ML Midterm Review II

- Agenda:
 - Midterm format
 - Example data
 - Summary
 - +Q&A

Format

You get:

Data X_train

We want:

- Trained classifier predict.py
- Predict function: y_pred = predict(X)
- Summary of your process explain.pdf (design decisions, charts/visuals, any validation you did – 2 pages MAX)

Format (cont.)

 PIQZZQ (private posts)

- COURSEWORKS @COLUMBIA
- Dead trees

NOT OK

Your friends

Example (200 x 4)

Example data (cont.)

- How do we start?
 - Make some plots
 - -Try to clean up data
 - Do all features matter?
- What do you notice?
 - -Some dimensions "more equal"
 - -Some dimensions "matter more"
 - -Dim 2 vs Dim 3 uninformative

Example data (cont.)

- Algorithms
 - Name some classification algorithms
 - Assumptions: must the classifier be linear?
 Data separable?
 - Train/test split
 - Regularization? (lasso aka L1 vs ridge aka L2)
- Ex.: Logistic regression

Logistic regression

$$f(x) = \frac{1}{1 + \exp(-\theta^T x)}$$

Logistic regression (cont.)

Summary

DO

- Perform cross-validation (training/testing set)
- Think about outlier rejection, feature selection
- Use Google Cloud

DON'T

- Train your classifier "on-the-fly" in predict(...)
- Expect 99% accuracy
- Use random algorithms we haven't talked about
- Use prohibited resources

Questions?