CSCI-570: Homework # 2

Due on Friday, September 12 , 2014

Saket Choudhary skchoudh@usc.edu 2170058637

Contents

HW1	W1																:											
(2:	Ch#2 Ex	(#3)																										3
(3:	Ch#2 Ex	#4)																										3
(4:	Ch#2 Ex	(45)																										4
(5:	$\mathrm{Ch}\#2$ Ex	:#6)																										4
(6:	Ch#3, Ex	x#2)																										4
(7:	Ch#3, Ex	x#6)															 											4

HW1

(2: Ch#2 Ex#3)

Part (a) n^2

Doubling the input size make it slower by $\frac{(2n)^2}{n^2} = 4$ Consider increasing input size by 1: $\frac{(n+1)^2}{n^2} = \frac{n^2+2n+1}{n^2} = 1 + \frac{1}{n} + \frac{1}{n^2}$ For $\lim_{n\to\infty}$, $1 + \frac{1}{n} + \frac{1}{n^2} = 1$, Thus the algorithm with n+1 input is as slow as with input size n for

Part (b): n^3

Doubling the input size: $\frac{(2n)^3}{n^3} = 8$, thus it is 8 times slower. Increasing the input size by 1: $\frac{(n+1)^3}{n^3} = \frac{n^3 + 3n^2 + 3n + 1}{n^3} = 1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3}$.

For $\lim_{n\to\infty}$, $1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3} = 1$.

Part (c): This is similar to Part(a), since the factor of 100 is common. The solution is exactly similar to Part(a)

Part (d): nlogn

Doubling the input size: $\frac{2nlog2n}{nlogn} = \frac{2log2n}{logn}$. For $\lim_{n\to\infty}$, this would blow up. Increasing the input size by 1: $\frac{n+1log(n+1)}{nlogn}$.

For $\lim_{n\to\infty}$, $\frac{n+1log(n+1)}{nlogn}=1$.

Hence input with n+1 is as slow as $n \lim_{n\to\infty}$

Part (e): 2^n

Doubling the input size: $\frac{2^{2n}}{2^n} = 2^n$, which blows up as $\lim_{n \to \infty}$.

Increasing the input size by 1: $\frac{2^{(n+1)}}{2^n} = 2$.

Thus increasing the input size by 1 causes it to be 2 times slower.

(3: Ch#2 Ex#4)

Given: Operating speed = 10^{10} operations per second.

To Find: Maximum possible n, for 3600s operation

Part (a): n^2

 $n^2 = 36*10^12 \implies n = 6*10^6$

Part (b): n^3

 $n^3 = 36 * 10^12 \implies n = (36)^0.333 * 10^4$

Part (c): $100n^2$

 $100n^2 = 36 * 10^12 \implies n = 6 * 10^5$

Part (d): nlogn

 $log(n^n) = 36 * 10^12$

Part (e): 2^{2^n}

 $2^{2^n} = 36 * 10^12 \implies n = log_2(log_2(36 * 10^12))$

(4: Ch#2 Ex#5)

$$f1 = n^2.5, f2 = \sqrt{2n}, f3 = n + 10, f4 = 10^n, f5 = 100^n, f6 = n^2 log n$$

Consider the square of f_i :

$$f1' = n^5; f2 = 2n; f3 = (n+10)^2; f4 = 10^{2n}; f5 = 100^{2n}; f6 = n^4(\log n)^2$$

Since exponentials always grow faster than polynomials, in the order of running time complexity higher to lower:

$$100^2n>10^2n>n^5>n^4(logn)^2>(n+2)^2>n2n$$

Thus:

(5: Ch#2 Ex#6)

(6: Ch#3, Ex#2)

(7: Ch#3, Ex#6)