LABORATÓRIO DE HARDWARE

PROF° DOUGLAS ROBERTO ROSA PEREIRA

- De maneira bastante resumida, podemos definir memória como qualquer dispositivo que permita a um computador guardar dados, de maneira temporária ou permanente.
- Conceitualmente podemos dividir a memória do computador em principal e secundária.
- A memória principal é composta pelas memórias que o processador pode endereçar diretamente, sem as quais o computador não pode funcionar.
- Sua função principal é a de conter a informação necessária para o processador num determinado momento, por exemplo, os programas em execução.

• Nesta categoria insere-se a RAM, que é uma memória de semicondutores, volátil, com acesso aleatório, isto é, palavras individuais de memória são acessadas diretamente, utilizando uma lógica de endereçamento implementada em hardware. Também pode-se compreender a memória ROM (não volátil), registradores e memórias cache.

- A memória secundária também chamada de memória de armazenamento em massa, para armazenamento permanente de dados.
- Elas não podem ser endereçadas diretamente, sendo que a informação precisa ser carregada em memória principal antes de poder ser tratada pelo processador. Não são estritamente necessárias para a operação do computador.
- São não-voláteis, permitindo guardar os dados permanentemente. Como exemplos temos os discos rígidos como o meio mais utilizado, uma série de discos óticos como CDs, DVDs e Blu-Rays, disquetes e fitas magnéticas.

 Como os dispositivos de armazenamento de dados não voláteis já foram estudados no conteúdo anterior, neste material focaremos nas memórias primárias ao invés de memórias secundárias.

MEMÓRIA RAM E MEMÓRIA ROM

- Podemos dividir as memórias em duas grandes categorias: **ROM** e **RAM**. Em todos os computadores encontramos ambos os tipos. Cada um desses dois tipos é por sua vez, dividido em várias outras categorias.
- ROM significa Read Only Memory, ou seja, memória para apenas leitura. Em uso normal, a ROM aceita apenas operações de leitura, não permitindo a realização de escritas. Outra característica da ROM é que seus dados não são perdidos quando ela é desligada. Dizemos então que a ROM é uma memória não volátil. Alguns tipos de ROM aceitam operações de escrita, porém isto é feito através de programas apropriados, usando comandos de hardware especiais.

MEMÓRIA RAM E MEMÓRIA ROM

- Uma típica aplicação da ROM é o armazenamento do BIOS do PC, o programa que entra em ação assim que o ligamos.
- Já RAM significa Random Access Memory, ou seja, memória de acesso aleatório. Este nome não dá uma boa ideia da finalidade deste tipo de memória, talvez fosse mais correto chamá-la de memória para leitura e escrita.
- Além de permitir leituras e escritas, a RAM tem outra característica típica: trata-se de uma memória volátil, ou seja, seus dados são apagados quando é desligada.

ENCAPSULAMENTO DA ROM

- Podemos encontrar ROMs fabricadas com encapsulamento DIP cerâmico ou plástico.
- O encapsulamento DIP (dual in-line package) cerâmico é mais utilizado pelas ROMs do tipo EPROM (Erasable programmable read only memory) ou UV-EPROM.
- As UV-EPROM possuem uma janela de vidro, através da qual os dados podem ser apagados através de raios ultravioleta. Depois de apagadas, podem ser novamente gravadas.
- Em uso normal esta janela deve permanecer tampada por uma etiqueta. A retirada da etiqueta da ROM expondo sua janela de vidro pode fazer com que ela seja apagada por exposição prolongada à luz natural.

ROM COM ENCAPSULAMENTO DIP

• Fonte: Vasconcelos (2014)

ENCAPSULAMENTO DA ROM

- Podemos ainda encontrar ROMs com outros encapsulamentos diferentes do DIP, como o PLCC (*Plastic leadless chip carrier*). Este tipo de ROM é muito encontrado em modems, placas de vídeo e nas placas mãe modernas.
- A ROM da figura a seguir está instalada em um soquete, mas é comum encontra-las soldadas diretamente nas placas.

ROM COM ENCAPSULAMENTO PLCC.

• Fonte: Vasconcelos (2014)

ENCAPSULAMENTO DA RAM

- Os chips de memória RAM também podem ser encontrados em diversos formatos, sendo que o mais comum é o encapsulamento SOJ (Small outline package J-lead).
- Esse tipo de encapsulamento é encontrado com frequência nos chips que formam os módulos de memória e nos que formam a memória de vídeo, encontrados em placas de vídeo.
- Existem também chips de RAM com encapsulamento QFP (Quad flatpack). Eles são usados por chips que formam a cache L2 em placas mãe com cache externa, e nos também chips que formam a memória de vídeo.

RAM COM ENCAPSULAMENTO SOJ

• Fonte: Vasconcelos (2014)

RAM COM ENCAPSULAMENTO QFP

• Fonte: Vasconcelos (2014)

ENCAPSULAMENTO DA RAM

- Outro encapsulamento bastante comum atualmente é o FBGA (Fine-pitch Ball Grid Array).
- Ele é bastante utilizado por chips de memória DDR2, DDR3 e DDR4, mas outros tipos também podem usá-lo. Esse tipo de encapsulamento não tem terminais nas suas partes laterais, os contatos ficam na parte inferior.
- São pequenos pontos de solda que são derretidos por calor no processo de soldagem fazendo sua fixação na placa de circuito.

RAM COM ENCAPSULAMENTO FBGA

 Existem diversos tipos de módulos de memória RAM, vamos abordar desde do DIMM (SDRAM) até o DDR4.

Módulo DIMM

• Na década de 1990, visando uma maior integração de componentes, foram criados módulos que fornecem 64 bits simultâneos, ideais para barramentos de processadores Pentium e superiores. Os primeiros desses módulos de 64 bits são chamados DIMM/168 (Dual inline memory module), e possuem 168 vias. Um único módulo DIMM/168 forma um banco de memória com 64 bits. Note que o formato do módulo é chamado DIMM/168, mas o tipo de memória é chamado SDRAM.

• Esses módulos foram bastante comuns em placas mãe com processadores da família K6, Pentium II, Pentium III, Celeron e nas primeiras placas para Athlon.

Fonte: Vasconcelos (2014)

Módulo DDR

A geração seguinte de memórias foi a DDR. Seus módulos são chamados de DIMM/184.
 Encontramos memórias DDR em placas para Pentium 4, Athlon, Athlon XP, Duron,
 Sempron, Celerons e Athlon 64. Esse foi o tipo mais usado de memória entre 2002 e 2006.

• Fonte: Vasconcelos (2014)

- A geração seguinte é a DDR2. O seu módulo é chamado DIMM/204. Esse tipo de memória surgiu em meados de 2005 e tornou-se comum a partir de 2006. Ao longo de 2006 era comum encontrar placas mãe mais simples equipadas com soquetes para memórias DDR, e placas mais avançadas equipadas com módulos para DDR2.
- Com a popularização dos processadores Intel da família Core e dos processadores AMD baseados no soquete AM2, as memórias DDR2 dominaram o mercado.

• Fonte: Vasconcelos (2014)

- Ainda na geração de placas mães para processadores Core 2 Duo e compatíveis, surgiram modelos que usavam memórias DDR3.
- As memórias DDR3 foram popularizadas à medida que cresceram as vendas de processadores Intel Core i7 e Core i7 Extreme, e dos processadores AMD Phenon II e posteriores com o soquete AM3 e AM3+.
- Seus módulos são chamados de DIMM/240.

- Lançado para o mercado em 2014.
- Seus módulos são chamados de DIMM/284 ou DIMM/288.
- Visualmente, os modelos DDR3 e DDR4 apresentam pequenas diferenças. Como a quantidade de pinos de contato e a posição de encaixe. Outro detalhe é que a DDR4 é ligeiramente mais espessa e possui uma leve curva na borda inferior.
- Em termos técnicos, os módulos de DDR4 são mais eficientes no quesito energia, utilizando 1,2 volts, enquanto a DDR3 usa 1,5 volts na alimentação. Essa pequena diferença pode gerar uma economiza de até 40% no consumo de energia, o que ajuda a prolongar a vida da bateria para os notebooks, por exemplo.

SPD – SERIAL PRESENCE DETECT

- Este é um pequeno chip existente nos módulos de memória SDRAM, DDR, DDR2,
 DDR3 e DDR4.
- É implementado através de uma EEPROM (Electrically Eraseable Programmable ROM).
- Graças a ele a BIOS pode identificar o tipo de memória e configurar o chipset da placa mãe para operar com velocidade compatível com as memórias utilizadas.

MEMÓRIA RAM DE NOTEBOOK

- Os pentes de memória RAM de notebook utilizam a mesma tecnologia dos tradicionais de computadores, porém possuem um tamanho reduzido.
- Os módulos SODIMM (Small Outline DIMM) são versões miniaturizadas dos módulos de memória DIMM, destinados a uso em notebooks, que utilizam os mesmos tipos de chips de memória de suas contrapartes de desktop.
- Os módulos SODIMM no geral possuem números de pinos menores que suas versões de desktop. E assim como nos módulos para desktops, existe uma pequena diferença no posicionamento do chanfro entre os módulos de diferentes gerações DDR o que impede o encaixe incorreto, já que ambos são incompatíveis.

MEMÓRIA RAM DE NOTEBOOK

Comparação módulo DIMM com SODIMM

RAM ESTÁTICAS E DINÂMICAS

- RAMs podem ser divididas em duas grandes categorias: **RAMs estáticas** (SRAM) e **RAMs dinâmicas** (DRAM). A DRAM é a memória usada em larga escala nos PCs.
- Quando dizemos que um PC possui, por exemplo, 4 GB, tratam-se de 4 GB de DRAM.
- São memórias baratas e compactas, o que é um grande atrativo. Por outro lado, são relativamente lentas em comparação com os processadores, o que é uma grande desvantagem.

RAM ESTÁTICAS E DINÂMICAS

- Por esta razão, os PCs utilizam em conjunto com a DRAM, uma memória especial, mais veloz, chamada cache, que serve para acelerar o desempenho da DRAM.
- Antigamente, a memória cache L2 era formada por chips de SRAM (RAMs estáticas), localizados na placa mãe.
- Atualmente conforme estudado na aula de processadores, a cache L2 faz parte do núcleo dos processadores modernos.

REFERÊNCIAS

- ABREU, Diego. **DDR3 ou DDR4:** entenda as diferenças e veja qual o melhor tipo memória. 2016. Disponível em: https://www.techtudo.com.br/dicas-e-tutoriais/noticia/2016/06/ddr3-ou-ddr4-entenda-diferencas-e-veja-qual-o-melhor-tipo-memoria.html. Acesso em: 17 mar. 2020.
- MORIMOTO, Carlos Eduardo. **Hardware, o guia definitivo II.** Porto Alegre: Sul Editores, 2010.
- VASCONCELOS, Laercio. **Manutenção de micros na prática 3º Edição.** Rio de Janeiro: Laércio Vasconcelos Computação, 2014.