Topology Analysis * (v1.6.0)

Xingyu Zhou [†] Beihang University

November 29, 2018

^{*}This package is implemented with reference to a program called Topo, which is developed by Prof. Shuxian Du from Zhengzhou University in China and has been widely used by people in BESIII collaboration. Several years ago, when I was a PhD student working on BESIII experiment, I learned the idea of topology analysis and a lot of programming techniques from the Topo program. So, I really appreciate Prof. Du's original work very much. To meet my own needs and to practice developing analysis tools with C++, ROOT and LaTex, I wrote the package from scratch. At that time, the package functioned well but was relatively simple. At the end of last year (2017), my co-supervisor, Prof. Chengping Shen reminded me that it could be a useful tool for Belle II experiment as well. So, I revised and extended it, making it more well-rounded and suitable for Belle II experiment. Here, I would like to thank Prof. Du for his original work, Prof. Shen for his suggestion and encouragement, and Wencheng Yan, Sen Jia, Yubo Li, Suxian Li, Longke Li, Guanda Gong, Junhao Yin, Xiaoping Qin, Xiqing Hao, HongPeng Wang, JiaWei Zhang for their efforts in helping me test the program.

[†]Email: zhouxy@buaa.edu.cn

List of Tables

1	Event trees and their respective initial-final states	;
2	Event initial-final states	1:
3	Signal inclusive sequential event branches	15

Table 1: Event trees and their respective initial-final states. $\,$

	event tree			_	~
index	(event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	$e^+e^- \to \bar{K}^0K^{*+}D^{*0}D_1^-, \bar{K}^0 \to K_L, K^{*+} \to \pi^0K^+, D^{*0} \to \pi^0D^0, D_1^- \to \pi^0\bar{D}^{*-}, \pi^0 \to e^+e^-,$				
	$D^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}K_{S}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, K_{S} \to \pi^{+}\pi^{-}, \bar{D}^{0} \to \rho^{-}K^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{+}K^{0},$				
1	$\pi^0 ightarrow e^+e^-, K^0 ightarrow K_L$	28	28	25	25
	$(e^{+}e^{-} \to e^{+}e^{+}e^{-}e^{-}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{+}K^{+}K^{*-}D^{*0}D_{1}^{\prime-}, K^{*-} \rightarrow \pi^{0}K^{-}, D^{*0} \rightarrow \pi^{0}D^{0}, D_{1}^{\prime-} \rightarrow \pi^{-}\bar{D}^{*0}, D^{0} \rightarrow \rho^{+}K^{*-}, \bar{D}^{*0} \rightarrow \bar{D}^{0}\gamma, D^{0} \rightarrow $				
2	$\rho^+ \to \pi^0 \pi^+, \bar{K^{*-}} \to \pi^0 K^-, \bar{D}^0 \to \pi^0 \pi^+ \pi^- K^*, \pi^{\bar{0}} \to e^+ e^-, K^* \to \pi^- K^+$	58	57	14	39
	$(e^+e^- \to e^+e^-\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^+K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \to \pi^{0}\rho^{0}\rho^{+}\rho^{-}\omega\bar{D}^{0}D^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{0} \to e^{-}\bar{\nu}_{e}K^{+},$				
3	$D^{*0} o \pi^0 D^0, D^0 o ho^0 \bar{K}^*, ho^0 o \pi^+ \pi^-, \bar{K}^* o \pi^+ K^-$	22	22	11	50
	$(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^+e^- o \bar{K}^0 \eta' \bar{D}^{*-} D_{s1}^{'+}, \bar{K}^0 o K_S, \eta' o \pi^+ \pi^- \eta, \bar{D}^{*-} o \pi^- \bar{D}^0, D_{s1}^{'+} o \pi^0 D_s^{*+}, K_S o \pi^0 \pi^0,$				
4	$\eta \to \pi^0 \pi^0 \pi^0, \bar{D}^0 \to \mu^- \bar{\nu}_\mu \pi^+, D_s^{*+} \to D_s^+ \gamma, D_s^+ \to \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^-$	40	40	10	60
	$\frac{(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \rho^{0}\rho^{0}\pi^{+}\pi^{-}D^{*+}\bar{D}^{*-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{0}\pi^{+}K^{-},}$				
	$e^{+}e^{-} \to \rho^{0}\rho^{0}\pi^{+}\pi^{-}D^{*+}D^{*-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, D^{*-} \to \pi^{-}D^{0}, D^{0} \to \pi^{0}\pi^{+}K^{-},$				
5	$ar{D}^0 ightarrow \pi^0 \pi^- K^+$	57	48	9	69
	$(e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma)$				
	$e^+e^- o ho^0\pi^+ \bar{K}^0 K^* D^0 D_1^{\prime-}, ho^0 o \pi^+\pi^-, \bar{K}^0 o K_S, K^* o \pi^- K^+, D^0 o \pi^+\omega K^-, D_1^{\prime-} o \pi^- \bar{D}^{*0},$	0			
6	$K_S \to \pi^+\pi^-, \omega \to \pi^0\pi^+\pi^-, \bar{D}^{*0} \to \bar{D}^0\gamma, \bar{D}^0 \to \pi^-K^+\eta', \eta' \to \rho^0\gamma, \rho^0 \to \pi^\pm\pi^-$	0	0	8	77
	$\frac{(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D}^{0}D_{1}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{0} \to \pi^{-}\omega K^{+}, D_{1}^{0} \to \pi^{-}D^{*+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0},}$				
_	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	F0.	c	0.9
7		50	50	6	83
	$\frac{(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \pi^{+}\pi^{-}\omega\omega D^{*0}\bar{D}^{*0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*0} \to \pi^{0}D^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{0} \to K_{L}\pi^{+}\pi^{-}, C^{*0} \to \pi^{0}D^{0}, \bar{D}^{*0} \to \pi^{0}D^{0}, D^{0} \to K_{L}\pi^{+}\pi^{-}, C^{*0} \to K_{L}\pi^{+}, C^{*0} \to K_{L}$				
8	$\bar{D}^0 \rightarrow e^- \bar{\nu}_e \pi^+ K^0, K^0 \rightarrow K_S, K_S \rightarrow \pi^+ \pi^-$	103	98	6	89
	$(e^+e^- \to e^-\bar{\nu}_e K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$	105	90	0	09
	$e^{+}e^{-} \rightarrow \pi^{0}K^{*}\bar{K}^{*}D^{*+}\bar{D}^{*-}, K^{*} \rightarrow \pi^{0}K^{0}, \bar{K}^{*} \rightarrow \pi^{+}K^{-}, D^{*+} \rightarrow \pi^{+}D^{0}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, K^{0} \rightarrow K_{S},$				
9	$D^0 \to \pi^0 \eta K_S, \bar{D}^0 \to \rho^0 \pi^- K^+, K_S \to \pi^+ \pi^-, \eta \to \pi^0 \pi^0 \pi^0, K_S \to \pi^+ \pi^-, \rho^0 \to \pi^+ \pi^-$	53	53	4	93
				_	00
	$\frac{(e^+e^-\to\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^+e^-\to\pi^0\pi^0\pi^0\rho^0\pi^+\omega\bar{D}^{*-}D^{*0},\rho^0\to\pi^+\pi^-,\omega\to\pi^0\pi^+\pi^-,\bar{D}^{*-}\to\pi^-\bar{D}^0,D^{*0}\to\pi^0D^0,\bar{D}^0\to\pi^+\pi^+\pi^-\pi^-,\omega\to\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi$				
10	$D^{0} \to \mu^{+} \nu_{\mu} K^{*-}, K^{*-} \to \pi^{-} \bar{K}^{0}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{+} \pi^{-}$	87	85	4	97
	$(e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$			_	٠.
	$\frac{(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \pi^{+}\pi^{-}D^{0}\bar{D}^{*0}, D^{0} \to e^{+}\nu_{e}\pi^{-}\bar{K}^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \bar{K}^{0} \to K_{L}, \pi^{0} \to e^{+}e^{-}, \bar{D}^{0} \to \pi^{-}K_{1}^{+},}$				
11	$K_1^+ \to \rho^+ K^0, \rho^+ \to \pi^0 \pi^+, K^0 \to K_L$	11	11	4	101
	$(e^{+}e^{-} \rightarrow e^{+}e^{+}e^{-}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma)$	1			

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
12	$e^{+}e^{-} \to \rho^{0}\rho^{0}\pi^{+}\pi^{-}\omega D^{*+}\bar{D}^{*-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $D^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, D^{-} \to \pi^{-}\pi^{-}K^{+}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	105	100	4	105
13	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{-}K^{-}D^{*+}\bar{D}^{*-}\Delta^{0}\bar{\Sigma}^{*+}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \Delta^{0} \to \pi^{0}n, \bar{\Sigma}^{*+} \to \pi^{+}\bar{\Lambda}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{+}K^{-}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K^{+}K^{-}, \bar{\Lambda} \to \pi^{+}\bar{p}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}K^{-}n\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{+}\pi^{-}\rho^{-}D^{*+}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, D^{0} \to \pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-},$	17	17	3	108
14	$e^{+}e^{-} \to \pi^{+}\pi^{-}\rho^{-}D^{*+}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, D^{0} \to \pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-}K_{S} \to \pi^{-}K_{S} \to \pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$	34	34	3	111
15	$K^* ightarrow \pi^+ K^-, ho^- ightarrow \pi^0 \pi^-, \phi ightarrow \pi^0 ho^0, ho^0 ightarrow \pi^+ \pi^- \ (e^+ e^- ightarrow e^+ u_e \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma \gamma \gamma \gamma \gamma)$	35	35	3	114
16	$e^{+}e^{-} \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}K^{+}K^{-}D^{*+}\bar{D}^{*-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{0} \to \pi^{0}\pi^{+}K^{-}, D^{-} \to K_{L}a_{1}^{-},$ $a_{1}^{-} \to \pi^{0}\rho^{-}, \rho^{-} \to \pi^{0}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	1	1	3	117
17	$e^{+}e^{-} \to K^{-}K^{*+}\bar{D}^{0}D_{1}^{\prime 0}, K^{*+} \to \pi^{0}K^{+}, \bar{D}^{0} \to K_{S}\eta', D_{1}^{\prime 0} \to \pi^{-}D^{*+}, K_{S} \to \pi^{+}\pi^{-}, \eta' \to \pi^{+}\pi^{-}\eta, \\ D^{*+} \to \pi^{+}D^{0}, \eta \to \pi^{0}\pi^{0}\pi^{0}, D^{0} \to K^{-}a_{1}^{+}, a_{1}^{+} \to \rho^{0}\pi^{+}, \rho^{0} \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	68	66	3	120
18	$e^{+}e^{-} \to \pi^{-}\rho^{+}K^{0}\bar{K}^{0}\eta'D^{0}\bar{D}_{0}^{*0}, \rho^{+} \to \pi^{0}\pi^{+}, K^{0} \to K_{L}, \bar{K}^{0} \to K_{S}, \eta' \to \pi^{0}\pi^{0}\eta, D^{0} \to \pi^{0}\pi^{0}\pi^{+}\pi^{-},$ $\bar{D}_{0}^{*0} \to \pi^{+}D^{-}, K_{S} \to \pi^{+}\pi^{-}, \eta \to \pi^{0}\pi^{0}\pi^{0}, D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	71	69	3	123
19	$e^{+}e^{-} \to \rho^{0}\rho^{0}\rho^{-}D^{*+}\bar{D}_{1}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}_{1}^{0} \to \pi^{+}\bar{D}^{*-}, D^{0} \to \rho^{+}K^{*-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{-}\bar{K}^{0}, \bar{D}^{0} \to \rho^{-}K^{*+}, \bar{K}^{0} \to K_{S}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, K_{S} \to \pi^{0}\pi^{0}, K^{0} \to K_{L}$	73	71	3	126
20	$\frac{(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \rho^{0}\pi^{+}\pi^{-}K^{0}D^{*+}D_{s}^{*-}, \rho^{0} \to \pi^{+}\pi^{-}, K^{0} \to K_{L}, D^{*+} \to \pi^{+}D^{0}, D_{s}^{*-} \to D_{s}^{-}\gamma, D^{0} \to K_{S}\phi, D_{s}^{-} \to K^{0}K^{*-}, K_{S} \to \pi^{+}\pi^{-}, \phi \to \pi^{0}\rho^{0}, K^{0} \to K_{S}, K^{*-} \to \pi^{0}K^{-}, \rho^{0} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma)$	77	75	3	129
21	$(e^{+}e^{-} \rightarrow K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma))$ $e^{+}e^{-} \rightarrow \pi^{-}D^{*+}D_{s}^{*-}p\bar{\Lambda}, D^{*+} \rightarrow \pi^{+}D^{0}, D_{s}^{*-} \rightarrow D_{s}^{-}\gamma, \bar{\Lambda} \rightarrow \pi^{0}\bar{n}, D^{0} \rightarrow \pi^{+}\omega K^{-}, D_{s}^{-} \rightarrow \rho^{-}\eta,$ $\omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, \rho^{-} \rightarrow \pi^{0}\pi^{-}, \eta \rightarrow \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \rightarrow \rho^{-}\bar{K}^{0}K^{+}\bar{D}^{*-}\Sigma^{0}\Xi_{c}^{+}, \rho^{-} \rightarrow \pi^{0}\pi^{-}, \bar{K}^{0} \rightarrow K_{S}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \Sigma^{0} \rightarrow \bar{\Lambda}\gamma, \Xi_{c}^{+} \rightarrow e^{+}\nu_{e}\Xi^{0},$	83	81	3	132
22	$e^{+}e^{-} \to \rho^{-}\bar{K}^{0}K^{+}\bar{D}^{*-}\bar{\Sigma}^{0}\Xi_{c}^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{K}^{0} \to K_{S}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \bar{\Sigma}^{0} \to \bar{\Lambda}\gamma, \Xi_{c}^{+} \to e^{+}\nu_{e}\Xi^{0}, \\ K_{S} \to \pi^{+}\pi^{-}, \bar{D}^{0} \to \pi^{+}\pi^{-}K_{S}, \bar{\Lambda} \to \pi^{0}\bar{n}, \Xi^{0} \to \pi^{0}\Lambda, K_{S} \to \pi^{+}\pi^{-}, \Lambda \to \pi^{-}p \\ (e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma)$	42	42	3	135

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
23	$e^{+}e^{-} \rightarrow \pi^{0}\rho^{0}\pi^{-}D^{*+}\bar{D}^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-}, D^{*+} \rightarrow \pi^{+}D^{0}, \bar{D}^{0} \rightarrow \mu^{-}\bar{\nu}_{\mu}K^{+}, D^{0} \rightarrow \pi^{+}\eta K^{-}, \eta \rightarrow \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma)$	90	87	3	138
24	$e^{+}e^{-} \to \rho^{0}\pi^{+}K^{0}\bar{K}^{*}\bar{D}^{*-}D_{1}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, K^{0} \to K_{S}, \bar{K}^{*} \to \pi^{+}K^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}, D_{1}^{0} \to \pi^{-}D^{*+},$ $K_{S} \to \pi^{+}\pi^{-}, D^{-} \to \pi^{0}\pi^{-}K_{S}, D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{+}\pi^{-}, D^{0} \to \pi^{+}\pi^{+}\pi^{-}K^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma)$	100	95	3	141
25	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\rho^{-}\omega K^{0}D^{*+}D_{s}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S}, D^{*+} \to \pi^{+}D^{0}, D_{s}^{*-} \to \pi^{0}D_{s}^{-}, K_{S} \to \pi^{+}\pi^{-}, D^{0} \to \pi^{0}\pi^{+}K^{-}, D_{s}^{-} \to \rho^{-}\eta', \rho^{-} \to \pi^{0}\pi^{-}, \eta' \to \rho^{0}\gamma, \rho^{0} \to \pi^{+}\pi^{-} (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma$	43	43	3	144
26	$e^{+}e^{-} \to \pi^{0}\rho^{-}\omega\bar{K}^{0}K^{*+}D^{*+}\bar{D}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S}, K^{*+} \to \pi^{+}K^{0}, D^{*+} \to \pi^{+}D^{0},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, K_{S} \to \pi^{0}\pi^{0}, K^{0} \to K_{L}, D^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, \bar{D}^{0} \to \pi^{+}\pi^{-}K_{S}, K_{L} \to \pi^{0}\pi^{+}\pi^{-},$ $K_{S} \to \pi^{0}\pi^{0}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma$	49	49	3	147
27	$e^{+}e^{-} \to \pi^{0}\pi^{+}D^{-}D_{1}^{0}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{*}, D_{1}^{0} \to \pi^{-}D^{*+}, K^{*} \to \pi^{0}K^{0}, D^{*+} \to \pi^{+}D^{0}, K^{0} \to K_{S},$ $D^{0} \to e^{+}\nu_{e}K^{-}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma)$	36	36	2	149
28	$e^{+}e^{-} \to \pi^{0}\pi^{+}\rho^{-}D^{*+}\bar{D}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{+}\eta K^{-}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S},$ $\eta \to \pi^{0}\pi^{0}\pi^{0}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	72	70	2	151
29	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}\rho^{+}\bar{D}^{*-}D^{0}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{0}\pi^{+}K^{-}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	19	19	2	153
30	$e^{+}e^{-} \to \pi^{+}\pi^{-}\rho^{+}\omega\bar{D}^{*-}D^{0}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{+}\pi^{-}\bar{K}^{*}, \bar{D}^{0} \to K^{+}a_{1}^{-}, \\ \bar{K}^{*} \to \pi^{+}K^{-}, a_{1}^{-} \to \pi^{0}\rho^{-}, \rho^{-} \to \pi^{0}\pi^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	74	72	2	155
31	$e^{+}e^{-} \to \pi^{0}\pi^{-}\eta K^{+}D^{*+}D^{*-}_{s}, \eta \to e^{+}e^{-}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, D^{*-}_{s} \to D^{-}_{s}\gamma, D^{0} \to \omega \bar{K}^{*}, D^{-}_{s} \to \pi^{-}\eta', $ $\omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{+}K^{-}, \eta' \to \pi^{+}\pi^{-}\eta, \eta \to \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	76	74	2	157
32	$e^{+}e^{-} \to \pi^{0}\pi^{+}\bar{K}^{0}K^{*}K^{+}K^{-}K^{-}\bar{D}^{*-}D_{s}^{*+}, \bar{K}^{0} \to K_{S}, K^{*} \to \pi^{-}K^{+}, \bar{D}^{*-} \to \pi^{0}D^{-}, D_{s}^{*+} \to D_{s}^{+}\gamma, K_{S} \to \pi^{+}\pi^{-}, D_{s}^{-} \to \pi^{-}\pi^{-}K^{+}, D_{s}^{+} \to \rho^{+}\eta', \rho^{+} \to \pi^{0}\pi^{+}, \eta' \to \pi^{+}\pi^{-}\eta, \eta \to \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	54	54	2	159
33	$e^{+}e^{-} \to \pi^{+}\rho^{-}D^{-}D^{*0}\bar{n}p, \rho^{-} \to \pi^{0}\pi^{-}, D^{-} \to \pi^{-}\omega K^{*}, D^{*0} \to \pi^{0}D^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{*} \to \pi^{-}K^{+}, $ $D^{0} \to \pi^{+}\omega K^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	80	78	2	161
34	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{-}\bar{K}^{0}\bar{D}^{*0}D_{s}^{+}p\bar{\Delta}^{++}, \bar{K}^{0} \to K_{S}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D_{s}^{+} \to e^{+}\nu_{e}\eta, \bar{\Delta}^{++} \to \pi^{-}\bar{p}, K_{S} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, \eta \to \pi^{0}\pi^{+}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}, \pi^{0} \to e^{+}e^{-} \\ (e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	82	80	2	163

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
35	$e^{+}e^{-} \to K^{0}D^{*+}D_{s}^{*-}, K^{0} \to K_{L}, D^{*+} \to \pi^{+}D^{0}, D_{s}^{*-} \to \pi^{0}D_{s}^{-}, D^{0} \to \pi^{+}\pi^{-}K_{S}, D_{s}^{-} \to K^{0}K^{*-}, K_{S} \to \pi^{+}\pi^{-}, K^{0} \to K_{L}, K^{*-} \to \pi^{-}\bar{K}^{0}, K_{L} \to e^{+}\nu_{e}\pi^{-}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0} $ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	55	55	2	165
36	$e^{+}e^{-} \to \pi^{+}\pi^{-}D^{*0}\bar{D}_{1}^{'0}, D^{*0} \to \pi^{0}D^{0}, \bar{D}_{1}^{'0} \to \pi^{+}\bar{D}^{*-}, D^{0} \to K_{L}\pi^{-}K^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \bar{D}^{0} \to K_{L}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma)$	33	33	2	167
37	$e^{+}e^{-} \to \pi^{+}K^{-}D_{s}^{*+}D_{1}^{-}, D_{s}^{*+} \to D_{s}^{+}\gamma, D_{1}^{-} \to \pi^{0}\bar{D}^{*-}, D_{s}^{+} \to \bar{K}^{*}K^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \bar{K}^{*} \to \pi^{+}K^{-}, K^{*} \to \pi^{+}K^{-}, K^{0} \to K_{s}, K^{*} \to \pi^{-}K^{+}, K_{s} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}X^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	24	24	2	169
38	$e^{+}e^{-} \to \pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D}^{*-}D^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*0} \to \pi^{0}D^{0}, \bar{D}^{0} \to e^{-}\bar{\nu}_{e}K^{+},$ $D^{0} \to \pi^{0}\bar{K}_{1}^{0}, \bar{K}_{1}^{0} \to \pi^{0}\pi^{+}K^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}\bar{D}^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, D^{0} \to \pi^{+}\pi^{+}\pi^{-}K^{-}, \bar{D}^{0} \to \pi^{-}K_{1}^{+},$	94	22	2	171
39	$e^{+}e^{-} \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}\bar{D}^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, D^{0} \to \pi^{+}\pi^{+}\pi^{-}K^{-}, \bar{D}^{0} \to \pi^{-}K_{1}^{+}, K_{1}^{+} \to \pi^{+}\pi^{-}K^{+} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma) \\ e^{+}e^{-} \to \rho^{0}\pi^{+}\pi^{-}\bar{K}^{0}K_{1}^{*}D^{*+}\bar{D}^{*-}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S}, K_{1}^{*} \to \pi^{0}K^{0}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, K_{1}^{*}$	98	93	2	173
40	$e^{+}e^{-} \to \rho^{0}\pi^{+}\pi^{-}\bar{K}^{0}K^{*}D^{*+}\bar{D}^{*-}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S}, K^{*} \to \pi^{0}K^{0}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, K_{S} \to \pi^{+}\pi^{-}, K^{0} \to K_{L}, D^{0} \to \pi^{-}K^{*+}, \bar{D}^{0} \to e^{-}\bar{\nu}_{e}\pi^{0}K^{+}, K_{L} \to e^{-}\nu_{e}\pi^{+}, K^{*+} \to \pi^{0}K^{+} $ $(e^{+}e^{-} \to e^{-}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)$	64	63	2	175
41	$e^{+}e^{-} \to \pi^{-}\pi^{-}D^{*+}\bar{D}^{*0}\bar{p}\Delta^{++}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \Delta^{++} \to \pi^{+}p, D^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	102	97	2	177
42	$e^{+}e^{-} \to \pi^{-}\omega \bar{D}^{*0}\bar{\Delta}^{+}\Sigma_{c}^{*++}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, \bar{\Delta}^{+} \to \bar{p}, \Sigma_{c}^{*++} \to \pi^{+}\Lambda_{c}^{+}, \bar{D}^{0} \to K^{+}a_{1}^{-}, \\ \Lambda_{c}^{+} \to \pi^{+}\pi^{+}\pi^{-}\Sigma^{0}, a_{1}^{-} \to \rho^{0}\pi^{-}, \Sigma^{0} \to \Lambda\gamma, \rho^{0} \to \pi^{+}\pi^{-}, \Lambda \to \pi^{-}p \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \to \rho^{+}\omega \bar{D}^{*-}D^{*0}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*0} \to \pi^{0}D^{0}, \bar{D}^{0} \to K^{+}a_{1}^{-}, \\ \bar{D}^{*0} \to \bar{D}^{*0}, \bar{D}^{*0} \to \bar{D}$	25	25	2	179
43	$e^{+}e^{-} \to \rho^{+}\omega\bar{D}^{*-}D^{*0}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*0} \to \pi^{0}D^{0}, \bar{D}^{0} \to K^{+}a_{1}^{-},$ $D^{0} \to \pi^{0}K_{S}, a_{1}^{-} \to \rho^{0}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{-}D^{*+}\bar{D}^{*0}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{0} \to e^{+}\nu_{e}K^{-}, \bar{D}^{0} \to K^{+}a_{1}^{-}, a_{1}^{-} \to \rho^{0}\pi^{-},$	69	67	2	181
44	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{-}D^{*+}\bar{D}^{*0}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{0} \to e^{+}\nu_{e}K^{-}, \bar{D}^{0} \to K^{+}a_{1}^{-}, a_{1}^{-} \to \rho^{0}\pi^{-},$ $\rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{+}D^{0}\bar{D}^{*0}n\bar{p}, D^{0} \to \omega\bar{K}^{*}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{+}K^{-}, \bar{D}^{0} \to \pi^{+}\pi^{-}K_{S},$	15	15	1	182
45	$e^{+}e^{-} \to \pi^{+}D^{0}\bar{D}^{*0}n\bar{p}, D^{0} \to \omega\bar{K}^{*}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{+}K^{-}, \bar{D}^{0} \to \pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-} $ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}n\bar{p}\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\rho^{-}D^{*+}\bar{D}^{*0}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, D^{0} \to \pi^{+}\pi^{-}\bar{K}^{*}, \bar{D}^{0} \to K_{S}\eta',$	44	44	1	183
46	$\bar{K}^* \to \pi^+ K^-, K_S \to \pi^+ \pi^-, \eta' \to \pi^+ \pi^- \eta, \eta \to \pi^0 \pi^+ \pi^- (e^+ e^- \to \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^- \gamma \gamma \gamma \gamma \gamma \gamma)$	45	45	1	184
47	$e^{+}e^{-} \to K^{+}D^{*+}D_{s}^{-}n\bar{p}, D^{*+} \to \pi^{0}D^{+}, D_{s}^{-} \to \rho^{-}\eta', \pi^{0} \to e^{+}e^{-}, D^{+} \to K_{S}K^{*+}, \rho^{-} \to \pi^{0}\pi^{-},$ $\eta' \to \rho^{0}\gamma, K_{S} \to \pi^{+}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, \rho^{0} \to \pi^{+}\pi^{-}, K^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{+}e^{-}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{p}\gamma\gamma\gamma)$	46	46	1	185

	event tree				
index	(event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
4.0	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{D}^{0}D^{*0}, \bar{D}^{0} \rightarrow \pi^{+}\pi^{+}\pi^{-}K^{-}, D^{*0} \rightarrow \pi^{0}D^{0}, D^{0} \rightarrow \pi^{0}\pi^{+}\pi^{-}\bar{K}^{*}, \bar{K}^{*} \rightarrow \pi^{+}K^{-}$				100
48	$(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma)$	47	47	1	186
49	$e^{+}e^{-} \rightarrow \rho^{0}\pi^{+}\pi^{-}\omega D^{0}\bar{D}^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, D^{0} \rightarrow \pi^{0}\pi^{+}K^{-}, \bar{D}^{0} \rightarrow \pi^{+}\pi^{-}K^{*}, K^{*} \rightarrow \pi^{-}K^{+}$	48	48	1	187
43	$(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma)$	40	40	1	107
-	$e^{+}e^{-} \rightarrow \pi^{+}K^{*}K^{*-}D^{+}\bar{D}^{*-}, K^{*} \rightarrow \pi^{-}K^{+}, K^{*-} \rightarrow \pi^{0}K^{-}, D^{+} \rightarrow \mu^{+}\nu_{\mu}\bar{K}^{0}_{1}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \bar{K}^{0}_{1} \rightarrow \pi^{0}\bar{K}^{*},$	1.0	1.0		100
50	$ar{D}^0 o \pi^- K_1^+, ar{K}^* o \pi^+ K^-, K_1^+ o \pi^+ K^*, K^* o \pi^- K^+$	16	16	1	188
	$\frac{(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \pi^{0}\eta\bar{K}^{0}K^{+}\bar{D}^{*-}D^{0}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{K}^{0} \to K_{L}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{0}\pi^{0}K_{L}, K_{L} \to \mu^{+}\nu_{\mu}\pi^{-},}$				
51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	1	189
01	$(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$			1	100
	$e^{+}e^{-} \to \pi^{+}D^{*0}\Delta^{+}\bar{\Sigma}_{c}^{}, D^{*0} \to \pi^{0}D^{0}, \Delta^{+} \to \pi^{0}p, \bar{\Sigma}_{c}^{} \to \pi^{-}\bar{\Lambda}_{c}^{-}, D^{0} \to e^{+}\nu_{e}K^{-}, \bar{\Lambda}_{c}^{-} \to K^{+}\bar{\Delta}^{++},$				
52	$ar{\Delta}^{++} ightarrow \pi^- ar{p}$	51	51	1	190
	$(e^+e^- \to e^+\nu_e\pi^+\pi^-\pi^-K^+K^-p\bar{p}\gamma\gamma\gamma\gamma)$				
53	$e^{+}e^{-} \to \pi^{+}\pi^{-}D^{*+}\bar{D}^{*-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{0}\pi^{0}K_{L}, \bar{D}^{0} \to \pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}K_{S}, K_{S} \to $	52	52	1	191
	$\frac{(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \pi^{0}\pi^{+}\omega\bar{D}^{*-}D^{*0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*0} \to \pi^{0}D^{0}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K^{*}, D^{0} \to \pi^{+}K^{-},}$, , , , , , , , , , , , , , , , , , ,			
54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	18	1	192
04	$(e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	10	10	1	132
	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{0}\rho^{0}\pi^{+}D^{*0}D_{1}^{'-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*0} \to \pi^{0}D^{0}, D_{1}^{'-} \to \pi^{-}\bar{D}^{*0}, D^{0} \to \eta K_{S}, \bar{D}^{*0} \to \bar{D}^{0}\gamma,$				
	$\eta \to \pi^0 \pi^+ \pi^-, K_S \to \pi^+ \pi^-, \bar{D}^0 \to \rho^- K^{*+}, \pi^0 \to e^+ e^-, \rho^- \to \pi^0 \pi^-, K^{*+} \to \pi^+ K^0,$	_	4	-	100
55	$K^0 o K_S, K_S o \pi^0\pi^0$	4	4	1	193
	$(e^+e^- \to e^+e^-\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$				
	$e^{+}e^{-} \to \pi^{+}\pi^{-}\omega D^{0}\bar{D}^{*0}\Delta^{++}\bar{\Delta}^{++}, \underbrace{\omega \to \pi^{0}\pi^{+}\pi^{-}, D^{0} \to K_{L}\pi^{+}\pi^{-}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, \Delta^{++} \to \pi^{+}p, \bar{\Delta}^{++} \to \pi^{-}\bar{p}, $				
56	$ar{D}^0 o K^+ a_1^-, a_1^- o \pi^0 ho^-, ho^- o \pi^0 \pi^-$	20	20	1	194
	$(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{-}\omega\omega D^{*+}\bar{D}^{*0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{0} \to \pi^{0}K_{L}\pi^{+}\pi^{-},$				
57	$\bar{D}^0 \rightarrow \rho^- K^{*+}, \rho^- \rightarrow \pi^0 \pi^-, K^{*+} \rightarrow \pi^0 K^+$	56	56	1	195
"	$(e^+e^- \to K_L \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	00	30	1	130
F0	$\frac{(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to D^{-}D_{2}^{*0}\bar{n}p, D^{-} \to \pi^{0}\pi^{-}K_{S}, D_{2}^{*0} \to \pi^{-}D^{+}, K_{S} \to \pi^{+}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}, \bar{K}^{*} \to \pi^{+}K^{-}}$	0.1	21	- 1	100
58	$(e^+e^- ightarrow\mu^+ u_\mu\pi^+\pi^-\pi^-\pi^-K^-ar{n}p\gamma\gamma)$	21	21	1	196
	$e^+e^- \to \rho^0\pi^+\pi^-D^{*+}\bar{D}^{*-}, \rho^0 \to \pi^+\pi^-, D^{*+} \to \pi^+D^0, \bar{D}^{*-} \to \pi^-\bar{D}^0, D^0 \to K_L\eta, \bar{D}^0 \to \pi^0\pi^-K^+,$				
59	$\eta o \pi^0 \pi^+ \pi^-$	5	5	1	197
	$(e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma \gamma \gamma)$				
	$e^{+}e^{-} \to \pi^{0}\pi^{-}\pi^{-}\rho^{+}\rho^{+}\bar{D}^{*0}\bar{D}^{*0}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{+} \to \pi^{0}\pi^{+}, D^{*0} \to D^{0}\gamma, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \pi^{0} \to e^{+}e^{-},$ $D^{0} \to \rho^{+}K^{*-}, \bar{D}^{0} \to \pi^{0}\pi^{0}K^{0}\bar{K}^{0}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{-}\bar{K}^{0}, K^{0} \to K_{L}, \bar{K}^{0} \to K_{S},$				
60	$D^{\circ} ightarrow ho^{+} K^{\circ} \; , D^{\circ} ightarrow \pi^{\circ} \pi^{\circ} K^{\circ} K^{\circ}, ho^{+} ightarrow \pi^{\circ} \pi^{+}, K^{\circ} ightarrow \pi^{-} K^{\circ}, K^{\circ} ightarrow K_{L}, K^{\circ} ightarrow K_{S}, \ ar{K}^{0} ightarrow K_{L}, K_{S} ightarrow \pi^{+} \pi^{-}$	59	58	1	198
	$(e^+e^- \to e^+e^- K_L K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \gamma \gamma$				
	(I.	1		

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
61	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{-}\rho^{+}\rho^{-}\rho^{-}D^{*0}\bar{D}^{*0}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*0} \to D^{0}\gamma, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0},$ $D^{0} \to \pi^{0}\pi^{0}\bar{K}^{*}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, \bar{K}^{*} \to \pi^{+}K^{-}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	60	59	1	199
62	$e^{+}e^{-} \to K^{0}\bar{K}^{0}D^{*+}\bar{D}^{*-}, K^{0} \to K_{S}, \bar{K}^{0} \to K_{S}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, K_{S} \to \pi^{+}\pi^{-}, $	61	60	1	200
63	$e^{+}e^{-} \to \pi^{0}\pi^{+}\rho^{-}D^{*+}\bar{D}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{+} \to K_{L}a_{1}^{+}, \bar{D}^{0} \to \pi^{-}\eta K^{+},$ $a_{1}^{+} \to \pi^{0}\rho^{+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	62	61	1	201
64	$(e^{+}e^{-} \rightarrow K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\pi^{+}\bar{D}^{*-}D^{*0}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, D^{*0} \rightarrow \pi^{0}D^{0}, \bar{D}^{0} \rightarrow \pi^{-}\omega K^{+}, D^{0} \rightarrow \omega \bar{K}^{*}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{*} \rightarrow \pi^{+}K^{-}$ $(e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	63	62	1	202
65	$e^{+}e^{-} \to \pi^{+}K^{-}\bar{D}^{*-}D'_{s1}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D'_{s1}^{+} \to D_{s}^{+}\gamma, \bar{D}^{0} \to \rho^{0}K^{*}, D_{s}^{+} \to \rho^{+}\phi, \rho^{0} \to \pi^{+}\pi^{-}, K^{*} \to \pi^{0}K^{0}, \rho^{+} \to \pi^{0}\pi^{+}, \phi \to K_{L}K_{S}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-} + K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma)$	23	23	1	203
66	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{-}D^{*0}\bar{D}_{2}^{*0}, D^{*0} \to \pi^{0}D^{0}, \bar{D}_{2}^{*0} \to \pi^{+}\bar{D}^{*-}, D^{0} \to K^{-}a_{1}^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, a_{1}^{+} \to \pi^{0}\rho^{+}, \\ \bar{D}^{0} \to \omega K^{*}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{*} \to \pi^{-}K^{+} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	65	62	1	204
67	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{*0}\bar{D}^{*0}, D^{*0} \to D^{0}\gamma, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{0} \to K_{S}\eta', \bar{D}^{0} \to e^{-}\bar{\nu}_{e}\pi^{+}K^{0}, K_{S} \to \pi^{+}\pi^{-}, \\ \eta' \to \pi^{+}\pi^{-}\eta, K^{0} \to K_{L}, \eta \to \gamma\gamma \\ (e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma)$	66	64	1	205
68	$e^{+}e^{-} \to \rho^{0}\pi^{-}\rho^{+}\omega D^{+}\bar{D}^{*-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}, \bar{D}^{*-} \to \pi^{0}D^{-}, \\ \bar{K}^{0} \to K_{L}, D^{-} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-} \\ (e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	67	65	1	206
69	$e^{+}e^{-} \to \rho^{0}\pi^{-}\omega K^{*+}D^{*+}_{s}D^{*-}_{s}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, D^{*+} \to \pi^{+}D^{0}, D^{*-}_{s} \to D^{-}_{s}\gamma, K^{0} \to K_{S}, D^{0} \to \pi^{+}\pi^{-}K_{S}, D^{-}_{s} \to e^{-}\bar{\nu}_{e}\eta, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}, \eta \to \gamma\gamma $ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	6	6	1	207
70	$e^{+}e^{-} \to \rho^{0}\pi^{+}D_{2}^{*-}\bar{\Sigma}^{0}\Xi_{c}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, D_{2}^{*-} \to \pi^{0}D^{-}, \bar{\Sigma}^{0} \to \bar{\Lambda}\gamma, \Xi_{c}^{0} \to e^{+}\nu_{e}\Xi^{-}, D^{-} \to \pi^{-}K_{S}, \\ \bar{\Lambda} \to \pi^{0}\bar{n}, \Xi^{-} \to \pi^{-}\Lambda, K_{S} \to \pi^{+}\pi^{-}, \Lambda \to \pi^{-}p \\ (e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma)$	7	7	1	208
71	$e^{+}e^{-} \to \pi^{-}\rho^{+}\omega p\bar{\Lambda}_{c}^{-}D_{1}^{\prime 0}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{\Lambda}_{c}^{-} \to \pi^{+}\pi^{-}\bar{\Sigma}^{-}, D_{1}^{\prime 0} \to \pi^{-}D^{*+}, \bar{\Sigma}^{-} \to \pi^{-}\bar{n},$ $D^{*+} \to \pi^{+}D^{0}, D^{0} \to \pi^{0}\pi^{+}K^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma)$	70	68	1	209
72	$e^{+}e^{-} \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}\bar{K}^{0}K^{+}\bar{D}^{*-}D_{2}^{*0}, \pi^{0} \to e^{+}e^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S}, \bar{D}^{*-} \to \pi^{0}D^{-}, D_{2}^{*0} \to \pi^{-}D^{*+}, K_{S} \to \pi^{+}\pi^{-}, D^{-} \to K_{S}K^{*-}, D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{0}\pi^{0}, K^{*-} \to \pi^{-}\bar{K}^{0}, D^{0} \to \pi^{0}\pi^{+}K^{-}, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	26	26	1	210

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
73	$e^{+}e^{-} \to \pi^{0}\rho^{0}\pi^{+}\bar{D}^{*-}D^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{*0} \to \pi^{0}D^{0}, D^{-} \to \rho^{0}\pi^{-}K^{*}, D^{0} \to \mu^{+}\nu_{\mu}K^{-}, \rho^{0} \to \pi^{+}\pi^{-}, K^{*} \to \pi^{0}K^{0}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$	27	27	1	211
	$\frac{(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \pi^{0}\rho^{0}\pi^{+}\bar{D}^{*-}D^{*0}, \pi^{0} \to e^{+}e^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*0} \to D^{0}\gamma, \bar{D}^{0} \to \pi^{-}K^{+}\eta',}$				
74	$D^{0} \to \pi^{0} \pi^{0} K^{0} \bar{K}^{0}, \eta' \to \rho^{0} \gamma, K^{0} \to K_{L}, \bar{K}^{0} \to K_{S}, \rho^{0} \to \pi^{+} \pi^{-}, K_{S} \to \pi^{0} \pi^{0}$ $(e^{+}e^{-} \to e^{+}e^{-}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	8	8	1	212
75	$e^{+}e^{-} \to \pi^{0}\rho^{0}\pi^{-}\rho^{+}K^{-}\bar{D}^{*0}D_{s}^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D_{s}^{+} \to \rho^{+}\eta', \bar{D}^{0} \to \pi^{-}K_{1}^{+}, \\ \rho^{+} \to \pi^{0}\pi^{+}, \eta' \to \pi^{+}\pi^{-}\eta, K_{1}^{+} \to \pi^{+}\pi^{-}K^{+}, \eta \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}D^{-}\bar{p}\Sigma_{c}^{*0}, D^{-} \to \pi^{0}\pi^{-}K^{*}, \Sigma_{c}^{*0} \to \pi^{-}\Lambda_{c}^{+}, K^{*} \to \pi^{-}K^{+}, \Lambda_{c}^{+} \to \pi^{+}\omega\Sigma^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, $	29	29	1	213
76	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}D^{-}\bar{p}\Sigma_{c}^{*0}, D^{-} \to \pi^{0}\pi^{-}K^{*}, \Sigma_{c}^{*0} \to \pi^{-}\Lambda_{c}^{+}, K^{*} \to \pi^{-}K^{+}, \Lambda_{c}^{+} \to \pi^{+}\omega\Sigma^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \Sigma^{0} \to \Lambda\gamma, \Lambda \to \pi^{-}p$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{0}\pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D}^{0}D^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{0} \to \rho^{-}K^{*+}, D^{*0} \to D^{0}\gamma, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{0} \to \rho^{-}K^{*+}, D^{*0} \to D^{0}\gamma, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{0} \to \rho^{-}K^{*+}, D^{*0} \to D^{0}\gamma, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{0} \to D^{0}\gamma, \bar{D}^{0} \to D^{$	75	73	1	214
77	$e^{+}e^{-} \to \pi^{0}\pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D}^{0}D^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{0} \to \rho^{-}K^{*+}, D^{*0} \to D^{0}\gamma, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, D^{0} \to K_{L}\eta', \pi^{0} \to e^{+}e^{-}, K^{0} \to K_{L}, \eta' \to \pi^{0}\pi^{0}\eta, K_{L} \to \mu^{+}\nu_{\mu}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-} $ $(e^{+}e^{-} \to e^{+}e^{-}\mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	30	30	1	215
78	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}\eta'D^{0}\bar{D}^{*0}, \eta' \to \pi^{+}\pi^{-}\eta, D^{0} \to \pi^{0}\pi^{0}\bar{K}^{*}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, \\ \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \to \pi^{+}\rho^{-}\omega D^{*+}\bar{D}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{+}K^{-}, $	31	31	1	216
79	$ar{D}^0 ightarrow e^-ar{ u}_e\pi^0 K^+$	78	76	1	217
80	$(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \rho^{-}\bar{D}^{*-}\bar{\Delta}^{-}\Sigma_{c}^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \bar{\Delta}^{-} \to \pi^{+}\bar{n}, \Sigma_{c}^{*+} \to \pi^{0}\Lambda_{c}^{+}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S},$ $\Lambda_{c}^{+} \to \bar{K}^{0}p, K_{S} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma)$	79	77	1	218
81	$e^{+}e^{-} \to \rho^{0}\pi^{-}\rho^{+}D^{*+}\bar{D}^{*-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, D^{*+} \to \pi^{+}\bar{D}^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{0}\bar{K}_{1}^{0},$ $\bar{D}^{0} \to \rho^{0}\pi^{-}K^{+}, \bar{K}_{1}^{0} \to \rho^{+}K^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{0}\pi^{+}\rho^{-}D^{*+}\bar{D}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{+}\pi^{-}\bar{K}^{*}, \bar{D}^{0} \to \eta K_{S},$	32	32	1	219
82	$e^{+}e^{-} \to \pi^{0}\pi^{+}\rho^{-}D^{*+}\bar{D}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{+}\pi^{-}\bar{K}^{*}, \bar{D}^{0} \to \eta K_{S}, \\ \bar{K}^{*} \to \pi^{+}K^{-}, \eta \to \gamma\gamma, K_{S} \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \to \pi^{0}\pi^{0}\rho^{0}\rho^{-}\bar{D}^{*0}D_{1}^{\prime+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, D_{1}^{\prime+} \to \pi^{0}D^{*+}, \bar{D}^{0} \to \pi^{-}K^{+},$	81	79	1	220
83	$e^{+}e^{-} \to \pi^{0}\pi^{0}\rho^{0}\rho^{-}\bar{D}^{*0}D_{1}^{\prime+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, D_{1}^{\prime+} \to \pi^{0}D^{*+}, \bar{D}^{0} \to \pi^{-}K^{+}, \\ D^{*+} \to \pi^{+}D^{0}, D^{0} \to K_{L}\pi^{+}\pi^{-} \\ (e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \to \rho^{0}\pi^{+}\pi^{-}\rho^{-}D^{*+}\bar{D}^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{0} \to \pi^{0}\pi^{-}K^{+},$	9	9	1	221
84	$e^{+}e^{-} \to \rho^{0}\pi^{+}\pi^{-}\rho^{-}D^{*+}\bar{D}^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{0} \to \pi^{0}\pi^{-}K^{+}, \\ \bar{D}^{0} \to \eta\eta', \eta \to \pi^{0}\pi^{+}\pi^{-}, \eta' \to \pi^{+}\pi^{-}\eta, \eta \to \pi^{0}\pi^{0}\pi^{0} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	10	10	1	222

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
85	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}\bar{D}^{*0}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{0} \to K_{L}\pi^{+}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	84	82	1	223
86	$e^{+}e^{-} \to \pi^{0}\omega \bar{D}_{0}^{*0}D_{1}^{*0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}_{0}^{*0} \to \pi^{+}D^{-}, D_{1}^{*0} \to \pi^{-}D^{*+}, D^{-} \to e^{-}\bar{\nu}_{e}\rho^{0}, D^{*+} \to \pi^{+}D^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, D^{0} \to K_{L}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma)$	85	83	1	224
87	$e^{+}e^{-} \to \pi^{+}\pi^{-}D^{*+}\Delta^{+}\bar{\Sigma}_{c}^{}, D^{*+} \to \pi^{+}D^{0}, \Delta^{+} \to \pi^{+}n, \bar{\Sigma}_{c}^{} \to \pi^{-}\bar{\Lambda}_{c}^{-}, D^{0} \to K^{-}a_{1}^{+}, \bar{\Lambda}_{c}^{-} \to \pi^{-}\bar{\Lambda}, $ $a_{1}^{+} \to \pi^{0}\rho^{+}, \bar{\Lambda} \to \pi^{0}\bar{n}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma)$	86	84	1	225
88	$e^{+}e^{-} \to \pi^{0}\rho^{0}\pi^{-}\rho^{-}D^{*+}\bar{D}^{*0}\bar{\Sigma}^{+}\Sigma^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, \bar{\Sigma}^{+} \to \pi^{+}\bar{n},$ $\Sigma^{0} \to \Lambda\gamma, D^{0} \to \pi^{0}K_{L}\pi^{+}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \Lambda \to \pi^{0}n$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{+}\pi^{-}\omega D^{*+}\bar{D}^{*-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}, \bar{D}^{0} \to \pi^{-}K_{1}^{+},$	2	2	1	226
89	$ar{K}^* ightarrow \pi^+ K^-, K_1^+ ightarrow \pi^0 K^+ \ (e^+ e^- ightarrow \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$	88	62	1	227
90	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{-}K^{*}D^{*+}D_{s}^{*-}, K^{*} \to \pi^{0}K^{0}, D^{*+} \to \pi^{+}D^{0}, D_{s}^{*-} \to D_{s}^{-}\gamma, K^{0} \to K_{S}, D^{0} \to K_{L}K^{+}K^{-}, D_{s}^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{-}D^{*+}\bar{D}^{*0}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, \bar{D}^{0} \to K^{+}a_{1}^{-}, K_{S} \to \pi^{+}\pi^{-},$	89	86	1	228
91	$a_1^- o ho^0 \pi^-, ho^0 o \pi^+ \pi^- \ (e^+ e^- o \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma \gamma \gamma)$	12	12	1	229
92	$e^{+}e^{-} \to \pi^{+}\pi^{-}D^{+}D^{-}, D^{+} \to K_{S}a_{1}^{+}, D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+}, K_{S} \to \pi^{+}\pi^{-}, a_{1}^{+} \to \pi^{0}\rho^{+}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma)$	91	88	1	230
93	$e^{+}e^{-} \to \pi^{0}\pi^{0}\omega D^{*+}\bar{D}^{*-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{0}\pi^{+}K^{-}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	92	89	1	231
94	$e^{+}e^{-} \to \pi^{+}\pi^{-}K^{0}D^{+}D_{s}^{*-}, K^{0} \to K_{S}, D^{+} \to e^{+}\nu_{e}\bar{K}_{1}^{0}, D_{s}^{*-} \to D_{s}^{-}\gamma, K_{S} \to \pi^{+}\pi^{-}, \bar{K}_{1}^{0} \to \omega\bar{K}^{0},$ $D_{s}^{-} \to \rho^{-}\eta', \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{0} \to K_{L}, \rho^{-} \to \pi^{0}\pi^{-}, \eta' \to \pi^{0}\pi^{0}\eta, \eta \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	93	90	1	232
95	$e^{+}e^{-} \to \pi^{0}\pi^{+}\rho^{-}\omega D^{*0}\bar{D}^{*0}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*0} \to D^{0}\gamma, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{0} \to \rho^{+}K^{*-}, \\ \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{0}K^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	37	37	1	233
96	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{-}\rho^{-}D^{*+}\bar{D}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \rho^{0}\bar{K}^{*}, \bar{D}^{0} \to \pi^{0}K^{*},$ $\rho^{0} \to \pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, K^{*} \to \pi^{0}K^{0}, \bar{K}^{0} \to K_{L}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	95	82	1	234
97	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{+}\rho^{-}\bar{D}^{*-}D^{0}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, D^{-} \to \pi^{-}\pi^{-}K^{+}, K_{S} \to \pi^{+}\pi^{-} $ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	96	91	1	235

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
98	$e^{+}e^{-} \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}\eta K^{0}D_{s}^{*-}D_{0}^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \eta \to \pi^{0}\pi^{0}\pi^{0}, K^{0} \to K_{S}, D_{s}^{*-} \to D_{s}^{-}\gamma, D_{0}^{*+} \to \pi^{+}D^{0}, K^{0} \to K^{*}K^{*-}, D^{0} \to \pi^{0}K_{L}\pi^{+}\pi^{-}, K^{*} \to \pi^{-}K^{+}, K^{*-} \to \pi^{0}K^{-} K^{0}K^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$	97	92	1	236
99	$e^{+}e^{-} \to \omega \omega D^{*+} \bar{D}^{*-}, \omega \to \pi^{0} \pi^{+} \pi^{-}, \omega \to \pi^{0} \pi^{+} \pi^{-}, D^{*+} \to \pi^{0} D^{+}, \bar{D}^{*-} \to \pi^{-} \bar{D}^{0}, D^{+} \to e^{+} \nu_{e} \bar{K}^{*},$ $\bar{D}^{0} \to \pi^{0} \pi^{-} K^{+}, \bar{K}^{*} \to \pi^{+} K^{-}$ $(e^{+}e^{-} \to e^{+} \nu_{e} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-} \pi^{-} K^{+} K^{-} \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$	38	38	1	237
100	$(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \pi^{+}K^{0}K^{-}D^{*+}\bar{D}^{*-}, K^{0} \to K_{L}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}K^{-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0},$ $K^{0} \to K_{L}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	99	94	1	238
101	$e^{+}e^{-} \to \pi^{-}\rho^{+}K^{-}K^{*+}D^{*+}\bar{D}^{*-}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*+} \to \pi^{0}K^{+}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to K^{+}K^{-}, \\ \bar{D}^{0} \to \pi^{-}\omega K^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	39	39	1	239
102	$e^{+}e^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\omega D^{*+}\bar{D}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \rho^{0}\bar{K}^{*}, \\ \bar{D}^{0} \to K^{+}a_{1}^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, a_{1}^{-} \to \rho^{0}\pi^{-}, \bar{K}^{0} \to K_{S}, \rho^{0} \to \pi^{+}\pi^{-}, \\ K_{S} \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	101	96	1	240
103	$e^{+}e^{-} \to \pi^{+}\pi^{-}D^{-}D^{*+}n\bar{n}, D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+}, D^{*+} \to \pi^{+}D^{0}, D^{0} \to \pi^{+}\pi^{+}\pi^{-}K^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}n\bar{n})$	13	13	1	241
104	$e^{+}e^{-} \to \pi^{0}\pi^{0}\rho^{+}\rho^{+}\rho^{-}\bar{D}^{*-}D^{0}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to K^{+}K^{-}, \\ \bar{D}^{0} \to \rho^{0}\pi^{-}K^{+}, \rho^{0} \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	41	41	1	242
105	$e^{+}e^{-} \to \pi^{0}\pi^{0}\pi^{-}K^{-}K^{*+}K^{*+}D^{*+}D_{s}^{*-}, K^{*+} \to \pi^{0}K^{+}, K^{*+} \to \pi^{+}K^{0}, D^{*+} \to \pi^{+}D^{0}, D_{s}^{*-} \to D_{s}^{-}\gamma, K^{0} \to K_{L}, K^{0} \to K_{L}, K^{*-} \to \pi^{-}\bar{K}^{0}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to K_{L}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	104	99	1	243
106	$e^{+}e^{-} \to \pi^{+}K^{+}K^{-}\bar{D}^{*-}D^{*0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*0} \to \pi^{0}D^{0}, \bar{D}^{0} \to \pi^{0}K_{L}\pi^{+}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	14	14	1	244

Table 2: Event initial-final states.

	Table 2: Event initial-final states.	ID ITEM	·	0.1.0
index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
1	$e^{+}e^{-} \rightarrow e^{+}e^{+}e^{-}e^{-}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma$	28	25	25
2	$e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma$	57	14	39
3	$e^+e^- \to e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	22	13	52
4	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma$	48	10	62
5	$e^+e^- \to \mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	40	10	72
6	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma$	0	8	80
7	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma$	50	6	86
8	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	98	6	92
9	$e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma$	11	4	96
10	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	85	4	100
11	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma$	53	4	104
12	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	100	4	108
13	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	49	3	111
14	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma$	34	3	114
15	$e^+e^- \to e^+\nu_e\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	35	3	117
16	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- K^- \gamma \gamma$	1	3	120
17	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma$	62	3	123
18	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	66	3	126
19	$e^+e^- \to e^- \bar{\nu}_e K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma$	69	3	129
20	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \gamma \gamma$	71	3	132
21	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma$	75	3	135
22	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\bar{n}p\gamma$	81	3	138
23	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma$	42	3	141
24	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma$	87	3	144
25	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}$	95	3	147
26	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma$	43	3	150
27	$e^+e^- \rightarrow \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-K^-K^-n\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	17	3	153
28	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^-\gamma$	19	2	155
29	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma$	70	2	157
30	$e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma$	33	2	159
31	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	72	2	161
32	$e^+e^- \rightarrow e^+e^-\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma$	74	2	163
33	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^+K^+K^-K^-\gamma$	54	2	165
34	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	78	2	167
35	$e^+e^- \rightarrow e^+e^+e^-\nu_e\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-p\bar{p}\gamma$	80	2	169
36	$e^+e^- \rightarrow e^+\nu_e K_L \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma$	55	2	171
37	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	82	2	173
38	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	24	2	175
39	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma\gamma\gamma\gamma$	25	2	177
40	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma$	93	2	179
	1			

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
41	$e^{+}e^{-} \rightarrow e^{-}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma$	63	2	181
42	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma$	97	2	183
43	$e^+e^- \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^-\pi^-K^-\gamma\gamma\gamma\gamma$	36	2	185
44	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma$	67	2	187
45	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^-n\bar{p}\gamma\gamma\gamma\gamma$	44	1	188
46	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	45	1	189
47	$e^{+}e^{-} \rightarrow e^{+}e^{-}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{p}\gamma\gamma\gamma$	46	1	190
48	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma$	47	1	191
49	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma$	16	1	192
50	$e^+e^- \to \mu^+\nu_\mu K_L\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+\gamma$	3	1	193
51	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	18	1	194
52	$e^+e^- \rightarrow e^+\nu_e\pi^+\pi^-\pi^-K^+K^-p\bar{p}\gamma\gamma\gamma\gamma$	51	1	195
53	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma$	52	1	196
54	$e^+e^- \rightarrow e^+e^-\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	4	1	197
55	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ p \bar{p} \gamma \gamma \gamma \gamma \gamma \gamma$	20	1	198
56	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\bar{n}p\gamma\gamma$	21	1	199
57	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma$	56	1	200
58	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma$	5	1	201
59	$e^+e^- \rightarrow e^+e^-K_LK_L\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	58	1	202
60	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma$	59	1	203
61	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma$	60	1	204
62	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma$	61	1	205
63	$e^+e^- \rightarrow K_L\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma$	23	1	206
64	$e^+e^- \to e^-\bar{\nu}_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	6	1	207
65	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma$	64	1	208
66	$e^+e^- \to e^+\nu_e K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	65	1	209
67	$e^+e^- \to e^+\nu_e\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\bar{n}p\gamma\gamma\gamma\gamma\gamma$	7	1	210
68	$e^{+}e^{-} \to e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$	26	1	211
69	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\bar{n}p\gamma\gamma\gamma\gamma\gamma$	68	1	212
70	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	27	1	213
71	$e^+e^- \to e^+e^-K_L\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	8	1	214
72	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma$	29	1	215
73	$e^+e^- \to e^+e^-\mu^+\nu_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	30	1	216
74	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	73	1	217
75	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	31	1	218
76	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma$	32	1	219
77	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	76	1	220
78	$e^+e^- \to K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \bar{n} p \gamma \gamma \gamma \gamma \gamma$	77	1	221
79	$e^+e^- \to K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	9	1	222
80	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma$	79	1	223

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
81	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	10	1	224
82	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ n \bar{n} \gamma \gamma$	2	1	225
83	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma$	12	1	226
84	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma$	83	1	227
85	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma$	84	1	228
86	$e^+e^- \to \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma$	37	1	229
87	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	86	1	230
88	$e^+e^- \to e^+\nu_e\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	38	1	231
89	$e^+e^- \rightarrow e^-\bar{\nu}_e\pi^+\pi^+\pi^+\pi^-\pi^-K^+\gamma\gamma\gamma\gamma$	88	1	232
90	$e^+e^- \to \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma$	89	1	233
91	$e^+e^- \to e^+\nu_e K_L \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	90	1	234
92	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	91	1	235
93	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	92	1	236
94	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma$	39	1	237
95	$e^+e^- \to \mu^-\bar{\nu}_{\mu}K_LK_L\pi^+\pi^+\pi^+K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	94	1	238
96	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}n\bar{n}$	13	1	239
97	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	96	1	240
98	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma$	41	1	241
99	$e^+e^- \to K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	14	1	242
100	$e^+e^- \to K_L K_L K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	99	1	243
101	$e^+e^- \to e^+\nu_e\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma$	15	1	244

Table 3: Signal inclusive sequential event branches.

index	signal inclusive sequential event branches	i Sig Inc Seq Evt Brs	nEtrs	nCmltEtrs
1	$D^{*+} \rightarrow D^0$ +anything, $D^0 \rightarrow \pi^+ \pi^- K_S, K_S \rightarrow \pi^+ \pi^-$	0	5	5