Zhen Peng

☑ hi.pengzhen@gmail.com

(510) 931-8704

⊘ johnpzh.github.io

(7) johnpzh

Research Interests

Zhen is a postdoc in the Future Computing Technologies Group (formerly known as the High-Performance Computing Group) at Pacific Northwest National Laboratory (PNNL).

His research interests include high-performance computing, compiler, continuum computing, machine learning optimization.

Education

Ph.D. College of William & Mary, Computer Science

Williamsburg, VA, USA Aug 2016 - Jan 2023

- · Advisor: Dr. Bin Ren
- Dissertation Title: Exploring Multi-Level Parallelism for Graph-Based Applications via Algorithm and System Co-Design
- M.S. **Huagiao University**, Computer Software and Theory

Xiamen, Fujian, China Sept 2013 - July 2016

- · Advisor: Dr. Tian Wang
- Dissertation Title: Research on Target Tracking in Wireless Sensor Networks with Mobility Elements

- Huaqiao University, Computer Science and Technology B.S.
 - Dissertation advisor: Dr. Weibo Xie
 - Dissertation Title: Popular Hot News Website Subscription

Xiamen, Fujian, China Sept 2009 - June 2013

Experience

Pacific Northwest National Laboratory (PNNL), Post Doctorate Research Associate

Richland, WA, USA (remote)

- Optimize distributed scientific workflows through prioritizing critical data flow
- Extend MLIR-based compiler to support Fabric Attached Memory (FAM) through CXL
- Develop MLIR-based compiler for sparse computation on heterogeneous hardware
- Use Generative AI for efficient prediction of protein redox potentials

Richland, WA, USA June 2022 - Apr 2023

Apr 2023 - present

Pacific Northwest National Laboratory (PNNL), PhD Intern

Extend MLIR-based compiler for redundancy-aware code optimization

Williamsburg, VA, USA

Department of CS, College of William & Mary (W&M), Research Assistant

Optimize deep neural network inference on edge devices

Aug 2017 – June 2022

- Parallelize and optimize graph-based Approximate Nearest Neighbors Search (ANNS)
- Parallelize Pruned Landmark Labeling algorithm for shortest path problem
- Optimize parallel graph processing on emerging many-core architectures

Palo Alto, CA, USA

Automate the model implementation to TensorRT

Kuaishou, US R&D Center, Machine Learning Research Intern

 Accelerate inference through operation fusion in convolutional neural networks (CNNs)

Apr 2021 - Sept 2021

Projects

FastFlow

PNNL

Optimization for Distributed Scientific Workflows Through Prioritizing Critical Data Flow

Feb 2025 - present

- · Implement the optimization method and pipeline to monitor and construct the critical data flow paths of given distributed workflows, using Nextflow and NetworkX
- · Apply space folding and time folding for a given DAG workflow to model its parallelism and iterations, which is used to infer analytical rules to explain substructure scaling and predict edge properties

AMAIS PNNI

Compiler Support to Fabric Attached Memory (FAM) for Artificial Intelligence

Aug 2024 - present

- Extend the compiler to support FAM that is enabled through Compute Express Link (CXL) protocol
- Optimize performance of AI applications that take advantage of a large memory pool through CXL

COMET PNNI

MLIR-Based Compiler for Computational Kernels on Heterogeneous Hardware

June 2022 - Sept 2025

- Design and extend intermediate representation to support parallel graph kernel in compiler COMET
- Optimize code transformation for sparse computation, such as SpGEMM

PNNL

Generative AI for Efficient Prediction of Protein Redox Potentials

June 2024 - Dec 2024

- Design and implement the LLMs-involved pipeline for training and predicting protein redox potentials
- For given magnitude and coordinates of a charge, predict its redox potential value. Conversely, for given redox potential, predict the possible magnitude and coordinate of a charge

W&M **EdgeML**

Accelerate Deep Neural Network Inference on Edge Devices

June 2021 - June 2022

- · Analyze inference procedure of TensorFlow Lite for Micro on microcontroller units (MCU)
- · Speed up the inference procedure by tuning loop unrolling and customized quantization methods

Speed-ANNS W&M

Efficient Parallelization of Graph-based Approximate Nearest Neighbors Search (ANNS)

Sept 2019 - Sept 2022

Sept 2018 – Jan 2020

- Analyze and parallelize the best-first search algorithm for ANNS on the graph-based index
- Reduce the intra-query latency on CPUs by a tailored parallelism scheme and synchronization mechanism

Auto-TensorRT Kuaishou, US R&D Center Apr 2021 - Sept 2021

Automate the Model Implementation to TensorRT

- Translate models from TVM Relay IR to TensorRT Python code
- Speed up the model deployment procedure and reduce the labor costs

Fusion-TVM Kuaishou, US R&D Center Apr 2021 - Sept 2021 Accelerate Inference Through Operation Fusion in Convolutional Neural Network (CNN)

- Try to add custom operation fusion pass in TVM
- Transform fused computational graph to TensorRT C++ code to accelerate the inference

Parallel-PLL W&M

Parallelizing Pruned Landmark Labeling - Dealing with Dependencies in Graph Algorithms

 Analyze and parallelize the sequential 2-hop labeling for shortest distance queries in large graphs

Zhen Peng - Page 2 of 4

 Reduce the query latency on CPUs using the parallel algorithm that breaks the dependency

GraphPhi W&M

Efficient Parallelization of Graph Processing on Emerging Many-core Architectures

July 2017 - Nov 2018

- Design the graph processing system for typical graph algorithms such as BFS to tap into many-core CPUs
- Achieve good performance and scalability by being aware of data locality, load balance, and update conflicts

Skills

Programming Languages: C++, C, Python, Bash

Frameworks: MLIR, OpenMP, AVX-512, MPI, Nextflow, TVM, TensorFlow Lite, TensorRT

Publications

FastFlow: Rapid Workflow Response By Prioritizing Critical Data Flows and their Interactions

Jesun Sahariar Firoz, Hyungro Lee, Luanzheng Guo, Meng Tang, Nathan R. Tallent, **Zhen Peng** 10.1145/3733723.3733735 ☑ (SSDBM 2025, the 37th International Conference on Scalable Scientific Data Management)

LiteForm: Lightweight and Automatic Format Composition for Sparse Matrix-Matrix Multiplication on GPUs

Zhen Peng, Polykarpos Thomadakis, Jacques Pienaar, Gokcen Kestor

10.1145/3731545.3731574 ☑ (HPDC 2025, the 34th ACM International Symposium on High-Performance Parallel and Distributed Computing)

Towards Recognizing Food Types for Unseen Subjects

Jiexiong Guan, Junjie Wang, Wei Niu, **Zhen Peng**, Shuangquan Wang, Zhenming Liu, Gang Zhou, Bin Ren 10.1145/3696424 ☑ (ACM Transactions on Computing for Healthcare, Volume 6, Issue 1, No. 1, pp 1-21, January 2025)

Automatic Code Generation for High-Performance Graph Algorithms

Zhen Peng, Rizwan A. Ashraf, Luanzheng Guo, Ruiqin Tian, Gokcen Kestor

10.1109/PACT58117.2023.00010 ☑ (PACT 2023, the 32nd International Conference on Parallel Architectures and Compilation Techniques)

$iQAN: Fast\ and\ Accurate\ Vector\ Search\ with\ Efficient\ Intra-Query\ Parallelism\ on\ Multi-Core\ Architectures$

Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, Bin Ren

10.1145/3572848.3577527 ☑ (PPoPP 2023, the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming)

Speed-ANN: Low-Latency and High-Accuracy Nearest Neighbor Search via Intra-Query Parallelism

Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, Bin Ren

10.48550/arXiv.2201.13007 ☐ (arXiv 2022)

MemHC: An Optimized GPU Memory Management Framework for Accelerating Many-body Correlation

Qihan Wang, Zhen Peng, Bin Ren, Jie Chen, Robert G. Edwards

10.1145/3506705 ☑ (ACM Transactions on Architecture and Code Optimization, Volume 19, Issue 2, No. 24, pp 1-26, June 2022)

Multi-Level Intermediate Representation Decoder For Heterogeneous Platforms

Zhen Peng, Yang Liu, Hanxian Huang, Yongxiong Ren, Jishen Yang, Lingzhi Liu, Xin Chen patents.google.com/patent/US11928446B2/en ☑ (U.S. Patent No. 11928446)

Parallelizing Pruned Landmark Labeling: Dealing with Dependencies in Graph Algorithms

Ruoming Jin*, **Zhen Peng*** (equal contribution), Wendell Wu, Feodor Dragan, Gagan Agrawal, Bin Ren 10.1145/3392717.3392745 ☑ (ICS 2020, the 34th ACM International Conference on Supercomputing)

ATMem: Adaptive Data Placement in Graph Applications on Heterogeneous Memories

Yu Chen, Ivy Peng, Zhen Peng, Xu Liu, Bin Ren

10.1145/3368826.3377922 ☑ (CGO 2020, International Symposium on Code Generation and Optimization)

Pruned Landmark Labeling Meets Vertex Centric Computation: A Surprisingly Happy Marriage!

Ruoming Jin, **Zhen Peng**, Wendell Wu, Feodor Dragan, Gagan Agrawal, Bin Ren 10.48550/arXiv.1906.12018 ☑ (arXiv 2019)

GraphPhi: Efficient Parallel Graph Processing on Emerging Throughput-oriented Architectures

Zhen Peng, Alexander Powell, Bo Wu, Tekin Bicer, Bin Ren

10.1145/3243176.3243205 ☑ (PACT 2018, International Conference on Parallel Architectures and Compilation Techniques)

Reliable Wireless Connections for Fast-Moving Rail Users Based on a Chained Fog Structure

Tian Wang, **Zhen Peng**, Sheng Wen, Weijia Jia, Yiqiao Cai, Hui Tian, Yonghong Chen 10.1016/j.ins.2016.06.031 ☑ (Information Sciences, Volume 379, pp 160-176, 2017)

Extracting Target Detection Knowledge Based on Spatio-temporal Information in Wireless Sensor Networks

Tian Wang, **Zhen Peng**, Chen Wang, Yiqiao Cai, Yonghong Chen, Hui Tian, Junbin Liang, Bineng Zhong 10.1155/2016/5831471 ☑ (International Journal of Distributed Sensor Networks, Volume 12, No. 2, 2016)

Following Targets for Mobile Tracking in Wireless Sensor Networks

Tian Wang, **Zhen Peng**, Junbin Liang, Sheng Wen, Md Zakirul Alam Bhuiyan, Yiqiao Cai, Jiannong Cao 10.1145/2968450 ☑ (ACM Transactions on Sensor Networks, Volume 12, Issue 4, No. 31, pp 1-24, 2016)

Dependable Cascading Target Tracking in Heterogeneous Mobile Camera Sensor Networks

Zhen Peng, Tian Wang, Md Zakirul Alam Bhuiyan, Xiaoqiang Wu, Guojun Wang 10.1007/978-3-319-27161-3_48 ☑ (ICA3PP 2015, International Workshops and Symposiums on Algorithms and Architectures for Parallel Processing)

Detecting Targets Based on a Realistic Detection and Decision Model in Wireless Sensor Networks

Tian Wang, **Zhen Peng**, Junbin Liang, Yiqiao Cai, Yonghong Chen, Hui Tian, Bineng Zhong 10.1007/978-3-319-21837-3_82 ☑ (WASA 2015, Wireless Algorithms, Systems, and Applications)

Continuous tracking for mobile targets with mobility nodes in WSNs

Tian Wang, **Zhen Peng**, Yonghong Chen, Yiqiao Cai, Hui Tian 10.1109/SMARTCOMP.2014.7043867 ☑ (SmartComp 2014, International Conference on Smart Computing)

Service

Program Committee Member: ExHetAl 2025

Conference Reviewer: ICPP (2020, 2024, 2025), IPDPS (2021, 2022, 2025), HiPC (2018, 2019, 2023, 2024), ICAT-2023, PPoPP-2021, ICS-2021, NPC (2018, 2019, 2020), Bench (2019, 2020), BIGCOM-2019, ICCCN-2019, UIC-2018, SCS-2017

Journal Reviewer: ACM Transactions on Architecture and Code Optimization, IEEE Transactions on Cloud Computing, Expert Systems with Applications

Artifact Evaluation Committee Member: SC (2023, 2024, 2025), ALENEX (2024, 2025)