持续学习与开放域知识库问答

NEVER-ENDING LEARNING FOR OPEN-DOMAIN QUESTION ANSWERING OVER KNOWLEDGE BASES

胡伟龙

huweilong@whu.edu.cn 2018 年 10 月 25 日

Contents

- 1. INTRODUCTION
- 2. SETUP
- 3. NEQA FRAMEWORK
- 4. EXPERIMENTS
- 5. CONCLUSION

INTRODUCTION

前言

- 知识库问答的一个核心挑战是将自然语言问题翻译为 SPARQL 查询语言
- 目前的方法主要分为线下训练阶段和线上部署阶段

目前存在的两个问题

- 1. 线下训练阶段需要大量的标注数据集
- 2. 往往对未见过领域的问题回答失败

»本文提出了 NEQA, 一个用于 KB-QA 的持续学习框架。

目前的 KB-QA 系统:

- 常用方法:通过语义分析,将用户问题翻译为 SPARQL 查 询语句,然后在知识库中执行,获取答案
- 两个阶段: 1)线下自动学习或手动创建模型; 2)线上部署 回答用户问题

三个主要缺点:

- 1. 需要大量标注数据,且涵盖各种用户问题的语法结构和词汇
- 2. 在部署之后,无法再进行学习
- 3. 受限于训练阶段的语料,对于未见过领域的问题回答失败

本文贡献

- 提出了新的 KB-QA 系统,能够从小部分训练数据开始,支持在回答问题过程中持续学习
- 提出了基于相似度函数的回答机制,能够回答未见过的问题 (新的语法结构),从而扩展了问题覆盖率
- 用户反馈模块明确对非专家用户询问满意答案,从而允许持续学习
- 两份数据上的实验表明该持续进化方法的有效性,和回答未见过领域问题的能力

SETUP

基本概念

知识库 (Knowledge Base): 由图形式表示的事实 (Fact) 集合

- 节点 (node)
 - 实体 e ∈ E, 比如 BillCarraro
 - 。 类或者类型 $c \in C$, 比如 MovieAward
 - 。 字面量、常量 h ∈ H, 比如 date
- \bigcirc 边 (predict) $p \in P$, 比如 nominatedFor

基本概念

句法分析 (Dependency Parse):

句子的核心谓词为"提出",主语是"李克强",提出的宾语是"支持上海…","调研…时"是"提出"的(时间)状语,"李克强"的修饰语是"国务院总理","支持"的宾语是"探索新机制"。有了上面的句法分析结果,我们就可以比较容易的看到,"提出者"是"李克强",而不是"上海"或"外高桥",即使它们都是名词,而且距离"提出"更近。

基本概念

问题、查询与答案 (Question,Query and Answer):

- Question
 - Which film award was Bill Carraro nominated for?
- Query
 - SPARQL triple pattern: (e.g. ?x type movieAward)
 - query: (e.g. BillCarraro nominatedFor ?x. ?x type MovieAward)
 - o ?x 被指定为投影变量 (projection variable)
- Answer
 - 一个或多个知识库中的实体
 - 。 通过将 query 中的变量映射到知识库得到, e.g. BlackReel

问题和查询模板

模板(Template) 负责将以自然语言方式描述的问题中的语法结构映射为 SPARQL 的语义谓词参数 (predicate-argument) 结构

问题模板 (u^t) 和查询模板 (q^t) 的对齐是通过共享 ent,pred,class 完成的

问题和查询模板生成模板

对于训练对 (u,A_u) , 生成**问题查询对**(u,q). 例如:

u=Which film awards was Bill Carraro nominated for? q=BillCarraro moninated ?x . ?x type MovieAward

- 使用Stanford Dependency Parser进行依存解析 *u* 中依存树 节点对齐到 *q* 的语义项
- 〇 带权词典 L 用于链接 u 中的词组和 q 中的候选语义项,对 齐问题建模为整数线性规划问题

问题和查询模板使用模板

使用模板的流程:

- 1. 新问题 unew 到来
- 2. 通过问题的依存句法匹配问题模板
- 3. 使用对齐信息和词典实例化对应的查询模板
- 4. 对生成的多个查询使用 LTR(learning-to-rank) 排序
- 5. 将 top-ranked 查询的答案输出

问题 → 问题模板 → 查询模板 → 查询 → 查询排序 → 答案

谓词和类词典

谓词词典 L_P 和类词典 L_C :

- ClueWeb09-FACC1, 利用 Freebase 标注的 500M 个网页
- L 中每个实体根据频率分配权重

定理(LP 构造)

```
if (e_1 \ r \ e_2), assume exists (e_1 \ p \ e_2), then add r \mapsto p to L_P
```

定理 $(L_C$ 构造)

```
if exists 'e and other np' then each c s.t. np \mapsto c is added to L_C such that (e \ type \ c) \in KB
```

NEQA FRAMEWORK

框架概览

» 每个 batch 之后,NEQA 重新训练 LTR 排序模块以改善系统性能

通过模板问答

匹配: 配对 u_{new} 和模板 $\{u_t\}$, 通过依存句法的 egde labels 和 POS Tag

"which president was lincoln succeeded by?" \rightarrow

用户反馈:验证 top - k op query 产生的答案

更新: 生成新的问题查询对

给出的答案集中至少有一个被用户采纳

通过相似函数问答

EXAMPLE

 $u_{new} =$ "what are the film award nominations that bill carraro received?"

 \downarrow

 $u_{similar} =$ "which film awards was bill carraro nominated for?"

 $q^* =$ "BillCarraro nominatedFor ?x . ?x type movieAward"

- 〇 一旦匹配成功,将会产生新的 question-query 对 (u_{new}, q^*) , 然后产生新的模板对 (u^t, q^t)
- 通过获取越来越多的模板,系统能够处理的问题 (对应于不同的语法结构) 越来越多

相似度函数 Similarity Function

无监督相似度函数,包含两个组件:

1. 基于语言模型的问题似然

$$score_{LM}(u_{new}, u_i) = \prod_{w \in u_{new}} [(1 - \lambda) \cdot p_{ml}(w|u_i) + \lambda \cdot p_{ml}(w|C)]$$

2. 基于词嵌入的相似度

$$score_{w2v}(u_{new}, u_i) = \frac{1}{|\varphi|} \sum_{(w_i, w_k) \in \varphi} cos(w2v(w_i), w2v(w_k))$$

最终的相似度:

$$score_{sim}(u_{new}, u_i) = \alpha \cdot score_{LM}(u_{new}, u_i) + (1 - \alpha) score_{w2v}(u_{new}, u_i)$$

用户反馈的利用

两种情况:

- 1. 使用模板回答: 用户反馈用于评价问题和答案的关联度。通过评估答案质量, Question-query bank将会拓展
- 2. 使用相似函数回答: 同时扩展Template bank和Question-query bank

新的问题:

获得用户反馈是否可行?如何量化用户反馈?

实验设置 Benchmarks

- WebQuestions(WQ)
 - 。 通过 Google suggest API 和众包创建
 - 3778 训练数据 + 2032 测试数据, 问题答案对
- ComplexQuestions(CQ)
 - 集中于更复杂的多限制条件的问题
 - 1300 训练数据 + 800 测试数据

属性	WQ	\overline{CQ}
train set 大小	300	105
dev set 大小	300	300
获得的初始模板	223	85

Train 集用干初始化:

- question-query 和 template 库
- Learning-to-rank(LTR) 模型
- 相似度函数的语言模型

Dev 集用于调整 λ 和 α 参数

实验设置 User Feedback

用户反馈的影响:

- NEQA (with user feedback)
 - 。 利用用户反馈从 top-k 中挑选。如果没有,则利用相似度 函数
 - 。 实验中使用答案标签模拟用户反馈
 - \circ k=5,用户选择的答案数目
- NEQA-No-User-Feedback
 - 。 排名最前的答案作为正确答案
 - 。 使用模板的答案列表为空时, 使用相似度函数

实验结果

- Answering performance over time
- Augmentation of bank

实验结果

Method	Avg. Prec.	Avg. Rec.	Avg. F1
QUINT [1] - No Feedback	25.5	30.2	25.7
QUINT [1] - Feedback	35.2	44.1	35.9
AQQU [6] - No Feedback	24.5	29.6	24.8
AQQU [6] - Feedback	36.3	45.2	37.6
NEQA-No-User-Feedback	36.6	45.4	37.0
NEQA	40.6	49.5	40.8

Method	Avg. Prec.	Avg. Rec.	Avg. F1
Berant et al. [9] (2013)	48.0	41.3	35.7
Yao and Van Durme [60] (2014)	-	-	33.0
Bordes et al. [13] (2014)	-	-	39.2
Bast and Haussmann [6] (2015)	49.8	60.4	49.4
Yih et al. [61] (2015)	52.8	60.7	52.5
Reddy et al. [40] (2016)	-	-	50.3
Savenkov et al. [42] (2016) (w/o text)	49.8	60.4	49.4
Xu et al. [55] (2016) (w/o text)	-	-	47.1
Abujabal et al. [1] (2017)	52.1	60.3	51.0
NEQA	52.1	60.3	51.0

实验分析

模板和相似度函数的影响:

- \bigcirc WQ with user feedback: 1184 + 848
- \bigcirc WQ without user feedback: 1788 + 244

失败情况:

- LTR 未学习到新的模板 (缺少合适的模板,字典不完整等)
- 相似度函数检索语义相似的问题失败,库中没有
- 检索出问题,但未生成模板 (词典或者 NERD 问题)

实验分析

对照实验:

Components	NEQA	A NEQA-No-User-Feedback	
Both	40.8	37.0	
Only LM	38.3	35.1	
Only word2vec	35.0	33.4	

案例分析:

"what is the name of the currency used in italy?"

"what is the head judge of the supreme court called?"
"where did the battle of waterloo occur?"

图 1: via templates

Question: Most similar:	"what is the currency in [italy?]" "what kind of money is used in [israel]?"
Question: Most similar:	"what films has [scarlett johansson] been in?" "what movies did [zoe saldana] play in?"
Question: Most similar:	"what was [sir isaac newton]'s inventions?" "what inventions did [robert hooke] made?"

CONCLUSION

总结

总结:

本文提出了一个持续学习框架 NEQA 用于 KB-QA,结合了语 法感知的模板,语义相似函数和非专家用户反馈。NEQA 以少量训练数据开始,利用错误案例改进性能,并通过相似函数学习未见过的语法结构对应的模板。实验表明,1)NEQA 的性能随着时间增加明显改善,2)比静态方法有效,3)能做到开放域问答。

未来工作:

- 改进相似函数,处理更隐式的语义信息
- 避免直接的用户反馈

思考

1. 持续学习:

与用户交互 → 与环境交互 →

2. 用户反馈:

主动反馈 → 量化用户行为 →

