КАФЕДРА №

АЩИЩЕН С ОЦЕНКОЙ РЕПОДАВАТЕЛЬ		
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕТ О) ЛАБОРАТОРНОЙ РА	БОТЕ
Лабораторная 1	работа №6 \ 18 Вариант	т(3 вариант)
Графическое представление р	результатов вычислений задач.	и́ при решении численных
АБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. №		

Цель работы:

Знакомство с графическими возможностями МАТLAB, особенностями форматирования графиков. Визуализация результатов вычислений. Закрепление навыков по преобразованию типов данных, организации программ-сценариев, подпрограмм и организации диалогов.

Задание:

Дополнить программу, реализованную в лабораторной работе №6, графическим представлением решения.

Программа должна запросить у пользователя математическую функцию, запросить интервал для построения графика заданной пользователем функции и проверить введенные значения согласно условию 1 и условию 2 (используя ранее написанные функции для лабораторной работы №5). Программа должна рассчитать значение интеграла ∫ x а f(x)dx, где f(x) — функция, введенная пользователем, а — нижняя граница интервала для построения графика, x — текущее значение аргумента, x∈ [a, b]. Интеграл рассчитать любым удобным методом и вывести результаты расчетов в виде таблицы с дискретными данными с 3 столбцами (аргумент, функция, интеграл), а также в виде графика. Для вывода таблицы использовать не более 15 строк, охватывающих всю ОДЗ с одинаковым шагом. Графическое окно должно быть разбито на два подокна, расположенных горизонтально или вертикально в зависимости от номера варианта (см. табл. 3). На графике функции указать маркерами точки, по которым строился график (для наглядности допускается прорисовать точки с большим шагом). Стили линий и маркеров, их цвет, толщина выбирается в соответствии с номером варианта (см. табл. 3). На графике тонкими горизонтальными пунктирными линиями отметить максимальное и минимальное значение функции.

На графиках прорисовать сетку. Все графики и оси должны быть подписаны

Ход работы:

3	Гориз.	пунктирная	звездочка	зеленый	красный	2	сплошная	Голубой	2
		линия							

Изменение основного кода:

```
close all
clear all
clc
integ = @(func) strcat('for (x = xmin:step:x )y(i) = y(i) + ', func, ';
end');
func = input('Введите функцию: ', 's');
func = eval(['@(x)' func]);
[xmax, xmin] = more less();
step = input step(xmin, xmax);
x v = xmin:step:xmax;
i = 0;
for i = 1:length(x v)
   y(i) = func(x_v(i));
    z(i) = integral(func, xmin, x v(i));
end
% вывод таблицы
printTable(x v, y, z)
% вывод графиков
create_chart(x_v, y, xmin, xmax, z)
```

Изменение функции вывода таблицы:

Отображение графиков:

```
function create_chart(x_v, y, xmin, xmax, z)
% вывод 1 графика
subplot(2,1,1)
hold on
```

```
n app = length(y);
    y\overline{1} = interpft(y, n_app);
    dx = length(y) / napp;
    x1 = 0:dx:length(y) - dx;
    x1 = x1 + xmin;
    %x = 0:length(x1) - 1;
   plot(x1, y1, '--g', 'LineWidth', 2);
plot(x1, y1, '*r', 'LineWidth', 2);
    % отображение минимума и максимума в 1 графике
    xMaxFunc = xmin:xmax;
    plot(xMaxFunc, ones(1, length(xMaxFunc)) * max(y1), '--r', 'LineWidth',
   plot(xMaxFunc, ones(1, length(xMaxFunc)) * min(y1), '--r', 'LineWidth',
1.5);
    xlim([xmin, xmax])
    grid on
    % вывод 2 графика
    subplot(2,1,2)
    hold on
    plot(x_v, z, '-c', 'LineWidth', 2);
    % вывод минимума и максимума во 2 графике
    xMaxFunc = xmin:xmax;
   plot(xMaxFunc, ones(1, length(xMaxFunc)) * max(z), '--r', 'LineWidth',
1.5);
   plot(xMaxFunc, ones(1, length(xMaxFunc)) * min(z), '--r', 'LineWidth',
1.5);
    xlim([xmin, xmax])
    grid on
```

end

Вывод графиков:

Введите функцию: sin(x)

Введите правую границу интервала:

xmax=10

Введите левую границу интервала:

xmin=-10

Введите шаг: 1

/-			\
ı	Аргумент	Функция	Интеграл
1-	-	-	
ı	-10.0000	0.0000	0.5440
I	-9.0000	0.0721	-0.4121
I	-8.0000	-0.6936	-0.9894
I	-7.0000	-1.5930	-0.6570
1	-6.0000	-1.7992	0.2794
1	-5.0000	-1.1227	0.9589
1	-4.0000	-0.1854	0.7568
1	-3.0000	0.1509	-0.1411
1	-2.0000	-0.4229	-0.9093
1	-1.0000	-1.3794	-0.8415
1	0.0000	-1.8391	0.0000
1	1.0000	-1.3794	0.8415
1	2.0000	-0.4229	0.9093
1	3.0000	0.1509	0.1411
1	4.0000	-0.1854	-0.7568
1	5.0000	-1.1227	-0.9589
1	6.0000	-1.7992	-0.2794
1	7.0000	-1.5930	0.6570
1	8.0000	-0.6936	0.9894
T	9.0000	0.0721	0.4121
1	10.0000	-0.0000	-0.5440
\-			/

Вывод: был ознакомлен с графическими возможностями MATLAB, особенностями форматирования графиков. Визуализировал результаты вычислений. Закрепил навыки по преобразованию типов данных, организации программ-сценариев, подпрограмм и организации диалогов.