第11章 平面图

- ■平面图
 - ■基本概念
 - ■欧拉公式
 - ■平面图的判断
 - ■对偶图

在实际应用中,如高速公路设计、印刷电路设计,都要求线路不交叉,这就是平面图,一个图能否画在一个平面上,且任何边都不交叉,这就是图的平面化问题。这个问题在近些年来,特别是大规模集成电路的发展进一步促进了对平面图的研究。

设G是无向图,如果能将G的所有结点和边都画在一个平面上,且使得任何两条边除了端点外没有其它交点,则称G是个平面图。一个图表面上是个非平面图,如果通过改变边的位置就变成平面图,称此图是可平面化的。

定义11.1

- 平面图(plane graph): 在平面上边与边不在非顶点处相交的图
- 可平面图(planar graph): 可以画在平面上,使 得边与边不在非顶点处相交的图
- 平面嵌入(imbedding): 画在平面上使得边与 边不在非顶点处相交
- 非平面图: 无平面嵌入的图

例如。

可平面化的图。

 v_2 v_3 v_4 v_5

下面是两个

重要的非平面图:

K₅和K_{3,3}

* 球面嵌入, 曲面嵌入

- 球面嵌入: 画在球面上使得边与边不在非顶点处相交
- 曲面嵌入: 画在曲面上使得边与边不在非顶点处相交

定理11.1 可平面嵌入 ⇔ 可球面嵌入 证明 连续球极投影。 #

面

- 区域:不含顶点与边的极大连通曲面, R
- 外部区域: 面积无限的区域, R₀
- 区域边界: 与R关联的边和顶点构成的子图 ∂R
- ■面:区域及其边界
- 面的次数: deg(R)=边界长度

 $\begin{array}{c|c}
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
 & & & & & & & & \\
\hline
 & & & & & & & & \\
 & & & & & & & & \\
\hline
 & & & & & & & \\
 & & & & & & & \\
\hline
 & & & & & & & \\
 & & & & & & & \\
\hline
 & & & & & & \\
 & & & & & & \\
\hline
 & & & & & & \\
 & & & & & & \\
\hline
 & & & & \\
\hline
 & &$

r₁: 边界:ABCDFDA

r2: 边界:ABCA

r3: 边界:ACDA

r4: 边界:ADA

 $deg(r_1)=6$

 $deg(r_2)=3$

 $deg(r_3)=3$

 $deg(r_4)=2$

■ 定理11.2:平面图G中所有面的次数之和等于边数m的2倍,即 $\Sigma_{i=1}^{r}$ deg(R_{i})=2m.

证明:任何一条边,或者是两个面的公共边,或者在一个面中作为边界被重复计算两次,故面的次数之和等于边数的两倍#

定理11.3 任何平面嵌入的内部面都可以在另一种平面嵌入下成为外部面

欧拉公式

- 欧拉公式: 设G是连通平面图,则 n-m+r=2 其中r是G的面数.
- 例: n=7,m=11,r=6: 7-11+6=2. #

- n、m、r分别表示G中结点数、边数、面数,证明n-m+r=2.
- 证明: (对边进行归纳)
- (1)若G为一个孤立结点,则n=1,m=0,r=1,结论成立。
- (2)若G为一条边,n=2,m=1,r=1,结论成立。
- (3)设G为k条边时,欧拉公式成立。即 n_k - m_k + r_k =2.当k+1条边时,在k条边的连通图上增加一条边,仍为连通图,只有两种情况

 \bullet (a) 加上一个新结点,该结点与图上的一点相连,此时 n_k 与 m_k 两者都增加1,而面数 r_k 未变,故

$$(n_k+1)-(m_k+1)+r_k=2$$

 \bullet (b) 用一条边连接图上的两已知点,此时 m_k 和 r_k 都增加1,而结点数 v_k 不变,故

$$n_k - (m_k + 1) + (r_k + 1) = 2$$

设n、m、r分别表示G中 结点数、边数、面数,则有 n-m+r=2.

证明: (对面数r归纳证明)

(1)当r=1 时,此时图是连通无回路的树,则总是有m=n-1,于是

n-m+r=n-(n-1)+1=2 结论成立.

(2)假设当G有r≤k-1个面时,结论成立.

当G有r=k个面且是连通图时, 当k≥2时, 至少有一个回路, 所以去掉此回路中的一条边后得到子图G', G'中有k-1个面, 结点数同G中结点数, 由(2)得n-(m-1)+(k-1)=2整理得 n-m+k=2 即 n-m+r=2 定理得证.

欧拉公式(推广形式)

- 欧拉公式: 设G是平面图,则n-m+r=1+p其中r是G的面数, p是G的连通分支数
- 证明:(破圈法)任选一个回路,删除回路上1 边,m'=m-1,这边分隔的2个面合并,r'=r-1, 所以n-m+r=n-m'+r'. 到最后无回路时是 森林, m"=n-p, r"=1, 即n-m+r=nm"+r"=1+p. #

■ 定理11.8: 设G是连通平面图, G的各面的次数至少是((≥3), 则

■ 证明: r=2+m-n, 2m=Σ^r_{i=1}deg(R_i)≥6r=6(2+m-n), 所以 m≤(n-2)ℓ/(ε2). #

- 给出平面图边数的上界
- •判定不是平面图

- 定理11.9: 设平面图G有p个连通分支, G的各面的次数至少是(≥3), 则
 m≤(n-p-1)((-2).
- 证明: r=1+p+m-n, 2m=Σ^r_{i=1}deg(R_i)≥6r=6(1+p+m-n), 所以 m≤(n-p-1)ℓ/(-2). #

例11.2(必要条件)

- 推论: K_5 和 $K_{3,3}$ 都不是平面图.
- 证明: (反证)假设K₅和K_{3.3}都是平面图.
 - (1) K_5 是简单图, 所以 $\ell=3$,

(2) $K_{3,3}$ 是偶图,无奇圈,所以 $\ell=4$,

#

Jordan定理

■ Jordan曲线把平面分为2部分,连接内部与外部点的任意曲线必然与Jordan曲线相交.

■ Jordan曲线: 自身不相交的封闭曲线

- 定理11.10: 设n(≥3)阶简单平面图G有m条 边,则 m≤3n-6.
- 证明: G是简单图, 所以 (≥3, m≤(n-p-1) (((-2)≤(n-2)3=3n-6, 其中, ((-2)=1+2/((-2))在 (=3时达到最大值3 #

- 定理11.12: 设G是简单平面图,则G中至少存在一个顶点,其度数小于等于5. (即证 δ(G)≤5.)
- 证明: 若G的顶点数n≤6,结论显然成立.
- (反证) 设n≥7并且δ≥6, 则
 2m=Σd(v)≥nδ≥6n ⇒ m≥3n,
 与 m≤3n-6 矛盾. #

极大平面图

定义:设G是个简单图,令u、v是不邻接的结点,如果不能在u、v之间增加一条边而不破坏图的平面性时,则称G是极大平面图。

极大(maximal)平面图

- 定理11.4: n(≥3)阶简单连通平面图是极大平面图⇔∀R,deg(R)=3
- 证明: (⇒)简单图⇒deg(R)≥3,
 极大平面图⇒deg(R)≤3(反证≥4)
 (⇐)∀R,deg(R)=3⇒不能加边而不交叉. #

■极小非平面图:是非平面图, 但是删除任意1边就是平面图

定理11.11: 设G是个极大平面图,且有n个结点,m条边,r个面,则: m=3n-6, r=2n-4。

证明: 因为G是极大平面图,每个面由3条边围成。 所以有 3r=2m, r=(2/3)m,由欧拉公式n-m+r=2,得 r=m-n+2,于是

(2/3)m=m-n+2, 2m=3m-3n+6, 所以 m=3n-6。 进而得 r=m-n+2=3n-6-n+2=2n-4。 定理得证。 前面定理是判定平面图的必要条件,而不是充分条件。

如果一个图 满足m≤3n-6, 它不一定是平面图. 例如, K_{3.3}中

n=6 m=9 9≤3×6-6 满足m≤3n-6, 1 但它不一定是平面图.

下面要介绍一个判定一个平面图的

充分必要条件,即Kuratowski(库拉图斯基)定理.在此之

前先介绍一个新概念----在2度结点内同构(同胚)。

在一个图中有2度结点,则这些结点不影响平面的面数,例如下面两个图:

我们称这两个图是同胚的图。

同胚(homomorphism)

- 插入2度顶点: 把(u,v)变成(u,w),(w,v)
- 删除2度顶点: deg(w)=2, 把(u,w),(w,v) 变成(u,v)
- 同胚: 反复插入或删除2度顶点后同构

Kuratowski定理

- 定理11.13: 图G是平面图 \Leftrightarrow G没有与 K_5 或 $K_{3,3}$ 同胚的子图
- 定理11.14: 图G是平面图 \Leftrightarrow G没有可以边收缩到 K_5 或 $K_{3,3}$ 的子图

例11.3

例11.3(1)

例11.3(2)

例11.3(3)

例11.6

- 例11.6: K₆的含K_{3,3}的非同构子图有哪些?
- 解: K₆有15条边, K_{3,3}有9条边, 分别给K_{3,3} 加0,1,2,3,4,5,6条边: 共10种. #

对偶图

- 平面图G=<V,E>, G的面集合是R
- 对偶图G*=<V*,E*>, G*的面集合是 R*,

则V*与R, E*与E, 都是一一对应的

对偶图的性质

- ■对偶图是连通平面图
- ■环与桥互相对偶
- 平行边对偶于2个面之间的多条边界

对偶图的性质

- n*=r, m*=m
- r*=n-p+1 (n-m+r=1+p, n*-m*+r*=2)
- $d_{G*}(v_i^*) = deg_G(R_i)$

对偶图的性质

■ G₁≅G₂, 不一定G₁*≅G₂*

对偶图的性质

■ G连通 ⇔ G≅G**(要求G*不改变形状)

自对偶图

- 自对偶图: G≅G*.
- n≥4时, 轮图W_n是自对偶图

外(可)平面图

■ 平面图的所有顶点可都在一个面的边界上

外平面图充要条件

- G是外平面图 ⇔ G不含与K₄或K_{2,3}同胚子图 #
- ・(G是平面图⇔G不含与K₅或K_{3,3}同胚子图)

极大外平面图

 本身是简单外平面图,但是在任意不相邻顶点之间 加边就不是外平面图了

极大外平面图充要条件

• 设G是n(≥3)阶外平面图, 所有顶点在外部面边界上,则 G是极大外平面图 ⇔

G外部面边界是n-圈, 所有内部面边界是3-圈.

定理11.19证明(⇒)

• (⇒) 反证, 分情形讨论.

(1)有4次以上内部面 ⇒ 可加边,矛盾。

(2)外部面边界不是圈 → 简单回路,连接两个以上的圈,有割点 → 不同圈的不相邻顶点可加边,不破坏外可平面性,矛盾.

定理11.19证明(⇐)

- (⇐) 分情形讨论
- (1) 只有一个内部面 $\rightarrow K_3 \rightarrow 是极大外平面图$
- (2) 至少有两个内部面. 加边e=(u,v) \Rightarrow 其余项点分两侧 \Rightarrow 有边连接两侧顶点 \Rightarrow 子图同胚 K_{1} . #

极大外平面图必要条件

- n(≥3)阶极大外平面图G所有顶点在外部面边界上
- ⇒ G有n-2个内部面
- \Rightarrow m=2n-3
- ⇒ 至少有3个顶点度数≤3
- ⇒ 至少有2个顶点度数=2
- $\Rightarrow \kappa = 2.$

- n(≥3)阶极大外平面图G 所有顶点在外部面边界上
- ⇒ G有n-2个内部面 (归纳法)
- ⇒ m=2n-3 (面的握手定理)

- ⇒至少2个顶点度=2(内部面提供0,1,2边界)
- ⇒ κ=2 (K₃; 圈⇒无割点; 2度点⇒有2点割集)

• n(≥3)阶极大外平面图G 所有顶点在外部面边界上 ⇒ G有n-2个内部面 (归纳法)

证明 用归纳法证明,n=3时,G为 K_3 ,结论成立。设 $n=k \ge 4$ 时结论成立,n=K+1 时,由定理 11.19 容易证明 G 中存在 2 度顶点,设 v 为 G 中 2 度顶点,令 G'=G-v,则 G' 的内部面仍为 K_3 ,外部面的边界为长度为 k+1-1=k 的圈,由定理 11.19 知 G'是 k 阶极大外平面图,由归纳假设知 G'有 k-2 个内部面,于是 G 有 k-2+1=k-1=k+1-1-1=n-2 个内部面.

• n(≥3)阶极大外平面图G 所有顶点在外部面边界上

⇒ m=2n-3 (面的握手定理)

证明 (1) 由定理 11.19 和 11.20 可知,G 有(n-2) 个次数为 3 的内部面,一个次数为 n 的外部面,由定理 11.2 知,

$$2m = \sum \deg(R_1) = 3 \cdot (n-2) + n = 4n - 6 \Rightarrow m = 2n - 3.$$

• n(≥3)阶极大外平面图G 所有顶点在外部面边界上

⇒至少3个顶点度≤3 (m=2n-3,握手)建理)

(2)由定理 11.19 可知,∀ v∈V(G),d(V)≥2.若 G 中至多有 2 上顶点的度数≤3,则 (n-2)个顶点的度数≥4,于是

$$2m = \sum \deg(R_i) \geqslant 4(n-2) + 2 \times 2 \Rightarrow m \geqslant 2n-2.$$

由(1)得

$$2n-3\geqslant 2n-2.$$

这是矛盾的.

• n(≥3)阶极大外平面图G 所有顶点在外部面边界上

⇒至少2个顶点度=2(内部面提供0,1,2边界)

(3) 由定理 11.19 和 11.20 可知,在 G 中,长度为 n 的外部面的边界 C 包围 n-2 个内部面.含 2 度顶点的内部面的边界与 C 有两条公共边而不含 2 度顶点的内部面的边界与 C 至多有一条公共 边. 若 G 中至多有一个 2 度顶点,则 C 的长度 $\leq 2+(n-2-1)=n-1$,这与 C 的长度为 n 是矛盾的.

• n(≥3)阶极大外平面图G 所有顶点在外部面边界上

⇒ κ=2 (K₃; 圈⇒无割点; 2度点⇒有2点割集)

(4) 若 n=3,则 G 为 K₃,结论成立,即 κ(G)=2.下面就 n≥4 讨论.由定理 11.19 可知,G 中无割点,所以 κ(G)≥2.

G 中存在度数大于等于 3 的顶点,否则 G 为长为 n 的圈,这与它是极大外平面图矛盾. 不妨设 v_n 是 G 中最大度数顶点之一,则 $d(v_n) \ge 3$. 考虑 $G' = G - v_n$,则 G' 中存在路径 $v_1v_2 \cdots v_{n-2}v_{n-1}$,则 v_n 与 $v_{i_1} = v_1, v_{i_2}, \cdots, v_{i_{d(v_n)}}$ ($= v_{n-1}$) 相邻,则 $G' - v_{i_2}$ 为非连通图,即 $\{v_n, v_{i_2}\}$ 为 G 的人,制集,所以 $\kappa(G) \le 2$. 综上所述, $\kappa(G) = 2$.

单元10.4 平面哈密顿图

什么样的平面图一定是哈密顿图? 四面体图、六面体图、十二面体图都是哈密顿图 泰特猜想: 3-连通3-正则平面图是哈密顿图?

内容提要

- 平面图与哈密顿图
 - Tait猜想的反例
 - 平面哈密顿图的充分条件
 - 平面哈密顿图的必要条件

Tait猜想

• Tait猜想(1880):

3连通3正则平面图都是哈密顿图

• 4, 6, 12面体图验证;解决四色猜想

Tait猜想的反例

- Tutte图(1946): 46阶反例(左图)
- Lederberg图(1967): 38阶反例(右图)

平面哈密顿图充分条件

• 定理(Tutte,1956):

4连通平面图是哈密顿图.#

平面哈密顿图必要条件

• 定理11.23(Grinberg,1968):

n阶简单平面哈密顿图,哈密顿回路内(外)部次数为i的面数为 $r_{i}'(r_{i}'') \Rightarrow$ $\Sigma^{n}_{i=3}(i-2)(r_{i}'-r_{i}'')=0.$

定理11.23证明

- $\Sigma_{i=3}^{n}(i-2)(r_{i}'-r_{i}'')=0.$
- ·证:设哈密顿回路C内有m₁条边,则

$$\sum_{i=3}^{n} r_i' = m_1 + 1.$$

$$\Sigma$$
内部面 $deg(R_j) = \Sigma_{i=3}^n ir_i' = 2m_1+n_i$

以上两式整理,则

$$\sum_{i=3}^{n} (i-2)r_{i}'=n-2.$$

同理
$$\Sigma_{i=3}^{n}$$
(i-2) r_{i} "=n-2.#

· 下图中不存在过边(a,b)的哈密顿回路. (由此可证Tutte图和Lederberg图不是哈密顿图.)
#

- $\Sigma_{i=3}^{n}$ (i-2)(r_{i} '- r_{i} ")=0 (定理11.23)
- $(r_3'-r_3'')+2(r_4'-r_4'')+3(r_5'-r_5'')+6(r_8'-r_8'')=0$

- $(r_3'-r_3'')+2(r_4'-r_4'')+3(r_5'-r_5'')+6(r_8'-r_8'')=0$
- (1-0)+2(r_4' - r_4'')+3(r_5' - r_5'')+6(0-1)=0
- $2(r_4'-r_4'')+3(r_5'-r_5'')=5$

•
$$2(r_4'-r_4'')+3(r_5'-r_5'')=5$$

- 3(r₅'-r₅") = 5 或 1
- · 上式不可能成立, 因为(r5'-r5")是整数. #

总结

• 平面哈密顿图

- Tait猜想的反例
- 平面哈密顿图的充分条件
- 平面哈密顿图的必要条件

总结

- ■平面图
 - ■欧拉公式
 - ■必要条件和充要条件
- ■对偶图
- ■外平面图

作业

■ P179: 6, 7, 12, 16, 18 (选做)