

Autonomous Mobile Robots (AMR)

2. AMR Systems

Prof. Dr. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Contents

- System Components
- Electronics
- Closed-Loop Control
- Robot Control Software

System Components

Embedded System: Offroad Robot RAVON

Actuators for Wheels and Steering

- Four independent DC motors
 - 48 V DC
 - 1700 Watt
 - 3200 U/Min
- Electromagnetic brakes

Linear steering motor

Propulsion motors of RAVON

Electronic Hardware on RAVON

Hardware

- Embedded industrial PC (19 inches)
- Backbone with extension cards
 (SBC Single Board Computer, PCI, ISA) for max. 2 SBC
- 48 V DC input voltage
- SBC with Intel Pentium 4
- Ruggedized hardware

Industrial PC

Hardware

Layout of a DSP56F803

Communication

- CAN-Bus
 - Sensor communication and vehicle control
 - CAN 2.0 A
 - 1 MBit/s
- Firewire cameras
- Serial interface to laser scanner
- Shielded connections necessary (EMV due to high motor currents)

Electronics

Actuation System

Electrical Actuators

- Actuator energy: electrical
- Pro
 - Little required space
 - Compact
 - Good controllability of revolutions and torque
 - High positioning-/repeat-accuracy, hence even driving on surfaces and curved paths is possible very precisely
- Contra: power very limited
- Application: small robots for tasks that require precision,
 e. g. for printed circuit board assembly

Types of Electrical Actuators

- DC motors
 - Brushless/brush-type DC-motors
- Step motors
 - Rotating in impulse steps, per impulse rotation with a fixed angle $(0.5^{\circ} 5^{\circ})$ is performed, max. 2000 impulses
 - Angle can be set precisely because of fixed resolution
 - Complex control, high energy consumption while idle

Types of Electrical Actuators

- AC motors
 - Alternating current 220 V (low power)
- Three phase current 3 × 380 V (high power)
- Servo motors
 - Motor + transmission + encoder + controller
 - Angle ~ controller output/ revolutions ~ output is not load affected

DC motor with controller

Characteristics of DC Motors

- Maximum efficiency: $\eta = \frac{P_{mech}}{P_{el}}$
- Power output/input: $P_{mech} = M \cdot \omega$, $P_{el} = U \cdot I$
- Idle revolutions: $\omega_{max} = \frac{U}{k}$
- Idle current/current while blocked: I_0/I_S
- Maximum torque: $M_S = k \cdot I_S$
- Nominal voltage: $U = U_R + u_L$

Characteristics of DC Motors

- Motor is series connection of inductor and resistor
 - $U = U_R + u_L$
 - $U = I \cdot R + k \cdot \omega$
 - $U = \frac{M \cdot R}{k} + k \cdot \omega$
- Motor revolutions with load: $\omega = -\frac{M \cdot R}{k^2} + \frac{U}{k}$
- Idle revolutions: $\omega_{max} = \frac{U_{max}}{k}$
- Calculation of the output curve

$$P_{mech} = M \cdot \omega = -\frac{R}{k^2} \cdot M^2 + \frac{U}{k} \cdot M$$

Characteristics of DC Motors

Current / power / efficiency characteristics of a typical DC motors

Stepper Motors

- 1.8° per step
- Switching of the inductor causes change in orientation of the magnetic field
- Rotor as permanent magnet
- 0.03 Ncm 2500 Ncm
- Diameter 6 mm 110 mm
- Revolutions 3000/min

Schematic diagram of stepper motors (Source: wolfgang-back.de)

Transmissions

Spur gear

Planetary gear

Worm gear

Harmonic drive

Lead screw and nutAck and pinion geaBelt- and pulley gear

Spur Gear

- Gear reduction $n = \frac{N_1}{N_2}$
- Angular velocity $\Omega_2 = n\Omega_1$

■ Torque $T_2 = \frac{T_1}{n}$

Power Electronics: Motor Control

- Direct control by micro controller not possible
- Micro controller only suited for small motors
- Power electronics required
- Use of H-bridge-circuit for control purposes

H-bridge-circuit

Power Electronics: Motor Control

- Elements of a H-bridge-circuit: relays of transistors
- Relay only switches on/off or changes polarization
- Transistors allow control of revolutions
- Transistor at partial load use causes high power loss

$$P_L = U_{voltagedrop} \cdot I_{motor}$$

Power loss possibly even bigger than power output

Power Electronics: Motor Control with PWM

- Application of PWM
- Microcontroller or DSP
- Median voltage at motor

$$U_{motor} = U \cdot \frac{t_{in}}{t_{period}}$$

Pulse width modulation (PWM)

Closed-Loop Control

General Control Loop Block Diagram

Standard Controller Types

Using of PI controller results in good steady state accuracy at lower complexity compared to a PID controller.

Standard Controller Types

Control Loop with PI Controller and DC Motor Plant

$$G_{PI}(s) = K_C \cdot \frac{T_I \cdot s + 1}{T_I \cdot s}$$

Block diagram of the closed control loop with PI controller and DC motor as plant

Goals and Attributes of a Closed Loop Control

Selection of controller type and calculation of its parameters for ...

- Steady state accuracy: control difference vanishes for $t \to \infty$
- Speed: actual value follows desired value as good/fast as possible
- Stability: no instability of control system due to feedback of system output
- Robustness: small changes of parameters of the control plant do not change the properties of the control system

 → approximations for calculation of control parameters are feasible

Test of the Velocity Controller

- Measurements in encoder values/ms
- Significant overshoots: controller not optimized since non linear motor characteristics

Reaction of the velocity controller on jumps at system input and on different disturbances

Applying Velocity Control to a Climbing Robot

Robot Control Software

Robotics Software Framework

Framework support in robotics software development

Various Challenges

- Inherent Complexity of application and environment
- Highly parallel and asynchronous nature
- Robustness and Reliability
- Distributed systems, Network communication
- Efficiency and Scalability
- Real-time requirements, ensure safety
- Changeability, Maintainability and Flexibility
- Software Reuse
- Interoperability, Portability

Robotics Software Development

- Developing software for autonomous robots from scratch is difficult, time-consuming and error-prone
- Robotic frameworks provide facilities and tools to tackle many of the issues raised above
- Selected Framework has critical impact on development effort and software quality
- Many general-purpose robotic frameworks exist
 - No solution is clearly superior
 - Focus on different topics

System Decomposition and Overall Architecture

- How should a robotic application be structured?
 - Monolithic vs. Modular approaches
 - Monolithic typically more efficient
 - Modular more maintainable, flexible, and reusable due to clear separation of concerns
- Frameworks have modular architectures
 - Entities often referred to as Modules, Components, or Services
- Two major groups
 - Network Transparent Data Flow Graphs
 - Entities are nodes with connector-style interfaces
 - Entities have object-oriented interfaces

System Decomposition and Overall Architecture

Component-based and data-flow-oriented approaches

Simulation of AMRs

Road Construction Simulation of the B10 Highway in the Unreal Engine

Software Visualization

MCABrowser visualizing MCA2 application

Graphical Programming

Microsoft Visual Programming Language IDE

Coming Next

Sensor Systems