

- 1. The magnitude of a vector is always a positive value.

 True/False
- 2. A scalar quantity has both magnitude and direction.

 True/False/
- 3. Two vectors are equal only if they have the same magnitude and the same direction. True/False
- 4. If A and B are two vectors, then A + B has the same magnitude as B + A.

 True/False
- 5. Adding a vector to a scalar quantity is a valid mathematical operation.

 True/False
- 6. If a vector is multiplied by a positive scalar, its direction changes.

 True/False/
- 7. If A and B are perpendicular vectors, then their dot product (A B) is zero. True/False

- 8. The cross product of two parallel vectors is a vector pointing perpendicular to both. True/False
- 9. The magnitude of the cross product of two vectors A and B is given by AB $\sin \theta$, where θ is the angle between them.

 True/False
- 10. A unit vector has a magnitude of one and indicates the direction of a vector. /True/False
- 11. The resultant of two vectors is <u>always</u> greater than or equal to the magnitude of either individual vector.

True/False

- 12. If a <u>vector is</u> resolved into its rectangular components, the sum of the magnitudes of the components is equal to the magnitude of the original vector.

 True/False
- 13. Torque is a scalar quantity because it is the result of a force acting at a distance.

 True/False

F

AXB = ABSINO = OX

(y) Righty 7

(3)

- 14. The area of a parallelogram formed by two vectors A and B is equal to the magnitude of their cross product, $|A \times B|$.

 True/False
- 15. If the scalar product of two vectors is equal to the magnitude of their vector product, then the angle between them is 45°.
- 16. If a vector A makes an angle θ with the positive x-axis, its x component is always |A| cos θ , regardless of the quadrant.

 True/False
- 17. Parallel vectors have the same magnitude but not necessarily the same direction.

 True/False
- 18. Equivalent vectors have the same magnitude and direction. True/False
- 19. Opposite vectors have a negative magnitude.

True/False

An = IA & B

A = 31-45

19. Opposite vectors have a negative magnitude.

True/False

- The resultant vector is the vector formed by adding two vectors.
- 21. To subtract a vector from a given vector, add the opposite vector to the given vector.

 True/False
- 22. To multiply two vectors, multiply their magnitudes and add their direction angles. True/False/
- 23. The scalar multiplication of a vector results in another vector having the same direction.

True/False/

24. A child pulling a wagon with a force of 100 N at 30° to the horizontal is an example of a vector.

True/False

25.	A single vector can be replaced by two vectors in the X and Y directions. These X and Y vectors are called the resultant of the original vector.	35
	True/False	36
26.	Wind velocity can be represented as a vector quantity. True/False	
27.	Is a vector necessarily changed if it is rotated through an angle? —NO 95 B 360	37
28.	Is it possible to add two vectors of unequal magnitudes and get zero? Is it possible to add three vectors of equal magnitudes and get zero?	38
29.	Can you add three unit vectors to get a unit vector? Does your answer change if two unit vectors are along the coordinate axes?	39
30.	Can we have physical quantities having magnitude and direction which are not vectors?	40
31.	Which of the following two statements is more appropriate?	
X	(a) Two forces are added using triangle rule because force is a vector quantity.	
	(b) Force is a vector quantity because two forces are added using triangle rule.	

35.

36.

37.

38.

39.

40.

10

32. Can you add two vectors representing physical quantities having different dimensions? Can you multiply two vectors representing physical quantities having different dimensions? (Principles)

No, Yes

33. Can a vector have zero component along a line and still have nonzero magnitude?

es h

34. Is the vector sum of the unit vectors \hat{i} and \hat{j} a unit vector? If no can you multiply this sum by a scalar number to get a unit vector?

A NO

(jes)

36. Let
$$\vec{A} = 3\hat{i} + 4\hat{j}$$
. Write vector \vec{B} such that $\vec{A} \neq \vec{B}$ but $\vec{A} = \vec{B}$. $\vec{A} = 3(+4)\hat{j}$

36. Can you have
$$\vec{A} \times \vec{B} = \vec{A} \cdot \vec{B}$$
 with $A \neq 0$ and $B \neq 0$? What if one of the two vectors is zero?

37. If
$$\vec{A} \times \vec{B} = 0$$
, can you say that (a) $\vec{A} = \vec{B}$,

(b) $\vec{A} \neq \vec{B}$?

38. Let
$$\vec{A} = 5\hat{i} - 4\hat{j}$$
 and $\vec{B} = -7.5\hat{i} + 6\hat{j}$. Do we have

$$\vec{B} = k\vec{A}$$
? Can we saw $\frac{\vec{B}}{\vec{A}} = k$?

- 39. A vector is not changed if
 - (1) vit is rotated through an arbitrary angle
 - (2) it is multiplied by an arbitrary scalar
 - (3) it is cross multiplied by a unit vector

- 40. Which of the sets given below may represent the magnitudes of three vectors adding to zero?
 - (1) 2, 4, 8
 - (2) 4, 8, 16 X
 - (3) 1, 2, 1
 - (4) 0.5, 1, 2 V

41. The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β with \vec{B} ,

$$\alpha < \beta$$

(2)
$$\alpha < \beta$$
 if $A < B$

(3)
$$\alpha < \beta \text{ if } A > B$$

(4)
$$\alpha < \beta$$
 if $A = B$

may be equal to make years may

42. The component of a vector is

- (1) always less than its magnitude
- (2) always greater than its magnitude
- (3) always equal to its magnitude
- (4) none of these

2 2 x x y

- A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector product $\vec{A} \times \vec{B}$ is
 - along west
 - (2) along east
 - (3) zero
 - (4) vertically downward

- A situation may be described by using different sets of coordinate axes having different orientations. Which of the following do not depend on the orientation of the axes?
 - (1) the value of a scalar
 - component of a vector
 - (3) a vector X
 - (4) the magnitude of a vector
- 45. Let $\vec{C} = \vec{A} + \vec{B}$.
 - (1) $|\vec{C}|$ is always greater than $|\vec{A}|$
- (2) It is possible to have $|\hat{C}| < |\hat{A}|$ and $|\hat{C}| < |\hat{B}|$
 - (3) C is always equal to A + B
 - (4) C is never equal to A + B

- Let the angle between two nonzero vectors A and Bbe 120° and its resultant be C.
 - (1) C must be equal to |A B|
 - (2) C must be less than |A B|
 - C must be greater than |A-B|
 - (4) C may be equal to |A B|
- The x-component of the resultant of several vectors
 - (1) is equal to the sum of the x-components of the vectors /
 - (2) may be smaller than the sum of the magnitudes of the vectors
 - (3) may be greater than the sum of the magnitudes of the vectors
 - (4) may be equal to the sum of the magnitudes of the vectors
- The magnitude of the vector product of two vectors $|\vec{A}|$ and $|\vec{B}|$ may be
 - (1) greater than AB (2) equal to AB
 - (3) less than AB/ (4) equal to zero

