

Titel der großen Studienarbeit

Projektarbeit

des Studienganges Angewandte Informatik / Betriebliches Informationsmanagement an der Dualen Hochschule Baden-Württemberg Mannheim

von

Maximilian Ludwig, Kevin Wrona, Fabian Brandmüller

7. März 2020

Bearbeitungszeitraum Betreuer der DHBW 23.09.2019 - 20.04.2019 Eckhard Kruse

Erklärung

Ort	Datum	Unterschrift
Hilfsmitte	el benutzt habe.	
Studienar	beit" selbstständig ver	fasst und keine anderen als die angegeben Quellen un
Ich versic	here hiermit, dass ich r	neine Projektarbeit mit dem Thema: "Titel der große

Abstract

Inhaltsverzeichnis

1	Einl	eitung		1		
2	Anforderungen					
	2.1	Aufga	benstellung	3		
	2.2	Useca	se	3		
	2.3	MoSC	ToW Priorisierung	4		
3	Sta	nd der	Technik	5		
	3.1	Gesich	ntserkennung vs. Emotionserkennung	5		
		3.1.1	Gesichtserkennung	5		
		3.1.2	Emotionserkennung	6		
			3.1.2.1 Emotionen	6		
			3.1.2.2 Abgrenzung zur Gesichtserkennung	7		
	3.2	Emoti	ionserkennung mithilfe von Deep Learning	7		
		3.2.1	Machine Learning - Frameworks	8		
			3.2.1.1 Dlib	8		
			3.2.1.2 Keras	8		
			3.2.1.3 Unterschiede	8		
		3.2.2	Supervised vs. Unsupervised Learning	9		
4	Erg	ebnis		9		
	4.1	Konze	ept	9		
		4.1.1	Systemkomponenten	9		
		4.1.2	Infrastruktur	9		
		4.1.3	Interaktionskonzept	10		
		4.1.4	Verzeichnisstruktur	10		
	4.2	Umset	tzung der Lösung	10		
		4.2.1	Stand-Alone Lösung mithilfe von OpenCV	10		
		4.2.2	Finale Lösung mithilfe von Tensorflow	10		
	4.3	Model	llaufbau	10		
	4.4	Tester	n des Modells	10		

5	Diskussion					
	5.1	Reflexion der Ergebnisse	11			
		5.1.1 Alternativen	11			
	5.2	Reflexion Vorgehen	11			
	5.3	Reflexion der Literatur	11			
	5.4	Offene Implikationen	11			
6	o Ausblick					
	6.1	Alternative Ansätze zur Umsetzung von Emotionserkennung	11			

Abbildungsverzeichnis

Abkürzungen

1 Einleitung

"Several researchers have stated that facial expression recognition appears to play one of the most important roles in human communication" Dieses Zitat von Katherine B. Leeland gibt einen Einblick in die Relevanz der Emotionserkennung für den Menschen. Fragen zu dieser Thematik stellen sich allerdings nicht erst seit Beginn der Digitalisierung. Bereits Darwin fragte sich, ob von den Gesichtsausdrücken einer Person nicht auch der Emotionale Zustand abgeleitet werden kann.² Einen solchen Zustand von einem Mitmenschen mittels Software abzulesen ist jedoch nicht nicht leicht zu realisieren. Bereits durch kleine Änderungen in der Mimik werden verschiedene Emotionen ausgedrückt. Zum Beispiel indem eine Person die Lippen zusammen presst und die Augen zusammen kneift bei Wut, oder die Mundwinkel nach unten gezogen werden bei Trauer.³ Durch derartige Ausdrücke können Emotionen wie Wut oder Trauer Ausdruck gewinnen. Emotionserkennungssoftware gibt es bereits und wird auch in der Wirtschaft eingesetzt. Die Anwendungsgebiete reichen dabei von Jobinterviews, in denen analysiert wird in wie weit die Bewerber für den jeweiligen Job geeignet sind,⁴ bis hin zur Automobilindustrie. Dort wird mittels geeigneter Sensorik versucht die Emotion und somit der physiologische Zustand des Autofahrers zu analysieren.⁵ Diese Daten legen den Grundbaustein für Warnsysteme, welche den Fahrer darauf hinweisen können, dass sein Zustand ungeeignet zum Betrieb eines Kraftfahrzeugs ist. Jedoch werden solche Einsatzszenarien auch durchaus kontrovers diskutiert. Auf Kritik stößt unter anderem dass die sogenannten "Basisemotionen" - z.B. Wut, Trauer, Ekel, Freude, Furcht, Überraschung -, die verwendet werden um den KIs Emotionserkennung beizubringen, selbst umstritten sind.⁶ Aber auch ethische bedenken werden zunehmend geäußert, vor allem bezüglich der Anwendungsgebiete. Denn je nach Emotion die erkannt werden soll, liegt die Fehlerrate sehr hoch. So hat das Frauenhofer Institut, welches an Einsatzgebieten von Emotionserkennung in Fahrzeugen arbeitet, festgestellt, dass eine Emotionserkennung je nach Zielemotion eine Vorhersagekraft zwischen 6 und 95% haben kann.⁷ Diese negativen Aspekte treffen jedoch nur teilweise auf das hier behan-

¹FaceRec.

²FaceRec.

 $^{^3}$ HandbookFaceRec.

⁴mixedArticle.

⁵Frauenhofer.

⁶SZ.

⁷Frauenhofer.

delte Forschungsprojekt zu, wie im Folgenden dargelegt werden soll: Basierend auf den zuvor genannten Basisemotionen Wut, Frucht, Trauer, Freude, und Ekel soll in dieser Arbeit getestet werden, in wie weit eine technische Vorhersage der Emotionen mittels küünstlicher Intelligenz möglich ist. Dies erfolgt am Anwendungsbeispiel der Pokerface Erkennung. Mittels der hier entworfenen technischen Lösung soll daher getestet werden in wie fern ein Pokerface, das auch als ein emotional neutraler Zustand definiert werden kann, erkannt werden kann. Diese Forschungsarbeit hat also nicht das Ziel, dass alle oder eine Emotion korrekt vorhergesagt wird, sondern zu ermitteln wann keine Emotion vorliegt. Das aus dieser Arbeit hervorgehende Prototyp ist dabei jedoch theoretisch gesehen nicht an das hier verwendete Fallbeispiel des Pokerspielens gebunden. Die Grundidee dieses Prototypen lässt einige hypothetische Einsatzszenarien in der Praxis zu. Diese haben eine gewisse Schnittmenge mit denen von "normaler" Emotionserkennungssoftware, jedoch gibt es auch einige weitere. Diese Im Folgenden werden einige denkbare Szenarien expliziert:

Polizeiverhöre

Es ist denkbar, dass eine erweiterte Form des entwickelten Prototypen bei Polizeiverhören eingesetzt werden könnte. Hierdurch könnten Beamte die Anwendung eines Pokerfaces durch den Beschuldigten erkennen, welches auf eine Lüge hinweisen könnte. Neben der gebräuchlichen Verwendung eines Lügendetektors wäre der Einsatz der in dieser Arbeit erstellten Lösung eine kostengünstige Variante.

• Gerichtsverhandlungen

Das zweite Einsatzgebiet ist ähnlich zu dem ersten. Bei Gerichtsverhandlungen gelten die gleichen Voraussetzungen wie bei einem Verhör der Polizei. Zwar müssen die Vorgeladenen eine eidesstattliche Erklärung abgeben nur die Wahrheit zu sagen, jedoch ist zu bezweifeln ob dies auch immer der Fall ist. Nun soll nicht der Eindruck entstehen dass das hier gebaute Werkzeug ein Lügendetektor ist. Es ist ebenfalls nicht möglich, dass von einem Pokerface immer auf eine Lüge geschlossen werden kann. Jedoch ist ein Pokerface ein Zeichen dafür, dass sich diese Person ihren emotionalen Zustand nicht anmerken lassen möchte. Und dies wiederum deutet eher daraufhin dass die Person nicht die Wahrheit sagt oder nur teilweise.

Pokerspiel

Wie bereits erwähnt ist dieses Einsatzszenario das Fallbeispiel dieser Arbeit. Dies liegt unter anderem daran, dass der erste Begriff der mit dem Wort Pokerface - bzw. einem emotionslosen Gesichtsausdruck - in Verbindung gebracht wird, das Pokerspiel selber ist. Und auch in diesem kann es nützlich sein zu wissen, ob die Kontrahenten ein

Pokerface aufsetzen, oder nicht. Denkbar wäre es, dass ein Mitspieler zum Beispiel mittels einer Kamera das Gesicht des Gegenübers scannt und analysiert ob ein Pokerface vorliegt oder nicht, und dementsprechend agiert.

2 Anforderungen

Das nun folgende Kapitel thematisiert die konkrete Aufgabenstellung der Arbeit, so wie eine Anforderungsanalyse mittels MoSCoW Priorisierung.

2.1 Aufgabenstellung

Das Projekt selber wird an der DHBW in Mannheim durchgeführt und von Prof. Dr. Erckhard Kruse betreut. Wie eingangs erwähnt soll mittels künstlicher Intelligenz erkannt werden, ob eine Emotion vorliegt oder nicht. Zur Umsetzung dieser Aufgabe wird eine Bilderkennungssoftware angefertigt, welches ein übermitteltes Bild nach vorhandenen Emotionen analysiert. Sollte keine Emotion durch die Software erkannt werden, wird dem Anwender das Vorhandensein eines Pokerfaces zurück gegeben. Ein konkretes Einsatzgebiet nach Abschluss der Entwicklung ist nicht vorgesehen, da es sich um ein Forschungsprojekt handelt. Jedoch sind wie bereits in der Einleitung beschrieben einige verschiedene Einsatzmöglichkeiten denkbar, an die das Werkzeug leicht angepasst werden kann.

2.2 Usecase

Wie bereits erwähnt ist der hier behandelte Use Case das Pokerspiel selber. An diesem soll ermittelt werden, in wie weit sich Emotionen vorhersagen lassen können, bzw. das Abhandensein von Emotionen. Dieses Fallbeispiel wurde gewählt, da es unter anderem das naheliegendste ist, so wie ein simples und leicht zu konstruierendes Szenario impliziert. Dabei soll mittels einer Kamera ein Bild von einem Pokerspieler aufgenommen werden, und dann mittels dem hier entworfenen Prototypen verarbeitet und anbalysiert werden. Am Ende soll dann eine Vorhersage der Emotionen getätigt werden die dem Photographen zur Verfügung gestellt wird.

2.3 MoSCoW Priorisierung

Diese Arbeit soll methodisch mit der MoSCoW Priorisierung bearbeitet werden. Diese Art der Priorisierung teilt die zu bearbeitenden Anforderungen in vier Kategorien ein:¹

- Must Core Anforderungen die unbedingt umgesetzt werden müssen
- Should Anforderungen die ebenfalls umgesetzt werden müssen, jedoch um Nachhinein noch durch Change Request verändert werden können.
- Could Anforderungen die Nach den Must und Should Anforderungen umgesetzt werden sollen, sofern noch Ressourcen und Zeit vorhanden sind um diese zu bearbeiten
- Won't Anforderungen die nicht in diesem Projekt bzw. Release erfolgen, jedoch in einer zukünftigen Version bearbeitet werden sollen.

Im Zuge des Projektes wurden die vorhandenen Anforderungen wie folgt anhand der MoSCoW Priorisierung eingeordnet:

• Must

- Emotionen werden nicht zufällig erkannt
- Es wird zwischen keine Emotion (Pokerface) und Emotion vorhanden unterschieden

• Should

- Die Wahrscheinlichkeit zur Erkennung der richtigen Emotion muss über 50%liegen
- Es können mindestens fünf verschiedene Emotionen erkannt werden
- Die Erkennung der Emotion darf nicht länger als 30 Sekunden dauern
- Die Kosten zur Umsetzung der Lösung müssen dem Nutzen gerecht werden?

• Could

- Bilder können zu Echtzeit analysiert werden
- Das Trainieren des Modells darf nicht länger als 72 Stunden dauern
- Eine Oberfläche zur intuitiven Bedienung der Lösung ohne technisches Verständnis muss vorhanden sein

• Won't

- Neben dem Analysieren von Bildern ist auch die Analyse von Videos möglich

¹Projektmanagement.

Dabei sollen die einzelnen Anforderungen entsprechend ihrer Priorität abgearbeitet werden. So kann am Ende der Erfolg der Arbeit deutlich besser eingeordnet werden

3 Stand der Technik

In diesem Abschnitt soll der aktuelle Forschungs- und Entwicklungsstand im Bereich Emotionserkennung thematisiert werden. Jedoch muss dafür erst einmal eine Unterscheidung der Begrifflichkeiten Emotionserkennung und Gesichtserkennung erfolgen, da beide gebiete Überschneidungen haben, jedoch inhaltlich und von ihren Zielen verschieden sind.

3.1 Gesichtserkennung vs. Emotionserkennung

3.1.1 Gesichtserkennung

Gesichtserkennung ist eine Disziplin der Informatik in der es darum geht Gesichter wieder zu erkennen, und gegebenenfalls verschiedenen Personen zuzuordnen. Dabei lässt sich der Prozess der Gesichtserkennung in vier Phasen einteilen, Face "detection", "alignment", "feature extraction" und "matching", wie anhand von Grafik 3.1 sichtbar ist. ¹ Die Detection Phase ist dafür verantwortlich um zu erkennen ob Gesichter vorhanden

Face recognition processing flow.

Abbildung 3.1: Phasen der Gesichtserkennung Quelle: https://alitarhini.files.wordpress.com/2010/12/untitled1.png

sind in einem Bild, oder aber Video.² In der darauffolgenden Alignment Phase hin-

 $^{^{1}}$ HandbookFaceRec.

 $^{^2}$ HandbookFaceRec.

gegen wird die Lokalisierung der Gesichter genauer, indem Gesichtskomponenten wie Augen, Augenbrauen, oder die Nase genauer lokalisiert werden. Dabei wird das Bild oder Video ebenfalls normalisiert, indem z.B. die Bildbeleuchtung angepasst wird.³ In der Feature extraction hingegen werden die verschiedenen Gesichtskomponenten wie Augen, Nase, Mund, dem Bild oder Video entnommen. Dies ist ein wichtiger Schritt für weitere Prozesse wie Eye Tracking oder Face Tracking. Alternativ kann sogar eine bestimmte Person anhand der extrahierten Merkmale erkannt werden.⁴ In der letzten Phase, dem Matching, geht es darum die gewonnen Daten mit den in der Datenbank vorhandenen Gesichtern abzugleichen. Wenn eine genügende Übereinstimmung gefunden wurde, wird ein Match mit einer Person ausgegeben.⁵ Die Anwendungsgebiete von Software die Gesichtserkennung ermöglicht ist mannigfaltig. Sie reicht von Applikationen die ein Gerät wie ein Smartphone entsperren, wenn das Gesicht des Besitzers als Match ausgegeben wurde, bis hin zur Anwendung in Verbrechensbekämpfung. In jedem dieser Szenarien wird dabei der oben beschriebene Ablauf durchgegangen, und abhängig vom zu liefernden Ergebnis eine Abschlussaktion vorgenommen.

3.1.2 Emotionserkennung

In diesem Unterkapitel nun sollen Emotionen an sich thematisiert werden, da diese maßgeblich sind für das zu entwickelnde Tool. Eine Definition von Emotionserkennung ist per se nicht schwer zu geben. Prinzipiell beschäftigt sich Emotionserkennung mit der Analyse von Gesichtern und den Emotionen die diese Gesichter darstellen. Jedoch ist der Begriff der Emotionen nicht ganz so einfach zu definieren, wie im folgenden erläutert wird:

3.1.2.1 Emotionen

• Def. von Emotionen

Grundsätzlich gibt es verschieden Ansätze Emotionen zu definieren und einzuteilen. Eine Variante ist dabei die eingangs erwähnte, nicht ganz unumstrittene Einteilung in Basisemotionen. Eine gängige Einteilung ist dabei die verschiedenen Emotionen in acht Bereiche einzuteilen. Diese Einteilung wurden 1984 von Plutchik postuliert und beinhaltet die Emotionskategorien Angst, Wut, Freude, Trauer, Akzeptanz, Ekel, Erwartung und Überraschung.⁶ Jedoch ist dies nicht die einzige mögliche Einteilung. Als weiteres Beispiel teilte MacLean die Emotionen in lediglich sechs Kategorien ein, welche da wären: Verlangen, Wut, Angst, Niedergeschlagenheit, Freude und Zuneigung.⁷ Wie

 $^{^3}$ Handbook Face Rec.

 $^{^4}$ IEEE.

⁵HandbookFaceRec.

⁶FaceRec.

⁷FaceRec.

sich bereits an den beiden Beispielen zeigt, geht die Meinungen der Forscher dabei stark auseinander, welche und wie viele Emotionen zu den sogenannten "Basis Emotionen" gehören. In dieser Arbeit werden die Emotionen in sechs Kategorien eingeteilt, in Wut, Trauer, Freude, Ekel, Überraschung und Neutral. Diese Einteilung entspricht an sich keiner gängigen Einteilung, jedoch wurde diese aus den folgenden Gründen gewählt: Die hier genannten Emotionen lassen sich gut anhand von Bildern erlernen, da diese zum Teil komplementär und somit eindeutig sind. Es ist aber auch einfacher Testdatensätze zu bekommen für ein freudiges Gesicht, oder ein überraschtes, als ein Gesicht mit dem emotionalen Ausdruck Akzeptanz. Des Weiteren wurde der Ausdruck "Neutral" hinzugefügt. Neutral repräsentiert ein emotionsloses Gesicht, und somit nach Definition einem Pokerface. Zudem sind die gewählten Emotionen häufig bei dem Test Usecase dieser Arbeit anzutreffen, dem Texas Holdem Poker.

3.1.2.2 Abgrenzung zur Gesichtserkennung

Der grundlegende Unterschied zwischen Emotions- und Gesichtserkennung liegt nun darin, dass bei der Emotionserkennung selber nicht die agierende Person im Vordergrund steht, sondern die Aktion die sie ausführt. Bei der Gesichtserkennung hingegen spielt lediglich die Rolle wer eine Aktion ausführt, und ob es einen Treffer in der Datenbank gibt, oder nicht. Wegen dieser Unterschiede ist auch die technische Realisierung eines Prototypen, vor allem im Bezug auf die Architektur, durchaus unterschiedlich. Dies ist jedoch ebenso von den unterschiedlichen Anwendungsszenarien der beiden Verfahren bedingt. Denn diese sind ebenso verschieden. Während Gesichtserkennung eher in den Bereich IT-Security oder aber Social Media (Snapchat Filter) eingesetzt wird, ist Emotionserkennung eher Informationsgenerierend. Zum Beispiel kann durch Emotionserkennung Informationen zugänglich werden wie das Befinden eines Individuums ist, ob emotional betroffen ist, oder aber nicht emotional betroffen wirken möchte und ein Pokerface aufsetzt. Wegen dieser signifikanten Unterschiede kann daher trotz der Gemeinsamkeiten nicht gesagt werden, dass Emotionserkennung eine Unterkategorie von Gesichtserkennung ist.

3.2 Emotionserkennung mithilfe von Deep Learning

In dem nun folgenden Kapitel wird erörtert wie das Ziel des Prototypen dieser Arbeit - das Erkennen eines Pokerfaces - mittels eines neuronalen Netzes umgesetzte werden kann. Dabei wird weniger auf die generellen Eigenschaften von Neuronalen Netzen Bezug genommen, als auf die in dieser Arbeit spezifischen Aspekte. Diese sind vor allem verschieden Ansätze und Möglichkeiten mittels Machine Learning eine Emotionserkennungssoftware zu erstellen.

3.2.1 Machine Learning - Frameworks

Um die gegebene Aufgabenstellung der Erkennung von Emotionen mittels der Analyse eines Gesichtes umsetzen zu können, musste ein entsprechendes Framework Anwendung finden, welches den Anforderungen gerecht wird. Maschinelles Lernen gehört in der heutigen Softwareentwicklung zu den beliebtesten Themen, wodurch dieses schnelle regelmäßige Änderungen und Weiterentwicklungen erfährt. Dementsprechend werden auf dem Markt auch zahllose kostenlose wie auch kostenpflichtige Frameworks angeboten. Um nur einige bekannte aufzuzählen fallen darunter OpenCV, TensorFlow oder Pandas. Möchte man nun das geeignete Framework für das eigene Projekt ausfindig machen, muss man das gegebene Angebot nach einigen Kriterien filtern. Als erstes stellt sich die Frage, was für eine Art von Applikation man umsetzen möchte. Soll das Projekt Texte analysieren oder wie im Falle dieses Projektes die Emotionen aus einem gegebenen Bild? Welche Programmiersprache wird innerhalb des Projektes eingesetzt? Zudem sind Informationen zur Lizenz und dem Support wichtig, sowie insbesondere die Community.

Nach entsprechender erster Selektion musste sich schlussendlich zwischen Dlib und Keras entschieden werden, welche für die Umsetzung der Anforderungen dieses Projektes am besten geeignet schienen. Beide Frameworks werden in den folgenden beiden Unterkapitel dem Leser kurz vorgestellt und anschließend wird ein Fazit gezogen, welches der beiden für dieses Projekt am geeignetsten war.

3.2.1.1 Dlib

Dlib ist nach dessen Entwickler Davis King ein modernes C++ Toolkit, welches Machine-Learning Algorithmen und Tools zur Entwicklung komplexer Software enthält um Probleme aus der echten Welt lösen zu können.⁸

Dlib selbst wurde in der Programmiersprache C++ entwickelt und kann durch eine Anbindung auch für Python Projekte eingesetzt werden. Die Software-Bibliothek kann unter den Bedingungen der Boost-Lizenz frei genutzt werden und ist durch entsprechende APIs portabel für eine Vielzahl von Betriebssystemen, wie MS-Windows, Linux oder OS X. Ein weiterer Vorteil bietet die Unabhängigkeit der Bibliothek von anderen Bibliotheken. Dlib ist seit dem Jahr 2002 in Entwicklung und bietet dementsprechend unzählige Features an, welche für verschiedenste Einsatzgebiete verwendet werden können, wie numerische und graphische Modell-Algorithmen und vor allem Gesichtserkennung. Eines der größten Vorteile dieser Bibliothek besteht in der ausführlichen Dokumentation für sämtliche Klassen und Funktionen, wie es nicht häufig der Fall ist für vergleichbare Open-Source Projekte. 10

⁸netguru.

⁹netguru.

¹⁰Dlib.

3.2.1.2 Keras

3.2.1.3 Unterschiede

Libraries werden hier expliziert

3.2.2 Supervised vs. Unsupervised Learning

In diesem Abschnitt werden die beiden Ansätze des Supervised bzw. des Unsupervised Learnings evaluiert. Dabei sollen jedoch beide Begriffe nicht noch ausführich beleuchtet werden. Es ist lediglich zu erwähnen, dass Supervised Learning Algorithmen im Gegensatz zu Unsupervised mit Datensätzen arbeiten, die Labels beinhalten, und so einen Datensatz kategorisieren. Grundlegende Informationen zu den einzelnen Vorgehensweisen können aus den Büchern "Hands-On Unsupervised Learning with Python" von Giuseppe Bonaccorso und Äpplied Supervised Learning with Python"von Benjamin Johnston und Ishita Mathur entnommen werden. Nun gilt es zu klären, ob sich für die zu Grunde liegende Aufgabe ein Supervised oder UNsupervised Ansatz eher anbietet. Ein Unsupervised Learning Algorithmus würde sich vor allem anbieten, wenn Zusammenhänge zwischen einzelnen Datensätzen gefunden werden sollen, die vielleicht nicht von Anfang an bekannt oder bewusst sind. 11 Supervised Learning Algoriuthmen hingegen bieten sich vor allem an, wenn es darum geht einen Prozess zu automatisieren oder aus der Wirklichkeit zu replizieren. 12 Das in dieser Arbeit zu Grunde liegende Problem ist demnach vor allem für Supervised Learning Algorithmen geeignet. Dies liegt zum einem daran, dass jedem Bild eines Menschen eine Basisemotion zugeordnet werden kann. Zum anderem ist auch der verwendete Datensatz mit dem das Modell trainiert und getestet werden soll ebenfalls gelabelt. Deshalb bietet sich dieses Verfahren am meisten an. Es wäre auch hypothetisch denkbar einen Unsupervised Learning Algorithmus zu verwenden, aber dieser Ansatz wäre suboptimal, da er nicht dem eigentlichen Use case dieses ANsatzes entspricht.

¹¹Unsupervised.

¹²Supervised.

4 Ergebnis

4.1 Konzept

4.1.1 Systemkomponenten

4.1.2 Infrastruktur

- Hardware
- Ressourcen
- Wechsel von Local-Hosting zu Cloud-Lösung

4.1.3 Interaktionskonzept

• GUI, UI, ...

4.1.4 Verzeichnisstruktur

4.2 Umsetzung der Lösung

4.2.1 Stand-Alone Lösung mithilfe von OpenCV

- Diente der Einarbeitung in die Technologien der Gesichtserkennung
- OpenCV für erste Versuche genutzt um Emotionen erkennen zu können
- Nicht geeignet für produktive Lösung, da (Ressourcen, etc.)

4.2.2 Finale Lösung mithilfe von Tensorflow

- Tensorflow als Haupt-Tool zur Umsetzung des Modells
- OpenCV weiterhin genutzt zur Vorverarbeitung der zu analysierenden Bilder

4.3 Modellaufbau

4.4 Testen des Modells

5 Diskussion

Das nunmehr letzte Kapitel soll sich mit der kurzen Zusammenfassung der Ergebnisse des letztens Teils und deren Bewertung widmen. Des Weiteren sollen die angewandten Methoden reflektiert werden, offene Fragen beantwortet und auch weitere Punkte aufgezeigt werden die verbessert oder noch implementiert werden können. Dazu soll zunächst die Ergebnisse kurz zusammengefasst werden.

5.1 Reflexion der Ergebnisse

5.1.1 Alternativen

5.2 Reflexion Vorgehen

Mehr darauf eingehen dass das Kontrovers ist und auch die Basisemotionen kontrovers sind – aber keine andere Möglichkeit vorhanden

5.3 Reflexion der Literatur

Bezüglich der Literatur ergeben sich nun einige Schwierigkeiten. Dies liegt unter anderem daran, dass das generelle Thema der Gesichts und Emotionserkennung immer noch vor allem aus psychologischer Sicht in der Literatur behandelt wurde. Zwar gibt es Fachbücher auch aus informationstechnischer Sicht, welche ebenfalls in dieser Arbeit verwendet wurden.

5.4 Offene Implikationen

6 Ausblick

6.1 Alternative Ansätze zur Umsetzung von Emotionserkennung

In diesem Abschnitt nun werden verschiedene alternative Ansätze dargestellt und expliziert, die dazu verwendet werden können um Emotionen zu erkennen. Dieses Unterkapitel beschäftigt sich mit alternativen Ansätzen zu den bereits explizierten Basisemotionen. Diese sind wie bereits erwähnt umstritten, was die Frage zulässt warum diese überhaupt verwendet werden sollten. Ein weiterer kreativer Ansatz zur Erkennung von Emotionen wäre die Analyse der Stimmlage. Dieser Ansatz beruft sich darauf, dass das Sprachzentrum eines Menschen einer der wichtigsten Aspekte der Kommunikation und somit auch der Preisgabe von Informationen über den emotionalen Zustand eines Individuums ist. Dieser Ansatz ist jedoch nicht zielführend, da hier hauptsächlich die Stimme analysiert wird. Von einer Stimme kann nun auf eine Emotion geschlossen werden. Für den Usecase ist dieser Ansatz allerdings ungeeignet, aus folgenden Gründen: Es kann möglich sein eine Emotion anhand der Sprache zu erkennen. Das Äquivalent eines Pokerfaces wäre dementsprechend eine neutrale Stimmlage, welche keine Emotionen suggeriert. Nun kann aber keine Aussage getroffen werden aus welchen Gründen eine Person neutral spricht. Es könnte von einem Pokerface stammen, oder einer monotonen Sprechweise, oder einen gelangweilten Gemütszustand. Dies ist nicht eindeutig identifizierbar. Gleiches könnte nicht über ein neutrales Gesicht gesagt werden, da dies gemeinhin als Pokerface bezeichnet wird. Ein weitere Ansatz wäre die Analyse der derzeit vernommenen Musik. Diese kann einem bestimmten Gemütszustand zugesprochen werden, welches auf eine aktuelle Emotion übertragbar ist.² Ziel dieses Forschungszweiges ist es daher die hinter Liedern oder Klängen stehenden Emotionen zu ermitteln und diese entsprechend zu kategorisieren. Dieser Ansatz erscheint zunächst durchaus interessant, hat jedoch genauso Nachteile wie die Analyse von Emotionen anhand von Bildern die Basisemotionen zeigen. Dieser liegt hier unter anderem in der Genauigkeit der Analysen. So z.B. lieferte ein Testprojekt an der Russischen HSE (Higher School of Economics) das Ergebnis von einer maximalen Genauigkeit von 71%.³ In dem Versuchsaufbau wurden Spektrogramme von Klangfragmenten ausgewertet und versucht mittels Neuronalen Netzen eine Klassifikation der hinter dem Klang liegenden Emotion zu erreichen.⁴ Der generelle Ansatz anhand von Musik die Emotion eines Individuums

¹EmotionInSpeech.

²MusicEmotion.

³EmotionInSound.

⁴EmotionInSound.

abzulesen ist zwar praktikabel und von dem Versuchsaufbau auch vergleichbar zu dem Ansatz bereits gelabelte Bilder zu verwenden. Jedoch lässt sich auf diese Weise aus zwei Gründen nicht die eigentliche Zielaufgabenstellung ableiten, das Erkennen eines Pokerfaces. Zum einen handelt es sich in dieser Arbeit um eine visuelle Problemstellung, in welcher das Erkennen des Gemütszustandes anhand des Gesichtsausdruckes erkannt werden soll, also einem vorhandenen bzw. nicht vorhandenen Pokerface. Zum anderen würde die Analyse von Musik einen Rückschluss auf den allgemeinen Gemütszustand des Betroffenen folgern und nicht eine kurzzeitige Stimmungsschwankung aufgrund beispielsweise eines schlechten Blattes, wie in diesem Usecase.

Literatur