INF221 – Algoritmos y Complejidad

Clase #14 Backtracking

Aldo Berrios Valenzuela

Horst H. von Brand

Miércoles 21 de septiembre de 2016

1. Backtracking

Otra estrategia recursiva...La idea es ir construyendo la solución incrementalmente, explorando distintas ramas y volviendo atrás (backtrack) si resulta que un camino es sin salida.

Ejemplo 1.1 (Un clásico). En el ajedrez la reina es la pieza más poderosa. Amenaza los casilleros en su fila y columna, y los ubicados en diagonal. La figura 1 muestra los casilleros que amenaza una reina en el ajedrez. Un problema

Figura 1: Los casilleros amenazados por una reina

clásico es determinar si se pueden ubicar ocho reinas en el tablero de manera que ninguna pueda amenzar a otra. Claramente no pueden ser más de ocho, puede haber a lo más una reina por columna.

Pasos:

- Reducir espacio de búsqueda.
 - → Si son 8 reinas, hay una por columna.

Por lo tanto, llenar por columnas, solución (parcial) indica las filas de las reinas ya ubicadas.

- Ordenar avance.
- Subproblemas similares.

En este caso:

- Ubicar reina en columna 1, 2, ...
- Registrar filas libres (por omitir ocupadas al ubicar la siguiente reina)
- Registrar diagonales libres.

Reina en i, j:

$$y - j = 1 \cdot (x - i)$$

$$i - j = x - y \rightsquigarrow x - ycte$$

$$y - j = -1 \cdot (x - i) \rightsquigarrow x + ycte$$

Por ejemplo, luego de ubicadas las primeras tres reinas en las filas 1, 3 y 5 la configuración resultante es la de la figura 2. Vemos que las filas y diagonales amenazadas por estas tres restringen muchísimo las posiciones viables

Figura 2: Configuración con tres reinas

para la cuarta y siguientes. Con estas tres reinas, para la cuarta reina quedan solo 3 posibilidades.

Elegimos Python (!), en Python los arreglos tienen índices desde 0, rango de i, j es 0...7. Interesan los rangos de:

- i j: $-7...7 \rightsquigarrow$ sumar 7 para llevar al rango 0...14.
- i + j: 0...14

El programa final es el siguiente:

```
#!/usr/bin/python3

queen = [0 for i in range(8)]  # Row of queen in column i
    rfree = [True for i in range(8)]  # Row i is free
    dufree = [True for i in range(15)]  # Up diagonal through i + 7 - j free
    ddfree = [True for i in range(15)]  # Down diagonal through i + j free

def solve(n):
    global solutions

if n == 8:
    solutions += 1
    print(solutions, end = ": ")
    for i in range(8):
        print(queen[i] + 1, end = " ")
```

```
print()
else:
    for i in range(8):
        if rfree[i] and ddfree[n + i] and dufree[n + 7 - i]:
            queen[n] = i
            rfree[i] = ddfree[n + i] = dufree[n + 7 - i] = False
            solve(n + 1)
            rfree[i] = ddfree[n + i] = dufree[n + 7 - i] = True

solutions = 0
solve(0)

print()
print(solutions, "solutions")
```

Una de las 92 soluciones posibles se muestra en la figura 3.

Figura 3: Una solución para el problema de 8 reinas.