281 Live Session

Week 3 - 2023/1/25

Agenda

- Overview of Units 2 & 3
- Bonus material on color spaces
- Group exercise (Histogram Equalization)

Discussion Questions

1: Perspective Projection
2: Image Formation
3: Image Artifacts
4: Convolution
5: Fourier

6: Pyramids, Edges, and Features

7: Image Analysis

8: Least-Squares

9: Total and Iterative Least-Squares

10: Clustering

11: Dimensionality Reduction

12: Linear Classifiers

13: Nonlinear Classifiers

2.2 Thin Lens
2.3 Depth of Focus
2.4 Color Filter Array (CFA) (With Exercise)
2.5 Pixels
2.6 Exposure
3.2 Chromatic Aberrations and Noise
3.3 Lens Distortion (With Exercise)
3.4 JPEG Compression (With Exercise)
3.5 Summary

- What is the focal length of a lens?
- How does a camera sensor differentiate between colors?
- What is demosaicing?
- Why does chromatic aberration occur?
- What is the difference between pincushion and barrel distortion?

Demosaicing

Unit 3 - Chromatic Aberration

What is the network really learning?

$$X = () ; Y = 3$$

Source: briankoberlein.com, Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. "Unsupervised visual representation learning by context prediction." Proceedings of the IEEE international conference on computer vision. 2015.

Unit 3 – Lens Distortion

- Consider carefully what "warped image" and "unwarped image" means
- Warping an image in order to generate an unwarped image is a reverse lookup operation
- For every regular grid location in the output image, warp coordinates back to a non-grid location in the input and interpolate to extract the color

Unit 3 – JPEG Compression

- We will learn more about decomposing images in Unit 5
- For now, just appreciate that images are usually compressed in a lossy way

Discussion Questions

1: Perspective Projection
2: Image Formation
3: Image Artifacts
4: Convolution
5: Fourier

6: Pyramids, Edges, and Features

7: Image Analysis

8: Least-Squares

9: Total and Iterative Least-Squares

10: Clustering

11: Dimensionality Reduction

12: Linear Classifiers

13: Nonlinear Classifiers

2.2 Thin Lens
2.3 Depth of Focus
2.4 Color Filter Array (CFA) (With Exercise)
2.5 Pixels
2.6 Exposure
3.2 Chromatic Aberrations and Noise
3.3 Lens Distortion (With Exercise)
3.4 JPEG Compression (With Exercise)
3.5 Summary

- What is the focal length of a lens?
- How does a camera sensor differentiate between colors?
- What is demosaicing?
- Why does chromatic aberration occur?
- What is the difference between pincushion and barrel distortion?

Color space transformations

Color models: mathematical representations of relationships between colors Many ways to parameterize colors, useful for different applications

Source: about.sourcegraph.com/strange-loop, wikipedia

CMYK color model (subtractive)

CMYK

Cyan Magenta Yellow Black

RGB color model

Color volumes and color gamut

Source: allhomecinema.com, mymusing.co

HSV and HSL color models

HSV/HSL

Hue Saturation Value/Lightness

Source: Jacob Rus (CC BY-SA 3.0) Wikimedia Commons

XYZ color model

XYZ

CIE 1931

Mathematically convenient

Source: allhomecinema.com, www.scratchapixel.com

L*a*b* color model

L*a*b*

Luminance a (red-green) b (yellow-blue)

Source: sensing.konicaminolta.asia, medium.com/nightingale/ Bronner, Timothée-Florian, et al. "Evaluation of color mapping algorithms in different color spaces." Applications of Digital Image Processing XXXIX. Vol. 9971. International Society for Optics and Photonics, 2016.

Matplotlib colormaps

Matplotlib colormaps

Cmap 'gray' is a *linear* mapping of pixel values to gray values

Do your remapping (e.g. gamma correction, etc) before calling imshow

Matplotlib will automatically use the full input range of the image unless you specify vmin/vmax (e.g. [0, 255] or [0, 1])

Group Exercise - Histogram Equalization

Group Exercise - Histogram Equalization

Upcoming ToDo's

- Watch async lectures for Unit 3
- Assignment 1 due January 30th
- Assignment 2 due February 6th
- Assignment 3 (to be released soon) due February 13th