Step-1

Let *A* be a matrix.

We have to prove that $A^{H}A$ is always Hermitian.

Step-2

We know that a matrix A is Hermitian if $A^H = A$.

Let $P = A^H A$

Now

$$P^{H} = (A^{H} A)^{H}$$

$$= A^{H} (A^{H})^{H}$$

$$= A^{H} A \qquad \left(\text{Since } (A^{H})^{H} = A \right)$$

Since $P^H = P \Rightarrow P$ is a hermitatian matrix

Hence $A^H A$ is always Hermitian.

Step-3

Given that $A = \begin{bmatrix} i & 1 & i \\ 1 & i & i \end{bmatrix}$

We have to compute $A^H A$ and AA^H .

Step-4

 $A = \begin{bmatrix} i & 1 & i \\ 1 & i & i \end{bmatrix}$ We have

$$\overline{A} = \begin{bmatrix} -i & 1 & -i \\ 1 & -i & -i \end{bmatrix}$$
Then

$$A^{H} = \overline{A}^{T} = \begin{bmatrix} -i & 1\\ 1 & -i\\ -i & -i \end{bmatrix}$$

Therefore,

Step-5

Now

$$A^{H}A = \begin{bmatrix} -i & 1 \\ 1 & -i \\ -i & -i \end{bmatrix} \begin{bmatrix} i & 1 & i \\ 1 & i & i \end{bmatrix}$$

$$= \begin{bmatrix} -i^2 + 1 & -i + i & -i^2 + i \\ i - i & 1 - i^2 & i - i^2 \\ -i^2 - i & -i - i^2 & -i^2 - i^2 \end{bmatrix}$$

$$= \begin{bmatrix} -(-1) + 1 & -i + i & -(-1) + i \\ i - i & 1 - (-1) & i - (-1) \\ -(-1) - i & -i - (-1) & -(-1) - (-1) \end{bmatrix}$$
 (Since $i^2 = -1$)

$$= \begin{bmatrix} 2 & 0 & 1+i \\ 0 & 2 & 1+i \\ 1-i & 1-i & 2 \end{bmatrix}$$

Therefore,
$$A^{II} A = \begin{bmatrix} 2 & 0 & 1+i \\ 0 & 2 & 1+i \\ 1-i & 1-i & 2 \end{bmatrix}$$

Step-6

Now we compute AA^H

$$AA^{H} = \begin{bmatrix} i & 1 & i \\ 1 & i & i \end{bmatrix} \begin{bmatrix} -i & 1 \\ 1 & -i \\ -i & -i \end{bmatrix}$$

$$= \begin{bmatrix} -i^2 + 1 - i^2 & i - i - i^2 \\ -i + i - i^2 & 1 - i^2 - i^2 \end{bmatrix}$$

$$= \begin{bmatrix} -(-1) + 1 - (-1) & i - i - (-1) \\ -i + i - (-1) & 1 - (-1) - (-1) \end{bmatrix}$$
 (Since $i^2 = -1$)
$$= \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Hence $AA^{H} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$