Real Analysis qualifying review big list

Students at the University of Michigan

Wednesday 30th June, 2021

1 Categorized (without solutions)

Problem 1 (Date: September 2011, tags: integral convergence). Let $f \in L_1([0,1], dx)$. Find

$$\lim_{n \to \infty} \frac{1}{n} \int_0^1 \log\left(1 + e^{nf(x)}\right) dx.$$

Problem 2 (Date: September 2011, tags: bounded variation). Suppose $f:[0,1]\to\mathbb{R}$ satisfies f(x)-f(y)< x-y for all $x,y\in[0,1], x>y$. Show that f' exists almost everywhere on [0,1] or give a counterexample.

Problem 3 (Date: September 2011, tags: hölder's inequality). Let (X,Ω,μ) be a finite measure space.

- (i) Prove that for any p < q, $L_q(\mu) \subset L_p(\mu)$.
- (ii) Assume that for any t > 0 there exists $E \in \Omega$ satisfying

$$0 < \mu(E) < t$$
.

Prove that for any $1 there exists a function <math>f \in L_p(\mu)$ such that $f \notin L_q(\mu)$ for any q > p.

Problem 4 (Date: September 2011, tags: L^p spaces). For a real valued function f(x,y) on \mathbb{R}^2 which is in L^2 , show that $f(x+\epsilon,y+\epsilon)\to f(x,y)$ in L^2 when $\epsilon\to 0$.

Problem 5 (Date: September 2011, tags: measurable sets?). Let $f \in L_1([0,1])$ be a function such that $\int_E f(x) \, dx = 0$ for any measurable set $E \subset [0,1]$ of Lebesgue measure 1/2. Prove that f = 0 a.e.

Problem 6 (Date: January 2011, tags: measurable functions).

Let A be a sequence of measurable subsets of [0,1] such that $\inf m(A_n) > 0$, where m stands for the Lebesgue measure.

- (i) Prove that there exists $x \in [0,1]$ which belongs to infinitely many of the sets A_n .
- (ii) Does there necessarily exist a point which (does not?) belong to any of the sets A_n , except finitely many?

Problem 7 (Date: January 2011, tags: integral convergence). Let $\{f_n\} \subset L_1(\mu)$ be a decreasing sequence of functions such that $f_n \to f$ a.e. Prove that

$$\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu.$$

Problem 8 (Date: January 2011, tags: simple function approximation). Let $f:X\to [0,+\infty)$ be an integrable function on a measure space (X,\mathcal{A},μ) . Define the measure ν by $\nu(A)=\int_A f\,d\mu$.

- (i) Prove that the measure ν is σ -additive.
- (ii) Prove that if $g \in L_1(\nu)$, then $\int_X g \, d\nu = \int_X f g \, d\mu$.

(Hint: first, assume that g is a simple positive function. Then extend the result to non-negative integrable functions using limit theorems).

Problem 9 (Date: January 2011, tags: integral inequalities). Let $f_n: \mathbb{R} \to [0,1]$ be functions such that $\sup_{x \in \mathbb{R}} f_n(x) = 1/n$ and $\int_{\mathbb{R}} f(x) \, dx = 1$. Set

$$F(x) = \sup_{n \in \mathbb{N}} f_n(x).$$

Find all possible values of $\int_{\mathbb{R}} F(x) dx$.

Problem 10 (Date: January 2011, tags: integral convergence?). Let $f \in L_{\infty}([0,1])$. Prove that

$$\lim_{n \to \infty} \frac{\int_{[0,1]} |f(x)|^{n+1} dx}{\int_{[0,1]} |f(x)|^n dx} = ||f||_{\infty}.$$

Problem 11 (Date: January 2011, tags: egoroff's theorem). Let E be the exceptional set in Egoroff's theorem. Is it possible to prove Egoroff's theorem with l(E) = 0 instead of l(E) < e?

Problem 12 (Date: January 2011, tags: simple functions). Let $f: X \to [0, \infty]$ be a measurable function. Assume that $\mu(X) < \infty$. Prove that $\int f d\mu < +\infty$ if and only if

$$\sum_{n=1}^{\infty} 2^n \mu(x \in X \mid f(x) \ge 2^n) < +\infty.$$

Problem 13 (Date: January 2011, tags: dominated convergence). Let $f_n, g_n, f, g \in L_1(\mu)$ be functions such that $f_n \to f$ a.e., $g_n \to g$ a.e. and $|f_n| \le g_n$. Prove that if $\int g_n d\mu \to \int g d\mu$, then $\int f_n d\mu \to \int f d\mu$.

(Hint: follow the proof of Lebesgue dominated convergence theorem.)

Problem 14 (Date: January 2011, tags:). Let $f_n, f \in L_1(\mu)$ be such that $f_n \to f$ a.e. Prove that if $||f_n||_1 \to ||f||_1$, then $f_n \to f$ in $L_1(\mu)$.

(Hint: use the previous problem)

Problem 15 (Date: January 2011, tags: change of variables). Let $f, g : \mathbb{R} \to \mathbb{R}$ be L_1 -functions.

(a) Prove that

$$\int_{\mathbb{R}} |f(x-y)g(y)| dm(y) < +\infty.$$

(b) Let

$$h(x) = \int_{\mathbb{R}} f(x - y)g(y)dm(y).$$

Prove that $h \in L_1(\mathbb{R})$ and $||h||_1 \leq ||f||_1 \cdot ||g||_1$.

Problem 16 (Date: January 2012, tags: measurable functions). Let $f:[a,b]\to\mathbb{R}$ be a differentiable function. Prove that the function f' is measurable.

Problem 17 (Date: January 2012, tags: L^p spaces). Let $1 \le p < \infty$, and let $f \in L_p(\mu)$. Prove that

$$\lim_{t \to 0} t^p \mu\{x \mid |f(x)| > t\} = 0.$$

Problem 18 (Date: January 2012, tags: Lebesgue differentiation theorem, Hardy-Littlewood maximal estimate?). Let $f \in L_1(\mathbb{R})$. For $n \in \mathbb{N}$ define the function $g_n : \mathbb{R} \to \mathbb{R}$ as follows. For $k \in \mathbb{Z}$ and for $x \in [k/n, (k+1)/n)$ set

$$g_n(x) = n \int_{k/n}^{(k+1)/n} f(x) dx.$$

Prove that g_n converges to f a.e. and in $L_1(\mathbb{R})$.

Problem 19 (Date: January 2012, tags: integral convergence). Let (X, \mathcal{A}, μ) be a finite measure space $(\mu(X) < \infty)$. Assume that a sequence $\{f_n\}_{n=1}^{\infty} \subseteq L_1(\mu)$ satisfies the condition

$$\frac{1}{\sqrt{\mu(E)}} \int_{E} |f_n| \, d\mu \le 1$$

for all $n \in \mathbb{N}$ and all sets E of positive measure. Prove that if $f_n \to f$ a.e., then $f \in L_1(\mu)$ and

$$\int_X f_n \, d\mu \to \int_X f \, d\mu.$$

Problem 20 (Date: January 2012, tags: L^p spaces). Construct a function $f \in L_1(\mathbb{R})$ such that $f \notin L_2((a,b))$ for any interval $(a,b) \subseteq \mathbb{R}$.

Problem 21 (Date: September 2019, tags: countable subadditivity?). Let E be the set of all $x \in (0,1)$ such that there exists a sequence of irreducible fractions $\{p_n/q_n\}_{n\in\mathbb{N}}$ with $p_n,q_n\in\mathbb{N}$, $q_1< q_2<\cdots$ such that

$$\left| x - \frac{p_n}{q_n} \right| \le \frac{1}{q_n^3} \,, \quad n = 1, 2, \dots$$

Prove that the Lebesgue measure of E is zero.

Problem 22 (Date: September 2019, tags: integral convergence). Let f be a measurable function on $(0, \infty)$, and for $n = 1, 2, \ldots$ let f_n be defined by

$$f_n(x) = f(x)e^{-x} \left[1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right].$$

Suppose $f \in L^2[(0,\infty)]$. Prove that $\lim_{n\to\infty} \|f_n - f\|_{L^2[(0,\infty)]} = 0$

Problem 23 (Date: September 2019, tags: Fubini, Hölder). Let $f : \mathbb{R} \times (0,1) \to \mathbb{R}$ be a measurable function such that for any $y \in (0,1)$,

$$\int_{\mathbb{R}} f^2(x,y) \, dx \, \leq \, 1 \, .$$

Prove there exists a sequence $\{x_n\}_{n\in\mathbb{N}}$, with $\lim_{n\to\infty}x_n=+\infty$, such that

$$\lim_{n\to\infty} \int_0^1 |f(x_n,y)| \, dy = 0.$$

Problem 24 (Date: September 2019, tags: Hölder). Let (X,Ω,μ) be a measure space with $\mu(X)=1$, and let $f\in L^2(\mu)$ be a non-negative function satisfying $\int_X f\ d\mu\geq 1$. Prove that

$$\mu(\{x \in X \mid f(x) > 1\}) \ge \frac{\left(\int_X f d\mu - 1\right)^2}{\int_X f^2 d\mu}.$$

Problem 25 (Date: September 2019, tags: absolute continuity). A function $f:(0,1)\to\mathbb{R}$ is locally Lipschitz if for any $x\in(0,1)$ there is an open interval I_x with $x\in I_x\subset(0,1)$ and a constant C_x such that $|f(y)-f(y')|\leq C_x|y-y'|$ for $y,y'\in I_x$.

- (a) Prove that a locally Lipschitz function $f(\cdot)$ is absolutely continuous on any compact subinterval $[a,b]\subset (0,1)$.
- (b) Give an example of a locally Lipschitz function $f:(0,1)\to\mathbb{R}$ which extends to a continuous function on the closed interval [0,1], but is not absolutely continuous on [0,1].

2 Categorized (with solutions)

3 Uncategorized

Problem 26 (Date: January 2011, tags:). Let $f \in L_1([0,1])$ be a function such that f(x) > 0 a.e.

(i) Prove that for any 0 < a < 1

$$\inf_{m(A)=a} \int_A f \, dm > 0.$$

(ii) Does the previous statement hold for a function $f \in L_1(\mathbb{R})$ such that f(x) > 0 a.e.