TP N°2

1. Acquisition des données

Voici une capture d'écran du logiciel Tracker après avoir effectué toutes les différentes étapes de la première partie du TP :

2. Traitement des données

Après avoir recopié les valeurs trouvées grâce à la manipulation sur Tracker, j'ai pu obtenir les valeurs suivantes sur Excel :

t	X	у	t centré	x centré	y centré
1.55	0.018164	-0.54379	0	0	0
1.6	0.035211	-0.52394	0.05	0.017048	0.019851
1.65	0.05305	-0.50604	0.1	0.034886	0.037752
1.7	0.071444	-0.49029	0.15	0.053281	0.053499
1.75	0.090164	-0.47706	0.2	0.072001	0.066729
1.8	0.109438	-0.46599	0.25	0.091274	0.077807
1.85	0.129089	-0.45717	0.3	0.110926	0.086618
1.9	0.149066	-0.451	0.35	0.130902	0.092797
1.95	0.169508	-0.44737	0.4	0.151345	0.09642
2	0.190428	-0.44621	0.45	0.172264	0.097585
2.05	0.211657	-0.44769	0.5	0.193493	0.096107
2.1	0.233408	-0.45206	0.55	0.215245	0.091733
2.15	0.255768	-0.45924	0.6	0.237604	0.084554
2.2	0.278193	-0.46937	0.65	0.260029	0.074427
2.25	0.301092	-0.48289	0.7	0.282929	0.060907
2.3	0.323883	-0.49924	0.75	0.30572	0.044552
2.35	0.346828	-0.51874	0.8	0.328664	0.025052
2.4	0.369537	-0.54105	0.85	0.351374	0.00274

Ensuite, j'ai pu tracer les positions $x(t_i)$ et $y(t_i)$:

Les courbes de tendance montrent que les valeurs sont correctes, étant donné que le coefficient R² est très proche de 1. De plus, nous pouvons remarquer une nette différence entre les 2 courbes, la première étant une fonction affine, la seconde une fonction du second degré.

3. Étude de la vitesse et de l'accélération

Ensuite, j'ai donc cherché à calculer les composantes $Vx(t_i)$ et $Vy(t_i)$. Pour cela, j'ai dérivé les positions $x(t_i)$ et $y(t_i)$ et j'ai obtenu ces valeurs :

vx(t)	vy(t)		
0.4242	0.4618		
0.4242	0.443648		
0.4242	0.424653		
0.4242	0.405067		
0.4242	0.385134		
0.4242	0.364612		
0.4242	0.343686		
0.4242	0.322416		
0.4242	0.300648		
0.4242	0.278373		
0.4242	0.255768		
0.4242	0.232607		
0.4242	0.208799		
0.4242	0.184921		
0.4242	0.160538		
0.4242	0.13627		
0.4242	0.111838		
0.4242	0.087657		

J'ai alors pu tracer les 2 courbes suivantes :

Finalement, j'ai pu dériver $vy(t_i)$ pour obtenir l'accélération et ainsi tracer la courbe suivante :

4. Conclusion

Tout d'abord, on doit convertir les valeurs données en unités du SI.

62 mm = 0.062 m

596 mm = 0.596 m

Ensuite, faisons un schéma de la situation pour trouver plus facilement α .

 $\alpha = \arctan(0.062/0.596) \approx 5.93^{\circ}$

Maintenant, comparons avec les valeurs expérimentales Deux forces en jeu, la réaction du support Rn et le poids P

PFD: Rn + P = ma

Si on se base sur l'axe y (comme le montre le schéma Fig.2), Rn est perpendiculaire donc Rn = 0

On a alors P = ma

 $-mgsin(\alpha) = ma$

 $-gsin(\alpha) = a$

 $sin(\alpha) = -a/g$

Application numérique : $sin(\alpha) = 1.0648/9.8$

 $\alpha \approx 6.23^{\circ}$

On remarque donc que les deux valeurs sont assez proches.