V - Séries numériques

I - Calculs de sommes

I.1 - Généralités

Définition 1 - Le symbole \sum

Le symbole \sum permet de désigner la somme des termes d'une suite de réels. Ainsi, si $(u_k)_{p \leqslant k \leqslant n}$ est une suite de réels,

$$\sum_{k=p}^{n} u_k = u_p + u_{p+1} + \dots + u_{n-1} + u_n.$$

Exemple 1 - Quelques sommes

• Si $u_k = 2$ pour tout $k \in [1, n]$, alors

$$\sum_{k=1}^{n} u_k = u_1 + \dots + u_n$$

$$= \underbrace{2 + \dots + 2}_{n \text{ termes}} = 2n.$$

• Si $v_k = 3$ pour tout $k \in [0, n]$, alors

$$\sum_{k=0}^{n} v_k = v_0 + \dots + u_n$$

$$= \underbrace{3 + \dots + 3}_{n+1 \text{ termes}} = 3(n+1).$$

• Si $w_k = 5$ pour tout $k \in [0, 5]$, alors

$$\sum_{k=0}^{5} w_k = w_0 + \dots + w_5$$

$$= 0 + 1 + \dots + 5$$

$$= \frac{5 \times 6}{2} = 15.$$

Proposition 1 - Somme de termes constants

- Soit $a \in \mathbb{R}$. $\sum_{k=1}^{n} a = n \cdot a$,
 - $\bullet \sum_{k=0}^{n} a = (n+1) \cdot a,$
 - $\bullet \sum_{k=-\infty}^{n} a = (n-p+1) \cdot a.$

Exercice 1. Calculer $\sum_{i=0}^{\ell} 2$.

Proposition 2

Soit $(u_k)_{1 \leq k \leq n+1}$ une suite de réels. Alors,

$$\sum_{k=0}^{n+1} u_k = \left(\sum_{k=0}^n u_k\right) + u_{n+1}.$$

A. Camanes

Exemple 2 - Sommes classiques

Soit $q \neq 1$. On prouve par récurrence que :

 $\bullet \sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$

• $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$.

 $\bullet \sum_{k=p}^{n} q^k = q^p \cdot \frac{1 - q^{n-p+1}}{1 - q}.$

Exercice 2. Calculer les sommes $\sum_{k=0}^{100} k$ puis $\sum_{k=0}^{100} \frac{1}{2^k}$.

Proposition 3 - Linéarité de la somme

Soit $(u_k)_{p \leqslant k \leqslant n}$, $(v_k)_{p \leqslant k \leqslant n}$ deux suites de réels et α un réel.

• $\sum_{k=p}^{n} (u_k + v_k) = \sum_{k=p}^{n} u_k + \sum_{k=p}^{n} v_k$.

 $\bullet \sum_{k=p}^{n} (\alpha \times u_k) = \alpha \times \sum_{k=p}^{n} u_k.$

Exemple 3 - Un calcul de somme

Calculons

$$\sum_{k=3}^{10} \left(2 + \frac{3}{5^k} \right) = \sum_{k=3}^{10} 2 + \sum_{k=3}^{10} 3 \times \frac{1}{5^k}$$

$$= 2(10 - 3 + 1) + 3 \times \sum_{k=3}^{10} \left(\frac{1}{5} \right)^k$$

$$= 2 \times 8 + 3 \times \left(\frac{1}{5} \right)^3 \times \frac{1 - \left(\frac{1}{5} \right)^{10 - 3 + 1}}{1 - \frac{1}{5}}$$

$$= 16 + \frac{3}{5^3} \times \frac{1 - \frac{1}{5^8}}{\frac{4}{5}}$$

$$= 16 + \frac{3}{5^3} \times \frac{5}{4} \times (1 - 5^{-8}) = 16 + \frac{3}{100} (1 - 5^{-8}).$$

I.2 - Deux méthodes de calcul

Proposition 4 - Somme télescopique

Soit $(u_k)_{p \leqslant k \leqslant n+1}$ une suite de réels. Alors,

$$\sum_{k=p}^{n} (u_{k+1} - u_k) = u_{n+1} - u_p.$$

Exemple 4 - Deux sommes télescopiques

• Lorsque p = 0 et n = 4,

$$\sum_{k=0}^{4} (u_{k+1} - u_k) = (u_5 - u_4) + (u_4 - u_3) + (u_3 - u_2) + \cdots$$

$$\cdots + (u_2 - u_1) + (u_1 - u_0)$$

$$= u_5 + (-u_4 + u_4) + (-u_3 + u_3) + \cdots$$

$$\cdots + (-u_2 + u_2) + (-u_1 + u_1) - u_0$$

$$= u_5 - u_0.$$

• On remarque que $\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$. Ainsi

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= -\sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k}\right)$$
$$= -\left(\frac{1}{n+1} - \frac{1}{1}\right)$$
$$= 1 - \frac{1}{n+1}.$$

En particulier, $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k(k+1)} = 1$.

Proposition 5 - Changement d'indice

Soit $(u_k)_{0 \le k \le n+1}$ une suite de réels.

$$\bullet \sum_{k=p}^{k=n} u_{k-1} = \sum_{k-1=p-1}^{k-1=n-1} u_{k-1} = \sum_{\ell=p-1}^{n-1} u_{\ell}.$$

$$\bullet \sum_{k=n}^{k=n} u_{k+1} = \sum_{k+1=n+1}^{k+1=n+1} u_{k+1} = \sum_{\ell=p+1}^{n+1} u_{\ell}.$$

$$\bullet \sum_{k=p}^{n} u_{k+1} = \sum_{k+1=p+1}^{n+1} u_{k+1} = \sum_{\ell=p+1}^{n+1} u_{\ell}$$

Exemple 5 - Un changement d'indice

On admet que, pour tout n entier naturel, $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$. Alors,

$$\sum_{k=0}^{n} (k+1)^2 = \sum_{k+1=1}^{n+1} (k+1)^2$$

$$= \sum_{\ell=1}^{n+1} \ell^2$$

$$= \sum_{\ell=0}^{n+1} \ell^2 - 0^2$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}.$$

II - Séries numériques

Définition 2 - Série

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels. Pour tout n entier naturel, on pose

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n.$$

• La suite $(S_n)_{n\in\mathbb{N}}$ est la série de terme général u_n .

• Le réel $S_n = \sum_{k=0}^n u_k$ est la somme partielle d'ordre n.

On note
$$\sum u_n$$
 la suite $\left(\sum_{k=0}^n u_k\right)_{n\in\mathbb{N}}$.

Exemple 6 - Des sommes partielles

• La somme partielle d'ordre 100 de la série de terme général

$$S_{100} = \sum_{k=1}^{100} \frac{1}{k}.$$

• La somme partielle d'ordre 10 de la série de terme général $\frac{1}{2^n}$ est:

$$S_{100} = \sum_{k=0}^{10} \frac{1}{2^k} = 2\left(1 - \frac{1}{2^{11}}\right).$$

II.1 - Nature des séries

Définition 3 - Série convergente, Série divergente

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels.

- est convergente, alors la série de terme général u_n converge. Sinon, la série de terme général u_n
- Si la série de terme général converge, la limite de $\left(\sum_{k=0}^{n} u_{k}\right)_{n\in\mathbb{N}}$ est la somme de la série de terme général u_n . On note

$$\sum_{k=0}^{+\infty} u_k = \lim_{n \to +\infty} \sum_{k=0}^{n} u_k.$$

Exemple 7 - Une série convergente / Une série divergente

• On a vu que pour tout n entier naturel non nul,

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}.$$

Ainsi, $\lim_{n\to +\infty}\frac{1}{k(k+1)}=1$. Donc la série de terme général $\frac{1}{k(k+1)}$ converge et

$$\sum_{k=1}^{+\infty} \frac{1}{k(k+1)} = 1.$$

• Soit $\sum u_n$ la série de terme général 4^n . Alors,

$$\sum_{k=0}^{n} 4^{k} = \frac{1 - 4^{n+1}}{1 - 4}$$
$$= 3 (4^{n+1} - 1)$$
$$\to +\infty.$$

Ainsi, $\sum 4^n$ diverge.

Théorème 1 - Condition nécessaire de convergence

- \bullet Si la série de terme général u_n converge, alors $\lim_{n \to +\infty} u_n = 0.$
- Si la suite $(u_n)_{n\in\mathbb{N}}$ ne tend pas vers 0, alors la série de terme général u_n diverge.

Exemple 8 - Divergence grossière

• Comme $\lim_{n\to+\infty}\frac{n^2+1}{n}=+\infty$, alors la série de terme général $\frac{n^2+1}{n}$ diverge.

• Comme $\lim_{n\to+\infty}\frac{3n^2-n+1}{2n(n+1)}=\frac{3}{2}$, alors la série de terme général $\frac{3n^2-n+1}{2n(n+1)}$ diverge.

ECT 2

II.2 - Série géométrique

Théorème 2 - Série géométrique

- Soit $x \in \mathbb{R}$. La série $\sum x^n$ de terme général x^n converge si et seulement si |x| < 1.
- Si |x| < 1, alors $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$.

Exemple 9 - Une série géométrique

Soit $\sum u_n$ la série de terme général $\frac{1}{2^n}$. Alors,

$$\sum_{k=0}^{n} \frac{1}{2^k} = \frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}}$$
$$= 2\left(1 - \frac{1}{2^{n+1}}\right)$$
$$\to 2.$$

Ainsi, $\sum \frac{1}{2^n}$ converge et sa somme vaut $\sum_{k=0}^{+\infty} \frac{1}{2^k} = 2$.

II.3 - 3 exemples de raisonnements

Théorème 3 - Série de Riemmann [Résultat Hors Programme]

$$\sum \frac{1}{k^2}$$
 converge.

Exemple 10

Pour tout $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

• D'après les propriétés de la somme,

$$S_{n+1} = \sum_{k=1}^{n+1} \frac{1}{k^2}$$

$$= \sum_{k=1}^{n} \frac{1}{k^2} + \underbrace{\frac{1}{(n+1)^2}}_{\geqslant 0}$$

$$\geqslant \sum_{k=1}^{n} \frac{1}{k^2} = S_n.$$

Ainsi, (S_n) est croissante.

• En utilisant un changement de variable,

$$S_n = \sum_{k=1}^{k=n} \frac{1}{k^2}$$

$$= \sum_{k-1=0}^{k-1=n-1} \frac{1}{(k-1+1)^2}$$

$$= \sum_{\ell=0}^{\ell=n-1} \frac{1}{(\ell+1)^2}$$

$$= \sum_{k=0}^{n-1} \frac{1}{(k+1)^2}.$$

• Alors,

$$k \leqslant k+1$$

$$\frac{1}{k+1} \leqslant \frac{1}{k}$$

$$\frac{1}{(k+1)^2} \leqslant \frac{1}{k(k+1)}$$

$$\sum_{k=1}^{n-1} \frac{1}{(k+1)^2} \leqslant \sum_{k=1}^{n-1} \frac{1}{(k+1)^2}$$

$$\sum_{k=0}^{n-1} \frac{1}{(k+1)^2} - 1 \leqslant \sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$S_n \leqslant -\left(\frac{1}{n} - 1\right) + 1$$

$$\leqslant 2.$$

Ainsi, (S_n) est majorée par 2.

• Finalement, (S_n) est croissante et majorée donc convergente et $\sum \frac{1}{k^2}$ converge. On peut montrer que sa somme vaut $\frac{\pi^2}{6}$.

Théorème 4 - Série exponentielle [Résultat Hors Programme]

$$\sum \frac{1}{k!}$$
 converge.

Exemple 11

Pour tout $n \in \mathbb{N}$, on note $T_n = \sum_{k=0}^n \frac{1}{k!}$.

• D'après les propriétés de la somme,

$$T_{n+1} = \sum_{k=0}^{n+1} \frac{1}{k!}$$

$$= \sum_{k=0}^{n} \frac{1}{k!} + \underbrace{\frac{1}{(n+1)!}}_{\geqslant 0}$$

$$\geqslant \sum_{k=0}^{n} \frac{1}{k!} = T_n.$$

Ainsi, la suite (T_n) est croissante.

• De plus, pour tout $k \ge 2$,

$$k \geqslant 2$$

$$k(k-1)(k-2)\cdots 2 \geqslant 2 \times 2 \times 2 \times \cdots \times 2$$

$$k! \geqslant 2^{k-1}$$

$$\frac{1}{k!} \leqslant \frac{1}{2^{k-1}}$$

$$\sum_{k=2}^{n} \frac{1}{k!} \leqslant \sum_{k=2}^{n} \frac{1}{2^{k-1}}$$

$$T_{n} - 2 \leqslant \sum_{k-1=1}^{n-1} \frac{1}{2^{k-1}}$$

$$T_{n} \leqslant \sum_{\ell=1}^{n-1} \frac{1}{2^{\ell}} + 1$$

$$\leqslant \frac{1}{2} \times \frac{1 - \frac{1}{2^{n}}}{1 - \frac{1}{2}} + 2$$

$$\leqslant 3$$

Donc (T_n) est majorée par 2.

• Ainsi, (T_n) est croissante et majorée donc convergente. On peut montrer que sa limite vaut e^1 . On peut généraliser ce résultat en montrant que pour tout réel x, la série $\sum \frac{x^k}{k!}$ converge et sa somme vaut e^x .

Théorème 5 - Série géométrique dérivée [Résultat Hors Programme]

Soit $x \in \mathbb{R}$ tel que |x| < 1. Alors,

$$\sum kx^{k-1}$$
 converge.

Exemple 12

On considère la fonction définie sur]-1,1[par $f_n(x)=\sum_{k=0}^n x^k.$

La fonction f_n est dérivable et $f'_n(x) = \sum_{k=1}^n kx^{k-1}$.

Or, $f_n(x) = \frac{1 - x^{n+1}}{1 - x}$. Ainsi,

$$f'_n(x) = \frac{-(n+1)x^n(1-x) - (1-x^{n+1})(-1)}{(1-x)^2}$$

Or, $\lim_{n \to +\infty} (n+1)x^n = 0$ et $\lim_{n \to +\infty} x^{n+1} = 0$. Ainsi,

$$\lim_{n \to +\infty} f'_n(x) = \frac{1}{(1-x)^2}.$$

Donc $\sum kx^{k-1}$ converge et

$$\sum_{k=1}^{+\infty} kx^{k-1} = \frac{1}{(1-x)^2}.$$