Lecture 4: Statistical functionals and Influence functions

Pratheepa Jeganathan

Properties of estimators

- Measures of robustness
 - efficiency
 - ▶ influence
 - breakdown
- ► Asymptotic relative efficiency **HWC** Chapter 3.11
- Consider influence and breakdown

Sensitivity to gross errors

- Sensitivity curve: function of observations.
- Let $\mathbf{z}_n = (z_1, \dots, z_n)^T$ drawn from cdf F and θ is the location parameter.
- ▶ Let $\hat{\theta}$ is an estimator of θ .
- ▶ Add an outlier observation z to z_n , $z_{n+1} = (z_1, \dots, z_n, z)^T$.
- ▶ The sensitivity curve of an estimator $\hat{\theta}$ is

$$S\left(z;\hat{\theta}\right) = \frac{\hat{\theta}_{n+1} - \hat{\theta}_n}{1/(n+1)}.\tag{1}$$

Sensitivity to gross errors (examples)

```
z n = c(1.85, 2.35, -3.85, -5.25, -0.15,
  2.15, 0.15, -0.25, -0.55, 2.65
mean(z n)
## [1] -0.09
median(z n)
## [1] 0
library(ICSNP)
hl.loc(z n)
## [1] 0
```

Example (Sensitivity curve for mean)

```
z_n_{plus_1_df} = data.frame(z_n_{plus_1} = seq(-20, 20,
  bv = 1)
sensitivity <- function(theta n plus 1, theta n, n){
  (theta n plus 1- theta n)*(n+1)
mean z n plus 1 = apply(z n plus 1 df, 1, function(x){
  x = c(z n, x)
  mean(x)
})
sensitivity_mean = sensitivity(mean_z_n_plus_1,
  mean(z_n), length(z_n)
```

Example (Sensitivity curve for median)

```
median_z_n_plus_1 = apply(z_n_plus_1_df, 1, function(x){
    x = c(z_n,x)
    median(x)
})
sensitivity_median = sensitivity(median_z_n_plus_1,
    mean(z_n), length(z_n))
```

Example (Sensitivity curve for HL)

```
HL_z_n_plus_1 = apply(z_n_plus_1_df, 1, function(x){
    x = c(z_n,x)
    hl.loc(x)
})
sensitivity_HL = sensitivity(HL_z_n_plus_1,
    mean(z_n), length(z_n))
```

Example (Sensitivity curve)

```
library(tidyr)
library(ggplot2)
df = data.frame(z_n_plus_1 = z_n_plus_1_df$z_n_plus_1,
  sensitivity_mean = sensitivity_mean,
  sensitivity_median = sensitivity_median,
  sensitivity_HL = sensitivity_HL)
df_long = gather(df, key = "estimator",
 value = "value", -z n plus 1)
df_long$estimator = factor(df_long$estimator)
ggplot(data = df_long) +
  geom line(aes(x = z n plus 1,
    y = value, group =estimator, color = estimator)) +
  xlab(bquote(z[n+1]))+
  scale_color_discrete(name = "Estimator",
    labels = c("HL", "Mean", "Median")) + ylab(bquote(S(z[
```

Example (Sensitivity curve)

- Mean: unbounded.
- Median and Hodges-Lehmann: bounded.

Statistical functionals

- Statistical inference involves estimating some aspects of a cdf F on the basis of a random sample drawn from F.
- ▶ Statistical functional *T* (*F*): any function of *F*.
 - Let $Z_1, \dots, Z_n \sim F$, where $F(z) = P(Z \le z)$, define $\theta = T(F)$.
- Examples:
 - ▶ Mean: $T(F) = \int z dF(z)$.
 - Median: $T(F) = F^{-1}(1/2)$.
 - ► HL: $T(F) = (1/2)\{F * F\}^{-1}(1/2)$, where * denotes convolution.

Estimating statistical functionals

- ► Estimator of F: empirical CDF $\hat{F}(z) = \frac{\#\{z_i \leq z\}}{n}$. ► Plug-in principal: plug-in estimator of T(F) is $T(\hat{F})$ -
- (summary statistic).
- ▶ Plug-in principal is good when there is information about F only through sample z (not from the model).

Influence functions

- Influence function
 - Measures rate of change of T (F) under small contamination at z (kind of derivative).
 - Indicates statistical accuracy of a statistic (if influence function is bounded - robustness).
 - Useful for computing the approximate standard error of plug-in estimate $T\left(\hat{F}\right)$ (standard deviation of a summary statistic).
- Gateaux derivative of T at F in the direction G

$$L(G) = \lim_{\epsilon \to 0} \frac{T((1 - \epsilon)F + \epsilon G) - T(F)}{\epsilon}$$
 (2)

Influence functions

• If $G = \delta_z$ is a point mass at z

$$L(z) = \lim_{\epsilon \to 0} \frac{T((1 - \epsilon)F + \epsilon \delta_z) - T(F)}{\epsilon}.$$
 (3)

- \triangleright L(z) is the influence function.
- ▶ Empirical influence function/plug-in estimator for L(z)

$$\hat{L}(z) = \lim_{\epsilon \to 0} \frac{T\left((1 - \epsilon)\hat{F} + \epsilon\delta_z\right) - T\left(\hat{F}\right)}{\epsilon}.$$
 (4)

Examples (influence functions)

- ► The influence function for our estimators are (up to constant of proportionality and center)
 - ▶ Mean: z
 - ► Median: sign (z)
 - ▶ HL: F(z) .5
- Mean is not robust, but median and HL are robust

Example (influence curves)

```
influence_mean = z_n
influence_median = sign(z_n)
z_n_df = data.frame(z_n = z_n)
influence_HL = apply(z_n_df, 1, function(x){
    mean(z_n <= x) -.5
})</pre>
```

Example (influence curves)

```
df inf = data.frame(z = z n,
  influence_mean = influence_mean,
  influence median = influence median,
  influence_HL = influence_HL)
df inf long = gather(df inf, key = "estimator",
 value = "value". -z)
df_inf_long$estimator = factor(df_inf_long$estimator)
ggplot(data = df_inf_long) +
  geom line(aes(x = z,
    y = value, group =estimator, color = estimator)) +
 xlab("z")+
  scale_color_discrete(name = "Estimator",
    labels = c("HL", "Mean", "Median")) +
  vlab("L(z)")
```

Example (influence curves)

Standard error of a plug-in estimator

- ▶ If $T(F) = \int a(z) dF(z)$, a linear functional
 - L(z) = a(z) T(F).
 - $\blacktriangleright \mathbb{E}(L(z)) = 0.$
 - $\tau^{2} = \int L(z)^{2} dF(z) = \int (a(z) T(F))^{2} dF(z).$
 - $\hat{\tau}^2 = \frac{1}{n} \sum_{i=1}^n \left(a(Z_i) T(\hat{F}) \right)^2.$

Example (Standard error of a plug-in estimator)

$$\bullet \ \theta = T(F) = \int z dF(z).$$

$$\hat{\theta} = T(\hat{F}) = \int z d\hat{F}(z) = \frac{\sum_{i=1}^{n} Z_i}{2} = \bar{Z}.$$

$$L(z) = z - \int z dF(z).$$

$$\hat{L}(z) = z - \bar{Z}.$$

Breakdown point of an estimator

- Reference: Following notes from this link.
- ▶ Suppose we contaminate n m points in our sample

$$z_n^* = (z_1, \cdots, z_m, z_{m+1}^*, \cdots, z_n^*)$$

.

- ▶ Consider z_{m+1}^*, \dots, z_n^* are very large (close to ∞).
- ▶ Breakdown point: the smallest value n-m so that $\hat{\theta}(z_n^*)$ is bad.
- Finite sample breakdown point : a function of sample size $\frac{n-m}{n}$.
- Asymptotic breakdown point: (single number) the limit of the finite sample breakdown point as $n \to \infty$.

Examples (breakdown point)

- Sample mean
 - ► Finite sample BP: ¹/_n.
 ► Asymptotic BP: 0.
- Sample median
 - Finite sample BP: $\left\lceil \frac{n-1}{2n} \right\rceil$, [u] is the largest integer less than or equal to u.
 - Asymptotic BP: .5.
- ► HL
 - Finite sample BP: Read this notes.
 - ► Asymptotic BP: ≈ 0.29.

References for this lecture

W Chapter 2 (Statistical functionals and influence functions)

 $\boldsymbol{\mathsf{ET}}$ Chapter 4, 5, 21.3 (Statistical functionals and influence functions)

KM Chapter 3.5 (R codes for sensitivity, breakdown, influence)

HWC Chapter 3.2 page 57, comment 16 (sensitivity to gross errors-HL)

HWC Chapter 3.5 page 77, comment 40 (sensitivity to gross errorsmedian)