FEUILLE D'EXERCICES N°10 Théorème de KARUSH-KUHN-TUCKER

Démonstrations de cours

Les exercices de cette section **ne seront pas** traités en TD, les corrigés se trouvant dans le polycopié. Les exercices marqués **&** sont exigibles au partiel et à l'examen.

♣ Exercice 1 – Condition d'indépendance linéaire

Module B5 – Théorème 1

Soit $U \subset E$ un ouvert. Soit $f: U \to \mathbb{R}$, $g_i: U \to \mathbb{R}$ avec $i \in [1; p]$ et $h_1: U \to \mathbb{R}$ des fonctions \mathcal{C}^1 . On considère le problème d'optimisation sous contraintes suivant

Minimiser
$$f(x)$$
 sous les contraintes
$$\begin{cases} g_i(x) = 0 & \text{pour } i \in [1; p] \\ h_1(x) \le 0 \end{cases}$$
 (\mathcal{P}_c)

- (a) Justifier que l'ensemble admissible est fermé.
- (b) On suppose que h_1 est nul. En utilisant le théorème des extrema liés, montrer que, si $x^* \in U$ est une solution de (\mathcal{P}_c) et que les $\nabla g_i(x^*)$ forment une famille libre, alors il existe p réels $\lambda_1, \ldots, \lambda_p$ tels que

$$\nabla f(x^*) + \sum_{i=1}^{p} \lambda_i \nabla g_i(x^*) = 0$$

(c) Justifier que (\mathcal{P}_c) est équivalent au problème

Minimiser
$$F(x,\varepsilon) = f(x)$$
 sous les contraintes
$$\begin{cases} \tilde{g}_i(x,\varepsilon) = g_i(x) = 0 \text{ pour } i \in [1; p] \\ \tilde{g}_{p+1}(x,\varepsilon) = h_1(x) + \varepsilon^2 = 0 \end{cases}$$
 (\mathcal{P}'_c)

dans le sens où x^* est solution de (\mathcal{P}_c) si et seulement si $(x^*, \pm \sqrt{-h_1(x^*)})$ est solution de (\mathcal{P}'_c) .

- (d) Montrer que les vecteurs $\nabla \tilde{g}_i(x,\varepsilon)$ pour $i \in [1; p+1]$ forment une famille libre si
 - les vecteurs $\nabla g_i(x)$ pour $i \in [1; p]$ forment une famille libre et $\varepsilon \neq 0$
 - ou les vecteurs $\nabla g_i(x)$ pour $i \in [1; p]$ et $\nabla h_1(x)$ forment une famille libre.

Vérifier que pour tout (x, ε) admissible pour (\mathcal{P}'_c) , on a $\varepsilon \neq 0$ si et seulement si $h_1(x) < 0$.

- (e) En déduire que, si x^* est une solution de (\mathcal{P}'_c) et que
 - les vecteurs $\nabla g_i(x^*)$ pour $i \in [1; p]$ forment une famille libre et $h_1(x^*) < 0$
 - ou les vecteurs $\nabla g_i(x^*)$ pour $i \in [1; p]$ et $\nabla h_1(x^*)$ forment une famille libre

alors il existe p+1 réels $\lambda_1,\ldots,\lambda_p$ et μ tels que

$$\nabla f(x^*) + \sum_{i=1}^p \lambda_i \nabla g_i(x^*) + \mu \nabla h_1(x^*) = 0 \quad \text{et} \quad \mu h_1(x^*) = 0$$

Exercice 2 – Positivité de μ

Module B₅ – Théorème 1

On reprend les notations de l'**Exercice** 1. On suppose que x^* est une solution de (\mathcal{P}'_c) tel que $h_1(x^*) = 0$ et que les vecteurs $\nabla g_i(x^*)$ pour $i \in [1; p]$ et $\nabla h_1(x^*)$ forment une famille libre. On pose

$$\varphi_0: \left\{ \begin{array}{ccc} U & \to & \mathbb{R}^{p+1} \\ x & \mapsto & \left(g_1(x), \dots, g_p(x), h_1(x)\right) \end{array} \right. \quad \text{et} \quad \varphi: \left\{ \begin{array}{ccc} U & \to & \mathbb{R}^p \\ x & \mapsto & \left(g_1(x), \dots, g_p(x)\right) \end{array} \right.$$

(a) En observant que $\varphi_0^{-1}(\{0\})$ et $\varphi^{-1}(\{0\})$ sont des sous-variétés, de dimension qu'on précisera, montrer que dim $\ker d_{x^*}\varphi = \dim \ker d_{x^*}\varphi_0 + 1$

En déduire qu'il existe un vecteur $v \in \mathbb{R}^n$ non nul tel que $v \in \ker d_{x^*} \varphi \setminus \ker d_{x^*} \varphi_0$.

 $\forall i \in [1; p], \quad \langle \nabla g_i(x^*), v \rangle = 0 \quad \text{et} \quad \langle \nabla h_1(x^*), v \rangle \neq 0$ (b) Justifier que

 $\langle \nabla f(x^*), v \rangle = -\mu \langle \nabla h_1(x^*), v \rangle$ (c) En déduire que

(d) Justifier que v est un vecteur tangent à la sous-variété $\varphi^{-1}(\{0\})$ en x^* . En déduire qu'il existe $\gamma:]-\delta; \delta[\to]$ \mathcal{U} telle que

$$\forall t \in]-\delta; \delta[, \qquad \begin{cases} \forall i \in \mathcal{I}_{x^*}, \quad g_i(\gamma(t)) = 0, \\ \forall j \in \mathcal{J}_{x^*} \setminus \{j_0\}, \quad h_j(\gamma(t)) = 0 \end{cases}$$

et telle que $(\gamma(0), \gamma'(0)) = (x^*, v)$.

 $h_1(\gamma(t)) = t \langle \nabla h_1(x^*), v \rangle + o(|t|)$ (e) Montrer que, pour t voisin de 0, En déduire que $h_1(\gamma(t))$ change de signe en 0 et que $h_1(\gamma(t)) \neq 0$ pour $t \neq 0$ voisin de 0.

(f) Montrer que, pour t voisin de 0,

$$f(\gamma(t)) = f(x^*) - t \,\mu \,\langle \nabla h_1(x^*), v \rangle + o(|t|)$$

- (g) On suppose que $\langle \nabla h_1(x^*), v \rangle < 0$. Montrer que $h_1(\gamma(t)) < 0$ pour t > 0 voisin de 0. En déduire que $\gamma(t)$ est admissible pour le problème (\mathcal{P}_c) pour de tels t. Justifier alors que $f(\gamma(t)) \geq f(x^*)$. En déduire que $\mu \langle \nabla h_1(x^*), v \rangle \leq 0$, puis que $\mu \geq 0$.
- (h) On suppose que $\langle \nabla h_1(x^*), v \rangle > 0$. En remplaçant v par -v dans les questions précédentes, prouver que $\mu \geq 0$.

♣ Exercice 3 – CS d'optimalité dans le cas convexe

Module B₅ – Théorème 2

Soit $U \subset E$ un ouvert. Soit $f: U \to \mathbb{R}$ et $h_j: U \to \mathbb{R}$, $j \in [1; q]$ des fonctions **convexes** différentiables et $g_i:U\to\mathbb{R},\ i\in[1:p]$ des fonctions **affines**. On considère le problème d'optimisation sous contraintes suivant

Minimiser
$$f(x)$$
 sous les contraintes
$$\begin{cases} g_i(x) = 0 & \text{pour } i \in [1; p] \\ h_1(x) \le 0 \end{cases}$$
 (\mathcal{P}_c)

 $\forall j \in [1; q], \quad h_i(x^*) \le 0$ Soit $x^* \in U$ tel que $\forall i \in [1; p], \quad g_i(x^*) = 0$ et et tel qu'il existe p+q réels $\lambda_1,\ldots,\lambda_p,\mu_1,\ldots,\mu_q$, appelés multiplicateurs de LAGRANGE, tels que $\nabla f(x^*) + \sum_{i=1}^p \lambda_i \nabla g_i(x^*) + \sum_{j=1}^q \mu_j \nabla h_j(x^*) = 0$

$$\nabla f(x^*) + \sum_{i=1}^p \lambda_i \nabla g_i(x^*) + \sum_{j=1}^q \mu_j \nabla h_j(x^*) = 0$$

avec

$$\forall j \in [1; q], \quad \mu_j h_j(x^*) = 0 \quad \text{et} \quad \mu_j \ge 0$$

- (a) Justifier que le problème (\mathcal{P}_c) est convexe.
- (b) Soit x un point admissible. En utilisant la convexité de f, justifier que

$$f(x) \ge f(x^*) - \sum_{i=1}^p \lambda_i \langle \nabla g_i(x^*), x - x^* \rangle - \sum_{j=1}^q \mu_j \langle \nabla h_j(x^*), x - x^* \rangle$$

(c) Justifier que pour tout $j \in [1; q]$

$$0 \ge \mu_j h_j(x) \ge \mu_j h_j(x^*) + \langle \mu_j \nabla h_j(x^*), x - x^* \rangle = \langle \mu_j \nabla h_j(x^*), x - x^* \rangle$$

et que pour tout $i \in [1; p]$

$$0 = q_i(x) = q_i(x^*) + \langle \nabla q_i(x^*), x - x^* \rangle = \langle \nabla q_i(x^*), x - x^* \rangle$$

- $\sum_{i=1}^{p} \lambda_i \langle \nabla g_i(x^*), x x^* \rangle + \sum_{i=1}^{q} \mu_j \langle \nabla h_j(x^*), x x^* \rangle \le 0$ (d) En déduire que
- (e) En conclure que $f(x) \ge f(x^*)$ pour tout point admissible $x \in U$.

Exercices fondamentaux

Exercice 4 – Qualification des contraintes Montrer que les contraintes suivantes sont qualifiées en tout point admissible au sens de l'indépendance linéaire, puis au sens de Slater.

(a)
$$C = \{(x, y) \in (\mathbb{R}^+)^2 \mid x + y \le 1 \}$$

(a)
$$C = \{(x,y) \in (\mathbb{R}^+)^2 \mid x+y \le 1\}$$

 (b) $C = \{(x,y) \in \mathbb{R}^2 \mid y \ge x^2 \text{ et } x+y \le 1\}$
 (c) $C = \{(x,y) \in \mathbb{R}^2 \mid y = x^3 \text{ et } x^2 + y^2 \le 1\}$
 (d) $C = \{x \in (\mathbb{R}^+)^n \mid ||x||_1 = 1\}$

(b)
$$C = \{(x, y) \in \mathbb{R}^2 \mid y \ge x^2 \text{ et } x + y \le 1 \}$$

(d)
$$C = \left\{ x \in (\mathbb{R}^+)^n \mid ||x||_1 = 1 \right\}$$

Exercice 5 – Conditions KKT : un premier exemple Soit $(x_0, z_0) \in \mathbb{R}^2$. On considère le problème d'optimisation suivant :

Minimiser
$$f(x, y, z) = \frac{1}{2} (x - x_0)^2 + \frac{1}{2} y^2 + \frac{1}{2} (z - z_0)^2$$
 sous les contraintes
$$\begin{cases} x^2 + y^2 + z^2 \le 1 \\ x + z = 1 \end{cases}$$
 (P)

- (a) Montrer que le problème (\mathcal{P}) est convexe.
- (b) Montrer que les contraintes sont qualifiées.
- (c) Écrire le lagrangien associé au problème (P). On notera λ le multiplicateur de LAGRANGE associé à la contrainte d'égalité et μ celui associé à la contrainte d'inégalité.
- (d) Écrire les conditions de Karush-Kuhn-Tucker pour le problème (\mathcal{P}) . Sont-elles nécessaires? suffisantes? Soit $(x^*, y^*, z^*, \lambda^*, \mu^*) \in \mathbb{R}^5$ un point qui satisfait les conditions KKT établies à la question précédente.
 - (e) Justifier que $1 + 2 \mu^* > 0$. En déduire que $y^* = 0$.
 - (f) On suppose que $\mu^* = 0$. Montrer que, dans ce cas, $(x^*, y^*, z^*) = (x_0 \lambda^*, 0, z_0 \lambda^*)$. Montrer que ce point satisfait la contrainte d'égalité si et seulement si

$$\lambda^* = \frac{x_0 + z_0 - 1}{2}$$

En déduire l'expression de (x^*, y^*, z^*) en fonction de (x_0, z_0) . À quelles conditions sur (x_0, z_0) le point obtenu satisfait la contrainte d'inégalité?

(g) On suppose désormais que $\mu^* > 0$. En sommant deux des conditions KKT considérées, montrer que

$$(1+2\,\mu^*)\,(x^*+z^*) = (x_0+z_0)-2\,\lambda^*$$

En déduire que

$$1 + 2\,\mu^* = (x_0 + z_0) - 2\,\lambda^*$$

(h) En élevant ces mêmes inégalités au carré avant de les sommer, montrer que

$$(1+2\mu^*)^2((x^*)^2+(z^*)^2)=(x_0-\lambda^*)^2+(z_0-\lambda^*)^2$$

En déduire que

$$((x_0 + z_0) - 2\lambda^*)^2 = (x_0 - \lambda^*)^2 + (z_0 - \lambda^*)^2$$

- (i) Résoudre l'équation du second degré en λ^* obtenue à la question précédente pour obtenir les valeurs possibles de λ^* . En déduire les valeurs associées de μ^* . À quelles conditions sur (x_0, z_0) ces dernières sont strictement positives? Que valent dans ce cas (x^*, y^*, z^*) ?
- (j) En déduire la solution de (\mathcal{P}) .

Exercice 6 – Conditions KKT Résoudre les problèmes d'optimisation sous contraintes suivants en suivant la démarche décrite à l'Exercice 2:

(a) Minimiser
$$f(x, y, z) = x + y$$
 sous les contraintes
$$\begin{cases} 2x - y = 0 \\ x + z = 1 \end{cases}$$
 (\mathcal{P}_1)

(b) Minimiser
$$f(x,y) = 2x^2 + y^2$$
 sous les contraintes $x^2 + y^2 \le 1$ (\mathcal{P}_2)

(c) Minimiser
$$f(x,y) = \frac{1}{2} (x-1)^2 + \frac{1}{2} (y-1)^2$$
 sous les contraintes
$$\begin{cases} x+y=1\\ (x,y) \in (\mathbb{R}^+)^2 \end{cases}$$
 (\mathcal{P}_3)

(d) Minimiser
$$f(x, y, z) = x + y - z$$
 sous les contraintes
$$\begin{cases} x + y + z = 1 \\ (x, y, z) \in (\mathbb{R}^+)^3 \end{cases}$$
 (\mathcal{P}_4)

Compléments

* Exercice 7 – Minimisation sur le simplexe Soit $n \in \mathbb{N}^*$ et $c \in \mathbb{R}^n$. On considère le problème d'optimisation sous contraintes suivant :

$$\min_{\substack{x \in (\mathbb{R}^+)^n \\ \|x\|_1 = 1}} \langle c, x \rangle + D(x, x^0)$$

où, pour tout $x = (x_i)_{1 \le i \le n} \in (\mathbb{R}^*)^n$,

$$D(x, x^{0}) = \sum_{i=1}^{n} \left(x_{i}^{0} - x_{i} - x_{i} \ln \frac{x_{i}^{0}}{x_{i}} \right) \quad \text{avec } x^{0} = (x_{i}^{0})_{1 \le i \le n} \in (\mathbb{R}^{+*})^{n}$$

- (a) Écrire le lagrangien associé à ce problème.
- (b) Résoudre ce problème à l'aide des conditions KKT.