

Term 7- Sept 2024

Nanoelectronics and Technology (01.119/99.503)

Week 2 Day 2 (26-Sept 2024)

Outline

- CMOS scaling
- Impact of Scaling on different CMOS parameters
- Scaling Challenges

Review of MOSFETs

 $\beta = \mu C_{ox} \frac{W}{L}$

n-channel MOS Transistor

 $I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$

CMOS scaling: Moore's Law

Moore's law says that the number of transistors doubles approximately every two years.

- CMOS scaling
 - Speed
 - High density
 - Less power
 - Reduced cost/transistor

Ref: M. L. Rieger, "Retrospective on VLSI value scaling and lithography" Journal of Micro/Nanolithography-2019

CMOS scaling: Dennard's scaling

Dennard scaling, also known as MOSFET scaling, is a scaling law which states roughly that, as transistors get smaller, their power density stays constant, so that the power use stays in proportion with area; both voltage and current scale (downward) with length.

With feature sizes below 65nm, these rules could no longer be sustained, because of the exponential growth of the leakage current."

Ref: M. L. Rieger, "Retrospective on VLSI value scaling and lithography" Journal of Micro/Nanolithography-2019

CMOS scaling: Moore's Law

Ref: H. H. Radamson, et al., "Miniaturization of CMOS" Micromachines 10(5) 293-2019

CMOS scaling: ITRS Roadmap

ITRS Projections

Year of Production	2007	2010	2013
Technology Node (nm)	65	45	32
Transistor Gate Length in Microprocessors circuits (nm)	25	18	13
Wafer diameter (inch)	12	12	18
Number of masks required for fabrication of Microprocessor	33	35	37
Number of Transistors in Microprocessor (billion)	1.1	2.2	4.4
Number of interconnect wiring levels in the Microprocessor	15	16	17

http://www.itrs2.net/

CMOS scaling: ITRS Roadmap

ITRS Projections

Year of Production	2007	2010	2013	2016	2019	2022
Technology Node (nm)	65	45	32	22	16	11
Transistor Gate Length in Microprocessors circuits (nm)	25	18	13	9	6.3	4.5
Wafer diameter (inch)	12	12	18	18	18	18

	2021	ZUZZ	2023	2020	2031	2034
	G51M30	G48M24	G45M20	G42M16	G40M16/T2	G38M16/T4
Logic industry "Node Range" Labeling (nm)	"5"	"3"	"2.1"	"1.5"	"1.0 eq"	"0.7 eq"
IDM-Foundry node labeling	i7-f5	i5-f3	i3-f2.1	i2.1-f1.5	i1.5e-f1.0e	i1.0e-f0.7e
Logic device structure options	FinFET	finFET LGAA	LGAA	LGAA	LGAA-3D	LGAA-3D
Platform device for logic	finFET	finFET	LGAA	LGAA	LGAA-3D	LGAA-3D
Frequency scaling - node-to-node		0.02	0.16	0.09	-0.08	-0.01
CPU frequency at constant power density (GHz)	3.13	2.83	3.53	2.50	1.48	0.86
Power at iso frequency - node-to-node		-0.16	-0.27	-0.05	-0.06	-0.08
Power density - relative	1.00	1.12	1.04	1.59	2.51	4.27
LOGIC TECHNOLOGY ANCHORS						
Patterning technology inflection for Mx interconnect	193i, EUV DP	193i, EUV DP	193i, EUV DP	193i, High-NA EUV	193i, High-NA EUV	193i, High-NA EUV
Beyond-CMOS as complimentary to platform CMOS				2D Device, FeFET	2D Device, FeFET	2D Device, FeFET
Channel material technology inflection	SiGe25%	SiGe50%	SiGe50%	Ge, 2D Mat	Ge, 2D Mat	Ge, 2D Mat
Process technology inflection	Conformal Doping, Contact	Channel, RMG	Lateral/AtomicE tch	Non-Cu Mx	3DVLSI	3DVLSI
Stacking generation inflection	2D	3D-stacking: W2W, D2W Mem-on-Logic	3D-stacking: W2W, D2W Mem-on-Logic	3D-stacking, Fine-pitch stacking, P-over- N, Mem-on-	3D-stacking, 3DVLSI: Mem-on-Logic with	3D-stacking, 3DVLSI: Logic-on-Logic
	I			Logic	Interconnect	

http://www.itrs2.net/

CMOS chip

Ref: N. Bhat, CeNSE, IISc Bangalore- Nanoelectronic Device Technology

Micro-MOSFET

Nano-MOSFET

Technology scaling

Parameter	Constant Field		
Supply voltage (V _{dd})	1/α	<u> </u>	
Length (L)	$1/\alpha$		
Width (W)	$1/\alpha$	Scaling	
Gate-oxide thickness (tox)	1/α	Variables	
Junction depth (X _i)	1/α	1	
Substrate doping (N _A)	α	. ↓	
Electric field across gate oxide (E)	1	<u> </u>	
Depletion layer thickness	$1/\alpha$		
Gate area (Die area)	$1/\alpha^2$	Device	
Gate capacitance (load) (C)	$1/\alpha$	Repercussion	
Drain-current (I _{dss})	$1/\alpha$	1	
Transconductance (g _m)	1	ļ	
Gate delay	1/α	1	
Current density	α	1	
DC & Dynamic power dissipation	$1/\alpha^2$	Circuit	
Power density	1	Repercussion	
Power-Delay product	$1/\alpha^3$	Ţ	

Typical Scaling Scenario

- 1974 : 5μm Technology, Vdd = 10V
- 1984 : 1μm Technology, Vdd = 5V
- 1994 : 0.35μm Technology, Vdd = 3.5V
- 2004: 90nm Technology, Vdd = 1V

CMOS scaling and FINFET technology

SiO₂/SiON dielectric based

High-k/Metal gate based

FINFET based

90 nm node

45 nm node 32 nm node

22nm/14nm/10nm/7nm/5nm

T. Ghani et al., IEDM 2003

(after S. Tyagi et al., IEDM 2005)

K. Mistry et al., **IEDM 2007**

P. Packan et al.. **IEDM 2009**

Gate length has not scaled proportionately with device pitch (0.7x per generation) in recent generations. – Transistor performance has been boosted by other means.

SOURCE: Intel

- Gate length scaling
- Supply voltage scaling
- Gate oxide scaling
- Scaling of Doping
- Shallow S/D

Overview of Scaling Limitations

CMOS scaling Issues:

- Short channel effects
- Threshold voltage variation
- DIBL (Drain Induced Barrier Lowering)
- Gate leakage current
- GIDL (Gate Induced Drain Leakage)
- Shallow S/D Parasitic resistance
- Mobility issues/Velocity saturation/Hot carrier effect

Gate length scaling

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

$$\beta = \mu C_{ox} \frac{W}{L}$$

Threshold Voltage: (V_{th}) Variation

Gate length scaling

Channel Length Modulation

 It occurs when transistor is in Saturation region.

i.e. Saturation region,

 $V_{GS}{>}V_{th}$ and $V_{DS}{>}~V_{GS}$ - V_{th} I_D increases slightly with increasing V_{DS} .

- The pinch-off point moves toward the source as V_{DS} increases.
- The length of the channel becomes shorter with increasing V_{DS}.

.....

Gate length scaling

Channel length Modulation

Drain Induced Barrier Lowering (DIBL)

Gate length scaling

As the source and drain get closer, they become electrostatically coupled, so that the drain bias can affect the potential barrier to carrier diffusion at the source junction

 \rightarrow V_{T} decreases (i.e. OFF state leakage current increases)

Drain Induced Barrier Lowering (DIBL)

Gate length scaling

(a)-(d): Energy-band diagram from source to drain when V_{gs} =0V and V_{gs} =V $_t$

Gate length scaling

Threshold Voltage: (V_{th}) and DIBL

Threshold as a function of the length (for low VDS)

Drain-induced barrier lowering (for low L) ...(DIBL)

J. Ho, "Introduction and Short Channel Effects", 2014, Semiconductors

Gate length scaling

Gate Induced Drain Leakage (GIDL)

- GIDL occurs when the V_{DG} potential and band bending are high enough to generate electron/hole pairs by valence to conduction band tunneling
- GIDL arises in MOSFETs due primarily to band to band tunneling that occurs between the drain and the gate
- GIDL prevents the drain from reaching a current of zero when it is in its "off" state

CMOS scaling: Gate dielectric Scaling

- SiO₂/SiON based dielectric till 65 nm CMOS Technology Node
- Best properties with silicon substrate
- Conventional SiON < 12Å loses its intrinsic insulative property.
- SiON < 12Å -Increased leakage current and poses reliability issues
- To reduce leakage, high- κ dielectrics with equivalent C_{OX} introduced.

SIO ₂ /SION Dielectric based							
1st Production	1997	1999	2001	2003	2005	2007	2009
Process Generation	0.25μm	0.18μm	0.13μm	90 nm	65 nm	45 nm	32 nm
Gate dielectric	SiO2	SiO2	SiO2	SiO2	SiO2	High-k	High-k
Gate electrode	Poly- silicon	Poly- silicon	Poly- silicon	Poly- silicon	Poly- silicon	Metal	Metal

Source: Intel

Robertson, Rep. Prog. Phys. 69 (2006) 327-396

CMOS scaling: HK-MG technology

HK-MG technology

- HK-MG technology: 45 nm and 32 **CMOS Technology Node**
- k value high enough and scalable
- Thermal stability
- Compatible with Si CMOS tech.
- Good interface with Si
- Lower defects in the bulk
- Not used after 32nm CMOS technology

1st Production	1997	1999	2001	2003	2005	2007	2009
Process Generation	0.25μm	0.18μm	0.13μm	90 nm	65 nm	45 nm	32 nm
Gate dielectric	SiO2	SiO2	SiO2	SiO2	SiO2	High-k	High-k
Gate electrode	Poly- silicon	Poly- silicon	Poly- silicon	Poly- silicon	Poly- silicon	Metal	Metal

Source: Intel

Source: Intel

CMOS scaling: HK-MG technology

- Challenges:
 - High density of defects
 - Interaction with the polysilicon gate
 - Interaction with the substrate
 - Polycrystallization structure
 - Increased trap-assisted tunneling
 - Increased leakage current
 - Reliability and failure of high-k dielectric

Source: Intel

CMOS scaling: HK-MG technolgy

45nm High-k + Metal Gate Transistors

Source: Intel

CMOS scaling: HK-MG technolgy

Micro-MOSFET

Periodic Table of the Elements

Nano-MOSFET

Periodic Table of the Elements

CMOS scaling: Shallow Source/Drain:

• To minimize the short channel effect and DIBL, we want shallow (small r_j) S/D regions — but the parasitic resistance of these regions increases when r_j is reduced.

Hot carrier injection

High electric field near the substrate-oxide interface energizes the electrons or holes and they cross the substrate-oxide interface to enter the oxide layer. This phenomenon is known as hot carrier injection.

Punch through effect

 In short channel devices, due to the proximity of drain and source terminals, the depletion region of both the terminals come together and eventually merge. In such a condition, "punch-through" is said to have taken place.

J. Ho, "Introduction and Short Channel Effects", 2014, Semiconductors

Punch through effect

- Drain current no longer controlled by gate voltage
- Drain current does not saturate
- High subthreshold current

J. Ho, "Introduction and Short Channel Effects", 2014, Semiconductors

Velocity saturation

$$V=\mu E$$

- Velocity of charge carriers is linearly proportional to the electric field and the proportionality constant is called as mobility of carrier.
- But when we increase the electric field beyond certain velocity called as the thermal velocity or saturated velocity the velocity of the charge carrier does not change with electric field
- The electric field at which the velocity of carrier saturates is called as the critical electric field. The loss of energy is because of the collisions of carriers called as scattering effect.

Subthreshold current

I_{DS} Vs V_{GS} characteristics in linear scale

https://www.electronics-tutorial.net/Digital-CMOS-Design/Non-Ideal-Effects/Subthreshold-Conduction/

 I_{DS} Vs V_{GS} characteristics in log scale

Subthreshold current

https://www.electronics-tutorials.ws/transistor/tran_7.html

Subthreshold current

Subthreshold conduction or subthreshold leakage t is the current between the source and drain of a MOSFET when

- the transistor is in subthreshold region, or
- weak-inversion region, that is, for gateto-source voltages below the threshold voltage.

Gate Oxide

| The state of the

 $V_B = 0 V$

https://www.electronics-tutorials.ws/transistor/tran_7.html

Impact of scaling on parasitic C and R

MOSFET parasitic capacitances

https://inst.eecs.berkeley.edu/~ee130/sp06/chp7full.pdf

https://www.electronics-tutorial.net/Analog-CMOS-Design/MOSFET-Parasitics/Parasitic-Capacitances-MOSFETS/

Impact of scaling on parasitic C and R

https://inst.eecs.berkeley.edu/~ee130/sp06/chp7full.pdf