PROJECT REPORT

Presented To

SAAD MUNIR

Presented By HAZIQ IJAZ

HASSAAN ULLAH

Table Of Contents

O1 Dataset

O2 Pre
Processing

O3 Code Explanation

O4 Models
Results

05 Website

Dataset:

We have used three different datasets for this project

- S&P 50 dataset
- Hourly energy consumption dataset
- Daily atmosphere CO2 dataset

```
import pandas as pd

co2_data = pd.read_csv('Co2.csv')
energy_data = pd.read_csv('Energy.csv')
sp500_data = pd.read_csv('sp500_data.csv')
Python
```

Pre Processing:

1. CO2 Data Preprocessing:

- Converted date columns to datetime format and set the index to 'Date'.
- Scaled CO2 concentration data using Min-Max scaling.
- Applied log transformation and differencing for stationarity analysis.

2. Energy Data Preprocessing

- Formatted datetime column and set it as the index.
- Interpolated missing values using time-series method.
- Filled remaining missing values with forward-fill and backward-fill.
- Scaled energy consumption metrics using Standard Scale.

3. S&P 500 Data Preprocessing

- Converted date column to datetime format and set it as the index.
- Scaled stock prices and volume using Min-Max scaling.
 Applied log transformation and differencing for stationarity analysis.

4. Missing Values Handling

- Checked and displayed missing values for CO2, Energy, and S&P 500 datasets.
- Imputed missing values in the energy dataset through interpolation, forward-fill, and backward-fill methods.

5. Stationarity Analysis

- Utilized Augmented Dickey-Fuller (ADF) test to assess stationarity.
- Applied log transformation and differencing to achieve stationarity in CO2, Energy, and S&P 500 datasets.
- Displayed ADF statistic, p-value, and stationarity result for each dataset.

```
energy_data.interpolate(method='time', inplace=True)

# Forward fill
energy_data.fillna(method='ffill', inplace=True)

# If still missing values after forward fill, use backward fill
energy_data.fillna(method='bfill', inplace=True)

missing_values_energy = energy_data.isnull().sum()
missing_values_energy
```

```
def test_stationarity(:s):
    adf result = adfuller(ts)
    return {
        'ADF Statistic': adf_result[0],
        'p-value': adf_result[1],
        'Stationary': adf_result[1] < 0.05
}

# COZ Data - Log Transformation and Differencing
# Log Transformation and Differencing
coZ_data['COZ_ppm_log'] = np.log(coZ_data['COZ_ppm_scaled'] + 1)
coZ_data['COZ_ppm_diff'] = coZ_data['COZ_ppm_log'].diff().dropna()
coZ_stationarity = test_stationarity(coZ_data['COZ_ppm_diff'].dropna())

energy_data_daily['Global_active_power_log'] = np.log(energy_data_daily['Global_active_power'] + 1)
energy_data_daily['Global_active_power_diff'] = energy_data_daily['Global_active_power_log'].diff().dropna()
energy_stationarity = test_stationarity(energy_data_daily['Global_active_power_diff'].dropna())

# S&P 500 Data - Log Transformation and Differencing
sp500_data['Adj Close_log'] = np.log(sp500_data['Adj Close'] + 1)
sp500_data['Adj Close_log'] = np.log(sp500_data['Adj Close_log'].diff().dropna()
sp500_stationarity = test_stationarity(sp500_data['Adj Close_diff'].dropna())

# Display stationarity results
(co2_stationarity, energy_stationarity, sp500_stationarity)</pre>
```

Arima Configuration and tuning

1.ACF and PACF Analysis

 ACF and PACF plots were generated to identify the autocorrelation and partial autocorrelation in the differenced energy consumption data.

2. ARIMA Model Fitting

- ARIMA model with parameters (p=1, d=1, q=1) was fitted to the log-transformed and differenced energy consumption data.
- The model was trained on the available historical data.

3.Forecasting

 Utilizing the fitted ARIMA model, forecasting was performed for the next 30 days. • Forecasted values were generated for the log-transformed energy consumption data.

4. Model Evaluation

- Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) were calculated to evaluate the forecast accuracy against the true values.
- MAE: \${mae}\$, MSE: \${mse}\$, RMSE: \${rmse}\$.

5. Forecast Visualization

- The plot illustrates the forecasted values alongside the actual values for the next 30 days.
- This visualization provides an insight into the performance of the ARIMA model in predicting energy consumption.

Results of Arima

CO2 dataset:

Energy Dataset:

S&P Dataset:

ANN Design and Training

1. Data Preprocessing

- Loaded preprocessed CO2 concentration data stored as sequences.
- Created sequences of length 5 for input data and corresponding target values.

2. Data Splitting

• Split the dataset into training and testing sets with a 80-20 ratio for model evaluation.

3. Artificial Neural Network (ANN) Architecture

- Designed a feedforward ANN model with two hidden layers and dropout regularization.
- Architecture:
 - Input Layer: 64 neurons, ReLU activation function
 - o Dropout Layer: 20% dropout rate
 - o Hidden Layer: 32 neurons, ReLU activation function
 - Dropout Layer: 20% dropout rate
 - Output Layer: 1 neuron

4. Model Training

- Trained the ANN model using Adam optimizer and mean squared error loss function.
- Epochs: 50, Batch Size: 8
- Monitored validation loss to prevent overfitting.

5. Model Evaluation

Evaluated the model performance on the test set.

Calculated Mean Squared Error (MSE) and Mean Absolute Error (MAE) for model assessment.

- Test Loss: \${test_loss}\$.
- MSE: \${mse}\$, MAE: \${mae}\$.

6. Results Visualization

- Visualized the actual vs. predicted CO2 concentration values.
- The plot illustrates the model's performance in capturing the temporal patterns and forecasting CO2 levels.

Results of ANN model

CO2 Dataset:

Energy Dataset:

S&P Dataset:

Prophet Model

1. Prophet Modeling

- Utilized the Prophet library for time series forecasting.
- Three datasets were prepared for forecasting: CO2 concentration, Energy consumption, and S&P 500 stock prices.

2. Model Preparation and Evaluation

- Each dataset was fitted to a Prophet model with appropriate settings.
- The model was trained to capture yearly and weekly seasonality patterns.
- Forecasting was performed for different time horizons: 12 months for CO2 data, 30 days for Energy data, and 12 months for S&P 500 data.

3. Model Evaluation Metrics

- Mean Squared Error (MSE) and Mean Absolute Error (MAE) were calculated to evaluate the forecast accuracy.
- The evaluation results provide insights into the performance of the Prophet models on each dataset.

4. Forecast Visualization

- Visualized the forecasted values alongside historical data using Prophet's built-in plotting functionalities.
- The plots illustrate the forecasted trends and provide a visual comparison with actual data.

Results of Prophet model

CO2 Dataset:

Energy Dataset:

S&P Dataset:

SVR MODEL

Data Cleaning and Preparation

- Loaded CO2 concentration, Energy consumption, and S&P 500 stock price datasets.
- Cleaned data by converting date columns to datetime and handling missing values.

2. Support Vector Regression (SVR) Modeling

- Utilized SVR for time series forecasting.
- Implemented SVR with a linear kernel and grid search for hyperparameter tuning.
- Data were split into training and testing sets, with optional data sampling for efficiency.

3. Model Evaluation

- Evaluated SVR models using Mean Squared Error (MSE) and Mean Absolute Error (MAE).
- Generated plots depicting actual vs. predicted values for visual assessment.

Results of SVR model CO2 Dataset:

Energy Dataset:

S&P Dataset:

LSTM Model

1. Data Cleaning and Preparation

- Loaded CO2 concentration, Energy consumption, and S&P 500 stock price datasets.
- Cleaned data by converting date columns to datetime and handling missing values.

2. LSTM Modeling

- Utilized LSTM neural networks for time series forecasting.
- Data were prepared in sequences suitable for LSTM input.
- Implemented LSTM models with dropout regularization for better generalization.

3. Model Training and Evaluation

- Trained LSTM models on training data.
- Evaluated models using Mean Squared Error (MSE) and Mean Absolute Error (MAE).
- Plotted actual vs. predicted values for visual assessment.

Results with LSTM Model

CO2 Dataset:

Energy Dataset:

S&P Dataset:

Hybrid Model

1. Data Preparation and Preprocessing

- Loaded CO2 concentration dataset and performed Min-Max scaling.
- Conducted log transformation and differencing to achieve stationarity.
- Prepared differenced data for ARIMA modeling.

2. ARIMA Modeling

- Utilized ARIMA model with order (5, 1, 0) for forecasting.
- Trained ARIMA model on differenced CO2 data.

3. ANN Modeling for Residuals

- Developed an Artificial Neural Network (ANN) to predict residuals from the ARIMA model.
- Scaled ARIMA predictions and residuals for training.

4. Hybrid Model Integration

- Combined ARIMA predictions with ANN predictions to obtain the final forecast.
- Evaluated the hybrid model using Mean Squared Error (MSE) and Mean Absolute Error (MAE).
- Plotted actual vs. predicted values for visual assessment.
- Similarly Hybird model is adpoted for all datasets with different models

Results with Hybrid Model

CO2 Dataset:

Energy Dataset:

S&P Dataset:

Website

