

Morphed Passport Photo Detection by Human Observers

FRONTEX ICBB2019 Warsaw

Within-Person Variability

Within-Person Variability

Provides A Route To ID Fraud

~Range of 10%-30% UFM errors are the norm

The Morph Problem

The Fraudster F.O.G

Study 1 Detecting Morphed Photos

MismatchOriginal Owner

No Awareness of Morph Fraud

Press 1 For Match
Press 2 For Mismatch

Morphed Image (Owner + Fraudster)

No Awareness of Morph Fraud

No Awareness of Morph Fraud

The Fraudster

Awareness Morphs Contained Within Set

Here is an example of the morphing process, and some tips on what to look out for.

This is the person who's passport has been stolen

This is an image of the fraudster (the person who has stolen the passport)

The fraudster can use commonly available technology (e.g. photoshop) to make a new morphed image which can contain different 'amount's of the owner's face and their own. Here are some examples.

Tip 1: Ghost like outline of another face

Tip 2: Does the image look altered in any way

<u>Tip 3:</u> Changes at the neck area (ghost outline of another person's shirt collar for example)

<u>Tip 4:</u> A dark patch over forehead could indicate a morph (one person wears hair up, the other down)

Awareness Morphs Contained Within Set

Match

Mismatch Original Owner Press 1 For Match
Press 2 For Mismatch
Press 3 For Morph

Morphed Image (Owner + Fraudster)

Awareness Morphs Contained Within Set

50

40

30

20

10

0

The Fraudster

Study 2 Improve Morph Detection?

Chance Level

Mean Improvement In Morph Detection Sensitivity (d')

Morph Condition

Basic 2AF Training only benefitted initially poor performers

Study 1 & 2 Are super-recognisers also super-morph-detectors?

Individual Differences

Occupational Experience

Super-recognisers?

Towler, A., Kemp, R. I., Burton, A. M., Dunn, J. D., Wayne, T., Moreton, R., & White, D. (2019). Do professional facial image comparison training courses work? *PloS one*, *14*(2), e0211037.

Data From Study 2

MFMT - Mismatch Subtest - Accuracy (%)

Support for selection

Summary

- Morphed passport photos are difficult to detect
- Awareness/Detection guidance improves performance
- Basic 2AFC training can provide a further benefit
- Identity recognition/morph detection may be linked
- Present data supports a selection and training approach

Caveats & Considerations

- We assume our set includes poor/moderate quality morphs
- Only use Caucasian observers/Caucasian Morphs
- Science/Practitioner partnerships (accessing real F. Attempts)
- May therefore be overestimating human detection rates
- See recent paper by Kramer et al. (2019)
- High quality morph detection may be beyond human perceptual capabilities
- Machine detection may be the best approach

References

Robertson, D. J. (2018). <u>Face recognition: security contexts, super-recognizers, and sophisticated fraud</u>. *The Journal of The United States Homeland Defence and Security Information Analysis Center (HDIAC)*, *5*(1), 6-10.

Kramer, R. S., Mireku, M. O., Flack, T. R., & Ritchie, K. L. (2019). Face morphing attacks: Investigating detection with humans and computers. *Cognitive research: principles and implications*, 4(1), 28.

Robertson, D. J., Fysh, M. C., & Bindemann, M. (2019). <u>Face identity verification: five challenges facing practitioners.</u> *Keesing Journal of Documents & Identity*, 59, 3-8.

Robertson, D. J., Kramer, R. S., & Burton, A. M. (2015). Face averages enhance user recognition for smartphone security. *PloS one*, *10*(3), e0119460.

Robertson, D. J., Kramer, R. S., & Burton, A. M. (2017). Fraudulent ID using face morphs: Experiments on human and automatic recognition. *PloS one*, 12(3), e0173319.

Robertson, D. J., Mungall, A., Watson, D. G., Wade, K. A., Nightingale, S. J., & Butler, S. (2018). Detecting morphed passport photos: a training and individual differences approach. *Cognitive research: principles and implications*, 3(1), 27.

Robertson, D. J., Noyes, E., Dowsett, A. J., Jenkins, R., & Burton, A. M. (2016). Face recognition by metropolitan police super-recognisers. *PloS one*, *11*(2), e0150036.

Towler, A., Kemp, R. I., Burton, A. M., Dunn, J. D., Wayne, T., Moreton, R., & White, D. (2019). Do professional facial image comparison training courses work?. *PloS one*, *14*(2), e0211037.

Acknowledgements | Lab | Contact

Applied Cognitive Psychology Lab

University of Strathclyde School of Psychological Sciences & Health

www.strathacpl.com

