Linear Regression model

when model learns too well from the training data and not perform well on testing dats it causes overfitting to reduce overfitting we have some techniques

cross validaaion

ensamble learning

Regularization

Regularization:

Regularization is a technique in machine learning it used to reduce overfitting by controlling size of the coefficients in a model

it adds penalty to the model if it uses more coefficients

it keeps the model simple better at predicting the model

Types of Regularization

i) Ridge regularization(L2):

it is a type of regularization it is used to prevent overfitting by reducing high coefficients to low

ii) Lasso regularization(L1):

it is a type of regularization it is used to prevent overfitting by reducing high coefficiets to zero

```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
   from sklearn import preprocessing
   from sklearn.preprocessing import PolynomialFeatures
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression, Ridge, Lasso
   from sklearn.metrics import r2_score
```

```
In [2]: data=pd.read_csv(r"C:\Users\akshi\Downloads\car-mpg.csv")
```

In [3]: data

Out[3]:		mpg	cyl	disp	hp	wt	acc	yr	origin	car_type	car_name
	0	18.0	8	307.0	130	3504	12.0	70	1	0	chevrolet chevelle malibu
	1	15.0	8	350.0	165	3693	11.5	70	1	0	buick skylark 320
	2	18.0	8	318.0	150	3436	11.0	70	1	0	plymouth satellite
	3	16.0	8	304.0	150	3433	12.0	70	1	0	amc rebel sst
	4	17.0	8	302.0	140	3449	10.5	70	1	0	ford torino
	•••		•••	•••				•••	•••		
	393	27.0	4	140.0	86	2790	15.6	82	1	1	ford mustang gl
	394	44.0	4	97.0	52	2130	24.6	82	2	1	vw pickup
	395	32.0	4	135.0	84	2295	11.6	82	1	1	dodge rampage
	396	28.0	4	120.0	79	2625	18.6	82	1	1	ford ranger
	397	31.0	4	119.0	82	2720	19.4	82	1	1	chevy s-10

398 rows × 10 columns

```
In [4]: # 1. Drop unnecessary column
        data = data.drop(['car_name'], axis=1)
        # 2. Replace origin numbers with names
        data['origin'] = data['origin'].replace({1: 'america', 2: 'europe', 3: 'asia'})
        # 3. Create dummy variables
        data = pd.get_dummies(data, columns=['origin'], dtype=int)
        # 4. Replace '?' with NaN
        data = data.replace('?', np.nan)
        # 5. Convert all columns to numeric (errors='ignore' skips dummy columns which are
        data = data.apply(pd.to_numeric, errors='ignore')
        # 6. Fill missing numeric values with median (only numeric columns)
        data = data.fillna(data.median(numeric_only=True))
       C:\Users\akshi\AppData\Local\Temp\ipykernel_18292\1530094145.py:14: FutureWarning: e
       rrors='ignore' is deprecated and will raise in a future version. Use to numeric with
       out passing `errors` and catch exceptions explicitly instead
         data = data.apply(pd.to_numeric, errors='ignore')
```

In [5]: data.head(5)

Out[5]:		mpg	cyl	disp	hp	wt	acc	yr (car_type	e origin_ame	rica o	rigin_asia	origin_eur
	0	18.0	8	307.0	130.0	3504	12.0	70	()	1	0	
	1	15.0	8	350.0	165.0	3693	11.5	70	()	1	0	
	2	18.0	8	318.0	150.0	3436	11.0	70	()	1	0	
	3	16.0	8	304.0	150.0	3433	12.0	70	()	1	0	
	4	17.0	8	302.0	140.0	3449	10.5	70	()	1	0	
	4												-
In [6]:		data.d data[['mpg']]]	,axis=	1)							
In [7]:	X												
Out[7]:		cyl	dis	o հլ	o w	t acc	yr	car_t	ype o	rigin_america	origin	_asia ori	gin_europe
		8 0	307.0	0 130.0	3504	1 12.0	70		0	1		0	0
		1 8	350.0	0 165.0	3693	3 11.5	70		0	1		0	0
		2 8	318.0	0 150.0	3436	5 11.0	70		0	1		0	0
		3 8	304.0	0 150.0	3433	3 12.0	70		0	1		0	0
		4 8	302.0	0 140.0	3449	9 10.5	70		0	1		0	0
	•	••	,				•••		•••	•••		•••	•••
	39	3 4	140.0	0 86.0	2790	15.6	82		1	1		0	0
	39	4 4	97.0	52.0	2130	24.6	82		1	0		0	1
	39	5 4	135.0	0 84.0	2295	5 11.6	82		1	1		0	0
	39	6 4	120.0	79.0	2625	5 18.6	82		1	1		0	0
	39	7 4	119.0	0 82.0	2720) 19.4	82		1	1		0	0
	398	rows	× 10 c	olumns	;								
	4												-
In [8]:	у												

```
Out[8]:
             mpg
          0
             18.0
              15.0
          2
             18.0
              16.0
             17.0
        393
             27.0
        394
             44.0
        395 32.0
        396 28.0
        397 31.0
```

398 rows × 1 columns

```
In [18]: x_s=preprocessing.scale(x) # it replaces every value by the z-score
    x_s=pd.DataFrame(x_s,columns=x.columns)
    y_s=preprocessing.scale(y)
    y_s=pd.DataFrame(y_s,columns=y.columns)
In [19]: x_s
```

Out[19]:		cyl	disp	hp	wt	acc	yr	car_type	origin_ame	
	0	1.498191	1.090604	0.673118	0.630870	-1.295498	-1.627426	-1.062235	0.773	
	1	1.498191	1.503514	1.589958	0.854333	-1.477038	-1.627426	-1.062235	0.773	
	2	1.498191	1.196232	1.197027	0.550470	-1.658577	-1.627426	-1.062235	0.773	
	3	1.498191	1.061796	1.197027	0.546923	-1.295498	-1.627426	-1.062235	0.773	
	4	1.498191	1.042591	0.935072	0.565841	-1.840117	-1.627426	-1.062235	0.773	
	•••				•••			•••		
	393	-0.856321	-0.513026	-0.479482	-0.213324	0.011586	1.621983	0.941412	0.773	
	394	-0.856321	-0.925936	-1.370127	-0.993671	3.279296	1.621983	0.941412	-1.292	
	395	-0.856321	-0.561039	-0.531873	-0.798585	-1.440730	1.621983	0.941412	0.773	
	396	-0.856321	-0.705077	-0.662850	-0.408411	1.100822	1.621983	0.941412	0.773	
	397	-0.856321	-0.714680	-0.584264	-0.296088	1.391285	1.621983	0.941412	0.773	
	398 rc	ows × 10 cc	lumns							
	4								•	
In [20]:	y_s									
Out[20]:		mpg								
	0	-0.706439								
	1	-1.090751								
	2	-0.706439								
	3	-0.962647								
	4	-0.834543								
	•••									
	393	0.446497								
	394	2.624265								
	395	1.087017								
	396	0.574601								
	397	0.958913								
	398 rc	ows × 1 colu	umns							
In [21]:	<pre>In [21]: x_train,x_test,y_train,y_test=train_test_split(x_s,y_s,test_size=0.30,random_state=</pre>									

In [22]:	x_tr	ain							
Out[22]:		cyl	disp	hp	wt	acc	yr	car_type	origin_ame
	230	1.498191	1.503514	1.720935	1.412400	-1.513346	0.268063	-1.062235	0.773
	357	-0.856321	-0.714680	-0.112746	-0.420234	-0.278877	1.351199	0.941412	-1.292
	140	1.498191	1.061796	1.197027	1.521175	-0.024722	-0.544290	-1.062235	0.773
	22	-0.856321	-0.858718	-0.243723	-0.703997	0.701436	-1.627426	0.941412	-1.292
	250	1.498191	1.196232	0.935072	0.903991	-0.859804	0.538847	-1.062235	0.773
	•••		•••			•••			
	323	-0.856321	-0.359385	0.018232	-0.201501	-0.424109	1.080415	0.941412	0.773
	192	0.320935	0.543257	0.018232	0.452336	-0.387801	-0.002721	-1.062235	0.773
	117	-0.856321	-1.204411	-1.448713	-1.304628	1.427593	-0.815074	0.941412	-1.292
	47	0.320935	0.543257	-0.112746	0.368389	-0.206262	-1.356642	-1.062235	0.773
	172	-0.856321	-0.993154	-0.872414	-0.883713	0.338357	-0.273506	0.941412	-1.292
	278 rd	ows × 10 cc	lumns						
	4								•
In [23]:	y_te:	st							
Out[23]:		mpg							
	65	-1.218855							
	132	0.190289							
		-1.346959							
	78	-0.322127							
	37	-0.706439							
	•••								
	236	0.254341							
	352	0.817999							
	92	-1.346959							
	221	-0.770491							

120 rows × 1 columns

322 2.957335

simple linear model

```
In [25]: # Fit simple linear model and find coefficients
         regressor=LinearRegression()
         regressor.fit(x train,y train)
         for idx, col_name in enumerate(x_train.columns):
             print('The coefficient for {} is {}'.format(col name,regressor.coef [0][idx]))
         intercept=regressor.intercept [0]
         print('The intercept is {}'.format(intercept))
        The coefficient for cyl is 0.2474447975894671
        The coefficient for disp is 0.28838215446098686
        The coefficient for hp is -0.18990342687152878
        The coefficient for wt is -0.673222906511177
        The coefficient for acc is 0.0675450154068818
        The coefficient for yr is 0.34463640721172734
        The coefficient for car type is 0.31491491540037686
        The coefficient for origin america is -0.07682943694882902
        The coefficient for origin_asia is 0.0633604889661997
        The coefficient for origin europe is 0.031283357351475284
        The intercept is -0.019500467624017432
         Regularized ridge regression
         ridge_model.fit(x_train,y_train)
         print("Ridge model coef: {}".format(ridge model.coef ))
```

```
In [27]: ridge model=Ridge(alpha=0.3)
    396213
     0.31169746 -0.07642734 0.06333336 0.03080065]
```

Regularized Lasso Regression

```
In [28]: lasso_model=Lasso(alpha=0.1)
         lasso_model.fit(x_train,y_train)
         print("LAsso model coef: {}".format(lasso_model.coef_))
                                       -0.
                                                   -0.06203044 -0.48363379 0.
        LAsso model coef: [-0.
                                                                                         0.27
        163751
          0.09620861 -0.03490256 0.
                                              0.
In [30]: # simple linear model
         print(regressor.score(x_train,y_train))
         print(regressor.score(x_test,y_test))
         # Ridae
         print(ridge_model.score(x_train,y_train))
         print(ridge model.score(x test,y test))
         #Lasso
```

```
print(lasso_model.score(x_train,y_train))
print(lasso_model.score(x_test,y_test))
```

- 0.836163800114943
- 0.8439452810748138
- 0.8361520170844985
- 0.8437853815947187
- 0.7994535676270829
- 0.81026554865651

In [31]: data_train_test=pd.concat([x_train,y_train],axis=1)
 data_train_test.head()

Out[31]:		cyl	disp	hp	wt	acc	yr	car_type	origin_ame
	230	1.498191	1.503514	1.720935	1.412400	-1.513346	0.268063	-1.062235	0.773
	357	-0.856321	-0.714680	-0.112746	-0.420234	-0.278877	1.351199	0.941412	-1.292
	140	1.498191	1.061796	1.197027	1.521175	-0.024722	-0.544290	-1.062235	0.773
	22	-0.856321	-0.858718	-0.243723	-0.703997	0.701436	-1.627426	0.941412	-1.292
	250	1.498191	1.196232	0.935072	0.903991	-0.859804	0.538847	-1.062235	0.773
	4 @								•