

Discrete Structures - Induction Mastery Workbook

1 Mastery Workbook 9	3
Counting And Binomials Workbook	3
Problem 1	4
Problem 2	6
Problem 3	8
Problem 4	10
Problem 5	12
Problem 6	14
Problem 7	16
Problem 8	18
Problem 9	20
D 11 10	00

Mastery Workbook 9

Counting And Binomials Workbook

I have neither given nor received unauthorized assistance.

Taylor James Larrechea

Problem Statement

Problem 1 from the mastery workbook quiz can be found on the following page.

CSPB 2824 4 Induction Mastery Workbook

Problem 1 Summary

Procedure

• Read off the n=7 line of Pascals triangle and select the corresponding answer.

Key Concepts

• This problem showcases Pascals triangle and what the rows of his triangle are.

- We could be asked to select a different row from Pascals triangle.
 - In that case we would just look at Pascals triangle and select the correct row.

Problem Statement

Problem 2 from the mastery workbook quiz can be found on the following page.

Problem 2 Summary

Procedure

- Observe Pascals triangle and look at the patterns inside of Pascals triangle.
- Select the correct options from the given choices.

Key Concepts

- Pascals triangle shows a sequence of squares.
- Pascals triangle shows a sequence of integers.
- Pascals triangle shows the Fibonacci sequence.
- Pascals triangle shows the coefficients of the binomial expansion.

- We could be asked to examine different patterns inside of Pascals triangle.
 - We would then have to sift through the choices to see which ones are the correct answers.

Problem Statement

Problem 3 from the mastery workbook quiz can be found on the following page.

Problem 3 Summary

Procedure

• Calculate the overall probability from having 8 children, namely

$$\left(\frac{1}{2}\right)^8$$

- Read off the column value from Pascals triangle for there to be 5 out of 8 binary possibilities.
- Multiply this value (56) by $(\frac{1}{2})^8$ to get the overall probability.

Key Concepts

• This problem showcases how we can use Pascals triangle to calculate binary choice probabilities.

- We could be asked to calculate the probability of a different number of children (or binary choices) being born with different values for girls and boys.
 - We would then use the same framework of the problem, read off the value from Pascals triangle, and perform similar calculations.

Problem Statement

Problem 4 from the mastery workbook quiz can be found on the following page. $\,$

Problem 4 Summary

Procedure

• Use the Binomial Theorem, namely

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

where the choose formula is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

where $x = \frac{1}{8}$, $y = \frac{7}{8}$, and n = 6.

• Round the final answer from the Binomial Theorem result.

Key Concepts

- The Binomial Theorem can be used to calculate a complex sum in this context.
- In this context, the value for x and y represent the the coefficients in front of two variables that are being summed and raised to a power.

- We could be given a different expression to evaluate with the Binomial Theorem.
 - We would then use the Binomial theorem to determine what this new sum evaluates to.

Problem Statement

Problem 5 from the mastery workbook quiz can be found on the following page.

Problem 5 Summary

Procedure

- Determine the value of the exponent that is being used in the Binomial Theorem.
- Go to this line of Pascals triangle and choose the correct choice.

Key Concepts

• This problem encapsulates determining what row of Pascals triangle is present in the expansion.

- We could be given a different expansion to decide which row of Pascals triangle is being shown.
 - We would then just read off of Pascals triangle what row is being represented.

Problem Statement

Problem 6 from the mastery workbook quiz can be found on the following page.

Problem 6 Summary

Procedure

- Expand the expression.
- Read off the coefficients from the expansion and submit the correct choices.

Key Concepts

• This problem encapsulates how the Binomial Theorem can be used to find the coefficients in an expansion.

- We could be given a different expression to calculate the coefficients for.
 - We would then use the Binomial Theorem to calculate the coefficients for the expansion. Or just do it by hand if it is simple enough.

Problem Statement

Problem 7 from the mastery workbook quiz can be found on the following page.

olution
duestion 7
Correct
Mark 10.00 out of 10.00
What is the coefficient of the x^2y^3 in $(2x + 3y)^5$
Use the binomial theorem - remember you can substitution 2x for x.
(It may be helpful to rewrite the theorem with a,b's to make this clearer.)
Answer: 1080 ✓
Correct
Marks for this submission: 10.00/10.00.

Problem 7 Summary

Problem Statement

- Use the Binomial Theorem where x = 2, y = 3, and n = 5.
- Read off the coefficient from the x^2y^3 term.

Key Concepts

• This problem incorporates how to use the Binomial Theorem for an expansion.

- We could be given a different expression to find the coefficients for.
 - We would then use the Binomial Theorem for this new expression and read off the correct coefficients.

Problem Statement

Problem 8 from the mastery workbook quiz can be found on the following page.

Problem 8 Summary

Procedure

• Write code in Python that will return the coefficients in a Binomial expansion that are stored in an array.

Key Concepts

• This problem encapsulates how to use the Binomial Theorem in the context of code in Python.

- We could be asked to do something different with the coefficients.
 - We would then use the same general algorithm and then make the modifications that are needed to achieve the final result.

Problem Statement

Problem 9 from the mastery workbook quiz can be found on the following page.

Problem 9 Summary

Procedure

- Modify the code from Problem 8 to multiply the coefficients of an expansion.
- Select the correct choice that corresponds with the result.

Key Concepts

• This problem incorporates how to utilizes code for a Binomial Theorem algorithm so that it returns a different result.

Variations

- We could be asked to calculate something different like the sum of coefficients.
 - We would then slightly modify the algorithm so that it returns the result that is desired.

Induction Mastery Workbook

Problem Statement

Problem 10 from the mastery workbook quiz can be found on the following page.

Marks for this submission: 25.00/25.00.

Problem 10 Summary

Procedure

• Write code in Python that achieves the result that we are seeking to produce.

Key Concepts

• This problem incorporates the Binomial Theorem in the context of code in Python.

- We could be asked to calculate something different with the coefficients of the expansion.
 - We would then slightly modify the algorithm so that it achieves the result that we are seeking to have.

