NLP + Offeneregister.de

From: Dominik Pichler

Exploring and assessing different approaches for NLP-based NER extraction in the official german Company register extract from Offeneregister.de

Date: October 2, 2024

Dataset:

The following dataset is publicly available and has been used as the foundation of this project: https://offeneregister.de/

Data- Tables:

Available tables: - company - name - officer - registrations

I retrieved the included tables and columns via:

```
SELECT m.name as tableName,
    p.name as columnName,
    p.type as columnType FROM sqlite_master m

LEFT OUTER JOIN
    pragma_table_info(m.name) p
    ON m.name <> p.name
    WHERE m.type IN ('table', 'view')
    AND m.name NOT LIKE 'sqlite_%'
    ORDER BY tableName, columnName;
```

As we are interested in NER/NLP I filtered this list for non-structural, TEXT/CLOB columns only via:

```
SELECT * FROM (SELECT
    m.name as tableName,
    p.name as columnName,
    p.type as columnType
FROM
    sqlite_master m
LEFT OUTER JOIN
    pragma_table_info(m.name) p
ON
    m.name <> p.name
WHERE
    m.type IN ('table', 'view')
AND
    m.name NOT LIKE 'sqlite_%'
ORDER BY
    tableName,
    columnName) WHERE columnType IN ('TEXT', 'CLOB');
```

leading to ${\bf 53}$ potentially interesting and relevant columns. After manually inspecting those columns, the following few seemed relevant for NLP/ER Tasks for me

Company Table:

```
SELECT _registerNummerSuffix
        ,company_number
        ,current_status
        ,federal_state
        ,former_registrar
        ,jurisdiction_code
        ,name
        ,native_company_number
        ,register_art
        ,register_flag_
        ,register_flag_Note:
        ,register_flag_Status information
        ,register_nummer
        ,registered_address
        ,registered_office
        ,registrar
        retrieved_at
FROM company;
```

Out of which the following are relevant for NLP/ER Tasks: - Name

Officer Table

```
SELECT city
,company_id
,dismissed
,end_date
,firstname
,flag
,lastname
,maidenname
,name
,position
,reference_no
,start_date
,title
type
FROM officer;
```

Out of which the following are relevant for NLP/ER Tasks: - flag

Registrations Table

```
SELECT alternate_company_number
        ,alternate_entity_type
        ,alternate_jurisdiction_code
        ,company_id
        ,confidence
        ,data_type
        ,previous_company_number
        ,previous_entity_type
        ,previous_jurisdiction_code
        ,previous_registration_end_date
        ,publication_date
        ,retrieved at
        ,sample_date
        ,source_url
        ,start_date
        ,start_date_type
        ,subsequent_company_number
        ,subsequent_entity_type
        ,subsequent_jurisdiction_code
        ,subsequent_registration_start_date
FROM registrations;
```

Out of which the **non** seem relevant for NLP/ER Tasks.

Summary:

This leads two potentially interesting columns: - company.name that contains the full company name - officer.flag that contains controlling rules of individuals.

NER Investigations:

Company.name

After consideration, following information might be relevant to extract:

Company Type and Status

Identify the type of company based on suffixes like "GmbH," "e.K.," or "Union," which indicate the legal structure (e.g., GmbH for a limited liability company in Germany) In my estimation, this can extracted by an rule-based approach. A corresponding investigation can be found in the playground_ER-NLP.ipynb notebook.

Geographical Information

Extract potential geographical indicators from the company name, such as "Algeria" in "Shell Algeria Zerafa GmbH," which might suggest a regional focus or origin.

Industry or Sector

Analyze keywords within the names that might indicate the industry, such as "Reederei" (shipping) or "Entertainment."

Branding or Product Focus

Identify specific branding elements or product focus from names like "Lime Juice Entertainment," which could hint at the company's market segment.

Owner or Founder Names

Extract personal names if present, such as "Markus Blum" in "Markus Blum Montagearbeiten e.K.," which might indicate the founder or owner.

General Entity Recognition:

ER has been tested/performed on the two columns mentioned above. More can be found in the playground_ER-NLP.ipynb,company_name_spaCy_ER_NLP.ipynb and company_name_HuggingFace.ipynb notebook.

I have investigated the following approaches: - Raw german SpaCy using de_core_news_lg - Translate names to english + en_core_news_lg -

Approaches	Result	Comment
1. Raw german SpaCy using de_core_news_lg 2. Translate names to english + en_core_news_lg 3. elenanereiss/bert-german-ler	did not help much TBD did not help much	
4. google-bert/bert-base-german-cased	did not help much	

1. (N)ER using default spaCy models:

Above all, a save fallback solution seems to be spaCy and it's available NER of the following entity types. For example the following entities are available in the general english sca vocabulary:

```
"CARDINAL",
        "DATE",
        "EVENT",
        "FAC".
         "GPE",
         "LANGUAGE",
        "LAW",
         "LOC",
         "MONEY",
         "NORP",
         "ORDINAL",
         "ORG",
         "PERCENT",
         "PERSON",
         "PRODUCT",
         "PROPN",
         "QUANTITY",
        "TIME",
         "WORK_OF_ART",
         "LOC",
```

"MISC", "ORG", "PER",

Some examples:

PERSON: People, including fictional.

NORP: Nationalities or religious or political groups. Buildings, airports, highways, bridges, etc. FAC: ORG:

Companies, agencies, institutions, etc.

GPE: Countries, cities, states.

LOC: Non-GPE locations, mountain ranges, bodies of water.

Objects, vehicles, foods, etc. (Not services.) PRODUCT:

Named hurricanes, battles, wars, sports events, etc. EVENT:

WORK_OF_ART: Titles of books, songs, etc. Named documents made into laws. LAW:

LANGUAGE: Any named language.

DATE: Absolute or relative dates or periods.

TIME: Times smaller than a day. PERCENT: Percentage, including "%". Monetary values, including unit. MONEY:

Measurements, as of weight or distance. QUANTITY:

ORDINAL: "first", "second", etc.

CARDINAL: Numerals that do not fall under another type. PROPN: proper noun, e.g. Mary, John, London, NATO, HBO

In order to handle foreign (non-german/english) company names, the language test model comes in handy. For translations to german/english, the Googletrans package has shown strong performance.

German

For the german language, the following models offer NER recognition: - de core news sm de core news md - de core news lg

For German models like de_core_news_sm, common entity labels include:

PERSON (PER): People, including fictional characters.

NORP: Nationalities or religious or political groups.

FAC: Buildings, airports, highways, bridges, etc.

ORG: Companies, agencies, institutions, etc.

GPE: Countries, cities, states.

LOC: Non-GPE locations, such as mountain ranges and bodies of water.

PRODUCT: Objects, vehicles, foods, etc. (Not services).

EVENT: Named hurricanes, battles, wars, sports events, etc.

WORK_OF_ART: Titles of books, songs, etc.

LAW: Named documents made into laws.

LANGUAGE: Any named language.

Unfortunately, this approach did not work so well with the given german company names as the model was only able to detect other Entits then "ORG"...

Company Name	Token	Entity
olly UG (haftungsbeschränkt)	olly	ORG
olly UG (haftungsbeschränkt)	$\overline{\mathrm{UG}}$	ORG
olly UG (haftungsbeschränkt)	(No entity
olly UG (haftungsbeschränkt)	haftungsbeschränkt	No entity
olly UG (haftungsbeschränkt))	No entity

Company Name	Token	Entity
BLUECHILLED Verwaltungs GmbH	BLUECHILLED	ORG
BLUECHILLED Verwaltungs GmbH	Verwaltungs	No entity
BLUECHILLED Verwaltungs GmbH	GmbH	No entity
Mittelständische Beteiligungsgesellschaft Bremen mbH	Mittelständische	No entity
Mittelständische Beteiligungsgesellschaft Bremen mbH	Beteiligungsgesellschaft	No entity
Mittelständische Beteiligungsgesellschaft Bremen mbH	Bremen	LOC
Mittelständische Beteiligungsgesellschaft Bremen mbH	mbH	No entity
Albert Barufe GmbH	Albert	PER
Albert Barufe GmbH	Barufe	PER
Albert Barufe GmbH	GmbH	No entity
ITERGO Informationstechnologie GmbH	ITERGO	ORG
ITERGO Informationstechnologie GmbH	Informationstechnologie	No entity
ITERGO Informationstechnologie GmbH	GmbH	No entity
Rheinbahn AG	Rheinbahn	ORG
Rheinbahn AG	\overline{AG}	ORG
Verwaltung IFÖ Zweite Immobilienfonds für Österreich GmbH	Verwaltung	No entity
Verwaltung IFÖ Zweite Immobilienfonds für Österreich GmbH	IFÖ	ORG
Verwaltung IFÖ Zweite Immobilienfonds für Österreich GmbH	Zweite	No entity
Verwaltung IFÖ Zweite Immobilienfonds für Österreich GmbH	Immobilienfonds	No entity
Verwaltung IFÖ Zweite Immobilienfonds für Österreich GmbH	für	No entity
Verwaltung IFÖ Zweite Immobilienfonds für Österreich GmbH	Österreich	LOC
Verwaltung IFÖ Zweite Immobilienfonds für Österreich GmbH	GmbH	No entity
AWS Personalmarketing GmbH	AWS	ORG
AWS Personalmarketing GmbH	Personalmarketing	ORG
AWS Personalmarketing GmbH	GmbH	ORG

${\bf 3.\ NER\ using\ bert\text{-}german\text{-}ler}$

Fine-tuned BERT utilizing a german dataset with the following annotated tokens:

Fine-grained classes	#	%
1. PER Person	1,747	3.26
2. RR Judge	1,519	2.83
3. AN Lawyer	111	0.21
4. LD Country	1,429	2.66
5. ST City	705	1.31
6. STR Street	136	0.25
7. LDS Landscape	198	0.37
8. ORG Organization	1,166	2.17
9. UN Company	1,058	1.97
10. INN Institution	2,196	4.09
11. GRT Court	3,212	5.99
12. MRK Brand	283	0.53
13. GS Law	18,52	34.53
14. VO Ordinance	797	1.49
15. EUN European legal norm	1,499	2.79
16. VS Regulation	607	1.13
17. VT Contract	2,863	5.34
18. RS Court decision	12,58	23.46
19. LIT Legal literature	3,006	5.60
Total	53,632	100

Figure 1: output.png

Benchmark Test with 100k Company Names: The model detected 880 Tokens as "Person". Examples look like:

entity	score	index	word	start	end
I-PER	0.52123576	2	:	2	3
I-PER	0.7519806	3	Lee	3	6
I-PER	0.5675053	3	##o	5	6
I-PER	0.52893364	12	##e	33	34
I-PER	0.70512134	13	На	35	37
I-PER	0.4497944	14	##gem	37	40
I-PER	0.48570016	15	##eier	40	44
I-PER	0.3244481	16	-	44	45
I-PER	0.3622264	17	Lem	45	48
I-PER	0.29476708	6	0	22	23
I-PER	0.33195055	8	${ m H}$	25	26
I-PER	0.6844228	12	Wa	47	49

To me, the effectiveness of this model seems limited ...

4.

Specific ER

Company Type and Status

Geographical Information

Raw spaCy -

Does not work that well (in 100 Test cases it didnt catch one location (eventhough Bundesländer were present)) on all of the following models: - de_core_news_sm - de_core_news_md - de_core_news_lg - de_dep_news_trf

GeoSpaCy

Paper Githup Repo outdated - Core Streamlit application does not work anymore Centrally it looks to me like the also only use standard spaCy models with small regex extensions that dont help much So this approach is also not very helpful ### Geoparsing ### Gazetters

Vocabulary based Entity Recognition?

For Company Type

Identify the type of company based on suffixes like "GmbH," "e.K.," or "Union," which indicate the legal structure (e.g., GmbH for a limited liability company in Germany) Rule-based approach / Fixed Vocab should do the trick here.

For Geographical Information

Same here, I think, if at all, a Rule-based / Fixed Vocab approach, utilizing the data from Deutschlandatlas will probably do the trick.

Industry or Sector

Same here, RB & fV utilizing lists of industries/sectors from: - Statista - Gewerbelisten -> could be utilized to get a comprehensive list of available Gewerbearten

Branding or Product Focus

Same here, RB & fV utilizing lists of registered trade marks(?) like: - DPMAregister (Limited to Germany) - EUIPO Database (EU wide) - ###### Owner or Founder Names Extract personal names if present, such as "Markus Blum" in "Markus Blum Montagearbeiten e.K.," which might indicate the founder or owner.

Resources:

• Survey on DL for NER (2019) Yielding a list of modern NER Tools:

NER System	URL	Description
$\overline{\rm StanfordCoreNLP}$	https://stanfordnlp.github.io/CoreNLP/	A comprehensive NLP toolkit
		in Java.
OSU Twitter	https://github.com/aritter/twitter_nlp	Tools for NLP on Twitter
NLP		data.
Illinois NLP	http://cogcomp.org/page/software/	NLP tools from the
		University of Illinois.

NER System	URL	Description
NeuroNER	http://neuroner.com/	Neural network-based NER
NERsuite	http://nersuite.nlplab.org/	system. A suite for named entity recognition.
Polyglot	https://polyglot.readthedocs.io	Multilingual NLP library.
Gimli	http://bioinformatics.ua.pt/gimli	Biomedical NER tool.
spaCy	https://spacy.io/api/entityrecognizer	Industrial-strength NLP library.
NLTK	https://www.nltk.org	A leading platform for building Python programs to work with human language data.
OpenNLP	https://opennlp.apache.org/	Machine learning based toolkit for processing natural
LingPipe	$\rm http://alias\text{-}i.com/lingpipe\text{-}3.9.3/$	language text. Toolkit for text analytics and linguistic processing.
AllenNLP	https://demo.allennlp.org/	An open-source NLP research library built on PyTorch.
IBM Watson	https://natural-language-understanding-demo.ng.bluemix.net/	AI-powered natural language understanding service by IBM.
FG-NER	https://fgner.alt.ai/extractor/	Fine-grained named entity recognition tool.
Intellexer	http://demo.intellexer.com/	Semantic analysis and natural language processing
Repustate	https://repustate.com/named-entity-recognitionapidemo/	tool. Sentiment analysis and text analytics API with NER capabilities.
AYLIEN	https://developer.aylien.com/text-api-demo	Text analysis API with NER features.
Dandelion API	https://dandelion.eu/semantic-text/entity extraction-demo/	Semantic text analysis API with entity extraction features.
displaCy	https://explosion.ai/demos/displacy-ent	Visualizer for spaCy's named entity recognition model.
ParallelDots	https://www.paralleldots.com/named-entityrecognition	AI-powered text analysis API with NER functionality.
TextRazor	$https://www.textrazor.com/named_entity_recognition$	Text analysis API with powerful NER capabilities.

• The paper A Dataset for German Legal Documents for NER might also be helpful: