School of Mathematics and Statistics

MT5836 Galois Theory

Problem Sheet V: Finite Fields

- 1. (a) Find an irreducible polynomial of degree 3 over \mathbb{F}_2 and hence construct the addition and multiplication tables of the field \mathbb{F}_8 of order 8.
 - (b) Find an irreducible polynomial of degree 2 over \mathbb{F}_3 and hence construct the addition and multiplication tables of the field \mathbb{F}_9 of order 9.
- 2. Let $F \subseteq K$ be an extension of finite fields.
 - (a) Show that K is a normal extension of F.
 - (b) Show that K is a separable extension of F.
- 3. Consider the Galois field \mathbb{F}_{p^n} for order p^n where p is a prime number and n is a positive integer.
 - (a) If F is a subfield of \mathbb{F}_{p^n} , show that $F \cong \mathbb{F}_{p^d}$ for some divisor d of n. [Hint: Recall $|\mathbb{F}_{p^n}:\mathbb{F}_p|=n$.]
 - (b) Suppose that d is a divisor of n.
 - (i) Set k = n/d, $r = \sum_{i=0}^{k-1} p^{id} = (p^n 1)/(p^d 1)$ and

$$g(X) = \sum_{i=1}^{r} X^{p^n - i(p^d - 1) - 1}.$$

Show that

$$g(X)(X^{p^d} - X) = X^{p^n} - X.$$

- (ii) Show that \mathbb{F}_{p^n} contains precisely p^d roots of $X^{p^d} X$.
- (iii) Show that $L = \{ a \in \mathbb{F}_{p^n} \mid a^{p^d} = a \}$ is a subfield of \mathbb{F}_{p^n} of order p^d .
- (c) Conclude that \mathbb{F}_{p^n} has a unique subfield of order p^d for each divisor d of n.
- 4. (a) Using information about the Galois field \mathbb{F}_{16} of order 16, or otherwise, factorize $X^{15}-1$ into a product of polynomials irreducible over \mathbb{F}_2 .

[Hint: What are the subfields of \mathbb{F}_{16} ? If an element lies in a particular subfield, what is the degree of its minimum polynomial?]

(b) Using information about the Galois field \mathbb{F}_{27} of order 27, or otherwise, find the degrees of the irreducible factors of $X^{26} - 1$ over \mathbb{F}_3 . Find the number of irreducible factors of each degree.

1

5. A primitive nth root of unity in a finite field F is an element x of order n in the multiplicative group F^* . [The terminology indicates that x satisfies $x^n = 1$ and that its powers $1, x, x^2, \ldots, x^{n-1}$ are the n distinct roots of $X^n - 1$ in F.]

Let q be a power of a prime.

- (a) Show that the Galois field \mathbb{F}_q of order q contains a primitive nth root of unity if and only if $q \equiv 1 \pmod{n}$.
- (b) Suppose that n and q are coprime. Show that the splitting field of $X^n 1$ over \mathbb{F}_q is \mathbb{F}_{q^m} where m is minimal subject to $q^m \equiv 1 \pmod{p}$.
- (c) For each value of n in the range $1 \leq n \leq 12$, determine the degree of the splitting field of $X^n 1$ over \mathbb{F}_5 .
- (d) Determine for which n in the range $1 \le n \le 12$ does the Galois field $\mathbb{F}_{5^{36}}$ of order 5^{36} contain a primitive nth root of unity?
- 6. Let F be a finite field with q elements where q is odd. Prove that the splitting field of $X^4 + 1$ over F has degree one or two and that $X^4 + 1$ factorizes in F[X] either as a product of four distinct linear polynomials when 8 divides q 1 or as a product of two distinct quadratic irreducible polynomials when 8 does not divide q 1.

[Hint: Consider the elements $-\alpha$, $1/\alpha$ and $-1/\alpha$ where α is a root of $X^4 + 1$ in some extension of F.]

- 7. Let G be a finite abelian group.
 - (a) If x_1 and x_2 are elements of G with coprime orders, show that x_1x_2 has order given by $o(x_1x_2) = o(x_1) o(x_2)$.
 - (b) Suppose p_1, p_2, \ldots, p_k are distinct prime numbers and that $x_1, x_2, \ldots, x_k \in G$ with $o(x_i) = p_i^{\alpha_i}$. Show that

$$o(x_1x_2...x_k) = o(x_1) o(x_2)...o(x_k) = p_1^{\alpha_1} p_2^{\alpha_2}...p_k^{\alpha_k}.$$

8. Give an example of a finite group (necessarily non-abelian) which has no element of order equal to its exponent.