

Praktikum Physik für Naturwissenschaftler

Bericht zum Versuch

Wechselstromkreise

Durchgeführt am 13. Dezember 2023

Gruppe 6

Moritz Wieland und Dominik Beck

(moritz.wieland@uni-ulm.de) (dominik.beck@uni-ulm.de)

Betreuer: **TODO**

Wir bestätigen hiermit, dass wir die Ausarbeitung selbständig erarbeitet haben un	d detaillierte
Kenntnis vom gesamten Inhalt besitzen.	

	und	
Moritz Wieland		Dominik Beck

Inhaltsverzeichnis

Kapitel		1 Einleitung	Seite 2	
Kapitel		2 Theorie	Seite 3	
Kapitel		3 Versuchsdurchführung und Auswertung	Seite 4	
	3.1	Versuch 1 - Signaldarstellung mit dem Analog-Oszilloskop Versuchsaufbau und -durchführung — 4 ● Ergebnisse — 4	4	
	3.2	Versuch 2 - Impedanzmessung an Widerstand, Kondensator und Spule Versuchsaufbau und -durchführung — 4 ● Ergebnisse — 4	4	
	3.3	Versuch 3 - Impedanzmessung an einem unbekannten Zweipol Versuchsaufbau- und durchführung — 5 ● Ergebnisse — 5	5	

1 Einleitung

2 Theorie

3 Versuchsdurchführung und Auswertung

3.1 Versuch 1 - Signaldarstellung mit dem Analog-Oszilloskop

3.1.1 Versuchsaufbau und -durchführung

Zunächst wurde uns ein Signal vom Betreuer vorgegeben, welches wir mit dem Oszilloskop untersuchen sollten. Diese ist für uns von unbekannter Form, Frequenz und Amplitude. Wir haben uns dann für folgende Einstellung am Oszilloskop entschieden:

TODO: Einstellungen, Skizze einfügen

Nun können wir folgende Messwerte ablesen:

Tabelle 3.1: Messwerte des vorgegebenen Signals

Größe	Wert		
Amplitude	TODO ± Fehler		
Frequenz	TODO ± Fehler		
Periodendauer	TODO ± Fehler		

Wir können nun mit folgender Formel die Frequenz des Signals berechnen:

$$f = \frac{1}{T} \tag{3.1}$$

Und den Größtfehler mit folgender Formel berechnen:

$$\Delta f = \left| \frac{1}{T^2} \right| \cdot \Delta T$$

$$\Rightarrow f^2 \cdot \Delta T$$
(3.2)

3.1.2 Ergebnisse

TODO: Ergebnisse, Vergleich mit vorgegebenen Werten

3.2 Versuch 2 - Impedanzmessung an Widerstand, Kondensator und Spule

3.2.1 Versuchsaufbau und -durchführung

3.2.2 Ergebnisse

3.3 Versuch 3 - Impedanzmessung an einem unbekannten Zweipol

3.3.1 Versuchsaufbau- und durchführung

3.3.2 Ergebnisse

Die gemessenen Werte befinden sich in folgender Tabelle:

Tabelle 3.2: Messwerte Versuch 3

f[Hz]	$U_1[V]$	$U_2[V]$	$t [\mu s]$	I[A]	$ Z [\Omega]$	ϕ [°]
200						
400						
1000						
2000						
4000						
10000						
20000						
40000						
80000						