

Latent Structure Models for NLP

Tsvetomila Mihaylova Instituto de Telecomunicações

Vlad Niculae Instituto de Telecomunicações

work with:

André Martins Instituto de Telecomunicações & IST & Unbabel

Nikita Nangia NYU

G deep-spin.github.io/tutorial

I. Introduction

Structured prediction and NLP

- **Structured prediction**: a machine learning framework for predicting structured, constrained, and interdependent outputs
- NLP deals with structured and ambiguous textual data:
 - machine translation
 - speech recognition
 - syntactic parsing
 - semantic parsing
 - information extraction
 - •

Examples of structure in NLP

Dependency parsing

Examples of structure in NLP

POS tagging

VERB PREP NOUN dog on wheels

NOUN PREP NOUN dog on wheels

NOUN DET NOUN dog on wheels

Dependency parsing

Word alignments

wheels

Examples of structure in NLP

Dependency parsing

Exponentially many structures!

- Big pipeline systems, connecting different structured predictors, trained separately
- Advantages: fast and simple to train, can rearrange pieces 😊

- Big pipeline systems, connecting different structured predictors, trained separately
- Advantages: fast and simple to train, can rearrange pieces \bigcirc
- Disadvantage: linguistic annotations required for each component @

- Big pipeline systems, connecting different structured predictors, trained separately
- Advantages: fast and simple to train, can rearrange pieces 😊
- Disadvantage: linguistic annotations required for each component @
- Bigger disadvantage: error propagates through the pipeline 💩

NLP today:

End-to-end training

NLP today:

End-to-end training

- Forget pipelines—train everything from scratch!
- No more error propagation or linguistic annotations!

NLP today:

End-to-end training

- Forget pipelines—train everything from scratch!
- No more error propagation or linguistic annotations!
- Treat everything as latent!

Representation learning

- Uncover hidden representations useful for the *downstream task*.
- Neural networks are well-suited for this: deep computation graphs.

Representation learning

- Uncover hidden representations useful for the *downstream task*.
- Neural networks are well-suited for this: deep computation graphs.
- Neural representations are unstructured, inscrutable.
 Language data has underlying structure!

 Seek structured hidden representations instead!

 Seek structured hidden representations instead!

- Seek structured hidden representations instead!
- They can bring us:
 - More interpretability;

- Seek structured hidden representations instead!
- They can bring us:
 - More interpretability;
 - Better inductive bias;

- Seek structured hidden representations instead!
- They can bring us:
 - More interpretability;
 - Better inductive bias:
 - Hopefully: smaller models.

Latent structure models aren't so new!

- They have a very long history in NLP:
 - IBM Models for SMT (latent word alignments) [Brown et al., 1993]
 - HMMs [Rabiner, 1989]
 - CRFs with hidden variables [Quattoni et al., 2007]
 - Latent PCFGs [Petrov and Klein, 2008, Cohen et al., 2012]
- Trained with EM, spectral learning, method of moments, ...
- Often, very strict assumptions (e.g. strong factorizations)
- Today, neural networks opened up some new possibilities!

What this tutorial is about:

- Discrete, combinatorial latent structures
- Often the structure is inspired by some linguistic intuition
- We'll cover both:
 - RL methods (structure built incrementally, reward coming from downstream task)
 - ... vs end-to-end differentiable approaches (global optimization, marginalization)
 - stochastic computation graphs
 - ... vs deterministic graphs.
- All plugged in discriminative neural models.

This tutorial is *not* about:

- It's not about continuous latent variables
- It's not about deep generative learning
- We won't cover GANs, VAEs, etc.
- There are (very good) recent tutorials on deep variational models for NLP:
 - "Variational Inference and Deep Generative Models" (Schulz and Aziz, ACL 2018)
 - "Deep Latent-Variable Models for Natural Language" (Kim, Wiseman, Rush, EMNLP 2018)

Background

Unstructured vs structured

- Simplest example of structure: Just a discrete choice among N categories.
- We call this unstructured.
- It will provide an important starting point.

$$z = 1$$

 $z = 2$

z = N

$$\frac{\partial L(\widehat{\mathbf{y}}, \mathbf{y})}{\partial \mathbf{w}} = ?$$

$$\frac{\partial L(\hat{\mathbf{y}}, \mathbf{y})}{\partial \mathbf{w}} = ?$$

or, essentially,

$$\frac{\partial \mathbf{z}}{\partial \mathbf{s}} = ?$$

Discrete mappings are "flat"

Discrete mappings are "flat"

Discrete mappings are "flat"

Argmax

Computing the most likely structure

is a very high-dimensional argmax

Computing the most likely structure

is a very high-dimensional argmax

Dealing with the combinatorial explosion

1. Incremental structures

- Build structure greedily, as sequence of discrete choices (e.g., shift-reduce).
- Scores (partial structure, action) tuples.
- Advantages: flexible, rich histories.
- **Disadvantages:** greedy, local decisions are suboptimal, error propagation.

2. Factorization into parts

- Optimizes globally (e.g. Viterbi, Chu-Liu-Edmonds, Kuhn-Munkres).
- Scores smaller parts.
- Advantages: optimal, elegant, can handle hard & global constraints.
- **Disadvantages:** strong assumptions.

The unstructured case: Probability simplex

The unstructured case: Probability simplex

• Each vertex is an *indicator vector*, representing one class:

$$\mathbf{z}_c = [0, \dots, 0, \underbrace{1}_{c^{\text{th}} \text{ position}}, 0, \dots, 0].$$

The unstructured case: Probability simplex

• Each vertex is an *indicator vector*, representing one class:

$$\mathbf{z}_c = [0, \ldots, 0, \underbrace{1}_{c^{\text{th}} \text{ position}}, 0, \ldots, 0].$$

 Points inside are probability vectors, a convex combination of classes:

$$p \ge 0$$
, $\sum_{c} p_{c} = 1$.

What's the analogous of \triangle for a structure?

• A structured object **z** can be represented as a *bit vector*.

What's the analogous of \triangle for a structure?

- A structured object **z** can be represented as a *bit vector*.
- Example:
 - a dependency tree can be represented a $O(L^2)$ vector indexed by arcs
 - each entry is 1 iff the arc belongs to the tree
 - structural constraints: not all bit vectors represent valid trees!

What's the analogous of \triangle for a structure?

- A structured object **z** can be represented as a bit vector.
- Example:
 - a dependency tree can be represented a $O(L^2)$ vector indexed by arcs
 - each entry is 1 iff the arc belongs to the tree
 - **structural constraints:** not all bit vectors represent valid trees!

$$\mathbf{z}_1 = [\mathbf{1}, 0, 0, 0, \mathbf{1}, 0, 0, 0, \mathbf{1}]$$

$$\mathbf{z}_2 = [0, 0, \mathbf{1}, 0, 0, \mathbf{1}, \mathbf{1}, 0, 0]$$

$$\mathbf{z}_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0]$$

The structured case: Marginal polytope

The structured case: Marginal polytope

• Each vertex corresponds to one such bit vector **z**

The structured case: Marginal polytope

- Each vertex corresponds to one such bit vector **z**
- Points inside correspond to marginal distributions: convex combinations of structured objects

$$\mu = \underbrace{p_1 \mathbf{z}_1 + \ldots + p_N \mathbf{z}_N}_{\text{exponentially many terms}}, \ \mathbf{p} \in \Delta.$$

$$p_1 = 0.2$$
, $\mathbf{z}_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1]$
 $p_2 = 0.7$, $\mathbf{z}_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0]$ $\Rightarrow \mu = [.3, 0, .7, 0, .3, .7, .7, .1, .2]$.
 $p_3 = 0.1$, $\mathbf{z}_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0]$

Unstructured vs Structured

• Unstructured case: simplex Δ

• Structured case: marginal polytope M

Unstructured vs Structured

• Unstructured case: simplex Δ

ullet Structured case: marginal polytope ${\mathcal M}$

Unstructured vs Structured

• Unstructured case: simplex Δ

ullet Structured case: marginal polytope ${\mathcal M}$

predict topic c ($z = e_c$)

predict topic $c (\mathbf{z} = \mathbf{e}_c)$

$$\frac{\partial L}{\partial \mathbf{W_s}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{v}} \frac{\partial \mathbf{v}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{s}} \frac{\partial \mathbf{s}}{\partial \mathbf{W_s}}$$

Option 1. Pretrain latent classifier W_s

Option 2. Multi-task learning

Option 3. Stochasticity! $\frac{\partial \mathbb{E}_{\mathbf{z}}(\hat{\mathbf{y}}(\mathbf{z}) - \mathbf{y})^2}{\partial \mathbf{W}_c} \neq \mathbf{0}$

$$\frac{\partial \mathbb{E}_{\mathbf{z}}(\hat{\mathbf{y}}(\mathbf{z}) - \mathbf{y})^2}{\partial \mathbf{W}_c} \neq \mathbf{0}$$

Option 4. Gradient surrogates (e.g. straight-through, $\frac{\partial z}{\partial s} \leftarrow I$)

Option 5. Continuous relaxation (e.g. softmax)

Dealing with discrete latent variables

- 1. Pre-train external classifier
- 2. Multi-task learning
- 3. Stochastic latent variables
- 4. Gradient surrogates
- 5. Continuous relaxation

Dealing with discrete latent variables

- 1. Pre-train external classifier
- 2. Multi-task learning
- 3. Stochastic latent variables (Part 2)
- 4. Gradient surrogates (Part 3)
- 5. Continuous relaxation (Part 4)

Roadmap of the tutorial

- Part 1: Introduction √
- Part 2: Reinforcement learning

Coffee Break

- Part 3: Gradient surrogates
- Part 4: End-to-end differentiable models (1/2)

Coffee Break

- Part 4: End-to-end differentiable models (2/2)
- Part 5: Conclusions

Learning Methods

II. Reinforcement

Latent structure via marginalization

• Given a sentence-label pair (x, y) and its **known** parse tree z,

• Given a sentence-label pair (x, y) and its **known** parse tree z, we can make a prediction $\hat{y}(z; x)$

• Given a sentence-label pair (x, y) and its **known** parse tree **z**, we can make a prediction $\hat{y}(\mathbf{z}; x)$ and incur a loss,

 $L(\hat{y}(z;x),y)$

• Given a sentence-label pair (x, y) and its **known** parse tree **z**, we can make a prediction $\hat{y}(\mathbf{z}; x)$ and incur a loss,

 $L(\hat{y}(z;x), y)$ or simply L(z)

• Given a sentence-label pair (x, y) and its **known** parse tree **z**, we can make a prediction $\hat{y}(\mathbf{z}; x)$ and incur a loss,

 $L(\hat{y}(z;x), y)$ or simply L(z)

• But we don't know z!

• Given a sentence-label pair (x, y) and its **known** parse tree **z**, we can make a prediction $\hat{y}(\mathbf{z}; x)$ and incur a loss,

$$L(\hat{y}(z;x), y)$$
 or simply $L(z)$

- But we don't know z!
- In this section: we jointly learn a structured prediction model $\pi_{\theta}(\mathbf{z} \mid x)$

• Given a sentence-label pair (x, y) and its **known** parse tree **z**, we can make a prediction $\hat{y}(\mathbf{z}; x)$ and incur a loss,

$$L(\hat{y}(z;x), y)$$
 or simply $L(z)$

- But we don't know z!
- In this section:

we jointly learn a structured prediction model $\pi_{\theta}(\mathbf{z} \mid x)$ by optimizing the **expected loss**.

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

SPINN

But first, supervised

Stack-augmented Parser-Interpreter Neural-Network

 Joint learning: Combines a constituency parser and a sentence representation model.

- Joint learning: Combines a constituency parser and a sentence representation model.
- The parser, $f_{\theta}(x)$ is a transition-based **shift-reduce** parser. It looks at top two elements of stack and top element of the buffer.

- Joint learning: Combines a constituency parser and a sentence representation model.
- The parser, $f_{\theta}(x)$ is a transition-based **shift-reduce** parser. It looks at top two elements of stack and top element of the buffer.
- **TreeLSTM** combines top two elements of the stack when the parser chooses the REDUCE action.

Stack-augmented Parser-Interpreter Neural-Network

Stack-augmented Parser-Interpreter Neural-Network

Stack-augmented Parser-Interpreter Neural-Network

Shift-Reduce parsing

We can write a shift-reduce style parse as a sequence of Bernoulli random variables,

$$z = \{z_1, \ldots, z_{2L-1}\}$$

where, $z_j \in \{0, 1\} \ \forall j \in [1, 2L - 1]$

Shift-Reduce parsing

A sequence of Bernoulli trials but with conditional dependence,

$$p(z_1, z_2, \dots, z_{2L-1}) = \prod_{j=1}^{2L-1} p(z_j \mid z_{< j})$$

• But now, remove syntactic supervision from SPINN.

• But now, remove syntactic supervision from SPINN.

• We model the parse, **z**, as a latent variable scored by $f_{\theta}(x)$.

But now, remove syntactic supervision from SPINN.

- We model the parse, **z**, as a latent variable scored by $f_{\theta}(x)$.
- With shift-reduce parsing, we're making discrete decisions
 ⇒ REINFORCE as a "natural" solution.

Unsupervised SPINN

Unsupervised SPINN

No syntactic supervision.

Only reward is from the downstream task.

We only get this reward after parsing the full sentence.

Some basic terminology,

• The action space is $z_i \in \{\text{SHIFT}, \text{REDUCE}\}\$, and **z** is a sequence of actions.

- The action space is $z_i \in \{\text{SHIFT}, \text{REDUCE}\}\$, and **z** is a sequence of actions.
- Training parser network parameters, **0** with REINFORCE

- The action space is $z_j \in \{\text{SHIFT}, \text{REDUCE}\}\$, and **z** is a sequence of actions.
- Training parser network parameters, **0** with REINFORCE
- The <u>state</u>, **h**, is the top two elements of the stack and the top element of the buffer.

- The action space is $z_i \in \{\text{SHIFT}, \text{REDUCE}\}\$, and **z** is a sequence of actions.
- Training parser network parameters, **0** with REINFORCE
- The <u>state</u>, **h**, is the top two elements of the stack and the top element of the buffer.
- Learning a policy network $\pi(\mathbf{z} \mid \mathbf{h}; \boldsymbol{\theta})$

- The action space is $z_i \in \{\text{SHIFT}, \text{REDUCE}\}\$, and **z** is a sequence of actions.
- Training parser network parameters, **0** with REINFORCE
- The <u>state</u>, **h**, is the top two elements of the stack and the top element of the buffer.
- Learning a policy network $\pi(\mathbf{z} \mid \mathbf{h}; \boldsymbol{\theta})$
- Maximize the <u>reward</u>, where \mathcal{R} is performance on the downstream task like sentence classification.

Some basic terminology,

- The action space is $z_i \in \{\text{SHIFT}, \text{REDUCE}\}\$, and **z** is a sequence of actions.
- Training parser network parameters, **0** with REINFORCE
- The state. h is the top two elements of the stack and the top element of the buffe
- Learn NOTE: Only a single reward at the end of parsing.
- Maxistence classification.

ke

 $\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{z} \sim \pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{z} \sim \pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})] = \nabla_{\boldsymbol{\theta}} \left[\sum_{\mathbf{z}} L(\mathbf{z}) \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}) \right]$$

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{z} \sim \pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})] = \nabla_{\boldsymbol{\theta}} \left[\sum_{\mathbf{z}} L(\mathbf{z}) \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}) \right]$$

$$= \sum_{\mathbf{z}} L(\mathbf{z}) \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x})$$

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{z} \sim \pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})] = \nabla_{\boldsymbol{\theta}} \left[\sum_{\mathbf{z}} L(\mathbf{z}) \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}) \right]$$

$$= \sum_{\mathbf{z}} L(\mathbf{z}) \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x})$$

$$\nabla \log f = \frac{\nabla f}{f}$$
, so $\nabla f = f \nabla \log f$.

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{z} \sim \pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})] = \nabla_{\boldsymbol{\theta}} \left[\sum_{\mathbf{z}} L(\mathbf{z}) \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}) \right]$$

$$= \sum_{\mathbf{z}} L(\mathbf{z}) \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x})$$

$$= \sum_{\mathbf{z}} L(\mathbf{z}) \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x})$$

Through the looking glass of REINFORCE

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{z} \sim \pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})} [L(\mathbf{z})] = \nabla_{\boldsymbol{\theta}} \left[\sum_{\mathbf{z}} L(\mathbf{z}) \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}) \right]$$
(Need to turn it into $\mathbb{E}[\cdot]$ so we can MC-estimate)

$$= \sum_{\mathbf{z}} L(\mathbf{z}) \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x})$$

$$= \sum_{\mathbf{z}} L(\mathbf{z}) \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x})$$

$$= \mathbb{E}_{\mathbf{z} \sim \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x})} [L(\mathbf{z}) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x})]$$

SPINN with REINFORCE, aka RL-SPINN

Yogatama et al. [2017] uses REINFORCE to train SPINN!

SPINN with REINFORCE, aka RL-SPINN

Yogatama et al. [2017] uses REINFORCE to train SPINN! However, this vanilla implementation isn't very effective at learning syntax.

SPINN with REINFORCE, aka RL-SPINN

Yogatama et al. [2017] uses REINFORCE to train SPINN! However, this vanilla implementation isn't very effective at learning syntax. This model fails to solve a simple toy problem.

Toy problem: ListOps

Toy problem: ListOps

	Accura	Self	
Model	$\mu(\sigma)$	max	F1
LSTM	71.5 (1.5)	74.4	-
RL-SPINN	60.7 (2.6)	64.8	30.8
Random Trees	-	-	30.1

	F1 wrt.			Avg.
Model	LB	RB	GT	Depth
48D RL-SPINN	64.5	16.0	32.1	14.6
128D RL-SPINN	43.5	13.0	71.1	10.4
GT Trees	41.6	8.8	100.0	9.6
Random Trees	24.0	24.0	24.2	5.2

Toy problem: ListOps

	Accuracy		Self
Model	$\mu(\sigma)$	max	F1
LSTM	71.5 (1.5)	74.4	-
RL-SPINN	60.7 (2.6)	64.8	30.8

But why?					
		F1 wrt. LB RB GT			Avg. Depth
		4.5	16.0	32.1	14.6
	128D KL-SPINN	43.5	13.0	71.1	10.4
	GT Trees Random Trees	41.6 24.0	8.8 24.0	100.0 24.2	9.6 5.2

Random Trees

RL-SPINN's Troubles

This system faces at least two big problems,

RL-SPINN's Troubles

This system faces at least two big problems,

- 1. High variance of gradients
- 2. Coadaptation

• We have a single reward at the end of parsing.

- We have a single reward at the end of parsing.
- We are sampling parses from very large search space!
 Catalan number of binary trees.

- We have a single reward at the end of parsing.
- We are sampling parses from very large search space!
 Catalan number of binary trees.

```
3 tokens \Rightarrow 5 trees
```

5 tokens
$$\Rightarrow$$
 42 trees

10 tokens \Rightarrow 16796 trees

- We have a single reward at the end of parsing.
- We are sampling parses from very large search space!
 Catalan number of binary trees.
- And the policy is stochastic.

So, sometimes the policy lands in a "rewarding state":

Figure: Truth: 7; Pred: 7

Sometimes it doesn't:

Figure: Truth: 6; Pred: 5

Catalan number of parses means we need many many samples to lower variance!

Catalan number of parses means we need many many samples to lower variance! Possible solutions.

- 1. Gradient normalization
- 2. Control variates, aka baselines

• A simple control variate: moving average of recent rewards

- A simple control variate: moving average of recent rewards
- Parameters are updated using the <u>advantage</u> which is the difference between the reward, \mathcal{R} , and the baseline prediction.

- A simple control variate: moving average of recent rewards
- Parameters are updated using the <u>advantage</u> which is the difference between the reward, \mathcal{R} , and the baseline prediction.

So,

$$\nabla \mathbb{E}_{\mathbf{z} \sim \pi(\mathbf{z})} = \mathbb{E}_{\mathbf{z} \sim \pi(\mathbf{z})} [(L(\mathbf{z}) - b(\mathbf{x})) \nabla \pi(\mathbf{z})]$$

- A simple control variate: moving average of recent rewards
- Parameters are updated using the <u>advantage</u> which is the difference between the reward, \mathcal{R} , and the baseline prediction.

So,

$$\nabla \mathbb{E}_{\mathbf{z} \sim \pi(\mathbf{z})} = \mathbb{E}_{\mathbf{z} \sim \pi(\mathbf{z})} [(L(\mathbf{z}) - b(\mathbf{x})) \nabla \pi(\mathbf{z})]$$

Which we can do because,

$$\sum_{\mathbf{z}} b(\mathbf{x}) \nabla \pi(\mathbf{z}) = b(\mathbf{x}) \sum_{\mathbf{z}} \nabla \pi(\mathbf{z}) = b(\mathbf{x}) \nabla \mathbf{1} = 0$$

Issues with SPINN with REINFORCE

This system faces two big problems,

- 1. High variance of gradients
- 2. Coadaptation

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.

Generally, ϕ will be learned more quickly than θ , making it harder to explore the parsing search space and optimize for θ .

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.

Generally, ϕ will be learned more quickly than θ , making it harder to explore the parsing search space and optimize for θ .

Difference in variance of two gradient estimates.

Learning composition function parameters ϕ with backpropagation, and parser parameters θ with REINFORCE.

```
Generally, \phi will be learned more quickly than \theta,
```

Possible solution:

Proximal Policy Optimization (Schulman et al., 2017)

Making REINFORCE+SPINN work

Havrylov et al. [2019] use,

- 1. Input dependent control variate
- 2. Gradient normalization
- 3. Proximal Policy Optimization

Making REINFORCE+SPINN work

Havrylov et al. [2019] use,

- 1. Input dependent control variate
- 2. Gradient normalization
- 3. Proximal Policy Optimization

They solve ListOps!

Making REINFORCE+SPINN work

Havrylov et al. [2019] use,

- 1. Input dependent control variate
- 2. Gradient normalization
- 3. Proximal Policy Optimization

They solve ListOps!

However, does not learn English grammars.

• Unbiased!

• Unbiased!

• High variance 😟

- Unbiased!
- In a simple setting, with enough tricks, it can work!

High variance 😧

- Unbiased!
- In a simple setting, with enough tricks, it can work! [♥]

- High variance
- Has not yet been very effective at learning English syntax.

Roadmap of the tutorial

- Part 1: Introduction √
- Part 2: Reinforcement learning √

Coffee Break

- Part 3: Gradient surrogates
- Part 4: End-to-end differentiable models (1/2)

Coffee Break

- Part 4: End-to-end differentiable models (2/2)
- Part 5: Conclusions

III. Gradient Surrogates

So far:

• Tackled **expected loss** in a **stochastic computation graph**

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

• Tackled expected loss in a stochastic computation graph

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})}[L(\boldsymbol{z})]$$

• Optimized with the **REINFORCE** estimator.

• Tackled **expected loss** in a **stochastic computation graph**

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

• Tackled expected loss in a stochastic computation graph

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})}[L(\boldsymbol{z})]$$

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

• Tackled expected loss in a stochastic computation graph

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})}[L(\boldsymbol{z})]$$

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

pick highest-score structure
$$\hat{\mathbf{z}}(x) := \arg \max_{\mathbf{z} \in \mathcal{M}} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid x)$$

• Tackled expected loss in a stochastic computation graph

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})}[L(\boldsymbol{z})]$$

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

```
pick highest-score structure \hat{\mathbf{z}}(x) := \arg \max_{\mathbf{z} \in \mathcal{M}} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid x) incur loss L(\hat{\mathbf{z}}(x))
```

• Tackled expected loss in a stochastic computation graph

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})}[L(\boldsymbol{z})]$$

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

• Consider the **deterministic alternative**:

```
pick highest-score structure \hat{\mathbf{z}}(x) := \arg \max_{\mathbf{z} \in \mathcal{M}} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid x)
incur loss L(\hat{\mathbf{z}}(x))
```

• 3A: try to optimize the deterministic loss directly

• Tackled expected loss in a stochastic computation graph

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

- Optimized with the **REINFORCE** estimator.
- Struggled with variance & sampling.

In this section:

```
pick highest-score structure \hat{\mathbf{z}}(x) := \arg \max_{\mathbf{z} \in \mathcal{M}} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid x)
incur loss L(\hat{\mathbf{z}}(x))
```

- 3A: try to optimize the deterministic loss directly
- 3B: use this strategy to reduce variance in the stochastic model.

Recap: The argmax problem

Softmax

$$\frac{\partial \mathbf{p}}{\partial \mathbf{s}} = \operatorname{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^{\mathsf{T}}$$

S

• Forward: **z** = arg max(**s**)

• Forward: $z = \arg \max(s)$

- Forward: **z** = arg max(**s**)
- Backward: pretend **z** was some continuous \tilde{p} ; $\frac{\partial \tilde{p}}{\partial s} \neq \mathbf{0}$

- Forward: **z** = arg max(**s**)
- Backward: pretend **z** was some continuous \tilde{p} ; $\frac{\partial \tilde{p}}{\partial s} \neq \mathbf{0}$

- Forward: z = arg max(s)
- Backward: pretend **z** was some continuous \tilde{p} ; $\frac{\partial \tilde{p}}{\partial s} \neq \mathbf{0}$
 - simplest: identity, $\tilde{p}(s) = s$, $\frac{\partial \tilde{p}}{\partial s} = I$

- Forward: z = arg max(s)
- Backward: pretend **z** was some continuous \tilde{p} ; $\frac{\partial \tilde{p}}{\partial s} \neq \mathbf{0}$
 - simplest: identity, $\tilde{p}(s) = s$, $\frac{\partial \tilde{p}}{\partial s} = I$
 - others, e.g. softmax $\tilde{p}(s) = \text{softmax}(s)$, $\frac{\partial \tilde{p}}{\partial s} = \text{diag}(\tilde{p}) \tilde{p}\tilde{p}^{\top}$

- Forward: z = arg max(s)
- Backward: pretend **z** was some continuous \tilde{p} ; $\frac{\partial \tilde{p}}{\partial s} \neq \mathbf{0}$
 - simplest: identity, $\tilde{p}(s) = s$, $\frac{\partial \tilde{p}}{\partial s} = I$
 - others, e.g. softmax $\tilde{p}(s) = \text{softmax}(s)$, $\frac{\partial \tilde{p}}{\partial s} = \text{diag}(\tilde{p}) \tilde{p}\tilde{p}^{\top}$
- More explanation in a while

- Forward: $\mathbf{z} = \arg \max(\mathbf{s})$
- Backward: pretend **z** was some continuous \tilde{p} ; $\frac{\partial \tilde{p}}{\partial s} \neq \mathbf{0}$
 - simplest: identity, $\tilde{p}(s) = s$, $\frac{\partial \tilde{p}}{\partial s} = I$
 - others, e.g. softmax $\tilde{p}(s) = \text{softmax}(s)$, $\frac{\partial \tilde{p}}{\partial s} = \text{diag}(\tilde{p}) \tilde{p}\tilde{p}^{\top}$
- More explanation

What about the structured case?

Dealing with the combinatorial explosion

1. Incremental structures

- Build structure greedily, as sequence of discrete choices (e.g., shift-reduce).
- Scores (partial structure, action) tuples.
- Advantages: flexible, rich histories.
- **Disadvantages:** greedy, local decisions are suboptimal, error propagation.

2. Factorization into parts

- Optimizes globally (e.g. Viterbi, Chu-Liu-Edmonds, Kuhn-Munkres).
- Scores smaller parts.
- Advantages: optimal, elegant, can handle hard & global constraints.
- **Disadvantages:** strong assumptions.

• Build a structure as a sequence of discrete choices (e.g., shift-reduce)

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- In this case, we just apply the straight-through estimator for each step.

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- In this case, we just apply the straight-through estimator for each step.
- Forward: the **highest scoring action** for each step

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- In this case, we just apply the straight-through estimator for each step.
- Forward: the highest scoring action for each step
- Backward: pretend that we had used a differentiable surrogate function

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- In this case, we just apply the straight-through estimator for each step.
- Forward: the highest scoring action for each step
- <u>Backward</u>: pretend that we had used a **differentiable surrogate function** <u>Example</u>: Latent Tree Learning with Differentiable Parsers: Shift-Reduce Parsing and Chart Parsing [Maillard and Clark, 2018] (STE through beam search).

STE for the factorized approach

Requires a bit more work:

- Recap: marginal polytope
- Predicting structures globally: Maximum A Posteriori (MAP)
- Deriving Straight-Through and SPIGOT

The structured case: Marginal polytope

The structured case: Marginal polytope

• Each vertex corresponds to one such bit vector **z**

The structured case: Marginal polytope

- Each vertex corresponds to one such bit vector **z**
- Points inside correspond to marginal distributions: convex combinations of structured objects

$$\mu = \underbrace{p_1 \mathbf{z}_1 + \ldots + p_N \mathbf{z}_N}_{\text{exponentially many terms}}, \ \mathbf{p} \in \Delta.$$

$$p_1 = 0.2$$
, $\mathbf{z}_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1]$
 $p_2 = 0.7$, $\mathbf{z}_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0]$
 $p_3 = 0.1$, $\mathbf{z}_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0]$

$$\Rightarrow \mu = [.3, 0, .7, 0, .3, .7, .7, .1, .2].$$

Predicting structures from scores of parts

- $\eta(i \rightarrow j)$: score of arc $i \rightarrow j$
- $z(i \rightarrow j)$: is arc $i \rightarrow j$ selected?

Predicting structures from scores of parts

- $\eta(i \rightarrow j)$: score of arc $i \rightarrow j$
- $z(i \rightarrow j)$: is arc $i \rightarrow j$ selected?
- Task-specific algorithm for the highest-scoring structure.

Algorithms for specific structures

Best structure (MAP)

Sequence tagging Viterbi
[Rabiner, 1989]

CKY

Constituent trees [Kasami, 1966, Younger, 1967] [Cocke and Schwartz, 1970]

Temporal alignments

DTW

[Sakoe and Chiba, 1978]

Dependency trees [Chi

Max. Spanning Arborescence [Chu and Liu, 1965, Edmonds, 1967]

Assignments Kuhn-Munkres [Kuhn, 1955, Jonker and Volgenant, 1987]

Structured Straight-Through

• Forward pass:

Find highest-scoring structure:

$$z = \arg\max_{z \in \mathcal{Z}} \eta^{\mathsf{T}} z$$

• Backward pass: pretend we used $\tilde{\mu} = \eta$.

Revisited

Revisited

• In the forward pass, $z = \arg \max(s)$.

- In the forward pass, $z = \arg \max(s)$.
- if we had labels (multi-task learning), $L_{\text{MTL}} = L(\hat{y}(z), y) + L_{\text{hid}}(s, z^{\text{true}})$

- In the forward pass, $z = \arg \max(s)$.
- if we had labels (multi-task learning), $L_{\text{MTL}} = L(\hat{y}(z), y) + L_{\text{hid}}(s, z^{\text{true}})$
- One choice: perceptron loss $L_{\text{hid}}(\mathbf{s}, \mathbf{z}^{\text{true}}) = \mathbf{s}^{\top} \mathbf{z} \mathbf{s}^{\top} \mathbf{z}^{\text{true}}; \quad \frac{\partial L_{\text{hid}}}{\partial \mathbf{s}} = \mathbf{z} \mathbf{z}^{\text{true}}.$

- In the forward pass, $z = \arg \max(s)$.
- if we had labels (multi-task learning), $L_{\text{MTL}} = L(\hat{y}(z), y) + L_{\text{hid}}(s, z^{\text{true}})$
- One choice: perceptron loss $L_{\text{hid}}(s, \mathbf{z}^{\text{true}}) = \mathbf{s}^{\top} \mathbf{z} \mathbf{s}^{\top} \mathbf{z}^{\text{true}}; \quad \frac{\partial L_{\text{hid}}}{\partial \mathbf{s}} = \mathbf{z} \mathbf{z}^{\text{true}}.$
- We don't have labels! Induce labels by "pulling back" the downstream target: the "best" (unconstrained) latent value would be: $\arg\min_{\tilde{\mathbf{z}} \in \mathbb{R}^D} L(\hat{y}(\tilde{\mathbf{z}}), y)$

- In the forward pass, $z = \arg \max(s)$.
- if we had labels (multi-task learning), $L_{\text{MTL}} = L(\hat{y}(z), y) + L_{\text{hid}}(s, z^{\text{true}})$
- One choice: perceptron loss $L_{\text{hid}}(s, \mathbf{z}^{\text{true}}) = \mathbf{s}^{\top} \mathbf{z} \mathbf{s}^{\top} \mathbf{z}^{\text{true}}; \quad \frac{\partial L_{\text{hid}}}{\partial \mathbf{s}} = \mathbf{z} \mathbf{z}^{\text{true}}.$
- We don't have labels! Induce labels by "pulling back" the downstream target: the "best" (unconstrained) latent value would be: $\arg\min_{\tilde{\mathbf{z}} \in \mathbb{R}^D} L(\hat{y}(\tilde{\mathbf{z}}), y)$
- One gradient descent step starting from z: $z^{\text{true}} \leftarrow z \frac{\partial L}{\partial z}$

- In the forward pass, $z = \arg \max(s)$.
- if we had labels (multi-task learning), $L_{\text{MTL}} = L(\hat{y}(z), y) + L_{\text{hid}}(s, z^{\text{true}})$
- One choice: perceptron loss $L_{\text{hid}}(s, \mathbf{z}^{\text{true}}) = \mathbf{s}^{\top} \mathbf{z} \mathbf{s}^{\top} \mathbf{z}^{\text{true}}; \quad \frac{\partial L_{\text{hid}}}{\partial \mathbf{s}} = \mathbf{z} \mathbf{z}^{\text{true}}.$
- We don't have labels! Induce labels by "pulling back" the downstream target: the "best" (unconstrained) latent value would be: $\arg\min_{\tilde{\mathbf{z}} \in \mathbb{R}^D} L(\hat{y}(\tilde{\mathbf{z}}), y)$
- One gradient descent step starting from z: $z^{\text{true}} \leftarrow z \frac{\partial L}{\partial z}$

$$\frac{\partial L_{\text{MTL}}}{\partial s} = \underbrace{\frac{\partial L}{\partial s}}_{=0} + \frac{\partial L_{\text{hid}}}{\partial s}$$

- In the forward pass, $z = \arg \max(s)$.
- if we had labels (multi-task learning), $L_{\text{MTL}} = L(\hat{y}(z), y) + L_{\text{hid}}(s, z^{\text{true}})$
- One choice: perceptron loss $L_{\text{hid}}(s, \mathbf{z}^{\text{true}}) = \mathbf{s}^{\top} \mathbf{z} \mathbf{s}^{\top} \mathbf{z}^{\text{true}}; \quad \frac{\partial L_{\text{hid}}}{\partial \mathbf{s}} = \mathbf{z} \mathbf{z}^{\text{true}}.$
- We don't have labels! Induce labels by "pulling back" the downstream target: the "best" (unconstrained) latent value would be: $\arg\min_{\tilde{\mathbf{z}} \in \mathbb{R}^D} L(\hat{y}(\tilde{\mathbf{z}}), y)$
- One gradient descent step starting from $z: z^{\text{true}} \leftarrow z \frac{\partial L}{\partial z}$

$$\frac{\partial L_{\text{MTL}}}{\partial s} = \underbrace{\frac{\partial L}{\partial s}}_{} + \frac{\partial L_{\text{hid}}}{\partial s} = z - \left(z - \frac{\partial L}{\partial z}\right) = \frac{\partial L}{\partial z}$$

Straight-Through in the structured case

• Structured STE: perceptron update with induced annotation

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^D}{\operatorname{arg \, min} \, L(\hat{y}(\boldsymbol{\mu}), y)} \approx \mathbf{z} - \nabla_{\mathbf{z}} L(\mathbf{z}) \rightarrow \mathbf{z}^{\operatorname{true}}$$

(one step of gradient descent)

Straight-Through in the structured case

• Structured STE: perceptron update with induced annotation

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^D}{\arg\min} L(\hat{y}(\boldsymbol{\mu}), y) \qquad \approx \mathbf{z} - \nabla_{\mathbf{z}} L(\mathbf{z}) \to \mathbf{z}^{\text{true}}$$

(one step of gradient descent)

SPIGOT takes into account the constraints; uses the induced annotation

$$\underset{\boldsymbol{\mu} \in \mathcal{M}}{\text{arg min }} L(\hat{y}(\boldsymbol{\mu}), y) \quad \approx \text{Proj}_{\mathcal{M}} (z - \nabla_z L(z)) \rightarrow z^{\text{true}}$$

(one step of *projected* gradient descent!)

Straight-Through in the structured case

• Structured STE: perceptron update with induced annotation

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^D}{\arg\min} L(\hat{y}(\boldsymbol{\mu}), y) \qquad \approx \mathbf{z} - \nabla_{\mathbf{z}} L(\mathbf{z}) \to \mathbf{z}^{\text{true}}$$

(one step of gradient descent)

□deep-spin.qithub.io/tutoriαl

• SPIGOT takes into account the constraints; uses the induced annotation

$$\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{arg \, min} \, L(\hat{y}(\boldsymbol{\mu}), \, y)} \quad \approx \operatorname{Proj}_{\mathcal{M}} \left(\mathbf{z} - \nabla_{\mathbf{z}} L(\mathbf{z}) \right) \rightarrow \mathbf{z}^{\operatorname{true}}$$

(one step of projected gradient descent!)

• We discuss a generic way to compute the projection in part 4.

We saw how to use the *Straight-Through Estimator* to allow learning models with *argmax* in the middle of the computation graph.

We saw how to use the *Straight-Through Estimator* to allow learning models with *argmax* in the middle of the computation graph.

We were optimizing $L(\hat{\mathbf{z}}(x))$

We saw how to use the *Straight-Through Estimator* to allow learning models with *argmax* in the middle of the computation graph.

We were optimizing
$$L(\hat{\mathbf{z}}(x))$$

Now we will see how to apply STE for stochastic graphs, as an alternative approach of REINFORCE.

Recall the stochastic objective:

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

Recall the stochastic objective:

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

• REINFORCE (previous section).

Recall the stochastic objective:

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

• REINFORCE (previous section). High variance. 😟

Recall the stochastic objective:

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

- REINFORCE (previous section). High variance. 😟
- An alternative is using the reparameterization trick [Kingma and Welling, 2014].

 Sampling from a categorical value in the middle of the computation graph.

z

- Sampling from a categorical value in the middle of the computation graph. $z \sim \pi_{\theta}(z \mid x) \propto \exp s_{\theta}(z \mid x)$
- What is the gradient of a sample $\frac{\partial z}{\partial \theta}$?!

- Sampling from a categorical value in the middle of the computation graph.
 z ~ π_θ(z | x) ∝ exp s_θ(z | x)
- What is the gradient of a sample $\frac{\partial z}{\partial \theta}$?!
- Reparameterization: Move the stochasticity out of the gradient path.

- Sampling from a categorical value in the middle of the computation graph.
 z ~ π_θ(z | x) ∝ exp s_θ(z | x)
- What is the gradient of a sample $\frac{\partial z}{\partial \theta}$?!
- Reparameterization: Move the stochasticity out of the gradient path.
- Makes z deterministic w.r.t. s!

- Sampling from a categorical value in the middle of the computation graph.
 z ~ π_θ(z | x) ∝ exp s_θ(z | x)
- What is the gradient of a sample $\frac{\partial z}{\partial \mathbf{q}}$?!
- Reparameterization: Move the stochasticity out of the gradient path.
- Makes z deterministic w.r.t. s!

 Sampling from a categorical value in the middle of the computation graph.

 $\mathbf{z} \sim \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}) \propto \exp \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x})$

• What is the gradient of a sample ∂z?

 Reparameteri stochasticity <u>As a result:</u>

Stochasticity is moved as an input.

• Makes **z** dete We can backpropagate through the deterministic input to **z**.

How do we sample from a categorical variable?

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score s_i)

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score \mathbf{s}_i)

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score s_i)

1. Inverse transform sampling:

• p = softmax(s)

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score s_i)

- **p** = softmax(**s**)
- $c_i = \sum_{j \leq i} p_j$

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score s_i)

- p = softmax(s)
- $c_i = \sum_{j \leq i} p_j$
- $u \sim \text{Uniform}(0, 1)$

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score s_i)

- p = softmax(s)
- $c_i = \sum_{j \leq i} p_j$
- $u \sim \text{Uniform}(0, 1)$
- return $\mathbf{z} = \mathbf{e}_t$ s.t. $c_t \le u < c_{t+1}$

We want to sample from a categorical variable with scores s (class i has a score s_i)

1. Inverse transform sampling: 2. The Gumbel-Max trick:

- p = softmax(s)
- $c_i = \sum_{j \leq i} p_j$
- $u \sim \text{Uniform}(0, 1)$
- return $\mathbf{z} = \mathbf{e}_t$ s.t. $c_t \le u < c_{t+1}$

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score \mathbf{s}_i)

1. Inverse transform sampling:

- $p = \operatorname{softmax}(s)$
- $c_i = \sum_{j \leq i} p_j$
- $u \sim \text{Uniform}(0, 1)$
- return $\mathbf{z} = \mathbf{e}_t$ s.t. $c_t \le u < c_{t+1}$

2. The Gumbel-Max trick:

• $u_i \sim \text{Uniform}(0, 1)$

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score \mathbf{s}_i)

1. Inverse transform sampling:

- p = softmax(s)
- $c_i = \sum_{j \leq i} p_j$
- *u* ~ Uniform(0, 1)
- return **z** = e_t s.t. $c_t \le u < c_{t+1}$

2. The Gumbel-Max trick:

- $u_i \sim \text{Uniform}(0, 1)$
- $\epsilon_i = -\log(-\log(u_i))$

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score s_i)

1. Inverse transform sampling:

- p = softmax(s)
- $c_i = \sum_{j \leq i} p_j$
- *u* ~ Uniform(0, 1)
- return **z** = e_t s.t. $c_t \le u < c_{t+1}$

2. The Gumbel-Max trick:

- $u_i \sim \text{Uniform}(0, 1)$
- $\epsilon_i = -\log(-\log(u_i))$
- $z = arg max(s + \epsilon)$

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score \mathbf{s}_i)

1. Inverse transform sampling:

- p = softmax(s)
- $c_i = \sum_{j \le i} p_j$
- *u* ~ Uniform(0, 1)
- return **z** = e_t s.t. $c_t \le u < c_{t+1}$

2. The Gumbel-Max trick:

- $u_i \sim \text{Uniform}(0, 1)$
- $\epsilon_i = -\log(-\log(u_i))$
- $z = \arg \max(s + \epsilon)$

The two methods are equivalent. (Not obvious, but we will not prove it now.)

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score s_i)

1. Inverse transform sampling:

- $p = \operatorname{softmax}(s)$
- $c_i = \sum_{j \leq i} p_j$
- *u* ~ Uniform(0, 1)
- return **z** = e_t s.t. $c_t \le u < c_{t+1}$

2. The Gumbel-Max trick:

- $u_i \sim \text{Uniform}(0, 1)$
- $\epsilon_i = -\log(-\log(u_i))$
- $\mathbf{z} = \arg\max(\mathbf{s} + \boldsymbol{\epsilon})$

The two methods are equivalent. (*Not obvious, but we will not prove it now.*) Requires sampling from the Standard Gumbel Distribution G(0,1).

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score \mathbf{s}_i)

1. Inverse transform sampling:

- p = softmax(s)
- $c_i = \sum_{j \le i} p_j$
- *u* ~ Uniform(0, 1)
- return $\mathbf{z} = \mathbf{e}_t$ s.t. $c_t \le u < c_{t+1}$

2. The Gumbel-Max trick:

- $u_i \sim \text{Uniform}(0, 1)$
- $\epsilon_i = -\log(-\log(u_i))$
- $\mathbf{z} = \arg\max(\mathbf{s} + \boldsymbol{\epsilon})$

The two methods are equivalent. (Not obvious, but we will not prove it now.)
Requires sampling from the Standard Gumbel Distribution G(0,1).

Derivation & more info: [Adams, 2013, Vieira, 2014]

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score s_i)

We want to sample from a categorical variable with scores \mathbf{s} (class i has a score s_i)

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

• Forward: $z = \arg \max(s + \epsilon)$

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

- Forward: $z = \arg \max(s + \epsilon)$
- Backward: pretend we had done
 p̃ = softmax(s + ε)

S+6

Apply a variant of the Straight-Through Estimator to Gumbel-Max!

Dealing with the combinatorial explosion

1. Incremental structures

- Build structure greedily, as sequence of discrete choices (e.g., shift-reduce).
- Scores (partial structure, action) tuples.
- Advantages: flexible, rich histories.
- **Disadvantages:** greedy, local decisions are suboptimal, error propagation.

2. Factorization into parts

- Optimizes globally (e.g. Viterbi, Chu-Liu-Edmonds, Kuhn-Munkres).
- Scores smaller parts.
- Advantages: optimal, elegant, can handle hard & global constraints.
- **Disadvantages:** strong assumptions.

• Build a structure as a sequence of discrete choices (e.g., shift-reduce)

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- Reparameterize the scores with Gumbel-Max now we have a deterministic node.

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- Reparameterize the scores with Gumbel-Max now we have a deterministic node.
- Forward: the **argmax** from the reparameterized scores for each step

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- Reparameterize the scores with Gumbel-Max now we have a deterministic node.
- Forward: the **argmax** from the reparameterized scores for each step
- Backward: pretend we had used a differentiable surrogate function

- Build a structure as a sequence of discrete choices (e.g., shift-reduce)
- Assigns a score to any (partial structure, action) tuple.
- Reparameterize the scores with Gumbel-Max now we have a deterministic node.
- Forward: the **argmax** from the reparameterized scores for each step
- <u>Backward</u>: pretend we had used a **differentiable surrogate function** Example: Gumbel Tree-LSTM [Choi et al., 2018].

Example: Gumbel Tree-LSTM

- Building task-specific tree structures.
- Straight-Through Gumbel-Softmax at each step to select one arc.

Perturb-and-MAP

Perturb-and-MAP

Reparameterize by **perturbing the arc scores**. (inexact!)

• Sample from the normal Gumbel distribution.

•
$$\epsilon \sim G(0, 1)$$

Perturb-and-MAP

- Sample from the normal Gumbel distribution.
- Perturb the arc scores with the Gumbel noise.
- $\epsilon \sim G(0, 1)$

•
$$\tilde{\eta} = \eta + \epsilon$$

Perturb-and-MAP

- Sample from the normal Gumbel distribution.
- Perturb the arc scores with the Gumbel noise.
- Compute MAP (task-specific algorithm).

- $\epsilon \sim G(0, 1)$
- $\tilde{\eta} = \eta + \epsilon$
- $arg max_{z \in \mathcal{T}} \tilde{\boldsymbol{\eta}}^T \boldsymbol{z}$

Perturb-and-MAP

- Sample from the normal Gumbel distribution.
- Perturb the arc scores with the Gumbel noise.
- Compute MAP (task-specific algorithm).
- Backward: we could use Straight-Through with Identity.

- $\epsilon \sim G(0, 1)$
- $\tilde{\eta} = \eta + \epsilon$
- $arg max_{z \in \mathcal{I}} \tilde{\boldsymbol{\eta}}^T z$

Summary: Gradient surrogates

- Based on the **Straight-Through Estimator**.
- Can be used for stochastic or deterministic computation graphs.
- Forward pass: Get an argmax (might be structured).
- **Backpropagation**: use a function, which we hope is close to argmax.
- Examples:
 - Argmax for iterative structures and factorization into parts
 - Sampling from iterative structures and factorization into parts

Gradient surrogates: Pros and cons

Pros

- Do not suffer from the high variance problem of REINFORCE.
- Allow for flexibility to select or sample a latent structured in the middle of the computation graph.
- Efficient computation.

Cons

- The Gumbel sampling with Perturb-and-MAP is an approximation.
- Bias, due to function mismatch on the backpropagation (next section will address this problem.)

Overview

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

 $L(\operatorname{arg\,max}_{z} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid x))$

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)

- Straight-Through
- SPIGOT

Overview

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

 $L(\operatorname{arg\,max}_{z} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid x))$

$$L(\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[\mathbf{z}])$$

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)

- Straight-Through
- SPIGOT

- Structured Attn. Nets
- SparseMAP

And more, in the next section!

Differentiable Relaxations

IV. End-to-end

End-to-end differentiable relaxations

- 1. Digging into softmax
- 2. Alternatives to softmax
- 3. Generalizing to structured prediction
- 4. Stochasticity and global structures

Recall: Discrete choices & differentiability

Odeep-spin.github.io/tutorial

One solution: smooth relaxation

□deep-spin.github.io/tutoriαl

One solution: smooth relaxation

□deep-spin.github.io/tutoriαl

Overview

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

$$L(\operatorname{arg\,max}_{z} \pi_{\boldsymbol{\theta}}(\boldsymbol{z} \mid x))$$

 $L(\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[\mathbf{z}])$

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)
- Straight-Through
- SPIGOT

What is softmax?

Often defined via
$$p_i = \frac{\exp s_i}{\sum_j \exp s_j}$$
, but where does it come from?

What is softmax?

Often defined via
$$p_i = \frac{\exp s_i}{\sum_j \exp s_j}$$
, but where does it come from?

 $p \in \Delta$: probability distribution over choices

Often defined via
$$p_i = \frac{\exp s_i}{\sum_j \exp s_j}$$
, but where does it come from?

 $p \in \Delta$: probability distribution over choices

Often defined via
$$p_i = \frac{\exp s_i}{\sum_j \exp s_j}$$
, but where does it come from?

 $p \in \Delta$: probability distribution over choices

Often defined via
$$p_i = \frac{\exp s_i}{\sum_j \exp s_j}$$
, but where does it come from?

 $p \in \Delta$: probability distribution over choices

Often defined via
$$p_i = \frac{\exp s_i}{\sum_j \exp s_j}$$
, but where does it come from?

 $p \in \Delta$: probability distribution over choices

Expected score under p: $\mathbb{E}_{i \sim p} s_i = p^{\top} s$

Often defined via
$$p_i = \frac{\exp s_i}{\sum_j \exp s_j}$$
, but where does it come from?

 $p \in \Delta$: probability distribution over choices Expected score under p: $\mathbb{E}_{i \sim p} s_i = p^{\top} s$ argmax

Often defined via
$$p_i = \frac{\exp s_i}{\sum_j \exp s_j}$$
, but where does it come from?

 $p \in \Delta$: probability distribution over choices Expected score under \mathbf{p} : $\mathbb{E}_{i \sim \mathbf{p}} s_i = \mathbf{p}^{\top} \mathbf{s}$ argmax maximizes expected score

 $p \in \Delta$

Often defined via
$$p_i = \frac{\exp s_i}{\sum_j \exp s_j}$$
, but where does it come from?

 $p \in \Delta$: probability distribution over choices Expected score under p: $\mathbb{E}_{i \sim p} s_i = p^{\top} s$ argmax maximizes expected score Shannon entropy of p: $H(p) = -\sum_i p_i \log p_i$

Often defined via $p_i = \frac{\exp s_i}{\sum_j \exp s_j}$, but where does it come from?

 $p \in \Delta$: probability distribution over choices Expected score under p: $\mathbb{E}_{i \sim p} s_i = p^{\top} s$ argmax maximizes expected score Shannon entropy of p: $H(p) = -\sum_i p_i \log p_i$ softmax maximizes expected score + entropy:

$$\arg\max_{\boldsymbol{p}\in\Delta}\boldsymbol{p}^{\top}\boldsymbol{s}+\mathsf{H}(\boldsymbol{p})$$

Proposition. The unique solution to $\arg \max_{p \in \Delta} p^{\top} s + H(p)$ is given by $p_j = \frac{\exp s_j}{\sum_i \exp s_i}$.

Proposition. The unique solution to $\arg \max_{p \in \Delta} p^{\top} s + H(p)$ is given by $p_j = \frac{\exp s_j}{\sum_i \exp s_i}$.

Explicit form of the optimization problem:

maximize
$$\sum_{j} p_{j}s_{j} - p_{j} \log p_{j}$$

subject to $\mathbf{p} \ge 0$, $\mathbf{p}^{\top} \mathbf{1} = 1$

Proposition. The unique solution to $\arg \max_{p \in \Delta} p^{\top} s + H(p)$ is given by $p_j = \frac{\exp s_j}{\sum_i \exp s_j}$.

Explicit form of the optimization problem:

maximize
$$\sum_{j} p_{j} s_{j} - p_{j} \log p_{j}$$

subject to $p \ge 0$, $p^{T} \mathbf{1} = 1$

Lagrangian:

$$\mathcal{L}(\boldsymbol{p},\,\boldsymbol{\nu},\,\tau) = -\sum_{j} p_{j} s_{j} - p_{j} \log p_{j} - \boldsymbol{p}^{\top} \boldsymbol{\nu} + \tau(\boldsymbol{p}^{\top} \boldsymbol{1} - 1)$$

Proposition. The unique solution to $\arg \max_{p \in \Delta} p^{\top} s + H(p)$ is given by $p_j = \frac{\exp s_j}{\sum_i \exp s_j}$.

Explicit form of the optimization problem:

maximize
$$\sum_{j} p_{j}s_{j} - p_{j} \log p_{j}$$

subject to $\mathbf{p} \ge 0$, $\mathbf{p}^{\top} \mathbf{1} = 1$

Lagrangian:

$$\mathcal{L}(\boldsymbol{p}, \boldsymbol{\nu}, \tau) = -\sum_{i} p_{i} s_{j} - p_{i} \log p_{i} - \boldsymbol{p}^{\top} \boldsymbol{\nu} + \tau(\boldsymbol{p}^{\top} \mathbf{1} - 1)$$

$$0 = \nabla_{p_i} \mathcal{L}(\boldsymbol{p}, \boldsymbol{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau$$
$$\boldsymbol{p}^{\top} \boldsymbol{\nu} = 0$$
$$\boldsymbol{p} \in \Delta$$
$$\boldsymbol{\nu} > \mathbf{0}$$

Proposition. The unique solution to $\arg \max_{p \in \Delta} p^{\top} s + H(p)$ is given by $p_j = \frac{\exp s_j}{\sum_i \exp s_j}$.

$$\log p_i = s_i + \nu_i - (\tau + 1)$$

maximize
$$\sum_{j} p_{j} s_{j} - p_{j} \log p_{j}$$

subject to $p > 0$, $p^{T} \mathbf{1} = 1$

Lagrangian:

$$\mathcal{L}(\boldsymbol{p}, \boldsymbol{\nu}, \tau) = -\sum_{i} p_{i} s_{j} - p_{i} \log p_{i} - \boldsymbol{p}^{\top} \boldsymbol{\nu} + \tau(\boldsymbol{p}^{\top} \mathbf{1} - 1)$$

$$\begin{aligned} 0 &= \nabla_{p_i} \mathcal{L}(\boldsymbol{p}, \, \boldsymbol{\nu}, \, \boldsymbol{\tau}) = -s_i + \log p_i + 1 - \nu_i + \boldsymbol{\tau} \\ \boldsymbol{p}^\top \boldsymbol{\nu} &= 0 \\ \boldsymbol{p} &\in \Delta \end{aligned}$$

Proposition. The unique solution to $\arg \max_{p \in \Delta} p^{\top} s + H(p)$ is given by $p_j = \frac{\exp s_j}{\sum_i \exp s_i}$.

Explicit form of the optimization problem:

maximize
$$\sum_{j} p_{j} s_{j} - p_{j} \log p_{j}$$

subject to $\mathbf{p} \ge 0$, $\mathbf{p}^{T} \mathbf{1} = 1$

 $\log p_i = s_i + \nu_i - (\tau + 1)$ if $p_i = 0$, r.h.s. must be $-\infty$,
thus $p_i > 0$, so $\nu_i = 0$.

Lagrangian:

$$\mathcal{L}(\boldsymbol{p},\,\boldsymbol{\nu},\,\tau) = -\sum_{j} p_{j} s_{j} - p_{j} \log p_{j} - \boldsymbol{p}^{\top} \boldsymbol{\nu} + \tau(\boldsymbol{p}^{\top} \boldsymbol{1} - 1)$$

$$0 = \nabla_{p_i} \mathcal{L}(\boldsymbol{p}, \boldsymbol{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau$$
$$\boldsymbol{p}^{\top} \boldsymbol{\nu} = 0$$
$$\boldsymbol{p} \in \Delta$$
$$\boldsymbol{\nu} > \mathbf{0}$$

Proposition. The unique solution to $\arg \max_{p \in \Delta} p^{\top} s + H(p)$ is given by $p_j = \frac{\exp s_j}{\sum_i \exp s_i}$.

Explicit form of the optimization problem:

maximize
$$\sum_{j} p_{j}s_{j} - p_{j} \log p_{j}$$

subject to $\mathbf{p} \ge 0$, $\mathbf{p}^{\top} \mathbf{1} = 1$

 $\log p_i = s_i + \nu_i - (\tau + 1)$ if $p_i = 0$, r.h.s. must be $-\infty$,
thus $p_i > 0$, so $\nu_i = 0$. $p_i = \exp(s_i)/\exp(\tau + 1) = \exp(s_i)/Z$

Lagrangian:

$$\mathcal{L}(\boldsymbol{p},\,\boldsymbol{\nu},\,\tau) = -\sum_{j} p_{j} s_{j} - p_{j} \log p_{j} - \boldsymbol{p}^{\top} \boldsymbol{\nu} + \tau(\boldsymbol{p}^{\top} \boldsymbol{1} - 1)$$

$$0 = \nabla_{p_i} \mathcal{L}(\boldsymbol{p}, \boldsymbol{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau$$
$$\boldsymbol{p}^{\top} \boldsymbol{\nu} = 0$$
$$\boldsymbol{p} \in \Delta$$
$$\boldsymbol{\nu} > 0$$

Proposition. The unique solution to $\arg \max_{p \in \Delta} p^{\top} s + H(p)$ is given by $p_j = \frac{\exp s_j}{\sum_i \exp s_i}$.

Explicit form of the optimization problem:

maximize
$$\sum_{j} p_{j}s_{j} - p_{j} \log p_{j}$$

subject to $\mathbf{p} \ge 0$, $\mathbf{p}^{\top} \mathbf{1} = 1$

Lagrangian:

$$\mathcal{L}(\boldsymbol{p},\,\boldsymbol{\nu},\,\tau) = -\sum_{j} p_{j} s_{j} - p_{j} \log p_{j} - \boldsymbol{p}^{\top} \boldsymbol{\nu} + \tau(\boldsymbol{p}^{\top} \boldsymbol{1} - 1)$$

Optimality conditions (KKT):

$$0 = \nabla_{p_i} \mathcal{L}(\boldsymbol{p}, \boldsymbol{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau$$
$$\boldsymbol{p}^{\top} \boldsymbol{\nu} = 0$$
$$\boldsymbol{p} \in \Delta$$
$$\boldsymbol{\nu} > \mathbf{0}$$

$$\log p_i = s_i + \nu_i - (\tau + 1)$$
if $p_i = 0$, r.h.s. must be $-\infty$,
thus $p_i > 0$, so $\nu_i = 0$.
$$p_i = \exp(s_i)/\exp(\tau + 1) = \exp(s_i)/2$$

Must find Z such that $\sum_i p_i = 1$.

Proposition. The unique solution to $\arg \max \mathbf{p}^{\mathsf{T}} \mathbf{s} + \mathsf{H}(\mathbf{p})$ is given by $p_j = \frac{\exp \mathsf{s}_j}{\sum_{i \in \mathsf{PXP}} \mathsf{s}_i}$.

Explicit form of the optimization problem:

maximize
$$\sum_{j} p_{j}s_{j} - p_{j} \log p_{j}$$

subject to $\mathbf{p} \ge 0$, $\mathbf{p}^{\top} \mathbf{1} = 1$

Lagrangian:

$$\mathcal{L}(\boldsymbol{p}, \boldsymbol{\nu}, \tau) = -\sum_{j} p_{j} s_{j} - p_{j} \log p_{j} - \boldsymbol{p}^{\top} \boldsymbol{\nu} + \tau(\boldsymbol{p}^{\top} \mathbf{1} - 1)$$

Optimality conditions (KKT):

$$0 = \nabla_{p_i} \mathcal{L}(\boldsymbol{p}, \boldsymbol{\nu}, \tau) = -s_i + \log p_i + 1 - \nu_i + \tau$$
$$\boldsymbol{p}^{\top} \boldsymbol{\nu} = 0$$
$$\boldsymbol{p} \in \Delta$$

$$\log p_i = s_i + \nu_i - (\tau + 1)$$
if $p_i = 0$, r.h.s. must be $-\infty$,
thus $p_i > 0$, so $\nu_i = 0$.
$$p_i = \exp(s_i)/\exp(\tau + 1) = \exp(s_i)/T$$

Must find Z such that
$$\sum_{j} p_{j} = 1$$
.
Answer: $Z = \sum_{i} \exp(s_{i})$

 $\nu > 0$

Proposition. The unique solution to $\arg \max_{p \in \Delta} p^{\top} s + H(p)$ is given by $p_j = \frac{\exp s_j}{\sum_i \exp s_i}$.

Explicit form of the optimization problem:

maximize
$$\sum_{j} p_{j}s_{j} - p_{j} \log p_{j}$$

subject to $\mathbf{p} \ge 0$, $\mathbf{p}^{\top} \mathbf{1} = 1$

Lagrangian:

$$\mathcal{L}(\boldsymbol{p},\,\boldsymbol{\nu},\,\tau) = -\sum_j p_j s_j - p_j \log p_j - \boldsymbol{p}^\top \boldsymbol{\nu} + \tau(\boldsymbol{p}^\top \boldsymbol{1} - 1)$$

Optimality conditions (KKT):

$$0 = \nabla_{p_i} \mathcal{L}(\mathbf{p}, \mathbf{v}, \tau) = -s_i + \log p_i + 1 - v_i + \tau$$

$$\mathbf{p}^{\top} \mathbf{v} = 0$$

$$\mathbf{p} \in \Delta$$

$$\mathbf{v} > \mathbf{0}$$

$$\log p_i = s_i + \nu_i - (\tau + 1)$$
if $p_i = 0$, r.h.s. must be $-\infty$,
thus $p_i > 0$, so $\nu_i = 0$.
$$p_i = \exp(s_i)/\exp(\tau + 1) = \exp(s_i)/7$$

Must find Z such that $\sum_{j} p_{j} = 1$.

Answer:
$$Z = \sum_{j} \exp(s_j)$$

So,
$$p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)}$$
.

Classic result, e.g., [Boyd and Vandenberghe, 2004, Wainwright and Jordan, 2008]

$$\hat{\boldsymbol{p}}_{\Omega}(\boldsymbol{s}) = \arg\max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{s} - \Omega(\boldsymbol{p})$$

$$\hat{\boldsymbol{p}}_{\Omega}(\boldsymbol{s}) = \arg\max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{s} - \Omega(\boldsymbol{p})$$

$$\hat{\boldsymbol{p}}_{\Omega}(\boldsymbol{s}) = \arg\max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{s} - \Omega(\boldsymbol{p})$$

• argmax: $\Omega(\mathbf{p}) = 0$

$$\hat{\boldsymbol{p}}_{\Omega}(\boldsymbol{s}) = \arg\max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{s} - \Omega(\boldsymbol{p})$$

- argmax: $\Omega(\mathbf{p}) = 0$
- softmax: $\Omega(\mathbf{p}) = \sum_{i} p_{i} \log p_{i}$

$$\hat{\boldsymbol{p}}_{\Omega}(\boldsymbol{s}) = \underset{\boldsymbol{p} \in \Delta}{\operatorname{arg max}} \, \boldsymbol{p}^{\top} \boldsymbol{s} - \Omega(\boldsymbol{p})$$

- argmax: $\Omega(\mathbf{p}) = 0$
- softmax: $\Omega(\mathbf{p}) = \sum_{i} p_{i} \log p_{i}$
- sparsemax: $\Omega(p) = 1/2 ||p||_2^2$

$$\hat{\boldsymbol{p}}_{\Omega}(\boldsymbol{s}) = \arg\max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{s} - \Omega(\boldsymbol{p})$$

- argmax: $\Omega(\mathbf{p}) = 0$
- softmax: $\Omega(\mathbf{p}) = \sum_{i} p_{i} \log p_{i}$
- sparsemax: $\Omega(p) = 1/2 ||p||_2^2$

$$\alpha$$
-entmax: $\Omega(\mathbf{p}) = 1/\alpha(\alpha-1) \sum_{j} p_{j}^{\alpha}$

Generalized entropy interpolates in between [Tsallis, 1988] Used in Sparse Seq2Seq: [Peters et al., 2019] and Adaptively Sparse Transformers [Correia et al., 2019]

$$\hat{\boldsymbol{p}}_{\Omega}(\boldsymbol{s}) = \arg\max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{s} - \Omega(\boldsymbol{p})$$

- argmax: $\Omega(\mathbf{p}) = 0$
- softmax: $\Omega(\mathbf{p}) = \sum_{i} p_{i} \log p_{i}$
- sparsemax: $\Omega(p) = 1/2 ||p||_2^2$

$$\alpha$$
-entmax: $\Omega(\mathbf{p}) = 1/\alpha(\alpha-1) \sum_{i} p_{i}^{\alpha}$

fusedmax:
$$\Omega(\mathbf{p}) = 1/2 ||\mathbf{p}||_2^2 + \sum_j |p_j - p_{j-1}|$$

csparsemax: $\Omega(\mathbf{p}) = 1/2 ||\mathbf{p}||_2^2 + \iota(\mathbf{a} \le \mathbf{p} \le \mathbf{b})$

csoftmax:
$$\Omega(\mathbf{p}) = \sum_{i} p_{i} \log p_{i} + \iota(\mathbf{a} \leq \mathbf{p} \leq \mathbf{b})$$

The structured case: Marginal polytope

- Each vertex corresponds to one such bit vector **z**
- Points inside correspond to marginal distributions: convex combinations of structured objects

$$\mu = \underbrace{p_1 \mathbf{z}_1 + \ldots + p_N \mathbf{z}_N}_{\text{exponentially many terms}}, \ \mathbf{p} \in \Delta.$$

$$p_1 = 0.2$$
, $\mathbf{z}_1 = [1, 0, 0, 0, 1, 0, 0, 0, 1]$
 $p_2 = 0.7$, $\mathbf{z}_2 = [0, 0, 1, 0, 0, 1, 1, 0, 0]$
 $p_3 = 0.1$, $\mathbf{z}_3 = [1, 0, 0, 0, 1, 0, 0, 1, 0]$

$$\Rightarrow \mu = [.3, 0, .7, 0, .3, .7, .7, .1, .2].$$

• **argmax** $\operatorname{arg\,max} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{s}$ $\boldsymbol{p} \in \Delta$

 $\underset{p \in \Delta}{\operatorname{arg\,max}} \, p^{\mathsf{T}} s$

$$\mathbf{MAP} \underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{arg\,max}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta}$$

- **argmax** $\operatorname{arg\,max} p^{\mathsf{T}} s$ $p \in \Delta$
- **softmax** $\arg \max_{p \in \Delta} p^{\top} s + H(p)$

- **argmax** $\operatorname{arg\,max} p^{\mathsf{T}} s$ $p \in \Delta$
- softmax $\arg \max p^{\top} s + H(p)$

$$\mathsf{MAP} \underset{\boldsymbol{\mu} \in \mathcal{M}}{\mathsf{arg}} \mathsf{max} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta}$$

marginals $\arg\max_{\boldsymbol{\mu}\in\mathcal{M}}\mathbf{\Pi}+\widetilde{H}(\boldsymbol{\mu})$

- **argmax** $\operatorname{arg\,max} p^{\mathsf{T}} s$ $p \in \Delta$
- softmax $\arg \max p^{\top}s + H(p)$ $p \in \triangle$

- MAP $\arg \max_{\mu \in \mathcal{M}} \mu^{\top} \eta$
- marginals $\arg \max_{\boldsymbol{\mu} \in \mathcal{M}} \mathbf{\Pi} + \widetilde{H}(\boldsymbol{\mu})$

Just like softmax relaxes argmax, marginals relax MAP **differentiably**!

- **argmax** arg max $p^T s$ $p \in \Delta$
- softmax $\arg\max p^{\top}s + H(p)$ $p \in \Delta$

- MAP $\arg \max_{\mu \in \mathcal{M}} \mu^{\top} \eta$
- marginals $\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{marginals}} \operatorname{arg\,max} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} + \widetilde{\operatorname{H}}(\boldsymbol{\mu})$

Just like softmax relaxes argmax, marginals relax MAP **differentiably**!

Unlike argmax/softmax, computation is not obvious!

Algorithms for specific structures

	Best structure (MAP)	Marginals
Sequence tagging	Viterbi [Rabiner, 1989]	Forward-Backward [Rabiner, 1989]
Constituent trees	CKY [Kasami, 1966, Younger, 1967] [Cocke and Schwartz, 1970]	Inside-Outside [Baker, 1979]
Temporal alignments	DTW [Sakoe and Chiba, 1978]	Soft-DTW [Cuturi and Blondel, 2017]
Dependency trees	Max. Spanning Arborescence [Chu and Liu, 1965, Edmonds, 1967]	Matrix-Tree [Kirchhoff, 1847]
Assignments	Kuhn-Munkres [Kuhn, 1955, Jonker and Volgenant, 1987]	#P-complete [Valiant, 1979, Taskar, 2004]

Algorithms for specific structures

		Best structure (MAP)	Marginals
dyn. prog.	Sequence tagging	Viterbi [Rabiner, 1989]	Forward-Backward [Rabiner, 1989]
	Constituent trees	CKY [Kasami, 1966, Younger, 1967] [Cocke and Schwartz, 1970]	Inside-Outside [Baker, 1979]
	Temporal alignments	DTW [Sakoe and Chiba, 1978]	Soft-DTW [Cuturi and Blondel, 2017]
	Dependency trees	Max. Spanning Arborescence [Chu and Liu, 1965, Edmonds, 1967]	Matrix-Tree [Kirchhoff, 1847]
	Assignments	Kuhn-Munkres [Kuhn, 1955, Jonker and Volgenant, 1987]	#P-complete [Valiant, 1979, Taskar, 2004]

Derivatives of marginals 1: DP

Dynamic programming: marginals by Forward-Backward, Inside-Outside, etc.

Dynamic programming: marginals by Forward-Backward, Inside-Outside, etc.

```
1 input: d tags, n tokens, \mathbf{\eta}_U \in \mathbb{R}^{n \times d}, \mathbf{\eta}_V \in \mathbb{R}^{d \times d}
2 initialize \mathbf{\alpha}_1 = \mathbf{0}, \mathbf{\beta}_n = \mathbf{0}
3 for i \in 2, \ldots, n do # forward log-probabilities
4 \alpha_{i,k} = \log \sum_{k'} \exp \left(\alpha_{i-1,k'} + (\mathbf{\eta}_U)_{i,k} + (\mathbf{\eta}_V)_{k',k}\right) for all k
5 for i \in n-1, \ldots, 1 do # backward log-probabilities
6 \beta_{i,k} = \log \sum_{k'} \exp \left(\beta_{i+1,k'} + (\mathbf{\eta}_U)_{i+1,k'} + (\mathbf{\eta}_V)_{k,k'}\right) for all k
7 Z = \sum_k \exp \alpha_{n,k} # partition function
8 return \mathbf{\mu} = \exp \left(\mathbf{\alpha} + \mathbf{\beta} - \log Z\right) # marginals
```


Dynamic programming: marginals by Forward-Backward, Inside-Outside, etc.

• Alg. consists of differentiable ops: PyTorch autograd can handle it! (v. bad idea)

```
1 input: d tags, n tokens, \mathbf{\eta}_U \in \mathbb{R}^{n \times d}, \mathbf{\eta}_V \in \mathbb{R}^{d \times d}
2 initialize \mathbf{\alpha}_1 = \mathbf{0}, \mathbf{\beta}_n = \mathbf{0}
3 for i \in 2, \ldots, n do # forward log-probabilities
4 \alpha_{i,k} = \log \sum_{k'} \exp \left(\alpha_{i-1,k'} + (\mathbf{\eta}_U)_{i,k} + (\mathbf{\eta}_V)_{k',k}\right) for all k
5 for i \in n-1, \ldots, 1 do # backward log-probabilities
6 \beta_{i,k} = \log \sum_{k'} \exp \left(\beta_{i+1,k'} + (\mathbf{\eta}_U)_{i+1,k'} + (\mathbf{\eta}_V)_{k,k'}\right) for all k
7 Z = \sum_k \exp \alpha_{n,k} # partition function
8 return \mathbf{\mu} = \exp \left(\mathbf{\alpha} + \mathbf{\beta} - \log Z\right) # marginals
```


Dynamic programming: marginals by Forward-Backward, Inside-Outside, etc.

- Alg. consists of differentiable ops: PyTorch autograd can handle it! (v. bad idea)
- Better book-keeping: Li and Eisner [2009], Mensch and Blondel [2018]

```
1 input: d tags, n tokens, \mathbf{\eta}_U \in \mathbb{R}^{n \times d}, \mathbf{\eta}_V \in \mathbb{R}^{d \times d}
2 initialize \mathbf{\alpha}_1 = \mathbf{0}, \mathbf{\beta}_n = \mathbf{0}
3 for i \in 2, \ldots, n do # forward log-probabilities
4 \alpha_{i,k} = \log \sum_{k'} \exp \left(\alpha_{i-1,k'} + (\mathbf{\eta}_U)_{i,k} + (\mathbf{\eta}_V)_{k',k}\right) for all k
5 for i \in n-1, \ldots, 1 do # backward log-probabilities
6 \beta_{i,k} = \log \sum_{k'} \exp \left(\beta_{i+1,k'} + (\mathbf{\eta}_U)_{i+1,k'} + (\mathbf{\eta}_V)_{k,k'}\right) for all k
7 Z = \sum_k \exp \alpha_{n,k} # partition function
8 return \boldsymbol{\mu} = \exp \left(\boldsymbol{\alpha} + \boldsymbol{\beta} - \log Z\right) # marginals
```


Dynamic programming: marginals by Forward-Backward, Inside-Outside, etc.

- Alg. consists of differentiable ops: PyTorch autograd can handle it! (v. bad idea)
- Better book-keeping: Li and Eisner [2009], Mensch and Blondel [2018]
- With circular dependencies, this breaks! Can get an approximation [Stoyanov et al., 2011]

```
1 input: d tags, n tokens, \mathbf{\eta}_{U} \in \mathbb{R}^{n \times d}, \mathbf{\eta}_{V} \in \mathbb{R}^{d \times d}
2 initialize \mathbf{\alpha}_{1} = \mathbf{0}, \mathbf{\beta}_{n} = \mathbf{0}
3 for i \in 2, \ldots, n do # forward log-probabilities
4 \alpha_{i,k} = \log \sum_{k'} \exp \left(\alpha_{i-1,k'} + (\mathbf{\eta}_{U})_{i,k} + (\mathbf{\eta}_{V})_{k',k}\right) for all k
5 for i \in n-1, \ldots, 1 do # backward log-probabilities
6 \beta_{i,k} = \log \sum_{k'} \exp \left(\beta_{i+1,k'} + (\mathbf{\eta}_{U})_{i+1,k'} + (\mathbf{\eta}_{V})_{k,k'}\right) for all k
7 Z = \sum_{k} \exp \alpha_{n,k} # partition function
8 return \boldsymbol{\mu} = \exp \left(\boldsymbol{\alpha} + \boldsymbol{\beta} - \log Z\right) # marginals
```


Derivatives of marginals 2: Matrix-Tree

L(**s**): Laplacian of the edge score graph

$$Z = \det \mathbf{L}(\mathbf{s})$$

$$\boldsymbol{\mu} = \mathbf{L}(\mathbf{s})^{-1}$$

$$\nabla \boldsymbol{\mu} = \nabla \mathbf{L}^{-1} = \mathbf{L}^{-1} \left(\frac{\partial \mathbf{L}}{\partial \boldsymbol{\eta}} \right) \mathbf{L}^{-1}$$

CRF marginals (from forward-backward) give attention weights \in (0, 1)

CRF marginals (from *forward-backward*) give attention weights \in (0, 1) Similar idea for projective dependency trees with *inside-outside*

CRF marginals (from *forward-backward*) give attention weights ∈ (0, 1) Similar idea for projective dependency trees with *inside-outside* and non-projective with the Matrix-Tree theorem [Liu and Lapata, 2018].

Differentiable Perturb & Parse

Extending Gumbel-Softmax to structured stochastic models

• Forward pass: sample structure z (approximately) $z = \arg \max_{z \in \mathcal{T}} (\eta + \epsilon)^{\top} z$

Backward pass:

pretend we did marginal inference

$$\tilde{\boldsymbol{\mu}} = \underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{arg max}} (\boldsymbol{\eta} + \boldsymbol{\epsilon})^{\mathsf{T}} \mathbf{z} + \tilde{\mathsf{H}}(\boldsymbol{\mu})$$

(or some similar relaxation)

Pros:

Pros:

• Familiar algorithms for NLPers,

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

Cons:

 (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
- Not applicable when marginals are unavailable.

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
- Not applicable when marginals are unavailable.
- Case-by-case algorithms required, can get tedious.

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Net)

Cons:

- (Structured Attention Net (fixed by Perturb & MA
- Efficient & numerically st (somewhat alleviated b
- Not applicable when mar.
- Case-by-case algorithms

xact.

inals are dense; nation) ugh DPs is tricky; 81)

Pros:

- Familiar algorithms for NLPers,
- (Structured Attention Networks:) All computations exact.

- (Structured Attention Networks:) forward pass marginals are dense; (fixed by Perturb & MAP, at cost of rough approximation)
- Efficient & numerically stable back-propagation through DPs is tricky; (somewhat alleviated by Mensch and Blondel [2018])
- Not applicable when marginals are unavailable.
- Case-by-case algorithms required, can get tedious.

- **argmax** arg max $p^T s$ $p \in \Delta$
- softmax arg max $p^T s + H(p)$
- sparsemax $\arg \max_{p \in \Delta} p^{\mathsf{T}} s 1/2 ||p||^2$

marginals $\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{marginals}} \operatorname{arg\,max} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} + \widetilde{H}(\boldsymbol{\mu}) \quad \bullet$

- **argmax** $\operatorname{arg\,max} p^{\mathsf{T}} s$ $p \in \Delta$
- softmax arg max $p^T s + H(p)$ $p \in \Delta$
- sparsemax $\arg \max_{p \in \Delta} p^{\mathsf{T}} s 1/2 ||p||^2$

marginals $\arg \max_{\boldsymbol{\mu} \in \mathcal{M}} \mathbf{\Pi} + \widetilde{\mathbf{H}}(\boldsymbol{\mu})$

SparseMAP $\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{arg max}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} - 1/2 \|\boldsymbol{\mu}\|^2 \bullet$

SparseMAP solution

$$\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^T \eta - \frac{1}{2} \|\mu\|^2$$

$$= 00 = .600 + .400$$

 (μ^*) is unique, but may have multiple decompositions p. Active Set recovers a sparse one.)

$$\mu^* = \underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{arg max}} \mu^{\mathsf{T}} \boldsymbol{\eta} - \frac{1}{2} ||\boldsymbol{\mu}||^2$$

This is also $proj_M$ required by SPIGOT!

$$\mu^* = \arg\max \mu^\top \eta - 1/2 \|\mu\|^2$$
linear constraints
(alas, exponentially many!)

| \text{quadratic objective} \tag{quadratic objective} \tag{quadratic objective} \tag{quadratic objective}

$$\mu^* = \arg\max \mu^\top \eta - 1/2 \|\mu\|^2$$
 | quadratic objective (alas, exponentially many!) | quadratic objective

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

$$\mu^* = \arg\max_{\mu \in \mathcal{M}} \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective (alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

select a new corner of M

$$\mu^* = \arg\max \mu^\top \eta - 1/2 \|\mu\|^2$$
 linear constraints
$$\mu \in \mathcal{M}$$
 quadratic objective (alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

select a new corner of M

$$\arg\max_{\boldsymbol{\mu}\in\mathcal{M}}\boldsymbol{\mu}^{\top}\underbrace{(\boldsymbol{\eta}-\boldsymbol{\mu}^{(t-1)})}_{\widetilde{\boldsymbol{\eta}}}$$

$$\mu^* = \arg\max_{\mu \in \mathcal{M}} \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective (alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of M
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise

$$\mu^* = \arg\max_{\mu \in \mathcal{M}} \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective (alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of M
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set

 a.k.a. Min-Norm Point, [Wolfe, 1976]

 [Martins et al., 2015, Nocedal and Wright, 1999]

$$\mu^* = \arg\max_{\mu \in \mathcal{M}} \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective (alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new cornel
- update the (sparse)

 - Quadratic objective:

Active Set achieves

• Update rules: vanilla finite & linear convergence!

a.k.a. Min-Norm Point, [Wolfe, 1976]

[Martins et al., 2015, Nocedal and Wright, 1999]

$$\mu^* = \arg\max \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective (alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of M
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set

 a.k.a. Min-Norm Point, [Wolfe, 1976]

 [Martins et al., 2015, Nocedal and Wright, 1999]

Backward pass

$$\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}$$
 is sparse

$$\mu^* = \arg\max \mu^\top \eta - 1/2 \|\mu\|^2$$
 | Iinear constraints | $\mu \in \mathcal{M}$ | quadratic objective (alas, exponentially many!)

Conditional Gradient

[Frank and Wolfe, 1956, Lacoste-Julien and Jaggi, 2015]

- select a new corner of M
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set

 a.k.a. Min-Norm Point, [Wolfe, 1976]

 [Martins et al., 2015, Nocedal and Wright, 1999]

Backward pass

$$\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}$$
 is sparse computing $\left(\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}\right)^{\mathsf{T}} \boldsymbol{d} \boldsymbol{y}$ takes $O(\dim(\boldsymbol{\mu}) \operatorname{nnz}(\boldsymbol{p}^{\star}))$

$$\mu^* = \arg\max \mu^\top \eta - 1/2 \|\mu\|^2$$
linear constraints
(alas, exponentially many!)
$$\mu \in \mathcal{M}$$
quadratic objective

Conditi

[Frank and Wolfe, 1956] Completely modular: just add MAP

select a new c

update the (sparse) coemcients of p

- Update rules: vanilla, away-step, pairwise
- Quadratic objective: Active Set a.k.a. Min-Norm Point, [Wolfe, 1976] [Martins et al., 2015, Nocedal and Wright, 1999]

pass

computing $\left(\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{n}}\right)^{\top} \boldsymbol{d} \boldsymbol{y}$

takes $O(\dim(\boldsymbol{\mu}) \operatorname{nnz}(\boldsymbol{p}^*))$

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

$$L(\operatorname{arg\,max}_{z} \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid x))$$

$$L(\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[\mathbf{z}])$$

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)

- Straight-Through
- SPIGOT

- Structured Attn. Nets
- SparseMAP

$$\mathbb{E}_{\mathbf{z}}[L(\mathbf{z})] = \sum_{\mathbf{z} \in \mathcal{Z}} L(\hat{\mathbf{y}}(\mathbf{z})) \pi(\mathbf{z} \mid \mathbf{x})$$

$$\mathbb{E}_{\mathbf{z}}[L(\mathbf{z})] = \sum_{\mathbf{z} \in \mathcal{I}} L(\hat{y}_{\phi}(\mathbf{z})) \, \pi_{\theta}(\mathbf{z} \mid \mathbf{x})$$

$$\mathbb{E}_{\mathbf{z}}[L(\mathbf{z})] = \sum_{\mathbf{z} \in \mathcal{Z}} L(\hat{y}_{\phi}(\mathbf{z})) \, \pi_{\theta}(\mathbf{z} \mid \mathbf{x})$$

Exponentially large sum!

idea 1 idea 2

idea 1

idea 2

Odeep-spin.github.io/tutorial

All methods we've seen require sampling; hard in general.

idea 2

$$= .7 \times + .3 \times$$

$$+ .3x + .3x + .3x + ...$$

$$\mathbb{E}[L(\mathbf{z})] = .7 \times L(3 \times L$$

recall our shorthand
$$L(\mathbf{z}) = L(\hat{y}_{\phi}(\mathbf{z}), y)$$

V. Conclusions

Stanford Sentiment (Accuracy)

[Socher et al., 2013] Bigram Naive Bayes

[Niculae et al., 2018b]

[Corro and Titov. 2019b]

GCN w/ CoreNLP

[Havrylov et al., 2019] TreeLSTM + tricks

[Choi et al., 2018] ST Gumbel-Tree

DepTreeLSTM w/ CoreNLP

GCN w/ Perturb-and-MAP

DepTreeLSTM w/ SparseMAP 84.7

83.1

90.2

83.2

83.8

84.6

90.7

[Choi et al., 2018] 100D ST Gumbel-Tree 300D -

600D -[Corro and Titov. 2019b] Latent Tree + 1 GCN -Latent Tree + 2 GCN -

[Kim et al., 2017]

Simple Attention

[Liu and Lapata, 2018]

[Yogatama et al., 2017]

100D RL-SPINN

Structured Attention

100D Structured Attention

[Havrylov et al., 2019] 100D TreeLSTM + tricks 85.2 86.2

84.3

86.2

86.8

86.8

80.5

82.6

85.6

86.0

Is it syntax?!

- Unlike e.g. unsupervised parsing, the structures we learn are guided by a downstream objective (typically discriminative).
- They don't typically resemble grammatical structure (yet) [Williams et al., 2018] (future work: more inductive biases and constraints?)

Is it syntax?!

- Unlike e.g. unsupervised parsing, the structures we learn are guided by a downstream objective (typically discriminative).
- They don't typically resemble grammatical structure (yet) [Williams et al., 2018] (future work: more inductive biases and constraints?)
- Common to compare latent structures with parser outputs. But is this always a meaningful comparison?

Syntax vs. Composition Order

Syntax vs. Composition Order

Syntax vs. Composition Order

Ωdeep-spin.github.io/tutoriαl

• 100

film

meaningful

deep

and

Conclusions

- Latent structure models are desirable for interpretability, structural bias, and higher predictive power with fewer parameters.
- Stochastic latent variables can be dealt with RL or straight-through gradients.
- Deterministic argmax requires surrogate gradients (e.g. SPIGOT).
- Continuous relaxations of argmax include SANs and SparseMAP.
- Intuitively, some of these different methods are trying to do similar things or require the same building blocks (e.g. SPIGOT and SparseMAP).
- ... we didn't even get into deep *generative* models! These tools apply, but there are new challenges. [Corro and Titov, 2019a, Kim et al., 2019a, Kawakami et al., 2019]

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$$

$$L(\operatorname{arg\,max}_{z}\pi_{\boldsymbol{\theta}}(\mathbf{z}\mid x))$$

$$L(\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[\mathbf{z}])$$

- REINFORCE
- Straight-Through Gumbel (Perturb & MAP)
- SparseMAP

- Straight-Through
- SPIGOT

- Structured Attn. Nets
- SparseMAP

$$\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})}[L(\boldsymbol{z})]$$

$$L(\operatorname{arg\,max}_{z}\pi_{\boldsymbol{\theta}}(\boldsymbol{z}\mid x))$$

$$L(\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[\mathbf{z}])$$

- REINFORCE^{SPL}
- Straight-Through Gumbel (Perturb & MAP)^{SPL,MRG}
- Straight-Through MAP, MRG
- SPIGOTMAP+

- Structured Attn. Nets^{MRG}
- SparseMAP^{MAP+}

• SparseMAP^{MAP+}

Computation:

SPL: Sampling. (Simple in incremental/unstructured, hard for most global structures.)

MAP: Finding the highest-scoring structure.

MRG: Marginal inference.

Thank you!

$$\overline{L(\text{arg max}_z \pi_{\boldsymbol{\theta}}(\mathbf{z} \mid x))}$$

$$L(\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[\mathbf{z}])$$

- REINFORCE^{SPL}
- Straight-Through Gumbel (Perturb & MAP)^{SPL,MRG}

 $\mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}[L(\mathbf{z})]$

SparseMAP^{MAP+}

- Straight-Through MAP, MRG
- SPIGOT^{MAP+}

- Structured Attn. Nets^{MRG}
- SparseMAP^{MAP+}

Computation:

SPL: Sampling. (Simple in incremental/unstructured, hard for most global structures.)

MAP: Finding the highest-scoring structure.

MRG: Marginal inference.

References I

Ryan Adams. The gumbel-max trick for discrete distributions, 2013. URL

https://lips.cs.princeton.edu/the-gumbel-max-trick-for-discrete-distributions/. Blog post.

James K Baker. Trainable grammars for speech recognition. The Journal of the Acoustical Society of America. 65(S1):S132-S132.

1979.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning classifiers with Fenchel-Young losses: Generalized entropies, margins, and algorithms. In *Proc. of AISTATS*, 2019.

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D. Manning, and Christopher Potts. A fast unified model for parsing and sentence understanding. In *Proc. of ACL*, 2016. doi: 10.18653/v1/P16-1139.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press, 2004.

Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer. The mathematics of statistical machine

translation: Parameter estimation. *Computational Linguistics*, 19(2):263–311, 1993.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced LSTM for natural language inference. In

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced LSTM for natural language inference. If Proc. of ACL, 2017.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. Learning to compose task-specific tree structures. In Proc. of AAAI, 2018.

References II

Yoeng-Jin Chu and Tseng-Hong Liu. On the shortest arborescence of a directed graph. Science Sinica, 14:1396–1400, 1965.

William John Cocke and Jacob T Schwartz. *Programming languages and their compilers*. Courant Institute of Mathematical Sciences., 1970.

Shay B Cohen, Karl Stratos, Michael Collins, Dean P Foster, and Lyle Ungar. Spectral learning of latent-variable PCFGs. In Proc. of

ACL, 2012.

calo M Correia, Gon Vlad Niculae, and André FT Martins. Adaptively sparse transformers. In *Proc. of EMNLP-IJCNLP* (to appear), 2019.

Caio Corro and Ivan Titov. Differentiable Perturb-and-Parse: Semi-Supervised Parsing with a Structured Variational Autoencoder. In *Proc. of ICLR*, 2019a.

Caio Corro and Ivan Titov. Learning latent trees with stochastic perturbations and differentiable dynamic programming. In *Proc.* of ACL, 2019b.

Marco Cuturi and Mathieu Blondel. Soft-DTW: a differentiable loss function for time-series. In *Proc. of ICML*, 2017. Jack Edmonds. Optimum branchings. *J. Res. Nat. Bur. Stand.*, 71B:233–240, 1967.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Nav. Res. Log., 3(1-2):95-110, 1956.

□deep-spin.github.io/tutoriαl

References III

- Serhii Havrylov, Germán Kruszewski, and Armand Joulin. Cooperative Learning of Disjoint Syntax and Semantics. In *Proc.* NAACL-HLT. 2019.
- Geoffrey Hinton. Neural networks for machine learning. In Coursera video lectures, 2012.
- Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. In Proc. of ICLR, 2017.
- Roy Jonker and Anton Volgenant. A shortest augmenting path algorithm for dense and sparse linear assignment problems. *Computing*, 38(4):325–340, 1987.
- Tadao Kasami. An efficient recognition and syntax-analysis algorithm for context-free languages. Coordinated Science Laboratory
- Report no. R-257, 1966.

 Kazuya Kawakami. Chris Dyer, and Phil Blunsom. Learning to discover, ground and use words with segmental neural language
- models. In *Proc. of ACL*, 2019. Yoon Kim, Carl Denton, Loung Hoang, and Alexander M Rush. Structured attention networks. In *Proc. of ICLR*, 2017.
 - oon Kini, Can Denton, Loung Hoang, and Alexander M Rush. Structured attention networks. In Proc. of ICLR, 2017.
- Yoon Kim, Chris Dyer, and Alexander Rush. Compound probabilistic context-free grammars for grammar induction. In *Proc. of ACL*, 2019a.
- Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro, Chris Dyer, and Gábor Melis. Unsupervised recurrent neural network grammars. In *Proc. of NAACL-HLT*, 2019b.

References IV

Diederik P Kingma and Max Welling. Auto-encoding Variational Bayes. 2014.

Gustav Kirchhoff. Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird. *Annalen der Physik*, 148(12):497–508, 1847.

Harold W Kuhn. The Hungarian method for the assignment problem. *Nav. Res. Log.*, 2(1-2):83–97, 1955.

Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. In *Proc. of NeurIPS*, 2015.

Zhifei Li and Jason Eisner. First-and second-order expectation semirings with applications to minimum-risk training on translation

forests. In *Proc. of EMNLP*, 2009.

Yang Liu and Mirella Lapata. Learning structured text representations. *TACL*, 6:63–75, 2018.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of discrete random variables. In *Proc. of ICLR*, 2016.

Jean Maillard and Stephen Clark. Latent tree learning with differentiable parsers: Shift-Reduce parsing and chart parsing. arXiv preprint arXiv:1806.00840, 2018.

Chaitanya Malaviya, Pedro Ferreira, and André FT Martins. Sparse and constrained attention for neural machine translation. In *Proc. of ACL*, 2018.

References V

André FT Martins and Ramón Fernandez Astudillo. From softmax to sparsemax: A sparse model of attention and multi-label classification. In *Proc. of ICML*, 2016.

André FT Martins and Julia Kreutzer. Learning what's easy: Fully differentiable neural easy-first taggers. In *Proc. of EMNLP*, 2017. André FT Martins and Vlad Niculae. Notes on latent structure models and SPIGOT. *preprint arXiv:1907.10348*, 2019.

André FT Martins, Mário AT Figueiredo, Pedro MQ Aguiar, Noah A Smith, and Eric P Xing. AD3: Alternating directions dual decomposition for MAP inference in graphical models. *JMLR*, 16(1):495–545, 2015.

Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured prediction and attention. In *Proc. of*

ICML, 2018.

Nikita Nangia and Samuel Bowman. ListOps: A diagnostic dataset for latent tree learning. In *Proc. of NAACL SRW*, 2018.

Vlad Niculae and Mathieu Blondel. A regularized framework for sparse and structured neural attention. In *Proc. of NeurIPS*, 2017.

Vlad Niculae, André FT Martins, Mathieu Blondel, and Claire Cardie. SparseMAP: Differentiable sparse structured inference. In *Proc. of ICML*, 2018a.

Vlad Niculae, André FT Martins, and Claire Cardie. Towards dynamic computation graphs via sparse latent structure. In *Proc. of EMNLP*, 2018b.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer New York, 1999.

References VI

- George Papandreou and Alan L Yuille. Perturb-and-MAP random fields: Using discrete optimization to learn and sample from energy models. In *Proc. of ICCV*, 2011.
- Hao Peng, Sam Thomson, and Noah A Smith. Backpropagating through structured argmax using a SPIGOT. In *Proc. of ACL*, 2018. Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence models. In *Proc. of ACL*, 2019.
- Slav Petrov and Dan Klein. Discriminative log-linear grammars with latent variables. In *Advances in neural information processing systems*, pages 1153–1160, 2008.
- Ariadna Quattoni, Sybor Wang, Louis-Philippe Morency, Michael Collins, and Trevor Darrell. Hidden conditional random fields. *IEEE Transactions on Pattern Analysis & Machine Intelligence*, 29(10):1848–1852, 2007.
- Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech recognition. *P. IEEE*, 77(2): 257–286, 1989.
- Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word recognition. *IEEE Trans. on Acoustics, Speech, and Sig. Proc.*, 26:43–49, 1978.
- Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In *Proc. EMNLP*, 2013.
- Veselin Stoyanov, Alexander Ropson, and Jason Eisner. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In *Proc. of AISTATS*, 2011.

References VII

Ben Taskar, Learning structured prediction models: A large margin approach. PhD thesis, Stanford University, 2004.

Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52:479-487, 1988.

Leslie G Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8(2):189-201, 1979.

Tim Vieira. Gumbel-max trick, 2014. URL

https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/. Blog post.

Martin J Wainwright and Michael I Jordan. *Graphical models, exponential families, and variational inference.*, volume 1. Now Publishers, Inc., 2008.

Adina Williams, Andrew Drozdov, and Samuel R Bowman. Do latent tree learning models identify meaningful structure in sentences? *TACL*, 2018.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Mach. Learn.*, 8, 1992.

Philip Wolfe. Finding the nearest point in a polytope. *Mathematical Programming*, 11(1):128–149, 1976.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, and Wang Ling. Learning to compose words into sentences with reinforcement learning. In *Proc. of ICLR*, 2017.

Daniel H Younger. Recognition and parsing of context-free languages in time n^3 . Information and Control, 10(2):189–208, 1967.