Técnicas de diseño de algoritmos

Divide y conquista

Divide y Conquista Esquema algorítmico

```
tipoResultado DivideyConquista (tipoDato X)
{ tipoDato x_1, x_2, ..., x_k;
  tipoResultado y<sub>1</sub>,y<sub>2</sub>,...,y<sub>k</sub>;
 if (simple(x)) return solución (x);
 else { x_1 = Parte_1(x);
         x_2= Parte<sub>2</sub> (x);
         x_k = Parte_k(x);
return Combinar ( DivideyConquista (x_1), DivideyConquista (x_2),...
                         DivideyConquista (x_k);
```

Divide y Conquista. Consideraciones

La solución de un problema se obtiene combinando la solución de subproblemas idénticos al problema original

- No se resuelve el mismo problema más de una vez
- El tamaño de las entradas de las partes es una fracción del tamaño de la entrada del problema original

Para lograr algoritmos eficientes

- Convienen problemas balanceados
- Las funciones Parte₁, Parte₂,.... y Combina deben ser eficientes!

Un problema...

Supongamos que queremos invertir en acciones de una empresa.

El precio de los activos de la empresa es volátil. Algunos tipos de activos experimentan periodos de volatilidad alta y baja.

La volatilidad puede permitir obtener beneficio si se vende en los picos y se compra en las bajas.

Podemos comprar en un determinado día y vender en otro y se conocen las previsiones de los precios de los activos

Analicemos un caso simple...

	0	1	2	3	4
	10	11	7	10	6
1		1	-4	3	-4

Conviene comprar el día 2 en 7\$ y vender el 3 en 10\$

Un algoritmo de "fuerza bruta" podría generar todos los pares de compra y venta. En n días hay comb (n,2) pares

Es posible mejorarlo?

Comprar el día 7 a 63\$ y vender el 11 a \$106, el beneficio es 43

Encontrar el sub-arreglo de suma máxima

A[8]..A[11] y la suma de los elementos es (18 + 20 - 7 + 12)

Un algoritmo de "fuerza bruta" podría generar todos los pares de compra y venta. En n días hay comb (n,2) pares

Es posible mejorarlo?

Encontrar el sub-arreglo de un arreglo de enteros de suma máxima

Parte 1

Parte 2

```
Pseudo-código maximoSubarreglo ENTRADA (A, bajo, alto)
SALIDA (bajoSol, altoSol, sumaSol)
// CASO BASE
if (alto== bajo)
  return (bajo, alto, A[bajo]);
// CÁLCULO DE SUBPROBLEMAS
else
{ medio = (alto + bajo) / 2;
```

```
// Subproblema- Parte1
(bajolzq, altolzq,sumalzq) =
maximoSubarreglo(A, bajo, medio);
// Subproblema-Parte 2
(bajoDer, altoDer,sumaDer) =
maximoSubarreglo(A,medio+1, alto);
// Combinar soluciones
```

// Combinar soluciones

```
(bajoComb, altoComb, sumaComb) =
                       SolucionCombinada(A, bajo, medio, alto);
If ((sumalzq > sumaDer ) and ( sumalzq > sumaComb))
                     return (bajolzq, altolzq, sumalzq);
If ((sumaDer >= sumaIzq) and (sumaDer > = sumaComb))
                     return (bajoDer, altoDer, sumaDer);
else return(bajoComb, altoComb, sumaComb);
```

Pseudo-código SolucionCombinada

```
Entrada (A, bajo, medio, alto)
Salida = (maxlzq, maxDer, sumaComb)
sumalzq= - \infty;
sumaDer = 0;
for (i=1; i <= medio; i++)
\{suma += A[medio-i +1];
 if (suma > sumalzq)
 { sumalzq = suma;
  maxIzq = medio -i +1;
```

```
sumaDer = -\infty;
suma = 0;
for (j = medio + 1; j \le alto; j++)
suma += A[j];
If (suma > sumaDer)
{ sumaDer = suma;
 maxDer = j;
sumaComb = sumalzq +
sumaDer
```

```
void SolucionMedio (int a[], unsigned int bajo, unsigned int medio, unsigned int alto,
            unsigned int & bajomedio, unsigned int & altomedio, int & cantmedio)
       int sumaizq = ValorMínimolnicial;
       int suma =0;
       unsigned int i = 0;
       while (i <= medio)
          \{suma += a[medio -i];
          if (suma > sumaizq)
          {sumaizq = suma; bajomedio= medio -i;}
          i++;
       int sumader = ValorMinimolnicial;
       suma = 0;
       unsigned int j=medio +1;
       while (j \le alto)
          \{suma += a[j];
          if (suma > sumader)
          {sumader = suma;
          altomedio =j;}
          j++;
          cantmedio = sumaizq + sumader;
```

```
void MayorSubA(int a[], unsigned int bajo, unsigned int alto, unsigned int & bajomax,
        unsigned int & altomax, int & cant)
    unsigned int bajoizq ,altoizq, bajoder, altoder, bajomedio,altomedio;
    int cantmedio, cantder, cantizg;
     if (bajo == alto)
       {bajomax= bajo;
        altomax= alto;
        cant = a[bajo];
     else
     unsigned int medio = (alto+bajo)/2;
     MayorSubA(a, bajo, medio, bajoizq, altoizq,cantizq);
     MayorSubA(a, medio +1, alto, bajoder, altoder, cantder);
     SolucionMedio(a,bajo,medio,alto,bajomedio,altomedio,cantmedio);
```


// Combinar soluciones

```
if ((cantizq >= cantder) and (cantizq >= cantmedio))
       bajomax=bajoizq;
       altomax=altoizq;
       cant = cantizq;
    else
       if ((cantder >= cantizq) and (cantder >= cantmedio))
            bajomax=bajoder;
            altomax=altoder;
            cant = cantder;
       else
         bajomax=bajomedio;
         altomax=altomedio;
         cant = cantmedio;
```

Complejidad temporal

Algoritmo de "fuerza bruta"

 $O(n^2)$

Algoritmo por Divide y Conquista

O(n log n)

Ejercicio propuesto

Implementar en C++

Determinar la complejidad temporal

Análisis de eficiencia comparativo entre el algoritmo de "fuerza bruta" y el implementado por Divide y Conquista

Divide y conquista Algoritmo de Strassen

Sean dos matrices A y B de dimensiones $2^k \times 2^k$ particionadas en 4 submatrices de $2^{k-1} \times 2^{k-1}$.

La matriz producto C= A x B puede calcularse a partir del algoritmo propuesto por Volker Strassen

A ₁₁	A ₁₂		B ₁₁	B ₁₂		C ₁₁	C ₁₂
A ₂₁	A ₂₂	Х	B ₂₁	B ₂₂	=	C ₂₁	C ₂₂

Divide y conquista Algoritmo de Strassen

$$I = (A_{11} + A_{22}) (B_{11} + B_{22})$$

$$II = (A_{21} + A_{22}) B_{11}$$

$$III = A_{11} (B_{12} - B_{22})$$

$$IV = A_{22} (B_{21} - B_{11})$$

$$V = (A_{11} + A_{12}) B_{22}$$

$$VI = (A_{21} - A_{11}) (B_{11} + B_{12})$$

$$VII = (A_{12} - A_{22}) (B_{21} + B_{22})$$

$$C_{11} = I + IV - V + VII$$

$$C_{12} = III + V$$

$$C_{21} = II + IV$$

$$C_{22} = I + III - II + VI$$

I, II,III, IV,V,VI,VII son productos de matrices de dimensión 2^{k-1} x 2^{k-1} que pueden ser resueltos recursivamente por el Algoritmo de Strassen

ESPACIO AUXILIAR

RESULTADOS

Secuencia de cálculo

1	AUX1, AUX2	P1
11	AUX1	P2
III	AUX1	P3
IV	AUX1	P4
V	AUX1	P5
VI	AUX1, AUX2	P6
VII	AUX1, AUX2	P7
C11, C12, C21, C22		

Secuencia de cálculo:

I, II, III, IV, VI, VII, C11, C12, C21, C22

ESPACIO AUXILIAR (2K) \in O(9K)

- ¿Cómo realizar un uso más eficiente de espacio?
- Utilizar el espacio asignado al resultado del nivel para almacenar resultados parciales
- Cambiar la secuencia de cálculo

Otra secuencia de cálculo

- Sea MR el espacio asignado a la matriz resultado del nivel de dimensión 2^k.
- Sus submatrices, de dimensión 2^{k-1} x 2^{k-1} son MR 11, MR 12, MR 21 y MR 22

ECDACIO ALIVILIAD

Secuencia de cálculo

	ESPACIO AUXILIAR	RESULTADO
	AUX1, AUX2	AUX3
VII	AUX1,AUX2	MR 11
VI	AUX1, AUX2	MR 22
I + VII		MR 11
I + VI		MR 22
II	AUX1	MR21

	ESPACIO AUXILIAR	RESULTADO
III	AUX1	MR 12
III — II		AUX1
(I + VI) + (III - II)		MR 22
IV	AUX1	AUX2
II + IV		MR 21
V	AUX1	AUX3
IV - V		AUX2
(I + VII) + (IV - V)		MR 11
III + V		MR 12

Secuencia de cálculo: I,VII, I + VII, VI, I+VI, II, III, III – II, (I+VI) + (III – II), IV, II + IV, V,IV –V, (I+VII) + (IV-V), III + V

ESPACIO AUXILIAR (2^K) \in O(3^K)

Representación de matrices

Las funciones Parte₁, Parte₂,.... y Combina deben ser eficientes!

¿Cómo representar a las matrices?

Problemas recursivos

Representación recursiva de los datos

Representación de matrices

a11	a12	a21	a22	a13	a14	a23	a24	a31	a32	a41	a42	a33	a34	a43	a44
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Arreglos unidimensionales

Matriz

a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44

Índice en el arreglo

1	2	5	6
3	4	7	8
9	10	13	14
11	12	15	16

Representación de matrices

1	2	5	6	17	18	21	22
3	4	7	8	19	20	23	24
9	10	13	14	25	26	29	30
11	12	15	16	27	28	31	32
33	34	37	38	49 🕶	50	53	54
35	36	39	40	51	52	55	56
41	42	45	46	57	58	61	62
43	44	47	48	59	60	63	64

indice
$$(A_{11}) = \text{indice}(A)$$

indice $(A_{12}) = \text{indice}(A) + (n/2)^2$
indice $(A_{21}) = \text{indice}(A) + 2 (n/2)^2$
indice $(A_{22}) = \text{indice}(A) + 3 (n/2)^2$

Se almacenan recursivamente A₁₁, A₁₂, A₂₁,A₂₂

Matriz A dimensión $n \times n$ $(n=2^k)$

¿Cómo aplicarlo con productos de matrices generales, no necesariamente cuadradas y de dimensión 2^k x 2^k?

Combinar el algoritmo de Strassen con el tradicional

Siempre es posible encontrar dos enteros m y k (positivos o nulos) tal que $n = m 2^k$ y particionar en:

- m x m submatrices de 2^k x 2^k que pueden ser resueltas por Strassen Ó
- suponer a las matrices cubiertas con ceros hasta la potencia de 2 más cercana, operando conceptualmente con los ceros

- Suponer a las matrices cubiertas con ceros hasta la potencia de 2 más cercana, operando conceptualmente con los ceros

Se completa con ceros hasta la potencia de dos más cercana a L = MAX(N,M,K)

Matriz Quadtree

Clave = 0 REGIÓN NULA; CLAVE > 0 REGIÓN NO HOMOGÉNEA; CLAVE < 0 REGIÓN HOMOGÉNEA

Matriz Quadtree

Representación Matriz Quadtree

Arreglo de direcciones:

- -Un valor positivo indica una matriz que vuelvo a particionar y representa el índice dentro del mismo arreglo donde se encuentran las particiones.
- -Un valor negativo indica el índice del arreglo de valores donde está almacenada la información
- Un cero indica una región de ceros "conocidos".

Arreglo de Valores: Almacena la información contenida en la matriz.

Matriz Quadtree

-c

Algoritmo de Strassen Matrices ralas

