LECTURER: TAI LE QUY

INTRODUCTION TO DATA SCIENCE

Introduction to Data Science	1
Data	2
Data Science in Business	3
Statistics	4
Machine Learning	5
Summary session	6

UNIT 5

MACHINE LEARNING

STUDY GOALS

0

- Explain what is meant by machine learning.
- Be familiar with common terms and definitions in machine learning.
- Learn the different applications of machine learning.
- Understand concepts of classification and regression.
- Comprehend the difference between each of the machine learning paradigms.

INTRODUCTION

Machine learning ...

- is a subfield of Artificial Intelligence (AI).
- is a mathematical and algorithmic approach
- is devoted to understanding and building methods that "learn".
- methods leverage data to improve performance on some set of tasks.

Machine Learning as a Subfield of Al

INTRODUCTION

Machine learning concepts

- Traditional programming constructs an explicit processing of input variables into desired outputs via a set of code instructions.
- ML algorithms build models based on sample data, in order to make predictions or decisions without being explicitly programmed to do so.

Traditional Programming

Machine learning

Classification

- Objective: Develop a ML model to map the inputs to the outputs and predict the classes of new inputs.
- Accuracy can be presented in a confusion matrix.
- Evaluation metrics:

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$Recall = \frac{TP}{TP + FN}$$

•
$$F_{Score} = \frac{2 \cdot (Precision \cdot Recall)}{Precision + Recall}$$

Dog and Cat classification

Confusion matrix

Regression

- **Objective**: Develop a ML model to **relate** the inputs x to the outputs y and **predict** the output **values** \hat{y} for new inputs
- Evaluation metrics:
 - Mean Square Error: $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - Root Mean Square Error: $RMSE = \sqrt{MSE}$
 - Mean Absolute Error: $\mathbf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$

Supervised Learning

- Dataset: a collection of labeled samples,
 containing both inputs (independent variables) and outputs (dependent variable)
- Objective: Develop a ML model to relate the inputs to the outputs of in the training set and predict the outputs for new inputs.

Supervised Learning

Supervised Learning Examples		
Example Dataset	Prediction	Туре
Previous home sales	How much is a specific home worth?	Regression
Previous loans that were paid	Will this client default on a loan?	Classification
Previous weeks' visa applications	How many businesspersons will apply for visa next week?	Regression
Previous statistics of benign/malignant cancers	Is this cancer malignant?	Classification

Supervised Learning Techniques			
Technique	Obtained Function		
Linear classifier, linear regression, multi-linear regression.	Numerical functions		
Support Vector Machine (SVM), Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden Markov models (HMM).	Parametric Probabilistic functions		
K-nearest neighbors, Kernel regression, Kernel density estimation	Non-parametric instance based functions		
Decision tree	Non-metric symbolic functions		

Unsupervised Learning

- Dataset: a collection of unlabeled samples, containing only inputs (independent variables) while outputs (dependent variable) are unknown.
- Objective: Develop a ML model to discover the salient patterns and structures within the training set.

Source of the text: Zöller, 2022.

Unsupervised Learning

Unsupervised Learning Examples				
Example dataset	Discovered patterns	Туре		
Customers profiles	Are these customers similar?	Clusters		
Previous transactions	Is a specific transaction odd?	Anomaly detection		
Previous purchasing	Are these products purchased together?	Association discovery		

Unsupervised Learning Techniques	
Technique	Description
K-Means, hierarchical clustering	Clustering analysis
Gaussian mixture model (GMM), graphical models	Density estimation
DBSCAN	Outlier detection
Principal component analysis, factor analysis	Dimensionality reduction

Semi-Supervised Learning

- Dataset: a collection of both labeled samples (a small portion of data), and unlabeled samples (lots of data)
- Objective: mix of supervised and unsupervised learning to combine the properties of both.

─ 2 steps:

- Supervised learning is performed on few labeled data.
- Unsupervised learning is performed on a large quantity of unlabeled data.

Semi-Supervised Learning Structure

Semi-Supervised Learning

Two Steps of Semi-Supervised Learning

Reinforcement Learning

- Objective: To find an action policy that achieves a given goal by trial-and-error interactions with the environment.
- "Cause and effect" method: An action is performed to achieve a maximum reward.
- Reward function acts as feedback to the agent.

Reinforcement Learning Structure

Reinforcement Learning

REVIEW STUDY GOALS

- Explain what is meant by machine learning.
- Be familiar with common terms and definitions in machine learning.
- Learn the different applications of machine learning.
- Understand concepts of classification and regression.
- Comprehend the difference between each of the machine learning paradigms.

SESSION 5

TRANSFER TASK

TRANSFER TASKS

Explain how Machine Learning can be applied to improve the purchasing services of an online shop.

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

- 1. Semi-supervised learning combines aspects of ...
 - a) ...supervised and reinforcement learning.
 - b) ...unsupervised and reinforcement learning.
 - c) ...reinforcement learning and active learning.
 - d) ...supervised and unsupervised learning.

LEARNING CONTROL QUESTIONS

- 2. Which of the following are the low and high bounds for the F-Score?
 - a) [0,100]
 - b) [0,1]
 - c) [-1,1]
 - d) [-1,0]

3. Normalized data are centered where?

- a) 0
- b) 1
- (c) -1
- d) 10

- 4. Grouping news articles according to similarity can be solved using which of the following?
 - a) Regression
 - b) Classification
 - c) Reinforcement Learning
 - d) Clustering

5. Classification problems fall under which category?

- a) unsupervised learning
- b) reinforcement learning
- c) supervised learning
- d) supervised and unsupervised learning

LIST OF SOURCES

Text:

 $Fernandez, J.~(2020). \textit{Introduction to regression analysis.} \underline{\text{https://towardsdatascience.com/introduction-to-regression-analysis-9151d8ac14b3}}$

Jason, B. (2021). Regression metrics for machine learning. https://machinelearningmastery.com/regression-metrics-for-machine-learning/

Machine Learning. (2023, February 28). In Wikipedia. https://en.wikipedia.org/wiki/Machine_learning

Zöller, T. (2022). Course Book – Machine Learning. IU International University of Applied Science.

Images:

Amatulic. (2007). File:Normdist_regression.png. Wikimedia Commons. https://en.wikipedia.org/wiki/Regression_analysis

Sasaki, T. (n.d.). Dog and Cat Classification.png [Open source]. Kaggle. https://www.kaggle.com/code/sasakitetsuya/dog-and-cat-classification-by-mobilenet

