Moving from identification to quantification of phosphorylation events in plant-pathogen interactions

Effector triggered susceptibility and immunity

^{**}Gimenez-Ibanez et al Current Biol. 2009

Signal transduction of AvrPtoB

Guttierez-Pulgar Plant J. 2009

AvrPtoB ubiquitinates kinase-dead Pto

1. Pto phosphorylates AvrPtoB

Pto

2 .Pto is phosphorylated after elicitation

CCB

Ntoukakis et al. Science 2009

Modifications on Pto kinase

Proteins: AvrPtoB (purple) Pto pink/yellow.

<u>Space fill:</u> Active site red, 'ubiquitination' site (fen), P-loop residues blue, alternative phosphorylation sites green

^{**}Gimenez-Ibanez et al Current Biol. 2009

Treatment with chitin induces a transient band-shift

CCBB Elena Petutschnig

Identification of constitutive and induced phosphorylation 'Quantified' by spectral counts

				dephosphorylated with λ-phosphatase		
	Phosphoresidue	control	chitin	control	Chitin	
SKGDSFSSSIPLSTK	S266	7	15	1	4	
	S268	0	2	0	0	
	S270	0	1	0	0	
	S274	0	4	0	0	
GAVVK[oxM]TEAV	GEFR T519	0	4	0	0	

Two weak points in this analysis:

quantification

position of phosphorylation

Extracted ion chromatograms of SKGDSFSSSIPLSTK

810.88 mz 2+ ion

Peak areas of SKGDSFSSSIPLSTK phosphorylated

Constitutive and induced phosphorylation revisited

		percent of specific forms of peptide									
		plus chitin				no chitin					
Peptide	modification	B1T1	B1T2	B2T1	В2Т2	B1T1	B1T2	B2T1	B2T2		
GDSFSSSIPLSTK		34	36	35	32	40	30	39	47		
GDSFSSSIPLSTK	Phospho (S274)	0	0	1	1	0	0	-	0		
SKGDSFSSSIPLSTK 2+	Phospho (S274)	1	2	4	4	0	0	0	0		
SKGDSFSSSIPLSTK 2+	Phospho (S266)	2	1	4	3	2	1	2	2		
SKGDSFSSSIPLSTK 2+	Phospho (S268)	3	4	3	3	1	1	0	0		
SKGDSFSSSIPLSTK 2+		35	34	37	40	32	37	39	33		
SKGDSFSSSIPLSTK 3+		25	24	17	17	25	30	19	17		
GAVVKMTEAVGEFR	Oxidation (M) Oxidation (M)	81	71	44	36	100	99	100	100		
GAVVKMTEAVGEFR	Phospho (T519)	19	29	56	64	-	1	-	-		

B= biological replicate, T= technical replicate

The co-receptor kinase BAK1

Current BAK1 strategy for mapping and quantifying phosphorylation sites

Expressed, tagged proteins

WT, hyperactive mutant, kinase dead versions

- 1. In vitro: 'Hot + cold' kinase assays Gel-LC-MS/MS mapping
- 2. In vivo: IP from transient expression N. benth, IP stable transgenics Arabidopsis
- 3. In vivo: native promoters, SRM

Peak areas of top 25 BAK1 peptides

Multiple reaction monitoring

Note:

Modified forms of a peptide differ in both Q1 (intact mass) and Q3 (fragment mass)

Phosphorylation events on BAK1

Non-phosphorylated

phosphorylated

mutant

in-house Qtrap 4000

Analyst image, AB Sciex

Phosphorylation events on BAK1 with elicitors

Nonphosphorylated

phosphorylated

Summary

- Plant proteomics is highly feasible
- Phosphorylation is important in plant-pathogen interactions
- Identification of sites is becoming routine

Current challenges are assignment of correct sites* quantification

 Future challenges subcellular localisation, compsition of complexes

*Note biochem noise, possible flexibility of enzymes

CERK1

Elena Petutschnig, Ulrike Lipka Volker Lipka

Pto and AvrPtoB

Dagmar Hann, Antje Hesse-Peck, Vardis Ntoukakis, Tatiana Mucyn, John Rathjen

Thanks to Gatsby Foundation for funding!

BAK1

Ben Schwessinger, Melina Roux Cyril Zipfel

MS group

Liliya Serazetdinova Jan Sklenar

THE SAINSBURY LABORATORY