TÉCNICAS AVANZADAS DE HIBRIDACIÓN PARA METAHEURÍSTICAS

Autora

Andrea Morales Garzón

Director

Daniel Molina Cabrera

Introducción

 En optimización los resultados dependen mucho del algoritmo.

• Es difícil que uno funcione bien en múltiples problemas.

 La hibridación permiten obtener mejores resultados y/o más robustos.

Introducción

Múltiples modelos de hibridación

- Modelo de isla (tradicional)
- Modelo de ejecución en 2 fases
- Modelo de Probabilidades adaptativas

Objetivo

Estudiar distintos algoritmos híbridos.

 Analizar su comportamiento interno y conveniencia, respondiendo a:

- ¿Cómo funcionan los modelos híbridos entre sí?
- ¿Cuándo usar cada uno?

Planificación

Tarea	Duración	Fecha Tope
Algoritmo Genético (Comprensión)	1 día	31/11/17
Algoritmo Genético (Estudio operadores)	1 día	31/11/17
Algoritmo Genético Estacionario	1 día	31/11/17
Repaso Algoritmos Genéticos	1 día	01/05/18
Modelo Híbrido 1 (Comprensión)	1 día	01/04/18
Modelo Híbrido 1 (Implementación)	2 días	01/05/18
Modelo Híbrido 2 (Comprensión)	1 día	01/04/18
Modelo Híbrido 2 (Implementación)	2 días	01/05/18
Modelo Híbrido 3 (Comprensión)	1 día	01/04/18
Modelo Híbrido 3 (Implementación)	2 días	01/05/18
Repaso Modelos Híbridos	1 día	01/06/18
MOS Comprender Algoritmo	2 días	20/05/18
MOS Realizar Pruebas	15 días	12/06/18

Tarea	Duración	Fecha Tope	
Implementación para fichero CSV	3 días	12/05/18	
Tomar datos y CSV	7 días	25/05/18	
Crear gráficas de los datos tomados	2 días	31/05/18	

Tarea	Duración	Fecha Tope
Memoria: Introducción	2 días	01/05/18
Repaso Introducción	1 día	01/06/18
Memoria: Planificación	2 días	01/06/18
Repaso Planificación	1 día	01/06/18
Memoria: Diseño	2 días	01/05/18
Repaso Diseño	1 día	01/06/18
Memoria: Implementación	2 días	01/05/18
Repaso Implementación	1 día	01/06/18
Memoria: Pruebas	2 días	01/06/18
Repaso Pruebas	1 día	04/06/18
Memoria: Conclusiones	5 días	05/06/18
Implementación Script Gráficas	2 días	07/06/18
Creación Gráficas	2 días	08/06/18
Memoria: Incorporación Gráficas	1 día	09/06/18
Memoria: Ideas y conclusiones finales	1 día	10/06/18
Memoria: Repaso Conclusiones	1 día	11/06/18
REPASO FINAL	2 días	16/06/18

Planificación

Hibridaciones a realizar

Versión con algoritmos genéticos generacionales

Versión con algoritmos genéticos estacionarios

Versión combinada de las anteriores

Análisis realizado

- Benchmark CEC'2014 (dimensión 10 y 30)
- 50 ejecuciones/función
- Tablas comparativas (31 comparaciones)
- Recuento de resultados
- Cálculo de Ranking
- Convergencias y comportamiento interno

Análisis realizado

	Función	ISLAS	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.8$
Funciones	1	6.5026e+05	2.6219e+07	1.9733e+07	1.3739e+07	1.7166e+06
unimoda-	2	4.4754e+03	8.1579e+08	2.5251e+08	2.1115e+07	5.2363e+03
les	3	1.6329e+03	2.0687e+04	2.0828e+04	1.3467e + 04	1.7111e+04
	4	1.7514e+01	2.5996e+02	9.5283e+01	4.1253e+01	2.8846e+01
	5	2.0105e+01	2.0493e+01	2.0417e+01	2.0398e+01	2.0543e+01
	6	2.2033e+00	6.3108e+00	4.0014e+00	3.3448e+00	3.6400e+00
	7	5.4011e-02	3.9984e+01	8.0940e+00	3.7040e-01	7.4475e-02
Funciones	8	7.2696e+00	2.5320e+01	1.4671e+01	1.2338e+01	1.6869e+01
Multimo-	9	9.8555e+00	3.3245e+01	2.2132e+01	1.6095e+01	2.4467e+01
dales	10	1.6907e+02	9.7422e+02	5.1843e+02	3.3073e+02	3.8424e+02
	11	5.5017e+02	1.2316e+03	9.6166e+02	7.7194e+02	1.0637e + 03
Simples	12	2.4918e-01	9.7918e-01	8.5978e-01	8.4969e-01	1.1069e+00
	13	1.6825e-01	1.5488e+00	3.6344e-01	2.4493e-01	2.7126e-01
	14	2.9645e-01	7.5064e+00	1.0728e+00	4.5416e-01	4.3870e-01
	15	1.0419e+00	3.5108e+01	7.7786e+00	2.2581e+00	1.5979e+00
	16	2.7782e+00	3.5554e+00	3.3121e+00	3.2780e+00	3.5895e+00
	17	4.4819e+04	5.7440e+05	5.8414e+05	5.2481e+05	1.5050e+05
Híbridas	18	2.3651e+03	1.7757e+04	1.1313e+05	1.6438e+04	1.0794e+04
Función 1	19	1.5083e+00	9.1000e+00	4.6540e+00	2.6449e+00	2.4317e+00
runcion 1	20	1.2494e+03	2.3066e+04	6.5040e+03	6.7841e+03	1.0622e+04
	21	2.3658e+03	1.9674e + 05	2.1169e+05	1.0274e+05	1.5027e+04
	22	2.1822e+01	1.4471e+02	1.2290e+02	7.7622e+01	6.1099e+01
	23	3.2945e+02	3.5255e+02	3.3771e+02	3.3118e+02	3.3041e+02
	24	1.2344e+02	1.8107e+02	1.6198e+02	1.3911e+02	1.3759e+02
Composi-	25	1.8034e+02	1.9995e+02	1.9757e+02	1.9939e+02	1.9927e + 02
ción de	26	1.0013e+02	1.0234e+02	1.0027e+02	1.0025e+02	1.0028e+02
Funciones	27	2.0665e+02	4.0829e+02	3.6480e+02	3.3075e+02	3.1702e+02
	28	4.0707e+02	1.0151e+03	6.3040e+02	4.8659e+02	4.2352e+02
	29	4.1250e+02	3.0855e+06	2.8811e+05	4.1881e+04	1.5624e+05
	30	8.5598e+02	1.0322e+04	3.6690e+03	1.4501e+03	8.0089e+02
	Recuento	29	0	0	0	1
	Ranking	1.033	4.766	3.766	2.633	2.800

Algoritmos Genéticos

 $x_i \in (-100,100)$

Solución

Algoritmos Genéticos

- Reemplazar Peor

Algoritmo Genético Generacional

Algoritmo Genético Estacionario

Algoritmo Genético Generacional

1. Cruce BLX- α con α =0.1

2. Cruce BLX- α con α =0.3

3. Cruce BLX- α con α =0.5

4. Cruce BLX- α con α =0.8

Algoritmo Genético Estacionario

1. Torneo Binario + Reemplazar peor

2. Selección NAM + Reemplazar peor

3. Torneo Binario + Crowding Determinístico

4. Selección NAM + Crowding Determinístico

DIMENSIÓN	POBLACIÓN	ISLAS	$\alpha = 0.1$	α =0.3	$\alpha = 0.5$	α =0.8
10	60	1.033	4.766	3.766	2.633	2.800
30	60	1.033	4.800	3.866	2.500	2.800
10	240	2.200	4.633	3.133	1.766	3.266
30	240	2.550	4.700	2.966	1.550	3.230
DIMENSIÓN	POBLACIÓN	ISLAS	TB-RW	NAM-RW	TB-DC	NAM-DC
10	60	1.483	4.933	3.050	2.900	2.633
30	60	1.700	5.000	2.933	2.800	2.566
10	240	1.930	3.100	1.900	3.400	4.666
30	240	2.113	3.133	1.766	3.200	4.766

CASO 1

Clara diferencia de resultados entre algoritmos

CASO 2

Los algoritmos dan resultados similares

CASO 3

Resultados diferentes entre sí

Necesidad de adaptación

Modelo de Ejecución en 2 Fases

Modelo de Ejecución en 2 Fases

DIM	POBLACIÓN	E. FASES	$\alpha = 0.1$	α =0.3	$\alpha = 0.5$	α =0.8
10	60	1.133	4.733	3.166	1.700	2.100
30	60	1.166	4.800	3.866	2.466	2.700
DIM	POBLACIÓN	E. FASES	TB-RW	NAM-RW	TB-DC	NAM-DC
10	60	2.233	4.933	2.866	2.683	2.283
30	60	2.400	5.000	2.800	2.530	2.266
DIM	POBLACIÓN	E. FASES	$\alpha = 0.5$	α =0.8	NAM-RW	NAM-DC
10	60	1.800	4.530	4.166	2.500	2.000
DIM	POBLACIÓN	E. FASES	$\alpha = 0.5$	α =0.8	TB-DC	NAM-DC
30	60	2.666	4.366	4.433	1.733	1.800

CASO 1: Si un algoritmo es mejor que otros

CASO 2: Si el mejor algoritmo converge lentamente....

Modelo con Probabilidades Adaptativas

Modelo con Probabilidades Adaptativas

DIM	POBLACIÓN	P. ADAPT	0.1	0.3	0.5	0.8
10	60	3.300	4.733	3.166	1.700	2.100
30	60	3.006	4.766	3.633	1.500	2.033
DIM	POBLACIÓN	P. ADAPT	TB-RW	NAM-RW	TB-DC	NAM-DC
10	60	3.933	4.866	2.166	2.166	1.916
30	60	3.866	5.0	2.166	2.066	1.900
DIM	POBLACIÓN	P. ADAPT	0.5	0.8	NAM-RW	NAM-DC
10	60	3.000	4.433	4.066	1.866	1.633
DIM	POBLACIÓN	P. ADAPT	0.5	0.8	TB-DC	NAM-DC
30	60	3.133	4.266	4.366	1.566	1.666

Existe una mínima adaptación

Los algoritmos que utilizamos convergen rápido

• Se produce un equilibrio en el reparto

• Se produce un equilibrio en el reparto

Se produce un equilibrio en el reparto

Comparación Híbridos

Dos puntos de vista

- Igualando tamaño población global del modelo
- Igualando tamaño subpoblaciones del modelo

Igualando Subpoblaciones

Modelo de Islas mejor técnica con diferencia

	DIM	ISLAS(60)	EJ. FASES	P. ADAPTATIVAS	ISLAS(15)
Generacional	10	1.133	1.866	3.233	3.766
Generacional	30	1.100	1.900	3.033	3.966
Estacionaria	10	1.183	2.166	3.766	2.883
	30	1.233	1.866	3.533	3.366
Combinada	10	1.200	2.200	3.400	3.400
	30	1.066	2.300	3.230	3.400

Igualando Población Global

Modelo de adaptación la mejor opción

	DIM	ISLAS(60)	EJ. FASES	P. ADAPTATIVAS	ISLAS(15)
Generacional	10	1.133	1.866	3.233	3.766
	30	1.100	1.900	3.033	3.966
Estacionaria	10	1.183	2.166	3.766	2.883
	30	1.233	1.866	3.533	3.366
Combinada	10	1.200	2.200	3.400	3.400
	30	1.066	2.300	3.230	3.400

Conclusiones

- Híbridos dan buenos resultados
- Comparativa en función del tamaño de poblaciones

Modelos de Islas depende del tamaño de población

Ejecución en 2
Fases adecuado
si un algoritmo
es mejor que
los otros

Modelo Probabilidades

Adaptativas ha dado peores resultados

GRACIAS POR SU ATENCIÓN