MATHEMATICS METHODS

8 LOS noisenination 2016 AWAM

Calculator-free

Marking Key

Page 1

MATHEMATICS METHODS SEMESTER 1 (UNIT 3) EXAMINATION

CALCULATOR-FREE MARKING KEY

Section One: Calculator-free

(50 Marks)

Question 1(a)(i)

Solution	
$y = (\cos(x))^{-\frac{1}{2}}$	
$\frac{dy}{dx} = -\frac{1}{2} \left(-\sin(x) \right) \left(\cos(x) \right)^{-\frac{3}{2}}$	
Marking key/mathematical behaviours	Marks
rewrites as a power	1
differentiates using chain rule	1

Question 1(a)(ii)

uestion i(a)(ii)	
Solution	
$dy = 2e^{2x}(-\cos(1-x)) - 4e^{2x}\sin(1-x)$	
$\frac{dx}{dx} = \frac{1}{\left(2e^{2x}\right)^2}$	
(26)	
Marking key/mathematical behaviours	Marks
correctly determines numerator of derivative	1
 correctly determines denominator of derivative 	1
• Correctly determines denominator of derivative	l l

Question 1(b)

auconom (b)	
Solution	
$\frac{dy}{dx} = 6x(2x+1)^5 + (-3x^2).5(2x+1)^4.2$	
$=6x(2x+1)^{4}\left[\left(2x+1\right)+5x\right]$	
$=6x(2x+1)^4(7x+1)$	
Marking key/mathematical behaviours	Marks
 correctly differentiates using product and chain rule 	1
correctly factorises	1
correctly simplifies	1

Page 2 © MAWA 2016

MARKING KEY CALCULATOR-FREE

Marks

MATHEMATICS METHODS SEMESTER 1 (UNIT 3) EXAMINATION

Question 2(a) Solution

$3 + x + \frac{7}{7} - \frac{8}{5} =$	$xp \mid x - \frac{\zeta}{\varepsilon^x} \int$
	Honnine

Marks	ng key/mathematical behaviours	Narkin
l	correctly integrates each term	•
l	correctly adds constant of integration (1 mark penalty once only throughout	•
	the rest of missering (2)	

(z nonsanh io isai am

Question 2(b)

$\partial + \frac{z}{\zeta} x \psi - \frac{\zeta}{\zeta} = x p \frac{z}{\zeta} - x \zeta - \frac{z}{\zeta} \qquad \int =$
$xb\frac{1}{2-z}x$

ng key/mathematical behaviours	Markir
correctly simplifies integral	•
correctly integrates each term	•

Question 2(c)

$\partial + \frac{1}{2}x + \frac{\xi}{\xi^{x}} + \frac{\zeta}{\xi} = xp x\zeta + \frac{1}{2}x\zeta + \xi x\zeta$	\int =
$xp_{x}(1+x)xz$	ſ

l	 correctly expands and simplifies integral
Marks	Marking key/mathematical behaviours

	 correctly integrates each term 	•
_		

Question 2(d) Solution

$\partial + \left(\frac{\varepsilon}{x\zeta}\right) \operatorname{uis} \frac{\zeta}{\xi} - \frac{\zeta}{z} \partial \zeta$	$= xp\left(\frac{\xi}{x7}\right)\cos - \frac{z}{x} \int$
X	uonnios

Marks	ig key/mathematical behaviours correctly integrates first term	
ı	correctly integrates second term	•

Page 3 9102 AWAM @

CALCULATOR-FREE MARKING KEY

MATHEMATICS METHODS SEMESTER 1 (UNIT 3) EXAMINATION

CALCULATOR-FREE MARKING KEY

Question 3(a)

Solution	
d = 0.3	
Marking key/mathematical behaviours	Marks
determines correct value	1

Question 3(b)

Marks
1
1

Question 3(c)

_	
50	lutior

(i) 0.6

(ii) 0.5

(iii) $\frac{6}{9}$	
Marking key/mathematical behaviours Mark	
obtains correct value	1
obtains correct value	1
obtains correct value	1

Question 9(c)

Solution $\int_0^2 \frac{d}{dx} \left(\frac{1 - x^2}{1 + x} \right) dx = \left[\frac{1 - x^2}{1 + x} \right]_0^2$ = -1 - 1 = -2

Marking key/mathematical behaviours	Marks
correctly integrates	1
correctly evaluates	1

L

Marks

Marks

l

Marks

SEMESTER 1 (UNIT 3) EXAMINATION MATHEMATICS METHODS

Marking key/mathematical behaviours

 $f'''(x) = 3(2x)(2x+6)(x^2+1)^2 + 2(x^2+1)^3$

states the point is a local minimum.

Since f'(-3) = 0 and f''(-3) = 2000 > 0 the point is a local minimum.

 \bullet determines the value of the second derivative at x = -3

determines the second part of the derivative using the product rule

determines the first part of the derivative using the product rule

(€–)' ₹ sənimətəb • Marking key/mathematical behaviours

Marking key/mathematical behaviours

Question 4(c)

 $0.002 = (\xi -)$ " f

Solution Question 4(b)

Question 4(a)

MARKING KEY SEMESTER 1 (UNIT 3) EXAMINATION MATHEMATICS METHODS CALCULATOR-FREE

- - t	(2)(1)
	Solution
	account o(a)

Question 8(c)

Solution

l agilditlum vitagares
Marking key/mathematical b
$\frac{6}{t} = \xi \times \left(\frac{\xi}{\zeta}\right) \left(\frac{\xi}{\zeta}\right)$
LIOIINIOC

correctly multiplies by three pehaviours Marks

- determines correct probability
- Question 8(d)

Marking key/mathematical behaviours

- determines correct probability recognises complementary events

Question 9(a)

$\int_{\pi}^{\pi} \left[\frac{x\xi \text{ mis}}{\xi} \right] = xp (x\xi) \cos^{\frac{\pi}{2}}$ Solution

Marking key/mathematical behaviours

 correctly evaluates correctly integrates

Question 9(b)

Marks

Marks

Page 8

MATHEMATICS METHODS **SEMESTER 1 (UNIT 3) EXAMINATION**

CALCULATOR-FREE **MARKING KEY**

Question 5(a)

_	
-50	lution

(i)	F(H) =	F(X)	+ 3 = 30
('')	-(11) -	-(21)	. 0 – 00

(ii)
$$Var(H) = Var(X) = 25$$

Marking key/mathematical behaviours	Marks
 calculates correct value of E(H) 	1
 calculates correct value of Var(H) 	1

Question 5(b)

Solution

(i)
$$E(G) = 2 E(H) = 2(30) = 60$$

(ii) standard deviation of
$$G = 2 \times \text{standard deviation of } H = 10$$

(ii) standard deviation of $G = 2 \times \text{standard deviation of } H = 10$	
Marking key/mathematical behaviours	Marks
 calculates correct value of E(G) 	1
 calculates correct value of the standard deviation of H 	1

Question 6

Solution

$$\frac{d^2y}{dx^2} = 3\sqrt{2x - 3} - 2$$

$$\frac{dy}{dx} = (2x - 3)^{\frac{3}{2}} - 2x + c_1 \implies 4 = (4)^{\frac{3}{2}} - 7 + c_1 \implies c_1 = 3$$

$$\frac{dy}{dx} = (2x - 3)^{\frac{3}{2}} - 2x + c_1 \implies 4 = (4)^{\frac{3}{2}} - 7 + c_1 \implies c_1 = 3$$

$$y = \frac{1}{5}(2x - 3)^{\frac{5}{2}} - x^2 + 3x + c_2 \implies -\frac{4}{5} = \frac{1}{5} - 4 + 6 + c_2 \implies c_2 = -3$$

$$\therefore y = \frac{1}{5}(2x - 3)^{\frac{5}{2}} - x^2 + 3x - 3$$

$$y = \frac{1}{5}(2x-3)^{\frac{5}{2}} - x^2 + 3x - 3$$

3	
Marking key/mathematical behaviours	Marks
correctly determines first derivative	1
$ullet$ correctly determines the value of c_1	1
 correctly determines y 	1
• correctly determines the value of c_2 and writes y in terms of x	1

MATHEMATICS METHODS SEMESTER 1 (UNIT 3) EXAMINATION

CALCULATOR-FREE MARKING KEY

Question 7

Solution $\frac{dy}{dx} = \frac{(2x-1)^2(1) - 4(2x-1)(x+1)}{(2x-1)^4}$ $\frac{dy}{dx}\Big|_{x=1} =$ $x=1 = \frac{1(1) - 2(4)}{1}$ = -7y = -7x + c8 = -7(1) + cc = 15

y = -7x + 15

Markir	ng key/mathematical behaviours	Marks
•	correctly determines the numerator of the derivative using the quotient rule	1
•	correctly determines the denominator of the derivative using the quotient rule	1
•	correctly determines the gradient of the curve at (1,8)	1
•	correctly substitutes the point $(1,8)$ into the equation to evaluate c	1
•	correctly determines the equation of the tangent	1

Question 8 (a)

Solution Marking key/mathematical behaviours Marks determines correct probability

Question 8(b)

Solution Marks Marking key/mathematical behaviours 1 determines correct probability