Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then

- b. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- c. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$
- d. $\mathbf{u} \cdot \mathbf{u} \ge 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$

Properties (b) and (c) can be combined several times to produce the following useful rule:

$$(c_1\mathbf{u}_1 + \cdots + c_p\mathbf{u}_p) \cdot \mathbf{w} = c_1(\mathbf{u}_1 \cdot \mathbf{w}) + \cdots + c_p(\mathbf{u}_p \cdot \mathbf{w})$$

Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^T :

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$

PROOF The row-column rule for computing Ax shows that if x is in Nul A, then x is orthogonal to each row of A (with the rows treated as vectors in \mathbb{R}^n). Since the rows of A span the row space, x is orthogonal to Row A. Conversely, if x is orthogonal to Row A, then x is certainly orthogonal to each row of A, and hence Ax = 0. This proves the first statement of the theorem. Since this statement is true for any matrix, it is true for A^T . That is, the orthogonal complement of the row space of A^T is the null space of **PROOF** As in the preceding proof, the orthogonality of $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ shows that A^T . This proves the second statement, because Row $A^T = \text{Col } A$.

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

An $m \times n$ matrix U has orthonormal columns if and only if $U^TU = I$.

 $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \vartheta$

for all y in R"

PROOF To simplify notation, we suppose that U has only three columns, each a vector in \mathbb{R}^m . The proof of the general case is essentially the same. Let $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3]$ and compute

$$U^{T}U = \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \mathbf{u}_{3}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1}^{T}\mathbf{u}_{1} & \mathbf{u}_{1}^{T}\mathbf{u}_{2} & \mathbf{u}_{1}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{2}^{T}\mathbf{u}_{1} & \mathbf{u}_{2}^{T}\mathbf{u}_{2} & \mathbf{u}_{2}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{3}^{T}\mathbf{u}_{1} & \mathbf{u}_{3}^{T}\mathbf{u}_{2} & \mathbf{u}_{3}^{T}\mathbf{u}_{3} \end{bmatrix}$$
(4

The entries in the matrix at the right are inner products, using transpose notation. The columns of U are orthogonal if and only if

$$\mathbf{u}_{1}^{T}\mathbf{u}_{2} = \mathbf{u}_{2}^{T}\mathbf{u}_{1} = 0, \quad \mathbf{u}_{1}^{T}\mathbf{u}_{3} = \mathbf{u}_{3}^{T}\mathbf{u}_{1} = 0, \quad \mathbf{u}_{2}^{T}\mathbf{u}_{3} = \mathbf{u}_{3}^{T}\mathbf{u}_{2} = 0$$
 (5)

The columns of U all have unit length if and only if

$$\mathbf{u}_1^T \mathbf{u}_1 = 1, \quad \mathbf{u}_2^T \mathbf{u}_2 = 1, \quad \mathbf{u}_3^T \mathbf{u}_3 = 1 \tag{6}$$

The theorem follows immediately from (4)-(6).

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p \tag{2}$$

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

PROOF Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be any orthogonal basis for W, and define $\hat{\mathbf{y}}$ by (2). Then $\hat{\mathbf{y}}$ is in W because $\hat{\mathbf{y}}$ is a linear combination of the basis $\mathbf{u}_1, \dots, \mathbf{u}_p$. Let $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$. Since \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$, it follows from (2) that

$$\begin{split} \mathbf{z} \cdot \mathbf{u}_1 &= (\mathbf{y} - \hat{\mathbf{y}}) \cdot \mathbf{u}_1 = \mathbf{y} \cdot \mathbf{u}_1 - \left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}}\right) \mathbf{u}_1 \cdot \mathbf{u}_1 - 0 - \dots - 0 \\ &= \mathbf{y} \cdot \mathbf{u}_1 - \mathbf{y} \cdot \mathbf{u}_1 = 0 \end{split}$$

Thus z is orthogonal to u_1 . Similarly, z is orthogonal to each u_j in the basis for W. Hence **z** is orthogonal to every vector in W. That is, **z** is in W^{\perp} .

To show that the decomposition in (1) is unique, suppose \boldsymbol{y} can also be written as $\mathbf{y} = \hat{\mathbf{y}}_1 + \mathbf{z}_1$, with $\hat{\mathbf{y}}_1$ in W and \mathbf{z}_1 in W^{\perp} . Then $\hat{\mathbf{y}} + \mathbf{z} = \hat{\mathbf{y}}_1 + \mathbf{z}_1$ (since both sides equal y), and so

$$\hat{\mathbf{y}} - \hat{\mathbf{y}}_1 = \mathbf{z}_1 - \mathbf{z}$$

This equality shows that the vector $\mathbf{v} = \hat{\mathbf{y}} - \hat{\mathbf{y}}_1$ is in W and in W^{\perp} (because \mathbf{z}_1 and \mathbf{z} are both in W^{\perp} , and W^{\perp} is a subspace). Hence $\mathbf{v} \cdot \mathbf{v} = 0$, which shows that $\mathbf{v} = \mathbf{0}$. This proves that $\hat{\mathbf{y}} = \hat{\mathbf{y}}_1$ and also $\mathbf{z}_1 = \hat{\mathbf{z}}$.

The uniqueness of the decomposition (1) shows that the orthogonal projection $\hat{\mathbf{y}}$ depends only on W and not on the particular basis used in (2).

- The set of least-so solutions of the n
- s solutions is nonempty and each nns. Conversely, suppose & satisfies was that b A & is orthogonal to the of A. Since the columns of A span A. Hence the equation PROOF As shown above, the set of least-squares so least-squares solution \hat{x} satisfies the normal equations. $A/X_0 = A^Tb$. Then \hat{x} satisfies C_0 above, which shows: lowes of A^T and hence is orthogonal to the columns of C_0 col A, the vector $\mathbf{b} = A\hat{\mathbf{x}}$ is orthogonal to all of Col A.]

and a vector orthogonal to ROOF Formula (4) follows immediately from (2) in Theorem 8. Also, (4) shows Ax must be the orthogonal at projar y is a linear combination of the columns of U using the weights $\mathbf{y} \cdot \mathbf{u}_1$, equares solution. $\mathbf{y} \cdot \mathbf{u}_2 \cdot \dots \mathbf{y} \cdot \mathbf{u}_p$. The weights can be written as $\mathbf{u}_1^T \mathbf{y} \cdot \mathbf{u}_2^T \mathbf{y} \dots \mathbf{u}_p^T \mathbf{y}$, showing that they

- 1. A vector **x** is in W^{\perp} if and only if **x** is orthogonal to every vector in a set that
- **2.** W^{\perp} is a subspace of \mathbb{R}^n .

If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

PROOF If
$$\mathbf{0} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$
 for some scalars c_1, \dots, c_p , then
$$0 = \mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$

$$= (c_1 \mathbf{u}_1) \cdot \mathbf{u}_1 + (c_2 \mathbf{u}_2) \cdot \mathbf{u}_1 + \dots + (c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$

$$= c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2(\mathbf{u}_2 \cdot \mathbf{u}_1) + \dots + c_p(\mathbf{u}_p \cdot \mathbf{u}_1)$$

$$= c_1(\mathbf{u}_1 \cdot \mathbf{u}_1)$$

because \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$. Since \mathbf{u}_1 is nonzero, $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero and so $c_1 = 0$. Similarly, c_2, \ldots, c_p must be zero. Thus S is linearly independent.

Let $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

are given by

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \qquad (j = 1, \dots, p)$$

$$\mathbf{y} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1)$$

Since $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero, the equation above can be solved for c_1 . To find c_j for j = 2, ..., p, compute $\mathbf{y} \cdot \mathbf{u}_i$ and solve for c_i .

The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , let y be any vector in \mathbb{R}^n , and let \hat{y} be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} , in the sense that

$$\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\| \tag{3}$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ in Theorem 9 is called **the best approximation to y by elements of** W Later sections in the text will examine problems where a given \boldsymbol{y} must be replaced, or approximated, by a vector \mathbf{v} in some fixed subspace W. The distance from \mathbf{y} to \mathbf{v} , given by $\|\mathbf{y} - \mathbf{v}\|$, can be regarded as the "error" of using \mathbf{v} in place of \mathbf{y} . Theorem 9 says that this error is minimized when $\mathbf{v} = \hat{\mathbf{v}}$.

Inequality (3) leads to a new proof that $\hat{\mathbf{y}}$ does not depend on the particular orthogonal basis used to compute it. If a different orthogonal basis for W were used to construct an orthogonal projection of y, then this projection would also be the closest point in W

PROOF Take \mathbf{v} in W distinct from $\hat{\mathbf{y}}$. See Figure 4. Then $\hat{\mathbf{y}} - \mathbf{v}$ is in W. By the Orthogonal Decomposition Theorem, $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to W. In particular, $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to $\hat{\mathbf{v}} - \mathbf{v}$ (which is in W). Since

$$\mathbf{y} - \mathbf{v} = (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \mathbf{v})$$

the Pythagorean Theorem gives

y and justifying (5)

$$\|\mathbf{y} - \mathbf{v}\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{v}\|^2$$

(See the colored right triangle in Figure 4. The length of each side is labeled.) Now $\|\hat{\mathbf{y}} - \mathbf{v}\|^2 > 0$ because $\hat{\mathbf{y}} - \mathbf{v} \neq \mathbf{0}$, and so inequality (3) follows immediately.

FIGURE 4 The orthogonal projection of y onto W is the closest point in W

The Gram--Schmidt Process

Given a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\begin{aligned} \mathbf{v}_{1} &= \mathbf{x}_{1} \\ \mathbf{v}_{2} &= \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\ \mathbf{v}_{3} &= \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\ &\vdots \\ \mathbf{v}_{p} &= \mathbf{x}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1} \end{aligned}$$

Then $\{\mathbf v_1,\dots,\mathbf v_p\}$ is an orthogonal basis for W. In addition

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\} = \operatorname{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\} \quad \text{for } 1 \le k \le p$$
 (1)

Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- a. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- b. The columns of A are linearly independent.
- c. The matrix $A^{T}A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} \tag{4}$$

The main elements of a proof of Theorem 14 are outlined in Exercises 19–21, which also review concepts from Chapter 4. Formula (4) for $\hat{\mathbf{x}}$ is useful mainly for theoretical purposes and for hand calculations when A^TA is a 2 × 2 invertible matrix.

When a least-squares solution $\hat{\mathbf{x}}$ is used to produce $A\hat{\mathbf{x}}$ as an approximation to \mathbf{b} , the distance from \mathbf{b} to $A\hat{\mathbf{x}}$ is called the **least-squares error** of this approximation.

Given an $m \times n$ matrix A with linearly independent columns, let A = QR be a QR factorization of A as in Theorem 12. Then, for each \mathbf{b} in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution, given by

$$\hat{\mathbf{x}} = R^{-1} Q^T \mathbf{b} \tag{6}$$

PROOF Let $\hat{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$. Then

$$A\hat{\mathbf{x}} = QR\hat{\mathbf{x}} = QRR^{-1}Q^T\mathbf{b} = QQ^T\mathbf{b}$$

By Theorem 12, the columns of Q form an orthonormal basis for Col A. Hence, by Theorem 10, $QQ^T\mathbf{b}$ is the orthogonal projection $\hat{\mathbf{b}}$ of \mathbf{b} onto Col A. Then $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$, which shows that $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$. The uniqueness of $\hat{\mathbf{x}}$ follows from Theorem 14.

The Spectral Theorem for Symmetric Matrices

An $n \times n$ symmetric matrix A has the following properties:

- a. A has n real eigenvalues, counting multiplicities.
- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
- c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
- d. A is orthogonally diagonalizable.

Spectral Decomposition

Suppose $A = PDP^{-1}$, where the columns of P are orthonormal eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_n$ of A and the corresponding eigenvalues $\lambda_1, \dots, \lambda_n$ are in the diagonal matrix D. Then, since $P^{-1} = P^T$,

$$A = PDP^{T} = \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_{1} \mathbf{u}_{1} & \cdots & \lambda_{n} \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix}$$

Using the column-row expansion of a product (Theorem 10 in Section 2.4), we can write

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$
 (2)

This representation of A is called a **spectral decomposition** of A because it breaks up A into pieces determined by the spectrum (eigenvalues) of A. Each term in (2) is an $n \times n$ matrix of rank 1. For example, every column of $\lambda_1 \mathbf{u}_1 \mathbf{u}_1^T$ is a multiple of \mathbf{u}_1 . Furthermore, each matrix $\mathbf{u}_j \mathbf{u}_j^T$ is a **projection matrix** in the sense that for each \mathbf{x} in \mathbb{R}^n , the vector $(\mathbf{u}_j \mathbf{u}_j^T)\mathbf{x}$ is the orthogonal projection of \mathbf{x} onto the subspace spanned by \mathbf{u}_j . (See Exercise 35.)

Observation vector
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}, \quad \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

PROOF Let \mathbf{v}_1 and \mathbf{v}_2 be eigenvectors that correspond to distinct eigenvalues, say, λ_1 and λ_2 . To show that $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$, compute

$$\lambda_1 \mathbf{v}_1 \cdot \mathbf{v}_2 = (\lambda_1 \mathbf{v}_1)^T \mathbf{v}_2 = (A \mathbf{v}_1)^T \mathbf{v}_2 \quad \text{Since } \mathbf{v}_1 \text{ is an eigenvector}$$

$$= (\mathbf{v}_1^T A^T) \mathbf{v}_2 = \mathbf{v}_1^T (A \mathbf{v}_2) \quad \text{Since } A^T = A$$

$$= \mathbf{v}_1^T (\lambda_2 \mathbf{v}_2) \quad \text{Since } \mathbf{v}_2 \text{ is an eigenvector}$$

$$= \lambda_2 \mathbf{v}_1^T \mathbf{v}_2 = \lambda_2 \mathbf{v}_1 \cdot \mathbf{v}_2$$

Hence
$$(\lambda_1 - \lambda_2)\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$$
. But $\lambda_1 - \lambda_2 \neq 0$, so $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$.

The special type of diagonalization in Example 2 is crucial for the theory of symmetric matrices. An $n \times n$ matrix A is said to be **orthogonally diagonalizable** if there are an orthogonal matrix P (with $P^{-1} = P^{T}$) and a diagonal matrix D such that

$$A = PDP^{T} = PDP^{-1} \tag{1}$$

Such a diagonalization requires n linearly independent and orthonormal eigenvectors. When is this possible? If A is orthogonally diagonalizable as in (1), then

$$A^{T} = (PDP^{T})^{T} = P^{TT}D^{T}P^{T} = PDP^{T} = A$$

Thus A is symmetric! Theorem 2 below shows that, conversely, every symmetric matrix is orthogonally diagonalizable. The proof is much harder and is omitted; the main idea for a proof will be given after Theorem 3.

An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

This theorem is rather amazing, because the work in Chapter 5 would suggest that it is usually impossible to tell when a matrix is diagonalizable. But this is not the case for symmetric matrices.

The next example treats a matrix whose eigenvalues are not all distinct.