第4章 矩阵的广义逆

Matrix Theory

黄正华

Email: huangzh@whu.edu.cn

武汉大学 数学与统计学院

December 15, 2014

源起

设 A 是 $n \times n$ 可逆方阵, b 是任意一个 n 维向量, 则方程组

$$Ax = b$$

总有解, 且解 x 可表为

$$x = A^{-1}b.$$

源起

设 A 是 $n \times n$ 可逆方阵, b 是任意一个 n 维向量, 则方程组

$$Ax = b$$

总有解, 且解 x 可表为

$$x = A^{-1}b.$$

现设 A 是任意 $m \times n$ 阵, b 是一个 m 维向量, 是否存在 $n \times m$ 矩阵 G, 使得只要方程 Ax = b 有解, 则

$$x = Gb$$

就是解?

源起

设 A 是 $n \times n$ 可逆方阵, b 是任意一个 n 维向量, 则方程组

$$Ax = b$$

总有解, 且解 x 可表为

$$x = A^{-1}b.$$

现设 A 是任意 $m \times n$ 阵, b 是一个 m 维向量, 是否存在 $n \times m$ 矩阵 G, 使得只要方程 Ax = b 有解, 则

$$x = Gb$$

就是解?

这样的矩阵 G 就涉及到广义逆的概念.

广义逆 (generalized inverse), 也称<u>伪逆(pseudoinverse)</u>, 一般是指 Moore–Penrose **广义逆矩阵** (Moore–Penrose pseudoinverse).

广义逆 (generalized inverse), 也称<u>伪逆</u>(pseudoinverse), 一般是指 Moore–Penrose **广义逆矩阵** (Moore–Penrose pseudoinverse).

F. H. Moore¹ 于 1920 年给出了矩阵的广义逆的概念.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 3 / 111

 $^{^{1}}$ Eliakim Hastings Moore (1862-1932), 美国数学家, 是二十世纪初美国数学的奠基人, 曾任美国数学会主席.

广义逆 (generalized inverse), 也称<u>伪逆</u>(pseudoinverse), 一般是指 Moore–Penrose **广义逆矩阵** (Moore–Penrose pseudoinverse).

F. H. Moore¹ 于 1920 年给出了矩阵的广义逆的概念.

Definition 1.1 (Moore 广义逆矩阵)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$\boldsymbol{A}\boldsymbol{G} = P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}, \qquad \boldsymbol{G}\boldsymbol{A} = P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}, \tag{1}$$

其中 $P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}$ 表示沿子空间 $N(\boldsymbol{A}^{\mathrm{H}})$ 向子空间 $R(\boldsymbol{A})$ 上的正交投影算子, $P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}$ 表示沿子空间 $N(\boldsymbol{A})$ 向子空间 $R(\boldsymbol{A}^{\mathrm{H}})$ 上的正交投影算子,则称 \boldsymbol{G} 为 \boldsymbol{A} 的 Moore 广义逆矩阵.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 3 / 111

¹Eliakim Hastings Moore (1862-1932), 美国数学家, 是二十世纪初美国数学的奠基人, 曾任美国数学会主席.

广义逆 (generalized inverse), 也称<u>伪逆(pseudoinverse)</u>, 一般是指 Moore–Penrose **广义逆矩阵** (Moore–Penrose pseudoinverse).

F. H. Moore¹ 于 1920 年给出了矩阵的广义逆的概念.

Definition 1.1 (Moore 广义逆矩阵)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$\boldsymbol{A}\boldsymbol{G} = P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}, \qquad \boldsymbol{G}\boldsymbol{A} = P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}, \tag{1}$$

其中 $P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}$ 表示沿子空间 $N(\boldsymbol{A}^{\mathrm{H}})$ 向子空间 $R(\boldsymbol{A})$ 上的正交投影算子, $P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}$ 表示沿子空间 $N(\boldsymbol{A})$ 向子空间 $R(\boldsymbol{A}^{\mathrm{H}})$ 上的正交投影算子,则称 \boldsymbol{G} 为 \boldsymbol{A} 的 Moore 广义逆矩阵.

公式 (1) 含义不容易理解和应用, 因此 Moore 给出的广义逆矩阵一直未被 重视.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 3 / 111

 $^{^1\}mathrm{Eliakim}$ Hastings Moore (1862-1932), 美国数学家, 是二十世纪初美国数学的奠基人, 曾任美国数学会主席.

广义逆 (generalized inverse), 也称<u>伪逆</u>(pseudoinverse), 一般是指 Moore–Penrose **广义逆矩阵** (Moore–Penrose pseudoinverse).

F. H. Moore¹ 于 1920 年给出了矩阵的广义逆的概念.

Definition 1.1 (Moore 广义逆矩阵)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$\boldsymbol{A}\boldsymbol{G} = P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}, \qquad \boldsymbol{G}\boldsymbol{A} = P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}, \tag{1}$$

其中 $P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}$ 表示沿子空间 $N(\boldsymbol{A}^{\mathrm{H}})$ 向子空间 $R(\boldsymbol{A})$ 上的正交投影算子, $P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}$ 表示沿子空间 $N(\boldsymbol{A})$ 向子空间 $R(\boldsymbol{A}^{\mathrm{H}})$ 上的正交投影算子,则称 \boldsymbol{G} 为 \boldsymbol{A} 的 Moore 广义逆矩阵.

公式 (1) 含义不容易理解和应用, 因此 Moore 给出的广义逆矩阵一直未被重视. 直到 1955 年剑桥大学的博士研究生 Roger Penrose 给出了广义逆矩阵的另一个等价定义, 才使得广义逆矩阵的研究获得迅速发展.

 黄正华 (武汉大学)
 第4章 矩阵的广义道
 December 15, 2014
 3 / 111

 $^{^1\}mathrm{Eliakim}$ Hastings Moore (1862-1932), 美国数学家, 是二十世纪初美国数学的奠基人, 曾任美国数学会主席.

广义逆矩阵的基本概念

Definition 1.2 (Penrose 广义逆矩阵)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) $\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$,
- (2) GAG = G,
- $(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 Penrose 广义逆矩阵, 简称为 Penrose 广义逆, 记为 A^+ , 或 A^\dagger .

广义逆矩阵的基本概念

Definition 1.2 (Penrose 广义逆矩阵)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- $(1) \quad \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A},$
- $(2) \quad \mathbf{G}\mathbf{A}\mathbf{G} = \mathbf{G},$
- $(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 Penrose 广义逆矩阵, 简称为 Penrose 广义逆, 记为 A^+ , 或 A^\dagger . 矩阵的 Moore 广义逆与 Penrose 广义逆是等价的, 并且是唯一的, 故也称为 M-P 广义逆.

广义逆矩阵的基本概念

Definition 1.2 (Penrose 广义逆矩阵)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- $(1) \quad \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A},$
- $(2) \quad \mathbf{G}\mathbf{A}\mathbf{G} = \mathbf{G},$
- $(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 Penrose 广义逆矩阵, 简称为 Penrose 广义逆, 记为 A^+ , 或 A^\dagger . 矩阵的 Moore 广义逆与 Penrose 广义逆是等价的, 并且是唯一的, 故也称为 M-P 广义逆.

若矩阵 G 满足条件 (1), (2), (3), (4) 中的部分或全部, 则称 G 为 A 的广义逆矩阵, 简称为广义逆.

若 G 只满足条件 (1), 则 G 为 A 的 $\{1\}$ -逆,

若 G 只满足条件 (1), 则 G 为 A 的 {1}-逆, 记为 $G \in A$ {1}.

若 G 只满足条件 (1), 则 G 为 A 的 {1}-逆, 记为 $G \in A$ {1}. 若 G 只满足条件 (1), (2), 则 G 为 A 的 {1,2}-逆,

若 G 只满足条件 (1), 则 G 为 A 的 {1}-逆, 记为 $G \in A$ {1}. 若 G 只满足条件 (1), (2), 则 G 为 A 的 {1,2}-逆, 记为 $G \in A$ {1,2}.

若 G 只满足条件 (1), 则 G 为 A 的 {1}-逆, 记为 $G \in A$ {1}. 若 G 只满足条件 (1), (2), 则 G 为 A 的 {1,2}-逆, 记为 $G \in A$ {1,2}. 满足条件 (1), (2), (3), (4) 的部分或全部的广义逆矩阵共有 15 类,

若 G 只满足条件 (1),则 G 为 A 的 $\{1\}$ -逆,记为 $G \in A\{1\}$. 若 G 只满足条件 (1),(2),则 G 为 A 的 $\{1,2\}$ -逆,记为 $G \in A\{1,2\}$. 满足条件 (1),(2),(3),(4) 的部分或全部的广义逆矩阵共有 15 类,即

 $C_4^1 + C_4^2 + C_4^3 + C_4^4 = 15.$

若 G 只满足条件 (1), 则 G 为 A 的 $\{1\}$ -逆, 记为 $G \in A\{1\}$. 若 G 只满足条件 (1), (2), 则 G 为 A 的 $\{1,2\}$ -逆, 记为 $G \in A\{1,2\}$. 满足条件 (1), (2), (3), (4) 的部分或全部的广义逆矩阵共有 15 类, 即

$$C_4^1 + C_4^2 + C_4^3 + C_4^4 = 15.$$

常用的广义逆是以下 5 类:

$$A\{1\}, A\{1,2\}, A\{1,3\}, A\{1,4\}, A^+.$$

 \Box 只有 A^+ 是唯一的,而其他各种广义逆矩阵都不是唯一的.

若 G 只满足条件 (1), 则 G 为 A 的 $\{1\}$ -逆, 记为 $G \in A\{1\}$. 若 G 只满足条件 (1), (2), 则 G 为 A 的 $\{1,2\}$ -逆, 记为 $G \in A\{1,2\}$. 满足条件 (1), (2), (3), (4) 的部分或全部的广义逆矩阵共有 15 类, 即

$$C_4^1 + C_4^2 + C_4^3 + C_4^4 = 15.$$

常用的广义逆是以下5类:

$$A\{1\}, A\{1,2\}, A\{1,3\}, A\{1,4\}, A^+.$$

只有 A^+ 是唯一的, 而其他各种广义逆矩阵都不是唯一的. 当 A 是可逆矩阵时, 它的所有广义逆矩阵都等于 A^{-1} .

若 G 只满足条件 (1), 则 G 为 A 的 $\{1\}$ -逆, 记为 $G \in A\{1\}$. 若 G 只满足条件 (1), (2), 则 G 为 A 的 $\{1,2\}$ -逆, 记为 $G \in A\{1,2\}$. 满足条件 (1), (2), (3), (4) 的部分或全部的广义逆矩阵共有 15 类, 即

$$C_4^1 + C_4^2 + C_4^3 + C_4^4 = 15.$$

常用的广义逆是以下5类:

$$A\{1\}, A\{1,2\}, A\{1,3\}, A\{1,4\}, A^+.$$

只有 A^+ 是唯一的,而其他各种广义逆矩阵都不是唯一的. 当 A 是可逆矩阵时,它的所有广义逆矩阵都等于 A^{-1} . 以下将重点讨论这 5 类广义逆.

Example 1.3

设
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, 则

$$G = \begin{bmatrix} 1 & a \\ 0 & 0 \end{bmatrix}, \quad \forall a \in \mathbb{C},$$

是 A 的 {1}-逆.

Example 1.3

设
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
,则

$$G = \begin{bmatrix} 1 & a \\ 0 & 0 \end{bmatrix}, \quad \forall a \in \mathbb{C},$$

是 A 的 $\{1\}$ -逆. 可见 $\{1\}$ -逆不是唯一确定的.

Example 1.3

设
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
,则

$$G = \begin{bmatrix} 1 & a \\ 0 & 0 \end{bmatrix}, \quad \forall a \in \mathbb{C},$$

是 A 的 {1}-逆. 可见 {1}-逆不是唯一确定的.

但 A^+ 是唯一的, 这里

$$\boldsymbol{A}^+ = \begin{bmatrix} \frac{1}{2} & 0\\ \frac{1}{2} & 0 \end{bmatrix}.$$

Sir Roger Penrose (born 8 August 1931), is an English mathematical physicist, recreational mathematician and philosopher. He is the Emeritus Rouse Ball Professor of Mathematics at the Mathematical Institute of the University of Oxford, as well as an Emeritus Fellow of Wadham College.

Penrose is internationally renowned for his scientific work in mathematical physics, in particular for his contributions to general relativity and cosmology. He has received a number of prizes and awards, including the 1988 Wolf Prize for physics, which he shared with **Stephen Hawking** for their contribution to our understanding of the universe.

Outline

- ① Moore-Penrose 广义逆矩阵
- 2 广义逆矩阵 A⁽¹⁾
 - 广义逆 A(1) 的定义和构造
 - 广义逆 A⁽¹⁾ 的性质
 - 广义逆 A⁽¹⁾ 应用于解线性方程组
- ③ 广义逆矩阵 A^(1,2)
- 4 广义逆矩阵 A^(1,3)
- 5 广义逆矩阵 A^(1,4)
- 6 M-P 广义逆矩阵

对于 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$AGA = A$$
,

则 G 称为 A 的 $\{1\}$ -逆, 也称为 A 的减号逆 (或称为 A 的 g 逆).

对于 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$AGA = A$$
,

则 G 称为 A 的 $\{1\}$ -逆, 也称为 A 的减号逆 (或称为 A 的 g 逆). 记为 $A^{(1)}$, 或 A^{-} .

对于 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$AGA = A$$

则 G 称为 A 的 $\{1\}$ -逆, 也称为 A 的减号逆 (或称为 A 的 g 逆). 记为 $A^{(1)}$, 或 A^{-} .

矩阵 A 所有 $\{1\}$ -逆的全体记为 $A\{1\}$,

对于 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$AGA = A$$

则 G 称为 A 的 $\{1\}$ -逆, 也称为 A 的减号逆 (或称为 A 的 g 逆). 记为 $A^{(1)}$, 或 A^{-} .

矩阵 A 所有 $\{1\}$ -逆的全体记为 $A\{1\}$, 即

$$\mathbf{A}\{1\} = \big\{ \mathbf{G} \mid \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A} \big\}.$$

对于 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$AGA = A$$
,

则 G 称为 A 的 $\{1\}$ -逆, 也称为 A 的减号逆 (或称为 A 的 g 逆). 记为 $A^{(1)}$, 或 A^{-} .

矩阵 A 所有 $\{1\}$ -逆的全体记为 $A\{1\}$, 即

$$\mathbf{A}\{1\} = \big\{ \mathbf{G} \mid \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A} \big\}.$$

☞ 注意表达式:

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{A}=\mathbf{A}.$$

设 $A, B \in \mathbb{C}^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足 PAQ = B,

设 A, $B \in \mathbb{C}^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足 PAQ = B, 则

$$A\{1\} = \{QB^{(1)}P \mid B^{(1)} \in B\{1\}\}.$$

设 A, $B \in \mathbb{C}^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足 PAQ = B, 则

$$A\{1\} = \{QB^{(1)}P \mid B^{(1)} \in B\{1\}\}.$$

证: 任取 $B^{(1)} \in B\{1\}$,

设 A, $B \in \mathbb{C}^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足 PAQ = B, 则

$$A\{1\} = \{QB^{(1)}P \mid B^{(1)} \in B\{1\}\}.$$

证: 任取 $B^{(1)} \in B\{1\}$,

$$A(QB^{(1)}P)A = (P^{-1}BQ^{-1})(QB^{(1)}P)(P^{-1}BQ^{-1}) \qquad (A = P^{-1}BQ^{-1})$$

$$= P^{-1}BB^{(1)}BQ^{-1}$$

$$= P^{-1}BQ^{-1} \qquad (BB^{(1)}B = B)$$

$$= A.$$

黄正华 (武汉大学)

设 A, $B \in \mathbb{C}^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足 PAQ = B, 则

$$A\{1\} = \{QB^{(1)}P \mid B^{(1)} \in B\{1\}\}.$$

证: 任取 $B^{(1)} \in B\{1\}$,

$$A(QB^{(1)}P)A = (P^{-1}BQ^{-1})(QB^{(1)}P)(P^{-1}BQ^{-1}) \qquad (A = P^{-1}BQ^{-1})$$

$$= P^{-1}BB^{(1)}BQ^{-1}$$

$$= P^{-1}BQ^{-1} \qquad (BB^{(1)}B = B)$$

$$= A.$$

所以 $QB^{(1)}P \in A\{1\}.$

反之, 任取 $A^{(1)} \in A\{1\}$, 则有 $AA^{(1)}A = A$.

反之,任取
$$A^{(1)} \in A\{1\}$$
,则有 $AA^{(1)}A = A$.代入 $A = P^{-1}BQ^{-1}$,即
$$(P^{-1}BQ^{-1})A^{(1)}(P^{-1}BQ^{-1}) = P^{-1}BQ^{-1}.$$

反之,任取 $A^{(1)} \in A\{1\}$,则有 $AA^{(1)}A = A$.代入 $A = P^{-1}BQ^{-1}$,即 $(P^{-1}BQ^{-1})A^{(1)}(P^{-1}BQ^{-1}) = P^{-1}BQ^{-1}.$

两端左乘 P, 右乘 Q, 得

$$\boldsymbol{B}\boldsymbol{Q}^{-1}\boldsymbol{A}^{(1)}\boldsymbol{P}^{-1}\boldsymbol{B} = \boldsymbol{B},$$

反之, 任取 $\boldsymbol{A}^{(1)} \in \boldsymbol{A}\{1\}$, 则有 $\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{A}$. 代入 $\boldsymbol{A} = \boldsymbol{P}^{-1}\boldsymbol{B}\boldsymbol{Q}^{-1}$, 即

$$(\mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1})\mathbf{A}^{(1)}(\mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1}) = \mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1}.$$

两端左乘 P, 右乘 Q, 得

$$BQ^{-1}A^{(1)}P^{-1}B=B,$$

则

$$Q^{-1}A^{(1)}P^{-1} \in B\{1\}.$$

反之, 任取 $\boldsymbol{A}^{(1)} \in \boldsymbol{A}\{1\}$, 则有 $\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{A}$. 代入 $\boldsymbol{A} = \boldsymbol{P}^{-1}\boldsymbol{B}\boldsymbol{Q}^{-1}$, 即

$$(\mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1})\mathbf{A}^{(1)}(\mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1}) = \mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1}.$$

两端左乘 P, 右乘 Q, 得

$$BQ^{-1}A^{(1)}P^{-1}B=B,$$

则

$$Q^{-1}A^{(1)}P^{-1} \in B\{1\}.$$

因而存在 $B^{(1)} \in B\{1\}$, 使得

$$\mathbf{Q}^{-1}\mathbf{A}^{(1)}\mathbf{P}^{-1} = \mathbf{B}^{(1)}.$$

反之, 任取 $A^{(1)} \in A\{1\}$, 则有 $AA^{(1)}A = A$. 代入 $A = P^{-1}BQ^{-1}$, 即

$$(\mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1})\mathbf{A}^{(1)}(\mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1}) = \mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1}.$$

两端左乘 P, 右乘 Q, 得

$$BQ^{-1}A^{(1)}P^{-1}B=B,$$

则

$$Q^{-1}A^{(1)}P^{-1} \in B\{1\}.$$

因而存在 $B^{(1)} \in B\{1\}$, 使得

$$Q^{-1}A^{(1)}P^{-1} = B^{(1)}.$$

故 $A^{(1)}$ 可表示为

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q}\boldsymbol{B}^{(1)}\boldsymbol{P}.$$

反之, 任取 $\boldsymbol{A}^{(1)} \in \boldsymbol{A}\{1\}$, 则有 $\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{A}$. 代入 $\boldsymbol{A} = \boldsymbol{P}^{-1}\boldsymbol{B}\boldsymbol{Q}^{-1}$, 即

$$(\mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1})\mathbf{A}^{(1)}(\mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1}) = \mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1}.$$

两端左乘 P, 右乘 Q, 得

$$BQ^{-1}A^{(1)}P^{-1}B=B,$$

则

$$Q^{-1}A^{(1)}P^{-1} \in B\{1\}.$$

因而存在 $B^{(1)} \in B\{1\}$, 使得

$$\mathbf{Q}^{-1}\mathbf{A}^{(1)}\mathbf{P}^{-1} = \mathbf{B}^{(1)}.$$

故 $A^{(1)}$ 可表示为

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q}\boldsymbol{B}^{(1)}\boldsymbol{P}.$$

证毕.

设 $A \in \mathbb{C}_r^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足

$$PAQ = egin{bmatrix} I_r & O \ O & O \end{bmatrix}$$
,则有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{2}$$

其中 G_{12} , G_{21} , G_{22} 分别是 $r \times (m-r)$, $(n-r) \times r$, $(n-r) \times (m-r)$ 阶的任意矩阵.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 12 / 111

设 $A \in \mathbb{C}_r^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足

$$PAQ = egin{bmatrix} I_r & O \ O & O \end{bmatrix}$$
,则有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{2}$$

其中 G_{12} , G_{21} , G_{22} 分别是 $r \times (m-r)$, $(n-r) \times r$, $(n-r) \times (m-r)$ 阶的任意矩阵.

注意
$$\begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$$
 是 A 的标准形,

设 $A \in \mathbb{C}_r^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足

$$PAQ = egin{bmatrix} I_r & O \ O & O \end{bmatrix}$$
,则有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{2}$$

其中 G_{12} , G_{21} , G_{22} 分别是 $r \times (m-r)$, $(n-r) \times r$, $(n-r) \times (m-r)$ 阶的任意矩阵.

注意 $\begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$ 是 A 的标准形, 此定理表明, 只要找到将 A 化为标准形的

可逆矩阵 P, Q, 依公式 (2) 即可得到广义逆 $A^{(1)}$.

设 $A \in \mathbb{C}_r^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足

$$PAQ = egin{bmatrix} I_r & O \ O & O \end{bmatrix}$$
,则有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{2}$$

其中 G_{12} , G_{21} , G_{22} 分别是 $r \times (m-r)$, $(n-r) \times r$, $(n-r) \times (m-r)$ 阶的任意矩阵.

注意 $\begin{vmatrix} I_r & O \\ O & O \end{vmatrix}$ 是 A 的标准形, 此定理表明, 只要找到将 A 化为标准形的

可逆矩阵 P, Q, 依公式 (2) 即可得到广义逆 $A^{(1)}$.

特别地, 当 $\mathbf{A} \in \mathbb{C}_{n}^{n \times n}$ 时,

设 $A \in \mathbb{C}_r^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足

$$PAQ = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$$
,则有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{2}$$

其中 G_{12} , G_{21} , G_{22} 分别是 $r \times (m-r)$, $(n-r) \times r$, $(n-r) \times (m-r)$ 阶的任意矩阵.

注意 $\begin{vmatrix} I_r & O \\ O & O \end{vmatrix}$ 是 A 的标准形, 此定理表明, 只要找到将 A 化为标准形的

可逆矩阵 P, Q, 依公式 (2) 即可得到广义逆 $A^{(1)}$.

特别地, 当 $A \in \mathbb{C}_n^{n \times n}$ 时, 存在 n 阶可逆矩阵 P, Q, 使 $PAQ = I_n$,

 黄正华 (武汉大学)
 第4章 矩阵的广义道
 December 15, 2014
 12 / 111

设 $A \in \mathbb{C}_r^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足

$$PAQ = egin{bmatrix} I_r & O \ O & O \end{bmatrix}$$
,则有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{2}$$

其中 G_{12} , G_{21} , G_{22} 分别是 $r \times (m-r)$, $(n-r) \times r$, $(n-r) \times (m-r)$ 阶的任意矩阵.

注意 $\begin{vmatrix} I_r & O \\ O & O \end{vmatrix}$ 是 A 的标准形, 此定理表明, 只要找到将 A 化为标准形的

可逆矩阵 P, Q, 依公式 (2) 即可得到广义逆 $A^{(1)}$.

特别地, 当 $A \in \mathbb{C}_{n}^{n \times n}$ 时, 存在 n 阶可逆矩阵 P, Q, 使 $PAQ = I_{n}$, 从而有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q}\boldsymbol{I}_n\boldsymbol{P}$$

设 $A \in \mathbb{C}_r^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足

$$PAQ = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$$
,则有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{2}$$

其中 G_{12} , G_{21} , G_{22} 分别是 $r \times (m-r)$, $(n-r) \times r$, $(n-r) \times (m-r)$ 阶的任意矩阵.

注意 $\begin{vmatrix} I_r & O \\ O & O \end{vmatrix}$ 是 A 的标准形, 此定理表明, 只要找到将 A 化为标准形的

可逆矩阵 P, Q, 依公式 (2) 即可得到广义逆 $A^{(1)}$.

特别地, 当 $A \in \mathbb{C}_{n}^{n \times n}$ 时, 存在 n 阶可逆矩阵 P, Q, 使 $PAQ = I_{n}$, 从而有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q}\boldsymbol{I}_n\boldsymbol{P} = \boldsymbol{Q}\boldsymbol{P} = \boldsymbol{A}^{-1}.$$

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014

设 $A \in \mathbb{C}_r^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足

$$PAQ = egin{bmatrix} I_r & O \ O & O \end{bmatrix}$$
,则有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{2}$$

其中 G_{12} , G_{21} , G_{22} 分别是 $r \times (m-r)$, $(n-r) \times r$, $(n-r) \times (m-r)$ 阶的任意矩阵.

注意 $\begin{vmatrix} I_r & O \\ O & O \end{vmatrix}$ 是 A 的标准形, 此定理表明, 只要找到将 A 化为标准形的

可逆矩阵 P, Q, 依公式 (2) 即可得到广义逆 $A^{(1)}$.

特别地, 当 $A \in \mathbb{C}_{n}^{n \times n}$ 时, 存在 n 阶可逆矩阵 P, Q, 使 $PAQ = I_{n}$, 从而有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q}\boldsymbol{I}_n\boldsymbol{P} = \boldsymbol{Q}\boldsymbol{P} = \boldsymbol{A}^{-1}.$$

可见满秩矩阵的 $\{1\}$ -逆是唯一的, 且等于 A^{-1} .

ਪੌE: ਪੌਟੇ
$$B = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$$
,

证: 记 $m{B} = egin{bmatrix} m{I_r} & m{O} \\ m{O} & m{O} \end{bmatrix}$,对照引理 2.2,只需证明 $m{B}$ 的 $\{1\}$ -逆有且仅有形式 $egin{bmatrix} m{I_r} & m{G_{12}} \\ m{G_{21}} & m{G_{22}} \end{bmatrix}$ 即可.

$$egin{bmatrix} I_r & G_{12} \ G_{21} & G_{22} \end{bmatrix}$$
即可.

证: 记 $m{B} = egin{bmatrix} m{I_r} & m{O} \\ m{O} & m{O} \end{bmatrix}$,对照引理 2.2,只需证明 $m{B}$ 的 $\{1\}$ -逆有且仅有形式 $egin{bmatrix} m{I_r} & m{G_{12}} \\ m{G_{21}} & m{G_{22}} \end{bmatrix}$ 即可. 设

$$egin{bmatrix} I_r & G_{12} \ G_{21} & G_{22} \end{bmatrix}$$
即可. 沒

$$oldsymbol{G} = egin{bmatrix} oldsymbol{G}_{11} & oldsymbol{G}_{12} \ oldsymbol{G}_{21} & oldsymbol{G}_{22} \end{bmatrix},$$

证: 记 $m{B} = egin{bmatrix} m{I_r} & m{O} \\ m{O} & m{O} \end{bmatrix}$,对照引理 2.2,只需证明 $m{B}$ 的 $\{1\}$ -逆有且仅有形式

$$egin{bmatrix} I_r & G_{12} \ G_{21} & G_{22} \end{bmatrix}$$
即可. 设

$$oldsymbol{G} = egin{bmatrix} oldsymbol{G}_{11} & oldsymbol{G}_{12} \ oldsymbol{G}_{21} & oldsymbol{G}_{22} \end{bmatrix},$$

代入 BGB = B, 得

$$\begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{bmatrix} \begin{bmatrix} \boldsymbol{G}_{11} & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{bmatrix}.$$

证: 记 $m{B} = egin{bmatrix} m{I_r} & m{O} \\ m{O} & m{O} \end{bmatrix}$,对照引理 2.2,只需证明 $m{B}$ 的 $\{1\}$ -逆有且仅有形式 $m{\begin{bmatrix} m{I_r} & m{G}_{12} \\ m{G}_{21} & m{G}_{22} \end{bmatrix}}$ 即可. 设

$$m{G} = egin{bmatrix} m{G}_{11} & m{G}_{12} \ m{G}_{21} & m{G}_{22} \end{bmatrix},$$

代入 BGB = B, 得

$$\begin{bmatrix} I_r & O \\ O & O \end{bmatrix} \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} \begin{bmatrix} I_r & O \\ O & O \end{bmatrix} = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}.$$

从而, 当且仅当 $G_{11} = I_r$, 而 G_{12} , G_{21} , G_{22} 为任意矩阵时, $G \in B\{1\}$.

Example 2.4

设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$
, 求 $\mathbf{A} \{1\}$.

Example 2.4

设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$
,求 $\mathbf{A}\{1\}$.

解: 将 A 化为标准形, 在 A 的右边放上单位矩阵 I_2 , 在 A 的下方放上单位矩阵 I_3 , 当 A 变成标准形时, 则 I_2 就变成 P, 而 I_3 就变成 Q.

$$\begin{bmatrix} \boldsymbol{A} & \boldsymbol{I_2} \\ \boldsymbol{I_3} & \boldsymbol{O} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ \frac{2}{1} & -2 & \frac{3}{1} & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow[c_3 + c_1]{} \xrightarrow[c_3 - 2c_1]{} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 2 & 4 & -1 & 0 & 1 \\ 1 & 1 & -2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

 \Rightarrow

$$P = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
. $Q = \begin{bmatrix} -3 & -2 & -7 \\ 0 & 0 & 1 \\ 2 & 1 & 4 \end{bmatrix}$.

则有

$$PAQ = [I_2, O],$$

于是

$$m{A}\{1\} = \left\{ m{Q} egin{bmatrix} 1 & 0 \\ 0 & 1 \\ x_1 & x_2 \end{bmatrix} m{P} \middle| \ \forall x_1, x_2 \in \mathbb{C}
ight\}. \quad \Box$$

今

$$P = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
. $Q = \begin{bmatrix} -3 & -2 & -7 \\ 0 & 0 & 1 \\ 2 & 1 & 4 \end{bmatrix}$.

则有

$$PAQ = [I_2, O],$$

于是

$$m{A}\{1\} = \left\{ egin{array}{ccc} m{Q} & 1 & 0 \\ 0 & 1 \\ x_1 & x_2 \end{array} \right] m{P} \mid orall x_1, x_2 \in \mathbb{C}
ight\}. \quad \Box$$

若 $x_1 = x_2 = 0$, 则

$$m{A}^{(1)} = m{Q} egin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} m{P} = egin{bmatrix} -3 & 2 \\ 0 & 0 \\ 2 & -1 \end{bmatrix}.$$

这只不过是其中的一个 {1}-逆.

Theorem 2.5

设
$$\mathbf{A} \in \mathbb{C}^{m \times n}$$
, $\mathbf{A}^{(1)} \in \mathbf{A}\{1\}$, 则

① $A\{1\} = \{A^{(1)} + U - A^{(1)}AUAA^{(1)} \mid U \in \mathbb{C}^{n \times m}$ 为任意矩阵 $\};$

Theorem 2.5

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{A}^{(1)} \in \mathbf{A}\{1\}$, 则

- ① $A\{1\} = \{A^{(1)} + U A^{(1)}AUAA^{(1)} \mid U \in \mathbb{C}^{n \times m}$ 为任意矩阵 $\};$
- ② $A\{1\} = \{A^{(1)} + V(I_m AA^{(1)}) + (I_n A^{(1)}A)U | U, V \in \mathbb{C}^{n \times m}$ 为任意矩阵}.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 16 / 111

Theorem 2.5

设 $\mathbf{A} \in \mathbb{C}^{m \times n}, \ \mathbf{A}^{(1)} \in \mathbf{A}\{1\}, \ 则$

- **③** $A\{1\} = \{A^{(1)} + U A^{(1)}AUAA^{(1)} \mid U \in \mathbb{C}^{n \times m}$ 为任意矩阵 $\};$
- ② $A\{1\} = \{A^{(1)} + V(I_m AA^{(1)}) + (I_n A^{(1)}A)U | U, V \in \mathbb{C}^{n \times m}$ 为任意矩阵 $\}.$

证: $\ddot{\mathbf{U}} = \mathbf{A}^{(1)} + \mathbf{U} - \mathbf{A}^{(1)} \mathbf{A} \mathbf{U} \mathbf{A} \mathbf{A}^{(1)},$

Theorem 2.5

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{A}^{(1)} \in \mathbf{A}\{1\}$, 则

- ① $A\{1\} = \{A^{(1)} + U A^{(1)}AUAA^{(1)} \mid U \in \mathbb{C}^{n \times m}$ 为任意矩阵 $\};$
- ② $A\{1\} = \{A^{(1)} + V(I_m AA^{(1)}) + (I_n A^{(1)}A)U | U, V \in \mathbb{C}^{n \times m}$ 为任意矩阵 $\}.$

证: 记
$$Y = A^{(1)} + U - A^{(1)}AUAA^{(1)}$$
,因

$$A YA = A (A^{(1)} + U - A^{(1)} A U A A^{(1)}) A$$

= $A A^{(1)} A + A U A - A A^{(1)} A U A A^{(1)} A$
= $A + A U A - A U A$
= A .

Theorem 2.5

读 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{A}^{(1)} \in \mathbf{A}\{1\}$, 则

- **①** $A\{1\} = \{A^{(1)} + U A^{(1)}AUAA^{(1)} \mid U \in \mathbb{C}^{n \times m} \text{ 为任意矩阵}\};$
- ② $A\{1\} = \{A^{(1)} + V(I_m AA^{(1)}) + (I_n A^{(1)}A)U | U, V \in \mathbb{C}^{n \times m}$ 为任意矩阵 $\}.$

证: 记
$$Y = A^{(1)} + U - A^{(1)}AUAA^{(1)}$$
, 因

$$A YA = A (A^{(1)} + U - A^{(1)} A U A A^{(1)}) A$$

= $A A^{(1)} A + A U A - A A^{(1)} A U A A^{(1)} A$
= $A + A U A - A U A$
= A ,

故 $Y \in A\{1\}$.

$$\overrightarrow{i} \overrightarrow{c} Z = A^{(1)} + V(\underline{I}_m - AA^{(1)}) + (\underline{I}_n - A^{(1)}A)U,$$

记
$$Z = A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U$$
, 因

$$(\mathbf{I}_m - \mathbf{A}\mathbf{A}^{(1)})\mathbf{A} = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O}, \tag{3}$$

$$\mathbf{A}(\mathbf{I}_n - \mathbf{A}^{(1)}\mathbf{A}) = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O},\tag{4}$$

记
$$Z = A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U$$
, 因

$$(\mathbf{I}_m - \mathbf{A}\mathbf{A}^{(1)})\mathbf{A} = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O}, \tag{3}$$

$$\mathbf{A}(\mathbf{I}_n - \mathbf{A}^{(1)}\mathbf{A}) = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O},\tag{4}$$

反之, 任取 $X \in A\{1\}$, 取

$$U = X - A^{(1)}, \tag{5}$$

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 17 / 111

记
$$Z = A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U$$
, 因

$$(\mathbf{I}_m - \mathbf{A}\mathbf{A}^{(1)})\mathbf{A} = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O}, \tag{3}$$

$$\mathbf{A}(\mathbf{I}_n - \mathbf{A}^{(1)}\mathbf{A}) = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O},\tag{4}$$

反之, 任取 $X \in A\{1\}$, 取

$$U = X - A^{(1)}, \tag{5}$$

则 $X = A^{(1)} + U - A^{(1)} A U A A^{(1)}$.

记
$$Z = A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U$$
, 因

$$(\mathbf{I}_m - \mathbf{A}\mathbf{A}^{(1)})\mathbf{A} = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O}, \tag{3}$$

$$\mathbf{A}(\mathbf{I}_n - \mathbf{A}^{(1)}\mathbf{A}) = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O},\tag{4}$$

反之, 任取 $X \in A\{1\}$, 取

$$U = X - A^{(1)}, \tag{5}$$

则 $X = A^{(1)} + U - A^{(1)}AUAA^{(1)}$. 取

$$V = X - A^{(1)}, \qquad U = XAA^{(1)}, \tag{6}$$

则
$$X = A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U$$
.

 黄正华 (武汉大学)
 第4章 矩阵的广义道
 December 15, 2014
 17 / 111

记
$$Z = A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U$$
, 因

$$(\mathbf{I}_m - \mathbf{A}\mathbf{A}^{(1)})\mathbf{A} = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O}, \tag{3}$$

$$\mathbf{A}(\mathbf{I}_n - \mathbf{A}^{(1)}\mathbf{A}) = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O},\tag{4}$$

反之, 任取 $X \in A\{1\}$, 取

$$U = X - A^{(1)}, \tag{5}$$

则 $X = A^{(1)} + U - A^{(1)}AUAA^{(1)}$. 取

$$V = X - A^{(1)}, \qquad U = XAA^{(1)}, \tag{6}$$

则
$$X = A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U$$
.
故 $A\{1\}$ 的任何元素都可以用表达式 $A^{(1)} + U - A^{(1)}AUAA^{(1)}$, $A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U$ 给出. 得证.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 17 / 11

Outline

- ① Moore-Penrose 广义逆矩阵
- 2 广义逆矩阵 A⁽¹⁾
 - 广义逆 A(1) 的定义和构造
 - 广义逆 A⁽¹⁾ 的性质
 - 广义逆 A⁽¹⁾ 应用于解线性方程组
- ③ 广义逆矩阵 A^(1,2)
- 4 广义逆矩阵 A^(1,3)
- 5 广义逆矩阵 A^(1,4)
- 6 M-P 广义逆矩阵

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\lambda \in \mathbb{C}$, 则有

- ② $\lambda^+ \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}, \ \sharp \ \forall \ \lambda^+ = \begin{cases} \lambda^{-1}, & \lambda \neq 0, \\ 0, & \lambda = 0. \end{cases}$
- $3 \operatorname{rank} A^{(1)} \geqslant \operatorname{rank} A.$
- **4** $AA^{(1)}$ 与 $A^{(1)}A$ 都是幂等阵,且满足 $\operatorname{rank}(AA^{(1)}) = \operatorname{rank}(A^{(1)}A) = \operatorname{rank}A$.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\lambda \in \mathbb{C}$, 则有

- ② $\lambda^+ \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}$, 其中 $\lambda^+ = \begin{cases} \lambda^{-1}, & \lambda \neq 0, \\ 0, & \lambda = 0. \end{cases}$
- 3 rank $A^{(1)} \geqslant \operatorname{rank} A$.
- $oldsymbol{A} A A^{(1)}$ 与 $A^{(1)} A$ 都是幂等阵,且满足 $\operatorname{rank} (A A^{(1)}) = \operatorname{rank} (A^{(1)} A) = \operatorname{rank} A$.

证: (1) 由 $AA^{(1)}A = A$, 有

$$\boldsymbol{A}^{\mathrm{H}} \left(\boldsymbol{A}^{(1)}\right)^{\mathrm{H}} \boldsymbol{A}^{\mathrm{H}} = \boldsymbol{A}^{\mathrm{H}},$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\lambda \in \mathbb{C}$, 则有

- ② $\lambda^+ \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}$, 其中 $\lambda^+ = \begin{cases} \lambda^{-1}, & \lambda \neq 0, \\ 0, & \lambda = 0. \end{cases}$
- 3 rank $A^{(1)} \geqslant \operatorname{rank} A$.
- **4** $AA^{(1)}$ 与 $A^{(1)}A$ 都是幂等阵,且满足 $\operatorname{rank}(AA^{(1)}) = \operatorname{rank}(A^{(1)}A) = \operatorname{rank}A$.

证: (1) 由 $AA^{(1)}A = A$, 有

$$A^{\mathrm{H}}(A^{(1)})^{\mathrm{H}}A^{\mathrm{H}}=A^{\mathrm{H}},$$

故
$$(\boldsymbol{A}^{(1)})^{\mathrm{H}} \in \boldsymbol{A}^{\mathrm{H}}\{1\}.$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\lambda \in \mathbb{C}$, 则有

- ② $\lambda^+ \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}$, 其中 $\lambda^+ = \begin{cases} \lambda^{-1}, & \lambda \neq 0, \\ 0, & \lambda = 0. \end{cases}$
- 3 rank $A^{(1)} \geqslant \operatorname{rank} A$.
- **4** $AA^{(1)}$ 与 $A^{(1)}A$ 都是幂等阵,且满足 $\operatorname{rank}(AA^{(1)}) = \operatorname{rank}(A^{(1)}A) = \operatorname{rank}A$.

证: (1) 由 $AA^{(1)}A = A$, 有

$$A^{\mathrm{H}} \left(A^{(1)}\right)^{\mathrm{H}} A^{\mathrm{H}} = A^{\mathrm{H}},$$

故 $(\boldsymbol{A}^{(1)})^{\mathrm{H}} \in \boldsymbol{A}^{\mathrm{H}}\{1\}.$

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A}$$

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \lambda \mathbf{A},$$

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \lambda \mathbf{A},$$

所以 $\lambda^{-1}\boldsymbol{A}^{(1)} \in (\lambda \boldsymbol{A})\{1\}.$

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \lambda \mathbf{A},$$

所以 $\lambda^{-1}\boldsymbol{A}^{(1)} \in (\lambda \boldsymbol{A})\{1\}.$

当
$$\lambda = 0$$
 时, 因 $(0\mathbf{A})(0\mathbf{A}^{(1)})(0\mathbf{A}) = 0\mathbf{A}$, 故 $0\mathbf{A}^{(1)} \in (0\mathbf{A})\{1\}$.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 20 / 11:

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \lambda \mathbf{A},$$

所以 $\lambda^{-1}\boldsymbol{A}^{(1)} \in (\lambda \boldsymbol{A})\{1\}.$

当 $\lambda = 0$ 时, 因 $(0\mathbf{A})(0\mathbf{A}^{(1)})(0\mathbf{A}) = 0\mathbf{A}$, 故 $0\mathbf{A}^{(1)} \in (0\mathbf{A})\{1\}$.

综合得 $\lambda^+ \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}.$

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \lambda \mathbf{A},$$

所以 $\lambda^{-1}\boldsymbol{A}^{(1)} \in (\lambda \boldsymbol{A})\{1\}.$

当 $\lambda = 0$ 时, 因 $(0\mathbf{A})(0\mathbf{A}^{(1)})(0\mathbf{A}) = 0\mathbf{A}$, 故 $0\mathbf{A}^{(1)} \in (0\mathbf{A})\{1\}$.

综合得 $\lambda^+ \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}.$

对照: $(\lambda \mathbf{A})^{-1} = \lambda^{-1} \mathbf{A}^{-1}, \lambda \neq 0.$

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \lambda \mathbf{A},$$

所以 $\lambda^{-1}\boldsymbol{A}^{(1)} \in (\lambda \boldsymbol{A})\{1\}.$

当 $\lambda = 0$ 时, 因 $(0\mathbf{A})(0\mathbf{A}^{(1)})(0\mathbf{A}) = 0\mathbf{A}$, 故 $0\mathbf{A}^{(1)} \in (0\mathbf{A})\{1\}$.

综合得 $\lambda^+ \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}.$

对照: $(\lambda \mathbf{A})^{-1} = \lambda^{-1} \mathbf{A}^{-1}, \lambda \neq 0.$

 $(3) 由 \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{A}, 得$

 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A})$

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \lambda \mathbf{A},$$

所以 $\lambda^{-1}\boldsymbol{A}^{(1)} \in (\lambda \boldsymbol{A})\{1\}.$

当 $\lambda = 0$ 时,因 $(0\mathbf{A})(0\mathbf{A}^{(1)})(0\mathbf{A}) = 0\mathbf{A}$,故 $0\mathbf{A}^{(1)} \in (0\mathbf{A})\{1\}$.

综合得 $\lambda^+ \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}.$

对照: $(\lambda \mathbf{A})^{-1} = \lambda^{-1} \mathbf{A}^{-1}, \lambda \neq 0.$

 $(3) 由 \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{A}, 得$

 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A})$

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \lambda \mathbf{A},$$

所以 $\lambda^{-1}\boldsymbol{A}^{(1)} \in (\lambda \boldsymbol{A})\{1\}.$

当 $\lambda = 0$ 时, 因 $(0\mathbf{A})(0\mathbf{A}^{(1)})(0\mathbf{A}) = 0\mathbf{A}$, 故 $0\mathbf{A}^{(1)} \in (0\mathbf{A})\{1\}$. 综合得 $\lambda^+ \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}$.

对照: $(\lambda \mathbf{A})^{-1} = \lambda^{-1} \mathbf{A}^{-1}, \lambda \neq 0.$

 $\lambda_{\text{JRR}} : (\lambda \mathbf{A}) = \lambda \cdot \mathbf{A} \cdot \lambda$

(3) 由 $AA^{(1)}A = A$, 得

 $\operatorname{rank} \mathbf{A} = \operatorname{rank}(\mathbf{A}\mathbf{A}^{(1)}\mathbf{A}) \leqslant \operatorname{rank}(\mathbf{A}^{(1)}\mathbf{A}) \leqslant \operatorname{rank}\mathbf{A}^{(1)}.$

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 20 / 111

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \lambda \mathbf{A},$$

所以 $\lambda^{-1} \mathbf{A}^{(1)} \in (\lambda \mathbf{A}) \{1\}.$

当 $\lambda = 0$ 时, 因 $(0\mathbf{A})(0\mathbf{A}^{(1)})(0\mathbf{A}) = 0\mathbf{A}$, 故 $0\mathbf{A}^{(1)} \in (0\mathbf{A})\{1\}$. 综合得 $\lambda^+ \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}$.

对照: $(\lambda \mathbf{A})^{-1} = \lambda^{-1} \mathbf{A}^{-1}, \lambda \neq 0.$

(3) 由 $AA^{(1)}A = A$, 得

 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank}\boldsymbol{A}^{(1)}.$

即证 $\operatorname{rank} \boldsymbol{A}^{(1)} \geqslant \operatorname{rank} \boldsymbol{A}$.

$$\left(\boldsymbol{A}\boldsymbol{A}^{(1)}\right)^2 = \boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A}\boldsymbol{A}^{(1)}$$

$$(AA^{(1)})^2 = AA^{(1)}AA^{(1)} = AA^{(1)},$$

$$(AA^{(1)})^2 = AA^{(1)}AA^{(1)} = AA^{(1)},$$

从而 $AA^{(1)}$ 是幂等阵,

21 / 111

(4) 因

$$(\mathbf{A}\mathbf{A}^{(1)})^2 = \mathbf{A}\mathbf{A}^{(1)}\mathbf{A}\mathbf{A}^{(1)} = \mathbf{A}\mathbf{A}^{(1)},$$

从而 $AA^{(1)}$ 是幂等阵, 同理得 $A^{(1)}A$ 是幂等阵.

$$(\boldsymbol{A}\boldsymbol{A}^{(1)})^2 = \boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A}\boldsymbol{A}^{(1)} = \boldsymbol{A}\boldsymbol{A}^{(1)},$$

由

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A})$$

$$\left(\boldsymbol{A}\boldsymbol{A}^{(1)}\right)^2 = \boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A}\boldsymbol{A}^{(1)} = \boldsymbol{A}\boldsymbol{A}^{(1)},$$

由

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank} \boldsymbol{A},$$

$$(AA^{(1)})^2 = AA^{(1)}AA^{(1)} = AA^{(1)},$$

由

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank} (\boldsymbol{A} \boldsymbol{A}^{(1)} \boldsymbol{A}) \leqslant \operatorname{rank} (\boldsymbol{A}^{(1)} \boldsymbol{A}) \leqslant \operatorname{rank} \boldsymbol{A},$$

得 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A}).$

$$(AA^{(1)})^2 = AA^{(1)}AA^{(1)} = AA^{(1)},$$

由

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank} \boldsymbol{A},$$

得 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A})$. 同理得 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)})$.

$$(AA^{(1)})^2 = AA^{(1)}AA^{(1)} = AA^{(1)},$$

由

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank} \boldsymbol{A},$$

得 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A})$. 同理得 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)})$. 即证 $\operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}) = \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{A}$.

设 $A \in \mathbb{C}^{m \times n}_r$, 则

 $\mathbf{A}^{(1)}\mathbf{A} = \mathbf{I}_n$ 当且仅当 r = n;

设 $A \in \mathbb{C}^{m \times n}_r$, 则

- **4** $A^{(1)}A = I_n$ 当且仅当 r = n;
- ② $AA^{(1)} = I_m$ 当且仅当 r = m.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}_{\mathbf{r}}$, 则

- **③** $\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$ 当且仅当 r = n;
- ② $AA^{(1)} = I_m$ 当且仅当 r = m.

或者表达为

- \bullet $A^{(1)}$ 是 A 的左逆 \Leftrightarrow A 列满秩;
- ② $A^{(1)}$ 是 A 的右逆 \Leftrightarrow A 行满秩.

证: (1) 若 $\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$,

证: (1) 若 $\mathbf{A}^{(1)}\mathbf{A} = \mathbf{I}_n$, 则 rank $(\mathbf{A}^{(1)}\mathbf{A}) = \operatorname{rank} \mathbf{I}_n = n$.

证: (1) 若 $\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$, 则 rank $(\boldsymbol{A}^{(1)}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{I}_n = n$. 则

 $r = \operatorname{rank} \mathbf{A}$

证: (1) 若
$$\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$$
, 则 $\operatorname{rank}\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{I}_n = n$. 则

 $r = \operatorname{rank} \boldsymbol{A} = \operatorname{rank} \left(\boldsymbol{A}^{(1)} \boldsymbol{A} \right)$

证: (1) 若
$$\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$$
, 则 rank $(\boldsymbol{A}^{(1)}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{I}_n = n$. 则

$$r = \operatorname{rank} \mathbf{A} = \operatorname{rank} (\mathbf{A}^{(1)} \mathbf{A}) = n,$$

$$\mathbb{P} r = n$$
.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 23 / 111

证: (1) 若
$$\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$$
, 则 rank $\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{I}_n = n$. 则

$$r = \operatorname{rank} \mathbf{A} = \operatorname{rank} (\mathbf{A}^{(1)} \mathbf{A}) = n,$$

即
$$r=n$$
.

反之, 若
$$r = n$$
,

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 23 / 111

证: (1) 若
$$\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$$
, 则 $\operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{I}_n = n$. 则

$$r = \operatorname{rank} \mathbf{A} = \operatorname{rank} (\mathbf{A}^{(1)} \mathbf{A}) = n,$$

 $\mathbb{P} r = n$.

反之, 若
$$r = n$$
, 则

$$\operatorname{rank}\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{A} = n,$$

 黄正华 (武汉大学)
 第4章 矩阵的广义逆
 December 15, 2014
 23 / 11

证: (1) 若 $\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$, 则 $\operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{I}_n = n$. 则

$$r = \operatorname{rank} \mathbf{A} = \operatorname{rank} (\mathbf{A}^{(1)} \mathbf{A}) = n,$$

 $\mathbb{P} r = n.$

反之, 若 r = n, 则

$$\operatorname{rank}\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{A} = n,$$

而 $\mathbf{A}^{(1)}\mathbf{A}$ 为 n 阶方阵,

证: (1) 若 $\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$, 则 $\operatorname{rank}\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{I}_n = n$. 则

$$r = \operatorname{rank} \mathbf{A} = \operatorname{rank} (\mathbf{A}^{(1)} \mathbf{A}) = n,$$

 $\mathbb{P} r = n.$

反之, 若 r = n, 则

$$\operatorname{rank}\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{A} = n,$$

而 $\boldsymbol{A}^{(1)}\boldsymbol{A}$ 为 n 阶方阵, 故 $(\boldsymbol{A}^{(1)}\boldsymbol{A})^{-1}$ 存在.

证: (1) 若 $\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$, 则 $\operatorname{rank}\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{I}_n = n$. 则

$$r = \operatorname{rank} \mathbf{A} = \operatorname{rank} (\mathbf{A}^{(1)} \mathbf{A}) = n,$$

 $\mathbb{P} r = n$.

反之, 若 r = n, 则

$$\operatorname{rank}\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{A} = n,$$

而 $A^{(1)}A$ 为 n 阶方阵, 故 $(A^{(1)}A)^{-1}$ 存在. 所以

$$A^{(1)}A = (A^{(1)}A)^{-1}(A^{(1)}A)(A^{(1)}A)$$

$$= (A^{(1)}A)^{-1}(A^{(1)}A) \qquad (A^{(1)}A)$$

$$= I_n.$$

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014

证: (1) 若 $\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$, 则 $\operatorname{rank}\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{I}_n = n$. 则

$$r = \operatorname{rank} \mathbf{A} = \operatorname{rank} (\mathbf{A}^{(1)} \mathbf{A}) = n,$$

 $\mathbb{P} r = n$.

反之, 若 r = n, 则

$$\operatorname{rank}\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{A} = n,$$

而 $\boldsymbol{A}^{(1)}\boldsymbol{A}$ 为 n 阶方阵, 故 $(\boldsymbol{A}^{(1)}\boldsymbol{A})^{-1}$ 存在. 所以

$$A^{(1)}A = (A^{(1)}A)^{-1}(A^{(1)}A)(A^{(1)}A)$$

= $(A^{(1)}A)^{-1}(A^{(1)}A)$ ($A^{(1)}A$ 为幂等阵)
= I_n .

同理可证 (2) 成立.

 黄正华 (武汉大学)
 第4章 矩阵的广义逆
 December 15, 2014
 23 /

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

- **0** $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A});$
- **2** $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A});$
- $R((\boldsymbol{A}^{(1)}\boldsymbol{A})^{\mathrm{H}}) = R(\boldsymbol{A}^{\mathrm{H}}).$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

- **2** $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A});$
- $R((\boldsymbol{A}^{(1)}\boldsymbol{A})^{\mathrm{H}}) = R(\boldsymbol{A}^{\mathrm{H}}).$

证: (1) 设 $\mathbf{u} \in R(\mathbf{A}\mathbf{A}^{(1)})$, 则存在 $\mathbf{x} \in \mathbb{C}^m$, 使得

$$\boldsymbol{u} = \boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{x}.$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

- **2** $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A});$

证: (1) 设 $\mathbf{u} \in R(\mathbf{A}\mathbf{A}^{(1)})$, 则存在 $\mathbf{x} \in \mathbb{C}^m$, 使得

$$u = AA^{(1)}x$$

记 $z = A^{(1)}x$, 则 u = Az, 因此 $u \in R(A)$,

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

- **2** $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A});$
- $R((\boldsymbol{A}^{(1)}\boldsymbol{A})^{\mathrm{H}}) = R(\boldsymbol{A}^{\mathrm{H}}).$

证: (1) 设 $\mathbf{u} \in R(\mathbf{A}\mathbf{A}^{(1)})$, 则存在 $\mathbf{x} \in \mathbb{C}^m$, 使得

$$\boldsymbol{u} = \boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{x}.$$

记 $z = A^{(1)}x$, 则 u = Az, 因此 $u \in R(A)$, 从而

$$R(\mathbf{A}\mathbf{A}^{(1)}) \subseteq R(\mathbf{A}).$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

- **2** $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A});$

证: (1) 设 $\mathbf{u} \in R(\mathbf{A}\mathbf{A}^{(1)})$, 则存在 $\mathbf{x} \in \mathbb{C}^m$, 使得

$$u = AA^{(1)}x$$

记 $z = A^{(1)}x$, 则 u = Az, 因此 $u \in R(A)$, 从而

$$R(\mathbf{A}\mathbf{A}^{(1)}) \subseteq R(\mathbf{A}).$$

 $\mathbb{X} \operatorname{rank} (\mathbf{A} \mathbf{A}^{(1)}) = \operatorname{rank} \mathbf{A},$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

- **2** $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A});$

证: (1) 设 $\mathbf{u} \in R(\mathbf{A}\mathbf{A}^{(1)})$, 则存在 $\mathbf{x} \in \mathbb{C}^m$, 使得

$$\boldsymbol{u} = \boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{x}.$$

记 $z = A^{(1)}x$, 则 u = Az, 因此 $u \in R(A)$, 从而

$$R(\mathbf{A}\mathbf{A}^{(1)}) \subseteq R(\mathbf{A}).$$

又 $\operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}) = \operatorname{rank}\boldsymbol{A}$,故

$$\dim R(\mathbf{A}\mathbf{A}^{(1)}) = \dim R(\mathbf{A}),$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

- **2** $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A});$
- $R((\boldsymbol{A}^{(1)}\boldsymbol{A})^{\mathrm{H}}) = R(\boldsymbol{A}^{\mathrm{H}}).$

证: (1) 设 $\mathbf{u} \in R(\mathbf{A}\mathbf{A}^{(1)})$, 则存在 $\mathbf{x} \in \mathbb{C}^m$, 使得

$$\boldsymbol{u} = \boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{x}.$$

记 $z = A^{(1)}x$, 则 u = Az, 因此 $u \in R(A)$, 从而

$$R(\mathbf{A}\mathbf{A}^{(1)}) \subseteq R(\mathbf{A}).$$

又 $\operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}) = \operatorname{rank}\boldsymbol{A}$,故

$$\dim R(\mathbf{A}\mathbf{A}^{(1)}) = \dim R(\mathbf{A}),$$

因此 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A}).$

(2) 设 $\boldsymbol{y} \in N(\boldsymbol{A})$, 则 $\boldsymbol{A}\boldsymbol{y} = \boldsymbol{0}$,

(2) 设 $y \in N(A)$, 则 Ay = 0, 故 $A^{(1)}Ay = 0$,

(2) 设 $y \in N(A)$, 则 Ay = 0, 故 $A^{(1)}Ay = 0$, 从而 $y \in N(AA^{(1)})$, 因此 $N(A) \subseteq N(A^{(1)}A).$

$$N(\mathbf{A}) \subseteq N(\mathbf{A}^{(1)}\mathbf{A}).$$

任取 $\boldsymbol{x} \in N(\boldsymbol{A}^{(1)}\boldsymbol{A})$, 则 $\boldsymbol{A}^{(1)}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$,

$$N(\mathbf{A}) \subseteq N(\mathbf{A}^{(1)}\mathbf{A}).$$

任取 $x \in N(A^{(1)}A)$,则 $A^{(1)}Ax = 0$,从而 $A^{(1)}Ax = 0$,即 Ax = 0,

$$N(\mathbf{A}) \subseteq N(\mathbf{A}^{(1)}\mathbf{A}).$$

任取 $x \in N(A^{(1)}A)$,则 $A^{(1)}Ax = 0$,从而 $AA^{(1)}Ax = 0$,即 Ax = 0,因

$$N(\boldsymbol{A}^{(1)}\boldsymbol{A}) \subseteq N(\boldsymbol{A}).$$

此

$$N(\mathbf{A}) \subseteq N(\mathbf{A}^{(1)}\mathbf{A}).$$

任取 $x \in N(\mathbf{A}^{(1)}\mathbf{A})$,则 $\mathbf{A}^{(1)}\mathbf{A}x = \mathbf{0}$,从而 $\mathbf{A}\mathbf{A}^{(1)}\mathbf{A}x = \mathbf{0}$,即 $\mathbf{A}x = \mathbf{0}$,因

$$N(\boldsymbol{A}^{(1)}\boldsymbol{A}) \subseteq N(\boldsymbol{A}).$$

综上得 $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A})$.

此

$$N(\mathbf{A}) \subseteq N(\mathbf{A}^{(1)}\mathbf{A}).$$

任取 $x \in N(A^{(1)}A)$,则 $A^{(1)}Ax = 0$,从而 $AA^{(1)}Ax = 0$,即 Ax = 0,因

$$N(\mathbf{A}^{(1)}\mathbf{A}) \subseteq N(\mathbf{A}).$$

综上得 $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A}).$

此

☞ 事实上, 易知以下的一般形式成立:

$$R(\mathbf{AB}) \subseteq R(\mathbf{A}),$$
 (7)

$$N(\mathbf{A}) \subseteq R(\mathbf{B}\mathbf{A}). \tag{8}$$

黄正华 (武汉大学)

(3) 用 $R(\mathbf{AB}) \subseteq R(\mathbf{A})$ 说明结论成立.

(3) 用 $R(\mathbf{A}\mathbf{B}) \subseteq R(\mathbf{A})$ 说明结论成立. 由 $(\mathbf{A}\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}} = \mathbf{A}^{\mathrm{H}}$, 即

$$\left(\boldsymbol{A^{(1)}A}\right)^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}}=\boldsymbol{A}^{\mathrm{H}}.$$

(3) 用 $R(\mathbf{A}\mathbf{B}) \subseteq R(\mathbf{A})$ 说明结论成立. 由 $(\mathbf{A}\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}} = \mathbf{A}^{\mathrm{H}}$, 即

$$\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right)^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}}=\boldsymbol{A}^{\mathrm{H}}.$$

故

$$R(\mathbf{A}^{\mathrm{H}}) = R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}}\mathbf{A}^{\mathrm{H}}) \subseteq R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}})$$
$$= R(\mathbf{A}^{\mathrm{H}}(\mathbf{A}^{(1)})^{\mathrm{H}}) \subseteq R(\mathbf{A}^{\mathrm{H}}).$$

(3) 用 $R(\mathbf{A}\mathbf{B}) \subseteq R(\mathbf{A})$ 说明结论成立. 由 $(\mathbf{A}\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}} = \mathbf{A}^{\mathrm{H}}$, 即

$$\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right)^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}}=\boldsymbol{A}^{\mathrm{H}}.$$

故

$$R(\mathbf{A}^{\mathrm{H}}) = R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}}\mathbf{A}^{\mathrm{H}}) \subseteq R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}})$$
$$= R(\mathbf{A}^{\mathrm{H}}(\mathbf{A}^{(1)})^{\mathrm{H}}) \subseteq R(\mathbf{A}^{\mathrm{H}}).$$

得证
$$R((\boldsymbol{A}^{(1)}\boldsymbol{A})^{\mathrm{H}}) = R(\boldsymbol{A}^{\mathrm{H}}).$$

黄正华 (武汉大学)

Outline

- ① Moore-Penrose 广义逆矩阵
- ② 广义逆矩阵 **A**⁽¹⁾
 - 广义逆 A(1) 的定义和构造
 - 广义逆 $A^{(1)}$ 的性质
 - 广义逆 A⁽¹⁾ 应用于解线性方程组
- ③ 广义逆矩阵 A^(1,2)
- 4 广义逆矩阵 A^(1,3)
- 5 广义逆矩阵 A^(1,4)
- 6 M-P 广义逆矩阵

在线性代数里, 若线性方程组 Ax = b 有解, 则称此方程组为相容方程组;

矩阵 G 是否为 $A^{(1)}$, 与 Gb 是否为相容性方程 Ax = b 的解密切相关, 这就是下面的定理.

矩阵 G 是否为 $A^{(1)}$, 与 Gb 是否为相容性方程 Ax = b 的解密切相关, 这就是下面的定理.

Theorem 2.9

设 $A \in \mathbb{C}^{m \times n}$, 则对任何 $b \in R(A)$, x = Gb 都是相容性方程 Ax = b 的解的充分必要条件是 $G \in A\{1\}$.

矩阵 G 是否为 $A^{(1)}$, 与 Gb 是否为相容性方程 Ax = b 的解密切相关, 这就是下面的定理.

Theorem 2.9

设 $A \in \mathbb{C}^{m \times n}$, 则对任何 $b \in R(A)$, x = Gb 都是相容性方程 Ax = b 的解的充分必要条件是 $G \in A\{1\}$.

证: 充分性. 设 $G \in A\{1\}$,

矩阵 G 是否为 $A^{(1)}$, 与 Gb 是否为相容性方程 Ax = b 的解密切相关, 这就是下面的定理.

Theorem 2.9

设 $A \in \mathbb{C}^{m \times n}$, 则对任何 $b \in R(A)$, x = Gb 都是相容性方程 Ax = b 的解的充分必要条件是 $G \in A\{1\}$.

证: 充分性. 设 $G \in A\{1\}$, 则 AGA = A.

矩阵 G 是否为 $A^{(1)}$, 与 Gb 是否为相容性方程 Ax = b 的解密切相关, 这就是下面的定理.

Theorem 2.9

设 $A \in \mathbb{C}^{m \times n}$, 则对任何 $b \in R(A)$, x = Gb 都是相容性方程 Ax = b 的解的充分必要条件是 $G \in A\{1\}$.

证: 充分性. 设 $G \in A\{1\}$, 则 AGA = A. 对任何 $b \in R(A)$, 必存在 $y \in \mathbb{C}^n$, 使得

Ay = b.

矩阵 G 是否为 $A^{(1)}$, 与 Gb 是否为相容性方程 Ax = b 的解密切相关, 这就是下面的定理.

Theorem 2.9

设 $A \in \mathbb{C}^{m \times n}$, 则对任何 $b \in R(A)$, x = Gb 都是相容性方程 Ax = b 的解的充分必要条件是 $G \in A\{1\}$.

证: 充分性. 设 $G \in A\{1\}$, 则 AGA = A. 对任何 $b \in R(A)$, 必存在 $y \in \mathbb{C}^n$, 使得

$$Ay = b$$
.

则

$$AGb = AGAy$$

矩阵 G 是否为 $A^{(1)}$, 与 Gb 是否为相容性方程 Ax = b 的解密切相关, 这就是下面的定理.

Theorem 2.9

设 $A \in \mathbb{C}^{m \times n}$, 则对任何 $b \in R(A)$, x = Gb 都是相容性方程 Ax = b 的解的充分必要条件是 $G \in A\{1\}$.

证: 充分性. 设 $G \in A\{1\}$, 则 AGA = A. 对任何 $b \in R(A)$, 必存在 $y \in \mathbb{C}^n$, 使得

$$Ay = b$$
.

则

$$AGb = AGAy = Ay$$

矩阵 G 是否为 $A^{(1)}$, 与 Gb 是否为相容性方程 Ax = b 的解密切相关, 这就是下面的定理.

Theorem 2.9

设 $A \in \mathbb{C}^{m \times n}$, 则对任何 $b \in R(A)$, x = Gb 都是相容性方程 Ax = b 的解的充分必要条件是 $G \in A\{1\}$.

证: 充分性. 设 $G \in A\{1\}$, 则 AGA = A. 对任何 $b \in R(A)$, 必存在 $y \in \mathbb{C}^n$, 使得

$$Ay = b$$
.

则

$$A Gb = A GAy = Ay = b,$$

矩阵 G 是否为 $A^{(1)}$, 与 Gb 是否为相容性方程 Ax = b 的解密切相关, 这就是下面的定理.

Theorem 2.9

设 $A \in \mathbb{C}^{m \times n}$, 则对任何 $b \in R(A)$, x = Gb 都是相容性方程 Ax = b 的解的充分必要条件是 $G \in A\{1\}$.

证: 充分性. 设 $G \in A\{1\}$, 则 AGA = A. 对任何 $b \in R(A)$, 必存在 $y \in \mathbb{C}^n$, 使得

$$Ay = b$$
.

则

$$AGb = AGAy = Ay = b,$$

故 x = Gb 是方程 Ax = b 的解.

必要性. 记 $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]$, 则 $\mathbf{a}_i \in R(\mathbf{A})$, $i = 1, 2, \cdots, n$.

必要性. 记 $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]$, 则 $\mathbf{a}_i \in R(\mathbf{A})$, $i = 1, 2, \cdots, n$. 已知对任何 $\mathbf{b} \in R(\mathbf{A})$, $\mathbf{x} = \mathbf{G}\mathbf{b}$ 都是相容性方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解,

必要性. 记 $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]$, 则 $\mathbf{a}_i \in R(\mathbf{A})$, $i = 1, 2, \cdots, n$. 已知对任何 $\mathbf{b} \in R(\mathbf{A})$, $\mathbf{x} = \mathbf{G}\mathbf{b}$ 都是相容性方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解, 故对 $\mathbf{a}_i \in R(\mathbf{A})$, $\mathbf{x} = \mathbf{G}\mathbf{a}_i$ 也是方程 $\mathbf{A}\mathbf{x} = \mathbf{a}_i$ 的解,

必要性. 记 $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]$, 则 $\mathbf{a}_i \in R(\mathbf{A})$, $i = 1, 2, \cdots, n$. 已知对任何 $\mathbf{b} \in R(\mathbf{A})$, $\mathbf{x} = \mathbf{G}\mathbf{b}$ 都是相容性方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解, 故对 $\mathbf{a}_i \in R(\mathbf{A})$, $\mathbf{x} = \mathbf{G}\mathbf{a}_i$ 也是方程 $\mathbf{A}\mathbf{x} = \mathbf{a}_i$ 的解, 即

$$\mathbf{A}\mathbf{G}\mathbf{a}_i = \mathbf{a}_i, \qquad i = 1, 2, \cdots, n.$$

必要性. 记 $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]$, 则 $\mathbf{a}_i \in R(\mathbf{A})$, $i = 1, 2, \cdots, n$. 已知对任何 $\mathbf{b} \in R(\mathbf{A})$, $\mathbf{x} = \mathbf{G}\mathbf{b}$ 都是相容性方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解, 故对 $\mathbf{a}_i \in R(\mathbf{A})$, $\mathbf{x} = \mathbf{G}\mathbf{a}_i$ 也是方程 $\mathbf{A}\mathbf{x} = \mathbf{a}_i$ 的解, 即

$$\mathbf{A}\mathbf{G}\mathbf{a}_i = \mathbf{a}_i, \qquad i = 1, 2, \cdots, n.$$

从而

$$AG[a_1, a_2, \cdots, a_n] = [a_1, a_2, \cdots, a_n].$$

必要性. 记 $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]$, 则 $\mathbf{a}_i \in R(\mathbf{A})$, $i = 1, 2, \cdots, n$. 已知对任何 $\mathbf{b} \in R(\mathbf{A})$, $\mathbf{x} = \mathbf{G}\mathbf{b}$ 都是相容性方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解, 故对 $\mathbf{a}_i \in R(\mathbf{A})$, $\mathbf{x} = \mathbf{G}\mathbf{a}_i$ 也是方程 $\mathbf{A}\mathbf{x} = \mathbf{a}_i$ 的解, 即

$$\mathbf{A}\mathbf{G}\mathbf{a}_i = \mathbf{a}_i, \qquad i = 1, 2, \cdots, n.$$

从而

$$AG[a_1, a_2, \cdots, a_n] = [a_1, a_2, \cdots, a_n].$$

即
$$\mathbf{AGA} = \mathbf{A}$$
, 所以 $\mathbf{G} \in \mathbf{A}\{1\}$.

非齐次线性方程组 Ax = b 有解的充分必要条件是

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b}=\mathbf{b}.$$

非齐次线性方程组 Ax = b 有解的充分必要条件是

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{b}.$$

证: 设 Ax = b 有解,则存在 $y \in \mathbb{C}^n$,使得 Ay = b.

非齐次线性方程组 Ax = b 有解的充分必要条件是

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b}=\mathbf{b}.$$

证: 设 Ax = b 有解, 则存在 $y \in \mathbb{C}^n$, 使得 Ay = b. 则

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{A}\mathbf{A}^{(1)}\mathbf{A}\mathbf{y}$$

非齐次线性方程组 Ax = b 有解的充分必要条件是

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{b}.$$

证: 设 Ax = b 有解, 则存在 $y \in \mathbb{C}^n$, 使得 Ay = b. 则

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{A}\mathbf{A}^{(1)}\mathbf{A}\mathbf{y} = \mathbf{A}\mathbf{y}$$

非齐次线性方程组 Ax = b 有解的充分必要条件是

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{b}.$$

证: 设 Ax = b 有解, 则存在 $y \in \mathbb{C}^n$, 使得 Ay = b. 则

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{A}\mathbf{A}^{(1)}\mathbf{A}\mathbf{y} = \mathbf{A}\mathbf{y} = \mathbf{b}.$$

非齐次线性方程组 Ax = b 有解的充分必要条件是

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{b}.$$

证: 设 Ax = b 有解,则存在 $y \in \mathbb{C}^n$, 使得 Ay = b.则

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{A}\mathbf{A}^{(1)}\mathbf{A}\mathbf{y} = \mathbf{A}\mathbf{y} = \mathbf{b}.$$

反之, 设 $\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{b}$,

非齐次线性方程组 Ax = b 有解的充分必要条件是

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{b}.$$

证: 设 Ax = b 有解, 则存在 $y \in \mathbb{C}^n$, 使得 Ay = b. 则

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{A}\mathbf{A}^{(1)}\mathbf{A}\mathbf{y} = \mathbf{A}\mathbf{y} = \mathbf{b}.$$

反之, 设 $AA^{(1)}b = b$, 则 $y = A^{(1)}b$ 为方程组 Ax = b 的解.

非齐次线性方程组 Ax = b 有解的充分必要条件是

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{b}.$$

证: 设 Ax = b 有解, 则存在 $y \in \mathbb{C}^n$, 使得 Ay = b. 则

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{A}\mathbf{A}^{(1)}\mathbf{A}\mathbf{y} = \mathbf{A}\mathbf{y} = \mathbf{b}.$$

反之, 设
$$AA^{(1)}b = b$$
, 则 $y = A^{(1)}b$ 为方程组 $Ax = b$ 的解.

© 直观的解释是: 注意到 $AA^{(1)}$ 为投影算子, 故

$$AA^{(1)}b = b \Leftrightarrow b \in R(AA^{(1)})$$

 $\Leftrightarrow b \in R(A)$ (因 $R(AA^{(1)}) = R(A)$)
 $\Leftrightarrow Ax = b$ 有解.

黄正华 (武汉大学)

n 元齐次线性方程组 Ax=0 的通解为

$$\boldsymbol{x} = (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},\tag{9}$$

其中 y 为 \mathbb{C}^n 中的任意向量, $\mathbf{A}^{(1)}$ 为 \mathbf{A} 的任意给定的一个 $\{1\}$ - 逆.

n 元齐次线性方程组 Ax=0 的通解为

$$\boldsymbol{x} = (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},\tag{9}$$

其中 y 为 \mathbb{C}^n 中的任意向量, $\mathbf{A}^{(1)}$ 为 \mathbf{A} 的任意给定的一个 $\{1\}$ - 逆.

证:将 (9)式代入方程组 Ax = 0,

n 元齐次线性方程组 Ax=0 的通解为

$$\boldsymbol{x} = (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},\tag{9}$$

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

证: 将 (9) 式代入方程组 Ax = 0, 得

$$\boldsymbol{A}(\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y}$$

n 元齐次线性方程组 Ax=0 的通解为

$$\boldsymbol{x} = (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},\tag{9}$$

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

证: 将 (9) 式代入方程组 Ax = 0, 得

$$A(I_n - A^{(1)}A)y = (A - AA^{(1)}A)y = (A - A)y$$

n 元齐次线性方程组 Ax=0 的通解为

$$\boldsymbol{x} = (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},\tag{9}$$

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

证: 将 (9) 式代入方程组 Ax = 0, 得

$$A(I_n - A^{(1)}A)y = (A - AA^{(1)}A)y = (A - A)y = 0,$$

故 (9) 是 Ax = 0 的解.

n 元齐次线性方程组 Ax=0 的通解为

$$\boldsymbol{x} = (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},\tag{9}$$

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

证: 将 (9) 式代入方程组 Ax = 0, 得

$$A(I_n - A^{(1)}A)y = (A - AA^{(1)}A)y = (A - A)y = 0,$$

故 (9) 是 Ax = 0 的解.

反之, 设 η 是 Ax = 0 的一个解,

n 元齐次线性方程组 Ax=0 的通解为

$$\boldsymbol{x} = (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},\tag{9}$$

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

证: 将 (9) 式代入方程组 Ax = 0, 得

$$A(I_n - A^{(1)}A)y = (A - AA^{(1)}A)y = (A - A)y = 0,$$

故 (9) 是 Ax = 0 的解.

反之, 设 η 是 Ax = 0 的一个解, 则

$$(\boldsymbol{I}_n - \boldsymbol{A}^{(1)} \boldsymbol{A}) \boldsymbol{\eta} = \boldsymbol{\eta} - \boldsymbol{A}^{(1)} \boldsymbol{A} \boldsymbol{\eta} = \boldsymbol{\eta},$$

n 元齐次线性方程组 Ax=0 的通解为

$$\boldsymbol{x} = (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},\tag{9}$$

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

证: 将 (9) 式代入方程组 Ax = 0, 得

$$A(I_n - A^{(1)}A)y = (A - AA^{(1)}A)y = (A - A)y = 0,$$

故 (9) 是 Ax = 0 的解.

反之, 设 η 是 Ax = 0 的一个解, 则

$$(\boldsymbol{I}_n - \boldsymbol{A}^{(1)} \boldsymbol{A}) \boldsymbol{\eta} = \boldsymbol{\eta} - \boldsymbol{A}^{(1)} \boldsymbol{A} \boldsymbol{\eta} = \boldsymbol{\eta},$$

故 (9) 是 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的通解.

方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的通解 $\mathbf{x} = (\mathbf{I}_n - \mathbf{A}^{(1)}\mathbf{A})\mathbf{y}$ 的直观解释:

方程组 Ax = 0 的通解 $x = (I_n - A^{(1)}A)y$ 的直观解释: 因 $A^{(1)}A$ 是幂等矩阵, 故

$$N(\boldsymbol{A}^{(1)}\boldsymbol{A}) = R(\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A}).$$

方程组 Ax = 0 的通解 $x = (I_n - A^{(1)}A)y$ 的直观解释: 因 $A^{(1)}A$ 是幂等矩阵, 故

$$N(\boldsymbol{A}^{(1)}\boldsymbol{A}) = R(\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A}).$$

又
$$N(\boldsymbol{A}^{(1)}\boldsymbol{A}) = N(\boldsymbol{A})$$
, 得

$$N(\mathbf{A}) = R(\mathbf{I}_n - \mathbf{A}^{(1)}\mathbf{A}).$$

黄正华 (武汉大学)

方程组 Ax = 0 的通解 $x = (I_n - A^{(1)}A)y$ 的直观解释: 因 $A^{(1)}A$ 是幂等矩阵, 故

$$N(\boldsymbol{A}^{(1)}\boldsymbol{A}) = R(\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A}).$$

又 $N(\boldsymbol{A}^{(1)}\boldsymbol{A}) = N(\boldsymbol{A})$, 得

$$N(\mathbf{A}) = R(\mathbf{I}_n - \mathbf{A}^{(1)}\mathbf{A}).$$

而 $N(\mathbf{A}) = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$, 故方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的全部解为

$$\{(\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y} \mid \boldsymbol{y} \in \mathbb{C}^n\}.$$

若n元非齐次线性方程组Ax = b有解,则其通解为

$$A^{(1)}b + (I_n - A^{(1)}A)y,$$

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

若n元非齐次线性方程组Ax = b有解,则其通解为

$$\boldsymbol{A}^{(1)}\boldsymbol{b} + (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},$$

其中 y 为 \mathbb{C}^n 中的任意向量, $\mathbf{A}^{(1)}$ 为 \mathbf{A} 的任意给定的一个 $\{1\}$ - 逆.

证: 对非齐次方程组 Ax = b, 因 $A^{(1)}b$ 是其一个特解,

若n元非齐次线性方程组Ax = b有解,则其通解为

$$A^{(1)}b + (I_n - A^{(1)}A)y,$$

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

证: 对非齐次方程组 Ax = b, 因 $A^{(1)}b$ 是其一个特解, 而 $(I_n - A^{(1)}A)y$ 是其对应齐次方程 Ax = 0 的通解,

若 n 元非齐次线性方程组 Ax = b 有解, 则其通解为

$$\boldsymbol{A}^{(1)}\boldsymbol{b} + (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},$$

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

证: 对非齐次方程组 Ax = b, 因 $A^{(1)}b$ 是其一个特解, 而 $(I_n - A^{(1)}A)y$ 是其对应齐次方程 Ax = 0 的通解, 故 Ax = b 通解为

$$\boldsymbol{A}^{(1)}\boldsymbol{b} + (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},$$

其中 y 为 \mathbb{C}^n 中的任意向量.

Outline

- ① Moore-Penrose 广义逆矩阵
- ② 广义逆矩阵 A⁽¹⁾
- ③ 广义逆矩阵 A^(1,2)
 - 广义逆 $A^{(1,2)}$ 的定义及存在性
 - 广义逆 $A^{(1,2)}$ 的性质
 - 广义逆 A^(1,2) 的构造
- 4 广义逆矩阵 A^(1,3)
- 5 广义逆矩阵 A^(1,4)
- 6 M-P 广义逆矩阵

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- $(1) \quad \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A},$
- $(2) \quad \mathbf{GAG} = \mathbf{G},$

则称 G 为 A 的 $\{1,2\}$ -逆, 记为 $A^{(1,2)}$.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- $(1) \quad \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A},$
- $(2) \quad \mathbf{GAG} = \mathbf{G},$

则称 G 为 A 的 $\{1,2\}$ -逆, 记为 $A^{(1,2)}$.

记 A 的 $\{1,2\}$ -逆的全体为 $A\{1,2\}$, 即

$$A{1,2} = {G \mid AGA = A, GAG = G}.$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- $(1) \quad \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A},$
- (2) GAG = G,

则称 G 为 A 的 $\{1,2\}$ -逆, 记为 $A^{(1,2)}$.

记 A 的 $\{1,2\}$ -逆的全体为 $A\{1,2\}$, 即

$$A{1,2} = {G \mid AGA = A, GAG = G}.$$

类似地, 若 $G \in \mathbb{C}^{n \times m}$ 只满足

$$GAG = G$$
,

则称 G 为 A 的 $\{2\}$ -逆, 记为 $A^{(2)}$,

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) $\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$,
- $(2) \quad \mathbf{GA} \mathbf{G} = \mathbf{G},$

则称 G 为 A 的 $\{1,2\}$ -逆, 记为 $A^{(1,2)}$.

记 A 的 $\{1,2\}$ -逆的全体为 $A\{1,2\}$, 即

$$A{1,2} = {G \mid AGA = A, GAG = G}.$$

类似地, 若 $G \in \mathbb{C}^{n \times m}$ 只满足

$$GAG = G$$
,

则称 G 为 A 的 $\{2\}$ -逆, 记为 $A^{(2)}$, 且记

$$A{2} = {G \mid GAG = G}.$$

对于逆矩阵 A^{-1} 有 $(A^{-1})^{-1} = A$, 但这对 $A^{(1)}$ 一般不成立.

对于逆矩阵 \mathbf{A}^{-1} 有 $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$, 但这对 $\mathbf{A}^{(1)}$ 一般不成立. 如

$$m{A} = egin{bmatrix} 1 & 0 \ 1 & 0 \ 1 & 0 \end{bmatrix}, \qquad m{A}^{(1)} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix},$$

但

$$\boldsymbol{A}^{(1)}\boldsymbol{A}\boldsymbol{A}^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \neq \boldsymbol{A}^{(1)}.$$

 黄正华 (武汉大学)
 第4章 矩阵的广义道
 December 15, 2014

36 / 111

对于逆矩阵 \mathbf{A}^{-1} 有 $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$, 但这对 $\mathbf{A}^{(1)}$ 一般不成立. 如

$$m{A} = egin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \qquad m{A}^{(1)} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

但

$$\boldsymbol{A}^{(1)}\boldsymbol{A}\boldsymbol{A}^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \neq \boldsymbol{A}^{(1)}.$$

 $\mathbb{P}\left(\boldsymbol{A}^{(1)}\right)^{(1)} \neq \boldsymbol{A}.$

对于逆矩阵 \mathbf{A}^{-1} 有 $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$, 但这对 $\mathbf{A}^{(1)}$ 一般不成立. 如

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \qquad A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

但

$$\boldsymbol{A}^{(1)}\boldsymbol{A}\boldsymbol{A}^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \neq \boldsymbol{A}^{(1)}.$$

 $\mathbb{P}\left(\boldsymbol{A}^{(1)}\right)^{(1)} \neq \boldsymbol{A}.$

在 $\{1,2\}$ -逆的定义 (1), (2) 两式中, \boldsymbol{A} 与 \boldsymbol{G} 的地位是对称的, 故 \boldsymbol{A} 与 \boldsymbol{G} 互为 $\{1,2\}$ -逆.

对于逆矩阵 \mathbf{A}^{-1} 有 $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$, 但这对 $\mathbf{A}^{(1)}$ 一般不成立. 如

$$m{A} = egin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \qquad m{A}^{(1)} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

但

$$\boldsymbol{A}^{(1)}\boldsymbol{A}\boldsymbol{A}^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \neq \boldsymbol{A}^{(1)}.$$

 $\mathbb{P}\left(\boldsymbol{A}^{(1)}\right)^{(1)} \neq \boldsymbol{A}.$

在 $\{1,2\}$ -逆的定义 (1), (2) 两式中, \mathbf{A} 与 \mathbf{G} 的地位是对称的, 故 \mathbf{A} 与 \mathbf{G} 互为 $\{1,2\}$ -逆. 所以又把 $\{1,2\}$ -逆叫做自反广义逆.

对于逆矩阵 A^{-1} 有 $(A^{-1})^{-1} = A$, 但这对 $A^{(1)}$ 一般不成立. 如

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \qquad A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

但

$$\boldsymbol{A}^{(1)}\boldsymbol{A}\boldsymbol{A}^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \neq \boldsymbol{A}^{(1)}.$$

 $\mathbb{P}\left(\boldsymbol{A}^{(1)}\right)^{(1)} \neq \boldsymbol{A}.$

在 $\{1,2\}$ -逆的定义 (1), (2) 两式中, \mathbf{A} 与 \mathbf{G} 的地位是对称的, 故 \mathbf{A} 与 \mathbf{G} 互为 $\{1,2\}$ -逆. 所以又把 $\{1,2\}$ -逆叫做自反广义逆.

即若 G 是 A 的一个 $\{1,2\}$ -逆, 则 A 也是 G 的一个 $\{1,2\}$ -逆, 或者说形式上有

"
$$(\boldsymbol{A}^{(1,2)})^{(1,2)} = \boldsymbol{A}$$
."

对于逆矩阵 A^{-1} 有 $(A^{-1})^{-1} = A$, 但这对 $A^{(1)}$ 一般不成立. 如

$$m{A} = egin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \qquad m{A}^{(1)} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

但

$$A^{(1)}AA^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \neq A^{(1)}.$$

 $\mathbb{P}\left(\boldsymbol{A}^{(1)}\right)^{(1)} \neq \boldsymbol{A}.$

在 $\{1,2\}$ -逆的定义 (1), (2) 两式中, \mathbf{A} 与 \mathbf{G} 的地位是对称的, 故 \mathbf{A} 与 \mathbf{G} 互为 $\{1,2\}$ -逆. 所以又把 $\{1,2\}$ -逆叫做自反广义逆.

即若 G 是 A 的一个 $\{1,2\}$ -逆, 则 A 也是 G 的一个 $\{1,2\}$ -逆, 或者说形式上有

"
$$(\mathbf{A}^{(1,2)})^{(1,2)} = \mathbf{A}$$
."

当然, 严格的写法应该是:

$$A \in A^{(1,2)}\{1,2\}.$$

设 Y, $Z \in A\{1\}$, 且令 X = YAZ, 则 $X \in A\{1, 2\}$.

设 Y, $Z \in A\{1\}$, 且令 X = YAZ, 则 $X \in A\{1,2\}$.

 $\mathbf{iI}: \quad \exists \mathbf{I} \ \mathbf{A} \ \mathbf{Y} \mathbf{A} = \mathbf{A}, \ \mathbf{A} \ \mathbf{Z} \mathbf{A} = \mathbf{A},$

设
$$Y$$
, $Z \in A\{1\}$, 且令 $X = YAZ$, 则 $X \in A\{1,2\}$.

证: 由
$$AYA = A$$
, $AZA = A$, 得

$$AXA = AYAZA$$

$$= AZA$$

$$= A,$$

$$XAX = YAZAYAZ$$

$$= Y(AZA)YAZ = YAYAZ$$

$$= Y(AYA)Z = YAYAZ$$

$$= Y(AYA)Z = YAZAYAZ$$

$$= Y(AYA)Z = YAZAYAZ$$

$$= X.$$
 $(X = YAZ)$
 $(AZA = A)$
 $(AYA = A)$

$$= X.$$

设
$$Y$$
, $Z \in A\{1\}$, 且令 $X = YAZ$, 则 $X \in A\{1, 2\}$.

证: 由 AYA = A, AZA = A, 得

$$AXA = A YAZA$$

$$= AZA$$

$$= A,$$

$$= A,$$

$$(X = YAZ)$$

$$(AYA = A)$$

$$XAX = YAZAYAZ$$
 $(X = YAZ)$
= $Y(AZA)YAZ = YAYAZ$ $(AZA = A)$

$$= Y(AYA)Z = YAZ \qquad (AYA = A)$$

$$= X$$

所以 $X \in A\{1,2\}$.

设
$$Y$$
, $Z \in A\{1\}$, 且令 $X = YAZ$, 则 $X \in A\{1,2\}$.

证: 由 AYA = A, AZA = A, 得

$$AXA = AYAZA$$
 $(X = YAZ)$
 $= AZA$ $(AYA = A)$
 $= A,$

$$XAX = YAZAYAZ$$
 $(X = YAZ)$
= $Y(AZA)YAZ = YAYAZ$ $(AZA = A)$

$$= Y(AYA)Z = YAZ \qquad (AYA = A)$$

= X

所以 $X \in A\{1,2\}$.

🔓 由 **A** 的 {1}-逆存在, 可以推得 **A** 的 {1,2}-逆也存在.

Outline

- ① Moore-Penrose 广义逆矩阵
- ② 广义逆矩阵 A⁽¹⁾
- ③ 广义逆矩阵 A^(1,2)
 - 广义逆 $A^{(1,2)}$ 的定义及存在性
 - 广义逆 A^(1,2) 的性质
 - 广义逆 A^(1,2) 的构造
- 4 广义逆矩阵 A^(1,3)
- 5 广义逆矩阵 A^(1,4)
- 6 M-P 广义逆矩阵

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 已知 $\mathbf{X} \in \mathbf{A}\{1\}$, 则

 $X \in A\{1,2\} \Leftrightarrow \operatorname{rank} X = \operatorname{rank} A.$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 已知 $\mathbf{X} \in \mathbf{A}\{1\}$, 则

$$X \in A\{1, 2\} \Leftrightarrow \operatorname{rank} X = \operatorname{rank} A$$
.

证: 必要性. 若 $X \in A\{1,2\}$, 则 AXA = A, XAX = X,

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 已知 $\mathbf{X} \in \mathbf{A}\{1\}$, 则

$$X \in A\{1,2\} \Leftrightarrow \operatorname{rank} X = \operatorname{rank} A.$$

证: 必要性. 若 $X \in A\{1,2\}$, 则 AXA = A, XAX = X, 因为

 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{A}) \leqslant \operatorname{rank} \boldsymbol{X},$

 $\operatorname{rank} \boldsymbol{X} = \operatorname{rank}(\boldsymbol{X}\boldsymbol{A}\boldsymbol{X}) \leqslant \operatorname{rank} \boldsymbol{A},$

设
$$\mathbf{A} \in \mathbb{C}^{m \times n}$$
, 已知 $\mathbf{X} \in \mathbf{A}\{1\}$, 则

$$X \in A\{1, 2\} \Leftrightarrow \operatorname{rank} X = \operatorname{rank} A$$
.

证: 必要性. 若
$$X \in A\{1,2\}$$
, 则 $AXA = A$, $XAX = X$, 因为

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{A}) \leqslant \operatorname{rank} \boldsymbol{X},$$

$$\operatorname{rank} \mathbf{X} = \operatorname{rank}(\mathbf{X}\mathbf{A}\mathbf{X}) \leqslant \operatorname{rank} \mathbf{A},$$

所以 $\operatorname{rank} X = \operatorname{rank} A$.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 已知 $\mathbf{X} \in \mathbf{A}\{1\}$, 则

$$X \in A\{1,2\} \Leftrightarrow \operatorname{rank} X = \operatorname{rank} A.$$

证: 必要性. 若 $X \in A\{1,2\}$, 则 AXA = A, XAX = X, 因为

 $\operatorname{rank} \mathbf{A} = \operatorname{rank}(\mathbf{A} \mathbf{X} \mathbf{A}) \leqslant \operatorname{rank} \mathbf{X},$

 $\operatorname{rank} \textbf{\textit{X}} = \operatorname{rank}(\textbf{\textit{XAX}}) \leqslant \operatorname{rank} \textbf{\textit{A}},$

所以 $\operatorname{rank} X = \operatorname{rank} A$.

充分性. 已知 $X \in A\{1\}$, 要证明 $X \in A\{1,2\}$, 只需要证明 $X \in A\{2\}$.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 已知 $\mathbf{X} \in \mathbf{A}\{1\}$, 则

$$X \in A\{1, 2\} \Leftrightarrow \operatorname{rank} X = \operatorname{rank} A.$$

证: 必要性. 若 $X \in A\{1,2\}$, 则 AXA = A, XAX = X, 因为

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{A}) \leqslant \operatorname{rank} \boldsymbol{X},$$

$$\operatorname{rank} \mathbf{X} = \operatorname{rank}(\mathbf{X}\mathbf{A}\mathbf{X}) \leqslant \operatorname{rank} \mathbf{A},$$

所以 $\operatorname{rank} X = \operatorname{rank} A$.

充分性. 己知 $X \in A\{1\}$, 要证明 $X \in A\{1,2\}$, 只需要证明 $X \in A\{2\}$.

由
$$X \in A\{1\}$$
, 则

$$\operatorname{rank}(\mathbf{X}\mathbf{A}) = \operatorname{rank}\mathbf{A}.$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 已知 $\mathbf{X} \in \mathbf{A}\{1\}$, 则

$$X \in A\{1, 2\} \Leftrightarrow \operatorname{rank} X = \operatorname{rank} A.$$

证: 必要性. 若 $X \in A\{1,2\}$, 则 AXA = A, XAX = X, 因为

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{A}) \leqslant \operatorname{rank} \boldsymbol{X},$$

$$\operatorname{rank} \mathbf{X} = \operatorname{rank}(\mathbf{X}\mathbf{A}\mathbf{X}) \leqslant \operatorname{rank} \mathbf{A},$$

所以 $\operatorname{rank} X = \operatorname{rank} A$.

充分性. 已知 $X \in A\{1\}$, 要证明 $X \in A\{1,2\}$, 只需要证明 $X \in A\{2\}$.

由 $X \in A\{1\}$, 则

$$rank(\mathbf{X}\mathbf{A}) = rank \mathbf{A}.$$

又已知 $\operatorname{rank} X = \operatorname{rank} A$, 故

$$rank(\mathbf{X}\mathbf{A}) = rank \mathbf{X}.$$

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

显然又有 $R(\mathbf{X}\mathbf{A}) \subseteq R(\mathbf{X})$, 从而有

$$R(\mathbf{X}\mathbf{A}) = R(\mathbf{X}).$$

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

显然又有 $R(\mathbf{X}\mathbf{A}) \subseteq R(\mathbf{X})$, 从而有

$$R(\mathbf{X}\mathbf{A}) = R(\mathbf{X}).$$

从而 X 的列向量可以由 XA 的列向量线性表示,

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

显然又有 $R(\mathbf{X}\mathbf{A}) \subseteq R(\mathbf{X})$, 从而有

$$R(\mathbf{X}\mathbf{A}) = R(\mathbf{X}).$$

从而 X 的列向量可以由 XA 的列向量线性表示, 即存在矩阵 $Y \in \mathbb{C}^{n \times m}$, 使

$$XAY = X$$
.

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

显然又有 $R(XA) \subseteq R(X)$, 从而有

$$R(\mathbf{X}\mathbf{A}) = R(\mathbf{X}).$$

从而 X 的列向量可以由 XA 的列向量线性表示, 即存在矩阵 $Y \in \mathbb{C}^{n \times m}$, 使

$$XAY = X.$$

$$XAX = XA(XAY)$$

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

显然又有 $R(XA) \subseteq R(X)$, 从而有

$$R(\mathbf{X}\mathbf{A}) = R(\mathbf{X}).$$

从而 X 的列向量可以由 XA 的列向量线性表示, 即存在矩阵 $Y \in \mathbb{C}^{n \times m}$, 使

$$XAY = X.$$

$$XAX = XA(XAY) = X(AXA)Y$$

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

显然又有 $R(XA) \subseteq R(X)$, 从而有

$$R(\mathbf{X}\mathbf{A}) = R(\mathbf{X}).$$

从而 X 的列向量可以由 XA 的列向量线性表示, 即存在矩阵 $Y \in \mathbb{C}^{n \times m}$, 使

$$XAY = X.$$

$$XAX = XA(XAY) = X(AXA)Y = XAY = X.$$

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

显然又有 $R(\mathbf{X}\mathbf{A}) \subseteq R(\mathbf{X})$, 从而有

$$R(\mathbf{X}\mathbf{A}) = R(\mathbf{X}).$$

从而 X 的列向量可以由 XA 的列向量线性表示, 即存在矩阵 $Y \in \mathbb{C}^{n \times m}$, 使

$$XAY = X.$$

$$XAX = XA(XAY) = X(AXA)Y = XAY = X.$$

故
$$X \in A\{2\}$$
, 从而 $X \in A\{1,2\}$.

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

显然又有 $R(\mathbf{X}\mathbf{A}) \subseteq R(\mathbf{X})$, 从而有

$$R(\mathbf{X}\mathbf{A}) = R(\mathbf{X}).$$

从而 X 的列向量可以由 XA 的列向量线性表示, 即存在矩阵 $Y \in \mathbb{C}^{n \times m}$, 使

$$XAY = X.$$

所以

$$XAX = XA(XAY) = X(AXA)Y = XAY = X.$$

故 $X \in A\{2\}$, 从而 $X \in A\{1,2\}$.

从上述定理可知,下列三个表述中的任何两个都蕴含着第三个成立:

(1) $X \in A\{1\}$; (2) $X \in A\{2\}$; (3) rank X = rank A.

黄正华 (武汉大学)

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

显然又有 $R(\mathbf{X}\mathbf{A}) \subseteq R(\mathbf{X})$, 从而有

$$R(\mathbf{X}\mathbf{A}) = R(\mathbf{X}).$$

从而 X 的列向量可以由 XA 的列向量线性表示, 即存在矩阵 $Y \in \mathbb{C}^{n \times m}$, 使

$$XAY = X.$$

所以

$$XAX = XA(XAY) = X(AXA)Y = XAY = X.$$

故 $X \in A\{2\}$, 从而 $X \in A\{1,2\}$.

从上述定理可知,下列三个表述中的任何两个都蕴含着第三个成立:

(1) $X \in A\{1\}$; (2) $X \in A\{2\}$; (3) rank X = rank A.

黄正华 (武汉大学)

此定理给出了一个判断 $A^{(1)}$ 是否是 $A^{(1,2)}$ 的一个简单方法: 只需检查 A 与 $A^{(1)}$ 的秩是否相等.

此定理给出了一个判断 $A^{(1)}$ 是否是 $A^{(1,2)}$ 的一个简单方法: 只需检查 $A^{(1)}$ 的秩是否相等.

比如, 由 $A^{(1)}$ 的通式

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{10}$$

取

$$m{A}^{(1)} = m{Q}egin{bmatrix} m{I}_r & m{O} \ m{O} & m{O} \end{bmatrix} m{P},$$

即为 A 的一个 $\{1,2\}$ -逆.

此定理给出了一个判断 $A^{(1)}$ 是否是 $A^{(1,2)}$ 的一个简单方法: 只需检查 A 与 $A^{(1)}$ 的秩是否相等.

比如, 由 $A^{(1)}$ 的通式

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{10}$$

取

$$m{A}^{(1)} = m{Q}egin{bmatrix} m{I}_r & m{O} \ m{O} & m{O} \end{bmatrix} m{P},$$

即为 A 的一个 $\{1,2\}$ -逆.

得到求某个 $A^{(1,2)}$ 的一个方法:

- (1) 将 A 化为标准形 Φ , 即有可逆矩阵 P, Q, 使得 $PAQ = \Phi$;
- (2) 则 $Q\Phi^{T}P$ 为 A 的一个 $\{1,2\}$ -逆.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

● AA^(1,2) 和 A^(1,2)A 都是幂等阵,且

$$rank(\mathbf{A}\mathbf{A}^{(1,2)}) = rank(\mathbf{A}^{(1,2)}\mathbf{A}) = rank \mathbf{A}.$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

4 $AA^{(1,2)}$ 和 $A^{(1,2)}A$ 都是幂等阵, 且

$$\operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1,2)}) = \operatorname{rank}(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{A}.$$

- - $A^{(1,2)}$ 当然满足 $A^{(1)}$ 的相关性质. 再比如:
- **1** $R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A});$
- **2** $N(\mathbf{A}^{(1,2)}\mathbf{A}) = N(\mathbf{A}).$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

- $N(\mathbf{A}) \oplus R(\mathbf{A}^{(1,2)}) = \mathbb{C}^n.$

证: (1) 由 $\mathbf{A}\mathbf{A}^{(1,2)} \in \mathbb{C}^{m \times m}$ 为幂等矩阵, 即为 \mathbb{C}^m 中的投影算子, 所以

$$\mathbb{C}^m = R(\mathbf{A}\mathbf{A}^{(1,2)}) \oplus N(\mathbf{A}\mathbf{A}^{(1,2)}).$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

- **2** $N(A) \oplus R(A^{(1,2)}) = \mathbb{C}^n$.

证: (1) 由 $\mathbf{A}\mathbf{A}^{(1,2)} \in \mathbb{C}^{m \times m}$ 为幂等矩阵, 即为 \mathbb{C}^m 中的投影算子, 所以

$$\mathbb{C}^m = R(\mathbf{A}\mathbf{A}^{(1,2)}) \oplus N(\mathbf{A}\mathbf{A}^{(1,2)}).$$

由 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A}),$ 知 $R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A}).$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

- **2** $N(A) \oplus R(A^{(1,2)}) = \mathbb{C}^n$.

证: (1) 由 $\mathbf{A}\mathbf{A}^{(1,2)} \in \mathbb{C}^{m \times m}$ 为幂等矩阵, 即为 \mathbb{C}^m 中的投影算子, 所以

$$\mathbb{C}^m = R(\mathbf{A}\mathbf{A}^{(1,2)}) \oplus N(\mathbf{A}\mathbf{A}^{(1,2)}).$$

由 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 知 $R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A})$. 下证 $N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)})$.

黄正华 (武汉大学)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

证: (1) 由 $\mathbf{A}\mathbf{A}^{(1,2)} \in \mathbb{C}^{m \times m}$ 为幂等矩阵, 即为 \mathbb{C}^m 中的投影算子, 所以

$$\mathbb{C}^m = R(\mathbf{A}\mathbf{A}^{(1,2)}) \oplus N(\mathbf{A}\mathbf{A}^{(1,2)}).$$

由 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 知 $R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A})$. 下证 $N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)})$. 由 $\{1\}$ -逆的性质 $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A})$, 有

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

证: (1) 由 $\mathbf{A}\mathbf{A}^{(1,2)} \in \mathbb{C}^{m \times m}$ 为幂等矩阵, 即为 \mathbb{C}^m 中的投影算子, 所以

$$\mathbb{C}^m = R(\mathbf{A}\mathbf{A}^{(1,2)}) \oplus N(\mathbf{A}\mathbf{A}^{(1,2)}).$$

由 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 知 $R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A})$. 下证 $N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)})$. 由 $\{1\}$ -逆的性质 $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A})$, 有

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

因 $A^{(1,2)}$ 与 A 互为 $\{1,2\}$ -逆, 故上式中 $A^{(1,2)}$ 与 A 可以互换,

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

证: (1) 由 $\mathbf{A}\mathbf{A}^{(1,2)} \in \mathbb{C}^{m \times m}$ 为幂等矩阵, 即为 \mathbb{C}^m 中的投影算子, 所以

$$\mathbb{C}^m = R(\mathbf{A}\mathbf{A}^{(1,2)}) \oplus N(\mathbf{A}\mathbf{A}^{(1,2)}).$$

由 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 知 $R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A})$. 下证 $N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)})$. 由 $\{1\}$ -逆的性质 $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A})$, 有

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

因 $A^{(1,2)}$ 与 A 互为 $\{1,2\}$ -逆, 故上式中 $A^{(1,2)}$ 与 A 可以互换, 即

$$N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)}).$$

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

而且有

$$N(\boldsymbol{A}\boldsymbol{A}^{(1,2)}) = N(\boldsymbol{A}^{(1,2)}).$$

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

而且有

$$N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)}).$$

根本原因在于 {1,2}-逆的自反性.

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

而且有

$$N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)}).$$

根本原因在于 {1,2}-逆的自反性.

同理, 由
$$R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$$
, 知

$$R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A}).$$

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

而且有

$$N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)}).$$

根本原因在于 {1,2}-逆的自反性.

同理, 由
$$R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$$
, 知

$$R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A}).$$

由 {1,2}-逆的自反性, 有

$$R(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = R(\boldsymbol{A}^{(1,2)}).$$

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

而且有

$$N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)}).$$

根本原因在于 {1,2}-逆的自反性.

同理, 由 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 知

$$R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A}).$$

由 {1,2}-逆的自反性, 有

$$R(\mathbf{A}^{(1,2)}\mathbf{A}) = R(\mathbf{A}^{(1,2)}).$$

(2) 由 $A^{(1,2)}A \in \mathbb{C}^{n \times n}$ 为幂等矩阵, 即为 \mathbb{C}^n 中的投影算子, 所以

$$\mathbb{C}^n = R(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) \oplus N(\boldsymbol{A}^{(1,2)}\boldsymbol{A})$$

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

而且有

$$N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)}).$$

根本原因在于 {1,2}-逆的自反性.

同理, 由 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 知

$$R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A}).$$

由 {1,2}-逆的自反性, 有

$$R(\mathbf{A}^{(1,2)}\mathbf{A}) = R(\mathbf{A}^{(1,2)}).$$

(2) 由 $\mathbf{A}^{(1,2)}\mathbf{A} \in \mathbb{C}^{n \times n}$ 为幂等矩阵, 即为 \mathbb{C}^n 中的投影算子, 所以 $\mathbb{C}^n = R(\mathbf{A}^{(1,2)}\mathbf{A}) \oplus N(\mathbf{A}^{(1,2)}\mathbf{A}) = R(\mathbf{A}^{(1,2)}) \oplus N(\mathbf{A}).$

黄正华 (武汉大学)

$$N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = N(\boldsymbol{A}),$$

而且有

$$N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)}).$$

根本原因在于 {1,2}-逆的自反性.

同理, 由 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 知

$$R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A}).$$

由 {1,2}-逆的自反性, 有

$$R(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = R(\boldsymbol{A}^{(1,2)}).$$

(2) 由 $\mathbf{A}^{(1,2)}\mathbf{A} \in \mathbb{C}^{n \times n}$ 为幂等矩阵, 即为 \mathbb{C}^n 中的投影算子, 所以

$$\mathbb{C}^n = R(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) \oplus N(\boldsymbol{A}^{(1,2)}\boldsymbol{A}) = R(\boldsymbol{A}^{(1,2)}) \oplus N(\boldsymbol{A}).$$

得证 $\mathbb{C}^n = N(\mathbf{A}) \oplus R(\mathbf{A}^{(1,2)}).$

Outline

- ① Moore-Penrose 广义逆矩阵
- ② 广义逆矩阵 **A**⁽¹⁾
- ③ 广义逆矩阵 A^(1,2)
 - 广义逆 $A^{(1,2)}$ 的定义及存在性
 - 广义逆 $A^{(1,2)}$ 的性质
 - 广义逆 A^(1,2) 的构造
- 4 广义逆矩阵 A^(1,3)
- 5 广义逆矩阵 A^(1,4)
- 6 M-P 广义逆矩阵

前述提到, 若 rank $\boldsymbol{A}^{(1)} = \operatorname{rank} \boldsymbol{A}$, 则 $\boldsymbol{A}^{(1)}$ 是 \boldsymbol{A} 的一个 $\{1,2\}$ -逆.

前述提到, 若 rank $\boldsymbol{A}^{(1)} = \operatorname{rank} \boldsymbol{A}$, 则 $\boldsymbol{A}^{(1)}$ 是 \boldsymbol{A} 的一个 $\{1,2\}$ -逆. 从而, 若 $\boldsymbol{A} \in \mathbb{C}_r^{m \times n}$ 的 $\{1\}$ -逆为

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{11}$$

前述提到, 若 rank $\boldsymbol{A}^{(1)} = \operatorname{rank} \boldsymbol{A}$, 则 $\boldsymbol{A}^{(1)}$ 是 \boldsymbol{A} 的一个 $\{1,2\}$ -逆. 从而, 若 $\boldsymbol{A} \in \mathbb{C}_r^{m \times n}$ 的 $\{1\}$ -逆为

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{11}$$

令

$$G=egin{aligned} G=Qegin{bmatrix} I_r & O\ O & O \end{bmatrix}P, \end{aligned}$$

则 $\mathbf{G} = \operatorname{rank} \mathbf{A}$,

前述提到, 若 rank $\boldsymbol{A}^{(1)} = \operatorname{rank} \boldsymbol{A}$, 则 $\boldsymbol{A}^{(1)}$ 是 \boldsymbol{A} 的一个 $\{1,2\}$ -逆. 从而, 若 $\boldsymbol{A} \in \mathbb{C}_r^{m \times n}$ 的 $\{1\}$ -逆为

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{11}$$

令

$$egin{aligned} oldsymbol{G} &= oldsymbol{Q} egin{bmatrix} oldsymbol{I}_r & oldsymbol{O} \ oldsymbol{O} & oldsymbol{O} \end{bmatrix} oldsymbol{P}, \end{aligned}$$

则 rank G = rank A, 故 $G \in A\{1, 2\}$.

设 $A \in \mathbb{C}_r^{m \times n}$, 及 P, Q 分别为 m 阶和 n 阶非奇异方阵, 且 $PAQ = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$,

则有

$$\mathbf{A}^{(1,2)} = \mathbf{Q} \begin{bmatrix} \mathbf{I}_r & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{21} \mathbf{G}_{12} \end{bmatrix} \mathbf{P}, \tag{12}$$

其中 G_{12} , G_{21} , 分别是 $r \times (m-r)$, $(n-r) \times r$ 阶的任意矩阵.

设 $m{A} \in \mathbb{C}_{r}^{m imes n}$,及 $m{P}$,及 分别为 m 阶和 n 阶非奇异方阵,且 $m{P}m{A}m{Q} = egin{bmatrix} m{I}_{r} & m{O} \\ m{O} & m{O} \end{bmatrix}$,

则有

$$\mathbf{A}^{(1,2)} = \mathbf{Q} \begin{bmatrix} \mathbf{I}_r & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{21} \mathbf{G}_{12} \end{bmatrix} \mathbf{P}, \tag{12}$$

其中 G_{12} , G_{21} , 分别是 $r \times (m-r)$, $(n-r) \times r$ 阶的任意矩阵.

☞ 事实上

$$egin{bmatrix} egin{bmatrix} m{I}_r & m{G}_{12} \ m{G}_{21} & m{G}_{21} m{G}_{12} \end{bmatrix} & \xrightarrow{r_2 - m{G}_{21} r_1} egin{bmatrix} m{I}_r & m{G}_{12} \ m{O} & m{O} \end{bmatrix} & \xrightarrow{c_2 - c_1 m{G}_{12}} m{m{I}}_r & m{O} \ m{O} & m{O} \end{bmatrix}.$$

设 $m{A} \in \mathbb{C}_{r}^{m imes n}$,及 $m{P}$,及 分别为 m 阶和 n 阶非奇异方阵,且 $m{P}m{A}m{Q} = egin{bmatrix} m{I}_{r} & m{O} \\ m{O} & m{O} \end{bmatrix}$,

则有

$$\boldsymbol{A}^{(1,2)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{21} \boldsymbol{G}_{12} \end{bmatrix} \boldsymbol{P}, \tag{12}$$

其中 G_{12} , G_{21} , 分别是 $r \times (m-r)$, $(n-r) \times r$ 阶的任意矩阵.

☞ 事实上

$$egin{bmatrix} egin{bmatrix} egin{matrix} \egin{matrix} \egin{matrix$$

故 $oldsymbol{Q}egin{bmatrix} oldsymbol{I_r} & oldsymbol{G_{12}} \ oldsymbol{G_{21}} & oldsymbol{G_{21}} oldsymbol{G_{12}} \end{bmatrix} oldsymbol{P}$ 的秩为 r,

设 $A \in \mathbb{C}_r^{m \times n}$, 及 P, Q 分别为 m 阶和 n 阶非奇异方阵, 且 $PAQ = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$,

则有 $oldsymbol{A}^{(1,2)}$

$$\boldsymbol{A}^{(1,2)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{21} \boldsymbol{G}_{12} \end{bmatrix} \boldsymbol{P}, \tag{12}$$

其中 G_{12} , G_{21} , 分别是 $r \times (m-r)$, $(n-r) \times r$ 阶的任意矩阵.

☞ 事实上

$$egin{bmatrix} egin{bmatrix} egin{matrix} \egin{matrix} \egin{matrix$$

故 $Q\begin{bmatrix}I_r&G_{12}\\G_{21}&G_{21}G_{12}\end{bmatrix}$ P 的秩为 r, 又该式为 A 的一个 $\{1\}$ -逆, 从而为 A 的一个 $\{1,2\}$ -逆.

设 $A \in \mathbb{C}_r^{m \times n}$ 的满秩分解式为

$$m{A} = m{B}m{C}, \qquad m{B} \in \mathbb{C}_{m{r}}^{m imes r}, \ m{C} \in \mathbb{C}_{m{r}}^{r imes n}.$$

则
$$G = C_{\rm R}^{-1} B_{\rm L}^{-1}$$
 是 A 的一个 $\{1,2\}$ -逆, 即可取

$$\mathbf{A}^{(1,2)} = \mathbf{C}_{\mathrm{R}}^{-1} \mathbf{B}_{\mathrm{L}}^{-1}.$$

设 $A \in \mathbb{C}_r^{m \times n}$ 的满秩分解式为

$$m{A} = m{B}m{C}, \qquad m{B} \in \mathbb{C}_{\pmb{r}}^{m imes r}, \ m{C} \in \mathbb{C}_{\pmb{r}}^{r imes n}.$$

则 $G = C_{\rm R}^{-1} B_{\rm L}^{-1}$ 是 A 的一个 $\{1, 2\}$ -逆, 即可取

$${\pmb A}^{(1,2)} = {\pmb C}_{
m R}^{-1} {\pmb B}_{
m L}^{-1}.$$

证: 注意到 $B_{L}^{-1}B = I$, $CC_{R}^{-1} = I$,

设 $A \in \mathbb{C}_r^{m \times n}$ 的满秩分解式为

$$A = BC$$
, $B \in \mathbb{C}_{r}^{m \times r}$, $C \in \mathbb{C}_{r}^{r \times n}$.

则 $G = C_{\mathbf{R}}^{-1}B_{\mathbf{L}}^{-1}$ 是 A 的一个 $\{1,2\}$ -逆, 即可取

$$\mathbf{A}^{(1,2)} = \mathbf{C}_{\mathrm{R}}^{-1} \mathbf{B}_{\mathrm{L}}^{-1}.$$

证: 注意到
$$B_{\mathrm{L}}^{-1}B = I$$
, $CC_{\mathrm{R}}^{-1} = I$, 取 $G = C_{\mathrm{R}}^{-1}B_{\mathrm{L}}^{-1}$, 则

$$egin{aligned} A\,GA &= egin{aligned} B\,C\,C_{
m R}^{-1}\,B_{
m L}^{-1}\,B\,C &= B\,C = A, \ G\,A\,G &= \,C_{
m R}^{-1}\,B_{
m L}^{-1}\,B\,C\,C_{
m R}^{-1}\,B_{
m L}^{-1} &= \,C_{
m R}^{-1}\,B_{
m L}^{-1} &= \,G, \end{aligned}$$

黄正华 (武汉大学)

设 $A \in \mathbb{C}_r^{m \times n}$ 的满秩分解式为

$$A = BC$$
, $B \in \mathbb{C}_{r}^{m \times r}$, $C \in \mathbb{C}_{r}^{r \times n}$.

则 $G = C_{\rm R}^{-1} B_{\rm L}^{-1}$ 是 A 的一个 $\{1, 2\}$ -逆, 即可取

$$\mathbf{A}^{(1,2)} = \mathbf{C}_{\mathrm{R}}^{-1} \mathbf{B}_{\mathrm{L}}^{-1}.$$

证: 注意到
$$\boldsymbol{B}_{\mathrm{L}}^{-1}\boldsymbol{B}=\boldsymbol{I},\;\boldsymbol{C}\boldsymbol{C}_{\mathrm{R}}^{-1}=\boldsymbol{I},\;\mathbb{R}\;\boldsymbol{G}=\boldsymbol{C}_{\mathrm{R}}^{-1}\boldsymbol{B}_{\mathrm{L}}^{-1},\;\mathbb{R}$$

$$egin{aligned} A\,GA &= egin{aligned} B\,C\,C_{
m R}^{-1}\,B_{
m L}^{-1}\,B\,C &= B\,C = A, \ G\,A\,G &= \,C_{
m R}^{-1}\,B_{
m L}^{-1}\,B\,C\,C_{
m R}^{-1}\,B_{
m L}^{-1} &= \,C_{
m R}^{-1}\,B_{
m L}^{-1} &= \,G, \end{aligned}$$

故
$$G \in A^{(1,2)}$$
.

设 $A \in \mathbb{C}_r^{m \times n}$ 的满秩分解式为

$$A = BC$$
, $B \in \mathbb{C}_{r}^{m \times r}$, $C \in \mathbb{C}_{r}^{r \times n}$.

则 $G = C_{\rm R}^{-1} B_{\rm L}^{-1}$ 是 A 的一个 $\{1, 2\}$ -逆, 即可取

$$\mathbf{A}^{(1,2)} = \mathbf{C}_{\mathrm{R}}^{-1} \mathbf{B}_{\mathrm{L}}^{-1}.$$

证: 注意到
$$B_{\mathrm{L}}^{-1}B = I$$
, $CC_{\mathrm{R}}^{-1} = I$, 取 $G = C_{\mathrm{R}}^{-1}B_{\mathrm{L}}^{-1}$, 则

$$AGA = {}^{BC}C_{
m R}^{-1}B_{
m L}^{-1}{}^{BC} = BC = A,$$

$$GAG = C_{
m R}^{-1}B_{
m L}^{-1}{}^{BC}C_{
m R}^{-1}B_{
m L}^{-1} = C_{
m R}^{-1}B_{
m L}^{-1} = G,$$

故 $G \in A^{(1,2)}$.

(1) 若 $A \in \mathbb{C}^{m \times n}$ 是行满秩的,则 $A = I_m A$,从而 $G = A_R^{-1} I_L^{-1} = A_R^{-1}$ 是 A 的一个 $\{1, 2\}$ -逆.

设 $\mathbf{A} \in \mathbb{C}_{r}^{m \times n}$ 的满秩分解式为

$$A = BC$$
, $B \in \mathbb{C}_{r}^{m \times r}$, $C \in \mathbb{C}_{r}^{r \times n}$.

则 $G = C_{\rm R}^{-1} B_{\rm L}^{-1}$ 是 A 的一个 $\{1, 2\}$ -逆, 即可取

$$\mathbf{A}^{(1,2)} = \mathbf{C}_{\mathrm{R}}^{-1} \mathbf{B}_{\mathrm{L}}^{-1}.$$

证: 注意到 $B_{\mathrm{L}}^{-1}B = I$, $CC_{\mathrm{R}}^{-1} = I$, 取 $G = C_{\mathrm{R}}^{-1}B_{\mathrm{L}}^{-1}$, 则

$$AGA = {}^{BC}C_{
m R}^{-1}B_{
m L}^{-1}{}^{BC} = BC = A,$$
 $GAG = C_{
m R}^{-1}B_{
m L}^{-1}{}^{BC}C_{
m R}^{-1}B_{
m L}^{-1} = C_{
m R}^{-1}B_{
m L}^{-1} = G,$

故 $G \in A^{(1,2)}$.

- (1) 若 $\mathbf{A} \in \mathbb{C}^{m \times n}$ 是行满秩的,则 $\mathbf{A} = \mathbf{I}_m \mathbf{A}$,从而 $\mathbf{G} = \mathbf{A}_{\mathrm{R}}^{-1} \mathbf{I}_{\mathrm{L}}^{-1} = \mathbf{A}_{\mathrm{R}}^{-1}$ 是 \mathbf{A} 的一个 $\{1, 2\}$ -逆.
 - (2) 若 $\mathbf{A} \in \mathbb{C}^{m \times n}$ 是列满秩的, 则 \mathbf{A}_{L}^{-1} 是 \mathbf{A} 的一个 $\{1, 2\}$ -逆.

黄正华 (武汉大学)

设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$
, 试求 \mathbf{A} 的一个 $\{1, 2\}$ -逆.

设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$
, 试求 \mathbf{A} 的一个 $\{1, 2\}$ -逆.

解: 因 $\mathbf{A} \in \mathbb{R}_2^{3 \times 2}$, 故

$$\begin{aligned} \boldsymbol{A}^{(1,2)} &= \boldsymbol{A}_{\mathrm{L}}^{-1} = (\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathrm{T}} \\ &= \left(\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix} \\ &= \frac{1}{11} \begin{bmatrix} -4 & 7 & 1 \\ 7 & -4 & 1 \end{bmatrix}. \end{aligned}$$

设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 4 & 0 \end{bmatrix}$$
, 试求 \mathbf{A} 的一个 $\{1, 2\}$ -逆.

设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 4 & 0 \end{bmatrix}$$
, 试求 \mathbf{A} 的一个 $\{1, 2\}$ -逆.

解: 因为 $\operatorname{rank} \mathbf{A} = 2 < 3$, 所以 \mathbf{A} 既非行满秩矩阵也非列满秩矩阵, 先求 \mathbf{A} 的满秩分解. 对矩阵 \mathbf{A} 进行初等行变换, 得到其行最简形矩阵.

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 4 & 0 \end{bmatrix} \xrightarrow[r_2 \times \frac{1}{2}]{r_3 - 2r_1} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 4 & 0 \end{bmatrix}$$
, 试求 \mathbf{A} 的一个 $\{1, 2\}$ -逆.

解: 因为 $\operatorname{rank} \mathbf{A} = 2 < 3$, 所以 \mathbf{A} 既非行满秩矩阵也非列满秩矩阵, 先求 \mathbf{A} 的满秩分解. 对矩阵 \mathbf{A} 进行初等行变换, 得到其行最简形矩阵.

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 4 & 0 \end{bmatrix} \xrightarrow[r_2 \times \frac{1}{2}]{r_3 - 2r_1} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

取此矩阵的前两行构成矩阵 C, 取 A 的第 1 列和第 3 列构成矩阵 B, 即

$$m{B} = \left[egin{array}{ccc} 1 & 0 \ 0 & 2 \ 2 & 0 \end{array}
ight], \qquad m{C} = \left[egin{array}{ccc} 1 & 2 & 0 \ 0 & 0 & 1 \end{array}
ight].$$

则 A 的满秩分解为 A = BC.

于是

$$C_{\mathbf{R}}^{-1} = C^{\mathbf{T}} (CC^{\mathbf{T}})^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}^{-1}$$
$$= \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 5 \end{bmatrix},$$

$$\mathbf{B}_{\mathbf{R}}^{-1} = (\mathbf{B}^{\mathsf{T}} \mathbf{B})^{-1} \mathbf{B}^{\mathsf{T}} = \left(\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix} \\
= \frac{1}{10} \begin{bmatrix} 2 & 0 & 4 \\ 0 & 5 & 0 \end{bmatrix},$$

因此

$$m{A}^{(1,2)} = m{C}_{
m R}^{-1} m{B}_{
m L}^{-1} = rac{1}{50} egin{bmatrix} 2 & 0 & 4 \ 4 & 0 & 8 \ 0 & 25 & 0 \end{bmatrix}.$$

$$\mathbf{B}_{\mathbf{R}}^{-1} = (\mathbf{B}^{\mathbf{T}} \mathbf{B})^{-1} \mathbf{B}^{\mathbf{T}} = \left(\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix} \\
= \frac{1}{10} \begin{bmatrix} 2 & 0 & 4 \\ 0 & 5 & 0 \end{bmatrix},$$

因此

$$A^{(1,2)} = C_{\rm R}^{-1} B_{\rm L}^{-1} = \frac{1}{50} \begin{vmatrix} 2 & 0 & 4 \\ 4 & 0 & 8 \\ 0 & 25 & 0 \end{vmatrix}.$$

 $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{B}}}}}$ 因为 $oldsymbol{A}$ 的满秩分解不是唯一的, 所以由上述方法得到的 $oldsymbol{A}^{(1,2)}$ 不唯一.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 52 / 11:

$$m{A}^{(1,2)} = m{Q}egin{bmatrix} m{I}_r & m{O} \ m{O} & m{O} \end{bmatrix} m{P}.$$

或者取

$$m{A}^{(1,2)} = m{Q}egin{bmatrix} m{I}_r & m{O} \ m{O} & m{O} \end{bmatrix} m{P}.$$

即,由

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 1 & 0 \\ -\frac{2}{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & -2 & 0 & 1 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

或者取

$$m{A}^{(1,2)} = m{Q}egin{bmatrix} m{I}_r & m{O} \\ m{O} & m{O} \end{bmatrix} m{P}.$$

即,由

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 1 & 0 \\ 2 & 4 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & -2 & 0 & 1 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

得

$$\boldsymbol{A}^{(1,2)} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ -2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{bmatrix}.$$

Outline

- ① Moore-Penrose 广义逆矩阵
- ② 广义逆矩阵 A⁽¹⁾
- ③ 广义逆矩阵 A^(1,2)
- ① 广义逆矩阵 A^(1,3)
 - 广义逆 $A^{(1,3)}$ 的定义和构造
 - 广义逆 $A^{(1,3)}$ 应用于解方程组
- 5 广义逆矩阵 A^(1,4)
- ⑥ M-P 广义逆矩阵

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) AGA = A,
- $(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$

则称 G 为 A 的 $\{1,3\}$ -逆, 记为 $A^{(1,3)}$.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

(1)
$$\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$$
,

$$(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$$

则称 G 为 A 的 $\{1,3\}$ -逆, 记为 $A^{(1,3)}$.

记 A 的 $\{1,3\}$ -逆的全体为 $A\{1,3\}$, 即

$$\mathbf{A}\{1,3\} = \{\mathbf{G} \mid \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}, (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G}\}.$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

(1)
$$\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$$
,

$$(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$$

则称 G 为 A 的 $\{1,3\}$ -逆, 记为 $A^{(1,3)}$.

记 A 的 $\{1,3\}$ -逆的全体为 $A\{1,3\}$, 即

$$\mathbf{A}\{1,3\} = \{\mathbf{G} \mid \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}, (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G}\}.$$

 $^{\square}$ 此时 AG 是正交投影算子.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

(1)
$$\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$$
,

$$(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$$

则称 G 为 A 的 $\{1,3\}$ -逆, 记为 $A^{(1,3)}$.

记 A 的 $\{1,3\}$ -逆的全体为 $A\{1,3\}$, 即

$$\mathbf{A}\{1,3\} = \{\mathbf{G} \mid \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}, (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G}\}.$$

 $^{\square \square}$ 此时 AG 是正交投影算子.

因 $AA^{(1)}$ 是幂等阵, 则 AG 是幂等矩阵;

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

(1)
$$\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$$
,

$$(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$$

则称 G 为 A 的 $\{1,3\}$ -逆, 记为 $A^{(1,3)}$.

记 A 的 $\{1,3\}$ -逆的全体为 $A\{1,3\}$, 即

$$\mathbf{A}\{1,3\} = \{\mathbf{G} \mid \mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}, (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G}\}.$$

 $^{\text{IC}}$ 此时 AG 是正交投影算子.

因 $\mathbf{AA}^{(1)}$ 是幂等阵, 则 \mathbf{AG} 是幂等矩阵; 又 \mathbf{AG} 是 Hermite 矩阵, 故 \mathbf{AG} 是正交投影算子.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) $\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$,
- (2) GAG = G,
- $(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$

则称 G 为 A 的 $\{1,2,3\}$ -逆, 记为 $A^{(1,2,3)}$.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) $\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$,
- (2) GAG = G,
- $(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$

则称 G 为 A 的 $\{1,2,3\}$ -逆, 记为 $A^{(1,2,3)}$.

记 \boldsymbol{A} 的 $\{1,2,3\}$ -逆的全体为 $\boldsymbol{A}\{1,2,3\}$, 即

$$A{1,2,3} = {G \mid AGA = A, GAG = G, (AG)^{H} = AG}.$$

黄正华 (武汉大学)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) $\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$,
- (2) GAG = G,
- $(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$

则称 G 为 A 的 $\{1,2,3\}$ -逆, 记为 $A^{(1,2,3)}$.

记 A 的 $\{1,2,3\}$ -逆的全体为 $A\{1,2,3\}$, 即

$$A{1,2,3} = {G \mid AGA = A, GAG = G, (AG)^{H} = AG}.$$

下面先证明 A 的 $\{1,2,3\}$ -逆存在, 从而也就证明了 A 的 $\{1,3\}$ -逆存在.

对任一矩阵 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 都有

$$\boldsymbol{Y} = \left(\boldsymbol{A}^{\mathrm{H}}\boldsymbol{A}\right)^{(1)}\boldsymbol{A}^{\mathrm{H}} \in \boldsymbol{A}\{1,2,3\}.$$

对任一矩阵 $A \in \mathbb{C}^{m \times n}$, 都有

$$\boldsymbol{Y} = (\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A})^{(1)} \boldsymbol{A}^{\mathrm{H}} \in \boldsymbol{A} \{1, 2, 3\}.$$

证: 依次证明 Y满足定义的 3 个条件.

对任一矩阵 $A \in \mathbb{C}^{m \times n}$, 都有

$$\mathbf{Y} = (\mathbf{A}^{\mathrm{H}} \mathbf{A})^{(1)} \mathbf{A}^{\mathrm{H}} \in \mathbf{A} \{1, 2, 3\}.$$

证: 依次证明 Y 满足定义的 3 个条件.

(1) 由教材 P.116 定理 3.1.8 知, $\operatorname{rank}(\boldsymbol{A}^{\mathrm{H}}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{A}^{\mathrm{H}}$, 故

$$\dim R(\boldsymbol{A}^{\mathrm{H}}\boldsymbol{A}) = \dim R(\boldsymbol{A}^{\mathrm{H}}).$$

又
$$R(\mathbf{A}^{\mathrm{H}}\mathbf{A}) \subseteq R(\mathbf{A}^{\mathrm{H}})$$
, 所以

$$R(\boldsymbol{A}^{\mathrm{H}}\boldsymbol{A}) = R(\boldsymbol{A}^{\mathrm{H}}).$$

对任一矩阵 $A \in \mathbb{C}^{m \times n}$, 都有

$$\mathbf{Y} = \left(\mathbf{A}^{\mathrm{H}}\mathbf{A}\right)^{(1)}\mathbf{A}^{\mathrm{H}} \in \mathbf{A}\{1, 2, 3\}.$$

 $\overline{\mathbf{u}}$: 依次证明 \mathbf{Y} 满足定义的 3 个条件.

(1) 由教材 P.116 定理 3.1.8 知, $\operatorname{rank}(\boldsymbol{A}^{\mathrm{H}}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{A}^{\mathrm{H}}$, 故

$$\dim R(\mathbf{A}^{\mathrm{H}}\mathbf{A}) = \dim R(\mathbf{A}^{\mathrm{H}}).$$

又 $R(\mathbf{A}^{\mathrm{H}}\mathbf{A}) \subseteq R(\mathbf{A}^{\mathrm{H}})$, 所以

$$R(\boldsymbol{A}^{\mathrm{H}}\boldsymbol{A}) = R(\boldsymbol{A}^{\mathrm{H}}).$$

故 A^{H} 的列向量是 $A^{H}A$ 的列向量的线性组合,则存在矩阵 $U \in \mathbb{C}^{n \times m}$,使得

$$\boldsymbol{A}^{\mathrm{H}} = \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{U}.$$

对任一矩阵 $A \in \mathbb{C}^{m \times n}$, 都有

$$\mathbf{Y} = (\mathbf{A}^{\mathrm{H}} \mathbf{A})^{(1)} \mathbf{A}^{\mathrm{H}} \in \mathbf{A} \{1, 2, 3\}.$$

证: 依次证明 Y 满足定义的 3 个条件.

(1) 由教材 P.116 定理 3.1.8 知, $\operatorname{rank}(\boldsymbol{A}^{\mathrm{H}}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{A}^{\mathrm{H}}$, 故

$$\dim R(\mathbf{A}^{\mathrm{H}}\mathbf{A}) = \dim R(\mathbf{A}^{\mathrm{H}}).$$

又 $R(\mathbf{A}^{\mathrm{H}}\mathbf{A}) \subseteq R(\mathbf{A}^{\mathrm{H}})$, 所以

$$R(\boldsymbol{A}^{\mathrm{H}}\boldsymbol{A}) = R(\boldsymbol{A}^{\mathrm{H}}).$$

故 \mathbf{A}^{H} 的列向量是 $\mathbf{A}^{\mathrm{H}}\mathbf{A}$ 的列向量的线性组合,则存在矩阵 $\mathbf{U}\in\mathbb{C}^{n\times m}$,使得

$$\boldsymbol{A}^{\mathrm{H}} = \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{U}.$$

两边取共轭转置有

$$A = U^{\mathrm{H}} A^{\mathrm{H}} A$$
.

$$A YA = U^{\mathsf{H}} A^{\mathsf{H}} A (A^{\mathsf{H}} A)^{(1)} A^{\mathsf{H}} A \qquad (A = U^{\mathsf{H}} A^{\mathsf{H}} A, Y = (A^{\mathsf{H}} A)^{(1)} A^{\mathsf{H}})$$

$$= U^{\mathsf{H}} A^{\mathsf{H}} A \qquad (A^{\mathsf{H}} A)^{\mathsf{H}} A^{\mathsf{H}} A = A^{\mathsf{H}} A)$$

$$= A. \qquad (A = U^{\mathsf{H}} A^{\mathsf{H}} A)$$

$$A YA = U^{\mathsf{H}} A^{\mathsf{H}} A (A^{\mathsf{H}} A)^{(1)} A^{\mathsf{H}} A \qquad (A = U^{\mathsf{H}} A^{\mathsf{H}} A, Y = (A^{\mathsf{H}} A)^{(1)} A^{\mathsf{H}})$$

$$= U^{\mathsf{H}} A^{\mathsf{H}} A \qquad (A^{\mathsf{H}} A (A^{\mathsf{H}} A)^{\mathsf{H}} A^{\mathsf{H}} A = A^{\mathsf{H}} A)$$

$$= A. \qquad (A = U^{\mathsf{H}} A^{\mathsf{H}} A)$$

故 $Y \in A\{1\}$.

$$A YA = \mathbf{U}^{\mathsf{H}} A^{\mathsf{H}} A (A^{\mathsf{H}} A)^{(1)} A^{\mathsf{H}} A \qquad (A = \mathbf{U}^{\mathsf{H}} A^{\mathsf{H}} A, Y = (A^{\mathsf{H}} A)^{(1)} A^{\mathsf{H}})$$

$$= \mathbf{U}^{\mathsf{H}} A^{\mathsf{H}} A \qquad (A^{\mathsf{H}} A (A^{\mathsf{H}} A)^{\mathsf{H}} A^{\mathsf{H}} A = A^{\mathsf{H}} A)$$

$$= A. \qquad (A = \mathbf{U}^{\mathsf{H}} A^{\mathsf{H}} A)$$

故 $Y \in A\{1\}$.

(2) 由 $\boldsymbol{A}^{(1)}$ 的性质知, rank $\boldsymbol{Y} \geqslant \operatorname{rank} \boldsymbol{A}$.

$$A YA = U^{H} A^{H} A (A^{H} A)^{(1)} A^{H} A \qquad (A = U^{H} A^{H} A, Y = (A^{H} A)^{(1)} A^{H})$$

$$= U^{H} A^{H} A \qquad (A^{H} A (A^{H} A)^{H} A^{H} A = A^{H} A)$$

$$= A. \qquad (A = U^{H} A^{H} A)$$

故 $Y \in A\{1\}$.

(2) 由 $\mathbf{A}^{(1)}$ 的性质知, rank $\mathbf{Y} \geqslant \operatorname{rank} \mathbf{A}$. 又

$$\operatorname{rank}\,\boldsymbol{Y}\!=\operatorname{rank}\left(\left(\boldsymbol{A}^{\operatorname{H}}\boldsymbol{A}\right)^{(1)}\boldsymbol{A}^{\operatorname{H}}\right)\leqslant\operatorname{rank}\boldsymbol{A}^{\operatorname{H}}=\operatorname{rank}\boldsymbol{A},$$

黄正华 (武汉大学)

$$A YA = U^{H} A^{H} A (A^{H} A)^{(1)} A^{H} A \qquad (A = U^{H} A^{H} A, Y = (A^{H} A)^{(1)} A^{H})$$

$$= U^{H} A^{H} A \qquad (A^{H} A (A^{H} A)^{H} A^{H} A = A^{H} A)$$

$$= A. \qquad (A = U^{H} A^{H} A)$$

故 $Y \in A\{1\}$.

(2) 由 $\mathbf{A}^{(1)}$ 的性质知, rank $\mathbf{Y} \geqslant \operatorname{rank} \mathbf{A}$. 又

$$\operatorname{rank}\,\boldsymbol{Y} = \operatorname{rank}\left(\left(\boldsymbol{A}^{\operatorname{H}}\boldsymbol{A}\right)^{(1)}\boldsymbol{A}^{\operatorname{H}}\right) \leqslant \operatorname{rank}\boldsymbol{A}^{\operatorname{H}} = \operatorname{rank}\boldsymbol{A},$$

所以

 $\operatorname{rank} \boldsymbol{Y} = \operatorname{rank} \boldsymbol{A}.$

$$A YA = U^{H} A^{H} A (A^{H} A)^{(1)} A^{H} A \qquad (A = U^{H} A^{H} A, Y = (A^{H} A)^{(1)} A^{H})$$

$$= U^{H} A^{H} A \qquad (A^{H} A (A^{H} A)^{H} A^{H} A = A^{H} A)$$

$$= A. \qquad (A = U^{H} A^{H} A)$$

故 $Y \in A\{1\}$.

(2) 由 $\mathbf{A}^{(1)}$ 的性质知, rank $\mathbf{Y} \geqslant \operatorname{rank} \mathbf{A}$. 又

$$\operatorname{rank}\,\boldsymbol{Y}\!=\operatorname{rank}\left(\left(\boldsymbol{A}^{\mathrm{H}}\boldsymbol{A}\right)^{(1)}\boldsymbol{A}^{\mathrm{H}}\right)\leqslant\operatorname{rank}\boldsymbol{A}^{\mathrm{H}}=\operatorname{rank}\boldsymbol{A},$$

所以

$$\operatorname{rank} \boldsymbol{Y} = \operatorname{rank} \boldsymbol{A}.$$

由定理 3.3 知 $Y \in A\{1,2\}$.

(3) 又因为

$$A Y = U^{H} A^{H} A (A^{H} A)^{(1)} A^{H} \qquad (A = U^{H} A^{H} A, Y = (A^{H} A)^{(1)} A^{H})$$

$$= U^{H} A^{H} A (A^{H} A)^{(1)} A^{H} A U \qquad (A^{H} = A^{H} A U)$$

$$= U^{H} A^{H} A U \qquad (A^{H} A (A^{H} A)^{H} A^{H} A = A^{H} A)$$

$$= (A U)^{H} (A U),$$

(3) 又因为

$$A Y = U^{H} A^{H} A (A^{H} A)^{(1)} A^{H} \qquad (A = U^{H} A^{H} A, Y = (A^{H} A)^{(1)} A^{H})$$

$$= U^{H} A^{H} A (A^{H} A)^{(1)} A^{H} A U \qquad (A^{H} = A^{H} A U)$$

$$= U^{H} A^{H} A U \qquad (A^{H} A (A^{H} A)^{H} A^{H} A = A^{H} A)$$

$$= (A U)^{H} (A U),$$

从而

$$(\boldsymbol{A}\boldsymbol{Y})^{\mathrm{H}} = ((\boldsymbol{A}\boldsymbol{U})^{\mathrm{H}}(\boldsymbol{A}\boldsymbol{U}))^{\mathrm{H}} = (\boldsymbol{A}\boldsymbol{U})^{\mathrm{H}}(\boldsymbol{A}\boldsymbol{U}) = \boldsymbol{A}\boldsymbol{Y}.$$

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 59 / 111

(3) 又因为

$$A Y = U^{H} A^{H} A (A^{H} A)^{(1)} A^{H} \qquad (A = U^{H} A^{H} A, Y = (A^{H} A)^{(1)} A^{H})$$

$$= U^{H} A^{H} A (A^{H} A)^{(1)} A^{H} A U \qquad (A^{H} = A^{H} A U)$$

$$= U^{H} A^{H} A U \qquad (A^{H} A (A^{H} A)^{H} A^{H} A = A^{H} A)$$

$$= (A U)^{H} (A U),$$

从而

$$(\boldsymbol{A}\boldsymbol{Y})^{\mathrm{H}} = ((\boldsymbol{A}\boldsymbol{U})^{\mathrm{H}}(\boldsymbol{A}\boldsymbol{U}))^{\mathrm{H}} = (\boldsymbol{A}\boldsymbol{U})^{\mathrm{H}}(\boldsymbol{A}\boldsymbol{U}) = \boldsymbol{A}\boldsymbol{Y}.$$

所以 $Y \in A\{1,2,3\}$.

☞ 由 $Y \in A\{1,2,3\}$ 有 $Y \in A\{1,3\}$, 即任一矩阵 A 的 $\{1,3\}$ -逆是存在的.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 59 / 111

$$A{1,3} = {G + (I - GA)Y | Y$$
是任意的 $n \times m$ 阶矩阵}.

设 $G \in A\{1,3\}$, 则

$$A{1,3} = {G + (I - GA)Y | Y$$
是任意的 $n \times m$ 阶矩阵}.

证: 记Z = G + (I - GA)Y.

$$A{1,3} = \{G + (I - GA)Y | Y$$
 是任意的 $n \times m$ 阶矩阵 $\}$.

证: 记
$$Z = G + (I - GA)Y$$
. 任意 $G \in A\{1\}$, 有

$$A(I-GA) = A - AGA = O,$$

$$A{1,3} = \{G + (I - GA)Y | Y$$
 是任意的 $n \times m$ 阶矩阵 $\}$.

证: 记
$$Z = G + (I - GA)Y$$
. 任意 $G \in A\{1\}$, 有

$$A(I-GA) = A - AGA = O,$$

故
$$AZ = AG$$
.

$$A{1,3} = \{G + (I - GA)Y | Y$$
是任意的 $n \times m$ 阶矩阵 $\}$.

证: 记
$$Z = G + (I - GA)Y$$
. 任意 $G \in A\{1\}$, 有

$$A(I-GA) = A - AGA = O,$$

故
$$AZ = AG$$
. 从而

$$AZA = AGA = A$$
,

设 $G \in A\{1,3\}$, 则

$$A{1,3} = \{G + (I - GA)Y | Y$$
是任意的 $n \times m$ 阶矩阵 $\}$.

证: 记
$$Z = G + (I - GA)Y$$
. 任意 $G \in A\{1\}$, 有

$$A(I-GA) = A - AGA = O,$$

故 AZ = AG. 从而

$$AZA = AGA = A$$

所以 $Z \in A\{1\}$.

设 $G \in A\{1,3\}$, 则

$$A\{1,3\} = \{G + (I - GA)Y | Y$$
 是任意的 $n \times m$ 阶矩阵 $\}$.

证: 记
$$Z = G + (I - GA)Y$$
. 任意 $G \in A\{1\}$, 有

$$A(I-GA) = A - AGA = O,$$

故 AZ = AG. 从而

$$AZA = AGA = A$$

所以 $Z \in A\{1\}$.

又因为

$$(AZ)^{\mathrm{H}} = (AG)^{\mathrm{H}}$$

$$(AZ = AG)$$

$$= AG$$

$$((AG)^{\mathrm{H}} = AG)$$

$$= AZ,$$

$$(AZ = AG)$$

设 $G \in A\{1,3\}$, 则

$$A\{1,3\} = \{G + (I - GA)Y | Y$$
 是任意的 $n \times m$ 阶矩阵 $\}$.

证: 记
$$Z = G + (I - GA)Y$$
. 任意 $G \in A\{1\}$, 有

$$A(I-GA) = A - AGA = O,$$

故 AZ = AG. 从而

$$AZA = AGA = A$$

所以 $Z \in A\{1\}$.

又因为

$$(AZ)^{\mathrm{H}} = (AG)^{\mathrm{H}}$$
 $(AZ = AG)$
= AG $((AG)^{\mathrm{H}} = AG)$
= AZ , $(AZ = AG)$

所以 $Z \in A\{1,3\}$.

反过来, 任取 $X \in A\{1,3\}$,

反过来, 任取 $X \in A\{1,3\}$, 令 Y = X - G, 则

$$G + (I - GA) Y$$
= $G + (I - GA)(X - G)$
= $G + X - G - GAX - GAG$
= $X - GAX - GAG$
= $X - GAGAX - GAG$
= $X - GAGAX - GAG$
($A = AGA$)
= $X - G(AG)^{H}(AX)^{H} - GAG$
($AG = (AG)^{H}, AX = (AX)^{H}$)
= $X - GG^{H}A^{H}X^{H}A^{H} - GAG$
= $X - GG^{H}A^{H} - GAG$
($AXA = A$)
= $X - G(AG)^{H} - GAG$
= $X - G(AG)^{H} - GAG$
($AXA = A$)

黄正华 (武汉大学) 第 4 章 矩阵的广义逆 December 15, 2014 61 / 111

反过来, 任取 $X \in A\{1,3\}$, 令 Y = X - G, 则

$$G + (I - GA) Y$$
= $G + (I - GA)(X - G)$
= $G + X - G - GAX - GAG$
= $X - GAX - GAG$
= $X - GAGAX - GAG$
= $X - GAGAX - GAG$
($A = AGA$)
= $X - G(AG)^{H}(AX)^{H} - GAG$
($AG = (AG)^{H}, AX = (AX)^{H}$)
= $X - GG^{H}A^{H}X^{H}A^{H} - GAG$
= $X - GG^{H}A^{H} - GAG$
($AXA = A$)
= $X - G(AG)^{H} - GAG$
= $X - G(AG)^{H} - GAG$
($AXA = A$)

故任意 $X \in A\{1,3\}$, 都可以用 G + (I - GA)Y表达. 得证.

Outline

- ❶ Moore-Penrose 广义逆矩阵
- ② 广义逆矩阵 **A**⁽¹⁾
- ③ 广义逆矩阵 A^(1,2)
- ♠ 广义逆矩阵 A^(1,3)
 - 广义逆 A(1,3) 的定义和构造
 - 广义逆 A^(1,3) 应用于解方程组
- 5 广义逆矩阵 A^(1,4)
- ⑥ M-P 广义逆矩阵

最小二乘法

Example 4.5

已知某种材料在生产过程中的废品率 y 与某种化学成分 x 有关. 下列表中记载了某工厂生产中 y 与相应的 x 的几组数值:

$$y(\%)$$
 1.00
 0.9
 0.9
 0.81
 0.60
 0.56
 0.35

 $x(\%)$
 3.6
 3.7
 3.8
 3.9
 4.0
 4.0
 4.2

我们想找出 y 对 x 的一个近似公式.

解: 把表中数值画出图来看, 发现它的变换趋势近于一条直线. 因此我们选取 x的一次式 ax + b 来表达. 当然最好能选到适当的 a, b 使得下面的等式

$$3.6a + b - 1.00 = 0,$$

$$3.7a + b - 0.9 = 0,$$

$$3.8a + b - 0.9 = 0,$$

$$3.9a + b - 0.81 = 0,$$

$$4.0a + b - 0.60 = 0,$$

$$4.1a + b - 0.56 = 0,$$

$$4.2a + b - 0.35 = 0$$

都成立. 实际上是不可能的 $(\operatorname{rank} \mathbf{A} = 2 \neq \operatorname{rank}[\mathbf{A}, \mathbf{b}] = 3)$, 任何 a, b 代入上面各式都有误差.

$$3.6a + b - 1.00 = 0,$$

$$3.7a + b - 0.9 = 0,$$

$$3.8a + b - 0.9 = 0,$$

$$3.9a + b - 0.81 = 0,$$

$$4.0a + b - 0.60 = 0,$$

$$4.1a + b - 0.56 = 0,$$

$$4.2a + b - 0.35 = 0$$

都成立. 实际上是不可能的 (rank $\mathbf{A} = 2 \neq \text{rank}[\mathbf{A}, \mathbf{b}] = 3$), 任何 a, b 代入上面各式都有误差. 于是想找到 a, b 使得上面各式的误差的平方和最小, 即找 a, b 使

$$(3.6a+b-1.00)^2 + (3.7a+b-0.9)^2 + (3.8a+b-0.9)^2 + (3.9a+b-0.81)^2$$
$$+ (4.0a+b-0.60)^2 + (4.1a+b-0.56)^2 + (4.2a+b-0.35)^2$$
最小。

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 64 / 13

$$3.6a + b - 1.00 = 0,$$

$$3.7a + b - 0.9 = 0,$$

$$3.8a + b - 0.9 = 0,$$

$$3.9a + b - 0.81 = 0,$$

$$4.0a + b - 0.60 = 0,$$

$$4.1a + b - 0.56 = 0,$$

都成立. 实际上是不可能的 (rank $\mathbf{A} = 2 \neq \text{rank}[\mathbf{A}, \mathbf{b}] = 3$), 任何 a, b 代入上面各式都有误差. 于是想找到 a, b 使得上面各式的误差的平方和最小, 即找 a, b 使

4.2a + b - 0.35 = 0

$$(3.6a + b - 1.00)^{2} + (3.7a + b - 0.9)^{2} + (3.8a + b - 0.9)^{2} + (3.9a + b - 0.81)^{2} + (4.0a + b - 0.60)^{2} + (4.1a + b - 0.56)^{2} + (4.2a + b - 0.35)^{2}$$

最小. 这里讨论的是误差的平方即二乘方, 故称为最小二乘法.

矛盾方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 是没有解的, 但希望找到近似解 \mathbf{x}_0 使误差 $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ 为最小.

矛盾方程 $\mathbf{A}x = \mathbf{b}$ 是没有解的,但希望找到近似解 \mathbf{x}_0 使误差 $\|\mathbf{A}x - \mathbf{b}\|$ 为最小. 若 $\mathbf{x}_0 \in \mathbb{C}^n$ 满足

$$||Ax_0 - b|| = \min_{x \in \mathbb{C}^n} ||Ax - b||,$$

即

$$\|\mathbf{A}\mathbf{x}_0-\mathbf{b}\|\leqslant \|\mathbf{A}\mathbf{x}-\mathbf{b}\|,$$

则称近似解 x_0 为矛盾方程 Ax = b 的最小二乘 (least squares) 解, 简称为 L-S 解.

矛盾方程 $\mathbf{A}x = \mathbf{b}$ 是没有解的, 但希望找到近似解 \mathbf{z}_0 使误差 $\|\mathbf{A}x - \mathbf{b}\|$ 为最小. 若 $\mathbf{z}_0 \in \mathbb{C}^n$ 满足

$$\|Ax_0 - b\| = \min_{x \in \mathbb{C}^n} \|Ax - b\|,$$

即

$$||\mathbf{A}\mathbf{x}_0 - \mathbf{b}|| \leqslant ||\mathbf{A}\mathbf{x} - \mathbf{b}||,$$

则称近似解 x_0 为矛盾方程 Ax = b 的最小二乘 (least squares) 解, 简称为 L-S 解.

 $oldsymbol{oldsymbol{arphi}}$ 矛盾方程无解, 故最小二乘解并不是矛盾方程 Ax=b 的解, 只是其近似解.

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 任取 $G \in A\{1,3\}$, 则 $x_0 = Gb$ 是方程组 Ax = b 的最小二乘解.

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 任取 $G \in A\{1,3\}$, 则 $x_0 = Gb$ 是方程组 Ax = b 的最小二乘解.

 $\text{i.i.} \quad \boxplus \ \| \bm{A} \bm{x} - \bm{b} \|^2 = \| \bm{A} \bm{G} \bm{b} - \bm{b} + \bm{A} \bm{x} - \bm{A} \bm{G} \bm{b} \|^2 = \| (\bm{A} \bm{G} - \bm{I}) \bm{b} + \bm{A} (\bm{x} - \bm{G} \bm{b}) \|^2,$

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 任取 $G \in A\{1,3\}$, 则 $x_0 = Gb$ 是方程组 Ax = b 的最小二乘解.

证: 由 $\|Ax - b\|^2 = \|AGb - b + Ax - AGb\|^2 = \|(AG - I)b + A(x - Gb)\|^2$, 又因为

$$(\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) \mid (\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{b}) = \mathbf{b}^{\mathrm{H}}(\mathbf{A}\mathbf{G} - \mathbf{I})^{\mathrm{H}}\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b})$$
$$= \mathbf{b}^{\mathrm{H}}(\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) = 0,$$

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 任取 $G \in A\{1,3\}$, 则 $x_0 = Gb$ 是方程组 Ax = b 的最小二乘解.

证: 由 $\|Ax - b\|^2 = \|AGb - b + Ax - AGb\|^2 = \|(AG - I)b + A(x - Gb)\|^2$, 又因为

$$(\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) \mid (\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{b}) = \mathbf{b}^{\mathrm{H}}(\mathbf{A}\mathbf{G} - \mathbf{I})^{\mathrm{H}}\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b})$$
$$= \mathbf{b}^{\mathrm{H}}(\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) = 0,$$

故 $A(x-Gb) \perp (AG-I)b$.

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 任取 $G \in A\{1,3\}$, 则 $x_0 = Gb$ 是方程组 Ax = b 的最小二乘解.

证: 由 $\|Ax - b\|^2 = \|AGb - b + Ax - AGb\|^2 = \|(AG - I)b + A(x - Gb)\|^2$, 又因为

$$(\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) \mid (\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{b}) = \mathbf{b}^{\mathrm{H}}(\mathbf{A}\mathbf{G} - \mathbf{I})^{\mathrm{H}}\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b})$$
$$= \mathbf{b}^{\mathrm{H}}(\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) = 0,$$

故
$$A(x-Gb) \perp (AG-I)b$$
. 所以

$$\|Ax - b\|^2 = \|AGb - b\|^2 + \|Ax - AGb\|^2,$$

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 任取 $G \in A\{1,3\}$, 则 $x_0 = Gb$ 是方程组 Ax = b 的最小二乘解.

证: 由 $\|Ax - b\|^2 = \|AGb - b + Ax - AGb\|^2 = \|(AG - I)b + A(x - Gb)\|^2$, 又因为

$$(\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) \mid (\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{b}) = \mathbf{b}^{\mathrm{H}}(\mathbf{A}\mathbf{G} - \mathbf{I})^{\mathrm{H}}\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b})$$
$$= \mathbf{b}^{\mathrm{H}}(\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) = 0,$$

故 $A(x-Gb) \perp (AG-I)b$. 所以

$$\|Ax - b\|^2 = \|AGb - b\|^2 + \|Ax - AGb\|^2,$$

故对任意 x ∈ \mathbb{C}^n 都有

$$\|\boldsymbol{A}\boldsymbol{G}\boldsymbol{b} - \boldsymbol{b}\|^2 \leqslant \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|^2,$$

黄正华 (武汉大学)

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 任取 $G \in A\{1,3\}$, 则 $x_0 = Gb$ 是方程组 Ax = b 的最小二乘解.

证: 由 $\|Ax - b\|^2 = \|AGb - b + Ax - AGb\|^2 = \|(AG - I)b + A(x - Gb)\|^2$, 又因为

$$(\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) \mid (\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{b}) = \mathbf{b}^{\mathrm{H}}(\mathbf{A}\mathbf{G} - \mathbf{I})^{\mathrm{H}}\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b})$$
$$= \mathbf{b}^{\mathrm{H}}(\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) = 0,$$

故 $A(x-Gb) \perp (AG-I)b$. 所以

$$\|Ax - b\|^2 = \|AGb - b\|^2 + \|Ax - AGb\|^2,$$

故对任意 $x \in \mathbb{C}^n$ 都有

$$||AGb - b||^2 \leqslant ||Ax - b||^2$$

因此 $x_0 = Gb$ 是方程组 Ax = b 的最小二乘解.

(1) 对 $\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) \perp (\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{b}$ 的说明.

☞ (1) 对 $A(x - Gb) \perp (AG - I)b$ 的说明.

事实上, 对任意 $\alpha \in \mathbb{C}^m$, $\beta \in \mathbb{C}^n$, 都有

$$m{A}m{lpha}\perp(m{A}m{G}-m{I}_n)m{eta}.$$

其中 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{G} \in \mathbf{A}\{1,3\}$.

67 / 111

(1) 对 $A(x - Gb) \perp (AG - I)b$ 的说明. 事实上, 对任意 $\alpha \in \mathbb{C}^m$, $\beta \in \mathbb{C}^n$, 都有

$$A\alpha \perp (AG - I_n)\beta$$
.

其中 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{G} \in \mathbf{A}\{1,3\}$.

证: 注意到 AG 是正交投影算子,

(1) 对 $\boldsymbol{A}(\boldsymbol{x}-\boldsymbol{G}\boldsymbol{b})\perp(\boldsymbol{A}\boldsymbol{G}-\boldsymbol{I})\boldsymbol{b}$ 的说明.

事实上, 对任意 $\alpha \in \mathbb{C}^m$, $\beta \in \mathbb{C}^n$, 都有

$$m{A}m{lpha}\perp(m{A}m{G}-m{I}_n)m{eta}.$$

其中 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{G} \in \mathbf{A}\{1,3\}$.

证: 注意到 AG 是正交投影算子, 从而

$$R(\mathbf{A}\mathbf{G}) \perp N(\mathbf{A}\mathbf{G}).$$

(1) 对 $\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) \perp (\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{b}$ 的说明.

事实上, 对任意 $\alpha \in \mathbb{C}^m$, $\beta \in \mathbb{C}^n$, 都有

$$A\alpha \perp (AG - I_n)\beta$$
.

其中 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{G} \in \mathbf{A}\{1,3\}$.

证: 注意到 AG 是正交投影算子, 从而

$$R(\mathbf{A}\mathbf{G}) \perp N(\mathbf{A}\mathbf{G}).$$

$$\mathbb{X}$$
 $R(\mathbf{A}\mathbf{G}) = R(\mathbf{A}), N(\mathbf{A}\mathbf{G}) = R(\mathbf{I} - \mathbf{A}\mathbf{G}) = R(\mathbf{A}\mathbf{G} - \mathbf{I}),$

黄正华 (武汉大学)

(1) 对 $\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) \perp (\mathbf{A}\mathbf{G} - \mathbf{I})\mathbf{b}$ 的说明.

事实上, 对任意 $\alpha \in \mathbb{C}^m$, $\beta \in \mathbb{C}^n$, 都有

$$m{A}m{lpha}\perp(m{A}m{G}-m{I}_n)m{eta}.$$

其中 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{G} \in \mathbf{A}\{1,3\}$.

证: 注意到 AG 是正交投影算子, 从而

$$R(\mathbf{A}\mathbf{G}) \perp N(\mathbf{A}\mathbf{G}).$$

又
$$R(\mathbf{A}\mathbf{G}) = R(\mathbf{A}), N(\mathbf{A}\mathbf{G}) = R(\mathbf{I} - \mathbf{A}\mathbf{G}) = R(\mathbf{A}\mathbf{G} - \mathbf{I}),$$
 故

$$R(\mathbf{A}) \perp R(\mathbf{A}\mathbf{G} - \mathbf{I}).$$

得 $\mathbf{A}\alpha \perp (\mathbf{A}\mathbf{G} - \mathbf{I})\beta$.

(2) "对任意 $\mathbf{x} \in \mathbb{C}^n$ 都有 $\|\mathbf{A}\mathbf{G}\mathbf{b} - \mathbf{b}\|^2 \leqslant \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$ " 的几何意义.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 68 / 111

REP

(2) "对任意 $x \in \mathbb{C}^n$ 都有 $\|AGb - b\|^2 \le \|Ax - b\|^2$ " 的几何意义. 假定 Ax = b 是矛盾方程, 故 $b \notin R(A)$.

REP

(2) "对任意 $x \in \mathbb{C}^n$ 都有 $||AGb - b||^2 \le ||Ax - b||^2$ " 的几何意义. 假定 Ax = b 是矛盾方程, 故 $b \notin R(A)$.

前述已证 $R(\mathbf{A}) \perp R(\mathbf{A}\mathbf{G} - \mathbf{I})$, 故

$$(\boldsymbol{A}\boldsymbol{G}-\boldsymbol{I}_n)\boldsymbol{b}\perp R(\boldsymbol{A}).$$

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 68 / 113

前述已证 $R(\mathbf{A}) \perp R(\mathbf{A}\mathbf{G} - \mathbf{I})$, 故

$$(\boldsymbol{A}\boldsymbol{G}-\boldsymbol{I}_n)\boldsymbol{b}\perp R(\boldsymbol{A}).$$

故对任意 $x \in \mathbb{C}^n$ 都有 $||AGb - b||^2 \leqslant ||Ax - b||^2$.

 黄正华 (武汉大学)
 第4章 矩阵的广义逆
 December 15, 2014 68 / 11

前述已证 $R(\mathbf{A}) \perp R(\mathbf{A}\mathbf{G} - \mathbf{I})$, 故

$$(\boldsymbol{A}\boldsymbol{G}-\boldsymbol{I}_n)\boldsymbol{b}\perp R(\boldsymbol{A}).$$

故对任意 $x \in \mathbb{C}^n$ 都有 $\|AGb - b\|^2 \leqslant \|Ax - b\|^2$.

又 AGb 是 b 沿 N(AG) 方向在 R(A) 的正交投影, 故 Ax = AGb 时, $\|Ax - b\|^2$ 最小.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 68 / 11

前述已证 $R(\mathbf{A}) \perp R(\mathbf{A}\mathbf{G} - \mathbf{I})$, 故

$$(\boldsymbol{A}\boldsymbol{G}-\boldsymbol{I}_n)\boldsymbol{b}\perp R(\boldsymbol{A}).$$

故对任意 $x \in \mathbb{C}^n$ 都有 $||AGb - b||^2 \leqslant ||Ax - b||^2$.

又 AGb 是 b 沿 N(AG) 方向在 R(A) 的正交投影, 故 Ax = AGb 时, $\|Ax - b\|^2$ 最小. (注意 N(A) 不一定垂直于 R(A).)

 黄正华 (武汉大学)
 第4章 矩阵的广义逆
 December 15, 2014
 68 / 111

设 $G \in A\{1,3\}$, 则 $x_0 \in \mathbb{C}^n$ 是方程组 Ax = b 的最小二乘解的充分必要条件为: x_0 是方程组

$$Ax = AGb$$

的解.

69 / 111

设 $G \in A\{1,3\}$,则 $x_0 \in \mathbb{C}^n$ 是方程组 Ax = b 的最小二乘解的充分必要条件为: x_0 是方程组

$$Ax = AGb$$

的解.

证: 若 $G \in A\{1,3\}$,则对任意 $x \in \mathbb{C}^n$ 都有

$$\|Ax - b\|^2 = \|AGb - b\|^2 + \|Ax_0 - AGb\|^2.$$

如果 x_0 是方程组 Ax = b 的最小二乘解,则应有

$$\|Ax_0 - b\|^2 = \|AGb - b\|^2.$$

设 $G \in A\{1,3\}$,则 $x_0 \in \mathbb{C}^n$ 是方程组 Ax = b 的最小二乘解的充分必要条件为: x_0 是方程组

$$Ax = AGb$$

的解.

证: 若 $G \in A\{1,3\}$,则对任意 $x \in \mathbb{C}^n$ 都有

$$\|Ax - b\|^2 = \|AGb - b\|^2 + \|Ax_0 - AGb\|^2.$$

如果 x_0 是方程组 Ax = b 的最小二乘解, 则应有

$$\|Ax_0 - b\|^2 = \|AGb - b\|^2.$$

所以

$$\|\mathbf{A}\mathbf{x}_0 - \mathbf{A}\mathbf{G}\mathbf{b}\|^2 = 0$$

则

$$\mathbf{A}\mathbf{x}_0 - \mathbf{A}\mathbf{G}\mathbf{b} = 0,$$

反之, 若 x_0 满足 Ax = AGb,

70 / 111

反之, 若 x_0 满足 Ax = AGb, 则必有

$$\|\mathbf{A}\mathbf{x}_0 - \mathbf{b}\|^2 = \|\mathbf{A}\mathbf{G}\mathbf{b} - \mathbf{b}\|^2.$$

即 x_0 也是方程组 Ax = b 的最小二乘解.

方程组 Ax = b 的最小二乘解的通式为

$$x = Gb + (I - GA)y,$$

其中 $G \in A\{1,3\}$, y 是 \mathbb{C}^n 中的任意向量.

方程组 Ax = b 的最小二乘解的通式为

$$x = Gb + (I - GA)y,$$

其中 $G \in A\{1,3\}$, $y \in \mathbb{C}^n$ 中的任意向量.

证: 由推理 4.7 知, $x \in \mathbb{C}^n$ 是方程组 Ax = b 的最小二乘解的充分必要条件为: x 是方程组

$$Ax = AGb$$

的解,

方程组 Ax = b 的最小二乘解的通式为

$$x = Gb + (I - GA)y,$$

其中 $G \in A\{1,3\}$, $y \in \mathbb{C}^n$ 中的任意向量.

证: 由推理 $4.7 \, \text{知}, \, \boldsymbol{x} \in \mathbb{C}^n$ 是方程组 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ 的最小二乘解的充分必要条件为: \boldsymbol{x} 是方程组

$$Ax = AGb$$

的解,也就是方程组

$$A(x - Gb) = 0 (13)$$

的解.

方程组 Ax = b 的最小二乘解的通式为

$$x = Gb + (I - GA)y,$$

其中 $G \in A\{1,3\}$, $y \in \mathbb{C}^n$ 中的任意向量.

证: 由推理 $4.7 \, \text{知}, \, \boldsymbol{x} \in \mathbb{C}^n$ 是方程组 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ 的最小二乘解的充分必要条件为: \boldsymbol{x} 是方程组

$$Ax = AGb$$

的解,也就是方程组

$$\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) = \mathbf{0} \tag{13}$$

的解. 注意到齐次方程组 Ax = 0 的通解为 $(I_n - A^{(1)}A)y$ (由定理 2.12 知),

黄正华 (武汉大学)

方程组 Ax = b 的最小二乘解的通式为

$$x = Gb + (I - GA)y,$$

其中 $G \in A\{1,3\}$, $y \in \mathbb{C}^n$ 中的任意向量.

证: 由推理 $4.7 \, \text{知}, \, \boldsymbol{x} \in \mathbb{C}^n$ 是方程组 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ 的最小二乘解的充分必要条件为: \boldsymbol{x} 是方程组

$$Ax = AGb$$

的解,也就是方程组

$$\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) = \mathbf{0} \tag{13}$$

的解. 注意到齐次方程组 Ax = 0 的通解为 $(I_n - A^{(1)}A)y$ (由定理 2.12 知), 故 (13) 式的通解为

$$x - Gb = (I - A^{(1)}A)y,$$

方程组 Ax = b 的最小二乘解的通式为

$$x = Gb + (I - GA)y,$$

其中 $G \in A\{1,3\}$, y 是 \mathbb{C}^n 中的任意向量.

证: 由推理 $4.7 \, \text{知}, \, \boldsymbol{x} \in \mathbb{C}^n$ 是方程组 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ 的最小二乘解的充分必要条件为: \boldsymbol{x} 是方程组

$$Ax = AGb$$

的解,也就是方程组

$$\mathbf{A}(\mathbf{x} - \mathbf{G}\mathbf{b}) = \mathbf{0} \tag{13}$$

的解. 注意到齐次方程组 Ax=0 的通解为 $(I_n-A^{(1)}A)y$ (由定理 2.12 知), 故 (13) 式的通解为

$$x - Gb = (I - A^{(1)}A)y,$$

即 $x = Gb + (I - A^{(1)}A)y$, 其中 y 是 \mathbb{C}^n 中的任意向量.

显然上述通解也可以写成

$$x = Gb + (I - GA)y, \qquad G \in A\{1, 3\},$$

其中 y 是 \mathbb{C}^n 中的任意向量.

₩ 从通式可以看出, 只有 A 是列满秩时, 最小二乘解才是唯一的, 且为 $\mathbf{x}_0 = (\mathbf{A}^{\mathrm{H}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{b}$. 否则, 便有无穷多个最小二乘解.

黄正华 (武汉大学) December 15, 2014

求矛盾方程组
$$\begin{cases} x_1 + 2x_2 = 1, \\ 2x_1 + x_2 = 0, \text{ 的最小二乘解.} \\ x_1 + x_2 = 0 \end{cases}$$

求矛盾方程组
$$\begin{cases} x_1 + 2x_2 = 1, \\ 2x_1 + x_2 = 0, \text{ 的最小二乘解.} \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{R}$$
: 系数矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$ 为列满秩矩阵,

求矛盾方程组
$$\begin{cases} x_1 + 2x_2 = 1, \\ 2x_1 + x_2 = 0, \text{ 的最小二乘解.} \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{R}$$
: 系数矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$ 为列满秩矩阵, 故

$$\mathbf{A}^{(1,3)} = (\mathbf{A}^{\mathrm{H}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{H}} = \frac{1}{11} \begin{vmatrix} -4 & 7 & 1 \\ 7 & -4 & 1 \end{vmatrix},$$

求矛盾方程组
$$\begin{cases} x_1 + 2x_2 = 1, \\ 2x_1 + x_2 = 0, \text{ 的最小二乘解.} \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{H}$$
: 系数矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$ 为列满秩矩阵, 故

$$\mathbf{A}^{(1,3)} = (\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{H}} = \frac{1}{11} \begin{bmatrix} -4 & 7 & 1 \\ 7 & -4 & 1 \end{bmatrix},$$

最小二乘解为

$$\boldsymbol{x}_0 = \boldsymbol{A}^{(1,3)} \boldsymbol{b} = \frac{1}{11} \begin{bmatrix} -4 \\ 7 \end{bmatrix}. \quad \Box$$

Outline

- Moore-Penrose 广义逆矩阵
- ② 广义逆矩阵 A⁽¹⁾
- ③ 广义逆矩阵 A^(1,2)
- 4 广义逆矩阵 A(1,3)
- **5** 广义逆矩阵 $A^{(1,4)}$
 - 广义逆 $A^{(1,4)}$ 的定义和构造
 - 广义逆 **A**^(1,4) 应用于解方程组
- 6 M-P 广义逆矩阵

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) AGA = A,
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 $\{1,4\}$ -逆, 记为 $A^{(1,4)}$.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) $\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$,
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 $\{1,4\}$ -逆, 记为 $A^{(1,4)}$.

记 A 的 $\{1,4\}$ -逆的全体为 $A\{1,4\}$, 即

$$\boldsymbol{A}\{1,4\} = \{\boldsymbol{G} \mid \boldsymbol{A}\boldsymbol{G}\boldsymbol{A} = \boldsymbol{A}, (\boldsymbol{G}\boldsymbol{A})^{\mathrm{H}} = \boldsymbol{G}\boldsymbol{A}\}.$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) $\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$,
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 $\{1,4\}$ -逆, 记为 $A^{(1,4)}$.

记 A 的 $\{1,4\}$ -逆的全体为 $A\{1,4\}$, 即

$$A{1,4} = {G \mid AGA = A, (GA)^{H} = GA}.$$

 $^{\mathbb{C}^{\mathfrak{D}}}$ 此时 GA 是正交投影算子.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) $\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$,
- (2) GAG = G,
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 $\{1,2,4\}$ -逆, 记为 $A^{(1,2,4)}$.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) $\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$,
- (2) GAG = G,
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 $\{1,2,4\}$ -逆, 记为 $A^{(1,2,4)}$.

记 A 的 $\{1,2,4\}$ -逆的全体为 $A\{1,2,4\}$, 即

$$A{1,2,4} = {G \mid AGA = A, GAG = G, (GA)^{H} = GA}.$$

黄正华 (武汉大学)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) $\mathbf{A}\mathbf{G}\mathbf{A} = \mathbf{A}$,
- (2) GAG = G,
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 $\{1,2,4\}$ -逆, 记为 $A^{(1,2,4)}$.

记 A 的 $\{1,2,4\}$ -逆的全体为 $A\{1,2,4\}$, 即

$$A{1,2,4} = {G \mid AGA = A, GAG = G, (GA)^{H} = GA}.$$

下面先证明 A 的 $\{1,2,4\}$ -逆存在, 从而也就证明了 A 的 $\{1,4\}$ -逆存在.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 76

Theorem 5.3

对任一矩阵 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 都有

$$\boldsymbol{X} = \boldsymbol{A}^{\mathrm{H}} (\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}})^{(1)} \in \boldsymbol{A} \{1, 2, 4\}.$$

Theorem 5.3

对任一矩阵 $A \in \mathbb{C}^{m \times n}$, 都有

$$\boldsymbol{X} = \boldsymbol{A}^{\mathrm{H}} (\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}})^{(1)} \in \boldsymbol{A} \{1, 2, 4\}.$$

Theorem 5.4

设 $G \in A\{1,4\}$, 则

$$A{1,4} = \{G + Z(I - AG) \mid Z$$
 是任意的 $n \times m$ 阶矩阵 $\}$.

Outline

- ① Moore-Penrose 广义逆矩阵
- ② 广义逆矩阵 A⁽¹⁾
- ③ 广义逆矩阵 A^(1,2)
- 4 广义逆矩阵 A(1,3)
- **5** 广义逆矩阵 $A^{(1,4)}$
 - 广义逆 $A^{(1,4)}$ 的定义和构造
 - 广义逆 A(1,4) 应用于解方程组
- 6 M-P 广义逆矩阵

问题: 若方程组 Ax = b 相容, 其解可能有无穷多个, 怎样求具有最小范数的解, 即求满足

$$\min_{\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}} \lVert \boldsymbol{x} \rVert_2$$

的解 x, 其中 $\|\cdot\|_2$ 是欧氏范数.

问题: 若方程组 Ax = b 相容, 其解可能有无穷多个, 怎样求具有最小范数的解, 即求满足

$$\min_{\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}} \|\boldsymbol{x}\|_2$$

的解 x, 其中 $\|\cdot\|_2$ 是欧氏范数. 可以证明, 满足该条件的解是唯一的, 称之为最小范数 (least-norm) 解, 简称 L-N 解.

<u>Le</u>mma 5.5

设
$$\mathbf{A} \in \mathbb{C}^{m \times n}$$
, 则有

$$\left(R(\boldsymbol{A}^{\mathrm{H}})\right)^{\perp} = N(\boldsymbol{A}).$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则有

$$(R(\boldsymbol{A}^{\mathrm{H}}))^{\perp} = N(\boldsymbol{A}).$$

证: 因 $A^{(1,4)}A \in \mathbb{C}^{n \times n}$, 且为幂等的 Hermite 矩阵, 故其可看成 \mathbb{C}^n 上的正交 投影算子.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则有

$$(R(\boldsymbol{A}^{\mathrm{H}}))^{\perp} = N(\boldsymbol{A}).$$

证: 因 $A^{(1,4)}A \in \mathbb{C}^{n \times n}$, 且为幂等的 Hermite 矩阵, 故其可看成 \mathbb{C}^n 上的正交 投影算子. 从而有

$$\left(R(\boldsymbol{A}^{(1,4)}\boldsymbol{A})\right)^{\perp} = N(\boldsymbol{A}^{(1,4)}\boldsymbol{A}).$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则有

$$(R(\boldsymbol{A}^{\mathrm{H}}))^{\perp} = N(\boldsymbol{A}).$$

证: 因 $A^{(1,4)}A \in \mathbb{C}^{n \times n}$, 且为幂等的 Hermite 矩阵, 故其可看成 \mathbb{C}^n 上的正交 投影算子. 从而有

$$\left(R(\boldsymbol{A}^{(1,4)}\boldsymbol{A})\right)^{\perp} = N(\boldsymbol{A}^{(1,4)}\boldsymbol{A}).$$

又由定理 2.8 的结论 $R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}}) = R(\mathbf{A}^{\mathrm{H}}), N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A}),$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则有

$$(R(\boldsymbol{A}^{\mathrm{H}}))^{\perp} = N(\boldsymbol{A}).$$

证: 因 $A^{(1,4)}A \in \mathbb{C}^{n \times n}$, 且为幂等的 Hermite 矩阵, 故其可看成 \mathbb{C}^n 上的正交 投影算子. 从而有

$$\left(R(\boldsymbol{A}^{(1,4)}\boldsymbol{A})\right)^{\perp} = N(\boldsymbol{A}^{(1,4)}\boldsymbol{A}).$$

又由定理 2.8 的结论 $R((\boldsymbol{A}^{(1)}\boldsymbol{A})^{\mathrm{H}}) = R(\boldsymbol{A}^{\mathrm{H}}), N(\boldsymbol{A}^{(1)}\boldsymbol{A}) = N(\boldsymbol{A}),$ 可知

$$R(\boldsymbol{A}^{(1,4)}\boldsymbol{A}) = R((\boldsymbol{A}^{(1,4)}\boldsymbol{A})^{\mathbf{H}}) = R(\boldsymbol{A}^{\mathbf{H}}),$$

$$N(\boldsymbol{A}^{(1,4)}\boldsymbol{A}) = N(\boldsymbol{A}).$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则有

$$(R(\boldsymbol{A}^{\mathrm{H}}))^{\perp} = N(\boldsymbol{A}).$$

证: 因 $\mathbf{A}^{(1,4)}\mathbf{A} \in \mathbb{C}^{n \times n}$, 且为幂等的 Hermite 矩阵, 故其可看成 \mathbb{C}^n 上的正交 投影算子. 从而有

$$\left(R(\boldsymbol{A}^{(1,4)}\boldsymbol{A})\right)^{\perp} = N(\boldsymbol{A}^{(1,4)}\boldsymbol{A}).$$

又由定理 2.8 的结论 $R((\boldsymbol{A}^{(1)}\boldsymbol{A})^{\mathrm{H}}) = R(\boldsymbol{A}^{\mathrm{H}}), N(\boldsymbol{A}^{(1)}\boldsymbol{A}) = N(\boldsymbol{A}),$ 可知

$$R(\boldsymbol{A}^{(1,4)}\boldsymbol{A}) = R((\boldsymbol{A}^{(1,4)}\boldsymbol{A})^{\mathbf{H}}) = R(\boldsymbol{A}^{\mathbf{H}}),$$

$$N(\mathbf{A}^{(1,4)}\mathbf{A}) = N(\mathbf{A}).$$

所以

$$(R(\boldsymbol{A}^{\mathrm{H}}))^{\perp} = N(\boldsymbol{A}). \quad \Box$$

设 $A \in \mathbb{C}^{m \times n}$, $b \in R(A)$, 则相容性方程 Ax = b 在且仅在 $R(A^{H})$ 上有唯一的最小范数解 x_0 .

设 $A \in \mathbb{C}^{m \times n}$, $b \in R(A)$, 则相容性方程 Ax = b 在且仅在 $R(A^{H})$ 上有唯一的最小范数解 x_{0} .

几何解释:

设 $A \in \mathbb{C}^{m \times n}$, $b \in R(A)$, 则相容性方程 Ax = b 在且仅在 $R(A^{H})$ 上有唯一的最小范数解 x_0 .

口何解释: $(R(\boldsymbol{A}^{\mathrm{H}}))^{\perp} = N(\boldsymbol{A}),$

设 $A \in \mathbb{C}^{m \times n}$, $b \in R(A)$, 则相容性方程 Ax = b 在且仅在 $R(A^{H})$ 上有唯一的最小范数解 x_0 .

「几何解释: $(R(\boldsymbol{A}^{\mathrm{H}}))^{\perp} = N(\boldsymbol{A})$,但 $R(\boldsymbol{A})$ 不一定与 $N(\boldsymbol{A})$ 正交.

设 $A \in \mathbb{C}^{m \times n}$, $b \in R(A)$, 则相容性方程 Ax = b 在且仅在 $R(A^{H})$ 上有唯一的最小范数解 x_0 .

「几何解释: $(R(\mathbf{A}^{H}))^{\perp} = N(\mathbf{A})$,但 $R(\mathbf{A})$ 不一定与 $N(\mathbf{A})$ 正交. 方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有解, 故 $\mathbf{b} \in R(\mathbf{A})$.

81 / 111

设 $A \in \mathbb{C}^{m \times n}$, $b \in R(A)$, 则相容性方程 Ax = b 在且仅在 $R(A^{H})$ 上有唯一的最小范数解 x_0 .

几何解释: $(R(\mathbf{A}^{\mathrm{H}}))^{\perp} = N(\mathbf{A})$,但 $R(\mathbf{A})$ 不一定与 $N(\mathbf{A})$ 正交. 方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有解,故 $\mathbf{b} \in R(\mathbf{A})$. \mathbf{A} 是平行于 $N(\mathbf{A})$ 向 $R(\mathbf{A})$ 的投影,

设 $A \in \mathbb{C}^{m \times n}$, $b \in R(A)$, 则相容性方程 Ax = b 在且仅在 $R(A^{H})$ 上有唯一的最小范数解 x_0 .

几何解释: $(R(\mathbf{A}^{\mathrm{H}}))^{\perp} = N(\mathbf{A})$,但 $R(\mathbf{A})$ 不一定与 $N(\mathbf{A})$ 正交. 方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有解,故 $\mathbf{b} \in R(\mathbf{A})$. \mathbf{A} 是平行于 $N(\mathbf{A})$ 向 $R(\mathbf{A})$ 的投影,l 过点 \mathbf{b} 且平行于 $N(\mathbf{A})$,

设 $A \in \mathbb{C}^{m \times n}$, $b \in R(A)$, 则相容性方程 Ax = b 在且仅在 $R(A^{H})$ 上有唯一的 最小范数解 xo.

「见何解释: $(R(\mathbf{A}^{\mathrm{H}}))^{\perp} = N(\mathbf{A})$,但 $R(\mathbf{A})$ 不一定与 $N(\mathbf{A})$ 正交. 方程 Ax = b 有解, 故 $b \in R(A)$.

A 是平行于 N(A) 向 R(A) 的投影, l 过点 b 且平行于 N(A), x 连接零点 和 l 上任意一点, 则 x 的投影一定是 b.

设 $A \in \mathbb{C}^{m \times n}$, $b \in R(A)$, 则相容性方程 Ax = b 在且仅在 $R(A^{H})$ 上有唯一的最小范数解 x_0 .

几何解释: $(R(\mathbf{A}^{\mathrm{H}}))^{\perp} = N(\mathbf{A})$, 但 $R(\mathbf{A})$ 不一定与 $N(\mathbf{A})$ 正交. 方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有解, 故 $\mathbf{b} \in R(\mathbf{A})$.

 $m{A}$ 是平行于 $N(m{A})$ 向 $R(m{A})$ 的投影, l 过点 $m{b}$ 且平行于 $N(m{A})$, $m{x}$ 连接零点和 l 上任意一点, 则 $m{x}$ 的投影一定是 $m{b}$.

 \mathbf{z}_0 是 l 与 $R(\mathbf{A}^H)$ 的交点, 显然 \mathbf{z}_0 满足 $\mathbf{A}\mathbf{x} = \mathbf{b}$, 且具有最小范数.

Theorem 5.7

设方程组 Ax = b 有解,则 x_0 是其最小范数解的充分必要条件是 $x_0 = A^{(1,4)}b$.

Outline

- ① Moore-Penrose 广义逆矩阵
- 2 广义逆矩阵 A⁽¹⁾
- ③ 广义逆矩阵 A^(1,2)
- 4 广义逆矩阵 A^(1,3)
- **5** 广义逆矩阵 $A^{(1,4)}$
- ⑥ M-P 广义逆矩阵
 - M-P 广义逆的存在及性质
 - M-P 广义逆的几种显式表示
 - M-P 广义逆用于解线性方程组

对任意 $\mathbf{A} \in \mathbb{C}^{m \times n}$, \mathbf{A}^+ 存在且唯一.

对任意 $\mathbf{A} \in \mathbb{C}^{m \times n}$, \mathbf{A}^+ 存在且唯一.

证: 设 A = O, 则可取 G = O.

对任意 $\mathbf{A} \in \mathbb{C}^{m \times n}$, \mathbf{A}^+ 存在且唯一.

证: 设 A = O, 则可取 G = O. 现设 $A \neq O$, 则 A 有奇异值分解:

$$m{A} = m{U}egin{bmatrix} m{S} & \ & m{O} \end{bmatrix}m{V}^{\! ext{H}},$$

其中 U, V 分别为 n 阶和 m 阶酉矩阵, $S = \operatorname{diag}(\delta_1, \delta_2, \dots, \delta_r)$, $\delta_1 \ge \delta_2 \ge \dots \ge \delta_r > 0$ 为 A 的正奇异值, r 为 A 的秩.

$$m{G} = m{V} egin{bmatrix} m{S}^{-1} & & \ & m{O} \end{bmatrix} m{U}^{\mathrm{H}},$$

$$extbf{ extit{G}} = extbf{ extit{V}} egin{bmatrix} extbf{ extit{S}}^{-1} & \ & O \end{bmatrix} extbf{ extit{U}}^{ ext{H}},$$

因为

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

December 15, 2014 85 / 111 又

$$egin{aligned} oldsymbol{A}oldsymbol{G} & oldsymbol{U}^{ ext{H}} oldsymbol{U}^{ ext{H}} oldsymbol{V}^{ ext{H}} oldsymbol{V}^{ ext{H}} & oldsymbol{O} oldsymbol{U}^{ ext{H}} & oldsymbol{U}^{ ext{H}} oldsymbol{U}^{ ext{H}} oldsymbol{U}^{ ext{H}} & oldsymbol{U}^{ ext{H}} old$$

易知
$$(\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G}, (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$$

又

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

易知 $(\mathbf{AG})^{\mathrm{H}} = \mathbf{AG}, (\mathbf{GA})^{\mathrm{H}} = \mathbf{GA},$ 则 \mathbf{G} 满足 Penrose 方程, 所以 \mathbf{A}^+ 总是存在的.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 86 / 111

设 G 与 Y 均是 A 的 M-P 广义逆, 则

$$G = GAG$$

$$= GG^{H}A^{H} \qquad (AG = (AG)^{H})$$

$$= GG^{H}A^{H}Y^{H}A^{H} \qquad (A = AYA)$$

$$= GAGAY \qquad (G^{H}A^{H} = AG, Y^{H}A^{H} = AY)$$

$$= GAY \qquad (GAG = G)$$

$$= A^{H}G^{H}YAY \qquad (GA = A^{H}G^{H}, Y = YAY)$$

$$= A^{H}G^{H}A^{H}Y^{H}Y \qquad (A^{H}G^{H}A^{H} = A^{H})$$

$$= YAY \qquad (A^{H}Y^{H} = YA)$$

$$= Y.$$

设 G 与 Y 均是 A 的 M-P 广义逆, 则

$$G = GAG$$

$$= GG^{H}A^{H}$$

$$= GG^{H}A^{H}Y^{H}A^{H}$$

$$= GAGAY$$

$$= GAY$$

$$= GAY$$

$$= A^{H}G^{H}YAY$$

$$= A^{H}G^{H}A^{H}Y^{H}Y$$

$$= A^{H}Y^{H}Y$$

$$= A^{H}Y^{H}Y$$

$$= YAY$$

$$= Y.$$

$$(AG = (AG)^{H})$$

$$(A = AYA)$$

$$(GA = AYA)$$

$$(AA = AYA)$$

因此, A^+ 是唯一的.

设
$$\mathbf{A} \in \mathbb{C}^{m \times n}$$
, 则

(1)
$$(A^+)^+ = A$$
;

(2)
$$(\mathbf{A}^{\mathrm{H}})^{+} = (\mathbf{A}^{+})^{\mathrm{H}}, (\mathbf{A}^{\mathrm{T}})^{+} = (\mathbf{A}^{+})^{\mathrm{T}};$$

(3)
$$(\mathbf{A}^{H}\mathbf{A})^{+} = \mathbf{A}^{+}(\mathbf{A}^{H})^{+}, (\mathbf{A}\mathbf{A}^{H})^{+} = (\mathbf{A}^{H})^{+}\mathbf{A}^{+};$$

(4)
$$A^{+} = (A^{H}A)^{+}A^{H} = A^{H}(AA^{H})^{+};$$

(5) rank $A^+ = \operatorname{rank} A$;

任意非零向量 x 的 M-P 广义逆为 $\frac{x^{\mathrm{H}}}{x^{\mathrm{H}}x}$. 特别地, 单位向量 x 的 M-P 广义逆为 x^{H} .

任意非零向量 x 的 M-P 广义逆为 $\frac{x^{\mathrm{H}}}{x^{\mathrm{H}}x}$. 特别地, 单位向量 x 的 M-P 广义逆为 x^{H} .

Example 6.4

矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 的 M-P 广义逆为自身.

任意非零向量 x 的 M-P 广义逆为 $\frac{x^{\mathrm{H}}}{x^{\mathrm{H}}x}$. 特别地, 单位向量 x 的 M-P 广义逆为 x^{H}

Example 6.4

矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 的 M-P 广义逆为自身. 矩阵 $\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 的 M-P 广义逆为 \mathbf{B}^{T} .

黄正华 (武汉大学) December 15, 2014 □ 由于普通逆矩阵只是 M-P 广义逆矩阵的一种特例, 故 M-P 广义逆矩阵可能不具备普通逆矩阵的一些性质.

□ 由于普通逆矩阵只是 M-P 广义逆矩阵的一种特例, 故 M-P 广义逆矩阵可能不具备普通逆矩阵的一些性质. 如下例.

Example 6.5

设
$$A = [1,0], B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, 则 $(AB)^+ = 1$ 而 $B^+A^+ = \frac{1}{2}$,因此
$$(AB)^+ \neq B^+A^+.$$$$

设
$$\mathbf{A} \in \mathbb{C}^{m \times n}$$
, 则

(1)
$$R(\mathbf{A}^{+}) = R(\mathbf{A}^{H});$$

(2)
$$N(A^+) = N(A^H)$$
.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

(1)
$$R(\mathbf{A}^{+}) = R(\mathbf{A}^{H});$$

(2)
$$N(\mathbf{A}^{+}) = N(\mathbf{A}^{H}).$$

证: (1) 由 {1}-逆的性质 $R(\mathbf{A}^{H}) = R((\mathbf{A}^{(1)}\mathbf{A})^{H})$, 有

$$R(\mathbf{A}^{\mathrm{H}}) = R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}})$$

$$= R((\mathbf{A}^{+}\mathbf{A})^{\mathrm{H}}) \qquad (\mathbf{A}^{+} \in \mathbf{A}\{1\})$$

$$= R(\mathbf{A}^{+}\mathbf{A}) \qquad ((\mathbf{A}^{+}\mathbf{A})^{\mathrm{H}} = \mathbf{A}^{+}\mathbf{A})$$

$$\subseteq R(\mathbf{A}^{+}). \qquad (R(\mathbf{A}\mathbf{B}) \subseteq R(\mathbf{A}))$$

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

(1)
$$R(\mathbf{A}^+) = R(\mathbf{A}^{\mathrm{H}});$$

(2)
$$N(\mathbf{A}^{+}) = N(\mathbf{A}^{H}).$$

证: (1) 由 {1}-逆的性质 $R(\mathbf{A}^{H}) = R((\mathbf{A}^{(1)}\mathbf{A})^{H})$, 有

$$R(\mathbf{A}^{\mathrm{H}}) = R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}})$$

$$= R((\mathbf{A}^{+}\mathbf{A})^{\mathrm{H}}) \qquad (\mathbf{A}^{+} \in \mathbf{A}\{1\})$$

$$= R(\mathbf{A}^{+}\mathbf{A}) \qquad ((\mathbf{A}^{+}\mathbf{A})^{\mathrm{H}} = \mathbf{A}^{+}\mathbf{A})$$

$$\subseteq R(\mathbf{A}^{+}). \qquad (R(\mathbf{A}\mathbf{B}) \subseteq R(\mathbf{A}))$$

又 $\operatorname{rank} \mathbf{A}^+ = \operatorname{rank} \mathbf{A} = \operatorname{rank} \mathbf{A}^H$,从而有 $\dim R(\mathbf{A}^+) = \dim R(\mathbf{A}^H)$.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

(1)
$$R(\mathbf{A}^+) = R(\mathbf{A}^{\mathrm{H}});$$

(2)
$$N(\mathbf{A}^{+}) = N(\mathbf{A}^{H}).$$

证: (1) 由 {1}-逆的性质 $R(\mathbf{A}^{H}) = R((\mathbf{A}^{(1)}\mathbf{A})^{H})$, 有

$$R(\mathbf{A}^{\mathrm{H}}) = R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}})$$

$$= R((\mathbf{A}^{+}\mathbf{A})^{\mathrm{H}}) \qquad (\mathbf{A}^{+} \in \mathbf{A}\{1\})$$

$$= R(\mathbf{A}^{+}\mathbf{A}) \qquad ((\mathbf{A}^{+}\mathbf{A})^{\mathrm{H}} = \mathbf{A}^{+}\mathbf{A})$$

$$\subseteq R(\mathbf{A}^{+}). \qquad (R(\mathbf{A}\mathbf{B}) \subseteq R(\mathbf{A}))$$

又 rank $\mathbf{A}^+ = \operatorname{rank} \mathbf{A} = \operatorname{rank} \mathbf{A}^H$, 从而有 dim $R(\mathbf{A}^+) = \dim R(\mathbf{A}^H)$. 故 $R(\mathbf{A}^+) = R(\mathbf{A}^H)$.

黄正华 (武汉大学) 第4章 矩阵的广义

(2) 注意到一般地有 $N(A) \subseteq N(BA)$,

(2) 注意到一般地有 $N(A) \subseteq N(BA)$, 又 $A^+ = (A^H A)^+ A^H$,

(2) 注意到一般地有 $N(\mathbf{A}) \subseteq N(\mathbf{B}\mathbf{A})$, 又 $\mathbf{A}^+ = (\mathbf{A}^H\mathbf{A})^+\mathbf{A}^H$, 故 $N(\mathbf{A}^+) = N((\mathbf{A}^H\mathbf{A})^+\mathbf{A}^H)$

(2) 注意到一般地有 $N(\mathbf{A}) \subseteq N(\mathbf{B}\mathbf{A})$, 又 $\mathbf{A}^+ = (\mathbf{A}^H \mathbf{A})^+ \mathbf{A}^H$, 故 $N(\mathbf{A}^+) = N((\mathbf{A}^H \mathbf{A})^+ \mathbf{A}^H) \subseteq N(\mathbf{A}^H),$

(2) 注意到一般地有
$$N(\mathbf{A}) \subseteq N(\mathbf{B}\mathbf{A})$$
, 又 $\mathbf{A}^+ = (\mathbf{A}^H \mathbf{A})^+ \mathbf{A}^H$, 故
$$N(\mathbf{A}^+) = N((\mathbf{A}^H \mathbf{A})^+ \mathbf{A}^H) \subseteq N(\mathbf{A}^H),$$

又
$$\operatorname{rank} \boldsymbol{A}^+ = \operatorname{rank} \boldsymbol{A} = \operatorname{rank} \boldsymbol{A}^H$$
,从而 $N(\boldsymbol{A}^+) = N(\boldsymbol{A}^H)$.

Outline

- ① Moore-Penrose 广义逆矩阵
- ② 广义逆矩阵 A⁽¹⁾
- ③ 广义逆矩阵 A^(1,2)
- 4 广义逆矩阵 A^(1,3)
- **5** 广义逆矩阵 $A^{(1,4)}$
- 6 M-P 广义逆矩阵
 - M-P 广义逆的存在及性质
 - M-P 广义逆的几种显式表示
 - M-P 广义逆用于解线性方程组

Theorem $6.7 (A^+)$ 的满秩算法)

- ① 设 A 为列满秩矩阵,则 $A^{+} = (A^{H}A)^{-1}A^{H}$;
- ② 设 \boldsymbol{A} 为行满秩矩阵, 则 $\boldsymbol{A}^+ = \boldsymbol{A}^{\mathrm{H}} (\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}})^{-1}$;
- ③ 设 $A = LR \in \mathbb{C}^{m \times n}$, 其中 L 为列满秩矩阵, R 为行满秩矩阵. 则

$$\boldsymbol{A}^+ = \boldsymbol{R}^+ \boldsymbol{L}^+ = \boldsymbol{R}^{\mathrm{H}} (\boldsymbol{R} \boldsymbol{R}^{\mathrm{H}})^{-1} (\boldsymbol{L}^{\mathrm{H}} \boldsymbol{L})^{-1} \boldsymbol{L}^{\mathrm{H}}.$$

已知
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$
, 用满秩分解求 \mathbf{A}^+ .

已知
$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$
, 用满秩分解求 \boldsymbol{A}^+ .

 \mathbf{M} : 将 \mathbf{A} 化为行最简形,

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

已知
$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$
,用满秩分解求 \boldsymbol{A}^+ .

 \mathbf{m} : 将 \mathbf{A} 化为行最简形,

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

故 A 的满秩分解为

$$m{A} = m{L}m{R} = egin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

$$\begin{split} \boldsymbol{R}\boldsymbol{R}^{\mathrm{H}} &= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \\ (\boldsymbol{R}\boldsymbol{R}^{\mathrm{H}})^{-1} &= \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \\ \boldsymbol{R}^{+} &= \boldsymbol{R}^{\mathrm{H}} (\boldsymbol{R}\boldsymbol{R}^{\mathrm{H}})^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}. \end{split}$$

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 96 / 111

$$\begin{split} \boldsymbol{L}^{\mathrm{H}}\boldsymbol{L} &= \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix}, \\ & (\boldsymbol{L}^{\mathrm{H}}\boldsymbol{L})^{-1} &= \frac{1}{6} \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}, \\ & \boldsymbol{L}^{+} &= (\boldsymbol{L}^{\mathrm{H}}\boldsymbol{L})^{-1}\boldsymbol{L}^{\mathrm{H}} = \frac{1}{6} \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 2 & -2 \\ -2 & 1 & 5 \end{bmatrix}. \end{split}$$

$$\mathbf{L}^{H} \mathbf{L} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix},
(\mathbf{L}^{H} \mathbf{L})^{-1} = \frac{1}{6} \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix},
\mathbf{L}^{+} = (\mathbf{L}^{H} \mathbf{L})^{-1} \mathbf{L}^{H} = \frac{1}{6} \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 2 & -2 \\ -2 & 1 & 5 \end{bmatrix}.$$

所以

$$A^{+} = R^{+}L^{+} = \frac{1}{18} \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & -2 \\ -2 & 1 & 5 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 1 & -3 \\ -2 & 0 & 4 \\ 0 & 1 & 1 \end{bmatrix}.$$

黄正华 (武汉大学)

设 $\mathbf{A} \in \mathbb{C}_r^{m \times n}$, r > 0, 且 \mathbf{A} 有如下的奇异值分解

$$oldsymbol{A} = oldsymbol{U} egin{bmatrix} oldsymbol{S}_r & \ & oldsymbol{O} \end{bmatrix} oldsymbol{V}^{\! ext{H}},$$

其中 $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ 为酉矩阵,且 $S_r = \operatorname{diag}(\delta_1, \delta_2, \cdots, \delta_r)$, $\delta_1 \geqslant \delta_2 \geqslant \cdots \geqslant \delta_r > 0$ 为 A 的正奇异值.则有

$$oldsymbol{A}^+ = oldsymbol{V} egin{bmatrix} oldsymbol{S}_r^{-1} & \ & oldsymbol{O} \end{bmatrix} oldsymbol{U}^{
m H}$$

设 $A \in \mathbb{C}_r^{m \times n}$, r > 0, 且 A 有如下的奇异值分解

$$m{A} = m{U}egin{bmatrix} m{S}_r & \ & m{O} \end{bmatrix}m{V}^{\! ext{H}},$$

其中 $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ 为酉矩阵, 且 $S_r = \operatorname{diag}(\delta_1, \delta_2, \dots, \delta_r)$, $\delta_1 \geq \delta_2 \geq \cdots \geq \delta_r > 0$ 为 **A** 的正奇异值. 则有

$$oldsymbol{A}^+ = oldsymbol{V} egin{bmatrix} oldsymbol{S}_r^{-1} & & \ & oldsymbol{O} \end{bmatrix} oldsymbol{U}^{
m H}$$

注意一个细节: $\begin{vmatrix} S_r \\ O \end{vmatrix}$ 的阶数是 $m \times n$, 而 $\begin{vmatrix} S_r^{-1} \\ O \end{vmatrix}$ 的阶数是 $n \times m$.

设
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
,用奇异值分解求 \mathbf{A}^+ .

设
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
,用奇异值分解求 \mathbf{A}^+ .

解: 由

$$oldsymbol{A}^{\mathrm{H}}oldsymbol{A} = egin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} egin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = egin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix},$$

设
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
,用奇异值分解求 \mathbf{A}^+ .

解: 由

$$oldsymbol{A}^{\mathrm{H}}oldsymbol{A} = egin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} egin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = egin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix},$$

故 $\mathbf{A}^{\mathrm{H}}\mathbf{A}$ 的特征值为 $\lambda_1 = 2$, $\lambda_2 = 1$.

设
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
,用奇异值分解求 \mathbf{A}^+ .

解: 由

$$oldsymbol{A}^{\mathrm{H}}oldsymbol{A} = egin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} egin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = egin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix},$$

故 $A^{H}A$ 的特征值为 $\lambda_1 = 2$, $\lambda_2 = 1$. 对应的单位特征向量为

$$m{v}_1 = egin{bmatrix} 1 \ 0 \end{bmatrix}, \qquad m{v}_2 = egin{bmatrix} 0 \ 1 \end{bmatrix}.$$

设
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
,用奇异值分解求 \mathbf{A}^+ .

解: 由

$$m{A}^{\mathrm{H}}m{A} = egin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} egin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = egin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix},$$

故 $A^{H}A$ 的特征值为 $\lambda_1 = 2$, $\lambda_2 = 1$. 对应的单位特征向量为

$$m{v}_1 = egin{bmatrix} 1 \ 0 \end{bmatrix}, \qquad m{v}_2 = egin{bmatrix} 0 \ 1 \end{bmatrix}.$$

则 AA^{H} 的 3 个特征值为 $\lambda_{1} = 2$, $\lambda_{2} = 1$, $\lambda_{3} = 0$.

 $\pm \mathbf{S} = \operatorname{diag}(\delta_1, \delta_2) = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}) = \operatorname{diag}(\sqrt{2}, 1),$

由 $\mathbf{S} = \operatorname{diag}(\delta_1, \delta_2) = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}) = \operatorname{diag}(\sqrt{2}, 1)$, 得

$$m{U}_1 = m{A} \, m{V}_1 m{S}^{-1} = egin{bmatrix} 1 & 0 \ 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} rac{1}{\sqrt{2}} & 0 \ 0 & 1 \end{bmatrix} = egin{bmatrix} rac{1}{\sqrt{2}} & 0 \ 0 & 1 \ rac{1}{\sqrt{2}} & 0 \end{bmatrix},$$

曲 $S = \operatorname{diag}(\delta_1, \delta_2) = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}) = \operatorname{diag}(\sqrt{2}, 1)$, 得

$$m{U}_1 = m{A} \, m{V}_1 m{S}^{-1} = egin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} egin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} egin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \end{bmatrix} = egin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix},$$

故 $\mathbf{A}\mathbf{A}^{\mathrm{H}}$ 的 2 个非零特征值 $\lambda_1 = 2$, $\lambda_2 = 1$ 对应的特征向量分别为

$$m{u}_1 = egin{bmatrix} rac{1}{\sqrt{2}} \ 0 \ rac{1}{\sqrt{2}} \end{bmatrix}, \qquad m{u}_2 = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}.$$

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 100 / 111

曲 $\mathbf{S} = \operatorname{diag}(\delta_1, \delta_2) = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}) = \operatorname{diag}(\sqrt{2}, 1)$, 得

$$U_1 = A V_1 S^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix},$$

故 $\mathbf{A}\mathbf{A}^{\mathrm{H}}$ 的 2 个非零特征值 $\lambda_1 = 2, \lambda_2 = 1$ 对应的特征向量分别为

$$u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \qquad u_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

因 $\lambda_3 = 0$ 对应的特征向量与 \mathbf{u}_1 正交, 故可设其为 $(1, y, -1)^{\mathrm{T}}$.

正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014

由 $\mathbf{S} = \operatorname{diag}(\delta_1, \delta_2) = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}) = \operatorname{diag}(\sqrt{2}, 1)$, 得

$$U_1 = A V_1 S^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix},$$

故 $\mathbf{A}\mathbf{A}^{\mathrm{H}}$ 的 2 个非零特征值 $\lambda_1 = 2, \lambda_2 = 1$ 对应的特征向量分别为

$$m{u}_1 = egin{bmatrix} rac{1}{\sqrt{2}} \\ 0 \\ rac{1}{\sqrt{2}} \end{bmatrix}, \qquad m{u}_2 = egin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

因 $\lambda_3 = 0$ 对应的特征向量与 \mathbf{u}_1 正交, 故可设其为 $(1, y, -1)^{\mathrm{T}}$. 又需要和 \mathbf{u}_2 正交, 故 y = 0.

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 100 / 11

曲 $S = \operatorname{diag}(\delta_1, \delta_2) = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}) = \operatorname{diag}(\sqrt{2}, 1)$, 得

$$U_1 = A V_1 S^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix},$$

故 $\mathbf{A}\mathbf{A}^{\mathrm{H}}$ 的 2 个非零特征值 $\lambda_1 = 2, \lambda_2 = 1$ 对应的特征向量分别为

$$m{u}_1 = egin{bmatrix} rac{1}{\sqrt{2}} \\ 0 \\ rac{1}{\sqrt{2}} \end{bmatrix}, \qquad m{u}_2 = egin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

因 $\lambda_3 = 0$ 对应的特征向量与 u_1 正交, 故可设其为 $(1, y, -1)^T$. 又需要和 u_2 正交, 故 y = 0. 从而 $\lambda_3 = 0$ 对应的单位特征向量为

$$\mathbf{u}_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix}.$$

黄正华 (武汉大学)

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}, \qquad S = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 1 \end{bmatrix}, \qquad V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

黄正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 101 / 111

记

$$m{U} = \left[egin{array}{ccc} rac{1}{\sqrt{2}} & 0 & rac{1}{\sqrt{2}} \ 0 & 1 & 0 \ rac{1}{\sqrt{2}} & 0 & -rac{1}{\sqrt{2}} \end{array}
ight], \qquad m{S} = \left[egin{array}{ccc} \sqrt{2} & 0 \ 0 & 1 \end{array}
ight] \qquad m{V} = \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array}
ight],$$

得矩阵 A 的奇异值分解为

$$m{A} = m{U}egin{bmatrix} m{S} \ m{O} \end{bmatrix}m{V}^{\! ext{H}},$$

记

$$m{U} = \left[egin{array}{ccc} rac{1}{\sqrt{2}} & 0 & rac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ rac{1}{\sqrt{2}} & 0 & -rac{1}{\sqrt{2}} \end{array}
ight], \qquad m{S} = \left[egin{array}{ccc} \sqrt{2} & 0 \\ 0 & 1 \end{array}
ight] \qquad m{V} = \left[egin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}
ight],$$

得矩阵 A 的奇异值分解为

$$m{A} = m{U}egin{bmatrix} m{S} \ m{O} \end{bmatrix}m{V}^{\! ext{H}},$$

所以

$$m{A}^+ = m{V}[m{S}^{-1}, m{O}] m{U}^{
m H} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} rac{1}{\sqrt{2}} & 0 & 0 \ 0 & 1 & 0 \end{bmatrix} egin{bmatrix} rac{1}{\sqrt{2}} & 0 & rac{1}{\sqrt{2}} \ 0 & 1 & 0 \ rac{1}{\sqrt{2}} & 0 & -rac{1}{\sqrt{2}} \end{bmatrix} = egin{bmatrix} rac{1}{2} & 0 & rac{1}{2} \ 0 & 1 & 0 \end{bmatrix}. \quad \Box$$

Outline

- 1 Moore-Penrose 广义逆矩阵
- ② 广义逆矩阵 $A^{(1)}$
- ③ 广义逆矩阵 A^(1,2)
- 4 广义逆矩阵 A^(1,3)
- **6** 广义逆矩阵 $A^{(1,4)}$
- ⑥ M-P 广义逆矩阵

黄正华 (武汉大学)

- M-P 广义逆的存在及性质
- M-P 广义逆的几种显式表示
- M-P 广义逆用于解线性方程组

第4章 矩阵的广义逆

一般来说,矛盾方程组

$$Ax = b$$

的最小二乘解是不唯一的, 但在最小二乘解的集合中, 具有最小范数的解, 即

$$\min_{\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b}\|}\|\boldsymbol{x}\|_2$$

的解 x 是唯一的, 称之为最小范数二乘解, 并简记为 L-S-N 解.

对任一 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 都有

$$A^+ = A^{(1,4)} A A^{(1,3)}.$$

对任一 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 都有

$$A^+ = A^{(1,4)} A A^{(1,3)}.$$

 $\stackrel{\cdot}{\mathbf{L}}$: $\Leftrightarrow \mathbf{Y} = \mathbf{A}^{(1,4)}, \mathbf{Z} = \mathbf{A}^{(1,3)}, \mathbf{X} = \mathbf{Y}\mathbf{A}\mathbf{Z}.$

对任一 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 都有

$$A^+ = A^{(1,4)} A A^{(1,3)}.$$

 $\stackrel{\text{i.i.}}{=} \Leftrightarrow Y = A^{(1,4)}, Z = A^{(1,3)}, X = YAZ.$

从而 $\boldsymbol{Y}, \boldsymbol{Z} \in \boldsymbol{A}\{1\}$, 故 $\boldsymbol{X} \in \boldsymbol{A}\{1,2\}$.

对任一 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 都有

$$A^+ = A^{(1,4)} A A^{(1,3)}.$$

$$\stackrel{\text{i.i.}}{=} \Leftrightarrow Y = A^{(1,4)}, Z = A^{(1,3)}, X = YAZ.$$

从而
$$Y, Z \in A\{1\}$$
, 故 $X \in A\{1, 2\}$. 又

$$AX = AYAZ = AZ,$$

对任一 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 都有

$$A^+ = A^{(1,4)} A A^{(1,3)}.$$

 $\stackrel{\text{i.i.}}{=} \Leftrightarrow Y = A^{(1,4)}, Z = A^{(1,3)}, X = YAZ.$

从而 $Y, Z \in A\{1\}$, 故 $X \in A\{1, 2\}$. 又

$$AX = AYAZ = AZ,$$
 $(AX)^{H} = (AZ)^{H} = AZ = AX,$

对任一 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 都有

$$A^+ = A^{(1,4)} A A^{(1,3)}.$$

$$\stackrel{\text{i.i.}}{=} \Leftrightarrow Y = A^{(1,4)}, Z = A^{(1,3)}, X = YAZ.$$

从而 $Y, Z \in A\{1\}$, 故 $X \in A\{1, 2\}$. 又

$$AX = AYAZ = AZ,$$
 $(AX)^{H} = (AZ)^{H} = AZ = AX,$

故

$$X \in A{3}.$$

对任一 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 都有

$$A^+ = A^{(1,4)} A A^{(1,3)}.$$

$$\stackrel{\text{i.i.}}{=} \Leftrightarrow Y = A^{(1,4)}, Z = A^{(1,3)}, X = YAZ.$$

从而 $Y, Z \in A\{1\}$, 故 $X \in A\{1, 2\}$. 又

$$AX = AYAZ = AZ,$$
 $(AX)^{H} = (AZ)^{H} = AZ = AX,$

故

$$X \in A\{3\}.$$

又
$$XA = YAZA = YA$$
, 从而 $(XA)^{H} = XA$, 故

$$X \in A\{4\}.$$

对任一 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 都有

$$A^+ = A^{(1,4)} A A^{(1,3)}.$$

$$\stackrel{\text{i.f.}}{=} \Leftrightarrow Y = A^{(1,4)}, Z = A^{(1,3)}, X = YAZ.$$

从而 $Y, Z \in A\{1\}$, 故 $X \in A\{1,2\}$. 又

$$AX = AYAZ = AZ,$$
 $(AX)^{H} = (AZ)^{H} = AZ = AX,$

故

$$X \in A\{3\}.$$

又
$$XA = YAZA = YA$$
, 从而 $(XA)^{H} = XA$, 故

$$X \in A\{4\}.$$

综上有 $X = A^+$.

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的充分必要条件 是:

$$x_0 = A^+ b.$$

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的充分必要条件 是:

$$x_0 = A^+ b$$
.

证: 必要性. 由推论 4.7 可知, 方程组 Ax = b 的 L-S 解即为方程组 $Ax = AA^{(1,3)}b$ 的解,

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的充分必要条件 是:

$$x_0 = A^+ b$$
.

证: 必要性. 由推论 4.7 可知, 方程组 Ax = b 的 L-S 解即为方程组 $Ax = AA^{(1,3)}b$ 的解, 因此, 方程组 Ax = b 的 L-S-N 解即是方程组 $Ax = AA^{(1,3)}b$ 的 L-N 解.

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的充分必要条件 是:

$$\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b}$$
.

证: 必要性. 由推论 4.7 可知, 方程组 Ax = b 的 L-S 解即为方程组 $Ax = AA^{(1,3)}b$ 的解, 因此, 方程组 Ax = b 的 L-S-N 解即是方程组 $Ax = AA^{(1,3)}b$ 的 L-N 解. 由定理 5.7 得, 这个解为

$$\mathbf{x}_0 = \mathbf{A}^{(1,4)} \mathbf{A} \mathbf{A}^{(1,3)} \mathbf{b},$$

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的充分必要条件 是:

$$x_0 = A^+ b$$
.

证: 必要性. 由推论 4.7 可知, 方程组 Ax = b 的 L-S 解即为方程组 $Ax = AA^{(1,3)}b$ 的解, 因此, 方程组 Ax = b 的 L-S-N 解即是方程组 $Ax = AA^{(1,3)}b$ 的 L-N 解. 由定理 5.7 得, 这个解为

$$\mathbf{x}_0 = \mathbf{A}^{(1,4)} \mathbf{A} \mathbf{A}^{(1,3)} \mathbf{b},$$

$$\mathbf{X} \mathbf{A}^{(1,4)} \mathbf{A} \mathbf{A}^{(1,3)} = \mathbf{A}^+,$$

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的充分必要条件 是:

$$x_0 = A^+ b.$$

证: 必要性. 由推论 4.7 可知, 方程组 Ax = b 的 L-S 解即为方程组 $Ax = AA^{(1,3)}b$ 的解, 因此, 方程组 Ax = b 的 L-S-N 解即是方程组 $Ax = AA^{(1,3)}b$ 的 L-N 解. 由定理 5.7 得, 这个解为

$$x_0 = A^{(1,4)} A A^{(1,3)} b,$$

又 $\mathbf{A}^{(1,4)}\mathbf{A}\mathbf{A}^{(1,3)} = \mathbf{A}^+$, 故方程组的 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的 L-S-N 解为 $\mathbf{x}_0 = \mathbf{A}^+\mathbf{b}$.

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的充分必要条件 是:

$$x_0 = A^+ b.$$

证: 必要性. 由推论 4.7 可知, 方程组 Ax = b 的 L-S 解即为方程组 $Ax = AA^{(1,3)}b$ 的解, 因此, 方程组 Ax = b 的 L-S-N 解即是方程组 $Ax = AA^{(1,3)}b$ 的 L-N 解. 由定理 5.7 得, 这个解为

$$\mathbf{x}_0 = \mathbf{A}^{(1,4)} \mathbf{A} \mathbf{A}^{(1,3)} \mathbf{b},$$

又 $A^{(1,4)}AA^{(1,3)} = A^+$, 故方程组的 Ax = b 的 L-S-N 解为 $x_0 = A^+b$. 充分性. 设 $x_0 = A^+b$, 则 $Ax_0 = AA^+b$,

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的充分必要条件 是:

$$x_0 = A^+ b.$$

证: 必要性. 由推论 4.7 可知, 方程组 Ax = b 的 L-S 解即为方程组 $Ax = AA^{(1,3)}b$ 的解, 因此, 方程组 Ax = b 的 L-S-N 解即是方程组 $Ax = AA^{(1,3)}b$ 的 L-N 解. 由定理 5.7 得, 这个解为

$$\mathbf{x}_0 = \mathbf{A}^{(1,4)} \mathbf{A} \mathbf{A}^{(1,3)} \mathbf{b},$$

又 $A^{(1,4)}AA^{(1,3)} = A^+$, 故方程组的 Ax = b 的 L-S-N 解为 $x_0 = A^+b$. 充分性. 设 $x_0 = A^+b$, 则 $Ax_0 = AA^+b$, 而 $A^+ \in A\{1,3\}$, 故由推论 4.7 可知 x_0 为方程组 Ax = b 的 L-S 解.

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的充分必要条件 是:

$$x_0 = A^+ b.$$

证: 必要性. 由推论 4.7 可知, 方程组 Ax = b 的 L-S 解即为方程组 $Ax = AA^{(1,3)}b$ 的解, 因此, 方程组 Ax = b 的 L-S-N 解即是方程组 $Ax = AA^{(1,3)}b$ 的 L-N 解. 由定理 5.7 得, 这个解为

$$\mathbf{x}_0 = \mathbf{A}^{(1,4)} \mathbf{A} \mathbf{A}^{(1,3)} \mathbf{b},$$

又 $A^{(1,4)}AA^{(1,3)} = A^+$, 故方程组的 Ax = b 的 L-S-N 解为 $x_0 = A^+b$. 充分性. 设 $x_0 = A^+b$, 则 $Ax_0 = AA^+b$, 而 $A^+ \in A\{1,3\}$, 故由推论 4.7 可知 x_0 为方程组 Ax = b 的 L-S 解. 又因为 $x_0 = A^+b$, 故 $x_0 \in R(A^+)$

设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的充分必要条件 是:

$$x_0 = A^+ b.$$

证: 必要性. 由推论 4.7 可知, 方程组 Ax = b 的 L-S 解即为方程组 $Ax = AA^{(1,3)}b$ 的解, 因此, 方程组 Ax = b 的 L-S-N 解即是方程组 $Ax = AA^{(1,3)}b$ 的 L-N 解. 由定理 5.7 得, 这个解为

$$\mathbf{x}_0 = \mathbf{A}^{(1,4)} \mathbf{A} \mathbf{A}^{(1,3)} \mathbf{b},$$

又 $\mathbf{A}^{(1,4)}\mathbf{A}\mathbf{A}^{(1,3)} = \mathbf{A}^+$, 故方程组的 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的 L-S-N 解为 $\mathbf{x}_0 = \mathbf{A}^+\mathbf{b}$.

充分性. 设 $x_0 = A^+ b$, 则 $Ax_0 = AA^+ b$, 而 $A^+ \in A\{1,3\}$, 故由推论 4.7 可知 x_0 为方程组 Ax = b 的 L-S 解. 又因为 $x_0 = A^+ b$, 故 $x_0 \in R(A^+) = R(A^H)$, 从而 x_0 是方程组 Ax = b 的 L-S-N 解.

已知方程组 Ax = b, 其中

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

问方程组是否有解? 若有解, 求最小范数解; 若无解, 求最小范数二乘解.

黄正华 (武汉大学)

已知方程组 Ax = b, 其中

$$m{A} = egin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix}, \qquad m{b} = egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

问方程组是否有解? 若有解, 求最小范数解; 若无解, 求最小范数二乘解.

解: 因为

$$[\boldsymbol{A}, \boldsymbol{b}] = \begin{bmatrix} 1 & 2 & 0 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 2 & 4 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{r_3 - r_1 - r_2} \begin{bmatrix} 1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix},$$

Example 6.13

已知方程组 Ax = b, 其中

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

问方程组是否有解? 若有解, 求最小范数解; 若无解, 求最小范数二乘解.

解: 因为

$$[\boldsymbol{A}, \boldsymbol{b}] = \begin{bmatrix} 1 & 2 & 0 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 2 & 4 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{r_3 - r_1 - r_2} \begin{bmatrix} 1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix},$$

即 $\operatorname{rank} \mathbf{A} = 2$, $\operatorname{rank}[\mathbf{A}, \mathbf{b}] = 3$, 所以方程组无解.

由

$$A \xrightarrow[r_2-r_1]{r_3-r_1-r_2} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

得满秩分解 A = LR, 其中

$$m{L} = egin{bmatrix} 1 & 0 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}, \qquad m{R} = egin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

$$\boldsymbol{R}\boldsymbol{R}^{\mathrm{H}} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix},$$

$$(\boldsymbol{R}\boldsymbol{R}^{\mathrm{H}})^{-1} = \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & 1 \end{bmatrix},$$

$$\boldsymbol{R}^{+} = \boldsymbol{R}^{\mathrm{H}}(\boldsymbol{R}\boldsymbol{R}^{\mathrm{H}})^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & \frac{6}{1} & 0 \end{bmatrix}.$$

黄正华 (武汉大学)

第4章 矩阵的广义边

$$\boldsymbol{L}^{\mathrm{H}}\boldsymbol{L} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 3 & 2 \end{bmatrix},$$

$$(\boldsymbol{L}^{\mathrm{H}}\boldsymbol{L})^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix},$$

$$\boldsymbol{L}^{+} = (\boldsymbol{L}^{\mathrm{H}}\boldsymbol{L})^{-1}\boldsymbol{L}^{\mathrm{H}} = \frac{1}{3} \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 & 1 \\ -3 & 3 & 0 \end{bmatrix}.$$

$$\mathbf{L}^{H}\mathbf{L} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 3 & 2 \end{bmatrix},
(\mathbf{L}^{H}\mathbf{L})^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix},
\mathbf{L}^{+} = (\mathbf{L}^{H}\mathbf{L})^{-1}\mathbf{L}^{H} = \frac{1}{3} \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 & 1 \\ -3 & 3 & 0 \end{bmatrix}.$$

从而

$$\mathbf{A}^{+} = \mathbf{R}^{+} \mathbf{L}^{+} = \frac{1}{18} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 6 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -3 & 3 & 0 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 2 & -1 & 1 \\ 4 & -2 & 2 \\ -18 & 18 & 0 \\ 2 & -1 & 1 \end{bmatrix}.$$

黄正华 (武汉大学)

$$\mathbf{L}^{H} \mathbf{L} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 3 & 2 \end{bmatrix},
(\mathbf{L}^{H} \mathbf{L})^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix},
\mathbf{L}^{+} = (\mathbf{L}^{H} \mathbf{L})^{-1} \mathbf{L}^{H} = \frac{1}{3} \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 & 1 \\ -3 & 3 & 0 \end{bmatrix}.$$

从而

$$\mathbf{A}^{+} = \mathbf{R}^{+} \mathbf{L}^{+} = \frac{1}{18} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 6 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -3 & 3 & 0 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 2 & -1 & 1 \\ 4 & -2 & 2 \\ -18 & 18 & 0 \\ 2 & -1 & 1 \end{bmatrix}.$$

所以方程组的最小范数二乘解是 $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b} = \frac{1}{6}[1, 2, 0, 1]^{\mathrm{T}}$.

活正华 (武汉大学) 第4章 矩阵的广义逆 December 15, 2014 109 / 111

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$\boldsymbol{A}\boldsymbol{G} = P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}, \qquad \boldsymbol{G}\boldsymbol{A} = P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}, \tag{14}$$

其中 $P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}$ 表示沿子空间 $N(\boldsymbol{A}^{\mathrm{H}})$ 向子空间 $R(\boldsymbol{A})$ 上的正交投影算子, $P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}$ 表示沿子空间 $N(\boldsymbol{A})$ 向子空间 $R(\boldsymbol{A}^{\mathrm{H}})$ 上的正交投影算子,则称 \boldsymbol{G} 为 \boldsymbol{A} 的 Moore 广义逆矩阵.

黄正华 (武汉大学)

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$\boldsymbol{A}\boldsymbol{G} = P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}, \qquad \boldsymbol{G}\boldsymbol{A} = P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}, \tag{14}$$

其中 $P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}$ 表示沿子空间 $N(\boldsymbol{A}^{\mathrm{H}})$ 向子空间 $R(\boldsymbol{A})$ 上的正交投影算子, $P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}$ 表示沿子空间 $N(\boldsymbol{A})$ 向子空间 $R(\boldsymbol{A}^{\mathrm{H}})$ 上的正交投影算子,则称 \boldsymbol{G} 为 \boldsymbol{A} 的 Moore 广义逆矩阵.

一方面, 若 G 是 A 的 Moore 广义逆, 则 AG, GA 都是正交投影算子, 从 而 AG, GA 是 Hermite 矩阵, 即满足 Penrose 广义逆定义的 (3) 与 (4).

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}), N(\mathbf{A}^{\mathrm{H}})}, \qquad \mathbf{G}\mathbf{A} = P_{R(\mathbf{A}^{\mathrm{H}}), N(\mathbf{A})},$$
 (14)

其中 $P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}$ 表示沿子空间 $N(\boldsymbol{A}^{\mathrm{H}})$ 向子空间 $R(\boldsymbol{A})$ 上的正交投影算子, $P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}$ 表示沿子空间 $N(\boldsymbol{A})$ 向子空间 $R(\boldsymbol{A}^{\mathrm{H}})$ 上的正交投影算子,则称 \boldsymbol{G} 为 \boldsymbol{A} 的 Moore 广义逆矩阵.

一方面,若 G 是 A 的 Moore 广义逆,则 AG, GA 都是正交投影算子,从 而 AG, GA 是 Hermite 矩阵,即满足 Penrose 广义逆定义的 (3) 与 (4).

对任意的 n 维向量 α , $\mathbf{A}\alpha \in R(\mathbf{A})$, 而投影算子 $\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}),N(\mathbf{A}^{\mathbf{H}})}$ 在 $R(\mathbf{A})$ 上为恒等变换, 故

$$AG(A\alpha) = A\alpha$$
.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}), N(\mathbf{A}^{\mathrm{H}})}, \qquad \mathbf{G}\mathbf{A} = P_{R(\mathbf{A}^{\mathrm{H}}), N(\mathbf{A})},$$
 (14)

其中 $P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}$ 表示沿子空间 $N(\boldsymbol{A}^{\mathrm{H}})$ 向子空间 $R(\boldsymbol{A})$ 上的正交投影算子, $P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}$ 表示沿子空间 $N(\boldsymbol{A})$ 向子空间 $R(\boldsymbol{A}^{\mathrm{H}})$ 上的正交投影算子,则称 \boldsymbol{G} 为 \boldsymbol{A} 的 Moore 广义逆矩阵.

一方面, 若 G 是 A 的 Moore 广义逆, 则 AG, GA 都是正交投影算子, 从 而 AG, GA 是 Hermite 矩阵, 即满足 Penrose 广义逆定义的 (3) 与 (4).

对任意的 n 维向量 α , $\mathbf{A}\alpha \in R(\mathbf{A})$, 而投影算子 $\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}),N(\mathbf{A}^{\mathbf{H}})}$ 在 $R(\mathbf{A})$ 上为恒等变换, 故

$$AG(A\alpha) = A\alpha.$$

即 $(AGA)(\alpha) = A\alpha$, 由 α 的任意性, 知 AGA = A.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}), N(\mathbf{A}^{\mathrm{H}})}, \qquad \mathbf{G}\mathbf{A} = P_{R(\mathbf{A}^{\mathrm{H}}), N(\mathbf{A})},$$
 (14)

其中 $P_{R(\boldsymbol{A}),N(\boldsymbol{A}^{\mathrm{H}})}$ 表示沿子空间 $N(\boldsymbol{A}^{\mathrm{H}})$ 向子空间 $R(\boldsymbol{A})$ 上的正交投影算子, $P_{R(\boldsymbol{A}^{\mathrm{H}}),N(\boldsymbol{A})}$ 表示沿子空间 $N(\boldsymbol{A})$ 向子空间 $R(\boldsymbol{A}^{\mathrm{H}})$ 上的正交投影算子,则称 \boldsymbol{G} 为 \boldsymbol{A} 的 Moore 广义逆矩阵.

一方面, 若 G 是 A 的 Moore 广义逆, 则 AG, GA 都是正交投影算子, 从 而 AG, GA 是 Hermite 矩阵, 即满足 Penrose 广义逆定义的 (3) 与 (4).

对任意的 n 维向量 α , $\mathbf{A}\alpha \in R(\mathbf{A})$, 而投影算子 $\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}),N(\mathbf{A}^{\mathbf{H}})}$ 在 $R(\mathbf{A})$ 上为恒等变换, 故

$$AG(A\alpha) = A\alpha.$$

即 $(AGA)(\alpha) = A\alpha$, 由 α 的任意性, 知 AGA = A. 同理 GAG = G.

另一方面, 若 G 是 A 的 Penrose 广义逆, 则 AG, GA 都是正交投影算子,

且.

$$\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}\mathbf{G}), N(\mathbf{A}\mathbf{G})}, \qquad \mathbf{G}\mathbf{A} = P_{R(\mathbf{G}\mathbf{A}), N(\mathbf{G}\mathbf{A})}.$$

由性质 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 得

$$R(\mathbf{A}\mathbf{G}) = R(\mathbf{A}). \tag{15}$$

另一方面, 若 G 是 A 的 Penrose 广义逆, 则 AG, GA 都是正交投影算子,

且.

$$\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}\mathbf{G}), N(\mathbf{A}\mathbf{G})}, \qquad \mathbf{G}\mathbf{A} = P_{R(\mathbf{G}\mathbf{A}), N(\mathbf{G}\mathbf{A})}.$$

由性质 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 得

$$R(\mathbf{A}\mathbf{G}) = R(\mathbf{A}). \tag{15}$$

又

$$N(\mathbf{A}\mathbf{G}) = N(\mathbf{G})$$
 $\left(N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)})\right)$
= $N(\mathbf{A}^{\mathrm{H}})$. $\left(N(\mathbf{A}^{+}) = N(\mathbf{A}^{\mathrm{H}})\right)$

另一方面,若 G 是 A 的 Penrose 广义逆,则 AG, GA 都是正交投影算子,

且

$$\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}\mathbf{G}), N(\mathbf{A}\mathbf{G})}, \qquad \mathbf{G}\mathbf{A} = P_{R(\mathbf{G}\mathbf{A}), N(\mathbf{G}\mathbf{A})}.$$

由性质 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 得

$$R(\mathbf{A}\mathbf{G}) = R(\mathbf{A}). \tag{15}$$

又

$$N(\mathbf{A}\mathbf{G}) = N(\mathbf{G})$$
 $\left(N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)})\right)$
= $N(\mathbf{A}^{\mathrm{H}})$. $\left(N(\mathbf{A}^{+}) = N(\mathbf{A}^{\mathrm{H}})\right)$

故

$$\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}\mathbf{G}), N(\mathbf{A}\mathbf{G})} = P_{R(\mathbf{A}), N(\mathbf{A}^{\mathrm{H}})}.$$

另一方面,若 G 是 A 的 Penrose 广义逆,则 AG, GA 都是正交投影算子,

且

$$\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}\mathbf{G}), N(\mathbf{A}\mathbf{G})}, \qquad \mathbf{G}\mathbf{A} = P_{R(\mathbf{G}\mathbf{A}), N(\mathbf{G}\mathbf{A})}.$$

由性质 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 得

$$R(\mathbf{A}\mathbf{G}) = R(\mathbf{A}). \tag{15}$$

又

$$N(\mathbf{A}\mathbf{G}) = N(\mathbf{G})$$
 $\left(N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)})\right)$
= $N(\mathbf{A}^{\mathrm{H}})$. $\left(N(\mathbf{A}^{+}) = N(\mathbf{A}^{\mathrm{H}})\right)$

故

$$\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}\mathbf{G}), N(\mathbf{A}\mathbf{G})} = P_{R(\mathbf{A}), N(\mathbf{A}^{\mathrm{H}})}.$$

同理可证
$$GA = P_{R(GA),N(GA)} = P_{R(A^H),N(A)}$$
.