~ Principal Component Analysis (PCA) Algorithm ~

Before applying PCA, there is a data pre-processing step which we should always do.

Given a training set of m unlabeled examples:

• Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

It's important to always perform Preprocessing - feature scaling / mean normalization.

Mean Normalization:

$$\bullet \ \mu_j = \sum_{i=1}^m x_j^{(i)}$$

- Replace each $x_j^{(i)}$ with $x_j \mu_j$. In other words, determine the mean of each feature set, and then for each feature subtract the mean from the value, so we re-scale the mean to be 0.
- Feature Scaling:
- If different features on different scales (e.g., x_1 = size of house, x_2 = number of bedrooms), scale features to have comparable range of values.
 - e.g. $x_j^{(i)}$ is set to $(x_j \mu_j) / s_j$
 - Where s_i is some measure of the range, so could be:
 - Biggest / smallest
 - Standard deviation σ (more commonly)

Having done this sort of data pre-processing, here's what the PCA algorithm does:

We previously saw PCA does is, it tries to find a lower dimensional sub-space onto which to project the data, so as to **minimize sum of the squared projection errors**, and so what we wanted to do specifically is find a vector $u^{(1)}$, which specifies that direction or in the 2D case we want to find two vectors, $u^{(1)}$ and $u^{(2)}$, to define the surface onto which to project the data.

- Need to compute the z vectors: z vectors are the new, lower dimensionality feature vectors
- A mathematical derivation for the *u* vectors is very complicated
 - But once we've done it, the procedure to find each *u* vector is not that hard.

PCA Algorithm description:

Reduce data from n-dimensions to k-dimensions

• Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{T}$$

This is commonly denoted as Σ (greek upper case sigma) - NOT summation symbol

- This is an $[n \ x \ n]$ matrix
 - Remember than $x^{(1)}$ is a $[n \ x \ 1]$ matrix

Compute "eigenvectors" of matrix Σ :

- On octave, the way we do that is to use the command: [U,S,V] = svd(sigma)
 - SVD stands for singular value decomposition.
 - · More numerically stable than eig
 - eig = also gives a eigenvector

Compute "covariance matrix": $\sum = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{T}$ sigma $\sum_{i=1}^{n} \sum_{j=1}^{n} (x^{(i)})(x^{(i)})^{T}$ or $\sum_{i=1}^{n} \sum_{j=1}^{n} (x^{(i)})(x^{(i)})^{T}$ or $\sum_{j=1}^{n} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{T}$

And what the SVD outputs three matrices, U, S, and V. The thing we really need out of the SVD is the u matrix.

- U matrix is also an $[n \ x \ n]$ matrix $(U \in \mathbb{R}^{n \ x \ n})$
- Turns out the columns of U are the u vectors we want
 - So to reduce a system from *n*-dimensions to *k*-dimensions
 - Just take the first k-vectors from U (first k columns)

From [U,S,V] = svd(sigma), we get:

$$U = \begin{bmatrix} & & & & & \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ & & & & \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$\times \in \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$$

Next we need to find some way to change x (which is n dimensional) to z (which is k dimensional) $x \in \mathbb{R}^n \to z \in \mathbb{R}^k$ (reduce the dimensionality).

- ullet Take first k columns of the U matrix and stack in columns
 - $n \ x \ k$ matrix call this U_{reduce}

We calculate z as follows:

- So $U_{reduce}^T * x^{(i)}$ which is $[k \; x \; n] \; * \; [n \; x \; 1]$
- Generates a matrix which is $[k \ x \ 1] = z^{(i)}$

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

Sigma =
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}$$
$$[U,S,V] = \text{svd}(\text{Sigma});$$

- Calculate sigma (covariance matrix Σ)
 - In MATLAB or octave we can implement this as follows:
 - sigma = (1 / m) * (X' * X);
- Next we can apply SVD (Singular Value Decomposition) routine to calculate the eigenvectors U, S, V
 - Take *k* vectors from *U*:
 - Ureduce = U(:, 1:k);
- Finally calculate z:
 - z = Ureduce' * x;

Video Question: In PCA, we obtain $z \in \mathbb{R}^k$ from $x \in \mathbb{R}^n$ as follows:

$$z = \begin{bmatrix} | & | & & | \\ u^{(1)} & u^{(2)} & \dots & u^{(k)} \\ | & | & & | \end{bmatrix}^T x = \begin{bmatrix} --- & (u^{(1)})^T & --- \\ --- & (u^{(2)})^T & --- \\ & \vdots & & \\ --- & (u^{(k)})^T & --- \end{bmatrix} x$$

Which of the following is a correct expression for z_j ?

- $z_i = (u^{(k)})^T x$
- $z_j = (u^{(j)})^T x_j$

$$z_j = (u^{(j)})^T x$$