数据一 课堂笔记

目录

数据一 课堂笔记	1
day01	3
一、主机配置命令	3
二、liunx 基本结构介绍	3
三、修改配置虚拟机网络	4
day02	5
一、Liunx 的常用命令	5
二、linux 定时任务	6
day03	
一、ntp 服务器时间同步 - 需要关闭防火墙	7
二、安装 Java 环境变量	
三、安装 Hadoop 环境变量	9
四、克隆虚拟机	11
五、配置 ssh 免密登录	
六、格式化 HDFS	12
day04	
一、从代码层看 hadoop	
二、启动 hadoop	
三、block 的概念	
四、HDFS shell 命令	
day05	
—————周总结考核	
—————构建 Maven 项目	
一、HDFS 基本架构关系图解	
二、HDFS 文件读写过程图解	
hdfs 流式写入过程	
hdfs 文件读操作	
三、HDFS 基础理论知识	
day06	
一、 HDFS 常用 API 调用前提	
1. HDFS 服务器启动正常	
2. eclipse 创建 maven 环境正常	
二、HDFS 常用 API 应用	
1. 下载 HDFS 服务器文件	
2. 读取 HDSF 服务器文件	
3. 查看 HDFS 服务器上文件状态	
4. 将 HDFS 文件写入本地文件	
5. 在 HDFS 上创建目录	24

24
25
25
25
26
28
28
28
28
29
30
30

----- day01 -----

一、主机配置命令

- 一、修改主机名 vi /etc/sysconfig/network
- 二、修改 ip 地址映射 vi /etc/hosts
- 三、ctrl + c 结束当前终端的前台进程
- 四、重启 reboot 、init 6
- 五、关机 halt 、shutdown -h now 、init 0
- 六、tab 键 ----> 命令的补全和提示功能

space 向下一屏

- b 向上一屏
- d 向下半屏
- u 向上半屏
- 七、帮助命令
- 内部命令 shell 自带开机会加载到内存中的 help 可以查看内部命令的帮助
- 2. 外部命令 其他应用程序提供的 man 可以查看外部命令的帮助

二、liunx 基本结构介绍

八、Linux 目录结构

```
dr-xr-xr-x.
                             4096 May 31 04:46 bin
             2 root root
                             1024 May 31 04:47
3740 Jun 1 03:17
dr-xr-xr-x.
               5 root root
                             3740 Jun
             18 root root
drwxr-xr-x.
                                                dev
drwxr-xr-x. 102 root root
                             4096 Jun
                                        1 03:19
                                                etc
drwxr-xr-x.
                             4096 May 31 04:49
               3 root root
                                                home
             10 root root
dr-xr-xr-x.
                             4096 May
                                       31 04:41
                           12288 May
                                                 1ib64
dr-xr-xr-x.
              9 root root
                                       31 04:41
drwx----.
                                       31 04:35 lost+found
               2 root root
                            16384 May
               2 root root
                             4096 Sep
                                       23
drwxr-xr-x.
                                           2011
                                                 media
drwxr-xr-x.
               3 root root
                             4096 May
                                       31 04:50
drwxr-xr-x.
               3 root root
                             4096 May 31 04:52
                                                opt
dr-xr-xr-x. 148 root root
                                        1 03:17
                                  Jun
                             4096 Jun
dr-xr-x---.
                                        1 03:18 root
             24 root root
               2 root root 12288 May 31 04:50 sbin
7 root root 0 Jun 1 03:17 seli
dr-xr-xr-x.
drwxr-xr-x.
                                                selinux
                             4096 Sep 23
drwxr-xr-x.
               2 root root
                                           2011 srv
              13 root root
                                        1 03:17
drwxr-xr-x.
                                  Jun
                                                SVS
                             4096 Jun
              16 root root
                                        1 03:23 tmp
drwxrwxrwt.
                             4096 May 31 04:36 usr
drwxr-xr-x.
              13 root root
                             4096 May 31 04:44 var
drwxr-xr-x.
              21 root root
```

在 linux 中所有以 • 开头的文件都是隐藏目录

- 1. bin : 存放二进制可执行文件(Is,cat,mkdir 等),常用命令一般都在这里。
- 2. dev :用于存放设备文件。/dev/null "黑洞",所有写入该设备的信息都将消失。

/dev/zero 是类 Unix 操作系统中的一个特殊文件,用来提供一个空字符文件,其一个典型的应用就是提供字符流进行数据存储初始化

- 3. home:存放所有用户文件的根目录,是用户主目录的基点。不包括 root 用户
 - 1).进入家目录的方式 cd~ cd/home/jingyue
- 4. mnt : 系统管理员安装临时文件系统的安装点,系统提供这个目录是让用户临时挂载其他的文件系统。
- 5. root: root 目录是超级用户的目录。
- 6. sbin:一般是命令的扩展命令目录
- 7. tmp:Linux 开关机时自动维护的临时目录,所以不要把文件创建或安装在这个目录下
- 8. usr:usr是个很重要的目录,通常这一文件系统很大,因为所有程序安装在这里。

三、修改配置虚拟机网络

- 1、物理机网络共享设置
- 2、确定 VMware 网络连接模式 NAT
- 3、虚拟机中进行网络配置

九、如何修改网卡信息(红色部分注意替换)

ifconfig 显示当前的网络配置信息

1.vi /etc/udev/rules.d/70-persistent-net.rules 修改物理地址 网络连接描述信息

2.vi /etc/sysconfig/network-scripts/ifcfg-eth0 ONBOOT="yes" 启动时是否激活网卡

TYPE=Ethernet

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=static

IPADDR=192.168.137.101

NETMASK=255.255.255.0

GATEWAY=192.168.137.1

DNS1=192.168.137.1

HWADDR=00:0c:29:a8:a7:45

十、虚拟机的网络连接方式

仅主机:虚拟机只能和当前的宿主机相连

桥 接:会创建一个实际的 ip,用这个 ip 对外可提供放,可访问外网上网

NAT : 会和宿主机共享一块网卡,不会创建实际的 ip,但可以利用宿主机的 ip 访问外网上网

----- day02 -----

一、Liunx 的常用命令

- 1.防火墙
- 1) service iptables status 查看状态
- 2)service iptables stop 停止
- 3)chkconfig iptables --list 查看各种运行状态下的防火墙状态
- 4)chkconfig iptables off 关闭各种运行状态下的防火墙

Chkconfig iptables on --level 234

- 2.ctrl + I 清空屏幕
- 3.find -name soft 查找一个文件或目录
- 4.which pwd 查找一个命令所在的位置
- 5.pwd 查看当前所在的工作目录
- 6.ls 列出目录下所有内容
 - -I 显示详细信息 等价 II
 - -a 显示所有文件包括隐藏文件(以.开头的文件是隐藏文件)
 - -h 人性化展示
- 7. vi 编辑器
- 1) 进入编辑模式
- i 光标当前 a 光标的下一个位置 o 下一行
- esc 退出编辑模式
- #yy 复制 p 粘贴 #dd 删除 u 后退 ctrl+r 前进
- G 光标定位到最后一行 gg 光标定位到第一行
- : 命令行模式 :set nu 显示行号 :set nonu 取消行号
- :w 保存:q 退出!强制执行
- ctrl + w,s 水平分屏
- ctrl + w,v 垂直分屏
- ctrl+w,w 移动光标到下一个
- ctrl+w,c 关闭当前屏
- ctrl+w,p 切换分屏光标

/string 从上向下查找字符串 ?string 从下向上查找字符串

- 8. mkdir 在指定位置创建目录
 - 1) -p 递归创建目录
- 9. rm 删除
 - 1) -r 递归删除
 - 2) -f 不提示强制执行
- 10.touch 文件目录 创建一个空文件
- 11.echo 在控制台输出语句
- 12.cat 读取一个文件内容到控制台
- 13.-rw-r--r--. 1 root root 0 Jun 1 09:55 test01
 - -rw-r--r- 文件类型和权限

- 文本文件
- d 目录

c/b 设备文件

- I 连接文件
- 1 连接次数 root root 属主 属组
- 14.cp -r 递归拷贝 src path tarpath 将 srcpath 复制到 tarpath cp test01_01 15.mv srcpath tarpath 将 srcpath 移动到 tarpath mv test02_test02_02

如果在当前目录下对文件 mv 相当于是对文件重命名

16.chmod 修改文件权限 r=4 w=2 x=1 chmod 755 test_01_01 chmod o+rx test 01 01

- 17.tail 读取一个文件尾部指定行数的数据 默认显示 10 条 tail -15 test01 tail -F test01 监控文件尾部数据变化
- -F 参数如果文件被删除又重新创建依然可以监控空数据
- -f 如果文件删除断开监控状态 -F 如果文件删除不会断开监控状态
- 18.date 查看时间 date -s "2018-6-4 04:15:19" 设置时间 date +'%Y-%m-%d'
- 19.kill -9 ps_id 强制关闭进程

二、linux 定时任务

service crond status 查看状态 crontab -e 配置定时任务的内容

* * * * *

分 时 日 月 周 ***3* commend 每下个单位的对应这个时间执行一次 */1 **** commend 每隔当前对应的时间执行一次 在定时任务中有时会找不到系统配置的环境 尽量把命令写成全路径 如果有多个任务就每个任务一行 因为 linux 是多用户多线程的操作系统,所以控制台的功能有限

date -s "2018-12-16 9:35"查看时间

----- day03 -----

一、ntp 服务器时间同步 - 需要关闭防火墙

- 1. 编辑 ntpd 服务配置文件 (在时间服务器主机上,想作为时间同步的标准主机)
 - a) vi /etc/ntp.conf
 - i. 文件中查找如下内容并修改: 修改红色部分
 - 1. 设置允许哪个网段来访问时间服务器(ntpd) 这里允许 227 网段
 - 2. restrict 192.168.227.0 mask 255.255.255.0 nomodify notrap
 - ii. 注释掉外网服务

#server 0.centos.pool.ntp.org iburst

#server 1.centos.pool.ntp.org iburst

#server 2.centos.pool.ntp.org iburst

#server 3.centos.pool.ntp.org iburst

添加如下内容,本机访问,无需外网时间同步时间 server 127.127.1.0

- 2. 启动 ntp 服务
 - a) 查看防火墙状态 确保防火墙关闭 (service iptables stop)
 - i. [root@hadoop-2 ~]# service iptables status
 - ii. iptables: Firewall is *not running*.
 - b) 查看 ntp 服务状态
 - i. [root@hadoop-1/]# service ntpd status
 - ii. ntpd is stopped
 - c) 启动 ntp 服务

- 3. 测试 ntp 时间同步服务功能 、 在其他机器, 如 102 机器 ; 同步时间
 - a) 登录其他机器
 - i. 比如 192.168.137.102 hadoop-2 机器进行操作
 - b) 修改本机时间,修改错误了
 - i. [root@hadoop-2 ~]# date -s "2018-12-16 18:46"
 - c) <mark>执行 ntp</mark> 时间同步指令(与 101 ip 主机同步,因为 101 启动了 ntpd 服务)
 - i. [root@hadoop-2~]# ntpdate -u 192.168.137.101 (ntp 服务器的地址)
 - d) 查看时间验证是否同步成功
 - i. [root@hadoop-2~]# date
 - **、 102 机器、通过 crontab 定时进行时间同步

[root@hadoop-2 ~]# crontab -e

编辑后自动保存到路径: /var/spool/cron/

文件添加以下内容:表示每2分钟与101机器同步一次

*/2 * * * * /usr/sbin/ntpdate -u 192.168.137.101

13.server 0.cn.pool.ntp.org

fudge 0.cn.pool.ntp.org stratum 10 当前服务器等级如果需要向其他服务器同步时间不要设置成 0ntpstat

<mark>ntpq -p</mark>

二、安装 Java 环境变量

1. 配置 java jdk 环境变量

- a) Ftp == filezilla 工具
 - i. 如何安装
 - ii. 如何连接
 - 1. ip name password port
- b) Java JDK 环境
 - i. 通过 ftp 工具把 windows 里边的 jdk 复制到 远程机器
 - 1. 注意: 不要放到 root 目录下,这里建议 /usr/soft
 - ii. 访问、登陆远程机器,找到 那个文件
 - 1. cd /usr/soft
 - iii. 解压文件
 - 1. tar -zxvf 要解压的 jdk.tar.gz 文件
 - 2. cd 解压后的 jdk 文件夹
 - 3. pwd
 - 4. 复制显示的 jdk 路径 备用
 - iv. 配置环境变量
 - 1. 用 vi 编辑环境变量的配置文件
 - a) vi /etc/profile
 - b) 打开后在 profile 最下边 添加 三个 export 开头的配置
 - i. export JAVA_HOME=/usr/soft/jdk1.8.0_40
 - ii. export PATH=\$PATH:\$JAVA_HOME/bin:
 - export CLASSPATH=.:\$JAVA_HOME/jre/lib/rt.jar:\$JAVA_HOME/lib/dt.jar:\$JAVA_HOME/lib/tools.jar
 - v. 生效
 - 1. source /etc/profile
 - vi. 测试
 - 1. java -version
 - 2. javac

2. Hadoop 环境

- a) ftp 拷贝同上
- b) hadoop 环境配置
 - i. ftp 拖拽同上
 - ii. 访问 cd 同上
 - iii. 解压同上
 - iv. 配置 环境变量文件

- 1. 用 vi 编辑环境变量的配置文件
 - a) vi /etc/profile
 - b) 打开后在 profile 最下边
 - i. 添加
 - 1. export HADOOP_HOME=/usr/soft/hadoop-2.7.1
 - ii. 更新
 - 1. export PATH=\$PATH:\$JAVA_HOME/bin: \$HADOOP_HOME/bin:\$HADOOP_HOME/sbin
- 2. 生效
 - a) source /etc/profile
- 3. 测试
 - a) java -version
 - b) javac

三、安装 Hadoop 环境变量

1. 解压 hadoop 安装包

/usr/soft/hadoop****

- 2. 配置 hadoop 环境变量同上,(以下仅作参考,以自己实际地址为准)
 - c) export HADOOP_HOME=/usr/soft/myhadoop/hadoop-2.7.1
 - d) export PATH=\$PATH:\$JAVA_HOME/bin:\$HADOOP_HOME/bin:\$HADOOP_HOME/sbin
- 3. 修改 hadoop 配置文件

hadoop-env.sh

slaves (这个文件单独添加所有机器的 对应 ip 和 hosts 名)

core-site.xml

hdfs-site.xml

yarn-site.xml

mapred-site.xml (特殊需要 cp,然后编辑)

hadoop-env.sh 环境变量的配置文件

文件中找到如下两行对应信息,修改等号后边红色部分,为自己的 java 和 hadoop 路径

- 1) export JAVA_HOME=/usr/soft/myhadoop/jdk1.8.0_40
- 2) export HADOOP_CONF_DIR=/usr/soft/myhadoop/hadoop-2.7.1/etc/hadoop

slaves

文件的配置 放值 hadoop 工作节点的目录 主机名 每台机器一行

hadoop-1

hadoop-2

hadoop-3

3.hadoop 的加载顺序是先加载 -default ---> -site ???

core-site.xml 找到对应配置内容 进行复制粘贴;红色修改为本机 hosts 名

- <!--指定 hdfs 的主端口 namenode 要放在哪台机器-->
- <!--配置默认文件系统的名称-->
- <!--9000 随意指定的端口 默认端口是 8020-->

```
HDFS 对外提供服务的位置
           <name>fs.defaultFS</name>
           <value>hdfs://hadoop-1:9000</value>
       </property>
       <!--流缓冲区大小-->
       cproperty>
           <name>io.file.buffer.size</name>
           <value>131072</value>
       </property>
                找到对应配置内容 进行复制粘贴;红色修改为本机 hosts 名
hdfs-site.xml
       cproperty>
           指定副本数 小于等于 datanode 数
           <name>dfs.replication</name>
           <value>3</value>
       </property>
       cproperty>
       在本地(linux)磁盘上存放 namenode 数据的目录
         <name>dfs.namenode.name.dir</name>
         <value>/usr/soft/name</value>
       </property>
       cproperty>
       在本地(linux)磁盘上存放 datanode 数据的目录
         <name>dfs.datanode.data.dir</name>
         <value>/usr/soft/data</value>
       </property>
       cproperty>
       配置 secondarynamenode 的 Web url
           <name>dfs.namenode.secondary.http-address</name>
           <value>hadoop-1711-001:50090</value>
       </property>
               找到对应配置内容 进行复制粘贴;红色修改为本机 hosts 名
yarn-site.xml
           property>
           配置服务类型 mapreduce_shuffle
               <name>yarn.nodemanager.aux-services</name>
               <value>mapreduce_shuffle</value>
           </property>
           property>
           指定 resourcemanager 启动在哪台
               <name>yarn.resourcemanager.hostname</name>
               <value>hadoop-1711-001</value>
           </property>
mapred-site.xml
                    (需要通过 mapred-site.xml.template,拷贝然后修改)
   cp mapred-site.xml.template mapred-site.xml
   vi mapred-site.xml
       cproperty>
       把 mapreduce 的计算依赖给 yarn 框架
           <name>mapreduce.framework.name</name>
```

cproperty>

```
<value>yarn</value>
</property>
cproperty>
程序操作历史日志的位置
    <name>mapreduce.jobhistory.address</name>
    <value>hadoop-1711-001:10020</value>
</property>
cproperty>
web url 访问历史服务的地址
    <name>mapreduce.jobhistory.webapp.address</name>
    <value>hadoop-1711-001:19888
</property>
cproperty>
存放多少条历史服务
    <name>mapreduce.jobhistory.joblist.cache.size</name>
   <value>20000</value>
</property>
```

四、克隆虚拟机

1. 右键--->管理--->克隆--->虚拟机中当前状态--->创建完整克隆---> 配置安装包---->完成

克隆完检查 1.ip 2.主机名和 ip 映射 3.防火墙是否关闭

- 1、修改 hosts ip
 - a) [root@hadoop-1 hadoop]# vi /etc/hosts
- 2、修改主机名称
 - a) [root@hadoop-1 hadoop]# vi /etc/sysconfig/network
- 3、查看ip 和 mac 地址
 - a) [root@hadoop-1 hadoop]# ifconfig
- 4、查看 网络情况
 - a) [root@hadoop-1 hadoop]# vi /etc/udev/rules.d/70-persistent-net.rules
- 5、修改配置网络 ip 文件
 - a) [root@hadoop-1 hadoop]# cd /etc/sysconfig/network-scripts/
 - b) [root@hadoop-1 network-scripts]# vim ifcfg-eth0
 - c) service network restart
 - d) ping www.baidu.com

五、配置 ssh 免密登录

1.编辑秘钥的配置文件

[root@hadoop-2 ~]# vim /etc/ssh/sshd_config

2.找到下边内容,对应去掉前面的#

RSAAuthentication yes

PubkeyAuthentication yes

AuthorizedKeysFile .ssh/authorized_keys

- 3.service sshd restart 重启 ssh 服务
 - 3.1 配置 ssdh 服务开机启动,保证 CRT 可以正常连接

chkconfig ssdh on

4.设置 ssh 的密码是无密码并且使用 rsa 非对称加密生成公私钥

设置生成 非对称 秘钥

[root@hadoop-1 ~]# ssh-keygen -t rsa -P "" -f ~/.ssh/id_rsa

重复 三遍 分别把秘钥 拷贝给 hadoop-1 hadoop-2 hadoop-3

[root@hadoop-1 ~]# ssh-copy-id hadoop-3

分别尝试登陆连接

[root@hadoop-1 ~]# ssh hadoop-1

退出登陆连接

[root@hadoop-3 ~]# exit

六、格式化 HDFS

1. 格式化执行

如果有错误,仔细查看错误提示文件,参考以上配置重新修改;

[root@hadoop-1 ~]# hadoop namenode -format

2. 启动两个服务,也可以单独使用

[root@hadoop-1 ~]# start-dfs.sh

[root@hadoop-1 ~]# start-yarn.sh

启动后查看 第一种 验证

[root@hadoop-1 ~]# jps

2787 NameNode

3605 Jps

3064 SecondaryNameNode

3304 NodeManager

3209 ResourceManager

2907 DataNode

启动后查看 第二种 验证

可以访问代表节点 3 的集群表示正常;

主机访问 hdfs 端口

http://192.168.137.101:50070

从属机器访问 yarn 端口

http://192.168.137.101:8088

3. 停止服务方法

stop-... 停止

[root@hadoop-1 ~]# stop-dfs.sh

[root@hadoop-1 ~]# stop-yarn.sh

----- day04 -----

hadoop 的作者 Doug Cutting 图标

一、从代码层看 hadoop

1. Hadoop Common: 其他组件的公共组件

2. Hadoop Distributed File System (HDFS™): 分布式的文件系统

3. Hadoop YARN: 资源调度框架

4. Hadoop MapReduce: 数据的计算框架

从使用的框架 有 2,3,4

二、启动 hadoop

- 1. start-dfs.sh 启动 HDFS
 - 1) hdfs 访问的 WEB url 主机 +50070 端口
 - 2) namenode 服务 HDFS 的主节点负责维护所有文件,是文件元数据(描述信息)
 - 3) datanode 服务 实际的数据负责维护实际的数据
 - 4) SecondaryNameNode 定期的改变 namenode 中的信息,它会拷贝 namenode,所以相当 nn 的冷备份。
- 2. start-yarn.sh 启动 yarn 负责资源调度的框架
 - 1) ResourceManager yarn 中的主节点负责分发资源和创建容器 NodeManager 一般和 datanode 是伴随的服务,负责维护实际数据

三、block 的概念

- 1. 一个文件切分开存放,每一部分叫一个 block。
- 2. 默认切分规则是 128M 对应一个 block。
- 3. 实际的文件大小按照文件的实际值。

四、HDFS shell 命令

- 1. hdfs dfs -help 帮助
- 2. -cat 查看文本文件的内容
- 3. -chmod 修改权限 使用创建的那个用户 hdfs dfs -chmod o+w /test
- 4. -copyFromLocal == -put

linux 的路径 hdfs 的路径 hdfs dfs -copyFromLocal in_use.lock /

hdfs dfs -put in_use.lock /

5. -copyToLocal == -get

hdfs 的路径 linux 的路径

hdfs dfs -copyToLocal /in_use.lock ./
hdfs dfs -get /in_use.lock ./

- 6. -cp hdfs dfs -cp /LICENSE.txt /test/license -p 递归拷贝
- 7. -ls hdfs dfs -ls / 查看目录下的文件信息
- 8. -mkdir hdfs dfs -mkdir /test 指定位置创建目录 -p 递归创建
- 9. -appendToFile

由于 HDFS 上的文件修改不能支持很好,只能在文件末尾添加数据 linux 下的文件 HDFS 上的文件

hdfs dfs -appendToFile in_use.lock /test/in_use.lock

- 10. -text 高级的查看文本文件的内容
- 11. -rm hdfs dfs -rm /test/123.rar 删除文件 -f 不询问强制删除 -R 递归删除 hdfs dfs -rm -R -f /test 不支持参数的组合使用
- 12. -mv hdfs dfs -mv /Text.zip /output180401_2 移动文件
- 13. rm 删除文件 如果需要加入回收站可以 修改 如下配置文件

core-site.xml

扩展回收站

property>

<name>fs.trash.interval</name>

<value>1440</value>

</property>

还原回收站文件 -mv 到其他目录即可

----- day05 -----

—————周总结考核

周考内容:

- 01、使用的 Linux 的名称、属于哪个主流发行版本的分支? cnetos 6.5; 红帽系列的社区版本
- 02、查看 /usr/soft 下的详细信息,包括隐藏文件的命令是什么? ls -la
- 03、同时创建一个多级目录、在/usr/soft/huagong (soft huagong 都不存在) mkdir - p / usr/soft/huagong (递归创建 - p)
- 04、简述 NAT 模式、桥接模式、仅主机模式的作用?
 NAT 没有独立 ip、与宿主机想用相同网卡设施;
 桥接有独立 ip 相当于独立机器;
 仅主机、只能和宿主机相连,不能访问互联网和局域网;
- 05、Apache hadoop 的四大核心模块儿是什么?
 hadoop common:公共组件、代码底层公用组件
 hadoop hdfs:分布式文件系统
 mapraduce:
 yarn:
- 06、core-site.xml 哪个属性配置 HDFS 主节点? (NameNode) fs.defaultFS
- 07、如何启动 HDFS? start-dfs.sh
- 08、如何启动 YARN? start-yarn.sh
- 09、搭建集群为何要配置 SSH 免秘钥登录? hadoop 集群运行中需要通过 ssh 协议相互发送信息。
- 10、HDFS 中 block 的概念是什么? 如果文件存储在 hdfs 上,存储的单位叫做 block。
- 11、block 的默认大小多少? 128M
- 12、50070 访问的功能是? hdfs 浏览器【查看】端口;只能查看
- 13、8088 访问的功能是? yarn 浏览器【查看】端口;只能查看
- 14、HDFS 启动后有哪些进程被启动? (jps 可以看到) NameNode 存放文件描述信息位置; DataNode 存放实际数据的内容; 可以有多个;
- 15、yarn 启动后有哪些进程被启动?

ResourceManager 一个集群只有一个,在主节点上; NodeManager 根据多少个 DataNode 出现多少个 NodeManager

-构建 Maven 项目

```
新建项目(Eclipse / MyEclipse)
1.
    选择 Maven
2.
    ① org.apache.maven.archetypes maven-archetype-quickstart 1.1
    导入配置依赖路径 settings.xml 文件
    1 Windows - Preferences - Maven - User Settings
    (2)
                  user setting s (open file); browse 选择 settings.xml 文件
    编辑 pom.xml 配置文件
4.
    添加 eclipse maven HDFSapi 依赖
<dependency>
         <groupId>org.apache.hadoop</groupId>
         <artifactId>hadoop-client</artifactId>
         <version>2.7.1</version>
</dependency>
<build>
         <plugins>
             <plugin>
                  <groupId>org.apache.maven.plugins
                  <artifactId>maven-compiler-plugin</artifactId>
                  <configuration>
                       <source>1.8</source>
                       <target>1.8</target>
                  </configuration>
             </plugin>
         </plugins>
    </build>
    测试项目运行
//import java.net.URI;
//import org.apache.hadoop.conf.Configuration;
//import org.apache.hadoop.fs.FileSystem;
public class App
   public static void main( String[] args ) throws Exception
       System.out.println( "Hello World!" );
       Configuration conf = new Configuration();
```

FileSystem fileSystem = FileSystem.get(new URI("hdfs://hadoop-1:9000"), conf, "root");

fileSystem.close();

一、HDFS 基本架构关系图解

参考: http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Introduction

HDFS(Hadoop Distributed File System)Hadoop 分布式文件系统基本结构分 NameNode、SecondaryNameNode、DataNode 这几个

NameNode:是 Master 节点,有点类似 Linux 里的根目录。管理数据块映射;处理客户端的读写请求;配置副本策略;管理 HDFS 的名称空间;

Secondary NameNode: 保存着 NameNode 的部分信息(不是全部信息 NameNode 宕掉之后恢复数据用),是 NameNode 的冷备份;合并 fsimage 和 edits 然后再发给 namenode。(防止 edits 过大的一种解决方案)

DataNode: 负责存储 client 发来的数据块 block; 执行数据块的读写操作。是 NameNode 的小弟。

热备份: b是 a的热备份,如果 a 坏掉。那么 b 马上运行代替 a 的工作。

冷备份: b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。

fsimage:元数据镜像文件(文件系统的目录树。)

edits: 元数据的操作日志(针对文件系统做的修改操作记录)

namenode 内存中存储的是=fsimage+edits。

参考: https://www.cnblogs.com/wxplmm/p/7239342.html

二、HDFS 文件读写过程图解

a. Client 将 FileA 按 64M 分块。分成两块,block1 和 Block2;

b. Client 向 nameNode 发送写数据请求,如图蓝色虚线①----->。

c. NameNode 节点,记录 block 信息。并返回可用的 DataNode,如粉色虚线②----->。

Block1: host2,host1,host3

Block2: host7,host8,host4

d. client 向 DataNode 发送 block1;发送过程是以流式写入。

hdfs 流式写入过程

- 1>将 64M 的 block1 按 64k 的 package 划分;
- 2>然后将第一个 package 发送给 host2;
- **3>host2**接收完后,将第一个 package 发送给 host1,同时 client 想 host2 发送第二个 package;
- **4>**host1 接收完第一个 package 后,发送给 host3,同时接收 host2 发来的第二个 package。
- 5>以此类推,如图红线实线所示,直到将 block1 发送完毕。
- **6>host2**,host1,host3 向 NameNode,host2 向 Client 发送通知,说"消息发送完了"。如图粉红颜色实线所示。
- **7>client** 收到 host2 发来的消息后,向 namenode 发送消息,说我写完了。这样就真完成了。如图<mark>黄色粗实线</mark>
- 8>发送完 block1 后,再向 host7,host8,host4 发送 block2,如图蓝色实线所示。
- **9>**发送完 block2 后,host7,host8,host4 向 NameNode,host7 向 Client 发送通知,如图浅**绿色实线**所示。

hdfs 文件读操作

读操作就简单一些了,如图所示,client 要从 datanode 上,读取 FileA。而 FileA 由 block1 和 block2 组成。

那么,读操作流程为:

- a. client 向 namenode 发送读请求。
- **b.** namenode 查看 Metadata 信息,返回 fileA 的 block 的位置。

block1:host2,host1,host3

block2:host7,host8,host4

c. block 的位置是有先后顺序的,先读 block1,再读 block2。而且 block1 去 host2 上读取;然后 block2,去 host7 上读取;

上面例子中,client 位于机架外,那么如果 client 位于机架内某个 DataNode 上,例如,client 是 host6。那么读取的时候,遵循的规律是:

优选读取本机架上的数据。

三、HDFS 基础理论知识

- 一、HDFS 的安全模式 安全模式下 HDFS 是只读
 - 1. hadoop dfsadmin -safemode get 查看是否是安全模式
 - 2. hdfs 在启动的时候回去检测各节点上的文件是否正常,进入安全模式
 - 3. hadoop dfsadmin -safemode leave 关闭安全模式
 - 4. hadoop dfsadmin -safemode enter 开启安全模式
 - 5. 没有文件不会进入安全模式
- 二、namenode 的大小是固定的----->无法高效存储大量小文件。
- 三、namenode 在启动后会把数据加载到内存中
- 四、查看块报告
- (1) hdfs dfsadmin -report 1小时报告一次
- 五、心跳 3 秒一次 超过 10 分钟认为这个节点不可用
- 六、checksum 文件创建后的三周开始检测

Client

- 文件切分
- 与NameNode交互,获取文件位置信息;
- 与DataNode交互,读 取或者写入数据;
- · 管理HDFS;
- 访问HDFS。

Secondary NameNode

- · 并非NameNode的热
- 辅助NameNode,分 担其工作量;
- 定期合并fsimage和 fsedits,推送给 NameNode;
- · 在紧急情况下,可辅 助恢复NameNode。

----- day06 -----

- 一、HDFS 常用 API 调用前提
 - 1. HDFS 服务器启动正常
 - 2. eclipse 创建 maven 环境正常

-----参考

源码参考: https://blog.csdn.net/ccorg

笔记参考: https://github.com/nmww/bigdata01

二、HDFS 常用 API 应用

1. 下载 HDFS 服务器文件

```
--下载 HDFS 服务器文件
//用到的包
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
 * @throws Exception
 * HDFS API 从 hdfs 服务器下载指定文件到本地 windows 指定路径
private static void getHdfsFileToWindowLocal() {
    // 创建一个 hdfs 运行环境的一个对象
    Configuration conf = new Configuration();
    FileSystem fs = null;
    Path src = new Path("/NOTICE.txt");//修改对应自己 hdfs 服务器路径文件
    Path dst = new Path("F:\\ptest"); //注意 java 中 windows 路径的转义符
    //Path dst1 = new Path("F:/ptest"); // 可以用两种 \\ OR /
    try {
        fs = FileSystem.get(new URI("hdfs://hadoop-1:9000"), conf, "root");
        // fs.copyToLocalFile(src, dst); //windows 和 linux 系统 交互不适用
        /*
```

```
* windows 需要有 hdfs 环境,或者设置兼容本地操作系统
     *1.是否删除源文件;
     * 2.src 源文件地址
     * 3.dst 目标文件地址
     * 4.useRawLocalFileSystem 是否兼容本地操作系统
    */
    fs.copyToLocalFile(false, src, dst, true);
} catch (Exception e) {
   e.printStackTrace();
} finally {
   try {
       fs.close();//占用资源的对象,用完及时关闭;
   } catch (IOException e) {
       // TODO Auto-generated catch block
       e.printStackTrace();
   }//占用资源的对象,用完及时关闭;
}
```

2. 读取 HDSF 服务器文件

}

```
----读取 HDSF 服务器文件
   /**
     * 从 hdfs 服务器读取一个文件, 打印到控制台
     * import org.apache.hadoop.io.IOUtils;
     */
    private static void catFileToConsole() {
        Configuration conf = new Configuration();
        FileSystem fs = null;
        try {
            fs = FileSystem.get(new URI("hdfs://hadoop-1:9000"), conf, "root");
            //获取输入流; 对应路径是 hdfs 已经存在的文件绝对路径
            FSDataInputStream in = fs.open(new Path("/p1"));
            //1.输入流; 参数 2: 输出流; 输出到控制台; 3.当前环境
            IOUtils.copyBytes(in, System.out, conf);
            IOUtils.closeStream(in);//关闭输入流 - 工具类
        } catch (Exception e) {
            e.printStackTrace();// 打印异常栈中信息
        } finally {
            if (null != fs)
                try {
                    fs.close();
                } catch (IOException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
```

```
}
```

}

3. 查看 HDFS 服务器上文件状态

```
---查看 HDFS 服务器上文件状态
  * 查看 HDFS 服务器上,指定文件或者目录的所有文件的状态
  * @see import org.apache.hadoop.fs.FileStatus;
  * @see listStatus
  */
 private static void statusFile() {
     Configuration conf = new Configuration();
     FileSystem fs = null;
     try {
          fs = FileSystem.get(new URI("hdfs://hadoop-1:9000"), conf, "root");
         // 获取指定文件,或文件夹的所有文件,返回一个数组
          FileStatus[] listStatus = fs.listStatus(new Path("/"));
          for (int i = 0; i < listStatus.length; i++) {
              //打印文件名称
              System.out.println(listStatus[i].getPath().getName());
              System.out.println("绝对路径: "+listStatus[i].getPath().toString());
              //打印文件大小
              System.out.println(listStatus[i].getLen() + " byte");
         }
     } catch (Exception e) {
         e.printStackTrace();
     } finally {
          if (null != fs)
              try {
                   fs.close();
              } catch (IOException e) {
                   // TODO Auto-generated catch block
                   e.printStackTrace();
              }
     }
}
```

4. 将 HDFS 文件写入本地文件

```
----将 HDFS 文件写入本地文件
/**
    * 将 hdfs 指定文件,写入本地的指定文件
    * @param conf
    * @param fs
    * @throws Exception
```

```
* @see getFileByStream(conf,fileSystem);
    */
private static void getFileByStream(Configuration conf, FileSystem fs) throws Exception{
    //打开 hdfs 服务器指定文件
    FSDataInputStream open = fs.open(new Path("/p1"));
    // 写入指定的文件中,文件需要存在
    FileOutputStream out = new FileOutputStream("F:\\ptest\\ceshi.txt");
    IOUtils.copyBytes(open, out, conf);
    IOUtils.closeStream(open);
    IOUtils.closeStream(out);
}
```

5. 在 HDFS 上创建目录

6. 上传、拷贝本地文件到 HDFS

```
-上传、拷贝本地文件到 HDFS
* @param source
* @param dest
* @throws Exception
* @throws URISyntaxException
* @see example: copyFromLocal("F:/ptest","/ceshi.txt");
*/
public static void copyFromLocal(String source, String dest) throws Exception(
    Configuration conf = new Configuration();
    URI uri = new URI("hdfs://hadoop-1:9000");
    FileSystem fileSystem = FileSystem.get(uri, conf, "root");
    Path srcPath = new Path(source);
    Path dstPath = new Path(dest);
    if (!(fileSystem.exists(dstPath))) {
        // 如果路径不存在,即刻创建
        fileSystem.mkdirs(dstPath);
    String filename = source.substring(source.lastIndexOf('/') + 1,source.length());
```

```
fileSystem.copyFromLocalFile(srcPath, dstPath);
System.out.println("File " + filename + " copied to " + dest);
fileSystem.close();
}
```

-下午 HDFS API

7. 在 HDFS 上创建文件,并写入内容

```
/**

* 在 HDFS 上创建文件,并写入内容

* @param fs

* @throws Exception

*/
public static void createFile(FileSystem fs)throws Exception{
    /*

    * 第二个参数;默认 true 会覆盖,如果是 false,文件存在,会抛异常

    * org.apache.hadoop.fs.FileAlreadyExistsException

    */
    FSDataOutputStream out = fs.create(new Path("/a"));
    out.writeUTF("111this is hdfs java api create \n");
    out.close();
}
```

8. 在 HDFS 上的文件进行追加内容

```
/**

* 在 HDFS 上的文件进行追加内容

* @param fs

* @throws Exception

*/
public static void appendFile(FileSystem fs)throws Exception{
    /*

    * @parm 2 : 缓冲区,IO 交互提高效率

    */
    FSDataOutputStream out = fs.append(new Path("/a"),2048);
    out.writeUTF("append this hdfs java api append \n");
    out.close();
}
```

9. 删除 hdfs 指定文件夹

```
删除 hdfs 指定文件夹
/**
 * hdfs 删除指定文件夹
 * @param fs
 * @throws Exception
 */
public static void deleteDir(FileSystem fs)throws Exception{
     if(fs.exists(new Path("/output01"))){
          FileStatus[] status = fs.listStatus(new Path("/output01"));
          for (int i = 0; i < status.length; i++) {
               boolean directory = fs.isDirectory(new Path(status[i].getPath().toString()));
               if(directory){
               }else{
                   fs.delete(new Path(status[i].getPath().toString()),false);
               }
         }
    }
}
```

10. 递归删除 HDFS 上指定的文件夹

```
-递归删除 HDFS 上指定的文件夹
 * deleteEmptyDirAndFile(new Path("/output01"));
* 递归删除 给定目录的全部内容
* @throws Exception
*/
public static void deleteEmptyDirAndFile(Path path) throws Exception {
    Configuration conf = new Configuration();
    FileSystem fs = FileSystem.get(new URI("hdfs://hadoop-1:9000"),conf,"root");
    //当是空文件夹时
    FileStatus[] listStatus = fs.listStatus(path);
    System.out.println(listStatus.length);
    if(listStatus.length == 0){
        fs.delete(path, true);
        return;
    // 该方法的结果: 包括指定目录的 文件 和 文件夹
    RemoteIterator<LocatedFileStatus> listLocatedStatus = fs.listLocatedStatus(path);
    while (listLocatedStatus.hasNext()) {
         LocatedFileStatus next = listLocatedStatus.next();
         Path currentPath = next.getPath();
        // 获取父目录
         Path parent = next.getPath().getParent();
```

```
// 如果是文件夹,继续往下遍历,删除符合条件的文件(空文件夹)
          if (next.isDirectory()) {
              // 如果是空文件夹
              if(fs.listStatus(currentPath).length == 0){
                  // 删除掉
                  fs.delete(currentPath, true);
              }else{
                  // 不是空文件夹,那么则继续遍历
                  if(fs.exists(currentPath)){
                     deleteEmptyDirAndFile(currentPath);
                 }
              }
          // 如果是文件
          } else {
              // 获取文件的长度
              long fileLength = next.getLen();
              // 当文件是空文件时, 删除
          // if(fileLength == 0){
                  fs.delete(currentPath, false);
          // }
          // 当空文件夹或者空文件删除时,有可能导致父文件夹为空文件夹,
          // 所以每次删除一个空文件或者空文件的时候都需要判断一下,如果真是如此,那么就需要把该文件
夹也删除掉
          int length = fs.listStatus(parent).length;
          if(length == 0){
              fs.delete(parent, true);
          }
       }
   }
```

----- day07 -----

0. HDFS 环境配置 - 顺序

- 01.创建虚拟机安装系统
- 02.配置虚拟机 IP
- 03.设置主机名、hosts 名
- 04.拷贝 jdk、hadoop-jdk
- 05.解压 jdk 和 hadoop
- 06.配置 java jdk 、测试
- 07.配置 hadoop jdk 、 测试
- 08.开机关闭防火墙, 开机启动 sshd 服务
- 09.配置 hadoop 参数文件
- 10.重启系统并克隆 2、3 机器
- 11.设置 2 号机 ip,设置主机名,hosts 名,重启
- 12.设置 3 号机 ip,设置主机名,hosts 名,重启
- 13.通过 CRT 连接三台机器
- 14.分别配置三台机器的 ssh 免秘钥认证、测试
- 15.格式化主机 HDFS 系统
- 16.启动服务 hdfs 、yarn
- 17.配置访问机器 hosts, 用 ip 和 hosts 名字访问 50070 8088
- 18.镜像快照备份

1. 操作举例 MR 计算

使用 MR 先计算一个 wordcount 出来

/usr/soft/hadoop-2.7.1/share/hadoop/mapreduce

[root@hadoop-1 mapreduce]# yarn jar hadoop-mapreduce-examples-2.7.1.jar wordcount /NOTICE.txt /output02

java --> jvm 中

MapReduce 离线计算框架: 当前计算统计一个文件中单词出现次数、

2. uber 模式(节省资源)

2.1、配置 uber 模式:

```
如果每次运行时间很短,但是运行次数很多,会重复的开启和销毁 JVM,
       开启 Uber 可以复用 JVM,避免频繁的开关 JVM 的资源浪费。
       将配置文件追加到 hadoop 配置文件 mapred-site.xml 后边
       通过下边命令可以快速配置给其他机器;
                                         三台机器都要配置
       [root@hadoop-1 hadoop]# scp mapred-site.xml hadoop-3:/usr/soft/hadoop-2.7.1/etc/hadoop/mapred-site.xml
       <!--开启 uber 模式-->
       cproperty>
         <name>mapreduce.job.ubertask.enable</name>
         <value>true</value>
       </property>
       <!---同时间可以容纳的最大数据量 单位:byte-->
       cproperty>
         <name>mapreduce.job.ubertask.maxbytes</name>
         <value>102400000</value>
       </property>
       <!--可以同时运行多少个 job(计算)-->
       cproperty>
        <name>mapreduce.job.jvm.numtasks</name>
        <value>10</value>
       </property>
   2.2、进入路径
       /usr/soft/hadoop-2.7.1/share/hadoop/mapreduce
   2.3、配置后再次运行计算
       [root@hadoop-1 mapreduce]# yarn jar hadoop-mapreduce-examples-2.7.1.jar wordcount /NOTICE.txt /output03
   2.4、没有错误,查看如下一行记录 uber true
       18/12/12 09:45:29 INFO mapreduce. Job job 1544575783224 0003 running in uber mode: true
3.聚合日志(查看日志)
   浏览器查看运行情况历史记录,无法正常查看;
   配置聚合日志后可以浏览器查看历史记录;
   3.1 配置到 yarn-site.xml 文件中
       cproperty>
       <!--开启聚合日志-->
          <name>yarn.log-aggregation-enable</name>
          <value>true</value>
       </property>
       cproperty>
```

<!--聚合日志的过期时间 单位秒, 当前设置1天-->

<value>86400</value>

<value>3600</value>

</property>

cproperty>

</property>

<name>yarn.log-aggregation.retain-seconds</name>

<!--检查过期日志的时间 超过指定日期删除过期日志-->

<name>yarn.log-aggregation.retain-check-interval-seconds</name>

cproperty>

<!--公共访问的路径 日志存储位置-->

<name>yarn.nodemanager.remote-app-log-dir</name> <value>/tmp/logs</value>

</property>

3.2 重启 yarn 服务

2944 DataNode

4466 Jps

2837 NameNode

4069 NodeManager

3111 SecondaryNameNode

3960 ResourceManager

3.3 启动历史服务器 (停止服务替换成 stop 即可)

mr-jobhistory-daemon.sh start historyserver

starting historyserver, logging to /usr/soft/hadoop-2.7.1/logs/mapred-root-historyserver-hadoop-1.out

3.4 jps 查看

4431 JobHistoryServer

3.5 测试 mr 计算文件单词数量

[root@hadoop-1 mapreduce]# yarn jar hadoop-mapreduce-examples-2.7.1.jar wordcount /NOTICE.txt /outputhistory01

查看生成的结果(注意,对应自己有的路径和文件名)

[root@hadoop-1 mapreduce]# hdfs dfs -cat /outputhistory01/part-r-00000

3.6 查看链接 【MR 学习调试的重要工具】

http://hadoop-1:19888

- ---> Job Id 可以点击查看详情
- ---> 右侧点击 logs 进入详情
- ---> here 点击 (看到 mr 运行栈信息,可以在这里查看错误,参考调试)

3.7 为什么要用聚合日志:

mr 运行的时候日志分发到不同机器中,不方便进行查看,通过配置聚合日志可以方便的通过浏览器进行查看日志,并在后续学习 mr 过程中,可以参考日志进行错误调试。

注意:

hdfs 启动,只能在 hdfs.site.xml 配置文件指定的机器启动; yarn 启动,只能在 yarn.site.xml 配置文件指定的机器启动;

备忘:

crontab -e #配置的内容在下边路径生成文件,长期保持 [root@hadoop-2~]# cd /var/spool/cron/

Linux 设置节省资源的方式:

0-6 的模式; 默认 id 5 是图形界面

[root@hadoop-1 ~]# vi /etc/inittab

编辑后 id 修改成 3 只用命令行模式,不用图形化界面,可以节省资源 id:3:initdefault: