Численные методы решения обратных задач

Тема1. Корректные и некорректные задачи

Содержание дисциплины

- Корректные и некорректные задачи
- Обратные задачи математической физики
- Метод регуляризации Тихонова
- Градиентные, итерационные методы
- Идентификация правой части
- Эволюционные обратные задачи
- 🛮 Коэффициентные обратные задачи
- Граничные обратные задачи

Краевые задачи

Ядро прикладных математических моделей составляют *уравнения с частными производными*.

Решение определяется из уравнений математической физики и некоторых дополнительных соотношений.

В качестве дополнительных соотношений выступают, прежде всего, краевые и начальные условия.

Наиболее важные для приложений уравнения:

- эллиптические,
- параболические,
- гиперболические.

Эллиптическое уравнение

Решение $u(\boldsymbol{x}), \ \boldsymbol{x} = (x_1, x_2)$ ищется в некоторой ограниченной области Ω с достаточно гладкой границей $\partial\Omega$.

Оно определяется из **эллиптического уравнения второго порядка**

$$-\nabla \cdot k(\boldsymbol{x}) \nabla u + q(\boldsymbol{x})u = f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega.$$
 (1)

На коэффициенты уравнения, обычно, накладываются ограничения

$$k(\boldsymbol{x}) \ge \kappa > 0, \quad q(\boldsymbol{x}) \ge 0, \quad \boldsymbol{x} \in \Omega.$$

Эллиптическое уравнение

Для уравнения (1) будем рассматривать граничные условия первого рода

$$u(\mathbf{x}) = \mu(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega.$$

На границе области или ее части могут задаваться и граничные условия второго и третьего рода. В случае граничных условий третьего рода имеем

$$k(\boldsymbol{x})\frac{\partial u}{\partial n} + \sigma(\boldsymbol{x})u = \mu(\boldsymbol{x}), \quad \boldsymbol{x} \in \partial\Omega,$$

где n – внешняя нормаль.

Параболическое уравнение

Рассматривается параболическое уравнение

$$\frac{\partial u}{\partial t} = \nabla \cdot k(\boldsymbol{x}) \nabla u + f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega.$$

Оно дополняется граничными условиями

$$u(\boldsymbol{x},t) = \mu(\boldsymbol{x},t), \quad \boldsymbol{x} \in \partial\Omega,$$
 (2)

и начальным условиями

$$u(\boldsymbol{x},0)=u_0(\boldsymbol{x}), \quad \boldsymbol{x}\in\Omega.$$

Гиперболическое уравнение

Рассматривается гиперболическое уравнение

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot k(\boldsymbol{x}) \nabla u + f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega.$$

Для однозначного определения решения этого уравнения помимо граничных условий (2) задаются два начальных условия

$$u(\boldsymbol{x},0) = u_0(\boldsymbol{x}), \quad \frac{\partial u}{\partial t}(\boldsymbol{x},0) = u_1(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega.$$

Граничные и начальные условия формулируются для того, чтобы из множества возможных решений дифференциального уравнения с частными производными выделить искомое.

Этих дополнительных условий должно быть не очень много (решения должны существовать) и не очень мало (решений не должно быть много).

Корректность задачи по Ж.Адамару (корректность в классическом смысле):

Задача называется корректно поставленной, если:

- решение задачи существует,
- 🧿 это решение единственно,
- **3** решение задачи зависит непрерывно от входных данных.

Особое значение имеет именно третье условие корректности, которое обеспечивает **устойчивость решения**, т.е. малость изменений решения при малом изменении входных данных.

Входными данными выступают коэффициенты уравнения, правая часть, граничные и начальные данные, которые беруться из эксперимента и всегда известны с некоторой погрешностью.

При рассмотрении краевых задач для уравнений математической физики *теоремы существования*, единственности и устойчивости в своей совокупности обеспечивают полное исследование корректности поставленной задачи.

Условия корректности должны кокретизироваться при рассмотрении той или иной задачи.

Корректность параболической задачи

Некоторые основные вопросы исследования корректности краевых задач математической физики проиллюстрируем на примере простейшей краевой задачи для одномерного параболического уравнения

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(k(x) \frac{\partial}{\partial x} u \right) + f(x), \quad x \in \Omega.$$
 (3)

Оно дополняется граничными условиями

$$u(0,t) = u(1,t) = 0, \quad 0 < t \le T,$$
 (4)

и начальным условиями

$$u(x,0) = u_0(x), \quad x \in \Omega. \tag{5}$$

Пространство \mathcal{H}

Для функций, заданных в области $\Omega=(0,1)$ и обращающихся в нуль в граничных точках (на $\partial\Omega$), определим гильбертово пространство $\mathcal{H}=L^2(\Omega)$, в котором скалярное произведение определено следующим образом

$$(v, w) = \int_{\Omega} v(x)w(x)dx.$$

Для нормы в \mathcal{H} используются обозначения

$$||v|| = (v, v)^{1/2} = \left(\int_{\Omega} v^2(x) dx\right)^{1/2}.$$

Оператор \mathcal{A}

Для функций, удовлетворяющих краевым условиям (4), определим оператор

$$\mathcal{A}u = -\frac{\partial}{\partial x} \left(k(x) \frac{\partial}{\partial x} u \right), \quad 0 < x < 1.$$
 (6)

Оператор \mathcal{A} является самосопряженным и неотрицательным в \mathcal{H} :

$$\mathcal{A}^* = \mathcal{A} \ge 0. \tag{7}$$

Оператор \mathcal{A}

Свойство самосопряженности следует из

$$(\mathcal{A}v, w) = \int_0^1 \mathcal{A}v(x)w(x) = \int_0^1 k(x)\frac{\partial v}{\partial x}\frac{\partial w}{\partial x}dx = (v, \mathcal{A}^*w)$$

которое получено с учетом того, что функции v(x), w(x) обращаются в нуль при $x \in \partial \Omega$.

Для функций $u(x)=0, x\in\partial\Omega$ имеем

$$(\mathcal{A}v, v) = \int_0^1 k(x) \left(\frac{\partial v}{\partial x}\right)^2 dx \ge 0$$

и поэтому A > 0.

Дифференциально-операторное уравнение

С учетом введенных обозначений уравнение (3), дополненное условиями (4) на границе запишем как дифференциально-операторное уравнение для нахождения $u(t) \in \mathcal{H}$:

$$\frac{du}{dt} + \mathcal{A}u = f(t), \quad 0 < t \le T.$$
 (8)

Начальное условие (5) переписывается в виде

$$u(0) = u_0. (9)$$

Лемма Гронуолла

Лемма

Для функции g(t), удовлетворяющей неравенству

$$\frac{dg}{dt} \le ag(t) + b(t), \quad t > 0$$

 $c \ a = \mathrm{const}, \ b(t) \geq 0 \ верна \ оценка$

$$g(t) \le \exp(at) \left(g(0) + \int_0^1 \exp(-a\theta)b(\theta(d\theta))\right)$$

Априорная оценка

Теорема

Для решения задачи (8), (9) верна априорная оценка

$$||u(t)|| \le ||u_0|| + \int_0^t ||f(\theta)|| d\theta.$$
 (10)

Доказательство. Домножая уравнение (8) скалярно на u(t), получим равенство

$$\left(\frac{du}{dt}, u\right) + (\mathcal{A}u, u) = (f, u).$$

Априорная оценка

С учетом неравенства Коши-Буняковского имеем

$$\left(\frac{du}{dt}, u\right) = \frac{1}{2} \frac{d}{dt} ||u||^2 = ||u|| \frac{d}{dt} ||u||,$$
$$(f, u) \le ||f|| ||u||,$$

что с учетом неотрицательности оператора ${\cal A}$ приводит к неравенству

$$\frac{d}{dt}||u|| \le ||f||.$$

Из этого неравенства вытекает доказываемая оценка (10) (в лемме Гронуолла a=0).

Единственность

Следствие

Решение задачи (8), (9) единственно.

Доказательство. Пусть имеются два решения $u_1(t)$ и $u_2(t)$.

Разность $u(t) = u_1(t) - u_2(t)$ удовлетворяет уравнению (8) с f(t) = 0, $0 < t \le T$ и однородным начальным условиям $(u_0 = 0)$.

Из априорной оценки (10) следует u(t) = 0 для всех $0 \le t \le T$.

В рассматриваемой задаче в качестве входных данных необходимо рассматривать, прежде всего, начальные условия. В этом случае мы говорим об устойчивости по начальным данным.

Входными данными являются коэффициенты уравнения (коэффициентная устойчивость.

В частности, имеет смысл исследовать зависимость решения задачи от правой части уравнения — **устойчивость по правой части**.

Покажем, например, что полученная априорная оценка (10) обеспечивает устойчивость по начальным данным и правой части.

Будем помимо (8), (9) рассматривать задачу с возмущенными начальным условием и правой частью:

$$\frac{d\tilde{u}}{dt} + A\tilde{u} = \tilde{f}(t), \quad 0 < t \le T.$$
 (11)

$$\tilde{u}(0) = \tilde{u}_0. \tag{12}$$

Следствие

 $\Pi y cm b$

$$||u_0 - \tilde{u}_0|| \le \varepsilon,$$

$$||f(t) - \tilde{f}(t)|| \le \varepsilon, \quad 0 \le t \le T,$$

 $\epsilon \partial e \varepsilon > 0$. Тогда

$$||u(t) - \tilde{u}(t)|| \le \mathcal{M}\varepsilon,$$

$$c \mathcal{M} = 1 + T.$$

Следствие определяет устойчиовсть решения задачи (8), (9) от правой части и начальных условий.

Доказательство. Для $\delta u(t)=u(t)-\tilde{u}(t)$ из (8), (9) и (11), (12) получим задачу

$$\frac{d\delta u}{dt} + \mathcal{A}\delta u = \delta f(t), \quad 0 < t \le T, \quad \delta u(0) = \delta u_0, \quad (13)$$

где

$$\delta u_0 = u_0 - \tilde{u}_0, \quad \delta f(t) = f(t) - \tilde{f}(t).$$

Для решения задачи (13), верна априорная оценка (10)

$$\|\delta u(t)\| \le \|\delta u_0\| + \int_0^t \|\delta f(\theta)\| d\theta \le (1+T)\varepsilon$$

Некорректные задачи

Задачи, в которых какое-либо из трех условий корректной постановки задачи (существование, единственность, устойчивость) не выполнено, относятся к классу некорректных задач.

При этом определяющую роль играет условие непрерывной зависимости решения от входных данных. Приведем некоторые примеры некорректно поставленных задач для уравнений математической физики.

Некорректные задачи

Для параболических уравнений корректными являются задачи с заданными граничными и начальным условиями (см. (3)–(5)).

При задании решения на конечный момент времени мы имеем задачу с обратным временем – по заданному состоянию мы хотим восстановить предысторию исследуемого процесса.

Задача с обратным временем

Остановимся на простейшей задаче с обратным временем:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < l, \quad 0 \le t < T, \tag{14}$$

$$u(0,t) = u(l,t) = 0, \quad 0 \le t < T,$$
 (15)

$$u(x,T) = u_T(x), \quad 0 \le x \le l. \tag{16}$$

Для объяснения сущности некорректности этой задачи можно рассмотреть решение задачи (14) - (16) с условием

$$u_T(x) = \frac{1}{k^p} \sqrt{\frac{2}{l}} \sin\left(\frac{\pi kx}{l}\right), \qquad (17)$$

Задача с обратным временем

В норме гильбертова пространства $\mathcal{H} = L^2(\Omega)$, $\Omega = (0, l)$ имеем

$$||u_T(x)||^2 = \int_{\Omega} u_T^2(x) dx = \frac{1}{k^{2p}} \to 0$$

при $k \to \infty$, т.е. конечное условие сколь угодно малое.

Точное решение задачи (14) - (16)имеет вид

$$u(x,t) = u_T(x) \exp\left(\left(\pi \frac{k}{l}\right)^2 (T-t)\right).$$

Задача с обратным временем

Из этого представления следует, что при $0 \le t < T$

$$||u(x,t)|| = \frac{1}{k^p} \exp\left(\left(\pi \frac{k}{l}\right)^2 (T-t)\right) \to \infty.$$

при $k \to \infty$.

Таким образом, возмущения в начальном условии, сколь малыми они не были, неограниченно возрастают при t < T.

Необходимость решения неустойчивых задач, подобных приведенной выше, требует более точного определения решения задачи.

В условно корректных задачах, задачах, корректных по А.Н.Тихонову, речь идет уже не просто о решении, а о решении, принадлежащем некоторому классу.

Сужение класса допустимых решений позволяет в некоторых случаях перейти к корректной задаче.

Будем говорить, что задача поставлена корректно по Тихонову, если:

- априори известно, что решение задачи существует в некотором классе,
- 🧿 в этом классе решение единственно,
- решение задачи зависит непрерывно от входных данных.

Принципиальное отличие состоит именно в выделении класса допустимых решений.

Класс априорных ограничений на решение может быть разный.

Сама постановка задачи при рассмотрении некорректных задач существенно меняется – в постановку задачи включается условие о принадлежности решения некоторому множеству.

Будем теперь рассматривать некорректную задачу Коши для уравнения

$$\frac{du}{dt} - \mathcal{A}u = 0, \quad 0 < t \le T, \tag{18}$$

$$u(0) = u_0. (19)$$

Получим оценку решения задачи (18), (19), из которой вытекает условная корректность задачи.

Обозначим

$$\Phi(t) = ||u||^2 = (u, u). \tag{20}$$

Непосредственное дифференцирование выражения (20) с учетом уравнения (18) дает

$$\frac{d\Phi}{dt} = 2\left(u, \frac{du}{dt}\right) = 2(u, \mathcal{A}u). \tag{21}$$

Принимая во внимание самосопряженность оператора \mathcal{A} , при повторном дифференцировании получим

$$\frac{d^2\Phi}{dt^2} = 4\left(\mathcal{A}u, \frac{du}{dt}\right) = 4\left\|\frac{du}{dt}\right\|^2. \tag{22}$$

Из (20)–(22) и неравенства Коши-Буняковского следует

$$\Phi \frac{d^2 \Phi}{dt^2} - \left(\frac{d\Phi}{dt}\right)^2 = 4\left(\|u\|^2 \left\|\frac{du}{dt}\right\|^2 - \left(u, \frac{du}{dt}\right)^2\right) \ge 0.$$
(23)

Неравенство (23) эквивалентно неравенству

$$\frac{d^2}{dt^2}\ln\Phi(t) \ge 0, (24)$$

т.е. функция $\ln \Phi(t)$ выпукла. Из (23) имеем

$$\ln \Phi(t) \le \frac{t}{T} \ln \Phi(T) + \left(1 - \frac{t}{T}\right) \ln \Phi(0). \tag{25}$$

Отсюда следует

$$\Phi(t) \le (\Phi(T))^{t/T} (\Phi(0))^{1-t/T}. \tag{26}$$

С учетом (20) получим искомую оценку решения задачи (18), (19):

$$||u(t)|| \le ||u(T)||^{t/T} ||u(0)||^{1-t/T}.$$
 (27)

Пусть теперь рассматривается решение задачи (18), (19) в классе ограниченных в \mathcal{H} решений, т.е.

$$||u(t)|| \le \mathcal{M}, \quad 0 < t \le T. \tag{28}$$

В классе априорных ограничений (28) из (27) получим оценку

$$||u(t)|| \le \mathcal{M}^{t/T} ||u(0)||^{1-t/T}.$$
 (29)

Это значит, что для задачи (18), (19) имеет место непрерывная зависимость решения от начальных данных при 0 < t < T в классе ограниченных решений.

На основании этого имеет смысл строить алгоритмы приближенного решения некорректной задачи (18), (19), которые каким-либо образом выделяли класс ограниченных решений.