ME 257: Problem set 3

RULES: WORK OUT YOURSELF. NO HANDWAVING. POST ON PIAZZA IF YOU HAVE QUESTIONS. HAVE FUN.

- 1. Let $0 = x_0 < x_1 < x_2 < x_3 = 1$, where $x_1 = 1/6$ and $x_2 = 1/2$ be a partition of the interval I = [0, 1] into three subintervals. Let $V_{h,0}$ be the space of continuous piecewise linear functions that vanish at the end points x = 0, 1 for the model problem u'' + 1 = 0 with homogeneous boundary conditions.
 - (i) Compute the stiffness matrix K.
 - (ii) Compute the load vector F.
 - (iii) Solve the linear system for the degrees of freedom.
 - (iv) Plot the computed and exact solutions.
- 2. Compute the stiffness matrix for the problem

$$u'' + f = 0$$
 on $x \in [0, 1]$
 $u'(0) = u'(1) = 0$

on a uniform mesh consisting of two elements. Is the matrix invertible? Why/Why not?

3. Consider the problem

$$-u'' + u = f, \qquad x \in [0, 1]$$

satisfying homogeneous boundary conditions at both ends.

- (i) Choose a suitable finite element space V_h .
- (ii) Formulate the Galerkin approximation.
- (iii) Derive the discrete system of equations.
- 4. We have seen that the weak form for a model elliptic problem has the form:

Find
$$u \in V_0$$
 such that $a(u, v) = F(v)$ for all $v \in V_0$,

where $a(\cdot,\cdot)$ and $F(\cdot)$ are bilinear and linear forms, respectively. Here, we will further assume that $a(\cdot,\cdot)$ is symmetric, i.e., a(v,w)=a(w,v).

It turns out that the solution to the weak form can also be identified by minimizing the functional

$$\Pi[w] = \frac{1}{2}a(w, w) - F(w).$$

Prove that if u is a solution to the weak problem, then necessarily, $\Pi[u] \leq \Pi[v]$ for all v in V_0 . Clearly identify where in your proof you used linearity of $a(\cdot, \cdot)$ and $F(\cdot)$, and symmetry of $a(\cdot, \cdot)$.

Hint: Try showing that $\Pi[u+v] \geq \Pi[u]$. Then argue why you have proved the required result.