Hack'in Trégor – Cryptographie et stéganographie sur images

Louis

October 22, 2024

Table of contents

Image

2 Xor

Plan

Image

2 Xor

Comment voir une image?

TODO: matrice de pixels.

Plan

Image

2 Xor

Principe du xor

Table de vérité du xor

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

C'est le ou exclusif : un dessert ou l'autre, mais pas les deux !

Propriétés du xor

Table de vérité du xor

Si

$$c = m \oplus k$$

alors on peut retrouver m à partir de k et c:

$$m = c \oplus k$$

Explication:

Dans la table de vérité du xor, on remarque que, pour $a \in \{0, 1\}$,

$$a \oplus a = 0$$
 et $0 \oplus a = a$, d'où :

$$c \oplus k = (m \oplus k) \oplus k$$

= $m \oplus (k \oplus k)$
= $m \oplus 0$
= m

Xor entre entiers

Xor entre entiers

Exemple: $10 \oplus 44$

On convertit en binaire :

$$\begin{array}{rcl}
10 & = & 1010_2 \\
44 & = & 101100_2
\end{array}$$

Puis on effectue le xor bit à bit :

On obtient $100110_2 = 38_{10}$.

Xor entre images

Principe

On xor les pixels entre eux :

$$\underbrace{(r_1,g_1,b_1)}_{\text{pixel image 1}} \oplus \underbrace{(r_2,g_2,b_2)}_{\text{pixel image 2}} = \underbrace{(r_1 \oplus r_2, \ g_1 \oplus g_2, \ b_1 \oplus b_2)}_{\text{pixel résultat}}$$

Exemple:

$$(255, 70, 0) \oplus (0, 255, 255) = (255, 185, 255)$$

On applique ensuite ceci pour chaque pixel.

Plan

Image

2 Xor

Modification de pixel

TODO: une petite modification du LSB des couleurs d'un pixel n'est pas visible à l'œil.

Cacher du texte dans un pixel

TODO

Merci pour votre attention