Московский государственный университет имени М.В. Ломоносова Механико-математический факультет Кафедра Математической теории интеллектуальных систем (МаТИС)

Курсовая работа

Сравнительный анализ функций потерь для верификации лиц с использованием сиамских нейронных сетей

Макаров Илья Александрович Научный руководитель: Миронов Андрей Михайлович

Содержание

Введение	2
Актуальность	2
Практическая значимость	2
Исторический обзор	3
2000-е годы	3
2010-е годы	3
2020-е годы	3
Формальная постановка задачи верификации лиц	4
Исходные данные	4
Постановка задачи	4
Основные метрики	4
Основные определения и теория	5
Эмбеддинг	5
Сиамские нейронные сети	5
Triplet Loss	5
Триплетный майнинг в задачах метрического обучения	6
Cluster Loss	6
Компонента компактности кластеров	6
Компонента разделения кластеров	7
Метрики качества	7
Точность (Accuracy)	7
VAL@FAR (10^{-2})	7
Подготовка экспериментальной части	8
Датасет	8
Обработка датасета	8
Обработка датасета	O
Экспериментальная часть	9
Целевые метрики	9
Формирование выборки для стохастического градиентного спуска	9
Валидация	9
Архитектура	9
Результаты	10
Обучение с Cluster loss	10
Обучение c Triplet loss random mining	11
Обучение c Triplet loss semi-hard mining	12
Обучение с Triplet loss hard mining	13
Выводы	14
Возможные улучшения Cluster Loss	15
Пересмотр понятия центра временного кластера	15
Автоматизация подбора гиперпараметров	15
Детектирование вбросов	

Введение

Актуальность

Актуальность исследования функций потерь в сиамских нейронных сетях для верификации лиц обусловлена возрастающей ролью биометрической аутентификации в современных системах безопасности, персонализированных сервисах и автоматизированном контроле доступа. В условиях роста требований к надёжности идентификации ключевое значение приобретает эффективность алгоритмов распознавания, которая во многом зависит от выбора и оптимизации функций потерь. Такие функции, как Contrastive Loss, Triplet Loss и более современные ArcFace, CosFace, SphereFace, определяют, насколько хорошо модель различает признаки человека и, а также насколько устойчива она к изменениям освещения, ракурса и другим искажениям. Однако каждая из этих функций имеет свои ограничения, и их сравнительный анализ необходим для того, чтобы найти компромисс между точностью, скоростью обучения и устойчивостью модели.

Практическая значимость

Практическая значимость работы заключается в том, что её результаты могут быть использованы для улучшения реальных биометрических систем. Оптимизация функций потерь позволяет повысить точность верификации, что критически важно в условиях, где ошибки идентификации могут привести к утечкам данных или несанкционированному доступу. Кроме того, эффективные модели распознавания лиц востребованы в персонализированных сервисах, цифровых ассистентах и автоматизированных системах учёта, где важно быстро и точно определять пользователя. Таким образом, исследование не только углубляет теоретическое понимание работы сиамских сетей, но и предлагает практические решения для внедрения в современные технологии аутентификации и безопасности.

Исторический обзор

2000-е годы

Сиамские нейронные сети [5] зародились как инструмент для сравнения объектов в условиях малого количества данных. Их структура, напоминающая сиамских близнецов (две идентичные подсети с общими весами), позволяла эффективно извлекать признаки из парных входов и оценивать их сходство через евклидово расстояние или другие метрики. Примером раннего применения стала работа с датасетом AT&T Faces, где сети обучались на парах изображений для бинарной классификации "свой/чужой". Основной функцией потерь тогда выступала Contrastive Loss, минимизирующая расстояние между схожими объектами и увеличивающая его для разных.

2010-е годы

С развитием свёрточных нейросетей (CNN) [4] сиамские архитектуры стали использовать CNN в качестве базового блока для извлечения признаков. Например, в работах Google был предложен Triplet Loss [3], где модель обучалась на тройках данных (якорь, позитивный и негативный примеры), что улучшило дискриминативность признаков. Ключевым прорывом стало применение сиамских сетей в коммерческих системах, таких как FaceNet (2015) [3], которая достигла точности 99.63% на LFW (Labeled Faces in the Wild), используя тройки и глубокие CNN.

2020-е годы

Современные исследования сосредоточены на оптимизации углового пространства признаков. В 2018 году Цзянькан Чжан (Университет Торонто) предложил ArcFace, который добавляет угловой зазор между "кластерами" картинок, улучшая межклассовую дистанцию.

Формальная постановка задачи верификации лиц

Исходные данные

Пусть заданы:

- Множество изображений $\mathcal{X} = \{x_1, \dots, x_N\}$
- Соответствующие идентификаторы классов $\mathcal{Y} = \{y_1, \dots, y_M\}$, где $y_i \in \{1, \dots, M\}$
- Функция эмбеддинга $f: \mathcal{X} \to R^d$, преобразующая изображение в вектор признаков
- Функция расстояния $\rho: R^d \times R^d \to R^+$

Постановка задачи

Для произвольной пары изображений $(x_i, x_j) \in \mathcal{X} \times \mathcal{X}$ требуется определить находятся ли на них один и тот же объект или нет, для этого используется следующая последовательность действий:

- 1. Получить эмбеддинги изображений
- 2. Посчитать расстояние между ними
- 3. В зависимости от порога сделать вывод о том, один и тот же объект на фотографии или нет

Основные метрики

- Точность
- VAL@FAR

Основные определения и теория

Эмбеддинг

Эмбеддинг (латентный вектор) - это компактное числовое представление данных (например, изображения, текста или аудио) в скрытом (латентном) пространстве, полученное в результате работы нейронной сети или другого метода машинного обучения.

Сиамские нейронные сети

Сиамская нейронная сеть (англ. *Siamese Neural Network*) — это специальная архитектура глубокого обучения, характеризующаяся следующими свойствами:

- Состоит из двух или более идентичных подсетей (близнецов), имеющих общие веса
- Все подсети принимают разные входные данные, но вычисляют признаки в едином латентном пространстве

Основные применения:

- Задачи верификации (лиц, подписей)
- Поиск дубликатов
- One-shot learning
- Ранжирование в рекомендательных системах

Triplet Loss

Функция потерь на триплетах (Triplet Loss) определяется следующим образом:

$$\mathcal{L}_{\text{triplet}} = \max (\|f(A) - f(P)\|_{2}^{2} - \|f(A) - f(N)\|_{2}^{2} + \alpha, 0)$$

- ullet С $_{
 m triplet}$ значение функции потерь
- \bullet A (Anchor) опорный пример
- P (Positive) позитивный пример (того же класса)
- N (**Negative**) негативный пример (другого класса)
- $f(\cdot)$ функция эмбеддинга (например, нейросеть)
- $\|\cdot\|_2$ L2-норма (евклидово расстояние)
- α параметр отступа (margin)

Триплетный майнинг в задачах метрического обучения

Для обучения с Triplet loss используются три типа триплетов:

- Сложные триплеты (Hard triplets):
 - В качестве позитивного примера берут наиболее удаленного от якоря представителя данного класса, в качестве негативного примера берут наиболее близкого представителя другого класса
 - Наиболее информативны для обучения, но могут содержать шум
 - Сложны для оптимизации, могут привести к коллапсу модели
- Полусложные триплеты (Semi-hard triplets):
 - Позитивный пример берется наиболее удаленным, а негативный исходя из соотношения: d(A, N) > d(A, P) но $d(A, P) + \alpha > d(A, N)$
 - Оптимальный баланс между информативностью и стабильностью обучения
 - Помогают избежать проблем сходимости
- Случайные триплеты (Random triplets):
 - Полностью случайные комбинации якорей, позитивов и негативов
 - Просты в генерации, но содержат много неинформативных примеров
 - Используются на начальных этапах обучения

Cluster Loss

Созданная в рамках данного исследования функция потерь состоит из двух компонент.

$$\mathcal{L}_{\text{cluster}} = \alpha \cdot \mathcal{L}_{\text{compactness}} + \mathcal{L}_{\text{separation}}$$

Компонента компактности кластеров

$$\mathcal{L}_{\text{compactness}} = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{N_k} \sum_{i=1}^{N_k} \text{ReLU} \left(\|\mathbf{c}_k - \mathbf{x}_i^k\|_2 - \delta_{\text{close}} \right)$$

- К количество кластеров
- N_k количество элементов в кластере k
- $\mathbf{c}_k = \frac{1}{N_k} \sum_{i=1}^{N_k} \mathbf{x}_i^k$ центр кластера k
- $\mathbf{x}_i^k i$ -й элемент кластера k
- $\delta_{\mathrm{close}} = 0.1$ пороговое расстояние
- $\alpha = 0.4$ гиперпараметр

Компонента разделения кластеров

$$\mathcal{L}_{\text{separation}} = \frac{1}{K} \sum_{k=1}^{K} \text{ReLU} \left(\delta_{\text{far}} - \| \mathbf{c}_k - \mathbf{c}_{\text{nearest}(k)} \|_2 \right)$$

- ullet $\mathbf{c}_{\mathrm{nearest}(k)}$ центр ближайшего кластера к кластеру k
- $\delta_{\mathrm{far}} = 0.5$ минимальное желаемое расстояние между центрами

Метрики качества

Точность (Accuracy)

Точность – доля правильно классифицированных примеров среди всех предсказаний:

$$\label{eq:Accuracy} \text{Accuracy} = \frac{\text{Число верно классифицированных пар}}{\text{Общее число пар}}$$

$VAL@FAR(10^{-2})$

Метрика Verification Accuracy at Fixed False Acceptance Rate (10^{-2}) показывает точность верификации при фиксированном уровне ложных принятий 1%:

$$VAL(d) = \frac{|TA(d)|}{|\mathcal{P}_{same}|}$$
$$FAR(d) = \frac{|FA(d)|}{|\mathcal{P}_{diff}|}$$

- ullet $\mathcal{P}_{\mathrm{same}}$ множество всех пар изображений одного человека (genuine pairs)
- ullet $\mathcal{P}_{\mathrm{diff}}$ множество всех пар изображений разных людей (impostor pairs)
- $TA(d) = \{(x_i, x_j) \in \mathcal{P}_{same} \mid dist(x_i, x_j) \leq d\}$ множество верно принятых пар
- $\mathrm{FA}(d) = \{(x_i, x_j) \in \mathcal{P}_{\mathrm{diff}} \mid \mathrm{dist}(x_i, x_j) \leq d\}$ множество ложных принятий

Процедура вычисления:

- 1. Для всех пар вычисляются расстояния между эмбеддингами
- 2. Подбирается порог t, при котором FAR = 0.01
- 3. Вычисляется VAL при найденном пороге t

Подготовка экспериментальной части

Датасет

Используется датасет CASIA-WEBFACE, содержащий фотографии людей размером 112×112 пикселей. В нем представлено $10\,572$ личности, при этом на одну личность приходится от 9 до более чем 1000 фотографий.

Обработка датасета

- Личности, на которых приходится менее 10 фотографий, были исключены из датасета.
- Личности с количеством фотографий от 10 до 16 включены в тестовую выборку.
- Остальные личности вошли в тренировочную выборку.
- Была проведена аугментация изображений: случайные повороты на угол, имеющий нормальное распределение со стадартным отклонением в $\frac{3\pi}{50}$.

Экспериментальная часть

Целевые метрики

- Точность (Accuracy)
- VAL@FAR (10^{-2})

Формирование выборки для стохастического градиентного спуска

• Для cluster loss:

- Из тренировочной выборки извлекаются 96 личностей с вероятностями, пропорциональными числу изображений на каждую из них.
- Для каждой личности равновероятно извлекаются 15 изображений.

• Для triplet loss:

- Аналогично *cluster loss* извлекаются 192 личности по 15 изображений на каждую.
- Для каждой личности выбираются 5 якорей (A).
- По оставшейся выборке формируются 5 триплетов согласно способу майнинга (большее кол-во приводит к переизбытку одинаковых или похожих триплетов и малой информативности каждого из них).
- В итоге получается 960 триплетов.

Валидация

- Формируются пары в равной пропорции: фотографии одного и того же класса и фотографии разных классов (чтобы избежать дисбаланса классов).
- Вычисляются оптимальный порог (threshold) и значения метрик.

Архитектура

Результаты

Обучение с Cluster loss

Точность	$VAL@FAR(10^{-2})$	Порог (threshold)	Среднее время на эпоху
0.86	0.48	0.82	162

Обучение с Triplet loss random mining

Точность	$VAL@FAR(10^{-2})$	Порог (threshold)	Среднее время на эпоху
0.83	0.35	1.19	188

Обучение с Triplet loss semi-hard mining

Точност	ь VAL@FAR (10^{-2})	Порог (threshold)	Среднее время на эпоху
0.83	0.27	1.03	258

Обучение с Triplet loss hard mining

Точность	VAL@FAR (10^{-2})	Порог (threshold)	Среднее время на эпоху
0.72	0.12	0.56	209

Выводы

- 1. Введённый в данной работе Cluster loss показал лучшие результаты из представленных, как по значениям метрик, так и по скорости работы. Помимо этого, он продемонстрировал стабильность и простоту применения.
- 2. Cluster loss прекрасно работает "из коробки", не требуя дополнительной настройки стратегий майнинга, в отличие от triplet loss.
- 3. Random mining на удивление показал лучший результат среди способов майнинга триплетов, что идёт вразрез с результатами, представленными в работе [3].
- 4. Модель, обученная на hard треплетах, не сошлась вопреки теоретическим ожиданиям. Возможными причинами могли быть использование слишком маленького размера батча (увеличение размера батча могло бы привести к улучшению результатов), а также низкое качество датасета (проблема могла бы быть исправлена ручной проверкой и удалением "плохих" изображений, например, низкого качества).

Возможные улучшения Cluster Loss

Для повышения эффективности новой функции потерь (*Cluster Loss*) можно рассмотреть следующие направления

Пересмотр понятия центра временного кластера

- Использование адаптивных методов вычисления центра кластера, например, экспоненциального скользящего среднего (EMA).
- Учет не только пространственной близости, но и временной динамики изменения центров.
- Введение весов для объектов кластера в зависимости от их "возраста"или степени уверенности.

Автоматизация подбора гиперпараметров

- Применение методов байесовской оптимизации для автоматического выбора оптимальных параметров в процессе обучения.
- Использование адаптивных стратегий, подобных learning rate scheduling, но для параметров кластеризации.
- Внедрение механизмов мета-обучения (meta-learning) для настройки гиперпараметров на лету.

Детектирование вбросов

- Интеграция статистических методов (например, анализ межквартильных размахов) для выбросов.
- Использование методов, основанных на плотности (DBSCAN-like подходы) для игнорирования шумовых точек.

Список литературы

- [1] ArcFace: Additive Angular Margin Loss for Deep Face Recognition. https://arxiv.org/abs/1801.07698
- [2] Understanding the Behaviour of Contrastive Loss. https://arxiv.org/abs/2012.09740
- [3] FaceNet: A Unified Embedding for Face Recognition and Clustering. https://arxiv.org/abs/1503.03832
- [4] ImageNet Classification with Deep Convolutional Neural Networks.
- [5] "Signature Verification using a 'Siamese' Time Delay Neural Network".