9.7 磁介质及磁化微观机制

9.7 磁介质及磁化微观机制

一、磁介质

1. 磁介质: 是经磁化后能够影响磁场分布的物质。

$$eta = ar{B}_0 + ar{B}' = \mu_r ar{B}_0$$
 μ_r 一相对磁导率

2. 磁介质的分类: (根据 \bar{B}' or μ 的不同)

• 顺磁质 (paramagnetic substance) 弱磁质

$$\vec{B}$$
' $\uparrow \uparrow \vec{B}_0$, 且 B ' $<< B_0$, $\mu_r > 1$ 如:Mn, Al, O_2 …

- 抗磁质 (diamagnetic substance) 弱磁质
- \vec{B} ' $\uparrow \downarrow \vec{B}_0$, 且B' $<< B_0$, $\mu_r < 1$ 如:Cu, Ag, H₂...
- 铁磁质 (ferromagnetic substance) 强磁质
- \vec{B} ' 个 \vec{B}_0 , 且 B' >>> B_0 , μ_r >> 1 如: Fe, Co, Ni ...

二、顺(抗)磁质磁化的微观机制

1. 顺磁质 特点: 分子具有固有的分子磁矩 (主要是电子轨道和自旋磁矩的贡献)

 $\vec{B}_0 = 0$ 热运动使 \vec{m}_{β} 完全混乱,不显磁性。

 $\bar{B}_0 \neq 0$ 固有磁矩趋向外磁场方向

磁化(束缚)电流

2. 抗磁质

特点:分子固有磁矩为零。但是,电子磁矩在外磁场力矩作用下进动产生和外磁场反向的感生磁矩。

出现反向的表面束缚电流→减弱磁场

抗磁质特点:分子固有磁矩为零

未加
$$\vec{B}_0$$
前 $\vec{F}_{\text{向心}} = \vec{F}_e$ 加入 \vec{B}_0 后 $\vec{F}_{\text{ell}} = \vec{F}_e + \vec{F}_m$

$$\mu \wedge B_0$$
后 $F_{\text{how}} = F_e + F_m$

$$:: \vec{F_e}$$
与 $\vec{F_m}$ 同向 $:: F_{\text{plu}} = F_e + F_m$

 Δm '与m'同向,即与 \bar{B}_0 反向

如果速度方向相反,情况如何?

未加
$$\vec{B}_0$$
前 $\vec{F}_{\text{how}} = \vec{F}_e$ 加入 \vec{B}_0 后 $\vec{F}_{\text{how}} = \vec{F}_e + \vec{F}_m$

$$:: \vec{F}_e$$
与 \vec{F}_m 反向 $:: F_{\text{plu}} = F_e - F_m$

又
$$:$$
F向心 $=m\frac{v^2}{r}$

$$abla : F_{\text{ho}} = m \frac{v^2}{r}$$
 $abla i \rightarrow w \Leftrightarrow m' \downarrow$

$\Delta m'$ 与m'反向,即与 \bar{B}_0 反向 (结果是一样的)

这种效应在顺磁质中也有,不过与分子固有磁矩的 说明: 转向效应相比弱得多。

三、铁磁质

1. 磁滯回线 (hysteresis loop)

$$测 I_0 \rightarrow H = nI_0$$

由此可得到B~H曲线:

磁滞回线

反向 $I_0 \uparrow \rightarrow$ 反向 $H \uparrow \rightarrow$ 反向 $B \uparrow$

$$\Rightarrow -H_m \Rightarrow B = -B_m$$

反向 $I_0 \downarrow \rightarrow$ 反向 $H \downarrow \rightarrow$ 反向 $B \downarrow$

仍不按原路返回

当
$$I_0 = 0$$
, $H = 0$ 时 $B = -B_r$

这种B的变化落后于H的变化的现象,叫做磁滞现象,简称磁滞

"磁滞损耗"正比于 $B\sim H$ 回线所围的面积。

(证明留给同学课后思考) 铁磁质的性质:

高μ 值、非线性、非单值性、磁滞性

2. 分类(按矫顽力的大小分)

- 1) 硬磁材料 特点: 一般 H_c 较大, B_r 也大,磁滞显著适合制作永磁体
- 2) 软磁材料 特点: 一般 H_c 较小, B_r 也小,磁滞损耗少适于制作交流电磁铁、变压器铁芯等。
- 3) 矩磁材料 特点: 磁滞回线像矩形,有两个稳态 适于做计算机的记忆原件。

三种铁磁材料磁滞回线的比较

3. 铁磁质磁化的微观机制

铁磁质中起主要作用的是电子的自旋磁矩。各电子的自旋磁矩靠交换偶合作用使方向一致,从而形成自发的均匀 磁化小区域——磁畴。

未加磁场

在磁场B中

主要磁化过程为:

壁移 (大角度→小角度) 转向 (磁畴方向与外场方向一致)

磁滞的解释:掺杂、内应力等对磁畴的钉扎作用。"畴壁位移"和"磁矩取向"过程不可逆。

居里点: 温度 $T > T_{\mathbb{C}} \to$ 磁畴瓦解,铁磁质 \to 顺磁质。

磁致伸缩: 畴壁位移和磁矩取向, 改变晶格间距(体积)