ISV51: Programmation sous R Analyse de données élémentaire

L3 GBI - Université d"Evry

semestre d'automne 2015

http://julien.cremeriefamily.info/teachings_L3BI_ISV51.html

Entrées/sorties

Entrées/sorties

Charger des données Bases des graphiques sous R

Entrées/sorties

Charger des données

Bases des graphiques sous R

Saisir des données Alternative à la concaténation

commande scan

Une utilisation élémentaire de scan permet une saisie plus agréable que la saisie directe des éléments d'un vecteur.

→ valable pour les jeux de données d'au plus quelques dizaines d'éléments...

Éditer des données

commande edit

Permet d'éditer des données existantes à l'aide d'un mini-tableur. Utile pour faire de petites modifications.

```
> new.data <- edit(old.data)
```


Figure: Éditeur Mac OS 10.6 / R 2.10 (obsolète!

Fichiers binaires

commandes save et load

save sauvegarde un sous ensemble des variables de l'espace de travail dans un fichier binaire; load permet de les recharger.

```
x <- rnorm(125)
y <- 1 + x + x^2
save(file="mes_simus",x,y)
rm(list=ls())
objects()

## character(0)

load(file="mes_simus")
objects()

## [1] "x" "y"</pre>
```

Jeux de données prédéfinies

commande data

R dispose d'une collection de données prédéfinies directement utilisables. La commande data() permet de les lister puis de les charger.

```
data(iris)
head(iris)
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
          5.1
                   3.5
                             1.4
                                      0.2
                                          setosa
          4.9
                 3.0
                             1.4
                                      0.2
                                          setosa
        4.7 3.2
                            1.3
                                      0.2 setosa
         4.6 3.1
                            1.5 0.2 setosa
        5.0 3.6
                           1.4 0.2
                                          setosa
## 6
          5.4
                   3.9
                             1.7
                                      0.4 setosa
```

- La description d'un jeu de données est accessible dans l'aide.
- L'installation d'un nouveau package rend souvent disponibles de nouveaux jeux de données accessibles par data.

Lecture de fichiers Méthodologie

Un bon éditeur permet de constater le formatage d'un fichier texte et comment en « attaquer » l'importation.

Figure: Fichier au formatage "csv"

Lecture de fichiers I

La fonction générique

commande read.table

Permet de lire un fichier formaté sous forme de table et de le convertir sous la forme du objet data.frame. Parmi les nombreuses options, les plus importantes sont

- header : présence ou pas d'une ligne nommant les colonnes du tableau
- sep : la chaîne de caractère définissant le séparateur (par défaut, un ou plusieurs espaces).

```
vignes <- read.table("data/baies_raisin.txt")
## Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :
la ligne 2 n'avait pas 20 éléments</pre>
```

Lecture de fichiers II

La fonction générique

```
vignes <- read.table("data/baies_raisin.txt", sep='\t')</pre>
head(vignes)
             V1
##
                     V2
                                           V3
                                                                      V4
## 1 Population variete nbre pepin/baie 2008 poids pulpe/baie (g)
                                                                    2008
## 2
             CE
                   1784
                                         1.00
                                                                    0.89
## 3
             CE 124
                                         1.00
                                                                    1.14
             CE 210
                                         1.20
                                                                    1.26
## 5
             CE 1805
                                         1.20
                                                                    0.66
## 6
             CF.
                   1303
                                         1.20
                                                                    0.83
                         V5
                                               V6
##
                                                                          V7
## 1 volume baie (cm3) 2008 nbre pepin/baie 2009 poids pulpe/baie (g) 2009
## 2
                       7.70
## 3
                       8.82
## 4
                       10.20
## 5
## 6
```

Lecture de fichiers III

La fonction générique

```
vignes <- read.table("data/baies_raisin.txt", sep='\t', header=TRUE)</pre>
head(vignes)
##
     Population variete nbre.pepin.baie.2008 poids.pulpe.baie..g..2008
## 1
             CE
                   1784
                                           1.0
                                                                     0.89
## 2
             CE
                    124
                                           1.0
                                                                     1.14
## 3
             CE 210
                                           1.2
                                                                     1.26
## 4
             CE 1805
                                          1.2
                                                                     0.66
             CE
                 1303
                                           1.2
## 5
                                                                     0.83
## 6
             CE
                     284
                                           1.3
                                                                     0.54
     volume.baie..cm3..2008 nbre.pepin.baie.2009 poids.pulpe.baie..g..2009
##
## 1
                        7.70
                                                NA
                                                                           NA
## 2
                        8.82
                                                NΑ
                                                                           NΑ
## 3
                       10.20
                                                NA
                                                                           NA
## 4
                          NA
                                                NA
                                                                           NA
## 5
                         NΑ
                                                NΑ
                                                                           NA
## 6
                        4.61
                                                NA
                                                                           NA
```

Lecture de fichiers

read.csv,read.delim

Commandes read.csv et read.delim

Raccourcis pour la fonction read.table, spécialisés dans l'importation des données « .csv » (comma-separated value) ou tabulées (le séparateur est la tabulation).

```
vignes <- read.delim(file="data/baies raisin.txt", header=TRUE)
head(vignes)
##
     Population variete nbre.pepin.baie.2008 poids.pulpe.baie..g..2008
## 1
             CE
                    1784
                                           1.0
                                                                     0.89
             CE
                    124
                                           1.0
                                                                     1.14
             CF.
                  210
                                           1.2
                                                                     1.26
             CE 1805
                                           1.2
                                                                     0.66
## 5
             CF.
                   1303
                                           1.2
                                                                     0.83
## 6
             CF.
                     284
                                           1.3
                                                                     0.54
##
     volume.baie..cm3..2008 nbre.pepin.baie.2009 poids.pulpe.baie..g..2009
                        7.70
                                                                            NΑ
## 1
                                                NΑ
                        8.82
                                                NA
                                                                            NA
                       10.20
                                                NA
                                                                            NA
                          NΑ
                                                NΑ
                                                                            NΑ
                          NA
                                                NA
                                                                            NA
## 6
                        4.61
                                                NΑ
                                                                            NΑ
```

Écriture dans un fichiers I

commandes write.table, write.csv et write.delim

La fonction write.table permet d'imprimer les données issues d'un data.frame dans un fichier texte externe. write.csv et write.delim sont des raccourcis pour les données csv ou tabulée.

```
vignes2008 <- vignes[, 1:5]
write.table(vignes2008, file="data/baies_raisin2008.txt")
rm(vignes2008)</pre>
```

Écriture dans un fichiers II

```
head(read.table(file="data/baies_raisin2008.txt", header=TRUE))
    Population variete nbre.pepin.baie.2008 poids.pulpe.baie..g..2008
##
## 1
            CE
                  1784
                                        1.0
                                                                 0.89
## 2
            CE
                124
                                        1.0
                                                                 1.14
## 3
            CE 210
                                        1.2
                                                                 1.26
            CE 1805
                                       1.2
                                                                 0.66
            CE 1303
                                       1.2
                                                                 0.83
                 284
                                        1.3
## 6
            CE
                                                                 0.54
    volume.baie..cm3..2008
##
## 1
                      7.70
## 2
                      8.82
## 3
                     10.20
## 4
                        NA
## 5
                        NA
## 6
                      4.61
```

Pour aller plus loin...

Beaucoup de choses sur l'importation des données dans

```
R Data Import /Export.
http://cran.r-project.org/doc/manuals/R-data.pdf
```

- Exemples avancés avec read.table,
- communication avec les bases de données (SQL),
- importation de données Excel,
- ▶ . . .

Entrées/sorties

Charger des données

Bases des graphiques sous R

Paramètres récurrents

Forme générique

La plupart des fonctions graphique s'utilisent par un appel du type

- 1. nom.function(object, options),
- 2. nom.function(x, y, options).

Parmi les options les plus courantes, on trouve :

- type="p"; spécifie le type de tracé : "p" pour points, "l" pour lignes "b" pour points liés par des lignes, "o" pour lignes superposées aux points...
- xlim=; ylim=, spécifie les limites de axes x et y
- ► xlab=; ylab=, annotation des axes x et y
- ▶ main=; titre du graphe en cours
- sub=; sous-titre du graphe en cours
- add=FALSE; si TRUE superpose le graphe au précédent
- axes=TRUE; si FALSE ne trace pas d'axes

Paramètres récurrents

Forme générique

La plupart des fonctions graphique s'utilisent par un appel du type

- 1. nom.function(object, options),
- 2. nom.function(x, y, options).

Parmi les options les plus courantes, on trouve :

- type="p"; spécifie le type de tracé : "p" pour points, "l" pour lignes, "b" pour points liés par des lignes, "o" pour lignes superposées aux points...
- xlim=; ylim=, spécifie les limites de axes x et y
- xlab=; ylab=, annotation des axes x et y
- main=; titre du graphe en cours
- ▶ sub=; sous-titre du graphe en cours
- ▶ add=FALSE; si TRUE superpose le graphe au précédent
- axes=TRUE; si FALSE ne trace pas d'axes

Représenter un objet graphiquement I

commande plot

Fonction élémentaire de réprésentation graphique.

- ightharpoonup plot(vect) représente le graphe des valeurs de vect sur l'axe des y.
- plot(vect1, vect1) représente le graphe des valeurs de vect2 en fonction de vect1. plot(object,...) appelle la méthode plot.class si elle est définie pour l'objet de class class.

Par exemple, avec deux vecteurs :

```
x <- runif(50,0,2)
y <- 3 * x + 2 * x^2 + 1 + rnorm(50,sd=1.5)
plot(x, y, xlab="x-label",ylab="y-label",main="mon premier graphe")</pre>
```

Représenter un objet graphiquement II

Autres exemples d'utilisation de plot (I) I

Beaucoup d'objet R accepte la commande plot! En particulier, les histogrammes :

```
mon_histo <- hist(rchisq(1000,df=4),nclass=75, plot=FALSE)
plot(mon_histo,main="distribution empirique du Khi-2")</pre>
```

Autres exemples d'utilisation de plot (I) II

distribution empirique du Khi-2

Autres exemples d'utilisation de plot (II)

Objet "formule" entre variables numériques : graphe de dispersion

plot(poids.pulpe.baie..g..2008~nbre.pepin.baie.2008, vignes)

Autres exemples d'utilisation de plot (III)

Objet "formule" entre variables numérique et catégorielle : boxplot

plot(poids.pulpe.baie..g..2008~Population, vignes)

Autres exemples d'utilisation de plot (IV)

Objet "data.frame": graphes pair à pair

plot(vignes)

Tracer une fonction symbolique I

commande curve

Elle permet de tracer une fonction définie par une expression de x.

Tracer une fonction symbolique II

Ajouter une légende I

commande legend

Pour ajouter une légende. Attention aux options, assez nombreuses!

Ajouter une légende II

Représentation 3D (courbe de niveaux) I

commande contour

contour(x,y,z) permet de tracer des courbes de niveaux : x et y sont des vecteurs et z une matrice telle que les dimensions de z soient length(x), length(y).

Représentation 3D (courbe de niveaux) II

Ajout de droites I

commande abline

abline permet d'ajouter à un graphe courant

- des droites de décalage a et de coefficient directeur b avec abline(a,b),
- des droites verticales avec abline(v=),
- des droites horizontales avec abline(h=).

commandes lines et points

Pour ajouter une courbe ou des points : s'utilisent de manière similaire à plot.

Ajout de droites II

```
contour(x,y,z,col="blue4")
curve((0.3*dnorm(x,mean=3) + 0.7*dnorm(x,mean=6))*3,-1,9,col="red",ylim=c(-1,7),add
x<-seq(-1,9,length=100)
lines((0.5*dnorm(x,mean=3) + 0.5*dnorm(x,mean=4))*3,x,col="red")
abline(h=0)
abline(v=0)</pre>
```

Ajout de droites III

Graphe en 3D I

commande persp

Fonctionne comme la fonction contour en proposant une représentation en perpective.

```
persp(x,y,z), box=TRUE, theta = 10, phi = 45, xlab = "x", ylab = "y", zlab = "f(x,y)"
```

Graphe en 3D II

Rediriger la sortie graphique

Par défaut, R envoie les graphiques sur la sortie écran. De nombreuses

Exportation de graphes

Se réalise en encadrant les fonctions graphiques par les commandes format_export(file="nom_fichier") et dev.off()), où format_fichier peut prendre les valeurs pdf,postscrip,png,

```
pdf(file="ma_sortie.pdf")
plot(runif(20),runif(20))
dev.off()
```

Graphes multiples

Ouverture d'une nouvelle fenêtre graphique

Se fait, selon les plateformes, avec les commandes

- ► x11()) pour Linux,
- quartz() ou x11()) pour Mac OS,
- ▶ windows().

Découpage d'une fenêtre

Plusieurs possibilités :

- ▶ layout(mat,width=,height=), qui s'utilise en découpant l'écran via la matrice mat.
- par(mfrow=vect) ou par(mfcol=vect) qui découpent en n lignes et m colonne spécifiées par le vecteur vect. Le remplissage se fait par ligne ou par colonne selon la fonction choisie.

Découpage du support graphique I

```
m1 <- matrix(1:4,2,2)
layout(m1)

m2 <- matrix(c(1:3,3),2,2)
layout(m2)

m3 <- matrix(0:3,2,2)
layout(m3,c(1,3),c(1,3))
```

Découpage du support graphique I

Découpage du support graphique III

Pour aller plus loin

- La commande par gère les options graphiques,
- ▶ Le package lattice, pour des graphes multivariés,
- ▶ Le package ggplot2, dont nous verrons une introduction en fin de module
- Lattice: Multivariate Data Visualization with R Deepayan Sarkar http://lmdvr.r-forge.r-project.org/
- ggplot2 : Grammar of graphics, Hadley Wickham http://ggplot2.org/
- ~ Au delà des mécanismes de représentation graphiques élémentaires, les possibilités graphiques de R sont liées à la nature des résumés statistiques opérés sur les données (cf. section suviante).

Plan

Entrées/sorties

Statistiques descriptives

Généralités

Statistique descriptive univariée

Variable qualitative

Variable quantitative

Statistique descriptive multivariée

Croisement quantitatives/quantita

Couple de variables qualitatives

Couple de variables quantitatives

Générateur aléatoire

Plan

Entrées/sorties

Statistiques descriptives

Généralités

Statistique descriptive univariée Variable qualitative Variable quantitative

Statistique descriptive multivariée Croisement qualitatives/quantitatif Couple de variables qualitatives Couple de variables quantitatives

Générateur aléatoire

- ➤ **Statistique** activité qui consiste dans le recueil, le traitement et l'interprétation de données d'observation.
- Population ensemble d'entités objet de l'investigation statistique
- Individu élément de la population d'étude
- Variable/Attribut descripteur ou caractère des individus de la population d'étude.

- ➤ **Statistique** activité qui consiste dans le recueil, le traitement et l'interprétation de données d'observation.
- ▶ **Population** ensemble d'entités objet de l'investigation statistique.
- Individu élément de la population d'étude
- Variable/Attribut descripteur ou caractère des individus de la population d'étude.

- ► **Statistique** activité qui consiste dans le recueil, le traitement et l'interprétation de données d'observation.
- ▶ Population ensemble d'entités objet de l'investigation statistique.
- Individu élément de la population d'étude
- Variable/Attribut descripteur ou caractère des individus de la population d'étude.

- ➤ **Statistique** activité qui consiste dans le recueil, le traitement et l'interprétation de données d'observation.
- ▶ Population ensemble d'entités objet de l'investigation statistique.
- ▶ Individu élément de la population d'étude
- Variable/Attribut descripteur ou caractère des individus de la population d'étude.

Nature des variables

On distingue deux grandes familles de variable :

- qualitative ou factorielle : les valeurs prises sont les modalités
 - ▶ ordinale : modalités intrinsèquement ordonnées (niveau de vie
 - nominale : pas de structure d'ordre (sexe)
- quantitative : les valeurs prises sont des nombres
 - discrète : à valeurs dans un ensemble dénombrable (âge en année)
 - continue : à valeurs dans un ensemble indénombrable (taille, poids)

Nature des variables

On distingue deux grandes familles de variable :

- qualitative ou factorielle : les valeurs prises sont les modalités
 - ordinale : modalités intrinsèquement ordonnées (niveau de vie)
 - nominale : pas de structure d'ordre (sexe).
- quantitative : les valeurs prises sont des nombres
 - discrète : à valeurs dans un ensemble dénombrable (âge en année)
 - continue : à valeurs dans un ensemble indénombrable (taille, poids)

Nature des variables

On distingue deux grandes familles de variable :

- qualitative ou factorielle : les valeurs prises sont les modalités
 - ordinale : modalités intrinsèquement ordonnées (niveau de vie)
 - nominale : pas de structure d'ordre (sexe).
- quantitative : les valeurs prises sont des nombres
 - discrète : à valeurs dans un ensemble dénombrable (âge en année)
 - continue : à valeurs dans un ensemble indénombrable (taille, poids)

Mode d'étude d'une population

Échantillonnage

Processus de sélection d'individus dans la population d'étude. → seule solution dans le cas d'une population infinie ou grande

Objectifs d'une étude statistique

À partir d'un échantillon,

- synthétiser, résumer, structurer l'information : Statistique descriptive ou exploratoire
- 2. formuler ou valider des hypothèses relatives à la population totale : **Statistique inférentielle**

Données

Soient n individus mesurés par p variables

Tableau de données

$$\mathbf{X} = (x_{ij}) = \begin{pmatrix} x_{11} & \dots & x_{1j} & \dots & x_{1p} \\ \vdots & & \vdots & & \vdots \\ x_{i1} & & x_{ij} & & x_{ip} \\ \vdots & & \vdots & & \vdots \\ x_{n1} & \dots & x_{nj} & \dots & x_{np} \end{pmatrix}$$

- lacktriangle Chaque variable est représentée par la colonne $\mathbf{X}_{\cdot j} = (x_{1j}, \dots, x_{nj})^\intercal$
- lacktriangle Chaque individu est représenté par la ligne ${f X}_{i\cdot}=(x_{i1},\ldots,x_{ip})$

Plan

Entrées/sorties

Statistiques descriptives

Généralités

Statistique descriptive univariée

Variable qualitative

Statistique descriptive multivariée

Couple de variables qualitatives

Couple de variables qualitatives

Couple de variables quantitative

Générateur aléatoire

Contexte

On considère une seule **colonne à la fois** du tableau de données, soient n observations de la $j^{\rm e}$ variable :

$$\mathbf{X}_{\cdot j} = (x_{1j}, \dots, x_{nj})^{\mathsf{T}}$$

Les résumés statistiques se regroupent selon la nature de la variable j, soientt

- qualitative ordinale (ou quantitative discrête)
- qualitative nominale
- quantitative continue

Plan

Entrées/sorties

Statistiques descriptives

Généralités

Statistique descriptive univariée Variable qualitative

Variable quantitative

Statistique descriptive multivariée Croisement qualitatives/quantitatif Couple de variables qualitatives Couple de variables quantitatives

Générateur aléatoire

Variable quantitative discrète ou qualitative ordinale

La variable prend ses valeurs dans $E = \{\epsilon_1, ..., \epsilon_K\}$ avec $\epsilon_1 < ... < \epsilon_K$.

Tableau de fréquence

Les résumés statistiques naturels sont liés aux fréquences :

- $ightharpoonup \epsilon_k$, la modalité
- $lacktriangleright n_k$, l'effectif des observations ayant la valeur ϵ_k
- $f_k = \frac{n_k}{n}$, la fréquence (relative)
- $F_k = \sum_{j=1}^k f_j$, la fréquence relative cumulée

Fréquences et compagnie en R I

```
data(mtcars)
print(counts <- table(mtcars$gear))</pre>
##
## 15 12 5
print(frequences <- counts/length(mtcars$gear))</pre>
##
## 0.46875 0.37500 0.15625
print(cumFreq <- cumsum(frequences))</pre>
##
## 0.46875 0.84375 1.00000
```

Fréquences et compagnie en R II

```
par(mfrow=c(1,3))
barplot(counts, ylab="effectifs", xlab="")
barplot(frequences, ylab="fréquences", xlab="Number of Gears")
barplot(cumFreq, ylab="fréquences cumulées", xlab="")
title(outer=TRUE,main="\nCar Distribution")
```

Fréquences et compagnie en R III

Fréquences et compagnie en R I Une alternative avec plot

```
par(mfrow=c(1,3))
plot(counts, ylab="effectifs", xlab="", type="h")
plot(frequences, ylab="fréquences", xlab="Number of Gears", type="h")
plot(cumFreq, ylab="fréquences cumulées", xlab="", type="h")
title(outer=TRUE,main="\nCar Distribution")
```

Fréquences et compagnie en R II

Une alternative avec plot

Car Distribution

Variable qualitative nominale

La variable prend ses valeurs dans $E = \{\epsilon_1, ..., \epsilon_K\}$.

- mêmes représentations que pour les variables ordinales (i.e. construits sur les fréquences), mais sans ordre.
- Les diagrammes en barre restent appropriés mais sans ordre naturel en abscisse.

Camembert

Fournit une représentation non ordonné des effectifs.

À n'utiliser que pour un faible nombre de modalités (sinon illisible)

pie(table(vignes\$Population))

Plan

Entrées/sorties

Statistiques descriptives

Généralités

Statistique descriptive univariée

Variable qualitative

Variable quantitative

Statistique descriptive multivariée Croisement qualitatives/quantitatif Couple de variables qualitatives Couple de variables quantitatives

Générateur aléatoire

Résumés numériques

Indicateurs de tendance centrale

```
► moyenne empirique : mean
```

moyenne pondérée : weighted.mean

médiane : median

Indicateurs de dispersion

variance empirique (corrigée) : var

écart-type : sd

étendu : range

fractiles empirique : quantile

summary/fivenum reprend ces indicateurs numériques élémentaires...

Résumés numériques I

Résumés numériques II

```
vol.cm3 <- vignes$volume.baie..cm3..2008; vol.cm3 <- vol.cm3[!is.na(vol.cm3)]</pre>
mean(vol.cm3)
## [1] 10.46512
median(vol.cm3)
## [1] 8.91
var(vol.cm3) ## version corrigée !
## [1] 28.39179
sum((vol.cm3 - mean(vol.cm3))^2)/length(vol.cm3)
## [1] 28.25053
sum((vol.cm3 - mean(vol.cm3))^2)/(length(vol.cm3)-1)
## [1] 28.39179
```

Résumés numériques III

```
sd(vol.cm3) ## version corrigée
## [1] 5.328394
range(vol.cm3)
## [1] 3.44 33.80
library(stats)
quantile(vol.cm3)
## 0% 25% 50% 75% 100%
## 3.44 7.14 8.91 11.90 33.80
summary(vol.cm3)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
##
     3.44 7.14 8.91 10.47 11.90 33.80
fivenum(vol.cm3) # correspond à summary pour un vecteur
## [1] 3.44 7.14 8.91 11.90 33.80
```

Tableau de fréquences

Pour une variable continue, nécessite un partitionnement préalable du domaine de définition en K classes (de largeur constante ou variable).

```
eff <- table(cut(vol.cm3, seq(min(vol.cm3),max(vol.cm3),len=10)))
barplot(eff/sum(eff), las=3)</pre>
```


Graphe en tiges et feuilles

Alternative au diagramme en barres

Permet de visualiser le tableau des fréquences

```
stem(vol.cm3)
##
     The decimal point is at the |
##
##
##
      2 | 45
##
          01335667722245579
##
          000122334444555556789999900111112222333344455556677788889
##
          0011222344444555556677888990000223335566667799
     10 I
          000001222345566779113455567899
##
##
     12 | 123489911234469
     14 | 01245685688
##
     16 I
          012685
##
##
     18 l
          2828
        I 170
##
     20
##
     24 | 0066
##
          906
##
     26 |
     28
          35
##
     30
##
     32 | 8
##
```

Boîte à moustaches ou boxplot I

La boîte à moustache permet de visualiser les grands traits caractéristiques d'une distribution.

Définition

Graphique constitué

- 1. d'une boîte délimitée par les quartiles et la médiane
- 2. d'une paire de moustaches : minimum et maximum de l'échantillon auquel on a ôté les outliers.
 - Les règles utilisées pour les outliers varient
- 3. des **outliers** eux-même.

boxplot(vol.cm3,col="yellow",notch=T)

Boîte à moustaches ou boxplot II

Fonction de répartition empirique I

Définition

La version empirique de la fonction de répartition $F(x) = \mathbb{P}(X \leq x)$ s'écrit

$$\hat{F}: \mathbb{R} \mapsto [0,1], \ x \mapsto \frac{1}{n} \operatorname{card}\{i : x_i \le x\}$$

→ le graphe de la fonction de répartition est une fonction en escalier appelé diagramme cumulatif

```
par(mfrow=c(1,2))
plot(ecdf(vol.cm3[vignes$Population =="TE"]), main="Population TE", xlab="")
plot(ecdf(vol.cm3[vignes$Population !="TE"]), main="Autres Populations", xlab="")
title(outer=TRUE, main="\nF.d.r du volume des baies")
```

Fonction de répartition empirique II

Histogramme et estimateur à noyau I

Définition

Ce sont des estimateurs de la fonction de densité de x. On pose

$$\sum_i h_i \mathbf{1}_{[a_i, a_{i+1}[}(x) \text{ pour } a_1 < \dots < a_{k+1}.$$

On a
$$\sum_i h_i(a_{i+1}-a_i)=1$$
 et $h_i(a_{i+1}-a_i)=\hat{\mathbb{P}}(X\in[a_i,a_{i+1}]).$

Réalisation

- 1. Découpage en intervalles $[a_i, a_{i+1})$
- 2. Calcul de la fréquence f_i et de la hauteur h_i
- 3. Aire du rectangle proportionnel à la fréquence

Histogramme et estimateur à noyau II

Remarques

- ► Attention : hauteur proportionnelle à la fréquence si et seulement si les intervalles ont tous la même largeur
- ▶ Nombre d'intervalles : Important, mais réglage difficile. . .

```
hist(vol.cm3,nclass=25,prob=TRUE)
lines(density(vol.cm3), col="red")
```

Histogramme et estimateur à noyau III

Plan

Entrées/sorties

Statistiques descriptives

Généralités

Statistique descriptive univariée

Variable qualitative

Variable quantitative

Statistique descriptive multivariée

Croisement qualitatives/quantitatif

Couple de variables qualitatives

Couple de variables quantitatives

Générateur aléatoire

Plan

Entrées/sorties

Statistiques descriptives

Généralités

Statistique descriptive univariée Variable qualitative

Variable quantitative

Statistique descriptive multivariée Croisement qualitatives/quantitatif

Couple de variables qualitatives Couple de variables quantitatives

Générateur aléatoire

Représentation conditionnellement à un facteur

Les boîtes à moustaches se prettent bien à cet exercice

```
pop <- vignes$Population[!is.na(vignes$volume.baie..cm3..2008)]
boxplot(vol.cm3~pop,col="yellow",notch=T)</pre>
```


Graphe conditionné par une variable

pepin <- vignes\$nbre.pepin.baie.2008[!is.na(vignes\$volume.baie..cm3..2008)]
coplot(vol.cm3 ~ pepin | pop, show.given=FALSE)</pre>

Plan

Entrées/sorties

Statistiques descriptives

Généralités

Statistique descriptive univariée

Variable qualitative

Variable quantitative

Statistique descriptive multivariée

Croisement qualitatives/quantitatif

Couple de variables qualitatives

Couple de variables quantitatives

Générateur aléatoire

Tableau croisé ou table de contingence I

Tableau de contigence

Chaque case du tableau de contingence compte le nombre d'individus possédant la modalité i de la variable X et j de la variable $Y:n_{ij}$

Marges

À ce tableau on peut rajouter une ligne et une colonne contenant les marges

- $n_{\bullet j} = \sum_i n_{ij}$ (marge en colonne)

Le nombre total d'individus de l'échantillon est

$$n = \sum_{ij} n_{ij} = \sum_{i} n_{i\bullet} = \sum_{j} n_{\bullet j}$$

Tableau croisé ou table de contingence II

```
X<-sample(c("Brown", "Blue", "Hazel", "Green"), prob=c(6,3,1,1), replace=T, size=200)
Y<-sample(c("Black", "Brown", "Red", "Blond"), prob=c(2,5,2,3), replace=T, size=200)
print(ContingencyTable<-table(X,Y))</pre>
##
## X
          Black Blond Brown Red
             6
                         29 14
##
    B111e
                    12
             20 24 44 18
    Brown
##
                 2 14 2
##
    Green
            1
    Hazel
              2
                              1
##
```

Diagramme mosaïque I

Représenter un tableau de contingence avec des informations sur ses marges

- ▶ chaque colonne j possède une largeur proportionnelle à sa marge $n_{\bullet j}$
- chaque case ij dans une colonne j possède une hauteur proportionnelle à $\frac{n_{ij}}{n_{\bullet j}}$
- la surface de chaque case ij est donc proportionnelle à son effectif n_{ij}

plot(ContingencyTable)

Diagramme mosaïque II

ContingencyTable

Plan

Entrées/sorties

Statistiques descriptives

Généralités

Statistique descriptive univariée

Variable qualitative

Variable quantitative

Statistique descriptive multivariée

Croisement qualitatives/quantitatif

Couple de variables quantitatives

Générateur aléatoire

Graphes pair à pair

Représente toutes les paires de graphes naturels d'un tableau

data(iris); pairs(iris)

Graphe quantile/quantile

Pour comparer visuellement les distributions de variables continues.

with(iris, qqplot(Sepal.Length[Species=="setosa"],Sepal.Length[Species=="virginica"]

Écart à la distribution normale

Une distribution est-elle normale? qqnorm/qqline donne une indication.

```
with(iris, qqnorm(Sepal.Length))
with(iris, qqline(Sepal.Length))
```


Statistique du couple : covariance

Définition

Décrit l'écart conjoint de 2 variables à leurs espérances respectives

$$cov(X, Y) = \mathbb{E}\left[(X - \mathbb{E}X)(Y - \mathbb{E}Y)\right] = \mathbb{E}(XY) - EX\mathbb{E}Y$$

cov.mat <- cov(iris[,-5])</pre>

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length	0.6856935	-0.0424340	1.2743154	0.5162707
Sepal.Width	-0.0424340	0.1899794	-0.3296564	-0.1216394
Petal.Length	1.2743154	-0.3296564	3.1162779	1.2956094
Petal.Width	0.5162707	-0.1216394	1.2956094	0.5810063

Statistique du couple : corrélation

Définition

Il s'agit de la version normalisé de la covariance

$$cor(X, Y) = \frac{cov(X, Y)}{\sqrt{\mathbb{V}(X)\mathbb{V}(Y)}}$$

```
data(iris)
cor.mat <- cor(iris[,-5])</pre>
```

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length	1.0000000	-0.1175698	0.8717538	0.8179411
Sepal.Width	-0.1175698	1.0000000	-0.4284401	-0.3661259
Petal.Length	0.8717538	-0.4284401	1.0000000	0.9628654
Petal.Width	0.8179411	-0.3661259	0.9628654	1.0000000

Graphe pair à pair et corrélation

La corrélation dit à quel point deux variables s'expliquent linéairement l'une l'autre.

```
library(GGally); ggpairs(iris, columns = 1:4, color = "Species")
```


Histogramme bidimensionnelle

Regroupe les points d'un graphe de dispersion par pavé bidimensionnels.

```
library(squash);
par(mfrow=c(1,2))
hist2(iris$Sepal.Length,iris$Sepal.Width)
hist2(iris$Sepal.Length,iris$Sepal.Width, nx=20)
```


Histogramme bidimensionnelle lisse

Estime la densité associé à deux variables continues. Représentation 3D ou image possible

```
library(MASS)
den3d <- kde2d(iris$Sepal.Length, iris$Sepal.Width)
par(mfrow=c(1,2))
persp(den3d, box=TRUE,theta = 10, phi = 45)
image(den3d)</pre>
```


Plan

Entrées/sorties

Statistiques descriptives

Généralités

Statistique descriptive univariée

Variable qualitative

Variable quantitative

Statistique descriptive multivariée

Croisement qualitatives/quantita

Couple de variables qualitatives

Couple de variables quantitatives

Générateur aléatoire

Quelques distributions disponibles

Distribution	R	Paramètres
beta	beta	
binomiale	binom	
binomiale négative	nbinom	
Cauchy	cauchy	
Chi-deux	chiqsq	
Exponentielle	exp	
Fisher	f	
Gamma	gamma	
géométrique	geom	
hypergéométrique	hyper	
log-normal	lnorm	
logistique	logis	
normale	norm	
normale multivariée	mvnorm	
Poisson	pois	
Student	t	
uniforme	unif	
Weibull	weibull	
Wilcoxon	wilcox	

Table: Principales distributions

Quelques distributions disponibles

Distribution	R	Paramètres
beta	beta	
binomiale	binom	
binomiale négative	nbinom	
Cauchy	cauchy	
Chi-deux	chiqsq	
Exponentielle	exp	
Fisher	f	
Gamma	gamma	
géométrique	geom	
hypergéométrique	hyper	
log-normal	lnorm	
logistique	logis	
normale	norm	
normale multivariée	mvnorm	
Poisson	pois	
Student	t	
uniforme	unif	
Weibull	weibull	
Wilcoxon	wilcox	

Table: Principales distributions

Quelques distributions disponibles

Distribution	R	Paramètres
beta	beta	
binomiale	binom	size, prob
binomiale négative	nbinom	
Cauchy	cauchy	
Chi-deux	chiqsq	df
Exponentielle	exp	rate
Fisher	f	df1, df2
Gamma	gamma	
géométrique	geom	
hypergéométrique	hyper	
log-normal	lnorm	
logistique	logis	
normale	norm	mean, sd
normale multivariée	mvnorm	mean, sigma
Poisson	pois	
Student	t	df
uniforme	unif	min, max
Weibull	weibull	
Wilcoxon	wilcox	

Table: Principales distributions

Tirage aléatoire

```
Forme générique : r+distrib(n,...)
```

r pour « random » : n donne la taille de l'échantillon et ... sont les paramètres requis selon la forme de distrib.

```
rexp(10, rate=1/5)
##
    Г17
       2.6403409 0.9194465 3.8042244 3.9043327 1.1889369 12.2990216
    [7] 0.1930232 6.8175360 16.5653974 4.7909241
##
rchisq(10,df=5)
    [1] 3.150175 11.666952
                            4.613559 5.786057 7.668031 2.983181 12.913080
##
##
    [8] 1.855266 8.280931 1.390537
runif(10,min=-2,max=2)
    [1] -1.3300977 -1.9725736
                              1.9131699 0.7622626 -0.7475197 1.7300227
##
##
    [7]
       0.2942702 0.9741818 1.6627920 -1.4103824
```

Exemple avec la loi normale : histogramme Avec n = 10

Exemple avec la loi normale : histogramme Avec n = 200

taille de l'echantillon = 200

Exemple avec la loi normale : histogramme Avec n = 10000

Tirage aléatoire avec sample

Définir une distribution discrète

La fonction sample(x, size, replace=FALSE, prob=NULL) permet d'échantillonner les éléments de x : le tirage est de taille size, avec ou sans remise. Si prob est vide, chaque élément est équiprobable.

```
sample(1:5)
## [1] 5 2 4 3 1

sample(1:5,10,replace=TRUE)
## [1] 3 3 1 3 2 5 2 1 5 4

sample(1:5,10,replace=TRUE,prob=c(.35,.1,.1,.1,0.35))
## [1] 4 3 1 1 5 1 5 3 1 2
```

Avec n=10

Avec n = 100

Avec n = 10000

Fonction de répartition

```
Forme générique : p+distrib(x,...)
```

p pour « probability distribution function » : donne $\mathbb{P}(X \leq \mathbf{x})$, où X est une variable aléatoire de loi distrib.

```
pnorm(0.5)
## [1] 0.6914625
pnorm(0.5,mean=2,sd=3)
## [1] 0.3085375
pnorm((0.5-2)/3)
## [1] 0.3085375
pbinom(5,10,.25)
## [1] 0.9802723
```

Densité

```
Forme générique : d+distrib(x,...)
```

d pour « density » : donne la densité pour une variable aléatoire continue et $\mathbb{P}(X=\mathbf{x})$ pour X une variable aléatoire discrète.

```
dnorm(0.5)
## [1] 0.3520653
dexp(3,1/8)
## [1] 0.08591116
dbinom(5,10,.25)
## [1] 0.0583992
dpois(4,2)
## [1] 0.09022352
```

Fractiles

```
Forme générique : q+distrib(alpha,...)
```

q pour « quantile » : donne la valeur de x définie par

$$\mathbb{P}(X \le x) = \alpha,$$

où X est une variable aléatoire de loi distrib.

```
qnorm(0.95)
## [1] 1.644854
qt(0.4,df=28)
## [1] -0.2557675
qchisq(0.05,df=6)
## [1] 1.635383
```