Explanation of "On Two Minimax Theorems in Graph "

Daniel Blévin George ??????

October 22, 2018

Contents

1	Def	initions	3	
	1.1	Edge-disjoint paths	3	
	1.2	Branching:	3	
	1.3	k-connected	3	
	1.4	a-cut	3	
	1.5	r-Cuts and r-Arborescences	3	
	1.6	A note on orientation	4	
2	Definitions examples			
	2.1	Branchings examples	4	
		2.1.1 Simple branching	4	
		2.1.2 Edge disjoint branching	4	
		2.1.3 Edge disjoint a -routed branching	5	
	2.2	Cuts examples	5	
		2.2.1 General cut	5	
		2.2.2 $a-cut$	5	
3	The	eorems	5	

1 Definitions

1.1 Edge-disjoint paths

Two paths are edge-disjoint if they do not have any internal edge in common.

1.2 Branching:

Branching One In a directed graph D = (V, A) a branching is a set of arcs not containing circuits s.t. each node of D is entered at most by one arc in A'. (So the arc in A' make up a forest).

Branching Two A branching B is an arc set in a digraph D that is a forest such that every node of D is the head of at most one arc of B. A branching that is a tree is called an arborescence. A branching that is a spanning tree of D is called a spanning arborescence of D. Clearly, in a spanning arborescence B of D every node of D is the head of one arc of B except for one node. This node is called the root of B. If F is the root of arborescence B we also say that B is rooted at F or F-rooted.

R-branching For a subset $R \subset V$, an r-branching in G is a spanning forest $B \subset G$ in which all vertices of V - R have outdegree precisely 1.

r-branching When R just consists of a single vertex r, we refer to B as an r-branching.

1.3 k-connected

A graph G (digraph D) is called k-connected (k-diconnected) if every pair s, t of nodes is connected by at least k [s, t]-paths ((s, t)-dipaths) whose sets of internal nodes are mutually disjoint.

1.4 a-cut

A a-cut of G determined by a set $S \subset V(G)$ is the set of edges going from S to V(G) - S. It will be denoted by $\Delta_G(S)$. We also set that $\delta_G(S) = |\Delta_G(S)|$.

1.5 r-Cuts and r-Arborescences

Consider a connected digraph (N,A) with $r \in N$ and nonnegative integer arc lengths l_a for $a \in A$. An r-arborescence is a minimal arc set that contains an rv-dipath for every $v \in N$. It follows that an r-arborescence contains |N|-1 arcs forming a spanning tree and each node of N-r is entered by exactly one arc. The minimal transversals of the clutter of r-arborescences are called r-cuts.

1.6 A note on orientation

A rooted tree is a tree in which one vertex has been designated the root. The edges of a rooted tree can be assigned a natural orientation, either away from or towards the root, in which case the structure becomes a directed rooted tree. When a directed rooted tree has an orientation away from the root, it is called an arborescence, branching, or out-tree; when it has an orientation towards the root, it is called an anti-arborescence or in-tree.

2 Definitions examples

2.1 Branchings examples

Taking the next figure as exemple:

Figure 1: A graph

2.1.1 Simple branching

Not yet.

2.1.2 Edge disjoint branching

Decomposition of the exemple figure in 3 branching routed respectively at a,c,d,e.

Figure 2: A graph

2.1.3 Edge disjoint a-routed branching

Figure 3: A graph

2.2 Cuts examples

2.2.1 General cut

2.2.2 a-**cut**

3 Theorems

THEOREM 1 (Edmonds). The maximum number of edge-disjoint branchings (rooted at a) equals the minimum number of edges in a-cuts.