Recommender System

author: 김영진 (2016025241)

Recommender System

Summary of algorithm

Training

Inference

Detailed description of code

Model

Preprocessing

Training

Inference

Instructions for compiling

Python dependencies

Usage

Example

Any other specifications

Summary of algorithm

Training

- 1. 파라미터들을 초기화 한다.
 - 1. 모든 학습 데이터에서 평점의 평균을 계산한다. (μ 라고 하자.)
 - 2. 각 유저에 번호를 부여한다 (0번부터 $N_u 1$ 까지) (N_u 는 유저의 개수)
 - 3. 각 아이템에 번호를 부여한다 (0번부터 N_i-1 까지) (N_i 는 유저의 개수)
 - 4. 각 유저마다 길이가 k인 고유의 벡터를 생성하여 Random uniform 초기화한다. (생성된 각 벡터를 p_u 라고 하자)
 - 5. 각 유저마다 길이가 k인 고유의 벡터를 하나 더 생성하여 Random uniform 초기화한다. (생성된 각 벡터를 x_u 라고 하자)
 - 6. 각 유저마다 고유의 스칼라를 랜덤으로 생성한다 (생성된 각 스칼라를 t_u 라고 하자)
 - 7. 각 유저마다 고유의 스칼라를 하나 더 생성한다 (생성된 각 스칼라를 α_u 라고 하자)
 - 8. 각 유저마다 고유의 스칼라를 하나 더 생성한다 (생성된 각 스칼라를 b_u 라고 하자)
 - 9. 각 아이템마다 길이가 k인 고유의 벡터를 생성하여 Random uniform 초기화한다. (생성된 각 벡터를 q_i 라고 하자)
 - 10. 각 아이템마다 길이가 k인 고유의 벡터를 하나 더 생성하여 Random uniform 초기화한다. (생성된 각 벡터를 y_i 라고 하자)
 - 11. 각 아이템마다 고유의 스칼라를 랜덤으로 생성한다 (생성된 각 스칼라를 b_i 라고 하자)
 - 12. N_i*N_t 개 만큼의 스칼라를 랜덤으로 생성한다 (생성된 각 스칼라를 $b_{i,Bin(t)}$ 라고 하자) (N_t 는 하이퍼 파라미터이다)
 - 13. (2k, k) 크기의 행렬을 랜덤으로 초기화하여 W^u_{Att} 라고 하자.
 - 14. 길이가 k인 벡터 b_{Att}^u 를 랜덤으로 생성한다.
- 2. 어떤 인풋 u, i, r, t, R_u , R_i , (유저 번호, 아이템 번호, 평점, 타임스탬프, 해당 유저가 구매한 적있는 모든 아이템들의 집합, 해당 아이템을 구매한 적 있는 모든 유저들의 집합)을 학습 데이터로 받았을 때, Loss 함수를 정의하자. 여기서 t는 해당 유저의 기록을 참고하여 normalize하고, Bin(t)의 경우 해당 아이템의 기록을 참고하여 N_t 개의 R_t 개의 R

$$\begin{split} L(u,i,r,t,R_u,R_i) &= \frac{1}{2}(r - \hat{r}(u,i,t,R_u,R_i))^2 \\ \hat{r}(u,i,t,R_u,R_i) &= \mu + (p_u + y)(q_i + \frac{1}{\sqrt{R_i}}\sum_{j \in R_i} x_j) + b_u + b_i + \alpha_u * \text{dev}_u(t) + b_{i,Bin(t)} \\ y &= \sum_{j \in R_u} y_j \otimes \text{Softmax}(\text{Relu}((y_j,p_u)W^u_{\text{Att}} + b^u_{\text{Att}})) \\ \text{Relu}(x) &= \max(0,x) \\ \text{Softmax}(x) &= \frac{\exp x}{\sum_j \exp x_j} \\ \text{dev}_u(t) &= \text{sign}(t - t_u) * |t - t_u|^{0.4} \end{split}$$

1. 위와 같이 정의한 $L(u,i,r,t,R_u,R_i)$ 가 최소가 되도록 Gradient Descent 기반 옵티마이저를 사용해 최적화 한다. 이 실험에서는 Adam 옵티마이저를 사용하였다.

Inference

- 1. 어떤 인풋 u, i, t 가 주어졌을 때, 트레이닝 데이터를 참고하여 $\mathrm{Bin}(t), R_u, R_i, t$ 를 생성한다. (여기서 t는 normalize된 값을 말한다)
- 2. $\hat{r}(u, i, t, R_u, R_i)$ 을 계산한다.

Detailed description of code

Model

```
def __init__(self,
        num_users,
        num items,
        mu,
        k,
        reg_lambda,
        sz_related,
        n_time_bins,
        use yp attention=True,
        use_xq_attention=False,
        use x=True,
        use y=True,
        use bti=True,
        use_btu=True
    ):
        super(). init (self)
        self.num users = num users
        self.num_items = num_items
        self.embed size = k
        self.mu = mu
        self.reg_lambda = reg_lambda
        self.sz_related = sz_related
```

```
self.n time bins = n time bins
        self.use yp attention = use yp attention
        self.use xq attention = use xq attention
        self.use x = use x
        self.use_y = use_y
        self.use bti = use bti
        self.use_btu = use_btu
        Embeddings
        mask zero = True
        self.user_embedding = tf.keras.layers.Embedding(self.num_users + 1,
self.embed size, input length=1,
            embeddings_regularizer=tf.keras.regularizers.L2(self.reg_lambda),
            embeddings initializer='normal',
            mask zero=mask zero)
        self.user_x_embedding = tf.keras.layers.Embedding(self.num_users + 1,
self.embed size, input length=sz related,
            embeddings regularizer=tf.keras.regularizers.L2(self.reg lambda),
            embeddings initializer='normal',
            mask zero=mask zero)
        self.user_tu_embedding = tf.keras.layers.Embedding(self.num_users + 1, 1,
input length=1,
            embeddings_regularizer=tf.keras.regularizers.L2(self.reg_lambda),
            embeddings initializer='normal',
            mask zero=mask zero)
        self.user alpha embedding = tf.keras.layers.Embedding(self.num users + 1, 1,
input length=1,
            embeddings_regularizer=tf.keras.regularizers.L2(self.reg_lambda),
            embeddings_initializer='normal',
            mask zero=mask zero)
        self.item embedding = tf.keras.layers.Embedding(self.num items + 1,
self.embed_size, input_length=1,
            embeddings regularizer=tf.keras.regularizers.L2(self.reg lambda),
            embeddings initializer='normal',
            mask zero=mask zero)
        self.item_y_embedding = tf.keras.layers.Embedding(self.num_items + 1,
self.embed_size, input_length=sz_related,
            embeddings regularizer=tf.keras.regularizers.L2(self.reg lambda),
            embeddings initializer='normal',
            mask zero=mask zero)
        self.user bias = tf.keras.layers.Embedding(self.num users + 1, 1,
input_length=1,
            embeddings_regularizer=tf.keras.regularizers.L2(self.reg_lambda),
            embeddings_initializer=tf.keras.initializers.Constant(0.0),
```

Summary에서 언급된 파라미터들을 모두 초기화한다.

```
class Attention(Layer):
    def __init__(self, k, element_wise=True):
        super(Attention, self). init ()
        self.k = k
        att out = k if element wise else 1
        w_init = tf.random_normal_initializer()
        self.att_w = tf.Variable(
            initial_value=w_init(shape=(2*k, att_out), dtype=tf.float32),
            trainable=True,
        self.att b = tf.Variable(
            initial value=w init(shape=(att out,), dtype=tf.float32),
            trainable=True,
        )
    def call(self, y, p):
       k = self.k
        p = tf.reshape(p, (-1, 1, k))
        p = tf.repeat(p, y.shape[1], axis=1)
        yp = tf.concat([y, p], axis=-1)
        yp = tf.matmul(yp, self.att_w) + self.att_b
        yp = tf.nn.relu(yp)
        yp = tf.nn.softmax(yp, axis=-1)
        return tf.reduce_sum(y * yp, axis=1)
```

Attention의 파라미터 초기화를 포함한 구현은 위와 같다. y,p를 concatenate하여 다시 k 차원으로 전사한 후에, 소프트맥스를 통해 어떤 y에 집중할지 정한다. 소프트맥스 결과를 통해 y 들의 weighted sum을 구한다.

일반적으로 FC를 사용하는 Attention은 concatenate결과를 스칼라 값으로 전사하여 사용하지만, 여기서는 실험 결과가 더 좋게 나오기 때문에 k차원으로 각 요소마다 따로 Attention하여 사용한다.

여기서 각 벡터나 스칼라들 중 0번 인덱스의 것들은 모두 0으로 초기화하고 업데이트 하지 않도록 한다. 이것은 이후 Inference 단계에서 처음 보는 아이템이나 유저를 위해 사용될 것이다.

```
def call(self, inputs):
        user input, item input, user times, item time bins, user relateds,
item relateds = inputs
        p = self.user_embedding(user_input)
        p = tf.reshape(p, (-1, self.embed_size,))
        # p = self.user inference(p)
        if self.use y:
            y = self.item y embedding(user relateds)
            if self.use_yp_attention:
                y = self.yp attention(y, p)
            else:
                y = tf.reduce_sum(y, axis=1)
                y = y / tf.maximum(1.0,
tf.reshape(tf.sqrt(tf.math.count_nonzero(user_relateds, 1, dtype=tf.float32)), (-1,
1)))
        else:
            y = 0
        q = self.item_embedding(item_input)
        q = tf.reshape(q, (-1, self.embed_size,))
        # q = self.item inference(q)
        if self.use x:
            x = self.user x embedding(item relateds)
            if self.use_xq_attention:
                x = self.xq attention(x, q)
            else:
                x = tf.reduce sum(x, axis=1)
                x = x / tf.maximum(1.0,
tf.reshape(tf.sqrt(tf.math.count_nonzero(item_relateds, 1, dtype=tf.float32)), (-1,
1)))
        else:
           x = 0
        pq = tf.reduce_sum((p + y) * (q + x), axis=-1)
        bu = self.user bias(user input)
        bu = tf.reshape(bu, (-1,))
        if self.use_btu:
            tu = self.user_tu_embedding(user_input)
            tu = tf.reshape(tu, (-1,))
            dt = tf.reshape(user_times, (-1,)) - tu
            dev ut = tf.sign(dt) * tf.pow(tf.abs(dt), 0.4)
```

```
alpha_u = self.user_alpha_embedding(user_input)
    alpha_u = tf.reshape(alpha_u, (-1,))
    btu = alpha_u * dev_ut
else:
    btu = 0

bi = self.item_bias(item_input)
bi = tf.reshape(bi, (-1,))

if self.use_bti:
    bti = self.item_time_bin_bias(item_input * self.n_time_bins + item_time_bins)
    bti = tf.reshape(bti, (-1,))
else:
    bti = 0

return self.mu + pq + bu + btu + bi + bti
```

Summary에 언급된 \hat{r} 을 그대로 구현한다.

Preprocessing

```
def build data(self):
        users, items = self._encode_user_item()
        data = np.array(self.observation)
        data[:, 0] = users.flatten()
        data[:, 1] = items.flatten()
        self.mu = np.mean(data[:, col_rating])
        user times = self. normalize time(data, col user, self.num users)
        item_times = self._normalize_time(data, col_item, self.num_items)
        self.user_times = user_times[0]
        self.user_min_times = user_times[1]
        self.user_max_times = user_times[2]
        self.item_times = item_times[0]
        self.item_min_times = item_times[1]
        self.item_max_times = item_times[2]
        self._build_relateds(data)
        return data
```

- 1. 각 유저와 아이템들에 번호를 부여
- 2. 평균 평점을 계산
- 3. 각 유저별 기록들의 최소 시간, 최고 시간을 계산
- 4. 각 아이템별 기록들의 최소 시간, 최고 시간을 계산

```
@staticmethod
def _normalize_time(data, by, num_by):
 normalize time by user
 inf = 0x3f3f3f3f
 min times = np.full(num by, inf)
 max_times = np.zeros(num_by)
 times = np.array(data[:, col_time], dtype=np.float32)
 for row, time in zip(data, times):
   pivot = row[by]
   min_times[pivot] = min(min_times[pivot], time)
   max_times[pivot] = max(max_times[pivot], time)
   for i, row in enumerate(data):
     pivot = row[by]
     min time = min times[pivot]
     max_time = max_times[pivot]
     interval = 1.0 if min time == max time else max time - min time
     times[i] = (times[i] - min_time) / interval
     return times, min times, max times
```

특정 컬럼의 값이 같은 것들 끼리 모아서 최소 시간과 최대 시간을 구한 후에, [0.0, 1.0] 사이로 interpolate한다.

```
def build relateds(self, data):
        n = data.shape[0]
        user_relateds = [list() for _ in range(self.num_users)]
        item_relateds = [list() for _ in range(self.num_items)]
        for user, item, _, _ in data:
            user_relateds[user].append(item + 1)
            item relateds[item].append(user + 1)
        for i in range(self.num_users):
            user relateds[i] = np.unique(user relateds[i])
        for i in range(self.num_items):
            item_relateds[i] = np.unique(item_relateds[i])
        self.user_relateds = np.zeros((self.num_users, self.sz_related),
dtype=np.int64)
        self.item relateds = np.zeros((self.num items, self.sz related),
dtype=np.int64)
        for index, row in enumerate(self.user_relateds):
```

```
relateds = user_relateds[index]
m = min(self.sz_related, len(relateds))
row[:m] = np.array(relateds[:m])

for index, row in enumerate(self.item_relateds):
    relateds = item_relateds[index]
    m = min(self.sz_related, len(relateds))
    row[:m] = relateds[:m]
```

각 유저와 아이템마다 관련된 아이템, 유저들을 모아서 중복되지 않도록 관리한다. 이 때 $self.sz_related$ 보다 많을 경우 차례대로 그 이상의 것들은 무시한다.

여기서 각 기록의 모음을 정확히 (n, sz_related) 크기의 행렬로 표현하기 위해 빈 자리는 0으로, 나머지 자리는 원래 유저, 아이템 번호보다 1 크게 하여 저장한다.

Training

```
def fit(self, observation, batch size=2000, epochs=0, validation data=None):
        Build data, model, and Fit
        :param observation: numpy array which has shape (-1, 4).
           each columns must represent (user id, item id, time, rating)
        assert(len(observation.shape) == 2)
        assert(observation.shape[-1] == 4)
        self.observation = observation
        self.data = self. build data()
        self.model = self. build model()
        users = self.data[:, col_user] + 1
        items = self.data[:, col_item] + 1
        user times = self.user times
        user relateds = self.user relateds[self.data[:, col user]]
        item relateds = self.item relateds[self.data[:, col item]]
        item time bins = np.int64(np.minimum(self.item times * self.n time bins,
self.n_time_bins - 1))
        ratings = self.data[:, col rating]
        X = [users, items, user_times, item_time_bins, user_relateds, item_relateds]
       Y = ratings
        if validation data is not None:
            validation_data_X = self._preprocess_prediction_data(validation_data)
            validation_data_Y = validation_data[:, col_rating]
            validation_data = (validation_data_X, validation_data_Y)
```

```
epoch = 0
prev_val_loss = 100000000000000000000000000000000
while epochs == 0 or epoch < epochs:
    history = self.model.fit(X, Y,
        batch_size=batch_size,
        epochs=1,
        validation_data=validation_data)
    val_loss = history.history['val_loss'][0]
    if epochs == 0 and val_loss > prev_val_loss:
        break
    prev_val_loss = val_loss
    epoch += 1
```

- 1. 같은 아이템인 기록별로 normalize된 time을 기반으로 N_t 을 곱하여 discretize한다.
- 2. 미리 정리한 관련 아이템, 유저 정보를 바탕으로 R_u, R_i 를 정리한다.
- 3. 주어진 epochs 번 만큼 트레이닝을 진행한다. 만약 epochs 가 0일 경우 validation loss가 이전보다 증가할 때 까지 진행한다.

Inference

```
def _preprocess_prediction_data(self, data):
        n = data.shape[0]
        rel pad = np.zeros(self.sz related)
        users = np.empty(n, dtype=np.int64)
        items = np.empty(n, dtype=np.int64)
        user_times = np.empty(n, dtype=np.float32)
        item_time_bins = np.empty(n, dtype=np.int64)
        user_relateds = np.empty((n, self.sz_related))
        item relateds = np.empty((n, self.sz related))
        for i, row in enumerate(data):
            user = row[col_user]
            item = row[col item]
            time = row[col_time]
            user_exist = user in self.users
            item_exist = item in self.items
            user = int(self.user_encoder.transform([[user]])[0, 0] if user_exist else
<del>-</del>1)
            item = int(self.item_encoder.transform([[item]])[0, 0] if item_exist else
-1)
            def norm(v, m, M):
                return (v-m)/(M-m) if m != M else 0.0
            user_times[i] = norm(time, self.user_min_times[user],
self.user_max_times[user]) if user_exist else 0.0
```

```
item_time = norm(time, self.item_min_times[item],
self.item_max_times[item]) if item_exist else 0.0
    item_time_bins[i] = max(0, min(self.n_time_bins - 1, int(item_time *
self.n_time_bins)))

user_relateds[i, :] = self.user_relateds[user] if user_exist else rel_pad
    item_relateds[i, :] = self.item_relateds[item] if item_exist else rel_pad

users[i] = user + 1
    items[i] = item + 1

X = [users, items, user_times, item_time_bins, user_relateds, item_relateds]

return X
```

입력으로 주어진 데이터는 여지껏 보지 못한 유저 번호나 아이템 번호를 가지고 있을 수 있다. 이 경우 관련된 아이템이나 유저가 없다고 표시하고, 초기화했던 벡터들 중 0번 인덱스의 것을 사용한다. (0번 인덱스의 벡터는 zero mask되어 학습되지 않는다)

Instructions for compiling

Python dependencies

numpy, sklearn, tensorflow, pandas

Usage

```
$ ./recommender.py -h
usage: recommender [-h] [--epochs EPOCHS] [--batch-size BATCH_SIZE]
                   [--dim DIM] [--reg-lambda REG_LAMBDA] [--lr LR]
                   [--sz-related SZ RELATED] [--n-time-bins N TIME BINS]
                   [--augment] [--seed SEED]
                   base test
positional arguments:
 base
                        base filepath
 test
                        test filepath
optional arguments:
 -h, --help
                       show this help message and exit
 --epochs EPOCHS, -e EPOCHS
                        epochs
 --batch-size BATCH_SIZE, -b BATCH_SIZE
                        batch size
                       The size of hidden factor
 --dim DIM, -d DIM
  --reg-lambda REG LAMBDA
                        regularization factor
 --lr LR, -r LR
                       learning rate
  --sz-related SZ RELATED
                        the maximum number of related objects
```

```
--n-time-bins N_TIME_BINS

the number of item time bins
```

Example

```
./recommender.py ./data/u1.base ./data/u1.test
```

Any other specifications