IP und Netzwerkkonzepte

Router

Verbinden Netzwerke und Übertragungstechnologien miteinander, Paketweiterleitung bis zum Ziel

Vorteile und Nachteile von Routern über Bridges:

VORTEILE	NACHTEILE	
optimaler Pfad	Teuer	7
Netze können logisch getrennt werden	konfigurationsintensiv	7
Abgrenzung von Schicht 2 (Broadcast-Shit-Storm)	teilweise lassen sich Protokolle nicht routen (Netbios)	

Kriterium Loop-Unterdrücku Sicherheit Pfade

Routingalgorithmen:

Broadcast • RIP: Routing Information Protocol Multi MTU Multi Medium • BGP: Border Gateway Protocol S3-unabhängig

Brouter

• Router mit Bridging-Funktionen, Bridges die routen

Gateway

- Spannen über alle OSI Layer
- Verbinden komplette Systeme

Internet Protocol

Das IP Protokoll ist aus dem ARPANET (US DOD) entstanden. Idee: keine zentrale Steuerung Der Internetlayer ist ein verbindungsloser Networklayer, er ermöglicht Datengramme über jedes Netz zu senden. Der Transport-Layer befindet sich oberhalb des Internet-Layers. Er beinhaltet die Kommunikation zwischen der Quelle und dem Ziel.

- TCP Transmission Control Protocol
 - Verbindungsorientiert, zuverlässig, Flowcontrol, fehlerfreie Übertragung
- UDP User Datagram Protocol
 - TCP ohne Flowcontrol, unzuverlässig, time-reliable

Der höhere Layer (Application Layer) beinhaltet Protokolle wie SSH, HTTP etc.

Adressierung

Adresse Dezimal Binär Berechnung Host-Adresse 160.85.17.161 1010 0000 / 0101 0101 / 0001 0001 / 1010 0001 1010 0000 / 0101 0101 / 0001 0001 / 1010 0000 host AND netmask Netz-Adresse 255.255.255.255.240 1111 1111 / 1111 1111 / 1111 1111 / 1111 0000 host OR inv(netmask) Broadcast-Adresse 160.85.17.175 1010 0000 / 0101 0101 / 0001 0001 / 1010 1111 host OR inv(netmask)				
Netz-Adresse 160.85.17.160 1010 0000 / 0101 0101 / 0001 0001 / 1010 0000 host AND netmask Netzmaske 255.255.255.240 1111 1111 / 1111 1111 / 1111 1111 / 1111 0000	Adresse	Dezimal	Binär	Berechnung
Netzmaske 255.255.250 1111 1111 / 1111 1111 / 1111 1111 / 1111 0000	Host-Adresse	160.85.17.161	1010 0000 / 0101 0101 / 0001 0001 / 1010 0001	
, , , , , , , , , , , , , , , , , , , ,	Netz-Adresse	160.85.17.160	1010 0000 / 0101 0101 / 0001 0001 / 1010 0000	host AND netmask
Broadcast-Adresse 160.85.17.175 1010 0000 / 0101 0101 / 0001 0001 / 1010 1111 host OR inv(netmask)	Netzmaske	255.255.255.240	1111 1111 / 1111 1111 / 1111 1111 / 1111 0000	
	Broadcast-Adresse	160.85.17.175	1010 0000 / 0101 0101 / 0001 0001 / 1010 1111	host OR inv(netmask)

SubNetBin	SubNe
0000.0000	0
1000.0000	128
1100.0000	193
1110.0000	224
1111.0000	240
1111.1000	248
1111.1100	255
1111.1110	254
1111.1111	25

Eine IP Adresse besteht somit aus 4Byte. Ebenfalls ist die IP 127.0.0.1 (/8) eine LoopBack Adresse (Bereich)

Classful-Routing

Es wird keine SUbnetzmaske benötigt. A(2^24, 1byte Netz (128), 3byte host (16'777'214)), B(2^16, 16'384, 65'534), C(2^8, 2'097'152, 254), D(Multicast, 224.0.0.0 - 239.255.255.255), E(Zukunft, 240.0.0.0 - 247.255.255.255)

Routing

Routen können mit "route -n" oder "netstat -rn" angezeigt werden. (route add -net 160.85.19.0 netmask 255.255.255.0 dev eth2) Falls kein Eintrag der Routingtabelle matcht, dann wird das Paket einfach an den "default" Host weitergeleitet.

IP Protokoll

1. Byte (Oktett)	2. Byte (Oktett)	3. Byte (Oktett)	4. Byte (Oktett)					
0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31					
Version IHL	Type of Service	Total I	ength					
Identification	on Number	Flags Frag	ment Offset					
Time to Live Protocol		IP Header Checksum						
	IP Source Address							
								
IP Destination Address								
Optionen		/ Padding						

- Die Internet Header Length (IHL) gibt die Länge des IP-Headers(min5/max15) inklusive dem optionalen Teil(max40byte) in Double Words (32 Bit) an. Die Länge bezeichnet also die Stelle wo im Datagramm die Nutzdaten beginnen.
- Quality of Service, gibt die Eigenschaft an. Dringend, hi reliablility, throughput etc.
- Total Length bezeichnet die gesamte L¨ange des Datagramms in Byte (inklusive Header und Nutzdaten)
- alle Fragmente des Datagramms den gleichen Identifikationswert
- Flags: reserved null, fragment allowed, last more fragments
- innerhalb des Datagramms ein Fragment: Der Fragment-Offset wird in 8-Byte-Einheiten (64 bits) angegeben, wobei das erste Fragment einen Offset von Null hat (in maximal 213 = 8192 Fragmente zerlegt)
- TTL: verbleibende Zeit in Sekunden an, die das Datagramm noch im Internet-System verbleiben darf
- Protocol: 1 ICMP / 6 TCP / 17 UDP

Fragmenting

Adressauflösung

Address Resolution Protokoll (ARP) von 4-Byte-langen IP-Adressen auf 6-Byte-lange Ethernet-Adressen

- ARP-Request: "who-has x.x.x.x" als Broadcast ins Netz, wird durch Bridges nicht gefiltert, dadurch kann hoher Traffic entstehen
- ARP-Response"is-at y:y:y:y:y direkt an den anfragenden Knoten, man beachte, dass die gesuchte Antwort im Feld Sender-MAC-Address zu finden ist

Im ARP-Cache werden die Adressen zwischengespeichert, sodass man nicht immer für jedes Paket eine neue ARP Anfrage machen muss.

• Gratuitous ARP: ARP Requests/Replies die nich (nach Standart) notwendig sind. Sie werden verwendet um IP-Adresskonflikte zu erkennen. Auch beim ändern der IP-Adresse verschickt, aber mit dem Zweck, die ARP-Cache der anderen Knoten zu berichtigen.

Mit dem Befehl "arping -C 1 -U x.x.x.x" kann ein Request gesendet werden.

Reverse Address Resolution Protocol (RARP) von Ethernet-Adresse auf IP-Adresse

- Verwendung von RARP ist besser als das Ablegen einer IP-Adresse in einem Disk-Image, weil dadurch die gleiche Konfiguration auf allen Maschinen benutzt werden kann
- Nachteil, dass es MAC-Layer-Broadcast benutzt, um den RARP-Server -> von Routern nicht weitergegeben
- Alternative: BOOTP und DHCP