Fault Tolerant Computing and VLSI Testing

Assignment 3

1.

2.

3.
$$FC = 80\% \implies DL = 1 - 0.9^{1-0.8} = 0.020852 = 20852PPM$$
 $FC = 90\% \implies DL = 1 - 0.9^{1-0.9} = 0.010481 = 10481PPM$
 $FC = 99\% \implies DL = 1 - 0.9^{1-0.99} = 0.001053 = 1053PPM$
 $DL = 20PPM = 2 * 10^{-5} = 1 - 0.7^{1-FC}$
 $0.6^{1-FC} = 1 - 2 * 10^{-5} = 0.99998$
 $1 - FC = \log_{0.6} 0.99998 = 3.915 * 10^{-5}$
 $FC = 1 - 3.915 * 10^{-5} = 0.99996 = 99.996\%$

4.

AB	00	01	10	11
Z	1	1	1	0
P_0 stuck open	1	LastZ	1	0
P_0 stuck short	1	1	1	I_{DDQ}
P_1 stuck open	1	1	LastZ	0
P_1 stuck short	1	1	1	I_{DDQ}
N_0 stuck open	1	1	1	LastZ
N_0 stuck short	1	I_{DDQ}	1	0
N_1 stuck open	1	1	1	LastZ
N_1 stuck short	1	1	I_{DDQ}	0

5.
$$a \oplus (a+b) = a\overline{(a+b)} + \overline{a}(a+b) = a\overline{a}\overline{b} + \overline{a}a + \overline{a}b = \overline{a}b$$

 $(a+b)\overline{b} = a\overline{b} + b\overline{b} = a\overline{b}$
 $(a \oplus (a+b)) + (a+b)\overline{b} = \overline{a}b + a\overline{b} = a \oplus b$