Anovas RWI Resilience

AJ Perez-Luque ((???))
2017 Dec

Resilience ANOVAs

• Partimos de los datos obtenidos de resiliencia para los RWI (./analysis/chronos/analysis_splines.md))

```
machine <- 'ajpelu'
# machine <- 'ajpeluLap'
di <- paste0('/Users/', machine, '/Dropbox/phd/phd_repos/qpyr_dendro/', sep = '')
# Read diameters data
re <- read.csv(file=paste0(di, 'data/resilience/resilience_rwi.csv'), header=TRUE, sep=',')</pre>
```

Asumptions

• Explorar si se cumplen los supuestos de normalidad y homocedasticidad. Tenemos que comprobar que cada uno de los grupos son normales (1995,2005,2012; site: SJ, CaH, CaL; e interactions)

Normalidad

```
normtestA <- rbind(nrcA, nrtA, nrsA, nrrsA)
normtestA %>% pander()
```

disturb_year	statistic	p_value	var
1995	0.7653	0	$_{\rm rc}$
2005	0.9625	0.1126	rc
2012	0.9435	0.01861	$_{\rm rc}$
1995	0.9857	0.799	${ m rt}$
2005	0.9376	0.01082	${ m rt}$
2012	0.9836	0.7114	${ m rt}$
1995	0.8233	0	rs
2005	0.9683	0.1964	rs
2012	0.9264	0.00403	rs
1995	0.8238	0	rrs
2005	0.9568	0.06517	rrs
2012	0.9741	0.3383	rrs

site	statistic	p_value	var
SJ	0.7237	0	rc

site	statistic	p_value	var
caH	0.8259	1e-05	$_{\rm rc}$
caL	0.8463	3e-05	$_{\rm rc}$
SJ	0.9748	0.2484	rt
caH	0.9791	0.585	rt
caL	0.9497	0.04967	rt
SJ	0.8871	5e-05	$_{\rm rs}$
caH	0.8214	1e-05	$_{\rm rs}$
caL	0.9887	0.9354	$_{\rm rs}$
SJ	0.8034	0	rrs
caH	0.9102	0.00199	rrs
caL	0.9286	0.00839	rrs

```
write.csv(normtestB,
```

file=paste0(di, '/out/anovas_resilience/rwi/normo_site.csv'), row.names = F)

normtestAB <- rbind(nrcAB, nrtAB, nrsAB, nrrsAB)
normtestAB %>% pander()

disturb_year	site	statistic	p_value	var
1995	SJ	0.8093	0.00119	rc
1995	caH	0.9494	0.5144	rc
1995	caL	0.8885	0.06366	rc
2005	SJ	0.9814	0.9507	rc
2005	caH	0.9657	0.7896	$_{\rm rc}$
2005	caL	0.9375	0.3513	$_{\rm rc}$
2012	SJ	0.9816	0.9528	$_{\rm rc}$
2012	caH	0.9459	0.4625	$_{\rm rc}$
2012	caL	0.972	0.8863	$_{\rm rc}$
1995	SJ	0.9225	0.1106	rt
1995	caH	0.9433	0.4253	rt
1995	caL	0.9437	0.4306	rt
2005	SJ	0.8994	0.04018	rt
2005	$_{\mathrm{caH}}$	0.9703	0.8619	rt
2005	caL	0.9655	0.787	rt
2012	SJ	0.9821	0.9581	rt
2012	$_{\mathrm{caH}}$	0.9647	0.7733	rt
2012	caL	0.9698	0.8556	rt
1995	SJ	0.9439	0.2842	rs
1995	$_{\mathrm{caH}}$	0.8192	0.00655	rs
1995	caL	0.9511	0.5424	rs
2005	SJ	0.8819	0.01911	rs
2005	$_{\mathrm{caH}}$	0.9481	0.4954	rs
2005	caL	0.9484	0.4997	$_{\rm rs}$
2012	SJ	0.956	0.4677	$_{\rm rs}$
2012	$_{\mathrm{caH}}$	0.9526	0.5656	$_{\rm rs}$
2012	caL	0.9424	0.4133	$_{\rm rs}$
1995	SJ	0.8829	0.01993	rrs
1995	$_{\mathrm{caH}}$	0.8944	0.07816	rrs
1995	caL	0.9315	0.2876	rrs
2005	SJ	0.9236	0.1165	rrs
2005	$_{\mathrm{caH}}$	0.9489	0.5077	rrs

disturb_year	site	statistic	p_value	var
2005	caL	0.9433	0.4261	rrs
2012	SJ	0.9577	0.4987	rrs
2012	caH	0.8702	0.03399	rrs
2012	caL	0.982	0.9814	rrs

• No se cumplen los requisitos de normalidad

Heterocedasticidad

fk_stat	fk_pvalue	lev_stat	lev_pvalue	factor	response
26.4	1.854 e - 06	16.02	5.1e-07	disturb_year	rs
39.2	3.081e-09	20.94	9.973e-09	site	rs
47.55	1.202e-07	11.46	1.931e-12	interaction(disturb_year,	$_{ m rs}$
				site)	
38.67	4.012e-09	15.67	6.769 e-07	disturb_year	$_{\rm rc}$
9.58	0.008314	4.701	0.0105	site	$_{\rm rc}$
51	2.618e-08	7.717	1.504 e - 08	interaction(disturb_year,	$_{\rm rc}$
				site)	
24.99	3.736e-06	15.54	7.545e-07	$disturb_year$	$_{ m rt}$
2.391	0.3026	1.205	0.3027	site	$_{ m rt}$
12.26	0.1401	1.512	0.158	interaction(disturb_year,	rt
				site)	
32.75	7.745e-08	17.03	2.223e-07	disturb_year	rrs
8.853	0.01196	6.114	0.002814	site	rrs
45.97	2.41e-07	10.33	2.621e-11	interaction(disturb_year,	rrs
				site)	

• Tampoco se cumplen los requisitos de homogeneidad de varianzas entre grupos

Transformación datos

Log

 $\bullet\,$ Probamos a transformar los datos con log y reanalizar los supuestos de homocedasticidad

fk_stat	fk_pvalue	lev_stat	lev_pvalue	factor	response
17.93	0.0001276	9.613	0.0001193	disturb_year	logrs
36.16	1.404 e - 08	28.41	3.711e-11	site	$\log rs$
27.17	0.0006601	4.159	0.0001728	interaction(disturb_year,	$\log rs$
				site)	

fk_stat	fk_pvalue	lev_stat	lev_pvalue	factor	response
9.209	0.01001	6.175	0.002661	disturb_year	logrc
3.358	0.1866	1.978	0.1421	site	logrc
22.51	0.004058	3.766	0.0004995	interaction(disturb_year,	logrc
				site)	
9.209	0.01001	6.175	0.002661	disturb_year	logrt
3.358	0.1866	1.978	0.1421	site	logrt
22.51	0.004058	3.766	0.0004995	interaction(disturb_year,	logrt
				site)	
2.543	0.2804	1.734	0.1821	disturb_year	logrrs
2.425	0.2975	0.7345	0.4824	site	logrrs
11.49	0.1754	1.768	0.09388	interaction(disturb_year,	logrrs
				site)	

• Tampoco se cumplen

ANOVAS

• Utilizamos una custom function

OJO SOLO 2005 y 2012

```
# Only 2005 and 2012
re <- re %>% filter(disturb_year != 1995) %>% as.data.frame()
vars <- c('disturb_year','site')
re$disturb_year <- factor(re$disturb_year)</pre>
```

Recovery

Table 6: ANOVA table: rc

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	1.373	1.373	38.33	0
site	2	2.495	1.247	34.83	0
disturb_year:site	2	0.1717	0.08587	2.398	0.09646
Residuals	94	3.366	0.03581		

	Statistic
R^2	0.55
$\mathrm{adj}R^2$	0.52
σ_e	0.19
F	22.56
p	0.00
$d\!f_m$	6.00
$\log \mathrm{Lik}$	27.67
AIC	-41.35
BIC	-23.11
dev	3.37
$d\!f_e$	94.00

```
# Post hoc Define model
mymodel <- aov_rc$mymodel</pre>
postH_rc <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
##
## ### Event ###
## $1smeans
## disturb_year
                    lsmean
                                  SE df lower.CL upper.CL
                0.9166547 0.02700904 94 0.8630276 0.9702817
## 2012
                 1.1407760 0.02700904 94 1.0871489 1.1944031
## Results are averaged over the levels of: site
## Confidence level used: 0.95
##
## $contrasts
## contrast
                  estimate
                                  SE df t.ratio p.value
   2005 - 2012 -0.2241213 0.03819655 94 -5.868 <.0001
## Results are averaged over the levels of: site
##
##
  disturb_year
                                  SE df lower.CL upper.CL .group
                   lsmean
                0.9166547 0.02700904 94 0.8551315 0.9781778
## 2012
                1.1407760 0.02700904 94 1.0792529 1.2022992
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
## $1smeans
## site
                          SE df lower.CL upper.CL
           lsmean
        1.2369397 0.02992124 94 1.1775304 1.2963491
##
  caH 0.9751421 0.03455008 94 0.9065421 1.0437421
##
  caL 0.8740642 0.03455008 94 0.8054642 0.9426642
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
## contrast
             estimate
                               SE df t.ratio p.value
## SJ - caH 0.2617976 0.04570546 94
                                        5.728 < .0001
## SJ - caL 0.3628756 0.04570546 94
                                        7.939 <.0001
   caH - caL 0.1010779 0.04886119 94
                                        2.069 0.1240
##
##
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
##
   site
                           SE df lower.CL upper.CL .group
            lsmean
  caL 0.8740642 0.03455008 94 0.7898457 0.9582827
  caH 0.9751421 0.03455008 94 0.8909236 1.0593606 a
##
## SJ
        1.2369397 0.02992124 94 1.1640044 1.3098751
##
```

```
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                        lsmean
                                       SE df lower.CL upper.CL
## 2005
                SJ 1.0738954 0.04231503 94 0.9898780 1.1579129
## 2012
                     1.3999840 0.04231503 94 1.3159665 1.4840015
## 2005
                caH 0.8657062 0.04886119 94 0.7686911 0.9627212
## 2012
                caH 1.0845780 0.04886119 94 0.9875630 1.1815931
                caL 0.8103624 0.04886119 94 0.7133474 0.9073774
## 2005
## 2012
                caL 0.9377660 0.04886119 94 0.8407509 1.0347810
##
## Confidence level used: 0.95
##
## $contrasts
## contrast
                          estimate
                                           SE df t.ratio p.value
## 2005,SJ - 2012,SJ
                       -0.32608857 0.05984249 94 -5.449 <.0001
## 2005,SJ - 2005,caH
                       0.20818928 0.06463727 94
                                                  3.221 0.0263
## 2005,SJ - 2012,caH -0.01068260 0.06463727 94
                                                 -0.165 1.0000
   2005,SJ - 2005,caL
                                                   4.077 0.0014
##
                        0.26353305 0.06463727 94
## 2005,SJ - 2012,caL
                      0.13612948 0.06463727 94
                                                   2.106 0.5680
## 2012,SJ - 2005,caH 0.53427785 0.06463727 94
                                                   8.266 < .0001
## 2012,SJ - 2012,caH 0.31540598 0.06463727 94
                                                   4.880 0.0001
## 2012,SJ - 2005,caL
                       0.58962163 0.06463727 94
                                                   9.122 <.0001
## 2012,SJ - 2012,caL
                                                   7.151 < .0001
                        0.46221805 0.06463727 94
## 2005,caH - 2012,caH -0.21887188 0.06910015 94
                                                 -3.167 0.0311
##
   2005, caH - 2005, caL 0.05534377 0.06910015 94
                                                  0.801 1.0000
##
   2005, caH - 2012, caL -0.07205980 0.06910015 94
                                                 -1.043 1.0000
## 2012,caH - 2005,caL 0.27421565 0.06910015 94
                                                   3.968 0.0021
## 2012,caH - 2012,caL 0.14681208 0.06910015 94
                                                   2.125 0.5436
##
   2005, caL - 2012, caL -0.12740357 0.06910015 94 -1.844 1.0000
##
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

site

рi

disturb_year*site effect plot

Resistance

Table 8: ANOVA table: rt

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	0.2085	0.2085	9.792	0.00233
site	2	1.527	0.7637	35.86	0
disturb_year:site	2	0.7454	0.3727	17.5	0
Residuals	94	2.002	0.02129		

	Statistic
R^2	0.55
$\mathrm{adj}R^2$	0.53
σ_e	0.15
F	23.30
p	0.00
$d\!f_m$	6.00
$\log \mathrm{Lik}$	53.66
AIC	-93.33
BIC	-75.09
dev	2.00
$d\!f_e$	94.00

```
# Post hoc Define model
mymodel <- aov_rt$mymodel</pre>
postH_rt <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
## ### Event ###
## $1smeans
## disturb_year
                                   SE df lower.CL upper.CL
                    lsmean
                0.7285968 0.02082753 94 0.6872433 0.7699504
## 2005
                 0.7978604 0.02082753 94 0.7565069 0.8392140
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## $contrasts
## contrast
                   estimate
                                    SE df t.ratio p.value
## 2005 - 2012 -0.06926357 0.02945458 94 -2.352 0.0208
## Results are averaged over the levels of: site
##
                                   SE df lower.CL upper.CL .group
## disturb_year
                    lsmean
## 2005
                 0.7285968 0.02082753 94 0.6811544 0.7760393 a
##
   2012
                 0.7978604 0.02082753 94 0.7504179 0.8453029 a
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
```

```
## $1smeans
   site
           lsmean
                          SE df lower.CL upper.CL
        0.6001707 0.02307323 94 0.5543583 0.6459832
   caH 0.8056734 0.02664267 94 0.7527738 0.8585731
##
   caL 0.8838417 0.02664267 94 0.8309420 0.9367413
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
##
## $contrasts
  contrast
                estimate
                                 SE df t.ratio p.value
## SJ - caH -0.20550269 0.03524493 94 -5.831 <.0001
   SJ - caL -0.28367091 0.03524493 94 -8.049 <.0001
   caH - caL -0.07816823 0.03767842 94 -2.075 0.1223
##
##
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
##
                          SE df lower.CL upper.CL .group
   site
           lsmean
##
   SJ
        0.6001707 0.02307323 94 0.5439280 0.6564135 a
##
   caH 0.8056734 0.02664267 94 0.7407299 0.8706170
   caL 0.8838417 0.02664267 94 0.8188981 0.9487852
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                        lsmean
                                       SE df lower.CL upper.CL
## 2005
                     0.4552091 0.03263047 94 0.3904205 0.5199976
## 2012
                     0.7451324 0.03263047 94 0.6803439 0.8099210
##
   2005
                caH 0.8645179 0.03767842 94 0.7897065 0.9393293
## 2012
                caH 0.7468290 0.03767842 94 0.6720176 0.8216404
## 2005
                caL 0.8660635 0.03767842 94 0.7912521 0.9408749
##
   2012
                caL 0.9016198 0.03767842 94 0.8268084 0.9764312
##
## Confidence level used: 0.95
##
## $contrasts
   contrast
                           estimate
                                            SE df t.ratio p.value
                       -0.289923388 0.04614645 94
   2005,SJ - 2012,SJ
                                                  -6.283 <.0001
   2005,SJ - 2005,caH -0.409308846 0.04984386 94
                                                   -8.212 <.0001
   2005,SJ - 2012,caH
                       -0.291619920 0.04984386 94
                                                   -5.851
                                                           <.0001
##
##
   2005,SJ - 2005,caL
                       -0.410854480 0.04984386 94
                                                   -8.243
                                                           <.0001
##
   2005,SJ - 2012,caL
                       -0.446410736 0.04984386 94
                                                   -8.956 <.0001
   2012,SJ - 2005,caH
                       -0.119385458 0.04984386 94
                                                   -2.395 0.2789
   2012,SJ - 2012,caH
                       -0.001696532 0.04984386 94
                                                   -0.034 1.0000
                                                   -2.426 0.2575
## 2012,SJ - 2005,caL
                       -0.120931092 0.04984386 94
## 2012,SJ - 2012,caL -0.156487348 0.04984386 94
                                                   -3.140 0.0339
## 2005,caH - 2012,caH 0.117688926 0.05328533 94
                                                    2.209 0.4444
## 2005,caH - 2005,caL -0.001545634 0.05328533 94 -0.029 1.0000
```

```
## 2005,caH - 2012,caL -0.037101891 0.05328533 94 -0.696 1.0000
## 2012,caH - 2005,caL -0.119234560 0.05328533 94 -2.238 0.4141
## 2012,caH - 2012,caL -0.154790817 0.05328533 94 -2.905 0.0687
## 2005,caL - 2012,caL -0.035556256 0.05328533 94 -0.667 1.0000
##
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Relative Resilience

Table 10: ANOVA table: rrs

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	0.8719	0.8719	55.07	0
site	2	1.194	0.597	37.71	0
disturb_year:site	2	0.09764	0.04882	3.083	0.05047
Residuals	94	1.488	0.01583		

	Statistic
R^2	0.59
$\mathrm{adj}R^2$	0.57
σ_e	0.13
F	27.33
p	0.00
$d\!f_m$	6.00
$\log \mathrm{Lik}$	68.48
AIC	-122.96
BIC	-104.73
dev	1.49
$d\!f_e$	94.00

```
# Post hoc Define model
mymodel <- aov_rrs$mymodel</pre>
postH_rrs <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
## ### Event ###
## $1smeans
                                             lower.CL
## disturb_year
                      lsmean
                                     SE df
                                                         upper.CL
                -0.09203152 0.01795911 94 -0.1276897 -0.05637329
## 2005
                  0.08729792 0.01795911 94 0.0516397 0.12295615
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## $contrasts
## contrast
                  estimate
                                   SE df t.ratio p.value
## 2005 - 2012 -0.1793294 0.02539801 94 -7.061 <.0001
## Results are averaged over the levels of: site
##
## disturb_year
                      lsmean
                                     SE df
                                              lower.CL
                                                          upper.CL .group
## 2005
                 -0.09203152 0.01795911 94 -0.13294007 -0.05112296 a
                  0.08729792 0.01795911 94 0.04638937 0.12820648
##
    2012
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
```

```
## $1smeans
                             SE df
##
   site
                                      lower.CL
                                                  upper.CL
              lsmean
         0.14062958 0.01989552 94 0.10112657 0.18013260
##
   SJ
   caH -0.03516178 0.02297337 94 -0.08077593 0.01045238
##
##
        -0.11256820 0.02297337 94 -0.15818235 -0.06695404
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
##
## $contrasts
  contrast
                {\tt estimate}
                                 SE df t.ratio p.value
   SJ - caH 0.17579136 0.03039091 94
                                         5.784 < .0001
   SJ - caL 0.25319778 0.03039091 94
                                         8.331 <.0001
   caH - caL 0.07740642 0.03248924 94
                                         2.383 0.0576
##
##
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
##
                             SE df
                                      lower.CL
   site
              lsmean
                                                  upper.CL .group
##
   caL
        -0.11256820 0.02297337 94 -0.16856754 -0.05656885
##
   caH -0.03516178 0.02297337 94 -0.09116113 0.02083757
         0.14062958 0.01989552 94 0.09213272 0.18912644
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                          SE df
                                                    lower.CL
                                                                 upper.CL
                           1smean
## 2005
                 SJ
                       0.01386758 0.02813651 94 -0.041998125
                                                             0.069733280
## 2012
                 SJ
                       0.26739159 0.02813651 94 0.211525885
                                                             0.323257290
##
   2005
                     -0.12599273 0.03248924 94 -0.190500882 -0.061484569
                 caH
##
   2012
                       0.05566917 0.03248924 94 -0.008838986 0.120177328
                 caH
##
  2005
                 caL -0.16396940 0.03248924 94 -0.228477554 -0.099461241
##
   2012
                 caL -0.06116699 0.03248924 94 -0.125675149 0.003341164
##
## Confidence level used: 0.95
##
## $contrasts
##
   contrast
                           estimate
                                            SE df t.ratio p.value
   2005,SJ - 2012,SJ
                        -0.25352401 0.03979104 94
                                                  -6.371 <.0001
##
   2005,SJ - 2005,caH
                         0.13986030 0.04297923 94
                                                    3.254 0.0237
   2005,SJ - 2012,caH
                                                   -0.973
##
                        -0.04180159 0.04297923 94
                                                          1.0000
##
   2005,SJ - 2005,caL
                         0.17783698 0.04297923 94
                                                    4.138 0.0011
##
   2005,SJ - 2012,caL
                         0.07503457 0.04297923 94
                                                    1.746 1.0000
   2012,SJ - 2005,caH
                         0.39338431 0.04297923 94
                                                    9.153 <.0001
##
   2012,SJ - 2012,caH
                         0.21172242 0.04297923 94
                                                    4.926 0.0001
## 2012,SJ - 2005,caL
                         0.43136099 0.04297923 94
                                                   10.036 <.0001
## 2012,SJ - 2012,caL
                         0.32855858 0.04297923 94
                                                    7.645 < .0001
## 2005,caH - 2012,caH -0.18166190 0.04594673 94
                                                   -3.954 0.0022
## 2005, caH - 2005, caL 0.03797667 0.04594673 94
                                                    0.827 1.0000
```

```
## 2005,caH - 2012,caL -0.06482573 0.04594673 94 -1.411 1.0000
## 2012,caH - 2005,caL 0.21963857 0.04594673 94 4.780 0.0001
## 2012,caH - 2012,caL 0.11683616 0.04594673 94 2.543 0.1894
## 2005,caL - 2012,caL -0.10280241 0.04594673 94 -2.237 0.4143
##
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Resilience

Table 12: ANOVA table: rs

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	1.933	1.933	86.93	0
site	2	0.02174	0.01087	0.4888	0.6149
disturb_year:site	2	1.194	0.5972	26.86	0
Residuals	94	2.09	0.02224		

	Statistic
R^2	0.60
$\mathrm{adj}R^2$	0.58
σ_e	0.15
F	28.32
p	0.00
$d\!f_m$	6.00
$\log \mathrm{Lik}$	51.50
AIC	-89.00
BIC	-70.76
dev	2.09
df_e	94.00

```
# Post hoc Define model
mymodel <- aov_rs$mymodel</pre>
postH_rs <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
## ### Event ###
## $1smeans
## disturb_year
                                   SE df lower.CL upper.CL
                    lsmean
                0.6365653 0.02128366 94 0.5943061 0.6788245
## 2005
                 0.8851583 0.02128366 94 0.8428991 0.9274175
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## $contrasts
## contrast
                estimate
                                  SE df t.ratio p.value
## 2005 - 2012 -0.248593 0.03009964 94 -8.259 <.0001
## Results are averaged over the levels of: site
##
## disturb_year
                    lsmean
                                   SE df lower.CL upper.CL .group
## 2005
                 0.6365653 0.02128366 94 0.5880839 0.6850468 a
##
   2012
                 0.8851583 0.02128366 94 0.8366769 0.9336398
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
```

```
## $1smeans
   site
                          SE df lower.CL upper.CL
           lsmean
        0.7408003 0.02357854 94 0.6939846 0.7876161
   caH 0.7705117 0.02722615 94 0.7164535 0.8245698
##
   caL 0.7712735 0.02722615 94 0.7172153 0.8253316
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
##
## $contrasts
  contrast
                                   SE df t.ratio p.value
                  estimate
## SJ - caH -0.0297113289 0.03601681 94 -0.825 1.0000
   SJ - caL -0.0304731365 0.03601681 94 -0.846 1.0000
   caH - caL -0.0007618076 0.03850359 94 -0.020 1.0000
##
##
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
##
                          SE df lower.CL upper.CL .group
   site
           lsmean
##
   SJ
        0.7408003 0.02357854 94 0.6833258 0.7982748
##
   caH 0.7705117 0.02722615 94 0.7041458 0.8368775
   caL 0.7712735 0.02722615 94 0.7049076 0.8376393
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                       SE df lower.CL upper.CL
                        lsmean
## 2005
                     0.4690766 0.03334508 94 0.4028692 0.5352841
## 2012
                     1.0125240 0.03334508 94 0.9463166 1.0787315
##
   2005
                caH 0.7385252 0.03850359 94 0.6620754 0.8149749
## 2012
                caH 0.8024981 0.03850359 94 0.7260484 0.8789479
## 2005
                caL 0.7020941 0.03850359 94 0.6256444 0.7785439
##
   2012
                caL 0.8404528 0.03850359 94 0.7640030 0.9169026
##
## Confidence level used: 0.95
##
## $contrasts
   contrast
                          estimate
                                           SE df t.ratio p.value
   2005,SJ - 2012,SJ
                       -0.54344740 0.04715707 94 -11.524 <.0001
   2005,SJ - 2005,caH
                       -0.26944854 0.05093546 94
                                                  -5.290 <.0001
   2005,SJ - 2012,caH
                                                  -6.546
                                                         <.0001
##
                       -0.33342151 0.05093546 94
                                                  -4.575 0.0002
##
   2005,SJ - 2005,caL
                       -0.23301750 0.05093546 94
##
   2005,SJ - 2012,caL
                       -0.37137617 0.05093546 94
                                                  -7.291 <.0001
   2012,SJ - 2005,caH
                       0.27399886 0.05093546 94
                                                   5.379 <.0001
##
   2012,SJ - 2012,caH
                        0.21002588 0.05093546 94
                                                   4.123 0.0012
## 2012,SJ - 2005,caL
                        0.31042989 0.05093546 94
                                                   6.095 <.0001
## 2012,SJ - 2012,caL
                        0.17207123 0.05093546 94
                                                   3.378 0.0159
## 2005,caH - 2012,caH -0.06397297 0.05445230 94
                                                  -1.175 1.0000
## 2005,caH - 2005,caL 0.03643104 0.05445230 94
                                                   0.669 1.0000
```

```
## 2005,caH - 2012,caL -0.10192762 0.05445230 94 -1.872 0.9650
## 2012,caH - 2005,caL 0.10040401 0.05445230 94 1.844 1.0000
## 2012,caH - 2012,caL -0.03795465 0.05445230 94 -0.697 1.0000
## 2005,caL - 2012,caL -0.13835866 0.05445230 94 -2.541 0.1904
##
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot


```
plot_mds <- means_distub_site %>%
    ggplot(aes(x=site, y=lsmean, group=disturb_year, colour=disturb_year)) +
    geom_point(aes(shape=disturb_year), size=3) +
    geom_line() +
    theme_bw() + xlab('') + ylab('') +
    facet_wrap(~var, scales='free_y', ncol = 1) +
```

mean + sd

```
grid.arrange(plot_mdSE, plot_msSE, plot_mdsSE, ncol=3)
```


mean + ci

grid.arrange(plot_mdCI, plot_msCI, plot_mdsCI, ncol=3)

2

pdf ## 2

term	df	sumsq	meansq	statistic	p.value	var
disturb_year	1	1.373	1.373	38.33	1.556e-08	$_{\rm rc}$
site	2	2.495	1.247	34.83	4.807e-12	$_{\rm rc}$
$disturb_year:site$	2	0.1717	0.08587	2.398	0.09646	$_{\rm rc}$
Residuals	94	3.366	0.03581	NA	NA	rc
$disturb_year$	1	0.2085	0.2085	9.792	0.002334	rt
site	2	1.527	0.7637	35.86	2.665e-12	rt
$disturb_year:site$	2	0.7454	0.3727	17.5	3.458e-07	rt

27

term	df	sumsq	meansq	statistic	p.value	var
Residuals	94	2.002	0.02129	NA	NA	rt
$disturb_year$	1	1.933	1.933	86.93	5.039e-15	rs
site	2	0.02174	0.01087	0.4888	0.6149	rs
disturb_year:site	2	1.194	0.5972	26.86	5.951e-10	rs
Residuals	94	2.09	0.02224	NA	NA	rs
$disturb_year$	1	0.8719	0.8719	55.07	5.143e-11	rrs
site	2	1.194	0.597	37.71	9.468e-13	rrs
disturb_year:site	2	0.09764	0.04882	3.083	0.05047	rrs
Residuals	94	1.488	0.01583	NA	NA	rrs

	rc	rt	rs	rrs
R^2	0.5454180	0.5534895	0.6010548	0.5924522
$adjR^2$	0.5212382	0.5297389	0.5798343	0.5707742
σ_e	0.1892386	0.1459279	0.1491238	0.1258303
F	22.55668	23.30427	28.32427	27.32956
p	8.427951e-15	3.708927e-15	2.098287e-17	5.601013e-17
$d\!f_m$	6	6	6	6
$\log \mathrm{Lik}$	27.67460	53.66418	51.49779	68.48203
AIC	-41.34920	-93.32836	-88.99559	-122.96405
BIC	-23.11301	-75.09217	-70.75940	-104.72786
dev	3.366256	2.001725	2.090362	1.488327
$d\!f_e$	94	94	94	94
variable	rc	rt	rs	rrs

ROBUST ANOVA

- Ver Wilcox (2005, 2012)
- Vamos a realizar un Robust factorial ANOVA. En concreto:
- Two-way robust factorial ANOVA on M-estimator
- pkg WRS2

```
robustANOVA <- function(df, resp_var, factores,</pre>
         alpha, nboot, treshold) {
  # alpha: alpha ci for huber m-estimation
  # nboot: numer of iterations
  # treshoold for letter (posthoc)
  # See http://rcompanion.org/rcompanion/d_08a.html
  set.seed(123)
  # Create interaction
  df$interaction <- interaction(df$disturb_year, df$site)</pre>
  # Formulas
  formulaFull <- as.formula(paste0(resp_var, " ~ ",</pre>
                                  paste(factores, collapse = '+')))
  formula_A <- as.formula(paste0(resp_var, " ~ ", factores[1]))</pre>
  formula_B <- as.formula(paste0(resp_var, " ~ ", factores[2]))</pre>
  formula_AB <- as.formula(paste0(resp_var, " ~ interaction"))</pre>
  # Produce Huber M-estimators and confidence intervals by group
  mest <- groupwiseHuber(formulaFull, data = df, ci.type = 'wald', conf.level = alpha)</pre>
  mest_a <- groupwiseHuber(formula_A, data = df, ci.type = 'wald', conf.level = alpha)</pre>
  mest_b <- groupwiseHuber(formula_B, data = df, ci.type = 'wald', conf.level = alpha)
  # Two-way robust analysis
  x <- pbad2way(formulaFull, data = df, est = "mom", nboot = nboot)
  out_ra <- data.frame(</pre>
   term = c(x$varnames[2],
             x$varnames[3],
             paste0(x$varnames[2], ':', x$varnames[3])),
    p_value = c(x$A.p.value, x$B.p.value, x$AB.p.value))
  out_raTrimmed <- t2way(formulaFull, data = df)</pre>
  out_ratr_df <- data.frame(fact = c(out_raTrimmed$varnames[2],</pre>
                                      out_raTrimmed$varnames[3],
                                     paste0(out_raTrimmed$varnames[2], ':', out_raTrimmed$varnames[3])),
              statistic = c(out_raTrimmed$Qa, out_raTrimmed$Qab), out_raTrimmed$Qab),
              pvalue = c(out_raTrimmed$A.p.value, out_raTrimmed$B.p.value, out_raTrimmed$AB.p.value))
  # post-hoc
  ## factor A
  pha <- pairwiseRobustTest(formula_A, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ## factor B
  phb <- pairwiseRobustTest(formula_B, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ## interaction effect (AB)
```

```
phab <- pairwiseRobustTest(formula_AB, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ph <- rbind(pha, phb, phab)
  phRWS2 <- mcp2a(formulaFull, data=df, est = "mom", nboot = nboot)</pre>
 phtrimmed <- mcp2atm(formulaFull, data=df)</pre>
  out <- list()
  out$mest <- mest # Huber M-estimators and Confidence Intervals
  out$mest_a <- mest_a
  out$mest_b <- mest_b
  out$raTrimmed <- out_raTrimmed</pre>
  out$out_ratr_df <- out_ratr_df</pre>
  out$ra <- out_ra # Output for Two-way robust analysis (M-estimators)
  out$ph <- ph # posthoc comparison usinng pairwiseRobustTest</pre>
  out$pha <- pha
  out$phb <- phb
  out$phab <- phab
  print(cat('\n Robust M-Anova \n'))
  print(out ra)
  print(cat('\n Robust Trimmed \n'))
  print(out raTrimmed)
  print(cat('\n post hoc Mhuber \n'))
  print(phRWS2)
  print(cat('\n post hoc Trimmed means \n'))
 print(phtrimmed)
 return(out)
}
  # if (exists('letters_phb')) {
  # letters_phb <- letters_phb} else {</pre>
  # myerror <- evaluate('cldList(comparison = phb$Comparison,</pre>
                         p.value = phb$p.adjust, threshold = treshold)')
  # letters_phb <- as.character(myerror[[2]]$message)}</pre>
  # if (exists('letters pha')) {
  # letters_pha <- letters_pha} else {</pre>
  # myerror <- evaluate('cldList(comparison = pha$Comparison,</pre>
                         p.value = pha$p.adjust, threshold = treshold)')
  # letters_pha <- as.character(myerror[[2]]$message)}</pre>
  # if (exists('letters_phab')) {
  # letters_phab <- letters_phab} else {</pre>
  # myerror <- evaluate('cldList(comparison = phab$Comparison,</pre>
                         p.value = phab$p.adjust, threshold = treshold)')
  # letters_phab <- as.character(myerror[[2]]$message)}</pre>
factores = c('disturb_year', 'site', 'disturb_year:site')
```

Resilience

```
rars <- robustANOVA(df=re, resp_var='rs', factores=factores,</pre>
              alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
## Robust M-Anova
## NULL
##
                  term p_value
          disturb_year 0.0000000
## 1
## 2
                  site 0.5486667
## 3 disturb_year:site 0.0000000
##
## Robust Trimmed
## NULL
## Call:
## t2way(formula = formulaFull, data = df)
##
##
                       value p.value
## disturb_year
                     71.0246
                                0.001
                      2.8626
                                0.260
## site
## disturb_year:site 48.0500
                                0.001
##
## post hoc Mhuber
## NULL
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
```

```
## site1
                       -0.10092 -0.30895 0.09093 0.11167
## site2
                       -0.08768 -0.28296  0.09801  0.15067
## site3
                        0.01323 -0.15329 0.18857 0.41400
## disturb_year1:site1 -0.47788 -0.69430 -0.30359 0.00000
## disturb_year1:site2 -0.41825 -0.61764 -0.22357 0.00000
## disturb_year1:site3  0.05963 -0.09717  0.26854  0.18767
##
##
## post hoc Trimmed means
## NULL
## Call:
## mcp2atm(formula = formulaFull, data = df)
##
##
                         psihat ci.lower ci.upper p-value
                       -0.75207 -0.93138 -0.57277 0.00000
## disturb_year1
## site1
                       -0.12597 -0.31506 0.06311 0.10456
## site2
                       -0.09108 -0.27777 0.09562 0.22978
                        0.03490 -0.13760 0.20740 0.61296
## site3
## disturb_year1:site1 -0.50137 -0.69045 -0.31229 0.00000
## disturb_year1:site2 -0.41264 -0.59933 -0.22595 0.00000
## disturb_year1:site3  0.08873 -0.08377  0.26123  0.20384
Rs Letters
x <-rars
letraArs <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mut
letraArs
##
     Group Letter MonoLetter var
## 1
        25
                а
                            rs
## 2
       212
                b
                           b rs
letraBrs <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mut
## Error: No significant differences.
letraBrs # Manual (IMPROVE IT)
## Error in eval(expr, envir, enclos): object 'letraBrs' not found
letraBrs <- data.frame(Group = c('SJ', 'caH', 'caL'),</pre>
                     Letter = c('a', 'a', 'a'),
                     MonoLetter = c('a', 'a', 'a')) %>% mutate(var = 'rs')
letraBrs
     Group Letter MonoLetter var
##
## 1
       SJ
                a
                           a rs
## 2
       caH
                           a rs
                a
                a
                           a rs
letraABrs <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>%
letraABrs
##
       Group Letter MonoLetter var
## 1
       25.SJ
                  a
```

psihat ci.lower ci.upper p-value

-0.72943 -0.96421 -0.53688 0.00000

##

disturb_year1

```
## 2 212.SJ b b rs
## 3 25.caH c c rs
## 4 212.caH bc bc rs
## 5 25.caL ac a c rs
## 6 212.caL bc bc rs
```

Recovery

```
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
## Robust M-Anova
## NULL
##
                  term p_value
## 1
          disturb_year
                         0.000
## 2
                         0.000
                  site
## 3 disturb_year:site
                         0.118
##
## Robust Trimmed
## NULL
## Call:
## t2way(formula = formulaFull, data = df)
##
##
                       value p.value
## disturb_year
                     32.1553
                               0.001
## site
                     54.0514
                                0.001
## disturb_year:site 3.7283
                                0.178
```

```
##
##
## post hoc Mhuber
## NULL
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
                        psihat ci.lower ci.upper p-value
## disturb_year1
                      -0.65218 -0.90500 -0.41425 0.00000
                       0.52444 0.26297 0.74729 0.00000
## site1
## site2
                       0.77070 0.50882 0.95238 0.00000
## site3
                       0.24626 0.04499 0.41107 0.00433
## disturb_year1:site1 -0.05684 -0.31167 0.15217 0.22533
## disturb_year1:site2 -0.19242 -0.42138 0.03381 0.03233
## disturb_year1:site3 -0.13557 -0.29443 0.07265 0.09767
##
##
## post hoc Trimmed means
## NULL
## Call:
## mcp2atm(formula = formulaFull, data = df)
##
                        psihat ci.lower ci.upper p-value
                      -0.66153 -0.89687 -0.42619 0.00000
## disturb year1
## site1
                       0.50457 0.24373 0.76541 0.00003
## site2
                       0.73950 0.48520 0.99380 0.00000
## site3
                       0.23493 0.03334 0.43652 0.00636
## disturb_year1:site1 -0.08655 -0.34739 0.17428 0.41020
## disturb_year1:site2 -0.18429 -0.43859 0.07001 0.07753
## disturb_year1:site3 -0.09774 -0.29933 0.10386 0.22961
Rc Letters
x <-rarc
letraArc <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mut
letraArc
##
    Group Letter MonoLetter var
       25
               a
                          b rc
      212
               b
letraBrc <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mut
   Group Letter MonoLetter var
## 1
                         a rc
       SJ
               а
## 2
      caH
               b
                         b rc
## 3
                          b rc
      caL
               b
letraABrc <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>%;
      Group Letter MonoLetter var
## 1
      25.SJ
                ab
                          ab rc
## 2 212.SJ
               a
                          a
                               rc
```

```
## 3 25.caH bc bc rc
## 4 212.caH ab ab rc
## 5 25.caL c c rc
## 6 212.caL bc bc rc
```

Resistance

```
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
## Robust M-Anova
## NULL
##
                  term
                          p_value
## 1
          disturb_year 0.01533333
                  site 0.00000000
## 3 disturb_year:site 0.00000000
##
## Robust Trimmed
## NULL
## Call:
## t2way(formula = formulaFull, data = df)
##
##
                       value p.value
## disturb_year
                      8.3202
                               0.006
## site
                     73.6290
                               0.001
## disturb_year:site 39.0757
                               0.001
##
```

```
##
## post hoc Mhuber
## NULL
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
                        psihat ci.lower ci.upper p-value
## disturb_year1
                       -0.23926 -0.43184 -0.04996 0.00733
## site1
                       -0.40017 -0.61001 -0.24605 0.00000
## site2
                       -0.57438 -0.77436 -0.42001 0.00000
                       -0.17421 -0.31943 -0.01647 0.00967
## site3
## disturb_year1:site1 -0.47057 -0.63523 -0.28334 0.00000
## disturb_year1:site2 -0.29946 -0.47947 -0.11566 0.00000
## disturb_year1:site3 0.17111 0.00938 0.30162 0.01167
##
##
## post hoc Trimmed means
## NULL
## Call:
## mcp2atm(formula = formulaFull, data = df)
##
                        psihat ci.lower ci.upper p-value
                      -0.24537 -0.41675 -0.07400 0.00602
## disturb_year1
                       -0.43524 -0.61967 -0.25082 0.00000
## site1
## site2
                      -0.59627 -0.77172 -0.42083 0.00000
## site3
                      -0.16103 -0.32670 0.00464 0.02021
## disturb_year1:site1 -0.45473 -0.63915 -0.27030 0.00000
## disturb_year1:site2 -0.30662 -0.48206 -0.13118 0.00011
## disturb_year1:site3  0.14811 -0.01756  0.31377  0.03122
Rt Letters
x <-rart
letraArt <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mut
## Error: No significant differences.
letraArt #Manual (IMPROVE IT)
## Error in eval(expr, envir, enclos): object 'letraArt' not found
letraArt <- data.frame(Group = as.factor(c('25', '212')),</pre>
                     Letter = as.factor(c('a', 'a')),
                     MonoLetter = as.factor(c('a', 'a'))) %>% mutate(var ='rt')
letraArt
     Group Letter MonoLetter var
## 1
       25
                а
                           a rt
## 2
      212
                           a rt
letraBrt <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mut
letraBrt
    Group Letter MonoLetter var
## 1
       SJ
               a
                        а
## 2 caH
               h
                         b rt
```

```
letraABrt <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>% =
letraABrt
##
      Group Letter MonoLetter var
## 1
      25.SJ
                a
## 2 212.SJ
                bc
                          bc rt
## 3 25.caH
                bc
                          bc rt
## 4 212.caH
               b
                           b
                               rt
## 5 25.caL
                bc
                           bc rt
## 6 212.caL
                 С
                            c rt
```

Relative Resilience

```
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
## Robust M-Anova
## NULL
                  term p_value
## 1
          disturb_year 0.000
                         0.000
                  site
## 3 disturb_year:site
                         0.158
##
## Robust Trimmed
## NULL
## Call:
```

```
## disturb_year:site 4.9425
                            0.107
##
## post hoc Mhuber
## NULL
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
                       psihat ci.lower ci.upper p-value
##
                      -0.53354 -0.70514 -0.34390 0.00000
## disturb_year1
                      0.35391 0.17105 0.50666 0.00000
## site1
## site2
                      0.53311 0.37908 0.67140 0.00000
## site3
                      0.17920 0.02233 0.35082 0.00833
## disturb_year1:site1 -0.02498 -0.21497 0.09894 0.25433
## disturb_year1:site2 -0.12823 -0.29656 0.00236 0.01967
## disturb_year1:site3 -0.10325 -0.24207 0.07439 0.12300
##
##
## post hoc Trimmed means
## NULL
## mcp2atm(formula = formulaFull, data = df)
##
                       psihat ci.lower ci.upper p-value
                     -0.53220 -0.69774 -0.36666 0.00000
## disturb_year1
                      0.34608 0.17192 0.52024 0.00003
## site1
## site2
                      0.18789 0.01871 0.35707 0.00892
## disturb_year1:site1 -0.06830 -0.24246 0.10586 0.32938
## disturb_year1:site2 -0.14482 -0.31031 0.02067 0.03500
## disturb_year1:site3 -0.07652 -0.24569 0.09266 0.26117
RRs Letters
x <-rarrs
letraArrs <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mu
letraArrs
    Group Letter MonoLetter var
## 1
       25
                        a rrs
               a
      212
                         b rrs
               b
letraBrrs <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mu
letraBrrs
    Group Letter MonoLetter var
## 1
                        a rrs
       SJ
               a
## 2
      caH
              ab
                        ab rrs
## 3 caL
              b
                         b rrs
```

t2way(formula = formulaFull, data = df)

value p.value

0.001

42.1386 0.001

67.9379

##

disturb_year

site

```
letraABrrs <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>%
letraABrrs
##
      Group Letter MonoLetter var
## 1
      25.SJ ab ab rrs
## 2 212.SJ
              С
                         c rrs
## 3 25.caH ab
                       ab rrs
## 4 212.caH a
                        a rrs
## 5 25.caL
               b
                        b rrs
## 6 212.caL ab
                         ab rrs
letrasA <- rbind(letraArs, letraArc, letraArt, letraArrs) %>%
  mutate(disturb_year =
          case when (Group == "25" ~ "2005",
                   Group == "212" ~ "2012")) %>%
  dplyr::select(-Group)
letrasB <- rbind(letraBrs, letraBrc, letraBrt, letraBrrs) %>% rename(site = Group)
letrasAB <- rbind(letraABrs, letraABrc, letraABrt, letraABrrs) %>%
  separate(Group, into=c('disturb_year', 'site')) %>%
  mutate(disturb_year =
          case_when(disturb_year == "25" ~ "2005",
                   disturb_year == "212" ~ "2012"))
```

Estimadores de huber

var	disturb_year	site	n	M.Huber	ci	Letter
$_{\rm rc}$	2005	SJ	20	1.075	(0.9688, 1.1806)	ab
rc	2005	caH	15	0.8689	(0.7875, 0.9504)	bc
rc	2005	caL	15	0.8104	(0.7432, 0.8775)	c

var	disturb_year	site	n	M.Huber	ci	Letter
rc	2012	SJ	20	1.394	(1.257, 1.5315)	a
rc	2012	caH	15	1.094	(1.0301, 1.158)	ab
rc	2012	caL	15	0.9293	(0.8738, 0.9847)	bc
rt	2005	SJ	20	0.4331	(0.3616, 0.5047)	a
rt	2005	caH	15	0.8649	(0.7834, 0.9464)	bc
rt	2005	caL	15	0.8716	(0.7894, 0.9538)	bc
rt	2012	SJ	20	0.7475	(0.6692, 0.8258)	bc
rt	2012	caH	15	0.7438	(0.6846, 0.803)	b
rt	2012	caL	15	0.903	(0.8636, 0.9425)	\mathbf{c}
$_{\rm rs}$	2005	SJ	20	0.4506	(0.3854, 0.5158)	a
$_{\rm rs}$	2005	caH	15	0.7413	(0.6669, 0.8157)	\mathbf{c}
$_{\rm rs}$	2005	caL	15	0.6928	(0.605, 0.7805)	ac
$_{\rm rs}$	2012	SJ	20	0.9983	(0.9213, 1.0752)	b
$_{\rm rs}$	2012	caH	15	0.8052	(0.7509, 0.8595)	bc
$_{\rm rs}$	2012	caL	15	0.8314	(0.7796, 0.8831)	bc
rrs	2005	SJ	20	0.0256	(-0.0158, 0.067)	ab
rrs	2005	caH	15	-0.1225	(-0.1997, -0.0452)	ab
rrs	2005	caL	15	-0.164	(-0.2254, -0.1025)	b
rrs	2012	SJ	20	0.2727	(0.1959, 0.3494)	\mathbf{c}
rrs	2012	caH	15	0.0683	(0.0239, 0.1128)	a
rrs	2012	caL	15	-0.0632	(-0.1148, -0.0115)	ab

var	disturb_year	n	M.Huber	ci	Letter
rc	2005	50	0.9218	(0.8624, 0.9813)	a
rc	2012	50	1.137	(1.064, 1.2098)	b
rt	2005	50	0.7033	(0.6282, 0.7784)	a
rt	2012	50	0.7993	(0.7594, 0.8392)	a
rs	2005	50	0.6173	(0.5593, 0.6753)	\mathbf{a}
rs	2012	50	0.8767	(0.8352, 0.9182)	b
rrs	2005	50	-0.0755	(-0.1165, -0.0344)	\mathbf{a}
rrs	2012	50	0.0977	(0.04, 0.1553)	b

var	site	n	M.Huber	ci	Letter
rc	SJ	40	1.23	(1.1329,1.3276)	a
rc	caH	30	0.9789	(0.9103, 1.0476)	b
$_{\rm rc}$	caL	30	0.8702	(0.817, 0.9234)	b
rt	SJ	40	0.5975	(0.525, 0.67)	a
rt	caH	30	0.7987	(0.7388, 0.8586)	b
rt	caL	30	0.8891	(0.8482, 0.93)	b
rs	SJ	40	0.7361	(0.6304, 0.8418)	a
rs	caH	30	0.776	(0.7335, 0.8185)	a
rs	caL	30	0.7734	(0.715, 0.8318)	a
rrs	SJ	40	0.1313	(0.0711, 0.1915)	a
rrs	caH	30	-0.0243	(-0.0832, 0.0346)	ab
rrs	caL	30	-0.1136	(-0.1601, -0.0671)	b

Pairwise comparison

```
rars$ph$var <- 'rs'
rarc$ph$var <- 'rc'
rart$ph$var <- 'rt'
rarrs$ph$var <- 'rrs'

pairwise <- rbind(rarc$ph, rart$ph, rarrs$ph)
pairwise %>% pander()
```

Comparison	Statistic	p.value	p.adjust	var
2005 - 2012 = 0	-0.1687	0.0006667	0.0006667	rc
SJ - caH = 0	0.2434	0.0006667	0.002	rc
SJ - caL = 0	0.3558	0	0	$_{\rm rc}$
caH - caL = 0	0.1124	0.02	0.06	rc
2005.SJ - 2012.SJ = 0	-0.3005	0.002667	0.04	rc
2005.SJ - 2005.caH = 0	0.2338	0.007333	0.11	$_{\rm rc}$
2005.SJ - 2012.caH = 0	-0.009841	0.7667	1	$_{\rm rc}$

Comparison	Statistic	p.value	p.adjust	var
2005.SJ - 2005.caL = 0	0.2891	0	0	rc
2005.SJ - 2012.caL = 0	0.1811	0.02267	0.34	rc
2012.SJ - 2005.caH = 0	0.5343	0	0	$_{\rm rc}$
2012.SJ - 2012.caH = 0	0.2906	0.0006667	0.01	rc
2012.SJ - 2005.caL = 0	0.5896	0	0	rc
2012.SJ - 2012.caL = 0	0.4816	0	0	rc
2005.caH - 2012.caH = 0	-0.2436	0.0006667	0.01	rc
2005.caH - 2005.caL = 0	0.05534	0.314	1	rc
2005.caH - 2012.caL = 0	-0.05272	0.3607	1	rc
2012.caH - 2005.caL = 0	0.299	0	0	rc
2012.caH - 2012.caL = 0	0.1909	0.0006667	0.01	rc
2005.caL - 2012.caL = 0	-0.1081	0.03933	0.59	rc
2005 - 2012 = 0	-0.1002	0.1607	0.1607	rt
SJ - caH = 0	-0.1956	0	0	rt
SJ - caL = 0	-0.3014	0	0	rt
caH - caL = 0	-0.1059	0.01	0.03	rt
2005.SJ - 2012.SJ = 0	-0.3364	0	0	rt
2005.SJ - 2005.caH = 0	-0.4354	0	0	rt
2005.SJ - 2012.caH = 0	-0.3012	0	0	rt
2005.SJ - 2005.caL = 0	-0.4369	0	0	rt
2005.SJ - 2012.caL = 0	-0.4739	0	0	rt
2012.SJ - 2005.caH = 0	-0.09894	0.06867	1	rt
2012.SJ - 2012.caH = 0	0.0352	0.8033	1	rt
2012.SJ - 2005.caL = 0	-0.1005	0.07133	1	rt
2012.SJ - 2012.caL = 0	-0.1375	0.004667	0.07	rt
2005.caH - 2012.caH = 0	0.1341	0.01133	0.17	rt
2005.caH - 2005.caL = 0	-0.001546	0.9387	1	rt
2005.caH - 2012.caL = 0	-0.03852	0.4613	1	rt
2012.caH - 2005.caL = 0	-0.1357	0.008	0.12	rt
2012.caH - 2012.caL = 0	-0.1727	0	0	rt
2005.caL - 2012.caL = 0	-0.03697	0.57	1	rt
2005 - 2012 = 0	-0.2354	0	0	$_{\rm rs}$
SJ - caH = 0	-0.03897	0.5433	1	rs
SJ - caL = 0	-0.03078	0.5393	1	$_{\rm rs}$
caH - caL = 0	0.008188	0.998	1	$_{\rm rs}$
2005.SJ - 2012.SJ = 0	-0.5419	0	0	$_{\rm rs}$
2005.SJ - 2005.caH = 0	-0.2894	0	0	$_{\rm rs}$
2005.SJ - 2012.caH = 0	-0.3534	0	0	$_{\rm rs}$
2005.SJ - 2005.caL = 0	-0.253	0.001333	0.02	$_{\rm rs}$
2005.SJ - 2012.caL = 0	-0.3766	0	0	$_{\rm rs}$
2012.SJ - 2005.caH = 0	0.2525	0	0	$_{\rm rs}$
2012.SJ - 2012.caH = 0	0.1885	0.003333	0.05	$_{\rm rs}$
2012.SJ - 2005.caL = 0	0.2889	0	0	$_{\rm rs}$
2012.SJ - 2012.caL = 0	0.1653	0.003333	0.05	$_{\rm rs}$
2005.caH - 2012.caH = 0	-0.06397	0.3167	1	rs
2005.caH - 2005.caL = 0	0.03643	0.4947	1	$_{\rm rs}$
2005.caH - 2012.caL = 0	-0.08717	0.09733	1	rs
2012.caH - 2005.caL = 0	0.1004	0.09733	1	rs
2012.caH - 2012.caL = 0	-0.0232	0.5567	1	rs
2005.caL - 2012.caL = 0	-0.1236	0.01533	0.23	$_{\rm rs}$
2005 - 2012 = 0	-0.1726	0	0	rrs
SJ - caH = 0	0.1265	0.01667	0.05001	rrs

Comparison	Statistic	p.value	p.adjust	var
SJ - caL = 0	0.2161	0	0	rrs
caH - caL = 0	0.0896	0.03333	0.09999	rrs
2005.SJ - 2012.SJ = 0	-0.2289	0	0	rrs
2005.SJ - 2005.caH = 0	0.1645	0.016	0.24	rrs
2005.SJ - 2012.caH = 0	-0.03947	0.1767	1	rrs
2005.SJ - 2005.caL = 0	0.2024	0.0006667	0.01	rrs
2005.SJ - 2012.caL = 0	0.1018	0.02867	0.43	rrs
2012.SJ - 2005.caH = 0	0.3934	0	0	rrs
2012.SJ - 2012.caH = 0	0.1894	0	0	rrs
2012.SJ - 2005.caL = 0	0.4314	0	0	rrs
2012.SJ - 2012.caL = 0	0.3307	0	0	rrs
2005.caH - 2012.caH = 0	-0.2039	0.0006667	0.01	rrs
2005.caH - 2005.caL = 0	0.03798	0.424	1	rrs
2005.caH - 2012.caL = 0	-0.06271	0.452	1	rrs
2012.caH - 2005.caL = 0	0.2419	0	0	rrs
2012.caH - 2012.caL = 0	0.1412	0.001333	0.02	rrs
2005.caL - 2012.caL = 0	-0.1007	0.048	0.72	rrs

Interaction plot

Response \sim (x=Drought)

```
mhuber<- mhuber %>%
 mutate(var_sorted = case_when(var == "rc" ~ "1_rc",
                                var == "rt" ~ "0_rt",
                                var == "rs" ~ "2_rs",
                                var == "rrs" ~ "3_rrs"))
pd <- position_dodge(.2)</pre>
robust_plot_rwi_drought <- ggplot(mhuber, aes(x=disturb_year, y=M.Huber, color = site, group=site, fill
  geom_errorbar(aes(ymin=lower.ci, ymax=upper.ci),
                width=.1, size=0.7, position=pd) +
  geom_line(aes(group=site,color=site, linetype=site), position=pd) +
  geom_point(shape=21, size=3.5, position=pd) +
  facet_wrap(~var_sorted, nrow = 2, scales = 'free_y',
             labeller=as_labeller(c('0_rt' = 'Resistance',
                                 '1_rc' = 'Recovery',
                                 '2_rs' = 'Resilience',
                                 '3_rrs' = 'Relative Resilience'))) +
  scale_color_manual(values=c('black','blue','red')) +
  scale_fill_manual(values=c('black','blue','red')) + theme_bw() +
  scale_linetype_manual(values=c("solid", "dashed", 'dashed')) +
  theme(panel.grid.minor = element_blank(),
        strip.background = element_rect(colour='black',
                                        fill='white'),
        legend.position="bottom") +
  ylab('') + xlab('Drought event')
robust_plot_rwi_drought
```



```
pdf(paste0(di, 'out/resilience_robust/rwi/robust_plot_rwi_drought.pdf'), width=9, height = 9)
robust_plot_rwi_drought
dev.off()
```

pdf ## 2

Response \sim (x=site)

```
pd <- position_dodge(.2)</pre>
robust_plot_rwi_site <- ggplot(mhuber, aes(x=site, y=M.Huber, color = disturb_year, group=disturb_year,
  geom_errorbar(aes(ymin=lower.ci, ymax=upper.ci),
                width=.1, size=0.7, position=pd) +
  geom_line(aes(group=disturb_year,color=disturb_year, linetype=disturb_year), position=pd) +
  geom_point(shape=21, size=3.5, position=pd) +
  facet_wrap(~var_sorted, nrow = 2, scales = 'free_y',
             labeller=as_labeller(c('0_rt' = 'Resistance',
                                 '1_rc' = 'Recovery',
                                 '2_rs' = 'Resilience',
                                 '3_rrs' = 'Relative Resilience'))) +
  scale_color_manual(values=c('black','blue')) +
  scale_fill_manual(values=c('black','blue')) + theme_bw() +
  scale_linetype_manual(values=c("solid", "dashed")) +
  theme(panel.grid.minor = element_blank(),
        strip.background = element_rect(colour='black',
```

```
fill='white'),
         legend.position="bottom") +
  ylab('') + xlab('Drought event')
robust_plot_rwi_site
                        Resistance
                                                                              Recovery
                                                     1.2
                                                     1.0
                                                     0.8
                        Resilience
                                                                           Relative Resilience
0.7
                                                     0.0
                                                 Drought event
                                            disturb_year ◆ 2005 ◆ 2012
pdf(paste0(di, 'out/resilience_robust/rwi/robust_plot_rwi_site.pdf'), width=9, height = 9)
robust_plot_rwi_site
dev.off()
## pdf
##
rars$out_ratr_df$var <- 'rs'</pre>
rarc$out_ratr_df$var <- 'rc'</pre>
rart$out_ratr_df$var <- 'rt'</pre>
rarrs$out_ratr_df$var <- 'rrs'</pre>
trimmedanovas <- rbind(rarc$out_ratr_df, rart$out_ratr_df, rars$out_ratr_df, rarrs$out_ratr_df)</pre>
trimmedanovas %>% pander()
```

fact	statistic	pvalue	var
disturb_year	32.16	0.001	$_{\rm rc}$
site	54.05	0.001	$_{\rm rc}$
disturb_year:site	3.728	0.178	$_{\rm rc}$
$disturb_year$	8.32	0.006	rt

fact	statistic	pvalue	var
site	73.63	0.001	$_{ m rt}$
disturb_year:site	39.08	0.001	$_{ m rt}$
$disturb_year$	71.02	0.001	rs
site	2.863	0.26	rs
disturb_year:site	48.05	0.001	rs
$disturb_year$	42.14	0.001	rrs
site	67.94	0.001	rrs
$disturb_year:site$	4.942	0.107	rrs

```
# Export data
```

```
write.csv(mhuber, file=paste0(di, '/out/anovas_resilience/huber_rwi/robust_mhuber.csv'), row.names = F)
write.csv(mhuber_agg, file=paste0(di, '/out/anovas_resilience/huber_rwi/robust_mhuber_agg.csv'), row.names
write.csv(mhuber_a, file=paste0(di, '/out/anovas_resilience/huber_rwi/robust_mhuber_a.csv'), row.names
write.csv(mhuber_agg_a, file=paste0(di, '/out/anovas_resilience/huber_rwi/robust_mhuber_agg_a.csv'), row.names
write.csv(mhuber_b, file=paste0(di, '/out/anovas_resilience/huber_rwi/robust_mhuber_agg_b.csv'), row.names
write.csv(mhuber_agg_b, file=paste0(di, '/out/anovas_resilience/huber_rwi/robust_mhuber_agg_b.csv'), row.names
write.csv(pairwise, file=paste0(di, '/out/anovas_resilience/huber_rwi/robust_pairwise.csv'), row.names
write.csv(trimmedanovas, file=paste0(di, '/out/anovas_resilience/huber_rwi/trimmed_anovas.csv'), row.names
```

References