Optimizing NN Inference on Embedded Devices

Master's Internship – May-July 2018 Snips Paris – Under the supervision of Mathieu Poumeyrol

> Romain Liautaud École Normale Supérieure de Lyon

Overview

- Introduction
- Profiling and visualization tools
- 3 Static analysis of dataflow graphs
- 4 New streaming semantics for dataflow graphs
- 5 Convolution implementations on embedded devices
- 6 Conclusion

About Snips

Snips is a french artificial intelligence startup which makes voice assistants (like Alexa or Siri), but with two specific goals:

- Every assistant is fully customizable, from the choice of hotword to the intents that it recognizes.
- Every assistant is private by design, i.e. all queries that you ask to the assistant are never sent to a remote server (so all the computation must be done on device).

Deep Neural Networks at Snips

Usage of Deep Neural Networks

The problem

Neural networks are used everywhere in voice assistants, and they must run on device (e.g. Raspberry Pi or smartphones).

These devices have several limitations:

- Size of the inference runtime;
- Size of the stored trained models;
- Limited computational resources;
- Limited battery life;
- Special instruction set (ARMv7, ARMv8).

About my internship

So traditional neural network libraries (e.g. TensorFlow, Theano, PyTorch, etc.) don't work well on these environments.

Several attempts at building specialized libraries:

- TensorFlow Lite;
- XLA (ahead-of-time or just-in-time);
- TFDeploy, by the Snips Device Engineering team.
 Written in Rust, a novel systems programming language.

During this internship, I had to find ways to improve TFDeploy w.r.t. speed, robustness, and space- and energy-efficiency.

Representing a neural network: dataflow graphs

TFDeploy is compatible with a subset of TensorFlow, so it borrows its internal representation of neural networks: **dataflow graphs**.

Here on a basic perceptron:

Each node has an *operation*, a set of input and output *ports* and a set of *attributes*. Edges go from output port of a node to input port of another.

Profiling and visualization tools

Command-line profiler:

```
cargo run -- ../../models/classic.pb -s 41x40xf32 profile
```

Graph visualizer:

```
cargo run -- ../../models/classic.pb -s 41x40xf32 analyse --web
```

Without hints about the input shape:

```
cargo run -- ../../models/classic.pb analyse --web
```

Problem statement

I first had to formalize and implement a **static analyser** for dataflow graphs (using ideas from abstract interpretation). Why?

- To clarify TFDeploy error messages;
- To catch as many errors as possible before runtime;
- To get hints about the edge shapes for the visualizer;
- To build optimizations, e.g. constant propagation and folding.

Essentially, we want to tag each edge of the graph with invariants about the tensors that flow through it. For instance:

Every tensor flowing through this edge has datatype float32;

Problem statement

I first had to formalize and implement a **static analyser** for dataflow graphs (using ideas from abstract interpretation). Why?

- To clarify TFDeploy error messages;
- To catch as many errors as possible before runtime;
- To get hints about the edge shapes for the visualizer;
- To build optimizations, e.g. constant propagation and folding.

Essentially, we want to tag each edge of the graph with invariants about the tensors that flow through it. For instance:

- Every tensor flowing through this edge has datatype float32;
- Every tensor flowing through this edge has the same value of t;

Problem statement

I first had to formalize and implement a **static analyser** for dataflow graphs (using ideas from abstract interpretation). Why?

- To clarify TFDeploy error messages;
- To catch as many errors as possible before runtime;
- To get hints about the edge shapes for the visualizer;
- To build optimizations, e.g. constant propagation and folding.

Essentially, we want to tag each edge of the graph with invariants about the tensors that flow through it. For instance:

- Every tensor flowing through this edge has datatype float32;
- Every tensor flowing through this edge has the same value of t;
- Every tensor flowing through this edge has rank 2 or more, and its first dimension is 5.

Definition

A datatype fact $f \in \mathcal{TF}$ is either:

- ullet $T_{\mathcal{TF}}$, which matches any possible datatype;
- $Only_{TF}(T)$ for T a datatype, which only matches a specific datatype;
- $\perp_{\mathcal{TF}}$, which signifies an error.

Definition

A value fact $f \in \mathcal{VF}$ is either:

- ullet $op_{\mathcal{VF}}$, which matches any possible tensor;
- $Only_{\mathcal{VF}}(t)$ for t a tensor, which only matches a specific tensor;
- \perp_{VF} , which signifies an error.

Definition

A **shape fact** is an element of $\mathcal{SF} \equiv \{0, 1\} \times (\mathbb{N} \cup \{_\})^*$. The first element defines whether the shape is *closed* or *open*, and the second element is a sequence of either an integer – which matches a specific dimension – or " $_$ " – which matches any dimension.

A few examples:

• "Every tensor has shape (2,2)": [2, 2];

Definition

A **shape fact** is an element of $\mathcal{SF} \equiv \{0, 1\} \times (\mathbb{N} \cup \{_\})^*$. The first element defines whether the shape is *closed* or *open*, and the second element is a sequence of either an integer – which matches a specific dimension – or " $_$ " – which matches any dimension.

A few examples:

- "Every tensor has shape (2,2)": [2, 2];
- "Every tensor has rank 2": [_, _];

Definition

A **shape fact** is an element of $\mathcal{SF} \equiv \{0, 1\} \times (\mathbb{N} \cup \{_\})^*$. The first element defines whether the shape is *closed* or *open*, and the second element is a sequence of either an integer – which matches a specific dimension – or " $_$ " – which matches any dimension.

A few examples:

- "Every tensor has shape (2,2)": [2, 2];
- "Every tensor has rank 2": [_, _];
- "Every tensor has rank ≥ 2 and first dimension 5": [5, _, ...].

Definition

A **shape fact** is an element of $\mathcal{SF} \equiv \{0, 1\} \times (\mathbb{N} \cup \{_\})^*$. The first element defines whether the shape is *closed* or *open*, and the second element is a sequence of either an integer – which matches a specific dimension – or " $_$ " – which matches any dimension.

A few examples:

- "Every tensor has shape (2,2)": [2, 2];
- "Every tensor has rank 2": [_, _];
- "Every tensor has rank ≥ 2 and first dimension 5": [5, _, ..].

Definition

A **tensor fact** is an element of $\mathcal{F} \equiv \mathcal{TF} \times \mathcal{SF} \times \mathcal{VF}$.

Formalism: Lattice structure and unification

From top to bottom: largest (least general) to smallest (most general).

Definition

For a lattice L, the **unification** of $a, b \in L$, written as $a \sqcap_L b$, is the largest $c \in L$ such that $c \sqsubseteq_L a$ and $c \sqsubseteq_L b$, i.e. the *most general fact that combines* the information from a and b. It can be \bot_L if a and b are incompatible facts.

Operation level: declarative constraint solver

How do we easily (and generically) express the enrichop function?

```
fn rules(&self, inputs, outputs) { // For the Pad operation.
 let (input, paddings, output) = (&inputs[0], &inputs[1], &outputs[0]);
 solver
     .equals(&inputs.len, 2)
     .equals(&outputs.len, 1)
     .equals(&output.datatype, &input.datatype)
     .equals(&paddings.datatype, DataType::DT_INT32)
     .equals(&input.rank, &output.rank)
     .equals(&paddings.rank, 2)
     .equals(&paddings.shape[0], &input.rank)
     .equals(&paddings.shape[1], 2)
     .given(&input.rank, move |solver, rank: usize| {
         (0...rank).for each(|i| {
             solver.equals_zero(wrap!(
                 (-1, &output.shape[i]), (1, &input.shape[i]),
                 (1, &paddings.value[i][0]), (1, &paddings.value[i][1])));
         })
     }):
```

An example of optimization: constant folding

To save space and prevent useless runtime computations, we can pre-compute constant parts of the graph and store the result instead.

Sometimes it makes sense:

An example of optimization: constant folding

To save space and prevent useless runtime computations, we can pre-compute constant parts of the graph and store the result instead.

Sometimes it doesn't:

The issue with real-time data

How do you feed real-time data (e.g. samples from a microphone) to a neural network which expects a [N, K]-shaped tensor as an input?

$$I_i = egin{pmatrix} s_i \ s_{i+1} \ \dots \ s_{i+N-1} \end{pmatrix} \in M_{N,\kappa}(\mathbb{R})$$

- Naïve method: feed a new l_i every time a new sample is recorded; (But samples overlap, so useless computations).
- Batched method: feed a new I_i every N new samples; (But introduces latency and reduces accuracy).
- Ideally, feed each new sample to the network separately. (But not supported by traditional semantics of inference.)

New streaming semantics

So we define new semantics for dealing with real-time data.

 Every input of the network (i.e. Placeholder node) can have a streaming dimension. This information is propagated to the rest of the graph using the analyser.

New streaming semantics

So we define new semantics for dealing with real-time data.

- Every input of the network (i.e. Placeholder node) can have a streaming dimension. This information is propagated to the rest of the graph using the analyser.
- Instead of thinking about tensors, we think about chunks (which have size 1 along the streaming dimension);

New streaming semantics

So we define new semantics for dealing with real-time data.

- Every input of the network (i.e. Placeholder node) can have a streaming dimension. This information is propagated to the rest of the graph using the analyser.
- Instead of thinking about tensors, we think about chunks (which have size 1 along the streaming dimension);
- Each operation is associated with a new streaming evaluation function which takes a chunk from one of the ports and might return a new chunk, and remembers data from previous iterations using buffers:

$$step_{op} \; : \; \mathcal{P}(\mathcal{A}_{op}) \; \times \; \mathcal{B}_{op} \times 0, \; n_i \times (\{\bot\} \cup \mathbb{N}) \times \mathcal{T} \; \rightarrow \mathcal{B}_{op} \times (\{\bot\} \cup \mathcal{T}^{n_o})$$

Streaming inference algorithm

Example of execution on the board:

How do we implement fast convolution?

2-D convolution (actually cross-correlation) is usually the most time consuming operation during CNN inference.

So the implementation matters:

- Naïve approach: slide the filter and perform every matrix product separately;
- Im2col approach: single matrix product of two well-built matrices:

(Courtesy of Leonardo Araujo dos Santos.)

- Im2col approach with optimized GEMM (e.g. from GotoBLAS or BLIS);
- **FFT**-based approaches: $f \times g = \mathcal{F}^{-1}(\mathcal{F}(f) \cdot \mathcal{F}(g))$

Conclusion

During this internship, I improved the speed, space- and energy-efficiency and robustness of TFDeploy via optimizations built on top of a static analyser for dataflow graphs; via new inference semantics for streaming data; and via a careful choice of the convolution implementation.

I also learned to tame Rust, and got a sense of how it feels doing research and implementation in a production environment.

Possible future improvements:

- Make the declarative rule solver more expressive;
- Improve the performance of static analysis;
- Reduce the overhead on streaming evaluation;
- Custom implementation of im2col-based convolution to better control memory usage and speed.

