Recursion Runtime Tables

```
unsigned int factorial(unsigned int n)
{
    if (n <= 1)
    {
       return 1;
    }
    return n * factorial(n - 1);
}</pre>
```

Step	Statement	Cost	Time
1	n <= 1	C1	1
2	return 1;	C ₂	0
3	<pre>return n * factorial(n - 1);</pre>	C 3	1 + 2(n - 1) = 2n - 1

$$T(n) = c_1 + c_3(2n - 1)$$

$$= c_3(2n) + (c_1 - c_3)$$

$$= 2n$$

$$Big-0 = 0(n)$$

The second return statement has a time of 1 + 2(n - 1).

1 for the return statement itself.

2(n-1) because the number of recursive calls is n-1.

There are 2 steps in the function.

Therefore, the number of calls is multiplied by 2.

Subtotal: 1 + 2(n - 1) = 1 + 2n - 2 = 2n - 1

Total: 1 + 2n - 1 = 2n

```
unsigned int digitCount(unsigned int n)
{
    if (n < 10)
    {
       return 1;
    }
    return 1 + digitCount(n / 10);
}</pre>
```

Step	Statement	Cost	Time
1	n < 10	C ₁	1
2	return 1;	C 2	0
3	<pre>return 1 + digitCount(n / 10);</pre>	C 3	1 + 2[log ₁₀ (n)]

```
T(n) = c_1 + c_3 + c_3(2\lfloor \log_{10}(n) \rfloor)
= c_3(2\lfloor \log_{10}(n) \rfloor) + (c_1 + c_3)
= 2\lfloor \log_{10}(n) \rfloor + 2
Big-0 = 0(\log(n))
```

 \boldsymbol{n} is the value of the parameter \boldsymbol{n}

The second return statement has a time of 1 + $2[log_{10}(n)]$

1 for the return statement itself.

 $2[\log_{10}(n)]$ because the number of recursive calls is $[\log_{10}(n)]$.

There are 2 steps in the function.

Therefore, the number of calls is multiplied by 2.

Subtotal: $2[\log_{10}(n)] + 1$

Total: $2[\log_{10}(n)] + 2$

```
template <class T>
class Node
{
    public:
        T data;
        Node<T>* next;
        Node(const T& value) : data(value), next(nullptr) {}
};
bool contains(Node<int>* node, int target)
{
    if (node == nullptr)
    {
        return false;
    }
    if (node->data == target)
    {
        return true;
    }
    return contains(node->next, target);
}
```

Step	Statement	Cost	Time
1	node == nullptr	C ₁	1
2	return false;	C ₂	0
3	node->data == target	C 3	1
4	return true;	C4	0
5	<pre>return contains(node->next, target);</pre>	C 5	2n

$$T(n) = c_1 + c_3 + c_5(2n)$$

$$= 2c_5(n) + (c_1 + c_3)$$

$$= 2n + 2$$

$$Big-0 = 0(n)$$

n = The number of nodes in the linked list pointed to by head.

The third return statement has a time of 2n. Since there is no operation being performed on the return statement, only the recursive calls get counted. 2n because the number of recursive calls is n and there are 2 steps in the function. The number of calls is multiplied by 2.

Subtotal: 2n Total: 2n + 2

```
void printBinaries(unsigned int n, const string& b = "")
{
    if (b.length() == n)
    {
       cout << b << endl;
       return;
    }
    printBinaries(n, b + "0");
    printBinaries(n, b + "1");
}</pre>
```

Step	Statement	Cost	Time
1	<pre>b.length() == n</pre>	C ₁	1
2	cout << b << endl;	C ₂	0
3	return;	C 3	0
4	<pre>printBinaries(n, b + "0");</pre>	C 4	$2^n + 2^{n-1} - 1$
5	<pre>printBinaries(n, b + "1");</pre>	C 5	$2^{n} + 2^{n-1} - 1$

$$T(n) = c_1 + (c_4 + c_5)(2^n + 2^{n-1} - 1)$$

$$= 2(2^n + 2^{n-1} - 1) + 1$$

$$= 2^{n+1} + 2^n - 2 + 1$$

$$= (2^n)(2+1) - (2 - 1)$$

$$= 3(2^n) - 1$$

$$Big-0 = 0(2^n)$$

n = n (characters) in the string.

Example: printBinaries(4) => ""

Since this is a void function, the return statement is ignored. Each recursive call has a time of $2^n + 2^{n-1} - 1$. Whenever the function is called, the function calls itself twice and does so n times. The sum of all the recursive calls is $2^n - 1$.

$$\sum_{i=1}^{n} 2^{i-1} = 2^{0} + 2^{1} + 2^{2} + \ldots + 2^{n-1} = 2^{n} - 1$$

Since one step gets executed per call, 2^n-1 remains. However, when the length of the string reaches n, there are 2 steps for each function call and 2^{n-1} calls. For these calls, 1 can be added for each for a total of 2^{n-1} . The time now is $2^n+2^{n-1}-1$.

Subtotal: $2^{n} + 2^{n-1} - 1$

Total: $2(2^n + 2^{n-1} - 1) + 1 = 3(2^n) - 1$