МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе № 1 по дисциплине «Параллельные алгоритм» Тема Основы работы с процессами и потоками

Студент гр. 9303	Ефимов М.Ю.
Преподаватель	Сергеева Е.И.

Санкт-Петербург

2022

Цель работы.

Изучить работу процессов и потоков в языке С++.

Задание.

Выполнить поэлементное сложение 2х матриц М*N

Входные матрицы вводятся из файла (или генерируются).

Результат записывается в файл

1.1.

Выполнить задачу, разбив её на 3 процесса. Выбрать механизм обмена данными между процессами.

Процесс 1: заполняет данными входные матрицы (читает из файла или генерирует их некоторым образом).

Процесс 2: выполняет сложение

Процесс 3: выводит результат

1.2.1

Аналогично 1.1, используя потоки (threads)

1.2.2

Разбить сложение на Р потоков.

Исследовать зависимость между количеством потоков, размерами входных данных и параметрами целевой вычислительной системы.

Выполнение работы.

Для генерации данных был написал класс Matrix в конструкторе которого происходит наполнение данными двумерного массива.

1.1 Реализация с помощью процессов.

Реализация сложения двух матриц с помощью процессов выполнена в файле processes.cpp. Разбиение на три процесса происходит с помощью функции fork(), которая создаёт процессы-потомки. Для того, чтобы определить, какой процесс что выполняет используется идентификатор PID: если значение равно 0, то это потомок, и он выполняет свою часть, иначе, с помощью функции wait() происходит ожидание выполнения кода потомком.

1.2.1 Реализация с помощью потоков.

Реализация сложения двух матриц с помощью потоков выполнена в файл threads.cpp. Поток создается с помощью конструктора thread(), который принимает ссылки на функцию для выполнения. Ожидание исполнения потока для продолжения исполнения программы выполняется с помощью метода join(). Передача данных через каналы(pipes).

1.2.2 Разбиение операции сложения на Р потоков.

Реализация сложения двух матриц с помощью нескольких потоков выполнена в функции Sum. В ней создаются потоки. Все созданные потоки хранятся в векторе, и после их инициализации для каждого потока вызывается метод join(). В функции Simple через индексы определяется, какой поток какой вектор складывает.

1.3 Исследование зависимости между количеством потоков, размерами входных данных и параметрами целевой вычислительной системы.

Количество потоков	Размер	Время
2	1000x1000	0.00430714
4	1000x1000	0.00398308
8	1000x1000	0.00234639
16	1000x1000	0.00304437

32	1000x1000	0.00269653
8	100x100	0.000528161
8	10000x10000	0.208908

Выводы.

В процессе выполнения работы были изучены процессы и потоки.

Было выявлено, что увеличение времени при увеличении объема данных линейно. В случае количества потоков ситуация другая. Не всегда увеличение потоков ведет к увеличению, даже если время уменьшается, не обязательно линейно. Узким местом в данном случае является обращение к RAM(оперативная память).