LISTING OF CLAIMS

1. (Original) A compound of formula (I),

the N-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

 R^1 is C_{1-6} alkyl or thiophenyl;

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =O;

R³ is a radical selected from

$$-(CH_2)_{S}$$
- NR^8R^9 (a-1),
-O-H (a-2),
-O-R¹⁰ (a-3),
-S- R^{11} (a-4), or
— $C\equiv N$ (a-5),

wherein

s is 0, 1, 2 or 3;

R⁸, R¹⁰ and R¹¹ are each independently selected from –CHO, C₁₋₆alkyl,

hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, amino, C₁₋₆alkylamino,

 $di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkyl,\ C_{1\text{-}6}alkyloxycarbonyl,\ C_{1\text{-}6}alkylcarbonylaminoC_{1\text{-}6}alkyl,$

piperidinylC₁₋₆alkylaminocarbonyl, piperidinyl, piperidinylC₁₋₆alkyl,

piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thiophenylC₁₋₆alkyl,

pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl,

arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl, and

R⁹ is hydrogen or C₁₋₆alkyl;

or R³ is a group of formula

$$-(CH_2)_t-Z$$
 (b-1),

wherein

t is 0, 1, 2 or 3;

-Z is a heterocyclic ring system selected from

wherein R¹² is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino, hydroxy, aryl,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N
 O

 C_{1-6} alkylamino C_{1-6} alkyloxy, C_{1-6} alkyloxy C_{1-6} alkyloxy C_{1-6} alkyloxy C_{1-6} alkylamino, aryl C_{1-6} alkyl, di(phenyl C_{2-6} alkenyl), piperidinyl, piperidinyl C_{1-6} alkyl,

 C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, haloindazolyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, aryl C_{1-6} alkylamino, morpholino, C_{1-6} alkylimidazolyl, pyridinyl C_{1-6} alkylamino; and

R¹³ is hydrogen, piperidinyl or aryl;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, amino, amino $C_{1\text{-}6}$ alkyl, di($C_{1\text{-}6}$ alkyl)amino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyloxy or $C_{1\text{-}6}$ alkyloxycarbonyl, or $C_{1\text{-}6}$ alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, $C_{1\text{-}6}$ alkyloxy, or amino $C_{1\text{-}6}$ alkyloxy; or when R^5 and R^6 are on adjacent positions they may taken together form a bivalent radical of formula

$$-O-CH_2-O$$
 (d-1),

-O- $(CH_2)_2$ -O- (d-2), -CH=CH-CH=CH- (d-3), or -NH-C(O)-NR¹⁴=CH- (d-4), wherein R¹⁴ is C₁₋₆alkyl;

aryl is phenyl, phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

with the proviso that when

n is 0, X is N, R^1 is $C_{1\text{-}6}$ alkyl, R^2 is hydrogen, R^3 is a group of formula (b-1), t is 0, -Z is the heterocyclic ring system (c-2) wherein said heterocyclic ring system -Z is attached to the rest of the molecule with a nitrogen atom, and R^{12} is hydrogen or

C₁₋₆alkyl; then

at least one of the substituents R^4 , R^5 or R^6 is other than hydrogen, halo, $C_{1\text{-}6}$ alkyloxy and trihalomethyl.

2. (Original) A compound as claimed in claim 1 wherein

 R^1 is C_{1-6} alkyl; R^3 is a radical selected from (a-1), (a-2), (a-3) or (a-5) or is a group of formula (b-1); s is 0, 1 or 2; R^8 and R^{10} are each independently selected from

-CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl,

 C_{1-6} alkylcarbonylamino C_{1-6} alkyl, piperidinyl C_{1-6} alkyl,

 $piperidinyl C_{1\text{--}6} alkylamino carbonyl, \ C_{1\text{--}6} alkyloxy, \ thiophenyl C_{1\text{--}6} alkyl,$

pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or

 $arylC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl;$ t is 0 or 2; -Z is a heterocyclic ring system selected from (c-1), (c-2), (c-4), (c-6), (c-8), (c-9), or (c-11); R¹² is hydrogen,

 C_{1-6} alkyl, aminocarbonyl,

, C₁₋₆alkyloxyC₁₋₆alkylamino,

di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl,

 C_{3-10} cycloalkyl C_{1-6} alkyl, haloindazolyl, or aryl C_{2-6} alkenyl; R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy,

 $C_{1\text{--}6}alkyl, C_{1\text{--}6}alkyloxy, \\ di(C_{1\text{--}6}alkyl) amino, \\ di(C_{1\text{--}6}alkyl) amino \\ C_{1\text{--}6}alkyloxy \\ or \\$

C₁₋₆alkyloxycarbonyl; and when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula (d-1) or (d-2).

3. (Currently Amended) A compound according to claim 1 and 2 wherein n is 0; X is CH; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is a group of formula

(b-1); t is 2; -Z is a heterocyclic ring system selected from (c-1); R¹² is hydrogen; R¹³ is hydrogen; and R⁵ and R⁶ are on adjacent positions and taken together form a bivalent radical of formula (d-2).

4. (Currently Amended) A compound selected from according to claim 1, 2 and 3 wherein the compound is compounds No 16, compound No 144, and compound No. 145:-

5. (Original) A compound of formula (VII-a),

the N-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

 R^1 , R^4 , R^5 , R^6 , R^7 and aryl are as defined in claim 1;

Re is hydrogen or taken together with Rd may form a bivalent radical of formula

(e-1), or

(e-2),

wherein R¹⁵ and R¹⁶ are each independently selected from hydrogen, C₁₋₆alkyl,

$$-C_{1\text{-}6} \text{alkanediyl} -N \\ -C_{1\text{-}6} \text{alkanediyl} \\ , -C_{1\text{-}6} \text{alkanediyl} \\ , C_{1\text{-}6} \text{alkyloxy} \\ C_{$$

piperidinyl C_{1-6} alkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, aryl C_{1-6} alkyl, or aryl C_{2-6} alkenyl; or

 R^d is $di(C_{1\text{--}6}alkyl)aminoC_{1\text{--}6}alkyl$ or piperidinyl $C_{1\text{--}6}alkyl$.

- 6. (Cancelled)
- 7. (Currently Amended) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 1-to-5.
- 8. (Cancelled).
- 9. (Currently Amended) A method of treating in a subject Use of a compound for the manufacture of a medicament for the treatment of a PARP mediated disorder, comprising administering to the subject a therapeutically effective amount of wherein said compound is a compound of formula (I)

$$\begin{array}{c}
R^{4} \\
R^{5} \\
R^{6}
\end{array}$$

$$\begin{array}{c}
R^{2} \\
R^{3}
\end{array}$$

$$\begin{array}{c}
CH_{2})_{n} \\
R^{5} \\
R^{6}
\end{array}$$

$$\begin{array}{c}
X \\
R^{1} \\
R
\end{array}$$

$$\begin{array}{c}
X \\
R$$

$$\begin{array}{c}
X \\
R
\end{array}$$

$$\begin{array}{c}
X \\
R$$

$$\begin{array}{c}
X \\
R$$

$$\begin{array}{c}
X \\
R
\end{array}$$

$$\begin{array}{c}
X \\
R$$

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

 R^1 is C_{1-6} alkyl or thiophenyl;

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =0;

R³ is a radical selected from

$$\begin{array}{lll} \hbox{-(CH_2)_S-NR^8R^9} & \quad \ \ \, \text{(a-1),} \\ \hbox{-O-H} & \quad \ \ \, \text{(a-2),} \\ \hbox{-O-R}^{10} & \quad \ \ \, \text{(a-3),} \\ \hbox{-S-R}^{11} & \quad \ \ \, \text{(a-4), or} \\ \hline \ \ \, \ \ \, \ \ \, \ \ \, \end{array}$$

wherein

s is 0, 1, 2 or 3;

R⁸, R¹⁰ and R¹¹ are each independently selected from -CHO, C₁₋₆alkyl,

hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, amino, C₁₋₆alkylamino,

 $di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkyl,\ C_{1\text{-}6}alkyloxycarbonyl,\ C_{1\text{-}6}alkylcarbonylaminoC_{1\text{-}6}alkyl,$

piperidinylC₁₋₆alkylaminocarbonyl, piperidinyl, piperidinylC₁₋₆alkyl,

piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thiophenylC₁₋₆alkyl,

pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl,

arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl, and

 R^9 is hydrogen or C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_{t}-Z$$
 (b-1),

wherein

t is 0, 1, 2 or 3;

(c-9)

-Z is a heterocyclic ring system selected from

wherein R¹² is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino, hydroxy, aryl,

(c-11)

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N

(c-10)

 C_{1-6} alkylamino C_{1-6} alkyloxy $C_$

 C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, haloindazolyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, aryl C_{1-6} alkylamino, morpholino, C_{1-6} alkylimidazolyl, pyridinyl C_{1-6} alkylamino; and R^{13} is hydrogen, piperidinyl or aryl;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, amino, amino $C_{1\text{-}6}$ alkyl, di($C_{1\text{-}6}$ alkyl)amino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyloxy or $C_{1\text{-}6}$ alkyloxycarbonyl, or $C_{1\text{-}6}$ alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, $C_{1\text{-}6}$ alkyloxy, or amino $C_{1\text{-}6}$ alkyloxy; or when R^5 and R^6 are on adjacent positions they may taken together form a bivalent radical of formula

aryl is phenyl, phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

- 10. (Cancelled)
- 11. (Currently Amended) A method for enhancing the effectiveness of chemotherapy of comprising administration of a compound according to claim 1, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy Use according to claim 9 and 10 wherein the treatment involves chemosensitization.
- 12. (Currently Amended) A method for enhancing the effectiveness of radiotherapy of comprising administration of a compound according to claim 1, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy Use according to claims 9 and 10 wherein the treatment involves radiosensitization.
- 13. (Original) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of formula (I)

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

 R^1 is C_{1-6} alkyl or thiophenyl;

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =0;

R³ is a radical selected from

$$\begin{array}{lll} \text{-(CH$_2$)$_8$- NR8R$^9} & \text{(a-1),} \\ \text{-O-H} & \text{(a-2),} \\ \text{-O-R$^{10}} & \text{(a-3),} \\ \text{-S- R$^{11}} & \text{(a-4), or} \\ \hline \text{-C=N} & \text{(a-5),} \\ \end{array}$$

wherein

s is 0, 1, 2 or 3;

R⁸, R¹⁰ and R¹¹ are each independently selected from –CHO, C₁₋₆alkyl,

hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, amino, C₁₋₆alkylamino,

 $di(C_{1-6}alkyl)aminoC_{1-6}alkyl, C_{1-6}alkyloxycarbonyl, C_{1-6}alkylcarbonylaminoC_{1-6}alkyl,$

piperidinylC₁₋₆alkylaminocarbonyl, piperidinyl, piperidinylC₁₋₆alkyl,

piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thiophenylC₁₋₆alkyl,

pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl,

arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl, and

 R^9 is hydrogen or C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_{t}-Z$$
 (b-1),

wherein

t is 0, 1, 2 or 3;

-Z is a heterocyclic ring system selected from

wherein R¹² is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino, hydroxy, aryl,

$$-C_{1-6}$$
alkanediyl $-N$, $-C_{1-6}$ alkanediyl N ,

 C_{1-6} alkylamino C_{1-6} alkyloxy $C_$

 C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, haloindazolyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, aryl C_{1-6} alkylamino, morpholino, C_{1-6} alkylimidazolyl, pyridinyl C_{1-6} alkylamino; and

R¹³ is hydrogen, piperidinyl or aryl;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, amino, amino $C_{1\text{-}6}$ alkyl, di($C_{1\text{-}6}$ alkyl)amino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyloxy or $C_{1\text{-}6}$ alkyloxycarbonyl, or $C_{1\text{-}6}$ alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, $C_{1\text{-}6}$ alkyloxy, or amino $C_{1\text{-}6}$ alkyloxy; or when R^5 and R^6 are on adjacent positions they may taken together form a bivalent radical of formula

$$-O-CH_2-O$$
 (d-1),
 $-O-(CH_2)_2-O-$ (d-2),

-CH=CH-CH=CH- (d-3), or
-NH-C(O)-NR¹⁴=CH- (d-4),
wherein R¹⁴ is
$$C_{1-6}$$
alkyl;

aryl is phenyl, phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

- 14. (Original) A combination of a compound according to claim 5 with a chemotherapeutic agent.
- 15. (Currently Amended) A process for <u>preparation of preparing</u> a compound as claimed in claim 1 or claim 5, characterized by <u>comprising</u>:
- a) the hydrolysis of intermediates of formula (VIII), according to art-known methods, by submitting the intermediates of formula (VIII) to appropriate reagents, such as, tinchloride, acetic acid and hydrochloric acid, in the presence of a reaction inert solvent, e.g. tetrahydrofuran,

b) the cyclization of intermediates of formula (X), according to art-known cyclizing procedures into compounds of formula (I) wherein X is CH herein referred to as compounds of formula (I-j), preferably in the presence of a suitable Lewis Acid, e.g. aluminum chloride either neat or in a suitable solvent such as, for example, an aromatic hydrocarbon, e.g. benzene, chlorobenzene, methylbenzene and the like; halogenated hydrocarbons, e.g. trichloromethane, tetrachloromethane and the like; an ether, e.g. tetrahydrofuran, 1,4 dioxane and the like or mixtures of such solvents,

c) the condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) into compounds of formula (I), wherein X is N and R² taken together with R³ forms =O, herein referred to as compounds of formula (I-a-1), in the presence of a carboxylic acid, e.g. acetic acid and the like, a mineral acid such as, for example hydrochloric acid, sulfuric acid, or a sulfonic acid such as, for example, methanesulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid and the like,

d) hydrolysing intermediates of formula (VI), wherein R³ is a group of formula (b-1) or a radical of formula (a-1) wherein s is other than 0, herein referred to as R³, according to art-known methods, such as stirring the intermediate (VI) in an aqueous acid solution in the presence of a reaction inert solvent with the formation of intermediates and compounds of formula (VII), wherein R⁴ and Re are appropriate radicals or taken together with the carbon to which they are attached, form an appropriate heterocyclic ring system as defined in -Z, and

e) converting intermediates of formula (VII), by a selective hydrogenation of said intermediate with an appropriate reducing agent and an appropriate reductant in a suitable solvent with the formation of compounds of formula (I) wherein R² is hydrogen and R^g is as defined above, herein referred to as compounds of formula (I-i).

16. (Currently Amended) A process for <u>preparation of preparing</u> a compound as claimed in claim 5, comprising characterized by

a) reacting a compound of formula (VII-a), wherein R^e taken together with R^d forms a bivalent radical of formula (e-1) or (e-2) (e.g. a bivalent radical of formula (e-1)) and R¹⁵ or R¹⁶ (e.g. R¹⁵) are hydrogen, herein referred to as compounds of formula (VII-a-2), with an intermediate of formula (XIX) wherein W is an appropriate leaving group such as, for example, chloro, bromo, methanesulfonyloxy or benzenesulfonyloxy and R¹⁵ or R¹⁶ (e.g. R¹⁵) are other than hydrogen, with the formation of compounds of formula (VII-a-1), defined as compounds of formula (VII-a), wherein R^e taken together with R^d forms a bivalent radical of formula (e-1) or (e-2) (e.g. a bivalent radical of formula (e-1)) and R¹⁵ or R¹⁶ (e.g. R¹⁵) are other than hydrogen, in a reaction-inert solvent; or

b) reacting a compound of formula (VII-a-2) with an intermediate of formula (XX) wherein R is an appropriate substituent whit the formation of compounds of formula (VII-a) wherein R^{15} or R^{16} (e.g. R^{15}) are aryloxy(hydroxy) C_{1-6} alkyl, herein referred to as compounds of formula (VII-a-3), in the presence of 2-propanol.