

# AutoFeat: Transitive Feature Discovery over Join Paths



Andra Ionescu



Kiril Vasilev



Florena Buse



Rihan Hai



Asterios Katsifodimos







## Input dataset is the result of data augmentation and feature selection





Collection of datasets

Training dataset





Collection of datasets

Training dataset

When PK-FK are known:

- 1. Search for datasets
- 2. Join datasets
- 3. Apply feature selection







When PK-FK are missing:

- 1. Dataset discovery
- 2. Join data
- 3. Apply feature selection







Spurious relations



When PK-FK are missing:

- 1. Dataset discovery
- 2. Join data
- 3. Apply feature selection







• Multiple join columns

When PK-FK are missing:

- 1. Dataset discovery
- 2. Join data
- 3. Apply feature selection







## Feature Discovery









## Feature Discovery







## Feature Discovery







## AutoFeat

• Join-path length:



**X** single-hop





## AutoFeat

Joinability graph



**X** simple graph





## AutoFeat

• Path / Feature selection:











## AutoFeat Pipeline







## AutoFeat Pipeline





Dataset Relation Graph

#### **Dataset Discovery**

 Valentine – schema matching tool suite [1]

#### DRG - weighted graph

- Nodes → Tables
- Edges → Relationships
  - Weight = 1 (PK-FK)
  - Weight = similarity score









## Join Trees

#### Graph traversal

- Breadth First Search (BFS)
- Evaluate data quality after each level
- Easier error management

#### Join type

- Left join
- Preserve number of rows
- Avoid introducing class imbalance



## Join Trees

#### Join paths

- Sequence of edges
- Chain of joins

#### Prune paths

- Similarity score
- Data quality completeness

# Relevance & Redundancy feature selection **Select features** Selected Discarded

## Feature Selection

#### Relevance

• Spearman correlation – rank correlation

#### Redundancy

• MRMR - with more selected features, the effect of redundancy is reduced

#### Ranking

 Linear function of relevance and redundancy scores



## Feature Selection





## Feature Selection





## **Evaluate Join Trees**

#### Top-k join trees

• Based on the ranking

#### Augment Base Table

• Train ML model





#### Datasets

7 OpenML

1 SOTA

#### ML models

Decision trees from AutoGluon

#### Metrics

Efficiency

Effectiveness



## Baselines

Base

• Non-augmented base table

Join All

• Join all tables

Join All + FS

Join all, then apply feature selection

ARDA [2]

Random Injection of noise

Multi-Armed Bandit [3]

Exploration - Exploitation strategy

<sup>[2]</sup> Chepurko, Nadiia, et al. "ARDA: Automatic Relational Data Augmentation for Machine Learning." 2020 VLDB



## Scenarios



#### **Benchmark**

Known PK-FK connections
Snowflake schema
Reproduce the results from baselines



#### **Data Lake**

Unknown PK-FK connections

Dense multi-graph

Show the predictive power of AutoFeat







## BENCHMARK SCENARIO

16% INCREASE IN ACCURACY ACROSS ALL DATASETS AND MODELS

|  | # joins                                              | Accuracy            | Runtime             |
|--|------------------------------------------------------|---------------------|---------------------|
|  | AutoFeat prunes out all the irrelevant tables        |                     |                     |
|  | AutoFeat < ARDA/MAB                                  | AutoFeat > ARDA/MAB | AutoFeat < ARDA/MAB |
|  | ARDA and MAB only join the directly connected tables |                     |                     |
|  | AutoFeat > ARDA/MAB                                  | AutoFeat > ARDA/MAB | AutoFeat < ARDA/MAB |

AUTOFEAT HAS SAME ACCURACY AS JOIN ALL(+FS) AT A FRACTION OF TIME

#### DATA LAKE SCENARIO





#### Path analysis

AutoFeat explores the join space in depth

Prunes out irrelevant tables



#### **Effectiveness:**

AutoFeat shows increased accuracy from the base table ARDA/MAB show marginal increase, or none compared to base



#### **Efficiency:**

10x faster than MAB 3x faster than ARDA





## Conclusion



AutoFeat is a more efficient and effective method for automatic feature discovery over long join paths.



AutoFeat works with both star and snowflake schema.



AutoFeat decouples the model training step from feature discovery process and relies on heuristics to prune out irrelevant tables and features.



#### AutoFeat: Transitive Feature Discovery Over Join Paths

https://github.com/delftdata/autofeat

