Airborne Transmission of Infectious Diseases in the Built Environment

Technological Solutions to Mitigate

Problem Addressing

How can airborne transmission of COVID-19 indoors be minimised?

```
Lidia Morawska <sup>a</sup> <sup>A</sup> <sup>B</sup> <sub>At a Boerstra</sub>, William Bahnfleth <sup>c</sup>,

Philomena M. Bluyssen <sup>d</sup>, Atze Boerstra <sup>e</sup>, Giorgio Buonanno <sup>f</sup>, Junji Cao <sup>g</sup>,

Stephanie Dancer <sup>h</sup>, Andres Floto <sup>i</sup>, Francesco Franchimon <sup>j</sup>,

Charles Haworth <sup>k</sup>, Jaap Hogeling <sup>l</sup>, Christina Isaxon <sup>m</sup>, Jose L. Jimenez <sup>n</sup>,

Jarek Kurnitski <sup>o</sup>, Yuguo Li <sup>p</sup>, Marcel Loomans <sup>q</sup>, Guy Marks <sup>r</sup>,

Linsey C. Marr <sup>s</sup>, Livio Mazzarella <sup>t</sup>...Maosheng Yao <sup>ai</sup>

Show more 

+ Add to Mendeley <sup>c</sup> Share <sup>95</sup> Cite

https://doi.org/10.1016/j.envint.2020.105832 7

Get rights and content 7

Under a Creative Commons license 7
```

Abstract

During the rapid rise in COVID-19 illnesses and deaths globally, and notwithstanding recommended precautions, questions are voiced

In a change, WHO says indoor airborne spread of coronavirus is possible

Health Jul 10, 2020 12:10 PM EDT

LONDON (AP) — The World Health Organization is acknowledging the possibility that COVID-19 might be spread in the air under certain conditions — after more than 200

The COVID-19 pandemic is a global indoor air crisis that should lead to change: A message commemorating 30 years of Indoor Air

 $\underline{\text{Yuguo Li,}}^{\boxtimes 1} \underline{\text{William W. Nazaroff,}}^2 \underline{\text{William Bahnfleth,}}^3 \underline{\text{Pawel Wargocki,}}^4 \\ \text{and } \underline{\text{Yinping Zhang}}^5$

▶ Author information ▶ Article notes ▶ Copyright and License information PMC Disclaimer

Why indoor spaces are still prime COVID hotspots.

Dyani Lewis view affiliations **¥**Nature, volume 592, issue 1476–4687

© updated 06 April 2021 • created 01 April 2021 • accessed 02 June 2022

Record provided by litcovid LITCOVID PUBLICATION PUBL

Community

General Overview about HEPA filters

- HEPA filters are essential for maintaining clean indoor air quality by effectively trapping airborne particles
 - a. Utilize multiple mechanisms for filtration
 - b. H14 grade removes 99.997% of particles.
 - c. Capture particles as small as 0.3 microns in diameter
- 2. HEPA filters intercept, impact and diffuse
 - a. Catches large particles
 - b. Catches smaller particles that got through the initial filter
 - c. Trapped by fibers within the filter

Costs HEPA filters

- 1. Cost of a single HEPA air filter is between \$20 and \$10,000
 - a. Hospitals often need to change out filters once every half a year at minimum
 - b. The average cost to replace one air filter is around \$300

Solution thought/example

- 1. If a hospital replaced all 100 HEPA air filters it would be around \$20,000
 - a. Each air filter is around \$182
 - b. Camfil air filtration systems typically lower their HVAC energy costs by 15 to 30 percent

$$T = (N_R imes C_R) + (N_{ICU} imes C_{ICU}) + (N_{OR} imes C_{OR}) + (N_{other} imes C_{other})$$

Literature Review

Technologies to mitigate airborne transmission

- 1. High-Efficiency Particulate Air (HEPA) Filters
 - Increasing filter MERV rating

Туре	Filter efficiency (MERV)	Depth (inches)	Initial pressure drop @ 500 fpm ("H2O)	Filter cost per filter unit area (\$/ft²)	Expected service life (months)	Labor cost per filter unit area (\$/ft²)	Annual VAV fan energy cost per filter unit area (\$/ft²)	Total annual cost per filter unit area (\$/ft²)
Pleat	8	2	0.31	\$2.98	3	\$5.00	\$5.83	\$37.73
Pleat	8	4	0.27	\$4.88	4	\$5.00	\$5.08	\$34.70
Pleat	13	2	0.41	\$7.23	2	\$5.00	\$7.71	\$81.06
Pleat	13	4	0.33	\$13.16	3	\$5.00	\$6.21	\$78.86
Bag	13	12	0.52	\$22.23	12	\$6.00	\$9.78	\$38.01
Bag	13	15	0.48	\$23.93	12	\$6.00	\$9.03	\$38.95

- 1. Ventilation Control for Aerosol-Transmissible Pathogens in Healthcare
 - Method: dilution, filtration, disinfection, Pressurization, UVGI(Germicidal ultraviolet irradiation)
- 1. Bipolar Ionization
- 2. Air Purifiers / Hybrid ventilation / temporary negative-pressure rooms

Literature Review (CONTAM Preparation)

$$ACH = \frac{Q}{V}$$

where,

Q= Volumetric flow rate of air into space, cfm

V=interior volume of space, ft³

Data (Survival Analysis)

- Data: HIPAA Data East 4 Outbreak.
 - Date of Positive Covid-19 test
 - Patients' contact information
 - Patients' room numbers of Positive Covid-19 test
- Analysis:
 - Visualization of maps of infection
 - Survival analysis using Kaplan-Meier Estimation
- Challenges of Data:
 - Missing information for the positive COVID-19 test
 - Unbalanced sample sizes between staff and patient
- Solution:
 - Combine the information from both the maps of infection and Excel data file and analysis
 - Focus on infections before the duration of 26 days when comparing staff group and patient group
 - Missing information for censored data for the duration of 26 days.
 - All samples on the duration of 26 days are patient

Example of Map of

Kaplan-Meier Survivorship Table

Duration (Days)	Survival Probability	Number at Risk	Number of Events
0	0.9767	43	1
4	0.9535	42	1
5	0.9302	41	1
6	0.9070	40	1
11	0.8605	39	2
12	0.8372	37	1
13	0.7442	36	4
14	0.6279	32	5
15	0.5349	27	4
16	0.5116	23	1
26	0.1395	22	16

Data: KM Curve

Note: Survival Probability is the non-positive test probability

- The initial survival probability is high at 97.67%, and drop down steadily before day 13. Between day 13 and day 15, there is a significant decline in survival curves (dropped from 0.8372 to 0.5349). The median survival time appears between day 16 and day 26.
- From the stratified KM graph, we can see staff got COVID-19 later than patients, and based on the log-rank test p-value = 0.0008, we have enough evidence to conclude that there is a significant difference between staffs and patients.

Kaplan-Meier Survival Curve

Stratified Curve for Staff and Patient before day 26

CONTAM: Sketchpad

CONTAM: No Ventilation + No HEPA

CONTAM: Ventilation + No HEPA

CONTAM: Ventilation + HEPA

CONTAM: Spatial Redesign

References

- 2020-10-14 Updated TE COVID19 White Paper
- Preventing Aerosol-Transmissible Diseases in Healthcare Settings_ The Need for Protective Guidelines and Standards—Workshop Report
- Engineering Solutions for Preventing Airborne Transmission in Hospitals with Resource Limitation and Demand Surge (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138644/pdf/ijccm-25-453.pdf)
- Bipolar ionization rapidly inactivates real-world, airborne concentrations of infective respiratory viruses (https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293504)
- Ventilation strategies to reduce airborne transmission of viruses in classrooms: A systematic review of scientific literature (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259197/)
- Engineering Solutions for Preventing Airborne Transmission in Hospitals with Resource Limitation and Demand Surge
 - (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138644/)
- Hospital HVAC: Hospital Air Filters Seem Inexpensive Now Prove Costly Later https://cleanair.camfil.us/2011/04/18/hospital-discovers-that-air-filters-that-seem-inexpensive-now-prove-costly-later/

THANK YOU!!!!

