Подсчет предела последовательности

- 1. Найти пределы последовательностей.
 - (a) $a_n = q^n$, $q \in \mathbb{R}$; (d) $a_n = \frac{n^2}{2^n}$, + обощить результат;
 - (b) $a_n = \sqrt[n]{a}$, a > 0; (e) $a_n = \frac{2^n}{n!}$, + обобщить результат;
 - (c) $a_n = \sqrt[n]{n};$ (f) $a_n = \frac{\ln n}{\sqrt{n}}, +$ обощить результат.
- 2. Доказать или опровергнуть следующие утверждения:
 - (а) Сумма бесконечно большой и ограниченной бесконечно большая.
 - (b) Частное бесконечно малой и бесконечно большой бесконечно малая.
 - (с) Произведение бесконечно малой и отделимой от нуля бесконечно малая.
- 3. Верно ли утверждение?
 - (а) Если последовательность не является бесконечно большой, то она ограничена.
 - (b) Если последовательность не является ограниченной, то она бесконечно большая.
 - (с) Если последовательность сходится не к нулю и не обращается в ноль, то она отделима от нуля.
- 4. Пусть $\lim_{n\to\infty} x_n = -\infty$ и $y_n \leqslant c$ для всех $n \in \mathbb{N}$. Доказать, что $\lim_{n\to\infty} (x_n + y_n) = -\infty$.
- 5. Вычислить пределы последовательностей, используя арифметку предела, свойства б.б. и б.м. и результаты задачи 1.

(a)
$$a_n = \frac{4n - n^2 + 1}{3n^2 - 7n + 3}$$

(b)
$$a_n = \frac{(n+1)^4 - (n-1)^4}{(n^2+1)^2 - (n^2-1)^2};$$

$$a_n = \frac{n^2}{n+1} - \frac{n^3}{n^2+1};$$

$$a_n = \sqrt{n^2 + n} - \sqrt{n^2 - 1};$$

$$a_n = \frac{\sqrt{n^2 + 1} - \sqrt{n^2 - 1}}{\sqrt{n^2 + 1} - n - 1};$$

$$a_n = \frac{\sqrt[n]{n^3} + \sqrt[n]{7}}{3\sqrt[n]{n^2} + \sqrt[n]{3n}};$$

$$a_n = \frac{n^3 + 3n}{n + 3^{n+1}};$$

$$a_n = \frac{4^n + n^2 \cdot 2^n - 1}{n^4 + (n!)^2}.$$

Домашнее задание

1. Найти предел последовательности

(a)
$$n = \frac{3n^2 + 2n - 1}{3 - n - 4n^2}$$
, (b) $a_n = n - \frac{3}{\frac{3}{n} - \frac{3}{n^2} + \frac{1}{n^3}}$
(c) $a_n = \frac{2n - \sqrt{4n^2 - 1}}{\sqrt{n^2 + 3} - n}$, (d) $a_n = \sqrt[3]{n + 1} - \sqrt[3]{n - 1}$,
(e) $a_n = \frac{10^n + n!}{2^n + (n + 1)!}$ (f) $a_n = \frac{\sqrt[n]{8} - 1}{\sqrt[n]{16} - 1}$

2. Пусть

$$\lim_{n \to \infty} x_n = -\infty, \qquad \exists C \ \exists n_0 \ \forall n > n_0 \ (y_n \leqslant C) \ .$$

Доказать, что $\lim_{n\to\infty}(x_n+y_n)=-\infty$.

3. Пусть $\lim_{n\to\infty}x_n=a$, где a это $+\infty$ или $-\infty$. Про y_n :

$$\exists C \exists n_0 \forall n > n_0 (y_n \geqslant C > 0).$$

Доказать, что $\lim_{n\to\infty}(x_n\cdot y_n)=a.$

Задачи для самостоятельного решения

- 1. Для всех сочетаний $A \circ B \circ C$, где A, C бесконечно малая, бесконечно большая, ограниченная, отделимая от нуля, B арифметическое действие, сформулируйте и докажите или опровергните соответствующее свойство данных величин.
- 2. Найти предел последовательности

(a)
$$a_n = \frac{(n^2 + 3n + 4)^3 - (n^2 + 3n - 4)^3}{(n^2 + 5n + 6)^3 - (n^2 + 5n - 6)^3}$$
 (b) $a_n = \frac{(2+n)^{100} - n^{100} - 200n^{99}}{n^{98} - 10n^2 + 1}$

(c)
$$a_n = \sqrt{(n+2)(n+1)} - \sqrt{n(n-1)},$$
 (d) $\sqrt[3]{n^3 + n^2 + 2002} - n,$

(e)
$$a_n = \frac{1}{n(\sqrt{n^2 - 1} - 1)}$$
, (f) $a_n = \frac{\sqrt{n^2 + 1} - n}{\sqrt{n^3 + 1} - n\sqrt{n}}$,

(g)
$$a_n = \frac{n \cdot 3^n + 1}{n! + 1}$$
, (h) $a_n = \frac{2^{\frac{n}{2}} + (n+1)!}{n(3^n + n!)}$,