Algoritmos para Análise de Sequências Biológicas

Alinhamentos de sequências

Sumário

- alinhmamento de sequências
- matrizes de substituição
- matrizes de pontos

Razões para alinhar sequências

- Há muitas sequências para as quais a estrutura/função não é conhecida;
- Um bom alinhamento de duas sequências implica que estas são similares e que poderão ter uma ascendência comum;
- Duas sequências similares têm uma probabilidade mais alta de terem estruturas e funções semelhantes;
- Obtemos informações valiosas ao alinharmos uma sequência com outra cuja função/estrutura é conhecida;

Alinhamento e similaridade

- Alinhamento de sequências: procedimento de comparação de duas ou mais sequências, procurando séries de caracteres individuais que se encontrem na mesma ordem nas sequências.
- Sequências são similares se número de caracteres idênticos (emparelhados durante o alinhamento) é elevado.
- Não é possível comparar sequências biológicas sem realizar o seu alinhamento dada a existência de mutações de inserção/remoção

Exemplos de alinhamentos

DNA/RNA

Proteínas

L G P S S G C A S R I W T K S A
| | | | | | | | | | | | | | |
T G P S - G - - S - I W S K S G

Tipos de alinhamento

Globais

- Tentam-se alinhar ambas as sequências na totalidade
- Podem identificar genes/proteínas com estruturas globais e funções semelhantes

Globais

L G P S S G C A S R I W T K S A
| | | | | | | | | | | | | | |
T G P S - G - - S - T W S K S G

Locais

- Tentam-se alinhar segmentos das sequências
- Podem identificar zonas conservadas ao longo da evolução, e.g., zonas funcionais ativas de proteínas

Locais

Problema de otimização

Função de mérito avalia cada alinhamento possível Alinhamento de duas sequências Procura pelo melhor emparelhamento de caracteres entre duas sequências

Problema de optimização pretende-se descobrir a melhor solução de entre um universo de possíveis soluções

Formulação

Dados

- Duas sequências (e.g. proteínas, DNA)
- Função objetivo que permite avaliar cada possível alinhamento.

Retornar

Emparelhamento óptimo entre as duas sequências, retendo a ordem relativa dos elementos de cada sequência, podendo introduzir-se **espaçamentos** em cada uma delas, **maximizando a função objetivo**

Universo de procura de soluções

Alinhamento entre sequências de tamanho n com espamentos

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \approx \frac{2^{2^n}}{\sqrt{\pi n}}$$

Progressão

N	Combinações		
5	252		
10	184756		
15	155117520		
20	137846528820		

Funções objetivo

- Atribuem um valor numérico à qualidade de um alinhamento
- Medem a similaridade entre as duas sequências, dado o alinhamento
- Possibilidade mais simples: contar número de caracteres idênticos nas duas sequências, posição a posição.

Funções objetivo

Normalmente aditiva, i.e., soma dos termos associados a cada par de caracteres ou espaçamentos, definida por:

- Matriz de substituição para a co-ocorrência de caracteres;
- Função de penalização para a ocorrência de espaçamentos.

A escolha destes parâmetros influencia fortemente o resultado do alinhamento.

Matrizes de substituição

- Atribuem uma pontuação à substituição de um caratere numa string pelo caratere na outra
- Calculadas considerando as probabilidades de substituição de um aminoácido por um outro em sequências relacionadas
- Probabilidades são estimadas por frequências relativas de substituição, calculadas a partir de BDs biológicas
- Valores correspondem ao logaritmo da divisão das probabilidades de substituição em sequências relacionadas, sobre a probabilidade de substituição em sequências não relacionadas (logaritmos tornam coerente a sua soma na função objetivo; valores são multiplicados por 10 e arredondados)

Exemplo

em 1000 sequências

S probabilidade de 10%

L probabilidade de 15%

Par	Esperado	Ocorrências	Score
SS	$10\% \times 10\% \times 1000 = 10$	32	$10 \times log_{10}(32/10) = 5$
SL	$15\% \times 10\% \times 1000 = 15$	9	$10 \times log_{10}(9/15) = -2$
LL	$15\% \times 15\% \times 1000 = 22$	22	$10 \times log_{10}(22/22) = 0$

Matrizes BLOSUM

- Valores das probabilidades são baseados em AAs pertencentes a regiões conservadas (blocks) em famílias de proteínas (provenientes da BD Prosite).
- Família de matrizes, em que a matriz BLOSUMi corresponde a matrizes calculadas para sequências com similaridades previstas de i%.

Matriz BIOSUM62

Figure 1: Matriz BLOSUM62

Penalizações por espaçamentos

Modelo simples

$$P = g \times x$$

Modelos mais utilizado

Distingue entre o início de um espaçamento e a sua extensão (affine gap penalty):

$$P = g + r \times x$$

- P penalidade do espaçamento
- g penalidade por início de um espaçamento
- r penalidade pela extensão de um espaçamento
- x número de caracteres do espaçamento

Valores típicos

- g entre -8 e -14;
- r entre -2 e -4.

Exemplo: penalização constante

Alinhamento

Parâmetros

Matriz BLOSUM62

g -8

Score

$$-1+6+7+4-8+6-8-8+4-2+4+11+5+5+4+0=29$$

Exemplo: affine gap penalties

Alinhamento

Parâmetros

Matriz BLOSUM62

g -12

r -2

Score

$$-1+6+7+4-12+6-12-2+4-2+4+11+5+5+4+0=27$$

Métodos para alinhamentos

Matrizes de pontos

análise e alinhamento visuais

Programação dinâmica – métodos exatos que garantem solução ótima:

Needleman / Wunsch alinhamentos globais Smith / Waterman alinhamentos locais

Métodos heurísticos

- mais rápidos;
- menos precisos;
- usados essencialmente para procura de sequências similares em bases de dados de grandes dimensões
- FASTA
- BLAST

Matrizes de pontos

- Método para comparar duas sequências de forma visual, o que permite procurar zonas de alinhamento e repetições de carateres (diretas ou invertidas), para além de zonas complementares.
- Representa as duas sequências, uma na horizontal (colunas) e a outra na vertical (linhas).
- Pontos representam carateres coincidentes.
- Diagonais representam regiões de similaridade nas duas sequências.

Matrizes de pontos: filtragem

- Para filtrar caracteres coincidentes por pura aleatoriedade, usa-se uma janela deslizante
- Ponto colocado se pelo menos S carateres numa janela de tamanho W à volta são coincidentes

Parâmetros

W window size

S stringency

Valores comuns W/S

DNA 11/ 7 ou 15/ 10

Proteínas 2/1 ou 3/2

Matrizes de pontos: repetições

- Repetições causam problemas aos algoritmos de alinhamento
- Representa-se a matriz de pontos de uma sequência versus si própria
- Repetições identificadas por diagonais (que não a principal)
- Podem analisar-se as repetições variando os parâmetros de filtragem
- Repetições de uma única letra linhas horizontais e verticais; quadrados