt tagagcttgg agatttaat gatatcacag aaacctgttag 1200
 ctgttcttcg agctcctcta agagtgtcac ttatgagcca gacttcaatt ctgcagaact 1260
 attagccaaa gagctgtacc gcgtgttcca gaagtgtgg atactgtcag tagtaattc 1320
 tcagctggca ggttccctga gtgcagctgg ctcgatagtc gtaaatgaag agtgtgtccg 1380
 aaaagacttt gaatccagta tgaatgttagt acagggaaatt aaatttaagt cttagatcag 1440
 agggactgaa gactgggctc ctcttagatt tcaaattcata ttaatattc atccaccact 1500
 caagaggac cttgtgggtt cagccccagaa tttttctgt gccggctgtg gaactccagt 1560
 agagcctaag tttgtgaagc ggctccggta ctgcgaatac cttagggaaatg atttctgtga 1620
 ctgctgccac tcatatgcag agtcgtgcat ccctgcccga atcctgtatgatgatg 1680
 caagaagtac tacgtcagca atttctccaa acagctgctc gacagcatat ggcaccagcc 1740
 cattttcaat ttgctgagca tcggccaaag cctgtatgcg aaagccaagg agctggacag 1800
 agtgaaggaa attcaggagc agctccttcca tatcaagaag ctgttgaaga cctgttagtt 1860
 tgctaacagc tttgtcaagg aaagggtttt atttgtgaat ttgcccagaa tacgactgtc 1920
 atcttccat ttccagacagc aacatgtaga agatgttcag cgtcaggcc ttgcttac 1980
 aaacagtgtc tccagtcctc cgagtcccc cgggtgtcgca ggatcacagc gaggagaaaa 2040
 cttctggaaa gtgtggccctc tgccagcaaca tgatgcccct gaggactgtg aaaaagactg 2100
 ttcaacatgc cttatgataa caccgatttgc tttcttattat tggtgacatt gttttagata 2160
 ttgggttattt tatattttagg aaaaagatgg tctatattct ctttatttgcata tataacttaat 2220
 gtttcaaaag aatgcagatt ctgtgtttaa gcacagggtt gatagttgtg gtttgttta 2280
 caaatgttct gtttggctg ctattggttt tttaaagagg tttttatatac ttttgttattt 2340
 gaatagttat gtttactgatgatg tttctgatgtt gtttgcataat atgtgaactg 2400
 taactgacaa gatgaattac tcagtttctc tttctctaaa gcttgtttga tgaaactggt 2460
 tggcccttcc agtgaacaaa aatatgaccc caaa 2494

<210> 12

<211> 635

<212> PRT

<213> Homo sapiens

<400> 12

Met	Val	Ser	Gln	Ser	Thr	Val	Arg	Gln	Asp	Ser	Pro	Val	Glu	Pro	Trp
1															
														10	15

Glu	Gly	Ile	Ser	Asp	His	Ser	Gly	Ile	Ile	Asp	Gly	Ser	Pro	Arg	Leu	
														20	25	30

Leu	Asn	Thr	Asp	His	Pro	Pro	Cys	Gln	Leu	Asp	Ile	Arg	Leu	Met	Arg	
														35	40	45

His	Lys	Ala	Val	Trp	Ile	Asn	Pro	Gln	Asp	Val	Gln	Gln	Gln	Pro	Gln	
														50	55	60

Asp	Leu	Gln	Ser	Gln	Val	Pro	Ala	Ala	Gly	Asn	Ser	Gly	Thr	His	Phe		
														65	70	75	80

Val	Thr	Asp	Ala	Ala	Ser	Pro	Ser	Gly	Pro	Ser	Pro	Ser	Cys	Leu	Gly	
														85	90	95

Asp	Ser	Leu	Ala	Glu	Thr	Thr	Leu	Ser	Glu	Asp	Thr	Thr	Asp	Ser	Val	
														100	105	110

Gly	Ser	Ala	Ser	Pro	His	Gly	Ser	Ser	Glu	Lys	Ser	Ser	Ser	Phe	Ser	
														115	120	125

Leu Ser Ser Thr Glu Val His Met Val Arg Pro Gly Tyr Ser His Arg
 130 135 140
 Val Ser Leu Pro Thr Ser Pro Gly Ile Leu Ala Thr Ser Pro Tyr Pro
 145 150 155 160
 Glu Thr Asp Ser Ala Phe Phe Glu Pro Ser His Leu Thr Ser Ala Ala
 165 170 175
 Asp Glu Gly Ala Val Gln Val Ser Arg Arg Thr Ile Ser Ser Asn Ser
 180 185 190
 Phe Ser Pro Glu Val Phe Val Leu Pro Val Asp Val Glu Lys Glu Asn
 195 200 205
 Ala His Phe Tyr Val Ala Asp Met Ile Ile Ser Ala Met Glu Lys Met
 210 215 220
 Lys Cys Asn Ile Leu Ser Gln Gln Gln Thr Glu Ser Trp Ser Lys Glu
 225 230 235 240
 Val Ser Gly Leu Leu Gly Ser Asp Gln Pro Asp Ser Glu Met Thr Phe
 245 250 255
 Asp Thr Asn Ile Lys Gln Glu Ser Gly Ser Ser Thr Ser Ser Tyr Ser
 260 265 270
 Gly Tyr Glu Gly Cys Ala Val Leu Gln Val Ser Pro Val Thr Glu Thr
 275 280 285
 Arg Thr Tyr His Asp Val Lys Glu Ile Cys Lys Cys Asp Val Asp Glu
 290 295 300
 Phe Val Ile Leu Glu Leu Gly Asp Phe Asn Asp Ile Thr Glu Thr Cys
 305 310 315 320
 Ser Cys Ser Cys Ser Ser Ser Lys Ser Val Thr Tyr Glu Pro Asp Phe
 325 330 335
 Asn Ser Ala Glu Leu Leu Ala Lys Glu Leu Tyr Arg Val Phe Gln Lys
 340 345 350
 Cys Trp Ile Leu Ser Val Val Asn Ser Gln Leu Ala Gly Ser Leu Ser
 355 360 365
 Ala Ala Gly Ser Ile Val Val Asn Glu Glu Cys Val Arg Lys Asp Phe
 370 375 380
 Glu Ser Ser Met Asn Val Val Gln Glu Ile Lys Phe Lys Ser Arg Ile
 385 390 395 400
 Arg Gly Thr Glu Asp Trp Ala Pro Pro Arg Phe Gln Ile Ile Phe Asn
 405 410 415
 Ile His Pro Pro Leu Lys Arg Asp Leu Val Val Ala Ala Gln Asn Phe
 420 425 430
 Phe Cys Ala Gly Cys Gly Thr Pro Val Glu Pro Lys Phe Val Lys Arg
 435 440 445

Leu Arg Tyr Cys Glu Tyr Leu Gly Lys Tyr Phe Cys Asp Cys Cys His
 450 455 460
 Ser Tyr Ala Glu Ser Cys Ile Pro Ala Arg Ile Leu Met Met Trp Asp
 465 470 475 480
 Phe Lys Lys Tyr Tyr Val Ser Asn Phe Ser Lys Gln Leu Leu Asp Ser
 485 490 495
 Ile Trp His Gln Pro Ile Phe Asn Leu Leu Ser Ile Gly Gln Ser Leu
 500 505 510
 Tyr Ala Lys Ala Lys Glu Leu Asp Arg Val Lys Glu Ile Gln Glu Gln
 515 520 525
 Leu Phe His Ile Lys Lys Leu Leu Lys Thr Cys Arg Phe Ala Asn Ser
 530 535 540
 Cys Val Lys Glu Arg Ala Leu Phe Val Asn Phe Ala Arg Ile Arg Leu
 545 550 555 560
 Ser Ser Ser His Phe Arg Gln Gln His Val Glu Asp Val Gln Arg Ala
 565 570 575
 Gly Leu Ala Phe Thr Asn Ser Ala Ser Ser Pro Pro Ser Ala Pro Gly
 580 585 590
 Val Arg Gly Ser Gln Arg Gly Glu Asn Phe Trp Lys Val Trp Pro Leu
 595 600 605
 Gln Gln His Asp Ala Pro Glu Tyr Cys Glu Lys Asp Cys Ser Thr Cys
 610 615 620
 Leu Met Ile Thr Pro Ile Cys Val Tyr Tyr Trp
 625 630 635

<210> 13
 <211> 148
 <212> DNA
 <213> Homo sapiens

<400> 13
 ctggttcacg tgtggagcta gttataacgt cctgccaaga tgggtaccag ttgactggac 60
 atgcttatca gatgtgtcaa gatgctgaaa atgaaatttg gttcaaaaag attccacttt 120
 gtaaagttat ccactgcacc ctccacca 148

<210> 14
 <211> 4094
 <212> DNA
 <213> Homo sapiens

<400> 14
 ccagagctgc cggacgctcg cgggtctcg aacgcattcc gcccgggggtt cttcggccgt 60
 ggcattggcg cccggggcct gtcgggggtt ttcttggctc tcgtcgacc gggggcctc 120
 gggatttctt gtggctctcc tccgcctatc ctaaatggcc ggatttagtta ttattctacc 180
 cccattgctg ttggtaccgt gataaggtac agttgttccag gtacccctccg cctcattgga 240
 gaaaaaaatgc tattatgcat aactaaagac aaagtggatg gaacctggga taaacctgct 300
 ccttaaatgtg aatatttcaa taaatattct tcttgcctcg agccccatagt accaggagga 360
 tacaaaatgttta gaggctctac accctacaga catggtgatt ctgtgacatt tgcctgtaaa 420

accaacttct ccatgaacgg aaacaagtct gtttgggtgca aagcaaataa tatgtggggg 480
 ccgacacgac taccacaccc tgtaagtgtt ttccctctcg agtgtccagc acttcctatg 540
 atccacaatg gacatcacac aagtgagaat gttggctcca ttgctccagg attgtctgtg 600
 acttacagct gtgaatctgg ttacttgctt gttggagaaa agatcattaa ctgtttgtct 660
 tcggggaaaat ggagtgtgtg cccccccaca tgtgaagagg cacgctgtaa atctcttagga 720
 cgatttccca atgggaaggt aaaggagcct ccaattctcc ggggtgggt aactgcaaac 780
 tttttctgtg atgaagggtt tcgactgcaa ggcccaccc cttagtcggg tgtaattgt 840
 ggacagggag ttgcggac caaaatgcca gtatgtgaag aaattttttt cccatcacct 900
 ccccttattc tcaatggaa acatataggc aactcactag caaatgtctc atatggaaac 960
 atagtcactt acacttgtga cccggaccca gaggaaggag tgaacttcat ccttattgga 1020
 gagagcactc tccgttgc agttgatagt cagaagactg ggacctggag tggccctgccc 1080
 ccacgctgtg aactttctac ttctcggtt cagtgtccac atccccagat cctaagagc 1140
 cgaatgtat ctggcagaa agatcgatat acctataacg acactgtgat atttgcttgc 1200
 atgtttggct tacatggaa gggcagcaag caaatccgat gcaatgcccc aggacatgg 1260
 gagccatctg caccagtctg tgaaaaggaa tgccaggccc ctcctaacat cctcaatggg 1320
 caaaaggaag atagacacat ggtccgctt gaccctggaa catctataaa atatagtgt 1380
 aaccctggct atgtgtgtt gggagaagaa tccatatacg gtacctctga ggggggtgtgg 1440
 acacccctg taccctaaatg caaagtggca gcgtgtgaag ctacaggaag gcaactctt 1500
 aaaaaacccc agcacaatt tgtagacca gatgtcaact cttcttgcgtg tgaagggtac 1560
 aagtttaatgt ggagtgttt tcaggagtgt caaggcacaat ttccttggtt tatggagatt 1620
 cgtcttgc taaaatcac ctggccacca cccctgtta tctacaatgg ggcacacacc 1680
 gggagttctc tagaagatatt tccatatgg accacggtca cttacacatg taaccctggg 1740
 ccagaaaagag gatgtggatt cagccctcatt ggagagagca ccatccgtt tacaagcaat 1800
 gatcaagaaa gaggcacctg gatgtggccct gtcctccat gtaaactttc ctccttgct 1860
 gtccagtgct cacaatgtca tattgtcaat ggatacaaga tatctggcaa ggaagcccc 1920
 tattttctaca atgacactgt gacattcaag tggatgtg gatattactt gaaggcagt 1980
 agtcagattt cttgcaccc gatgtttttt tgataaacacc tgggatctg aaataccagt ttgtgaaaaa 2040
 ggctggcagc cacccctgg gtcctccat ggtcgtcata caggtggaaa tacggcttcc 2100
 tttgttctg gatgtactgt agactacact tggaccctg gctatttgcg tttggaaaac 2160
 aaatccattt actgtatgcc ttcaggaaat tggagtccctt ctggccac gatgtggaaa 2220
 acatggccagc atgtgagaca gatgtttcaaa gaaactccag ctggttcagc tttggagcta 2280
 gatgtttttt gatgtttttt tgggttccat tggactggac atgcttatca gatgtgtcaa 2340
 gatgtgaaa atggaaattt gttttttttt attccactt gtaaagtat tcaactgtcac 2400
 cctccaccag tgattgtcaa tgggaaagcac acaggcatga tggcagaaaa ctttctat 2460
 gggaaatgtaaatgatgttccat tgggttccat gatgtttttt gatgtttttt tggagcgag ctttccacca gatgtttttt 2520
 agtgcagaag tgattttttt ggcattttttt tggactggac atgcttatca gatgtgtcaa 2580
 tctctgtgcc ctaatccaga agtcaaacat gggatgttccat tgggttccat gatgtttttt 2640
 tattttccatc atgacatagt gatgttttgc tggatgttccat gatgtttttt tgggttccat 2700
 cgcgttgc gatgtttttt tgggttccat gatgtttttt tgggttccat gatgtttttt 2760
 aaagccctca taggggttcc acctccgcct aagaccctta acgggaacca tactgtgg 2820
 aacatagctc gatgtttttt tggatgtca atcctgtaca gatgtttttt tgggttccat 2880
 gtgggtggag agccacttct ttttttttccat gatgtttttt tgggttccat 2940
 cattgtttaatg aggttttttccat gatgtttttt tgggttccat gatgtttttt 3000
 gaaccaagga aaatgtatca gatgtttttt tgggttccat gatgtttttt tgggttccat 3060
 atgtgtttttt gatgtttttt tgggttccat gatgtttttt tgggttccat 3120
 gatgtttttt gatgtttttt tgggttccat gatgtttttt tgggttccat 3180
 ctttttttccat tgggttccat gatgtttttt tgggttccat gatgtttttt 3240
 tatttttttccat gatgtttttt tgggttccat gatgtttttt tgggttccat 3300
 gatgtttttt gatgtttttt tgggttccat gatgtttttt tgggttccat 3360
 tggatgttttccat gatgtttttt tgggttccat gatgtttttt tgggttccat 3420
 atggccttcaat gatgtttttt tgggttccat gatgtttttt tgggttccat 3480
 caagaagaac atcttttttccat gatgtttttt tgggttccat gatgtttttt 3540
 ggacttttttccat gatgtttttt tgggttccat gatgtttttt tgggttccat 3600
 atggccttcaat gatgtttttt tgggttccat gatgtttttt tgggttccat 3660
 gatgttttttccat gatgtttttt tgggttccat gatgtttttt tgggttccat 3720
 ttttttttccat gatgtttttt tgggttccat gatgtttttt tgggttccat 3780
 gatgttttttccat gatgtttttt tgggttccat gatgtttttt tgggttccat 3840
 tacccttttccat gatgtttttt tgggttccat gatgtttttt tgggttccat 3900
 atcactcagt gatgttttttccat gatgtttttt tgggttccat gatgtttttt 3960
 cttagagattttccat gatgtttttt tgggttccat gatgtttttt tgggttccat 4020
 ctatgttttccat gatgtttttt tgggttccat gatgtttttt tgggttccat 4080

tgtaaaagaaaa acat

4094

<210> 15
<211> 1033
<212> PRT
<213> Homo sapiens

<400> 15
Met Gly Ala Ala Gly Leu Leu Gly Val Phe Leu Ala Leu Val Ala Pro
1 5 10 15

Gly Val Leu Gly Ile Ser Cys Gly Ser Pro Pro Pro Ile Leu Asn Gly
20 25 30

Arg Ile Ser Tyr Tyr Ser Thr Pro Ile Ala Val Gly Thr Val Ile Arg
35 40 45

Tyr Ser Cys Ser Gly Thr Phe Arg Leu Ile Gly Glu Lys Ser Leu Leu
50 55 60

Cys Ile Thr Lys Asp Lys Val Asp Gly Thr Trp Asp Lys Pro Ala Pro
65 70 75 80

Lys Cys Glu Tyr Phe Asn Lys Tyr Ser Ser Cys Pro Glu Pro Ile Val
85 90 95

Pro Gly Gly Tyr Lys Ile Arg Gly Ser Thr Pro Tyr Arg His Gly Asp
100 105 110

Ser Val Thr Phe Ala Cys Lys Thr Asn Phe Ser Met Asn Gly Asn Lys
115 120 125

Ser Val Trp Cys Gln Ala Asn Asn Met Trp Gly Pro Thr Arg Leu Pro
130 135 140

Thr Cys Val Ser Val Phe Pro Leu Glu Cys Pro Ala Leu Pro Met Ile
145 150 155 160

His Asn Gly His His Thr Ser Glu Asn Val Gly Ser Ile Ala Pro Gly
165 170 175

Leu Ser Val Thr Tyr Ser Cys Glu Ser Gly Tyr Leu Leu Val Gly Glu
180 185 190

Lys Ile Ile Asn Cys Leu Ser Ser Gly Lys Trp Ser Ala Val Pro Pro
195 200 205

Thr Cys Glu Glu Ala Arg Cys Lys Ser Leu Gly Arg Phe Pro Asn Gly
210 215 220

Lys Val Lys Glu Pro Pro Ile Leu Arg Val Gly Val Thr Ala Asn Phe
225 230 235 240

Phe Cys Asp Glu Gly Tyr Arg Leu Gln Gly Pro Pro Ser Ser Arg Cys
245 250 255

Val Ile Ala Gly Gln Gly Val Ala Trp Thr Lys Met Pro Val Cys Glu
260 265 270

Glu Ile Phe Cys Pro Ser Pro Pro Pro Ile Leu Asn Gly Arg His Ile
 275 280 285

Gly Asn Ser Leu Ala Asn Val Ser Tyr Gly Ser Ile Val Thr Tyr Thr
 290 295 300

Cys Asp Pro Asp Pro Glu Glu Gly Val Asn Phe Ile Leu Ile Gly Glu
 305 310 315 320

Ser Thr Leu Arg Cys Thr Val Asp Ser Gln Lys Thr Gly Thr Trp Ser
 325 330 335

Gly Pro Ala Pro Arg Cys Glu Leu Ser Thr Ser Ala Val Gln Cys Pro
 340 345 350

His Pro Gln Ile Leu Arg Gly Arg Met Val Ser Gly Gln Lys Asp Arg
 355 360 365

Tyr Thr Tyr Asn Asp Thr Val Ile Phe Ala Cys Met Phe Gly Phe Thr
 370 375 380

Leu Lys Gly Ser Lys Gln Ile Arg Cys Asn Ala Gln Gly Thr Trp Glu
 385 390 395 400

Pro Ser Ala Pro Val Cys Glu Lys Glu Cys Gln Ala Pro Pro Asn Ile
 405 410 415

Leu Asn Gly Gln Lys Glu Asp Arg His Met Val Arg Phe Asp Pro Gly
 420 425 430

Thr Ser Ile Lys Tyr Ser Cys Asn Pro Gly Tyr Val Leu Val Gly Glu
 435 440 445

Glu Ser Ile Gln Cys Thr Ser Glu Gly Val Trp Thr Pro Pro Val Pro
 450 455 460

Gln Cys Lys Val Ala Ala Cys Glu Ala Thr Gly Arg Gln Leu Leu Thr
 465 470 475 480

Lys Pro Gln His Gln Phe Val Arg Pro Asp Val Asn Ser Ser Cys Gly
 485 490 495

Glu Gly Tyr Lys Leu Ser Gly Ser Val Tyr Gln Glu Cys Gln Gly Thr
 500 505 510

Ile Pro Trp Phe Met Glu Ile Arg Leu Cys Lys Glu Ile Thr Cys Pro
 515 520 525

Pro Pro Pro Val Ile Tyr Asn Gly Ala His Thr Gly Ser Ser Leu Glu
 530 535 540

Asp Phe Pro Tyr Gly Thr Thr Val Thr Tyr Thr Cys Asn Pro Gly Pro
 545 550 555 560

Glu Arg Gly Val Glu Phe Ser Leu Ile Gly Glu Ser Thr Ile Arg Cys
 565 570 575

Thr Ser Asn Asp Gln Glu Arg Gly Thr Trp Ser Gly Pro Ala Pro Leu
 580 585 590

Cys Lys Leu Ser Leu Leu Ala Val Gln Cys Ser His Val His Ile Ala
 595 600 605
 Asn Gly Tyr Lys Ile Ser Gly Lys Glu Ala Pro Tyr Phe Tyr Asn Asp
 610 615 620
 Thr Val Thr Phe Lys Cys Tyr Ser Gly Phe Thr Leu Lys Gly Ser Ser
 625 630 635 640
 Gln Ile Arg Cys Lys Ala Asp Asn Thr Trp Asp Pro Glu Ile Pro Val
 645 650 655
 Cys Glu Lys Glu Thr Cys Gln His Val Arg Gln Ser Leu Gln Glu Leu
 660 665 670
 Pro Ala Gly Ser Arg Val Glu Leu Val Asn Thr Ser Cys Gln Asp Gly
 675 680 685
 Tyr Gln Leu Thr Gly His Ala Tyr Gln Met Cys Gln Asp Ala Glu Asn
 690 695 700
 Gly Ile Trp Phe Lys Lys Ile Pro Leu Cys Lys Val Ile His Cys His
 705 710 715 720
 Pro Pro Pro Val Ile Val Asn Gly Lys His Thr Gly Met Met Ala Glu
 725 730 735
 Asn Phe Leu Tyr Gly Asn Glu Val Ser Tyr Glu Cys Asp Gln Gly Phe
 740 745 750
 Tyr Leu Leu Gly Glu Lys Lys Leu Gln Cys Arg Ser Asp Ser Lys Gly
 755 760 765
 His Gly Ser Trp Ser Gly Pro Ser Pro Gln Cys Leu Arg Ser Pro Pro
 770 775 780
 Val Thr Arg Cys Pro Asn Pro Glu Val Lys His Gly Tyr Lys Leu Asn
 785 790 795 800
 Lys Thr His Ser Ala Tyr Ser His Asn Asp Ile Val Tyr Val Asp Cys
 805 810 815
 Asn Pro Gly Phe Ile Met Asn Gly Ser Arg Val Ile Arg Cys His Thr
 820 825 830
 Asp Asn Thr Trp Val Pro Gly Val Pro Thr Cys Met Lys Lys Ala Phe
 835 840 845
 Ile Gly Cys Pro Pro Pro Pro Lys Thr Pro Asn Gly Asn His Thr Gly
 850 855 860
 Gly Asn Ile Ala Arg Phe Ser Pro Gly Met Ser Ile Leu Tyr Ser Cys
 865 870 875 880
 Asp Gln Gly Tyr Leu Leu Val Gly Glu Ala Leu Leu Leu Cys Thr His
 885 890 895
 Glu Gly Thr Trp Ser Gln Pro Ala Pro His Cys Lys Glu Val Asn Cys
 900 905 910

Ser Ser Pro Ala Asp Met Asp Gly Ile Gln Lys Gly Leu Glu Pro Arg
915 920 925

Lys Met Tyr Gln Tyr Gly Ala Val Val Thr Leu Glu Cys Glu Asp Gly
930 935 940

Tyr Met Leu Glu Gly Ser Pro Gln Ser Gln Cys Gln Ser Asp His Gln
945 950 955 960

Trp Asn Pro Pro Leu Ala Val Cys Arg Ser Arg Ser Leu Ala Pro Val
965 970 975

Leu Cys Gly Ile Ala Ala Gly Leu Ile Leu Leu Thr Phe Leu Ile Val
980 985 990

Ile Thr Leu Tyr Val Ile Ser Lys His Arg Glu Arg Asn Tyr Tyr Thr
995 1000 1005

Asp Thr Ser Gln Lys Glu Ala Phe His Leu Glu Ala Arg Glu Val Tyr
1010 1015 1020

Ser Val Asp Pro Tyr Asn Pro Ala Ser
1025 1030

<210> 16
<211> 637
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (9)
<223> n = g, a, c or t

<400> 16
ctggccaana ccaagtcaca gtttccagcg tgctgctcag ccctccgagt gtgtgtgctc 60
atcctttca tagaagtccc atmkgscatg gagagggttg ggctgcarag ctgwattgc 120
cagagccct tccttgagaa ctgtggggaa ggaggccctg ggggtttctt ctgttaggcag 180
agctcaggcc ccagtcacct ctgccaccct cagcctggca ctgttgtgcc agagcctctg 240
ctgcctctct cttcctaccc atctgcagac cagcagaata ttctccccct ctcatcacca 300
accaggagtt tgggtgtggtt tctggacacg gccagagcag tcactgcggg gctggtttg 360
ctgggcttcc ctgtcaaagc aatgctaacg tccagctctc gactcaaggg caggttcttc 420
tcccacttgt ggcctcttgg gcttggaggc tgagccaggg gctcctctcc tgctggccgt 480
ccaggaacag acatcttac atccctagtc ttccaaaccc ggaccatgcc gtcttgactc 540
ccggtgatga tggatctggct tggatctccat gctggggccct ccatcaggca gcaacagggtt 600
atggctcctt ctggggccca ggctgtggtg atgctgg 637

<210> 17
<211> 4191
<212> DNA
<213> Homo sapiens

<400> 17
agcgagactt ccagtccgag gtcctgcttt ctgctatgga actattccac atgacaagtg 60
gaggtgatgc agcgatgttc agagacggca aagagctca gccaagtgcga gaagctgctg 120
ctgccccttc tcttgccaac atctcctgct tcacccagaa gctgggtggag aagctgtaca 180
gtggatgtt ctggcagac cccaggcata tcctcctt catcctggag cacatcatgg 240
tggatcttga gactgccttct tctcaaaggg acactgtcct cagcacttta tacagcagtt 300
taaataaaagt cattctttat tgcctatcca agccccagca gtcctctcc gaatgcctcg 360

gccttctcag catcctggc tttctgcagg agcaactggga tttgttctt gcccacccata 420
 attccaacat cagcttcctc ctgtgtctca tgcattgcct tttgttactc aatgagagaaa 480
 gttaccaga aggatttggaa ttggagccca agcctagaat gtctacttat catcaagtct 540
 tcctttcccc aaatgaagac gtggaaagaaa aaagagaaga cttaccaagt ttgagtgtat 600
 tccaaacacaa catccagaag acatgcaga ctctctggca gcagctgggt gcacaaaggc 660
 agcagaccct ggaggatgcc ttcaagatcg atctctctgt gaaacctggaa gagagggaaag 720
 tgaagattga agaggtcaca ccgtctggg aggagacat gtcaggcc tggcagcatt 780
 acttagcatc tgagaagaag tcaactggcaa gtcgttcaaa ttttgacac cacagcaaag 840
 tcactttgtg gagtggaaac ctgttctcag ccatgaagct gatgcccggg cggcaggcca 900
 aggaccctga gtcaagaca gaggattttg tgcattgtat agagaactac agaagaagag 960
 gacaagagct atatgcattt ttatacaacaa accatgtca aaggcgaaaa ttttgcaaca 1020
 tcaaggcagc caacgcctgg gccaggatcc aggagcagct ttttggggag ctggcttgt 1080
 ggagccaggg ggaagaaacc aaggccctgtt ccccatggga actcgactgg agagaaggac 1140
 cagctcaaat gaggaaacgc atcaaaccgt tgcattttt ggaggccctg agctcaggaa 1200
 ggcacaagga aagccaagac aaaatgtatc atatctca aacaatgtt gaaaaccaag 1260
 atgaactgac actgaggggag gtcggggcg agccggacca ggtgggggtg gactgcaccc 1320
 agctgacctt ttcccagcc ttacacgaaa gtcgtcactc agaagacttc ttggaaactgt 1380
 gtcgggaaag acaagttttt ttacaagagc ttcttgataa agaaaagggtt acgcagaagt 1440
 tctcccttgtt gattgtgcag ggccacctgg tgcagaagg gtcctgttt tttggccacc 1500
 aacattctca catctgcgag aacttcacac tgcattttcac ggggtatgtc tactgtaccc 1560
 gtcactgtttt atccaacatc agcgatccgt tcattttcaa cctgtgcagc aaagacaggt 1620
 ccactgacca ttactctgtc cagtgcacca gtcacgtca catgcgggag ctacggcagg 1680
 ctcgcttcctt cctgcaggac atcgcctgg agatcttcc tcacaatggaa tattttcaagt 1740
 ttcttgctt ctacaacaat gatcgagta aggcctttaa aagcttctgc tctttccaac 1800
 ccagcctgaa ggggaaagcc acctcgagg acaccctcaa tctaaggaga taccggct 1860
 ctgacaggat catgtgcag aagtggcaga aaaggacat cagcaattttt gatgtatctca 1920
 tgtacctcaa caccgcggct gggagaacct gcaatgacta catgcgtac ccagtgttcc 1980
 cctgggtctt cgcagactac acctcagaga cattgaactt ggcaaatccg aagattttcc 2040
 gggatctttt aaagcccatg ggggtcaga ccaaggaaag gaagctgaaa tttatccaga 2100
 ggtttaaaga agttgagaaa actgaaggag acatgactgt ccagtgcac tactacaccc 2160
 actactcctc ggccatcatc gtggcctct acctggcccg gatgccaccc ttcacccagg 2220
 ccttcgtcgc tctgcagggc ggaagcttcg acgtggcaga cagaatgttc cacagtgtga 2280
 agagcacgtg ggagtccggcc tccagagaga acatgagtga cgtcaggggag ctgacccagg 2340
 agttcttctca cctgccttgag ttcttaacca actgcaacgg ggttagatgtc ggctgcatgc 2400
 aggacgggac tgcgttagga gacgtgcagc tccctccctg ggctgtatggg gaccctcgga 2460
 aattcatcag cctgcacaga aaggccctgg aaagtactt tgcgtgtcc aacccatccacc 2520
 attggataga ctttattttt gggtaacaagc agcaggggcc agccgcgtg gatgtgtta 2580
 atatcttcca cccctacttc tacggtgaca gaatggacat cagcagcatc actgacccccc 2640
 tcatcaaaag caccatctg gggtttgc gcaactttgg acaggtgccc aaacagctct 2700
 ttaccaaacc tcacccagcc aggactgcag caggaaagcc ttcgtcctggaa aaggatgtct 2760
 ccaccccccgt ggcctgcct ggccacccac agccctttt ctacagcctg cagtcgtca 2820
 ggccctccca ggtcacggtc aaagatatgt acctcttttcc tctaggctca ggtccccc 2880
 aaggggccat tggccacatt gtctctactg agaagaccat tctggctgta gagaggaaca 2940
 aagtgtctgtc gcctcctctc tggAACAGGA cttcagctg gggcttgc gacttcagct 3000
 gctgcttggg gagctacggc tccgacaagg tcctgtatgac attcgagaac ctggctgcct 3060
 gggcccgctg tctgtgcgcc gtgtgcccatt ccccaacaac gattgtcacc tctggacca 3120
 gcaactgtgtt gtgtgtgtgg gagctcagca tgaccaagg ccggcccgagg ggcttgcgc 3180
 tccggcaggc cttgtatggaa cacacacagg ctgtcacgtg cttggcagcg tcagtcaccc 3240
 tcagctctt ggtgagccgc tccaggact gcaactgtatgac attcgagaac ctggaccacc 3300
 tcacccacgt gacccgcctg cccgcccattt gggaaaggcat ctcagccatc accatcagt 3360
 acgtctcagg caccattgtc tcctgtgcgg gacacactt gtcctgtgg aatgtcaatg 3420
 gacagccctt ggccagcatc accacagctt gggcccgaga aggagccata acctgttgc 3480
 gctgtatgga gggcccgacca tggacacaa gcaatgttgc gtttgc gacttcaccc 3540
 gcatgtccg gttttggaaactgaggatg tgaagatgtc ttttgc gggcccgacca 3600
 gagagggaccc cttggctcaagcc caagggccaa caatgttgc gggcccgacca 3660
 ctttgc gacttcaccc gtttgc gacttcaccc 3720
 ccgcacgtgac tgcctctggcc gtgtcccgaa accacaccaa actcctgtt ggtgatgaga 3780
 gggggagaat attctgtctgg tctgcagatg ggttagaaaga gagagggcagc agaggctctg 3840
 gcacaacagt gcaaggctga ggggtggcaga ggtgacttgg gcctgagctc tgcctacaga 3900
 agaaacccccc agggccctctt tcccccacatg tctcaaggaa gggccctctgg caatcacagc 3960
 tctgcagccc aaccctctcc atggccgatg ggacttctat gaaaaggatg agcacaacaca 4020

ctcgagggc tgagcagcac gctggaaact gtgacttgggt gatgccacgc tgcacacgaa 4080
attacacatg actcaccta ttaagggcta ttgcactgaa aaaaaaaaaa agatgggtcg 4140
cttactggaa attattgtat tgtctttatt ttattaaagc aactatgtt t 4191

<210> 18
<211> 1606
<212> PRT
<213> Homo sapiens

<400> 18
Met Asn Ile Ser Ser Arg Asp Asn Ala Met Pro Val Phe Leu Leu Arg
1 5 10 15

Asn Cys Ala Gly His Leu Ser Gly Ser Leu Arg Thr Ile Gly Ala Val
20 25 30

Ala Val Gly Gln Leu Gly Val Arg Val Phe His Ser Ser Pro Ala Ala
35 40 45

Ser Ser Leu Asp Phe Ile Gly Gly Pro Ala Ile Leu Leu Gly Leu Ile
50 55 60

Ser Leu Ala Thr Asp Asp His Thr Met Tyr Ala Ala Val Lys Val Leu
65 70 75 80

His Ser Val Leu Thr Ser Asn Ala Met Cys Asp Phe Leu Met Gln His
85 90 95

Ile Cys Gly Tyr Gln Ile Met Ala Phe Leu Leu Arg Lys Lys Ala Ser
100 105 110

Leu Leu Asn His Arg Ile Phe Gln Leu Ile Leu Ser Val Ala Gly Thr
115 120 125

Val Glu Leu Gly Phe Arg Ser Ser Ala Ile Thr Asn Thr Gly Val Phe
130 135 140

Gln His Ile Leu Cys Asn Phe Glu Leu Trp Met Asn Thr Ala Asp Asn
145 150 155 160

Leu Glu Leu Ser Leu Phe Ser His Leu Leu Glu Ile Leu Gln Ser Pro
165 170 175

Arg Glu Gly Pro Arg Asn Ala Glu Ala Ala His Gln Ala Gln Leu Ile
180 185 190

Pro Lys Leu Ile Phe Leu Phe Asn Glu Pro Ser Leu Ile Pro Ser Lys
195 200 205

Ile Pro Thr Ile Ile Gly Ile Leu Ala Cys Gln Leu Arg Gly His Phe
210 215 220

Ser Thr Gln Asp Leu Leu Arg Ile Gly Leu Phe Val Val Tyr Thr Leu
225 230 235 240

Lys Pro Ser Ser Val Asn Glu Arg Gln Ile Cys Met Asp Gly Ala Leu
245 250 255

Asp Pro Ser Leu Pro Ala Gly Ser Gln Thr Ser Gly Lys Thr Ile Trp
260 265 270

Leu Arg Asn Gln Leu Leu Glu Met Leu Leu Ser Val Ile Ser Ser Pro
 275 280 285
 Gln Leu His Leu Ser Ser Glu Ser Lys Glu Glu Met Phe Leu Lys Leu
 290 295 300
 Gly Pro Asp Trp Phe Leu Leu Leu Gln Gly His Leu His Ala Ser
 305 310 315 320
 Thr Thr Val Leu Ala Leu Lys Leu Leu Tyr Phe Leu Ala Ser Pro
 325 330 335
 Ser Leu Arg Thr Arg Phe Arg Asp Gly Leu Cys Ala Gly Ser Trp Val
 340 345 350
 Glu Arg Ser Thr Glu Gly Val Asp Ile Val Met Asp Asn Leu Lys Ser
 355 360 365
 Gln Ser Pro Leu Pro Glu Gln Ser Pro Cys Leu Leu Pro Gly Phe Arg
 370 375 380
 Val Leu Asn Asp Phe Leu Ala His His Val His Ile Pro Glu Val Tyr
 385 390 395 400
 Leu Ile Val Ser Thr Phe Phe Leu Gln Thr Pro Leu Thr Glu Leu Met
 405 410 415
 Asp Gly Pro Lys Asp Ser Leu Asp Ala Met Leu Gln Trp Leu Leu Gln
 420 425 430
 Arg His His Gln Glu Glu Val Leu Gln Ala Gly Leu Cys Thr Glu Gly
 435 440 445
 Ala Leu Leu Leu Leu Glu Met Leu Lys Ala Thr Met Ser Gln Pro Leu
 450 455 460
 Ala Gly Ser Glu Asp Gly Ala Trp Ala Gln Thr Phe Pro Ala Ser Val
 465 470 475 480
 Leu Gln Phe Leu Ser Leu Val His Arg Thr Tyr Pro Gln Asp Pro Ala
 485 490 495
 Trp Arg Ala Pro Glu Phe Leu Gln Thr Leu Ala Ile Ala Ala Phe Pro
 500 505 510
 Leu Gly Ala Gln Lys Gly Val Gly Ala Glu Ser Thr Arg Asn Thr Ser
 515 520 525
 Ser Pro Glu Ala Ala Ala Glu Gly Asp Ser Thr Val Glu Gly Leu Gln
 530 535 540
 Ala Pro Thr Lys Ala His Pro Ala Arg Arg Lys Leu Arg Glu Phe Thr
 545 550 555 560
 Gln Leu Leu Leu Arg Glu Leu Leu Gly Ala Ser Ser Pro Lys Gln
 565 570 575
 Trp Leu Pro Leu Glu Val Leu Leu Glu Ala Ser Pro Asp His Ala Thr
 580 585 590

Ser Gln Gln Lys Arg Asp Phe Gln Ser Glu Val Leu Leu Ser Ala Met
 595 600 605
 Glu Leu Phe His Met Thr Ser Gly Gly Asp Ala Ala Met Phe Arg Asp
 610 615 620
 Gly Lys Glu Pro Gln Pro Ser Ala Glu Ala Ala Ala Pro Ser Leu
 625 630 635 640
 Ala Asn Ile Ser Cys Phe Thr Gln Lys Leu Val Glu Lys Leu Tyr Ser
 645 650 655
 Gly Met Phe Ser Ala Asp Pro Arg His Ile Leu Leu Phe Ile Leu Glu
 660 665 670
 His Ile Met Val Val Ile Glu Thr Ala Ser Ser Gln Arg Asp Thr Val
 675 680 685
 Leu Ser Thr Leu Tyr Ser Ser Leu Asn Lys Val Ile Leu Tyr Cys Leu
 690 695 700
 Ser Lys Pro Gln Gln Ser Leu Ser Glu Cys Leu Gly Leu Leu Ser Ile
 705 710 715 720
 Leu Gly Phe Leu Gln Glu His Trp Asp Val Val Phe Ala Thr Tyr Asn
 725 730 735
 Ser Asn Ile Ser Phe Leu Leu Cys Leu Met His Cys Leu Leu Leu
 740 745 750
 Asn Glu Arg Ser Tyr Pro Glu Gly Phe Gly Leu Glu Pro Lys Pro Arg
 755 760 765
 Met Ser Thr Tyr His Gln Val Phe Leu Ser Pro Asn Glu Asp Val Lys
 770 775 780
 Glu Lys Arg Glu Asp Leu Pro Ser Leu Ser Asp Val Gln His Asn Ile
 785 790 795 800
 Gln Lys Thr Val Gln Thr Leu Trp Gln Gln Leu Val Ala Gln Arg Gln
 805 810 815
 Gln Thr Leu Glu Asp Ala Phe Lys Ile Asp Leu Ser Val Lys Pro Gly
 820 825 830
 Glu Arg Glu Val Lys Ile Glu Glu Val Thr Pro Leu Trp Glu Glu Thr
 835 840 845
 Met Leu Lys Ala Trp Gln His Tyr Leu Ala Ser Glu Lys Lys Ser Leu
 850 855 860
 Ala Ser Arg Ser Asn Val Ala His His Ser Lys Val Thr Leu Trp Ser
 865 870 875 880
 Gly Ser Leu Ser Ser Ala Met Lys Leu Met Pro Gly Arg Gln Ala Lys
 885 890 895
 Asp Pro Glu Cys Lys Thr Glu Asp Phe Val Ser Cys Ile Glu Asn Tyr
 900 905 910

Arg Arg Arg Gly Gln Glu Leu Tyr Ala Ser Leu Tyr Lys Asp His Val
 915 920 925

Gln Arg Arg Lys Cys Gly Asn Ile Lys Ala Ala Asn Ala Trp Ala Arg
 930 935 940

Ile Gln Glu Gln Leu Phe Gly Glu Leu Gly Leu Trp Ser Gln Gly Glu
 945 950 955 960

Glu Thr Lys Pro Cys Ser Pro Trp Glu Leu Asp Trp Arg Glu Gly Pro
 965 970 975

Ala Arg Met Arg Lys Arg Ile Lys Arg Leu Ser Pro Leu Glu Ala Leu
 980 985 990

Ser Ser Gly Arg His Lys Glu Ser Gln Asp Lys Asn Asp His Ile Ser
 995 1000 1005

Gln Thr Asn Ala Glu Asn Gln Asp Glu Leu Thr Leu Arg Glu Ala Glu
 1010 1015 1020

Gly Glu Pro Asp Glu Val Gly Val Asp Cys Thr Gln Leu Thr Phe Phe
 1025 1030 1035 1040

Pro Ala Leu His Glu Ser Leu His Ser Glu Asp Phe Leu Glu Leu Cys
 1045 1050 1055

Arg Glu Arg Gln Val Ile Leu Gln Glu Leu Leu Asp Lys Glu Lys Val
 1060 1065 1070

Thr Gln Lys Phe Ser Leu Val Ile Val Gln Gly His Leu Val Ser Glu
 1075 1080 1085

Gly Val Leu Leu Phe Gly His Gln His Phe Tyr Ile Cys Glu Asn Phe
 1090 1095 1100

Thr Leu Ser Pro Thr Gly Asp Val Tyr Cys Thr Arg His Cys Leu Ser
 1105 1110 1115 1120

Asn Ile Ser Asp Pro Phe Ile Phe Asn Leu Cys Ser Lys Asp Arg Ser
 1125 1130 1135

Thr Asp His Tyr Ser Cys Gln Cys His Ser Tyr Ala Asp Met Arg Glu
 1140 1145 1150

Leu Arg Gln Ala Arg Phe Leu Leu Gln Asp Ile Ala Leu Glu Ile Phe
 1155 1160 1165

Phe His Asn Gly Tyr Ser Lys Phe Leu Val Phe Tyr Asn Asn Asp Arg
 1170 1175 1180

Ser Lys Ala Phe Lys Ser Phe Cys Ser Phe Gln Pro Ser Leu Lys Gly
 1185 1190 1195 1200

Lys Ala Thr Ser Glu Asp Thr Leu Asn Leu Arg Arg Tyr Pro Gly Ser
 1205 1210 1215

Asp Arg Ile Met Leu Gln Lys Trp Gln Lys Arg Asp Ile Ser Asn Phe
 1220 1225 1230

Glu Tyr Leu Met Tyr Leu Asn Thr Ala Ala Gly Arg Thr Cys Asn Asp
 1235 1240 1245
 Tyr Met Gln Tyr Pro Val Phe Pro Trp Val Leu Ala Asp Tyr Thr Ser
 1250 1255 1260
 Glu Thr Leu Asn Leu Ala Asn Pro Lys Ile Phe Arg Asp Leu Ser Lys
 1265 1270 1275 1280
 Pro Met Gly Ala Gln Thr Lys Glu Arg Lys Leu Lys Phe Ile Gln Arg
 1285 1290 1295
 Phe Lys Glu Val Glu Lys Thr Glu Gly Asp Met Thr Val Gln Cys His
 1300 1305 1310
 Tyr Tyr Thr His Tyr Ser Ser Ala Ile Ile Val Ala Ser Tyr Leu Val
 1315 1320 1325
 Arg Met Pro Pro Phe Thr Gln Ala Phe Cys Ala Leu Gln Gly Gly Ser
 1330 1335 1340
 Phe Asp Val Ala Asp Arg Met Phe His Ser Val Lys Ser Thr Trp Glu
 1345 1350 1355 1360
 Ser Ala Ser Arg Glu Asn Met Ser Asp Val Arg Glu Leu Thr Pro Glu
 1365 1370 1375
 Phe Phe Tyr Leu Pro Glu Phe Leu Thr Asn Cys Asn Gly Val Glu Phe
 1380 1385 1390
 Gly Cys Met Gln Asp Gly Thr Val Leu Gly Asp Val Gln Leu Pro Pro
 1395 1400 1405
 Trp Ala Asp Gly Asp Pro Arg Lys Phe Ile Ser Leu His Arg Lys Ala
 1410 1415 1420
 Leu Glu Ser Asp Phe Val Ser Ala Asn Leu His His Trp Ile Asp Leu
 1425 1430 1435 1440
 Ile Phe Gly Tyr Lys Gln Gln Gly Pro Ala Ala Val Asp Ala Val Asn
 1445 1450 1455
 Ile Phe His Pro Tyr Phe Tyr Gly Asp Arg Met Asp Leu Ser Ser Ile
 1460 1465 1470
 Thr Asp Pro Leu Ile Lys Ser Thr Ile Leu Gly Phe Val Ser Asn Phe
 1475 1480 1485
 Gly Gln Val Pro Lys Gln Leu Phe Thr Lys Pro His Pro Ala Arg Thr
 1490 1495 1500
 Ala Ala Gly Lys Pro Leu Pro Gly Lys Asp Val Ser Thr Pro Val Ser
 1505 1510 1515 1520
 Leu Pro Gly His Pro Gln Pro Phe Phe Tyr Ser Leu Gln Ser Leu Arg
 1525 1530 1535
 Pro Ser Gln Val Thr Val Lys Asp Met Tyr Leu Phe Ser Leu Gly Ser
 1540 1545 1550

Glu Ser Pro Lys Gly Ala Ile Gly His Ile Val Ser Thr Glu Lys Thr
 1555 1560 1565
 Ile Leu Ala Val Glu Arg Asn Lys Val Leu Leu Pro Pro Leu Trp Asn
 1570 1575 1580
 Arg Thr Phe Ser Trp Gly Phe Asp Asp Phe Ser Cys Cys Leu Gly Ser
 1585 1590 1595 1600
 Tyr Gly Ser Asp Lys Ser
 1605

<210> 19
 <211> 426
 <212> DNA
 <213> Homo sapiens

<400> 19
 ctgcccttcc atgtcgac aggcataccg ggcgtggacc cactgcttgg tgcccttgcc 60
 gaagtagtag cacttcgtt ggaattgtat ccactttca gggcacgtgt tgcacacaaa 120
 gcccgtggac acctgcact ccatccttag ctttgtcacc tcctccggaa gtctttccag 180
 caaatctgaa gcttcgttcc tctcgttcaa ttccctggac ttgaagctgc tcagatctgc 240
 ttgaagcccg ttcaggttcc aggacagctc caagtctga gatttcaatc tctgtgttc 300
 agctcgaagt tcctccaggat cctgtgaaat ctgcgtggac tgggatttc gcgcctatgc 360
 gtcaccgtgg tggctttcca agttcttggaa aacttgagag acgttccggg cagccctctc 420
 ttccag 426

<210> 20
 <211> 1569
 <212> DNA
 <213> Homo sapiens

<400> 20
 ggcacgaggc tgcttaaacc tctgtctctg acgggtccctg ccaatcgctc tggtcgaccc 60
 caacacacta ggaggacaga cacaggctcc aaactccact aaccagagct gtgattgtgc 120
 ccgctgatgt gactgcgtt tcagggagtg agtgcctcat catcgggaga atccaaggcag 180
 gaccggccatg gaggaaaggc aatattcaga gatcgaggag cttcccgaggaa ggcgggtgtt 240
 caggcgtggg actcagatcg tgctgctggg gctgggtgacc gccgctctgt gggctggct 300
 gctgactctg cttctccctgt ggcactggaa caccacacag agtctaaaac agcttggaa 360
 gagggctgcc cggAACGCTC ctcaagtttcaagaacttg gaaagccacc acgggtgacca 420
 gatggcgcag aaatcccagt ccacgcagat ttcacagggaa ctggaggaac ttgcagctga 480
 acagcagaga ttgaaatctc aggacttggaa gctgtctgg aacctgaacg ggcttcAAGC 540
 agatctgagc agcttcaagt cccaggaattt gaacgagagg aacgaagctt cagatttgc 600
 ggaaagactc cggggaggagg tgacaaagctt aaggatggag ttgcaggtgt ccagcggctt 660
 tgtgtcaac acgtgccttcc aaaagtggat caatttccaa cgaagtgtctt actacttcgg 720
 caagggcacc aagcagtggg tccacgccccg gtatgcctgt gacgacatgg aagggcagct 780
 ggtcagcatc cacagccccgg aggagcagga cttcttgacc aacgcatttgc gccacaccgg 840
 ctcctggatt ggccttcgga acttggaccc ttatctggg tggatggag 900
 ccacgtggac tacagcaact gggctccagg ggagccacc accgggagcc agggcgagga 960
 ctgcgtgtatg atgcggggctt ccgggtcgctg gaacgacgccc ttctgcgacc gtaagctggg 1020
 cgcctgggtg tgcgaccggc tggccacatg cagccgcca gccagcgaag gttccggaa 1080
 gtccatggga cctgatttcaa gaccagaccc tgcggccgc ctgcaccc cctctgcccc 1140
 ttcactctt tgacgtatggaa tacagccagg cccagagcaa gaccctgaag acccccaacc 1200
 acggcctaaa agcctctttt tggctgaaatg tccctgtga cattttctgc cacccaaacg 1260
 gaggcagctg acacatctcc cgctctcta tggccctgc ctteccagga gtacacccca 1320
 acagcaccctt ctccagatgg gagtcccccc aacagcaccct ttcctcagatg agagtacacc 1380
 ccaacagcac cctctccaga tgagagtaca ccccaacagc accctctcca gatgagagta 1440
 cacccaaaca gcaccctctc cagatgcagc cccatctctt cagcaccaccg ggacctgagt 1500
 atcccccagct caggtggta gtcctcctgt ccagcctgca tcaataaaat gggcagtgaa 1560

tggcctccc

1569

<210> 21
<211> 321
<212> PRT
<213> Homo sapiens

<400> 21
Met Glu Glu Gly Gln Tyr Ser Glu Ile Glu Glu Leu Pro Arg Arg Arg
1 5 10 15

Cys Cys Arg Arg Gly Thr Gln Ile Val Leu Leu Gly Leu Val Thr Ala
20 25 30

Ala Leu Trp Ala Gly Leu Leu Thr Leu Leu Leu Leu Trp His Trp Asp
35 40 45

Thr Thr Gln Ser Leu Lys Gln Leu Glu Glu Arg Ala Ala Arg Asn Val
50 55 60

Ser Gln Val Ser Lys Asn Leu Glu Ser His His Gly Asp Gln Met Ala
65 70 75 80

Gln Lys Ser Gln Ser Thr Gln Ile Ser Gln Glu Leu Glu Glu Leu Arg
85 90 95

Ala Glu Gln Gln Arg Leu Lys Ser Gln Asp Leu Glu Leu Ser Trp Asn
100 105 110

Leu Asn Gly Leu Gln Ala Asp Leu Ser Ser Phe Lys Ser Gln Glu Leu
115 120 125

Asn Glu Arg Asn Glu Ala Ser Asp Leu Leu Glu Arg Leu Arg Glu Glu
130 135 140

Val Thr Lys Leu Arg Met Glu Leu Gln Val Ser Ser Gly Phe Val Cys
145 150 155 160

Asn Thr Cys Pro Glu Lys Trp Ile Asn Phe Gln Arg Lys Cys Tyr Tyr
165 170 175

Phe Gly Lys Gly Thr Lys Gln Trp Val His Ala Arg Tyr Ala Cys Asp
180 185 190

Asp Met Glu Gly Gln Leu Val Ser Ile His Ser Pro Glu Glu Gln Asp
195 200 205

Phe Leu Thr Lys His Ala Ser His Thr Gly Ser Trp Ile Gly Leu Arg
210 215 220

Asn Leu Asp Leu Lys Gly Glu Phe Ile Trp Val Asp Gly Ser His Val
225 230 235 240

Asp Tyr Ser Asn Trp Ala Pro Gly Glu Pro Thr Ser Arg Ser Gln Gly
245 250 255

Glu Asp Cys Val Met Met Arg Gly Ser Gly Arg Trp Asn Asp Ala Phe
260 265 270

Cys Asp Arg Lys Leu Gly Ala Trp Val Cys Asp Arg Leu Ala Thr Cys
275 280 285

Thr Pro Pro Ala Ser Glu Gly Ser Ala Glu Ser Met Gly Pro Asp Ser
290 295 300

Arg Pro Asp Pro Asp Gly Arg Leu Pro Thr Pro Ser Ala Pro Leu His
305 310 315 320

Ser

<210> 22

<211> 1076

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (1)..(1076)

<223> n = g, a, c or t

<400> 22

atcagcacga atacattcac gtccacaac acatcaacta ccaacaccat caccacgagc 60
acattcatgc ccaacaacac atcaaccacc aacacccttg ccacaaacac attcatgtct 120
aacaacacat caattaccaa caccagcgcc acgaacacat tcacgtccat caacacatca 180
accaccaaca ccatcagcac gggcacattc acatccaata acacatcaac taccaacacc 240
agcaccatga acacattcat gcccacaac acgtaaaaccc ctaacactgt caccacaaac 300
accttacagc cggcagaacg ccagtcacta acaccatcgc catcagcact tcgtggtag 360
caacacctca gctgacgcca atgtcaccac aaacacctca tggccagaag cagtcacc 420
accaacaccc ttattataaa tacattcttg accatcaatg cttcaactgc tgacaccatt 480
accataaata catccatggc cagcaactact tcaatcacca acaccatgac cggcggcag 540
tcagcggcca tcactgtcac cacaacacc ttcatatcca ataacacttc aaccaccate 600
atcaccacaa acacccata gccaacagtg cctcagccac caaccccatc atgacaaaca 660
cctcatggcc agcagcactt caaccaccaaa caaaccctc caaggtcagg aacaccttca 720
tcaccgacat cattaacaga ggtacccacc accagcagca gtttatctcc accacccaca 780
ccacagccaa caccatctt accaaccaca ccagccgtgt ctcatcaact ggcacccgaca 840
gaaaaaccag tgctgtggcc aggtccacca gggattactt tccccaaagca ccatccctac 900
caacagccct ggtcatcata actggcagaa cccgccaaac cagcactcct agccaatgtc 960
tggaaattt ngatnatttt cttccagtgg gaggctntgg tcaggagagc caatgggatt 1020
gcaagactag gtcccaataat ccctcaatat ggtctttt cccctttccc cccacc 1076

<210> 23

<211> 476

<212> DNA

<213> Homo sapiens

<400> 23

aggtacgccc ggacgttcaa cgacttactg gggagagaaa gaaaaggaac gggagctgag 60
agctggagt ggagtatgaa gaccaaggaa ttctcttaaa gacctgagca gttatctgga 120
actcctcaca aaatcacagt aatggatatt atttccctgt tcctactcta cactggcat 180
agatgttatg gacatcttct ggtccacca acacccctgc aaggcagata tgatacactc 240
cttccaccta tggagaacgg aggtccaaag aggttaggtg accctcagga aacacagatg 300
agaggtcccc gcccagtctg cccagctctg aaatcttcca tggcaactcc ctttagggcga 360
tcctgagtct agcctgtaca ggcagttcat gtgggtgtat ttgaaataaaa tccctttcct 420
ccagaataaa aaaaaaaaaaaa aatgaaaaat tggaaaggaa aaaaaa 476

<210> 24
<211> 421
<212> DNA
<213> Homo sapiens

<400> 24
ccaccaacag tcagaggcca aggaagctgt tggctaaaa ggtggtctat gttggcgtct 60
ggatccctgc ctcctgtcg actattcccg acttcatctt tgccaacgtc a诶tgaggcag 120
atgacagata tatctgtgac cgcttctacc ccaatgactt gtgggtgggt gtgttccagt 180
ttcagcacat catggttggc cttatcctgc ctggatttgt ctcctgtcc tgctattgca 240
ttatcatctc caagctgtca cactccaagg gccaccagaa gcgcaggccc ctcaagacca 300
cagtcatctt catcctggct ttcttcgcct gttggctgcc ttactacatt gggatcagca 360
tcgactcctt catcctcctg gaaatcatca agcaagggtg tgagtttag aacactgtgc 420
a 421

<210> 25
<211> 8747
<212> DNA
<213> Homo sapiens

<400> 25
caattctgaa tcctgcctt tgcacttaat gtttcataag tatttccccca tgcactaaa 60
aattcttcca aataacatc acgatgtcca tatggattt cagatgtgga tgaaccaaaa 120
tcttgcaac tattccacta acagtggta ttttagggatg ttcagacatt tcactattta 180
aaaaaaaaatg ttccacaaaa tacctttgtg gcataagttt ttatgagtgg agttactgtt 240
ctgaagttcc tgctgaatag aaaatgctt ccagtggcgtc tgcccaagg cacattcccc 300
tcagtgacaa gcgagagaca gctggcttt tcaaattccgg agaccaaata ttatcttga 360
aaaaaaaaatgg attttgctt aattttgttag tcaccaaata gcatctcatt gttctttaa 420
ttatctgctt ctttttagta gagatcccta aaaagatctg aaaggagtct tcagataaaag 480
gaaggagctt tctttgtct gtctacaatc aacaaatatt tattatgcaa accatttgc 540
tccgagtttt ctcccttttcc ccttttggc cagatgggg agatctcacc ttcaggttt 600
tagacatcgt gcagggggaga gttttgaggt agggtgcagc ttacggtcca ggataaaaaca 660
tactgattct gcccactacca ggctttgtga aaagcaagtc atgaaaacgc tctgaaattc 720
tagacccatca gtagatagga tctaccgtgt ctataaaaaat atgaagatcc ttaagtttta 780
ttaaagattc gaaaaaaatg aaagtgtttt tacgggtttt tttcattttt tatttcttac 840
cgttatcgtt tattataaaag gatattataa aggatacaga tgaagagata cgtaatgcaa 900
ggcctgtgag aaggggcggtc gagcttccga aaccttcccg acccaccacc ctccaaagaac 960
ctggagtttc tttttttttt ttaattctt caaatgtaat attagaattt attttatctg 1020
gccatttagtg tgcgtctaa ctcgttcgtt tctgagagtc ccatctcccg gcccgggata 1080
tcatcttcc tgcgtcgtt aaagtgcaga gtagatgaga acctttaacc accaacattt 1140
gggaggggtc ccagacaaaag gggtaagtc atgctctgtc gagaaaaaggt tccctgcctc 1200
cgaactacat ctggAACACT ccagtaaatg tttcctctt tgcataatgaa aagagggttc 1260
gtgtgttagag tgcgtctgg gcaatccctc tccctgggac catttcgggg tagggcctc 1320
tggggtccgt gtcgcacgc acgcgcctcg gtcccagctc tccctgcagc gggccacccc 1380
gcctgcggac gcagtttctc gccccggccc cacactcgct ccccccggccc acccagtctc 1440
cgccggggag ggaagtggcg cgagggggaa agcaactgtct ggcgcggccac tgcaaacctc 1500
agccagtcgt agatcgcttt aaacgtctga ccccccacccc cactccggcc cggccagttc 1560
ttcaacctaa tttctgattc gtgcacaaagc ttgtcctctg ctcaaatcg tggaaagacgc 1620
cgagtatggg gaccgaagac ctgggttcaa gccccggctt gaatccctgc ccatccctgg 1680
catttcatct ctccgggctt atttctgtgt ttctccgaat gccccggctt tctgggttac 1740
gctggatccc caacgcctag aacagtgcgt ggcacgcagt tgcgtcttct ataaatatcg 1800
gactaaatgc atctctgtga tggtaatacc cacacgggtgt tgcgtatgg aatgtgtat 1860
tctgtgcaag ttccttagtga tctgttacaa aaagtactgg tgcgtatgg tattatgaaa 1920
taaagcatac ttttaggata ataaagcact attcgcgtt tggtaaccgc tattatgaaa 1980
ttactgagca atacatatct acatctgtac agtctccaga attatgccaa atcctacctt 2040
cttctgaaag tatctctaa ttatctgcac ctgcacccat tgcgtatgg aatgtgtat 2100
tatacgatca tccctccgaag gaaaggatct ttactctttt tgcgtatgg tgcgtatgg 2160
tctgtgaaa ggcggggggaa atggcggtt ggaagcttgg ccctacttcc agcattgccc 2220
cctactgggtt gggtaactcc agcaagtgcac tcccttccttcc tggcctcag tgcgtatgg 2280
gtagcattcc cagggtctgga attccatcca ctttagcaag gatggacgcg ccacagagag 2340

acgcgttcct agcccgcgct tcccacctgt cttcaggcgc atccccgttc cctcaaaactt 2400
aggaaatgcc tctgggaggt cctgtccggc tccggactca ctacccgacca cccgcaaaaca 2460
gcagggtccc ctgggcttcc caagcccgcc acctctccgc cccgccccctg cgccctcctt 2520
cctcgctct gcccctctcc cccaccccgcc ttctccctc cccgccccag cggcgcatgc 2580
gccgcgtcg gagcgtgtt ttataaaaagt ccggcccgcc ccaagaaactt cagttgttg 2640
gctgcggcag caggtagcaa agtgcacccg aggccctgag tgctccagta gccaccgc 2700
ctggagaacc agcggttacc atggagggga tcagtgtaag tccagttca acctgtttg 2760
tcataaatgt acaaacgtt gaacttagag cgcagccct ctccgagcgg gcagaagcgg 2820
ccaggacatt ggaggtaccc gtactccaaa aaagggtcac cgaaaggagt tttcttgacc 2880
atgcctatat agtgcgggt ggtggggggg gacgaggatt ggaatcttt tctctgttag 2940
tcgaggagaa acgactggaa agagcgttcc agtggctgca tggctctccc ccttgagtcc 3000
cgccgcgcgc ggcggcttgc acgctgtttg caaacgttaag aacattctgt gcacaagtgc 3060
agagaaggcg tgccgcgtgc ctggggactc agaccacgg tctttccctt ggggaagcgg 3120
ggatgtctt gagcgagttt cattgtctga atttagagc ggagggcggc gtgcctggc 3180
tgagttccca ggaggagatt gcgcccgtt taactcggg gtaagcgc tggtgactgt 3240
tcttgacact gggtgcgtgt ttgttaaact ctgtgcggcc gacggagctg tgccagtctc 3300
ccagcacagt aggcagaggg cgggagaggc gggtgacccc accgcgcga tcctctgagg 3360
ggatcgagtg gtggcagcag ctaggagttt atccgcggc gcgtttggg tttgaggggg 3420
aaacctccc gccgtccgaa gcgcgcctt tccccacggc cgcgagtggg tcctgcagtt 3480
cgagagttt gggtgcgtgca gaggtcagecg gagtggtttt acctccctt tgacaccgcg 3540
cagctgccag ccctgagatt tgcgtccgg gatataggagc gggtaacggg tgagggcgg 3600
gggcggtaaacc gaccgcacct gggctgccc gtcgcggcc cgaagactgg caggtgcaag 3660
tggggaaacc gtttggctt ctccgagttc agttgtgtat ttaaccgtc ggtggttcc 3720
agaaacctt taaaaccctt ttgtctaggaa gttttgtt tcctgtcagcg gcgcgeaatt 3780
caaagacgtc cgccgcggag ccgcggcgtc gctcccagc accctgtggg acagagctg 3840
gcgtgtcgcc cagcggagcc cctgcagcgc tgcttgcggg cggttggcgt gggtgttagt 3900
ggcagccgcg gggcccggg gctggacgac ccggcccccc gcgtgcccac cgcctggagg 3960
cttecaagtc cccacccccc gccgggttaa ctggateagt ggggggtaa tggaaaccca 4020
cccgggagag tgagggaaatg aaacttgggg cgaggaccac gggtgcagac cccgttacct 4080
tctccaccca gaaaaatgcc cgcgtcccta acgtccaaa cgcgcgaatg gataaacacg 4140
aggatggcaa gagaccccaca caccggagga gcccggcgtt gggggaggag gtgcctttg 4200
ttcattttt gacactcccc cccaaatatac cccaaagcacc gaaggccct egtttaaga 4260
ccgcatttc ttacccact acaagtgtt tgaagcccg aatggttt attaggcag 4320
gggtggaaa attaagttt tgccctttag gagaatgagt ctttgcacg ccccccctt 4380
ccccccgtga tctcccttc tccctcttc cctccctggg cgaaaaactt ttacaaaaaa 4440
gttaatcact gcccctecta gcagcaccca ccccaccccc cacgcgcgtt gggagtggcc 4500
tctttgtgtg tattttttt ttccctcttaa ggaagggttt tttcttccc tctagtggc 4560
ggggcagagg agttagccaa gatgtgactt taaaaccctc agcgtctcag tgccttttg 4620
ttctaaacaa agaattttgt aattggttt accaaagaag gatataatga agtcaactatg 4680
ggaaaagatg gggaggagag ttgttaggatt ctacattaat tctcttgc tcttagccca 4740
ctacttcaga atttcctgaa gaaagcaagc ctgaatttgt ttttaaatt gctttaaaaaa 4800
attttttaa ctgggttaat gcttgctgaa ttggaaagtga atgtccattc cttgcctct 4860
tttgcagata tacacttcag ataactacac cgagggaaatg ggctcagggg actatgactc 4920
catgaaggaa ccctgtttcc gtgaagaaaa tgctaatttca aataaaatct tccgtccac 4980
catctactcc atcatcttct taactggcat tggggcaat ggattggtca tccgtgtcat 5040
gggttaccag aagaaactga gaagcatgac ggacaagtac aggtgcacc tgcgtggc 5100
cgaccccttc ttgtcatca cgcttccctt ctggcagtt gatccgtgg caaactggta 5160
cttgggaac ttcttatgca aggcaatcc tgcatttac acagtcaacc tctacagcag 5220
tgtctctatc ctggcttca tcaatgttgc ccgttacccg gcatgtcc acgcccacca 5280
cagtcagagg ccaaggaagg tgggtgtga aaaggtgtc tatgtggcg tctggatccc 5340
tgccctcttgc ctgactattc ccgacttcat tttgccaat gtcagtgagg cagatgacag 5400
atataatgtt gaccgttctt accccaaatga ttgtgggtg gttgtgttcc agtttcagca 5460
catcatgtt ggccttattcc tgccttgtt tgcatttgc tccctgtatt gcatatcat 5520
ctccaagctg tcaactccca agggccacca gaagcgcac gcccctcaaga ccacagtcat 5580
cctcatcttgc gtttcttgc cctgttgcgtt cccttactac attggatca gcatcgactc 5640
cttcatcttc ctggaaatca tcaagcaagg gtgtgagttt gagaacactg tgcacaagtgc 5700
gatttccatc acccgaggccc tagcttctt ccactgttgc tgaacccca tcccttatgc 5760
tttccttggg gccaaattta aaacctctgc ccagcacca ctcacctctg tgagcagagg 5820
gtccagccctc aagatcctct ccaaaggaaa gcgaggtggaa cattcatctg tttccactga 5880
gtctgagttct tcaagttttt actccagcta acacagatgt aaaagacttt tttttatacg 5940
ataaataact ttttttaaq ttacacattt ttcatgatataa aagactgac caatattgt 6000

<210> 26
<211> 568
<212> PRT
<213> *Homo sapiens*

<400> 26
Met Asp Val Asp Glu Gly Gln Asp Met Ser Gln Val Ser Gly Lys Glu
1 5 10 15

Ser Pro Pro Val Ser Asp Thr Pro Asp Glu Gly Asp Glu Pro Met Pro
20 25 30

Val Pro Glu Asp Leu Ser Thr Thr Ser Gly Ala Gln Gln Asn Ser Lys
 35 40 45

Ser Asp Arg Gly Met Ala Ser Asn Val Lys Val Glu Thr Gln Ser Asp
 50 55 60

Glu Glu Asn Gly Arg Ala Cys Glu Met Asn Gly Glu Glu Cys Ala Glu
 65 70 75 80

Asp Leu Arg Met Leu Asp Ala Ser Gly Glu Lys Met Asn Gly Ser His
 85 90 95

Arg Asp Gln Gly Ser Ser Ala Leu Ser Gly Val Gly Gly Ile Arg Leu
 100 105 110

Pro Asn Gly Lys Leu Lys Cys Asp Ile Cys Gly Ile Val Cys Ile Gly
 115 120 125

Pro Asn Val Leu Met Val His Lys Arg Ser His Thr Gly Glu Arg Pro
 130 135 140

Phe Gln Cys Asn Gln Cys Ser Ser Ala Leu Ser Gly Val Gly Gly Ile
 145 150 155 160

Arg Leu Pro Asn Gly Lys Leu Lys Cys Asp Ile Cys Gly Ile Val Cys
 165 170 175

Ile Gly Pro Asn Val Leu Met Val His Lys Arg Ser His Thr Gly Glu
 180 185 190

Arg Pro Phe Gln Cys Asn Gln Cys Gly Ala Ser Phe Thr Gln Lys Gly
 195 200 205

Asn Leu Leu Arg His Ile Lys Leu His Ser Gly Glu Lys Pro Phe Lys
 210 215 220

Cys His Leu Cys Asn Tyr Ala Cys Arg Arg Asp Ala Leu Thr Gly
 225 230 235 240

His Leu Arg Thr His Ser Val Gly Lys Pro His Lys Cys Gly Tyr Cys
 245 250 255

Gly Arg Ser Tyr Lys Gln Arg Ser Ser Leu Glu Glu His Lys Glu Arg
 260 265 270

Cys His Asn Tyr Leu Glu Ser Met Gly Leu Pro Gly Met Tyr Pro Val
 275 280 285

Ile Lys Glu Glu Thr Asn His Asn Glu Met Ala Glu Asp Leu Cys Lys
 290 295 300

Ile Gly Ala Glu Arg Ser Leu Val Leu Asp Arg Leu Ala Ser Asn Val
 305 310 315 320

Ala Lys Arg Lys Ser Ser Met Pro Gln Lys Phe Leu Gly Asp Lys Cys
 325 330 335

Leu Ser Asp Met Pro Tyr Asp Ser Ala Asn Tyr Glu Lys Glu Asp Met
 340 345 350

Met Thr Ser His Val Met Asp Gln Ala Ile Asn Asn Ala Ile Asn Tyr
 355 360 365

Leu Gly Ala Glu Ser Leu Arg Pro Leu Val Gln Thr Pro Pro Gly Ser
 370 375 380

Ser Glu Val Val Pro Val Ile Ser Ser Met Tyr Gln Leu His Lys Pro
 385 390 395 400

Pro Ser Asp Gly Pro Pro Arg Ser Asn His Ser Ala Gln Asp Ala Val
 405 410 415

Asp Asn Leu Leu Leu Ser Lys Ala Lys Ser Val Ser Ser Glu Arg
 420 425 430

Glu Ala Ser Pro Ser Asn Ser Cys Gln Asp Ser Thr Asp Thr Glu Ser
 435 440 445

Asn Ala Glu Glu Gln Arg Ser Gly Leu Ile Tyr Leu Thr Asn His Ile
 450 455 460

Asn Pro His Ala Arg Asn Gly Leu Ala Leu Lys Glu Glu Gln Arg Ala
 465 470 475 480

Tyr Glu Val Leu Arg Ala Ala Ser Glu Asn Ser Gln Asp Ala Phe Arg
 485 490 495

Val Val Ser Thr Ser Gly Glu Gln Leu Lys Val Tyr Lys Cys Glu His
 500 505 510

Cys Arg Val Leu Phe Leu Asp His Val Met Tyr Thr Ile His Met Gly
 515 520 525

Cys His Gly Cys His Gly Phe Arg Asp Pro Phe Glu Cys Asn Met Cys
 530 535 540

Gly Tyr His Ser Gln Asp Arg Tyr Glu Phe Ser Ser His Ile Thr Arg
 545 550 555 560

Gly Glu His Arg Tyr His Leu Ser
 565

<210> 27
 <211> 350
 <212> DNA
 <213> Homo sapiens

<400> 27
 ccagagagta agaataggag gagaaaaacat gctgcagatg taggcggggc ccagattgt 60
 gacagcatag aaataatttt gggctttcc tggtaaatttc ctcttagcttc taggatacat 120
 ttttttaac ttttgtctt gagataattt tagatttaca gaagagttgc aaaaagagta 180
 gagagagtcc ctgtacaccc ttcacccagc ttccctctact gctaacatct tacataatca 240
 tagttcaac ctgagaaattt agcatgggtt acagtcctat taatgaaacc ccaggctta 300
 ttcagatttc accaggtttt cagtaacatc ctttatctgt ttcagaattt 350

<210> 28
 <211> 850
 <212> DNA
 <213> Homo sapiens

<400> 28

gaattccggc aaaatgcatg acagtaacaa tgtggagaaa gacattacac catctgaatt 60
gcctgcaaac ccagggtgtc tgcatcaaa agagcattct attaaagcta ccttaatttg 120
gcgcttattt ttcttaatca ttttctgac aatcatagtg tgtggaatgg ttgctgcttt 180
aagcgcaata agagctaact gccatcaaga gccatcatgt tgcattcaag ctgcattgccc 240
agaaagctgg attggtttc aaagaaaagtg tttcttattt tctgatgaca ccaagaactg 300
gacatcaagt cagaggccccatgtgactcaca agatgtgtat cttgctcagg ttgaaagctt 360
ccaggaactg aatttcctgt tgagatataa aggccatct gatcaactgaa ttggctgag 420
cagagaacaa ggccaaccat ggaatggat aaatggtaact gaatggacaa gacagttcc 480
tatctgggaa gcaggagagt gtgcctattt gaatgacaaa ggtgccagta gtgcaggca 540
ctacacagag aggaagtggaa ttgttccaa atcagatata catgtctaga ttttacagca 600
aagccccaaac taatcttttag aagcatattg gaaactgataa ctccatTTTaaatgagcaa 660
agaatttttattt tcttataccaa acaggttat gaaaatatgc tcaatatcac taataactgg 720
gaaaatacaa atcaaaaatca tagaaaaata ttacctgttt tcacggctgaaatattacct 780
gttctccac tgctaatgac atacccgaga atgagtaatt tataaataaa agagatttaa 840
ttgaaaaaaaaaa 850

<210> 29

<211> 191

<212> PRT

<213> Homo sapiens

<400> 29

Met His Asp Ser Asn Asn Val Glu Lys Asp Ile Thr Pro Ser Glu Leu
1 5 10 15

Pro Ala Asn Pro Gly Cys Leu His Ser Lys Glu His Ser Ile Lys Ala
20 25 30

Thr Leu Ile Trp Arg Leu Phe Phe Leu Ile Met Phe Leu Thr Ile Ile
35 40 45

Val Cys Gly Met Val Ala Ala Leu Ser Ala Ile Arg Ala Asn Cys His
50 55 60

Gln Glu Pro Ser Val Cys Leu Gln Ala Ala Cys Pro Glu Ser Trp Ile
65 70 75 80

Gly Phe Gln Arg Lys Cys Phe Tyr Phe Ser Asp Asp Thr Lys Asn Trp
85 90 95

Thr Ser Ser Gln Arg Phe Cys Asp Ser Gln Asp Ala Asp Leu Ala Gln
100 105 110

Val Glu Ser Phe Gln Glu Leu Asn Phe Leu Leu Arg Tyr Lys Gly Pro
115 120 125

Ser Asp His Trp Ile Gly Leu Ser Arg Glu Gln Gly Gln Pro Trp Lys
130 135 140

Trp Ile Asn Gly Thr Glu Trp Thr Arg Gln Phe Pro Ile Leu Gly Ala
145 150 155 160

Gly Glu Cys Ala Tyr Leu Asn Asp Lys Gly Ala Ser Ser Ala Arg His
165 170 175

Tyr Thr Glu Arg Lys Trp Ile Cys Ser Lys Ser Asp Ile His Val
180 185 190

<210> 30
 <211> 558
 <212> DNA
 <213> Homo sapiens

<220>
 <221> modified_base
 <222> (1)..(558)
 <223> n = g, a, c or t

<400> 30
 ccatgggatg gctcttctga ccattgggg ccagggcagg ccagggcagg cttagggcag 60
 caaggaccag gccaaagggg cagggcctcc tttggagggg ttgaggggta categtcggc 120
 tgggtttgc atccagggtt ccagcaggat ctctccagt gagggtcgaa aagaaggaaa 180
 gggggccagg cacccggcggaa ttagggcaca gcaatctgg gaaaaacatg ggcttggaa 240
 gtggagctca gcttccagaa tctcctggc cctctcaaag gaaatgtccc cacacaccat 300
 gtcatagagg agatgcccc gtgaccagac agtggccggg agtgcattgt actgggtcg 360
 agagatccac tctggggggc tgtacaccct tgtcccatca aagtcaatgtt agggttcatc 420
 atgaagcagg gcaccagaac caaaatcaat gagtttgca cagccacggc gtaggtctat 480
 caggatgntc tcatcttgc tgtaacatgt gacaactnca cggaaatgg cagtgttgg 540
 tggctgccac tactttgg 558

<210> 31
 <211> 2088
 <212> DNA
 <213> Homo sapiens

<400> 31
 gaattcggca cgagcgcgcg gcaaatctca acgctgcggcc gtctgcgggc gttccgggc 60
 caccagtttc tctgctttcc accctggcgc ccccccggcc tggctcccca gctgcgtgc 120
 cccggcgtc cacccctgc gggcttagcg gttcaatctg gtcacatctg cgcacgcggc 180
 cttccatgtt gaccaagccct ctacaggggc cttccggcc ccccccggacc cccacgcggc 240
 cggccaggagg caaggatcgg gaagcgttcg aggccggata tegactcgcc cccctccctgg 300
 gtaagggggg ctttggcacc gtcttcgcag gacaccggct cacatcgaa ctccagggtgg 360
 ccatcaaagt gattccccgg aatcgtgtc tgggctggc cccctgtca gactcagtca 420
 catgcccact cgaagtcgca ctgttatggaa aagtgggtgc aggtgggtggg caccctggcg 480
 tggatccgccc gtttgcgttggg tttgagacac aggaaggctt catgctggc ctcgagcgcc 540
 ctttggccgc ccaggatctc tttgactata tcacagagaa gggcccaactg ggtgaaggcc 600
 caagccgtc cttttttggc caagtagtgg cagccatcca gcaactggccat tcccggtgg 660
 ttgtccatcg tgacatcaag gatgagaaca ttctgataga cctacggccgt ggctgtggca 720
 aactcattga ttttgggttgc ggtgcctgc ttcatgatga accctacact gactttgtat 780
 ggacaagggt gtacagcccc ccagagtggc tctctcgaca ccagtaccat gcaactccgg 840
 ccactgtctc gtcactggc atccctctt atgacatggt gtgtggggac attccctttg 900
 agagggacca ggagattctg gaagctgagc tccactccc agcccatgtc tccccagact 960
 gctgtccctt aatccggccgg tgcctggccc ccaaaccctt tccccggacc tcactggaa 1020
 agatcctgtc ggacccctgg atgcaaaacac cagccggagga ttgttaccctt caaccctcc 1080
 aaaggaggcc ctggcccttt ggcctggc ttgttaccctt aagcctggcc tggcctggcc 1140
 tggcccccaa tggtcagaag agccatccca tggccatgtc acagggtatg atggacattt 1200
 gttgacttgg ttttacaggt cattaccagt cattaaagtc cagtattact aaggttaagg 1260
 attgaggatc aggggtttaga agacataaac caagttgccc cagttccctt cccaaatccta 1320
 caaaggagcc ttccctcccg aaccctgtgtt ccctgatttt ggagggggaa cttcttgctt 1380
 ctcatttgc taaggaagtt tattttggc aagttgttcc cattttggc cccggactc 1440
 ttatTTTgtt gatgtgtcac cccacattgg caccctctac taccaccaca caaacttagt 1500
 tcataatgtt ttacttggc aagggtgtt cccttccat accccagtag cttttatTTT 1560
 agtaaaggga ccctttcccc tagcttaggg tcccatattt ggtcaagctg cttacactg 1620
 tcagccagg attttttatt ttgggggagg taatgcctg ttgttaccctt aaggcttctt 1680
 tttttttttt tttttttttt ggtgagggaa ccctactttt ttatcccaag tgctttattt 1740
 ctggtgagaa gaaccttaat tccataattt gggaaatgg ggaagatgg caccacccga 1800
 caccaccaga caataggatg ggtatggatgg tttttgggg gatgggtctg gggaaataag 1860
 gcttgcgtt tgtttccctg gggcgctccc tccaaatTTTt cagatTTTt cAACCTCCTC 1920

ctgagccggg attgtccaat tactaaaatg taaataatca cgtattgtgg ggaggggagt 1980
tccaaagtgtg ccctcctttt tttcctgcc tggattattt aaaaagccat gtgtggaaac 2040
.ccactatcca ataaaagtaa tagaatcaga aaaaaaaaaa aaaaaaaaa 2088

<210> 32
<211> 334
<212> PRT
<213> Homo sapiens

<400> 32
Met Leu Thr Lys Pro Leu Gln Gly Pro Pro Ala Pro Pro Gly Thr Pro
1 5 10 15

Thr Pro Pro Pro Gly Gly Lys Asp Arg Glu Ala Phe Glu Ala Glu Tyr
20 25 30

Arg Leu Gly Pro Leu Leu Gly Lys Gly Gly Phe Gly Thr Val Phe Ala
35 40 45

Gly His Arg Leu Thr Asp Arg Leu Gln Val Ala Ile Lys Val Ile Pro
50 55 60

Arg Asn Arg Val Leu Gly Trp Ser Pro Leu Ser Asp Ser Val Thr Cys
65 70 75 80

Pro Leu Glu Val Ala Leu Leu Trp Lys Val Gly Ala Gly Gly His
85 90 95

Pro Gly Val Ile Arg Leu Leu Asp Trp Phe Glu Thr Gln Glu Gly Phe
100 105 110

Met Leu Val Leu Glu Arg Pro Leu Pro Ala Gln Asp Leu Phe Asp Tyr
115 120 125

Ile Thr Glu Lys Gly Pro Leu Gly Glu Gly Pro Ser Arg Cys Phe Phe
130 135 140

Gly Gln Val Val Ala Ala Ile Gln His Cys His Ser Arg Gly Val Val
145 150 155 160

His Arg Asp Ile Lys Asp Glu Asn Ile Leu Ile Asp Leu Arg Arg Gly
165 170 175

Cys Ala Lys Leu Ile Asp Phe Gly Ser Gly Ala Leu Leu His Asp Glu
180 185 190

Pro Tyr Thr Asp Phe Asp Gly Thr Arg Val Tyr Ser Pro Pro Glu Trp
195 200 205

Ile Ser Arg His Gln Tyr His Ala Leu Pro Ala Thr Val Trp Ser Leu
210 215 220

Gly Ile Leu Leu Tyr Asp Met Val Cys Gly Asp Ile Pro Phe Glu Arg
225 230 235 240

Asp Gln Glu Ile Leu Glu Ala Glu Leu His Phe Pro Ala His Val Ser
245 250 255

Pro Asp Cys Cys Ala Leu Ile Arg Arg Cys Leu Ala Pro Lys Pro Ser
260 265 270

Ser Arg Pro Ser Leu Glu Glu Ile Leu Leu Asp Pro Trp Met Gln Thr
275 280 285

Pro Ala Glu Asp Val Thr Pro Gln Pro Leu Gln Arg Arg Pro Cys Pro
290 295 300

Phe Gly Leu Val Leu Ala Thr Leu Ser Leu Ala Trp Pro Gly Leu Ala
 305 310 315 320

Pro Asn Gly Gln Lys Ser His Pro Met Ala Met Ser Gln Gly
325 330

<210> 33
<211> 1215
<212> DNA
<213> Homo

```

<400> 33
ggggggactt gagtatcctt tgttaccctc aggagatcct gaaaccagtc ccccatggat 60
actgagggct gactgtatag tcctatcctc acggaacttt cattctaatg ggggaagact 120
gactataaac aaaatatatag taataggtgg tggtaagttac cgtagagaag taacaaatgg 180
ggcaaagtga gttatacagc tccattctta gaaaccttgg agtactttc tttagttata 240
ctcggtgg tttccttttg tctcccttat tacatggac tctgacatgt gccccatagct 300
agggtgacag taggatctac ccgatagtag ggtggcagta ggatctaccc aaaaagcgctc 360
ctgctgatac aggaccaaag catcctgttgc ttctcgagcc tataaaaaaga gctaattgg 420
ttgcttctct taactgtggc ctccatcaact gtgttttggc tgattggta tgtcttggat 480
attctgtttc ttggaaacctt tgaatataca acactttact agggaaattag caatggaaagc 540
agagcaaaga tgtacagagg aaacaatgcg taactctgtat ggaatttgaag tcatgaggca 600
gcagagagct taaattacag cttaaaaaat ttttattttt tagagggaat ttacttggg 660
gtaacagcag taatagttaa cggagccaga atgcttgagt catataattg caaagcagag 720
ttgggagcaa cagatgctaa agagtagttg ctgtagttcc tctttgggtc gtaggagcag 780
ttgtcatatt actatatacgc tactgcatga agaagagttc tttagtgaggc ctgggtgatc 840
agctcttctt agtattctgt gtgaccccat ttgacctttt aacaaatccc taagtaaata 900
aatagccccct caggaaaact aagttttct ctgctgtttt ttgccttgag agagctataa 960
ctgtaataga ctatatttc tgaacatttt agtgcttgcc aatattttgt aatattttatg 1020
tttcctatata ttgtaatgaa cattcttctt ccggatcatt tttgtttaaa ttattgtttg 1080
atggataaaa gttcacctt tattgtataa aattgactga gattaattta tacacattga 1140
caatgggtaa atagaatttt tcagatttt aaaagctgaa ggatgccac gtaagcaaaa 1200
aaaaaaaaaaa aaaaaa 1215

```

<210> 34
<211> 3144
<212> DNA
<213> *Homo sapiens*

<400>	34	tcctctttcc	gtgcgcgagt	gcacagctcc	ggaggccccga	gccgaccctg	ggcggtccgg	60
tccggggc	ttgcagcctc	caaaccggca	gtgctataacc	gaactgcgcg	ccaagggtgg		120	
gagagctgac	ggcctgggccc	acccttcttc	cttcaactggg	caggcttga	ggtgcttgtc		180	
ggtctggact	gatgaaaatc	catatgacct	gaaagatgtc	tgaaaattcc	agtgcacagt		240	
attcatcttgc	tggttggact	gtcatcagtc	atgaggggtc	agatataaaaa	atgttgaatt		300	
ctgtgacccc	caactgacagc	tgtgagcccc	ccccagaatg	ttcatcttta	gagcaagagg		360	
agcttcaagc	attgcagata	gagcaaggaa	aaagcagccaa	aatggcaca	gtgcttatgg		420	
aagaaaactgc	ttatccagct	ttggaggaaaa	ccagctcaac	aattgaggca	gaggaacaaa		480	
agatacccgaa	agacagtatac	tatattggaa	ctgccagtg	tgattctgat	attgttaccc		540	
ttgagccacc	taagttagaa	gaaattggaa	atcaagaagt	tgtcattgtt	gaagaagcac		600	
agagttcaga	agactttaac	atgggcttct	cctctagcag	ccagtataact	ttctgtcagc		660	
cagaaaactgt	attttcatct	cagccatgtg	acgatgaatc	aagttagtgtat	gaaaccagta		720	
atcagccca	tcctgcctt	agacgacgccc	gtgcttaggaa	gaagaccgtt	tctgcttcag		780	

aatctgaaga	cggcgcttagtt	gctgaacaag	aaactgaacc	ttcttaaggag	ttgagtaaac	840
gtcagttcg	tagtggcttc	aataagtgtg	ttatacttgc	tttggtgatt	gcaatcagca	900
tgggatttgg	ccatttctat	ggcacaaattc	agattcagaa	ggtcaacag	ttagtcagaa	960
agatacatga	agatgaattt	aatgatatga	aggattatct	ttcccagtgt	caacaggaac	1020
aagaatctt	tatagattat	aagtcattga	aagaaaatct	tgcaaggtgt	tggacactta	1080
ctgaagcaga	gaagatgtcc	tttggaaactc	agaaaacgaa	cttgctaca	gaaaatcagt	1140
attnaagagt	atccctggag	aaggaagaaa	aagccttatac	ctcattacag	gaagagttaa	1200
acaaaactaag	agaacagatt	agaatattgg	aagataaagg	gacaagtact	gaatttagtt	1260
aagaaaaatca	gaaaacttaag	cagcatttgg	aagagggaaa	gcagaaaaaa	cacagcttcc	1320
tttagtcaaag	ggagactctg	ttgacagaag	caaagatgct	aaagagagaa	ctggagagag	1380
aacgactagt	aactacggct	ttaagggggg	aactccagca	gttaagtgg	agtcagttac	1440
atggcaagtc	agattctccc	aatgtatata	ctgaaaaaaaa	gaaaatagca	atcttacggg	1500
aaagactcac	tgagctggaa	cggaagctaa	ccttcgaaca	gcagcgttct	gatttgtggg	1560
aaagattgtt	tgttgaggca	aaagatcaaa	atggaaaaca	aggaacagat	gaaaaaaaaga	1620
aagggggcag	aggaagccac	agggctaaaa	ataagtcaaa	gaaaacattt	ttggggttcag	1680
ttaagggaaac	atttgatgcc	atgaagaatt	ctaccaagga	gtttgttaagg	catcataaag	1740
agaaaattaa	gcaggctaaa	gaagctgtga	agggaaaatct	gaaaaaattt	tcagattcag	1800
ttaaaatccac	tttcagacac	ttaaaagata	ccaccaagaa	tatctttgat	gaaaaggta	1860
ataaaaagatt	tgtgtctaca	aaagaagcag	ctgaaaaacc	aagaacagtt	tttagtgact	1920
atttacatcc	acagtataag	gcacctacag	aaaaccattt	aaggccctac	tatgcaaaaa	1980
gatggaaagga	agaaaagcca	gttcacttta	aagaattcag	aaaaaaataca	aattcaaaga	2040
aatgcagtcc	tgggcatgt	tgttagagaaa	attctcattt	tttcagaaag	gcttgttctg	2100
gtgttatttga	tttgtgtctaa	caagagtcca	tgagcctttt	taacacagt	gtgatcccta	2160
taaggatgg	tgaattttaga	cagataattt	aaaggatcat	gttaaaaagaa	ctggatactt	2220
tttgcgctg	gaacgaactt	gatcagttca	tcaataagtt	tttcttaaac	gggtgtttta	2280
tacatgatca	gaagcttttc	actgactttt	ttaatgtatgt	taagattatc	ttagggaaaca	2340
tgaaggaata	tgaagtagat	aatgatggag	tatttgagaa	gttggatgaa	tatatatata	2400
gacacttctt	tggtcacact	ttttccccctc	cata tgacc	cagggtcggtt	tacataaaac	2460
cgtgtcatta	cagtatgtt	taacattttgt	agattggata	cgatTTTAT	gatttgatga	2520
gtttcttgc	agtttaccgt	ttcttaagagt	tgtgttttat	ggccactgag	agaattcaga	2580
ataaaattgaa	agatggagtc	taaaaattat	tagctgttac	aaatggaaaca	atttcattat	2640
aacgtgatca	ctttgacttg	agcaaatttt	ttaatttttta	tcttaaaatc	agtttaagaat	2700
atataaaatc	ctacctttgg	ccaagtttgt	ttcttttcat	tatagtttat	atgaaaagat	2760
caccttaagt	gaaatttattt	tccttatttt	cctttaatct	tttatgtatt	tattcacttc	2820
tggaaagctag	gaatgagcaa	cacaaatttt	actctgaagt	cagaagagct	catatatata	2880
attctaattgt	cccacctatg	tccattccat	gtaccagctt	agttatatac	tagtcacata	2940
attatcttg	ataaaaggtag	aggcacaag	aggcaacta	acaagtcaaa	ttctaatgtg	3000
tgtacttcat	aataattttt	tatccatttt	catcttcttt	atctttatat	tctgtaaat	3060
gaaacttacc	taatcttcaa	atgttagctt	cattttttac	ctttgaaata	cttaatcttt	3120
ctqaataaaat	ataatqqtct	ataa				3144

<210> 35
<211> 755
<212> PRT
<213> *Homo sapiens*

<400> 35
Met Ser Glu Asn Ser Ser Asp Ser Asp Ser Ser Cys Gly Trp Thr Val
1 5 . 10 15

Ile Ser His Glu Gly Ser Asp Ile Glu Met Leu Asn Ser Val Thr Pro
20 25 30

Thr Asp Ser Cys Glu Pro Ala Pro Glu Cys Ser Ser Leu Glu Gln Glu
35 40 45

Glu Leu Gln Ala Leu Gln Ile Glu Gln Gly Glu Ser Ser Gln Asn Gly
50 55 60

Thr Val Leu Met Glu Glu Thr Ala Tyr Pro Ala Leu Glu Glu Thr Ser
 65 70 75 80
 Ser Thr Ile Glu Ala Glu Glu Gln Lys Ile Pro Glu Asp Ser Ile Tyr
 85 90 95
 Ile Gly Thr Ala Ser Asp Asp Ser Asp Ile Val Thr Leu Glu Pro Pro
 100 105 110
 Lys Leu Glu Glu Ile Gly Asn Gln Glu Val Val Ile Val Glu Glu Ala
 115 120 125
 Gln Ser Ser Glu Asp Phe Asn Met Gly Ser Ser Ser Ser Gln Tyr
 130 135 140
 Thr Phe Cys Gln Pro Glu Thr Val Phe Ser Ser Gln Pro Ser Asp Asp
 145 150 155 160
 Glu Ser Ser Ser Asp Glu Thr Ser Asn Gln Pro Ser Pro Ala Phe Arg
 165 170 175
 Arg Arg Arg Ala Arg Lys Lys Thr Val Ser Ala Ser Glu Ser Glu Asp
 180 185 190
 Arg Leu Val Ala Glu Gln Glu Thr Glu Pro Ser Lys Glu Leu Ser Lys
 195 200 205
 Arg Gln Phe Ser Ser Gly Leu Asn Lys Cys Val Ile Leu Ala Leu Val
 210 215 220
 Ile Ala Ile Ser Met Gly Phe Gly His Phe Tyr Gly Thr Ile Gln Ile
 225 230 235 240
 Gln Lys Arg Gln Gln Leu Val Arg Lys Ile His Glu Asp Glu Leu Asn
 245 250 255
 Asp Met Lys Asp Tyr Leu Ser Gln Cys Gln Gln Glu Gln Glu Ser Phe
 260 265 270
 Ile Asp Tyr Lys Ser Leu Lys Glu Asn Leu Ala Arg Cys Trp Thr Leu
 275 280 285
 Thr Glu Ala Glu Lys Met Ser Phe Glu Thr Gln Lys Thr Asn Leu Ala
 290 295 300
 Thr Glu Asn Gln Tyr Leu Arg Val Ser Leu Glu Lys Glu Glu Lys Ala
 305 310 315 320
 Leu Ser Ser Leu Gln Glu Glu Leu Asn Lys Leu Arg Glu Gln Ile Arg
 325 330 335
 Ile Leu Glu Asp Lys Gly Thr Ser Thr Glu Leu Val Lys Glu Asn Gln
 340 345 350
 Lys Leu Lys Gln His Leu Glu Glu Lys Gln Lys Lys His Ser Phe
 355 360 365
 Leu Ser Gln Arg Glu Thr Leu Leu Thr Glu Ala Lys Met Leu Lys Arg
 370 375 380

Glu Leu Glu Arg Glu Arg Leu Val Thr Thr Ala Leu Arg Gly Glu Leu
 385 390 395 400
 Gln Gln Leu Ser Gly Ser Gln Leu His Gly Lys Ser Asp Ser Pro Asn
 405 410 415
 Val Tyr Thr Glu Lys Lys Glu Ile Ala Ile Leu Arg Glu Arg Leu Thr
 420 425 430
 Glu Leu Glu Arg Lys Leu Thr Phe Glu Gln Gln Arg Ser Asp Leu Trp
 435 440 445
 Glu Arg Leu Tyr Val Glu Ala Lys Asp Gln Asn Gly Lys Gln Gly Thr
 450 455 460
 Asp Gly Lys Lys Lys Gly Gly Arg Gly Ser His Arg Ala Lys Asn Lys
 465 470 475 480
 Ser Lys Glu Thr Phe Leu Gly Ser Val Lys Glu Thr Phe Asp Ala Met
 485 490 495
 Lys Asn Ser Thr Lys Glu Phe Val Arg His His Lys Glu Lys Ile Lys
 500 505 510
 Gln Ala Lys Glu Ala Val Lys Glu Asn Leu Lys Lys Phe Ser Asp Ser
 515 520 525
 Val Lys Ser Thr Phe Arg His Phe Lys Asp Thr Thr Lys Asn Ile Phe
 530 535 540
 Asp Glu Lys Gly Asn Lys Arg Phe Gly Ala Thr Lys Glu Ala Ala Glu
 545 550 555 560
 Lys Pro Arg Thr Val Phe Ser Asp Tyr Leu His Pro Gln Tyr Lys Ala
 565 570 575
 Pro Thr Glu Asn His Ser Arg Pro Tyr Tyr Ala Lys Arg Trp Lys Glu
 580 585 590
 Glu Lys Pro Val His Phe Lys Glu Phe Arg Lys Asn Thr Asn Ser Lys
 595 600 605
 Lys Cys Ser Pro Gly His Asp Cys Arg Glu Asn Ser His Ser Phe Arg
 610 615 620
 Lys Ala Cys Ser Gly Val Phe Asp Cys Ala Gln Gln Glu Ser Met Ser
 625 630 635 640
 Leu Phe Asn Thr Val Val Ile Pro Ile Arg Met Asp Glu Phe Arg Gln
 645 650 655
 Ile Ile Gln Arg Tyr Met Leu Lys Glu Leu Asp Thr Phe Cys Arg Trp
 660 665 670
 Asn Glu Leu Asp Gln Phe Ile Asn Lys Phe Phe Leu Asn Gly Val Phe
 675 680 685
 Ile His Asp Gln Lys Leu Phe Thr Asp Phe Val Asn Asp Val Lys Ile
 690 695 700

Ile Leu Gly Asn Met Lys Glu Tyr Glu Val Asp Asn Asp Gly Val Phe
705 710 715 720

Glu Lys Leu Asp Glu Tyr Ile Tyr Arg His Phe Phe Gly His Thr Phe
725 730 735

Ser Pro Pro Tyr Gly Pro Arg Ser Val Tyr Ile Lys Pro Cys His Tyr
740 745 750

Ser Ser Leu
755

<210> 36
<211> 558
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1)..(558)
<223> n = g, a, c or t

<400> 36
ccatggatg gctttctga ccattggggg ccaggccagg ccaggccagg cttagggcag 60
caaggaccag gccaaagggg caggcctcc tttggagggg ttgagggta catcctcgcc 120
tgggtttgc atccaggggt ccagcaggat ctcttcagt gagggtcggg aagaaggttt 180
gggggccagg caccggcgga ttagggcaca gcaatcttg gaaaaacatg ggcttggaa 240
gtggagctca gtttccagaa tctctggtc cctctcaaag ggaatgtccc cacacaccat 300
gtcatagagg aggatgccca gtgaccagac agtggccggg agtgcatggt actgggtgtcg 360
agagatccac tctggggggc tgtacaccct tgtcccatca aagtcaagtgt agggttcatac 420
atgaagcagg gcaccagaac caaaaatcaat gagtttgca cagccacggc gttaggtctat 480
caggatgntc tcataccttga tgtcacgatg gacaactnca cgggaaatgg cagtgctgga 540
tggctgccac tactttgg 558

<210> 37
<211> 86
<212> PRT
<213> Homo sapiens

<220>
<221> MOD_RES
<222> (1)..(86)
<223> Xaa = any amino acid

<400> 37
Gln Val Val Ala Xaa Ile Gln His Cys His Ser Arg Gly Val Val His
1 5 10 15

Arg Asp Ile Lys Asp Glu Asn Ile Leu Ile Asp Leu Arg Arg Gly Cys
20 25 30

Ala Lys Leu Ile Asp Phe Gly Ser Gly Ala Leu Leu His Asp Glu Pro
35 40 45

Tyr Thr Asp Phe Asp Gly Thr Arg Val Tyr Ser Pro Pro Glu Trp Ile
50 55 60

Ser Arg His Gln Tyr His Ala Leu Pro Ala Thr Val Trp Ser Leu Gly
65 70 75 80

Ile Xaa Leu Tyr Asp Met
85

<210> 38
<211> 584
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1)..(584)
<223> n = g, a, c or t

<400> 38
aaataatcca ggcaggagaa gagaggaggg cacacttggc actccccctcc ccacaatacg 60
tgattattta catttttagta attggacaat cccggctcag gaggagggtt caagaatctg 120
caaaaatggg agggagcggc ccaggagaac aaacagcaag ctttatttcc cctagccat 180
cccccaaaaa accatccatc ccatcctagt gtctgggtt gtccgggtgt gtccatcttc 240
cattccttcc caaatttatgg aagtaagggtt cttctcacca gaataagagc acttgggata 300
acagagttagg gtccccctcac ccaaaaaaaaaa aaaaaaaaaan gaagccttgg ggtaacaaca 360
gggcattacc tccccccagaa taaaagaatcc tgggctgagg caggttaagca gcttgaccca 420
atatgggacc ctaggctagg ggaaagggtc ctttactaa aataaaagct actggggat 480
tggaaaggaaa gcacccttgc ccaagtaaga gcatatgaac taagtttngn tgngngtagt 540
aggaggngcc aatgtggggt gacacatcat cagaataaga gtcc 584

<210> 39
<211> 2052
<212> DNA
<213> Homo sapiens

<400> 39
cgcgcgcggc gaatctcaac gctgcgcgt ctgcggcgc ttccgggcca ccagtttctc 60
tgcttccac cctggcgcggccc cccagccctg gtcgttccac tgcgtgcgc cggcggtcca 120
cgccctgcgg gcttagcggg ttcagtggc tcaatctcg cagcgccacc tccatgttga 180
ccaaaggctct acaggggcct cccgcgcggcc cggggacccc cacgcgcggc ccaggaggca 240
aggatcggga agcgttgcag gccgagttt gactcgcccc cttctgggtt aaggggggct 300
ttggcaccgt ttctcgagga caccgcctca cagatcgact ccaggtggcc atcaaagtga 360
ttcccccggaa tcgtgtgtcgg gctgggtccc cttgtcaga ctcagtaca tgcccactcg 420
aagtgcact gctatggaaa gtgggtgcag gtgggtggca ccctggcgtt atccgcctgc 480
ttgactgggtt tgagacacag gagggttca tgctggtctt cgagcggccct ttgccccccc 540
aggatctttt tgactatatac acagagaagg gcccactggg tgaaggccca agccgctgt 600
tctttggcca agtagtggca gccatccagc actgcccattc ccgtggagtt gtccatcggt 660
acatcaagga tgagaacatc ctgatagacc tacggcgtgg ctgtgcctaa ctcattgatt 720
tttgttctgg tgccctgttt catgtgaac ctttacactga ctttgcgttgg acaagggtgt 780
acagcccccc agagtggatc tctcgacacc agtaccatgc actcccgcc actgtctgtt 840
caactggcat cctcccttat gacatgggtt gtggggacat tccctttgag agggaccagg 900
agattctgga agctgagctc cacttccctt cccatgtctc cccagactgc tttgcctaa 960
tccgcgggtt cctggccccc aaaccttctt cccgaccctc acttggaaagag atccctgtgg 1020
acccctggat gcaaacacca gccgaggatg tacccttcaa cccctccaaa ggaggccctg 1080
cccctttggc ctggcttctt ctacccttaag cttggcctgg cttggcctgg ccccaatgg 1140
tcagaagagc catcccatgg ccatgtcaca gggatagatg gacatttggt gacttggttt 1200
tacaggatcat taccagtcat taaagtccag tattactaag gtaagggtt gaggatcagg 1260
gtttagaaga cataaaccaa gtctggccag ttcccttccc aatcctacaa aggagccttc 1320
ctcccaagaac ctgtggtccc tgattctgga gggggactt ctgtcttc attttgcctaa 1380
gaaagtttat ttgggtgaag ttgttccat tctgacccccc gggactcttta ttctgtatgt 1440
gtgtcaccctt acattggcac ctcctactac caccacacaa acttagttca tatgtcttta 1500

cttgggcaag ggtgcttcc ttccaatacc ccagtagctt ttatTTTtagt aaaggGacc 1560
 tttcccctag cctagggtcc catattgggt caagctgctt acctgcctca gcccaggatt 1620
 ctTTattctg ggggaggtaa tgccCTgttg ttacCCCAAG gCTTCTTTT TTtTTTTTT 1680
 tgggtgaggg gaccctactc tgTTatCCCA agtgctctta ttctggtag aagaacctta 1740
 cttccataat ttgggaagga atggaagatg gacaccacCG gacaccacca gacacttagga 1800
 tgggatggat ggTTTTTGG gggatgggct aggGAAATA aggCTTgCTg TTTGTTCTCC 1860
 tggggcgctc CCTCCAACCTT ttgcagatTC ttgcaacCTC CTCCTGAGCC gggattgtCC 1920
 aattactaaa atgtaaataa tcacgtattg tggggaggGG agttccaagt gtGCCCTCT 1980
 ctcttctcct gcctggatta tttaaaaAGC catgtgtgga aaccactat ttaataaaaag 2040
 taatagaatc ag 2052

<210> 40
 <211> 311
 <212> PRT
 <213> Homo sapiens

<400> 40
 Met Leu Thr Lys Pro Leu Gln Gly Pro Pro Ala Pro Pro Gly Thr Pro
 1 5 10 15
 Thr Pro Pro Pro Gly Gly Lys Asp Arg Glu Ala Phe Glu Ala Glu Tyr
 20 25 30
 Arg Leu Gly Pro Leu Leu Gly Lys Gly Gly Phe Gly Thr Val Phe Ala
 35 40 45
 Gly His Arg Leu Thr Asp Arg Leu Gln Val Ala Ile Lys Val Ile Pro
 50 55 60
 Arg Asn Arg Val Leu Gly Trp Ser Pro Leu Ser Asp Ser Val Thr Cys
 65 70 75 80
 Pro Leu Glu Val Ala Leu Leu Trp Lys Val Gly Ala Gly Gly His
 85 90 95
 Pro Gly Val Ile Arg Leu Leu Asp Trp Phe Glu Thr Gln Glu Gly Phe
 100 105 110
 Met Leu Val Leu Glu Arg Pro Leu Pro Ala Gln Asp Leu Phe Asp Tyr
 115 120 125
 Ile Thr Glu Lys Gly Pro Leu Gly Glu Gly Pro Ser Arg Cys Phe Phe
 130 135 140
 Gly Gln Val Val Ala Ala Ile Gln His Cys His Ser Arg Gly Val Val
 145 150 155 160
 His Arg Asp Ile Lys Asp Glu Asn Ile Leu Ile Asp Leu Arg Arg Gly
 165 170 175
 Cys Ala Lys Leu Ile Asp Phe Gly Ser Gly Ala Leu Leu His Asp Glu
 180 185 190
 Pro Tyr Thr Asp Phe Asp Gly Thr Arg Val Tyr Ser Pro Pro Glu Trp
 195 200 205
 Ile Ser Arg His Gln Tyr His Ala Leu Pro Ala Thr Val Trp Ser Leu
 210 215 220

Gly Ile Leu Leu Tyr Asp Met Val Cys Gly Asp Ile Pro Phe Glu Arg
225 230 235 240

Asp Gln Glu Ile Leu Glu Ala Glu Leu His Phe Pro Ala His Val Ser
245 250 255

Pro Asp Cys Cys Ala Leu Ile Arg Arg Cys Leu Ala Pro Lys Pro Ser
260 265 270

Ser Arg Pro Ser Leu Glu Glu Ile Leu Leu Asp Pro Trp Met Gln Thr
275 280 285

Pro Ala Glu Asp Val Pro Leu Asn Pro Ser Lys Gly Gly Pro Ala Pro
290 295 300

Leu Ala Trp Ser Leu Leu Pro
305 310

<210> 41

<211> 105

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (1)..(105)

<223> n = g, a, c or t

<400> 41

ctggaaactgc acnttagtccc agctcttcctc ggccgcggtc tccctgggn tggtgccgta 60
cttttggatg gttttctcta cnacntcccg caagcttccn tccag 105

<210> 42

<211> 1125

<212> DNA

<213> Homo sapiens

<400> 42

gtctccccca ctgtcagcac ctcttctgtg tggtgagtgg accgcttacc ccactagg 60
aagatgtcag cccaggagag ctgcctcagc ctcataa gt acttcctt cgtttcaac 120
ctcttcttct tgcgttcgtt cagcctgatc ttctgcttcg gcatctggat cctcatcgac 180
aagaccagat tgcgttcctt tgtgggcttg gccttcgtgc ctctgcagat ctggtccaa 240
gtcctggcca ttcaggaaat cttcaccatg ggcattcccc tccctgggtt tggtggggcc 300
ctcaaggagc tccgctgcct cctgggcctt tattttggta tgctgctgc cctgtttgcc 360
acacagatca ccctggaaat cctcatctcc actcagcggg cccagctgga gcaagctt 420
cgggacgtcg tagagaaaac catccaaaat tacggcacca accccgagga gaccgcggcc 480
gaggagagct gggactatgt gcagttccag ctgcgtgcgt gcccgtggca ctacccgcag 540
gactggttcc aagtccat cctgagaggt aacgggtcgg aggccgcaccc cgtgcctgc 600
tcctgctaca acttgtcggc gaccaacgc tccacaatcc tagataaggt gatcttgccc 660
cagctcagca ggcttggaca cctggcgcgg tccagacaca gtgcagacat ctgcgtgtc 720
cctgcagaga gccacatcta ccgcggggc tgcgcgcagg gcctccagaa gtggctgcac 780
aacaacctta tttccatagt gggatttgc ctgggcgtcg gcctactcga gctcgggttc 840
atgacgctct cgatattct gtgcagaaac ctggaccacg tctacaaccc gctcgctcga 900
taccgtttagg ccccgccctc cccaaagtcc cgcggccccc ccgtcacgtg cgctgggcac 960
ttccctgctg cctgtaaata tttgttaat ccccgatccg cctggagccc tccgcctca 1020
catccccctg gggacccacg tggctgcgtg cccctgcgtc tgcacccct cccacggac 1080
ctggggcttt cgtccacacgc ttccctgtccc catctgtcgg cctac 1125

<210> 43
<211> 281
<212> PRT
<213> Homo sapiens

<400> 43
Met Ser Ala Gln Glu Ser Cys Leu Ser Leu Ile Lys Tyr Phe Leu Phe
1 5 10 15

Val Phe Asn Leu Phe Phe Val Leu Gly Ser Leu Ile Phe Cys Phe
20 25 30

Gly Ile Trp Ile Leu Ile Asp Lys Thr Ser Phe Val Ser Phe Val Gly
35 40 45

Leu Ala Phe Val Pro Leu Gln Ile Trp Ser Lys Val Leu Ala Ile Ser
50 55 60

Gly Ile Phe Thr Met Gly Ile Ala Leu Leu Gly Cys Val Gly Ala Leu
65 70 75 80

Lys Glu Leu Arg Cys Leu Leu Gly Leu Tyr Phe Gly Met Leu Leu Leu
85 90 95

Leu Phe Ala Thr Gln Ile Thr Leu Gly Ile Leu Ile Ser Thr Gln Arg
100 105 110

Ala Gln Leu Glu Arg Ser Leu Arg Asp Val Val Glu Lys Thr Ile Gln
115 120 125

Lys Tyr Gly Thr Asn Pro Glu Glu Thr Ala Ala Glu Glu Ser Trp Asp
130 135 140

Tyr Val Gln Phe Gln Leu Arg Cys Cys Gly Trp His Tyr Pro Gln Asp
145 150 155 160

Trp Phe Gln Val Leu Ile Leu Arg Gly Asn Gly Ser Glu Ala His Arg
165 170 175

Val Pro Cys Ser Cys Tyr Asn Leu Ser Ala Thr Asn Asp Ser Thr Ile
180 185 190

Leu Asp Lys Val Ile Leu Pro Gln Leu Ser Arg Leu Gly His Leu Ala
195 200 205

Arg Ser Arg His Ser Ala Asp Ile Cys Ala Val Pro Ala Glu Ser His
210 215 220

Ile Tyr Arg Glu Gly Cys Ala Gln Gly Leu Gln Lys Trp Leu His Asn
225 230 235 240

Asn Leu Ile Ser Ile Val Gly Ile Cys Leu Gly Val Gly Leu Leu Glu
245 250 255

Leu Gly Phe Met Thr Leu Ser Ile Phe Leu Cys Arg Asn Leu Asp His
260 265 270

Val Tyr Asn Arg Leu Ala Arg Tyr Arg
275 280

<210> 44
<211> 2915
<212> DNA
<213> Homo sapiens

<400> 44

agcccccccg cgatccccgc gcccggcaggga cgcctccctcc cgctgctggc ccggccggcg 60
gccctactg cgctgctgct gctgctgctg ggccatggcg gcccggggcg ctggggcgcc 120
cgggcccgagg aggccggccgc ggcggccggcg gacggggccc cccggcaga cggcgaggac 180
ggacaggacc cgcacagcaa gcacactgtac acggccgaca tttcacgca cgggatccag 240
agcggccgcgc acttcgtcat gtttccgcg ccctgggtg gacactgcca gcggctgcag 300
ccgacttggaa atgacctggg agacaaatac aacagcatgg aagatgccaa agtctatgt 360
gctaaagtgg actgcacggc ccactccgac gtgtgcctcg cccaggggg gcgaggatac 420
cccacctaagctttcaa gccaggccaa gaagctgtga agtaccaggg tcctcggac 480
ttccagacac tggaaaactg gatgctgcag acactgaacg aggagccagt gacaccagag 540
ccggaagtgg aaccgccccag tgcccccgag ctcagaacg ggctgtatga gctctcagca 600
agcaactttg agctgcacgt tgcaacaaggc gaccaccca tcaagttctt cgctccgtgg 660
tgtggtaact gcaaaggccct ggctccaacc tgggagcagc tggctctggg ccttgaacat 720
tccgaaaactg tcaagattgg caaggttgat tgtacacagc actatgaact ctgctccgga 780
aaccaggttc gtggctatcc cactttctc tggttccgag atggggaaaaaa ggtggatcag 840
tacaaggaa agegggattt ggagtcaact gggagtagc tgagatcgca gctgcagcgc 900
acagagactg gagcgcacggc gaccgtcactg ccctcagagg ccccggtgct ggcagctgag 960
cccaggctg acaaggggcac tggttggca ctcactgaaa ataacttcga tgacaccatt 1020
gcagaaggaa taaccttcat caagttttat gtcctatggt gtggtcattt taggactctg 1080
getctactt gggaggaact ctctaaaaag gaattccctg gtctggcggg ggtcaagatc 1140
gccgaagttag actgcactgc tgaacggaat atctgcagca agtattcggt acgaggctac 1200
cccacgttat tgctttccg aggagggaaag aaagtcaactg agcacagctgg aggcagagac 1260
cttgactctgt tacaccgtt tgcctgcgc caagcggaaag acgaacttta ggaacacagt 1320
tggaggtcact ctctccgtcc cagtcggc accctgcgtt taggagttca gtcccacaga 1380
ggccactggg ttccccagttgg tggctgttca gaaagcagaa catactaagc gtgaggtatc 1440
ttctttgtgt gtgtgttttca caagccaaaca cactctacag attctttttaa atatgtgtaa 1500
ctcatggta ctgtgtaaac atttcagtg gcgatatatc cccttgacc ttctcttgat 1560
gaaatttaca tggtttccctt tgagactaaa atagcgttga gggaaatgaa attgtggac 1620
tattttgtgc ttctgagtttgg agtatttttgg tggaaagaaaa gacatccaa agcatagttt 1680
acctgccccac gagttctggaa aagggttgcct tggcgttca ttgacgttcc tctgatctta 1740
aggtcacagt tgactcaata ctgtgtttggt ccgttagcat ggcagatgg aatgcaaaa 1800
accccacacctt ctggaggata ctttcacggc cgctgctggc gtttctgtt ctgtgaatac 1860
ttcttcactgt gtgagaggtt agccgttgcgtt aaagcagcgt tacttctgac cgtgcctgag 1920
taagagaatg ctgatgccccat aactttatgt gtcgataactt gtcaaatcag ttactgttca 1980
ggggatcctt ctgtttctca cgggggtgaaa catgtcttta gttcctcatg ttaacacgaa 2040
gccagagccc acatgaactg ttggatgtct tccttagaaaa gggtaggcat gaaaaattcc 2100
acgaggctca ttctcactgtat ctcattaaact cattgaaaga ttccagttgtt atttgtcacc 2160
tgggggtgaca agaccagaca ggctttccca ggcctggta tccagggagg ctctgcagcc 2220
ctgctgaagg gccctaacta gagttctaga gtttctgtt ctgtttctca gtgtccctt 2280
tagaggcttgc tctactttgg tctgcttca ggaggctgcac ctctaatgt atgaagaatg 2340
ggatgcattt gatctcaaga ccaaagacag atgtcagtgg gctgctctgg ccctgggtg 2400
cacggctgtg gcaactgttg atgcactgtt cctctaaactc atgctgtcct tggattaaa 2460
cacctctatc tcccttggaa ataagcacat acaggctttaa gctctaagat agataaggtgt 2520
ttgtcctttt accatcgagc tacttcccat aataaccact ttgcattccaa cacttccac 2580
ccaccccca tacgcaaggg gatgtggata ttggcccaa agtaactggt ggttagaactc 2640
tttagaaacaa gaccacttat actgtctgtc tgaggccagaa gataacagca gcatctcgac 2700
cagcctctgc cttaaaggaa atctttatata atcactgtatg gttcactatg aattctttt 2760
ttaaaaaaac ccaacctcct agagaagcac aactgtcaag agtcttgcac acacaacttc 2820
agctttgcacat cacgacttgc gatattccaaag aaaatcaaaatg tggtacaattt tttttttt 2880
caactatgata ctttctaaat aaactccctt tttttt 2915

<210> 45
<211> 432
<212> PRT
<213> Homo sapiens

<400> 45
 Met Pro Ala Arg Pro Gly Arg Leu Leu Pro Leu Leu Ala Arg Pro Ala
 1 5 10 15
 Ala Leu Thr Ala Leu Leu Leu Leu Leu Gly His Gly Gly Gly
 20 25 30
 Arg Trp Gly Ala Arg Ala Gln Glu Ala Ala Ala Ala Asp Gly
 35 40 45
 Pro Pro Ala Ala Asp Gly Glu Asp Gly Gln Asp Pro His Ser Lys His
 50 55 60
 Leu Tyr Thr Ala Asp Met Phe Thr His Gly Ile Gln Ser Ala Ala His
 65 70 75 80
 Phe Val Met Phe Phe Ala Pro Trp Cys Gly His Cys Gln Arg Leu Gln
 85 90 95
 Pro Thr Trp Asn Asp Leu Gly Asp Lys Tyr Asn Ser Met Glu Asp Ala
 100 105 110
 Lys Val Tyr Val Ala Lys Val Asp Cys Thr Ala His Ser Asp Val Cys
 115 120 125
 Ser Ala Gln Gly Val Arg Gly Tyr Pro Thr Leu Lys Leu Phe Lys Pro
 130 135 140
 Gly Gln Glu Ala Val Lys Tyr Gln Gly Pro Arg Asp Phe Gln Thr Leu
 145 150 155 160
 Glu Asn Trp Met Leu Gln Thr Leu Asn Glu Glu Pro Val Thr Pro Glu
 165 170 175
 Pro Glu Val Glu Pro Pro Ser Ala Pro Glu Leu Lys Gln Gly Leu Tyr
 180 185 190
 Glu Leu Ser Ala Ser Asn Phe Glu Leu His Val Ala Gln Gly Asp His
 195 200 205
 Phe Ile Lys Phe Phe Ala Pro Trp Cys Gly His Cys Lys Ala Leu Ala
 210 215 220
 Pro Thr Trp Glu Gln Leu Ala Leu Gly Leu Glu His Ser Glu Thr Val
 225 230 235 240
 Lys Ile Gly Lys Val Asp Cys Thr Gln His Tyr Glu Leu Cys Ser Gly
 245 250 255
 Asn Gln Val Arg Gly Tyr Pro Thr Leu Leu Trp Phe Arg Asp Gly Lys
 260 265 270
 Lys Val Asp Gln Tyr Lys Gly Lys Arg Asp Leu Glu Ser Leu Arg Glu
 275 280 285
 Tyr Val Glu Ser Gln Leu Gln Arg Thr Glu Thr Gly Ala Thr Glu Thr
 290 295 300
 Val Thr Pro Ser Glu Ala Pro Val Leu Ala Ala Glu Pro Glu Ala Asp
 305 310 315 320

Lys Gly Thr Val Leu Ala Leu Thr Glu Asn Asn Phe Asp Asp Thr Ile
325 330 335

Ala Glu Gly Ile Thr Phe Ile Lys Phe Tyr Ala Pro Trp Cys Gly His
340 345 350

Cys Arg Thr Leu Ala Pro Thr Trp Glu Glu Leu Ser Lys Lys Glu Phe
355 360 365

Pro Gly Leu Ala Gly Val Lys Ile Ala Glu Val Asp Cys Thr Ala Glu
370 375 380

Arg Asn Ile Cys Ser Lys Tyr Ser Val Arg Gly Tyr Pro Thr Leu Leu
385 390 395 400

Leu Phe Arg Gly Gly Lys Lys Val Ser Glu His Ser Gly Gly Arg Asp
405 410 415

Leu Asp Ser Leu His Arg Phe Val Leu Ser Gln Ala Lys Asp Glu Leu
420 425 430

<210> 46

<211> 551

<212> DNA

<213> Homo sapiens

<400> 46

ccagccatgt acagaaaaaa gagtgaatgt gccttaaga agaagagcaa tgagacacag 60
tgttcaact tcatccgtgt cctggttct tacaatgtca cccatctcta cacctgcggc 120
accttcgcct tcagccctgc ttgtaccttc attgaacttc aagattccta cctgtgccc 180
atctcgagg acaaggtcat ggagggaaaa ggccaaagcc ccttgaccgc cgctcacaag 240
catacggctg tcttgggtgaa tgggatgctc tattctggta ctatgaacaa cttcctggc 300
agtgagccca tcctgtatgcg cacactggga tcccagctg tcctcaagac cgacaacttc 360
ctccgcgtggc tgcatcatga cgcctcctt gtggcagcca tcccttcgac ccaggctcg 420
tacttcttct tcgaggagac agccagcggag tttgacttct ttgagaggct ccacacatcg 480
cgggtggcta gagtctgcaa gaatgacgtg ggccggcgaaa agctgctgca gaagaagtgg 540
accacccatcc t 551

<210> 47

<211> 3252

<212> DNA

<213> Homo sapiens

<400> 47

aggatgatga aagttagggc cttccagat agtgaacctt ctctgcccc 60
atgccccacc cctgccacca atacacacgc ttctgtgcc tggggctctc ctattggtcc 120
tcggggggat gtggtaagaa ctgctcaccc agaaagtgcc cgggtgcctg tttcccccaga 180
cctcccttgt gacagtctgt ggctgagcat ggcctccca gccctggcc tggacccctg 240
gagccctcctg ggcctttcc tcttccaact gcttcagctg ctgctgccga cgacgaccgc 300
ggggggaggc gggcaggggc ccattccccag ggtcagatac tatgcagggg atgaacgtag 360
ggcacttagc ttcttccacc agaaggccct ccaggatttt gacactctgc tcctgagtgg 420
tgatgaaat actctctacg tgggggctcg agaagccatt ctggccttgg atatccagga 480
tccaggggtc cccaggctaa agaacatgt accgtggcca gccagtgaca gaaaaaaagag 540
tgaatgtgcc ttaagaaga agagcaatga gacacagtgt ttcaacttca tccgtgtcc 600
gtttcttac aatgtcaccc atctctacac ctgcggcacc ttgcgttca gccctgtttg 660
taccttcatt gaacttcaag attcttaccc ttgcccatt tcggaggaca aggtcatgg 720
gggaaaaggc caaagccct ttgaccccgc tcacaagcat acggctgtct tggtgatgg 780
gatgctctat tctggtacta tgaacaactt cctggcagt gagcccatcc tgatgcgcac 840
actggatcc cagcctgtcc tcaagaccga caacttcctc cgctggctgc atcatgacgc 900

ctcctttgtg gcagccatcc cttcgaccca ggtcgtctac ttcttcttcg aggagacagc 960
 cagcgagttt gacttcttg agaggctcca cacatcgccg gtggcttagag tctgcaagaa 1020
 tgacgtggc ggcgaaaagc tgctgcagaa gaagtggacc accttctgta aggcccagct 1080
 gctctctgca cccagccgg gcagctgccc ttcaacgtca tccgcccacgc ggtctgctc 1140
 cccggccatt ctccccacagc tccccacate tacgcagttt tccacttcca gtggcaggt 1200
 tggcgggacc aggagctctg cggttgtgc ttctctctc ttggacattt aacgtgtctt 1260
 taaggggaaa ttcaaagagt tgaacaaaga aactteacgc tggactactt atagggccc 1320
 tgagaccaac ccccggccag gcagttgctc agtggggccc tcctctgata aggcctgac 1380
 cttcatgaag gaccatttc tgatggatga gcaagttgtg gggacgccc tgctggtaa 1440
 atctggcgtg gagtatacac ggcttgcagt ggagacagcc cagggcctt atgggcacag 1500
 ccatcttgc atgtacctgg gaaccaccac agggtcgctc cacaaggctg tggtaagtgg 1560
 ggacagcagt gtcacatctgg tggaaagagat tcagctgttc cctgaccctg aacctgtcg 1620
 caacctgcag ctggccccca cccagggtgc agtgtttgtt ggttctcag gaggtgtctg 1680
 gagggtgcggc cgagccaact gtatgtcta tgagagctgt gtggactgtg tccttgcgg 1740
 ggacccccac tggctctgg accctgagtc ccgaacctgt tgccctctgt ctgcccccaa 1800
 cctgaactcc tggaaaggcagg acatggagcg ggggaaccca gagtggcgt tgccagttg 1860
 ccccatgagc aggacccctt ggcttcagag ccccccggc aaatctttaaag aagtcttgc 1920
 tggcccaac tccatcttgg agtccctctg ccccccaccc tcaagcccttgg cctcttattt 1980
 ttggagtcat ggcccagcag cagtcggcaga agccttcc actgtctaca atggctccct 2040
 cttgctgata gtgcaggatg gagttggggg tcttaccag tgctggcgtt ctgagaatgg 2100
 cttttcatac cttgtatctt cttactgggtt ggacaggccag gaccagaccc tggcccttgg 2160
 tcttgaactg gcaggcatcc cccggggagca tggtaagggtc ccgttgcacca gggtcagtgg 2220
 tggggccggcc ctggctggcc agcacttca cttggcccccac tttgtactg tcactgtct 2280
 ctttgcctta gtgttttcag gagccctcat catcctctgt gctcccccatt tgagagcact 2340
 cccggctcgg ggcaagggtt aggctgtgtga gaccctgcgc cttgggggaga aggccccgtt 2400
 aagcagagag caaacacccctt agtctcccaaa ggaatgcagg acctctgcac gtatgtgg 2460
 cgctgacaac aactgccttgcactggat agcttaaact ctaggcagcag gcccgggctg 2520
 cgggtgcaggc acctggccat gctggctggg cggcccaaggc acagccctgac ttaggatgac 2580
 agcagcacaa aagaccaccc ttctccctgtt agaggagctt ctgctactt gcatcactga 2640
 tgacactcag cagggtgtat cacagcagtc tgcctccctt atggactcc cttctaccaa 2700
 gcacatgagc tcttcaacag ggtgggggctt accccccagac ctgctcttactt actgatattt 2760
 aagaacctgg agaggatctt tcagttctgg ccattccagg gaccctccag aaacacagtg 2820
 tttcaagaga ccctaaaaaa cctgcctgtc ccaggaccctt atggtaatga acaccaaaca 2880
 tctaaacaat catatgctaa catgccactc ctggaaactc cactctgttgc ctgcgcgttt 2940
 ggacaccaac actcccttcccccagggtca tgcaggatc tgctccctcc tgcttccctt 3000
 accagtctgtt caccgctgtac tccctaggaaat tctttcttgc agtctgacca cttttcttct 3060
 tgcttcaggat ggggcagact ctgatccctt ctgcccctggc agaatggcag ggtaatctg 3120
 agccttcttc actcccttac cctagctgac cccttcaccc ttccccctcc tttttcttctt 3180
 gttttggat tcagaaaact gcttgcaga gactgtttat tttttattaa aaatataagg 3240
 cttatgtatg at 3252

<210> 48

<211> 762

<212> PRT

<213> Homo sapiens

<400> 48

Met Ala Leu Pro Ala Leu Gly Leu Asp Pro Trp Ser Leu Leu Gly Leu
 1 5 10 15

Phe Leu Phe Gln Leu Leu Gln Leu Leu Pro Thr Thr Thr Ala Gly
 20 25 30

Gly Gly Gly Gln Gly Pro Met Pro Arg Val Arg Tyr Tyr Ala Gly Asp
 35 40 45

Glu Arg Arg Ala Leu Ser Phe Phe His Gln Lys Gly Leu Gln Asp Phe
 50 55 60

Asp Thr Leu Leu Leu Ser Gly Asp Gly Asn Thr Leu Tyr Val Gly Ala
 65 70 75 80

Arg Glu Ala Ile Leu Ala Leu Asp Ile Gln Asp Pro Gly Val Pro Arg
 85 90 95

Leu Lys Asn Met Ile Pro Trp Pro Ala Ser Asp Arg Lys Lys Ser Glu
 100 105 110

Cys Ala Phe Lys Lys Ser Asn Glu Thr Gln Cys Phe Asn Phe Ile
 115 120 125

Arg Val Leu Val Ser Tyr Asn Val Thr His Leu Tyr Thr Cys Gly Thr
 130 135 140

Phe Ala Phe Ser Pro Ala Cys Thr Phe Ile Glu Leu Gln Asp Ser Tyr
 145 150 155 160

Leu Leu Pro Ile Ser Glu Asp Lys Val Met Glu Gly Lys Gly Gln Ser
 165 170 175

Pro Phe Asp Pro Ala His His Thr Ala Val Leu Val Asp Gly Met
 180 185 190

Leu Tyr Ser Gly Thr Met Asn Asn Phe Leu Gly Ser Glu Pro Ile Leu
 195 200 205

Met Arg Thr Leu Gly Ser Gln Pro Val Leu Lys Thr Asp Asn Phe Leu
 210 215 220

Arg Trp Leu His His Asp Ala Ser Phe Val Ala Ala Ile Pro Ser Thr
 225 230 235 240

Gln Val Val Tyr Phe Phe Phe Glu Glu Thr Ala Ser Glu Phe Asp Phe
 245 250 255

Phe Glu Arg Leu His Thr Ser Arg Val Ala Arg Val Cys Lys Asn Asp
 260 265 270

Val Gly Gly Glu Lys Leu Leu Gln Lys Lys Trp Thr Thr Phe Leu Lys
 275 280 285

Ala Gln Leu Leu Ser Ala Pro Ser Arg Gly Ser Cys Pro Ser Thr Ser
 290 295 300

Ser Ala Thr Arg Ser Cys Ser Pro Pro Ile Leu Pro Gln Leu Pro Thr
 305 310 315 320

Ser Thr Gln Ser Ser Pro Pro Ser Gly Gln Val Gly Gly Thr Arg Ser
 325 330 335

Ser Ala Val Cys Ala Phe Ser Leu Leu Asp Ile Glu Arg Val Phe Lys
 340 345 350

Gly Lys Phe Lys Glu Leu Asn Lys Glu Thr Ser Arg Trp Thr Thr Tyr
 355 360 365

Arg Gly Pro Glu Thr Asn Pro Arg Pro Gly Ser Cys Ser Val Gly Pro
 370 375 380

Ser Ser Asp Lys Ala Leu Thr Phe Met Lys Asp His Phe Leu Met Asp
 385 390 395 400
 Glu Gln Val Val Gly Thr Pro Leu Leu Val Lys Ser Gly Val Glu Tyr
 405 410 415
 Thr Arg Leu Ala Val Glu Thr Ala Gln Gly Leu Asp Gly His Ser His
 420 425 430
 Leu Val Met Tyr Leu Gly Thr Thr Gly Ser Leu His Lys Ala Val
 435 440 445
 Val Ser Gly Asp Ser Ser Ala His Leu Val Glu Glu Ile Gln Leu Phe
 450 455 460
 Pro Asp Pro Glu Pro Val Arg Asn Leu Gln Leu Ala Pro Thr Gln Gly
 465 470 475 480
 Ala Val Phe Val Gly Phe Ser Gly Gly Val Trp Arg Val Pro Arg Ala
 485 490 495
 Asn Cys Ser Val Tyr Glu Ser Cys Val Asp Cys Val Leu Ala Arg Asp
 500 505 510
 Pro His Cys Ala Trp Asp Pro Glu Ser Arg Thr Cys Cys Leu Leu Ser
 515 520 525
 Ala Pro Asn Leu Asn Ser Trp Lys Gln Asp Met Glu Arg Gly Asn Pro
 530 535 540
 Glu Trp Ala Cys Ala Ser Gly Pro Met Ser Arg Ser Leu Arg Pro Gln
 545 550 555 560
 Ser Arg Pro Gln Ile Ile Lys Glu Val Leu Ala Val Pro Asn Ser Ile
 565 570 575
 Leu Glu Leu Pro Cys Pro His Leu Ser Ala Leu Ala Ser Tyr Tyr Trp
 580 585 590
 Ser His Gly Pro Ala Ala Val Pro Glu Ala Ser Ser Thr Val Tyr Asn
 595 600 605
 Gly Ser Leu Leu Leu Ile Val Gln Asp Gly Val Gly Gly Leu Tyr Gln
 610 615 620
 Cys Trp Ala Thr Glu Asn Gly Phe Ser Tyr Pro Val Ile Ser Tyr Trp
 625 630 635 640
 Val Asp Ser Gln Asp Gln Thr Leu Ala Leu Asp Pro Glu Leu Ala Gly
 645 650 655
 Ile Pro Arg Glu His Val Lys Val Pro Leu Thr Arg Val Ser Gly Gly
 660 665 670
 Ala Ala Leu Ala Ala Gln Gln Ser Tyr Trp Pro His Phe Val Thr Val
 675 680 685
 Thr Val Leu Phe Ala Leu Val Leu Ser Gly Ala Leu Ile Ile Leu Val
 690 695 700

Ala Ser Pro Leu Arg Ala Leu Arg Ala Arg Gly Lys Val Gln Gly Cys
705 710 715 720

Glu Thr Leu Arg Pro Gly Glu Lys Ala Pro Leu Ser Arg Glu Gln His
725 730 735

Leu Gln Ser Pro Lys Glu Cys Arg Thr Ser Ala Ser Asp Val Asp Ala
740 745 750

Asp Asn Asn Cys Leu Gly Thr Glu Val Ala
755 760

<210> 49

<211> 182

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (1)..(182)

<223> n = g, a, c or t

<400> 49

accagcagtc ctgcggcacc tacctccgct tgcgccagcc gcccccagg cccttcctgg 60
acatggggga gggcaccaag aaccgaatca tcacagccga ggggatcatc ctcctgttct 120
gcgcgttgttgcctggacg ctgctgctgt tnagaaacg atggcaagaa cganaactcn 180
gg 182

<210> 50

<211> 60

<212> PRT

<213> Homo sapiens

<220>

<221> MOD_RES

<222> (1)..(60)

<223> Xaa = any amino acid

<400> 50

Gln Gln Ser Cys Gly Thr Tyr Leu Arg Val Arg Gln Pro Pro Pro Arg
1 5 10 15

Pro Phe Leu Asp Met Gly Glu Gly Thr Lys Asn Arg Ile Ile Thr Ala
20 25 30

Glu Gly Ile Ile Leu Leu Phe Cys Ala Val Val Pro Gly Thr Leu Leu
35 40 45

Leu Xaa Arg Lys Arg Trp Gln Glu Arg Xaa Leu Xaa
50 55 60

<210> 51

<211> 182

<212> DNA

<213> Homo sapiens

<220>
<221> modified_base
<222> (1)..(182)
<223> n = g, a, c or t

<400> 51
accagcagtc ctgcggcacc tacctcccg tgcgccagcc gcccccagg cccttcctgg 60
acatggggga gggcaccaag aaccgaatca tcacagccga gggatcatc ctccctgttct 120
gccccgggttgc gcctgggacg ctgctgctgt tnaggaaacg atggcaagaa cganaactcn 180
gg 182

<210> 52
<211> 60
<212> PRT
<213> Homo sapiens

<220>
<221> MOD_RES
<222> (1)..(60)
<223> Xaa = any amino acid

<400> 52
Gln Gln Ser Cys Gly Thr Tyr Leu Arg Val Arg Gln Pro Pro Pro Arg
1 5 10 15

Pro Phe Leu Asp Met Gly Glu Gly Thr Lys Asn Arg Ile Ile Thr Ala
20 25 30

Glu Gly Ile Ile Leu Leu Phe Cys Ala Val Val Pro Gly Thr Leu Leu
35 40 45

Leu Xaa Arg Lys Arg Trp Gln Glu Arg Xaa Leu Xaa
50 55 60

<210> 53
<211> 1107
<212> DNA
<213> Homo sapiens

<400> 53
tgctgcaact caaactaacc aaccactgg gagaagatgc ctgggggtcc aggagtcc 60
caagctctgc ctgccacat cttccctcctc ttccctgtgt ctgctgtcta cctggccct 120
gggtgccagg ccctgtggat gcacaaggc ccagcatcat tgatggtagg cctgggggaa 180
gacgcccact tccaatgcc gcacaatagc agcaacaacg ccaacgtcac ctggggcgc 240
gtcctccatg gcaactacac gtggccccc gagttctgg gcccggcga ggacccaaat 300
ggtagctga tcatccagaa tgtgaacaag agccatgggg gcatatacgt gtgggggtc 360
caggagggca acgagtcatc ccagcagtcc tgccgcaccc acctccgcgt ggcgcagccg 420
ccccccaggc cttccctgga catgggggag ggcaccaaga accgaatcat cacagccgag 480
gggatcatcc ttctgttctg cgccgtggtg cctgggacgc tgctgtgtt cagaaacga 540
tggcagaacg agaagctcg gttggatgcc gggatgaat atgaagatga aaacctttat 600
gaaggcctga acctggacga ctgctccatg tatgaggaca tctccgggg cctccaggc 660
acctaccagg atgtgggacg cctcaacata ggagatgtcc agctggagaa gccgtgacac 720
ccctactcct gccaggctgc cccccctgc tgcaccca gctccagtgt ctcagctcac 780
ttccctggga cattctcctt tcagccctc tggggcttc cttagtcata ttccccagt 840
gggggtggg agggtaacct cactttctc caggccaggc ctccctggac tccccctgggg 900
gtgtccact cttctccct ctaaactgccc ccacctctta actaatccc cacgccccgc 960
tgccttccc aggctccctt caccagccg gtaatgagcc ctaaatcgct gcctctaggg 1020
gagctgattg tagcagccctc gtttagtgtca cccctcctc cctgatctgt cagggccact 1080
tagtataat aaattcttcc caactgc 1107

<210> 54
<211> 226
<212> PRT
<213> Homo sapiens

<400> 54
Met Pro Gly Gly Pro Gly Val Leu Gln Ala Leu Pro Ala Thr Ile Phe
1 5 10 15

Leu Leu Phe Leu Leu Ser Ala Val Tyr Leu Gly Pro Gly Cys Gln Ala
20 25 30

Leu Trp Met His Lys Val Pro Ala Ser Leu Met Val Ser Leu Gly Glu
35 40 45

Asp Ala His Phe Gln Cys Pro His Asn Ser Ser Asn Asn Ala Asn Val
50 55 60

Thr Trp Trp Arg Val Leu His Gly Asn Tyr Thr Trp Pro Pro Glu Phe
65 70 75 80

Leu Gly Pro Gly Glu Asp Pro Asn Gly Thr Leu Ile Ile Gln Asn Val
85 90 95

Asn Lys Ser His Gly Gly Ile Tyr Val Cys Arg Val Gln Glu Gly Asn
100 105 110

Glu Ser Tyr Gln Gln Ser Cys Gly Thr Tyr Leu Arg Val Arg Gln Pro
115 120 125

Pro Pro Arg Pro Phe Leu Asp Met Gly Glu Gly Thr Lys Asn Arg Ile
130 135 140

Ile Thr Ala Glu Gly Ile Ile Leu Leu Phe Cys Ala Val Val Pro Gly
145 150 155 160

Thr Leu Leu Leu Phe Arg Lys Arg Trp Gln Asn Glu Lys Leu Gly Leu
165 170 175

Asp Ala Gly Asp Glu Tyr Glu Asp Glu Asn Leu Tyr Glu Gly Leu Asn
180 185 190

Leu Asp Asp Cys Ser Met Tyr Glu Asp Ile Ser Arg Gly Leu Gln Gly
195 200 205

Thr Tyr Gln Asp Val Gly Ser Leu Asn Ile Gly Asp Val Gln Leu Glu
210 215 220

Lys Pro
225

<210> 55
<211> 1038
<212> DNA
<213> Homo sapiens

<400> 55
atgtacaagg actgcacgca gtccactgga gactatttc ttctctgtga cgccgagggg 60
ccatggggca tcattctgga gtcctggcc atactggca tcgtggtcac aattctgcta 120
ctcttagcat ttcttcttcatgcgaaag atccaagact gcagccagtg gaatgtcctc 180

cccacccagc tccttcttctt cctgagtgtc ctggggctct tcggactcgc ttttgccttc 240
 atcatcgagc tcaatcaaca aactgcccccc gtacgctact ttctctttgg gtttctcttt 300
 gctctctgtt tctcatgcct cttagctcat gcctccaatc tagtgaagct gtttcggggt 360
 tgtgtctcct tctcctggac gacaattctg tgcatgtca ttgggttgcag tctgttgaa 420
 atcattatttgc ccaactgagta tggactctc atcatgacca gaggtatgat gtttggaaat 480
 atgacaccctt gccagctcaa tggactttt gttgtactcc tggcttatgt cctcttcctg 540
 atggccctca cattcttcgt ctccaaagcc accttctgtg gcccgtgtga gaactggaag 600
 cagcatggaa ggctcatctt tatactgtg ctcttcctca tcatcatctg ggtgggttgg 660
 atctccatgc tcctgagagg caacccgcag ttccagcgcac agccccagtg ggacgaccccg 720
 gtcgtctgca ttgctctggc caccaacgcgca tgggtttcc tgcgtctgtatcatcgccct 780
 gagctctgca ttctctacag atcgtgtaga caggagtgcc ctttacaagg caatgcctgc 840
 cccgtcacag cctaccaaca cagcttccaa gtggagaacc aggagctctc cagagcccg 900
 gacagtgtatg gagctgagga ggatgttagca ttaacttcat atggtaactcc catteagccg 960
 cagactgttg atccccacaca agagtgtttc atccccacagg ctaaaactaag ccccccagcaa 1020
 gatgcaggag gagtataa 1038

<210> 56

<211> 345

<212> PRT

<213> Homo sapiens

<400> 56

Met Tyr Lys Asp Cys Ile Glu Ser Thr Gly Asp Tyr Phe Leu Leu Cys
 1 5 10 15

Asp Ala Glu Gly Pro Trp Gly Ile Ile Leu Glu Ser Leu Ala Ile Leu
 20 25 30

Gly Ile Val Val Thr Ile Leu Leu Leu Ala Phe Leu Phe Leu Met
 35 40 45

Arg Lys Ile Gln Asp Cys Ser Gln Trp Asn Val Leu Pro Thr Gln Leu
 50 55 60

Leu Phe Leu Leu Ser Val Leu Gly Leu Phe Gly Leu Ala Phe Ala Phe
 65 70 75 80

Ile Ile Glu Leu Asn Gln Gln Thr Ala Pro Val Arg Tyr Phe Leu Phe
 85 90 95

Gly Val Leu Phe Ala Leu Cys Phe Ser Cys Leu Leu Ala His Ala Ser
 100 105 110

Asn Leu Val Lys Leu Val Arg Gly Cys Val Ser Phe Ser Trp Thr Thr
 115 120 125

Ile Leu Cys Ile Ala Ile Gly Cys Ser Leu Leu Gln Ile Ile Ile Ala
 130 135 140

Thr Glu Tyr Val Thr Leu Ile Met Thr Arg Gly Met Met Phe Val Asn
 145 150 155 160

Met Thr Pro Cys Gln Leu Asn Val Asp Phe Val Val Leu Leu Val Tyr
 165 170 175

Val Leu Phe Leu Met Ala Leu Thr Phe Phe Val Ser Lys Ala Thr Phe
 180 185 190

Cys Gly Pro Cys Glu Asn Trp Lys Gln His Gly Arg Leu Ile Phe Ile
 195 200 205

Thr Val Leu Phe Ser Ile Ile Trp Val Val Trp Ile Ser Met Leu
 210 215 220
 Leu Arg Gly Asn Pro Gln Phe Gln Arg Gln Pro Gln Trp Asp Asp Pro
 225 230 235 240
 Val Val Cys Ile Ala Leu Val Thr Asn Ala Trp Val Phe Leu Leu Leu
 245 250 255
 Tyr Ile Val Pro Glu Leu Cys Ile Leu Tyr Arg Ser Cys Arg Gln Glu
 260 265 270
 Cys Pro Leu Gln Gly Asn Ala Cys Pro Val Thr Ala Tyr Gln His Ser
 275 280 285
 Phe Gln Val Glu Asn Gln Glu Leu Ser Arg Ala Arg Asp Ser Asp Gly
 290 295 300
 Ala Glu Glu Asp Val Ala Leu Thr Ser Tyr Gly Thr Pro Ile Gln Pro
 305 310 315 320
 Gln Thr Val Asp Pro Thr Gln Glu Cys Phe Ile Pro Gln Ala Lys Leu
 325 330 335
 Ser Pro Gln Gln Asp Ala Gly Gly Val
 340 345

<210> 57
 <211> 2457
 <212> DNA
 <213> Homo sapiens

<400> 57
 ggcacgagga agggcctgtg ggtttattat aaggcggagc tcggcgggag aggtgcgggc 60
 cgaatccgag ccgagcggag aggaatccgg cagtagagag cggactccag ccggcggacc 120
 ctgcagccct cgcctggac agccgcgcgc tggcaggcg cccaagagag catcgagcag 180
 cggAACCCGc gaagccggcc cgcagccgcg accccgcgcag cctgcccgtc tcccggcc 240
 ggtccggca gcatgaggcg cgccgcgcgc tggctctggc tggcgcgcgt ggcgtgagc 300
 ctgcagccgg ccctgcgcga aattgtggct actaatttgc cccctgaaga tcaagatggc 360
 tctgggatg actctgacaa ctttcggc tcaggtgcag gtgcgttgcg agatatcacc 420
 ttgtcacagc agacccccctc cacttggaaag gacacgcgc tcctgacggc tattccacg 480
 tctccagaac ccaccggcct ggaggctaca gtcgcctcca cctccaccct gccggctgga 540
 gaggggccccca aggagggaga ggctgttagtc ctgcagaag tggagcctgg ctcaccggc 600
 cgggagcagg aggccacccc ccgacccagg gagaccacac agctccgcac cactcatcag 660
 gccttaacga ccacagccac cacggccca gggccgcac cctccaccct ccacaggac 720
 atgcagccctg gccaccatga gacctaacc cctgcaggac ccagccaagc tgacctcac 780
 actccccaca cagaggatgg aggtccttgc gccacccaga ggctgtctga ggatggagcc 840
 tccagtccgc tcccaggcgc agagggctct ggggagcagg acttcaccc tggaaacctcg 900
 ggggagaata cggctgttagt ggcgtggag cctgaccgc ggaaccagtc cccagtggat 960
 cagggggcca cgggggcctc acagggcctc ctggacagga aagaggtgt gggaggggtc 1020
 attgcgttag gctcgtggg gctcatctt gctgtgtgcc tgggggttt catgctgtac 1080
 cgcataaga agaaggacga aggacgtac tccttgagg agccgaaaca agccaaacggc 1140
 ggggcctacc agaagccac caaacaggag gaattctatg cctgacgcgg gagccatgcg 1200
 cccctccgc cctgcactc actaggcccc cacttgccctc ttcccttgaag aactgcaggc 1260
 cctggccctcc cctgcacca ggcacccctcc ccagcattcc agccctctg gtcgtcctg 1320
 cccacggagt cgtgggggtgt gctggagct ccactctgtc tctctgactt ctgcctggag 1380
 acttagggca ccagggggtt ctcgcataagg acctttccac cacagccagc acctggcatc 1440
 gcaccattct gactcggttt ctccaaactg aagcagccctc tcccccaggtc cagctctgga 1500
 ggggaggggg atccgactgc ttggaccta aatggcctca tggcgtggag agatcctgcg 1560
 ggtggggctt gggcataca cacctgttagc acttactggt aggaccaagc atcttgggg 1620

gggtggccgct	gagtggcagg	ggacaggagt	ccactttgtt	tcgtggggag	gtctaattct	1680
gatatcgact	tgtttttgca	catgtttcct	ctagttctt	gttcatagcc	cagtagacct	1740
tgttacttct	gaggtaagtt	aagtaagttg	atccggtata	ccccccatctt	gcttcctaa	1800
tctatggtcg	ggagacagca	tcagggtaa	gaagactttt	tttttttttt	tttttaaaact	1860
aggagaacca	aatctggaaag	ccaaaatgtt	ggcttagttt	gtgtgttgc	tcttgagttt	1920
gtcgctcatg	tgtgcaacag	ggtatggact	atctgtctgg	tggccccgtt	tctgggtggc	1980
tgttggcagg	ctggccagtc	caggctgccg	tggggccgcc	gcctcttca	agcagtcgtg	2040
cctgtgtcca	tgcgctcagg	gccatgtga	ggcctgggcc	gctgccacgt	tggagaagcc	2100
cgtgtgagaa	gtgaatgctg	ggactcagcc	tccagacaga	gaggactgtt	gggagggcgg	2160
cagggggctg	gagatcctcc	tgcagaccac	gcccgtctg	cctgtggcgc	cgtctccagg	2220
ggctgtttcc	tcctggaaat	tgacgaggggg	tgtcttggc	agagctggct	ctgagcgcct	2280
ccatccaaagg	ccaggttctc	cgttagctcc	tgtggcccca	ccctgggccc	tgggctggaa	2340
tcaggaatat	tttccaaaga	gtgatagtct	tttgctttt	gaaaaactct	acttaatcca	2400
atgggtttt	ccctgtacag	tagatttcc	aaatgtata	aactttaata	taaagta	2457

<210> 58
<211>.310
<212> PRT
<213> Homo sapiens

<400> 58
Met Arg Arg Ala Ala Leu Trp Leu Trp Leu Cys Ala Leu Ala Leu Ser
1 5 10 15

Leu Gln Pro Ala Leu Pro Gln Ile Val Ala Thr Asn Leu Pro Pro Glu
20 25 30

Asp Gln Asp Gly Ser Gly Asp Asp Ser Asp Asn Phe Ser Gly Ser Gly
35 40 45

Ala Gly Ala Leu Gln Asp Ile Thr Leu Ser Gln Gln Thr Pro Ser Thr
50 55 60

Trp Lys Asp Thr Gln Leu Leu Thr Ala Ile Pro Thr Ser Pro Glu Pro
65 70 75 80

Thr Gly Leu Glu Ala Thr Ala Ala Ser Thr Ser Thr Leu Pro Ala Gly
85 90 95

Glu Gly Pro Lys Glu Gly Glu Ala Val Val Leu Pro Glu Val Glu Pro
 100 105 110

Gly Leu Thr Ala Arg Glu Gln Glu Ala Thr Pro Arg Pro Arg Glu Thr
115 120 125

Thr Gln Leu Pro Thr Thr His Gln Ala Ser Thr Thr Thr Ala Thr Thr
130 135 140

Ala Gln Glu Pro Ala Thr Ser His Pro His Arg Asp Met Gln Pro Gly
145 150 155 160

His His Glu Thr Ser Thr Pro Ala Gly Pro Ser Gln Ala Asp Leu His
165 170 175

Thr Pro His Thr Glu Asp Gly Gly Pro Ser Ala Thr Glu Arg Ala Ala
180 185 190

Glu Asp Gly Ala Ser Ser Gln Leu Pro Ala Ala Glu Gly Ser Gly Glu
105 200 205

Gln Asp Phe Thr Phe Glu Thr Ser Gly Glu Asn Thr Ala Val Val Ala
210 215 220

Val Glu Pro Asp Arg Arg Asn Gln Ser Pro Val Asp Gln Gly Ala Thr
225 230 235 240

Gly Ala Ser Gln Gly Leu Leu Asp Arg Lys Glu Val Leu Gly Gly Val
245 250 255

Ile Ala Val Gly Leu Val Gly Leu Ile Phe Ala Val Cys Leu Val Gly
260 265 270

Phe Met Leu Tyr Arg Met Lys Lys Asp Glu Gly Ser Tyr Ser Leu
275 280 285

Glu Glu Pro Lys Gln Ala Asn Gly Gly Ala Tyr Gln Lys Pro Thr Lys
290 295 300

Gln Glu Glu Phe Tyr Ala
305 310

<210> 59

<211> 357

<212> DNA

<213> Homo sapiens

<400> 59

ctggggctga ggatggagtc caagactgag aaatggatgg aacgaataca cctcaatgtc 60
tctgaaggc cttttccacc tcataatccag ctcccctccag aaattcaaga gtcccaggaa 120
gtcaactctga cctgcttgct gaatttctcc tgctatgggt atccgatcca attgcagtgg 180
ctccttagagg gggttccaat gaggcaggct gctgtcacct cgacccctt gaccatcaag 240
tctgtttca cccggagcga gctcaagttc tccccacagt ggagtcacca tgggaagatt 300
gtgacctgcc agttcagga tgcagatggg aagttccctt cc当地gacac ggtgcag 357

<210> 60

<211> 3260

<212> DNA

<213> Homo sapiens

<400> 60

ccatcccata gtgagggaaag acacgcggaa acaggcttgc acccagacac gacaccatgc 60
atctccctcg cccttggctc ctgctcctgg ttctagaata cttggctttc tctgactcaa 120
gtaaaatgggt tttttagcac cctgaaaccc tctacgcctg ggagggggcc tgcgtctgga 180
tcccctgcac ctacagagcc ctatgtgtg acctggaaag cttcatcctg ttccacaatc 240
ctgagttataa caagaacacc tcgaagttt atgggacaag actctatgaa agcacaaaagg 300
atgggaaggt tccttctgag cagaaaaggg tgcaatttctt gggagacaag aataagaact 360
gcacactgag tatccacccg gtgcacccca atgacagtgg tcagctgggg ctgaggatgg 420
agtccaaagac tgagaaatgg atgaaacgaa tacacccaa tgcgtctgaa aggccctttc 480
cacctccatat ccagctccct ccagaaattc aagagtccca ggaagtcact ctgaccgtct 540
tgctgaattt ctccctgctat ggttatccga tccaaatttca gtggctctt gagggggttc 600
caatgaggca ggctgctgtc acctcgacct ctttgaccat caagtctgtc ttcacccgga 660
gcgagctcaa gttctccca cagtgagtc accatggaa gattgtgacc tgccagcttc 720
aggatgcaga tgggaagttc ctctccaaatg acacgggtca gctgaacgtg aagcacaccc 780
cgaagttgga gatcaagggtc actcccaatg atgccatagt gagggagggg gactctgtga 840
ccatgacccg cggaggtcagc agcagcaacc cggagttacac gacggtatcc tggctcaagg 900
atgggaccc gctgaagaag cagaatacat tcacgctaaa cctgcgcgaa gtgaccaagg 960
accagagtgg gaagttactgc tgcaggtctt ccaatgacgt gggcccgaaa aggtcgaaag 1020
aagtgttccct gcaagtgcag tatccccggg aacccctccac ggttcagatc ctccactcac 1080
cggtgtgaa gggaaagtcaa gtcgagttc tttgcattgtc actggccaat cctcttccaa 1140

caaattacac gtggtaccac aatggaaag aaatgcagg aaggacagag gagaaagtcc 1200
 acatccaaa gatcctcccc tggcacgctg ggacttattc ctgtgtggca gaaaacattc 1260
 ttggtaactgg acagaggggc cgggagctg agctggatgt ccagtatcc cccaagaagg 1320
 tgaccacagt gattcaaac cccatgccga ttcgagaagg agacacagt acccttcct 1380
 gtaactacaa ttccagtaac cccagtgtt cccggatgaa atggaaaccc catggcgcct 1440
 gggaggagcc atcgcttggg gtgctgaaga tccaaaacgt tgctgggac aacacaacca 1500
 tcgcctgcgc acgttgtaat agttggtgc cgtgggcctc ccctgtcgcc ctgaatgtcc 1560
 agtatgcccc ccgagacgtg agggtccgga aaatcaagcc ccttccgag attcaactctg 1620
 gaaactcggt cagcctcaa tggacttct caagcagcca ccccaaagaa gtccagttct 1680
 tctggagaa aaatggcagg ctctgggaa aagaaagcca gctgaatttt gactccatct 1740
 ccccaagaaga tgctgggagt tacagctgtc gggtaacaa ctccatagga cagacagcgt 1800
 ccaaggcctg gacacttgaa gtgctgtatg caccaggag gtcgcgtgt tccatgagcc 1860
 cgggggacca agtgtatggag gggaaagagtg caaccctgac ctgtgagagt gacgccaacc 1920
 ctcccgtctc ccactacacc tggtttact ggaataacca aagcctcccc caccacagcc 1980
 agaagctgag attggagccg gtgaaggtcc agcactcggg tgctactgg tgccaggaa 2040
 ccaacagtgt gggcaagggc cggtcgccct tcagcaccct tactgtctac tatagccgg 2100
 agaccatcggt cagggcagtg gctgtggac tcgggtcctg cctcgccatc ctcatcctgg 2160
 caatctgtgg gctcaagctc cagcgcgtt ggaagaggac acagagccag caggggcttc 2220
 aggagaattc cagcggccag agtttcttg tgaggaataa aaaggttaga agggcccccc 2280
 tctctgaagg cccccactcc ctggatgtc acaatccaaat gatggaagat ggcattagct 2340
 acaccacccct ggcgtttccc gagatgaaca taccacaaac tgagatgca gагtccctcag 2400
 agatgcagag acctcccccgg acctgcgtt acacggtcac ttattcagca ttgcacaagc 2460
 gccaagtggg cgactatgag aacgtcattc cagatttcc agaagatgag gggatttatt 2520
 actcagagct gatccagtt ggggtcgaaa gacggcctca ggcacaagaa aatgtggact 2580
 atgtgatcct caaacattga cactggatgg gctgcagcag aggcactggg ggcagcgggg 2640
 gccaggaaag tccccgagtt tccccagaca cgcacacac acacacacac tcactgcggaa gAACCTTGTG 2700
 ggcacacac acacacacac gcacacacac gtaacccaa acctccaaa ctcctgcccc 2760
 cctggctcag agccagtctt tttgggtgagg tgttctctt cactctccctt gtcctctcct gctgcacat 2820
 aatcatctaa atacctgccc tgacatgcac 2880
 acctccctg cccccaccgc ccactggca tctccaccccg gagctgctgt gtcctctgg 2940
 tctgtcgtc atttcttc ccttctccat ctctctggcc ctctacccct gatctgacat 3000
 ccccaactcac gaatattatg cccagtttctt gcctctgagg gaaagcccag aaaaggacag 3060
 aaacgaagta gaaagggggcc cagtcctggc ctggcttctc ctttggaaagt gaggcattgc 3120
 acggggagac gtacgtatca gcgccccctt gactctggg actccgggtt tgagatggac 3180
 acactgggtt ggattaacct gccaggaga cagagctcac aataaaaatg gtcagatgc 3240
 cacttcaaaag aaaaaaaaaaaaa 3260

<210> 61
 <211> 847
 <212> PRT
 <213> Homo sapiens

<400> 61
 Met His Leu Leu Gly Pro Trp Leu Leu Leu Leu Val Leu Glu Tyr Leu
 1 5 10 15

Ala Phe Ser Asp Ser Ser Lys Trp Val Phe Glu His Pro Glu Thr Leu
 20 25 30

Tyr Ala Trp Glu Gly Ala Cys Val Trp Ile Pro Cys Thr Tyr Arg Ala
 35 40 45

Leu Asp Gly Asp Leu Glu Ser Phe Ile Leu Phe His Asn Pro Glu Tyr
 50 55 60

Asn Lys Asn Thr Ser Lys Phe Asp Gly Thr Arg Leu Tyr Glu Ser Thr
 65 70 75 80

Lys Asp Gly Lys Val Pro Ser Glu Gln Lys Arg Val Gln Phe Leu Gly
 85 90 95

Asp Lys Asn Lys Asn Cys Thr Leu Ser Ile His Pro Val His Leu Asn
 100 105 110

 Asp Ser Gly Gln Leu Gly Leu Arg Met Glu Ser Lys Thr Glu Lys Trp
 115 120 125

 Met Glu Arg Ile His Leu Asn Val Ser Glu Arg Pro Phe Pro Pro His
 130 135 140

 Ile Gln Leu Pro Pro Glu Ile Gln Glu Ser Gln Glu Val Thr Leu Thr
 145 150 155 160

 Cys Leu Leu Asn Phe Ser Cys Tyr Gly Tyr Pro Ile Gln Leu Gln Trp
 165 170 175

 Leu Leu Glu Gly Val Pro Met Arg Gln Ala Ala Val Thr Ser Thr Ser
 180 185 190

 Leu Thr Ile Lys Ser Val Phe Thr Arg Ser Glu Leu Lys Phe Ser Pro
 195 200 205

 Gln Trp Ser His His Gly Lys Ile Val Thr Cys Gln Leu Gln Asp Ala
 210 215 220

 Asp Gly Lys Phe Leu Ser Asn Asp Thr Val Gln Leu Asn Val Lys His
 225 230 235 240

 Thr Pro Lys Leu Glu Ile Lys Val Thr Pro Ser Asp Ala Ile Val Arg
 245 250 255

 Glu Gly Asp Ser Val Thr Met Thr Cys Glu Val Ser Ser Asn Pro
 260 265 270

 Glu Tyr Thr Thr Val Ser Trp Leu Lys Asp Gly Thr Ser Leu Lys Lys
 275 280 285

 Gln Asn Thr Phe Thr Leu Asn Leu Arg Glu Val Thr Lys Asp Gln Ser
 290 295 300

 Gly Lys Tyr Cys Cys Gln Val Ser Asn Asp Val Gly Pro Gly Arg Ser
 305 310 315 320

 Glu Glu Val Phe Leu Gln Val Gln Tyr Ala Pro Glu Pro Ser Thr Val
 325 330 335

 Gln Ile Leu His Ser Pro Ala Val Glu Gly Ser Gln Val Glu Phe Leu
 340 345 350

 Cys Met Ser Leu Ala Asn Pro Leu Pro Thr Asn Tyr Thr Trp Tyr His
 355 360 365

 Asn Gly Lys Glu Met Gln Gly Arg Thr Glu Glu Lys Val His Ile Pro
 370 375 380

 Lys Ile Leu Pro Trp His Ala Gly Thr Tyr Ser Cys Val Ala Glu Asn
 385 390 395 400

 Ile Leu Gly Thr Gly Gln Arg Gly Pro Gly Ala Glu Leu Asp Val Gln
 405 410 415

Tyr Pro Pro Lys Lys Val Thr Thr Val Ile Gln Asn Pro Met Pro Ile
 420 425 430

Arg Glu Gly Asp Thr Val Thr Leu Ser Cys Asn Tyr Asn Ser Ser Asn
 435 440 445

Pro Ser Val Thr Arg Tyr Glu Trp Lys Pro His Gly Ala Trp Glu Glu
 450 455 460

Pro Ser Leu Gly Val Leu Lys Ile Gln Asn Val Gly Trp Asp Asn Thr
 465 470 475 480

Thr Ile Ala Cys Ala Arg Cys Asn Ser Trp Cys Ser Trp Ala Ser Pro
 485 490 495

Val Ala Leu Asn Val Gln Tyr Ala Pro Arg Asp Val Arg Val Arg Lys
 500 505 510

Ile Lys Pro Leu Ser Glu Ile His Ser Gly Asn Ser Val Ser Leu Gln
 515 520 525

Cys Asp Phe Ser Ser Ser His Pro Lys Glu Val Gln Phe Phe Trp Glu
 530 535 540

Lys Asn Gly Arg Leu Leu Gly Lys Glu Ser Gln Leu Asn Phe Asp Ser
 545 550 555 560

Ile Ser Pro Glu Asp Ala Gly Ser Tyr Ser Cys Trp Val Asn Asn Ser
 565 570 575

Ile Gly Gln Thr Ala Ser Lys Ala Trp Thr Leu Glu Val Leu Tyr Ala
 580 585 590

Pro Arg Arg Leu Arg Val Ser Met Ser Pro Gly Asp Gln Val Met Glu
 595 600 605

Gly Lys Ser Ala Thr Leu Thr Cys Glu Ser Asp Ala Asn Pro Pro Val
 610 615 620

Ser His Tyr Thr Trp Phe Asp Trp Asn Asn Gln Ser Leu Pro His His
 625 630 635 640

Ser Gln Lys Leu Arg Leu Glu Pro Val Lys Val Gln His Ser Gly Ala
 645 650 655

Tyr Trp Cys Gln Gly Thr Asn Ser Val Gly Lys Gly Arg Ser Pro Leu
 660 665 670

Ser Thr Leu Thr Val Tyr Tyr Ser Pro Glu Thr Ile Gly Arg Arg Val
 675 680 685

Ala Val Gly Leu Gly Ser Cys Leu Ala Ile Leu Ile Leu Ala Ile Cys
 690 695 700

Gly Leu Lys Leu Gln Arg Arg Trp Lys Arg Thr Gln Ser Gln Gln Gly
 705 710 715 720

Leu Gln Glu Asn Ser Ser Gly Gln Ser Phe Phe Val Arg Asn Lys Lys
 725 730 735

Val Arg Arg Ala Pro Leu Ser Glu Gly Pro His Ser Leu Gly Cys Tyr
740 745 750

Asn Pro Met Met Glu Asp Gly Ile Ser Tyr Thr Thr Leu Arg Phe Pro
755 760 765

Glu Met Asn Ile Pro Arg Thr Gly Asp Ala Glu Ser Ser Glu Met Gln
770 775 780

Arg Pro Pro Arg Thr Cys Asp Asp Thr Val Thr Tyr Ser Ala Leu His
785 790 795 800

Lys Arg Gln Val Gly Asp Tyr Glu Asn Val Ile Pro Asp Phe Pro Glu
805 810 815

Asp Glu Gly Ile His Tyr Ser Glu Leu Ile Gln Phe Gly Val Gly Glu
820 825 830

Arg Pro Gln Ala Gln Glu Asn Val Asp Tyr Val Ile Leu Lys His
835 840 845

<210> 62

<211> 340

<212> DNA

<213> Homo sapiens

<400> 62

ctggggggtc cgggaaagggttggggccat gagccaggca gctccgaagc agtcacttag 60
gccaggggagc ctgcacccag gtcatggggc gacctggctc tcactcctgg cctgggtgct 120
cacctacaga ccacttca tcccctgtcc gcagcgtaac tatgtcctca tagttggctg 180
tctggtaat gtccaggcccc tcgttaggtgt gatcttcctc catgccagcc ttgctgtcat 240
ccttgccag cagcaggaag ataggcacga tgatgaagag gatgatcagc agcgtctgga 300
tcatgatgat accatccttc agcgtgttcc tctgcttcag 340

<210> 63

<211> 79

<212> PRT

<213> Homo sapiens

<400> 63

Leu Lys Gln Arg Asn Thr Leu Lys Asp Gly Ile Ile Met Ile Gln Thr
1 5 10 15

Leu Leu Ile Ile Leu Phe Ile Ile Val Pro Ile Phe Leu Leu Asp
20 25 30

Lys Asp Asp Ser Lys Ala Gly Met Glu Glu Asp His Thr Tyr Glu Gly
35 40 45

Leu Asp Ile Asp Gln Thr Ala Thr Tyr Glu Asp Ile Val Thr Leu Arg
50 55 60

Thr Gly Glu Val Lys Trp Ser Val Gly Glu His Pro Gly Gln Glu
65 70 75

<210> 64
<211> 340
<212> DNA
<213> Homo sapiens

<400> 64
ctgggggtc cgggaaaggg gttggccat gagccaggca gtcggcaagc agtcaactgag 60
gccagggagc ctgcacccag gtcatgggc gacctggctc tcactcctgg cctgggtgct 120
cacctacaga ccacttcaact tcccctgtcc gcagcgtaac tatgtcctca taggtggctg 180
tctggtaat gtccaggccc tcgttaggtgt gatcttcctc catgcccagcc ttgctgtcat 240
ccttgccag cagcaggaag ataggcacga tgatgaagag gatgatcagc agcgtctgga 300
tcatgatgat accatccttc agcgtgttcc tctgcttcag 340

<210> 65
<211> 1226
<212> DNA
<213> Homo sapiens

<400> 65
ccacgcgtcc gcccacgcgt ccgcagagcg gtcggaccatgg ccaggctggc gttgtctcct 60
gtgcccagcc actggatggt ggcgttgcgt ctgctgtct cagctgagcc agtaccagca 120
gccagatcg aggaccggta ccggaaatccc aaaggttagt cttgttcgcg gatctggcag 180
agcccacgtt tcatagccag gaaacggggc ttcacggta aaatgcactg ctacatgaac 240
agcgctccg gcaatgtgag ctggctctgg aagcaggaga tggacgagaa tccccagcag 300
ctgaagctgg aaaaggccg catggaagag tcccagaacg aatctctcg caccctcacc 360
atccaaggca tccggtttga ggacaatggc atctacttct gccagcagaa gtgcaacaac 420
acctcggagg tctaccaggg ctgcggcaca gagctgcgag tcatgggatt cagcacctg 480
gcacagctga agcagaggaa cacgctgaag gatggtatca tcatgatcca gacgctgctg 540
atcatctct tcatcategt gcctatcttc ctgctgtgg acaaaggatga cagcaaggct 600
ggcatggagg aagatcacac ctacgaggcc ctggacattt accagacagc cacctatgag 660
gacatagtga cgctgcggac agggaaagtg aagtggctg taggtgagca cccaggccag 720
gagttagagc caggtcgecc catgacctgg gtgcaggctc cctggccctca gtgactgctt 780
cgagctgcc tggctcatgg cccaaacccct tttccggacc ccccaagctgg cctctgaagc 840
tggcccacca gagctgcctt ttgtctccag cccctggcc ccaagcttgc ccaaaggcc 900
tggatagaa ggacaacagg gcagcaactt ggagggagtt ctctggggat ggacgggacc 960
cageccctctg ggggtgctt gaggtgatcc gtccccacac atgggatggg ggagggcagag 1020
actggccag agcccgaaaa tggactcggg gccgaggcc tcccagcaga gcttgggaag 1080
ggccatggac ccaactgggc cccagaagag ccacagaac atcattcctc tcccgcacc 1140
actcccaccc cagggaggcc ctggcctcca gtgccttccc ccgtggaata aacggtgtgt 1200
cctgagaaac caaaaaaaaaaaaaaaa 1226

<210> 66
<211> 229
<212> PRT
<213> Homo sapiens

<400> 66
Met Ala Arg Leu Ala Leu Ser Pro Val Pro Ser His Trp Met Val Ala
1 5 10 15

Leu Leu Leu Leu Leu Ser Ala Glu Pro Val Pro Ala Ala Arg Ser Glu
20 25 30

Asp Arg Tyr Arg Asn Pro Lys Gly Ser Ala Cys Ser Arg Ile Trp Gln
35 40 45

Ser Pro Arg Phe Ile Ala Arg Lys Arg Gly Phe Thr Val Lys Met His
50 55 60

Cys Tyr Met Asn Ser Ala Ser Gly Asn Val Ser Trp Leu Trp Lys Gln
 65 70 75 80
 Glu Met Asp Glu Asn Pro Gln Gln Leu Lys Leu Glu Lys Gly Arg Met
 85 90 95
 Glu Glu Ser Gln Asn Glu Ser Leu Ala Thr Leu Thr Ile Gln Gly Ile
 100 105 110
 Arg Phe Glu Asp Asn Gly Ile Tyr Phe Cys Gln Gln Lys Cys Asn Asn
 115 120 125
 Thr Ser Glu Val Tyr Gln Gly Cys Gly Thr Glu Leu Arg Val Met Gly
 130 135 140
 Phe Ser Thr Leu Ala Gln Leu Lys Gln Arg Asn Thr Leu Lys Asp Gly
 145 150 155 160
 Ile Ile Met Ile Gln Thr Leu Leu Ile Ile Leu Phe Ile Ile Val Pro
 165 170 175
 Ile Phe Leu Leu Asp Lys Asp Asp Ser Lys Ala Gly Met Glu Glu
 180 185 190
 Asp His Thr Tyr Glu Gly Leu Asp Ile Asp Gln Thr Ala Thr Tyr Glu
 195 200 205
 Asp Ile Val Thr Leu Arg Thr Gly Glu Val Lys Trp Ser Val Gly Glu
 210 215 220
 His Pro Gly Gln Glu
 225

<210> 67
 <211> 449
 <212> DNA
 <213> Homo sapiens

<220>
 <221> modified_base
 <222> (16)
 <223> n = g, a, c or t

<400> 67
 aaaattgatc acaacnaggg aaaacaaaat aaaatttaggg ggcaaagggt aggagtatgg 60
 ggggagggga gagcaaacct atcgaatata tcttagaaatt ttgctcagaa atcactgctg 120
 cctctcaagt gttgcattgt ccctgcctaa accaagaagg ctaaacaaag cccctcctgt 180
 ttgaattctt aaggtaaagaa atttctaagc taagaaaaaca ctattgccta aaaccatga 240
 tagtggagct catttacaaa taggcatgcc tcacacacac agtccaaagg caagacactg 300
 gcttggaaat taggctcatg atgtgattcc tattatatgt acctgatttt tttaggcccc 360
 aggtatgtgg accagaggtt atgtcatgac tcttcaaaga tatgtatgaaa agttgcccta 420
 gaaatctaga gatgcatttt tatttaatt 449

<210> 68
 <211> 2359
 <212> DNA
 <213> Homo sapiens

<400> 68

ctttcaagaa aatacatctg tgctgttattt tcccccttccc tcaggccatg atctctgctg 60
tttcccttac taactggcat gtcagtacaa gagtgattgt gaagctgctc cggaaaggct 120
ttatgctaac ctctgttgc tgatgacatg tcctcaggac tctgatatta aaactcaatc 180
cttagataac aggtagctt atcatggaag taggtagcaa tttgaatta gaccattctt 240
agttatttt ttcttaatga attgatacat gaagaaaaac tcagactttt aaaaaagtgt 300
gagtgaaatc tgaacgctgt cttatattaa atattgtccc attataatat gtatatggaa 360
cttaatctgt aggaaatatg agtttatgtt gcagtagaaat taggtattat cataaaaagt 420
aatttagttga aacccagact ctaaagtctg tatgagttct gtcagtcctc tctttgagag 480
ctgcagaagg ttgcctttt accccagtg 540
atttacataa gagacttgtt tttagtggagc ttcttaatatt tggttgttaa gaccacttat
gtgctgctt agaactgtct tttaaaaattt 600
gggggcaaag ggtaggagta tggggggagg ataaggggagg ggcatataagtt acaccgttt 660
attttgccta gaaatcactg ctgcctctca atcacaacga gggaaaacaa aataaaaatta 720
aggctaaaca aagccccctcc tgtttgaatt 780
acactattgc ctaaaaaccaa tgatagtgg gtcatttac aaataggcat gctcacaca 900
cacagtccaa aggcaagaca ctggcttga aattaggctc atgatgttat tcctattata 960
tgtacctgtat tttttaggc cccaggtatg tggaccagag ttaatgtcat gactctcaa 1020
agatatgtatg aaaagttgcc ctagaaatct agagatgcat gtttatttaa ttccatagtt 1080
aaaaaaaaaa tttaagcagg tagttgtggc ttatctggg gcaaataat atatgtaaa 1140
ttgctccag aggacaaaagt atatttcta aagtccctaa ataggatcat gaacccttct 1200
gaagtttgg ttgaaatat tatagtataat gatattacca aagagccctt aattcagagt 1260
ttaaggggct ctcttcctga actctctca tcactcaggg ttgaatgtgt aatgtcctt 1320
gctattgatt gtattgttg attcttagga tcaggccaag aatcatctgg aaaacattat 1380
cttaattccg tctctcatat cctaaacagt acattttact aagaaattcc atatgaaaaa 1440
ctccactcat gtcctctgag attatcctgt aagtgaagta gcttcattt aaccaagcta 1500
aattatttcc atttagccat gttaaagaga agccaagtct agagaaagca atcctgtaac 1560
ccatgaatct ggtgtaccca tttccctta acgtaacggg aagtgtttt aattccctc 1620
aagagagctg tttgtatc aaagtgtatgg attataagaa agccagactt tggaaaagga 1680
taattgaaat aaagggaggt gcttgaagat ttccaaact actttatgtc atttagcttc 1740
tattttctga agggtttct ttggtgcatt gtactcagat cagtcagttt actgaaagat 1800
gatcatgttt tcttcgtaaa gatttaagca attggcaact acaaagacat tattttctta 1860
ctgttctata tcatgtactg ttgctgacat tacaaaaagg gtctggagg gaaaccgtgt 1920
caactgtttt tctttttct taaaataaca aaagtatccc aactaatcat ttattatggt 1980
cagttgttt tacatgtccc ctatgtgag aaatgctatc aacatctgtg atttctaaga 2040
gtcttaccaa attgttactt taattcttgc gtcctgctga gtgggtttt tttaaaata 2100
ccattttat caccctgtgg cactgggtgt gttactgcga ttacactgat gattctgagc 2160
tgtgcttctt caagtagctc agttcttgcg ttttatatta ggtaacagtt ttgtgatgt 2220
tttgcatt cttgtcattc tttctgagtt tttcgaatct gtcatataa aacttttca 2280
ctatqcacct qqtaaaaaaaaaa 2340
2359

<210> 69

<211> 240

<212> DNA

<213> DNA

<400> 69

```

cctaaggccgc ctaaggggct gcctcggtcg tccatcagtt acctcggttc ctgagcagag 60
taattgggtg agattgttca tggaggcatt gctggctctc tagtcctgga acctacagtt 120
ggtccaattc attatgccaa agggtccgtc taggaggttc ttgttccaag tattgagatt 180
cccgagagaaa gttaggtcccc ttagatagaa gcagagttc tcagaggtat tttagcagcag 240

```

<210> 70

<211> 980

<212> DNA

<213> Homo sapiens

<400> 70

gcccgtcccg ctccaggaga caggttcca tgcaggaatg aaagacatgg aaggaaagag 60
ggggccagc tccctgagtc ctgtgtccac cagctgctgc taaatacctc tgagaaaactc 120
tgcttctatc taaggggacc tacttctctc gggaatctca atacttggaa caagaacctc 180
ctagacggac cctttggcat aatgaattgg accaactgt a gttccagga ctagagagcc 240
agcaatgcct ccatgaacaa tctcacccaa ttactctgct caggaaacga ggtaactgat 300
ggacagccga ggcagcccc taggcggctt aggcctcccc tggagcat ccctgaggcg 360
gactccggcc agcccgagt atgcgatcca aagagcactc cgggttagga aattgccccg 420
gtggaatgcc tcaccagagc agcgtgtac agttccctgt ggaggattaa cacagtggct 480
gaacaccggg aaggaactgg cacttggagt ccggacatct gaaaacttgc gactgggagc 540
tgtacatggc tggagcgc ttcaccaacc cctgcaaagt gactctgaag aagacgacaa 600
gccctgcctc agtcacaccc ggaagctgac tggtccacgc acagctgaag catgaggaaa 660
ctcategcgg gactaattt cctaaaatt tagacttgca cagtaaggac ttcaactgac 720
cttcctcaga ctgagaactg tttccagttt atacatcaag tcactgggt aggacaaaag 780
attgtcatat ttcttattt ttaaggttac atttttgggg acccctctt cttctgttct 840
agctattacc ttcttgcgt cacctagaaa aggaccagtc cttaaattgtt tttaaaaaac 900
tgtgatcatg ggaagctta aattggttca ataacacgca tcaagttgg tatttcctgg 960
gctacatacc ttggatagat 980

<210> 71

<211> 118

<212> PRT

<213> Homo sapiens

<400> 71

Met Asp Ser Arg Gly Ser Pro Leu Gly Gly Leu Gly Leu Pro Cys Gly
1 5 10 15

Ala Ser Leu Arg Arg Thr Pro Ala Ser Pro Ser Asp Ala Ile Gln Arg
20 25 30

Ala Leu Pro Gly Arg Lys Leu Pro Arg Trp Asn Ala Ser Pro Glu Gln
35 40 45

Arg Val Ala Val Pro Cys Gly Gly Leu Thr Gln Trp Leu Asn Thr Gly
50 55 60

Lys Glu Leu Ala Leu Gly Val Arg Thr Ser Glu Thr Cys Arg Leu Gly
65 70 75 80

Ala Val His Gly Trp Glu Gln Leu His Gln Pro Leu Gln Ser Asp Ser
85 90 95

Glu Glu Asp Asp Lys Pro Cys Ser Ser His Thr Arg Lys Leu Thr Gly
100 105 110

Pro Arg Thr Ala Glu Ala
115

<210> 72

<211> 531

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (519)

<223> n = g, a, c or t

<400> 72

aaaaaggtaa ttttcagcat tttggcacct aaaagggaaa ctttcatctg cttacacagg 60
ccagaagcaa agacaagat tgcattgtgt tcttacagat gacttaaatc atctctttga 120
tgataaaaat attttaagc cgtaaaagtt atgagatatt ctgggtaagc ctgattatca 180
aagaataccaa caaatagctt tggagatcggt gtattgtttg tcactgagtc aaagagatct 240
gtgggattgt gaggattttt gggggaggg gtgactaatac ctgcacgtcc ctttgtgaag 300
actccagtaa gtactcgac aacgtacatg tgctttctcc cattgctgtc tggcttggag 360
taggtgtcct tggcagaata actggcatcc acagaaaaat aggttctttt tccataggat 420
acagcattttt tcccacacaa cttctattaa agccgtgctg attgacatata ggcactgagt 480
ctgcattctgt cccatggaaaggaggatctt cattattctt atggtcatttc t 531

<210> 73

<211> 1956

<212> DNA

<213> Homo sapiens

<400> 73

attgttatca actctttgat atctgatgat caatgctcca aagaatttggaa ttaatatttt 60
tacacaatat tggtagtc agtaactgtt tctatttcca ggcattttta gatgaattca 120
ctaactggtc aagaataat cccaaacaagg ccaggattcc catggcagga gatacccaag 180
gtgtggtcgg gactgtctt aaggcttggt tcacagcata taaaatgaaa atcggtgcaa 240
ttactttca ggttgcatac ggagatatacg ccactgaaca ggtatgtttt attgtaaact 300
caacagcaag gacatttaat cggaaatcag gtgtgtcaag agctattttt gaagggtgctg 360
gacaagctgt gggaaagtgaa tggctgtac tagctgcaca gcctcagaga gattttataa 420
ttacaccagg tggatgctt aagtgcaaaa taataattca tggctctggg ggaaaaagatg 480
tcaggaaaac ggtcaccagt gttctagaag agtgtgaaca gaggaaatgtc acatcggttt 540
cccttccagc cattggaaca gggaaatgccc gaaaaaaaccc tatcacaatgt gctgataaca 600
taatcgatgc tattgttagac ttctcatcac aacattccac cccatcatta aaaaacagttt 660
aagtgtcat ttttcaacct gagctgttca atatatttca cgacagcatg aaaaaaaagag 720
acctctctgc atactgaac tttcagtcac cattctccat gactacatgt aatcttcctg 780
aacactggac tgacatgaat catcagctgt tttgcatgtt ccagcttagag ccaggacaat 840
cagaatataa taccataaaag gacaagttca cccgaacttg ttcttcctac gcaatagaga 900
agattggagag gatacagaat gcatttctt ggcagagctt ccaggtaaaag aaaaggcaaa 960
tggatataa gaatgaccat aagaataatg agagacttctt cttccatggg acagatgcag 1020
actcagtgcc atatgtcaat cagcacggct ttaatagaag ttgtgtctggg aaaaatgtc 1080
tatccatgg aaaaggaacc tattttgtgt tggatgccag ttattctgtc aaggacaccc 1140
actccaagcc agacagcaat gggagaaagc acatgtacgt tggcgagta cttactggag 1200
tcttcacaaa gggacgtgca ggattgtca cccctccacc caagaatcc cacaatccca 1260
cagatctttt tgactcagtg acaaacaata cacgatctcc aaagcttattt gtggatttct 1320
ttgataatca ggcttacca gaatatctca taactttcac ggcttaaaaaa tatttttattc 1380
atcaaagaga tgatttaagt catctgttca aacaacatgc aatctttgtc tttgcttctg 1440
gcctgtgtaa gcagatgaaa gtttccctt taggtccaa aatgctgaaa attacctttt 1500
taaagtgtc tattgtgtcg attttagca taccttttt tctcagcaaa ttgatgggtg 1560
gaagctgaga aatgtatgtt aatgtcaca gagctacaac cattcacaga caccaaatct 1620
ctaggagaat aaaaagcaca ttattttttt tctatcagaa aaaaacaaga tgcattcacct 1680
taaaaccaag atgacattgt tcttcttggaa acatgttca aacatcgaatg gtggcgggtt 1740
aaactgtact gcttaagtgg agcggctacc gttatgcattc tatcacaatgtt ggggattttt 1800
ccttattaaag gaaaacttgtt caatagttca gctgaatga ctgaatcaca gaatattaaac 1860
tctgttatgg aacaaatcat aacagattttt acctgtttac atttcaggtt aaaaatgtatc 1920
gcattgttat ctaatattaa aaaattaccc ccaatt 1956

<210> 74

<211> 444

<212> PRT

<213> Homo sapiens

<400> 74

Met Leu Gln Arg Ile Gly Leu Ile Phe Leu His Asn Ile Val Val Val

Ser Asn Cys Phe Tyr Phe Gln Ala Phe Leu Asp Glu Phe Thr Asn Trp
 20 25 30

Ser Arg Ile Asn Pro Asn Lys Ala Arg Ile Pro Met Ala Gly Asp Thr
 35 40 45

Gln Gly Val Val Gly Thr Val Ser Lys Pro Cys Phe Thr Ala Tyr Glu
 50 55 60

Met Lys Ile Gly Ala Ile Thr Phe Gln Val Ala Thr Gly Asp Ile Ala
 65 70 75 80

Thr Glu Gln Val Asp Val Ile Val Asn Ser Thr Ala Arg Thr Phe Asn
 85 90 95

Arg Lys Ser Gly Val Ser Arg Ala Ile Leu Glu Gly Ala Gly Gln Ala
 100 105 110

Val Glu Ser Glu Cys Ala Val Leu Ala Ala Gln Pro His Arg Asp Phe
 115 120 125

Ile Ile Thr Pro Gly Gly Cys Leu Lys Cys Lys Ile Ile Ile His Val
 130 135 140

Pro Gly Gly Lys Asp Val Arg Lys Thr Val Thr Ser Val Leu Glu Glu
 145 150 155 160

Cys Glu Gln Arg Lys Tyr Thr Ser Val Ser Leu Pro Ala Ile Gly Thr
 165 170 175

Gly Asn Ala Gly Lys Asn Pro Ile Thr Val Ala Asp Asn Ile Ile Asp
 180 185 190

Ala Ile Val Asp Phe Ser Ser Gln His Ser Thr Pro Ser Leu Lys Thr
 195 200 205

Val Lys Val Val Ile Phe Gln Pro Glu Leu Leu Asn Ile Phe Tyr Asp
 210 215 220

Ser Met Lys Lys Arg Asp Leu Ser Ala Ser Leu Asn Phe Gln Ser Thr
 225 230 235 240

Phe Ser Met Thr Thr Cys Asn Leu Pro Glu His Trp Thr Asp Met Asn
 245 250 255

His Gln Leu Phe Cys Met Val Gln Leu Glu Pro Gly Gln Ser Glu Tyr
 260 265 270

Asn Thr Ile Lys Asp Lys Phe Thr Arg Thr Cys Ser Ser Tyr Ala Ile
 275 280 285

Glu Lys Ile Glu Arg Ile Gln Asn Ala Phe Leu Trp Gln Ser Tyr Gln
 290 295 300

Val Lys Lys Arg Gln Met Asp Ile Lys Asn Asp His Lys Asn Asn Glu
 305 310 315 320

Arg Leu Leu Phe His Gly Thr Asp Ala Asp Ser Val Pro Tyr Val Asn
 325 330 335

Gln His Gly Phe Asn Arg Ser Cys Ala Gly Lys Asn Ala Val Ser Tyr
340 345 350

Gly Lys Gly Thr Tyr Phe Ala Val Asp Ala Ser Tyr Ser Ala Lys Asp
355 360 365

Thr Tyr Ser Lys Pro Asp Ser Asn Gly Arg Lys His Met Tyr Val Val
370 375 380

Arg Val Leu Thr Gly Val Phe Thr Lys Gly Arg Ala Gly Leu Val Thr
385 390 395 400

Pro Pro Pro Lys Asn Pro His Asn Pro Thr Asp Leu Phe Asp Ser Val
405 410 415

Thr Asn Asn Thr Arg Ser Pro Lys Leu Phe Val Val Phe Phe Asp Asn
420 425 430

Gln Ala Tyr Pro Glu Tyr Leu Ile Thr Phe Thr Ala
435 440

<210> 75

<211> 449

<212> DNA

<213> Homo sapiens

<400> 75

cgaggctctga gtcctctgg ttcttctcta gacctgctcc ctctctgaaa tgcaaggccc 60
tgccttaat gggctttgg cattctgtct ccagacctcc ctctcatct gaagggtct 120
caggagaaca gagaaaaaaac cagcctgtct ccaaactggc ccgtctcagg gactgggggc 180
ctttaccccc agtggaaagat gcagacttta cagcgctgca gtacagttaga gtcaagtgac 240
tccttcagat agttggatgg gtctctcgat cattcctgat aataacattt tgcctatgtt 300
aagtgcatttc cacctatcat gttaccttct aactactccc ttggttggat acaggatttata 360
gccccatttc acaattaaga aatttgaggct taaaaggatt aaagagttt ttagaggaga 420
aacagctctt cttacagaa ggatccaa 449

<210> 76

<211> 79

<212> PRT

<213> Homo sapiens

<400> 76

Arg Ser His Leu Thr Leu Leu Tyr Cys Ser Ala Val Lys Ser Ala Ser
1 5 10 15

Phe Thr Gly Gly Lys Gly Pro Gln Ser Leu Arg Arg Ala Ser Leu Glu
20 25 30

Thr Gly Trp Phe Phe Leu Cys Ser Pro Glu Ser Pro Ser Asp Glu Lys
35 40 45

Gly Gly Leu Glu Thr Glu Cys Gln Lys Pro Ile Lys Gly Thr Ala Leu
50 55 60

His Phe Arg Glu Gly Ala Gly Leu Glu Lys Asn Gln Arg Ser Ser
65 70 75

<210> 77
<211> 3067
<212> DNA
<213> Homo sapiens

<400> 77

ggcacgagca atgggactta tcgctgctga tggtaacctt gatctttgg ttcagggtgg 60
gcctgccagc tgtctccact gtggagttac tattttcct tttccccatt ttattcatca 120
gaagccagtc actaagcgag gtcaaactcc aggacagggg aattaagtgc caccttctgg 180
agagggagca ttcacattt ttacttggg tccctctgt aagaagagct gtttctcc 240
taaaaaactc ttaatccct ttaagcctca atttcttaat tggaaatgg ggctaataacc 300
tgtatccaac caagggagta gttagaaggt aacatgatag gtggaaagca cttaacatag 360
gaaaatgtt attatcagga atgatcgaga gaccatcca actatctgaa ggagtcaactt 420
aactctactg tactgcagcg ctgtaaagtc tgcacatccc acgtttttt aaggccccca 480
gtccctgaga cgggcccagtt tggagacagg ctggttttt ctctgttctc ctgagagccc 540
ttcagatgag aagggagggtc tggagacaga atgc当地aaag cccattaaag gcacggcctt 600
gcatttcaga gagggagcag gtctagagaa gaaccagagg agctcagctg agatatggg 660
tatggattgg attttggtag aagatgggaa gaaccaaaca cctgagaaac cactttgaag 720
atcggggtca gagaaggcc taacacatag ttggctccca gtaattattt gttgattgaa 780
cagctcaaag agcaactcga ccaagaacac tggactggg gtcctgttac ttggatctt 840
cattcctgat ttattttat ttatatgtt tttttctat ttttttgaga cgaagtctca 900
ctcactctgt cgccccaggct ggactacaat ggcacgatct cgctcactg caaactctgc 960
ctcccaagggtt caagcgattc tcctgcctca gcctctcgag tagctaggat tacaggcatg 1020
caccaccacg ctggcttaatt tttgtattt tagtagagac ggggtttgc catgttggcc 1080
atgctgggtt ccacccctgt acctcagttt atcttcctgc ctcagccttc caaaatgtt 1140
ggattacagg cgtgagccac cgtgcctggc cgtgatttat ttttttggg tatgtttgtt 1200
tttgcact tgcgtgtga ccttaagcaa gttacttaac ttctctggc ttcaactttcc 1260
atggatgaac attgtaaaga ggctggagag agatgaggac taggtacagg ctttagagga 1320
gagccaccgc cccggacttc tccctctgtc accccgctt ccacgttgc cttgcctga 1380
ctttgtgact cttgcctcg ctatcaaacc aagtgcgtca attcagtc tttccaagag 1440
ccctgcattt ttagaaactt cccagcacgc agcaaggct gctgcaatac tcgctctg 1500
tgccttgcc ctgcgttcc tacttaccct cttttgtt ctcccaaaca tctgtccctg 1560
actatgctca ttcatgtt gtcctcagct gctgaaaggg ccacgtttt tttcattaca 1620
aataagacca ccgagtgccc tcctggcgtg gggcgggag cagccgcgc cagtcttcag 1680
aggcagcccc ccaggctgtc tctggagggt gtgtctctgc ttccctttcc ccgtgtttat 1740
tttcagacga agccaagtgg cccggggggc ccctccggac tcccagcctt cagagaggag 1800
ggcagctcgg gcttcgcgg cagtcgttcc tgccgcgtac gtgtgtgctc ttagccggg 1860
tcgggggagc tggtatctt gcccctctgg gaggacgcgc acagccccag gaggcagagc 1920
cccagacggg aatgggctt tcagaggtgg ggtgcggcgc aggggacgat gcattatttt 1980
taatatttga ttatatttcc caactggact tttccggg gtcctttctg ggcccagctg 2040
cctttgtat cccgcgcgg ggtcctcgcc ctctcaccc tcagcgcggg ggcgccttgc 2100
ctgtcggaaag cggctgtgac cggcagagg gggacagcga accgaggggc agatgatcca tgcatactt gactctggg ttcagcccc 2160
cgccccctgccc ctcgcctttt tccggggagcg tcagaaaaga gccggcactg cccagcccc 2220
ccccatcttt gagccccggc ccaagctctg cggatgttgc ggtgcggcgc acggcgttgc 2280
caaggacccc aaggagaagg tcaggagcgg gggatgttgc ggtgcggatcc gtcaggcccc 2340
ggcgcgcact cccttcagtc ttcccttctt ctaggacca ggtgcgttgc gtcctggat 2400
ctcgcccttg tgcgttgc tccctgcggc acctactaag aaccaagtct gttcaccgg 2460
ctcccaagag ctggaaacca ttctcagct gctggggggc caggccaccc ttccctcca 2520
gacctgtgtg cttctgcgg tggctccagg gccccccaca cctgtgaccag ggcgggatcc 2580
ctatggggct ggccagtcgg caccgtgcca gggccacagt gccctggcgc tccatggaaag 2640
tcgttctgtg tctttaaaat cagaaggaag acattaacct ttaggctgaa gaaaatgtt 2700
tagtacacag caataactta tttgtcttta tccaaacagcc ataaaatata actttaaata 2760
ttctattgtt agagaaagga gttcatgaag gcagaaaatgc ctggggccca cgaacatccc 2820
agtgtggccc tggacgggac atcatgctgg gcaacacagc taaaatgcgg gtgaagacca 2880
gatttcttgc acatggcggt gacgggatgc tccctagaga gttcaagtg gatttcttgc 2940
tttttatttt ctctcttaat aaaaatgtt gatgttaca ttgtcagaga aaaaaaaaaa 3000
aaaaaaaaa 3060
aaaaaaaaa 3067

<210> 78
<211> 554
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> modified_base
<222> (1)..(554)
<223> n = g, a, c or t
```

<400> 78
aaagcgaatt catactataa cagcagaaaac aaaacttcag atttcagaat ttgttattgg 60
caaaatttat ttcattata cctgcattcat atgggtatat tactattaaa acagaataacc 120
atagagtaat tgcatatttt gaaaattctn tcattttaca atgcacttca ccaatgaaac 180
agntaatttc catttgaaa attaaaaagaa aacagcacag agaagttaaa tgcggtgttag 240
caaagttatg gggctctgctt gagggcacta acctcaacag attattccctc ctctcccttag 300
aataaccatg aaaatacaaa ttactttagc acatTTTgc tttttaaagta gctggttcat 360
tttctgaatt tcccacattc agagttccag tcattattgt tacatcatgt ttgcagaaac 420
cttgtcttat tttagtgtcta ttgcataata accctgaaaa cattattatt tgaaaacttt 480
tctatataatc aaattaataat acatTTTcat aacctacctt tgnattaaga cttgcaattt 540
tatcaatcta ttat 554

<210> 79
<211> 3243
<212> DNA
<213> *Homo sapiens*

<400> 79
ccgcagcctc cgccgggtggc aaggcggtcg gggagagccg agggccaaag gaagagaaaa 60
tcgcggggag tctctggccg ggagagtcca ggtagcgctc ggccgggcagc agtgcgcagg 120
ccccctcggtca accaccgcca caatgctgcc agcagcggca ggcaggggc ttgggagccc 180
ggaccccgcc ccctcgccgccc cagcgccccc aggaaataca aaagatataa taatgatata 240
tgaagaagat gctgaggaat gggctctgtc cttgacagaa gtattttac atgttgtgaa 300
aagggaagcc atccctgttat atcgcttgaa gaatttctt ttcggcatt tggagttgtc 360
gaacttaacg tcttacaaaat gtaaactttt gatattatca aatagcctgc ttagagacct 420
aactccaaag aaatgtcagt ttctggaaaa gatacttcat tcaccaaaaa gtgtagttac 480
tttgcattgt ggagtgaaga gttcagatca gctctatgaa ttactaaata tctctcaaag 540
cagatgggag atctcaactg aacaggaacc tgaagactac atctctgtaa tccagagtat 600
catattcaaa gattctgaag actacttga ggtcaacatt ccaacagacc tacgagcaaa 660
acattctggg gaaataagtg agagaaaagga aattgaagaa ctatcagaag cttcaagaaa 720
caccataccatctagcagtgg tgcttccac taaaattcca tgtgagaatc ctggtgaat 780
attcataatt ttgagagatg aagtaattgg tgataactgtt gaggttgaat ttacatcaag 840
taataagcgc attagaacac ggcgcgcctt tggaataag aaagtctggc gcatgaaagc 900
tttagagttt cctgctgggt cagtcacatgt caatgtctac tggatggaa tcgttaaagc 960
tacaacccaaa attaagtact acccaacagc aaaggcaag gaatgcctat tcagaatggc 1020
agattcagga gagagtttgtt gccagaatag cattgaagaa ctggatgggt tccttacatc 1080
catattcaaa catgagatcacatattatga gttccagtc tttcaactg aaatttgc 1140
tcaaaaacaaa tatactcatt tcaaaagaact tccaactctt ctccactgtg cagcaaaatt 1200
tggcttaaag aacctggcta ttcatgtc tcaatgttca ggagcaacct gggcatctaa 1260
gataaaaaat atggagggtt cagacccgc acatattgtt gaaaggcatg gtcacaaaaga 1320
actcaagaaa atcttcgaag actttcaat ccaagaattt gacataaata atgagcaaga 1380
aaatgattat gaagaggata ttgcctcatt ttccacatat attccttcca cacagaaccc 1440
agcatttcatt catgaaaagca gaaagacata cgggcagagt gcagatggag ctgaggcaaa 1500
tgaaatggaa ggggaaggaa aacagaatgg atcaggcatg gagaccaaac acagccact 1560
agaggttggc agtgagagtt ctgaagacca gtatgtgac ttgtatgtgt tcattcctgg 1620
tgctgatcca gaaaataatt cacaagagcc actcatgac agcagacctc ctctcccccc 1680
ggccgcgacct gtagctaatg ctttcaact gggaaagacct cacttcacct taccaggac 1740
aatgggtggaa gcccaaatgg aaagaagtca aaactgggtt catcctgggt ttagacaaga 1800
aacaggagat gaacccaaag gagaaaaaaga gaagaaaagaa gggaaaaaaag agcaggagga 1860
ggaagaagac ccatatactt ttgctgagat tgatgacatgtt gatatgaca tgatattggc 1920

caatctgagt ataaaagaaaa aaactggag tcggtcttc attataaata gacccctgc 1980
 ccccacaccc cgaccacaa gtatacctcc aaaagaggaa actacaccc acatagctca 2040
 agtgttcaa caaaagacag ccagaagaca atctgatgat gacaagttcc gtggcttcc 2100
 taagaaacaa gacagagctc ggatagagag tccagcctt tctactctca gggctgtct 2160
 aactgatggt caggaagaac tcatttcct gcaggagaaa gtaaaaatg gaaaaatgtc 2220
 tatggatgaa gctctggaga aatttaaaca ctggcagatg gaaaaatgtc gcctggaaat 2280
 gattcagcag gagaattac gacaactacg agactgcatt attggaaaaa ggccagaaga 2340
 agaaaatgtc tataataaac tcaccattgt gcaccatcca ggtggttaagg aaactgccc 2400
 caatgaaaat aagtttata atgtacactt cagcaataag cttcctgctc gaccccaagt 2460
 tgaaaaaggaa tttggttct gttcaagaa agatcattaa agaaggttat tataatgaaa 2520
 ctcacgaatc tacggacatt ttgcttcag ggtgaagcaa gcttgaattt ggattgcctg 2580
 ctttcttaa agcgaattca tactataaca gcagaaacaa aacttcagat ttcagaattt 2640
 gttattggca aaatttattc tcattatacc tgcttcataat ggttatatta ctataaaac 2700
 agaataccat agagtaattt cattattga aaattcttc atttacaat gcacttcacc 2760
 aatgaaacag ctaatttcca tttgaaaat taaaagaaaa cagcacagag aagttaatg 2820
 cggtagca aagttatggg gtctgcttga gggcaactaac ctcacacagat tattcctc 2880
 ctccttagaa taaccatgaa aatacaaatt tacttagcac attttgctt tttaagttagc 2940
 tggttcattt tctgaatttc tcacattcag agttccagtc attattgtt catcatgttt 3000
 gcagaaaacct tgcattttt agtgtctatt tgcataaac cctgaaaaca ttattatgg 3060
 aaaactttc tataatctcaa attaatatac atttcataa cctaccttg tattaagact 3120
 tgcaatttt tcaatctatt atttcttaga aacaatttac tagcttagaa tagaaagcaa 3180
 tgttatcgatc atataatttt catgtacaaa tgccacaaat aaattgaatg tttaagcta 3240
 aaa 3243

<210> 80

<211> 755

<212> PRT

<213> Homo sapiens

<400> 80

Met Ile Tyr Glu Glu Asp Ala Glu Glu Trp Ala Leu Tyr Leu Thr Glu
 1 5 10 15

Val Phe Leu His Val Val Lys Arg Glu Ala Ile Leu Leu Tyr Arg Leu
 20 25 30

Glu Asn Phe Ser Phe Arg His Leu Glu Leu Leu Asn Leu Thr Ser Tyr
 35 40 45

Lys Cys Lys Leu Leu Ile Leu Ser Asn Ser Leu Leu Arg Asp Leu Thr
 50 55 60

Pro Lys Lys Cys Gln Phe Leu Glu Lys Ile Leu His Ser Pro Lys Ser
 65 70 75 80

Val Val Thr Leu Leu Cys Gly Val Lys Ser Ser Asp Gln Leu Tyr Glu
 85 90 95

Leu Leu Asn Ile Ser Gln Ser Arg Trp Glu Ile Ser Thr Glu Gln Glu
 100 105 110

Pro Glu Asp Tyr Ile Ser Val Ile Gln Ser Ile Ile Phe Lys Asp Ser
 115 120 125

Glu Asp Tyr Phe Glu Val Asn Ile Pro Thr Asp Leu Arg Ala Lys His
 130 135 140

Ser Gly Glu Ile Ser Glu Arg Lys Glu Ile Glu Glu Leu Ser Glu Ala
 145 150 155 160

Ser Arg Asn Thr Ile Pro Leu Ala Val Val Leu Pro Thr Glu Ile Pro
 165 170 175

 Cys Glu Asn Pro Gly Glu Ile Phe Ile Leu Arg Asp Glu Val Ile
 180 185 190

 Gly Asp Thr Val Glu Val Glu Phe Thr Ser Ser Asn Lys Arg Ile Arg
 195 200 205

 Thr Arg Pro Ala Leu Trp Asn Lys Lys Val Trp Cys Met Lys Ala Leu
 210 215 220

 Glu Phe Pro Ala Gly Ser Val His Val Asn Val Tyr Cys Asp Gly Ile
 225 230 235 240

 Val Lys Ala Thr Thr Lys Ile Lys Tyr Tyr Pro Thr Ala Lys Ala Lys
 245 250 255

 Glu Cys Leu Phe Arg Met Ala Asp Ser Gly Glu Ser Leu Cys Gln Asn
 260 265 270

 Ser Ile Glu Glu Leu Asp Gly Val Leu Thr Ser Ile Phe Lys His Glu
 275 280 285

 Ile Pro Tyr Tyr Glu Phe Gln Ser Leu Gln Thr Glu Ile Cys Ser Gln
 290 295 300

 Asn Lys Tyr Thr His Phe Lys Glu Leu Pro Thr Leu Leu His Cys Ala
 305 310 315 320

 Ala Lys Phe Gly Leu Lys Asn Leu Ala Ile His Leu Leu Gln Cys Ser
 325 330 335

 Gly Ala Thr Trp Ala Ser Lys Met Lys Asn Met Glu Gly Ser Asp Pro
 340 345 350

 Ala His Ile Ala Glu Arg His Gly His Lys Glu Leu Lys Lys Ile Phe
 355 360 365

 Glu Asp Phe Ser Ile Gln Glu Ile Asp Ile Asn Asn Glu Gln Glu Asn
 370 375 380

 Asp Tyr Glu Glu Asp Ile Ala Ser Phe Ser Thr Tyr Ile Pro Ser Thr
 385 390 395 400

 Gln Asn Pro Ala Phe His His Glu Ser Arg Lys Thr Tyr Gly Gln Ser
 405 410 415

 Ala Asp Gly Ala Glu Ala Asn Glu Met Glu Gly Glu Gly Lys Gln Asn
 420 425 430

 Gly Ser Gly Met Glu Thr Lys His Ser Pro Leu Glu Val Gly Ser Glu
 435 440 445

 Ser Ser Glu Asp Gln Tyr Asp Asp Leu Tyr Val Phe Ile Pro Gly Ala
 450 455 460

 Asp Pro Glu Asn Asn Ser Gln Glu Pro Leu Met Ser Ser Arg Pro Pro
 465 470 475 480

Leu Pro Pro Pro Arg Pro Val Ala Asn Ala Phe Gln Leu Glu Arg Pro
 485 490 495

 His Phe Thr Leu Pro Gly Thr Met Val Glu Gly Gln Met Glu Arg Ser
 500 505 510

 Gln Asn Trp Gly His Pro Gly Val Arg Gln Glu Thr Gly Asp Glu Pro
 515 520 525

 Lys Gly Glu Lys Glu Lys Lys Glu Glu Glu Lys Glu Gln Glu Glu Glu
 530 535 540

 Glu Asp Pro Tyr Thr Phe Ala Glu Ile Asp Asp Ser Glu Tyr Asp Met
 545 550 555 560

 Ile Leu Ala Asn Leu Ser Ile Lys Lys Lys Thr Gly Ser Arg Ser Phe
 565 570 575

 Ile Ile Asn Arg Pro Pro Ala Pro Thr Pro Arg Pro Thr Ser Ile Pro
 580 585 590

 Pro Lys Glu Glu Thr Thr Pro Tyr Ile Ala Gln Val Phe Gln Gln Lys
 595 600 605

 Thr Ala Arg Arg Gln Ser Asp Asp Asp Lys Phe Arg Gly Leu Pro Lys
 610 615 620

 Lys Gln Asp Arg Ala Arg Ile Glu Ser Pro Ala Phe Ser Thr Leu Arg
 625 630 635 640

 Gly Cys Leu Thr Asp Gly Gln Glu Glu Leu Ile Leu Leu Gln Glu Lys
 645 650 655

 Val Lys Asn Gly Lys Met Ser Met Asp Glu Ala Leu Glu Lys Phe Lys
 660 665 670

 His Trp Gln Met Gly Lys Ser Gly Leu Glu Met Ile Gln Gln Glu Lys
 675 680 685

 Leu Arg Gln Leu Arg Asp Cys Ile Ile Gly Lys Arg Pro Glu Glu Glu
 690 695 700

 Asn Val Tyr Asn Lys Leu Thr Ile Val His His Pro Gly Gly Lys Glu
 705 710 715 720

 Thr Ala His Asn Glu Asn Lys Phe Tyr Asn Val His Phe Ser Asn Lys
 725 730 735

 Leu Pro Ala Arg Pro Gln Val Glu Lys Glu Phe Gly Phe Cys Cys Lys
 740 745 750

 Lys Asp His
 755

<210> 81
 <211> 3195
 <212> DNA
 <213> Homo sapiens

<400> 81

ggaagagaaa	atcgcgggaa	gtctctggcc	gggagagtcc	aggttagcgct	cggccggcag	60
cagtgcgcag	gccccctcgcc	ttcaaccgcc	acaatgctgc	cagcagcgcc	aggcaagggg	120
cttgggagcc	cggaccccgc	cccctgcggc	ccagcgcccc	caggaaatac	aaaagatata	180
ataatgatat	atgaagaaga	tgtgaggaa	tggctctgt	acttgacaga	agtattttta	240
catgttgtga	aaagggaaagc	catcctgtta	tatcgcttgg	agaatttctc	ttttcggcat	300
ttggagttgc	tgaacttaac	gtcttacaaa	tgtaaacttt	tgatattatc	aatagcctg	360
cttagagacc	taactccaaa	gaaatgtcag	tttctggaaa	agataacttca	ttcacccaaa	420
agtgttagtta	cttgccttg	tggagtgaag	agttcagatc	agctctatga	attactaaat	480
atctctcaaa	gcagatggga	gatctcaact	gaacaggaac	ctgaagacta	catctctgt	540
atccagagta	tcatattcaa	agattctgaa	gactacttt	aggtcaacat	tccaaacagac	600
ctacgagcaa	aacattctgg	gaaaaataagt	gagagaaaagg	aaattgaaga	actatcagaa	660
gcttcagaaa	acaccatacc	actagcagt	gtgcttccc	ctgaaaattcc	atgtgagaat	720
cctgggtggaa	tattcataat	ttttagagat	gaagtaattt	gtgatactgt	agagggtgaa	780
tttacatcaa	gtaataagcg	cattagaaca	cggccagccc	tttggataaa	gaaagtctgg	840
tgcattgaaag	cttttagagtt	tcctgctgg	tcagttccat	tcaatgtcta	ctgtgatgga	900
atcggtttaaag	ctacaaccaa	aattaagtac	tacccaacag	caaaggcaaa	ggaatgccta	960
ttcagaatgg	cagattcagg	agagagttt	tgccagaata	gcattgaaga	acttgatggt	1020
gtccttacat	ccatattcaa	acatgagata	ccatattatg	agttccagtc	tcttcaaact	1080
gaaatttgg	ctcaaaaacaa	atatactcat	ttcaagaac	ttccaactct	tctccactgt	1140
gcagcaaaat	ttggcttaaa	gaacctggct	attcatttgc	ttcaatgttc	aggagcaacc	1200
tgggcatct	agatgaaaaa	tatggaggg	tcagaccccg	cacatattgc	tgaaaaggcat	1260
ggtcacaaaag	aactcaagaa	aatcttcgaa	gactttcaa	tccaagaaaat	tgacataaaat	1320
aatgagcaag	aaaatgatta	tgaagaggat	attgcctcat	tttccacata	tattccttcc	1380
acacagaacc	cagcatttca	tcatgaaagc	agaaagacat	acgggcagag	tgcagatgga	1440
gctgaggcaa	atgaaatgga	aggggaagga	aaacagaatg	gatcaggcat	ggagacccaa	1500
cacagcccac	tagaggttgg	cagttagagt	tctgaagacc	agtatgatga	cttgtatgt	1560
ttcatttctg	gtgctgatcc	agaaaataat	tcacaagagc	cactcatgag	cagcagacct	1620
cctctccccc	cgccgcgacc	tgtagcta	gccttccaac	tggaaagacc	tcacttcacc	1680
ttaccaggga	caatggtgg	aggccaaatg	gaaagaagtc	aaaactgggg	tcattcttgc	1740
gttagacaag	aaacaggaga	tgaacccaaa	ggagaaaaag	agaagaaaaga	agaggaaaaa	1800
gagcaggagg	aggaagaaga	cccatatact	tttgctgaga	ttgatgacag	tgaatatgac	1860
atgatattgg	ccaatctgag	tataaagaaa	aaaactggga	gtcggctttt	cattataaaat	1920
agacccctcg	ccccccacacc	ccgaccacca	agtatacctc	aaaaagagga	aactacacct	1980
tacatagctc	aagtgttca	acaaaagaca	gccagaagac	aatctgtatga	tgacaagttc	2040
cgtggcttcc	ctaagaaaaca	agacagagct	cggatagaga	gtccagcctt	ttctactctc	2100
aggggctgtc	taactgatgg	tccggaaagaa	ctcatcttcc	tgcaggagaa	agtaaagaat	2160
gggaaaatgt	ctatggatga	agctctggag	aaatttaaac	actggcagat	gggaaaaagt	2220
ggcctggaaa	tgattcagca	ggagaaaatta	cgacaactac	gagactgcat	tattggaaa	2280
aggccagaag	aagaaaatgt	ctataataaa	ctcaccattt	tgcaccatcc	aggtggtaag	2340
gaaactgc	acaatgaaaa	taagttttat	aatgtacact	tccgtatcc	gtttcctgct	2400
cgaccccaag	ttgaaaagga	atttggtttc	tgttgcaga	aatgtatcc	aagaaggta	2460
ttataatgaa	actcacgaat	ctacggacat	tttgcattca	gggtgaagca	agcttgaatt	2520
tggattgcct	gctttcttta	aagcgaattc	atactataac	agcagaaaaca	aaacttcaga	2580
tttcagaatt	tgttattggc	aaaattttat	ctcattatac	ctgcttcata	tggtatatt	2640
actattaaaa	cagaataccca	tagatgtatt	gcattatttgc	aaaattctct	cattttacaa	2700
tgcacttcac	caatgaaaaca	gctaatttcc	atttgtaaaa	ttaaaaagaaa	acagcacaga	2760
gaagttaaat	gggggtgtac	aaagttatgg	ggtctgttg	agggcactaa	cctcaacaga	2820
ttatttcctcc	tctcctttaga	ataaccatga	aaatacaaata	ttacttagca	catttttgct	2880
tttaaagttag	ctgggttcatt	ttctgtat	ctcacattca	gagttccagt	cattattgtt	2940
acatcatgtt	tgcagaaacc	ttgtcttatt	tagtgcatt	ttgcataataa	ccctgaaaac	3000
attattattt	gaaaactttt	ctatatctca	aattaatata	cattttcata	acctacccctt	3060
gtattaagac	ttgcaatttt	atcaatctat	tatttcttag	aaacaattta	ctagcttga	3120
atagaaagca	atgttacatgt	catataattt	tcatgtacaa	atgcccacaaa	taaattgaat	3180
gtttaaagct	aaaaaa					3195

<210> 82

<211> 816

<212> PRT

<213> Homo sapiens

<400> 82
 Gly Arg Glu Asn Arg Gly Glu Ser Leu Ala Gly Arg Val Gln Val Ala
 1 5 . 10 15
 Leu Gly Gly Gln Gln Cys Ala Gly Pro Ser Ala Ser Thr Ala Thr Met
 20 25 30
 Leu Pro Ala Ala Pro Gly Lys Gly Leu Gly Ser Pro Asp Pro Ala Pro
 35 40 45
 Cys Gly Pro Ala Pro Pro Gly Asn Thr Lys Asp Ile Ile Met Ile Tyr
 50 55 60
 Glu Glu Asp Ala Glu Glu Trp Ala Leu Tyr Leu Thr Glu Val Phe Leu
 65 70 75 80
 His Val Val Lys Arg Glu Ala Ile Leu Leu Tyr Arg Leu Glu Asn Phe
 85 90 95
 Ser Phe Arg His Leu Glu Leu Leu Asn Leu Thr Ser Tyr Lys Cys Lys
 100 105 110
 Leu Leu Ile Leu Ser Asn Ser Leu Leu Arg Asp Leu Thr Pro Lys Lys
 115 120 125
 Cys Gln Phe Leu Glu Lys Ile Leu His Ser Pro Lys Ser Val Val Thr
 130 135 140
 Leu Leu Cys Gly Val Lys Ser Ser Asp Gln Leu Tyr Glu Leu Leu Asn
 145 150 155 160
 Ile Ser Gln Ser Arg Trp Glu Ile Ser Thr Glu Gln Glu Pro Glu Asp
 165 170 175
 Tyr Ile Ser Val Ile Gln Ser Ile Ile Phe Lys Asp Ser Glu Asp Tyr
 180 185 190
 Phe Glu Val Asn Ile Pro Thr Asp Leu Arg Ala Lys His Ser Gly Glu
 195 200 205
 Ile Ser Glu Arg Lys Glu Ile Glu Glu Leu Ser Glu Ala Ser Arg Asn
 210 215 220
 Thr Ile Pro Leu Ala Val Val Leu Pro Thr Glu Ile Pro Cys Glu Asn
 225 230 235 240
 Pro Gly Glu Ile Phe Ile Ile Leu Arg Asp Glu Val Ile Gly Asp Thr
 245 250 255
 Val Glu Val Glu Phe Thr Ser Ser Asn Lys Arg Ile Arg Thr Arg Pro
 260 265 270
 Ala Leu Trp Asn Lys Lys Val Trp Cys Met Lys Ala Leu Glu Phe Pro
 275 280 285
 Ala Gly Ser Val His Val Asn Val Tyr Cys Asp Gly Ile Val Lys Ala
 290 295 300
 Thr Thr Lys Ile Lys Tyr Tyr Pro Thr Ala Lys Ala Lys Glu Cys Leu
 305 310 315 320

Phe Arg Met Ala Asp Ser Gly Glu Ser Leu Cys Gln Asn Ser Ile Glu
 325 330 335
 Glu Leu Asp Gly Val Leu Thr Ser Ile Phe Lys His Glu Ile Pro Tyr
 340 345 350
 Tyr Glu Phe Gln Ser Leu Gln Thr Glu Ile Cys Ser Gln Asn Lys Tyr
 355 360 365
 Thr His Phe Lys Glu Leu Pro Thr Leu Leu His Cys Ala Ala Lys Phe
 370 375 380
 Gly Leu Lys Asn Leu Ala Ile His Leu Leu Gln Cys Ser Gly Ala Thr
 385 390 395 400
 Trp Ala Ser Lys Met Lys Asn Met Glu Gly Ser Asp Pro Ala His Ile
 405 410 415
 Ala Glu Arg His Gly His Lys Glu Leu Lys Lys Ile Phe Glu Asp Phe
 420 425 430
 Ser Ile Gln Glu Ile Asp Ile Asn Asn Glu Gln Glu Asn Asp Tyr Glu
 435 440 445
 Glu Asp Ile Ala Ser Phe Ser Thr Tyr Ile Pro Ser Thr Gln Asn Pro
 450 455 460
 Ala Phe His His Glu Ser Arg Lys Thr Tyr Gly Gln Ser Ala Asp Gly
 465 470 475 480
 Ala Glu Ala Asn Glu Met Glu Gly Glu Lys Gln Asn Gly Ser Gly
 485 490 495
 Met Glu Thr Lys His Ser Pro Leu Glu Val Gly Ser Glu Ser Ser Glu
 500 505 510
 Asp Gln Tyr Asp Asp Leu Tyr Val Phe Ile Pro Gly Ala Asp Pro Glu
 515 520 525
 Asn Asn Ser Gln Glu Pro Leu Met Ser Ser Arg Pro Pro Leu Pro Pro
 530 535 540
 Pro Arg Pro Val Ala Asn Ala Phe Gln Leu Glu Arg Pro His Phe Thr
 545 550 555 560
 Leu Pro Gly Thr Met Val Glu Gly Gln Met Glu Arg Ser Gln Asn Trp
 565 570 575
 Gly His Pro Gly Val Arg Gln Glu Thr Gly Asp Glu Pro Lys Gly Glu
 580 585 590
 Lys Glu Lys Lys Glu Glu Glu Lys Glu Gln Glu Glu Glu Asp Pro
 595 600 605
 Tyr Thr Phe Ala Glu Ile Asp Asp Ser Glu Tyr Asp Met Ile Leu Ala
 610 615 620
 Asn Leu Ser Ile Lys Lys Lys Thr Gly Ser Arg Ser Phe Ile Ile Asn
 625 630 635 640

Arg Pro Pro Ala Pro Thr Pro Arg Pro Thr Ser Ile Pro Pro Lys Glu
 645 650 655
 Glu Thr Thr Pro Tyr Ile Ala Gln Val Phe Gln Gln Lys Thr Ala Arg
 660 665 670
 Arg Gln Ser Asp Asp Asp Lys Phe Arg Gly Leu Pro Lys Lys Gln Asp
 675 680 685
 Arg Ala Arg Ile Glu Ser Pro Ala Phe Ser Thr Leu Arg Gly Cys Leu
 690 695 700
 Thr Asp Gly Gln Glu Glu Leu Ile Leu Leu Gln Glu Lys Val Lys Asn
 705 710 715 720
 Gly Lys Met Ser Met Asp Glu Ala Leu Glu Lys Phe Lys His Trp Gln
 725 730 735
 Met Gly Lys Ser Gly Leu Glu Met Ile Gln Gln Glu Lys Leu Arg Gln
 740 745 750
 Leu Arg Asp Cys Ile Ile Gly Lys Arg Pro Glu Glu Asn Val Tyr
 755 760 765
 Asn Lys Leu Thr Ile Val His His Pro Gly Gly Lys Glu Thr Ala His
 770 775 780
 Asn Glu Asn Lys Phe Tyr Asn Val His Phe Ser Asn Lys Leu Pro Ala
 785 790 795 800
 Arg Pro Gln Val Glu Lys Glu Phe Gly Phe Cys Cys Lys Lys Asp His
 805 810 815

<210> 83
 <211> 3544
 <212> DNA
 <213> Homo sapiens

<400> 83
 attttggttt ctcttcaaga attaacaac cacttactct tgaattctct tctagttAAC 60
 acaggcatca ctacttccaa ttgatctcg gatgtggat cctcatacac attttgaaca 120
 aaatcctctg tttcagcaag gaattcatat ttgcataatgg tgaagatggg ttctgaagtg 180
 agatcagaag tagagcttct aatgaccccc agaagcactg agtgaccaag tgacataacct 240
 gccaggccca ttgtgtccat cgctctcaga gcagctgggg attgtgcttg gctcccagag 300
 ctatggtgca aaaggcgggg tcgctagggc cactcaggga aagagaaccc agaaacatgg 360
 catgtgaca aaaggttagtc cctgcttac cagtttcaact ttctgctgat ttagttaccc 420
 atggtaact gccatctgaa aataggaaat acaaaaagata taataatgat atatgaagaa 480
 gatgtgagg aatggctct gtacttgaca gaagtatTT tacatgttg gaaaaggaa 540
 gccatcctgt tatatcgctt ggagaatttc tctttcggc atttggagtt gctgaactta 600
 acgtcttaca aatgtaaact tttgatatta tcaaataGCC tgcttagaga cctaactcca 660
 aagaatgtc agtttctgga aaagatactt cattcaccaa aaagtgttgt tactttgctt 720
 tgtggagtga agagttcaga tcagctctat gaattactaa atatctctca aagcagatgg 780
 gagatctcaa ctgaacagga acctgaagac tacatctcg taatccagag tatcatattc 840
 aaagattctg aagactactt tgaggtcaac attccaaacag acctacgagc aaaacattct 900
 ggggaaataa gtgagagaaa gggaaattgaa gaactatcg aagcttcaag aaacaccata 960
 ccactagcag tggtgcttcc cactgaaatt ccatgtgagg atcctgggtga aatattcata 1020
 attttgagag atgaagtaat tggtgatact gtagaggtt aatttacatc aagtaataag 1080
 cgcattagaa cacggccagc cctttggaaat aagaaagtct ggtgcattgaa agcttttagag 1140
 tttcctgctg gttcagttca tgtaatgtc tactgtgatg gaatcgtaa agctacaacc 1200
 aaaattaagt actacccaaac agcaaaggca aaggaatgcc tattcagaat ggcagattca 1260

ggagagagtt tgcgtccagaa tagcattgaa gaacttgatg gtgtccttac atccatattc 1320
 aaacatgaga taccatatta tgagtccag tctctcaaa ctgaaatttgc ttctcaaaac 1380
 aaatatactc atttcaaaga acttccaact cttctccact gtgcagcaaa atttggctta 1440
 aagaacctgg ctattcattt gcttcattgt tcaggagcaa cctgggcatc taagatgaaa 1500
 aatatggagg gttcagaccc cacacatatt gctgaaaggc atggcacaagc agaactcaag 1560
 aaaatcttcg aagacttttc aatccaagaa attgacataa ataatgagca agaaaaatgt 1620
 tatgaagagg atattgcctc atttccaca tatattcattt ccacacagaa cccagcattt 1680
 catcatgaaa gcaggaagac atacgggcag agtgcagatg gagctgaggc aaatgaaatg 1740
 gaagggaaag gaaaaacagaa tggatcaggc atggagacca aacacagccc actagaggtt 1800
 ggcagtgaga gttctgaaga ccagtatgt gacttgtatg tggtcatttc tggtgctgat 1860
 ccagaaaata attcacaaga gccactcatg agcagcagac ctccctctccc cccgcccgcga 1920
 cctgttagcta atgccttcca actggaaaga cctcacttca ctttaccagg gacaatggtg 1980
 gaaggccaaa tggaaagaag tcaaaaactgg ggtcatcctg gtgttagaca agaaacagga 2040
 gatgaaccca aaggagaaaa agagaagaaa gaagaggaaa aagagcagga ggaggaagaa 2100
 gaccatata ctttgcgtga gattgtatg acatgtatg acatgtatg gccaatctg 2160
 agtataaaga aaaaactgg gagtcggctt ttcattataa atagacctcc tgccccca 2220
 cccccaccca caagtatacc tccaaaagag gaaactacgc cttacatagc tcaagtgtt 2280
 caacaaaaga cagccagaag acaatctgtat gatgacaagt tccgtggctc tcctaagaaa 2340
 caagacagag ctcggataga gagtccagcc ttttctactc tcaggggctg tctaactgt 2400
 ggtcaggaag aactctatcc cctgcaggag aaagtaaaga atgggaaaat gtctatggat 2460
 gaagctctgg agaaaattaa acactggcag atgggaaaaa gtggcctgaa aatgattcag 2520
 caggagaaat tacgacaact acgagactgc attattggaa aaaggccaga agaagaaaaat 2580
 gtctataata aactcaccat tgcgtcaccat ccaggtggta agggaaactgc ccacaatgaa 2640
 aataatgtttt ataatgtaca cttcagcaat aagcttccctg ctcgacccca agttgaaaag 2700
 gaatttggtt tctgttgc当地 gaaagatcat taaagaaggt tattataatg aaactcacga 2760
 atctacggac attttgcctt cagggtaag caagcttgcgaa ttggattgc ctgctctt 2820
 taaagcgaaat tcatactatg acagcagaaa caaaacttca gatttcagaa ttgttattt 2880
 gcaaaaattta ttctcattat acctgttca tatgggtata ttactattaa aacagaatac 2940
 catagagtaa ttgcattatt tgaaaattct ctcattttac aatgcacttc accaatgaaa 3000
 cagctaattt ccattttgaa aataaaaga aaacagcaca gagaagttaa atgcgggtgta 3060
 gcaaaatgtt ggggtctgt tgagggcact aacctoacaa gattattccct cccctcctt 3120
 gaataaccat gaaaatacaa attacttag cacatttctg ctttttaagt agctggttca 3180
 ttttctgtat ttctcacatt cagagttcca gtcattatttgc ttacatcatg ttgcagaaa 3240
 ctttgc当地 ttttagtgc当地 atttgcataat aaccctgaaa acattattat ttgaaaactt 3300
 ttcttatatct caaattaata tacattttca taacctacct ttgttattaaatg acttgcatt 3360
 ttatcaatct attatttctt agaaacaatt tactagcttta gaatagaaaatg caatgttattc 3420
 gtcataataat ttcatgtac aaatgccaca aataaaatttgc atgtttaag ctatgtctg 3480
 gtttttaaag taaatttata agaatttagcc aataaaatttgc cttctcgcc ttggctaa 3540
 gatc 3544

<210> 84
 <211> 770
 <212> PRT
 <213> Homo sapiens

<400> 84
 Met Val Asn Cys His Leu Lys Ile Gly Asn Thr Lys Asp Ile Ile Met
 1 5 10 15

Ile Tyr Glu Glu Asp Ala Glu Glu Trp Ala Leu Tyr Leu Thr Glu Val
 20 25 30

Phe Leu His Val Val Lys Arg Glu Ala Ile Leu Leu Tyr Arg Leu Glu
 35 40 45

Asn Phe Ser Phe Arg His Leu Glu Leu Leu Asn Leu Thr Ser Tyr Lys
 50 55 60

Cys Lys Leu Leu Ile Leu Ser Asn Ser Leu Leu Arg Asp Leu Thr Pro
 65 70 75 80

Lys	Lys	Cys	Gln	Phe	Leu	Glu	Lys	Ile	Leu	His	Ser	Pro	Lys	Ser	Val
				85					90						95
Val	Thr	Leu	Leu	Cys	Gly	Val	Lys	Ser	Ser	Asp	Gln	Leu	Tyr	Glu	Leu
				100			105						110		
Leu	Asn	Ile	Ser	Gln	Ser	Arg	Trp	Glu	Ile	Ser	Thr	Glu	Gln	Glu	Pro
				115			120						125		
Glu	Asp	Tyr	Ile	Ser	Val	Ile	Gln	Ser	Ile	Ile	Phe	Lys	Asp	Ser	Glu
				130			135				140				
Asp	Tyr	Phe	Glu	Val	Asn	Ile	Pro	Thr	Asp	Leu	Arg	Ala	Lys	His	Ser
				145			150			155			160		
Gly	Glu	Ile	Ser	Glu	Arg	Lys	Glu	Ile	Glu	Glu	Leu	Ser	Glu	Ala	Ser
				165				170					175		
Arg	Asn	Thr	Ile	Pro	Leu	Ala	Val	Val	Leu	Pro	Thr	Glu	Ile	Pro	Cys
				180				185				190			
Glu	Asp	Pro	Gly	Glu	Ile	Phe	Ile	Ile	Leu	Arg	Asp	Glu	Val	Ile	Gly
				195			200				205				
Asp	Thr	Val	Glu	Val	Glu	Phe	Thr	Ser	Ser	Asn	Lys	Arg	Ile	Arg	Thr
				210			215				220				
Arg	Pro	Ala	Leu	Trp	Asn	Lys	Lys	Val	Trp	Cys	Met	Lys	Ala	Leu	Glu
				225			230			235			240		
Phe	Pro	Ala	Gly	Ser	Val	His	Val	Asn	Val	Tyr	Cys	Asp	Gly	Ile	Val
				245				250				255			
Lys	Ala	Thr	Thr	Lys	Ile	Lys	Tyr	Tyr	Pro	Thr	Ala	Lys	Ala	Lys	Glu
				260				265				270			
Cys	Leu	Phe	Arg	Met	Ala	Asp	Ser	Gly	Glu	Ser	Leu	Cys	Gln	Asn	Ser
				275			280				285				
Ile	Glu	Glu	Leu	Asp	Gly	Val	Leu	Thr	Ser	Ile	Phe	Lys	His	Glu	Ile
				290			295				300				
Pro	Tyr	Tyr	Glu	Phe	Gln	Ser	Leu	Gln	Thr	Glu	Ile	Cys	Ser	Gln	Asn
				305			310			315			320		
Lys	Tyr	Thr	His	Phe	Lys	Glu	Leu	Pro	Thr	Leu	Leu	His	Cys	Ala	Ala
				325				330				335			
Lys	Phe	Gly	Leu	Lys	Asn	Leu	Ala	Ile	His	Leu	Leu	Gln	Cys	Ser	Gly
				340			345				350				
Ala	Thr	Trp	Ala	Ser	Lys	Met	Lys	Asn	Met	Glu	Gly	Ser	Asp	Pro	Thr
				355			360			365					
His	Ile	Ala	Glu	Arg	His	Gly	His	Lys	Glu	Leu	Lys	Lys	Ile	Phe	Glu
				370			375				380				
Asp	Phe	Ser	Ile	Gln	Glu	Ile	Asp	Ile	Asn	Asn	Glu	Gln	Glu	Asn	Asp
				385			390			395			400		

Tyr Glu Glu Asp Ile Ala Ser Phe Ser Thr Tyr Ile Pro Ser Thr Gln
 405 410 415

 Asn Pro Ala Phe His His Glu Ser Arg Lys Thr Tyr Gly Gln Ser Ala
 420 425 430

 Asp Gly Ala Glu Ala Asn Glu Met Glu Gly Glu Gly Lys Gln Asn Gly
 435 440 445

 Ser Gly Met Glu Thr Lys His Ser Pro Leu Glu Val Gly Ser Glu Ser
 450 455 460

 Ser Glu Asp Gln Tyr Asp Asp Leu Tyr Val Phe Ile Pro Gly Ala Asp
 465 470 475 480

 Pro Glu Asn Asn Ser Gln Glu Pro Leu Met Ser Ser Arg Pro Pro Leu
 485 490 495

 Pro Pro Pro Arg Pro Val Ala Asn Ala Phe Gln Leu Glu Arg Pro His
 500 505 510

 Phe Thr Leu Pro Gly Thr Met Val Glu Gly Gln Met Glu Arg Ser Gln
 515 520 525

 Asn Trp Gly His Pro Gly Val Arg Gln Glu Thr Gly Asp Glu Pro Lys
 530 535 540

 Gly Glu Lys Glu Lys Lys Glu Glu Lys Glu Gln Glu Glu Glu Glu
 545 550 555 560

 Asp Pro Tyr Thr Phe Ala Glu Ile Asp Asp Ser Glu Tyr Asp Met Ile
 565 570 575

 Leu Ala Asn Leu Ser Ile Lys Lys Lys Thr Gly Ser Arg Ser Phe Ile
 580 585 590

 Ile Asn Arg Pro Pro Ala Pro Thr Pro Arg Pro Thr Ser Ile Pro Pro
 595 600 605

 Lys Glu Glu Thr Thr Pro Tyr Ile Ala Gln Val Phe Gln Gln Lys Thr
 610 615 620

 Ala Arg Arg Gln Ser Asp Asp Asp Lys Phe Arg Gly Leu Pro Lys Lys
 625 630 635 640

 Gln Asp Arg Ala Arg Ile Glu Ser Pro Ala Phe Ser Thr Leu Arg Gly
 645 650 655

 Cys Leu Thr Asp Gly Gln Glu Glu Leu Ile Leu Leu Gln Glu Lys Val
 660 665 670

 Lys Asn Gly Lys Met Ser Met Asp Glu Ala Leu Glu Lys Phe Lys His
 675 680 685

 Trp Gln Met Gly Lys Ser Gly Leu Glu Met Ile Gln Gln Glu Lys Leu
 690 695 700

 Arg Gln Leu Arg Asp Cys Ile Ile Gly Lys Arg Pro Glu Glu Glu Asn
 705 710 715 720

Val Tyr Asn Lys Leu Thr Ile Val His His Pro Gly Gly Lys Glu Thr
725 730 735

Ala His Asn Glu Asn Lys Phe Tyr Asn Val His Phe Ser Asn Lys Leu
740 745 750

Pro Ala Arg Pro Gln Val Glu Lys Glu Phe Gly Phe Cys Cys Lys Lys
755 760 765

Asp His
770

<210> 85

<211> 564

<212> DNA

<213> Homo sapiens

<400> 85

cctctcagaa aactgagcat actagcaaga cagctttct taaaaaaa aatatgtata 60
cacaatata tacgtatatac tatataacg tatgtatata cacacatgtt tattttcct 120
tgatttgtta gctgtccaaa ataataacat atatagaggg agctgtattc ctttatacaa 180
atctgtatggc tcctgcagca cttttcctt ctgaaaat ttacattttgc ctaacctgt 240
ttgttacttt aaaaatcagt tttgatgaaa ggaggaaaaa gcagatggac ttgaaaaaga 300
tccaagctcc tattagaaaa ggtatgaaaaa tctttatagt aaaattttt ataaactaaa 360
gttgcaccc ttatatgtt gttaactctc atttatttgg gtttcgtct tggatctcat 420
ccatccattt tgttctctt aatgtgcct gcctttgag gcattcactg ccctagacaa 480
tgccaccaga gatagtgggg gaaatgccag atgaaaccaa ctcttgctct cactagttgt 540
cagcttcctt ggataagtga ccac 564

<210> 86

<211> 5024

<212> DNA

<213> Homo sapiens

<400> 86

agcggagtgg gtcctgcctg tgacgcgcgg cggcggtcgg tcctgcctgt aacggcggcg 60
gcggctgctg ctccagacac ctgcggcggc ggccggcacc acgcggcggg cgccggagatg 120
tggcccttgg tagggcgct gttgtgggc tcggcgtgtc gggatcgc tcagctacta 180
tttataaaaa caaaatctgt agaattcagc ttttgtatg acactgtcgt cattccatgc 240
tttgcgtacta atatggagc acaaaaacact actgaagtat acgtaaagtgc gaaatttaaa 300
ggaagagata ttacaccc ttatggagct ctaaacaaatg ccactgtccc cactgacttt 360
agtagtgcaaa aaattgaagt ctcacacatta ctaaaaggag atgcctctt gaagatggat 420
aagagtgtatg ctgtctcaca cacagggaaac tacacttgc aagtaacaga attaaccaga 480
gaaggtgaaa cgatcatcga gctaaaatat cgtgttgc ttttttttc tccaaatgaa 540
aatattctt ttgttatttt cccaaatttt gctatactcc ttgttctgggg acagtttgg 600
attaaaacac ttaaatatag atccgggtgtt atggatgaga aaacaattgc ttacttgc 660
gctggacttag tgatcactgt cattgtcatt gttggagccatctttcgt cccaggtgaa 720
tattcattaa agaatgtcac tggccttggc ttaattgtga ctcttacagg gatattaata 780
ttacttcact actatgtgtt tagtacagcg attggattaa cctccttcgt cattgccata 840
ttggttatttcc aggtgtatgc ctatatcctc gctgtgggtt gactgagtcgt ctgtattgc 900
gcgtgtatac caatgcattgg ccctttctg atttcaggatg ttagtatctt agctctagca 960
caattacttgc gacttagttt tatgaaattt gtggcttcca atcagaagac tatacaaccc 1020
ccttagaata actgaagtgc agtgtatggac tccgatttgg agagtagttaa gacgtgaaag 1080
gaatacactt gtgtttaagc accatggcct ttagtgcattca ctgttggggaa gaagaaacaa 1140
gaaaaagtaac tggttgtcac ctatgagacc cttacgtgtat ttttttttttgc 1200
aaagcagctg taattttagtt aataaaaataa ttatgtatca ttttttttttgc ccaatttgc 1260
tccaggcccc ttgttgcatt ttatcaat tagggcaat agtagaatgg acaatttcca 1320
agaatgtgc ctggccttcgc ctggcccttc tggcctctgt gtaaccaggtaaaatgg 1380
cagggtgata actacttagc actgccttgg tgattaccca gagatatcta tgaaaaccag 1440

<210> 87
<211> 305
<212> PRT
<213> Homo sapiens

<400> 87
Met Trp Pro Leu Val Ala Ala Leu Leu Leu Gly Ser Ala Cys Cys Gly
1 5 10 15

Ser Ala Gln Leu Leu Phe Asn Lys Thr Lys Ser Val Glu Phe Thr Phe
20 25 30

Cys Asn Asp Thr Val Val Ile Pro Cys Phe Val Thr Asn Met Glu Ala
35 40 45

Gln Asn Thr Thr Glu Val Tyr Val Lys Trp Lys Phe Lys Gly Arg Asp
50 55 60

Ile Tyr Thr Phe Asp Gly Ala Leu Asn Lys Ser Thr Val Pro Thr Asp
65 70 75 80

Phe Ser Ser Ala Lys Ile Glu Val Ser Gln Leu Leu Lys Gly Asp Ala
85 90 95

Ser Leu Lys Met Asp Lys Ser Asp Ala Val Ser His Thr Gly Asn Tyr
100 105 110

Thr Cys Glu Val Thr Glu Leu Thr Arg Glu Gly Glu Thr Ile Ile Glu
115 120 125

Leu Lys Tyr Arg Val Val Ser Trp Phe Ser Pro Asn Glu Asn Ile Leu
130 135 140

Ile Val Ile Phe Pro Ile Phe Ala Ile Leu Leu Phe Trp Gly Gln Phe
145 150 155 160

Gly Ile Lys Thr Leu Lys Tyr Arg Ser Gly Gly Met Asp Glu Lys Thr
165 170 175

Ile Ala Leu Leu Val Ala Gly Leu Val Ile Thr Val Ile Val Ile Val
180 185 190

Gly Ala Ile Leu Phe Val Pro Gly Glu Tyr Ser Leu Lys Asn Ala Thr
195 200 205

Gly Leu Gly Leu Ile Val Thr Ser Thr Gly Ile Leu Ile Leu Leu His
210 215 220

Tyr Tyr Val Phe Ser Thr Ala Ile Gly Leu Thr Ser Phe Val Ile Ala
225 230 235 240

Ile Leu Val Ile Gln Val Ile Ala Tyr Ile Leu Ala Val Val Gly Leu
245 250 255

Ser Leu Cys Ile Ala Ala Cys Ile Pro Met His Gly Pro Leu Leu Ile
260 265 270

Ser Gly Leu Ser Ile Leu Ala Leu Ala Gln Leu Leu Gly Leu Val Tyr
275 280 285

Met Lys Phe Val Ala Ser Asn Gln Lys Thr Ile Gln Pro Pro Arg Asn
290 295 300

Asn
305

<210> 88
<211> 6790
<212> DNA
<213> *Homo sapiens*

<400> 88

ggagatattt tcttgttcaa tttaaggaga ggtaaatttgc tatcaatag aaaaatgtt 60
tctgaaaaat ttaaaccctg gaaatgtatt tatggcatgg agtcagatgt ttcaggagaa 120
gaagaacaaa tcaagaagca ttgcaagtat gctcatatgg aatgcttaag gcttgggtt 180
aaaaaatata tatatatggc tgtcaatgtc tttaggctcat ggtacgagca gaaatcgtaa 240
taattctttt gtcacatggg ttatccat attggagaga attaactcag gtgaaattaa 300
cttgcact gttgggttt ataataatcta gagggatcac aactgactga tgtcccttg 360
aagtaccatt cttcataaaat ctttttttt tcagaatggg ccagccaact gtgacatccc 420
ttggatcgg gatttagaac tagaaagtat tcttctaca ttatttaggaa agaaaaggag 480
ttacttggcg gtagcaata ttctatttt ttttgggtt ttttagaga cagggctca 540
ttatgttgc caggctggcc tcgagctcct gggctcaagc aatgctccca cctcagccctc 600
ccaagtagct ggactacgg gcatgtgcca ctacacctgg cagtgtttat tctgataaaat 660
acatttatga gctaaaaat gtaactctaa aaccttatct ctgaaacttcc atattaccat 720
cagaaattta gatagttgt tagttctt tttcttgc taacatagat ataaggcatg 780
gtttcattga agtcagttgt atatacatgt aactatcctg atgttcccaataaaagctct 840
gtatttatgc tttagttatt ggggaggctg ctaaatgtag tgcatccca cccatttac 900
cctgttctac tttaaaaaga ggttggctt ttggttgcataaggacca agtcaactccc 960
ccaggttcct ccacagtaag ggaggcctat taaaagccgc ccatggact aacagaaaact 1020
ggactcctat gagctcagat acataactgg gcctcacagg gttgggacag tatgtagtct 1080
aggaatttga agatccatt ccataatcaa gaactgaagc atcgtgttgc cctctcagca 1140
gcaagagtaa ggtgatgccc ctgtcatgtt tagttctga gttctctgt ctttgattct 1200
ttgcctatta gccagctagc tcaccctt ttttatgcca ctgttttta tcctattcat 1260
gccttctcac agacaacttt tcttacctac agctttgac tcattcttgt ctctttctg 1320
tttcttttc actttccctt cccatcacca actttctggg ttttttctg tttcttctta 1380
gagtcagtg gcaagggagaa acttgcagt ccagtcgtt gccatttttcc tgggttgc 1440
aagactcacc agctttggc tggctcacag attggcttc ctgggtcag gacccaccct 1500
tttccctgcc agctttggaa gttgacaga attcgagttgt gcaagtgggtt taaataaaata 1560
gtaaggaaca cagagcagtc ctggaggcgt gcctccatct gctgatgaga aaatccagtg 1620
ctgtcatcca gcccagggtcc cagcggaaatg ggcctctgt ttcagtagga tccccctcc 1680
gctgagtggt tcatggcatg ttctgttca acgctttcc atctgttagga ttcttattct 1740
gtatttattt gtttttttgg gtttttttat ttttgagat ggagtctcgc tctgtcgccc 1800
aggctggagt gcagtggcac gäcccccagct cgctgcagcc tctgcctccc aggacgaggg 1860
agatcctccc acctcagccct tccacgtac tggtactaca ggcattgcacc acaggcatgc 1920
accaccacgc cagctaattt ttgtatttt ggttagagaca gggttgcato atgttgcaca 1980
ggctggctt gaatgcctga gctcaagcaa tctatggcc ttggcctccc aaagtgtgg 2040
gattacaggc atgagccacc acggccagcc ttctcatttt ttttttttat aaggaagcta 2100
tctcttcttc cctccccaaac tagggattt ttttccctt tcgtcaactt gctcatgtac 2160
tgtattctt caacttcatt aatgaatcca ttggaaagca gtggaaaagg caactcagaa 2220
agctaagaag aaatagatag aggaataactc agagctatct gagtattttc ttttagttgt 2280
tagctcttgc gagctttgaa actggaaaga cccagggagt gatgtggaga aagagactga 2340
gcttgtaaga cacaggagca gtgagctaag ggagatggag tagtggggac aaattctggc 2400
acattctgtc tacactctgg gtagatagag gäggggagat ggacccacca tgggtgggggt 2460
atgttgggtga cagcattttc ccaccagcca gtgtacaag tggctgattt gggggaaaga 2520
tggcataaaac aaatgagaga atgtgtttac tatttgatgt agatgggtta tttgcttcat 2580
tttcaaatc agtgatata atcaagaata tttagatgtt ttgaatagac tgcagagct 2640
ggaactctt cattaacatc tctggcacct tttagtttag ccctgaacat tttatcttaa 2700
aattaaacat taccaaatgc tttagttat ttcattttt aaatttat tcttattttgt 2760
tatttatatc agttccat cagaagaacta tacaacccctc tagaataaac tgaagtgaag 2820
tgatggactc cgatttggag agtagtaaga cgtgaaagga atacacttgt gtttaagcac 2880

caattaaagg tttgttacag cactgtttaa aacataactt tataaaaaaa
tgttgcgttacc gttaaagggtt ttgttattaa atcaatttat 6660
tttgccaaagg tactttttt tttaaaaaaa 6720
accctgtat attatatata cttataaaaa cattttaagc 6780
6790

<210> 89
<211> 2538
<212> DNA
<213> Homo sapiens

<400> 89
ttttaaaact tcttaggtaat ttgccacgct ttttgactgc tcaccaatac cctgtaaaaa 60
tacgttaattc ttccctgtttg tgtaataaga tattcatatt tttgttgc ttaataatag 120
ttatttccta gtccatcaga tgccccgtg tgcctctttt atgccaattt gattgtcata 180
tttcatgttg ggaccaagta gtttgcggat ggcaaaccta aatttatgac ctgctgaggc 240
ctctcagaaa actgagcata ctagcaagac agctcttctt gaaaaaaaaa atatgtatac 300
acaatataat acgtatatac atatatacgt atgtatatac acacatgtat attcttcctt 360
gattgtgttag ctgtccaaaa taataacata tataagggga gctgttattcc tttatcacaa 420
tctgtatggct cctgcagcac ttcccttc tggaaaatatt tacatgttgc taacctagtt 480
tgttacttta aaaatcagtt ttgatgaaag gagggaaaag cagatggact tgaaaaagat 540
ccaagctctt attagaaaaag gtatgaaaat ctttataatgta aaattcttta taaactaaag 600
ttgtaccttt taatatgttag taaactctca ttatttggg gttcgcttgg ggatctcatc 660
catccattgt gttctcttta atgctgcctg ctttttgggg cattcaactgc cctagacaat 720
gccaccagag atagtggggg aaatgccaga tggaaaccaac tcttgccttc actagttgtc 780
agcttcctcg gataagtgac cacagaagca ggagtccctc tgcttgggca tcattgggccc 840
agttccctctt cttaaaatca gatttgaat ggctccaaa ttccatcaca tcacattaa 900
attgcagaca gtgttttgc catcatgtat ctgttttgc ccataatatg ctttttactc 960
cctgatccca gtttctgtg ttgactcttc cattcagttt tattttattgt gtgttctcac 1020
agtgacacca ttgtcctt tctgcaacaa cttttccagc tacttttgc aaatttctatt 1080
tgtctctcc ttcaaaacat tctccttgc agttccctt catctgtgtt gctgttctt 1140
tgtctcttaa cttaccatc ctatagtaat ttatgcattt ctgttttagttt ctattagttt 1200
tttggccttg ctcttctctt tgatttaaa attccttcta tagctagagc ttttcttctt 1260
ttcattctctt ctccctgcag tgtttgcattt acatcagaag cttaggtacat aagttaatg 1320
attgagagtt ggctgttattt agatttatac ctttttataa gggtagctt gagagtttc 1380
tttcttctg tttttttttt tttttttttt tttttttttt ttgactaattt tcacatgctc 1440
taaaaacctt caaagggtgat ttttttctc ctggaaactc caggtccatt ctgtttaat 1500
ccctaagaat gtcagaatta aaataacagg gctatcccgt aattggaaat atttctttt 1560
tcaggatgct atagtcaatt tagtaagtga ccaccaaattt gtttatttgc ctaacaaagc 1620
tcaaaacacg ataagtttac tccttcattt cagtaataa aattaagctg taatcaacct 1680
tctagtttc tcttgcattt aaatgggtat tcaaaaatgg ggtatctgtgg tttatgtatg 1740
gaaacacata ctccttaatt tacctgttgc tggaaactgg agaaatgatt gtcgggcaac 1800
cgtttatttt ttattgtattt ttatttgggtt gagggatttt ttataaaaca gttttacttgc 1860
tgtcatattt taaaattact aactgcccattt acctgctggg gtcctttgtt aggtcattttt 1920
cagtgactaa tagggataat ccaggttaact ttgaagagat gagcagttag gtagccaggca 1980
gttttctgc cttagctttt gacagttctt aattaagatc attgaagacc agctttctca 2040
taaatttctc tttttgaaaaaa aaagaaagca ttgttactaa gtcctctgtt aagacaacat 2100
cttaaaatctt aaaagtgttg ttatcatgac tggtagagaga agaaaacattt ttgtttttat 2160
taaatggagc attatttaca aaaagccattt gttgagaattt agatcccaca tcgtataat 2220
atcttataac cattctaaat aaagagaactt ccagtgttgc tatgtgcaag atcctctctt 2280
ggagcttttt tgcatacgaa tttaaagggtt gctatttgc agtagccattt ttttgcagt 2340
gatttgaaga ccaaagggtt tttacagctg tggtaggtttt aaaggtttttt ttgtttttat 2400
gtattaaatc aatttatac tttttaaagc tttgaatattc tgcaatctt gccaaggatc 2460
ttttttttt tttttttttt aaaaaaaaaaataacttgtt aaatattacc ctgtatattt atatataactt 2520
aataaaacat tttaagctt 2538

<210> 90
<211> 550
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1)..(550)
<223> n = g, a, c or t

<400> 90
ccatatcatg tacaaaagt tgctgaagtt tctttctag ctggtaaagt aggagttgc 60
atgacttcac acttttttg cgtagttct tctgttgtat gatggcgtga gtgtgtgtct 120
tggtaccgc tgtgtactac tgtgtgccta gattccatgc actctcggtt tgtttgaagt 180
aaatattgga gaccggaggg taacagggtt gcctgttat tacagctagt aatcgctgtg 240
tcttgttccg cccccccct gacaccccgat ctcccagga tgtggaaagc ctggatctca 300
gctccttgcc ccataccct tctgtatatt gtacctaaag agtgtgatta tcctaattca 360
agagtcacta aaactcatca cattatcatt gcatacagc aaagggtaaa gtcctagcac 420
caattgttcc acataccagc atgttccatt tccaatttag aattagccac ataataaaat 480
cttagaatct tccttgagaa agagctgcct gagatgttagt ttgttatat ggntcccccac 540
cgaccatTTT 550

<210> 91
<211> 1209
<212> DNA
<213> Homo sapiens

<400> 91
ccatatcatg tacaaaagt tgctgaagtt tctttctag ctggtaaagt aggagttgc 60
atgacttcac acttttttg cgtagttct tctgttgtat gatggcgtga gtgtgtgtct 120
tggtaccgc tgtgtactac tgtgtgccta gattccatgc actctcggtt tgtttgaagt 180
aaatattgga gaccggaggg taacagggtt gcctgttat tacagctagt aatcgctgtg 240
tcttgttccg cccccccct gacaccccgat ctcccagga tgtggaaagc ctggatctca 300
gctccttgcc ccataccct tctgtatatt gtacctaaag agtgtgatta tcctaattca 360
agagtcacta aaactcatca cattatcatt gcatacagc aaagggtaaa gtcctagcac 420
caattgttcc acataccagc atgttccatt tccaatttag aattagccac ataataaaat 480
cttagaatct tccttgagaa agagctgcct gagatgttagt ttgttatat ggntcccccac 540
cgaccatTTT tgtgttttt tcttggtttt tttgtttt actgcactgt gagttttgt 600
gtgtcctctt cttgccaaaa caaacgcgag atgaactgga cttatgtaga caaatcgta 660
tgccagtgtt tcttcctt cttcagttcc agcaataatg aatggtcaac tttttaaaa 720
tctagatctc tctcattcat ttcaatgtat ttttacttta agatgaacca aaattattag 780
acttatttaa gatgtacagg catcagaaaa aagaagcaca taatgtttt ggtgcgtatgg 840
caactcaactgtt gaacatgtt aaccacatata taatatgcaaa tattgtttcc aataacttct 900
aatacagttt ttataatgt tgtgtgttgtt gattgttcag gtcgaatctg ttgtatccag 960
tacagttta ggtttcagc tgccttctg gcgagtacat gcacaggatt gtaaatgaga 1020
aatgcagtca tattttccatgt ctgcctctat gatgtatgtt aattattgtct gtttagctgt 1080
gaacaaggga tgttccactg gaggaaataga gtatcctttt gtacacattt tgaaatgttt 1140
cttctgttagt gatagaacaa ataaatgcaa cgaatactct gtcaaaaaaaaaaaaaaaa 1200
aaaaaaaaaaa 1209

<210> 92
<211> 1661
<212> DNA
<213> Homo sapiens

<400> 92
ccatatcatg tacaaaagt tgctgaagtt tctttctag ctggtaaagt aggagttgc 60
atgacttcac acttttttg cgtagttct tctgttgtat gatggcgtga gtgtgtgtct 120
tggtaccgc tgtgtactac tgtgtgccta gattccatgc actctcggtt tgtttgaagt 180

aaatattgga gaccggaggg taacagggttgcctgttatcagctagt aatcgctgtg 240
tcttgcccg ccccctccct gacaccccgaccccag cttcccagga tttggaaagc ctggatctca 300
gctccctgcc ccataccct tctgtatattt gtacctaaag agtgtgatta tcctaattca 360
agagtacta aaactcatca cattattcatt gcataccgc aaaggtaaa gtccttagcac 420
caattgcttc acataccagc atgttccatt tccaatttag aattagccac ataataaaat 480
cttagaatct tccttgagaa agagctgcct gagatgtat tttgttatat gttccccac 540
cgaccatttt tgtgttttt tcttggtttg tttgtttt actgcactgt gagttttgt 600
gtgtcctctt cttgccaaaa caaacgcgag atgaactgga ctatgtaga caaatcgtga 660
tgccagtgtt tccttcctt cttcagttcc agcaataatg aatggtaaac tttttaaaa 720
tctagatctc tctcattcat ttcaatgtat ttttactta agatgaacca aaattattag 780
acttatttaa gatgtacagg catcagaaaa aagaagcaca taatgcttt ggtgcgatgg 840
cactcactgt gaacatgtgt aaccacatata taatatgcaa tattgtttcc aatactttct 900
aatacagttt ttataatgt tggtgtgggt gattgttcag gtcgaatctg ttgtatccag 960
tacagctta ggtcttcagc tgcccttctg gcgagtacat gcacaggatt gtaaatgaga 1020
aatgcagtca tatttccagt ctgcctctat gatgatgtta aattattgtt gtttagctgt 1080
gaacaaggaa tgttaccactg gaggaaataga gtatcctttt gtacacattt tgaaatgctt 1140
cttctgttagt gatagaacaa ataaatgcaa cgaatactct gtctgcccta tcccgtaag 1200
tccacactgg cgtaagagaa ggcccagcag agcaggaatc tgcttagact ttctccaat 1260
gagatccaa tatgagaggg agaagagatg ggcctcagga cagctcaat accacttggg 1320
aacacatgtg gtgtcttgat gtggccagcg cagcagttca gcacaacgta cctcccatct 1380
acaacagtgc tggacgtggg aattctaagt cccagtttg aggggggtt gggatgggg 1440
gcaacaagag atacatttcc agttctccac tgccatgc ttcaatgtt ctgtgagtgg 1500
ccggggccag ggccctcaca atttcaatc cttgtctta catagtata agaattatcc 1560
tcaacatagc ctttgacgc ttgttaatct tgagtattca atttaaccct tttctgaatc 1620
tccctggaaa caggtgcctg cttggattgc cttcttc c 1661

<210> 93
<211> 6400
<212> DNA
<213> Homo sapiens

<400> 93

gaattccggc gtcgcggacg catcccgatc tgggcgggac gctcggccgc ggcgaggcgg 60
gcaaggctgg cagggcagag ggagccccgg ctccgagggtt gctcttcgccc cccgaggatc 120
agtcttggcc ccaaagcgcg acgcacaaat ccacataacc tgaggaccat ggatgctgat 180
gagggtcaag acatgtccca agtttcaggg aaggaaagcc cccctgtaaag cgataactca 240
gatgagggcg atgagcccat gcccgtccccc gaggacctct ccaccaccc gggaggacag 300
caaagctcca agagtgcacag agtcgtggcc agtaatgtta aagttagagac tcagagtgt 360
gaagagaatg ggcgtgcctg tggaaatgaat ggggaagaat gtgcggagga tttacgaatg 420
cttgcgtgcct cgggagagaa attaatggc tcccacaggg accaaggcag ctgcgtttt 480
tcgggagttt gaggcattcg acttcctaaac gaaaaactaa agtgtgatat ctgtgggatc 540
atttgcatcg ggcccaatgt gctcatgttt cacaaaagaa gccacactgg agaacggccc 600
ttccagtgc atcagtgcgg ggcctctt acccagaagg gcaacctgct ccggcacatc 660
aagctgcatt ccggggagaa gcccctcaaa tgccacccct gcaactacgc ctgcggccgg 720
agggacgccc tcaactggcca cctgaggacg cactccgtt gtaaacctca caaatgtgga 780
tattgtggcc gaagctataa acagcgaacg tcttttagagg aacataaaaga ggcgtgccac 840
aactacttgg aaagcatggg cttccgggc acactgtacc cagtcattaa agaagaaact 900
aatcacagtg aaatggcaga agacccgtgc aagataggat cagagagatc tctcgtgtc 960
gacagactag caagtaacgt cgccaaacgt aagagctcta tgccctcagaa atttcttggg 1020
gacaaggggcc tgtccgacac gcccacgc acgcagcgc gctacgagaa ggagaacgaa 1080
atgatgaagt cccacgtat ggaccaagcc atcaacaacg ccatcaacta cctggggcc 1140
gagtcctgc gcccgtgtt gcagacgccc cccggcggtt ccgaggtggt cccggtcatc 1200
agcccgatgt accagctgca caagccgctc gcccggcgc ccccgccgctc caaccactcg 1260
gcccaggaca ggcgtccgtga gaacccgtgt ctgcctctca aggccaagtt ggtgcctcg 1320
gagcgcgagg cgtccccgag caacagctgt caagactcca cggacacccga gagcaacaac 1380
gaggagcagc gcagccgtct catctacctg accaaccaca tcgccccgca cgcgcgcaac 1440
ggcttgcgc tcaaggagga gcaccggcgc tacgacctgc tgccgcgcgc ctccgagaac 1500
tcgcaggacg cgctccgcgt ggtcagcacc agcggggagc agatgaaggt gtacaagtgc 1560
gaacactgccc ggggtgtctt cctggatcac gtcatgtaca ccatccacat gggctgccac 1620
ggcttccgtg atcctttga gtcaacatg tgccgttacc acagccagga cccgtacgag 1680

ttctcgtcgc acataacgac aggggagcac cgcttccaca ttagactaaag ccctcccg 1740
 cccccacccc agaccccgag ccacccagg aaaagcacaa ggactgccgc cttctcgctc 1800
 cgcgcagcag catagactgg actggaccag acaatgtgt gtttgattt gtaactgttt 1860
 tttgtttttt gtttagttt gttgatttggg gtttggattt gtttggattt gtttggattt 1920
 ttttagaggca gggctgcatt gggagcatcc agaactgcta cttccctaga tggtttccca 1980
 gaccgctggc tgagattccc tcacctgtcg cttccctaga tcccttctc caaacgatta 2040
 gtctaaattt tcagagagaa atagataaaa cacgccccag cttgggaaagg agcggtct 2100
 accctgtgct aagcacgggg ttgcgcacc aggtgtctt ttccagtcacc cagaagcaga 2160
 gacacagcc cctgctgtgt gggctgcag gtgagcagac aggacagggt tgccgcacc 2220
 caagtgc当地 gacacagcc ggc当地acaac ctgtgc当地 agctacatgc 2280
 atcttagggcg gagaggctgc acttgtgaga gaaaatactt atttcaagtc atattctgcg 2340
 gtaggaaaat gattgggtt gggaaagtgc gtgtctgtca gactgcctg ggtggaggga 2400
 gacgc当地 gtaggc当地t gggatgtcc tggatttact ggcttgggg aggctgttca 2460
 gatggcttga gc当地cccgag gcttgc当地t cc当地cttcc actccctatac cttaatggc ccccaaatac 2580
 tatctggggc gccctgttcc ccccttcc tgc当地actaca atttaaacac cagtcccgaa atttggatct tctttttt tgaatctctc 2640
 aaacggcaac attcctcaga aacc当地aaatgc ttccatctag taccagagc ctcttttctt gaagaatcc aatcctagcc ctcattttaa 2760
 ttatgtacat ctgcttgc当地t cc当地aaagctt ctaccctc当地c tatattattt tctcgtttaa gaatttctca gtgttggtaa gtttcttac 2820
 attaattttc caactcaatg aaaatatgtg aagcccaagca tctctgttgc taacacacag 2940
 agctcacctg tttgaaacca agctttcaaa ccagcatgtg tgc当地ccacaca tacataggat catgttgaag ctcttactg taaaggcaag 3000
 tgc当地ccaggc aatttgggca ctgagccaga ggctggtctt gcacctgttag gatattggaa 3060
 aggaaagagg aggccaaatgg cactgc当地t gagaaccccg cccatccgtg ctatgacatg 3120
 gaggcactga agcccgagga aggtgtgtgg ttcaagatta atgctatcaa tcattaaaggat gatttcttgc当地t taatgtccac cagatccct 3180
 atataccatt tcaaataattt acagtaacttgc当地t aagcaacaga gaggaaattt tacataagta agtctc当地t ctatgacatt ttggctgtac 3240
 gcatgtttagg ataatttagca gtatccctgg gaatttgc当地t cccaaactctt ccagacatca 3300
 ctgggggaga accactgacc caaatgaattt ctttccatc当地t ttttttccatc当地t taatccaaat caaatgtctg ggaagccctc 3360
 caagaaaaaa aatagaaaaag cacttgaaga aaggctgact tgc当地tcatg tggaggcattt gtttccatc当地t ttttttccatc当地t 3420
 gatatttgc当地t aatatttttccatc当地t aatatttttccatc当地t ttttttccatc当地t ttttttccatc当地t 3480
 gtttccatc当地t aatatttttccatc当地t aatatttttccatc当地t ttttttccatc当地t ttttttccatc当地t 3540
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 3600
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 3660
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 3720
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 3780
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 3840
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 3900
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 3960
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4020
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4080
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4140
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4200
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4260
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4320
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4380
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4440
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4500
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4560
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4620
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4680
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4740
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4800
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4860
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4920
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 4980
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 5040
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 5100
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 5160
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 5220
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 5280
 aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t aatccatc当地t 5340

aggcatcaga	aaaaagaagc	acataatgct	tttggtgcgaa	tggcaactcac	tgtgaacatg	5400
tgttaaccaca	tattaatatg	caatattgtt	tccaataactt	tctaatacag	ttttttataa	5460
tgttgtgtgt	ggtgattgtt	caggtcgaat	ctgttgtatc	cagtacagct	ttaggtcttc	5520
agctgcctt	ctggcgagta	catgcacagg	attgtaaaatg	agaaatgcag	tcatatttcc	5580
agtctgcctc	tatgtatgtt	ttaaaattatt	gctgttttagc	tgtgaacaag	ggatgtacca	5640
ctggaggaat	agagtatcc	tttgtacaca	ttttgaaatg	cttcttctgt	agtgatagaa	5700
caaataaatg	caacgaatac	tctgtctgcc	ctatcccgtg	aagtccacac	tggcgtaaaga	5760
gaaggccccag	cagagcagga	atctgcctag	actttctccc	aatgagatcc	caatatgaga	5820
gggagaagag	atgggcctca	ggacagctgc	aataccactt	ggaaacacat	gtggtgtctt	5880
gatgtggcca	gcccacgagt	tcagcacaac	gtacctccca	tctacaacag	tgctggacgt	5940
gggaattcta	agtcccagtc	ttgagggtgg	gtggagatgg	agggcaacaa	gagatacatt	6000
tccagttctc	cactgcagca	tgcttcagtc	attctgttag	tggccgggccc	cagggccctc	6060
acaatttcac	taccttgcct	tttacatagt	cataagaatt	atcctcaaca	tagccttttg	6120
acgctgtaaa	tcttgagttat	tcatttaccc	ttttctgtatc	tcctggaaac	agctgcctgc	6180
ctgcattgca	cttctcttcc	cgaggagttg	ggtaaaattta	aaagtcaagt	tatagtttgg	6240
atgttagtat	agaattttga	aattgggaat	taaaaatccat	gactggggac	tgggagacca	6300
aaaatttctg	atccccatttc	tgatggatgt	gtcacacett	ttctgtcaaa	ataaaaatgtc	6360
ttggagggtt	tgactccttgc	gtgaaaaaaaaa	aaaaaaaaaa			6400

<210> 94
<211> 1364
<212> DNA
<213> *Homo sapiens*

<400>	94					
aatcaaagggt	gggaggattt	tccctaaact	gacttagcag	gactcttggtt	acaattggac	60
taggcaggct	gaagacagga	tgcaaggaca	aagcttggtg	aaaagaggcc	tcagaggagc	120
tcatctaaaa	tttggtcaag	gggagggtct	ttcttggtcc	ctccttctgt	tcaaggaaaa	180
aagagacatt	cttctttcct	ttgaacaata	taagtcaatt	tctcattgggt	ggcctttttt	240
tcattaagga	caagctgagc	cccctgtga	aacttggtag	cagggcagcc	agttgagaag	300
atttctagat	gtcaaggcat	cttttagatga	tggggtgagg	actgcagtgg	ccatcccaga	360
tcatggattt	tctgggttgc	agtttgaatg	tccttggtga	tggcatagac	atcagtgtca	420
cagtcatggt	tatTTTCCG	agcagagtgt	agaagtgtcc	aacctcatct	tgaaggcett	480
cttttagrcag	tcacaataaa	gatctggaa	gttaggtttt	agttctcagt	gatgccaaat	540
caggacagtg	ggagaaaaat	taaaaacctc	agtttggaga	gtgttagcca	gatagtaaag	600
ggaactagaa	gaactgagaa	tttggtaagg	actgacaagc	tgtcatgtat	gacaggatcc	660
cgttcaattt	acaagttagat	aacaaaacct	gaaagacaag	tacaggacca	gaataataac	720
ccataagaag	gtgctatagt	ttttataaaa	tatctttcta	cagtcatccc	ccttttttga	780
tccaaattaa	ccaaagttaag	attattcttgc	tttacaaaat	aagtcttgc	tcattatatt	840
tgacttactt	atttgcataa	ttgcagcaag	aatggcaact	gaccaggtag	gcttatttaa	900
gtttgcattt	ctggaacttt	ttacaagtaa	tctcagatta	tgcttcaag	agttcttgaa	960
gctataaaggc	caagtcaagc	accaccaggc	cttatctgca	atgcctagag	attccagatg	1020
ggttcttctc	ttcttgagggt	cctaaaaaca	tcctgaggtt	cttggcctg	ccagaaagtc	1080
accttcctga	ctcacctgt	aggctggaa	ctccataatc	caggtaccag	gcagactttc	1140
cgggagggct	tcatatgcat	tggctccata	aagttaacct	tagttcctca	aaactgtctg	1200
ttcatatgtg	attttatgtc	ttattctcag	ttggaaatgc	agaaatcacc	tgtcttctgc	1260
gtcgatcagg	ctgggagctg	cagacccggag	ctgttccat	tcggccatct	tggaatggac	1320
ccccatgtct	tattctcaaa	taaaacattt	tggtaaaaaa	aaaa		1364

<210> 95
<211> 411
<212> DNA
<213> *Homo sapiens*

<400> 95
cctaatatga cattatttca aagcttatta taaaggaaca gtaatcaaac tagtgcaatt 60
ttggcataaaa gttaaaaaaa cagatcaatg aagcagaaga gagagtccag aaacagaact 120
gcacatttat gtgttggtga atgccaggga ttcagcttag gtctgattgc tcaccacaca 180
qaaqccaat cactqagaca acaagtactq ccaqqaagaa aggtttatt gctggtgatg 240

ccagccagga tatgggagac aagtctaaaa tctgtctctg taaccaataa agttaggagt 300
ttatgttagga gttgctcaac aggcatagg tagttgaatc agggttctgg caccttgctg 360
tttagatgca gcgatctgga aatcttcagc tttctgatac tatctggag g 411

<210> 96
<211> 1632
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1)..(1632)
<223> n = g, a, c or t

<400> 96
gtgccagta taaaatatct tatattttct tataatgcct ccatagttt attatatatt 60
cactcaatac atcattttc tatgtgttat gaggtaaaga tctaactttt actgatttt 120
tctttatgca ttttttttaa tttaaatgt gggtaggaa tctaactttt ttcaaacaca 180
tataaatgtg cactactatt tatttaataa gtctgttctt ttccctttta ttattatgct 240
atcttatctc acttgaatc aacctaagcc tggttagac tccaactaat actacagatc 300
ttcctaccac tcttcccott gcataattaa cttcaagcac attagcctcc gggttcctca 360
agcacaccaa atttagtccc agtcaggaa ctctgtactt tctatttcca tgctttaatg 420
ttctttctct tgatatcctt gttttcttatt ttccttcatt tgcathttctg ctttgatttt 480
ctgtttctgg tccatggaca tttttatattt cttttatag aacaaacaca gctttttac 540
attttgtatt ttcctgcaca ttgctatgtg cttggagctc agggaggggcc tcaaaggatg 600
aaattggagt atgggtgtat cagaagttt aacttcttg tattgtatga tcattccctt 660
accttaatac tcacatgaaa tgctatctat ggcttcttac attccacttc ttcttaatca 720
atttctttct tcatgaacct aaacgttccc atcattttt atagggtctg tgagtttatt 780
tgtccaaaaa gccaaaaagc agaatttaag attgatagca tagcttctg ctcaacagtt 840
gtaatatttt tttccatggt cgtctagctt cttctgtttt ctttgagaaa tctatgtaat 900
tggtgtttct ttataatcaa tctatctttt ctctccagtt gcctttaaga ctttttataat 960
ttgatattat gcaatttac tatgattttt ctaaatgtgc atttattttt ctagagatta 1020
ataactcaag tctaaggat catgtctttt ttcaagtttta gaaaatattt ggctatttac 1080
tctttattat catgctgcta cagcattttt tgaattcttt ccctcagaaa tttatattag 1140
aagtttgcta gacttcatc tagtctcatg actcttaattt agtcttgcaa aattttcatt 1200
tcattatcac ttattgcatt ttagttaattt tcttaatctc tgcttccag tttactgggt 1260
ctttcttcag ctgtatctat tttattgttt aaccttatttta ttttcttattt caatgattac 1320
attttttgag attttatttag caaaatggttt aaaagcatgg tttcagagggaa ttgtctggat 1380
ttacatttttgc cctccattat ttactagctc tccagtttgc gttaaatcaa ttaacctttt 1440
gtgctcttg gtgtgtaaaa ttgaagtaac aattgtatataat aatataatgtg tttttggta 1500
attaatcaaatttatttgc taaaatgctt aagacagggc ctgaaatgac attgagtcct 1560
caaaaaataa attattattatcatttc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaana 1620
aaaaaaaaanac ca 1632

<210> 97
<211> 2378
<212> DNA
<213> Homo sapiens

<400> 97
tctaaaagct gcggaaattcc tcgagcactg ttggcccttg gtagatgccc ctctggaga 60
gatccccagg ggtgacagcc atggccctg gaaggccctg ggcttagggac agggaccaga 120
gccagtcagg ggagaggaca gagccaatgg actgggtgt actgtaacag ccctgctggc 180
gagaggggacc agggcaccgt cctccaggaa gcccattctg caagtcgggc cagaggtgcc 240
cctgaacctg aaggccaatg agacccaaga caggccaaatg gggttgtgag acccctgagg 300
agctggggccc tggcccagg cagcgctggc ccctgctgtc gctgggtctg gccatggtcg 360
cccatggccct gctgcggcca atggttgcac cgccaaagcgg ggacccagac cctggagcct 420
cagttggaaag cagccgatcc agcctgcggaa gctgtgggg caggtaaagg gcaagagata 480
tgtgggggtc ctgcagcaga gctggaaag ggtgaccaag gggggacaag ccagaggagt 540

gaggaggaag gttAACCCCT aagaggggcc tgggctgaca ctggctttag taatgggtt 600
 atattttgtc catcacagat ttgtttgatt tactgtttt aatatcatat tacgatatta 660
 ttttcttca tttctgagtt ttctggcgcc acttaaattt tcaccagggt cagtgectca 720
 atcacctagt ccttagtcctc tggtagggaa aggaacagag gcagggacag gacatccaca 780
 ggggggtgtg gccactgtcc ccacagggtg cccaggcctg ttctcccccc tcctccctc 840
 tgcccatgtg ctcctgccc agtgaggggca gggccactc cctggagaag gcagcaagg 900
 cttggtttgg tctccccaag ggctgtctgt tcaccaactt gcacataaat acttactggg 960
 gccaggctca aggacacagg gaggggtggaa tgaaccgagg ggagctgtcc agtcattgg 1020
 acaggcccac ggcccatgtt tgcaagcaatg aaggagagg geatctccct ctggatgtat 1080
 gcccaggctg gtctcacaga tcgagggca ctggctggg atgggtgccc ccaaagaca 1140
 gaggcgtgc agaggagagg agagcacagg atgaggctgg gagtcctgg gtgactggg 1200
 aggggaggca agaagacat agggtccgtg caccatccc agtccaggac gagtccttg 1260
 atggatttag gttagtttat tattcagatc agattttgtt tttggaaaaa atcagcac 1320
 gatggaggg ttagtgcgacg cccaaatttggg ggggggagga ggggggtga tggccaagt 1380
 caggtaggt ggggatctg gaggaaagccg tgccttggg atggggagga cactcagatt 1440
 cagagcaccc agggggcccaag tttcttatga aatgggagca tgagggtgaa gtgagggctg 1500
 agcaggggg agcagacacg ctccgggact gtctatggc attggaaaatg tataaccatt 1560
 ttagcaacag gcccgcgatc aaaacccaag gtgtgtttat ctaaactggg caatctct 1620
 tcttaggaatt tattctaagg gttgggtggg ggaataatca aagctgaaac caaatctta 1680
 taacaagggt ggttaggtca gcattcttag tgatggaga aaactggaaa aaatccaaat 1740
 atctaccaga aagggtgtga aaaaacacaa ttgtatggg gggactgtt ttgatgtt 1800
 tttgaaacag ttttgcattctg ttgtctcaggc tggagtacag tggcggtggc acagctact 1860
 gcagcctcaa cttcccgaggc tcaaaagatc ctccagcctc agcctctga gttagttaga 1920
 ctacagatgc aggccactac acctggctaa ttttgatttag gattatcatt agtttagaga 1980
 cagagectcg etatattgtc caggcctgtc tcaaattctt aagctcaagc aatctttctg 2040
 cctcgtttc ccacgtgtc gaattacagg cgtgagccac tgcacctgac ccaactgtgt 2100
 ttttaaagta tatatgcatt ttcaaaaacc tgcagaaaa tatagaaaaa tgtcaatgg 2160
 gtgtctggct ggctgtatggg atttcaccta attttatgt ggctttataa ttttctgg 2220
 ttgtgaagtt gttcacaaaa agagacattt cttctaataat aatttttaat acaacagtaa 2280
 tgcattactc ttttgcattt gatgtatataa caaaatgtaa tgactttgt 2340
 acattactct ttttcttgc caaaaaaaaaaaaaaaa 2378

<210> 98
 <211> 313
 <212> DNA
 <213> Homo sapiens

<220>
 <221> modified_base
 <222> (1)..(313)
 <223> n = g, a, c or t

<400> 98
 ccacaaaata aggtctaatt caataaatta tagtaaatta atgtaatata atattacatg 60
 ccactaaaaaa gaataaggta gctgtatatt tcctggatg gaaaaaacat attaatatgt 120
 tataaactat tagttgggtg caaaactaat tgcgtttttt gccattgaa tggcattgaa 180
 ataaaagtgt aaagaaatct ataccagatg tagtaacagt gttttgggtc tgggagggtt 240
 gattacaggg agcatttgc ttctatgttngtatttcta tantgttga attgtttaga 300
 atgaatctgt ntt 313

<210> 99
 <211> 317
 <212> DNA
 <213> Homo sapiens

<400> 99
 ccagtatgga atccagaagg accgagtgga taagagcgct gtcggcttca atgaaatgga 60
 ggccccgacc acagttata agaagacgac gccatagaa gccgttctca gtggtgcccg 120
 tgggctgaag gcgaaatttgc agtccatggc tgaggagaag aggaagcgag aggaagagga 180

gaaggcacag caggtggcca ggaggcaaca ggagcgaaag gctgtgacaa agaggagccc 240
 tgaggctcca cagccagtga tagctatgga agagccagca gtaccggccc cactgcccaa 300
 gaaaatctcc tcagagg 317

<210> 100
 <211> 1968
 <212> DNA
 <213> Homo sapiens

<400> 100
 aattccgccc ggcgcttaga acagaggctt gcacagggtgg agatgtggaa gtctgttagtg 60
 ggc当地 tttgttgc cgtggagacc cagggtgatg attgggacac agatcctgac 120
 tttgttaatg acatctctga aaaggagcaa cgatggggag ccaagaccat cgagggtct 180
 ggacgcacag aacacatcaa catccaccag ctgaggaaca aagtatcaga ggagcatgat 240
 gttctcagga agaaagagat ggagtcaggg cccaaagcat cccatggcta tggaggtcgg 300
 tttggagtag aaagagaccg aatggacaag agtgcagtgg gccatgagta tggtgccgag 360
 gtggagaagc actcttctca gacggatgct gccaaaggct ttgggggcaa gtacggagtt 420
 gagagggaca gggcagacaa gtacgcagtc ggcttgcatt ataaaggaga agtggagaag 480
 catacatctc agaaagatta ctctcgtggc tttggtggcc ggtacggggt ggagaaggat 540
 aaatgggaca aagcagctc gggatatgac tacaagggg agacggagaa acacgagtcc 600
 cagagagatt atgccaaggg ctttggtggc cagtatggaa tccagaagga ccgagtggat 660
 aagagcgtg tcggcttcaa tgaatggag gccccgacca cagttataa gaagacgacg 720
 cccatagaag ccgcttctag tggtgcggcgt gggctgaagg cggaaatttga gtccatggct 780
 gaggagaaga ggaagcgaga ggaagaggag aaggcacagc aggtggccag gaggcaacag 840
 gagcggaaagg ctgtgacaaa gaggagccct gaggctccac agccagtgtt agctatggaa 900
 gagccagcag taccggcccc actgcccacaa aaaatctctc cagaggcctg gcctccagtt 960
 gggactcctc catcatcaga gtctgagccgt gtgagaacca gcagggaaaca cccagtgccc 1020
 ttgctgccc ttggcagac tctccggag gacaatgagg agccccccagc tctgccccct 1080
 aggactctgg aaggcctcca ggtggaggaa gagccagtgtt acgaagcaga gcctgagcct 1140
 gagcccgagc ctgagcccgaa gcctgagaat gactatgagg acgttgagga gatggacagg 1200
 catgagcagg aggtgaacc agagggggac tatgaggagg tgctcgagcc tgaagattct 1260
 tcttttctt ctgctctggc tggatcatca ggctgcccgg ctggggctgg ggctggggct 1320
 gtggctctgg ggtatctcagc tggatctcta tatgattacc aaggagaggg aagtgtatgag 1380
 ctttcctttt atccggacga cgtaatcact gacattgaga tggatggacga gggctgggtgg 1440
 cggggacgtt gccatggcca ctttggactc ttccctgcaaa attatgtcaa gcttctggag 1500
 tgactagagc tcactgtcta ctgcaactgt gatttccat gtccaaagtgt gctctgctcc 1560
 accccctccc tattcctgtat gcaaatgtct aaccagatga gtttctggac agacttccct 1620
 ctcctcttc attaagggtt tggggcagag acagcatggg gaaggagggtc cccttcccc 1680
 agagtctctc tataccttggaa tgagctcatg aacatttctc ttgtgttccct gactccttcc 1740
 caatgaacac ctctctggca ccccaagtc tgctctctc ctctgtgagc tctgggcttc 1800
 ccagtttgtt taccgggaa agtacgtcta gattgtgtgg tttgcctcat tggatctattt 1860
 gcccacttcc ttccctgaa gaaatatctg tgaaccttct ttctgttcaag tcctaaaattt 1920
 cgaaataaaag tgagactatg gttcacctgt aaaaaaaaaa aaggaatt 1968

<210> 101
 <211> 486
 <212> PRT
 <213> Homo sapiens

<400> 101
 Met Trp Lys Ser Val Val Gly His Asp Val Ser Val Ser Val Glu Thr
 1 5 10 15

Gln Gly Asp Asp Trp Asp Thr Asp Pro Asp Phe Val Asn Asp Ile Ser
 20 25 30

Glu Lys Glu Glu Gln Arg Trp Gly Ala Lys Thr Ile Glu Gly Ser Gly Arg
 35 40 45

Thr Glu His Ile Asn Ile His Gln Leu Arg Asn Lys Val Ser Glu Glu
 50 55 60

His Asp Val Leu Arg Lys Lys Glu Met Glu Ser Gly Pro Lys Ala Ser
 65 70 75 80

His Gly Tyr Gly Gly Arg Phe Gly Val Glu Arg Asp Arg Met Asp Lys
 85 90 95

Ser Ala Val Gly His Glu Tyr Val Ala Glu Val Glu Lys His Ser Ser
 100 105 110

Gln Thr Asp Ala Ala Lys Gly Phe Gly Gly Lys Tyr Gly Val Glu Arg
 115 120 125

Asp Arg Ala Asp Lys Ser Ala Val Gly Phe Asp Tyr Lys Gly Glu Val
 130 135 140

Glu Lys His Thr Ser Gln Lys Asp Tyr Ser Arg Gly Phe Gly Gly Arg
 145 150 155 160

Tyr Gly Val Glu Lys Asp Lys Trp Asp Lys Ala Ala Leu Gly Tyr Asp
 165 170 175

Tyr Lys Gly Glu Thr Glu Lys His Glu Ser Gln Arg Asp Tyr Ala Lys
 180 185 190

Gly Phe Gly Gly Gln Tyr Gly Ile Gln Lys Asp Arg Val Asp Lys Ser
 195 200 205

Ala Val Gly Phe Asn Glu Met Glu Ala Pro Thr Thr Ala Tyr Lys Lys
 210 215 220

Thr Thr Pro Ile Glu Ala Ala Ser Ser Gly Ala Arg Gly Leu Lys Ala
 225 230 235 240

Lys Phe Glu Ser Met Ala Glu Glu Lys Arg Lys Arg Glu Glu Glu
 245 250 255

Lys Ala Gln Gln Val Ala Arg Arg Gln Gln Glu Arg Lys Ala Val Thr
 260 265 270

Lys Arg Ser Pro Glu Ala Pro Gln Pro Val Ile Ala Met Glu Glu Pro
 275 280 285

Ala Val Pro Ala Pro Leu Pro Lys Lys Ile Ser Ser Glu Ala Trp Pro
 290 295 300

Pro Val Gly Thr Pro Pro Ser Ser Glu Ser Glu Pro Val Arg Thr Ser
 305 310 315 320

Arg Glu His Pro Val Pro Leu Leu Pro Ile Arg Gln Thr Leu Pro Glu
 325 330 335

Asp Asn Glu Glu Pro Pro Ala Leu Pro Pro Arg Thr Leu Glu Gly Leu
 340 345 350

Gln Val Glu Glu Glu Pro Val Tyr Glu Ala Glu Pro Glu Pro Glu Pro
 355 360 365

Glu Pro Glu Pro Glu Asn Asp Tyr Glu Asp Val Glu Glu Met
370 375 380

Asp Arg His Glu Gln Glu Asp Glu Pro Glu Gly Asp Tyr Glu Glu Val
385 390 395 400

Leu Glu Pro Glu Asp Ser Ser Phe Ser Ala Leu Ala Gly Ser Ser
405 410 415

Gly Cys Pro Ala Gly Ala Gly Ala Val Ala Leu Gly Ile Ser
420 425 430

Ala Val Ala Leu Tyr Asp Tyr Gln Gly Glu Gly Ser Asp Glu Leu Ser
435 440 445

Phe Asp Pro Asp Asp Val Ile Thr Asp Ile Glu Met Val Asp Glu Gly
450 455 460

Trp Trp Arg Gly Arg Cys His Gly His Phe Gly Leu Phe Pro Ala Asn
465 470 475 480

Tyr Val Lys Leu Leu Glu
485

<210> 102

<211> 96

<212> DNA

<213> Homo sapiens

<400> 102

ctgacagcat ctggctttca gttcctcagt caccactact ttgtacccaa ttcactgttt 60
tggctctgaa atctaatttt gagtttagca aggatg 96

<210> 103

<211> 349

<212> DNA

<213> Homo sapiens

<400> 103

ccagagtgcg ggatacatca ttggcaccaa gggctttttt caattcttgg tcaatcctct 60
gcagcaagca cccccggatg acgtcctcat agatgcctc agtggtcaga gcctggctgc 120
ccacggcaag gacatcccc tcgaactcgag gcagctcctt ttgcagccct ggctcgagtt 180
ggctcagcac aaaaggtaaa aagatgcaga gaccccgcc tcggatgaac ctccctctgcg 240
ccaaaccgcgt gtccgatttg aatttcttca gcacgcgccc cctgactctc tccagcctct 300
gggcagcctg gtcacagttg agggccgtcg tcagacactg gtcagccag 349

<210> 104

<211> 116

<212> PRT

<213> Homo sapiens

<400> 104

Leu Ala Asp Gln Cys Leu Thr Thr Ala Leu Asn Cys Asp Gln Ala Ala
1 5 10 15

Gln Arg Leu Glu Arg Val Arg Gly Arg Val Leu Lys Lys Phe Lys Ser
20 25 30

Asp Ser Gly Leu Ala Gln Arg Arg Phe Ile Arg Gly Trp Gly Leu Cys
35 40 45

Ile Phe Leu Pro Phe Val Leu Ser Gln Leu Glu Pro Gly Cys Lys Lys
50 55 60

Glu Leu Pro Glu Phe Glu Gly Asp Val Leu Ala Val Gly Ser Gln Ala
65 70 75 80

Leu Thr Thr Glu Gly Ile Tyr Glu Asp Val Ile Arg Gly Cys Leu Leu
85 90 95

Gln Arg Ile Asp Gln Glu Leu Lys Lys Thr Leu Gly Ala Asn Asp Val
100 105 110

Ser Cys Thr Leu
115

<210> 105

<211> 311

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (1)..(311)

<223> n = g, a, c or t

<400> 105

ctgcaagaca gcagagaanc tgccaatatac cagttacgag atgactttgc tggcaaggcag 60
aggaagncgg taaaagcttg tctcccgagcc aggaaacctg acaccaagt aagatttgg 120
gcttagaaac aaacccaaaa ggctcacagc aagcggagaa aaaaacccca aaatctgtaa 180
cctgtatcac aaagcggtca tatccttcag atataaagag ttattagata tcaataagaa 240
aaatgcaaac actcctgaaa agtagaaaaa agctatgaac aggcaattca ctgaaattaa 300
aaaaaaaaa a 311

<210> 106

<211> 5107

<212> DNA

<213> Homo sapiens

<400> 106

cgcaggcggt ggtcggtgggg aagggaaagag gagccccggg agacgacagc agcatgggtg 60
ggcgcccttc gagccctctg gacaagcagc agcggcagca cctaagggtt caggtggaca 120
ccctgctgag gaaccttcctg ccttgcattc gtggcagct ggcagcgtct gtcctgcggc 180
agatctctcg agagctggc cctcaggagc cgaccgaaag ccagttgcta cgcagcaaaa 240
agctcccccg agtccgtgag caccgaggac ccctgaccca gcttcggggc caccacccc 300
ggtggcagcc gatcttctgt gtttcgtgt gggacggccg cctagagtgg tttagccaca 360
aggagaata tggaaaacggg ggccactgtcc ttggctcaac agccctgaca ggatacacgc 420
tcctgacttc ccagcgagaa tatctccggc ttggatgc tctctgcctt gaatccttgg 480
gagaccatac tcaggaagag cctgactccc tcttggaaatg gctctgtgagc ttcccgctgt 540
tcctgcagca ccccttccgc cggcacctct gtttcctgc agccaccagg gaggcacagc 600
atgcctggag gctggccctg cagggtggca tccggcttca gggcagcgtc ctgcagcggaa 660
gccagcccc tgctgccccg gccttcctgg acggcgtccg actctaccgg cagcaccaag 720
gccacttgg cgacgacgac gtgaccctag gtcagacgc cgagggtgctg accgcgggtgc 780
tgatgcggga gcaacttccc gcgctgcgag cccagaccct tcctggccctg cggggggcag 840
gccgcggcccg cgccctggggcc tggaccggagc ttctagacgc cggtcacgca gctgtccctgg 900
ccggggccctc cgccggggctc tgcgccttcc agcccggaaaa ggacgagctg cttgcgtcgc 960
tggagaagac gatccgccccg gacgtggacc agctgctgcg gcagcggcgg cgtgtggcgg 1020

ggcggctgag gacggatatc aggggaccgc tcgagtcgtg cctgcgcgg gagggtggacc 1080
 cgcagctgcc ccgggtcggt cagaccctgc tgccgcaccgt ggaagcctcg ctcgaggcg 1140
 tgcggaccct cctggctcaa ggcattggacc gactgtccca cccgcctgcgc cagagcccct 1200
 cgggcacgcg gctgcgcagg gagtttact catttggga gatgccgtgg gacttggcgc 1260
 ttagtgcagac atgctaccgt gaggccgagc ggagccgggg gcgcttgggg cagctggcag 1320
 caccgttgg ctttcttggg atgcagagcc tcgttggg ggcccaagat cttgcacagc 1380
 agctcatggc tgacgcccgt gccaccttc tgccagctggc tgaccagtgt ctgacgacgg 1440
 ccctcaactg tgaccaggct gcccagaggc tggagagagt cagggggcgc gtgctgaaga 1500
 aattcaaatac ggacagcggg ttggcgcaga ggaggttcat cccaggctgg ggtctctgca 1560
 tcttttacc ttttgtgtc agccaactcg agccagctg caaaaagacg gagtctcgct 1620
 ctgtcgccca ggctgttagtg cagtgggtgt atcttgcgtc gctgcggctt ccacccctta 1680
 ggttcaagcg atcctcccat ctccgcctcc caagtagctg ggattacagg caccgcstat 1740
 agggaccagc cccacagggt cgggtggctc ctccctgtgt gcagagacaa gagagtgttag 1800
 aaataaagac acaagacaaa gagataaaaag aaaagacacg tggggccggg ggaccactac 1860
 taccaagttg cggagacccgg tagtggcccc gaatgtctgg ctgcgtctt atttatttgg 1920
 tacaaggcaa aaggggcagg gtaaagagtg tgagtcatct ccaatgatag gtaaggtcac 1980
 gtgggtcatg tgtccactgg acagggggcc cccctgtcc tggcagctga ggcagagaga 2040
 gagaggagac aaagagaaaag acagcttaag ccattatttc tgcatatcag agacttttag 2100
 tactttcact aactgactac tgctatctag aaggcagacg caggtgtaca ggatggaaca 2160
 cgaaggcggc cttaggagcga gaccactgaa gcacagcatc acaggggac ggttaggtct 2220
 ctggataact gtggcaagc ctgactgata tcaggccctc cacaagaggt ggaggagcag 2280
 agtctctct aaactccccc ggagaaaagg agactccctt tcccggtctg ctaagtagcc 2340
 ggtttttc cttgacactt ttgcgtaccg cttagccagac gctggcgtca ccgttagacc 2400
 ataacagaag gtcgcactc ttgtcttctg aaggagccct tctgctggcc ctgtccgggc 2460
 gtcataacctc actatgcggc ctcagctct 2520
 atctctgtat ggcctgggtt ttccttagtt atgattttag agtgaggatt attataatat 2580
 tggataaaag agtaactgtt accaactaat cattaatgat attcatatataatcatatct 2640
 aatatctata tctggtataa ctattctgt tttatattt ttataactgg aacagctcat 2700
 gtcctcggtc tcttcgtca gcacctgggt ggcttgcgc ccacaacccg ccaccacgccc 2760
 cagctaattt ttgtactttt ggttagagacg gtgggttcac catgttggc aggtggctct 2820
 tgaactcctg acctcatgtat ccgcacccact cagccaaacca aagtgtctggg attacaggca 2880
 tgagccaccg caccggcct gtttattttt aaataaaaaat attaaaaat aaagataagg 2940
 aaactaaggc ccaagccccg cccccaacc ccacagctaa tcaggcccaag ggctaggc 3000
 gaagcctgtg ttgtaggcct ctagagggc ctcctctcc atccgagccc ctaacccgccc 3060
 atggttccag gagctgcctg agttcgaggg gaccactgag ggcattctatg aggacgtcat ggatgtctt gccgtggc gccaggctct 3120
 ggagctgaat cttcaccac atctatctg ccgggggtgc ttgcgtcaga ggattgacca 3180
 tttctggcc aaaacggatg tgccatctt ctctggacgg ctgcttggag gtcctatggg 3240
 aacaggaggg agcagatgag gaaactgagg tctgcccacc gccttctcca ggaacattcc 3360
 agccagactc tggtgcccag atccagccac ggagctgaat ttctatttg ataaatgtct acaagtggaa 3420
 tttctggcc aaaacggatg tgccatctt aggctttgt aacccctgca acttcagaaa 3480
 actgtaccat ttatactcc aageagcage tttatatttgt gtatccc caaggctttc 3540
 tttatatttaa tttttttttt ttttttttgag actgggtctt gctgtcacc cccggcttggg 3600
 gtgcagtggc aggtatctgg ctcactgcga ctcctcagecc tcccgagtag ctggattttc 3660
 tgcctcagecc tcccgagtag ctggatttc aggccacccgc caccatgcct ggtaattgt 3720
 gtttttggta gagatgggg ttcggcgtgt tgccaggct ggtctcgaac tcctgtcctt 3780
 aggtggtctg cccgcctcag ctcctccggag tgctgggatt gcaggtgtga gccaccacac 3840
 gtggcctaattttttttaataatata agacaaggctc tcgctatgct gcccaggctg 3900
 atctcaaact ctcggactca agcaatctc taggagtgtat ccactatgtc cactatgtc 3960
 taggagtgtat ccactatgtc cagcctccaa aaagaaaaaa gctatgcccag tttagacacac atccttgc 4020
 ctttgcactaa attgaactta caaataagtt tattatggcc gggcgtggcg gtgcacacct 4140
 gtggtcccgg cactttggg ggcgtggcg ggcagatcac ttgagctcag gagttcggga 4200
 ccagcctggc ggacgtgggt ggacccatc tctacaaaaa atacaaaatt agcggccggg 4260
 agtggtggct caccgcctgtc atccagcacc agccaaggag ttttgaggc tgagacagggt ggtttcttgc 4320
 aaaaataataa aataaataaa taaaataataa aataaataaa taaaatttaa aagaagctgg 4380
 gctgagatgg gagatttggc tgacgcctggg aactcaaggc tgcaatgtgat ggtgattgca 4440
 ccactgcact ccagcctggg tgatgggagt gagaccctgt ctcaaaaaac aaaatccaaa 4560
 tatgttgatt agccatttac atgtttgttag tttttttttt ttaatttca gtgaattgcc 4620
 tgccatagc tttttctac tttcaggag tgtttgcatt tttcttatttgc atatctaata 4680

actcttata tctgaaggat atgaacgctt tgtgatacacag gttacagatt ttgggggttt 4740
tttcgcgt tgctgtgagc ctttgggtt tgcccttag ctccaaatct taacttggtg 4800
tcaagttcc tggctggag acaagctttt accgacttcc tctgcttgcg agcaaagtca 4860
tctgtaact ggatattggc agcttctctg ctgtcttgcg gctgcttccg gagttgggttc 4920
cacagggatt cccgtgtgtt cttggttcag cttgcagagg gactttcaca ctccctggag 4980
accgtttcct cccattctgt ctggagttt cggcctaccc caagacaatg agatattcct 5040
gaccttcca cctatccc tccaacccca cttccaaaa tacatggct caatacattt 5100
gcacttc 5107

<210> 107
<211> 579
<212> PRT
<213> Homo sapiens

<400> 107
Gln Ala Val Val Val Gly Lys Gly Arg Gly Ala Pro Gly Asp Asp Ser
1 5 10 15

Ser Met Gly Gly Arg Pro Ser Ser Pro Leu Asp Lys Gln Gln Arg Gln
20 25 30

His Leu Arg Gly Gln Val Asp Thr Leu Leu Arg Asn Phe Leu Pro Cys
35 40 45

Tyr Arg Gly Gln Leu Ala Ala Ser Val Leu Arg Gln Ile Ser Arg Glu
50 55 60

Leu Gly Pro Gln Glu Pro Thr Gly Ser Gln Leu Leu Arg Ser Lys Lys
65 70 75 80

Leu Pro Arg Val Arg Glu His Arg Gly Pro Leu Thr Gln Leu Arg Gly
85 90 95

His Pro Pro Arg Trp Gln Pro Ile Phe Cys Val Leu Arg Gly Asp Gly
100 105 110

Arg Leu Glu Trp Phe Ser His Lys Glu Glu Tyr Glu Asn Gly Gly His
115 120 125

Cys Leu Gly Ser Thr Ala Leu Thr Gly Tyr Thr Leu Leu Thr Ser Gln
130 135 140

Arg Glu Tyr Leu Arg Leu Leu Asp Ala Leu Cys Pro Glu Ser Leu Gly
145 150 155 160

Asp His Thr Gln Glu Glu Pro Asp Ser Leu Leu Glu Val Pro Val Ser
165 170 175

Phe Pro Leu Phe Leu Gln His Pro Phe Arg Arg His Leu Cys Phe Ser
180 185 190

Ala Ala Thr Arg Glu Ala Gln His Ala Trp Arg Leu Ala Leu Gln Gly
195 200 205

Gly Ile Arg Leu Gln Gly Thr Val Leu Gln Arg Ser Gln Ala Pro Ala
210 215 220

Ala Arg Ala Phe Leu Asp Ala Val Arg Leu Tyr Arg Gln His Gln Gly
225 230 235 240

His Phe Gly Asp Asp Asp Val Thr Leu Gly Ser Asp Ala Glu Val Leu
 245 250 255
 Thr Ala Val Leu Met Arg Glu Gln Leu Pro Ala Leu Arg Ala Gln Thr
 260 265 270
 Leu Pro Gly Leu Arg Gly Ala Gly Arg Ala Arg Ala Trp Ala Trp Thr
 275 280 285
 Glu Leu Leu Asp Ala Val His Ala Ala Val Leu Ala Gly Ala Ser Ala
 290 295 300
 Gly Leu Cys Ala Phe Gln Pro Glu Lys Asp Glu Leu Leu Ala Ser Leu
 305 310 315 320
 Glu Lys Thr Ile Arg Pro Asp Val Asp Gln Leu Leu Arg Gln Arg Ala
 325 330 335
 Arg Val Ala Gly Arg Leu Arg Thr Asp Ile Arg Gly Pro Leu Glu Ser
 340 345 350
 Cys Leu Arg Arg Glu Val Asp Pro Gln Leu Pro Arg Val Val Gln Thr
 355 360 365
 Leu Leu Arg Thr Val Glu Ala Ser Leu Glu Ala Val Arg Thr Leu Leu
 370 375 380
 Ala Gln Gly Met Asp Arg Leu Ser His Arg Leu Arg Gln Ser Pro Ser
 385 390 395 400
 Gly Thr Arg Leu Arg Arg Glu Val Tyr Ser Phe Gly Glu Met Pro Trp
 405 410 415
 Asp Leu Ala Leu Met Gln Thr Cys Tyr Arg Glu Ala Glu Arg Ser Arg
 420 425 430
 Gly Arg Leu Gly Gln Leu Ala Ala Pro Phe Gly Phe Leu Gly Met Gln
 435 440 445
 Ser Leu Val Phe Gly Ala Gln Asp Leu Ala Gln Gln Leu Met Ala Asp
 450 455 460
 Ala Val Ala Thr Phe Leu Gln Leu Ala Asp Gln Cys Leu Thr Thr Ala
 465 470 475 480
 Leu Asn Cys Asp Gln Ala Ala Gln Arg Leu Glu Arg Val Arg Gly Arg
 485 490 495
 Val Leu Lys Lys Phe Lys Ser Asp Ser Gly Leu Ala Gln Arg Arg Phe
 500 505 510
 Ile Arg Gly Trp Gly Leu Cys Ile Phe Leu Pro Phe Val Leu Ser Gln
 515 520 525
 Leu Glu Pro Gly Cys Lys Lys Thr Glu Ser Arg Ser Val Ala Gln Ala
 530 535 540
 Val Val Gln Trp Cys Asp Leu Gly Ser Leu Arg Pro Pro Pro Pro Arg
 545 550 555 560

Phe Lys Arg Ser Ser His Leu Gly Leu Pro Ser Ser Trp Asp Tyr Arg
565 570 575

His Pro Leu

<210> 108

<211> 2917

<212> DNA

<213> Homo sapiens

<400> 108

ctagaatgct aattgcactt aggccatcg gttctagtaa acggcagctg tggggcccttt 60
tgccttcctcc cctgttcttg gcctcacatc tccagctgag ctggccggctc tggcttcctg 120
gtcgccctcg tcccagagat ggtcccaggg agccatccctaa gggcaggttag cactgaggct 180
cctgtggaaa caggagccac ctgtctcaggaa gacccttcctc ctgaggaaagt ccttacctct 240
ccccttgaga tgtaaaaatg gtccagcaga gacaagctcc cggtggaaaac agacaggagc 300
atgggggcag ctgtcatggc tggccggggc acttttcctc agagttctg ctttgcgtc 360
gtccaggagc cattttgcac caaggacttg gtggcagag gcagccccac tgtaaagaag 420
ggtcagatta aaacaaaaaa ctgccaaaag catccctctc gcccccattg tggactggc 480
atcatctctc gttccctgg gaggaaatttt ttcaccatgt tattgaaggg gatggttcat 540
taaggactcc accccctcaga gctcactctcg acccccaagga cagaggtgac tggggcttgg 600
tgacttgttc actccctttt tcccaaggat actgaagggg tgacagagag aggtcttcat 660
ggcagaccag gccttcacag ctaatggggaa gaggaaactca tggtaacctct gcaggcctgg 720
ggtcctgagg gggcttttg gcttcagctt gttcccccag aggtttgatc atcccacatt 780
gtcccttcag ctcagctgtc ttctccccc accccacccctg ggttgcgtt gctctggct 840
gaaccaaggc tatgactttt ggagagaggc tcaggggttg gtctgagagg cctccatcc 900
acccttcagg gagcttaggtt ttctcagagg ctcagctggc cagcactttt tagaaaaagtt 960
tgtacgatta agctggttt aaatatgaag ttggtttgc tggatggctc ctgagctgac 1020
tgactgatgt ctgaagttt agacgaggga ttatttcagg tggggggccca atgtgatcta 1080
atgcccacgt ggggacaatt gtgcctcata atttgcctaa attcctgggc ccccaagtt 1140
gccccctccc aggagtggc acgggttcac agctgcccc actctataag cagggctaat 1200
tgttacccctt ttcagaaat gctttggc tcctacccaa atactcacaa gggcttatac 1260
agacccccgt cttaaagtcc agcatgctca gggaccctgt gtggatctc gtttgggtg 1320
agtggctgc tctgaggctt ccactgggtc gccatttagc catgtgccat ctctgaagtc 1380
agaggtgttt gactcccatt ctttggc tggagcttcc cccaagaatt acatcagaga 1440
aaaggaagaa ggggcctgca ggaccattt ggaatgagtt taatactgaa gtctggaatg 1500
taagctcatg ccctagaggc ctctccatat ggctggtcag gggagctgccc ttcaggcttgc 1560
tgccccgtgt gtcagcagc tgcctctgtc cccctctact gtcctttca cacctgcct 1620
ggccaagggg ctagacctcc caggctaaac ctcagattca gtgcaggaca caagctcatg 1680
cccccttgc tccagtgaca ctttgcactt cccgacttcc acagagtgtc tcaggacaca 1740
ttttgagtgg tattttctt tcttttttc ttctttttt tttttttttag atggagtctc 1800
gctctgttgc ccaggctgga gtgcagttgc ctgatctcg ctcactgca cctctgcctc 1860
ccaggttcaa gggattcttc tgcctcagcc tccagatgt ctgggactat agacatgcac 1920
caccacgccc ggtaattttt gtattttgg tcgagacggg gtttgcatt gtttagtcagg 1980
ctggcttgc actccctgacc tcaagtgtc caccaccccg gctcccaaa gtgtttagat 2040
gacaggcacg agccaccagg cccagctga gtggatttt ctttagggac caggttagact 2100
ttaaaacgag ggttaagagaa aagccagtgt ttttctgagg taaataattt ctgccaggaa 2160
acttcccacg cccaccaggc gccccctaa aaaaatact cgttccca gggacttcta 2220
aagctgggg ctccaggaaa tcatccatgt gagttggaga ttcagagatt tcttgaagcc 2280
agggacatgc tccataactcc tttccattt aagggttttag aatagaccag aggggtgtccc 2340
ttttccacag taatgggatc ggttgggtgt ctttcaggaa ggaagaggga ggtggtcaag 2400
cttgaaaaac tggcttttagg atggttctga ctttgccttc ccccccacatc ttttgcataac 2460
ctccattctg cagtgttcaag agtttttaggg aaagggttttgg ggtggcccaag catccagggtc 2520
ttgtgtggct tagcgcattgt gaagtggaaa ctttctgggg ttgtttggaa gcaatcttct 2580
ggttcttgcattt attgtatctt gaggtccctc aaccctattt tcccaacgagg atcctcagtg 2640
accatggggcc acacacgcct ggccagccctg ctggcttgc ggtgagctga agaaccttgc 2700
ctgtggcact ttccgggggt gagctggaaac cgagagaaca tggcccccgt gctggactc 2760
atgcgggtca tttccctgcgg gcctggtttc gcctggctgt gtctttatga gcaccatgt 2820
agccctcttgcattt tatttggatataattt aacatattttt ctgcagctctt gggaaaaaaa 2880
aaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2917

<210> 110
<211> 509
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (467)
<223> n = g, a, c or t

<400> 110
aaaccttaag aaccacataa tactatataa tgctttctg taccaaatctc aagaaaact 60
ttcatttcatt aaaacatcat gaaaatcctt aaatgtgtta aatggaaaaa aatgaaaacca 120
tgaacaaaaa agctatacat gtaggtgcatttattatctcc tcctgagttt ggagaaaatct 180
ttctaagcat agaaaacaatg gtagcaaaag agaagaatag atttggctgg attaacaata 240
aaaaatttct gccagaaaata tgaaaattca atttagacaa aattcaatat aaacaaaatt 300
aatatagaca aagggtggtaa acagggtggtt ctcagagaag ataaatacat gattatttaa 360
cataaaaaaga aatgttcaat gtttcttagaa gacaaataat tacaaaaccta aacaaattgt 420
atatttggta gattggcata aattataata atccaaacatt gagttangtg gaatataaaat 480
tggtaaaaata ttctggaaag acaattttgg 509

<210> 111
<211> 525
<212> DNA
<213> Homo sapiens

<400> 111
agaagtgatt atgggattaa aagaatacat aattacagt ttttggatt gggctctttt 60
ttttcttaat agaaaagcag aaacttcata aataatagct gtgcattttaga taccagataa 120
caaatattgt ttcccctgaa gatatgacct actagaacta ctcacatata tagtccaata 180
attgctgact taataggat ggtaaaatag ctgataataa gtcagactct caagagttc 240
tgtaccttga ttattgacaa attcattgtt ttacatccta ctaaagaaca tgtgtgtggg 300
gagggggtgg ggaactggtt cacaacataa tctgaaggag atcaaacatc tgtaaggaca 360
ggtacccagt gatgataata tatctgaaaa cacaagccat ttttattctt tatcccaatt 420
aacttgaggt actctaataatg tgaagcactc gattgcacta tgacccctt gagtgatggg 480
cagcttggtt cctctctcac tttttgtttc ttttaatat qcaaa 525

<210> 112
<211> 183
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> modified_base
<222> (1)..(183)
<223> n = g, a, c or t
```

<400> 112
aaaaaaaaagac aatttgagca ggacgaccct ctccaaatctg ggttagcatgg tttagcctgtg 60
cagtaacaac gtaggcttgg aggatgggtt caaatgaaaat gattctgatt cgaaaaacgtt 120
ttgactttgg actgtanaag cttttctttt atcacctgtg ntggaggaaa ggaaagaagc 180
ctt 183

<210> 113
<211> 1750
<212> DNA
<213> *Homo sapiens*

<400> 113
cagctctctg tcagaatggc caccatggta ccatccgtgt tggcccccag ggccctgctgg 60
actctgctgg tctgctgtct gctgacccca ggtgtccagg ggcaggagtt cttttgcgg 120
gtggagcccc agaacccctgt gctctgtctg gaggggtccc tgtttgtcaa ctgcagact 180
gattgtccca gctctgagaa aatcgccctg gagacgtccc tatcaaagga gctggggcc 240
agtggcatgg gctgggcagc cttcaatctc agcaacgtga ctggcaacag tcggatcctc 300
tgctcagtgt actgcaatgg cttccagata acaggctcct ctaacatcac cgtgtacggg 360
ctcccggagc gtgtggagct ggcacccctg ctccttggc agccgggtggg ccagaacctc 420
accctgcgct gccaagtggg ggggtggtcg ccccgacca gcctcacggt ggtgtcgctt 480
cgctgggagg aggagctgag cggcaagccc gcagtgaggag agccagcggg ggtcaactgcc 540
actgtgtctgg ccagcagaga cgaccacggc gcccccttct catgcccgcac agaactggac 600
atgcagcccc aggggctggg actgttctgt aacacactca ccccccggcca gtcggaaacc 660
tttgccttcg cctgtacccc cccgcgcctc gtggcccccgg ttgttcttggc ggtggaaacg 720
tcgtggccgg tggactgcac ctagacggg ctttttccag cctcagaggc ccaggtctac 780
ctggcgctgg gggaccagat gctgaatgcg acagtcatga accacggggc cacgctaacg 840
gcccacagcca cagccacggc ggcgcggat caggagggtg cccgggagat cgtctgcaac 900
gtgaccctag ggggcgagag acgggaggcc cggggagaact tgacggctt tagcttccta 960
ggacccattg tgaacctcag cgagccacc gcccattgagg ggtccacagtg gaccgtgagt 1020
tgcattggctg gggctcgagt ccaggtcactg ctggacggag ttccggccgc ggcccccgggg 1080
cagccagctc aacctcagct aaatgttacc gagagtgcgc acggacgcgc cttcttcgtc 1140
agtgcacactc tcgaggttgc cggcgagttc ttgcacagaa acagtagcgt ccagctgcga 1200
gtcctgtatg gtccaaaat tgaccgagcc acatgcccccc agcacttgaa atggaaagat 1260
aaaacgagac acgtccctgca gtgccaagcc aggggcaacc cgtaccccgaa gctgcgggtgt 1320
ttgaaggaag gctccagccg ggaggtccgg gtggggatcc ctttttcgtt caacgttaaca 1380
cataatgtt cttatcgtt ccaagcgtcc agctcacgcg gcaaatacac cttggctgtg 1440
gtgtatggaca ttgaggctgg gagctccac tttgtccccg tcttcgtggc ggtgttactg 1500
accctggcgc tggtgactat cgtactggcc ttaatgtacg ttttcaggaa gcaccaacgg 1560
agccggcagtt accatgttag ggaggagagc acctatctgc ccctcacgtc tatgcagccg 1620
acagaagcaa tggggaaaga accgtccaga gctgagtgac gctgggatcc gggatcaaag 1680
ttggcggggg ctggctgtt ccctcagatt ccgcaccaat aaaggcttca aactccctaa 1740
aaaaaaaaaa 1750

<210> 114
<211> 547
<212> PRT
<213> *Homo sapiens*

<400> 114
 Met Ala Thr Met Val Pro Ser Val Leu Trp Pro Arg Ala Cys Trp Thr
 1 5 10 15
 Leu Leu Val Cys Cys Leu Leu Thr Pro Gly Val Gln Gly Gln Glu Phe
 20 25 30
 Leu Leu Arg Val Glu Pro Gln Asn Pro Val Leu Ser Ala Gly Gly Ser
 35 40 45
 Leu Phe Val Asn Cys Ser Thr Asp Cys Pro Ser Ser Glu Lys Ile Ala
 50 55 60
 Leu Glu Thr Ser Leu Ser Lys Glu Leu Val Ala Ser Gly Met Gly Trp
 65 70 75 80
 Ala Ala Phe Asn Leu Ser Asn Val Thr Gly Asn Ser Arg Ile Leu Cys
 85 90 95
 Ser Val Tyr Cys Asn Gly Ser Gln Ile Thr Gly Ser Ser Asn Ile Thr
 100 105 110
 Val Tyr Gly Leu Pro Glu Arg Val Glu Leu Ala Pro Leu Pro Pro Trp
 115 120 125
 Gln Pro Val Gly Gln Asn Phe Thr Leu Arg Cys Gln Val Glu Gly Gly
 130 135 140
 Ser Pro Arg Thr Ser Leu Thr Val Val Leu Leu Arg Trp Glu Glu Glu
 145 150 155 160
 Leu Ser Arg Gln Pro Ala Val Glu Pro Ala Glu Val Thr Ala Thr
 165 170 175
 Val Leu Ala Ser Arg Asp Asp His Gly Ala Pro Phe Ser Cys Arg Thr
 180 185 190
 Glu Leu Asp Met Gln Pro Gln Gly Leu Gly Leu Phe Val Asn Thr Ser
 195 200 205
 Ala Pro Arg Gln Leu Arg Thr Phe Val Leu Pro Val Thr Pro Pro Arg
 210 215 220
 Leu Val Ala Pro Arg Phe Leu Glu Val Glu Thr Ser Trp Pro Val Asp
 225 230 235 240
 Cys Thr Leu Asp Gly Leu Phe Pro Ala Ser Glu Ala Gln Val Tyr Leu
 245 250 255
 Ala Leu Gly Asp Gln Met Leu Asn Ala Thr Val Met Asn His Gly Asp
 260 265 270
 Thr Leu Thr Ala Thr Ala Thr Ala Arg Ala Asp Gln Glu Gly
 275 280 285
 Ala Arg Glu Ile Val Cys Asn Val Thr Leu Gly Gly Glu Arg Arg Glu
 290 295 300
 Ala Arg Glu Asn Leu Thr Val Phe Ser Phe Leu Gly Pro Ile Val Asn
 305 310 315 320

Leu Ser Glu Pro Thr Ala His Glu Gly Ser Thr Val Thr Val Ser Cys
 325 330 335

 Met Ala Gly Ala Arg Val Gln Val Thr Leu Asp Gly Val Pro Ala Ala
 340 345 350

 Ala Pro Gly Gln Pro Ala Gln Leu Gln Leu Asn Ala Thr Glu Ser Asp
 355 360 365

 Asp Gly Arg Ser Phe Phe Cys Ser Ala Thr Leu Glu Val Asp Gly Glu
 370 375 380

 Phe Leu His Arg Asn Ser Ser Val Gln Leu Arg Val Leu Tyr Gly Pro
 385 390 395 400

 Lys Ile Asp Arg Ala Thr Cys Pro Gln His Leu Lys Trp Lys Asp Lys
 405 410 415

 Thr Arg His Val Leu Gln Cys Gln Ala Arg Gly Asn Pro Tyr Pro Glu
 420 425 430

 Leu Arg Cys Leu Lys Glu Gly Ser Ser Arg Glu Val Pro Val Gly Ile
 435 440 445

 Pro Phe Phe Val Asn Val Thr His Asn Gly Thr Tyr Gln Cys Gln Ala
 450 455 460

 Ser Ser Ser Arg Gly Lys Tyr Thr Leu Val Val Val Met Asp Ile Glu
 465 470 475 480

 Ala Gly Ser Ser His Phe Val Pro Val Phe Val Ala Val Leu Leu Thr
 485 490 495

 Leu Gly Val Val Thr Ile Val Leu Ala Leu Met Tyr Val Phe Arg Glu
 500 505 510

 His Gln Arg Ser Gly Ser Tyr His Val Arg Glu Glu Ser Thr Tyr Leu
 515 520 525

 Pro Leu Thr Ser Met Gln Pro Thr Glu Ala Met Gly Glu Glu Pro Ser
 530 535 540

 Arg Ala Glu
 545

<210> 115
 <211> 275
 <212> DNA
 <213> Homo sapiens

<400> 115
 cctgatgccc gaatttcagt ttggcactta cagcgaatct gagaggaaaa ccgaggagta 60
 cgatactcag gccatgaagt acttgtcata cctgctgtac cctctctgtg tcgggggtgc 120
 tgtctattca ctccctgaata tcaaataataa gagctgtac tcctggtaa tcaacagctt 180
 cgtcaacggg gtctatgcct ttggttccct cttcatgctg cccccagctct ttgtgaacta 240
 caagttgaag tcagtggcac atctgccctg gaagg 275

<210> 116
<211> 2040
<212> DNA
<213> Homo sapiens

<400> 116

cagctccttc accagcttgg tggggcggt gttcgtggc tacgtgggc acacctgctg 60
ggtcatgtac ggcatcgct acacccggcc gtgcctccggc gacgccaact gcatccagcc 120
ctacccggcg cggcgccca agctcgacgt gagcgtgtac accacgacga ggtcccacct 180
gggtgctgag aacaacatcg acctggctt gaatgtggaa gactttgatg tggagtccaa 240
atttgaaaagg acagttaatcg tttctgtacc aaagaaaaacg agaaacaatg ggacgctgt 300
tgcctacatc ttccctccatc acgctgggg cctggcggt cacgacggga agcaggtgca 360
cctggtcagt cctctgacca cctacatggt ccccaagcca gaagaaaatca acctgctcac 420
cggggagtct gatacacacgc agatcgaggc ggagaagaag ccgacgagtg ccctggatga 480
gccagtgtcc cactggcgac cgccggctggc gctgaacgtg atggcgacaa actttgtctt 540
tgacgggtcc tccctgcctg ccgatgtgca tcggtacatg aagatgtatcc agctggggaa 600
aaccgtgtcat tacctgcccc tcctgttcat cgaccagctc agcaaccgog tgaaggacct 660
gatggtcata aaccgctcca ccacccgacgt gcccctcacc gtgtcttacg acaaggtctc 720
actggggcgg ctgcgttctt ggtccacat gcaggacgcc gtgtactccccc tgcaagcagtt 780
cggggtttca gagaaagatg ctgtatgggt gaaaggaatt ttgttagata ccaacttata 840
cttcctggcg ctgacccctt ttgtcgacgt gttccatctt ctctttgatt tcctggcctt 900
taaaaaatgac atcgttttctt ggaagaagaa gaagagcatg atcggcatgt ccaccaaggc 960
agtgcgtctgg cgctgcttca gcaccgtggt catctttctg ttctgtctgg acgagcagac 1020
gagccgtctg gtgctggtcc cgccgggtgt tggagccgcc attgagctgt ggaaagtgaa 1080
gaaggcattt aagatgacta ttttttggag aggccgtatg cccgaatttc agtttggcac 1140
ttacagcgaa tctgagagga aaaccggagga gtacgataact caggccatga agtacttgc 1200
ataccctgtc tacccctctt gtgtcgaaaa tgctgtctat tcactcctga atatcaaata 1260
taagagctgg tactcctgtt taatcaacag cttcgtcaac ggggtctatg cttttggttt 1320
cctcttcatg ctgccccacgc tttttgtgaa ctacaagttg aagtcaatgg cacatctgcc 1380
ctggaaaggcc ttcacctaca aggcttcaa cacccttcatt gatgacgtct ttgccttcat 1440
catcaccatg cccacgtctc accggctggc ctgcttccgg gacgacgtgg tgtttctgg 1500
ctacccgtac cagcggtggc tttatcctgt ggataaacgc agagtgaacg agtttgggg 1560
gtcctacgag gagaaggcca cgcgggcgcc ccacacggac tgaaggccgc cgggctgccc 1620
gccagccaag tgcaacttga attgtcaatg agtatttttg gaagcatgg gaggaattcc 1680
tagacatttc gttttctgtg ttgccaaaat cccttcggac atttctcaga catctcccaa 1740
gttcccatca cgtcagatgg ggagctggta ggccttacga tgccccacag tgtgaacatc 1800
tgtctggc acagagctgg gtgtcgccgg tcacctttagt ctgtgggtggc tcccggcaca 1860
cgaggtgtccg ggggtcgccc atgtccctac gcgggcaggg gtggggagccc tcacaggcaa 1920
gggggtctgtt ggatttccat ttccagggtt tttctaagtg ctcccttatgt gaattcaaaa 1980
cacgtatgga attcattccg catggactct gggatcaaag gctctttcctt cttttttttt 2040

<210> 117
<211> 538
<212> PRT
<213> Homo sapiens

<400> 117

Met	Trp	Ser	Gly	Arg	Ser	Ser	Phe	Thr	Ser	Leu	Val	Val	Gly	Val	Phe
1							5			10				15	

Val Val Tyr Val Val His Thr Cys Trp Val Met Tyr Gly Ile Val Tyr

					20				25				30		
--	--	--	--	--	----	--	--	--	----	--	--	--	----	--	--

Thr Arg Pro Cys Ser Gly Asp Ala Asn Cys Ile Gln Pro Tyr Leu Ala

					35				40				45		
--	--	--	--	--	----	--	--	--	----	--	--	--	----	--	--

Arg Arg Pro Lys Leu Gln Leu Ser Val Tyr Thr Thr Arg Ser His

					50				55				60		
--	--	--	--	--	----	--	--	--	----	--	--	--	----	--	--

Leu Gly Ala Glu Asn Asn Ile Asp Leu Val Leu Asn Val Glu Asp Phe
 65 70 75 80

Asp Val Glu Ser Lys Phe Glu Arg Thr Val Asn Val Ser Val Pro Lys
 85 90 95

Lys Thr Arg Asn Asn Gly Thr Leu Tyr Ala Tyr Ile Phe Leu His His
 100 105 110

Ala Gly Val Leu Pro Trp His Asp Gly Lys Gln Val His Leu Val Ser
 115 120 125

Pro Leu Thr Thr Tyr Met Val Pro Lys Pro Glu Glu Ile Asn Leu Leu
 130 135 140

Thr Gly Glu Ser Asp Thr Gln Gln Ile Glu Ala Glu Lys Lys Pro Thr
 145 150 155 160

Ser Ala Leu Asp Glu Pro Val Ser His Trp Arg Pro Arg Leu Ala Leu
 165 170 175

Asn Val Met Ala Asp Asn Phe Val Phe Asp Gly Ser Ser Leu Pro Ala
 180 185 190

Asp Val His Arg Tyr Met Lys Met Ile Gln Leu Gly Lys Thr Val His
 195 200 205

Tyr Leu Pro Ile Leu Phe Ile Asp Gln Leu Ser Asn Arg Val Lys Asp
 210 215 220

Leu Met Val Ile Asn Arg Ser Thr Thr Glu Leu Pro Leu Thr Val Ser
 225 230 235 240

Tyr Asp Lys Val Ser Leu Gly Arg Leu Arg Phe Trp Ile His Met Gln
 245 250 255

Asp Ala Val Tyr Ser Leu Gln Gln Phe Gly Phe Ser Glu Lys Asp Ala
 260 265 270

Asp Glu Val Lys Gly Ile Phe Val Asp Thr Asn Leu Tyr Phe Leu Ala
 275 280 285

Leu Thr Phe Phe Val Ala Ala Phe His Leu Leu Phe Asp Phe Leu Ala
 290 295 300

Phe Lys Asn Asp Ile Ser Phe Trp Lys Lys Lys Ser Met Ile Gly
 305 310 315 320

Met Ser Thr Lys Ala Val Leu Trp Arg Cys Phe Ser Thr Val Val Ile
 325 330 335

Phe Leu Phe Leu Leu Asp Glu Gln Thr Ser Leu Leu Val Leu Val Pro
 340 345 350

Ala Gly Val Gly Ala Ala Ile Glu Leu Trp Lys Val Lys Lys Ala Leu
 355 360 365

Lys Met Thr Ile Phe Trp Arg Gly Leu Met Pro Glu Phe Gln Phe Gly
 370 375 380

Thr Tyr Ser Glu Ser Glu Arg Lys Thr Glu Glu Tyr Asp Thr Gln Ala
 385 390 395 400
 Met Lys Tyr Leu Ser Tyr Leu Leu Tyr Pro Leu Cys Val Gly Gly Ala
 405 410 415
 Val Tyr Ser Leu Leu Asn Ile Lys Tyr Lys Ser Trp Tyr Ser Trp Leu
 420 425 430
 Ile Asn Ser Phe Val Asn Gly Val Tyr Ala Phe Gly Phe Leu Phe Met
 435 440 445
 Leu Pro Gln Leu Phe Val Asn Tyr Lys Leu Lys Ser Val Ala His Leu
 450 455 460
 Pro Trp Lys Ala Phe Thr Tyr Lys Ala Phe Asn Thr Phe Ile Asp Asp
 465 470 475 480
 Val Phe Ala Phe Ile Ile Thr Met Pro Thr Ser His Arg Leu Ala Cys
 485 490 495
 Phe Arg Asp Asp Val Val Phe Leu Val Tyr Leu Tyr Gln Arg Trp Leu
 500 505 510
 Tyr Pro Val Asp Lys Arg Arg Val Asn Glu Phe Gly Glu Ser Tyr Glu
 515 520 525
 Glu Lys Ala Thr Arg Ala Pro His Thr Asp
 530 535

<210> 118
 <211> 4217
 <212> DNA
 <213> Homo sapiens

<400> 118
 cttccgggcc ccagccaagg ctgtcgttta cgtgtcgac attcaggagc tgtacatccg 60
 tgggttgac aagggtggaga ttggaaagac agtgaaggca tacgtccgcg tgctggactt 120
 gcacaagaag cccttccttg ccaaatactt cccctttatg gacctgaagc tccgagcagc 180
 ctccccgatc attacattgg tggcccttga tgaagccctt gacaactaca ccatcacatt 240
 cctcatccgc ggtgtggcca tcggccagac cagtctaact gcaagtgtga ccaataaagc 300
 tggacagaga atcaactcag ccccacaaca gattgaagtc tttccccgt tcaggctgat 360
 gcccaggaag gtgacactgc ttatcggggc cacgatgcag gtcacctccg agggcggccc 420
 ccagcctcag tccaacatcc ttttctccat cagcaatgag agcggtgcgc tggtgagcgc 480
 tgctgggctg gtacaggggcc tcgccccatcgga gaacggcact gtgtctgggc tcgtgcaggc 540
 agtggatgca gagaccggca aggtggtcat catctctcag gacctcgtgc aggtggaggt 600
 gctgtgtcta agggccgtga ggatccgcgc ccccatcatg cggatgagga cgggcaccca 660
 gatgeccatc tatgtcaccg gcatcaccaa ccaccagaac ctttctcct ttggcaatgc 720
 cgtgccaggc ctgaccttcc actggctgtt caccacgg gacgtcctgg acctccgagg 780
 gcccacccac gaggcgtcga tccgactccc gtcacagtac aactttgcca tgaacgtgct 840
 cggccgggtta aaaggccgga ccggcgttag ggtgggtgtc aaggctgtgg accccacatc 900
 gggcagctg tatggcctgg ccagagaact ctcggatgag atccaagtcc aggtgtttga 960
 gaagctgcag ctgctcaacc ctgaaaataga agcagaacaa atattaatgt cgcccaactc 1020
 atatataaaag ctgcagacaa acagggatgg tgcagcctct ctgagctacc gctgtccgtga 1080
 tggacccgaa aaggttccag ttgtgcattgt tgatgagaaa ggcttcttag catcagggtc 1140
 tatgtcggg acatccacca tcgaagtgtat tgcacaagag cccttgggg ccaaccaa 1200
 catcattgtt gctgtaaagg tatccccgtt ttcctacctg agggtttcca tgagccctgt 1260
 cctgcacacc cagaacaagg agggcctggt ggccgtgcct ttggaaatga ccgtgacctt 1320
 cactgtccac ttccacgaca actctggaga tgcacatgtt gtcacagtt cggtcctcaa 1380
 ctttgcact aacagagacg actttgtgca gatcggaaag ggccccacca acaacacactg 1440

cggtgtccgc acagtcagcg tggcctgac actgctccgt gtgtggacg cagagcaccc 1500
 gggcctctcg gacttcatgc ccctgcctgt cctacaggcc atctccccag agctgtctgg 1560
 ggccatggtg gtggggacg tgctctgtct ggccactgtt ctgaccagcc tggaaaggcct 1620
 ctcaggaacc tggagctcct cagccaacag catcctccac atcgacccca agacgggtgt 1680
 ggctgtggcc cggccgtgg gatccgtgac gtttactat gaggtcgctg ggcacctgag 1740
 gacctacaag gaggtggtgg tcagcgtccc tcagaggatc atggcccgtc acctccaccc 1800
 catccagaca agtctccagg aggctacagc ctccaaagtg attgttgcgg tggagacag 1860
 aagctctaac ctgagaggcg agtgcacccc caccaggagg gaagtcatcc aggcttgca 1920
 cccagagacc ctcatcagct gccagtcaca gttcaagccg gccgtcttg atttccatc 1980
 tcaagatgtg ttcaccgtgg agccacagtt tgacactgct ctcggccagt acttctgctc 2040
 aatcacaatg cacaggctga cggacaagca gcggaagcac ctgagcatga agaagacagc 2100
 tctggtggtc agtgcctccc tctccagcag ccacttctcc acagagcagg tggggccga 2160
 ggtgccttc agcccaggc tcttcggcga ccaggctgaa atcctttga gcaaccacta 2220
 caccagttcc gagatcaggg tcttggtgc cccggaggtt ctggagaact tggaggtgaa 2280
 atccgggtcc cggccgtgc tggcattcgc aaaggagaag tctttgggt gcccagctt 2340
 catcacatac acggtcggcg tctcggaccc cgccggctggc agccaaggcc ctctgtccac 2400
 taccctgacc ttctccagcc cctgtaccaa ccaagccatt gccatcccag tgacagtggc 2460
 ttttgtatg gatgcggcgtg ggcccggtcc ttatggagcc agccttcc agcacttct 2520
 ggattccatc caggtcatgt tcttcacgct cttcgccctg ttggctggga cagcggcat 2580
 gatcatagcc taccacactg tctgcacgcc ccgggatctt gctgtgcctg cagccctcac 2640
 gcctcggagcc agccctggac acagccccca ctatccgtc gcctcatcac ccacatctcc 2700
 caatgcattg ctcctctgtc gcaaagccag ccctccctca gggctgtgga gcccagctc 2760
 tgcctccac taggcccgtg gaaggttccc ggaggatggg tctcagccga gcctcgtgca 2820
 ccccaagat ggaacatccc tgctgcattc acactggaac aagccctcc agatgagtgc 2880
 cccggcccca ggccagcttc actgcccgtc cttcacacag agctgttagtt tcggctctgc 2940
 ccattagctc attttatgtt ggagttttaa atgtgtgtt tttcccttc aagtcttaca 3000
 aagctaagac ttttggctc attcctttt gcatgggtt ctagggtttc tggacaatgt 3060
 gctgttgcat ttttattttc ctagccttgc taaaatctt cccttctcaa gactttgagc 3120
 agttagaagt gctctttaga agttgtctgt ggggtatgtt actgtgtgg tctcaggaa 3180
 aggattgtcc agttacttta gggggttttt ggtggggttt ttccccctgt gaaaacttac 3240
 tttgcccccta gtctggctgc tgcttagact tctgaggagc aatgggacat gagtgcct 3300
 gtatctgcgc cactgcgcga agggaaaggct caggaaccag cacctggagg ccaggatagc 3360
 caagccctgg gtgagcggaga ggctggagaa cacaggagc caccaggcc tgctgccaa 3420
 ccatgggcca ctgtgaacag acttcagtcc tctgttttg tttcataagc cggtgagaca 3480
 tctgtatggac ttggcttagg ccctgctggg acatcccaag tgtatccct ttcactccat 3540
 caggacacca ggactgtcct taggaaaatg tccttgagat ggcagcggga gtcataat 3600
 ctgtgtgtgt gtttggaaa gccgtgtgt cctgcctcag cacaagacc cagtgtcatt 3660
 tgctcctctt gttcctgtgc cactccagaa cctcagcaga tctgagccac cgcctgccc 3720
 tgtgagagggc ggccactttc atggcagctt atcaggcgca gggcccccaga cagttccca 3780
 gccggcccta gagcccgcc tgggccaatg atggaggccg gccaccagcc cagggcctgc 3840
 ccatccagaa gggactcccc agggcctggg ggaggagacc cttggaaaag tcctctttc 3900
 ccagctcctg attctggatc tgagattctc agatcacagg cccctgtget ccaggccgag 3960
 gctggccac ctcaggag atccagagac tcatgcccatt ggcacatccat gctggacgc 4020
 tgtgtggaga gtccaggatc acgggatccc gcacaagctc cttcagttcc ttcaaggctg 4080
 ggccatgtgg ttgattttc taaagctgga gaaaggaaga attgtgcctt gcatattact 4140
 tgagcttaaa ctgacaacct ggtatgtaaat aggacccctt ctactggttt attaataaa 4200
 gttctatgtg atttttt 4217

<210> 119
 <211> 923
 <212> PRT
 <213> Homo sapiens

<400> 119
 Phe Pro Ala Pro Ala Lys Ala Val Val Tyr Val Ser Asp Ile Gln Glu
 1 5 10 15

Leu Tyr Ile Arg Val Val Asp Lys Val Glu Ile Gly Lys Thr Val Lys
 20 25 30

Ala Tyr Val Arg Val Leu Asp Leu His Lys Lys Pro Phe Leu Ala Lys
 35 40 45

Tyr Phe Pro Phe Met Asp Leu Lys Leu Arg Ala Ala Ser Pro Ile Ile
 50 55 60

Thr Leu Val Ala Leu Asp Glu Ala Leu Asp Asn Tyr Thr Ile Thr Phe
 65 70 75 80

Leu Ile Arg Gly Val Ala Ile Gly Gln Thr Ser Leu Thr Ala Ser Val
 85 90 95

Thr Asn Lys Ala Gly Gln Arg Ile Asn Ser Ala Pro Gln Gln Ile Glu
 100 105 110

Val Phe Pro Pro Phe Arg Leu Met Pro Arg Lys Val Thr Leu Leu Ile
 115 120 125

Gly Ala Thr Met Gln Val Thr Ser Glu Gly Gly Pro Gln Pro Gln Ser
 130 135 140

Asn Ile Leu Phe Ser Ile Ser Asn Glu Ser Val Ala Leu Val Ser Ala
 145 150 155 160

Ala Gly Leu Val Gln Gly Leu Ala Ile Gly Asn Gly Thr Val Ser Gly
 165 170 175

Leu Val Gln Ala Val Asp Ala Glu Thr Gly Lys Val Val Ile Ile Ser
 180 185 190

Gln Asp Leu Val Gln Val Glu Val Leu Leu Leu Arg Ala Val Arg Ile
 195 200 205

Arg Ala Pro Ile Met Arg Met Arg Thr Gly Thr Gln Met Pro Ile Tyr
 210 215 220

Val Thr Gly Ile Thr Asn His Gln Asn Pro Phe Ser Phe Gly Asn Ala
 225 230 235 240

Val Pro Gly Leu Thr Phe His Trp Ser Val Thr Lys Arg Asp Val Leu
 245 250 255

Asp Leu Arg Gly Arg His His Glu Ala Ser Ile Arg Leu Pro Ser Gln
 260 265 270

Tyr Asn Phe Ala Met Asn Val Leu Gly Arg Val Lys Gly Arg Thr Gly
 275 280 285

Leu Arg Val Val Val Lys Ala Val Asp Pro Thr Ser Gly Gln Leu Tyr
 290 295 300

Gly Leu Ala Arg Glu Leu Ser Asp Glu Ile Gln Val Gln Val Phe Glu
 305 310 315 320

Lys Leu Gln Leu Leu Asn Pro Glu Ile Glu Ala Glu Gln Ile Leu Met
 325 330 335

Ser Pro Asn Ser Tyr Ile Lys Leu Gln Thr Asn Arg Asp Gly Ala Ala
 340 345 350

Ser Leu Ser Tyr Arg Val Leu Asp Gly Pro Glu Lys Val Pro Val Val
 355 360 365
 His Val Asp Glu Lys Gly Phe Leu Ala Ser Gly Ser Met Ile Gly Thr
 370 375 380
 Ser Thr Ile Glu Val Ile Ala Gln Glu Pro Phe Gly Ala Asn Gln Thr
 385 390 395 400
 Ile Ile Val Ala Val Lys Val Ser Pro Val Ser Tyr Leu Arg Val Ser
 405 410 415
 Met Ser Pro Val Leu His Thr Gln Asn Lys Glu Ala Leu Val Ala Val
 420 425 430
 Pro Leu Gly Met Thr Val Thr Phe Thr Val His Phe His Asp Asn Ser
 435 440 445
 Gly Asp Val Phe His Ala His Ser Ser Val Leu Asn Phe Ala Thr Asn
 450 455 460
 Arg Asp Asp Phe Val Gln Ile Gly Lys Gly Pro Thr Asn Asn Thr Cys
 465 470 475 480
 Val Val Arg Thr Val Ser Val Gly Leu Thr Leu Leu Arg Val Trp Asp
 485 490 495
 Ala Glu His Pro Gly Leu Ser Asp Phe Met Pro Leu Pro Val Leu Gln
 500 505 510
 Ala Ile Ser Pro Glu Leu Ser Gly Ala Met Val Val Gly Asp Val Leu
 515 520 525
 Cys Leu Ala Thr Val Leu Thr Ser Leu Glu Gly Leu Ser Gly Thr Trp
 530 535 540
 Ser Ser Ser Ala Asn Ser Ile Leu His Ile Asp Pro Lys Thr Gly Val
 545 550 555 560
 Ala Val Ala Arg Ala Val Gly Ser Val Thr Val Tyr Tyr Glu Val Ala
 565 570 575
 Gly His Leu Arg Thr Tyr Lys Glu Val Val Val Ser Val Pro Gln Arg
 580 585 590
 Ile Met Ala Arg His Leu His Pro Ile Gln Thr Ser Phe Gln Glu Ala
 595 600 605
 Thr Ala Ser Lys Val Ile Val Ala Val Gly Asp Arg Ser Ser Asn Leu
 610 615 620
 Arg Gly Glu Cys Thr Pro Thr Gln Arg Glu Val Ile Gln Ala Leu His
 625 630 635 640
 Pro Glu Thr Leu Ile Ser Cys Gln Ser Gln Phe Lys Pro Ala Val Phe
 645 650 655
 Asp Phe Pro Ser Gln Asp Val Phe Thr Val Glu Pro Gln Phe Asp Thr
 660 665 670

Ala Leu Gly Gln Tyr Phe Cys Ser Ile Thr Met His Arg Leu Thr Asp
 675 680 685
 Lys Gln Arg Lys His Leu Ser Met Lys Lys Thr Ala Leu Val Val Ser
 690 695 700
 Ala Ser Leu Ser Ser His Phe Ser Thr Glu Gln Val Gly Ala Glu
 705 710 715 720
 Val Pro Phe Ser Pro Gly Leu Phe Ala Asp Gln Ala Glu Ile Leu Leu
 725 730 735
 Ser Asn His Tyr Thr Ser Ser Glu Ile Arg Val Phe Gly Ala Pro Glu
 740 745 750
 Val Leu Glu Asn Leu Glu Val Lys Ser Gly Ser Pro Ala Val Leu Ala
 755 760 765
 Phe Ala Lys Glu Lys Ser Phe Gly Trp Pro Ser Phe Ile Thr Tyr Thr
 770 775 780
 Val Gly Val Ser Asp Pro Ala Ala Gly Ser Gln Gly Pro Leu Ser Thr
 785 790 795 800
 Thr Leu Thr Phe Ser Ser Pro Val Thr Asn Gln Ala Ile Ala Ile Pro
 805 810 815
 Val Thr Val Ala Phe Val Met Asp Arg Arg Gly Pro Gly Pro Tyr Gly
 820 825 830
 Ala Ser Leu Phe Gln His Phe Leu Asp Ser Tyr Gln Val Met Phe Phe
 835 840 845
 Thr Leu Phe Ala Leu Leu Ala Gly Thr Ala Val Met Ile Ile Ala Tyr
 850 855 860
 His Thr Val Cys Thr Pro Arg Asp Leu Ala Val Pro Ala Ala Leu Thr
 865 870 875 880
 Pro Arg Ala Ser Pro Gly His Ser Pro His Tyr Phe Ala Ala Ser Ser
 885 890 895
 Pro Thr Ser Pro Asn Ala Leu Pro Pro Ala Arg Lys Ala Ser Pro Pro
 900 905 910
 Ser Gly Leu Trp Ser Pro Ala Tyr Ala Ser His
 915 920

<210> 120
 <211> 1270
 <212> PRT
 <213> Homo sapiens

<400> 120
 Arg Asp Phe Gln Ser Glu Val Leu Leu Ser Ala Met Glu Leu Phe His
 1 5 10 15

Met Thr Ser Gly Gly Asp Ala Ala Met Phe Arg Asp Gly Lys Glu Pro
 20 25 30

Gln Pro Ser Ala Glu Ala Ala Ala Pro Ser Leu Ala Asn Ile Ser
 35 40 45

 Cys Phe Thr Gln Lys Leu Val Glu Lys Leu Tyr Ser Gly Met Phe Ser
 50 55 60

 Ala Asp Pro Arg His Ile Leu Leu Phe Ile Leu Glu His Ile Met Val
 65 70 75 80

 Val Ile Glu Thr Ala Ser Ser Gln Arg Asp Thr Val Leu Ser Thr Leu
 85 90 95

 Tyr Ser Ser Leu Asn Lys Val Ile Leu Tyr Cys Leu Ser Lys Pro Gln
 100 105 110

 Gln Ser Leu Ser Glu Cys Leu Gly Leu Leu Ser Ile Leu Gly Phe Leu
 115 120 125

 Gln Glu His Trp Asp Val Val Phe Ala Thr Tyr Asn Ser Asn Ile Ser
 130 135 140

 Phe Leu Leu Cys Leu Met His Cys Leu Leu Leu Leu Asn Glu Arg Ser
 145 150 155 160

 Tyr Pro Glu Gly Phe Gly Leu Glu Pro Lys Pro Arg Met Ser Thr Tyr
 165 170 175

 His Gln Val Phe Leu Ser Pro Asn Glu Asp Val Lys Glu Lys Arg Glu
 180 185 190

 Asp Leu Pro Ser Leu Ser Asp Val Gln His Asn Ile Gln Lys Thr Val
 195 200 205

 Gln Thr Leu Trp Gln Gln Leu Val Ala Gln Arg Gln Gln Thr Leu Glu
 210 215 220

 Asp Ala Phe Lys Ile Asp Leu Ser Val Lys Pro Gly Glu Arg Glu Val
 225 230 235 240

 Lys Ile Glu Glu Val Thr Pro Leu Trp Glu Glu Thr Met Leu Lys Ala
 245 250 255

 Trp Gln His Tyr Leu Ala Ser Glu Lys Lys Ser Leu Ala Ser Arg Ser
 260 265 270

 Asn Val Ala His His Ser Lys Val Thr Leu Trp Ser Gly Ser Leu Ser
 275 280 285

 Ser Ala Met Lys Leu Met Pro Gly Arg Gln Ala Lys Asp Pro Glu Cys
 290 295 300

 Lys Thr Glu Asp Phe Val Ser Cys Ile Glu Asn Tyr Arg Arg Arg Gly
 305 310 315 320

 Gln Glu Leu Tyr Ala Ser Leu Tyr Lys Asp His Val Gln Arg Arg Lys
 325 330 335

 Cys Gly Asn Ile Lys Ala Ala Asn Ala Trp Ala Arg Ile Gln Glu Gln
 340 345 350

Leu Phe Gly Glu Leu Gly Leu Trp Ser Gln Gly Glu Glu Thr Lys Pro
 355 360 365

 Cys Ser Pro Trp Glu Leu Asp Trp Arg Glu Gly Pro Ala Arg Met Arg
 370 375 380

 Lys Arg Ile Lys Arg Leu Ser Pro Leu Glu Ala Leu Ser Ser Gly Arg
 385 390 395 400

 His Lys Glu Ser Gln Asp Lys Asn Asp His Ile Ser Gln Thr Asn Ala
 405 410 415

 Glu Asn Gln Asp Glu Leu Thr Leu Arg Glu Ala Glu Gly Glu Pro Asp
 420 425 430

 Glu Val Gly Val Asp Cys Thr Gln Leu Thr Phe Phe Pro Ala Leu His
 435 440 445

 Glu Ser Leu His Ser Glu Asp Phe Leu Glu Leu Cys Arg Glu Arg Gln
 450 455 460

 Val Ile Leu Gln Glu Leu Leu Asp Lys Glu Lys Val Thr Gln Lys Phe
 465 470 475 480

 Ser Leu Val Ile Val Gln Gly His Leu Val Ser Glu Gly Val Leu Leu
 485 490 495

 Phe Gly His Gln His Phe Tyr Ile Cys Glu Asn Phe Thr Leu Ser Pro
 500 505 510

 Thr Gly Asp Val Tyr Cys Thr Arg His Cys Leu Ser Asn Ile Ser Asp
 515 520 525

 Pro Phe Ile Phe Asn Leu Cys Ser Lys Asp Arg Ser Thr Asp His Tyr
 530 535 540

 Ser Cys Gln Cys His Ser Tyr Ala Asp Met Arg Glu Leu Arg Gln Ala
 545 550 555 560

 Arg Phe Leu Leu Gln Asp Ile Ala Leu Glu Ile Phe Phe His Asn Gly
 565 570 575

 Tyr Ser Lys Phe Leu Val Phe Tyr Asn Asn Asp Arg Ser Lys Ala Phe
 580 585 590

 Lys Ser Phe Cys Ser Phe Gln Pro Ser Leu Lys Gly Lys Ala Thr Ser
 595 600 605

 Glu Asp Thr Leu Asn Leu Arg Arg Tyr Pro Gly Ser Asp Arg Ile Met
 610 615 620

 Leu Gln Lys Trp Gln Lys Arg Asp Ile Ser Asn Phe Glu Tyr Leu Met
 625 630 635 640

 Tyr Leu Asn Thr Ala Ala Gly Arg Thr Cys Asn Asp Tyr Met Gln Tyr
 645 650 655

 Pro Val Phe Pro Trp Val Leu Ala Asp Tyr Thr Ser Glu Thr Leu Asn
 660 665 670

Leu Ala Asn Pro Lys Ile Phe Arg Asp Leu Ser Lys Pro Met Gly Ala
 675 680 685
 Gln Thr Lys Glu Arg Lys Leu Lys Phe Ile Gln Arg Phe Lys Glu Val
 690 695 700
 Glu Lys Thr Glu Gly Asp Met Thr Val Gln Cys His Tyr Tyr Thr His
 705 710 715 720
 Tyr Ser Ser Ala Ile Ile Val Ala Ser Tyr Leu Val Arg Met Pro Pro
 725 730 735
 Phe Thr Gln Ala Phe Cys Ala Leu Gln Gly Gly Ser Phe Asp Val Ala
 740 745 750
 Asp Arg Met Phe His Ser Val Lys Ser Thr Trp Glu Ser Ala Ser Arg
 755 760 765
 Glu Asn Met Ser Asp Val Arg Glu Leu Thr Pro Glu Phe Phe Tyr Leu
 770 775 780
 Pro Glu Phe Leu Thr Asn Cys Asn Gly Val Glu Phe Gly Cys Met Gln
 785 790 795 800
 Asp Gly Thr Val Leu Gly Asp Val Gln Leu Pro Pro Trp Ala Asp Gly
 805 810 815
 Asp Pro Arg Lys Phe Ile Ser Leu His Arg Lys Ala Leu Glu Ser Asp
 820 825 830
 Phe Val Ser Ala Asn Leu His His Trp Ile Asp Leu Ile Phe Gly Tyr
 835 840 845
 Lys Gln Gln Gly Pro Ala Ala Val Asp Ala Val Asn Ile Phe His Pro
 850 855 860
 Tyr Phe Tyr Gly Asp Arg Met Asp Leu Ser Ser Ile Thr Asp Pro Leu
 865 870 875 880
 Ile Lys Ser Thr Ile Leu Gly Phe Val Ser Asn Phe Gly Gln Val Pro
 885 890 895
 Lys Gln Leu Phe Thr Lys Pro His Pro Ala Arg Thr Ala Ala Gly Lys
 900 905 910
 Pro Leu Pro Gly Lys Asp Val Ser Thr Pro Val Ser Leu Pro Gly His
 915 920 925
 Pro Gln Pro Phe Phe Tyr Ser Leu Gln Ser Leu Arg Pro Ser Gln Val
 930 935 940
 Thr Val Lys Asp Met Tyr Leu Phe Ser Leu Gly Ser Glu Ser Pro Lys
 945 950 955 960
 Gly Ala Ile Gly His Ile Val Ser Thr Glu Lys Thr Ile Leu Ala Val
 965 970 975
 Glu Arg Asn Lys Val Leu Leu Pro Pro Leu Trp Asn Arg Thr Phe Ser
 980 985 990

Trp Gly Phe Asp Asp Phe Ser Cys Cys Leu Gly Ser Tyr Gly Ser Asp
 995 1000 1005
 Lys Val Leu Met Thr Phe Glu Asn Leu Ala Ala Trp Gly Arg Cys Leu
 1010 1015 1020
 Cys Ala Val Cys Pro Ser Pro Thr Thr Ile Val Thr Ser Gly Thr Ser
 1025 1030 1035 1040
 Thr Val Val Cys Val Trp Glu Leu Ser Met Thr Lys Gly Arg Pro Arg
 1045 1050 1055
 Gly Leu Arg Leu Arg Gln Ala Leu Tyr Gly His Thr Gln Ala Val Thr
 1060 1065 1070
 Cys Leu Ala Ala Ser Val Thr Phe Ser Leu Leu Val Ser Gly Ser Gln
 1075 1080 1085
 Asp Cys Thr Cys Ile Leu Trp Asp Leu Asp His Leu Thr His Val Thr
 1090 1095 1100
 Arg Leu Pro Ala His Arg Glu Gly Ile Ser Ala Ile Thr Ile Ser Asp
 1105 1110 1115 1120
 Val Ser Gly Thr Ile Val Ser Cys Ala Gly Ala His Leu Ser Leu Trp
 1125 1130 1135
 Asn Val Asn Gly Gln Pro Leu Ala Ser Ile Thr Thr Ala Trp Gly Pro
 1140 1145 1150
 Glu Gly Ala Ile Thr Cys Cys Cys Leu Met Glu Gly Pro Ala Trp Asp
 1155 1160 1165
 Thr Ser Gln Ile Ile Ile Thr Gly Ser Gln Asp Gly Met Val Arg Val
 1170 1175 1180
 Trp Lys Thr Glu Asp Val Lys Met Ser Val Pro Gly Arg Pro Ala Gly
 1185 1190 1195 1200
 Glu Glu Pro Leu Ala Gln Pro Pro Ser Pro Arg Gly His Lys Trp Glu
 1205 1210 1215
 Lys Asn Leu Ala Leu Ser Arg Glu Leu Asp Val Ser Ile Ala Leu Thr
 1220 1225 1230
 Gly Lys Pro Ser Lys Thr Ser Pro Ala Val Thr Ala Leu Ala Val Ser
 1235 1240 1245
 Arg Asn His Thr Lys Leu Leu Val Gly Asp Glu Arg Gly Arg Ile Phe
 1250 1255 1260
 Cys Trp Ser Ala Asp Gly
 1265 1270

<210> 121
 <211> 647
 <212> PRT
 <213> Homo sapiens

<400> 121

Met Leu Gln Lys Trp Gln Lys Arg Asp Ile Ser Asn Phe Glu Tyr Leu
1 5 10 15

Met Tyr Leu Asn Thr Ala Ala Gly Arg Thr Cys Asn Asp Tyr Met Gln
20 25 30

Tyr Pro Val Phe Pro Trp Val Leu Ala Asp Tyr Thr Ser Glu Thr Leu
35 40 45

Asn Leu Ala Asn Pro Lys Ile Phe Arg Asp Leu Ser Lys Pro Met Gly
50 55 60

Ala Gln Thr Lys Glu Arg Lys Leu Lys Phe Ile Gln Arg Phe Lys Glu
65 70 75 80

Val Glu Lys Thr Glu Gly Asp Met Thr Val Gln Cys His Tyr Tyr Thr
85 90 95

His Tyr Ser Ser Ala Ile Ile Val Ala Ser Tyr Leu Val Arg Met Pro
100 105 110

Pro Phe Thr Gln Ala Phe Cys Ala Leu Gln Gly Gly Ser Phe Asp Val
115 120 125

Ala Asp Arg Met Phe His Ser Val Lys Ser Thr Trp Glu Ser' Ala Ser
130 135 140

Arg Glu Asn Met Ser Asp Val Arg Glu Leu Thr Pro Glu Phe Phe Tyr
145 150 155 160

Leu Pro Glu Phe Leu Thr Asn Cys Asn Gly Val Glu Phe Gly Cys Met
165 170 175

Gln Asp Gly Thr Val Leu Gly Asp Val Gln Leu Pro Pro Trp Ala Asp
180 185 190

Gly Asp Pro Arg Lys Phe Ile Ser Leu His Arg Lys Ala Leu Glu Ser
195 200 205

Asp Phe Val Ser Ala Asn Leu His His Trp Ile Asp Leu Ile Phe Gly
210 215 220

Tyr Lys Gln Gln Gly Pro Ala Ala Val Asp Ala Val Asn Ile Phe His
225 230 235 240

Pro Tyr Phe Tyr Gly Asp Arg Met Asp Leu Ser Ser Ile Thr Asp Pro
245 250 255

Leu Ile Lys Ser Thr Ile Leu Gly Phe Val Ser Asn Phe Gly Gln Val
260 265 270

Pro Lys Gln Leu Phe Thr Lys Pro His Pro Ala Arg Thr Ala Ala Gly
275 280 285

Lys Pro Leu Pro Gly Lys Asp Val Ser Thr Pro Val Ser Leu Pro Gly
290 295 300

His Pro Gln Pro Phe Phe Tyr Ser Leu Gln Ser Leu Arg Pro Ser Gln
305 310 315 320

Val Thr Val Lys Asp Met Tyr Leu Phe Ser Leu Gly Ser Glu Ser Pro
 325 330 335

 Lys Gly Ala Ile Gly His Ile Val Ser Thr Glu Lys Thr Ile Leu Ala
 340 345 350

 Val Glu Arg Asn Lys Val Leu Leu Pro Pro Leu Trp Asn Arg Thr Phe
 355 360 365

 Ser Trp Gly Phe Asp Asp Phe Ser Cys Cys Leu Gly Ser Tyr Gly Ser
 370 375 380

 Asp Lys Val Leu Met Thr Phe Glu Asn Leu Ala Ala Trp Gly Arg Cys
 385 390 395 400

 Leu Cys Ala Val Cys Pro Ser Pro Thr Thr Ile Val Thr Ser Gly Thr
 405 410 415

 Ser Thr Val Val Cys Val Trp Glu Leu Ser Met Thr Lys Gly Arg Pro
 420 425 430

 Arg Gly Leu Arg Leu Arg Gln Ala Leu Tyr Gly His Thr Gln Ala Val
 435 440 445

 Thr Cys Leu Ala Ala Ser Val Thr Phe Ser Leu Leu Val Ser Gly Ser
 450 455 460

 Gln Asp Cys Thr Cys Ile Leu Trp Asp Leu Asp His Leu Thr His Val
 465 470 475 480

 Thr Arg Leu Pro Ala His Arg Glu Gly Ile Ser Ala Ile Thr Ile Ser
 485 490 495

 Asp Val Ser Gly Thr Ile Val Ser Cys Ala Gly Ala His Leu Ser Leu
 500 505 510

 Trp Asn Val Asn Gly Gln Pro Leu Ala Ser Ile Thr Thr Ala Trp Gly
 515 520 525

 Pro Glu Gly Ala Ile Thr Cys Cys Cys Leu Met Glu Gly Pro Ala Trp
 530 535 540

 Asp Thr Ser Gln Ile Ile Ile Thr Gly Ser Gln Asp Gly Met Val Arg
 545 550 555 560

 Val Trp Lys Thr Glu Asp Val Lys Met Ser Val Pro Gly Arg Pro Ala
 565 570 575

 Gly Glu Glu Pro Leu Ala Gln Pro Pro Ser Pro Arg Gly His Lys Trp
 580 585 590

 Glu Lys Asn Leu Ala Leu Ser Arg Glu Leu Asp Val Ser Ile Ala Leu
 595 600 605

 Thr Gly Lys Pro Ser Lys Thr Ser Pro Ala Val Thr Ala Leu Ala Val
 610 615 620

Ser Arg Asn His Thr Lys Leu Leu Val Gly Asp Glu Arg Gly Arg Ile
625 630 635 640

Phe Cys Trp Ser Ala Asp Gly
645

<210> 122
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR
amplification primer PDM-797

<400> 122
gtgtcacaat ctacagtcag qcaggattct cc 32

<210> 123
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR
amplification primer PDM-799

<400> 123
qttatqtaqc qccqcttat catottqctq caqaq 35

<210> 124
<211> 980
<212> DNA
<213> *Homo sapiens*

<400> 124						
ggcgcgtgccg	ctccaggaga	caggttcccc	tgcaggaatg	aaagacatgg	aagggaagag	60
gggggcccagc	tccctgagtc	ctgtgtccac	cagctgctgc	taaatacctc	tgagaaaactc	120
tgcttctatc	taaggggacc	tacttctctc	gggaatctca	atactttggaa	caagaaacctc	180
ctagacggac	ccttggcat	aatgaattgg	accaactgt	ggttccagga	ctagagagcc	240
agcaatgcct	ccatgaacaa	tctcacccaa	ttactctgt	caggaaacga	ggtaactgt	300
ggacagccga	ggcagccccc	taggcccgtt	aggcctcccc	tgtggagcat	ccctgaggcg	360
gactccggcc	agcccgagt	atgcgatcca	aagagcactc	ccgggtagga	aattgccccg	420
gtggaatgcc	tcaccagagc	agcgtgttagc	agttccctgt	ggaggattaa	cacagtggct	480
gaacaccggg	aaggaactgg	cacttggagt	ccggacatct	gaaacttgta	gactgggagc	540
tgtacatgga	tgggagcagc	ttcaccaacc	cctgcaaagt	gactctgaag	aagacgacaa	600
gccctgtcc	agtacacaccc	ggaagctgac	ttgtccacgc	acagctgaag	catgagaaa	660
ctcatcgccg	gactaatttt	ccttaaaatt	tagacttgca	cagtaaggac	ttcaactgac	720
cttcctcaga	ctgagaactg	tttccagtat	atacatcaag	tcactgaggt	aggacaaaag	780
attgctacat	tcctattatt	ttaaggttac	atttttgggg	accctcttt	ttctgttct	840
agctattacc	tttcttgtgt	cacctagaaa	aggaccagtc	cttaatttgta	ttttaaaaac	900
tgtgatcatg	ggaagctta	aattggttca	ataacacgca	tcaagtttgt	tatttcctgg	960
gctacatacc	ttggatagat					980

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.