

EE 305 Digital Electronics

Tuba Ayhan

Homework 1 -Inverter

Due: 21.10.2019

Q1. An "enhancement" load inverter is shown in Figure 1. Explain how this circuit functions as an inverter. Follow these steps:

- a. What is the operation mode of M_L in the figure? What is the role of M_2 ?
- b. What is V_{OH} of the second inverter? Calculate it by hand. (Hint: Drain currents are 0)
- c. Run SPICE simulations and plot VTCs of the inverter.
- d. Compare this structure with a resistive load inverter.
 Comment on the advantages and disadvantages of an enhancement load inverter over a resistive load inverter.

You can choose your own parameters for simulation, or use these ones:

M2 : VT = 0.7V, $kn = 100\mu A/V^2$

ML : VT = 0.7V, kn = $10\mu A/V^2$

Q2. (Exercise 5.7, modified)

Design a CMOS inverter circuit with the following parameters:

 $V_{T0,n} = 0.44V \mu_n C_{ox} = 102 \mu A/V^2 (W/L)=12$

 $V_{T0,p} = -0.42 V \mu_p C_{ox} = 51.6 \mu A/V^2 (W/L)=19$

The power supply is 1.2V. The channel length for both transistors Ln = Lp = 60nm.

- a. Determine the (Wn/Wp) ratio so that the switching threshold voltage $V_{th} = 0.5V$.
- b. The CMOS fabrication process used to manufacture this inverter allows a variation of the $V_{T0,n}$ value by $\pm 15\%$ around its nominal value and a variation of the $V_{T0,p}$ value by $\pm 20\%$ around its nominal value. Assuming that all other parameters (such as μ_n , μ_p , C_{ox} , Wn, Wp) always retain their nominal values, find the upper and lower limits of the switching threshold voltage V_{th} of this inverter. Use MATLAB to answer this question. Graphically show the change in V_{th} as a function of $V_{T0,p}$ and $V_{T0,n}$. Make a 3D plot.

Q3. (Exercise 6.10, modified)

Consider a CMOs inverter with the following parameters:

$$V_{T0,n} = 0.5V \mu_n C_{ox} = 98\mu A/V^2 (W/L)=10$$

$$V_{T0,p} = -0.48V \mu_p C_{ox} = 46\mu A/V^2 (W/L)=15$$

The power supply is 1.2V, and the output capacitance is 10fF.

- a. Plot VTC and calculate the critical voltage points (V_{OH}, V_{OL}, V_{IH}, V_{IL}, V_{th})
- b. Estimate the rise time and the fall time of the output.
- c. Determine the maximum frequency of a periodic square-wave input signal so that the output voltage can still exhibit a full logic swing from 0 to 1.2V in each cycle.
- d. Calculate the dynamic power dissipation at this frequency.
- e. Assume that the output load capacitance is mainly dominated by fixed fan-out components (which are independent of W_n and W_p). We want to re-design the inverter so that the propagation delay times are reduced by 25%. Determine the required channel dimensions of the nMOS and the pMOs transistors. How does this re-design influence the switching (inversion) threshold, V_{th} ?