REVIEW QUESTIONS FOR POWER SERIES

Power series

- 1) Give a definition of the power series. What is the radius of convergence / interval of convergence of a power series? Explain how to compute them for a given series.
- 2) Determine the radius and interval of convergence for the following series:

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{3n+1}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n}{2^n(n^3+1)} x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^2 4^n}$$

(f)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n7^n} x^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^3+1}$$

$$(g) \sum_{n=1}^{\infty} \frac{x^{2n}}{n!}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n^n}$$

(h)
$$\sum_{n=1}^{\infty} 3^n (2x-1)^n$$
.

Representing functions by power series

- 3) Explain how to differentiate / integrate a power series. What is the impact of these operations on the radius of convergence?
- 4) Give a power series representations of the following functions:

(a)
$$f(x) = \frac{1}{1-x}$$

(d)
$$f(x) = \frac{x}{3x^2 - 1}$$

(b)
$$f(x) = \frac{4}{2x+1}$$

(e)
$$f(x) = \frac{1}{x^2 + 2x + 2}$$

(c)
$$f(x) = \frac{x}{1-x}$$

(f)
$$f(x) = \frac{4x+1}{x^2+6x+10}$$
.

In the following questions use partial fractions decomposition first, then obtain the expansions of the resulting fractions:

(g)
$$f(x) = \frac{2x-4}{x^2-4x+3}$$

(h) $f(x) = \frac{2x+3}{x^2+3x+2}$

(i)
$$f(x) = \frac{3x^2 - 5x + 5}{(x-2)(x^2+3)}$$

(h)
$$f(x) = \frac{2x+3}{x^2+3x+2}$$

(i)
$$f(x) = \frac{3x^2 - 5x + 5}{(x - 2)(x^2 + 3)}$$

(j) $f(x) = \frac{3x^2 + 2x + 1}{(x + 1)(x^2 + x + 2)}$

Taylor and Maclaurin series

- 5) Write down the formula for Taylor series. What needs to be changed to obtain Maclaurin series? What is the expression for $T_n(x)$, the n-th degree Taylor polynomial? What is the Taylor inequality, and how is it used to estimate the error in approximating f(x)with its Taylor polynomial $T_n(x)$? Write down the important Maclaurin series you know.
- 6) Obtain Maclaurin series for the following functions, using the definition or any other convenient method. Do not show that $R_n(x) \to 0$.

(a)
$$f(x) = (1-x)^{-2}$$

(b)
$$f(x) = (x+3)^2$$

(c)
$$f(x) = \cos x$$

(d)
$$f(x) = \sin 2x$$

(e)
$$f(x) = \ln(1+x)$$

(f)
$$f(x) = x^2 \ln(1+x)$$

(g)
$$f(x) = e^{x^3}$$

(h)
$$f(x) = \sqrt[4]{(1-x)}$$

(i)
$$f(x) = (2+x)^{-2/3}$$

(j)
$$f(x) = x \cos 3x$$

(k)
$$f(x) = \begin{cases} \frac{1 - \cos x}{x^2}, & x \neq 0\\ 1/2, & x = 0 \end{cases}$$

(1)
$$f(x) = \frac{x^2}{\sqrt{2+x}}$$
.

7) Compute the Taylor series of the following functions centered at the specified a. Do not show that $R_n(x) \to 0$.

(a)
$$f(x) = x^3 + 4x^2 + x + 3$$
, $a = 2$ (d) $f(x) = \sqrt{x}$, $a = 9$
(b) $f(x) = \ln x$, $a = 1$ (e) $f(x) = \cos x$, $a = \pi/4$
(c) $f(x) = e^{3x}$ $a = 2$ (f) $f(x) = \sin x$ $a = \pi/6$

$$a=2$$

(d)
$$f(x) = \sqrt{x}, \quad a = 9$$

(b)
$$f(x) = \ln x$$
, $a = 1$
(c) $f(x) = e^{3x}$, $a = 2$

(e)
$$f(x) = \cos x$$
,

(e)
$$f(x) = \cos x$$
, $a = \pi/4$
(f) $f(x) = \sin x$, $a = \pi/6$.

(a)
$$\lim_{x \to 0} \frac{x - \ln(1+x)}{x^2}$$

(c)
$$\lim_{x \to 0} \frac{1 - \cos x}{1 + x - e^x}$$

(b)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1 - x/2}{x^2}$$

(c)
$$\lim_{x \to 0} \frac{1 - \cos x}{1 + x - e^x}$$

(d) $\lim_{x \to 0} \frac{\sin x - x + x^3/6}{x^5}$.

Applications of Taylor polynomials

- 9) Explain the method for approximating functions with Taylor polynomials, and its purposes. How to choose the center of such a polynomial? Explain how the singularities of a function influence the radius of convergence if its Taylor polynomial.
- 10) Find the Taylor polynomial T_3 for the following functions, centered at the given a:

(a)
$$f(x) = e^x$$
, $a = 1$

(e)
$$f(x) = x^2 \ln(1+x)$$
, $a = 0$

(b)
$$f(x) = \sin x$$
, $a = \pi/6$

(f)
$$f(x) = x \sin x, \qquad a = 0$$

(a)
$$f(x) = e^x$$
, $a = 1$
(b) $f(x) = \sin x$, $a = \pi/6$
(c) $f(x) = \cos 2x$, $a = \pi/4$
(d) $f(x) = e^x \sin x$, $a = 0$
(e) $f(x) = x^2 \ln(1+x)$, $a = 0$
(f) $f(x) = x \sin x$, $a = 0$
(g) $f(x) = \sqrt{x}$, $a = 4$
(h) $f(x) = e^{x^2}$, $a = 0$.

(g)
$$f(x) = \sqrt{x}$$
, $a = 4$

(d)
$$f(x) = e^x \sin x$$
, $a = 0$

(h)
$$f(x) = e^{x^2}$$
, $a = 0$

11) For the functions of the previous question, estimate the accuracy of the approximation $f(x) \approx T_3(x)$ when |x - a| < 0.5.