Machine Learning Lab Assignment 4

Sourav Patra Roll No:- 001811001044

Iris plants dataset: https://archive.ics.uci.edu/ml/datasets/Iris/

Wine Dataset: https://archive.ics.uci.edu/ml/datasets/wine

The code used for the this assignment is as follows:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def preprocess cluster(X, y, te size=0.3, label=False, scale=False, pca=False):
   if label:
        y = LabelEncoder().fit transform(y)
   if scale:
       X = sc.fit transform(X)
       X = sc.transform(X)
   if pca:
        pca = PCA(n components='mle')
        X = pca.fit transform(X)
       X = pca.transform(X)
```

```
def tester cluster(X,y,model):
rand_score,adjusted_rand_score,mutual_info_score,adjusted_mutual_info_scor
e,normalized mutual info score,homogeneity score,completeness score,v meas
ure_score
   print("Performance evaluation:")
   print('----')
   print('----')
   print("Rand Score")
   print(rand score(y, model.labels))
   print('----')
   print("Adjusted Rand Score")
   print(adjusted rand score(y, model.labels))
   print('----')
   print("Mutual Info Score")
   print(mutual_info_score(y, model.labels_))
   print('----')
   print("Adjusted Mutual Info Score")
```

```
print(adjusted_mutual_info_score(y,model.labels_))

print('-----')

print("Normalized Mutual Info Score")
print(normalized_mutual_info_score(y,model.labels_))

print('-----')
print('----')

print("Homogenity Score")
print(homogeneity_score(y,model.labels_))

print('-----')

print('-----')

print('Completeness Score")
```

```
print(completeness_score(y, model.labels_))

print('-----')

print("V-measure Score")
 print(v_measure_score(y, model.labels_))

def tester_cluster_2(X, y, model):
    from sklearn.metrics import

silhouette_score, calinski_harabasz_score, davies_bouldin_score

print("Performance Evaluation:")
 print('------')
print('------')
```

```
print("Silhouette Coefficient")
   print(silhouette score(X, model.labels , metric='euclidean'))
   print('----')
   print("Calinski Harabasz Score")
   print(calinski harabasz score(X, model.labels))
   print('----')
   print("Davies Bouldin Score")
   print(davies_bouldin_score(X, model.labels_))
   print('----')
def tester cluster 3(X,y,model,kmeans=False):
   from scipy.cluster.vq import vq
   if kmeans:
      codebook = model.cluster centers
      codebook = []
      for i in np.unique(model.labels):
```

```
cluster_data = X[model.labels_ == i]
    centroid = cluster_data.mean(0)
    codebook.append(centroid)

partition, euc_distance_to_centroids = vq(X, codebook)
```

```
tss = np.sum((X-X.mean(0))**2)
   ssb = tss - sse
   print("Cohesion Score")
   print(sse)
   print('----')
   print("Seperation Score")
   print(ssb)
   print('-----')
df1 = pd.read csv('data/iris.data', header=None)
X = np.array(df1.iloc[:,:-1])
y = np.array(df1.iloc[:,-1])
# df1 = pd.read csv('data/wine.data', header=None)
\# x = df1.iloc[:,1:]
X, y = preprocess cluster(X,y,te size=0,label=True,scale=True)
from sklearn.cluster import KMeans
model = KMeans(n clusters=3,n init=100,max iter=1000)
KMedoids(n clusters=3,method='pam',init='k-medoids++',max iter=1000)
# from sklearn.cluster import AgglomerativeClustering
```

```
# from sklearn.cluster import DBSCAN
# model = DBSCAN(eps=2,min_samples=8)

# from sklearn.cluster import OPTICS
# model = OPTICS(max_eps=2,min_samples=8)

model.fit(X)

tester_cluster_2(X,y,model)
tester_cluster_3(X,y,model,False)
```

Partition Based Algorithms:

i) Kmeans:-

The scores for iris dataset are:-

Performance Evaluation:
Silhouette Coefficient 0.4317682861510166
Calinski Harabasz Score 152.3870943273455
Davies Bouldin Score 0.8205624685391698
Cohesion Score 433.15661144203204
Seperation Score 898.060917092929 The
scores for wine dataset are:-

Performance Evaluation:

ii)Kmeans++:-

This was pre-implemented in kmeans library function of scikit learn by using the 'k-means++' option in the init argument during model initialisation

Performance Evaluation:
Silhouette Coefficient 0.4317682861510166
Calinski Harabasz Score 152.3870943273455
Davies Bouldin Score 0.8205624685391698
Cohesion Score 433.15661144203204
Seperation Score 898.060917092929

iii)Bisecting Kmeans:-

The code for this algorithm is as follows:

```
import pandas as pd
import numpy as np

df1 = pd.read_csv('data/iris.data', header=None)
X = np.array(df1.iloc[:,:-1])
y = np.array(df1.iloc[:,-1])

from sklearn.preprocessing import LabelEncoder
y = LabelEncoder().fit_transform(y)

from sklearn.cluster import KMeans
K = 3
current_clusters = 1
centroids = []
clusters = []
X_ = X
labels = [0]*X.shape[0]
label = 1
```

```
while current_clusters != K:
    kmeans = KMeans(n_clusters=2)
```

```
kmeans.fit(X )
   current clusters += 1
   cluster centers = kmeans.cluster centers
   sse = [0]*2
   for point, label in zip(X , kmeans.labels ):
       sse[label] += np.square(point-cluster centers[label]).sum()
   chosen cluster = np.argmax(sse,axis=0)
   centroids.append(cluster centers[1-chosen cluster])
   clusters.append(X [kmeans.labels == 1-chosen cluster])
centroids.append(X .mean(0))
clusters.append(X )
labels = np.zeros(X.shape[0])
labels[clusters[0].shape[0]:clusters[0].shape[0]+clusters[1].shape[0]] = 1
labels[clusters[0].shape[0]+clusters[1].shape[0]:] = 2
labels = labels.astype(int)
from sklearn.metrics import
silhouette score,calinski harabasz score,davies bouldin score
print("Performance Evaluation:")
print('-----')
```

```
print("Silhouette Coefficient")
print(silhouette score(X,labels, metric='euclidean'))
print('-----')
print("Calinski Harabasz Score")
print(calinski harabasz score(X,labels))
print('-----')
print("Davies Bouldin Score")
print(davies bouldin score(X,labels))
from scipy.cluster.vq import vq
codebook = centroids
partition, euc distance to centroids = vq(X, codebook)
tss = np.sum((X-X.mean(0))**2)
sse = np.sum(euc distance to centroids**2)
ssb = tss - sse
print("Cohesion Score")
print(sse)
print("Seperation Score")
print(ssb)
```

Periormance	Evaluation:

Silhouette Coefficient 0.37352230022461397		
Calinski Harabasz Score 243.27002984971273		
Davies Bouldin Score 1.025154504871039		
Cohesion Score 80.09330502556426		
Seperation Score 600.7310949744357		
The scores for wine dataset are:-		
Performance Evaluation:		
Silhouette Coefficient 0.13354160766718481		
Calinski Harabasz Score 133.95058126266278		
Davies Bouldin Score 16.93020288935997		
Cohesion Score 2498290.9965025433		
Seperation Score 15094005.38700593		
iv)Kmediods:-		
The scores for iris dataset are:-		
Performance Evaluation:		

0.4390041518129282
Calinski Harabasz Score 151.00104809628613
Davies Bouldin Score 0.7970734618618747
Cohesion Score 435.22340023159717
Seperation Score 895.9941283033638

Performance Evaluation:
Silhouette Coefficient 0.25788384772276307
Calinski Harabasz Score 107.4402890033373
Davies Bouldin Score 1.3582758881134855
Cohesion Score 8652.61794565623
Seperation Score 10712.467060801535

Hierarchical Algorithms:

i)Dendrogram:-

The graph for iris dataset:-

The graph for wine dataset:-

ii)AGNES:-

Performance Evaluation:
Silhouette Coefficient
0.25788384772276307
Calinski Harabasz Score
107.4402890033373
Davies Bouldin Score
1.3582758881134855
Cohesion Score
8652.61794565623

Seperation Score 10712.467060801535

The scores for wine dataset are:-

Performance Evaluation:
Silhouette Coefficient 0.05506029279005502
Calinski Harabasz Score 2.393717637307116
Davies Bouldin Score 0.6534805641366035
Cohesion Score 17730.974867562945
Seperation Score 1634.110138894819

iii)BIRCH:-

Performance Evaluation:
Silhouette Coefficient
0.4207655357916486
Calinski Harabasz Score
146.28041877203535
Davies Bouldin Score
0.8388514354531184

Cohesion Score
440 050000050000
440.9596839852269
Seperation Score
000 0570445407040
890.2578445497342

Silhouette Coefficient 0.26428431893338583
Calinski Harabasz Score 107.19355782534467
Davies Bouldin Score 1.3653874210280403
Cohesion Score 8568.906004725632
Seperation Score 10796.179001732133

Density Based Algorithms:

i)DBSCAN:-

	Evaluation:	
Silhouette	Coefficient	

0.4672532531297798
Calinski Harabasz Score 86.97354665917852
Davies Bouldin Score 0.6285907442747066
Cohesion Score 590.532907833632
Seperation Score 740.6846207013291

Performance Evaluation:
Silhouette Coefficient 0.5587229611951657
Calinski Harabasz Score 237.70687070972235
Davies Bouldin Score 0.6551076423025366
Cohesion Score 5019958.209778264
Seperation Score 12572338.17373021

ii)OPTICS:-

Performance	Evaluation:	
Silhouette (Coefficient	

-0.2538505885661452
Calinski Harabasz Score
19.3913120185153
Davies Bouldin Score
2.83428709567964
Cohesion Score
210.68419432792155
Seperation Score
470.1402056720784

Performance Evaluation:
Silhouette Coefficient 0.013388601390969089
Calinski Harabasz Score 25.417115659353996
Davies Bouldin Score 0.9717411608615347
Cohesion Score 10029749.502308398
Seperation Score 7562546.881200075

Finally summarising all scores for each model and dataset:

Iris dataset	Silhoue tte Coeff.	0.43176 8286151 0166	0.43176 8286151 0166	0.37352 2300224 61397	0.43900 4151812 9282	0.25788 3847722 76307	0.42076 5535791 6486	0.46725 3253129 7798	-0.253 850588 566145 2
	Calsink i Harabsz Score	152.387 0943273 455	152.387 0943273 455	243.270 0298497 1273	151.001 0480962 8613	107.440 2890033 373	146.280 4187720 3535	86.9735 4665917 852	19.391 312018 5153
	Davies Bouldin Score	0.82056 2468539 1698	0.82056 2468539 1698	1.02515 4504871 039	0.79707 3461861 8747	1.35827 5888113 4855	0.83885 1435453 1184	0.62859 0744274 7066	2.8342 870956 7964
	Cohesio n Score	433.156 6114420 3204	433.156 6114420 3204	80.0933 0502556 426	435.223 4002315 9717	8652.61 7945656 23	440.959 6839852 269	590.532 9078336 32	210.68 419432 792155
	Seperat ion Score	898.060 9170929 29	898.060 9170929 29	600.731 0949744 357	895.994 1283033 638	10712.4 6706080 1535	890.257 8445497 342	740.684 6207013 291	470.14 020567 20784
Wine dataset	Silhoue tte Coeff.	0.28447 7246443 2905	0.28447 7246443 2905	0.13354 1607667 18481	0.25788 3847722 76307	0.05506 0292790 05502	0.26428 4318933 38583	0.55872 2961195 1657	0.0133 886013 909690 89
	Calsink i Harabsz Score	111.723 6052963 5833	111.723 6052963 5833	133.950 5812626 6278	107.440 2890033 373	2.39371 7637307 116	107.193 5578253 4467	237.706 8707097 2235	25.417 115659 353996
	Davies Bouldin Score	1.30102 6874987 2544	1.30102 6874987 2544	16.9302 0288935 997	1.35827 5888113 4855	0.65348 0564136 6035	1.36538 7421028 0403	0.65510 7642302 5366	0.9717 411608 615347
	Cohesio n Score	8505.24 1813812 467	8505.24 1813812 467	2498290 .996502 5433	8652.61 7945656 23	17730.9 7486756 2945	8568.90 6004725 632	5019958 .209778 264	100297 49.502 308398
	Seperat ion Score	10859.8 4319264 5298	10859.8 4319264 5298	1509400 5.38700 593	10712.4 6706080 1535	1634.11 0138894 819	10796.1 7900173 2133	1257233 8.17373 021	756254 6.8812 00075