

Example #1

At 2000°C, K_{eq} is 6.40 x 10^{-7} for the decomposition of CO_2 into CO and O_2 . Calculate all equilibrium concentrations if 0.250 mol of CO_2 is placed in a 1.00 L container at the given temperature.

Example #1

At 2000°C, K_{eq} is 6.40 x 10^{-7} for the decomposition of CO_2 into CO_3 and CO_3 . Calculate all equilibrium concentrations if 0.250 mol of CO_2 is placed in a 1.00 L container at the given temperature.

$$2CO_{2(g)} \Leftrightarrow 2CO_{(g)} + O_{2(g)} \qquad K_{eq} = \frac{[CO]^{2}[O_{2}]}{[CO_{2}]^{2}}$$

$$0.250 \qquad 0 \qquad \qquad [CO_{2}]^{2}$$

$$C = 6.40 \times 10^{-7} = \frac{[2x]^{2}[x]}{[0.250 - 2x]^{2}}$$

$$6.40 \times 10^{-7} = \frac{4x^{3}}{0.0625 - x + 4x^{2}}$$

How do we solve this cubic equation?!

Example #1

At 2000°C, K_{eq} is 6.40×10^{-7} for the decomposition of CO_2 into CO_2 and CO_2 . Calculate all equilibrium concentrations if 0.250 mol of CO_2 is placed in a 1.00 L container at the given temperature.

$$2CO_{2(g)} \Leftrightarrow 2CO_{(g)} + O_{2(g)}$$

I 0.250 0 0

C -2x +2x +x

E 0.250-2x 2x x

Look at the K_{eq} (which is 0.000000640): VERY little of the CO_2 actually decomposes.

So x must be a VERY VERY small number.

So we assume that 0.250-2x = 0.250

It's **as if** we're assuming that x is 0.

Example #1

$$2CO_{2(g)} \Leftrightarrow 2CO_{(g)} + O_{2(g)}$$

I 0.250 0 0

C -2x +2x +x

E 0.250-2x 2x x

```
K_{eq} = [CO]^2[O_2]
     6.40 \times 10^{-7} = [2x]^{2}[x]
                         [0.250-2x]^2
   Assumption: 0.250-2x = 0.250
     6.40 \times 10^{-7} = [2x]^2[x]
                          [0.250]^2
     6.40 \times 10^{-7} = 4 \times^3
                         0.0625
     4.00 \times 10^{-8} = 4 \times^3
     1.00 \times 10^{-8} = x^3
3\sqrt{(1.00\times10^{-8})} = 3\sqrt{(\times^3)}
     2.15 \times 10^{-3} =
```

Example #1

At 2000°C, K_{eq} is 6.40 x 10⁻⁷ for the decomposition of CO_2 into CO and O_2 .

Calculate all equilibrium concentrations

if 0.250 mol of CO₂ is placed in a 1.00 L container at the given temperature.

$$2CO_{2(g)} \Leftrightarrow 2CO_{(g)} + O_{2(g)}$$

$$1 \quad 0.250 \quad 0 \quad 0$$

$$C \quad -2x \quad +2x \quad +x$$

$$E \quad 0.250-2x \quad 2x \quad x$$

$$=0.250 - 2(2.15x10^{-3}) \qquad =2(2.15x10^{-3})$$

$$=0.247M \qquad =0.0043M$$

.:
$$[CO_{2(g)}] = 2.47 \times 10^{-1} M$$
, $[CO_{(g)}] = 4.30 \times 10^{-3} M$, & $[O_{2(g)}] = 2.15 \times 10^{-3} M$

Example #1

$$2CO_{2(g)} \Leftrightarrow 2CO_{(g)} + O_{2(g)}$$

I 0.250 0 0

C -2x +2x +x

E 0.250-2x 2x x

0.247 and 0.250 are very close

The difference is 1.2%. As long as the difference is less than 5%, you can use the assumption.

You can also divide the initial concentration by k_{eq} . If the answer is AT LEAST 100, you can use the assumption.

 $0.250/6.40 \times 10^{-7} = 3.91 \times 10^{5}$, which is MUCH bigger than 100

Simplification of equilibrium equations may <u>usually</u> be used if K_{eq} values are:

1.greater than 10³

2.less than 10⁻³

Questions involving a lot of polynomial expansion is a good indication that an assumption should be used.

Example #2

What is molar solubility of $PbCl_{2(s)}$ in a 0.2 mol / L NaCl_(aq) solution? $K_{sp} = 1.7 \times 10^{-5}$

 K_{sp} = solubility product constant

Example #2

What is molar solubility of $PbCl_{2(s)}$ in a 0.2 mol / L NaCl_(aq) solution? $K_{sp} = 1.7 \times 10^{-5}$

$$PbCl_{2(s)} \Leftrightarrow Pb^{2+}_{(aq)} + 2Cl_{(aq)}$$

Example #2

What is molar solubility of PbCl_{2(s)} in a 0.2 mol / L NaCl_(aq) solution? $K_{sp} = 1.7x10^{-5}$

$$K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$$

1.7x10⁻⁵ = [x][0.2+2x]²

Because K_{sp} is SO small, very little PbCl₂ actually dissolves

Assumption:
$$0.2+2x = 0.2$$

 $1.7x10^{-5} = [x][\mathbf{0.2}]^2$
 $\frac{1.7x10^{-5}}{0.04} = x$.: the molar solubility of PbCl₂ in 0.2M NaCl_(aq) is

 $4.2 \times 10^{-4} = x$

4.2x10⁻⁴ mol/L

Net Ionic Equations

Do you remember what this is?

How does it affect equilibrium?

Chemical equation:

$$K_2CO_{3(aq)} + CuSO_{4(aq)} \rightarrow K_2SO_{4(aq)} + CuCO_{3(s)}$$

Ionic equation:

 \rightarrow Anything that is aqueous must be separated into its component ions $2K^{+}_{(aq)} + CO_{3}^{2-}_{(aq)} + Cu^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)} \rightarrow 2K^{+}_{(aq)} + SO_{4}^{2-}_{(aq)} + CuCO_{3(s)}$

Net Ionic equation:

→ **Spectator ions** are eliminated

$$Cu^{2+}_{(aq)} + CO_3^{2-}_{(aq)} \rightarrow CuCO_{3(s)}$$

Common Ion Effect

For aqueous solutions, the addition of ions may or may not affect equilibrium.

The added ion will <u>only</u> affect equilibrium when it is one that is <u>common</u> with those involved in the net ionic equation.

Spectator ions will not affect equilibrium.