ACHATAMENTO DOS PLANETAS GASOSOS E DO SOL

WILSON LOPES Universidade de Guarulhos 07110 Guarulhos. SP

I. ACHATAMENTO DOS PLANETAS GASOSOS

Os grandes planetas gasosos, do sistema solar, como Saturno, Urano e Netuno, são formados, em suas partes internas, por um núcleo rochoso, gelo, hidrogênio metálico e muito hidrogênio molecular em suas superfícies (ver Fig. 1). Es te modelo deriva da hipótese desses planetas formarem-se, inicialmente, pela deposição de material rochoso e gelo e, em se guida, foram-se acumulando gases em suas superfícies. O núcleo rochoso de Saturno é de, aproximadamente, 2×10^4 km de diâmetro e uma capa de gelo de 5×10^3 km de espessura. Urano e Netuno possuem, cada um, um núcleo rochoso com cerca de

Figura 1 - O achatamento do planeta, devido à sua rotação, e as partes que constituem seu interior.

 16×10^3 km de diâmetro e uma capa de gelo de 8×10^3 km de espessura (1).

Neste trabalho não é importante a origem dos planetas citados, nem a natureza dos gases que compõem suas atmosferas. Estamos interessados, somente, que as atmosferas desses planetas sejam muito espessas. Também não levaremos em conta o ângulo de inclinação do eixo de rotação do planeta em relação ao plano de sua órbita. Essa suposição, de nossa parte, poderá ser razoável para os planetas Júpiter, Saturno e Netuno, contudo, poderá ser inconveniente para Urano, que apresenta uma inclinação de 98° (ver tabela 1). Admite-se, por outro lado, que no topo da atmosfera de cada planeta, a tempe-

Tabela 1 - Ângulo de inclinação do eixo de rotação do planeta (θ) com o plano de sua órbita(2).

Planeta	θ(°)		
Júpiter	3,01		
Saturno	26,74		
Urano	98		
Netuno	28,80		

ratura seja função apenas da latitude, quando se percorre o trajeto CA (ver Fig. 2), segundo a expressão:

$$T \propto \cos \lambda$$
 (1)

onde λ representa a latitude.

Supondo-se que nas altas camadas da atmosfera de cada planeta, e na direção radial, a temperatura permaneça praticamente constante (ver Fig. 3)⁽³⁾, então a densidade num ponto da atmosfera do planeta é dada por:

$$\mu = p.M/RT , \qquad (2)$$

onde p, M e T são, respectivamente, a pressão, a massa mole-

Figura 2 - As colunas gasosas AB e BC e o trajeto CA, no topo da atmosfera do planeta.

cular média e a temperatura (em kelvin), à latitude λ e nas últimas camadas da atmosfera planetária.

Figura 3 - A temperatura T em kelvin é função da altura h, medida a partir da superfície da Terra, para uma determinada latitude. Seria diferente para outros planetas?

Levando-se en conta a expressão (1), pode-se escrever a (2) da seguinte maneira:

onde o representa um coeficiente de proporcionalidade. A expressão (3) indica como a densidade varia com a pressão e com a latitude nas colunas gasosas AB e BC (ver Fig. 2).

A equação barométrica ao longo da coluna gasosa AB, de raio b, é dada por:

$$dp = -\mu . b^2 . w^2 sen \lambda . cos \lambda . d \lambda$$
, (4)

onde b e w são, respectivamente, o raio polar e a velocidade angular do planeta $^{(4)}$.

Substituindo-se (3) em (4) e integrando-se, tem-se:

$$\int_{p_B}^{p_A} dp/p = -\sigma. v^2. b^2 \int_{0}^{\pi/2} sen \lambda. d\lambda ,$$

portanto,

$$\ln p_B = \ln p_A + \sigma . v^2 . b^2$$
 (5)

Ao longo do plano equatorial e na direção radial, para as últimas camadas da atmosfera do planeta, a equação barométrica é dada por:

$$dp = -G.M_p.\mu.dr/r^2$$
, (6)

onde M_p e G são, respectivamente, a massa do planeta e a con<u>s</u> tante de gravitação.

Substituindo-se (3) en (6), com λ = 0, e integrando-se, obten-se:

$$\int_{P_B}^{P_C} dp/p = - C.M_p.\sigma \int_{b}^{a} dr/r^2 ,$$

portanto,

$$\ln p_{B} \approx \ln p_{C} + G.M_{p}.\sigma.(1/b - 1/a)$$
, (7)

onde a é o raio equatorial do planeta.

Igualando as expressões (5) e (7), e levando-se em conta que $p_A = p_B$, obtém-se:

$$e \approx w^2 \cdot b^3 / G.M_p$$
 (8)

A expressão (8) fornece o achatamento de um planeta gasoso em função de seu raio polar, de sua velocidade angular em torno de seu eixo de rotação, e de sua massa.

Tabela 2 - Valores observados e calculados para o achatamento dos quatro maiores planetas do sistema solar. Para os valores calculados foi usada a expressão (8).

Planeta	a x 10 ⁷ (m)	b x 10 ⁷ (m)	w x 10 ⁻⁵ (rad/s)		e (obs.)	e (cal.)
Júpiter	7,135	6,693	17,6	190	0,062	0,073
Saturno	6,040	5,460	17,1	57	0,096	0,12
Urano	2,380	2,237	16,2	9	0,060	0,052
Netuno	2,220	2,176	11,0	10	0,020	0,022

II. ACHATAMENTO POLAR DO SOL

Supondo, para o Sol, $a_{\odot} - b_{\odot} << b_{\odot}$ pode-se fazer a hipótese de que a temperatura seja constante em toda a região ABC (ver Fig. 2). Substituindo-se a equação (2) em (4) e integrando-se, tem-se:

$$\int_{p_{R}}^{p_{A}} dp/p \approx (M.b_{\Theta}^{2}.w_{\Theta}^{2}/RT_{\Theta}) \int_{0}^{\pi/2} sen\lambda.cos\lambda.d\lambda ,$$

portanto,

$$\ln p_B = \ln p_A + M.b_o^2 \cdot v_o^2 / 2RT_o$$
 (9)

Na expressão (9) b_{\odot} , w_{\odot} e T_{\odot} são, respectivamente, o raio polar do Sol, sua velocidade angular em torno de seu eixo de rotação e sua temperatura suposta constante na região ABC (ver Fig. 2).

Da mesma maneira, substiuindo-se (2) em (6) e integrando-se, obtém-se:

$$\int_{P_B}^{P_C} dp/p = - (G.M_{\odot}.M/RT_{\odot}) \int_{b_{\odot}}^{a_{\odot}} dr/r^2 ,$$

portanto,

$$\ln p_B = \ln p_C + (G.M_o.M/RT_o).(1/b_o - 1/a_o)$$
 (10)

Igualando as expressões (9) e (10), e levando-se en conta que p_A = p_C, tem-se:

$$e^{-a} = w_{\Theta}^2 \cdot b_{\Theta}^3 / 2GM_{\Theta}$$
 (11)

Na expressão (11), $\rm M_{\odot}$ representa a massa do Sol. Assumindo $\rm b_{\odot} = 6.96 \times 10^8$ m, $\rm M_{\odot} = 1.99 \times 10^{30}$ kg e um período de rotação de 26 dias, obtém-se, com o auxílio da equação (11), um achatamento de 0.99×10^{-5} que representa um bom resultado (5).

111. CONCLUSÕES

Observando-se a Tabela 2, verifica-se que os valores dos achatamentos, calculados para os planetas, são todos maio res que os observados, com exceção de Urano. Muito provavelmente esse fato podería estar relacionado com a inclinação de 98º do eixo de rotação de Urano em relação ao plano de sua orbita. Se a temperatura realmente desempenha um papel importante no achatamento dos planetas muito gasosos, então Urano podería apresentar um achatamento periodicamente variável de vido ao seu movimento orbital em torno do Sol: (i) quando seu

eixo de rotação estivesse praticamente paralelo à radiação so lar, a temperatura num dos polos sería maior que a equatorial (condição completamente adversa âquela formulada neste traba lho) e (ii) quando seu eixo de rotação estivesse perpendicular à radiação solar, a temperatura equatorial seria maior que as polares (condição formulada neste trabalho).

Supondo-se constante a temperatura das altas camadas das atmosferas dos planetas, da mesma maneira como foi feito para o Sol, todos os valores calculados da Tabela 2 estaríam divididos por dois, o que os tornaria inaceitáveis.

Creío que a hipótese mais discutível deste trabalho é com relação à equação (1). Tal equação daria conta, perfeitamente, da temperatura equatorial de un planeta, porém, para os pólos, a (1) fornece a temperatura de 0 K. Uma temperatura polar de 0 K não é aceitável para os grandes planetas gasosos, mesmo em se considerando suas grandes distâncias ao Sol.

Com relação ao Sol, parece-me muito razoável assumir a temperatura constante na região ABC (ver Fig. 2) devido ao fato de não haver muita diferença entre os raios equatorial e polar, que resultou na equação (11). Para um período de rotação de 26 dias, na região equatorial do Sol, essa equação for nece um achatamento de 0,99 x 10⁻⁵, que concorda com o resultado obtido por Hill e Stebbins (5).

BIBLIOGRAFIA

- (1) Hunten, D.M., Los planetas exteriores (El sistema Solar Selecciones de Scientific American), 1977.
- (2) Glasstone, S., Iniciación a las Ciencias del Espacio (Aghi-
- (3) Davies, K., Ionosfheric Radio Propagation (Dover), 1966.
- (4) Lopes, W., Achatamento Polar de un Planeta. Revista de Ensino de Física, vol. 2, nº 4, dez. de 1980.
- (5) Hill, H.A. and Stebbins, R.T., <u>The Astrophysical Journal</u> 200, 471-483 (1975).