# Color Image Processing

# Spectrum of White Light



**FIGURE 6.1** Color spectrum seen by passing white light through a prism. (Courtesy of the General Electric Co., Lamp Business Division.)

1666 Sir Isaac Newton, 24 year old, discovered white light spectrum.

# Electromagnetic Spectrum



Visible light wavelength: from around 400 to 700 nm

- 1. For an achromatic (monochrome) light source, there is only 1 attribute to describe the quality: intensity
- 2. For a chromatic light source, there are 3 attributes to describe the quality:

```
Radiance = total amount of energy flow from a light source (Watts)

Luminance = amount of energy received by an observer (lumens)

Brightness = intensity
```

# Sensitivity of Cones in the Human Eye



CIE = Commission Internationale de l'Eclairage (The International Commission on Illumination)

# **Primary and Secondary Colors**



# Primary and Secondary Colors (cont.)



Additive primary colors: RGB use in the case of light sources such as color monitors

RGB add together to get white

Subtractive primary colors: CMY use in the case of pigments in printing devices

White subtracted by CMY to get Black

#### **Color Characterization**

dominant color corresponding to a dominant Hue:

wavelength of mixture light wave

Saturation: Relative purity or amount of white light mixed

with a hue (inversely proportional to amount of white

light added)

Brightness: Intensity

Hue Saturation Chromaticity

amount of red (X), green (Y) and blue (Z) to form any particular color is called *tristimulus*.

# **CIE Chromaticity Diagram**



#### Trichromatic coefficients:

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z}$$

$$x + y + z = 1$$

Points on the boundary are fully saturated colors

# Color Gamut of Color Monitors and Printing Devices



x-axis

#### **RGB Color Model**

Purpose of color models: to facilitate the specification of colors in some standard



RGB color models:

 based on cartesian coordinate system

#### **RGB Color Cube**



(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.

# RGB Color Model (cont.)



#### Safe RGB Colors

Safe RGB colors: a subset of RGB colors.

There are 216 colors common in most operating systems.



t

#### FIGURE 6.10

(a) The 216 safe RGB colors. (b) All the grays in the 256-color RGB system (grays that are part of the safe color group are shown underlined).

#### **RGB Safe-color Cube**

| Number System |    | (  | Color Equiv |     |     |     |
|---------------|----|----|-------------|-----|-----|-----|
| Hex           | 00 | 33 | 66          | 99  | CC  | FF  |
| Decimal       | 0  | 51 | 102         | 153 | 204 | 255 |

TABLE 6.1
Valid values of each RGB component in a safe color.



The RGB Cube is divided into 6 intervals on each axis to achieve the total  $6^3 = 216$  common colors.

However, for 8 bit color representation, there are the total 256 colors. Therefore, the remaining 40 colors are left to OS.

#### CMY and CMYK Color Models

C = Cyan

M = Magenta

Y = Yellow

K = Black



$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

#### **HSI Color Model**

RGB, CMY models are not good for human interpreting

#### **HSI** Color model:

Hue: Dominant color

Saturation: Relative purity (inversely proportional

to amount of white light added)

Color carrying information

Intensity: Brightness

# Relationship Between RGB and HSI Color Models



### Hue and Saturation on Color Planes





- 1. A dot is the plane is an arbitrary color
- 2. Hue is an angle from a red axis.
- 3. Saturation is a distance to the point.

# HSI Color Model (cont.)



Intensity is given by a position on the vertical axis.



Intensity is given by a position on the vertical axis.

# Example: HSI Components of RGB Cube



**RGB** Cube



(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.

# Converting Colors from RGB to HSI

$$H = \begin{cases} \theta & \text{if } B \le G \\ 360 - \theta & \text{if } B > G \end{cases}$$

$$\theta = \cos^{-1} \left\{ \frac{\frac{1}{2} [(R - G) + (R - B)]}{[(R - G)^{2} + (R - B)(G - B)]^{1/2}} \right\}$$

$$S = 1 - \frac{3}{R + G + B}$$

$$I = \frac{1}{3}(R + G + B)$$

# Converting Colors from HSI to RGB

RG sector:  $0 \le H < 120$ 

$$R = I \left[ 1 + \frac{S \cos H}{\cos(60^{\circ} - H)} \right]$$

$$B = I(1 - S)$$

$$G = 1 - (R + B)$$

BR sector:  $240 \le H \le 360$ 

$$H = H - 240$$

$$B = I \left[ 1 + \frac{S \cos H}{\cos(60^{\circ} - H)} \right]$$

$$G = I(1-S)$$

$$R = 1 - (G + B)$$

GB sector:  $120 \le H < 240$ 

$$H = H - 120$$

$$R = I(1-S)$$

$$G = I \left[ 1 + \frac{S \cos H}{\cos(60^{\circ} - H)} \right]$$

$$B = 1 - (R + G)$$

# Example: HSI Components of RGB Colors



(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.

# Example: Manipulating HSI Components



# **Color Image Processing**

There are 2 types of color image processes

1. Pseudocolor image process: Assigning colors to gray values based on a specific criterion. Gray scale images to be processed may be a single image or multiple images such as multispectral images

2. Full color image process: The process to manipulate real color images such as color photographs.

# Pseudocolor Image Processing

Pseudo color = false color : In some case there is no "color" concept for a gray scale image but we can assign "false" colors to an image.

Why we need to assign colors to gray scale image?

Answer: Human can distinguish different colors better than different shades of gray.





# Intensity Slicing or Density Slicing

Formula:

$$g(x, y) = \begin{cases} C_1 & \text{if } f(x, y) \le T \\ C_2 & \text{if } f(x, y) > T \end{cases}$$

$$C_1$$
 = Color No. 1  
 $C_2$  = Color No. 2



# Intensity Slicing Example



An X-ray image of a weld with cracks



After assigning a yellow color to pixels with value 255 and a blue color to all other pixels.

# Multi Level Intensity Slicing

$$g(x, y) = C_k$$
 for  $l_{k-1} < f(x, y) \le l_k$ 



# Multi Level Intensity Slicing Example

$$g(x,y) = C_k$$

for 
$$l_{k-1} < f(x, y) \le l_k$$

$$C_k$$
 = Color No.  $k$   
 $l_k$  = Threshold level  $k$ 



An X-ray image of the Picker Thyroid Phantom.



After density slicing into 8 colors

# **Color Coding Example**



A unique color is assigned to each intensity value.

Gray-scale image of average monthly rainfall.



Color map



Color coded image



South America region

## Gray Level to Color Transformation

Assigning colors to gray levels based on specific mapping functions



# Gray Level to Color Transformation Example

An X-ray image of a garment bag



(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.



An X-ray image of a garment bag with a simulated explosive device







Color coded images

# Gray Level to Color Transformation Example

An X-ray image of a garment bag





An X-ray image of a garment bag with a simulated explosive device



**Transformations** 







(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image

Color coded images

# **Pseudocolor Coding**

Used in the case where there are many monochrome images such as multispectral satellite images.



## Pseudocolor Coding Example



Visible red  $\lambda = 0.63 - 0.69 \, \mu m$ 

Near infrared  $\lambda = 0.76 - 0.90 \, \mu \text{m}$ Plant discrimination Biomass and shoreline mapping

#### Washington D.C. area

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.

#### Pseudocolor Coding Example







Psuedocolor rendition of Jupiter moon Io

Yellow areas = older sulfur deposits.

Red areas = material ejected from active volcanoes.



A close-up

#### Basics of Full-Color Image Processing

- 2 Methods:
- 1. Per-color-component processing: process each component separately.
- 2. Vector processing: treat each pixel as a vector to be processed.

Example of per-color-component processing: smoothing an image By smoothing each RGB component separately.



#### **Example:** Full-Color Image and Variouis Color Space Components



Color image





Magenta



Yellow



CMYK components



Red

Cyan





Blue

RGB components







HSI components

#### **Color Transformation**

Use to transform colors to colors.

Formulation:

$$g(x, y) = T[f(x, y)]$$

f(x,y) = input color image, g(x,y) = output color image T = operation on f over a spatial neighborhood of (x,y)

When only data at one pixel is used in the transformation, we can express the transformation as:

$$s_i = T_i(r_1, r_2, K, r_n)$$
  $i=1, 2, ..., n$ 

Where 
$$r_i$$
 = color component of  $f(x,y)$   
 $s_i$  = color component of  $g(x,y)$ 

For RGB images, n = 3

#### **Example: Color Transformation**

#### Formula for RGB:

$$s_R(x, y) = k r_R(x, y)$$

$$s_G(x, y) = kr_G(x, y)$$

$$s_B(x, y) = k r_B(x, y)$$

#### Formula for HSI:

$$s_I(x, y) = kr_I(x, y)$$

#### Formula for CMY:

$$s_{C}(x, y) = kr_{C}(x, y) + (1-k)$$

$$s_{M}(x, y) = kr_{M}(x, y) + (1-k)$$

$$s_{Y}(x, y) = kr_{Y}(x, y) + (1-k)$$









These 3 transformations give the same results.

#### **Color Complements**

Color complement replaces each color with its opposite color in the color circle of the Hue component. This operation is analogous to image negative in a gray scale image.



#### Color Complement Transformation Example



a b c d

#### FIGURE 6.33

Color complement transformations.

- (a) Original image.
- (b) Complement transformation functions.
- (c) Complement of (a) based on the RGB mapping functions. (d) An approximation of the RGB complement using HSI transformations.

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.

## **Color Slicing Transformation**

or

We can perform "slicing" in color space: if the color of each pixel is far from a desired color more than threshold distance, we set that color to some specific color such as gray, otherwise we keep the original color unchanged.

$$s_{i} = \begin{cases} 0.5 & \text{if } \left[ |r_{j} - a_{j}| > \frac{W}{2} \right]_{any \ 1 \le j \le n} \end{cases}$$
 Set to gray 
$$i = 1, 2, ..., n$$
 Keep the original color

$$s_{i} = \begin{cases} 0.5 & \text{if } \sum_{j=1}^{n} (r_{j} - a_{j})^{2} > R_{0}^{2} \\ r_{i} & \text{otherwise} \end{cases}$$
 Set to gray Keep the original color

## **Color Slicing Transformation Example**

#### After color slicing



Original image





a b

**FIGURE 6.34** Color slicing transformations that detect (a) reds within an RGB cube of width W = 0.2549 centered at (0.6863, 0.1608, 0.1922), and (b) reds within an RGB sphere of radius 0.1765 centered at the same point. Pixels outside the cube and sphere were replaced by color (0.5, 0.5, 0.5).

#### Tonal Correction Examples



In these examples, only brightness and contrast are adjusted while keeping color unchanged.

This can be done by using the same transformation for all RGB components.

Contrast enhancement

Power law transformations

## **Color Balancing Correction Examples**



FIGURE 6.36 Color balancing corrections for CMYK color images.

Color imbalance: primary color components in white area are not balance. We can measure these components by using a color spectrometer.



Heavy in

black





























Color balancing can be performed by adjusting color components separately as seen in this slide.

#### Histogram Equalization of a Full-Color Image

- \* Histogram equalization of a color image can be performed by adjusting color intensity uniformly while leaving color unchanged.
- The HSI model is suitable for histogram equalization where only Intensity (I) component is equalized.

$$S_k = T(r_k) = \sum_{j=0}^k p_r(r_j)$$
$$= \sum_{j=0}^k \frac{n_j}{N}$$

where r and s are intensity components of input and output color image.

#### Histogram Equalization of a Full-Color Image















# FIGURE 6.37 Histogram equalization (followed by saturation adjustment) in the

HSI color space.





(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.

#### **Color Image Smoothing**

#### 2 Methods:

1. Per-color-plane method: for RGB, CMY color models Smooth each color plane using moving averaging and the combine back to RGB

$$\overline{\mathbf{c}}(x,y) = \frac{1}{K} \sum_{(x,y) \in S_{xy}} \mathbf{c}(x,y) = \begin{bmatrix} \frac{1}{K} \sum_{(x,y) \in S_{xy}} R(x,y) \\ \frac{1}{K} \sum_{(x,y) \in S_{xy}} G(x,y) \\ \frac{1}{K} \sum_{(x,y) \in S_{xy}} B(x,y) \end{bmatrix}$$

2. Smooth only Intensity component of a HSI image while leaving H and S unmodified.

Note: 2 methods are not equivalent.

Color image



Red

Green



Blue





Color image

**HSI** Components







(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.







Smooth only I component of HSI

(faster)



Difference between smoothed results from 2 methods in the previous slide.

## Color Image Sharpening

We can do in the same manner as color image smoothing:

- 1. Per-color-plane method for RGB,CMY images
- 2. Sharpening only I component of a HSI image



Sharpening all RGB components



Sharpening only I component of HSI

## Color Image Sharpening Example (cont.)



Difference between sharpened results from 2 methods in the previous slide.

#### **Color Segmentation**

#### 2 Methods:

- Segmented in HSI color space:
   A thresholding function based on color information in H and S Components. We rarely use I component for color image segmentation.
- 2. Segmentation in RGB vector space:
  A thresholding function based on distance in a color vector space.



## Color Segmentation in HSI Color Space



Saturation

Intensity

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.

#### Color Segmentation in HSI Color Space (cont.)

Binary thresholding of S component with T = 10%

Product of 2 and 5



(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.

Histogram of (

Segmentation of red color pixels

#### Color Segmentation in HSI Color Space (cont.)





Color image

Segmented results of red pixels

#### Color Segmentation in RGB Vector Space



- 1. Each point with (R,G,B) coordinate in the vector space represents one color.
- 2. Segmentation is based on distance thresholding in a vector space

$$g(x, y) = \begin{cases} 1 & \text{if } D(\mathbf{c}(x, y), \mathbf{c}_T) \le T \\ 0 & \text{if } D(\mathbf{c}(x, y), \mathbf{c}_T) > T \end{cases}$$

$$D(\mathbf{u}, \mathbf{v}) = \text{distance function}$$

$$\mathbf{c}_T$$
 = color to be segmented.  
 $\mathbf{c}(x,y) = \text{RGB vector at pixel } (x,y).$ 

#### Example: Segmentation in RGB Vector Space





Reference color  $\mathbf{c}_T$  to be segmented  $\mathbf{c}_T$  = average color of pixel in the box



Results of segmentation in RGB vector space with Threshold value

T = 1.25 times the SD of R,G,B values In the box

#### Gradient of a Color Image

Since gradient is define only for a scalar image, there is no concept of gradient for a color image. We can't compute gradient of each color component and combine the results to get the gradient of a color image.



#### Gradient of a Color Image (cont.)

One way to compute the maximum rate of change of a color image which is close to the meaning of gradient is to use the following formula: Gradient computed in RGB color space:

$$F(\theta) = \left\{ \frac{1}{2} \left[ (g_{xx} + g_{yy}) + (g_{xx} - g_{yy}) \cos 2\theta + 2g_{xy} \sin 2\theta \right] \right\}^{\frac{1}{2}}$$

$$\theta = \frac{1}{2} \tan^{-1} \left[ \frac{2g_{xy}}{(g_{xx} - g_{yy})} \right]$$

$$g_{xx} = \left| \frac{\partial R}{\partial x} \right|^2 + \left| \frac{\partial G}{\partial x} \right|^2 + \left| \frac{\partial B}{\partial x} \right|^2 \qquad g_{yy} = \left| \frac{\partial R}{\partial y} \right|^2 + \left| \frac{\partial G}{\partial y} \right|^2 + \left| \frac{\partial B}{\partial y} \right|^2$$

$$g_{yy} = \left| \frac{\partial R}{\partial y} \right|^2 + \left| \frac{\partial G}{\partial y} \right|^2 + \left| \frac{\partial B}{\partial y} \right|^2$$

$$g_{xy} = \frac{\partial R}{\partial x} \frac{\partial R}{\partial y} + \frac{\partial G}{\partial x} \frac{\partial G}{\partial y} + \frac{\partial B}{\partial x} \frac{\partial B}{\partial y}$$

#### Gradient of a Color Image Example

Original image





Obtained using the formula in the previous slide

Sum of gradients of each color component





Difference between and 3

## Gradient of a Color Image Example



Gradients of each color component

#### Noise in Color Images

Noise can corrupt each color component independently.

a b c d

#### FIGURE 6.48 (a)-(c) Red,

green, and blue component images corrupted by additive Gaussian noise of mean 0 and variance 800. (d) Resulting RGB image. [Compare (d) with Fig. 6.46(a).]







Noise is less noticeable in a color image

> (Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.

#### Noise in Color Images



abc

FIGURE 6.49 HSI components of the noisy color image in Fig. 6.48(d). (a) Hue. (b) Saturation. (c) Intensity.

#### Noise in Color Images



a b c d

#### FIGURE 6.50

component.

(a) RGB image with green plane corrupted by saltand-pepper noise.
(b) Hue component of HSI image.
(c) Saturation component.
(d) Intensity

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2<sup>nd</sup> Edition.

## **Color Image Compression**



After lossy compression with ratio 230:1