WT01P4C5-S1 技术规格书

版本 1.0

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

注意

由于产品版本升级或其他原因,本手册内容有可能变更。深圳市启明云端科技有限公司保留在没有任何通知或者提示的情况下对本手册的内容进行修改的权利。本手册仅作为使用指导,深圳市启明云端科技有限公司尽全力在本手册中提供准确的信息,但是深圳市启明云端科技有限公司并不确保手册内容完全没有错误,本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。

修改记录

版本号	日期	制定/变更内容	制定/修改人	审核人
V0. 1	2025-5-20	创建文档 (预发布)	Pai1	Louie
V1. 0	2025-9-2	正式发布	Pail	Louie
				4
		nireles ^s		

目录

1.	概述	. 5
	1.1. 产品简介	
	1.2. 产品特点	
	1.3. 产品图片	
	1.4. 应用场景	
2.	产品规格	
۷٠	2.1. 功能框图	
	2.2. 硬件参数	
3.	引脚定义	
٥.		
	3.1. 引脚布局	10
	3.3. 启动项配置	13
	3. 3. 1. ESP32-P4 Strapping 管脚	
	3. 3. 2. ESP32-P4 芯片启动模式控制	
	3.3.3. ESP32-P4 ROM 日志打印控制	
	3. 3. 4. ESP32-C5 Strapping 管脚	
	3.3.5. ESP32-C5 芯片启动模式控制	
	3.3.6. ESP32-C5 ROM 日志打印控制	
4.	电气特性	
	4.1. 绝对最大限定值	
	4.2. 功耗特性	
	4.3. 建议工作条件	
5.	WT01P4C5-S1 原理图	18
6.	WT01P4C5-S1 尺寸	19
7.	存储条件	19
8.	回流焊曲线	20
9.	联系我们	21

1. 概述

1.1.产品简介

WT01P4C5-S1 系列是深圳市启明云端有限公司推出的基于乐鑫科技ESP32-P4 与 ESP32-C5 系列芯片设计的一款,集成 2.4GHz & 5GHz Wi-Fi6 与 NOR FLASH 的小尺寸邮票孔核心板。核心处理器芯片 ESP32-P4 封装内可叠封16MB 或 32MB PSRAM,包含一个高性能(HP)系统和一个低功耗(LP)系统。HP系统采用 RISC-V 双核处理器,主频360MHz,包含一个JPEG编/解码器、像素处理加速器、H. 264视频编码器和 MIPI 接口,具有强大的图像和语音处理能力。核心板上搭载的 ESP32-C5 高性能 SOC,支持 2.4 & 5G 双频 Wi-Fi6(802.11ax)、Bluetooth®5(LE)、Zigbee 及 Thread(802.15.4),具有丰富的外设接口。核心板上的 ESP32-P4 与 ESP32-C5 通过两者的 SDIO 接口连接,其余引脚均已引出。

图1: 芯片 ESP32-P4 架构图

WT01P4C5-S1 系列共两种规格,具体信息见下表。

WT01P4C5-S1 系列型号对比

采购型号	Flash	Psram	核心板尺寸 (mm)
WT01P4C5-S1-N16R16	16MB	16MB	35. 00*35. 00
WT01P4C5-S1-N16R32	16MB	32MB	35. 00*35. 00

1.2. 产品特点

- 双核 360 MHz 高主频 CPU
- 内置 16 MB Flash 与 16/32 MB PSRAM
- 支持 2.4GHz & 5GHz 双频 Wi-Fi6、BLE5.3、Zigbee、Thread 多协议
- ESP32-P4 与 ESP32-C5 芯片全引脚引出
- 支持多个多媒体接口
- 核心板尺寸小,便于硬件设计
- 开发资料齐全

1.3.产品图片

图2: WT01P4C5-S1-N16R16(正)

图4: WT01P4C5-S1-N16R32(正)

图3: WT01P4C5-S1-N16R16(背)

图5: WT01P4C5-S1-N16R32(背)

1.4.应用场景

- 智能家居
- 工农业自动化
- 消费电子产品

- HMI 人机交互
- 电子机器人
- 摄像头视频流传输
- USB 设备
- 医疗保健

2. 产品规格

2.1.功能框图

图6: WT01P4C5-S1 功能框图

2.2. 硬件参数

ESP32-P4	内核	RISC-V 32 位双核处理器
	主频	360 MHz(HP 系统)
		40 MHz(LP 系统)
ESP32-C5	内核	RISC-V 32 位单核处理器
	主频	240 MHz
	ECDOO DA DOU	128 KB HP ROM
存储	ESP32-P4 ROM	16 KB LP ROM
	ESP32-P4 SRAM	768 KB HP L2MEM

VIV深圳市局	目明云端科技有限公司	WT01P4C5-S1系列技术规格书
		32 KB LP SRAM
	ESP32-P4 PSRAM	16/32 MB
	ESP32-C5 ROM	320 KB
	ESP32-C5 SRAM	384 KB
	Flash	16 MB
	GPIO	46
	SPI	2
	LP SPI	y ()
	UART	5
	LP UART	-51
	I3C	1
	I2C	2
	LP I2C	1
	12S	3
	LP I2S	1
	USB JTAG	1
ESP32-P4	LED PWM	1
外设接口	MCPWM	2
	TWAI [®] 控制器	3
	(兼容 ISO 11898-1)	J
	高速 USB 2.0 OTG	1
	全速 USB 2.0 OTG	1
	百兆以太网 MAC	1
	MIPI CSI-2	1
	MIPI DSI	1
	并行 IO (PARLIO) 控制器	1
	12 位多通道模/数转换器	2
	温度传感器	1
	触摸传感器	1

	模拟电压比较器	1
	欠压监测	1
	GPI0	12
	SPI	1
	UART	2
ESP32-C5	I2C	1
外设接口	I2S	1
	LED PWM	11 (1)
	12 位多通道模/数转换器	1
	温度传感器	5 1
	JPEG 编/解码器	1
图像与语音	像素处理加速器 (PPA)	1
处理接口	图像信号处理器 (ISP)	1
	H264 视频编码器	1

3. 引脚定义

3.1. 引脚布局

3.2. 引脚描述

引脚功能描述

引脚	名称	描述	
1	C5_EN	使能 ESP32-C5 芯片 (内部10K上拉)	
2	C5_I01	GPI01, XTAL_32K_N, LP_GPI01, LP_UART_DSRN, ADC1_CHO	
3	C5_I02	GPIO2, MTMS, LP_GPIO2, LP_UART_RTSN, ADC1_CH1, FSPIQ	
4	C5_I03	GPIO3, MTDI, LP_GPIO3, LP_UART_CTSN, ADC1_CH2	
5	C5_I04	LP_UART_RXD, LP_GPIO4, GPIO4, MTCK, ADC1_CH3, FSPIHD	
6	C5_I05	LP_UART_TXD, LP_GPI05, GPI05, MTDO, ADC1_CH4, FSPIWP	
7	C5_I06	LP_I2C_SDA, LP_GPI06, GPI06, ADC1_CH5, FSPICLK	
8	C5_UOTXD	GPI011, UOTXD (ESP32-C5 烧录引脚)	
9	C5_UORXD	GPI012, UORXD (ESP32-C5 烧录引脚)	
10	GND	电源地	
11	P4_EN	使能 ESP32-P4 芯片 (内部10K上拉)	
12	GPI00	GPIOO, LP_GPIOO, XTAL_32K_N	
13	GPI01	GPI01, LP_GPI01, XTAL_32K_P	
14	GPI02	GPIO2, MTCK, LP_GPIO2, TOUCH_CHANNELO	
15	GPI03	GPI03, MTDI, LP_GPI03, TOUCH_CHANNEL1	
16	GPI04	GPIO4, MTMS, LP_GPIO4, TOUCH_CHANNEL2	
17	NC1	内部无连接,仅物理存在	
18	GPI06	GPIO6, SPI2_HOLD_PAD, LP_GPIO6, TOUCH_CHANNEL4	
19	GPI07	GPIO7, SPI2_CS_PAD, LP_GPIO7, TOUCH_CHANNEL5	
20	GPI08	GPIO8, UARTO_RTS_PAD, SPI2_D_PAD, LP_GPIO8, TOUCH_CHANNEL6	
21	GPI09	GPIO9, UARTO_CTS_PAD, SPI2_CK_PAD, LP_GPIO9, TOUCH_CHANNEL7	
22	GPI010	GPIO10, UART1_TXD_PAD, SPI2_Q_PAD, LP_GPIO10, TOUCH_CHANNEL8	
23	NC2	内部无连接,仅物理存在	
24	GPI011	GPI011, UART1_RXD_PAD, SPI2_WP_PAD, LP_GPI011, TOUCH_CHANNEL9	
25	GPI020	GPI020, ADC1_CHANNEL4	
26	GPI021	GPIO21, ADC1_CHANNEL5	

_	1/1/11/11/11/11	为公师行政行政公司 WIUIF4C5 31 宏列汉小戏佾 17
27	GPI022	GPIO22, ADC1_CHANNEL6
28	GP1023	GPIO23, ADC1_CHANNEL7, REF_50M_CLK_PAD
29	GND	电源地
30	DSI_DATAP1	MIPI DSI PHY DATAP1
31	DSI_DATAN1	MIPI DSI PHY DATAN1
32	DSI_CLKN	MIPI DSI PHY CLKN
33	DSI_CLKP	MIPI DSI PHY CLKP
34	DSI_DATAPO	MIPI DSI PHY DATAPO
35	DSI_DATANO	MIPI DSI PHY DATANO
36	GND	电源地
37	CSI_DATANO	MIPI CSI PHY DATANO
38	CSI_DATAPO	MIPI CSI PHY DATAPO
39	CSI_CLKP	MIPI CSI PHY CLKP
40	CSI_CLKN	MIPI CSI PHY CLKN
41	CSI_DATAN1	MIPI CSI PHY DATAN1
42	CSI_DATAP1	MIPI CSI PHY DATAP1
43	GND	电源地
44	USB_DM	USB2 OTG PHY DM
45	USB_DP	USB2 OTG PHY DP
46	GND	电源地
47	GND	电源地
48	GPI024	GPI024, USB1P1_NO
49	GPI025	GPI025, USB1P1_P0
50	GPI026	GPI026, USB1P1_N1
51	GPI027	GPI027, USB1P1_P1
52	GPI028	GPIO28, SPI2_CS_PAD, GMAC_PHY_RXDV_PAD
53	GPI029	GPIO29, SPI2_D_PAD, GMAC_PHY_RXDO_PAD
54	GP1030	GPIO30, SPI2_CK_PAD, GMAC_PHY_RXD1_PAD
55	GPI031	GPIO31, SPI2_Q_PAD, GMAC_PHY_RXER_PAD

	1/6/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	为公编件1X有限公司 W1011年63 31 宏列3X 小风俗 D
56	GP1032	GPIO32, SPI2_HOLD_PAD, GMAC_RMII_CLK_PAD
57	GPI033	GPI033, SPI2_WP_PAD, GMAC_PHY_TXEN_PAD
58	GPI034	GPIO34, SPI2_IO4_PAD, GMAC_PHY_TXDO_PAD
59	GPI035	GPIO35, SPI2_IO5_PAD, GMAC_PHY_TXD1_PAD(内部10K上拉)
60	GPI036	GPIO36, SPI2_IO6_PAD, GMAC_PHY_TXER_PAD (内部10K上拉)
61	GPI037	GPI037, UARTO_TXD_PAD, SPI2_I07_PAD (ESP32-P4 烧录引脚)
62	GPI038	GPI038, UARTO_RXD_PAD, SPI2_DQS_PAD (ESP32-P4 烧录引脚)
63	ESP_LDO_VO4	输出电源 (输出电压范围0.5 [~] 2.7V或者3.3V,最大输出电流0.2A)
64	GP1039	GPIO39, SD1_CDATAO_PAD, REF_50M_CLK_PAD
65	GPI040	GPIO40, SD1_CDATA1_PAD, GMAC_PHY_TXEN_PAD
66	GPI041	GPIO41, SD1_CDATA2_PAD, GMAC_PHY_TXDO_PAD
67	PWR_CTRL	核心板电源控制引脚(默认高电平,拉低关断电源)
68	VCC_5V0	电源(核心板供电5V输入端)
69	VCC_5V0	电源(核心板供电5V输入端)
70	GND	电源地
71	GND	电源地
72	VBAT	锂电池供电引脚(预留)。内部无连接,仅物理存在
73	GPI042	GPIO42, SD1_CDATA3_PAD, GMAC_PHY_TXD1_PAD
74	GPI043	GPIO43, SD1_CCLK_PAD, GMAC_PHY_TXER_PAD
75	GPI044	GPIO44, SD1_CCMD_PAD, GMAC_RMII_CLK_PAD
76	GPI045	GPIO45, SD1_CDATA4_PAD, GMAC_PHY_RXDV_PAD
77	GPI046	GPIO46, SD1_CDATA5_PAD, GMAC_PHY_RXDO_PAD
78	GPI047	GPIO47, SD1_CDATA6_PAD, GMAC_PHY_RXD1_PAD
79	GPI048	GPIO48, SD1_CDATA7_PAD, GMAC_PHY_RXER_PAD
80	GPI049	GPIO49, GMAC_PHY_TXEN_PAD, ADC2_CHANNELO
81	GP1050	GPI050, GMAC_RMII_CLK_PAD, ADC2_CHANNEL1
82	GPI051	GPIO51, GMAC_PHY_RXDV_PAD, ADC2_CHANNEL2, ANA_COMPO
83	GP1052	GPIO52, GMAC_PHY_RXDO_PAD, ADC2_CHANNEL3, ANA_COMPO

84	GPI053	GPIO53, GMAC_PHY_RXD1_PAD, ADC2_CHANNEL4, ANA_COMP1
85	GPI054	GPIO54, GMAC_PHY_RXER_PAD, ADC2_CHANNEL5, ANA_COMP1
86	C5_I023	GPI023
87	C5_I024	GPI024
88	C5_I025	GPI025
89	C5_I026	GPI026
90	C5_I027	GPI027
91	C5_I028	GPIO28(ESP32-C5 BOOT引脚)
92	GND	电源地

3.3. 启动项配置

3.3.1. ESP32-P4 Strapping 管脚

ESP32-P4 芯片在上电或硬件复位时,可以通过 Strapping 管脚和 eFuse 位配置如下启动参数,无需微处理器的参与:

• 芯片启动模式

- Strapping 管脚: GPI035, GPI036, GPI037, GPI038

• ROM 日志打印

- Strapping 管脚: GPI036

- eFuse 位: EFUSE_UART_PRINT_CONTROL

JTAG 信号源

- Strapping 管脚: GPI034

- eFuse 位: EFUSE_DIS_PAD_JTAG、EFUSE_DIS_USB_JTAG 和 EFUSE_JTAG_SEL_ENABLE 上述 eFuse 位的默认值均为 0,也就是说没有烧写过。eFuse 只能烧写一次,一旦烧写为 1,便不能恢复为 0。

上述 strapping 管脚如果没有连接任何电路或连接的电路处于高阻抗状态,则 其默认值(即逻辑电平值)取决于管脚内部弱上拉/下拉电阻在复位时的状态。

Strapping 管脚默认配置

Strapping 管脚	默认配置	值
GPI034	浮空	_
GPI035	弱上拉	1

GPI036	浮空	-
GPI037	浮空	_
GPI038	浮空	_

要改变 strapping 管脚的值,可以连接外部下拉/上拉电阻。如果 ESP32-P4 用作主机 MCU 的从设备, strapping 管脚的电平也可通过主机 MCU 控制。

所有 strapping 管脚都有锁存器。系统复位时,锁存器采样并存储相应 strapping 管脚的值,一直保持到芯片掉电或关闭。锁存器的状态无法用其他方式 更改。因此,strapping 管脚的值在芯片工作时一直可读取,strapping 管脚在芯片复位后作为普通 IO 管脚使用。

3.3.2. ESP32-P4 芯片启动模式控制

ESP32-P4 复位释放后,GPI035 ~ GP0I38 共同决定启动模式。详见下表。

启动模式	GPI035	GPI036	GPI037	GP1038
SPI Boot*	1*	任意值	任意值	任意值
Joint Download Boot	0	1	任意值	任意值

*表示默认值和默认配置。

Joint Download Boot 模式下支持以下下载方式:

- USB Download Boot:
 - USB-Serial-JTAG Download Boot
 - USB 2.0 OTG Download Boot
- UART Download Boot
- SPI Slave Download Boot

3.3.3. ESP32-P4 ROM 日志打印控制

系统启动过程中, ROM 代码日志可打印至:

- (默认) UARTO 和 USB 串口/JTAG 控制器
- USB 串口/JTAG 控制器
- UARTO

EFUSE UART PRINT CONTROL 和 GPIO36 控制 UARTO ROM 日志打印,详见下表

UARTO ROM 日志打印	EFUSE_UART_PRINT_CONTROL	GPI036	
----------------	--------------------------	--------	--

▼ 深圳市启明云端科技有限公司

	0*	忽略
使能*	1	0
	2	1
	1	1
关闭	2	0
	3	忽略

^{*}表示默认值和默认配置。

EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT 控制 **USB 串口/JTAG 控制器** ROM 日志打印,详见下表。

USB 串口/JTAG ROM 日志打印控制	EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT
使能*	0*
关闭	1

^{*}表示默认值和默认配置。

3.3.4. ESP32-C5 Strapping 管脚

ESP32-C5 芯片在上电或硬件复位时,可以通过 Strapping 管脚和 eFuse 位配置如下启动参数,无需微处理器的参与:

• 芯片启动模式

- Strapping 管脚: GPI026, GPI027, GPI028

• ROM 日志打印

- Strapping 管脚: GPIO27
- eFuse 位:

EFUSE_UART_PRINT_CONTROL 和 EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT

上述 strapping 管脚如果没有连接任何电路或连接的电路处于高阻抗状态,则 其默认值(即逻辑电平值)取决于管脚内部弱上拉/下拉电阻在复位时的状态。

Strapping 管脚默认配置

Strapping 管脚	默认配置	值
GPI026	浮空	_
GPI027	上拉	1
GPI028	上拉	1

要改变 strapping 管脚的值,可以连接外部下拉/上拉电阻。

所有 strapping 管脚都有锁存器。系统复位时,锁存器采样并存储相应 strapping 管脚的值,一直保持到芯片掉电或关闭。锁存器的状态无法用其他方式 更改。因此,strapping 管脚的值在芯片工作时一直可读取,strapping 管脚在芯片复位后作为普通 IO 管脚使用。

3.3.5. ESP32-C5 芯片启动模式控制

ESP32-C5 复位释放后, GPI027 和 GP0I28 共同决定启动模式。详见下表。

启动模式	GPI026	GPI027	GPI028
SPI Boot*	任意值	任意值	1*
Joint Download Boot 0	任意值	SD	0
Joint Download Boot 1	0	0	0

^{*}表示默认值和默认配置。

Joint Download Boot 0 模式下支持以下下载方式:

- USB-Serial-JTAG Download Boot
- UART Download Boot

Joint Download Boot 1 模式下支持以下下载方式:

- UART Download Boot
- SDIO Download Boot

在 SPI Boot 模式下, ROM 引导加载程序通过从 SPI flash 中读取程序来启动系统。

在 Joint Download Boot 0 模式下,用户可通过 UARTO、USB 接口将二进制文件下载至 flash,或将二进制文件下载至 SRAM 并运行 SRAM 中的程序。

在 Joint Download Boot 1 模式下,用户可通过 UARTO、SDIO 接口将二进制文件下载至 flash,或将二进制文件下载至 SRAM 并运行 SRAM 中的程序。

3.3.6. ESP32-C5 ROM 日志打印控制

系统启动过程中, ROM 代码日志可打印至:

- (默认) UARTO 和 USB 串口/JTAG 控制器
- USB 串口/JTAG 控制器

UARTO

EFUSE UART PRINT CONTROL 和 GPIO27 控制 UARTO ROM 日志打印,详见下表

UARTO ROM 日志打印	Register ²	eFuse³	GP1027
启动过程中,ROM 代码日志始终打印至 UARTO*		0 (0b00)*	χ^4
启动过程中使能打印		1 (0b01)	0
启动过程中关闭打印	0*	1 (0001)	1
启动过程中关闭打印		2 (0b10)	0
启动过程中使能打印			1
启动过程中关闭打印		3 (0b11)	X
启动过程中关闭打印	C 15	X	X

^{*}表示默认值和默认配置。

EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT 控制 USB 串口/JTAG 控制器 ROM 日志打印,详见下表。

USB 串口/JTAG ROM 日志打印控制	EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT
使能*	0*
关闭	1
大闪	忽略

^{*}表示默认值和默认配置。

3.4. 其他引脚说明

核心板内 ESP32-P4 芯片的 GPI012、GPI013 引脚已与核心板内 ESP32-C5 芯片的 GPI00、CHIP_PU 引脚相连接(详见下表), ESP32-P4 可通过 GPI012 唤醒 ESP32-C5, ESP32-P4 可通过 GPI013 复位 ESP32-C5。

ESP32-P4	ESP32-C5
GPI012	GPI00
GPI013	CHIP_PU

²寄存器: LP_AON_STORE4_REG[0]

³eFuse: EFUSE_UART_PRINT_CONTROL

⁴x: x 表示该值被忽略,任何取值不影响该状态。

核心板内 ESP32-P4 芯片的 GPI014、GPI015、GPI016、GPI017、GPI018、GPI019 引脚已与核心板内 ESP32-C5 芯片的 GPI07、GPI08、GPI09、GPI010、GPI013、GPI014 引脚相连接(详见下表),两者通过 SDI0 接口通讯。

ESP32-P4	ESP32-C5		
GPI014	GPI08		
GPI015	GPI07		
GPI016	GPI014		
GPI017	GPI013		
GPI018	GP109		
GPI019	GPI010		

4. 电气特性

4.1. 绝对最大限定值

超出绝对最大额定值可能导致器件永久性损坏。这只是强调的额定值,不涉及器件在这些或其它条件下超出本技术规格指标的功能性操作。长时间暴露在绝对最大额定条件下可能会影响 WT01P4C5-S1 的可靠性。

4.2. 功耗特性

暂无

4.3. 建议工作条件

符号	参数	最小值	典型值	最大值	单位
VCC	电源管脚电压	4.8	5	5. 5	V
I_{vcc}	外部电源的供电电流	_	1.5	_	A
T _A	工作环境温度	-40	_	85	$^{\circ}$

5. WT01P4C5-S1 原理图

待更新

图8: WT01P4C5-S1 原理图

6. WT01P4C5-S1 尺寸

下图为核心板的俯瞰图与正视图,公差±0.2 mm。

图9: WT01P4C5-S1 尺寸图

7. 存储条件

条件	参数
存储条件	密封MBB中, < 40 ℃/90 %RH 的非冷凝大气环境
使用条件	25±5 ℃、60 %RH下,168 小时内
潮湿敏感度	3 级

8. 回流焊曲线

图10: 回流焊温度曲线图

e/e/s

9. 联系我们

官方网址: www.wireless-tag.com

淘宝链接: 启明云端官方企业店

销售邮箱: sales@wireless-tag.com

技术支持邮箱: technical@wireless-tag.com

联系电话: 18122057087

B 站: 启明云端

启明云端公众号:

