MA4832 Microprocessor Systems Lab 2 Exercise – Hardware – Pushbutton SW 1 and RGB LED

You will learn in this session:

- How to read digital signal from input device through GPIO port F (read the Status of SW1 on PF4)
- How to send digital signal to output device through GPIO port F (turn on LED, Red (PF1), Blue (PF2) and Green (PF3))

Hardware Connection:

Please follow the diagram below to do the hardware connection among TM4C123GH6P, three LEDs and two switches. Once done, please approach the lab Technician for verification.

GPIO Pin	Pin Function	USB Device
PF4	GPIO	SW1
PF0	GPIO	SW2
PF1	GPIO	RGB LED (Red)
PF2	GPIO	RGB LED (Blue)
PF3	GPIO	RGD LED (Green)

Tiva C Series TM4C123G LaunchPad

1. Program to read the status of SW1 and turn on and off the LED (white)

• Program: main.s

```
GPIO PORTF DATA R EQU 0x400253FC
                                            set bit to 1 for Bits 9:2
GPIO PORTF DIR R EQU 0x40025400
GPIO_PORTF_AFSEL_R EQU 0x40025420
GPIO_PORTF_PUR_R EQU 0x40025510
GPIO_PORTF_DEN_R EQU 0x4002551C
GPIO PORTF AMSEL R EQU 0x40025528
GPIO_PORTF_PCTL_R EQU 0x4002552C
PF0
                   EQU 0x40025004
                                             SW2 - negative logic
                                      ;
                                           RED LED
PF1
                   EQU 0x40025008
                                     ;
PF2
                   EQU 0x40025010
                                            BLUE LED - ORIG
                                            GREEN LED
SW1 - ORIG -negative logic
PF3
                   EQU 0x40025020
                                    ;
PF4
                   EQU 0x40025040
                                     ;
                   EQU 0x40025038
                                            All 3 colours (RGB) - white
                                      ;
SYSCTL RCGCGPIO R EQU 0x400FE608 ;
                                             Register to enable port F .p340
        AREA
                |.text|, CODE, READONLY, ALIGN=2
        THUMB
        EXPORT Start
Start
; initialize PF 1-3 output, PF4 an input,
; enable digital I/O, ensure alt. functions off.
; Input: none, Output: none, Modifies: R0, R1
       ; activate clock for Port F
   LDR R1, =SYSCTL RCGCGPIO R
    LDR R0, [R1]
    ORR R0, R0, #0x20
                                    ; set bit 5 to turn on clock
    STR R0, [R1]
    NOP
                                    ; allow time for clock to finish
    NOP
    NOP
    ; no need to unlock PF2
       ; disable analog functionality
   LDR R1, =GPIO PORTF AMSEL R
    LDR R0, [R1]
    BIC RO, #0x0E
                                     ; 0 means analog is off
    STR R0, [R1]
       ; configure as GPIO
   LDR R1, =GPIO_PORTF_PCTL_R
    LDR R0, [R1]
                       #0x00000FF0
       BIC RO, RO,
                                     ; Clears bit 1 & 2 (to ensure default GPIO func selected)
       BIC RO, RO, #0x000FF000
                                     ; Clears bit 3 & 4 (to ensure default GPIO func selected)
       STR R0, [R1]
       ;set direction register
   LDR R1, =GPIO PORTF DIR R
    LDR R0, [R1]
    ORR R0, R0, #0x0E
                                     ; PF 1,2,3 output (1 in output)
    BIC R0, R0, #0x10
                                      ; Make PF4 built-in button input (0 is output)
    STR R0, [R1]
       ; regular port function
    LDR R1, =GPIO_PORTF_AFSEL_R
    LDR R0, [R1]
       BIC R0, R0, #0x1E
                                      ; 0 means disable alternate function
       STR R0, [R1]
       ; pull-up resistors on switch pins
```

```
LDR R1, =GPIO_PORTF_PUR_R ; R1 = &GPIO_PORTF_PUR_R LDR R0, [R1] ; R0 = [R1] ; R0 = R0|Ox10 (enable posterior posteri
                                                                                                                    ; R0 = R0 \mid 0 \times 10 (enable pull-up on PF4)
              STR R0, [R1]
                                                                                                                 ; [R1] = R0
                         ; enable digital port
              LDR R1, =GPIO PORTF DEN R ; 7) enable Port F digital port
             ; 1 means enable digital I/O ORR R0, R0, \#0x10 ; R0 = R0|0x10 (enable digital STR R0, [R1]
              LDR R0, [R1]
                                                                                                                    ; R0 = R0 \mid 0 \times 10 (enable digital I/O on PF4)
              LDR R4, =PF4
                                                                                                                     ; R4 = \&PF4
 loop
                                                                                                                 ; in this loop, the appliance (PF2) toggles when the switch
                                                                                                                    ; is released
             BL SSR On
waitforpress1 ; proceed only when the button is pressed LDR R0, [R4] ; R0 = [R4] (read status of PF4) CMP R0, #0x10 ; R0 == 0x10?

BEQ waitforpress1 ; if so, spin waitforrelease1 ; proceed only when the button is released LDR R0, [R4] ; R0 = [R4] (read status of PF4) CMP R0, #0x10 ; R0 != 0x10?

BNE waitforrelease1 ; if so, spin BL SSR_Off
             BL SSR Off
BL SSR_Off
waitforpress2 ; proceed only when the button is pressed
LDR R0, [R4] ; R0 = [R4] (read status of PF4)
CMP R0, #0x10 ; R0 == 0x10?
BEQ waitforpress2 ; if so, spin
waitforrelease2 ; proceed only when the button is released
LDR R0, [R4] ; R0 = [R4] (read status of PF4)
CMP R0, #0x10 ; R0 != 0x10?
BNE waitforrelease2 ; if so, spin
             B loop
 ;-----SSR On-----
 ; Make PFA high.
 ; Input: none
 ; Output: none
  ; Modifies: R0, R1
 SSR On
                                                                                                         ; R1 = &PFA
; R0 = 0x04 (turn on the appliance)
             LDR R1, =PFA
             MOV R0, \#0x0E
                                                                                                                  ; [R1] = R0, write to PFA
              STR R0, [R1]
             BX T<sub>1</sub>R
                                                                                                                    ; return
 ;-----SSR Off-----
  ; Make PFA low.
 ; Input: none
 ; Output: none
  ; Modifies: R0, R1
 SSR Off
              LDR R1, =PFA
                                                                                                                ; R1 = &PFA
             MOV R0, #0x00
STR R0, [R1]
                                                                                                                 ; R0 = 0x00 (turn off the appliance)
                                                                                                                    ; [R1] = R0, write to PFA
              BX LR
                                                                                                                     ; return
                                                                                                                     ; make sure the end of this section is aligned
              ALIGN
              END
                                                                                                                      ; end of file
```

- Load and run the program.
- Study the code and determine;
 - (i) How status of SW1 (PF4) is read when it is pressed and released.
 - (ii) How the LED (White) is generated and then turned off.

Exercise:

Modify the code such that with each successive press and release of switch SW1

• The TM4C123G LED will perform the following operation.

Press SW1 - Red Led

 $Press\ SW1-Off$

Press SW1 – Blue Led

 $Press\ SW1-Off$

Press SW1 - Green Led

Press SW1 – Off

Press SW1 - White Led

Press SW1 – Off

Repeat.