PROCESS SCHEDULING

The objective of multiprogramming is to have some process running at all times so as to maximize CPU utilization. The objective of time sharing is to switch a CPU core among processes so frequently that users can interact with each program while it is running. To meet these objectives, the **process scheduler** selects an available process (possibly from a set of several available processes) for program execution on a core. Each CPU core can run one process at a time. For a system with a single CPU core, there will never be more than one process running at a time, whereas a multicore system can run multiple processes at one time. If there are more processes than cores, excess processes will have to wait until a core is free and can be rescheduled. The number of processes currently in memory is known as the **degree of multiprogramming**.

Balancing the objectives of multiprogramming and time sharing also requires taking the general behavior of a process into account. In general, most processes can be described as either I/O bound or CPU bound. An I/O-bound process is one that spends more of its time doing I/O than it spends doing computations. A CPU-bound process, in contrast, generates I/O requests infrequently, using more of its time doing computations.

SCHEDULING QUEUES

As processes enter the system, they are put into a **ready queue**, where they are ready and waiting to execute on a CPU's core This queue is generally stored as a linked list; a ready-queue header contains pointers to the first PCB in the list, and each PCB includes a pointer field that points to the next PCB in the ready queue.

The system also includes other queues. When a process is allocated a CPU core, it executes for a while and eventually terminates, is interrupted, or waits for the occurrence of a particular event, such as the completion of an I/O request. Suppose the process makes an I/O request to a device such as a disk. Since devices run significantly slower than processors, the process will have to wait for the I/O to become available. Processes that are waiting for a certain event to occur — such as completion of I/O — are placed in a **wait queue**.

A common representation of process scheduling is a **queueing diagram**, such as that in Figure 3.5. Two types of queues are present: the ready queue and a set of wait queues. The circles represent the resources that serve the queues, and the arrows indicate the flow of processes in the system.

A new process is initially put in the ready queue. It waits there until it is selected for execution, or **dispatched**. Once the process is allocated a CPU core and is executing, one of several events could occur:

- The process could issue an I/O request and then be placed in an I/O wait queue.
- The process could create a new child process and then be placed in a wait queue while it awaits the child's termination.
- The process could be removed forcibly from the core, as a result of an interrupt or having its time slice expire, and be put back in the ready queue.

CPU SCHEDULING

A process migrates among the ready queue and various wait queues through-out its lifetime. The role of the CPU scheduler is to select from among the processes that are in the ready queue and allocate a CPU core to one of them. The CPU scheduler must select a new process for the CPU frequently. An I/O-bound process may execute for only a few milliseconds before waiting for an I/O request. Although a CPU-bound process will require a CPU core for longer durations, the scheduler is unlikely to grant the core to a process for an extended period. Instead, it is likely designed to forcibly remove the CPU from a process and schedule another process to run. Therefore, the CPU scheduler executes at least once every 100 milliseconds, although typically much more frequently.

Some operating systems have an intermediate form of scheduling, known as **swapping**, whose key idea is that sometimes it can be advantageous to remove a process from memory (and from active contention for the CPU) and thus reduce the degree of multiprogramming. Later, the process can be reintroduced into memory, and its execution can be continued where it left off. This scheme is known as **swapping** because a process can be "swapped out" from memory to disk, where its current status is saved, and later "swapped in" from disk back to memory, where its status is restored.

CONTEXT SWITCH

When an interrupt occurs, the system needs to save the current **context** of the process running on the CPU core so that it can restore that context when its processing is done, essentially suspending the process and then resuming it. The context is represented in the PCB of the process. It includes the value of the CPU registers, the process state, and memory-management information. Generically, we perform a **state save** of the current state of the CPU core, be it in kernel or user mode, and then a **state restore** to resume operations.

Switching the CPU core to another process requires performing a state save of the current process and a state restore of a different process. This task is known as a context switch. When a context switch occurs, the kernel saves the context of the old process in its PCB and loads the saved context of the new process scheduled to run. Context-switch time is pure overhead, because the system does no useful work while switching. Switching speed varies from machine to machine, depending on the memory speed, the number of registers that must be copied, and the existence of special instructions (such as a single instruction to load or store all registers). A typical speed is a several microseconds.

Context-switch times are highly dependent on hardware support. For instance, some processors provide multiple sets of registers. A context switch here simply requires changing the pointer to the current register set. Of course, if there are more active processes than there are register sets, the system resorts to copying register data to and from memory, as before. Also, the more complex the operating system, the greater the amount of work that must be done during a context switch.

Multitasking in Mobile Systems

- Some mobile systems (e.g., early version of iOS) allow only one process to run, others suspended
- Due to screen real estate, user interface limits iOS provides for a
 - Single **foreground** process- controlled via user interface
 - Multiple background processes—in memory, running, but not on the display, and with limits
 - Limits include single, short task, receiving notification of events, specific long-running tasks like audio playback
- Android runs foreground and background, with fewer limits
 - Background process uses a service to perform tasks
 - Service can keep running even if background process is suspended
 - Service has no user interface, small memory use

Operations on Processes

- System must provide mechanisms for:
 - Process creation
 - Process termination

Process Creation

- Parent process create children processes, which, in turn create other processes, forming a tree of processes
- Generally, process identified and managed via a process identifier (pid)
- Resource sharing options
 - Parent and children share all resources
 - · Children share subset of parent's resources
 - Parent and child share no resources
- Execution options
 - Parent and children execute concurrently
 - Parent waits until children terminate

Process Termination

- Process executes last statement and then asks the operating system to delete it using the exit() system call.
 - Returns status data from child to parent (via wait())
 - Process' resources are deallocated by operating system
- Parent may terminate the execution of children processes using the abort() system call. Some reasons for doing so:
 - Child has exceeded allocated resources
 - Task assigned to child is no longer required

• The parent is exiting, and the operating systems does not allow a child to continue if its parent terminates

Android Process Importance Hierarchy

- Mobile operating systems often have to terminate processes to reclaim system resources such as memory. From most to least important:
 - Foreground process
 - Visible process
 - Service process
 - Background process
 - Empty process
- Android will begin terminating processes that are least important.

Multiprocess Architecture – Chrome Browser

- Many web browsers ran as single process (some still do)
 - If one web site causes trouble, entire browser can hang or crash
- Google Chrome Browser is multiprocess with 3 different types of processes:
 - Browser process manages user interface, disk and network I/O
 - Renderer process renders web pages, deals with HTML, Javascript. A new renderer created for each website opened
 - ▶ Runs in **sandbox** restricting disk and network I/O, minimizing effect of security exploits
 - Plug-in process for each type of plug-in

Each tab represents a separate process.

Hi I'm Flashee!

You have reached the end of the lesson. Be sure to answer the corresponding activity of this lesson on the activities folder of our class materials in the file server.