Übung zur Vorlesung Informatik I

WS 2024/25

Fakultät für Angewandte Informatik

Institut für Informatik

Prof. Dr. J. Hähner, J. Linne, H. Cui, V. Gerling, N. Kemper

Übungsgruppe 69

Abgabe des 4. Übungsblatts

Erik Wiedmann, Marwin Merkl, Manuel Henker

Aufgabe 29

Datei: temperatur.h

```
# #ifndef TEMPERATURE_H
2 #define TEMPERATURE_H
#include <stdio.h>
5 #include <stdlib.h>
7 #define MAX_CELSIUS -273.15
8 #define MIN_CELSIUS 100
#define SUCCESS 0
#define ERROR -1
#define CELSIUS_TO_FAHRENHEIT(celsius) ((celsius) *1.8 + 32)
void print_temp_in_fahrenheit(double *temperatures, int size);
int input_temperature(double *temperatures, int *size, int
    max_size);
is int connect_temperature_arrays(double *temps1, int *temps1_size,
    int max_size, double *temps2, int temps2_size);
18 #endif
 Datei: temperatur.c
#include "temperature.h"
void print_temp_in_fahrenheit(double *temperatures, int size) {
     int i;
     for (i = 0; i < size; i++) {</pre>
              printf("Temperatur %f C zu: %.2f F\n", temperatures[
                 i], CELSIUS_TO_FAHRENHEIT(temperatures[i]));
     }
8 }
int input_temperature(double *temperatures, int *size, int
    max_size) {
     double input;
     if (*size >= max_size) {
             printf("Fehler: Maximale Kapazitaet des Arrays
                 erreicht.\n");
```

```
16
          printf("Geben Sie eine Temperatur in Grad Celsius ein (%d
             bis %.2f): ", MIN_CELSIUS, MAX_CELSIUS);
          if (scanf("%1f", &input) != 1 || input < MIN_CELSIUS ||</pre>
             input > MAX_CELSIUS) {
              printf("Ungueltige Eingabe! Bitte eine gueltige
                  Temperatur eingeben.\n");
              return ERROR;
          }
          temperatures[*size] = input;
          (*size)++;
          return SUCCESS;
28 }
int connect_temperature_arrays(double *temps1, int *temps1_size,
     int max_size, double *temps2, int temps2_size) {
      int i;
      if (*temps1_size + temps2_size > max_size) {
              printf("Fehler: Ziel-Array hat nicht genuegend
                  Kapazitaet.\n");
              return ERROR;
34
          }
          for (i = 0; i < temps2_size; i++) {</pre>
              temps1[*temps1_size + i] = temps2[i];
          *temps1_size += temps2_size;
          return SUCCESS;
42
43 }
 Datei: 29main.c
#include "temperature.h"
3 int main(void) {
      int max_size = 10;
          double temperatures[10];
      int *size = 0;
      double second_temperatures[] = {25.5, -100.0};
      int second_size = 2;
          if (input_temperature(temperatures, size, max_size) ==
             SUCCESS) {
              printf("Temperatur erfolgreich hinzugefuegt.\n");
          }
          printf("Alle Temperaturen in Fahrenheit:\n");
          print_temp_in_fahrenheit(temperatures, *size);
16
          if (connect_temperature_arrays(temperatures, size,
             max_size, second_temperatures, second_size) == SUCCESS)
```

return ERROR;

15

Aufgabe 30

```
Datei: 30.h
# #ifndef DREIZIG_H
#define DREIZIG_H
#include < stdio.h >
#define ISPRIME(x) printf("\nDIGAAAAA %i ist DIE Primzahl", x)
\tau #define ABSTANT(a,b) (a > b) ? a - b : b - a
9 int prim(int a);
int quad(int q);
#endif
 Datei: 30.c
#include "30.h"
#include < stdio.h >
5 int prim(int a){
     int i;
      for(i = 2; i * i <= a; i++){</pre>
          if(a \% i == 0){
              return 0;
                                     /*flase*/
                                      /*true*/
      return 1;
12
13 }
int quad(int a){
      int i;
16
      for(i = 0; i < a; i++){</pre>
17
          if((i * i) == a){
                                       /*true*/
              return 1;
19
          }
20
      }
21
                                      /*false*/
      return 0;
22
23 }
int main(void){
```

```
int a, b, n;
      n = 0;
27
28
      for(a = 1000; a <= 1100; a++){
29
          if(prim(a)){
30
                ISPRIME(a);
31
               if(n > 0){
               printf("\nabstand zwischen %i und %i ist: %i", n, a,
                   ABSTANT(a, n));
          n = a;
          }
37
      }
39
      for(b = 1000; b \le 2000; b++){
41
          if(quad(b)){
42
               printf("\nBoa %i ist übelst die Quadrahtzahl", b);
43
45
      }
46
      return 0;
47
48 }
```

Aufgabe 31

```
Datei: 31.c
#include <stdio.h>
unsigned long int fibonacci();
unsigned long int next(void);
void start(unsigned long int seed);
static unsigned long int current = 0;
9 int fibstop = 0;
int main () {
      static unsigned long int loops = 0;
13
      unsigned long int seed;
     int loopthreenplus1 = 0;
15
16
      static unsigned long int v1;
      static unsigned long int v2;
      static unsigned long int v3;
19
      fibstop = 50;
21
     fibonacci();
24
      printf("ab 48 unsigned long int limit reached. fib(48), fib
         (49) und fib(50) stimmen also nicht \n\n";
```

```
for (seed = 1; seed <= 10; seed++) {</pre>
27
          printf("3n+1-Folge fuer: i \ n", seed);
28
          start(seed);
29
          v1 = 0;
31
          v2 = 0;
32
          v3 = 0;
          while (1) {
35
               if (loops == 0) {
36
                   printf("%lu \n", current);
               } else {
                   printf("%lu \n", next());
                   if (loopthreenplus1 \% 3 == 0) {
                        v1 = current;
42
                        loopthreenplus1++;
43
                   } else if (loopthreenplus1 % 3 == 1) {
44
                        v2 = current;
                        loopthreenplus1++;
                   } else {
                        v3 = current;
                        loopthreenplus1 = 0;
                   }
50
               }
51
52
               if ((v1 == 4 && v2 == 2 && v3 == 1) || (v1 == 1 && v2
                  == 4 \&\& v3 == 2) \mid \mid (v1 == 2 \&\& v2 == 1 \&\& v3 == 4)
                  ) {
                   printf("4,2,1 loop reached \n\n");
                   break;
               }
56
57
               loops++;
58
          }
          loops = 0;
60
61
      return 0;
62
63
64
 unsigned long int fibonacci(void) {
65
      static unsigned long int last = 0, current = 0;
      int n = 0, temp = 0;
      while(n >= 0) {
68
          if (n == fibstop + 1) {
69
               return current;
          } else if (n == 0) {
          } else if (n == 1) {
73
               current++;
          } else {
               temp = current;
               current = last + current;
               last = temp;
          }
79
          printf(" %i = %lu \n", n, current);
```

```
n++;
82
     return current;
83
84 }
void start(unsigned long int seed) {
      current = seed;
88 }
89
90 unsigned long int next(void) {
     if (current % 2 == 0) {
              current = current / 2;
      } else {
93
         current = 3 * current + 1;
95
     return current;
```

Aufgabe 32

```
a 1. Datei: 32a1.c
    int main(void){
    char w[3];
         int *p = &w[2];
    4 }
   2. Datei: 32a2.c
    int main(void) {
         int **p;
    3 }
   3. Datei: 32a3.c
    int ** p;
    int main(void){}
   4. *v + 2 = 3
   5. +(v + 2) = -1
   6. Datei: 32a6.c
    int main(void){
   int n;
         int *p = &n;
    4 }
   7. *(p++) = 6
   8. ++(*p) = 7
   9. *(++p) = 6
  10. Mar
  11. lade
  12. ++(*p); -> (*p)++;
  13. char w[] = v -> char w[strlen(v)]; strcpy(w, v);
  14. *p = '5' -> p = '5'
```

15. p = v - p = v = v

32 b) 1.	5 3 V 2	2. & r	7 /0 + s e v T	3 (Folio 25)	/o + s e
Anneisury Typ c) p=xa ch	v ×				V

b)	() /	[700]
	Anneisung C) p= xa	Typ chax x
	p= a+1	dia
		1

P = * * a C	ha **
p = a[o] c	char

$$f = \times a[0]$$
 char \times
 $f = b a[1]$ char \times