Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники Направление подготовки: 09.03.01 - Информатика и вычислительная техника, Компютернык системы и технологии

Лабороторная работа №6 по информатике «Работа с системой компьютерной верстки I^AT_EX» Вариант №28

> Выполнил: Хабнер Георгий Евгеньевич Принял Белозубов Александр Владимирович

Jagarnuk "Klanma"

Таблица

Матириал	Q, Ом мм ² /м (при 20 ° <i>C</i>)	$lpha$, град $^{-1}$ (при 20 ° C)	Плот- ность, $\Gamma/\text{см}^{3}$	Температура плавления, °С
Алюминий	0,032	0,038	2,6-2,8	660
Бронза	0,12	0,004	7,4-8,8	1000
Вольфрам	0,055	0,0051	19,0	3387
Золото	0,024	0,0039	19,3	1063
Кобальт	0,097	0,0033	8,8	1490
Латунь	0,06-0,09	$0,\!001\!-\!0,\!007$	8,4-8,7	900
Медь	0,017	0,0043	8,6-9,0	1083
Молибден	0,048	0,0050	10,2	2622
Никель	0,11	0,0027	8,8	1452
Олово	0,11	0,0044	7,3	232
Платина	0,09	0,0038	21,4	1773
Свинец	0,21	0,0042	11,3	327
Серебро	0,016	0,0040	10,5	961
Сталь	0,199	0,0016 - 0,0042	7,5-7,9	1500
Хром	0,027	0,0042	6,7	1700
Цинк	0,060	0,0039	6,8-7,1	419

Ф1307. Квант электромагнитного излучения испытывает рассеяние на покоящемся эелктроне (так называемый Комптон-эффект). При этом рассеянный квант изменяет частоту, а электрон получает импульс отдачи р. Определите, под какими углами по отношению к направлению падающего излучения может двигаться электрон с данным импульсом. Считайте, что скорость электрона существенно меньше, чем скорость света.

Ю Самарский

Решения задач

M1271-M1275, $\Phi1283-\Phi1287$

Пусть AMNB — искомая трапеция и NP — ее высота. Так как трапеция вписана в окружность, то ее боковые стороны равны. Но трапеция является и описанной, поэтому каждая из ее боковых сторон равняется полусумме оснований, т.е. отрезку АР. Из подобия треугольников ANB и NPB (рис. 1) следует равенство

$$AP^2 = NB^2 = AB \cdot BP \tag{*}$$

т.е. точка P делит отрезок AB, как говорят, «в крайнем и среднем отношении». Построение такой точки можно выполнить следующим образом: восставим к AB перпендикуляр $BD = \frac{1}{2}AB$ (рис. 2), отложим не отрезке AD отрезок DE=DB, а на AB отрезок AP=AE. Если AB=2, то, как легко проверить, $AP = \sqrt{5} - 1$ и для точки P выполнено coothomethie (*).

Затем можно, восстановив перпендикуляр PN в точке P к отрезку AB до пересечения с полуокружностью, построить искомую равнобочную трапецию AMNB и доказать (используя подобие треугольников), что ее боковая сторона равна AP, т.е. полусумме оснований, следовательно, она описанная.

М 1271. Дана полуокруженость с диаметром АВ. Постройте $xop \partial y$ MN, mak чтобы трапеция AMNB была описанной.

Puc.1.

Puc.2.

Puc.3.

В. Сендеров

Если сближать два числа u, v (0 < u < v < 1) так, чтобы их сумма оставалась постоянной, то произведение $uv = (u+v)^2/4 - (u-v)^2/4$ увеличивается, а произведение $(1/u^2-1)(1/v^2-1) = (1-u^2-v^2+u^2v^2)/u^2v^2 = (1-(u+v^2)/u^2v^2+2uv+1$ уменьшается. Из n чисел с суммой 1, среди которых не все равны 1/n, найдется число u, меньшее 1/n, и число v, большее 1/n (подобное соображение играло ключевую роль в «самом коротком доказательстве теоремы Коши», см. статью Ю. П. Соловьева в «Кванте» №3 за этот год). Будем сближать u и v, сохраняя сумму до тех пор, пока одно из них не станет равным 1/n; при этом произведение $P = (1/a_1^2-1) \times ... \times (1/a_n^2-1)$ будет уменьшаться. Если в полученном наборе еще не все числа равны 1/n, можно повторить эту процедуру с другой парой чисел и поступать так до тех пор, пока все числа не станут равны 1/n; при этом P станет равным $(n^2-1)^n$. Тем самым, первоначально произведение P было не меньше этой величины.

Л. Курляндчик

$$f(x) = \sum_{k=0}^{\infty} k \cdot \sqrt[3]{\frac{1}{k+x}}$$