Lecture 2: Countability and Terminology

CSC 320: Foundations of Computer Science

Quinton Yong

quintonyong@ uvic.ca

${\mathbb R}$ is uncountable (Cantor's Diagonalization)

Proof by contradiction: Assume that the rational numbers \mathbb{R} is countable.

- If \mathbb{R} is countable, then we should be able to enumerate the real numbers **just** between 0 and 1.
- Let the enumeration $(x_1, x_2, x_3, ...)$ be written as follows:

$$x_1 = 0. d_{11}d_{12}d_{13}d_{14} \dots$$
 $x_2 = 0. d_{21}d_{22}d_{23}d_{24} \dots$
 $x_3 = 0. d_{31}d_{32}d_{33}d_{34} \dots$
 $x_4 = 0. d_{41}d_{42}d_{43}d_{44} \dots$
 \vdots

- $x_n = 0.d_{n1}d_{n2}d_{n3}d_{n4}$... is the n^{th} real number in the enumeration
- x_n has decimal digits $0.d_{n1}d_{n2}d_{n3}d_{n4}$ (since we are enumerating real numbers between 0 and 1)

R is uncountable (Cantor's Diagonalization)

• Consider the number $\mathbf{c} = 0. c_1 c_2 c_3 c_4$... where $c_i \neq d_{ii}$ for each i

```
x_1 = 0. d_{11} d_{12} d_{13} d_{14} \dots c \neq x_1 since the 1^{st} decimal digit is different (c_1 \neq d_{11}) c \neq x_2 since the 2^{nd} decimal digit is different (c_2 \neq d_{22}) c \neq x_2 since the 3^{rd} decimal digit is different (c_3 \neq d_{22}) c \neq x_3 since the 3^{rd} decimal digit is different (c_3 \neq d_{33}) c \neq x_4 since the 4^{th} decimal digit is different (c_4 \neq d_{44}) c \neq x_4 since the 4^{th} decimal digit is different (c_4 \neq d_{44}) c \neq x_4 since the a_1 decimal digit is different (a_2 decimal digit is different (a_3 decimal digit is different (a_4 decimal di
```

- Since c is a number between 0 and 1, it **should be enumerated** in this list
- However, since it differs from every element, it cannot be in this list

Clarification on c

- Consider the number $\mathbf{c} = 0. c_1 c_2 c_3 c_4 \dots$ where $c_i \neq d_{ii}$ for each i
- For example, suppose the numbers $(x_1, x_2, x_3, ...)$ are as follows

```
x_1 = 0.4031...

x_2 = 0.1893...

x_3 = 0.5367...
```

- We define c = 0. $c_1 c_2 c_3 c_4$ such that the digit c_i is something different than the i^{th} digit of x_i
- In the example enumeration above:
 - c_1 can be any number other than 4
 - c_2 can be any number other than 8
 - c_3 can be any number other than 6
 - So, *c* could be something like 0.597...

Clarification on c

You may be wondering, if we enumerate the real numbers between 0 and 1 like

$$x_1 = 0.000 \dots 00$$

 $x_2 = 0.000 \dots 01$
 $x_3 = 0.000 \dots 02$

then c must be in the list somewhere.

- Consider if \boldsymbol{c} appears in the list at position \boldsymbol{k} , that is $\boldsymbol{x}_{\boldsymbol{k}} = \boldsymbol{c}$
- However, c is defined such that digit c_k is different than the k^{th} decimal digit of x_k
- Thus, c can't possibly be in the list anywhere

$\mathbb R$ is uncountable (Cantor's Diagonalization)

- The enumerated list $x_1, x_2, x_3, ...$ **does not** contain all real numbers between 0 and 1 since it cannot contain c
- So, we cannot enumerate all the elements in this subset of \mathbb{R} (real numbers between 0 and 1)
- This is a **contradiction** since we assumed that $\mathbb R$ is countable
- Therefore, \mathbb{R} is uncountable

Terminology Review: Sets

- **Set**: a collection of distinct **elements** / **members** (unordered, no repeats, can be finite or infinite)
 - $S = \{3, l, 20, \text{green}, \alpha\}$
- Set membership / non-membership: $\alpha \in S$, $\beta \notin S$
- **Empty set**: Set with no elements
 - Ø or {}
- Singleton set: set with exactly one member
- Unordered pair: set with exactly two members

Terminology Review: Set Operations

• Union of sets \boldsymbol{A} and \boldsymbol{B} : $\boldsymbol{A} \cup \boldsymbol{B} = \{ x \mid x \in \boldsymbol{A} \text{ or } x \in \boldsymbol{B} \}$

• Intersection of sets A and B: $A \cap B = \{ x \mid x \in A \text{ and } x \in B \}$

• **Set difference** of sets A and B: $A \setminus B$ or $A - B = \{ x \mid x \in A \text{ and } x \notin B \}$

• Complement of set A: $\overline{A} = \{ x \mid x \notin A \}$

Terminology Review: Powerset

- Powerset $\mathcal{P}(A)$ of set A: set of all subsets of A
 - $\mathcal{P}(A) = \{ S \mid S \subseteq A \}$
 - Note that $\emptyset \in \mathcal{P}(A)$ since the empty set is a subset of all sets
- Example: Let $A = \{1, 2, 3\}$. Then $\mathcal{P}(A)$ is

$$\begin{cases}
\emptyset, \\
\{1\}, \{2\}, \{3\}, \\
\{1, 2\}, \{1, 3\}, \{2, 3\}, \\
\{1, 2, 3\}
\end{cases}$$

Languages

- In this course, we will be evaluating the **computational power** of different computational models using **languages**
 - "How complex of a language can a model compute / represent?"

- A language in this course is no different than other languages you know:
 - Given an alphabet, a language contains selected strings created by symbols in the alphabet
 - The **English** language: strings containing letters $\{a-z\}$ which follow the rules of the language
 - Java: strings (text files) containing typed symbols which follow Java syntax

Deterministic Finite Automata

• **DFA state diagram** for the 3-digit passcode game:

Deterministic Finite Automata

• If we don't display * and don't reset the game, we can simplify the DFA to:

- Accepts if the input is 320
- Does not accept (lands on a non-accept state) if the input is shorter than 3 digits, the wrong 3 digit code, or longer than 3 digits

Languages

- In the passcode game, alphabet is $\{0-9\}$ and the language is $\{320\}$
- DFA's are powerful enough to represent this language and others
- However, DFA's can't represent the language "O's followed by the same number of 1s"

Terminology: Strings

- An alphabet Σ is a **finite** set of symbols
 - e.g. binary alphabet $\{0, 1\}$, the Roman / Latin alphabet
- A **string** over an alphabet Σ is a finite sequence of symbols from Σ
 - e.g. 0001 is a string over alphabet {0, 1}
- The **empty string** ε is the string with no symbols
- The set of all possible strings over an alphabet Σ is denoted Σ^*
 - Important note: ε is in Σ^* (ε is a string over any alphabet)
- Example: Let $\Sigma = \{a, b\}$. Then $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba bbb, ... \}$

Terminology: Strings

- The length |w| of a string $w \in \Sigma^*$ is the number of symbols of w
 - Length of the empty string: $|\varepsilon| = 0$
 - Let w = ab, |w| = 2

- For a string $w \in \Sigma^*$, the symbol in the i^{th} position of w is denoted w_i
 - Let $\mathbf{w} = \text{aba}$, $\mathbf{w_2} = b$

Terminology: String Operations and Relations

- The concatenation for strings x and y yields string xy
 - Let $\Sigma = \{a, b, c\}$, and strings x = ab, y = bac, and z = bba
 - xyz = abbacbba
- A string v is a **substring** of string w if and only if there are strings x and y such that w = xvy
 - If $x = \varepsilon$, then w = vy and v is a **prefix** of w
 - If $y = \varepsilon$, then w = xv and v is a suffix of w
 - Example: w = abbacbba, then cbba is a suffix of w, and abb is a prefix of w
- A string w written backwards is denoted w^R and is called the **reversal** of w
 - If w = abc, then $w^R = cba$

Terminology: Languages

- A language is a set of strings over an alphabet Σ
- Since languages are sets, we can **apply set operations** to languages (union, intersection, etc.) to create new languages
- For a language L over an alphabet Σ , its **complement** \overline{L} is $\overline{L} = \Sigma^* L$
 - i.e. all strings in Σ^* that aren't in L
- Given languages L_1 and L_2 over alphabet Σ , their **concatenation** denoted L_1L_2 is defined as $L_1L_2=\{w\in\Sigma^*\mid w=xy \text{ for some }x\in L_1 \text{ and }y\in L_2\}$
 - E.g. Let $L_1 = \{0, 10\}$ and $L_2 = \{0, 11\}$. Then $L_1L_2 = \{00, 011, 100, 1011\}$

Terminology: Languages

• For a language L over alphabet Σ , the Kleene star L^* of L is the set of all strings obtained by concatenating zero or more strings from L

$$L^* = \{ w \in \Sigma^* \mid w = w_1 w_2 \dots w_k , k \ge 0 \text{ and } w_i \in L \text{ for } 1 \le i \le k \}$$

• Example: Let $L = \{0, 10\}$, then $L^* = \{\varepsilon, 0, 10, 00, 010, 100, 1010, ...\}$

- For a language L over alphabet Σ , the **positive closure** L^+ of L is $L^+ = LL^*$
- Basically, \boldsymbol{L}^+ is \boldsymbol{L}^* but without the "zero strings concatenated" case
- Example: Let $L = \{0, 10\}$, then $L^+ = \{0, 10, 00, 010, 100, 1010, ...\}$

Decision Problems

- In this course, the kinds of problems we will be working with are decision problems, which are problems with a yes or no answer
- Formally, a decision problem is a mapping from a set of problem instances (inputs) to yes / no (yes-instances and no-instances)

• Examples:

- Did the user input the passcode 320?
- Does the input consist of 0's followed by the same number of 1's?
- Is the given sequence in sorted order?

Decision Problems Languages

- We can use languages as an abstract representation of decision problems
- The strings in the language are **yes-instances**

$$L = \{x \in \Sigma^* \mid x \text{ is a yes instance of the problem}\}$$

• Examples:

• Did the user input the passcode 320?

$$\Sigma = \{0 - 9\}, \ L_1 = \{x \in \Sigma^* \mid x = 320\}$$

• Does the input consist of 0's followed by the same number of 1's?

$$\Sigma = \{0, 1\}, \ L_2 = \{x \in \Sigma^* \mid x \text{ has form } 0^i 1^i, i \ge 0\}$$

Is the given sequence in sorted order?

 $L_{\text{SortedSequence}} = \{ \text{list of elements } l \mid \text{the elements of } l \text{ are in sorted order} \}$

Decision Problems and Computational Models

- Recall that we are using languages to evaluate the computational power of computational models
- i.e. can we build an "algorithm" in the model to represent the accepted strings in the language

- Then, we are using languages as representations of a decision problem
- If we can build an "algorithm" in the model which accepts all yes-instances of a problem language, then the decision problem can be solved using the model

Are Decision Problems Enough?

- There are other types of problems that computers solve:
 - Search problems: find the desired solution (e.g. find the path between two vertices u and v)
 - Optimization problems: maximize or minimize a solution (e.g. find the weight of the minimum spanning tree)
- There is usually a way to form **roughly equivalent decision problems** from other types of problems:
 - e.g. does there exist a path between vertices u and v?
 - e.g. is there a minimum spanning tree of weight $\leq k$?
- Note: the problem may not be identical (running time), but it can tell us if the problem is solvable on a computational model