S'ha dissenyat un puzle per a infants format per set peces. L'objectiu del joc és construir amb totes les peces el quadrat de costat $b=0,25\,\mathrm{m}$ que es mostra en la figura. Una empresa es planteja produir el puzle o comprar les peces ja elaborades directament a un proveïdor. Si l'empresa produeix el puzle, el cost de producció es calcula amb l'expressió $c=c_1s+c_2p$, en què s és la superfície de fusta utilitzada i p és el perímetre de les peces tallades per a construir el puzle. En aquest cas, el primer coeficient de cost és $c_1=13,5\,\mathrm{€/m^2}$ i el segon és $c_2=0,85\,\mathrm{€/m}$. En canvi, si l'empresa compra les peces ja elaborades directament a un proveïdor, el cost de cada peça és de $0,65\,\mathrm{€}$ si la peça fa menys de $100\,\mathrm{cm^2}$, i de $0,95\,\mathrm{€}$ si la peça fa més de $100\,\mathrm{cm^2}$. Determineu:

- a) La superfície de cadascuna de les set peces. Comproveu que la suma de la superfície de totes les peces equival a la superfície s del quadrat de la figura. [1 punt]
- b) El perímetre p de les peces tallades per a construir el puzle. [1 punt]
- c) El cost de producció del puzle, d'una banda, i el cost de comprar les peces ja elaborades a un proveïdor, de l'altra. Quina és l'opció més econòmica per a l'empresa?
 [0.5 punts]

Exercici 2

Es vol construir una estrella de sis puntes com la de la figura a partir d'un tauler de fusta. L'estrella es pot construir a partir de triangles equilàters o de rombes com els que es mostren en la figura. El cost de producció de l'estrella es calcula segons l'expressió $c=c_1$ $s+c_2$ p, en què s és la superfície de fusta utilitzada i p és el perímetre de les peces tallades per a construir l'estrella. El primer coeficient de cost és $c_1=15\,\text{€/m}^2$, i el segon és $c_2=0.6\,\text{€/m}$ si el perfil és senzill (com, per exemple, un triangle o un rombe) o $c_2=1.4\,\text{€/m}$ si el perfil és complex (com, per exemple, una estrella). Determineu:

- a) El nombre de triangles equilàters $n_{\rm T}$ que calen per a construir l'estrella i el perímetre de les peces tallades $p_{\rm T}$ en aquest cas. [0,5 punts]
- b) El nombre de rombes $n_{\rm R}$ que calen per a construir l'estrella i el perímetre de les peces tallades $p_{\rm R}$ en aquest cas. [0,5 punts]
- c) El perímetre tallat $p_{\rm E}$ si l'estrella es construeix tallant-ne directament el perfil exterior. [0,5 punts]
- *d*) La superfície s de fusta necessària per a construir l'estrella, i el cost $c_{\rm T}$, $c_{\rm R}$ i $c_{\rm E}$ de cadascuna de les tres opcions anteriors. Quina és l'opció més econòmica? [1 punt]

S'està preparant una maqueta d'un nou equipament esportiu per a una població. La maqueta està formada per diferents peces que s'elaboren amb una impressora 3D, una de les quals és una rampa per a patinadors com la que es mostra en la figura. La impressora fabrica la figura massissa de plàstic a còpia d'anar dipositant capes horitzontals de gruix e=0,2 mm. S'alimenta amb un filament de PLA (àcid polilàctic) de diàmetre d=3 mm i densitat $\rho=1$ 250 kg/m³ que passa per un extrusor on s'escalfa i es prem per a poder-lo dipositar adequadament. Determineu:

a) El volum V i la massa m del sòlid construït.

[1 punt]

b) La longitud *L* de filament de PLA utilitzat.

[1 punt]

c) El nombre mínim *n* de capes que ha de dipositar la impressora.

[0,5 punts]

Exercici 4

Es vol construir un prisma massís de base quadrada com el de la figura a partir d'un tauler de fusta. Es pot escollir entre dos taulers, l'un de gruix $e_1 = 12$ mm i l'altre de gruix $e_2 = 14$ mm. Per a construir el prisma, s'hauran de tallar quadrats o rectangles, segons s'esculli, i encolar-los entre ells fins a obtenir la figura. El gruix de la cola es considera negligible.

La botiga calcula el cost del prisma segons l'expressió $c = c_a p + c_b s$, en què p és el perímetre del quadrat o del rectangle tallat i s és la superfície de tauler utilitzada. El primer coeficient de cost és $c_a = 0.7 \in /m$, i l'altre coeficient de cost és

 $c_{\rm b1}$ = 3,2 €/m² si s'utilitza el tauler de gruix $e_{\rm i}$, o $c_{\rm b2}$ = 4,8 €/m² si s'utilitza el tauler de gruix $e_{\rm 2}$. Determineu:

- a) Quin tauler s'utilitzarà per a construir el prisma a base de quadrats i quin per a construir-lo a base de rectangles? Per què? [1 punt]
- b) El perímetre total dels quadrats o dels rectangles tallats en cada cas, p_1 i p_2 . [0,5 punts]
- c) La superfície de tauler de fusta utilitzada en cada cas, s_1 i s_2 . [0,5 punts]
- d) El cost de cadascuna de les opcions, c_1 i c_2 . Quina és la més econòmica? [0,5 punts]

Es vol construir una estrella com la de la figura a partir d'un tauler de fusta. La botiga en calcula el cost segons l'expressió $c = c_1 s + c_2 p$, en què s és la superfície de fusta utilitzada i p és el perímetre de les peces tallades. El primer coeficient de cost és $c_1 = 10 \, \text{€/m}^2$ i l'altre coeficient de cost és $c_2 = 0.5 \, \text{€/m}$ si el perfil és senzill (com, per exemple, un triangle) o és $c_2 = 1.3 \, \text{€/m}$ si el perfil és complex (com, per exemple, una estrella). Determineu:

a) La superfície s de fusta utilitzada.

[0,5 punts]

- b) El perímetre tallat p_1 si es construeix a partir de triangles com els de la figura. [1 punt]
- c) El perímetre tallat p_2 si es construeix tallant el perfil exterior de l'estrella.

[0,5 punts]

d) El cost de cadascuna de les opcions. Quina és la més econòmica?

[0,5 punts]

Exercici 6

La planxa de la figura s'obté a partir d'una planxa rectangular a la qual es fa un retall triangular. Per fer-lo, s'utilitza una màquina de tall làser que ressegueix el contorn del retall a una velocitat v_{tall} = 12 mm/s. Determineu:

a) La longitud total del tall L i el temps t per fer-lo.

[1 punt]

- b) El percentatge d de material, respecte al de partida, que no s'aprofita si el retall es llença.
- c) La massa m de la planxa obtinguda, si és d'acer de e = 4 mm de gruix.

[0,5 punts]

$$L_1 = 0.7 \text{ m}$$
 $e = 10 \text{ mm}$
 $L_2 = 0.4 \text{ m}$ $\rho = 0.7 \text{ kg/dm}^3$
 $L_3 = 0.4 \text{ m}$
 $c_1 = 8 \text{ EUR/m}^2$ $c_2 = 0.5 \text{ EUR/m}$

En una botiga, calculen el preu de venda v dels taulers de fusta segons l'expressió $v = c_1 \ s + c_2 \ p$, on s és la superfície del tauler i p és el seu perímetre. Per al tauler de la figura, de gruix $e = 10 \ \text{mm}$ i de densitat $\rho = 0.7 \ \text{kg/dm}^3$, les constants que s'apliquen són $c_1 = 8 \ \epsilon / \text{m}^2$ i $c_2 = 0.5 \ \epsilon / \text{m}$. Determineu per a aquest tauler:

a) El preu de venda v.

[1,5 punts]

b) La massa m.

[1 punt]

Exercici 8

b = 400 mm h = 200 mm $r_{\text{ext}} = 100 \text{ mm}$ $r_{\text{int}} = 50 \text{ mm}$ e = 10 mm $p = 8,03 \text{ kg/dm}^3$ v = 5 m/min El marc de la figura, de vèrtexs arrodonits, s'ha tallat d'una planxa d'acer inoxidable de gruix e=10 mm i densitat $\rho=8,03 \text{ kg/dm}^3$. El tall s'ha fet, amb una màquina de tall per doll d'aigua, a una velocitat v=5 m/min. Determineu:

- a) Les llargades dels contorns exterior $L_{\rm ext}$ i interior $L_{\rm int}$. [1 punt]
- b) El temps total t_{total} de tall. [0,5 punts]
- c) La massa m del marc. [1 punt]

Un fuster ha de tallar el tauler del dibuix amb contraplacat de gruix e=22 mm, aplacar els cantells amb una làmina de fusta decorativa i donar-li tres capes de vernís a cada cara. La densitat del contraplacat utilitzat és $\rho=680$ kg/m 3 i el rendiment del vernís és $\eta_{\rm S}=15$ m 2 /l (amb 1 l de vernís es pot donar una capa de vernís a una superficie de 15 m 2). Determineu:

a) El pes p del tauler abans de vernissar.

[1 punt]

b) La longitud s de cinta decorativa necessària.

[0,75 punts]

c) La quantitat V de vernís necessari.

[0,75 punts]

