Different Ages of Man

Crystal Structures

Additional Reference Books:

Structure of Materials

Marc DeGraef

Michael McHenry

Structure and Bonding in Crystalline Materials

G.S. Rohrer

Structure—Property Relation

Structure—Property Relation

Why is this material transparent?

Electronic structure

How is the transparency affected? **Defect structure**

What induces complete opacity? *Microstructure*

Structure—Property Relation

Why is this material transparent?

Electronic structure

How is the transparency affected? **Defect structure**

What induces complete opacity?

Microstructure

Crystalline Materials

• Standardized description of crystal structures

Symmetry to create classifications

- Mathematical techniques
 - Unambiguous and clear description
 - Rules and tools for computations

3-D arrangement

Crystal structure

of atoms or molecules

on a lattice

Einstein summation convention

Summation implied over every subscript that occurs twice

on the same side

$$t = u_i a_i = u_1 a_1 + u_2 a_2 + u_3 a_3$$

Einstein summation convention

Summation implied over every subscript that occurs twice

on the same side

$$t = u_i a_i = u_1 a_1 + u_2 a_2 + u_3 a_3$$

$$??? = \epsilon_{ijk} p_i q_j r_k$$

Einstein summation convention

Summation implied over every subscript that occurs twice

on the same side

 $t = u_i a_i = u_1 a_1 + u_2 a_2 + u_3 a_3$

 $??? = \epsilon_{ijk} p_i q_j r_k$

 $??? = b_j u_i a_i$

$$\tau = \{t | t = u_i \vec{a_i}, u_i \in \mathbb{Z}\}$$

The space lattice

- Collection (or set) of all corner points
- Each corner point is called/a lattice point
- Lattice points are related by translation vectors

The space lattice

- All lattice points are identical
- lattice is invariant under translation

- Set of 6 numbers characterizes it
- lattice parameters

- Volume defined by the 3 basis vectors
- unit cell

$$(a_1, a_2, a_3, \alpha_3, \alpha_1, \alpha_2)$$

$$(\overrightarrow{a_1} \times \overrightarrow{a_2}) \cdot \overrightarrow{a_3}$$

Problem

A lattice is described by the following lattice parameters:

(2, 3, 4, 90, 98.30, 90)

- Sketch a projection of the lattice as viewed along the a₂ axis
- Calculate the volume of the unit cell