# 重识概率世界

## 学习过程

- 读书学习, 提升认知过程中, 开始重新认识概率世界
- 混沌大学曹天元 《不确定性与新商业逻辑》
- 《随机漫步的傻瓜》
- 量子力学学习:《量子物理史话》、《量子力学揭秘(视频)》、《世界观》
- 有待学习《概率论与数理统计》、《概率论沉思录》
- 思考总结

# 走进概率世界

- - 生日悖论
- - 股票投资
- - 赌徒破产以小搏大
- - 赌神理论: 10000个人在一个房间里面赌博
- - 经济学: 成功或者失败的原因难以确定。旱涝保收的生意不是好生意。
- - 风口上的猪会飞
- - 成功学/成功人士
- 企业连续七年盈利
- - 全概率公式应用

## 生日问题 [編8]

维基百科、自由的百科全书



本条目需要编修,以确保文法、用词、语气、格式、标点等使用恰当。 (2018年4 月)

请按照校对指引,帮助编辑这个条目。(帮助、讨论)

关于新加坡及亚洲学校数学奥林匹克的题目,请见"谢丽尔的生日"。

生日问题是指,如果在一个房间要多少人,则两个人的生日相同的概率要大于50%?答案是23人。 这就意味着在一个 典型的标准小学班级(30人)中,存在两人生日相同的可能性更高。对于60或者更多的人,这种概率要大于99%。从 引起逻辑矛盾的角度来说生日悖论并不是一种悖论,从这个数学事实与一般直觉相抵触的意义上,它才称得上是一个悖 论。大多数人会认为,23人中有2人生日相同的概率应该远远小于50%。计算与此相关的概率被称为生日问题,在这个 问题之后的数学理论已被用于设计著名的密码攻击方法: 生日攻击。

例 3d 一项血液化验有 95% 的把握将患有某种疾病的患者诊断出来, 但是, 这项化验用于健康人也会有 1% 的"伪阳性"结果 (也即, 如果一个健康人接受这项化验, 则化验结果误诊此人患该疾病的概率为 0.01). 如果该疾病的患者事实上仅占人口的 0.5%, 若某人化验结果为阳性, 问此人确实患该疾病的概率为多大?

解: 以 D 表示 "接受化验的这个人患该疾病" 这一事件, E 表示 "其化验结果为阳性" 这一事件, 所求概率 P(D|E) 为

$$\begin{split} P(D|E) &= \frac{P(DE)}{P(E)} = \frac{P(E|D)P(D)}{P(E|D)P(D) + P(E|D^c)P(D^c)} \\ &= \frac{0.95 \times 0.005}{0.95 \times 0.005 + 0.01 \times 0.995} = \frac{95}{294} \approx 0.323 \end{split}$$

因此, 在验血结果为阳性的人当中, 真正患该病只有 32%. 对于这一结果, 许多学生感到非常吃惊 (因为验血似乎是个好办法, 他们总认为这个数值应该高得多), 因此, 有必要给出第二个解法. 与前一个解法比较, 第二个解法尽管不严格, 但却更直观.



| BR                |     |
|-------------------|-----|
| 第一篇 國天鹅亭件         | 55  |
| 第一章 赚钱的赔机性        | 60  |
| 第二章 奇特的結算方法       | 99  |
| 第三章 从数学的角度思考历史    | 135 |
| 第四章 随机性和科学知识分子    | 188 |
| 第五章 最不远者可能生存吗?    | 205 |
| 第六章 偏态与不对称        | 248 |
| <b>第七章 归纳法的问题</b> | 288 |
| 第二篇 打字机前的猴子       | 317 |
| 第八章太多 "下一个富翁"     | 324 |
| 第九章 买卖证券比赖蛋容易     | 343 |
| 第十章 生活中的非线性现象     | 388 |
| 第十一章 我们是我率盲       | 405 |
| 舞三篇 活在随机世界中       | 458 |
| 第十二章 赌徒的进信和竞中的鸽子  | 467 |
| 第十三章 概率与怀疑论       | 484 |
| 第十四章 掌控膀机现象       | 506 |



# 《量子力学》

- · 《量子物理史话》、《量子力学揭秘(视频)》、《世界观》
- 关于量子理论:量子实体、量子数学、量子理论 应用
- 量子实体: 电子、中子、质子和其他亚原子粒子; 光子; 放射性衰变时释放出来的粒子。







就像量子世界本身并行一样,量子信息基本的单位量子比特,是非常脆弱的,要不是0,要不是1,量子比特既是0,又是1,是0到一的叠加的状态,如果稍微有一些噪声,量子叠加状态要不变成0,要不变成1。

一张首晟\*贵阳数博会\*201805 https://www.huxiu.com/article/275194.html

- 量子实验: 量子被测量之前存在不确定性
- 世间万物均由量子组成。量子处于不稳定的状态, 有成千上万的量子组成的实物和系统更具有不确 定性。

# 在不确定中寻找确定

- 永远不要忘记考虑随机波动的可能性
- 要克服自己的心理谬误。要防范心理本能
- 概率都是反直觉的,永远不要信任自己的直觉
- 千万不要把成功的经验当做真理,要牢记不确定性因素,是主宰你的根本性的因素。成功是一个运气

## 继续学习

- 基础理论学习
- 继续总结概率现象,进行刻意练习

## 概率论与数理统计



作者: 陈希德

出版社: 中国科学技术大学出版社

出版年: 2009-2 可数: 385

定价: 38.00元 丛书: 陈希德文集

ISBN: 9787312018381

### 豆瓣评分

9.4 \*\*\*\*\*\*\*

75.7% 4届 18.5% 3 4.9% 2差 0.9% 1星 0.0%



概率论沉思录

作者: [美] 杰恩斯

出版社: 人民邮电出版社 副标题: (英文版) 出版年: 2009-4

页数: 727 定价: 99,00元

丛书: 图灵原版数学·统计学系列

ISBN: 9787115195364

#### 豆堰评分

9.4 \*\*\*\*\*

74.1% 45 22.8%

3星 | 1.9% 2里 0.6% 1星 0.6%

# 自我思考

- 构建不确定性世界观
- 重新思考生活和工作
- 针对不确定性刻意练习

学习概率与统计,可以帮助你养成不确定性思维的习惯。不确定性思维可以帮助你认识一个全新的世界。