測度論的確率論 2018 S1S2

Homework 2

経済学研究科現代経済コース修士 1 年 / 池上 慧 (2918009) / sybaster.x@gmail.com April 19, 2018

1 Ex 1.5

まず「 $A_n \downarrow \phi$, $A_n \in \mathcal{A} \Rightarrow \lim_{n \to \infty} \mu(A_n) = 0$ 」 \Rightarrow 「 μ が $\sigma(\mathcal{A})$ 上に拡張できる」を示す。Caratheodory の拡張定理を用いるために、以下の二点が成立することを確認すれば良い。

- 1. $A_n \in \mathcal{A}$ が $n=1,2,3,\ldots$ で排反に取られていて、 $\bigcup_{n=1}^\infty A_n \in \mathcal{A}$ であるなら、 $\mu(\bigcup_{n=1}^\infty A_n) = \sum_{n=1}^\infty \mu(A_n)$ が成立する。
- 2. $\mu(\phi) = 0$
- 1番目を確認する。仮定されている有限加法性から以下が成立する。

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(A_1 \cup \bigcup_{n=2}^{\infty} A_n\right) = \mu\left(A_1\right) + \mu\left(\bigcup_{n=2}^{\infty} A_n\right)$$

ただし、2つ目の統合は、 $\bigcup_{n=1}^\infty A_n \in \mathcal{A}$ かつ任意の n について $A_n \in \mathcal{A}$ であることから、field の性質より $\bigcup_{n=2}^\infty A_n \in \mathcal{A}$ となり、 μ の定義域に入るため成立することに注意する。この処理は繰り返し用いることができるので、 $\mu(\bigcup_{n=1}^\infty A_n) = \sum_{n=1}^\infty \mu(A_n)$ が成立することがわかる。

2番目を確認する。今、 $B_n=A_1\backslash A_n$ とすると、仮定より $B_n\uparrow A_1\backslash \phi$ である。さらに $C_n=B_n\backslash B_{n+1}$ とすると、 $\{B_n\}_{n=1}^\infty$ が単調な列であることから $\{C_n\}_{n=1}^\infty$ は排反である。有限加法性より、

$$\mu\left(B_{n}\right) = \mu\left(\bigcup_{m=1}^{n} C_{m}\right) = \sum_{m=1}^{n} \mu\left(C_{m}\right)$$

である。 $\mu(A_n) = \mu(A_1) - \mu(A_1 \setminus A_n) = \mu(A_1) - \mu(B_n)$ なので、 $\mu(A_n)$ の極限を考えるには $\mu(B_n)$ の極限を考えれば良い。上の式と 1 の性質より、

$$\lim_{n \to \infty} \mu\left(B_n\right) = \sum_{m=1}^{\infty} \mu\left(C_m\right) = \mu\left(\bigcup_{m=1}^{\infty} C_m\right) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \mu\left(A_1 \setminus \phi\right)$$

である。以上より、

$$\lim_{n\to\infty}\mu\left(A_{n}\right)=\mu\left(A_{1}\right)-\lim_{n\to\infty}\mu\left(B_{n}\right)=\mu\left(A_{1}\right)-\left(\mu\left(A_{1}\right)-\mu\left(\phi\right)\right)=\mu\left(\phi\right)$$

であり、仮定より $\mu(\phi) = 0$ を得た。

次に「 μ が $\sigma(A)$ 上に拡張できる」 ⇒ 「 $A_n \downarrow \phi$, $A_n \in A$ ⇒ $\lim_{n \to \infty} \mu(A_n) = 0$ 」を示す。レクチャーノートの lemma1.3 を用いる。 $\mu(A_1) < \infty$ であることを示せば、lemma1.3 より $A_n \downarrow \phi$, $A_n \in A \subset \sigma(A)$ のように取れば、測度 の定義より空集合の測度は 0 なので、 $\lim_{n \to \infty} \mu(A_n) = \mu(\phi) = 0$ となり題意を示せる。従って $\mu(A_1) < \infty$ を確認すれば良い。拡張した測度においても A 上では元の関数 μ と同じ値をとり、元の μ の値域は \mathbb{R}_+ であり、 $A_1 \in A$ である。これより $\mu(A_1) < \infty$ は明らかである。以上で必要十分条件であることが確認された。

- 2 Ex 2.1
- 3 Ex 2.9
- 4 Ex 3.1
- 5 Ex 3.2