(19) 日本国特許庁 (JP)

四公開特許公報(A)

(11)特許出顧公開番号 特開2000-186224 (P2000-186224A)

(43)公開日 平成12年7月4日(2000.7.4)

(51) Int.Cl.'	識別記号	FΙ	テーマコード(参考)
C 0 9 B 61/00		C 0 9 B 61/00	Α
C 0 7 C 403/24	•	C 0 7 C 403/24	
C09B 67/04		C 0 9 B 67/04	

審査請求 未請求 請求項の数2 OL (全 5 頁)

		一	木間水 間水気の数と しし (主 5 以)
(21)出願番号	特願平11-42594	(71)出願人	591003013 エフ・ホフマン-ラ ロシユ アーゲー
(22)出顧日	平成11年2月22日(1999.2.22)		F. HOFFMANN-LA ROCH E AKTIENGESELLSCHAF
(31)優先権主張番号 (32)優先日 (33)優先権主張国	98103113.1 平成10年2月23日(1998.2.23) ヨーロッパ特許庁(EP)		T スイス・シーエイチー4070パーゼル・グレ ンツアーヘルストラツセ124
	2 2 /// Na // (23/	(72)発明者	ヘルマン・シュタイン スイス国、ツェーハーー4410 リースタ ル、プリュールマッテン 13
		(74)代理人	100078662 弁理士 津国 肇 (外2名)
			最終頁に続く

(54) 【発明の名称】 微粉砕粉末カロテノイド製剤の製造

(57)【要約】

【課題】 大量の溶媒を使用せずに活性成分を微粉砕粉 末形態に変換する方法の提供。

【解決手段】 活性成分が微粉砕されている、粉末カロテノイド、レチノイドまたは天然着色剤製剤の連続製造方法であって、

a)水-非混和性有機溶媒中の活性成分の懸濁液を形成する工程;b)工程a)の懸濁液を熱交換器に供給し、該懸濁液を100~250℃に加熱し、とこで熱交換器における滞留時間が5秒未満である工程;c)工程b)の溶液を、20~100℃の範囲の温度にて彫潤性コロイドの水性溶液と急速に混合する工程;d)有機溶媒を除去する工程;およびe)工程d)の分散物を粉末製剤に転換する工程を含む方法。

【特許請求の範囲】

【請求項1】 活性成分が微粉砕されている、粉末カロ テノイド、レチノイドまたは天然着色剤製剤の連続製造 方法であって、

- a)場合により抗酸化剤および/または油を含む水-非 混和性有機溶媒中の活性成分の懸濁液を形成する工程: b) 工程a)の懸濁液を熱交換器に供給し、該懸濁液を 100~250℃に加熱し、ととで熱交換器における滞 留時間が5秒未満である工程:
- c) 工程 b) の溶液を、20~100℃の範囲の温度に 10 て場合により安定剤を含む膨潤性コロイドの水性溶液と 急速に混合する工程;
- d) 有機溶媒を除去する工程:および ·
- e)工程d)の分散物を粉末製剤に転換する工程を含む ことを特徴とする方法。

【請求項2】 請求項1に記載の方法で製造され、0. 5~25重量%の活性成分を含有する粉末製剤。

【発明の詳細な説明】

[0001]

チノイドまたは天然着色剤を、特に着色食品および動物 飼料にとって必要とされる微粉砕粉末形態に転換するた めの連続的方法に関する。

[0002]

【従来の技術】結晶サイズが1ミクロン未満の活性成分 を含有する粉末の製造のための数多くの方法が記載され ている。これらの方法のほとんどはバッチ加工の用途に よく適合する。

[0003]例えば米国特許第3,998,753号は 1ミクロン未満の粒子サイズを有するカロテノイドを含 30 ことを特徴とする方法に関する。 有する水分散性粉末の製造のためのバッチプロセスを記 載しており、該プロセスは(a)ハロゲン化脂肪族炭化 水素(例えばクロロホルム、四塩化炭素および塩化メチ レン) からなる群から選択した揮発性溶媒中のカロテノ イドおよび抗酸化剤の溶液を形成し、(b)ラウリル硫 酸ナトリウム、水溶性担体組成物(例えばゼラチン)、 保存剤および安定剤の水性溶液を形成し、該溶液のpHを 約10~11に調節し、(c)高速および高剪断で混合 することによって工程(a)および(b)の溶液の乳濁 乾燥してカロテノイド粉末を得ることからなる。

[0004]欧州特許出願公開EP-0065193B 1または対応米国特許第4,522,743号には、微 粉砕カロテノイド粉末製造のための連続的方法が記載さ れており、該方法においてカロテノイドは実質的に0. 5ミクロン未満の粒子サイズを有している。カロテノイ ドは、50~200℃で10秒以内に、揮発性で水混和 性有機溶媒に溶解される。カロテノイドは0~50℃で 膨潤性コロイドの水性溶液と急速に混合することによ り、生じた分子的に分散した溶液からコロイド的に分散 50

した形態ですぐに沈殿する。カロテノイド溶液の製造お よびカロテノイドの沈殿は2つの撹拌室内で連続的に行 われる。得られた分散物は溶媒および従来法における分 散媒質を含まない。

【0005】しかし、経済的および生態学的な理由によ り、この方法は大量の溶媒を必要とするという欠点を有

[0006]

【発明が解決しようとする課題】本発明の目的は、活性 成分を微粉砕粉末形態に転換する一方で、上記の欠点を 克服したプロセスを提供することである。

[0007]

【課題を解決するための手段】連続的プロセスにおいて 水ー非混和性有機溶媒を使用することにより、活性成分 が微粉砕された粉末製剤を提供し得ることが見い出され *tc.*

【0008】したがって、本発明は、活性成分が微粉砕 されている、粉末カロテノイド、レチノイドまたは天然 着色剤製剤の連続製造方法であって、

- [発明の属する技術分野]本発明は、カロテノイド、レ 20 a)場合により抗酸化剤および/または油を含む水−非 混和性有機溶媒中の活性成分の懸濁液を形成する工程;
 - b) 工程 a) の懸濁液を熱交換器に供給し、該懸濁液を 100~250℃に加熱し、ことで熱交換器における滞 留時間が5秒未満である工程;
 - c) 工程 b) の溶液を、20~100℃の範囲の温度に て場合により安定剤を含む膨潤性コロイドの水性溶液と 急速に混合する工程;
 - d) 有機溶媒を除去する工程;および
 - e) 工程d)の分散物を粉末製剤に転換する工程を含む

【0009】本発明の範囲内では、用語「微粉砕され た」は1.5ミクロン未満、好ましくは1ミクロン未 満、より好ましくは0.4ミクロン未満の粒子サイズを

【0010】本発明の範囲内では、用語「活性成分」は カロテノイド、レチノイドまたは天然着色剤を示す。

【0011】本発明の目的のためには、カロテノイドは 特にβーカロテン、βーアポー4′ーカロテナール、β -アポ-8′-カロテナール、β-アポ-12′-カロ 液を形成し;有機溶媒を除去し、得られた乳濁液を噴霧 40 テナール、β-アボー8'-カロテン酸、アスタキサン チン、カンタキサンチン、ゼアキサンチン、クリプトキ サンチン、シトラナキサンチン、ルテイン、リコペン、 トルラロジン-アルデヒド、トルラロジン-エチルエス テル、ノイロスポラキサンチン-エチルエステル、ζー カロテンまたはデヒドロプレクタニアキサンチンを含 む。天然起源のカロテノイドももちろん含まれる。β-カロテン、アスタキサンチン、カンタキサンチン、βー アポー8′-カロテナールおよびリコペンが好ましく、 β-カロテンはより好ましい。

【0012】本発明の目的のため、天然着色剤は特にク

3

ルクミン、コチニール、カルミン、アンナットおよびC れらの混合物を含む。

【0013】本発明の方法は好ましくはカロテノイドを 用いて行われる。

[0014] 工程b) の温度は好ましくは120~18 0°C、より好ましくは140~170°Cであり、工程 c) の温度は好ましくは50~80°Cである。

[0015] 熱交換器での滞留時間は好ましくは0.5~4秒、より好ましくは1~3秒である。

【0016】本発明の範囲内では、用語「水ー非混和性 10 有機溶媒」は大気圧下に10%未満の水溶解度を有する 有機溶媒を示す。本発明の連続方法を実施するのに適した水ー非混和性有機溶媒はクロロホルム、四塩化炭素および塩化メチレン等のハロゲン化脂肪族炭化水素、炭酸ジメチルエステル(ジメチルカーボネート)、ギ酸エチルエステル(エチルホルメート)、酢酸メチル、酢酸エチルまたは酢酸イソブロビル等の水ー非混和性エステル、あるいはメチルー t ーブチルエーテル等の水ー非混和性エステル、あるいはメチルー t ーブチルエーテル等の水ーま混れ性エーテルである。ジメチルカーボネート、エチルホルメート、酢酸エチル、酢酸イソブロビルおよびメチル 20 ー t ーブチルエーテルが好ましい。

【0017】本発明の範囲内では、用語「膨潤性コロイド」はゼラチン、例えばでん粉またはでん粉誘導体、デキストリン、ベクチン、アラビアゴム、オクテニルブタンジオエートアミロデキストリン(CAPSUL(商標))のような炭水化物、例えばカゼインのような乳たん白質、植物たん白質およびそれらの混合物を示す。魚ゼラチンまたはでん粉誘導体が好ましい。

【0018】カロテノイドの安定性を増加するには、アスコルビン酸、アスコルビルバルミテート、dl-aトコフェロール、レシチン、ブチルヒドロキシトルオール、ブチル-4-メトキシフェノールおよびそれらの化合物の組合わせからなる群から選択した抗酸化剤を添加するのが有利である。

【0019】抗酸化剤はマトリックス溶液またはカロテノイド溶液あるいは両方の溶液に添加することができる。カロテノイド溶液に好ましい抗酸化剤は d1-αトコフェロールであり、水性相溶液にはアスコルビルバルミテートが好ましい。

【0020】さらに、カロテノイド懸濁液中に油、好ま 40 しくはコーン油を溶解するのが有利であり得る。

[0021]

【発明の実施の形態】本発明の方法を実施するのに適したフローチャートを概略的に示した添付の図1を参照されたし。全プロセスは連続的に実施されねばならない。 【0022】以下にフローチャートを説明する。

【0023】ケトル1において、膨潤性コロイドおよび 場合により安定剤を含有する水性マトリックスを製造す る。

【0024】ケトル2において、選択した溶媒中のカロ 50

テノイド懸濁液を製造する。 懸濁液は更に抗酸化剤および油を含有してもよい。

【0025】カロテノイド懸濁液はポンプ6により熱交換器4に供給される。流速は、所与の温度でカロテノイドを溶媒中に溶解するのに必要な所望滞留時間に従って調整する。熱交換器4において、カロテノイド懸濁液を100~250℃、好ましくは120~180℃、より好ましくは140~170℃に加熱し、カロテンを溶解する。加熱は熱交換器を通じて間接的にあるいは8で水蒸気と混合することにより直接的に実施し得る。熱交換器中の滞留時間は5秒未満、好ましくは1~3秒である

【0026】ケトル1のマトリックス溶液はポンプ7によりケトル3に供給される。流速は懸濁液の流速および要求される乳濁液組成に依存する。ケトル3において、カロテノイド懸濁液およびマトリックスを混合し、ロータスターター均質機を用いて約150~400mの内相粒子の望ましいサイズまで乳化する。混合の結果、温度は20~100℃の範囲に低下する。

[0027]得られた分散物を第2の熱交換器5に通 し、分散物を冷却する。圧力を圧力調整により大気圧に 開放する。

【0028】溶媒を蒸発等の慣用の方法により除去する。粉末状の組成物を例えば噴霧乾燥または粉末キャッチ法などの慣用方法により、得られた分散物から分離し得る。

【0029】本発明を使用すれば、非常に広範囲の色を カバーする粉末を製造することができる。

[0030]本発明の方法を容易に実施するやり方を次の実施例により示す。色強度は5ppmのカロテノイドを含有する水性分散物において測定し、1cmキュベット中の1%溶液の吸光度の計算値により与えられた(E1/1-値)。平均粒子サイズはコールター粒子分析器N4Sにより測定した。カロテノイド含量はUV-分光法により測定した。

[0031]

【実施例】実施例1

溶媒:酢酸エチル、間接熱移転

水性マトリックスをケトル1で製造した。すなわち、

1. 0 kgのアスコルビルバルミテートを27. 8 kgの水 に60℃で分散した。この分散物のpH値はNaOH(20%)で7.2~7.6 に調節した。ついで、3.4 kgの魚ゼラチンおよび7.2 kgのスクロースを加えた。得られた混合物を粘稠で透明な溶液が得られるまで撹拌した。

 $[0032]0.75 kgの全-トランス-<math>\beta$ -カロテン 結晶をケトル2 において90gの $d1-\alpha$ -トコフェロール、330gのコーン油および7.5 kgの酢酸エチルの混合物中に分散した。

【0033】カロテン懸濁液をポンプ6を介して6kg/h

た。

の速度で連続的に熱交換器4に供給し、160℃に加熱 して、カロテンを溶解した。熱交換器での滞留時間は4 秒であった。

[0034]ケトル1のマトリックス溶液をポンプ7を 介して9.2 kg/hの流速でケトル3に供給し、カロテン 溶液と混合した。

【0035】得られた乳濁液を第2の熱交換器5で60 ℃まで冷却し、圧力を開放して大気圧とした。

[0036] 酢酸エチルを薄膜蒸発器で除去した。得ら れた乳濁液は225 nmの内相粒子サイズを示し、これを 10 噴霧乾燥した。以下の特徴を有する粉末が得られた:カ ロテン含量11.6%、E1/1=1015、λmax 440-460nm。粉末は冷水によく溶け、強い赤色を 与えた。

[0037]実施例2

溶媒:酢酸イソプロビル、直接熱移転(蒸気)

実施例1に従って1.25kgのアスコルビルバルミテー トを30.9kgの水に60℃で分散した。この分散物の pH値をNaOH (20%) で7.2~7.6に調節し た。ついで、5. 1 kgの魚ゼラチンおよび7. 1 kgのス 20 クロースを加えた。得られた混合物を粘稠で透明な溶液 が得られるまで撹拌した。

【0038】0.75kgのカンタキサンチン結晶をケト ル2において0. $10 \log Od 1 - \alpha - 1$ コフェロール、 0.36 kgのコーン油および6.25 kgの酢酸イソプロ ビルの混合物中に分散した。

【0039】カンタキサンチン懸濁液をポンプ6を介し て6kg/hの速度で連続的に混合室に供給し、ことで温度 を蒸気の注入により170℃に上げた。次いで、加熱カ ンタキサンチン分散物を2秒以内で熱交換器4を通過さ せ、カンタキサンチンを溶解した。

【0040】ケトル1のマトリックス溶液をポンプ7を 介して8.1kg/hの流速でケトル3に供給し、カンタキ サンチン溶液と混合した。

【0041】得られた乳濁液を熱交換器5で60℃まで 冷却し、圧力を開放して大気圧とした。

[0042] 酢酸イソプロピルを薄膜蒸発器で除去し た。得られた乳濁液は213nmの内相粒子サイズを示 し、これを噴霧乾燥した。以下の特徴を有する粉末を得 5、 λ max 470-485 nm。 粉末は冷水によく溶 け、強い桃-赤色を与えた。

[0043]実施例3

溶媒:酢酸イソプロビル、直接熱移転(蒸気)

ケトル1にて、10.3 kgの魚ゼラチン、20.6 kgの 砂糖および2. 78 kgのアスコルビルバルミテートを2 7. 56 kgの水に溶解した。このマトリックスのpH値を NaOH (20%) で7、2~7、6に調節した。

[0044]ケトル2において、6.68kgのβ-カロ テン、0.84 kgのd l - α - トコフェロールおよび

3. 34 kgのコーン油を33. 4 kgの酢酸イソプロピル 中に分散した。

【0045】β-カロテン懸濁液をポンプ6により25 ka/hの流速で熱交換器4に供給し、ここで蒸気と混合し 出□温度を160℃にした。熱交換器4での滞留時間は 1. 0秒であった。マトリックスをポンプ7により3 4. 5 kg/hの流速でケトル3 にポンプ移送し、ここで溶 解8-カロテンをマトリックスと混合し、その中に乳化 した。得られた乳濁液を熱交換器5で60℃まで冷却し

【0046】酢酸イソプロビルを縦型蒸発器を用いて乳 濁液から除去した。得られた乳濁液は220mmの内相粒 子サイズを示し、これを噴霧乾燥した。

[0047] 最終生産物はB-カロテン含量11.3 %. E1/1=1159、λmax 440-460nmを 有した。粉末は水によく溶けた。溶液は非常に強い黄色 を有した。

[0048]実施例4

溶媒:酢酸イソプロピル、直接熱転移(蒸気) ケトル1にて、9.25kgの魚ゼラチン、18.5kgの 砂糖および2.5 kgのアスコルビルバルミテートを3 0. 25 kgの水に溶解した。このマトリックスのpH値を NaOH (20%) で7.2~7.6に調節した。 【0049】ケトル2において、6.0kgのβ-カロテ ン、 $0.75 \log Od 1 - \alpha - 1$ コフェロールおよび3.0 kgのコーン油を30.0 kgの酢酸イソプロピル中に分 散した。

【0050】β-カロテン懸濁液をポンプ6により20 kg/hの流速で熱交換器4に供給し、ここで蒸気と混合し 出□温度を158℃にした。熱交換器4での滞留時間は 1. 3秒であった。マトリックスをポンプ7により3 0. 4 kg/hの流速でケトル3にポンプ移送し、ここで溶 解β-カロテンをマトリックスと混合し、その中に乳化 した。得られた乳濁液を熱交換器5で60℃まで冷却し た。

【0051】酢酸イソプロピルを縦型蒸発器を用いて乳 濁液から除去した。得られた乳濁液は240mの内相粒 子サイズを示し、これを噴霧乾燥した。

[0052] 最終生産物はβ-カロテン含量11.2 た: カンタキサンチン含量12.3%、E1/1=90 40 %、E1/1=795、λ max 440-460 nmを有 した。粉末は水によく溶け、溶液は非常に強い赤色を有

【0053】実施例5

溶媒:塩化メチレン、直接熱移転(蒸気) ケトル1にて、9.25kgの魚ゼラチン、18.5kgの 砂糖および2.5 kgのアスコルビルバルミテートを3 0. 25 kgの水に溶解した。このマトリックスのpH値を NaOH (20%) で7. 2~7. 6に調節した。 [0054]ケトル2において、6.0kgの β -カロテ 50 ン、0.75 kgのd $1-\alpha$ ートコフェロールおよび3.

7

0 kgのコーン油を30.0 kgの塩化メチレン中に分散した。

【0055】β-カロテン懸濁液をポンプ6により20kg/hの流速で熱交換器4に供給し、ここで蒸気と混合し出口温度を145℃にした。熱交換器4での滞留時間は1.3秒であった。マトリックスをポンプ7により30.4kg/hの流速でケトル3にポンプ移送し、ここで溶解β-カロテンをマトリックスと混合し、その中に乳化した。得られた乳濁液を熱交換器5で35℃まで冷却し

【0056】塩化メチレンを縦型蒸発器を用いて乳濁液から除去した。得られた乳濁液は196nmの内相粒子サ*

* イズを示し、これを噴霧乾燥した。

[0057] 最終生産物は β -カロテン含量9.9%、E1/1=1120、 λ max 440-460 nmを有した。粉末は水によく溶け、溶液は非常に強い黄色を有した。

【図面の簡単な説明】

【図1】本発明の方法を実施するのに適したフローチャートを示す。

【符号の説明】

10 1、2、3:ケトル

4、5: 熱交換器

6、7:ポンプ

【図1】

フロントページの続き

(72)発明者 クラウス・ヴィアドー スイス国、ツェーハー-4125 リーヘン、 アゥフ・デァ・ビショフヘーエ 36 (72)発明者 ビン・ヤング スイス国、ツェーハー 4313 メーリン、 ヘレンシュトラーセ 13ベー