# LAB #3

NICOLA BEZZO, MASOUD BASHIRI

Fall 2016

#### Asus Xtion PRO LIVE

#### **RGB**, Depth and Microphones

- Depth Image Size
  - (640x480) : 30 fps
- Field of View
  - Horizontal: 58°
  - Vertical: 45°
  - Diagonal: 70°



## Depth Sensing

- Structured Light (Active Depth Sensing)
  - Project a speckle pattern of infra red laser light (Transmitter)
  - Capture and Analyze the results (Depth Camera)
- Depth from Blur and Stereo Vision (Passive Sensing)
  - Blur: Things further away Astigmatic Lens
  - Stereo Vision: Thing viewed from two vantage points,
  - Look different based on distance



#### Launch 3dSensor

- ssh into your turtlebot
- roslaunch turtlebot\_bringup minimal.launch
- roslaunch turtlebot\_bringup 3dsensor.launch
- rostopic list
  - You should see a number of new topics being published
  - rostopic echo /scan

#### Visualize Kinect data in Rviz

- On your Lenovo Laptop, open a terminal
- Rosrun rviz rviz
- Global Options->Fixed Frame = base\_footprint
- Grid->Reference Frame = odom
- Click on the 'Add' button, from the 'By Display Type' tab select
  DepthCloud, RobotModel and LaserScan
  - Color Image Topic
    - Select camera/rgb/image\_raw
  - Depth Map Topic
    - Select camera/depth\_registered/image\_raw



#### Visualize Kinect data in Rviz



# How to subscribe to the virtual(fake) laser data

- Data Type:
  - #include <sensor\_msgs/LaserScan.h>
  - In python: from sensor\_msgs.msg import LaserScan
- Subscribe:
  - /scan topic
  - Read ranges[0-639]
  - Values range from 0.44 to 10 (meters), some will be NaN (not a number)

### AMR Lab #3 – Due Thu 10/27/2016 during Lab hours

Use the Asus Xtion Pro (kinect) sensor for the following behaviors:

- 1. Use the cruise controller developed in the first lab assignments, set a speed and make the robot stop at 1m from any obstacle in front of the turtlebot.
- 2. run an obstacle avoidance behavior. Use the turtlebot box as the obstacle to avoid. Implement a go-to-goal behavior making the robot move 4m ahead while avoiding the obstacle.
- 3. Implement a follow-me behavior. Make the turtlebot follow you around the lab
- 4. extra: use the camera on the xtion sensor to recognize and follow a specific object (e.g., a red ball, your face, your backpack, a drawing on a piece of paper, etc.)