Language and Grammer

2.1 Language

```
language: set of sentence.
sentence: set of word, grammer.
word: set of alphabet.
```

Alphabet

 T^{\ast} - Any sentence that can be made into a set of word.

 T^+ - T^* minus ϵ only.

Therefore, Language is a subset of the T^* set.

String

```
\omega - string.
```

Length

 $|\omega|$ - length of string.

Empty string

 ϵ or λ

Language is generally composed of infinite sentence \Rightarrow unable to list all thus we can't list all, we need a method to describe it

sol1) Syntax(Grammer): Production rule - production perspective

sol2) Recognizer: Automata - perspective of recognizing truth or false of a sentence.

Concatenation

String u, String v

 $u \cdot v$ - combine.

 $u\epsilon = u = \epsilon u$

 $\forall\, u,v\in T^*, uv\in T^*$ - If u,v is configured as 01, uv is also configured as 01.

 a^n : string with n a's ex) $a^0 = \epsilon$

 ω^R : reverse string

L: language

Product $LL' = \{xy | x \in L \text{ and } y \in L'\}$

Power $L^0 = \{\epsilon\}$

 $L^n = LL^{n-1} \ (n \ge 1)$

 L^* : $L^0 \cup L^1 \cup L^2 \cup L^3 \cdots \cup L^n \cdots = U_{i=0}^{\infty} L^i$

 L^+ : $L^n - L^0$

2.2 Grammer

 V_t : terminal - alphabet.

 V_n : nonterminal - Grammatical symbols for describing constraints that do not constitute actual sentences (usually use uppercase)

$$V = V_n \cap V_t$$

Definition of grammer

$$G = (V_n, V_t, P, S)$$

example

$$G = (\{S, A\}, \{a, b\}, P, S)$$

P(set of production rule): $S \to aAS$ $S \to a$ $A \to SbA$ $A \to ba$ $A \to SS$

$$A \to SbA$$
 $A \to ba$ $A \to SS$

conclusion

$$S \to aAS|a$$

 $A \rightarrow SbA|ba|SS$