暨南大学考试试卷

线	教师填写	20_24 20_25_ 学年度第二学期	课程类别 必修[√选修[]	
		课程名称: <u>运筹学</u> 授课教师姓名:	考试方式 开卷[]闭卷[√]	
		考试时间:	试卷类别(A、B) [] 共 <u>6</u> 页	
	考生	学院专业		
	填写	姓名学号内招[]外招[]		

题号	 \equiv	=	四	五.	六	总 分
得 分						
评阅人						

一、选择题(每题 5 分, 共 30 分)

- 1. 关于 Q-线性收敛的定义,以下说法正确的是()
- A. 存在常数 $0<\alpha<1$ 和正整数 N,使得当 $k\geq N$ 时, $\frac{|x_{k+1}-x^*|}{|x_k-x^*|}\leq \alpha$ 。
- B. 存在常数 $0 < \alpha < 1$,使得 $\lim_{k \to \infty} \frac{|x_{k+1} x^*|}{|x_k x^*|} = \alpha$ 。
- C. 存在常数 $\alpha>1$ 和正整数 N,使得当 $k\geq N$ 时, $\frac{|x_{k+1}-x^*|}{|x_k-x^*|}\leq \alpha$ 。
- D. 存在常数 $\alpha > 1$,使得 $\lim_{k \to \infty} \frac{|x_{k+1} x^*|}{|x_k x^*|} = \alpha$ 。
- 2. 下列关于 R-线性收敛的定义,表述正确的是()
- A. 存在非负序列 $\{t_k\}$ 和常数 $0<\alpha<1$, 满足 $\limsup_{k\to\infty}\frac{t_{k+1}}{t_k}\leq\alpha$,
- 且 $|x_k x^*| \le t_k$ 对任意 k 成立。
- B. 存在非负序列 $\{t_k\}$ 和常数 $\alpha > 1$,满足 $\limsup_{k \to \infty} \frac{t_{k+1}}{t_k} \le \alpha$,
- 且 $|x_k x^*| \ge t_k$ 对任意 k 成立。
- C. 存在非负序列 $\{t_k\}$ 且 $\{t_k\}$ R-线性收敛于 0, 使得 $|x_k-x^*| \le t_k$ 对任意 k 成立。
- D. 存在非负序列 $\{t_k\}$ 收敛于常数 c>0 ,使得 $|x_k-x^*| \le t_k$ 对任意 k 成立。

华

江

- 3. 设向量函数 $f: \mathbb{R}^n \to \mathbb{R}^m$, 其在点 $x \in \mathbb{R}^n$ 处的梯度 $\nabla f(x)$ 是()
- A. 一个 $n \times m$ 的矩阵,其 (i,j)元素为 $\frac{\partial f_j(x)}{\partial x_i}$
- B. 一个 $m \times n$ 的矩阵, 其 (i,j)元素为 $\frac{\partial f_i(x)}{\partial x_i}$
- C. 一个 n 维向量, 其第 i 个元素为 $\frac{\partial f(x)}{\partial x_i}$
- D. 一个 m 维向量, 其第i 个元素为 $\frac{\partial f_i(x)}{\partial x}$
- 4. 以下关于范数性质的表述,错误的是()
- A. 对于向量 $x \in \mathbb{R}^n$, $|x| \ge 0$, 且 |x| = 0 当且仅当 x = 0
- B. 对于向量 $x \in \mathbb{R}^n$ 和实数 α , $|\alpha x| = |\alpha||x|$
- C. 对于向量 $x, y \in R^n$, $|x + y| \le |x| + |y|$
- D. 对于向量 $x, y \in \mathbb{R}^n$, $|x y| \ge |x| |y|$ 不成立
- 5. 关于适当函数的性质,下列说法错误的是()
- A. 适当函数的定义域非空
- B. 适当函数的值域不包含 -∞
- C. 适当函数在定义域内处处有限
- D. 若函数 f(x)为适当函数,且 x_0 是定义域内一点,则 $f(x_0) < +\infty$
- 6. 闭函数的定义是()
- A. 函数的图像是闭集的函数
- B. 函数在定义域内的每个点都连续的函数
- C. 函数的上境图是闭集的函数
- D. 函数的下境图是闭集的函数

二、填空题(每题 5 分, 共 20 分)

- 1. 最优线搜索步长计算设目标函数为 $f(x)=\frac{1}{2}x^THx+g^Tx+c$,其中 $H=\begin{bmatrix}2&1\\1&3\end{bmatrix}$,当前点梯度为 $g=\nabla f(x_k)=\begin{bmatrix}-4\\2\end{bmatrix}$,沿方向 d=-g 进行精确线搜索,则最优步长 $t_k=$ _____。
- 2. 下降方向判断设当前点 x_k 处的梯度为 $\nabla f(x_k) = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$,搜索方向为 $d_k = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$,则 d_k 是否为下降方向? (填 "是" 或 "否")。
- 3.考虑目标函数 $f(x,y) = x^2 + 3xy + 2y^2$,该函数满足 L=_____的梯度 Lipschitz 条件。使用梯度下降法 $x_{k+1} = x_k t\nabla f(x_k)$,则具有收敛性保证的步长上界 $t_{\text{max}} = _____$ 。
- 4.对于目标函数 $f(x,y)=x^2+2xy+3y^2$,若 $x^*=(x_1^*,x_2^*)$ 是局部极小点且 f 在 x^* 处可微,则一阶必要条件为

덕

摋

殺

三、问答题(共 6 题,任选 5 题作答,每题 10 分)

1. 考虑线性规划问题:

$$min 3 x_1 + 2x_2$$

$$s. t. x_1 + x_2 \ge 3$$

$$2x_1 + x_2 \ge 4$$

$$x_1, x_2 \ge 0$$

- (1) 将该问题转化为标准型;
- (2) 用单纯形法进行求解。

鉄

江

摋

2. 给定原问题:

$$\min f(x,y) = \frac{1}{2}x^2 + y^2$$

$$s.t. \quad x + 2y \le 4$$

$$3x - y = 1$$

- (1) 写出拉格朗日函数 $L(x,y;\lambda,\mu)$,
- (2) 消去原始变量(x,y), 推导对偶函数 $g(\lambda,\mu)$;
- (3) 写出对偶优化问题(包括目标函数和约束条件)。

羰

킥

殺

- 3. 设向量函数 $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}A\mathbf{x} + \mathbf{b}^{\mathsf{T}}\mathbf{x} + c$, 其中 $\mathbf{x} \in R^n$, $A \in R^{n \times n}$ 为对称矩阵, $\mathbf{b} \in R^n$, $c \in R$ 。
- (1) 计算 $f(\mathbf{x})$ 的 Hessian 矩阵 $\nabla^2 f(\mathbf{x})$;
- (2) 证明: 当 A 为半正定矩阵时,f(x)是凸函数; (

- 4. 设函数 $f: \mathbb{R}^n \to \mathbb{R}$ 的梯度 ∇f 满足 Lipschitz 连续条件
- (1) 证明: 对任意**x,y**,有

$$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} |\mathbf{y} - \mathbf{x}|^2$$

(2) 若 f 是凸函数,证明:对任意x,y,有

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

摋

江

级

- 5. 设矩阵 $X \in R^{m \times n}$, 函数 $f(X) = \operatorname{tr}(X^T A X)$, 其中 $A \in R^{m \times m}$ 为对称矩阵, $\operatorname{tr}(\cdot)$ 表示矩阵的迹。
- (1) 计算 f(X)对 X 的导数 $\frac{\partial f}{\partial X}$;
- (3) 若 $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$, 写出导数矩阵的具体表达式。

摋

圢

殺

- 6. (1) 求函数 $f(x) = \frac{1}{2}x^2 (x \in R)$ 的共轭函数 $f^*(y)$;
- (2) 求函数 $f(x) = |x|_1$ $(x \in \mathbb{R}^n)$ 的共轭函数 $f^*(y)$ 。

线

卜

摋