Review

PERCEPTRON

The Perceptron

- □A perceptron separates the input space into two halves, positive and negative.
- □ All the inputs that produce *true* lie on one side (positive half) and all the inputs that produce *false* lie on the other side (negative half space)
- A single Perceptron can only be used to implement linearly separable functions
 - Just like M-P Neuron
- ☐ How Perceptron is different than M-P Neuron?
 - The inputs can be assigned different importance
 - The weights and the thresholds can be learned.
 - The inputs can be real values

How to make linearly separable decision boundary? What should be changed in Perceptron?

Credit: https://towardsdatascience.com/perceptron-the-artificial-neuron-4d8c70d5cc8c

One way: Adding Dimensions to Achieve Linear Separability

Second Way: Use Hidden Layers

Training a Perceptron

- ☐ Before moving to hidden layers, lets understand why these are useful!
- ☐ The new weights are changed via the equation:

• Where:

$$w_i = w_i + \Delta w_i$$

This is learning rate which dictates how much the weights should change

$$\Delta w_i = \eta(y - \widehat{y})x_i$$
Actual label
(Target)

Predicted label
(Output of Network)

Combined form of equation

$$w_i = w_i + \eta (y - \widehat{y}) x_i$$

This is known as

Perceptron Training Rule

 $w_1 = 1.2$ $w_2 = 0.6$ $\eta = 0.5$ threshold = 1

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

Note: We are not using Bias (x_0) for this example.

$$w_1 = 1.2$$

$$w_2 = 0.6$$

$$\eta = 0.5$$

$$threshold = 1$$

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

For record 1:

$$\sum w_i \times x_i = 0 \times 1.2 + 0 \times 0.6 = 0$$

Sum is not greater than threshold, so output is 0

For record 2:

$$\sum w_i \times x_i = 0 \times 1.2 + 1 \times 0.6 = 0.6$$

Sum is not greater than threshold, so output is 0

For record 3:

$$\sum w_i \times x_i = 1 \times 1.2 + 0 \times 0.6 = 1.2$$

Sum is greater than threshold, so output is 1

$$w_i = w_i + \eta(y - \widehat{y})x_i$$

The target is 0 and the output is 1, update the weights!

$$w_1 = 1.2$$

$$w_2 = 0.6$$

$$\eta = 0.5$$

$$threshold = 1$$

For record 3:

$$\sum w_i \times x_i = 1 \times 1.2 + 0 \times 0.6 = 1.2$$

Sum is greater than threshold, so output is 1

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

$$w_i = w_i + \eta (y - \widehat{y}) x_i$$

$$w_1 = 1.2 + 0.5(0 - 1)1 = 0.7$$

$$w_2 = 0.6 + 0.5(0 - 1)0 = 0.6$$

$$w_1 = 0.7$$

$$w_2 = 0.6$$

$$\eta = 0.5$$

$$threshold = 1$$

For record 1:

$$\sum w_i \times x_i = 0 \times 0.7 + 0 \times 0.6 = 0$$

Sum is not greater than threshold, so output is 0

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

For record 2:

$$\sum w_i \times x_i = 0 \times 0.7 + 1 \times 0.6 = 0.6$$

Sum is not greater than threshold, so output is 0

For record 3:

$$\sum w_i \times x_i = 1 \times 0.7 + 0 \times 0.6 = 0.7$$

Sum is not greater than threshold, so output is 0

For record 4:

$$\sum w_i \times x_i = 1 \times 0.7 + 1 \times 0.6 = 1.3$$

Sum is greater than threshold, so output is 1

$$w_1 = 0.7$$
 $w_2 = 0.6$ $\eta = 0.5$ threshold = 1

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

Take Aways:

Only update weights when the predicted output is not equal to the actual output.

If all records/training examples are classified correctly with certain set of weights, stop the training.

Save the final weights for future deployments for unseen data.

$$w_1 = 0.7$$
 $w_2 = 0.6$ $\eta = 0.5$ threshold = 1

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

Trained Perceptron

$$w_1 = 0.6$$

$$w_2 = 0.6$$

$$\eta = 0.5$$

$$threshold = 1$$

For record 1:

$$\sum w_i \times x_i = 0 \times 0.6 + 0 \times 0.6 = 0$$

Sum is not greater than threshold, so output is 0

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

For record 2:

$$\sum w_i \times x_i = 0 \times 0.6 + 1 \times 0.6 = 0.6$$

Sum is not greater than threshold, so output is 0

$$w_i = w_i + \eta(y - \widehat{y})x_i$$

The target is 1 and the output is 0, update the weights!

$$w_1 = 0.6 + 0.5(1 - 0)0 = 0.6$$

$$w_2 = 0.6 + 0.5(1 - 0)1 = 1.1$$

$$w_1 = 0.6$$

$$w_2 = 1.1$$

$$\eta = 0.5$$

$$threshold=1$$

For record 1:

$$\sum w_i \times x_i = 0 \times 0.6 + 0 \times 1.1 = 0$$

Sum is not greater than threshold, so output is 0

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

For record 2:

$$\sum w_i \times x_i = 0 \times 0.6 + 1 \times 1.1 = 1.1$$

Sum is greater than threshold, so output is 1

For record 3:

$$\sum w_i \times x_i = 1 \times 0.6 + 0 \times 1.1 = 0.6$$

$$\times x_i = 1 \times 0.6 + 0 \times 1.1 = 0.6$$

$$w_i = w_i + \eta(y - \widehat{y})x_i$$

$$w_1 = 0.6 + 0.5(1 - 0)1 = 1.1$$

$$w_2 = 0.6 + 0.5(1 - 0)0 = 1.1$$

Sum is not greater than threshold, so output is 0

The target is 1 and the output is 0, update the weights!

$$w_1 = 1.1$$

$$w_2 = 1.1$$

$$\eta = 0.5$$

$$threshold=1$$

For record 1:

$$\sum w_i \times x_i = 0 \times 1.1 + 0 \times 1.1 = 0$$

Sum is not greater than threshold, so output is 0

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

For record 2:

$$\sum w_i \times x_i = 0 \times 1.1 + 1 \times 1.1 = 1.1$$

Sum is greater than threshold, so output is 1

For record 3:

$$\sum w_i \times x_i = 1 \times 1.1 + 0 \times 1.1 = 1.1$$

Sum is not greater than threshold, so output is 1

For record 4:

$$\sum w_i \times x_i = 1 \times 1.1 + 1 \times 1.1 = 2.2$$

Sum is not greater than threshold, so output is 1

$$w_1 = 1.1$$

$$w_2 = 1.1$$

$$\eta = 0.5$$

threshold = 1

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

Trained Perceptron

These were few of infinite possible solutions...

■Why infinite solutions?

- ☐ The solution is nothing but a set of "weights and biases" which gives us the right output.
 - As weights can be any continuous value, depending on the initial random initialization, we have infinite possibilities.

Other Solutions to OR and AND Problems

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

Solution for AND

Note: We are using Bias for this solution.

Other Solutions to OR and AND Problems

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

Solution for AND

Note: No threshold required.

Other Solutions to OR and AND Problems

Solution for OR

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

Not So Simple Example: XOR Function

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

No weights would satisfy all the target labels.

Perceptrons are linear classifiers....

Decision Boundaries

How to learn such complex decision boundaries?

- ■XOR can't be calculated by a single perceptron
- □XOR can be calculated by a layered network of units

	0	1	1
ReLU $y_1 = ReLU(0 \times 1 + 0 \times -2 + 1 \times 0)$	1	0	1
$y_1 = ReLU(0) = 0$	1	1	0
Relu 0 $h_1 = ReLU(0 \times 1 + 0 \times 1 + 1)$ $h_1 = ReLU(0) = 0$ $h_1 = ReLU(0) = 0$ $h_2 = ReLU(0 \times 1 + 0 \times 1 + 1)$ $h_2 = ReLU(-1) = 0$	l × (–] 1))	

Solution Credit: Goodfellow et al. (2016)

- ■XOR can't be calculated by a single perceptron
- □XOR can be calculated by a layered network of units

ReLU $y_1 = ReLU(1 \times 1 + 0 \times -2 + 1 \times 0)$ $y_1 = ReLU(1) = 1$	0 1 1	1 0 1	1 1 0
	1		1 0
$y_1 = ReLU(1) = 1$	1	1	0
ReLU 1 $h_1 = ReLU(0 \times 1 + 1 \times 1 + 1 \times 0)$ $h_1 = ReLU(1) = 1$	0)		
x_1 x_2 $h_2 = ReLU(0 \times 1 + 1 \times 1 \times$	(-1)))	
$h_2 = ReLU(0) = 0$	$h_2 = ReLU(0) = 0$		

Solution Credit: Goodfellow et al. (2016)

 x_1

- ■XOR can't be calculated by a single perceptron
- □XOR can be calculated by a layered network of units

		0	1	1
ReLU $y_1 = ReLU(1 \times 1)$	$1+0\times-2+1\times0$	1	0	1
$y_1 = R$	eLU(1) = 1	1	1	0
1 1 1 0 -1 X_2	$= ReLU(1 imes 1 + 0 imes 1 + 1 \ h_1 = ReLU(1) = 1 \ = ReLU(1 imes 1 + 0 imes 1 + 1 \ h_2 = ReLU(0) = 0$]] 1))	

Solution Credit: Goodfellow et al. (2016)

 x_1

- ■XOR can't be calculated by a single perceptron
- □XOR can be calculated by a layered network of units

	0	1	
ReLU $y_1 = ReLU(2 \times 1 + 1 \times -2 + 1 \times 0)$	1	0	
$y_1 = ReLU(0) = 0$	1	1	
Relu 2 $h_1 = ReLU(1 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1 \times $	+ 1 × (−		

Solution Credit: Goodfellow et al. (2016)

 x_1

0

The Hidden Representation h

□ Did you notice what happened to the hidden space *h* for the inputs where only one input was 1?

Solution Credit: Goodfellow et al. (2016)

The Hidden Representation h

- ☐ In this example, we used predefined weights
- ☐ But in actual, the weights are learned using **Backpropagation** Algorithm
- ☐ Which means, the hidden layer learns useful representation of the input during the training
- ☐ This intuition that Multilayer NNs can learn useful representation of the inputs automatically is one of their key advantages

Implementation Details

- □Can multilayer Perceptron/NNs only be used for classification tasks?
 - No! The output can also be a continuous label (i.e., regression)
 - The difference is, you will compute SSE as an error and use Gradient Descent just like we did in linear regression!

MLP to Deep Neural Network

Deep Neural Network For Different Tasks

Summary

- ☐ If your problem is a **regression** problem, you should use a **linear activation** function (i.e., multiply sum by 1 aka no activation).
 - Regression: One output node, linear activation.

- □ If your problem is a **classification** problem, then there are three main types of classification problems and each may use a different activation function.
 - If there are two mutually exclusive classes (binary classification).
 - Binary Classification: One output node, sigmoid activation.
 - If there are more than two mutually exclusive classes (multiclass classification).
 - Multiclass Classification: One output node per class, softmax activation.
 - If there are two or more mutually inclusive classes (multilabel classification),
 - Multilabel Classification: One output node per class, sigmoid activation.

What is multilabel classification?

Book Reading

- ☐ Murphy Chapter 8
- □Jurafsky Chapter 5, Chapter 4, Chapter 7
- ☐ Tom Mitchel Chapter 4