Rate of Refush of an Investment Chapter 5 End up with > payments
20 year Invest C00,001& for 2D years Resert Value solve for i (00,000 = K azzi i = effective and vate of Neturn of it vestment.

"Yield rate" "interhal rate" or return"

Internal Rate of Return (IRR).

future payments from ivestment

K, , K2, ---, Kn

Present Value

 $L = K_1 D + K_2 D^2 + \cdots + K_n D^n$

Solve tor i.

if $L < \sum_{i=1}^{n} k_i$, solution for i is unique and positive.

it all Ki > 0, unique solution for i > - I

Internal Rate of Return

Suppose transaction has not cashfow of amounts C_0 , C_1 , C_2 , ... C_n at times t_0 , t_1 , t_k , ... t_n , then TRR for the transaction is rate; satisfying eggs $\frac{1}{k} = 0$

Example 5.1

- Ruys 1000 shares of stock at 5.00 per share

 Pay commission of 2%.
- Six-mouth later, receive dividend of .20 per share. inediately reinvests with 4.00 per share. Commission thee.
- + Six-nove worth later boy another 500 slaves at 4.50 pay 2% Com.
- + Six-ma, later, receive divided of .25 per share sell all shares @ 5.00 paying 2% comm,

Fird ((2)

$$5100 + 0 + 2295 12^2 + 7982,5023 = 0$$

Solve tor
$$j \Rightarrow j = 3,246\%$$

$$|z| = 2j = \sqrt{6,49\%}$$

Example 5.2 Uniqueness of IRR balance cala be tor-. Line of Credit. earlys interest vate i regardless, balance 0 at time = 2 2 +1.33 -2.3 a) +1 +1.32 (ط -2.3+1 + 1,3125 c) -2.3 + 1 4) + 1 -2.3 +1,2825

a)
$$1(|ri|^2 - 2.3(|ri|) + 1.33$$
ho red solution for (|ri|).

b)
$$|(1+i)^2 = -2.3(1+i) + 1.32$$

 $(1+i) = |.1 \text{ or } 1.2$

c)
$$(1+i)^2 - 7.3(1+i) + 1.3125$$

 $(1+i) = 1.05 \text{ or } 1.25$

d)
$$(1+i)^{2}-2.3(1+i)+1.2825$$

 $(1+i)=.95 \text{ or } 1.35$

IRR for given speculserations of cashflow may not be segmence of cashflow may not be

-> If Co>o and Ca<O for k=1,...,n then IRR is Ulique and >-I

- + Furthermore, if $\frac{h}{2}$ Ca < 0 then is 0.

s needs other nethod of comparing transactions,

NET Presant Value, (NPV) till to to to Transaction A (C. C1 C2 C3 ... C4) Transaction B (Do, D., Dz., Da) choose

(So, D., Dz., Da)

i = "csst of capital"

interest preference

"interest preference" Compare by picking i, and The Carling Us The Daring

.

+ look at sigh of NPP + = protitable

+ IRR = i such that UPV = 0.

5.2 Odlar-Weighted and Time-weighted Rate
of Return

bollar - Weighted AR

like IRR, but use simple interest.

solution i always exists.

Ex 5.3

2009 Feb Aug De+ End

1 M 1200,000 +200,000 -500,000 1,100,000

Odlar - weighted RT. associng each no. is exactly 1/2.

$$|000,000|$$
 $(|+i|)$
 $+200,000|$ $(|+i|\frac{4}{12})$
 $+200,000|$ $(|+i|\frac{2}{12})$
 $-500,000|$ $(|+i|\frac{2}{12})$
 $= |,|00,000|$

It IRR (compound have rest) was used,

$$(,000,000)$$
 $(1+i)$
 $+ 200,000$ $(1+i)$
 $+ 200,000$ $(1+i)$ $= 100$
 $- 500,000$ $(1+i)$ $= 1,100,000$

time interval
hay not be
the same

Fz = balance in the fund just before the transaction Cz.

$$\left(\frac{F_1}{F_n}\right)\left(\frac{F_2}{F_1+C_1}\right)\left(\frac{F_3}{F_2+C_2}\right)^{\frac{2}{2}}\left(\frac{F_n}{F_{n-1}+C_{n-1}}\right)\left(\frac{F_n}{F_n+C_n}\right)^{-1}$$

$$\left(\frac{1,000,000}{1,000,000}\right) \left(\frac{1,400,000}{1,000,000}\right) \left(\frac{1,580,000}{1,000,000}\right) \left(\frac{1,100,000}{1,000,000}\right) - 1$$

Portfolio Year vate

Intenst vale earlied by hain ford.

Investment year rate

dibforent interest rate for "new money"

Calendar Year of Original Investment	Investment Year Rates (in %)					Portfolio Rates (in %)
у	i_1^y	i_2^y	$i_3^{\mathcal{Y}}$	$i_4^{j'}$	$i_5^{\mathcal{Y}}$	i ^{y+5}
1992	8.25	8.25	8.40	8.50	8.50	8.35
1993	8.50	8.70	8.75	8.90	9.00	8,60
1994	9.00	9.00	9.10	9.10	9.20	8.85
1995	9.00	9.10	9.20	9.30	9.40	9.10
1996	9,25	9.35	9.50	9.55	9.60	9.35
1997	9.50	9.50	9.60	9.70	9.70	
1998	10.00	10.00	9.90	9.80		
1999	10.00	9.80	9.70			
2000	9.50	9.50	•			
2001	9.00					

Suppose that the amount in a fund is 1000 on January 1, 1997. Let the following be the accumulated value of the fund on January 1, 2000:

- P: under the investment year method
- Q: under the portfolio yield method
- R: if the balance is withdrawn at the end of every year and is reinvested at the new money rate.

Determine the ranking of P, Q, and R.