Many faces of information: irreversibility, ignorance, inference

Rajaram Nityananda Azim Premji University Bengaluru 560100 http://www.ncra.tifr.res.in:8081/~rajaram rajaram.nityananda@gmail.com

The best evidence that the subject has reached wide significance A best -selling paperback by James Gleick available in all airports.

Recommended!

Measuring information; bit by bit

- Information is the removal of uncertainty / ignorance. So we need to measure ignorance
- W, the number of equally probable options (before receiving the information) is a reasonable measure so is p=1/W
- W multiplies, $\log W$ adds (can also use $-\log p$)
- 2 is a good base to use
- Generalises to $S = -\sum p_i \log_2 p_i$

W=64

Real message have correlations

- Symbols are not independent e.g q is almost always followed by u
- Shannon entropy can be generalised to take care of this, just use the joint probability distribution for long messages
- With proper coding, the message can be compressed. This happens all the time nowadays e.g gzip

Channel Capacity

Log of no. of possible messages to the base 2 there are (26)^4 entries in a dictionary of four letter words, all the way from AAAA to ZZZZ

$$S = 4 \times \log_2 26 \approx 18.8 \ll 26 \times \log_2 4 = 52$$

Number of symbols in the alphabet is \sim S/N The number of letters in the message is 2Bt

Statistics, The Big Fight

Error on the mean

 $\overline{x} = \frac{(x_1 + x_2 + \dots + x_N)}{N} \pm \frac{\sigma}{\sqrt{(N)}}$ • The usual calculation assumes we take *many*

- The usual calculation assumes we take *many* samples from an *known* underlying distribution and works out how they are distributed this is a deductive process (F for Fisher or frequentist)
- In real life, you have *one* sample, and you have to give error bars on the parameter (say mean) of the *unknown* underlying distribution!

Problems of inference / induction / inversion

Bayes

Laplace

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

Jeffreys

Jaynes

Maximum entropy image restoration A Bayesian strategy?

Ramesh Narayan and RN, ARAA 1986

The Prior

- P(H) is required by Bayes theorem
- How can we say anything about *H* without data?

 BUT
- Maybe those who do without a prior are just hiding it somewhere
- "Entropy" is now the logarithm of the prior
- Stating the prior is an honest exhibition of our assumptions and sensitivity to the prior is an honest appraisal of the uncertainty of our methods

Irreversibility

- Boltzmann gave the same -p ln p type of formula for entropy, starting with ln W
- Default' is for the system to be in a "state" with a large value of W. (Equlilibrium)
- There is no mysterious force driving a system irreversibly towards equilibrium! Microscopic reversibility prevails. Equilibrium is just tyranny of the majority
- Need 'molecular chaos', i.e there should be no constraint preventing the system from exploring all the states

Schematic view of equilibrium and fluctuations

Information can be traded for entropy

Maxwell demon -separates hot and cold

- Szilard exorcism: you need information on molecular speeds
- Destroying information increases entropy (e.g erasing the results of computation). reversible and irreversible computation (Bennet, Landauer of IBM)

Information at the foundations of physics

- Information is physical
- Quantum information, communication, computation
- Black hole entropy and "information loss"
- Is all physics about information?
- Qbism information is always relative to someone (one?....who? What?....)
- Nagarjuna? "nothing exists by itself, only in relation to other things"

Claude Elwood Shannon: father of information theory

MS thesis

PhD

War work

Bell Labs

MTC

aftermath