

Aula 3 – Microcontroladores: Arquitetura e o Arduino

Disciplina: Microprocessadores e Microcontroladores

Professor: Daniel Gueter

Cronograma

08/05 – Aula 1 - Introdução da disciplina, revisão de conceitos e histórico da área

15/05 – Aula 2 - Microprocessadores: Arquitetura e instruções

22/05 – Aula 3 – Microcontroladores: Arquitetura e o Arduino

29/05 - Aula 4

05/06 - Aula 5

12/06 - Prova

19/06 – Feriado – Corpus Christi

26/06 – Exame

Unidade de processamento central (CPU) Microprocessador

Unidade lógica e aritmética (ALU)

Registradores

Temporizadores e controles

 A arquitetura básica de um Microcomputador se baseia em três blocos: um Microprocessador, uma Unidade de memória e uma Unidade de entradas e saídas de informações (I/O).

Blocos básicos de um Microcomputador

Microprocessador

Logo, um Microprocessador representa somente a unidade de processamento central (CPU), enquanto o Microcomputador é o sistema completo, feito com no mínimo uma CPU, uma unidade de memória e uma unidade de entradas e saídas (I/O)

Arquitetura de um Microcomputador com exemplos de entradas e saídas (I/O)

Em nossos computadores pessoais, as unidades de um Microcomputador são componentes separados. Exemplo: Processador, pentes de memória, HD/SSD.

Caso todos **esses componentes sejam colocados dentro de um chip ou um circuito integrado**, ele deixa de ser um Microcomputador e passa e ser chamado de um **Microcontrolador**.

Arquitetura genérica de um Microcontrolador

Microprocessador	Microcontrolador	
Somente o processador.	Processador, memória e dispositivos de I/O dentro de um CI.	
Circuito é maior.	Circuito é mais compacto. Recomendado para aplicações compactas.	
Não recomendado para aplicações compactas.		
Alto consumo de energia.	Baixo consumo de energia.	
Custos mais elevados e menor praticidade de reposição	Custos mais baixos e maior praticidade de reposição	

Microprocessador	Microcontrolador	
Maior capacidade de processamento	Menor capacidade de processamento	
Geralmente, arquitetura de memória Von Neumann	Geralmente, arquitetura de memória Harvard	
Geralmente, arquitetura de instruções CISC	Geralmente, arquitetura de instruções RISC	

Arquitetura de memória: Von Neumann e Harvard

Von-Neumann

- Arquitetura mais simples do que a de Harvard
- Possui um único barramento para programa (instruções) e dados.
- Geralmente utiliza uma arquitetura CISC (Próximos slides!).
- Permite produzir um conjunto complexo de código de instruções para o microcomputador, possuindo muito mais tipos de instruções.

Arquitetura de memória: Von Neumann e Harvard

Harvard

- Arquitetura mais rápida do que a de Von-Neumann
- Possui barramentos separados para programa (instruções) e dados, podendo usá-los paralelamente.
- Geralmente utiliza uma arquitetura RISC (Próximos slides!).
- Produz um conjunto de códigos de instrução mais simples, necessitando mais linhas de código do que a arquitetura de Von-Neumann.

Arquitetura ISA (Instruction Set Architecture): CISC e RISC

CISC: Complex Instruction Set Computer

- Utiliza conjunto de instruções complexas
- Mais operações com menos linhas de códigos
- Necessita de vários ciclos de clock para processar instruções
- Geralmente, processadores com maior desempenho e consequentemente maior consumo de energia.
- Exemplos equipamentos que usam processadores CISC:
 Computadores pessoais e servidores.

RISC: Reduced Instruction Set Computer

- Utiliza conjunto de instruções simples
- Necessita de mais linhas de código
- Executa cada instrução em um único ciclo de clock
- Geralmente, processadores com menor desempenho e consequentemente menor consumo de energia.
- Exemplos equipamentos que usam processadores RISC: Arduino, Fones de ouvidos.

Nota: Atualmente, existem computadores híbridos, utilizando internamente tanto arquiteturas CISC quanto RISC.

Aula 3 – Microcontroladores: Arquitetura e o Arduino

Arquitetura ISA (Instruction Set Architecture): CISC e RISC

Exemplo: Código em Assembly (Programação de baixo nível) para realizar a operação de multiplicar dois números contidos nos endereços 0 e 3 da memória e armazenar o resultado de volta na posição 0.

```
Em microprocessadores CISC, o objetivo é executar a tarefa com o menor número de códigos possíveis (assembly). Assim, um microprocessador CISC hipotético poderia ter a seguinte instrução:

MULT 0,3 //multiplica o conteúdo do endereço 0 com o do endereço 3; //armazena o resultado no endereço 0.

Para um microprocessador RISC, a resolução do problema seria feita por algo como:

LOAD A,0 //carrega o registrador A com o conteúdo do endereço 0; LOAD B,3 //carrega o registrador B com o conteúdo do endereço 3; MULT A,B //multiplica o conteúdo de A com o de B. Resultado fica em A; STORE 0,A //armazena o valor de A no endereço 0.
```


Código em Assembly para uma arquitetura CISC e RISC

Microprocessador

Microcontrolador

Aula 3 – Microcontroladores: Arquitetura e o Arduino

Unidade de processamento central (CPU) ou Microprocessador

- Fazendo analogia com o sistema de um ser humano, o microprocessador, ou CPU, de um microcomputador corresponde ao cérebro de um ser humano. Ele é responsável pela busca de um programa na memória e por sua execução.
- Ao executar o programa, ela é responsável por obter informações dos dispositivos de entrada (Ex: Teclado), pelo processamento dessas informações (Ex: Cálculos lógicos), e pelo resultado de um programa executado por meio dos dispositivos de saída (Ex: Envio de dados para outro microcomputador).
- De maneira resumida, a CPU realiza duas funções básicas:
 - Busca e interpretação do programa alocado na memória por meio de instruções
 - 2. Execução do programa, por meio de instruções

Aula 3 – Microcontroladores: Arquitetura e o Arduino

Timer

Controla o clock do microcontrolador

Watch Dog

• Circuito responsável por verificar nível de tensão e a partir disso realizar ações, como reiniciar o sistema.

Memórias

- **Memória RAM**: Memória volátil, onde são armazenados os dados.
- **Memória ROM:** Memória não-volátil, onde é armazenado o programa.

Portas seriais

Responsável por comunicação externa de maneira serial (bit a bit).

Portas de I/Os

• Entradas e saídas responsáveis pelo envio de sinais, a atuadores por exemplo, e recebimento de sinais, de sensores por exemplo.

Conversor Analógica/Digital

 Responsável por converter sinais analógicos em digitais, assim como sinais digitais em analógicos.

Periféricos de um Microcontrolador

Os periféricos de um Microcontrolador são todos os dispositivos adicionais ao Microprocessador. Eles podem ser divididos em:

- Periféricos on-chip (Localizados dentro do CI)
 - Ex: Memória RAM, Temporizadores, conversores A/D e D/A
- Periféricos off-chip (Localizados foram do CI)
 - Ex: Memórias não-voláteis externas (Flash), módulos Bluetooth/Wifi, sensor de temperatura, display LCD.

Periféricos de um Microcontrolador

Sensor de temperatura

Display LCD

Conversor USB - UART

Aula 3 – Microcontroladores: Arquitetura e o Arduino

Microcontroladores do mercado

- ATmega328P (Microchip)

 Arduino UNO
- ESP32 (Espressif)
- PIC16F877A (Microchip)
- MSP430G2553 (Texas Instruments)
- ARM Cortex-M (ARM)
- Intel 8051 (Intel)

Arduino function		_	. —	Arduino function
reset	(PCINT14/RESET) PC6□	ŀ	PC5 (ADC5/SCL/PCINT13)	analog input 5
digital pin 0 (RX)	(PCINT16/RXD) PD0 □	2	27 PC4 (ADC4/SDA/PCINT12)	analog input 4
digital pin 1 (TX)	(PCINT17/TXD) PD1 □	3	26 PC3 (ADC3/PCINT11)	analog input 3
digital pin 2	(PCINT18/INT0) PD2□	4	25 PC2 (ADC2/PCINT10)	analog input 2
digital pin 3 (PWM)	(PCINT19/OC2B/INT1) PD3	5	24 PC1 (ADC1/PCINT9)	analog input 1
digital pin 4	(PCINT20/XCK/T0) PD4 □	6	23 PC0 (ADC0/PCINT8)	analog input 0
VCC	VCC □	7	22 ☐ GND	GND
GND	GND□	8	21 AREF	analog reference
crystal	(PCINT6/XTAL1/TOSC1) PB6	9	20 ☐ AVCC	VCC
crystal	(PCINT7/XTAL2/TOSC2) PB7	10	19 PB5 (SCK/PCINT5)	digital pin 13
digital pin 5 (PWM)	(PCINT21/OC0B/T1) PD5 □	11	18 PB4 (MISO/PCINT4)	digital pin 12
digital pin 6 (PWM)	(PCINT22/OC0A/AIN0) PD6	12	17 PB3 (MOSI/OC2A/PCINT3)	digital pin 11(PWM)
digital pin 7	(PCINT23/AIN1) PD7 □	13	16 PB2 (SS/OC1B/PCINT2) di	igital pin 10 (PWM)
digital pin 8	(PCINT0/CLKO/ICP1) PB0	14	15 PB1 (OC1A/PCINT1)	digital pin 9 (PWM)

Diagrama de blocos do microcontrolador ATmega238P

Arquitetura do microprocessador do ATmega238P