Leveraging conformal prediction

for calibrated probabilistic time series forecasts to accelerate the renewable energy transition

Inge van den Ende Data Scientist

www.dexterenergy.ai

¹25 January 2024

A balancing act on the energy grid:
Supply needs to equal demand at any moment

Uncertainty in energy generation forecast increases

Forecasting the uncertainty explicitly enables decision making

Point forecasts don't give any information about this uncertainty

A prediction interval gives us more information about the uncertainty

Conformal prediction can create a prediction interval for any point forecast

A calibration set is hold out from the train set

Three steps to forecast with prediction interval

Training Calibration Prediction

Train the point forecast model on the train set as usual

Training Calibration Prediction 1. Train point forecast model on the training set $\hat{y} = f(X)$

The calibration set is used to compute the prediction interval

The calibration set is used to compute the prediction interval

Add the prediction interval to every prediction

13

Residuals of a calibration set determine the prediction interval

Training	Calibration	Prediction
1.	2.	3.
Train point forecast model	Predict on calibration set and get conformity scores	Predict with point forecast model & add prediction interval based on conformity scores
$\hat{y} = f(X)$	Actual value Point forecast Calibration set	y Prediction interval Point forecast Prediction set

1

Python packages for conformal prediction

MAPIE:

Model Agnostic Prediction Interval Estimator

Crepes:

Conformal classifiers, regressors and predictive systems

Forecasting with prediction interval with the crepes package

- crepes_model = WrapRegressor(baseline_model)
- crepes_model.fit(X_prop_train, y_prop_train)
- crepes_model.calibrate(X_cal, y_cal)
- crepes_point_prediction = crepes_model.predict(X_test)
- crepes_prediction_cp = crepes_model.predict_int(X_test, confidence=0.90)

This simple method has great advantages, but also some disadvantages

Advantages

Model agnostic: Any model can be used

Statistical guarantee: valid coverage

√ No distribution assumption needed

Disadvantages

Constant over the prediction set

A single prediction interval provides less information then a distribution

The prediction interval is constant over the prediction set

A prediction interval provides less information then a probabilistic distribution

19

This simple method has great advantages, but also some disadvantages

Advantages

√ Model agnostic: Any model can be used

Statistical guarantee: valid coverage

✓ No distribution assumption needed

Disadvantages

Constant over the prediction set

A single prediction interval provides less information then a distribution

Solution will be given in next slides

Calibrating a probabilistic forecast creates a well-calibrated full distribution that is specific over samples

Part 1: Create prediction interval

We can use the same three steps to calibrate a probabilistic forecast

Training Calibration Prediction

Train a probabilistic forecast model on the train set

Quantile regression: fit a model per quantile that you predict

Quantile regression: asymmetrically weight errors during model training

▶ lightgbm.LGBMRegressor(objective='quantile', alpha=0.2)

Why do we need conformalized quantile regression?

Quantile regression

- X Asymptotically consistent
- Takes into account local variability of the input space

Conformal prediction

- / Statistical guarantee of valid coverage
 - Basic application does not adapt to input space

Conformalized quantile regression

- Statistical guarantee of valid coverage
- Takes into account local variability of the input space

The calibration set is used to compute a correction factor

27

Calibrate every prediction interval

28

Residuals of a calibration set are used to calibrate the forecasted distribution

Training	Calibration	Prediction
1.	2.	3.
Train probabilistic forecast model	Predict on calibration set and get conformity scores for every quantile	Predict on test set and calibrate that distribution
$[\hat{y}_{q01}\hat{y}_{q01}] = f(X)$	y Calibration set	y Prediction set

A remaining disadvantage: exchangeability

Advantages Model agnostic: Any model can be used

- Statistical guarantee: valid coverage
- ✓ No distribution assumption needed

Advantages

Varies over the prediction set

A distribution provides more information then a single prediction interval

Disadvantage

Assumption: exchangeability

Exchangeability does not always hold

▶ mapie.time_series_regression.MapieTimeSeriesRegressor

Key takeaways about conformal prediction

Simple method with statistical guarantee

Conditional when calibrating probabilistic forecast

Helps to accelerate the renewable energy transition

At the start of 2022 the interest in conformal prediction started to rise

Google trend worldwide show increase from start of 2022

On the awesome-conformal-prediction github you can find more information

Started in 2022

QR code to awesome-conformal-prediction github

