MATH 4281 Risk Theory-Ruin and Credibility

Module 1 (Final Lecture)

January 28, 2021

Where we left off - the distribution of a Compound Distribution

It is possible to get a fairly general expression for the CDF of S (a "compound *blank* distribution") by conditioning on the number of claims:

$$F_S(x) = \sum_{n=0}^{\infty} \Pr[S \le x | N = n] \Pr[N = n] = \sum_{n=0}^{\infty} F_X^{*n}(x) p_n,$$

where $F_X^{*n}(x)$ is the *n*-fold convolution of $F_X(x)$. Note that

- N will always be discrete, so this works for any type of RV X (continuous, discrete or mixed)
- however, the type of S will depend on the type of X

Type of *X*

If X is continuous, S will generally be mixed:

- with a mass at 0 because of Pr[N = 0] (if positive)
- continuous elsewhere, but with a density integrating to $1 \Pr[N = 0]$

If X is mixed, S will generally be mixed:

- Other than Pr[N = 0] consider if X is not continuous for x > 0
- ullet with a density integrating to something $\leq 1 \Pr[N=0]$

But if *X* discrete?

• For discrete X's there is a similar expression for the pmf of S:

$$f_S(x) = \sum_{n=0}^{\infty} \Pr[S = x | N = n] \Pr[N = n] = \sum_{n=0}^{\infty} f_X^{*n}(x) p_n,$$

- Where $f_X^{*0}(0) = 1$ (and thus 0 anywhere else)
- Obviously this can be implemented in a table and/or in a program in the manner we have seen

However...

- However, if the range of N goes really to the infinity, calculating $f_S(x)$ may require an infinity of convolutions of X
- This formula is more efficient if the number of possible outcomes for N is small

 We will explore two algorithms for simplifying these calculations in the next section (see next section)

he Sparse Vector Algorithm anjer's Recursion Algorithm oncluding remarks

Approximating *S* in the CRM: Discrete Methods

Example

Suppose that N_1, N_2, \dots, N_m are independent random variables. Further, suppose that N_i follows Poisson (λ_i) . Let x_1, x_2, \dots, x_m be deterministic numbers. What is the distribution of the following:

$$x_1N_1+\cdots+x_mN_m$$
?

Ex (cont.)

Theorem

If $S \sim \text{compound Poisson}(\lambda, \Pr(X = x_i) = \pi_i), i = 1, ..., m$ then

$$S = x_1 N_1 + \ldots + x_m N_m,$$

where the N_i 's

- represent the number of claims of amount x_i
- are mutually independent
- are Poisson($\lambda_i = \lambda \pi_i$)

So What?

 Allows to develop an alternative method for tabulating the distribution of S that is more efficient as m is small called the Sparse Vector Algorithm

• S can be used to approximate the Individual Risk Model if X = IB where I = 1 if N > 0 and B = xN.

The sparse vector algorithm: examples

Suppose S has a compound Poisson distribution with $\lambda=0.8$ and individual claim amount distribution

X	$\Pr[X = x]$
1	0.250
2	0.375
3	0.375

Compute $f_S(x) = \Pr[S = x]$ for x = 0, 1, ..., 6.

This can be done in two ways:

- Basic method (seen earlier in the lecture): requires to calculate up to the 6th convolution of X
- Sparse vector algorithm: requires no convolution of X

Solution - Basic Method

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
×	$f_X^{*0}(x)$	$f_X(x)$	$f_X^{*2}(x)$	$f_X^{*3}(x)$	$f_X^{*4}(x)$	$f_X^{*5}(x)$	$f_X^{*6}(x)$	$f_S(x)$
0	1	-	-	-	-	-	-	0.4493
1	-	0.250	-	-	=.	-	=.	0.0899
2	-	0.375	0.0625	-	-	-	-	0.1438
3	-	0.375	0.1875	0.0156	-	-	-	0.1624
4	-	-	0.3281	0.0703	0.0039	-	-	0.0499
5	-	-	0.2813	0.1758	0.0234	0.0010	-	0.0474
6	-	=	0.1406	0.2637	0.0762	0.0073	0.0002	0.0309
n	0	1	2	3	4	5	6	
$e^{-0.8} \frac{(0.8)^n}{n!}$	0.4493	0.3595	0.1438	0.0383	0.0077	0.0012	0.0002	

- The convolutions are done in the usual way
- The $f_S(x)$ are the sumproduct of the row x and row Pr[N=n]
- The number of convolutions (and thus of columns) will increase by 1 for each new value of $f_S(x)$, until the infinity!

Solution - Sparse Vector Algorithm

Thanks to out theorem we can write $S = N_1 + 2N_2 + 3N_3$. Now only two convolutions are needed! (columns (5) and (6))

(1)	(2)	(3)	(4)	(5)	(6)
X	$Pr[N_1 = x]$	$Pr[2N_2 = x]$	$Pr[3N_3 = x]$	$\Pr\left[N_1 + 2N_2 = x\right]$	$f_{S}(x)$
				= (2)*(3)	= (4)*(5)
0	0.818731	0.740818	0.740818	0.606531	0.449329
1	0.163746	0	0	0.121306	0.089866
2	0.016375	0.222245	0	0.194090	0.143785
3	0.001092	0	0.222245	0.037201	0.162358
4	0.000055	0.033337	0	0.030974	0.049906
5	0.000002	0	0	0.005703	0.047360
6	0.000000	0.003334	0.033337	0.003288	0.030923
x _i	1	2	3		
$\lambda_i = \lambda \pi_i$	0.2	0.3	0.3		
$Pr[N_i = x/i]$	$e^{-0.2} \frac{(0.2)^x}{x!}$	$e^{-0.3} \frac{(0.3)^{x/2}}{(x/2)!}$	$e^{-0.3} \frac{(0.3)^{x/3}}{(x/3)!}$		

Another Algorithm

The (a, b, 0) family is a family of distributions with the following property

$$\Pr[N = k] = \left(a + \frac{b}{k}\right) \Pr[N = k - 1], \quad k = 1, 2, \cdots.$$

 \implies Pr[N = n] can be obtained by recursion given Pr[N = 0].

The <u>exhaustive</u> list of the (a, b, 0) members is:

Distribution	а	b	Pr[N=0]
Poisson(λ)	0	λ	$e^{-\lambda}$
$Neg\;Bin(r,eta)$	$\beta/1+\beta$	$(r-1)\beta/(1+\beta)$	$(1+\beta)^{-r}$
Binomial (m, q)	-q/(1-q)	(m+1)q/(1-q)	$(1-q)^m$

e.g. for Poisson:

Panjer's recursion algorithm

- The remarkable property of the (a, b) family allows us to develop a recursive method to get the distribution of S for discrete X's.
- I will present the algorithm without proof here. But I attached a supplemental document with Mikosch's proof (which I prefer to Klugman et al.).
- The algorithm is very stable when *N* is Poisson and Negative Binomial, but less stable when *N* is Binomial.

Panjer's Recursion Formula

lf

- S has a compound distribution on X
- X is non-negative and discrete
- N is of the (a, b, 0) family

Then

$$f_{S}\left(s\right) = \frac{1}{1 - af_{X}\left(0\right)} \sum_{j=1}^{s} \left(a + \frac{bj}{s}\right) f_{X}\left(j\right) f_{S}\left(s - j\right), \quad s = 1, 2, \dots,$$

with starting value

$$f_{S}(0) = \begin{cases} Pr[N = 0], & \text{if } f_{X}(0) = 0 \\ P_{N}[f_{X}(0)], & \text{if } f_{X}(0) > 0. \end{cases}$$

Panjer's recursion for compound Poisson

If $S \sim \text{compound Poisson}(\lambda, f_X(x))$ the algorithm reduces to

$$f_{S}(s) = \frac{\lambda}{s} \sum_{j=1}^{s} j f_{X}(j) f_{S}(s-j)$$

with starting value

$$f_{S}\left(0\right)=e^{\lambda\left(f_{X}\left(0\right)-1\right)}$$

(whether $f_X(0)$ is positive or not).

Previous Example using the recursion formula

Effectively, the recursion formula boils down to

$$f_S(s) = \frac{1}{s} [0.2f_S(s-1) + 0.6f_S(s-2) + 0.9f_S(s-3)], \text{ (for } s > 2)$$

with starting value

$$f_S(0) = \Pr[N = 0] = e^{-0.8} = 0.44933.$$

We have then

$$f_S(1) = 0.2f_S(0) = 0.2e^{-0.8} = 0.089866$$

$$f_S(2) = \frac{1}{2} [0.2f_S(1) + 0.6f_S(0)] = 0.32e^{-0.8} = 0.14379$$

$$f_S(3) = \frac{1}{3}[0.2f_S(2) + 0.6f_S(1) + 0.9f_S(0)] = 0.3613e^{-0.8} = 0.16236$$

:

- When X is continuous, it is possible to discretise its distribution (advanced methods out of the scope of this course).
- Can be very accurate. If you are curious Sec. 9.6.5
 "Constructing Arithmetic Distributions" in Klugman et al.
- There also exists a corollary to Panjer for computing convolutions in the IRM. This is called DePril's Algorithm.
- Panjer Recursion can be generalized to calculate the "probability of ruin" in the Cramér-Lundberg model (Module 2).

Approximating *S* in the CRM: Normal Approximation

Approximations

Possible motivations:

- It is not possible to compute the distribution of S e.g. no detailed data is available except for the moments of S
- The risk of having a sophisticated—but wrong—model is too high if limited data is available to fit the model
- A quick approximation is needed.
- A higher level of accuracy is not required (does not justify the resources necessary to calculate an exact probability)

CLT approximation assuming symmetry

The Central Limit Theorem suggests that

$$F_{S}(s) = \Pr[S \le s] = \Pr\left[\frac{S - E[S]}{\sqrt{Var(S)}} \le \frac{s - E[S]}{\sqrt{Var(S)}}\right]$$

$$\approx \Pr\left[Z \le \frac{s - E[S]}{\sqrt{Var(S)}}\right] = \Phi\left(\frac{s - E[S]}{\sqrt{Var(S)}}\right),$$

This approximation performs poorly

- individual model: for small n (generally $n \leq 30$)
- ullet collective model: for small λ (compound Poisson) and small r (compound negative binomial)
- for highly skewed distributions

CLT Approximation allowing for skewness

Two "Normal¹ Power Levels":

- NP1: this is the CLT approximation
- NP2: CLT but with a correction taking the skewness into account. Given that $x > E[S] + \sqrt{Var(S)}$:

$$\Pr\left[\frac{S - E[S]}{\sqrt{Var(S)}} \le x\right] \approx \Phi(s)$$

with

$$x=s+rac{\gamma_1}{6}\left(s^2-1
ight) \quad ext{ or } \quad s=\sqrt{rac{9}{\gamma_1^2}+rac{6x}{\gamma_1}+1}-rac{3}{\gamma_1}$$

¹That is, power levels bellow 9,000

Example

A total claim amount S has expected value 10000, standard deviation 1000 and skewness 1. Use the CLT to find the probability that S is greater than 13000.

• NP1:

$$\Pr(S > 13000) = \Pr\left(\frac{S - E[S]}{\sqrt{Var(E)}} > \frac{13000 - 10000}{1000}\right)$$

 $\approx 1 - \Phi(3) = 0.013.$

NP2

$$\Pr(S > 13000) = \Pr\left(\frac{S - E[S]}{\sqrt{\text{Var}(E)}} > \frac{13000 - 10000}{1000}\right)$$

$$\approx 1 - \Phi(\sqrt{9 + 6 \times 3 + 1} - 3)$$

$$= 1 - \Phi(2.29) = 0.011.$$

End of Module 1