CLAIMS

What is claimed is:

1		1.	A method of treating a surface of a substrate, the method		
2	comprising:				
3		(a)	forming hydroxyl groups on an oxide surface by exposing the		
4	surface to a plasma;				
5		(b)	reacting a first gas comprising epoxy-functional molecules with		
6	the surface hy	droxyl	groups in situ in the absence of plasma to provide surface-bound		
7	spacer chains.		,		
1		2.	The method of claim 1, further comprising immobilizing		
2	biomolecules	on the s	urface by reacting the biomolecules with the surface-bound		
3	spacer chains.				
1		3.	The method of claim 2, wherein the biomolecules are amine-		
2	functionalized or amine-containing biomolecules.				
1		4.	The method of claim 1, wherein the oxide surface comprises a		
2	silicon oxide.				
1		5.	The method of claim 4, wherein the oxide surface comprises		
2	silica, glass or	r quartz.			
1		6.	The method of claim 1, wherein the oxide surface comprises a		
2	metal oxide.				
1		7.	The method of claim 6, wherein the metal oxide comprises a		
2	native oxide o	of stainle	ess steel.		
1		8.	The method of claim 1, wherein the plasma is formed from a		
2	source gas con	mprising	g water, oxygen or a mixture thereof.		
1		9.	The method of claim 1, wherein the epoxy-functional		
2	molecules are epihalohydrin molecules.				

1	10.	The method of claim 9, wherein the epihalohydrin molecules			
2	are epichlorohydrin molecules.				
1	11.	The method of claim 1, wherein the epoxy-functional			
2	molecules are diepo	xide molecules.			
1	12.	The method of claim 11, wherein the diepoxide molecules are			
2	1,4-butanediol digly	cidyl ether molecules.			
1	13.	The method of claim 2, wherein the biomolecule is selected			
2	from the group cons	isting of oligonucleotides, aptamers, cDNA and RNA.			
1	14.	The method of claim 2, wherein the biomolecule is a protein.			
1	15.	The method of claim 1, further comprising extending the space			
2	chains by reacting th	ne spacer chains with spacer molecules in situ in the absence of			
3	plasma to provide extended spacer chains.				
1	16.	The method of claim 15, wherein the spacer molecules			
2	comprise an amine group capable of reacting with the epoxy functionality of the				
3	spacer chains.				
1	17.	The method of claim 15, still further comprising immobilizing			
2	biomolecules on the extended spacer chains by reacting the biomolecules with the				
3	extended spacer chains.				
1	18.	An inorganic oxide substrate comprising:			
2	(a)	an inorganic oxide substrate surface;			
3	(b)	one or more molecular spacer chains covalently bound to the			
4	surface, the one or n	nore spacer chains having a length of at least 2.5 nm; and			
5	(c)	one or more biomolecules covalently bound to the one or more			
6	molecular spacer ch	ains.			
1	19.	The substrate of claim 18, wherein the substrate surface			
2	comprises an inorga	nic oxide selected from the group consisting of glass, silica and			
3	quartz.				

1	20. The substrate of claim 18, wherein the substrate surface				
2	comprises a metal oxide.				
1	21. The substrate of claim 20, wherein the metal oxide is a native				
2	oxide of stainless steel.				
1	22. The substrate of claim 18, wherein the one or more spacer				
	•				
2	chains have a length of at least 4 nm.				
1	23. The substrate of claim 18, wherein the one or more spacer				
2	chains have a length of at least 5 nm.				
1	24. The substrate of claim 18, wherein the one or more				
2	biomolecules are proteins.				
1	25. The substrate of claim 18, wherein the one or more				
2	biomolecules are enzymes.				
1	26. The substrate of claim 18, wherein the one or more				
2	biomolecules are oligonucleotides.				
_					
1	27. A method of treating a surface of a substrate, the method				
2	comprising:				
3	(a) implanting silicon-chlorine functionalities into the substrate				
4	surface by exposing the surface to a chlorine-containing plasma;				
5	(b) forming hydroxyl groups on the surface by exposing the				
6	silicon-chlorine functionalities to a gas comprising water, oxygen or a mixture				
7	thereof; and				
8	(c) reacting a gas comprising epoxy-functional molecules with the	е			
9	surface hydroxyl groups in situ in the absence of plasma to provide surface-bound				
10	spacer chains.				
1	28. The method of claim 27, wherein the chlorine-containing				
2	plasma is ignited from a gas selected from the group consisting of dichlorosilane,				
3	silicon tetrachloride, hexachlorodisilane and mixtures thereof.				

1	29	9.	The method of claim 27, wherein the epoxy-functional		
2	molecules are epihalohydrin molecules.				
1	30	0.	The method of claim 27, wherein the epoxy-functional		
2	molecules are diepoxide molecules.				
1	31	1.	The method of claim 27, further comprising immobilizing		
2	biomolecules on	the s	urface by reacting the biomolecules with the surface-bound		
3	spacer chains.				
1	32	2.	The method of claim 27, further comprising extending the		
2	spacer chains by reacting the spacer chains with spacer molecules in situ in the				
3	absence of plasma to provide extended spacer chains.				
1	33	3.	The method of claim 32, further comprising immobilizing		
2	biomolecules on the extended spacer chains by reacting the biomolecules with the				
3	extended spacer	chain	s.		