Meccanica Newtoniana

Oudeys

June 26, 2025

Contents

Contents					
1	Cinematica				
	1.1	Moto	in una dimensione		
		1.1.1	Velocità vettoriale media		
		1.1.2	Velocità vettoriale istantanea		
		1.1.3	Accelerazione vettoriale media		
		1.1.4	Accelerazione vettoriale istantanea		
		1.1.5	Moto uniformemente accelerato		
	1.2	Moto	in più dimensioni		
		1.2.1	Vettore spostamento		
		1.2.2	Velocità vettoriale media		
		1.2.3	Velocità vettoriale istantanea		
		1.2.4	Accelerazione vettoriale media		
		1.2.5	Accelerazione vettoriale istantanea		
		1.2.6	Moto uniformemente accelerato		
		1.2.7	Moto parabolico		
	1.3	Moto	rotazionale		
		1.3.1	Velocità angolare media		
		1.3.2	Velocità angolare istantanea		
		1.3.3	Accelerazione angolare media		
		1.3.4	Accelerazione angolare istantanea		
		1.3.5	Frequenza		
		1.3.6	Periodo		
		1.3.7	Equazioni del moto in caso di accelerazione angolare costante		

2	Din	amica	8
	2.1	Leggi	di Newton
		2.1.1	I principio della dinamica
		2.1.2	II principio della dinamica
		2.1.3	III principio della dinamica
		2.1.4	Definizione di massa
	2.2	Moto	circolare uniformemente accelerato
		2.2.1	Accelerazione centripeta radiale
		2.2.2	Forza centripeta radiale
		2.2.3	Forza normale su curva inclinata
	2.3	Gravit	tazione
		2.3.1	Legge di Newton della gravitazione universale 10
		2.3.2	Leggi di Keplero
		2.3.3	Campo gravitazionale
		2.3.4	Principio di equivalenza
	2.4	Attrit	o
		2.4.1	Attrito dinamico
		2.4.2	Attrito statico
		2.4.3	Attrito viscoso
	2.5	Lavor	o ed energia
		2.5.1	Lavoro di una forza costante
		2.5.2	Lavoro di una forza variabile
		2.5.3	Energia cinetica
		2.5.4	Teorema dell'energia cinetica
	2.6	Conse	rvazione dell'energia
		2.6.1	Forze conservative e non conservative
		2.6.2	Energia potenziale
		2.6.3	Energia meccanica e sua conservazione
		2.6.4	Principio di conservazione dell'energia
		2.6.5	Energia potenziale gravitazionale e velocità di fuga 15
	2.7	Poten	$_{ m za}$
		2.7.1	Potenza media
		2.7.2	Potenza istantanea
		2.7.3	Efficienza
	2.8	Quant	iità di moto
		2.8.1	Quantità di moto e sua relazione con la forza
		2.8.2	Conservazione della quantità di moto
		2.8.3	Urti e impulso

	2.8.4	Conservazione dell'energia e della quantità di moto negli urti	17
	2.8.5	Centro di massa	17
	2.8.6	Centro di massa e moto traslatorio	17
2.9	Momen	nto angolare	18
	2.9.1	II principio della dinamica per il moto rotazionale	18
	2.9.2	Conservazione del momento angolare	18
	2.9.3	Momento angolare di una particella	18
	2.9.4	Momento angolare e momento delle forze per un sistema di	
		particelle	18
	2.9.5	Momento angolare e momento delle forze per un corpo rigido	18
	2.9.6	Conservazione del momento angolare	18
	2.9.7	Giroscopio	18
	2.9.8	Forze d'inerzia	18
	2.9.9	Effetto Coriolis	18
2.10	Equilib	prio statico, elasticità e rotture	19
2.11	Fluidi		20
2.12 Oscillazioni			

1 CINEMATICA

1.1 Moto in una dimensione

1.1.1 Velocità vettoriale media

$$[v] = [L][T]^{-1}$$
$$m \cdot s^{-1}$$

$$\overline{v} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

$$\frac{km}{h} = \frac{1}{3.6} \cdot \frac{m}{s}$$
$$\frac{m}{s} = 3.6 \cdot \frac{km}{h}$$

1.1.2 Velocità vettoriale istantanea

$$v = \lim_{\Delta \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

1.1.3 Accelerazione vettoriale media

$$[a] = [L][T]^{-2}$$
$$m \cdot s^{-2}$$

$$\overline{a} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

1.1.4 Accelerazione vettoriale istantanea

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$$
$$= \frac{dv}{dt}$$
$$= \frac{d^2x}{dt^2}$$

1.1.5 Moto uniformemente accelerato

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

$$\overline{v} = \frac{v + v_0}{2}$$

1.2 Moto in più dimensioni

1.2.1 Vettore spostamento

$$\Delta \vec{r} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

1.2.2 Velocità vettoriale media

$$\overline{v} = \frac{\Delta \vec{r}}{\Delta t}$$

1.2.3 Velocità vettoriale istantanea

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}$$

$$= \frac{d\vec{r}}{dt}$$

$$= \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}$$

$$= v_x\hat{i} + v_y\hat{j} + v_z\hat{k}$$

1.2.4 Accelerazione vettoriale media

$$\frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1}$$

1.2.5 Accelerazione vettoriale istantanea

$$\begin{split} \vec{a} &= \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} \\ &= \frac{d\vec{v}}{dt} \\ &= \frac{dv_x}{dt} \hat{i} + \frac{dv_y}{dt} \hat{j} + \frac{dv_z}{dt} \hat{k} \\ &= \frac{d^2x}{dt^2} \hat{i} + \frac{d^2y}{dt^2} \hat{j} + \frac{d^2z}{dt^2} \hat{k} \end{split}$$

1.2.6 Moto uniformemente accelerato

$$\vec{r} = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a}t^2$$

Componente x	Componente y
$v_x = v_{x0} + a_x t$	$v_y = v_{y0} + a_y t$
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	$y = y_0 + v_{y0}t + \frac{1}{2}a_yt^2$
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	$v_y^2 = v_{y0}^2 + 2a_y(y - y_0)$

1.2.7 Moto parabolico

$$y = \left(\frac{v_{y0}}{v_{x0}}\right)x - \left(\frac{g}{2v_{x0}^2}\right)x^2$$

Componente x	Componente y
$\forall a_x = 0$	$\forall a_y = -g$
$v_x = v_{x0}$	$v_y = v_{y0} - gt$
$x = x_0 + v_{x0}t$	$y = y_0 + v_{y0}t - \frac{1}{2}gt^2$
$v_y^2 = v_{y0}^2 + 2g(y - y_0)$	

Gittata:

$$R = v_{x0}t$$

$$= v_{x0} \left(\frac{2v_{y0}}{g}\right)$$

$$= \frac{2v_{x0}v_{y0}}{g}$$

$$= \frac{2v_0^2 \sin \theta_0 \cos \theta_0}{g}$$

$$= \frac{v_0^2 \sin 2\theta_0}{g}$$

$$R_{max} = \frac{v_0^2}{g} \Leftrightarrow \theta = 45^{\circ}$$

1.3 Moto rotazionale

1.3.1 Velocità angolare media

$$\overline{\omega} = \frac{\Delta \theta}{\Delta t}$$

1.3.2 Velocità angolare istantanea

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t}$$
$$= \frac{d\theta}{dt}$$

1.3.3 Accelerazione angolare media

$$\overline{\alpha} = \frac{\Delta\omega}{\Delta t}$$

1.3.4 Accelerazione angolare istantanea

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t}$$
$$= \frac{d\omega}{dt}$$

1.3.5 Frequenza

$$f = \frac{\omega}{2\pi}$$

1.3.6 Periodo

$$T = \frac{1}{f}$$

1.3.7 Equazioni del moto in caso di accelerazione angolare costante

$$\omega = \omega_0 + \alpha t$$

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha \theta$$

$$\overline{\omega} = \frac{\omega + \omega_0}{2}$$

2 DINAMICA

2.1 Leggi di Newton

2.1.1 I principio della dinamica

$$\vec{F} = 0 \Rightarrow \vec{a} = 0 \Rightarrow \vec{v} = \text{costante}$$

2.1.2 II principio della dinamica

$$[F] = [M][L][T]^{-2}$$

$$N = kg \cdot m \cdot s^{-2}$$

$$\sum \vec{F} = m\vec{a}$$

2.1.3 III principio della dinamica

$$\vec{F}_{AB} = -\vec{F}_{BA}$$

2.1.4 Definizione di massa

$$\forall F_1 = F_2$$

$$\frac{m_2}{m_1} = \frac{a_1}{a_2}$$

2.2 Moto circolare uniformemente accelerato

2.2.1 Accelerazione centripeta radiale

$$a_R = \frac{v^2}{r}$$

2.2.2 Forza centripeta radiale

$$\sum F_R = m \cdot a_R$$
$$= m \cdot \frac{v^2}{r}$$

2.2.3 Forza normale su curva inclinata

$$F_N = m \cdot \frac{v^2}{r \cdot \sin \theta}$$

2.3 Gravitazione

2.3.1 Legge di Newton della gravitazione universale

$$F_G = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

$$g = G \cdot \frac{M_T}{r_T^2}$$

$$M_T = \frac{g \cdot r_T^2}{G}$$

Costante di gravitazione universale: $G = 6.67 \cdot 10^{-11} \cdot \frac{N \cdot m^2}{kg^2}$

2.3.2 Leggi di Keplero

I legge di Keplero:

La traiettoria di ogni pianeta attorno al Sole è un'ellisse, con il Sole che occupa uno dei due fuochi.

II legge di Keplero:

Ogni pianeta si muove in modo che la proiezione di una linea immaginaria tracciata dal Sole al pianeta disegni aree uguali in tempi uguali.

III legge di Keplero:

Il rapporto tra i quadrati dei periodi di due pianeti che orbitano intorno al Sole è pari al rapporto dei cubi dei loro semiassi maggiori. Il semiasse maggiore è la metà della lunghezza maggiore dell'asse dell'orbita e rappresenta la distanza media del pianeta dal Sole.

$$\frac{a_1^3}{T_1^2} = \frac{a_2^3}{T_2^2}$$

2.3.3 Campo gravitazionale

$$\vec{g} = \frac{\vec{F}}{m}$$

2.3.4 Principio di equivalenza

Non esiste alcun esperimento che possa distinguere se l'accelerazione di un corpo sia causata dalla forza di gravità o dal fatto che è il sistema di riferimento che sta accelerando.

2.4 Attrito

2.4.1 Attrito dinamico

$$F = \mu_d F_N$$

2.4.2 Attrito statico

$$F < \mu_s F_N$$

2.4.3 Attrito viscoso

$$F_V = -bv$$

Velocità limite caduta libera:

$$v_L = \frac{mg}{b}$$

2.5 Lavoro ed energia

2.5.1 Lavoro di una forza costante

$$\begin{split} [L] &= [M][L]^2[T]^{-2} \\ N \cdot m &= J \end{split}$$

$$W = F \cdot d \cdot \cos \theta$$

2.5.2 Lavoro di una forza variabile

$$\begin{split} W &= & \lim_{\Delta l_i \to 0} \sum F_i \cdot \cos \theta_i \Delta l_i \\ &= \int_A^B F \cdot \cos \theta \cdot dl \\ &= \int_A^B \vec{F} \cdot d\vec{l} \\ &= \int_{x_A}^{x_B} F_x \, dx + \int_{y_A}^{y_B} F_y \, dy + \int_{z_A}^{z_B} F_z \, dz \end{split}$$

Lavoro compiuto da una forza elastica:

2.5.3 Energia cinetica

$$K = \frac{1}{2}mv^2$$

2.5.4 Teorema dell'energia cinetica

$$W_{tot} = \Delta K$$
$$= \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

Il lavoro totale compiuto su un corpo è uguale alla variazione dell'energia cinetica del corpo. Il lavoro compiuto da una forza conservativa è recuperabile.

2.6 Conservazione dell'energia

2.6.1 Forze conservative e non conservative

Una forza è conservativa se il lavoro compiuto dalla forza lungo un qualunque percorso chiuso è zero.

Forze conservative	Forze non conservative
Forza gravitazionale	Forza di attrito
Forza elastica	Tensione
Forza elettrica	Forza di propulsione

Lavoro della forza di gravità:

$$W_G = \int_1^2 \vec{F}_G \cdot d\vec{l}$$
$$= \int_1^2 mg \cdot \cos \theta dl$$
$$= -\int_1^2 mg dy = -mg(y_2 - y_1)$$

2.6.2 Energia potenziale

Energia potenziale gravitazionale:

$$\Delta U = U_2 - U_1$$

$$= -W_G$$

$$= mg(y_2 - y_1)$$

$$U_G = mgy$$

Variazione di energia potenziale:

$$\Delta U = U_2 - U_1$$

$$= -\int_1^2 \vec{F} \cdot d\vec{l}$$

$$= -W$$

Energia potenziale elastica:

$$\Delta U = U(x) - U(0)$$

$$= -\int_{1}^{2} \vec{F} \cdot d\vec{l}$$

$$= -\int_{0}^{x} (-kx)dx$$

$$= \frac{1}{2}kx^{2}$$

Energia potenziale di una forza unidimensionale:

$$U(x) = -\int F(x)dx$$

$$F(x) = -\frac{dU(x)}{dx}$$

Energia potenziale in tre dimensioni:

$$\vec{F}(x,y,z) = -\hat{i}\frac{\partial U}{\partial x} - \hat{j}\frac{\partial U}{\partial y} - \hat{k}\frac{\partial U}{\partial z}$$

2.6.3 Energia meccanica e sua conservazione

Energia meccanica:

$$E = K + U$$

Conservazione dell'energia meccanica:

$$E = \frac{1}{2}mv^2 + U$$

$$\frac{1}{2}mv_1^2 + mgy_1 = \frac{1}{2}mv_2^2 + mgy_2$$

$$\frac{1}{2}mv_1^2 + \frac{1}{2}kx_1^2 = \frac{1}{2}v_2^2 + \frac{1}{2}kx_2^2$$

2.6.4 Principio di conservazione dell'energia

$$\Delta K + \Delta U = 0$$

2.6.5 Energia potenziale gravitazionale e velocità di fuga

$$\vec{F} = -G \frac{mM_T}{r^2 \hat{r}}$$

$$\Delta U = -\frac{GmM_T}{r_2} + \frac{GmM_T}{r_1}$$

$$U(r) = -\frac{GmM_T}{r}$$

$$\frac{1}{2}mv_1^2 - G\frac{mM_T}{r_1} = \frac{1}{2}mv_2^2 - G\frac{mM_T}{r_2}$$

Velocità di fuga:

$$v_f = \sqrt{2GM_t/r_T} = 1.12^4 m/s$$

2.7 Potenza

2.7.1 Potenza media

$$\begin{split} [P] &= [M][L]^2[T]^{-3} \\ W &= \frac{J}{s} \end{split}$$

$$\overline{P} = \frac{W}{t}$$

2.7.2 Potenza istantanea

$$P = \frac{dW}{dt} = \frac{dE}{dt} = \vec{F} \cdot \frac{d\vec{l}}{dt} = \vec{F} \cdot \vec{v}$$

2.7.3 Efficienza

$$e = \frac{P_{out}}{P_{in}}$$

2.8 Quantità di moto

2.8.1 Quantità di moto e sua relazione con la forza

$$[P] = [M][L][T]^{-1}$$

$$kg \cdot m \cdot s^{-1}$$

$$\vec{p} = m\vec{v}$$

II principio della dinamica:

$$\sum \vec{F} = \frac{d\vec{p}}{dt}$$

$$= \frac{d(m\vec{v})}{dt}$$

$$= m\frac{d\vec{v}}{dt}$$

$$= m\vec{a}$$

2.8.2 Conservazione della quantità di moto

$$\forall \sum \vec{F}_{ext} = 0$$

$$m_a \vec{v}_a + m_B \vec{v}_B = m_a \vec{v}_a' + m_B \vec{v}_B'$$

II principio della dinamica per un sistema di corpi:

$$\frac{d\vec{P}}{dt} = \sum \vec{F}_{ext}$$

2.8.3 Urti e impulso

$$d\vec{p} = \vec{F}dt$$

Impulso:

$$\vec{J} = \Delta \vec{p}$$

$$= \vec{p}_f - \vec{p}_i$$

$$= \int_{t_i}^{t_f} \vec{F} dt$$

2.8.4 Conservazione dell'energia e della quantità di moto negli urti

Urti elastici in una dimensione:

$$\frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}m_A v_A'^2 + \frac{1}{2}m_B v_B'^2$$

Urti anaelastici:

Urti in due o tre dimensioni:

2.8.5 Centro di massa

$$\vec{r}_{CM} = \frac{\sum m_i \vec{r}_i}{M}$$

2.8.6 Centro di massa e moto traslatorio

2.9 Momento angolare

2.9.1 II principio della dinamica per il moto rotazionale

$$\sum \tau = \frac{dL}{dt}$$

- 2.9.2 Conservazione del momento angolare
- 2.9.3 Momento angolare di una particella
- 2.9.4 Momento angolare e momento delle forze per un sistema di particelle
- 2.9.5 Momento angolare e momento delle forze per un corpo rigido
- 2.9.6 Conservazione del momento angolare
- 2.9.7 Giroscopio
- 2.9.8 Forze d'inerzia
- 2.9.9 Effetto Coriolis

2.10 Equilibrio statico, elasticità e rotture

2.11 Fluidi

2.12 Oscillazioni