24/10/2015 Coursera

Feedback — Week 5: Turing Machine

Help Center

You submitted this homework on **Sat 24 Oct 2015 8:17 PM CEST**. You got a score of **4.00** out of **4.00**.

Question 1

The Turing machine M has:

- States q and p; q is the start state.
- Tape symbols 0, 1, and B; 0 and 1 are input symbols, and B is the blank.
- The following next-move function:

State	Таре	Move
	Symbol	
q	0	(q,0,R)
q	1	(p,0,R)
q	В	(q,B,R)
р	0	(q,0,L)
р	1	none (halt)
р	В	(q,0,L)

Your problem is to describe the property of an input string that makes M halt. Identify a string that makes M halt from the list below.

Your Answer		Score	Explanation
1001			
11010	~	1.00	
0010			
001010			
Total		1.00 / 1.00	

24/10/2015 Coursera

Question 2

The Turing machine M has:

- States q and p; q is the start state.
- Tape symbols 0, 1, and B; 0 and 1 are input symbols, and B is the blank.
- The following next-move function:

State	Таре	Move
	Symbol	
q	0	(q,0,R)
q	1	(p,0,R)
q	В	(q,B,R)
р	0	(q,0,L)
р	1	none (halt)
р	В	(q,0,L)

Simulate M on the input 1010110, and identify one of the ID's (instantaneous descriptions) of M from the list below.

Score	Explanation
1.00	
1.00 / 1.00	
	1.00

Question 3

A Turing machine M with start state q_0 and accepting state q_f has the following transition function:

δ(q,a)	0	1	В
q_0	(q ₀ ,1,R)	(q ₁ ,1,R)	(q_f,B,R)
q ₁	(q ₂ ,0,L)	(q ₂ ,1,L)	(q ₂ ,B,L)
q ₂	_	(q ₀ ,0,R)	-

Deduce what M does on any input of 0's and 1's. Hint: consider what happens when M is started in state q_0 at the left end of a sequence of any number of 0's (including zero of them) and a 1. Demonstrate your understanding by identifying the true transition of M from the list below.

Your Answer		Score	Explanation
q ₀ 0011 -* 1100Bq _f	~	1.00	
o q ₀ 1010 -* 1001Bq _f			
o q ₀ 0011 -* 1100q _f			
o q ₀ 1010 -* 0101q _f			
Total		1.00 / 1.00	

Question 4

A nondeterministic Turing machine M with start state q_0 and accepting state q_f has the following transition function:

δ(q,a)	0	1	В
q ₀	{(q ₁ ,0,R)}	{(q ₁ ,0,R)}	{(q ₁ ,0,R)}
q ₁	$\{(q_1,1,R), (q_2,0,L)\}$	$\{(q_1,1,R), (q_2,1,L)\}$	{(q ₁ ,1,R), (q ₂ ,B,L)}
q_2	$\{(q_f,0,R)\}$	{(q ₂ ,1,L)}	{}
q _f	{}	{}	{}

Simulate all sequences of 5 moves, starting from initial ID q_01010 . Find, in the list below, one of the ID's reachable from the initial ID in EXACTLY 5 moves.

Your Answer		Score	Explanation
● 01111q ₁	~	1.00	
01q ₂ 10			
011q ₂ 11			
Oq ₂ 111			

24/10/2015 Coursera

Total	1.00 / 1.00