习题

- **3.1** 若随机变量 $X \sim B(n, p)$, 证明当 $k \in [0, np + p]$ 时 P(X = k) 单调递增, 当 $k \in [np + p, n]$ 时 P(X = k) 单调递减.
- **3.2** 设随机变量 X 服从参数为 λ 的泊松分布, 且 P(X = 1) = P(X = 2), 求 $P(X \ge 4)$.
- **3.3** 设随机变量 X 的取值为 $r, r+1, \cdots$ 以及事件 $\{X=k\}$ 的概率为

$$P(X=k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, \qquad p \in (0,1), \quad k = r, r+1, r+2, \cdots,$$

检验上面的概率构成一个分布列.

3.4 设随机变量 X 的分布列为

$$P(X=k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, \qquad p \in (0,1), \quad k = r, r+1, r+2, \cdots,$$

证明: 随机变量 X 的期望 E(X) = r/p 和方差 $Var(X) = r(1-p)/p^2$

- **3.5** 现需要 100 个符合规格的元件, 从市场上购买该元件的废品率为 0.01, 现准备在市场上买 100 + x 个元件, 要使得其中至少有 100 个符合规格元件的概率大于 0.95, 求 x 的最小值?
- **3.6** 设随机变量的分布列为 $P(X = (-5)^k/k) = 4/5^k$ $(k = 1, 2, \dots)$, 证明 X 的期望不存在.
- **3.7** 一个箱子中有一个白球和一个红球, 若从箱子中随机摸到一个白球则再放入一个白球, 若 摸到一个红球则结束这个游戏. 证明: 游戏结束时的摸球次数的期望不存在.