5 同値関係 (二項関係)・商集合

Xを集合とする、

- 1. ρ が集合 X 上の二項関係とは、任意の $(a,b) \in X \times X$ について、満たすか満たさないかが 判定できる規則のこと.
- 2. 対 (a,b) が二項関係 ρ を満たすとき $a\rho b$ とかく.
- 3. X 上の二項関係 ρ についてグラフ $G(\rho) := \{(a,b) \in X \times X | a\rho b\}$ とする.
- $4. \sim$ を X 上の二項関係とする. \sim が次を満たすとき, \sim を同値関係という.
 - (1). (反射律) 任意の $x \in X$ について $x \sim x$.
 - (2). (対称律) $x \sim y$ ならば, $y \sim x$.
 - (3). (推移律) $x \sim y$ かつ $y \sim z$ ならば, $x \sim z$.
- 5. \sim を同値関係とする. $x \in X$ について, $C(x) := \{y \in X | x \sim y\}$ を x の同値類という. $C(x) \cap C(y) \neq \varnothing \iff x \sim y \iff C(x) = C(y)$ である.
- 6. $X/\sim:=\{C(x)|x\in X\}$ を商集合という. $C\in X/\sim$ について C=C(x) となる $x\in X$ が存在する. この x を X の代表という. (代表の取り方は一つとは限らない).
- 7. 自然な射影 (商写像) $\pi:X\to X/\sim$ を $\pi(x):=C(x)$ で定める. $\pi(x)=\pi(y)$ ⇔ $x\sim y$ である.

110度之

C//据确律 U+50倍数的的SMC数一日生的手引

(2) 2×5でもりきれる = 10でわりきれる (1)と同じ、

(3) 推移律の面(内() O(=2, b=4, C=9.

(4) a heat, b-c ea=) a-cea dy

(S) a= 12, b=0, C= 52+1 が特別原物!

(6) 反射性・のなんが スーろのともなってごけない

[] BAL C=2 b=0, C=-2.

(8) 室母景が空間、早中 とよばれる

問題 1. 次の二項関係 ~ のうち同値関係であるものを全て選べ.

- (1). 整数の集合 \mathbb{Z} において、 $a,b \in \mathbb{Z}$ の二項関係 $a \sim b$ を $\lceil a-b \rvert$ は 5 で割り切れる」とする.
- (2). 整数の集合 \mathbb{Z} において, $a,b \in \mathbb{Z}$ の二項関係 $a \sim b$ を $\lceil a-b \mid b \mid 2 \mid b \mid 5$ で割り切れる」とする.
- (3). 整数の集合 \mathbb{Z} において, $a,b \in \mathbb{Z}$ の二項関係 $a \sim b$ を「a-b は 2 または 5 で割り切れる」とする.
- (4). 実数の集合 $\mathbb R$ において, $a,b\in\mathbb R$ の二項関係 $a\sim b$ を 「 $a-b\in\mathbb Q$ 」とする.
- (5). 実数の集合 \mathbb{R} において, $a,b \in \mathbb{R}$ の二項関係 $a \sim b$ を「 $a b \in \mathbb{R} \setminus \mathbb{Q}$ 」とする.
- (6). 実数の集合 \mathbb{R} において, $a, b \in \mathbb{R}$ の二項関係 $a \sim b$ を 「 $a \in [0, 1]$ かつ $b \in [0, 1]$ 」とする.
- (7). 実数の集合 \mathbb{R} において, $a,b \in \mathbb{R}$ の二項関係 $a \sim b$ を「 $a \in [0,1]$ または $b \in [0,1]$ 」とする.
- (8). $\mathbb{R}^2\setminus\{0\}$ において, $a,b\in\mathbb{R}^2\setminus\{0\}$ の二項関係 $a\sim b$ を「0 でない実数 λ が存在して $a=\lambda b$ となる」とする.

$_{\text{RE}}$: (1) (2) (4) (8)

問題 2. 実数の集合 $\mathbb R$ に通常の順序 \leq を入れて, $(\mathbb R, \leq)$ を半順序集合とみる. 次の値を求めよ. ただし存在しない場合は"なし"と答えよ.

問題 3. 「X を集合、 \sim を X の同値関係、 $\pi: X \to X/\sim$ を自然な射影とする. さらに集合 Y と写像 $f: X \to Y$ で、以下の (\sharp) が成り立つと仮定する.

$$x \sim y$$
 ならば $f(x) = f(y)$ がなりたつ (#)

このときある写像 $\widetilde{f}:X/\sim o Y$ で $\widetilde{f}\circ\pi=f$ となるものがただ一つ存在する.」

以上の主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明]. まず $\widetilde{f}: X/\sim \to Y$ が存在することを示す. $a\in X/\sim$ とする. このとき π は ので $\pi(x)=a$ となる $x\in \mathbb{Z}$ が存在する.そこで $\widetilde{f}(a):=f(x)$ として定める.

 \widetilde{f} がx の取り方によらないことを示す. つまり $a=\pi(x)=\pi(y)$ なる $x,y\in X$ について, f(x)=f(y) を示せば良い. ここで $\pi(x)=\pi(y)$ ならば x y である. よって仮定 (\sharp) から f(x)=f(y) となる. また f の定め方から $\widetilde{f}\circ\pi=f$ は明らかである. よって存在性が言えた.

次に唯一性を示す.つまり「 \widetilde{f} , \widetilde{g} : $X/\sim \to Y$ で $\widetilde{f}\circ\pi=f=\widetilde{g}\circ\pi$ ならば $\widetilde{f}=\widetilde{g}$ 」であることを示す.上のような \widetilde{f} , \widetilde{g} : $X/\sim \to Y$ をとる.示すことは,「任意の $a\in$ \bigcirc について $\widetilde{f}(a)=\widetilde{g}(a)$ 」である. $a\in$ とする. π は全射なので $\pi(x)=a$ となる $x\in X$ が存在する.よって

語句群

全射 単射 全単射 \sim \leq \geq X Y X/\sim f(x) $\widetilde{f}(x)$ $\widetilde{g}(x)$ f(a)