Project 2 (Group)

Dolma Sherpa/ Chandan Gurung

Import necessary libraries

```
In [1]:
        import matplotlib.pyplot as plt
        import pandas as pd
        import seaborn as sns
        import numpy as np
In [2]: # Import the dataset and assign to a variable
In [3]: | df=pd.read_csv("Scorecard.csv")
        C:\Users\pemat\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3
        020: DtypeWarning: Columns (6,9,31,1608,1619,1620,1621,1622,1623,1624,1625,16
        26,1627,1628,1629,1688,1689,1690,1691,1692,1703,1704,1725,1726,1727,1728,172
        9,1743,1815,1816,1817,1818,1823,1824,1830,1831,1879,1880,1881,1882,1883,1884,
        1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894, 1895, 1896, 1897, 1898, 1909, 19
        10,1911,1912,1913,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,196
        8,1969,1970,1971,1972,1973,1974,1975,1976) have mixed types. Specify dtype op
        tion on import or set low memory=False.
          interactivity=interactivity, compiler=compiler, result=result)
In [4]: # Data Documentation
        # https://collegescorecard.ed.gov/assets/FullDataDocumentation.pdf
In [5]: | df.shape
Out[5]: (7058, 1977)
```

1. What is the most costly college?

```
In [7]: print ('The most costly college is:')
    print (df.loc[df['COST'].idxmax()].INSTNM)
    print ('Its cost is:')
    print (df.loc[df['COST'].idxmax()].COST)

The most costly college is:
    L3 Commercial Training Solutions Airline Academy
    Its cost is:
    105745.0
```

What is the cheapest?

```
In [8]: print ('The cheapest college is:')
    print (df.loc[df['COST'].idxmin()].INSTNM)
    print ('Its cost is:')
    print (df.loc[df['COST'].idxmin()].COST)

The cheapest college is:
    Purdue University Northwest
    Its cost is:
    0.0
```

2. What is the average cost for colleges in different parts of the US?

```
In [9]: AvgCost = df.dropna(subset=['COST'])
In [10]: AvgCost = round(AvgCost.groupby(['STABBR'])['COST'].mean())
```

```
In [11]: print ('The average tuition for each state of US in ascending order is')
    print ('')
    print (AvgCost.sort_values(ascending=True))
```

The average tuition for each state of US in ascending order is

STABBI	₹
PW	6085.0
AS	7400.0
MP	8734.0
MH	8750.0
FM	9554.0
PR	11653.0
GU	12339.0
WY	14714.0
VI	16786.0
MT	17120.0
ND	17174.0
OK	17511.0
NM	18100.0
WV	18102.0
AR	18277.0
MS	19143.0
ID	19609.0
UT	20058.0
AK	20203.0
AL	20662.0
HI	20745.0
LΑ	20745.0
SD	
	21214.0
AZ	21327.0
TX	21573.0
KS	21793.0
WA	22177.0
KY	22480.0
MO	22621.0
NV	22694.0
MI	22736.0
TN	22750.0
NC	22907.0
CO	23154.0
IL	23245.0
OH	23277.0
GA	23428.0
FL	23676.0
OR	23797.0
SC	24323.0
NE	24390.0
DE	24394.0
WI	24553.0
MN	24887.0
NJ	25149.0
VA	25170.0
CA	25254.0
MD	25329.0
IA	25968.0
CT	26631.0
IN	26988.0
NY	27910.0
ME	28091.0
NH	28653.0

```
PA 29007.0
RI 34898.0
MA 35063.0
DC 36921.0
VT 39869.0
Name: COST, dtype: float64
```

3. What is the average cost for college for religious vs. secular institutions?

```
In [12]: # creating a new data frame for religious institution and drop all rows where
          religious is NaN
         religious = df.dropna(subset=['RELAFFIL'])
         # calculate the average tuition for religious institution
         print ('The average tuition for religious institution is:')
         print (round(religious.COST.mean()),'$')
         The average tuition for religious institution is:
         37389 $
In [13]: # create new data frame for secular institution and drop all rows where secula
         r is NaN
         secular= df.loc[pd.isnull(df).any(1),:]
         # calculate the average annual tuition for secular institution
         print ('The avarage annual tuition for secular institution is:')
         print (round(secular.COST.mean()),'$')
         The avarage annual tuition for secular institution is:
         23869 $
```

4. What percent of colleges have an open admission policy?

There are 4063 colleges with open admission which is 58 % of 7058 colleges

5. What is the correlation (scatterplot) between admission rates and college cost?

```
In [15]: # Annual costs
          Adm Cst = df[['ADM RATE', 'COST']].copy()
In [16]:
          Adm Cst.corr()
Out[16]:
                      ADM_RATE
                                     COST
           ADM_RATE
                         1.000000
                                  -0.301969
                COST
                        -0.301969
                                  1.000000
In [17]:
          #The correlation between Addmision rate and college cost is -0.302
In [18]:
          s=(4,2)
          plt.scatter(df.ADM RATE*100, df.COST,s,color='g')
          plt.title("Correlation between admission rates and college cost")
          plt.xlabel("admission rates %")
          plt.ylabel("college cost")
          plt.show()
                    Correlation between admission rates and college cost
              70000
              60000
              50000
           college cost
             40000
             30000
              20000
             10000
                 0
                                                        80
                             20
                                      40
                                               60
                                                                100
                     0
                                     admission rates %
```

6. What is the correlation between SAT scores and admission rates? Are there any outliers?

```
In [19]: Adm_Sat = df[['ADM_RATE', 'SAT_AVG']].copy()
```

```
In [20]: Adm_Sat.corr()
```

Out[20]:

ADM_RATE SAT_AVG

ADM_RATE 1.000000 -0.413266 **SAT_AVG** -0.413266 1.000000

In [21]: # The correlation between Admission rate and SAT scores is -0.41

Outliers

```
In [22]: sns.boxplot(df.SAT_AVG)
```

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x16728a378d0>


```
In [23]: # There is one an outlier just below 600
df.SAT_AVG.sort_values(ascending=True).head(2)
```

Out[23]: 825 564.0 2513 822.0

Name: SAT_AVG, dtype: float64

In [24]: # There is an outlier with SAT average of 564

```
In [25]: sns.boxplot(df.ADM_RATE)
Out[25]: <matplotlib.axes. subplots.AxesSubplot at 0x167289e7cf8>
```

0.0 0.2 0.4 0.6 0.8 1.0 ADM RATE

Extra Credit

7. What colleges have the highest and lowest family income averages? How does that correlate with college costs?

```
In [28]: df['FAMINC'] = df['FAMINC'].replace('PrivacySuppressed', np.nan)
    df['FAMINC'] = df.FAMINC.astype(float)

In [29]: print('The highest family income is : ', round(df['FAMINC'].max()),'$')
    print('Institution:',df.iloc[df['FAMINC'].idxmax].INSTNM,',', df.iloc[df['FAMINC'].idxmax].STABBR)

    The highest family income is : 174263.0 $
    Institution: Jewish Theological Seminary of America , NY
```

```
In [30]: print('The lowest family income is: ', round(df['FAMINC'].min()),'$')
print('Institution:',df.iloc[df['FAMINC'].idxmin].INSTNM,',', df.iloc[df['FAMI
NC'].idxmin].STABBR)
The lowest family income is: 321.0 $
Institution: J F Ingram State Technical College , AL
```

Correlation