

Задача 1. Лихач (не задирай носа)

Автомобили бывают разные – большие и маленькие, красные и черные, дорогие и поддержанные. Но у всех их есть нечто общее, например, двигатель, кузов, колеса, подвеска.

Рассматриваемый в данной задаче автомобиль понравится не многим автолюбителям, поэтому будем его считать некоторой моделью — «идеальным автомобилем». Подобно тому как в модели идеального газа пренебрегают многими важными свойствами, например, запахом, так и в нашей модели мы оставим только наиболее существенные для нашей задачи характеристики.

Итак, рассматриваем следующую модель автомобиля:

- автомобиль передвигается только по горизонтальной поверхности, трением качения можно пренебречь;
- корпус автомобиля однородный параллелепипед;
- колеса соединены с корпусом посредством пружин подвески;
- жесткость всех пружин одинакова и такова, что у неподвижного автомобиля на горизонтальной дороге их деформация равна $x_0 = 10 \,\mathrm{cm}$;

- центр масс корпуса находится на равных расстояниях от осей передних и задних колес;
- расстояние между осями равно l = 3.5 м;
- в состоянии покоя центр масс автомобиля находится на высоте h = 0.40 м
- масса колес, подвески и заднего моста пренебрежимо мала;
- ведущими является задняя пара колес автомобиля (передняя пара колес не взаимодействует с двигателем);
- коэффициент трения скольжения между колесами автомобиля и дорогой $\mu_{\rm c}=0.80$, максимальный коэффициент трения покоя между колесами автомобиля и дорогой $\mu_{\rm n}=0.90$ (наверно, вы слышали, что коэффициент трения покоя превышает коэффициент трения скольжения).

Часть 1. Поехали - старт и разгон.

Разгоняться хочется быстро! Тщательно рассмотрите движение автомобиля при его разгоне – силы, моменты сил, ускорение, все так, как вас учили! Сначала рассмотрите «аккуратный» разгон, когда водитель бережет

колеса и при старте колеса не проскальзывают.

- **1.1** Известно, что при разгоне автомобиля с задними ведущими колесами передок (передняя часть) автомобиля приподнимается. На какой угол α_1 «задерет нос» автомобиль при старте с максимально возможным ускорением?
- **1.2** Определите модуль максимального ускорения a_{\max} , с которым автомобиль может начать движение.
- **1.3** Чему равен модуль скорости v_1 автомобиля через промежуток времени $\Delta t = 5.0$ с после начала движения с максимально возможным ускорением?

Часто можно наблюдать, как водители «рвут с места», включая двигатель на максимальную мощность, при которой колеса прокручиваются при еще неподвижном автомобиле. Насколько эффективен такой старт?

1.4. Чему равно максимальное ускорение при таком старте при заданных значениях коэффициентов трения?

Нужные Вам дополнительные характеристики автомобиля задайте самостоятельно.

Часть 2 Приехали – торможение и остановка.

Тормозить тоже желательно аккуратно, но иногда возникает необходимость в резком торможении. Считайте, что при таком торможении вращение колес прекращается практически мгновенно.

- 2.1 Определите тормозной путь s автомобиля, движущегося со скоростью $\upsilon = 90 \frac{{\rm KM}}{{\rm Y}}$, при резком торможении.
- 2.2 Известно, что при резком торможении, когда вращение всех колес резко прекращается, автомобиль «клюет носом». На какой угол α_2 наклонится автомобиль при таком торможении?

Можно ли уменьшить тормозной путь, применяя другую стратегию торможения? 2.3 Каким может быть минимальный тормозной путь s' автомобиля, движущегося со скоростью $\upsilon = 90\frac{\rm KM}{\rm H}$, при торможении опытным водителем, знающим основы физики?

Задача 2. Две трубы, два поршня, две части...

Два цилиндра поперечными сечениями $S_1 = 20\,\mathrm{cm}^2$ и $S_2 = 80\,\mathrm{cm}^2$ сварены так, что их оси совпадают. В цилиндры вставлены легкоподвижные поршни массами

