CS208: Mathematical Foundations of CS

Fall 2018

Lecture 16: September 14

Lecturer: Samar Scribes: Vinay (B17068), Deepak(B17039)

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

16.1 Infinite Sets

Lemma 1 A strict B iff |A| < |B|Here A strict B is defined as NOT(A surjective B).

Proof: A strict B iff NOT(A surj B). A strict B iff NOT ($|A| \ge |B|$). A strict B iff |A| < |B|.

16.1.1 A few more lemma

For set A,B and C

- if A surjective B iff B injective A.
- if A surjective B and B surjective C then A surjective C.
- if A bijective B and B bijective C then A bijective C.
- if A bijective B then B bijective A.

16.1.2 Lemma and its proof

Lemma 1.

A strict B and B strict C then A strict C.

Proof: PROOF BY CONTRADICTION assume that NOT(A strict C) is true. \implies A surjective C. \implies B strict C

C surjective B From above we get

```
A surjective C and C surjective B.
```

 \implies A surjective B.

but A strict B implies NOT(A surjective B)

Here it contradicts hence lemma is true.

Lemma 2.

Let A be a set and $b \notin A$. Then A is infinite iff A bij $A \cup \{b\}$.

Proof: Since A is not the same size as $A \cup \{b\}$ when A is finite, we only have to show that $A \cup \{b\}$ is the same size as A when A is infinite.

$$A = \{a_0, a_1, a_2, \dots a_n\}$$

Lets define bijection $e: A \cup \{b\} \implies A$

$$e(b) ::= a_0,$$

 $e(b_n) ::= a_{n+1}$

$$e(a) := a$$

for
$$a \in A - \{b, a_0, a_1, a_2, \dots a_n\}$$

References

[CW87] D. COPPERSMITH and S. WINOGRAD, "Matrix multiplication via arithmetic progressions," *Proceedings of the 19th ACM Symposium on Theory of Computing*, 1987, pp. 1–6.