Lecture 42

niceguy

January 24, 2024

1 Manifolds

A k dimensional manifold in \mathbb{R}^k is a set $M^k \in \mathbb{R}^n$ with the property that $\forall p \in M^k \exists \alpha : U \to \mathbb{R}^n$ with $\alpha(U) = V \subseteq M^k$ with open $U \subseteq \mathbb{R}^k, V \subseteq M^k$ satisfying

- 1. $\alpha \in C^r$
- 2. α is one-to-one
- 3. α^{-1} is continuous
- 4. The rank of $D\alpha$ is k

We call α a coordinate chart.

Example 1.1. Consider the map π from the surface of a sphere to the \mathbb{R}^2 plane by means of a line connecting the north pole to said point and finding its intersection with the \mathbb{R}^2 plane. This is *not* a coordinate chart, but π^{-1} is. Then \mathbb{S}^2 is a manifold without boundary.

Note: If you think α preserves distance, you need to seek medical help.

Example 1.2 (Ellipsoid). Is $\left\{\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\right\} \subset \mathbb{R}^3$ an open manifold? It is, if you use tangent planes.

Example 1.3 (Parabaloid). Is $\{z = 5x^2 + 7y^2\} \subset \mathbb{R}^3$ a manifold? It is. Define

$$\alpha(x,y) = (x,y,5x^2+7y^2)$$

It is obvious that α is continuous. Its inverse is also continuous (preimage of open set is open). Finally,

$$D\alpha = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 10x & 14y \end{pmatrix}$$

which has rank 2, since its (only) two columns are linearly independent.

Consider any C^r function $f: U \to \mathbb{R}$, where $U \subseteq \mathbb{R}^k$ is open. Similar to the example above, the graph of f is a k dimensional manifold in \mathbb{R}^{k+1} .

Now we see why every condition is needed. The rank being k means that there are k "directions" locally, and that they are all smooth. If not, the image of $U \subseteq \mathbb{R}^k$ under α has less than k dimensions, so it doesn't make sense to call it a k dimensional manifold. Without C^r , a cone can be a manifold, which is weird because of its vertex.