

Adversarial Label Flips

Matthias Dellago & Maximilian Samsinger

A short recap

Adversarial attack

+ 6

=

Husky (42.82% confidence)

Noise (PGD-40) 50x amplified Handkerchief (99.999988% confidence)

Source: ctf.codes, circa 2021

What we want to do

Categorised as Dog Cat Plane Adversarial Example of a Cat Plane ? ? 0.0

How many modified dogs get classified as cats vs as planes? etc.

Some simple theory

We want similar images that are classified differently.
But what is "similar"?

Quantifying Changes

Two Different Approaches

Projected Gradient Decent

- Pick spot in epsilon ball
- Iterate gradient decent
- 3 If leaving ball, project back onto surface.

Projected Gradient Decent

Know your enemy, Oscar Knagg, towardsdatascience.com, 2019

Carlini-Wagner-Attack

Original idea: minimise disance while always staying in

"misclassification territory".

Problem: Nonlinearity of constraint makes for bad optimisation

Carlini-Wagner-Attack

Solution: Pack constraint into the function that is optimised. => minimise: distance + "how misclassified is x?"* equiv. minimise distance while maximising misclassification.

*loss function

References I