3 Доп2 (7). Построение неглавной универсальной вычислимой функции.

Теорема Успенского-Райса. Пусть класс всех вычислимых функций (одного аргумента) - F.Пусть $A \subset F$ — произвольное нетривиальное свойство вычислимых функций (нетривиальность означает, что есть как функции, ему удовлетворяющие, так и функции, ему не удовлетворяющие, то есть что множество A непусто и не совпадает со всем F). Пусть U — главная универсальная функция. Тогда не существует алгоритма, который по U-номеру вычислимой функции проверял бы, обладает ли она свойством A. Другими словами, множество $\{n|U_n \in A\}$ неразрешимо.

▲ Верно следующее усиление этой теоремы: для любых различных вычислимых функций φ и ψ и любой главной универсальной функции U множества всех U-номеров функции φ и функции ψ не отделимы разрешимым множеством. (Эти множества к тому же не перечислимы) ■

Теперь легко указать пример вычислимой универсальной функции, не являющейся главной. Достаточно сделать так, чтобы нигде не определённая функция имела единственный номер. Пусть U(n, x) — произвольная вычислимая универсальная функция. Рассмотрим множество D всех U-номеров всех функций с непустой областью определения. Это множество перечислимо: полухарактеристическая функция - начинаем запускаться параллельно от всех x, если область определения не пуста, то когда-нибудь мы получим значение и выведем 1, иначе зациклимся. Рассмотрим всюду определённую вычислимую функцию d, его перечисляющую: $D = \{d(0), d(1), \cdots\}$. Теперь рассмотрим функцию V(i, x), для которой V(0, x) не определено ни при каком x, а V(i+1, x) = U(d(i), x). Другими словами, функция V_0 нигде не определена, а функция V_{i+1} совпадает с $U_{d(i)}$. Легко понять, что функция V вычислима; она универсальна по построению, и единственным V-номером нигде не определённой функции является число 0.