第二章-作业

1

用 O、 Ω 、 θ 表示函数 f 与 g 之间阶的关系,并分别指出下列函数中阶最低和最高的函数:(该题考察阶的关系,20分)

1.
$$f(n)=100$$
, $g(n)=\sqrt[100]{n}$ $f(n)=O(g(n))$
2. $f(n)=6n+n\lfloor logn\rfloor$, $g(n)=3n$ $g(n)=O(f(n))$

3.
$$f(n)=rac{n}{logn}-1$$
 , $\ g(n)=2\sqrt{n}$ $\ f(n)=O(g(n))$

4.
$$f(n) = 2^n + n^2$$
, $g(n) = 3^n$ $f(n) = O(g(n))$

5.
$$f(n) = log_3 n$$
 , $g(n) = log_2 n$ $f(n) = heta(g(n))$

• 阶最低的函数: f(n) = 100

• 阶最高的函数: $g(n) = 3^n$

2

证明: $\sum_{k=1}^{\infty} \frac{1}{k^2}$ 有常数上界。 (该题考察和式求和, 20分)

证明:

因为当 $k-1 \le x \le k$ 时,有 $\frac{1}{k^2} \le \frac{1}{x^2}$,所以

$$\frac{1}{k^2} = \int_{k-1}^k \frac{1}{k^2} dx \le \int_{k-1}^k \frac{1}{x^2} dx (k = 2, 3 \cdots)$$

从而级数的部分和为

$$egin{align} S_n &= 1 + \sum_{k=2}^n rac{1}{k^2} \leq 1 + \sum_{k=2}^n \int_{k-1}^k rac{1}{x^2} \, dx = 1 + \int_1^n rac{1}{x^2} \, dx \ &= 1 + rac{1}{2-1} (1 - rac{1}{n^{2-1}}) < 1 + rac{1}{2-1} = 2 \, (n = 2, 3 \cdots) \ \end{array}$$

表明数列 $\{S_n\}$ 有界,即 $\sum_{k=1}^{\infty} \frac{1}{k^2}$ 有常数上界。

3

给出下列各式中 T(n) 的渐近上下界,假设当 $n \leq 10$ 时, T(n) 为常数,尽可能保证给出的界限是紧的,并验证给出的答案。(该题考察递归方程解法,20分)

3.1

$$egin{align} T(n) &= 3T(n/5) + (lgn)^2 \ &a = 3, b = 5, f(n) = (lgn)^2, n^{log_ba} = n^{log_53} = O(n^{0.683}) \ &f(n) = (lgn)^2 = O(n^{log_53 - 0.28}) \ &\therefore T(n) = \Theta(n^{log_53}). \end{split}$$

$$T(n) = T(\sqrt{n}) + \Theta(lglgn)$$

设
$$m = logn$$
,则 $n = 2^m$, $T(2^m) = T(2^{m/2}) + \Theta(lgm)$.

尝试使用master定理,则

$$a = 1, b = 2, f(m) = \Theta(logm), m^{log_b a} = m^{log_2 1} = 1$$

f(m) 不是多项式的大于 n^{log_ba} , 不能用 master 定理.

设
$$q = logm$$
,则 $m = 2^q$, $S(2^q) = S(2^q/2) + \Theta(q)$.

故 $\Theta(q)=P(q)-P(q-1)$,由定义有:存在 $c_1,c_2>0,n_0>0$,使得当 $n>n_0$ 时,下式成立:

$$c_1q \leqslant P(q) - P(q-1) \leqslant c_2q$$

q 从 1 取到 q, 并累加得:

$$rac{c_1}{2}q^2\leqslant c_1\sum_{k=1}^q k\leqslant P(q)-P(0)\leqslant c_2\sum_{k=1}^q k\leqslant c_2q^2$$

可知
$$P(q) = \Theta(q^2)$$
,而 $n = 2^{2^q}, q = loglogn$,故 $T(n) = \Theta((logn)^2)$

3.3

$$T(n) = 10T(n/3) + 17n^{1.2}$$

$$egin{align} a = 10, b = 2, f(n) = 17n^{1.2}, n^{log_b a} = n^{log_3 10} = O(n^{2.095}) \ f(n) = 17n^{1.2} = O(n^{log_3 10 - \epsilon}) \,, \epsilon = 0.8. \ dots \,. \ T(n) = \Theta(n^{log_3 10}). \end{split}$$

3.4

$$T(n) = 7T(n/2) + n^3$$

$$a=7, b=2, f(n)=n^3, n^{log_ba}=n^{log_27}=O(n^{2.80}) \ f(n)=n^3=\Omega(n^{log_27+\epsilon})$$
 , $\epsilon=0.2.$

且
$$af(n/b) = 7(n/2)^3 \le cn^3 = cf(n)$$
, 只需 $c \ge 7/8$.

故存在常数 $7/8 \leq c < 1$,使得 $af(n/b) \leq cf(n)$ 成立.故 $T(n) = \Theta(n^3)$.

3.5

$$T(n) = T(n/2 + \sqrt{n}) + \sqrt{6046}$$

显然存在
$$n_0>0$$
,使得当 $n>n_0$ 时, $T(n/2) < T(n/2+\sqrt{n}) < T(3n/4)$,

因
$$T(n)=T(n/2)+\sqrt{6046}$$
 和 $T(n)=T(3n/4)+\sqrt{6046}$ 由 master 定理都可得 $T(n)=\Theta(logn).$

故
$$T(n) = \Theta(logn)$$
.

运用主定理求解下面方程,假设T为O(1)作为基本情况: (该题考察主定理, 20分)

4.1

$$T(n)=25T(n/5)+n^{2.1}$$
 $a=25,b=5,f(n)=n^{2.1},n^{log_ba}=n^{log_525}=n^2$ $f(n)=n^{2.1}=\Omega(n^{log_ba+\epsilon})\,,\epsilon=0.1.$

且 $af(n/b)=25(n/5)^{2.1}\leq cn^{2.1}=cf(n)$,只需 $c\geq 5^{-0.1}$.

故存在常数 c=0.9<1,使得 $af(n/b)\leq cf(n)$ 成立.故 $T(n)=\Theta(f(n))=\Theta(n^{2.1})$.

4.2

$$egin{aligned} T(n) &= 25T(n/5) + n^{1.5} \ &a = 25, b = 5, f(n) = n^{1.5}, n^{log_b a} = n^2 \ &f(n) = n^{1.5} = \Theta(n^{log_b a - \epsilon}) \,, \epsilon = 0.5. \ &dots \, T(n) = \Theta(n^{log_b a}) = \Theta(n^2). \end{aligned}$$

4.3

$$egin{aligned} T(n) &= 25T(n/5) + n^2 \ & a = 25, b = 5, f(n) = n^2, n^{log_b a} = n^2 \ & f(n) = n^2 = \Theta(n^2) = \Theta(n^{log_b a}) \ & \therefore T(n) = \Theta(n^{log_b a} log n) = \Theta(n^2 log n). \end{aligned}$$

5

对递归式 $T(n)=3T(n/4)+cn^2$,用递归法确定一个渐进上界,并画出递归树。

可能会用到的公式: $a^{log_bc=c^{log_ba}}$ (该题考察递归树,20分)

$$egin{align} T(n) &= cn^2 + rac{3}{16}cn^2 + (rac{3}{16})^2cn^2 + \cdots + (rac{3}{16})^{log_4n-1}cn^2 + \Theta(n^{log_43}) \ &= \sum_{i=0}^{log_4n-1} (rac{3}{16})^icn^2 + \Theta(n^{log_4^3}) \ &= rac{(rac{3}{16})^{log_4n} - 1}{rac{3}{16} - 1}cn^2 + \Theta(n^{log_43}) \ \end{array}$$

猜测 $T(n) = O(n^2)$,用代入法验证.

即证: $T(n)=O(n^2)$, 即证: 存在 d>0, $n_0>0$, 使得当 $n>n_0$ 时, 有 $T(n)\leq dn^2$

证:假设当 m<n 时,有 $T(m) \leq dm^2$ 成立.

那么当m=n时,

$$T(m) = 3T(m/4) + cm^2 \leq 3d(m/4)^2 + cm^2 = 3/16dm^2 + cm^2 = (c + rac{3}{16}d)m^2.$$

要使得上式成立,只需 $d \geq 16/13c$.

故当 $d \geq 16/13c$ 时,当 m = n 时, $T(m) \leq dm^2$ 成立.

即证得 $T(n) = O(n^2)$.