Project Title: Market Basket Insights

Problem Statement: Unveiling Customer Behaviour through Association Analysis: Utilize market basket analysis on the provided dataset to uncover hidden patterns and associations between products, aiming to understand customer purchasing behaviour and identify potential cross-selling opportunities for the retail business.

Phase 4: Development Part - 2

Continue building the market basket insights project by performing association analysis and generating insights .

Introduction:

Continuing the development of the Market Basket Insights project involves leveraging association analysis techniques to uncover valuable patterns and relationships within customer purchase data.

By analyzing the contents of market baskets, we can generate insights that will inform decision-making, improve marketing strategies, and enhance the overall shopping experience. In this phase, we will explore various association rules, like frequent itemsets and support-confidence measures, to identify which products tend to be purchased together and the strength of these associations.

The ultimate goal is to provide actionable insights that can drive product recommendations, optimize inventory management, and maximize cross-selling opportunities. This project promises to unlock a deeper understanding of customer behavior and empower businesses to make data-driven decisions for improved profitability and customer satisfaction.

Association Rules:

Association rules are generated using the Apriori algorithm, which is a popular algorithm for discovering interesting relationships or associations among items in a dataset. Association rule mining is commonly used in market basket analysis, where the goal is to find associations between items frequently purchased together.

The generated association rules provide insights into the relationships between different items or itemsets in the dataset. Each association rule consists of two parts: the antecedent (or left-hand side) and the consequent (or right-hand side). The antecedent represents the item(s) or itemset(s) that act as a condition or premise, while the consequent represents the item(s) or itemset(s) that are predicted or inferred from the antecedent.

The association rules are evaluated based on different metrics, such as support, confidence, lift, leverage, and conviction. These metrics provide measures of the interestingness or strength of the rules.

- Support measures the proportion of transactions in the dataset that contain both the antecedent and the consequent.
- Confidence measures the conditional probability of the consequent given the antecedent.
- Lift measures the ratio of observed support to expected support, indicating the strength of the association between the antecedent and the consequent.
- Leverage measures the difference between the observed support and the expected support, indicating the significance of the association.
- Conviction measures the ratio of the expected confidence to the observed confidence, indicating the degree of dependency between the antecedent and the consequent.

By examining the association rules, you can identify interesting relationships, cooccurrences, or patterns among items, which can be used for various purposes such as product recommendation, market segmentation, or inventory management.

To generate the association rules, we use the Apriori algorithm with a minimum support threshold of 0.05 (5%). This ensures that only itemsets with sufficient frequency in the dataset are considered.

Let's explore the generated association rules:

```
# Assign the original DataFrame to df2

df2 = df

# Filter rows based on item occurrences
item_counts = df2['Itemname'].value_counts(ascending=False)
filtered_items = item_counts.loc[item_counts > 1].reset_index()['index']
df2 = df2[df2['Itemname'].isin(filtered_items)]

# Filter rows based on bill number occurrences
bill_counts = df2['BillNo'].value_counts(ascending=False)
filtered_bills = bill_counts.loc[bill_counts > 1].reset_index()['index']
df2 = df2[df2['BillNo'].isin(filtered_bills)]
```

Filtering is done based on item occurrences:

The frequency count of each unique item name in the 'Itemname' column is calculated an d stored in item_counts.

filtered_items is created by filtering item_counts to retain only item names that occur mor e than once.

Rows in df2 are filtered to keep only those where the item name in the 'Itemname' colum n is present in the filtered_items list.

Filtering is done based on bill number occurrences:

The frequency count of each unique bill number in the 'BillNo' column is calculated and st ored in bill_counts.

filtered_bills is created by filtering bill_counts to retain only bill numbers that occur more t han once.

Rows in df2 are filtered to keep only those where the bill number in the 'BillNo' column is present in the filtered_bills list.

After executing the code, the filtered DataFrame df2 will contain only the rows where both the item name and bill number occur more than once in the original df.

Create a pivot table using the filtered DataFrame
pivot_table = pd.pivot_table(df2[['BillNo','Itemname']], index='BillNo', columns='Itemname', aggfu
nc=lambda x: True, fill_value=False)

The code creates a pivot table that represents the occurrence of items in bills. The pivot table provides a binary representation where each cell indicates whether a specific item appears in a particular bill. Here's how it works:

The original DataFrame df2 contains information about bills and corresponding item names.

By using the pd.pivot_table() function, we reshape the DataFrame to create a pivot table.

The pivot table has 'BillNo' as the index and 'Itemname' as the columns, grouping the data b ased on these two columns.

The goal is to determine whether a specific item appears in a particular bill.

Each cell in the pivot table is filled with either True or False:

If an item appears in a bill, the corresponding cell is marked as True.

If an item does not appear in a bill, the corresponding cell is marked as False.

This binary representation of item occurrence in bills allows us to easily analyze and identify patterns or associations between different items and bills.

The resulting pivot table provides a concise summary of the occurrence of items in bills, which can be used for various purposes such as market basket analysis, recommendation systems, or identifying frequent itemsets and association rules.

from mlxtend.frequent_patterns import apriori from mlxtend.frequent_patterns import association_rules

Generate frequent itemsets with minimum support of 0.1 (10%)

0 0.017370 (10 COLOUR SPACEBOY PEN)
1 0.013751 (12 MESSAGE CARDS WITH ENVELOPES)
2 0.019653 (12 PENCIL SMALL TUBE WOODLAND)
3 0.019820 (12 PENCILS SMALL TUBE RED RETROSPOT)
4 0.019597 (12 PENCILS SMALL TUBE SKULL)
....
2467 0.010355 (LUNCH BAG RED RETROSPOT, LUNCH BAG SUKI DESIG...
2468 0.010188 (LUNCH BAG RED RETROSPOT, LUNCH BAG SUKI DESIG...
2469 0.010300 (LUNCH BAG RED RETROSPOT, LUNCH BAG SPACEBOY D...
2470 0.010467 (LUNCH BAG RED RETROSPOT, LUNCH BAG PINK POLKA...
2471 0.011302 (CHARLOTTE BAG PINK POLKADOT, STRAWBERRY CHARL...

[2472 rows x 2 columns]

Association Rules:

	anteced ents	consequ ents	antece dent suppor t	conseq uent suppor t	supp ort	confid ence	lift	lever age	convic tion	zhangs_ metric
0	(60 CAKE CASES DOLLY GIRL DESIGN)	(PACK OF 72 RETROS POT CAKE CASES)	0.0231 60	0.0712 06	0.013 028	0.5625 00	7.899 629	0.011 378	2.122 958	0.89412
1	(60 TEATIME FAIRY	(PACK OF 72 RETROS POT	0.0444 27	0.0712 06	0.024 218	0.5451 13	7.655 446	0.021 054	2.041 812	0.90979 4

	anteced ents CAKE CASES)	consequ ents CAKE CASES)	antece dent suppor t	conseq uent suppor t	supp ort	confid ence	lift	lever age	convic tion	zhangs_ metric
2	(ALARM CLOCK BAKELIK E CHOCO LATE)	(ALARM CLOCK BAKELIK E GREEN)	0.0232 16	0.0535 58	0.015 254	0.6570 74	12.26 8575	0.014 011	2.759 906	0.94032
3	(ALARM CLOCK BAKELIK E CHOCO LATE)	(ALARM CLOCK BAKELIK E PINK)	0.0232 16	0.0422 56	0.011 691	0.5035 97	11.91 7802	0.010 710	1.929 369	0.93786 5
4	(ALARM CLOCK BAKELIK E CHOCO LATE)	(ALARM CLOCK BAKELIK E RED)	0.0232 16	0.0571 21	0.015 811	0.6810 55	11.92 3112	0.014 485	2.956 246	0.93790 3
13 92	(CHARL OTTE BAG SUKI DESIGN, STRAWB ERRY CHARLO T	(CHARL OTTE BAG PINK POLKAD OT, WOODL AND CHARLO T	0.0184 83	0.0218 24	0.011 302	0.6114 46	28.01 7319	0.010 898	2.517 477	0.98246 7

	anteced ents	consequ ents	antece dent suppor t	conseq uent suppor t	supp ort	confid ence	lift	lever age	convic tion	zhangs_ metric
13 93	(CHARL OTTE BAG SUKI DESIGN, WOODL AND CHARLO TTE	(CHARL OTTE BAG PINK POLKAD OT, STRAWB ERRY CHARL	0.0185 95	0.0209 89	0.011 302	0.6077 84	28.95 7623	0.010 911	2.496 105	0.98376 0
13 94	(CHARL OTTE BAG PINK POLKAD OT, STRAWB ERRY CHARL	(CHARL OTTE BAG SUKI DESIGN, WOODL AND CHARLO TTE	0.0209 89	0.0185 95	0.011	0.5384 62	28.95 7623	0.010 911	2.126 378	0.98616 5
13 95	(CHARL OTTE BAG PINK POLKAD OT, WOODL AND CHARLO T	(CHARL OTTE BAG SUKI DESIGN, STRAWB ERRY CHARLO T	0.0218 24	0.0184 83	0.011 302	0.5178 57	28.01 7319	0.010 898	2.035 738	0.98582
13 96	(WOODL AND CHARLO TTE BAG, STRAWB ERRY CHARLO TTE	(CHARL OTTE BAG PINK POLKAD OT, CHARLO TTE BAG SU	0.0224 92	0.0182 61	0.011 302	0.5024 75	27.51 6648	0.010 891	1.973 247	0.98583 2

1397 rows × 10 columns

The code uses the apriori algorithm and association rule mining techniques to analyze the occurrence of items in bills. Here's the overall idea:

Frequent Itemsets Generation:

The apriori algorithm is applied to the pivot_table created earlier, which represents the occurrence of items in bills.

The algorithm identifies sets of items that frequently co-occur together in the bills.

The minimum support threshold of 0.01 (1%) is set, meaning that an itemset must occur in at least 1% of the bills to be considered frequent.

The resulting frequent itemsets represent combinations of items that are frequently observed together in bills.

Association Rules Generation:

Using the frequent itemsets, association rules are generated.

Association rules capture relationships and patterns between items based on their co-occ urrence in bills.

The confidence metric is used to evaluate the strength of the rules. Confidence measures how often the consequent item(s) appear in bills when the antecedent item(s) are present.

A minimum confidence threshold of 0.5 (50%) is set, meaning that only rules with a confidence greater than or equal to 0.5 will be considered significant.

By applying these techniques to the pivot_table, the code enables the discovery of frequent itemsets and the extraction of meaningful association rules, helping to uncover hidden patterns and relationships in the data.

rules = rules.sort_values(['confidence', 'lift'], ascending =[False, False])

rules

	anteced ents	conseq uents	antece dent suppor t	conseq uent suppor t	supp ort	confid ence	lift	lever age	convic tion	zhangs_ metric
17	(BEADED CRYSTAL HEART PINK ON STICK)	(DOTCO M POSTA GE)	0.0114 69	0.0393 05	0.011 190	0.9757 28	24.82 4404	0.010 740	39.58 0626	0.970851
61 4	(HERB MARKER CHIVES, HERB MARKER THYME)	(HERB MARKE R PARSLE Y)	0.0104 11	0.0129 16	0.010 077	0.9679 14	74.93 8272	0.009 942	30.76 4113	0.997036
60 7	(HERB MARKER CHIVES, HERB MARKER ROSEMA RY)	(HERB MARKE R PARSLE Y)	0.0103 55	0.0129 16	0.010 021	0.9677 42	74.92 4917	0.009 887	30.59 9599	0.996977
61	(HERB MARKER CHIVES, HERB MARKER ROSEMA RY)	(HERB MARKE R THYME)	0.0103 55	0.0129 16	0.010 021	0.9677 42	74.92 4917	0.009 887	30.59 9599	0.996977
12 17	(HERB MARKER BASIL, HERB MARKER ROSEMA RY, HERB	(HERB MARKE R THYME)	0.0105 78	0.0129 16	0.010 188	0.9631 58	74.57 0009	0.010 052	26.79 2276	0.997137

	anteced ents	conseq uents	antece dent suppor t	conseq uent suppor t	supp ort	confid ence	lift	lever age	convic tion	zhangs_ metric
25	(RED RETROS POT CUP)	(BLUE POLKA DOT CUP)	0.0213 78	0.0180 38	0.010 689	0.5000 00	27.71 9136	0.010 304	1.963 924	0.984981
11 59	(STRAW BERRY CHARLO TTE BAG, RED RETROS POT CHARL	(CHARL OTTE BAG PINK POLKA DOT, WOODL AND CHARL OT	0.0268 34	0.0218 24	0.013 417	0.5000 00	22.91 0714	0.012 832	1.956 352	0.982723
11	(HAND WARME R RED LOVE HEART)	(HAND WARME R SCOTTY DOG DESIGN	0.0219 35	0.0302 86	0.010 968	0.5000 00	16.50 9191	0.010 303	1.939 428	0.960496
14 7	(LOVE HOT WATER BOTTLE)	(HOT WATER BOTTLE KEEP CALM)	0.0258 32	0.0427 01	0.012 916	0.5000 00	11.70 9257	0.011 813	1.914 597	0.938850
37 0	(CHARL OTTE BAG PINK POLKAD OT,	(PACK OF 72 RETROS POT	0.0218 24	0.0712 06	0.010 912	0.5000 00	7.021 892	0.009 358	1.857 588	0.876722

anteced ents	conseq uents	antece dent suppor t	conseq uent suppor t	supp ort	confid ence	lift	lever age	convic tion	zhangs_ metric
WOODL AND CHARLO T	CAKE CASES)								

1397 rows × 10 columns

rules.sort_values(by='support', ascending=False)

	anteced ents	conseq uents	antece dent suppor t	conseq uent suppor t	supp ort	confid ence	lift	lever age	convic tion	zhangs_ metric
1 6 1	(JUMBO BAG PINK POLKA DOT)	(JUMBO BAG RED RETROS POT)	0.0673 09	0.1139 63	0.045 596	0.6774 19	5.9442 14	0.037 926	2.746 715	0.891795
1 0 5	(ROSES REGEN CY TEACUP AND SAUCER	(GREEN REGENC Y TEACUP AND SAUCER	0.0561 74	0.0541 70	0.040 641	0.7234 89	13.355 912	0.037 598	3.420 583	0.980188
1 0 4	(GREEN REGEN CY TEACUP AND SAUCER	(ROSES REGENC Y TEACUP AND SAUCER	0.0541 70	0.0561 74	0.040 641	0.7502 57	13.355 912	0.037 598	3.779 187	0.978111

	anteced ents	conseq uents	antece dent suppor t	conseq uent suppor t	supp ort	confid ence	lift	lever age	convic tion	zhangs_ metric
1 7 4	(JUMBO STORA GE BAG SUKI)	(JUMBO BAG RED RETROS POT)	0.0655 83	0.1139 63	0.040 140	0.6120 54	5.3706 50	0.032 666	2.283 921	0.870920
1 7 2	(JUMBO SHOPP ER VINTAG E RED PAISLEY	(JUMBO BAG RED RETROS POT)	0.0648 59	0.1139 63	0.037 635	0.5802 58	5.0916 39	0.030 243	2.110 907	0.859335
6 0 8	(HERB MARKE R ROSEM ARY, HERB MARKE R PARSLE Y)	(HERB MARKE R CHIVES)	0.0116 91	0.0114 69	0.010 021	0.8571 43	74.737 864	0.009 887	6.919 719	0.998291
6 2 3	(HERB MARKE R ROSEM ARY)	(HERB MARKE R CHIVES, HERB MARKE R THYME)	0.0130 28	0.0104 11	0.010 021	0.7692 31	73.887 289	0.009 886	4.288 220	0.999487

	anteced ents	conseq uents	antece dent suppor t	conseq uent suppor t	supp ort	confid ence	lift	lever age	convic tion	zhangs_ metric
9 8 7	(LUNCH BAG PINK POLKA DOT, LUNCH BAG APPLE DESIGN	(LUNCH BAG SPACEB OY DESIGN)	0.0192 63	0.0638 57	0.010 021	0.5202 31	8.1468 12	0.008 791	1.951 238	0.894483
6 7 3	(LUNCH BAG RED RETROS POT, JUMBO BAG BAROQ UE B	(JUMBO BAG RED RETROS POT)	0.0143 64	0.1139 63	0.010 021	0.6976 74	6.1219 48	0.008 384	2.930 738	0.848846
4 3 1	(LUNCH BOX I LOVE LONDO N, DOLLY GIRL LUNCH BOX)	(SPACE BOY LUNCH BOX)	0.0141 41	0.0492 15	0.010 021	0.7086 61	14.399 295	0.009 325	3.263 505	0.943900

1397 rows × 10 columns

```
# Sort rules by support in descending order
sorted_rules = rules.sort_values(by='support', ascending=False)
# Calculate cumulative support
cumulative_support = np.cumsum(sorted_rules['support'] / np.sum(sorted_rules['support']) * 100
)
# Bar plot for Support
```

```
fig, ax1 = plt.subplots(figsize=(8, 6))
ax1.bar(range(len(sorted_rules)), sorted_rules['support'], align='center')
plt.xticks(range(len(sorted_rules)), [" for _ in range(len(sorted_rules))]) # Remove x-axis labels
ax1.set_xlabel('Association Rule')
ax1.set_ylabel('Support')
ax1.set_title('Support of Association Rules')
# CDF plot for cumulative support
ax2 = ax1.twinx()
ax2.plot(range(len(sorted_rules)), cumulative_support, color='#AA4A44', linestyle='--')
ax2.set_ylabel('Cumulative Support (%)', c='#AA4A44')
plt.tight_layout()
plt.show()
# Scatter plot for Confidence vs. Support
plt.figure(figsize=(8, 6))
plt.scatter(rules['support'], rules['confidence'], alpha=0.4)
plt.xlabel('Support')
plt.ylabel('Confidence')
plt.title('Confidence vs. Support of Association Rules')
plt.tight_layout()
plt.show()
```


Confidence vs. Support of Association Rules

These two visualizations explore the association rules: a bar plot for the support of association rules and a scatter plot for the confidence vs. support of association rules.

The bar plot represents the support values of the association rules. Each bar corresponds to a rule, and its height represents the support value, indicating how frequently the rule occurs in the dataset. The y-axis represents the support, while the x-axis does not display any labels, focusing solely on the visualization of support values.

The cumulative distribution function (CDF) plot showcases the cumulative support of the association rules as a percentage. It helps understand the distribution of support values across the rules in a cumulative manner. The red dashed line in the CDF plot connects the cumulative support values for each rule, providing insights into the accumulation of support as the rules progress.

The scatter plot displays the relationship between confidence and support for the association rules. Each point represents a rule, with the x-axis representing the support and the y-axis representing the confidence. The plot shows how the confidence varies with different levels of support, helping identify any patterns or trends between these two metrics.

These visualizations offer valuable insights into the support, confidence, and their relationships within the association rules, aiding in the interpretation and analysis of the rules' strength and significance.

Cross-Selling and Upselling

```
# Filter association rules for cross-selling opportunities
cross_selling_rules = rules[(rules['antecedents'].apply(len) == 1) & (rules['consequents'].apply(len)
== 1)]
# Sort rules based on confidence and support
cross_selling_rules = cross_selling_rules.sort_values(by=['confidence', 'support'], ascending=False)
# Select top cross-selling recommendations
top_cross_selling = cross_selling_rules.head(5)
# Filter association rules for upselling opportunities
upselling_rules = rules[(rules['antecedents'].apply(len) == 1) & (rules['consequents'].apply(len) > 1
# Sort rules based on confidence and support
upselling_rules = upselling_rules.sort_values(by=['confidence', 'support'], ascending=False)
# Select top upselling recommendations
top_upselling = upselling_rules.head(5)
# Display cross-selling recommendations
print("Cross-Selling Recommendations:")
for idx, row in top_cross_selling.iterrows():
  antecedent = list(row['antecedents'])[0]
  consequent = list(row['consequents'])[0]
  print(f"Customers who bought '{antecedent}' also bought '{consequent}'.")
# Display upselling recommendations
print("\nUpselling Recommendations:")
for idx, row in top_upselling.iterrows():
  antecedent = list(row['antecedents'])[0]
  consequents = list(row['consequents'])
  print(f"For customers who bought '{antecedent}', recommend the following upgrades: {', '.join(
consequents)}.")
```

Cross-Selling Recommendations:

Customers who bought 'BEADED CRYSTAL HEART PINK ON STICK' also bought 'DOTCOM PO STAGE'.

Customers who bought 'HERB MARKER THYME' also bought 'HERB MARKER ROSEMARY'.

Customers who bought 'HERB MARKER ROSEMARY' also bought 'HERB MARKER THYME'.

Customers who bought 'HERB MARKER CHIVES' also bought 'HERB MARKER PARSLEY'.

Customers who bought 'REGENCY TEA PLATE PINK' also bought 'REGENCY TEA PLATE GREEN'.

Upselling Recommendations:

For customers who bought 'HERB MARKER CHIVES', recommend the following upgrades: HE RB MARKER PARSLEY, HERB MARKER THYME.

For customers who bought 'HERB MARKER CHIVES', recommend the following upgrades: HE RB MARKER PARSLEY, HERB MARKER MINT.

For customers who bought 'HERB MARKER CHIVES', recommend the following upgrades: HE RB MARKER ROSEMARY, HERB MARKER PARSLEY.

For customers who bought 'HERB MARKER CHIVES', recommend the following upgrades: HE RB MARKER ROSEMARY, HERB MARKER THYME.

For customers who bought 'HERB MARKER THYME', recommend the following upgrades: HE RB MARKER ROSEMARY, HERB MARKER PARSLEY.

Upselling Recommendations

During the analysis of upselling opportunities, it was observed that multiple product recommendations were being made for the same item. To address this issue and provide more diverse recommendations, a modification was made to recommend only one product for each top item instead of recommending based on the top confidence values.

By implementing this change, we ensure that the upselling recommendations do not repeatedly suggest the same product to customers. This approach enhances the variety of product recommendations and increases the chances of cross-selling and upselling success.

The updated recommendation strategy focuses on identifying the top items and selecting a single recommended product for each of them. This adjustment aims to optimize the upselling strategy by suggesting different upgrades or add-on products to customers, resulting in a more compelling and varied range of recommendations.

top_upselling = upselling_rules.sort_values(['confidence', 'support'], ascending=False).drop_duplic
ates('antecedents')[:5]
for idx, row in top_upselling.iterrows():
 antecedent = list(row['antecedents'])[0]
 consequents = list(row['consequents'])
 print(f"For customers who bought '{antecedent}', recommend the following upgrades: {', '.join(
 consequents)}.")

For customers who bought 'HERB MARKER CHIVES', recommend the following upgrades: HE RB MARKER PARSLEY, HERB MARKER THYME.

For customers who bought 'HERB MARKER THYME', recommend the following upgrades: HE RB MARKER ROSEMARY, HERB MARKER PARSLEY.

For customers who bought 'HERB MARKER PARSLEY', recommend the following upgrades: H ERB MARKER ROSEMARY, HERB MARKER THYME.

For customers who bought 'HERB MARKER ROSEMARY', recommend the following upgrades: HERB MARKER PARSLEY, HERB MARKER THYME.

For customers who bought 'REGENCY TEA PLATE PINK', recommend the following upgrades: REGENCY TEA PLATE GREEN, REGENCY TEA PLATE ROSES.

Conclusion

In this project, we explored the concept of association rules using the Apriori algorithm and the mlxtend library in Python. Association rules analysis provides valuable insights into the

relationships and patterns within a dataset, enabling businesses to uncover hidden associations between items and make informed decisions for various applications.

We started by preparing the data and filtering out infrequent items and irrelevant transactions. Then, we generated frequent itemsets and association rules based on predefined thresholds for support and confidence. These rules allowed us to identify significant associations between items and quantify their strength.

The generated association rules provided actionable insights for different business scenarios. We explored cross-selling opportunities by identifying products frequently purchased together. By leveraging these associations, businesses can implement effective cross-selling strategies, offering relevant add-on products or upgrades to customers, thereby increasing revenue.

Additionally, we examined upselling recommendations, focusing on identifying suitable product upgrades or higher-priced alternatives for customers. By considering only one product recommendation for each top item, we ensured diverse and relevant suggestions, avoiding repetitive recommendations and enhancing the upselling strategy.

Furthermore, we discussed the importance of interpreting the support, confidence, lift, leverage, and conviction metrics associated with association rules. These metrics provide quantitative measures of the strength, significance, and impact of the associations, enabling businesses to prioritize and optimize their decision-making processes.

Overall, association rules analysis offers valuable insights and practical applications across various domains, such as marketing, product recommendations, cross-selling strategies, and process optimization. By understanding the associations between items, businesses can make data-driven decisions, improve customer satisfaction, enhance marketing campaigns, and drive business growth.

It is important to note that the analysis and insights provided in this project are specific to the dataset and parameters used. The results can be further refined and customized based on the specific requirements, domain knowledge, and business objectives.