Measure and Integration I (MAA5616), Fall 2020 Homework 8, due Thursday, Oct. 29

We write $\int f dx = \int f$ for the Lebesgue integral on \mathbb{R} .

- **1.** Suppose $\{f_n\}, f \in L_+$. If $f_n \to f$, $n \to \infty$, and $f_n \le f$ a.e., prove that $\int f_n \to \int f$. Notice that we do not assume monotone convergence.
- 2. Compute the given limit. Justify your answer.

$$\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n} \right)^{-n} \sin(x/n) \, dx.$$

- **3.** Show: $\int_0^\infty x^n e^{-x} dx = n!$ by taking the *n*-th derivative of both sides of the equality $\int_0^\infty e^{-tx} dx = 1/t$.
- **4.** An easy example of nowhere continuous function that is not (locally) Riemann integrable is $1_{\mathbb{Q}}$. However, by modifying this function on a Lebesgue null set gives a constant. For g(x) in this example such modification no longer exists.

Denote $f(x) = 1_{(0,1)} x^{-1/2}$, and let

$$g(x) = \sum_{1}^{\infty} \frac{1}{2^n} f(x - r_n),$$

where $\{r_n\}_1^{\infty}$ is an enumeration of \mathbb{Q} . Prove:

- $g \in L^1(\mathbb{R}, \lambda)$, in particular $g < \infty$ a.e. (Use Theorem 2.25.)
- For any nonempty $(a,b) \subset \mathbb{R}$, $\sup_{(a,b)} g(x) = \infty$.
- Function g is discontinuous at every $x \in \mathbb{R}$.
- The two previous properties hold also for any g_0 , such that $g_0 = g$ a.e. (So modifying g on a null set does not give a nice function.)
- The function g^2 is not integrable on any $(a,b) \subset \mathbb{R}$. (Even though it is finite a.e.)
- **5.** Prove that the cardinality of continuous functions on \mathbb{R} is \mathfrak{c} .
 - Prove that the cardinality of monotonic functions on \mathbb{R} is \mathfrak{c} .

Hint: Continuous functions are determined by their values on \mathbb{Q} . Then use # 4 from HW 1. Show that monotonic functions have at most countably many discontinuities. Then prove that a monotonic function is determined by its values on \mathbb{Q} and the positions and sizes of its jumps.

The set of all functions $\mathbb{R} \to \mathbb{R}$ of course has higher cardinality than \mathfrak{c} , because it contains indicators.