A Me IN 3

IN THE SPECIFICATION:

Please amend paragraph number [0033] as follows:

[0033] Various types of semiconductor device structures 20 may be assembled with and secured to wafer carrier 1, including, without limitation, full or partial wafers of silicon or other semiconductive materials (e.g., gallium arsenide or indium phosphide), as well as other-large-scale substrates (e.g., a silicon-on-insulator (SOI) substrate, such as silicon-on-glass (SOG), silicon-on-ceramic (SOC), silicon-on-sapphire (SOS), or the like).

Please amend paragraph number [0039] as follows:

[0039] Pressure application apparatus 10 may also include a plurality of independent springs 13, each of which is associated with a corresponding pressurization structure 12. Each spring 13 may be a known type of spring that is suitable for maintaining a position of a corresponding pressurization structure 12 relative to a backside 24 of a semiconductor device structure 20 when a corresponding actuator 14 is not acting upon pressurization structure 12. For example, and not to limit the scope of the present invention, spring 13 may be a conventional mechanical, coiled spring, a leaf spring, a belleville Belleville spring, an elastomeric spring, a pneumatic (air) spring, or combinations thereof. In the case of pressure application apparatus 10, each spring 13 is configured and positioned to maintain its corresponding pressurization structure 12 in such a position that substantially no force is applied to backside 24 of semiconductor device structure 20 unless the corresponding actuator 14 causes pressurization structure 12 to be biased against backside 24. Each spring 13 thus pulls its corresponding pressurization structure 12 away from backside 24 of semiconductor device structure 20 in the absence of a magnetic field emanating from the corresponding actuator 14.

Please amend paragraph number [0043] as follows:

[0043] An alternative embodiment of pressure application apparatus 10' is shown in FIG. 3. Each of the features of pressure application apparatus 10' are substantially the same as those of pressure application apparatus 10 shown in FIGs. 1 and 2, with the exception that