FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence¹

February 6, 2020

 $^{^1{\}it FixMatch:}$ Simplifying Semi-Supervised Learning with Consistency and Confidence by Sohn et al.

FixMatch:

▶ is a strong Self-Supervised Learning approach

- ▶ is a strong Self-Supervised Learning approach
- has a very simple loss function which has an interesting interpretation

- ▶ is a strong Self-Supervised Learning approach
- has a very simple loss function which has an interesting interpretation
- has quite complex augmentation strategy

- ▶ is a strong Self-Supervised Learning approach
- has a very simple loss function which has an interesting interpretation
- has quite complex augmentation strategy
- ▶ achieves 88.61% accuracy on CIFAR-10 with 4 labels per class!

▶ Imagine we have two datasets of images:

- ▶ Imagine we have two datasets of images:
 - ▶ Labeled images $X^{I} = \{(x_{n}^{I}, p_{n})\}_{n=1}^{N}$

- ► Imagine we have two datasets of images:
 - ▶ Labeled images $X' = \{(x_n', p_n)\}_{n=1}^N$
 - ▶ Unlabeled images $X^u = \{x_n^u\}_{n=1}^{k \times N}$, i.e. X^u is k times larger than X^l

- ▶ Imagine we have two datasets of images:
 - ▶ Labeled images $X^{I} = \{(x_{n}^{I}, p_{n})\}_{n=1}^{N}$
 - Unlabeled images $X^u = \{x_n^u\}_{n=1}^{k \times N}$, i.e. X^u is k times larger than X^l
 - \triangleright p_n is a one-hot class label

- ▶ Imagine we have two datasets of images:
 - ▶ Labeled images $X^{I} = \{(x_{n}^{I}, p_{n})\}_{n=1}^{N}$
 - Unlabeled images $X^u = \{x_n^u\}_{n=1}^{k \times N}$, i.e. X^u is k times larger than X^l
 - $ightharpoonup p_n$ is a one-hot class label
- Let H(p, q) be a cross-entropy between p and q.

- ▶ Imagine we have two datasets of images:
 - ▶ Labeled images $X^{I} = \{(x_{n}^{I}, p_{n})\}_{n=1}^{N}$
 - Unlabeled images $X^u = \{x_n^u\}_{n=1}^{k \times N}$, i.e. X^u is k times larger than X^l
 - $ightharpoonup p_n$ is a one-hot class label
- Let H(p, q) be a cross-entropy between p and q.
- We also have augmentation functions:

- Imagine we have two datasets of images:
 - ▶ Labeled images $X^{l} = \{(x_{n}^{l}, p_{n})\}_{n=1}^{N}$
 - Unlabeled images $X^u = \{x_n^u\}_{n=1}^{k \times N}$, i.e. X^u is k times larger than X^l
 - $ightharpoonup p_n$ is a one-hot class label
- Let H(p,q) be a cross-entropy between p and q.
- ▶ We also have augmentation functions:
 - $\alpha(x)$ is a weak (i.e. simple) augmentation: random horizontal flipping and translations

- Imagine we have two datasets of images:
 - ▶ Labeled images $X^{I} = \{(x_{n}^{I}, p_{n})\}_{n=1}^{N}$
 - Unlabeled images $X^u = \{x_n^u\}_{n=1}^{k \times N}$, i.e. X^u is k times larger than X^l
 - p_n is a one-hot class label
- Let H(p,q) be a cross-entropy between p and q.
- ▶ We also have augmentation functions:
 - $\alpha(x)$ is a weak (i.e. simple) augmentation: random horizontal flipping and translations
 - \rightarrow A(x) is a strong (i.e. sophisticated) augmentation: color inversion, translation, contrast adjustment, etc

FixMatch loss is a combination of two losses:

$$\mathcal{L}_{\mathsf{FM}} = \mathcal{L}_{\mathsf{cls}} + \lambda_{\mathsf{pl}} \mathcal{L}_{\mathsf{pl}} \tag{1}$$

FixMatch loss is a combination of two losses:

$$\mathcal{L}_{\mathsf{FM}} = \mathcal{L}_{\mathsf{cls}} + \lambda_{\mathsf{pl}} \mathcal{L}_{\mathsf{pl}} \tag{1}$$

 $ightharpoonup \mathcal{L}_{cls}$ is a usual cross-entropy classification loss on X^I dataset.

FixMatch loss is a combination of two losses:

$$\mathcal{L}_{\mathsf{FM}} = \mathcal{L}_{\mathsf{cls}} + \lambda_{\mathsf{pl}} \mathcal{L}_{\mathsf{pl}} \tag{1}$$

- $ightharpoonup \mathcal{L}_{cls}$ is a usual cross-entropy classification loss on X^I dataset.
- $ightharpoonup \mathcal{L}_{pl}$ is a *pseudo-labeling loss*, i.e. a cross-entropy loss that uses synthetic targets produced by our model

Pseudo-labeling loss \mathcal{L}_{pl} equals:

$$\mathcal{L}_{\mathsf{pl}} = \frac{1}{\mathsf{k} \mathsf{N}} \sum_{n=1}^{\mathsf{k} \mathsf{N}} 1 \left[\mathsf{max} \left(\bar{q}_{\mathsf{n}} \right) \ge \tau \right] H \left(\bar{q}_{\mathsf{n}}', p_{\mathsf{m}} \left(y | \mathcal{A} \left(x_{\mathsf{n}} \right) \right) \right) \tag{2}$$

Where:

- $lack q_n = p_m(y|\alpha(x_n)),$ i.e. class probabilities for weakly augmented x_n
- $ightharpoonup ar{q}_n' = rg \max ar{q}_n$, i.e. a pseudo label (one-hot)
- ightharpoonup au is a hyperparameter

Pseudo-labeling loss \mathcal{L}_{pl} equals:

$$\mathcal{L}_{\mathsf{pl}} = \frac{1}{\mathsf{k} \mathsf{N}} \sum_{n=1}^{\mathsf{k} \mathsf{N}} 1 \left[\mathsf{max} \left(\bar{q}_{\mathsf{n}} \right) \ge \tau \right] H \left(\bar{q}_{\mathsf{n}}', p_{\mathsf{m}} \left(y | \mathcal{A} \left(x_{\mathsf{n}} \right) \right) \right) \tag{2}$$

Where:

- $\bar{q}_n = p_m(y|\alpha(x_n))$, i.e. class probabilities for weakly augmented x_n
- $ightharpoonup ar{q}_n' = rg \max ar{q}_n$, i.e. a pseudo label (one-hot)
- ightharpoonup is a hyperparameter

Pseudo-labeling loss \mathcal{L}_{pl} equals:

$$\mathcal{L}_{\mathsf{pl}} = \frac{1}{\mathsf{k} \mathsf{N}} \sum_{n=1}^{\mathsf{k} \mathsf{N}} 1 \left[\mathsf{max} \left(\bar{q}_{\mathsf{n}} \right) \ge \tau \right] H \left(\bar{q}_{\mathsf{n}}', p_{\mathsf{m}} \left(y | \mathcal{A} \left(x_{\mathsf{n}} \right) \right) \right) \tag{2}$$

Where:

- $\bar{q}_n = p_m(y|\alpha(x_n))$, i.e. class probabilities for weakly augmented x_n
- $\bar{q}'_n = \arg\max \bar{q}_n$, i.e. a pseudo label (one-hot)
- ightharpoonup is a hyperparameter

Algorithm:

 \triangleright Pick an unlabeled image x_n , produce two augmentated versions:

$$\bar{x}_n = \alpha(x)_n$$
 and $\tilde{x}_n = \mathcal{A}(x_n)$

Pseudo-labeling loss \mathcal{L}_{pl} equals:

$$\mathcal{L}_{\mathsf{pl}} = \frac{1}{\mathsf{k} \mathsf{N}} \sum_{n=1}^{\mathsf{k} \mathsf{N}} 1 \left[\mathsf{max} \left(\bar{q}_{\mathsf{n}} \right) \ge \tau \right] H \left(\bar{q}_{\mathsf{n}}', p_{\mathsf{m}} \left(y | \mathcal{A} \left(x_{\mathsf{n}} \right) \right) \right) \tag{2}$$

Where:

- $ightharpoonup ar{q}_n = p_m(y|\alpha(x_n))$, i.e. class probabilities for weakly augmented x_n
- $\bar{q}'_n = \arg\max \bar{q}_n$, i.e. a pseudo label (one-hot)
- $\triangleright \tau$ is a hyperparameter

- Pick an unlabeled image x_n , produce two augmentated versions: $\bar{x}_n = \alpha(x)_n$ and $\tilde{x}_n = \mathcal{A}(x_n)$
- ► Compute class probabilities \bar{q}_n and \tilde{q}_n for \bar{x}_n and \tilde{x}_n

Pseudo-labeling loss \mathcal{L}_{pl} equals:

$$\mathcal{L}_{\mathsf{pl}} = \frac{1}{\mathsf{k} \mathsf{N}} \sum_{n=1}^{\mathsf{k} \mathsf{N}} 1 \left[\mathsf{max} \left(\bar{q}_{\mathsf{n}} \right) \ge \tau \right] H \left(\bar{q}'_{\mathsf{n}}, \rho_{\mathsf{m}} \left(y | \mathcal{A} \left(x_{\mathsf{n}} \right) \right) \right) \tag{2}$$

Where:

- $\bar{q}_n = p_m(y|\alpha(x_n))$, i.e. class probabilities for weakly augmented x_n
- $ightharpoonup ar{q}'_n = \arg\maxar{q}_n$, i.e. a pseudo label (one-hot)
- ightharpoonup is a hyperparameter

- Pick an unlabeled image x_n , produce two augmentated versions: $\bar{x}_n = \alpha(x)_n$ and $\tilde{x}_n = \mathcal{A}(x_n)$
- ► Compute class probabilities \bar{q}_n and \tilde{q}_n for \bar{x}_n and \tilde{x}_n
- Pick only examples with confident class probabilities for weakly-augmented images

Pseudo-labeling loss \mathcal{L}_{pl} equals:

$$\mathcal{L}_{\mathsf{pl}} = \frac{1}{\mathsf{k} \mathsf{N}} \sum_{n=1}^{\mathsf{k} \mathsf{N}} 1 \left[\mathsf{max} \left(\bar{q}_{\mathsf{n}} \right) \ge \tau \right] H \left(\bar{q}_{\mathsf{n}}', p_{\mathsf{m}} \left(y | \mathcal{A} \left(x_{\mathsf{n}} \right) \right) \right) \tag{2}$$

Where:

- $\bar{q}_n = p_m(y|\alpha(x_n))$, i.e. class probabilities for weakly augmented x_n
- $ightharpoonup ar{q}_n' = rg \max ar{q}_n$, i.e. a pseudo label (one-hot)
- ightharpoonup au is a hyperparameter

- Pick an unlabeled image x_n , produce two augmentated versions: $\bar{x}_n = \alpha(x)_n$ and $\tilde{x}_n = \mathcal{A}(x_n)$
- ► Compute class probabilities \bar{q}_n and \tilde{q}_n for \bar{x}_n and \tilde{x}_n
- Pick only examples with confident class probabilities for weakly-augmented images
- Cross-entropy term forces the model to give the same predictions for a weakly-augmented and a strongly-augmented images

An interesting property of this pseudo-labeling loss

Previously used variants of pseudo-labelling loss required tuning of $\lambda_{\rm pl}$ weight during training and gradually increase it.

An interesting property of this pseudo-labeling loss

- Previously used variants of pseudo-labelling loss required tuning of $\lambda_{\rm pl}$ weight during training and gradually increase it.
- In FixMatch model becomes gradually more confident in new images and authors omit λ_{pl} whatsoever!

An interesting property of this pseudo-labeling loss

- Previously used variants of pseudo-labelling loss required tuning of $\lambda_{\rm pl}$ weight during training and gradually increase it.
- In FixMatch model becomes gradually more confident in new images and authors omit $\lambda_{\rm pl}$ whatsoever!
- So we get a curriculum learning out of the box!

► FixMatch provides very strong scores

- ► FixMatch provides very strong scores
- ► Has a very simple loss with an interesting side-effect of curriculum learning

- ► FixMatch provides very strong scores
- ► Has a very simple loss with an interesting side-effect of curriculum learning
- ► A disadvantage: strong augmentations are based on CutOut, CTAugment, etc and seem *very* sophisticated

- ► FixMatch provides very strong scores
- ► Has a very simple loss with an interesting side-effect of curriculum learning
- ► A disadvantage: strong augmentations are based on CutOut, CTAugment, etc and seem *very* sophisticated
- Strongly beats SotA in many setups:

Method	CIFAR-10			CIFAR-100			SVHN		
	40 labels	250 labels	4000 labels	400 labels	2500 labels	10000 labels	40 labels	250 labels	1000 labels
Π-Model	-	54.26±3.97	14.01±0.38	-	57.25±0.48	37.88±0.11		18.96±1.92	7.54±0.36
Pseudo-Labeling	-	49.78 ± 0.43	16.09 ± 0.28	-	57.38 ± 0.46	36.21 ± 0.19	-	20.21 ± 1.09	9.94 ± 0.61
Mean Teacher	-	32.32 ± 2.30	9.19 ± 0.19	-	53.91±0.57	35.83 ± 0.24	-	3.57 ± 0.11	3.42 ± 0.07
MixMatch	47.54±11.50	11.05 ± 0.86	6.42 ± 0.10	67.61 ± 1.32	39.94 ± 0.37	28.31 ± 0.33	42.55 ± 14.53	3.98 ± 0.23	3.50 ± 0.28
UDA	29.05±5.93	8.82 ± 1.08	4.88 ± 0.18	59.28 ± 0.88	33.13 ± 0.22	24.50 ± 0.25	52.63 ± 20.51	5.69 ± 2.76	2.46±0.24
ReMixMatch	19.10±9.64	5.44±0.05	4.72 ± 0.13	44.28 ± 2.06	27.43±0.31	23.03 ± 0.56	3.34 ± 0.20	2.92 ± 0.48	2.65 ± 0.08
FixMatch (RA)	13.81±3.37	5.07±0.65	4.26±0.05	48.85±1.75	28.29±0.11	22.60±0.12	3.96±2.17	2.48±0.38	2.28±0.11
FixMatch (CTA)	11.39 ± 3.35	5.07 ± 0.33	4.31 ± 0.15	49.95±3.01	28.64 ± 0.24	23.18 ± 0.11	7.65 ± 7.65	2.64 ± 0.64	2.36±0.19