Intro to Machine Learning

In this lecture

- We begin with a high-level overview of machine learning.
- After the lecture, you should be able to recognize the different types of machine learning and how to evaluate different models.

Types of Machine Learning

- Supervised Learning:
 - \circ Given independent data X and dependent data y, the goal is to predict y from X, that is, find a function f such that f(X) pprox y.
 - \circ If y takes categorical values \Rightarrow Classification.
 - \circ If y takes numerical values \Rightarrow Regression.
- Unsupervised Learning:
 - \circ Only X is given and the task is to find some subgroups/structure.

Types of Machine Learning (cont.)

- Semi-supervised learning:
 - \circ Similar to supervised learning, except that maybe not all observations in X have corresponding values y.
- Reinforcement learning:
 - Choose an action in a dynamic environment. This choice of action determines both a reward and the new state in the environment.

Methodology

Representation:

- This is the hypothesis space. How do we represent our model?
- Choosing the representation determines the complexity/hypothesis space.

• Evaluation:

• We choose a criteria to say if a given model is good or not.

• Optimization:

 The way we search for a good model on the hypothesis space.

Example: Linear regression

Let n denote the number of observations in X (number of rows).

- Representation: We assume there exists θ such that $f_{\theta}(X) = X\theta$ if a good representation of f (the "true" solution).
- Evaluation: For a given θ , we calculate

$$J(heta) = rac{1}{n} \sum_{i=1}^n \left(f(x_i) - y_i
ight)^2$$

ullet Optimization: Update heta by gradient descent

$$\theta \leftarrow \theta - \alpha \nabla J(\theta)$$

Model Selection

Choosing among hypothesis spaces

- ullet Besides linear functions, we could use polynomials. In particular, a polynomial of degree n+1 which would have zero error!
- However, the main goal of a machine learning model is to generalize.
- This means that the task should work well on unseen data.

Generalization

- To achieve generalization, we pretend we forget some of our data.
- While we use the majority for training our model, we leave a fraction aside for testing.

Types of Cross Validation

Holdout:

 Leave a fraction of the data aside, train the model on the rest.

Kfold

- Divide data in k parts, train in (k 1) of them and test in the other. Average the errors.
- \circ Use k=5 for quick prototyping, k 10 for production/publication.

Leave one out:

Train the model on all the data except for one observation.

Best practice: Do Holdout and K-fold

Learning Curve

- To see if our model is good, and to help us debug, we use a technique called learning curve.
- We train models with an increasing amount of data, and calculate the error.
- Then we plot of the number of observations against the model error.

Interpreting the learning curve

- High test error, low train error:
 - Overfitting. Simplify your model or add cross validation.
- Big gap in train and test error:
 - Problem with the data. Add more data, or check that the data in train and test comes from same distribution.
- High value of train error:
 - Likely a bias problem, use a more complicated model.

In summary

- Machine learning consists largely of trial and error across different representations for our problem.
- To ensure the results are reliable and will work well in unseen data, we use cross validation.
- To debug our models and decide whether we need better/more data or better algorithms, we use learning curves.