CSC 503 Homework Assignment 9

Out: October 12, 2015 Due: October 19, 2015 rsandil

Consider the transition model \mathcal{M}_1 depicted in Figure 1.

Figure 1: Model \mathcal{M}_1

In answering the following questions, recall that all paths are infinite. To indicate a path that ends with a repeated set of states, put parenthesis around the repeated subsequence (e.g., $(s_1, s_2)^{\infty}$). To indicate a path in which the initial subsequence s_1, s_2 is followed by any possible continuing path, write " s_1, s_2 , (any)".

1. [8 points] Find a path from the initial state s_1 which satisfies Ga.

Answer

There are multiple paths which satisfy Ga.

Path:
$$s_1 - (s_3)^{\infty}$$

Explanation: Starting from state s_1 and then repeating on state s_3 infinitely keeps the literal a always true. Hence this path satisfies Ga

2. [8 points] Determine whether $\mathcal{M}_1, s_1 \models \mathsf{G} a$ and explain why or why not.

Answer

 $\mathcal{M}_1, s_1 \models \mathsf{G}a$ is False.

Explanation: $\mathcal{M}_1, s_1 \models \mathsf{G} a$ means that for every path in the model literal 'a' is always true. This is not the case in the given model. Considering the path $(s_1s_3s_2)^{\infty}$, which is loop, we can see that 'a' is true in all the states but not in s_2

3. [8 points] Find a path from the initial state s_1 which satisfies $b \cup a$.

Answer

There are multiple paths that satisfy $b \cup a$.

Path:
$$s_1 - (s_3)^{\infty}$$

Explanation: At first state s_1 itself literal a becomes true. Thus any path starting from state s_1 will satisfy the condition $b \cup a$.

4. [8 points] Determine whether $\mathcal{M}_1, s_1 \models b \cup a$ and explain why or why not.

Answer

 $\mathcal{M}_1, s_1 \models b \cup a$ is True and satisfies.

Explanation: For all paths starting from state s_1 , $b \cup a$ is true as in the first state itself we get a as true hence state s_1 will satisfy the $b \cup a$. Since the condition of U is satisfied at the first step itself, we need not check further.

5. [8 points] Find a path from the initial state s_1 which satisfies $Xa \cup X(\neg a \wedge \neg b)$.

Answer

 $Xa \cup X(\neg a \wedge \neg b)$ is satisfied in one of the many paths.

Path:
$$(s_1 - s_2)^{\infty}$$

Explanation: Starting from s_1 in the path above $(\neg a \land \neg b)$ is true in the next state i.e state s_2 . since the until condition is satisfied in next step s_2 , we need not check further. All the path " s_1, s_2 , (any)" will satisfy $Xa \cup X(\neg a \land \neg b)$

6. [8 points] Determine whether $\mathcal{M}_1, s_1 \models \mathsf{X} a \cup \mathsf{X}(\neg a \wedge \neg b)$ and explain why or why not.

Answer

$$\mathcal{M}_1, s_1 \models \mathsf{X} a \; \mathsf{U} \; \mathsf{X} (\neg a \wedge \neg b)$$
 is False.

Explanation: Path $s_1 - (s_3)^{\infty}$) is one such path where $\mathcal{M}_1, s_1 \models Xa \cup X(\neg a \wedge \neg b)$ does not hold. This is because s_3 turns into loop so $(\neg a \wedge \neg b)$ does not become true at any further step.

7. [8 points] Find a path from the initial state s_1 which satisfies $X(\neg b \land X(\neg a \rightarrow G \neg a))$.

Answer

One of the multiple paths satisfy $X(\neg b \land X(\neg a \rightarrow G \neg a))$.

Path:
$$s_1 - s_2 - (s_4)^{\infty}$$
.

Explanation: In the path above starting from s_1 , in the next step i.e s_2 , $\neg b$ is True. Also in the next step of s_2 i.e s_4 , $(\neg a \to \mathsf{G} \neg a)$ is true, thus $\mathsf{X}(\neg b \land \mathsf{X}(\neg a \to \mathsf{G} \neg a))$ satisfies for above path.

8. [8 points] Determine whether $\mathcal{M}_1, s_1 \models \mathsf{X}(\neg b \land \mathsf{X}(\neg a \to \mathsf{G} \neg a))$ and explain why or why not.

Answer

$$\mathcal{M}_1, s_1 \models \mathsf{X}(\neg b \land \mathsf{X}(\neg a \to \mathsf{G} \neg a))$$
 does not hold.

Explanation: In the path " $s_1s_3s_2s_1$ (any)" $\mathcal{M}_1, s_1 \models \mathsf{X}(\neg b \land \mathsf{X}(\neg a \to \mathsf{G}\neg a))$ does not hold. Since in transition from state s_2 to s_1 literal $\neg a$ is not true thus $\mathsf{X}(\neg a \to \mathsf{G}\neg a)$) will not be true.

9. [8 points] Find a path from the initial state s_1 which satisfies $X(\neg a \land \neg b) \land F(\neg a \land b)$.

Answer

Path satisfying above is: **Path**: $s_1 - s_2 - (s_4)^{\infty}$.

10. [8 points] Determine whether \mathcal{M}_1 , $s_1 \models \mathsf{X}(\neg a \land \neg b) \land \mathsf{F}(\neg a \land b)$ and explain why or why not.

Answer

 $\mathcal{M}_1, s_1 \models \mathsf{X}(\neg a \land \neg b) \land \mathsf{F}(\neg a \land b)$ does not hold. Considering the path $s_1 - (s_3)^\infty, \neg a \land \neg b$ is never achieved as True. So does not satisfy.

11. [20 points] List all subformulas of the LTL formula

$$((\neg \mathsf{X} p) \; \mathsf{W} \; q) \; \mathsf{U} \; (\neg p \to (q \; \mathsf{U} \; (\mathsf{X} \mathsf{G} r \vee \mathsf{F} \mathsf{X} \neg q)))$$

Answer

Subformulas are:

(a)
$$((\neg Xp) \ W \ q) \ U \ (\neg p \rightarrow (q \ U \ (XGr \lor FX \neg q)))$$

(b)
$$((\neg Xp) W q)$$

- $\text{(g) } \left(\neg p \to \left(q \text{ U } \left(\mathsf{X}\mathsf{G}r \vee \mathsf{F}\mathsf{X} \neg q\right)\right)\right)$
- (h) ¬p
- (i) $q \cup (XGr \vee FX \neg q)$
- (j) $(XGr \vee FX \neg q)$
- (k) XGr
- (l) Gr
- (m) r
- (n) $\mathsf{FX} \neg q$
- (o) X¬q
- (p) ¬q