

Proofs (that contain programs that contain proofs)*

Adrián Rebola-Pardo TU Wien, JKU Linz

Timisoara, Romania 26 September 2025

Supported by FWF 10.55776/COE12

Resolution [Davis, Putnam '60]

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D} \qquad \{C \vee x, D \vee \overline{x}\} \vDash C \vee D$$

Resolution [Davis, Putnam '60]

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D} \qquad \{C \vee x, D \vee \overline{x}\} \vDash C \vee D$$

$$\pi = C_1, \dots, C_n$$
 is a proof of $F \vDash G$ if

- C_i is a resolvent of clauses in $F \cup \{C_1, \dots, C_{i-1}\}$
- $\blacksquare G \subseteq F \cup \{C_1, \dots, C_n\}$

Resolution [Davis, Putnam '60]

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D} \qquad \{C \vee x, D \vee \overline{x}\} \vDash C \vee D$$

$$\pi = C_1, \dots, C_n$$
 is a proof of $F \models G$ if

- \blacksquare C_i is a resolvent of clauses in $F \cup \{C_1, \dots, C_{i-1}\}$
- $\blacksquare G \subseteq F \cup \{C_1, \dots, C_n\}$

Reverse unit propagation (RUP) [Goldberg, Novikov '03]

 ${\it C}$ is a RUP over ${\it F}$ if ${\it C}$ can be obtained by iterated resolution over clauses in ${\it F}$

Resolution [Davis, Putnam '60]

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D} \qquad \{C \vee x, D \vee \overline{x}\} \vDash C \vee D$$

$$\pi = C_1, \dots, C_n$$
 is a proof of $F \models G$ if

- \blacksquare C_i is a resolvent of clauses in $F \cup \{C_1, \dots, C_{i-1}\}$
- $\blacksquare G \subseteq F \cup \{C_1, \dots, C_n\}$

Reverse unit propagation (RUP) [Goldberg, Novikov '03]

C is a RUP over Fif C can be obtained by iterated resolution over clauses in F

$$\pi = C_1, \dots, C_n$$
 is a proof of $F \vDash G$ if

- C_i is a RUP over $F \cup \{C_1, \dots, C_{i-1}\}$
- $\blacksquare G \subseteq F \cup \{C_1, \dots, C_n\}$

Resolution [Davis, Putnam '60]

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D} \qquad \{C \vee x, D \vee \overline{x}\} \vDash C \vee D$$

$$\pi = C_1, \dots, C_n$$
 is a proof of $F \models G$ if

- \blacksquare C_i is a resolvent of clauses in $F \cup \{C_1, \dots, C_{i-1}\}$
- $\blacksquare G \subseteq F \cup \{C_1, \dots, C_n\}$

Reverse unit propagation (RUP) [Goldberg, Novikov '03]

C is a RUP over Fif C can be obtained by iterated resolution over clauses in F

$$\pi = C_1, \dots, C_n$$
 is a proof of $F \vDash G$ if

- C_i is a RUP over $F \cup \{C_1, \dots, C_{i-1}\}$
- $\blacksquare G \subseteq F \cup \{C_1, \dots, C_n\}$

Deletions [Heule, Hunt, Wetzler '14]

Proofs are sequences of either introductions i: C or deletions d: C.

At every point in the proof we have an accumulated formula F_i .

Resolution [Davis, Putnam '60]

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D} \qquad \{C \vee x, D \vee \overline{x}\} \vDash C \vee D$$

$$\pi = C_1, \dots, C_n$$
 is a proof of $F \models G$ if

- \blacksquare C_i is a resolvent of clauses in $F \cup \{C_1, \dots, C_{i-1}\}$
- $\blacksquare G \subseteq F \cup \{C_1, \dots, C_n\}$

Reverse unit propagation (RUP) [Goldberg, Novikov '03]

C is a RUP over Fif C can be obtained by iterated resolution over clauses in F

$$\pi = C_1, \dots, C_n$$
 is a proof of $F \models G$ if

- C_i is a RUP over $F \cup \{C_1, \dots, C_{i-1}\}$
- $\blacksquare G \subseteq F \cup \{C_1, \dots, C_n\}$

Deletions [Heule, Hunt, Wetzler '14]

Proofs are sequences of either introductions i: *C* or deletions d: *C*.

At every point in the proof we have an accumulated formula F_i .

■ If the *i*-th instruction is i: C, then C must be RUP in F_{i-1} , and $F_i = F_{i-1} \cup \{C\}$

Resolution [Davis, Putnam '60]

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D} \qquad \{C \vee x, D \vee \overline{x}\} \vDash C \vee D$$

$$\pi = C_1, \dots, C_n$$
 is a proof of $F \models G$ if

- \blacksquare C_i is a resolvent of clauses in $F \cup \{C_1, \dots, C_{i-1}\}$
- $\blacksquare G \subseteq F \cup \{C_1, \dots, C_n\}$

Reverse unit propagation (RUP) [Goldberg, Novikov '03]

C is a RUP over F if C can be obtained by iterated resolution over clauses in F

$$\pi = C_1, \dots, C_n$$
 is a proof of $F \models G$ if

- \blacksquare C_i is a RUP over $F \cup \{C_1, \dots, C_{i-1}\}$
- $\blacksquare G \subseteq F \cup \{C_1, \dots, C_n\}$

Deletions [Heule, Hunt, Wetzler '14]

Proofs are sequences of either introductions i: C or deletions d: C.

At every point in the proof we have an accumulated formula F_i .

- If the *i*-th instruction is i: C, then C must be RUP in F_{i-1} , and $F_i = F_{i-1} \cup \{C\}$
- If the *i*-th instruction is d: C, then $F_i = F_{i-1} \setminus \{C\}$

Proofs are sequences of either introductions i: C or deletions d: C.

At every point in the proof we have an accumulated formula F_i .

- If the *i*-th instruction is i: C, then C must be RUP in F_{i-1} , and $F_i = F_{i-1} \cup \{C\}$
- If the *i*-th instruction is d: C, then $F_i = F_{i-1} \setminus \{C\}$

Proofs are sequences of either introductions i: C or deletions d: C.

At every point in the proof we have an accumulated formula F_i .

- If the *i*-th instruction is i: C, then C must be RUP in F_{i-1} , and $F_i = F_{i-1} \cup \{C\}$
- If the *i*-th instruction is d: C, then $F_i = F_{i-1} \setminus \{C\}$

$$F = F_0 \vDash F_1 \vDash F_2 \vDash \cdots \vDash F_n \ni \bot$$

Proofs are sequences of either introductions i: C or deletions d: C.

At every point in the proof we have an accumulated formula F_i .

- If the *i*-th instruction is i: C, then C must be RUP in F_{i-1} , and $F_i = F_{i-1} \cup \{C\}$
- If the *i*-th instruction is d: C, then $F_i = F_{i-1} \setminus \{C\}$

$$F = F_0 \vDash F_1 \vDash F_2 \vDash \cdots \vDash F_n \ni \bot$$

... but why ⊨? [Järvisalo, Heule, Biere '12]

C is redundant in F if F satisfiable implies $F \cup \{C\}$ satisfiable

If the proof ends in \bot , then we can replace RUP by any redundance criterion!

Proofs are sequences of either introductions i: C or deletions d: C.

At every point in the proof we have an accumulated formula F_i .

- If the *i*-th instruction is i: C, then C must be RUP in F_{i-1} , and $F_i = F_{i-1} \cup \{C\}$
- If the *i*-th instruction is d: C, then $F_i = F_{i-1} \setminus \{C\}$

$$F = F_0 \vDash F_1 \vDash F_2 \vDash \cdots \vDash F_n \ni \bot$$

... but why ⊨? [Järvisalo, Heule, Biere '12]

C is redundant in F if F satisfiable implies $F \cup \{C\}$ satisfiable

If the proof ends in \bot , then we can replace RUP by any redundance criterion!

$$F = F_0 \vDash_{\mathsf{sat}} F_1 \vDash_{\mathsf{sat}} F_2 \vDash_{\mathsf{sat}} \cdots \vDash_{\mathsf{sat}} F_n \ni \bot$$

Proofs are sequences of either introductions i: C or deletions d: C.

At every point in the proof we have an accumulated formula F_i .

- If the *i*-th instruction is i: C, then C must be RUP in F_{i-1} , and $F_i = F_{i-1} \cup \{C\}$
- If the *i*-th instruction is d: C, then $F_i = F_{i-1} \setminus \{C\}$

$$F = F_0 \vDash F_1 \vDash F_2 \vDash \cdots \vDash F_n \ni \bot$$

... but why ⊨? [Järvisalo, Heule, Biere '12]

C is redundant in F if F satisfiable implies $F \cup \{C\}$ satisfiable

If the proof ends in \bot , then we can replace RUP by any redundance criterion!

$$F = F_0 \vDash_{\mathsf{sat}} F_1 \vDash_{\mathsf{sat}} F_2 \vDash_{\mathsf{sat}} \cdots \vDash_{\mathsf{sat}} F_n \ni \bot$$

... why though? proof complexity considerations [Tseitin '83] [Haken '85]

Proofs are sequences of either introductions i: C or deletions d: C.

At every point in the proof we have an accumulated formula F_i .

- If the *i*-th instruction is i: C, then C must be RUP in F_{i-1} , and $F_i = F_{i-1} \cup \{C\}$
- If the *i*-th instruction is d: C, then $F_i = F_{i-1} \setminus \{C\}$

$$F = F_0 \vDash F_1 \vDash F_2 \vDash \cdots \vDash F_n \ni \bot$$

... but why ⊨? [Järvisalo, Heule, Biere '12]

C is redundant in F if F satisfiable implies $F \cup \{C\}$ satisfiable

If the proof ends in ⊥, then we can replace RUP by any redundance criterion!

$$F = F_0 \vDash_{\mathsf{sat}} F_1 \vDash_{\mathsf{sat}} F_2 \vDash_{\mathsf{sat}} \cdots \vDash_{\mathsf{sat}} F_n \ni \bot$$

... why though? proof complexity considerations [Tseitin '83] [Haken '85]

```
Substitution redundancy (SR) [Buss, Thapen '19] [Gocht, Nordström, '21] but also DRAT [Wetzler, Heule, Hunt '14], DPR [Heule, Kiesl, Biere '17]

F is a CNF formula

C is a clause

σ is an atomic substitution (variables map to literals, T or ⊥)
```

```
Substitution redundancy (SR) [Buss, Thapen '19] [Gocht, Nordström, '21] but also DRAT [Wetzler, Heule, Hunt '14], DPR [Heule, Kiesl, Biere '17] F is a CNF formula C is a clause \sigma is an atomic substitution (variables map to literals, T or L) C is SR over F upon \sigma if F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma} (simplified)
```

```
Substitution redundancy (SR) [Buss, Thapen '19] [Gocht, Nordström, '21] but also DRAT [Wetzler, Heule, Hunt '14], DPR [Heule, Kiesl, Biere '17] F is a CNF formula C is a clause \sigma is an atomic substitution (variables map to literals, T or \bot) C is SR over F upon \sigma if F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma} (simplified)
```

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

```
Substitution redundancy (SR) [Buss, Thapen '19] [Gocht, Nordström, '21] but also DRAT [Wetzler, Heule, Hunt '14], DPR [Heule, Kiesl, Biere '17] F is a CNF formula C is a clause \sigma is an atomic substitution (variables map to literals, T or \bot) C is SR over F upon \sigma if F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma} (simplified)
```

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

Pros

Succintly captures a lot (but not all!) of beyond-CDCL reasoning

```
Substitution redundancy (SR) [Buss, Thapen '19] [Gocht, Nordström, '21]
   but also DRAT [Wetzler, Heule, Hunt '14], DPR [Heule, Kiesl, Biere '17]
    Fis a CNF formula
   C is a clause
   \sigma is an atomic substitution (variables map to literals, T or \bot)
   C is SR over F upon \sigma if F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma} (simplified)
             If I had an assignment I satisfying F, then check if it satisfies C.
           If it does, then I satisfies F \cup \{C\}; otherwise, I \circ \sigma satisfies F \cup \{C\}.
Pros
   Succintly captures a lot (but not all!) of beyond-CDCL reasoning
Cons [RP, Suda '17] [RP '23] [RP '25]
   Fixpoints in trimming huh, that's weird
```

```
Substitution redundancy (SR) [Buss, Thapen '19] [Gocht, Nordström, '21]
   but also DRAT [Wetzler, Heule, Hunt '14], DPR [Heule, Kiesl, Biere '17]
    Fis a CNF formula
   C is a clause
   \sigma is an atomic substitution (variables map to literals, T or \bot)
   C is SR over F upon \sigma if F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma} (simplified)
             If I had an assignment I satisfying F, then check if it satisfies C.
           If it does, then I satisfies F \cup \{C\}; otherwise, I \circ \sigma satisfies F \cup \{C\}.
Pros
   Succintly captures a lot (but not all!) of beyond-CDCL reasoning
Cons [RP, Suda '17] [RP '23] [RP '25]
   Fixpoints in trimming huh, that's weird
   Subproofs cannot be merged that's ok i quess?
```

```
Substitution redundancy (SR) [Buss, Thapen '19] [Gocht, Nordström, '21]
   but also DRAT [Wetzler, Heule, Hunt '14], DPR [Heule, Kiesl, Biere '17]
   Fis a CNF formula
   C is a clause
   \sigma is an atomic substitution (variables map to literals, T or \bot)
   C is SR over F upon \sigma if F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma} (simplified)
            If I had an assignment I satisfying F, then check if it satisfies C.
           If it does, then I satisfies F \cup \{C\}; otherwise, I \circ \sigma satisfies F \cup \{C\}.
Pros
   Succintly captures a lot (but not all!) of beyond-CDCL reasoning
Cons [RP, Suda '17] [RP '23] [RP '25]
   Fixpoints in trimming huh, that's weird
   Subproofs cannot be merged that's ok i quess?
   Deriving lemmas prevents inferences *slams desk in anger *
```

```
Substitution redundancy (SR) [Buss, Thapen '19] [Gocht, Nordström, '21]
   but also DRAT [Wetzler, Heule, Hunt '14], DPR [Heule, Kiesl, Biere '17]
   Fis a CNF formula
   C is a clause
   \sigma is an atomic substitution (variables map to literals, T or \bot)
   C is SR over F upon \sigma if F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma} (simplified)
            If I had an assignment I satisfying F, then check if it satisfies C.
          If it does, then I satisfies F \cup \{C\}; otherwise, I \circ \sigma satisfies F \cup \{C\}.
Pros
   Succintly captures a lot (but not all!) of beyond-CDCL reasoning
Cons [RP, Suda '17] [RP '23] [RP '25]
   Fixpoints in trimming huh, that's weird
   Subproofs cannot be merged that's ok i quess?
   Deriving lemmas prevents inferences *slams desk in anger*
   Deletions are now semantically relevant *yells at clouds *
```

```
Substitution redundancy (SR) [Buss, Thapen '19] [Gocht, Nordström, '21]
   but also DRAT [Wetzler, Heule, Hunt '14], DPR [Heule, Kiesl, Biere '17]
   Fis a CNF formula
   C is a clause
   \sigma is an atomic substitution (variables map to literals, T or \bot)
   C is SR over F upon \sigma if F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma} (simplified)
            If I had an assignment I satisfying F, then check if it satisfies C.
          If it does, then I satisfies F \cup \{C\}; otherwise, I \circ \sigma satisfies F \cup \{C\}.
Pros
   Succintly captures a lot (but not all!) of beyond-CDCL reasoning
Cons [RP, Suda '17] [RP '23] [RP '25]
   Fixpoints in trimming huh, that's weird
   Subproofs cannot be merged that's ok i quess?
   Deriving lemmas prevents inferences *slams desk in anger*
   Deletions are now semantically relevant
                                                     *vells at clouds *
```

The real issue non-monotonicity and global dependence a.k.a. interference

C is SR over F upon σ if $F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma}$

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

C is SR over Fupon σ if $F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma}$

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

If π is a proof of $F \vdash G$ then, given any assignment I satisfying F, I know how to construct $\mathrm{mut}(I)$ satisfying G

$$C$$
 is SR over F upon σ if $F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma}$

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

If π is a proof of $F \vdash G$ then, given any assignment I satisfying F, I know how to construct $\operatorname{mut}(I)$ satisfying G

This is a monotonic property! *bangs head against the wall *

Solution [RP, Suda '17] [RP '23]

Operate over constraints $\nabla(\sigma_1:-T_1)....\nabla(\sigma_n:-T_n).C$

$$C$$
 is SR over F upon σ if $F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma}$

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

If π is a proof of $F \vdash G$ then, given any assignment I satisfying F, I know how to construct $\operatorname{mut}(I)$ satisfying G

This is a monotonic property! *bangs head against the wall *

Solution [RP, Suda '17] [RP '23]

Operate over constraints $\nabla(\sigma_1:-T_1)....\nabla(\sigma_n:-T_n).C$

 $I \models \nabla (T : -\sigma) \cdot \varphi$ iff $I' \models \varphi$, where $I' = I \circ \sigma$ if $I \models T$, and I' = I otherwise

$$C$$
 is SR over F upon σ if $F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma}$

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

If π is a proof of $F \vdash G$ then, given any assignment I satisfying F, I know how to construct $\operatorname{mut}(I)$ satisfying G

This is a monotonic property! *bangs head against the wall *

Solution [RP, Suda '17] [RP '23]

Operate over constraints $\nabla(\sigma_1:-T_1)....\nabla(\sigma_n:-T_n).C$

 $I \models \nabla (T : -\sigma).\varphi$ iff $I' \models \varphi$, where $I' = I \circ \sigma$ if $I \models T$, and I' = I otherwise

If C is SR over F upon σ then $F \vDash \nabla(\overline{C} : -\sigma) \cdot F \cup \{C\}$

$$C$$
 is SR over F upon σ if $F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma}$

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

If π is a proof of $F \vdash G$ then, given any assignment I satisfying F, I know how to construct $\operatorname{mut}(I)$ satisfying G

This is a monotonic property! *bangs head against the wall *

Solution [RP, Suda '17] [RP '23]

Operate over constraints $\nabla(\sigma_1:-T_1)....\nabla(\sigma_n:-T_n).C$

 $I \models \nabla (T : -\sigma).\varphi$ iff $I' \models \varphi$, where $I' = I \circ \sigma$ if $I \models T$, and I' = I otherwise

If *C* is SR over *F* upon σ then $F \models \nabla(\overline{C} : -\sigma) \cdot F \cup \{C\}$

Fixpoints in trimming are now gone!

$$C$$
 is SR over F upon σ if $F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma}$

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

If π is a proof of $F \vdash G$ then, given any assignment I satisfying F, I know how to construct $\operatorname{mut}(I)$ satisfying G

This is a monotonic property! *bangs head against the wall *

Solution [RP, Suda '17] [RP '23]

Operate over constraints $\nabla(\sigma_1:-T_1)....\nabla(\sigma_n:-T_n).C$

 $I \models \nabla (T : -\sigma).\varphi$ iff $I' \models \varphi$, where $I' = I \circ \sigma$ if $I \models T$, and I' = I otherwise

If C is SR over F upon σ then $F \models \nabla(\overline{C} : -\sigma) \cdot F \cup \{C\}$

Fixpoints in trimming are now gone! Lemmas can now safely derived!

$$C$$
 is SR over F upon σ if $F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma}$

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

If π is a proof of $F \vdash G$ then, given any assignment I satisfying F, I know how to construct $\operatorname{mut}(I)$ satisfying G

This is a monotonic property! *bangs head against the wall *

Solution [RP, Suda '17] [RP '23]

Operate over constraints $\nabla(\sigma_1:-T_1)....\nabla(\sigma_n:-T_n).C$

 $I \models \nabla (T : -\sigma).\varphi$ iff $I' \models \varphi$, where $I' = I \circ \sigma$ if $I \models T$, and I' = I otherwise

If C is SR over F upon σ then $F \models \nabla(\overline{C} : -\sigma) \cdot F \cup \{C\}$

Fixpoints in trimming are now gone! Lemmas can now safely derived! Deletions are now semantically irrelevant!

C is SR over Fupon σ if $F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma}$

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

If π is a proof of $F \vdash G$ then, given any assignment I satisfying F, I know how to construct $\operatorname{mut}(I)$ satisfying G

This is a monotonic property! *bangs head against the wall *

Solution [RP, Suda '17] [RP '23]

Operate over constraints $\nabla(\sigma_1:-T_1)....\nabla(\sigma_n:-T_n).C$

 $I \models \nabla (T : -\sigma).\varphi$ iff $I' \models \varphi$, where $I' = I \circ \sigma$ if $I \models T$, and I' = I otherwise

If C is SR over F upon σ then $F \models \nabla(\overline{C} : -\sigma) \cdot F \cup \{C\}$

Fixpoints in trimming are now gone! Lemmas can now safely derived! Deletions are now semantically irrelevant! All inferences have clearly defined dependencies!

$$C$$
 is SR over F upon σ if $F \cup \{\overline{C}\} \models (F \cup \{C\})|_{\sigma}$

If I had an assignment I satisfying F, then check if it satisfies C. If it does, then I satisfies $F \cup \{C\}$; otherwise, $I \circ \sigma$ satisfies $F \cup \{C\}$.

If π is a proof of $F \vdash G$ then, given any assignment I satisfying F, I know how to construct $\operatorname{mut}(I)$ satisfying G

This is a monotonic property! *bangs head against the wall *

Solution [RP, Suda '17] [RP '23]

Operate over constraints $\nabla(\sigma_1:-T_1)....\nabla(\sigma_n:-T_n).C$

 $I \models \nabla (T : -\sigma) \cdot \varphi$ iff $I' \models \varphi$, where $I' = I \circ \sigma$ if $I \models T$, and I' = I otherwise

If C is SR over F upon σ then $F \models \nabla(\overline{C} : -\sigma) \cdot F \cup \{C\}$

Fixpoints in trimming are now gone! Lemmas can now safely derived! Deletions are now semantically irrelevant! All inferences have clearly defined dependencies!

Dominance: interference with a vengeance

Dominance needs three accumulated formulas

please stop...

K(x), R(x), O(x, x') are CNF formulas

Dominance: interference with a vengeance

Dominance needs three accumulated formulas please stop...

$$K(x), R(x), O(x, x')$$
 are CNF formulas

$$O(x,x')$$
 encodes a preorder: $O(x,x') \equiv \sum_{i=0}^n 2^i x_i - \sum_{i=0}^n 2^i x_i' \le 0$

$$F \curvearrowright \searrow K \curvearrowright K \hookrightarrow K \cup R \qquad K(x) \vDash O(x, \delta(x))$$

RUP and SR add clauses in R(x)

SR now requires proving $K(x) \models O(x, \sigma(x))$, and σ is added to δ

Dominance: interference with a vengeance

Dominance needs three accumulated formulas please stop...

K(x), R(x), O(x, x') are CNF formulas

$$O(x,x')$$
 encodes a preorder: $O(x,x') \equiv \sum_{i=0}^n 2^i x_i - \sum_{i=0}^n 2^i x_i' \le 0$

$$F \curvearrowright \searrow K \curvearrowright K \hookrightarrow K \cup R \qquad K(x) \vDash O(x, \delta(x))$$

RUP and SR add clauses in R(x)

SR now requires proving $K(x) \models O(x, \sigma(x))$, and σ is added to δ

Dominance [Boggaerts, Gocht, McCreesh, Nordström '23]

C is dominance-redundant over K, R, O upon σ if:

- $\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$
- $\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \models O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$

Dominance: interference with a vengeance

Dominance needs three accumulated formulas please stop...

K(x), R(x), O(x, x') are CNF formulas

$$O(x,x')$$
 encodes a preorder: $O(x,x') \equiv \sum_{i=0}^n 2^i x_i - \sum_{i=0}^n 2^i x_i' \le 0$

$$F \curvearrowright \searrow K \curvearrowright K \hookrightarrow K \cup R \qquad K(x) \vDash O(x, \delta(x))$$

RUP and SR add clauses in R(x)

SR now requires proving $K(x) \models O(x, \sigma(x))$, and σ is added to δ

Dominance [Boggaerts, Gocht, McCreesh, Nordström '23]

C is dominance-redundant over K, R, O upon σ if:

- $\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$
- $\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \models O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$

If is dominance-redundant over K, R, O upon σ , then C is redundant on $K \cup R$

$$K(x)$$
, $R(x)$, $O(x, x')$ are CNF formulas O encodes a preorder

$$F \curvearrowright K \curvearrowright K \hookrightarrow K \cup R \qquad K(x) \vDash O(x, \delta(x))$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

$$F \curvearrowright K \curvearrowright K \hookrightarrow K \cup R \qquad K(x) \vDash O(x, \delta(x))$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K,

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

$$F \sim K \sim K \sim K \cup R \qquad K(x) \models O(x, \delta(x))$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

$$F \curvearrowright K \curvearrowright K \hookrightarrow K \cup R \qquad K(x) \vDash O(x, \delta(x))$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable;

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

$$F \sim K \sim K \sim K \cup R \qquad K(x) \vDash O(x, \delta(x))$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare \ K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_1 satisfying K,

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

$$F \sim K \sim K \sim K \cup R \qquad K(x) \models O(x, \delta(x))$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_1 satisfying K, and by δ I have an assignment J_1 satisfying $K \cup R$.

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

$$F \sim K \sim K \sim K \cup R \qquad K(x) \models O(x, \delta(x))$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_1 satisfying K, and by δ I have an assignment J_1 satisfying $K \cup R$.

If J_1 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable;

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

$$F \sim K \sim K \sim K \cup R \qquad K(x) \vDash O(x, \delta(x))$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_1 satisfying K, and by δ I have an assignment J_1 satisfying $K \cup R$.

If J_1 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_2 blah blah blah.

$$K(x), R(x), O(x, x')$$
 are CNF formulas

 ${\it O}$ encodes a preorder

$$F \sim K \sim K \sim K \cup R \qquad K(x) \models O(x, \delta(x))$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_1 satisfying K, and by δ I have an assignment J_1 satisfying $K \cup R$.

If J_1 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_2 blah blah blah.

This process cannot continue forever because O is non-increasing on δ and strictly decreasing on σ .

$$K(x), R(x), O(x, x')$$
 are CNF formulas

 ${\it O}$ encodes a preorder

$$F \sim K \sim K \sim K \cup R \qquad K(x) \vDash x \ge \delta(x)$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_1 satisfying K, and by δ I have an assignment J_1 satisfying $K \cup R$.

If J_1 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_2 blah blah blah.

This process cannot continue forever because O is non-increasing on δ and strictly decreasing on σ .

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

$$F \sim K \qquad K \cup R(x) \cup \overline{C}(x) \vDash x > \sigma(x)$$

$$K(x) \cup R(x) \cup \overline{C}(x) \vDash x > \sigma(x)$$

$$K(x) \vDash x \ge \delta(x)$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_1 satisfying K, and by δ I have an assignment J_1 satisfying $K \cup R$.

If J_1 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_2 blah blah blah.

This process cannot continue forever because O is non-increasing on δ and strictly decreasing on σ .

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_1 satisfying K, and by δ I have an assignment J_1 satisfying $K \cup R$.

If J_1 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_2 blah blah blah.

This process cannot continue forever because O is non-increasing on δ and strictly decreasing on σ .

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

termination order

invariant
$$K(x) \cup R(x) \cup \overline{C}(x)$$
 $F \sim K \qquad K \cup R \qquad K(x) \models x \geq \delta(x)$

$$K(x) \cup R(x) \cup \overline{C}(x) \vDash x > \sigma(x)$$

 $K(x) \vDash x \ge \delta(x)$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

$$\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$$

$$\blacksquare \ K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x,\sigma(x)) \cup \overline{O(\sigma(x),x)}$$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_1 satisfying K, and by δ I have an assignment J_1 satisfying $K \cup R$.

If J_1 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_2 blah blah blah.

This process cannot continue forever because O is non-increasing on δ and strictly decreasing on σ .

$$K(x), R(x), O(x, x')$$
 are CNF formulas

O encodes a preorder

termination order

invariant
$$K(x) \cup R(x) \cup \overline{C}(x) \vDash x > \sigma(x)$$

$$F \xrightarrow{\text{MODEL CHECKING BY ANY OTHER NAME}} K \cup R \qquad K(x) \vDash x \ge \delta(x)$$

Dominance-based strengthening (very simplified) C is dominance-redundant over K, R, O upon σ if:

- $\blacksquare K \cup R \cup \{\overline{C}\} \models K|_{\sigma}$
- $\blacksquare K(x) \cup R(x) \cup \{\overline{C(x)}\} \vDash O(x, \sigma(x)) \cup \overline{O(\sigma(x), x)}$

If I had an assignment I_0 satisfying K, then by δ I have an assignment J_0 satisfying $K \cup R$.

If J_0 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_1 satisfying K, and by δ I have an assignment J_1 satisfying $K \cup R$.

If J_1 satisfies C, then $K \cup R \cup \{C\}$ is satisfiable; otherwise by σ I have an assignment I_2 blah blah blah.

This process cannot continue forever because O is non-increasing on δ and strictly decreasing on σ .

Why do we keep having global conditions on classical reasoning when we know classical logic is monotonic? [Martin Suda over lunch in 2017]

 $\nabla(T : -\sigma)(I)$ is $I \circ \sigma$ if $I \models T$, or I otherwise.

Why do we keep having global conditions on classical reasoning when we know classical logic is monotonic? [Martin Suda over lunch in 2017]

 $\nabla (T : -\sigma)(I)$ is $I \circ \sigma$ if $I \models T$, or I otherwise.

I maps variables to bits → memory states

Why do we keep having global conditions on classical reasoning when we know classical logic is monotonic? [Martin Suda over lunch in 2017]

 $\nabla (T : -\sigma)(I)$ is $I \circ \sigma$ if $I \models T$, or I otherwise.

I maps variables to bits → memory states

 $\nabla (T:-\sigma)$ transforms a memory state into a memory state \rightsquigarrow programs

Why do we keep having global conditions on classical reasoning when we know classical logic is monotonic? [Martin Suda over lunch in 2017]

 $\nabla (T : -\sigma)(I)$ is $I \circ \sigma$ if $I \models T$, or I otherwise.

I maps variables to bits → memory states

 $\nabla (T : -\sigma)$ transforms a memory state into a memory state \rightsquigarrow programs

if we want to make this work for dominance, we must be even more general:

- programs may be partial maps (to allow while loops)
- programs may be non-deterministic (to encode preorders)

Why do we keep having global conditions on classical reasoning when we know classical logic is monotonic? [Martin Suda over lunch in 2017]

 $\nabla (T : -\sigma)(I)$ is $I \circ \sigma$ if $I \models T$, or I otherwise.

I maps variables to bits → memory states

 $\nabla (T : -\sigma)$ transforms a memory state into a memory state \rightsquigarrow programs

if we want to make this work for dominance, we must be even more general:

- programs may be partial maps (to allow while loops)
- programs may be non-deterministic (to encode preorders)

(Static) constraints semantics given by a set of (satisfying) assignments

Why do we keep having global conditions on classical reasoning when we know classical logic is monotonic? [Martin Suda over lunch in 2017]

 $\nabla (T : -\sigma)(I)$ is $I \circ \sigma$ if $I \models T$, or I otherwise.

I maps variables to bits → memory states

 $\nabla (T : -\sigma)$ transforms a memory state into a memory state \rightsquigarrow programs

if we want to make this work for dominance, we must be even more general:

- programs may be partial maps (to allow while loops)
- programs may be non-deterministic (to encode preorders)

(Static) constraints semantics given by a set of (satisfying) assignments

Programs semantics given by a binary relation of (transitioning) assignments

$$J \models C$$

 $I \otimes J \models \varepsilon$

Why do we keep having global conditions on classical reasoning when we know classical logic is monotonic? [Martin Suda over lunch in 2017]

 $\nabla (T : -\sigma)(I)$ is $I \circ \sigma$ if $I \models T$, or I otherwise.

I maps variables to bits → memory states

 $\nabla (T : -\sigma)$ transforms a memory state into a memory state \rightsquigarrow programs

if we want to make this work for dominance, we must be even more general:

- programs may be partial maps (to allow while loops)
- programs may be non-deterministic (to encode preorders)

(Static) constraints semantics given by a set of (satisfying) assignments

Programs semantics given by a binary relation of (transitioning) assignments

Dynamic constraints a static constraint must hold after executing a program

$$J \models C$$
 $I \otimes J \models \varepsilon$

Why do we keep having global conditions on classical reasoning when we know classical logic is monotonic? [Martin Suda over lunch in 2017]

 $\nabla (T : -\sigma)(I)$ is $I \circ \sigma$ if $I \models T$, or I otherwise.

I maps variables to bits → memory states

 $\nabla (T:-\sigma)$ transforms a memory state into a memory state \rightsquigarrow programs

if we want to make this work for dominance, we must be even more general:

- programs may be partial maps (to allow while loops)
- programs may be non-deterministic (to encode preorders)

(Static) constraints semantics given by a set of (satisfying) assignments

Programs semantics given by a binary relation of (transitioning) assignments

Dynamic constraints a static constraint must hold after executing a program

 $I \models \varepsilon.C$ iff $J \models C$ for all J such that $I \otimes J \models \varepsilon$

Noop $I \otimes J \models 1$ iff I = J

Noop $I \otimes J \models 1$ iff I = J

Composition $I \otimes J \vDash \varepsilon_1 \varepsilon_2$ iff $\exists K, \ I \otimes K \vDash \varepsilon_1 \text{ and } K \otimes J \vDash \varepsilon_2$

Noop $I \otimes J \vDash 1$ iff I = JComposition $I \otimes J \vDash \varepsilon_1 \varepsilon_2$ iff $\exists K, \ I \otimes K \vDash \varepsilon_1 \text{ and } K \otimes J \vDash \varepsilon_2$ Assignment $I \otimes J \vDash \langle \sigma \rangle$ iff $J = I \circ \sigma$

Noop $I \otimes J \vDash 1$ iff I = JComposition $I \otimes J \vDash \varepsilon_1 \varepsilon_2$ iff $\exists K, \ I \otimes K \vDash \varepsilon_1 \text{ and } K \otimes J \vDash \varepsilon_2$ Assignment $I \otimes J \vDash \langle \sigma \rangle$ iff $J = I \circ \sigma$ Choice $I \otimes J \vDash \varepsilon_1 \sqcup \varepsilon_2$ iff $I \otimes J \vDash \varepsilon_1 \text{ or } I \otimes J \vDash \varepsilon_2$

```
Noop I \otimes J \models 1 iff I = J

Composition I \otimes J \models \varepsilon_1 \varepsilon_2 iff \exists K, \ I \otimes K \models \varepsilon_1 \text{ and } K \otimes J \models \varepsilon_2

Assignment I \otimes J \models \langle \sigma \rangle iff J = I \circ \sigma

Choice I \otimes J \models \varepsilon_1 \sqcup \varepsilon_2 iff I \otimes J \models \varepsilon_1 \text{ or } I \otimes J \models \varepsilon_2

Test I \otimes J \models T? iff I = J \text{ and } I \models T
```

```
Noop I \otimes J \vDash 1 iff I = J

Composition I \otimes J \vDash \varepsilon_1 \varepsilon_2 iff \exists K, \ I \otimes K \vDash \varepsilon_1 \text{ and } K \otimes J \vDash \varepsilon_2

Assignment I \otimes J \vDash \langle \sigma \rangle iff J = I \circ \sigma

Choice I \otimes J \vDash \varepsilon_1 \sqcup \varepsilon_2 iff I \otimes J \vDash \varepsilon_1 \text{ or } I \otimes J \vDash \varepsilon_2

Test I \otimes J \vDash T? iff I = J \text{ and } I \vDash T

Branch I \otimes J \vDash \nabla (T : \varepsilon_1 \parallel \varepsilon_0) iff I \otimes J \vDash (T ? \varepsilon_1) \sqcup (\overline{T} ? \varepsilon_0)
```

```
Noop I \otimes J \vDash 1 iff I = J

Composition I \otimes J \vDash \varepsilon_1 \varepsilon_2 iff \exists K, \ I \otimes K \vDash \varepsilon_1 \text{ and } K \otimes J \vDash \varepsilon_2

Assignment I \otimes J \vDash \langle \sigma \rangle iff J = I \circ \sigma

Choice I \otimes J \vDash \varepsilon_1 \sqcup \varepsilon_2 iff I \otimes J \vDash \varepsilon_1 \text{ or } I \otimes J \vDash \varepsilon_2

Test I \otimes J \vDash T? iff I = J \text{ and } I \vDash T

Branch I \otimes J \vDash \nabla (T : \varepsilon_1 \parallel \varepsilon_0) iff I \otimes J \vDash (T ? \varepsilon_1) \sqcup (\overline{T} ? \varepsilon_0)

Repeat I \otimes J \vDash \varepsilon^* iff \exists I_i, \ I_0 = I, \ I_n = J, \ I_{i-1} \otimes I_i \vDash \varepsilon
```

```
Noop I \otimes J \models 1 iff I = J

Composition I \otimes J \models \varepsilon_1 \varepsilon_2 iff \exists K, \ I \otimes K \models \varepsilon_1 \ \text{and} \ K \otimes J \models \varepsilon_2

Assignment I \otimes J \models \langle \sigma \rangle iff J = I \circ \sigma

Choice I \otimes J \models \varepsilon_1 \sqcup \varepsilon_2 iff I \otimes J \models \varepsilon_1 \ \text{or} \ I \otimes J \models \varepsilon_2

Test I \otimes J \models T? iff I = J \ \text{and} \ I \models T

Branch I \otimes J \models \nabla (T : \varepsilon_1 \parallel \varepsilon_0) iff I \otimes J \models (T ? \varepsilon_1) \sqcup (\overline{T} ? \varepsilon_0)

Repeat I \otimes J \models \varepsilon^* iff \exists I_i, \ I_0 = I, \ I_n = J, \ I_{i-1} \otimes I_i \models \varepsilon

Loop I \otimes J \models \Box (T : \varepsilon) iff I \otimes J \models (\overline{T} ? \varepsilon)^* T?
```

```
Noop I \otimes J \models 1 iff I = J
Composition I \otimes J \models \varepsilon_1 \varepsilon_2 iff \exists K, I \otimes K \models \varepsilon_1 and K \otimes J \models \varepsilon_2
Assignment I \otimes J \models \langle \sigma \rangle iff J = I \circ \sigma
Choice I \otimes J \models \varepsilon_1 \sqcup \varepsilon_2 iff I \otimes J \models \varepsilon_1 or I \otimes J \models \varepsilon_2
Test I \otimes J \models T? iff I = J and I \models T
Branch I \otimes J \models \nabla (T : \varepsilon_1 \parallel \varepsilon_0) iff I \otimes J \models (T : \varepsilon_1) \sqcup (T : \varepsilon_0)
Repeat I \otimes J \models \varepsilon^* iff \exists I_i, I_0 = I, I_n = J, I_{i-1} \otimes I_i \models \varepsilon
Loop I \otimes J \models \Box (T : \varepsilon) iff I \otimes J \models (\overline{T}?\varepsilon)^* T?
Rendezvous I \otimes J \models \Diamond(V : \varepsilon_1 \parallel \varepsilon_0) iff \exists J_1, J_0, I \otimes J_i \models \varepsilon_i and J = J_1 +_V J_0
```

```
Noop I \otimes J \models 1 iff I = J
Composition I \otimes J \models \varepsilon_1 \varepsilon_2 iff \exists K, I \otimes K \models \varepsilon_1 and K \otimes J \models \varepsilon_2
Assignment I \otimes J \models \langle \sigma \rangle iff J = I \circ \sigma
Choice I \otimes J \models \varepsilon_1 \sqcup \varepsilon_2 iff I \otimes J \models \varepsilon_1 or I \otimes J \models \varepsilon_2
Test I \otimes J \models T? iff I = J and I \models T
Branch I \otimes J \models \nabla (T : \varepsilon_1 \parallel \varepsilon_0) iff I \otimes J \models (T : \varepsilon_1) \sqcup (T : \varepsilon_0)
Repeat I \otimes J \models \varepsilon^* iff \exists I_i, I_0 = I, I_n = J, I_{i-1} \otimes I_i \models \varepsilon
Loop I \otimes J \models \Box (T : \varepsilon) iff I \otimes J \models (\overline{T}?\varepsilon)^* T?
Rendezvous I \otimes J \models \Diamond(V : \varepsilon_1 \parallel \varepsilon_0) iff \exists J_1, J_0, I \otimes J_i \models \varepsilon_i and J = J_1 +_V J_0
Solve I \otimes J \models [R] iff I \otimes J \models R
```

```
Noop I \otimes J \models 1 iff I = J
Composition I \otimes J \models \varepsilon_1 \varepsilon_2 iff \exists K, I \otimes K \models \varepsilon_1 and K \otimes J \models \varepsilon_2
Assignment I \otimes J \models \langle \sigma \rangle iff J = I \circ \sigma
Choice I \otimes J \models \varepsilon_1 \sqcup \varepsilon_2 iff I \otimes J \models \varepsilon_1 or I \otimes J \models \varepsilon_2
Test I \otimes J \models T? iff I = J and I \models T
Branch I \otimes J \models \nabla (T : \varepsilon_1 \parallel \varepsilon_0) iff I \otimes J \models (T : \varepsilon_1) \sqcup (T : \varepsilon_0)
Repeat I \otimes J \models \varepsilon^* iff \exists I_i, I_0 = I, I_n = J, I_{i-1} \otimes I_i \models \varepsilon
Loop I \otimes J \models \Box (T : \varepsilon) iff I \otimes J \models (\overline{T}?\varepsilon)^* T?
Rendezvous I \otimes J \models \Diamond(V : \varepsilon_1 \parallel \varepsilon_0) iff \exists J_1, J_0, I \otimes J_i \models \varepsilon_i and J = J_1 +_V J_0
Solve I \otimes J \models [R] iff I \otimes J \models R
Havoc I \otimes J \models \forall V iff I \otimes J \models \Diamond (V : [T] \parallel 1)
```

```
Noop I \otimes J \models 1 iff I = J
Composition I \otimes J \models \varepsilon_1 \varepsilon_2 iff \exists K, I \otimes K \models \varepsilon_1 and K \otimes J \models \varepsilon_2
Assignment I \otimes J \models \langle \sigma \rangle iff J = I \circ \sigma
Choice I \otimes J \models \varepsilon_1 \sqcup \varepsilon_2 iff I \otimes J \models \varepsilon_1 or I \otimes J \models \varepsilon_2
Test I \otimes J \models T? iff I = J and I \models T
Branch I \otimes J \models \nabla (T : \varepsilon_1 \parallel \varepsilon_0) iff I \otimes J \models (T : \varepsilon_1) \sqcup (T : \varepsilon_0)
Repeat I \otimes J \models \varepsilon^* iff \exists I_i, I_0 = I, I_n = J, I_{i-1} \otimes I_i \models \varepsilon
Loop I \otimes J \models \Box (T : \varepsilon) iff I \otimes J \models (\overline{T}?\varepsilon)^* T?
Rendezvous I \otimes J \models \Diamond(V : \varepsilon_1 \parallel \varepsilon_0) iff \exists J_1, J_0, I \otimes J_i \models \varepsilon_i and J = J_1 +_V J_0
Solve I \otimes J \models [R] iff I \otimes J \models R
Havoc I \otimes J \models \forall V iff I \otimes J \models \Diamond (V : [T] \parallel 1)
Not even a new thing! [Fischer, Ladner '79] [Balbiani, Herzig, Troquard '13]
     Propositional dynamic logic (PDL) defines modalities for each program
```

```
Noop I \otimes J \models 1 iff I = J
Composition I \otimes J \models \varepsilon_1 \varepsilon_2 iff \exists K, I \otimes K \models \varepsilon_1 and K \otimes J \models \varepsilon_2
Assignment I \otimes J \models \langle \sigma \rangle iff J = I \circ \sigma
Choice I \otimes J \models \varepsilon_1 \sqcup \varepsilon_2 iff I \otimes J \models \varepsilon_1 or I \otimes J \models \varepsilon_2
Test I \otimes J \models T? iff I = J and I \models T
Branch I \otimes J \models \nabla (T : \varepsilon_1 \parallel \varepsilon_0) iff I \otimes J \models (T : \varepsilon_1) \sqcup (T : \varepsilon_0)
Repeat I \otimes J \models \varepsilon^* iff \exists I_i, I_0 = I, I_n = J, I_{i-1} \otimes I_i \models \varepsilon
Loop I \otimes J \models \Box (T : \varepsilon) iff I \otimes J \models (\overline{T}?\varepsilon)^* T?
Rendezvous I \otimes J \models \Diamond(V : \varepsilon_1 \parallel \varepsilon_0) iff \exists J_1, J_0, I \otimes J_i \models \varepsilon_i and J = J_1 +_V J_0
Solve I \otimes J \models [R] iff I \otimes J \models R
Havoc I \otimes J \models \forall V iff I \otimes J \models \Diamond (V : [T] \parallel 1)
```

Not even a new thing! [Fischer, Ladner '79] [Balbiani, Herzig, Troquard '13]
Propositional dynamic logic (PDL) defines modalities for each program

Necessitation law (a.k.a. I can apply programs to a proof) If $F \models G$ holds, then $\varepsilon . F \models \varepsilon . G$ holds too

Proving unsatisfiability F is unsatisfiable if $F \vdash \varepsilon . \bot$ and $\varepsilon . \bot \vdash \bot$

Proving unsatisfiability F is unsatisfiable if $F \vdash \varepsilon$. \bot and ε . $\bot \vdash \bot$

Proving satisfiability F is satisfiable if $T \vdash \varepsilon . F$ and $\varepsilon . \bot \vdash \bot$

Proving unsatisfiability F is unsatisfiable if $F \vdash \varepsilon$. \bot and ε . $\bot \vdash \bot$

Proving satisfiability F is satisfiable if $T \vdash \varepsilon . F$ and $\varepsilon . \bot \vdash \bot$

Parametric proofs If I have proven $F \vdash G$, then I can prove $F|_{\sigma} \vdash G|_{\sigma}$ as $\langle \sigma \rangle . F \vdash \langle \sigma \rangle . G$

Proving unsatisfiability F is unsatisfiable if $F \vdash \varepsilon . \bot$ and $\varepsilon . \bot \vdash \bot$

Proving satisfiability F is satisfiable if $T \vdash \varepsilon . F$ and $\varepsilon . \bot \vdash \bot$

Parametric proofs If I have proven $F \vdash G$, then I can prove $F|_{\sigma} \vdash G|_{\sigma}$ as $\langle \sigma \rangle . F \vdash \langle \sigma \rangle . G$

Proving a safety property P always holds in ε assumming A if $A \vdash \varepsilon^* . P$

Proving unsatisfiability F is unsatisfiable if $F \vdash \varepsilon . \bot$ and $\varepsilon . \bot \vdash \bot$

Proving satisfiability F is satisfiable if $T \vdash \varepsilon . F$ and $\varepsilon . \bot \vdash \bot$

Parametric proofs If I have proven $F \vdash G$, then I can prove $F|_{\sigma} \vdash G|_{\sigma}$ as $\langle \sigma \rangle . F \vdash \langle \sigma \rangle . G$

Proving a safety property P always holds in ε assumming A if $A \vdash \varepsilon^* . P$

Proving a liveness property P eventually holds in ϵ if $\epsilon^* \cdot \overline{P} \vdash \bot$

Proving unsatisfiability F is unsatisfiable if $F \vdash \varepsilon$. \bot and ε . $\bot \vdash \bot$

Proving satisfiability F is satisfiable if $T \vdash \varepsilon . F$ and $\varepsilon . \bot \vdash \bot$

Parametric proofs If I have proven $F \vdash G$, then I can prove $F|_{\sigma} \vdash G|_{\sigma}$ as $\langle \sigma \rangle . F \vdash \langle \sigma \rangle . G$

Proving a safety property P always holds in ε assumming A if $A \vdash \varepsilon^* . P$

Proving a liveness property **Peventually holds** in ε if $\varepsilon^* \cdot \overline{P} \vdash \bot$

Refinements ε refines δ if $\varepsilon \vdash [R_{\varepsilon}]$ and $[R_{\delta}] \vDash \delta$ and $R_{\varepsilon} \vdash R_{\delta}$

Proving unsatisfiability F is unsatisfiable if $F \vdash \varepsilon . \bot$ and $\varepsilon . \bot \vdash \bot$

Proving satisfiability F is satisfiable if $T \vdash \varepsilon . F$ and $\varepsilon . \bot \vdash \bot$

Parametric proofs If I have proven $F \vdash G$, then I can prove $F|_{\sigma} \vdash G|_{\sigma}$ as $\langle \sigma \rangle . F \vdash \langle \sigma \rangle . G$

Proving a safety property P always holds in ε assumming A if $A \vdash \varepsilon^* . P$

Proving a liveness property **P** eventually holds in ε if $\varepsilon^* \cdot \overline{P} \vdash \bot$

Refinements ε refines δ if $\varepsilon \vdash [R_{\varepsilon}]$ and $[R_{\delta}] \vDash \delta$ and $R_{\varepsilon} \vdash R_{\delta}$

I think this could be a good foundation for a general, versatile, unified certificate system for propositional reasoning beyond SAT

Proving unsatisfiability F is unsatisfiable if $F \vdash \varepsilon . \bot$ and $\varepsilon . \bot \vdash \bot$

Proving satisfiability F is satisfiable if $T \vdash \varepsilon . F$ and $\varepsilon . \bot \vdash \bot$

Parametric proofs If I have proven $F \vdash G$, then I can prove $F|_{\sigma} \vdash G|_{\sigma}$ as $\langle \sigma \rangle . F \vdash \langle \sigma \rangle . G$

Proving a safety property P always holds in ε assumming A if $A \vdash \varepsilon^* . P$

Proving a liveness property **P** eventually holds in ε if $\varepsilon^* \cdot \overline{P} \vdash \bot$

Refinements ε refines δ if $\varepsilon \vdash [R_{\varepsilon}]$ and $[R_{\delta}] \vDash \delta$ and $R_{\varepsilon} \vdash R_{\delta}$

I think this could be a good foundation for a general, versatile, unified certificate system for propositional reasoning beyond SAT

An appetizer: [Rebola-Pardo '25, SYNASC]