Modelli di produzione fotovoltaica e di domanda elettrica residenziale e industriale

Giulio Presti

Relatore

Prof. Giuseppe De Nicolao

Dipartimento di Ingegneria Informatica e dell'Informazione Università di Pavia

30/04/2025

Dataset (I)

AIMMS-MOPTA 2024 Competition

- Modeling and Optimization: Theory and Applications Conference
- Lehigh University (USA)
- "Would a Fully Renewable Energy Grid benefit from adding Green Hydrogen as a Supplemental Power Source?"

Dataset (II) - Produzione fotovoltaica

• Totale campioni: 384 (Generation)

• Quarter: 4 giornate

• Instance: 96 rilevamenti (15 m)

Dataset (III) - Consumi elettrici

• Totale campioni: 2688 (Load)

Quarter: 4 giornateLocation: 7 posizioni

• Instance: 96 rilevamenti (15 m)

Dataset (III) - Consumi elettrici

• Totale campioni: 2688 (Load)

Quarter: 4 giornateLocation: 7 posizioni

• Instance: 96 rilevamenti (15 m)

Consumi elettrici - Modelli polinomiali

- Minimi quadrati
- $F(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4...$
- Scelta modello: Test F, FPE, AIC, MDL, Crossvalidazione

Consumi elettrici - Modelli polinomiali

- Minimi quadrati
- $F(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4...$
- Scelta modello: Test F, FPE, AIC, MDL, Crossvalidazione

Consumi elettrici - Serie di Fuorier

•
$$F(x) = b_0 + b_1 \sin\left(\frac{2\pi}{T}x\right) + b_2 \cos\left(\frac{2\pi}{T}x\right) + \dots + b_{2k-1} \sin\left(k\frac{2\pi}{T}x\right) + b_{2k} \cos\left(k\frac{2\pi}{T}x\right)$$

Consumi elettrici - Serie di Fuorier

•
$$F(x) = b_0 + b_1 \sin\left(\frac{2\pi}{T}x\right) + b_2 \cos\left(\frac{2\pi}{T}x\right) + \dots + b_{2k-1} \sin\left(k\frac{2\pi}{T}x\right) + b_{2k} \cos\left(k\frac{2\pi}{T}x\right)$$

• Confronto performance e flessibilità polinomi vs serie di Fourier:

Location	Quarter	Model	N-params (FPE)	R^2
i1	Q1	Fourier	13	0.9907
i2	Q2	Poli	5	0.9464
r1	Q3	Fourier	5	0.8752
r2	Q2	Poli	10	0.9035

Consumi elettrici - Modelli additivi 2D

- Modello in *Instance* (hours) e *Quarter* (days)
- $F(h,d) = F_i(h) + c(d)$

Consumi elettrici - Modelli addițivi 2D

- Modello in *Instance* (hours) e *Quarter* (days)
- $F(h,d) = F_i(h) + c(d)$

$$MSE = 10.2 MWh^2 e R^2 = 0.81$$

Consumi elettrici - Modelli additivi 2D

- Modello in *Instance* (hours) e *Quarter* (days)
- $F(h,d) = F_i(h) + c(d)$

Consumi elettrici - Modelli additivi 2D

- Modello in *Instance* (hours) e *Quarter* (days)
- $F(h,d) = F_i(h) + c(d)$
- c(d) di tipo polinomiale o periodico

 $MSE = 8.72 \text{MWh}^2 \text{ e } R^2 = 0.84$

Generazione solare - Modelli 2D

Una sola Location

Generazione solare - Modelli 2D

- Una sola Location
- Problematiche di derivabilità

Generazione solare - Modelli 2D

- Una sola Location
- Problematiche di derivabilità
- Feature selection: Lasso, Forward stepwise, Backward stepwise

15 parametri, $MSE = 9.43 \cdot 10^{-7} \text{MWh}^2 \text{ e } R^2 = 0.89$

Generazione solare - Generazione positiva

- $\{G|G(h,d)>0\}$
- Teorema di Gauss-Markov

•
$$\theta^{blue} = (\Phi^T \Psi^{-1} \Phi)^{-1} \Phi^T \Psi^{-1} Y$$

• $f_I(g) = k \cdot f_I(g|s) \cdot f_I(s)$

$$MSE = 2.05 \cdot 10^{-6} \,\text{MW} \,\text{h}^2 \,\,\text{e} \,\,R^2 = 0.75$$

Generazione solare - Generazione positiva

- $\{G|G(h,d)>0\}$
- Teorema di Gauss-Markov

•
$$\theta^{blue} = (\Phi^T \Psi^{-1} \Phi)^{-1} \Phi^T \Psi^{-1} Y$$

• $f_I(g) = k \cdot f_I(g|s) \cdot f_I(s)$

 $MSE = 1.29 \cdot 10^{-6} MWh^2 e R^2 = 0.84$

Generazione solare - Generazione positiva

- $\{G|G(h,d)>0\}$
- Teorema di Gauss-Markov

•
$$\theta^{blue} = (\Phi^T \Psi^{-1} \Phi)^{-1} \Phi^T \Psi^{-1} Y$$

• $f_l(g) = k \cdot f_l(g|s) \cdot f_l(s)$

8 parametri, $MSE=2.05\cdot 10^{-6} \mathrm{MWh^2}$ e $R^2=0.75$

Grazie per l'attenzione

Esempio matrice di sensitività Φ

```
1 \text{ Ty} = 365;
2 Td=24:
4 Phi=@(instances, periods)[
      instances. ~ 0 ... % cost
5
      ... % 1 ord
      cos(1*2*pi/Td*instances) sin(1*2*pi/Td*instances)...
      cos(1*2*pi/Ty*periods) sin(1*2*pi/Ty*periods)...
8
      cos(1*2*pi/Td*instances).*cos(1*2*pi/Ty*periods) sin
          (1*2*pi/Td*instances).*cos(1*2*pi/Ty*periods)...
      cos(1*2*pi/Td*instances).*sin(1*2*pi/Ty*periods) sin
10
          (1*2*pi/Td*instances).*sin(1*2*pi/Ty*periods)...
      ... % 2 ord
11
12
      cos(2*2*pi/Td*instances) sin(2*2*pi/Td*instances)...
13
      cos(2*2*pi/Ty*periods) sin(2*2*pi/Ty*periods)...
      ... % altri ordini
14
15
```

Riferimenti

- MOPTA24 Competition Dataset, https://coral.ise.lehigh.edu/~mopta2024/.
- MOPTA24 Competition Dataset, MOPTA Competition Optimization Problem, Marco Capelletti, Luca Danna, Anna Sacilotto.
- The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, Jerome Friedman.

Load Quarter - Problemi

- "This demand data can be considered indicative of a typical demand pattern for the region during that quarter." (AIMMS-MOPTA 2024 -"Data")
- Il testo della competizione non specifica la regolarità del campionamento durante l'anno.

Load Quarter - Problemi

- "This demand data can be considered indicative of a typical demand pattern for the region during that quarter." (AIMMS-MOPTA 2024 -"Data")
- Il testo della competizione non specifica la regolarità del campionamento durante l'anno.

Blackout - Spagna

- Poco prima che si verificasse il blackout, si è avuto un picco di produzione di energia solare.
- Lunedì 28 alle 12.30

