Конспект по математическому анализу (1-й семестр)

Латыпов Владимир (конспектор) donrumata03@gmail.com

Виноградов Олег Леонидович (лектор) olvin@math.spbu.ru

September 13, 2021

Contents

1	Введение		3
	1.1	Множества	3
		1.1.1 Определения	3
2	Веш	цественные числа	3
3	Оторбражения		3
		3.0.1 Инъекция, сюрьекция, биекция	5
	3.1	Графики	5
	3.2	Операции над функициями	6
		3.2.1 Многомерные отображения	6
	3.3	Счётные множества	6
4	Последовательности в метрических пространствах		9
	Д1	Препел последовательности	9

1 Введение

1.1 Множества

Kurale, Kurale, Kurale

1.1.1 Определения

Определение 1 (Множество). X - множество, это аксиома, его метафизическая сущность не подлежит обсуждению.

$$\begin{cases} x \in X \\ x' \notin X \end{cases} \tag{1}$$

Пример. Задания множества:

$$set = \{1, 2, 3\}$$
 (2)

$$set = \{x | x \in \mathbb{N}\} \tag{3}$$

$$set = \{\{1, 4\}, 898\} \tag{4}$$

Определение 2 (Подмножество).

$$A \subset B \iff \forall a \in A : a \in B$$
 (5)

2 Вещественные числа

Множество вещестыенных чисел - множество, удовлетворяющее 16-и аксиомам.

1. Аксиомы поля (9 штук)

3 Оторбражения

Определение 3 (Отображение). $]\exists X,Y-sets,f-rule$ Говорят, что задано оторбражение, если $f:X\longrightarrow !Y$ (сопоставляет единстыенный Y каждому $x\in X$)

Отображение называют f, но оно включает как f, так и X,Y

$$f: X \longrightarrow Y \stackrel{\text{def}}{\Longleftrightarrow} f: X \mapsto Y \stackrel{\text{def}}{\Longleftrightarrow} X \stackrel{f}{\longrightarrow} Y$$
 (6)

Если X,Y - числовые множества, то f - функция. Если Y - числовое множество, X - любое, то это "функционал".

X - область задания, область отправления. Y - множество значений, область прибытия.

 $x \in X$ - аргумент, независимая переменная.

Определение 4 (Последователности). Последовательность - функция натурального аргумента.

Если при этом Y - число, то f - числовая последовательность.

А если $\forall y \in Y : y \in \mathbb{Z}$, то это двусторонняя последовательность.

$$\{x_n\}_{n=1}^{\infty} \tag{7}$$

Определение 5. Семейство - это то же, что и отображение.

Определение 6 (Естественная область определения). Естественная область определения: то, где выражение имеет смысл.

Определение 7.

$$id_X: X \mapsto X$$
 (8)

$$f^{-1} \circ = id_X \tag{9}$$

Определение 8 (Образ).

$$B = f(A) = \{ y \in Y : \exists x \in A : f(x) = y \}$$
 (10)

Определение 9 (Прообраз). Прообраз множества B:

$$A = f^{-}1(B) = \{x \in X : f(x) \in B\}$$
(11)

Определение 10 (Композиция). ...

3.0.1 Инъекция, сюрьекция, биекция...

$$\triangleleft f: X \longrightarrow Y$$

Определение 11 (Инъективное оторбражение). Если $\forall x_1, x_2 \in X: f(x_1) \neq f(x_2)$, то отображение инъективно, *обратимо*.

Определение 12 (Обратимое отображение).

$$f \text{ is } reversable \iff \exists f^{-1} : \dots$$
 (12)

Определение 13 (Сюрьективное оторбражение). Если f(X) = Y, то f сюрьективно или *отображение на*.

Определение 14. Если f одновременно и инективно, и сюрьективно, то f - взаимно-однозначное соответствие или биективно.

3.1 Графики

Определение 15 (График оторбражения).

$$\Gamma_f = \{(x, y) : x \in X, y = f(x)\} \subset X \times Y \tag{13}$$

Теорема 1.

$$\Gamma_f \iff f$$
 (14)

Определение 16. Отображение, сопоставляющее каждому $y \in f(X) \longrightarrow y \in Y$, для которого

$$f^{-1}(x): f(X) \mapsto X \tag{15}$$

Но что такое f^{-1} ? Прообраз или обратное отображение?

Если обратимо, и имеет значение, то они совпадают

Определение 17 (Сужение, распространение, расширение, привЕдение).

$$|f:X\mapsto Y,X_0\subset X \tag{16}$$

$$f|_{X_0} \tag{17}$$

3.2 Операции над функициями

• Сложение: (f+g)(x) = f(x) + g(x)

• Умножение: ...

• Деление: ...

• Вычитание: ...

• ...

3.2.1 Многомерные отображения

 f_i - Координатные функции отображения f

3.3 Счётные множества

Если множества конечны, легко сравнить количество элементов. Если одно конечно, другое - бес, то понятно.

А вот вопрос - одинаковы ли бесконечности?!

Определение 18 (Равномощные множества). Множества называют *равномощными*

или *эквивалентными* (по мощности), если ∃ биекция (взаимно однозначное соответствие) между ними

Определение 19 (Бесконечное множество). Не равномощно никакому подотрезку натурального ряда ← никогда не исчерпается.

Замечание. Равномощность множеств - отношение эквивалентности. Существут классы эквивалентности по мощности.

Пример. Пример равномощных множеств:

- Отрезки (возможно, разных длин)
- Концентрические (и не только) окружности
-
- Плоскость и сфера
- Отрезок и плоскость
- Полуинтервал и окружность

Определение 20.
$$A$$
 - счётно $\Longleftrightarrow A \sim \mathbb{N}$

Эквивалетное определение: можно занумеровать натуральными числами, то есть расположить в виде последовательности

Пример. Положительные, чётные, квадраты натуральных, целые, ...- всё счётные

Теорема 2. Всякое бесконечное множество содержит счётное подмножество

Proof. Есть хотя бы один элемент. Обозначим его a_1 , удалим его. a_1

Теорема 3. Всякое подмножество счётного множества - счётно.

Proof.
$$b_{n+1} = A_{min(\{n|n\in A_{indexes}\})}, \cdots$$

Предыдущие 2 теоремы - о бедности натурального ряда.

Определение 21 (Не более, чем счётное (НБЧС)). = пустое, конечное или счётное.

Лемма 1. $\mathbb{N}^n, n \in \mathbb{N}$ - счётное множество

Proof. Заполняем матрицу змейкой по диагонали. Для n измерений: induction ■

Теорема 4. Не более чем счётное объединение (множество индексов НБЧС) не более чем счётных множеств - не более чем счётное.

Proof.

$$B = \bigcup_{k=1}^{n} A_k \quad or \quad B = \bigcup_{k=1}^{\infty} A_k$$
 (18)

Запишем в матрицу: $A_1,A_2\setminus A_1,\dots$ Получили не более чем множество $\mathbb{N}\times\mathbb{N}.$

Теорема 5. Множество Q - счётно.

Proof. Догадайтесь! ■

Теорема 6. Множество $\mathbb{R} \cap [0,1]$ - несчётно.

Proof. Пусть несчётно.

$$[0,1] = \{x_1, x_2, \dots\}$$
 (19)

Разобьём орезок на три части: $\left[0,\frac{1}{3}\right],\left[\frac{1}{3},\frac{2}{3}\right],\left[\frac{2}{3},1\right]$ Рассмотрим отрезок, в котором нет точки x_1 , затем - тот, в котором нет x_2 , деля на три до бесконечности. Получим последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$. Тогда по аксиоме о вложенных отрезках $\exists x^*: \forall n: x^* \in [a_n,b_n]$. Если пронумеровали, значит, был некий m, который Но, по построению, мы строили такой подотрезок

Следствие 1 (Некоторые множества тоже несчётны). \mathbb{R} - несчётно, так как иначе его бесконечное подмножество было счётно.

- Любой невырожденный отрезок несчётен
- Любой невырожденный интервал, полуинтервал несчётен

Как строить биекцию, если выколотые точки?

Утверждение 1. Если A - бесконечно, а B - не более чем счётно, то $A \setminus B$

Свойство 1 (Характеристическое свойство бесконечных множеств). Если

Определение 22 (|A|<|B|). $|A|<|B| \stackrel{\text{def}}{\Longleftrightarrow} (\exists biection \ A \leftrightarrow part(B) \land \nexists biection \ A \leftrightarrow B)$

Теорема 7 (Теорема Кантора-Бершнейна). Если $A \sim part(B)$ && $B \sim part(A)$, то $A \sim B$

(Теорема о том, что мощности можно сравнивать: либо)

Утверждение 2. Множество всех подмножеств имеют мощность большую,чем само множнство.

4 Последовательности в метрических пространствах

4.1 Предел последовательности

Определение 23.

$$A = \lim x_n \stackrel{\text{def}}{\Longleftrightarrow} \forall \varepsilon > 0 : \exists N_0 : \forall n > N_0 : |A - x_n| < \varepsilon$$
 (20)

Определение 24 (Сходящиеся, расходящиеся последовательности).

Пример.

$$\lim_{n \to \infty} \frac{1}{n} = 0 \tag{21}$$

$$\lim_{n \to \infty} A = A \tag{22}$$

Пример.

(!)
$$\forall A : \lim \{-1, 1, -1, \ldots\} \neq A$$
 (23)

Предъявим $\varepsilon = 0.1$: $\exists n_1, n_2 : \forall n > n_1 : |A - a_n| < \varepsilon$

Замечание. Если проверено малое эпсилон, можно не проверять большие эпсилон. Например, достаточно проверять для всех |arepsilon| < 1

Замечание. Не обязательно находить самый маленький номер, для данного ε .

Замечание. Одно или оба (из 2, 3) строгих неравенства можно заменить на нестрогие, это непложно доказать.

Замечание. Если заменить конечное число членов, то сходимость не нарушится и предел не изменится.

Замечание. Последнее неравенство с модулем можно переписать как двойное. Это может быть полезно при некоторых доказательствах. Интервал $(A-\varepsilon,A+\varepsilon)$ - ε -окресность точки A. Тогда можно записать предел словами: Для любой окресности точки все члены за исключением конечного множества принадлежат этой окрестности.