Description logics

Description Logics

- decidable, supported by automatic reasoning A family of KR formalisms, based on FOPL systems
- □ Used for modelling of application domains
- individuals (constants), constructors for building Classification of concepts and individuals concepts (unary predicates), subconcept (subsumption), roles (binary predicates), concepts, equality ...

[Baader et al. 2002]

Applications

- software management
- configuration management
- natural language processing
- clinical information systems
- information retrieval
- :
- Ontologies and the Web

Outline

- DL languages
- syntax and semantics
- DL reasoning services
- algorithms, complexity
- DL systems
- DLs for the web

Tbox and Abox

Syntax - AL

R atomic role, A atomic concept

C,D → A I (atomic concept)

T | (universal concept, top)

⊥ I (bottom concept)

-A | (atomic negation)

C ∩ D I (conjunction)

VR.C | (value restriction)

(limited existential quantification)

AL[X]

C ¬C (concept negation)

u C U D (disjunction)

BR.C (existential quantification)

(number restriction) ≥nR, ≤nR

≥ n R.C, ≤ n R.C (qualified number restriction)

Example

Team

Team ∩ ≥ 10 hasMember

Team $\cap \ge 11$ hasMember. Soccer-player

AL[X]

 $R \cap S$ (role conjunction)

I R- (inverse roles)

 ${\cal H}$ (role hierarchies)

 \mathcal{F} $u_1 = u_2$, $u_1 \neq u_2$ (feature (dis)agreements)

S[X]

ALC + transitive roles

SHIQ ALC + transitive roles

+ role hierarchies

+ inverse roles

+ number restrictions

Tbox

Terminological axioms:

```
\square C = D (R = S)
```

$$\square \ C \subseteq D \quad (R \subseteq S)$$

- An equality whose left-hand side is an atomic concept is a definition.
- A finite set of definitions T is a Tbox (or terminology) if no symbolic name is defined more than once.

Example Tbox

Soccer-player ⊆ T

Team ⊆≥2 hasMember

Large-Team = Team ∩ ≥ 10 hasMember

S-Team = Team ∩ ≥ 11 hasMember

DL as sublanguage of FOPL

Team(this)

<

(∃ X₁,...,X₁₁:

hasMember(this,x1) ^ ... ^ hasMember(this,x11)

 $\wedge x_1 \neq x_2 \wedge ... \wedge x_{10} \neq x_{11}$

<

 $(\forall x: hasMember(this,x) \rightarrow Soccer-player(x))$

Abox

- Assertions about individuals:
- □ C(a) □ R(a,b)

Example

Ida-member(Sture)

Individuals in the description language

O {i1, ..., ik} (one-of)

R:a (fills)

Example

(S-Team ∩ hasMember:Sture)(IDA-FF)

Knowledge base

A knowledge base is a tuple < T, A > where T is a Tbox and A is an Abox.

Example KB

```
Large-Team = Team ∩ ≥ 10 hasMember
                                                                   S-Team = Team ∩ ≥ 11 hasMember
                     Team ⊆≥2 hasMember
Soccer-player ⊆ T
```

Ida-member(Sture)

(S-Team ∩ hasMember:Sture)(IDA-FF)

AL (Semantics)

An interpretation I consists of a non-empty set every atomic concept A a set $A^{J} \subseteq \Delta^{J}$ and to Δ^g (the domain of the interpretation) and an interpretation function . Twhich assigns to every atomic role R a binary relation $\mathsf{R}^{\mathcal{J}\subseteq} \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}}$.

concept definitions using inductive definitions. The interpretation function is extended to

AL (Semantics)

C,D → A | (atomic concept)

T | (universal concept)

⊥ I (bottom concept)

¬A | (atomic negation)

C ∩ D | (conjunction)

VR.C | (value restriction)

 $\mathsf{T}^g = \Delta^g$ $(\neg A)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus A^{\mathcal{I}}$

 $(\mathsf{C} \cap \mathsf{D})^{\mathcal{I}} = \mathsf{C}^{\mathcal{I}} \cap \mathsf{D}^{\mathcal{I}}$

 $(\forall R.C)^{\mathcal{J}} =$

 $\{a \in \Delta^{\mathcal{I}} \mid \forall b.(a,b) \in \mathbb{R}^{\mathcal{I}} \rightarrow b \in \mathbb{C}^{\mathcal{I}}\}\$

quantification)

 $\exists R.T \mid \text{ (limited existential } (\exists R.T)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \exists b.(a,b) \in R^{\mathcal{I}}\}$

ALC (Semantics)

$$(\neg C)^{\mathcal{J}} = \Delta^{\mathcal{J}} \setminus C^{\mathcal{J}}$$

$$(C \cup D)^3 = C^3 \cup D^3$$

$$(\ge n R)^3 = \{a \in \Delta^3 \mid \# \{b \in \Delta^3 \mid (a,b) \in R^3 \} \ge n \}$$

$$(\le n R)^3 = \{a \in \Delta^3 \mid \# \{b \in \Delta^3 \mid (a,b) \in R^3 \} \le n \}$$

$$(\exists R.C)^{\mathcal{J}} = \{a \in \Delta^{\mathcal{J}} \mid \exists b \in \Delta^{\mathcal{J}} : (a,b) \in R^{\mathcal{J}} \land b \in C^{\mathcal{J}} \}$$

Semantics

Individual i

$$j^{\mathcal{J}} \in \Delta^{\mathcal{J}}$$

Unique Name Assumption: if $i_1 \neq i_2$ then $i_1^{\mathcal{I}} \neq i_2^{\mathcal{I}}$

if
$$i_1 \neq i_2$$
 then $i_1^{\mathcal{I}} \neq i_2^{\mathcal{I}}$

Semantics

An interpretation J is a model for a terminology Tiff

$$C^{3} = D^{3}$$
 for all $C = D$ in T

$$C^3 \subseteq D^3$$
 for all $a \subset C \subseteq D$ in T

$$C^{J} \cap D^{J} = \emptyset$$
 for all (disjoint C D) in T

Semantics

An interpretation J is a model for a knowledge base < T, A > iff

J is a model for T

for all C(a) in A

 $a^g \in C^g$

 $\langle a^{J},b^{J}\rangle \in \mathbb{R}^{J}$ for all R(a,b) in A

Bird = Animal ∩ ∀ Skin.Feather

$$\Delta^{\mathcal{J}} = \{\text{tweety, goofy, fea1, fur1}\}$$
Animal $^{\mathcal{J}} = \{\text{tweety, goofy}\}$
Feather $^{\mathcal{J}} = \{\text{fea1}\}$
Skin $^{\mathcal{J}} = \{-\text{tweety, fea1}\}$

 \Rightarrow Bird³ = {tweety}

QuietPerson = Person \to \to Friend.QuietPerson (A = F(A))

```
Friend<sup>3</sup> = \{<john, sue>, <andrea, bill>, <bill, bill>\}
                                                                 Person<sup>J</sup> = {john, sue, andrea, bill}
\Delta^{g} = \{\text{john, sue, andrea, bill}\}
```

- \rightarrow QuietPerson³ ={john, sue}
- \rightarrow QuietPerson³ ={john, sue, andrea, bill}

constraint stating that A has to be some Descriptive semantics: A = F(A) is a solution for the equation.

- Not appropriate for defining concepts
- Necessary and sufficient conditions for concepts

Human = Mammal ∩ ∃ Parent

○ ∀ Parent.Human

Least fixpoint semantics: A = F(A) specifies that A is to be interpreted as the smallest solution (if it exists) for the equation.

Appropriate for inductively defining concepts

Non-Empty-DAG = Node ∩ ∀ Arc.Non-Empty-DAG DAG = EmptyDAG U Non-Empty-DAG

Human = Mammal ∩ ∃ Parent ∩ ∀ Parent.Human → Human =

A is to be interpreted as the greatest solution (if it Greatest fixpoint semantics: A = F(A) specifies that exists) for the equation.

individuals have circularly repeating structure Appropriate for defining concepts whose

FoB = Blond ∩ ∃ Child.FoB

Human = Mammal ∩ ∃ Parent ∩ ∀ Parent.Human Horse = Mammal $\cap \exists$ Parent $\cap \forall$ Parent.Horse → Human = Horse

Open world vs closed world semantics

Databases: closed world reasoning

database instance represents one interpretation

→ absence of information interpreted as negative information

"complete information"

query evaluation is finite model checking

DL: open world reasoning

Abox represents many interpretations (its models)

→ absence of information is lack of information

"incomplete information"

query evaluation is logical reasoning

Open world vs closed world semantics

hasChild(Jocasta, Oedipus)
hasChild(Jocasta, Polyneikes)
hasChild(Oedipus, Polyneikes)
hasChild(Polyneikes, Thersandros)
patricide(Oedipus)

¬ patricide(Thersandros)

Does it follow from the Abox that

- Satisfiability of concept
- Subsumption between concepts
- Equivalence between concepts
- Disjointness of concepts
- Classification
- Instance checking
- Realization
- Retrieval
- Knowledge base consistency

- Satisfiability of concept
- \square C is satisfiable w.r.t. $\mathcal T$ if there is a model I of $\mathcal T$ such that $\mathsf C^I$ is not empty.
- Subsumption between concepts
- \square C is subsumed by D w.r.t. \mathcal{T} if $\mathbf{C}^I \subseteq \mathsf{D}^I$ for every model I of \mathcal{T} .
- Equivalence between concepts
- \square C is equivalent to D w.r.t. \mathcal{T} if $C^I = D^I$ for every model I of \mathcal{T} .
- Disjointness of concepts
- \square C and D are disjoint w.r.t. \mathcal{T} if $C^{J} \cap D^{J} = \emptyset$ for every model I of

- Reduction to subsumption
- □ C and D are equivalent iff C is subsumed by D and D is subsumed by C
- ${}_{\square}\mathsf{C}$ and D are disjoint iff $\mathsf{C} \cap \mathsf{D}$ is subsumed by \bot
- The statements also hold w.r.t. a Tbox.

- Reduction to unsatisfiability
- □ C is subsumed by D iff C ∩ ¬D is unsatisfiable
- □C and D are equivalent iff
- both (C \cap \neg D) and (D \cap \neg C) are unsatisfiable
- $\ \square C$ and D are disjoint iff $C \cap D$ is unsatisfiable
- The statements also hold w.r.t. a Tbox.

Tableau algorithms

- To prove that C subsumes D:
- ☐ If C subsumes D, then it is impossible for an individual to belong to D but not to C.
- Idea: Create an individual that belongs to D and not to C and see if it causes a contradiction.
- subsumption is proven. Otherwise, we have If always a contradiction (clash) then found a model that contradicts the subsumption.

Tableau algorithms

Based on constraint systems.

$$\square S = \{ x: \neg C \cap D \}$$

- ■Add constraints according to a set of propagation rules
- □ Until clash or no constraint is applicable

Tableau algorithms – de Morgan rules

 $\neg (A \cap B) \rightarrow \neg A \cup B$

ר (A U B) → ר A ∩ L

¬ (∀ R.C) → ∃ R.(¬ C)

 $\neg (\exists R.C)$ $\forall R.(\neg C)$

Fableau algorithms – constraint propagation rules

 \blacksquare S \blacktriangledown \cap {x:C₁, x:C₂} U S

if x: $C_1 \cap C_2$ in S

and either x:C₁ or x:C₂ is not in S

S ∩ {a:c) ∩ < S

if x: C_1 U C_2 in S and neither x: C_1 or x: C_2 is in S, and $D = C_1$ or $D = C_2$

Fableau algorithms – constraint propagation rules

if x: ∀ R.C in S and xRy in S and y:C is not in S

■ S → ∃ {xRy, y:C} U S

if x: ∃ R.C in S and y is a new variable and there is no z such that both xRz and z:C are in S

ST: Tournament

SBT: Tournament

□ ∃ hasParticipant.(Swedish ⊃ Belgian)

```
■ SBT => ST?
```

```
S = { x:
```

```
¬(Tournament ∩ ∃ hasParticipant.Swedish)
```

```
  □ ∃ hasParticipant.(Swedish □ Belgian))
```

```
__
```

```
    □ ∃ hasParticipant.(Swedish ⊃ Belgian))
                                                                                           U ∀ hasParticipant. ¬ Swedish)
Example 1
                                                                                                                    (¬Tournament
                                        ■ S = { x:
```

```
x: ∃ hasParticipant.(Swedish ∩ Belgian)

    □ ∃ hasParticipant.(Swedish ⊃ Belgian)),
                                                                                                                                                                                           U ∀ hasParticipant. Swedish,
                                                                                U ∀ hasParticipant. ¬ Swedish)
                                                                                                                                                                 x: ¬Tournament
                                                    x: (¬Tournament
                                                                                                                                                                                                                      x: Tournament,
                                                                                                           |
|
|
|
|
∩-rule:
```

```
x: (¬Tournament U ∀ hasParticipant.¬ Swedish)
                                                                                                                                                                                                                                                                                                                                                                 x hasParticipant y, y: (Swedish ∩ Belgian)

  □ HasParticipant.(Swedish ∩ Belgian)),
                                                                                                                                                                                                                                                                                                                                  x: ∃ hasParticipant.(Swedish ∩ Belgian),
                                                                                                                                                                                                                                                                 U ∀ hasParticipant. ¬ Swedish,
Example 1
                                                                                                                                                                                                                                 x: ¬Tournament
                                                                                                                                                                   x: Tournament,
                                                                                                          )
။
လ
                                                                         3 -rule:
```

```
∩-rule:
```

```
S= {x: (¬Tournament U ∀ hasParticipant.¬ Swedish)
                                                                                                                                 x: ¬Tournament U ∀ hasParticipant.¬ Swedish,

    ⊃ ∃ hasParticipant.(Swedish ⊃ Belgian)),

                                                  x: Tournament,
```

x hasParticipant y, y: (Swedish ∩ Belgian),

y: Swedish, y: Belgian }

x: ∃ hasParticipant.(Swedish ∩ Belgian),

```
S = \{ x: (\neg Tournament \ U \ \forall \ hasParticipant. \neg Swedish) \}
                                                                                                                                                         x: ¬Tournament U ∀ hasParticipant.¬ Swedish,
                                                                                                                                                                                                                                                                                      x hasParticipant y, y: (Swedish ∩ Belgian),
                                                                                 \cap (Tournament \cap ∃ hasParticipant.(Swedish \cap Belgian)),
                                                                                                                                                                                                                                            x: ∃ hasParticipant.(Swedish ∩ Belgian),
                                                                                                                                                                                                                                                                                                                                  y: Swedish, y: Belgian,
                                                                                                                                                                                                                                                                                                                                                                                x: Tournament,
U-rule, choice 1
```

→ clash

```
U-rule, choice 2
```

S = {x: (¬Tournament U ∀ hasParticipant.¬ Swedish)

∃ hasParticipant.(Swedish ⊃ Belgian)),

x: ¬Tournament U ∀ hasParticipant.¬ Swedish,

x: Tournament,

x: ∃ hasParticipant.(Swedish ∩ Belgian),

x hasParticipant y, y: (Swedish ∩ Belgian),

y: Swedish, y: Belgian,

x: ∀ hasParticipant.¬ Swedish

_

```
x: ¬Tournament U ∀ hasParticipant.¬ Swedish,
                                                            x: (¬Tournament U ∀ hasParticipant.¬ Swedish)
                                                                                                                                                                                               x hasParticipant y, y: (Swedish ∩ Belgian),
                                                                                                                                                                     x: ∃ hasParticipant.(Swedish ∩ Belgian),
                                                                                                                                                                                                                                               x: ∀ hasParticipant. ¬ Swedish,
                                                                                                                                                                                                                         y: Swedish, y: Belgian,
                                                                                                                                             x: Tournament,
                                                                                                                                                                                                                                                                             choice 2 - continued
                                    S = {
```

→ clash

```
  □ ∃ hasParticipant.(Swedish □ Belgian))

→ (Tournament)

ST => SBT?
                       - S = { x:
```

```
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
                                                                                                Example 2
                                                            (¬Tournament
                                         S = { x:
```

```
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
                                                                                          U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
                                                                                                                         \cap (Tournament \cap \exists hasParticipant.Swedish),
                                                                                                                                                                                                                                                         x: ∃ hasParticipant.Swedish
                                                                                                                                                       x: (¬Tournament
                                                          x: (¬Tournament
                                                                                                                                                                                                                          x: Tournament,
                             | S | |
O-rule
```

```
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),

    (Tournament ∩ ∃ hasParticipant.Swedish),
    x: (¬Tournament

                                                                                  U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
                                                                                                                                                                                                                                                             x hasParticipant y, y: Swedish
                                                                                                                                                                                                                                x: ∃ hasParticipant.Swedish,
                                                       x: (¬Tournament
                                                                                                                                                                                                   x: Tournament,
                            S = {
∃ -rule
```

```
x: (\neg Tournament U \lor PasParticipant.(\neg Swedish U \lor Belgian)),
                                                                                                                    \cap (Tournament \cap \exists hasParticipant.Swedish),
                                                                                     U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
                                                                                                                                                                                                                                                                      x hasParticipant y, y: Swedish,
                                                                                                                                                                                                                                        x: ∃ hasParticipant.Swedish,
                                                                                                                                                                                                                                                                                                     x: ¬Tournament
                                                    x: (¬Tournament
                                                                                                                                                                                                             x: Tournament,
U -rule, choice 1
                                                                                                                                                                                                                                                                                                                                                                 → clash
```

```
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
                                                                                                         U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
                                                                                                                                             \cap (Tournament \cap \exists hasParticipant.Swedish),
                                                                                                                                                                                                                                                                                                                                                              x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian)
                                                                                                                                                                                                                                                                                                                           x hasParticipant y, y: Swedish,
                                                                                                                                                                                                                                                                                          x: ∃ hasParticipant.Swedish,
                                                                                                                                                                              x: (¬Tournament
                                                                      x: (¬Tournament
                                                                                                                                                                                                                                                    x: Tournament,
U-rule, choice 2
                                    } = S
```

```
x: (\neg Tournament \ U \lor PasParticipant.(\neg Swedish <math>U \lor Belgian)),
                                                                                                                                                                                                                                                                                                                                                                          x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian), y: (¬ Swedish U ¬ Belgian)
                                                                                                                                  U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
                                                                                                                                                                       \cap (Tournament \cap \exists hasParticipant.Swedish),
                                                                                                                                                                                                                                                                                                                                              x hasParticipant y, y: Swedish,
                                                                                                                                                                                                                                                                                                              x: ∃ hasParticipant.Swedish,
                                                                                               x: (¬Tournament
                                                                                                                                                                                                                                                                            x: Tournament,
choice 2 continued
```

```
x: (\negTournament U \lor NasParticipant.(\neg Swedish U \lor Belgian)),
                                                                                                                                                                                                                                                                                                                    x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian),
                                                                                                                                          \cap (Tournament \cap \exists hasParticipant.Swedish),
                                                                                                              U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
                                                                                                                                                                                                                                                                                        x hasParticipant y, y: Swedish,
                                                                                                                                                                                                                                                                                                                                             y: (¬ Swedish U ¬ Belgian),
y: ¬ Swedish
} → clash
                                                                                                                                                                                                                                                          x: 3 hasParticipant.Swedish,
                                                                               x: (¬Tournament
                                                                                                                                                                                                                                 x: Tournament,
choice 2 continued
                             U-rule, choice 2.1
                                                         S
II
```

```
x: (\negTournament U \lor NasParticipant.(\neg Swedish U \lor Belgian)),
                                                                                                                                                                                                                                                                                                                          x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian),
                                                                                                                                             \cap (Tournament \cap \exists hasParticipant.Swedish),
                                                                                                                U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
                                                                                                                                                                                                                                                                                              x hasParticipant y, y: Swedish,
                                                                                                                                                                                                                                                                 x: ∃ hasParticipant.Swedish,
                                                                                                                                                                                                                                                                                                                                                      y: (¬ Swedish U ¬ Belgian),
y: ¬ Belgian
} → ok, model
                                                                                  x: (¬Tournament
                                                                                                                                                                                                                                       x: Tournament,
choice 2 continued
                             U-rule, choice 2.2
                                                          S
II
```

Complexity - languages

 Overview available via the DL home page at nttp://dl.kr.org

Example tractable language:

A, T, \bot , \neg A, $C \cap D$, \forall R.C, \ge nR, \le nR

Reasons for intractability:

choices, e.g. C U D

exponential size models,

e.g interplay universal and existential quantification

Reasons for undecidability:

e.g. role-value maps R=S

Systems

Systems

- Overview available via the DL home page at http://dl.kr.org
- Current systems include: CEL, Cerebra Enginer, FaCT++, fuzzyDL, HermiT, KAON2, MSPASS, Pellet, QuOnto, RacerPro, SHER

Extensions

- Time
- Defaults
- Part-of
- Knowledge and belief
- Uncertainty (fuzzy, probabilistic)

DAML+OIL Class Constructors

Example	Human ⊓ Male	Doctor ⊔ Lawyer	⊐Male	{john, mary}	∀hasChild.Doctor	∃hasChild.Lawyer	∃citizenOf.{USA}	≽2hasChild.Lawyer	≪1hasChild.Male	=1 hasParent.Female
DL Syntax Example	$C_1 \sqcap \ldots \sqcap C_n$	$C_1\sqcup\ldots\sqcup C_n$	Γ	$\{x_1 \dots x_n\}$	$\forall P.C$	$\exists P.C$	$\exists P.\{x\}$	$\geqslant nP.C$	$\leqslant nP.C$	=n P.C
Constructor	intersectionOf	unionOf	complementOf	oneOf	toClass	hasClass	hasValue	minCardinalityQ	maxCardinalityQ	cardinalityQ

- XMLS datatypes as well as classes
- Arbitrarily complex nesting of constructors
- E.g., Person □ ∀hasChild.(Doctor ⊔ ∃hasChild.Doctor)

EDBT 2002; DAML+OIL - p.13/32

DAML+OIL Axioms

Evample	- 1	Human ⊑ Animal ⊓ Biped	Man ≡ Human ⊓ Male	hasDaughter ⊑ hasChild	cost ≡ price	$\{President_Bush\} \equiv \{G_W_Bush\}$	Male ⊑ ¬Female	} {john} ⊑ ¬{peter}	hasChild ≡ hasParent⁻	$ancestor^+ \sqsubseteq ancestor$	$ op \leq 1$ hasMother	\top \square \leq 1 is Mother Of $^-$
O Syntax	DL Oylılan	$C_1 \sqsubseteq C_2$	$C_1 \equiv C_2$	$P_1 \sqsubseteq P_2$	$P_1 \equiv P_2$	$\{x_1\} \equiv \{x_2\}$	$C_1 \sqsubseteq \neg C_2$	$\{x_1\} \sqsubseteq \neg \{x_2\}$	$P_1 \equiv P_2^-$	$P^+ \sqsubseteq P$	$\top \sqsubseteq \leqslant 1P$	$\top \Box \leqslant 1P^-$
		subClassOf	sameClassAs	subPropertyOf	samePropertyAs	sameIndividualAs	disjointWith	differentIndividualFrom	inverseOf	transitiveProperty	uniqueProperty	unambiguousProperty

Maxioms (mostly) reducible to subClass/PropertyOf

OWL

- OWL-Lite, OWL-DL, OWL-Full: increasing expressivity
- A legal OWL-Lite ontology is a legal OWL-DL ontology is a legal OWL-Full ontology
- OWL-DL: expressive description logic, decidable
- XML-based
- RDF-based (OWL-Full is extension of RDF, OWL-Lite and OWL-DL are extensions of a restriction of RDF)

OWL-Lite

- Class, subClassOf, equivalentClass
- intersectionOf (only named classes and restrictions)
- Property, subPropertyOf, equivalentProperty
- domain, range (global restrictions)
- inverseOf, TransitiveProperty (*), SymmetricProperty, Functional Property, Inverse Functional Property
- allValuesFrom, someValuesFrom (local restrictions)
- minCardinality, maxCardinality (only 0/1)
- Individual, sameAs, differentFrom, AllDifferent

(*) restricted

OWL-DL

- cannot be also class or individual), Separation between DatatypeProperties Type separation (class cannot also be individual or property, property and ObjectProperties
- Class -complex classes, subClassOf, equivalentClass, disjointWith
- <u>intersectionOf</u>, unionOf, complementOf
- **Property**, subPropertyOf, equivalentProperty
- domain, range (global restrictions)
- inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty, InverseFunctionalProperty
- allValuesFrom, someValuesFrom (local restrictions), oneOf, hasValue
- minCardinality, maxCardinality
- Individual, same As, different From, All Different

(*) restricted

References

- Baader, Calvanese, McGuinness, Nardi, Patel-Schneider. The Description Logic Handbook. Cambridge University Press, 2003.
- Donini, Lenzerini, Nardi, Schaerf, Reasoning in representation. CSLI publications. pp 191-236. description logics. Principles of knowledge 1996.
- dl.kr.org
- www.daml.org
- (lwo) group (owl)

