

					P	rinte	d Pa	ge: 1	of 2	
				5	Subj	ect C	ode:	KE	E301	
Roll No:										l

BTECH (SEM III) THEORY EXAMINATION 2021-22 ELECTROMAGNETIC FIELD THEORY

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all o	questions in brief.	

1.	Attempt all questions in brief.	2 x 10	= 20
Q no.	Question	Marks	CO
a.	Find the value of $(3 \hat{a}_x + 6 \hat{a}_y)X (2 \hat{a}_x + 3 \hat{a}_y + 5 \hat{a}_z)$, where X denotes cross product.	2	1
b.	Find the unit vector of the vector $\vec{A} = (7 \ \hat{a}_x + 2 \ \hat{a}_y + 8 \ \hat{a}_z)$.	2	1
c.	Explain Electric Field Intensity.	2	2
d.	Prove that $\vec{\mathbf{E}} = -\mathbf{grad} \ \mathbf{V}$, where E is Electric Field Intensity and V is Electric Potential.	2	2
e.	Prove that curl $\vec{A}=0$, if $\vec{A}=(yz \hat{a}_x + zx \hat{a}_y + xy \hat{a}_z)$.	2	3
f.	Narrate the concept of electric dipole moment.	2	3
g.	Explain the term 'Inductance.'	2	4
h.	Explain the concept of Magnetic Flux Density.	2	4
i.	Explain the physical significance of Poynting vector.	2	5
j.	Explain the reflection of a plain wave in a normal incidence.	2	5

SECTION B

2. Attempt any three of the following:

 $3 \times 10 = 30$

Q no.	Question	Marks	CO
a.	Given that $\vec{A} = \left(\frac{5r^2}{4}\right)\hat{a}_r$ is in spherical coordinates, solve both sides of	10	1
	the divergence theorem for the volume enclosed by $r = 4m$, and $\theta = \frac{\pi}{4}$		
	shown in below figure.		
	z ↑		
	$\frac{A}{ds}$ $\frac{ds}{ds}$		
b.	Derive the mathematical expression for energy stored in electric field.	10	2
0.	If $V = yx^2 + zx + xy$ V, Do the analysis of \vec{E} at $(2, 3, 7)$ and the electrostatic energy stored in a cube of side 4m centered at origin.	10	2
c.	Explain Biot-Savart's Law. Find the magnetic field intensity for infinite line current.	10	3
d.	Explain the ampere circuital law. Derive two applications of ampere circuital law. Also, derive modified maxwell's equations.	10	4
e.	Derive the mathematical equation for Poynting vector.	10	5

				S	Subje	oject Code: KEE301				
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 ELECTROMAGNETIC FIELD THEORY

SECTION C

3. Attempt any *one* part of the following:

 $1 \times 10 = 10$

Printed Page: 2 of 2

Q no.	Question	Marks	CO
a.	Investigate the values of X, Y, and Z. If $\vec{A} = (2 \hat{a}_x + 4 \hat{a}_y + 5 \hat{a}_z)$ is transformed	10	1
	as $\vec{A} = (X \hat{a}_r + Y \hat{a}_\theta + Z \hat{a}_\phi)$		
b.	Derive the Poisson's and Laplace equation in all coordinate systems.	10	1

4. Attempt any *one* part of the following:

 $1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Point charges 1 mC and – 2 mC are located at (3, 2, –1) and (-1, -1, 4),	10	2
	respectively. Calculate the electric force on a 10 nC charge located at (0, 3, 1) and the electric field intensity at that point.		
b.	Given the potential $V = \frac{560}{3r^2} \sin 2\theta \cos \phi$,	10	2
	Find the electric flux density D at $(2, 90^0, 0)$. Also calculate the work done in moving a $10 \mu C$ charge from point A $(1, 30^0, 120^0)$ to B $(2, 60^0, 30^0)$.		

5. Attempt any *one* part of the following:

 $1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Explain convection and conduction currents. Derive mathematical	10	3
	equations also. Also derive the magnetic vector potential.		
b.	What is magnetic dipole? Find magnetic vector potential. Explain the	10	3
	complete Magnetic boundary conditions. Derive all tangential and		
	normal components.		

6. Attempt any *one* part of the following:

 $1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Explain transformer and motional electromotive forces with necessary mathematical expressions. If vector $\mathbf{A} = yx^2\mathbf{a}x + zx\mathbf{a}y + xy\mathbf{a}z$ is expressed as, where $\mathbf{a}x$, $\mathbf{a}y$, and $\mathbf{a}z$ are the unit vectors. Find the vector B.	10	4
b.	A charged particle of mass 2 kg and charge 3 C starts at point $(1, -2, 0)$ with velocity 4 $\mathbf{a_x}$ +3 $\mathbf{a_z}$ m/s in an electric field 12 $\mathbf{a_x}$ +10 $\mathbf{a_y}$ V/m. At time t=1 sec, determine- the acceleration of the particle, its velocity, kinetic energy of the particles and its position.	10	4

7. Attempt any *one* part of the following:

 $1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Explain uniform plane wave. Derive uniform plane waves in lossless	10	5
	dielectrics. What is skin effect? Explain the Smith chart in detail.		
b.	What is transmission line. Derive all the supporting mathematical	10	5
	equations of the transmission line.		