Exercice 1.

- 1. On a dans l'urne U_1 , 17 boules blanches et 3 noires soit 20 boules au total, donc $p_2 = \frac{17}{20} = 0.85$.
- 2. (a) On s'aide d'un arbre. Pour obtenir p_{n+1} il faut considérer les cas où l'on a tiré au rang précédent une boule blanche :

 A_n et $\overline{A_n}$ forment une partition de l'univers, d'après la formule des probabilités totales on a :

$$P(A_{n+1}) = P(A_n \cap A_{n+1}) + P(\overline{A_n} \cap A_{n+1})$$

$$= \frac{17}{20}p_n + (1 - p_n) \times \frac{1}{20}$$

$$= 0, 5p_n + 0, 4$$

$$p_{n+1} = \frac{16}{20}p_n + \frac{1}{20}$$

$$= 0, 8p_n + 0, 05$$

(b) Voici le programme complété:

- 3. On a avec la relation de récurrence établie précédemment $p_3 = 0, 8p_2+0, 05$ soit $p_3 = 0, 8\times0, 85+0, 05 = 0, 73$.
- 4. (a) Soit \mathscr{P}_n la proposition : $p_n > 0, 25$.
 - Initialisation. On sait que $p_1 = 1$ donc $p_1 > 0, 25$: \mathcal{P}_1 est vraie.
 - Hérédité

Soit $n \in \mathbb{N}^*$. Supposons \mathscr{P}_n vraie c'est-à-dire $p_n > 0, 25$. D'après l'hypothèse de récurrence, $p_n > 0, 25$ donc $0, 8p_n > 0, 2$ et donc $0, 8p_n + 0, 05 > 0, 25$ qui signifie $p_{n+1} > 0, 25$. La proposition est donc vraie au rang n+1.

• Conclusion

 \mathcal{P}_1 est vraie et \mathscr{P}_n est héréditaire à partir du rang 1 donne \mathscr{P}_n est vraie pour tout $n \geqslant 1$. On a donc démontré que, pour tout entier naturel non nul, $p_n > 0, 25$. (b) $\forall n \in \mathbb{N}^*$,

$$p_{n+1} - p_n = 0.8p_n + 0.05 - p_n$$
$$= -0.2p_n + 0.05$$

$$p_{n+1} - p_n = 0.8p_n + 0.05 - p_n = -0.2p_n + 0.05.$$

Or on vient de démontrer que $p_n > 0,25$ qui entraîne

$$-0, 2p_n < -0, 2 \times 0, 25 \text{ soit } -0, 2p_n < -0, 05 \iff -0, 2p_n + 0, 05 < 0.$$

On a donc pour tout $n \ge 1$, $p_{n+1} - p_n < 0$, cela prouve que la suite (p_n) est décroissante

- (c) La suite (p_n) est décroissante et minorée par 0, 25 : elle donc convergente vers un réel ℓ supérieur ou égal à 0, 25.
- (d) Les suites (p_n) et (p_{n+1}) ayant la même limite ℓ , la relation de récurrence $p_{n+1} = 0, 8p_n + 0, 05$ donne $\ell = 0, 8\ell + 0, 05$.
- (e) $\ell = 0, 8\ell + 0, 05 \iff 0, 2\ell = 0, 05 \iff \ell = \frac{0, 05}{0, 2} = 0, 25.$

Conclusion:
$$\lim_{n \to +\infty} p_n = 0, 25 = \frac{1}{4}.$$

On en déduit qu'à long terme, la probabilité que le tirage se fasse dans l'urne U_1 se limitera à $\frac{1}{4}$.

Exercice 2.

- 1. (a) Pour étudier le signe de $\ln x(1-\ln x)$, on étudie le signe de $\ln x$ puis celui de $1-=\ln x$.
 - Pour $\ln x : \ln x > 0 \iff x > 1$.

De même $\ln x < 0 \iff 0 < x < 1$ et $\ln x = 0 \iff x = 1$.

— Pour $1 - \ln x : 1 - \ln x > 0 \iff 1 > \ln x \iff 0 < x < e$. De même $1 - \ln x < 0 \iff x > e$ et $1 - \ln x = 0 \iff x = e$.

On en déduit le tableau de signe de $\ln x(1 - \ln x)$:

x	0		1		е		$+\infty$
signe de $\ln x$		_	0	+		+	
signe de $1 - \ln x$		+		+	0	_	
signe de $\ln x(1 - \ln x)$		_	0	+	0	_	

(b) On a $f(x) - g(x) = \ln x - (\ln x)^2 = \ln x(1 - \ln x)$.

On déduit du tableau précédent que $\mathscr C$ est en dessous de $\mathscr C'$ sauf entre 1 et e.

- 2. $M(x ; \ln x)$ et $N(x ; (\ln x)^2)$.
 - (a) On a déjà vu que $h(x) = \ln x(1 \ln x)$.

h est dérivable sur]0; $+\infty[$ et pour tout x de cet intervalle :

$$h'(x) = \frac{1}{x} \times (1 - \ln x) + \ln x \times \left(-\frac{1}{x}\right)$$
$$= \frac{1}{x} - \frac{2 \ln x}{x}$$
$$= \frac{1 - 2 \ln x}{x}$$

Pour tout réel x > 0, h'(x) est du signe de $1 - 2 \ln x$.

$$-1 - 2\ln x > 0 \iff \ln x < \frac{1}{2} \iff 0 < x < e^{\frac{1}{2}}. \text{ De même } 1 - 2\ln x < 0 \iff x > e^{\frac{1}{2}} \text{ et } 1 - 2\ln x = 0 \iff x = e^{\frac{1}{2}}.$$

On en déduit donc que : h est croissante sur $[0; e^{\frac{1}{2}}]$ et décroissante sur $[e^{\frac{1}{2}}; +\infty[$.

(b) Le résultat précédent montre la fonction h a un extremum (la dérivée s'annule en changeant de signe), qui est un maximum pour $x = e^{\frac{1}{2}} = \sqrt{e}$.

Comme ce nombre est entre 1 et e, (car $1 < e < e^2 \Rightarrow 1 < \sqrt{e} < e$) le nombre h(x) est positif.

Donc
$$MN = h(\sqrt{e}) = \ln \sqrt{e} (1 - \ln \sqrt{e}) = \frac{1}{2} \left(1 - \frac{1}{2} \right) = \frac{1}{4}.$$

(c) On pose $X = \ln x$ et l'équation devient $X^2 - X - 1 = 0$.

 $\Delta = 5 > 0$ donc l'équation a deux solutions réelles distinctes $X_1 = \frac{1}{2} + \frac{\sqrt{5}}{2} = \ln x_1$ et $X_2 = \frac{1}{2} - \frac{\sqrt{5}}{2} = \ln x_2$.

On a donc finalement deux solutions:

$$x_1 = e^{\frac{1+\sqrt{5}}{2}} \text{ et } x_2 = e^{\frac{1-\sqrt{5}}{2}}$$

- (d) Sur]0 ; $1[\cup]e$; $+\infty[$ la fonction $(\ln x)^2 \ln x$ est positive et représente donc la distance MN. D'après la question précédente il existe deux valeurs de x pour lesquelles la distance MN = 1. Ce sont les réels $x_2 = a = e^{\frac{1-\sqrt{5}}{2}}$ et $x_1 = b = e^{\frac{1+\sqrt{5}}{2}}$, avec a < b.
- 3. (a) On pose u(x) = x et v'(x) = 1 alors u'(x) = 1 et v(x) = x par exemple avec u et v dérivables sur [1; e] à dérivées continues sur [1; e], on intègre par parties :

$$\int_{1}^{e} \ln x \, dx = [x \ln x]_{1}^{e} - \int_{1}^{e} 1 \, dx$$
$$= [x \ln x]_{1}^{e} - [x]_{1}^{e}$$
$$= 1$$

(b) G est dérivable et pour tout réel x > 0:

$$G'(x) = (\ln x)^2 - 2\ln x + 2 + x\left(\frac{2\ln x}{x} - \frac{2}{x}\right)$$

$$= (\ln x)^2 - 2\ln x + 2 + 2\ln x - 2$$

$$= (\ln x)^2$$

$$= g(x)$$

Ainsi G est une primitive de g sur $]0; +\infty[$.

(c) Sur l'intervalle [1 ; e] on a vu que $\ln(x) - (\ln x)^2 \ge 0$, donc l'aire \mathcal{A} est égale à $\int_1^e \left[\ln x - (\ln x)^2 \right] dx$.

$$\mathcal{A} = \int_{1}^{e} \ln x \, dx - \int_{1}^{e} g(x) \, dx$$
$$= 1 - [G(x)]_{1}^{e}$$
$$= 1 - G(e) + G(1)$$
$$= 3 - e \quad (u. a.)$$

Exercice 3.

02/05/2024

1. (a)
$$\overrightarrow{AB} \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix}$$
 et $\overrightarrow{AC} \begin{pmatrix} 4 \\ 7 \\ 1 \end{pmatrix}$.

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = -4 + 7 - 3 = 0$ donc \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux et le triangle ABC est donc

(b)
$$\overrightarrow{BC} \begin{pmatrix} 5 \\ 6 \\ 4 \end{pmatrix}$$
 donc $\overrightarrow{BA} \cdot \overrightarrow{BC} = 5 - 6 + 12 = 11$.

BA =
$$\sqrt{1^2 + (-1)^2 + 3^2} = \sqrt{11}$$
 et BC = $\sqrt{5^2 + 6^2 + 4^2} = \sqrt{77}$

(c) On cherche la mesure en degrés de l'angle ABC arrondie au degré. On a alors

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = BA \times BC \times \cos\left(\widehat{ABC}\right) \iff 11 = \sqrt{11} \times \sqrt{77} \times \cos\left(\widehat{ABC}\right)$$
$$\iff 11 = \sqrt{11} \times \sqrt{11} \times \sqrt{7} \times \cos\left(\widehat{ABC}\right)$$
$$\iff \cos\left(\widehat{ABC}\right) = \frac{1}{\sqrt{7}}$$

La calculatrice donne $\widehat{ABC} \approx 68^{\circ}$ au degré près.

(a) On veut démontrer que le plan \mathcal{P} est parallèle au plan (ABC).

Un vecteur normal du plan \mathscr{P} est le vecteur $\overrightarrow{n} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$.

Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires car ABC est un triangle rectangle. De plus $\overrightarrow{n} \cdot \overrightarrow{AB} = 2 \times (-1) - 1 \times 1 - 1 \times (-3) = -2 - 1 + 3 = 0$ et $\overrightarrow{n} \cdot \overrightarrow{AC} = 2 \times 4 - 1 \times 7 - 1 \times 1 = 8 - 7 - 1 = 0$

De plus
$$\overrightarrow{n} \cdot \overrightarrow{AB} = 2 \times (-1) - 1 \times 1 - 1 \times (-3) = -2 - 1 + 3 = 0$$

$$\overrightarrow{n} \cdot \overrightarrow{AC} = 2 \times 4 - 1 \times 7 - 1 \times 1 = 8 - 7 - 1 = 0$$

n est donc un vecteur normal à deux vecteurs non colinéaires du plan (ABC), c'est donc un vecteur normal de ce plan et du plan \mathscr{P} .

Les plans \mathscr{P} et (ABC) sont donc parallèles.

(b) On déduit une équation cartésienne du plan (ABC).

Le plan (ABC) a donc une équation de la forme 2x - y - z + d = 0, comme A appartient à ce plan, on a : 5 + d = 0 soit d = -5.

Une équation de (ABC) est donc 2x - y - z - 5 = 0.

(c) On détermine une représentation paramétrique de la droite \mathcal{D} orthogonale au plan (ABC) et passant par le point E.

Un vecteur directeur de la droite \mathcal{D} est donc le vecteur n'

On a donc
$$M(x ; y ; z) \in \mathcal{D} \iff \overrightarrow{EM} = t\overrightarrow{n}$$
, avec $t \in \mathbb{R}$, soit

$$\begin{cases} x - 1 &= 2t \\ y - 2 &= -t, \ t \in \mathbb{R} \iff \begin{cases} x &= 1 + 2t \\ y &= 2 - t, \ t \in \mathbb{R}. \\ z &= 4 - t \end{cases}$$

(d) On démontre que le projeté orthogonal H du point E sur le plan (ABC) a pour coordonnées

4

H correspond à l'intersection du plan (ABC) avec la droite perpendiculaire à (ABC) qui passe par E soit la droite \mathcal{D} , les coordonnées de H seront donc solutions du système suivant :

$$\begin{cases} x = 1 + 2t \\ y = 2 - t \\ z = 4 - t \\ 2x - y - z - 5 = 0 \end{cases} \iff \begin{cases} x = 1 + 2t \\ y = 2 - t \\ z = 4 - t \\ 2(1 + 2t) - (2 - t) - (4 - t) - 5 = 0 \end{cases}$$

$$\iff \begin{cases} x = 1 + 2t \\ y = 2 - t \\ z = 4 - t \\ z = 4 - t \\ 6t - 9 = 0 \end{cases} \iff \begin{cases} t = \frac{3}{2} \\ x = 4 \\ y = \frac{1}{2} \\ z = \frac{5}{2} \end{cases}$$

3. On rappelle que le volume d'une pyramide est donné par $\mathcal{V} = \frac{1}{3}\mathcal{B}h$ où \mathcal{B} désigne l'aire d'une base et hla hauteur de la pyramide associée à cette base.

On va calculer l'aire du triangle ABC puis démontrer que le volume de la pyramide ABCE est égal à 16,5 unités de volume.

AC =
$$\sqrt{4^2 + 7^2 + 1^2} = \sqrt{66}$$
 et donc $\mathscr{B} = \frac{\text{AB} \times \text{AC}}{2} = \frac{\sqrt{11} \times \sqrt{66}}{2} = \frac{11\sqrt{6}}{2}$

HE est la hauteur de la pyramide et $\overrightarrow{\text{HE}} \left(\frac{-3}{\frac{3}{2}}\right)$

On a par suite $\overrightarrow{\text{HE}} = \sqrt{(-3)^2 + \left(\frac{3}{2}\right)^2 + \left(\frac{3}{2}\right)^2} = \sqrt{\frac{27}{2}}$ puis

 $\mathscr{V} = \frac{1}{3} \times \frac{11\sqrt{6}}{2} \times \sqrt{\frac{27}{2}} = \frac{11 \times \sqrt{2} \times \sqrt{3} \times 3\sqrt{3}}{3 \times 2 \times \sqrt{2}} = \frac{33}{2} = 16,5$

On a par suite HE =
$$\sqrt{(-3)^2 + \left(\frac{3}{2}\right)^2 + \left(\frac{3}{2}\right)^2} = \sqrt{\frac{27}{2}}$$
 puis

$$\mathcal{V} = \frac{1}{3} \times \frac{11\sqrt{6}}{2} \times \sqrt{\frac{27}{2}} = \frac{11 \times \sqrt{2} \times \sqrt{3} \times 3\sqrt{3}}{3 \times 2 \times \sqrt{2}} = \frac{33}{2} = 16,5$$

Exercice 4. On considère l'équation différentielle

(E):
$$y' - 2y = e^{2x}$$
.

1. u est dérivable sur \mathbb{R} et pour tout réel x on a :

$$u'(x) = e^{2x} + 2xe^{2x}$$

$$u'(x) - 2u(x) = e^{2x} + 2xe^{2x} - 2xe^{2x}$$

$$= e^{2x}$$

u est donc une solution de (E).

- 2. (E_0) : $y'-2y=0 \iff y'=2y$: les solutions de (E_0) sont les fonctions définies et dérivables sur \mathbb{R} telles que $x \longmapsto Ce^{2x}$, $C \in \mathbb{R}$.
- 3. Toutes les solutions de (E) sont donc les fonctions définies et dérivables sur \mathbb{R} telles que :

4. On pose $f_3(x) = (C+x)e^{2x}$. $f_3(0) = 3 \iff C = 3$ et ainsi :

$$f_3(x) = (x+3)e^{2x}$$

5. Soit g définie sur \mathbb{R} par $g(x) = (x+k)e^{2x}$

Calculons la limite de g en $-\infty$.

On a une FI du type « $\infty-\infty$ donc on change d'écriture.

Pour tout réel $x : g(x) = xe^{2x} + ke^{2x}$ donc $g(x) = xe^x + ke^{2x}$.

 $\lim_{x\to -\infty} x \mathrm{e}^x \text{ (limite de cours) et } \lim_{x\to -\infty} x \mathrm{e}^x = 0 \text{ donc par produit des limites } \lim_{x\to -\infty} x \mathrm{e}^x \times \mathrm{e}^x = 0 \text{ et } \lim_{x\to -\infty} x \mathrm{e}^x \times k \mathrm{e}^{2x} = 0 \text{ d'où par somme des limites } \lim_{x\to -\infty} g(x) = 0 \text{ donc on en déduit que l'axe des abscisses est asymptote horizontale à la courbe représentative de la fonction <math>g$ au voisinage de $-\infty$.