

Reaksjonene til alkylhalider: Nukleofil substitusjon og eliminasjon

Nukleofil substitusjon og eliminasjon

- Substitusjonsreaksjoner
 - S_N2 (substitusjon, nukleofil, bimolekylær)
 - S_N1 (substitusjon, nukleofil, unimolekylær)
- Eliminasjonsreaksjoner
 - E2 (eliminasjon, bimolekylær)
 - E1 (eliminasjon, unimolekylær)
- Sammenligning av S_N vs. E

Nukleofil substitusjon: Waldens eksperiment

Husk:

Dersom to grupper ved et kiralt (tetraedrisk) senter bytter plass, skjer det en inversjon – en omvending av stereokjemien

S_N2: Inversjon på karbon = "paraply-vrengning"

- Reaksjonshastighet
 - hast. = $k \cdot [RX] \cdot [Nu^{-1}]$
 - første orden m.h.p. R-X
 - første orden m.h.p. Nu-
 - andre orden totalt
 - k er hastighetskonstanten
- Inversjon på karbon
 - "Baksideangrep" av Nu-
- $S_N 2 = S_U$ ubstitusjon, Nukleofil, 2. ordens
- 1-trinns reaksjon

nukleofil utgående gruppe Nu alkyl R X

- Substrat-effekter:
 - Alkylgruppen:Hastigheter for R = metyl > primær > sekundær >> tertiær
 - Steriske årsaker
 - Mange millioner gangers forskjell i hastighet
 - Type karbonatom:
 - S_N2-reaksjon kun på sp³ karbonatomer
 - Ingen reaksjon på sp² eller sp karbonatomer

S_N2: Steriske effekter

KJM 1110 - Mats Tilset

relative

hastigheter:

- Nukleofilen, Nu: eller Nu:
 - Ledig elektronpar
 - Nøytral eller negativt ladd
 - Gode og dårlige nukleofiler
 - Følger i grove trekk basestyrken til nukleofilen når det reagerende atomet på nukleofilen er det samme
 - Bedre nukleofiler nedover i en gruppe i periodesystemet (mer polariserbart/mindre fast bundet elektronpar)
 - Negativt ladde nukleofiler er bedre enn nøytrale når sentralatomet er det samme (eks. OH⁻ mye bedre enn H₂O)
 - Derfor utføres S_N2-reaksjoner ofte i basisk miljø
 - NB! Komplisert tema, rangering kan påvirkes av endring av løsemiddel og andre faktorer

- Utgående gruppe
 - Gode anioniske utgående grupper stabiliserer negativ ladning
 - Anioner som er svake baser er ofte gode utgående grupper
 - $TosO^{-} > I^{-} > Br^{-} > CI^{-} > F^{-} >> HO^{-}, RO^{-}, NH_{2}^{-}$

- Anioner som er sterke baser må først gjøres om til bedre utgående grupper, f.eks. ved protonering eller annen form for aktivering
 - HO⁻ til H₂O
 - HO- til TosO-
 - RO-til ROH

- Løsemiddelet
 <u>Hva er hensikten med et løsemiddel i en kjemisk</u>
 <u>reaksjon?</u>
- S_N2-reaksjonshastigheten påvirkes sterkt av valg av løsemiddel
 - Store forskjeller mellom forskjellige løsemidler
 - Langsom reaksjon i protiske løsemidler
 - vann, alkoholer, etc.
 - Hurtig reaksjon i polare aprotiske løsemidler
 - acetonitril, aceton, DMSO, DMF
 - Komplisert samspill mellom mange faktorer gjør at...
 - · rangering av nukleofiler
 - rangering av utgående grupper
 - · etc.
 - ...kan påvirkes av løsemiddelvalget

S_N1-reaksjonen

- Reaksjonshastighet
 - reaksjonshastighet = k [RX]

configuration

- første orden m.h.p. RX
- uavhengig av Nu- konsentrasjonen
- $S_N 1 = Substitusjon, 1. ordens, nukleofil$
- 2-trinns reaksjon

intermediate

configuration

Substrat-effekter:

- Hastigheter for R =tertiær >> sekundær ≈ allyl ≈ benzyl > primær > metyl
 - I henhold til karbokation-stabiliteten
 - Mange millioner gangers forskjell i hastighet
- Reaksjon kun på sp³ karbonatomer
 - Ingen reaksjon på sp² eller sp karbon

$$R$$
—Br + H_2O — \blacktriangleright R —OH + HBr

- Nukleofilen
 - Kan ofte være et polart løsemiddel-molekyl (H₂O, ROH)
 - "Solvolyse-reaksjon"
 - Liten effekt på reaksjonshastigheten
 - Fordi ioniseringen er hastighetsbegrensende

- Utgående gruppe som for S_N2
 - Gode anioniske utgående grupper stabiliserer negativ ladning
 - Svake baser
 - $TosO^{-} > I^{-} > Br^{-} > CI^{-} > OH^{-}$
 - Sterke baser må gjøres om til bedre utgående grupper
 - HO⁻ til H₂O, RO⁻ til ROH
 - NH₂⁻ til NH₃ osv.
- Løsemiddelet kan også fungere som nukleofil
 - Store forskjeller mellom forskjellige løsemidler
 - Meget hurtig i protiske løsemidler
 - vann, alkoholer, etc.
 - Langsommere i polare aprotiske løsemidler
 - acetonitril, aceton, DMSO, DMF
 - Enda langsommere i upolare løsemidler
 - eter, hydrokarboner, etc.

Substitusjonsreaksjoner i naturen

- Biologiske systemer
 - Både S_N2 og S_N1 er viktige
 - Naturen har laget sine egne, velegnede utgående grupper
- Kjemi i sjøen og på land
 - Produksjon av den minste klororganiske forbindelsen, CH₃Cl, fra biologisk materiale

Eliminasjonsreaksjoner

- Konkurrerer med substitusjon
 - Substitusjon innebærer at en nukleofil (base) angriper på et karbonatom
 - Eliminasjon innebærer at en base (nukleofil) angriper på et hydrogenatom. Dette H-atomet er i β-posisjonen i forhold til den utgående gruppen

Zaitsevs regel

Mange alkyl-halider kan undergå eliminasjon i flere "retninger": Reaksjonen kan skje med forskjellig *regiokjemi*.

Alexander Zaitsev (1841 – 1910):

- Eliminasjonsreaksjoner gir normalt det høyst substituerte alken-produktet
- Eliminasjonsreaksjoner gir normalt det mest stabile alken-produktet

Eliminasjonsreaksjoner: Mekanismer

- Mekanismene er forskjellige i timingen av brudd på C-H og C-X bindingene
- E2 mekanisme
 - Eliminasjon, 2. ordens
 - Protonet avspaltes samtidig med den utgående gruppen
- E1 mekanisme
 - Eliminasjon, 1. ordens
 - Utgående gruppe spaltes av først, deretter protonet i β-posisjonen

E2-eliminasjon

B:
$$C = C$$

$$X$$

$$C = C$$

$$X$$

$$C = C$$

$$X$$

$$S$$

- Eliminasjon, 2. orden
 - Reaksjonshastighet = k [RX] [Base]
 - C-H og C-X bindingen brytes samtidig
 - Anti periplanar orientering av C-H og C-X bindingene er foretrukket:
 - Dette bestemmer stereokjemien i reaksjonen
 - Favoriseres av basiske betingelser

Anti periplanar orientering av C og X

 Periplanar: De 4 atomene som reagerer, er i samme plan

- Anti: På motsatt side av C-C bindingen
 - Anti er energetisk foretrukket, gir "staggered" interaksjoner
 - Syn er mindre foretrukket, vil gi "eclipsed" interaksjoner
 - Gradvis overgang fra sp³ bindinger til π -binding

Anti periplanar reactant

Anti transition state

Alkene product

E1-eliminasjon

- Eliminasjon, 1. orden
 - Reaksjonshastighet = k [RX]
 - Karbokation intermediat (det samme som ved S_N1 !!) dannes ved dissosiasjon av X⁻ - karbokationdannelse favoriseres av sure eller nøytrale reaksjonsbetingelser
 - Intet geometrisk krav om orientering av C-H og C-X bindingene
 - C=C dannes ved deprotonering (- H+) fra β-posisjonen (naboposisjonen) til utgående gruppe
- Gode E1 substrater er også gode S_N1 substrater
 - Produktblandinger oppstår
 - Eliminasjon favoriseres over substitusjon ved høyere temperaturer

Oppsummering: $E1 - E2 - S_N 1 - S_N 2$

- Primære alkyl-halider
 - S_N2 dersom god nukleofil tilstede
 - E2 dersom sterk base tilstede
- Sekundære alkyl-halider
 - S_N2 dersom svakt basisk nukleofil i polart aprotisk løsemiddel
 - E2 dersom sterk base tilstede
- Tertiære alkyl-halider
 - E2 dersom base tilstede
 - Konkurrerende S_N1 og E1 dersom nøytrale og sure betingelser