semestre 1

Opérations sur les matrices

Somme et produit par un scalaire

Définition 1. Soient $A = (a_{i,j})$ et $B = (b_{i,j})$ deux matrices de taille $n \times p$.

- La somme des matrices A et B, notée A+B, est la matrice $C=c_{i,j}$ de taille $n \times p$ telle que, pour tous $1 \le i \le n$ et $1 \le j \le p$, on a: $c_{i,j}=a_{i,j}+b_{i,j}$.
- Le **produit de la matrice** A **par un réel** λ , est la matrice $M = (m_{i,j})$ de taille $n \times p$ telle que, pour tous $1 \le i \le n$ et $1 \le j \le p$, on a: $m_{i,j} = \lambda \times a_{i,j}$.

Exemple 1. Soient $A = \begin{pmatrix} 5 & -1 & 0 \\ -2 & 2 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 7 & -1 \\ 2 & 1 & 4 \end{pmatrix}$ deux matrices de taille 2×3 . Calculer les matrices suivantes:

- 1. A + B,
- 2. 2A,
- $3. \, 3B,$
- 4. 2A 3B.

Les opérations d'ajout et de multiplication par un scalaire se font avec les opérateurs + et *.

Exercice 1. Vérifier les calculs précédents à l'aide de Python.

Propriété 1. Soient A,B,C trois matrices de même taille et α et β deux réels.

- -A+B=B+A (commutativité de la somme des matrices)
- -A + (B+C) = (A+B) + C (associativité de la somme des matrices)
- $-1 \times A = A \times 1 = A$
- $-(\alpha + \beta)A = \alpha A + \beta B$

Définition 2. On appelle opposée de A la matrice M=(-1)A, notée -A, telle que, pour tous $1 \le i \le n$ et $1 \le j \le p$, on a: $m_{i,j}=-a_{i,j}$. De plus, on note A-B la matrice A+(-B).

Remarque 1. L'égalité M + A = B équivaut à l'égalité M = B - A.

Produit d'un vecteur-ligne par un vecteur colonne

Définition 3. Soit
$$L = (l_1, \dots l_p)$$
 un vecteur-ligne de dimensions $1 \times p$ et $C = \begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix}$

un vecteur colonne de dimensions $p \times 1$.

Le produit $L \times C$ (ou LC) est égal au réel :

$$\sum_{i=1}^{p} l_i c_i = l_1 c_1 + l_2 c_2 + \ldots + l_p c_p.$$

Exemple 2. 1.
$$(1 - 3 \ 2) \times \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix} = -6$$

2. Que vaut
$$(4\ 2\ 1) \times \begin{pmatrix} 8 \\ 3 \\ -2 \end{pmatrix}$$
?

Remarque 2. Pour que le produit $L \times C$ soit défini, L doit avoir autant de **colonnes** de C a de **lignes**.

Exercice 2. 1. Écrire une fonction produits calaire qui prend en paramètres d'entrée un vecteur ligne A et un vecteur colonne B, de tailles $1 \times l$ et $l \times 1$, et retourne leur produit scalaire.

2. Vérifier les calculs précédents avec votre fonction.

Produit de matrices

Définition 4. Si A une matrice de dimension $n \times m$ et B une matrice de dimensions $m \times p$, le **produit des matrices** A **et** B, noté $A \times B$ ou (AB), est la matrice $C = (c_{i,j})$ de dimension $n \times p$ telle que, pour tous $1 \le i \le m$ et $1 \le j \le q$, on a $c_{i,j} = \sum_{k=1}^m a_{i,k}c_{k,j}$. Autrement dit, l'élément $c_{i,j}$ est le produit de la i-ème ligne de A par la j-ième colonne de B.

Exemple 3. Pour calculer le produit de
$$\begin{pmatrix} 2 & 3 & -1 \\ 1 & -5 & 0 \end{pmatrix}$$
 par $\begin{pmatrix} 1 & 0 \\ 4 & -1 \\ -2 & -3 \end{pmatrix}$:

- 1. On vérifie si le produit peut se calculer, donc si la deuxième matrice a autant de lignes que la première a de colonnes.
- 2. Chaque coefficient de la matrice est la somme des produits des coefficients de la ligne par ceux de la colonne correspondante.
 On peut donc placer les matrices ainsi:

$$M = C \times D = \begin{pmatrix} 2 & 3 & -1 \\ 1 & -5 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 4 & -1 \\ -2 & -3 \end{pmatrix}$$

semestre 1

On a:

$$m_{1,1} = 2 \times 1 + 3 \times 4 + (-1) \times (-2) = 16$$
 (1)

$$m_{2,2} = 2 \times 0 + 3 \times (-1) + (-1) \times (-3) = 0$$
 (2)

$$m_{2,1} = 1 \times 1 + (-5) \times 4 + 0 \times (-2) = -19$$
 (3)

$$m_{2,2} = 1 \times 0 + (-5) \times (-1) + 0 \times (-3) = 5$$
 (4)

Exercice 3. Calculer le produit
$$\begin{pmatrix} 1 & 0 & -2 & 4 \\ 0 & 3 & 3 & -1 \\ 4 & 0 & 5 & 0 \end{pmatrix} \times \begin{pmatrix} -3 & 1 \\ 2 & 0 \\ -1 & 3 \\ 5 & -2 \end{pmatrix}$$
.

Exercice 4. 1. Écrire une fonction produitmatrice qui prend en entrée deux matrices A et B, de tailles $m \times p$ et $k \times n$, et retourne leur produit matriciel s'il existe ou un message d'erreur dans le cas contraire.

2. Vérifier les calculs précédents avec votre fonction.

Exercice 5. Soient
$$A,B,C,D \in \mathcal{M}_{4,4}(\mathbb{R})$$
:
$$A = \begin{pmatrix} 2 & -1 & -1 & -2 \\ 4 & 4 & 2 & 0 \\ 0 & 4 & -2 & 0 \\ -1 & -1 & 0 & -3 \end{pmatrix}, B = \begin{pmatrix} -2 & 2 & 1 & -3 \\ 1 & -3 & 0 & -2 \\ 2 & -1 & -2 & 3 \\ -4 & 3 & 3 & 3 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & -4 & 3 & 1 \\ 4 & 2 & -4 & 1 \\ 1 & -1 & 3 & 3 \\ 4 & 1 & 4 & -4 \end{pmatrix} D = \begin{pmatrix} -8 & -6 & 26 & 0 \\ 4 & -8 & 0 & -11 \\ 10 & -5 & 26 & -6 \\ -12 & -23 & 0 & 38 \end{pmatrix}$$

- 1. Calculer $(A+B)^2$
- 2. Calculer $A^2 + 2AB + B^2$
- 3. Qu'en déduisez vous?
- 4. De même calculer $(C+D)^2$, $C^2+2CD+D^2$, quelle est votre conclusion cette fois?

Remarque 3. Lorsque les produits $A \times B$ et $B \times A$ sont définis, on a en général $A \times B \neq A$ $B \times A$.

Le produit matriciel n'est pas commutatif.

Propriété 2. Soient A, B et C trois matrices et λ un nombre réel. Sous réserve que les expressions soient bien définies, on a:

$$-(A \times B) \times C = A \times (B \times C) = A \times B \times C$$

$$-A \times (B+C) = (A \times B) + (A \times C) \ et \ (A+B) \times C = (A \times C) + (B \times C)$$

$$- (\lambda A) \times B = \lambda A \times B \text{ et } A \times (\lambda B) = \lambda A \times B$$

$$-I_n \times A = A \times I_n = A$$

Remarque 4. La multiplication est:

- associative,
- **distributive** par rapport à l'addition.

semestre 1

Exercices d'entraînement

Pour certains de ces exercices vous pouvez vous aider, au besoin, de vos codes en Python.

Exercice 6. Effectuer le produit des matrices:

$$\begin{pmatrix} 4 & 5 & 6 \end{pmatrix} \times \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} & \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \times \begin{pmatrix} 4 & 5 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \times \begin{pmatrix} 4 & -6 & 9 & 6 \\ 0 & -7 & 10 & 7 \\ 5 & 8 & -11 & -8 \end{pmatrix} & \begin{pmatrix} 2 & 3 & 4 \\ 1 & 5 & 6 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 1 \\ 4 & 0 & 2 \end{pmatrix} \times \begin{pmatrix} 3 & -4 \\ 1 & 5 \\ -2 & 2 \end{pmatrix}$$

Exercice 7. Soit A et B deux matrices carrées d'ordre n, I_n la matrice identitée d'ordre n. Développer et simplifier les produits suivants :

1.
$$(2A - I_n)(A + 3I_n)$$
,

5.
$$(2A - B)(A + B)$$
,

2.
$$(A-4I_n)(2A+3I_n)$$
,

6.
$$(-A+3B)(3A-B)$$

3.
$$(I_n - A)(I_n + A + A^2)$$
,

7.
$$(B-4A)(B+4A)$$
,

4.
$$(A+2I_n)^2$$
.

8.
$$(3A - B)^2$$
.

Exercices d'approfondissement

Exercice 8. Soit M la matrice suivante: $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

- 1. Calculer M^2 puis M^3 et M^4 .
- 2. Conjecturer, pour tout entier naturel n, une expression de M^n .
- 3. Démontrer cette conjecture par récurrence.

Exercice 9. On considère la matrice $A: A = \begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix}$

- 1. Calculer A^2 . Prouver que $A^3 = -I_2$.
- 2. Exprimer pour tout entier naturel n, A^{3n} , A^{3n+1} , A^{3n+2} en fonction de n.

Exercice 10. Soit A et B deux matrices carrées non nulles d'ordre n telles que $A+B=I_n$. Soit M une matrice carrée d'ordre n telle qu'il existe deux réels non nuls distincts λ et μ vérifiant :

$$M = \lambda A + \mu B$$
 et $M^2 = \lambda^2 A + \mu^2 B$

- 1. (a) Montrer que $(M \lambda I_n)(M \mu I_n) = (M \mu I_n)(M \lambda I_n) = O_n$
 - (b) En déduire que $AB = BA = 0_n$ et que $A^2 = A$ et $B^2 = B$.
- 2. Démontrer que, pour tout $p \in \mathbb{N}$, on a:

$$M^p = \lambda^p A + \mu^p B.$$

3. **Application:** Soient
$$A = \begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 & 6 \\ -1 & 3 \end{pmatrix}$ et $M = \begin{pmatrix} 8 & -18 \\ 3 & -7 \end{pmatrix}$

- (a) Déterminer λ et μ tels que $M = \lambda A + \mu B$ et $M^2 = \lambda^2 A + \mu^2 B$.
- (b) En déduire M^p pour tout $p \in \mathbb{N}$.