Camera

Céline Loscos

Contenu

- Formalisation d'un modèle de caméra général
- Définir les paramètres à partir de la connaissance du point de visé

Paramètre d'une camera simple (vue de coté)

Paramètres généraux de la caméra

- View Reference Point (VRP)
 - Où se positionne la caméra
- View Plane Normal (VPN)
 - Dans quelle direction pointe la caméra
- View Up Vector (VUV)
 - Direction vers le haut (verticale) de la caméra
- X (ou axe U) pour former un système main gauche ou main droite

Coordonnées UVN

- View Reference Point (VRP)
 - origin du système de coordonnées de vue (VCS=View Coordinate Système)
- View Plane Normal (VPN)
 - Z (ou axe N) du VCS
- View Up Vector (VUV)
 - détermine Y (ou l'axe V) du VCS
- X (ou axe U) pour former un système main gauche ou main droite

Coordonnées du monde WC et coordonnées de la camera VC

Vue depuis la camera (repère main gauche)

Trouver les vecteurs de base

• Step 1 - n

• Step 2 - u

• Step 3 - v

$$n = \frac{VPN}{\mid VPN \mid}$$

$$u = \frac{n \times VUV}{|n \times VUV|}$$

$$v = u \times n$$

Trouver le lien entre WC et VC (1)

 La rotation R transforme les coordonnées de u,v,n dans WC en coordonnées i,j,k dans le repère VC

$$\begin{pmatrix} u \\ v \\ n \end{pmatrix} \begin{pmatrix} R \\ \end{pmatrix} = \begin{pmatrix} I \\ \end{pmatrix} avec \ u \ (u_1 u_2 u_3), \ \forall \ (v_1 v_2 v_3), \ n \ (n_1 n_2 n_3)$$

- Les deux bases sont normalisées pour ne considérer que la rotation (pas de mise à l'échelle)
 - La matrice de rotation est orthogonale avec comme propriété R^T = R⁻¹

$$R = \begin{pmatrix} u1 & v1 & n1 \\ u2 & v2 & n2 \\ u3 & v3 & n3 \end{pmatrix}$$

Trouver le lien entre WC et VC (2)

- Dans le repère UVN les coordonnées du VRP (q) sont (0, 0, 0, 1)
 (en coordonnées homogènes)
- Appliquer la rotation et la translation aux coordonnées de q dans le WC le ramène en (0, 0, 0, 1) soit qR + t = 0

$$t = -qR$$

$$t = -\left(\sum_{i=1}^{3} q_{i}u_{i} \sum_{i=1}^{3} q_{i}v_{i} \sum_{i=1}^{3} q_{i}n_{i}\right)$$

Matrice complète

Main gauche

$$M = \begin{pmatrix} u1 & v1 & n1 & 0 \\ u2 & v2 & n2 & 0 \\ u3 & v3 & n3 & 0 \\ -\sum_{i=1}^{3} q_i u_i & -\sum_{i=1}^{3} q_i v_i & -\sum_{i=1}^{3} q_i n_i & 1 \end{pmatrix}$$

Main droite

$$M = \begin{pmatrix} u1 & v1 & n1 & -\sum_{i=1}^{3} q_i u_i \\ u2 & v2 & n2 & -\sum_{i=1}^{3} q_i v_i \\ u3 & v3 & n3 & -\sum_{i=1}^{3} q_i n_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

À vérifier

Si

$$M = \begin{pmatrix} R & 0 \\ -qR & 1 \end{pmatrix}$$

Alors

$$M^{-1} = \begin{pmatrix} R^T & 0 \\ q & 1 \end{pmatrix}$$

Forme alternative à la caméra

- Utilise la visée "Look At"
 - Données : un VRP et un point de visée TP (Target Point)
 - VPN = TP-VRP
 - VUV = (0 1 0)
- Champ de vue (Field of View)
 - Donner le FOV horizontal et vertical et un ratio (aspect ratio)
 - Calculer la portée de vue (viewport)

Animer les caméras

- Animer VRP (caméra de l'observateur)
- Animer VPN (regarder autour)
- Animate TP (caméra de suivi)
- Animer le COP
 - Le long de VPN zoom
 - Orthogonalement à VPN distortion

Conclusion

- Il est possible de définir des paramètres de caméra pour créer des vues de la scène depuis des positions arbitraires
- Les paramètres sont définis en fonction des objectifs de visées
- Il est facile de formuler les matrices de transformation entre le WCS et le VCS

