EXERCISE 7.1

1.
$$-\frac{1}{2}\cos 2x$$
 2. $\frac{1}{3}\sin 3x$ 3. $\frac{1}{2}e^{2x}$

2.
$$\frac{1}{3}\sin 3x$$

3.
$$\frac{1}{2}e^{2x}$$

4.
$$\frac{1}{3a}(ax+b)^3$$

4.
$$\frac{1}{3a}(ax+b)^3$$
 5. $-\frac{1}{2}\cos 2x - \frac{4}{3}e^{3x}$ 6. $\frac{4}{3}e^{3x} + x + C$

6.
$$\frac{4}{3}e^{3x} + x + 0$$

7.
$$\frac{x^3}{3} - x + C$$

7.
$$\frac{x^3}{3} - x + C$$
 8. $\frac{ax^3}{3} + \frac{bx^2}{2} + cx + C$ 9. $\frac{2}{3}x^3 + e^x + C$

$$\frac{2}{3}x^3 + e^x + C$$

10.
$$\frac{x^2}{2} + \log|x| - 2x + C$$

11.
$$\frac{x^2}{2} + 5x + \frac{4}{x} + C$$

12.
$$\frac{2}{7}x^{\frac{7}{2}} + 2x^{\frac{3}{2}} + 8\sqrt{x} + C$$

13.
$$\frac{x^3}{3} + x + C$$

14.
$$\frac{2}{3}x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}} + C$$

15.
$$\frac{6}{7}x^{\frac{7}{2}} + \frac{4}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}} + C$$

16.
$$x^2 - 3\sin x + e^x + C$$

17.
$$\frac{2}{3}x^3 + 3\cos x + \frac{10}{3}x^{\frac{3}{2}} + C$$

18.
$$\tan x + \sec x + C$$

19.
$$\tan x - x + C$$

20.
$$2 \tan x - 3 \sec x + C$$

22. A

EXERCISE 7.2

1.
$$\log(1+x^2) + C$$

1.
$$\log (1 + x^2) + C$$
 2. $\frac{1}{3} (\log |x|)^3 + C$ 3. $\log |1 + \log x| + C$

3.
$$\log |1 + \log x| + C$$

4.
$$\cos(\cos x) + C$$

4.
$$\cos(\cos x) + C$$
 5. $-\frac{1}{4a}\cos 2(ax+b) + C$

6.
$$\frac{2}{2\pi}(ax+b)^{\frac{3}{2}}+C$$

6.
$$\frac{2}{3a}(ax+b)^{\frac{3}{2}}+C$$
 7. $\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+C$

8.
$$\frac{1}{6}(1+2x^2)^{\frac{3}{2}} + C$$
 9. $\frac{4}{3}(x^2+x+1)^{\frac{3}{2}} + C$ 10. $2\log|\sqrt{x}-1| + C$

11.
$$\frac{2}{3}\sqrt{x+4}(x-8)+C$$

12.
$$\frac{1}{7}(x^3-1)^{\frac{7}{3}} + \frac{1}{4}(x^3-1)^{\frac{4}{3}} + C$$
 13. $-\frac{1}{18(2+3x^3)^2} + C$

14.
$$\frac{(\log x)^{1-m}}{1-m} + C$$
 15. $-\frac{1}{8}\log|9-4x^2| + C$ 16. $\frac{1}{2}e^{2x+3} + C$

17.
$$-\frac{1}{2e^{x^2}} + C$$
 18. $e^{\tan^{-1}x} + C$ 19. $\log(e^x + e^{-x}) + C$

20.
$$\frac{1}{2}\log(e^{2x}+e^{-2x})+C$$
 21. $\frac{1}{2}\tan(2x-3)-x+C$

22.
$$-\frac{1}{4}\tan(7-4x) + C$$
 23. $\frac{1}{2}(\sin^{-1}x)^2 + C$

24.
$$\frac{1}{2}\log|2\sin x + 3\cos x| + C$$
 25. $\frac{1}{(1-\tan x)} + C$

26.
$$2\sin\sqrt{x} + C$$
 27. $\frac{1}{3}(\sin 2x)^{\frac{3}{2}} + C$ **28.** $2\sqrt{1+\sin x} + C$

29.
$$\frac{1}{2}(\log \sin x)^2 + C$$
 30. $-\log |1 + \cos x| + C$ **31.** $\frac{1}{1 + \cos x} + C$

32.
$$\frac{x}{2} - \frac{1}{2} \log|\cos x + \sin x| + C$$
 33. $\frac{x}{2} - \frac{1}{2} \log|\cos x - \sin x| + C$

34.
$$2\sqrt{\tan x} + C$$
 35. $\frac{1}{3}(1+\log x)^3 + C$ 36. $\frac{1}{3}(x+\log x)^3 + C$

37.
$$-\frac{1}{4}\cos(\tan^{-1}x^4) + C$$
 38. D

39. B

EXERCISE 7.3

1.
$$\frac{x}{2} - \frac{1}{8}\sin(4x+10) + C$$

2.
$$-\frac{1}{14}\cos 7x + \frac{1}{2}\cos x + C$$

3.
$$\frac{1}{4} \left[\frac{1}{12} \sin 12x + x + \frac{1}{8} \sin 8x + \frac{1}{4} \sin 4x \right] + C$$

4.
$$-\frac{1}{2}\cos(2x+1) + \frac{1}{6}\cos^3(2x+1) + C$$

5.
$$\frac{1}{6}\cos^6 x - \frac{1}{4}\cos^4 x + C$$

6.
$$\frac{1}{4} \left[\frac{1}{6} \cos 6x - \frac{1}{4} \cos 4x - \frac{1}{2} \cos 2x \right] + C$$

7.
$$\frac{1}{2} \left[\frac{1}{4} \sin 4x - \frac{1}{12} \sin 12x \right] + C$$

8.
$$2\tan\frac{x}{2} - x + C$$

9.
$$x-\tan\frac{x}{2}+C$$

9.
$$x-\tan\frac{x}{2}+C$$
 10. $\frac{3x}{8}-\frac{1}{4}\sin 2x+\frac{1}{32}\sin 4x+C$

11.
$$\frac{3x}{8} + \frac{1}{8}\sin 4x + \frac{1}{64}\sin 8x + C$$

12.
$$x - \sin x + C$$

13.
$$2(\sin x + x \cos \alpha) + C$$

$$14. \quad -\frac{1}{\cos x + \sin x} + C$$

15.
$$\frac{1}{6}\sec^3 2x - \frac{1}{2}\sec 2x + C$$

16.
$$\frac{1}{3} \tan^3 x - \tan x + x + C$$

17.
$$\sec x - \csc x + C$$

18.
$$\tan x + C$$

19.
$$\log |\tan x| + \frac{1}{2} \tan^2 x + C$$

$$20. \quad \log|\cos x + \sin x| + C$$

21.
$$\frac{\pi x}{2} - \frac{x^2}{2} + C$$

21.
$$\frac{\pi x}{2} - \frac{x^2}{2} + C$$
 22. $\frac{1}{\sin(a-b)} \log \left| \frac{\cos(x-a)}{\cos(x-b)} \right| + C$

EXERCISE 7.4

1.
$$\tan^{-1} x^3 + C$$

2.
$$\frac{1}{2}\log|2x+\sqrt{1+4x^2}|+C$$

3.
$$\log \left| \frac{1}{2 - x + \sqrt{x^2 - 4x + 5}} \right| + C$$
 4. $\frac{1}{5} \sin^{-1} \frac{5x}{3} + C$

4.
$$\frac{1}{5}\sin^{-1}\frac{5x}{3} + C$$

5.
$$\frac{3}{2\sqrt{2}} \tan^{-1} \sqrt{2} x^2 + C$$

6.
$$\frac{1}{6}\log\left|\frac{1+x^3}{1-x^3}\right| + C$$

7.
$$\sqrt{x^2 - 1} - \log \left| x + \sqrt{x^2 - 1} \right| + C$$
 8. $\frac{1}{3} \log \left| x^3 + \sqrt{x^6 + a^6} \right| + C$

8.
$$\frac{1}{3}\log\left|x^3 + \sqrt{x^6 + a^6}\right| + C$$

9.
$$\log |\tan x + \sqrt{\tan^2 x + 4}| + C$$

9.
$$\log \left| \tan x + \sqrt{\tan^2 x + 4} \right| + C$$
 10. $\log \left| x + 1 + \sqrt{x^2 + 2x + 2} \right| + C$

11.
$$\frac{1}{6} \tan^{-1} \left(\frac{3x+1}{2} \right) + C$$

12.
$$\sin^{-1}\left(\frac{x+3}{4}\right) + C$$

13.
$$\log \left| x - \frac{3}{2} + \sqrt{x^2 - 3x + 2} \right| + C$$
 14. $\sin^{-1} \left(\frac{2x - 3}{\sqrt{41}} \right) + C$

14.
$$\sin^{-1}\left(\frac{2x-3}{\sqrt{41}}\right) + C$$

15.
$$\log \left| x - \frac{a+b}{2} + \sqrt{(x-a)(x-b)} \right| + C$$

16.
$$2\sqrt{2x^2+x-3}+C$$

16.
$$2\sqrt{2x^2 + x - 3} + C$$
 17. $\sqrt{x^2 - 1} + 2\log\left|x + \sqrt{x^2 - 1}\right| + C$

18.
$$\frac{5}{6}\log|3x^2+2x+1|-\frac{11}{3\sqrt{2}}\tan^{-1}\left(\frac{3x+1}{\sqrt{2}}\right)+C$$

19.
$$6\sqrt{x^2 - 9x + 20} + 34\log\left|x - \frac{9}{2} + \sqrt{x^2 - 9x + 20}\right| + C$$

20.
$$-\sqrt{4x-x^2} + 4\sin^{-1}\left(\frac{x-2}{2}\right) + C$$

21.
$$\sqrt{x^2 + 2x + 3} + \log \left| x + 1 + \sqrt{x^2 + 2x + 3} \right| + C$$

22.
$$\frac{1}{2}\log\left|x^2-2x-5\right| + \frac{2}{\sqrt{6}}\log\left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right| + C$$

23.
$$5\sqrt{x^2+4x+10} - 7\log\left|x+2+\sqrt{x^2+4x+10}\right| + C$$

EXERCISE 7.5

1.
$$\log \frac{(x+2)^2}{|x+1|} + C$$
 2. $\frac{1}{6} \log \left| \frac{x-3}{x+3} \right| + C$

3.
$$\log |x-1| - 5\log |x-2| + 4\log |x-3| + C$$

4.
$$\frac{1}{2}\log|x-1| - 2\log|x-2| + \frac{3}{2}\log|x-3| + C$$

5.
$$4\log|x+2| - 2\log|x+1| + C$$
 6. $\frac{x}{2} + \log|x| - \frac{3}{4}\log|1 - 2x| + C$

7.
$$\frac{1}{2}\log|x-1| - \frac{1}{4}\log(x^2+1) + \frac{1}{2}\tan^{-1}x + C$$

8.
$$\frac{2}{9}\log\left|\frac{x-1}{x+2}\right| - \frac{1}{3(x-1)} + C$$
 9. $\frac{1}{2}\log\left|\frac{x+1}{x-1}\right| - \frac{4}{x-1} + C$

10.
$$\frac{5}{2}\log|x+1| - \frac{1}{10}\log|x-1| - \frac{12}{5}\log|2x+3| + C$$

11.
$$\frac{5}{3}\log|x+1| - \frac{5}{2}\log|x+2| + \frac{5}{6}\log|x-2| + C$$

12.
$$\frac{x^2}{2} + \frac{1}{2}\log|x+1| + \frac{3}{2}\log|x-1| + C$$

13.
$$-\log |x-1| + \frac{1}{2} \log (1+x^2) + \tan^{-1}x + C$$

14.
$$3\log|x+2| + \frac{7}{x+2} + C$$
 15. $\frac{1}{4}\log\left|\frac{x-1}{x+1}\right| - \frac{1}{2}\tan^{-1}x + C$

16.
$$\frac{1}{n} \log \left| \frac{x^n}{x^n + 1} \right| + C$$
 17. $\log \left| \frac{2 - \sin x}{1 - \sin x} \right| + C$

18.
$$x + \frac{2}{\sqrt{3}} \tan^{-1} \frac{x}{\sqrt{3}} - 3 \tan^{-1} \frac{x}{2} + C$$
 19. $\frac{1}{2} \log \left(\frac{x^2 + 1}{x^2 + 3} \right) + C$

20.
$$\frac{1}{4} \log \left| \frac{x^4 - 1}{x^4} \right| + C$$

21. $\log\left(\frac{e^x-1}{e^x}\right)+C$

23. A

EXERCISE 7.6

$$1. -x \cos x + \sin x + C$$

2.
$$-\frac{x}{3}\cos 3x + \frac{1}{9}\sin 3x + C$$

3.
$$e^x(x^2-2x+2)+C$$

4.
$$\frac{x^2}{2} \log x - \frac{x^2}{4} + C$$

5.
$$\frac{x^2}{2} \log 2x - \frac{x^2}{4} + C$$

6.
$$\frac{x^3}{3} \log x - \frac{x^3}{9} + C$$

7.
$$\frac{1}{4}(2x^2-1)\sin^{-1}x + \frac{x\sqrt{1-x^2}}{4} + C$$
 8. $\frac{x^2}{2}\tan^{-1}x - \frac{x}{2} + \frac{1}{2}\tan^{-1}x + C$

8.
$$\frac{x^2}{2} \tan^{-1} x - \frac{x}{2} + \frac{1}{2} \tan^{-1} x + C$$

9.
$$(2x^2-1)\frac{\cos^{-1}x}{4} - \frac{x}{4}\sqrt{1-x^2} + C$$

10.
$$(\sin^{-1}x)^2 x + 2\sqrt{1-x^2} \sin^{-1}x - 2x + C$$

11.
$$-\sqrt{1-x^2}\cos^{-1}x + x + C$$

12.
$$x \tan x + \log |\cos x| + C$$

13.
$$x \tan^{-1} x - \frac{1}{2} \log(1 + x^2) + C$$

13.
$$x \tan^{-1} x - \frac{1}{2} \log(1 + x^2) + C$$
 14. $\frac{x^2}{2} (\log x)^2 - \frac{x^2}{2} \log x + \frac{x^2}{4} + C$

15.
$$\left(\frac{x^3}{3} + x\right) \log x - \frac{x^3}{9} - x + C$$

16.
$$e^x \sin x + C$$

$$17. \quad \frac{e^x}{1+x} + C$$

18.
$$e^{x} \tan \frac{x}{2} + C$$

19.
$$\frac{e^x}{x}$$
 + C

20.
$$\frac{e^x}{(x-1)^2} + C$$

21.
$$\frac{e^{2x}}{5}(2\sin x - \cos x) + C$$

22.
$$2x \tan^{-1} x - \log (1 + x^2) + C$$

24. B

EXERCISE 7.7

1.
$$\frac{1}{2}x\sqrt{4-x^2}+2\sin^{-1}\frac{x}{2}+C$$

1.
$$\frac{1}{2}x\sqrt{4-x^2}+2\sin^{-1}\frac{x}{2}+C$$
 2. $\frac{1}{4}\sin^{-1}2x+\frac{1}{2}x\sqrt{1-4x^2}+C$

3.
$$\frac{(x+2)}{2}\sqrt{x^2+4x+6} + \log\left|x+2+\sqrt{x^2+4x+6}\right| + C$$

4.
$$\frac{(x+2)}{2}\sqrt{x^2+4x+1} - \frac{3}{2}\log\left|x+2+\sqrt{x^2+4x+1}\right| + C$$

5.
$$\frac{5}{2}\sin^{-1}\left(\frac{x+2}{\sqrt{5}}\right) + \frac{x+2}{2}\sqrt{1-4x-x^2} + C$$

6.
$$\frac{(x+2)}{2}\sqrt{x^2+4x-5} - \frac{9}{2}\log\left|x+2+\sqrt{x^2+4x-5}\right| + C$$

7.
$$\frac{(2x-3)}{4}\sqrt{1+3x-x^2} + \frac{13}{8}\sin^{-1}\left(\frac{2x-3}{\sqrt{13}}\right) + C$$

8.
$$\frac{2x+3}{4}\sqrt{x^2+3x} - \frac{9}{8}\log\left|x+\frac{3}{2}+\sqrt{x^2+3x}\right| + C$$

9.
$$\frac{x}{6}\sqrt{x^2+9} + \frac{3}{2}\log\left|x + \sqrt{x^2+9}\right| + C$$

1.
$$\frac{1}{2}(b^2 - a^2)$$
 2. $\frac{35}{2}$ 3. $\frac{19}{3}$ 4. $\frac{27}{2}$ 5. $e - \frac{1}{e}$ 6. $\frac{15 + e^8}{2}$

2.
$$\frac{35}{2}$$

3.
$$\frac{19}{3}$$

4.
$$\frac{27}{2}$$

5.
$$e - \frac{1}{e}$$

6.
$$\frac{15+e^8}{2}$$

2.
$$\log \frac{3}{2}$$

3.
$$\frac{64}{3}$$

4.
$$\frac{1}{2}$$

6.
$$e^4 (e-1)$$

7.
$$\frac{1}{2} \log 2$$

8.
$$\log\left(\frac{\sqrt{2}-1}{2-\sqrt{3}}\right)$$
 9. $\frac{\pi}{2}$

10.
$$\frac{\pi}{4}$$

11.
$$\frac{1}{2}\log\frac{3}{2}$$
 12. $\frac{\pi}{4}$

12.
$$\frac{7}{2}$$

13.
$$\frac{1}{2} \log 2$$

13.
$$\frac{1}{2}\log 2$$
 14. $\frac{1}{5}\log 6 + \frac{3}{\sqrt{5}}\tan^{-1}\sqrt{5}$

15.
$$\frac{1}{2}(e-1)$$

15.
$$\frac{1}{2}(e-1)$$
 16. $5-\frac{5}{2}\left(9\log\frac{5}{4}-\log\frac{3}{2}\right)$

17.
$$\frac{\pi^4}{1024} + \frac{\pi}{2} + 2$$
 18. 0

19.
$$3\log 2 + \frac{3\pi}{8}$$

20.
$$1 + \frac{4}{\pi} - \frac{2\sqrt{2}}{\pi}$$
 21. D

1.
$$\frac{1}{2}\log 2$$

$$\frac{64}{231}$$

3.
$$\frac{\pi}{2} - \log 2$$

4.
$$\frac{16\sqrt{2}}{15}(\sqrt{2}+1)$$
 5. $\frac{\pi}{4}$

5.
$$\frac{\pi}{4}$$

6.
$$\frac{1}{\sqrt{17}}\log \frac{21+5\sqrt{17}}{4}$$

7.
$$\frac{\pi}{8}$$

8.
$$\frac{e^2(e^2-2)}{4}$$

10. B

1.
$$\frac{\pi}{4}$$

2.
$$\frac{\pi}{4}$$

3.
$$\frac{\pi}{4}$$

4.
$$\frac{7}{2}$$

7.
$$\frac{1}{(n+1)(n+2)}$$

8.
$$\frac{\pi}{8}\log 2$$

9.
$$\frac{16\sqrt{2}}{15}$$

10.
$$\frac{\pi}{2} \log \frac{1}{2}$$
 11. $\frac{\pi}{2}$

11.
$$\frac{\pi}{2}$$

16.
$$-\pi \log 2$$
 17. $\frac{a}{2}$

17.
$$\frac{a}{2}$$

Miscellaneous Exercise on Chapter 7

1.
$$\frac{1}{2} \log \left| \frac{x^2}{1 - x^2} \right| + C$$

2.
$$\frac{2}{3(a-b)} \left[(x+a)^{\frac{3}{2}} - (x+b)^{\frac{3}{2}} \right] + C$$

3.
$$-\frac{2}{a}\sqrt{\frac{(a-x)}{x}} + C$$

4.
$$-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+0$$

3.
$$-\frac{2}{a}\sqrt{\frac{(a-x)}{x}} + C$$
4. $-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}} + C$
5. $2\sqrt{x} - 3x^{\frac{1}{3}} + 6x^{\frac{1}{6}} - 6\log(1+x^{\frac{1}{6}}) + C$
6. $-\frac{1}{2}\log|x+1| + \frac{1}{2}\log(x^2+9) + \frac{3}{2}\tan^{-1}\frac{x}{x} + C$

6.
$$-\frac{1}{2}\log|x+1| + \frac{1}{4}\log(x^2+9) + \frac{3}{2}\tan^{-1}\frac{x}{3} + C$$

7.
$$\sin a \log |\sin (x-a)| + x \cos a + C$$
 8. $\frac{x^3}{3} + C$

9.
$$\sin^{-1}\left(\frac{\sin x}{2}\right) + C$$
 10. $-\frac{1}{2}\sin 2x + C$

10.
$$-\frac{1}{2}\sin 2x + C$$

11.
$$\frac{1}{\sin{(a-b)}}\log{\left|\frac{\cos{(x+b)}}{\cos{(x+a)}}\right|} + C$$
 12. $\frac{1}{4}\sin^{-1}{(x^4)} + C$

$$13. \quad \log\left(\frac{1+e^x}{2+e^x}\right) + C$$

14.
$$\frac{1}{3} \tan^{-1} x - \frac{1}{6} \tan^{-1} \frac{x}{2} + C$$

15.
$$-\frac{1}{4}\cos^4 x + C$$

16.
$$\frac{1}{4}\log(x^4+1) + C$$

17.
$$\frac{[f(ax+b)]^{n+1}}{a(n+1)} + C$$

18.
$$\frac{-2}{\sin \alpha} \sqrt{\frac{\sin (x + \alpha)}{\sin x}} + C$$

19.
$$\frac{2(2x-1)}{\pi} \sin^{-1} \sqrt{x} + \frac{2\sqrt{x-x^2}}{\pi} - x + C$$

20.
$$-2\sqrt{1-x} + \cos^{-1}\sqrt{x} + \sqrt{x-x^2} + C$$

21.
$$e^x \tan x + C$$

22.
$$-2\log|x+1| - \frac{1}{x+1} + 3\log|x+2| + C$$

23.
$$\frac{1}{2} \left[x \cos^{-1} x - \sqrt{1 - x^2} \right] + C$$

23.
$$\frac{1}{2} \left[x \cos^{-1} x - \sqrt{1 - x^2} \right] + C$$
 24. $-\frac{1}{3} \left(1 + \frac{1}{x^2} \right)^{\frac{3}{2}} \left[\log \left(1 + \frac{1}{x^2} \right) - \frac{2}{3} \right] + C$

25.
$$e^{\frac{\pi}{2}}$$

26.
$$\frac{\pi}{8}$$

27.
$$\frac{\pi}{6}$$

28.
$$2\sin^{-1}\frac{(\sqrt{3}-1)}{2}$$

29.
$$\frac{4\sqrt{2}}{3}$$

30.
$$\frac{1}{40}\log 9$$

31.
$$\frac{\pi}{2}$$
-1

32.
$$\frac{\pi}{2}(\pi-2)$$

33.
$$\frac{19}{2}$$

40.
$$\frac{1}{3} \left(e^2 - \frac{1}{e} \right)$$

43. D

EXERCISE 8.1

1.
$$\frac{14}{3}$$

2.
$$16-4\sqrt{2}$$

3.
$$\frac{32-8\sqrt{2}}{3}$$

5.
$$6\pi$$

6.
$$\frac{\pi}{3}$$

7.
$$\frac{a^2}{2} \left(\frac{\pi}{2} - 1 \right)$$

9.
$$\frac{1}{3}$$

10.
$$\frac{9}{8}$$

11.
$$8\sqrt{3}$$

EXERCISE 8.2

1.
$$\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3}$$

2.
$$\left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$$

3.
$$\frac{21}{2}$$

4. 4

5. 8

7. B

Miscellaneous Exercise on Chapter 8

1. (i)
$$\frac{7}{3}$$

(ii) 624.8

2.
$$\frac{1}{6}$$

3. $\frac{7}{3}$

4.

5.

6.
$$\frac{8}{3} \frac{a^2}{m^3}$$

7. 27

8. $\frac{3}{2}(\pi-2)$

9.
$$\frac{ab}{4}(\pi-2)$$

10. $\frac{5}{6}$

11.

12. $\frac{1}{3}$

14.
$$\frac{7}{2}$$

18. C

 $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right) + \frac{1}{3\sqrt{2}}$

16. D

17. C

19. B

EXERCISE 9.1

- 1. Order 4; Degree not defined
- 3. Order 2; Degree 1
- 5. Order 2; Degree 1
- 7. Order 3; Degree 1
- 9. Order 2; Degree 1
- **11.** D

- 2. Order 1; Degree 1
- 4. Order 2; Degree not defined
- 6. Order 3; Degree 2
- 8. Order 1; Degree 1
- 10. Order 2; Degree 1
- **12.** A

EXERCISE 9.2

11. D

12. D

EXERCISE 9.3

1.
$$y'' = 0$$

3.
$$y'' - y' - 6y = 0$$

5.
$$y'' - 2y' + 2y = 0$$

7.
$$xy' - 2y = 0$$

9.
$$xyy'' + x(y')^2 - yy' = 0$$

2.
$$xy y'' + x (y')^2 - y y' = 0$$

$$4. \quad y'' - 4y' + 4y = 0$$

6.
$$2xyy' + x^2 = y^2$$

8.
$$xyy'' + x(y')^2 - yy' = 0$$

10.
$$(x^2 - 9)(y')^2 + x^2 = 0$$

EXERCISE 9.4

1.
$$y = 2 \tan \frac{x}{2} - x + C$$

3.
$$y = 1 + Ae^{-x}$$

5.
$$y = \log(e^x + e^{-x}) + C$$

7.
$$y = e^{cx}$$

9.
$$y = x \sin^{-1}x + \sqrt{1-x^2} + C$$

2.
$$y = 2 \sin (x + C)$$

4. $\tan x \tan y = C$

$$4. \quad \tan x \tan y = 0$$

5.
$$y = \log (e^{x} + e^{-x}) + C$$
6. $\tan^{-1} y = x + \frac{x^{3}}{3} + C$
7. $y = e^{cx}$
8. $x^{-4} + y^{-4} = C$
9. $y = x \sin^{-1} x + \sqrt{1 - x^{2}} + C$
10. $\tan y = C (1 - e^{x})$

8.
$$x^{-4} + y^{-4} = C$$

10.
$$\tan y = C (1 - e^x)$$

11.
$$y = \frac{1}{4} \log \left[(x+1)^2 (x^2+1)^3 \right] - \frac{1}{2} \tan^{-1} x + 1$$

12.
$$y = \frac{1}{2} \log \left(\frac{x^2 - 1}{x^2} \right) - \frac{1}{2} \log \frac{3}{4}$$
 13. $\cos \left(\frac{y - 2}{x} \right) = a$

14.
$$y = \sec x$$

14.
$$y = \sec x$$

15. $2y - 1 = e^x(\sin x - \cos x)$
16. $y - x + 2 = \log(x^2(y + 2)^2)$
17. $y^2 - x^2 = 4$

18.
$$(x+4)^2 = y+3$$

$$\frac{2\log 2}{\log\left(\frac{11}{10}\right)}$$

13.
$$\cos\left(\frac{y-2}{x}\right) = a$$

15.
$$2y - 1 = e^x(\sin x - \cos x)$$

17.
$$y^2 - x^2 = 4$$

19.
$$(63t+27)^{\frac{1}{3}}$$

EXERCISE 9.5

1.
$$(x-y)^2 = Cx e^{\frac{-y}{x}}$$

$$2. \quad y = x \log |x| + Cx$$

3.
$$\tan^{-1} \left(\frac{y}{x} \right) = \frac{1}{2} \log (x^2 + y^2) + C$$
 4. $x^2 + y^2 = Cx$

5.
$$\frac{1}{2\sqrt{2}}\log\left|\frac{x+\sqrt{2}y}{x-\sqrt{2}y}\right| = \log\left|x\right| + C$$
 6. $y+\sqrt{x^2+y^2} = Cx^2$

7.
$$xy \cos \left| \frac{y}{x} \right| = C$$
 8. $x \left[1 - \cos \left(\frac{y}{x} \right) \right] = C \sin \left(\frac{y}{x} \right)$

9.
$$cy = \log \left| \frac{y}{x} \right| - 1$$
 10. $ye^{\frac{x}{y}} + x = C$

11.
$$\log(x^2 + y^2) + 2 \tan^{-1} \frac{y}{x} = \frac{\pi}{2} + \log 2$$

12.
$$y + 2x = 3x^2 y$$
 13. $\cot\left(\frac{y}{x}\right) = \log|ex|$

14.
$$\cos\left(\frac{y}{x}\right) = \log|ex|$$
 15. $y = \frac{2x}{1 - \log|x|} (x \neq 0, x \neq e)$

EXERCISE 9.6

1.
$$y = \frac{1}{5} (2\sin x - \cos x) + C e^{-2x}$$
 2. $y = e^{-2x} + C e^{-3x}$

3.
$$xy = \frac{x^4}{4} + C$$
 4. $y(\sec x + \tan x) = \sec x + \tan x - x + C$

5.
$$y = (\tan x - 1) + Ce^{-\tan x}$$
 6. $y = \frac{x^2}{16}(4\log|x|-1) + Cx^{-2}$

7.
$$y \log x = \frac{-2}{x} (1 + \log |x|) + C$$
 8. $y = (1+x)^{-1} \log |\sin x| + C(1+x^2)^{-1}$

9.
$$y = \frac{1}{x} - \cot x + \frac{C}{x \sin x}$$
 10. $(x + y + 1) = C e^y$

11.
$$x = \frac{y^2}{3} + \frac{C}{y}$$
 12. $x = 3y^2 + Cy$

13.
$$y = \cos x - 2 \cos^2 x$$

14.
$$y(1 + x^2) = \tan^{-1} x - \frac{\pi}{4}$$

15.
$$y = 4 \sin^3 x - 2 \sin^2 x$$

16.
$$x + y + 1 = e^x$$

17.
$$y = 4 - x - 2e^x$$

19. D

Miscellaneous Exercise on Chapter 9

- **1.** (i) Order 2; Degree 1
- (ii) Order 1; Degree 3
- (iii) Order 4; Degree not defined

3.
$$y' = \frac{2y^2 - x^2}{4xy}$$

5.
$$(x + yy')^2 = (x - y)^2 (1 + (y')^2)$$

6.
$$\sin^{-1} y + \sin^{-1} x = C$$

8.
$$\cos y = \frac{\sec x}{\sqrt{2}}$$

6.
$$\sin^{-1}y + \sin^{-1}x = C$$

8. $\cos y = \frac{\sec x}{\sqrt{2}}$
9. $\tan^{-1}y + \tan^{-1}(e^x) = \frac{\pi}{2}$
10. $e^{\frac{x}{y}} = y + C$

10.
$$e^{\overline{y}} = y + C$$

11.
$$\log |x-y| = x + y + 1$$

12.
$$ye^{2\sqrt{x}} = (2\sqrt{x} + C)$$

13.
$$y \sin x = 2x^2 - \frac{\pi^2}{2} (\sin x \neq 0)$$

$$y \sin x = 2x^2 - \frac{\pi^2}{2} (\sin x \neq 0) \qquad 14. \quad y = \log \left| \frac{2x+1}{x+1} \right|, x \neq -1$$

EXERCISE 10.1

1. In the adjoining figure, the vector \overrightarrow{OP} represents the required displacement.

- scalar (ii) vector (iii) scalar (iv) scalar (v) scalar
 - (vi) vector
- 3. (i) scalar (ii) scalar (iii) vector (iv) vector (v) scalar
- 4. (i) Vectors \vec{a} and \vec{b} are coinitial
 - (ii) Vectors \vec{b} and \vec{d} are equal
 - (iii) Vectors \vec{a} and \vec{c} are collinear but not equal
- (ii) False **5.** (i) True (iii) False (iv) False

EXERCISE 10.2

1.
$$|\vec{a}| = \sqrt{3}, |\vec{b}| = \sqrt{62}, |\vec{c}| = 1$$

- 2. An infinite number of possible answers.
- An infinite number of possible answers.

4.
$$x = 2, y = 3$$

5.
$$-7$$
 and 6; $-7\hat{i}$ and 6 \hat{j}

6.
$$-4\hat{j}-\hat{k}$$

7.
$$\frac{1}{\sqrt{6}}\hat{i} + \frac{1}{\sqrt{6}}\hat{j} + \frac{2}{\sqrt{6}}\hat{k}$$

8.
$$\frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$

9.
$$\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k}$$

$$\mathbf{10.} \quad \frac{40}{\sqrt{30}}\hat{i} - \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$$

12.
$$\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$$

13.
$$-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}$$

15. (i)
$$-\frac{1}{3}\hat{i} + \frac{4}{3}\hat{j} + \frac{1}{3}\hat{k}$$
 (ii) $-3\hat{i} + 3\hat{k}$

16.
$$3\hat{i} + 2\hat{j} + \hat{k}$$

EXERCISE 10.3

1.
$$\frac{\pi}{4}$$

$$2. \quad \cos^{-1}\left(\frac{5}{7}\right)$$

4.
$$\frac{60}{\sqrt{114}}$$

6.
$$\frac{16\sqrt{2}}{3\sqrt{7}}, \frac{2\sqrt{2}}{3\sqrt{7}}$$

6.
$$\frac{16\sqrt{2}}{3\sqrt{7}}, \frac{2\sqrt{2}}{3\sqrt{7}}$$
 7. $6|\vec{a}|^2 + 11\vec{a}.\vec{b} - 35|\vec{b}|^2$

8.
$$|\vec{a}|=1, |\vec{b}|=1$$

9.
$$\sqrt{13}$$

12. Vector
$$\vec{b}$$
 can be any vector

13.
$$\frac{-3}{2}$$

Take any two non-zero perpendicular vectors \vec{a} and \vec{b}

15.
$$\cos^{-1}\left(\frac{10}{\sqrt{102}}\right)$$

EXERCISE 10.4

1.
$$19\sqrt{2}$$

2.
$$\pm \frac{2}{3}\hat{i} \mp \frac{2}{3}\hat{j} \mp \frac{1}{3}\hat{k}$$
 3. $\frac{\pi}{3}$; $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{2}$

3.
$$\frac{\pi}{3}$$
; $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{2}$

5.
$$3, \frac{27}{2}$$

6. Either
$$|\vec{a}| = 0$$
 or $|\vec{b}| = 0$

8. No; take any two nonzero collinear vectors

9.
$$\frac{\sqrt{61}}{2}$$

10.
$$15\sqrt{2}$$

Miscellaneous Exercise on Chapter 10

1.
$$\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$$

2.
$$x_2 - x_1, y_2 - y_1, z_2 - z_1; \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

3.
$$\frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

4. No; take $\vec{a} \cdot \vec{b}$ and \vec{c} to represent the sides of a triangle.

5.
$$\pm \frac{1}{\sqrt{3}}$$

6.
$$\frac{3}{2}\sqrt{10}\,\hat{i} + \frac{\sqrt{10}}{2}$$

5.
$$\pm \frac{1}{\sqrt{3}}$$
 6. $\frac{3}{2}\sqrt{10}\,\hat{i} + \frac{\sqrt{10}}{2}\,\hat{j}$ 7. $\frac{3}{\sqrt{22}}\,\hat{i} - \frac{3}{\sqrt{22}}\,\hat{j} + \frac{2}{\sqrt{22}}\,\hat{k}$

9.
$$3\vec{a} + 5\vec{b}$$

9.
$$3\vec{a} + 5\vec{b}$$
 10. $\frac{1}{7}(3\hat{i} - 6\hat{j} + 2\hat{k})$; $11\sqrt{5}$

12.
$$\frac{1}{3}(160\hat{i} - 5\hat{j} + 70\hat{k})$$
 13. $\lambda = 1$

EXERCISE 11.1

1.
$$0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$$
 2. $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$ 3. $\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}$

5.
$$\frac{-2}{\sqrt{17}}$$
, $\frac{-2}{\sqrt{17}}$, $\frac{3}{17}$; $\frac{-2}{\sqrt{17}}$, $\frac{-3}{\sqrt{17}}$, $\frac{-2}{\sqrt{17}}$; $\frac{4}{\sqrt{42}}$, $\frac{5}{\sqrt{42}}$, $\frac{-1}{\sqrt{42}}$

EXERCISE 11.2

4.
$$\vec{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda (3 \hat{i} + 2 \hat{j} - 2 \hat{k})$$
, where λ is a real number

5.
$$\vec{r} = 2 \hat{i} - \hat{j} + 4 \hat{k} + \lambda (\hat{i} + 2 \hat{j} - \hat{k})$$
 and cartesian form is

$$\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-4}{-1}$$

6.
$$\frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6}$$

7.
$$\vec{r} = (5\hat{i} - 4\hat{j} + 6\hat{k}) + \lambda (3\hat{i} + 7\hat{j} + 2\hat{k})$$

8. Vector equation of the line:
$$\vec{r} = \lambda (5 \hat{i} - 2 \hat{j} + 3 \hat{k})$$
;

Cartesian equation of the line:
$$\frac{x}{5} = \frac{y}{-2} = \frac{z}{3}$$

9. Vector equation of the line:
$$\vec{r} = 3\hat{i} - 2\hat{j} - 5\hat{k} + \lambda(11\hat{k})$$

Cartesian equation of the line:
$$\frac{x-3}{0} = \frac{y+2}{0} = \frac{z+5}{11}$$

10. (i)
$$\theta = \cos^{-1}\left(\frac{19}{21}\right)$$
 (ii) $\theta = \cos^{-1}\left(\frac{8}{5\sqrt{3}}\right)$

11. (i)
$$\theta = \cos^{-1}\left(\frac{26}{9\sqrt{38}}\right)$$
 (ii) $\theta = \cos^{-1}\left(\frac{2}{3}\right)$

12.
$$p = \frac{70}{11}$$
 14. $\frac{3\sqrt{2}}{2}$ **15.** $2\sqrt{29}$

16.
$$\frac{3}{\sqrt{19}}$$
 17. $\frac{8}{\sqrt{29}}$

EXERCISE 11.3

(b)
$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}}$$

(c)
$$\frac{2}{\sqrt{14}}$$
, $\frac{3}{\sqrt{14}}$, $\frac{-1}{\sqrt{14}}$; $\frac{5}{\sqrt{14}}$ (d) 0, 1, 0; $\frac{8}{5}$

(d)
$$0, 1, 0; \frac{8}{5}$$

2.
$$\vec{r} \cdot \left(\frac{3 \ \hat{i} + 5 \ \hat{j} - 6 \ \hat{k}}{\sqrt{70}} \right) = 7$$

3. (a)
$$x + y - z = 2$$

(b)
$$2x + 3y - 4z = 1$$

3. (a)
$$x + y - z = 2$$
 (b) $2x + 3y - 4z = 1$ (c) $(s - 2t) x + (3 - t) y + (2s + t) z = 15$

4. (a)
$$\left(\frac{24}{29}, \frac{36}{29}, \frac{48}{29}\right)$$

(b)
$$\left(0, \frac{18}{25}, \frac{24}{25}\right)$$

$$(c) \quad \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

(d)
$$\left(0, \frac{-8}{5}, 0\right)$$

5. (a)
$$[\vec{r} - (\hat{i} - 2\hat{k})] \cdot (\hat{i} + \hat{j} - \hat{k}) = 0; \quad x + y - z = 3$$

(b)
$$[\vec{r} - (\hat{i} + 4 \hat{j} + 6 \hat{k})] \cdot (\hat{i} - 2 \hat{j} + \hat{k}) = 0; x - 2y + z + 1 = 0$$

6. (a) The points are collinear. There will be infinite number of planes passing through the given points.

(b)
$$2x + 3y - 3z = 5$$

7.
$$\frac{5}{2}$$
, 5, -5 8. $y = 3$

8.
$$y = 3$$

9.
$$7x - 5y + 4z - 8 = 0$$

10.
$$\vec{r} \cdot (38\hat{i} + 68\hat{j} + 3\hat{k}) = 153$$

11.
$$x - z + 2 = 0$$

12.
$$\cos^{-1} \frac{15}{\sqrt{731}}$$

13. (a)
$$\cos^{-1}\left(\frac{2}{5}\right)$$

- The planes are perpendicular
- (c) The planes are parallel
- The planes are parallel

- (e) 45°
- **14.** (a) $\frac{3}{13}$

(b)

(c) 3

(d)

Miscellaneous Exercise on Chapter 11

4.
$$\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$$
 5. 0°

6.
$$k = \frac{-10}{7}$$

6.
$$k = \frac{-10}{7}$$
7. $\vec{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda (\hat{i} + 2 \hat{j} - 5 \hat{k})$

8.
$$x + y + z = a + b + c$$

10.
$$\left(0, \frac{17}{2}, \frac{-13}{2}\right)$$
 11. $\left(\frac{17}{3}, 0, \frac{23}{3}\right)$ **12.** $(1, -2, 7)$

11.
$$\left(\frac{17}{3}, 0, \frac{23}{3}\right)$$

$$13. \quad 7x - 8y + 3z + 25 = 0$$

14.
$$p = \frac{3}{2}$$
 or $\frac{11}{6}$ or $\frac{7}{3}$

15.
$$y - 3z + 6 = 0$$

16.
$$x + 2y - 3z - 14 = 0$$

17.
$$33x + 45y + 50z - 41 = 0$$

19.
$$\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(-3\hat{i} + 5\hat{j} + 4\hat{k})$$

20.
$$\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$$

23. B

EXERCISE 12

- Maximum Z = 16 at (0, 4)
- Minimum Z = -12 at (4, 0)
- 3. Maximum $Z = \frac{235}{19}$ at $\left(\frac{20}{19}, \frac{45}{19}\right)$
- Minimum Z = 7 at $\left(\frac{3}{2}, \frac{1}{2}\right)$
- Maximum Z = 18 at (4, 3)
- Minimum Z = 6 at all the points on the line segment joining the points (6, 0)and (0, 3).
- 7. Minimum Z = 300 at (60, 0);

Maximum Z = 600 at all the points on the line segment joining the points (120, 0) and (60, 30).

8. Minimum Z = 100 at all the points on the line segment joining the points (0, 50) and (20, 40);

Maximum Z = 400 at (0, 200)

- 9. Z has no maximum value
- 10. No feasible region, hence no maximum value of Z.

EXERCISE 12.2

- 1. Minimum cost = Rs 160 at all points lying on segment joining $\frac{8}{3}$, 0 and $2,\frac{1}{2}$
- 2. Maximum number of cakes = 30 of kind one and 10 cakes of another kind.
- 3. (i) 4 tennis rackets and 12 cricket bats
 - (ii) Maximum profit = Rs 200
- 4. 3 packages of nuts and 3 packages of bolts; Maximum profit = Rs 73.50.
- 5. 30 packages of screws A and 20 packages of screws B; Maximum profit = Rs 410
- **6.** 4 Pedestal lamps and 4 wooden shades; Maximum profit = Rs 32
- 7. 8 Souvenir of types A and 20 of Souvenir of type B; Maximum profit = Rs 160.
- 8. 200 units of desktop model and 50 units of portable model; Maximum profit = Rs 1150000.
- 9. Minimise Z = 4x + 6ysubject to $3x + 6y \ge 80$, $4x + 3y \ge 100$, $x \ge 0$ and $y \ge 0$, where x and y denote the number of units of food F_1 and food F_2 respectively; Minimum cost = Rs 104
- 10. 100 kg of fertiliser F_1 and 80 kg of fertiliser F_2 ; Minimum cost = Rs 1000
- **11.** (D)

Miscellaneous Exercise on Chapter 12

- 1. 40 packets of food P and 15 packets of food Q; Maximum amount of vitamin A = 285 units.
- 2. 3 bags of brand P and 6 bags of brand Q; Minimum cost of the mixture = Rs 1950
- **3.** Least cost of the mixture is Rs 112 (2 kg of Food X and 4 kg of food Y).

- 5. 40 tickets of executive class and 160 tickets of economy class; Maximum profit = Rs 136000.
- 6. From A: 10,50, 40 units; From B: 50,0,0 units to D, E and F respectively and minimum cost = Rs 510
- 7. From A: 500, 3000 and 3500 litres; From B: 4000, 0, 0 litres to D, E and F respectively; Minimum cost = Rs 4400
- **8.** 40 bags of brand P and 100 bags of brand Q; Minimum amount of nitrogen = 470 kg.
- 9. 140 bags of brand P and 50 bags of brand Q; Maximum amount of nitrogen = 595 kg.
- 10. 800 dolls of type A and 400 dolls of type B; Maximum profit = Rs 16000

EXERCISE 13.1

1.
$$P(E|F) = \frac{2}{3}, P(F|E) = \frac{1}{3}$$

2.
$$P(A|B) = \frac{16}{25}$$

4.
$$\frac{11}{26}$$

5. (i)
$$\frac{4}{11}$$

(ii)
$$\frac{4}{5}$$

6. (i)
$$\frac{1}{2}$$

(ii)
$$\frac{3}{7}$$

(iii)
$$\frac{\epsilon}{7}$$

8.
$$\frac{1}{6}$$

10. (a)
$$\frac{1}{3}$$
, (b) $\frac{1}{9}$

11. (i)
$$\frac{1}{2}$$
, $\frac{1}{3}$

(ii)
$$\frac{1}{2}$$
, $\frac{2}{3}$

(iii)
$$\frac{3}{4}, \frac{1}{4}$$

12. (i)
$$\frac{1}{2}$$

(ii)
$$\frac{1}{3}$$

13.
$$\frac{5}{6}$$

14.
$$\frac{1}{15}$$

EXERCISE 13.2

1.
$$\frac{3}{25}$$

- **4.** A and B are independent
- 5. A and B are not independent
- E and F are not independent
- (ii) $p = \frac{1}{5}$
- **8.** (i) 0.12
- (ii) 0.58
- (iii) 0.3

- 9. $\frac{3}{8}$ 11. (i) 0.18
- **10.** A and B are not independent
- (ii) 0.12
- (iii) 0.72
- (iv) 0.28

- **13.** (i) $\frac{16}{81}$, (ii) $\frac{20}{81}$, (iii) $\frac{40}{81}$
- **14.** (i) $\frac{2}{3}$, (ii) $\frac{1}{2}$ **15.** (i), (ii)

17. D

18. B

EXERCISE 13.3

1.
$$\frac{1}{2}$$

12. $\frac{11}{50}$

13.

14.

EXERCISE 13.4

1. (ii), (iii) and (iv)

- **2.** X = 0, 1, 2; yes **3.** X = 6, 4, 2, 0

- **4.** (i) $\frac{1}{4}$ 1 1 P(X) $\frac{-}{4}$
 - (ii) X 0 3 3 1 P(X)8 8 8

610 MATHEMATICS

(iii)	X	0	1	2	3	4
	P(X)	1 16	$\frac{1}{4}$	3/8	$\frac{1}{4}$	1/16

(ii)
$$X = 0 = 1$$

 $P(X) = \frac{25}{36} = \frac{11}{36}$

6.
$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline X & 0 & 1 & 2 & 3 & 4 \\\hline P(X) & \frac{256}{625} & \frac{256}{625} & \frac{96}{625} & \frac{16}{625} & \frac{1}{625} \\\hline \end{array}$$

7.
$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline X & 0 & 1 & 2 \\\hline P(X) & \frac{9}{16} & \frac{6}{16} & \frac{1}{16} \\\hline \end{array}$$

8. (i)
$$k = \frac{1}{10}$$
 (ii) $P(X < 3) = \frac{3}{10}$ (iii) $P(X > 6) = \frac{17}{100}$ (iv) $P(0 < X < 3) = \frac{3}{10}$

(iv)
$$P(0 < X < 3) = \frac{3}{10}$$

9. (a)
$$k = \frac{1}{6}$$
 (b) $P(X < 2) = \frac{1}{2}, P(X \le 2) = 1, P(X \ge 2) = \frac{1}{2}$

13. Var(X) = 5.833, S.D = 2.415

Mean =
$$17.53$$
, $Var(X) = 4.78$ and $S.D(X) = 2.19$

15.
$$E(X) = 0.7$$
 and $Var(X) = 0.21$ **16.** B **17.** D

EXERCISE 13.5

1. (i)
$$\frac{3}{32}$$

(ii)
$$\frac{7}{64}$$

(iii)
$$\frac{63}{64}$$

2.
$$\frac{25}{216}$$

3.
$$\left(\frac{29}{20}\right)\left(\frac{19}{20}\right)^9$$

4. (i)
$$\frac{1}{1024}$$

(ii)
$$\frac{45}{512}$$

(ii)
$$\frac{45}{512}$$
 (iii) $\frac{243}{1024}$

5. (i)
$$(0.95)^5$$
 (iv) $1 - (0.95)^5$

(ii)
$$(0.95)^4 \times 1.2$$

(ii)
$$(0.95)^4 \times 1.2$$
 (iii) $1 - (0.95)^4 \times 1.2$

6.
$$\left(\frac{9}{10}\right)^4$$

7.
$$\left(\frac{1}{2}\right)^{20} \left[20C_{12} + {}^{20}C_{13} + ... + {}^{20}C_{20}\right]$$

9.
$$\frac{11}{243}$$

10. (a)
$$1 - \left(\frac{99}{100}\right)^{50}$$
 (b) $\frac{1}{2} \left(\frac{99}{100}\right)^{49}$ (c) $1 - \frac{149}{100} \left(\frac{99}{100}\right)^{49}$

(b)
$$\frac{1}{2} \left(\frac{99}{100} \right)^{49}$$

(c)
$$1 - \frac{149}{100} \left(\frac{99}{100} \right)^{49}$$

11.
$$\frac{7}{12} \left(\frac{5}{6}\right)^5$$
 12. $\frac{35}{18} \left(\frac{5}{6}\right)^4$ 13. $\frac{22 \times 9^3}{10^{11}}$

12.
$$\frac{35}{18} \left(\frac{5}{6} \right)^{2}$$

13.
$$\frac{22 \times 9^2}{10^{11}}$$

14. C

Miscellaneous Exercise on Chapter 13

- 1. (i) 1
 2. (i) $\frac{1}{3}$

3.
$$\frac{20}{21}$$

4.
$$1 - \sum_{r=7}^{10} {}^{10}C_r (0.9)^r (0.1)^{10-r}$$

5. (i)
$$\left(\frac{2}{5}\right)^6$$
 (ii) $7\left(\frac{2}{5}\right)^4$ (iii) $1-\left(\frac{2}{5}\right)^6$ (iv) $\frac{864}{3125}$

(ii)
$$7\left(\frac{2}{5}\right)^4$$

$$1 - \left(\frac{2}{5}\right)^6$$

(iv)
$$\frac{864}{3125}$$

6.
$$\frac{5^{10}}{2 \times 6^9}$$

7.
$$\frac{625}{23328}$$

8.
$$\frac{2}{7}$$

9.
$$\frac{31}{9} \left(\frac{2}{3}\right)^4$$

10.
$$n \ge 4$$

11.
$$\frac{-91}{54}$$

12.
$$\frac{1}{15}, \frac{2}{5}, \frac{8}{15}$$

13.
$$\frac{14}{29}$$

14.
$$\frac{3}{16}$$

16.
$$\frac{16}{31}$$

