Математическое программирование

(постановка задачи и основные определения)

Основная задача математического программирования состоит в минимизации вещественной функции на множестве, определенном системой ограничений типа равенства и/или неравенства.

Записывать задачу будем в следующем виде:

$$\min_{x \in X} \varphi(x) \left[\varphi(x) \to \min, x \in X \right]$$
, где

Определение. φ называется *целевой функцией*.

Ограничения или условия записываются в виде:

$$X = \left\{ x \in \mathbb{R}^n : f_i(x) \le 0 , i = 1...m \right\},$$
 где
$$g_k(x) \le 0 , k = 1...l \right\},$$
 где

Определение. Х называется допустимым множеством.

Pазмерность задачи: n — число переменных; m + l — число ограничений.

Запись $\min \varphi(x)$ означает:

а) либо найти оптимальную точку

$$x^* \in X$$
: $\varphi(x^*) = \min_{x \in X} \varphi(x) \left[$ или $x^* = \arg\min_{x \in X} \varphi(x) \right]$.

Определение. Всякая допустимая $movka \ x \in X$ называется $nnahom; \ x^* - onmuмальный <math>nnah.$

- б) если x^* не существует, то найти $\varphi^* = \inf_{x \in X} \varphi(x)$, например, $\varphi^* = -\infty$.
- в) либо показать, что $X = \emptyset$ (допустимое множество пусто).

Классификация задач математического программирования

1) Если целевая функция линейна, т.е. $\varphi(x) = (c, x)$, где $c \in \mathbb{R}^n$ и ограничения линейны, т.е. имеют вид:

$$Ax \le b$$
, где $A - m \times n$ — матрица, $b \in R^m$
 $Gx = h$, где $G - l \times n$ — матрица, $h \in R^l$,

то это задача линейного программирования (иначе, нелинейного, например, квадратичного).

- 2) Если целевая функция φ выпукла и допустимое множество X выпуклое (f_i , g_k выпуклые функции), то это задача выпуклого программирования.
- 3) Если по условию переменные целые числа, т.е. $x_i \in Z$, i = 1,...,n, то это задача целочисленного программирования (в данном курсе не рассматривается).

Спецификация задач математического программирования

- как правило, методы классического анализа для отыскания условных экстремумов неприменимы (экстремум достигается в угловых точках допустимого множества).
- большое количество переменных и ограничений в практических задачах, так что задача перебора точек, подозреваемых в экстремальности, может оказаться нетривиальной.
- \Rightarrow целью математического программирования является *создание*, где это возможно, *аналитических методов* определения решения, а при отсутствии таких методов *создание* эффективных вычислительных способов получения приближенного решения.

Наименование предмета – математическое программирование – связано с тем, что целью решения задач является выбор программы действий.

Сведения о выпуклых множествах

Определение 1. Множество $X \subset \mathbb{R}^n$ называется *выпуклым*, если $\forall x, y \in X \Rightarrow \forall \alpha \in [0,1]$ $\alpha x + (1-\alpha)y \in X$ (выпуклое множество содержит отрезок, соединяющий две любые его точки).

Определение 2. Точка $x \in X$ называется внутренней, если существует $\varepsilon > 0$: $\upsilon_{\varepsilon}(x) \subset X$, где $\upsilon_{\varepsilon}(x) = \{y : \|y - x\| < \varepsilon\} - \varepsilon$ -окрестность точки x, т.е. точка $x \in X$ называется внутренней, если существует такая её окрестность, все точки которой принадлежат X. И наоборот, если найдется такая ε -окрестность точки υ , которая не содержит ни одной точки множества X — такая точка называется внешней по отношению к множеству X.

Определение 3. Точка $x \in X$ называется *граничной*, если $\forall \varepsilon > 0$ существует $y' \in \upsilon_{\varepsilon}(x) : y' \in X$ и существует $y'' \in \upsilon_{\varepsilon}(x) : y'' \notin X$, т.е. в любой окрестности точки x содержатся как точки, принадлежащие множеству X, так и точки, не предлежащие этому множеству.

Определение 4. *Проекцией* точки υ на множество X называют такую точку $p \in X$, что

$$||p-v|| = \inf_{x \in X} ||x-v|| \stackrel{def}{=} \rho(v,x) = \rho.$$

При этом, $\rho = \rho(\upsilon, x)$ называют "расстояние" от точки υ до множества X. Ясно, что если $\upsilon \in X$, то $p = \upsilon$. Если же $\upsilon \notin X$, и множество X – открыто, то проекция p не существует. Если множество X – не выпукло, то проекция может быть не единственной.

Лемма 1. Пусть X – выпуклое замкнутое множество из \mathbb{R}^n , $X \subset \mathbb{R}^n$, тогда:

- 1) Любая точка $\upsilon \in \mathbb{R}^n$ имеет и притом единственную проекцию на это множество;
- 2) Для того чтобы точка $p \in X$ была проекцией точки υ на множество X, необходимо и достаточно выполнения неравенства $(x-p,\upsilon-p) \le 0$ для $\forall x \in X$.

Доказательство.

Докажем первое утверждение леммы.

Рассмотрим функцию g(x) вида

$$g(x) = ||x - \upsilon||^2 \quad \forall (\cdot)\upsilon \in \mathbb{R}^n, x \in X.$$

тупой угол $(x-p, v-p) \le 0$)

Поскольку g(x) сильно выпукла, то по следствию из теоремы об ограниченности множеств Лебега для сильно выпуклой функции можно утверждать, что g(x) достигает своей нижней грани на X в единственной точке $p' \in X$.

Это означает, что

$$||x-v||^2 \ge ||p'-v||^2 \Rightarrow ||x-v|| \ge ||p'-v||,$$

Причем равенство здесь возможно, только когда x=p' (т.к. p' единственная точка), а тогда p=p', что и требовалось доказать.

Докажем второе утверждение леммы.

Heoбxoдимость. Пусть p – проекция точки v на X.

Возьмем произвольную точку $x \in X$, отличную от p, рассмотрим точку $z \neq p : z = ax + (1-\alpha)p$. Ввиду выпуклости множества X для $\forall \alpha \in [0,1]$ точка $z \in X$.

Так как $\|z-\upsilon\|^2 = \alpha^2 \|x-p\|^2 + 2\alpha(x-p,p-\upsilon) + \|p-\upsilon\|^2$, и из определения проекции следует, что $\|z-\upsilon\|^2 \ge \|p-\upsilon\|^2$, то $\alpha^2 \|x-p\|^2 + 2\alpha(x-p,p-\upsilon) \ge 0$.

Поскольку это неравенство справедливо для $\forall \alpha \in [0,1]$, то $\alpha \|x-p\|^2 + 2(x-p,p-\upsilon) \ge 0$.

Переходя к пределу при a > 0, имеем $(x - p, p - v) \ge 0$, что и требовалось доказать.

Достаточность. Пусть верно $(x-p, \upsilon-p) \le 0 \ \forall x \in X$, тогда $\forall x \in X$ верно

$$||x-v||^2 = ||(x-p)+(p-v)||^2 = ||x-p||^2 + 2(x-p,p-v) + ||p-v||^2 \ge ||p-v||^2$$

т.е. точка p является проекцией точки v на X.

Определение 5. Гиперплоскостью в R^n называется множество вида $\Gamma_{c,\lambda} = \{x : (c,x) = \lambda\}$,

где $c \neq 0$ – вектор $\in \mathbb{R}^n$, $\lambda \in \mathbb{R}^1$.

Свойства гиперплоскостей

1. Это множество всегда *не пусто*: если, например $c_i \neq 0$, то точка x_0 с координатами $x^i = \frac{\lambda}{c_i}, \quad x^j = 0 \ (j \neq i)$ удовлетворяет равенству $(c, x_0) = \lambda$, т.е. $x_0 \in \Gamma_{c, \lambda}$.

2. Пусть
$$x_0 - \forall (\cdot)$$
 из $\Gamma_{c,\lambda}$, т.е. $(c,x_0) = \lambda$, тогда $\Gamma_{c,\lambda} = \{x : x \in \mathbb{R}^n, (c,x-x_0) = 0\}$.

Известно, что два вектора $a,b \in \mathbb{R}^n$ — ортогональны, если $(a,b)=0 \Rightarrow$ гиперплоскость $\Gamma_{c,\lambda}$ состоит из тех и только тех точек x, для которых вектор x— x_0 ортогонален вектору c. Вектор c называют *нормальным* вектором гиперплоскости $\Gamma_{c,\lambda}$.

3. В пространстве R^n гиперплоскость определяет два полупространства:

$$\{x:(c,x) \le \lambda\}$$
 и $\{x:(c,x) \ge \lambda\}$.

Лемма 2 (Теорема отделимости). Для любого выпуклого и замкнутого множества X и любой точки υ , не принадлежащей множеству X, существует такая гиперплоскость Γ , что $(c,\upsilon) = \lambda$ и $(c,x) < \lambda$ для $\forall x \in X$.

Очевиден геометрический смысл теоремы: существует проходящая через точку υ гиперплоскость Γ такая, что X лежит в одном из полупространств, определенных Γ .

Доказательство. Пусть p – проекция υ на X.

Определим $c = (\upsilon - p), \quad \lambda = (c, \upsilon)$, и рассмотрим

гиперплоскость $\Gamma_{c,\lambda} = \{y : y \in \mathbb{R}^n, (c,y) = \lambda\},\$

для которой выполняется первое утверждение леммы 2.

По лемме 1, если p – проекция, то $\forall x \in X$ справедливо $(x, v - p) \le (p, v - p)$.

Поскольку точка $\upsilon \not\in X$, то расстояние $\rho = \|\upsilon - p\| > 0 \Rightarrow (p, \upsilon - p) < (\upsilon, \upsilon - p)$.

Итак, имеем для
$$\forall x \in X$$
: $(c,x) = (v-p,x) \le (v-p,p) < (v-p,v) = (c,v) = \lambda$

$$\Rightarrow \forall x \in X \ (c,x) < \lambda, \ u.m.\partial.$$

Теорема (об опорной гиперплоскости).

В любой граничной точке x^0 выпуклого множества существует *опорная гиперплоскость*, т.е. существует $c \neq 0$ и λ :

$$\varGamma_{c,\lambda} = \left\{y: y \in R^n, (c,y) = \lambda\right\}, \lambda = (c,x^0)\,,\, \text{и для всех } x \in X \ (c,x) < \lambda\,.$$

Опорная гиперплоскость единственна (если существует касательная гиперплоскость, то она совпадает с опорной). И в этом случае опорная гиперплоскость единственная.

Понятие опорной гиперплоскости — шире касательной. В точке x^0 не существует касательной, но существуют опорные гиперплоскости, причем в качестве вектора c можно выбрать любой, лежащий между c_1, c_2 .

Доказательство. Рассмотрим последовательность $\{\upsilon_k\}$ — внешних точек относительно $X: \lim_{k\to\infty} \upsilon_k = x^0$ (т.е. по определению сходимости $\lim_{k\to\infty} \left\|\upsilon_k - x^0\right\| = 0$).

По лемме 2 (теорема отделимости) существует последовательность гиперплоскостей $\Gamma_{c_k,\lambda_k} = \left\{ y : (c_k,y) = \lambda_k \right\}, \quad \text{где } \lambda_k = (c_k,\nu_k) \text{ и } \forall x \in X \ (c_k,\nu_k) < \lambda_k \, .$

Т.к. длину c_k можно выбирать произвольно, то, не умаляя общности, можно считать, что $\|c_k\|=1$. Не меняя обозначений, считаем, что $\lim_{x\to\infty}c_k^{def}=c$.

Далее воспользуемся леммой Больцано-Вейерштрасса.

Лемма (Больцано-Вейерштрасса). Из любой ограниченной последовательности всегда можно извлечь такую частичную последовательность, которая сходилась бы к конечному пределу.

Рассмотрим $\lim_{x\to\infty} (c_k, \nu_k) = (c, x^0) \stackrel{def}{=} \lambda.$

Переходя к пределу в соотношении, определяющем Γ_k , получим гиперплоскость:

$$\Gamma_{c,\lambda} = \{y : (c,y) = \lambda\},$$
 где $\lambda = (c,x^0).$

А, переходя к пределу в соотношении $(c_k, x) < \lambda_k \ \forall x \in X$, получим:

 $(c,x) \le \lambda$ для $\forall x \in X$, $q.m.\partial$. (равенство возникает, поскольку $x^0 \in X$, а $(c,x^0) = \lambda$).

Теорема (о разделяющей гиперплоскости).

Пусть X_0 – множество внутренних точек выпуклого множества X; Y – выпуклое множество.

Если $X_0 \neq \emptyset$ (множество X_0 – не пусто) и $X_0 \cap Y = \emptyset$ (не пересекается с другим множеством), то для множеств X и Y существует разделяющая гиперплоскость, т.е.

существует $c \neq 0$: $\forall x \in X$, $\forall y \in Y$ справедливо соотношение $(c, y) \leq (c, x)$.

Доказательство. Рассмотрим множество $Z = \{Z : Z = y - x, y \in Y, x \in X_0\}$. Это множество выпукло. Действительно,

$$z = \alpha z_1 + (1 - \alpha) z_2 = \alpha (y_1 - x_1) + (1 - \alpha) (y_2 - x_2) = \underbrace{[\alpha y_1 + (1 - \alpha) y_2]}_{\in Y} - \underbrace{[\alpha x_1 + (1 - \alpha) x_2]}_{\in X_0} \in Z.$$

Точка z = 0 не является внутренней точкой множества Z (т.к. $x_0 \cap Y = \emptyset$).

Поэтому существует $c \neq 0$: $\forall z \in Z$ $(c,z) \leq (c,0)$. Это неравенство справедливо:

- по теореме об опорной гиперплоскости, если точка z = 0 граничная для множества Z;
- или по теореме о разделяющей гиперплоскости, если точка z = 0 внешняя (тогда неравенство строгое).

$$\Rightarrow$$
 $(c, y - x) \le 0 \Leftrightarrow (c, y) \le (c, x) \ \forall y \in Y, \forall x \in X_0$.

Последнее неравенство остается справедливым и для $\forall y \in Y$ и $\forall x \in X$, поскольку предельный переход не нарушает нестрогих неравенств, $u.m.\partial$.

Введем два определения:

Определение 1. Точка x множества X ($x \in X$) называется *угловой* (*или крайней*) точкой, если в X не существует таких точек x' и x'', $x' \neq x''$, что $x = \alpha x' + (1 - \alpha)x''$, при некотором $\alpha \in (0,1)$.

 Γ еометрически: точка x — крайняя в X, если её нельзя поместить внутрь отрезка, концы которого лежат в X.

Например,

- у треугольника крайние точки вершины;
- у луча начало;
- у круга все точки окружности;
- прямая, гиперплоскость крайних точек не имеют.

Определение 2. Точка $x^0 \in X$ называется выпуклой комбинацией точек $x_1, ..., x_n \in X$, если существуют $\alpha_i \ge 0$, существуют $x_i \in X$, i=1,...N, такие, что:

$$x^{0} = \sum_{i=1}^{N} \alpha_{i} x_{i}; \quad \sum_{i=1}^{N} \alpha_{i} = 1; \quad \alpha_{i} \ge 0, \quad i = 1, ..., N$$

Теорема Крейна-Мильмана (о представлении).

Пусть X — выпуклое, замкнутое, ограниченное множество, тогда $\forall x^0 \in X$ может быть представлена в виде выпуклой комбинации конечного числа угловых точек множества, т.е. $\forall x^0 \in X$ существуют $\alpha_i \geq 0$, существуют $x_i \in X$ — угловые точки:

$$x^{0} = \sum_{i=1}^{N} \alpha_{i} x_{i}; \sum_{i=1}^{N} \alpha_{i} = 1$$

Доказательство. Индукция по размерности пространства *n*.

При n = 1 X – отрезок \Rightarrow утверждение теоремы очевидно.

Предположим, что для n = k - 1 теорема справедлива.

Пусть $X \in \mathbb{R}^k$. Возможны два случая:

1) x^0 – граничная точка X.

$$x^{0} = \alpha x_{1} + (1 - \alpha)\tilde{x} =$$

$$= \alpha x_{1} + (1 - \alpha)\beta x_{2} + (1 - \alpha)(1 - \beta)x_{3}$$

Построим в этой точке гиперплоскость, опорную к X (существует по теореме об опорной гиперплоскости):

$$\Gamma_{c,\lambda} = \{y : (c,y) = \lambda \}$$
, где $\lambda = (c,x^0)$ – опорная гиперплоскость.

Рассмотрим множество $X_0 = X \cap \Gamma_{c,\lambda}$. Оно, как пересечение выпуклого, замкнутого, ограниченного множества X с выпуклым замкнутым множеством $\Gamma_{c,\lambda}$, само выпукло, замкнуто и ограничено.

Кроме этого, $X_0 \subset \Gamma_{c,\lambda} \subset R^{k-1}$.

По индукционному предположению существуют $x_1,...,x_n$ – угловые точки X_0 :

$$x^{0} = \sum_{i=1}^{N} \alpha_{i} x_{i}, \quad \alpha_{i} \ge 0, \quad i = 1, ..., N, \quad \sum_{i=1}^{N} \alpha_{i} = 1$$

Покажем, что $x_1, x_2, ..., x_n$ являются угловыми точками и для множества X.

Предположим противное, т.е. что некоторая точка x_i не является угловой для множества X. Это означает, что существует $x', x'' \in X, x' \neq x''$ и $\alpha \in (0,1)$: $x_i = \alpha x' + (1-\alpha)x''$.

T.K.
$$x_i \in X_0 \subset \Gamma_{c,\lambda}$$
, to $(c, x_i) = \lambda = (c, x^0)$

и т.к. $\Gamma_{c,\lambda}$ – опорная к X, то

$$(c, x') \le (c, x^0)$$

 $(c, x'') \le (c, x^0)$ (*)

Поскольку $0 < \alpha < 1$, можно записать:

$$\Rightarrow (c, x') = \frac{1}{\alpha} [(c, x_i) - (1 - \alpha)(c, x'')] \ge \frac{1}{\alpha} [(c, x^0) - (1, \alpha)(c, x^0)] = (c, x^0).$$

Из последнего соотношения следует, что $(c, x') \ge (c, x^0)$, но

$$(c,x') \le (c,x^0) \Longrightarrow (c,x') = (c,x^0) \Longrightarrow x' \in \Gamma_{c,\lambda}$$
,

Поскольку $x' \in X \Rightarrow x' \in X_0 = X \cap \Gamma_{c,\lambda}$.

Аналогично можно показать, что $x'' \in X_0 \Rightarrow$ противоречие с тем, что x_i – угловая точка X_0 \Rightarrow x_i — угловая точка X, $y.m.\partial$

2) Пусть теперь x^0 – внутренняя точка множества X. Проведем через x^0 прямую l. Пересечение $l \cap X$ является отрезком с концами \tilde{x} и \tilde{x} , принадлежащими границе множества X, и, поскольку x^0 – внутренняя точка $X \Rightarrow$ существует $\alpha \in (0,1)$:

$$x^0 = \alpha \tilde{x} + (1 + \alpha) \tilde{\tilde{x}}.$$

Поскольку для граничных точек \tilde{x} и \tilde{x} теорема верна, то верна она и для x^0 . Действительно, для граничных точек имеют место соотношения:

$$\begin{split} \tilde{x} &= \sum_{i=1}^{N_1} \beta_i \, y_i, \sum_{i=1}^{N_1} \beta_i = 1, \beta_i \geq 0, i = 1, ..., N_1 \\ \tilde{\tilde{x}} &= \sum_{i=1}^{N_2} \gamma_i z_i, \sum_{i=1}^{N_2} \gamma_i = 1, \gamma_i \geq 0, i = 1, ..., N_2 \,, \end{split}$$

где все y_i и z_i — угловые точки множества X.

А тогда
$$x^0 = \sum_{i=1}^{N_1} \alpha \beta_i y_i + \sum_{i=1}^{N_2} (1-\alpha) \gamma_i z_i$$
, ч.т.д.

Замечание: Можно доказать, что в указанном представлении число угловых точек не превосходит величины *n*-размерности пространства.

Линейное программирование

Задача линейного программирования:

Здесь c_j , a_{ij} , b_i — заданные числа, причем не все c_j и $a_{ij} = 0$.

Это — задача линейного программирования (ЗЛП) со смешанными ограничениями. К задачам такого вида (1) сводятся многие прикладные задачи технико-экономического содержания. Из общей задачи линейного программирования обычно выделяют и исследуют два её подкласса — основную задачу и каноническую.

Если k = m (только ограничение неравенства) и s = n (прямые ограничения) накладываются на все элементы вектора, то это *основная* (*стандартная*) форма $3Л\Pi$.

$$\begin{cases} \min(c,x) \\ x \in X \end{cases}$$
 (2)
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i}, i = 1,..., m \Leftrightarrow Ax \geq b; \\ x_{j} \geq 0, j = 1,..., n \Leftrightarrow x \geq 0; \\ \Rightarrow \text{Допустимое множество } X = \left\{ x \in R^{n} : Ax \geq b, x \geq 0 \right\}$$

 $A-m \times n$ – матрица условий; b-m – вектор ограничений.

Если k = 0 (только ограничения равенства) и s = n, то это – каноническая форма ЗЛП.

(3)
$$\begin{cases} \min(c, x) \\ x \in X \\ X = \left\{ x \in \mathbb{R}^n : Ax = b, x \ge 0 \right\} \end{cases}$$

Задачи в формах (1), (2), (3) могут быть сведены друг к другу, т.е. приведены к эквивалентной задаче (с тем же множеством решений).

Сведение (1) к (2):

Обозначим $I = \{i : i = 1, ..., m\}$ – множество всех ограничений;

 $I_1 = \{i: i = 1, ..., k\}$ — множество ограничений неравенств;

 $I_2 = I \setminus I_1$ — множество ограничений равенств.

Аналогично:

Обозначим $J = \{j : j = 1,...,n\};$

 $J_1 = \{j : j = 1,...,s\}$ — множество прямых ограничений;

$$J_2 = J \setminus J_1$$

Заметим, что задача (1) приводится к виду:

$$\begin{cases} \min[(c_1, x_1) + (c_2, x_2)] \\ x \in X \\ X : A_{11}x_1 + A_{12}x_2 \ge b_1 \\ A_{21}x_1 + A_{22}x_2 \ge b_2 \\ x_1 \ge 0 \end{cases}$$

Здесь:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} k \\ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{cases} s \\ n-s \end{cases}; b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \begin{cases} k \\ m-k \end{cases}; c = \begin{pmatrix} c_1, c_2 \\ s \end{cases} \begin{cases} s \\ n-s \end{cases}$$

Идея: Нужно (m - k)–равенств заменить неравенствами:

$$\left(\xi = 0 \Leftrightarrow \begin{cases} \xi \ge 0 \\ -\xi \le 0 \end{cases}\right)$$

Ввести (n-s)-прямых ограничений:

T.o., делаем замену переменных $x_2=\overline{x}_2-\overline{\overline{x}}_2$, где элементы вектора

$$\overline{x}_{j_2} = \max(x_{j_2}, 0) \\ \overline{\overline{x}}_{j_2} = \max(-x_{j_2}, 0)$$
 $j \in J_2$

Тогда задача (1) приводится к виду:

$$\begin{cases} \min_{x \in X} [(c_1, x_1) + (c_2, \overline{x}_2) - (c_2, \overline{\overline{x}}_2)] \\ x : A_{11}x_1 + A_{22}\overline{x}_2 - A_{12}\overline{\overline{x}}_2 \ge b_1 \\ A_{21}x_1 + A_{22}\overline{x}_2 - A_{22}\overline{\overline{x}}_2 \ge b_2 \\ -A_{21}x_1 - A_{22}\overline{x}_2 + A_{22}\overline{\overline{x}}_2 \ge -b_2 \\ x_1 \ge 0, \quad \overline{x}_2 \ge 0, \quad \overline{\overline{x}}_2 \ge 0 \end{cases}$$

Это задача в основной форме (2) с размерностью n'=2n-s и числом ограничений m'=2m-k .

Сведение (2) к (3):

Введем m-дополнительных переменных и рассмотрим задачу в пространстве R^{n+m} :

$$x' = \left(\frac{x}{u}\right)_{m}^{n}; c' = \left(\frac{c}{o}\right)_{m}^{n};$$

Тогда (2) можно записать в виде:

$$(3')\begin{cases} \min(c', x') = \min(c, x) \\ x' \in X' \\ X' : Ax - u = b \\ x \ge 0, u \ge 0 \end{cases}$$

Эта задача в канонической форме (3) с размерностью n' = m + n и m-ограничениями.

Нетрудно убедиться в том, что множество решений, рассмотренных выше задач совпадают, либо пусты одновременно.

Геометрическая интерпретация основной задачи линейного программирования

Рассмотрим задачу ЛП в форме (2), т.е. основную ЗЛП:

$$\begin{cases}
\min(c, x) \\
x \in X \\
x : \{x \in R^n : Ax \ge b, x \ge 0\}
\end{cases}$$

Пусть $n = 2, x = (x_1, x_2)^T \Rightarrow$ задача сводится к виду:

$$\begin{cases} c_1 x_1 + c_2 x_2 \to \min \\ X : \{ (x_1, x_2) : x_1 \ge 0, x_2 \ge 0, a_{i1} x_1 + a_{i2} x_2 \ge b_i, i = 1, ..., m \} \end{cases}$$

Введем множества:

$$X_0 = \{x = (x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$$
 — положительные квадрант плоскости.

$$X_i = \{x = (x_1, x_2) : a_{i1}x_1 + a_{i2}x_2 \geq b_i, \quad i = 1...m\} - \text{полуплоскость}, \quad \text{образованная} \quad \text{прямой}$$

$$a_{i1}x_1 + a_{i2}x_2 = b_i \,.$$

Ясно, что множество X является пересечением множеств $X_0, X_1, ..., X_m$ и возможны следующие случаи:

- 1) Может случиться, что это пересечение пусто, тогда задача теряет смысл (а).
- 2) Если множество X не пусто, то оно образовано пересечением конечного числа полуплоскостей \Rightarrow множество X представляет собой выпуклое многоугольное множество, границей которого является

ломаная, составленная из отрезков каких-либо координатных осей и прямых $a_{i1}x_1 + a_{i2}x_2 = b_i$, i = 1,...,m. Это многоугольное множество может быть ограниченным (выпуклый многоугольник) (б) и неограниченным (в).

Рассмотрим уровни минимизируемой функции, т.е. $c_1 x + c_2 x = \alpha$.

При изменении α от $-\infty$ до $+\infty$ прямая, перемещаясь параллельно самой себе, "зачертит" всю плоскость. При этом направление вектора c задает движение линии уровня по направлению возрастания функции (c, x).

Если X – многоугольник (б), то при изменении α от $-\infty$ до $+\infty$ прямая, соответствующая линии уровня, при некотором значении α^* впервые коснется X (выпуклого многоугольника) и

будет иметь с этим множеством X общую точку x^* , т.е. x^* – решение задачи.

Возможен случай, когда при первом касании линией уровня множества X, общей окажется целая сторона многоугольника, тогда решением будет целая прямая. Это может случиться, когда множество X имеет сторону, перпендикулярную вектору c ((Γ) и (\mathfrak{A})).

Если многоугольное множество X не ограничено, то возможна ситуация, когда прямая линия уровня при всех $\alpha:-\infty<\alpha<\alpha_0<+\infty$ имеет общую точку с множеством X (e), тогда $\inf_X(c,x)=-\infty$. В этом случае первого касания с прямой нет – задача не имеет решения.

Из рассмотренных случаев ясно, что ЗЛП может не иметь ни одного решения ((a) и (e)), может иметь единственное решение ((б) и (в)) и, наконец, может иметь бесконечное множество x_2 (e решений (линия уровня параллельна одной из граней допустимого

множества).

 α_1

На примере рассмотренной выше ЗЛП нетрудно увидеть, что, если задача имеет решение, то среди решений найдется хотя бы одна угловая точка многоугольного множества X. Ниже мы увидим, что это не случайно — и в более общей ЗЛП, оказывается, нижняя грань

минимизируемой функции достигается на X в угловой точке множества.

Итак, рассмотрим основную задачу линейного программирования, т.е. задачу в форме (2):

$$\begin{cases} \min(c, x) \\ x \in X \\ x : \left\{ x \in R^n : Ax \ge b, x \ge 0 \right\} \end{cases}$$

Теорема. Допустимое множество в задаче (2) – выпукло и замкнуто.

Доказательство.

Замкнутость. Рассмотрим последовательность

$$\{x_n^k\}$$
: $x^k \in X$, т.е. $Ax^k \ge b$; $x^k \ge 0$ для $\forall k$.

Пусть $\{x^k\} \to x \Rightarrow Ax^k \to Ax$ (непрерывность линейной функции).

Переходя к пределу в неравенстве: $Ax^k \ge b$, получим $Ax \ge b$, и соответственно,

$$x^k \ge 0 \Longrightarrow x \ge 0 \implies (\cdot)x \in X$$
,

т.е. множество X содержит свои предельные точки, следовательно, оно замкнуто.

Выпуклость. Пусть $x', x'' \in X; \lambda \in [0,1]$. Это означает, что

$$Ax' \ge b, x' \ge 0$$

$$Ax'' \ge b, x'' \ge 0$$

Рассмотрим $2 = \lambda x' + (1-\lambda)x''$ и покажем, что $\begin{cases} A\widetilde{x} \geq b \\ \widetilde{x} \geq 0 \end{cases}$, т.е. множество X - выпукло.

Действительно:

$$A(\lambda x' + (1-\lambda)x'') = \lambda Ax' + (1-\lambda)Ax'' \ge \lambda b + (1-\lambda)b = b.$$

Аналогично:

$$\Re = \lambda x' + (1 - \lambda)x'' \ge 0$$
, $y.m.\partial$.

Теорема доказана.

Теоремы об оптимальных точках основной задачи линейного программирования

Теорема 1. Если допустимое множество задачи (2) не пусто $(X \neq \emptyset)$ и целевая функция ограничена снизу на X, то существует x^* – оптимальная точка, причем x^* лежит на границе множества X.

Доказательство. (индукция по n)

а) Пусть n=1. В этом случае утверждение теоремы очевидно: допустимое множество – отрезок $b_1 \le x \le b_2$ или луч, а целевая функция - $\varphi(x) = cx$.

Если X – отрезок, то min достигается и находится на границе.

Если X – луч, то c>0 (в силу ограниченности $\varphi(x)$ снизу на X) \Rightarrow min достигается на границе луча.

б) Пусть теорема верна для n-1, и докажем её для n.

Рассмотрим грани допустимого множества Х:

$$\Gamma_k = \{x \in X : (A_k, x) = b_k\}, k = 1, ..., m$$
 – ограничения - неравенства;

и "координатные" грани:

$$\Gamma_{m+j} = \{x \in X : (e_i, x) = 0\}, j = 1,...,n$$
 — прямые ограничения.

Т.к. $\forall l = \overline{1, m+n}$, Γ_l — линейное пространство размерности (n-1), выпуклое замкнутое множество, то по индукционному предположению имеем (m+n) - точек (на \forall грани — по одной), где $\varphi(x)$ достигает min.

Пусть x^* – одна из них, где функция минимальна. Докажем, что x^* – оптимальная точка на множестве X.

Предположим *противное*, пусть существует $x \in X$, $x \neq x^*$: $\varphi(x) < \varphi(x^*)$.

Можно утверждать, что точка x — внутренняя точка множества X. Действительно, если бы она была граничной, то для нее не могло бы выполняться $\varphi(x) < \varphi(x^*)$.

А тогда через точку x можно провести прямую, пересекающую две граничные гиперплоскости \Rightarrow существуют $y_1, y_2 \in X$, $\lambda \in [0,1]$ такие, что:

$$y_1, y_2$$
 – граничные и $x = \lambda y_2 + (1 - \lambda)y_1$

$$\Rightarrow$$
 существует $l_1: y_1 \in \Gamma_{l1}$ и существует $l_2: y_2 \in \Gamma_{l2}$ =

$$\varphi(x^*) \le \varphi(y_1), \quad \varphi(x^*) \le \varphi(y_2)$$
 — по выбору точки x^* .

Получаем:

$$\varphi(x) = \lambda \varphi(y_1) + (1 - \lambda) \varphi(y_2) \ge \varphi(x^*) - \text{противоречие!}$$

$$\underset{\ge \varphi(x^*)}{\ge \varphi(x^*)}$$

Теорема доказана.

Теорема 2. Если допустимое множество задачи (2) не пусто и целевая функция задачи (2) ограничена снизу на допустимом множестве X, то среди оптимальных точек задачи линейного программирования есть крайняя (угловая).

Доказательство.

Пусть x^* – оптимальная точка ЗЛП (она существует по теореме 1).

1) Предположим, что X — ограниченное множество. Но X — выпукло и замкнуто (по доказанной выше теореме). Тогда по теореме Крейна-Мильмана (о представлении), точка x^* может быть представлена в виде выпуклой комбинации конечного числа угловых точек множества X, т.е. существует y_1, \ldots, y_k — крайние точки в X и существуют $\lambda_1, \ldots, \lambda_k$, такие, что:

$$\sum_{j=1}^{k} \lambda_j = 1; \quad \sum_{j=1}^{k} \lambda_j y_j = x^*$$

Поскольку φ - линейная функция, можно записать:

$$\varphi(x^*) = \sum_{j=1}^k \lambda_j \varphi(y_j).$$

Докажем, что в этом случае $\varphi(x^*) = \varphi(y_1) = ... = \varphi(y_k)$, т.е. тем самым мы докажем, что среди оптимальный точек x^* есть крайние - $y_1, y_2, ..., y_{\kappa}$

Предположим, что
$$\varphi(x^*) \le \varphi(y_1) \le \dots \le \varphi(y_k)$$
 (*)

Тогда:
$$\varphi(x^*) = \sum_{j=1}^k \lambda_j \varphi(y_j) \ge \sum_{j=1}^k \lambda_j \varphi(y_1) = \varphi(y_1)$$

 \Rightarrow с учетом (*) имеем $\varphi(x^*) = \varphi(y_1)$.

Далее будет доказывать по индукции.

Пусть для некоторого l < k, справедливо: $\varphi(x^*) = \varphi(y_1) = ... = \varphi(y_l)$.

Докажем, что $\varphi(x^*) = \varphi(y_{l+1})$.

Действительно,
$$\varphi(x^*) = \sum_{j=1}^k \lambda_j \varphi(y_i) = \sum_{j=1}^l \lambda_j \varphi(y_i) + \sum_{j=l+1} \lambda_i \varphi(y_i) \geq \varphi(x^*) \sum_{j=1}^l \lambda_j + \varphi(y_{l+1}) \sum_{j=l+1}^k \lambda_j$$

$$\bigvee_{\text{Min}} \qquad \bigvee_{\text{Min среди суммируемых по (*)}} \psi$$

Тогда, перенеся в левую часть неравенства, получим

$$\left(1 - \sum_{\substack{j=1 \ > 0}}^{l} \lambda_j\right) \varphi(x^*) \ge \sum_{\substack{j=l+1 \ > 0}}^{k} \lambda_j \varphi(y_{l+1}) = \left(1 - \sum_{\substack{j=1 \ > 0}}^{l} \lambda_j\right) \varphi(y_{l+1}) \quad \Rightarrow \varphi(x^*) \ge \varphi(y_{l+1}),$$

а тогда, с учетом (*), имеем

$$\varphi(x^*) = \varphi(y_{l+1}), \quad u.m.\partial.$$

2) Предположим, что X – неограниченное множество, а x^* – оптимальная точка ЗЛП. Рассмотрим вектор

$$d = \begin{pmatrix} 1 \\ \cdot \\ \cdot \\ \cdot \\ 1 \end{pmatrix} \in R^n.$$

Пусть $\mu = (d, x^*)$. Введем новое ограничение $(d, x) \le \mu + 1$.

Тогда точка x^* лежит в новом допустимом множестве, при этом, т.к. $\sum_{i=1}^n x_i \le \mu + 1$, то новое

допустимое множество ограниченно. \Rightarrow По доказанному выше существует $z_1,...,z_k$:

$$x^* = \sum_{j=1}^k \lambda_j z_j \Longrightarrow \varphi(z_1) = \dots = \varphi(z_k) = \dots = \varphi(x^*).$$

Осталось доказать, что существует $j:(d,z_j)<\mu+1$, т.е. крайняя оптимальная точка не лежит на новой гиперплоскости, т.е. z_j – крайняя точка множества X и оптимальна.

Имеем:

$$(d, x^*) = \sum_{j=1}^k \lambda_j z_j = \mu = \sum_{j=1}^k \lambda_j (d, z_j) < \mu + 1 \Rightarrow \exists l : (d, z_l) < \mu + 1, u.m.\partial.$$

(Условие того, что точка x^* лежит на новой гиперплоскости $(d, x^*) = \mu + 1$). *Теорема доказана*.

Итак, *для решения задачи линейного программирования надо искать крайние точки*. Ранее было введено геометрическое определение крайней точки. Для того чтобы уметь находить её, следует ввести её *алгебраическое её определение*.

Характеристика крайних точек

Рассмотрим основную форму ЗЛП, когда допустимое множество X имеет вид:

$$X = \{x \in \mathbb{R}^n : Ax \ge b, x \ge 0\}$$
 – всего $(m + n)$ ограничений.

Определение. Если в точке x для некоторых ограничений выполняются равенства $\{(A_i, x) = b_i$ или $x_j = 0$ $\}$, то они называются *активными*, остальные ограничения называются *пассивными*.

Рассмотрим матрицу ограничений:
$$B = \begin{pmatrix} ... & A & ... \\ 1 & ... & 0 \\ 0 & ... & 1 \end{pmatrix} n$$

Для $\forall x \in X$ определим множество индексов активных ограничений:

$$I_x = \{i : (A_i, x) = b_i\} \cup \{m + j : x_i = 0\}$$

Обозначим через B_x матрицу, составленную из векторов-строк матрицы B, соответствующую активным ограничениям точки $x \in X$.

Пример. Пусть
$$X: \begin{cases} x_1+x_2+x_3 \geq 3 \\ x_2 \geq 1 \end{cases}$$
, где $m=2, n=3;$
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 Матрица B имеет вид:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 В единичная матрица, соответствующая прямым ограничениям

(0, 1, 2) – крайняя точка, для неё:

$$B_x = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

(2, 1, 0) – крайняя точка:

$$B_x = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(0, 3, 0) – крайняя точка:

$$B_{x} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(0, 2, 1) – не крайняя точка:

$$B_{x} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Для внутренних точек x матрицы B_x будет состоять из пустых строк.

Теорема. Для того чтобы допустимая точка x задачи (2) была крайней, необходимо и достаточно, чтобы ранг матрицы B_x был максимальным, т.е. равен n, т.е. $x \in X$ — крайняя точка \Leftrightarrow $rang\ B_x = n$.

Доказательство.

Достаточность. Пусть $rang B_x = n$. Это означает, что из соотношения $B_x \cdot z = 0$, следует, что z = 0. Докажем, что тогда точка $x \in X$ – крайняя.

Предположим обратное, т.е. пусть существует $x_1, x_2 \in X: x = \lambda x_1 + (1-\lambda)x_2$, где $\lambda \in (0,1)$ $x_1 \neq x_2$

16

Обозначим $b_x^{def} = B_x x$ (т.е. вектор b_x состоит из компонент вектора b и нулей).

Т.к.
$$x_1, x_2$$
 – допустимые точки, то $\begin{cases} B_x x_1 \geq b_x \\ B_x x_2 \geq b_x \end{cases}$ домножим на λ и сложим

$$\Rightarrow B_r x \ge b_r$$

По определению b_x в этом соотношении должно быть равенство

$$\Rightarrow B_x x_1 = b_x \Rightarrow B_x (x - x_1) = b_x - b_x = 0 \Rightarrow x = x_1 (m.\kappa. rang B_x = n)$$

Аналогично можно показать, что $B_x x_2 = b_x \implies x = x_2$.

Значит наше предположение не верно, точка x крайняя, $y.m.\partial$.

Heoбxoдимость. Пусть точка x — крайняя. Предположим, что $rangB_x < n$, т.е. существует $z \neq 0$: $B_x \cdot z = 0$.

Зафиксируем такую точку $z\in X$ и при малом $\varepsilon>0$ рассмотрим точки: $\begin{cases} x_1=x-\varepsilon z\\ x_2=x+\varepsilon z \end{cases}$

Для x_1 и x_2 выполняются активные ограничения

По определению точки z имеем:

$$B_x x_1 = b_x B_x x_2 = b_x$$

(т.к. для крайней точки справедливо $B_x x = b_x$ и по предположению $B_x \cdot z = 0$) Отсюда следует, что активные ограничения для точки x_1 и точки x_2 верны.

Для x_1 и x_2 выполняются пассивные ограничения

arepsilon можно выбрать таким образом, чтобы и пассивные ограничения сохранялись: , $\forall i \not\in I_x$ $(A_i,x) > b_i$, значит можно выбрать arepsilon таким образом, чтобы выполнялось неравенство $|(A_i,z)| \varepsilon < -b_i + (A_i,x) \Rightarrow (A_i,x \pm \varepsilon \ z) > b_i$ Аналогично можно показать, что и прямые пассивные ограничения сохраняются: $\forall j \in I_x, \ x_j > 0 \Rightarrow z \varepsilon < x_j \Rightarrow x_j \pm \varepsilon z > 0$

Это означает, что x_1, x_2 – допустимые точки. Но $x = \frac{1}{2}x_1 + \frac{1}{2}x_2$ – противоречит тому, что x – крайняя точка. Т.е. не существует такого вектора $Z \neq 0$: $B_x \cdot Z = 0 \Rightarrow rang B_x = 0$, $v.m.\partial$.

Замечания.

1. В крайней точке пересекаются не менее чем n гиперплоскостей (граней допустимого множества). Для n=2 – две прямых, для n=3 – три плоскости и т.д.

Определение. Крайняя точка называется *невырожденной*, если она лежит на пересечении ровно *п* гиперплоскостей. В противном случае она называется *вырожденной*. Задача линейного программирования, у которой существует вырожденная точка, также называется вырожденной.

Примеры вырожденных точек:

вырожденная точка

Далее, если не оговорено особо, будем рассматривать невырожденные задачи ЛП.

2. Т.к. ограничений (m+n), а в крайних точках сходится n-гиперплоскостей, то всего *крайних точек* может быть не более C_{n+m}^n – *конечное число*. (Число сочетаний из n+m по n).

17

Доказанные выше теоремы (о существовании решения 3ЛП и алгебраической характеристике её крайних точек) означают, что для поиска решения основной задачи ЛП, достаточно перебрать лишь крайние точки допустимого множества X, число которых конечно. Крайние точки могут быть найдены с использованием теоремы о характеристике крайних точек за конечное число арифметических операций.

Выводы из 3-х теорем.

- 1. Справедлива следующая альтернатива:
 - либо целевая функция на допустимом множестве не ограничена снизу;
 - либо существует крайняя оптимальная точка.
- 2. Количество крайних точек допустимого множества конечно.

Таким образом, вышедоказанные теоремы обосновывают принципиальную возможность решения задачи ЛП за конечное число шагов методом полного перебора крайних точек.

Однако "конечное" — не значит "малое". При сколько-нибудь больших m и n этот простой метод требует огромной вычислительной работы.

Следовательно, естественным образом подходим к основной идее *симплекс-метода* – полный перебор следует заменить упорядоченным, разумным.

Название метода связано с тем, что он впервые разрабатывался применительно к ЗЛП, в которых множество X представляло собой симплекс в $R^n: X = \left\{x \in R^n: x \geq 0, \sum_{i=1}^n x^i = 1\right\}$. Затем

метод был обобщен на случай более общих множеств X, но первоначальное название так и сохранилось. В литературе его ещё называют методом последовательного улучшения плана.

Итак, cumnnekc memod — это алгоритм преобразования таблицы (состоящей из коэффициентов a_{ij} , b_j , c_j), основанных на memode $\mathcal{K}opdanoвых$ ucknючений при решении системы линейных уравнений.

Метод, состоит из 2-х этапов:

- 1) поиск крайней точки, в результате которой могут быть три ситуации:
 - крайней точки нет (т.е. $X = \emptyset$);
 - крайняя точка не найдена;
 - крайняя точка найдена, в этом случае начинается второй этап:

- 2) перебор крайних точек и поиск оптимальной:
 - оптимальной точки нет (т.е. $\varphi(x)$ не ограничена снизу на X);
 - оптимальная точка не найдена;
 - оптимальная точка найдена, на этом алгоритм симплекс-метода кончается.

Переход к следующей крайней точке в поисках оптимальной осуществляется исходя из предположения, что значение целевой функции уменьшается.

Поэтому, поскольку:

- число крайних точек конечно и среди них обязательно есть решение задачи (если оно существует),
- возврат к уже просмотренным точкам невозможен, то за *конечное число* итераций эта процедура приведет к решению, либо к выводу о том, что $X = \emptyset$.

Теоретически не исключается ситуация, когда метод пройдется по всем крайним точкам множества X (и такие патологические примеры построены). Однако, как показывает практика, для большинства задач количество итераций симплекс-метода находится в пределах от m до 2m.

Алгоритм симплекс-метода решения основной ЗЛП

Рассмотрим основную ЗЛП:

$$\min_{x \in X} (c, x) = \min_{x \in X} \varphi(x), \quad \text{ide } X = \{x \in \mathbb{R}^n : Ax \ge b, x \ge 0\},$$

 $A - (m \times n)$ – матрица, $b - (m \times 1)$ – вектор

$$Ax \ge b \Longrightarrow \begin{pmatrix} A_1 \\ \cdot \\ \cdot \\ \cdot \\ A_m \end{pmatrix} x \ge \begin{pmatrix} b_1 \\ \cdot \\ \cdot \\ \cdot \\ b_m \end{pmatrix},$$

 A_i – (1 × n) – строка, b_i – число, $i \in 1, ..., m$.

Введем
$$m$$
-переменных:
$$\begin{cases} y_1 = (A_1,x) - b_1 \geq 0 \\ & \cdots \\ y_m = (A_m,x) - b_m \geq 0 \end{cases}$$

Итак, допустимое множество X ограниченно (m+n) — гиперплоскостями: $\begin{cases} y_i \geq 0, & i=\overline{1,m} \\ x_j \geq 0, & j=\overline{1,n} \end{cases}.$

1. Алгоритм поиска крайней точки

Имеем систему:

$$\begin{cases} y_1 = \sum_{j=1}^n a_{1j} x_j - b_1 \ge 0 \\ & \dots & \dots \\ y_m = \sum_{j=1}^n a_{mj} x_j - b_m \ge 0 \\ & x_1 \ge 0, \ x_2 \ge 0, \dots, x_n \ge 0 \end{cases}$$

Т.к. в крайней точке неравенство заменяется равенством, то используем метод Жордановых исключений для решения системы линейных уравнений.

а) Если $\forall i$ $-b_i > 0$, то крайняя точка найдена, это точка x = 0.

b) Если существуют s: $-b_s < 0$, то рассмотрим коэффициенты $a_{s1},...,a_{sn}$. Если все они ≤ 0 , то

$$y_s = \sum_{\substack{q_{sj} \ \leq 0 \ \geq 0}} q_{sj} x_j - q_s < 0$$

⇒ допустимое множество пусто, крайних точек нет.

с) Иначе: при $-b_s > 0$ существует $r: a_{sr} > 0$. Тогда делается один шаг Жордановых преобразований, который состоит в замене координат $x_r \leftrightarrow y_s$. Из s-го уравнения:

$$x_r = (-\sum_{j \neq r} a_{sj} x_j + b_s + y_s) a_{sr}^{-1}.$$

Подставим x_r в другие уравнения системы:

$$y_i = \sum_{j \neq r} \partial_{ij}^{\alpha} x_j + \partial_{ir}^{\alpha} y_s - \partial_i^{\alpha}, i \neq s,$$

где

$$\mathcal{U}_{ij} = a_{ij} - \frac{a_{ir} \, a_{sj}}{a_{sr}}; \quad \mathcal{U}_{ij} = \frac{a_{ir}}{a_{sr}}; \quad \mathcal{B}_{i}^{0} = b_{i} - \frac{a_{ir} \, b_{s}}{a_{sr}}$$

$$\tag{1}$$

В новом *s*-м уравнении:

$$\partial_{S_j} = -\frac{a_{sj}}{a_{rr}}, \ j \neq r; \quad \partial_{S_r} = \frac{1}{a_{rr}}; \quad \partial_{S_s} = -\frac{b_s}{a_{rr}}$$
 (2)

В табличной форме:

Внебазисные

1) Обратим внимание на то, что теперь

$$-b_s^{\prime 0} > 0 \quad \left(-b_s = \frac{b_s}{a_{sr}}\right).$$

Определение. Элемент a_{sr} называется *разрешающим*.

Зависимые координаты $y_1,...,y_m$ (в левом столбце), называются базисными.

Независимые координаты $x_1,...,x_n$ (в верхней строке), называются внебазисными.

Один шаг Жордановых исключений — это замена базиса. *Крайняя точка найдена: все независимые координаты равны* 0, все $-b_i > 0$.

2) Для того чтобы последовательно приближаться к крайней точке, необходимо чтобы \forall шаг увеличивал (не уменьшал!) число положительных компонент вектора b.

Для этого, в пункте в) фиксируем столбец r (для которого при $-b_s < 0$ существует $r: a_{sr} > 0$) и в нём выбирается такая строка s, т.е. такой разрешающий элемент a_{sr} , чтобы

$$-\frac{b_{s}}{a_{sr}} = \max_{k} \left\{ -\frac{b_{k}}{a_{kr}} : -\frac{b_{k}}{a_{kr}} < 0 \right\}$$

или *отрицательное отношение* было бы максимальным среди всех *отрицательных отношений*.

Покажем, что при таком выборе разрешающего элемента, число положительных компонент вектора b не уменьшится.

- 1. Если компонента корректируется по формуле (2), то, т.к. $\frac{b_s}{a_{sr}} > 0$ имеем $-b_s^{\prime 0} > 0$. (показали ранее).
- 2. Пусть компонента вектора b корректируется по формуле (1). Тогда, нас интересует случай, когда $-b_i > 0$. Хочется, чтобы $-\widetilde{b}_i > 0$.
 - пусть $-b_i > 0$ и $a_{ir} > 0$

$$\Rightarrow b_i^0 = b_i - \frac{a_{ir}b_s}{a_{sr}} < 0 \Rightarrow -b_i^0 > 0, \quad \text{u.m.} \partial.$$

- пусть $-b_i > 0$ и $a_{ir} < 0$

$$\Rightarrow b_i^0 = b_i - \frac{a_{ir}b_s}{a_{sr}} < b_i - \frac{a_{ir}b_i}{a_{ir}} \Rightarrow -b_i^0 > 0, \quad u.m.\partial.$$

Таким образом, алгоритм сходится к крайней точке за конечное число шагов в предположении, что среди крайних точек нет вырожденных. На практике это означает, что $\forall i$ $b_i \neq 0$.

2. Алгоритм поиска оптимальной точки

Продолжаем преобразование таблицы. Т.к. от одного базиса всегда можно перейти к другому, то считаем, что в начале этого этапа (в верхней строке) находятся независимые координаты $x_1, ..., x_n$, при этом, точка x = 0 (т.е. $x_1 = ... = x_n = 0$) – крайняя.

а) Если $\forall j \ c_j \geq 0$, то *оптимальная точка найдена*. Это точка x=0. Действительно $\sum_{i=1}^{n} c_i = 0$

$$\varphi(x) = \sum_{j=1}^{n} c_{j} x_{j}$$
 достигает min в нуле.

б) Если существует $r: c_r < 0$, то рассмотрим коэффициенты $a_{lr}, ..., a_{mr}$. Если все они ≥ 0 , то оптимальной точки нет. Целевая функция не ограничена снизу на Х. Действительно, для $\forall i$ в неравенстве $\sum_{i\neq r} a_{ij} x_j + a_{ir} x_r - b_i \ge 0$, x_r может неограниченно расти. С другой

стороны, при росте
$$x_r$$
, $\varphi(x)$ – убывает $\left[\varphi(x) = \sum_{j \neq r} c_j x_j + q_r \atop < 0 \atop < 0$

Иначе: при $c_r < 0$ существует $s: a_{sr} < 0$. Делается один т.е. меняется базис относительно разрешающего элемента $a_{sr}: x_r \leftrightarrow y_s$. в) Иначе: при $c_r < 0$ существует $s: a_{sr} < 0$. Делается один шаг Жордановых исключений,

$$\varphi = \sum_{j=1}^{n} c_j x_j + \alpha ,$$

подставим в нее x_r , выраженный из s-го уровня $\varphi = \sum_{i=r}^n \aleph_j x_j + \aleph_i y_r + \aleph_i$, где

$$\partial \phi = c_j - \frac{c_r a_{sj}}{a_{sr}}, j \neq r ; \ \partial \phi = \frac{c_r}{a_{sr}}, \ \partial \phi = \alpha + \frac{c_r b_s}{a_{sr}}$$

$$(3)$$

Остальные элементы вычисляются по формулам (1) и (2).

В табличной форме:

	x_1	χ_r	χ_n	<i>−b</i>			x_1	y_s	χ_n	<i>−b</i>
<i>y</i> ₁	a_{11}	a_{1r}	a_{1n}	$-b_1$		<i>y</i> ₁	\tilde{a}_{11}	$\tilde{a}_{1\mathrm{s}}$	\tilde{a}_{1n}	$-\tilde{b_1}$
		$\widehat{a_{sr}}$			\rightarrow	(x_r)	\tilde{a}_{s1}	\tilde{a}_{sr}	\tilde{a}_{sn}	$- ilde{b_s}$
y_m	a_{m1}	a_{mr}	a_{mn}	$-b_m$		y_m	\tilde{a}_{m1}	\tilde{a}_{mr}	\tilde{a}_{mn}	$- ilde{b_m}$
φ	c_1	C_r	C_n	α		φ	\tilde{c}_1	\tilde{c}_r	\tilde{c}_n	\tilde{lpha}

Необходимо обеспечить, чтобы ∀ следующий шаг преобразований не ухудшал достигнутого, т.е. чтобы правый столбец таблицы оставался положительным $(-b_i > 0)$ и чтобы функция φ – уменьшалась (количество положительных компонент вектора "c" может меняться).

Для того, чтобы двигаться по крайним точкам к точке min функции φ , аналогично случаю поиска крайней точки, в пункте в) фиксируют столбец r и в нем выбирают такую строку s, т.е. такой разрешающий элемент a_{sr} , чтобы

$$-\frac{b_s}{a_{sr}} = \max\left\{-\frac{b_k}{a_{kr}}: -\frac{b_k}{a_{kr}} < 0\right\}.$$

Выше было показано, что при таком выборе a_{sr} (выше) количество положительных компонент вектора b не уменьшается.

22

При этом, элемент
$$-c_r \to 8 \!\!\!/ > 0$$
 , а значение функции $\varphi : \begin{bmatrix} c_r < 0 \\ a_{sr} < 0 \\ & \end{bmatrix} \Rightarrow 8 \!\!\!/ = \frac{c_r}{a_{sr}}$

$$\mathscr{A}_0 = \alpha + \frac{c_r b_s}{a_{sr}} < \alpha, \quad \textit{u.m.} \partial.$$

Таким образом, алгоритм выбора оптимальной точки также *сходится* κ *оптимальной точке* за конечное число итераций, для невырожденной ЗЛП (среди компонент вектора "b" не должно быть нулевых).

Координаты оптимальной точки определяются следующим образом:

- если x_i находится на i-ом месте левого столбца, то его значение равно b_i ;
- если x_i находится на j-ом месте верхней строки, то его значение равно 0.

Далее рассмотрим несколько примеров:

Представим формулы для пересчета таблицы в более компактном виде. Итак,

	x_1	χ_r	\mathcal{X}_n	<i>-b</i>			x_1	y_s	χ_n	-b
<i>y</i> ₁	a_{11}	a_{1r}	a_{1n}	$-b_1$		<i>y</i> ₁	\tilde{a}_{11}	\tilde{a}_{1r}	\tilde{a}_{1n}	$-\tilde{b_1}$
y_s	a_{s1}	(a_{sr})	a_{sn}	$-b_s$	\rightarrow	χ_r	\tilde{a}_{s1}	\tilde{a}_{sr}	\tilde{a}_{sn}	$- ilde{b_s}$
y_m	a_{m1}	a_{mr}	a_{mn}	$-b_m$		y_m	$ ilde{a}_{m1}$	$ ilde{a}_{mr}$	$ ilde{a}_{mn}$	$- ilde{b}_m$
φ	c_1	C_r	C_n	α		φ	\tilde{c}_1	\tilde{c}_r	\tilde{c}_n	\tilde{lpha}

Для элементов "разрешающей" строки:

$$\begin{cases} \mathcal{U}_{sj} = -\frac{a_{sj}}{a_{sr}}, \ j \neq r \\ \mathcal{U}_{sr} = \frac{1}{a_{sr}} \\ \mathcal{U}_{s} = -\frac{b_{s}}{a_{sr}} \end{cases}$$

Для элементов "разрешающего" столбца:

$$\begin{cases} \partial_{0r}^{\epsilon} = \frac{a_{ir}}{a_{sr}}, & i \neq s \\ \partial_{0}^{\epsilon} = \frac{c_{r}}{a_{sr}} \end{cases}$$

Для остальных элементов:

$$\begin{cases} \mathcal{A}_{ij}^{\alpha} = a_{ij} - \frac{a_{ir}a_{sj}}{a_{sr}}, & i \neq s, j \neq r \\ \mathcal{B}_{i}^{\alpha} = b_{i} - \frac{a_{ir}b_{s}}{a_{sr}}, & i \neq s \end{cases}$$

$$\mathcal{B}_{i}^{\alpha} = c_{j} - \frac{c_{r}a_{sj}}{a_{sr}}, & j \neq r$$

$$\mathcal{B}_{ij}^{\alpha} = c_{j} - \frac{c_{r}a_{sj}}{a_{sr}}, & j \neq r$$

$$\mathcal{B}_{ij}^{\alpha} = c_{j} - \frac{c_{r}b_{s}}{a_{sr}}$$

Примеры.

Пример 1

1. Целевая функция имеет вид: $\varphi(x) = x_1 + 2x_2 \rightarrow \min$

$$X: \begin{cases} x_1 - x_2 \ge 1 \\ 2x_1 + x_2 \le 10 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Приводим к основному виду задачи линейного программирования (ЗЛП) $\begin{cases} A_x - b \ge 0 \\ x \ge 0 \end{cases}$

$$\Rightarrow \begin{cases} y_1 = x_1 - x_2 - 1 \ge 0 \\ y_2 = -2x_1 - x_2 + 10 \ge 0 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Рис.1

На рис.1 представлено графическое решение задачи с определением допустимого множества и линии уровня целевой функции. Как видно из рис 1, решение задачи достигается в точке (1,0). Решим задачу с помощью алгоритма симплекс-метода.

Составляем таблицу: Начинаем решение с точки $x_1 = 0$, $x_2 = 0$.

 x_1 x_2 x_3 x_4 x_5 x_5 x_6 x_6 x_6 x_6 x_6 x_7 x_8 x_8 x_8 x_8 x_8 x_9 x_9

Разрешающий элемент - а_{11.}

- ⇒ Делаем первый шаг преобразований:
 - а) Для 1-ой строки имеем:

$$\begin{aligned} &\mathcal{A}_{P_1}' = \frac{1}{a_{11}} = 1; \ \left(\mathcal{A}_{Sr}' = \frac{1}{a_{sr}} \right) \\ &\mathcal{A}_{P_2}' = -\frac{a_{12}}{a_{11}} = 1; \ \left(\mathcal{A}_{Sj}' = -\frac{a_{sj}}{a_{sr}}; \quad j \neq r \right) \\ &\mathcal{B}_{1}'' = -\frac{b_1}{a_{11}} = \frac{-1}{1} = -1; \ \left(\mathcal{B}_{S}'' = -\frac{b_s}{a_{sr}} \right) \end{aligned}$$

б) Для 2-ой строки имеем:

$$\begin{aligned} &\mathcal{B}_{21} = \frac{a_{21}}{a_{11}} = -2; \ \left(\mathcal{B}_{0r}^{\bullet} = \frac{a_{ir}}{a_{sr}} \right) \\ &\mathcal{B}_{22} = a_{22} - \frac{a_{21}a_{12}}{a_{11}} = -1 - \frac{\left(-2\right)\left(-1\right)}{1} = -3; \ \left(\mathcal{B}_{0}^{\bullet} = a_{ij} - \frac{\left(a_{ir}a_{sj}\right)}{a_{sr}}, \ j \neq r \right) \\ &\mathcal{B}_{2}^{\bullet} = b_{2} - \frac{a_{21}b_{1}}{a_{11}} = -10 - \frac{\left(-2\right)\left(1\right)}{1} = -8; \ \left(\mathcal{B}_{i}^{\bullet} = b_{i} - \frac{a_{ir}b_{s}}{a_{sr}} \right) \end{aligned}$$

в) Для коэффициентов ф при целевой функции имеем:

$$\mathcal{E}_{p} = \frac{c_{1}}{a_{11}} = 1; \quad \left(\mathcal{E}_{p} = \frac{c_{r}}{a_{sr}} \right)$$

$$\mathcal{E}_{2} = c_{2} - \frac{c_{1}a_{12}}{a_{11}} = 2 - \frac{(1)(-1)}{1} = 3; \quad \left(\mathcal{E}_{p} = c_{j} - \frac{c_{r}a_{sj}}{a_{sr}} \right)$$

$$\mathcal{E}_{6} = 0 + \frac{c_{1}b_{1}}{a_{11}} = \frac{1 \cdot 1}{1} = 1; \quad \left(\mathcal{E}_{6} = \alpha + \frac{c_{r}b_{s}}{a_{sr}} \right)$$

⇒ получаем таблицу вида:

	<i>y</i> ₁	x_2	-b	Пришли в точку $x_1=1, x_2=0.$
x_1	1	1	1	\Rightarrow поскольку $\forall i\ b_i > 0\ $ точка $(1,0)$ – крайняя,
<i>y</i> ₂	-2	-3	8	и поскольку $\forall r \ c_r > 0 \ $ точка (1,0) — оптимальная, при этом
φ	1	3	1)4	$\varphi_{\min} = 1$.

2. Пример 2

Целевая функция имеет вид: $\varphi(x) = x_1 \rightarrow \min$

$$X: \begin{cases} x_1 + x_2 \le 2 \\ x_2 \ge 1 \\ x_1 - x_2 \ge 1 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Приводим к основному виду задачи линейного программирования:

$$\begin{cases} y_1 = -x_1 - x_2 + 2 \le 0 \\ y_2 = x_2 - 1 \ge 0 \\ y_3 = x_1 - x_2 - 1 \ge 0 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Рис.2

На рис.2 представлено графическое решение задачи с определением допустимого множества и линии уровня целевой функции. Как видно из рис 2, допустимое множество - пусто. Решим задачу с помощью алгоритма симплекс-метода.

Составим таблицу:

	x_1	χ_2	-b	Начинаем решение с точки $x_1 = 0$, $x_2 = 0$.
<i>y</i> ₁	-1	-1	2	Ищем крайнюю точку. Начинаем решение с точки $x_1 = 0$, $x_2 = 0$.
y_2	0	1	-1	Можно продолжать её искать, поскольку для $-b_2 < 0$ существует $a_{22} > 0$ и
<i>y</i> ₃	1	-1	-1	для $b_3 < 0$ существует $a_{31} > 0$.
φ	1	0	0	Выбираем \forall из b_2 или b_3 .

Допустим, выбрали b_2 , тогда в столбце 2 рассмотрим соотношения:

$$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ – тах среди отрицательных \Rightarrow разрешающий элемент a_{22} .

⇒ Делаем первый шаг преобразований:

а) Для 2-ой строки:

$$\begin{aligned} &\mathcal{A}_{21} = -\frac{a_{21}}{a_{22}} = 0; \ \left(\mathcal{A}_{3j}' = -\frac{a_{sj}}{a_{sr}}, \ j \neq r \right), \\ &\mathcal{A}_{22} = \frac{1}{a_{22}} = 1; \ \left(\mathcal{A}_{3r}' = \frac{1}{a_{sr}} \right) \\ &\mathcal{B}_{2}' = -\frac{b_{2}}{a_{22}} = \frac{-1}{1} = -1; \ \left(\mathcal{B}_{s}' = -\frac{b_{s}}{a_{sr}} \right) \end{aligned}$$

б) Для 1-ой строки:

$$\begin{split} &\mathcal{A}_{01}^{\prime}=a_{11}-\frac{a_{12}a_{21}}{a_{22}}=-1-\frac{(-1)\cdot 0}{1}=-1;\;\left(\mathcal{A}_{0}^{\prime}=a_{ij}-\frac{a_{ir}a_{sj}}{a_{sr}};\;j\neq r\right)\\ &\mathcal{A}_{02}^{\prime}=\frac{a_{12}}{a_{22}}=-1;\;\left(\mathcal{A}_{0r}^{\prime}=\frac{a_{ir}}{a_{sr}}\right)\\ &\mathcal{B}_{1}^{\prime\prime}=b_{1}-\frac{a_{12}b_{2}}{a_{22}}=-2-\frac{(-1)\cdot 1}{1}=-1;\;\left(\mathcal{B}_{i}^{\prime\prime}=b_{i}-\frac{a_{ir}b_{s}}{a_{sr}}\right) \end{split}$$

в) Для 3-ей строки:

$$\begin{aligned} &\mathcal{B}_{31}^{\prime}=a_{31}-\frac{a_{32}a_{21}}{a_{22}}=1-\frac{(-1)(0)}{1}=1;\;\left(\mathcal{B}_{0j}^{\prime}=a_{ij}-\frac{a_{ir}a_{sj}}{a_{sr}};\;j\neq r\right)\\ &\mathcal{B}_{32}^{\prime}=\frac{a_{32}}{a_{22}}=\frac{(-1)}{1}=-1;\;\left(\mathcal{B}_{0r}^{\prime}=\frac{a_{ir}}{a_{sr}}\right)\\ &\mathcal{B}_{3}^{\prime0}=b_{3}-\frac{a_{32}b_{2}}{a_{22}}=1-\frac{(-1)\cdot 1}{1}=2;\;\left(\mathcal{B}_{i}^{\prime0}=b_{i}-\frac{a_{ir}b_{s}}{a_{sr}}\right) \end{aligned}$$

г) Для коэффициентов φ имеем:

$$\begin{split} & \aleph_{1}=c_{1}-\frac{c_{2}a_{21}}{a_{22}}=1; \ \left(\aleph_{2}=c_{j}-\frac{c_{r}a_{sj}}{a_{sr}}; \ j\neq r \right) \\ & \aleph_{2}=\frac{c_{2}}{a_{22}}=0; \ \left(\aleph_{2}=\frac{c_{r}}{a_{sr}} \right) \\ & \aleph_{3}=0+0=0; \ \left(\aleph_{4}=\alpha+\frac{c_{r}b_{s}}{a_{sr}} \right) \end{split}$$

Делаем второй шаг преобразований:

а) Для 1-ой строки имеем:

$$\begin{aligned} &\mathcal{A}_{01}' = \frac{1}{a_{11}} = -1; \ \left(\mathcal{A}_{0r}' = \frac{1}{a_{sr}} \right) \\ &\mathcal{A}_{02}' = -\frac{a_{12}}{a_{11}} = -1; \ \left(\mathcal{A}_{0j}' = -\frac{a_{sj}}{a_{sr}}; \ j \neq r \right) \\ &\mathcal{B}_{1}'' = -\frac{b_{1}}{a_{11}} = \frac{1}{-1} = -1; \ \left(\mathcal{B}_{s}'' = -\frac{b_{s}}{a_{sr}} \right) \end{aligned}$$

б) Для 2-ой строки имеем:

$$\begin{aligned} &\mathcal{A}_{21} = \frac{a_{21}}{a_{11}} = 0; \ \left(\mathcal{A}_{0r} = \frac{a_{ir}}{a_{sr}} \right) \\ &\mathcal{A}_{22} = a_{22} - \frac{a_{21}a_{12}}{a_{11}} = 1 - 0 = 1; \ \left(\mathcal{A}_{0j} = a_{ij} - \frac{a_{ir}a_{sj}}{a_{sr}}; \ j \neq r \right) \end{aligned}$$

$$b_2^{\prime 0} = b_2 - \frac{a_{21}b_1}{a_{11}} = -1 - 0 = -1; \left(b_i^{\prime 0} = b_i - \frac{a_{ir}b_s}{a_{sr}}\right)$$

в) Для 3-ей строки имеем:

$$\begin{aligned} &\mathcal{B}_{31}^{\prime} = \frac{a_{31}}{a_{11}} = -1; \ \left(\mathcal{B}_{ir}^{\prime} = \frac{a_{ir}}{a_{sr}} \right) \\ &\mathcal{B}_{32}^{\prime} = a_{32} - \frac{a_{31}a_{12}}{a_{11}} = -1 - \frac{1 \cdot (-1)}{(-1)} = -2; \ \left(\mathcal{B}_{ij}^{\prime} = a_{ij} - \frac{a_{ir}a_{sj}}{a_{sr}}; \ j \neq r \right) \\ &\mathcal{B}_{3}^{\prime 0} = b_{3} - \frac{a_{31}b_{1}}{a_{11}} = 2 - \frac{1 \cdot (-1)}{(-1)} = 1 \end{aligned}$$

г) Для коэффициентов φ имеем:

$$\begin{split} & \mathscr{C}_{P} = \frac{c_{1}}{a_{11}} = -1; \; \left(\mathscr{C}_{P} = \frac{c_{r}}{a_{sr}} \right) \\ & \mathscr{C}_{2} = c_{2} - \frac{c_{1}a_{12}}{a_{11}} = 0 - \frac{1 \cdot \left(-1\right)}{\left(-1\right)} = -1; \; \left(\mathscr{C}_{P} = c_{j} - \frac{c_{r}a_{sj}}{a_{sr}}; \; j \neq r \right) \\ & \mathscr{C}_{0} = 0 + \frac{c_{1} \cdot b_{1}}{a_{11}} = \frac{1 \cdot \left(-1\right)}{\left(-1\right)} = 1; \; \left(\mathscr{C}_{0} = \alpha + \frac{c_{r} \cdot b_{s}}{a_{sr}} \right) \end{split}$$

⇒ приходим к таблице:

		<i>y</i> ₁	y_2	-b	
-	x_1	-1	-1	1	Пришли в точку $x_1=1, x_2=1.$
	x_2	0	1	1 /	В этой строке все элементы $a_{ij} < 0$ при $b_i < 0$
	<i>y</i> ₃	$\begin{bmatrix} -1 \end{bmatrix}$	-2	-1	⇒ допустимое множество пусто.
	φ	-1	-1	1	

3. Пример 3

Целевая функция имеет вид: $\varphi(x) = -x_1 \to \min$

$$X : \begin{cases} x_1 + x_2 \ge 3 \\ x_1 - x_2 \ge -1 \\ -x_1 + 2x_2 \ge -1 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Приводим к основному виду задачи линейного программирования:

$$\begin{cases} y_1 = x_1 + x_2 - 3 \ge 0 \\ y_2 = x_1 - x_2 + 1 \ge 0 \\ y_3 = -x_1 + 2x_2 + 1 \ge 0 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Рис.3

На рис.3 представлено графическое решение задачи с определением допустимого множества и линии уровня целевой функции. Как видно из рис 3, целевая функция неограничена на допустимом множестве. Решим задачу с помощью алгоритма симплексметода.

Составим таблицу:

	x_1	x_2	<i>−b</i>	Начинаем решение с точки $x_1 = 0$, $x_2 = 0$.
<i>y</i> ₁	1	1	_3 ←	$_{-}$ Точка $(0,0)$ – не крайняя и можно продолжать искать крайнюю точку, т.к.
<i>y</i> ₂	1	-1	1	для $-b_1=-3$ существует a_{11} и $a_{12}>0 \Rightarrow$ выбираем \forall из них, например 1-й
<i>y</i> ₃	(-1)	2	1	столбец.
φ	-1	0	0	Рассмотрим отношения $\begin{pmatrix} -3 \\ 1 \end{pmatrix} u \begin{pmatrix} 1 \\ -1 \end{pmatrix} \Rightarrow a_{31}$ — разрешающий элемент

⇒ Делаем первый шаг преобразований:

а) Для 3-ей строки имеем:

$$\mathcal{A}_{91} = \frac{1}{a_{31}} = -1; \quad \left(\mathcal{A}_{9r} = \frac{1}{a_{sr}} \right)$$

$$\mathcal{A}_{92} = -\frac{a_{32}}{a_{31}} = \frac{-2}{-1} = 2; \quad \left(\mathcal{A}_{9j} = -\frac{a_{sj}}{a_{sr}}; j \neq r \right)$$

$$\mathcal{B}_{3}^{60} = -\frac{b_{3}}{a_{31}} = \frac{1}{-1} = -1; \quad \left(\mathcal{B}_{s}^{60} = -\frac{b_{s}}{a_{sr}} \right)$$

б) Для 1-ой строки имеем:

$$\begin{aligned} &\mathcal{A}_{11}^{\prime} = \frac{a_{11}}{a_{31}} = \frac{1}{-1} = -1; \ \left(\mathcal{A}_{0r}^{\prime} = \frac{a_{ir}}{a_{sr}} \right) \\ &\mathcal{A}_{12}^{\prime} = a_{12} - \frac{a_{11}a_{32}}{a_{31}} = 1 - \frac{1 \cdot 2}{-1} = 3; \ \left(\mathcal{A}_{0}^{\prime} = a_{ij} - \frac{a_{ir}a_{sj}}{a_{sr}} \right) \\ &\mathcal{B}_{1}^{\prime 0} = b_{1} - \frac{a_{11}b_{3}}{a_{31}} = 3 - \frac{1 \cdot (-1)}{-1} = 2; \ \left(\mathcal{B}_{i}^{\prime 0} = b_{i} - \frac{a_{ir}b_{s}}{a_{sr}} \right) \end{aligned}$$

в) Для 2-ой строки имеем:

$$\begin{split} &\mathcal{A}_{21} = \frac{a_{21}}{a_{31}} = \frac{1}{-1} = -1; \ \left(\mathcal{A}_{9r} = \frac{a_{ir}}{a_{sr}} \right) \\ &\mathcal{A}_{22} = a_{22} - \frac{a_{21}a_{32}}{a_{31}} = -1 - \frac{1 \cdot 2}{-1} = 1; \ \left(\mathcal{A}_{9} = a_{ij} - \frac{a_{ir}a_{sj}}{a_{sr}} \right) \\ &\mathcal{B}_{2}^{0} = b_{2} - \frac{a_{21}b_{3}}{a_{31}} = -1 - \frac{1 \cdot (-1)}{1} = -2; \ \left(\mathcal{B}_{i}^{0} = b_{i} - \frac{a_{ir}b_{s}}{a_{sr}} \right) \end{split}$$

г) Для коэффициентов φ имеем:

$$\varrho_{p} = \frac{c_{1}}{a_{31}} = \frac{1}{-1} = 1; \left(\varrho_{p} = \frac{c_{r}}{a_{sr}} \right)$$

$$\frac{\partial c_{2}}{\partial c_{2}} = c_{2} - \frac{c_{1}a_{32}}{a_{31}} = 0 - \frac{(-1)\cdot(-1)}{-1} = -2; \quad \left(\frac{\partial c_{2}}{\partial c_{3}} = \frac{c_{r}a_{sj}}{a_{sr}}; j \neq r\right)$$

$$\frac{\partial c_{2}}{\partial c_{3}} = \frac{c_{1}b_{3}}{a_{31}} = \frac{(-1)\cdot(-1)}{-1} = -1; \quad \left(\frac{\partial c_{2}}{\partial c_{3}} = \frac{c_{r}b_{s}}{a_{sr}}\right)$$

⇒ приходим к таблице:

$$y_3$$
 x_2 $-b$ Пришли в точку $x_1=1$, $x_2=0$
 y_1 -1 3 -2 Точка $(1,0)$ – не крайняя.

 y_2 -1 1 2 Крайнюю точку можно искать, т.к. для $-b_1=-2$ существует $a_{12}>0$.

 x_1 $x_2=0$ Точка $x_1=1$ $x_2=0$ Крайнюю точку можно искать, т.к. для $x_1=1$ $x_2=1$ $x_2=1$ $x_3=1$ $x_4=1$ $x_4=1$

⇒ Делаем второй шаг преобразований:

а) Для 1-ой строки имеем:

$$\begin{split} &\mathcal{A}_{01} = \frac{a_{11}}{a_{12}} = -\frac{\left(-1\right)}{3} = \frac{1}{3}; \; \left(\mathcal{A}_{0j} = -\frac{a_{sj}}{a_{sr}}; \; j \neq r\right) \\ &\mathcal{A}_{02} = \frac{1}{a_{12}} = \frac{1}{3}; \; \left(\mathcal{A}_{0r} = \frac{1}{a_{sr}}\right) \\ &\mathcal{B}_{1}^{6} = -\frac{b_{1}}{a_{12}} = \frac{\left(-2\right)}{3} = -\frac{2}{3}; \; \left(\mathcal{B}_{s}^{6} = -\frac{b_{s}}{a_{sr}}\right) \end{split}$$

б) Для 2-ой строки имеем:

$$\begin{aligned} &\mathcal{U}_{21} = a_{21} - \frac{a_{22}a_{11}}{a_{12}} = -1 - \frac{1 \cdot (-1)}{3} = -\frac{2}{3}; \quad \left(\mathcal{U}_{ij} = a_{ij} - \frac{a_{ir}a_{sj}}{a_{sr}}; \ j \neq r \right) \\ &\mathcal{U}_{22} = \frac{a_{22}}{a_{12}} = \frac{1}{3}; \quad \left(\mathcal{U}_{ij} = \frac{a_{ir}}{a_{sr}} \right) \\ &\mathcal{U}_{22} = b_{3} - \frac{a_{22}b_{1}}{a_{12}} = -2 - \frac{1 \cdot 2}{3} = -2\frac{2}{3}; \quad \left(\mathcal{U}_{ij} = b_{i} - \frac{a_{ir}b_{s}}{a_{sr}} \right) \end{aligned}$$

в) Для 3-ей строки имеем:

$$\begin{aligned} &\mathcal{A}_{91} = a_{31} - \frac{a_{32}a_{11}}{a_{12}} = -1 - \frac{2 \cdot (-1)}{3} = -\frac{1}{3}; \ \left(\mathcal{A}_{9} = a_{ij} - \frac{a_{ir}a_{sj}}{a_{sr}}; \ j \neq r \right) \\ &\mathcal{A}_{92} = \frac{a_{32}}{a_{12}} = \frac{2}{3}; \ \left(\mathcal{A}_{9r} = \frac{a_{ir}}{a_{sr}} \right) \\ &\mathcal{B}_{3}^{6} = b_{3} - \frac{a_{32}b_{1}}{a_{12}} = -1 - \frac{2 \cdot 2}{3} = -2\frac{1}{3}; \ \left(\mathcal{B}_{i}^{6} = b_{i} - \frac{a_{ir}b_{s}}{a_{sr}} \right) \end{aligned}$$

г) Для коэффициентов φ имеем:

$$\begin{aligned} &\mathscr{H}_{P} = c_{1} - \frac{c_{2}a_{11}}{a_{12}} = 1 - \frac{(-2)\cdot(-1)}{3} = \frac{1}{3}; \ \left(\mathscr{H}_{9} = c_{j} - \frac{c_{r}a_{sj}}{a_{sr}} \right) \\ &\mathscr{H}_{9} = \frac{c_{2}}{a_{12}} = \frac{-2}{3}; \ \left(\mathscr{H}_{9} = \frac{c_{r}}{a_{sr}} \right) \\ &\mathscr{H}_{9} = \alpha + \frac{c_{2}b_{1}}{a_{12}} = -1 + \frac{(-2)\cdot2}{3} = -\frac{7}{3}; \ \left(\mathscr{H}_{9} = \alpha + \frac{c_{r}b_{s}}{a_{sr}} \right) \end{aligned}$$

⇒ приходим к таблице:

	<i>y</i> ₃	y_1	-b
x_2	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$ Пришли в точку $x_1 = 2\frac{1}{3}$, $x_2 = \frac{2}{3}$
y_2	$-\frac{2}{3}$	$\frac{1}{3}$	$2\frac{2}{3}$ \Rightarrow Точка $\left(2\frac{1}{3};\frac{2}{3}\right)$ – крайняя, но
x_1	$-\frac{1}{3}$	$\frac{2}{3}$	$2\frac{1}{3}$ в этом столбце при $c_j = -\frac{2}{3} < 0$ все $a_{ij} > 0 \Rightarrow$ оптимальной точки нет, $\inf \varphi = -\infty$ (целевая функция не ограничена на допустимом множестве)
φ	$\frac{1}{3}$	$\left(-\frac{2}{3}\right)$	7