EE901 PROBABILITY AND RANDOM PROCESSES

MODULE -3
DISTRIBUTION OF
RANDOM VARIABLES

Abhishek Gupta

ELECTRICAL ENGINEERING IIT KANPUR

28

Probability of a Singleton Set

$$F_X(x) - F_X(x^-) = \mathbb{P}(\{X = x\})$$

- If F_X is continuous everywhere, the probability of a singleton set $\{x\}$ is zero.
- This means there is no point \boldsymbol{x} where probability mass is concentrated.
- $\bullet\,$ We say the mass is diffused and a mass density exists.
- If for any x, probability of $\{x\}$ is non-zero then, there is a discontinuity or a jump there.
- At those point, probability mass is concentrated.

29

Types of Random Variables

- Depending on how probability mass is distributed, random variables are divided into two types:
 - Discrete
 - Continuous
 - Mixed
- RV is a function, so the set of values it takes is known as its range.

- A random variable is called a discrete RV if its range is finite or countable.
- Its CDF will have discontinuities and has discrete levels
- · Let us start with an example.

31

- · Pick a direction with equal probability
 - $\Omega = \{N, W, E, S\}$
 - X is 1 if picked direction is N, otherwise it is 0
 - $X(\omega) = 1(\omega = N)$
 - X takes only two values 0 and 1, hence it is a discrete RV
 - What is its probability law and CDF?

	$X(\omega)$ = Indicator that North is picked		
- W	$\mathbb{P}_X(B) = \Pr[X \in B] = \mathbb{P}(\mathbb{E}_B)$	$E_B = \{\omega : X(\omega) \in B\}$	
P = (m, r)	CDF is $F_X(x) = \mathbb{P}_X((-\infty, x])$		

$B=(-\infty,x].$		
x < 0	$\mathbb{P}_X(B) = 0$	
x = 0	$\mathbb{P}_X(B) = 3/4$	
0 < x < 1	$\mathbb{P}_X(B) = 3/4$	
x = 1	$\mathbb{P}_X(B) = 1$	
1 < x	$\mathbb{P}_X(B)=1$	

· A(,,
0	<i>x</i> < 0
3/4	x = 0
3/4	0 < x < 1
1	x = 1
1	1 < x
	0 3/4

- Set B that does not include 1 or 0 in them have no probability mass in them.
 This indicates that all the probability mass is concentrated at these two points only.

 $X(\omega)$ = Indicator that North is picked CDF is $F_X(x) = \mathbb{P}_X((-\infty, x])$

$$\exists \text{ is } F_X(x) = \mathbb{P}_X((-\infty, x])$$

$$= \begin{cases} 0 & x < 0 \\ 3/4 & x = 0 \\ 3/4 & 0 < x < 1 \\ 1 & x = 1 \\ 1 & 1 < x \end{cases}$$

- There are two jumps at X=0 and X=1 which tells that $\mathbb{P}(\{X=0\})$ and $\mathbb{P}(\{X=1\})$ are non-zero.
- Rest singleton elements have zero probability.

 All the probability mass is concentrated at these two points only with 1 having ¼ mass and 0 having ¾ mass.

34

Another way to compute CDF

- X takes only two values 0 and 1.
- X = 0 is equivalent to the event {W,S,E} which has
- 3/4 probability i.e. P[{X = 0}] = 3/4
 X = 1 is equivalent to the event {N} which has 1/4 probability i.e. P[{X = 1}] = 1/4
- Since $F_X(-\infty) = 0$, start with 0 at $-\infty$.
- Reach x = 0 and then make a jump of $\mathbb{P}[\{X = 0\}]$ to reach 3/4 and continue until x = 1.
- At x = 1, make a jump of $\mathbb{P}[\{X = 1\}]$ to reach 3/4+1/4=1.
- Stay at 1 as x approaches infinity.

No of Jumps = No of values X can take

Sum of all jumps = 1

- Specifying all jumps (jump points and jump amounts) fixes the distribution including CDF.
- Hence, distribution can be specified by specifying $\mathbb{P}[\{X=x\}]$ for all x.

$$p_X(x) = \mathbb{P}(\{X = x\}) = \begin{cases} 1/4 & \text{if } x = 1\\ 3/4 & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}$$

Example: Pick a Direction

- Specifying all jumps (jump points and jump amounts) fixes the distribution including CDF.
- + Hence, distribution can be specified by specifying $\mathbb{P}[\{X=x\}]$ for all x.

 $p_X(x) = \mathbb{P}(\{X = x\}) = \begin{cases} 1/4 & \text{if } x = 1\\ 3/4 & \text{if } x = 0\\ 0 & \text{otherwis} \end{cases}$

This is known as probability mass function or PMF.

37

Discrete RV

* Let RV takes only finite number of values x_i 's

$$\Omega = \bigcup_{i} \{X = x_i\}$$

$$\mathbb{P}(\Omega) = \sum_{i} \mathbb{P}(\{X = x_i\})$$

$$1 = \sum_{i} \mathbb{P}(\{X = x_i\})$$

38

Discrete RV

$$1 = \sum_i \mathbb{P}(\{X = x_i\})$$

This indicates that $\mathbb P$ ({ $X=x_i\}$) 's can not be all zeros otherwise their sum cannot be non-zero.

The probability mass is concentrated at these points.

The PMF at a value x is defined as the probability that X takes the value x

$$p_X(x) = \mathbb{P}(\{X = x_i\})$$

This is also true for RVs that take countable number of values.

Discrete RV

Also note that

note that
$$\{X\in (-\infty,x]\} = \bigcup_{\{x_i\le x\}} \{X=x_i\}$$

$$\mathsf{F}_X(x) = \sum_{x_i\le x} p_X(x_i)$$

As we increase x, more mass is accumulated in $(-\infty,x]$. As a new x_i is added when x passes it, a sudden mass is added which results in a jump.

There are jumps in CDF, one corresponding to each value in the range.

$$F_X(x) - F_X(x^-) = \mathbb{P}(\{X = x\})$$

At other places, $F_X(x)$ remains constant. So, plot of the CDF of such a RV looks like stair case. Hence, the name "Discrete" RV.

40

CDF and PMF of a Discrete RV

 The distribution can be specified by listing P[X ≤ x] for all x.

 $F_X(x) = \mathbb{P}(\{X \le x\})$

• The distribution can be specified by listing $\mathbb{P}[X = x]$ for all x.

$$p_X(x)=\mathbb{P}\left(\{X=x\}\right)$$

• This is CDF.

• This is PMF.

41

Discrete RV from Countable Ω

- It is not required to have sample space with finite/countable number of outcomes.
- · Let us take another example:
- Pick a number between 0 and 1 $\,$
 - Ω = (0,1)
 - $\it X$ is 1 if picked number is less than 0.5, otherwise it is 0
 - X(ω) = 1(ω < 0.5)
 - X takes only two values 0 and 1, hence it is a discrete RV
 - What is its CDF?

43

Continuous RV

- When RV takes only finite/countable number of values x_i 's, we saw that

$$1 = \sum_i \mathbb{P}(\{X = x_i\})$$

- * Therefore, $\mathbb{P}(\{X=x_i\})$ can not be zeros otherwise the sum cannot be non-zero.
- Now, let us consider a RV that take uncountable number of values.
- If each $\mathbb{P}(\{X=x\})$ is non-zero, then the summation will be infinite.
- Hence, $\mathbb{P}(\{X = x\})$ should be zero for all x except few countable number of points.
- $\bullet \quad \text{Let us take } \mathbb{P}(\{X=x\}) = 0 \text{ for all } x.$
- Now, since

 $F_X(x)-F_X(x^-)=\mathbb{P}(\{X=x\}),$

there will not be any jumps or discontinuities.

Corresponding CDF will be continuous.

44

Continuous RV

 $\mathbb{P}(\{X=x\})=0 \text{ for all } x.$

Now, since

$$F_X(x)-F_X(x^-)=\mathbb{P}(\{X=x\}),$$

there will not be any jumps. Corresponding CDF will be continuous.

- · Probability mass is not concentrated at any points.
- A RV is a continuous RV if its CDF $F_X(x)$ is continuous with x.

Pick a number in (0,1) Probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$

 $X(\omega) = 4\omega$ for each $\omega \in \Omega$.

CDF is
$$F_X(x) = \mathbb{P}_X((-\infty, x])$$

$$= \begin{cases} 0 & x \le 0 \\ x/4 & 0 < x < 4 \\ 1 & x \ge 4 \end{cases}$$

46

- A RV is a continuous RV if its CDF $F_X(x)$ is continuous with x.
- As we increase x, more mass is accumulated in $(-\infty, x]$.
- So CDF $F_X(x)$ increases.
- · However, probability mass is not concentrated at any points, but it is diffused

- Take a uniform rod with length ${\it L}$
- Now, take a segment of length ℓ from one side.
- Its mass is $m(\ell)$ is a function of ℓ . Bigger the length,
- If I take a segment of zero length, it will not have any $m(\ell)$
- · However, combining all these segments, we get the complete rod which has a mass.

1	0
4	О

- Take a uniform rod with length ${\it L}$ and mass ${\it M}$.
- If I take a segment of zero length, it will not have any mass.
- If we take a very small segment of length $d\ell,$ what will be
- Let us take its density as $\rho = M/L$.

 $\mathrm{d} m = \rho \; \mathrm{d} \ell \quad \text{which will contribute to } m(\ell) \, .$

• Total mass will be the sum over these segments

$$M = \int dm = \int_{0}^{L} \rho d\ell = \rho L = M$$

For uniformly built rod, density is defined as mass per unit

49

- Take a non-uniform rod with length L and mass M.
- Let the density be $\rho(\ell)$.
- If we take a very small segment of length $\mathrm{d}\ell$, its mass is $\mathrm{d}m=\rho(\ell)\,\mathrm{d}\ell$
- · Therefore, the total mass

$$M = \int dm = \int_{0}^{L} \rho(\ell) d\ell$$

• The mass of a segment (a,b)

$$M = \int_{a}^{b} \rho(\ell) d\ell$$

• Denote the mass of a segment of length ℓ from one side by $m(\ell)$. Density is defined as derivative of mass $m(\ell)$ with ℓ . $\rho(\ell) = \frac{\mathrm{d} m}{\mathrm{d} \ell}$

$$\rho(\ell) = \frac{dn}{d\ell}$$

This is known as probability density function or PDF.

50

Continuous RV

- A RV is a continuous RV if its CDF F_X(x) is continuous with x.
- Since the CDF $F_X(x)$ can be seen as the (probability) mass of interval $(-\infty, x]$, a density can be defined here also such that

$$F_X(x) = \mathbb{P}_X((-\infty, x]) = \int_{-\infty}^{x} f_X(x) dx$$

· Therefore, the density is

$$f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x)$$

• The probability of X taking a value in the interval [a,b]

$$\mathbb{P}_X([a,b]) = \int_a^b f_X(x) dx$$

• The probability of X takin is very small,

ng a value in t	he interval $(a, a + \epsilon)$ where ϵ
$\mathbb{P}_X([a,b]) =$	$\int_{0}^{a+\epsilon} f_X(x) dx = f_X(x)\epsilon$

Continuous RV

 $\mathbb{P}_X([a,b]) = f_X(x)\,\epsilon$

52

Example: Pick a Number

Pick a number in (0,1) Probability space $(\Omega,\mathcal{B}(\Omega),\mathbb{P})$ $X(\omega)=4\omega$ for each $\omega\in\Omega$. CDF is

$$F_X(x) = \begin{cases} 0 & x \le 0 \\ x/4 & 0 < x < 4 \\ 1 & x \ge 4 \end{cases} \qquad f_X(x) = \begin{cases} 0 & x \le 0 \\ 1/4 & 0 < x < 4 \\ 0 & x \ge 4 \end{cases}$$

53

Mixed RV

- $\mathbb{P}(\{X = x\})$ should be zero for all x except few countable number of points.
- Let us take $\mathbb{P}(\{X=x\}) = 0$ for all x except one point.

