Characterizations of Invertible Matrices

Section 2.3

Learning Objectives:

- 1. Combine and review the various notions seen thus far in the course.
- 2. Translate notions of invertible matrices to invertible linear transformations.

1 The Theorem

The Invertible Matrix Theorem. Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, they are all either true or all false.

- a. A is an invertible matrix
- b. A is row equivalent to the $n \times n$ identity matrix
- c. A has n pivot positions
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
- e. The columns of A form a linearly independent set
- f. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n
- h. The columns of A span \mathbb{R}^n
- i. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n
- j. There is an $n \times n$ matrix C such that CA = I
- k. There is an $n \times n$ matrix D such that AD = I
- l. A^T is an invertible matrix

Example 1. Show that (j) implies (d).

Solution. Suppose that there exists C so that $CA = I_n$. Suppose that $A\mathbf{x} = \mathbf{0}$. We will show that $\mathbf{x} = \mathbf{0}$. Multiplying both sides of the equation by C we get $CA\mathbf{x} = C\mathbf{0}$. Since CA = I the left hand side simplifies $CA\mathbf{x} = I\mathbf{x} = \mathbf{x}$. The right hand side must be $\mathbf{0}$ and so we have $\mathbf{x} = \mathbf{0}$.

Example 2. T/F: The matrix

$$A = \left(\begin{array}{ccc} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 2 & 3 & 4 \end{array}\right)$$

is invertible.

- A. Yes, and I am confident.
- B. Yes, but I am not confident.
- C. No, but I am not confident.
- D. No, and I am confident.

Example 3. Suppose A is 3×4 and that $A\mathbf{x} = \mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^3$. Does $A\mathbf{x} = \mathbf{0}$ have a unique solution?

Solution. No. There must be a column without a pivot and so there is a free variable. As such there are non-unique solutions. This theorem does not apply because A is non-square.

Example 4. An $n \times n$ upper triangular matrix is one whose entries below the diagonal are 0's. When is a square upper triangular matrix invertible?

Solution. If an entry on the diagonal is 0 then the matrix cannot have pivots in all columns, so it cannot be invertible. On the other hand, if each diagonal entry is non-zero, then the matrix has pivots in all columns so it is invertible.

2 Invertible Linear Transformations

Definition: A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = T(S(\mathbf{x})) = \mathbf{x}.$$

In fact, Theorem 9 from the book shows that if such an S exists then it must be unique and a linear transformation. So, we may write $S = T^{-1}$.

Example 5. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation defined by

$$T(x_1, x_2) = (-5x_1 + 9x_2, 4x_1 - 7x_2).$$

Show that T is invertible and find a formula for T^{-1} . (We wrote the column vectors here as row vectors for convenience, but the math does not change!)

Solution. The standard matrix for T is

$$A = \left(\begin{array}{cc} -5 & 9 \\ 4 & -7 \end{array} \right).$$

The inverse matrix is

$$A^{-1} = \frac{1}{35 - 36} \begin{pmatrix} -7 & -9 \\ -4 & -5 \end{pmatrix} = \begin{pmatrix} 7 & 9 \\ 4 & 5 \end{pmatrix}.$$

So the inverse map is

$$T^{-1}(x_1, x_2) = (7x_1 + 9x_2, 4x_1 + 5x_2).$$

Example 6. Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation that is one-to-one. Show that T is onto.

Solution. Let A be the standard matrix for T. Since A is one-to-one then $A\mathbf{x} = \mathbf{b}$ has at least one solution for each **b**. Thus T is onto. That is to say, T is bijective.

Remark. For those who have seen discrete math, notice the distinction here: if a linear transformation T is one-to-one then it is invertible. This is not true for all functions!