Advanced Machine Learning

Multi-Target Prediction: Loss Functions

Learning goals

- Get to know loss functions for multi-target prediction problems
- Understand the difference between instance-wise and decomposable losses
- Know risk minimizer for Hamming and subset 0/1 loss

MULTIVARIATE LOSS FUNCTIONS

- In MTP: For a feature vector \mathbf{x} , predict a tuple of scores $f(\mathbf{x}) = (f(x)_1, f(x)_2, \dots, f(x)_I)^{\top}$ for I targets with a function (hypothesis) $f: \mathcal{X} \to \mathbb{R}^{g_1} \times \dots \times \mathbb{R}^{g_I}$.
- Following loss minimization in machine learning, we need a multivariate loss function

$$L: (\mathcal{Y}_1 \times \cdots \times \mathcal{Y}_l) \times (\mathbb{R}^{g_1} \times \cdots \times \mathbb{R}^{g_l}) \to \mathbb{R}.$$

- In multi-target regression: $\mathcal{Y}_1 = \ldots = \mathcal{Y}_l = \mathbb{R}$, and $g_1 = \ldots = g_l = 1$.
- In multi-label binary classification: $\mathcal{Y}_1 = \ldots = \mathcal{Y}_l = \{0, 1\}$, and $g_1 = \ldots = g_l = 1$.

MULTIVARIATE LOSS FUNCTIONS

 We treat two categories: Decomposable and instance-wise

L is decomposable over targets if

$$L(\mathbf{y},f) = \frac{1}{l} \sum_{m=1}^{l} L_m(y_m, f(\mathbf{x})_m)$$

with single-target losses L_m .

• Example: Squared error loss (in multivariate regression):

$$L_{\text{MSE}}(\mathbf{y}, f) = \frac{1}{I} \sum_{m=1}^{I} (y_m - f(\mathbf{x})_m)^2.$$

• Can also be used for cases with missing entries.

INSTANCE-WISE LOSSES

• Hamming loss averages over mistakes in single targets:

$$L_H(\mathbf{y},\mathbf{h}) = \frac{1}{l} \sum_{m=1}^{l} \mathbb{1}_{[y_m \neq h_m(\mathbf{x})]},$$

where $h_m(\mathbf{x}) := [f(\mathbf{x})_m \ge c_m]$ is the threshold function for target m with threshold c_m .

- Hamming loss is identical to the average 0/1 loss and is decomposable.
- The subset 0/1 loss checks for entire correctness and is not decomposable:

$$L_{0/1}(\mathbf{y},\mathbf{h}) = \mathbb{1}_{[\mathbf{y}\neq\mathbf{h}]} = \max_{m} \mathbb{1}_{[y_m\neq h_m(\mathbf{x})]}$$

HAMMING VS. SUBSET 0/1 LOSS

• The risk minimizer for the Hamming loss is the *marginal mode*:

$$f^*(\mathbf{x})_m = \arg\max_{y_m \in \{0,1\}} \Pr(y_m \mid \mathbf{x}), \quad m = 1, \dots, I,$$

while for the subset 0/1 loss it is the *joint mode*:

$$f^*(\mathbf{x}) = \arg\max_{\mathbf{y}} \Pr(\mathbf{y} \mid \mathbf{x}).$$

• Marginal mode vs. joint mode:

0 0 0 0 0.30	
0 1 1 1 0.17	Marginal mode
1 0 1 1 0.18	Joint mode:
1 1 0 1 0.17	
1110 0.18	

0000