MODELLI E ALGORITMI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (10 punti) Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4, 5\}$$

$$A = \{(1,2), (1,3), (2,3), (2,4), (3,4), (3,5), (4,5)\}$$

con i seguenti costi unitari di trasporto c_{ij} e capacità d_{ij}

arco	(1,2)	(1,3)	(2,3)	(2,4)	(3,4)	(3, 5)	(4,5)
c_{ij}	5	4	7	20	1	5	3
d_{ij}	7	6	6	1	2	8	8

e i seguenti valori b_i associati ai nodi

nodo	1	2	3	4	5
b_i	+5	0	0	0	-5

Verificare che alla terna

$$B = \{(1,2), (2,3), (3,5), (4,5)\}$$
 $N_0 = \{(1,3), (3,4)\}$ $N_1 = \{(2,4)\}.$

corrisponde una soluzione di base ammissibile e partire da questa per determinare una soluzione ottima e il valore ottimo per questo problema.

ESERCIZIO 2. (9 punti)

In un grafo orientato G=(V,A) si consideri un problema di cammino a costo minimo da un nodo s a un nodo t e si supponga di aver già calcolato tale cammino minimo. Per ciascuna delle seguenti affermazioni dire se è vera o falsa **MOTIVANDO LA RISPOSTA**:

- \bullet se la lunghezza di tutti gli archi viene aumentata di M, il valore ottimo del problema aumenta di M moltiplicato per il numero di archi del cammino minimo;
- se ci sono archi di lunghezza negativa, l'algoritmo di Dijkstra non è applicabile ma quello di Floyd-Warshall garantisce di trovare un cammino minimo;
- se il cammino minimo dal nodo s al nodo t passa per il nodo x, allora il cammino minimo da s a x coincide certamente con il sottocammino del cammino minimo da s a t che congiunge s e x.

ESERCIZIO 3. (6 punti) Dopo aver spiegato che cos'è un upper bound relativo a un sottinsieme della regione ammissibile di un problema di massimo, si descriva la procedura per il calcolo di un upper bound per il nodo radice nel problema KNAPSACK e si spieghi come si effettua il branching del nodo radice.

ESERCIZIO 4. (6 punti) Si dimostri la correttezza dell'algoritmo greedy per il problema dell'albero di supporto a peso minimo.