A Low-pass Filter Method to Suppress the Voltage Variations Caused by Introducing Droop Control in DC Microgrids

Portland, Oregon | Sept. 23-27

IEEE ENERGY CONVERSION CONGRESS & EXPO

Fulong Li, Zhengyu Lin, Wenping Cao Aston University

Alian Chen
Shandong University

Jiande Wu
Zhejiang University

lif12@aston.ac.uk

1. Microgrid Configurations

Fig.1: Single DC Bus microgrid configuration

- > Contains:
 - ✓ Distributed sources
 - ✓ Energy storage
 - ✓ DC load/AC load
- > Control methods:
 - □ Droop control
 - ☐ DC bus signalling
 - ☐ Master-salve control

Large droop coefficient \rightarrow bus oscillations

- Exceed the designed margin → instability
- Variations in introduced output current

2. Control blocks of Two Nodes

Fig.4: Droop curve and ripple variations

Aston University

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 734796.

large voltage variations

3. Analysis

- Lack the immunity on frequencies lower than crossover frequency
- Adding low-pass filter can compensate the unavailability over lower frequencies

4. Simulation Results

- > Conclusions:
- 1. Introducing droop control can cause voltage variations
- 2. Larger droop coefficient can cause larger variations
- 3. Low-pass filter on output current path can reduce variations