MATEMÁTICA DISCRETA

Lic. Ciências da Computação

Exercícios de Teoria de Números - Divisibilidade

- 1. Sejam $a, b, c, d \in \mathbb{Z}$. Mostre que:
 - (a) 1 | a, a | a e a | 0;
 - (b) $a \mid 1 \text{ sse } a = \pm 1;$
 - (c) $0 \mid a \text{ sse } a = 0;$
 - (d) se $c \neq 0$, então $a \mid b$ sse $ac \mid bc$;
 - (e) $a \mid b \in a \mid b + c$ implica que $a \mid c$;
 - (f) se $ab \neq 0$ e $a \mid b$ e $b \mid a$, então |a| = |b|.
- 2. Sejam $a, x, y \in \mathbb{Z}$. Mostre que, se $a \mid (2x + 3y)$ e $a \mid (4x + 5y)$, então $a \mid y$.
- 3. Usando indução natural, mostre que 4 | $5^n 1$ para qualquer $n \in \mathbb{N}$.
- 4. Calcule o quociente e o resto da divisão de a por b em cada caso:
 - (a) a = 29 e b = 4;
 - (b) a = -29 e b = 4;
 - (c) a = -29 e b = -4;
 - (d) a = 29 e b = -4;
 - (e) a = -1350 e b = 45;
 - (f) a = -1351 e b = 45;
 - (g) a = -1351 e b = -45;
 - (h) a = 0 e b = -37.
- 5. Sejam $a, b \in \mathbb{Z}$ e $b \neq 0$. Prove as afirmações seguintes.
 - (a) m.d.c.(a, b) = m.d.c.(|a|, |b|) = m.d.c.(b, a).
 - (b) se $b \mid a$, então m.d.c.(a, b) = |b|.
 - (c) m.d.c.(0, b) = |b|.
- 6. Em cada caso, utilizando o algoritmo de Euclides, calcule o máximo divisor comum de a e b e escreva-o como combinação linear de a e b.
 - (a) a = 144 e b = 34;
 - (b) a = 34 e b = 144;
 - (c) a = 39 e b = 51;
 - (d) a = -39 e b = -51;
 - (e) a = -63 e b = -37;
 - (f) a = -63 e b = 37.

- 7. Resolva as seguintes equações no conjunto dos números inteiros:
 - (a) 144x + 34y = 20,
 - (b) 39x + 51y = 7,
 - (c) 63x 37y = 3,
 - (d) 63x + 37y = 3,
 - (e) 119x 29y = 8.
- 8. Sejam a e b inteiros não ambos nulos. Mostre que o conjunto

$$S = \{ax + by \mid x, y \in \mathbb{Z}\}\$$

é o conjunto de todos os múltiplos de m.d.c.(a, b).

- 9. Prove que o resto da divisão do quadrado de qualquer número inteiro por 4, ou é 0 ou é 1.
- 10. Seja $a \in \mathbb{Z}$. Mostre que $\frac{a(a^2+2)}{3} \in \mathbb{Z}$.
- 11. Utilizando o Algoritmo da Divisão, prove que:
 - (a) um quadrado perfeito não é da forma 3k + 2;
 - (b) um inteiro da forma $3k^2 1$ não é um quadrado perfeito.
- 12. Sejam a e b inteiros não ambos nulos. Mostre que:
 - (a) $a \in b$ são primos entre si sse, existem inteiros $x \in y$, tais que 1 = ax + by;
 - (b) se d = m.d.c.(a, b), então $\frac{a}{d} \in \frac{b}{d}$ são primos entre si;
 - (c) se m.d.c.(a, b) = 1 e $c \in \mathbb{Z}$ é tal que $a \mid c$ e $b \mid c$, então $ab \mid c$.
- 13. Prove que dois inteiros consecutivos são primos entre si.
- 14. Verifique que 6 | a(a+1)(2a+1), qualquer que seja $a \in \mathbb{Z}$.
- 15. Verifique que, para qualquer $n \in \mathbb{N}$, $6 \mid n^3 n$.
- 16. Sejam $a, b \in \mathbb{Z} \setminus \{0\}$. Mostre que:
 - (a) m.m.c.(a, b) = m.m.c.(|a|, |b|) = m.m.c.(b, a).
 - (b) m.m.c.(a, a) = |a|.
 - (c) se $b \mid a$, então m.m.c.(a, b) = |a|.
 - (d) m.d.c.(a, b) | m.m.c.(a, b).
 - (e) m.m.c.(ka, kb) = |k|m.m.c.(a, b) para qualquer $k \in \mathbb{Z} \setminus \{0\}$.
- 17. Em cada caso, calcule o mínimo múltipo comum de a e b e escreva-o como combinação linear de a e b.
 - (a) a = 144 e b = 34;
 - (b) a = 34 e b = 144;
 - (c) a = 39 e b = 51;
 - (d) a = -39 e b = -51;
 - (e) a = -63 e b = -37.

Exercícios de Teoria de Números - Números Primos

- 18. Seja $p \in \mathbb{P}$ e p > 3. Mostre que o resto da divisão de p por 6 é igual a 1 ou a 5.
- 19. Prove que, se $p \in \mathbb{P}$ e p > 3, então $p^2 + 2$ é um número composto. (Sugestão: use o resultado do exercício 18.)
- 20. Mostre, que se $p, p+2 \in \mathbb{P}$ e p>3, então $6 \mid (p+1)$.
- 21. Fatorize como produto de primos os números: 36300, 5661, 529, 677.
- 22. Sejam a = 86625 e b = 38220.
 - (a) Fatorize $a \in b$ em primos.
 - (b) Escreva a fatorização em primos de m.d.c.(a, b).
 - (c) Escreva a fatorização em primos de m.m.c.(a, b).
- 23. Sejam a=4918793 e b=35302597. Calcule m.d.c.(a,b), sabendo que $a\times 9514662-b\times 1325700=66$.
- 24. Sejam $a, b \in \mathbb{Z}$ e $n \in \mathbb{N}$. Mostre que m.d.c. $(a^n, b^n) = \text{m.d.c.}(a, b)^n$.
- 25. Determine os números primos p tais que 17p + 1 é um quadrado perfeito.
- 26. Mostre que o único primo p da forma $p=n^3-1$, com $n\in\mathbb{N}$, é p=7. (Sugestão: note que 1 é raiz do polinómio n^3-1 de incógnita n.)
- 27. Determine um fator primo do número $2^{30} + 1$.
- 28. Sejam $a, b \in \mathbb{Z}$ e $n \in \mathbb{N}$. Mostre que se $n = a^4 b^4$, então n não é um número primo.
- 29. Sejam $a, b, c \in \mathbb{Z}$ e $p \in \mathbb{P}$. Diga quais das seguintes afirmações são verdadeiras:
 - (a) Se m.d.c.(a, b) = m.d.c.(b, c), então m.d.c.(a, b) = m.d.c.(a, c).
 - (b) Se m.d.c.(a, b) = m.d.c.(b, c), então m.m.c.(a, b) = m.m.c.(b, c).
 - (c) Se m.d.c.(a, b) = m.d.c.(b, c), então m.d.c. $(a^2, b^2) = \text{m.d.c.}(b^2, c^2)$.
 - (d) Se $p \mid a \in p \mid (ab + b^2)$, então $p \mid b$.
 - (e) Se $b \mid (a^2 + 1)$, então $b \mid (a^4 + 1)$.
 - (f) Se $b \mid (a^2 1)$, então $b \mid (a^4 + 1)$.
- 30. Prove que o conjunto dos números primos da forma 6n + 5 é infinito.

Exercícios de Teoria de Números - Congruências modulares

- 31. Determine o conjunto de todos os inteiros positivos x tais que x < 100 e $x \equiv 9 \pmod{11}$.
- 32. Calcule os valores de m para os quais $25 \equiv 4 \pmod{m}$.
- 33. Determine dois positivos e dois negativos, na classe $[5]_m$ em que:
 - (a) m = 11;
 - (b) m = 18.
- 34. Determine um número $x \in \mathbb{N}$ tal que: $x \equiv 0 \pmod{11}$ e $x \equiv 0 \pmod{14}$.
- 35. Sejam $a, b, c \in \mathbb{Z}$ e $m, n \in \mathbb{N}$. Prove que, se $a \equiv b \pmod{m}$, então
 - (a) $a + c \equiv b + c \pmod{m}$;
 - (b) $ac \equiv bc \pmod{m}$;
 - (c) $a^n \equiv b^n \pmod{m}$.
- 36. Sejam $a, b, c \in \mathbb{Z}$ e $m, n \in \mathbb{N}$. Prove que:
 - (a) se $a \equiv b \pmod{m}$ e $n \mid m$, então $a \equiv b \pmod{n}$;
 - (b) $a^2 \equiv b^2 \pmod{m}$ não implica $a \equiv b \pmod{m}$;
 - (c) se $a \equiv b \pmod{m}$, então, m.d.c.(a, m) = m.d.c.(b, m).
- 37. Verifique se S é um sistema completo de resíduos módulo 7.
 - (a) $S = \{-6, -5, -4, -3, -2, -1, 0\};$
 - (b) $S = \{-4, -3, -2, -1, 0, 8, 23\};$
 - (c) $S = \{-12, -4, 11, 13, 22, 32, 91\};$
 - (d) $S = \{-19, -4, 11, -1, 22, 54, 21\}.$
- 38. Caso exista, determine S um sistema completo de resíduos módulo m em que
 - (a) m = 12;
 - (b) m = 7 e os elementos de S são números primos;
 - (c) m = 11 e os elementos de S são menores do que 4;
 - (d) m = 11 e os elementos de S são múltiplos de 3;
 - (e) m = 12 e os elementos de S são múltiplos de 3.
- 39. (a) Que dia da semana será o dia 23 de abril de 2021?
 - (b) Que dia da semana foi o dia 23 de abril de 2000?
- 40. (a) Verifique se 22051946 é um quadrado perfeito.
 - (b) Mostre que o último algarismo de um quadrado perfeito não pode pertencer a {2, 3, 7, 8}.

- 41. Calcule o menor $a \in \mathbb{N}_0$ tal que, em \mathbb{Z}_{23} , $[a]_{23}$ é o simétrico de:
 - (a) $[5]_{23}$;
 - (b) $[-29]_{23}$;
 - (c) $[26]_{23}$;
 - (d) $[46]_{23}$.
- 42. Diga se são verdadeiras ou falsas as seguintes igualdades em \mathbb{Z}_{23} :
 - (a) $[17]_{23} + [15]_{23} = [9]_{23}$;
 - (b) $[17]_{23} \cup [15]_{23} = [9]_{23}$;
 - (c) $[5]_{23} \cap [15]_{23} = [0]_{23}$;
 - (d) $[30]_{23} \cap [53]_{23} = [7]_{23}$;
 - (e) $[5]_{23} \cap [15]_{23} = \emptyset$;
 - (f) $[-29]_{23} \cdot [15]_{23} = [9]_{23}$;
 - (g) $[26]_{23} \setminus [15]_{23} = [3]_{23}$.
- 43. Diga se são verdadeiras ou falsas as seguintes igualdades em \mathbb{Z}_{15} :
 - (a) $[17]_{15} + [15]_{15} = [17]_{15}$;
 - (b) $[17]_{15} \setminus [15]_{15} = [2]_{15}$;
 - (c) $[5]_{15} \cdot [15]_{15} = [0]_{15}$;
 - (d) $[5]_{15} \cap [15]_{15} = \emptyset$;
 - (e) $[-29]_{15} \cdot [27]_{15} = [27]_{15}$;
 - (f) $[3]_{15} \cdot [25]_{15} = [0]_{15}$;
 - (g) $[19]_{15} \cdot [32]_{15} \cdot [17]_{15} = [1]_{15}$.
- 44. Mostre que:
 - (a) $41 \mid 2^{20} 1$;
 - (b) o resto da divisão de 41^{65} por 7 é igual a 6;
 - (c) $4^{215} \equiv 7 \pmod{9}$.
- 45. Calcule:
 - (a) o resto da divisão de 2^{50} por 7;
 - (b) $\left(\sum_{n=1}^{100} n!\right) \pmod{12}$.
- 46. Seja $n \in \mathbb{N}$. Mostre que
 - (a) $7 \mid 5^{2n} + 3 \times 2^{5n-2}$;
 - (b) $13 \mid 3^{n+2} + 4^{2n+1}$.
- 47. Mostre que, para qualquer $n \in \mathbb{Z}$, $n^3 n = 3k$, para certo $k \in \mathbb{Z}$.
- 48. Sejam $a \in \mathbb{Z}$ e $b \in \mathbb{N}$. Prove que, se m.d.c. $(a,b) \neq 1$, então não existe $c \in \mathbb{Z}$ que verifique $ac \equiv 1 \pmod{b}$.

- 49. Caso exista, calcule:
 - (a) o inverso de 3 módulo 7;
 - (b) o inverso de 3 módulo 11;
 - (c) o inverso de 6 módulo 25;
 - (d) o inverso de 15 módulo 231;
 - (e) o inverso de 4 módulo 45.
- 50. Determine os valores de $x \in \mathbb{Z}$ tais que:
 - (a) $3x \equiv 1 \pmod{7}$;
 - (b) $3x \equiv 2 \pmod{7}$;
 - (c) $6x \equiv 8 \pmod{11}$;
 - (d) $15x \equiv 1 \pmod{231}$;
 - (e) $15x \equiv 6 \pmod{231}$.
- 51. Sejam $x, y \in \mathbb{Z}$. Determine o conjunto dos inteiros x tais que:
 - (a) 3x + 7y = 1;
 - (b) 3x + 7y = 2;
 - (c) 6x + 25y = 1;
 - (d) 15x + 231y = 1;
 - (e) 15x + 231y = 6.
- 52. Mostre que a equação $x^2 + y^2 = 4z + 3$, nas incógnitas $x, y \in \mathbb{Z}$, não tem soluções inteiras.
- 53. Mostre que a soma dos algarismos de um quadrado perfeito não pode ser igual a 375.
- 54. Com base nos critérios de divisibilidade estudados, mostre que o número 155832732 é divisível por 396.
- 55. Sejam $a \in d$ dígitos (ou algarismos). Determine os valores de $a \in d$ de modo que:
 - (a) o número inteiro $n = \overline{3a5d}$ (i.e. $n = 3 \times 10^3 + a \times 10^2 + 5 \times 10 + d$) é múltiplo de 4 e de 9;
 - (b) o número inteiro $n = \overline{34aa58d}$ é múltiplo de 11 e de 9.

.

- 56. Resolva as seguintes equações diofantinas nas incógnitas $x \in y$.
 - (a) 31x + 25y = 3;
 - (b) 42x + 66y = 12;
 - (c) 54x + 21y = 906.
- 57. Caso existam, determine as soluções positivas das seguintes equações diofantinas.
 - (a) 6x + 25y = 353;
 - (b) 18x + 7y = 43;
 - (c) 6x 11y = 17;
 - (d) 39x + 24y = 104.
- 58. Se possível, escreva 100 como a soma de dois números positivos tais que:
 - (a) um é múltiplo de 7 e o outro é múltiplo de 11;
 - (b) um é múltiplo de 5 e o outro é múltiplo de 8:
- 59. De quantas maneiras se pode escrever o número 6 como diferença de dois inteiros positivos, sendo que o primeiro é múltiplo de 13 e o segundo é múltiplo de 11?
- 60. Considere a a equação diofantina 11x + 7y = 200 nas incógnitas $x \in y$.
 - (a) Resolva a equação.
 - (b) Quantas soluções positivas tem a equação.
 - (c) Para que soluções da equação se verifica 3x + 5y é múltiplo de 3.
- 61. Um turista espanhol e um guia tiveram de fugir e subiram a correr os degraus de uma pirâmide por serem perseguidos por um leão! O turista subia cinco degraus de cada vez, o guia seis degraus e o leão sete degraus. A dada altura, o turista estava a um degrau do topo da pirâmide, o guia a nove degraus e o leão a dezanove degraus. Quantos degraus tem a pirâmide?
- 62. Dispondo de dois relógios sonoros, um que sinaliza intervalos de 5 minutos e o outro que sinaliza intervalos de 11 minutos, como podemos marcar o tempo de cozedura de um ovo que se pretende seja exatamente de 4 minutos?
- 63. Para que inteiros x e y não nulos se verifica que $\frac{x+y}{xy} \in \mathbb{Z}$?
- 64. Considere a congruência linear $16x \equiv 9 \pmod{11}$. Determine:
 - (a) duas soluções que sejam números primos;
 - (b) duas soluções que sejam números pares;
 - (c) o conjunto das soluções menores do que 100.
- 65. Resolva os seguintes sistemas de congruências:

(a)
$$\begin{cases} 2x \equiv 1 \pmod{5} \\ 3x \equiv 9 \pmod{6} \\ 2x \equiv 4 \pmod{7} \end{cases}$$

(b)
$$\begin{cases} 2x \equiv 1 \pmod{9} \\ 5x \equiv 9 \pmod{7} \\ 4x \equiv 8 \pmod{11} \end{cases}$$

- 66. Resolva as seguintes congruências:
 - (a) $16x \equiv 9 \pmod{300}$;
 - (b) $462x \equiv 840 \pmod{300}$;
- 67. Determine o menor número natural a > 2 tal que $2 \mid a, 3 \mid a+1, 4 \mid a+2, 5 \mid a+3 \in 6 \mid a+4$.
- 68. Resolva os seguintes sistemas de congruências:

(a)
$$\begin{cases} 3x \equiv 1 \pmod{4} \\ 5x \equiv 1 \pmod{6} \\ 2x \equiv 7 \pmod{15} \\ 2x \equiv 4 \pmod{9} \end{cases}$$
(b)
$$\begin{cases} 7x \equiv 11 \pmod{12} \\ 7x \equiv 20 \pmod{30} \\ 2x \equiv 19 \pmod{45} \end{cases}$$
(c)
$$\begin{cases} 7x \equiv 11 \pmod{12} \\ 7x \equiv 29 \pmod{30} \\ 2x \equiv 19 \pmod{45} \end{cases}$$

Exercícios de Teoria de Números - Teoremas Fundamentais

- 69. Calcule o resto da divisão de 3^{372} por 37.
- 70. Mostre que $7 \nmid n^2 + 1$ qualquer que seja $n \in \mathbb{Z}$.
- 71. Calcule
 - (a) $31^{100} \mod 19$, (b) $2^{10000} \mod 29$.
- 72. Mostre que $11^{84} 5^{84}$ é divisível por 7.
- 73. Mostre que $a^{13} \equiv a \pmod{273}$, para todo o inteiro a.
- 74. Mostre que $a^{12} \equiv 1 \pmod{35}$, para todo o inteiro a o tal que m.d.c.(a, 35) = 1.
- 75. Mostre que, para qualquer $n \in \mathbb{N}$, $n^{13} n \equiv 0 \pmod{2730}$.
- 76. Seja $a \in \mathbb{Z}$ tal que m.d.c.(a,7) = 1. Mostre que $7 \mid a^3 + 1$ ou $7 \mid a^3 1$.
- 77. Mostre que $a^{n-1} \equiv 1 \pmod{n}$ para qualquer inteiro a tal que m.d.c.(a, n) = 1 se
 - (i) n = 561, (ii) n = 1105, (iii) n = 1729.
- 78. Seja p é um primo e a um inteiro tais que $a \not\equiv 1 \pmod{p}$. Prove que $1 + a + \cdots + a^{p-1} \equiv 1 \pmod{p}$.
- 79. Determine os valores de n para os quais
 - (a) $\phi(n) = 2$,
 - (b) $\phi(n) = 6$,
 - (c) $\phi(2n) = \phi(n)$,
 - (d) $\phi(2n) = \phi(3n),$
 - (e) $\phi(n) = n 2$.
- 80. Calcular os últimos dois dígitos de 1993¹⁹⁹³.
- 81. Calcule o inverso de 2 e de 3 módulo 35.
- 82. Calcule o resto da divisão de 2⁷²⁰ por 225.
- 83. Mostre que $n^{12} \equiv 1 \pmod{72}$ para qualquer inteiro n tal que m.d.c.(n,72) = 1.
- 84. Verifique que se p é primo, então

$$1^{p-1} + 2^{p-1} + \dots + (p-1)^{p-1} \equiv -1 \pmod{p}.$$

- 85. Calcule o resto da divisão de
 - (i) 87! por 89; (ii) 18! por 437; (iii) $\frac{13!}{7!}$ por 7.
- 86. Mostre que se p é um primo ímpar, então $2(p-3)! \equiv -1 \pmod{p}$.