Mid-Term Presentation

FEM and its application to static structures

Group A

Introduction

- Finite Element Method (FEM) is a procedure of numerical solution of a domain viewed as the collection of sub-domains.
- FEM on static structures computing the stress and displacement.
- The actual problem will be replaced by simpler ones to find one approximate solution.

Gantt Chart : Progress

Working Schedule

Progress so far.

Problem Identification

Each member came up with various problems where FEM is used and we decided on trusses.

Theoretical Background

Went through basic ideas about FEM and the new concepts.

Progress so far.

Manual and Python Implementation
 wrote custom classes and procedures for solving the problem
 in python. Tested code against examples in book and worked
 on debugging.

```
import math
import numpy as np
import copy
#import classes for nodes and elements
from node import node
from ele import ele
#define nodes along with boundary conditions
node1 = node(1,0,0,0,0,np.nan,np.nan)
node2 = node(2,2,0,0,0,np.nan,np.nan)
node3 = node(3,2,2,np.nan,np.nan,1,-2)
#define elements
ele1 = ele(1.1.1.1.1.0.1.2)
ele2 = ele(2,1,1, 1, math.pi / 2, 2, 3)
ele3 = ele(3,1*math.sqrt(2),1, 1, math.pi / 4 , 1 , 3)
#generating stiffness matrix for all elements
print(ele1.stiff())
print(ele2.stiff())
print(ele3.stiff())
```

ff 1. 0. -1. -0.1

Verifying solution

```
In [15]: ans_dis = np.linalg.solve(GK_dis , f_dis)
ans_dis
```

Out[15]: array([5.82842712, -3.])

Solution of the Finite Element Equations

Solving Eqs. (4.6.18) for U_5 and U_6 , we obtain

$$U_3 = (3 + 2\sqrt{2})\frac{PL}{EA} = 5.828 \frac{PL}{EA}, \quad V_3 = -\frac{3PL}{EA}$$

and the reaction forces are computed using Eq. (4.6.19)

$$F_{1x} = -P$$
, $F_{1y} = -P$, $F_{2x} = 0.0$, $F_{2y} = 3P$

Visualization

Worked on visualizing the structure and the deformations in python using the problem data and solution data.

Future Plans

Finalizing Implementation:

- The current version of implementation doesn't work for all cases.
- Determining edge cases and their debugging is needed.

Understanding Theoretical aspects:

 We have been learning the new concepts of FEM and will be getting much better understanding after we implement it ourselves.

Things left

Streamlining Procedure:

- Separate modules have been independently developed to deal with problem definition, solution and visualization
- The streamlining of all these components and compiling into one coherent module is needed.

Report Writing:

• Final report of the project is to be completed and proof read.

Thank You