

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 15/00		A2	(11) International Publication Number: WO 99/64576 (43) International Publication Date: 16 December 1999 (16.12.99)
<p>(21) International Application Number: PCT/IB99/01062</p> <p>(22) International Filing Date: 9 June 1999 (09.06.99)</p> <p>(30) Priority Data: 60/088,801 10 June 1998 (10.06.98) US</p> <p>(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application US 60/088,801 (CON) Filed on 10 June 1998 (10.06.98)</p> <p>(71) Applicant (<i>for all designated States except US</i>): BAYER CORPORATION [US/US]; 333 Coney Street, East Walpole, MA 02032 (US).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): ENDEGE, Wilson, O. [KE/US]; 222 Normandy Drive, Norwood, MA 02062 (US). STEINMANN, Kathleen, E. [US/US]; 115 Washington Street, Unit 3B, Winchester, MA 01890 (US). ASTLE, Jon, H. [US/US]; 42 Short Street, Taunton, MA 02780 (US). BURGESS, Christopher, C. [US/US]; 97 Canton Terrace, Westwood, MA 02090 (US). BUSHNELL, Steven, E. [US/US]; 41 South Street, Medfield, MA 02052 (US). CAR-</p>		<p>ROLL, Eddie, III [US/US]; 24 Eddy Street, Waltham, MA 02154 (US). CATINO, Theodore, J. [US/US]; 18 Jo Paul Drive, Attleboro, MA 02702 (US). DERTI, Adnan [US/US]; 7 Wigglesworth Street, Boston, MA 02120 (US). FORD, Donna, M. [US/US]; 8 Morningside Road, Plainville, MA 02762 (US). LEWIS, Marcia, E. [US/US]; 67 Wheelwright Farm, Cohasset, MA 02025 (US). MONAHAN, John, E. [US/US]; 942 West Street, Walpole, MA 02081 (US). SCHLEGEL, Robert [US/US]; 211 Melrose Street, Auburndale, MA 02466 (US).</p> <p>(74) Agents: ROESLER, Judith, A.; Bayer Corporation, 63 North Street, Medfield, MA 02052 (US) et al.</p> <p>(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>	
<p>(54) Title: NOVEL HUMAN GENES AND GENE EXPRESSION PRODUCTS</p> <p>(57) Abstract</p> <p>This invention relates to novel human genes, to proteins expressed by the genes, and to variants of the proteins. The invention also relates to diagnostic assays and therapeutic agents related to the genes and proteins, including probes, antisense constructs, and antibodies. The subject nucleic acids have been found to be differentially regulated in tumor cells, particularly colon cancer cell lines and/or tissue.</p>			
<p>Differential Expression Analysis</p> <p>SW480 Clone Number</p> <p>§ § § §</p>			
<p>Cancer Probe</p> <p>Normal Probe</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Kazakhstan	PT	Portugal		
CU	Cuba	LC	Saint Lucia	RO	Romania		
CZ	Czech Republic	LI	Liechtenstein	RU	Russian Federation		
DE	Germany	LK	Sri Lanka	SD	Sudan		
DK	Denmark	LR	Liberia	SE	Sweden		
EE	Estonia			SG	Singapore		

5

NOVEL HUMAN GENES AND GENE EXPRESSION PRODUCTS

This application is based on Provisional Application No. 60/088,801, filed June 10, 1998, which is hereby incorporated herein by reference.

10

Field of the Invention

The present invention provides nucleic acid sequences and proteins encoded thereby, as well as probes derived from the nucleic acid sequences, antibodies directed to the encoded proteins, and diagnostic methods for detecting cancerous cells, especially colon cancer cells.

15

Background of the Invention

Colorectal carcinoma is a malignant neoplastic disease. There is a high incidence of colorectal carcinoma in the Western world, particularly in the United States. Tumors of this type often metastasize through lymphatic and vascular channels. Many patients with colorectal carcinoma eventually die from this disease. In fact, it is estimated that 62,000 persons in the United States alone die of colorectal carcinoma annually.

However, if diagnosed early, colon cancer may be treated effectively by surgical removal of the cancerous tissue. Colorectal cancers originate in the colorectal epithelium and typically are not extensively vascularized (and therefore not invasive) during the early stages of development. Colorectal cancer is thought to result from the clonal expansion of a single mutant cell in the epithelial lining of the colon or rectum. The transition to a highly vascularized, invasive and ultimately metastatic cancer which spreads throughout the body commonly takes ten years or longer. If the cancer is detected prior to invasion, surgical removal of the cancerous tissue is an effective cure. However, colorectal cancer is often detected only upon manifestation of clinical symptoms, such as pain and black tarry stool. Generally, such symptoms are present

only when the disease is well established, often after metastasis has occurred, and the prognosis for the patient is poor, even after surgical resection of the cancerous tissue. Early detection of colorectal cancer therefore is important in that detection may significantly reduce its morbidity.

5 Invasive diagnostic methods such as endoscopic examination allow for direct visual identification, removal, and biopsy of potentially cancerous growths such as polyps. Endoscopy is expensive, uncomfortable, inherently risky, and therefore not a practical tool for screening populations to identify those with colorectal cancer. Non-invasive analysis of stool samples for characteristics indicative of the presence of
10 10 colorectal cancer or precancer is a preferred alternative for early diagnosis, but no known diagnostic method is available which reliably achieves this goal. A reliable, non-invasive, and accurate technique for diagnosing colon cancer at an early stage would help save many lives.

15

Summary of the Invention

The present invention provides nucleic acid sequences and proteins encoded thereby, as well as probes derived from the nucleic acid sequences, antibodies directed to the encoded proteins, and diagnostic methods for detecting cancerous cells, especially colon cancer cells.

20 In one aspect, the invention provides an isolated nucleic acid comprising a nucleotide sequence which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto. In a related embodiment, the nucleic acid is at least about 80% or about 100% identical to a sequence corresponding to at least about 12, at least about 15, at least about 25, or at least about
25 25 40 consecutive nucleotides up to the full length of one of SEQ ID Nos. 1-127 or a sequence complementary thereto or up to the full length of the gene of which said sequence is a fragment. In certain embodiments, a nucleic acid of the present invention includes at least about five, at least about ten, or at least about twenty nucleic acids from a region designated as novel in Table 2. In certain other
30 30 embodiments, a nucleic acid of the present invention includes at least about five, at least about ten, or at least about twenty nucleotides which are not included in corresponding clones whose accession numbers are listed in Table 2.

In one embodiment, the invention provides a nucleic acid comprising a nucleotide sequence which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto, and a transcriptional regulatory sequence operably linked to the nucleotide sequence to render the 5 nucleotide sequence suitable for use as an expression vector. In another embodiment, the nucleic acid may be included in an expression vector capable of replicating in a prokaryotic or eukaryotic cell. In a related embodiment, the invention provides a host cell transfected with the expression vector.

In another embodiment, the invention provides a transgenic animal having a 10 transgene of a nucleic acid comprising a nucleotide sequence which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto incorporated in cells thereof. The transgene modifies the level of expression of the nucleic acid, the stability of an mRNA transcript of the nucleic acid, or the activity of the encoded product of the nucleic acid.

15 In yet another embodiment, the invention provides substantially pure nucleic acid which hybridizes under stringent conditions to a nucleic acid probe corresponding to at least about 12, at least about 15, at least about 25, or at least about 40 consecutive nucleotides up to the full length of one of SEQ ID Nos. 1-127 or a sequence complementary thereto or up to the full length of the gene of which said 20 sequence is a fragment. The invention also provides an antisense oligonucleotide analog which hybridizes under stringent conditions to at least 12, at least 25, or at least 50 consecutive nucleotides of one of SEQ ID Nos. 1-850 up to the full length of one of SEQ ID Nos. 1-850 or a sequence complementary thereto or up to the full length of the gene of which said sequence is a fragment, and which is resistant to 25 cleavage by a nuclease, preferably an endogenous endonuclease or exonuclease.

In another embodiment, the invention provides a probe/primer comprising a substantially purified oligonucleotide, said oligonucleotide containing a region of nucleotide sequence which hybridizes under stringent conditions to at least about 12, at least about 15, at least about 25, or at least about 40 consecutive nucleotides of 30 sense or antisense sequence selected from SEQ ID Nos. 1-127 up to the full length of one of SEQ ID Nos. 1-127 or a sequence complementary thereto or up to the full length of the gene of which said sequence is a fragment. In preferred embodiments,

the probe selectively hybridizes with a target nucleic acid. In another embodiment, the probe may include a label group attached thereto and able to be detected. The label group may be selected from radioisotopes, fluorescent compounds, enzymes, and enzyme co-factors. The invention further provides arrays of at least about 10, at least 5 about 25, at least about 50, or at least about 100 different probes as described above attached to a solid support.

In yet another embodiment, the invention pertains to a method of determining the phenotype of a cell, comprising detecting the differential expression, relative to a normal cell, of at least one nucleic acid which hybridizes under stringent conditions to 10 one of SEQ ID Nos. 1-850, wherein the nucleic acid is differentially expressed by at least a factor of two, at least a factor of five, at least a factor of twenty, or at least a factor of fifty.

In another aspect, the invention provides polypeptides encoded by the subject nucleic acids. In one embodiment, the invention pertains to a polypeptide including an 15 amino acid sequence encoded by a nucleic acid comprising a nucleotide sequence which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto, or a fragment comprising at least about 25, or at least about 40 amino acids thereof. Further provided are antibodies immunoreactive with these polypeptides.

20 In still another aspect, the invention provides diagnostic methods. In one embodiment, the invention pertains to a method for determining the phenotype of cells from a patient by providing a nucleic acid probe comprising a nucleotide sequence having at least 12, at least about 15, at least about 25, or at least about 40 consecutive nucleotides represented in a sequence of SEQ ID Nos. 1-850 up to the full 25 length of one of SEQ ID Nos. 1-850 or a sequence complementary thereto or up to the full length of the gene of which said sequence is a fragment, obtaining a sample of cells from a patient, providing a second sample of cells substantially all of which are non-cancerous, contacting the nucleic acid probe under stringent conditions with mRNA of each of said first and second cell samples, and comparing (a) the amount of 30 hybridization of the probe with mRNA of the first cell sample, with (b) the amount of hybridization of the probe with mRNA of the second cell sample, wherein a difference of at least a factor of two, at least a factor of five, at least a factor of twenty, or at least

a factor of fifty in the amount of hybridization with the mRNA of the first cell sample as compared to the amount of hybridization with the mRNA of the second cell sample is indicative of the phenotype of cells in the first cell sample. Determining the phenotype includes determining the genotype, as the term is used herein.

5 In another embodiment, the invention provides a test kit for identifying an transformed cells, comprising a probe/primer as described above, for measuring a level of a nucleic acid which hybridizes under stringent conditions to a nucleic acid of SEQ ID Nos. 1-850 in a sample of cells isolated from a patient. In certain 10 embodiments, the kit may further include instructions for using the kit, solutions for suspending or fixing the cells, detectable tags or labels, solutions for rendering a nucleic acid susceptible to hybridization, solutions for lysing cells, or solutions for the purification of nucleic acids.

In another embodiment, the invention provides a method of determining the phenotype of a cell, comprising detecting the differential expression, relative to a 15 normal cell, of at least one protein encoded by a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850, wherein the protein is differentially expressed by at least a factor of two, at least a factor of five, at least a factor of twenty, or at least a factor of fifty. In one embodiment, the level of the protein is detected in an immunoassay. The invention also pertains to a method for determining the 20 presence or absence of a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-127 in a cell, comprising contacting the cell with a probe as described above. The invention further provides a method for determining the presence of absence of a subject polypeptide encoded by a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-127 in a cell, 25 comprising contacting the cell with an antibody as described above. In yet another embodiment, the invention provides a method for determining the presence of an aberrant mutation (e.g., deletion, insertion, or substitution of nucleic acids) or aberrant methylation in a gene which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-383 or a sequence complementary thereto, comprising collecting a 30 sample of cells from a patient, isolating nucleic acid from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a nucleic acid sequence of SEQ ID Nos. 1-850 under conditions such that

hybridization and amplification of the nucleic acid occurs, and comparing the presence, absence, or size of an amplification product to the amplification product of a normal cell.

- In one embodiment, the invention provides a test kit for identifying
- 5 transformed cells, comprising an antibody specific for a protein encoded by a nucleic acid which hybridizes under stringent conditions to any one of SEQ Nos. 1-850. In certain embodiments, the kit further includes instructions for using the kit. In certain embodiments, the kit may further include instructions for using the kit, solutions for suspending or fixing the cells, detectable tags or labels, solutions for rendering a
- 10 polypeptide susceptible to the binding of an antibody, solutions for lysing cells, or solutions for the purification of polypeptides.

In yet another aspect, the invention provides pharmaceutical compositions including the subject nucleic acids. In one embodiment, an agent which alters the level of expression in a cell of a nucleic acid which hybridizes under stringent

15 conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto is identified by providing a cell, treating the cell with a test agent, determining the level of expression in the cell of a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto, and comparing the level of expression of the nucleic acid in the treated cell with the level of

20 expression of the nucleic acid in an untreated cell, wherein a change in the level of expression of the nucleic acid in the treated cell relative to the level of expression of the nucleic acid in the untreated cell is indicative of an agent which alters the level of expression of the nucleic acid in a cell. The invention further provides a pharmaceutical composition comprising an agent identified by this method. In another

25 embodiment, the invention provides a pharmaceutical composition which includes a polypeptide encoded by a nucleic acid having a nucleotide sequence that hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto. In one embodiment, the invention pertains to a pharmaceutical composition comprising a nucleic acid including a sequence which hybridizes under stringent

30 conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto.

Brief Description of the Figure

The figure depicts an exemplary assay result for determining differential expression of gene products in cells.

5

Detailed Description of the Invention

The invention relates to nucleic acids having the disclosed nucleotide sequences (SEQ ID Nos. 1-850), as well as full length cDNA, mRNA, and genes corresponding to these sequences, and to polypeptides and proteins encoded by these nucleic acids and genes and portions thereof.

10 Also included are nucleic acids that encode polypeptides and proteins encoded by the nucleic acids of SEQ ID Nos. 1-850. The various nucleic acids that can encode these polypeptides and proteins differ because of the degeneracy of the genetic code, in that most amino acids are encoded by more than one triplet codon. The identity of such codons is well known in this art, and this information can be used for the
15 construction of the nucleic acids within the scope of the invention.

Nucleic acids encoding polypeptides and proteins that are variants of the polypeptides and proteins encoded by the nucleic acids and related cDNA and genes are also within the scope of the invention. The variants differ from wild-type protein in having one or more amino acid substitutions that either enhance, add, or diminish a
20 biological activity of the wild-type protein. Once the amino acid change is selected, a nucleic acid encoding that variant is constructed according to the invention.

25 The following detailed description discloses how to obtain or make full-length cDNA and human genes corresponding to the nucleic acids, how to express these nucleic acids and genes, how to identify structural motifs of the genes, how to identify the function of a protein encoded by a gene corresponding to an nucleic acid, how to use nucleic acids as probes in mapping and in tissue profiling, how to use the corresponding polypeptides and proteins to raise antibodies, and how to use the nucleic acids, polypeptides, and proteins for therapeutic and diagnostic purposes.

30 The sequences investigated herein have been found to be differentially expressed in samples obtained from colon cancer cell lines and/or colon cancer tissue. However, it is also believed that these sequences may also have utility with other types of cancer.

Accordingly, certain aspects of the present invention relate to nucleic acids differentially expressed in tumor tissue, especially colon cancer cell lines, polypeptides encoded by such nucleic acids, and antibodies immunoreactive with these polypeptides, and preparations of such compositions. Moreover, the present 5 invention provides diagnostic and therapeutic assays and reagents for detecting and treating disorders involving, for example, aberrant expression of the subject nucleic acids.

I. General

10 This invention relates in part to novel methods for identifying and/or classifying cancerous cells present in a human tumors, particularly in solid tumors, e.g., carcinomas and sarcomas, such as, for example, breast or colon cancers. The method uses genes that are differentially expressed in cancer cell lines and/or cancer tissue compared with related normal cells, such as normal colon cells, and thereby 15 identifies or classifies tumor cells by the upregulation and/or downregulation of expression of particular genes, an event which is implicated in tumorigenesis.

Upregulation or increased expression of certain genes such as oncogenes, act to promote malignant growth. Downregulation or decreased expression of genes such as tumor suppressor genes promotes malignant growth. Thus, alteration in the 20 expression of either type of gene is a potential diagnostic indicator for determining whether a subject is at risk of developing or has cancer, e.g., colon cancer.

Accordingly, in one aspect, the invention also provides biomarkers, such as nucleic acid markers, for human tumor cells, e.g., for colon cancer cells. The invention also provides proteins encoded by these nucleic acid markers.

25 The invention also features methods for identifying drugs useful for treatment of such cancer cells, and for treatment of a cancerous condition, such as colon cancer. Unlike prior methods, the invention provides a means for identifying cancer cells at an early stage of development, so that premalignant cells can be identified prior to their spreading throughout the human body. This allows early detection of potentially 30 cancerous conditions, and treatment of those cancerous conditions prior to spread of the cancerous cells throughout the body, or prior to development of an irreversible cancerous condition.

II. Definitions

For convenience, the meaning of certain terms and phrases used in the specification, examples, and appended claims, are provided below.

- 5 The term "an aberrant expression", as applied to a nucleic acid of the present invention, refers to level of expression of that nucleic acid which differs from the level of expression of that nucleic acid in healthy tissue, or which differs from the activity of the polypeptide present in a healthy subject. An activity of a polypeptide can be aberrant because it is stronger than the activity of its native counterpart. Alternatively,
- 10 10 an activity can be aberrant because it is weaker or absent relative to the activity of its native counterpart. An aberrant activity can also be a change in the activity; for example, an aberrant polypeptide can interact with a different target peptide. A cell can have an aberrant expression level of a gene due to overexpression or underexpression of that gene.
- 15 15 The term "agonist", as used herein, is meant to refer to an agent that mimics or upregulates (e.g., potentiates or supplements) the bioactivity of a protein. An agonist can be a wild-type protein or derivative thereof having at least one bioactivity of the wild-type protein. An agonist can also be a compound that upregulates expression of a gene or which increases at least one bioactivity of a protein. An agonist can also be
- 20 20 a compound which increases the interaction of a polypeptide with another molecule, e.g., a target peptide or nucleic acid.
- The term "allele", which is used interchangeably herein with "allelic variant", refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for that gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. Alleles of a specific gene can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions, and/or insertions of nucleotides. An allele of a gene can also be a form of a gene containing mutations.
- 25 25 The term "allelic variant of a polymorphic region of a gene" refers to a region of a gene having one of several nucleotide sequences found in that region of the gene in other individuals.

“Antagonist” as used herein is meant to refer to an agent that downregulates (e.g., suppresses or inhibits) at least one bioactivity of a protein. An antagonist can be a compound which inhibits or decreases the interaction between a protein and another molecule, e.g., a target peptide or enzyme substrate. An antagonist can also be a 5 compound that downregulates expression of a gene or which reduces the amount of expressed protein present.

The term “antibody” as used herein is intended to include whole antibodies, e.g., of any isotype (IgG, IgA, IgM, IgE, etc), and includes fragments thereof which are also specifically reactive with a vertebrate, e.g., mammalian, protein. Antibodies 10 can be fragmented using conventional techniques and the fragments screened for utility in the same manner as described above for whole antibodies. Thus, the term includes segments of proteolytically-cleaved or recombinantly-prepared portions of an antibody molecule that are capable of selectively reacting with a certain protein.

Nonlimiting examples of such proteolytic and/or recombinant fragments include Fab, 15 F(ab')₂, Fab', Fv, and single chain antibodies (scFv) containing a V[L] and/or V[H] domain joined by a peptide linker. The scFv's may be covalently or non-covalently linked to form antibodies having two or more binding sites. The subject invention includes polyclonal, monoclonal, or other purified preparations of antibodies and recombinant antibodies.

20 The phenomenon of “apoptosis” is well known, and can be described as a programmed death of cells. As is known, apoptosis is contrasted with “necrosis”, a phenomenon when cells die as a result of being killed by a toxic material, or other external effect. Apoptosis involves chromatic condensation, membrane blebbing, and fragmentation of DNA, all of which are generally visible upon microscopic 25 examination.

A disease, disorder, or condition “associated with” or “characterized by” an aberrant expression of a nucleic acid refers to a disease, disorder, or condition in a subject which is caused by, contributed to by, or causative of an aberrant level of expression of a nucleic acid.

30 As used herein the term "bioactive fragment of a polypeptide" refers to a fragment of a full-length polypeptide, wherein the fragment specifically agonizes (mimics) or antagonizes (inhibits) the activity of a wild-type polypeptide. The

bioactive fragment preferably is a fragment capable of interacting with at least one other molecule, e.g., protein, small molecule, or DNA, which a full length protein can bind.

"Biological activity" or "bioactivity" or "activity" or "biological function", 5 which are used interchangeably, herein mean an effector or antigenic function that is directly or indirectly performed by a polypeptide (whether in its native or denatured conformation), or by any subsequence thereof. Biological activities include binding to polypeptides, binding to other proteins or molecules, activity as a DNA binding protein, as a transcription regulator, ability to bind damaged DNA, etc. A bioactivity 10 can be modulated by directly affecting the subject polypeptide. Alternatively, a bioactivity can be altered by modulating the level of the polypeptide, such as by modulating expression of the corresponding gene.

The term "biomarker" refers a biological molecule, e.g., a nucleic acid, peptide, hormone, etc., whose presence or concentration can be detected and 15 correlated with a known condition, such as a disease state.

"Cells," "host cells", or "recombinant host cells" are terms used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or 20 environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A "chimeric polypeptide" or "fusion polypeptide" is a fusion of a first amino acid sequence encoding one of the subject polypeptides with a second amino acid sequence defining a domain (e.g., polypeptide portion) foreign to and not substantially 25 homologous with any domain of the subject polypeptide. A chimeric polypeptide may present a foreign domain which is found (albeit in a different polypeptide) in an organism which also expresses the first polypeptide, or it may be an "interspecies," "intergenic," etc., fusion of polypeptide structures expressed by different kinds of organisms. In general, a fusion polypeptide can be represented by the general formula 30 $(X)_n-(Y)_m-(Z)_n$, wherein Y represents a portion of the subject polypeptide, and X and Z are each independently absent or represent amino acid sequences which are not related to the native sequence found in an organism, or which are not found as a polypeptide

chain contiguous with the subject sequence, where m is an integer greater than or equal to one, and each occurrence of n is, independently, 0 or an integer greater than or equal to 1 (n and m are preferably no greater than 5 or 10).

A "delivery complex" shall mean a targeting means (e.g., a molecule that 5 results in higher affinity binding of a nucleic acid, protein, polypeptide or peptide to a target cell surface and/or increased cellular or nuclear uptake by a target cell). Examples of targeting means include: sterols (e.g., cholesterol), lipids (e.g., a cationic lipid, virosome or liposome), viruses (e.g., adenovirus, adeno-associated virus, and retrovirus), or target cell-specific binding agents (e.g., ligands recognized by target 10 cell specific receptors). Preferred complexes are sufficiently stable *in vivo* to prevent significant uncoupling prior to internalization by the target cell. However, the complex is cleavable under appropriate conditions within the cell so that the nucleic acid, protein, polypeptide or peptide is released in a functional form.

As is well known, genes or a particular polypeptide may exist in single or 15 multiple copies within the genome of an individual. Such duplicate genes may be identical or may have certain modifications, including nucleotide substitutions, additions or deletions, which all still code for polypeptides having substantially the same activity. The term "DNA sequence encoding a polypeptide" may thus refer to one or more genes within a particular individual. Moreover, certain differences in 20 nucleotide sequences may exist between individual organisms, which are called alleles. Such allelic differences may or may not result in differences in amino acid sequence of the encoded polypeptide yet still encode a polypeptide with the same biological activity.

The term "equivalent" is understood to include nucleotide sequences encoding 25 functionally equivalent polypeptides. Equivalent nucleotide sequences will include sequences that differ by one or more nucleotide substitutions, additions or deletions, such as allelic variants; and will, therefore, include sequences that differ from the nucleotide sequence of the nucleic acids shown in SEQ ID NOs: 1-850 due to the degeneracy of the genetic code.

30 As used herein, the terms "gene", "recombinant gene", and "gene construct" refer to a nucleic acid of the present invention associated with an open reading frame, including both exon and (optionally) intron sequences.

A "recombinant gene" refers to nucleic acid encoding a polypeptide and comprising exon sequences, though it may optionally include intron sequences which are derived from, for example, a related or unrelated chromosomal gene. The term "intron" refers to a DNA sequence present in a given gene which is not translated into protein and is generally found between exons.

The term "growth" or "growth state" of a cell refers to the proliferative state of a cell as well as to its differentiative state. Accordingly, the term refers to the phase of the cell cycle in which the cell is, e.g., G0, G1, G2, prophase, metaphase, or telophase, as well as to its state of differentiation, e.g., undifferentiated, partially differentiated, 10 or fully differentiated. Without wanting to be limited, differentiation of a cell is usually accompanied by a decrease in the proliferative rate of a cell.

"Homology" or "identity" or "similarity" refers to sequence similarity between two peptides or between two nucleic acid molecules, with identity being a more strict comparison. Homology and identity can each be determined by comparing a position 15 in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are identical at that position. A degree of homology or similarity or identity between nucleic acid sequences is a function of the number of identical or matching nucleotides at positions shared by the nucleic acid sequences. A degree of 20 identity of amino acid sequences is a function of the number of identical amino acids at positions shared by the amino acid sequences. A degree of homology or similarity of amino acid sequences is a function of the number of amino acids, i.e., structurally related, at positions shared by the amino acid sequences. An "unrelated" or "non-homologous" sequence shares less than 40% identity, though preferably less than 25% 25 identity, with one of the sequences of the present invention.

The term "percent identical" refers to sequence identity between two amino acid sequences or between two nucleotide sequences. Identity can each be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When an equivalent position in the compared sequences is occupied by 30 the same base or amino acid, then the molecules are identical at that position; when the equivalent site occupied by the same or a similar amino acid residue (e.g., similar in steric and/or electronic nature), then the molecules can be referred to as

homologous (similar) at that position. Expression as a percentage of homology, similarity, or identity refers to a function of the number of identical or similar amino acids at positions shared by the compared sequences. Various alignment algorithms and/or programs may be used, including FASTA, BLAST, or ENTREZ. FASTA and
5 BLAST are available as a part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.), and can be used with, e.g., default settings. ENTREZ is available through the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Md. In one embodiment, the percent identity of two sequences can be determined by the GCG program with a
10 gap weight of 1, e.g., each amino acid gap is weighted as if it were a single amino acid or nucleotide mismatch between the two sequences.

Other techniques for alignment are described in Methods in Enzymology, vol. 266: Computer Methods for Macromolecular Sequence Analysis (1996), ed. Doolittle, Academic Press, Inc., a division of Harcourt Brace & Co., San Diego, California,
15 USA. Preferably, an alignment program that permits gaps in the sequence is utilized to align the sequences. The Smith-Waterman is one type of algorithm that permits gaps in sequence alignments. See Meth. Mol. Biol. 70: 173-187 (1997). Also, the GAP program using the Needleman and Wunsch alignment method can be utilized to align sequences. An alternative search strategy uses MPSRCH software, which runs
20 on a MASPAR computer. MPSRCH uses a Smith-Waterman algorithm to score sequences on a massively parallel computer. This approach improves ability to pick up distantly related matches, and is especially tolerant of small gaps and nucleotide sequence errors. Nucleic acid-encoded amino acid sequences can be used to search both protein and DNA databases.

25 Databases with individual sequences are described in Methods in Enzymology, ed. Doolittle, *supra*. Databases include Genbank, EMBL, and DNA Database of Japan (DDBJ).

Preferred nucleic acids have a sequence at least 70%, and more preferably 80% identical and more preferably 90% and even more preferably at least 95%
30 identical to an nucleic acid sequence of a sequence shown in one of SEQ ID NOS: 1-850. Nucleic acids at least 90%, more preferably 95%, and most preferably at least about 98-99% identical with a nucleic sequence represented in one of SEQ ID NOS:

1-850 are of course also within the scope of the invention. In preferred embodiments, the nucleic acid is mammalian.

The term "interact" as used herein is meant to include detectable interactions (e.g., biochemical interactions) between molecules, such as interaction between 5 protein-protein, protein-nucleic acid, nucleic acid-nucleic acid, and protein-small molecule or nucleic acid-small molecule in nature.

The term "isolated" as used herein with respect to nucleic acids, such as DNA or RNA, refers to molecules separated from other DNAs, or RNAs, respectively, that are present in the natural source of the macromolecule. The term isolated as used 10 herein also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Moreover, an "isolated nucleic acid" is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state. 15 The term "isolated" is also used herein to refer to polypeptides which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides.

The terms "modulated" and "differentially regulated" as used herein refer to both upregulation (i.e., activation or stimulation (e.g., by agonizing or potentiating)) 20 and downregulation (i.e., inhibition or suppression (e.g., by antagonizing, decreasing or inhibiting)).

The term "mutated gene" refers to an allelic form of a gene, which is capable of altering the phenotype of a subject having the mutated gene relative to a subject which does not have the mutated gene. If a subject must be homozygous for this 25 mutation to have an altered phenotype, the mutation is said to be recessive. If one copy of the mutated gene is sufficient to alter the genotype of the subject, the mutation is said to be dominant. If a subject has one copy of the mutated gene and has a phenotype that is intermediate between that of a homozygous and that of a heterozygous subject (for that gene), the mutation is said to be co-dominant. 30 The designation "N", where it appears in the accompanying Sequence Listing, indicates that the identity of the corresponding nucleotide is unknown. "N" should therefore not necessarily be interpreted as permitting substitution with any nucleotide,

e.g., A, T, C, or G, but rather as holding the place of a nucleotide whose identity has not been conclusively determined.

The "non-human animals" of the invention include mammals such as rodents, non-human primates, sheep, dog, cow, chickens, amphibians, reptiles, etc.

- 5 Preferred non-human animals are selected from the rodent family including rat and mouse, most preferably mouse, though transgenic amphibians, such as members of the *Xenopus* genus, and transgenic chickens can also provide important tools for understanding and identifying agents which can affect, for example, embryogenesis and tissue formation. The term "chimeric animal" is used herein to refer to animals in
- 10 which the recombinant gene is found, or in which the recombinant gene is expressed in some but not all cells of the animal. The term "tissue-specific chimeric animal" indicates that one of the recombinant genes is present and/or expressed or disrupted in some tissues but not others.

- As used herein, the term "nucleic acid" refers to polynucleotides such as deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA). The term should also be understood to include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs, and, as applicable to the embodiment being described, single (sense or antisense) and double-stranded polynucleotides. ESTs, chromosomes, cDNAs, mRNAs, and rRNAs are representative examples of molecules
- 15 that may be referred to as nucleic acids.

- The term "nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO. x" refers to the nucleotide sequence of the complementary strand of a nucleic acid strand having SEQ ID NO. x. The term "complementary strand" is used herein interchangeably with the term "complement". The complement of a nucleic acid strand can be the complement of a coding strand or the complement of a non-coding strand.

- The term "polymorphism" refers to the coexistence of more than one form of a gene or portion (e.g., allelic variant) thereof. A portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a
- 25 "polymorphic region of a gene". A polymorphic region can be a single nucleotide, the identity of which differs in different alleles. A polymorphic region can also be several nucleotides long.

A "polymorphic gene" refers to a gene having at least one polymorphic region.

As used herein, the term "promoter" means a DNA sequence that regulates expression of a selected DNA sequence operably linked to the promoter, and which effects expression of the selected DNA sequence in cells. The term encompasses 5 "tissue specific" promoters, i.e., promoters which effect expression of the selected DNA sequence only in specific cells (e.g., cells of a specific tissue). The term also covers so-called "leaky" promoters, which regulate expression of a selected DNA primarily in one tissue, but cause expression in other tissues as well. The term also encompasses non-tissue specific promoters and promoters that constitutively express 10 or that are inducible (i.e., expression levels can be controlled).

The terms "protein", "polypeptide", and "peptide" are used interchangeably herein when referring to a gene product.

The term "recombinant protein" refers to a polypeptide of the present invention which is produced by recombinant DNA techniques, wherein generally, 15 DNA encoding a polypeptide is inserted into a suitable expression vector which is in turn used to transform a host cell to produce the heterologous protein. Moreover, the phrase "derived from", with respect to a recombinant gene, is meant to include within the meaning of "recombinant protein" those proteins having an amino acid sequence of a native polypeptide, or an amino acid sequence similar thereto which is generated 20 by mutations including substitutions and deletions (including truncation) of a naturally occurring form of the polypeptide.

"Small molecule" as used herein, is meant to refer to a composition, which has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be nucleic acids, peptides, polypeptides, peptidomimetics, 25 carbohydrates, lipids or other organic (carbon-containing) or inorganic molecules. Many pharmaceutical companies have extensive libraries of chemical and/or biological mixtures, often fungal, bacterial, or algal extracts, which can be screened with any of the assays of the invention to identify compounds that modulate a bioactivity.

30 As used herein, the term "specifically hybridizes" or "specifically detects" refers to the ability of a nucleic acid molecule of the invention to hybridize to at least a portion of, for example approximately 6, 12, 15, 20, 30, 50, 100, 150, 200, 300, 350,

- 400, 500, 750 or 1000 contiguous nucleotides of a nucleic acid designated in any one of SEQ ID Nos: 1-850, or a sequence complementary thereto, or naturally occurring mutants thereof, such that it has less than 15%, preferably less than 10%, and more preferably less than 5% background hybridization to a cellular nucleic acid (e.g., 5 mRNA or genomic DNA) encoding a different protein. In preferred embodiments, the oligonucleotide probe detects only a specific nucleic acid, e.g., it does not substantially hybridize to similar or related nucleic acids, or complements thereof.

"Transcriptional regulatory sequence" is a generic term used throughout the specification to refer to DNA sequences, such as initiation signals, enhancers, and 10 promoters, which induce or control transcription of protein coding sequences with which they are operably linked. In preferred embodiments, transcription of one of the genes is under the control of a promoter sequence (or other transcriptional regulatory sequence) which controls the expression of the recombinant gene in a cell-type in which expression is intended. It will also be understood that the recombinant gene 15 can be under the control of transcriptional regulatory sequences which are the same or which are different from those sequences which control transcription of the naturally-occurring forms of the polypeptide.

As used herein, the term "transfection" means the introduction of a nucleic acid, e.g., via an expression vector, into a recipient cell by nucleic acid-mediated gene 20 transfer. "Transformation", as used herein, refers to a process in which a cell's genotype is changed as a result of the cellular uptake of exogenous DNA or RNA, and, for example, the transformed cell expresses a recombinant form of a polypeptide or, in the case of anti-sense expression from the transferred gene, the expression of the target gene is disrupted.

25 As used herein, the term "transgene" means a nucleic acid sequence (or an antisense transcript thereto) which has been introduced into a cell. A transgene could be partly or entirely heterologous, i.e., foreign, to the transgenic animal or cell into which it is introduced, or, is homologous to an endogenous gene of the transgenic animal or cell into which it is introduced, but which is designed to be inserted, or is 30 inserted, into the animal's genome in such a way as to alter the genome of the cell into which it is inserted (e.g., it is inserted at a location which differs from that of the natural gene or its insertion results in a knockout). A transgene can also be present in

a cell in the form of an episome. A transgene can include one or more transcriptional regulatory sequences and any other nucleic acid, such as introns, that may be necessary for optimal expression of a selected nucleic acid.

A "transgenic animal" refers to any animal, preferably a non-human mammal,
5 bird or an amphibian, in which one or more of the cells of the animal contain heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a
10 recombinant virus. The term genetic manipulation does not include classical cross-breeding, or *in vitro* fertilization, but rather is directed to the introduction of a recombinant DNA molecule. This molecule may be integrated within a chromosome, or it may be extra-chromosomally replicating DNA. In the typical transgenic animals described herein, the transgene causes cells to express a recombinant form of one of
15 the subject polypeptide, e.g. either agonistic or antagonistic forms. However, transgenic animals in which the recombinant gene is silent are also contemplated, as for example, the FLP or CRE recombinase dependent constructs described below. Moreover, "transgenic animal" also includes those recombinant animals in which gene disruption of one or more genes is caused by human intervention, including both
20 recombination and antisense techniques.

The term "treating" as used herein is intended to encompass curing as well as ameliorating at least one symptom of the condition or disease.

The term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of preferred vector is an
25 episome, i.e., a nucleic acid capable of extra-chromosomal replication. Preferred vectors are those capable of autonomous replication and/or expression of nucleic acids to which they are linked. Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the
30 form of "plasmids" which refer generally to circular double stranded DNA loops which, in their vector form are not bound to the chromosome. In the present specification, "plasmid" and "vector" are used interchangeably as the plasmid is the

most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto.

The term "wild-type allele" refers to an allele of a gene which, when present in 5 two copies in a subject results in a wild-type phenotype. There can be several different wild-type alleles of a specific gene, since certain nucleotide changes in a gene may not affect the phenotype of a subject having two copies of the gene with the nucleotide changes.

10 III. Nucleic Acids of the Present Invention

As described below, one aspect of the invention pertains to isolated nucleic acids, variants, and/or equivalents of such nucleic acids.

Nucleic acids of the present invention have been identified as differentially expressed in tumor cells, e.g., colon cancer-derived cell lines (relative to the 15 expression levels in normal tissue, e.g., normal colon tissue and/or normal non-colon tissue), such as SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto. In certain embodiments, the subject nucleic acids are differentially expressed by at least a factor of two, preferably at least a factor of five, even more preferably at least a factor of 20 twenty, still more preferably at least a factor of fifty. Preferred nucleic acids include sequences identified as differentially expressed both in colon cancer cell tissue and colon cancer cell lines. In preferred embodiments, nucleic acids of the present invention are upregulated in tumor cells, especially colon cancer tissue and/or colon cancer-derived cell lines. In another embodiment, nucleic acids of the present 25 invention are downregulated in tumor cells, especially colon cancer tissue and/or colon cancer-derived cell lines.

Table 1 indicates those sequences which are over- or underexpressed in a colon cancer-derived cell line relative to normal tissue, and further designates those sequences which are also differentially regulated in colon cancer tissue. The 30 designation O indicates that the corresponding sequence was overexpressed, M indicates possible overexpression, N indicates no differential expression, and U indicates underexpression.

Genes which are upregulated, such as oncogenes, or downregulated, such as tumor suppressors, in aberrantly proliferating cells may be targets for diagnostic or therapeutic techniques. For example, upregulation of the *cdc2* gene induces mitosis. Overexpression of the *myt1* gene, a mitotic deactivator, negatively regulates the 5 activity of *cdc2*. Aberrant proliferation may thus be induced either by upregulating *cdc2* or by downregulating *myt1*. Similarly, downregulation of tumor suppressors such as *p53* and *Rb* have been implicated in tumorigenesis.

Particularly preferred polypeptides are those that are encoded by nucleic acid sequences at least about 70%, 75%, 80%, 90%, 95%, 97%, or 98% similar to a nucleic 10 acid sequence of SEQ ID Nos. 1-850. Preferably, the nucleic acid includes all or a portion (e.g., at least about 12, at least about 15, at least about 25, or at least about 40 nucleotides) of the nucleotide sequence corresponding to the nucleic acid of SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto.

Still other preferred nucleic acids of the present invention encode a 15 polypeptide comprising at least a portion of a polypeptide encoded by one of SEQ ID Nos. 1-850. For example, preferred nucleic acid molecules for use as probes/primers or antisense molecules (i.e., noncoding nucleic acid molecules) can comprise at least about 12, 20, 30, 50, 60, 70, 80, 90, or 100 base pairs in length up to the length of the complete gene. Coding nucleic acid molecules can comprise, for example, from about 20 50, 60, 70, 80, 90, or 100 base pairs up to the length of the complete gene.

Another aspect of the invention provides a nucleic acid which hybridizes under low, medium, or high stringency conditions to a nucleic acid sequence represented by one of SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto. Appropriate stringency conditions which promote 25 DNA hybridization, for example, 6.0 x sodium chloride/sodium citrate (SSC) at about 45 °C, followed by a wash of 2.0 x SSC at 50 °C, are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-12.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50 °C to a high stringency of 30 about 0.2 x SSC at 50 °C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22 °C, to high stringency conditions at about 65 °C. Both temperature and salt may be varied, or

temperature or salt concentration may be held constant while the other variable is changed. In a preferred embodiment, a nucleic acid of the present invention will bind to one of SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, under moderately stringent conditions, for example at about 5 2.0 x SSC and about 40 °C. In a particularly preferred embodiment, a nucleic acid of the present invention will bind to one of SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, under high stringency conditions.

In one embodiment, the invention provides nucleic acids which hybridize under low stringency conditions of 6 x SSC at room temperature followed by a wash 10 at 2 x SSC at room temperature.

In another embodiment, the invention provides nucleic acids which hybridize under high stringency conditions of 2 x SSC at 65 °C followed by a wash at 0.2 x SSC at 65 °C.

Nucleic acids having a sequence that differs from the nucleotide sequences 15 shown in one of SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, due to degeneracy in the genetic code, are also within the scope of the invention. Such nucleic acids encode functionally equivalent peptides (i.e., a peptide having equivalent or similar biological activity) but differ in sequence from the sequence shown in the sequence listing due to degeneracy in the genetic 20 code. For example, a number of amino acids are designated by more than one triplet. Codons that specify the same amino acid, or synonyms (for example, CAU and CAC each encode histidine) may result in "silent" mutations which do not affect the amino acid sequence of a polypeptide. However, it is expected that DNA sequence polymorphisms that do lead to changes in the amino acid sequences of the subject 25 polypeptides will exist among mammals. One skilled in the art will appreciate that these variations in one or more nucleotides (e.g., up to about 3-5% of the nucleotides) of the nucleic acids encoding polypeptides having an activity of a polypeptide may exist among individuals of a given species due to natural allelic variation.

Also within the scope of the invention are nucleic acids encoding splicing 30 variants of proteins encoded by a nucleic acid of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence

complementary thereto, or natural homologs of such proteins. Such homologs can be cloned by hybridization or PCR, as further described herein.

The polynucleotide sequence may also encode for a leader sequence, e.g., the natural leader sequence or a heterologous leader sequence, for a subject polypeptide.

- 5 For example, the desired DNA sequence may be fused in the same reading frame to a DNA sequence which aids in expression and secretion of the polypeptide from the host cell, for example, a leader sequence which functions as a secretory sequence for controlling transport of the polypeptide from the cell. The protein having a leader sequence is a preprotein and may have the leader sequence cleaved by the host cell to
10 form the mature form of the protein.

The polynucleotide of the present invention may also be fused in frame to a marker sequence, also referred to herein as "Tag sequence" encoding a "Tag peptide", which allows for marking and/or purification of the polypeptide of the present invention. In a preferred embodiment, the marker sequence is a hexahistidine tag,

- 15 e.g., supplied by a PQE-9 vector. Numerous other Tag peptides are available commercially. Other frequently used Tags include myc-epitopes (e.g., see Ellison et al. (1991) *J Biol Chem* 266:21150-21157) which includes a 10-residue sequence from c-myc, the pFLAG system (International Biotechnologies, Inc.), the pEZ-Z-protein A system (Pharmacia, NJ), and a 16 amino acid portion of the *Haemophilus influenza*
20 hemagglutinin protein. Furthermore, any polypeptide can be used as a Tag so long as a reagent, e.g., an antibody interacting specifically with the Tag polypeptide is available or can be prepared or identified.

- As indicated by the examples set out below, nucleic acids can be obtained from mRNA present in any of a number of eukaryotic cells, e.g., and are preferably obtained from metazoan cells, more preferably from vertebrate cells, and even more preferably from mammalian cells. It should also be possible to obtain nucleic acids of the present invention from genomic DNA from both adults and embryos. For example, a gene can be cloned from either a cDNA or a genomic library in accordance with protocols generally known to persons skilled in the art. cDNA can be obtained by isolating total mRNA from a cell, e.g., a vertebrate cell, a mammalian cell, or a human cell, including embryonic cells. Double stranded cDNAs can then be prepared from the total mRNA, and subsequently inserted into a suitable plasmid or bacteriophage

vector using any one of a number of known techniques. The gene can also be cloned using established polymerase chain reaction techniques in accordance with the nucleotide sequence information provided by the invention.

In certain embodiments, a nucleic acid, probe, vector, or other construct of the 5 present invention includes at least about five, at least about ten, or at least about twenty nucleic acids from a region designated as novel in Table 2. In certain other embodiments, a nucleic acid of the present invention includes at least about five, at least about ten, or at least about twenty nucleic acids which are not included in the clones whose accession numbers are listed in Table 2.

10 The invention includes within its scope a polynucleotide having the nucleotide sequence of nucleic acid obtained from this biological material, wherein the nucleic acid hybridizes under stringent conditions (at least about 4 x SSC at 65°C, or at least about 4 x SSC at 42°C; see, for example, U.S. Patent No. 5,707,829, incorporated herein by reference) with at least 15 contiguous nucleotides of at least one of SEQ ID
15 Nos. 1-850. By this is intended that when at least 15 contiguous nucleotides of one of SEQ ID Nos. 1-850 is used as a probe, the probe will preferentially hybridize with a gene or mRNA (of the biological material) comprising the complementary sequence, allowing the identification and retrieval of the nucleic acids of the biological material that uniquely hybridize to the selected probe. Probes from more than one of SEQ ID
20 Nos. 1-850 will hybridize with the same gene or mRNA if the cDNA from which they were derived corresponds to one mRNA. Probes of more than 15 nucleotides can be used, but 15 nucleotides represents enough sequence for unique identification.

Because the present nucleic acids represent partial mRNA transcripts, two or more nucleic acids of the invention may represent different regions of the same 25 mRNA transcript and the same gene. Thus, if two or more of SEQ ID Nos. 1-850 are identified as belonging to the same clone, then either sequence can be used to obtain the full-length mRNA or gene.

Nucleic acid-related polynucleotides can also be isolated from cDNA libraries. These libraries are preferably prepared from mRNA of human colon cells, more 30 preferably, human colon cancer cells, even more preferably, from a human colon adenocarcinoma cell line, SW480. Alignment of SEQ ID Nos. 1-850, as described

above, can indicated that a cell line or tissue source of a related protein or polynucleotide can also be used as a source of the nucleic acid-related cDNA.

Techniques for producing and probing nucleic acid sequence libraries are described, for example, in Sambrook *et al.*, "Molecular Cloning: A Laboratory Manual" (New York, Cold Spring Harbor Laboratory, 1989). The cDNA can be prepared by using primers based on a sequence from SEQ ID Nos. 1-850. In one embodiment, the cDNA library can be made from only poly-adenylated mRNA. Thus, poly-T primers can be used to prepare cDNA from the mRNA. Alignment of SEQ ID Nos. 1-850 can result in identification of a related polypeptide or 10 polynucleotide. Some of the polynucleotides disclosed herein contains repetitive regions that were subject to masking during the search procedures. The information about the repetitive regions is discussed below.

Constructs of polynucleotides having sequences of SEQ ID Nos. 1-850 can be generated synthetically. Alternatively, single-step assembly of a gene and entire 15 plasmid from large numbers of oligodeoxyribonucleotides is described by Stemmer *et al.*, *Gene (Amsterdam)* (1995) 164(1):49-53. In this method, assembly PCR (the synthesis of long DNA sequences from large numbers of oligodeoxyribonucleotides (oligos)) is described. The method is derived from DNA shuffling (Stemmer, *Nature* (1994) 370:389-391), and does not rely on DNA ligase, but instead relies on DNA 20 polymerase to build increasingly longer DNA fragments during the assembly process. For example, a 1.1-kb fragment containing the TEM-1 beta-lactamase-encoding gene (bla) can be assembled in a single reaction from a total of 56 oligos, each 40 nucleotides (nt) in length. The synthetic gene can be PCR amplified and cloned in a vector containing the tetracycline-resistance gene (Tc-R) as the sole selectable marker. 25 Without relying on ampicillin (Ap) selection, 76% of the Tc-R colonies were Ap-R, making this approach a general method for the rapid and cost-effective synthesis of any gene.

IV. Identification of Functional and Structural Motifs of Novel Genes Using Art-
30 Recognized Methods

Translations of the nucleotide sequence of the nucleic acids, cDNAs, or full genes can be aligned with individual known sequences. Similarity with individual

sequences can be used to determine the activity of the polypeptides encoded by the polynucleotides of the invention. For example, sequences that show similarity with a chemokine sequence may exhibit chemokine activities. Also, sequences exhibiting similarity with more than one individual sequence may exhibit activities that are
5 characteristic of either or both individual sequences.

The full length sequences and fragments of the polynucleotide sequences of the nearest neighbors can be used as probes and primers to identify and isolate the full length sequence of the nucleic acid. The nearest neighbors can indicate a tissue or cell type to be used to construct a library for the full-length sequences of the nucleic acid.

10 Typically, the nucleic acids are translated in all six frames to determine the best alignment with the individual sequences. The sequences disclosed herein in the Sequence Listing are in a 5' to 3' orientation and translation in three frames can be sufficient (with a few specific exceptions as described in the Examples). These amino acid sequences are referred to, generally, as query sequences, which will be aligned
15 with the individual sequences.

Nucleic acid sequences can be compared with known genes by any of the methods disclosed above. Results of individual and query sequence alignments can be divided into three categories: high similarity, weak similarity, and no similarity. Individual alignment results ranging from high similarity to weak similarity provide a
20 basis for determining polypeptide activity and/or structure.

Parameters for categorizing individual results include: percentage of the alignment region length where the strongest alignment is found, percent sequence identity, and p value.

25 The percentage of the alignment region length is calculated by counting the number of residues of the individual sequence found in the region of strongest alignment. This number is divided by the total residue length of the query sequence to find a percentage. An example is shown below:

Query sequence:	ASN PERTM I P V T R V G L I R Y M
30	
Individual sequence:	Y M M T E Y L A I P V . R V G L P R Y M
	1 5 10 15

The region of alignment begins at amino acid 9 and ends at amino acid 19.

The total length of the query sequence is 20 amino acids. The percent of the alignment region length is 11/20 or 55%.

Percent sequence identity is calculated by counting the number of amino acid
5 matches between the query and individual sequence and dividing total number of matches by the number of residues of the individual sequence found in the region of strongest alignment. For the example above, the percent identity would be 10 matches divided by 11 amino acids, or approximately 90.9%.

P value is the probability that the alignment was produced by chance. For a
10 single alignment, the p value can be calculated according to Karlin *et al.*, Proc. Natl. Acad. Sci. **87**: 2264 (1990) and Karlin *et al.*, Proc. Natl. Acad. Sci. **90**: (1993). The p value of multiple alignments using the same query sequence can be calculated using an heuristic approach described in Altschul *et al.*, Nat. Genet. **6**: 119 (1994).

Alignment programs such as BLAST program can calculate the p value.

15 The boundaries of the region where the sequences align can be determined according to Doolittle, *Methods in Enzymology, supra*; BLAST or FASTA programs; or by determining the area where the sequence identity is highest.

Another factor to consider for determining identity or similarity is the location
of the similarity or identity. Strong local alignment can indicate similarity even if the
20 length of alignment is short. Sequence identity scattered throughout the length of the query sequence also can indicate a similarity between the query and profile sequences.

High SimilarityError! Bookmark not defined.

For the alignment results to be considered high similarity, the percent of the
25 alignment region length, typically, is at least about 55% of total length query sequence; more typically, at least about 58%; even more typically; at least about 60% of the total residue length of the query sequence. Usually, percent length of the alignment region can be as much as about 62%; more usually, as much as about 64%; even more usually, as much as about 66%.

30 Further, for high similarity, the region of alignment, typically, exhibits at least about 75% of sequence identity; more typically, at least about 78%; even more typically; at least about 80% sequence identity. Usually, percent sequence identity

can be as much as about 82%; more usually, as much as about 84%; even more usually, as much as about 86%.

The p value is used in conjunction with these methods. If high similarity is found, the query sequence is considered to have high similarity with a profile sequence when the p value is less than or equal to about 10^{-2} ; more usually; less than or equal to about 10^{-3} ; even more usually; less than or equal to about 10^{-4} . More typically, the p value is no more than about 10^{-5} ; more typically; no more than or equal to about 10^{-10} ; even more typically; no more than or equal to about 10^{-15} for the query sequence to be considered high similarity.

10

Weak Similarity

For the alignment results to be considered weak similarity, there is no minimum percent length of the alignment region nor minimum length of alignment. A better showing of weak similarity is considered when the region of alignment is, typically, at least about 15 amino acid residues in length; more typically, at least about 20; even more typically; at least about 25 amino acid residues in length. Usually, length of the alignment region can be as much as about 30 amino acid residues; more usually, as much as about 40; even more usually, as much as about 60 amino acid residues.

Further, for weak similarity, the region of alignment, typically, exhibits at least about 35% of sequence identity; more typically, at least about 40%; even more typically; at least about 45% sequence identity. Usually, percent sequence identity can be as much as about 50%; more usually, as much as about 55%; even more usually, as much as about 60%.

If low similarity is found, the query sequence is considered to have weak similarity with a profile sequence when the p value is usually less than or equal to about 10^{-2} ; more usually; less than or equal to about 10^{-3} ; even more usually; less than or equal to about 10^{-4} . More typically, the p value is no more than about 10^{-5} ; more usually; no more than or equal to about 10^{-10} ; even more usually; no more than or equal to about 10^{-15} for the query sequence to be considered weak similarity.

Similarity Determined by Sequence Identity Alone~~Error! Bookmark not defined.~~

Sequence identity alone can be used to determine similarity of a query sequence to an individual sequence and can indicate the activity of the sequence. Such an alignment, preferably, permits gaps to align sequences. Typically, the query sequence is related to the profile sequence if the sequence identity over the entire query sequence is at least about 15%; more typically, at least about 20%; even more typically, at least about 25%; even more typically, at least about 50%. Sequence identity alone as a measure of similarity is most useful when the query sequence is usually, at least 80 residues in length; more usually, 90 residues; even more usually, at 10 at least 95 amino acid residues in length. More typically, similarity can be concluded based on sequence identity alone when the query sequence is preferably 100 residues in length; more preferably, 120 residues in length; even more preferably, 150 amino acid residues in length.

15 Determining Activity from Alignments with Profile and Multiple Aligned Sequences

Translations of the nucleic acids can be aligned with amino acid profiles that define either protein families or common motifs. Also, translations of the nucleic acids can be aligned to multiple sequence alignments (MSA) comprising the polypeptide sequences of members of protein families or motifs. Similarity or 20 identity with profile sequences or MSAs can be used to determine the activity of the polypeptides encoded by nucleic acids or corresponding cDNA or genes. For example, sequences that show an identity or similarity with a chemokine profile or MSA can exhibit chemokine activities.

Profiles can be designed manually by (1) creating a MSA, which is an alignment 25 of the amino acid sequence of members that belong to the family and (2) constructing a statistical representation of the alignment. Such methods are described, for example, in Birney *et al.*, Nucl. Acid Res. 24(14): 2730-2739 (1996).

MSAs of some protein families and motifs are publicly available. For example, these include MSAs of 547 different families and motifs. These MSAs are 30 described also in Sonnhammer *et al.*, Proteins 28: 405-420 (1997). Other sources are also available in the world wide web. A brief description of these MSAs is reported in Pascarella *et al.*, Prot. Eng. 9(3): 249-251 (1996).

Techniques for building profiles from MSAs are described in Sonnhammer *et al.*, *supra*; Birney *et al.*, *supra*; and Methods in Enzymology, vol. 266: "Computer Methods for Macromolecular Sequence Analysis," 1996, ed. Doolittle, Academic Press, Inc., a division of Harcourt Brace & Co., San Diego, California, USA.

5 Similarity between a query sequence and a protein family or motif can be determined by (a) comparing the query sequence against the profile and/or (b) aligning the query sequence with the members of the family or motif.

Typically, a program such as Searchwise can be used to compare the query sequence to the statistical representation of the multiple alignment, also known as a
10 profile. The program is described in Birney *et al.*, *supra*. Other techniques to compare the sequence and profile are described in Sonnhammer *et al.*, *supra* and Doolittle, *supra*.

Next, methods described by Feng *et al.*, J. Mol. Evol. 25: 351-360 (1987) and Higgins *et al.*, CABIOS 5: 151-153 (1989) can be used align the query sequence with
15 the members of a family or motif, also known as a MSA. Computer programs, such as PILEUP, can be used. See Feng *et al.*, *infra*.

The following factors are used to determine if a similarity between a query sequence and a profile or MSA exists: (1) number of conserved residues found in the query sequence, (2) percentage of conserved residues found in the query sequence, (3)
20 number of frameshifts, and (4) spacing between conserved residues.

Some alignment programs that both translate and align sequences can make any number of frameshifts when translating the nucleotide sequence to produce the best alignment. The fewer frameshifts needed to produce an alignment, the stronger the similarity or identity between the query and profile or MSAs. For example, a
25 weak similarity resulting from no frameshifts can be a better indication of activity or structure of a query sequence, than a strong similarity resulting from two frameshifts. Preferably, three or fewer frameshifts are found in an alignment; more preferably two or fewer frameshifts; even more preferably, one or fewer frameshifts; even more preferably, no frameshifts are found in an alignment of query and profile or MSAs.

30 Conserved residues are those amino acids that are found at a particular position in all or some of the family or motif members. For example, most known chemokines contain four conserved cysteines. Alternatively, a position is considered

conserved if only a certain class of amino acids is found in a particular position in all or some of the family members. For example, the N-terminal position may contain a positively charged amino acid, such as lysine, arginine, or histidine.

Typically, a residue of a polypeptide is conserved when a class of amino acids 5 or a single amino acid is found at a particular position in at least about 40% of all class members; more typically, at least about 50%; even more typically, at least about 60% of the members. Usually, a residue is conserved when a class or single amino acid is found in at least about 70% of the members of a family or motif; more usually, at least about 80%; even more usually, at least about 90%; even more usually, at least 10 about 95%.

A residue is considered conserved when three unrelated amino acids are found at a particular position in the some or all of the members; more usually, two unrelated amino acids. These residues are conserved when the unrelated amino acids are found at particular positions in at least about 40% of all class member; more typically, at 15 least about 50%; even more typically, at least about 60% of the members. Usually, a residue is conserved when a class or single amino acid is found in at least about 70% of the members of a family or motif; more usually, at least about 80%; even more usually, at least about 90%; even more usually, at least about 95%.

A query sequence has similarity to a profile or MSA when the query sequence 20 comprises at least about 25% of the conserved residues of the profile or MSA; more usually, at least about 30%; even more usually; at least about 40%. Typically, the query sequence has a stronger similarity to a profile sequence or MSA when the query sequence comprises at least about 45% of the conserved residues of the profile or MSA; more typically, at least about 50%; even more typically; at least about 55%.

25

V. Probes and Primers

The nucleotide sequences determined from the cloning of genes from tumor 30 cells, especially colon cancer cell lines and tissues will further allow for the generation of probes and primers designed for identifying and/or cloning homologs in other cell types, e.g., from other tissues, as well as homologs from other mammalian organisms. Nucleotide sequences useful as probes/primers may include all or a portion of the sequences listed in SEQ ID Nos. 1-850 or sequences complementary

thereto or sequences which hybridize under stringent conditions to all or a portion of SEQ ID Nos. 1-850. For instance, the present invention also provides a probe/primer comprising a substantially purified oligonucleotide, which oligonucleotide comprising a nucleotide sequence that hybridizes under stringent conditions to at least 5 approximately 12, preferably 25, more preferably 40, 50, or 75 consecutive nucleotides up to the full length of the sense or anti-sense sequence selected from the group consisting of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, or naturally occurring mutants thereof. For instance, primers based on a nucleic acid represented 10 in SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, can be used in PCR reactions to clone homologs of that sequence.

In yet another embodiment, the invention provides probes/primers comprising a nucleotide sequence that hybridizes under moderately stringent conditions to at least 15 approximately 12, 16, 25, 40, 50 or 75 consecutive nucleotides up to the full length of the sense or antisense sequence selected from the group consisting of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or naturally occurring mutants thereof.

In particular, these probes are useful because they provide a method for 20 detecting mutations in wild-type genes of the present invention. Nucleic acid probes which are complementary to a wild-type gene of the present invention and can form mismatches with mutant genes are provided, allowing for detection by enzymatic or chemical cleavage or by shifts in electrophoretic mobility.

Likewise, probes based on the subject sequences can be used to detect 25 transcripts or genomic sequences encoding the same or homologous proteins, for use, for example, in prognostic or diagnostic assays. In preferred embodiments, the probe further comprises a label group attached thereto and able to be detected, e.g., the label group is selected from radioisotopes, fluorescent compounds, chemiluminescent compounds, enzymes, and enzyme co-factors.

30 Full-length cDNA molecules comprising the disclosed nucleic acids are obtained as follows. A subject nucleic acid or a portion thereof comprising at least about 12, 15, 18, or 20 nucleotides up to the full length of a sequence represented in

SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, may be used as a hybridization probe to detect hybridizing members of a cDNA library using probe design methods, cloning methods, and clone selection techniques as described in U.S. Patent No.

- 5 5,654,173, "Secreted Proteins and Polynucleotides Encoding Them," incorporated herein by reference. Libraries of cDNA may be made from selected tissues, such as normal or tumor tissue, or from tissues of a mammal treated with, for example, a pharmaceutical agent. Preferably, the tissue is the same as that used to generate the nucleic acids, as both the nucleic acid and the cDNA represent expressed genes. Most
10 preferably, the cDNA library is made from the biological material described herein in the Examples. Alternatively, many cDNA libraries are available commercially. (Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, 2nd Ed. (Cold Spring Harbor Press, Cold Spring Harbor, NY 1989). The choice of cell type for library construction may be made after the identity of the protein encoded by the nucleic
15 acid-related gene is known. This will indicate which tissue and cell types are likely to express the related gene, thereby containing the mRNA for generating the cDNA.

Members of the library that are larger than the nucleic acid, and preferably that contain the whole sequence of the native message, may be obtained. To confirm that the entire cDNA has been obtained, RNA protection experiments may be performed
20 as follows. Hybridization of a full-length cDNA to an mRNA may protect the RNA from RNase degradation. If the cDNA is not full length, then the portions of the mRNA that are not hybridized may be subject to RNase degradation. This may be assayed, as is known in the art, by changes in electrophoretic mobility on polyacrylamide gels, or by detection of released monoribonucleotides. Sambrook *et*
25 *al.*, *Molecular Cloning: A Laboratory Manual*, 2nd Ed. (Cold Spring Harbor Press, Cold Spring Harbor, NY 1989). In order to obtain additional sequences 5' to the end of a partial cDNA, 5' RACE (PCR Protocols: A Guide to Methods and Applications (Academic Press, Inc. 1990)) may be performed.

Genomic DNA may be isolated using nucleic acids in a manner similar to the
30 isolation of full-length cDNAs. Briefly, the nucleic acids, or portions thereof, may be used as probes to libraries of genomic DNA. Preferably, the library is obtained from the cell type that was used to generate the nucleic acids. Most preferably, the genomic

- DNA is obtained from the biological material described herein in the Example. Such libraries may be in vectors suitable for carrying large segments of a genome, such as P1 or YAC, as described in detail in Sambrook *et al.*, 9.4-9.30. In addition, genomic sequences can be isolated from human BAC libraries, which are commercially
- 5 available from Research Genetics, Inc., Huntsville, Alabama, USA, for example. In order to obtain additional 5' or 3' sequences, chromosome walking may be performed, as described in Sambrook *et al.*, such that adjacent and overlapping fragments of genomic DNA are isolated. These may be mapped and pieced together, as is known in the art, using restriction digestion enzymes and DNA ligase.
- 10 Using the nucleic acids of the invention, corresponding full length genes can be isolated using both classical and PCR methods to construct and probe cDNA libraries. Using either method, Northern blots, preferably, may be performed on a number of cell types to determine which cell lines express the gene of interest at the highest rate.
- 15 Classical methods of constructing cDNA libraries are taught in Sambrook et al., *supra*. With these methods, cDNA can be produced from mRNA and inserted into viral or expression vectors. Typically, libraries of mRNA comprising poly(A) tails can be produced with poly(T) primers. Similarly, cDNA libraries can be produced using the instant sequences as primers.
- 20 PCR methods may be used to amplify the members of a cDNA library that comprise the desired insert. In this case, the desired insert may contain sequence from the full length cDNA that corresponds to the instant nucleic acids. Such PCR methods include gene trapping and RACE methods.
- Gene trapping may entail inserting a member of a cDNA library into a vector.
- 25 The vector then may be denatured to produce single stranded molecules. Next, a substrate-bound probe, such a biotinylated oligo, may be used to trap cDNA inserts of interest. Biotinylated probes can be linked to an avidin-bound solid substrate. PCR methods can be used to amplify the trapped cDNA. To trap sequences corresponding to the full length genes, the labeled probe sequence may be based on the nucleic acids
- 30 of the invention, e.g., SEQ ID Nos. 1-383, preferably SEQ ID Nos. 1-127, or a sequence complementary thereto. Random primers or primers specific to the library vector can be used to amplify the trapped cDNA. Such gene trapping techniques are

described in Gruber *et al.*, PCT WO 95/04745 and Gruber *et al.*, U.S. Pat. No. 5,500,356. Kits are commercially available to perform gene trapping experiments from, for example, Life Technologies, Gaithersburg, Maryland, USA.

“Rapid amplification of cDNA ends,” or RACE, is a PCR method of 5 amplifying cDNAs from a number of different RNAs. The cDNAs may be ligated to an oligonucleotide linker and amplified by PCR using two primers. One primer may be based on sequence from the instant nucleic acids, for which full length sequence is desired, and a second primer may comprise a sequence that hybridizes to the oligonucleotide linker to amplify the cDNA. A description of this method is reported 10 in PCT Pub. No. WO 97/19110.

In preferred embodiments of RACE, a common primer may be designed to anneal to an arbitrary adaptor sequence ligated to cDNA ends (Apte and Siebert, *Biotechniques* 15:890-893, 1993; Edwards *et al.*, *Nuc. Acids Res.* 19:5227-5232, 1991). When a single gene-specific RACE primer is paired with the common primer, 15 preferential amplification of sequences between the single gene specific primer and the common primer occurs. Commercial cDNA pools modified for use in RACE are available.

Another PCR-based method generates full-length cDNA library with anchored ends without specific knowledge of the cDNA sequence. The method uses lock-docking primers (I-VI), where one primer, poly TV (I-III) locks over the polyA tail of 20 eukaryotic mRNA producing first strand synthesis and a second primer, polyGH (IV-VI) locks onto the polyC tail added by terminal deoxynucleotidyl transferase (TdT). This method is described in PCT Pub. No. WO 96/40998.

The promoter region of a gene generally is located 5' to the initiation site for 25 RNA polymerase II. Hundreds of promoter regions contain the “TATA” box, a sequence such as TATTA or TATAA, which is sensitive to mutations. The promoter region can be obtained by performing 5' RACE using a primer from the coding region of the gene. Alternatively, the cDNA can be used as a probe for the genomic sequence, and the region 5' to the coding region is identified by “walking up.”

30 If the gene is highly expressed or differentially expressed, the promoter from the gene may be of use in a regulatory construct for a heterologous gene.

Once the full-length cDNA or gene is obtained, DNA encoding variants can be prepared by site-directed mutagenesis, described in detail in Sambrook *et al.*, 15.3-15.63. The choice of codon or nucleotide to be replaced can be based on the disclosure herein on optional changes in amino acids to achieve altered protein structure and/or function.

As an alternative method to obtaining DNA or RNA from a biological material, nucleic acid comprising nucleotides having the sequence of one or more nucleic acids of the invention can be synthesized. Thus, the invention encompasses nucleic acid molecules ranging in length from 12 nucleotides (corresponding to at least 12 contiguous nucleotides which hybridize under stringent conditions to or are at least 80% identical to a nucleic acid represented by one of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto) up to a maximum length suitable for one or more biological manipulations, including replication and expression, of the nucleic acid molecule. The invention includes but is not limited to (a) nucleic acid having the size of a full gene, and comprising at least one of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto; (b) the nucleic acid of (a) also comprising at least one additional gene, operably linked to permit expression of a fusion protein; (c) an expression vector comprising (a) or (b); (d) a plasmid comprising (a) or (b); and (e) a recombinant viral particle comprising (a) or (b). Construction of (a) can be accomplished as described below in part IV.

The sequence of a nucleic acid of the present invention is not limited and can be any sequence of A, T, G, and/or C (for DNA) and A, U, G, and/or C (for RNA) or modified bases thereof, including inosine and pseudouridine. The choice of sequence will depend on the desired function and can be dictated by coding regions desired, the intron-like regions desired, and the regulatory regions desired.

VI. Vectors Carrying Nucleic Acids of the Present Invention

The invention further provides plasmids and vectors, which can be used to express a gene in a host cell. The host cell may be any prokaryotic or eukaryotic cell. Thus, a nucleotide sequence derived from any one of SEQ ID Nos. 1-850, preferably

SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, encoding all or a selected portion of a protein, can be used to produce a recombinant form of an polypeptide via microbial or eukaryotic cellular processes. Ligating the polynucleotide sequence into a gene construct, such as an 5 expression vector, and transforming or transfecting into hosts, either eukaryotic (yeast, avian, insect or mammalian) or prokaryotic (bacterial cells), are standard procedures well known in the art.

Vectors that allow expression of a nucleic acid in a cell are referred to as expression vectors. Typically, expression vectors contain a nucleic acid operably 10 linked to at least one transcriptional regulatory sequence. Regulatory sequences are art-recognized and are selected to direct expression of the subject nucleic acids. Transcriptional regulatory sequences are described in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). In one embodiment, the expression vector includes a recombinant gene encoding a 15 peptide having an agonistic activity of a subject polypeptide, or alternatively, encoding a peptide which is an antagonistic form of a subject polypeptide.

The choice of plasmid will depend on the type of cell in which propagation is desired and the purpose of propagation. Certain vectors are useful for amplifying and making large amounts of the desired DNA sequence. Other vectors are suitable for 20 expression in cells in culture. Still other vectors are suitable for transfer and expression in cells in a whole animal or person. The choice of appropriate vector is well within the skill of the art. Many such vectors are available commercially. The nucleic acid or full-length gene is inserted into a vector typically by means of DNA ligase attachment to a cleaved restriction enzyme site in the vector. Alternatively, the 25 desired nucleotide sequence may be inserted by homologous recombination *in vivo*. Typically this is accomplished by attaching regions of homology to the vector on the flanks of the desired nucleotide sequence. Regions of homology are added by ligation of oligonucleotides, or by polymerase chain reaction using primers comprising both the region of homology and a portion of the desired nucleotide sequence, for example. 30 Nucleic acids or full-length genes are linked to regulatory sequences as appropriate to obtain the desired expression properties. These may include promoters (attached either at the 5' end of the sense strand or at the 3' end of the antisense

strand), enhancers, terminators, operators, repressors, and inducers. The promoters may be regulated or constitutive. In some situations it may be desirable to use conditionally active promoters, such as tissue-specific or developmental stage-specific promoters. These are linked to the desired nucleotide sequence using the techniques described above for linkage to vectors. Any techniques known in the art may be used.

When any of the above host cells, or other appropriate host cells or organisms, are used to replicate and/or express the polynucleotides or nucleic acids of the invention, the resulting replicated nucleic acid, RNA, expressed protein or polypeptide, is within the scope of the invention as a product of the host cell or organism. The product is recovered by any appropriate means known in the art.

Once the gene corresponding to the nucleic acid is identified, its expression can be regulated in the cell to which the gene is native. For example, an endogenous gene of a cell can be regulated by an exogenous regulatory sequence as disclosed in U.S. Patent No. 5,641,670, "Protein Production and Protein Delivery."

A number of vectors exist for the expression of recombinant proteins in yeast (see, for example, Broach *et al.* (1983) in *Experimental Manipulation of Gene Expression*, ed. M. Inouye, Academic Press, p. 83, incorporated by reference herein). In addition, drug resistance markers such as ampicillin can be used. In an illustrative embodiment, a polypeptide is produced recombinantly utilizing an expression vector generated by sub-cloning one of the nucleic acids represented in one of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto.

The preferred mammalian expression vectors contain both prokaryotic sequences, to facilitate the propagation of the vector in bacteria, and one or more eukaryotic transcription units that are expressed in eukaryotic cells. The various methods employed in the preparation of plasmids and transformation of host organisms are well known in the art. For other suitable expression systems for both prokaryotic and eukaryotic cells, as well as general recombinant procedures, see *Molecular Cloning: A Laboratory Manual*, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989) Chapters 16 and 17. When it is desirable to express only a portion of a gene, e.g., a truncation mutant, it may be necessary to add a start codon (ATG) to the oligonucleotide fragment

containing the desired sequence to be expressed. It is well known in the art that a methionine at the N-terminal position can be enzymatically cleaved by the use of the enzyme methionine aminopeptidase (MAP). MAP has been cloned from *E. coli* (Ben-Bassat *et al.* (1987) *J. Bacteriol.* 169:751-757) and *Salmonella typhimurium* and its *in vitro* activity has been demonstrated on recombinant proteins (Miller *et al.* (1987) *PNAS* 84:2718-1722). Therefore, removal of an N-terminal methionine, if desired, can be achieved either *in vivo* by expressing polypeptides in a host which produces MAP (e.g., *E. coli* or CM89 or *S. cerevisiae*), or *in vitro* by use of purified MAP (e.g., procedure of Miller *et al.*, *supra*).

Moreover, the nucleic acid constructs of the present invention can also be used as part of a gene therapy protocol to deliver nucleic acids such as antisense nucleic acids. Thus, another aspect of the invention features expression vectors for *in vivo* or *in vitro* transfection with an antisense oligonucleotide.

In addition to viral transfer methods, non-viral methods can also be employed to introduce a subject nucleic acid, e.g., a sequence represented by one of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, into the tissue of an animal. Most nonviral methods of gene transfer rely on normal mechanisms used by mammalian cells for the uptake and intracellular transport of macromolecules. In preferred embodiments, non-viral targeting means of the present invention rely on endocytic pathways for the uptake of the subject nucleic acid by the targeted cell. Exemplary targeting means of this type include liposomal derived systems, polylysine conjugates, and artificial viral envelopes.

A nucleic acid of any of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, the corresponding cDNA, or the full-length gene may be used to express the partial or complete gene product. Appropriate nucleic acid constructs are purified using standard recombinant DNA techniques as described in, for example, Sambrook *et al.*, (1989) *Molecular Cloning: A Laboratory Manual*, 2nd ed. (Cold Spring Harbor Press, Cold Spring Harbor, New York), and under current regulations described in United States Dept. of HHS, National Institute of Health (NIH) Guidelines for Recombinant DNA Research. The polypeptides encoded by the nucleic acid may be expressed in

any expression system, including, for example, bacterial, yeast, insect, amphibian and mammalian systems. Suitable vectors and host cells are described in U.S. Patent No. 5,654,173.

Bacteria. Expression systems in bacteria include those described in Chang *et al.*, *Nature* (1978) 275:615, Goeddel *et al.*, *Nature* (1979) 281:544, Goeddel *et al.*, *Nucleic Acids Res.* (1980) 8:4057; EP 0 036,776, U.S. Patent No. 4,551,433, DeBoer *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1983) 80:2125, and Siebenlist *et al.*, *Cell* (1980) 20:269.

Yeast. Expression systems in yeast include those described in Hinnen *et al.*, 10 *Proc. Natl. Acad. Sci. (USA)* (1978) 75:1929; Ito *et al.*, *J. Bacteriol.* (1983) 153:163; Kurtz *et al.*, *Mol. Cell. Biol.* (1986) 6:142; Kunze *et al.*, *J. Basic Microbiol.* (1985) 25:141; Gleeson *et al.*, *J. Gen. Microbiol.* (1986) 132:3459, Roggenkamp *et al.*, *Mol. Gen. Genet.* (1986) 202:302) Das *et al.*, *J. Bacteriol.* (1984) 158:1165; De Louvencourt *et al.*, *J. Bacteriol.* (1983) 154:737, Van den Berg *et al.*, *Bio/Technology* 15 (1990) 8:135; Kunze *et al.*, *J. Basic Microbiol.* (1985) 25:141; Cregg *et al.*, *Mol. Cell. Biol.* (1985) 5:3376, U.S. Patent Nos. 4,837,148 and 4,929,555; Beach and Nurse, *Nature* (1981) 300:706; Davidow *et al.*, *Curr. Genet.* (1985) 10:380, Gaillardin *et al.*, *Curr. Genet.* (1985) 10:49, Ballance *et al.*, *Biochem. Biophys. Res. Commun.* (1983) 112:284289; Tilburn *et al.*, *Gene* (1983) 26:205221, Yelton *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1984) 81:14701474, Kelly and Hynes, *EMBO J.* (1985) 4:475479; EP 0 244,234, and WO 91/00357.

Insect Cells. Expression of heterologous genes in insects is accomplished as described in U.S. Patent No. 4,745,051, Friesen *et al.* (1986) "The Regulation of Baculovirus Gene Expression" in: *The Molecular Biology Of Baculoviruses* (W. 25 Doerfler, ed.), EP 0 127,839, EP 0 155,476, and Vlak *et al.*, *J. Gen. Virol.* (1988) 69:765776, Miller *et al.*, *Ann. Rev. Microbiol.* (1988) 42:177, Carbonell *et al.*, *Gene* (1988) 73:409, Maeda *et al.*, *Nature* (1985) 315:592594, Lebacq-Verheyden *et al.*, *Mol. Cell. Biol.* (1988) 8:3129; Smith *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1985) 82:8404, Miyajima *et al.*, *Gene* (1987) 58:273; and Martin *et al.*, *DNA* (1988) 7:99. 30 Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts are described in Luckow *et al.*, *Bio/Technology* (1988) 6:4755, Miller

et al., Generic Engineering (Setlow, J.K. *et al.* eds.), Vol. 8 (Plenum Publishing, 1986), pp. 277-279, and Maeda *et al.*, *Nature*, (1985) 315:592-594.

Mammalian Cells. Mammalian expression is accomplished as described in Dijkema *et al.*, *EMBO J.* (1985) 4:761, Gorman *et al.*, *Proc. Natl. Acad. Sci. (USA)* 5 (1982) 79:6777, Boshart *et al.*, *Cell* (1985) 41:521 and U.S. Patent No. 4,399,216. Other features of mammalian expression are facilitated as described in Ham and Wallace, *Meth. Enz.* (1979) 58:44, Barnes and Sato, *Anal. Biochem.* (1980) 102:255, U.S. Patent Nos. 4,767,704, 4,657,866, 4,927,762, 4,560,655, WO 90/103430, WO 87/00195, and U.S. RE 30,985.

10

VII. Therapeutic Nucleic Acid Constructs

One aspect of the invention relates to the use of the isolated nucleic acid, e.g., SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, in antisense therapy. As used 15 herein, antisense therapy refers to administration or *in situ* generation of oligonucleotide molecules or their derivatives which specifically hybridize (e.g., bind) under cellular conditions with the cellular mRNA and/or genomic DNA, thereby inhibiting transcription and/or translation of that gene. The binding may be by conventional base pair complementarity, or, for example, in the case of binding to 20 DNA duplexes, through specific interactions in the major groove of the double helix. In general, antisense therapy refers to the range of techniques generally employed in the art, and includes any therapy which relies on specific binding to oligonucleotide sequences.

An antisense construct of the present invention can be delivered, for example, 25 as an expression plasmid which, when transcribed in the cell, produces RNA which is complementary to at least a unique portion of the cellular mRNA. Alternatively, the antisense construct is an oligonucleotide probe which is generated *ex vivo* and which, when introduced into the cell, causes inhibition of expression by hybridizing with the mRNA and/or genomic sequences of a subject nucleic acid. Such oligonucleotide 30 probes are preferably modified oligonucleotides which are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, and are therefore stable *in vivo*. Exemplary nucleic acid molecules for use as antisense oligonucleotides are

phosphoramidate, phosphorothioate and methylphosphonate analogs of DNA (see also U.S. Patents 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in antisense therapy have been reviewed, for example, by Van der Krol et al. (1988) BioTechniques 6:958-976; and Stein et al.

- 5 (1988) Cancer Res 48:2659-2668. With respect to antisense DNA, oligodeoxyribonucleotides derived from the translation initiation site, e.g., between the -10 and +10 regions of the nucleotide sequence of interest, are preferred.

Antisense approaches involve the design of oligonucleotides (either DNA or RNA) that are complementary to mRNA. The antisense oligonucleotides will bind to 10 the mRNA transcripts and prevent translation. Absolute complementarity, although preferred, is not required. In the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing 15 nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.

Oligonucleotides that are complementary to the 5' end of the mRNA, e.g., the 20 5' untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated sequences of mRNAs have recently been shown to be effective at inhibiting translation of mRNAs as well. (Wagner, R. 1994. Nature 372:333). Therefore, oligonucleotides complementary to either the 5' or 3' untranslated, non- 25 coding regions of a gene could be used in an antisense approach to inhibit translation of endogenous mRNA. Oligonucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions are typically less efficient inhibitors of translation but could also be used in accordance with the invention. 30 Whether designed to hybridize to the 5', 3', or coding region of subject mRNA, antisense nucleic acids should be at least six nucleotides in length, and are preferably

less than about 100 and more preferably less than about 50, 25, 17 or 10 nucleotides in length.

Regardless of the choice of target sequence, it is preferred that *in vitro* studies are first performed to quantitate the ability of the antisense oligonucleotide to

- 5 quantitate the ability of the antisense oligonucleotide to inhibit gene expression. It is preferred that these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of the target RNA or protein with that of an internal control RNA or protein. Additionally, it is envisioned that results obtained using the
- 10 antisense oligonucleotide are compared with those obtained using a control oligonucleotide. It is preferred that the control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.

- 15 The oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. WO 88/09810, published December 15, 1988) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134, published April 25, 1988), hybridization-triggered cleavage agents
- 20 (See, e.g., Krol et al., 1988, BioTechniques 6:958-976), or intercalating agents (See, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

- 25 The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxytriethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-

carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil,

5 beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and

10 2,6-diaminopurine.

The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

The antisense oligonucleotide can also contain a neutral peptide-like backbone. Such molecules are termed peptide nucleic acid (PNA)-oligomers and are described, e.g., in Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93:14670 and in Eglom *et al.* (1993) Nature 365:566. One advantage of PNA oligomers is their capability to bind to complementary DNA essentially independently from the ionic strength of the medium due to the neutral backbone of the DNA. In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

25 In yet a further embodiment, the antisense oligonucleotide is an α -anomeric oligonucleotide. An α -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-O-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-12148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).

- Oligonucleotides of the invention may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. 5 (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.
- While antisense nucleotides complementary to a coding region sequence can be used, those complementary to the transcribed untranslated region and to the region 10 comprising the initiating methionine are most preferred.
- The antisense molecules can be delivered to cells which express the target nucleic acid *in vivo*. A number of methods have been developed for delivering antisense DNA or RNA to cells; e.g., antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to target the desired cells 15 (e.g., antisense linked to peptides or antibodies that specifically bind receptors or antigens expressed on the target cell surface) can be administered systemically.
- However, it is often difficult to achieve intracellular concentrations of the antisense sufficient to suppress translation on endogenous mRNAs. Therefore, a preferred approach utilizes a recombinant DNA construct in which the antisense 20 oligonucleotide is placed under the control of a strong pol III or pol II promoter. The use of such a construct to transfet target cells in the patient will result in the transcription of sufficient amounts of single stranded RNAs that will form complementary base pairs with the endogenous transcripts and thereby prevent translation of the target mRNA. For example, a vector can be introduced *in vivo* such 25 that it is taken up by a cell and directs the transcription of an antisense RNA. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the art for replication and expression in mammalian cells.
- 30 Expression of the sequence encoding the antisense RNA can be by any promoter known in the art to act in mammalian, preferably human cells. Such promoters can be inducible or constitutive. Such promoters include but are not limited to: the SV40

early promoter region (Bernouist and Chambon, 1981, *Nature* 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto *et al.*, 1980, *Cell* 22:787-797), the herpes thymidine kinase promoter (Wagner *et al.*, 1981, *Proc. Natl. Acad. Sci. U.S.A.* 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster *et al.*, 1982, *Nature* 296:39-42), etc. Any type of plasmid, cosmid, YAC or viral vector can be used to prepare the recombinant DNA construct which can be introduced directly into the tissue site; e.g., the choroid plexus or hypothalamus. Alternatively, viral vectors can be used which selectively infect the desired tissue (e.g., for brain, herpesvirus vectors may be used), in which case administration may be accomplished by another route (e.g., systemically).

In another aspect of the invention, ribozyme molecules designed to catalytically cleave target mRNA transcripts can be used to prevent translation of target mRNA and expression of a target protein (See, e.g., PCT International Publication WO90/11364, published October 4, 1990; Sarver *et al.*, 1990, *Science* 247:1222-1225 and U.S. Patent No. 5,093,246). While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy target mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach, 1988, *Nature*, 334:585-591. Preferably the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the target mRNA; i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.

The ribozymes of the present invention also include RNA endoribonucleases (hereinafter "Cech-type ribozymes") such as the one which occurs naturally in *Tetrahymena thermophila* (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug, *et al.*, 1984, *Science*, 224:574-578; Zaug and Cech, 1986, *Science*, 231:470-475; Zaug, *et al.*, 1986, *Nature*, 324:429-433; published International patent application No. WO88/04300 by University Patents Inc.; Been and Cech, 1986, *Cell*, 47:207-216). The Cech-type

ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The invention encompasses those Cech-type ribozymes which target eight base-pair active site sequences that are present in a target gene.

5 As in the antisense approach, the ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells which express the target gene *in vivo*. A preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce
10 sufficient quantities of the ribozyme to destroy endogenous messages and inhibit translation. Because ribozymes, unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

Antisense RNA, DNA, and ribozyme molecules of the invention may be prepared by any method known in the art for the synthesis of DNA and RNA
15 molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by *in vitro* and *in vivo* transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated
20 into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

Moreover, various well-known modifications to nucleic acid molecules may
25 be introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.

30

VIII. Polypeptides of the Present Invention

The present invention makes available isolated polypeptides which are isolated from, or otherwise substantially free of other cellular proteins, especially other signal transduction factors and/or transcription factors which may normally be associated with the polypeptide. Subject polypeptides of the present invention include

- 5 polypeptides encoded by the nucleic acids of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, or polypeptides encoded by genes of which a sequence in SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, is a fragment. Polypeptides of the present invention
10 include those proteins which are differentially regulated in tumor cells, especially colon cancer-derived cell lines (relative to normal cells, e.g., normal colon tissue and non-colon tissue). In preferred embodiments, the polypeptides are upregulated in tumor cells, especially colon cancer cancer-derived cell lines. In other embodiments, the polypeptides are downregulated in tumor cells, especially colon cancer-derived
15 cell lines. Proteins which are upregulated, such as oncogenes, or downregulated, such as tumor suppressors, in aberrantly proliferating cells may be targets for diagnostic or therapeutic techniques. For example, upregulation of the *cdc2* gene induces mitosis. Overexpression of the *myt1* gene, a mitotic deactivator, negatively regulates the activity of *cdc2*. Aberrant proliferation may thus be induced either by upregulating
20 *cdc2* or by downregulating *myt1*

- The term "substantially free of other cellular proteins" (also referred to herein as "contaminating proteins") or "substantially pure or purified preparations" are defined as encompassing preparations of polypeptides having less than about 20% (by dry weight) contaminating protein, and preferably having less than about 5%
25 contaminating protein. Functional forms of the subject polypeptides can be prepared, for the first time, as purified preparations by using a cloned nucleic acid as described herein. Full length proteins or fragments corresponding to one or more particular motifs and/or domains or to arbitrary sizes, for example, at least about 5, 10, 25, 50, 75, or 100 amino acids in length are within the scope of the present invention.
30 For example, isolated polypeptides can be encoded by all or a portion of a nucleic acid sequence shown in any of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary

thereto. Isolated peptidyl portions of proteins can be obtained by screening peptides recombinantly produced from the corresponding fragment of the nucleic acid encoding such peptides. In addition, fragments can be chemically synthesized using techniques known in the art such as conventional Merrifield solid phase f-Moc or t-
5 Boc chemistry. For example, a polypeptide of the present invention may be arbitrarily divided into fragments of desired length with no overlap of the fragments, or preferably divided into overlapping fragments of a desired length. The fragments can be produced (recombinantly or by chemical synthesis) and tested to identify those peptidyl fragments which can function as either agonists or antagonists of a wild-type
10 (e.g., "authentic") protein.

Another aspect of the present invention concerns recombinant forms of the subject proteins. Recombinant polypeptides preferred by the present invention, in addition to native proteins as described above are encoded by a nucleic acid, which is at least 60%, more preferably at least 80%, and more preferably 85%, and more
15 preferably 90%, and more preferably 95% identical to an amino acid sequence encoded by SEQ ID NOS. 1-850. Polypeptides which are encoded by a nucleic acid that is at least about 98-99% identical with the sequence of SEQ ID Nos. 1-850 are also within the scope of the invention. Also included in the present invention are peptide fragments comprising at least a portion of such a protein.

20 In a preferred embodiment, a polypeptide of the present invention is a mammalian polypeptide and even more preferably a human polypeptide. In particularly preferred embodiment, the polypeptide retains wild-type bioactivity. It will be understood that certain post-translational modifications, e.g., phosphorylation and the like, can increase the apparent molecular weight of the polypeptide relative to
25 the unmodified polypeptide chain.

The present invention further pertains to recombinant forms of one of the subject polypeptides. Such recombinant polypeptides preferably are capable of functioning in one of either role of an agonist or antagonist of at least one biological activity of a wild-type ("authentic") polypeptide of the appended sequence listing. The
30 term "evolutionarily related to", with respect to amino acid sequences of proteins, refers to both polypeptides having amino acid sequences which have arisen naturally,

and also to mutational variants of human polypeptides which are derived, for example, by combinatorial mutagenesis.

In general, polypeptides referred to herein as having an activity (e.g., are "bioactive") of a protein are defined as polypeptides which include an amino acid sequence encoded by all or a portion of the nucleic acid sequences shown in one of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, and which mimic or antagonize all or a portion of the biological/biochemical activities of a naturally occurring protein. According to the present invention, a polypeptide has biological activity if it is a specific agonist or antagonist of a naturally occurring form of a protein.

Assays for determining whether a compound, e.g., a protein or variant thereof, has one or more of the above biological activities are well known in the art. In certain embodiments, the polypeptides of the present invention have activities such as those outlined above.

In another embodiment, the coding sequences for the polypeptide can be incorporated as a part of a fusion gene including a nucleotide sequence encoding a different polypeptide. This type of expression system can be useful under conditions where it is desirable to produce an immunogenic fragment of a polypeptide (see, for example, EP Publication No: 0259149; and Evans *et al.* (1989) Nature 339:385; Huang *et al.* (1988) J. Virol. 62:3855; and Schlienger *et al.* (1992) J. Virol. 66:2). In addition to utilizing fusion proteins to enhance immunogenicity, it is widely appreciated that fusion proteins can also facilitate the expression of proteins, and, accordingly, can be used in the expression of the polypeptides of the present invention (see, for example, Current Protocols in Molecular Biology, eds. Ausubel *et al.* (N.Y.: John Wiley & Sons, 1991)). In another embodiment, a fusion gene coding for a purification leader sequence, such as a poly-(His)/enterokinase cleavage site sequence at the N-terminus of the desired portion of the recombinant protein, can allow purification of the expressed fusion protein by affinity chromatography using a Ni²⁺ metal resin. The purification leader sequence can then be subsequently removed by treatment with enterokinase to provide the purified protein (e.g., see Hochuli *et al.* (1987) J. Chromatography 411:177; and Janknecht *et al.* PNAS 88:8972).

Techniques for making fusion genes are known to those skilled in the art. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide 5 for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of nucleic acid fragments can be carried out using anchor primers which give rise to complementary 10 overhangs between two consecutive nucleic acid fragments which can subsequently be annealed to generate a chimeric nucleic acid sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al. John Wiley & Sons: 1992).

The present invention further pertains to methods of producing the subject polypeptides. For example, a host cell transfected with a nucleic acid vector directing 15 expression of a nucleotide sequence encoding the subject polypeptides can be cultured under appropriate conditions to allow expression of the peptide to occur. Suitable media for cell culture are well known in the art. The recombinant polypeptide can be isolated from cell culture medium, host cells, or both using techniques known in the art for purifying proteins including ion-exchange chromatography, gel filtration 20 chromatography, ultrafiltration, electrophoresis, and immunoaffinity purification with antibodies specific for such peptide. In a preferred embodiment, the recombinant polypeptide is a fusion protein containing a domain which facilitates its purification, such as GST fusion protein.

Moreover, it will be generally appreciated that, under certain circumstances, it 25 may be advantageous to provide homologs of one of the subject polypeptides which function in a limited capacity as one of either an agonist (mimetic) or an antagonist, in order to promote or inhibit only a subset of the biological activities of the naturally occurring form of the protein. Thus, specific biological effects can be elicited by treatment with a homolog of limited function, and with fewer side effects relative to 30 treatment with agonists or antagonists which are directed to all of the biological activities of naturally occurring forms of subject proteins.

Homologs of each of the subject polypeptide can be generated by mutagenesis, such as by discrete point mutation(s), or by truncation. For instance, mutation can give rise to homologs which retain substantially the same, or merely a subset, of the biological activity of the polypeptide from which it was derived. Alternatively, 5 antagonistic forms of the polypeptide can be generated which are able to inhibit the function of the naturally occurring form of the protein, such as by competitively binding to a receptor.

The recombinant polypeptides of the present invention also include homologs of the wild-type proteins, such as versions of those proteins which are resistant to 10 proteolytic cleavage, for example, due to mutations which alter ubiquitination or other enzymatic targeting associated with the protein.

Polypeptides may also be chemically modified to create derivatives by forming covalent or aggregate conjugates with other chemical moieties, such as 15 glycosyl groups, lipids, phosphate, acetyl groups and the like. Covalent derivatives of proteins can be prepared by linking the chemical moieties to functional groups on amino acid sidechains of the protein or at the N-terminus or at the C-terminus of the 20 polypeptide.

Modification of the structure of the subject polypeptides can be for such purposes as enhancing therapeutic or prophylactic efficacy, stability (e.g., *ex vivo* 25 shelf life and resistance to proteolytic degradation), or post-translational modifications (e.g., to alter phosphorylation pattern of protein). Such modified peptides, when designed to retain at least one activity of the naturally occurring form of the protein, or to produce specific antagonists thereof, are considered functional equivalents of the 30 polypeptides described in more detail herein. Such modified peptides can be produced, for instance, by amino acid substitution, deletion, or addition. The substitutional variant may be a substituted conserved amino acid or a substituted non-conserved amino acid.

For example, it is reasonable to expect that an isolated replacement of a 35 leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid (i.e., isosteric and/or isoelectric mutations) will not have a major effect on the 40 biological activity of the resulting molecule. Conservative replacements are those that

take place within a family of amino acids that are related in their side chains.

Genetically encoded amino acids can be divided into four families: (1) acidic = aspartate, glutamate; (2) basic = lysine, arginine, histidine; (3) nonpolar = alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4)

5 uncharged polar = glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine.

In similar fashion, the amino acid repertoire can be grouped as (1) acidic = aspartate, glutamate; (2) basic = lysine, arginine histidine, (3) aliphatic = glycine, alanine, valine, leucine, isoleucine, serine, threonine, with serine and threonine optionally be grouped separately as aliphatic-hydroxyl; (4) aromatic = phenylalanine, tyrosine,

10 tryptophan; (5) amide = asparagine, glutamine; and (6) sulfur -containing = cysteine and methionine. (see, for example, Biochemistry, 2nd ed., Ed. by L. Stryer, WH

Freeman and Co.: 1981). Whether a change in the amino acid sequence of a peptide results in a functional homolog (e.g., functional in the sense that the resulting polypeptide mimics or antagonizes the wild-type form) can be readily determined by

15 assessing the ability of the variant peptide to produce a response in cells in a fashion similar to the wild-type protein, or competitively inhibit such a response.

Polypeptides in which more than one replacement has taken place can readily be tested in the same manner. The variant may be designed so as to retain biological activity of a particular region of the protein. In a non-limiting example, Osawa et al.,

20 1994, Biochemistry and Molecular International 34:1003-1009, discusses the actin binding region of a protein from several different species. The actin binding regions of the these species are considered homologous based on the fact that they have amino acids that fall within "homologous residue groups." Homologous residues are judged according to the following groups (using single letter amino acid designations):

25 STAG; ILVMF; HRK; DEQN; and FYW. For example, an S, a T, an A or a G can be in a position and the function (in this case actin binding) is retained.

Additional guidance on amino acid substitution is available from studies of protein evolution. Go et al., 1980, Int. J. Peptide Protein Res. 15:211-224, classified amino acid residue sites as interior or exterior depending on their accessibility. More 30 frequent substitution on exterior sites was confirmed to be general in eight sets of homologous protein families regardless of their biological functions and the presence or absence of a prosthetic group. Virtually all types of amino acid residues had higher

5 mutabilities on the exterior than in the interior. No correlation between mutability and polarity was observed of amino acid residues in the interior and exterior, respectively. Amino acid residues were classified into one of three groups depending on their polarity: polar (Arg, Lys, His, Gln, Asn, Asp, and Glu); weak polar (Ala, Pro, Gly, Thr, and Ser), and nonpolar (Cys, Val, Met, Ile, Leu, Phe, Tyr, and Trp). Amino acid replacements during protein evolution were very conservative: 88% and 76% of them in the interior or exterior, respectively, were within the same group of the three. Inter-group replacements are such that weak polar residues are replaced more often by nonpolar residues in the interior and more often by polar residues on the exterior.

10 Querol *et al.*, 1996, Prot. Eng. 9:265-271, provides general rules for amino acid substitutions to enhance protein thermostability. New glycosylation sites can be introduced as discussed in Olsen and Thomsen, 1991, J. Gen. Microbiol. 137:579-585.

An additional disulfide bridge can be introduced, as discussed by Perry and Wetzel, 1984, Science 226:555-557; Pantoliano *et al.*, 1987, Biochemistry 26:2077-2082;

15 Matsumura *et al.*, 1989, Nature 342:291-293; Nishikawa *et al.*, 1990, Protein Eng. 3:443-448; Takagi *et al.*, 1990, J. Biol. Chem. 265:6874-6878; Clarke *et al.*, 1993, Biochemistry 32:4322-4329; and Wakarchuk *et al.*, 1994, Protein Eng. 7:1379-1386.

An additional metal binding site can be introduced, according to Toma *et al.*, 1991, Biochemistry 30:97-106, and Haezerbrouck *et al.*, 1993, Protein Eng. 6:643-

20 649. Substitutions with prolines in loops can be made according to Masul *et al.*, 1994, Appl. Env. Microbiol. 60:3579-3584; and Hardy *et al.*, FEBS Lett. 317:89-92.

Cysteine-depleted muteins are considered variants within the scope of the invention. These variants can be constructed according to methods disclosed in U.S. Patent No. 4,959,314, which discloses how to substitute other amino acids for cysteines, and how to determine biological activity and effect of the substitution. Such methods are suitable for proteins according to this invention that have cysteine residues suitable for such substitutions, for example to eliminate disulfide bond formation.

30 To learn the identity and function of the gene that correlates with an nucleic acid, the nucleic acids or corresponding amino acid sequences can be screened against profiles of protein families. Such profiles focus on common structural motifs among

proteins of each family. Publicly available profiles are described above. Additional or alternative profiles are described below.

In comparing a new nucleic acid with known sequences, several alignment tools are available. Examples include PileUp, which creates a multiple sequence 5 alignment, and is described in Feng *et al.*, *J. Mol. Evol.* (1987) 25:351-360. Another method, GAP, uses the alignment method of Needleman *et al.*, *J. Mol. Biol.* (1970) 48:443-453. GAP is best suited for global alignment of sequences. A third method, BestFit, functions by inserting gaps to maximize the number of matches using the local homology algorithm of Smith and Waterman, *Adv. Appl. Math.* (1981) 2:482-10 489.

Examples of such profiles are described below.

Chemokines

Chemokines are a family of proteins that have been implicated in lymphocyte 15 trafficking, inflammatory diseases, angiogenesis, hematopoiesis, and viral infection. See, for example, Rollins, *Blood* (1997) 90(3):909-928, and Wells *et al.*, *J. Leuk. Biol.* (1997) 61:545-550. U.S. Patent No. 5,605,817 discloses DNA encoding a chemokine expressed in fetal spleen. U.S. Patent No. 5,656,724 discloses chemokine-like 20 proteins and methods of use. U.S. Patent No. 5,602,008 discloses DNA encoding a chemokine expressed by liver.

Mutants of the encoded chemokines are polypeptides having an amino acid sequence that possesses at least one amino acid substitution, addition, or deletion as compared to native chemokines. Fragments possess the same amino acid sequence of the native chemokines; mutants may lack the amino and/or carboxyl terminal 25 sequences. Fusions are mutants, fragments, or the native chemokines that also include amino and/or carboxyl terminal amino acid extensions.

The number or type of the amino acid changes is not critical, nor is the length or number of the amino acid deletions, or amino acid extensions that are incorporated in the chemokines as compared to the native chemokine amino acid sequences. A 30 polynucleotide encoding one of these variant polypeptides will retain at least about 80% amino acid identity with at least one known chemokine. Preferably, these polypeptides will retain at least about 85% amino acid sequence identity, more

preferably, at least about 90%; even more preferably, at least about 95%. In addition, the variants will exhibit at least 80%; preferably about 90%; more preferably about 95% of at least one activity exhibited by a native chemokine. Chemokine activity includes immunological, biological, receptor binding, and signal transduction functions of the native chemokine.

5 Chemotaxis. Assays for chemotaxis relating to neutrophils are described in Walz *et al.*, *Biochem. Biophys. Res. Commun.* (1987) 149:755, Yoshimura *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1987) 84:9233, and Schroder *et al.*, *J. Immunol.* (1987) 139:3474; to lymphocytes, Larsen *et al.*, *Science* (1989) 243:1464, Carr *et al.*, *Proc. 10 Natl. Acad. Sci. (USA)* (1994) 91:3652; to tumor-infiltrating lymphocytes, Liao *et al.*, *J. Exp. Med.* (1995). 182:1301; to hemopoietic progenitors, Aiuti *et al.*, *J. Exp. Med.* (1997) 185:111; to monocytes, Valente *et al.*, *Biochem.* (1988) 27:4162; and to natural killer cells, Loetscher *et al.*, *J. Immunol.* (1996) 156:322, and Allavena *et al.*, *Eur. J. Immunol.* (1994) 24:3233.

15 Assays for determining the biological activity of attracting eosinophils are described in Dahinden *et al.*, *J. Exp. Med.* (1994) 179:751, Weber *et al.*, *J. Immunol.* (1995) 154:4166, and Noso *et al.*, *Biochem. Biophys. Res. Commun.* (1994) 200:1470; for attracting dendritic cells, Sozzani *et al.*, *J. Immunol.* (1995) 155:3292; for attracting basophils, in Dahinden *et al.*, *J. Exp. Med.* (1994) 179:751, Alam *et al.*, *J. 20 Immunol.* (1994) 152:1298, Alam *et al.*, *J. Exp. Med.* (1992) 176:781; and for activating neutrophils, Maghazaci *et al.*, *Eur. J. Immunol.* (1996) 26:315, and Taub *et al.*, *J. Immunol.* (1995) 155:3877. Native chemokines can act as mitogens for fibroblasts, assayed as described in Mullenbach *et al.*, *J. Biol. Chem.* (1986) 261:719.

25 Receptor Binding. Native chemokines exhibit binding activity with a number of receptors. Description of such receptors and assays to detect binding are described in, for example, Murphy *et al.*, *Science* (1991) 253:1280; Combadiere *et al.*, *J. Biol. Chem.* (1995) 270:29671; Daugherty *et al.*, *J. Exp. Med.* (1996) 183:2349; Samson *et al.*, *Biochem.* (1996) 35:3362; Raport *et al.*, *J. Biol. Chem.* (1996) 271:17161; Combadiere *et al.*, *J. Leukoc. Biol.* (1996) 60:147; Baba *et al.*, *J. Biol. Chem.* (1997) 30 23:14893; Yosida *et al.*, *J. Biol. Chem.* (1997) 272:13803; Arvannitakis *et al.*, *Nature* (1997) 385:347, and many other assays are known in the art.

Kinase Activation. Assays for kinase activation are described by Yen *et al.*, *J. Leukoc. Biol.* (1997) 61:529; Dubois *et al.*, *J. Immunol.* (1996) 156:1356; Turner *et al.*, *J. Immunol.* (1995) 155:2437. Assays for inhibition of angiogenesis or cell proliferation are described in Maione *et al.*, *Science* (1990) 247:77.

- 5 Glycosaminoglycan production can be induced by native chemokines, assayed as described in Castor *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1983) 80:765. Chemokine-mediated histamine release from basophils is assayed as described in Dahinden *et al.*, *J. Exp. Med.* (1989) 170:1787; and White *et al.*, *Immunol. Lett.* (1989) 22:151. Heparin binding is described in Luster *et al.*, *J. Exp. Med.* (1995) 182:219.
- 10 Dimerization Activity. Chemokines can possess dimerization activity, which can be assayed according to Burrows *et al.*, *Biochem.* (1994) 33:12741; and Zhang *et al.*, *Mol. Cell. Biol.* (1995) 15:4851. Native chemokines can play a role in the inflammatory response of viruses. This activity can be assayed as described in Bleul *et al.*, *Nature* (1996) 382:829; and Oberlin *et al.*, *Nature* (1996) 382:833. Exocytosis
- 15 of monocytes can be promoted by native chemokines. The assay for such activity is described in Uggioni *et al.*, *Eur. J. Immunol.* (1995) 25:64. Native chemokines also can inhibit hematopoietic stem cell proliferation. The method for testing for such activity is reported in Graham *et al.*, *Nature* (1990) 344:442.

20 Death Domain Proteins

Several protein families contain death domain motifs (Feinstein and Kimchi, *TIBS Letters* (1995) 20:242-244). Some death domain-containing proteins are implicated in cytotoxic intracellular signaling (Cleveland and Ihle, *Cell* (1995) 81:479-482, Pan *et al.*, *Science* (1997) 276:111-113, Duan and Dixit, *Nature* (1997) 385:86-89, and Chinnaiyan *et al.*, *Science* (1996) 274:990-992). U.S. Patent No. 5,563,039 describes a protein homologous to TRADD (Tumor Necrosis Factor Receptor-1 Associated Death Domain containing protein), and modifications of the active domain of TRADD that retain the functional characteristics of the protein, as well as apoptosis assays for testing the function of such death domain containing proteins. U.S. Patent No. 5,658,883 discloses biologically active TGF-B1 peptides. U.S. Patent No. 5,674,734 discloses protein RIP which contains a C-terminal death domain and an N-terminal kinase domain.

Leukemia Inhibitory Factor (LIF)

An LIF profile is constructed from sequences of leukemia inhibitor factor, CT-1 (cardiotrophin-1), CNTF (ciliary neurotrophic factor), OSM (oncostatin M), and IL-6 (interleukin-6). This profile encompasses a family of secreted cytokines that have pleiotropic effects on many cell types including hepatocytes, osteoclasts, neuronal cells and cardiac myocytes, and can be used to detect additional genes encoding such proteins. These molecules are all structurally related and share a common co-receptor gp130 which mediates intracellular signal transduction by cytoplasmic tyrosine 5
10 kinases such as src.

Novel proteins related to this family are also likely to be secreted, to activate gp130 and to function in the development of a variety of cell types. Thus new members of this family would be candidates to be developed as growth or survival factors for the cell types that they stimulate. For more details on this family of 15 cytokines, see Pennica *et al*, *Cytokine and Growth Factor Reviews* (1996) 7:81-91. U.S. Patent No. 5,420,247 discloses LIF receptor and fusion proteins. U.S. Patent No. 5,443,825 discloses human LIF.

Angiopoietin

20 Angiopoietin-1 is a secreted ligand of the TIE-2 tyrosine kinase; it functions as an angiogenic factor critical for normal vascular development. Angiopoietin-2 is a natural antagonist of angiopoietin-1 and thus functions as an anti-angiogenic factor. These two proteins are structurally similar and activate the same receptor. (Folkman and D'Amore, *Cell* (1996) 87:1153-1155, and Davis *et al.*, *Cell* (1996) 87:1161-1169.)

25 The angiopoietin molecules are composed of two domains, a coiled-coil region and a region related to fibrinogen. The fibrinogen domain is found in many molecules including ficolin and tesascin, and is well defined structurally with many members.

Receptor Protein-Tyrosine Kinases

30 Receptor Protein-Tyrosine Kinases or RPTKs are described in Lindberg, *Annu. Rev. Cell Biol.* (1994) 10:251-337.

Growth Factors: Epidermal Growth Factor (EGF) and Fibroblast Growth Factor (FGF)

For a discussion of growth factor superfamilies, see Growth Factors: A Practical Approach, Appendix A1 (Ed. McKay and Leigh, Oxford University Press, 5 NY, 1993) pp. 237-243.

The alignments (pretty box) for EGF and FGF are shown in Figures 1 and 2, respectively. U.S. Patent No. 4,444,760 discloses acidic brain fibroblast growth factor, which is active in the promotion of cell division and wound healing. U.S. Patent No. 5,439,818 discloses DNA encoding human recombinant basic fibroblast 10 growth factor, which is active in wound healing. U.S. Patent No. 5,604,293 discloses recombinant human basic fibroblast growth factor, which is useful for wound healing. U.S. Patent No. 5,410,832 discloses brain-derived and recombinant acidic fibroblast growth factor, which act as mitogens for mesoderm and neuroectoderm-derived cells in culture, and promote wound healing in soft tissue, cartilaginous tissue and 15 musculo-skeletal tissue. U.S. Patent No. 5,387,673 discloses biologically active fragments of FGF that retain activity.

Proteins of the TNF Family

A profile derived from the TNF family is created by aligning sequences of the 20 following TNF family members: nerve growth factor (NGF), lymphotoxin, Fas ligand, tumor necrosis factor (TNF), CD40 ligand, TRAIL, ox40 ligand, 4-1BB ligand, CD27 ligand, and CD30 ligand. The profile is designed to identify sequences of proteins that constitute new members or homologues of this family of proteins.

U.S. Patent No. 5,606,023 discloses mutant TNF proteins; U.S. Patent No. 25 5,597,899 and U.S. Patent No. 5,486,463 disclose TNF muteins; and U.S. Patent No. 5,652,353 discloses DNA encoding TNF α muteins.

Members of the TNF family of proteins have been show in vitro to multimerize, as described in Burrows *et al.*, *Biochem.* (1994) 33:12741 and Zhang *et al.*, *Mol. Cell. Biol.* (1995) 15:4851 and bind receptors as described in Browning *et al.*, 30 *J. Immunol.* (1994) 147:1230, Androlewicz *et al.*, *J. Biol. Chem.* (1992) 267:2542, and Crowe *et al.*, *Science* (1994) 264:707.

In vivo, TNFs proteolytically cleave a target protein as described in Kriegel *et al.*, *Cell* (1988) 53:45 and Mohler *et al.*, *Nature* (1994) 370:218 and demonstrate cell proliferation and differentiation activity. T-cell or thymocyte proliferation is assayed as described in Armitage *et al.*, *Eur. J. Immunol.* (1992) 22:447; Current Protocols in Immunology, ed. J.E. Coligan *et al.*, 3.1-3.19; Takai *et al.*, *J. Immunol.* (1986) 137:3494-3500, Bertagnoli *et al.*, *J. Immunol.* (1990) 145:1706-1712, Bertagnoli *et al.*, *J. Immunol.* (1991) 133:327-340, Bertagnoli *et al.*, *J. Immunol.* (1992) 149:3778-3783, and Bowman *et al.*, *J. Immunol.* (1994) 152:1756-1761. B cell proliferation and Ig secretion are assayed as described in Maliszewski, *J. Immunol.* (1990) 144:3028-3033, and Assays for B Cell Function: In vitro antibody production, Mond and Brunswick, Current Protocols in Immunol., Coligan Ed vol 1 pp 3.8.1-3.8.16, John Wiley and Sons, Toronto 1994, Kehrl *et al.*, *Science* (1987) 238:1144 and Boussiotis *et al.*, *PNAS USA* (1994) 91:7007.

Other in vivo activities include upregulation of cell surface antigens, 15 upregulation of costimulatory molecules, and cellular aggregation/adhesion as described in Barrett *et al.*, *J. Immunol.* (1991) 146:1722; Bjorck *et al.*, *Eur. J. Immunol.* (1993) 23:1771; Clark *et al.*, *Annu Rev. Immunol.* (1991) 9:97; Ranheim *et al.*, *J. Exp. Med.* (1994) 177:925; Yellin, *J. Immunol.* (1994) 153:666; and Gruss *et al.*, *Blood* (1994) 84:2305.

Proliferation and differentiation of hematopoietic and lymphopoietic cells has also been shown in vivo for TNFs, using assays for embryonic differentiation and hematopoiesis as described in Johansson *et al.*, *Cellular Biology* (1995) 15:141-151, Keller *et al.*, *Mol. Cell. Biol.* (1993) 13:473-486, McClanahan *et al.*, *Blood* (1993) 81:2903-2915 and using assays to detect stem cell survival and differentiation as 25 described in Culture of Hematopoietic Cells, Freshney *et al.* eds, pp 1-21, 23-29, 139-162, 163-179, and 265-268, Wiley-Liss, Inc., New York, NY, 1994, and Hirajama *et al.*, *PNAS USA* (1992) 89:5907-5911.

In vivo activities of TNFs also include lymphocyte survival and apoptosis, assayed as described in Darzynkiewicz *et al.*, *Cytometry* (1992) 13:795-808; Gorczca 30 *et al.*, *Leukemia* (1993) 7:659-670; Itoh *et al.*, *Cell* (1991) 66:233-243; Zacharduk, *J. Immunol.* (1990) 145:4037-4045; Zamai *et al.*, *Cytometry* (1993) 14:891-897; and Gorczyca *et al.*, *Int'l J. Oncol.* (1992) 1:639-648.

Some members of the TNF family are cleaved from the cell surface; others remain membrane bound. The three-dimensional structure of TNF is discussed in Sprang and Eck, Tumor Necrosis Factors; *supra*.

TNF proteins include a transmembrane domain. The protein is cleaved into a shorter soluble version, as described in Kriegler *et al.*, *Cell* (1988) 53:45-53, Perez *et al.*, *Cell* (1990) 63:251-258, and Shaw *et al.*, *Cell* (1986) 46:659-667. The transmembrane domain is between amino acid 46 and 77 and the cytoplasmic domain is between position 1 and 45 on the human form of TNF α . The 3-dimensional motifs of TNF include a sandwich of two pleated β sheets. Each sheet is composed of anti-parallel α strands. α Strands facing each other on opposite sites of the sandwich are connected by short polypeptide loops, as described in Van Ostade *et al.*, *Protein Engineering* (1994) 7(1):5-22, and Sprang *et al.*, Tumor Necrosis Factors; *supra*.

Residues of the TNF family proteins that are involved in the β sheet secondary structure have been identified as described in Van Ostade *et al.*, *Protein Engineering* (1994) 7(1):5-22, and Sprang *et al.*, Tumor Necrosis Factors; *supra*.

TNF receptors are disclosed in U.S. Patent No. 5,395,760. A profile derived from the TNF receptor family is created by aligning sequences of the TNF receptor family, including Apo1/Fas, TNFR I and II, death receptor3 (DR3), CD40, ox40, CD27, and CD30. Thus, the profile is designed to identify, from the nucleic acids of the invention, sequences of proteins that constitute new members or homologs of this family of proteins.

Tumor necrosis factor receptors exist in two forms in humans: p55 TNFR and p75 TNFR, both of which provide intracellular signals upon binding with a ligand. The extracellular domains of these receptor proteins are cysteine rich. The receptors can remain membrane bound, although some forms of the receptors are cleaved forming soluble receptors. The regulation, diagnostic, prognostic, and therapeutic value of soluble TNF receptors is discussed in Aderka, *Cytokine and Growth Factor Reviews*, (1996) 7(3):231-240.

30 PDGF Family

U.S. Patent No. 5,326,695 discloses platelet derived growth factor agonists; bioactive portions of PDGF-B are used as agonists. U.S. Patent No. 4,845,075

discloses biologically active B-chain homodimers, and also includes variants and derivatives of the PDGF-B chain. U.S. Patent No. 5,128,321 discloses PDGF analogs and methods of use. Proteins having the same bioactivity as PDGF are disclosed, including A and B chain proteins.

5

Kinase (Including MKK) Family

U.S. Patent No. 5,650,501 discloses serine/threonine kinase, associated with mitotic and meiotic cell division; the protein has a kinase domain in its N-terminal and 3 PEST regions in the C-terminus. U.S. Patent No. 5,605,825 discloses human 10 PAK65, a serine protein kinase.

The foregoing discussion provides a few examples of the protein profiles that can be compared with the nucleic acids of the invention. One skilled in the art can use these and other protein profiles to identify the genes that correlate with the nucleic acids.

15

IX. Determining the Function of the Encoded Expression Products

Ribozymes, antisense constructs, dominant negative mutants, and triplex formation can be used to determine function of the expression product of an nucleic acid-related gene.

20

A. Ribozymes

Trans-cleaving catalytic RNAs (ribozymes) are RNA molecules possessing endoribonuclease activity. Ribozymes are specifically designed for a particular target, and the target message must contain a specific nucleotide sequence. They are 25 engineered to cleave any RNA species site-specifically in the background of cellular RNA. The cleavage event renders the mRNA unstable and prevents protein expression. Importantly, ribozymes can be used to inhibit expression of a gene of unknown function for the purpose of determining its function in an in vitro or in vivo context, by detecting the phenotypic effect.

30

One commonly used ribozyme motif is the hammerhead, for which the substrate sequence requirements are minimal. Design of the hammerhead ribozyme is disclosed in Usman *et al.*, *Current Opin. Struct. Biol.* (1996) 6:527-533. Usman

- also discusses the therapeutic uses of ribozymes. Ribozymes can also be prepared and used as described in Long *et al.*, *FASEB J.* (1993) 7:25; Symons, *Ann. Rev. Biochem.* (1992) 61:641; Perrotta *et al.*, *Biochem.* (1992) 31:16-17; Ojwang *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1992) 89:10802-10806; and U.S. Patent No. 5,254,678.
- 5 Ribozyme cleavage of HIV-I RNA is described in U.S. Patent No. 5,144,019; methods of cleaving RNA using ribozymes is described in U.S. Patent No. 5,116,742; and methods for increasing the specificity of ribozymes are described in U.S. Patent No. 5,225,337 and Koizumi *et al.*, *Nucleic Acid Res.* (1989) 17:7059-7071. Preparation and use of ribozyme fragments in a hammerhead structure are also
- 10 described by Koizumi *et al.*, *Nucleic Acids Res.* (1989) 17:7059-7071. Preparation and use of ribozyme fragments in a hairpin structure are described by Chowrira and Burke, *Nucleic Acids Res.* (1992) 20:2835. Ribozymes can also be made by rolling transcription as described in Daubendiek and Kool, *Nat. Biotechnol.* (1997) 15(3):273-277.
- 15 The hybridizing region of the ribozyme may be modified or may be prepared as a branched structure as described in Horn and Urdea, *Nucleic Acids Res.* (1989) 17:6959-67. The basic structure of the ribozymes may also be chemically altered in ways familiar to those skilled in the art, and chemically synthesized ribozymes can be administered as synthetic oligonucleotide derivatives modified by monomeric units.
- 20 In a therapeutic context, liposome mediated delivery of ribozymes improves cellular uptake, as described in Birikh *et al.*, *Eur. J. Biochem.* (1997) 245:1-16.
- Using the nucleic acid sequences of the invention and methods known in the art, ribozymes are designed to specifically bind and cut the corresponding mRNA species. Ribozymes thus provide a means to inhibit the expression of any of the
- 25 proteins encoded by the disclosed nucleic acids or their full-length genes. The full-length gene need not be known in order to design and use specific inhibitory ribozymes. In the case of an nucleic acid or cDNA of unknown function, ribozymes corresponding to that nucleotide sequence can be tested in vitro for efficacy in cleaving the target transcript. Those ribozymes that effect cleavage in vitro are further
- 30 tested in vivo. The ribozyme can also be used to generate an animal model for a disease, as described in Birikh *et al.*, *Eur. J. Biochem.* (1997) 245:1-16. An effective ribozyme is used to determine the function of the gene of interest by blocking its

transcription and detecting a change in the cell. Where the gene is found to be a mediator in a disease, an effective ribozyme is designed and delivered in a gene therapy for blocking transcription and expression of the gene.

- Therapeutic and functional genomic applications of ribozymes proceed
- 5 beginning with knowledge of a portion of the coding sequence of the gene to be inhibited. Thus, for many genes, a partial nucleic acid sequence provides adequate sequence for constructing an effective ribozyme. A target cleavage site is selected in the target sequence, and a ribozyme is constructed based on the 5' and 3' nucleotide sequences that flank the cleavage site. Retroviral vectors are engineered to express
- 10 monomeric and multimeric hammerhead ribozymes targeting the mRNA of the target coding sequence. These monomeric and multimeric ribozymes are tested in vitro for an ability to cleave the target mRNA. A cell line is stably transduced with the retroviral vectors expressing the ribozymes, and the transduction is confirmed by Northern blot analysis and reverse-transcription polymerase chain reaction (RT-PCR).
- 15 The cells are screened for inactivation of the target mRNA by such indicators as reduction of expression of disease markers or reduction of the gene product of the target mRNA.

B. Antisense

- 20 Antisense nucleic acids are designed to specifically bind to RNA, resulting in the formation of RNA-DNA or RNA-RNA hybrids, with an arrest of DNA replication, reverse transcription or messenger RNA translation. Antisense polynucleotides based on a selected nucleic acid sequence can interfere with expression of the corresponding gene. Antisense polynucleotides are typically
- 25 generated within the cell by expression from antisense constructs that contain the antisense nucleic acid strand as the transcribed strand. Antisense nucleic acids will bind and/or interfere with the translation of nucleic acid-related mRNA. The expression products of control cells and cells treated with the antisense construct are compared to detect the protein product of the gene corresponding to the nucleic acid.
- 30 The protein is isolated and identified using routine biochemical methods.

One rationale for using antisense methods to determine the function of the gene corresponding to an nucleic acid is the biological activity of antisense

therapeutics. Antisense therapy for a variety of cancers is in clinical phase and has been discussed extensively in the literature. Reed reviewed antisense therapy directed at the Bcl-2 gene in tumors; gene transfer-mediated overexpression of Bcl-2 in tumor cell lines conferred resistance to many types of cancer drugs. (Reed, J.C., *N.C.I.* 5 (1997) 89:988-990). The potential for clinical development of antisense inhibitors of *ras* is discussed by Cowser, L.M., *Anti-Cancer Drug Design* (1997) 12:359-371. Additional important antisense targets include leukemia (Geurtz, A.M., *Anti-Cancer Drug Design* (1997) 12:341-358); human C-ref kinase (Monia, B.P., *Anti-Cancer Drug Design* (1997) 12:327-339); and protein kinase C (McGraw *et al.*, *Anti-Cancer Drug Design* (1997) 12:315-326).

Given the extensive background literature and clinical experience in antisense therapy, one skilled in the art can use selected nucleic acids of the invention as additional potential therapeutics. The choice of nucleic acid can be narrowed by first testing them for binding to "hot spot" regions of the genome of cancerous cells. If an 15 nucleic acid is identified as binding to a "hot spot", testing the nucleic acid as an antisense compound in the corresponding cancer cells clearly is warranted.

Ogunbiyi *et al.*, *Gastroenterology* (1997) 113(3):761-766 describe prognostic use of allelic loss in colon cancer; Barks *et al.*, *Genes, Chromosomes, and Cancer* (1997) 19(4):278-285 describe increased chromosome copy number detected by FISH 20 in malignant melanoma; Nishizake *et al.*, *Genes, Chromosomes, and Cancer* (1997) 19(4):267-272 describe genetic alterations in primary breast cancer and their metastases and direct comparison using modified comparative genome hybridization; and Elo *et al.*, *Cancer Research* (1997) 57(16):3356-3359 disclose that loss of heterozygosity at 16q24.1-q24.2 is significantly associated with metastatic and 25 aggressive behavior of prostate cancer.

C. Dominant Negative Mutations

As an alternative method for identifying function of the nucleic acid-related gene, dominant negative mutations are readily generated for corresponding proteins 30 that are active as homomultimers. A mutant polypeptide will interact with wild-type polypeptides (made from the other allele) and form a non-functional multimer. Thus, a mutation is in a substrate-binding domain, a catalytic domain, or a cellular

localization domain. Preferably, the mutant polypeptide will be overproduced. Point mutations are made that have such an effect. In addition, fusion of different polypeptides of various lengths to the terminus of a protein can yield dominant negative mutants. General strategies are available for making dominant negative 5 mutants. See Herskowitz, *Nature* (1987) 329:219-222. Such a technique can be used for creating a loss-of-function mutation, which is useful for determining the function of a protein.

D. Triplex Formation

10 Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene or its promoter using targeted homologous recombination. (E.g., see Smithies *et al.*, 1985, *Nature* 317:230-234; Thomas & Capecchi, 1987, *Cell* 51:503-512; Thompson *et al.*, 1989 *Cell* 5:313-321; each of which is incorporated by reference herein in its entirety). For example, a mutant, non-functional gene (or a 15 completely unrelated DNA sequence) flanked by DNA homologous to the endogenous gene (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express that gene *in vivo*. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the gene.

20 Alternatively, endogenous gene expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the target gene (i.e., the gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells in the body. (See generally, Helene, C. 1991, *Anticancer Drug Des.*, 6(6):569-84; Helene, C., et al., 1992, *Ann. N.Y. Accad. Sci.*, 660:27-36; and Maher, L.J., 1992, *Bioassays* 14(12):807-15).

25 Nucleic acid molecules to be used in triple helix formation for the inhibition of transcription are preferably single stranded and composed of deoxyribonucleotides. The base composition of these oligonucleotides should promote triple helix formation via Hoogsteen base-pairing rules, which generally require sizable stretches of either 30 purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide

base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, containing a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the 5 majority of the purine residues are located on a single strand of the targeted duplex, resulting in CGC triplets across the three strands in the triplex.

Alternatively, the potential sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-5' 10 manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizable stretch of either purines or pyrimidines to be present on one strand of a duplex.

Antisense RNA and DNA, ribozyme, and triple helix molecules of the invention may be prepared by any method known in the art for the synthesis of DNA 15 and RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by *in vitro* and *in vivo* transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated 20 into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

Moreover, various well known modifications to nucleic acid molecules may be 25 introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.

X. Diagnostic & Prognostic Assays and Drug Screening Methods

The present invention provides method for determining whether a subject is at risk for developing a disease or condition characterized by unwanted cell proliferation by detecting the disclosed biomarkers, i.e., the disclosed nucleic acid markers (SEQ ID Nos: 1-850) and/or polypeptide markers for colon cancer encoded thereby.

In clinical applications, human tissue samples can be screened for the presence and/or absence of the biomarkers identified herein. Such samples could consist of needle biopsy cores, surgical resection samples, lymph node tissue, or serum. For example, these methods include obtaining a biopsy, which is optionally fractionated by cryostat sectioning to enrich tumor cells to about 80% of the total cell population. In certain embodiments, nucleic acids extracted from these samples may be amplified using techniques well known in the art. The levels of selected markers detected would be compared with statistically valid groups of metastatic, non-metastatic malignant, benign, or normal colon tissue samples.

In one embodiment, the diagnostic method comprises determining whether a subject has an abnormal mRNA and/or protein level of the disclosed markers, such as by Northern blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), *in situ* hybridization, immunoprecipitation, Western blot hybridization, or immunohistochemistry. According to the method, cells are obtained from a subject and the levels of the disclosed biomarkers, protein or mRNA level, is determined and compared to the level of these markers in a healthy subject. An abnormal level of the biomarker polypeptide or mRNA levels is likely to be indicative of cancer such as colon cancer.

Accordingly, in one aspect, the invention provides probes and primers that are specific to the unique nucleic acid markers disclosed herein. Accordingly, the nucleic acid probes comprise a nucleotide sequence at least 12 nucleotides in length, preferably at least 15 nucleotides, more preferably, 25 nucleotides, and most preferably at least 40 nucleotides, and up to all or nearly all of the coding sequence which is complementary to a portion of the coding sequence of a marker nucleic acid sequence, which nucleic acid sequence is represented by SEQ ID Nos: 1-850 or a sequence complementary thereto.

In one embodiment, the method comprises using a nucleic acid probe to determine the presence of cancerous cells in a tissue from a patient. Specifically, the method comprises:

1. providing a nucleic acid probe comprising a nucleotide sequence at least 12 nucleotides in length, preferably at least 15 nucleotides, more preferably, 25 nucleotides, and most preferably at least 40 nucleotides, and up to all or nearly all of the coding sequence which is complementary to a portion of the coding sequence of a nucleic acid sequence represented by SEQ ID Nos: 1-850 or a sequence complementary thereto and is differentially expressed in tumors cells, such as colon cancer cells;
5. 2. obtaining a tissue sample from a patient potentially comprising cancerous cells;
10. 3. providing a second tissue sample containing cells substantially all of which are non-cancerous;
15. 4. contacting the nucleic acid probe under stringent conditions with RNA of each of said first and second tissue samples (e.g., in a Northern blot or in situ hybridization assay); and
20. 5. comparing (a) the amount of hybridization of the probe with RNA of the first tissue sample, with (b) the amount of hybridization of the probe with RNA of the second tissue sample;
25. wherein a statistically significant difference in the amount of hybridization with the RNA of the first tissue sample as compared to the amount of hybridization with the RNA of the second tissue sample is indicative of the presence of cancerous cells in the first tissue sample.

In one aspect, the method comprises in situ hybridization with a probe derived from a given marker nucleic acid sequence, which nucleic acid sequence is represented by SEQ ID Nos: 1-850 or a sequence complementary thereto. The method comprises contacting the labeled hybridization probe with a sample of a given

type of tissue potentially containing cancerous or precancerous cells as well as normal cells, and determining whether the probe labels some cells of the given tissue type to a degree significantly different (e.g., by at least a factor of two, or at least a factor of five, or at least a factor of twenty, or at least a factor of fifty) than the degree to which 5 it labels other cells of the same tissue type.

Also within the invention is a method of determining the phenotype of a test cell from a given human tissue, e.g., whether the cell is (a) normal, or (b) cancerous or precancerous, by contacting the mRNA of a test cell with a nucleic acid probe at least 12 nucleotides in length, preferably at least 15 nucleotides, more preferably at least 25 10 nucleotides, and most preferably at least 40 nucleotides, and up to all or nearly all of a sequence which is complementary to a portion of the coding sequence of a nucleic acid sequence represented by SEQ ID Nos: 1-850 or a sequence complementary thereto, and which is differentially expressed in tumor cells as compared to normal cells of the given tissue type; and determining the approximate amount of 15 hybridization of the probe to the mRNA, an amount of hybridization either more or less than that seen with the mRNA of a normal cell of that tissue type being indicative that the test cell is cancerous or precancerous.

Alternatively, the above diagnostic assays may be carried out using antibodies to detect the protein product encoded by the marker nucleic acid sequence, which 20 nucleic acid sequence is represented by SEQ ID Nos: 1-850 or a sequence complementary thereto. Accordingly, in one embodiment, the assay would include contacting the proteins of the test cell with an antibody specific for the gene product of a nucleic acid represented by SEQ ID Nos: 1-850 or a sequence complementary thereto, the marker nucleic acid being one which is expressed at a given control level 25 in normal cells of the same tissue type as the test cell, and determining the approximate amount of immunocomplex formation by the antibody and the proteins of the test cell, wherein a statistically significant difference in the amount of the immunocomplex formed with the proteins of a test cell as compared to a normal cell of the same tissue type is an indication that the test cell is cancerous or precancerous.

30 Another such method includes the steps of: providing an antibody specific for the gene product of a marker nucleic acid sequence represented by SEQ ID Nos 1-850, the gene product being present in cancerous tissue of a given tissue type (e.g.,

colon tissue) at a level more or less than the level of the gene product in noncancerous tissue of the same tissue type; obtaining from a patient a first sample of tissue of the given tissue type, which sample potentially includes cancerous cells; providing a second sample of tissue of the same tissue type (which may be from the same patient
5 or from a normal control, e.g. another individual or cultured cells), this second sample containing normal cells and essentially no cancerous cells; contacting the antibody with protein (which may be partially purified, in lysed but unfractionated cells, or in situ) of the first and second samples under conditions permitting immunocomplex formation between the antibody and the marker nucleic acid sequence product present
10 in the samples; and comparing (a) the amount of immunocomplex formation in the first sample, with (b) the amount of immunocomplex formation in the second sample, wherein a statistically significant difference in the amount of immunocomplex formation in the first sample less as compared to the amount of immunocomplex formation in the second sample is indicative of the presence of cancerous cells in the
15 first sample of tissue.

The subject invention further provides a method of determining whether a cell sample obtained from a subject possesses an abnormal amount of marker polypeptide which comprises (a) obtaining a cell sample from the subject, (b) quantitatively determining the amount of the marker polypeptide in the sample so obtained, and (c)
20 comparing the amount of the marker polypeptide so determined with a known standard, so as to thereby determine whether the cell sample obtained from the subject possesses an abnormal amount of the marker polypeptide. Such marker polypeptides may be detected by immunohistochemical assays, dot-blot assays, ELISA and the like.

25 Immunoassays are commonly used to quantitate the levels of proteins in cell samples, and many other immunoassay techniques are known in the art. The invention is not limited to a particular assay procedure, and therefore is intended to include both homogeneous and heterogeneous procedures. Exemplary immunoassays which can be conducted according to the invention include fluorescence polarization
30 immunoassay (FPIA), fluorescence immunoassay (FIA), enzyme immunoassay (EIA), nephelometric inhibition immunoassay (NIA), enzyme linked immunosorbent assay (ELISA), and radioimmunoassay (RIA). An indicator moiety, or label group, can be

attached to the subject antibodies and is selected so as to meet the needs of various uses of the method which are often dictated by the availability of assay equipment and compatible immunoassay procedures. General techniques to be used in performing the various immunoassays noted above are known to those of ordinary skill in the art.

5 In another embodiment, the level of the encoded product, i.e., the product encoded by SEQ ID Nos 1-850 or a sequence complementary thereto, in a biological fluid (e.g., blood or urine) of a patient may be determined as a way of monitoring the level of expression of the marker nucleic acid sequence in cells of that patient. Such a method would include the steps of obtaining a sample of a biological fluid from the
10 patient, contacting the sample (or proteins from the sample) with an antibody specific for a encoded marker polypeptide, and determining the amount of immune complex formation by the antibody, with the amount of immune complex formation being indicative of the level of the marker encoded product in the sample. This determination is particularly instructive when compared to the amount of immune
15 complex formation by the same antibody in a control sample taken from a normal individual or in one or more samples previously or subsequently obtained from the same person.

In another embodiment, the method can be used to determine the amount of marker polypeptide present in a cell, which in turn can be correlated with progression
20 of a hyperproliferative disorder, e.g., colon cancer. The level of the marker polypeptide can be used predictively to evaluate whether a sample of cells contains cells which are, or are predisposed towards becoming, transformed cells. Moreover, the subject method can be used to assess the phenotype of cells which are known to be transformed, the phenotyping results being useful in planning a particular therapeutic
25 regimen. For instance, very high levels of the marker polypeptide in sample cells is a powerful diagnostic and prognostic marker for a cancer, such as colon cancer. The observation of marker polypeptide level can be utilized in decisions regarding, e.g., the use of more aggressive therapies.

As set out above, one aspect of the present invention relates to diagnostic
30 assays for determining, in the context of cells isolated from a patient, if the level of a marker polypeptide is significantly reduced in the sample cells. The term "significantly reduced" refers to a cell phenotype wherein the cell possesses a

reduced cellular amount of the marker polypeptide relative to a normal cell of similar tissue origin. For example, a cell may have less than about 50%, 25%, 10%, or 5% of the marker polypeptide that a normal control cell. In particular, the assay evaluates the level of marker polypeptide in the test cells, and, preferably, compares the 5 measured level with marker polypeptide detected in at least one control cell, e.g., a normal cell and/or a transformed cell of known phenotype.

Of particular importance to the subject invention is the ability to quantitate the level of marker polypeptide as determined by the number of cells associated with a normal or abnormal marker polypeptide level. The number of cells with a particular 10 marker polypeptide phenotype may then be correlated with patient prognosis. In one embodiment of the invention, the marker polypeptide phenotype of the lesion is determined as a percentage of cells in a biopsy which are found to have abnormally high/low levels of the marker polypeptide. Such expression may be detected by immunohistochemical assays, dot-blot assays, ELISA and the like.

15 Where tissue samples are employed, immunohistochemical staining may be used to determine the number of cells having the marker polypeptide phenotype. For such staining, a multiblock of tissue is taken from the biopsy or other tissue sample and subjected to proteolytic hydrolysis, employing such agents as protease K or pepsin. In certain embodiments, it may be desirable to isolate a nuclear fraction from 20 the sample cells and detect the level of the marker polypeptide in the nuclear fraction.

The tissue samples are fixed by treatment with a reagent such as formalin, glutaraldehyde, methanol, or the like. The samples are then incubated with an antibody, preferably a monoclonal antibody, with binding specificity for the marker polypeptides. This antibody may be conjugated to a label for subsequent detection of 25 binding. Samples are incubated for a time sufficient for formation of the immuno-complexes. Binding of the antibody is then detected by virtue of a label conjugated to this antibody. Where the antibody is unlabeled, a second labeled antibody may be employed, e.g., which is specific for the isotype of the anti-marker polypeptide antibody. Examples of labels which may be employed include radionuclides, 30 fluorescers, chemiluminescers, enzymes and the like.

Where enzymes are employed, the substrate for the enzyme may be added to the samples to provide a colored or fluorescent product. Examples of suitable

enzymes for use in conjugates include horseradish peroxidase, alkaline phosphatase, malate dehydrogenase and the like. Where not commercially available, such antibody-enzyme conjugates are readily produced by techniques known to those skilled in the art.

5 In one embodiment, the assay is performed as a dot blot assay. The dot blot assay finds particular application where tissue samples are employed as it allows determination of the average amount of the marker polypeptide associated with a single cell by correlating the amount of marker polypeptide in a cell-free extract produced from a predetermined number of cells.

10 It is well established in the cancer literature that tumor cells of the same type (e.g., breast and/or colon tumor cells) may not show uniformly increased expression of individual oncogenes or uniformly decreased expression of individual tumor suppressor genes. There may also be varying levels of expression of a given marker gene even between cells of a given type of cancer, further emphasizing the need for
15 reliance on a battery of tests rather than a single test. Accordingly, in one aspect, the invention provides for a battery of tests utilizing a number of probes of the invention, in order to improve the reliability and/or accuracy of the diagnostic test.

In one embodiment, the present invention also provides a method wherein nucleic acid probes are immobilized on a DNA chip in an organized array.

20 Oligonucleotides can be bound to a solid support by a variety of processes, including lithography. For example a chip can hold up to 250,000 oligonucleotides (GeneChip, Affymetrix). These nucleic acid probes comprise a nucleotide sequence at least about 12 nucleotides in length, preferably at least about 15 nucleotides, more preferably at least about 25 nucleotides, and most preferably at least about 40 nucleotides, and up to
25 all or nearly all of a sequence which is complementary to a portion of the coding sequence of a marker nucleic acid sequence represented by SEQ ID Nos: 1-850 and is differentially expressed in tumor cells, such as colon cancer cells. The present invention provides significant advantages over the available tests for various cancers, such as colon cancer, because it increases the reliability of the test by providing an
30 array of nucleic acid markers on a single chip.

The method includes obtaining a biopsy, which is optionally fractionated by cryostat sectioning to enrich tumor cells to about 80% of the total cell population. The

DNA or RNA is then extracted, amplified, and analyzed with a DNA chip to determine the presence or absence of the marker nucleic acid sequences.

In one embodiment, the nucleic acid probes are spotted onto a substrate in a two-dimensional matrix or array. Samples of nucleic acids can be labeled and then 5 hybridized to the probes. Double-stranded nucleic acids, comprising the labeled sample nucleic acids bound to probe nucleic acids, can be detected once the unbound portion of the sample is washed away.

The probe nucleic acids can be spotted on substrates including glass, nitrocellulose, etc. The probes can be bound to the substrate by either covalent bonds 10 or by non-specific interactions, such as hydrophobic interactions. The sample nucleic acids can be labeled using radioactive labels, fluorophores, chromophores, etc.

Techniques for constructing arrays and methods of using these arrays are described in EP No. 0 799 897; PCT No. WO 97/29212; PCT No. WO 97/27317; EP 15 No. 0 785 280; PCT No. WO 97/02357; U.S. Pat. No. 5,593,839; U.S. Pat. No. 5,578,832; EP No. 0 728 520; U.S. Pat. No. 5,599,695; EP No. 0 721 016; U.S. Pat. No. 5,556,752; PCT No. WO 95/22058; and U.S. Pat. No. 5,631,734.

Further, arrays can be used to examine differential expression of genes and can be used to determine gene function. For example, arrays of the instant nucleic acid sequences can be used to determine if any of the nucleic acid sequences are 20 differentially expressed between normal cells and cancer cells, for example. High expression of a particular message in a cancer cell, which is not observed in a corresponding normal cell, can indicate a cancer specific protein.

In yet another embodiment, the invention contemplates using a panel of antibodies which are generated against the marker polypeptides of this invention, 25 which polypeptides are encoded by SEQ ID Nos 1-850. Such a panel of antibodies may be used as a reliable diagnostic probe for colon cancer. The assay of the present invention comprises contacting a biopsy sample containing cells, e.g., colon cells, with a panel of antibodies to one or more of the encoded products to determine the presence or absence of the marker polypeptides.

30 The diagnostic methods of the subject invention may also be employed as follow-up to treatment, e.g., quantitation of the level of marker polypeptides may be

indicative of the effectiveness of current or previously employed cancer therapies as well as the effect of these therapies upon patient prognosis.

Accordingly, the present invention makes available diagnostic assays and reagents for detecting gain and/or loss of marker polypeptides from a cell in order to 5 aid in the diagnosis and phenotyping of proliferative disorders arising from, for example, tumorigenic transformation of cells.

The diagnostic assays described above can be adapted to be used as prognostic assays, as well. Such an application takes advantage of the sensitivity of the assays of the invention to events which take place at characteristic stages in the progression of a tumor. For example, a given marker gene may be up- or downregulated at a very early stage, perhaps before the cell is irreversibly committed to developing into a malignancy, while another marker gene may be characteristically up or down regulated only at a much later stage. Such a method could involve the steps of contacting the mRNA of a test cell with a nucleic acid probe derived from a given 10 marker nucleic acid which is expressed at different characteristic levels in cancerous or precancerous cells at different stages of tumor progression, and determining the approximate amount of hybridization of the probe to the mRNA of the cell, such amount being an indication of the level of expression of the gene in the cell, and thus 15 an indication of the stage of tumor progression of the cell; alternatively, the assay can be carried out with an antibody specific for the gene product of the given marker 20 nucleic acid, contacted with the proteins of the test cell. A battery of such tests will disclose not only the existence and location of a tumor, but also will allow the clinician to select the mode of treatment most appropriate for the tumor, and to predict 25 the likelihood of success of that treatment.

The methods of the invention can also be used to follow the clinical course of a tumor. For example, the assay of the invention can be applied to a tissue sample from a patient; following treatment of the patient for the cancer, another tissue sample is taken and the test repeated. Successful treatment will result in either removal of all 30 cells which demonstrate differential expression characteristic of the cancerous or precancerous cells, or a substantial increase in expression of the gene in those cells, perhaps approaching or even surpassing normal levels.

In yet another embodiment, the invention provides methods for determining whether a subject is at risk for developing a disease, such as a predisposition to develop cancer, for example colon cancer, associated with an aberrant activity of any one of the polypeptides encoded by nucleic acids of SEQ ID Nos: 1-850, wherein the 5 aberrant activity of the polypeptide is characterized by detecting the presence or absence of a genetic lesion characterized by at least one of (i) an alteration affecting the integrity of a gene encoding a marker polypeptides, or (ii) the mis-expression of the encoding nucleic acid. To illustrate, such genetic lesions can be detected by ascertaining the existence of at least one of (i) a deletion of one or more nucleotides 10 from the nucleic acid sequence, (ii) an addition of one or more nucleotides to the nucleic acid sequence, (iii) a substitution of one or more nucleotides of the nucleic acid sequence, (iv) a gross chromosomal rearrangement of the nucleic acid sequence, (v) a gross alteration in the level of a messenger RNA transcript of the nucleic acid sequence, (vii) aberrant modification of the nucleic acid sequence, such as of the 15 methylation pattern of the genomic DNA, (vii) the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene, (viii) a non-wild type level of the marker polypeptide, (ix) allelic loss of the gene, and/or (x) inappropriate post-translational modification of the marker polypeptide.

The present invention provides assay techniques for detecting lesions in the 20 encoding nucleic acid sequence. These methods include, but are not limited to, methods involving sequence analysis, Southern blot hybridization, restriction enzyme site mapping, and methods involving detection of absence of nucleotide pairing between the nucleic acid to be analyzed and a probe.

Specific diseases or disorders, e.g., genetic diseases or disorders, are 25 associated with specific allelic variants of polymorphic regions of certain genes, which do not necessarily encode a mutated protein. Thus, the presence of a specific allelic variant of a polymorphic region of a gene in a subject can render the subject susceptible to developing a specific disease or disorder. Polymorphic regions in genes, can be identified, by determining the nucleotide sequence of genes in 30 populations of individuals. If a polymorphic region is identified, then the link with a specific disease can be determined by studying specific populations of individuals, e.g, individuals which developed a specific disease, such as colon cancer. A

polymorphic region can be located in any region of a gene, e.g., exons, in coding or non coding regions of exons, introns, and promoter region.

In an exemplary embodiment, there is provided a nucleic acid composition comprising a nucleic acid probe including a region of nucleotide sequence which is 5 capable of hybridizing to a sense or antisense sequence of a gene or naturally occurring mutants thereof, or 5' or 3' flanking sequences or intronic sequences naturally associated with the subject genes or naturally occurring mutants thereof. The nucleic acid of a cell is rendered accessible for hybridization, the probe is contacted with the nucleic acid of the sample, and the hybridization of the probe to the 10 sample nucleic acid is detected. Such techniques can be used to detect lesions or allelic variants at either the genomic or mRNA level, including deletions, substitutions, etc., as well as to determine mRNA transcript levels.

A preferred detection method is allele specific hybridization using probes overlapping the mutation or polymorphic site and having about 5, 10, 20, 25, or 30 15 nucleotides around the mutation or polymorphic region. In a preferred embodiment of the invention, several probes capable of hybridizing specifically to allelic variants are attached to a solid phase support, e.g., a "chip". Mutation detection analysis using these chips comprising oligonucleotides, also termed "DNA probe arrays" is described e.g., in Cronin et al. (1996) *Human Mutation* 7:244. In one embodiment, a chip 20 comprises all the allelic variants of at least one polymorphic region of a gene. The solid phase support is then contacted with a test nucleic acid and hybridization to the specific probes is detected. Accordingly, the identity of numerous allelic variants of one or more genes can be identified in a simple hybridization experiment.

In certain embodiments, detection of the lesion comprises utilizing the 25 probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligase chain reaction (LCR) (see, e.g., Landegran et al. (1988) *Science* 241:1077-1080; and Nakazawa et al. (1994) *PNAS* 91:360-364), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al. 30 (1995) *Nuc Acid Res* 23:675-682). In a merely illustrative embodiment, the method includes the steps of (i) collecting a sample of cells from a patient, (ii) isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, (iii)

contacting the nucleic acid sample with one or more primers which specifically hybridize to a nucleic acid sequence under conditions such that hybridization and amplification of the nucleic acid (if present) occurs, and (iv) detecting the presence or absence of an amplification product, or detecting the size of the amplification product
5 and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

Alternative amplification methods include: self sustained sequence replication (Guatelli, J.C. *et al.*, 1990, Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional
10 amplification system (Kwoh, D.Y. *et al.*, 1989, Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P.M. *et al.*, 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such
15 molecules are present in very low numbers.

In a preferred embodiment of the subject assay, mutations in, or allelic variants, of a gene from a sample cell are identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and
20 fragment length sizes are determined by gel electrophoresis. Moreover, the use of sequence specific ribozymes (see, for example, U.S. Patent No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

Another aspect of the invention is directed to the identification of agents
25 capable of modulating the differentiation and proliferation of cells characterized by aberrant proliferation. In this regard, the invention provides assays for determining compounds that modulate the expression of the marker nucleic acids (SEQ ID Nos: 1-850) and/or alter for example, inhibit the bioactivity of the encoded polypeptide.

Several in vivo methods can be used to identify compounds that modulate
30 expression of the marker nucleic acids (SEQ ID Nos: 1-850) and/or alter for example, inhibit the bioactivity of the encoded polypeptide.

Drug screening is performed by adding a test compound to a sample of cells, and monitoring the effect. A parallel sample which does not receive the test compound is also monitored as a control. The treated and untreated cells are then compared by any suitable phenotypic criteria, including but not limited to microscopic analysis, viability testing, ability to replicate, histological examination, the level of a particular RNA or polypeptide associated with the cells, the level of enzymatic activity expressed by the cells or cell lysates, and the ability of the cells to interact with other cells or compounds. Differences between treated and untreated cells indicates effects attributable to the test compound.

10 Desirable effects of a test compound include an effect on any phenotype that was conferred by the cancer-associated marker nucleic acid sequence. Examples include a test compound that limits the overabundance of mRNA, limits production of the encoded protein, or limits the functional effect of the protein. The effect of the test compound would be apparent when comparing results between treated and untreated
15 cells.

The invention thus also encompasses methods of screening for agents which inhibit expression of the nucleic acid markers (SEQ ID Nos: 1-850) in vitro, comprising exposing a cell or tissue in which the marker nucleic acid mRNA is detectable in cultured cells to an agent in order to determine whether the agent is
20 capable of inhibiting production of the mRNA; and determining the level of mRNA in the exposed cells or tissue, wherein a decrease in the level of the mRNA after exposure of the cell line to the agent is indicative of inhibition of the marker nucleic acid mRNA production.

Alternatively, the screening method may include in vitro screening of a cell or
25 tissue in which marker protein is detectable in cultured cells to an agent suspected of inhibiting production of the marker protein; and determining the level of the marker protein in the cells or tissue, wherein a decrease in the level of marker protein after exposure of the cells or tissue to the agent is indicative of inhibition of marker protein production.

30 The invention also encompasses in vivo methods of screening for agents which inhibit expression of the marker nucleic acids, comprising exposing a mammal having tumor cells in which marker mRNA or protein is detectable to an agent

suspected of inhibiting production of marker mRNA or protein; and determining the level of marker mRNA or protein in tumor cells of the exposed mammal. A decrease in the level of marker mRNA or protein after exposure of the mammal to the agent is indicative of inhibition of marker nucleic acid expression.

5 Accordingly, the invention provides a method comprising incubating a cell expressing the marker nucleic acids (SEQ ID Nos: 1-850) with a test compound and measuring the mRNA or protein level. The invention further provides a method for quantitatively determining the level of expression of the marker nucleic acids in a cell population, and a method for determining whether an agent is capable of increasing or
10 decreasing the level of expression of the marker nucleic acids in a cell population. The method for determining whether an agent is capable of increasing or decreasing the level of expression of the marker nucleic acids in a cell population comprises the steps of (a) preparing cell extracts from control and agent-treated cell populations, (b) isolating the marker polypeptides from the cell extracts, (c) quantifying (e.g., in
15 parallel) the amount of an immunocomplex formed between the marker polypeptide and an antibody specific to said polypeptide. The marker polypeptides of this invention may also be quantified by assaying for its bioactivity. Agents that induce increased the marker nucleic acid expression may be identified by their ability to increase the amount of immunocomplex formed in the treated cell as compared with
20 the amount of the immunocomplex formed in the control cell. In a similar manner, agents that decrease expression of the marker nucleic acid may be identified by their ability to decrease the amount of the immunocomplex formed in the treated cell extract as compared to the control cell.

25 mRNA levels can be determined by Northern blot hybridization. mRNA levels can also be determined by methods involving PCR. Other sensitive methods for measuring mRNA, which can be used in high throughput assays, e.g., a method using a DELFIA endpoint detection and quantification method, are described, e.g., in Webb and Hurskainen (1996) *Journal of Biomolecular Screening* 1:119. Marker protein levels can be determined by immunoprecipitations or immunohistochemistry using an
30 antibody that specifically recognizes the protein product encoded by SEQ ID Nos: 1-850.

Agents that are identified as active in the drug screening assay are candidates to be tested for their capacity to block cell proliferation activity. These agents would be useful for treating a disorder involving aberrant growth of cells, especially colon cells.

- 5 A variety of assay formats will suffice and, in light of the present disclosure, those not expressly described herein will nevertheless be comprehended by one of ordinary skill in the art. For instance, the assay can be generated in many different formats, and include assays based on cell-free systems, e.g., purified proteins or cell lysates, as well as cell-based assays which utilize intact cells.
- 10 In many drug screening programs which test libraries of compounds and natural extracts, high throughput assays are desirable in order to maximize the number of compounds surveyed in a given period of time. Assays of the present invention which are performed in cell-free systems, such as may be derived with purified or semi-purified proteins or with lysates, are often preferred as "primary" screens in that
- 15 they can be generated to permit rapid development and relatively easy detection of an alteration in a molecular target which is mediated by a test compound. Moreover, the effects of cellular toxicity and/or bioavailability of the test compound can be generally ignored in the *in vitro* system, the assay instead being focused primarily on the effect of the drug on the molecular target as may be manifest in an alteration of binding
- 20 affinity with other proteins or changes in enzymatic properties of the molecular target.

A. Use of Nucleic Acids as Probes in Mapping and in Tissue Profiling

Probes

- 25 Polynucleotide probes as described above, e.g., comprising at least 12 contiguous nucleotides selected from the nucleotide sequence of an nucleic acid as shown in SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, are used for a variety of purposes, including identification of human chromosomes and determining
- 30 transcription levels. Additional disclosure about preferred regions of the nucleic acid sequences is found in the accompanying tables.

- The nucleotide probes are labeled, for example, with a radioactive, fluorescent, biotinylated, or chemiluminescent label, and detected by well known methods appropriate for the particular label selected. Protocols for hybridizing nucleotide probes to preparations of metaphase chromosomes are also well known in the art. A 5 nucleotide probe will hybridize specifically to nucleotide sequences in the chromosome preparations which are complementary to the nucleotide sequence of the probe. A probe that hybridizes specifically to an nucleic acid should provide a detection signal at least 5-, 10-, or 20-fold higher than the background hybridization provided with other unrelated sequences.
- 10 In a non-limiting example, commercial programs are available for identifying regions of chromosomes commonly associated with disease, such as cancer. Nucleic acids of the invention can be used to probe these regions. For example, if, through profile searching, a nucleic acid is identified as corresponding to a gene encoding a kinase, its ability to bind to a cancer-related chromosomal region will suggest its role 15 as a kinase in one or more stages of tumor cell development/growth. Although some experimentation would be required to elucidate the role, the nucleic acid constitutes a new material for isolating a specific protein that has potential for developing a cancer diagnostic or therapeutic.
- Nucleotide probes are used to detect expression of a gene corresponding to the 20 nucleic acid. For example, in Northern blots, mRNA is separated electrophoretically and contacted with a probe. A probe is detected as hybridizing to an mRNA species of a particular size. The amount of hybridization is quantitated to determine relative amounts of expression, for example under a particular condition. Probes are also used to detect products of amplification by polymerase chain reaction. The products of the 25 reaction are hybridized to the probe and hybrids are detected. Probes are used for in situ hybridization to cells to detect expression. Probes can also be used in vivo for diagnostic detection of hybridizing sequences. Probes are typically labeled with a radioactive isotope. Other types of detectable labels may be used such as chromophores, fluorophores, and enzymes.
- 30 Expression of specific mRNA can vary in different cell types and can be tissue specific. This variation of mRNA levels in different cell types can be exploited with nucleic acid probe assays to determine tissue types. For example, PCR, branched

DNA probe assays, or blotting techniques utilizing nucleic acid probes substantially identical or complementary to nucleic acids of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, can determine the presence or absence of target cDNA or
5 mRNA.

Examples of a nucleotide hybridization assay are described in Urdea *et al.*, PCT WO92/02526 and Urdea *et al.*, U.S. Patent No. 5,124,246, both incorporated herein by reference. The references describe an example of a sandwich nucleotide hybridization assay.

- 10 Alternatively, the Polymerase Chain Reaction (PCR) is another means for detecting small amounts of target nucleic acids, as described in Mullis *et al.*, *Meth. Enzymol.* (1987) 155:335-350; U.S. Patent No. 4,683,195; and U.S. Patent No. 4,683,202, all incorporated herein by reference. Two primer polynucleotides nucleotides hybridize with the target nucleic acids and are used to prime the reaction.
15 The primers may be composed of sequence within or 3' and 5' to the polynucleotides of the Sequence Listing. Alternatively, if the primers are 3' and 5' to these polynucleotides, they need not hybridize to them or the complements. A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a large amount of target nucleic acids is
20 generated by the polymerase, it is detected by methods such as Southern blots. When using the Southern blot method, the labeled probe will hybridize to a polynucleotide of the Sequence Listing or complement.

- Furthermore, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook *et al.*, "Molecular Cloning: A Laboratory Manual"
25 (New York, Cold Spring Harbor Laboratory, 1989). mRNA or cDNA generated from mRNA using a polymerase enzyme can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labeled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled
30 probe are detected. Typically, the probe is labeled with radioactivity.

Mapping

Nucleic acids of the present invention are used to identify a chromosome on which the corresponding gene resides. Using fluorescence *in situ* hybridization (FISH) on normal metaphase spreads, comparative genomic hybridization allows total genome assessment of changes in relative copy number of DNA sequences. See 5 Schwartz and Samad, *Current Opinions in Biotechnology* (1994) 8:70-74; Kallioniemi *et al.*, *Seminars in Cancer Biology* (1993) 4:41-46; Valdes and Tagle, *Methods in Molecular Biology* (1997) 68:1, Boultood, ed., Human Press, Totowa, NJ.

Preparations of human metaphase chromosomes are prepared using standard 10 cytogenetic techniques from human primary tissues or cell lines. Nucleotide probes comprising at least 12 contiguous nucleotides selected from the nucleotide sequence of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, are used to identify the corresponding chromosome. The nucleotide probes are labeled, for example, with a 15 radioactive, fluorescent, biotinylated, or chemiluminescent label, and detected by well known methods appropriate for the particular label selected. Protocols for hybridizing nucleotide probes to preparations of metaphase chromosomes are also well known in the art. A nucleotide probe will hybridize specifically to nucleotide sequences in the chromosome preparations that are complementary to the nucleotide sequence of the 20 probe. A probe that hybridizes specifically to a target gene provides a detection signal at least 5-, 10-, or 20-fold higher than the background hybridization provided with unrelated coding sequences.

Nucleic acids are mapped to particular chromosomes using, for example, radiation hybrids or chromosome-specific hybrid panels. See Leach *et al.*, *Advances 25 in Genetics*, (1995) 33:63-99; Walter *et al.*, *Nature Genetics* (1994) 7:22-28; Walter and Goodfellow, *Trends in Genetics* (1992) 9:352. Panels for radiation hybrid mapping are available from Research Genetics, Inc., Huntsville, Alabama, USA. Databases for markers using various panels are available via the world wide web at http://shgc-www.stanford.edu; and other locations. The statistical program RHMAP 30 can be used to construct a map based on the data from radiation hybridization with a measure of the relative likelihood of one order versus another. RHMAP is available via the world wide web at http://www.sph.umich.edu/group/statgen/software.

Such mapping can be useful in identifying the function of the target gene by its proximity to other genes with known function. Function can also be assigned to the target gene when particular syndromes or diseases map to the same chromosome.

5 Tissue Profiling

The nucleic acids of the present invention can be used to determine the tissue type from which a given sample is derived. For example, a metastatic lesion is identified by its developmental organ or tissue source by identifying the expression of a particular marker of that organ or tissue. If a nucleic acid is expressed only in a specific tissue type, and a metastatic lesion is found to express that nucleic acid, then the developmental source of the lesion has been identified. Expression of a particular nucleic acid is assayed by detection of either the corresponding mRNA or the protein product. Immunological methods, such as antibody staining, are used to detect a particular protein product. Hybridization methods may be used to detect particular mRNA species, including but not limited to in situ hybridization and Northern blotting.

Use of Polymorphisms

A nucleic acid will be useful in forensics, genetic analysis, mapping, and diagnostic applications if the corresponding region of a gene is polymorphic in the human population. A particular polymorphic form of the nucleic acid may be used to either identify a sample as deriving from a suspect or rule out the possibility that the sample derives from the suspect. Any means for detecting a polymorphism in a gene are used, including but not limited to electrophoresis of protein polymorphic variants, differential sensitivity to restriction enzyme cleavage, and hybridization to an allele-specific probe.

B. Use of Nucleic Acids and Encoded Polypeptides to Raise Antibodies

Expression products of a nucleic acid, the corresponding mRNA or cDNA, or the corresponding complete gene are prepared and used for raising antibodies for experimental, diagnostic, and therapeutic purposes. For nucleic acids to which a corresponding gene has not been assigned, this provides an additional method of

identifying the corresponding gene. The nucleic acid or related cDNA is expressed as described above, and antibodies are prepared. These antibodies are specific to an epitope on the encoded polypeptide, and can precipitate or bind to the corresponding native protein in a cell or tissue preparation or in a cell-free extract of an in vitro expression system.

- 5 Immunogens for raising antibodies are prepared by mixing the polypeptides encoded by the nucleic acids of the present invention with adjuvants. Alternatively, polypeptides are made as fusion proteins to larger immunogenic proteins. Polypeptides are also covalently linked to other larger immunogenic proteins, such as 10 keyhole limpet hemocyanin. Immunogens are typically administered intradermally, subcutaneously, or intramuscularly. Immunogens are administered to experimental animals such as rabbits, sheep, and mice, to generate antibodies. Optionally, the animal spleen cells are isolated and fused with myeloma cells to form hybridomas which secrete monoclonal antibodies. Such methods are well known in the art.
- 15 According to another method known in the art, the nucleic acid is administered directly, such as by intramuscular injection, and expressed in vivo. The expressed protein generates a variety of protein-specific immune responses, including production of antibodies, comparable to administration of the protein.

Preparations of polyclonal and monoclonal antibodies specific for nucleic 20 acid-encoded proteins and polypeptides are made using standard methods known in the art. The antibodies specifically bind to epitopes present in the polypeptides encoded by a nucleic acid of SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto. In another embodiment, the antibodies specifically bind to epitopes present in a 25 polypeptide encoded by SEQ ID Nos. 1-850. Typically, at least about 6, 8, 10, or 12 contiguous amino acids are required to form an epitope. However, epitopes which involve non-contiguous amino acids may require more, for example, at least about 15, 25, or 50 amino acids. A short sequence of a nucleic acid may then be unsuitable for use as an epitope to raise antibodies for identifying the corresponding novel protein, 30 because of the potential for cross-reactivity with a known protein. However, the antibodies may be useful for other purposes, particularly if they identify common

structural features of a known protein and a novel polypeptide encoded by a nucleic acid of the invention.

Antibodies that specifically bind to human nucleic acid-encoded polypeptides should provide a detection signal at least about 5-, 10-, or 20-fold higher than a 5 detection signal provided with other proteins when used in Western blots or other immunochemical assays. Preferably, antibodies that specifically bind nucleic acid T-encoded polypeptides do not detect other proteins in immunochemical assays and can immunoprecipitate nucleic acid-encoded proteins from solution.

To test for the presence of serum antibodies to the nucleic acid-encoded 10 polypeptide in a human population, human antibodies are purified by methods well known in the art. Preferably, the antibodies are affinity purified by passing antiserum over a column to which an nucleic acid-encoded protein, polypeptide, or fusion protein is bound. The bound antibodies can then be eluted from the column, for example using a buffer with a high salt concentration.

15 In addition to the antibodies discussed above, genetically engineered antibody derivatives are made, such as single chain antibodies.

Antibodies may be made by using standard protocols known in the art (See, for example, Antibodies: A Laboratory Manual ed. by Harlow and Lane (Cold Spring Harbor Press: 1988)). A mammal, such as a mouse, hamster, or rabbit can be 20 immunized with an immunogenic form of the peptide (e.g., a mammalian polypeptide or an antigenic fragment which is capable of eliciting an antibody response, or a fusion protein as described above).

In one aspect, this invention includes monoclonal antibodies that show a subject polypeptide is highly expressed in colorectal tissue or tumor tissue, especially 25 colon cancer tissue or colon cancer-derived cell lines. Therefore, in one embodiment, this invention provides a diagnostic tool for the analysis of expression of a subject polypeptide in general, and in particular, as a diagnostic for colon cancer.

Techniques for conferring immunogenicity on a protein or peptide include conjugation to carriers or other techniques well known in the art. An immunogenic 30 portion of a protein can be administered in the presence of adjuvant. The progress of immunization can be monitored by detection of antibody titers in plasma or serum. Standard ELISA or other immunoassays can be used with the immunogen as antigen

to assess the levels of antibodies. In a preferred embodiment, the subject antibodies are immunospecific for antigenic determinants of a protein of a mammal, e.g., antigenic determinants of a protein encoded by one of SEQ ID Nos. 1-850 or closely related homologs (e.g., at least 90% identical, and more preferably at least 95% identical).

- Following immunization of an animal with an antigenic preparation of a polypeptide, antisera can be obtained and, if desired, polyclonal antibodies isolated from the serum. To produce monoclonal antibodies, antibody-producing cells (lymphocytes) can be harvested from an immunized animal and fused by standard somatic cell fusion procedures with immortalizing cells such as myeloma cells to yield hybridoma cells. Such techniques are well known in the art, and include, for example, the hybridoma technique (originally developed by Kohler and Milstein, (1975) *Nature*, 256: 495-497), the human B cell hybridoma technique (Kozbar *et al.*, (1983) *Immunology Today*, 4: 72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole *et al.*, (1985) *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc. pp. 77-96). Hybridoma cells can be screened immunochemically for production of antibodies specifically reactive with a polypeptide of the present invention and monoclonal antibodies isolated from a culture comprising such hybridoma cells.
- The term antibody as used herein is intended to include fragments thereof which are also specifically reactive with one of the subject polypeptides. Antibodies can be fragmented using conventional techniques and the fragments screened for utility in the same manner as described above for whole antibodies. For example, F(ab)₂ fragments can be generated by treating antibody with pepsin. The resulting F(ab)₂ fragment can be treated to reduce disulfide bridges to produce Fab fragments. The antibody of the present invention is further intended to include bispecific, single-chain, and chimeric and humanized molecules having affinity for a polypeptide conferred by at least one CDR region of the antibody. In preferred embodiments, the antibodies, the antibody further comprises a label attached thereto and able to be detected, (e.g., the label can be a radioisotope, fluorescent compound, chemiluminescent compound, enzyme, or enzyme co-factor).

Antibodies can be used, e.g., to monitor protein levels in an individual for determining, e.g., whether a subject has a disease or condition, such as colon cancer, associated with an aberrant protein level, or allowing determination of the efficacy of a given treatment regimen for an individual afflicted with such a disorder. The level of 5 polypeptides may be measured from cells in bodily fluid, such as in blood samples.

Another application of antibodies of the present invention is in the immunological screening of cDNA libraries constructed in expression vectors such as gt11, gt18-23, ZAP, and ORF8. Messenger libraries of this type, having coding sequences inserted in the correct reading frame and orientation, can produce fusion 10 proteins. For instance, gt11 will produce fusion proteins whose amino termini consist of β-galactosidase amino acid sequences and whose carboxyl termini consist of a foreign polypeptide. Antigenic epitopes of a protein, e.g., other orthologs of a particular protein or other paralogs from the same species, can then be detected with antibodies, as, for example, reacting nitrocellulose filters lifted from infected plates 15 with antibodies. Positive phage detected by this assay can then be isolated from the infected plate. Thus, the presence of homologs can be detected and cloned from other animals, as can alternate isoforms (including splicing variants) from humans.

In another embodiment, a panel of monoclonal antibodies may be used, wherein each of the epitope's involved functions are represented by a monoclonal 20 antibody. Loss or perturbation of binding of a monoclonal antibody in the panel would be indicative of a mutational attention of the protein and thus of the corresponding gene.

C. Differential Expression

The present invention also provides a method to identify abnormal or diseased 25 tissue in a human. For nucleic acids corresponding to profiles of protein families as described above, the choice of tissue may be dictated by the putative biological function. The expression of a gene corresponding to a specific nucleic acid is compared between a first tissue that is suspected of being diseased and a second, 30 normal tissue of the human. The normal tissue is any tissue of the human, especially those that express the target gene including, but not limited to, brain, thymus, testis,

heart, prostate, placenta, spleen, small intestine, skeletal muscle, pancreas, and the mucosal lining of the colon.

The tissue suspected of being abnormal or diseased can be derived from a different tissue type of the human, but preferably it is derived from the same tissue type; for example an intestinal polyp or other abnormal growth should be compared with normal intestinal tissue. A difference between the target gene, mRNA, or protein in the two tissues which are compared, for example in molecular weight, amino acid or nucleotide sequence, or relative abundance, indicates a change in the gene, or a gene which regulates it, in the tissue of the human that was suspected of being diseased.

The target genes in the two tissues are compared by any means known in the art. For example, the two genes are sequenced, and the sequence of the gene in the tissue suspected of being diseased is compared with the gene sequence in the normal tissue. The target genes, or portions thereof, in the two tissues are amplified, for example using nucleotide primers based on the nucleotide sequence shown in the Sequence Listing, using the polymerase chain reaction. The amplified genes or portions of genes are hybridized to nucleotide probes selected from a corresponding nucleotide sequence shown SEQ ID No. 1-850. A difference in the nucleotide sequence of the target gene in the tissue suspected of being diseased compared with the normal nucleotide sequence suggests a role of the nucleic acid-encoded proteins in the disease, and provides a lead for preparing a therapeutic agent. The nucleotide probes are labeled by a variety of methods, such as radiolabeling, biotinylation, or labeling with fluorescent or chemiluminescent tags, and detected by standard methods known in the art.

Alternatively, target mRNA in the two tissues is compared. PolyA⁺ RNA is isolated from the two tissues as is known in the art. For example, one of skill in the art can readily determine differences in the size or amount of target mRNA transcripts between the two tissues using Northern blots and nucleotide probes selected from the nucleotide sequence shown in the Sequence Listing. Increased or decreased expression of a target mRNA in a tissue sample suspected of being diseased, compared with the expression of the same target mRNA in a normal tissue, suggests

that the expressed protein has a role in the disease, and also provides a lead for preparing a therapeutic agent.

Any method for analyzing proteins is used to compare two nucleic acid-encoded proteins from matched samples. The sizes of the proteins in the two tissues
5 are compared, for example, using antibodies of the present invention to detect nucleic acid-encoded proteins in Western blots of protein extracts from the two tissues. Other changes, such as expression levels and subcellular localization, can also be detected immunologically, using antibodies to the corresponding protein. A higher or lower level of nucleic acid-encoded protein expression in a tissue suspected of being
10 diseased, compared with the same nucleic acid-encoded protein expression level in a normal tissue, is indicative that the expressed protein has a role in the disease, and provides another lead for preparing a therapeutic agent.

Similarly, comparison of gene sequences or of gene expression products, e.g., mRNA and protein, between a human tissue that is suspected of being diseased and a
15 normal tissue of a human, are used to follow disease progression or remission in the human. Such comparisons of genes, mRNA, or protein are made as described above.

For example, increased or decreased expression of the target gene in the tissue suspected of being neoplastic can indicate the presence of neoplastic cells in the tissue. The degree of increased expression of the target gene in the neoplastic tissue
20 relative to expression of the gene in normal tissue, or differences in the amount of increased expression of the target gene in the neoplastic tissue over time, is used to assess the progression of the neoplasia in that tissue or to monitor the response of the neoplastic tissue to a therapeutic protocol over time.

The expression pattern of any two cell types can be compared, such as low and
25 high metastatic tumor cell lines, or cells from tissue which have and have not been exposed to a therapeutic agent. A genetic predisposition to disease in a human is detected by comparing a target gene, mRNA, or protein in a fetal tissue with a normal target gene, mRNA, or protein. Fetal tissues that are used for this purpose include, but are not limited to, amniotic fluid, chorionic villi, blood, and the
30 blastomere of an in vitro-fertilized embryo. The comparable normal target gene is obtained from any tissue. The mRNA or protein is obtained from a normal tissue of a human in which the target gene is expressed. Differences such as alterations in the

nucleotide sequence or size of the fetal target gene or mRNA, or alterations in the molecular weight, amino acid sequence, or relative abundance of fetal target protein, can indicate a germline mutation in the target gene of the fetus, which indicates a genetic predisposition to disease.

5

D. Use of Nucleic Acids, and Encoded Polypeptides to Screen for Peptide Analogs and Antagonists

Polypeptides encoded by the instant nucleic acids, e.g., SEQ ID Nos. 1-850, preferably SEQ ID Nos. 1-383, even more preferably SEQ ID Nos. 1-127, or a sequence complementary thereto, and corresponding full length genes can be used to screen peptide libraries to identify binding partners, such as receptors, from among the encoded polypeptides.

A library of peptides may be synthesized following the methods disclosed in U.S. Pat. No. 5,010,175, and in PCT WO 91/17823. As described below in brief, one prepares a mixture of peptides, which is then screened to identify the peptides exhibiting the desired signal transduction and receptor binding activity. In the '175 method, a suitable peptide synthesis support (e.g., a resin) is coupled to a mixture of appropriately protected, activated amino acids. The concentration of each amino acid in the reaction mixture is balanced or adjusted in inverse proportion to its coupling reaction rate so that the product is an equimolar mixture of amino acids coupled to the starting resin. The bound amino acids are then deprotected, and reacted with another balanced amino acid mixture to form an equimolar mixture of all possible dipeptides. This process is repeated until a mixture of peptides of the desired length (e.g., hexamers) is formed. Note that one need not include all amino acids in each step: one may include only one or two amino acids in some steps (e.g., where it is known that a particular amino acid is essential in a given position), thus reducing the complexity of the mixture. After the synthesis of the peptide library is completed, the mixture of peptides is screened for binding to the selected polypeptide. The peptides are then tested for their ability to inhibit or enhance activity. Peptides exhibiting the desired activity are then isolated and sequenced.

The method described in WO 91/17823 is similar. However, instead of reacting the synthesis resin with a mixture of activated amino acids, the resin is

divided into twenty equal portions (or into a number of portions corresponding to the number of different amino acids to be added in that step), and each amino acid is coupled individually to its portion of resin. The resin portions are then combined, mixed, and again divided into a number of equal portions for reaction with the second 5 amino acid. In this manner, each reaction may be easily driven to completion.

Additionally, one may maintain separate "subpools" by treating portions in parallel, rather than combining all resins at each step. This simplifies the process of determining which peptides are responsible for any observed receptor binding or signal transduction activity.

10 In such cases, the subpools containing, e.g., 1-2,000 candidates each are exposed to one or more polypeptides of the invention. Each subpool that produces a positive result is then resynthesized as a group of smaller subpools (sub-subpools) containing, e.g., 20-100 candidates, and reassayed. Positive sub-subpools may be resynthesized as individual compounds, and assayed finally to determine the peptides 15 that exhibit a high binding constant. These peptides can be tested for their ability to inhibit or enhance the native activity. The methods described in WO 91/7823 and U.S. Patent No. 5,194,392 (herein incorporated by reference) enable the preparation of such pools and subpools by automated techniques in parallel, such that all synthesis and resynthesis may be performed in a matter of days.

20 Peptide agonists or antagonists are screened using any available method, such as signal transduction, antibody binding, receptor binding, mitogenic assays, chemotaxis assays, etc. The methods described herein are presently preferred. The assay conditions ideally should resemble the conditions under which the native activity is exhibited *in vivo*, that is, under physiologic pH, temperature, and ionic 25 strength. Suitable agonists or antagonists will exhibit strong inhibition or enhancement of the native activity at concentrations that do not cause toxic side effects in the subject. Agonists or antagonists that compete for binding to the native polypeptide may require concentrations equal to or greater than the native concentration, while inhibitors capable of binding irreversibly to the polypeptide may 30 be added in concentrations on the order of the native concentration.

The end results of such screening and experimentation will be at least one novel polypeptide binding partner, such as a receptor, encoded by a nucleic acid of the

invention, and at least one peptide agonist or antagonist of the novel binding partner. Such agonists and antagonists can be used to modulate, enhance, or inhibit receptor function in cells to which the receptor is native, or in cells that possess the receptor as a result of genetic engineering. Further, if the novel receptor shares biologically important characteristics with a known receptor, information about agonist/antagonist binding may help in developing improved agonists/antagonists of the known receptor.

E. Pharmaceutical Compositions and Therapeutic Uses

10 Pharmaceutical compositions can comprise polypeptides, antibodies, or polynucleotides of the claimed invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or 15 to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics 20 selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgment of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in 25 the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not 30 itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins,

polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral
5 acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in *Remington's Pharmaceutical Sciences* (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain
10 liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared.
15 Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

Once formulated, the nucleic acid compositions of the invention can be (1) administered directly to the subject; (2) delivered ex vivo, to cells derived from the
20 subject; or (3) delivered in vitro for expression of recombinant proteins.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly, or delivered to the interstitial space of a tissue. The compositions can also be administered into a tumor or lesion. Other modes of administration include oral and
25 pulmonary administration, suppositories, and transdermal applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in e.g., International Publication No. WO
30 93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoietic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct 5 microinjection of the DNA into nuclei, all well known in the art.

Once a subject gene has been found to correlate with a proliferative disorder, such as neoplasia, dysplasia, and hyperplasia, the disorder may be amenable to treatment by administration of a therapeutic agent based on the nucleic acid or corresponding polypeptide.

10 Preparation of antisense polypeptides is discussed above. Neoplasias that are treated with the antisense composition include, but are not limited to, cervical cancers, melanomas, colorectal adenocarcinomas, Wilms' tumor, retinoblastoma, sarcomas, myosarcomas, lung carcinomas, leukemias, such as chronic myelogenous leukemia, promyelocytic leukemia, monocytic leukemia, and myeloid leukemia, and
15 lymphomas, such as histiocytic lymphoma. Proliferative disorders that are treated with the therapeutic composition include disorders such as anhydric hereditary ectodermal dysplasia, congenital alveolar dysplasia, epithelial dysplasia of the cervix, fibrous dysplasia of bone, and mammary dysplasia. Hyperplasias, for example, endometrial, adrenal, breast, prostate, or thyroid hyperplasias or
20 pseudoepitheliomatous hyperplasia of the skin, are treated with antisense therapeutic compositions. Even in disorders in which mutations in the corresponding gene are not implicated, downregulation or inhibition of nucleic acid-related gene expression can have therapeutic application. For example, decreasing nucleic acid-related gene expression can help to suppress tumors in which enhanced expression of the gene is
25 implicated.

Both the dose of the antisense composition and the means of administration are determined based on the specific qualities of the therapeutic composition, the condition, age, and weight of the patient, the progression of the disease, and other relevant factors. Administration of the therapeutic antisense agents of the invention 30 includes local or systemic administration, including injection, oral administration, particle gun or catheterized administration, and topical administration. Preferably, the therapeutic antisense composition contains an expression construct comprising a

promoter and a polynucleotide segment of at least about 12, 22, 25, 30, or 35 contiguous nucleotides of the antisense strand of a nucleic acid. Within the expression construct, the polynucleotide segment is located downstream from the promoter, and transcription of the polynucleotide segment initiates at the promoter.

5 Various methods are used to administer the therapeutic composition directly to a specific site in the body. For example, a small metastatic lesion is located and the therapeutic composition injected several times in several different locations within the body of tumor. Alternatively, arteries which serve a tumor are identified, and the therapeutic composition injected into such an artery, in order to deliver the
10 composition directly into the tumor. A tumor that has a necrotic center is aspirated and the composition injected directly into the now empty center of the tumor. The antisense composition is directly administered to the surface of the tumor, for example, by topical application of the composition. X-ray imaging is used to assist in certain of the above delivery methods.

15 Receptor-mediated targeted delivery of therapeutic compositions containing an antisense polynucleotide, subgenomic polynucleotides, or antibodies to specific tissues is also used. Receptor-mediated DNA delivery techniques are described in, for example, Findeis *et al.*, *Trends in Biotechnol.* (1993) 11:202-205; Chiou *et al.*, (1994) Gene Therapeutics: Methods And Applications Of Direct Gene Transfer (J.A. Wolff, ed.); Wu & Wu, *J. Biol. Chem.* (1988) 263:621-24; Wu *et al.*, *J. Biol. Chem.* (1994) 269:542-46; Zenke *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1990) 87:3655-59; Wu *et al.*, *J. Biol. Chem.* (1991) 266:338-42. Preferably, receptor-mediated targeted delivery of therapeutic compositions containing antibodies of the invention is used to deliver the antibodies to specific tissue.

20 Therapeutic compositions containing antisense subgenomic polynucleotides are administered in a range of about 100 ng to about 200 mg of DNA for local administration in a gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 1 mg to about 2 mg, about 5 mg to about 500 mg, and about 20 mg to about 100 mg of DNA can also be used during a gene therapy protocol. Factors
25 such as method of action and efficacy of transformation and expression are considerations which will affect the dosage required for ultimate efficacy of the antisense subgenomic nucleic acids. Where greater expression is desired over a larger

area of tissue, larger amounts of antisense subgenomic nucleic acids or the same amounts readministered in a successive protocol of administrations, or several administrations to different adjacent or close tissue portions of, for example, a tumor site, may be required to effect a positive therapeutic outcome. In all cases, routine 5 experimentation in clinical trials will determine specific ranges for optimal therapeutic effect. A more complete description of gene therapy vectors, especially retroviral vectors, is contained in U.S. Serial No. 08/869,309, which is expressly incorporated herein, and in section F below.

For genes encoding polypeptides or proteins with anti-inflammatory activity, 10 suitable use, doses, and administration are described in U.S. Patent No. 5,654,173, incorporated herein by reference. Therapeutic agents also include antibodies to proteins and polypeptides encoded by the subject nucleic acids, as described in U.S. Patent No. 5,654,173.

15 F. Gene Therapy

The therapeutic nucleic acids of the present invention may be utilized in gene delivery vehicles. The gene delivery vehicle may be of viral or non-viral origin (see generally, Jolly, *Cancer Gene Therapy* (1994) 1:51-64; Kimura, *Human Gene Therapy* (1994) 5:845-852; Connelly, *Human Gene Therapy* (1995) 1:185-193; and 20 Kaplitt, *Nature Genetics* (1994) 6:148-153). Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches. Expression of such coding sequences can be induced using endogenous mammalian or heterologous promoters. Expression of the coding 25 sequence can be either constitutive or regulated.

The present invention can employ recombinant retroviruses which are constructed to carry or express a selected nucleic acid molecule of interest. Retrovirus vectors that can be employed include those described in EP 0 415 731; WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; U.S. Patent No. 5, 219,740; WO 30 93/11230; WO 93/10218; Vile and Hart, *Cancer Res.* (1993) 53:3860-3864; Vile and Hart, *Cancer Res.* (1993) 53:962-967; Ram et al., *Cancer Res.* (1993) 53:83-88; Takamiya et al., *J. Neurosci. Res.* (1992) 33:493-503; Baba et al., *J. Neurosurg.*

(1993) 79:729-735; U.S. Patent no. 4,777,127; GB Patent No. 2,200,651; and EP 0 345 242. Preferred recombinant retroviruses include those described in WO 91/02805.

Packaging cell lines suitable for use with the above-described retroviral vector constructs may be readily prepared (see PCT publications WO 95/30763 and WO 92/05266), and used to create producer cell lines (also termed vector cell lines) for the production of recombinant vector particles. Within particularly preferred embodiments of the invention, packaging cell lines are made from human (such as HT1080 cells) or mink parent cell lines, thereby allowing production of recombinant retroviruses that can survive inactivation in human serum.

The present invention also employs alphavirus-based vectors that can function as gene delivery vehicles. Such vectors can be constructed from a wide variety of alphaviruses, including, for example, Sindbis virus vectors, Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River virus (ATCC VR-373; ATCC VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250; ATCC VR 1249; ATCC VR-532). Representative examples of such vector systems include those described in U.S. Patent Nos. 5,091,309; 5,217,879; and 5,185,440; and PCT Publication Nos. WO 92/10578; WO 94/21792; WO 95/27069; WO 95/27044; and WO 95/07994.

Gene delivery vehicles of the present invention can also employ parvovirus such as adeno-associated virus (AAV) vectors. Representative examples include the AAV vectors disclosed by Srivastava in WO 93/09239, Samulski et al., *J. Vir.* (1989) 63:3822-3828; Mendelson et al., *Virol.* (1988) 166:154-165; and Flotte et al., *PNAS* (1993) 90:10613-10617.

Representative examples of adenoviral vectors include those described by Berkner, *Biotechniques* (1988) 6:616-627; Rosenfeld et al., *Science* (1991) 252:431-434; WO 93/19191; Kolls et al., *PNAS* (1994) 91:215-219; Kass-Eisler et al., *PNAS* (1993) 90:11498-11502; Guzman et al., *Circulation* (1993) 88:2838-2848; Guzman et al., *Cir. Res.* (1993) 73:1202-1207; Zabner et al., *Cell* (1993) 75:207-216; Li et al., *Hum. Gene Ther.* (1993) 4:403-409; Cailaud et al., *Eur. J. Neurosci.* (1993) 5:1287-1291; Vincent et al., *Nat. Genet.* (1993) 5:130-134; Jaffe et al., *Nat. Genet.* (1992) 1:372-378; and Levrero et al., *Gene* (1991) 101:195-202. Exemplary adenoviral gene

therapy vectors employable in this invention also include those described in WO 94/12649, WO 93/03769; WO 93/19191; WO 94/28938; WO 95/11984 and WO 95/00655. Administration of DNA linked to killed adenovirus as described in Curiel, *Hum. Gene Ther.* (1992) 3:147-154 may be employed.

- 5 Other gene delivery vehicles and methods may be employed, including polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example Curiel, *Hum. Gene Ther.* (1992) 3:147-154; ligand linked DNA, for example see Wu, *J. Biol. Chem.* (1989) 264:16985-16987; eukaryotic cell delivery vehicles cells, for example see U.S. Serial No. 08/240,030, filed May 9, 1994, and U.S. Serial 10 No. 08/404,796; deposition of photopolymerized hydrogel materials; hand-held gene transfer particle gun, as described in U.S. Patent No. 5,149,655; ionizing radiation as described in U.S. Patent No. 5,206,152 and in WO92/11033; nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip, *Mol. Cell Biol.* (1994) 14:2411-2418, and in Woffendin, *Proc. Natl. Acad. Sci.* 15 (1994) 91:1581-1585.

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S. Patent No. 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads.

- 20 The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm. Liposomes that can act as gene delivery vehicles are described in U.S. Patent No. 5,422,120, PCT Nos. WO 95/13796, WO 94/23697, and WO 91/14445, and EP No. 0 524 968.

- 25 Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin *et al.*, *Proc. Natl. Acad. Sci. USA* (1994) 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery 30 of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. Patent No. 5,149,655; use of ionizing radiation for activating

transferred gene, as described in U.S. Patent No. 5,206,152 and PCT No. WO 92/11033.

G. Transgenic Animals

5 One aspect of the present invention relates to transgenic non-human animals having germline and/or somatic cells in which the biological activity of one or more genes are altered by a chromosomally incorporated transgene.

10 In a preferred embodiment, the transgene encodes a mutant protein, such as dominant negative protein which antagonizes at least a portion of the biological function of a wild-type protein.

Yet another preferred transgenic animal includes a transgene encoding an antisense transcript which, when transcribed from the transgene, hybridizes with a gene or a mRNA transcript thereof, and inhibits expression of the gene.

15 In one embodiment, the present invention provides a desired non-human animal or an animal (including human) cell which contains a predefined, specific and desired alteration rendering the non-human animal or animal cell predisposed to cancer. Specifically, the invention pertains to a genetically altered non-human animal (most preferably, a mouse), or a cell (either non-human animal or human) in culture, that is defective in at least one of two alleles of a tumor-suppressor gene. The
20 inactivation of at least one of these tumor suppressor alleles results in an animal with a higher susceptibility to tumor induction or other proliferative or differentiative disorders, or disorders marked by aberrant signal transduction, e.g., from a cytokine or growth factor. A genetically altered mouse of this type is able to serve as a useful model for hereditary cancers and as a test animal for carcinogen studies. The
25 invention additionally pertains to the use of such non-human animals or animal cells, and their progeny in research and medicine.

Furthermore, it is contemplated that cells of the transgenic animals of the present invention can include other transgenes, e.g., which alter the biological activity of a second tumor suppressor gene or an oncogene. For instance, the second
30 transgene can functionally disrupt the biological activity of a second tumor suppressor gene, such as p53, p73, DCC, p21^{cip1}, p27^{kip1}, Rb, Mad or E2F. Alternatively, the second transgene can cause overexpression or loss of regulation of an oncogene, such

as ras, myc, a cdc25 phosphatase, Bcl-2, Bcl-6, a transforming growth factor, neu, int-3, polyoma virus middle T antigen, SV40 large T antigen, a papillomaviral E6 protein, a papillomaviral E7 protein, CDK4, or cyclin D1.

A preferred transgenic non-human animal of the present invention has
5 germline and/or somatic cells in which one or more alleles of a gene are disrupted by a chromosomally incorporated transgene, wherein the transgene includes a marker sequence providing a detectable signal for identifying the presence of the transgene in cells of the transgenic animal, and replaces at least a portion of the gene or is inserted into the gene or disrupts expression of a wild-type protein.

10 Still another aspect of the present invention relates to methods for generating non-human animals and stem cells having a functionally disrupted endogenous gene. In a preferred embodiment, the method comprises the steps of:

- (i) constructing a transgene construct including (a) a recombination region having at least a portion of the gene, which recombination region directs 15 recombination of the transgene with the gene, and (b) a marker sequence which provides a detectable signal for identifying the presence of the transgene in a cell;
- (ii) transferring the transgene into stem cells of a non-human animal;
- (iii) selecting stem cells having a correctly targeted homologous recombination 20 between the transgene and the gene;
- (iv) transferring cells identified in step (iii) into a non-human blastocyst and implanting the resulting chimeric blastocyst into a non-human female; and
- (v) collecting offspring harboring an endogenous gene allele having the correctly targeted recombination.

25 Yet another aspect of the invention provides a method for evaluating the carcinogenic potential of an agent by (i) contacting a transgenic animal of the present invention with a test agent, and (ii) comparing the number of transformed cells in a sample from the treated animal with the number of transformed cells in a sample from an untreated transgenic animal or transgenic animal treated with a control agent. The 30 difference in the number of transformed cells in the treated animal, relative to the number of transformed cells in the absence of treatment with a control agent, indicates the carcinogenic potential of the test compound.

Another aspect of the invention provides a method of evaluating an anti-proliferative activity of a test compound. In preferred embodiments, the method includes contacting a transgenic animal of the present invention, or a sample of cells from such animal, with a test agent, and determining the number of transformed cells 5 in a specimen from the transgenic animal or in the sample of cells. A statistically significant decrease in the number of transformed cells, relative to the number of transformed cells in the absence of the test agent, indicates the test compound is a potential anti-proliferative agent.

The practice of the present invention will employ, unless otherwise indicated, 10 conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, *Molecular Cloning A Laboratory Manual*, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press:1989); *DNA Cloning*, 15 Volumes I and II (D. N. Glover ed., 1985); *Oligonucleotide Synthesis* (M. J. Gait ed., 1984); Mullis *et al.* U.S. Patent No. 4,683,195; *Nucleic Acid Hybridization* (B. D. Hames & S. J. Higgins eds. 1984); *Transcription And Translation* (B. D. Hames & S. J. Higgins eds. 1984); *Culture Of Animal Cells* (R. I. Freshney, Alan R. Liss, Inc., 1987); *Immobilized Cells And Enzymes* (IRL Press, 1986); B. Perbal, *A Practical 20 Guide To Molecular Cloning* (1984); the treatise, *Methods In Enzymology* (Academic Press, Inc., N.Y.); *Gene Transfer Vectors For Mammalian Cells* (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); *Methods In Enzymology*, Vols. 154 and 155 (Wu *et al.* eds.), *Immunochemical Methods In Cell And Molecular Biology* (Mayer and Walker, eds., Academic Press, London, 1987); *Handbook Of 25 Experimental Immunology*, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); *Manipulating the Mouse Embryo*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

As mentioned above, the sequences described herein are believed to have particular utility in regards to colon cancer. However, they may also be useful with 30 other types of cancers and other disease states.

The present invention will now be illustrated by reference to the following examples which set forth particularly advantageous embodiments. However, it should

be noted that these embodiments are illustrative and are not to be construed as restricting the invention in any way.

XI. Examples

5 A. Identification of differentially expressed sequences in the SW480 library

Description of the SW480 library

SEQ ID NO 1-850 were derived from the SW480 library. The SW480 library is a normalized, subtracted cDNA library that was generated from the RNA derived
10 from colon cancer cell line SW480 and normal human colon tissue. Human colorectal adenocarcinoma (cancer) cell line SW480; ATCC #CCL228 (Leibovitz et al., Cancer Research 36:4562-4569, 1976) was used to generate double-stranded cDNA that was subsequently used as the tester sample for the subtraction experiment. Poly A⁺ RNA from normal human colon tissue (purchased from OriGene Technologies, Inc.
15 Rockville, MD) was used to generate double-stranded cDNA that was used as the driver sample for the subtraction experiment.

The growth conditions of the driver and tester sources in this library were different as SW480 is a rapidly growing cell line and may have higher cellular metabolism. Therefore
20 some of the differential expression in this library might be due to non-relevant growth effects of the two sources of tissue.

Construction of the SW480 library

Double-stranded cDNA was generated using the Clontech SMART PCR cDNA
25 Synthesis Kit (purchased from Clontech Laboratories Inc, Palo Alto, CA) following the manufacturer's instructions. Subtraction hybridization steps were performed in accordance with the manufacturer's instructions for the Clontech PCR-Select kit (purchased from Clontech Laboratories Inc, Palo Alto, CA). The subtracted cDNAs were then directly inserted into a T/A cloning vector (TOPO TA Cloning Kit, Invitrogen Corporation, Carlsbad, CA)
30 according to manufacturer's instructions, transformed into *E. coli*, and plated onto LB-amp plates, containing X-gal and IPTG. 1248 bacterial colonies were picked, transferred to LB-

amp broth and propagated. Plasmids were isolated using column chromatography (QIAprep 96 Turbo Miniprep Kits, Qiagen Corporation, Valencia, CA) on the QIAGEN Biorobot 9600.

Initial validation of differential expression

5

The inserts from subtracted clones were amplified by PCR and 10ul of the PCR reaction product was run on a 2.0% agarose gel for 2 hr at 100 volts. The gel was blotted onto a nylon membrane according to standard methods and hybridized as follows: 50 ng aliquots of the RSA1 cut SW480 and normal colon cDNA libraries were labeled with [α -³²P] dCTP by 10 Prime-It RmT Random Primer labeling kit (Stratagene, La Jolla, CA). Nylon membranes containing the PCR amplified DNA from the SW480 library clones were hybridized to the labeled probes at 4×10^6 cpm/ml in Express hybridization buffer (Clonetech) at 68°C for approximately 16 hours. The membranes were subjected to stringent washes (0.1 X SSC; 0.1% SDS) done at 68°C and were then exposed to phosphorimager screens. The screens were 15 analyzed using Molecular Dynamics ImageQuant software. Clones that exhibited a stronger hybridization signal with the SW480 probe relative to the normal colon probe were deemed to be differentially expressed.

Validation of differential expression in colon cancer

20

To validate that the differentially expressed sequences found in this library were specific to colon cancer, the clones were screened with cDNAs prepared from a colon cancer specific library, Delaware (DE), and a normal tissue specific library Maryland (MD).

25

The DE library is specific for sequences expressed in colon cancer [proximal and distal Dukes' B, microsatellite instability negative (MSI-)] but not expressed in normal tissues, including colon. This colon cancer tissue specific cDNA library, was made using pooled colon cancer cDNA as tester (tumor tissue cDNA pooled from eight patients with either proximal stage B MSI- or distal stage B MSI- cancers). The driver cDNA consisted a combination of cDNAs made from 50% normal colon tissue and a pool of peripheral blood 30 leukocytes (PBL), and normal liver, spleen, lung, kidney, heart, small intestine, skeletal muscle, and prostate tissue cDNAs as the remaining 50% of the driver.

The MD library is specific for sequences expressed in normal tissue, but not expressed in proximal and distal Dukes' B, MSI- colon cancers. The tester cDNA in this case was made up of 50% normal colon tissue cDNA while the other 50% was made up of PBL, liver, spleen, lung, kidney, heart, small intestine, skeletal muscle, and prostate tissue cDNAs. The 5 driver for this library was generated from pools of proximal stage B, MSI- and distal stage B, MSI tumor tissue cDNAs obtained from eight cancer patients.

SW 480 clones that hybridized with the DE probe, but hybridized to a lesser degree (or not at all) to the MD probe were determined to be differentially expressed. This confirmation of differential expression is additional evidence that the up 10 regulation of the individual clones is related to colon cancer.

Sequencing and analysis of differentially expressed clones

The nucleotide sequence of the inserts from clones shown to be differentially 15 expressed was determined by single-pass sequencing from either the T7 or M13 promoter sites using fluorescently labeled dideoxynucleotides via the Sanger sequencing method. Sequences were analyzed according to methods described in the text (XI., Examples; B. Results of Public Database Search).

Each nucleic acid represents sequence from at least a partial mRNA transcript. 20 The nucleic acids of the invention were assigned a sequence identification number (see attachments). The DNA sequences are provided in the attachments containing the sequences.

Of the 1248 colonies examined, 826 individual clones were found to be differentially expressed using the SW480 and normal colon probes. Of these, 681 25 were found to be differentially expressed using the DE and MD tissue probes. 145 clones that previously showed differential expression with the SW480 and normal colon probes did not show differential expression with the DE and MD probes. 363 of these clones contained known sequences, 213 contained ESTs, and 105 contained novel sequences. An examination of the known sequences revealed that many of the 30 genes are involved in cellular metabolism.

An example of an experiment to identify differentially expressed clones is shown in the Figure, "Differential Expression Analysis". The inserts from subtracted clones were amplified, electrophoresed, and blotted on to membranes as described above. The gel was hybridized with RSA1 cut DE and MD cDNA probes as
5 described above.

In the Figure, individual clones are designated by a number at the top of each lane; the blots are aligned so that the same clone is represented in the same vertical lane in both the upper ("Cancer Probe") and lower ("Normal Probe") blot. Lanes
10 labeled "O" indicate clones that are overexpressed, i.e., show a darker, more prominent band in the upper blot ("Cancer Probe") relative to that observed, in the same lane, in the lower blot ("Normal Probe"). The Lane labeled "U" indicates a clone that is underexpressed, i.e., shows a darker, more prominent band in the lower blot ("Normal Probe") relative to that observed, in the same lane, in the upper blot
15 ("Cancer Probe"). The lane labeled "M", indicates a clone that is marginally overexpressed in cancer and normal cells.

B. Results of Public Database searches

The nucleotide sequence of SEQ ID Nos. 1-850 were aligned with individual
20 sequences that were publicly available. Genbank and divisions of GenBank, such as dbEST, CGAP, and Unigene were the primary databases used to perform the sequence similarity searches. The patent database, GENESEQ, was also utilized.

A total of 850 sequences were analyzed; most sequences were between 200 and 700 nucleotides in length. The sequences were first masked to identify vector-
25 derived sequences, which were subsequently removed. The remaining sequence information was used to create the sequences listed in the Sequence Listing (SEQ ID Nos. 1-850). Each of these sequences was used as the query sequence to perform a Blast 2 search against the databases listed above. The Blast 2 search differs from the traditional Blast search in that it allows for the introduction of gaps in order to
30 produce an optimal alignment of two sequences.

A proprietary algorithm was developed to utilize the output from the Blast 2 searches and categorize the sequences based upon high similarity (e value < 1e-40) or

identity to entries contained in the GenBank and dbEST databases. Three categories were created as follows: 1) matches to known human genes, 2) matches to human EST sequences, and 3) no significant match to either 1 or 2, and therefore a potentially novel human sequence.

5

Those skilled in the art will recognize, or be able to ascertain, using not more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such specific embodiments and equivalents are intended 10 to be encompassed by the following claims.

All patents, published patent applications, and publications cited herein are incorporated by reference as if set forth fully herein.

Table 1

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
1	SW0006	O	O	47	SW0558	O	O
2	SW0019M13	O	O	48	SW0585T7	O	O
3	SW0025T7	O	O	49	SW0602T7	O	O
4	SW0026T7	O	O	50	SW0605T7	O	O
5	SW0044	O	O	51	SW0638M13	O	O
6	SW0071	O	O	52	SW0638T7	O	O
7	SW0081T7	O	O	53	SW0652T7	O	O
8	SW0106	O	O	54	SW0659	O	O
9	SW0116	O	O	55	SW0663T7	M	O
10	SW0124	O	O	56	SW0678T7	O	O
11	SW0142M13	O	O	57	SW0682T7	O	M
12	SW0142T7	O	O	58	SW0684	O	O
13	SW0162T7	M	N	59	SW0693T7	M	O
14	SW0181T7	O	O	60	SW0704M13	O	O
15	SW0184	M	O	61	SW0704T7	O	O
16	SW0208T7	O	O	62	SW0709M13	O	O
17	SW0212M13	O	O	63	SW0709T7	O	O
18	SW0212T7	O	O	64	SW0730T7	O	O
19	SW0249	M	O	65	SW0749T7	O	O
20	SW0277	O	O	66	SW0758T7	M	O
21	SW0292	O	O	67	SW0766	O	O
22	SW0305T7	M	O	68	SW0796M13	M	O
23	SW0306	O	O	69	SW0797T7	O	O
24	SW0328	M	O	70	SW0799T7	O	O
25	SW0337	O	O	71	SW0800T7	M	O
26	SW0345	O	O	72	SW0815T7	M	O
27	SW0348	M	O	73	SW0824M13	N	O
28	SW0353	O	O	74	SW0824T7	N	O
29	SW0389T7	O	O	75	SW0837	O	O
30	SW0392T7	M	O	76	SW0843T7	N	O
31	SW0402T7	O	O	77	SW0852	M	O
32	SW0410T7	M	O	78	SW0906T7	O	O
33	SW0411T7	M	M	79	SW0925	N	O
34	SW0433	O	O	80	SW0926T7	O	O
35	SW0445T7	O	O	81	SW0931T7	M	O
36	SW0450T7	O	M	82	SW0932	M	O
37	SW0464	O	O	83	SW0961T7	O	N
38	SW0466	M	O	84	SW0962	O	O
39	SW0469T7	M	O	85	SW0971	O	O
40	SW0489T7	O	O	86	SW0973T7	M	M
41	SW0498	O	O	87	SW0985	O	O
42	SW0511M13	O	O	88	SW1000M13	O	O
43	SW0511T7	O	O	89	SW1000T7	O	O
44	SW0519T7	O	M	90	SW1015T7	O	O
45	SW0522	O	O	91	SW1032T7	O	O
46	SW0539	O	O	92	SW1051	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
93	SW1052	O	O	142	SW0082T7	O	O
94	SW1053	O	O	143	SW0091T7	O	O
95	SW1059T7	O	O	144	SW0093T7	O	O
96	SW1067	M	O	145	SW0101M13	O	O
97	SW1068M13	O	O	146	SW0101T7	O	O
98	SW1068T7	O	O	147	SW0102T7	O	O
99	SW1085T7	M	O	148	SW0105T7	O	O
100	SW1086M13	M	O	149	SW0108T7	O	M
101	SW1086T7	M	O	150	SW0111T7	O	O
102	SW1088M13	O	O	151	SW0112T7	O	O
103	SW1088T7	O	O	152	SW0117T7	O	O
104	SW1089M13	O	O	153	SW0119T7	O	O
105	SW1089T7	O	O	154	SW0122T7	M	O
106	SW1093T7	O	O	155	SW0131T7	O	O
107	SW1098	O	O	156	SW0132T7	O	O
108	SW1115	O	O	157	SW0144T7	M	O
109	SW1116M13	O	O	158	SW0146T7	M	O
110	SW1116T7	O	O	159	SW0156T7	O	O
111	SW1122	O	O	160	SW0160T7	O	O
112	SW1138M13	O	O	161	SW0163T7	O	O
113	SW1138T7	O	O	162	SW0166T7	O	O
114	SW1139M13	O	O	163	SW0175T7	M	O
115	SW1139T7	O	O	164	SW0177M13	O	O
116	SW1144M13	O	O	165	SW0182T7	O	O
117	SW1144T7	O	O	166	SW0185T7	O	O
118	SW1145M13	M	O	167	SW0189T7	O	O
119	SW1187T7	O	O	168	SW0191T7	O	O
120	SW1195M13	M	O	169	SW0195T7	O	O
121	SW1195T7	M	O	170	SW0202T7	O	O
122	SW1209T7	M	N	171	SW0203T7	O	O
123	SW1225M13	O	O	172	SW0213T7	O	N
124	SW1225T7	O	O	173	SW0224T7	O	O
125	SW1227M13	M	O	174	SW0229T7	O	O
126	SW1227T7	M	O	175	SW0231M13	O	O
127	SW1242	M	O	176	SW0241T7	O	O
128	SW0004M13	O	O	177	SW0242T7	O	O
129	SW0004T7	O	O	178	SW0246T7	O	O
130	SW0011M13	O	O	179	SW0248T7	O	O
131	SW0011T7	O	O	180	SW0254T7	O	O
132	SW0015T7	O	O	181	SW0260T7	M	M
133	SW0024T7	M	O	182	SW0264T7	O	O
134	SW0026M13	O	O	183	SW0267T7	M	O
135	SW0026T7	O	O	184	SW0269T7	O	O
136	SW0033T7	O	O	185	SW0271T7	O	O
137	SW0038T7	M	O	186	SW0273T7	O	O
138	SW0069T7	O	O	187	SW0280T7	O	O
139	SW0073T7	O	O	188	SW0281T7	O	O
140	SW0076T7	O	O	189	SW0291T7	O	O
141	SW0078T7	O	O	190	SW0294T7	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes			SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes		
			O	O	O				O	M	O
191	SW0295T7	O	O	O	O	240	SW0575T7	O	O	O	O
192	SW0296T7	O	O	O	O	241	SW0577T7	O	O	O	O
193	SW0297T7	O	O	O	O	242	SW0583T7	O	O	O	O
194	SW0301T7	O	O	O	O	243	SW0604T7	O	O	O	O
195	SW0310T7	O	O	O	O	244	SW0605M13	O	O	O	O
196	SW0311M13	O	O	O	O	245	SW0609T7	M	O	O	O
197	SW0325T7	O	O	O	O	246	SW0610M13	M	O	O	O
198	SW0326T7	O	O	O	O	247	SW0610T7	M	O	O	O
199	SW0330T7	M	O	O	O	248	SW0613T7	O	M	O	M
200	SW0334T7	O	N	O	O	249	SW0621T7	O	O	O	O
201	SW0339T7	O	O	O	O	250	SW0633T7	O	O	O	O
202	SW0341T7	O	O	O	O	251	SW0647T7	O	O	O	O
203	SW0358T7	O	O	O	O	252	SW0654M13	M	O	O	O
204	SW0359T7	M	O	O	O	253	SW0658T7	M	O	O	O
205	SW0360T7	O	O	O	O	254	SW0662T7	O	O	O	O
206	SW0361M13	O	O	O	O	255	SW0663M13	M	O	O	O
207	SW0367T7	O	O	O	O	256	SW0668T7	O	O	O	O
208	SW0369T7	O	O	O	O	257	SW0672T7	O	O	O	O
209	SW0394T7	O	O	O	O	258	SW0674T7	O	N	O	N
210	SW0399T7	O	O	O	O	259	SW0676T7	O	M	O	M
211	SW0401T7	O	O	O	O	260	SW0677T7	O	O	O	O
212	SW0403T7	O	O	O	O	261	SW0678M13	O	O	O	O
213	SW0412T7	M	O	O	O	262	SW0681T7	O	M	O	M
214	SW0419T7	O	O	O	O	263	SW0683T7	O	M	O	M
215	SW0429T7	M	M	M	M	264	SW0687T7	O	M	O	M
216	SW0434T7	O	O	O	O	265	SW0688T7	O	O	O	O
217	SW0441T7	O	O	O	O	266	SW0692T7	O	N	O	N
218	SW0446T7	O	O	O	O	267	SW0694T7	O	O	O	O
219	SW0454T7	O	O	O	O	268	SW0697T7	O	O	O	O
220	SW0461T7	O	O	O	O	269	SW0710T7	O	O	O	O
221	SW0468T7	O	O	O	O	270	SW0711T7	O	O	O	O
222	SW0484T7	O	U	U	U	271	SW0713T7	N	M	U	M
223	SW0489M13	O	U	U	U	272	SW0724T7	M	M	O	U
224	SW0496T7	O	U	U	U	273	SW0734T7	M	O	O	O
225	SW0499T7	O	O	O	O	274	SW0736T7	N	M	O	M
226	SW0507T7	O	M	M	M	275	SW0744T7	O	O	O	O
227	SW0514T7	O	M	M	M	276	SW0751T7	O	O	O	O
228	SW0520T7	O	M	M	M	277	SW0753T7	O	O	O	O
229	SW0531T7	M	N	N	N	278	SW0763T7	O	O	O	O
230	SW0537T7	M	N	N	N	279	SW0768T7	M	M	M	M
231	SW0548T7	O	U	U	U	280	SW0770T7	O	M	M	M
232	SW0555T7	O	N	N	N	281	SW0772T7	O	N	O	N
233	SW0557T7	O	N	N	N	282	SW0774T7	M	O	O	O
234	SW0560T7	O	N	N	N	283	SW0778T7	M	M	M	M
235	SW0563T7	O	U	U	U	284	SW0779T7	M	M	M	M
236	SW0570T7	O	O	O	O	285	SW0783T7	O	O	O	O
237	SW0572T7	O	M	M	M	286	SW0784T7	O	M	M	M
238	SW0573T7	M	U	U	U	287	SW0786T7	N	O	O	N
239	SW0574T7	O	O	O	O	288	SW0787T7	O	N	O	N

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
289	SW0797M13	O	O	338	SW1065T7	O	O
290	SW0803T7	O	O	339	SW1080T7	M	M
291	SW0809T7	O	N	340	SW1085M13	M	O
292	SW0811T7	M	N	341	SW1087T7	O	O
293	SW0815M13	M	O	342	SW1091T7	O	O
294	SW0821T7	O	O	343	SW1093M13	O	O
295	SW0825T7	M	M	344	SW1097T7	O	O
296	SW0826T7	M	M	345	SW1104T7	O	O
297	SW0827M13	O	O	346	SW1105T7	O	O
298	SW0828T7	O	M	347	SW1106T7	O	O
299	SW0836T7	M	O	348	SW1107T7	O	O
300	SW0839T7	O	M	349	SW1108T7	O	O
301	SW0843M13	N	O	350	SW1109T7	O	O
302	SW0846M13	O	M	351	SW1114T7	O	O
303	SW0847T7	O	M	352	SW1123T7	O	O
304	SW0849T7	M	M	353	SW1124T7	O	O
305	SW0850T7	O	O	354	SW1130T7	M	O
306	SW0855T7	O	O	355	SW1131T7	M	O
307	SW0863T7	M	M	356	SW1132T7	M	O
308	SW0866T7	O	O	357	SW1133M13	M	O
309	SW0867T7	N	O	358	SW1134T7	O	O
310	SW0896M13	N	O	359	SW1136T7	O	N
311	SW0912T7	O	O	360	SW1141T7	M	O
312	SW0914T7	O	O	361	SW1146T7	M	O
313	SW0916T7	O	O	362	SW1147T7	O	O
314	SW0918T7	O	O	363	SW1155T7	O	N
315	SW0921T7	N	O	364	SW1156T7	O	N
316	SW0923T7	O	O	365	SW1160T7	O	N
317	SW0926M13	O	O	366	SW1161T7	O	N
318	SW0928T7	N	M	367	SW1169T7	O	N
319	SW0947T7	O	O	368	SW1176T7	O	O
320	SW0949T7	O	O	369	SW1182T7	O	O
321	SW0954T7	M	O	370	SW1193T7	O	O
322	SW0964T7	M	N	371	SW1201T7	O	O
323	SW0969T7	M	N	372	SW1203T7	O	O
324	SW0972T7	M	N	373	SW1212T7	O	M
325	SW0982T7	O	M	374	SW1213M13	O	M
326	SW0994T7	O	N	375	SW1214T7	O	N
327	SW0998T7	O	N	376	SW1218T7	O	N
328	SW1001T7	O	O	377	SW1220T7	O	N
329	SW1002T7	O	N	378	SW1232T7	O	N
330	SW1012T7	O	O	379	SW1236M13	O	N
331	SW1018T7	O	M	380	SW1238T7	O	O
332	SW1045T7	O	M	381	SW1239T7	O	O
333	SW1046T7	M	O	382	SW1245M13	M	N
334	SW1058T7	O	O	383	SW1247T7	O	O
335	SW1059M13	O	O	384	SW0003T7	O	O
336	SW1061T7	O	O	385	SW0009T7	O	O
337	SW1064T7	O	O	386	SW0012T7	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
387	SW0013T7	O	O	436	SW0158T7	O	O
388	SW0015T7	O	O	437	SW0159T7	O	O
389	SW0016T7	U	N	438	SW0169T7	O	O
390	SW0018T7	O	O	439	SW0170T7	O	O
391	SW0019T7	O	O	440	SW0171T7	O	O
392	SW0023T7	O	O	441	SW0173T7	O	O
393	SW0025T7	O	O	442	SW0178T7	O	O
394	SW0027T7	O	O	443	SW0179T7	O	O
395	SW0029M13	O	O	444	SW0180T7	O	O
396	SW0030T7	O	O	445	SW0183T7	O	N
397	SW0039T7	O	O	446	SW0186T7	M	M
398	SW0043T7	O	O	447	SW0187T7	M	U
399	SW0046T7	O	O	448	SW0188T7	O	O
400	SW0048T7	O	O	449	SW0190T7	O	O
401	SW0050T7	O	O	450	SW0192T7	O	O
402	SW0052T7	O	O	451	SW0196T7	O	O
403	SW0063T7	O	O	452	SW0199T7	O	O
404	SW0064T7	O	O	453	SW0201T7	O	M
405	SW0068T7	O	N	454	SW0204T7	O	M
406	SW0072T7	O	O	455	SW0205T7	O	N
407	SW0074T7	O	N	456	SW0206T7	O	O
408	SW0075T7	O	O	457	SW0207T7	O	M
409	SW0077T7	O	O	458	SW0210T7	O	O
410	SW0080T7	O	O	459	SW0211T7	O	O
411	SW0081T7	O	O	460	SW0214T7	O	O
412	SW0085T7	O	O	461	SW0217T7	O	O
413	SW0088T7	O	O	462	SW0218T7	O	O
414	SW0090T7	O	O	463	SW0220T7	O	O
415	SW0095T7	O	O	464	SW0223T7	O	O
416	SW0103T7	M	O	465	SW0229T7	O	O
417	SW0104T7	M	O	466	SW0237T7	O	O
418	SW0121T7	O	N	467	SW0244T7	O	O
419	SW0123T7	O	O	468	SW0247T7	O	O
420	SW0125T7	O	O	469	SW0250T7	O	O
421	SW0127T7	O	O	470	SW0251T7	O	O
422	SW0128T7	O	O	471	SW0252T7	O	O
423	SW0129T7	O	O	472	SW0253T7	O	O
424	SW0130T7	O	N	473	SW0255T7	O	O
425	SW0133T7	M	M	474	SW0256T7	O	O
426	SW0134T7	O	O	475	SW0257T7	O	O
427	SW0135T7	M	O	476	SW0258T7	O	O
428	SW0140T7	O	O	477	SW0262T7	O	O
429	SW0141T7	M	O	478	SW0275T7	O	O
430	SW0143T7	O	O	479	SW0278T7	M	O
431	SW0145T7	O	O	480	SW0285T7	O	O
432	SW0147T7	O	O	481	SW0289T7	O	M
433	SW0152T7	O	O	482	SW0290T7	O	O
434	SW0155T7	O	N	483	SW0293T7	O	O
435	SW0157T7	O	O	484	SW0300T7	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
485	SW0302T7	O	O	534	SW0430T7	M	O
486	SW0303T7	O	O	535	SW0435T7	O	O
487	SW0307T7	O	O	536	SW0436T7	O	O
488	SW0308T7	O	O	537	SW0438T7	O	O
489	SW0311T7	O	O	538	SW0439M13	O	O
490	SW0312T7	O	O	539	SW0440T7	O	O
491	SW0313T7	O	O	540	SW0442M13	O	N
492	SW0314T7	O	O	541	SW0443T7	O	O
493	SW0319T7	O	O	542	SW0444T7	O	O
494	SW0322T7	O	N	543	SW0448T7	O	M
495	SW0333T7	O	O	544	SW0452M13	O	O
496	SW0338T7	M	O	545	SW0455T7	O	O
497	SW0340T7	O	O	546	SW0456T7	O	O
498	SW0342T7	O	O	547	SW0457T7	O	O
499	SW0344T7	O	O	548	SW0458T7	O	O
500	SW0346T7	O	O	549	SW0459T7	O	O
501	SW0347T7	O	O	550	SW0460T7	M	M
502	SW0349T7	M	O	551	SW0463T7	O	O
503	SW0350T7	O	O	552	SW0467M13	O	O
504	SW0351T7	O	O	553	SW0469M13	M	O
505	SW0352T7	O	O	554	SW0473M13	O	M
506	SW0354T7	O	O	555	SW0474T7	O	O
507	SW0355T7	O	O	556	SW0476T7	O	O
508	SW0356T7	O	M	557	SW0481T7	O	U
509	SW0357T7	O	O	558	SW0485T7	O	U
510	SW0361T7	O	O	559	SW0486T7	O	U
511	SW0362T7	O	O	560	SW0487T7	O	U
512	SW0365T7	O	O	561	SW0488T7	O	O
513	SW0366T7	O	O	562	SW0490T7	U	O
514	SW0381T7	O	O	563	SW0491T7	O	U
515	SW0391M13	O	O	564	SW0492T7	O	U
516	SW0393T7	O	O	565	SW0494T7	O	U
517	SW0395T7	O	M	566	SW0495T7	O	O
518	SW0396T7	M	O	567	SW0497T7	O	N
519	SW0398T7	O	O	568	SW0500T7	O	U
520	SW0400T7	O	O	569	SW0501T7	N or U	U
521	SW0404T7	O	O	570	SW0502T7	M	N
522	SW0405T7	O	O	571	SW0503T7	O	U
523	SW0406T7	M	O	572	SW0504T7	O	N
524	SW0407T7	O	O	573	SW0505T7	N	N
525	SW0408T7	M	O	574	SW0506T7	O	U
526	SW0413T7	M	O	575	SW0509T7	O	M
527	SW0414T7	O	U	576	SW0512T7	O	U
528	SW0415T7	O	O	577	SW0513T7	O	U
529	SW0417T7	N	O	578	SW0515T7	O	O
530	SW0418T7	O	O	579	SW0516T7	O	M
531	SW0426T7	O	O	580	SW0517T7	O	M
532	SW0427T7	O	O	581	SW0518T7	O	N
533	SW0428T7	M	U	582	SW0525T7	M	N

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes		SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	
			N	O				M	O
583	SW0529T7	O	N		632	SW0651T7	O	N	
584	SW0532T7	O	N		633	SW0653T7	M	O	
585	SW0533T7	O	N		634	SW0655T7	O	O	
586	SW0534T7	O	M		635	SW0656T7	O	O	
587	SW0535T7	O	O		636	SW0664T7	M	O	
588	SW0536T7	M	U		637	SW0666T7	O	O	
589	SW0538T7	O	N		638	SW0667T7	O	U	
590	SW0540T7	O	O		639	SW0671T7	O	O	
591	SW0541T7	O	O		640	SW0673T7	O	M	
592	SW0542T7	O	O		641	SW0675T7	O	O	
593	SW0543T7	O	O		642	SW0686T7	O	O	
594	SW0544M13	O	M		643	SW0689T7	O	O	
595	SW0545T7	O	O		644	SW0693M13	M	O	
596	SW0546T7	O	O		645	SW0695T7	O	M	
597	SW0547T7	O	U		646	SW0698T7	M	M	
598	SW0550T7	O	M		647	SW0701T7	O	O	
599	SW0551T7	O	M		648	SW0708T7	O	M	
600	SW0552T7	O	U		649	SW0714T7	O	O	
601	SW0554T7	O	U		650	SW0715T7	O	N	
602	SW0559T7	O	M		651	SW0716T7	O	M	
603	SW0561T7	O	N		652	SW0720T7	O	O	
604	SW0562T7	O	U		653	SW0722T7	O	N	
605	SW0566T7	O	O		654	SW0723T7	O	O	
606	SW0567T7	O	N		655	SW0725T7	O	M	
607	SW0568T7	O	N		656	SW0726T7	O	O	
608	SW0569T7	O	O		657	SW0727T7	M	U	
609	SW0571T7	O	O		658	SW0728T7	O	U	
610	SW0578T7	O	N		659	SW0729T7	O	O	
611	SW0580T7	O	O		660	SW0730M13	O	M	
612	SW0582T7	O	O		661	SW0731T7	O	O	
613	SW0584T7	O	O		662	SW0732T7	O	N	
614	SW0591T7	N	O		663	SW0733T7	O	O	
615	SW0606T7	O	O		664	SW0735T7	O	O	
616	SW0607T7	O	O		665	SW0738T7	O	O	
617	SW0608T7	O	O		666	SW0740T7	O	N	
618	SW0611T7	O	O		667	SW0750T7	O	O	
619	SW0612T7	N	O		668	SW0752T7	O	O	
620	SW0616T7	O	M		669	SW0755T7	O	O	
621	SW0623T7	O	O		670	SW0756T7	O	N	
622	SW0629T7	O	O		671	SW0757T7	O	O	
623	SW0635T7	O	O		672	SW0761T7	O	N	
624	SW0636T7	O	O		673	SW0762T7	O	O	
625	SW0637T7	O	M		674	SW0764T7	M	O	
626	SW0640T7	N	O		675	SW0765T7	O	O	
627	SW0641T7	O	M		676	SW0767T7	M	O	
628	SW0642T7	O	O		677	SW0769T7	M	M	
629	SW0644T7	O	O		678	SW0771T7	O	M	
630	SW0645T7	O	O		679	SW0775T7	M	M	
631	SW0646T7	O	O		680	SW0776T7	O	O	

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
681	SW0780T7	O	O	730	SW0920T7	O	O
682	SW0782T7	M	M	731	SW0922T7	O	O
683	SW0785T7	O	O	732	SW0929T7	O	O
684	SW0789T7	O	O	733	SW0930T7	O	O
685	SW0790T7	O	N	734	SW0933T7	M	O
686	SW0795T7	O	O	735	SW0936T7	M	O
687	SW0796T7	M	M	736	SW0937T7	O	O
688	SW0798T7	M	M	737	SW0938T7	N	O
689	SW0799M13	O	O	738	SW0940T7	O	O
690	SW0801T7	O	O	739	SW0943T7	O	O
691	SW0802T7	M	M	740	SW0945T7	O	O
692	SW0804T7	O	O	741	SW0946T7	N	O
693	SW0806T7	O	M	742	SW0951T7	O	O
694	SW0807T7	N	N	743	SW0952T7	O	O
695	SW0810T7	M	O	744	SW0953T7	O	O
696	SW0814T7	O	O	745	SW0955T7	N	O
697	SW0816T7	N	N	746	SW0957T7	O	O
698	SW0819T7	O	O	747	SW0967T7	O	M
699	SW0822T7	O	M	748	SW0968T7	O	O
700	SW0827T7	O	O	749	SW0970T7	O	N
701	SW0829T7	O	M	750	SW0974T7	O	O
702	SW0830T7	O	M	751	SW0975T7	O	O
703	SW0831T7	O	O	752	SW0976T7	O	O
704	SW0834T7	O	O	753	SW0977T7	M	N
705	SW0835T7	O	N	754	SW0978T7	O	N
706	SW0838T7	O	U	755	SW0983T7	O	M
707	SW0840T7	O	O	756	SW0988T7	O	N
708	SW0842T7	O	O	757	SW0989T7	M	O
709	SW0845T7	O	O	758	SW0990T7	M	N
710	SW0846T7	O	M	759	SW0991T7	O	N
711	SW0848T7	O	M	760	SW0992T7	O	O
712	SW0851T7	M	M	761	SW0997T7	M	N
713	SW0853T7	O	O	762	SW1004T7	O	O
714	SW0854T7	N	O	763	SW1007T7	M	N
715	SW0857T7	O	O	764	SW1008T7	O	O
716	SW0858T7	M	N	765	SW1024T7	O	M
717	SW0859T7	M	M	766	SW1027T7	O	O
718	SW0860T7	O	M	767	SW1028T7	O	O
719	SW0862T7	M	M	768	SW1029T7	O	M
720	SW0865T7	N	O	769	SW1030T7	M	O
721	SW0868T7	O	O	770	SW1032M13	O	O
722	SW0891T7	O	O	771	SW1036T7	O	N
723	SW0897T7	O	O	772	SW1037T7	O	N
724	SW0898T7	O	O	773	SW1039T7	O	N
725	SW0901T7	O	O	774	SW1047T7	M	N
726	SW0904T7	O	O	775	SW1048T7	O	O
727	SW0905T7	N	O	776	SW1050T7	O	O
728	SW0917T7	O	O	777	SW1055T7	O	N
729	SW0919T7	O	O	778	SW1062T7	O	O

SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes	SEQ ID NO	clone name	Cell line probe	Cancer Tissue Probes
779	SW1063T7	O	O	828	SW1192T7	O	N
780	SW1066T7	O	O	829	SW1196T7	M	N
781	SW1069T7	O	O	830	SW1199T7	M	O
782	SW1070T7	M	O	831	SW1200T7	O	M
783	SW1074T7	O	O	832	SW1202T7	O	N
784	SW1075T7	O	O	833	SW1204T7	O	N
785	SW1076T7	O	O	834	SW1205T7	O	N
786	SW1077T7	O	O	835	SW1207T7	O	N
787	SW1078T7	O	O	836	SW1210T7	M	N
788	SW1081T7	O	O	837	SW1213T7	O	M
789	SW1082T7	O	O	838	SW1221T7	O	N
790	SW1094T7	O	O	839	SW1223T7	O	O
791	SW1095T7	O	N	840	SW1224T7	O	N
792	SW1096T7	O	O	841	SW1228T7	O	O
793	SW1099T7	O	O	842	SW1230T7	O	N
794	SW1101T7	O	O	843	SW1231T7	O	O
795	SW1103T7	O	O	844	SW1234T7	O	O
796	SW1111T7	O	O	845	SW1235T7	O	N
797	SW1112T7	O	O	846	SW1237T7	O	N
798	SW1113T7	O	O	847	SW1240T7	O	O
799	SW1117T7	O	O	848	SW1241T7	O	O
800	SW1118T7	O	O	849	SW1243T7	O	O
801	SW1119T7	O	O	850	SW1246T7	O	N
802	SW1121T7	O	N				
803	SW1125T7	O	O				
804	SW1128T7	M	N				
805	SW1129T7	O	O				
806	SW1140T7	M	N				
807	SW1143T7	O	O				
808	SW1145T7	M	O				
809	SW1149T7	M	O				
810	SW1153T7	O	N				
811	SW1157T7	O	O				
812	SW1158T7	O	N				
813	SW1164T7	O	M				
814	SW1165T7	O	N				
815	SW1166T7	O	O				
816	SW1167T7	O	N				
817	SW1170T7	M	N				
818	SW1171T7	O	N				
819	SW1172T7	O	N				
820	SW1173T7	O	N				
821	SW1175T7	O	N				
822	SW1178T7	O	O				
823	SW1179T7	O	O				
824	SW1180T7	M	N				
825	SW1183T7	O	M				
826	SW1187M13	O	N				
827	SW1189T7	O	N				

Table 2

SEQ ID NO	Clone name	'Novel' Region 1		'Novel' Region 2		GenBank identifier for top 5 matching EST sequences
		Start / Stop	Start / Stop	Start / Stop	Start / Stop	
128	SW0004M13	742-865		g1947473	g1969195	g12216795 g1236508 g1236508 g1952906
129	SW0004T7	752-910		g1947473	g1969195	g12216795 g12209605
130	SW0011M13	1-218	553-932	g2241970	g2140706	g11720731
131	SW0011T7	1-264	599-890	g2241970	g2140706	g11720731
132	SW0015T7	483-606		g675241	g900355	g1774265 g2337538
133	SW0024T7	1-148	268-606	g4033911	g1960000	g176376 g176294 g176294 g176294 g176294
134	SW0026M13	400-598		g767139	g880785	g2558187 g2038504
135	SW0026T7	1-199	285-336	g767139	g880785	g2558187 g1494014
136	SW0033T7	427-610		g2873486	g1960450	g4440193 g1721900
137	SW0038T7	321-645		g4222862	g2583432	g2268964 g2768420
138	SW0069T7	366-612		g770924	g1308307	g3229743
139	SW0073T7	521-592		g1152099	g2191626	g1296011 g2031668
140	SW0076T7	456-618		g2567157	g2236340	g3754642 g2620190
142	SW0082T7	511-601		g11718668	g1274002	g2265780 g3214360
146	SW0101T7	420-624		g1376510	g708780	g1137129 g390100
147	SW0102T7	512-599		g4223023	g3430515	g4125195 g2931421
148	SW0105T7	1-219	570-609	g2835475	g1482129	g1624179 g1817372
149	SW0108T7	220-296	552-589	g2154028	g1303058	g1645371 g2882934
150	SW0111T7	1-68		g1308307	g4332333	g172312
153	SW0119T7	510-596		g42836717	g4487239	g3228921
154	SW0122T7	1-51		g1760809	g3804685	g2876545
158	SW0146T7	1-76	333-617	g2009649	g985491	g661521 g961346
159	SW0156T7	1-71	782-1002	g2902747	g3887935	g4223262 g1162310
162	SW0166T7	1-48	44-638	g2264624	g3755582	g4684438 g4440147
163	SW0175T7	1-303	829-1002	g724430	g2154572	g1958041 g2033455
166	SW0185T7	113-208		g1647210	g3886862	g2444221
168	SW0191T7	388-683		g829950	g771211	g2785582 g9555941
172	SW0213T7	449-617		g3886373	g955334	g961389
174	SW0229T7	293-987				

SEQ ID NO	Clone name	"Novel" Region 1 Start / Stop	"Novel" Region 2 Start / Stop	GenBank Identifier for top 5 matching EST sequences
176	SW0241T7	494-570		g2010030 g2021290 g918739 g893980 g1976699
177	SW0242T7	1-41	440-621	g3645529 g4565156 g235995 g1978587 g2019409
178	SW0246T7	1-202		g11162850 g1140707 g190341 g1191239 g2538237
179	SW0248T7	497-650		g4079044 g2158663 g278869 g1195625 g3750745
182	SW0264T7	1-94	479-609	g1976294 g3446793 g2459258 g1153656 g2577184
186	SW0273T7	1-89	546-638	g3677131 g3805522 g3244458 g4525163 g4598742
187	SW0280T7	412-628		g1815110 g1933167 g2817266
188	SW0281T7	109-160	572-654	g2436919 g2185995 g3758001 g654599 g4523959
189	SW0291T7	461-650		g1992596 g1138351 g1146820 g395782 g1837320
190	SW0294T7	431-699		g2839339 g3838466 g1307860 g2617794 g1479221
196	SW0311M13	1-46	456-658	g4195712 g4648481 g2750125 g796654 g683242
197	SW0325T7	511-615		g1270394 g3886108 g2009344 g1238973 g2184702
198	SW0326T7	499-557		g1967113 g1967684 g1966134 g1966828 g2904744
200	SW0334T7	525-615		g1624696 g2356793 g1784223 g1774696 g1764577
202	SW0341T7	414-584		g774421 g570881 g1623681 g3040994 g1481791
203	SW0358T7	112-188	513-608	g1984379 g3789679 g3741829 g4531886 g1524800
204	SW0359T7	57-159	561-621	g1802072 g1663807 g1894318 g1775584 g1678033
206	SW0361M13	1-65	183-572	g2030884 g645753 g1988795 g1577434 g1578203
207	SW0367T7	559-616		g6444105 g716356 g901097 g1188705 g712897
210	SW0399T7	486-589		g1856563 g1690249 g1966703 g1952828 g1639845
211	SW0401T7	470-590		g1165586 g1690123 g1967659 g1491055 g918845
212	SW0403T7	369-614		g3214476 g1648508 g182846 g2703245 g1686573
213	SW0412T7	1-304	509-624	g681577 g712993 g4305548 g3428224 g318414
214	SW0419T7	134-612		g1388511 g4533033 g2552190 g3240798 g3366974
215	SW0429T7	516-618		g1269881 g452374 g1272714 g3933264
216	SW0434T7	349-595		g4261346 g359644 g3753357 g3329909 g464571
217	SW0441T7	428-610		g4762076 g2158733 g2158750 g2809783 g2113084
218	SW0446T7	458-585		g4111486 g1484542 g3415988 g1959348 g2874960
219	SW0454T7	116-599		g1319069 g1319055 g2669407 g2355953 g3181853
220	SW0461T7	1-189	411-602	g1295370 g2008512 g1783876 g1571056 g1696820
221	SW0468T7	1-55	477-573	g2163292 g162568 g4534378 g1225564 g2016248
223	SW0489M13	449-564		g2027299 g1779025 g1960180 g2879596

SEQ ID NO	Clone name	"Novel" Region 1		"Novel" Region 2		GenBank Identifier for top 5 matching EST sequences
		Start / Stop	Start / Stop	Start / Stop	Start / Stop	
224	SW0496T7	160-277		g1040448	g1012154	g1023347
225	SW0499T7	451-589		g1745433	g4535376	g3933369
226	SW0507T7	539-636		g1694289	g1959749	g3075884
227	SW0514T7	348-451		g815990	g4824527	g4281629
228	SW0520T7	1-200		g1999728	g1959807	g3897416
231	SW0548T7	511-639		g2036727	g1692039	g1951783
234	SW0560T7	237-408		g1180638	g2110980	g1061663
237	SW0572T7	1-47	530-607	g2825571	g4395571	g4686751
239	SW0574T7	1-53		g1721900	g1962046	g2268964
242	SW0583T7	156-284	500-565	g1983062	g1779675	g3924063
243	SW0604T7	272-647		g1151602	g1799297	g1406230
244	SW0605M13	436-603		g3255034	g4523614	g2322572
245	SW0609T7	553-640		g870149	g870280	g2064580
246	SW0610M13	263-312	545-608	g1689308	g1289557	g1042368
247	SW0610T7	1-81	496-632	g27910	g873209	g812805
248	SW0613T7	274-624		g3118093	g877748	g781949
249	SW0621T7	295-636		g4070350	g4087920	g1898671
250	SW0633T7	478-669		g4300499	g3307939	g2840238
251	SW0647T7	530-670		g1959511	g1689297	g1306866
252	SW0654M13	398-461		g1894108	g838679	g788785
253	SW0658T7	133-433		g2878157	g3091572	g3923528
254	SW0662T7	505-652		g4083719	g2539985	g3649260
255	SW0663M13	315-605		g2786351	g645679	g961061
256	SW0668T7	371-654		g1273871	g1978052	g2001412
257	SW0672T7	477-594		g1376487	g1815330	g691414
258	SW0674T7	505-648		g1280912	g774134	g3849587
260	SW0677T7	1-148	432-584	g1999506	g1967695	g2358776
261	SW0678M13	146-219	309-526	g1502150	g202732	g2013528
262	SW0681T7	1-105	422-703	g2329443	g3897476	g4534909
263	SW0683T7	301-344	410-475	g1645468	g1507025	g3280794
264	SW0687T7	276-601		g2986269	g4665361	g2988563
265	SW0688T7	404-643		g1188536	g1188074	g1693906

SEQ ID NO	Clone name	"Novel" Region 1 Start / Stop	"Novel" Region 2 Start / Stop	GenBank identifier for top 5 matching EST sequences
266	SW0692T7	1-54	490-582	g1969153 g4534166 g3990730 g2215531 g1927555
267	SW0694T7	503-565		g2184535 g812780 g3117755 g4688064 g4267188
268	SW0697T7	279-661		g2986269 g4665361 g2988563 g3755365 g2821651
269	SW0710T7	476-643		g1307580 g2053081 g1299364 g2021058 g1515716
270	SW0711T7	540-650		g1967859 g1970279 g1967270 g1966441 g1958872
271	SW0713T7	478-620		g1308937 g1484655 g1967497 g685648 g1990513
272	SW0724T7	431-490	575-670	g3030963 g389972 g1060573 g3679607 g1391607
273	SW0734T7	320-688		g3037561 g1068430 g4851814 g2198924 g2240396
274	SW0736T7	499-674		g4735776 g2458732 g4451965
275	SW0744T7	488-638		g4291133 g1367232 g879361 g835655
276	SW0751T7	1-67	348-638	g2033666 g4525902 g4094551
277	SW0753T7	457-734		g1281367 g2013326 g1423548 g711455 g1254955
279	SW0768T7	1-457		g816092 g2028907 g1977384 g4126279
281	SW0772T7	1-116	524-677	g1389446 g989175 g4685207
282	SW0774T7	515-691		g1280912 g1516408 g774134 g3849587 g774915
283	SW0778T7	166-688		g709101 g692097 g1843758 g1849532
284	SW0779T7	247-777		g572918 g672436 g2873870 g2903123 g4307250
285	SW0783T7	433-692		g2884478 g2882317 g3918382 g2810893 g1760738
286	SW0784T7	557-709		g1147127 g2269337 g3674707 g1670065 g3934061
288	SW0787T7	476-681		g1624696 g2356793 g1784223 g1764577 g1959061
289	SW0797M13	1-48	527-565	g647094 g4329924 g1296124 g3648342 g3277126
290	SW0803T7	464-699		g869902 g698828 g1496517 g1521347 g1512645
291	SW0809T7	1-120	495-699	g815129 g814313 g791801 g711356 g565905
292	SW0811T7	337-688		g775252 g1064596 g2106148 g2009858 g2012888
293	SW0815M13	411-572		g2369395 g1495178 g715203 g1978754 g893190
294	SW0821T7	192-692		g1847887 g899896 g3055436
296	SW0826T7	451-677		g4850460 g864989 g793071 g2524536
297	SW0827M13	476-536		g17779025 g2027299 g1960180 g2210077 g1712368
299	SW0836T7	485-644		g2912733 g3330967 g1166303 g2562807 g2563437
301	SW0843M13	114-589		g1211744 g1320893 g825200 g817462
303	SW0847T7	1-346	555-673	g2410830 g1012926 g1505518 g2341367 g2198300
304	SW0849T7	115-426		g3099047 g2079660 g2197847

SEQ ID NO	Clone name	"Novel" Region 1 Start / Stop	"Novel" Region 2 Start / Stop	GenBank Identifier for top 5 matching EST sequences
305	SW0850T7	521-655	91306156	g1923678 g2874241 g2805210 g4630217
306	SW0855T7	511-684	92402087	g1781722 g1303037 g2005846 g2218908
308	SW0866T7	487-660	g1894503	g2191248 g3898116 g1785384 g1114295
312	SW0914T7	123-168	9783104	g1496681 g1687044 g2006571 g1440899
313	SW0916T7	541-656	91255268	g1809627 g1815279 g1049496 g1388310
316	SW0923T7	461-637	g389604	g1983913 g57354 g772210 g3429552
317	SW0926M13	315-505	92110746	g1958300 g850595 g1040607 g848805
318	SW0928T7	546-645	92835368	g2159357 g1320607 g961005 g1692986
321	SW0954T7	351-588	91713128	g4296983 g3152028 g3597337 g3134671
322	SW0964T7	275-368	455-589	g2617590 g1983739 g2321557 g6611505
327	SW0998T7	1-430	91665148	g873211 g1734568 g1722041 g1137689
331	SW1018T7	369-421	9815990	g4824527 g3213763 g4281629 g2445651
332	SW1045T7	171-616	91960129	g3797281 g3678504 g2907669 g1299288
333	SW1046T7	1-58	227-650	g1689803 g747999 g3094753 g1969991 g4599383
334	SW1058T7	256-734	93076981	g4764472 g4244708 g3671566 g3057227
335	SW1059M13	164-451	93146363	g2842317 g2291325 g2035592 g4076865
336	SW1061T7	435-732	91720353	g4083719 g2188948 g3649260 g1966864
337	SW1064T7	465-642	91898567	g1984998 g1577078 g1969872 g1577114
338	SW1065T7	466-723	94737452	g1721911 g2567423 g3595294 g4564556
340	SW1085M13	195-502	92994840	g652041 g728040 g1741474 g3739875
342	SW1091T7	1-177	457-669	g4740134 g1123719 g4690317 g4690888
343	SW1093M13	178-372	92876843	g1212266 g1277704 g3842193 g650405
344	SW1097T7	345-483	91966405	g2000446 g1984682 g1162830
345	SW1104T7	348-667	91987181	g1975635 g2575165 g2901280
346	SW1105T7	450-754	93849721	g4606643 g166922 g2725769 g3147355
348	SW1107T7	507-693	94223536	g2539603 g4763850 g3921215 g4190351
350	SW1109T7	372-622	91969153	g4534166 g390730 g3052018
351	SW1114T7	436-574	92094727	g3034248 g2445722 g2318514 g2884719
353	SW1124T7	424-727	91801953	g834048 g867043 g4598665 g1491375
354	SW1130T7	1-151	311-411	g834106 g857314 g2880334 g1166307 g697528
356	SW1132T7	428-678	92167403	g2080455 g1996679 g565319 g659447
358	SW1134T7	144-267	504-633	g3190963 g1921067 g1210922 g711478 g874773

SEQ ID NO	Clone name	"Novel" Region 1		"Novel" Region 2		GenBank Identifier for top 5 matching EST sequences
		Start / Stop	Start / Stop	Start / Stop	Start / Stop	
359	SW1136T7	420-635		91740775	g657385	g983198 g831166
361	SW1146T7	425-631		94524079	g2154010	g4703413 g3648263
362	SW1147T7	480-660		94739574	g4301551	g1312127 g1721536
364	SW1156T7	1-176	409-686	91729323	g1729322	g1989919 g1314949
365	SW1160T7	408-638		92834800	g3429486	g3049810 g1140898
366	SW1161T7	400-585		92807169	g4681663	g4393979 g1155820
367	SW1169T7	422-628		92526582	g2525859	g3595746 g4190042
368	SW1176T7	425-618		91781738	g2674401	g1501716 g656431
370	SW1193T7	447-636		94391165	g4295071	g3146054 g2357775
372	SW1203T7	487-612		91012013	g1388510	g1716758 g1264038
373	SW1212T7	500-640		91384656	g1696886	g1891098 g2825672
374	SW1213M13	218-503		93076981	g4764472	g4244708 g3675166
375	SW1214T7	426-611		91386338	g2162796	g1616215 g1965789
376	SW1218T7	424-601		91191932	g1952078	g1328929 g2329319
377	SW1220T7	1-67	487-621	91690249	g1856563	g1966703 g1952828
379	SW1236M13	390-516		9875363	g2100509	g4187897 g1623528
381	SW1239T7	420-480	501-620	91017274	g1999568	g1987290 g1182700

We claim:

1. An isolated nucleic acid comprising a nucleotide sequence which hybridizes under stringent conditions to a sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto.
5
2. An isolated nucleic acid comprising a nucleotide sequence at least 80% identical to a sequence corresponding to at least about 15 consecutive nucleotides of one of SEQ ID Nos. 1-127 or a sequence complementary thereto.
10
3. An isolated nucleic acid comprising a nucleotide sequence of SEQ ID Nos. 1-127 or a sequence complementary thereto.
15
4. A nucleic acid according to claim 1, further comprising a transcriptional regulatory sequence operably linked to said nucleotide sequence so as to render said nucleotide sequence suitable for use as an expression vector.
20
5. An expression vector, capable of replicating in at least one of a prokaryotic cell and eukaryotic cell, comprising the nucleic acid of claim 4.
25
6. A host cell transfected with the expression vector of claim 5.
30
7. A transgenic animal having a transgene of the nucleic acid of claim 1 incorporated in cells thereof, which transgene modifies the level of expression of the nucleic acid, the stability of an mRNA transcript of the nucleic acid, or the activity of the encoded product of the nucleic acid.
8. A substantially pure nucleic acid which hybridizes under stringent conditions to a nucleic acid probe corresponding to at least 12 consecutive nucleotides of one of SEQ ID Nos. 1-127 or a sequence complementary thereto.

9. A polypeptide including an amino acid sequence encoded by a nucleic acid of claim 1 or a fragment comprising at least 25 amino acids thereof.
10. A probe/primer comprising a substantially purified oligonucleotide, said oligonucleotide containing a region of nucleotide sequence which hybridizes under stringent conditions to at least 12 consecutive nucleotides of sense or antisense sequence selected from SEQ ID Nos. 1-127.
5
11. An array including at least 10 different probes of claim 10 attached to a solid support.
10
12. The probe/primer of claim 10, further comprising a label group attached thereto and able to be detected.
13. The probe/primer of claim 12, wherein said label group being selected from radioisotopes, fluorescent compounds, enzymes, and enzyme co-factors.
15
14. An antibody immunoreactive with a polypeptide of claim 9.
15. An antisense oligonucleotide analog which hybridizes under stringent conditions to at least 12 consecutive nucleotides of one of SEQ ID Nos. 1-850 or a sequence complementary thereto, and which is resistant to cleavage by a nuclease.
20
16. A test kit for determining the phenotype of transformed cells, comprising the probe/primer of claim 12, for measuring a level of a nucleic acid which hybridizes under stringent conditions to a nucleic acid of SEQ ID Nos. 1-850 in a sample of cells isolated from a patient.
25
17. A test kit for determining the phenotype of transformed cells, comprising an antibody specific for a protein encoded by a nucleic acid which hybridizes under stringent conditions to any one of SEQ Nos. 1-850.
30

18. A method of determining the phenotype of a cell, comprising detecting the differential expression, relative to a normal cell, of at least one nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850, 5 wherein the nucleic acid is differentially expressed by at least a factor of two.
19. A method for determining the phenotype of cells in a sample of cells from a patient, comprising:
 - i. providing a nucleic acid probe comprising a nucleotide sequence having at least 12 consecutive nucleotides of any of SEQ ID Nos. 1-850;
 - ii. obtaining a sample of cells from a patient;
 - iii. providing a second sample of cells substantially all of which are non-cancerous;
 - iv. contacting the nucleic acid probe under stringent conditions with mRNA of each of said first and second cell samples; and
 - v. comparing (a) the amount of hybridization of the probe with mRNA of the first cell sample, with (b) the amount of hybridization of the probe with mRNA of the second cell sample, wherein a difference of at least a factor of two in the amount of hybridization with the mRNA of the first cell sample as compared to the amount of hybridization with the mRNA of the second cell sample is indicative of the phenotype of cells in the first cell sample.
20. A method of determining the phenotype of a cell, comprising detecting the differential expression, relative to a normal cell, of at least one protein encoded by a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850, wherein the protein is differentially expressed by at least a factor of two.
30. The method of claim 20, wherein the level of said protein is detected in an immunoassay.

22. A method for determining the presence or absence of a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-127 in a cell, comprising contacting the cell with a probe of claim 10.

5

23. A method for determining the presence or absence of a polypeptide encoded by a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-127 in a cell, comprising contacting the cell with an antibody of claim 14.

10

24. A method for detecting a mutation in a test nucleic acid which hybridizes under stringent conditions to a nucleic acid of SEQ ID Nos. 1-383 or a sequence complementary thereto, comprising

- i. collecting a sample of cells from a patient,
- ii. isolating nucleic acid from the cells of the sample,
- iii. contacting the nucleic acid sample with one or more primers which specifically hybridize to a nucleic acid sequence of SEQ ID Nos. 1-383 under conditions such that hybridization and amplification of the nucleic acid occurs, and
- iv. comparing the presence, absence, or size of an amplification product to the amplification product of a normal cell.

25. A method for identifying an agent which alters the level of expression in a cell of a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto, comprising

- i. providing a cell;
- ii. treating the cell with a test agent;
- iii. determining the level of expression in the cell of a nucleic acid which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto; and
- iv. comparing the level of expression of the nucleic acid in the treated cell with the level of expression of the nucleic acid in an

untreated cell, wherein a change in the level of expression of the nucleic acid in the treated cell relative to the level of expression of the nucleic acid in the untreated cell is indicative of an agent which alters the level of expression of the nucleic acid in a cell.

5

26. A pharmaceutical composition comprising an agent identified by the method of claim 25.
- 10 27. A pharmaceutical composition comprising a nucleic acid which includes a nucleotide sequence which hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto.
- 15 28. A pharmaceutical composition comprising a polypeptide encoded by a nucleic acid which includes a nucleotide sequence that hybridizes under stringent conditions to one of SEQ ID Nos. 1-850 or a sequence complementary thereto.
29. An isolated nucleic acid comprising a portion of a nucleotide sequence of SEQ ID Nos. 128-383 or a sequence complementary thereto.
- 20 30. A gene which hybridizes to one of SEQ ID Nos. 1-383.
31. A method for detecting cancer in which one or more of SEQ ID Nos. 1-850 are used as probes, said method comprising:
 - i. collecting a sample of cells from a patient,
 - 25 ii. isolating nucleic acid from the cells of the sample,
 - iii. contacting the nucleic acid sample with one or more primers which specifically hybridize to a nucleic acid sequence of SEQ ID Nos. 1-850 under conditions such that hybridization and amplification of the nucleic acid occurs, and
 - 30 iv. comparing the presence, absence, or size of an amplification product to the amplification product of a normal cell.

32. A method of claim 31 in which said cancer is colon cancer.
33. A method for detecting cancer in a patient sample in which an antibody to a protein encoded by SEQ ID Nos. 1-850 is used to react with proteins in said sample.
5
34. A method of claim 33 in which said cancer is colon cancer.

10

Differential Expression Analysis

SW480 Clone Number

838 839 840 841 842

Cancer Probe

Normal Probe

SEQUENCE LISTING

<110> BAYER CORPORATION

<120> NOVEL HUMAN GENES AND GENE EXPRESSION
PRODUCTS

<130> CCD-257 (PCT)

<150> US 60/088,801
<151> 1988-06-10

<160> 850

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 359

<212> DNA

<213> Homo sapiens

<400> 1

tacaaaacta acgatgaagt tattcatggc atcttcaaag cttacattca gaggctgctt	60
cacgccttgg ctcgacactg ccagctggaa ccagaccatg aggggggtcc tgaggagact	120
gatgactttg gggagtttcg catgagggtta tcagacctgg taaaggactt gattttcttg	180
atagggtcta tggagtgttt tgctcagttt tattctactc taaaagaagg caacccaccc	240
tgggaggtga cagaagcggt tctctttatc atgactgcta tagcaaagag tggatcccg	300
gaaaacaatc caacacttgtt ggaagtccca gaaggagttt tccgcctccc ggagaccgt	359

<210> 2

<211> 901

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(901)

<223> n = A,T,C or G

<400> 2

tacactacct tttaaaaaaa attggtatatttta ctgtaaagaa atgttttaaa	60
tcaggggtcc ccaaccccca ngtcacanac ctgaangggt ccatgnatg nnatgaacca	120
ngccacacag nnggangtaa gcanctgaga gcgaggaaag cctagnntgn attacagaa	180
aagggaaagct ncatctgtat ttacagccac tccccactgc tcacattatg gcctgagctc	240
tgcctccctg nagatcagga gacatttat tctcatagga gcatgaacac tatttngaaac	300
tgcacatnca angatctgg gttgtctgg ttgtgcgtc cttataaaaaa tctaattggtg	360
gatgatttgc cactgtctgc catcatccct agatggaaaaa caagctcacc caaagtctcn	420
tttnccna ggnntncctg atgccaagat tcncatttt gacctggggc ggaaaaaggc	480
naaagnggat gagtccgct ttgnngccac atgntgttag atgaatntga gcagctgcct	540
ctgaaggccct ggaggctgcc cgaatttng ccaatannta ccccgaaagcg ctggtacgat	600
tcccaaggggg agccctttt acactgngcc ctganacttc nntccagat cggtcnggcc	660
ttttaactt tggttcccg tttgtcaan gacattgctt cctttanttt tncagctggt	720

gngncttgga aaggattggg ccctggctc tcnaggatgg ctaaggatga anngatatca	780
aggncgtggca tgaanaant cnccggccn nccttnggc ngttncctt gggacctggc	840
cggggccggtc cgttcgaaa gggcnaaatt ctggcagaat ttccctgana cctggcgccc	900
g	901
<210> 3	
<211> 553	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(553)	
<223> n = A,T,C or G	
<400> 3	
actgccttct gctgccgctc aggatagcac tggctttcac agggattanc cttctggtgg	60
tgggcacaac tgggtggga tacttgccaa atgggagggt taaggagttc atgagtaaac	120
atgttcacctt aatgtgttac cgatctgcg tgcgagcgct gacagccatc atcacctacc	180
atgacagggaa aaacagacca agaaatggtg gcatctgtgt ggcacatcat acctcaccga	240
tcgatgngat catcttggcc agcgatggct attatgccat ggtgggtcaa gtgcacgggg	300
gactcatggg tggattcac agagccatgg tgaaggcctg cccacacgtc tggtttgagc	360
gctcggaagt gaaggatcgc cacctgggtt ctaagagact gactgaacat gtgcaagatn	420
aaagcaagct gcctatcctc atcttcccag aaggaacctg catcaataat acatcggn	480
tgtatgttcaa aaaggaaagn tttgaaattt nagccacagt ttaccctgg gctatnaagt	540
atgaccctca att	553
<210> 4	
<211> 565	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(565)	
<223> n = A,T,C or G	
<400> 4	
actgccttct gctgccgctc aggatagcac tggctttcac agggatttgc cttctggtgg	60
tgggcacaac tgggtggga tacttgccaa atgggagggtt taaggagttc atgagtaaac	120
atgttcacctt aatgtgttac cgatctgcg tgcgagcgct gacagccatc atcacctacc	180
atgacagggaa aaacagacca agaaatggtg gcatctgtgt ggcacatcat acctcaccga	240
tcgatgtgtat catcttggcc agcgatggctt attatgccat ggtgggtcaa gtgcacgggg	300
gactcatggg tggattcac agagccatgg tgaaggcctg cccacacgtc tggtttgagc	360
gctcggaagt gaaggatcgc cacctgggtt ctaagagact gactgaacat gtgcaagata	420
aaagcaagct gcctatcctc tcttcccaga aggaacctgc atcataatac attgggtgata	480
tgtaaaaaan gggaaagttt gaaatgganc cccagttaa cctgnngntt tnagtttnac	540
ccttaattt gcaaggctt tggan	565
<210> 5	
<211> 500	
<212> DNA	
<213> Homo sapiens	


```

<210> 8
<211> 649
<212> DNA
<213> Homo sapiens

<400> 8
actgatctcc tttggcctg cttcatttgc ctcagtttcaatccaga acaatatgga
ataattcccg atgctcctat taatgaagta gcacgattt aatctgtatgc ggtaggccgc
ctttgcgc agtagcaat gactggctc gaagagggag atccccgaac aaagagcagc
cttggaaagt ttgacaaaag ctgtttgc gctttccctt atgttgtat tggggccgt
gcagtgaga ccccttcatt gtcttcgtc aatcttctgg aaggatttag cagaactgtg
gttatataa cctacatgtca ggcttattatc tctggatattttatgaaag agtgtgtatgt
ctggatgtca actgagagaa gatagaatgg ctcttgacaa ttatggca aacatcccc
cgccaagcc agaaaaaaagt agcagtttag aatgactcc ctacaatataa ctcagctat
ctccagcaac cactccagca aataaaaaaga atcgattacc tatagcaact cgaggcagaa
gccgcaccaa tatgctaattt gacctacata tggaccatga aggatcatct caagaaacca
tccaggaggt gcaaccagaa gaggtgttgg tcatttcctt aggtacctc . 649

<210> 9
<211> 645
<212> DNA
<213> Homo sapiens

<400> 9
acttagtgca acatattgaa cttaaattcc agttttcctg gaattacttg tgccttgagc
taaaggctgt atttgatata acagggaaagg aaagaaaatta ttttcctat aaaatttagtt
tagtttaaaa acacatataa ttaaacaaaaa taaaaatattt attccatctt ttaaagaaca
tttactaatt cacagatatt acccgaagtt tagaaagtca cctaagaaca attgtttaaa
aattatttag gaaaaatgaa gcaaaaattgt ttcaatctg agattttaaac agccagtgca
ctcctgttcc tcagctgaaa gtccttcattca ttctgaatgt ctgcagtagt attgaattgg
ggagcagtttta gttccaggg acatattcac tcctgttttgc ttctccatc aatctcagcc
cttcgggtga ctgtttggc aaagcctccc ttgtggtaga agatgctca cttctgggaa
gaagaggctc ctcatcttgc agacaagaag cagcacccac tgtttcttgc tccaaaagcc
attaacatta taaactggcc agttgcagtg gctcaaaactt gtaatcccag caccttttgg
gaggttgagg cacaaggatt gcttgagccc aggagtttga gtacc . 645

<210> 10
<211> 564
<212> DNA
<213> Homo sapiens

<400> 10
cgccggcccgag gtacctggc ttaacagtaa tagagaacctt cattataacc atacagacac
agcaacttag gaagacagca ctgatagcat tttagcttagtt gtaaccaaattt ccaaatatgt
aaaatttggaa attatgatataa acatatgcattt ctttagataat aggaatagat gataattttc
ctgttattttt tcaaaaatgt gactgttcag ctgggatccca ttggattata atttacaatgt
tcacataata ttatgtttt caatattgtat gaggatgtta aacaatataa agttggcagt
ttgttagtagt tcagttatcctt agaaatatacat tgaacttcat aagtatcagt tcatttttaa
gcatacagaa ttgaactgtat acttactgaa atcataaaactt cagagaaac aagcccatctt
ttatcactaa ttacttagct tgaataactttt tctatatttaa aataatccta attattgctt
tttcaattat agtctactgtt atttattttt atggatcaa caggtattta tcaaaccatctt
actgtgtgcc caqcactacc tagt . 564

```

<210> 11
 <211> 593
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(593)
 <223> n = A,T,C or G

<400> 11
 cgaggtgcct cgctcgccc attttcttgc agcaagaagg gacgcatgcc tctggcataaa 60
 atccaaccag agagtcaccc ctctcaagct gatttttaa aaatctagat attattttaga 120
 tcatttcagc aaattcttaa tgcttggcc tttcacagta agatgtgct taatcggtcg 180
 gatctccccc ctccctgcca aggagactca attttgcagt tgcccatatc tgccctagtt 240
 aatcggtgct atactaaagg ttctgggagg gtggggacag aatttccccg gtgctaattgc 300
 ggcactgaat cgcaggaggc tgccatgcat ttcttcagtc atctacaacc aagaattctc 360
 agagcagtcc ctccgcagcc ttttgaagct gtgctagagc agaaaagctgc tattgntctc 420
 atctctcaac aagaaaagga tcaaacttg cctcttcaa tttgaaagat ttttttttat 480
 ggtggtgccc ggaagggatt gcaatcttga tnctcaagtt aactttgagg atttggagtg 540
 gtctnccagt taaaactgca gatcaaatca cagaaggccct aacgcctgca tnt 593

<210> 12
 <211> 602
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(602)
 <223> n = A,T,C or G

<400> 12
 acacacaatt ccactctacc acccaacatc aatgaggcatt tattgagcat ctactgaagc 60
 tcacagcatt gtgcaggcag gatacatatc atacaatgc tgtttcctcc tcccacccaa 120
 tgagggagaa ttagatgaga tttttaaaaa ttccctctag ttctacaacc agtattgtat 180
 actgatccaa ttttggaaatg tttagttttaa attaattcaa ggattccagt tgaggaaatg 240
 gtcccaacttc cttggaaatg aaactagctc ggtcaccagg cttagtttacc cacgttgtaa 300
 ttgcttgta ttgactactc caccgttata atgatgaagt gcccccgact tgagatgcag 360
 gcgttagggc atctgtgatt tgatctgcag tttaaactgg gagaccactc caaatcctca 420
 aagtttaactt tgagtatccat attgcaatcc ttccccccacc accataaaaaaaa 480
 aaatttgaaga ggccaaaatgtt ggatccttcc cttgttgaga gatgagatcca ttggccgctt 540
 ttgntntagc caggtttcaa anggttgcca nggactgntr tganaatctn ggtgganaaa 600
 an 602

<210> 13
 <211> 487
 <212> DNA
 <213> Homo sapiens

<400> 13
 gcgtggcgcg gcccgggtac tggaggccat ccagccata ccctggcgccc gggccaaacct 60
 cagatgcctc cttctgggt ttcattgggc accaggatcc atcttcatg aattggatct 120

catcacaatc	tgaacaggaa	ctaagaatct	ccataaaataa	accatcaatg	ataagagatt	180
catagggagc	cttcttgta	cacacaggac	atgtccatgt	aggcttcttc	tcattcatct	240
gttagataaag	ggcagcatcg	aagctctgca	ggtgggcgcga	ggtgaggga	cgacaaggga	300
cagtcaggcg	cacatcccct	agcgggcaca	tgagtgacac	ccggagactt	gtagtggcca	360
cctcaactgc	agggtcagca	gtcaatttct	ccttgatca	tgcccgcgag	tggctctgggt	420
tccggatacc	cttgcgtctg	agttttgtta	gaagggttcc	tgcagtcac	tgcctcacca	480
ggtacct						487

<210> 14
<211> 300
<212> DNA
<213> Homo sapiens

<400> 14						
acagaaaattc	ttaactgctt	atgaaatgct	gattgttaaa	cagcatccac	agctattttg	60
tgttgttcc	ctgaccccac	cctgaagaaa	agaaaaaatta	tggcatattg	aaaacagcag	120
tatgatgtaa	gagaaaagat	cacaaattcc	ttgagggtgg	gtctttcca	tactcataag	180
cctatttata	atattcagag	taatttattt	acacatatta	atattccctc	ctatccatt	240
aattgccaaa	tcatcaaaca	tttatttgagc	actactctg	tgttagggtgt	aagcagtacc	300

<210> 15
<211> 882
<212> DNA
<213> Homo sapiens

<400> 15						
acctcataaac	aatgcctgc	catgtgttcc	agattcacct	tctttctttc	tgccccagcc	60
ctggaatcag	ctgcttctcc	aagcactcag	gactcctctt	aacagagaat	gataaataact	120
tagaaacccc	tgaggcccg	tgtgctcagt	gttctaggct	gtcctcccttc	taagcccttc	180
tcgtggccag	aaccacacaa	agtatcatca	cgacagctt	atagtaagtg	ctgggttttg	240
cagggcaaat	ggccctcttc	ttcacaactg	ttttaattaa	tcctggactt	gcaactcttct	300
cagtgaattc	tagtacaccc	gtcaggaaaag	agaagtggct	ggatgtcgat	gggaacgtca	360
ttgaatgtta	agagcaactt	ttggagaccc	gacacctggc	atcttcctt	ctctgaacat	420
agaggagaat	taagcaaattc	ttcccttaaat	gtccttcaat	aaagtttata	tattttctgc	480
atgcagatct	tatctgtctt	aaaatttacc	ccagataacct	ttttgcact	gtaaaggattt	540
tgttttaaat	tacattttgt	aaccaattaa	attgttggtt	taacaaaatg	aattgatttt	600
atattttgt	cttaaatttg	ctcaactctc	taatctgttc	tgagatccct	attnaggaaa	660
ttacatcaca	tcacatgcc	gtAACAGCAG	ttttatttct	gccttttca	ccctctgccc	720
tgctgaaaac	agtgttgtga	ggctgaggat	gatgtgggtt	acacaaaact	tggctgcact	780
gcagggggga	atgaaatct	acataaccac	ttggaaaaaa	tcgatatgt	tcaatatgca	840
gacgtctcg	ttatcctgca	gaaactggaca	tttgcacgta	cc		882

<210> 16
<211> 568
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(568)
<223> n = A,T,C or G

<400> 16

ggtaactcccg gctttacagt	taaaaccagt	tttctggaa	catttgc当地	acacagggaa	60
aggctgtcct ttaagtag	tgtttactgc	atttc当地	agactaaatg	gacaatgaa	120
ttataaaattc attttttagg	aggcataata	aacttggaa	atatttttc	ttaatttagag	180
ggaagaaaatg agcaaaaagag	aacccgaggc	tctagctaga	agcccgttt	tctctgccct	240
aattgcatca aacaatgcct	taataatctg	tgtcttcatg	tgggaggcat	ctactctgtc	300
ctctacttt tcacttttat	gcaaactcag	ggaaactca	ggggaaaaaa	tgattctatg	360
aaattataat tagagccata	tttcttagatt	ttaattttca	acattggcat	ttattaattt	420
cctgcagctg ctgtaacaag	ttaccacaaa	ctggtaaaaaa	tggcttaaaa	gaacngaaaat	480
ttattnntnct acaggtcaag	gccggaaatn	ccaaatctaa	gcatcanggg	ggtgggggtcc	540
cttggangn tccanggn	ntttttcc				568
<210>	17				
<211>	584				
<212>	DNA				
<213>	Homo sapiens				
<220>					
<221>	misc_feature				
<222>	(1) ... (584)				
<223>	n = A,T,C or G				
<400>	17				
acaactgaag acccttagaaa	taagggtttc	aaccctgggtt	gcccattaga	atcatgaaag	60
agccccccgag attgggttg	aattggctg	cagagactcc	aggccccttc	tttgaagct	120
ccacagatga ttctttctg	cctgagggga	ggtgctgagt	tcccatcacc	caccagcttc	180
atcctacaca ngtcaatna	gaggectagt	gagagtggca	ctgggggggt	gccccccagc	240
gagtgc当地	tagatcccac	caggcccttn	ctttaggcca	gaggttctag	300
gaatgtngca ataaccaggg	ggtgctctga	aaaggmccta	nggctgggt	gcacctgnta	360
aaatnaagcc cagtcttct	ggttgggacc	agaagattcc	naagggcagc	ncgctcttta	420
aaaaccaagt gccttctgn	taaacnaatc	cttaggnccn	ttatgtctgc	agttnttaag	480
ntaangggtt ggttaagntan	taacntccat	taantttnag	tntacactta	agcttttggg	540
ggtatcnnt tnangtgna	ttangnagtc	ttcacaggt	ngtt		584
<210>	18				
<211>	560				
<212>	DNA				
<213>	Homo sapiens				
<220>					
<221>	misc_feature				
<222>	(1) ... (560)				
<223>	n = A,T,C or G				
<400>	18				
ggtaactaaa gcttggactc	catccotgaa	ggtcttcctg	attgatagcc	tggccttaat	60
accctacaga aagcctgtcc	attggctgtt	tcttcctcag	tcagttcctg	gaagacctta	120
ccccatgacc ccagcttcag	atgtggcttt	tgaaacaga	ggtc当地	aagtaaggag	180
ctgagagctc acattcatag	gtgccgcccag	ccttcgtgca	tcttc当地	tcatctctaa	240
ggagctc当地	taattacacc	atgcccgtca	ccccatgagg	gatc当地	300
ttctaaactc tatattcgct	gtgagttccag	gtttaagggg	ggagcactgt	ggatgc当地	360
tattgc当地	cagctgatga	caccaaagct	taggtgtttt	ctgaaagttc	420
gacttaccac ccctgcctna	caactgcaga	cataagggga	ctatggattt	cttaacagga	480
aaggcactng ntctcaangg	cggntgccc	ttggaaact	tntggccca	ccccaaagaa	540

tgtggnttn agttttcnn

560

<210> 19
<211> 425
<212> DNA
<213> Homo sapiens

<400> 19

ggtacaaaaga gaaaaggta	agacat	ttt caaatgaggg	aaaactaaca ggatttatca	60
cttagaaacc tgctctaaaa	gaattcaagg	gaagctttt	aaaaagaagg gaagttatag	120
cagaaggaaa cttagaatgg	caggaataaa	gaaggcataa	tgtatagggt aaatataata	180
gacttctttt gaggtttaa	aaattacatt	tgttatttga	aagaaaaaaaaa ttaacgttgc	240
tgtatgtat tctctgtaga	ggatatacag	ttttttttgt	tgttcttgc ttctttttt	300
taaggtgaag tctctgtcac	ccaagctgga	gtgcagttct	gtgatcatgg ctcactgcag	360
cttcaccctg gttcaggtg	atcctccac	ttcagcctct	tcagtaactg ggactacagg	420
catgt				425

<210> 20

<211> 655

<212> DNA

<213> Homo sapiens

<400> 20

tgttacttcc caagcactgt	agggcgtaag	gaaaatctgg	tccttatcaa atcccaggag	60
cttctgccta gttggggaaag	aaattacatg	aagcaaccag	agttataag gccacacttg	120
tatatcgtag accctgtgt	gacaagatta	ggactgttg	agagaggagg aaaccagttag	180
agagcaaagc tctaccagg	ctccttgtaa	gcctctgggc	tcccccgaga gggcctcgct	240
actctacgct tccctagcaa	cgttgatgtc	cccacaaccc	cacatcagtg cagctgtggc	300
ttgtgtggag gggctctgag	gcctctgagg	ccagatgtgt	aaacagtgtc gaggttcagt	360
aataggatga agtcttcagg	tgtggagcag	cccaccttg	ctcttccat gtctctgtgt	420
tacttctcat attctgtgt	ccttcaaacc	ttcaaggaca	gtattaattt atactagtat	480
ttcttcctca gtttgtgac	ttgaatgcag	tgagtgcct	agaggatcca aggatgaagg	540
aatgcgggtt ggtggttetc	tcttcagaa	tggaaacttc	ccaaaaatgg ggctgcgtct	600
cgccctctcag tagttccct	acctctgggt	cttccaccct	tcaaaatctg gtacc	655

<210> 21

<211> 566

<212> DNA

<213> Homo sapiens

<400> 21

ggtacagccc tttctttgaa	tggggatctg	gggatgcaga	ggagcataat gagcctttt	60
taattacaaa catgtcttc	tctagcttt	aaggttatgc	ctaacgctca ttgccttt	120
gctaaataa ctgagaaaaa	aagttagtag	taaaaaaaatg	ctggaagtct gaaaatgggt	180
tagacagaac ttcatctctg	aagtttttagt	ctgtagccag	attttaattt tggcctgttt	240
tggtttttag atgatagatc	tttttagtgc	tcaacaggaa	tgtaaaggtt gtattaaacat	300
ctagggtat cactgccccat	gttattaaatg	cagcatggta	taattaaaag ttacatatgt	360
aggttcagag cctcttagca	cagtgtaca	ttgttaagctc	ttggagggca ggaatgagat	420
tctagtcctt acgaaaatgg	agtttgggtt	tctatcccta	gcatttcattt tagtgcattt	480
cacgtggtag gaattctgt	aatatttgc	aaagaaaatga	atttctgcctt gttaggttca	540
gcagtgtata cttaaatgt	atgtgt			566

<210> 22

<211> 269
<212> DNA
<213> Homo sapiens

<400> 22
ggtaactaaata gcaaggaata atcctaaaca ttttcccaat aaactgacta agcctcaaaa 60
ggacagctta gaaaaatgtat taacatgcag ttttctttt ttccctagcca attcagttct 120
acttagataa atctggttgc caatcaatac atatataaaat taattttttt ctgctcaatt 180
actaccattt ttcttttttc acctttccc caattttctc tagcaacact ttccctttgg 240
tttgatcagt tgaactcaaa aggttttgt 269

<210> 23
<211> 815
<212> DNA
<213> Homo sapiens

<400> 23
gaggtaacct tcatccatca ggactgcacc tcctttccca tgagccttct ggggtcacat 60
tctcctaact gcagctactg ttgctgtttt acttatacgag ggcctattac gtgccaggct 120
ctgctgtgaa cgcttcacgc ccactggatc atttactcat aatagctcag taaggtagtt 180
accccaatta gccccatgtt agagaaaaac accaaggcac agaggtgagt cacttgtccc 240
aggtcacaca tctaggaagt agtagaacca ggactcagct caggtccaaa gtctcaacca 300
tgggcoagtc tgctcatctt agtcaaacc cccaggctgca ttctgtggtc cagctactgg 360
atcctgcaac ctctcagac tctatccatg aagccaagtg cacaggatct aggacatcag 420
gtccagaaaaa atggggcctt cattttctg gacctgcaga tggcaagga ccagactcta 480
gcctgaacag tgatgcag cccagagaag tggaatcca cagacagagc ctggcctgag 540
actcttactg agactgccc tttggccact cggggagttc ccgtccccctg cctgatcagc 600
agtcttttg ctccccccctc caagagagct gggggcatt cctccaggaa gcctgatatg 660
taacaactc ctcccttattt tcttgctttt cttaaatctc caaagtccctt ggagctgaag 720
ccaaaggcgc ctcatcttagt ccacttaca gaaaagcaaa ctgagttctca aagagggaa 780
gtcactgagc cgggtacctg ccgcggccg ctctga 815

<210> 24
<211> 555
<212> DNA
<213> Homo sapiens

<400> 24
ggtaacctggg cttAACAGTA atagagaacc tcattttatac catacagaca cagcaactta 60
ggaagacacgc actgatagca tttagctgt tgtaacccaa tacaatatg taaaatttag 120
aattatgatt aacatatgca actttatgtt taggaataga tgataattttt cctgtattgt 180
ttcaataaag tgactgttca gctggatcc attggattat aatttacaat gtcacataat 240
attatgtttt tcaatattgtt tgatgtatgtt aaacaatata aagttggcag tttgtatgt 300
ttcagtatcc tagaaataca ttgaacttca taagtatcag ttcattttta agcatacaga 360
attgaactga tacttactga aatcataaaac tcagaggaaa caagcccatc tttatcacta 420
attacttagc ttgaataactt ttcttattttt aaataatcct aattattgcc ttttcaatata 480
tagtctactg gatttattttat tatggatca acaggttattt atcaaacatc tactgtgtgc 540
ccagcaactac ctgtt 555

<210> 25
<211> 413
<212> DNA
<213> Homo sapiens

<400> 25
 ggtacaagct tttttttttt ttttcctttc attgtccagt ccccatgaat 60
 tatttatttg ttattaaatt caactgaatg agattcaaa gcaacgaaaa ttgaagttca 120
 aatgaaacca aattaccact ctgagctcca ggtggccctg acagcccagt tttgtgaagg 180
 gcccctgagg ctgttcaactg aatctgagat gtcaccaggc atggagggtc tctgatcagc 240
 atccagagct ccagagtagg gagcaacccc tcaccaccac ttctgggcc caggcaaggc 300
 agagacccaaa agaaccctgg taaggttccc caacctccat gttcatttaa aaaaaatgtt 360
 taaaactgac aaataataat tgcatatatatt catggggtcc atcatgatgt ttt 413

<210> 26
 <211> 638
 <212> DNA
 <213> Homo sapiens

<400> 26
 acttagaaatc gtgtgtccat ctgaagccag tgcagaggcc aaagtcatgc aatattaat 60
 gaccatcag atcaatcaaa atattatcg gtttaatatac tctatgaata aaacccattt 120
 taaggaacac cttccaaact gcacaggtaa gttctgctat gtagaatcgt gccagacttt 180
 ctggaaagat gccattcta attaataggc tcatcatatc accccccagga atgttagtcca 240
 ttacaaagta taaattgtcc ttatcttgg aatgataata tagacgaact acccattcat 300
 tgcagcttc agccaggata tctctctcag ccttaacatg agcgacttga ttgcgaagaa 360
 gaacatctt atttgcaga gttttgtt catacaaagc cttagtatct acttttcttg 420
 ctagacagac ttcaccaat gctcttattc ctatgtctt tatcttcaca aacatagact 480
 tgtccatattt agccctttt aagacggatgt aatttagattc ttttggcaa agcatcttcc 540
 tcatttgcattc ctgggcatttct tgagataatc caacccgcattt catttcatttctc tctaatttgtt 600
 ttttacatg tagacgctgc tgatgagatt tgagtacc 638

<210> 27
 <211> 236
 <212> DNA
 <213> Homo sapiens

<400> 27
 ggtacacgctc gttctcttca agatctcata gacaatcggt ctccgggttt tgctgtcgaa 60
 aaaggaatcc ttatcagaca agtcaaatacg atgctgttcc tcccgggaga agggataggg 120
 gagtctcttc atggctgtgg gctctgtctc agccactttt ggctggatgg gatctgtgtat 180
 tttctggagc acagagttga ttttttcag gaggccacgg gtctcattaa tgtgg 236

<210> 28
 <211> 607
 <212> DNA
 <213> Homo sapiens

<400> 28
 ggtaccacgg gaaagatcag gactttggct gcaccctttt ccagctccctc catgttacag 60
 atcatatggg cacaagtggt aaaaatctcc acggctcggt aacgggttcg aataccatac 120
 acctcagcca tggtaagat cttatacatc tctgggagaa tgacaggagc aacaaagtgg 180
 catctgtgtg tctgttactt tcacgagtga attctgtcag cacacgcattt gctccatgg 240
 cggcatttaa gtctccgcctc accaacatct ccatgagcag gttgaagagt tggggccaaag 300
 cttcaggccca gtcccagtgg gcaatggctg acactgcata ggccacactg gagegcactt 360
 tgcttatacgta ttctctcaac ccattaggca atagctcccg gataacaatt tttggccctt 420
 ctgttagtttcc agaggccta aatttctctg attgggcaca ccagtgagtc tccacatattt 480

gtttcaagat gactgatgcc agctgacgga ttgccagtgc cccctgggga tctacagtca	540
gttctgcca gtgaacacca aattcctccg tcacctccag caccttaatc tggcttcag	600
cagccgc	607
<210> 29	
<211> 612	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(612)	
<223> n = A,T,C or G	
<400> 29	
ggtaactcgctttaccc ttctgtatatt cgccctaaga ttttacttcc tattatata	60
tggttgcagt ataccagggt gaaggacctg tcacttctta atgaatggcc ttggtaagg	120
gtttttaaaag ttcagggtca gaaatgtga tgaaaaaaa tggtttttaa gaccttcaca	180
ggcttacttag tttcacacagca ataaatgatt ctaccaggat attcttcgtg gacttagttg	240
gcctggaggt agacttttaa ggatatatct gtgcttctga ataaaattag ctaagaattc	300
aacatttatgg aattcaataa atccagggg gaaatcgttg aattaggata cactgcctct	360
taaattctaa accctatata tcccacctgt tgcattang gggcatgtgt gcatgtggca	420
tcaaaaactag ctngggaccc tttttttcc ataaaatttg gncntactca tccttggng	480
aaaaanccctt gaaggaaaaa tctgggttna aaaaaaaagct ttggctgtg gaccaacctt	540
ccangttccc nggaaaggga ttnggaccta gnaaaaannc cntggaaantg gcttgggcct	600
tggattactg cn	612
<210> 30	
<211> 286	
<212> DNA	
<213> Homo sapiens	
<400> 30	
ggtaactgtta tcatacgacg actatccaac atgaaaagtaa tcttataatt tgcatgg	60
ccccactccca gcttttcat ttagcttca atccacttca tatttggc agaccaaata	120
acaatgtcat aatcttcata ggcagatgtt agaaattcat gaagatatgg ccgcattaat	180
tctaccccaag tctctgcaca agacctgtgg tcaaataatg tataatcaac atctagcacc	240
aaaagctttt tccctccctt gggaggattc aaaatttcca ctttgc	286
<210> 31	
<211> 606	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(606)	
<223> n = A,T,C or G	
<400> 31	
accttatttt gctgagctta ttatataata ccagagcaga atagaaggta gacccacggg	60
aattcaaatc ttggctgtgc cacccttc ctggcaagt cacttcctct ctctgtgtcc	120
atttccaaat ctttgaatt cagttaaaa catcaatttta aaaacagggt tgggtgaag	180

attttatgag ataatgtata aaataagttc ttacccaagta tcagctatga tattttatgat	240
attttagagt tattaattat actgtgagga ttaaggaact tggcagagga atacagtagg	300
tgccttaatg gtatcctaaa atattattha aaaataaaatg acagtaatgg gaataccgca	360
attactttg caccacacgtt ataatagtag gatatttaaa gttgagatca caggaatcag	420
tgcagatatg tctcattttt cccacagggtg gcgctcatgg ccgggttaaa ttctgaaaaa	480
ccttaaaaag tcccttgggc gngaaccnnc ttangcgaa ttcccgnca ctngngggcc	540
gtctaangga nnccnatttg ggccaacntt ggggaaccnng ggcanaaccgn tccccgggna	600
aatggn	606
<210> 32	
<211> 615	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(615)	
<223> n = A,T,C or G	
<400> 32	
ggtaactcatg catcttcatg agcagctctc ttatcttctc agtaacatag tcacccctc	60
actggaaagg tctgtatttt atactctttt gggtaagtc actggcagac agaaacatca	120
atatcctaattcaggatgga tgccacagtc tgcccagtt gctcattat tagataattc	180
tttaaaaata ttgacaaacc attaattaag agctgattat tcacacatca aacaatttt	240
cacttaaact agaggatttc tttaaatagc agctccccct ggctgcattt atctctttgt	300
gtaagtttat tagctatgg gcagagaaat ttcaaatgc cagctacaag tcagtgcagt	360
tgaagaacag aatgtaatgg agggaaagta ttcttggaaag catggcattt attccaagaa	420
attatctaag aatgnaattc ctttggaaag tgcttaatat aattatatat gnaatcncaa	480
ttaatttctt aaataantct ngggaatggc ccagattttc tggtttggaa aagcccggtt	540
nttngaattc caaaataantt gnccaggcatt tttnnnnnng nccnnngtng accnnggtn	600
gattcaangt ttccnn	615
<210> 33	
<211> 297	
<212> DNA	
<213> Homo sapiens	
<400> 33	
acagacttcc atctcccaa catcttgaag atgtatcaat ttttttaaat taagaattac	60
ttaaacacgc actcatttca gaagataggc agaggttattt aaacttctgc tccaaatcttc	120
tcattattcc aaggttcata aaaaccactt aggaagacct tggttactgt gacacatcac	180
agctataagt gtaggtggcc tagactctcc ctatcttta gctgccctga gtcatgtgaa	240
ataagatagt gaccccttcc atcatccctt gaggctctct ccccgagaga gagtacc	297
<210> 34	
<211> 468	
<212> DNA	
<213> Homo sapiens	
<400> 34	
actgttttagt gggatccatt ttatacaggt gacggtcagt gacaaaaatt gctctgtctt	60
ccaccttact aaatcgattt accttacggc cgtgacagga aaagaggaca ttcatgtatt	120
tgtccttccg tttcaattca ttagcaacag ggacaaaagt gcctgaggc tgaggtgtat	180

ctggcttga agcaagatag ttgcctccc aggccctctg gagcccgagg tcagcccttt	240
gacccttcaa cattccacg gctgcaacct ttgcctgac ctggggcagg tctgaggccg	300
aatgcttt gatgagctgg gatgcttcc atctattgaa aatcgctgc agggcctct	360
aaaaacggcg aagaacttta ggaggcgtt gccacttcac gtgcctcccg tagtctcgca	420
tggcttgac gccatggaaa cgtctggca cctcgtggat gtacctcg	468
<210> 35	
<211> 314	
<212> DNA	
<213> Homo sapiens	
<400> 35	
ggtaatattg gctccagata aaatctctgg tggccacatt attcaagact ttttaaagtg	60
ctttatctga aatatcttca tagacatgaa tatgaaagt ctgaaaattg ttttcaatgg	120
cccggtgttc ccagaagatc ctaatgtaaa gatgcatatt tataaagtaa ttatagaat	180
aggattaaac atatgttagaa ctttataaag aaaatataat gactttggga ccaattacag	240
gcccttgaac agccacaata ggctcaggag ggctgtgctt ctgtgtaaag tccccctccca	300
gacaccacca gggt	314
<210> 36	
<211> 600	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(600)	
<223> n = A,T,C or G	
<400> 36	
acccaatgtc atgggaatga tgtgcctgtc acccccattt gacaagctgg ggaacagccca	60
tagggggacc agcttctgcc agaagtgggt gtctctttt aattttccaca actatgacaa	120
cctgaggcac tgtgtctggaa agtttagaccc acggcgtgaa ggggcagaaa ttggaaacaa	180
gactgtggtc aacctgttat ttgctgccta tagtggcgat gtctcagctc ttgcaggtt	240
tgccttgtca gccatggata tgaaacagaa agactatgac tcgcgcacag ctctgcgt	300
tgcgtcagct gaaggacacca tcgaagttgt taaattcctg atcgaggctt gcaaaatgaa	360
tccttttgcc aaggacaggt ggggcaacat tcggctggat gatgctgtgc agttcaacca	420
tctggaggtg gtcaaaactgc ttccaggatt accaggaatt tctacacaac cttttgaaac	480
tcaggcttga gggcacaann tgaaggccct ntccnaaang aaactttaa aaagccttng	540
gttttaaccc ncgggtcant gnnnaatccc tggttaana aaaaancctn gacttggccg	600
<210> 37	
<211> 516	
<212> DNA	
<213> Homo sapiens	
<400> 37	
ggtaactgtg taggaaagaa attaaggaca gtttagtatgg gcctgtgaat tctggcatac	60
atgtttaaat caattacaat tatgcaagta aaaaaaggat atccctact aattcatgca	120
ggctgaaaag tcttagtatgt aaacctgcac cagaatctaa tttaagaaa caggcaccta	180
attttggattt taaaactcac tcacctgagg aaagcttcca tcaggctcac tatgcccctt	240
gtgctgactt gcacactaaa attagcaaaa cagactccaa ctattaaaa tatcaaactc	300
ttcgtataca tactttgtt ttaactttaa gtatgcttag agcaaagtag gtgccttac	360

taagctatat tttagagcact atggggggag ctctagtgtg agaaacagtt tctcaagggt	420
aacaatccctaa aaatcttagg atttggaaatg aaaactttca ataatttcaa agtattttga	480
gcagaaaaat acatttgcata caagtataga aagcgt	516
<210> 38	
<211> 319	
<212> DNA	
<213> Homo sapiens	
<400> 38	
actgaaaagga tgaaaagggtg gtgtcatgtt ttggggagaaa tcttacttct caaatggaaa	60
ttgcactttt tgctgaatcc tttgcatttt ttggtagta agcagttcat tgagtatcag	120
gtcctcaaag gaatgagttg gcccggctag ggtggggccct cttgaccta cttcagaggg	180
ggccttggtc cagtaggtgt gaatcaggga agccacatttgc tccctcagggt gctgtatgaa	240
gctgggtgtg ggcggattcc tcccacaccc tcacactggc ctgcctccaa ctcatacaga	300
tctcgagcg gtcgggtacc	319
<210> 39	
<211> 592	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(592)	
<223> n = A,T,C or G	
<400> 39	
acctacactt ggaataagac actgttctga atttgtgtca tagtttttt ttcataattga	60
cattaataga ggcttctatt ggggttaggc taaaaatctt ttgtaaaaaaaaa ttttaatgaa	120
cactgctgat tttctccgt taattatcag ttataagct aataaaaaact ttggcttgat	180
attacattct agtggttaaa tttgtcatag aaggaatatgt tgctgaggtt cttatgtatt	240
gtaatcttga gattacgatt ttttatttga aaatttagaca aagtttggttt ttaattttta	300
tttcatttta ataatttgagt tcagattaaa tgccaaggct aaatttgaat tccgttttc	360
tctaaaata ctgnnnnctt attattttaa ggcatccctt ggaggctaa aattgggcat	420
ttataggtgt tgatgaaagc acacccgatt taaagaatgg atgaccccccc ttctgnatna	480
aacctttaat ngtttttaa annccaaact ttgggtccct taaacctngg acctcccttc	540
ccnnaatccc cttaaaaaaaaa ncntnggcnt tngcanaatt cnnttgccc aa	592
<210> 40	
<211> 577	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(577)	
<223> n = A,T,C or G	
<400> 40	
ggcacacaac ctaaagggtt cactgaatgc gaaatgacga aatctagccc ttggaaaata	60
acattgtttt tagaagagga caaatccctaa aaagtaacat cagacccaaa ggttgagcag	120
aaaatttgaag tgatacgtga aattgagatg agtgtggatg atgatatcaa tagttcgaaa	180

gtaatataatg acctcattcag tcatgttccta gaggaagggtg aactagatat ggagaagagc	240
caagaggaga tggatcaagc attagcagaa agcagcgaag aacaggaga tgcactgaat	300
atctcctcaa tgtctttact tgcaccattg gcacaaaacag ttggtgtggt aagtccagag	360
agtttagtgn ccacacccatg actggattt aaagacccag cagaagtgtat gaaagtccaa	420
accnngaaaa ttccaagaac tcgngtctn gactggatct tgggganaac ccttggtnt	480
taaaaannggg acnnttttnc cggcttgggg ccnntttaga tttcaagtt tcangaaccc	540
aaacggcct tnattaaanc cggngattgt tcgaagg	577

<210> 41
<211> 490
<212> DNA
<213> Homo sapiens

<400> 41	
ggtacacaag agtatacgta tataaaacta aatgaagtca atcatattga ttatcccccc	60
aaaaaaaaata taatctaaag aataatcagt tcctaaataa ttgaaagctg cccttacaaa	120
ataaaaacaaa agaacacaca tttcggtgt tgcccaggc tggtctcgaa ctctgggct	180
caagcagtcc tcccaccccg acctcccaag atgctggat ttcggacat gagccaccac	240
gcccgccca aagctgcctt ttttaacat ggatttttt tccccccattc gtgtgtctca	300
gaagtcatgg cctcttattt ttctctgcta atgtgtgctt taacaaacct gttaaaacg	360
acaaggcctt aatcaactgg ggtgtttgt ttgtttttt tcttattttc ttaggagtca	420
gtggatcggt gggaaaaatg ctgcttaccc tggccctgg gctgtagaaa gaagacacca	480
aaggcaagt	490

<210> 42
<211> 571
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(571)
<223> n = A,T,C or G

<400> 42	
ggtaacttgcc tttaacttt ccccccacatt actgttgagt catgaaataa tgtttaagtt	60
gttatttgca tgaaattaa gtaggtgtt tatttatcta aaggaaatcaa gtccactctt	120
ctgcctgaa catttggtaaaaactaacc aaggtaaaat atttatttga aagcccaact	180
ttgatgttaa atattcttga ataaatctgt tattttaaaga atatcacatt attcaatgca	240
tataaaacta tcagaagttt gtaaatcata ccagcactaa aaataagaca attggaatat	300
attttagcat cagtttacaa acaactttat tatcaacaga aatttttagct cttttcttt	360
caagatataat cacagctgct ttgggcagta gctgaagccg aagtatgaac agtccatttt	420
gtttcttaaa atttgaagtc gtgtctgtcg tagcattttt actaccagca gtatgttact	480
taaaaacta catggcttcc tttgaatttta ttgaccgna ttatgtataa gacttgaaac	540
aattgccatc ttgttagnta tgcctgggtt c	571

<210> 43
<211> 708
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1)...(708)

<223> n = A,T,C or G

<400> 43

aggtaactgca	aaaatgaagt	attattctct	aagtattcat	tttatccctt	tcatttcagc	60
aaaatcacac	attgaataa	acaggatcg	aatacgacac	ttgtcttcc	tcttaattt	120
aggaatatat	tgttagatt	attgtcata	ttagacaact	gcctcaaaaa	tgtttaatg	180
ccatccaata	aataaacttt	tgatagatta	tgacttttt	taatttaag	ttgttaagaa	240
tattaacttt	gagtctccta	ttaatattct	aaaagctagg	attcaattca	gcagtttct	300
ataacatccc	agaacccaag	gcataactac	aaagatggca	attgttcaa	gtctattaca	360
taatacccg	caaataaaatt	caaggaaaag	cccatgtagt	tttaagtaa	ccataccctgc	420
tggtaagtaa	aaaatgctta	cgaccggacc	acgactttca	aaatttttaa	ggaaaaccaa	480
aaatnggacc	tngtnccat	tacctttgg	gnnttcaag	cntaccttgg	gccccaaaag	540
ccaagcttgg	nggaatataa	tccttggcca	aaggnaaaaa	ggaagccta	aaaantttcc	600
ngggngggaa	naantnaaaa	gttngtttg	gnaaaaaccn	ggangcccaa	aaaattttta	660
tttncccaa	ttggggccct	naaattttt	aaagggcnng	ggganang		708

<210> 44

<211> 632

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(632)

<223> n = A,T,C or G

<400> 44

ggtaacttagt	ctattaaatc	tacctgctta	aaaaggtttt	gaactgaaga	ttccaggagc	60
tgagcagctg	cctcttcaaa	ggtttgaga	gttaacaattt	ggacctggta	gtttttgcta	120
acaggggtgga	ggccgttgat	catgcctca	gtggtgatga	tggccaggtt	tgcaccgcag	180
gggctcaactg	ctatccctgt	agtccttact	gagccaaaca	catctgagag	ttaatcaac	240
tgggttcaa	acttcaatgc	aacatctgtt	aaaatggaa	ttagctgcct	cacctttccg	300
tcactggagc	aagtataagac	tgttccattc	tgtttgtctg	cagtcatgga	gacaattgc	360
agttagttga	aggcctgtga	catggaaattt	gtgaaccatt	nagccctgt	ttggagatca	420
gaagangaca	ccaaaattca	taaganccctc	ttcagcccc	cttactaaag	ctgcnactac	480
acttttgg	aaggatgaa	taaangtgc	ccacattng	atactgngca	cnagnact	540
tgggnccatt	tctttccnc	aagannacca	gggttgnctt	aaagnggaaa	tanncttta	600
cngnttnaa	aatnccncng	aaaaatttt	tt			632

<210> 45

<211> 664

<212> DNA

<213> Homo sapiens

<400> 45

ggtacccggt	ctacagtaga	gaggttttat	aaaaataaaa	tacaagacca	aattcaaaga	60
gcttaaaaaa	ccacagagcc	agacaatgt	gagagttat	tatgagcaaa	caatgacatt	120
acagaagtga	aagtgtcaa	gtccatcaa	gaacaagggc	tctatttcac	tcccatgtgt	180
caccataata	aagacagagt	ccctgatctt	aaaggcatca	atttgcccc	actggaaagcc	240
ttaatttgtaa	ttcattaata	cagcagcatc	ctaaaagtta	ctgcccgttc	taggaatcca	300
aacaactggt	tttaggtcct	aaagaattt	aatcattaag	aaatttaaag	tacccactct	360
ggccagttg	atggctgcga	agagagcaga	aggggtgctg	ctgttaggaaa	tcaatggctc	420

ggaagaccac actgaggaag gtgtgagttg atactggaag atctccaggt ttgaggcatc	480
ttcagaggtt tatgggttgt ttgtgtgt tgagggtgt gtagcgacgc agctccctag	540
ggaattagaa gttttattt aacatttacc ctgtgacagg cactgcaggc attcagcgcg	600
cagtgtcatc ttcattttac aggtgaggaa aagactcagg ttcaagtaga tggtaaggc	660
cagt	664

<210> 46
<211> 633
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(633)
<223> n = A,T,C or G

<400> 46

ggtaacgttt tatggatgg gcacactaga ttagatggaa gaagatgtgc cagtatgtg	60
gagacaggaa gtgtgggaga ggagcaggtt gagctcagag acggtcact taggcctgtg	120
gtcattgggg gtgacccaag tagccagcag ctgcccagcg tttgtgttt ctctcctggg	180
tccctaggag tgaattttgtt gtaagaacaa tttgtgagggt tttgtgc ggggcagtta	240
gcagttgtca gaccgggtgcc accctgtcat tttttttttt gaaaaatcagg actgaaagg	300
gcattaaggat tttttttttt accctgtcat tttttttttt gaaaaatcagg actgaaagg	360
aggaaaaggcc ctgtttttttt gttttttttt tttttttttt gaaaaatcagg actgaaagg	420
acctgccccaa agctgggtcc tttttttttt cttttttttt tttttttttt gttttttttt	480
agnccatct cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	540
gctgtatgtt gtgtttttttt gttttttttt tttttttttt tttttttttt tttttttttt	600
agtgtcttctt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	633

<210> 47
<211> 433
<212> DNA
<213> Homo sapiens

<400> 47

accagttgtt cttttttttt gttttttttt tttttttttt tttttttttt tttttttttt	60
ctttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	120
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	180
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	240
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	300
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	360
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	420
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	480
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	540
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	600
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	633

<210> 48
<211> 633
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(633)
<223> n = A,T,C or G

<400> 48
acttcttcag gtaacactgt aaggatctcc agcaaaaaag gcaaagaagt cacatcatg 60
ctgtatTTT ccaccagtgt ttgcacacat ccTTccagg aaggcatctg tagggcaaga 120
tctgtatTTG ctaaAGCCAG ctgcgttaca atAACAGGTG acaagtcttt caagtctgg 180
atATGGGTTA gcaatgagTC ccgtAAAGAG gcatgagAGT ctgtggggag ctcataaaAT 240
gaggTCTGAA tCTTCATTT catggTCTGT gcAGcAAAAT agcatgACTC cacatCCTGC 300
cgGAATCTGTA acaACTGGTC tgAGATCTCC catGATGAA ccGAACGCTG cAGCTTCCC 360
AGCNAAAAAG AGGNGCCGCT CCTTCCCCTG TGGATCTGG GTTCCGTGGT AAANCGCCT 420
GCACTGGCTT GGTACCACCA ATAAAGGNCA ATTNCGAAA AAAAANAAA AAAAANAAAACC 480
TTGGCCGGGA CCACNCTTAN GGCgAAATCA ACACACTGCG GCCGCTTANG GATCCACTNG 540
nACCAACTTG GCGTANCATG GCNNACTGGT TCCTGGGNA ATTGTANCCG TTCAAATTCC 600
CCAATTACAA CCGANNCTA AANNAAAACTN GGG 633

<210> 49
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 49
ggTACCCCTC tCTCACACAT gTCAAATATG aAGAGGcAGA AGGAGCCAAT ggCAATGGGT 60
ccGACTTGCT tCCAATAACCC tGCGATGTGG ttCCGCTCGT gCTGATCCAT CATGTGCTCG 120
ccACAGAAGA tGATCCAGAA ggACAGAAGC ATCGCATAGA AGATGCCCTG tcGGATGTCA 180
ccAAACAGCA gCATCCAGGT ccAGTCAAAC CGAGTGGAAA ACCATTCAC tGGGATATTG 240
ataAAAGGTCA tGGAAATCCC aAGGGCAAAAG ATGACTTTT tcAGAAGCAC CGGGGGTCCG 300
gACATCATGG tGATCCTCTC CCAATACCAC ACCATAATGA tGAAGATGCT GGGCGTAAg 360
gaAGGTCTTC atGGCAAAACC ACACCTTGGT gaAGCCTCCA tTTTGGTGGA tCCCCACCAA 420
cccGGATATC CTTTATCTCC CAATTCACAC ATTGATTCT tCTTCTTATT CACAGGcAGN 480
cgGATGTTNA aANGNAAAAC tTATGGCCAC AGACCCATTt NATGAAAGGA AGACTTACAT 540
CATAGTACGG CCTTATGCTT GGATCTGGA ANNTGAGGGC ATTGAGNTCC NGGACTGCG 600
gcGGGcNTTA aANGNAATCC ACNN 624

<210> 50
<211> 733
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(733)
<223> n = A,T,C or G

<400> 50
ggTACCCACAA AGACAGAAGC TTCACAGGAA gAGCGGTCTA ATTCAAGCGG CCTCACATCT 60
ctCAAGAAAT CACCAAAAGGT CTCACTCCAAg GACACTCGGG AAATCAAAC TGATTTCTCA 120
CTTTCTTATT GTAATTGTC AGATGTGAGT GCTAAAGATA AGCATGCTGA AGACAATGAG 180
aAGCGTTGG CAGCCTTGGA AGCGAGGCAA AAAGCAAAAG AAGTGCAGAA GAAGCTGGTG 240
CATATGCTC TGGCAAATTt GGATGGTCAT CCAGAGGATA AGCCAACGCA CATCATCTTC 300

ggttctgaca	gtgaatgtga	aacagaggag	acatcgactc	aggagcagag	ccnntccagg	360
agaggaatgg	gtgaaagaag	tctatgggt	aaaacatcg	gggaaagctg	gttggatagc	420
agtngatgat	gaccnaaatc	tggantcttg	naagaatgac	cggtnattan	ggntccaaaa	480
attnaaccc	ttangtttg	aaggggccna	aacttnggac	cnnaaanctt	cattgggatt	540
taaccaggtt	gnacnnttt	gggcacccca	ttgaccgna	tttccccat	tgggaccttt	600
tcgaatttct	tanaaaaactt	gnccnnngga	aaaaaggaa	cccggaaaaa	agggtaaaaat	660
ggaaaaggaa	aaacctggnt	tngggaaaaa	aaaaacntt	gcccaaanaa	aaaaaangaa	720
aagcccttt	ttt					733

<210> 51
<211> 565
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(565)
<223> n = A,T,C or G

<400> 51						
acattaagtc	aagattgagc	tttgatttaa	aaggaacata	aatcctttac	attataaagg	60
gaagacataa	atctctccaa	tctaaatttt	ctcatcttgg	atgtatgtcat	taaactgcag	120
ctcaactga	gattatgtt	gaattttatg	taaattacat	cttgaacaa	atgagaacaa	180
ataactatc	tgcagaatat	ataaagaacc	ttcattaatc	aaaaggaatt	agacaagcac	240
ctagtttaa	aaaataaatg	gtgaattatt	taaacagaaaa	cctcaaaaaaa	gaaaatatca	300
gagtggccaa	taagcatac	gaaagataca	caacatcatt	agttttaag	agaactacaa	360
attaaagcaa	ccataaaagat	acctcccaa	cactacnaga	atgactaaat	ttttaagtc	420
cgacagcggtt	gtgcccgggt	tcccaataacc	actcaggtt	agtgatttct	ggaanggctc	480
cagaactcag	aaaagctata	cttgctatcc	tannggtatg	ggttgtacn	gtggaaaaat	540
cccggttaaa	tcaaggtaaag	acccn				565

<210> 52
<211> 637
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(637)
<223> n = A,T,C or G

<400> 52						
ggtagttcc	aaagaaccaa	ctgggtcttg	atctgctcct	gagagataac	cttcaaatcc	60
ttgaaatatac	ctgcatgata	agagtggat	tgtaaatgtg	gggccttcga	tcatgccaaa	120
tagtttatgc	taaccatgtg	atttatggtg	gggaacttga	ccatgctgtc	agtttgacat	180
ccggaggggc	cgagtgttaa	gtactaagg	ttggccacat	ggcaatcca	tgcttcgtta	240
actgaaggct	aatagaatct	ctagacaacg	aacagcttgg	gtgagcttcc	ctgcttgata	300
atattccaca	ttgnnttcgt	gaagaattga	acattctta	cacagttca	ctaggagcag	360
acaactggaa	atttgcctgn	gnctcttt	tggagaact	ctgggnctt	tacctggatt	420
taaçcnggat	ctcttnactg	naaccaacn	ttaccnntag	tatngccaag	gataacttt	480
ttgaagtctg	ggagtccctc	cgaaaatnct	taacctgtat	gnntgggan	ccccggcaan	540
cttgnngcct	ttaaaaattan	ncntttgna	ngtggggggg	gnnttaaggg	ggtttaattn	600
gagtncttaa	aactaagnng	gggggnntt	ttttgg			637

<210> 53
<211> 632
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(632)
<223> n = A,T,C or G

<400> 53

ggtacatcca agatttgaag aactgaaata aatcagctt aaacctgctt tttaaaaata	60
tctgggttgg aatttgcccc tgacaataaa taaaatgatg agtgatgcaa gtgacatgtt	120
ggctgcacgc ttggagcaga tggatgttat catagcaggt tctaaggctc tggaatatc	180
caatggatt ttgtattgcc aatctccac ctctccattc atggaaagt tgcgagctct	240
gcacccctgtg gaagacctgc gtggattgtt agagatgtg gaaacagatg agaaagaagg	300
cttgagatgc cagatcccac attcaacagc agaaacgctt gttgaatggc ttcagagtca	360
aatgacaaat gggacaccta ccagggaaacc ggagatgtt atcaagaaag gctggcacgt	420
ttagaaaaatg ataaaagaatc ctcggctt canggttaagt gtgntaacag accagtggan	480
gctnanggag agaaaatcn aattggagt ttggcttggaa aaccngaga gaattgaatg	540
ccccgaagaa tgctgcacag gagctntaat tggacttctt aaactchaaan ttggactgan	600
gctgaantt acctgagttt actgnnnntgg tn	632

<210> 54

<211> 661
<212> DNA
<213> Homo sapiens

<400> 54

acaatagaac ttccagaaaa ttctttactt ccagcttctt ctatgttgc tggcacacaa	60
agtaaggctg ttgcatttca tgcataaat attaactttt agtgtttact aactctgtgt	120
tttgcttacc tggctttct tccttgaatg tgcttaattt tttttctcc aagaggaatt	180
atttaaaaag acttttgtct gtgacataac caagatttat tctgttacc taaggaactt	240
attttctttt ttgcatttcc atttattctg agtcaatttta tttgtataaa gtgaagaatt	300
ttaataactta gaaataagtt gtaaagaaaa taatgagaat cttaccatgc ttagagggaa	360
cggtaatttc tagaaatagt taaaagatga aatactaaga tattattttt cttctttat	420
atagctgtat atactggtag tatgaaagca actagtgtca ttgatgattt ttgggggggg	480
tattttgtt ttcaggctt gctgcaacct catttagaga gggttgccat cgatgctcta	540
caggttatgg tggttggtag ttccccacc aaatcgtaga aagcttcaac tttaatgcg	600
tatgatttcc cgaatgagtc aaaatgttga tatgccccaa cttcatgatg caatgggtac	660
c	661

<210> 55

<211> 628
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(628)
<223> n = A,T,C or G

<400> 55
acaactgcct acattcttc tgtttatcac ttcaagttaga agtgttacat tcccaaactc 60
taatgttaat ccgagaacgg tggggagacc ttgtgcaggt ggaaaggtat catgctggaa 120
agtgcctctc ccttcagtt tggaatcaac agttcttg gaaaaaact ggaacagcat 180
ctgttcacaa attacaatt aaaattgtat agaatgtatgt ctccaagcct ttacagattt 240
ttcacgatcc tccttgcca gcttctgatt ccaaattat agaaagagcc atgaagatcg 300
accactatac aatagaaaaa ctctgtattt acagtgcctt gcaagagctc atcagaagct 360
tcaagaactg aaggccatc tttagaggctt caatgccnat gaaaactctt tcatagagac 420
tggctccagc tcttgggtt nccatcttgg agccctgnng naattcanan tggctgccc 480
tttgnagaat tacatttttgaaggncttca tggagctta tngacttgnc aggccctntg 540
ggtaatggg aanctnggat gagatttcaa ccaatntacc cggattanca cttaaatgg 600
nttggcaaaa ngttcaggcg nntnaaaaa 628

<210> 56
<211> 635
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(635)
<223> n = A,T,C or G

<400> 56
acctcagctg ggaaccgtc ctagaaagag atggccacta tgctgttagct gccaaatgct 60
attaggggc cacttgtct tatgtgcag ccaaagtttt ggccaaaaag ggggatgcgg 120
catcaaccttgc aacggctgca gagttggctg ccatcgtagg agaggatgag ttgtctgctt 180
ccctggctct cagatgtgccc caagagctgc ttctggccaa caactgggtg ggagcccagg 240
aagccctgca gtcgtcatgaa agtctacagg gtcagagatt ggtgtttgc cttctggagc 300
tactgtccag gcatctggag gaaaagcagc ttccagaggg caaaagctcc tcctcttacc 360
acacttgaa cacgggcacc gaagggtcnt tcgtggaaag ggtgactgca atgtggaaag 420
aacatcttca gccttgaca cccctgaccg tattangaa nccttnanaa acttgagaac 480
atnagttacc ttggggccgga acacccttan ggcgaattcc acnactggg ggccgtacta 540
nggggnntcca acttggggccc ancttggggg aanaatnggcn aacnggttcc ttgggaaatg 600
ttacccttcc aatcccncaa nttnaaccgg aggn 635

<210> 57
<211> 345
<212> DNA
<213> Homo sapiens

<400> 57
actgcttggatctc tccaagctgt gcacacacat aaggcagatg atgaccattt 60
gaaagatgag aagggtccggg aggaaagcat atccactctc atactcctcc tcatcctcac 120
tggccaggct gaggttgggt gaggaggcga ggtagaagag gcagagggtt aagtccctca 180
ggactgactg gcaaagttagt gtcagctctg agtccacggg gctgttttgc ggtgttagga 240
ggctttgcag atacataaaat ttcactagca accttttaat gtcttacat cgcttttgc 300
caggagacag ttcccgagtc tcacacttct tcagttgggtt gtacc 345

<210> 58
<211> 638
<212> DNA
<213> Homo sapiens

<400> 58

ggtaactcct	cttcctcctc	atcctcacta	gaggcttctt	ctgcggcatg	attagacctt	60
gggggaggag	cagtggcagt	gccatctgcc	ttctggatcg	atggcttctg	acagatgtat	120
ttggggtccc	ttccaagatt	acagattct	tcaagtaact	tgatgatggc	agtcggtca	180
tctgtttaa	gggtgggctg	atgtctcatg	agctcatcga	cagcactccc	cagggttgat	240
gcagtatccc	caaggggatc	agaacttctc	ctccctccgca	tggctggag	gtaatctgga	300
gacagaagaa	cttgaagag	gcgttcaaaa	ggctgacact	gaacaaaaga	ctgaagacct	360
cgggcattca	aacagagtgc	actgaataca	tttgggaggg	agccaaggac	ttcacggta	420
gcaggaacat	cttgataaa	gcagtgcatg	cagcatgaca	tctggcaatc	cattgtcctg	480
gagtgaggag	agcagtgatg	gttctgaaa	tacaaacaca	gtcaccactt	cagtagctag	540
gaggaagagt	gatgggccac	agtattctgc	attgctgatg	atgtttca	gggaggtagg	600
cagagaacca	tccatcacat	gtcgtatgcc	atctgaga			638

<210> 59

<211> 728

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(728)

<223> n = A,T,C or G

<400> 59

gcgtggtcgg	cggcccgaggt	accatgcccc	gctaattttt	ttacttttag	tagtgacggg	60
tctcaactgt	ttgccttaggc	ttctcaaact	tctggactca	agcaatatgc	ctgcctccgc	120
ctcccaaagt	cctgggatta	caggcatgag	ctaccgagct	cagtttgaa	aggtagaagt	180
gtatgttaca	aggatgttag	gacttgagag	tcaaggccct	tggcttgc	ctggctctac	240
cagtaagtgt	gaccttcgtat	gttttttct	caagtaagc	tggtaataat	taccacagtt	300
gtgagaattt	agaatttgg	aatgcagtga	aagagactat	actcaagtct	tgttctggac	360
taacagtgtat	ctaaaaatct	ctcattcaa	agaaataaaag	tattttgatg	atcttttgc	420
tggngtatt	ataaaacactt	gnnataatgg	cagaaactgt	acccataaaca	gggttaccgt	480
taactctttt	tggaaagggtgg	tttggaaaaaa	naaggaatgg	acccttgaat	tttggaaagaa	540
cgttcaancc	tcatgacnta	aggaaaaant	tggaaaagg	ccattggng	ncccaaggac	600
ccaatgccc	tgtcttnaa	aaggaaaaag	ggggaccang	ggnntaaaat	tggaaaaacc	660
gttttccng	gaaatcctt	gggcccnn	nnaaagggtcc	ccaccccttng	ggaattttga	720
aaaaaaaaaa						728

<210> 60

<211> 581

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(581)

<223> n = A,T,C or G

<400> 60

ggtaactggcc	caaggccaaag	atggagaata	tgaagagctg	ctcaattcca	gttccatctc	60
ctctttgctg	gatgcacagg	gtttcagtga	tctggagaaa	agtccatcac	ccactccagt	120
aatggatct	cccgatttg	acccatttaa	cacaagtgtt	cccgaaagagt	tccataactac	180

catcttgc aa gttccatcc cttcattatt gccagcaact gtaaacatgg aaacttctga	240
aaaatcaa ag ttgactccta agccagagac ttcatgtt gaaaatgtat gaaacataat	300
ccttggtgcc actgtt gata cccaactgtg tgataaaactt ttaacttcaa gtctgcagaa	360
gtccagcgc ctgggcaatc tgaagaaaga gacgtctgat gggaaaagg aaactattca	420
gaagacttca gaggacagag ctccggcaga aagcaggcca tttgggacc cttccttcca	480
ggcccccaag gcaggacacc tcatggatga caaccccttc gnactcgaaa agtcagactt	540
tctttggcc cgggctttt taaaatccaa agttacnaga g	581

<210> 61
<211> 681
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(681)
<223> n = A,T,C or G

<400> 61

acgagccaa gccctgttcc atcagccaa tgcaaacctg ctccctggc cacttggcaa	60
atggcatatc caagtcaactg tttagactgtc ccaagtcctcg agaccaacct aatcggggccc	120
ccgcgggtgc ccttgtccct cctctttga attcaggcctc agacatgtca tctgggttga	180
atgtagttga ttgacttctc ctaagtttc caaagagttt catgataacct ctggatttct	240
ttttggaaatc tgagatggaa ggcggatctc ggaaggggact gtccctgtt gaatctttt	300
gcccggaaag aagcaccaggc cagatctagg tgcctgtc nctcttttgc tgnttcaact	360
aaatgggtg cacttgctgg tctcttggta cttttgcattt taaaaaagcc ccngccaaag	420
ggaanactga ctttcgagt gccnaaagggttgcattt ngangtgc tggcccttggg	480
gcctggaaag naaggcataa atgggtcgat ttctggccga nctttggcc ttggannnc	540
ttctggaaaa gtnccntt tccattaaa cgnttttct taaaatggc ccagctgggtt	600
ggacntttgg naacttgaag ttaaaagttt ttccccccant tgggnnttaa caggggnnc	660
cagggatatg ttnccttant t	681

<210> 62
<211> 569
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(569)
<223> n = A,T,C or G

<400> 62

actgggatta caggcgtgac ccaccacacc cggccctaa ccacttgc aagtcccttc	60
acatctgtta gttctttaag gatgaaggct gagaattaac cttgtccctt attccccgaa	120
gtgtctgacc cagtgtcgtaa tgtgtggtc gagcttggtg aattcttcc aaataaaggaa	180
attccccacaa cagccccacg aaggacttgc ggcaggattt aggatccccaa cttacagaag	240
aggaggacaa ggccccagaga agatccccca gactcagccca gggcacgggg ggtcgggtga	300
gttttgcgttgcat ctttttact ctccctgtgac gacatgcacag tagataaaaaaa	360
gcatataacct tcattgcactc tcattggctc tggcaccatg tttagatgc ggcttaggggtt	420
ctttgcataatc tggctaaacca ttatacccaa acctcttcc ctgcttcttgc	480
nctgtgcaca tctctttcca tcagaccatc catagctcaa gctcaacagc tttnccagct	540
agtgnccctn ctccctttnc atggagatgc	569

```

<210> 63
<211> 650
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(650)
<223> n = A,T,C or G

<400> 63
gaggtacaat ggaggtatct gtgggaagga aaatgcaggt aaagatgaag agaaaaatct      60
gcctttaaa agcccaagctc cccaaagtat tagacacatg aatttgccttc tggctgagg      120
ccatctgtgg ccgtcaggct agctgtttc tggctgatac ttttggaa tggtatttt      180
gctgagaaag atagttccat gtcagagcta tcaacagaat gtggccatct ggacaaccat      240
gtataaacca acttattgct tcttgaatgc cacctacaaa catgactacc tggctttct      300
tggttgaagg ggcactaaca atacttggaa agatggaaag tgaactggac attaaggcag      360
agatgaagaa ttctgccttgc cttcctgcac tccatggaaa aaggaggagg acactancgt      420
ggaaaagctg ttgaaccttgc aactatggat ggnctgatgg aaaaaggatg tcngacca      480
naacnngaaa aaaagggtttg gtttaagtta ancctnaggat acccgaaatgc aagaacctac      540
cccacttaa catggccca ancctaaaaa gcctnaagnat atgnctttat tcnggattnt      600
ccccgaaang naaaagnttt ttganntaaa atncccnncc ccngggccggg      650

<210> 64
<211> 676
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(676)
<223> n = A,T,C or G

<400> 64
cgagggtgcca attgggagga accttcttgc gatgagggtg ctgggttag caatataaag      60
gtgtggctcc agataattca atcatctaat taagattccca gttatgctaa tctgttttaa      120
aattccgtt gtgtaaattc ttttacaaag cctcaacccc aattttccagg gagggttcag      180
agcctcagggt tgagttgatg accaacagcc tatagttaa cccatcatgc ctctagatg      240
aggtctccaa aaaaatccaa aaggaatagc ttagagagc ttctggataa cactaactgg      300
aaggttagagc gccactccaa acaagacggg accaaaaatt ttctgaatt ttctcgaaata      360
tctgcaacaa taaaatggaa aatgtaatgg ccctcctacg tggggagc tcttcagcc      420
aatggatgcn actattacna ggantgggg aaacctggat tataaccagc tgctgaaaaa      480
gccagtaaac aacgtaaaggc tttcattggat aatattttt gaaggacagt ctttggggac      540
ttcggccctt tgnaactaat ggtatggccc gnanataacc gtnccttgg atttcaagac      600
cccccttgggt tgganactt tttgggcatt tgcttgcgg cttaattacc attggaatca      660
aatctttcc ggcnnn      676

<210> 65
<211> 660
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<222> (1)...(660)
<223> n = A,T,C or G

<400> 65
acgtggcctg aagagatgtt attcttaaa atggctcgg ctgtggcgga ggtgcggccca      60
tacaacaact ctcggctat catggcaggat accgtggccct tggcaggatt cggagctgcc      120
ctggtaaaaat ctttgtgtg atgtccctga ctaactccta cagccctggc gacctcggc      180
accatggaa gaatcccaggc aggtagctgc tgatgactta gataaggcat cctgaactca      240
tcctcttat tactagttcc atttcatcc ccagagccag gttaaaaaaa gtttacttt      300
cttccatccc ctggtttctt tatgggtgtc ttctcccttg acttgagtgc cggttgggt      360
gctgcgcctg cgggactttg aaaccaggaa tcttcaacat gntctcgctg cattgcctg      420
gccaccccttct tgggtgtccc gtccttntgc aatgggggtt ctaaccttna cctgnatnac      480
aaacctccctt ncgcncggaa aggctngtt cntgaagaac gtgtaccttgc ggcnngaaca      540
cgcttanggc gaantccacn cactgggnngg ccgtactann ggaatccaac ttgggaccaa      600
cntggggnaa catggcaaac tggttcctng ggnaaatgtt tccgttacaa ttcccncana      660

<210> 66
<211> 678
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(678)
<223> n = A,T,C or G

<400> 66
actcaaatct catcagcagc gtctacatcg taaaaaacaat ttagagaatg aaatgatgcg      60
ggttggatta tctcaagatg cccaggatca aatgagaaag atgcttgc  aaaaagaatc      120
taattacatc cgtcttaaaa gggcttaaaa ggacaagtct atgtttgtga agataaaagac      180
actaggaata ggagcatttgc gtgaagtctg tctagcaaga aaagttagata ctaaggctt      240
gtatgcaaca aaaactcttc gaaagaaaga tggcttctt cggaaatcaag tcgctcatgt      300
taaggctgag agagatatcc tggctgaagc tgacaatgaa tgggtatgtc gtctatatta      360
ttcattccaa gataaggggcc attatccctt gtaatggctt cattcctngg ggtatatga      420
agagccattt aattanaatg ggcattttt ccagaaaggc tngcaccaat ctaccttgc      480
cagaacttac ctgngccngt tggaaatgtt cttttttttt gggttttaatt ctttagagatt      540
tttaacctgg ataataatgg antggaccgn gaagggcctt attaaaatgg cttgcttgg      600
ccttngactg cttnanatgg ccccccaatc taagtnccctg ggccgaaacc ctttangggc      660
naattcagcn cactgggg      678

<210> 67
<211> 695
<212> DNA
<213> Homo sapiens

<400> 67
ggtaactatgt gtgaagaaat ggagaaaagg aaaaatcagt gtagaaaaat aaaaaaagca      60
agagttaggt tggtgccatc agttcacagc atgtgataag gactgagcat ttattctatt      120
atgggtcat aaaaatgcag gctgttaaggc cotacacaca ccagcttatac gcagacttgg      180
ctctgagctt tcctgcagcc aataaaaaaca gggagacaca acagagaatt gccaatgctg      240
gaagcttagat gtctaatgtt gatcctgctt gtgactaaag tctgaatctg ggctaaatca      300

```

cacatgtcct gacactctgg aagctctgtc tggtggtct gggAACGGGG gagaagtgaa	360
agaggaagta gcaaggaaag atgcagaggc ggAGCCTGGG agcttagggca gtGCCAGGTG	420
ggactgacat ggCACCGAGA GTCCCTCTG CAGGGATCTG TCCTGATTCA GTCAGCTGC	480
atcctgcata tctagggaat gagaccacat ctgcaactca ccaggactgt tcactgttt	540
ttccacccccc caatctcaact cccactcaat cccttggatg tggaaaggag aaatactaa	600
gctgaatgtt gctgtggccc atttgatgac aggttaccag tgtggggat gaccccaat	660
gactcaaga agtgtccag atgtcagaag tgggt	695
<210> 68	
<211> 579	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(579)	
<223> n = A,T,C or G	
<400> 68	
ggtaccaaagg aagacattca gagtgtgatg actgagatcc gcaggccc tggagaggta	60
tgtttactt tagtaaatgt tagtttatat ggtatTTT cctttaggaa aatctgactt	120
tttatagtga ttgtttaca ttatTTACAC ttctgagttt gattttgtt gaacaaaatg	180
ttctgtgttt attaaaaaaaaaaaaaaa aagaagcagt agcttgaaa attctgctt	240
agcctgtatt ctgaaggaag aatgccttag agtaagtctg acttcagaat atttatgcag	300
taaaaactgac agtattcttc atcctaacaa ccttatggta gaatagaaaag aacagtggac	360
taattatcag gagacctgac aattagttct agtcattgtt gtgtcgacag tttagctggag	420
gaccttgaat ataagttcct caacctaact tgacatcagt gntttcacc tataaaataa	480
attaaaatag gtaatgatta aatacttta aggctttagt attangnaat gactgggat	540
tgagtaataa atacctaata gcccttcagt taattnaaa	579
<210> 69	
<211> 661	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(661)	
<223> n = A,T,C or G	
<400> 69	
cgaggtacaa gctttttttt ttttttttca gatgttaat tctatTTTG	60
tagagcagag actccattaa aaactccaa atgacaaact agaaaaaaaaa ttacaaacac	120
tgtgtgaaaa tcanagtgtg attttctta atatacaaag agctttgc aaccaacaag	180
aaaaacacaa atacccaaat ggaaaaatca acaaaggaca ggaatagtta gttttcagaa	240
aaagaaatat gaattaccaa taagtgtgaa aatggtgctc aatgcctcatc tgattaaaga	300
aatgttaacca aaacagtggt gagcccattt ttcatgtggc agattactca attttagtaa	360
tttattctga aaacaatctc ccacaagtgt atacttccac ttgnatgcnc aaggaagtac	420
aagttttttt tttttttt tttttttt ccttggctgn agtcatgagc cttttgaaaa	480
aggcctccaa agtaaatntt tcagggggaa tagggaaagt nttttttaa anaaggcngt	540
gattnttaat tccccgggac tatggaaa tactntggaa aaatttaant ggtccatggt	600
ggccnaatg gngctntta aaangnggg gaaaaaantt tttgngggaa aatncccaag	660
	661

```

<210> 70
<211> 697
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(697)
<223> n = A,T,C or G

<400> 70
actgagttc cagaaggcgc agtgcacttt tagtgcgccca aactgtaat ttgccattta      60
gagaattctt cctaaagttag attattctg ttaaagcaaa tcactattcc taactgttattt      120
ataattttgg taaatctaaa tttcatgaa ataggcttat aaagcgtgcc acatttctgt      180
tttctccat ggacaggaag aaaaagttgg atggggacag aaggacagaa caggggtgcgg      240
aaaccatagg ataaaagctg tgggtttcc cccaaaagtt gctaaaaga ataatatgac      300
ttctgctttt ctctccctc gggtgccat tggggaatcc agcagcctgt tgagaggaca      360
gaattggtta agttgtggag aggtgcagtc taattggtaa atctttaaaa gtcttggttg      420
tctaacctgc tggttttctt gtcacagcc cctgcagata tcttctcacc taccttaacg      480
ctggcatgca aggntttctt ctgtgttag tggcattnng gtttaattcc atgttnaatt      540
ctaacccttgg ccatgattac naagcccccta ctatggcctt gctttgagtt angccctggg      600
gctttaagna atrnccctanaa ttcncccnn cttnatttctt aagggcttgg anatnccaaa      660
atgatnganc ttgacnttgg tttgggaggg naactna                                697

<210> 71
<211> 705
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(705)
<223> n = A,T,C or G

<400> 71
accacacagt caatgatgtc agccactccg agcttttaggg tcctgggagt ggcagtaggt      60
gatacgctg tctctccaaa aagcaaaaagg atcctgcttg gggacacccc aaggtgggtg      120
gccatgttgtt ccaccacact ctgcaggggc tccgacatcc tgaggggcaa tctgaccagg      180
tcagccggc aacggatttt gagtgggaaag aggttcctta gatgacgggt gatgaagccc      240
aatctccag gtggagagga cagcatgacc aaaggaagga cgtggaggtg acatggcatg      300
tgcagggAAC tacactgaac actgcagaga gcacactggca ggaccaggc cagggagcac      360
ctacttggtc atactggggc gcttggcctt tctcttggtg gtctggagat cccaaaagaa      420
tttatGCCAA aaagttagag gtggatagat tttaaataact ggggtttta aatacccgan      480
ggatTTAAA tactcttgat gggtaatct aaatttang ggaacaaaaa ctggaggcnn      540
ntnaaaaggn cccttataag tggaaaaant gaaaagagnit tgnattang cnncnnaaat      600
ttntggtggc nttttaagtn ccntngatt tcccnnaaaa attnaatcng ggggatttta      660
atccccgaaat tggggaaana aannnnngaa gggtnccaa tttt                                705

<210> 72
<211> 683
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<222> (1)...(683)
<223> n = A,T,C or G

<400> 72
actgaatgaa gtaaccgaag acaacttaat agacctgggg ccagggtctc cagcccgtgg   60
tgagcccaat ggtggggAAC acagcgcccc catcttcctt ctccctccag cttgcaggct  120
tagacttggg gacagagagc gtcagtgca ccctcagttc actccagcaa tctaattcccc 180
gtgacggctt tgacatgttt gcccagacga gaggaaactc cttggctgag cagcgcaaga 240
cggtaaccta tgaggatcct caggctgtcg gaggacttgc ttctgcacta gacaatcgaa 300
aacagagttc agaaggggta ggtcttaac cctgttttc tgcctggagt cttctggagg 360
gaaagtctagg tggtttggca aaactggctg ggttaattcag cagaaactgg cttgcacagg 420
gggcanggac accctggggg gaaaaaccna cgggggacac cccgtggAAC ccaagtantg 480
ccttatttga gtcttnacct nacccctgtga gataaggccc ccatgagctt tccaatccac 540
ccaagagaaa cnagtnccgc ngttgggana cagcttgnac nccanaagc nnacnngaagc 600
cgggttccaa tctnggataa gggcnnntcc aaanccttgtt ggtcttacca aaggggcccaa 660
ttttcaggcc aantttntg gnn                                         683

<210> 73
<211> 566
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(566)
<223> n = A,T,C or G

<400> 73
acagtgtgga aatttcaaca tgttatataca tccgtgaaac cattatccca atcaacatca   60
tgaatttaac catcacccca aaaagtcttc tcattgtatctt ttgttaatacc ttccttttc 120
ctgtcccgtc ccccacaaac gtctgtttt ttttcttatta gtttgcattt tctagagttt 180
tatataaatg aaatcaatac attatacctt ttttgtcttag cttctttcac tcagcataat 240
taatgtgaga gctgtccatg ttgtcttaatg tatttagtagt ccatttctat ttttggggg 300
ttgggcaggg gctgggttagt attccattaa gaggatacac tacagttgt ttatttattt 360
tccttattcat ggatgtttt gttgttctg gtttgaggcc tataatgtca cttgaagata 420
gattgtgatg ttaaaagggtgc atactgtaaa ccctaaaata gtcactaaaa taacnaaaac 480
gaaaaggatg tggtaataag ccaacaaagg aaataaaatca aatcataaaa tacnaaagaa 540
agcngaaaaa gaccaagggc acctgg                                         566

<210> 74
<211> 690
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(690)
<223> n = A,T,C or G

<400> 74

```

cgagggtgtac aagttttttt tttttttttt tttttttttt ggctccctgt agcctcgact	60
tcccagcaat cctcctgctt cgccctcacag caggcacacg ccaccatgcc cagctaattt	120
ttgtatTTTT tgtagagaca gggTTTgCC atgttgccta ggctggctc aaactcctgg	180
gctcaagcaa cccatctGCC ttggccaacc aaagtgcTgg gattctaggt gtgaaccact	240
gtgcccagcc aactctgtc tttaaatga ggggtgtcgc atcgTTgtt tcacatggnt	300
atTTAGGACT aactctatca ttctgctgct cagaattttt gttgcCagg ctgccttgg	360
tcttttctg ctttcttttg nattttatga ttgtatTTA ttcccttgn tgcttatta	420
acaataactt ttctttttgg taatTTAagn gactatTTA ggggttacag tatgcaccnt	480
taacatcaca atctatcttc aagtgcattt atangnctna aaccnngaaac caccCAAACA	540
tcntgaatng gaaaatgaat aaccaactnn annggaancn cttaaaggaa actccaacc	600
ctggccaanc cccaaaatng aaaggcctct aatccnttna cacntggcc ggttncata	660
atntcntggn gaaaacttt cccaaaaggn	690

<210> 75
<211> 447
<212> DNA
<213> Homo sapiens

<400> 75	60
ggtacAAact gtgttattca catctggccc ccaaggatag taaggaaaaa cttaaataaa	120
atctttaagc tcattcagggt acaaagcaca gtctctatcc aaatcatgct tgtcaaagggt	180
gctttggaga aataaaatatg catgatgatt taattcagta gtgcaatcag gaggtatTTT	240
cagcaggGGG aacAAatattt cagggtgtcaa atccagggtca tcattcataac caaatcgtcg	300
aagcacAGTC caagtaggtt cgtgtctccc tctctggata aaaagtgtgt gtAAAAAGAG	360
aaaACCTTC agggtcaacc cactgtcagc cacaccatca cttatatgtt ttctgactac	420
attcttgaca tcctccagag cttgaggagc taatggagtg ttgaaacaaa tcctctgaaa	447
gaagttgagt tcagcatcat tgagagt	

<210> 76
<211> 674
<212> DNA
<213> Homo sapiens

<220>	
<221> misc_feature	
<222> (1)...(674)	
<223> n = A,T,C or G	
<400> 76	60
actgttaggt aatTTTgata ttTTacttag ttggTTTctt ttgtTTTgg agacagggtc	120
ttgctctgta gcccaggctg gactgcactg gaactcctgg gctcaagcaa tcctcctgccc	180
tcggcCTCCA agtagCTGGG actactacag gcactcacca ccattcctgg ctaatTTTta	240
gtttagTTTT gttagAAAGTA agactAAATA cactggatca ttcagaatgt cagAAAGTAA	300
tgtTTTCTC agTTTATTT ttCTTAATAG cacacaccat gttattggTT tGTGTTTGT	360
tagtgcTTGT aactAGAGTG caacttaATT aacaATTGc tcctcCTCAT gaggttcatG	420
gcagtatAGA cttaAAATTCT agtcccATGT ttgncATTa tttagCTGTGT gctaAGACTT	480
ggTTTCTTA tcagcAGAAT tgCTATGTAT atCTAAGGGT atgttaAGGG ttCAAACCAAG	540
gaACCCTCTT tgtaAGTgAA aggtgggggg gagctattgg taaattttt ggtcAGAAAT	600
tggcataacct aatttaATTt ctacCTTACT aaANGNATCA attacCCTCA tctatttcan	660
nggttaatg ggnccaAGTg gaatattcT ttacttaAAA gCcagTTA ctgggAAATC	674
nCTTANCAAG gNTT	

<210> 77

<211> 441
 <212> DNA
 <213> Homo sapiens

<400> 77

acatggctt	ttgtcccta	aaagactgca	tcacacctct	gattgggagg	ccaactgtca	60
ttaactgag	tgttgagtgc	tctaaaacca	agttcagcat	ttgtctatct	agcaagctc	120
cctttccaaac	ttgcttactc	ctctcaattt	catctgcaga	tctcctgggt	caataaggct	180
caaaaaactgg	ctgttccctt	gcattcctct	cttctctccc	aggcactctt	cattcctttt	240
tctctcaggc	tcacccttac	aatccaacac	cttccaatgg	cctctcttag	tccagtccat	300
cctgacacca	agtaactggc	ccgcttgg	agtcctgaca	ctttcagtcc	ctctttcccg	360
ttctttccac	tttcctcg	ccccaggagg	atcctggatg	gtcgtcacag	ctgacaaaatg	420
atgagcagaa	tgccctgtac	c				441

<210> 78
 <211> 623
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(623)
 <223> n = A,T,C or G

<400> 78

ggtacacgat	taacttaaca	caaaaacccg	aacttcaaaa	tgaagggtgt	tggagggaaag	60
gtgctgctgg	gtctccctac	aactgttcat	ttctttgtgg	ggcaggggg	agttcctgaa	120
tggctgtgg	ccaatgacta	atgtaaaaca	aaaacagaaaa	caaaaaaaaaac	aaggaaactgt	180
catttccacg	aaagcacagc	ggcagtgtatt	ctagcaggcc	tcagggccct	gggcctggag	240
aggctacatg	agggggagcc	tcagtcacag	gatcaacctg	gggcccgaag	gagcagggtt	300
ccctgcctct	ccctctgcaa	cagatcatcc	catccaacac	aacccccaaa	atgttcatgaa	360
tgacgcacat	ggtcaaccct	caagaccctt	aagacaaaaac	agagcacata	ggaaaaaaaaaa	420
aacnaaacgc	ccaatttctg	ctgtgtcaat	ggtagggcac	cattttaaaa	agtctgctaa	480
acagtctgt	ttacttggan	ggacgtatgc	aaacataatn	cttgttagtg	agaaccatg	540
acgcctctac	ttactctaag	ttatgtngaca	ntaaacttct	gtcccttca	agttaaagnc	600
nttcnaactg	ggtggggaat	act				623

<210> 79
 <211> 462
 <212> DNA
 <213> Homo sapiens

<400> 79

accagttaaa	aatgttattta	ccaataagtg	ataacagcaa	caatagctaa	ctgacaattt	60
attaaagaca	gtatacaggg	atcctttgt	gttctataag	catgtatgatt	agattttcat	120
gctattgggt	gagatatgcc	ttcctcagac	tttgttacag	catagggcaca	ttacaacctg	180
tctgatagga	gaaagaaaagt	aaagatggta	tacaggccag	gtgcgggtggc	tcacgcctgt	240
aatcccagca	ctgtggggagg	ctgagggtgg	tggattgtctt	taggcctgga	gttcaagacc	300
agcctggccc	acatggcaa	accccatctc	tactaaaata	caaaaaaaaaatg	gttgtgggtgg	360
cacacacccgt	tattttccgt	tgcttgggg	gctaaggcac	aagaatctct	tgaaccagga	420
ggtggaggtt	gcagtgagcc	aatatcgac	cactgtacct	cg		462

<210> 80

```

<211> 640
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(640)
<223> n = A,T,C or G

<400> 80
acccgttgct gctgccatgt gtgtgcttaa aacagggttc cttttttagt catcagaatt      60
tggaaaccat tacttatatac aaattgcaca tcttggagat gatgtgaag aacctgagtt    120
ttcatcagcc atgcctctgg aagaaggaga cacattctt tttcagccaa gaccacttaa    180
aaacaccttg aatgtttgtg agttggacag cctctctccc attctgtttt gccagatagc    240
tgatctggcc aatgaagata ctccacagt gtatgtggcc tgggttaggg gaccccgatc    300
atctctgaga gtcctaagac atggacttga ggtgtcagaa aatggctggt tctgagctac    360
ctggtaaccc caacgctgtc tggacagtgc gtnacacatt gaaaaatgaa ttgtatgcct    420
acatcattgn gtcttcgtg aatgccacct aatggtggnc cattggagaa actgtnaaaa    480
aagtgactga ctctgggtrn ctnngganca cccngaactt ngcctgnnc ttattaggag    540
atgatncntg gngcaaggct ttccaanngn atnngacaa tccaacctac caganaagtc    600
atggntggaa naaccctgga aagaaacaat ggtgaagggg    640

<210> 81
<211> 643
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(643)
<223> n = A,T,C or G

<400> 81
actgccattc cttaaattca ttttagattac agtgtgtaat cataactttt gatccatcag      60
ctcccttgc caaacactgg tcatactgca tgagttgtt tgcttcattt attctgaaaaa    120
gctgattccc tcccatctg tggcagggtc ctgttcaac aaagcctcca tttgttttc    180
ccatgtatc aatgcagtaa gcagttcga agcctctgat ttctccccag tcaacatttt    240
tgggtggcaa aggtagtgt gaggtgatatacataagctat ttctccatg aaccacttaa    300
aactttgcg gtgtgatct tctcgaaatt tttcaagct ccgatatac cccatatggt    360
aatgcctgcg attcaggacg actagcatag aagtagtct tatattcattc caccaaacct    420
tcacaactct aacataattc ttcaagatgtt gagaagaccc aacataaatg ggcnagggat    480
tncttggcag ccctcaagac ggttagatgt tccacacgag aaccanggac caaataataa    540
tttgnacca cacttggcat atcttggatg agatctcaaa gtttaccac cccaaatttg    600
gaaacctgga tctttagagacc caattcaaaag aaaactttt ttt    643

<210> 82
<211> 642
<212> DNA
<213> Homo sapiens

<400> 82
accaagtcat tatttctgac agcattgtgt attagaagga acactggatt tagtcaaaaag      60
ataggagttt gaatcccgtt gccaccctttt accaactggg taaccttggaa taggaattgc    120

```

ataacttctc tgagcctgtt ctcaaattgc ctacccata aggttgctgt	gaagaataaa	180
tgcatgatgg tttctgaagc acttatcccc tgccgttaga tctcctgagc	tgcatctg	240
tttaacaacgg gcccccaagt tgtcagccaa gcagctcaaa tatatgaagt	ctaaaatgaa	300
agtaatgacc ctttatgatc tctttctatt gtctcaatc agttcctttt	tttttagtta	360
cctaattctg ctcacgggtgt gtcctgttgc tttagattcc agatgtcagt	gattgtggac	420
tcctcctttt tctaacaaga ttacataata cctgcagctg ccaagtctt	gtctgtgtt	480
tcattatcc atcatttaca tcagatctt ctttctctt cccgttgaca	caccctagtt	540
caggcctcat tcaagtata cccagagat tttatcagcc tcctaattga	tctttactcc	600
ttcactttgc aacctattct gtatgcctt tgaagtaccc cg		642

<210> 83
<211> 584
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(584)
<223> n = A,T,C or G

<400> 83		
ggtacagtag agtctgagaa ctgggtcaac actgaagcat tcacacccat	aggatatgaa	60
gcagagcttc ctgtcacatc tgcagatgtt gtgtgttgtt	tcaagagcca gtgtgcagtg	120
atctctccac ctctcatggg tgcactgac cttagacacag tctcagtcgt	agacatggga	180
cttccatattt gcacccctcaga gctgctggca agctgatgtt	ctccaaaggt tggggaatca	240
ttttgccaac gcaaagacgt aagtccaaat tcattttctg tggatggttc	aatgaattcc	300
tcatcccctg gattcccagt tactctactg ntcttctcg attccactgc	agagggtgaa	360
agaaggactg agatgaagt ccgttagcaat tctggagtcc ttggggaaagc	cttctgttct	420
gctcacaggt tccagactga cccgtcaaag atccgcagcg ttctggggcc	accttcagtg	480
aacacggggg caacatgcat tggcttgtt gactgactna ggagctttgg	aggcccagtn	540
gganttgta agtttctctg nacctgcccc gggcggccnc ccgg		584

<210> 84
<211> 558
<212> DNA
<213> Homo sapiens

<400> 84		
ggtaaaagaaaa gaaaaaaaaaa aaaggcctgg atactgcttt tgctgtctct	gttatgagat	60
ggaagactta catggttgt gataaaaggg gaccatgaga atgaattggc	ttggcttact	120
ttccccctga aatccctctct cctgcagact gtctgaaga cctgggtact	ggtaaataaa	180
gccctgcacg gaggtgcac agcaggggca agaggccat ccccccacat	ctcactgagg	240
acagcttcag gctgccttcc tctgaacgtg gtccacacct	tcctctcctc cacagagagg	300
gtgcccgcag aatccccctgt cgctttctgt gtctgcaatg	gggggcagca cagggatcaa	360
agccatctaa agatttcca gagaaagtat taattcagaa caagccaaag	accctgagcc	420
tcaccacaaa caggcctttt ggagtgtgaa tttagttgttga	agataacaaga tcggagaatg	480
attttctgtt cttaactaat cctcgcttcc atgtttgatc tttaagaagt	catcacccat	540
tgatttcagt ttgtgtgt		558

<210> 85
<211> 499
<212> DNA
<213> Homo sapiens

<400> 85
 acaaaaacccat cgccatcaaaa aaaacgctgt tctgacaaca ctgaagtaga agtttctaac 60
 ttggaaaaata aacaaccagt tgagtcgaca tctgaaaaat cttgttctcc aagtctgtg 120
 tctcctcagg tgcagccaca agcagcagat accaccagtg attctgttgc tgtcccggca 180
 tcactgctgg gcatgaggag agggctgaac tcaagattgg aagcaactgc agcctcctca 240
 gttaaaacac gtatgcaaaa acttgcagag caacggcgcc gttggataa tgatgatatg 300
 acagatgaca ttccctgaaag ctcactcttc tcaccaatgc catcagagga aaaggctgct 360
 tccccctccca aacctctgtc ttcaaattgcc ttggcaactt cagttggcag aaggggccgt 420
 ctggcccaat cttggctgca actatttgct cctggaaaaa tgatgtaaat cactcatttg 480
 caaaaacaaaaa cagtgtacc 499

<210> 86
 <211> 146
 <212> DNA
 <213> Homo sapiens

<400> 86
 acaggataact taaaatggaa taacttttg gttgcaaaac agagacatgg ttctataatg 60
 cttcatgtcc ctccaagatt tgagatcaat ttagggattt tgaaattttt ttttcaaat 120
 ttccatacaat catatccc agtacc 146

<210> 87
 <211> 572
 <212> DNA
 <213> Homo sapiens

<400> 87
 atccctagca tttaaaatt cagttgttac agggatccca cataatattt tgcatttat 60
 atgagggcttgg atgagggctg aaatttcattc ttgggtcttg gaacagattc atgggcacac 120
 attttaaagc tattggctt cagttctgca gattaagaaa ctccaaattna ttgattcccc 180
 agggtaatga gaaaatgcat tgagtatat ataacatccca ctacattcac agaaatgct 240
 gtcctggatc aaaaactgac ctggtcattt aattatgtt gagaactcat aaaaattcca 300
 tggagaaagt gatattcaag ttggctcatg aattctgagt aaaagttaa aagcaaaggaa 360
 gaggatagcc ttacagagat aacaatagga acaaagtca agacttgtgg aatggaaaga 420
 ccgggctaga aattaggaca gttcatattc aagcaagcag ggttgggttt gtgaacaaat 480
 accttgaagc tttggatgcc ttggagccct tgacagttt tgagaatgta taaaaacaaat 540
 taaaatgtct atttggaaagt gagacccctg gt 572

<210> 88
 <211> 512
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(512)
 <223> n = A,T,C or G

<400> 88
 ggtacccat ctcagaaagc agactgtttg gggacaggcg cagtgcctgt ggagcggcac 60
 ttgacatcg cgtctcttcc cacatggagt gaggagccctg gccttgacaa ccctgccttt 120
 gaggagagcg ctggagctga caccacacaa cagccactta gttaccaga aggagaaatc 180

accacgattg aaattcatcg gtccaatcct tacattcagt taggaatcag cattgtgggt	240
ggcaacgaaa caccttgat taacattgtc atccaggagg tctatcgga tgggttcatt	300
gccagagacg ggagacttct tgctggagac cagattcttc aggtcaacaa ctacaatatc	360
agcaatgtgt cccataacta tgcccagact gnccttccc agccctgcaa cacactgnat	420
cttactggc ttgcagaga agcgcccttt ggcaaccgaa ngcacacaan cattctgaaa	480
ggnaactctc cccnagaaaa aaatttncn ng	512

<210> 89
<211> 573
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(573)
<223> n = A,T,C or G

<400> 89	
actcggcgtgc tcctccgcgt tctgagtcgc ctcccaaca atctggacct caagtgcctt	60
aaggcaaca gcaggggacg cggcactggc ttcagcat gcaactgcct cactgtgact	120
taaattggc aaatcaatgc cggttat tagcaacaca tcacctctt ttattctgcc	180
atctcggtca aggccat ggggtggcac actggtcaca aagatggca gtcaccact	240
cttacttccc ctggggccat caacggcat gccaaggat tcatgtggg ccttcttac	300
agtaatgtgt ttcttggc atgtacaca ctgagtaaga tccttatgt agcttggct	360
gctataatac ggtgggtggg tgggtgtctg gtcgtgtctg ctatgattc ctgtttctct	420
aatgggtta ccaggctggg gttccctgg tctagcaatt ggtaaattca ctctntctcc	480
actggcctga ataatctggg cagcaagctc cggaaattcc atacttcagg tcgtgccccat	540
tgtatggccac actcggcatt gtcgtanc ctg	573

<210> 90
<211> 658
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(658)
<223> n = A,T,C or G

<400> 90	
ggtaccttt aaccacccct cctccaaatca tggaggagt tggggat ctcagcatgt	60
ctgaagagga ccagatgtg agagcaattt ctatgtctt gggacaggat attccaatgg	120
atcaaaggcc agagtccat gaggaaatgg ctgcggaa ggaggaagag gaacggaaag	180
ctcgaaaaa gcaggaggag gaagaggcta aatgtcttaga gaagttccag gatgtgtacc	240
cgttggaaaca agatgagctc cacacttca cagatactat gttgcaggc tgcttccacc	300
ttcttgcata gtcgcagac acagtatacc cgtgtgtgtg acctgtatcat gacagcaatc	360
aaacgtaatg gagcagatta tcgtgacatg attctgttgc cagtagtcaa tcagggtgg	420
gaagcttgc ttagtattt gatcaaaagg ttnttcttcc cctggacaac cangtggaca	480
caaaaaaccg tggcanaaa tgggttaaag tcanatnggg ccccaattgg ccccaaggcc	540
ttccaattt ggtcanattt aaaatcttgc gcttttaacc ntactttt tgnagggat	600
ttgaagctt ccttgggccc ttgggtgggg ttgnaatcna agngggattc ctttnnnng	658

<210> 91

<211> 570
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(570)
 <223> n = A,T,C or G

<400> 91

acctctgact acaccttcat	gttggccctt gaccaacaga	ccctcagggtt gtgaggtttt	60
gcttcgggaa gaaaattttt	cctgcttgat gtagggcaaa	gtagctgatt tggcagattc	120
ctgtgcgtt ggcagtccaa	gagagataga tcccactgac	ggcttgggtt ttcttgagt	180
gttaggaagcc tgattatgag	aagtcaaata agtgcctgg	gttccctgtg agatggagcc	240
tcccatataa aaagatgggtt	tttctgaagc cactgtgg	ttggatgacg ggatgagagg	300
ggggccgggtt cctgggttgtt	cgagttgtcg gaagccgaa	cgcccttcagg gagattagt	360
atcacatttatgtt gtagggcagg	ctgaaggact tcccactctc	tgtttggact ctggatgtg	420
ccacatggac ttgtagaact tctacattcc	aatctatct ggncttggct	ctggccnttg	480
ttcctncagg agtgctgact catgcnnn	tttaatgngt cgctggtaga	naacatanc	540
gttactgggg tccaaatggga	tgtacatngg		570

<210> 92
 <211> 603
 <212> DNA
 <213> Homo sapiens

<400> 92

ggtacacatg ttttatttag attcagtcct cacaacgaat	ccattcaaag atacaactca	60
cagtggtaa atgactggcc	agaggttagc caggttagcac	120
aagagtctt tccatcatat	cacactgact aagttttcct	180
atggttcatt gggcataatg	gtttctagtt ctttctatt	240
ccttctcatt tactatgaaa	gattttgtta gccttcacat	300
ctaaggaaag gcaggttcct	ccacacagaa cagctctc	360
aactttcaat aagacatatc	gtgtttatct caagccacc	420
tgcgtttcccc tataattccc	atgcccagc atttcacaa	480
tcctcatttatacaatatga	agtaaaagcc aattttaaact	540
aatgctgaat atcaaaataa tcaactgtt	aaaattttaaa tgattttt gatatattct	600
tgt		603

<210> 93
 <211> 627
 <212> DNA
 <213> Homo sapiens

<400> 93

ggtacacatg tgcgtccagc attaaaaaaa	gatgacacag atgctgctca	60
tttgaaagga agaaaatata tataatcata	aaacaaaacaa caaaataaga	120
ggaaatgccc aaaccaactc	catgccaagg aaagagcaat	180
caataggttc ctagaagctg	gtctttgata aaatttttat	240
aaaacaagga gaatttattt	agcttcatttta aaaaaaaaaact	300
agattatccc ttatataaga ttagccttc	ttatggaga agccatcaac	360
tctgactgat agtacatata	ataactgggtt tggatgtca	420
atgtggatag aggacataaa	aaagagaaaga catcctgggc	480
	ccagattgca acacaaacac	

agaactgacg tgacagctgt gggggatatg ggacagagat acaggaagga ggagcctggc	540
cagggttgcg gagtgcgta aaatcgact ggggagctga gagagccctc ttggagaggc	600
tttggaaatgc agggccgggg a gtcgttgg	627
<210> 94	
<211> 331	
<212> DNA	
<213> Homo sapiens	
<400> 94	
ggtagtccatgtataatcgat ggagatctgg ggaggggaga acgtggaaat gtccttcgg	60
gtgtggcagt gtgggggcca gctggagatc atccccctgct ctgtcgtagg ccatgtgttc	120
cgaccaaga gccccccacac ctcccccaag ggcactagtg tcattgctcg caatcaagtg	180
cgccctggcag aggtctggat ggacagctac aagaagattt tctataggag aaatctgcag	240
gcagcaaaga tggcccaaga gaaatcctc ggtgacattt cggaacgact gcagctgagg	300
aaacaactgc actgtcacaa ctttcctgg t	331
<210> 95	
<211> 752	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(752)	
<223> n = A,T,C or G	
<400> 95	
ggtcctgtcc cgcccccttc cccaaaggcg gggccggcca gcggaaagccc ctgcgcggc	60
gccatgtcaa agaaaaaaaagg actgagtgcg gaagaaaaaga gaactcgcattt gatggaaata	120
ttttctgaaa caaaagatgt atttcaatta aaagacttgg agaagattgc tcccaaagag	180
aaaggcattt ctgttatgtc agtaaaagaa gtccttcaaa gcttagttga tgatggatag	240
gttactgtg agaggatcg aacttctaat tattattggg ctttccaag taaagctttt	300
catgcaagga aacataagtt ggagggtctg gaatctcattt tgcgttgggg aagtcaaaag	360
catgcaagcc tacagaaaaaa gcattttgaga aagctnaaaa ttggcccgat gtgaaaccgg	420
aaagaacnga acncaggctt accaaaaaaa agctttcttc acnttcgaag aaccaaagg	480
gaaccagctt taanggccna aagtgnaaa aatttccaaa ggactggngaa atccncnaag	540
tttggggaa aaaaattccc ttanccttan ttcccaatt aaaaatnttt ggggnccca	600
aagnaaaaat ttnggggttt tggaaaaaaa tttaaaaantg ggnntngaaac ntttttgggaa	660
aattcccaa aanaactttt gccttcctt tgnccctaaa aanttncca tgggggggna	720
aaanggattt nnccctgncc cnngggggnc nc	752
<210> 96	
<211> 405	
<212> DNA	
<213> Homo sapiens	
<400> 96	
tacaacaaac accgaaaaca aagtaaaaaa tggaaacacaa ctagagaaaa ttgtttaggac	60
acatgtcagg aggttaatat ccctaatact gaaaaatttc ttgcttagaa gccaaacaac	120
ccaataaaac tctaaatgtat acttcgtgag ttgataaaaat gatttccaac ttgagttgtc	180
agacaaaaca ttgagatag actaacaaaa ttattgtta tctaaaactc taattggca	240
tgttgttattt ttatttgg t aaggtggca cactattca gacacttgc ttcatttggc	300

cctgcagtaa	ctcaatgaga	tggggaaaga	ggtaattaa	cctctccaac	agcagttcc	360
tcatctgtca	aatacagtgt	gagaattaaa	ttggataata	taggt		405
<210> 97						
<211> 499						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(499)						
<223> n = A,T,C or G						
<400> 97						
acagaaaactt	ggggactgtg	gcoagagttg	ggaccctgga	gcagcatcct	60	
ctgcagagaa	ggattttgtc	tggccagagc	ctggagaaac	ctgaaaaaga	120	
tagccaggt	ctcagagaaa	agcagattac	acactcaaat	tggtaattt	180	
taataaaggc	agtatttaca	aagtgtgggc	taagectccc	atgagagtgc	240	
ggcttagcgt	gtggggcgct	atccccagcc	ccctcaatcc	attggctgag	300	
gccacccggc	caagggagct	tgttgatgtg	ggtcacacgg	gcatgttccc	360	
aggagatgg	agagtgaatc	tanggagact	caagaggaa	aggtgactt	420	
tcctttctgg	ccgtttgtc	tccanctggc	ttotctttt	ccgannccnt	480	
ttaangnan	ntangtnaa				499	
<210> 98						
<211> 688						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(688)						
<223> n = A,T,C or G						
<400> 98						
naggtacaag	ttatcaatcc	gagggacaag	agggagggac	aagaaccagg	60	
attcacatcc	tggaccctgt	catctcaaag	ccagttccct	ccctgccttc	120	
tcatttcactt	tggattgagt	tgcgttctca	ctgaacagaa	acccacaacc	180	
gcagcccatg	gcccgtgatta	agctctgcac	cagtggcgaa	gggatcgagt	240	
aattcagctc	cgcctctgtg	cggcctcaag	ggagttatga	acttctgagc	300	
cttctgagct	gccacccaagc	tgcctnatgg	ggctgcctaa	ggattaatgn	360	
tcccaggcac	atnagtcat	aataaaatta	agaatacngn	gaccactaaa	420	
tngaagtaact	tcctactaac	tacnttaaac	cccaacttga	aggttttgga	480	
nccaacttgg	aaccaaaccg	gcnnnaangg	aaaggtacct	tggaggcact	540	
tggggcttnc	ctanaatccn	tttccatttt	cttttgacc	tnggnnaatt	600	
ccccatttac	aaagtttct	tgggccccgg	gnnttnaag	ggcttanc	660	
ggggcttggg	aaaaagnccc	ccacttgn			688	
<210> 99						
<211> 657						
<212> DNA						
<213> Homo sapiens						

```

<220>
<221> misc_feature
<222> (1)...(657)
<223> n = A,T,C or G

<400> 99
ggtaacttttc ttagtatctt aacatcacat gcattttgta gtttatggtc tccagtctcc      60
agctgttttt ggagcacctt ctaacttga gaggggtgagc tctagcctgt aaaatggact    120
gtgggtggct cgtggagaag gtgccttggt gtgcctttct gtgcctctc tggattctcc    180
ctgagctgtc caccctctgaa gcctgctca cttcagact gccaggcca gacatgcagc    240
ttctgcagaa ctcatggcag cgctttcca cttggccgag ctgggtctgt gaagcagaga    300
ggaatcaga ataggaaaga aatgttaagtt gntttttcc cccttagaat acctaccata    360
ctggatttca gcttggagtg cgccagcatga agcatttgcgt gtcaaaaaag aggncttcct    420
tttccctct nctggttct tttcttnctt ctccccaaact tccccaaangc ttactggctt    480
tcttnntnaag ncacgtgtgt aaaatancct tgagggaaaa aanggttccg gcttgggana    540
tttggatnta cctaaagggn cagaataacc cttctttgcc tggttcnntt ttggcctaatt  600
cnagggaaatt tttcgactgg ggncattaat ggncctccgg cggccgttaa anggcaa    657

<210> 100
<211> 504
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(504)
<223> n = A,T,C or G

<400> 100
atttcttctt tgcattgcagg aagaaaattc actcgccgtt tgataatttg ttatggtctt      60
atttgacctg ttatcccctgc ctccccatgtt ctctttaccc tacaacccat cagctgttag    120
agtttccttt tccaaagactc tccatgtcca tccccctctgc attccccccct ttcaactccat    180
cttctgtAAC ccagccccctc gggagctgag gaggtggagg cgatatacga cacggagagt    240
gctggatgca aagggtttac ttgtggcaaa ggcccccgtgt gtgctgagga tagatggcag    300
gtatgagaga gggcaggatg aagcacaggg gtggaggggga gcagagagac ctacaacaaa    360
acccactcaa ggggtatgtg agatagactt tttttctgg ncttttgcgt tgcgttaat    420
gggggttggaa aagtgggtg gtctcanacag ntaatctct ggagnctctt ggacttgagc    480
ctngtcnnaa nagccagaa nttt                                         504

<210> 101
<211> 685
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(685)
<223> n = A,T,C or G

<400> 101
ggtgccctgtt ttgccactta ggaagctgga aagaattttc gagtcaagtt aacccaaccc      60
cctcttcttt tcacatgtaa gcacactggc tcagccagaa ctcaggtctt tcaacctcac    120
agttggtaa gactcttaca tgggttcc aagttgctca actctcaggg ctcagcctac    180

```

aaaagactcg gcatttcgac cagctcagtc cagaggactc cagagaatga ctgctgagac	240
caccccaacctt tccaaccccc actacagaca cacaaaaaaga acagaaaaaa aagtctatct	300
cacataccccc ttgagtgggt tttggtnag gtctctctgn tcccctcac ccctgngctt	360
catcctgcct ctctcatacc tgccatctat cctnagcaca cacngngcct ttggcacaag	420
tacacccttg cattcaagca ctnttcgggn ctatatncgg cttcaacttc tttagcttccg	480
aaggggcttg ggtacngaaa aaggatgaaa ggggggaaatg ncaangggat nggcctggga	540
aagttttgga aaaggaacct ttaccnctga agggtttag gggnaaaaaa aacctgggag	600
ggccgggtta ccnngtcaaa taggacctt ccaantttt aacngggagg gaattnttc	660
cngctgccaa naaaaannnc ttccn	685

<210> 102
<211> 498
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(498)
<223> n = A,T,C or G

<400> 102	
ggtaccatat acttaaggct atagtttatt tcataacttt tttcttagcc ttcatatctt	60
gtgttttcag gttgtcacaa tattcttta aaaattaagc attcttacgg cttcaactcat	120
gtgcaacatt tataattatt tgcatttgcc ccctcaatga tctcaataga ataaatcagg	180
ctccactata ctcatttcac aaagacacat tcattacaaa ggataaagga ctgaaatatt	240
tgttttgc当地 tctgttgacc taagtaggaa taggaagcac agtttcaatgt ctccaatgtt	300
ttaaccctt gactgagacg tttgggtga gtattactat tcttattcta ccaatgataa	360
aggaaaaactg aatgcccac catgtgttcc acatgttacac atatgcaaca ttgactgggtt	420
ctcacaacca ccttgaggaa taggcattgn cttaattt caaatgagga aaacaaccat	480
tttcaangng catttnc	498

<210> 103
<211> 697
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(697)
<223> n = A,T,C or G

<400> 103	
gnnatctgaa attcgccctt cnagcggcgc cgggcaggac taaaaatgtt agtttatttt	60
gccataacccc taacaacatt ttatTTAAAT tatattgttga ctgttattaca aatcttttaa	120
atgacattat tggcatattt ttcttaact ttgttggaaa aagataacat ttccatTTTT	180
agtagcaaaa tcattgtttaa gagatagtca attttgttggaaa aatatttgtag tgtaatcaa	240
ttttccagg atgatTTCT atccattttt atttagatct ttcttttggaa gcacttacat	300
catcatcaaa ttttggtca ttgtntgn gn catcttattt ctgggttccatt ttctaatggc	360
ttcgatgttgg aatgttattttt agtttccattt aacgttccattt gtagccactc ttgttggaaattt	420
ttttttttttt ccaggcttcc aatttttattt tatanggaat ttgttgggg atatagatgtt	480
ccgctcaaaa ttcccatgng agactgntga aatgnctaa acnattcgcc tggacnctgg	540
attaancccgn ggcctctttaa ggttaatctng anggggtggc ttattggaa aattttggattt	600
nngggccggcgt tactntgcca ggttngactt nnaaggggccc anaaggaccc nngaaatnaa	660

gatnccctna acccttcctt ggnnaaaaa naagttn

697

<210> 104
<211> 504
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(504)
<223> n = A,T,C or G

<400> 104
accatcatc agaataactc ttccaatttc tgctttcaga catgctgcag gtcctcatct 60
gaactgttgg gttcgttttt tgggtttttt cctgctccaa gaaagtgact tcaaaaataa 120
ctgatcgga tagatatttt tattttactt ttaaacactc cttctcccct tttcccactg 180
aaccaaaaag aaatccccatc cctaaaacct gccttcctt tttatgcaaa actgaaaaatg 240
gcaatacacatt attatagcca taatggata gatagtgatt gcgttggct atgtgttgg 300
ttctttttt ttaaattatg aatatgtta aatatctgagg taacttgcta accgtgaatg 360
gtcatataaac tttaaagata tatttataat tatttaatga catttggacc cttgaaacat 420
ttcttagtgn attgatatgt tgacttcgg tctctaaaag tgctcttat taaaataaca 480
aatttctta aagggnctaa aanc 504

<210> 105
<211> 746
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(746)
<223> n = A,T,C or G

<400> 105
ggtaacttagt gtctcataat tgaaccctct atccacatgt gcccgtttt gctgactatg 60
tctttgttat gaaggctggc gatttagat ttgtcttaac tatgaaacca cagaacattt 120
ttctgttagtt caatgattta ctgtgtcttgc tctttttat atgacaagag tcataattac 180
cccaaagaaa ttagaaaacc acatcactcc agcatttcat gctgataaaag ggctaaagg 240
tgttttttaa atccctaatt accgcttttag aaggcaaaagc tgtgttagag gcattcaaag 300
atctgaaaga actaaacata acattttctt catacatcac aaaaacaatc tatatctaaa 360
atatggag aagggaaatg tttttttttt tcacattgng ccctggatga acctggaaat 420
ggcttancca tatttcaaga atatggntct aggacccact ggaaggaaaa ttgggttaat 480
ttaataaaaa ganccctt ttaggaggan ccgaaagtcc aaccttattt aattccccctt 540
angaaaatng ttcaagggg gtcnnnaag gcccatttaa antaatttt taaaatatta 600
tcctttaaag ggttttttg ganccntn nccggttgnc caaggttnc ccttcgnaat 660
ttttnccct tttccctaa antttaaaaa aannngnaa accccccctt ttgnccaaag 720
cccatnccn 746

<210> 106
<211> 645
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(645)
<223> n = A,T,C or G

<400> 106
acaagcttt tttttttt ttttttttga gatggagtct cacattgtt cctgggctgg      60
agtgcagtgg cacgatctcg gctcccggt tcacgtggtt ctccctgcctc agcctcccag 120
gtagccggga ttacaggtgc ccaccaccat gcccagataa ttttttatat ttttagtaga 180
gacgggggtt taccatgtt gccagactgg tctcaaactc ctgacccat gatccgcctg 240
cctcaacactn ccaaactgtc gggattacag gcgtgagcca ccacacccgg ctgagttgtt 300
gatttttag tttgntcagc ttttacttg gtagaatgaa gtgatgactg ncgacctcct 360
taagggccag actagaaaact gggagtctcc tattangnc gccttaaaaa ttgnaagctn 420
gacattggtg gtgaaggatt ggaacaattc ttaattctgg tacctganan gggtgaattt 480
tggtttcact ngcngcttat cagtantcaa ttccctgaac ttttaaacn ttagttaccc 540
ttngtaggaa cagnnttcaa atttcccttg acttagggaa cccttantct ngggacaagt 600
tttattctaa ctgactgtt caaacttang gctcntacc tggcc      645

<210> 107
<211> 684
<212> DNA
<213> Homo sapiens

<400> 107
acagccagat cttaagatga gtctgtgtca aaatgacctg aacgcaagtc tgtattcttg 60
cagagtaaca gagtgttcgt ctgtttctgt ctaaaagtca taactataca gatatctggg 120
aatgcttgc tgaagcttt actcccgaga gcataactact acttacggtt ataacttgtt 180
gatgtctata ttggcttaat tcaaattgaaa agttcactcc aggagcagct cttgttaatc 240
cacaccaccc cccagactgt tctgaataaa cccagaacaa ctcatacacc agcctaagca 300
tggcttattt ttctggatg ggacagaaca taattgtatt aaaatataaa atcagtttt 360
aaaggtctgg aaggacatata cttaaaggcca tgatagtaag tacagctggg gtgctggg 420
ggggacctca actagggtt gttggcaaaaa ttggactttt aactttggct ttaacatcct 480
ggtcctaaaa agaagactag atttacat tatatatgca atctaaaatt aattcaaaaa 540
gtcatcagcg aggacccccc taagattctg ggtggtaagt ccaccaaagg ccaagagcta 600
aaacaaaagc cttttccaca ttttctgaga agttggccca aaactgtga atctataggt 660
cttagcatgc tctatctatg tacc      684

<210> 108
<211> 236
<212> DNA
<213> Homo sapiens

<400> 108
ggtacacgtc gttctttca agatctcata gacaatcggtg ctccgggtt tgctgtcgaa 60
aaaggaatcc ttatcagaca agtcaaataag atgctgcttc tcccgggaga agggatagga 120
gagtccttc atggcttggg gcctgtgtc agccactttt ggtggatgg gatctgtgtat 180
tttctggagc acagagttga tttttttcag gaggccacgg gtctcattaa ttttgtt      236

<210> 109
<211> 497
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<222> (1)...(497)
<223> n = A,T,C or G

<400> 109
acgagaagtg tggtgctgga atatcttcc ggtgaggcct caagaagttt acagtcacgg      60
tggaaggcaa tgaggagcca gcatatcaca tggtgacagc aacagccaga gcaaaaagagg     120
gagggagagg tgccactcac acttaaacaa ccagatctgg tgtgaactga ctcatcacca     180
aggggatggc actaaccat tcattgaggga tctgccccca tcattccagac acctcccacc     240
aggcctcatac tccaacactg gggattacat ttcatcatga gatttggagc ggacaaaacat     300
ccaaaccata tcagtaggat gtctgacatt catcatacga tgtctgagtg aagggaggtt     360
taagggctta ttttgtctcc ctggatagta atggaaaatg tatatctgaa agagatgtct     420
aaaaaagaaa gtttaagtgg gtggcttgca cacttttgtt ttgctagngg gcttttttag     480
ctcanattct cattgn                                         497

<210> 110
<211> 722
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(722)
<223> n = A,T,C or G

<400> 110
ggtagacagccg gtccttcttcc tccaggaatt ggctactgtc cctctgcaat cccattcatg      60
ataaaaagcat tcttatacaa cacaaaagat gctgcatcaa tgatttc当地 acctccaaga     120
catccaaatc aactagcatg cttaaatgc agattcctgt gctgactca ccaacttcca     180
gaattttcca ttcccttaggt ctggatggaa cctggaaatc tgccttgcta acaaattatgtg     240
ctgacactgt tgatttgggg accccacttg gagaacctgg gctctagatc tctaccctct     300
tactgaagtc ttcttccact tcctgctta actggaaatcc aacccggccac ccctgnagcc     360
cttgcaaaatg gaatttgcctt ttcccttac tctggttttt tctcctctgg ttcttagccta     420
gattccangg aacatnaact ttgggcntgg cattttcccc tngatntggg atccctttgg     480
nccagnttt ccccaaagna agccntnaat tcaaaatctt tcccnntng gtcctattn     540
acccggacct tcngggggna aaaaatnccc aaaagcccccc ttacnaaatac cctttttccc     600
aaacttcaat tggaaaactn gggctttaaa aaagncccn tttncCAAan ccnaaaaantg     660
ggcctaacc ccccccnnn aaactttntt tttnnnanaa attnttttn anaaattncc     720
tt                                         722

<210> 111
<211> 614
<212> DNA
<213> Homo sapiens

<400> 111
accagggctc tcacttccaa atagactatt taattgtttt gatacattct caaaaactgt      60
caagggtctcc aaggcatcca aagcttcaag gtatttgc acaaaacccaa ccctgtttgc     120
ttgaatatga actgtcctaa ttcttagccc ggtcttccat ttccacaatg ctgtgacttt     180
gttccttattg ttatctctgt aaggctatcc tctccttgc ttttaactt ttactcagaa     240
ttcatgagcc aacttgaata tcactttctc catggaaattt ttatgagttc tccaacataa     300
ttcaatgacc aggtcagttt ttgatccagg acagcatttc ctgtgaatgt ggtggatgtt     360

```

atatatcact caatgcattt ttcattacc ctggggaaatc aataaattgg agtttcttaa	420
tctcgagaac tgaggaccaa tagcttaaa atgtgtgccc atgaatctgt tccaagaccc	480
aagatgaard ttccggcc tc atccaccctc atataaatga caaaaatatta tgtgggatcc	540
ctgttaacaac tgaattttaa aatgcttagga ttatcccttc cctagacta tgcattttt	600
aaagggtgtac ctcg	614
<210> 112	
<211> 499	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(499)	
<223> n = A,T,C or G	
<400> 112	
acttttctgg aaattggctt taagagctca tcctgcattt taaaatctc tccaactggaa	60
tcaaattttt tatatactcg tttgataggt tttttaaaaa cacatgactc ttcaggacta	120
caaggcgttat tagtctgggt tcctacagaa gcctgtcctg aggaagaatt tggactagct	180
ggtgttggaa ttaagttaga acccacaaca gctgtcttc catcactatt attttacat	240
tctgtatcaa tgattaaaca ctcctcatct gtatcactgc tgcagagaac tgtaccttca	300
gttttgctg ctctgatcc aacagtctt tccttgagt tgtcttaggtt ttctagaaca	360
tttaggtctt caccatcagc atgaaatata tctatagtca tatcattttt attagaagtt	420
tcaatttcct gagaatttct aactggaaagg catcagatgt ttcaaggca ctatcttggaa	480
tcaaangctt ggcaaaaaaa	499
<210> 113	
<211> 697	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(697)	
<223> n = A,T,C or G	
<400> 113	
gcgtggcgcg gccccgggtt cctaacatga cagatgctcc tacagcccccc aaagcaggaa	60
ctacaactgt ggcaccaagt gcaccagaca tttctgtctaa ttctagaagt ttatctcaga	120
ttctgtatggaa acaaattgcaa aaggagaaac agctggtcac tggatggat ggtggccctg	180
aggaatgcaa aaataaaagat gatcagggat ttgaatcatg taaaaggtt tcaaattctg	240
acaaggcttt gataacaagat agtacttga aacatctga tgccttacag ttagaaaaatt	300
ctcaggaaat taaaacttct aataaaaatg atatgactat agatattata catgctgtat	360
gtgaaagacc taatgttcta gaaaacctag acaactcaa gggaaaaagac tggatggatna	420
gaagcagcaa aaacctggaa ggtccaggat tctgcacant ggatccccan tgaanggaag	480
tggtttaaat caattgggtt ccggaaatggg aaaaaattaa ttatggatg gggaaaagacc	540
agcttgggg aggggctttt tnggnnaacc gncttaaac gggtnngnan cccctaanaa	600
cttnaggggaa ntcttggngt taaaaaaaaa ccttttanc cgngttt	660
<210> 114	
<211> 497	

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(497)
 <223> n = A,T,C or G

 <400> 114

accacacttct	gacatctgg	ccacttcttg	cagtcattgg	gggtcatccc	ccacactgg	60
aacctgtcat	caa atggg	cc acagcaacat	tca gcttaag	tatttctcct	tcccacatcc	120
aagggatga	gtgggagtga	gattgggggg	tggaaaaaaac	agtgaacagt	cctggtgagt	180
tgcagatgt	gtctcattcc	ctagagatgc	aggatgcagc	tgacctgaat	caggacagat	240
ccctgcagga	gggactcctg	gtgccatgtc	agtcccacct	ggcactgccc	tagctccag	300
gctccgcctc	tgc attttc	cttgc tactt	ccttccatc	ttctcccccg	ttcccagacc	360
caccagacag	agcttccaga	gtgtcaggac	atgtgtgact	tagcccagat	tcagacttta	420
gtcacaagca	ggatcaagca	tanacatcta	acttccagca	tggcaattc	tctggtgggg	480
ctccctgnnt	ggantgg					497

<210> 115
 <211> 687
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(687)
 <223> n = A,T,C or G

 <400> 115

ggtaactatgt	gtgaagaaaat	ggagaaaaagg	aaaaatcang	tgttagaaaaaa	taagaaaaag	60
caagagttag	gttggtgcc	acagttcaca	gcatgtgata	aggactgagc	atttattcta	120
ttatggc	ataaaaatgc	aggctgtta	ggcctacaca	caccagctta	tcgnagactt	180
ggctctgagc	tttccctgcag	ccaatcacaa	cagggagaca	cancagagaa	ttgcatgct	240
gggagctaga	tgtctatgt	gatcctgtt	gtgactaaag	tctgaatctg	ggctaagtca	300
cacatgtnt	gacactctgg	aangctctng	ctgggtggtc	tggAACGGG	ggagaagtga	360
aagatgaagt	agcttagggaa	nagatgcaga	ggctgnncct	tggaaactt	ggcaagtgcc	420
aggtggggac	tgaccatgtt	anccaggaat	tccnttcctg	gtangggatt	ctggccctng	480
aattcaggg	taagcttgcc	attcctgcat	ttcttntagg	gggantgan	aacccccc	540
ttggaaactt	cancaaggan	ttggctccc	nggnntttt	cccccccta	aattnaattc	600
cccnnttaatn	ccttgaatt	cnngnaaggg	nnaattctt	ancctaantg	ttcttgggc	660
nctatttgg	ngacagggtt	ncnang				687

<210> 116
 <211> 508
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(508)
 <223> n = A,T,C or G

<400> 116	
ggtaccatt ttctatttca agtagattaa ccccttatat tctgctaaaa tcataacttg	60
tgcctaacac ccgttaaca aagcaaaaa aaatcagttt atttataaaa acaaaaatgt	120
aattctt ctatgtaat gtatttcata gatttttaagg ggttaatcac caattagaag	180
acatgctgtg tccacactat tttaagatta aacgttaatg ggaatatatt aattcaaatt	240
aacatggta tgtaaaaatata ataaccact caaccattt aaaaactatgt tgaacactgc	300
tcaattctag aagagacaaa gacaaaacaaa acaaaaacagc cacacaaagg acaataaaatg	360
ccaggctctg catccaaaat ccctccctta tcaaattggca gatgtgacac tgagcttttg	420
aaaaccttgg ncaaaaatcc ttccgatgtc ttggcagcaa cccctggcag gatcaatccc	480
ctctgntata aagntttggg cccngccc	508
<210> 117	
<211> 644	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(644)	
<223> n = A,T,C or G	
<400> 117	
acaggggtta aggaaggctt tgccggaaga acaattgtaa atcatgagag ttactacttg	60
cgcattgtgt ggtagtctct ttaatgcata atggctctt ttaataccaa aaattaatta	120
ataaaaggaaa tgattacatt gtccaaataa ctgttaaaca catgacagat ctgtttatg	180
atactgtgtt tgacagttaa acattaagta aacatttaat tgactttaag ctgaaatgt	240
tcagaatgtct taacccttg ctacagaatc tttctgcag caagtttaatg attttgtgtg	300
ttttttccca cctgttagctt atcaggccccg gtccaaagcc ttctagcaga ggggattgat	360
cctgtcaggg gttgctgcca agacatcgga aggattttt accaaggntt taaaagctc	420
aatgnacat ctggcatttt gataaaagga gggattttgg atccaaagcn tggcnnattt	480
ggccttttgg gtggctgggtt agggtgnntt tgctttngc ctttcttaa aaattaacca	540
nggtnccac ttatttttt aaaagggtga atgggtaaa attttccnt ggaccnngta	600
aattgnaata aaaattcccc ttaccgtta aactaaaaan angg	644
<210> 118	
<211> 500	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(500)	
<223> n = A,T,C or G	
<400> 118	
ggtacaaacc catgcagcct gcccctcactg tggtaagat cttctttgct ggggacacta	60
ttcctaagag tcccttcgtt gtgcaggtt gggaaaggctg caatccaaat gcctgccggg	120
ccagtgcccg aggctacaa cccaaaggcg tccgtatccg ggagaccaca gatttcaagg	180
ttgacaccaa agtgcagga agtggggagc tgggtgttaac catgaagggt cctaagggtc	240
tggaggagct ggtgaagcag aaagacttcc tggatgggtt ctacgatttcc gagtattacc	300
ccagcacccc ggggagatac agcattgcca tcacatgggg gggacaccac attccaaaga	360
gccccttga agttcaagtt gcccctgaag cggttatgca gaaagtccgt gcttggggcc	420
ctgggctcca tggtggatt gtcngcggcgt caacngactt cgtggananaa tccattggct	480

ctgaaatnng gnctctgggg

500

<210> 119
 <211> 624
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(624)
 <223> n = A,T,C or G

<400> 119
 actcaatctt tgcgtgagag gggcctcaa tggcaaacc cagagacccc acttcagagc 60
 caatggattc taccacgaag tctgctgacc gcccgacaat cccaccatgg agcccaggc 120
 cccaaagcacg gactttctgc ataccgcctt cagggccaaac ttgaacttca aaggggctct 180
 ttggaatgtg gtgtcccccc catgtatgg caatgtgtta tctcccccggg gtgctggggt 240
 aataactcgaa tgcgttagacc ccatccagaa agtcttctg ctccaccagc tcctccagac 300
 ccttaggacc cttcatggtt acaccgagct ccccacttcc tgcaaccttgg gtgtcaacct 360
 tgaaatctgt ggtctcccg ataccgaccg ccttgggtt gtaggcctcg gcaactggcc 420
 cggcaggcat ttggatgcan gcttcccaa cctgcacaac gaangactt ttangaatag 480
 tggncccagc aaagaaaatc ttgaccacnt tgangggcca gctngatggg tttggacctt 540
 tggccggaac acccttangg ccaantccng canttggggg ccgtacttag ggaccaactt 600
 ggnnccaact ttggngaata tgg 624

<210> 120
 <211> 504
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(504)
 <223> n = A,T,C or G

<400> 120
 acaggcatgg caccgacata tgcgtggctt ctgcgttagc ctcaggaagc ttatagtcgt 60
 ggcagaaggc aaagaggggac ggcaagagag gaagcaagag agagagcggag gaggtctcag 120
 actctcttta ataatcagat ctccgtataa ctcatttca tggggaggc accattcatg 180
 aggatccgc tcccatgacc caaacagccc ccaccgggc ccactgtcaa cactgaggat 240
 cacatttcaa cataaaaatgt ggaggggaca gacatccaaa ctatatcacc tccatactgt 300
 tttccacagc attccacca acagtgcaca ggggtttcag tgtctccaca tcctcatcac 360
 acttgttatac ttctgtttt gtttgttgt ttgtttgtt tttatagtag ccattctcat 420
 gantgtgaag tattaacagt gtctttgaa gatcagaaat ttctaatttgc atgaaagtcc 480
 ngnttancan ntttttcntt tttt 504

<210> 121
 <211> 630
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<222> (1)...(630)
 <223> n = A,T,C or G

 <400> 121
 ggtactatcc taagtttaac actgcttcac agtaaggaaa gccgatcaaa atttaaggag 60
 agattagaat ccagaataag gcccacacat atatatagtc attgattttt aataaagggtt 120
 caaaggccaaa aacaatgaaga aaggatggtc tttcaataa atgatgcaga aacaactgga 180
 catccacgta tgcaaataaa cttaatcca tgccctttac tttatccaaa agctaatcca 240
 aaatagaaaac ctccccttcc tccctcaaaa aagcttctag agaaaacaca ggagaaaatc 300
 tttgtaacct tgggttcaca aagatttctc aggtatgaca ccataagtat gatccagaaa 360
 agaaaaaaaaa tgataaaactg gacttcatca aattagaat ttctggatct tcaaaagaca 420
 ctgntaatac ctcacactca tgagaatggc tactataaaa acnaannanc caaccaacca 480
 ataacngaag attncagggtt gatgangntt ggagacnctg aancctng cactgttggt 540
 gggaatnntt ntggaaaaca gttggangng aattagnng gngnntngcc ctcccanttc 600
 atgggnaagg gacctnagnn tgancnggg 630

<210> 122
 <211> 431
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(431)
 <223> n = A,T,C or G

<400> 122
 actgaaaaagc ttggtcataa tcttcctgaa catggaatga tctagctagc tgatagcagc 60
 tctctgttg catagcttcc acttctgtat tatggaatgc atggagggcc agatgctgg 120
 ctttactata atcccttttg aagaaaaagt gatttgc当地 atggttcaat accatagggt 180
 tgcttagatc aatagtatag gctctggaaa gaagctggac accatttttta atggaatca 240
 cctcttattt gttgagttct agaacagcca gtccaaaccaa tgctcccacg catttggaa 300
 tgagttccag ggctctgctg aatgccagac gagcttttc cagtttgttta agtttcacaa 360
 agcaatgacc cattcctaaa cnaacttccg ctggacattc ctgggttaag tacctnnngc 420
 cgngaccacg c 431

<210> 123
 <211> 504
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(504)
 <223> n = A,T,C or G

<400> 123
 actggctgtc ctctgaggca cttgggtgtc tttccacaa tggtttattt tcctccagta 60
 ggctagactg gttccttat ttggcagttt cagggcagca tttcaaaagc aggaagggtgg 120
 aagtggcaag gccccttgag gcccttctt cagagctcac acagtgtcac ctttaccaca 180
 ttctatttgtt caaagcaact tccaggccag cccaaattca aagggtgagg tagtagactc 240
 tacctctttt ttcttttgag acagaattgc gctctattgc ccactctgga gtgcagtagc 300
 agcctcatgg ctcactgcag cctcaacctc ctgggctcaa gcgatccttc catctcagcc 360

tcccggat	ctaggaccac	aggcacatac	caccacagtc	agctaattaa	aacat	ttttt	420
ttggtagaag	atgggttctc	actttttgc	ccaagctgat	catgaactcc	tggccacntt		480
nggcntttc	aaggggnaac	cccc					504
<210>	124						
<211>	632						
<212>	DNA						
<213>	Homo sapiens						
<220>							
<221>	misc_feature						
<222>	(1) ... (632)						
<223>	n = A,T,C or G						
<400>	124						
ggtacaaaaca	cagtaaagaa	caacacagat	accagtccctg	cctttatcag	gaaagacaaa		
acaaaaacaa	aaagtaaaaca	ttccagtaaa	ggaatgatta	gtgctattat	gacaaggaaa		
gcatagggaa	ctattcgatc	aaagaagaga	ggttacagtt	ccccaaatct	aggggtgttg		
gaaaggaaga	atatccttag	taaatgacat	tgaagctaaa	acctaaacta	tgtatagcag		
tcagctagaa	aaaacaggca	agaaaagaata	tttcaggtgg	agagaaaacac	atgtttcag		
gccaaaagct	ggagaacaag	gtgagttaa	agaactgana	gaggtttagt	gattacaatn		
gttgaacaaa	aggggggcat	tgtggaatga	atannaaaga	ntggtttgt	anattggaaat		
ctctgcagca	aaactccatt	cagaaggtat	aagttcangc	cttgggggt	tactttggnna		
aggcgttagt	gggcccaggag	nttcatgtn	cancttgggc	caaaaagnng	agaacccatt		
tttccaaaaa	anaatgntt	naatttacct	ncntgggggg	ggaatgnncn	tngggtcctt		
anttcttgg	aanggttaa	attgnaaggt	nc				632
<210>	125						
<211>	496						
<212>	DNA						
<213>	Homo sapiens						
<220>							
<221>	misc_feature						
<222>	(1) ... (496)						
<223>	n = A,T,C or G						
<400>	125						
acaagattag	gaggggggaa	aaacctgaac	aaatcctgga	acacacctat	gtat	ttacgt	60
catggaaaaa	ggggagagaa	cactcaa	atcaacaatg	tctgcgccat	taactcatta		
atagctaaat	ggccacacca	aattgc	atgtgtttaga	accttcaga	tagccacaat		
aagtccatat	tttttttaa	aaaaaggaaa	acacagaaaat	aactaccaac	agtgtctgag		
aagagagact	aagttaacat	acatgc	tattgcaggc	aaggcagagg	atttttta		
aagcttttgc	acagacttca	tataatctt	aaaaaaaaat	gcaggcctt	gcaagattt		
acttgctgaa	atccaaacaa	ttttgactca	tggaaaagtca	taagacttca	gctgaaaaaa		
aagaaaaaaag	ttccagcc	agaccaaaaa	aaaaaacctg	gaanagtntg	atagattaa		
cnanggtngg	cacgct						496
<210>	126						
<211>	631						
<212>	DNA						
<213>	Homo sapiens						

```

<220>
<221> misc_feature
<222> (1)...(631)
<223> n = A,T,C or G

<400> 126
ggtacacccatt gtacccaaat aggttggctt cttccccacc caccttgag cttttgctct
aaaatacatt cagggttccaa gcctgaccat cttgttttaa tctatcatac tcttccaggt
ttttttttt ggtctaaggc tggaaactttt ttctttttt tcagctgaag tcttatgact
tttcatgagt caaaaatttgtt tggatttcag caagtcaaat ctgc当地 cctgc当地
tttttaaga ttatatgaa tctgtgcaaa agctttaaa aaatgc当地 gc当地
caatacatgc aatgtatgtt aacttaagtc tctcttctca gacactgtt gtagttattt
ctgtgtttt ctttttaaaa aaaaaatatg gacttattgt ggctatctga gagggctaa
cattcacatg ccaatttggg ggtggncatt taactattaa tggagttat gggcccaaaa
cttgggtata tttttaaggg gtctttccc nttttccaa tgccgtaant ctttngggg
tggttccagg aatttgnntcc aggnntttc ccccnccctaa aatnttgaac cttgnccnng
cnngncctt caaagggcna attnnancn t

<210> 127
<211> 518
<212> DNA
<213> Homo sapiens

<400> 127
caggtactcg gtgttccca acacccctt attggaaaac agccaaggag atgggtggcta
actggaggca tcacccagca gtggggagc agtggagcaa ggtcatttgc gcactcaatt
ccagattgct acgtttaca tatggcctt catttcctgc atttaaagtt cccgatgaag
atgccagtct gatccctcca gaaatggata atgagtgtt tgccacagaca tggtttcgct
ttttacacat gtaagtaat cctgtggatt tgagtaaccc agctattata agctctactc
ccaaatttca ggaacagttc ttgaatgtga gcggaatgcc gcaagaattt aatcagtatc
cctgccttaa acatctgcct caaatatttt ttcgtgccc gcttggaaatc agctgtctgg
tggatgcatt cttaggtatt tctagacccc gatcagacag tgctccccca acaccgtga
atagattaag tatgcctcaa agtgctgtg tcaatgtt

<210> 128
<211> 865
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(865)
<223> n = A,T,C or G

<400> 128
accaaaggat agctgttctg tttaagtagg gacctctcat ggcctacagg ctttgacatc
tgagaatcaa actggagaac attccgaagc cggttcttata agtgtctca tctctacccctg
ggctgaaatg gaatgtgcaat atgtggccca gcctggctt tgggtgttgc cagttgattt
atgactggg gccaaagtgg catctctt gacctaaacg ggc当地 gatgatgaaataaaact
caacagcctt tctctcatct tgcatgtga gatgc当地 agagcgtgtc tctctgc当地
tcatttttagg ctgaggccgt ccaaagcggc catgccccat gtttccacta gatggcgctg
acacttcagg catcaaccct catggcctct cagccttgca aaggcagcca cttaaagtcg
gtqtcctatq tqqqqccca agctgagctg cagacacccca gtaggc当地 ggcaaatgc当地

```

tcccatttta	agaggctgt	atttatgagc	tcttgcttc	ctccctccca	ctatctttaa	540
agaattgctc	tccatctcct	ttggcaaagt	tccttgccc	tttgncttat	tttgtgaaa	600
cccttcaagg	tattccagt	ccatggcat	ccaatctggc	atcttacng	aanagcggtc	660
tcatatgcta	ttgggtgtaa	cgtggacta	gtatttatgn	ggttgagaac	cacttggctg	720
tttgtcaagg	aaaagtgtgc	ccaaaaacca	agaagtacct	ttggccngna	accacgctta	780
aggccgaaat	tctgnagata	tncnntcaca	cttggcgggc	cggttcgaac	cttgcataat	840
aanggnccca	atttggccct	tatag				865

<210> 129
<211> 910
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(910)
<223> n = A,T,C or G

<400>	129					
tactcttgt	tttggcacac	tttcctgac	aaacagccag	tgttctcaac	acataaatac	60
tagtccacgt	taacaacaat	agcatatgag	accgctctcc	gtaaagatgc	cagattggat	120
gcaaatggac	tggaaatacc	ttggagggtt	tcacaaaaat	aagacaaagg	gcaaaggaac	180
tttgccaaag	gagatggaga	gcaattctt	aaagatagtg	ggagggagga	agcaaagagc	240
tcataaatac	aagccttta	aatgggacg	catttgcctc	gcccctactg	gtgtctgca	300
gctcagctt	gtggccca	caggacaccc	actttaagtg	gctgcctttg	caaggctgag	360
aggccatgag	ggttcatgcc	tgaagtgtca	gcccattct	gtggaaacat	ggggcatggc	420
cgctttggac	ggccatcagcc	taaaatgaga	ggcagagaga	cacgcttat	ttcgcattctc	480
acaatgcaag	atgagagaaa	ggctgttag	tttatttca	tcatgcggcg	tttaggtcaa	540
aggagatgcc	acttggctc	ccagtcata	atcaactggc	aacacccaag	gaccaggctg	600
ggctacattt	gcacattcca	tttcagccca	ggttagagatg	gagacottat	aagaacngct	660
tcnagaatgg	ctncagttt	gaatctcaga	tgtcaaaagc	ctgtagncc	atgaaaggc	720
cctacttaaa	ccggAACCG	ctatcctt	gnanctggcc	ggggcccccc	gttgcaaaa	780
gggcgaaatt	ccacaccact	tggcgccccc	gttacttaan	ggaatcccga	actttgnan	840
cccaagcnn	ggcgtaaat	catggccat	anctgggtt	cctggggggg	aaaatggat	900
tcccttccca						910

<210> 130
<211> 932
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(932)
<223> n = A,T,C or G

<400>	130					
taccgcttgt	ttatccaaat	tttcctctgc	aagtggagca	tctgcttagga	tcaatagcag	60
cagtgttaag	caggaagcta	cattctgtc	ccaaaggat	ggcgataacct	cttgaataa	120
agccctatcc	tcaagtgtc	atgatgcgtc	tttggtaat	gcctcaattt	ccagctctgt	180
gaaagctact	tctccagtga	aatctactac	atctatact	gatgctaaaa	gttgtgaggg	240
acaaaatcct	gagctactc	aaaaactcc	tattgtctt	ctgaaaacgg	gggtatcgaa	300
accaattgtg	aagtcaactt	tatcccagac	agttccatcc	aaggagaat	taagttagaga	360

aatttgcgtg	caatctcaat	ctaaagacaa	atctacgaca	ccaggaggaa	caggaattaa	420
gccttcgtg	gaacgcgtt	gagagcgtt	tcaagaacat	agcaaagaaa	gtccagctcg	480
tagcacaccc	cacagaaccc	ccattattac	tccaaatcaa	aggccatcca	agaaaagatta	540
ttcaagcaag	acacatctt	atctactacc	catttagcac	aacagctcaa	gcaggaacct	600
tcaaaaagaa	ctagcatgtc	ttcgtggccc	gatttgacaa	gggcaatatt	atggaggtgc	660
agaaaaaggc	ngggaaactca	aaaagcnaac	cacctnggaa	anccaaacng	ggaaaacttc	720
acttgtcaag	agcaactcccc	tnaaaaaaaa	ccncccccaag	ggggtttnc	aaaactcagt	780
cccnntccgg	taaccngaaa	aagggggacc	cggaaaacccc	cganaccnng	gcccaaaaat	840
tntaggacct	tgccccggcg	ggcccgnnc	aaaangggcg	aaattttgg	gaaaatccat	900
tnnnccctngg	cggggcnggt	tttgcaccatt	cn			932

<210> 131
<211> 890
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(890)
<223> n = A,T,C or G

<400> 131						
actagaattt	ttggctggta	tctggtttc	ggtcacccccc	tctgttactg	gaagtgactg	60
agtttttggaa	acacccctgggt	gtttttttag	gggagtgctc	tgacagttag	tttcctgttt	120
ggttttctgt	tgtttgcgtt	ttgagtttcc	gccttttct	gcactccata	tattgcctt	180
gtcaaatccgg	ccacgaagac	atgctagttc	tttttgacgt	tcctgttga	gctgttgtgc	240
taaatgggta	gtagatgaag	atgtgttctt	cttgaataat	ctttcttgg	tggcctttgt	300
atttggagta	ataatggggg	ttctgtgggg	tgtgtacga	gctggacttt	ctttgtatgt	360
ttcttgacaa	cgcctccaa	agcggttccag	gaaaggctta	atccctgtt	ctcctgggt	420
cgtagattt	tcttttagatt	gagattgcag	acaaattttct	ctacttaatt	ctcccttgg	480
tggaaactgtc	tggataaaag	ttgacttac	aattggttt	gatacccccg	ttttcagagg	540
actaatagga	gtttttggaa	gtagctcagg	atttgcctt	cacaactttt	agcatcagt	600
atagatgttag	tagatttcac	tggagaagta	gctttcacag	agctggaaat	tgaggcatta	660
accaaagacg	catcatcaag	cacttgagga	tagggcttta	ttcaaaagagg	tatccggatc	720
cctttgggaa	accagaatgg	aagcttntcg	cttaacactg	ntgctatgg	cctancana	780
agctccactt	tgcancanng	aaatttggat	aaaccagccg	ganccttggc	cgggaancac	840
gcttangcc	gaattccnca	cacctggcg	gnccggttacc	taagggaacc		890

<210> 132
<211> 606
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(606)
<223> n = A,T,C or G

<400> 132						
actcaggcac	tccacagttt	acttgaaaaga	ggctttggaa	aatagataaa	gtgaaagaag	60
aataaaataca	tattttaat	aatgtat	taaaaatcct	ttataatcag	gactaagtct	120
tggtttgcag	aagctgtcac	ttaccctgaa	acacagtatc	aaaagggaaa	cttaaaacat	180
actgtttat	tttttttattt	ccttttacaa	tccatgttt	caggtagaat	tatgactt	240

cccccattgt tacacatttc tttacaaagg aggccctgttag aaattggaca cgatcatgct	300
tgagcatgtg agttagtcaa attatgagtc cctgcctatt gtccattaca caccgaatgt	360
taattnaaga accagaggca gaagttctgg ctctctgtt gaaaaccaat tcttatatga	420
aaattttaa aagccagaac ctagcagccc atctgnnttt tctctttgc cggngnatt	480
gganccttgg cgsgaacaacc cttanggggn aattcngnnnc acttgggggc cggtaacttan	540
ggganccaac ttggggccca annttgggga aancagggcn anatnngtnc ctggggnaaa	600
tggtnn	606
<210> 133	
<211> 606	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(606)	
<223> n = A,T,C or G	
<400> 133	
ggtaacttttc cttaatcttc ttcttcttct tcttgcacc atccttcttt tcttcttct	60
catcagaacc aacatcttca atttcagggt tgcttccga ctctttctct tcttttctt	120
tttcttcttc ttgttcttcc ttttcttcag cctcatcatc gcttacttct ttatcacgtt	180
ccttctccac aaaaagagta atggatatac caataaactg agaatgttc ttcaaaatct	240
ccttcttattct tcgttccctcc aagtacttta aatttagtgg ttgctggagc acctaaaagt	300
cagattgtca tggtaaagc ctctgcagag aacattttac agcaggactt ttgccatgct	360
atcaaagtgg gagtggaaata taccacaacaa ataattcagg gcattcagca gttggtaaaa	420
gaaactgggtt ttaccaagag gcacccctcaga agttatttac cccttcgcag agaatngaa	480
ataactactat aacactgtca tggagagact ctatgcagt ttacagatac gacatgaca	540
aggttcngga gatgaagctg taccaaataa gatagatccn gnggaccact aaangaaaat	600
tccgag	606
<210> 134	
<211> 598	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(598)	
<223> n = A,T,C or G	
<400> 134	
tacntcacca tcccgatattt gctgctgtnc canaaggcat ngncaaattg agggtcatac	60
tngatagcan cagggttaaac tggcttcca atttcaaaac ttnccctttaa gaacatcatc	120
accgangat tattgatgca ggntccttct gngaagatga ggataggcag ctngctttta	180
tcttgacat gttcannnan nctnttagcc accanntggc natccttcac ttccgagcgc	240
tcaaaccaga cgtgtggncn ggccttcacc atggntctct gaatcacacc catgagtc	300
ccgtgcactt gaccacccat ggcataatan ccatcgctgg ccaagatgtt cacatcgatc	360
ggtaggnat gattggccac acagatgcca ccatttcttg gtctgnnttc cctgtcatgg	420
taggtgatga tggctgtcag cgctcgacg cagatccggc aacacattaa ctgaacatgt	480
ttactctatga actcccttaaa cctcccttgc ggcangtatac ccaccacagn tggcccacc	540
accagaaggc taatccctgt gaaagccagt gctatcctga gccgcancag aaagcagt	598

<210> 135
<211> 617
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(617)
<223> n = A,T,C or G

<400> 135

actgctttct gctgccgctc angatagcac tggcttcac	agggattagc cttctggtgg	60
tgggcacaac tgtggngga tacttgccaa atgggaggnt	taaggagttc atgagtnaac	120
atgtncactt aatgtgttac cgatctgcg tgcgagcgct	gacagccatc atcacctacc	180
atgacagggaa aaacanacca agaaatggtg gcatctgngt	ggccaancat acctcaccga	240
tcgatgtgat catcttggcc ancgtatggct attatgccat	ggtgngtcan gtgcacngcg	300
gactcatggg tgtgattnag agagccatgg ngaanngct	gcccacacgt ctggtttag	360
cgctcgaaag tgaatgatcg ncacctggtg gntaanana	tgactganca tgtgcangat	420
aanngcnagc tggctatnct catcttccca gangganct	gcatcaatna tacatcgntg	480
atgatgttca aaaagggaag ttttgaactt ggagccacag	tttacctga tgctntcaag	540
tatgaccctg aatttgnca tgccctctgg aacagnagca	aatncngtat ggngactanc	600
ctcggnegnn ancacgc		617

<210> 136

<211> 610
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(610)
<223> n = A,T,C or G

<400> 136

cgtgccgtag gccggaaatgt taccggctgt tggatctgcg gatgaggagg aggatcctgc	60
ggaggaggat tgtcctgaat tggttcccat tgagacgacg caaagcgagg aggagggaaa	120
gtctggcctc ggcgccaaga tcccagtac aattatcacc gggtatattag gtgctggaa	180
gacaacactt ctgaactata ttttgacaga gcaacatagt aaaagagtag cggtcatttt	240
aatatgaattt ggggaaggaa gtgcgcttga gaaatccctt gctgtcagcc aaggtggaga	300
gctctatgaa gagtggctgg aacttagaaa cgggtgcctc tgctgttnag tgaaggacag	360
tggcctttaga gctattgaga atttgcataa aagaaagggg aaattnatt acatactgg	420
agagachntg gattancnng accctggtgc cantggctt tantgtttt ggttgaagct	480
ttaatttaggg nnngtnntta acttggaggg ttnttacttt tgggggttca antttgggtt	540
aaacttttnn cnaaaaaaac cttgangcct nttaatgan nntttngca agttttttgc	600
canagcctt	610

<210> 137

<211> 645
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (645)
 <223> n = A,T,C or G

<400> 137
 acaattccaa gtgcttataag ccaatataag catatttcat attagaataa gttatccata 60
 tggtaacaag aaactatgtt cctcaaataat gccaatttta gagtcataata actactgata 120
 gtaactatgt aaatattttg gaataaacag ttatttacgc aagccacact tcagctgaga 180
 tgatcaactag acatctgtt ccagagctc aacaatgtgt gcagcagaag gacgatctt 240
 agggtcttca ttagtgcata cagagaagag ttcaattact ttctggatg attcatccag 300
 ttcttcata ttaatagggt gccttagttcc caaggctgca tagtatgctt catcatcaa 360
 atcaacttca tcaaaaagttt tatcttcatac atcatcatca tttgaaagat taatgtgtgg 420
 aaatccata aaatccata tttcccacaa agtaaggcc aangccaaat atgtctggcc 480
 tggccatcaa taacacccat tcttcac agnttcttt tggggttnca atggnttctg 540
 ggnccaatgg taaccaggnc ctaangggc aggtccccgg cataatttc aatncccnng 600
 ggaaaaaaag acctcctaaa nttnccagaa tttnaatnngg ttcna 645

<210> 138
 <211> 612
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1) ... (612)
 <223> n = A,T,C or G

<400> 138
 ggtactcctg gtcacttaag atctgataact gaacattcta caaatgaagt tgggacttta 60
 tgcataaaaa ctgatttaaa taatcttcaa atggccatta aggaagatca gattgcagat 120
 aacttcaag gaatatcagg tcctaaagaa gacagcacaa gtataaaggt aattcagacc 180
 aggattctt tcttcatgag aattcgatcc accaagaaga gagtcaaaaa gaaaatatgc 240
 cttgtgggaa aacagcagaa tttaaacaagaa agcaaaagttgt taacaaagga aaacaaggaa 300
 aggagcaaaa tcaggactca cagacagagg cagaagagct acgcaaaactt tgaaaaccc 360
 atactatgca acaaactaaa cagcanaggg aaaatattca acaagtgtca caaanagaag 420
 ctaagcataa aattacatct gctgatggac acatagaaag gtctgcactt tttaaaagaaa 480
 agcanaggca tcgattacat aagttcttgg gtcttagagt tggaaaacc aatgaggaaa 540
 accgtttgga nttaaggcc aggtgctacc aatgccaccg ntgcncag ggttaagaaaa 600
 cctnaatntt gg 612

<210> 139
 <211> 592
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1) ... (592)
 <223> n = A,T,C or G

<400> 139
 ggtactccac ttcttcctat tggaagatta acattattta ccaagaagga ctaagggag 60
 taaggggcgc agatttagcat tgctcaagag tatgtaaaaaa aaaaaaaaaa aaaagaacca 120
 aaccactgga aataatcaa tgcaaaaagg taacaaattc ataactggaa agcaaagaga 180

agaacaagta tgatggat gataaagcat tggatataatg gtgaaaactt cacagatcac	240
taatgtttct agaggtaac ttcaagtggg caagctgggg ttttaggta gtcagtggcc	300
tagttctaa agccacagta taggatctgt taaactgaat gtctgtgaa agtttggttt	360
agctgctgg aggcttcctt ttaagacaaa ctgtatgtga ttaagttgtt tttgagggaa	420
ctgaagacct gatgtacccc tggccagata actgcctgat tctcagatat tattctctgg	480
gaaacatcta catabacagg agcttaant ggcattatct cttgcctaaa ttcagagatn	540
tttgnactt gcccggggc gtcnaanggc gaatccgcac ctggcggcgt ac	592

<210> 140
<211> 618
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(618)
<223> n = A,T,C or G

<400> 140	
ggtncttaca cgttaagaggatt tagcctatgg tcattttata aagatgactg ttaggattta	60
attcacattt aaagaaaaatg agattcgta tattatggtg tttttatgac ctataaaaata	120
cttaccctta caaatttcca taaatgttgtt ggttagtaaa gctttttct tactgaaaaaa	180
taatgccagg taaccaagta ttattccttc catcatttat ttagaaaaaa gttttatgtt	240
tttagggtaaa gtggtagaag ttaacctaga atctaataat ctccaaatcac ccattcctga	300
tctaataagt agccatgaga aaaaatctt agaaaagaatc atacctctca aaaaataaaaa	360
tatnaaacaa aggctgggtg cagtggtca cacctgtat ctnagcactt cccngaagtt	420
gaggtgggca gatcgcttga gccttagcat atcgcttgnat gcctggcaa ctgtggccaa	480
accggctttn taccaaaaaaa atcncnaaag tagcccgcc ttagggccat accacctngaa	540
ccccagggan ggtnaagnct accttganc ngtgattgga ncctgcccng gtggncgttc	600
aaaaagggn naaattntt	618

<210> 141
<211> 551
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(551)
<223> n = A,T,C or G

<400> 141	
ggtaacttcaa actctcttaa cggtgatgct ctgacattca ctactacatt tactctgcaa	60
gatgtatcca atgactttga aataaatatt gaagtttaca gcttgggtca aaagaaaagat	120
ccctcaggcc ttgataagaa gaaaaaaaaaca tccaagtcca aggctattac tccaaagcga	180
ctcctcacat ctataaccac aaaaagcaac attcattctt cagtcattggc cagtcaggaa	240
ggtcttagtg ctgtgcgaac cagcaacttc gcccttggat gatcttacac attatcatttg	300
tcttcagtag gaaatactaa gtttggatgtt gacaagggtcc ccttttattt ttctttggaa	360
ggtcataattt attaaaaat aaaatgtcaa gtgaattcca gtgttgaaga aagaggtttt	420
ctaaccatattt ttgaagatgt tagtggatgtt ggtgcctggc atcgaagatg gtgtgtcttt	480
tctggaaact ggatatctta ttggacttaa cccgatgatg agaancgcaa ggtaattttat	540
atagtacctg c	551

```

<210> 142
<211> 601
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(601)
<223> n = A,T,C or G

<400> 142
cgaggatcacat ggtctatgcc tcccaggaga cgttcgggat gaaattgtca gtgtaaaacc
agaaaaaaatg catctttctt agaattgttt aaacccttac caaggaaaaaa aaaggggtgt
taccaactga gatcgatcg ttcatccaat cacagatcat gaaacagttag tggtccacc
taggagtgtt gggaaagttgt gtttgggtt caagcagaaa aactgagctc caagtgagca
cattcagctt tggaaactat attatataat gtgggcttagc ttgttttcaa atttaaaaag
tttaaaaaata aaataactttt cattctaagt tgccaataaa atagaccttc aagttatttt
aatgtcttt tctcaactat aggaacttgtt aattccagca gtaattttaa ggcttcaga
gagaccttga gtcttctttt caggttcaca gaacccgccc nctttttggg tagaagttt
ctactcagct agagagatct cctaagagga tcttttangc ctgagttgtg aangcacnc
ngcaaacgca ttgccttcca ntggcacaa acnccggtna acggcttgtg ttaaaaaccg
c                                     601
                                         120
                                         180
                                         240
                                         300
                                         360
                                         420
                                         480
                                         540
                                         600
                                         601

<210> 143
<211> 515
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(515)
<223> n = A,T,C or G

<400> 143
ggtnncgtaa agaatataatc ttatctggag ctcagccctca atcatgtctt aacaaaatga
caggctnan aaagggggag ctcaatacgct caaaagtgc aagtctttt cacagcaccc
ttctcagaac acctctgagt aacgtgttg ccagtagcta ttctcaactga tgcactgtat
gccctgaaga agcggatcca gtcacatagg aaaggaggot gtgttagtga aagcacatgg
aagggtgtgn ttttagaaagg tagtcaggaa aaacattcag gaatagattt atacaccatt
atgnattat ttntaaattt tcattcaactc ttctgtttgg atactttgc taattaaccg
tcctatgtta atanccacca aagctataag tccatagtc gtaaaacatt ccccttggc
tgtctgagct aaaagcancgt gcacatccgn atgtnggaca tccnagaaat agnttggtac
ctgccccnggc cgnncgttct taaggctaat ccngg                                     515
                                         601
                                         120
                                         180
                                         240
                                         300
                                         360
                                         420
                                         480
                                         540
                                         600
                                         601

<210> 144
<211> 436
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(436)
<223> n = A,T,C or G

```

<400> 144
 ggtaccgctc aggattccca tcccaagaca cccggtcctt aaaccggcca ctcatgggtt 60
 ggaagggatc tatgtggtag tagaatacaa actgctcagg tcccccgctc agaggacgaa 120
 aattccaggt cactgttaga gcatcaccca caggggcaaa gctggagaaa gtgcatttt 180
 accgagcatc tgtcccatta acagcctcca gcacccggga ggtataaatt tccacagctg 240
 ctataggcca aagagctgtg agctgtatgc caaggagaag aagcacgcga cgagtagagc 300
 tcttgccata catgaggaa acccagcctt ggccccagag accggacggg gcagaccgag 360
 ggctccaaaca ccctgccaag gccactccgg gaggagcaag caccgcgtt tnccagagag 420
 aggagtta gttgag 436

<210> 145
 <211> 441
 <212> DNA
 <213> Homo sapiens

<400> 145
 ggtacatccc cactatcatc cgccgggatg acccctccat catcccatc ctctacgacc 60
 atgagcacgc aaccttcgag gacatccctt agagataga gaggaagctg aacgtctacc 120
 acaagggagc caagatctgg aaaatgtga tttctgcca gggaggtctt ggacacctct 180
 atctcctcaa gaacaagggt gccacccctt ccaaagtggaa gaaggaagag gacatgattc 240
 acttctggaa gcggctgagc cgcctgatga gcaaagtggaa cccagagccg aacgtcatcc 300
 acatcatctgg ctgtacatt ctggggaaacc ccaatggaga gaagctgttc cagaacctca 360
 ggaccctcat gactccttat agggtcacct tcgagtcacc cctggagctc tcagcccaag 420
 ggaaggcagat gatcgagacg t 441

<210> 146
 <211> 624
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(624)
 <223> n = A,T,C or G

<400> 146
 acgtctcgat catctgcttc cttgggctg agagctccag gggtaactcg aaggtgaccc 60
 tataaggagt catgagggtc ctgagggtct ggaacagctt ctctccattt ggttccccca 120
 gaatgttagca gcccattatg tggatgacgt tcggctctgg gttcactttt ctcattcaggc 180
 ggctcagccg cttccagaag tgaatcatgt cctttccctt ctccactttt gcaaagggtgg 240
 ccaccttgtt ttgaggaga tagaggtgtc caggacctcc ctggcagaaaa atcagcattt 300
 tccagatctt ggctcccttg tggtagacgt tcagcttcctt ctctatctcc tcaaggatgt 360
 cctcgaaggt tgctgtctca tggctgtana ggtggggat gatggaaagggtc catcccg 420
 ngatgaatag tgggggatgt accttgcccg ngaacacgct taaggccaa ttccannaca 480
 cttgcgggcc ttactaaag ggatnmcac ttngnacca aacttggcnn aacaaatggg 540
 ccnaacttgg ttccntggng aaaaatgttt cccntcaaat tcccccaan ttacnaccgg 600
 aaccttaaag gaaaacctt gggg 624

<210> 147
 <211> 599
 <212> DNA
 <213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(599)
<223> n = A,T,C or G

<400> 147
cgaggtacaa gctttttttt tttttttttt tttttttttt cttttttttt tttttttttt      60
ttttttttt tttttttgaa cnccanatcan tttattggca tggntttgtt tnaaaaaaaag     120
aaaaagngnc aaancaaaaa nacanacttt gntaacaat ncctgggggn ggctggacnt     180
ttttgcctaa tgctgngcaa anagggggat cctggcccan acatccngct gattccttgg     240
nacaagggtt gntgccttgg cctaantgcn ccttttgaa tacttgnttg caaaccacac     300
nttcanttt aatttccagg ggcagnnat naccctnnat ccactgggtc cagccacgccc     360
cntcnttta accctttgc anacactgga gcttgntccg tcccagnntca ctgnngnatg     420
cncttgccgn catttatgcc tgtcaaaacctn tttccacctg gaagccatgg     480
angtagtcc taaaaaggct caacgngccg aagaacaana tgggccccgg cctggacaaa     540
actttttggc ngggttaaac aagtggcna ttttcccaag gnccanttgc ctnnnngcc     599

<210> 148
<211> 609
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(609)
<223> n = A,T,C or G

<400> 148
ggtaacttaag taatccaaag ctgcattctg atctgcattga attagcatca taaaatgcatt      60
cctttgcaa cttgcattct ttcattcac cagaaaaatca tgtatcattt caggagcatc     120
aggtaataaga tggtaaaaat ttctatagat ggtatagatg gccaaaacag catttcttct     180
aacatagctg tggatgtct cccaaacatgc acgaatagct ggcattaaag gttctagcaa     240
ttctgcttct ttcattttgc aaagaaaaacg aagagtagat cctcgaataa attcatttagg     300
atgttgaaga tcctttctgt atgcattcaca tacaaggatc atctcatgtt aaaaatctccc     360
atctggagtt gttttaggaa caatttcca aaataccaga agtaatttct tgatagtgtg     420
atccgttaaga agtagcaca naacgaatgg atggatcatca gaaagtnicag gaagttttc     480
accaatttcag aatcataatg gattaccttt cttcaaaagct tcagtcttgc actttacttc     540
ttcccttttc taaaatcatt ttttaagctt aatttccaaa tgggngggtc ttgaatccat     600
gggcncgtt     609

<210> 149
<211> 589
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(589)
<223> n = A,T,C or G

<400> 149
actcaggttag aaccatcatg aaaatgaccc acagtgaact tatggaaaag ttcttaacag      60

```

attattnaaa tgacctccag ggtcgcaatg atgatgacgc cagtggact tggacttct	120
atggcagctc tgggtgtcaa ccagatgatg aaagtggcta tggatgtttt gccaaccccc	180
caggaccaga agaccaggat gatgatgacg atgcctatacg cgatgtgtt gaatttgaat	240
tttcagagac cccccttta cgggtttata acatccaagt atctgtggct cagggggcac	300
gaaactggct actgtttcg gatgtccctt agaaattgaa aatgtccctc gcatatttcg	360
ctgcaattt ccaaactgtgg aaattgtcac cattgcagag gcagaattt atcggcaggt	420
ttctgcaagt ctctggctc ttcttcaaa gacctggaa cttcaaccct gaaagtaagg	480
agctggtaga tctggtgaa ttcacgaacg aaatcaaact ctgctggct cctctgtana	540
gtgctccacc cagtattgg cctagacact ctgggagcaa ctggccccc	589

<210> 150

<211> 353

<212> DNA

<213> Homo sapiens

<400> 150

ggtacaaaaga aattttggat agcaaaataa aggaatctt acccatagat atagatcagc	60
tatcaggaag ggacttctgc cattcaaga aatgacagg aagtaacact gaggaaatag	120
actcaagaat ccgagatgca ggtaatgata gtgccagcac tgctcctagg agcaactgagg	180
agtctcttc tgaagatgtg ttcacagaat cagaacttcc ccctatacga gaggagctt	240
tatcttcaga tgaactgca caagataat ttctgggtgc gtcatacga tctgtcataa	300
ctgtcaatca ggctgaagta gaaagtctga cagtcaaaatc agaatctact ggt	353

<210> 151

<211> 492

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(492)

<223> n = A,T,C or G

<400> 151

ggtacctact ggtgctaaaa aaaggaaaat tccggcttga aggaaaggag tttagaactc	60
tgaaaaatttggt gtgacattgt tttccctga aagaaatgtg tggatgtt aacagatgaa	120
attatctgcc ctc当地aaatgtt cttttagaaag agccatgtca aggctgaa gcaaaagcg	180
agaacacgc cagactctca gttccctctg ctttgcctt ttgttggat aatgcaatg	240
caaagagctt cccgttaaaa acaaggatgt tctgagagcc acgtgttcaa cacgttctc	300
ctgtgtgtca cccctctgca cctgcagagg cagtgagcac ccaacaggtg gcgccaaggc	360
gccccgtcaca cgctcacgtc ctctggccag cagccacgtt tattgaagga gtgtggact	420
gccccatcatt ggatatgccc tcggccatga aggattccag tggatcacgc tgnccagtt	480
atacaaaaat gt	492

<210> 152

<211> 597

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(597)

<223> n = A,T,C or G

<400> 152
 ggtacataaag cctaaacaat ttcacccagg taaaatattt atgtcataac caaactatat 60
 ggccccgttt cataaagggtt actatattct atagagagtg aagagggtggc ctttctatcc 120
 cagcttaccc tattttgtt attgttcaaa ttctcctgaa gcttgcataa ctatgtgcc 180
 tcaggttaat gctattggct agcagaagac tgcatgtctg ttaatattag aaccagcagg 240
 gggaaacttgg gaaccttgaca taaaaaatct agaaacagaa ttttaggatg ggtctcgta 300
 gaaacctgaa ttgttaatgg acttaagtaa aaaccatccc aaagaattt agctttaagg 360
 tgataaccgt ctttcagag atcatagcac atgaagaacc catggacact acacagacta 420
 tgaaccggtt gcagaaaaaag atctcgac taaagtgggg gatgacagca aaaaaaaaaa 480
 ttaccaaagg aaaaaagttt agaatncagg aatattacca gatggtaaaa aatattatct 540
 tangccaaat gaggcccttc ggattccaa accttgctt ttctccttcc gtcttgn 597

<210> 153
 <211> 596
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(596)
 <223> n = A,T,C or G

<400> 153
 actgggttgtt accattttt tcaagtctag gtgtatggctg ctcccttcca acttgccttg 60
 ttaaccgga tcctgaacaa gcatctactc ctgcagggtc gaattccaca gctaaaaatc 120
 tcgaaaaaccac tcagtttctt gcaaaggcat tgagagagtc ccagagccac cttcttactg 180
 attctcagtc ttggacggag agcagcataa acccaggaaaa atgcaaaagct ggtatgagca 240
 atccctgcatt aaccatggaa aatgagactt aactcttcaa gcaagataaa ttccatactt 300
 ataaaaagttt caatgctgtt gatggatgga agaggcttcc cacaggaagg tgccaccagt 360
 cagtttgc ctatgtccct ttggctggaa atgcagaata tgaatttgcatt aagttctctt 420
 ccaaggccatt gctaaaaata taacatgttt tgggatccaa tacacacatt ggtacacaacta 480
 acacaaattt ctattaaata taaaagtag ttctgggtt ttaatcaacg gggaaaaacat 540
 tttttccaaa aaaacttggaa ataaatccan ggaccagttt tancccaata tttgggg 596

<210> 154
 <211> 297
 <212> DNA
 <213> Homo sapiens

<400> 154
 ggtacccagg ttcaaaagctc tctggttttt tctaagaaat gaagcaagga taggaacccc 60
 ttctcccaaga acaggcctca aatctatctt caaagggtac ccagcaatca gtgtcaatgc 120
 ctttactgtt gttAACCTGG taatttcatt ctttagtctc tccaagaaaa tctgaagtgt 180
 attaggcaag tcagaacccaa aattgtctcc aagggtgcaa ataatttgc ccatacagga 240
 aatagccctt tccttgactt cctgatcaat gtcaatgtt ttaatctctt taatggt 297

<210> 155
 <211> 594
 <212> DNA
 <213> Homo sapiens

<220>

```

<221> misc_feature
<222> (1)...(594)
<223> n = A,T,C or G

<400> 155
ggtaactgaa ggagaacagt ttacatcggg cgtagccac cttgcaggag gagactactg      60
tgtctctgaa tactgtggac agcattgaga gtttgtggc tgacattaac agtggccatt     120
gggatactgt gttcaggct atacagtctc taaaattgcc agacaaaacc ctcatcgacc     180
tctatgaaca ggttgttctg gaattgatag agtccgtga attgggtgct gccaggtcac     240
tttgagaca gactgatccc atgatcatgt taaaacaaac acagccagag cgatataattc     300
atctggagaa cctttggcc aggtcttact ttgatcctcg tgaggcatac ccagatggaa     360
gtagcanaga aaagagaaga gcagcaattt cccaggcctt agctggcgaa gtcaagtgtg     420
gtgcctncat ctcgtctcat ggcattgctg ggacaaggcc tgaagtggca gcacattcag     480
ggattgcctc ctctgttat gaccatagaa tttggttcga ggcaaggcac tgtcaaagat     540
gtggaagaag aaaagttct acacactgag caggctata agtngcag aaaa      594

<210> 156
<211> 294
<212> DNA
<213> Homo sapiens

<400> 156
acaggatgca gtttctcagc tggattctga gctgatggac ataactaagc tttatgggaa      60
atttgctgac ccatttaaac ttgcagagtg caaacttgca ataattcatt gtgccgggta     120
ttcagaccct atattggtgc agacactttt gcaagatato atagagaaag aattgagtga     180
cagtgtgaca ttgagctctt cggatagaat gcatgctctt agtctcaaga ttgttctcct     240
tggaaaatt tatgctggca caccacgctt cttccttta gattttattt tacc      294

<210> 157
<211> 527
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(527)
<223> n = A,T,C or G

<400> 157
ggtaactgatt gtcatcctga ctttggcatt ggcagctctt atattccgac gaatatatct      60
ggcaaacgaa tacatattt actttgagtt ataataatggt tttgtgactt atgagctgtg     120
actcaactgc ttcataaaaac attctgcatt gggataatc taagaattgt ttacaaaaag     180
attatgtt attaccctt cattccttt tttgatcctt gtaagtttag tataaatata     240
tctagacatt cagactgtgt ctgcagttt cgtcctgctt aaaggacta gaagtcaaag     300
ttccttgcctt cactatttga tctgcttgc agggaaataa cttgntttt ctcatgtttc     360
atcttctttt tatgtaaatt tgtaatactt tcctatattt ccctttgaaa tttttggata     420
aaagatgatg gtttaagttt caatgagtt tactaggtac tcaataccac ttattggagt     480
cctggcccnng ggccggcgnt tcgaaanggc caaatncagc accactg      527

<210> 158
<211> 617
<212> DNA
<213> Homo sapiens

```



```

<220>
<221> misc_feature
<222> (1)...(434)
<223> n = A,T,C or G

    <400> 160
ggtacaagtc atcanggtca gcattctccc acttcaagt gcactaacaa ggctgctggg      60
atttccactg gagtgtcaac agcagtattc ttgtgcagg aactctcaga atttgggggt      120
ccataacagg tttagcctat gaccgggtc caaaaagtcc agccttctc gcacacctcca      180
gagctagctt caggttctgg tcaaagagct cacacctgat aggcatctt aaggaataga      240
atggattttt gagggcaaag tctgataaa tctcataaat ctgcgaga agagaatcta      300
ttccagttt cctaggatct gctagaacca caaacttgat ccctgtcagt gtctggtagc      360
agtcaattt gaatgtgtct gtctncagca tctcaatgcc tgagcttncc tgttcangag      420
acagntggna gccca      434

    <210> 161
    <211> 652
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1)...(652)
    <223> n = A,T,C or G

    <400> 161
acagactcca agggaagact gggctccaaa gccacatgcc tttgttggca gcgtcaagag      60
tgagaagact tttgtgggg gtcctttaa gccaatgcc gagaacagga aagctactgg      120
gcatagttcc ctggaactgg tgggtcactt ggaagggtat cccttgcata tgacttgc      180
cttctgaaaa ttaccccgag agccaggaa gggctcagt gagoctctgg agccttctc      240
tctccctcc caactcagca tcaagcaggc attttatggg aagcttcta aactccaact      300
gagttccacc agcttaatt attcctctag ctctccacc tttccaaag gccttgc      360
gagttccacc agcttaatt attcctctag ctctccacc tttccaaag gccttgc      360
aagtgtgtg cagctgagcc acaaagcaaa ctttggcg agccacagt catcatttc      420
cttgcaatg ttcaactgaca gcagcacggt gggaaagcatt tcgtccagt gtgcgtgc      480
cctgaaagcc atgatcatgt gccaaggctg cgtgcgttc tgtcacatg actgtattgg      540
accctcaaag ctctgtgtat tgccttgg ggtgagatataaaattatgg ccatggaaa      600
caaannanan nnnnnnnnnaa aaaaaaagct tgnaccttg ccngnaccac gc      652

    <210> 162
    <211> 638
    <212> DNA
    <213> Homo sapiens

    <400> 162
ggtaactgaa gatttgcata aagccaaat tcgcaccgtc atggtcacag gtgacagtat      60
gttgactgct gtctctgtgg ccagagattt tgaaatgatt ctacccagg ataaagtgtat      120
tattgtgaa gcattaccc caaaggatgg gaaaagtgc aaaataaaatt ggcattatgc      180
agactccctc acgcagtgc gtcattccatc agcaattgc ccagaggcta ttccggtaa      240
attggtccat gatagcttag aggatctca aatgactcgat tatcattttt caatgaatgg      300
aaaatccattc tcagtgatac tggagcattt tcaagacattt gttcctaagt tgatgttgca      360
tggcacggtg ttgccttgcata tggcacctga tcagaagaca cagttgatag aagcatttgca      420
aaatgtgtat tattttgttg ggtatgtgtgg tgatggcgca aatgattgtg gtgctttgaa      480
gagggcacac ggaggcattt cttatcgga gtcgaagct tcagtggcat ctccctttac      540

```

ctctaagact cctagtattt cctgtgtgcc aaaccttatac aggaaaggcc gtgctgcttt	600
aataacttcc ttctgtgtgt ttaaattcat ggcattgt	638
<210> 163	
<211> 1002	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(1002)	
<223> n = A,T,C or G	
<400> 163	
acatataaat atatatataa aatgaacata gttcatgctt tcagataaaa tgagtagatg	60
tatatttaga ttaatttttt tagtcagaac ttcatgaaat ccacacccaa gaaaaaggtaa	120
actggaaattt cccttggaca tatgtgaaat cttttgctt ttatagtgaa acaaaggccag	180
agcatctttg tatattgcaa tatacttgaa aaaaatgaat gtatttttt ctccaaagaa	240
cagcatgttt cactcaatgg tgaaaagggt gaaacattt tctaacttta tgtgtatctg	300
tcttgatatac tactgacatt gtctatatga gggaaaatgt tactggtcat gctcctgtga	360
gttttttggg aaggtagggt catttcctcc tgccctgctt gtgcacta gcatgttgc	420
tctacatgca ttatgagtct ggttaggcat tactttaaac atacataaag agacagtagg	480
acattgtggc ttagtctacc cagctcaagg taaaggagaa tattgctaatt ttttagcaa	540
actagaccag cattattact caaactaaaa atatcacacc tgaaaaattt aatttaggac	600
ctaaaatgtc tagatttagt ttctgctttt ttatattgaa taactcattt agttgtgaat	660
gaattccctt ttaattgggt ccacagtccac caaatgacaa ggatttgcca ctttcccccc	720
aaatnggagt gcttgttaatt taggctctct accntnaaat cagtnaagg gaaccgtaat	780
tatgtatggat ttttccaaat atgaccagct ggggtgaaaa ccattttct ttggccaaatg	840
gcaaaaactaa taagctttaa aaacttcccc ttatggggg aagtttaaaa actgggaaag	900
gttangaacc naccnctggaa aancnctggaa agggaaaaaaa anaaagggn ccttggncgg	960
gaacaccctt aaggggaaatt canccattt ggggcnnttc nt	1002
<210> 164	
<211> 572	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(572)	
<223> n = A,T,C or G	
<400> 164	
acagcatgca tttacaacca gcgcgtatct agtctatTTT gtcataaaaa cttgaataca	60
aaaatccaaat ttaaataaaga ctagacttac tataatagta aacaaacaaa aacaaaaaaac	120
aaaaaaaaaa aacacacaca gtagacttag tttgatactg attaatttttta agagtaaact	180
catcctgtcc cctcttaata ctctactgca atttattgtt ggctagaata ttactgact	240
taaaaaaggt attaaataact ttttatcatga aattacattt ttatataacaa taagacatac	300
tgtgtaaagaa aataagctcat gtgtgaaatg tttctgaaat gatTTTTT cttacaacta	360
tcanaacatc cactcacact aaaatgaaac cactccaaac ccccccgtt gaaatgttna	420
ggaaagacng ggtgggctgg gggaggagca agggaggaa aagatttagc tatactaatt	480
acagcacagt gattaacaat ggttcaggac agaaccacaaca gaatnngca aaaaanngcc	540
ctttaaacat gntaccatt aaaaaccaac nn	572

<210> 165
 <211> 594
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(594)
 <223> n = A,T,C or G

<400> 165

ggtaactggcc tcctggcact ctgttttc actgactggc tactgaagag caaggcagag	60
.ctgggtggca ttcagaact ggcatacgaa cctccctaac tgggccccgc tggcccatt	120
tgctcatttag aatccctct cacatcagtggatacagaa ttcaagtttct cccttgccag	180
gtccttggga tggttgaccctgc agtagcctt tggactctg ctaaggttagc	240
tctcacacac ctcggctctg ggggtgatac ctgagcctac aatagagccc tgaaatcaag	300
agcatagctt gagttgtgtga atatgtatgt tgacacatgtc taatgagcgt gcaagtgtgc	360
acacgtttgt ggagaggagg gtgttctggc ctgagaaggt aaagaagagg catgtccagt	420
atgctttgca ggggtgtgtt gctctttcc atgeccatgc aacccagatt ggggtggagc	480
aggaaggagc tctttctgt tcccaagcct cagaactctt gagctgtggc ttacttgctg	540
gcttcatcatcg gtcagactn cgtggccac actgctgctg ngccaagaag gtgt	594

<210> 166
 <211> 434
 <212> DNA
 <213> Homo sapiens

<400> 166

gcgtcgccgc cgaggtacta taatggtccc catcttaatt tgaaaagcggt tgagaatctt	60
ttaggacaag cactgacgaa ggcactcgaa gactccagct tcctgaaaaag aagtggcagg	120
gacagttggct acgggtgacat ctgggtgtctt gaacgtggag aatttcttgc tcctccaagg	180
caccataaga gagaagattt ctttggaaagg ttggactctt tgggtcgag gtcattgaca	240
agctgtctt ctgatcac gttgagaggg gggcgtgaag gttttgaaag tgacacagat	300
tcggaatttta catttaagat gcaggattat aataaagatg atatgtcgta tccaaaggatt	360
tcggctgttg agccaaagac tgcgttaccc ttcaatcggt ttttacccaa caaaagtaga	420
cagccatcct atgt	434

<210> 167
 <211> 395
 <212> DNA
 <213> Homo sapiens

<400> 167

acaaaagttaa gtttagccct tttcttagaaaa gtgatcttta aaattaaaaat tgctccttta	60
ttaaattcac caaattttatg tggggaaagg caccaaaaatg attttgcgttgc tggccactgca	120
atattccctt tcaagtgtgg cctaaatttc aatcttaagg atggaaatgca tggctgtcc	180
ttgttctgaa aaatatagggc atctactaca tttaaaaaca cagtgaaaca tatacataag	240
cctataaaaa aagatttggc caattgaaa gcctgttaat ttttatgtt gacataccta	300
cacacgaaag gtttaattt acagccttac tagttccctt cttccagttat tcaatttgtt	360
ctcctccctt cattattttt attactacta gtacc	395

<210> 168

<211> 683
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(683)
 <223> n = A,T,C or G

<400> 168

ggtacgttat	tctaataat	gcatttgaaa	agtca	gcaaa	agcccacatt	aattcctatt	60
acgcgttgttt	cttggttcaa	tctcagcact	ttcagcggt	cttgcggc	gattctgtct		120
tggacttatt	tctgtgtctt	gaagatcgtt	tttatgtat	gcttcccagg	tttcctcttc		180
ttctaaaaga	tctcttatga	tgtctgaact	ggaactattt	catgaatctg	attctgtatga		240
agaaaagaact	tcttgaatat	caatacagct	agaagaatcc	tcttcctgt	caggttccaa		300
ttcctctggg	gagtccagct	ttgattgaga	aaagtgggtt	gttactgagg	tcatattatc		360
ttcctgtccc	atgcatacag	aagatagctt	ttctgtatgt	tcatcttctt	ttgttattgt		420
tactgtttt	tgtcacatcc	cagcaatttt	cttgcataatc	tttcttagcct	gatccaccag		480
aagctgaaat	tcactcttat	gttttttag	atatttactg	tggatttcat	ctatttcctt		540
ttctgnttgg	tctttgtaa	aaaccattac	actttcattt	agtttactag	tttcaagacg		600
catcctagtc	ttctctataat	tttcgatttc	tcgaactatt	tcagcagctg	atttaggatg		660
caaagcatcg	cattgggcat	tgt					683

<210> 169
 <211> 408
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(408)
 <223> n = A,T,C or G

<400> 169

ggtaccttgc	tgaccacaat	gaaataaacc	tagaaatcaa	taacaagagg	aacttttaaa	60
gcagcacaaa	taaatggaaa	ttaaataaca	tgattctgaa	tgaccaatgg	gtaatgaaga	120
aattaagaaa	caaaatttaa	atgtcttaaa	atgagtgaaa	acagaaacac	aacatataaa	180
aatgtatggg	atgcagcaag	agcagttta	agagggaaat	atttagtaat	aaacacccat	240
atcaaaaaaca	agaaaagatct	ggctgggcaa	ggtggctcac	acctgtatc	ccagtgcattt	300
gggagcccaa	ggcaggagga	cgacttgatg	ctgggtcaag	accagcctgg	gccatatata	360
tagcaagacc	ttatctctaa	aaaaaaaaaa	nanaaaaaaa	aagcttgc		408

<210> 170
 <211> 566
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(566)
 <223> n = A,T,C or G

<400> 170

ggtaccaaca cagccaaaga ctgtaagaag gtagctgaag tcctctgcc aataggattg	60
aaaagctaaa atctttctct gtttcttct taagtaacaa ctggcttatt caagctcaac	120
cagagcatat aagagaaaaa actgactaac gagggggctc taaagagctt tgaaggacag	180
tttctagaaa gttagaaagat cactgagtaa attactgcac ctcctctacc ccacaaaaaa	240
aagggtgagg atgaatgtaa aagtgttagag caagcttca gacaacttca agtttgttt	300
tggcgcttcc gtttgaagc aatcaagatg gtgagagacg ctatccaaa gaagaaagtc	360
tgttaggaacc agagtagctg agcccgacca cttgtatgc ctttatgctt gcacaatact	420
atggcataca aggactctnc cacatgaatc agccaggcaa gccaataccc attgcaaagg	480
anggtgtat gggngggcac caagtacctg tccggcgcc cctttaaaag gggaaattcc	540
ccacttgggg gccccnttta gggnac	566
<210> 171	
<211> 562	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(562)	
<223> n = A,T,C or G	
<400> 171	
ggtacctttg caagcagggtg gccagtaaag ctgaggagaa tctgctcatg gtgctgggaa	60
cagacatgag ttagtggaga gctgcagtca tctttgcaga tacacttact cttctgtttg	120
aagggtatgc cgcatttgtg gagaccacc agccaatagt ggagacctat tatggccag	180
ggagactcta taccctgtac aaatatctgc aggtggaaatg tgacagacag gtggagaagg	240
ttgttagacaa gtcatcaag caaaggact accaccagca gttccggcat gttcagaaca	300
acctgtatggaa aatttctaca acagaaaaaa tcgaaccaag agaactggac cccatcctga	360
ctgagggtac cctgtatgaat gcccgcagtg agctataact acgcttcctc aagaagagga	420
ttagctctga tttgaaggt gggagaattc atggccttag angaagtaaa gccangagcc	480
cccaaatgtc ttggacnaac ttctcaataa ctggctttt agctgtacct gtcccggng	540
ggcnctttaa aangnnnaat tn	562
<210> 172	
<211> 617	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(617)	
<223> n = A,T,C or G	
<400> 172	
acggtagaaac tgcttattatt catcctatgt gggtaattga ggagtatgct aagatttgc	60
gtagctgggt ttggtttaat ccacctaacc tgcctgtat gatggataag attgagagag	120
tgaggagaag gcttacgttt agtgagggag agatttggta tatgatttag atggggctta	180
gtttttgtca tgtgagaaga agcaggccgg atgtcagagg ggtgccttgg gtaacctctg	240
ggactcagaa gtgaaagggg gctatttcta gttttattgc tatagccatt atgattatta	300
atgatgagta ttgatggta gtattggta tggttcatgt tccggagagt atattgtta	360
agaggatagc tattagaagg attatggat cggttgctg cgtgaggaaa tcttgatggc	420
agcttctgtt ggaacgangg tttatgtt gggtnaaact gggattaaaa gctacatggt	480
taattctaa gccactcagg ntaaaaaanc nngcgagctt aacccttga aaaangngc	540

ccccntggcc cgaaaacnccc ttaaggggca attccancaa cntggnggcc gttattangg	600
gatccgactt gggcccn	617
<210> 173	
<211> 232	
<212> DNA	
<213> Homo sapiens	
<400> 173	
ggtagccat gctagctggg cctgggtggg atccacccag acgagatgat cgtggagggg	60
gacagggata tcccgagagaa ggaaggaaat acccttgcc accaccctca ggaagataca	120
atggaaatta agctttgtta aagcttccc aaatccttc atcattctac agtttatgc	180
tatttgtgga aagatttctt tctcaagtag tagttttaa taaaactaca gt	232
<210> 174	
<211> 987	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(987)	
<223> n = A,T,C or G	
<400> 174	
gcggccgang tacttcacca tcactgactc catggacttg atcagccgcc gctggatgta	60
tccagtctca gcagtnttga cagccgtgtc aatgagcccc tcacgacccc ccatggngtg	120
aaaaaagaac tcagtgggtg tgaggccggc taggttaggag ttctccacaa agccacggct	180
ctcaggcccg tagtcatcct ttagtgaatg aggcaactgt ccgggtgttg aagccaaatg	240
aatcccgctt gccctcgacg ttctgtgtc caacgacagc gatgacctgg gagatgttaa	300
tcttggAAC ttttagtccg gacacgacca tanactgaa gttgttgtat tcanacaggg	360
atttntgagc agaggagcca gtcttgctc gggcatcggt aagaatgcgg ttcacctgt	420
tctcaaacct ctggccgaga gtgttccctg ngnggggctc cagtcattt ttgnngncct	480
tctcgatgac ctcttattacg tcctgtctgn ncttcttaat agtgttctga atgtcctgg	540
aagncttaga atcagcangt gngtcccaan gcccatactt tgacctatag acaggaaaaa	600
acatcagcaa acccctttgg acctctaata nacatgaaat ggaattataa ccccaagagta	660
taancanggg caccanatnc aaggagaaaa gaaanggatn gtangacagn aagaagttnn	720
agaantcnn nagacggctt ggaccctgnc cggcngggcg ttcaaanggc caattccann	780
ccactgggtgg ccgnnacttn tggaaaccgnc ttgganccaa acntggctaa aaanggccnt	840
agcnggttcc cgggcttaaa tggnatncgn tcccaattcc ncccaaatta cggcccgnaa	900
nccttaanncn aaaancccg gggcctnan gaanggnnta acncccnnnta aatgggttng	960
ccncaaggcc cnntttcaan tnggan	987
<210> 175	
<211> 574	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(574)	
<223> n = A,T,C or G	

<400> 175
actccccgcc ccctctgaaa gcatgtcaca tcatgtaaat ttgcttctaa catctgcttc 60
aaactgtctc tggactccaa atttggatgg gtcagcctct gcagaaagtt tgtgttgaga 120
tgctggaga acacgcagac ctcctgcacc ctcagcaagg gaccagctcc caaaggaaag 180
gtccttgtt gacatttggaa gaatcttcct tcatccagac aactctactc gaagcaagac 240
gaaagcagga tgtggcagtt gcagtgagaa agaaaaggaa agatggcag actctgttt 300
ctggaaattt cttcacaaag tagagctcat gaactctgtt ctgtcttctg gtaacatatac 360
atcagtgttt gtattcatgg tgtggcacat ggatccatgg cattggtaa atctgggt 420
tttacacat ggtcagaatg tgttcaata catctcatga tggagacagt ncccaaggta 480
aatggtttgtt tcagcattt taaaaaagac tcccttaaca tttatcttag aatcatgagc 540
ccttcttcta gttgacaatg cgaatggtcc cccn 574

<210> 176
<211> 570
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(570)
<223> n = A,T,C or G

<400> 176
ggtacagata ttcattcagg agctccagga aactggattt gctcttaga gggcagctca 60
aaggcccat tcactcacaa tccacccaac ggcatccctg gcctccggc acagcctcag 120
ccacgaaagt cctgcagggt ttgtcagtct gtgggggtga gtgccttaac accatgaact 180
gcccaactgct cccagaaaga aagaagaact tgaatatga gactccccag gtctcctgac 240
cctttccctt cttggaatga gacccaggta gtgctcaggg gatttttgtt gttggccatg 300
gacaagcaac cagtagtgccc ctcacttttag ggacgcaaac cacaagccc acctcaggaa 360
gccaaatttc aactcttgcc ctggggcaaa cttctagcaa ccaggccaga ggcaaatgtc 420
agacaggata agggatgaca tnccatcaat caaagttgna aatgggaagg gaccancca 480
gtttgnata aaggcnttaa actnggnacc tggcccgcc ggcgtttaa aggcaattc 540
acacactggn gggccgtcta agggatccca 570

<210> 177
<211> 621
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(621)
<223> n = A,T,C or G

<400> 177
acagaagagg atgaagaaga ggtatggagag gaagaagaag agtcttttat gacatcaaga 60
gaaatgatcc cagaaagaaa aaatcaagaa aaagaatctg atgatgcctt aactgtgaat 120
gaagagactt ctgaggaaaaaa taatcaaatg gagaatctg atgtgtctca agctgagaaa 180
gatttgctac attctgaaagg tagtggaaaac gaaggccctg taagtagtag ttcttctgac 240
tgcgtgaaaa cagaagaatt agtaggatcc aattccagta aaactggaga gattcttca 300
gaatcatcca tgaaaaatga tgacgaagcc acagaagtca ccgatgaacc aatgggaaca 360
agactaacta tttagaaaaca tttagatgc cagttttt catacagggtt ctggntttta 420
acactggatt aaaactttt ggngtaata aaaaatggga ccctttaggn ttttacccag 480

gaagaaaagcc aagggtttggt	aaaaataaaa aggtanccct	tggggccggg gaancacgg	540
ctttaagggg ccgaaaattt	ccaagnacaa ccttggcng	ggcccgnta ncttaaaggg	600
ggaatncca agaccttnng g			621
<210> 178			
<211> 403			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> misc_feature			
<222> (1)...(403)			
<223> n = A,T,C or G			
<400> 178			
actccttcct gagccgctgc aataagcttt ttgctgtgg	atatgacgac agctagatac	60	
tgtccctgcc acaagagctt ctggttataa atagacaaaag	actctaattt ctaattgacc	120	
tctttttttt ttcaggttta tacataaatt ttcgtcacct	ttataaacag cgcagacggc	180	
gctatggaca aaaaangaaa aagatccact aaaaagaaaag	attagatgg cttcttgcca	240	
gtttgagcct aatctgattt ttacagttt accttcttga	accaatgtaa aagttttttt	300	
aatgttaaat gattaaattc tcagtgaggc tatcttcctt	ttcccagta acattcctga	360	
atttactgnt accttattgt aagtacctcg gtcgtgacca	cgc	403	
<210> 179			
<211> 650			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> misc_feature			
<222> (1)...(650)			
<223> n = A,T,C or G			
<400> 179			
cgaggtacaa gctttttttt tttttttttt tttttttttt	agccaaaccag ctaaaggatc	60	
actgcagcta aatacagata gagaagcaac aaagccaggg	aaatacccat cagagacagt	120	
gacaagagca gctgggggca cgggggaggg agaaggaaga	gaaagaaggg gaggagcctc	180	
cagagtccca gcccccaaccc cctctgccat tgcttaccct	tgctccccac aaatccctgg	240	
ggttgaagtg aggaggacta caggctgggg tggaaataca	caaggacagc ccaacaaaat	300	
acaacaagga ctagcatcag tctcccccctt actccacccc	caagaaaaat acccttattt	360	
ngacttagtat ttatgaaaat ctgtaaagaga ctattctatg	tagtggctct aatcccatat	420	
cacagcaact gcctgngttg ggaacttttcaatcgtga	tttgcgggaa ccaaccggat	480	
tttcagcttta tacggngc tgcaatcgttta cccaaacttg	ggtaagncc agncacattt	540	
accttctgt tacatntaaa aagggtgang aaagaggaa	gggaaaaagg ggttaaggc	600	
tagttaact tactggtnag cagctanatt caccatggtc	nttttttggg	650	
<210> 180			
<211> 639			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> misc_feature			

<222> (1)...(639)
 <223> n = A,T,C or G

 <400> 180
 acatacggct gtgcgataca ccagcattga attgggttggga gagatgagtg aagtcgttga 60
 tcgaaatcct cagttcccttg accctgtgtt gggctatttg atgaaaaggcc tgggtgaaaaa 120
 gcccctggct tctgctgcag ccaaaggccat tcataacatt tgctctgtct gccgagatca 180
 catggctcgactttaatg gactccctggat gattgcccgc tccctcgatt ctttcctgtt 240
 gtctccagaa gctgctgtgg gcttgctaaa agggacagca cttgtcctag cccgattacc 300
 tttggataag attaccgaat gtcttagtga actatgttct gttcaggtta tggcattgaa 360
 aaagctgttgc tctcaagagccagcaatggcatatcctca gatccccatgt gttcttagat 420
 cgcccttcag tgatatttag gcataccaat cccattgtgg aaaaatggaca gactcatccg 480
 tgtcagaaag tcatacagga aatatggncat gtttatccga gactctaaat aagcacccgag 540
 ctgataatcg gattgttagag cgtgttcaag gtgcctgcgc tttgtggtcc tgngaagcna 600
 angactgaac actgtgcagc nctagtccac aatgngaaat 639

 <210> 181
 <211> 644
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(644)
 <223> n = A,T,C or G

 <400> 181
 acaagagagg ttccaggagg gggtgatagg cagaatttttgcgtcccatca cttccctgc 60
 ccagtgttat gcctatgaat gtgttacatt atgtggtaaa agggacttttgcagatgttaac 120
 taaaatttct aaaatagaga tattatcctg gattacctgg gggAACCCAG tgtaattaca 180
 tgaaccctta aaaatggaaag aggatgcagg agtcagattc aaaggaaaggc ccaagggtgt 240
 attgctgact tgaagataga ggggcatgt gggaaatcaag agaaggaaatgt gaatccttcc 300
 agtgagcttgcgaaagagagca ccttgaggca cagatgagaa gcttggcctt acctgtatgcc 360
 ttgatttttag cctggtgaga ccccgagcat ataaaatttgc tttgtctatgc cacacttctc 420
 acctacagaaatcttttgcgaaatggccactaa gtttggatggtaatttgc ttttagggcccc 480
 ttggggtag agatgtatgg cttgtgttac aagtagaaaga gcatggaaa agttgggctt 540
 tggtaatttcttcaagggttgc aattgttagtt ctgggagtc tatctanctt gggntcagaa 600
 ctttgttggc cangncctgc tggggacttc ctgggttaac cttg 644

 <210> 182
 <211> 609
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(609)
 <223> n = A,T,C or G

 <400> 182
 ggtacagaaaa agttagatca aattggatat gttagacattt ctaaggattt tgaactctaa 60
 gggcatttgc aagctactca agggtttta gttaggggat gacttggat gacttattttt 120
 tttgttggaaa agtctgtgttgc gctgggtgttgc ggaaaataga atggattgaa aaggaactca 180

agtggagcat caagactcg	ttaaggagtt aatcttaggtt	ggaaataatt gtagcttagg	240
cctggatgct ggcaataggg	aaggggatgg attcatgaaa	gaatggata cttgagaaga	300
aatatttcgt tgctggagaa	gtagatggg gaagttcatg	gcataaacat tataatggat	360
gctatggca tagataacat	aaacatgttag agaaaagtaaa	ggtgacctag ggcagaagcc	420
tttaggaaccc aaaatttaag	agtagactga agagaaccgc	tgtagaagtg ggaggaaanc	480
tgctcggtg ggtagacaag	gagacnttc aaaaggatca	tcattacagt naaaagctgg	540
caactcgcg tcttggtcaa	agtnccctgcc cgccggcgtc	naggcnatca gccatgcgccc	600
gtcttaggn			609

<210> 183
<211> 401
<212> DNA
<213> Homo sapiens

<400> 183			
ggtaactcat cttgccagc	aaagatgcac aactataact	atggtggtaa cttacaggaa	60
aatccgatgc gccccagct	catgcattggc cagaccttgg	cttctcttc ccaaggacct	120
ggatattcac aagatacag	gggacatatt agcacatcaa	ctggcagagg cagaggcaga	180
gggttaccat actgatgt	tgttttctt caggcacatc	attttatct gggaaagactt	240
ttctagctgc aatttaaggc	agcaatccaa gagacttcaa	taataataat tcaacaacag	300
ctttattttt atgtggagaa	gggtctgca tacaatagtt	taaaaaagac aaaaaaaaaacc	360
tttgcttaaa ttcatgctgt	tctaaaaact agatcgattt	t	401

<210> 184
<211> 423
<212> DNA
<213> Homo sapiens

<400> 184			
ggccggcgat ggaggtcagc	ggtggtgctc gctgcgggtt	ggaatcactt gctaggagtc	60
ttgtctctt gcccagg	acatcatggc agtcacactg	gtaaagcgat gcacgtgcct	120
cctgagagaa gctgctcg	aggccccctgc catggctca	gttggccgac tgagacttgc	180
ctgggtagcc cataagactc	tgacttctc acccacctca	cccatttccc acctcccagg	240
ttccttgatg gagccgtgg	agaaggaacg agcatctact	ccctacatag agaaggcaggt	300
ggaccaccc tcataagaagg	ccacaaggcc agaggagctc	ctggagctac ttgggtggcag	360
tcacgactt gacagcaatc	aagcagcaat ggtactaccg	gctacaaa gtgaagtcgt	420
acc			423

<210> 185
<211> 669
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(669)
<223> n = A,T,C or G

<400> 185			
acccgcagct tgcctccatc	ctcatattca tccaggcaaa	tggcacagac atcatactgg	60
tctccctct gatagtcatg	tgttaggaatc tggatgttgc	gctctttggt aagtcgattc	120
cgctggagcc gtttccggtg	ctggatacaa cgagctatca	ttactgctcc catggccaaa	180
accagcagtc ccacaatccc	tgtgaaaggg atgaggtat	agcccaaggg gaaggtattt	240

tctggAACCA	gaagcACCCG	agccccTTTC	tcgtAGACAA	agAGGGCACG	caggTACAAA	300
gagAGAAATT	ttaaAGCTGG	gtgtCAGGGG	agacATCATA	tgtCGGCAGG	ttctGTGATG	360
ccccCTTAAGC	ccgtAAAACC	agcaAGTTT	tattAGTGAT	ttccAAAGG	ggGAAGGGAG	420
tgtATGAAAT	aggGTGGTGG	gtcacaAGAG	attcacATGOT	tnacaAGGT	ataAAAATAT	480
cacaAGGCAA	aatGGAGGC	gggtTGAGAA	cacNGGACCA	cattGACCA	gggcGAAATT	540
aaaaATTGTG	aagtGAAGT	cnGGCCACGC	antgnCANTG	atacatTTA	tcaGGAGACA	600
ggnttGAGA	gcnGACCANC	agtctGgnCC	aaaATTAATA	agtggAAAT	ttcttggcT	660
aataAGCCG						669

<210> 186
<211> 638
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(638)
<223> n = A,T,C or G

<400> 186

ggtacatgtg	cgttggcatt	atggatcgat	ttttacaggt	tcaggcagtt	tcccggaaaga	60
agcttcaatt	agttgggatt	actgctctgc	tcttgcttc	caagtatgag	gagatgttt	120
ctccaaatat	tgaagacttt	gtttacatca	cagacaatgc	ttataccagt	tcccaaATCC	180
gagaaatgga	aactctaatt	ttgaaagaat	tgaaatttga	gttgggtcga	cccttgccac	240
tacactctt	aaggcgagca	tcaaaagccc	ggggagggtt	atgttgaaca	gcacgcttta	300
gccaagttt	tgtggagct	gactctcattc	gactatgata	tgggtgcatt	atcatccttc	360
taaggttagca	gcagctgctt	cctgctgnct	canaaggtct	aggacaagga	aatggaaact	420
taaagcagca	gtattacaca	ggatncncag	agaatgaagt	attggaagca	tgcagcacat	480
ggccaaaaat	gttggtaaaag	aatgaaaac	ttacctaaat	catcgccntc	agaataagt	540
ntgcagcngc	aactctgaa	natcacttga	cccttagntg	accttaaagc	ccgnaaanac	600
cttgcctccc	ccggaaggaa	ggcctaggtt	cccgggcc			638

<210> 187

<211> 628
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(628)
<223> n = A,T,C or G

<400> 187

ggtacataga	aattcattga	ggtatataga	tactcatctg	tctaggcagt	tcccaatttt	60
ctgaagaatg	ttttacagca	aaattttcta	ttttctttta	ttaaatagt	acacgtcaaa	120
caatgtcaca	tccaaaacac	tagttcattc	aatttctagc	agtaataata	gacttgctgt	180
aagtattgtt	ttctgtatgcc	atacccttgt	catacatatt	attaaatgac	caatattatg	240
tatgaagtag	acaaaaaaaaat	ttactcaaac	ttcattcaaa	tccttaattgt	gataatttt	300
gttttatatt	taattataaa	ccaaaataca	tttgcatttt	taagctaatt	tgtctcaaaa	360
ttttgcttta	tatTTTGGG	tcaggtaaa	gtcctgggg	tccctgaaat	gttattgccc	420
tcttggattg	gtttttactt	ctgagctata	ccgtcaaaag	acacataagc	ttcaaaagt	480
aagacaaacc	tcatttgcca	taaaaatcaa	gatatagatg	tctggccga	aactncttga	540
aaaacattt	aagcatcaat	atgactggtt	ccatgaactt	aagtacttct	taatgagtat	600

tctttctgaa gctgaaagaa gattgttt

628

<210> 188
<211> 654
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(654)
<223> n = A,T,C or G

<400> 188

cgaggtacaa ggtggactgt gcatgcctca aagaaaaccc agagtgcctt gttctaaaac	60
gtagttctga atccatggaa aatatcaata gtggttatga gaccagacgg aaaaaagaat	120
aaaaagacaa agatatttca aaagaaaaag atacacaaaa tcagaatatt actttggatt	180
gtgaaggaac gaccaacaaa atgaagagcc cagaaactaa acaaagaaaag ctttctccac	240
tgagactatc agtatcaaatt aatcaggaac cagattttat tgatgatata gaagaaaaaaa	300
ctcctatttag taatgaagta gaaatgaaat cagaggagca gattgcagaa aggaaaaagga	360
agatgacaag agaagaaaaga aaaatgaaag caattttgcg aggctttgc cagacttgc	420
aagagagaga anagaagaga acaagcttg gaaaggatca gcacagccna aactgaagtt	480
aaaactgaat gtaaagatcc cagattgcag tgatgctgag ttatatttanga acnagccata	540
gaagaaaaatg cttagcagcca accccctgcca agtaatagac taancgggaa aaagttttot	600
cgagttaggac tacttggcag caccgtcggg gaccngactg tcacatgggtt anan	654

<210> 189
<211> 650
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(650)
<223> n = A,T,C or G

<400> 189

ggtactttaa gataattgtt ttgatctttt ttcagattcc ttgtatTTT aataaaagtaa	60
tcttaataaa aactcagata ggtaagtgt tagaaatTTT aaacagctt cattgttagc	120
gtaaagttat cttttctttt ttcctaatac gagttcttga ccctttgggtt attgagttta	180
aaacttcaat tggaaattcaa tagtattttat tttttaaaaa aatcactaaa ctgtgcctaa	240
agaacataac tgcctatatta atgttttggg ttatatcctc tatagtaata gaaaaacatt	300
taatacttgt aatgctgatg tgtaatttg ataccagttg agttagaatgt gatcaatcca	360
gtttacaatc tccatgtatg attatTTAact aaaatctatg tgctttcaa taggaatcat	420
tcttcttttgc ctgnaacact tgccttaact ttangaaaag nggcatttt taaactgcac	480
tggnaagggtt gaaagttagt actcttggat ttggngaccg naatctgaag ccgaatantt	540
aaagggagaa aaagaaacca ggtcttttttgc ccaaaggctg ggaacctat tcanctttgg	600
gnaagtaattt gcatatncca aggttgggaa gacaagtctg aaaatcacng	650

<210> 190
<211> 699
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(699)
<223> n = A,T,C or G

<400> 190
accagctcta atctgtggcg tccagtttc tttctttttt tttttttctt ttttaatgtc      60
aaagtgaatg tctgaagtt tgcctttttt tctttgtcct ttccatctg cttcattctg      120
tggggataaa atacttgtt ttaatcagaa caactggAAC gcattgagga agggatggac      180
caaatcaata aggacatgaa agaaggagaa aagaatttga cggacctagg aaaattctgt      240
gggctttgtg tggtccctg taacaagtag gtgctgcctg cctgcctgaa gctttgattt      300
cccaggcccc atctccaagc ctgcacaaag ctcattcctg ccaagctcat aggcaggatg      360
aagcatgtgg catgcagaaa cagatcaata cccgcttcaa tgcatcattc tcatacgata      420
gaagatatta accaggaagt tactgggtga tgcanttaaa aaatcaaggc catacctaca      480
ggtgaaagc ntacntgt cagcnacnt ttaattggat gaaccggttt caaccatttt      540
nccaaaaaaag gtgtacctgg ggnnaagggg gtggcccaag tggcccccAA gtgggacctn      600
ttgaaaaatga aaagggtgg tcnnttccac tggccctt gggccttggt aaccaagncc      660
tcttccgcgg gggcaaggca antancctt gccccgnan      699

<210> 191
<211> 378
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(378)
<223> n = A,T,C or G

<400> 191
acaaagattc cagacagact ttgtttttt gcttataaca atgtgttagat actacacaaaa      60
gaatgaggat gtaatttca tttacaagca aaatgtgacc aaaatccctt ttcttcttaa      120
aattgaaaaa tggaaattctt gagaatacta attagtgacg gccaaatctt agactattt      180
aaatttagcca tggtaaaaca taggtgagtt aaacattgtg cctttccaaa attaaggttt      240
gcagtttagaa acataaacat ttgataaaac ttctcaaaat taattatgag tggcttattc      300
atgtcccttg gattccagac acacactana aaaagtaaac gttaaagagg tgatattttg      360
gaaaggcatcc cttagtacc      378

<210> 192
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 192
acagtaaaaaa gtaaaacttcc ctccatcccc ggcctgccag catccctgat gccgactttc      60
tgggtgtggc cttagggccccc tcagtgtaat gttaggggtg tgagcacaga ctttggtgcc      120
agtttgctag gttcaatcc tgactccctc tttgttagctc tgccttcaa ttgaaataact      180
gtgcctcagt ttctccctta taaaggcagg gatcatgaga gtgcctgtcc cttgtgagca      240

```

ctatgaaagt	gttagctgtt	ctttaccaga	ataaatgcat	ttctatatct	tcccatatgc	300
attttgttaa	tttttaaagt	atttcaaaca	caaagttga	aacagaaaat	tgtgtacat	360
taactatgaa	cttaccaccc	agaattaca	aatgctgaca	tttgcataa	tttatttcgg	420
atctattttt	aaggggggga	accctgcagt	tactgcttaa	tcctcttcc	accccaacct	480
tttattttta	cacaaggagc	catagtggc	atacttaagc	tattttttc	agtaactnaa	540
tatattttgg	aaganctccc	tcctaggnca	tanaagcttt	gnccctttt	tttacagtgg	600
taaacctttn	ggactaaagg	gcng				624
<210>	193					
<211>	348					
<212>	DNA					
<213>	Homo sapiens					
<400>	193					
actgctactt	ctataaacgg	acagccgtaa	gactaggcga	tcctcacttc	taccaggact	60
ctttgtggct	gcgcaggag	ttcatgcaag	ttcgaaggtg	acctcttgc	acactgtatgg	120
atactttcc	ttcctgtatag	aagccacatt	tgcgtcttgc	cagggagagt	tggccctatg	180
catgggcaaa	cagctggact	ttccaaggaa	gttcagact	agctgtgttc	agcattcaag	240
aaggaagatc	ctcccttttgc	cacaataga	gtgtccccat	cggtctccag	tgcggcatcc	300
cttcccttgc	tttacatctt	gttccacccc	tttcccttcc	tttccacc		348
<210>	194					
<211>	627					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(627)					
<223>	n = A,T,C or G					
<400>	194					
ggtaccttct	caggcagctg	cagcaaagcc	aaatggcaga	gaagcagttt	gaggaatcag	60
tcagtaaaaa	ggAACAGCAG	ctgctgagca	cactgaagt	tcaggatgaa	gaacttgaga	120
aaatgcgaga	agtgtgtgag	caaaatcagc	agcttctcg	agagaatgaa	atcatcaagc	180
agaaactgac	cctccctccag	gtagccagca	gacagaaaaca	tcttcctaag	gatacccttc	240
tatctccaga	cttttctttt	gaatatgtcc	cacctaagcc	aaaaccttct	cgtgttaaag	300
aaaagtttct	ggagcaaagc	atggacatcg	aggatctaaa	atattgttca	gagcattctg	360
tgaatgagca	tgaggatggt	gtatgtatg	atgtatgaggg	ggatgacgag	aatggaaagc	420
caacaaaatt	agttaaagggt	tccaggaaga	acatccaagg	gtgtccctgc	aagggctgg	480
gtggaaacaa	gcatgtgggt	gcaggaagcc	aaaagtccaga	ctgtgggtt	ggctgggtgc	540
tgtgancccc	ccaaagtgtng	gaccgcgcgc	caaggcaagg	aaaccttggg	cccttttaa	600
cggcccnng	aattcccaag	gttcntt				627
<210>	195					
<211>	405					
<212>	DNA					
<213>	Homo sapiens					
<400>	195					
ggtacaattc	cacttatcca	tactattcct	ttataaaaagg	cagatttcag	gtaagcttct	60
aaatgcatgc	gtaatgtaga	ggctaataatt	ttctggcagt	ccttggttcc	tgaaatttga	120
acttcatatg	tgtttaaac	tttgcataaa	atagtcatga	aagatatgtt	atttttgcata	180

aatgaggtaa tatatcaggg	gcgggcactc	ataagacagt	ataaaatccac	ttgtctaaac	240
ttgcatgagg	ctgtgtcat	tgtaaaatgc	cataaagagt	tttgggtcag	300
gctgaaggaa	taacacttac	attnaactga	gcactttct	gtaataaata	360
ttttttagc	tgtaaactgt	gtacctgccc	ggccggccg	ctcga	405
<210>	196				
<211>	658				
<212>	DNA				
<213>	Homo sapiens				
<220>					
<221>	misc_feature				
<222>	(1)...(658)				
<223>	n = A,T,C or G				
<400>	196				
ggtgaaaagga	gttaaaacgc	ccagtggtca	ttaagtgaaa	catctttat	60
aagctgcagc	gttctctgcc	aggtcaaatg	ggcatgttta	aaacataaga	120
gagtataagct	aatgaataaaa	tggttgttcc	tttagaaaaat	taaacacaca	180
gaggagagga	tacggccctc	cctgaaggat	aaagtccacc	tggacgggtgc	240
cttctcacat	taactgcccc	ggaatgtcat	gtgtattggt	tcccggaagg	300
aggggcagtg	tatggagcta	cgtgtagaag	gagagaaaatt	tggtgtggc	360
tttgaccat	tgccgcaatt	aaataaatttg	attactgngt	tgatttaaat	420
gcttcagaaga	cnaaaaataaa	accttcacg	ttaccccaa	annaaaaan	480
nataaaaaaaa	acttggancg	gnatgngtt	tcttggaaaa	agtttggatg	540
aattcttcnt	tttnggtttn	aaaattgaac	ncaggnattn	gggggancc	600
aanccataaa	gcttggttt	cttgnnaaaa	cttgnnaant	tngcccnngg	658
<210>	197				
<211>	615				
<212>	DNA				
<213>	Homo sapiens				
<220>					
<221>	misc_feature				
<222>	(1)...(615)				
<223>	n = A,T,C or G				
<400>	197				
ggtacagaga	aagaaaataaa	agataactgag	aaagaggtgg	atgacctaac	60
aaaagtcttg	aggacaaaagc	agcagaggc	gtaaaagaata	caaatgctgc	120
ttaccagaga	tccagaaaga	acatcgcaat	ctgcttcaag	aattaaaagt	180
aatgaacatg	ctcttcaaaa	agatcactt	agtattaagt	tgaaacttga	240
ggtcacattg	ctgaacataaa	ttctaaaata	aaatattggc	acaaagagat	300
tcactgcattc	ctatagaaga	taatccatt	gaagagattt	cggttcaag	360
cttgaagcga	tcaagaatcc	agattctata	caaataaat	gcactttgg	420
tcatgaaatg	aaacccaacc	tccggccat	cgcagagtnt	aaaaaggaag	480
atttgcaccc	gtacgagaat	tggccaaaat	acttntgaag	ggaccggttt	540
anaannntan	aaaaaaaann	nttnacttgc	ccggnggccc	ttnaangggg	600
gggggccttt	tangg				615
<210>	198				
<211>	557				

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(557)

<223> n = A,T,C or G

<400> 198

gggacctgca	gttgttattt	atcttggcac	cacctactct	tgtgtgggtg	ttttccagca	60
cggaaaagtc	gagataattt	ccaatgatca	gggaaaccga	accacctcaa	gttatgtcgc	120
ctttacggac	actgaacggt	tgatcggtga	tgccgcaaa	aatcaagttt	aatgaaccc	180
caccaacaca	gtttttgatg	ccaaacgtct	gattggacgc	agatttgatg	atgctgttgt	240
ccagtctgtat	atgaaacattt	ggccctttat	ggtgttgaat	gatgctggca	ggcccaaggt	300
ccaagttagaa	tacaaggggag	agacaaaag	cttctatcca	gaggaggtgt	cttctatgtt	360
tctgacaaag	atgaaggaaa	ttgcagaagc	ctaccttggg	aagactgtta	ccaatgttgt	420
ggtcacagtg	ccagcttact	ttaatgactc	taacgtcagg	ctaccaaaga	tgctggaaact	480
attgctggct	caatgtacct	nggcgcgaa	cacgctaagg	gcgaattnca	cacacttggn	540
ggncgtctan	tggatnc					557

<210> 199

<211> 498

<212> DNA

<213> Homo sapiens

<400> 199

acaatgatgc	ttctcacagc	ttcaaagaca	tgtctgaggc	atcctaactg	cgaatcagcc	60
cataaaaaaca	aagaaggagt	atttgaccgt	atgaaagtgg	cattggataa	gttcattgaa	120
attgtgactg	actgtaaacc	gaatggagag	actgacattt	catctatcat	tattttact	180
ggaattaagg	aattcaagat	gaatattgaa	gctcttcggg	agaatcccta	ttttcagttcc	240
aaagagaacc	tttctgtgac	atttggaaagtc	atcttggagc	gtatggagga	ctttactgtat	300
tctgcctaca	ccagccatga	gcacagagaa	cgcattttgg	aactgtcaac	tcaggcgaga	360
atggaaactgc	agcagttat	ttctgtgtgg	attcaagctc	aaagcaagaa	aacaaaaaagc	420
atcgctgaag	aacttggaaact	cagtattttt	aaaatcagtc	acagtcttaa	tgaacttaag	480
aaagaacttc	atagtacc					498

<210> 200

<211> 615

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(615)

<223> n = A,T,C or G

<400> 200

ggtaccctct	cttccacagc	ccaggccagt	atttggatcg	attctctcta	tgaaggaatc	60
gacttctata	cctccattac	ccgtccccga	tttgaagaac	tgaatgtga	cctgttccgt	120
ggcacccctgg	acccagtaga	gaaagccctt	cgagatgc	aactagacaa	gtcacagatt	180
catgatattt	tccgttgtgg	tggttctact	cgtatcccc	agattcagaa	gcttctccaa	240
gacttcttca	atggaaaaga	actgaataag	agcatcaacc	ctgatgaagc	tgttgcttat	300
ggtgcagctg	tccaggcagc	catcttgc	ggagacaagt	ctgagaatgt	tcaagaattt	360

gctgctcttt	ggatgtcac	tcctctccc	ttggatttga	aactgttgtt	ggagtcata	420
ctgnccat	caagccgtaa	taccaccatt	cctaccaagc	agaccacaga	ccttcaactac	480
ctatcttgac	aaccagtctg	gtggncat	tcangttat	gaagcgacccn	gccttgccaa	540
ggataccacc	tgnttggcaa	gttttaactn	caggcttcct	tctggacccc	aggngttccc	600
aaattgaagt	ccttt					615
<210>	201					
<211>	256					
<212>	DNA					
<213>	Homo sapiens					
<400>	201					
actgcacttt	ataaaaagcat	ggataatatt	aaaggatcac	aaaaggcagc	attagcattc	60
tctatccagg	tattataaa	tcttttatac	ccatcccccc	ctcaaatata	ggagaattat	120
tatctgataa	gcctgaaacg	actttttta	ataccataac	ctaaaaagac	acttcttaca	180
ggtgtatgca	actttggtca	gcagaaacac	aatacgagcc	tctggcttag	ctaaggcact	240
ctattctgaa	agtacc					256
<210>	202					
<211>	584					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(584)					
<223>	n = A,T,C or G					
<400>	202					
acttttcaat	ctgatccatt	atcttctcg	ctctttctgg	aggcactttc	ccacgagttt	60
gcaccccttc	ggccacattt	ttggtagaaat	cctgagcaca	ctctgactgt	tcttcaatgc	120
tttagatccct	ttttagtatgc	attccttcca	aaaacagttt	ggtctgttta	tagatttctt	180
ggcctgtctt	gttggaaaggc	tttggagaaatt	ctatgaactc	cttagacact	ctatccgttt	240
caatgctggt	tttgcgggtt	atggaaaggac	tggagcttt	tgcttccctga	atttccttct	300
ttgatccgac	ccttggaaagaa	tgcactgaag	aaatttttca	ctggggaaac	cctgggggtc	360
ttcttggntgg	gttttttttc	ttcaaaacttgc	aaaaatgttna	aggattgggc	ccctgggtgg	420
gtttagactgg	ngccaaaggct	tttttttttc	cctgaggcn	tccgcagttc	annctctgaa	480
ttgnttgcc	tggcttgggg	acctggccga	cacctanggg	aaatccacca	ctggggggccg	540
tctaaagganc	cncntggggcc	aacttgggn	anntnggtan	nntt		584
<210>	203					
<211>	608					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(608)					
<223>	n = A,T,C or G					
<400>	203					
ggtactctta	tacacacactg	ttttctccaa	tgttctcctt	tagtatggct	ggtaattttt	60
ttggtgattt	ccacccccc	tgc	ccataagt	ctctgttggc	ctat	120

aacacagaat ttcatttag tttctacaa aacttcttt acaaacacaa actattaaat	180
ctacaatct ttgcgtcata aataaaaagt attaagatat tttagcaccc attagatgct	240
actcataaat catacatact agttcattta taaccaccag tctatgttag tataatcatc	300
ctatgttgt aacatgcctn aaacacttaa ctccgaacac ttaatggaa agcccataca	360
cacaatttca gaacaggatt gtatgttaac aatgaatttt aataccactg ctttataaaa	420
ttaagttaaa tattcttacc actgnaatct gcatatcctg nccatatcat aggtcccata	480
ggtataccca ggataaacat attcggcata gcactatggg ttgaacacct gccccggcgg	540
gccggtncaa aaggcgaatt cancnactgg nggcccgtnc natggatcca ncntcggnacc	600
aactttgg	608
<210> 204	
<211> 621	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(621)	
<223> n = A,T,C or G	
<400> 204	
ggtacctgaa gatcttgatt tgctacacga gctttctcta gggcattata gtaagaaact	60
gcttcttct ctcgctcctc ttttccctct ttaagccggt ctacctggcg cattaggtta	120
gtaataagaa gttctagctg ttcttgctg tattgttagtt cattcaatc ttctttgagg	180
gtggcttcata tactctccat ttctgtcagc tcaatttggaa gagccagcat ctctgaagac	240
atgcttcct gcacacgttc agacattacg cgcaatttcct ctgatttaca agagaggagt	300
tccttctgtat gatctacttg gtgcttcagc tgctttcact taagcttgc ttcatctaat	360
tccactttca gttttcttat cttaagttt taagttcatt cacttcctgc catggcttct	420
gcttagtgtt cttccnattt cttcagggtgc attttttggg ggtggtaat agcttcacat	480
tcgcaagctc aaactttcta acattcgact ctgagttca acttccttt tgaangggat	540
atttcnctgg tcataactct tangcatnng gcataattct taccacatta tccaatggat	600
ccggaaattca ntttgcctn t	621
<210> 205	
<211> 607	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(607)	
<223> n = A,T,C or G	
<400> 205	
ggtaccacact atcataggta ttaccacaca atttcatgca tggtggcata ttttaactgg	60
ccttgggtcc tatcttcaca tcctttcag ttgtataaca agaacacttt acctgagata	120
taggcacaaa gtgaagttt tctttgaat ctggccagtg atcctgttt agecctctcag	180
gaagcattga tgaatcattc caccaagaaa acaaacaacg acctaccata gacctggcag	240
aataaataag gaaatccta aagatctaca agttcaataa tgtcatgacc atcacagcag	300
aggagtgact ttctgactaa tgctgcacc cacacagaga ataaggagta gggctgtcg	360
ggtgttttagc tcatggctt atcttatttg cccccctcctc tttcacgctc cagtttataa	420
aagaaacaga gatgatgtgt gtgtatgcct caaaatgcag aaacaggtgg gctttctta	480
acangtnac agtttgtct gggtataaga aaataaccct ctttctttt gccaagggtg	540

catgtgaatt atcccttctt aanattggtt aaataagcan tnncttanag ccccaaanc nctntnn	600 607
<210> 206	
<211> 572	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(572)	
<223> n = A,T,C or G	
<400> 206	
acgcgtgacg tcactcacat agcaggaga ctcacaacct ccatccagaa gcaccattc ccatccttg atgagtttat ttttccat atagtcaaa gtgttgacc gattaccacc agccaccaca ggtggatagg cttaaatgtc tgccacacga gcccggcatt caaattcaaa cttagcataaa agaaaaggctt cttccacagg ggctttactg gtgaacatgg tttctatgaa agcctgtgat gtcagcttcc cagcaatctg cattcgatca atttctgcag gagacttgat cagccggagg cgctgtatca gctgctgaac accccgaacc ttgttcttgc tcttggctt ggcctcagtc aggggctgca tatagtcaga gtgaagctgt gcatgtgagg gccttatacca ggtcataatcca aaccatgttc gtctcagtt tcattttttt gtagaagatg ttgaaattct tctagcgtat aggcttcgtc tactccagtt agagctattt gttccatcag tgccagantic ngggaccatt cccaaagggtt tnnactnnggg ag	60 120 180 240 300 360 420 480 540 572
<210> 207	
<211> 616	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(616)	
<223> n = A,T,C or G	
<400> 207	
ggtacctgtc ccattcttaa aaggatttgt gggtaatgt ggcacttggt ggccaggaga atcttctgac cccactctcc ctcctttca gtcctgaaga ccccaagaac ccagttagaa ccccctggcc agaggtctct gtgactgcct ctggactcag cacgtgcagc agcttggag gatttgagcc agtctaaaaa acttttagcc ccagaatgag accagtgacc ccaagcagga gggctggat ctggagggaa gagaggggtt ccaagggac cctgtggctg aggccatgga gaaccagtgc caggccccaa gagaccatt tttccagtt tcagaggtga ctgacatctt ctgccactgc ctgagttca gaaattaaaa aaagcttgc gcaagaaaaat gccagtgtgc aactgggtga ctaaagacca aagaaaaaca gttaaaagg acagctact tgctctctgt ctcangttt acttctcacc tgaatctct nataccctaa ttaacacaac caaagtctct ttcatagata ggctactttt aagtttact gcttctgtgg tgggctttgg gggctttggaa agtggaaatt ttttgg	60 120 180 240 300 360 420 480 540 600 616
<210> 208	
<211> 614	
<212> DNA	
<213> Homo sapiens	

```

<220>
<221> misc_feature
<222> (1)...(614)
<223> n = A,T,C or G

<400> 208
acacaacgtc atgaggttat tcgaaccaca gcgtcttcag aactttcaga gaaaccagct      60
gagtctgtca cttctaaaaa gacaggaccc ctttagtgc cc agccctctgt tggaaaaagag    120
aacttggcaa tagaaaagtca atcgaaaaact cagaaaaaaag ggaagatgtc tcatgacaaa   180
aggaagaaat caagaagtaa agccataggc tcagatactt ctgacattgt gcacatttg      240
tgtccagaag gaatgaaaac cagtgacatc aaggagttga atatttttt gcctgaattt     300
gagaaaaacc accttagagca tcaacaaaga atagaatcta aagtttgtaa ggccagccatc  360
gccacattt atgtaatgt taaagaacaa ttcatcaaaa tgcttaaaga aagccagatg     420
ttgacaaatc taaaaaggaa gaatgctaag atgatttcag atatcgaaaa gaaaaggcag   480
cgtatgattt aagtccagga tgaactgctt cggnntagagc cacagctgaa acaactncca  540
acaaaatatg atgaacttaa agagagaaaag tctttccctt ggaaagcaca tatttcttat  600
ctaatttaaa canc                                         614

<210> 209
<211> 610
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(610)
<223> n = A,T,C or G

<400> 209
acactgtttt gatggaagag gacattgtgg acacgaagta actggagatg gccttcagaa      60
tcagctgagc tgctgtctgc tttggaaaac cgttcctgcc gctgccatg gatggaaatg    120
caatggattt cagcttctta tcatcagccca gggccaagca gtttttcaact gtctttccca  180
gaagttcttc acacttgttgc gcaccccaaa ctggactatt acagtggatc acaaacttgg  240
caggcaggcc atggcctgcg ctgacagcag ctccagctac ttccaaaggcc ccgttctttt 300
tccggaggcc caggacagct tccacaaact ccttgcacc tttcttctcc agcgtgtttc  360
ctaggtcatc tttaaggtca atgtcagcat tggttaggatt gattatggcc tncacctcaa  420
aagcccggtt aaataactgtt ttcaactgnga ataanggtca actttttggc cangggaaaag 480
ctctttgggt gaaaaggact gtgaaaaccn tnngcaagng ggccctcggtt tgggctttnn  540
gggcttggntg gcnttaaggg antnanncgn gtttnggaa ttccggnnccc ttttggcccc 600
cnggttttta                                         610

<210> 210
<211> 589
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(589)
<223> n = A,T,C or G

<400> 210
ggtacccagc tctaattact ggccgttagca gcatattgct taagaatttt gtagaactta      60

```

tttctcatca	gcagctgtcc	aaaggactga	taaatagaga	cagatcccag	tcctggatac	120
tttctgtaaa	tcctaattcg	agactca	ctcagcaatg	gaggctgaaa	gtcttagtga	180
gactcagtaa	attcccttcag	gccttggcag	atggatccag	taggttgaga	gaaagtgaag	240
gacttcagga	acagaaagaa	aatccccatg	ccactagcaa	ctccat	atcaactgga	300
aggaacatgc	caacgaccag	caacacatcc	aggttatga	aaatgggggt	tcacagccaa	360
atgtcagttc	acagttcagg	ctacggat	tgggtggagg	actgagtggt	gtggatgaag	420
gcctgnatc	tactgaaacc	tgaaaggatt	attngataa	taattcctt	ntnaatgaat	480
gctgggtgaa	ctgtacctgg	ccggccggcc	cttaaaggnc	aattcncca	cttgggggccc	540
gactaaggga	nccncttggg	ccancnttggg	gnaacanggc	aannttgn		589
<210>	211					
<211>	590					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(590)					
<223>	n = A,T,C or G					
<400>	211					
acgaactgta	gcatcagcta	caactgccat	tgaaattcgt	aggcaatcca	gtagttatga	60
tgattccctgg	aaaataaacag	atgaacaaag	acagtattat	gtaaatcagt	ttaaaaaccat	120
tcagcctgat	ctaaacggat	ttattccagg	atctgcagct	aaagagttt	ttacaaaaatc	180
aaaacttctt	attttgaac	tttctcatat	tttggaaactc	tcagactttg	ataaaagatgg	240
tgcattgaca	ctggatgagt	tttgcgtgc	ttttcatctg	gtgggtgcta	ggaagaatgg	300
ctatgattt	ccagaaaaac	ttcctgaaag	cttaatgccc	aaactgattt	atttggaaaga	360
ttcagcagat	gttggggatc	agccaggtga	ggtaggttat	tcaggctt	ctgctgaact	420
cctncaagca	agtcccattcg	atgccattac	ttaacccgac	ttggncgtac	tgaatcaaac	480
cntgaccatg	ggaaacattt	nngacgttt	ttaagctaca	aantttggnc	ccattggttt	540
taaatttggc	ccnattgnac	cggaaccgga	ntgggnattc	cgnnccattn		590
<210>	212					
<211>	614					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(614)					
<223>	n = A,T,C or G					
<400>	212					
ggtacattcc	attactaaat	gccacataac	tgtttggata	acataagaag	agtgggtcat	60
tatatgatac	caatttggaaag	atatttaggga	tgggtggaggc	agtaatttct	gggataagaa	120
ctataatttta	cagaataacc	agacatcatc	tgatctgg	aaacctgtgc	atcccacaa	180
ttaggctttt	tcacacttcc	tctctttaaa	tgtgcaacac	cttcccattc	ccctctttac	240
ttgttagcaag	ttgattttgc	ttcttataatc	ccgagaaaagc	aactaccacc	aatctacca	300
gtcaactcat	ctatatttga	acttaaaat	ctttagtta	gaatggaaatc	tatccatgtt	360
ccagctttag	cgaagccctt	ctgaagat	ccatccattc	cttccatc	aaattttcct	420
tcttgactag	gattaaaaaa	attcaaccag	taggcataat	ccgaacctt	gnctcataaa	480
tgaaaaggat	agttataaaag	gctcatcaat	tggccgnaa	ttttgnntt	ggtcaagngt	540
tgcccaaagc	nncnnaaang	gccccan	tggtaaaa	tttttnaggg	gtaaaanc	600

anggggnntnc annn

614

<210> 213
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 213

ggtacaccttc ttgtcatcaa attttgccca gttatTTAAT gttggattcc tcaaggctca	60
gtcagcacct tttaagccac tctaaactcc cactaatggaa taagctcatt tacttccaag	120
gcttcaatgg tcacaataca acactgctgg ctctccaact tattttctta taaaataaaa	180
aataataaag gaacaacgta ttttcttatt caagactttt tatctgagct tcagatacat	240
atatccaaatt gcttacttga catctccact tagaggccag aggcatTTAA actcaatacg	300
tcttaatcca atctcatgat ctcccctctg aaatctaattc tcctactctt ccctatctta	360
atgaaagaca acaccatccg tcccttaca ttaagtgcTTT cagcttattcc ctacatcttat	420
ctcatcacta aagaacaggt attttcaccct ttttgatTTT cattcaaATG ctttctactt	480
cttttccatt cttactggta cccccctang ggmaagntat taacttttc ctacctacng	540
nccctttgn ancccttcca tcaantttc cnaattgnga nggtnaattt tttnaaccnc	600
aanntggnc tacnnngtgg gnng	624

<210> 214
<211> 612
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(612)
<223> n = A,T,C or G

<400> 214

ggtacaagtc tgTTAATACC ctatgtggTT tcattaggat aacttttac ctatcTTGA	60
ggTCatccat attttacAG gcTTCCAGT caataatggaa agagctcact ctataaaaa	120
ccaatATGCA aggcatgtgt ttgtccaAGC aattggatgt gtgcagtagc caatttcatt	180
tactgcatta ctTTTGGCC tggAACCCt gtggTCTGCA ctacatgtGA atggcTTCC	240
acttcagttc taggcagatt tgacTTTA gggcagcaa tgctgaagga cacagcaatt	300
taaaattataa tgtgcaggc tggTTTCA cttcaaacat gtatgagtag tcaagtGTaa	360
ttagagaaat gatgacttcc taagagtca gccaacgcata attctagatt tcaagagcat	420
ctaagacttg tggattacct catggcatga gagTTTcaga ctcagccnTn tgagccAGTC	480
nagggaaagt ggagtctgca acgcaaATGA aaacctggct ttggggccaa nggacttggc	540
tttaaatggg ccccccttngg cctgggnTTT cctttttgg cnaaantttt ngtnnccaan	600
gaaagtaatn ag	612

<210> 215
<211> 618
<212> DNA
<213> Homo sapiens

cggtgaggat	tgaataacca	ggacttgggg	atattgtttg	ttgtcaggggt	tattctgtgt	180
ggtaaggaaat	atttgttca	catttataca	ttttctttt	ccactcacgt	aagtttctat	240
cttgagagca	tagtccaaag	tgcaaaactt	ggtgtttaca	aggaaaattt	tcttccagaa	300
ctccactgtc	atcaacttca	ccaaagtgg	agtttgcatt	aatatgtca	aatctataa	360
ttcaatgttc	tgttacattt	taagtgaagt	ccagctaaa	atagatttaa	tatattgaat	420
ttatttgnac	cntngggccgg	gaacacgcct	aaggggcgaaa	ttncagcacc	actggccggg	480
cggttcccaa	ngggatccc	aaactntggg	nncanactt	nggcgnnaan	cnatngggcc	540
taaaaacttgg	tttccccctng	nngaaaattt	ggttatnccg	gttacaaattt	tcccncncaa	600
atttccgggg						610

<210> 218
<211> 585
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(585)
<223> n = A,T,C or G

<400> 218

ggtacaattt	gtaaaatattt	caaaggtcta	ggagtcataa	ctttttgttt	tcataactgaa	60
aatgatgtt	atcagagaaa	ccaactgttt	tgctttcat	tgctctgtga	gaaatttgag	120
gattctgttt	tgctgttagg	taagctaac	tcagaaaattt	aaaaggaaaa	gactggataa	180
acacaggatt	ttcagtaaga	aaacaacccc	agtcttgcct	tagaagccac	ttgttgagga	240
gtctgttggg	ggaaaaaaaaga	ggatatgttt	ttaaaggtag	aacaaacctt	cttctgtgtt	300
aaatcaaaag	gatgttcaaa	atccaccagg	acagatgcta	cttgggttta	aatggagcca	360
tagatgatac	aaagtcctct	tgggctgaa	aatcaacttcc	tatggcatg	gttttactaa	420
ctgggttctg	ttttccatta	tcttttcac	agaaagtntt	tggtcaagat	ttttccagc	480
ctttnaaattt	gaaaccggtc	agtanttga	ccctgnttgc	gntatttnnt	ccagnaattt	540
aaattgnattt	cnctggntcc	aaaggcnntt	attccccccttc	cttng		585

<210> 219
<211> 599
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(599)
<223> n = A,T,C or G

<400> 219

acaggtcaca	gatcctacaa	tcctactgtg	gcttgtgtct	ctttttccga	ggcacatcct	60
caaccttgg	aaaataaaact	tttaaatgt	ttgagacttg	cctcagtgtat	tttcttttgt	120
gtataactctg	tatcaacttga	atactttcca	agtgaagaca	tgctttataa	tccagagtat	180
ggactgtttt	ggccagatgt	tttctatata	ctggaaagaa	atgtgtattt	tgctgttgtt	240
gaatggcatg	ttctataaaat	ctcaattaca	tcaagtttgt	tgatagttctt	gatgtcttct	300
atatctctgt	ggattttcca	tttgttctag	tgattattga	gagaaaggta	ttgatataatc	360
tgcctataat	tctggattt	tctacttctc	tttgagattt	tctccatattt	tgcttcatgt	420
attttggaaag	ccccctacttc	acccagcatn	ggnccttctt	gagcccccctt	caagaagtaa	480
tttaaccac	ccangnccca	tccaaccctt	aaccccaang	gnnaaccaac	cgnnggcang	540
tnanttggc	ctAACCCNGGG	GAACCCATTG	GGGGNCCTT	GGNATTAGGG	GANACCNNNG	599

```

<210> 220
<211> 602
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(602)
<223> n = A,T,C or G

<400> 220
ggtaccatt taatataact atgatgcact taaattgaag ctatgccaca ggatagaaaa      60
tgaattacaa cttaaataca ttttggaaagt gtaacactgt ttttcaaggt taaaaaaaaat    120
tcctaattgtc tttagcattt cttaatatt ttaggttaag gaaagtatgt ttggattttt     180
tcctcttgtt aggtatatga gattgaaatg tgaagtattt ggacaacaaa cgtcaagcaa    240
tgggaaggca tttagtttcc ttgagtaatc ttgtaagcat taagtgaatg acaaagtatgt   300
agtgttaactt atttcttatg gtataacttc agtcaattaa tataaggata gttttgttg    360
tatgtacact aagtggtaat ataatngcca ttgaantata ctaatcttc tcttaanaga    420
ctattcnct nttaattgtt tcctaattggg aacantntg gcctaaccn gaaaaagggg     480
ganaaaggat tnccctgccc nggccggcnn tttccaaagg ggcatttn cgnncacctt     540
ggnngcccgtn tntctanngg aatccnannn tggtcccaan anttgggggg aatcttngc    600
nn                                                               602

<210> 221
<211> 573
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(573)
<223> n = A,T,C or G

<400> 221
acctaattgaa aagatctcca agagggtttgt ctcattctcc ttgggctgtt aaaaagatta    60
atcctatatg taatgatcat tatcgaagtg tgtatcaaaa gagactaatg gatgaagcta    120
agattttgaa aaggcttcat catccaaaca ttgttggta tcgtactttt actgaagcca    180
atgatggcag tctgtgtctt gctatggaaat atggaggtga aaagtctcta aatgacttaa    240
tagaagaacg atataaagcc agccaagatc ctttccagc agccataatt taaaaagttt     300
ctttgaatat ggcagaggg ttaaagatc tgaccaaga aaagaaactg cttcatggag    360
acataaaatgc ttcaaatgtt gtaattaaag gcgattttga aacaattaaa atctgtatg    420
tanggagtct ctctaccact ggatgaaaat atgactgggat ctgccccgttga ggcttggtac    480
cnttggcncc aanccttgg gaacccaaa aactntggaa gagaannggg gttttcctgn    540
caggcaacat attgccttttgcgcctncttgg ggg                                573

<210> 222
<211> 168
<212> DNA
<213> Homo sapiens

<400> 222
ccaccatctt ggaacgggag gcggagcaga gtcgactggg agcgaccgag cggggccgccc    60

```

ccggccgccc	cat gaacccc	gaa tatgactacc	tgttaagct gctttt	gatt ggcgactc	ag 120	
gcgtggc	caa gtc	atgcctg	ctcctgc	cggttgatga	cacgtacc 168	
<210>	223					
<211>	564					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(564)					
<223>	n = A,T,C or G					
<400>	223					
actgcagaca	aaatctg	ctt tagaggca	gccc	gatttct	gacaaagt aa ctgatc	60
ggatggcata	aattc	actttt	ggggacta	gtc	tttgc	tttgc 120
caatttattc	aattc	atca	aaaagtgt	tctt	caatta	gaaaga 180
ttctgcttca	gctt	ttctca	ggggcc	tttcc	catcaaac	ac agc 240
agcctggcta	gctt	gataga	tcactgt	tttgc	at ttc	tttgc 300
cattttctgt	tttgc	atattaa	tttgc	atattt	tttgc	tttgc 360
agtaacatct	tcctt	ccgaa	tttgc	tttgc	tttgc	tttgc 420
tctttgagat	ctat	atgc	caatcac	tttgc	tttgc	tttgc 480
atcacnagat	tcagg	tcgag	tttgc	tttgc	tttgc	tttgc 540
atca	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc 564
<210>	224					
<211>	277					
<212>	DNA					
<213>	Homo sapiens					
<400>	224					
acaaggc	tgg cgg	tttgg ggg	ac	cttggga	gggagggtca	gggtctggac 60
aggagcc	cg	ggg	cc	ggg	ggg	ggg 120
aaacc	ctt	ttt	ccat	ttt	ttt	ttt 180
cttc	ggaa	ggg	ggg	ggg	ggg	ggg 240
agct	tttca	tttgc	tttgc	tttgc	tttgc	tttgc 277
<210>	225					
<211>	589					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(589)					
<223>	n = A,T,C or G					
<400>	225					
ggta	cctt	ggc	tttgc	tttgc	tttgc	tttgc 60
gagaaa	act	tttgc	tttgc	tttgc	tttgc	tttgc 120
tccttat	at	tttgc	tttgc	tttgc	tttgc	tttgc 180
actc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc 240
gggtt	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc 300

gtatcaattt ttacaacttt tttcctgaaa gcagtttagt ccataacttg cactgacata	360
cttttcctt ctgtgctaag gtaaggtatc caccctcgat gcaatccacc ttgggtttc	420
ttanggtgga atgtgatggc cagcaacaaa cttgcaacaa gactgggcct ttgggtggta	480
cttnnaaaa ggccncntt atcccattt agnaattncn cccggcccaa aaaaagggtcc	540
taangtttgt aaaatttgca agcttttaa ggttgcaca aagnatgnt	589

<210> 226
<211> 636
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(636)
<223> n = A,T,C or G

<400> 226

ggtaagaag catgccacct ccacaactcc tacctggacc tccagcgcag gtatggaga	60
ccctcgatgt gcagagcctt cccctggag aaggagctga aagacaaaaca cccagcttg	120
tccaggcat tgctggagat ggatctgtg accgtgcca ggaacaaaaa tgaatctgt	180
tcagaaatcg gtggaaagat atttggaaag gctgtaaaga gactctctag cattgtatgg	240
ttcaccaaa ttactcttat cgtccccctt ctgacggatt ccagctgtg tggataccat	300
aaagcatcct actaccttgc agtctttat gagactggat taaatgttcc tcgggatcag	360
ctgcaggggc atgttgnata agtttgggt gaggccnnng ggagtgagaa gctgcttcaa	420
tgaatcttgg gtataaacac taccaaggta ttgacaacta cccctggac ttggaaactg	480
ncgtatgcct actacagcaa ccntggccnc caagaaaccc cttggaccag cacacacttg	540
gaaggngaat caggcctttt gttgaaacca tttgacttaa aggattttg gaaatcttca	600
nggnaccttg cccggcgggc ctttnaaaaa ggggna	636

<210> 227
<211> 451
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(451)
<223> n = A,T,C or G

<400> 227

acccaaaaac caccccaac gcccccaac cctcaggcggt gcctgtgagt gtgtctgtgt	60
gtctcaactt gactcacca gacaactgac ttcaagcagcc aaccttggtc attccagaa	120
ccaccactgg gggcatacg tggcttaga ctggggcgcc ccgaatatct gtctctacaa	180
aaagtaaaaaa aaaaattaat ggggtgtgtt ggtgtgtcggt gcctgtggta tcagctgtt	240
gggacgctgg ggcangagga tcacttgagc ccgagaattc aaggctacag tgagttaga	300
ttacgccact gcactccatc ctgggtgaca gagcaagacc ttgtctcaag aaaaatttt	360
taaatgagta aaattcaaaa aaaanaanaa aaanaaaaagc ttgacacactg aaacatgggt	420
tactgcatat ggnacctngg cngagacacg c	451

<210> 228
<211> 408
<212> DNA
<213> Homo sapiens

<400> 228
 ggtcccttat atggcagaat cttgcaggca gcatgtcgag tttgatatgc tggtaagaa 60
 tagaacccaa ggaatcattc ctttggcccc catactaaa tcattgtgga cttgctcagt 120
 agaatcttcc atggaatatt gtagaataat gtatgatata ttccttca aaaagctgg 180
 gaattttatt gtgaatgtact ctggagcaca tgttttaat tcttggactc aagaagacca 240
 aaatttacag gggctaattgg cagcattagc cgctgttggg cctcctaattc ctcggcaga 300
 tccagagtgc tgcagtattc tgcattggct tggcacag tggaaactct ctgcaaaatt 360
 actgataacc aacatgagge tcgtacattgc cccggccgg ccgctcga 408

<210> 229
 <211> 270
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(270)
 <223> n = A,T,C or G

<400> 229
 ggtacacacg agcatcaaaa aggctattta caagagattt tcttcaacag aatccacttg 60
 aaagcactga gaatttgcattt cttagcttaag agcagtttac caaggaacag gcccattctaa 120
 gtgcctaact agcatctaaa ttgtcaagg ggtggggatg tgcaaattaa gcagcaaaag 180
 attattatct ttgtntgctt taaggaaag taatantggt cagaggggccc agttccaagg 240
 gctggtccaa gggggccgc ttgtcttgg 270

<210> 230
 <211> 425
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(425)
 <223> n = A,T,C or G

<400> 230
 ggtacattat ccaatttcag ggaaaaaaaaa tacagtttc ttaccaaatt atccagtgt 60
 tatgacttgt tagaatttttta agttttgatt ttactgaaa tttaggtat gaaatgc当地 120
 cattcaggat aaaatgaatt cataattaca cacagttata tcaacttgca acaaagcagc 180
 aaatatgagg gccttaacaca catctcgact ctcccattcc cttctgatcc ctcaaaaaaaaaa 240
 agtgc当地at caaaaggtca ctgcttggtc caaaaaataa aatacattgt gtataaacat 300
 ttgaaatctg atggaaatcca gcttcttattc cacaggttgc cttcagtaag aatcaacgtc 360
 cgaagatgga actcagttcc agaagaatta attctacaat ctgattctgg tcctgcccggg 420
 cggnc 425

<210> 231
 <211> 639
 <212> DNA
 <213> Homo sapiens

<220>

```

<221> misc_feature
<222> (1)...(639)
<223> n = A,T,C or G

<400> 231
gcgtggttcg cggccgaggt actccaagaa gtctgtctgc cattgatagg gctggaggcag      60
aggtaagag tagaacaacg ctttcagaa agattggaga cttagaagc ttggagaaga      120
tttacggga agtcaaatca attacgatta tcggtgaaaa cttccttggg agcgaactgg      180
cctgtgctct tggcagaaag gctcgagcc tggcacaga atgtattcaa ctctccccg      240
agaaaggaaa tatggaaaag atccccc aataacctcg caactggacc atgaaaaaag      300
tcagacgaga gggggttaag gtatgccc atgtattgt gcaatccgtt ggagttagca      360
gtggcaagtt acttatcaag ctgaaagacg gcaggaaggt ngaaactgac cacatagtgg      420
cagctgtggg cctggAACCC aatgttgagt tggcaagac tggcgtctg gaaatagact      480
cagatttng tggcttccg ggtaaatgca tnacttccag cacgcttta ccattttggg      540
tggcangaaa atgcgtcatt gcnttctacg atnataaagt tggnaagga ggccgggtan      600
aacnccctng aacnccctt tgtgantggg aaaattgcn      639

<210> 232
<211> 369
<212> DNA
<213> Homo sapiens

<400> 232
ggtaaaaaa ggcctcaaaa taatttagtga cagaaatagt gttatataatt tgctaagctc      60
aacaataagc aattccctaa taaaatctt cgagatataa atttgatgac tattctttc      120
agaaatgaca tacctggatt atgttaatca tcacaagcct tattgtcac acatataaac      180
atggcctcat gcaatcattt gtctgtatat gttactctaa gttgcgttag cacaaggtt      240
aatatctata tctttaagaa aataacttgat attataaaca gagtaaaaaga catgatatag      300
tagtgattac taaaaaaaaaa aaatttagcag cttaaatcta tctatattt aaaaaacgta      360
gtcacaagt      369

<210> 233
<211> 618
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(618)
<223> n = A,T,C or G

<400> 233
accctcttcc cccacccca ggccagttt gagatcgatt ctctctatga aggaatcgac      60
ttctataacctt ccattacccg tgcccgattt gaagaactga atgctgaccc gttccgtggc      120
accctggacc cagtagagaa agcccttcga gatgccaaac tagacaagtc acagattcat      180
gatattgtcc tgggtgggg ttctactcg atccccaaaga ttcaagaagct tctccaagac      240
ttcttcaatg gaaaagaact gaataagagc atcaacccctg atgaagctgt tgcttatggg      300
gcagctgtcc aggccat cttgtctgga gacaagtctg agaatgttca agatttgctg      360
ctcttggatg tcactcttct ttcccttggg attgaaaactg ctgggtgggcatgactggc      420
ctcatcaagc gtaatcccc attcctacca agcagacaca gaccttacta cctattctga      480
caaccagnctt ggtgngctt ttcanggttt attaaaggca accttcctg acaaaggata      540
ccacctgtttt ggcagggttt gaactccctg gcctgcccngg aaggaatgcn cggggggatt      600
nctgggggggg ggnccncn      618

```

<210> 234
<211> 603
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(603)
<223> n = A,T,C or G

<400> 234

accagatgga	aaatgtttt	ggtgatctgg	ctgctgttta	aagccagttt	tccctaagaa	60
ctccaaaggc	taaactctac	taggggcaga	gtgtgaggat	agatttctaa	tcagagaaaa	120
gtggcctcca	ggagctttca	tttatgtctt	ctccagacca	ggttttcctg	ttatcttcct	180
ttaatccccct	ttcaaccaac	aggtaagtt	cttccagccc	acagaggtag	taatatcatc	240
ttttctatct	cctcctctcc	tttggccatg	taatgaagca	aaatattatt	tatttagccc	300
aggcttgaga	gccactgttt	gtggacagtc	ttcatctaga	ttccatacc	tggcttaggc	360
gaggttaaggc	tctctggta	ttgccaggat	ggagccctc	taccccangt	ctgctgtang	420
gaatacccta	attagttgan	gcatgcttt	ggaatcctgc	atgttggcat	atggctggnc	480
tatcctttt	aaaanctctg	ggtgtgggnna	tctggatath	gattaagang	ggacaaggag	540
ccttttcttg	gctaangtt	ncaataacctt	tttgaatggg	gccagccctc	aggctccca	600
ccc						603

<210> 235

<211> 328
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(328)
<223> n = A,T,C or G

<400> 235

gcgtgtcgcg	gccgangnac	atggacnaca	ggtgangaac	aggtaaacat	ggaggttgta	60
gancccangg	gagggggagt	cacttggttt	ggggcaaact	tgctaaatgc	aggaccacag	120
gaaccanctn	ttcanctncc	gtgagantt	ggctgccc	gccanttagg	ggtgtggcc	180
tgcacggnag	acagttatcc	cttctantc	tggctcgtgg	gactntnnan	ggantcantc	240
tgcaacagta	agtgtgtant	tcttctgncc	ancgtcagta	ttttgatgg	ggcttttagac	300
ttgcccagatn	acactacntr	acatcagt				328

<210> 236

<211> 352
<212> DNA
<213> Homo sapiens

<400> 236

ggtacaccc	ttaggagctc	tatcactctg	aaagccaaaa	gatagaatgc	tcatttgagc	60
atttgc	aaaaaa	tgttctctat	ttatattttt	aaaaatctga	tacatgttaag	120
agattcttt	tgtatgttac	aaaacaaaac	atcaaaagct	cagagtaaga	taagaatccc	180
tttttcttag	aaaggtcaag	cagatactc	ttgacatcat	gtccttata	caatggcata	240
ttgttcatat	aaaaggtctc	ttatcctata	aaaatcttga	caaaggcagc	cttctaattcc	300

aatgcgtcca gttccgttc tgcgactgc tacttgattg ttgcaaaca gt

<210> 237
<211> 607
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(607)
<223> n = A,T,C or G

<400> 237

ggtacaaaatg cgcttccagc aggaggtcat ggacagccct atggaagagg tcctgctgg	60
caatcttgt gaaggaacct tcttaatgtc ggtgggtgat gaaaaagaca tcctgccacc	120
gaagcttcag gatgacatct tagactctc tggtcagggg atcaatgagt taaagactgc	180
agaacaaaatc aacgagcatg ttccaggccc ctttgtcag ttcttgtca agattgtggg	240
ccattatgtc tccttatatac agcggggaggc aaatgggcaa ggccacttcc aagaaagatc	300
cttctgttaag gctctgaccc ccaagaccaa ccggcgattt gtgaagaagt ttgtgaagac	360
acagctttc tcactttca tccaggaagc ccgagaagag caagaatctt cctgcaggct	420
atttccaaca gaaaatcttg aatatgagga acagaagaaa ccngaagaaa ccaagggaaa	480
aaactgtgaa ataagactgt ggtgaattag aatggctaga gctacccca ttntnggctt	540
tagccctgcc aagtggcagg ntcancaact gtcagnntcc naatccta at cntactttgg	600
gnnnntgg	607

<210> 238
<211> 391
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(391)
<223> n = A,T,C or G

<400> 238

acaaacttag aagaaaattg gaagatagaa acaagataga aaataaaaat attgtcaaga	60
gtttcagata gaaaatgaaa aacaagctaa gacaagtatt ggagaagttt agaagataga	120
aaaatataaa gccaaaaattt ggataaaaata gcactgaaaa aatgagggaaa ttattggtaa	180
ccaatttttattt taaaaagccc atcaattttt tttctgggtgg tgcagaagttt agaaggtaaa	240
gcttgagaag atgagggtgt ttacgttagac cagaaccaat tttagaagaat acttgaagct	300
agaagggaaa gttgggtaaa aatcacatca aaaagctact aaaaggactg gtgtaaaana	360
aaaantgttna nnnaaaaaaaaaa agttgttcctt n	391

<210> 239
<211> 466
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(466)
<223> n = A,T,C or G

<400> 239
 gggagggaga cgggggagag agagaaaaaa aaaaaaaaaa aaaaaaaaaaag cttgtgttgg 60
 tcccagcgt tcagctgagg tagggacgtg ccgtaggccg gaatgttacc ggctgttgg 120
 tctgtggatg aggaagagga tcctgcggag gaggattgtc ctgaatttgt tcccatcgag 180
 acgacgcaaa gcgaggagga gaaaaagtct ggcctcggcg ccaagatccc agtcacaatt 240
 atcaccgggt atttaggtgc tggaaagaca acacttctga actatatttt gacagagcaa 300
 catagtaaaa gatgtacgtt cattttaaat gaatctgggg aaggaagtgc gctggagaaa 360
 tccttagctg tcagccaagg cgagagctc tatgaaagag tggctgaaac tttagaaacgg 420
 tttgccttctt gcttgcgtt can tgaagtgagg aatgtgttta ctgggt 466

<210> 240
 <211> 616
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(616)
 <223> n = A,T,C or G

<400> 240
 ggtacaactc ttgctaattgg aatgtataaa tgccacaaggta caaggattta ataaattcta 60
 aaagtgtcta catatatacg tgataactgt attatttagaa atataaatgt atagaaatata 120
 aaagtataatg gtataaaaaa cagaccttgc taatataaaac atatataaaag tatgtcaatt 180
 ctccctgttaat aacagcataa agatcgatct acatgttgc cttcccttgg cactttaaa 240
 ccactcctcc aatgtcaat gttgaccttg aatcaacagc cgctgaaccc aggagacccc 300
 acagatgtgt agattcagca cctanagggc cccccctaccc tctgtgttgcgt gtgttccat 360
 gactccagaa ataattaaatc gcaacttgca ttattaatgtc cacaggcaag ttttggaaatc 420
 taactagaaa aagtagcagc aaaggccaaa ataccgcggg aatttgttaa gaaaagcaac 480
 cagaatttct taaaatgtt tcanttcaag gtctgaatta aggtgacntt aggtcccacc 540
 agcnnttaacg nagttgggn atgttttgct gntggtttt naaaaaagaa gaatctgcna 600
 taaacatgtc ctttgg 616

<210> 241
 <211> 598
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(598)
 <223> n = A,T,C or G

<400> 241
 ggtactctat gaatgtgtta cccaggagac cccagagatg ttgcctgcat acatagcaat 60
 ggcgcgcgtt ataagaagac ttgggagaag agaaatgtct gagacttctg aaccttggca 120
 gataaaatgtg gtgttagagt ttttcagctc ccgaagccat caggagccgc tgccggaaacca 180
 ccctaaagccg gggctttta tgaactcgga attccctccct gttgtgaatgt gcaccattga 240
 taataccctg gaccagtggc tacaagtccg ggggtatgt tttgtgcacg cctacccatc 300
 cgggcagccc ttggaggaat cacagctgag catgctggcc tgcttcctcg tctaccactc 360
 tttgtccatc ccacaaggcac ctgccaccta taggactaga agggagcaca agctttgtg 420
 aactgntttt caaatttaac agcttaaaat gccagtgcga gctttgttga natggctcct 480

ttgcttcttg gaaatccaca gccatggtga tggaccgtg ttggccggga acctacctga	540
acgtgacttn tggcacaacg tgaccaacct naaacttaag catgtttaa gtttangg	598
<210> 242	
<211> 565	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(565)	
<223> n = A,T,C or G	
<400> 242	
acagagcttc gggtagcaga agaggaatgg cctatggaca tattgactct tatggggcag	60
atgatagtga ggaggaggg gctgggcctg ttgagcgacc gccagtgaga gggaaaactg	120
gcaagttaa agatgataag ctgtatgacc cagagaaagg ggcaaggctt ttggctggc	180
cacctccaca ttctcttagt tttagccgtg atgtgagaga ggagcgagac aagtttagacc	240
cagtccctgc agcaagatgc tcagctagca gagctgactt cctgccacaa agtagtgtgg	300
ccacacagtc gtcttctgaa ggcaagctgg ctacaaaagg tgacagctcg gagagggaga	360
gaagggagca aaatttacct gcacgttcca ncagggctcc tgtgagatt tgggtggtg	420
gggaaaacac cttnaagaag tgcagagggaa cctgtggtca ggccccaaat cagaaacctg	480
gcaggtccaa ctgcgtgaaa cccaaaattt tttttgatc ctgatgatga ntgaccatnt	540
ccncaccgta ccttggcgn gaaca	565
<210> 243	
<211> 647	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(647)	
<223> n = A,T,C or G	
<400> 243	
ggtactttgaa atggggctg tttttggct ggtctgagtg caggactttg ctgctaggat	60
gcttaccaaa tagaaaatttg actcagagcc tggctggctgg gaattgtcct caggaagtaa	120
aatggctcgc cagcttccct acctgcttgc gatgcctca gatagcaatg gtcggacagg	180
acacttcagt gtggaaagca gcatccggtg aggctgtgct ctggcacagg gggatcctga	240
atctccccat ctcttctaag ctgacctgtc cacacattct gagggattaa gcttagagca	300
cctaagaaca gcagcctccc caggagaggc cagggaccaa agtggcagga atcctagaca	360
actctacgct ttttctgcac taaccagctg ggtgactcta aacatgtcac ctccctntgg	420
cctnaactt ctcatcgacc aaacgaanga gatgactg ngcttcagc ttaagaccga	480
aaaccgtate ttaaccctt tctggnacct tgcccgccg gccgttcaa angggcaaatt	540
tccnnacact gggcgccgt actaaggat cccacttngg gcccaaactt gggtaaaca	600
tggcanaact ggtncctngn gnaaatggta anccgttcaa aatcccc	647
<210> 244	
<211> 603	
<212> DNA	
<213> Homo sapiens	

<220>
 <221> misc_feature
 <222> (1)...(603)
 <223> n = A,T,C or G

<400> 244

acaacattca	gggcTTTctt	tttttcttcg	gcaagctctt	cttcctcagc	agttttcttt	60
tcatTTacct	cttccTgttc	ctcttcaCTg	tcagTTcta	gaaatcgaga	gtccatgcgg	120
aatCTgtcat	cggTgcCAAa	gtgcgactgt	aaatCCatga	gcttctgtcc	agctctgccc	180
tcaaactgag	gtttaatTTT	gaacctatta	ctgtcatctt	cagaatcaga	ttcgtcatca	240
tcactgctat	caaACAGCtt	ccctgatgtt	ttacccatag	actctttcac	ccattcctct	300
cctggatgC	tctgctcctg	agtgcgatgc	tcctctgttt	cacattca	gtcagaaccg	360
aatGATGATG	gcgtTggCtt	atcctctgga	tgaccatcca	aattGCCaga	gcattatgca	420
ccagCTTCTT	ctgcactt	tgcttttgc	ctcgCTTCCA	aggctgncaa	acgcttctn	480
attggCTTCA	acatGTTat	cttagact	cacatttgac	gaattactaa	tngaaaggGG	540
agaaaaanagt	tttgattcc	ccgagngccc	ttggatgana	ccttgggga	ttcttganaa	600
aag						603

<210> 245

<211> 640

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(640)

<223> n = A,T,C or G

<400> 245

actgggcacc	attaatgagg	atgcaggaga	tcaggtggcc	caggcCTTCG	aagatatact	60
ggaacttGtg	ctgctgaagg	ctggcgctca	tggcCTTtc	aatggcgctg	atatctttgt	120
tgagCTTgac	caccaggGGG	tcataatcca	tactttccac	attagccaca	atggcatagt	180
tcccCTCCTT	tgcaagaggg	ataagatagt	ggaaacagtG	aaccctca	tccagatgta	240
agacaagcaa	gcagcggtca	gccatatcct	ggaacgattt	ggcaagtca	ctgagagtct	300
gcatgatctg	ctctgacact	ggggggagat	ccgtgttcgt	gtggctgctt	gagcaggaga	360
aagcatctgg	gatgtgaaa	gattggaaga	aagctgactt	ttgttcgact	tgccaaccat	420
tccaagCTT	catgcntgtt	ngccaaggct	ttganggcac	ttgaccgtca	cgaaggatnc	480
ttgtggaaagg	antaatttat	caccaaggTT	ccaatagaac	tttagactcc	ttgncaaaaac	540
tggcTTatg	aaaacttntt	cntcncttt	ttggcctanc	tgnttngggt	tgngcctntt	600
cattccantt	gggnaaaaat	tcaaananTTG	ctggTTCTTn			640

<210> 246

<211> 608

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(608)

<223> n = A,T,C or G

<400> 246

cgaggtactg	tcattgaagt	ggaaccagcg	gccttcgtga	gttgcgtatg	ctgtgtaatg	60
------------	------------	------------	------------	------------	------------	----

tccagaacca	accgggaaac	catggtgcac	caccacagcg	gcgaggcat	acaggcagct	120
ctccgggcca	ctgttcttag	gctctagaa	gtgcatttc	atgtcttaggc	ctctcagtgg	180
aaattctacg	tatgtatcaa	ctttattct	taaatatgtct	gtccaatgaa	atctttcaa	240
atgtaaagcat	agcacccctgg	gtagttttg	aatccaaaac	ttttttgtgg	actttgttt	300
cttttgcata	ttatggcaca	tatataactc	tgttcatca	agttcttcta	agtcggtaaa	360
actgcgaaga	caatctcgta	acgaacaaac	tggccattt	tcttgattct	tagagcgctt	420
acttctgaaac	tgacttggaa	tatctaata	aaaggctang	gaatggatca	aacttttaga	480
atctgccccca	tatgaggcag	ttacctcatt	ttggagaagc	ctccgaatat	agccggacaa	540
cagtnaagct	ccattatgna	ccttggtacc	ttgcagacag	ngtaaaatnt	cctgcaaaaat	600
gntgaccg						608
<210>	247					
<211>	632					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(632)					
<223>	n = A,T,C or G					
<400>	247					
acagaaaagtc	agagaacact	tacagaacct	ggaaaactca	gctttcacag	ctgacaggca	60
taagaaaaga	aaactttgg	aaaactcaac	actaaacagc	aagttattaa	aagtaaatgg	120
aagcaccact	gccatttgg	ccacaggct	tcgaaatttg	gggaacacat	gttcatgaa	180
tgccatcctt	cagtcactca	gtaacatga	gcagttttgc	tgttatttca	aagaactgccc	240
cgccgtggag	ttaaggaatg	ggaaaacagc	aggaaggcgg	acataccaca	ccaggagcc	300
aggggataac	aatgtgtctt	tggtagaaga	gtttagaaag	acactctgtg	ctttatggca	360
aggcagccag	actgnattta	gcccagagtc	cttaatttat	gttggggaa	agaatatgccc	420
caactttagg	ggctatcaac	agcaggacgc	catgaatcat	gcgctcctt	tgaccctta	480
ccttggact	tcaggcggnt	caacgggggtt	tccgctnaac	atttgcagg	gaaatctact	540
ttgctgcagt	accaagtgtt	gctaaatgga	cattntggt	gcacggtnn	ttcgagggn	600
ntccaaatnn	ggttactgcn	tanttgggaa	aa			632
<210>	248					
<211>	624					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(624)					
<223>	n = A,T,C or G					
<400>	248					
actccgaggg	gcctggcgag	gacatgtaga	aagactgcgt	tttcctttc	aatcgcccc	60
ttttgttggc	caacaccaga	ctgcgcggc	ttgaactgat	gatttccgaa	atgaacttct	120
tgcagtccac	acacacccctcc	atgggtgtcc	agtcctccat	caactctttg	ggaaactggaa	180
gttcttcatc	tgattttgtcc	atagacttag	attttgagga	gaacctggca	atgctccgaa	240
gtggccgatg	atgggcagtg	gagggtttt	ctgacctcat	actactttc	cctctttgca	300
gagcagaagg	tcccaatgaa	aagataggaa	gagtggagta	tggtttgag	ggcagccccgc	360
atcttttgc	aacactgtga	gcacaccggc	ctnttacaga	actgacaggt	ataagaccaa	420
gtgaagaagg	aaaaccttct	ggttcggcaa	ccaaagcaga	gctttnctt	tttcaagnncg	480

tgttaagnct ttatctggtg atatttcca ntntgcntta ccaggaccgg cgaatatgnt	540
ncttnntccc agtagacnag nattcnctgg gaccaaattc taaanaccgg acttnctgaa	600
gnngaggact gcttcgttta ggct	624

<210> 249
<211> 636
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(636)
<223> n = A,T,C or G

<400> 249

acagtaaaaa gtaaacttcc ctccatccca ggctgccag catccctgat gccgactttc	60
tgggtgtggc ctagggcccc tcagtgtaat gttaggggtt tgagcacaga ctttgggtgcc	120
agtttgcgt tagttcaatcc tgactccctc ttttagctc tgtgctcaa ttgaaaatact	180
gtgcctcagt ttctccctta taaaggcagg gatcatgaga gtgcctgtcc cttgtgagca	240
ctatgaaagt gttagctgtt ctttaccaga ataaaatgcat ttctataatct tcccatatgc	300
attttgnataa tttttaaagt atttcaaaaca caaagttga aacagaaaat tggtaacat	360
taactatgaa cttaccaccc agaatttaca aatgctgaca ttttgcataa tttatccnng	420
atctattttt aangggggga accctgcagt tactgnataa tcctttccac ccacctttta	480
attttacacc angagcatag tggtcataacc tangctaatt ttttcagttac ctgtatattt	540
tggagaactc cttccttaggc ataaaacttg ncccttttt taanagtggtaaccccttgg	600
gacnaaaaggc cttgaacaat tggcccatcc ctttgg	636

<210> 250
<211> 669
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(669)
<223> n = A,T,C or G

<400> 250

ggtagataat ccggcagctc catggcatct cgcttctgg gctgtgcctc agcccaatc	60
agaagggtga aatgagtggc caaatgtctt cgccagcaag tcttattggg tggatgttc	120
aataactgag ccattgttcc tacgttaaaa cgaggctcta gaaccatgag cccaccatgg	180
acaccactgc ctctgagatt gggcgcatat tctgccaatg ccacggagcg cagccactcc	240
atcaactcgat ggttagtcca cttctgaact tctgatgggg cgatggatt ctcatacagat	300
ggccgcctcc gtagacagtt tggttcaaaa gttattgttc ctcaggacct ggatggccct	360
tttgatactg agatgggtga ncacacttac cacctttcag agacagtaag tcatcaacag	420
tcatgtaatg taacattcga ccatnaaccc ggcttnatt aaactggtc ttatatttga	480
gggaaggnc atggcattcc aaccctntaa nggaccnnn ttggaaatcc actttcccat	540
aatgggttc nttnntaaa atcccanggc nttingaaagg ctaacttgg ngttcnntt	600
tcatgaaang aaagcctgga ttccaaggc cctttttaa aactttgtgg naaaccctgc	660
aaaaacnntn	669

<210> 251
<211> 670

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(670)
 <223> n = A,T,C or G

 <400> 251

actattcaag	aggtaagag	aatgtgtat	gacc ttacaa	gtatccccgt	tcgcc accaa	60
ttatgggagg	gctggccaaac	ttctgctaca	gac gactcaa	tgtgtcttgc	tgaatcaggg	120
ctctcttata	cctggccatcg	acttacagtg	ggaagaagat	cttcac ctgc	acagacccgg	180
gaacagtccg	aagaacaaat	caccgatgtt	catatggta	gtgatagcga	tggagatgac	240
tttgaagatg	ctacagaatt	tgggg tggat	gatggagaag	tatttggcat	ggcgtcatct	300
gccttgagaa	aatctccaaat	gatgccagaa	aacgcagaaa	atgaaggaga	tgccttatta	360
caatttacag	cagagtttc	ttcaagatat	ggt gatttgc	atccctgnatt	tttatttggc	420
tcattagaag	ctgctttca	agangccccc	tatgtgaaag	ccccgagata	gaaagcttct	480
tgcttatctan	ctnccccntg	atgnaaaatgt	tggtnaccca	cggg ttcgn	gttaccaa at	540
gctttgggccc	tgnaanccat	tgggttccct	attctgggtc	aaaaattttt	taacc cgggc	600
nttgggaaact	tgccaanggn	ntccacngna	gccangaatt	ttcactttgg	gccaaaaaaac	660
cttttnggg						670

acacagcaca	ttctcttaag	agaaaacagg	aatgaacatt	ctcagaaaaca	ttcacattgc	60
tcatcaa atg	tagcttacc	caaagtat at	agggaaatggc	aaaaaccta a	cctagctgga	120
cattttatac	aagtaagtca	aagttcaag	gaatcatcct	atctttattc	tca gaaatcc	180
aatgttgaat	atcacagttc	ttctttaatg	gaagcagaag	attcagagtc	cttgc tctccc	240
aaaatgcctc	agccagggtc	agcacagaga	gtggaatata	aaaagctt aa	ttgtgttaat	300
acatggaaga	caacagttct	cagtcaacct	agccacaatt	ttctgtctt g	gccatctgta	360
agaaaatgact	accgtt gaa	attcaactt	cacattcaaa	aaaaagaaaa	tcaattcagc	420
tttnagacac	aaagcaaaac	caaaaca aaaa	aaacnaatgg	catag tctac	atatttnacc	480
ccttgacaa at tggggaa						498

acgtttcagt	tcaagtgc aa	aaaataacta	tttgc tgaat	tctatttctt	tca gttat ttt	60
tat ttttaa g	ctgtgttt a	ttgtgaagcg	agacatccaa	gtgtagaatt	tctt atccca	120
aatgcagttat	tgctcctt gg	ttacgcttcc	tggggagaca	gggg ttcgt	tgc ttgagtt	180
caaagtcaag	tccatcatac	ggttagtaat	ttcac ctgc	tggggctgca	gagtgggttc	240

actgttcatg tttggagctg ttggcaaagt aacgggtgtct gagacattga gccctgtttc	300
caaaagggtt ctttctcac gcatttttg tgatatggtg agggaaaggagg taaaggaaga	360
atttgttggc aggataagtt aactggtgac ttgcatttgtt ggggtgaagt tgggtggcc	420
aatcttttgtt acc	433

<210> 254
 <211> 652
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(652)
 <223> n = A,T,C or G

<400> 254	
ggtacaaacc caggcctggg ccttaggaaag ggcagaagaa aggcaaaggg tcccttggag	60
caggaaccca tccctctctg cttataccca gcacccctca tcccagggttc ct当地tcaa	120
cctccgcctg cctctggaa cacagagcac caagaactga caaaccggga cc当地ccaggg	180
ccacacgctg gggcagagtc caggcttctg tctcccccga gtgggagatc tggggagctc	240
agtgaacctc ctcacccctcc tgccagtgatg aagttggaa ggc当地tctc tgc当地ccagg	300
aacagaacaa actcttgttc tctgtgggtt gggaaaaggt gtggggggct tggacctagg	360
aagaagctga gctgaattcc tccagggccc aggtgaaacc cccaaaggggga gtttctgaga	420
cttcttagact tggcattct ccacttttcc cttccaatga ctccgggtgaa gcaactaaaa	480
gtctnggctt agggcaactg gttaggacagt nggaaatttg ncccaagaca tt当地nggggtt	540
tcaaataatnag gtttcccaac accngaatca ttatatggan cctgc当地nggc nggccgttca	600
aaggcnaat tcngccctt ggnnggctgta ctaagggaac ccactttggg cc	652

<210> 255
 <211> 605
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(605)
 <223> n = A,T,C or G

<400> 255	
ggtacgacag ttgtgtgggt ttattggaa cctccaacat ctccacaaca atgtatgtatt	60
gtgaaaggcg ggtaagtttta atgaacagtt tattcttaga aaggtttcca ataggatgag	120
ttgagtaatt gggaaagctgc aatgtttcac tgcttatacgat aggcagatgt tt当地tagact	180
gcttgc当地cg ctgttgc当地 agccaaaact taagttgctg aatccagggt atgattcggt	240
tcatatcatc attcacagac ttctccatgt catccagagt ggc当地ggc当地 agtccataaa	300
gcatcaattg aaacattcca gaatgtaaat ctacaaaaat gtgc当地ggc当地 tctgaattac	360
cacaggggctc caagatggga acaacaagag ctgggagtgcc agtctctatg gaagagttc	420
atggcattt aagcctctaa gaatggcctt cagttcttgg agcttctgtat gagctcttgc	480
atggacactg gnaatcangg agtttcttat tgataagtgg gccgatcttc atggctcttt	540
ctactaattt ggaatcanaa ntgc当地aaagg aggatcgtga aaaattnna aggtttggaa	600
acatn	605

<210> 256
 <211> 654

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(654)
 <223> n = A,T,C or G

 <400> 256

acagttcaca	agcttcaggc	aaggggcagc	ctgagactat	ccgagtgatg	ttgaggcaat	60
ccaggcacag	caagtcatc	agccacttct	ccactgcattc	cccaggggcc	gtatcgatt	120
gactcctgga	ggaaaacctc	atgcagtgtc	cgcgcgtatg	ccaatctggc	tgtcgctgtg	180
gtcttattct	cagcagtgtt	gctgacctgg	ctctggcgcc	tctgttgacg	gagctgctga	240
attagcttga	gggacagtga	ccggccagtg	ccctcatagc	cattgatggt	ggatgcccatt	300
aaaacaagg	agggccaag	taggctttc	accaaggggg	ggggatggc	ggcagcttca	360
tcaatcacaa	ctagttcaggc	ctggcccaagc	ttcacagcat	ctgcaggatg	tatatactga	420
atagtctggc	tgngtctcg	aatacattca	ctctgatcac	tgntttggta	aattcangaa	480
ttanagactg	gataatctca	taatccaaag	gttcctgaaa	nttgcanaac	attnaaatcc	540
nttnaatncc	aattcaaccc	aattttgang	tttaanggc	tttgggangg	aaccaanaan	600
ttgggttacc	ttggccggaa	cccccttaag	gggnaattca	gncacntggg	gggn	654

<210> 257
 <211> 594
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(594)
 <223> n = A,T,C or G

 <400> 257

actgctcttt	tattacggta	atacttgcta	gtgggatttc	tctcttcacc	aaggctgcct	60
ttactgtgt	aaggacctgt	cagtctggct	gcagccaaat	tggatggagt	cctcattcga	120
agacttgact	tagccatttc	atgatgtca	atttcagcct	ttttcatata	aaatattttt	180
ttaatttgaat	ttgcatttc	gaataacttga	gagccaggct	cattataatgt	tttggcattt	240
tttgcgagga	gatctatata	tttggccatt	gcatgaatac	ttttgttagct	tccattctgt	300
atccctctgg	caatggtctt	gagatctata	ggctccttaa	ttattgcata	ataatctgga	360
tattgcactt	tagaaggcaa	gtttctgaaa	aaagtcgcta	atgagacgtn	ctgatggatt	420
gnagctacca	ctatggcttc	aagaaactgc	ttaggaact	ncttcaagta	agctggagaa	480
aaatcttnag	cactgggncc	tggatgggct	tggccatctt	catcaataac	ttcgncaatt	540
ggttctcnnt	ttgaaccaac	ctcatttttgc	gtccaaggna	ccttggncgg	gaac	594

<210> 258
 <211> 648
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(648)
 <223> n = A,T,C or G

<400> 258

cgaggtacct	tgctgttat	tccttagtct	agcagcatcc	ttagttgtat	gtatatctta	60
c _{tt} tagttca	actaaaaaaaaa	attgctagcc	taggtttaa	ctggggagttt	ctattatcta	120
gaagggttat	gtgaaccttt	cagaaaaagt	gaaagcaacc	aaaagagctg	tctcaaagac	180
tgtgtcccccc	cagagttgt	ccagctctta	ctgttagacac	tctgaacagg	cacggttata	240
tcatgtccaa	agtcataac	agcacatag	aagaaagtgg	ggagccgtt	agaagcaggc	300
atattgtatag	tgtgggagaa	gacatagcaa	attacttagc	agatattta	aaaattttaa	360
aatccaaacag	cagtctgagg	caaatgattc	tgnatacctc	agggctgana	gaatcacttt	420
atacatattt	ggtatagccc	tttcatttta	tgaaaagtgtt	tacataccnn	agactngatc	480
ctataataat	accttatgaa	tatactttac	tttcatcat	ggaaaatgtg	aatatactng	540
c _{nt} tgatgttt	aagaagaagg	ccggagggtt	cctaccnnc	ntgaancn	ccttaaaaat	600
aatccnnngtt	taaanngtgg	ncttggnaaa	ttccttattt	tcccaaaa		648

<210> 259
<211> 224
<212> DNA
<213> Homo sapiens

<400> 259

ggtaacttcaa	aaagaacatc	aggattaatg	ttccctcagag	tatgttctgc	tgcttgaact	60
ttacttaatc	ctgcttgatg	aggttggaaag	aaaagtctat	tcataattggc	tagttccacc	120
ttgtcataat	caaagagttag	caacttacca	atgccacatc	ttgtcagcat	ttcagcagtc	180
acactaccta	ctccaccaac	acctactatt	gctacggcaa	aggt		224

<210> 260
<211> 584
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(584)
<223> n = A,T,C or G

<400> 260

ggtaacttcaa	actctcttaa	cggtgatgct	ctgacattca	ctactacatt	tactctgcaa	60
gatgttatcca	atgactttga	aataaaatatt	gaagtttaca	gcttggtgca	aaagaaaagat	120
ccctcagggcc	ttgataagaa	aaaaaaaaca	tccaaagtcc	aggctattac	tccaaaggcga	180
ctcctcacat	ctataaccac	aaaaagcaac	attcattttt	cagtcatggc	cagtcaggg	240
ggtcttagtg	ctgtgcgaac	cagcaacttc	gcccttgg	gatcttacac	attatcattg	300
tcttcagtag	gaaataactaa	gtttgttctg	gacaagggtcc	ccttttatac	ttctttggaa	360
ggtcatat	ataaaaaaat	aaaatgtcaa	gtgaatttcca	gtgttgaaaga	aagagggttt	420
ctaaccatat	tgaagaatgt	tagtgggttt	tggggccctg	ggcatcgaag	aatgggtgtgg	480
ttcttttctg	ggaaaactgna	taatcttaat	tggacttaat	ccagnatgt	gaagaaaaccg	540
caggaattcc	catnggaan	gggataaattc	tngcttaatt	ggan		584

<210> 261
<211> 526
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1)...(526)
 <223> n = A,T,C or G

<400> 261
 ggtacttgat gttctgcagc ttctgaaagg cttcctgata ctgctcaggg gtgtcaaggc 60
 tgaagatgct cttccacact gcagtcaccc tctccacgaa agacccttcg gtgcccgtgt 120
 tccaagtgtg gtaagaggag gagctttgc cctctgaaag ctgctttcc tccagatgcc 180
 tggacagtag ctccagaagg caaaaacacca atctctgacc ctgtagactt tcacatgcgt 240
 gcagggcttc ctgggctccc acccagttgt tgccagaag cagctctgg gcacatctga 300
 gagccagggaa agcagacaac tcacccctc acatcgatggc agccaactct gcagccgttc 360
 taagtgtatc cgcaccccccc ttttggcca aaactttggc tgcatcataa gcacaagtgg 420
 cccctaaata gcatttggca gctacagcat agtggccatc tctttcttagg acnggtcccc 480
 agctgangna cctgccccggc gggcgctct aaanggcgaa atcttg 526

<210> 262
 <211> 703
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(703)
 <223> n = A,T,C or G

<400> 262
 cgaggtacag aggctgcaag aagggtggcat agagggctga aggtctgggt ggcagggcca 60
 ctccttaat aaaccaatgt catgctcaca ctccatttcg ctacccctggc atgctggatc 120
 agctcacaga tgcaggatca agtcttggaaa gccaatcaga aaatccttca taggcttaca 180
 aaggaccacc catggaacat tggtttccgt aagactgaaa agacaaacta caccacacc 240
 caccactttt ctttttcctt ttggcccca tcaaaggaca tggagaaggt agacaagttt 300
 tcttattccct acttttctaa ctcgaggatt ctccaaatcc acatcgatc ctctaaaggat 360
 attcctcaca ggtcacaaac tgaacccaaaa atgaaaatcc ttctataaa actacacatt 420
 ctttattccat acatgtact aaaggctact gaatggnacc tgccccggcc gggcggtcga 480
 aaggccaan ttcaacacac ttggccggnc cgtactanat ggaatccnaa ctttgggacc 540
 caagctttgg cggtaatcca tggccataaa gcttggttnc ccggggggga aaattggtat 600
 tnccgntac caatttcccc accaaccntt cccaaaccntt gaaaccntt aagggttaaa 660
 anccttgggg gggcccaaaa nggggtggc ctttaacttcc ann 703

<210> 263
 <211> 475
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(475)
 <223> n = A,T,C or G

<400> 263
 ggtacttgtt agtttacccc aaaataatac ctggatatacc ggacccaata tctgtgtatt 60
 gatctaacct aaatgaatac aaaccatttc agaaaaagat atacaataga ccacatatacc 120
 aggtcatgaa aatcaaagct ttcaggtcac ctatgttgc gactattgtt tttctgacc 180
 tagactcttgc aaagcctatt taaaactggcc tctttctcca caccacact gataaaaaagg 240

agactgatta tgagccagga tttacacaga gattcttatataaggcata aaggtgaggg	300
gtgagagaga gagagagaga gagagagaga gagacgtgag ggagggagag	360
aaaagagaac agacngaaga tnagagaaag agaaaggatatacgtctgn gcctcaattc	420
cagtatgntg atttggcttc aacaccng tacctggccc ggcnngccgn tncaa	475

<210> 264
<211> 601
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(601)
<223> n = A,T,C or G

<400> 264	
ggtaactacaa aaaccaagtgcgtgattacc acttaaacatgttcagcttga aatgactgct	60
acctttgcct tcataatcctt cccacacacc caggtataaca aatatctttt ataccaagag	120
tccttgtaa agtaaataga gggaaactccc aggataagg gagggcaaaa aacaggaagc	180
acttgaagcc aaaatcttgcgcaactttt aagaaggaga gacgtccgtc ctatttcat	240
atctctgcattt ggtatctccca tggagaactt gagttaaatgttaatg acgtggcaga	300
aagacaactc tcttagcacag tgtttcttca cataggctg ctacattcat tccataagct	360
caacaattt aataaaaaat atttctgcta aataactttt attcatcatc ataaaaaaatg	420
cacagccatt tgaaaaaaaaan ggcaattacc ctaaatgaat attgccaaa gcacagatca	480
actttatata nggattctt cttggctctg aaaaatcgca ancggaactg gcagacttta	540
tttaccaacc atggattttt nccagcatgg agttaaattt antgctgtct ggagcaggaa	600
a	601

<210> 265
<211> 643
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(643)
<223> n = A,T,C or G

<400> 265	
actatgaag gcagggtttcc ttgtctggag gaaaagggtcc ttgagacacc acaggaaatt	60
cacaccgtaa gcagcgaggc tgcagcttg ttggaagagg tcatcaactcc ccggaaaggac	120
ctgcctcctt tactcctcaa attgaatgag aggctgtcc aacgccttga ttacctgggt	180
gttccctat gcttgcaccc caggctctc aagttcttga aacgagctgg atttgcctt	240
gtttatctga gacagacccc gaatgacctg accggagagc actcgtcat catgctgaag	300
acgctcaactg atgaggatga ggctgaccag ggaggcttgc ttgcaggctt ctggaaagat	360
ttccgacggc ggtcctacact tgctcttac cagttcaata cctngggccgc gaccaccta	420
ggccaaatt cacacactgg cnngcgtact aatggatcca cttngttccc aacttggcgt	480
aatcatggca taactggttc gggngaaatg gtatccgtta caattccac acataacaanc	540
cggaannnta agttaaannc tgggtgtctaa tgatgactac ttncttaatg ngttggctac	600
tgcgttca tcggaaactt ntgccattgn tataatgcnc ccc	643

<210> 266
<211> 582

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(582)
 <223> n = A,T,C or G

 <400> 266

actgtttacc	agatcttgc	agatgagggtg	cttggttcag	gccagttgg	catcgtttat	60
ggaggaaaaac	atagaaagac	tgggaggggat	gtggctatta	aagaattga	taagatgaga	120
ttccccacaa	aacaagaaaag	tcaactccgt	aatgaagtgg	ctatttaca	gaatttgcac	180
catcctggga	ttgtaaacct	ggaatgtatg	tttggaaaccc	cagaacgagt	ctttagtga	240
atggaaaagc	tgcattggaga	tatgttgaa	atgattctat	ccagtgagaa	aagtccggctt	300
ccagaacgaa	ttactaaatt	catggtcaca	cagataacttg	ttgcttttag	gaatctgcat	360
tttaagaata	tttgtcactg	tgatttaaag	ccagaaaatg	tgctgctttg	catcaacaga	420
accatttcct	caggtgaagc	tgtgtgactt	ttggattgca	cgcatttttg	gtggaaaagta	480
ttcaggagac	tgtggaggac	tccactacta	nccctgaagt	cttcgagcaa	ngtacaccgt	540
cctanaatgt	ggcatgggag	tatattatgg	anctatgcca	tt		582

<210> 267
 <211> 565
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(565)
 <223> n = A,T,C or G

 <400> 267

actttgggag	gctgaggcg	gcagatcaca	aggcaggag	ttcgagtc	agcctggcca	60
atatggtaa	accctgtctc	tactaaaaat	gcaaaaatta	gccaggcatg	gtgggtgc	120
cctggatcc	cacctacttg	gggctgaagc	agaatggctt	gaccaggag	gtggaggttg	180
cagtggcca	agatcatgcc	atggcactcc	aacctgggtg	acagagcaag	actccatctt	240
aaaaaaaaagt	atactaatgt	ccctcaagtt	cttccatatg	aggtaaaggg	atccaagatt	300
aagggttggaa	ttcttaaact	gttcaacaat	tttgggtgt	catcaaaaaa	ggaatatttc	360
atatatatta	atttaacctc	aatgatcaac	attgttaaaa	gtcagtatgg	agaaaagatca	420
ttctgaccc	ttcagaaacc	acctggata	tgaacattct	gatccanat	tatggggaa	480
nctaaggacn	atggtggaaa	gaatcnncan	attaaaagtt	ctatttcna	tggaccttng	540
cccccgngaa	acncttaagg	gccna				565

<210> 268
 <211> 661
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(661)
 <223> n = A,T,C or G

 <400> 268

cgaggtacta	caaaaaccaa	gtgctcgatt	accacttaac	atgttcagct	tgaaatgact	60
gctaccttg	ccttcaattc	cttcccacac	accaggat	acaaatatct	tttataccaa	120
gagtccctgt	gaaaagtaaat	agagggact	cccaggata	agggagggc	aaaaacagga	180
agcaacttggaa	gccaaaatct	ggagcaactt	ttaagaagga	agagacgtcc	gtcctatttt	240
catatctctg	catggatctc	ccatggagaa	ctttagttaa	atgtaatgtat	tacaccgtgg	300
cagaaagaca	actctctagc	acagtgttc	tttcacatag	gctgtacat	tcattccata	360
agctcaacaa	ttttaataaa	aaatatttct	gctaaatact	tttatatcatc	atcataaaaa	420
atgcacagcc	ttttgaaaaa	angggcanta	cccctaaatg	aatattgcca	agcacagatc	480
aacttatata	ggattcttc	cttggttctg	aaaaatcgca	accgaactgg	cagactttaa	540
ttaacaacat	tgatttggcc	agcctggagt	tnaattttant	gcatgtcctg	gaggcnngan	600
aatatgatcca	gaagtaagca	ccaccgnctg	cngggnccan	gttcaagaac	ttaagccnng	660
g						661

<210> 269
<211> 643
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(643)
<223> n = A,T,C or G

<400>	269					
actgatggga	aggccaatat	ttgatcaat	caccacagt	agggcagatg	ccagttcaat	60
actgaagcca	ctagagggtg	tgatcggtgt	cagatccctc	cccatggctc	ggataactct	120
tcttccccaa	accacacagac	caacacagat	accaacacca	ccatagagta	gaagccatat	180
tggtgttgc	acttttggaa	aaacatctcc	tgtgccataa	accaaataata	aagcaaccag	240
aggcccaatg	gcatgttca	cgtcatttgc	accatgggcg	aatgacccaa	agcaggctgt	300
aaggatctgc	aggaacttgg	agangggagag	agacttcagg	gcttattctg	ggcataaccat	360
tctttctaga	agaaccctta	ctttctttc	tgnacacctaa	acccatcttt	gnctttgcac	420
ttatggctat	cttaaaaangc	ttaatgaaag	ncagacacng	cattgcagta	actgggggnac	480
tgncatttta	antcccttct	tggagctgna	ntaggcctgt	cacttctcat	ttcttngccn	540
ttggtaactt	ttttgnncgg	atgaatcnga	gnatgcncat	atgcntggat	tganntactn	600
tatggcctaa	gggtgnncgn	ggtcctcant	tcncttggan	aga		643

<210> 270
<211> 650
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(650)
<223> n = A,T,C or G

<400>	270					
gggcccacatc	tgccagagcc	tggagtctgc	gaaggccggg	acccgggtcc	ccggcccaca	60
gtgggggtgt	gcaaaacccga	gagaacttggg	ttgcaaaattc	gtgaagaatc	agcatcatgt	120
ttggcagctg	agtattggag	ccaggagct	gccatgaggt	tttgagaaca	gagtgtgtt	180
ttagagctgg	cagcagcatc	tcagcccaag	agaaggttat	attcccaagag	gatgtcagtc	240
ccaaggacca	gtagctgcca	tcagtttgg	ttctgaaaac	taactgcat	caacactggg	300
tgtagaaaca	tgcttgcctt	atgtatcaga	ggacatgctc	agcaagatcc	aagagatata	360

tttggcaact	ttttctagaa	aaggcacatt	gggtatcatt	cattacattc	tttagttttt	420
ttgggtttt	ttttttttt	tgaacagtct	tgctgnattg	ccangctgga	atgtggtgac	480
caatcacanc	ttattgcac	ctaataccccc	aggcctaagc	aatccctcccc	ttganctggg	540
actanggtt	cagnacacctg	gtaaaatttt	tttgtgaac	ggntcttatg	tgccagctgg	600
nttaggttct	nggnntnaang	gcctctgcta	nnttcaaggc	nagccatttg		650
<210>	271					
<211>	620					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(620)					
<223>	n = A,T,C or G					
<400>	271					
ggtacacagg	tcccaagctc	tttaaggagc	ccagtagtaa	atcaaacaag	ccgattattc	60
acaatgccat	atcccattgc	tgcctggctg	gaaaagtgaa	cgaacccac	aagaattcca	120
tattggagga	gctggagaag	tgtgatgcca	atcactacat	catactgtt	cgtgatgctg	180
gctgccagtt	cagggcgctt	tactgctact	atccgtatac	tgaggaaatc	tacaaactca	240
ctggcacggg	gccaaaagaac	atcaccaaga	aaatgatcga	caaactgtat	aaatacagct	300
cagaccggaaa	acagtttaac	ttgatccag	ccaaaaccat	gtctgtcagt	gtggacgcac	360
tccacaatcca	caaccacctg	tggnanccaa	cggnctgcat	gccaagaagg	ccaaactcgt	420
aatgaccggg	tgcactggcg	tccaaagggtg	accagactcg	taaatgatgc	cttgggtgg	480
atcaaagggtg	cacggggggcc	tanttantgg	ttanctattt	ggtcctgccc	gcnggcgttn	540
aaagggaaatt	caccactggn	ggcgtctaag	gaccacttgn	ccacttgnga	anatggntan	600
gttctnggga	aantcccn					620
<210>	272					
<211>	670					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(670)					
<223>	n = A,T,C or G					
<400>	272					
cgaggtactt	tatattacta	aatgtctgaa	gacaaaagag	caattggaaa	tctctgtttc	60
ttgtttcgtc	atacatagga	aggcgacgtg	atgcaattt	taacacaaga	tttttattaaa	120
gacgggcaaa	ttggtgaggc	atacctgaat	ttctggagat	atacaaatagc	gtgaggctgg	180
catcatatgc	aaatgtggct	ttacaaattt	gttttatttt	ctagctgtat	ttaaaagaggt	240
gttcaaaaatt	ccctactaat	caagaagcac	ccctgaaaaaa	actatgagat	aagatagtgt	300
tattaatgtt	ttgcatctaa	agaccaggaa	acacattagc	caatacagtc	cacaatcggt	360
gaaatgctgc	cgtgcnaaat	gcacgtgcat	atgcntttt	actatattcc	ctnagagacc	420
gtaaaaacaac	naccaccacc	aaaaaaaaac	ngtgctcnta	aatngnggac	naaccttcc	480
aaaccacccn	cttactctta	ctggggttt	aggaattca	ggaagctcn	tttanccana	540
aagctnaacc	ccttcagttc	ataancttt	nccttggaaat	aaggcctgnt	ntggctacct	600
aaaaccaagt	ctgggggaaa	aggactcatt	ccattattaa	cnnttacncc	taaggganga	660
ataagggnnt						670

<210> 273
<211> 688
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(688)
<223> n = A,T,C or G

<400> 273

acacaggtaa	ccttatgcag	cacattgtgc	taaaagtatg	gaacagttaa	cacttcagc	60
cattactgaa	aataaacatg	tagaaaactaa	gcaacaagtt	aaaatacagt	aatgcacaac	120
ttaacaattt	taagtttcc	acatggagca	ataaaggcagg	taactgaata	atthaaggag	180
atgcaaatgg	ccctcttcat	tcttaattct	cggcaattta	ctcaggaaaa	taaatttctg	240
gtcgccgccc	gaacagttcc	agtccgatct	caccttgatg	gaaagtcttc	attatctgtg	300
cttgcggcag	gacttatgaa	tgnttcttct	ctttcttttc	ttctgaactg	gccccgttct	360
ctttcttttc	tatcctttct	ttatcatgcc	tggactccct	ttggcacccg	aaggagaatt	420
taaccatctt	ctcagaatta	aatggaatca	ctgcttttt	cnttggcctg	aagaatttga	480
cttattttt	tncttggctt	tctcaatng	attaaggggg	ttcnccaagg	actttactt	540
ttaaggttt	gnaaacccca	atnggtncat	tctcccccctt	taccgctctt	gggttaaanc	600
ccggggggac	tttaccgggc	cttgggtgaa	ngaaccnntt	ttcgggtcttt	tcngggcctt	660
ttaactttt	ctcnctttnn	ctgggagn				688

<210> 274

<211> 674
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(674)
<223> n = A,T,C or G

<400> 274

atttaaacct	ggtttggata	tgcgcctgta	tgaggaagat	gatttggacc	ggtagagca	60
gatggaagat	tcagaaggga	cagtgagaca	gataagggtca	ttctctgaag	gcatcaacaa	120
tctgacgcac	atgttaaaag	aagatgacat	gtttaagat	tttgctgccc	gttccccccag	180
tgccagcatt	acagatggaa	actcaaacgt	ttgaccgtag	cacctggatg	aacatttagga	240
gtgcttagtc	ttttttctac	ttgctttcc	aaacactcac	agtatataca	acaggcagcg	300
gattgnctat	tgnttggtn	tccaaactct	gctgccagaa	gtttaacag	aaagcaggaa	360
taatgtgcc	attctgaagt	tgccacaaaa	aataagaccc	tggtaatga	aaatataatt	420
ggttttcttc	taattaatgg	aaaaatctgg	gatattat	atttaaaggt	ggtcattta	480
aagaatgagt	atttacccc	gaagtgggtc	ccttcatatt	ccccggattg	aaggatttga	540
nggaccgtac	cnggatgggn	atgaatttgg	tacttcatgg	tcacttgaac	ccnctaagtn	600
ggccnntttt	ggattcanaa	tcatatgggg	aacttcttta	agccttcagg	ggccncttaa	660
tgcnnnncca	cctn					674

<210> 275

<211> 638
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(638)
<223> n = A,T,C or G

<400> 275
ggtaactggca tggcaccaac atttgctcag cttctggtga gggcctcagg aagcttacag 60
taaaggcgga aggtgaaggg ggagcagca tatacatgg cgagaaagag gggagaggc 120
tcagactctt taaaacaacc atatctatgt gaattgagtg agaactcact catcaccaag 180
gagatggtgc tgagccattc atgaaggatc ccctctcatg atccaaatac ttcccaccag 240
gctccacttc caacactggg aattacattt caacatgaga tttggagggg acgagcatcc 300
aaaccataatc agatggtagg acaggagaac tttgtgtgc cagctgact ggtctgaaga 360
tataactaag tccctggact ttttctcctt aattggagaa ttccctaatgt tcattgtcag 420
cctgantgac cagtggctga ctggcctgaa agggagata aaacngacca cagctttctt 480
catagaccaa tttaacctt attcatctgn gcagcagaag ggactggnc anatanccat 540
caggttagng cttgaatatg ggtacttcc nanatacttg ccggccggcc ntttaaggca 600
attccaccaa tggggccgtc tannggatcc actcggnc 638

<210> 276
<211> 638
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(638)
<223> n = A,T,C or G

<400> 276
ggtacgtcag atctacagcg aacacaacta ctgccgcctt atcctctaaa tggggagcat 60
accaggccg gaactgcccgt gtccagagct aggagagagg acctgccttc tctgagaaag 120
gaggaaagct gcctactaca gaggcgtaca gttggactca cagatggct aggagatgcc 180
tcccaactcc ccgttgctcc cactggggac cagccatgcc aggcctgccc cctactgtcc 240
tccccaaacct cagtagctga gagatttagtgc ggcgcgcctc agttgcattcc ggtatgttgc 300
actgaatgtc agtctggcac cacttcctgg gaaaagtgtat gatgaggagc aaggaccac 360
cgttcctgca gacaatggtc ccattccgc tctagtggga gatgatnntt agagaaagga 420
ctggcccgac tcttgcagtc atccactatg aaggatcctg taatgtgacc ccagttccac 480
actgatctca ccgctgatgc tgcagaacag anatttgatg acgaataggc ttggngntta 540
tgcctctatg agggaaagtat ctngacnaga aacttgaaac cangntntg ttacagtct 600
ttgtatggtcc atcatcatga nnngatgaac gccaaaccg 638

<210> 277
<211> 734
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(734)
<223> n = A,T,C or G

<400> 277
ggtacagaga tagatgaatg gaaatggta agggaggtgt tcattcacat ccatctaact 60

```

gcaaaaataca	aaagtaagaa	gtcattgaca	tgaagcaacg	acgacccaaga	cgttctcaga	120
tctaaagggtg	aatgatctca	gtcagcctgg	aatgcacaa	ggtgaaaaaa	taacataaaa	180
aaggcataaag	accttgaaga	acatcaatgt	caaagataaa	ttctaaagtc	ccagagaaaa	240
aagaatggga	atcaaattga	cctcagacta	tacgtgagaa	acacggagag	ccagaaaact	300
gtgatgttcc	atccctcagag	tttgaaggaa	atatttgaag	gctgaatttt	acatccagct	360
taactatcaa	ggcatgccaa	gtcatgttat	tcttaggcct	tcaaggnctt	ngccctttt	420
ctcngeaaaag	cccgatttn	aatgctttt	aaagaccgtt	cttcaacccn	gaagagaaaa	480
gaaaancnng	ganggggtct	cttgagatat	ttcagtcncc	cacaggttnc	ccaaatnggg	540
cctaaggaaa	ttccgaagag	gtcncgaaat	nttnaccat	taccttcccc	caatngggga	600
accccccggac	agggnnttan	ccatnggggt	taaagggttt	ttgaccgggg	ggggccttgg	660
caaggtancc	tggcccccgg	cgggcccnn	cnnaangggc	caaantccn	gncccccttg	720
ggggggccgg	tanc					734

<210> 278
<211> 586
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(586)
<223> n = A,T,C or G

acatgggtaa	tggaccacca	cattttacag	aaagcacagt	gtttccaagg	gaatctggga	60
agaattgcaa	agtctgtatc	tttagtaagg	atgggacctt	gtttgcctgg	ggcaatggag	120
aaaaagtaaa	tattatcgt	gtcactaaca	aggactact	gcactccttc	gaccccttga	180
aggcagttt	ccttgaattt	tcacccaaaa	atactgtcct	ggcaacgtgg	cagccttaca	240
ctacttctaa	agatggcaca	gctggatac	ccaacctaca	actttatgtat	gtaaaaactg	300
ggacatgttt	gaaatcttcc	atccagaaaa	aaatgcaaaa	ttggtgtcca	tcctggtcag	360
aagatgaaac	tctttgtgcc	cgcaatgtta	acaatgaagt	tcacttcttt	gaaaaccacc	420
aattttaaaca	caattgccaa	ataaaantgca	tttgccaaaa	attaatgact	ttggattatc	480
accctggacc	ccaaccatac	caaggtggct	ggctatgttn	ccaggaagtn	aangngcccc	540
cttatttggt	agaatataatc	agtancttgg	gcgggaacac	ccttan		586

<210> 279
<211> 664
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(664)
<223> n = A,T,C or G

accaccgagg	ctagcacagt	caagcctcca	gctaagctgg	atccctgaag	cctgctatca	60
tgcagacagg	ctatgcggct	gcctcggacc	atgctaggcc	acttgctggg	gtgtcaacct	120
accaccaaa	gggtctttta	gcaaacctca	tggggAACAG	gaacatccct	gtcatccct	180
ggccacacggc	tgcagacccca	gcactggccc	ttgcgtgagt	cagagcctgg	ggctggccct	240
agcccctct	actgacttcc	tcatttaagc	caattatata	agtcacattt	gatcaggag	300
ggagggaaag	agctaaagag	ggtcacacaa	gtggctattt	tccctgcagt	gtttctgtgt	360
ggtgaaaata	acccagtcca	ctaagggcgc	ggagtgaatg	gatggctgga	ttttccccaa	420

gctccttata	gcctaattgtt	gtcaggatgt	gagttatggagg	aatttagcct	cttataatgtga	480
aatgagtcca	actctgggt	ttgcttan	gaaagctncc	gtcaggctt	ctataatatg	540
aaaagaagtc	accattgggg	aactagagac	cccagacctt	ttcatatgga	tatttgagaa	600
tgtaatgcat	ntangcctng	tgctggaact	ttaggcctnt	aggcnggtta	aaacacttga	660
tttt						664

<210> 280
<211> 448
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(448)
<223> n = A,T,C or G

<400>	280					
actaccacag	actgttgact	tttagttct	taaagagaaa	aattgcctt	ttactagaaa	60
gcctttgtat	attgcaattt	ttctgttgg	gaaaatctaa	ggatttactg	tggtagtct	120
tacagaagaa	atgtggattt	gataaactag	tgcttatgtat	tttaacttat	gtttgatata	180
tagtagtaag	ggtttatga	atgttgatta	ttttgtgcc	acagccaga	attgtcactt	240
atatgtaa	agaaaacaat	gagctctgct	tccaaagtt	tttaatttc	tcagtgttt	300
aatgttattt	tttgtaa	tgtaataaaa	agtgtaaaga	attggaaaaa	atataaata	360
tcttaactca	agcatttgc	ggatcattt	tctacaaaac	ttgggtgtac	tgnaacctg	420
tgtatcancg	tttgtaa	ctagtacc				448

<210> 281
<211> 677
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(677)
<223> n = A,T,C or G

<400>	281					
gcgtggcgcg	gcccgaggta	cacccatcaca	ggaaatccgc	aggcggggat	cttcagtctc	60
ctttaacacc	ggaaagtata	aacgggacag	atgtgaaag	aacacctgat	gtgacacaga	120
actcagagcc	aaggcgtaa	ccaaactcaga	atgcattgcc	atttcacat	agttcagcaa	180
ttagcaaa	ttggaggct	gaactggcta	ccctcaaagg	aaataatgcc	aaactcactg	240
cagccctgt	ggagtccact	gccaatgtga	aaacatggaa	acagcaactt	gtgcctatc	300
aagaggaagc	agaacgtctg	cacaagcggg	taatttcagg	gctgatgtct	atagggattt	360
agggctaaca	ggtttcttg	atcagaagaa	attttgcatt	tagattcagc	acagggat	420
cttctagttc	taggatgtca	gaacatagat	atgggttgna	tgatatgcatt	ttgggtgatt	480
aagaaaaata	tttccatag	tttaatgaga	atgaagaata	taccccttg	aagcaacaaa	540
ncatgtgatt	cccatattat	catggggcta	gnatgtgcnc	agtccctgccc	ggcggcgtaa	600
ggcaatcagn	cctggngccg	tctnnggacc	acttggccac	tggngacagg	caactgtctg	660
ggaatgncc	ccatccc					677

<210> 282
<211> 691
<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(691)

<223> n = A,T,C or G

<400> 282

cgaggtacct	tgctgtttat	tccttagtct	agcagcatcc	ttagtttgta	gtatatctta	60
cttagttgca	actaaaaaaaaa	attgtctagcc	taggctttaa	ctggggagttt	ctattatcta	120
gaaggttact	gtgaaccttt	cagaaaaagtg	gaaagcaacc	aaaagagctg	tctcaaagac	180
tgtgtcccc	cagagttgt	ccagcttta	ctgttagacac	tctgaacagg	cacggttatc	240
tcatgtccaa	agctcataac	agcacattag	aagaaaagtgg	ggagccctgtt	agaagcaggc	300
atattgatag	tgtggggagaa	gacatagcaa	attacttagc	agatatttta	aaaattttaa	360
aatccaacag	cagtctgagg	caaatgattc	tgtatacctc	agggctgaga	gaatcacttt	420
ataacatatt	tgntatagcc	ctttacattt	tatgaagtgn	tttacataca	tcagagctgg	480
atcttataat	aatacattat	gaatataact	ttaacttttc	atcatgaaaa	tgtgaattat	540
actgacctga	tgttaagaan	aangccggaa	ggtttctaac	atacgtaaaa	tctcccttaa	600
aataattcca	ggtttaaang	tggnccttga	aanttcctta	ctttccaaaa	tntatgacct	660
gccgggggcn	ntnnnaaggng	aatccnnct	n			691

<210> 283

<211> 668

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(668)

<223> n = A,T,C or G

<400> 283

acatggttct	gtgacatggc	tggaggtggg	cgttctggac	aagtaaacaa	tttactgggg	60
agggtctgt	gtttcacact	taggtcgcta	agtttttagc	caaggctta	gttgtcctcc	120
atgagcaatt	gttagaaattg	gaaatttgc	atgatttttt	atgagaaagg	ccacgaatgt	180
gtgttactat	tagatatat	ccacatattg	tccagtcatg	gaaaatggcc	taaaagataaa	240
tttacctgca	aaacagaata	ttatgcagct	ataaaaataaa	tgcataatgaa	gatttgccat	300
agagtggaaa	aatgtttgtt	aggtaaaaat	caaaaaaaaaa	tgttagaaaac	aaaattttac	360
atatttgatc	tccactgtat	aaataaaataa	aatggagaaaa	catttgagaa	aaatcatcca	420
ataatgggt	tctgtgggtg	gtaaaagcaa	ttgaaaatgtc	ttcccttacac	tttaataat	480
ttttaaaaag	tatgtaaaat	gccaaattatg	acaatgctaa	gctagatgaa	catcccattc	540
aaatttggaaag	cccattttaa	attttagaaag	cncggtttgg	ttcccttctc	tatcctttt	600
taaagcaaat	ggcccannc	tgggnnntt	ttgacccaac	ctttcaaaat	tnggctaact	660
ttntgaat						668

<210> 284

<211> 777

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(777)

<223> n = A,T,C or G

<400> 284

acagtattta	agggattttc	cttttagctt	ttcatctcca	gtggcattaa	acataaaaag	60
accctggcat	ttttcacat	acttgaatcc	ctaaatgcac	ctgtcttca	cttttgaga	120
cagactgaat	atatctaaaa	tttccagcaa	aaaaaaaaaa	gcatttaact	tgcaccaagc	180
aagaaaatat	aaatacagtt	aactgcatta	agataatcac	gttaaaattg	ttactatgca	240
gcacagaact	tcattcttat	agtattcttg	ggttcaacct	ttgaatcaat	tttaccactg	300
attaaataaa	tgactcaaag	acatctgtaa	gtcatgctgc	tgtgtttga	aagtctttaa	360
ctaaattaag	aatgcagaat	ggatagtgtat	tattcaatta	gaatthaagt	aaggggatgg	420
tgatantana	aggctggaaa	atnccttaat	ttttaaaaaaa	atcagaataag	gcntttaaat	480
aggtaaaaatc	acttcaatt	nttccccaaa	acctgnangt	ttcccgaaa	aaagggtttta	540
aggcttnaa	ggtggggaaat	gncccaaggt	ttttaactta	tnccatggaa	gccanngcct	600
tgcatgggn	ccttagggna	acccccengaa	tcccnntccc	aaaagggggg	tttaccnntt	660
tggattnaa	tttggggnaa	ccttatnrgg	ncctnnggg	nttacctng	gaaanaaaaat	720
tnnnntttaa	atnnnttcan	gggnnnggaa	attnaaagc	ctttttttt	gggaaaaa	777

<210> 285

<211> 692

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(692)

<223> n = A,T,C or G

<400> 285

ggtacaagat	ttttttttt	ttttttttt	ttttttttt	aaggatttac	ttttcttaac	60
aagtgaacaa	tttgcttcta	agcgtcaatg	aaaggcaaca	cctccctnta	atggccaaag	120
gaagagagtg	gcagtaagct	ggctttcca	atngntcaca	caatccttca	tgcattaaag	180
ttctccttgt	tggaaaagaa	attaggttgt	tttgataact	tagaaaatgtt	agtttttagac	240
aacagtgact	ttcagctaca	aatacaaaaat	caaatccatg	tatataaggc	ttctgtatc	300
gatgtcttag	aggAACATCT	gctcattttc	tccaaGGCCC	agtccctataa	atcaaggcaa	360
gtcaagtaat	taagttcaa	ctatTTGgc	agctttgcaa	ttaaaaatgag	cnaagcacta	420
tatctatcct	tcatatcngg	atataaaaaa	ggtccaactt	ggtacnccca	atnttacatg	480
ccgagaggcc	taaaatttnc	nntttggggt	ccnngtttaa	ttaaagncca	taanggnctt	540
gcnacnaatc	ttttccct	ncccaaggaa	aatttccctc	nnattaccaa	accctgnct	600
caatttntt	ccccggnaat	ttgaaaggcc	gggttntcc	tttcaaanaa	aattttcccc	660
ggggattaan	atttgggccc	caatttctta	nn			692

<210> 286

<211> 709

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(709)

<223> n = A,T,C or G

<400> 286

actgtgccag	ggatattgag	atgctctggg	ggtgtattgt	atacctgccaa	gttttcttca	60
------------	------------	------------	------------	-------------	------------	----

tttctgaatt gagtttctt ttcttgatgt tggtttcctt catatcacct caaggtttag	120
atttgtgaag gaataagcat gatggaaata atagtcttga aaggagatat gtgttatata	180
atcaggagga agaggaagga aggacttacc cattttgata ttttgcgtta ggtggccagt	240
tttgcgttc atagggaaat ctgaccacc tgcatgtt gctcctaagg aactgctgtt	300
gtaagcgct catcaagagt tgaacttac gtagccttgt tggaaatatg gaaaaggaag	360
aaagccacag gactgcccatt tcagtcttgg gaagattggg atgattctgc acaagcaaaa	420
atgactgaag ttatgtata gacacaccc taccaatcca tcttcagctg actgaatgtt	480
gnatgatacc ctcttcaa gcagangtag aatggtcang gttcaccat ggaattttct	540
acttaatttc gttttngga atcaacttta ccnaatncc aggtccctt tngaaaaaaa	600
tccttaaatc ttgcgttt ttnaaaaat aanttnggtt catantaaa ggccttgg	660
ttaanccang gttncngtn ccnatttatt tgaacccttt gcccttana	709

<210> 287
<211> 231
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(231)
<223> n = A,T,C or G

<400> 287	
acaagctttt tttttttttt tttttttttt ttttgcgttct cactatgtt	60
cccaggctgg tctcaaactc ctgggctcag gtttcctcc tgcctggcc tcccaaagt	120
ctgacatcac aggctgagc caccacaccc agccccttt ggttttta aatataactt	180
tggcattt aacaaatgca accacatgtt anatcttatt agaagtacct n	231

<210> 288
<211> 681
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(681)
<223> n = A,T,C or G

<400> 288	
accctcttcc ccaagcacccca ggccagttt gagatcgatt ctctctatga aggaatcgac	60
ttctataacctt ccattaccgg tgcccgtt gaagaactga atgctgaccc gttccgtggc	120
accctggacc cagtagagaa agcccttcga gatgccaaac tagacaagtc acagattcat	180
gatattgtcc tgggtgggtt ttctactcgt atccccaaaga ttcagaagct tctccaagac	240
ttcttcataatg gaaaaaaact gaataagagc atcaaccctg atgaagctgt tgcttatgg	300
gcagctgtcc aggccat cttgtcttgg gacaagctg agaatgttca agatggctg	360
ctcttggatg tcactcctctt ttcccttggt attgaaaactg ntggtgaggt catgactgcc	420
tcatcaagcg taataccacc atccctacca agcagaccag accttacta cctatctgac	480
accagccctgg nngncttaat canggttatg aaaggcaaac gtgccatgac caangataca	540
accttgggtt gcaagggttga aactacaggc ttacctntgg acccccgggg gtcctnaaaa	600
tgaagtccctt ttgacattga gcccagggtt actcaaggnt ttgttnggtca aaaancttgg	660
ccggaaacctt angggattn n	681

<210> 289

```

<211> 565
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(565)
<223> n = A,T,C or G

<400> 289
actcaaccta acttatagtt agcagctgga attctcaact cttccctgcc agcactatac      60
cacagtgtgg aaaaatttag tcaaatgc ttttccctgc ttctctttc agctgttact      120
gtgcgttgg taaaaatgtt tttctcttc aaagccgttg cttatatcgtaagaatgaa      180
ggtttgtgtt taaaatttat tgcattgcaa aggttagttt cactgaagtc atgcaccatt      240
aaataagatg aaatattgtt atttattgtc ctacttccta agccgttaact tctttcctc      300
tgtgaatttg cattgatgtca ctcatgtac actacatgc ttttagtattt gagatggcat      360
ttatgtttcc tctcggttat catgaaaatgg ggtcagattc catcagattc cacctctgtc      420
aggtggactc ttgtctgcct tccatgatga gattttttt tctccttccc ttctttaag      480
agaggctgcn gaactangng gcaatcaatt tggnnaaccag tctctggntt tttttcatta      540
gtaatttcta tcatagttca ctggg      565

<210> 290
<211> 699
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(699)
<223> n = A,T,C or G

<400> 290
ggtagacaat tctgcatttc tctcttgta atgggatccc agttttattt caggaggcag      60
tgtgcgcgtc tcagtagatg gaacacgatt ggtctattca gccatgacaa ttctgttccc      120
tgctgtctta gctttgttg cagctagagg tgcaatggta gctggctcgg gccaaggggca      180
tctaaatgaa gatatgcaga gggagagagc aggaaacaga cttctgacga ggttttactt      240
tctgtatagaa ggtgacagat ccagcttagt tggcccttcc tcttccttcca cccctcttc      300
cttgaacgca gacatgattt ttggggatac agcagccatc ttgggaccat gaagtaacga      360
gcactgagat taaggcaaaa ggatcaagac gtgaccccta cttcgtgaa gtgggtgaac      420
caataccatt aaccacccca tctcccaaat ccatgctatg tggnaaaaaca atttctggt      480
tggtaaacc actgnaattt aaggtttncn ttnttgcaaa ctgaatggaa gnccctttta      540
naaggactt tgaccaaaaat gccnaaggaa ncttggcctt tggaaattgg ancccgnaan      600
acctgggtt ttaagccccat ttggcnnn tttnggnaag cttaagggt aaggcctgaa      660
cctttggccn aaagggggna actngggttc cccctttcc      699

<210> 291
<211> 699
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(699)

```

<223> n = A,T,C or G

<400> 291

ggtaacttggg	gacttcaggc	atacagcctg	tccagaatat	ggctatccta	cttcctact	60
cagaaagaga	tcctgtccct	ggaggctgta	atttggagtt	cgatttagat	attgatccca	120
acatttacctt	ggagataat	ttctttgaaa	cgactatcaa	gtttgcccca	gcaaaccctag	180
gctatgcgag	aggcgtagat	cccccacat	gtgacgctgg	gacagaccag	gactccaggt	240
ggaggttgca	gtatgatgtc	tatcagtatt	ttctgcctga	gaatgacetc	actgaggaga	300
tgttgctgaa	gcatctgcag	aggatggta	gtgtgccccca	ggtgaaggcc	agtgtctca	360
aggtgttac	cctaacadgt	aatgataaga	ccagtgtttc	cttctctcct	tccnggacaa	420
gttgcataat	accatgtcat	tggttggac	ccggttctaa	atcatctgtc	ggctacattc	480
ctgntnacac	atacccttgc	aactttgang	cnmgaaaagg	taagtgggc	cttcctaagg	540
aaaaggncnt	tccaagggggt	cntcaatctt	tttgncccgg	ntnggnntnct	tnaattgggt	600
ntttggaccc	cnaatttggg	aaaccgaaat	attnttnana	ggctttannn	nngggaaann	660
tnttnaaaa	ccggntccnn	nantggccct	ttnaggtnn			699

<210> 292

<211> 688

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(688)

<223> n = A,T,C or G

<400> 292

acagtcatcc	caactacctgg	ctatttcatt	acttggtgct	ctagacaagc	tcccaagaac	60
tgactggatc	ttggcttgg	ctgtttctgt	cattgctaat	ataatatgg	aaacattgtc	120
gaaaagaaca	gagatggcca	tggatatggc	tagtttaggt	attcatatcc	aaatatctga	180
actctaacct	aatgtggata	tgattctgt	gcatttatatt	aaaagctatg	atgtatgcaat	240
gcaggaaata	acctttcatt	ctccccccct	gaggatcacf	acaggtgctt	caatgcctgc	300
cttatctatg	ggacagtagt	gtgattctca	gtgagaagtg	aaggcccttg	gggatttgag	360
tcaggaaagg	gaacatggct	aagtgcctgg	aaactctggc	aacagtctgc	gggttagaattc	420
tacttggcct	ctggataaga	aaatctgtgc	ttcantgaac	ttaagnnggtt	tggaaaaatt	480
taaccaggaa	ttttnnnang	agcataagtn	cctggttcaa	ganaaccagc	ttacggaaca	540
tgcacattct	taacatangc	aacctttggc	caatnaatcc	catnggatgg	cccccttaag	600
ggaaaggccat	tttgggttct	tggatccaa	cnttttaagt	tcaaactttt	ttttaagnt	660
tttagntcct	nggcccctt	agnaagg				688

<210> 293

<211> 572

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(572)

<223> n = A,T,C or G

<400> 293

ggtaactgctc	tgcttaggcca	gtgacaaaatg	gccatcagag	atgtggctcg	ggtcagcatt	60
gtccttcctg	gtgcaggcca	tggtttatac	agagcactga	ccaccctgtg	gcactgtAAC	120

agggtgaccat	aggagacttg	tgcctggaga	acttggggcc	actgtggtag	gaacagcagg	180
ggttctggaa	atggacacta	atccttagat	tggAACCCG	gcttgctgtc	tgctctctgg	240
gtgtctcage	ctgtctccca	cctgcctggg	actgtttct	cttgggtgg	ttggaaagct	300
catgtgtggc	ctcacatcac	ggggtaggt	gaagactcaa	tgaggcacta	cctgggttcc	360
acgggggtgtc	ccccgtgggt	ctctccccca	gggtgtccct	gccccctgtg	caagccagtt	420
tctgctgaat	taccagcca	gctttgccaa	accacctgac	tttccttcag	aagacttcag	480
gcngaaaaac	agggttaaag	acctaccct	tctgaacttg	gttcantgct	antgcanaac	540
caagtccttc	acaancttag	gatcctata	gt			572

<210> 294
<211> 692
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(692)
<223> n = A,T,C or G

<400> 294						
acttcacaag	tgtatgaaaa	tgatgtgacg	ttaacggctg	ataaaaggcaa	aacagaggac	60
actttcttca	tgagcaacaa	accccaaaga	tacaaagaca	agctaccaga	tagtgttat	120
tctatgctta	ggatcagcac	cattgctca	gccattgcag	aggcatcagt	taatactgtat	180
ccttcccaac	ttgctgcaat	gatcaaggca	cttcaaaata	aaaccagaga	caagactttt	240
caggaagatg	agaaaacaaaa	ggactatct	catgtgcgtc	atttcttacc	taatgattta	300
gaaaaaaagta	atggatccaa	tgcacttggat	atggagaaat	acctaaaaaa	aacagaagtt	360
agtagatgt	aaagtgcatt	ggaaaacttt	tcaagggtca	gtatgtctga	tacttgggat	420
ttatcttgc	caaagaacaa	actactcaag	acattcattc	cggtggactt	aagtgtctta	480
gtggnaatgt	gaaggccccn	gaagaaaach	cagcagctat	tgttatgttg	aaaatggnga	540
gagtgagaat	caagaggcn	ttagaancct	aaacttctca	aatccggttc	caattgagag	600
aatacngggc	cntanttgat	ggggaaactg	tccnttgcac	caattccaga	agtrnggaccc	660
atnaaaaactn	cctaatttcc	ctccnttgga	gg			692

<210> 295
<211> 459
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(459)
<223> n = A,T,C or G

<400> 295						
cgaggtacaa	tgcaacaaaa	tacaaaatac	atgcttggtg	aacattcggt	catactaca	60
agacggcagc	tagagattag	gtttcaatac	tgaccattha	ctatccata	agcaattagc	120
attacatcat	aatatgccat	caaggcaact	tttttatac	tgaaaaaatc	aaaataaaaaa	180
ccgttatttg	taaactttta	tacgaaatgt	aactcttcaa	gtggaaataa	aaaataaaaat	240
ttgtctat	actattgaat	acacatagga	tttcaat	cattataccg	agaaaaaaagc	300
tcttttgtgt	tggaaaata	atgcttcaaa	aaataattag	tagaaaaacc	cactagtata	360
atgnnttgcc	tttcaatgcc	agcacagatt	tggaaacata	ctgaggatga	aagttataga	420
cattcacagg	tgaatgtcc	tgccngggcg	ccgtcgaaa			459

<210> 296
<211> 677
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(677)
<223> n = A,T,C or G

<400> 296

taaagactac ctacacatag atatatgatt ccaaagtcat actttctcca tccccacatt	60
agccaaagtga atacaggggcc aaatgggttc ttggaatgat aataacaag cattacaag	120
tgggtcccctt tggttccagc cttgtccaga gttttgggtt atatattctt atttattaca	180
atttacctt taaaattgtaa aataaaacctt tgtgtggaca gagccaatgt ttcaatcttgc	240
aatgagtaaa gaaaataactt tggaaactgat cctcattttg aaattgggttc taaaattatta	300
tccatttcca atgtctgaaa ttcttcttact tcctgctaaa actctctttc tgccaaagtt	360
gtttcgtaat ctgtctcaat gactataatg taaaattaaa gaagtaacca tgettctcaa	420
ggggggaaatt aaaagtggttt aatggatttt actcaggcta attgggttgn cagaaattcc	480
taaggccaca gcttngggg ggtccgtgtt natgtccagg anggcagnga cattagttcc	540
ttcttntgtt aatccaaaa ctttagaaacc nataatctt ccctggcatt tcctttntaa	600
aatggccagg ccnttgggg ggaccttggc cggaacccct tanggggaat ccnccactgg	660
gggccgtttt agggann	677

<210> 297

<211> 574
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(574)
<223> n = A,T,C or G

<400> 297

accgtgggtt tagaatgatt gttatgtact gcagacaaaaa tctgctttta gaggcaagcg	60
gatttctgac aaagtaactg atcccttggg tggcataaat tcactttggg gactagcctt	120
attcttcctt tgaggtcctt cgttcttcaa tttattcaat tcatcaatca aaagtgttct	180
cttcccagggtt gcaatttagaa gaagtcttc tgcttcagct tcttcttaggg accctttcc	240
atgttcttca tcaacacagc agttaagagc ctggctagct tgatagatca ctgtctgttg	300
catattttttt tcgttattga gttcctgcat tttctgttg atattaactt gacaaggaaa	360
ggcatttattt ttttcatcca gtttgaagt aacatcttcc ttccgaacaa tcacctgctt	420
tattgatgga cgttctgntt ctttgaatct ttgagatcta tatgcataa tgctgtaaag	480
aagatcacga tcttcagaac ccaggctatc accagattca actcgangga ccnagttctt	540
tggaattttc ctgggtttgg actttcatca cttn	574

<210> 298

<211> 535
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(535)
 <223> n = A,T,C or G

<400> 298
 ggtacattt gctttggaaat gatggagaga cacagagata tatgtaaacg tcaagagaat 60
 cactccactc cacgtctggg tccacaccc tccaggctt gtctggaca ttatgtggct 120
 ggtgcctgat tccacagtga ggatgcagga gcccagggtgg tgatggataa agcattagga 180
 gacaatcaag tgcaggaat tggtaataa gaacggctt aataatgatt taacaaggaa 240
 gacgagtaaa aaacaatccc atttcattt tagaaagaat taagtcacta aatgatttct 300
 tctaagttgt tgccatttgc ttggatgaga tcttgaagggt ttccattct ttccaccc 360
 agttaagaac acattgacta gaaatttgg acaagaatct agtaaaggcc tttccctcc 420
 tgctcctcat tatgccaatg caagaacact tatagcttcc tngccaaag tatttgacat 480
 ccatgncttc atcttggcct aacttctgna gtacctggcc gggccggccg ttcna 535

<210> 299
 <211> 644
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(644)
 <223> n = A,T,C or G

<400> 299
 acatatttcc cgggataaga tcaccaggcc aggagcgaag ctatggaaaga aaggggaagg 60
 gctccccaaac tttgacaaca acaatattcaaa gggtctttt ataatcactt ttatgtgg 120
 ttttccaaaa gaacagttaa cagaggaagc gagagaaggat atcaaacacg tactgaaaca 180
 agggtcagtg cagaaggat acaatggact gcaaggatat tgagatgaa taaaattgg 240
 ctttgtttaa aataagtgaa taagcgatat ttatattctg caaggtttt ttgtgtgt 300
 ttttgtttt atttcaata tgcaagtttag gctaatttt ttttatctaa tgatcatcat 360
 gaaatgaata agagggctt agaatttgcc atttgcattt ggaaaagaat gaccagcaaa 420
 agggttacta ataccttcc tttggggatt aatgtctgtg ctgccgctga gttcaagaa 480
 ttaagctgca gaagactcag gagcaagaa ccccatnttta agggtggagt gtaccattcn 540
 tcaaatttcca ctggaaagct gtttancat ttggngtatt caaaaaaaaaa aaaaaaaaaant 600
 ttcttgccga ccctangnaa tcaccctggg cgtnttngan cann 644

<210> 300
 <211> 642
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(642)
 <223> n = A,T,C or G

<400> 300
 acctcccaa ccatttaggt gagtcaccct agaagcaaat tctccagctc cagtgcattc 60
 tttagataac tgccactctg gtcactatct tatctacaac ctcattgagaa acctcagcca 120
 gaaccaccca gctaagttgc ctctgaattt ctgagccaca gaaactggga gataatgttt 180
 actgttttaag actttaaatt tggagtaatt tgcttattcag ccatagaaag tgacactcat 240
 ttcttcgtgc ccgacactgc tgtctctgtg gttcacatc cctgtggta aagctctcca 300

agggctcatc actaatttca ggataaaaatc taaatccctt aacatagcat aggtttttta	360
caaactgcct cctgtgtgcc tctcagcccc atccggccca ctctgcctt cctncctgga	420
tcactccagc tactctgaaa catactgnac cttntctaaat gcngacagat aaaattggca	480
gacttttcat aggatgcccgt gtaaaatttg aatttcagat aaccatgaat aatngtgtg	540
ggtataacaat atttgggaca tcctatacta aaaatattgc tgacncatat tcttcaaggt	600
attaattttaa tctgaaatcn catttaatan ggcatnttgg gc	642

<210> 301
<211> 589
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(589)
<223> n = A,T,C or G

<400> 301	
cgaggtaccg tattatgaac taacaaaaata ttttgtttt acatcagtct taatagtccc	60
attttgcctca attgggaata gtgctagctc tcttggttga gaactgttac ttcaaaaaaaaa	120
atccaatgca aggtgctggt aagtccctt cataacctta attaataactt gtttagtGatt	180
tacagtaaaa ctgcttttag tgaagtatata tcacttggcc cataaaacact gaaatagatg	240
aggtaatgat acattagtaa tgttagtaata aatttagtatg ccaattctga caaaaaattta	300
ccaatagctc ccccccacctt cacttacaag aggttcctg gtttgaaccc taacataaccc	360
tagatataaca tagcaattct gctgatagga aaaccaagtc ttagcacaca gctaataaat	420
gacaaacatg ggactagaat ttaagtctat actgccatga acctcatgag gaggagccaa	480
attgntaatt aagtgcact ctgttacca gcactaacan aacacaaacc aataacatgg	540
gtgtgggctt ttnaaaaaaa ataactggg gaaaacattt ctttnttgg	589

<210> 302
<211> 577
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(577)
<223> n = A,T,C or G

<400> 302	
ggtaacttggaa atgttgctgg taaaagttt ttctgcttta ctcattccctt tgacagcatt	60
aatttggaa catttatatt cagttcagct gtatttatgg cacaagatct cattccaaa	120
atggcactaa tttcccttaa gtgtAACAGC actctatTTT tagcagtaat tataTTTTA	180
aaggtaatt tgttagaacaa atgttttaac tataactttt ttctactcta tactccccag	240
ttacagtatt tacaaaggc tgaagtctat ataaaaaaat gatctttggc tggcatgg	300
ggctcatgcc tgtaatccca gcactttggg aggtcgaggc aggccgatca cgaggtagg	360
agtttgagac cagctgacc aacatgaaga aaccctgtct ctactaaaaa tacaaaaattta	420
gccaggcatg gaggcaggcg cctgtaatcc caactactcg ggaggctgan gcaggagaa	480
tcgcttgaac ccgggaggcc gaaggtgccg tgagttgaga ntggccattt cttcagcct	540
gggtgacaaa cgagttcaa aaaaaaaaaa acatttt	577

<210> 303
<211> 673

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(673)
 <223> n = A,T,C or G

<400> 303

ggtacattta	gccccatgagc	ctggcacaga	tcccttatcta	gacatgaggc	ccttttagaca	60
tgactttggc	attgaccagc	ctgttggcaa	tgggtcgaaaa	aggcagaggg	gatgctcaca	120
ccagtaattc	tcatecccgt	aatgcttggg	atcacctggg	gagagtac	aaaatactgg	180
tgcaggggtc	ccacccctga	tgatgctgag	tgggtgggtct	gggggtgtggc	ccaggcatca	240
tgatgttca	ggccccccagg	tgacttctta	ggcagcccaag	ctaagccct	agagccttgc	300
aatttcccc	aaatgacctc	agagggcccg	atttgaggga	aatgcctaac	ttcaggggcc	360
cgtaagaatc	ccccaggggag	catgtgaaat	gcagatacca	ggcccccaccc	cagagatgag	420
ctgangtggg	tcaaggggtg	aaagtgcang	gatcaagtgt	ttttcacaag	ctccatacct	480
tcagggaaatg	gttttgtgtt	ttggggccgt	anaaaaacatt	cttgagagtc	ctggtnctt	540
gtgccttggt	gcacccctggg	gtgggaatnc	caatgggncc	ttgnncnttga	ggaaggatgt	600
gccattaacc	tggtaagggg	aaacccgaaa	ccgggttcaa	cttgnnccttgc	gccccaaaccgg	660
ggacccttcn	aaa					673

<210> 304
 <211> 426
 <212> DNA
 <213> Homo sapiens

<400> 304

ggtactgggc	tcccatttat	ttgaaatgtc	caaaataggc	aaattttag	acgaaaagta	60
gatcagtgg	ttccatgcagc	tgaagtgtag	gttggaaatgt	gagcatgact	gaatgccctt	120
tctaaaacaa	gtaaacctat	aattcatatt	tccttaagaa	aataaaaatt	ttatataatc	180
aagatttaat	ttaccatgaa	gaacacagag	ttattattag	tgcaagactt	tattcatcct	240
ctccccagcc	aaatcccaag	aggatggcca	ccttggAAC	tttttactgg	cagttactt	300
aacctaagt	agtcctcaa	tctagtggc	tttggaaatgg	ggatgtataa	gacaaccatt	360
tgacacaggt	agaaaacttt	tactttta	agccattcc	cctggtaaac	aatatatgtt	420
cctgcc						426

<210> 305
 <211> 655
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(655)
 <223> n = A,T,C or G

<400> 305

ggtacgagat	tctgtgtgtc	agccagtttta	ccctccagtg	tgtcctgaag	ggaaaacaagc	60
ctgatttcca	cctagcaatg	cccacggagc	agcagaggg	cttctacaac	agcttcctgg	120
agcagctcg	taaaacatac	aggccggagc	tatcaaaga	tggcaagttt	ggggcctaca	180
tgcaggtgca	cattcagaat	gatgggcctg	tgaccataga	gctggaaatcg	ccagctcccg	240
gcactgctac	ctctgaccca	aagcagctgt	caaagctcg	aaaacagcag	cagaggaaag	300

aaaagaccag agctaaggga ccttctgaat caagcaagga aagaaacact ccccggaaaag	360
aagaccgcag tgccagcgc ggggctgagg gcgcacgtgc ctctgaacgg gagccccgtag	420
ctcaggaggg agaattcaat gtgttatcat tggcagaac tggatcctga aaaattcaag	480
atgctaagca cctacactac tttaagaatt tggactgaa catgaanaag aagacngaaa	540
ttagaatttg ggaacctgaa tagctttgc aaaaacaccc aagggccggt taatcggttc	600
tggtgggtgct nnggtggaat gatncatggg cctgccontg ggncaagggg cngrnt	655

<210> 306
<211> 684
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(684)
<223> n = A,T,C or G

<400> 306	
cgaggtacaa cacgcctcca tgtttcagca tctacgtcat gggcttggtt ctggagtgg	60
ttaaaaacaa tggaggtgcc ggggcattgg agaaagcttag ctccatcaaa tctcaaacaa	120
tttatgagat tattgataat tctcaaggat tccacgtttg tccagtggag ccccaaaaata	180
gaagcaagat gaatattcca tcccgatttg gcaatgcca aggagatgat gcttttagaaa	240
aaaagatttc ttgataaaggc tcttgaactc aatatgttgc cttgaaagg gcataggct	300
gtgggaggca tccgggcctc tctgtataat gctgtcacaa ttgaagacgt tcagaagctg	360
gccgccttca tgaaaaattt tttggagatg catagctat gaacacatcc taacccagga	420
tatactctgt tcttgaacaa catacaaaatg ttaaaggtaa ctgggggat ggctaccaaa	480
aggtaacac agtattttc tcaaataaacatgcctt atgcatttgc ttcnnttttgc	540
gaaagaacca ccggccaaaaa cattcccaa ctntgtaaa agctggggg gacctaattgg	600
ccgccttaa ttctgactt gaactggaaa ncctttaag naaaacttgg nngcttttnt	660
aacaaaatcc cgctanttt gnct	684

<210> 307
<211> 647
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(647)
<223> n = A,T,C or G

<400> 307	
caggtcttgt atacacaaggc gtccatgtct cacacaaata ttgatgtgat tattcttaag	60
tgttaaatca ttaacactta aatgactca ttggaaatat tgagcagagg gactgtgctt	120
ctatgcactg ggcaaggcag tatttgccta ggaactaat ttagtcatca gagataacttt	180
cctaaaaagg aaaaataaaa aacaaaatgg tgccactttg ggttgaagct actttgttag	240
gcttgaatttc atttatatgt ctttgatttgc ttaaaaaaaaac aaaaaacatt ccattagaag	300
caccagttt tttgtcaga ctttgtggat cagactctac actcaacaca ctctaatcta	360
cttaaaggta tacaaaatatt gctgatctt tttaaattat gatttcctga atttttttct	420
taagtcgtct caactgattt actcaacttag ctcccttcc tcatacaccta gtataataga	480
atgnatgtta cattttatg aatggcagggt gtcatataaa tctgnattga cttaaaaagg	540
ttcttcctca tgatgctaat angttttgg atantgggaa ggataacncat ttgacagttt	600
tgcattttat gnatgagccn gatccatga cggggcacgg attataag	647

```

<210> 308
<211> 660
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(660)
<223> n = A,T,C or G

<400> 308
acctttgttg ctataaacca gatggagact gtggtgctat tttgtatTTT ttttttaatg      60
gaagggtt ggggtggcag ttttatccct tgaagacctc agatatgcta aGtcaaccta      120
agcaaagt actcggtgga accctagctc tgggggtga tctgaaaat agagtatcc      180
ggcatgtaa gttcaggaaa tgctacagac tcaaggatta ttttggga ttccatgc      240
acagcacaca ttgaaggctg aaaagtccct gcagaaagga aactgactta actttgtttc      300
ttaaggatat ttgaccacaa aacccttagt ctgcacatcaca ccaacctgat gcctnctgga      360
acctgtttc tgtanaatgc gtattagaaa atgttggaca acctgttca ttatcagaag      420
tcccattttc gangacagtg gtctctgnct ggaaaataan ggtccagaat ctcaanttcc      480
agggaccagn caaggtctgg cacttnanc cagaaaaacc ccattgcata aattttcatt      540
ccatcaaggg tataanttgc ttngccccct tnacaaangg ggaaanaact cggaanaaaag      600
gtnccttggg ccggaaacac ccttaaggc caaattccan acaattgnng gccgtaatna      660

<210> 309
<211> 401
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(401)
<223> n = A,T,C or G

<400> 309
ggtacacata tacacataac aagtgtagaa gtatataatta catacataca ctcactctgt      60
ctggtatagg ctaattttga agaactccca taagttctg ctgcttctcc cataactgct      120
gccaccacca tcagaattca taatcaaacc taacctttt gtttgggca ccaaacttga      180
agacaaaatt aatttgcacc agtaaacttc aagctgctt ctttctgaa aactaaacgt      240
ttaacgtata atgtctgtt ggatactgtt ccaaattgtt gattgcatgt gttaatgtt      300
gcattagagc actttgcaat tgcataattc attaatgtt tgtgagctg catttgtgag      360
ttattggatg atcagactga attttgcag tatcacattg n      401

<210> 310
<211> 502
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(502)
<223> n = A,T,C or G

```

<400> 310
 acatgtttat ggggactcct aacacagggc tcccctctt ttcactagga gtttcactta 60
 cagctgacaa tctatgggg cggggggggg gcgcggcaaa aaagcaatga tgaccttgg 120
 ctaatcccc cggcccttt cttaacaata tagtagatg tctatgtca gttgcctct 180
 ttgccaagac ctaggaggcg gctctgccat gagctgtgt gtgctgcct ccccaccttc 240
 agcacactca tctacacaca cacaggtgc acccacctcg atgagaccgc ctgctctgg 300
 cctgccccaa cccttggaaat tgaaaacata gagccattta ttctgttc tactctctgn 360
 gccccatgtct tgtccacgaa actttgtga acttccagga ctttacacct gaagccccac 420
 aataacctgg atgtttgaa agccctngga aancagttt taganaaaagg acccccttaa 480
 gccgaaacag ggcctgttaa aa 502

<210> 311
 <211> 387
 <212> DNA
 <213> Homo sapiens

<400> 311
 cgaggtaccc tactcagagg ggctttgatt ttttcaagc acaaagcaag aagttccctg 60
 gattctaaag cacactgtat ccaagtccct ggtgggtgaa aataccttg acattgtttg 120
 cagaacgaaa tcgagacttg ttccgaaata ccttggctga tgtccactt acttcgcaaa 180
 caggccacac aaatattggc aggatttggc cttatcgaa caccacactc acagcacaag 240
 atgtgtccag ggctgcccgc ggtggatct gccatatact ccatcggttct gtatgcctta 300
 agtttcgcg cttccagacc agccctggat ttgtgaaaaa cccgcaacaa aatagacccc 360
 ggctgtcccg tcagctgcca acctgg 387

<210> 312
 <211> 654
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(654)
 <223> n = A,T,C or G

<400> 312
 ggtacaaaaa aatgtttctg gagatttctt tggcagaaaat gccttcatc tataattca 60
 tggagaactg ctttattag ccttaggtgaa aagtagtcct agcagtgtaa atatgtataa 120
 ttagagttt ctaatttcac tgtgagatct ctaacttttgc agtggcaaac agatcaagtc 180
 ttttgcctat agactttctt gtggggttat taaaatgc当地 aagctttatt tttttataa 240
 atgccataact ccatttagtgc cagatgtgg tatggattt gttccctgc tttccccac 300
 tgttactgct tcagttata gattgccagc agagttcaga aatagagcag ggatttaccc 360
 gttcttgct tggacatccc attttctttt gccagaccca tggatcatgatcatgat 420
 ctgntgtata cttctcagtg ctttctttt tcttttgc当地 aagatggata tcaaaaatag 480
 ttgctgtgcc aaaagtagta agccttc当地 aagaagaaaa cccaatctt ttctaataat 540
 aatcctgnga aaatgttca ttcatcatt taattttaa gccaaaggc accaaangct 600
 gntgnnttta actangaaaat ttgaaaatggn agnnttaaag ctttttaaaa aaag 654

<210> 313
 <211> 656
 <212> DNA
 <213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(656)
<223> n = A,T,C or G

    <400> 313
acagttctgt cctggcatca tcattcattg tagtatggtc aatagggtgcc atgaaaactca      60
gtagttgtct aaggacatga aaccgaagtt tcctgccttt gctggcttc ctatctactt      120
ttttgtggat tttgttcgt aacttctggta ttgcaagcca ctgccttccc atggccacct      180
gatcggttggg atccaaaggag ctggcttcc gttctatgag ttctcgaagg agctgggtgg      240
aaaagtcatc atcatcaaag atttcttcat ccaagtccctt cagatgagca ttagcaggggg      300
cttgaggaag gatctccggt tccccctggca aactctctgg gacaggctga gctgctggct      360
cagggttgcc aagaactcga tagacagagc gcttggctgg tgtccttcga agtaatctct      420
ctttgnccat cagaatatgg tcgatctgag tcaaagattt aaccgttcaa angcaccaaa      480
acccctnccc agttttcag aaacccagtt tggcttatac gggccatttc tgaantgtgc      540
cggttcctgn aaactggtaa agtccggaaa acgctttgcc atgaacttgg aatagnccctc      600
catntccgggt tncttttgc anggaccctt ntttgtgggn tgggtctttt ttttn      656

    <210> 314
    <211> 649
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1)...(649)
    <223> n = A,T,C or G

    <400> 314
ggtacatggc ctggacactgc ctggagccca gccagagca tctcctcagt gctcatctct      60
atccagtccc tgatgactga gaacccctat cacaatgagc ccggcttga acaggagaga      120
catccaggag acagcaaaaa ctataatgaa tgtatccggc acgagaccat cagagttgca      180
gtctgtgaca tgatggaaagg aaagtgtccc tgccttgcac ccctacgagg ggtgtatggag      240
aaagtcccttc tggagtatta cgacttctat gaggtggctt gcaaagatcg cctgcacccct      300
caaggccaaa ctatgcagga cccttttggaa gagaagcggg gccacttga ctaccagtcc      360
ctcttgatgc gcctggact gatacgtcaa gaaagtgtcg gagaggctcc ataatgagaa      420
tgcagaaaatg gactctgata gcagttcatc tggacagag acagacccctt atgggagccct      480
ganggttag accctggtcc atctcccttc cccacttaag aagtccagca gaatcccttc      540
cccancan ggatgganan gcctgggnat ctccttccan aattgaagtc atcttgcaag      600
aaggcaagaa ccaagcagct tegantccan ggtgtggaaat gggggccctn      649

    <210> 315
    <211> 238
    <212> DNA
    <213> Homo sapiens

    <400> 315
acctgcaggt ggtggcagcg ggttagccggg actcgggcgc cgcgctctac gtcttctccg      60
agttcaaccg gtatctcttc aactgtggag aaggcgatca gagactctatc caggagcaca      120
agttaaaggt tgctgcctg gacaacatat tcctgacacg aatgcactgg tctaattttt      180
ggggcttaag tggaaatgatt cttactttaa agggaaaccgg gcttccaaag tgggttacc      238

    <210> 316

```

<211> 637
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1) ... (637)
 <223> n = A,T,C or G

<400> 316

ggtaactgtgt ttacatggtg agtggtcgtt accatccaac	agcacaaggc acaaaaaatg	60
ggcatcaagc aaaccatgca taacgaggcc tggaaaccat	caagaacagc cacaaggag	120
gtcaactcaga cctctgattc aaacttctgg ttttgagtg	acaagcatgc acgttttaggc	180
tctgccccaaa tattcaggag gatttccaat ctccacaaga	gactggttc acatatggcc	240
tttctcttgg ctgtcaaacc accagggttc ctccaaaaca	aaatgagagc agctgtttg	300
ctgatcaacc aatcacacta gcagtttat ttcaagttaa	aacaaccttg caggaataaa	360
ccacataaaag actccgtggc taagggctgc tattacttac	acctaccaag cgaacacaa	420
cggctggct ttctatggta acgcttcaact ggcatgcaaa	ccccaaaggc cactgaatgg	480
aatgaatcca catgaacagc atacctggag caggaacatg	cttcacaag aagtgtcagg	540
agactaacct gtggttgcta acattnttgc gangaaaanc	aggtagcag aagggtgggt	600
tgaagtnttgc cctaataatnc ttaccatata tataaac		637

<210> 317

<211> 505
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1) ... (505)
 <223> n = A,T,C or G

<400> 317

ggtacatgg ccagactcat gcacaccaca tctgctgaca	tctccttccg ttctgtgtac	60
tcattcagct gtcctgaagg atccatctcg aaatagacca	gtctcctcc tgcaggc	120
atcaccactt gtcgctgggt cactgcacac ttccacaattt	ttttttttcc aggggtttc	180
cactcatga ctctcttgc tgcgtatg tgccgaatgc	catctgata gacctgcacc	240
aaggcatcat ctccataaa ggagcaggac aaggctgggg	tggccccag gaacccagag	300
tcagtcactt ctctacagt ttctccaatg gacaacacta	gggtggcatt cacgaaagac	360
acaatgtgt aggcatcaaa ctcatcttca atgtgtcgac	gcactgtcca nacagcgttg	420
gggttaccag gtnanctana aacagccatt tctgacacct	naagtccatg gtttaaggac	480
ttttaaanat gatcngggnc ccctn		505

<210> 318

<211> 645
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1) ... (645)
 <223> n = A,T,C or G

<400> 318
 gcgtgtcgcg gccgaggtac atacaaactg gggttctgtc aatgacaaca aggactatgt 60
 gtggttcat atcaaattcca agaatattag acaaccaaac atataaccc ttgtgggtt 120
 ctcttaatat gcagcattca ttatggtagt tagtccctt cactgggtt ctgcaagtct 180
 gaagttgtgt ttcttgtgtc gttgccegca tctccaccct cagagctgtct ttgtttcc 240
 tcttcatttc agtcttgtc atcttcatct cctggagatt tccggactg tttagaggat 300
 ttctttgaag tatatgactt ttccgtttt gagcctgctt ttcatttctt tctttgcct 360
 tttccatctt ctctactct atcaccttct tcctcaactgc ttgcattgc agtatttcca 420
 ccttctcc tc agttctgaa ganctctggt gctgaattgc ctggtaccag taaaactttac 480
 tnctgggtat ttcttatttc cacaatcctt cgtaaatcc ttccgttgg ttgacttttc 540
 aaactggcnt tggacctggc ccggccggcc gtcgaaaggc gaattccacc attggcggcc 600
 gtactaatgg atcnacttgg ncccacctgg cgtaatatgg catan 645

<210> 319
<211> 424
<212> DNA
<213> Homo sapiens

<400> 319
 acttttccat aaagttcttag tcacttctgt tggcctgagc caccagatta tgatgttgcc 60
 agaattcaact caatttgaat aaagatgaac agtatttggt ttcttggttt catgaatttat 120
 atcagttatcc taaaacatcg cttcagaaag agaactgttt atttctgcag gcttcctgtc 180
 cttttgggtt atgggtttt ggccttattt tcactggctt ttcccttc aaacttttag 240
 gctgtatttc attcattgaa gaatcaatac atattttgtt tcaaaaatgtt tgaaacaaaa 300
 gacatagatg gtagactttt attaaaacat atatggatgt ggaaaggcaca tatattaatg 360
 cagtcatccc tttcagggtt ggaagagagc aaaccagttt attttttaat tcattccttag 420
 tacc 424

<210> 320
<211> 472
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(472)
<223> n = A,T,C or G

<400> 320
 acgaagtccg gcaacaagaa agcgaggagc agcgtgtatg cccttattcct cagcaagtga 60
 gaacaaggca gatcacagca ccgacacaga agatggcctt ctccccatgtg ccagcggaga 120
 atccccctcc agccaaatcc tcaggaagca gagcaccaca caagcagcat ttcttggttt 180
 ctcatggtca tattcaaaag cgacttttaa atcagaaaat agaaaaagca ttgtggtag 240
 gtcttttca aaccagaac acaagttggc taggaaaacg gaaagcttcc tctggcatcc 300
 ctgtttggac tccttcctcctt cttggagag tttcctgaac cgacacacaca tcgcttcctc 360
 accaagagag atgctcaact aggatcttt ttagtgtgcc agttacaaga cacatttaca 420
 ggctatgttt ctaagaccc tc tagtggcca acgangaagg agggtacctt cg 472

<210> 321
<211> 588
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(588)
<223> n = A,T,C or G

<400> 321
acctcacctca cagggttggt gtgaagacta aatgaagata atgcaataaa cggtcgagac      60
ccatgccaaag cacatggtaa aagtgtgtaa ttgcgttata gcagcagcag ccagagcaat     120
agccaaagggt caattaactic ccagtccagt gttcagttca tgattgtcca tgcattaaga    180
gccaaagcac ccccaaagcc atctcacccct gctgaagcag tctaaagtgc tcaactaagt    240
tggtgcatta atctcttagac cagaggtcag cagacgttt ctgtaaaggg ccagacagca    300
aacattttag gtctctgttg caactactca gctttgcctt tgtgaatgaa agcagcaaga    360
caatatgtaa atgaatgggc cgtggcagat ttcatccaca ggggttcctt gcttttagact    420
gtgccgagag ccatangtct tgagttnaag tccaaacctta ccacacttgc aangggtggt    480
cttgacccaa gtcnngaag gnntnccaaa agtcaaggcc cttaaancctt taaaaaatgg    540
ggaataataa tgccttcnt caagagctgg tnaaacaatg gaagctgg                         588

<210> 322
<211> 589
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(589)
<223> n = A,T,C or G

<400> 322
acagctaatt gaaagtataat aaaaatgtga attagtgtgg ttgcagctaa aagtatgagt      60
gatgtAACAA gaatgacgac gtaatgagtc aagtggtag actagttctta taagcaccgt     120
aaggagtgcc agtccataata catgaacttc atccatccct tttatataaaat attacttttc agaaatttgg    180
gtggtcagag aatgtatTTT gtaagctata gttaaaaat attacttttc agaaatttgg    240
agcccaagca ggaattacag agattccccc caacagaggc cctgagatct cccctgactg    300
ccaccCAAAG gatccacact tgcctctgtat caaccagatt caggccaagg cttanaagag    360
ggaggaggca gtggccagaa gccaggact ctagaggaga gaaatgtgg cagatgtggg    420
gttcagaaaa aacacaagac gggaaagggg aagaaggaa aaaaaggaa gaaccaccac    480
tggtgangaa attgttnaan aaggccacnt ttgcctgang agtggccctt gncttttca    540
ccttgccctgt gggcaaangc tggcaagtagaa agacaaggc ttaaccctn                         589

<210> 323
<211> 582
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(582)
<223> n = A,T,C or G

<400> 323
actgcttatg taaatcgttt atttttatTTT catcaaagcc tggcaagttt atgcattcca      60
atttaccatt ggcaagctt tattttatTTT taagggttggta tggtgaattt attttgtggg    120
aaaatgagat ttgttaagtag ttttcttctt agataagata acataaaacca agctttcaga    180

```

agttaaggat	gatgaataat	attgaaatga	cttggatat	attgttaagg	ttcccttaag	240
tatcataatt	aacaatttg	gaaaattgaa	aaacataaa	ctgtgttat	tgattaagta	300
atatgttccc	ttaaaattca	ttttgaggtg	tatgttatac	acacagtaaa	tttttgtca	360
gaaatgactt	gctcattctg	tgtttttaaa	aataggaaat	aaggcatagt	gagtcatcat	420
tacatcaatt	aaccnaaaaa	atattcatn	ccctccgtca	ctggaaaattt	tctacttcag	480
ncacctttct	taatcctcg	gttaggaggg	ccccgtttat	gggcctttt	taattccat	540
ngccatatt	gtccactacc	cggcagtagc	ccaaagctan	ct		582
<210>	324					
<211>	180					
<212>	DNA					
<213>	Homo sapiens					
<400>	324					
acccgtcggc	ggcacccacc	aacaaccg	ggatcttctg	aattgtggct	agcgagcaga	60
tgttttgt	gccgcagaat	ggcaggcg	ccgtggcgaa	ggctctgccc	tgggtgaaca	120
tttctgtcac	ttgggaaggc	agtagctgg	tggaggccat	gagcactt	ccgaagtacc	180
<210>	325					
<211>	575					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(575)					
<223>	n = A,T,C or G					
<400>	325					
ggtacaaaata	ctggaaaaaa	cctgctttc	tgcgttaagt	gggagacaat	gtcacaagtt	60
aaaagctt	attcctatga	tgccttctcg	gatttcatca	attttcatc	cttggatgat	120
gaaggagata	ctcaaaacat	agattcatgg	tttggggaga	aggccaat	ggagaataag	180
ttactgggg	agaatggAAC	tggagggctt	tttcaggggca	aaactccctt	gagaaaggct	240
aatcttcagc	aagctattgt	cacacctt	aaaccagtt	acaacactt	ctacaaagag	300
gcagaaaaag	aaaatcttgc	ggaacaatcc	attccatcaa	atgcttgg	ttccctggaa	360
gttgaggcag	ccatatcaag	aaaaactcca	gcccagcctc	agagaagatc	tcttaggctt	420
tctgctcaga	aggatttgg	acagaaagaa	aagcatcatg	taaaaatgaa	agccanaga	480
tgtgccactc	ctgtatcat	cgatgaaatt	ctaccctcta	agaaaatgaa	agtttctaac	540
acnAAAAGAA	ccngangaag	aagcatgctc	atcaa			575
<210>	326					
<211>	584					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(584)					
<223>	n = A,T,C or G					
<400>	326					
accagcaatc	ttagttacaa	aataatactt	ttcagtagtc	tttcttgatg	cacattttaaa	60
aaccagcaca	actcctctag	tgaaatggtc	aattccctt	aaaaaacaac	atctgaaatt	120

ataagacctg	acaaatcata	ttatatttca	atattagact	gctgtggctc	tagaacaaca	180
gaaaagcgta	actttcaaac	agcttaggga	aaaagcactg	aatatgttagat	gtcgtaatc	240
agcctcaggc	attattgatc	ctgtgccatc	cacacaccct	taagggtttt	cacagcactc	300
tgacggatt	atgtgtgtt	tgcaaatgac	gaatcaacag	tatgctgaat	aatcagcaat	360
gaaacacagg	agataaaatta	aatgtgttt	tccaaatgtc	agaatatcga	ggttcccagg	420
agttggcaaa	acttctcaag	gtgggcatt	cagactcang	ctgtgcnggg	ataaggcttc	480
cttaccgtan	gtgaaccgg	tgagaatatt	ggtccncac	acccnagaag	ccatTTtaggc	540
ataatactggg	caaaaaagaa	acctgaatnn	aatgggacca	atnt		584

<210> 327

<211> 573

<212> DNA

<213> Homo sapiens

<400> 327

gg taccttc	tgaagcacac	agaagttagcg	ccaggcagag	ggtttgaagg	atatgtattc	60
atcaagaagt	aaacgcaaat	ccaagatctc	aaccacactt	ggctctaaa	gatccaccaa	120
cttaaccctt	atggcatgca	tatgtgactt	ctgcaagaag	caacttgaaa	acccaagaat	180
gccttgctt	accacgtccc	gcgactgcaa	actcccttcc	tctgaaacaa	gcagccacag	240
ctttataaga	aacatgccgg	catgtagtc	atctgggag	gggagaaaatc	ttcaccactg	300
gctgccttc	agcaagttcc	ccttgaatc	tgccggcagt	ggaacagatc	ccagatccca	360
acgctgtac	ttggcgtcc	tcccaccagg	ggttccttgt	tctgaaagct	gccaccagtg	420
ttgttccgaa	agatgcctt	gcctttgtgg	ggtcatcttc	cattatgcct	cctaacagga	480
aacaggcttc	tatggaagag	aagagtccca	gccccctgac	cttccgctt	tggtcttgg	540
ggatctgagt	cacatctgcc	atgttgctca	aag			573

<210> 328

<211> 422

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(422)

<223> n = A,T,C or G

<400> 328

ggtaactattt	tgaagcgctg	gaagaagaac	tggtttgate	tgtggtcgga	tggtcacctg	60
atcttattat	atgaccagac	tcggcagaat	atcaaggata	aggtccacat	gccaatggac	120
tgcataaca	tccgcacggg	gcaggaatgt	cggataactc	agccccgg	tggaaagtca	180
aaagactgca	tgctccagat	tgtttgtcga	gatgggaaaa	caattagtct	ttgtgcagaa	240
agcacagatg	attgttggc	ctggaaattt	acactccaag	attctaggac	aaacacagcg	300
tatgtgggct	ctgcagtcat	gaccgatgag	acatccgtgg	tttcctcacc	tccaccatac	360
acggncatag	ctgcacccggc	ccctgagcag	gcttatggct	atgggcata	cggtggtgcc	420
gt						422

<210> 329

<211> 467

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(467)
 <223> n = A,T,C or G

<400> 329
 ggttaccactt tcccccacttt acagatgagg aaaaaaacagg ctc当地
 cttgcttagt atctcaaaggc taagctgcaa gcaaaagatgg ggctccaagg tctgtgtgac 60
 Ctgagctttt ggttatccaa tacttcaaaa ctgtcactta ggaaaagaaga gaacatttt
 agaaaatagga gaaaacccaa cagccacagt gattgtcaaa gagctgaggg ggc当地
 caggttcggg ggc当地 cagac caggttcagg gccactgcgt aactgc当地
 gccccaggag acacgc当地 cccactgccc tagacgagtg gccc当地
 ataaaaggta ggc当地 cacaatcc tacacaaaagg ccccagaatt caaaccactg tctt当地
 cagactttt ctttaagagcc nagtacctgc ccggccgggn cgctega 467

<210> 330
 <211> 595
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(595)
 <223> n = A,T,C or G

<400> 330
 tc当地 gggccccc cccggggcagg tacatggccg cc当地
 tggagctggc tggcaatgca gc当地
 tc当地
 cc当地
 aaggaaagtt ggaaggccatc atcacaccac
 agaagaagcc tggatctaaa aaaggcaggag
 ggc当地
 acggcttac
 cagggaaatc attaattagc cggcttgaa
 gcattgac
 60
 120
 180
 240
 300
 360
 420
 480
 540
 595

<210> 331
 <211> 421
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(421)
 <223> n = A,T,C or G

<400> 331
 accccaaaaac caccccaac gcccccaac cctcaggcg
 gtctcactt gactcacca gacaactgac tt当地
 cc当地
 aaaaaaaaaa aaaaattaat
 ggggtgtgg
 gggc当地
 ttacg
 taaaatgagaa
 60
 120
 180
 240
 300
 360
 420

C

421

<210> 332
 <211> 616
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(616)
 <223> n = A,T,C or G

<400> 332

cgaggtacca	ggctacatat	ctcggtcagt	agctggatcc	tttgataatg	aaggcattgc	60
tat	tttgc	tttcagttca	catactattt	atggtaaaa	tctgtaaaaa	120
tttttggaca	atgtgctgct	gtttatcca	tttctatatg	gtctctgctt	gggggtggta	180
tgtat	tttatac	atcaatctta	ttccactgca	tgtat	ttgttactga	240
cagcaaaaga	gtctacatag	catatagcac	tttctacatt	gtgggtttaa	tattatcaat	300
gcagataacct	tttgtggat	tccagccaat	cagaacaagt	gaacacatgg	cagcttgcag	360
gtgcttgc	ttgtgtcaag	cttaanctt	tttgcagttat	ctgagaaccg	attaccaaac	420
caagagttcc	agacccttcc	nttttgggg	atactacttc	agn	cttgc	480
tattgnatc	nggtacattt	cccctggatg	gcngttantc	ntgggaaccg	ggatncaaaa	540
cccnccata	tgctangnt	gnccctaacct	acaatnggg	ctttttgac	aaaaanntgg	600
atncctccgg	ggccnn					616

<210> 333
 <211> 650
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(650)
 <223> n = A,T,C or G

<400> 333

ggtgggagag	ctaagtctgc	attat	ttt	ggaatcatta	attaattgc	aatcacagag	60
tcttcaggaa	aaaggcaagt	tat	cag	ctgaa	atccc	gatgactctg	120
atcatcagga	attaactcta	ccaaat	ccca	agacaa	agat	aagttccatc	180
agatggagt	aggaagtca	ttcaca	agg	gtcaat	gttcc	gtcaatgaag	240
tgatgaggag	gaagaggaag	aagaggagga	ggaggaggag	gagga	gaaa	gagaatgaaga	300
accactgc	ggcgatgtat	ttgtat	tttgc	gatgg	ttc	cac	360
gatgaaagag	aaaaggcctc	ggagtaa	act	tcc	ca	ctgagaggtn	420
ancctcnntt	cgtttgnnt	gaagagaacg	tg	ngaggcn	at	tnatgggtna	480
nataaaaaaca	gctctttgg	ttat	ggcca	tcttacttta	nc	ctgat	540
ngcctngaaa	atcntgc	tgagt	gtgc	tggcttnaa	tcc	ccn	600
ttnactggcn	aatttttgg	nagc	cttttta	ancgg	tt	ttgntcaan	650

<210> 334
 <211> 734
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(734)
 <223> n = A,T,C or G

<400> 334

tgttatctga	gaattcgcct	ttcgagcggc	gccgggcagg	tacagattaa	cttaacacaa	60
aaacccgaaac	tccaaaatga	aggtgtgtgg	aggaaagggtg	ctgctgggtc	tccctacaac	120
tgttcattc	tttgtggggc	agggggtagt	tcctgaatgg	ctgtggcca	atgactaatg	180
taaaacaaaa	acagaaacaa	aaaaaaacaag	gaactgtcat	ttccacagaaa	gcacagcggc	240
agtattcta	gcaggcctca	gggccttggg	cctggggagg	ctacatgagg	gggagcctca	300
gtcacaggat	caacctgggg	cccgaaggag	cagggttccc	tgcctctccc	tctgcaacag	360
atcatccat	ccaacacaac	ccccaaaatg	ttgatgatga	cgcaacatgg	tcaaccctna	420
agaccttaa	gaccaaacag	agcagcatag	aaaaaaaaaa	accaaacgca	ccaatttctg	480
catgtgtcaa	tggtagggca	ccattnaa	aaagtttggc	ttaaacaagc	tgcctttact	540
tgganggacc	taatnccaag	cttaattct	ttggtaangg	aaaaaaaccct	tgaaccccn	600
tctnagctta	aantcttaag	gttaagtcn	aaccantaa	aacnttctgg	gttncccctt	660
tccaagnnntn	aagccccctt	ttccctnaac	ctggggattt	ggggnattn	accnggnncnt	720
ttaaatttcc	gnng					734

<210> 335
 <211> 492
 <212> DNA
 <213> Homo sapiens

<400> 335

acatccttca	ccaccatgga	atattttagt	ctatgttagtc	aaagtcttct	ggaattccaa	60
aagttctatc	aattttattt	tcttcaaacc	caaattttct	tttggccaa	gattttattt	120
cgaatatgtt	atgtatttct	tccacaactt	gcccgtcaca	gtctttgtat	ttttctactt	180
ctgccttttag	ctgttccctt	tggtctcgaa	gtgaagaaag	ctcttttgct	agcctggttc	240
gctcttccgt	ttcacatcg	ccaattttag	cttctcaat	gtctttctgt	aggcttgcat	300
gcttttgact	tccctcagac	aactgagatt	ccagaacctc	caactttagt	ttccttgcat	360
gaagagctt	acttggaaaa	gcccataat	aattagaagt	tccgatccctc	tacagtcaa	420
ccataccatc	atcaactaag	cttgaagga	cttctttac	tgacatagca	gtatgcctt	480
tctctttggg	gg					492

<210> 336
 <211> 732
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(732)
 <223> n = A,T,C or G

<400> 336

ggtacatata	aatgaatctg	gtgttgggga	aactttcattc	tgaaacccac	agatgtctct	60
ggggcagatc	cccactgtcc	taccagg	tgc	cctagccca	actctgagct	120
gtcatttggg	aggaaaagtq	gagaaatggc	aagtcttagag	tctcagaaac	tcccctgggg	180
gtttcacctg	ggccctggag	gaattcagct	cagcttcttc	ctaggtccaa	gccccccaca	240
cctttccccc	aaccacagag	aacaagagtt	tgttctgttc	tgggggacag	agaaggcgct	300
tccaacttca	tactggcagg	agggtgagga	ggttcaactga	gcttccaga	tctccactgc	360

ggggagacag aagcctggac tttgccaa cctgtggccc tggagggtcc cgggttgtca	420
attcttggtg ctcttgnngt tccagaagca agccggaagt ttgaaagaaa gggAACCTTG	480
ggaatnaagg ggtgcttggg tattaanccn naaaaggat tgggttcct gntccaang	540
ggancctttt ggccttctt tttggncct tncttaaggc cccaggccct ngggTTTGG	600
accttngccc cggnngcccc aaggggccna aatcccacc ncantgggg ggcgggtac	660
ttaangggga atcccaactt tgggnccca aacttnggg gnnaancntn gggccaaaac	720
tggttccctn gg	732

<210> 337
<211> 642
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(642)
<223> n = A,T,C or G

<400> 337

ggtacaacag tagaagaagc aacaacaata gtAAAGCCAC aggaaatttat gttggacaat	60
atagaagacc ctttcagga ggatcttgc agtgggtcc aatctggaga aagtggagg	120
gaagaggaac aagataccct tgaactggag ctatggggg aaaggaaaaa agcagagttg	180
cgagccttgg aggaaggaga tggtagtgc tcagggtcta gtccacgttc tgatatcgc	240
cagccagcat ctcaagatgg aatgcgtagg ctatgtcta aaagaggaaa atggaagatg	300
tttggcggag ctaccgtcc agaatctacc agtagggatt ctatggggg tggacgaaga	360
tctccagaaaa atggagaaac tgcaattggt gctgggggg tcagaaaaaa tagatgagaa	420
ttcagataag agatggaaatc agaagaatct tcagagaaa taaagtccctg ccnggcccnc	480
gttcnaangg cnaattnac acctggccgc cgcttagtgg attccactt gtcggcaactt	540
gcgnatctgg gatactgggtt cttggngaat tggatggggg acaatcnncn acttcaancc	600
ggagcttaan gtAAACTTGG ggcntannag tgctnactcc tt	642

<210> 338
<211> 723
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(723)
<223> n = A,T,C or G

<400> 338

acataaaacac acgcatatca caagtctagt caagaaagaa atacatagaa aaacaagata	60
gaattttaaa aataatttgc aaggaaaggat ctcattgtttt cagttctaaa atattgtctt	120
cttttagaaa aatttaagac tggataaca gattttttt cctgcaatgc tggatattact	180
gcaaattttt cagccaaagag gtAAACAGCA atgcaatttt tccttaagct tggatatacata	240
aggaaacaat aaagaaacctt gatttagaccc gaaactaatta aaagtccacac cgtaatttt	300
caggccagct ctggcttcca ggtggatcc caggacagggt ttgnatcact gggccatcc	360
ccaaacaggct ggataggaga gtctggagta attataagga taccacccctc ttctatcctg	420
ggctggccac tggcattggg cttcacatcc ccagaatacc ttctgngngaa ataggccctt	480
ttcagggggg ccnggaagga aggaaaaagg gggctntggg aaacatnnggg ggattctttg	540
gnaaaatttc tggcctggaa tngtggcnaa cctttggggc ttggggtnn gggaaaatgtc	600
caaggganct ttaangggnc ccttngaact cgagggnaa aatttaaccc ctangggccc	660

ttgggttnaa aaagggctt atttggggga cccgggttnc ctttgnaaaa aatgcnncca ann	720 723
<210> 339	
<211> 356	
<212> DNA	
<213> Homo sapiens	
<400> 339	
acaatagtgt aaagggtggtt tttaaaaaca tagccaggtg tggtggcacg tgccttagt tccagctact caggaggcta aggcaggagg attgctttag cccaggctgt gtggttcacc ataattgtgt ttgtgactag ctactgcact ccaacctggg caacatagtg ggacttcatc tctaaaacaa aacaaaacaa aattacactt aagcactatt gtttaatttt taattgtcag tttatcatta ttttggtaa gacattctgg ggtttcttga atcttgtcca aaaaccagtt gtttggaaa attgctttaa attgagcata ttatgtata ttggataaaaa atgtcc	60 120 180 240 300 356
<210> 340	
<211> 502	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(502)	
<223> n = A,T,C or G	
<400> 340	
caggtacaat taactgtcac acagtcagat ataattcact ctgatgaggc cagagaaaaga aaacaaggca aagaaaaggc tcatacttgc cctttaggtt atatccaaat atcccagcac ggaaaccatc ttttcctcaa aggttatcta cacacgtggc ctgagaagaa aggcagtaag cctttgggga gttggggaga agaaaggaaa agaaaacagg aggagggaaa aggaagacct cttttctgaa ccacaaatgc ctcatgtgc gcactccaag ctgaaataca gtatggtagg tattctaagg gggaaaaaaaaa caactacatt ttttccttat tactgattcc tctctgcttc acagaccagg ctccggcaag tggaaaacgg ctggcatgag ttctgcagaa gctgcgtgtc ttgccttggc agtctgaagg tgaagcangc ttcanaggtg gacagctaa ggagaattcc cagaggncnc cnaaaagccc cc	60 120 180 240 300 360 420 480 502
<210> 341	
<211> 243	
<212> DNA	
<213> Homo sapiens	
<400> 341	
acatcatcac ctctttggtc aagttttcca tccaaacttaa ttttaggatt ctccggacaa tcaacattt cactgtttc tgctgcaatt ttctgtttt gattttcagt cacctcgttt tgggcttcca ctgtgtactt tctgtcaagta gactttacct gctcttcttc cttaatttca cttaaatctg tgttctgata cgtaactct ttttaacat cttaagggt ttctacgggt acc	60 120 180 240 243
<210> 342	
<211> 669	
<212> DNA	
<213> Homo sapiens	

```

<220>
<221> misc_feature
<222> (1)...(669)
<223> n = A,T,C or G

<400> 342
tgaggtcaag cttttttttt tttttttttt ttttttttca gctttgttgt agttganatt      60
ctgatgttca cctaacaagg tccctgacaa aacagacttc cttcaatcca ggtcataatt     120
tgaaacgtta tacaataatg agatthaagt gatgaatggaa aagaaaagaa ggagactgaa     180
aagatatccag aaatttctat tngtttttag attcagaaaa atataattac aggccaacat    240
gggtntgaca gagaggaagg acgtcagcag ttacttgaat gtaaccctt cccagcattt     300
ccaaagacct gcaatngntc cattngnac caagggcctt gntacctagt ttcttaggnga    360
tctacagant tgaacaacc cagcacaact ttatttctt gagaagatga acccttaact     420
ntgaagggtgc nttaaggaaa nttnnaactg gtcaacttcca tgggtccgggt ttc当地agcca   480
caatcntcc gattaaanta aaacctggga naaaagccaa cggngggcaa nc当地acgggn     540
gggatttcac ntggtaac ccattgaacc ggggcttcn ttttaanan gtgntcattg     600
gttgggttt anaacctaaa nccccctttt tnaaaaaant ggtgnaaatt ttccncntnt    660
aaccgggtt                                         669

<210> 343
<211> 500
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(500)
<223> n = A,T,C or G

<400> 343
ggtagcaggc agtacatgac gctttgacaa acagttcatg ctaggagtag agactgtgtc      60
ccaggactga gggatctgcc taagatcaag gggaaaatct gaaagactcg tc当地acaaa     120
gtgtaaaact aaggtttat aagttcaagg gaactgacta ctgattagct gccagtgaaa     180
acaaaaatca acactctcag gtaacagaaa tc当地attgc tacaatgcat caccaacaaat   240
gtccagctta caattttaa ggacgactaa ataggagact cccagttct agtctggcac     300
ataaggaggt cggcagtcat cacttcattc taacaagtaa aaagctgaac aaactaaaaaa   360
atcaacaact cagccgggtg tggtggtca cgcctgtaat cccagcagtt tggaggttg     420
aggcaggcgg atcatgaggt caggantttg agaccagtct ggcccacatg gn当地acccc   480
ggtctactta aanataaaaa                                         500

<210> 344
<211> 483
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(483)
<223> n = A,T,C or G

<400> 344
ggtacttcgg caaaaacag gagcccattt tgacaggcat ctggcatcac tacaaaggac      60

```

ccctggggct ccatggcaac caggcaggca ctaaggatag aaggagagtc tgcggcagag	120
attccacaca tccggcacac atccttgagc ttttgctga ttgtctgtag tgaacattct	180
ccaaggagga tactccaatc ttaagctcc ccatggccaa gacgcccag tcgccccatt	240
acaactctcc agggtagaga tgtcatttgg acaatcccta tgccaccatc ccataacttc	300
tgttagtccaa ttttacgtgc agatacttta ctccctccgtg acctaacaaa taaagaaatg	360
gggaaggggaa aggggtccct agataaaatca gagttattta tcacttataa gaccaacact	420
agaaaatttcc aagaacctat ccatgctgna cctgcenggc ngccgtnmaa aggcaantc	480
agc	483

<210> 345
<211> 667
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(667)
<223> n = A,T,C or G

<400> 345	
ggtacaggag agaaggctct tatgaccgat acctacgaat ggatgactat tgcaggagaa	60
aggatgactc ttatggac cgttacagag atagcttga tggacggggc cttccaggcc	120
cagaaaagtca gtctcgtaa aaagagcggt tgaaacgtaa ggaacggcgt agagaagagc	180
tttategtca atatggag gaaatccaga gacgcttga tgccgaaagg cccgttgatt	240
gttctgtgtat tgtggtaaac aaacagacaa aagactatgc tgagtctgtg gggcggaaagg	300
tgcgagacct gggcatggta gtggacttga tcttccttaa cacagaagtg tcactgtcac	360
aaggccttggaa ggtatggtagc agggggaggtt ctccctttgc tattgnatc acccacaaca	420
ccagatcacc gntcctgcac aggtcaacat catgtttgaa accccgnaag aaccttgnaa	480
catgccccaa gncnatgcca tggtgctggc ggcanaaat ttttagcgt tccaggaatt	540
aattcccgga anaaggaacc tnagggnaat gccnaaccgg ccntcaaann gcccattaaaa	600
ccttcttgcg gaaaaaaaaa gggggcctna ggagggatcc ttggggcccc tttaaancntt	660
caancnn	667

<210> 346
<211> 754
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(754)
<223> n = A,T,C or G

<400> 346	
actgaactac ttcattacca actcggccca gatattgaca tgcctgatga taacaaaaga	60
attagaagggg tgcgtctcct ggtggaaagag ggctgtgaag atcgaattct ggtagcacat	120
gacatacata cgaaaaccccg gctgatgaaa tatggaggtc acggctattc tcataatactc	180
accaatgttgc ttccaaaaat gttgctgaga ggcataactg agaatgtgt tgataagatt	240
ctaatagaga accctaagca atggctaact ttcaaataagg atggttgtt atgaattcac	300
acctttagtgc taaaacttgc agagaacatt cagcgatttc cagtcactg tgagatatta	360
atcagttacc taggactaat gacagatcat ttccctctga tgagaactag gaggggtttg	420
ccttctctga gaccctgacta ttacaactgg gcctntaag ggaggtactt aagcctaaat	480
tgagccctta ataattttaa ctttaaccctaa anttaattnc cggaanttcc ctngggccg	540

ggaaaccacn ccttaagggg ccnaaatttc cagcnccaac ttgggcgggg ccggttactt	600
aangggaat ncccaaactt tgggncccc aaancttgg gcgaaaaacc atngggccct	660
aaacctnggn tncccnggg nggaaaatn ggnaattccc ggtnananaa atttccnn	720
ccaannttt tcnaaaccnc ggnaagccnt taaa	754

<210> 347
<211> 444
<212> DNA
<213> Homo sapiens

<400> 347	
accgtctcga tcatctgctt cccttggct gagagctcca ggggtgactc gaaggtgacc	60
ctataaggag tcatgagggt cctgagggtc tggAACAGCT tctctccatt ggggtcccc	120
agaatgtac agcccatgtat gtggatgacg ttccgtctcg gttcaactt gctcatcagg	180
cggctcagcc gcttccagaa gtgaatcatg tccttccct tctccactt ggcaaaagggtg	240
gccaccttgt tcttgaggag atagagggtt ccaggacctc cctggcagaa aatcagcatt	300
ttccagatct tggctccctt gtggtagacg ttcaagttcc tctctatctc ctcaaggatg	360
tcctcgaagg ttgcgtgtc atggccgtt gaggatgggg atgatggagg ggtcatcccc	420
ggcggatgtat agtggggatg tacc	444

<210> 348
<211> 693
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(693)
<223> n = A,T,C or G

<400> 348	
ggtaactttaa gaccctttgc cttaaagtac tataccaaca cagactttat agtatgttta	60
aaaatcccaa ctgaagata cacaggatgc ttagggctg atttcctgtt ttagaacctc	120
cagccctgtg ttgaatgagg aggtgcaat atatacaccc ttaagatcag accacagcag	180
gcattcagggt ggaggggatg aactccattc attccagctg tgcaagtggg catctgcgcc	240
ctccgcattt cggctcattc ctcatctgag ccactcaaga gggcggctcg gtaagtgtca	300
tctgaattca gcttctgaat tccaatgatt tctcccttc cgtgtctt catccgagtc	360
aaaaggcagt aaacaagaga atagttgacg gccacaatgc tgaaggcagc aggtagtgcc	420
agcagaaaaca catggtgatg aacatgaagg tggcatcatc cttctgncc attcnggtgg	480
tncaaagggt gggAACNGGA caaaccncaa tttgcenaa ccangtccn tgnaaaatga	540
ttaaactggg tccggaaaaa gttccagcnc aatggnggtc ccggaaanat cnccnntng	600
ggggantctt acnccnccctt ttgaaaaggg cttccencng gaatgaanng aatnncttgg	660
nccaacggaa gccccgtttt nggcntngta atn	693

<210> 349
<211> 299
<212> DNA
<213> Homo sapiens

<400> 349	
cgaggtacat tctctaaaaa ttgttactga ctggtaagaa atagacctga gtttttattt	60
ctaacaccca atcaactaaac cacggcagca agcaactggcc accgattaa tggattacga	120
cacaggaaac cccatcaggg ttctatgtaa tttagtata ctcatgtcac taatatttag	180

cattatactt gatctgcatt atattgttga tatgcagagg ctaaactagt catcatttgc	240
tctttcatct atcagtagag tccaaagttg tttgcttcaa tggactacat gttaaaggt	299
<210> 350	
<211> 622	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (622)	
<223> n = A,T,C or G	
<400> 350	
actgtttacc agatcttgc agatgaggtg ctgggttcan gccagttngg catcgtttat	60
ggaggaaaaac atannaagac tgggagggat gtggcttatta aagtaattga taagatgaga	120
ttccccacaa aacangaaaag tcaactccnt aatgaagtgg ctatnttaca gaatntgcac	180
catcctggga ttgttaaacct ggaatgtatg tttgaaacccc canaacgagt cttttagtta	240
atggaaaagc tgcattggaga tatgttgaa atgattctat ccnnngagaa aantctggct	300
tccagaacga attactnaat ncatgntcac acagataactt tgangcctt gaggaaatctg	360
cattttaaaga aatattgggt cnctggnatt taatancnna aaaagggctg cttgcatcaa	420
tagaancat tncttagtn aagctngtat nactntgnat tgcacccttc atttgcngaa	480
atgtcnntcn ngnnaactnt ggtacggAAC tcctccatnc ttatcccn gn aagtntccn	540
gagccanagg gtnccnacnt atcctatana nnagnntcnnt cnngacntna tcnncnttng	600
ggnncnttag tggccctttn cc	622
<210> 351	
<211> 574	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (574)	
<223> n = A,T,C or G	
<400> 351	
gctttaacaa tagcagcaga caaaggtcac tacaatttt gtgaactcct gattcatagg	60
ggagccacaa ttgtatgttcg taacaaaaag gaaaaatacgc cactttggct ggcacccaat	120
ggaggtcatt ttgtatgtgt gcagttgcta gtgcagcag gtgctgatgt ggatgcagca	180
gataaccgga aaatcacacc tcttatgtca gcatttcgca agggtcatgt aaaagttgtt	240
caatattttgg taaaggaagt aaatcagttc ccttctgata tagaatgcat gagatacata	300
gcaacaatta cagataagga actgntgaaa aaatgtcato aatgtgtcga aaccattgtg	360
aangctaaaa gaccacaagc tgcaaaagca aataaaatgc cagtncttt taaggaactt	420
gatctggaaa agtcaganaa agacngaaac agctttgtgt aaagagaaaa gaangaaaga	480
gnaagaatag agaccgaagg actgagaata naacactagg atcgactcca gtaataagga	540
ttaattgnna ntctaacttt nccctcatga ttgn	574
<210> 352	
<211> 399	
<212> DNA	
<213> Homo sapiens	

<400> 352
 ggtacataat attccagtag gaaaactgctt ccaagtttaa gcatgagctc cccaaactgg 60
 agaaaaacata ttttgctatt ctgagacaac aatcagaata cagactttgg attccaggtc 120
 acagtttgc ttttagacaa ggtaaagcaa agaaagccac attgtgccat cttcagctcc 180
 agtggcttta gcagtgactg tttgacataa aacatgtaa aattgcttgt tggttagagt 240
 gcttttaggga cccactgttt tcatttcttc ttggagttta cttgtttca gatgcagcca 300
 tgggttaggtc agagatggac tggtggtca ataaacccaa gaatcaatgt agcctcttaa 360
 tccccatcaag atgtagttt tagcagcaaa agtgtaccc 399

<210> 353
 <211> 727
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(727)
 <223> n = A,T,C or G

<400> 353
 ggtactttta cccatttcca gttccacacctt tacttttatca agtggaaactt tctgtggag 60
 gacagcaatt taatggcaaa gggaaagacaa gacaggctgc gaaacacgat gctgctgcca 120
 aagcggtttag gatcctgcag aatgagcccc tgccagagag gctggaggtg aatggaaagag 180
 aatccgaaga agaaaaatctc aataaaatctg aaataagtca agtgttttagt attgcactta 240
 aacggaaacctt gcctgtgaat ttcgagggtgg cccgggagag tggcccaccc cacatgaaga 300
 actttgtgac caaggtttcg gttggggagt ttgtggggga aggtgaaggg aaaagcaaga 360
 agatttcaaa gaaaaatgcc cgccatagct gntcttgagg agctgaagaa agtaccgncc 420
 ctggcttgn a ttggaccgaa gttaaaggcc anaatccaaa taaaanaccn aaancctt 480
 ggttcaangc cnccagaccc angggcccat aattttttgg ccncnngggg attcaaattnn 540
 ccnttttaan cnccgacttg ggnccncnaa attcnccgn ggggcnnaaa naaagggtta 600
 naaaggggan ccccaanagt taccccttgnc ccngggcnng ggnccgttt tnaaaanggg 660
 gtcnaaantt cccatntcnc attggggggg gcccgtttc ttagggggaa tcccgagctt 720
 tggggnc 727

<210> 354
 <211> 411
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(411)
 <223> n = A,T,C or G

<400> 354
 ggtaccatag gtcatttctg gccgatagtc tgaatttaca gcccattgtc ggtgaaagtt 60
 tagtaattt aaattgtttc tggagccca tgtaacactg aaaaaattct ccatttcctt 120
 ttccttcatac ccatctaat acaaagtttt ggattttaga accattgtca ctaggtgcct 180
 tccattgcaa agttagtcaa ttttggtcc gattggctat cttgggtga ttaggtatat 240
 caggttcaca gctcaagggtg gtaaagattt cagccctctga aggagttccc tttatagaat 300
 tatattctgc ctggactttt gcatggtaat ccatggctgg cttgagatca tttaaagtga 360
 tatttgnttc ttctctacat atacactttt ggatttccca tctttccag t 411

<210> 355
 <211> 331
 <212> DNA
 <213> Homo sapiens

<400> 355
 ggtactttc tctatctgat tcagccattt ctgccagagg gaaaaggctcg gcagaaaaaga 60
 tgtatttgcg gaatagttaa ggataggatc ttttgtccaaa aatttcagaa agatttagca 120
 aatctgacgt attcatttag tgagtttctg tgtttcaaa ggtggaggag aaatttgtc 180
 tggaagttt taagccctcg ttttcttggaa aatcagtctg taacactggc aagtcttaag 240
 atagtccccgt ttagactttg cagatgtca acctggctct gtaacgctgg gaagtcttaa 300
 gatagtcctg ttttagactttt gcaaaccctg t 331

<210> 356
 <211> 678
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(678)
 <223> n = A,T,C or G

<400> 356
 ggtactttt aattcagcac cttttcaaaa tatgtgctgg gatggattct tcttagggaa 60
 agccccatata agaattctca ttttggagca tcatttttat atgctatctc cccagtgtat 120
 cttctcaata tttataaacac ttatgaaat aaatattggg ttgcctgtaa gaagagaaaa 180
 atatacgctt ttctgagaaa ggcatttgg cttgcagttt acagcaagag ctgaaatttag 240
 agaccatagg gatttccaag accaatttga ccagaaatac aaaaattctg atgtcaaaaaa 300
 ccctctcaca aaatttaaca ggtagaaatt atttagcag tatagcctga aatccagtgc 360
 aacaaaaatg natcccaatt ctatgatag ncataagtat gntctttan ctggcttncc 420
 ttacttggtc ctactcccta cttggacctt tngggaaagaa aatggtcggc ccaancccat 480
 ctttcaattt ttcnaatttcc ttaatatggaa acccttagcc atggaataac caggggcntt 540
 aaagttcccc ccatttaaat aatgnccctt aatntggnaa anggctgaa ancctggncc 600
 aaaggctgg ggtcttttaa gccccttgaa ggttaacctt caaaaaggggg aaaaaaccnt 660
 tttttttta agttgggg 678

<210> 357
 <211> 414
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(414)
 <223> n = A,T,C or G

<400> 357
 acaccgagaaa ccataatgaa aaaaccttcc gtgtgttttgc tcatgttttgc ttccagggaa 60
 gcagttgtat agtgcgttta ctaatgtttt ctccccagatc cattcagtgg tgagaggag 120
 gaaaatgggc tgggtggatg tggctttgtt gccttgcagt tactctgcac tggttatgca 180
 ttttttttttctc ctcttttcttca gttaacctttt tgccagtggg tttccatag tctgggtatt 240
 tgccttata tcagttatac cacctaaggc aactgggtgc aaaatgcatt ctgttcactc 300

actgtctggg ccttccccac cctagtcttg gcacattcct tcaagaatgt agttaccgtc	360
tgcttggaa gatgtcagtg caaatgtcaa gataatgggc atcggnaaac ccct	414
<210> 358	
<211> 633	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (633)	
<223> n = A,T,C or G	
<400> 358	
cgagggtact tcaaagaaaag tcaaattcta agcctgccc ggcccaaaga caaagccagc	60
caggacctga ccacctgtat cctcttggtg gcaatctgtc gaagccagat gagttctgtc	120
ttttaattcc aatcctattc tgccactgaa actaggcctg ggcaaccact ctaatcatt	180
aacatatcaa aaggagtatc tcctctgaga aaagagctt tctcagttc tagaagctag	240
cttttacaaa agacgtcttc aaataggggc cggtgcagt ggctcacgcc tataattttg	300
gcacttttagg aggctgaggt gggaggattt ctggaggcca ggagtccaag accagcctgg	360
acaacgtatg gaaacatcta ttctaccaa aaaatttaaa aaaggaaaaa attatgtcct	420
aaaatattaa angncatta aaanggccca ctngaacttg gaactttggg gaatctagtg	480
caacaacccc ttgccggana gaagaanctt naaccagctn ttgaattgcc nggtcaaant	540
ggtttatattt aaaaccgata ccactttttt ataatccttt ggnaaatnaa ctgtaagccn	600
ttttccctg aacggaccnt gcctgccc aaatccctt	633
<210> 359	
<211> 635	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (635)	
<223> n = A,T,C or G	
<400> 359	
acagattctt ttagaagctg gggcagatcc taatgcaact actttagaag aaacgacacc	60
attgtttta gctgtgaaa atggacagat agatgtgtt aggctgttgc ttcaacacgg	120
agcaaatgtt aatggatccc attctatgtg tggatggAAC tccttgacc agcttcttt	180
tcagggaaaat gctgagatca taaaattgtc tcttanaaaa ggagcanaca agaaatgcc	240
ggatgactt ggaatcacac ctttatttgt ggctgctcag tatggcaagg tagaaagctt	300
gagcatactt atttcatcggt gtgcaatgt caattgtcaa gccttgacca aagctacacc	360
cttgcatttgc ctgctcaaga gggacacacc aaatgtgtgg agctttgtc ctccagtgg	420
gcagatcctg atctttactg naatgangac agttggcagt ttcccnatca tgccagntt	480
cccaaatngg gcncntcaaa aatcttggac ttgtaatnc cccttaactn accgggnctt	540
gggacccttgc gcttaaccaa agtnagnctt tgttaattaa naaaggtttgg ggggncttga	600
aaantgctt naantnttct ccggaatggg ttcn	635
<210> 360	
<211> 403	
<212> DNA	
<213> Homo sapiens	

```

<220>
<221> misc_feature
<222> (1)...(403)
<223> n = A,T,C or G

<400> 360
aggtaaaat tcaccgagt gtgtatggg cctgtccggg tgcgtgtt tgacctggct      60
tctgtggaca gctgtgagga gaactcagt ctggagatca ttgccttca ttgcaagagc      120
ccgcaccgac accgaatggt cgaaaaatggg cccctgaaca aactgctgca ggcggaaatgg      180
gatctgctca tccccaaat ttctttaaac ttccgtgtt atctgatcta catgttcatc      240
ttcacccgtg ttgccttcca tcagcctacc ctgaagaagc aggccggccct cacctgaaag      300
cgagggttgg aaactccatg ctgctgacgg gccacatct tatccctgcta gggggatct      360
acctcctcgt gggcaactg tggtaacctng ggccggacca cgc                         403

<210> 361
<211> 631
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(631)
<223> n = A,T,C or G

<400> 361
ggtaaaat ttttttttt ttttttttt tttttttttt cgaaaaat aactcggtt      60
ttatncaata gaatgtttt tagcanatgc ctnttgggg aatataattaa aattttgcaa      120
agccnttta gctactgcct tagtctaccc actgtccctt ngttatgagg tanaggatnt      180
catgacacca tacacacaaa cccatcatgg cctgtgaatg cacgtgggc canaatttcct      240
cagttccgc tcctctgagg gttgatactg ctggaaatgc caaccantnc acaagcanag      300
ggaagcccn tcaggcctnc aggaggagcc gcagcagggg gtccaaatna aaccagcngc      360
aaaagaggct gacattttcc catccatnta tgaggaaagc cattttacag aacntggaca      420
tagggcactt gnttttccca cacnaanggg atggaaattt tctacctata gnccattcctt      480
gnacttctgg anttactcan gaccangnc caactaaang gaaaaaccct tttggntctt      540
taaccagaaa agcantnctn nggactgggg acctncccg gngggccnntt aaaggngaat      600
ttccnnntt gggcggtnt aggggacan g                           631

<210> 362
<211> 660
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(660)
<223> n = A,T,C or G

<400> 362
ncnggtacct cantgnctg cttacgctnn anccagcatg tggagctag gtcatttntc      60
gcaaggccagg caaccacacc agngtataan cctcaagcaa atgtnactcc naagccnan      120
atgggactaa ggccttgct gggctaggcg tgggtaaaan cccangcctg naagctnnata      180
cccaaccnta attagtntca ncttactntc aatatgtca tantttcata aagcacacat      240

```

tnnccatgagg	aaaagangat	ggtgtgaaa	gggnaggggt	gangggacat	nttcaagtca	300
canaggctgn	anaactcagc	atgactttgt	gacggaccac	aggncatnca	gggnnacaac	360
acngacataa	ctcaaccagt	ggtnaacn	tctaaaccag	ggtnaacagg	agangggacc	420
aaangnaact	tcctggattt	ngctgcaagt	ttaaaagata	agttctacct	tagcttaag	480
cttagncct	tatggggca	aaaaaaangn	aaagtcaatt	cttgccncaa	atccaagctt	540
gggcncngca	aaaaaggaa	atnggggtn	ttaggcccc	aaacctnaat	tgagnccc	600
aggnttcaag	gcccaggcaa	attgnaaagt	tcctgcctn	aaagcttgg	ccaataaaaa	660
<210>	363					
<211>	486					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(486)					
<223>	n = A,T,C or G					
<400>	363					
ggtagcttca	accttctcta	ttttaatctg	agggaaaatt	aagagaatct	caaaagttac	60
tacagagttt	ggtaggcta	gatacatatta	ttaatagtaa	aagcaaccat	ggcaaaagca	120
accatactca	ttcttgataa	tgaaaggatc	ttcttatatac	aaacctagca	aattaaaaaaaa	180
aaatactaaa	acaagggtc	tgaagataat	gaaaggcagt	tcaattcatg	taatgtcaag	240
taactttcaa	ttgtataga	atcattata	ttcttatagt	gccttacagc	atatittatc	300
gttaatgaga	aatgaacca	aaactatagt	gctaaccctg	aaacctaaa	ccgaacctta	360
caaagttaaa	gactaagtgt	tggtcagaag	gaaaaggatg	caccatgcat	cttcacaggg	420
aaaaatgaaa	atagcnaaga	tggcagaaat	gcctgaactc	atgggtacct	gccccggcggc	480
cgttng						486
<210>	364					
<211>	686					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(686)					
<223>	n = A,T,C or G					
<400>	364					
ggtgctcgga	ataacttcct	gcagcgacca	acaggctaaa	gagggggaaag	gtctggaggg	60
atccagcacc	ggcttcct	ccggcaacca	cggtgggagc	ggcggaggaa	atggacataa	120
acccgggtgt	gaaaaggccag	ggaatgaagc	ccgcgggagc	gggaaatctg	ggattcagaa	180
ctctgagacg	tctctggga	tgttaactt	tgacactttc	tggaagaatt	ttaaatccaa	240
gctgggtttc	atcaactggg	atgccataaa	caagaaccag	gtcccccccc	ccagcacccg	300
agccctcctc	tacttcagcc	gactctggg	ggatttcaaa	cagaacactc	cttcctcaa	360
ctggaaagca	attattgagg	gtgcccaccc	cgtcatca	gcagaaaaccg	tgcaaggcag	420
aacccgatca	gaactacaa	ttccaccagc	atgccgtatt	cccacttggc	ttattggtgg	480
ggaaataacct	tgccngggcn	ggncgttca	aangggcgna	anttccagct	cacttggccg	540
gcccgtactt	aatggggatc	cnaaactttg	gnacccccana	cnttggggcg	nnaatncatn	600
gggcaaaaat	tggntnnncnc	tgggggnaaa	atgtaatnc	cggttcacaa	nttcccccca	660
attttctann	cccgaaagct	taaagg				686

<210> 365
 <211> 639
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(639)
 <223> n = A,T,C or G

<400> 365

ggtagatcct aaagcattct ggtacaaatg aaatggaaact gcctcttgt	ggcttatttc	60
agaagtctgt tgcacatgtt cagttcacag gcatcaacca gaaggcttagt	gaggccgttt	120
gaaattctgg cccagattaa tttttaaag ctgcatttg agcttttaa	agtgcagctg	180
tttccaaagg cttaactgaa gagtaactga ttctactgga aataaaagtc	cacatgttat	240
cccagctgga gtgtggtcat attttcttg caaacctaga atgtcttgg	gaacaaaacgg	300
ctgtcacatg tccccctcca aaaatgtctt aaacaccgga aaggaggcga	ggctaagggtg	360
tagccctcc caccctgggt gccagggttg ggggtgctat aagtgaata	tcaaagcttg	420
aggcactaat attctgaatt tcagcctcaa agganggann gtntcnngaa	tcnangaagg	480
aggggaagga cccaganacg gggaaatggcc tggatggat naatccanna	cntggggnaa	540
agctggtttc ctgataatg nggtcntggg gaccttgcgg	ggccggncgt	600
atccacccc atgnnnngcc gttactaagg ggntccgcn		639

<210> 366
 <211> 586
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(586)
 <223> n = A,T,C or G

<400> 366

cgaggtacaa aatttcgtat agtggcttac tgagttaag atcaagatca	gacttaaact	60
caacaagatc accaaaggta tttctactga gttttccat gtcccacatg	aagctgggtt	120
agagagaact caaatttcgt atggaaaaca aaaccgaaca aaaaaactag	aaaaaaaagg	180
tgttaaaaat gctgtgtaaat ttgctgcata agggaaaaaa	gaatagacac taactccatg	240
taatttttaga catgcagctt ttgtgtttt ttttgcgtttt	ttttttttt ttttgcgtttt	300
aaccagttt ttttgcgtttt agtggaaaaga gtctangcca cagaaaagaa	cagctttta	360
atgcaagttt aaatgtgtaa atgaatgacc cgggacactt gacacccat	gatgcagact	420
tcatttcggca ctgttggct cagacttgcc ggccgcgtt naaaggcnat	tcaccnctgc	480
ggccgtctan tngtccaaat ttgtccaaact gnnaanaggn tanntgtctt	ggaaaannnt	540
nntncatcn nnntnaccga gctaaatgtt cgggnnnntt nnnnnn		586

<210> 367
 <211> 628
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(628)

<223> n = A,T,C or G

<400> 367

gcttcctgag	gaggcaggcca	gaacggaagt	cttggttta	tttatagttg	ataacttaca	60
tccggcctgc	tcctcaggaa	gcacagcagg	gaggagacag	agcccaaagg	.agacggcgac	120
aaaaatgccc	aaaccctga	gctaatgtgg	tgactgagag	caagcctaaa	gctcccttct	180
gagctccccca	gcagccaaag	caaagagaga	aacagggtcc	tgcagcatga	tgtcacagaa	240
aaccaggggac	cctggagcct	gggttccaaat	aagaacctta	cattctgacg	ccttagattt	300
ctccctggaa	aatggggaga	aaaatactga	atgggttggg	agggccatgc	aacacaccca	360
gcacagtgtc	tggatgcatt	tcagagggcc	caccagtcta	gggtctacag	aaagacagta	420
ccttnngccg	ngaccacgct	angggcgaat	tccactact	ggcggggcggt	tctaattggat	480
ccnacttgg	accaactttg	gcgttatcat	nggcataact	tgnittctgn	gggaaaattt	540
gtatcccgnt	tcaaattncc	ccccantct	aancgaannc	ttaangttt	aacctggggg	600
ncaaataagn	gcttacctcc	tattgggn				628

<210> 368

<211> 618

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(618)

<223> n = A,T,C or G

<400> 368

acaattcata	ggggacgacca	atgaggacag	ggaatgaacc	cggctctccc	ccagccctga	60
ttttgctac	atatgggtc	tctttcatt	cttgcaaaa	acactggct	ttctgagaac	120
acggacggtt	cttagcacaa	tttgtqaat	ctgtgtagaa	ccgggccttg	caggggagat	180
aattttcetc	ctctggagga	aagggtgtga	ttgacaggca	gggagacagt	gacaaggcta	240
gagaaagcca	cgctcggcct	tctctgaacc	aggatggAAC	ggcagacccc	tgaaacgaag	300
cttgcctcctt	ccaatcagcc	acttctgaga	acccccacatct	aacttcctac	tggaaaagag	360
ggccttcctca	ggagcagtcc	aagagttca	aaagataacgt	gacaactacc	atctagagga	420
aagggtcccc	ttagcagaga	agcccagagc	ttactctggt	cgtttncaga	nacaactgnt	480
ggcttgcttg	ggatgcccc	agccttgan	aggcccttac	ccattgacct	tttgcctatcc	540
cttgggcatt	aacttnnggc	cttgggnntt	aancttgnntt	gccttnaang	gncaagggttt	600
gcttaanccg	gntgnggc					618

<210> 369

<211> 443

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(443)

<223> n = A,T,C or G

<400> 369

gcagggcgccc	cngcgccgtc	ttggcgaacg	gtttcggaa	gcggcgccgg	cgcgatgacc	60
acgctacggg	ccttacctg	cgacgacctg	ttccgcttca	acaacattaa	cttggatcca	120
cttacagaaa	cttatggat	tcctttctac	ctacaatacc	tcgcccactg	gccagaggtat	180
ttcatttgg	cagaggcacc	tggtgagaa	ttaatgggtt	atattatggg	taaaggcagaa	240

ggctcagtag ctagggaga atggcacggg caccgtcacg gctctgtctg ttgccccaga	300
atttcgacgc cttgggttgg ctgtctaaact tatggaaagt actagaggag atttcagaaa	360
gaaagggtgg atttttgtg gatctcttg taagagtata taaccaagtt gcaagtaaca	420
tgtaccttng gtcgcganna cgc	443

<210> 370
<211> 636
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(636)
<223> n = A,T,C or G

<400> 370

acatttgttt atttaaagca caggaaatga ataaaatgcc acctaaaaag tattgtcaat	60
gaataaaatta tttccagtga agcactgcag atccacacac accagtctgc taacctttac	120
caaggccatg tccgggtggc ttgtgtctgt tccagttgac tcttccttga gacctttccc	180
ttctgtgcac tgaccacagc attagagacc agtccatgcac ggcgtggcct tcctcgtagg	240
catggcagac cacgtggatg agcagtgggc tggcatgcac taggcttnaa caaatggcac	300
ttcactgttt ccagtgcacc tgaaatgttt tacgtaagtg gggcctgggc tttaaagaaa	360
agagccaggg ttcctcaagc tggggccctt tacttgaggc cagcttcagg aaatactgggn	420
cctaaggagc cagcaacttg tccaggagtt ttgagccctt antttgaagg aaaatggccc	480
cttggngtcc ntgcaagcac cagnnatttc cgtatngtg ancaagtnac cnnccttaag	540
ggaaggccaa tcccnccttg ggnggantcn agggcnctan tcctgtttgg aagggcttga	600
aggttggaa tntttaaaat ggaggnntng gcttcc	636

<210> 371
<211> 615
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(615)
<223> n = A,T,C or G

<400> 371

ggtacaagct tttttttttt tttttttttt tttttttttc tgtaaagaa tgctttatta	60
atacaaatac acacaaactc tgaagcacta anaaattttaa atatctatgt cacagcaaac	120
agggtggcaat tcaacatcca gggtcgacag aatgtttgaa gganactgca acagattgga	180
ttccccatgtt gganagggca tnttcacagg tgaagggggg cccagctgaa acagttttc	240
aagctcttc tcctcgtaa ggatcatgag aggactcca ctcaagggga ggtgcgcaat	300
ctgggtgcct tcagggcaggc caaaactctc aaagtctaga ggattgaagg gaaagaattt	360
ttctattttt gatatggcat catctgaggc aggaacacagag cttttgctt taacagtctt	420
ctcagtcata ttttttggca aaaaagctt gctgggtttt tttgangggg tccttgggct	480
ttacagactt ttctgnaact ctgttgacca gntccccaaa gcctttttta gtaactttta	540
ggttaaggctt ntggggccat taaacctttt tccaaacctg gggttgaaac ttggaaccnc	600
ctttaaggt ttgt	615

<210> 372
<211> 612

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(612)
 <223> n = A,T,C or G

<400> 372

actttttttt	tgttcttagga	atgagggtag	gataaatctc	agaggtctgt	gtgatttact	60
caagttgaag	acaacctcca	ggccattcct	ggtaacgtt	ttaagttagca	tttccagcat	120
tcacacttga	tactgcacat	cangagtgt	gtcaccttc	ctgggtgatt	tgggtttct	180
ccattcaagg	agcttgttagc	tctgagctat	gatgcttta	ttgggaggaa	aggaggcagc	240
tgcagaattt	atgtgagcta	tgtggggccg	aangtctcg	cccgcagcta	agtctctacc	300
taagaaaaatg	cctctggca	ttcttttcaa	agtatagtgt	ctgagctnat	gctanaaaaga	360
atcaaaaaggc	nagtgtggat	tttttagactg	naattaaatg	aggcnaaang	atttctattc	420
ccagtgggaa	agaanacctt	tctactgaag	ttgtgggggg	antatgtng	aatgttagag	480
agaaccctt	aggntnctt	tgattggccc	ttggagacccg	nttggannac	atnncccgga	540
attnnnant	aaattnttc	nggnntnaag	tttcccncgt	tngtngmann	ccaacctngt	600
						612
ttttgcccccc cc						

<210> 373
 <211> 638
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(638)
 <223> n = A,T,C or G

<400> 373

ggtaactca	atttcaaatac	atgaacacaa	gattgaaact	tttggaaaaaa	tgggttcaag	60
cttccttatt	agccatggaa	atgcaaagtt	tagcagaagc	aagcaattag	gcagagaaca	120
aaaatgttaa	gcatgggtt	gtctatctt	ttgaagtggt	tggaaatgaa	agcttttaat	180
tttgatagatt	tatcgtata	aaatttagga	aaccacgtgt	ggggaaatgaa	tcaattttaga	240
gcttcgggaa	ttgtgagggt	acttttgtaa	cttttgttct	gtgtgtgacc	tgtgaaccac	300
tagatgtgat	ctgccttgc	gggcagggtcc	agcatagttt	ggagtttaggc	tttancataaa	360
aattcttagt	gcatctgagt	ctcctggat	gggtgtctt	tggctngtt	tggcctgccc	420
gattgggtgag	atccagancc	agcttttcc	tgcgtctgg	ccctnncaa	ttaatttgg	480
gggattggcca	gtgcnagaan	accttagttt	taaagaattt	taatcctacc	ncgaccnagt	540
ccaaaangc	ngggtttga	atgtggaaan	ttttnnaattt	ttcccttana	aagtctaaat	600
						638
tttgcctngt tanactnttgc tttttaaagg gaaggaa						

<210> 374
 <211> 503
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(503)
 <223> n = A,T,C or G

<400> 374
 ggtacagatt aacttaaacac aaaaacccga acttcaaaat gaagggtgtgt ggaggaaagg 60
 tgctgctggg tctccctaca actgttcatt tctttgttag gcagggggta gttcctgaat 120
 ggctgtggtc caatgactaa tgaaaaacaa aaacagaaac aaaaaaaaca aggaactgtc 180
 atttccacga aagcacacgcg gcagtgattc tagcaggcct cagggccctg ggcttggga 240
 ggctacatga gggggagcct cagtcacagg atcaacctgg ggcccgaagg agcagggttc 300
 cctgccttc cctcgcaac agatcatccc atccaacaca acccccaaaa tggatgtat 360
 gacgcaacat ggtcaaccct caagacctt aagacaaaac agagcagcat aggaaaaaaaaa 420
 aaacaaaacg caccatattc tgcatgtgtc aatggtaggg caccnttta aaaaagtctg 480
 tctaaaaacan nctntgttta ctt 503

<210> 375
 <211> 611
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(611)
 <223> n = A,T,C or G

<400> 375
 ggtacaaaag ctgttgaact taatccaaa tatgtgaaag ctctcttttag acgtgcaaaa 60
 gccccatgaga agctagacaa taagaaggaa tggtagaag atgtcaactgc tgtgtgtata 120
 ttagaagggt tccaaaatca acaaagcatg ctgttagccg ataaaggttct taaactcctt 180
 gaaaaagaga aagccaaaga aaaatataag aatcgtgaac ctctgtatgcc atctccacag 240
 ttatcaaat cttaacttcag ttcttcacg gatgatatca ttcccagcc catgcttaaa 300
 ggagagaaat ctgtatgaa taaagacaag gaaggggagg ctttagaagt gaaagaaaaat 360
 tctggatact taaaggccaa acagtttatgg aagaagaaaaa ctacgatana atcataagtg 420
 aatgcccana aaaaaaaatn attaaaaaaa aagcttgcc ctgcccggc gccgttcnaa 480
 agggcgaatt canctccctg gngggcggtt ctannnggat ccaacnttgg gccaaccttg 540
 gngnnaacan ngntatant gtttcttggg naaatggtn cngttncaa tccccnaatn 600
 ntngngccgg g 611

<210> 376
 <211> 601
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(601)
 <223> n = A,T,C or G

<400> 376
 cgaggtcttt tctcttttc tgcatttcattc ccagatcaaa gaatcccgag ttaggatctg 60
 gatgaaggat aagccctga attgtcgatg ggctcacccc cacactgacc cagcatctga 120
 acttgcttaa cagggagccg gggctaaact gttcacccct gcctgagaac cagggagcac 180
 tgcatttctc cacagggtgg aggagaagag gcagaataaa ccaagctgg gacacctccc 240
 tcctgtctag gtgtacagca cacagttaa tactcttcac cctcatcctc tcctgtcagca 300
 ctatctgttc caaccttcataatccttc tcaagggcag ccatgttc acgggcctct 360
 gaaaactcgc ctggaccaca aagttgacc tgatgtatgc caagccgtgc ctttggtcac 420

tggcacctgg ccngccggc cgttcaangg cgaattccac acactggcng gccgtactan	480
tggatccnaa ctnggaccag cttgngtaat catggcatnc tggccttgg ggnaaatgg	540
atccgttaca attccnccan ntcnancgg aacctaaagg gttaacctgg ggngctaatt	600
a	601

<210> 377
<211> 621
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(621)
<223> n = A,T,C or G

<400> 377	
ggtacaagct tttttttttt tttttttttt tttttttttt tctgttcaag aaccagtctg	60
ggatcttgcata cccagctcta attactggcc gtagcagcat attgcttaan aattttgttag	120
aacttatttc tcacatcgacg ctgtccaaag gactgataaa tagagacaga tcccagtcct	180
ggatacttgc tgtaaatect aatcgagac tcacttntna gcaatggagg ctgaaaagtct	240
tagtgagact cagtaaatttc cttnaggcct tggcagatgg atccagtagg ttgagagaaa	300
gtgaaggact tcagaaacag aaagaaaatc cccatgccac tagcaactcc atttttatna	360
actggaaagga acatgccaac gaccagcaac acatccaggg ttatgaaaa tgggggttca	420
cagnchaaat gtcngntcca agttcaggtc ncnggattt ggtttggagg actgaatgg	480
gtggattaaa ggcttncatt ttcttgnaac cttgaaaggg tttnnggan aanaattcnt	540
tgnatgna agctnggtt aaacttgacc tngcccggn gggccntca aaaggcgna	600
ttnccgcncn ttggggggcc g	621

<210> 378
<211> 327
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(327)
<223> n = A,T,C or G

<400> 378	
acatctccga cagtatctgt tttagcatct ttgcncttct gaagtctttn atacttgtgg	60
caaaaatccc tggaaactggc ctccangtgt ccctccaccc tggctggcac ttggcggtt	120
ccacncaaact tcccaaacag ctcacaatcc tggctgactg ggacaataat tcagcaaact	180
ggctactcaag acctggcacc aaatgtccctg tccaaaatgc tggctactga accagtgtcg	240
ggcgccccctg ggcagggtgg ctcgatcacc cgccacatnc acttggccgc cagaagccng	300
nggggaagga cctnggcgcg acnacgc	327

<210> 379
<211> 517
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1)...(517)

<223> n = A,T,C or G

<400> 379

actcacaagt aagaaacttt ctctactgaa ggatactgtc acagagtttgc ttgcagagca	60
tctatatata tatttattna tttatTTtaa aaaantaaac aacantgtat aacganccca	120
ggttcctaga accaattctc ttgattctc acttccacaa aataaagtgt atcatttggc	180
caagactaca gatgtgttt tnttttca canatgcaag tgccatgcaa aaataaatta	240
aagaacagat accaaaacat acatgtgata aaactacana tggtagattt ttaaaggcat	300
ttatataaac ntaattata aatacttctc ttntgcct tatatacagt cncaaancgt	360
gntgttatac atntaggatt tcctntgcnt gacctnggc cgtnacnacg nntaagggcc	420
gaattctgga agattccatc tacaatttgc ggctcgTTTn tancatncct ttntanggcc	480
caatttngnc cnntannnga gtcngattac aanntcn	517

<210> 380

<211> 351

<212> DNA

<213> Homo sapiens

<400> 380

acgctgtgga gggctgcagt gctcgtggat tcaaaatcac agagggctgg taaatggcag	60
cttctgtagg aataactgca gcaggagctg gaaatgtgta ggagggagga gacaggcatg	120
gtaacttaca tggcgggtggg gataagccat ttgcatttaa agtgcCCCCC attaacacaa	180
agttcatctc ctcagctgaa cactgaaaaga cttcaacata tctgtcccttc atgtttttt	240
atgacacttc tgtgcagcca taaaatgtct gtccgcagac ttcatctgga taaaggcatc	300
tcctgtatggg cggccctgg t gattcaaaac catgtgaacc ccatgagttac c	351

<210> 381

<211> 622

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(622)

<223> n = A,T,C or G

<400> 381

acacttccaa ttgtccatat aattaagctt tccacaatct tacacaccca tcatctcctg	60
aagatgttag caccgttctt gttatTTcc aactcaactcg ccagactgtg gaattatgtat	120
tatcgaactg agccactata tggatttcaa actttgtgg cccaccagag gaagtcaagt	180
cttcctcac aggcttaat gtaaaaattc tcacatctt ggtcgctatt gctagaatat	240
ggaaagatct tcccaaattt ggagcgaatg caatatcatg aacaggatca gtgactgtca	300
taagagtttc agcttttgca tatttcctgg tggTTTcatt atattcaaaa atctgaacct	360
tggccatTC gttggggcta ctgnacatcac ttctacggc gatcatgggg gaatgagcac	420
gagagctttg naggggtncc aagaaatnca ttcccagctt agcttacttg aganctctgg	480
ctggnaaga cccctngct gagaattcnt aaccatctgg ggccctcaaa nantcttacc	540
tttccatng nggacaaggt ggtaacttag aacCCCNgnn ctgggacca actnccnTT	600
cggttncana gtttggtncc cc	622

<210> 382

<211> 509

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(509)

<223> n = A,T,C or G

<400> 382

ggtaactctca	tcccgcccc	attcaggctg	atagtaacag	cctaggtaga	gtcaacacat	60
aaaaaaagtgt	aattccaggg	gaggaggatt	agaataagga	cacaaggaa	gggaggaaaa	120
tgttctttga	ggctgaaatt	ccattaattt	ttcatagtag	tgagtttata	tttgcattg	180
catccttcaa	tcttctaaa	aaggaaatcc	ccgaaacata	ataaaatctc	ttctgtatag	240
aaaagctaca	gctccacact	aagaggaatg	ccgtctgcct	taaagaatgg	aatcatcagt	300
gaccaagaat	tacttccaag	gagaattca	ttgatattaa	aaccaaagcc	agatccagct	360
cagcaaaccg	acagccagaa	cagtgatacg	gaggagtatt	ttgagaatg	gtttccaaac	420
ccgccaacct	gcacgggttt	atttctgcca	cgtgtctctg	gaacacacat	taaactgtgg	480
aaactnnctn	ctttccgctg	ggggtcccc				509

<210> 383

<211> 380

<212> DNA

<213> Homo sapiens

<400> 383

acaattccac	ttatccatac	tattcctta	taaaaggcag	atttcaggta	agtttctaaa	60
tgcattgcgt	atgttagaggc	taatattttc	tggcagtcc	tggttcctga	aatttgaact	120
tcatatgtgt	tttaaacttt	tgtcaaaata	gtcatgaaag	atatgttatt	tttgcataat	180
gaggttaatat	atcagggggcg	ggcactcata	agacagtata	aatccacttg	tctaaacttg	240
catgaggctg	tgtgcattgt	aaaatgcatt	aaagagttt	gggtcaagtg	aatattttgc	300
tgaaggaata	acacttacat	ttaactgagc	actttctgt	aataaataacc	aaagttaggtt	360
tttgcattgt	taaactgtgt					380

<210> 384

<211> 317

<212> DNA

<213> Homo sapiens

<400> 384

ggtcccagac	ccaagaccaa	ccgatggagg	aggaggaggt	tgagacgttc	gcctttcagg	60
cagaaattgc	ccagtgtatg	tcattgtatca	tcaatacttt	ctactcgaac	aaagagatct	120
ttctcgagaga	gctcatttca	aattcatcag	atgcatttga	caaaatccgg	tatgaaagct	180
tgacagatcc	cagtaattta	gactctggaa	aagagctgt	tattaacctt	ataccgaaca	240
aacaagatcg	aactctca	attgtggata	ctgaaattgg	aatgaccaa	ggctgacttg	300
gatcaataac	ccttgggt					317

<210> 385

<211> 275

<212> DNA

<213> Homo sapiens

<400> 385

acttttagtc	cctgtttac	aggggttaga	atagactgtt	aaggggcaac	tgagaaagaa	60
caagagaatg	acagcttaggg	gttgagaggg	gccagaaaaa	catgaatgc	ggcagatttc	120

gtgaaaatctg ccaccacttt ataaccagat ggccctttc acaaccctgg gtcaaaaaga	180
gaataatttg gcctataatg taaaagaaa gcaggaaggt gggtaataa aaatcttgg	240
gcctggaaaa aaaaaaaaaa aaaaaaaaaaag ctgta	275
<210> 386	
<211> 606	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(606)	
<223> n = A,T,C or G	
<400> 386	
ggtacatgga tattccaaa ccattccatt agaaaactgc cctccctgca cacacaacaa	60
aaacagcgct atttcctaca cctattggac tgaaagtgc tggaaatgga atggtttag	120
aatatgaaga agaacacaaa ccaagtagct gtgggttggaa cctggacgtg agctggctgc	180
agggccgtt ggtagaaaac cagcatctca taaacaggtc actacaaaaaa taggaagagt	240
ataaaaatag aatatattat gtcactattt cgtttctct ttatagtgc gtatcgtagg	300
agtgggacag gtggccttc ccgaccctgc tacgctggct ggtgcccgc aacctccac	360
tggatggttt gtcactggat ggttgggtggc acaggcgcaa aggacatgca	420
cacgggcacg ctgcgtactg naaccagan gtgacttcag cntgaataaa gngaaaagg	480
tccccatnta nctnggaat tattnccnc ccaggncccta ttaaggggct ttntggctt	540
tnaccancca agncccnccc cttgaaangc caaactttt tgaaaaaaag gganccttgn	600
atngnc	606
<210> 387	
<211> 339	
<212> DNA	
<213> Homo sapiens	
<400> 387	
accacttgca gtcaaattgaa ttcccttcgaa atgtatttga acttggaccc ccagtgtgc	60
ttgatgctgc aacgctaaa acgatgaaga tttctcggtt cgaaaggcat ttatataact	120
ctgcagcctt caaagctcgaa accaaagcta gaagcaaattg tcgagataag agagcagatg	180
ttggagaatt ctcttagatt ttcagaactt gaagactatt ttcttaatttc tattttttt	240
tctatttcaa tgtatTTaaa ctctagacac agtttttac ctggattaac ttagataact	300
ttttagcag tggtttatatt gcttataatt taatgtacc	339
<210> 388	
<211> 667	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(667)	
<223> n = A,T,C or G	
<400> 388	
taccagttgt catcatagcc ggagatggac acttcaggag gtagcgtac attccatga	60
caccaatact acagtttcg gagtcacagt aagatacaca gaattacatc cgtaattaat	120

atgaatgc	acatgtcaag	cagtaattt	ttacatggca	aacaaaatca	agaaaagcaac	180
catcaaaca	aagagaccca	tagcttcaga	caaggcaat	cccaggatag	catatgagaa	240
cagctgctc	ttcagcgaag	ggtttctggc	ataaccaatg	ataaggctgc	caaagactgt	300
tccaaatcca	gcaccagaac	cagccactcc	tactgttgca	gcacctgcac	caataaaattt	360
ggcagcagta	tcaatgtctc	tgctgatgc	actggctcg	aactccctt	ggatttagctg	420
agacacacca	ttctgggccc	cattaaatac	cgtagagccc	tctccagtcc	tactagcctc	480
tggtcgagat	aacactgtat	cagaaaatgg	tctgtatgc	actctggatc	cagctcgat	540
cagagagggg	gtgcaggcga	gcttggcgca	ggcgaacatc	ttacactctt	cgggactg	600
cggctggaga	tattgggtga	caggcgacgt	gggctctct	cccgcttnct	ctctttccag	660
gaagcg						667

<210> 389
<211> 613
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(613)
<223> n = A,T,C or G

<400>	389					
ggtaccagg	gtcatcatag	ccggagatgg	acacttcagg	aggtagcgt	acattccat	60
gacaccaata	ctacagt	ttt	cgaggatcaca	gtaagataca	cagaattaca	120
atataatgc	caacatgtca	agcagtaatt	tgttacatgg	caaacaaaat	caagaaagca	180
accatcaaa	aaagagacc	catagttca	gacaaggcaa	atcccaggat	agcatatgag	240
aacagctgt	gtttcagcga	agggttctg	gcataaccaa	tgataaggct	gccaaagact	300
gttccaatac	cagcaccaga	accagccact	cctactgtt	cagcacctgc	accaataaaat	360
ttggcagcag	tatcaatgtc	tctgctgatt	gcactggct	gaaactccct	ttggattagc	420
tgagacacac	cattctggc	cccattaaaa	taccgnagag	cctttcagt	cctactagcc	480
tctggncgag	ataacactga	tgcanaaatg	gnctgtatgc	caactctgga	tcacttcgg	540
ttcaaaaagg	ggtgcaggca	acttggccca	ngcgaacatn	tacactttc	gggactgccc	600
gnttggnnaa	tgg					613

<210> 390
<211> 278
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(278)
<223> n = A,T,C or G

<400>	390					
actagtcc	tagaaatagg	ttaaaactgaa	gcaacttgat	ggaaggatct	ctccacaggg	60
cttgtttcc	aaagaaaaat	attgnntgga	ggagcaaaat	taaaagccta	cctaagcata	120
tcgtaaaat	gttcaaaaat	aactcagacc	cagtcttng	gatggaaatg	tagtgc	180
gtcacattct	gcttaaaat	gtaacaaata	cngatgagtt	aaaaanann	ctttnttga	240
actctnanga	aaanc	tttgaa	ccttngccgn	gaccacgc		278

<210> 391
<211> 604

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(604)
 <223> n = A,T,C or G

<400> 391

ggtcgtttttt	ttttttttt	ttttttgaa	cacagatcac	tttattggca	tggctttgtt	60
ttaagaaaaag	gaaaagtgc	aaagccaaga	gacagactnt	gctaacagat	gcctgggggt	120
ggctggacat	ttttgcctca	tgctgtgcaa	agagggggat	cctggccac	acatcctgt	180
gattccttgg	gacaagggtt	tctgcctggg	cctcaactgca	ccttcttcaa	tacttgcttg	240
canaccacac	cttcactct	natctncagg	tgcagctcat	caccctngat	ccactgggtc	300
cagccacgccc	ccttcttctc	acccttctga	cacactggag	cttgctccgt	cccagtact	360
gtgtcatgc	cttgcggnc	tctatgcctg	nagatctcc	taaactctt	tccaaacctgg	420
aagtccatga	tgnantncct	aaaagngtc	accgtggcg	angatcatat	ggtcancggc	480
ntgaacgaan	tntttggcg	gnnttcanna	agttgcccatt	tttgcgcaa	ggggccattt	540
gnctnnnagg	gcccangtnc	tttgcnngnc	ccctnagggn	aatccccac	nttggggccg	600
ttn						604

<210> 392

<211> 610
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(610)
 <223> n = A,T,C or G

<400> 392

acgagggggag	cgagacgaaa	ggagaacggt	gattattcat	gacaggcctg	atatcactca	60
tcctagacat	cctcgagagg	cagggccaa	tccttccaga	cccaccagct	ggaaaagtga	120
aggaagcatg	tccactgaca	aacgggaaac	aagagttgaa	aggccagaac	gatctggag	180
agaagtatca	gggcacagt	tgagaggcgc	tccccctggg	aatcgttagca	gcgcctcggg	240
gtacttattg	gcacaaattc	gggcagcctc	cagggcttca	gaggacagct	gctcatattc	300
atctgacacc	atgtggccac	aaagcgaaa	ctcatccact	tttgccctt	tccgccccag	360
gtccaaaat	cgaatcttgg	catcaggagac	acctcgccag	aagcgagact	ttgggtgagc	420
ttgtttcca	tctagggatg	atggagaca	gtgacaaatc	atccaccatt	agattttat	480
aaggagcgca	caaccagac	aacccaaatc	ccttggatg	tgccagttca	caatagtgg	540
catgcctcca	ttgagaatat	aatggcttn	gacttgcgg	aaggcaaact	taaggccata	600
atgggaccng						610

<210> 393

<211> 314
 <212> DNA
 <213> Homo sapiens

<400> 393

ggtcccagac	ccaagaccaa	ccgatggagg	aggaggaggt	tgagacgttc	gcctttcagg	60
cagaaattgc	ccagttgatg	tcattgatca	tcaatacttt	ctactcgAAC	aaagagatct	120
ttctgagaga	gctcatttca	aattcatcag	atgcatttgg	caaaatccgg	tatgaaagat	180

tgacagatcc cagtaaatta gactctggga aagagctgta tattaacctt ataccgaaca	240
aacaagatcg aactctact attgtggata ctggaaattgg aatgaccaag gctgacttga	300
tcaataaacct tggt	314
<210> 394	
<211> 498	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(498)	
<223> n = A,T,C or G	
<400> 394	
accagacctg tcaacgtcna tttctcggn aatttnttgg tattttgaa tctncgtcca	60
gagaatgtaa aactccttca gncccagctt gccactcccg tccgaatcta gcatgtcaac	120
cataatttng aatcttcgtc cagagaatgt agaactcctt cagccccagc ttgccactcc	180
cgtccgaatc tagcatgtca accataattt tgcattgnctc gatgctgaag ccattctgact	240
ggataatcttgc ggcctttgtc agaacccttc tcaggatggc ctgcngctca aaggcanaga	300
tctccgnatc ctctcctgccc aactgggcaa acagnctcct gaatccatca tcaatgtcat	360
cctcgctgtat gtcgaactct tcaagattgg cctcgatttc atcatcgaca gcttggtagt	420
cagctttctt ttcagaaaag acccggatgc agaaatcccc atccttgntg gtttcgaagg	480
tggaaaggcac ganaatgt	498
<210> 395	
<211> 629	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(629)	
<223> n = A,T,C or G	
<400> 395	
gccggccgtc aagctgtcca catccctggc ctcagccccg cacatcaccc tgacctgctt	60
acggccagat ttcttcaat cacatctgaa taaatcactt gaagaaaagct tatagtttca	120
ttgcaccatg tggcgttgcattt gggcgctgtt tggcagtgtat gattgcctt ctgctcagtgt	180
tctgagtgct atgaagatttgc cacacagagg tccagatgca ttccgttttgc agaatgtcaa	240
tggatcacacc aactgctgtat ttggatttca cccgttggcg gtagttgacc cgctgtttgg	300
aatgcagcca attcgagtga agaaatatcc gtattttgtgg ctctgttaca atggtaaat	360
ctacaaccat aagaagatgc aacagcattt tgaatttgaa taccagacca aagtggatgg	420
ttagataatc cttcatcttt atgaccaang gaggaaatttga gccaaccatt tgnatggtttg	480
gatgggtgttgc gttcaattn ggtttactgg ggaaactggc cattangaaa aggntcctg	540
ggtaaaaagaa tccctatggg ggccnnnacc tttgnntnaa agccntngcc caaaaaanggg	600
gntttttttggg cggnatgtttt cnaaaaacn	629
<210> 396	
<211> 614	
<212> DNA	
<213> Homo sapiens	

```

<220>
<221> misc_feature
<222> (1)...(614)
<223> n = A,T,C or G

    <400> 396
ggtaacttggg cttctttcag ctgcttcaac agagtggcag caacccaagct ggagtccaaag      60
ccccctgata aaaggcagcc aatccttcgt tctgtcatca aacgtttctt tacagcatta      120
ttaaaaaga tcctgagggtt gttcttcaca gtttcttatct caaaaacctgg aaagagttc      180
tccacattgt catagagggc gtgcagggggt tcatcccac agtgatgata tttaaccatt      240
tccacggatg caactttgcc atttggctt aaatccaaaa cttcatagtg tccaggaaga      300
aaaggctcca ctttaaaaaaaa gggagtcgcg gagtgctca atgtaacaag acctttaact      360
tctgaacata cagccaaaaa tcatctttc gncattgct taaaccaang tctgactcca      420
tatggtatct cttacccagg aacccnnttc ttaatggca ggtantccag taaaaccaa      480
atggcaaaccc ccancancntc caaccnnttc naaatggntt gggtnaaat nccttcctt      540
gggcataaaa gaatthaang ggntnnntt tanccttcc ccttttggc cgggggattt      600
cnaaaaattcn aaaa      614

    <210> 397
    <211> 588
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1)...(588)
    <223> n = A,T,C or G

    <400> 397
acctggggcat aggaagggAAC caggacaggg ctggggacAG aaggTggTCA cagtcatggT      60
ttcactctca gaaatatccct gggcctatgg cttaaggctt cgtggagcag ggagtggacc      120
tttgtgttat ttacaaggctt gggccatataa aagcattgc aaacatggag tggagaggat      180
ccttggagat gagctggttc aatcacttct ctgaccaaca agggaaacaaa ggcccagaga      240
ggagaaggca gtgcctggcc agacgtggGA cctgaacccA gccaggGCTC tgactcccAG      300
tccccccagtc ccctctctac ctccttgctt ggctgagtct tttttgata aaggccccAG      360
acagcctctc cgacagtctc aggtcaggtt ggggttataa atggagcagt ggactcagAG      420
tcagaggccc agactctgtt cttgggcctt nacattacca agncttgcta ataaccacGA      480
ggccctggtg tggaggggct gctctttt aagctcagct cttatctggA acaggccaca      540
aagttncatg ggataaanggn tgaggccnna gcccacagng tggaggnc      588

    <210> 398
    <211> 348
    <212> DNA
    <213> Homo sapiens

    <400> 398
ggtaactagcc ggacttggat tttctggaaa gattcagtt gaggaacggg aacaaagatt      60
atgatagctt tccgaccacc accaacttca atttccttag ctgcccgtaat attcagctcc      120
ctgagctgag ccttgaggTC cgagttcata tccagctcca gaagagcttggagatggccg      180
gactcgaact cgtccggctt ctgcatttgc ggcttacgaa tcttggcgct cgaactgaac      240
atggctttctt cctgggagaa cttgccgagc gcccgttag gaagagaccc aatctcgCG      300
agagcacgtc aaaatccggc gtccgaaggc aagaggcggA aacagcgc      348

```

<210> 399

<211> 630

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(630)

<223> n = A,T,C or G

<400> 399

acatccaagt ttaaaattat cagcgaaatg	gtccatgttt ttccaattac	ctgctgacac	60
ggttctaagg taagtgaagg ggaagatctg	agagcgtgct gtttgtggct	gttgatgcat	120
atccgtatg taacaggtcc tggggcctca	cttacccca tttgtaaaat	ggggctaatg	180
tcacacctcctt cttacctacc tcagagggat	ttggtgaagc aaactgttaa	tcttcgaaaa	240
cgaccatssc acttcttggat tatcaagtgc	taaaccagta tggcttcctt	ttttatgtaa	300
gggacagctt tctccacaga gtcctttctg	ctggtgagga cagcatttct	gagcagggtct	360
ttgttctcta tgtgcattag gacttttatac	atgcccttgg tctatgtgt	gttacttgac	420
agcatcaaat gcccgtctt cctaatgncc	tcaagggttt catgaactaa	caaccccacc	480
tttcancatg ggctggccc ctgaatttgc	tgnacttcc agaccacact	ggttctacca	540
cctgaacagg ccnttaaagt tcccaanggt	cancttcctt aattccttgg	ttcccggtgt	600
atggggact tggctanaa aaggccncc			630

<210> 400

<211> 619

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(619)

<223> n = A,T,C or G

<400> 400

actgaacagg taagtcatcc ctcagccaga	gattagtcta cttttccat	gcgtgtgt	60
tcgtcatatcc cttcaagggg tggcatttct	tcagttacag cagcactgg	atcatcagca	120
gtagggtcat cttcatcaat acccagacca	agtttgcata	tcctgttagat	180
tgtgtctggg gatcttccag actgaagcca	gaagacagga	gcgcagttc ataaagcaag	240
atgaccagat cttcacaga cttgtcggtt	ttatcagcct	ctgccttttgccttaagggtc	300
tcaataatgg aatggtcagg gtttatctcc	agggtttct	ttgctgccat gtaacccatt	360
gntgagtgtc tcttagggct tgagcttca	tgattcgctc	catgntgtgc gccagccata	420
tgtgcttgtg acaatacagn atggagatgc	accaatcggt	tggacaaacc acctttcact	480
ttttcttcca tangcttca gatttgcata	gttctaaact	ttgggtttc ccttctgntc	540
ttttctttt atcttggaa gtccaggctt	nttggggacg	ncctaagctt ccctnaatct	600
ttagtgtgga nnagncntn			619

<210> 401

<211> 663

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (663)

<223> n = A,T,C or G

<400> 401

cgaggtactt	gggcttcttt	cagctgcctc	aacagagtgg	cagcaaccaa	gctggagtcc	60
aagccccctg	ataaaaaggca	gccaaatcctt	ctgtctgtca	tcaaacgttt	ctttacagca	120
ttattaaaaa	ggatccttag	gttgttcttc	acagtttcta	tctcaaaacc	tgaaaagagt	180
ttctccacat	tgtcatagag	ggcgtgcagg	ggttcatccc	gacagtatgc	atatttaacc	240
atttccacgg	atgcaactt	gccattttgc	tttaaatcca	aaacttcata	gtgtccagga	300
agaaaaggt	ccacttttaa	aaaggggatc	gcccggatgc	tcaatgtaac	aagaccttta	360
gcttctgaac	atacagccaa	aaatccatct	tctgcattgc	tttaaacaaa	ggtctgactc	420
catatgtatc	tctacccagg	aacactttct	taatggcagt	attcagtaaa	accaatgcca	480
acccaccatt	ccacatacca	aatgggttgc	tcaaaccctc	cttggcataa	agatgaaagg	540
ttattnacc	atncactttg	gcccggattc	aaattccaaa	agccggtgca	ttttntaan	600
ggtgganaat	tnnccctgn	accnaanccc	caaattccggg	attttnttnc	ctcnaatngn	660
tgg						663

<210> 402

<211> 673

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (673)

<223> n = A,T,C or G

<400> 402

ggtacgtgtc	cagctctgaa	ggccaaagtg	cagaagatcc	taatctggaa	gtgggggtcag	60
ccaccatctc	ccacaccagt	gcctcgccct	ccagatgctg	atcccaacac	gcctccccc	120
aagcccttgg	agggcgggcc	agagcggcag	ttctttgtga	aatggcaagg	catgtcttac	180
tggactgct	cctgggttgc	tgaactgcag	ctggagctgc	actgtcaggt	gatgttccga	240
aactatcagc	ggaagaatga	tatggatgag	ccacccctcg	gggactttgg	tggatgaa	300
gagaaaagcc	gaaagcgaaa	gaacaaggac	cctaaatttg	cagagatgg	ggaacgcttc	360
tatcgctatg	ggataaaaacc	cgagtggatg	atgatcaccc	aatcctnaac	cacagtgtgg	420
accagaaggg	ccacgttcca	ctacttggat	ccaaagtggcn	ggacttaccc	ttacgaatca	480
nggcntttt	ggaanaatga	aggttttnga	aaatccagga	ataccnacct	ggtcaagcng	540
ancttttgg	naatcccnng	ggagtttatt	aaagggtttaa	aggaaggcnn	nacccagcca	600
agaaagctt	aagaaagggg	naactttcgg	aaattggaaa	aggccttcan	aacnccaaacg	660
gttgttccac	ngg					673

<210> 403

<211> 616

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) ... (616)

<223> n = A,T,C or G

<400> 403

ggtaccgatt	atatcatctc	agtcttgaat	ttactcacgc	tgattgtga	acagataaaat	60
------------	------------	------------	------------	-----------	-------------	----

acgaaaactgc	catcatcatt	tgtagaaaaa	ctgtttatac	catcatctaa	actactattc	120
ttgcgttac	ataaagaaaa	agaggttgg	gctgttagcc	atgctgttta	tcaagcaatg	180
ctcagcttga	agaatattcc	tgttttgagg	actgcctata	agttaatatt	gggagaaaatg	240
acttgtgccc	taaacaacct	cctgcacagt	ctgcaacttc	ctgaggcctg	ttctgaataa	300
aaacatgagg	ctttaagaa	tcatgtttc	aatgttagaca	atgcaaattt	tgttagttaa	360
tttgactca	gtgcctgac	tacaatttga	aatgccaattt	actcgagtct	ttaattgtta	420
tggcttgg	ttatccacag	ttaggccctt	tctcaatacata	tatttatgna	tttcaactggg	480
catggcaaca	tggctggaa	aatcactgg	tgttaaccaa	caggcctttt	ttaanaaaatg	540
ncncggntt	acccaaanaaa	aaaaaaaaaa	anaaaagntt	gacctcccc	gnggggcctt	600
taaaagggnna	attccn					616

<210> 404
<211> 613
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(613)
<223> n = A,T,C or G

cagtgcgtgg	cctaaaggag	ataacattt	tgaatggaga	tcaactatac	ttggtccacc	60
gggttctgt	atgtgggt	gtgtgtttt	tctggatatc	acattttcat	cagattatcc	120
attnaagcca	ccaaagggtt	cttccgcac	cagaatctat	caactgcaaca	tcaacagtca	180
gggagtcatc	tgtctggaca	tccttaaaga	caactggagt	cccgcttga	ctatttcaaa	240
gttttgctg	tctatttgtt	ccctttgac	agactgcaac	cctgceggatc	ctctgggttgg	300
aagcatagcc	actcagtatt	tgaccaacag	agcagaacac	gacaggatag	ccagacagtg	360
gaccaagaga	tacgcaacat	aattcacata	atttgtatgc	agtgtgaang	agcagaaggc	420
atcttctcac	tgggctgca	atcnntatag	cctttacaat	ccggactttg	gggaaatgg	480
atacctggat	ctactctgnn	tttanacctt	tggacntng	gaaanmtccc	caaaanggga	540
aaggcttca	aangtaaact	ttgaacctga	aaataagttt	gttnaacnc	ctattgcaag	600
tttgggggtt	gga					613

<210> 405
<211> 605
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(605)
<223> n = A,T,C or G

<400> 405						
ggtaactgagg	tgtaaaaggga	tttatatggg	gacgtaggcc	gatttccggg	tgttgttaggt	60
ttctctttt	caggcttata	ctcatgaatc	ttgtctgaag	cttttgagg	cagactgcc	120
agtcctggag	aaatagtaga	tggcaagttt	gtgggtttt	ttttttaca	cgaatttgag	180
gaaaacccaa	tgaatttgat	agccaaattt	agacaatttc	agcaaatctg	taagcagttt	240
gtatgttag	ttggggtaat	gaagtattt	agtttgtga	atagatgacc	tgttttact	300
tcctcaccc	gaattcgttt	tgtaaatgt	gagtttggat	gtgtactga	ggcggggggg	360
agtttcagt	atttttttt	gtgggggtgg	ggccaaaata	tgtttcagt	tcttttccc	420
ttaaggctg	ctagaatcct	aaaggccaaat	gactcaaggt	gtaaccagaa	aaccagaaaa	480

tcccatttc	nggatatnng	accccccag	gttancgggtt	attnaacttt	naccnntta	540
ccttaggct	ttggggaaaaa	attncccttg	gaaaaagggt	tgggannacc	tttttnccc	600
ccccc						605
<210>	406					
<211>	255					
<212>	DNA					
<213>	Homo sapiens					
<400>	406					
ggtaacct	gcggcctgtc	tcccagcagg	agtttgacaa	gaacacccctt	gatctcaggc	60
aacagaacgg	aactgcctca	tcacggaga	ccctctggaa	tcaagaactc	tacatccagc	120
aggacaactc	agagaggaag	cggaaacacc	ttccagaccc	acaggatggg	cctgcagcca	180
agagtggagaa	agcagcccccc	agaagtca	actggttgca	cagggacctg	cgtgtcggt	240
ttgtggacaa	catgt					255
<210>	407					
<211>	601					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(601)					
<223>	n = A,T,C or G					
<400>	407					
ggtttttttt	ttaagaggaa	aacccggtaa	tgtatgtcggg	gttgagggt	aggaggagaa	60
tggggatag	gtgtatgaac	atgagggtgt	tttctcggt	aatgagggt	tttatgttgt	120
taatgtggtg	ggtgagttag	cccnattgtg	ttgtggtaaa	tatgttaggg	gagtataggg	180
ctgtgactag	tatgttgagt	cctgttaagta	ngagagtgtat	atttgcgtc	gagaacgtgg	240
ttactagcac	agagaggttct	nccagtaggt	taatagtggg	ggtaaggcg	aggttagcga	300
ggcttgctag	aagtcntcat	aaagcttta	gtggnaagta	gagtttgaag	ccttgaaaag	360
aggatatgtat	nccaactntga	gtgcgttcgg	tgttgagggt	ngctaggcag	aatattatttt	420
atgatgttaag	cccggtggcca	ttatgagant	gactgccntg	ttaagnttna	nggggtttgg	480
atgangaatg	gctngttaact	actaaggct	atgntggctg	gtttaanagn	ttcnatntnc	540
nnantttann	tcttgcttgt	ctatgcagaa	tnganctgnt	attnatatgc	ctcacnang	600
g						601
<210>	408					
<211>	630					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(630)					
<223>	n = A,T,C or G					
<400>	408					
ggtacaaaag	gagtctcagg	cttgaagagg	ttatgttaact	tgcctaaggt	cacacagtt	60
agtggcagaa	atgagataca	aaccaaagtc	tgtctaactc	cagagttcac	accatcatgt	120
tatagtgcca	tcttcgtaca	ttgagctcca	tagagacagc	gccggggcaa	gtgagagccg	180

gacgggcact	gggcgactct	gtgcctcgct	gaggaaaaat	aactaaacat	ggccaaaggaa	240
gatcctaaga	agccgagagg	caaaaatgtc	atcatatgca	tttttgtgc	aaacttgcg	300
ggaggagcat	aagaagaagc	accaggatgc	ttnagtcaac	ttctnagagt	ttctaagaaa	360
gtgctcanta	gaggtggaaa	gaccatgttt	gcttaaagag	anagggaaaat	ttnaagatat	420
tggcaaagcg	gacaaaggnc	cgtttgaaa	gangaaatga	naacctataat	cccttccaaa	480
gggggagacc	caaanaagaag	tttcaaggat	nccaatggca	ccccaaagaag	gcntnctng	540
gccttctnc	tcttctgtc	ntgagtttc	ggcccaaaaat	tcaaaggag	aacatctng	600
gcctggccat	tggtgatgtt	ggcaaaaaag				630

<210> 409
<211> 614
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(614)
<223> n = A,T,C or G

<400> 409

cgaggtagcc	ggatgcagca	gtgatggctt	ttggttgtat	cttggaaagga	ccagagccca	60
gtcagctcaa	accactagtt	atacaggcta	tgcaccct	aatagaattt	atgaaagacc	120
ccagtgttgt	tgttcagat	acagctgcat	ggactgttagg	cagaatttgt	gagctgcttc	180
ctgaagctgc	catcaatgtat	gtctacttgg	ctccctgtct	acagtgtctg	attgagggtc	240
tcagtgtga	acccagagtgt	gcttcaaata	tgtgctgggc	tttctccagt	ctggctgaag	300
ctgcttatga	agctgcagac	gttgctgtat	atcaggaaga	accagactact	tactgcttat	360
cttcttcatt	tgaactcata	agttcagaag	ctccctagaga	ctacagacag	acctgatgga	420
caccagaaca	acctgaggag	ttctgcataat	gaatctctga	tggaaattgt	gaaaaaacagt	480
gnccaaggat	tggttaatcct	gctgnncag	aaaaacgact	tttggncatc	atgggaacgaa	540
ctggcacang	gtcttcaana	tggagtcnca	tatccgagcc	cattccattt	gaatnccgtt	600
caangacttn	ntct					614

<210> 410
<211> 611
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(611)
<223> n = A,T,C or G

<400> 410

cgaggtagcc	atgttatgtct	ttcacctctc	accccaatgg	agtcacacag	gcctgagttt	60
gaacagttaa	cacagcttgg	aaggcacaca	tgcctgattt	ccatccttgg	agaacaataat	120
catgtatga	ggagtaggaa	gggcaagaga	tatgaaaaga	acagaggaaa	tgtggttcct	180
agaagtcaga	aggcatcaag	ggtccatcag	tgtagaagt	gctggggcgg	gagacgtaaa	240
cctcatccac	ggtgttctgg	ccagccaaaca	gtgggtcacc	attcggcatg	atttcttcaa	300
tctttacaca	gttctgttgaag	atttccattt	gctcagtgtt	caaatgtctc	agatcacagg	360
gcaaatactgg	ctctggact	ggctgtgata	caggtcctt	gtctggctt	ggcactgntt	420
gtgataaccca	tgcatagtgt	gggctctatc	acangctcca	gagtggactt	cagcacagac	480
tctagctttt	ggccccagaa	tccagcctt	ncttaacca	gtggctntt	atncaggctg	540
acctctggct	ntggcaccag	ncctagttca	gcttnaaang	ctccanttt	gctntggttt	600

aagctccacn g

611

<210> 411
<211> 590
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(590)
<223> n = A,T,C or G

<400> 411

ggtacccttg tctttaaaag gattccccct tataaggact cttcaagtaa atccacacat	60
atatagtcaa ctaattttg acaaagacac caagaataca caatgggaa aggtatgtt	120
cttcaataaa cagtatttga aatactggat atccacatgc aaaagaatga aattggatga	180
aatatggtga aattatttt caccgtaccc gctccccaaac gtgcacggca ggagctacgg	240
cccagcggcc ggcgctggcc acgtgcagaa atggagtttc atcatgttgt cctctcgAAC	300
tcctgaccc aagtgtatcca cccgcctcgc cttccaaag tgctgagatt acaggaagag	360
tctaaccctgt ctctgcaagc tcttgagttcc cgccaagatg atatttaaa acgtctgtat	420
gagttgaaag ctgcagttga tggcctctcc aagatgattc aaacccagat gcagacttgg	480
atgtacccaa cataatccaa gcggatgagc ccacgacttt aaccaccaat ggcgtggact	540
ttgaatttcg tgcttggaa ggatacgggc gctnaaagac atcggacan	590

<210> 412
<211> 609
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(609)
<223> n = A,T,C or G

<400> 412

ggtacagaag atgtgttggc tattcagac atcaatgagg tggcagaaga taaaagccga	60
agataccagc agacgttggg gagcttgcag cccctttgcc actcagatta tgatgaagat	120
gactatgtt ctgttgtga agacatttgc tgcaagttga tgccctctcc acctccaccc	180
ccgggaccaa tgaagaagga taaggaccag gatcttattt ctggtgtgtc taaaaatgg	240
gaaggcatca tcttgcctc catcattgcc cttcctctt tggcctcaga gaaagtggac	300
ttcagtagtt cctctgactc agaatcttgcgatgggaccc aggaagcaac acaggcagaa	360
tctgaagatg gaaagctgac cttccattt gctggattt tgcaagatga tgccaccaag	420
ctgttgcacaa gtgtcacaga acttttncgaaattttgcgatggaaagg ttttaccgtt	480
tttctacgtc tttttggacc agggagaat gtnccatctg gtttggcga ntgctcgaan	540
aaagaggaag aagaagcncc gggagctgtat ccaggaagaa cnatccccgg aagtggagtn	600
gctcantna	609

<210> 413
<211> 420
<212> DNA
<213> Homo sapiens

<400> 413

ggtaccgcca catcgctgac ttggctggca actctgaagt catcctgcc	gtcccgccgt	60
tcaatgtcat caatggcggt tctcatgctg gcaacaagct ggccatgcag	gagttcatga	120
tcctcccggt cgggcgcga aacttcaggaa aagccatgcg cattggagca	gagggttacc	180
acaacctgaa gaatgtcatc aaggagaaat atgggaaaga tgccaccaat	gtgggggatg	240
aaggcgggtt tgctcccaac atcctggaga ataaagaagg cctggagctg	ctgaagactg	300
ctattggaa agctggctac actgataagg tggcatcgg catggacgta	gcggcctccg	360
agtcttcag gtctggaaag tatgacctgg acttcaagtc tcccgtatgac	cccagcaggt	420
<210> 414		
<211> 621		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> misc_feature		
<222> (1)...(621)		
<223> n = A,T,C or G		
<400> 414		
acatagttt atatggcca cagtaacttc cagtgactgg ccaaatttctt	tgcatcagct	60
ggcatgtgtg gtgaatggaa ttcccatgaa cagctcttac atcctccgc	tttccttcta	120
caggcctcgg tcttgttcc aaaggtgact gcagtggagga tgtaaggtcc	atgacctcta	180
gggataatgc catccactca ggaagaaaga tgctggagaa ctctaggat	atctaagtt	240
acatcacagg gggagaatca attgtggagg tttaagaag acatttgaat	ttttgcccct	300
aatcaagaag tggggccca tctggttac attcaataac tagttggctc	atcatttgca	360
gaaataaact ttccctctaga tttaggaaact tcatacatgag atctgagata	tactggttg	420
gaaaggttnc tcagttctct tggcttcna agtccccggc cttggaaatgg	ggtnaaggcc	480
cattggangc ncattnaatt ggccttgggg taaaggaaac tttggantgg	cgnccaaatt	540
nnaaccggg tggccattn nttnacnc ggtaaattaa ggntggccc cggaaaattt		600
gggttccgg aananntttn g		621
<210> 415		
<211> 619		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> misc_feature		
<222> (1)...(619)		
<223> n = A,T,C or G		
<400> 415		
acaagctttt tttttttttt tttttttaaa gatcaacaaa cattttatta		60
attctgattc ctttttatcat gtgtttttt atacaaagca cttnaaatn cattacatta		120
tcttaaatat ataataggag ttctttcgg attcagttt aaaaatgacaa atagcattcg		180
ttgcgcggaa gttagaatta caccaaaaatt accatgngct ggcacatacc atcatccac		240
tggtggtgg aaaactgggt tgcaggagtgc tctgcactga gatggggccac caccggcgt		300
gccatataagg tataatggag ggaaggatgg actanaanca agctgggctt tcngggcgt		360
ctatantcct tttcacttc attccgtttt cccattgng ctttgaaccc agggaatctn		420
nttgaccat ctttggagct nttaaaaagg acctgngttn aaggtgccnc ctttggaaa		480
ggggccccct ttgnatnaan tggccgttg aaaaaggccc ttngatttg ganccaaang		540
acngggaaat ttcaacttngg cattaacnan tgtcnccgaa atnttcnctn ngntatgaac		600
tttantaana tngnttngn		619

```

<210> 416
<211> 611
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(611)
<223> n = A,T,C or G

<400> 416
ggtacactaa ggtatgagct gaagctttag gttctccgtg cttccctcaa gaccccttc      60
ttgctaacag aacgagttagg caattgctgc agtgcgttc tcaccctgcc aataggcttg      120
tctgtatctc tggtaaggaa aatagcctgg tccctccctgg cagtgcgtgg aagcttgatg      180
ctaatttttata tagcgtgg caagctgacc agcagtgcga ggccttgatc tgattctgc      240
actatccctt tacttggttc ctggcactga atggtctcca gccctgaaga atcacgtgtg      300
atcacagcag ctgacctggg ctttctcccc gagaggaagg ggcatgtcat ttttatttga      360
cagagggaaa atggaaactg ctttgactgc ctttngntgng ctttcccgcg taagaaagca      420
ctngngttaa actgtgcaat acactngctt tgccatngat gtaaaatgtaa gaaaatccct      480
anctttaaaa cctantggtt tgaacnnttat tatatnaaan acttttaac ctattnngna      540
attnnggnc cttgcccggta agnttnggg ggggnaaacn ngttncaaaa gaaaagggtcc      600
tttaacttnggg 611

<210> 417
<211> 609
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(609)
<223> n = A,T,C or G

<400> 417
caggtactga gacatcacat tactggccag tggtaaaa gaaactgcca caaacaccat      60
gagaaggcag gcaattttat actcttcttc tgactaatg tttccgatt ttgtgtgaaga      120
aagagctacg accaatgcag gatcaatctc acaaggtaat ccggcagctg atgataactc      180
atcacatcc attgcaacat tcataatcgt tcccttggg atgtgatcct taaaatctc      240
aattgaactt acaagaaaaag gaatgtggta ggataacaca tctctaagtg cttcttgtgc      300
caatgatcgg aagataaaaa ttacaccaat tattgtcata ctcttcaaga cactgtcaac      360
agatgataat ctttaaaaca gtgcagccat ctggctctggg ttgtcaaagc tggtccctcat      420
ttgtgttaac acatcaacat tctccaccac aagtttctta agttcaagca accttgtgat      480
gaaatatgcc acataaggct ttcacttaga aacntcatac catatgggcc taataagtct      540
ggataatgac ctcattctga natggtcaga atattcntnt gcattggaan gtaaatcaat      600
ttctggagg 609

<210> 418
<211> 643
<212> DNA
<213> Homo sapiens

<220>

```

```
<221> misc_feature  
<222> (1)...(643)  
<223> n = A,T,C or G
```

<400> 418

ggtaactcccc	attgaagcccc	ccattcgat	aataattaca	tcacaagacg	tcttgcactc	60
atgagctgtc	cccacattag	gcttaaaaac	agatgcaatt	cccgacgtc	taaaccaaac	120
cactttcacc	gctacacgac	cgggggtata	ctacggtcaa	tgctctgaaa	tctgnggagc	180
aaaccacagt	ttcatgccc	tcgtccctaga	attaattccc	ctaaaaatct	ttgaaatagg	240
gccccgtatt	acccatatagc	accnctcta	ccccctctag	agccccactgt	aaagctaact	300
taggcattaa	ccttttaagt	taaagattaa	gagaaccaac	acccctttac	agnaaaaatgc	360
cncaactata	tactaccctg	atggccacc	atantttacct	ccnatactnc	ctacatatt	420
tncttatnaa	cncancttna	naatattaaat	ctcataattta	ccagctanct	tncttaacc	480
aatgnccnat	tanaaaattaa	anntattatn	taccatactc	cntgtnntcn	nnataatgt	540
nngnananat	tggnnntcg	ttcaatttat	nnggtcccaa	aatgcctan	gcttaactcn	600
gnactngtnc	gggcggcncg	ttngnaaagg	ggctgaaatt	cng		643

<210> 419

<211> 607

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (1) . . . (607)

<223> n = A,T,C or G

<400> 419

accagaatata	ggacacattc	caagcttct	tgtcgatgc	tgcacatctt	tagaagacca	60
tattcatacc	gaagggctt	ttcggaaatc	aggatctgtg	attcgcttaa	aagcactaaa	120
gaataaaagt	gatcatggt	aaggttgct	atcttcgtca	cctccgttg	atattgcggg	180
acttcttaag	cagttttta	gggaactgcc	agagcccatt	ctccccagctg	atttgcata	240
agcactttg	aaagctcaac	agtttaggcac	agaggaaaag	aataaagcta	cactgttgc	300
ctccctgtctt	ctggctgacc	acacaggctca	tgattataaga	tcttccttaa	ctttctcagg	360
aatgtttctc	ttagatccag	tgagaataag	atggacagca	gcaatcttc	agtaatattt	420
gcaccgaaatc	ttcttttagaa	caagtggagg	ccntggaaaag	atgctntac	ccccggaaaa	480
gaagcttcca	atacnggnnt	gaanaagnac	cttggggcggg	aacacnctta	ngggngggaaat	540
tcngnccact	tggngggcgt	actaangggn	nccaaacttng	gnccaaactt	ggggaaacan	600
ggcanaaa						607

<210> 420

<211> 494

2123 DNA

<212> DNA

<400> 420

```

ggtacatgag aacatatatt tattgcatga ttttcttagat acacagtcta tgcattattc 60
atacacattt attttagcct aaagtgttt tcaaataccag ttcttcaagc cataaaatgac 120
caagatccaa gcaatctgaa tttgttttg tgattattt actgaaatgc ttcttaagtg 180
gaataactat actccgttat ccaccggatt tcctaatgtt attgaaaagat tttcttattt 240
gccacacact tggagacaat aagggtttt agtttatct actcttctat tgaagttaaa 300
gaaagaaaaaa aagattttt tatttgtt aatgaaaagc tttagttaa aataaggaga 360
tccagaataa aaagaagaga ctgatctttt caattattgt catctgtaqc caccqaqcaca 420

```

tcactcttat gtaatccccca aaggcttggc atgccgtaag tgtgtggtgg gtagactgc	480
tgcggggaa tcgt	494
<210> 421	
<211> 366	
<212> DNA	
<213> Homo sapiens	
<400> 421	
ggtaccaagg ttattgtca agtcaggcctt ggtcattcca attccagtat ccacaatagt	60
gagagttcga tcttgttgc tcggtataag gttaatatgc agctcttcc cagagtctaa	120
tttactggga tctgtcaagc ttccataaccg gattttgtcc aatgcacatcg atgaatttgaa	180
aatgagctct ctcaaaaaaa gttttttttt cgagtagaaaa gtattgtatgtcaatgacat	240
caactggggca atttctgcct gaaaggcgaa cgtctcaacc ttctccctt ccacccgggttgc	300
gtcttgggtc tgggtttctt caggcatctt ggtaagtga ccgcacagga ccaacggcac	360
agccac	366
<210> 422	
<211> 418	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(418)	
<223> n = A,T,C or G	
<400> 422	
ggtacaagag tgtttcatga aatccgtttt taaaatgaac atctctgtgt gccacagttc	60
ctaggactgg ggcaaggaca cagtgtaag tcttgggtt aggatgagtc tctgaagaga	120
cagaattcct gccagaatgc gcacagaaca taagtccagcc aagtgtgtcg tggccaggat	180
actttgactt tgggttgctg ctgctgttag ggatattggg agggttatcc ttccagggtt	240
gtaggagagg gttgtgggtt aaggctgttc gtaaaggacc cctggctgtc agtccaaact	300
gattccgcat gcgttgttca cgctctcnca gctgacgccc tcatttcagc attttccag	360
ccttttttga aagctctcta ggaagccctt cctgtggaggt aattttgttca ggtcatgt	418
<210> 423	
<211> 374	
<212> DNA	
<213> Homo sapiens	
<400> 423	
ggtctattct gcatatatagag aactgagggc ttcccttgag aaacagttga gttgtgttgc	60
caaccagaat ggctcgcaag ctgactgtga gctcgaaat cttttaaaaa gaaattcaaa	120
tgtcactttt tattttgggtt taagtacacc tgattttcat gacaaatacg gtaatgtgt	180
attagctagt ggagccactt tctgtattgt tacatggaca tatgttagcaa cacaagtgc	240
aatagaatgg aacctgtccc ctgttgcag agttacccca aaggaatggaa ggaatcaagt	300
aatcatccca actgggttaa taatgaatttgg tttaaaaaac agtcataat tgatgc	360
ttaaaggact gtgt	374
<210> 424	
<211> 610	
<212> DNA	

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(610)

<223> n = A,T,C or G

<400> 424

ggcggagctt	gaggaaaccg	cagataagtt	tttttctctt	tgaaagatag	agattaatac	60
aactactaa	aaaatatagt	caataggta	ctaagatatt	gcttagcggt	äagtttttaa	120
cgtaattta	atagcttaag	attttaagag	aaaatatgaa	gacttagaag	agtagcatga	180
ggaaggaaaa	gataaaaagg	ttctaaaaca	tgacggaggt	tgagatgaag	cttcttcatg	240
gagtaaaaaa	tgtatTTaaa	agaaaattga	gagaaaggac	tacagagccc	cgaattaata	300
ccaatagaag	ggcaatgctt	ttagattaaa	atgaagggtga	cttaaacgc	ttaaagttta	360
gtttaaaagt	tgttaggtat	taaaataatt	tgaaggcgat	cttttaaaaa	gagattaaac	420
ccgaagggtg	attaaaagac	cttgaatcc	atgaccgcag	ggagaattgc	gtcatttaaa	480
gcctagttaa	cgcatttcct	aaaccccaga	ccaaaaatgg	ggaaggatta	attgggagtg	540
gtaggatgaa	ccaanttggg	ngaagatgaa	gttggaaagt	gaaactggaa	aaccgaaagt	600
ncctcgcccc						610

<210> 425

<211> 368

<212> DNA

<213> Homo sapiens

<400> 425

ggtataagtt	cagagagaaa	gattcettcc	caaggtcatg	cagctagtaa	atgatagaat	60
caggattcat	agcatcacta	taggggtca	atatttacac	aaaaaaggaa	agtcacaagc	120
ctgtttaaaa	tgaagtgacc	acctttctt	gcatacgacta	aataactcga	actggcatt	180
ttaggttgg	aagacagctg	aatttagt	taagtctgtat	agccaaat	gtttttaaaa	240
ccaaagcacatc	caggatgcac	acccctgcac	catttgctgt	gccaattaaat	agttctgtct	300
ctctctctct	ttcttttttc	tttttattct	ttgagatgga	ttttcgctct	tgtcgcccag	360
gctggagt						368

<210> 426

<211> 630

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(630)

<223> n = A,T,C or G

<400> 426

actaccacag	ccttaagt	acattgattt	ataacttgg	cacaattcac	tgcatttagg	60
aaaaccagca	ttcttatctg	gtcagtgctc	gcttcttagc	aacccttaat	taaatttaat	120
tcatctctaa	atcttagctt	caactttatt	caattacatt	tggctgacgg	ctgtttctta	180
aaacccttaa	gtgttgacca	taaatgcaaa	acttccagta	tctgttgggt	tttatttagca	240
gatgctgctt	ttatTTaaaa	aaaaccgaca	gtataactgt	cataattatg	gaaggcactg	300
cttccgataa	ttatattcta	ttaaaaaaac	accatttata	gtgaactctg	tcactgtataa	360
ataaaacaata	aatatctcag	tgccaaaagg	acagaaagct	ctcccctaag	attaacactt	420
tggccaaaat	ttggtagcat	attattctt	aaagtctgac	aaactgagtc	tgcaactaaa	480

cacctgaaaac tggctcttt caatgggctt tggagaacc aaaataccaa gaactaaatg gaggcttatg ggggaagggn cgagggaaaata aatatctaag ctttggttc tggccctctt tcataaanc ctgaggtaca tattangctn	540 600 630
<210> 427 <211> 224 <212> DNA <213> Homo sapiens	
<400> 427 gggggggggg tgggttccac tgcccagtcc cgtgtcccga tgcccagcgc cagcgccagc cgcaagagtc aggagaagcc gcgggagatc atggacgcgg cggaagattt tgctaaagag agatatggaa tatcttcaat gatacaatca caagaaaaac cagatcgagt ttgggttcgg gttagagact tgacaataca aaaagctgtat gaagttgttt gggt	60 120 180 224
<210> 428 <211> 543 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (1)...(543) <223> n = A,T,C or G	
<400> 428 ggacgctctc agctctcgcc gcacggccca gtttccttca aaatgtctac tggcacgaa atcctgtgca agtcagctt ggagggtgtat cactctacac ccccaagtgc atatgggtct gtcaaaggctt atactaactt tgatgtcgag cgggatgttt tgaacattga aacagccatc aagaccaaaag gtgtggatga ggtcaccatt gtcaacattt tgaccaaccg cagcaatgca cagagacagg atattgcctt cgcctaccag agaaggacca aaaaggaact tgcattcagca ctgaagtcag ctttatctgg ccacctggag acggtgattt tgggcctattt gaagacaccc gctcaagttt gacgcttctg agctaaaagc ttccatgaag gggctgggg accgacgagg actctctcat tgagancatc tgnttcagaa cccaaaccag gaagctgcan ggaantaac cagagtctac caagggaaat gtaccctnnng gnccngnaac cacgcttaan gggcgaaatt cca	60 120 180 240 300 360 420 480 540 543
<210> 429 <211> 346 <212> DNA <213> Homo sapiens	
<400> 429 actatctttt cattcagtcc cttaaggcagc ttactcttca atgccaacaa aacttttattt tttaaatagt cttaaaaagtg cttaaggagg ttctgggtcc tcttttagc ctgcacagt taagatcaat ggttaaaggta ggaaataatc ataagggcac tggagaagg aatgagtct aataatgtat aatgactgtt cgcgcatacc aattttgtca tggtgattat tcactaattt tataggagag tgatattgaga tctgctacag cttcttggat ctttgaagca ctgctgaatt acatacacaa agcagagcag atgtcagcagc ctgattaatc agtacc	60 120 180 240 300 346
<210> 430 <211> 605 <212> DNA	

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(605)

<223> n = A,T,C or G

<400> 430

ggtgtggcgcgg ccgagggtaca gctgggtctt	ctgccttacc ccatcctctc	ctctcagatt	60
caccgaggac tggtcaggtg gtaacattct	cttagggtag ggaactctgc	agagggagag	120
ctgaggaggt tccggccata gttgttgta atcttagggc	tctgggcttg	gctgaaacat	180
gacggtattg ctgggttca ggcttgacac tgccaggcgc	ctattgcttgc	acctctgttt	240
aatgagggaa cttcaagact agacagcatg	gctctttca	gttattgca	300
acactagtcc aagtaaaag cggaccccaa atggttacat	tatacaagct	gtgaggttt	360
taaacctgtg acaagggaga gaagggaaat	tctactcatt	gcaaggaaat	420
gcttcagtga gccacaagca cttaaaaccc atgaaccttc	agctgatcg	ccttagccag	480
tccaatctct acgaggaact ggcataatgtc	ttgcgttggc	accctgttagc	540
ctcatattcn gatgctaatt ncagacctgn	ccggcggccg	tcaaaggcn	600
gnngn			605

<210> 431

<211> 430

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(430)

<223> n = A,T,C or G

<400> 431

acactaccaa cagatcaaag aaaccctcc	ggccagttag	aaagacaaaa	ctgctaaggc	60
caagggtccaa cagactcctg	atggatccc	gcagagtcca	gatggcacac	120
tggacacccc ttgcctgcca	caagccaggg	cactgcaagc	aatgccctt	180
acagatgaat cagagaggca	gcagtgtctt	ctgcaaagcc	agtcttgagc	240
tgtgcaggaa atgaatgccg	tgagggaaaga	ggttgctgaa	acctcagcag	300
ggttagtgtg aaaaccgatg	gagggatcc	cagtggactg	ctgaagaact	360
tatgaaaag caaagaccaa	aaaanaaann	nnaaaaaaaa	aagcttgtac	420
accacgctaa			ctrngccng	430

<210> 432

<211> 479

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(479)

<223> n = A,T,C or G

<400> 432

acaagctttt tttttttttt	tttttttttt	ttggAACGTA	ggctttctct	tgtctttatt	60
ctggggagga	ggaatcctcc	tcatcatctt	cctcatcttc	atcattgaac	120

tctcgccctcg ggactcgag cagttagagg ccgcactgct ggactggtga ctgtttgggg	180
ccaggaactg cccagttgct aaggccactt ctgcattccaa gcataaccct tggtttacac	240
ttgactgggg taagggtggca ccagtggta ggtctaaatt tgaaactgat tgggttagaag	300
ttcagaagta gtccctgatt taaccaagaa ggtcctgtgg agatatctgn gatataacct	360
tctaaagcct ttggcaccag ggatttcgca agtttcaan atcctccaga gaggcattgc	420
ctgacttcag gcnaaacgac attcccatnc gctttangac cttgggcng accacgcta	479
<210> 433	
<211> 600	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(600)	
<223> n = A,T,C or G	
<400> 433	
ggtacccaac aataccaccc accaggagct gcaacacatt cgcaacagcc tcccagacac	60
agtgcggatt aggccgggtgg aggagccgtt ctcagccttg ggcaatgtca ccacacctgaa	120
tgactacgtg gccttggtcc acccagactt ggacagggag acagaagaaa ttctggcaga	180
tgtgctcaag gtggaagtct tcagacagac agtggccgac caggtgctag taggaagcta	240
ctgtgtcttc agcaatcagg gagggctggt gcatcccaag acttcaattt aagaccagga	300
tgagctgtcc tcttttcttc aagtccccct tggggggggg actgtgaacc gaggcagtga	360
ggtgattgtc gctgggatgg tggtaatga ctgggtgtcc ttctgtggcc tggacacaac	420
cagcacagag ctgtcagtgg tggagagtgt cttaagctg aatgaagccc agcctagcac	480
cattgccacc agcatgcggg attccctcat tgacagcctc acctgagtca ccttccaagt	540
tgttccatgg gtcctggct ctggactgtc gcacacccatc tncacattcc gccaatctgt	600
<210> 434	
<211> 417	
<212> DNA	
<213> Homo sapiens	
<400> 434	
ggtaccaacg cgctaagaaa tcagctccaa ttcaaggatgc acctgttccc cccaaagatt	60
gcacacccctcc tacccgccttc tccttgcgtg ctggggctgtc atcccccaagg gcaagacgag	120
aagcacacgt ccggaactca gccaggccca ggattggcag atactcgtga tttaggctat	180
tgtcatttgc aatcttctgc tccactttct tcactactgg caaaacccag ggatggcagt	240
catccgtcgat atatgttccc actcccaagg tgaccttgcg ggggtccgga tcctccctga	300
agtccggcagt gagcttgcg accaggacag gctggggctgt cgaaacactcg gcaaagactg	360
acggagggtgc catatcgaga gacttagaat caagagatt caccacacgc ccggagc	417
<210> 435	
<211> 672	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(672)	
<223> n = A,T,C or G	

<400> 435

ggcagagaac	gatgtggaca	atgagcttt	ggactatgaa	gatgtatgagg	tggagacagc	60
agctggggga	gatggggctg	aggccctgc	caagaaggat	gtcaagggt	cctatgtctc	120
catccacagc	tctggcttc	gtgacttct	gctcaagcca	gagttgctcc	ggccattgt	180
cgactgtggc	tttgagcato	cgtcagaagt	ccggcatgag	tgcattccctc	aggccattct	240
ggaaatggat	gtcctgtgcc	aggccaagtc	ggcatggga	aagacacgag	tgttgtctt	300
ggccacactg	caacagctgg	agccaggta	tggcagggt	tctgtgttgg	tgatgtgtca	360
cactcgggag	ttggctttc	aagatcagna	agaatatga	gcgcctctt	taatacatgc	420
ccaatgtcaa	aggttgctgg	ttttttgg	ggctggcta	tcaagaaaagg	atgaagaagg	480
tgctgaanaa	anaactgccc	natattgttc	ctggggact	tcaagccgt	atnctaanc	540
tggcttcgaa	ataagancct	taanctaaa	cncataaaaca	ctttatattgg	atgaatgnng	600
taaananc	tt					660
anngncntgn						672

<210> 436

<211> 469

<212> DNA

<213> Homo sapiens

<400> 436

ggtacaagct	ttttttttt	ttttttttt	ttttttataa	aagcatttta	ttgaacacat	60
tctggaggt	agtttagaacc	aaaacaaaat	ttggattgg	ggtggggatt	ctgtttgtat	120
gatttagatt	ttggaaaact	ttggattctc	gtgtcagcag	ggccatgct	gtggaaacc	180
tgaaggctga	tttgaagcag	aatatagaac	tgcggcacgg	gagaccagg	gctggaaatg	240
gggctctcct	gggaaacaaa	gaatgtggtt	ctgcaattgg	cttggcttag	actactctcc	300
agaaaaggat	aaaacatggc	ttgagaact	gcctagaaga	ggcaatctcc	atgggctggg	360
ttgctgcact	ttgaaggcag	tgacttgcag	caggttctta	gctcttgaag	ctttccggg	420
aggaggaggt	ggtggagaca	aatttgcgc	tgggctgtct	accccccgg		469

<210> 437

<211> 457

<212> DNA

<213> Homo sapiens

<400> 437

actgaggcat	cttcttcagc	atctggaca	ggtcccgcat	ggtgggtctt	ctctccagta	60
ttcattctct	tgctagaaga	aaaatcttc	agagaccggg	gtgacttctg	ggacacctct	120
gcgatgtgct	tgtggcgag	tgctatccac	aggtcgtcgt	cctcgccag	gagcacctcc	180
ttcacccgtg	cctccccat	ggcgctggtc	tcatacttgt	atacatcatt	ttcgataggg	240
agcagatcat	aactcatagc	ctgaaaagtc	aattcatgga	gcacaggg	gctgggtca	300
aagcctcgat	ccaggatcag	gagctggag	cgtgccttg	ctggccctc	ccccattgtt	360
ggatcatcag	ctttagggc	atcgagttt	tctggattt	gctgagccag	cagggcattt	420
tccttgcatt	ccccccgata	ccgcata	gggtacc			457

<210> 438

<211> 731

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(731)

<223> n = A,T,C or G

<400> 438
 accaattt cagaatcaaa tggatgcaact tcttgatttt aatgttaata gcaatgaact 60
 tacaatggg gtaataaatg ctgccttcat gctcctgttc aaagatgccaa ttagactgtt 120
 tgcagcatac aatgaaggaa ttattaattt gttggaaaaaa tatttgata tgaaaaagaa 180
 ccaatgc当地 gaaggtcttg acatctataa gaagttcccta actaggatga caagaatctc 240
 agagttccctc aaagttgcag agcaagtgg aattgacaga ggtgatatac caqaccttc 300
 acaggcccctc agcagtcttc ttgatgctt ggaacaacat ttagcttcct tggaaggaaa 360
 gaaaatcaaa gattctacag ctgcaagcag ggcaactaca ctttccaatg cagtgtcttc 420
 cctggcaagc actggcttat ctctgaccaa agtggatgaa agggaaaagc aggagcatt 480
 agaggaagaa caggcacggt tgaaagctt aaaggaacag cgcctaaaag aacttgcaaa 540
 gaaacctcat acctctttaa caactgcagc ctctcctgta tccacctcag cagggggat 600
 aatgactgca ccagccattt acatattttc taccctagt tcttctaaca gcacatcaaa 660
 gctgnccaat gatctgctt anttgcagca gccaaactttt caccatctg tacctttggg 720
 ccngaacac g 731

<210> 439
 <211> 470
 <212> DNA
 <213> Homo sapiens

<400> 439
 ctgcgagcca ggattccccga tccagagaca atggcccgaa tggatggag cccgaaggcg 60
 tcatcgagag taactggaaat gagatttttga acagctttga tgacatgaac ctctcgagg 120
 cccttctccg tggcatctac gcctatggtt ttgagaagcc ctctgccatc cagcagcgag 180
 ccattctacc ttgtatcaag gtttatgatg tgattgctca agcccaatct gggactggaa 240
 aaacggccac atttgcata tcgattctgc agcagattga attagatcta aaagccaccc 300
 aggcccttgtt cctagcaccc actcgagaat tggctcagca gatacagaag gtgtcatgg 360
 cactaggaga ctacatgggc gcctcctgtc acgcctgtat cgggggcacc aacgtgcgtg 420
 ctgaggtgca gaaactgcag atgaaagctc cccacatcat cgtgggtacc 470

<210> 440
 <211> 353
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(353)
 <223> n = A,T,C or G

<400> 440
 ggtacattga agagaacaag tatagcagag ccaaattctcc tcagccacct gttgaagaag 60
 aagatgaaca cttcgatgac acagtggttt gtcttgatac ttataattgt ggatctacat 120
 tttaaaatat caagagatcg tctcagtgtc tctccctta caatggagaa gttttgcttt 180
 tctttgggtt ggaggaagag catectatgg tggatcaaaa ggcaaagtgt gttttgagat 240
 gaaggttaca gagaagatcc cagtnagcata ttatatcnn nngatattga catacatgaa 300
 gttcgnattt gctggncact actcnnttgg aatgntctt gnganaana att 353

<210> 441
 <211> 647
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(647)
 <223> n = A,T,C or G

<400> 441

acattatgtt	tgaacgcagt	gactctgaag	aataatcaga	ggatgacatg	ggagagccca	60
atggcttcat	tgattgccc	tccctgtgag	gacaggaaa	tggagatcg	tggatctg	120
gggatgacag	aggtgagtga	ggtgaagccc	tagggatgg	tgaatgttag	ctccggatcc	180
ctggtgagga	gcttccttt	aagtctgagt	tactgagagg	gaagagggag	aagctgggtg	240
aggctagcat	cgtcgacc	ggggatccg	ggctggggg	ctgttccaca	gaagagccag	300
acaagacc	actgttctta	ggtcagaca	ggattatgaa	acctgaagct	cccaggacc	360
ccaacaaatt	ttcaaacc	gagaatgaag	gagtgtgt	gactgtgaga	gtgtgtgtgt	420
gtgtgtgtgg	tgtgaggtat	gcgtcctta	agaaaatgga	aataaaccaa	ccaatgagac	480
agacagacag	acagagactc	acttatccaa	gtgtctgtc	cagtcctctg	aatccggttc	540
caagtcgcaa	gaccctttga	gctccaagtc	catacagagc	ccggaaaaat	gctccggccc	600
gctgctcggc	tcttgtgac	atctgagta	ctcgccgn	gaccacg		647

<210> 442
 <211> 1002
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(1002)
 <223> n = A,T,C or G

<400> 442

acagaagtt	aagtgaatc	tactgaggag	gctttgaag	ttttctggag	aggccagaaa	60
aagagacgt	ttgctaatac	ccatttgaat	cgtgagtcc	gccgttccca	tagcgtgttc	120
aacattaat	tagtcaggc	tcccttgat	gcagatggag	acaatgttt	acaggaaaaaa	180
gaacaaatca	ctataagtca	gttgccttg	gtagatctt	ctggaaatga	aagaactaac	240
cggaccagag	cagaaggaa	cagattacgt	gaagctggta	atattaatca	gtcactaatg	300
acgctaagaa	catgtatgga	tgcctaaga	gagaacccaa	tgtatgaa	taacaagatg	360
gttccatatac	gagattcaaa	gttaaccat	ctttcaaga	actacttga	tggggaaagg	420
aaagtgcgga	tgatcgtgt	tgtgaacccc	aaggctgaag	attatgaaga	aaacttgc当地	480
gtcatgagat	ttgcggaaat	gactcaagaa	gttgaagtag	caagacctgt	agacaaggca	540
atatgtgtt	taacgcctgg	gaggagatac	agaaaccagc	ctcgaggatcc	agttggaaat	600
gaaccatgg	ttacctgac	tgggtttca	gagtttccac	cnttgcgtc	atgcgaaatt	660
ttggatatac	acgatgagca	gacacttcc	angtGattg	gaagccctta	gagaaacgac	720
ttacttacga	caaatggat	atttgtgagt	ttaacaaacc	atntaaagct	ttaaagctt	780
ttgtaccaga	aattggcaat	gctggttaa	gttaaggaaa	anccctgcc	angggaaact	840
taatggaaan	ggggaaaaag	attnngnccc	aaattggat	tnaaccnccc	gaaaaaaaaaa	900
annnnnnnaaa	aaaganctt	gnccggaaacc	ccctttaggg	gaattcnncn	ccctgggggc	960
cnntnntaan	ggacccantt	gnccaaaat	ttggggaaan	tg		1002

<210> 443
 <211> 486
 <212> DNA
 <213> Homo sapiens

<400> 443		
acatttagtct taattgactt attacataat cgattcggt ctatgtttga gagctttaag	60	
ttctcaatta tagttctttg aaaactgaat agcaaataac aatatgatta acttcatttt	120	
tattatttca acgatcttt ttataaccga gtttaatttt taaattaaat ttctaaaata	180	
gattaccaat attaaaatac cttaaagatat ttatcttttag caataatagg caatattaaa	240	
gttgttattaa cttttaaatt aagtaagagt atttgggtgga tgccttggt ctgaaagtgc	300	
atgaaggacg cgattacctg cgataagctt cgtggagttg gaaataaact atgataccga	360	
gatttccgaa tgggttaacc taactgagca aacctcagtt gcattttgtat gaatccatag	420	
tcaaattagc gagacacgtt gcgaattgaa acatcttagt agcaacagga aaagaaaata	480	
aatacc	486	
<210> 444		
<211> 625		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> misc_feature		
<222> (1)...(625)		
<223> n = A,T,C or G		
<400> 444		
gagggatgca cgttgcctta gccgagcttc ggagagaagc ctgatatgtta acccaggcag	60	
gtggggagct cagtctgtcg ggctgaggc tggcatctac aaagcccttt gcccgtgttc	120	
tgaacttgaa gcctggagga gttctctgtc cagcacagcc aaggaacaga attagaagaa	180	
aaggaacctt ggctgaggc aggtgacaaa cattaccacc ccagctgtgc acgatgcagc	240	
agatgcaacc agatgttac agaaggagag gaaatgttac ttcaaggctc caccgtttgg	300	
catccccact gtaagcaatc tacgaagacc gaggaaaagc tgccgcctac caggacatcc	360	
tcggaaagta ttatttctag gccaggctcc agtattcctg gctcaccagg tcataactatc	420	
tatgcaaaag tagacaatga gatcctggat tacaaggatt tagcagccat tccgaagggtc	480	
aaggcaattt atgacattga acgtccagat cttattacct atgagcctt ctacacttcg	540	
ggctatgatg acaaacagga gagacagagc cttggagagt ctccgaggac ttgnctnct	600	
acttcatcatcag cagaaggta cctcg	625	
<210> 445		
<211> 1002		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> misc_feature		
<222> (1)...(1002)		
<223> n = A,T,C or G		
<400> 445		
accacaactc ccaggatttt cctggatcaa accttgcata tcttctgcaa gtattgtgt	60	
tattggctcg agagacgtgg accctcctga acatTTTT taaaagaact atgatatcca	120	
gtatTTTCC atgagagata ttgatcgact tggatccag aaggtcatgg aacgaacatt	180	
tgatctgtcg attggcaaga gacaaagacc aatccatTTT agtttgata ttgatgcatt	240	
tgaccctaca ctggctccag ccacaggaaac tccctgttgc gggggactaa cctatcgaga	300	
aggcatgtat attgctgagg aaatacacaac tacagggttg ctatcagcac tgatcttgc	360	
tgaagtcaat cctcagttgg ccacctcaga ggaagaggcg aagactacag ctaaacctggc	420	
agtagatgtg attgcttcaa gctttggta gacaagagaa ggagggcata ttgnctatga	480	

ccaacttcct	actcccagtt	caccagatga	atcagaaaaat	caagcacgtg	tgagaattta	540
ggggacactg	tgcactgaca	tgtttccacaa	caggcattcc	agaattatga	ggcattgagg	600
ggatagatga	atactaaatg	gttggctggg	tcaatactgn	cttaatgaga	acatttacac	660
attctcacaa	ttggtaaagg	ttccccctca	tttgggtgac	caatactact	ggaaatggaa	720
tttggnttt	tgcaagtccac	agggtantaa	tatggcttag	taccttnggc	cgcgaacacg	780
cttaagggn	aattccacac	acttggcg	ccgttcttaa	nggatccgaa	ctnggancca	840
agcnnttggcg	taaacatggg	chataantgg	tttctggggg	gaaatggtat	ccggttacaa	900
tttccccca	nattccnaac	ccggaagnn	tnaagggtaa	aaccgggggg	gccctaanggg	960
gngctaact	ccaaatnaaa	tggttgngc	ttaatggccc	nt		1002

<210> 446

<211> 367

<212> DNA

<213> Homo sapiens

<400> 446

ggtacaaaag	agtatggct	cacaagaaga	tgattcagga	aacaaaccat	ccagttattc	60
ttgaaactaa	catccatcct	gagctaaaca	agagaaacta	ccatcttggc	cagtgacaag	120
tgttcggagg	gcagcagaga	ggaccaagcc	tgtgtcacct	ggagactaag	aaattaagtt	180
ttgttttgcac	atttcagtc	ctgtgtgctt	tcagaaaacc	attttctctg	caaagaaaagg	240
aaacaggtt	gcaacttta	aagtctgtcg	tggatttatt	tatcctcaga	ttattgttac	300
tgcattaaat	ctacctttt	gttttaagtt	gcttgaaaaaa	aaaaaaaaaa	aaaaaaaaaa	360
aaaaagc						367

<210> 447

<211> 754

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(754)

<223> n = A,T,C or G

<400> 447

actcttgggg	tggaaaaagat	ctacacataa	caagttcaga	aaccacagtg	ataaaactaac	60
ctaagaaaaat	cgtttaactt	ttatctacct	gaaacacaaa	attaaaaggc	aacctataaa	120
ctggaaaaaa	atatttgcac	caaataaac	aaaagattat	caatatcctt	aatgttaaa	180
tggctttgc	aaaacaatca	atagaaaaat	gacttaggaat	tagaaaaatca	tacacacaca	240
cacacacaca	cacacgcaca	cacacacaca	ccacaaatgg	ccaattgaca	catggtagag	300
atgttcagtc	accagcagac	aaagcaatgt	tcacatccac	aggaaagca	gactcgatcc	360
gtcggaggag	caaagggtt	caatgttata	aagcccggtt	ctgagggaaan	angggaaaggc	420
atcagggtt	ncctcaccac	gtgaagaaca	cctaatttng	aaaaaatccc	ttcccttgct	480
tggggccagt	tttaaccaat	tatggaaaccc	ttgaaagtct	ttaaagaagt	tttaaccagg	540
caatttncct	ttcttcngaa	atggtatgtt	atttcaggca	tttcccaaag	gaggtttanc	600
cancgggacc	gttggaaaaaa	ggtcntggaa	ccttccnagg	gnaaagttca	tttgccaagg	660
gtnttaattt	ttcttaagga	agggaaaaaa	aaaaancttg	naaaaatncc	ctnnngattgn	720
ccccatttgn	aancccgggn	atnggtttaa	aatt			754

<210> 448

<211> 551

<212> DNA

<213> Homo sapiens

<400> 448

accagaacgg	agtccgggat	actcacaggc	tcatcaactca	gatgcagctg	agcctggcag	60
aaagtgaagc	ttccttggga	aacactaaca	ttcctgcctc	agaccactac	gtggggccaa	120
atggcttaa	aagtctggct	caggaggcca	caagattagc	agaaagccac	gttgagtca	180
ccagtaacat	ggagcaactg	acaaggaaa	ctgaggacta	ttccaaacaa	gccctctcac	240
tggtcgccaa	ggccctgcac	gaaggagtcg	gaagcggaaag	cggtagcccg	gacggtgctg	300
tggtgcaagg	gcttgtggaa	aaattggaga	aaacccaagt	cctggcccag	cagtgtacaa	360
gggaggccac	tcaagcggaa	attgaagcag	ataggtctta	tcagcacagt	ctccgcctcc	420
tggattcagt	gtctcggctt	cagggagtca	gtgatcagtc	cttcagggtg	gaagaagcaa	480
agaggatcaa	acaaaaaagcg	gattcaactct	caagcctggt	aaccaggcat	atggatgagt	540
tcaagcgtac c						551

<210> 449
<211> 398
<212> DNA
<213> Homo sapiens

<400> 449

accttcaaca	ggcatctcaa	cagccccatc	accaacacct	gtgtgcaagg	catagccatc	60
acgcggaaaa	gtctcaggac	tcagaactac	accataaaatg	caggatctt	ttatttcata	120
taaaaatgtat	caatgtgaaa	aaagccaaac	tgtatgtcg	ttttacagac	tccgaccctt	180
cctgacagtc	gtcttgtctg	gccaggctgg	gggcccagca	ttccttggaaag	ggagagacag	240
ccggcatct	cagatttca	ttgggacaac	aagctggatg	tggcaggggaa	agctgagagc	300
gccaaggatcc	ccttgcttta	tcccaagctc	ggagggacgc	agcctggcat	ggctctggcc	360
tagcagccag	gtgacatggc	caggcacctt	cctgtacc			398

<210> 450
<211> 672
<212> DNA
<213> Homo sapiens

<400> 450

accttatttag	aaagcgacgg	caaactatgt	gccagcagcc	gccccataac	ataggtcgca	60
agcgtttatcc	ggaattatttg	ggcgtaaagc	gtccgttaggt	tttttctaa	gtctggagtt	120
aaatgctgaa	gctcaacttc	agtccgcttt	ggatactggc	aaaatagaat	tataaagagg	180
ttagcggaat	tcctagtgaa	gccccgtggat	gcttagatata	taggaagaac	accaataggc	240
gaaggcagct	aactggttat	atattgacac	taagggacga	aagcggtggg	agcaaacagg	300
attagatacc	ctggtagtcc	acgcccgtaa	cgatgatcat	tagttgtgg	aataatttca	360
ctaacgcagc	taacgcgtt	aatgatccgc	ctgagtagta	tgctcgcaag	agtgaaattt	420
aaaggaattt	acgggaaccc	gcacaagcgg	tggagcatgt	ggtttaattt	gattctacgc	480
gtagaacctt	acccacttt	gacatcttct	gcaaagctat	agagatata	tggaggttaa	540
cagaatgaca	gatggtgcat	ggttgtccgt	cagctcgtgt	cgtgagatgt	taggttaagt	600
cctgcaacga	gcgcaaccct	tttctttagt	tactaatatt	aagttaaagg	ctctagagat	660
actggctgga cc						672

<210> 451
<211> 554
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1)...(554)
 <223> n = A,T,C or G

<400> 451

acacgctgcc	aaagtaattc	ctgctcatcc	atgcctgtc	tctgtctt	tttagagtcat	60
accttatttg	agtataggtt	gcttaatttt	gctagacttc	ctgaaaacac	taaggtggag	120
tatcagaagt	gattttagtc	acagttctgc	gggagagctt	agaataaacat	cctccttgg	180
gaggtggct	tgggtgcgtg	gatgttgta	tacagtctt	attgttaagtc	tgataaaaaa	240
tgctaataaa	ttaatgttt	ttcttcctta	atttattggc	atagttcttc	aggttagcacc	300
tcattttat	taatgatatt	gggattaact	atgaacaagc	tatatgtaga	catttgcat	360
taaggacatt	gcaagtggttc	aaagatccc	tcattgcagc	ttgnatcctt	tagatccat	420
cggaaacttc	tggagcttac	attaaatgct	catttgagct	aatagnaat	ctggtnaacc	480
aganttgggc	aatactttt	aaganactgg	ggacnattan	ggntaganng	ggctatttcc	540
ccttnaggg	nggg					554

<210> 452

<211> 566

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(566)

<223> n = A,T,C or G

<400> 452

acaaataaaat	tgtatgtttt	ccggataagt	gacatgttta	tatggtgata	aaggaaatta	60
taatgcttt	aactcttatg	tagtatgttc	tcataaaaat	caccaagcat	gagaacactg	120
ttagtctca	ttcatcactc	agcacagcct	cttctgtcc	acttcaggc	caagtcttg	180
ccatggcccc	acataaacgtg	taaattagct	tcagggatca	aaaatcttg	aaaacccagt	240
ttgctgagcc	ttgaaggaag	cctttagacc	cagcttcaat	gaagtcacag	ctccctgagg	300
gtcctgttgg	actggaggcg	gcctcccaag	cctgggagct	gtgtgcctgg	atggtctcac	360
tgggtgtatg	acccaagctc	atggctccct	ctcaacctct	aacccttctt	aacacaagtc	420
acccctggnc	ccctgagcac	tcctgaatgc	ccttggaaag	gacatttcta	ggctnctaag	480
angcctgtt	ccttcagctg	gcaccctnan	tttaccagcc	nggnangcag	gnnttccaan	540
ttntgctggg	tnaanaaaanc	ccgncc				566

<210> 453

<211> 688

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(688)

<223> n = A,T,C or G

<400> 453

ggtaactcta	ttcattttt	gaaggcttgt	aactgctgag	gttaggtgc	tgtcacattc	60
aacattttca	ctgccacatc	accatgccac	tttcccttgt	agactgttcc	aatatgatcca	120
gatccaattc	tttgtccac	tgtatctgc	ccatcaggaa	tctcccaatc	atcaactcgag	180
tcccgtctac	caagtgtttt	cattcgattc	ctgtcttctg	aggatgaaga	tgacttcctt	240
tctcgctgag	gtcctggaga	tttctgttaag	gcttcacgt	tagttagtga	gccaggtaat	300

gaggcagggg	gggttagcaga	caaaccctgtg	gttgatccctc	catcaccacg	aaatccttgg	360
tctctaata	cgtcaatca	attgacaggt	tctattgtgt	ttatatgcac	attggggagc	420
tgatgaggat	cggnctcggt	gcccaaattg	aattccatga	tcttcatctg	ctggggccgaa	480
nggctgngga	aatggaatgg	gtttgaaga	gaccgactgg	tgagaattgg	ggcccaatan	540
aatcnaggcg	ggtgccgaaa	gggatgatcn	cantgttaggc	agtcttggt	aaggaccctn	600
ttctgnggga	ttgggggggt	taannacttg	ggacaacccg	caaataant	ggcctattaa	660
nccttaggga	aatntanct	gccngggg				688
<210>	454					
<211>	565					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(565)					
<223>	n = A,T,C or G					
<400>	454					
actggctgcg	aggcgccagt	cgatcaatgt	atgacaggag	ctgagacttg	gccacacccag	60
gatccccat	cagacagatg	ttgatgttgc	cccgatttt	catgcctcga	ggagactgg	120
ccacacccccc	gactagcagg	agcagcagt	ccttcttcac	atcttcatgc	ccgtatattt	180
ctggggcgat	tgaagctgcc	agctttcg	agaaaatcct	cctctgcaat	ttgcctcagc	240
tcctccctgg	tgagctctcc	agccccagac	tcatcatecc	cactcttgtt	catttcaca	300
atccgatggg	cttccaggt	ggtttctgag	agtaaaaccct	gtacttgatg	cactttgcac	360
agacagggtg	tgttgaatag	gcattatttt	ataaggaaaa	gaagtctgt	gtgactgggt	420
tgaaaataaaag	tgttaatgg	gatggagggc	agntctttg	gatttgctg	gtantgctga	480
tgggagacng	gagaccacct	ngggcgcgaa	cacgcttaag	gggganaatt	cngcacactg	540
ggggccgta	ctatagngn	ccnnnc				565
<210>	455					
<211>	566					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(566)					
<223>	n = A,T,C or G					
<400>	455					
acagtctga	ttgcatcata	attgtggttt	ccaaacccagt	ggacattctt	acgtatgtta	60
cctggaaact	aagtggatta	ccaaacaccc	gcgtgattgg	aagtggatgt	aatctggatt	120
ctgctagatt	tcgctacctt	atggctgaaa	aacttggcat	tcatcccagc	agctgccatg	180
gatggatttt	gggggaacat	ggcgactcaa	gtgtggctgt	gtggagtggt	gtaatgtgg	240
caggtgttcc	tctccaggaa	ttgaatccag	aatgggaac	tgacaatgt	agtggaaaatt	300
ggaaggaagt	gcataagatg	gtgggtgaaa	gtgcctatga	agtcctcaag	ctaaaaggat	360
ataccaaactg	ggcttattgg	ttaagtgtgg	ctgatcttat	tgaatccatg	ntggaaaatc	420
tatccaggat	tcatcccgng	tcaacnatgg	tngaaagggg	atgtatggca	ttggagaaaat	480
gaancttcc	tngncccttc	cntgnatccc	ncaanggncc	cggggattna	acnagcggtt	540
ttnaanccn	aanctttaag	ggnggg				566
<210>	456					

<211> 559
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(559)
 <223> n = A,T,C or G

<400> 456

ggtcctggcc tcagcccccc acatcaccct gacctgctta cgcccagatt ttcttcaatc	60
acatctgaat aaatcaacttg aagaaagctt atagcttcat tgcaccatgt gtggcatttg	120
ggcgctgttt ggcagtgtat attgcctttc ttttcgtgt ctgagtgtcaat tgaagattgc	180
acacagaggt ccagatgtcat tccgtttga gaatgtcaat ggatacacca actgctgctt	240
tggatttcac cgggtggcgg tagttgaccc gctgtttgga atgcagccaa ttcgagtgaa	300
gaaatatccg tatttgtggc tctgttacaa tggtaaaatc tacaaccata agaagatgca	360
acagcatttt gaatttgaat accagaccaa agtggatggat gagataatcc ttcatcttta	420
tgacaaaagga ggaattgagc caacaattgn atgttggatg gtgggttgca ttgggtttac	480
tggatactgg catagaaaagt ggtntctgggaa gaaaaaccta tggggcaga ncntttttta	540
agcctggcca ananagnt	559

<210> 457

<211> 552
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(552)
 <223> n = A,T,C or G

<400> 457

gttacgacaa aatattaagag gaataacaaa tacaaatttt ctgttaagaa cggaaaggta	60
caaacttagca gaggtaatac tggtaaccag aaggcactaa tccaaacaca taaatttcaa	120
aagctggta tattatggaa taccatatac actggcctt gccagtttgg gatttctgca	180
atagcaataa gcctcggtt ttttccat tataacaaca aaaagatgag ttactaatga	240
acattccact acagaagtct aggctatgtt gataaaattga aaacttatct agactactct	300
gtctaagagc aataaaaaagt aaacactttt ttagccagca gcactaggaa acagggtgaa	360
tttaccaaga taaatttaggt tggggatacc tactgccaac ttgtgcgggtt gtcgaattca	420
ctgnaatatg tattccttattt gatagatagatg ctcttgaatg naaaccacct anaagtgagg	480
ggaaaaagctt caggatcatg gnccacaatt atgntatagn gctttngnng ggtngagccn	540
aaccccgntn cc	552

<210> 458

<211> 561
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(561)
 <223> n = A,T,C or G

<400> 458
 accccaaacaa tcttcaagcc acagtccaag agaagtctca gcaaaggcaga ctagaggaa
 gaatccttag caactcaggaa acgaacacca tcagtaggaa aagctatgg cacacccaaa
 ccagcaggag gtgtatgagaa agacatgaaa gcatttatgg gaactccagt gcagaaattg
 gacctgccag gaaatttacc tggcagcaaa agatggccac aaactcctaa gaaaaaggcc
 caggctctag aagacctggc tggcttcaaa gagctttcc agacaccagg cactgacaag
 cccacgactg atgagaaaaac taccaaaaata gcctgcaaat ctccacaacc agacccatgt
 gacaccccg caagcacaaa gcaacggcca agagaaacct cagggaaagca gacgttagagg
 aagaattttt agacttcagg aaacgaacac catnagcagg ccaagccntg gnacacccaa
 aaccngcngt nagtggtga gnaaaaattt cncccanntt tgggnaactt ccggngcaaa
 nttnngcccn nttnnnnaa a

60
 120
 180
 240
 300
 360
 420
 480
 540
 561

<210> 459
 <211> 468
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(468)
 <223> n = A,T,C or G

<400> 459
 ggtacctcga catcctgaac actggataaa aaagttgatt aaatccagaa gtgcgtatgtc
 cctgtcttgt ttatatgatt caatccagtc atccaccacg gactgcattt cactttccc
 cagtttccacc acctcaaata atgtgacagg ctccccttcc ccattctgtt gagggtgtcc
 attagctctt ccacggcctg ctcccttaat tccagcttca attctgtct ttcacactgg
 agatttcga ggtttcttat ttgttagatgg aggccggcca ggacgacccc tttttcttt
 tcctttgacc tctgtttctt caagctcgct gccagcatcg gaatgggcag tagtttatt
 agttgaatcc tgtaaacactg gtaattctga agtaatcatt gctggagagg cctttcacaa
 tgcagcaaaa taatcaagtg ctgnacctgg ccggggccggg cgctcgaa

60
 120
 180
 240
 300
 360
 420
 468

<210> 460
 <211> 566
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(566)
 <223> n = A,T,C or G

<400> 460
 acttcttgca tgggtgtcaca tgggtgttg agaatacggt gctgcctata tggctccact
 gggagagggc agatggaaagc cgtcgctca tctgtcggtt aacgtgtgtct gtgcaccc
 tcccttgc tatcttaatc tctgtcttt tactgtata aactgttaact gtgagccata
 cagtttctt ggttctgtt agtccctcta gcaaatgaaa ggagggtgtt ctggagacc
 tatgaaacttgc cacctggccc cgtcggtt aggtctggca cagggaggga ggctggcttc
 tttggagggg gtcgttcatcc attgggtcg ggtccaaactc tggaggccca cgtccttgcc
 agctccagtc tctctccctt ctcagttcccg acgctgtcac cttgtgcctt ctgtctgtgg
 atccctggaa gagctgntct ctctgtcact agctgaatan gagacatgcc cattagctga
 ggcgttgca tgcttgact actcgattgn caaangtnca agngntccca nnncncccg
 ggtctatgga naannggggg gnanan

60
 120
 180
 240
 300
 360
 420
 480
 540
 566

<210> 461
 <211> 570
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(570)
 <223> n = A,T,C or G

<400> 461

ggtaactatag	catacgctgc	ctttgctgg	gtgtggcgat	taggcctgg	ggaactgcc	60
tcaataaaatc	aacgcgtgatc	agggtgagga	acagggaaga	aggaaatgtg	gggaaatggg	120
atgaacatca	ggtggtatcac	agagatgcag	tcatgggggt	caggtgtgg	atccggaata	180
atgtgggagg	ctggattgaa	gtccgggcca	gaaacaatgg	taattgtggg	acttaacaaa	240
aagtgagaac	agtcgaagga	gtcaggggagc	agaaagtata	tgcgtcaggt	gtgaggaaga	300
aatagattt	tgaaagtat	gagaatgt	gagagttagt	tgagcatagt	ttgtgatttt	360
gagggcctct	aatagtatta	aacgcgtggc	agccgcctac	accgcagaca	tganggctag	420
gctaaaacag	taagggccaa	gttgttgc	cagaaaggct	tcagggtgcc	ggtcctggct	480
cttgggtaag	aattttggac	cggacttaac	catgcctaag	gaaggggaaag	gagttgtngt	540
tttgtnaggg	gaccagggtt	ttggaaaann				570

<210> 462
 <211> 573
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(573)
 <223> n = A,T,C or G

<400> 462

cgagggtacca	ccagtatatg	gaatgttagg	aaaaaacttt	gttccagttc	cttttttttt	60
tctttctact	ttaaagtttta	agtgaaccat	actgaaatga	ccaacaagtc	tgcctgtaaa	120
gttacatgtc	atgattgtgt	tgttaaatga	ttatggggga	gaaaatgaag	taaatgttgc	180
tgatgatccc	catattttt	gatcatatta	aggttgtta	tatagttgg	aaatgaccag	240
ccccctaaggc	agtgtttgtat	taacttatgc	taatcagatg	attactcata	tattctgcta	300
attttcttagc	tttattcttg	ttatttggaa	aaattattag	ccaaatgcct	tcctaggtgg	360
atccagttgg	aagatatgtc	cagaaacctg	aagaaaaatt	gacgctgcct	ttgtgtgtcg	420
gattgctcta	cttgatttga	tcatgatata	tcaaggntga	attttagag	ggaaaattaa	480
ttctgatatac	ttatttggatc	ccttgataag	nttttcctg	gattttttt	tttccccaaa	540
gaatttttca	tttgngncct	ngcccgccgg	gcc			573

<210> 463
 <211> 574
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(574)

<223> n = A,T,C or G

<400> 463

accatatcct	gtgtttgaat	caaaccggta	gttcttctat	gtgaaaggct	tgcagaggg	60
gattcccttc	cgaagcccta	cctgggttgg	aattccacga	cttggaaagga	tgcacgg	120
gagtaataaa	atcaagttcg	ttgttaaaaa	acctgaacta	gttatttcct	acttgccctcc	180
tgggatggct	agtaaaataa	acactaaagc	tttgcagtcc	ccccaaagac	cacgaagtcc	240
tgggagtaat	tcaaaagggtc	ctgaaattga	ggtcacccgtg	gaaggcccta	ataacaacaa	300
tcctcaaaccc	tcaagtttc	gaaccccgac	ccagactaac	ggttctaacg	ttcccttcaa	360
gccacgaagg	gaagagaggt	ttnctttga	ggcctggaaa	tgcccaaaat	cacnggcctt	420
aaaacaggaa	ggtggaaaa	tctcttcaa	tgagaaaat	tggggnaact	cttgggcctt	480
aaacaagctg	tgaaggtgc	ccggcccgg	taatttgggg	cctttcccg	gaagacnntt	540
tttgtggaaag	gntacctga	ngggggggcc	cttt			574

<210> 464

<211> 458

<212> DNA

<213> Homo sapiens

<400> 464

ggtaactgccc	ctccggagata	tttacttgc	tttactttga	acatgagcag	agaaaagaca	60
aagaaaaaga	tggccatggc	aaagctgatc	cgatacacag	ctttataacc	aaccagcaca	120
tcacaatctt	tatctgcatt	tatatcagcc	tcatggattt	taaatcccc	ttcacaaaat	180
ccaggaaatct	tcttcaagta	agtttcatc	tctttctct	gcatgatata	ggatacgcaca	240
gtgctcagga	ggagaatgaa	agcataaatg	aggcgagtca	ccgtggattt	cttactgtta	300
ggacagacaac	tacacagcaa	acatgaggca	ccgctgcaga	ggcatggaac	ccagctggcg	360
agggagaaga	cacccagcac	agccccatg	gtgacgcccag	tcatggaggt	ggccggcctt	420
gaggctgctt	tctaacacgg	tgttaactgc	cagcttag			458

<210> 465

<211> 580

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(580)

<223> n = A,T,C or G

<400> 465

gcggccgang	tacttcacca	tcactgactc	catggacttg	atcagccnc	gctggatgt	60
tncagtc	gnagtnttga	cagccgtgn	aatgagcccc	tcacgacccc	ccatggngtg	120
gaaaaagaac	tcaagtgggtg	tgaggccggc	taggttaggag	ttctncacaa	agccacggct	180
ctnaggcccc	tagtcatcct	tgtgaagtg	aggcagagtc	cggtgcttga	agccaaatgg	240
aatccgcttgc	ccctcgacgt	tctgctgtnc	aacgacagcg	atnacctggg	agatgttaat	300
cttggAACCT	ttagctccgg	acacgaccat	anacttgaag	ttgttgatt	canacaggga	360
tttctgagca	gaggagccag	tcttgc	ggcatacgta	agaatgcggg	tcacctgatt	420
ctcaaacgtc	tgcgcagan	tggccctgg	ggngggctcc	agtcattgt	tgngngnctt	480
cttnatgacc	tcttacgt	cctgnttggg	gcttttaana	gggcctgaat	gncccccggaa	540
ggnnttanaa	ttncnatggg	gttcccaagg	ccanactnn			580

<210> 466

<211> 566

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(566)
 <223> n = A,T,C or G

<400> 466

caagcctttt	ttttttttt	ttttttttt	ggcgcattgcct	gtgttggggtt	gacagtggagg	60
gtaataatga	cttgttggtt	gattgttagat	atgggctgt	taattgttcag	ttcagtgttt	120
taatctgacg	caggcttatg	cgaggagaaa	tgtttccatg	ttacttatac	taacatttagt	180
tcttctatag	ggtgatagat	tggtccaatt	gggtgtgagg	agttcagtt	tatgtttggg	240
attttttagg	tagtgggtgt	tgagctgaa	cgccttctta	attggtggct	gcttttaggc	300
ctactatggg	tgttaaattt	tttactctct	ctacaagggtt	tttccctagt	gtccaaagag	360
ctgntccct	ttgactaaac	agtaaatttta	cnagggggat	ttaaagggtt	ctggggggcca	420
aatttaaagg	ttgactaaag	aattctatct	tggaccaacc	agnttttcac	cangcctcgg	480
gaagggttgg	ccgcctntac	ctattaaact	tncccctatt	ttgggaccta	naccgggnngg	540
ggctcctttt	aacngggcnt	aagggg				566

<210> 467

<211> 597
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(597)
 <223> n = A,T,C or G

<400> 467

gcgtggtccg	gccgagggtac	gtgatgcctt	tacagctgaa	aaatccaaga	ttgagacaga	60
aatcaagaac	aagatgcaac	agaaatcaca	gaagaaaagca	gaacttcttg	ataatgaaaa	120
accagctgct	gtgttgctc	ccattacaac	gggctatacg	gtgaaaatca	gtattatgg	180
atgggatcag	tcaaaaaatgt	ttgtgaaaat	ctacattacc	ttaactggag	ttcatcaagt	240
tcccactgag	aatgtgcagg	tgcatttcac	agagagggtca	tttgatcttt	ttgtaaagaa	300
tctaaatggg	aagagttact	ccatgattgt	gaacaatctc	ttgaaaccca	tctctgtgga	360
aggcagtca	aaaaaaagtca	agactgatac	agttcttata	ttgtgtagaa	agaaagtggaa	420
aaacacaagg	tggatttacc	tgacccaggt	ttgaaaangg	agtgc当地	aaaaggagaa	480
gcccttntct	tgacactgga	accagaatcc	tngtnagggg	attgtataaa	ggtcttaaga	540
aaaatttttg	aagaangnng	cattgatttt	gaagcgnacc	ctttattnan	gcttggg	597

<210> 468

<211> 562
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(562)
 <223> n = A,T,C or G

<400> 468

ggtaactggat	aaagggtctga	catcaagagc	aaacagaagt	ctttcctag	tgcataatgca	60
aactggccaa	ttccttccaa	ctgaatgcat	atttgccaga	tgttactgtt	catggagcaa	120
atagtggac	ttggcttga	gaaggctaga	aaagatgtaa	cttggtaggt	gtgttcacca	180
gacgtgtatgg	cttggaggcc	tgggtgtcc	atcatcagct	cctctccat	ttcctcagtt	240
tcaagacagg	taaccaaata	ccaattttct	tgacttgtgt	attcttcaag	tatagatgtc	300
acaatcttc	tcagtttttc	tgggtttgtt	ttaatatgtt	ttcgtgaag	atcctcaacc	360
tccagcccg	cagccccctgt	aaccaggta	ttaaggatca	tggcagttg	cttcggtaa	420
accacagatt	gatggtaaag	ttccataaaag	tgatccacaa	gcnaataaaa	gattnccata	480
ataaccaagt	agcttgacaa	acctggctna	agagcntgaa	aatctctta	tccgtgaaga	540
aaccgaaata	tcttctntng	gg				562
<210>	469					
<211>	533					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(533)					
<223>	n = A,T,C or G					
<400>	469					
cgaggtacca	ataccaccaa	ttttgttagac	atcctggaga	ggcaggcgca	agggcttg	60
agttggacga	gttgggtgta	ggatgcagtc	cagagcctca	agcagcgtgg	ttccactggc	120
attgccatcc	ttacgggtga	ctttccatcc	cttgaaccaa	ggcatgttag	cacttggctc	180
cagcatgtt	tcaccattcc	aaccagaaat	tggcacaaat	gctactgtgt	cggggtt	240
gccaattttc	ttaatgttaag	tgctgacttc	cttaacaatt	tcctcatatc	tcttctggct	300
gttagggtgg	ctcagtggaa	tccattttgt	taacaccgac	aattagttgt	ttcacaccca	360
gtgtgttaagc	cagaaggc	tgctctcggg	tctgccattc	ttggagatac	cagcttcaaa	420
ttcaccaaca	ccagcagcaa	caatcaggac	agcacaagtc	aggctgagat	gtcctgmaat	480
catgnntttt	ataaaagtct	gggtcctggg	ccatcaatga	tagccatagt	acc	533
<210>	470					
<211>	672					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(672)					
<223>	n = A,T,C or G					
<400>	470					
ggtacaccat	ataaacagca	gatgaagtgc	gagagatgt	ctaatacact	tagatcatgt	60
tccaccacaa	tgtatatatct	atctggattt	attagagatc	gtatagtaat	agcagccttt	120
aaacgctgct	tgacatctag	gtaactagaa	ggctcatcaa	acatgaaaat	atcagctttc	180
tgtatgcaaa	cgacagcaca	agcaaatctc	tgcaactctc	ctcctgaaag	atcttcaaca	240
tttcgttctt	ttaggtgggt	taaatcaagc	tgctgacata	caattgcctg	tgtctttgtt	300
tcatctttc	ggtccaaaat	agatcccact	gtccccttt	cagcctttagg	aatctggct	360
acatatttgg	gtttgatgt	ggcttttagg	tcatcttcta	aatcttgg	aaagnaattt	420
tgnatttgc	atccacngaa	ataagtcaaa	atcttctggc	agtcaaggg	gatcatcgga	480
cctgncccg	ccggccgntt	cgaaaggcca	aattccagca	cacttggccg	gccggtaactt	540
agnngaatcc	nagttcggg	ancccangcn	ttggcgnnaa	tcatngggca	taactgggtt	600

ccctgggggg	aaaaatggta	atcccggtta	ccaanttcnc	cccnacatac	cnaaccgga	660
agccttan	an	gg				672
<210> 471						
<211> 387						
<212> DNA						
<213> Homo sapiens						
<400> 471						
cgaggtgagc	tttgaaacaa	ctgatgagag	cctgaggagc	catttgagc	aatggggAAC	60
gctcacggac	tgttgtgtaa	tgagagatcc	aaacaccaag	cgctccaggg	gctttgggtt	120
tgtcacatat	gccactgtgg	aggaggtgga	tgtagctatg	aatgcaaggc	cacacaaggt	180
ggatggaaaga	gttgtggAAC	caaagagagc	tgtctccaga	gaagattctc	aaagaccagg	240
tgcacactta	actgtaaaaa	agatatttgt	tggtggcatt	aaagaagaca	ctgaagaaca	300
tcacctaaga	gattattttg	aacagtatgg	aaaaattgaa	gtgattgaaa	tcatgactga	360
ctgagacctg	ccccggccgg	ccgtcga				387
<210> 472						
<211> 241						
<212> DNA						
<213> Homo sapiens						
<400> 472						
ggtacgaatc	gtctcctggc	actgtgcagg	cccacagctg	acggcgatga	cctccttcac	60
cagttcttc	tccttgagcc	gcacagcctc	ctccaccgcg	atctcacaga	aggggttcat	120
ggagtgcttc	acaccatccg	tgaccacacc	ggtcctgtca	ggcttcactc	ggatcttcac	180
ggcgtatcg	atgaccctct	tgacagctac	gagcacgcgc	agctccgcca	tcttcccgcc	240
g						241
<210> 473						
<211> 470						
<212> DNA						
<213> Homo sapiens						
<400> 473						
ggtactagtt	cactatcggt	gtctgattag	tathtagcct	taccgggtgg	tcccggcaga	60
ttcagacagg	gtttcacgtg	ccccgcctta	ctcaggatac	atctatgaga	tttatgtatt	120
tcgtatacag	gaatatcacc	ttctatgttg	aagtttcca	acttcttcta	ctatcataaa	180
attttgtAAC	tcaatgtaa	atgtcctaca	acccttttt	acaggtttgg	gcttttcgc	240
tttgcgtcgc	cactactgac	gaaatcatta	tttattttct	tttcctgttg	ctactaagat	300
gtttcaattc	gcaacgtgtc	tcgctaattt	gactatggat	tcatcaaaat	gcaactgagg	360
tttgcgtcgt	taggttaccc	cattcgaaaa	tctccgtatc	atagtttatt	tccaactcca	420
cgaagcttat	cgcaggtaat	cgcgcccttc	atcgactttc	agacccaagg		470
<210> 474						
<211> 637						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)...(637)						
<223> n = A,T,C or G						

<400> 474
 acctcttcct gataagattg aagtaaaaac tggtgaggaa gatgaagaag aattcttttgc
 caaccgcgcg aaattgtttc gtttcgatgt agaatccaaa gaatggaaag aacgtggat 60
 tggcaatgt aaaaactgt ggcataaaaac atctggtaaa attcgcttc taatgagacg 120
 agagcaagta ttgaaaatct gtgcaaatca ttacatcagt ccagatatga aattgacacc 180
 aaatgcttga tcagacagat cttttgtatg gcatgccctt gattatgcag atgagttgc 240
 aaaaccagaa caacttgta ttaggttcaa aactccttagt gaagcagcac 300
 caagtttga gaagcccaga gcattttaaa agccccagga acaaatgttag ccatggcg 360
 aaatcaggct gcagaattgt aaagaaccca caagtcatga taacnaggat attgcaat 420
 ctgatgttgg aaacctgtt ttgaatttca ggntgcaaga aagaaaggc ttggtggcat 480
 tgaaccactg ntcatattaaga atgcttcact gctaaaaatg ngattatgcc aaattaanc 540
 agcaataaga ctctggccc ccttaactga actgttt 600
 637

<210> 475
 <211> 647
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(647)
 <223> n = A,T,C or G

<400> 475
 ggtacaagcc atagtggaaa gaatgaatct ctccctaaaa tagcagttgc aaaagcagaa 60
 agggggagac agagaatatg gaacccaca gatgcaactg aacctagcat tattaacagt 120
 aaatttttg agcctgccc aaggccacat gttatcagca gctgaagagc atctacagaa 180
 accagctgca aggacaaaaa cagaacaact gatttgggg agagatccga taacacgaag 240
 ttgggaaata ggtaaaataa taacttgggg gagaggttat gcttgtttt ctccaggcca 300
 atatcaatag cctatttggta taccatcaag acacctgaaa ctttatcgtg agccagatgc 360
 tgaggaatag actccgggag ggatcctgag aaccccccag ttgcagccat gtttggact 420
 gatgctgagg aggactccaa ctgtcacgag cacagcccc atctggggac agatcaagaa 480
 gctgtcacag atggaagaag aaaaccttga gggaaaggcagg acaatcggtc ccatgatgaa 540
 aatctgatgg tagctataaa ccgttttan cacnccatgn tattcttng ttaaggctga 600
 cncngagaac aattataacct antgggata tttatcatct tggtngg 647

<210> 476
 <211> 665
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(665)
 <223> n = A,T,C or G

<400> 476
 accttatttag aaagcgacgg caaactatgt gccagcagcc gcggtaatac ataggtcgca 60
 agcgttatcc ggaattatttgg ggcgtaaagc gtccgtaggt ttttgcataa gtctggagtt 120
 aaatgctgaa gctcaacttc agtccgttt ggatactggc aaaatagaat tataaagagg 180
 tttagcggaat tccttagtggaa gcgggtggaaat gcgttagatat taggaagaac accaataggc 240
 gaaggcagct aactggttat atattgacac taaggacga aagcgtgggg agcaaacagg 300

attagatacc ctggtagtcc acgcccgtaaa cgatgatcat	tagtttgtgg aataatttca	360
ctaacgcagc taacggcggtt aaatgatccc gcctgagtag	tatgctcgca agagtgaat	420
ttaaaggaaat tgacgggaaac cccgacaaaggc cggtggaaaca	tgtgggttaa ttgtattcta	480
cggcgtgaaat ccttaccac ttcttgacca tcctctgcaa	agctatngga gatatagtgg	540
anggttaaca gaatggcccg aaggtgcattt ggtggccgca	gctcggtcg tgagaaggta	600
nggttaaagtc ctgnaacgag cgccaaacctt ttcttagta	ctaattttaa gttaaggact	660
ntagn		665

<210> 477

<211> 319

<212> DNA

<213> Homo sapiens

<400> 477

cgaggtactt ttcaattatg ttaacgtaaa atactcgtaa	cgaatgttagt atgagtttaa	60
agttagcttt tcagatcata taagtgcata ctaagtaatg	acaggcttta agataaggaa	120
tatatgcatt ttgttaaggc agaaatctca taaaatttca	tgaaaaacca tggtaatcc	180
aatgatgcac ttttaagac aagttgtct gggaaactgga	agggtaaaaa gacaacaaaa	240
aagcacacac caaaaaaacct cacttaagc aaatctataa	cttgaaaaaa aaaaagccta	300
agaatattct gagagtgg		319

<210> 478

<211> 419

<212> DNA

<213> Homo sapiens

<400> 478

acccacgatg atgtggggag cttccatctg cagtttctgc acctcagcac	gcacggtgg	60
gcccccgata caggcgtgac aggaggcgcc catgtgtct	cctagtgcca tgaccacctt	120
ctgtatctgc tgagccatt ctcgagttgg tgcttagact	aaggcctggg tggcttttag	180
atctaattca atctgctgca gaatcgat	ggcaaatgtg gccgtttcc cagtcccaga	240
ttgggcttga gcaatcacat cataaccctt gatacaaggt	agaatgggc ctgtgctgga	300
tggcagaggg cttctcaaaa ccataaggcgt agatgccacg	gagaagggac tccgagaggt	360
tcatgtcatac aaagctgtca acaatctcat	tccagttact ctcgatgacg cttcgacc	419

<210> 479

<211> 312

<212> DNA

<213> Homo sapiens

<400> 479

acatcctgga gacctaaga attctgtga agtcgcactg aacaagttgc	tggatccaat	60
ccggggaaaat ttaataatccc ctgcccgtaa aaaactggcc	agcgctgcct acccgatcc	120
ctcaaaggcag aagccaatgg ccaaaggccc tgccaagaat	tcagaaccag aggaggtcat	180
cccatcccgg ctggatatcc gtgtggggaa aatcatca	gtggagaagc acccgatgc	240
agacagcctg tatgttagaga agattgacgt gggggaaagct	gaaccacgga ctgtggtag	300
cgccctggta cc		312

<210> 480

<211> 640

<212> DNA

<213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(640)
 <223> n = A,T,C or G

<400> 480

ggtaccaaca	attcctccta	ccagtggctg	agcatactct	gcagagtcag	cctgcagcac	60
tgtggtaact	tctttggac	tcaggtgatt	aacctcgctg	ctgctatacg	gaactgggg	120
ttcctcatgg	tccactgctt	ttgcaggaaag	aaactgcttc	attccttcc	accaacctgc	180
ccggccccag	taaggttaagt	cataggtgcc	ttcagttttt	ttctttctgt	ttctccagtg	240
ccaagcacac	actaatatga	gaatgagagt	agtggaggacc	atgaccagca	cagggacaag	300
aactgcagcc	agcgctacat	ctttggttac	atttggagtt	acggtagtat	ttctgatatc	360
aggactggca	gttgggggtt	ctgtctgtgc	aggaaattca	ttgctactgc	gaagttgtag	420
tgggtgcgt	aattttgggg	cacgacctt	ggttatttg	gagggctgt	atgggtttt	480
aggncatgc	tgttncnaag	aggtggaggt	ttagtaagtt	ttggangacn	actttangaa	540
taaaactgaca	tccgagcagt	tcattttcat	ggcaatttct	gctgccatgg	gtaaggatta	600
ctctaataaa	cgtccataa	ttggtggcaa	aagtattccc			640

<210> 481
 <211> 501
 <212> DNA
 <213> Homo sapiens

<400> 481

ggtacatttc	ctttagact	ctgttaattt	cctgcagctc	ctgggtgggtt	ctggagcaga	60
tgtatctcaat	gagagagtcc	tcgtcggttc	ccagccccctt	catggaaagct	tttagctcag	120
aaggcgtcata	ctgagcaggt	gtcttcaata	ggccaaaaat	caccgtctcc	aggtggccag	180
ataaggctga	cttcagtgct	gatgcaagtt	ccttttttgt	ccttcctctgg	taggcgaagg	240
caatatcctg	tctctgtgca	ttgctgcggt	ttgtcaaaaat	gttgacaatg	gtgacctcat	300
ccacacccctt	ggcttctgatg	gctgtttcaa	tgttcaaaagc	atcccgtca	gcatcaaaag	360
ttagtatagg	cttgcacaga	cccatatgca	cttgggggtg	tagagtgtatc	accctccaag	420
ctgagctgtc	acaggatttc	gtgaacagta	agacattttg	aaaggaagct	ggcccggtgc	480
ccccggagagc	tgaaagcgtc	c				501

<210> 482
 <211> 306
 <212> DNA
 <213> Homo sapiens

<400> 482

ggtacctata	cagggatggc	tcccacgcat	ccotcagtga	ccccaaaccc	atctccactt	60
acactcaggc	actccccagga	cctgacagct	actccccgtt	atcgtccttc	agttcgaagc	120
cctggccaaat	ctaccagccc	acatgacgca	gttacctggc	catttctcca	cggttcccggt	180
gaggggccca	cacccagccg	cacaagagcc	cctcctgtcat	tccgtcctca	cacacaggcc	240
tgtgtatgca	cttgcactgt	tcacactt	gctagcagaa	gaggccctg	taatggccga	300
tatcccc						306

<210> 483
 <211> 663
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(663)
 <223> n = A,T,C or G

<400> 483
 acagaatttc ttatttcttg aagactctgt ggttgaccac ttcttcatta gttacctgca 60
 gcaagacacc ttccatTTA ctaccaacac cactgaagga accaagaaaa gctttattaa 120
 tgatcaactg gcttgcctca gctgttggaa tgaagcactt tacagtctt gtggcagcag 180
 aataatacttg tccatgggtc atatcaatgc catggcaaAT aggaagaAGC tcagtatcgg 240
 ctcccccac cataaCCCCC acttcctcca ctgcctcctg gaccatagtt tcctccacca 300
 tatggccccc ccatgttccct gctaccacca aagtttccac tcttcacacg ggccaagtca 360
 gaaagaccat gacataaaga gagatggcga aactgaaacg gattatttct tttgncttca 420
 aaacatctca tcaattttatc actcatccat tctacctggg acttagaaaa ctccaccaca 480
 ttgttaactga cattatTTAG gagtgcctaa gactaaacac ccaatcctgn atcttttagtc 540
 cctccaaatc tggatccaag aagtttagcc aggttccaaa ctntggctg ntggggggcca 600
 ctgttattaa cacatTTCA ttanctgaa nnngttccag gacanttggc anaacttggt 660
 ant 663

<210> 484
 <211> 228
 <212> DNA
 <213> Homo sapiens

<400> 484
 cttgggtctg aaagtcgatg aaggacgcga ttacctgcga taagcttcgt ggagttggaa 60
 ataaaactatg atacggagat ttccgaatgg ggtAACCTAA ctgagcaaAC ctcagttgc 120
 ttttgcataaa tccatagtca aatttagcgag acacgttgcg aattgaaaaca tcttagtagc 180
 aacaggaaaa gaaaaaaaaaaaaaaa aaaaaaaaaaag cttgtacc 228

<210> 485
 <211> 672
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(672)
 <223> n = A,T,C or G

<400> 485
 acggagccct ctgaaaaatg acaaagatgg tatgtatgtat ggccaccag tggggactta 60
 ccatgacccc agtgcCcagg aggctggcgt ctgcctaAT tctagtgatg gtctgcctaa 120
 caagggcatg gaattaaAGC atggctccca gaagttaacaa gaatcctgtt gggatcttc 180
 tcggcaact tctccagCCA aaAGCAGCGG tcctccagga atgtccAGTC aaaaaaggtA 240
 tgggccccc catgagactg atggacatgg actagctgag gctacacagt catccaaACC 300
 tggtagtgtt atgctgagac ttccaggCCA ggaggatcat tcttctaaa accccttaat 360
 catgaggagg cgtgttcgtt ctttatTC tcccatccc agtaagagac agtcacaaga 420
 tgtaaaAGAC agtagcactg aagataaagg tcgccttcct tcactcatca aaaAGAAAAGG 480
 cgcttgatTA aagatttca atttcctatg gccccatTTT ttnttcacag gtccnGGGat 540
 antcaagtc tatnccTTA agaagagaat tnccTCCan gggncTTc cnaggtcccc 600
 aatagttta AAAACTGGNC ctggtnGGTA ancTTTann aaagccTTG gtAAAAnCC 660
 cnAAAnAnNg 672

<210> 486
 <211> 637
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(637)
 <223> n = A,T,C or G

<400> 486

ggtacaata	g agctttggat	ctgatacaag	aatttagaaa	tataaaacaa	aataactata	60
aaagttagga	ggcatttgaa	tggcatttcc	ttagaagaac	ctgctaactc	tgtatcattc	120
tgtatgtggat	tcctagtcat	gtggggtgaa	atgcatttattt	ttcccccttt	gctggatcac	180
tggcctttct	tcaaaaagcta	taatgccatg	aacacacatc	c ttaggagtct	c tataatgtt	240
aacagaagct	ccaaatacca	agccaatcaa	agatgggaga	gggcagggga	accataaagg	300
cgaagggtcc	aaagggtggct	gttactgaga	acttgcctt	tccaaaatgt	gaaagtcat	360
gtgcttcttgc	cttgttctca	gcttaaactt	gttaactgag	ttaatttgtt	tcttcagtgc	420
attctgtgca	gctgaaaatgg	aggggaatgt	ggctaagacg	gtgtangtgg	angccaagtc	480
actgggttta	gaaccgttca	aggggtggca	gtgggtggnc	ccactggcca	cagcagaagg	540
ggttgaccac	cctgggttgg	gactgggggg	tncccgann	cccccgatn	ttggngccca	600
attttaaaga	agtnccccca	aaaactttt	aacttn			637

<210> 487
 <211> 618
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(618)
 <223> n = A,T,C or G

<400> 487

ggtacacctt	cccattgactg	cacccagctc	cagggggccct	tgggacagcc	agagctgggt	60
ggggacagtg	ataggccaa	ggtcccctcc	acatcccagc	agcccaagct	taatagccct	120
ccccctcaac	ctcaccattt	tgaagcacct	actatgtct	gggtgcctcc	cacacttgc	180
ggggctcacg	gggcctccaa	cccatttaat	caccatggga	aactgttgc	ggcgctgctt	240
ccaggataag	gagactgagg	cttagagaga	ggaggcagcc	ccctccacac	cagtggcctc	300
gtggttatta	gcaaggctgg	gtaatgtaa	ggcccaagag	cagagtctgg	gcctctgact	360
ctgagttcac	tgcatttata	ataacccca	cctgacctga	gactgtcgga	gaggctgtct	420
ggggccttta	tcaaaaaaaag	actcagccaa	gacaaggagg	tanaggggg	actgggggac	480
tgggagtc	aaacccctggc	tgggtaag	tccacgnt	gcnagactg	gtttttctt	540
ttgggccttgc	gttcatttgc	ggcaaagaat	gatgaccnct	atttcagga	ctttcccttc	600
ngtncaagg	ttttnt					618

<210> 488
 <211> 618
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<222> (1)...(618)
 <223> n = A,T,C or G

<400> 488

ggtagcagtcg tctgaagaag ctctgagggc ggcaggacca gccagcagca	gcccaagctt	60
ccctccatcc cccttaccc tctttgtgc agagaaaactt aagcaaaggg	gacagctgtg	120
tgacatttgg agagggggcc tgggacttcc atgccttaaa cctaccccac	acactccaa	180
ggttggagcc cagggcatct tgctggctac gcctcttctg tccctgttag	acgtcctccg	240
tccatatcag aactgtgcca caatgcagtt ctgagcaccc tgtcaagctg	ccctgagcca	300
cagtggatg aaccagccgg ggccttatcg ggctccagcc atctcatgag	gggagaggag	360
acggaggggga gtagagaagt tacacagaaa tgctgctggc caaatagcaa	agacaacctg	420
ggaaaggaaa ggtcttgtg ggataatcca tatgttaatt attcaacttc	atcaatcact	480
ttatattttt tttttctaac ttcttgaga cttatattac tgntttatta	gggtgaaaac	540
tggcnntcta ngtagggtt ntntatccca ggactacctt gggtttaan	ttaaaaaaaaaa	600
aaagaaatgg ntaaaaaaaaa		618

<210> 489

<211> 624
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(624)
 <223> n = A,T,C or G

<400> 489

naggtnctga tgattctcca natccangta tagaatatga ncncgnncn	cgaaantgg	60
tganttgat tcctgggct gagtacgtat gttatgnca	tggaaaaacna	120
atttctcaga gagactacac acaaatactat gatcatattt	ctaaacagna	180
cgcanatgca tacaagactt tttcaagaaa cacatacagt	ggaagaaaatt	240
attgntgtnt tttttgtgg taacnngaaa gtttatnnnt	gtctgaaagc	300
attnaaatnn acnnagtaat gaactattca attgctgnaa	tccgtcaaaaa	360
ncgcacacaa antnntatcc ttgnncacgn ancntcatac	actgnccctn	420
cttgcggga accaatcnge atgacatttc tggccgggtt	gccaaacacacc	480
cccnngcact ggttaaggng ggccttanac ctttagggg	aaatntata	540
ctttaaacntc tgggggnngg tananatttc ttataggnac	aaggcccnaa	600
·canttttng ncccttggg tttt	taccctnccn	624

<210> 490

<211> 620
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(620)
 <223> n = A,T,C or G

<400> 490

ggtagcactt cccatgactg caccagctc cagggccct	tgggacagcc	60
ggggacagtg ataggccaa ggtccccctcc acatcccagc	agcccaagct	120
ccccctcaac ctaccattt gtaagcacct actatgtgct	taatagcccc	180

ggggctcacg	gggcctccaa	cccatttaat	caccatggga	aactgttgtg	ggcgctgctt	240
ccaggataag	gagactgagg	cttagagaga	ggagggcagcc	ccctncacac	cagtggcctc	300
gtggttatta	gcaaggctgg	gtaatgtgaa	ggcccaagag	cagagtctgg	gcctctgact	360
ctgagtcac	tgctccattt	ataacccag	cctgacacctga	gactgtcgga	aggctgtctg	420
gggccttat	caaaaaaaaaag	actnagccaa	acaaggaggt	agagagggga	ctgggggact	480
gggagtcana	gccctggctg	ggttcangtc	cacgttgggc	aggcacttgc	ttttctttt	540
nngnctttgg	tcccttggtg	gcaaaaagagt	gattgaaccc	cttattttca	agggctttc	600
nctnatgttn	cangntttnn					620

<210> 491
<211> 630
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(630)
<223> n = A,T,C or G

<400> 491

acatttcctt	gtagactctg	ttaatttcct	gcagctcctg	gttggttctg	gagcagatga	60
tctcaatgag	agagtcctcg	tcggttccca	gccccttcgt	ggaagctttt	agtcagaag	120
cgtcatactg	agcagggtgc	ttcaaataggc	caaaaatcac	cgtctccagg	tggccagata	180
aggctgactt	cagtgtctat	gcaagttct	tttggtcct	tctctggtag	gcgaaggcaa	240
tatcctgtct	ctgtgcattt	ctgcgggtgg	tcaaaatgtt	gacaatggtg	acctcatcca	300
caccttggt	cttgatggct	gtttcaatgt	tcaaaagcatc	ccgctcagca	tcaaagttag	360
tataggctt	gacagaccca	tatgcactt	gggggtgtaga	gtgatcaccc	tccaaagctga	420
gcttgcacag	gaattccgtg	aacagttagac	attttgaagg	aagcttnctt	gaggcccaat	480
gtgttcaacc	caaccggaa	aactnttncg	ggtagaaagtg	aaatccgaag	ttgttattgc	540
ttccagaata	acctgggnccn	tncccccnaaa	actttaaaac	gttcccacct	tggcgggaa	600
cccncttaan	ggggaaattc	ccgnccncng				630

<210> 492
<211> 412
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(412)
<223> n = A,T,C or G

<400> 492

acactaccaa	cagatcaaag	aaacccctcc	ggccagttag	aaagacaaaaa	ctgctaaggc	60
caagggtccaa	cagactcctg	atggatccca	gcagagtcca	gatggcacac	agttccgtc	120
tggacacccc	ttgcctgcca	caagccaggg	cactgcaagc	aaatccctt	tcctggcagc	180
acagatgaat	cagagaggca	gcagtgtctt	ctgcaaaagcc	agtcttgagc	tccaggagga	240
tgtgcaggaa	atgaatgccg	tgaggaaaga	ggttgcgtaa	acctcagcag	gcccccagtgt	300
ggttagtgtg	aaaaccgatg	gaggggatcc	cagtggactg	ctgaagaact	tccaggacat	360
tatgcaaaag	caaagaccan	aaaaaaaaaa	nnaaaaaaaaa	aaagcttgc	cc	412

<210> 493
<211> 633

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(633)
 <223> n = A,T,C or G

 <400> 493

acactggcca	gtgtgtttt	ggcgattaaa	cataatcctg	tgaatcagat	taattcactt	60
gctgagtgtt	catttgcggc	atccctctgt	tgggtcttgg	gggcctcca	cgacctcg	120
gggctccccg	tggtccactc	tgcggagac	ctcgcttcaa	attctgctga	tatccatccc	180
gttgatagcc	agagtaatcc	cggggagcac	tgaactgaga	ctgtgtataa	ccactgttg	240
gagtgtaga	aatgtaaagg	cggttaaccat	natatcctcc	tctgaatcca	ttggcagggc	300
cccggtatcc	attcatcaag	cctctagcac	cacgggagcc	ttcacggagac	gcaccacgac	360
tattgtataa	ggggctgatt	gttacgtgga	aatncagtgt	tctgctgaag	aagctgtgg	420
tgggtaccag	tcacttgcgt	ggactggct	gggggaacc	atgttaaagt	gcccaaccac	480
tggttgnaac	ttgtcttgct	tgaancctg	gttggtctac	cttgggaaag	cttgactaaa	540
aaaactttt	gtataaattt	ggctgggacc	ccctanggn	gcaaccctgg	gcccnnnttt	600
tcctnannct	taaaaagg	ggggnatgaa	ggn			633

<210> 494
 <211> 609
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(609)
 <223> n = A,T,C or G

 <400> 494

actaaaaagg	taaagttagta	accaaagaga	aaatccagga	agccaaagat	gtctacaaag	60
aacatttcca	agatgatgtc	ttaatgaaa	aggatggaa	ctacattctt	gagaagtat	120
atgggcacat	tccaatagaa	ataaaagctg	ttcctgaggg	cttgcatt	cccagagggaa	180
atgttctctt	cacggtgaa	aacacagatc	cagagtgtta	ctggcttaca	aattggattt	240
agactattct	tgttcagtcc	tggtatccaa	tcacagtggc	cacaaattct	agagagcaga	300
agaaaatatt	ggccaaatat	ttgttagaaa	cttctggtaa	cttagatggt	ctggaataca	360
agttacatga	tttggctac	agaggagtct	cttcccaaga	gactgtggc	ataggagcat	420
ctgctcaact	ggttaacttc	aaaggaacag	atacagtagc	aggacttgct	ctaattaaaa	480
aatattatgg	aacgaaagat	nctgtttccag	ctattctgg	ccacagcaga	acacagtacc	540
ttggccgnga	cnacnctaag	gcgaaatccg	ccactggggg	gccgttataa	nggatcccnc	600
ttnggaccn						609

<210> 495
 <211> 606
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(606)
 <223> n = A,T,C or G

<400> 495
 ggtaccaagg tatctttgat aataccacta gtctgacggg taaaacacctg gacccaatca 60
 gggaaaatct gggaaagcac tggaaaaact gtgcccgtaa actgggcctc acacagtctc 120
 agattgatga aattgaccat gactatgagc gagatggact gaaagaaaaag gtttaccaga 180
 tgctccaaaaa gtgggtgatg agggaaaggca taaagggagc cacgggggg aagctggccc 240
 aggcgctcca ccagtgttcc tggatcgacc ttctgagcag cttgatttc gtcagccaga 300
 actaacccctg gatgggctac ggcagctgaa gtggacgcct cacttagtgg ataaccccg 360
 aaagttggct gcctcagagc attcagaatt ctgtcctcac tgataggggt tctgtgtctg 420
 cagaaatttt gttcctgtta cctgccnggc ggncgctcaa agggcgaatt cacacactgc 480
 ggccgtacta gtggatccaa ctgggaccaa ctggcgtaa tatggcatac tgttctng 540
 ggaaatgttat ccgtccaatt cnccccacata cgancgganc ntaaaggtaa gcttggggcc 600
 tataat 606

<210> 496
 <211> 279
 <212> DNA
 <213> Homo sapiens

<400> 496
 ggtactcaat gatgctggtc agcgacttcc acgggagaaa atcttgctga atgtccgtga 60
 aatccttccc atattttcc agggcttcct cggaaaggtt ggcctctgtat gcagaccact 120
 cctccatctc gtccctgcag agcacgggccc cggccctgcgg caccagcgc c gagatggcct 180
 tggagatgtc gtagatgttc ttgtggagag tatccatggc gtggAACAGG gtgtatgtctc 240
 gggaggcagc tgccggcgtc atgtgcaggc tggctgtc 279

<210> 497
 <211> 633
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(633)
 <223> n = A,T,C or G

<400> 497
 ggtacacaac agggcaaaag ctttttcgca agtcataaaaa ttgagttgaa aataacttgt 60
 tgattcagct acaggaagac aactaacaat taacaggctc atgaatattt atgaataaaag 120
 tgccactaat tttattgtaa taagatataa atagaataaa tcctgacatg gatagtagct 180
 tctgtgttct ctccatcctg agaacagaag gcccataaaaa aaacaaagaa gcattaccaa 240
 aggggagttc tagacccaca cggggactc ctaatacaca agcaacaaga aagacangta 300
 agactttaaa agttgcagaa gtcctaagaa tagcgccaat gtagtaggccc ctttttaaca 360
 acaacaaaataa ataaaaataa gagagagaga gaaatttagaa atttangaag ttcataaaaat 420
 aactggtaact tatattcaag ggaattttt agtggccagc ctantgggg acccagcntn 480
 taggaaaaaga cccttgaaaa ggaccttccc ncacctggga canaaggata gnaccgacc 540
 cccagggaaag nccgcctngg aaangggatc cnaacttgan gctttttagg gtttcaaaaan 600
 tccttgctng gccccaaang gcaaggnttn ntn 633

<210> 498
 <211> 601
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(601)
 <223> n = A,T,C or G

<400> 498
 acattttca gaacagttt ggtcgaaaa aaaaaatcac acattataa gcagtgattt 60
 caatcatgtt taaaaacaaa aatattaaac aaattcattt cctaattccag atgatacaga 120
 atccaaagaaa ttctgttagg cacttcactt tccatagaac ttcttggtaa gcaggtataat 180
 gagaaggaaa acatttactt taacccatc aaacattttc attacagcta ctccttcata 240
 ttgcacttga agttaatcctt gaatatttagg ttgcacccctt tccatctcaa caccaaggaa 300
 ttttgatctt acatcgaaaa tgcctacatc ttctgttagt atgatatcaa atgttaacatt 360
 cttaaactgg ttgtttgaa gatcatctat atcttagcagg acacccttctt catgcagctt 420
 tgctgcagttg tacaactgc aggctccatc ctcgtgggtt cgactatgt ggcgtttaa 480
 aaaatattat ttcttataaaa ttcttgaagt taaaataccg ttctttcagt tggncaaaaa 540
 aaaaannnnn nnmanganag aanngnaang aaagtgggtt gnnnttgggg nggaaaaacn 600
 n 601

<210> 499
 <211> 293
 <212> DNA
 <213> Homo sapiens

<400> 499
 ggtactcaag cttttgaccc catgccttgt gtatggaaaa aggatttggg ggttttgg 60
 ggttccctgag aggggtgtgt tttgtttttt tttccctttt tttatgtttt ggcctttct 120
 ctttgcctt ccacgttagac cagatattt aaaggccaga cgatggctag aggtgtaatg 180
 tgcagttgt ttatacggta ttttggaaa cttaccccttgg atggaaaatc gaatcgtgga 240
 ttcaccaggc cgggtgctggc acactcaccct tcgcctttt cctccgggttc agt 293

<210> 500
 <211> 630
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(630)
 <223> n = A,T,C or G

<400> 500
 gggtaactcat gaattcaagc cacagagttt agcagagatc aaagaagggt gtgaaacaca 60
 taagggtgcc aacacaagtt ctttcacac aactccaaac acatcactgg gaatggttca 120
 ggcaacgcca tccaaagtgc agccatcacc caccgtgcac aaaaaagaag cattaggttt 180
 catcatgaat atgtttcagg ctcctacact tcctgtatatt tctgtatgaca aagatgaatg 240
 gcaatctcta gatcaaaatg aagatgcatt tgaagcccaag tttcaaaaaa atgttaagggtc 300
 atctggggct tggggagtca ataagatcat ctcttctttt ncacatgtctt ttcatgtgtt 360
 tgaagatgga aacaaagaaaa attatggatt accacagccct aaaaataaaac ccacaggagc 420
 caggaccctt ggagaacgct ctgtcacaga cttncttcaa accccaaggag gaagtgcctn 480
 atgctgaaaaa gttttggatg actcaactgg atggggattt ccctgnaacc aaaacctggn 540
 acccaagtcc taaaancnn nggagactta catntngntg nacaatttgg gttaaaccnn 600
 ttcncaaagc tttccatggg ggcangccc 630

<210> 501		
<211> 240		
<212> DNA		
<213> Homo sapiens		
<400> 501		
acatctgaaa taccggccaa acccagaaag ctttcaaca gctagggtgt ccaagaactt	60	
ggaaaattca ccttctgtat tcctccaaga cagattccat ttttataca ctttattgc	120	
ttagacctgt aacttcagcc tggagtgaa acagacacct agtttcctc aaactcctct	180	
tggctttag agagaaggta ctggccctt gagccaagca ggttattgggt tagtagtacc	240	
<210> 502		
<211> 481		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> misc_feature		
<222> (1)...(481)		
<223> n = A,T,C or G		
<400> 502		
ggtacctgtt ctcttatcca aaccttcaa ttcatgctac ctgattcatt tatttgacat	60	
agatctttagg cccacttcaa ctctttctt gttagttagt catagcacaa acgttttcc	120	
agtcttctt atcaacacta atgccttta attgcatttgc tatttcctat tggaaaatac	180	
atctgttcca gaaaaacatt tggcatttgc gaataatttc caaatgttt taatccaaag	240	
aaaaagggttt aaagcttatt tcccttctt atacacacctt gaataaaaattt gatgtgcatt	300	
tttttagggat caattaccta actgttccctt ggtctattta tgtataagaa tgctttttaa	360	
agcacatgtc tcattttaaa tgacgcacaa actgaagatgtttaaaaat ttaagagtaa	420	
tacaatgaaa aatattantn ttnnanatan aaaagcttgg acctgccngg gcggccgntc	480	
g	481	
<210> 503		
<211> 643		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> misc_feature		
<222> (1)...(643)		
<223> n = A,T,C or G		
<400> 503		
ggtaactgcat tatttgagaa gctgctcaac ttgcaaaatc agtttcctc tcaataaaaat	60	
tatagctcta atgtttgcat ataaggaaag tagtttatcat gtttagtaata cctctaatag	120	
tataaaccccc accccaaaat tagccagtaa tcctgttagga aggtacaagt ctcagactaa	180	
gttttttagcc acttgtcaaa ttcatgttta aatgtttaga aaacactgtg gacacctatt	240	
gaggagggag gggggaaaggt cacctgtaaa ggagtccaaa gtatgtgctg gaggcagatga	300	
tgacaaaagac agaacatcta agaagataga catggaggaa agggagtagt atttccacac	360	
actatgacat taaaattca atcattatg ataggattt gatccactgc cattactacc	420	
ttgtggggaaa aatctnccaa tggaaaaggaa gaaaattca ttctccaaaa attggcccn	480	
tttaangag aaaatttttag agcagcacccn taaaaccatg ccggaaactt tggtaaca	540	

aaatatngtg gggccccaaa aagctcctgt tgcttttagg cctcnagaga tttacccaga	600
acttaaaggm ttncnctggc cttgttcctt aangttgaaa acc	643

<210> 504
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 504

ggtaactgcataatttgagaa gctgctcaac ttgaaaaatc agttttcctc tcaataaaat	60
tatagctcta atgtttgcataaaggaaag tagtttatcat gtttagtaata cctctaatacg	120
tataaaacccc accccaaaat tagccagtaa tcctgttagga aggtacaagt ctcagactaa	180
gttttttagcc acttgtcaaa ttcaatgtttt aatgtcttaga aaacactgag gacacctatt	240
gaggaggagg gggggaaaggcacccatgttttggagttccaaa gtatgtgtggcagatga	300
tgacaaagac agaacatcta agaagataga catggaggaa agggagtagt attccacac	360
actatgacat tgaaaattca atcattttatg ataggatttt gatccactgn ccattactac	420
cttgtggaa aaatcctca caatgaaaag ggttggaaaa ttcaattttc caaaattggc	480
ccnnngttta aggagaaaat nttagagccg ccccttaanc ctgcccggaa ctgggnttta	540
ccaaatntca gggngncccc aaaanctct gntgcctta ngncntncan agacttnacc	600
cnngaacttc naggnttnc ctng	624

<210> 505
<211> 652
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(652)
<223> n = A,T,C or G

<400> 505

acaagctaca aatgcttgcatacggcactct tgtagtagcgt gtctgaagag	60
tgaataaaaaa tccatataaa acaaataattc aaatagttc cataggaaca cagataagt	120
tgaccatataat cctagtcctc catatggctg catcatggcg accctactct tacaaagaca	180
tttcaaaact agcagtaatt aagttacatg gtccccccaa atcccttaat tcaagctaaa	240
cttgcagttt acagctacca gagtgctatc tacacattaa tactagcccg aagcacaggg	300
tgctctgtgg cggttcatcc cactctccca ggcacaagac acaggcagggt tgctggcatc	360
ctgttcctct acttcgggtg gggaaagtgc gggttcttgc attgctgcataatgatggccac	420
gcaggccctg acatcacata gtaanatcgt ccggcctttt gggaaaccca ttgnacctan	480
aaggcancna gcaaccagtg gtaagccgccc ccaagggtttt cnaaagagcc tttccaatna	540
ccccccatgc ctttttaang gcnnngttac caagggttcaaaaaatccg atttnanggg	600
ccnttacaag gttggggccc ccanaatgcn cggatngnaa aaaaanacctt tt	652

<210> 506
<211> 545
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(545)
<223> n = A,T,C or G

<400> 506
acaagctttt tttttttttt tttttttatc taaaagtgcc caggtggct      60
taaggctgcc anactgcacg cacatctaca gcaacaaggg cttctattcc atctacaact 120
tggatcgccc gaaaaggtag atgttaggaga ggaaggaaaa aagagggaa aaatatacca 180
ccaaccctcc cccacaaaaa aaggaaaaa aaaaaatccc accacaggga gatctatgtg 240
ccaagcataa tggaaagatg tgctccccaa acagatggg ttgcacaggg taatgttctg 300
ctgggtttcc ttagagacct atttgaaaa agttaaaaa gacaggagat ttcaaaataa 360
ttcaatcctg gcagaaattc aaactccaaa actaggagca aaatcatcct tcactgaatt 420
aattcccttt ctcttctct tttcttaaac attttattca ttttatagaa agatttctt 480
ttttggntgc ntttgtcca atcnnttgaa nantggttga aggagtacct tggncngan 540
cccccc          545

<210> 507
<211> 625
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(625)
<223> n = A,T,C or G

<400> 507
acctgtctct ctgccttctg gaggctctct aggattggaa aagttcaaga aacccgaggg      60
aagctgggac tgtgaattgt gccttagtgca gaataaggca gactctacca aatgtttggc 120
atgtgaaagt gcaaaggccag gcacaaaatc tgggtttaaa ggcttgaca catcttcctc 180
atcttgcac tcagcagcct cctcatectt caaatttggt gtctcatcat cctttctgg 240
gccttcctcag actttaacaa gcactggaaa ttttaaattt ggagatcagg gaggattcaa 300
aatagggtgtg tcatctgatt ctgggtctat aaaccccatg agtgaaggct ttaaatttc 360
taaacaataa ggagattta aatttggagt ttcatctgaa tctaagcccg aagaagttaa 420
aaaagatagt aagaatgata attttaagt ttggacttct ttggtttaac caccaggatt 480
ctttaacttc atttcaattt gggtatctaa tcttggacag gaagaaaaag aaagangaac 540
ctggccaaa tcttcctnt gcaggnntta nccttnggac cttggccgc naaccaccct 600
aaggggggaa ttccnnacac tgggg          625

<210> 508
<211> 612
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(612)
<223> n = A,T,C or G

<400> 508
ggtcgaagac agaggttcag gtcgttccag gggtagagga ggcattgaagg atgaccgtcg      60

```

ggacagatac tctgcgggca aaagggttgg attaataacc tttagagaca gggaaaatta	120
tgacagaggt tactctagcc tgcttaaaag agattttggg gcaaaaactc agaatgggtgt	180
ttacagtgt gcaaattaca ccaatgggag ctgggaagt aattttgtgt ctgctggtat	240
acagaccagt tttaggactg gtaatccaa acggacttac cagaatgtt atgatagcac	300
tcagcaatac ggaagtaatg ttccaaatat gcacaatggt atgaaccaac aggcatatgc	360
atatcctgt actgcagctg cacctatgtat tggttatcca atgccaacag gatattccca	420
ataagactt agaagtataat gtaaatgnct ggtttcata attgctctt atattgggng	480
gtatctgacc agatagtatt ttaagaaaca tggaaattgc anaaatgact gnagtgcaan	540
agtaattntn gggcactttt cgttttaag ntggaaattc nctacanttc ctgaaccant	600
ttanggttt tt	612

<210> 509
<211> 473
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(473)
<223> n = A,T,C or G

<400> 509

cttgggtctg aaagtcgatg aaggacgcga ttacctgcga taagcttcgt ggagttggaa	60
ataaactatg atacggagat ttccgaatgg ggttaacctaa ctgagcaaac ctcagttgca	120
ttttgatgaa tccatagtca aattagcgag acacgttgcg aattgaaaca tcttagtagc	180
aacaggaaaa gaaaataaat aatgatttcg tcagtagtgg cgagcgaaag cgaaagagcc	240
caaacctgta aaaaggggtt gttaggacatc ttacattgag ttacaaaatt ttatgatagt	300
agaagaagt ggaaagcttc aacatagaag gtgatattcc tgtatacgaa atcataaaat	360
ctnatagatg tatcctgagt agggcggggc accgtgaaac cctgtctgaa tctgccggga	420
ccaccccggt aaggctaata ctaatcanac accgatagt aactagtacc tng	473

<210> 510
<211> 632
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(632)
<223> n = A,T,C or G

<400> 510

ggtacccatg tggattccaa gagcctgata gcattcttgt ctttcagagc ctccctggca	60
aacaattacc atcacacaaa gccatacttt ttgtgcctcg gcgagatccc agtcgagaac	120
tttggatgg tccgcgatct ggcactgtg gagcaatagc tctaactgga gtagacgaag	180
cctatacgtc agaagaattt caacatcttc taccaaaaat gaaagcttag acgaacatgg	240
tttggatgatg ctggatgagg ccctcacatg cacagttca ctctgactat atgcagcccc	300
tgactgaggc caaagccaa agcaagaaca aggttcgggg tgttcagcag ctgatacagc	360
gcctccggct gatcaagtct cctgcagaaaa ttgaacgaat gcagattgt gggagctga	420
catcacaggc tttcatagaa accatgttna ccagaaaaag cccctgtgga agaaccnttc	480
tttatgctaa gtttgaattt gaatgcccgg ctcgtggcgc agacattttt acctattcan	540
cttgggttgg cttggngtta attcggncac aacactttgc nctttgtga aaaaaatcn	600
cctcttcang gttgggnnaa nggggctttt gg	632

```

<210> 511
<211> 616
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(616)
<223> n = A,T,C or G

<400> 511
acagaacctaaaggttcac tgaatgcgaa atgacgaaat ctggcccttt gaaaataaca      60
ttgttttag aagaggacaa atcctaaaa gtaacatcg acccaaagggt tgagcagaaa     120
attgaagtga tacgtgaaat tgagatgagt gtggatgatg atgatatcaa tagttcgaaa     180
gtaattaatg acctcttcag tgatgtccta gaggaagggt aactagatat ggagaagagc     240
caagaggaga tggatcaagc attagcagaa agcagcgaag aacaggaaga tgcactgaat    300
atctcccaa tgtcttact tgcaccattt gcacaaacag ttgggtgtgg aagtccagag     360
agtttagtgt ccacaccttag actggaaattt aaagacaccca gcagaagtga tgaaagtcca    420
aaaccaggaa aattccaaag aacttgttc cctcgagctg aatcttgtga tagcccttgg     480
ttctgaagat cgtgacttct ttacagcattt gatgcataata gatctcaaag attnanagaa   540
acnngaatgtt ccatcaataaa acnaggtgtat ttgttnggaag gaagatgttc tttttaaaaa  600
tnaatgtttn atntng                                              616

<210> 512
<211> 619
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(619)
<223> n = A,T,C or G

<400> 512
ggtaccggtc ttctcaaattt atcatcagca ccctcaatcc cactgctaaa cgacattttgg 60
tcctcgccctg ccactatgac tccaaatgtatttttccactg gaacaacaga gtgtttgttag 120
gagccactga ttccggctgt ccatgtgcaa tgatgttggaa acttgctcg gccttagaca 180
agaaaactcct ttccctaaatg actgttccag actccaaagcc agatttgtca ctccagctga 240
tcttcttgc ttgtgaagag gcttttcttcc actggctctcc tcaagattct ctctatgggt 300
ctcgacactt agctgcaaaatg atggcatcgacccccgcaccc acctggagcg agaggcacc 360
gccaactgca tggcatggat ttattggcttattggattt gattggagct ccaaacccaa 420
cgtttcccaa ttttttccaa aactcagcca ggtgggtcga aagacttcaa gcaattgaac 480
atgaacttca tgaattgggt tgcttcaagg atcactctt tggaaaggcg ggattnccg 540
aaataacnggt ttggagggng tgaatcaggg atgaccntat tccctttta anaaaaaagg 600
gttcccnntnt gcntntgnn                                              619

<210> 513
<211> 175
<212> DNA
<213> Homo sapiens

<400> 513

```

ggtacatcct	cggccggggag	tccccactgt	ctctctacaa	tgaggagctg	gtgagcatga	60
acgtgcaggg	tgattatgag	ccaaactgatg	ccaccgggtt	catcaacatc	aattccctca	120
ggctgaagga	atacatcg	ctccagagca	aggtca	ctgc	caaata	175
<210>	514					
<211>	597					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(597)					
<223>	n = A,T,C or G					
<400>	514					
actagtta	tcattgtgatt	ttacagacag	agaagagtca	aggcccagag	agcagacagc	60
tcacccaa	atcacacagc	agtca	ctgc	gggggctt	gtgctactca	120
aagaatgtt	ggaaaacaacc	tgagggagag	ttaagtaata	aaggaaaatc	acaaacagag	180
acagagaccc	agaaaaggac	tcacggaa	aaaagcagaa	agtca	gagat	240
atgatgagac	agagacagag	agatca	gaga	tagggttc	atacatagag	300
gggcacagtt	gctcacgcca	gtaatccc	cactt	gaga	gagat	360
ttgagcc	ccagctt	gaga	cagcatag	ta	gatctc	420
aaaaagttt	attaatttaa	aaaaatgcc	nagagagata	acccc	nta	480
aagccaaaag	cttttgggg	gcttaaagn	accccaaccc	ggnccn	ggga	540
tttttgaggg	aanaatccgg	ttcttggcca	ngcttaanng	gcctatttcc	aaaaaac	597
<210>	515					
<211>	574					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(574)					
<223>	n = A,T,C or G					
<400>	515					
ggtacactgg	ttgatatgaa	gattgaattt	ggtgtt	gat	taaccacca	60
cttgcgtat	ttattgacaa	tgattctt	gg	agactcttgc	catcaggaga	120
cagaaagaca	aacagtctt	tcgggac	ctc	aaagaagtaa	tcctgt	180
gtaaaagaaaa	actttagt	gttgc	agag	agat	gttggaa	240
cagtgcaggg	ttttagt	gtatgg	ctct	acttctgatc	tttgtcact	300
aagaaggcct	gttggaaat	tggcat	tca	tgtgaacttc	tgaaaaaaatc	360
ggaccagatg	aaactctgag	gat	aaagct	gat	tgat	420
tttgtggcag	ttggcaggcag	aat	atgtt	gatgtctt	ttctactgt	480
tatnccgtt	tnagctggcn	tcncttanac	caact	ggggacc	ttgtgtt	540
ctctttgact	nccatggnc	ttggctntca	accn	agttcaggat	ttgtggc	574
<210>	516					
<211>	450					
<212>	DNA					
<213>	Homo sapiens					

<220>
 <221> misc_feature
 <222> (1)...(450)
 <223> n = A,T,C or G

<400> 516

aaaaaggcgt aaagcgaaaa	gcagatacta ccacccctac	acctacagcc atcttggctc	60
ctggttctcc agctagccct	cctgggagtc ttgagctaa	ggcagcacgg cttcccccta	120
tgcgttagaga gagtggcgc	cccataagg ccccacgcaa	agacttgct gactctcagc	180
aacaacacca gagctctaag	aaaggaaaagc ttcagaaca	gttaaacat tgcaatggca	240
ttttgaagga gttactctct	aagaagcatg ctgccttatgc	ttggccttca tataaaccag	300
tggatgcttc tgcaattggc	ctgcataact accatgacat	cattaagcac cccatggacc	360
tcagcactgt caagcgaaag	atggagaacc gtgattaccg	ggatgcacag gagtttgctg	420
ctgatgtacc tcgggcgcga	acacgcttan		450

<210> 517
 <211> 611
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(611)
 <223> n = A,T,C or G

<400> 517

actcctctga ggactacatt	aagtcaggag ctcttcttgc	ctgtggcata gtgaactctg	60
gggtccggaa ttagtgtgac	cctgctctgg cactgctctc	agactatgtt ctccacaaca	120
gcaacaccat gagacttgg	tccatcttgc ggctaggctt	ggcttatgct ggctcaaata	180
gtgaagatgt cctaacaactg	ctgctgcctg ttagtggaga	ttcaaaagtcc agcatggagg	240
tggcaggtgt cacagcttta	gcctgtggaa ttagtagcagt	agggtcctgc aatggagatg	300
taacttccac tatccttcag	accatcatgg agaaagtccaga	gactgagctc aaggataactt	360
atgctcggtt gtttcttctt	ggacttgggtc tcaaccacat	ggggaaagggtt gggccatcg	420
angcaatctt ggtgcactg	gaaggtnngc anaacnttt	cgcantttt nccacacacc	480
tggnggatgt gtngccttat	tcncgtttt ggnanatgcc	tnaaggcnca caaattggc	540
caattnnnn nnaacntttt	cctccaaaga aaggggaaa	naaaagtcc ccccnannng	600
ggggggcccc c			611

<210> 518
 <211> 395
 <212> DNA
 <213> Homo sapiens

<400> 518

ggtgatttat ctaatcagaa	ctttcagat caggcaaattg	aagaatggga aacagttct	60
gaaagcagtg atttcaatga	gaggcgagag agggatgaaa	aaaaaatgc tgacttgaat	120
gcacaaacag ttgtaaagg	tggagagaat gttctacctc	caaagaggaa aattgcaaag	180
agaagttttt ctgtcagag	accagtagat cgtcagaatc	gacgtggcaa caatggtcca	240
cccaaatcag gaaggaatti	ctcaggctt agaaatgaaa	ggagaatggg cccaccatca	300
aaaagtggga agagaggcc	atttgatgac cagcctgcag	gcacaactgg gtttgcaccc	360
atcaatggca gctctgcaca	ccatcaggaa ggagt		395

<210> 519

<211> 626
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(626)
 <223> n = A,T,C or G

<400> 519

ggtaccgaaa gcacagtaat cactgggtgc gatattgtca tgaaccatca cctgcaggaa	60
acaagttca caaaaagaagc ctacaagaag tactgatttt aaaaactaat aacttaaaac	120
tgcccacacgc aaaaaaagaaaa accaaagtgg tccacaaaac attctccctt ccttctgaag	180
gttttagat gcattgttat cattaaccag tcctttacta ctaaacttaa atggccaatt	240
gaaacaaaca gttctgagac cggtcttcca ccactgatta agagtggggt ggcaggatt	300
agggataata ttcatatttc cttctgagct ttctgggcag acttgggtgac cttgccagct	360
ccagcagcct tctgccact gcttggatga cacccaccgc aactgtctgn ctcatatcac	420
gaacagaaa gcgacccaaa ngtggatagt ctgagaagct nttcaacaca catnggcttt	480
gccaggaanc nttntacca tgggagcntt cccngacttt tagnaaatta agggcnnntt	540
tcactttta acccaaacgg ggaaaattt ttnttttaag ttaaaaact tgcnnntgcaa	600
tggaaancgn ngggaatcca atacgg	626

<210> 520
 <211> 322
 <212> DNA
 <213> Homo sapiens

<400> 520

ggtacccaag catctagtct ggaactgaca gagataaata gagaaaatgt tccaaagtct	60
ggcacggccc agcttaggct gccattcgct gcaagggttga acaccccccac gggcccttgg	120
cgaactgtcg tcgtttaagg agaagtgaat gcaaatgcca aaagctttaa tggtgaccta	180
ctagcaggaa aatcaaagga tattgtctta cacttgaacc cacgcctgaa tattaaagca	240
ttttaagaa attctttct tcaggagtcc tggggagaag aagagagaaa tattacctct	300
ttcccattha gtcctggat gt	322

<210> 521
 <211> 613
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(613)
 <223> n = A,T,C or G

<400> 521

ggtaccatcc tcatctcggt gggatgtgca gttttctgtt cccttatacggt ctgggttctt	60
gtatgtccca ggatgaagag aaaaattgaa cgagaaataa agtgtatgtcc ttctgaaagc	120
cccttaatgg aaaaaaagaa tagctgaaa gaagaccatg aagaaacaaa gttgtctgtt	180
ggtgatattg aaaaacaagca tcctgtttct gaggttagggc ctgcactgt gcccctccag	240
gctgtggtgg aggagagaac agtctcattc aaacttggag atttggagga agctccagag	300
agagagagggc ttccccagcgt ggacttgaaa gaggaaacca gcataagatag caccgtgaat	360
ggtgcagtgc agttgcctaa tggaaacctt gtccagttca gtcaaagccg tcagcaaccca	420

aataaaactnc agtggccact accagtatca caccgtgcattaaaggattcc gggctgtanc	480
ttgcccggcc ggccgtntaa aggcaattc cagncaacttg gggcccgntc taaaggatn	540
ccactttggn ccaacnttgg gggaatctng ggcaantng tccctgnnga aatggtatcc	600
gtcaaatencc cnn	613
<210> 522	
<211> 319	
<212> DNA	
<213> Homo sapiens	
<400> 522	
accagggagg catgacatttgcctttgtga atttggaaaat gatgggcagg ctggagctgc	60
cagggatgt ttacaggat ttaagatcac accgtcccat gctatgaaga tcacctatgc	120
caagaaataaa catttggat agtcgtctt aaaagacttg gtgttatta cagttttgt	180
tttataaca tttggctggg tcattttaaat agtttagat gaggaggagt aaaagtgaaa	240
tttttgtgaa ggacttaaat tatccagtgt ttcttagcc ttgggtgaact atgaaatacg	300
aaggccttaa ttttgtacc	319
<210> 523	
<211> 589	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ..(589)	
<223> n = A,T,C or G	
<400> 523	
acagcgcgcg gctctacacg cttgggttagc gggataagtc actgttttct ttattttttt	60
aaaaaaaaaa aagttctgtt gcaaaccgact gctgttggat tctgagggtg gggagggaga	120
gagaggagg gagaggaggat gaagagcctg ccctccata tggatttttc aggggccctcc	180
acatctgagg tggctcatc ccatcacaca cagattgtcc tgggtttcat ttcaaggcca	240
gtgttcagaca gcagcgtttg gaaagcaggt tctgtggac ccccccgcacac gccccccacac	300
tccttcatacg cagcgttagt ggcttctca tcctgnttcc tgcaacattc tataaaaaac	360
tgtgctgtga ctttgcggta agcctggatc tggcaaagag aatcaaataa aacccttct	420
ttctcttttgc tggccacaact ctgtanaact ntntgnaccc ttacccttt ccaccttttgc	480
gattnaattt taaggccgtg nanctttggc cggaacacccc tttagggcnaa ttcnnnnccat	540
tggggccgt ctaaggann ccaattggnc caanttgggn aacanggnn	589
<210> 524	
<211> 621	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ..(621)	
<223> n = A,T,C or G	
<400> 524	
ggtacattgg agagatctcg cctactgccc tgcggggtgc ctttggact ctcaaccagc	60
tgggcatcgt tggttggatt ctgggtggccc agatcttgg tctggaaattc atccttgggt	120

ctgaagagct atggccgctg ctactgggtt ttaccatcct tcctgctatc ctacaaagtgc	180
cagcccttc atttgcctt gaaagtccca gattttgct cattaacaga aaagaaggagg	240
agaatgtcaa gcagatcctc cagcggttgtt ggggcaccca ggatgtatcc caagacatcc	300
aggagatgaa agatgagagt gcaaggatgt cacaagaaaa gcaagtcacc gtgctagagc	360
tcttttagagt gtcagctacc cgacagtcca tcatacatttc cattgtgctc cagctctntc	420
gcagcttctt gggatcaatg ctngngttcta atactcacca ggaatcttca aggatgcagg	480
tggtaaaaaa nccccattn gcccnccttg ggcccggtgn gggtnaaacc anactnccn	540
nggaggnncn tntttnnng ggggaanggc cngaaaaaag gncttcgcct taaaanngcc	600
cttggaggga agntttttt n	621

<210> 525
<211> 384
<212> DNA
<213> Homo sapiens

<400> 525	
acagcacttt gagaggacat cactagacaa gtaatacaca catggcctgc aggaggtaaa	60
gggcggcggag ggggctgggc aggggacatt tttgtgactt ccactgttat tatatttcac	120
gacaacagca gcagcacaaa tggtgtgctc accactggag aatgagagct gctgagtcctt	180
gaggatggcg agacagcctt cctgcatttg ctgcttttagt ttctgcctta gagctaagtt	240
ttatacagag aataaaatga ccatcttctc ttacaaacac gatgatgtat gaccccacac	300
aacacaaggt attatgaagt atctgaaact gaggataatc tgactgaaga tgcttgccga	360
gagggtacctt cggccgcgcc acgc	384

<210> 526
<211> 621
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(621)
<223> n = A,T,C or G

<400> 526	
actgttagctc cccatgagat gtgatgagta tgccttcacc cttgggtgtca tactggggtc	60
ttccggcactc tcccagcatc tgcagaatgt ccagtgcctc cagttctgtc caacggccct	120
tctctggact gtacaatgtc actgacggat cctggccagct gtttggat ggggctgtg	180
acggaaacaaag caataattac ctgaccaagg aggatgcctt caagaaatgtt gccactgtca	240
cagagaatgn cangggtgac ctggccacna gcangaatgc agcggattcc tctgcccac	300
tgcttnagaa ggcagnattc tgaagactac tncagcgata tggtaacta tgangaatac	360
tgcacngtna accgcattna ctgggntttt ncngtgcattc ttcnacgctt ggtacccctcg	420
gccccgggacc acgctaagg gcaaatncan gnactactgg ccgggtcggtt actantngaa	480
tccgagnttc gnnaccaaggc tttgcgtaaa atattggca taagttggnt ttctgngnng	540
aaaatggtan atcngttnan aattccnnaa tatatncanc cngrncctt aattntaaat	600
ccgggggttn taantrntrn n	621

<210> 527
<211> 611
<212> DNA
<213> Homo sapiens

<220>

```

<221> misc_feature
<222> (1)...(611)
<223> n = A,T,C or G

<400> 527
acagctcatc cactcctca tctgtaaaacc gatccccat ggttgtcagc agctcttta      60
ggtaatcttc ctgaatggtg cctgttgctt cttcatcaaa gcaaggaaag gcgtttctga    120
tgacatcttc aggatctgtg ccatttaact tctcaccaaa catggtcagg aacatggtg     180
aattgtggg ccctggggcc tcattcatca tggcatcaag gtatgcata gtgggattct     240
tccctagaga agcaagcata tcatgcaaat cttccttgtc gatgaagcca tctctgttct   300
gatcaatcat gtgtgaaggcc tctttgaact cctgaatctg tgatttgtca aacatggcaa   360
acacattgga tgggcacgc tgagggcgct tcttggtgt ctgggtctt gccttttgc     420
ttcgacatgg tggntggta attncgacgc ccaaacacca gaaccgggg ccanctgcf     480
cganaacgca accaaaacct tnggccggaa cacccttaag gggaaatccc nncactgggg   540
ggccgtataa nnnnnccna nttnnggacca aacttggngg aaaaangggc aaaanngtc   600
ctgnggaaan n                                         611

<210> 528
<211> 593
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(593)
<223> n = A,T,C or G

<400> 528
acaagctttt tttttttttt tttttttttt taggtagtgg gtgtttagtgg tgaacgctt      60
cttaattggg ggctgctttt aggccacta tgggtgttaa atttttact ctctctacaa    120
ggtttttcc tagtgtccaa agagctgttc ctctttggac taacagttaa atttacaagg   180
ggatttagag gtttctgtgg gcaaatttaa agttgaacta agattctatc ttggacaacc  240
agctatcacc aggctcggtt ggtttgtcgc ctctacccat aaatcttccc actatttgc 300
tacatagacg ggtgtgtctt ttagctgtt cttaggttagc tcgtctgggt tcgggggtct 360
tancttggc tctccttgca aaggtaatttca tgntaatttca attatgcnnna aagnatangg 420
gtaagccctg ctatataaggc ctgggtataaa atttcancctt tttcccttgn ggaccctngg 480
ccggAACACC ctaaggggcga aatccancca ctggggccgg tactaaaggg atcccaactt 540
gggnccaaact tggnnnaaac cggggcanaa nnntccctgg ggnnaatggc anc          593

<210> 529
<211> 251
<212> DNA
<213> Homo sapiens

<400> 529
accattggtg gccaattgtt ttgtatggtaa gggagggatc gttgacctcg tctgttatgt 60
aaaggatgcg tagggatggg agggcgatga ggactaggat gatggccggc aggatagttc 120
agacggtttc tatttcctga gcgtctgaga tgtagttt agtttagttt gttgtgatg     180
tttagaaaaag ggcatacagg acttaggaagc agataaggaa aatgattatg agggcgtat 240
catggaaagac c                                         251

<210> 530
<211> 601

```

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(601)
 <223> n = A,T,C or G

 <400> 530
 acagtataaaa atgtttccat aggaacacaa aagaaaactgt cactagtggc ctgctgtcag 60
 atggcttcta attcatcagt tagccatttt taggacacta gtccagctta ttgctacaat 120
 cttcaagttg ttcttagtcac ccaaattata atgaattcaa tgtataccag aatttaccaa 180
 taaaggctca aagagttata taatatacac caatatacac aaaacagcta ttctgagtaa 240
 aatgaatatt ccatacttaa ataagaacca agaatacgtaa ttttaggcta ctctattatc 300
 cttgtgattg gtatTTTaa aatTTTgagc aaagtgcaca gtgaatgaaa cagtcagcag 360
 acacgatcct tctgtgaact ctcaaattcc tgcccttagaa tcacgtcacc tgagaaatga 420
 gaacctttaa gacctggcgc atatcaaata gcttcacatg tcaaaccaca gggccgcctt 480
 ggangccatt ctngggcaca ggangncaac tggttcnttn aaaatggnnnc ccttncctgt 540
 gcangggccc ttgtttaaag gccccaaac cgccctcngg gaaaacaagg ttgntaatta 600
 a 601

<210> 531
 <211> 607
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(607)
 <223> n = A,T,C or G

 <400> 531
 ggtacaagct tttttttttt tttttttttt ttttttttct cagccttggaa ttttttttta 60
 gcttccttct gctttaagct cttggctct tttttccgtt natttctggc ctgccccttgg 120
 atagtagtct gacactctcc cctgttgcacc ttctgcctca ttttcttctt gcttttagca 180
 atctttgtttt tattcctctc attcaatgtt ttttggccct ccagtttctt tagggggcgg 240
 ttgtctgtct ttttcaatag ctcagtgatt ttgaccttag gtggccgacc tcgaccccg 300
 ttcaccttgg ggacttcctt agtcttagcc ttctcagtgt ttcaaggtcg accccgtttg 360
 ccagtaattt cctgaatcct ctagggatc tcctctgtt aaagctgcac ccactgcaag 420
 ccctttggcg ngnctttttt cttcaaaagaa atctccaaca nggcatacgg ggactgaanc 480
 ttaanngctt ntggnggaa actgggnacc tgccctggca ngggcctntg ttttacctnc 540
 tggnaatnaa aaggaaaaat ncaaaanttt accctnttna ccnngttntt ggggtngggg 600
 gaaaang 607

<210> 532
 <211> 608
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(608)
 <223> n = A,T,C or G

<400> 532
 ggtactgaac aggtaaagtca tccctcagcc agagattagt ctacttcttc catgcgtgat 60
 gtgtcgcat ctccttcaag gggtggcatt tcctcagttt cagcagcaact ggttatcatca 120
 gcagtagggt catcttcatc aatacccaga ccaagtttgta tcatctgtt gatcctgtt 180
 gcatgtgtct ggggatctt cagactgaag ccagaagaca ggagcgcagt ttccataaaagc 240
 aagatgacca gatccttcaag agacttgcg ttcttatacg cctctgcctt ttgccttaag 300
 gtctcaataa tggaatggtc agggtttatc tccagggtttt tctttgtgc catgttaaccc 360
 attgtttagt ngctttagg gcttgagctt tcatgattcg tcctcatgttt gctgtccagc 420
 catatgtgct tgnagacaatc agcatggaaa ntccaccaatc cggttgcac aaccacnttt 480
 cacttttctt ccaaannngcc tttcatgant ttccnnanggt ntccaaactttt gggtttcnc 540
 ntnccgggtc nttcnncntt ttaaaccctt nggaattccn gccttttttgg gacnnacnn 600
 taagnttt 608

<210> 533
 <211> 593
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(593)
 <223> n = A,T,C or G

<400> 533
 acacatttgc tgatggcttc tcaaaacctg agccgagaat agggctctgat agcccagcca 60
 agtttaaaag cagacacaca cgaatgttgtt atcggtgtgc ctgaaatgac cattctgggt 120
 tgtttagaat ccagaatcat caaaagccat gtggtatgag gaagtaataa atatcctttt 180
 gaatcttctt acccttattt gcacaaatgg atggctgcattt gaacagctct tggtaattgc 240
 tctgagttcca caccaataga aacctgcact cattctatacg ctacagaggg ttgttggct 300
 taaggggact ttatcatctc agcattaattt tcctttttaa agctattctc aagggttggac 360
 tgtctcagag ataaaacaaag aggaatcctt ttggctttaga agccaaactgg cttaactcaga 420
 ctccctccct tcctactcca attcccacac taccatanta tcntcttgac tagaaaaatca 480
 attatttacc tgacataagg gcaagttctat ttcccttccca nncccttgcac tnggggcctt 540
 ggnaanaaaa atccntgcct ttgttggaa agttttggga cnngctttagg ttt 593

<210> 534
 <211> 608
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(608)
 <223> n = A,T,C or G

<400> 534
 ggtacacttc tgtttatatt taaacaacaa agaaaaaaagc atctacacac ttaaaaaaattt 60
 aattcaatat tcctaaatctt attttaactc atttttttttt actacatataca gaagccgaaa 120
 tgcagggtta agaatggaaat aaggtggggaa gaagaagggg accaccaaga aaaacactta 180
 gacaattact tgtctgttgc gggtaaagca acaggaatcc tgggagatac aagaaatcag 240
 taacaactttt gtcataact gatattttcc cctcatgtttt gtttttaata acgtccatat 300
 gggtgcttc tggatgtcc cttcaactggc ctatcgaggag gggccctttagg cgacggcctg 360

gtcccatattc	agtccgtcct	ggccataagc	ttcataagaa	tcttgaacct	ncccatgtcc	420
atagtcataa	tattctgagt	ccccttgact	ctggctgnaa	ataanctcg	tagccttnga	480
actttggct	gcgnatgnat	natcatatnc	ctaatacntca	naagntntn	gnccccgaag	540
ttggngcaa	gggttcttn	ggaancccc	tnccngcctt	tgggnctgg	acncnctnan	600
agnggggg						608

<210> 535
<211> 603
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(603)
<223> n = A,T,C or G

<400> 535

acaaaagtgac	ccctcgctcc	tgccaccgg	ttgagcaagc	gttctacacc	tatgacacgt	60
tttcacccat	tatcttgaca	ttgacagcca	ttcgcacca	tgtccttgg	actatcacca	120
ccgacaaaaat	gatggatgtc	actgtgacta	tcaagtcttc	catcgacagt	gaaccgcct	180
tggtcttagg	ccctctgaag	tctgtgcagg	agctgcggag	ggagcagcag	ctggctgaga	240
tcgaggcccg	caggcaggag	agggagaaaa	acgcaatga	ggaagggtgaa	gaaagaatga	300
ccaaggcctcc	cgtgcaggag	atggtagatg	agtacaagg	ccccttctcg	tatgatttct	360
cttaactgggc	gcnngnctgg	agagaaaatt	actgnntcac	ngtcatctna	agaactgctc	420
ttttatcccc	cttcaatgg	aaagcncgtt	gntcangtgg	gaagaaagct	tgcncaaggg	480
aaanntggat	tcgagatncn	ccggaaaaag	gccaggcctg	gtttttaaaa	aggcccnaa	540
tncccccccg	nanttgnaaa	ggaatccna	aatttgtt	ccntnngaaa	aggggncaag	600
ttt						603

<210> 536
<211> 581
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(581)
<223> n = A,T,C or G

<400> 536

ggtaactcctg	ggaggcttt	gacagccacg	ggcaggagag	cagcggccag	cttcccgg	60
agcttttct	gctgctccag	tctttggta	tggctaccca	cgaaaaggac	acggaagcca	120
tcaagtcgt	gcaggtggag	atgtggccac	tgttgcactgc	tgagcagaac	caccccttc	180
acctcgttct	acaagaaaacc	atctccccc	caggacaggg	agtctgatcc	atcccattca	240
cccaagtgtact	tcttttgcc	caggcctgga	cttttgcat	cagtcacg	aaccagatga	300
ctttgcctgt	taccaaacct	catgcattca	cgttgcgtc	tggggagggaa	taaaaagaca	360
tcgttcccc	ttctgcgtt	tgnattcct	actgcccaca	taggaattat	ttcgtggctg	420
aacgttaccc	agcancccg	gaacacttt	ggatagaatt	ngagttgagg	acattggctg	480
gcttttaaaa	anccnnctt	ggaaatngna	atncccttc	ntccttctc	cgngngttcc	540
ncctnanggn	antttgggt	cgctttgnt	caaagngagg	g		581

<210> 537
<211> 568

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(568)
 <223> n = A,T,C or G

<400> 537

ggtaacggact actccccctca catgcgtcct acctgtgaaa ctctgggaag caggaaggcc	60
caagacctgg tgctggatac tatgtgtctg tccactgacg actgtcaagg cctcatttgc	120
agaggcccacc ggagcttaggg cactagcctg acttttaagg cagtgtgtct ttctgagcac	180
tgttagaccaa gcccttggag ctgctgttt agccttgac ctggggaaag gatgtattta	240
tttgttatttt catatatatcg cccaaagctg aatggaaaag ttaagaacat tccttaggtgg	300
ccttatttcta ataagtttct tctgtctgtt ttgttttca attgaaaagt aattaaataa	360
cagatttaga atctagttag ggccttcctt ctgggtgggt gtggcattta agggtcaaac	420
cancnanaaaa tgcttgggtgc tggtnaaaaa agctcangtg gctgtgtgg tggctnatgc	480
ctgnaatcca acattntggg aaggccaagc cgaaaaactg ttgnngccnnng anttaaaaata	540
anctgggcac ntacaanntt cgtttnna	568

<210> 538
 <211> 598
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(598)
 <223> n = A,T,C or G

<400> 538

ggttttttttttttttttt catgtttttt attaactcat acagttactt gtcttctggt	60
tttgtgaaac agtaagtcaag acaacntttg ccacaataat gtctgtcaaa gtgacttgc	120
ataaaanaccc cancaccaca ttcatataa gggacttctt gacgaaggcg actaattttg	180
ccattctatt tcaggacagc cagctaaacc ttctntctt tttgtcttatt cttcttggga	240
gtgggtgtaaag acttcttctt ctttttttaa gcaccaccac gaagttttaa cacatgtga	300
agantagact ctttttgaat attgtatcn gacaagagtn catacatcat accaactnn	360
tanatacaca gtcagttaa ttagcttgat ggcacagtta tngttingaa nagagangag	420
tgcancatan gnangagtga ngngngatt cccacaattt tctnagaacn gaanagttagg	480
nngaattagt aggtactgga aatgaaatnn ggcttagcct gnctggntta gaaanaagaa	540
ttcnaagccc ttgtcaana ntntcaaaa agtnacttta ngcctatntt gcgggnag	598

<210> 539
 <211> 607
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(607)
 <223> n = A,T,C or G

<400> 539

ggtagcaggct ttaacagaaaa ttccaggagtt catcagcttt ataaagcaaac aaggcaattt	60
atcatctcaa gttccccctta agagacttct gaacacactgg acaaacagat atccagatgc	120
taaaatggac ccaatgaaca tctgggatga catcatcaca aatcgatgtt tctttctcag	180
caaaatagag gagaagctta cccctttcc agaagataat agtataatg tggatcaaga	240
tggagacccc agtgacagga tggaagtgc agagcaggaa gaagatatac gtcctctgat	300
caggagttgc aagtttcca tgaaaatgaa gatgatngac agtgcggaa agcagaacaa	360
tttctcactt gctatgaaaa ctactgaagg agcttgcata aagagtcaaa aaaccagaga	420
cgaattggct ggtgagctgg ggtgccaaac tactggcgnc tggagccct taccgggag	480
cccggnccc angnttggt cttgannnac gggcttaat tggccttcaa aacnagtctt	540
ttttggttgg attagnaacn cacngtgtca agctncttta agccaaaaat tntccnggnt	600
tttnccg	607

<210> 540
<211> 432
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(432)
<223> n = A,T,C or G

<400> 540

ggtaactgatc attcttatttc cccctctatt gatccccacc tccaaatatc tcatacaacaa	60
ccgactaatac accacccaac aatgactaat caaaactaacc tcaaaacaaa tgataaccat	120
acacaaacact aaaggacgaa cctgatctt catacttagta tccttaatca ttttttatgc	180
cacaactaac ctcctcgac tcctgcctca ctcatttaca ccaaccaccc aactatctat	240
aaaccttagcc atggccatcc cctttaggac gggcgagtg atttaggtt ttcgctctaa	300
gattaaaaat gccctagccc acttcttacc acaaggcaca cctacacccc ttatccccat	360
actagttatt atcgaaacca tcagcctact cattcaacca atagccctgg ccgnccctcg	420
ncgtgaccac gc	432

<210> 541
<211> 597
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(597)
<223> n = A,T,C or G

<400> 541

gggttaccggc gtgtcaaaaa aatgtcagat gacgaggacg atgacgagga ggaatatggc	60
aaggaggaac atgaaaaaga agctattgcg gaagaaatct tccaggatgg ggaaggggaa	120
gaaggggcagg aggccatgga ggccccatg gtcctccag aggaggagga agaagatgat	180
gaggagtcag atattgacga cttcatgtg gatgatgatg gacagcctt gaaaaaacct	240
aagtggcga aaaagcttcc tggatacaca gacgcggccc tgcaagaagc ccaggaatc	300
ttcgggtgtgg acttgacta tggatattt gagaataaca atgagttatg tgaagaactg	360
gaggaagagt atgagttatg ggtatgtan gctgatggtg aaatccgtg cccccccaga	420
agaccacca gaaacngtgt tgagccctn ggagcnntt ttgaaatggt ttgannccn	480
gtngggctt naaagccnn nccttacnna ttnggggct tngantccn gcccctncc	540
gccttnaaag ggtccanntt ccgttnctt ccagtcangg ggntaaaaa tnatnan	597

```

<210> 542
<211> 577
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(577)
<223> n = A,T,C or G

<400> 542
gcccaaggct cagccagtct ctatttaaga aaatttaaca aatacagagta accctgtccc      60
aatcaactgaa tctcttagtta ctactcttag aaacacactgt ggcttcttgg ccctcctgtt    120
gccccgctctg aatctctctg cagtctacaa aatcgcccca gtcaactctc cacttggagg     180
gaattgtcca gtgtggccccc tagaatttag tcacccctcta gataccaact gtctgacc       240
gaggagctct gtaagtccct gtccttcctc tttcccttgg ggctgggtgt gccactcagc     300
aataatcctc tttctctgt gttttcttag gtcctgtcc tctgtctttg aggctggta       360
ggaagcaaga gtcctgatct ttcatgtgc acaatatgag catgaaaaaa gcttttcca     420
gcagaacatg ttccctcgcc tccagtgcc cgaaaaagga atttggggga tcaaagaact     480
tagcttgnc taccccatgg ttgagttctg gccttggaaa ancccaagcc aagtnangga   540
ccnagacctt ggcggaaac cnttaaggc aattccn                                577

<210> 543
<211> 607
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(607)
<223> n = A,T,C or G

<400> 543
tcgagcggcc gtccggcagg tacattattg ggcctcattt gcccagcaac gggcatcca      60
gattgagtgc agtcaggcc atgtcttcac tcggggact cancaggctt atacctcaag     120
caggcacagt gatgcggcgc cttatctctg attggagtgt tacccanatg gtgagtgacc    180
taagtcaggt gaccgttcac ctgatggct cacccactga agagaatgt gatcactgtc     240
ttgatccctt ggtAACAAAG acccacttcg tgagttgtc ctccttcacc taccaacggn    300
ntancaattc gcacagctga cgaggagctc tctgntcggt atggggatcc tacctttcat   360
acanatcagc tgcacttagt nnanttaacng atttctggac aaactaccaa tcganacatt  420
gccttgggt aattgatggg tccctnggcc gngacaanc ttagggcgaa tttccatnca   480
actggcgccg ccgntactan cngrnatccta nccttgggac ctaatcttgc tgcancatg  540
gcnttaactng tacctctggg taatcnatc cngrtnaanta tccnnanct tactngccng  600
anntnng                                607

<210> 544
<211> 570
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

```

<222> (1)...(570)
 <223> n = A,T,C or G

<400> 544

acttgggctt ctttcagctg cttcaacaga gtggcagcaa ccaagctgga	gtccaaaggccc	60
cctgataaaaa ggcagccaat ccttcgtct gtcataaac ac	gtttcttac	120
aaaaggatcc tgagggttgtt cttcacagtt tctatctcaa aac	ctggaaa	180
acattgtcat agagggcgta caggggtca tcccgacagt gatgatattt	aaccatttcc	240
acggatccaa cttgccatt tggcttaaa tccaaaactt cata	tgatgtcc	300
ggctccactt taaaaaaaggg agtcgcggag tgcttcaatg taacaagacc	aggaagaaaa	360
gaacatacag cccaaaatcc atcttcgtc attgctttaa acaaagg	gtct	420
gtatctctac ccaggaacac ttcttatttgc gcaatccatc gactccat	gtttagcttct	480
ccatccaaca tacaaattgn ttgctcaatt cctcccttgg cataaaagatg	aaggattatc	540
tcaccaatcc acttttggnc tggnattcaa		570

<210> 545

<211> 330
 <212> DNA
 <213> Homo sapiens

<400> 545

accgtccagg atctccaggat catagccatc agccagacac	cagttgacgc	ttgtctccctt	60
agtcttcccg gattgcctt tggaaatcata tatgctgact	ctgccaacct	tgggggtgggtt	120
gacaataaaag ggtatgtcgta gtccatcctc aaatgcactc	ccatctcttg	tcacacgaca	180
gcaaataagca cggttcagat gcccctggct gaaaaggtaa	cccaatgtga	cagatttgag	240
ataaaatgggc tgcaggaagt gggtaaacag tgccccttgc	aggcccagca	cgttccagcg	300
taggatttttgc tcaactacagg acatggtaacc			330

<210> 546

<211> 589
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(589)
 <223> n = A,T,C or G

<400> 546

ggtaccagag gcactgtgga tggccacgg aatgaattgt	cccgggtctc	caaaaagaac	60
attttcttc tatttaagaa gctctgtcc ttccgttacc	gcaggatct	actgagactc	120
tcctatggtg aggccaagaa agctgcccgt	gactacgaga	cggccaagaa	180
aaaggcctga agatatggg ctatggaaac tggattagca	aaccccagga	gaaaaagaac	240
tttatctct gcccagtata gtatgtcca	gtgacagatg	gattagggcg	300
gggtgtgaga gaggttaggtc gtagcattcc	tcatcacatg	gtcagggat	360
cctttttttt ttcttttaa gccataattt	gtgatactga	aaactttggg	420
atcctgctt cttgggatt gctaagcaag gncttggcca	agccccccct	ttttttcccc	480
caaggngaaa agnccnaaan cctaanaagn tataccttct	ttttanccca	aggctccct	540
tagcccttgg nccnccnttc	ctttaaaang	tttngttt	589

<210> 547

<211> 613
 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(613)

<223> n = A,T,C or G

<400> 547

ggtaccagg	ttaaatgtag	tcttctggag	aagtattttt	gacattgagc	tctgggacag	60
gacaccc	ttgg	gtttgtggac	tgcagccac	tatgtatgtt	ttacttct	120
ccagtgg	aaag	tgcacaggca	ctcccaatgt	tgttaatgt	ctgtcttcca	180
aatcc	tacgt	gttggctgt	ggttccatgc	attagctgtt	tgtaaaataat	240
actgaaa	ag	tgccacagtt	gatggtgagg	aagctcc	gacgtgg	300
aat	ttt	gatgtct	ggggacacga	ggatgccta	atgatgtga	360
ttgcagc	att	tgaaactttt	gtgttaaaaa	naaaaac	tnagtc	420
cattt	aca	ccctngnatt	tttaaaagaa	gcnttctt	attaaaaaaa	480
ccaccagn	nc	ctattgggtc	aaaccaattc	ctcncttnt	ggggccnctg	540
gggc	c	ctngaan	ttggnantcc	canggtt	ganaaaaant	600
tnnncc	cccc	tcc				613

<210> 548

<211> 578

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(578)

<223> n = A,T,C or G

<400> 548

ggtacat	atg	tat	ttt	aaaa	ttt	gaa	ttccc	accca	60
ttctata	cca	acc	acc	acc	cc	ttt	ttt	ttt	120
acc	acc	acc	act	cc	cc	ttt	ttt	ttt	180
atg	ctt	cc	cc	cc	cc	ttt	ttt	ttt	240
ccaa	cc	cc	cc	cc	cc	ttt	ttt	ttt	300
cc	cc	cc	cc	cc	cc	ttt	ttt	ttt	360
cc	cc	cc	cc	cc	cc	ttt	ttt	ttt	420
cc	cc	cc	cc	cc	cc	ttt	ttt	ttt	480
cc	cc	cc	cc	cc	cc	ttt	ttt	ttt	540
ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	600
ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	613

<210> 549

<211> 620

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(620)

<223> n = A,T,C or G

<400> 549

ggtaacgcatg tcaactccca tcatggaacc actcatgggtt gctggtgaa cggcaggatt	60
agtttcataa cctatgccac caccacccac tagaggtgaa aatttctggc ctccctgaacc	120
ataggatct cccatgttca ttgctccccc gccacccatt cgcatgtctc tttccccgtgg	180
atccatgttag cccattcgcc tgtaactttc ctctctttgg cgcctcattt gttcttccat	240
ctcacgttga cgaatcatca tctcttcctc tcttctacgt cgntccctcttgcctcaa	300
ttgcatttctt acgtttctt gcatttcttgg attgtgaaag ttcttccatg cgtcttaatt	360
cttcctgtcg tctcatcaga tcttggcgtaa aaagatttgc ctgatgttca tgatanggca	420
ttttccattt cactttcca atttgnctt ttggcanctt ttcanngntt nttnncaaac	480
ttnggtncct ttggctggg nttttccat ntcnatncan atgagnntt gnntgggnng	540
ggagnantgg tnnggnccctt nnctgtccgg cccntntnaa angggcgnaa tttnnnaa	600
cncatgggng ggcgggtant	620

<210> 550
<211> 577
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(577)
<223> n = A,T,C or G

<400> 550

acctatgttt cacctcctgg aaatgaagag gaagaatcaa aaatcttac cactcttgcac	60
cctgctctc tgcttggct gactgaggag gagccagaac cagcagaggt cacaagcacc	120
tcccagagcc ctcactctcc agattccagt cagagctccc tggctcaggaa ggaagaggag	180
gaagaccaag ggagaaccag gaaacggaaa cagagtggcatttcccgcc ccgggctgga	240
aagcagcgca tgaaggagaa agaacaggag aatgaaagga aagtggcaca gctagctgaa	300
gagaatgaaac ggctcaagca ggaatcgag cgccgtacca gggaaatgaga ggcgactcgc	360
cgagctctga ttgaccgaat gggtaatctt gccaaggaa tgaaccaatt ggggagcatc	420
aagtccccca ctggggccac acttacccac cttttccaga agtggcttct gnctacctt	480
nacttanngc catggtggnn accttaattt ccattttttt gggggaaagt ttgaattacc	540
aaagggaaagg gtttacactt gtttttagaaa ttngccc	577

<210> 551
<211> 573
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(573)
<223> n = A,T,C or G

<400> 551

ggtaacaaacc atcttctact gtgacttctt ctacttgtat gtgaccaaagg tccttaagg	60
aaagaagttt agtcttccaa tgccaatctg aggacccat gagacagtct acgccttaac	120
aagcacatga aggaaactat tttgaatgtt ctctttggca acttatccat aatttggat	180
caaattttaa aaccagaaaa gtgttagtg tggatttcag caaaacctga tcattccacc	240
cagaagacct tctcatcaat agatccct taaaagacccaa ttgttaaggcataaaaaaacc	300
tcggccaaact gcacaaagat ggtgcctcac tgcaacaaga aacctaagg tgccttaccg	360
acgaaataaa aaacataaaat gattgttctc caaaggcctg agggcaagac tcattgtgag	420
caagtcaacc cccaaatctgg aacaatggcc ttctntttaaa atgnccact taagacccgt	480

taaaatatta ggganctggc cggcgcccc tttaaanggc naattcngnc rctggngcc 540
ntacttanqq gaccaacttn ggnccangtt ngg 573

<210> 552
<211> 581
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)...(581)
<223> n = A,T,C or G
```

```

<400> 552
attca ggaataatca tatcactggt tacataacaac tctcatgaa agaaaacct 60
aacaa aaaaaaaaaa ccctcaagttt gttgttttct taagtctaattaatccaaac 120
atagc catttaatta gcaatctgtt aatccagagag gtatagaatatcagcagtc 180
tattt tccacccata gcactgctgc tactcaaattttctca cgttagaa 240
catag gcattgtatgg taaaaataag aatttcaaca tagcagcaaa tgacagaaga 300
agaaa gagctcttaa tgtgttgaca gtcttaatgtcctttaaaa ggtagaagat 360
cgcta tggatggaaa ggaggtaggaa agaaaaagcat gaggttaaga caggtatttt 420
aatgg cgagatagctt accttagaat atttattttt taaaaaaact gctctgaaat 480
cagtg tacctgcccc gcnncnttc naaggcnaa ttttgcnnatntnnttcan 540
cqggc cgttnnacctg qnttttaan ggccccantt c 581

```

<210> 553
<211> 575
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)...(575)
<223> n = A,T,C or G
```

```

<400> 553
tgccc ttggAACCT tgctgaggc tttgttaattc ctagttaaaa tccatTTGta      60
gttcc tgtaaAGcac tcattCCat tcttAAAATC tgctcaACCT tggcaggAAg      120
tttcc acatTTTct taactCGGcg taacagaaaat ggctcaAGCT ccttGTgAaG      180
ataaa ccatATTCTC tccCTTGcc atgttCTTCT tcaAAATCTT ccaggAAga      240
tttct ggCataATgA aatgtAGCA agaccAGAGC tcttGAGGG aattCTGTAg      300
ttcca gtGataAGGA gacGatGATT gatTTAAAG tcttATAAG ttttATAACAG      360
agtca tcattTTTA atcGGTGTGc ttcatCAACA CCTtATAATG CCCAATTtAA      420
ttccag ggaatGCCTT aaaATAATAG aaaaACAGTA ttttGAGAGA aaaACCGGAA      480
atTTA gCcTTCCat ttaATCTGAC tcaATTATTA aaATGAAATn naaATTAaaa      540
ctttq qcctaatttt caaataaaaa atcgn                                575

```

<210> 554
<211> 548
<212> DNA
<213> *Homo sapiens*

<220>

```

<221> misc_feature
<222> (1)...(548)
<223> n = A,T,C or G

<400> 554
acggaggact ccattaataa catggaaatc tccactctga aagcgattca ccatttctgt      60
cagcaagtca gcccatttct gtggaaaatc ttctctgccta ataatgctaa ttgcattact      120
taactgcttc tgaatttgct ctgggctgct aagcatcaag tgcaactatgt tggctttaat      180
ggccactcga tcggcttcac aaattttgtt tggttcatct tcaacaattc tccagttcct      240
ttaatataag ttttgaatg ttactgaagc acataactttg ataacattat cctgggactt      300
ctccagtaat gtcaaaagca acagtggata attctgattt ccttcaacag attcaagaaa      360
tttctcagct ggacgtcgga tggcaggatc aggtcaagt gtttcttta aatattctgt      420
tagtgtttgc agatttgcatt cgtctgatc cattgctata ggatctcggt gggatacaga      480
aaccgaggaa ggaaccccccag ccgcggaccg taactngcac taccggctt cctngggcgc      540
gaaacacg                                     548

<210> 555
<211> 576
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(576)
<223> n = A,T,C or G

<400> 555
actccctgca taacaagaga ttattttggaa gacagttgat aaaaaccata catcctttt      60
attgttaagt cataaaggagg tatcaaaatt aaaagcaaaa attacagggt aagacttaac      120
aaaactacta ggagcgtcaa aggaagtgaa aatgggacta ggcgcggggc aatatgaatt      180
aatgaacatcg ggaaggacaa ggtatggggag aacagtgagc atgtgctgaa gatactaggg      240
gagaggatct ggtaaaaat ttgatcttag acaagcgcct aggtaaagaa ataatggat      300
aagatttcta aaccccaacta tttgtttaag agtcatcctc gccattggcg ctgnctctgn      360
catcctctcc ttctcacctc tttttcatca tccttgcata actccagctt ggcacatncccc      420
cgatcttcat tatcattaaat cttccagttt gncccccttc ttagcanaag taatntgnac      480
cccccttana attcattttt ccatttgnct aaattttttt tccnggacnn gtnggnntgg      540
gcccttttng nnntaaaant ttttaantttt acnggg                                     576

<210> 556
<211> 613
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(613)
<223> n = A,T,C or G

<400> 556
ggtacctctt cccatgactg cacccagctc cagggggccct tgggacagcc agagctgggt      60
ggggacagtg ataggcccaa ggtccctcc acatcccagc agcccaagct taatagccct      120
ccccctcaac ctcaccattt tgaagcacct actatgtgct gggtgcctcc cacacttgc      180
ggggctcactg gggcctccaa cccatttaat caccatggaa aactgttgc ggcgctgctt      240

```

ccaggataag gagactgagg cttagagaga ggaggcagcc ccctccacac cagtggcctc	300
gtggttatta gcaaggctgg gtaatgtcaa ggc当地aaagag cagagtctgg gcctctgact	360
ctgagtcac tgctccattt ataaccagg cctgaccta nacttgtcgaaaagctgtc	420
ttggggcctt ttatnaaata aaaagacttn agncnatgac aanggangt ttaagaangg	480
gacttgnggg gaantnggaa gnnannaanc cttgggttgg ggtttaaagnn nccccacgtt	540
tggcccaggc angtggctt ttcctnttgg gncccttngg tnncnttngg ggacanaagg	600
nnntttgnac ccc	613

<210> 557
<211> 607
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(607)
<223> n = A,T,C or G

<400> 557

acctggatga aaagcagagg gacccagaa tcgaagcggag caaatgtctg ctgtgccatg	60
gggagctcg gaccaagagt ggacataaac tttacatttt cctgtttcaa gacatcttgg	120
ttctgactcg gccgtcaca cggAACGAAC ggcactctt ccagggttac cggcagccaa	180
tcccagtcca agagcttagtc cttagaagacc tgcaggatgg agatgtgaga atgggaggct	240
ccttcgagg agctttcagt aactcagaga aagctaaaaa tatctttaga attcgcttcc	300
atgacccttc tccagccccag tctcacactc tgcaagccaa tgacgtgttc cacaaggcgc	360
agtggttcaa ctgtattcga gggccattt ccccttcca gtcggcaggc aagtccacct	420
gaactgcagg gcctggccgg agctgtacga aaaatgtgaa ggggaaccac ctttgcgag	480
gaactnacag cccaaaggaa ggcattcaca gtttcagtgg tacttcaggt agaaaaggta	540
tggctttgg cattgcaaattt ggcagaggcc agcaagaact	600
taaannt	607

<210> 558
<211> 355
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(355)
<223> n = A,T,C or G

<400> 558

acaaagacaa agaaaacaaac tacattggca tttaagccaa tcaaaaaagg aaagaagaga	60
aatccctggc ctgattcaga atcagatagg agcagtgcg aaagtaattt tgatgtccct	120
ccacgagaaa cagagccacg gagagcagca acaaaaacaa aattcacaat gtatttgat	180
tcatgatgaa atttctcaga ttttgcgaa aaaactgtatg atgaagattt tgtcccatca	240
gatgctagtc cacctaagac caaaacttcc ccaaaaacttta gtaacaaaga actgaaacca	300
cagaaaaggta tcgtgtcaga ctttgcgat gatgtatgttta agggcagtgtt acctn	355

<210> 559
<211> 597
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(597)
<223> n = A,T,C or G

<400> 559
acccgcaaaa cgggacatacg tatgtgacaa tctgcacatcg tcatggacta ctaaatgcct      60
ttacatagaa gggctctgat ttgcacaatt tggtaaaaaa tcacaaaccc atagaaaagt      120
aagttaggcta agttggggag gctcaaacca ttaagggtt aaaaatacatc ttaaacattg      180
gaaagctctt ctagctgaat ctgaaatatt accccttgc tagaaaaagg gggcagtc      240
gaacagctgt tccccactcc gtggctctca aatcataaa ccatggctac tcttggAAC      300
cacccggcca tgggtcgcc aagtagagca agccccctt ctcttccaa tcacgtggct      360
gagtgtggat gactttttt ttaggagaag ggccgatatac acttttgac agtattttgn      420
tttgcctgtt ttgggggat tgnttggtt ttgggtgggtt gtttggaaa aacnggttat      480
aaactgggtt ttgnangnt ttgggatttt aaagcccnaa ataaaaaann nnanaaaaaaa      540
aaagnctttg gnctttgggc cgaaaaaccct taangggcna attccagccca ctttggg      597

<210> 560
<211> 559
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(559)
<223> n = A,T,C or G

<400> 560
gactttgagg caagtgtggg ccactgtggt ggcagtggag gtgggggtt tgggaggctg      60
cgtgccagtc aagaagaaaa agtttgcatttcacatcg ccaggatgat aagttcctt      120
ccttttctt aaagaagttt aagtttagga atcctttggt gccaaactggt gtttggaaagt      180
agggacctca gaggtttacc tagagaacag gtgggtttt aagggttatct tagatgttc      240
acaccggaag gttttaaac actaaaatat ataatttata gttaggctaa aaaagtataat      300
ttattgcaga ggatgttcat aaggccagta tgatttataa atgcaatctc ctttgcattt      360
aacacacaga tcacacacac acacacacac acacaaacccn tntgcctttg atgttacaga      420
ttttantccg ttnattttt aaggatagagc ctttatnggt gnnnnnnnnnnnnnnnnnnnn      480
aaaaaaaaac ncncncnggc ttgnatttng ncttnntngg gtttccccca aanccatnn      540
nnttgncagg ctngggngg      559

<210> 561
<211> 569
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(569)
<223> n = A,T,C or G

<400> 561
ggtacaagct tttttttttt tttttttttt tttttttact ttttgggana naggcttagga      60
ggaggaaggg gtgaaaacag cgtctactg gagtctcaaa agtgtatgaa tcttctggta      120

```

gtgcaaggat	gggataagat	ggccaggggaa	gtcagatgga	aaatccccaa	gattcttttt	180
gctactgatt	tctataatta	aaatatgaca	tatgttaaggg	actagtgcac	gatattcaat	240
aaatgtcagt	tgtcttcctt	aactagggtc	ctcacaggct	aggttatgcc	tanatatcat	300
catcctcctt	tcagggaaatg	aagctcacct	agaaaactag	ggaactaaaa	gtgcaatatg	360
gtttgggtaa	tgcagtttgt	tagctgcctc	ccatcctccc	aactcactat	tccagggagg	420
ggctgaaaac	agaaatggct	cccctgaagc	tanntagcat	ggcatgcana	gtcnatgaa	480
aggtttggc	tggaattttt	aagccaagnc	ctnnttttg	gaaaaaaaaatn	ttgggaaaaaa	540
ancccncccc	tnctgnntcn	nagctgttt				569

<210> 562
<211> 597
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(597)
<223> n = A,T,C or G

<400> 562

cgaggtacgg	atgtactttg	tccaaatgtatg	gtaaaagggt	agcttactgg	ttgtcctccg	60
attcaggtta	aatggaggag	gtctgcggct	aggagtcaat	aaagtgattt	gcttagtggg	120
cgaaatattt	tgctttgttg	tttggatata	tggaggatgg	ggattattgc	taggtgagg	180
atggatagta	atagggcaag	gacgcctcct	agtttgttag	ggacggatcg	gagaattgtg	240
taggcgataa	ggaatataatca	ttcgggctt	atgtggggag	gggtgtttaa	gggggttggct	300
agggtataat	tgtctgggtc	gcctaggagg	tctggtgaga	atagtgttaa	tgtcattaag	360
gagagaagga	agagaagtaa	gccccgagggc	cgtctttgat	tgtgttagtaa	gggggttggaaag	420
gtgattttat	ccggaatggg	aagtgtatnct	aagggggggtt	gtttgannnc	ctttcntgc	480
cntaaantgg	angtngaaat	cnnnnnnng	cncncatana	ttanaggcca	aaatnaaatt	540
gaanggnnaa	aaaancnn	anggggggga	ctgnnnnntg	agaacccccc	taaaaatn	597

<210> 563
<211> 574
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(574)
<223> n = A,T,C or G

<400> 563

acgccaagaa	ccgtatttctt	tgcccacaggg	ttttatgtgg	gacactttag	acttgagtga	60
tgccgaagtg	ctcaaggagt	tatacacgtt	gtttaaatgag	aattacgtag	aagatgtatg	120
caatatgttc	cgatttgact	attcacccga	gttcctgttg	tgggctctgc	gtccaccagg	180
ctggctccgt	cagtggcaact	gtgggggtcag	agtgtcttca	aataaaaaac	tggtcgggtt	240
cataagtgcc	atcccagcaa	acattcgtat	ttatgacagt	gtgaagaaga	tggtagaaat	300
caactttctt	tgtgttcata	agaagtttag	atcgaaacgg	gtagccccag	tgctaattccg	360
agagatcaat	agaagagtga	acctggaaagg	gatctcccg	gctgtgtcaa	aaagcacact	420
ctccanncct	cngggccctg	cattcctgcg	cttntntnn	gacactttcc	ctttcttattt	480
tactgnggtg	actttttcaa	acgctgttac	cccaaccctt	ananttttn	gcccttggcg	540
gnntatnggt	taaanatcac	ccttcccnng	gttt			574

<210> 564

<211> 600

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(600)

<223> n = A,T,C or G

<400> 564

ggtacagaat	atttctaata	aacctaaatt	taatcacagt	taaaaatttct	caaaaagtatt	60
ttaaagtgt	caagaatatt	aaagtttggg	gggaaaatacc	taagtcataa	ataagcaagt	120
attccctcca	agattcacta	attgggataa	aagtctcagg	gtaagcccac	aagaatggtc	180
tgcaataaaag	aaaaatcagg	tctgtgtaga	gtaatttctg	ccatcttag	cagaaaaagcc	240
aaaaacatcc	tgagccaaat	aaaagcaaag	atctttgtat	tcagcgctt	ttttgtgttt	300
agtttttaatt	tctaacttct	caacatgtta	tagtcagaa	attcccatat	gcttactatc	360
tgtataaagg	aactataacg	ttaaagaaaa	aattcagaga	ccgtgatcat	ttttccatcat	420
aggctcggt	ctctttggta	gaaacagatc	aagacttact	ttattttct	ctttcccncc	480
ngaagaaaaan	gggggggtta	atggcnttta	cccttggnnaa	anaaccnccg	ngggttaac	540
cttnaaattn	ggnggggtaa	aanancctaa	ngntnagccc	tttttnanaa	ctnggggnnaa	600

<210> 565

<211> 600

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(600)

<223> n = A,T,C or G

<400> 565

accatcgccc	atgtggacca	cgggaagacc	acactgactg	cagccatcac	gaagattcta	60
gctgagggag	gtggggctaa	gttcaagaag	taccaggctg	tttgtgatcg	tatcagccgc	120
tatgtgaaac	agccttacc	tgtatgagtt	ggcagctcac	ccttggagcc	aggggcctgc	180
aatggctcca	ggaacagctg	tgaaggagaa	gatgaggaag	aaatggagca	tcaggaagaa	240
ggccaaagagc	agnnnnnana	aacagaaggc	agnngggaaag	atgagccagg	aaatgaccnc	300
agtgagacca	ccccaaaagaa	gatcaaaggc	cagccctgcc	caaaaaggct	tntttaccnt	360
cagtcttgc	aactcctatg	gaacagctga	cataaaatttcc	actttgcagc	tnatggaaaa	420
ctacntaaac	tcaantnttc	ganctacact	tggncntgg	tttgtgacnt	ttgaaaaactn	480
tggaganttt	tnctatgnnt	gtgcncnnnaa	atttttaggg	ntntccnat	aaatctctgt	540
tancctttt	gggnaccntt	tcnaagnaag	atntnangnc	cctangncc	nttnaaaaan	600

<210> 566

<211> 576

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(576)

<223> n = A,T,C or G

<400> 566
 ggtactgaac aggtaagtca tccctcagcc agagattagt ctacttcttc catgcgtgat 60
 gtgtcgcat ctccttcaag ggtgttttc ttatattttg ttaatattaa aaagtctgta 120
 tggcatgaca actactttaa ggggaagata agatttctgt ctactaagtg atgctgtgat 180
 accttaggca ctaaaggcaga gcttagtaatg cttttgagt ttcatgttg ttatatttca 240
 cagattgggg taacgtgcac tgtaagacgt atgtaacatg atgttaactt tgtggtctaa 300
 agtgttagc tgtaagccg gatgcctaag tagaccaaattt cttgttattg aagtgttctg 360
 agctgtatct tgatgttag aaaagtattt gtacatctt gtagggatct acttttggaa 420
 cttttcatt ccctgnaggt gacaantctg catggacctg cccccggcgg cccttnaan 480
 ggcgaanttc annncantgg ngggnntct tngggnnccn ncctgncca aatntggggg 540
 ancnggnca anctnttccn tggggaaaatg gntccc 576

<210> 567
 <211> 427
 <212> DNA
 <213> Homo sapiens

<400> 567
 ttttggcagt aaatcaattt tatttgtgtt cacagaacat actaggcgat ctcgacagtc 60
 gctccgtgac agcccaaccc cccccaaccc totacctcgcc agccacccta aaggcgactt 120
 caagaagatg gaaggatctc acggatctca ttccataatgg tccgcgaag tctcacacag 180
 tagacagacg gagttgagat gctggaggat gcagtcaccc cctaaactta cgaccacca 240
 ccagacttca tcccagccgg gacgtcctcc cccacccgag tcctcccat ttcttctct 300
 actttgccgc agttccaggt gtcctgcttc caccagtccc acaaagctca ataaatacca 360
 agagacctgc attacagca ggggaacat ctcacaccct tgcataagtt aaaataaata 420
 ttaccgt 427

<210> 568
 <211> 616
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(616)
 <223> n = A,T,C or G

<400> 568
 acaagagtga tggcaatgtg actggAACAG aaatagtttc taccaggcac aaaaaagctc 60
 ctgtaagccc cgtagttccg tcctgcaaag ggcctcagtg ggaaccaggat ctgcagaccc 120
 gagtgggcag agagacgggt ggaagcaggat gccccagatg gtcccgagg cgtcaccgtc 180
 tggtttggag acctaaggg agttgtgtt ccaaacttctc tcccagggtc tcaggtggag 240
 actaggagat ttgacctaataa ggtcctccaa ggagaggcoa aggtcttggaa gacagatctg 300
 gtttaccatc tttaacaaa aggcaaattgt ctctcttct tcagaaagag tcattaacac 360
 taaaattctt ttctthngaa gtttcttctt ttcgcgtgcc atcttccaag tttgnnccca 420
 agaatgaaag gctgtttttn ccnaagggtc aagggtttcc attcacnttgc gcccccatgg 480
 naaaaggggac tggttccctt tgggggggtt ggncccggac cccccaaana aggnnaanggn 540
 ttttgtncac acccacttnt tcccnnggggn gggaaagggnna anaacctttg ggcccgngna 600
 acccacttta annggg 616

<210> 569
 <211> 582

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(582)
 <223> n = A,T,C or G

<400> 569

acagaatata acgcagcttg gcaggatgca tacggccctg cgcagggaa agtattcaa	60
atcagctggc agttcaagc ctttctgcac ttagacttt ccacactctg gaaaagaagc	120
aaacaacaaa accccaaaga acccccggaa aaaacaaaaaa ccatccggga ggtgcatgag	180
tccaatgggaa atgcaaccgt gatgccgctg tcctatgccc agtgacagca caggtcacgt	240
aagtacagc aggggaggggg tagctaagc tacagaggat tattgtcata ttgctaagac	300
agcataaaatc cattcaaaaaa aaaaaaaaaa aatccaaacc agggtaagta aagaaaggaa	360
aaccaaatct atacagcatt tacaacaaat aatatctctag ccagctgggg gtaaaatatg	420
catctatgtt tagactatgt gttaggttaag aaaagctttt aatatngtt anaaagaggn	480
cctttgatta aaggccttgg cccgaacncc cttaaaggnnn aattcnagnnc nattgggggc	540
cggtcnaagg ggatccaach tgggnccaaa ntggngaaat nn	582

<210> 570

<211> 557
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <222> (1)...(557)
 <223> n = A,T,C or G

<400> 570

ccgggcaggt acttcttgcc tttaagatag gcaccaggaa atcttcaag gatctcatag	60
tcactctcca atttatagag ggctgacaat ctggcttcca taaaatgag taatcgtcct	120
ctggcaacat cttaatttt cacatattgc atttctggat taacacacac agcaaggta	180
ctagtagag tccagggagt ggttgtccaa gcaactaaag atacagttc atcttcttcc	240
aaaggaaaag ttacaaatac tgaaggatct tgaacatcct tataattctg gtgtgactcg	300
aagtggaaaa gtggagtgtt acatgccgta gagaaggca tgacttcac acctctataa	360
acaaggcctt tatcatagag ttgggttaag acccaccaga ctgattccat gaattgtgga	420
tacagagttt tatagtcatt ggcaaagtna atncatcgcc aagttgctac aggagacttc	480
actnannnaa atctcatcnc aatnnntgga ctnatggata cctnggannc ccnttngcc	540
caatctggc ctngatn	557

<210> 571

<211> 382
 <212> DNA
 <213> Homo sapiens

<400> 571

acactgctct cttcctggca attgacagtg gtaaccctcc cgctacgggc actgggactt	60
tgctgataac cttggaggac gtgaatgaca atgccccgtt catttacccc acagtagctg	120
aagtctgtga ttagtgc当地 aacctcagtg tagtcatttt gggagcatca gataaggatc	180
ttcacccgaa tacagatcct ttcaaatttg aaatccacaa acaagctgtt cctgataaag	240
tctggaaat ctccaagatc aacaatacac acgcccgtt aagccttctt caaatctga	300

acaaagcaaa	ctacaacctg	cccatcatgg	tgacagattc	aggaaacca	cccatgacga	360
atatacaga	tctcaggta	cc				382
<210>	572					
<211>	621					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(621)					
<223>	n = A,T,C or G					
<400>	572					
acaagctttt	ttttttttt	ttttttttt	tttttttgc	atttattgcc	atgttttaaa	60
attcgtgcaa	aatatntgaa	gcccggaca	gagaatacaa	agtgatattt	tcccaagaaaa	120
cntaaaacta	ggaaaagggg	tgggggacat	tttcccacca	nagctncccc	cacggccaggc	180
cccaaggcagg	gtgaggcctn	caacccggcc	agctgagcag	ggaggactaa	gagctacaat	240
ctggaccang	gaaggagggg	tggaaatttc	aacagngtnt	taactaccaa	cgagaggaaaa	300
gccagtcaac	tgtacaacct	cttgcggagc	ggggaaagggt	actaccngaa	caagacatgc	360
tgcctgcct	gtgcttgtgg	gctgcaaagt	gggnntccaa	taagtgggtc	catgaacgag	420
gacaggagtt	tttgancctt	gnngatcaac	aaaangttna	ctgacatccn	tttctgcctt	480
tccctttcct	ggnnccttta	anccatgtca	acnntgacan	acncctntng	atggtccctt	540
tggnagtctt	aatnaggctg	attttggan	nantnaatnt	ttttttggaa	cncaaggnga	600
acnttttgg	ngaatttng	g				621
<210>	573					
<211>	296					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(296)					
<223>	n = A,T,C or G					
<400>	573					
ggtactcatt	gtgcctttc	tttcctacag	aaaaggaagt	gatctatacc	60	
aagggttgca	gggaagtcaa	atgttctcaa	cctttcatgc	cctctggta	120	
ttgc当地ata	atttggatcc	ggacagattt	ccagtatttt	caagtccgct	180	
aaagctcggc	ctaacctgga	gctagtttag	tccgcaggcg	ccaccgncgg	240	
agaagaagct	ccttctttag	ccgcccagga	gagttcctcg	cgcaactccgg	296	
<210>	574					
<211>	616					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(616)					
<223>	n = A,T,C or G					

<400> 574

ggtaactccaa	cggcaccctg	tgcagaaaatg	agagaagaca	gtgcttagagt	ctatgaaaac	60
gtgggcctga	tgcAACAGCA	gaaaaggTTTc	agatgagaaa	acctGCCAAA	acttcAGCAC	120
agaaaatAGAT	gtggACTTTC	accCTCTCCC	taaaaAGATC	aAGAACAGAC	gcaAGAAAGT	180
ttatgtGAAG	acAGAATTG	gatttGGAAG	gCTTGCAATG	TGGTTGACTA	CCTTTGATA	240
agcaAAATTt	gaaACCATTt	aaAGACCACt	gtatTTAAC	tcaACAATAC	ctgCTTCCCA	300
attactcATT	tcCTCAGATA	agaAGAAAATC	atCTCTACAA	tGTAGACAAc	attatATTT	360
atAGGAATTt	gttGAAATT	gAGGAAGCAG	ttaAAATTGtG	cgCTGTATTT	TGCAgATTAT	420
ggggattCAA	attCTAGTA	tagGCTTTT	tATTTTATTt	ttataCCCTT	aACCAGGTtA	480
atTTTTTTT	ttCCTCATtG	gtngggatG	atGAGAAGAA	atGATNGGG	aaaATTAAGT	540
accaACGNAC	tagAAAAGtG	agaACCATTc	tATTCCTCnT	ntggTCCnG	gAGnGATAA	600
ttcatttGAN	ggCTTN					616

<210> 575

<211> 614

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(614)

<223> n = A,T,C or G

<400> 575

ggtacAAACA	ttttacAAAAA	aAGAACATTA	ccaATATCAG	tggcAGTAAG	ggcaAGCTGA	60
agaataAAATA	gactGAGTTT	ccgggCAATG	tctgtCCTCA	aAGACATCCA	aACTGCgtTC	120
aggcAGCTGA	aACAGGCTTC	tttcccAGTG	acaAGCATAAT	gtggTCAGTA	atACAAACGGA	180
tggtaAAATGA	ggCTACTACA	tagGCCAGT	taACAAACTC	ctCTTCTCCT	cgGGTAGGCC	240
atGATACAAAG	tggAACTCAT	caaATAATT	aaACCCAAAGG	cgATAACAAAC	GTATTTCCC	300
atCTAAACTC	attaAGCCT	tcACAAATGTC	gcaATGGATT	caAGTACTT	gcaAAACGATC	360
ccgggttGTC	ataCAGATAC	ttgnTTTTA	cACATAACGC	tATGCCATCC	cttnCTTCAC	420
tGCCCAgTC	gtttCCTGN	tGTTGGACCG	aaAGGGGATC	ctTTAAAAA	TGCTTCNTTC	480
aAGACAGAAG	tgAGAAAGAA	aggAGACCT	gAGGCCAGAN	ctATTAAC	ttGTGNGTCC	540
ccAAAAGGAA	ggggAAAGGN	agaATTGAAA	ggAAACGGNT	ctTnGCCA	ggATNGGAAN	600
cgGGACTACN	ttGg					614

<210> 576

<211> 596

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(596)

<223> n = A,T,C or G

<400> 576

acatCAAGAC	ttttGGAACA	gCGATCGTA	tcaATCCTGA	gaaAGACAAA	gACATGGTCC	60
aAGACCTGTT	ggACTTCAG	gacaAGGTGG	accACGTGAT	cgAGGTCTGC	ttCCAGAAGA	120
atGAGCGGTT	cgtCAACCTG	atGAAGGAGT	cTTTGAGAC	ttTCATCAAC	aAGAGACCCA	180
acaAGCCTGC	agaACTGATC	gcaaAGCATG	TGATTCAAA	gtTAAGAGCA	ggCAACAAAG	240
aAGCCACAGA	cgAGGAGCTG	gAGCGGACGT	TGACAAGAT	CATGATCCTG	ttCAGGTTA	300
tCCACCGTAA	AGATGTCTT	GAAGCATTtT	ATAAAAAAAGA	tttGGCAAAA	AGACTCCTTG	360

ttggaaaaag tgcctcagtc gatgctgaaa agtctatgtt gtcaaagctc aagcatgagt	420
gcgggtcagc cttcaccagc aagctggaa gntttcaag gacatggagc tttcaangac	480
atcatggtca ttcaagcca gcntatgcag natcngagtg cttcaggcct atagacctac	540
agggacatct nccatggctt ctngccacat aacnccatgg aangcctac cccaaa	596

<210> 577
<211> 617
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(617)
<223> n = A,T,C or G

<400> 577

ggtaccacaa ctcccaggat tttcctggat caaaccttgt atctcttctg caagtattgt	60
gtatatttgt ctgagagacg tggaccctcc tgaacattt attttaaaga actatgatat	120
ccagttttt tccatgagag atattgatcg acttggatc cagaaggta tggAACGAAC	180
atttgatctg ctgattggca agagacaaag accaatccat ttgagtttg atttgatgc	240
atttgacct acactggctc cagccacagg aactcccttt gtcggggac taacctatcg	300
agaaggcatg tatattgtcg aggaaataca caatacaggg gttgctatca gcactggatc	360
ttgttgaagt caatcctcag ttggccacct cagaggaaga ggcgaagact acagctaacc	420
tggcagtaga tgtgattgtc tcaagctttt ggtcagacca gaagaangaa ggcataattgg	480
ctatgaccaa cttctactc ccagttcacc agatgaatca gaaaatcaag cnctgtgan	540
aaatttaggag acacttngcc ctggcatgtt tacaaaaagg ctttnngaaa tntgangcct	600
ttagggaaa aaataaa	617

<210> 578
<211> 409
<212> DNA
<213> Homo sapiens

<400> 578

ggtacatgca gaattgtcaa ctacaggaa tgaaaagttc aaaaagtaga tcctacaaga	60
tgttaacgaat acttttctaa acatcaagat acagctcaga acacttcaat aacaagattt	120
ggtctactta ggcattccggc ttgacagcta aacactttag accacaaagt taacatcatg	180
ttacatacgt cttacagtgc acgttacccc aatctgtgaa aataaaccacaa catgaaactc	240
aaaaagcatt actagctctg ctttagtgcc taaggtatca cagcatcact tagtagacag	300
aaatcttatac ttcccccttaa agtagttgtc atgcatacata gacttttaa tattaacaaa	360
aataaagaaa aacatccttg aaaatataatt atcagaggaa ttgttagagt	409

<210> 579
<211> 619
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(619)
<223> n = A,T,C or G

<400> 579

ggtactatTT	tataTccaga	aagtcttctc	tatgttagaga	agtcagagag	actagatgct	60
ttcaCTAGGG	aatgtcttcc	cacCCAGCCA	tcacaaATGT	ggacaatcac	tgcatccaca	120
tctgtaggCA	tatttctatG	gaagttaat	tgacagctat	attcattatt	tatTTtacAA	180
tttcatttt	ctacacCTT	gagatttatG	aatgcagTT	tttcttaaaa	tttattttAA	240
cttgcacAGTA	tgtttttagT	tcccccaatt	taattaatgg	accatgtgca	tatataatggg	300
agtgtgCTTA	catgttaata	atttactgC	atacttatGA	gaatttcaca	ttggaattca	360
taatggtaAA	acaacatACA	tctgccaATA	tacgttttT	ctgnTggTT	aagagaagat	420
aactgacAGC	tttacctaCT	tcctacagat	gcatctaaAC	ccagatttac	tgagaagaAG	480
tgtattggAC	tctgagtggA	aaaagagat	ggtgttttt	ggTTtaagn	tctgctctAG	540
anccataATT	ngnaaaaaAT	tttaggnctT	aanctggtnC	cctaaaattG	gnnanccAAA	600
ngttnaatGA	aangctGC					619

<210> 580

<211> 632

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(632)

<223> n = A,T,C or G

<400> 580

ggtacaaaca	ttttacaaaa	aagaacatta	ccaatatcg	tggtagtaag	ggcaagctga	60
agaataata	gactgagTTT	ccgggcaatg	tctgtcctca	aagacatcca	aactgcgttc	120
aggcagCTGA	aacaggCTTC	tttcccagtG	acaagcatat	gtggtcagta	atacaaacga	180
tggtaatATG	ggctactaca	taggcccagt	taacaaactc	ctcttctcct	cggtagGCC	240
atgataacaAG	tggactcat	ataacaacgc	tatttccat	ctaaactcat	ttaagccttc	300
acaatgtCGC	aatggattca	gttacttgcA	aacgatcccG	ggttgtcata	cagataactG	360
ntttttacac	ataacgctgt	gccatccctt	ccttcaCTGN	cccagtcaGG	tttctgttg	420
gtggaccGAA	aggggatcat	ttaagaaaAT	gcttccttnA	agacagaaaAG	tgagaaaAGA	480
aaggagacCC	ttgaggncag	gaactaatta	aacctggTGT	ggtgccccAA	aaggaaaggG	540
gaaaaggCCG	gaantgnAA	nggataaccG	nttcnttng	cccaggGANT	cnggaaccGT	600
ggctcgctt	gggcttggac	annccaaAT	cc			632

<210> 581

<211> 607

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(607)

<223> n = A,T,C or G

<400> 581

acataagtGA	tggagatATCA	atgctggTGG	ttgaggtggA	gaaggaattt	agttccttGA	60
atTTTCTTTG	ttctcctCTG	tgttccTTCT	tggcaggTA	accCCTGCTA	tatcataAGA	120
tttcatCTGC	gagaaaAGGA	ggaattCTTC	tacagCTCCC	ctgctcaACT	ttcaggAGAT	180
tttgacCCAT	gtgctgttAA	tcaccgAAAT	tTTTtaAGGA	ggcttctcCT	ggcatgAAAG	240
agttggTATT	gtgtccCGAA	ttggTTggTT	cttggTctca	ctgacttcaa	aaatGAAGCC	300
gcggaccCTC	gcggTgAGTG	ttaacagCTC	ttaaggtggc	acgtctggag	tttggTcCTT	360
ctgatgttCC	ggatgtgttC	agagtttCTT	cTTTCTGGTA	ggttccTGGC	ctcgcttggc	420

ttcaggaatg aagctgcaga ctttcgttgcgt	nagtgnatac agctcttaan gcaggccgtc	480
tggaaaggtgt tcgttccctcc tggggctcggt	ggcttgcgt gctttaggag tcaagtncaa	540
accttnaggg tgagtgtaca ntcatanaag cagtgtngnc	ccaanaatna ncnttnaaaa	600
gccaacn		607

<210> 582
<211> 603
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(603)
<223> n = A,T,C or G

<400> 582

actgtatttct ccataatgttag ctcggatgcg	gagggctgtg agattccgca gtaaccttcg	60
atactcaaag taactcagct gggggctcca	attattgtctt ggatgctcat ttaacctgaa	120
tgtgttaagtcc ttggtgagcc	cacaaggcag tgcgttgcac agtggcatca	180
gatccgtaga ccagcacctt ccagaatcac	atcatggca gatgggtgtc tgccttcctt	240
gtcccacacgg tagtcaaagg acaggcttg	accatagctc acctgttgcgt tcccaagaaa	300
tttggcagga gccacaaaat agacagggtc	tagtcgttgg gctgagctaa acacatctg	360
atgggcgtg tgaccattgg agctttgcag	gagaccatt tcgttggaca gccttccagc	420
catcaacatc ttgatgaaag gtanaagtga	tcttatggac actgnattct gcanaactgc	480
ggcaacttgg ctgaatgcca tagcagaacc	ctgggtaccc tnggcggaa cacgcttang	540
gcaattcag cccacttggg gccgtctann	gnanccact ttgggcccantt cttggggaa	600
ant		603

<210> 583
<211> 535
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(535)
<223> n = A,T,C or G

<400> 583

ggtacacacaca ggaccgcctg	gggctaaagg aaatggacaa tgcaggacag ctagtgttcc	60
tggctacaga aggggaccat cttcagttgt	ctgaagaatg gtttatgcc cacatcatac	120
cattccttgg atgaaaccccg	tatagttcac aatagagctc agggagcccc taactcttcc	180
aaaccacatg ggagacagtt	tccttcatgc ccaagcctga gctcagatcc agcttgcaac	240
taatccctct atcatctaac atgcctact	tggaaagatc taagatctga atcttatct	300
ttgccatctt ctgttaccat atgggtgttga	atgcaagttt aattaccatg gagatgttt	360
tacaaacttt tggatgtggtc	aagttcagtt ttagaaaagg gagtcgttgc cagatcaagg	420
gccagaactg tgcccaggcc	caaaggagac actaactaaa gtgtgagat agattctaann	480
ggcaaacatt ttccaggcctt	gccatatttc aagcaanaag ggcnaagcc tgagg	535

<210> 584
<211> 524
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(524)
<223> n = A,T,C or G

<400> 584
acaactctct taaaagagta tggataacta tattttctgg attctggagg ttgataacca      60
tatgcactta acattatatt ctataaacat taagtagtgc cagttatgag attcccagg      120
cttactaaat tgatttagca ggagctggta attacttgta ttatcacatg taactaataa      180
tttgaactat acttgaagga ccgtgttgc gtcaggatt tacagtggtt ggaagatagc      240
agtattatta gcataagctg catacgtaat attcagtaac tgccatatta tataacaaat      300
ttacattcgc aaatcgta tcctgttaaa gtgtcatatt cttgtaatct gcattctcca      360
ggagtttat gtgttaata gatgaattta ttttattttt aaaggatttc aatgnnttc      420
agccncntat aggagaaata cccaaagtata ttctagttcc ttnatgtccc tgnaccctcg      480
gccngnacca cgctaaaggg cgaaatncaa ncncactggg nggn      524

<210> 585
<211> 618
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(618)
<223> n = A,T,C or G

<400> 585
actgactata atcaaactcc gaataccatt aaaattaagc tatgcagtcg gaacgtgggt      60
gataacgtcc acgctcgcga ggggaacaac ccagatcgac agctaaggc caaaaattgt      120
gttaagttag aaggttgcg agatttcata aacaactagg aagttggctt agaaggcagcc      180
acctttaaa gagtgcgtaa ttgctcaacta gtcagagat cttgcgc当地 taatgtAACG      240
ggactcaaac acaataccga agctacggc acattatgtc cgtaggaga gcgtttaat      300
ttcggttgcg tcaagaccgtg aggactggc gagagattaa aagtgagaat gcccgc当地      360
gtaacgattc gaagttagaa tcttcgacgc ctattggaa aggtttccgt ggcaagggttc      420
gtccaccagg gggtagtca gggcttanga tgaggcanaa atgcatagtc gatggacaca      480
ggttaatatt cctgtacctt cggncngaa cacgctaagg gccgaatnc agcacactt      540
gcgggnngtgc ctatgttgc cccanctntg ganccaactt ngggtaatc ntggcttan      600
ctggttccct ggttaat      618

<210> 586
<211> 337
<212> DNA
<213> Homo sapiens

<400> 586
acaagctttt tttttttttt tttttttttt tgttcaagt ttatcaaaa gcttgtatata      60
aagattactt tattcctgca ttttctcaat gtttcttcc ttgtatttgc cttttccctt      120
tcctacttgg cgagatttg ctttccgttc gaggatctt ttgcggctt tgcaggattt      180
tagccttagtataaaccacct tgctgggtt aatgcctacg tggacagttt tgccattagc      240
ctttccccgc tgcacccgtt caatgttagat aacatatttc ttctgtaaa cctggactac      300
tttgc当地 tgc当地 acgtacc      337

```

<210> 587
 <211> 656
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(656)
 <223> n = A,T,C or G

<400> 587

cgaggtacaa	gctttttttt	ttttttttct	gaggagtggc	atggagttct	60
ttaatttsga	aggcaaaaagg	ttacatttaa	tgaaggcag	aggctggatt	120
tgttanaaaag	ttgttctgac	acacagtcaa	ctctgggctt	ttctccgtca	180
agcttagcagt	aagtgcataat	ntgaagaaaa	tccatgtgtc	caataagctg	240
aactcttatac	cagaaattc	aaagagtgaa	cattctttta	gtctccact	300
gtaaatgaga	atgattcagc	caacaagtt	catgacaaca	aggtgcagga	360
aaanagaaaa	tnagcaaaagg	ctcgctctgg	ggagatgcct	tggaaatccn	420
ngggttgatc	tgnatttttc	agggnaaacc	cgctaggat	gaaactccc	480
aatgaaaacc	cgaagaaaaa	agangttaa	agggaaaagg	nccccngan	540
tacccgaact	tggAACnncc	ccggcaagca	atttttcnc	ggcagggtnc	600
ggcggccntt	tnaaaagggg	gcaattncca	ngncacttgg	gggggcgttt	656

<210> 588
 <211> 586
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(586)
 <223> n = A,T,C or G

<400> 588

actcaaacac	agggggggttg	tcatttatgt	caagaactga	tacaatcaca	gtgccagtgg	60
cagtcagcct	ccttggcaag	ccttgatcca	cagcttcaa	agagagggtg	tatactgcct	120
ggagttctct	gtccaaaggt	ttttctaact	gaataattcc	agataattcg	ttaatggaga	180
actgcccattc	agcagagtc	atcagtggat	ataaaatctt	ccgatttaat	cctgcgtcgg	240
catctgtggc	ctgcacttct	gtcagcagcg	ttcccggtct	tgtgtttca	aacacgggtga	300
tggcataagg	atccggcagag	aattcggggg	cattatcggt	cacgtctct	agcgtgagca	360
caatactggc	tttgtagaat	cttccttc	catctgtggc	cctgacgaga	agatgataaa	420
cagcttgc	ctnacgatca	aagggggtt	gacgtttca	agtacacctgg	nctggattaa	480
tttgaatttt	ctgcacctga	cccaatacgg	taagtattca	gcgttaaccgg	atgttgcgtt	540
gacanaaaact	gatgacattt	tccgaaggac	tnttaggaaa	aggtga		586

<210> 589
 <211> 645
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(645)

<223> n = A,T,C or G

<400> 589

acaaggcagta	tttagaaaatc	tttttggcaa	gggagagaaaa	taaatacaaa	tggaatgcta	60
catttttaaa	ttagcaact	gtctcaggaa	tgataaaggt	atcagtaaag	tagcaagggg	120
ataactttaa	aacattattt	gtctgggct	caaaaaacac	tcaaaacaat	ttatTTaaag	180
gttgcacaag	agctatgtcc	aggcattac	gcttatggga	agtaaaaatta	aaagaggata	240
ctttttccc	aaggagaatt	tctttaaac	caagcacatt	gctaaatagc	aacattatac	300
tcggtaaaca	ataattggca	acaaaataag	ttaatattc	tgcccaaacc	agtcccagat	360
actgttaat	aaccaagata	caaactaatt	ttgttgnac	aagcctagac	caatTTatc	420
aaacatgtcc	ttgtttagat	atccaatttc	atTTAACGTT	tttgnagct	canttgacag	480
ccagtcnagt	ccttnatacn	gacccagttc	cNTGGGTTG	gcacaaagtg	ggnttggacc	540
atacccacca	ttcaaaaagg	cgcATnTNGG	ttcttggccc	aaaaaatccn	gnnaaaaaaa	600
agggangga	aattattnaa	gggnccctt	ggnngnaatg	ggcnc		645

<210> 590

<211> 464

<212> DNA

<213> Homo sapiens

<400> 590

ggttcttgac	gaggctgcgg	tgtctgtgc	tattctccga	gcttcgcaat	gccgcctaag	60
gacgacaaga	agaagaagga	cgctggaaag	tcggccaaga	aagacaaaaga	cccagtgaac	120
aaatccgggg	gcaaggccaa	aaagaagaag	tggtccaaag	gcaaagttcg	ggacaagctc	180
aataacttag	tcttgttga	caaagctacc	tatgataaac	tctgttaagga	agttcccaac	240
tataaactta	taaccccagc	tgtggtctct	gagagactga	agattcgagg	ctccctggcc	300
agggcagccc	ttcaggagct	ccttagtaaa	ggacttatca	aactggttc	aaagcacaga	360
gctcaagtaa	tttacaccag	aaataccaag	ggtggagatg	ctccagctgc	tgttgaagat	420
gcatgaatag	gtcaccaggc	ttgttacactgc	cgggcggccg	ttcg		464

<210> 591

<211> 387

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(387)

<223> n = A,T,C or G

<400> 591

ggaagacgga	ggtcctcttt	ccttgcctaa	cgcagccatg	gctcggtgc	ccaagaagca	60
tctgaagcgg	gtgcagctc	caaagcattt	gatgctggat	aaattgaccg	gtgtgtttgc	120
tcctcggtca	tccaccggc	cccacaagt	gagagagtgt	ctccccctca	tcattttcct	180
gaggaacaga	cttaagtatg	ccctgacagg	agatgaagta	aagaagattt	gcatgcagcg	240
gttcattaaa	atcgatggca	aggtccgaac	tgatataacc	taccctgctg	gattcatgga	300
tgtcatcagc	attgacaaga	cgggagagaa	tttccgtctg	atctatgaca	ccaagggtcg	360
cttgcgtta	cctngggccgc	gacacgc				387

<210> 592

<211> 648

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(648)
<223> n = A,T,C or G

<400> 592
ggtacaaaca ttttacaaaa aagaacatta ccaatatcag tggtagtaag ggcaagctga      60
agaataaata gactgagttt ccgggcaatg tctgtcctca aagacatcca aactgcgttc     120
aggcagctga aacaggcttc tttcccagtg acaagcatat gtggtagta atacaaacgta     180
tggtaaatga ggctactaca taggcccagt taacaaaactc ctcttctcct cgggttaggcc    240
atgataacaag tggactcat caaataattt aaacccaagg cgataacaac gctatttccc     300
atctaaactc attaaggct tcacaatgtc gcaatggatt cagttacttg caaacgatcc     360
cggttgcata tacagatact tgnntttac acataacgct gtgcacatccc ttcccttact    420
gnccccagtca ggttccctgt tgntggaccg aaaggggata catttanga aaatgcttc     480
ttcaagacag aaatgagaaaa gaaanggaga accctgaggc caggaatcta ttaaaccctg     540
ggggtnnnnc nccaaaaggg aagggggnaa aggccngaa ttgaaaagg ntaaaaccgn     600
ttcctttgn gnccccaggga attagggaaa ctttgcactna cttttggg     648

<210> 593
<211> 625
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(625)
<223> n = A,T,C or G

<400> 593
ggtacttaaa atcagagtca aaaaatggtt ttaagttta atactcttaa ttagctccct      60
gctttatact gtaactccac agaagacata gggccaccta ggattcacag gaaggagcag     120
ctctgattct tacatggctg gctccgatgc ccccacagca ggccttcc tcccaagtt     180
tttccttcc atttcaaaaa agcactattt tatcttcaca tccaagagct ggttggttt     240
gtttgttct ttggaaacca ataaaaagaag caatttttc ctgttcttt tactcacatc     300
tacctatcag agcggctatt tccttcgaca gtcagtagc acacaggctg acttggccac     360
atggactcat gaatgcattc attcagaccg catattgcta cccaaatggga atgtggaaat     420
atgctatgca cctcaggtt agaaatgacc aagaaaaatca agatctaaag gggtgatata     480
taatatatat atatatcaat gctatttattc ataaaaaacct tggtagtaa taaaaaaaaat     540
tgctttgggt naaatattga atattataag ctggcttctc atgggttggaa aaaaataagt     600
cttntgnnaa aagccggggc ctttt     625

<210> 594
<211> 586
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(586)
<223> n = A,T,C or G

<400> 594

```

ggtaccggaa	caaaaacccgg	ccacgtgtaa	gtcagatgct	gattttgact	ccatttcaag	60
gtcaaggcca	tgtgtctcaa	cttcttgaaa	cagttcatag	atactacact	gaatttccta	120
cagttctga	tattacagcg	gaagatccat	ccaaaagcta	tgtgaaatta	cgagactttg	180
tgcttgcgaa	gctttgtcaa	gatttgcct	gtttttcccg	ggaaaaatta	atgcaaggat	240
tcaatgaaga	tatggcgata	gaggcacaac	agaagttcaa	aataaataag	caacacgcta	300
gaagggtta	tgaatttctt	cgactactgg	taactgacat	gagtgatgcc	gaacaataca	360
gaagctacag	actggatatt	aaaagaagac	taatttagccc	atataaagaaa	aagcagagag	420
atcttgcata	gatgagaaaa	tgtctcagac	cagaagaact	gacaaaccag	atgaacccaa	480
tagaaataag	catgcaacat	gaacagctt	gaananaagt	tttcangnc	tagtggaga	540
ataccccggc	gtggatttga	acnacttgct	caagagttaa	gaattt		586
<210>	595					
<211>	613					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(613)					
<223>	n = A,T,C or G					
<400>	595					
acagaagggtt	gacgaaaatt	cttactgagc	aagaaataac	cttggttgtaa	ttactaaaat	60
ttgagaaatg	tgatttcttga	ctggaaaaat	agatgtgtcg	tggaggccga	atgtttgcac	120
caaccaaaac	ctggcgccgt	tggcatcgta	gagtgaacac	aacccaaaaa	cgatacgcac	180
tctgttctgc	cctggctgcc	tcagccctac	cagcactgg	catgtctaaa	ggtcatcgta	240
ttgaggaagt	tcctgaactt	ccttggtag	ttgaagataa	agttgaaggc	tacaagaaga	300
ccaaggaagc	tgtttgtc	cttaagaaac	ttaaagcctg	gaatgatatc	aaaaaggtct	360
atgcctctca	gcaaatgaga	gctggcaaag	gcanaatgag	aaaccgtcgc	cgtatccagc	420
gcagggggccc	gtgctcatct	ataatgagga	tnaatggtat	catcaaggcc	tttagaaaca	480
tcctggaaat	acctctgtt	aatggtaagc	caagcttgac	cattttgaan	ncctgttctg	540
tgggccctt	tggacgttc	tggatttgg	cttggaaaggc	ttttccggaa	ttnnatgaaa	600
tgncnnncgg	ccc					613
<210>	596					
<211>	616					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(616)					
<223>	n = A,T,C or G					
<400>	596					
gcgtgggtcg	cggccgagggt	acaagaacac	tccttggcg	tccttgcgt	tttggtttgt	60
aagtttcta	tgcccagtgt	tcctgacttc	gaaacgctat	tctcacaggt	tcagctttc	120
atcagcaact	gtaatgggaa	gcacattcga	tatgcaacag	acactttgc	tgggctttgc	180
catcagctaa	caaatacgact	tgtggaaaaga	aaacagcccc	tgcgaggaat	tggcatcctt	240
aagcaagcca	tagacaagat	gcagatgaat	acaaaaccagc	tgacctcaat	acatgctgat	300
ctctgccagc	tttggttgt	agcaaaaatgc	tttaagcctg	cttccatat	cttgacgtgg	360
atatgatgga	tatctgtaaa	gagaatggag	cctatgatgc	aaaacacttt	ttatgnact	420
attattatgg	aggatgatt	atactggct	gaaagaactt	tctacttttta		480

tgaacagct atactacttc tgcatggcgg cagtcatac atgtggaaac attaaaagn	540
ntatttanng gcttgaatac ctggcaaaga cctgnccggc gccgttcaaa ggggattca	600
ccacttgng gctnt	616
<210> 597	
<211> 631	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(631)	
<223> n = A,T,C or G	
<400> 597	
accagatggc tttttagaca gaggttgaa accatcccac ttttgggat atgcagggtc	60
tcgtgtctag ggaaaaacag agacccaagt tcccaagaac ctggaaagaa aatagcctgg	120
cagtgggtc actcaaggag acaatcgaa actgttggg ccaggatgca gaggctcggc	180
ttactgcaca gtgtgcttag gaaaggatgg ctgaacttat gatgatttg gaaagaaaaca	240
aatctgttag cccaaacagtc aatccatgt ctactgctat gcagaatgaa cgcaacctgt	300
cacataatag gctgtgcca aaaattggc cttatccaga ttattcttcc tcctcataca	360
ttgaagactc tatccatcat actgacagca tcgtgaagaa tatttcctt gaggcattcta	420
tgtccagcac acctttgact atagggggaa aaaaacccga aattcaatta ctatgaaccg	480
acagcaaggc acaaagctcg aatncccaag cccttggaaac aagtggtaac cagctttca	540
ccacancacc aaccnncaaa cnccccaggg anttacgccc aaggtacctt nggccgggaa	600
cccncttang gggnaattcn cgncccttgg g	631
<210> 598	
<211> 630	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(630)	
<223> n = A,T,C or G	
<400> 598	
cgaggtgctt cgtcttcggt ttttctttc cttcgctaac gcctccggc tctcgtaagc	60
ctcccgccgg ccgtctccctt aacacccgaa accatgcctt caattaagtt gcagagttct	120
gatggagaga tatttgaagt tgatgtggaa attgccaaac aatctgtgac tattaagacc	180
atgttggaaat ttttggaaat ggtatgtgaa ggagatgtg acccagtcc tcctccctct	240
cctcctgaag atgttggaaat caaaagaaat cgaacagatg atatccctgt ttgggaccaa	300
gaattcctga aagttggacca aggaacactt ttgttactca ttctggctgc aaactactta	360
gacatcaaag gtttgccttga ttttgccttga aagactgtt ccaatatgat caagggggaaa	420
actcctgagg agattcgcaa gacccat atcaaaaatg actttccctc ttttttggaa	480
agcaatggct ggcttaatggccagg taacntttat tgacctttta aaaagtttgg	540
ccatttggnaa atnaaaccac ttgcaaaaaa gtttnttggaa atagaatttc cnaatatttt	600
ccttttcat gagtggaaac tgggnaaagg	630
<210> 599	
<211> 359	
<212> DNA	

<213> Homo sapiens

<400> 599

ggtacctacc	tcaggagcag	agatttgata	ttcgagtgt	gggcttaggt	ctgctgataa	60
atctagtgg	gtatagtgct	cggaatccgc	actgtcttgt	caacatggaa	acatcgtgt	120
cttttggatt	ttccatctgt	agtggagaag	gggatgata	ttaaggata	ggtgtggacaag	180
ttcatgtgt	ccaggctta	gtgcagctat	tccttqagcg	agagcgggca	gcccaqctag	240
cagaaaagtaa	aacagatgag	ttgatcaaag	atgctcccac	cactcagcat	gataagagtg	300
gagagtggca	agaaaacaagt	ggagaaaatac	agtgggtgtc	aactgaaaag	actgatggt	359

<210> 600

<211> 589

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) . . . (589)

<223> n = A, T, C or G

<400> 600

acccaggggac	acaaaacactg	tggaggctg	cagggaccc	tgccctaggaa	agccaggtat	60
tgtccaaggt	ttcccccat	gtgacagtct	gaaatatggc	ctcgtaggaa	gggaaagacc	120
tgaccgtccc	ccagcccgac	accataaaag	ggtctttgc	gaggaggatt	agtaaaaagag	180
gaaggccctt	ttgcagttga	gataagagga	aggcatctgt	ctccctgtcg	tccctgggca	240
atggaaatgtc	tcggttaaaa	acccgattgt	atattctata	tactgagata	ggagaaaaact	300
gccttagggc	tggagatgag	acatgttgtt	ggcaatactg	ctctttaatg	cattggatgt	360
tttatgtatg	tgccaaaaaa	agcacagcgc	tcttttcttt	acctcgttt	tgatgcagag	420
acatttggtc	acatgtttc	ctgctgactc	tctcccaacta	ttaccctatt	gcctgcacca	480
tctccctttc	gaaanggtag	agataatgtat	caataaaatac	tgaggactn	aganactggg	540
cccgctaagt	cctaatatct	gaacqccagt	ccctggccca	ntttttnt		589

<210> 601

<211> 240

<212> DNA

<213> Homo sapiens

<400> 601

acatctgaaa	taccccccua	acccagaaaag	ctttcaaca	gcttaggttgc	ccaagaactt	60
ggaaaattca	ccttctgatg	tcctccaaaga	cagattccat	tttttataca	ccttatttgc	120
tcagacctgt	aacctcagcc	tggagtgaac	acagacacct	agttttcctc	aaactcctct	180
tgggctttag	aqagaaggta	ctqqcccttt	qagccaaqca	ggttatttgc	taqtatqacc	240

<210> 602

<211> 621

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (1) . . . (621)

<223> n = A, T, C or G

<400> 602	
ggtacccccc acataacaaga aattaaatga gagaaaaaat aactgttagtt acaccatatc	60
acttacaaga atggagaatc tgcttataag tcaaactaga attagaactt atttcttaga	120
ctgcttcata aaaactaaca taccactact tttaattat ttatttattt gctaaagaac	180
aaaaattaa gtatgaaaaa caaccaactg attcacccaa ctcagtaagt ttgactcag	240
tttctgggtt caacaccaat gtctcacaa aatttctcca tgccctcagg gcctacaaca	300
tcatcagttc ctgcataattc atagaaccat tccaagcacc tttacttga aaaggcttct	360
tcttcagtct ttattcttagt cgaatcatat ttctataca tgctatcatg tctactttc	420
ttggcagata aatcatctcc agaagcaggt ctctcttt tccttgggtt catacttta	480
ttaaagcagt ctgaagaact gnaagaaccc agacttcttg gtttggcgc gncttgnca	540
nggctctgg anggtcaanc ttattaangg nngggaaaaa cctntgaan atttgccccn	600
gttganagat gaaaagtcnn g	621
<210> 603	
<211> 655	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(655)	
<223> n = A,T,C or G	
<400> 603	
acttataatt ggcagtggag gaagggaca tacgctggcc tggaaacttg cacagtctca	60
tcatgtcaaa caagtgttgg ttgccccagg aaacgcaggc actgcctgct ctgaaaagat	120
ttcaaataacc gccatctcaa tcagtgacca cactgcccctt gctcaattct gcaaagagaa	180
gaaaattgaa ttgttagttg ttggaccaga agcacctctg gctgctggga ttgttggaa	240
cctgaggctc gcaggagtgc aatgcttgg cccaacagca gaagcggctc agtttagagtc	300
cagaaaaagg ttgccaagg agtttatgga cagacatggaa atcccaaccc cacaatggaa	360
ggctttcacc aaacctgaag aagcctgcag cttcattttt agtgcagact tccctgcttt	420
ggttgtgaaa gggcancggg cttgcaactt ggnaaaagggg tgaatgggtt ccaaagaagc	480
caaagaaaana aggcnctgca aagcntgtan ccttggcc gggAACACG ctaangggc	540
cnaaattcca agnacaactt ggccggcccc gtacctaaa nggatccca acttngggn	600
acccaaaacn ttngggngna aatcatnggg ncnaaaantt tggttccct gngng	655
<210> 604	
<211> 490	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(490)	
<223> n = A,T,C or G	
<400> 604	
acaacacacg aatccactc taaaactgaa cgaaagcta tgccctctc tgccctcatgg	60
cagtggcca cagcatcctt caatcttta gtgagcgat acaactccac tagccggatg	120
ttcacatgga cgtcatcagg tottacataa agttctgact gaatcaagtc aaaaagttta	180
ttccatccat cttcacccctc acaatctaga agctgttcct ttagttata aattgcagga	240
cttcctggga aaagtttgc tgctcttcg acccagtatt ttgctcttcc atcaggtaac	300
atcattttta caaagcaatt ctgcaatctt caacacaaga tctttgtgt tgggttaat	360

tccactgaac gcctgtaca tttnaacggnt ttctctgtgt tttcttccat tcataaagan	420
gaccaggaaa tctgtgagct ttgggatccc tctctcgac attaaatgta agtacctngg	480
gnccgcacca	490
<210> 605	
<211> 612	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (612)	
<223> n = A,T,C or G	
<400> 605	
acagaagggtt gacgaaaatt cttaactgagc aagaaaataac cttgttgtaa ttactaaaat	60
ttgagaaaatg tgattcttga ctggaaaaat agatgtgtcg tggaggccga atgtttgcac	120
caacccaaaac ctggcgccgt tggcatcgta gagtgaacac aacccaaaaa cgatacgcca	180
tctgttctgc cctggctgcc tcagccctac cagcactggc catgtctaaa ggtcatcgta	240
ttgaggaagt tcctgaactt ccttggtag ttgaagataa agttgaaggc tacaagaaga	300
ccaaggaagc tggtttgctc cttaaagaaac ttaaaggctg gaatgatatc aaaaaggct	360
atgcctctca gcgaatgaga gctggcaaag gcaaaaatgag aaacccgtcg ccgtatccag	420
ccgcaggggc ccgtgcatca tctataatga ggataatggg tatcatcaag gccttcagaa	480
acatccctgg aattactctg cttaatgnaa gcaagctgac atttttgaac cctgcttctg	540
ggngggctgt nngactttct gcatttggac tgaaantgct ttccgaaagt ttantaantg	600
gacctnnngcc cc	612
<210> 606	
<211> 577	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (577)	
<223> n = A,T,C or G	
<400> 606	
gactttgagg caagtgtgg ccactgtggt ggcagtggag gtgggggttt tggaggcgt	60
cgtgccagtc aagaagaaaa aggtttgcat tctcacattt ccaggatgat aagttccctt	120
ccttttctt aaagaagttt aagtttagga atcctttgtt gccaactggg gttgaaagt	180
aggggaccta gagggttacc tagagaacag gtggttttt aagggttatct tagatgtttc	240
acacccggaaag gtttttaaac actaaaatat ataatttataa gtttaaggcta aaaagtatat	300
ttatttgaga ggtatgttcat aaggccagta tgatttataa atgcaatctc cccttgattt	360
aaacacacac atacacacac acacacacac acacacacac aaaccttctg cctttgatgt	420
tacagatttta atacagtttta tttttaaaga tagaattctt ttataggtga gaaaaaaaaaca	480
atctgggaag aaaaaaccac acaagacatt gatcagctg ttngcgttcc canangtctt	540
tgattggcag catggtnca aggaaantag gtacctc	577
<210> 607	
<211> 312	
<212> DNA	
<213> Homo sapiens	

<400> 607
 ggtaccaggc cgctcaccac agtccgtgg tcaagctccc ccacgtcaat cttctctaca 60
 tacaggctgt ctgcattctgg gtgcttctcc acagtgtatga ttttccccac acggatatcc 120
 agccggatg ggatgacctc ctctgggtt gaattcttgg cagggccttt ggccattggc 180
 ttctgtttt agggatctgg gttaggcagcg ctggccagtt ttttcagggc aggggtattta 240
 aactttccc ggattggate cagcaacttg ttcaagtgcga ttcaacaga attcttcagg 300
 tctccaggat gt 312

<210> 608
 <211> 614
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(614)
 <223> n = A,T,C or G

<400> 608
 ggtgcaactt ctttcggtcg tcccgaatcc gggttcatcc gacaccagcc gcctccacca 60
 tggcccgaa gttcgacccc aacgagatca aagtctata cctgaggtgc accggagggt 120
 aagtccgtgc cacttctgcc ctggccccc agatcgcc cctgggtctg tctccaaaaa 180
 aagttggta tgacattgcc aaggcaacgg gtgactggag gggctgagg attacagtga 240
 aactgaccat tcagaacaga caggcccaga ttgaggtggt gccttctgcc tctccctga 300
 tcatcaaaggc cctcaaggaa ccaccaagag acaaagaaac agaaaaacat taaacacagt 360
 gggaaatatca ctttgatga gattgtcaac attgctcgac agatgccggc accgatcctt 420
 agccagagaa ctctctggaa ccattaaaga gatctgggaa ctgcccagtc agtgggctgn 480
 aatggtgatg gcccgcattnc ttatgactt atcgatgaca tcaacagtgg tgctgtggaa 540
 tgcnagccgg ttaanccnaa ggaaacttta atnanggtca ttgcactggn aaaaaaaaaa 600
 nnaanananaa ggnt 614

<210> 609
 <211> 609
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(609)
 <223> n = A,T,C or G

<400> 609
 ggtactgagc acccctgttg tcaagaaaat gggagtaaca tctgttaggag gttctttaac 60
 tggggccca aatatataaa caactctgtt aacgttgtga cacatgcgag gtataaggct 120
 agccagaaaa ataagtgtt cccagtcagg ttcatcttta ctggagattc cacacacgta 180
 attgttagaa cgacagtcac cctgcacacc tacagttta attggcagca agaaggcatt 240
 cagtgaatgc agactggtaa ttgcacatcg ctctcctga tcctcttctg ttgtgcaggc 300
 tttgactctc tggataggg tatgtggctt tttaacactt gcagaaaaat cagctactat 360
 tttcaaaaata ttgttggtt cagggaaatc ttacacaata taaggttctt cagcacatat 420
 tactctgatt gccaggccag gacctggaaa tggatgcctg gaaactaact ttctggaaag 480
 tccaaggcttctt cttggccaaa attctcactt catctttatg aaaattttc agaggtctat 540
 acttttccttctt ctttttaact ttctgaatga ctcttggna ttggaaangg tttgatgagt 600

tcactttnc

609

<210> 610
 <211> 254
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(254)
 <223> n = A,T,C or G

<400> 610
 accattggtg gccaattgtat ttgatggtaa gggaggggatc gttgacctcg tctgttatgt 60
 aaaggatgcg tagggatggg agggccgatg aggacttagga tgatggcggg caggatagtt 120
 cagacggttt ctatttcctg agcgtctgag atgttagtat tagtagttt tgttgtgagt 180
 gtttagaaaa gggcatacag gacttaggaag cagataagga aaatgattat gagggcgtga 240
 tcatgaaaga cctn 254

<210> 611
 <211> 687
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(687)
 <223> n = A,T,C or G

<400> 611
 ggtacaagga tgccatccat ttctataaca agtctctggc agagcaccga acccccagatg 60
 tgctcaagaa atgccagcag gcagaaaaaa tcctgaagga gcaagagcgg ctggcctaca 120
 taaaacccca cctggctttg gaggagaaga acaaaggcaa cgagtgttt cagaaagggg 180
 actatccccca ggcattgaag cattatacag aagccatcaa aaggaacccg aaagatgcc 240
 aattatacag caatcgagct gcctgtaca ccaaactcct ggagttccag ctggcactca 300
 aggactgtga ggaatgtatc cagctggagc ccgaccttca tcaaggggtt atacacggaa 360
 agccgctgca ctggaagcga tgaaggacta caccctaaag cccatggatg tgtacctgcc 420
 cgggcccggcc gctcgaaagg ggcgaattn agcacactgg ccggccggta cttagtggga 480
 tncnanctc ggtaccaaac ntngcgnnaa tcatggcat ancnnngttc ctnnggngga 540
 aaattggtaa tnccgtttac nattccccca ccaacttccn aaccctggaaa ccttnaagng 600
 gaaanccntg gggnggccta atgggngggc ttactcnccct taattggctt gggcttaatg 660
 ggccccctttt caatngggaa acctnnnt 687

<210> 612
 <211> 673
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(673)
 <223> n = A,T,C or G

<400> 612

gactgatgtt	gtgtcctgc	agcgccacgt	tcccgccac	aaccaccgga	acgaggatga	60
ggagaacaca	ctctccgtgg	actgcacacg	gatctcctt	gagtatgacc	tccgccttgt	120
gctctaccag	cactggtccc	tccatgacag	cctgtcaac	accagctata	ccgcagccag	180
gttcaagctg	ttgtctgtgc	atggacagaa	gccccctccag	gagttccttg	cagacatggg	240
tcttcctctg	aagcagggtga	agcagaagtt	ccaggccatg	gacatctcct	tgaaggagaa	300
tttgccggaa	atgattgaag	agtctgcaaa	taaatttggg	atgaaggaca	tgcgcgtgc	360
agacttcaa	cattcatttt	gggttcaagc	acaagtttct	ggccagccga	cgtggcttt	420
ngcaccatgt	ctttgatgga	gagccccgan	aaaggatggc	tnaaggaccg	aatcaactta	480
tncagcttt	tggacangcc	tnttcaggag	tnaccctgga	caaacttgta	cctttgggn	540
ggngaacacc	nctaagggc	naatttcang	cacactggcg	ggccgttaatt	aagggaatcc	600
aacttnggna	nccaancttg	gggnnaancn	tgggcataan	ngttccctgn	gnnaaatngt	660
atccctncc	aat					673

<210> 613
<211> 279
<212> DNA
<213> Homo sapiens

<400> 613

ggtacaaaag	gagacaatcc	atccccgaaa	gtcatataaag	atgaactctt	cctgtcaga	60
tatcctgctc	tttgcctctt	ataagtggaa	tgtctcccg	ccctcattgc	tggctgactc	120
caaggatgtg	atggacagca	ccaccaccca	gaaatactgg	attgacatcc	agttgcgtg	180
gggggactat	gattcccacg	acattgagcg	ctacgccccg	gccaagttcc	tggactacac	240
caccgacaac	atgagtatct	acccttcgcc	cacaggtgt			279

<210> 614
<211> 653
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(653)
<223> n = A,T,C or G

<400> 614

gtttccacaa	acttcgtgga	tcaaaacgag	gtttccagt	tctgcgggtc	agaaggctga	60
cccggggctc	aatctgggt	gtcgccagtc	ctgcactct	tctggaggct	ctaggggaga	120
attcatttct	ggcctttca	tttttagagg	ctgaccgtaa	ttcttgactt	caggctctc	180
catcttcaga	gccagctgtg	ggtagttgaa	tcttttccc	gtcacctcat	tgaggccctc	240
cctctctgc	ctccctccac	cactttttt	tttttttag	acagggctt	gctgtgtgc	300
ccaggctgga	gtgcagtggc	ctggcatgg	catcaaggt	cactgcagcc	tggacctcct	360
gttcaagtg	atcctcttgt	ctcagttccc	tgagacaatc	ccccacgccc	agctacatat	420
tttttgtgga	tacagggtct	cattctgntg	cctagttgt	ctggaaactcc	tgggctcaag	480
ggatcttgg	gccttaaccc	tnctaaagtg	cttggaaata	taggcatgag	tcactggacc	540
ttgggnccga	ccacctaann	ggccgaattt	cagcacaatt	ggcggcccg	tacttaggg	600
annccaactt	tgggaccaac	ntggngnaa	tcatggccn	aactggttnc	cng	653

<210> 615
<211> 676
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(676)
<223> n = A,T,C or G

<400> 615
acatgtgaag atttttggc agcttagcgt gggaaaccatt gatcaccctg ctctcatttc      60
tacctgttct gtgttggcaa gggagagtgc ccaaatacgac aagatatacgc agcaaaaacag 120
caactccaggc gtgaacggaa tttagtggat ccatacccg gcacatgcc gcggcttaca 180
gcagggttccct cagctggcgt ctgctggccc tgggggagga ggcaaaagctg tggctccag 240
caagcagagc aaaaagagt cccccatggta tcgaaacagt gacgaagtat cggcaacgccc 300
gagagaggaa caacatggct gtgaaaaaga gcccggttga aaagcaagca gaaaggcaca 360
gacacactgn agagagtcaa tcagctcaa gaagagaatg aacgggttga aagcaaaaat 420
caaattgtct accnanggat taagtgtacn gaagcatgcc aacgccttag ctnatggcc 480
tggctnctat cagcttggga acccnnaagn accagtttt ccangaatcc ccagaccgaa 540
ngggnccaaag gggnccaaag ttccggactt gaaangggaa aaaaacttg gancttggca 600
aggacttggg cttnccaaat tggancggan cccaanggat gaanaacccc ttcaagaaaa 660
ccagcttcct ttctng                                         676

<210> 616
<211> 694
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(694)
<223> n = A,T,C or G

<400> 616
ggcaccttct agatcttggc gttgatatga atgaacccaa tgcctatgg aatacacaccc 60
ttcatgttagc ctgtataat ggacaagatg tttagtggaa tgaacttata gactgtggtg 120
ctattgtgaa tcaaaaagaat gaaaaaggat ttactcctt gcactttgtc gtcgtcatcaa 180
cacatggagc attgtgtta gagcttctag ttggcaatgg ggccgatgtc aatatgaaga 240
gtaaagatgg gaaaacccca ctacacatga ctgctctcca cggtagattc tcccgatcac 300
aaaccattat ccagagtgga gctgtaatcg actgtgagga taagaatgg aataccctt 360
tgcacatagc aacacggat ggccatgaan ctgctgatca acacttctt ataccagtgg 420
gtgctgaccc ttgcaaannc gtggcatac cttggaatgg ttccccccttc cattttggca 480
agcccttaaa ccgntttt caagaattac tggcnnaaaa accttcnttc ttttanggaa 540
ttnganattt gaaancccc aanggaattt tngccnggac cttgggnataa catgccant 600
gnnacttggg aggnaattt gggaaangggc tnaaaccttt tnggnnaaaa cctggggccn 660
aacntttatt aaaangggcc caatttnggg gaan                                         694

<210> 617
<211> 554
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(554)
<223> n = A,T,C or G

```

<400> 617

cgaggtaccg caagggaaag atgaaaaatt ataaccaagc	ataatatagc aaggactaac	60
ccctataacct tctgcataat gaattaacta gaaataactt	tgcaaggaga gccaaagcta	120
agacccccga aaccagacga gctacctaag aacagctaaa	agagcacacc cgtctatgt	180
gcaaaatagt gggtagattt ataggttagag gcgacaaacc	taccgagcct ggtgatagct	240
gtttgtccaa gatagaatct tagtcaact ttaaatttgc	ccacagaacc ctctaaatcc	300
ccttgnaaat ttaactgtta gtccaaagag gaacagctct	ttggacacta gaaaaaaacc	360
tttagagag agtaaaaaaat ttaacaccca tagtaggcct	aaaaagcagc caccaattaa	420
gaaagcgttc agactatacc tattgcgcc agtttcaatt	tctatcgcta tactttat	480
ggtagaaatg ggttggctt aagggtggctt nggaagaaag	gtggaatngg aactgcccgg	540
gcngccgct ngaa		554

<210> 618

<211> 305

<212> DNA

<213> Homo sapiens

<400> 618

acatgtttc acaaggggta ctcctcaaaa cccccagttc	tcactcatgt ccccaactca	60
aggctagaaa acaccaagat ggagaaataa tggtctgctg	cgtccccacc gtgacctgcc	120
tggcctcccc tggctcaggg agcaggcac aggtcaccat	ggggattct agccccccact	180
ggggggatgt tacaacacca tgctggttat ttggcggct	gtagttgtgg ggggatgtgt	240
gtgtcacgt gtgtgtgtgt gtgtgtgtt cgttgcacccatg	tgtgacctcc tggccatgt	300
gtacc		305

<210> 619

<211> 604

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(604)

<223> n = A,T,C or G

<400> 619

acactctcat agtcactgaa agtaatatac actgacctgc	aaaagtccaga tgggaagaca	60
taaaggacct catcttttgtt tattagtggg tggaaat	ctccatctgt tccattaatc	120
atattgcact tggctgttat ccaccagtca agtgcgttt	tcgcattcca ttccacaatt	180
tttgttaaagt taaggttaact gtcttcacca gttagaaaaa	catagtctcc atcattagtc	240
ccatTTTCT catagaatag gccaatatacg gggagat	cgggcctgaa aacatggata	300
agggacaaga ttccatctttt gtagccccag agcaattcg	caactgtgtg agtcacaaag	360
agcttcgtct gataggctt caacatggcc tcgatgtct	ccctgaggaa gtgcacctgg	420
gaccactcta tgacagtcaa tacaggaata ttatggct	taattaagtn aaattttaa	480
ggctncaaca gattgggtct cgttcaaaac cataggcctt	gttgcataaca gcaganattg	540
gtggttcatt atctncaaat gggaaattn gttggttctt	ggagtnccctg naagggtatg	600
gncc		604

<210> 620

<211> 571

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(571)
<223> n = A,T,C or G

<400> 620
ggtaactgtga acatgacttt cagatgctct ttgccccttg ctgtcatcag tgggtgaat      60
tcatcattgg ccgagttatac aaagccatga ataacagctg gcatccggag tgcttccgct     120
gtgacctctg ccaggaagtt ctggcagata tcgggtttgt caagaatgct gggagacacc     180
tgtgtcgccc ctgtcataat cgtgagaaag ccagaggccct tggaaatac atctgccaga     240
aatgccatgc tatcatcgat gaggcagccctc tgatattcaa gaacgacccc taccatccag    300
accatttcaa ctgcgccaac tgcgggaagg agctgactgc cgatcacgg gaaactgaaag     360
gggaaactat actgncttcc atgccatgat aaaatggggg tccattgng gtgcttgc当地    420
cgccatcaa ggcgctgtga cctatggcaa catgcatgtg gacatttggt gnnnagtgtaa     480
aacattntga atgcatataa gaagctgctg tttgactatt accgtntggg ngtgtcctga     540
tcggntnaag ggaggctgtt taaagccggng g                                         571

<210> 621
<211> 581
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(581)
<223> n = A,T,C or G

<400> 621
acattcggcc tgagggccag gacagtgcct tctcctggac ggacctgctg ctgaagaata      60
attctgagct gcttaacaac ctggcaact tcatcaacag agctggatg tttgtgtcta     120
agttcttgg gggctatgtg cctgagatgg tgctcacccc tgatgatcag cgcctgctgg     180
cccatgtcac cctggagctc cagcactatac accagctact tgagaagggtt cggatccggg     240
atgccttgcg cagttatcaccatatctc accatatctc gacatggcaa ccaatatatt caggtgaatg    300
agccctggaa gcggattaaa ggcagtggagg ctgacaggca acgggcagga acagtgactg     360
gcttggcagt gaatatactgc gccttgcct ctgcatgctt caccttacat gcccacggta     420
gtgcccatac agcccaactgc actccactca gctgagtttgc ngntgacaac ttctgngacc    480
ttggccggac acctaaggca atcaccatgg cgcgtctang gaccactcga ccacttgc当地    540
acatggcnat ggtctgngaa tgnccgtaat tccncanntc a                                         581

<210> 622
<211> 644
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(644)
<223> n = A,T,C or G

<400> 622
actgtttacc agatcttgc agatgaggtg ctgggttcag gccagtttg catcgtttat      60
ggagaatttg caccatcctg ggattgtaaa cctggaatgt atgtttgaaa cccccagaacg     120

```

agtctttgtta	gtaatggaaa	agctgcattgg	agatatgttgc	gaaatgattc	tatccagtga	180
gaaaaagtccg	cttcagaacg	aattactaaa	ttcatggtca	cacagatact	tgttgctttg	240
aggaaatctgc	atttiagaa	tattgtgcac	tgtgatttaa	agccagaaaa	tgtgctgctt	300
gcatcagcag	agccatttcc	tcaggtgaag	ctgtgtgact	ttggatttgc	acgcatcatt	360
ggtgaaaagt	cattcaggag	atctgtggta	ggaacttcag	catacttacc	cctgaagttc	420
ttcngagcca	angtacaacc	gntccctana	tatgtggnc	gtgggaggtt	tcatctatgt	480
gagcctnaat	ggcacatttc	ctttaatgng	gatgaagatt	taatgnccaa	tccaaaaggc	540
tgganttatg	naccctngc	cgacccctt	anggggaatt	ccannnnntt	ggggggccgt	600
tctaagggn	nccancttgg	gcccaacntg	ggggaaancat	ggcn		644

<210> 623
<211> 662
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(662)
<223> n = A,T,C or G

<400> 623

acaaaagagct	actccataaaa	ttacatcttg	ccaagggtggg	agattgcattg	ggagactccg	60
gtgacaaaacc	cttaaggcgc	aataatagct	atacttccta	taccatggca	atatgtggca	120
tgcctctgga	ttcattccgt	gccaaagaag	gtgaacagaa	gggcgaagaa	atggagaagc	180
tgacatggcc	taatgcggac	tccaagaagc	gaattcgaat	ggacagttac	accagttact	240
gcaaatgtgt	gtctgacctt	cactcagcat	ctgagataga	catgagtgtc	aaggcagaga	300
tgggtctagg	tgacagaaaa	ggaaagtaat	gggcctctta	gaagaatgtt	atgaccagga	360
taagcctgaa	gtctctctcc	tcttcagtt	cctgcaganc	cttacagcct	gcttgggtc	420
atccggccat	ggtggcaatg	acgttaagcca	tgcattttgg	gcctctgggt	gttttatatt	480
tgggttatga	cccnngagan	gttcttcaaa	agtggcaaca	ccaatattgg	nttctactct	540
antggngggg	gttgggatct	gnggttggtc	tgtggggtt	ggggaaaaaaaa	aagtttccc	600
naccttgggg	aaaggatttgc	ccnccgttac	acccttaag	gtttngtat	ttgactngna	660
tn						662

<210> 624
<211> 682
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(682)
<223> n = A,T,C or G

<400> 624

acacccaagca	tgggactttg	aaataccaga	cagactgtgc	ccctaataat	gttacttta	60
tgatccctt	gtatgataag	ggggatttca	ttctgaagat	tgagcctccc	ctagggtgga	120
gttttgagcc	gacgaccgtg	gagctccatg	tggatggagt	cagtgcacate	tgcacaaaagg	180
gtggggacat	caactttgtc	ttcactgggt	tctctgtgaa	tggcaagtc	ctnagcaaag	240
ggcagccct	gggtcctgcg	ggagttcang	tgtctctgag	aaacactggg	acccgaagca	300
aagatccagt	ncacagttac	acagnctgca	gaaagttgc	atttttaaa	gttctgcctg	360
gagaatatna	aaatcctngt	actcatccaa	cctggggcgt	tgaaagaagc	aagcaccacn	420
gtncnttt	accaactcca	atgccaatgn	cggnncagtcc	cottcatagt	tgctggnta	480

ccaatngtgg tcttggcntn tgtcccnaaa ttgatnggn gaagcccctt gtaangggcc	540
taaaaggtn tnntcnnttt cttctttant ttcctnnang aaggaanncc ttgggttnca	600
ntggntnacc tgngcctggg gttccaancc nnataccnan nntcttgggg tatttngect	660
accccgtntc nnaaaaanat gg	682

<210> 625
<211> 502
<212> DNA
<213> Homo sapiens

<400> 625

acatttcctt gttagactctg ttaatttcct gcagctccctg gttgggttctg gagcagatga	60
tctcaatgag agagtccctcg tcgggtccca gccccttcat ggaagctttt agctcagagg	120
cgtcatactg agcagggtgc ttcaataggc caaaaatcac cgtctccagg tggccagata	180
aggctgactt cagtgcgtat gcaaggttctt tttgggtctt tctctggtag gcgaaggcaa	240
tatcctgtct ctgtgcattt ctgcgttgg taaaaatgtt gacaatggtg acctcatcca	300
caccttgggt ctgtatggct gttcaatgt tcaaagcatc ccgctcagca tcaaagttag	360
tataggcttt gacagaccca tatgcacttg ggggtgttag aagtgtatcac cctccaagct	420
gagcttgcac aggaatttcg tgaacagtag acatttgaa ggaactggc ccgtgcgccc	480
aagagctgaa aaccgtccca cc	502

<210> 626
<211> 935
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(935)
<223> n = A,T,C or G

<400> 626

acattcatca aagaggaatt tgcacccaa ggcacatgtgc ttttcagtgg aaaggaagga	60
gggaaacctc taaggccgca cgggtggccc acggagctag cacgtggcg ggactgaagg	120
ctagatgctg ggattgagggt ggggaactag agatgactct aaggcaggaa catctgtacc	180
ttcggggcgc ganccacgccc taagggccga aattcagcac actggccggg cccgttacct	240
aagtggaaat cccgaagctt cgggtaccca aagcctttgg gccgtaaaat caattgggtc	300
caattaagcc ttgggtttt ccttgggggg tgnaaaaat ttgggtttaa ttcccggtt	360
tcaaccaaan ttttcccaac canccaaacc anttancnn aaaacccccc gggaaaaggc	420
cntttttaaa agttggta aaaaaggnc ccttnggggg gtttngggcc cttaaaatgt	480
gaaantttgg aaacccttna aaccnttnaa nccattttta aattttggc cggttttggc	540
cggcctttta aactttggc ccccnngttt ttttccca agttccccggg gaaaaaaanc	600
cttgggttcc ntggncncc aaccnttggc cantttnaa ttggnaaatt cnngggcnccn	660
aaacggccccc cgggggggnna aaaaaggcc cnnggtttt gccggttaant tnggggcccc	720
cttttttttc cggcttttc ctttgggtt tnaacttggc acttcnnttt tgggncttg	780
gggnccnttt cgggtttt cggncaaaac cggggatntc aagnnttanc ttcaaaagg	840
ccgggaaata ncnggtttt cccccngaaa tccgggggnna aaaccccccgg gaaaaaaacct	900
ttttggacca aaaggccnc naaangggccc ggaan	935

<210> 627
<211> 680
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(680)
<223> n = A,T,C or G

<400> 627
ggtaccacaa cttccaggat tttcctggat caaaccttgt atctcttctg caagtattgt      60
gtatattggc ctgagagacg tggacctcc tgaacatccc attttaaaga actatgatat      120
ccagtatccc tccatgagag atattgatcg acttggatcc cagaaggatca tggacacgac      180
atttgatctg ctgattggca agagacaaag accaatccat ttgagtttg atattgatgc      240
atttgaccct acactgactc cagccacagg aactcctgtt gtcggggac taaccttatcg      300
agaaggcatg tatattgctg aggaaataca caatacaggg ttgctatcg cactggatct      360
tggtggaaatg caatcctnag ttggccaccc nagaggaaga ngccaagact acagctaacc      420
tggcagtaga tngantgct tcaagctttt gggcagacca ganaaaggan gcntattgg      480
ctattgaccc actttctant tccaagttt cccgaaggaa tccgaaaatc nagccccctgt      540
gganaaaattt tggggaaact tggcnctgn ctggtttacc aacaggggct ttcccnaaat      600
tttanggcc ttnggggggn ttnanngaaa ccctaaagggt gtnnnctggg gcctaaaccg      660
gccttaanng ggnaaaacttt                                         680

<210> 628
<211> 637
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(637)
<223> n = A,T,C or G

<400> 628
actttaggg tggagggtgtc ggtcaaagac cttctttatg atatcaagaa atagacatgt      60
aacaaccatg aggattatgg caaaccacgc agaaccactt gacaggagct gaataaaccac      120
aaaatacata ttctgggagc ccaaaaatgg ccagagaatc cctccataaa acaaggaaaa      180
tacaaaataa aatataatag atccccatgt aacgagatgg ttgatccaag tccaaaaatg      240
agtttccaga gccatctta ctgtgactgt aataaccatg actgtgaaga ccaaagtggcc      300
aaatgtccag ttccaaaca tctggcattt ccaaggcagag atgtatctt cccttattgt      360
aaataggatc naaaaagaaaa ataaaggcat gactgaaccc agatggtcc aataaagaaaa      420
tggtttaata cttaagaagg cggtttact aatggctcgta taaaggtggc ttaatttggn      480
acacatgaag gncatcatgc ttgttccaaa agactnttt tcnnnaattgg tngggaaagta      540
aaccatccc ggttaaagtc agggnccttg gcggacccn cttanggcga attccnnccn      600
ctggggccg tcttagggg ncaacttggg cccact                                         637

<210> 629
<211> 446
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(446)
<223> n = A,T,C or G

```

<400> 629

acttctcatg	tccatggta	atgaaaggca	gccatttgtt	ttgcgcgtgt	ctgttctcta	60
ttgtttccag	tgttcttg	ataaaaacca	aaaaggacaa	ggagaaaatcg	tgtcaacact	120
tttaccttct	accattgatg	caacaggtaa	ttcagttca	gctggccagt	tattatgtgg	180
aggtttgtt	tctactgatt	cacttcaaa	ctgggtgtgt	gctgtggccc	ttgcccacatgc	240
gttgcagaa	aatgccaccc	agaaagaaca	gttgctcagg	gttcaacttg	ctacaagtat	300
tggcaaccct	ncagtttctt	tacttcaaca	gtgcaccaat	attcttcac	agggtgataa	360
agatcgacag	acggggaaac	naaatacnaa	ccaagaagtg	gattattaat	ggtgctttgg	420
accttgnncg	ngancacctt	anggcc				446

<210> 630
<211> 635
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(635)
<223> n = A,T,C or G

<400> 630

actagatatt	gtgcctgcaa	gtcataaaaa	aaaaaaaaaa	aaaagaaaaa	aatgaaagaa	60
tgcctttccc	cttcagacaa	aagaattact	tttttcattt	ttcttaaaaa	aagagggaaa	120
gttataacac	gaaacctaaa	ttgacttgca	aaggaataacc	atgtacaaaa	tggcttgaag	180
tagtctatca	aaaaattggg	gagatttttta	ttaatagtg	agttagcaag	gcatttttg	240
ttgtttaaaa	aaaatctcat	ttccttacag	aaacagtttt	tagttttaa	tgaacttgta	300
aacnaaaaag	ctccccatcc	aaaataaaaa	cnaaatccca	gatcatatta	atgnnttacng	360
ggggtacctt	tatctaagca	acatacntac	ctgttcagtt	gtaaganggt	aactaaattt	420
ctgngaccaa	natgcnntt	tttaatacc	cngaacnntt	ttgaggtat	gcnnaatcct	480
aangggaaac	tagnngncc	taagntttct	taagcnntcc	tttaaaaagcn	gggaattnta	540
gcccccattaa	ccggccnagn	tttntatgc	ctaaancctg	gaantttggn	gntnccattt	600
atgggttgna	acaaaanccc	ccnttnaaa	ngttn			635

<210> 631
<211> 694
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(694)
<223> n = A,T,C or G

<400> 631

actcatctta	tactgaaaga	acgtggtggc	tctaaatatg	aagctgaaa	gaagtggaaat	60
ttacctgccg	ttactatagc	ttggctgttg	gagactgcta	gaacggaaa	gagagcagac	120
gaaagccatt	ttctgattga	aaattcaact	aaaagaagaac	gaagtttgg	aacagaaata	180
acaaatggaa	tcaatctaaa	ttcagatact	gcagagcatc	ctggcacacg	cctgcaaact	240
cacagaaaaa	cccgctgtta	cacctttaga	tatgaaccgc	tttcagagta	aagcttccg	300
tgctgnggct	nacaacatgc	cagacaggc	gcaacctccc	agcagtagga	caaccactt	360
agaaggagcc	ctcggtacac	ctggatcacac	cattcaaaat	tctgnntccan	ggccaactct	420
ttaagccctt	ctttgatgtg	aaagatgccc	tttcagnctt	tggnaacttc	cagaacgttc	480
caanccacn	gaaaaaggga	aacccgtan	ccttngccgg	gaacccccc	taagggcga	540

aattccannn cacttgggg gnccgtnct aaaggggatc ccaaacttng gnnccaaan nttggggga aancangggg ccanaaanng gntcccctgg gggnaaaaat gntatnccg gttcnaaaan ttcccccccn aanatttngg ggcn	600 660 694
<210> 632	
<211> 252	
<212> DNA	
<213> Homo sapiens	
<400> 632	
acggccatct tccagctgct tgcctgcaaa gatgagcctc tgctggtcgg ggggaatgcc ttccttatcc tgatcttgg cttcacatt ttcgatggtg tcactggct ccacctaag ggtgatggtc ttgccggtaa gggtttccac gaagatctgc attttgcacct gtagcgat accaggatcc tgccaatcac caaccacgtc cacccacagg gacacaaaca agctcaccca acaaagccaa cc	60 120 180 240 252
<210> 633	
<211> 631	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(631)	
<223> n = A,T,C or G	
<400> 633	
ggtactgttg attcaacaac aaacctaataat gggtgatgag cttttgcata ccaatatgaa tttgtcagca cttctgaaaa ctggccatca ttttcaaat tcacaatttgc ctggatgtca gggaacaataa ggaagaagaa tgagcgtcaa ttttcatgtc ttcctttgc tcttcactgg ccttccatag aagtagtcag aaaaaaaaaa agcaccatca accacacttc acaaacaatt catgttggcc taagcttgc tcaacattca tatgacagaa gatagaataa taaaaaggaa ctgctgcat cactttcccc ataataattac aaaaaaaaaatgg acagcacatt aaataaaacat tctgntatta atcattaaat atattaacac caaaaatcat gtataaaaatt agggaaataaa tgtcctgccc ggccggncgc tcaaggccaa atncagnac tggcgggccc tctagtggat ccnactcggg ccaacttggc gtaacatngn catactgggt cctggggaa atggtaatcc nttacaantc ncacactnac anccggaaanc taaggggtaa acttgggtgc ctaagaggg nctacntnca ttaatgngtgc gcncnttgcc c	60 120 180 240 300 360 420 480 540 600 631
<210> 634	
<211> 561	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(561)	
<223> n = A,T,C or G	
<400> 634	
gtgaaattgg ttagtttgggt ggtgatttcc cggtgcctgc aatgaactcc tggtaaaatg taggcgaggt tggaaagtag ctgggacaga caggagattt cctgaatgtt ggagataaaac acgtggtaga gactggggag taacacagtg aaagtgggaa gcttgggtgatccctggg	60 120 180

atcctggaaa	tgactggggc	tgaaatgtgg	gcgtgggtgg	agagtagctg	ggacagacag	240
gagggtttgt	aagggctgg	ggtgaagacg	tgagagagac	tggcgaggat	ctcaactgagg	300
tctctgactt	tctagggttt	tctgggggtgt	gggagacata	caacagctga	aaactggaca	360
tagttggaca	gcactgggac	agaaaggaga	tcgtgatggg	tgggggtgac	tgcttattgt	420
gccaacagan	tacccaaagt	atatcagacc	gtttgccttc	nttgaatggc	ctctggctnt	480
caaaaagcna	tggtangaca	ctcagagtat	tctnctaagc	nttgataata	cactgnttat	540
nctgcntgt	tctanctgcn	c				561

<210> 635
<211> 630
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(630)
<223> n = A,T,C or G

<400> 635

accgaggctg	ctaaagctgc	cagtcacaac	ccagcatgtc	aactggttcc	tcatgctctg	60
tttggtgtgg	aaattcacat	gtgccctgac	actgaggaag	caattgccta	aaatcacttt	120
ccaataacag	ctgataaaat	atttgcagg	tttgcatagc	aaggtttatt	tatttaggtgg	180
ctattcaaiag	tttgtatagc	aaccacttaa	gcagaactaa	attaatattc	actgagcact	240
gtaacgatgg	aagagggttt	tccctaaggg	ttggggtggg	agttgtgctt	ctgtgaaatt	300
aacatcttc	actcattgccc	aagattctct	gctaaaaat	attagtttc	tgtgctggtg	360
caaaaatagc	aatttaagcn	aatgtgtgc	cagaatgaca	catgaacctn	ggactnaggg	420
aacagttncc	tgctgnggag	taccttggc	gngaacacgc	ttangcgaa	ttccacacac	480
tgcgggcgt	ctaanggatc	caactnggna	ccancttggc	aatcatggc	atactggttc	540
ctggggaaaaa	tggtatccgt	tacaatcncn	cacntaccag	ccggaaccta	anngnnaaac	600
tgggggccta	atggngacta	cntcattant				630

<210> 636
<211> 640
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(640)
<223> n = A,T,C or G

<400> 636

actcctattt	ccgccagtgg	ggcctgtgga	atgagtgtgc	atggaggccc	tcctgtgctg	60
ggggatgag	cccagagaac	agcgaagtag	cttgctccct	gtgtccacct	gtgggtgtag	120
ccaggtatgg	ctctgcaccc	ctctgcccc	attactggc	cttagtggc	cagggctgcc	180
ctgagaagct	gctccaggcc	tgcagcagga	gtgggtcaga	cagaagtctc	ctcaattttt	240
gtctcagaag	tgaaaaatctt	gaaaaccctg	caaacagaac	agggtcatgt	ttgcagggggt	300
gacggccctc	atctatgagg	aaaggtttt	gatcttgaat	gtggctctag	gatatcctta	360
tcaganctt	nggtgggtgc	tcanataaag	gcangcattt	gangaaaaat	cttgggttct	420
ctttacagtg	cccacttctt	acacaccctt	gaggcaagga	atgcttgctt	acaagtacct	480
tgggcgggaa	cacgcttang	gccaattca	acacacttgc	cggccgtact	aaaggatcc	540
ancttnggan	ccaacttggn	ggaaacatgg	cnaaatggtt	ccntggggaa	atgnaatccg	600
ttcaattccc	nnaantntca	accggaacct	taaggtaan			640

<210> 637
 <211> 470
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(470)
 <223> n = A,T,C or G

<400> 637
 acctgggtgac cttgaatgtg attaggactg ggagctccgt gaggccagag acctatgtc 60
 attttagccta cataaaagac actcaataaa tagctggtaa aataacaat gaataaatac 120
 atatcatcaa ggggttgggtt cagtagacag cagtgcacaa gctggcatcc gtcaggaagt 180
 gtgggcctt gtgtttgtat gctacacatg tctatggagg gccacttctt ctgtaagtct 240
 gtggggcctc agcataccca ataggcagca agttcagta ttcccagtt gtatgtcc 300
 atggtggggc tatgtctcc ccaccacgta ccctctcatc aggctagact ttaacatcca 360
 tcaatcatgt cttgagttt gctcccttctt cttggcttan tcatgtgact acngatcaan 420
 atcnntggctt aatggttaa gtgtncang taccttngc cggggccacg 470

<210> 638
 <211> 391
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(391)
 <223> n = A,T,C or G

<400> 638
 actggAACAT caagttaaat acaaataactc agaactaacc actgtCCAAC aacAGCTAAT 60
 tagggAGACG CTCATATCAT ggCTGCAAGC TCAAGATGCTG aatCCCCAAC cAGAGAAAGC 120
 CTTTATAcGA aataaaAGCCG CCCAAGTCTT CGCCTTGCTT tttgttACAG agtatCTCAC 180
 taagtggccc aagtTTTTT ttgacattct ctcaGtagtg gacctAAATC caAGGGGGAGT 240
 agatCTCTAC CTGCGAATCC TCAATGGCTAT tgattcAGAG ttggTGGATC gtGATGTGt 300
 gcatacatca gaggaggCTC gtaggaatac tCTCATAAAA gataccatGA gggAACAGTG 360
 cattccAAAT CTGGTGAAT catggnacct n 391

<210> 639
 <211> 329
 <212> DNA
 <213> Homo sapiens

<400> 639
 acatgCTGAC CCACCAGGAA CTAGCCTCCG ATGGGGAGAT TGAAACTAAA CTAATTAAAGG 60
 gtgatattta taaaacaagg ggtggTGGAC aatCTGTTCA GTTACTGAT attGAGACTT 120
 taaAGCAAGA ATCACCAAAT ggtAGTCGA aacGAAGATC TTCCACAGTA GCACCTGCC 180
 aaccAGATGG TGCAGAGTCT gaatGGACCG ATGTAGAAAC aaggGTtCT gtggCTGTGG 240
 agatGAGAGC AGGATCCCAG CTGGGACCTG gatATCAGCA tcacGcacAA cccAAAGCGCA 300
 aaaAGCCATG aactGACAGT CCCAGTAC 329

<210> 640
<211> 764
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(764)
<223> n = A,T,C or G

<400> 640

gccccggagg tacttcacca tcactgactc catggacttgc atcagccgcc gctggatgtatccagtcga	60
gaaaaaac tcagtgggtc cagccgtgtc aatggggccc tcacgacccc ccatggcggt	120
ctcaggcccg tagtcatct tcatgtggatc aggcagatgc cggtgcttgc agccaaatgg	180
aatccgttg ccctcgacgt tctgtgtcc aacgacagcg atgacatggg agatgttaat	240
cttggAACCT tttagctcccg acacgaccat agacttgaag ttgttgnatt cagacaggaa	300
tttctgaagc agaaggaacc agtctggct tggcattcg gtaanaatgc gggtcacctg	360
aatcttcAAA acgtctggnc cgcaaaatgg ttcccctggg ggttggggct tccancnta	420
attgggtgggg gncccccttn ttggaaaggaa ccctctaatt aacggccctt ggctttggc	480
ctttccctaa ataaggggtn ctngnaaagg gccctnggggn aaaggncntt aaaaaaaatcc	540
nccaatnggg agnnccccc aangggccca atrnngtnttgc ganccttaa aanncccgaa	600
ggaaaaaaaaacc tttnngncaa aaaccccnct ttggggncct ttttaaanaa aacccttggg	660
aatggggaa ttnttnncc cccaaaanag gtttnaaaac ccgg	720
	764

<210> 641
<211> 540
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(540)
<223> n = A,T,C or G

<400> 641

ggtacagtag ccatgaacta catacagtga cgccctctaga aacgtggta gtgcaactga	60
ggaaggaaatt tttaatctta tgtgatttttta attggcttaa cttaaacag cccatgtgg	120
ttactgtatt ggtatgcaca gcccttagagc ctgaagaaaag caaaccAAAG aacaccagct	180
gggtccccaa cagaaggcag aaagggttaga accatccacc tcaactattc cagccccatc	240
agaaggcacc aggaacaggg caagaaaaaa aggcaaaaac ccaccagcc cataaaaatt	300
cactcctcaa ccacccagca catcaaactg gaacaccata ctatttcctg aaaaaatata	360
tttattttttt ctagaccaag gagatatata tatatagaac cagcacattt ccacatcctc	420
atataatttgg actgtaaaaa acttgtcgc aanttttaa agacantnaa ggcagctagc	480
gggttaagtaa aaactggag gtagaaaca gagaaggaga gctttantta taaaaaaa	540

<210> 642
<211> 608
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1)...(608)

<223> n = A,T,C or G

<400> 642

ggtactatgt	agaagaggga	atatgcattg	cagttcagca	aagccgaaat	tctgtgttg	60
acagatgtct	gtctccctag	tgtgtgactc	acaccttgc	gctgcctca	gagcgccacc	120
tccagatcag	atggggacac	acaacccctg	gatatgttc	attgtcagat	tttgtgc	180
attttaagaa	tggaattgt	ggtatcttc	ctttttta	atgtatctta	actgttgct	240
gtcagtgttt	acaaaactgt	gcgttgacgg	caccgtgtcc	aagtttttag	acccttgtt	300
agccagacgg	agggtgcctg	gtcaccgttt	caccatcatg	cttgcgtt	ccccgtctt	360
tccctcttct	gctctcaaga	caaaggtaa	ttaaggacna	agatgaagtc	actgtaaact	420
aatctggcat	tggttttac	cttcctttc	ttttcagtg	cagaaaatta	aaagttangt	480
attaaagcac	cgtaaaaaaa	aaataactnt	antacaana	aaagctgt	caagcttnt	540
tttttntnn	ttttttttt	ttatccc	gncaaaaaa	ttttttnan	tcaaantcaa	600
gggttnan						608

<210> 643

<211> 669

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(669)

<223> n = A,T,C or G

<400> 643

acagagtcat	ttacatagat	tatgttgtgc	tttgtgttta	ttctccacac	tttcagtcca	60
tattctgtcc	tgtatatgtt	tcccattttt	ccaggcattt	tagttccagg	ccagactctg	120
ccaatatcac	cagttgcaac	agctccaggt	ctccctgtggg	tttcgttgc	accatgcgt	180
gcaggcgtgc	ctttaaatcc	ccatctttc	atgacacctt	aaaaaccttt	accatagtt	240
ttggctgtga	catccacata	ctgtccctgga	cggaaagttag	cagcataaag	aggagtgc	300
ggttaatttgc	cagcatttgc	tggttatattt	aagattttaa	ctgtctgttt	cgccggcaat	360
ccaagttccc	ggtaaaaatttgc	caatatggat	gtagctttac	aaaaacgt	tcaaggtttc	420
cttctacaga	cagggttgcc	attttcatt	acaggttcc	tttgacgt	tatttttaaga	480
catgacagtc	ttgnacacta	gaattatgg	ttaagttcc	tttggnatta	agagatata	540
aacccttca	aaacaatctg	gtcctaaaaa	aatntcaata	atggatgaa	ttttcttaaa	600
aaaggggaga	atccaccnnt	gcacctgctt	tggnnttaan	aaaatatgg	taaacattta	660
cttccnntnn						669

<210> 644

<211> 572

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(572)

<223> n = A,T,C or G

<400> 644

acaagctttt	tttttttttt	tttttttttc	atattcacta	nttngngacat	60	
ntaactgctc	aangatttct	tgaatacgtt	tttcaatttg	ancctngtca	cctttcc	120

ttaanagcat ggcatcgctc ttggncacaa ngacctntcc aactttcct aagtcatgag	180
gctgaacgtc ttcalanattc agggtaaatc cctnttctcc aaacacctac aaaaagagt	240
aaacgttaaac ctgtttagg ttacagttt tgccattata ccaagttnat taatacncca	300
tgcaananaa tcataaaaaat actttatttc ttgaaatga gagatttaa natcactgtt	360
agtccanaac aagacttgag tatagctnt ttcaactgnat ttccaaattc tcaattttca	420
caactgggtt aattattacc agcnntactt gnnaaaaaaa cnntcnaagg tcacacttac	480
tgggaanagc caggacaana ncataggccn ttgactntta agtcctanaa tcccttgna	540
catacnctt taccttnaa actgnngctt gg	572

<210> 645
<211> 690
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(690)
<223> n = A,T,C or G

<400> 645

ttgtgagacc ctcttcattc tgggtttgtc cttgaaccaa cagcatcccc tggAACGCC	60
caagcaagac caagggcagat actatgaggc aggccgcaca gggcccaaata caagaattgg	120
tgcagtgcga tcagggctgt gggagaggcc ctatgtattc cggattccca gggcttgctc	180
taattcttgt cgctctgtgc gcaccttggta gtagaagtat cggcacacag cctcctgagc	240
ccagggctgg aagtagaact cagctcgcg ctccctctt gggttaccca ccacatcagt	300
cattgtctt aggtccctgc actgggactg aagccagtca ttgatgaaac cctgagggtc	360
tctggccaaa cttAACATGA actcccgctg agtcttcagc tgggttatgg gtttctattg	420
gctcatggat cttgggtggct aaagtaccaa tcttctggta gcccggcant ggacacagcag	480
aaaaagaaat catcttgggg ctttcaaggn ggcatctact ttnaccatca atggcataaac	540
aagctggct tttctnaac attcgggtca acactgatga cattgaataa nganaatagg	600
ttntggnggc attaaccang natgaaaccc cttaggact ttgaaactta tcnntgagac	660
ttaanantt tgnggaccc ggcgaacncg	690

<210> 646
<211> 770
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(770)
<223> n = A,T,C or G

<400> 646

cgaggtacat tccgctcagc gatctcagct tccagatggg ggtgaactg gaggcagtgc	60
ccaacatccc cctgggtgcc gatgaggagc tggacgctt gaagatcaag atctcccaga	120
tcaagagtga catccagaga gagaagaggg cgaacaaggg cagcaaggct acggagaggc	180
tgaagaagaa gctgtcgag caggagtac tgctgctgt tatgtctccc agcatggcct	240
tcaggggtca cagccgcaac ggcaagagtt acacgttctt gatctctct gactatgagc	300
gtgcagagtg gaggggagaa catccggag cagcaagaaa gaagtgtttc anaaagcttt	360
ctcccttgac atcccgtgga gcttgcanaa tgcctgaccc aacttcgtgt tggtaaaac	420
ttccagaact tgcatacaag catttccgc ttgaccctt caatthaagg gaagaatgaa	480
tgaagtcttc cngggcctt ttattgggt ttctggaat ggtcattcan tccacttnaa	540

gcccncgtgg	gaattttaag	cccgagggtt	caaaatcttg	tanccttggc	ccnngggccgg	600
gcccgttcca	aaggggcgaa	atttccagcn	cacttgggnng	ggcccgtaact	tanngggat	660
cccaacttcg	gnncccaacc	ttggngnnaa	ancatngggc	ctanctnggt	tccncggng	720
aaaaatggta	tnccgttcc	aatttcccc	cannttnna	accggagctt		770
<210>	647					
<211>	454					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(454)					
<223>	n = A,T,C or G					
<400>	647					
acttggaaatc	ctccaggaag	ggcttcagga	cctgggttggg	gaagaccttc	atcaggatct	60
tgtgtttccg	cagctgggtgt	cgcataagaa	gcttgcctc	tgcactcaga	gccacattct	120
ggcagacggc	tatcatcgg	ttgtccctgg	aaactgctgc	tatctcccg	cggagaagcc	180
tgtatgaggcc	tatctctcc	tgtggggggc	tgggaggaga	tggcaegtat	cttccaagta	240
tgttctgaaa	attaaacagg	gtaacctatt	tttgatgtta	tttcaaactg	ctatattcat	300
ctatgtctag	ttaaaaacaa	tttttggttt	attacttac	ataatgttct	tatagtgata	360
tttttccac	ttattccana	agtgttaggt	gattattcta	cacttctgn	gcccattcta	420
tggagaataa	agatggtcct	nggcgcgac	cacc			454
<210>	648					
<211>	532					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(532)					
<223>	n = A,T,C or G					
<400>	648					
ggtacatgtg	ggagaaaaac	ttaagtgtga	tgagtgtgg	aaggaattca	gtcaggggcgc	60
tcatctacag	accatcaga	aagtccacgt	gatagagaaa	ccatacaa	atgtaa	120
tgggaaaggt	ttagtgcgt	gatcagact	taatgttcat	tgcaaggtcc	acacggcaga	180
aaaaccttat	aattgtgagg	agtgtggag	ggccttcagt	caggcctctc	atttcagga	240
ccatcagaga	ctccacactg	gggagaagcc	attcaa	atgtgt	gtaa	300
cagtcggaaat	tcacatcttc	aatccatca	aagagttcat	acaggagaga	aaccatacaa	360
atgtgaggag	tgtggtaagg	gcttcattt	tagctcaa	cttacattc	atcagagagt	420
ccacacagga	aaaaaacctt	ataatgtga	ggaatgtgg	aaaggctta	gtcggnc	480
aagtcttcag	gccatcagg	gagttcacac	tggagagaag	tcatacatat	gt	532
<210>	649					
<211>	493					
<212>	DNA					
<213>	Homo sapiens					
<400>	649					
ggtacaaaaat	tgtggaaatt	tagctaata	aaaaacatag	taaatattt	aaaaaacgtt	60

gataacatta ctcagaatcac acacatataa caatgttagac aggtcttaac aaagtttaca 120
 aattgaaatt atggagattt cccaaaatga atctaatacg tcattgctga gcatggttat 180
 caataataaca tttaagatct tggatcaaattt gtgtccccg agtcttctgc aatccagttc 240
 tcttagaaaat tggtttctct ctttggaga ttcagactca gaggcagcca gagggggacag 300
 gtcaagagct gaaataaatca cataactact ctaattttot tcatttattt gactgtgtca 360
 agttatagac acagccaaag tggtttctt ctgcctctga tgatttgaga agatgaagaa 420
 catgagcaat ttctcattgc ttaaagaaaa acttggcaca taagaggctg agtgttagtag 480
 agtatctgtc ctg 493

<210> 650
 <211> 693
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(693)
 <223> n = A,T,C or G

<400> 650

gagactttgg atcccttcctg aggacgtgga gaaaaacttgc tgctgagaag gacattttga 60
 aggtttgtt ggctaaaaaa gctgtttctg gaatcacccc tagatcttc ttgaagactt 120
 gaatttagatt acagcgatgg ggacacagaa ggtcacccca gctctgatat ttgcacatcac 180
 agttgtcaca atcggctctt tccaatttgg ctacaacact ggggtcatca atgcttcctga 240
 gaagatcata aaggaaattt a tcaataaaaac tttgacggac aaggaaaatg ccccacccctc 300
 tgaggtgctg ctcacgtctc tctggncctt ggctgtggcc atatttccc nccggggat 360
 gaacggnttc ttttcccgcg gactcttcg caacccnntt ggcaggcccc attcaatgct 420
 gaatggcaac ctggtnctg cactggtgcc tgctttattt ggactggtn aaggaactta 480
 ntccgggtgn aatgcttgat nccgggnccc ttngtaattt gggcnntt tgnggactnt 540
 tggncaaagg tttgggnccc tgcancctt ggccggnaac acccttangg gcnaanttcc 600
 gcncacttgg ccggggcgta ctanaggaa tcccaactt gnaccacaen ttggggnaaaa 660
 catnggcana actggttccc gggggaaaaa tgg 693

<210> 651
 <211> 678
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(678)
 <223> n = A,T,C or G

<400> 651

ggtacgaagt ttgttaccac agtagagata atttagtaga aaaatgcttt gaggcttcag 60
 tatttgttaag attttgcatt agccagatgc taggttggta aaggcatttc agtgttgata 120
 ataacctgag cagacttctt tacaatggg atctgtttct atatgtgtat atgcccactt 180
 accattcaga gagactggc tttctcttgc tcttccttca cattgtgtg tcagttctac 240
 acctagttt ttcagcactt agcaaattca aatttgatt tttttgtcag cttagttcac 300
 tttaaggcat attggcatgg tgtgtgaaag tgatgttttgc ccccagtatt gaggacttt 360
 agatccnaat aatgactcat taaatataat tatgttttaa gtatacctga atttctggta 420
 gcttaaaatg ttaattctca ggaatgattt tctcacactt ttgggggtggc taataataaa 480
 agcactggtt tattctcaaa actcctttt tcaaaattag ggagagagcn naagtggaca 540

ttttatgtga acccctttgn aaanatgggg gntngantgc ngagaaacca atggagttt	600
ngntgcnaaa aggtttttc ccgnaangta aaatttggaat aantggcnat tgaggaccct	660
tgnnctgccc ggccgnnn	678

<210> 652
 <211> 676
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(676)
 <223> n = A,T,C or G

<400> 652	
ggtacaagct ttttttttt tttttttt ttttttgtg tttaaatgca ttttattttt	60
agacaaccta catgacatgt ttttcttaaa aacaatgcct ccactccaaa taatcacag	120
tcaaaataaa tgaagagctc aagatgacat cagtcattt tgccttaagt cctgggtttg	180
tgtggatgac aagcagaagc cagttatgt gacaggtat agatccaaaa taattgccac	240
atttggtaac attttccat ttctaaacca tccttaaaga aaatcatata tgggttcaca	300
ccatcctcac ggtatccaa taggcaacc atgcctatcg gattcatgtt ttccacata	360
aagaacttgtt aatgttgc aatttgcag ggatgtgtt gatttgcctt gcaacccctg	420
gcataaaaaag gtttacttct tctnggcctt ggtcttaag gttnccttgc aatggattca	480
tgtAACCTT gatgtaccct ggccggccg gccaaggggac ntgtaaaagn gccccaaatcc	540
acccganaan aaataagggg ttnttcgc gntanganc tcctttggac cttttttaan	600
cttgctgnn gggaaattaat ctggccnntt acctnggana atagaaaata nttttcccg	660
naaccttgaa cttcnn	676

<210> 653
 <211> 468
 <212> DNA
 <213> Homo sapiens

<400> 653	
tcgagcgcc ccggccaggactccagcat tggttatagt catggaaaag gaagggtgtcc	60
acggaggcac acttaacaag aaagcatatg aactcgctt atacctgagg aggtctgtat	120
tgtaaagcagc ctctcccat ctacctagca actgtcttca tcaacaaccc taattatgg	180
cacaatgcta ccaaactgta gatggtagct aattttctt tacctatttt ctaatgtcat	240
gattcctgtt tgcccaatgg atcatttgc tggtaaccac tggatgtac caacccttat	300
ctggcaacat aattgcagca caataatgtt tgcgtatgata cttgaaatt ggggggaggg	360
ggcatgccaa gttggcattt actttgtt agcaattaat gggatattga ttactaaaat	420
aagttaatat taaacaaggt gccgggttgc cttggccgg gaacacgc	468

<210> 654
 <211> 612
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(612)
 <223> n = A,T,C or G

<400> 654
actgaagagc ccatggatac tacttctgca gttatccatt cagaaaaattt tcagacattg 60
cttgatgctg gttaccaca gaaagtgtct gaaaaactag atgaaaattt cgttcaggg 120
ctagttgcac atagtgatt agatgaaaga gctattgaag cttaaaaaga attcaatgaa 180
gacgggtgcac tggcagttct tcaacagttt aaagacagtg atctctctca tggtcagaac 240
aaaagtgcct ttttatgtgg agtcatgaag acttacaggc agagagaaaa acaagggacc 300
aaagtagcag attcttagtaa aggaccagat gaggcaaaaa ttaaggcact ctggaaaga 360
acaggctaca cacttgcgtt gaccactgga cagaggaat atggaggacc accttcagat 420
tccgtttatt cagtcagca gccttctgtt ggcacctgag atatttgtgg gaaaagatcc 480
caagagatct atttgaggat gaacctggtn cantaattt agaaaaacctn gacctatatg 540
gggatcnctcg tctaattgtat ggatcccttc actggcttn aataaangt ntgccgttgg 600
caanttttg nc 612

<210> 655
<211> 608
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(608)
<223> n = A,T,C or G

<400> 655
ggtaaccttgt cctggaggaa gggcacgact acacttcttc caagggcag aacatggtgt 60
gcggcgccat gggcgtcaac aatgattccc tggtgcagca gatattaac gcggcgccagc 120
tggacaacta taccgaata ggcttcgccc cctcgtcctg gatcgacgt tatttcgact 180
gggtgaagcc acagtcgtct tgctgtcgag tggacaatat cactgaccag ttctgcaatg 240
cttcagttgt tgaccctgccc tgcttcgtt gcaggcctct gactccggaa ggcaaacaga 300
ggcctcaggg gggagacttc atgagattcc tgcccatgtt ccttcggat aaccctaacc 360
ccaagtgtgg caaaagggggg acatgctgcc tatagtctgc agttaacatc ctccctggcc 420
atggcaccag ggtcngaacc acgtactaca atgaanccac aggtggcaaa atgttcctcg 480
tgccttcgtt ggattaaact gggaccatgg ctgttcctag nccttgcnng ncttaaccaa 540
cacttgattt cttttggag taaatggcaa gcctccagag cncactgtnt tgctgaggac 600
tccgcgcc 608

<210> 656
<211> 659
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(659)
<223> n = A,T,C or G

<400> 656
accaaactga ccaatggct gcaagaggtt tagattattt ctacccacaa aattctgagc 60
caaattgata atggtcatca ttagtgacat ctcgccttac tgataagaag acatttcagc 120
caactgatcca gctaattggg caacccatcc ttctcgctt tcattccgtt tgaagcaagt 180
aaacaaaacc ttctctgac ctggtttcaa accatccacc atagaaggaa tagatctctc 240
gttatcagaa ttgttgcata agataaggcc cttgttgatg aagtccattt atgtcagata 300
tgtggtagtt tgtccataca agtaatccctc aggaagccca agtaacttcc gttgtcttct 360

atcctccatg aaattagttt accattcctt tcgatcatct atctgtttt tgctaaaggc	420
caggctgata gcagcatcat cttcaggacc agaatatttg aactggatac gatgtcttt	480
catatctgca aagtatctt acttccttg atgtgctggt gcccaaacct ttgnaatatt	540
ggctttcat tttatgatt gggagtagaa ctctnact cttcaaattc aggaangctt	600
naaaaatgcct ttcttgctt gtttaganc ttccatggg agtgataaat cctccgaaa	659
<210> 657	
<211> 676	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(676)	
<223> n = A,T,C or G	
<400> 657	
ggtacagaat tatataattc taacgcttaa atcatgtgaa agggttgctg ctgtcagcct	60
tgcccactgt gacttcaaac ccaaggagga actcttgatc aagatgccca accctgttat	120
cagaaccccttcc aaataactgccc atgagaaaact agagggcagg ttttcataaaa agccctttga	180
accccccttcc tgcctctgtgt taggagatag ggatattggc ccctcactgc agctgccagc	240
acttggtagt tcactctcgcc ccatagcact ttgttcaactg tcctgtgtca gaacactgag	300
ctccacccttcc ttctgagaag ttattacagc cnagaaagtg tgggctgaaa aatgggtggg	360
ttcatgggtt tggattaatg gatcttttg gatgggaaag actatatttt gggacctcat	420
cttttcccaag gatgacccttcc aagctanaac ctgctaaaag gattcttggaa acntgaagg	480
tattaatacn aaccnnntca tggnggnatc ctnngaaacct gcccggaaaga aggcnnntgg	540
cccggttaat gcncgggtgc tnaacaagtc tgnntctgn ntttcaacttc ancttggggc	600
cctggaaatca nctggcnctg gtgnncagtt taactatgnc ttgntgaaac ccctaaggcc	660
ttangcctta ccaaag	676
<210> 658	
<211> 646	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(646)	
<223> n = A,T,C or G	
<400> 658	
ggtacaatgg aacaaacaac aagaacacac ctgtctatgt gtcctcacca acctggaga	60
atcacaatgc tgggtttcc gctgctgggtt taaaagacat tgggtccat cgctactggg	120
atgcagagaa gagaggattt gacccctcagg gcttcctgaa tggatctggag aatgtctctg	180
agttctccat tgggtccctc cacgcctgtg cacacaaccc aactggaaattt gacccaactc	240
cgaggcagggtt gaagcaggat gcttctgtca tgaagcaccg gtttctgttc cccttcttg	300
actcagccta tcagggtttc gcatctggaa acctggagag agatgcctgg gccattcgct	360
attttgcgtc tgaagcttcg agttcttctg tgcccatcct tctccaagaa cttcggctct	420
acaatgagag agtcnggaat ctgactgntg gttggaaaag aacctgagaa catcctgcaa	480
gtcctttcca gatgagaaaa tcgtggcgat tactggtcc aatccccccgg ccaaggagcc	540
cnaattgtgg ccagcacccnt ttaacctga cttttgagga tggcnggtat ntgaaacatg	600
gttaccgatc tggcctgana ctgactnnngn ncnnntnaanc ctaaan	646

```

<210> 659
<211> 673
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(673)
<223> n = A,T,C or G

<400> 659
actgtgtcca acagctgaag gaatttgagg ggaagacttt agtgtcagtc accaaagaag      60
gccttggaaact tccagaggat gaagaagaga aaaagaagca ggaagagaaa aaaacaaagt     120
ttgagaacct ctgcaaaatc atgaaagaca tattggagaa aaaagtgaa aaggtggttg     180
tgtcaaaccg atttgtgaca tctccatgt gtattgtcac aagcacatat ggctggacag     240
caaacatgga gcgaaatcatg aaagctcaag ccctaagaga caactcaaca atgggttaca     300
tggcagcaaa gaaacacctg gagataaaacc ctgaccattc cattatttag acctaaggc     360
aaaaggcaga ggctgataag aacgacaagt ctgtgaagga tctggtcatc ttgctttatg     420
aaactgcgct cctgncttct ggcttcagtc tggaagatcc cagacacatg ctaacaggat     480
ctcaggatg atcaaacttg gtctgggtat tgatgaagat gaccctactg ntgatgatcc     540
catgcttgct gnaactgaag aaatgccnc ccttgaagga gataccaccc ctnacgcctg     600
ggaanaagtn actaactttg gcttanggat nnttaccngt cagaccttgg ncggaccccc     660
ttagggcnaa tcc                                         673

<210> 660
<211> 580
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(580)
<223> n = A,T,C or G

<400> 660
acaaaacgcc acattctcac ttgtattggg agctaaaaaa tgggatcaca tggacgcagg      60
acgggaaaca acacacactg gggctttcg ggagacagag cguttaagaaa aacagctgat     120
gcattgtggg cttaatatcc aggtgacggg ttgacagggtg cagcaaacca ccatggcaact     180
cgtttaccc agtaacaaat atacacatcc tgcccatata ccccagaact tagaaacaga     240
acgaaacaaa agaaaaacgag aaagcaatag caaatcgcta gcgggaaaac aaattttcaa     300
actcagaaaaa tgacagacca attttgctt caaatcatgg ttcttaaccc aggtgccata     360
aggtcaggat aaagaatttg attacatatt gtaataaga catgcagcaa atgaccagaa     420
aaattattcc caacatatgt gtgtttcga attcaatggt gacgctatct accgggacat     480
aacatttagat tccaaagggc cgagtnncac aagactgncc tnccatacta ataacnatga     540
aagccctacg ttgggttac ctgctttnt ancagctggg                                         580

<210> 661
<211> 710
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

```

<222> (1)...(710)
 <223> n = A,T,C or G

<400> 661

ggtagatata	aatgaatctg	gtgttgggaa	aacccatc	tggaaaccac	agatgtctct	60
ggggcagatc	cccactgtcc	taccagtgc	cctagcccag	actctgagct	gctcacccga	120
gtcattggaa	aggaaaaagt	gagaaatggc	aagtctagag	tctcagaaaac	tccccctgggg	180
gtttcacctg	ggccctggag	gaattca	cagcttc	ctaggccaa	gcccccaca	240
ccttttcccc	aaccacagag	aacaagagtt	tgttctgttc	tgggggacag	agaaggcgct	300
tcccaacttc	atactggcg	gagggtgagg	aggttca	agctcccccag	atctccca	360
gcggggagac	agaaacctgg	actctcccc	acgctgtggc	cctggagggt	cccggttgnc	420
agttcttgtt	gctctgtgtt	cccagaggca	agccggaggt	ttgaaagaaa	ggaacctggg	480
atgaagggggt	gctgggtata	aaccagaaaa	ggatngggt	tcctgnntcc	aangggaccc	540
ctttggccct	tcttctggcc	tttcctaagg	cccaggnc	gggnnttgnc	ccttggccog	600
ngaaccacgc	ttaaggccg	aaattccagc	acacttggcc	ggccggta	tagtgggatc	660
ccaactttgg	gtccaaactt	tggcgtaaat	catngggcct	aacttngttn		710

<210> 662
 <211> 411
 <212> DNA
 <213> Homo sapiens

<400> 662

ccaaaatctg	aatgttcat	agtgtcctca	atgtccttca	ttccctggta	gacaaatcca	60
acatcaaccg	acagttggag	gtatacaca	gcggaggtga	ccctgagagt	gtggctgggg	120
agtatggcg	gcactccctc	tacaaaatgc	ttgttactt	cagcctggc	gggcttctcc	180
gcctgcactc	cctgttagga	gattactacc	agggcatcaa	ggtgctggag	aacatcgaac	240
tgaacaagaa	gagtatgtat	tcccgtgtc	cagagtgc	ggtcaccaca	tactattatg	300
ttggggttgc	atattttagt	atgcgtgtt	accaggatgc	catccgggtc	ttcgccaaca	360
tcctcctcta	catccagagg	accaagagca	tgttccagag	gaccacgtac	c	411

<210> 663
 <211> 633
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(633)
 <223> n = A,T,C or G

<400> 663

ggtaacttgtt	ttaatgtct	gtcagcgaaa	agcctttctt	aatgcaatta	tgcgatatgg	60
tatgccac	caggatgtt	tttactacca	gtggcttgc	agagacctgc	gaggcaatc	120
agagaaagag	ttcaaggcat	atgtctctt	tttcatgcgg	catttatgt	agccggggc	180
agatggggct	gagacctttg	ctgatgggt	cccccgagaa	ggcctgtctc	gccagcatgt	240
ccttactaga	attgggttta	tgtctttgt	tcgcaagaag	gttcaggagt	ttgaacatgt	300
taatgggcgc	tggagcatgc	ctgaactggc	tgaggtggag	gaaaacaaga	agatgtccca	360
gccagggtca	ccctcccaa	aactcctaca	ccctccactc	caggggacac	gcagccaaac	420
actcctgcac	ctgtccac	gctgaagatg	gataaaatng	aaggaaaata	cctcaaagaa	480
ganagagactn	gaaggagaaa	aggaggtta	actacagccc	tgaactgc	tgatgactgc	540
ccggcggccg	tcaaaggcn	atcaaccatn	gcggcgtna	atggntcaac	tnggaccant	600
tgcnaacatg	cnaacttgtc	ctgggaaatg	nnc			633

```

<210> 664
<211> 598
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(598)
<223> n = A,T,C or G

<400> 664
gcgtggcgcg gcccggatca ctgggtccaa atgctggaga agttacacaa ggctttgcag      60
ctcgctcaa atgtggactg accaaaaaagc agctggacag cacaatttgg aatccaccctg     120
tctgtgcaga ggttattcaca acatttgtctg tgaccaagcg ctctggggca agcatcctcc    180
aggctggctg ctgaggttaa gccccagtggtt ggatgtctgtt gccaagactg caaaccactg   240
gctcgttcc gtggccaaat ccaaggcgaa gttttctaga gggttcttgg gctttggca       300
cctgcgtgtc ctgtgcttac caccgccaag gcccccttgg atctcttgg ataggagttg       360
tgaatagaag cagcacatca cacttgggtc actgcagaac ttgaanttga cattggcagg     420
catcnaggat natccatgag tcaccagtct nagccatgtg taggcgtatg acactgcaaa     480
tatttacata ccttccttggg attctatctc tggaaagttttt ggtgatttc tttttcatgg   540
naanattaan taaaactncat tatttgcac anntgttaat cntcagggtg tctgaagg       598

<210> 665
<211> 658
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(658)
<223> n = A,T,C or G

<400> 665
acccaaaaggc agtgcaggac ctctgcagct ggagaatctg gagcctggct tggggaaaga      60
gcagcatcat tgtggcagcc gatgagagca ccatcagctg gggcccatca ccgaccccttgc    120
ggaaacttggg ctacagggat cacaagccca agtcttccac tgcagcccgag gaggtgaaga    180
ctctgcattgg cattttctca gagccggctcg ccatgggcta ctcacactcc ttgggtatag    240
caagagatga aagtggaaact gagaagaaaa agatcaagaa actgcacccaa tacagcccccc  300
aaaccctctg atgtccaga gactccctcg actccacacc tctcatggca gctgcatttc     360
catgtgcact gggaccggaa agtccaaacna ggaattttaaa aaagccaaag tggaccggaaa  420
ggtagctttt tattttaaact tcctganggt ncgttttacc agtgcacccaa cgtnactac   480
ctttttctt ggttgcttc caaagaccct tttttctct taatggccaa ataaaaaaacc     540
tgnntcgaan tggcctaaca nttctaccaa gagccnnaaa ccttttacca ttaagggggt     600
tttttctct tctntctgaa acccttncca aaaactcnnntt tccgttaat nnntnnngg     658

<210> 666
<211> 349
<212> DNA
<213> Homo sapiens

<400> 666
gcggcggcgg gggaaaggcagc gtgagcagcc ggaggatcgc ggagtcacaa tggaaacgggc   60

```

agccatggcc	ctccacagcc	cgcagtata	tttggagat	tttagccctg	atgaattcaa	120
tcaattttt	gtgactcctc	gatcttcagt	tgagcttcct	ccatacagtg	gaacagttct	180
gtgtggcaca	caggctgtgg	ataaaactacc	tgatggacaa	aatatcaga	gaattgagtt	240
tggtgtcgat	gaagtcatcg	aaccaggta	cactttgcgg	agaaccccca	gtcacagtat	300
ttcaaggcaca	cttgaaccct	cagccctga	atttattctc	ggttgtacc		349

<210> 667
<211> 768
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(768)
<223> n = A,T,C or G

<400> 667						
ggtggcgagg	tggaggccca	ggactctgac	cctgcccctg	ccttcagcaa	ggccccccggc	60
agcgccgccc	actacgaact	gccgtgggtt	aaaaatata	ggccagtaaa	gctgaatgaa	120
attgtcgaaa	atgaagacac	cgtgaggcagg	ctagaggct	ttgcaaggaa	agaaaatgtg	180
cccaacatca	tcattgcggg	ccctccagga	accggcaaga	ccacaagcat	tctgtgcttg	240
gccccggggcc	tgttggggccc	agcactcaaa	gatgccatgt	tggactcaa	tgcttcaaata	300
gacagggggca	ttgacgttgt	gaggaataaa	attaaaatgt	ttgctcaaca	aaaagtcaact	360
cttccaaagg	cccacataa	gatcatcatt	cttggatgaa	acaagaacag	cattgaccgg	420
acggagccca	agcaagccnt	tgaaggaaga	accatggga	aaatctactt	ttaaaaaccca	480
cttcgntttc	gnccctttgc	nttggaaatg	gctttngga	ttaagaaaaca	atngaagcc	540
ccaatttaan	tnccccgctt	ggggccaatc	ccnttccnng	taaccttgg	cccnngggccn	600
ggcccggttt	cnaaaanggg	ccnaaaattt	ccaagcacca	cttgggnng	gnnccccgnnt	660
ncttaanggg	gatcccaaac	tttgggnacc	ccannccctt	ngcgnaaaaa	ncaatgggccc	720
ataaaannggg	gttcccttgg	ggngnnaaaaa	tgggnattnc	ccccncnc		768

<210> 668
<211> 659
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(659)
<223> n = A,T,C or G

<400> 668						
ggtacagtat	ccttccaga	catttgcata	tggcatggaa	gacagccccg	atttactggc	60
tgctagaaaag	gtggcagatc	atattggaaag	tgaacattat	gaagtccctt	ttaactctga	120
ggaaggcatt	caggctctgg	atgaagtcat	attttccctt	gaaactttag	acattacaac	180
agttcggtct	tcaatgtgtt	tgtatttaat	ttccaagttat	attcggaaaga	acacagata	240
cgtgggtatc	ttctctggag	aaggatcaga	tgaacttacg	cagggttaca	tatatttca	300
caaggctct	tctctgaaa	aagccgagga	ggagaagtga	gaggctctg	agggactct	360
atttgggtga	tgttctccgc	gcagatcgaa	ctactgtgc	ccatggcttt	gaactgagaa	420
gtccatttct	agaacatcg	ntttcttnct	aatacttggc	tttggccccc	aatatgagaaa	480
ttccaagaat	ggatngaaa	aacattttct	gaganaaaacc	nttgaggat	tccaatctga	540
taccaaaagag	aatcttggc	gaccaaaanaa	accttnatga	tnggaaacct	tngntaaaaaa	600
tnctggtaa	aatnnnngga	atccttnact	tnggtnata	atccngangg	caaannccc	659

```

<210> 669
<211> 409
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(409)
<223> n = A,T,C or G

<400> 669
acgtgcccgc gaaatgctcc gctagcaatc gcacatcatcg tgccaaggac cacgcattca      60
tccagatgaa cgtggcccgag gttgacaagg tcacaggcag gtttaatggc cagttaaaaa      120
cttatgctat ctgcggggcc attcgtagga tgggtgagtc agatgattcc attctccgat      180
tggccaaggc cgatggcattc gtctcaaagt aaggttgggg gctcacattt gggcagagtg      240
agtggactag gactgctcca gaggcgttgt cttaacgttg tcctttccc ctggttctag      300
gaactttga ctggagagaa tcacagatgt ggaatatttg tcataaataa ataatgaana      360
aaaaannnnn nnnnnnnnaaaa aaaaaaactt gtccctcgcc ggaccacgc      409

<210> 670
<211> 741
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(741)
<223> n = A,T,C or G

<400> 670
accgctgtaa gactgccaag aagtcaaggagg aggagattga ctttcttcgt tccaatcccc      60
aaatctggaa tttctatgt gtcctcaatg tccttcattc cctggtagac aaatccaaca      120
tcaaccgaca gttggaggt tacacaagcg gaggtgaccc tgagagtgtg gctggggagt      180
atgggcggca ctccctctac aaaatgctt gttacttcag cctggtcggg cttctccgcc      240
tgcactccct gttaggagat tactaccagg ccatcaaggt gctggagaac atcgaactga      300
acaagaagag tatgtattcc cgtgtgccag aatgccaggt caccacatac tattatgtt      360
gggtttgcat atttgatgat gctgtcgatc caggatgcca tcgggtcttc gccaacatcc      420
tnctctacat ccaggaggacc nagaagcatg ttncagaagg acccacgtac cttggccgn      480
gaccacgcct aaggccaaa attncaacac actggcceng ncggttacct aagtggaaatc      540
cnaaccttcg gnanccaaag ctttggccgt naatccatng ggccataaagc ttggttccct      600
ggggggggaaa attgtaatn ccgttcaen aatttccca ccaacnttcc naaaccgggn      660
aagccttaa agngtnaaa accntgggg tggccnnaaa ggggggggac ctnaacttnc      720
atttaatng gggttggccn c      741

<210> 671
<211> 699
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(699)

```

<223> n = A,T,C or G

<400> 671

ggtagacgag	gaattacaac	tactacctca	ccgagaactc	ctccaccact	gactgttcag	60
gatcccttat	gtcctgcagt	ttgtccctta	gaagaattat	ctccagatag	tattgatgca	120
catacgttt	atttgaaac	tatccccat	ccaaacatag	aacagactat	tcaccaagtt	180
tctttagact	tggttattcatt	agcagaaagt	cctgaatcag	atttatgtc	tgctgtgaat	240
gagttgttaa	tagaagaaaa	tttgcgtct	cctaattcta	taagtgtatcc	acaaaaggccaa	300
gaaatgtgg	gttggaatcac	tttattccatc	agttatcaat	gcgatagaca	gtagacgaat	360
gcagggatca	aatgtatgtg	gttgggggg	atttggaga	tcataacttct	ctgaatgtcc	420
agttggaaag	atgttagagtt	gttgccttcaag	actctcaett	cagtatacca	accattaagg	480
aagaccttgg	cacttttaga	accattgtac	ctggcccccgc	cggccgggttc	naaanggcog	540
aantccagc	acacttggcn	ggccgttact	tagtggatt	ccgagcttcg	ggacccaagc	600
nttggcggtt	atcatngggc	catagcttgt	tcccnngngt	naaattggta	ttcccggttac	660
caattccccca	ccacnnttcc	ancccgnaa	ccntaaagt			699

<210> 672

<211> 377

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(377)

<223> n = A,T,C or G

<400> 672

actgaagctg	aaatgcagga	agtggggca	aaggtttattt	ccagagaagc	caggaagccg	60
gtcatcaccc	agcctctgag	agcagttaact	gggggtcaccc	aacctgactt	cctctgccac	120
tccccgtgt	gtgactttgg	gcaaggccaa	tgcctctct	gaacctcagt	ttccctcatct	180
gaaaaatggg	aacaatgacg	tgcctaccc	ttagacatgt	tgtgaggaga	ctatgatata	240
acatgttat	gtaaatcttc	atgtgattgt	catgttaaggc	ttaacacagt	gggtgggtgag	300
ttctgactaa	aggttacctg	ttgtcggtat	ctgaaaaaaaa	aaannnnnnaa	aaaaaaaaaac	360
ctnggccnn	accacgc					377

<210> 673

<211> 650

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(650)

<223> n = A,T,C or G

<400> 673

cgaggtactt	gatggacca	gatgggtgagt	ttctagatta	ttttggccag	aacaagagga	60
agggagaaat	agctgcttca	attgccccac	acatgaggcc	atacagaaaaa	aagagctagc	120
caaaggcgtg	ttgttggatg	cagtattctc	ttgtctaagag	gaaggaaaact	gtctcgcat	180
ggagcctata	taaaatataaa	catatatacg	tgactctac	agaatggcct	tcataaccatg	240
agaacatttc	tgtttggat	ggggatgtta	cccttgcgtt	caacaaaaat	tgattcttgg	300
aactgtaaag	attacaaccc	aaagtctccc	aggaagctgt	ggggagacca	gaggatcaag	360
ctgaagtgaa	accagtgaaa	aacccacctg	tggaaaggcat	ggcggggcca	ggcacaccag	420

tgcattcctg cctgcgaaca ggcctccaca acttgccgc ttttcatcg	ttggggccctt	480
gctaaatagc tgtggactg aattcacaga aaagaatnta ttccatagg ctcttgctgg		540
ctcttcttga gtcttntct ttgagcttg gnggctatac cgncgaatag ggcttggcat		600
tanagtgtatc cttaactt agttcctata angatnctn tcgattgcta		650

<210> 674
<211> 705
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(705)
<223> n = A,T,C or G

<400> 674		
ggtacaagct tttttttttt tttttttttt ggtgaaaaga tatatatata tatatattca	60	
gaatttaggca gctggactca gtttagatga tcccaatttt gttggcaaca tccaaagcat	120	
cgtaatcagg agccagtcga acatatgcct tcttctctcc atcaggccga atcagggtgt	180	
tgaccttggc cacatcaatg tcatacagct tcttcacagc ctgtttaatc tggtgcttgt	240	
tggcttaac atccacaatg aacacaagtg tgggtttgtc ttctatcttc ttcatggcag	300	
actcagttgtt cagcggaaac ttgatgatag catagtggtc aagcttgttt ctccctggag	360	
cgctcttccg aggatatttgg ggcgtctcc ggagtcgcag tgccttcggc cccccgaagg	420	
nggggtgacg tgccggatct tcttctttt gggctgtgg accaccttca aacactgcct	480	
ttttggcccn ttnaaagccc ttngcttgg cttagctt taggaagggg ccaggaacct	540	
tnccttnttc gctttcggaa acctgccccg gccggccgt tcnaaaaggg cnnaatttcc	600	
aacncacttg gcngggccgn tactaagggg atnccaanc ttggnancca ancttggcg	660	
nnaancttgg ggcnataact ggnttcccg ngngnaaaaa tgntt	705	

<210> 675
<211> 622
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(622)
<223> n = A,T,C or G

<400> 675		
ggtaccctaa ttttccttgc acccatgcct gtccaatcag atgactctgg gaaacgccaa	60	
acaggctgaa tcaatgtctt tgggtgtttt tttcttcca gattgtttt ttctcaccta	120	
taaaaggatc tatctttaaa aataaaactgt attaaatctg taacatcaaa ggcagaaggt	180	
ttgtgtgtgt gtgtgtgtgt gtgtgtgtat ctgtgtgtttt aaatcaaggg gagattgcat	240	
ttataaaatca tactggcctt atgaacatcc tctgcaataa atatacttt tagccttaac	300	
tataaaattat atattttagt gtttaaaaac ctccgggtgt gaaacatcta agataaccct	360	
taaaaaccac ctgttctcta ggttaaacctc tgaggtccctt actttcaaacc accagttggc	420	
accaaaggat tcctaaactt caacttctttt aaagaaaaaga aaggaactta tcacatggca	480	
tgtgagaatg caaccttttc tcttnctgca cgcagctnca acacccactc atgcacacag	540	
tggccacccctt gctaaagtct gttgaacagc ctgcggcgcg tcaagngatc accactgcgc	600	
gtctatgacc actcgacact gc	622	

<210> 676

<211> 620
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(620)
<223> n = A,T,C or G

<400> 676

cgaggtgcac	aggcaccact	aataatcaga	cctgattctg	gaaaccctct	tgacactgtg	60
ttaaagggtt	tggagattt	aggtaaaaag	tttcctgtta	ctgagaactc	aaagggttac	120
aagttgctgc	cacccatatct	tagagttatt	caaggggatg	gagtagatat	taataccctta	180
caagagattg	tagaaggcat	gaaaacaaaaa	atgtggagta	ttgaaaatat	tgccttcgggt	240
tctggtagag	gtttgctaca	gaagtggca	agagatctct	tgaattgttc	cttcaagtgt	300
agctatgtg	taactaatgg	ccttgggatt	aacgtcttca	aggacccagt	tgtgtatccc	360
aacaaaaggt	ccaaaaaggg	ccgattatct	ttacatagga	cgccagcagg	gaatttggta	420
cactggaga	aggaaaagga	gaccttgagg	aatatggtca	ggatcttcc	atctgcttca	480
aatatggtca	tgacaaaagc	tatctttgt	aaaaaaaaaa	aaaaacctgc	cgccgnccgc	540
aangccaatt	cacctgccc	cgtctatgac	cactgnccac	tgcnatntgc	tactgtntcg	600
ggaatgatcg	tncatcnan					620

<210> 677

<211> 691

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(691)

<223> n = A,T,C or G

<400> 677

cgaggtactg	ggtccaaatg	ctggagaagt	tacacaaggc	tttgcagctg	cgctcaaatg	60
tggactgacc	aaaaaggcgc	tggacagcac	aatttgaatc	caccctgtct	gtgcagaggt	120
attcacaaca	ttgtctgtga	ccaaagcgctc	tggggcaagc	atccctccagg	ctggctgctg	180
agguttaagcc	ccagtgtgga	tgctgttgc	aagactgcaa	accactggct	cgtttccgtg	240
cccaaatcca	aggcgaagtt	ttcttagaggg	ttcttgggct	cttggcacct	gcgtgtcctg	300
tgcttaccac	ccgccaagcc	cccttggatc	tcttggatag	gagttggta	atagaagcag	360
gcagcatcac	actggggtca	ctgacagact	tgaactgaca	ttttggcaag	gcatcgaag	420
gatgtattcc	atgaagtac	cagtctaaa	cccattgttgt	aagccggta	tggaaaccact	480
Gttaaatcaa	ttttAACATG	aacctttcnt	gnggattttct	taatctcggt	gcaagtttt	540
aagggtgaat	ttttttttt	ctncatgggg	gtaatgattt	tnagatgaaa	accccccag	600
ttgatTTTG	tccaaancaa	tnatggtaa	atatccctcc	agggnnnttt	ncttgaagga	660
aatttggtnct	ttgagggttt	agcttncccgg	a			691

<210> 678

<211> 667

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(667)
 <223> n = A,T,C or G

<400> 678
 cgaggtaactt gattggacca gatggtgagt ttctagatta ttttggccag aacaagagga 60
 angggagaaa tagctgcttc aattgcacca cacatgaggc catacagaaa aaagagctag 120
 ccaaaggcagt gttgctggat gcagtattct ctgtctaaga ggaaggaaac tgtctcgcat 180
 aggagcctat ataaaataaa acatatatac gtgcactcta cagaatggcc ttcataaccat 240
 gagaacattt ctgttttggaa tggggatgtt acccttgcgt tcaaccaaaa ttgattcttg 300
 gaactgtaaa gattacaacc caaagtctcc caggaagctg tggggagacc agaggatcaa 360
 gctgaagtga aaccagtgaa gagcccacct gtggaaagga catggcgggg cgagggcaca 420
 ncagtgcatt cctgcctgcg aacagnnctn cacactttgc cgcttgcatac gcttgggcct 480
 tggtaataac tggactga atttccagaa aagaatntat ttcataaggnt ttnttgctt 540
 tcttgagttct tggactttag tcttgggnt aanacagtcn aatanggctt tgcnntcaag 600
 tgancttggaa ccttaagttcc nttaangana tccttcnat gctatgaaag gaattttgtt 660
 ngggaa 667

<210> 679
 <211> 302
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(302)
 <223> n = A,T,C or G

<400> 679
 cgaggtaactg atgggaagt gccggcgctt ctggatgaa ctagatgcgg ttcagatgga 60
 ctgagcttgg atgcttctga ggcaagctga agctttgggt tctgactgac ccaccctaca 120
 ggactgtcga acagagagcc cagtgtact agggatctg agtttctgg gacaattcca 180
 gcttaatca atacattttgc ttaaatgtgc cataaaatga gacttttac gccttataa 240
 ggccttagat gtaataaaac tcacccaaac aaaaaaaaaaaa aaaanaaaaaaa aaaaaagctt 300
 gt 302

<210> 680
 <211> 649
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(649)
 <223> n = A,T,C or G

<400> 680
 ggtacgtgct cagggaaatta aaaacaaaaa tcaaggaatt gaacaacaca tgtgaacccg 60
 ttgtacacaca accggaaacca aaaattgaat caccctaaact ggaaagaact ccaaattggcc 120
 caaatatgtaa taaaaggaa gaagatttag aagacaaaaa caattttgtt gctgaacctc 180
 cacatcagaa tggtaatgt taccctaatg agaaaaattc tgttaatatg gacttggact 240
 agataacctt aaattggctt attccttcaa ttaataaaat attttgcca tagtatgtga 300
 ctctacataa catactgaaa ctatattat ttctttttt aaggatattt agaaattttg 360
 tgtattatgtt gaaaaagaa aaaaagctt agtctgttagt ctatgtatc cttttttttt 420

aaattgcctt ggtaactttc agattcctgt ggaattgtga attcatacta agctttctgg	480
gcagtctcac cattgcata ctgaggatga aactgacttt ggcnttgga gaaaaaaaact	540
gtcctgcggg cggccgtcaa aggcaattca ccctgcggcg tntanggacc actnggacca	600
ctgggaantg gctactgtcc tggaatgtnc cgtccatccc aatcaccgg	649
<210> 681	
<211> 722	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(722)	
<223> n = A,T,C or G	
<400> 681	
cgaggtacca ccagagggaa agctggggcg gagggatttg ttctgttga cccgagatta	60
tgtgctgaag tctgcagagc tggcaaaaagc tggagggtgc aaacatttca acttgcatac	120
ctctaaagga gctgataaat caagcaattt ttatatatcta caagttaagg gagaagtaga	180
agccaaggtt gaagaattaa aatttgcattc ttactctgtt tttaggcctg gagttctgtt	240
atgtgatagg caagaatctc gcccagggtga atggctgggtt agaaagttct ttggctcctt	300
accagactct tggccagtg ggcattctgt gcctgtgggt acccgtgggt tagagcaatg	360
ctgaacaatg tgggtgagac caagagacaa gcagatggaa ctgctggaga acaaggccat	420
ccatgacctg gggaaaagcg catggctctn tnaagccatg acccccattt gagaaatggg	480
ttttatttggc aacccttaca cccattaccc aaatcngnaa tttcanggtc taaaaaaaaag	540
tcanccttgtt ttaactttgg ngggttacta atccttaggc ttcantcca atcagggaaat	600
gatggggcct ntggattaaag gggttcaaaa cccgggtttc cctttggann ctgcggggnc	660
nttggnaaaa ataaaaattt gnncctnt tttaacttga atnaaaattt ngggggggggc	720
cn	722
<210> 682	
<211> 530	
<212> DNA	
<213> Homo sapiens	
<400> 682	
ggtacttgcc tttagtttat cagggatgt gtaaggagct tcaggagcat aaatcctgaa	60
aatatcagca aggcagcagg ctaccagtaa gcgaacatcc ttatcaggat gcttggggaa	120
aaaatctgaa gcaagatgtt aagcttagtt taaaataaaagc tcctttctt ctccagagtc	180
ctggccata tccataaaaag ttttcacaac catctataca aaaataaaaa atcaaataat	240
gaaatgcgcc atgaaaaact acagtcatgt gaaataaaagg tcatgttaat tgctaaagg	300
aacttcaaat gaatataactt tcattttct gcagaaaagtc tctatttgag agaacacaat	360
tctcctaaaa ctacaaagta aacttctatt taaaagactt actaaaaat ttttcattt	420
acccaaaata tctgctaacc agattttaa agattaaatt gcccttatgt agtagtcatt	480
atggaaagaa ttccaataga atatttgcgg aaacttctgg tctcacttgc	530
<210> 683	
<211> 745	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	

<222> (1)...(745)
 <223> n = A,T,C or G

<400> 683
 ggtacctgtc tttccttatt ccctcatcct tagtggatca tttgttatctc ctgcctttag 60
 agaaccttt gagacaagat gagacaacca tatctgatga tgtggatatac gctcgggatg 120
 tcataatgtct tataaaatgc ctccggctga ttgaagagtc agtaactgtg gatatgtcag 180
 ttataatgga aatgagttgt tataacctac agtctccgga aaaggctgca gagcagattc 240
 tggaagatatac gatcactatt gatgtagaaa atgtgatgga ggatatttg agtaaactgc 300
 aagagattag gaacccaatc catgcaattt gactacttat acggaaatg gattatgaaa 360
 cagaagtggaa aatggaaaag ggattcaatc cagctcacct ttgaatattc gaatgaatct 420
 taccctatc tatggtagta acacagcagg gtatattgtg tgccagangg gtgcattaaa 480
 atccggcagt acctgcccng gccggccgnt cggaaanggcc naatttccac acactggcg 540
 ggccgttaact angggaaatc ccaagctttg ggancsaagc ntggncgta atcatggcc 600
 ataancnng tncctgggn ngaaaatngg taatccggtt aacaattncc ccnccaactt 660
 tcccnacccg gnaaccctta aaggggtaaa aaccctgggg gggncccaaa gggagggggc 720
 cttaacccttc ccctttaaat tggcn 745

<210> 684
 <211> 628
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(628)
 <223> n = A,T,C or G

<400> 684
 ggtggagac ccgagaaccg gaggctggag agaaaaatcc gggagcactt ggagaagaag 60
 ggaccccaagg tcagagactg gagcattac ttcaagatca tcgaggacct gagggtctca 120
 accttcgcaa atactgtgga caatgcccgc atcgatctgc agattgacaa tggccgtctt 180
 gctgctgatg acttagatg caagtatgag acagagctgg ccatgcgcca gtctgtggag 240
 aacgacatcc atgggctccg caaggtcatt gatgacacca atatcacacg actgcagctg 300
 gagacagaga tcgaggctct caaggaggag ctgctttca tgaagaagaa ccacgaagag 360
 gaagtaaaag gcctacaagc ccagattgcc agctctgggt tgaccgtgga ggttagatgcc 420
 cccaaatctn aggacctcg aagatcatgg cagacattcc ggcacatat gacaactggc 480
 tcggaagaac cnagangact ngacaagtcc ttgcggccg ncgtcnaagg caattcacca 540
 ctgnggcgtc tatgatccac tgnncactgg gantgctact gtctgaaatg ttcgtnatcc 600
 cactcacac tagnactggc tagggata 628

<210> 685
 <211> 758
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(758)
 <223> n = A,T,C or G

<400> 685
 gcgtgggtcg cggcccgagg tacggagcaa atgttttatt taataagtta taagatacaa 60

tttacagtcg	gcgtttgatt	ccagtttngg	cttccgtgg	ccaacttaac	acaccccg	120
ggcccttcac	aataagctc	cggctggtcc	actttctgt	ngggtgggct	tttacccaa	180
caactnccca	gatctacacc	tgccacaaga	ntggccactt	tctnaggact	aagcagcaaa	240
acctaaaggn	ctgcctgcca	gaccacacta	cacatttggg	ctcaggcaac	gtccctgaca	300
ctttaaccc	atccaaago	cagctcaggt	ctgcaggaag	gcaggcaaaa	ttccctacac	360
ctcatttctg	gatttctca	ccacacagnt	ctnactgggt	ctgcccatt	tgaaaagacc	420
ccaataagct	gntggcctt	tttccccaa	cattcccaac	tttnaggggcc	aaganccca	480
agaggttcaa	tctggcctgc	tggacctggc	cggcngggcc	ntnnnaaangg	ccaaantcca	540
ncacaattgg	gnngncggta	ctaaagggga	acccaaactt	gggnccaaac	tttggggnaa	600
acatgggn	naannggn	ccnggggn	aaaatngnna	ncccnttcc	aaattnccn	660
ccaanntt	naacccggaa	accttaaang	gnnaaaanc	cggggggg	caaaggggg	720
ggccnannnn	cccnttaaan	gggnngggc	ccccccnn			758

<210> 686
 <211> 697
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(697)
 <223> n = A,T,C or G

<400> 686						
ggtacagatt	ggccggaatg	tggagaagg	tggccacagt	ccagagccag	gagcccatgg	60
aacaacttgg	aaggtaactc	aggtgaggct	gtcaatgagg	aatcccgca	tgtctggg	120
aatgggtcta	ggctgggctt	cattcagctt	gaagacactc	tccaccactg	acagctctgt	180
gctgggttgt	tccaggccac	agaaggcaca	ccagtcat	accaccatcc	cagcagcaat	240
cacctcaactg	cctcgggtca	cagtccccgc	cacaaggggg	acttgaagaa	gagaggacag	300
ctcatcttgg	tcttcaattt	aagtcttggg	atgcaccagc	cctccctgtat	tgtctgaagac	360
acagtagctt	cctactagca	cctgggtggc	cactgctgtc	tgaagacttc	caccttgagc	420
acatctggca	gaatttcttc	tgncctctgt	ccaagtctgg	gtggaccaag	gnacacgtagt	480
catttcaagt	ggtgacattt	cccaaggctt	aaaaccgttc	ttaaaccgnc	taatctgcac	540
ttggtcttggg	aagttgttt	ccaaatgtgt	caattctgg	ggccgnngta	ttgtngggac	600
cttggccggc	cggccgttca	aaggcaatt	ccanccaatg	ggggccgtac	tangggaaacc	660
ancttggnc	caacttgggg	naanatgggc	nnaacgn			697

<210> 687
 <211> 668
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)...(668)
 <223> n = A,T,C or G

<400> 687						
acataataac	ctcatcaact	aactttaaa	ttaactgaat	ggctattatg	tatatttattac	60
tcaataccag	tccattacct	aatataagag	cactaagagt	atthaatcat	tacctat	120
aatttatttt	ataggtgaaa	aacactgtat	tcaagttagg	ttgaggaact	tatattcaag	180
gtcctccagc	taactgtcga	cacaacaatg	actagaacta	attgtcaggt	ctccgtataa	240
ttagtccact	gttcttctta	ttctaccata	aggttgttag	gatgaagaat	actgcagttt	300

tactgcataa atattctgaa gtcagactta ctctaaggca ttcttccttc agaatacagg	360
ctaaagcaga atttacaag ctactgcctc tttttttttt tttttttta ataaacacag	420
aacatattgn tcaaacaaa tctaactcg aagtgnaaat aatgnaagcc aatcactatt	480
aaaaggcnga atttcctaaa gggaaaanta ccatttaacc aaccttctca aagtaaacat	540
ccttccang ggactgggga tttagnctta cacttgaagg cttcctggga cctgggcgg	600
acccttangg cnattcancc atggggcgg tctanggnnc cacttgggcc annttggnn	660
atnngcn	668

<210> 688
<211> 375
<212> DNA
<213> Homo sapiens

<400> 688	
acatcaattc agtgagaaaa ggtgtgtagg gagccataag tctgcaaaga gaaagcagaa	60
cactaaacaa ggtttctagg gccatgacac aatccctccat cccatttca ccctttaatc	120
ttctgcgtt cattctaaca tccaattgg tcagaatatac tacaaacttg accaggcgag	180
gcaccacagt ataaaggccta taagctgcca tttagtctc aaagaagcca atgagagact	240
gcatgaagga caggatccac cggctctgaa tggggctt ttctctaacc gtgttctcat	300
tgttagagaaa ttctatttct tecccttct ggagcctcag aacgttctgg attaagaagc	360
gataggcatt gtacc	375

<210> 689
<211> 582
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(582)
<223> n = A,T,C or G

<400> 689	
ggtagccaaaa gttaaatgac ttacctggc tgtttagaaa ctctctacct agaaagattt	60
ccattaccgt cagatgttag gagaggatct aacataggaa aggtcaccag ttgtcacaga	120
aaaagccaaa gaacttaggt ctatgcctcc tttgcccactg acaaactaat aacaccctct	180
agacatccctc aagtccctct ccttgctcag gaattttctt ctaccaggc ttttctacca	240
acttctctgt ataactacat cttactcattt tttcaagcc cgactcagtt gccccttcca	300
tctagaaaaac ttccagacc aaactatccc agcacatggt tatgatctct caaacctctg	360
tgtttccccca tccctgttgc ccgttaattt ctggccacaag ctcagaccga ctctctattt	420
ggcttatttg tgtctaattcc attgagttct cctccaaagc agagatcatg cttcaactcat	480
ttctgcatct ncaggacattt atgaatgaat gaatgtgtga attataagga ttactaaagc	540
cncagggcct gactcaaagc caggacccta gtaggngctt gg	582

<210> 690
<211> 812
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(812)
<223> n = A,T,C or G

<400> 690
actaaagcgg atggaatgt cgtttggcct ggagtcaggc aaatgctctc tggaggatct 60
gaaactcgcg aaatccctgg tgccaaaggc tttagaaggt tatatcacag atatctccac 120
aggacctct tggttaaatc agggactact tctgaactct acccaatcag tttcaaatt 180
agacctgacc actggtgcca ccttacccca gtcaagtgt aaccaagggt tatgcttgg 240
tgcagaagtgc gcttaacaa ctggcagtt ctggccccc aacagtccacc agtccagcag 300
tgcggncntn nactgnntcg agtcccgaag cgaagacccc ctggcgttc aatgatgaan 360
atgaaggaan atgatgaagg agggatccc tnctcccaa gaattaaaga ccangaagaa 420
agccctaccc ttcaaatat ggtgaatgcc tcaatgggtg gtttggtaa ntgggtgaag 480
cctcnttggg tttttgaaa atgaaattgg ctttcaagtc cttttggccc tttgggttg 540
gcacttgggg ngggttcaan ngaaaaaanc ttngnggaa aacnccccat ttaggccccaa 600
attcnccatt gaaanggctt tgaaaaatgn atttggnaaa ttgnaaaagg ttnaacccctt 660
aanggggna attgnaaaan tnttggccc aaccngaacc ccntnnnaan gggntttnc 720
cccaannaaa agcctggcnt ttttgaggg gaaaaaanng ggggataaaa ncccnctaaa 780
aaaatttgcc cnnnntnnaag ngccaccntt tt 812

<210> 691
<211> 691
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(691)
<223> n = A,T,C or G

<400> 691
acctactata atacagtagc taacatgtat tgagcacaga tttttttgg taaaactgtg 60
aggagctagg atataactt ggtgaaacaa accagtatgt tccctgttct cttgagcttc 120
gactcttctg tgctctattt ctgcgcactg cttttctac aggcatcaca tcaactccta 180
aggggtcctc tggatttagt taagcagcta ttaaatcacc cgaagacact aatttacaga 240
agacacaact ccttccccag tgatcactgt cataaccagg gctctaccgt atccccatcac 300
tgaggactga tggactga catcattta tcgtaataaa catgtggctc tattagctgc 360
aagcttacc aagaatttgg catgacatct gagcacagaa attaaggnaa aaaaccaaag 420
caaaacaaat acatgggctg aaantaactt gatgccaagc ccaaggact gatttctgg 480
natttgaact tanggcaaat cagagctaca cagacgccta cagaagggtc aggaagangc 540
agaaggcttc aatttgaag aaatttattt gcaccaaagt aaggccgga tnaaccttta 600
ggcnnnttta nggagggcct tttaaaaagg ntccctggcc ggaacncntt anggngaatt 660
ccanccnttgg gggccgtatt aagggacccg n 691

<210> 692
<211> 271
<212> DNA
<213> Homo sapiens

<400> 692
cgaggtactg ctgttaccac tggaaagcgct ggcctttt cgggtttgt cccggccgcg 60
atccttctca ctgcactctt tggggccccc tttatctttt gagcgttctc tgacttctc 120
atctgagcgg tctttgcgtt tggtaggtga aggagcccta gtgctggact ttttattatg 180
agaaacgatc cctaatcgat tgcaatttac gccgaagagc agcatcttcc ctccggcc 240
acctccttcc gtttccatca ggcggcaggc c 271

<210> 693
 <211> 730
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(730)
 <223> n = A,T,C or G

<400> 693

cgagggtttt	tttgccgca	catgaaacat	tatTTtaatt	ggTTaaagt	ccctttataa	60
agagtgtac	atggTTtaga	taaaggaaac	atataactat	tgagttacag	gggattttat	120
taattataaa	atgcaatcaa	ttaaattac	gtaggTTtaa	gactagtccc	ttggataaGC	180
cccaagcgaa	tttgTcttca	gattattaaa	attagtgtcG	taaatcaggg	tgggcaattc	240
acagccttc	tgaactgact	gaactagAGC	ttgcagtgaa	gtgttctgct	gagactgagc	300
accttacaga	tatTTTCTC	cagaagatgg	tgctgggtaa	taaaatcATC	acaatttaggg	360
gaatggtaa	gtggTctcta	ctgnGGcaaa	tgccaactgn	tggAAATTcAC	tttattgtAG	420
aaaaaccCAA	actgagactc	ttaagTTTG	gttaacaatg	nggttctggg	atggAAACCA	480
ctactggggc	actgnCCAGG	taggaaACCA	ttcttcaCT	ggggTTTCAG	cataaatggg	540
aactggatgt	tnaaaggcng	ggaattaACC	cttttagc	caaaAGAAA	agcttaantg	600
gggnTTacc	aanggntcc	ctggggctta	aattcaannn	tgggnctac	anngnccnna	660
anccctggnt	aaaccCggat	taaccctta	acctgggaac	ccaacctta	aanggggggt	720
tttaaaaagg						730

<210> 694
 <211> 700
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(700)
 <223> n = A,T,C or G

<400> 694

cgaggttaca	aaccacaaAG	acattggAAC	actataccta	ttattcggCG	catgagctgg	60
agtccTAGGC	acagctctaa	gcctcTTtat	tcgagccgag	ctggGCCAGC	caggcaacCT	120
tcttaggtAAC	gaccacatCT	acaacgttat	cgtcacagCC	catgcatttG	taataatCTT	180
cttcatAGTA	atacCCatCA	taatcggagg	cttggcaac	tgaactagtTC	ccctaataat	240
cggtGCCCC	gataTggcGT	ttccccgcAT	aaacaacata	agcttctgac	tcttacCTCC	300
ctctctCTCA	ctccTgCTCG	catctgtat	agtggaggCC	ggagcaggAA	caggTTGAAC	360
agtctacCC	cccttacAGG	gaactactCC	accTggAGC	cttcgtAGAC	acacCTTGG	420
gtttttcGA	aatatgggtt	gggtttttgg	gctttttgg	tgaattaaaa	taaaatttAA	480
atgcCTTCAC	gctgngatAG	gtgccacatG	aactaccGAG	nttcngaaaa	agaaggGAGA	540
actgacACTT	cttanngNTT	gcagactNTT	aangggccCT	taggactANT	ngggTTTGT	600
ggggtaaaAG	gtncCCTNA	agaanCCNG	nacctggCCN	ggggggcGTT	naaangggGA	660
attcnancCN	ctgggggCCG	tactaaggGG	accactnNG			700

<210> 695
 <211> 690
 <212> DNA
 <213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(690)
<223> n = A,T,C or G

    <400> 695
ggtagatg gcaactgacaa tccccttct ggtggggatc agtatcagaa catcacagtg      60
cacagacatc tgatgctacc agatttgat ttgctggagg acattgaaag caaaatccaa     120
ccaggttctc aacaggctga ctccctggat gcactaatcg tgagcatgga tgtgattcaa     180
catgaaacaa taggaaagaa gtttgagaag aggcataattg aaatattcac tgacctcagc     240
agccgattca gaaaaagtca gctggatatt ataattcata gcttgaagaa atgtgacatc     300
tcccctgcaat tcttcttgc tttctcactt ggcaggaaag atggaagtgg ggacagagga     360
gatggccctt ttcgcttagg tggccatggg cttcccttc cactaaaagg aattacncga     420
acagcaaaaa gaaggtcttg agatagtcaa aatggtgatg atatctttag aaggtaaga     480
tgggttggat gaaatttatt cattcatgag agtctgagaa aactgngccg tcttcaagaa     540
aattgagagg ctccattca ctggncctg ccgactgacc atggctccaa ttggctataa     600
ggttgcagcc tttatcgat ttncngggna gggttaaaag ctggncctg tgggttccaa     660
acctaaaaaa aannnnnnnnn aaaaaanant                                690

    <210> 696
    <211> 688
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1)...(688)
    <223> n = A,T,C or G

    <400> 696
ggtagaaaa tgaggcgctcg cagaatagag gtcaatgtgg agctgaggaa aagctaagaa      60
ggatgaccag atgctgaaga ggagaaatgt aagctcattt cctgatgatg ctacttctcc     120
gctgcagaa aaccgaaca accagggcac tgaaaattgg tctgttgatg acattgtcaa     180
aggcataaat agcagcaatg tgaaaatca gctccaagct actcaagctg ccagggaaact     240
actttccaga gaaaaacagc cccccataga caacataatc cgggctgggt tgattccgaa     300
atttgttgc ttcttggca gaactgattt tagtcccatt cagttgaat ctgcttggc     360
actcactaac attgcttctg ggacatcaga acaaaccag gctgtgttag atggaggtgc     420
catcccagca ttcatctc tggtggcatc tccccatgct cacatnagtg aacaagctgt     480
ctgggctcta gggaaacattg caggtgatgg cttaatggt nccagacttg ggtanttaag     540
acctggccgg ccggccgttc aaaaggccaa ntccacacct tggcggccgt ctannggatc     600
caactngac caacttgggg naacatggca aactggttct tggggaaatg gttccgttcc     660
aattcccaa tttcaccgag gctaaagg                                688

    <210> 697
    <211> 732
    <212> DNA
    <213> Homo sapiens

    <220>
    <221> misc_feature
    <222> (1)...(732)
    <223> n = A,T,C or G

```

<400> 697

gcgggtcgcg	gcccgggtac	tcccgattga	agcccccatt	cgtataataa	ttacatcaca	60
agacgtcttg	cactcatgag	ctgtccccac	attaggctta	aaaacagatg	caattcccgg	120
acgtctaaac	caaaccactt	tcaccgctac	acgaccgggg	gtataactacg	gtcaatgctc	180
tgaaatctgt	ggagcaaacc	acagttcat	gcccatgtc	ctagaattaa	ttccccctaa	240
aatcttggaa	atagggcccg	tatccatcct	atagcacccc	ctctaccccc	tctagagcca	300
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaagct	tgtaccatct	cccagtctg	gaggctggcc	360
atgtgagacc	caggtattgc	agggctgggt	gcttctgagg	ctgaggtgt	tcccgcttgc	420
ctccaggccc	ttcccagctg	gtcttctccc	tacatttgca	gacngatggc	catccgaagn	480
tgacatcatc	tcctttgggg	ctggctctgg	gnccattggg	aattaatggt	ttanagacng	540
aattcactgg	ggtgcttaag	cttgggcttc	aaaccggtag	gnntaaacnn	nnttnctttc	600
ttagcctcc	aagtaactng	atnccnggct	taanccctg	ggcccanccc	aaagttcccc	660
cttttttaan	gggcctctt	ttaatngggt	taaggncnc	tggaaggatt	cntnttaact	720
ngggaaancnt	na					732

<210> 698

<211> 651

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(651)

<223> n = A,T,C or G

<400> 698

cgaggtgcca	cgtaatgtcc	cgtagttcgc	tcatccgtc	catgccagat	ggattgtggg	60
gaaggtgatt	gggacaaaaa	tgcaaaagac	tgcataaagt	agagtgacca	ggcttgttct	120
ggatccctat	ttttaaaat	attttaataa	gccccaaaacc	tactttgctc	acgatgccct	180
tcagcagtc	acatgtgggg	atattgtgt	tctcagagct	ttacctgttc	cacgagcaaa	240
gcatgtgaaa	catgaactgg	ctgagatctgt	tttcaaagtt	ggaaaagtc	tagatccagt	300
gacagggaaag	ccctgtgtc	gaactacca	cctggagagt	cccgttgagt	tccggaaacca	360
cccagctaag	caaaaatctg	gaagaactca	atatcttttc	agcacagtga	agcgggagtg	420
gaagaaggat	ctaaaggaa	aaactgcac	gttatgtta	tggaaaaaga	aattttctaa	480
gttcatcaca	actgngtca	ttcttngng	tatgaatac	taaaccatg	aataanggct	540
actatggttt	tacaaaaaaa	nnnaataaaa	anaactgnct	gccggggcgt	naaggnaatn	600
acatgngcgt	tntntgggnnc	acttggccac	ntggganngg	cnantgtctg	g	651

<210> 699

<211> 709

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(709)

<223> n = A,T,C or G

<400> 699

actgttagcat	attaataaccc	tgtgaactgc	aaaaaaccua	atacatattac	agtagtattg	60
gtcacaaaaa	tagagggaa	actttacaat	tgtgagaatg	tgtaaatgtt	ctcattaagg	120
cagtattgac	ccagacaacc	attttagtatt	catctatccc	ctcaatgcct	cataattctg	180

gaatgcctgt tttctgatt tctcttgcct ccccttcct aaccctgnat caaatggaaat cttttggaaa
 tggtaatccat ctgaggtggc gaccaaaagct tgaagcaatc acatctactg ccaggtagc ttgacttcaa
 tgtagtctc aactcgagga tcagcaatat acatgccttc tcgatanggt aagtccccg
 acacaggagt tnctgtggct tggagcccgt gttaggggcaa atgcntnaat atcnaaaactt
 caaatggaaat gggctttgg ctcttgccaa tcancnagaac caaangttcg ntccctgaac
 cttttggaaa cccagttnat tcaanttna tcannggaaa aaacctggga atcnaagnct
 tttaaaaaaa aagggttcnnga ngggnchncg ttttnaacc aaaaaaccc 709

<210> 700
 <211> 656
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(656)
 <223> n = A,T,C or G

<400> 700
 ggtcagaacc taaagggtttc actgaatgcg aatgacgaa atctagccct ttgaaaataa
 cattgtttt agaagaggac aaatccttaa aagtaacatc agacccaaag gttgagcaga
 aaattgaagt gatacgtgaa attgagatga gtgtggatga tgatgatatc aatagttcga
 aagtaattaa tgaccttcc agtgatgtcc tagaggaagg tgaactagat atggagaaga
 gccaagagga gatggatcaa gcattagcag aaagcagcga agaacaggaa gatgcactga
 atatctcctc aatgtctta ctgcacccat tggcacaaaac agttgtgtg gtaagtccag
 agagtttagt gtcacacccat agactggaat tgaaaagacac cagcagaagt gatgaaagtc
 caaaaccagg aaaattccaa agaactcgtg tccctcgagct gaatctggtg atagccttgg
 tctgaagatc gtgacttctt tacagattt atgcataatag atctcaaaga ttnaagaacn
 gaacgtcncc ataaggcgtg atgtccgaag ganatgtctt aaactgntga aaaatancct
 tcttcgacta ttcaccgaaa gcggactatc caatattcnc nacgggttta ctgcnn 656

<210> 701
 <211> 716
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(716)
 <223> n = A,T,C or G

<400> 701
 ggtaccttga cagggacgag aggtcgaaagg agttgccagc cccatctttg aatgaacatt
 cagtcagatc gaaagggtggg caggcatact gcgttcgcca ctcaaaacaag taggaacaat
 ctgaagtcctc ctttagaaat actggccgct gggtgccgag gtcacagtag aagaagatgg
 ctgtggagcg ctgataaaacc ttatggcaag tgcacccccc gtgaagttca ttttaacaa
 gccatcttca taagttagct tctgagtcag gagacctgccc actttgtgaa atccctgccc
 ttcccgcttt tcctgacatg aggagaccac ctggacttg ncacttgtgg gggcagacgt
 ctgaggaaaa gcttccaca gaccccgaaa gtaataaaagt gtattcgcca gcgctnacga
 atgggtgtcgt tgaagcccaa gggcttnang tcataacaagt tgccatgccc ttgggtcttt
 caccttacaa gttgncccn ttcactttt acaacgggac caggcttca caagttttcc 540

aantaacccg taccttgccc nggccggccg ttnnaaangg gcnaattcca nncaacttgg	600
ggccgtacta agggatccc aactttggac ccaacttgg gnnaanatng ggcntaactg	660
gttccctgg gnaaaatgtt tcccgttcaa aattcccn aantttgagc cggaag	716

<210> 702
<211> 707
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(707)
<223> n = A,T,C or G

<400> 702

tgnatntgtc agcggcgca g tgtatggtat ctgnagaatt cgccttcga gggcgccgg	60
gcaggtaactc atcttatact gaaagaacgt ggtggctcta aatatgaagc tgc当地aagaag	120
tggaaatttac ctgcgttac tatagcttg ctgttggaga ctgctagaac gggaaagaga	180
gcagacgaaa gccatttct gattgaaaat tcaactaaag aagaacgaag tttggaaaca	240
gaaataacaa atgaaatcaa tctaaatca gatactgcag agcatctgg cacacgcctg	300
caaactcaca gaaaaaccgt cggtacacct ttagatatga accgcttca gagtaaagct	360
ttccgtgtc tggtctcaca acatgccaga cagtcgcag cctcccgca gttagacaac	420
cacttcagaa ggagccctcg ttacacctgg atacaccatc aaaattctg tccaaggaca	480
aactcttaha gccttcctt gatgtgaagg atgcacttgc agccttgaa acttcangac	540
gtccagccac agaaaaaggaa ccgagtctn ggccgcgacc ccctaaggca attcacacac	600
tggcggcgtc tagggaccac ttgggcaac ttngaactg gctactggtc tggaaatgtn	660
ccgtacatcc ncaatnaccg actaagtaac tggctnnngg gctatcn	707

<210> 703
<211> 703
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(703)
<223> n = A,T,C or G

<400> 703

acctgccaga attagcaaga gctttctta agaagacatt tgtcaaactc aacaaattga	60
aggtaacac cttaaagagtt gtatgtactg accagaata tggacagact tcttagactt	120
ggaggaggtc tgcctggact gggccagggg ccacctacag atgctctgc agtggacaca	180
gcagaacaag tctatatctc ttccctggca ctgttaaaaaa tgtaaaaaca tggccgtgt	240
ggagttccaa tggaaaggat gggttttagt ctggagaat ttgtttagtca ttataccgtc	300
agagtgtattt atgtgtttgc tatgccacag tcaggaacag gtgtcagttt ggaggcagtt	360
gatccagttt tccaagctaa aatgttgat atgttgaaca gacaggaaag cccgaaatgg	420
ttgggttgtt ggtatcacaa gtcacccctgg cttgggttg tggctttctg gtgtggatan	480
tcaacactt agcagagctt ttgaagctt ttccggaaaa nagctttggc antgggtgt	540
ggatccctt canaatggta aaaggaaaagg ttggtaattt atgccttcan aatggancaa	600
ggctaaatna agggcttagg acttgaaccc ggacaanaan tttaaatng gncccttaaa	660
caagcctttt ntncnggctt atttggctt accnncttt tnn	703

<210> 704

<211> 683
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(683)
<223> n = A,T,C or G

<400> 704

cgaggtactg	aggatagga	gagtatatgg	gttggcacc	acagggtggg	taggcaaaac	60
aatttgtt	ataaggctca	gatcctgaac	taacctgtaa	ggcctgtct	ggtcgagga	120
caggtgaaat	gggggaaattt	taagtagagt	ttataggctt	taaaaggcca	tgctgttagca	180
ggcgagtgtat	aacaggctt	aatctttta	aagcatgctg	tggatggga	tattggcatt	240
gagcggggta	agggtgatta	ggtttaatg	agatggtaag	gggtccatga	tcggcacca	300
aggagggagt	agaggtatct	tatacttgc	ggtaagggtg	gggggataca	agaggaggac	360
gcanaggagg	ctttggattt	ggaaaaaagg	gcaccaatga	gatgtacnt	aatccagggaa	420
tagtcaggga	aacnnatagt	tanttaaaag	tgtctcggt	aatangggac	tggcagtgg	480
ggatactaaa	aaggatgtt	aaaaagtatg	nctaagttgc	accnnattna	ngagttaaa	540
aaggtaaaa	acttgctggn	aatcctanca	ccnntttgga	gcnagaaaac	aggcccttna	600
aanaaggtat	ntgaatggga	accncntntt	aaaagggcg	gcntaatttc	cctgnaaagt	660
cttnaactnt	nnaaggccct	acn				683

<210> 705

<211> 463
<212> DNA
<213> Homo sapiens

<400> 705

ctgaaagtgc	atgaaggacg	cgattacctg	cgataagctt	cgtggagttg	gaaataaaact	60
atgatacgg	gattccgaa	tgggtaacc	taactgagca	aacctcagtt	gcattttgat	120
gaatccatag	tcaaatttagc	gagacacgtt	gcgaattgaa	acatcttagt	agcaacacgga	180
aaagaaaaata	aataatgatt	tcgtcagtag	tggcgagcga	aagcgaaga	gcccaaacct	240
gtaaaaaggg	gtttaggac	atcttacatt	gagttacaaa	attttatgtat	agttagaagaa	300
gttggaaaggc	ttcaacatag	aagggtat	tcctgtatac	gaaatcataa	aatctcatag	360
atgtatcctg	agtagggcgg	ggcacctgtga	aaccctgtct	gaatctgccc	ggaccacccg	420
gtaggctaa	atactaatac	gacacgata	gtgaactagt	acc		463

<210> 706

<211> 651
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(651)
<223> n = A,T,C or G

<400> 706

actatacgat	ctgtggaaaa	tcttagaaaa	aaacattttc	tcccccaccc	tctctttcc	60
ctgttaagac	catccaaaa	tgcttcaagt	aaaaaataac	aagtttaagg	ggtaagcac	120
ttttaaagtc	tgattaaggg	ggtgggggg	aaaaagagta	actaccagcc	atttctccaa	180
tggacatctc	ttccacagac	ctcaacgtga	gaactgctct	agtttctata	aactgtaaac	240

ctgtgggtt ctgattatcc tgatattgga tttcttgtt ttctgtaca ccttgagtca	300
ttgcctta ggattctaga cagacctaag gaaaaaagaa ctgaaaacat attttgc	360
caccccaaca aaaaaata ctgaaaactc ccccccgcct cagttacaca tccaaactct	420
acatttacaa aacaattca gggtgaggaa gtaaaacagg tcatttattc aaaaaactga	480
aataacttcat tacccttactt aaacatataaa actgnntaca gattgtgaa atggctaat	540
ttggctatca aattcatttg ggttcctca aatcgngtaa aaaaaaaaaa aaaaaaaagct	600
tggnctngg ccgnaacacn cttangggca aatccanccc ctggggggcc g	651

<210> 707
<211> 625
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(625)
<223> n = A,T,C or G

<400> 707	
ggggcggct cggacggag gacgcgtag tttcttctg tgtggcgtt cagaatgatg	60
gatcaagct aatcgatt ctctaactt tttgggtgg aaccattgtc atatacccg	120
tccagctgg ctccggcaagt agatggcgat aacagtcatg tggagatgaa acttgcgt	180
gatgaagaag aaaatgtca caataacaca aaggccatg tcacaaaacc aaaaagggtt	240
atggaaatgtca tctgttatgg gactattgtc gtgatcgat tttcttgcgtt tggattttat	300
attggctact tggctattt taaagggta gaaccaaaaa ctgagtgta gagactggca	360
ggAACCCGAG tctccagtga gggaggagcc aggagaggac ttcctgcaca cgtcgcttat	420
atggggatgtca cctgaagaga aagttgtcg gaaaaactggc agcacagact tcaccagcac	480
catcaagctg ctgaatgaaa atcatatgtc cctcgatgtc ctggatctca aaagatgaaa	540
atctgatgtca tggtaatc aattcgatgtca ttaacttcaca agttgcgtga cacatttgcgtt	600
aatcngcaaa cacntnaaac tgggn	625

<210> 708	
<211> 209	
<212> DNA	
<213> Homo sapiens	
<400> 708	
actgttccat ctggaaagtca agattgggtc cacctaagtgg gttccctgtc gcaaggaaact	60
taaggacatc ctcccttcatttgcagga catcaagggc tccggacatt gtggaaagttt	120
cccttaagt tacacggga atccagaaca acgccccgtatg gaccctctg caggtgcac	180
ggaaaaaaaaaaaaaaa gcttgtacc	209

<210> 709
<211> 643
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(643)
<223> n = A,T,C or G

<400> 709

ggtaactcctt	agagccagtt	gctgtagaac	tcaaatctct	gctggcaag	gatgttctgt	60
tcttgaagga	ctgtgttaggc	ccagaagtgg	agaaaaggctg	tgccaaccca	getgctgggt	120
ctgtcatcct	gctggagaac	ctccgcttc	atgtggagga	agaagggaaag	ggaaaagatg	180
cttctggaa	caaggttaaa	gcccagccag	ccaaaataga	agcttccga	gcttcacttt	240
ccaagctagg	ggatgtctat	gtcaatgatg	ctttggcac	tgctcacaga	gcccacagct	300
ccatggtagg	agtaaatctg	ccacagaang	ctgggggtt	tttgatgaag	aaggagctga	360
actacttgc	aaaggccctt	gagagccag	agcgaccctt	cctggccatt	ctnggcggac	420
taaagtgc	gaccagatcc	agctcatcaa	taatatgctg	gacaaaagtc	aatgagatga	480
ttattgggg	tggaatggct	tttaccttcc	ttaangngct	caacaccatg	gagattggca	540
cttctctgt	tgtgaaaaaa	gggncccaga	ttgcaaagac	tnatgtccaa	actgagaaaa	600
agggntgaan	ataccttgc	tgtgcttgc	nctgtncaa	ttg		643

<210> 710
<211> 390
<212> DNA
<213> Homo sapiens

<400> 710						
ggtaacttc	tagcatttag	atctacactc	tcgagttaaa	gatggggaaa	ctgagggcag	60
agaggtaaac	agattttatct	aaggccccca	gcagaattga	cagttgaaca	gagcttagagg	120
ccatgtctcc	tgcatacgctt	ttccctgtcc	tgacaccagg	caagaaaagc	gcagagaaaat	180
cggtgtctga	cgattttgg	aatgagaaca	atctaaaaaa	aaaaaaaaaa	gaaaagagaaa	240
aaaaaaagact	agccagccag	gaagatgaat	cctagcttct	tccattggaa	aatttaagac	300
aagttcaaca	acaaaaacatt	tgctctgggg	ggcaggggaaa	acacagatgt	gttgcaaagg	360
taggttgaag	ggacctctct	cttaccaagt				390

<210> 711
<211> 683
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(683)
<223> n = A,T,C or G

<400> 711						
cgaggtcaag	aaggcagccc	gagaagaaaac	gggaggacaa	agctaagaag	aagcacgaca	60
ggaaatccaa	acgcctggat	gaggaggagg	aggacaatga	aggcggggag	tggaaaaggg	120
tccggggcgg	agtgcgttg	gttaaggaga	agccaaaaat	gtttgccaag	ggaactgaga	180
tcacccatgc	tgttgttatac	aagaaactga	atgagatcct	acaggcacga	ggcaagaagg	240
gaactgatcg	tgctgcccag	attgagctgc	tgcaactgct	gtttcagatt	gcagcggaaa	300
acaacctggg	agagggcgtc	attgtcaaga	tcaagttcaa	tatcatcgcc	tctctctatg	360
actacaaccc	caacctggca	acctacatga	agccagagat	gtgggggaag	tgcctggact	420
gcatcaatga	gctgatggat	atcctgtttg	caaattccaa	catttttgt	gggggagaat	480
attcttggaa	gaaaagttag	aacctgcaca	acgctgaccc	agcccttgcg	tgtccctggc	540
ttgcatnctn	acttttggtg	ggaaccnaat	gggttaaaga	aattanccaa	ataatgccaa	600
atacttgacc	cttanticcc	aaaaataacct	tgcccgccg	ggcccnntca	aaaggccaa	660
attccancnc	ccttgggggc	ccg				683

<210> 712
<211> 605
<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) . . . (605)

<223> n = A, T, C or G

<400> 712

ggtacaagct	tttttttttt	tttttttttt	tttctaaaca	atagtgcgtt	attgataaaa	60
ggtagttta	aatggataca	aaattgttgt	gtaaaataag	tgtttcaaa	atacatttc	120
ataggtagag	actatgtctt	agtaaaagag	cagttatcta	ttatcaaaag	tatctattta	180
natttgggta	gtaaaaccaa	aggggatcg	aagtgtanca	gtgtgggtcc	tccctccctg	240
catagctgtt	accaggaggc	agcgtgcctg	aagtacttgg	aggaacgaaag	aataaaaggag	300
attgtgaaga	aacattctca	gcttatttgg	tatcccatta	ctctttttgt	ggagaaggaa	360
ccgtataaa	gaagtaagcg	atgatgaggc	tgaagaaaaag	gaagaccaaag	aagaagaata	420
ngaanaaagaa	gagaagaggt	cggaaagacaa	acctgttgg	gaanatgttg	gtctgtatgag	480
gaagaaaaaaaaa	gaaggtgtgt	cnagaagaan	anaagaagat	tagaaagtc	ctgccccccgg	540
ccgtcaangc	aatccaccct	gcggcgtcta	ngaccactgn	ncactgngat	atgctctgtc	600
tgqna						605

<210> 713

<211> 376

<212> DNA

<213> Homo sapiens

<400>. 713

ggtagccaagg	ttattgtatca	agtccgcctt	ggtcattcca	attccagttat	ccacaatagt	60
gagagttcga	tcttgttgc	tcggataaag	gttaatatgc	agctcttcc	cagagtctaa	120
tttactggga	tctgtcaagg	tttcataacgg	gatTTTGTCC	aatgcatacg	atgaatttga	180
aatgagctct	ctcagaaaaga	tctcttgcgtt	cgagtagaaaa	gtattgtatga	tcaatgacat	240
caactgggca	atttctgcct	gaaaggcgaa	cgtctcaacc	tcctccctct	ccatcggttg	300
gtcttgggtc	tgggtttcct	caggcatctt	ggctaagtga	cccgcacagg	accaacggca	360
cagccacacc	gacctg					376

<210> 714

<211> 378

<212> DNA

<213> Homo sapiens

<400> 714

```

cgagggttacca aggttattga tcaagtcgc cttgggtcatt ccaattccag tatccacaat 60
agtggaggtt cgatcttgtt tggtcggtat aaggtaata tgcagctttt tcccagagtc 120
taatttactg ggatctgtca agtttcata ccggattttt tccaaatgcattt ctgatgaatt 180
tgaaaatgagc tctctcagaa agatctttt gtgcgagtag aaagtttgc ttgtatcaatga 240
catcaactgg gcaatttctg cctgaaaggc gaacgtctca acctcttccctt cctccatcg 300
ttggtcttgg gtctgggttt cctcaggcat cttggctaa tgaccgcaca ggaccaacgg 360
cacaaqccaca ccqacctq 378

```

<210> 715

<211> 310

<212> DNA

<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(310)
<223> n = A,T,C or G

<400> 715
actttttagt gtgtgtgtgc atgtgtgtgt gtgtgtgtat gtgagagatt      60
ctgtgatctt tttaagtgtt actttttgtt aacgacaaga ataattcaat tttaaagact 120
caagggtggc agttaataaac aggcatttgt tcactgaagg tgattcacca aaatagtctt 180
ctcaaattag aaagttaacc ccatgtcctc agcatttctt ttctggccaa aagcagtaaa 240
tttgctagca gtaaaaagatg aagttttata cacacagcan aaaaaaaaaa aaaaaaaaaa 300
agcttgcacc                                310

<210> 716
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 716
ggtaaccgatt gccaggctgt ggtctccccc cagtgtgaca cggctgtac catctgacac      60
agctctgcta accacccatcg ccagttccctg gttggcaaga cccactgagc gtggattcac 120
tatcagggtt ttagatcatctttttgg gactggagta aaattcaat ctccaaagtc 180
tttaggtgg cagccaaac tggagagcc tttcatcaag ccagcttctc ttatggcagc 240
gggaccatgc tccactccgt ttctttctg tccttgcag aacggggctc ctatcacagc 300
cacggatgg acggatttct tcaggatgga atgcactcgc gtctggagga gacgcgagag 360
gctgccctt gggacatgat cccgcagcac tgagaatctc caaggcagag gctccacatg 420
gccgggggtgt tgaaggtctc aaacataatc tgagtcatct tctctctgtt ggccttgggg 480
ttcaagggggg cctcggcaca gcactgggtg ctcttncggg ccacgcgcac ttgtgtaaaa 540
gtgnngtgcctt nacttcatg cgnccaattt gngaccatcc tctnatggga ctgcccggggc 600
cgtnaagggg gaatcacccnt ggng                                624

<210> 717
<211> 652
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(652)
<223> n = A,T,C or G

<400> 717
cgaggtacaa aaattagctg ggtgtcggtga tgggtgcctg taatcacagc tatgtgggag      60
gctgaggccag gagaattgtct tgaaccttggg aggcgaagggt tgcaagtgcgcaagatcagc 120
tcactgcact ccagcctctt tgacagagtg cgactctgtc tcagaaaaaaa aaaaaaaaaa 180
aagaaaaagag attacatatt atttagaaaa cagcagctaa acagtcttg ggtctctggc 240
aaagatgaag tgagccagtc ttcttccgac taaatcacca actggacaaa gttctcagct 300
ggaaaacact ccccttctgg gatcctgcgc ccagaagtgg tagcaagaac ttcttggaat 360

```

agaatggagc agaaccttcc ttagcctgag gaaccaacaa aaagtcaaag aatgaactct	420
ttcgaacaca aaataaaatt tctcaaagcc caggcatgc ttttctgtt aatctttatc	480
cctgcgtcag tatggacatg acatagttcc gaggaaaaat ttcagccta ctttatgcnc	540
aagaaaatgc catgatgccg ccagttgtt gatgcccnnag gacantgctn ttganggccg	600
aaaaataggn ctgcagcngg gaaccaaagg ctgttncct gnttcttaaa ag	652

<210> 718
<211> 544
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(544)
<223> n = A,T,C or G

<400> 718

cacagaggg gtgagggtgca tttcgactca gcttcgctc accactaaga tggatgcaga	60
gcatccggaa ctcaggagtt acgctcaagag ccaagggtgg tggacgggag agggcgagtt	120
caattttcc gaagtctttt ctccagtgaa ggatcatcta gactgcgggtg ctggcaaaga	180
cagcttagaa aaacaagaag aaagcatcac agtgcagact atgatgaaca ctttacggga	240
caaagccagc ggagttgtgca tagactctgaa gttttccctc accacagcca gtggagtgtc	300
tgtcctcccg cagaatagaa gctctccgtg cattcaactac ttcaactggaa cccctgatcc	360
ttccagggtcc atattcaagc ttttcatctt tggtgatgac gtaaaacttg tccccaaaac	420
acaagtctcc ctgttttggg ggatgacgac cttgccaaa aaggagcctc ggttncagg	480
agaaaaccnga accggccggc attgaacctg tacctgncc gggccggccg nttncaangg	540
gcga	544

<210> 719
<211> 626
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(626)
<223> n = A,T,C or G

<400> 719

accaaagaaaa agctgaacag gaaaatgaga agagaagaaa tgtagaaaaat gaagtttcta	60
cattaaagga tcagttggaa gacttaaaga aagtcaactca gaattcacag ctgtctaattg	120
agaagctgtc ccaggtaaaa aagcagctag aagaagccaa tgacttactt aggacagaat	180
cggacacacgc tgtaagattt gagaagatc acacagagat gaacaagtca attagtca	240
tagagtccctt gaacagagag ttgcaagaga gaaatcgaaat tttagagaat tctaagtca	300
aaacagacaa agattattac cagctgcaag ctatattaga agctgaacga agagacagag	360
gtcatgattt tgatgttgg gtagacccctt aagctcgaaat tacatcttta nagaggaggt	420
gaacatctca acataatctc gaaaaatggg aaggagaaaag aaaagagctc aagacatgct	480
taatcactca gaaaaggaaa gaatatttag agatagattt aactacaact taaatcnntc	540
acacggtaga ccagangtaa tgacccctt accaagctcg ttactgcaac atcattntt	600
agaggcaagc ttggcatggg taaaaaa	626

<210> 720
<211> 469

```

<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(469)
<223> n = A,T,C or G

<400> 720
ggtaactctt agcatataat tacatcggtc atataacaact acaccattt agatggcct      60
tggaaataaa ttcaaggcc ttaaatatta aaaataattt tataactatt tcatagttta      120
atggctttt aaatagttt gctaggagg aaacatttg tggtctttaa gaaattgata      180
tgtgtaaatg tggtcaactt aatcttgaga aaacctaagg atgaagtctg ttgtttgtt      240
tttcctaaaa aagaaaaaaa gaaccaaaga aaaatgtga agaacaagaa tatttaccat      300
taaaaagaag aaacattatc caacaaaaag gagacatata gattgaaaa cacttattt      360
actgnctca acaacaacaa caaacagata ggcagggaa gtccagagga ctcagaattg      420
aagcagctct atacaataat gaaggtggac ctgccggcgc ggcgctcga      469

<210> 721
<211> 644
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(644)
<223> n = A,T,C or G

<400> 721
acaaggtaa tctcaacttcg agtgaccaca atccggacca gggtgagtc atctgtgcca      60
gcacccatca tagcatagta gagcctctca gcaaagaagg cagggcggtt cagggcacac      120
tgcaagatgg tcttcaaacc actttctaca tatccggaaa actcacggct cacactgctt      180
aacaaggttc gattagccat cctagaataa gcctccatgg tagctctcag ctgaggaaag      240
cttcttggtt caaggatcat gttaaagcaa gattcatcg tccctagtct cccctcacca      300
gctttagata gacgtgagc atcttcctga gccatgggt ggtttataact ctgggtctca      360
tcacgatcc cctggcacat ggacacaagt aaacgttcaa aatgtcctga tttatctgac      420
ctaatgnct ttcaagggtc tcgtccaaat tctgactgat aacatctgac aatttctcg      480
atttcctgat ttggcttgn gcacaaaatc ttcaatcaat acaccgttcc tgagttcctg      540
ntncctgcatt gtnnttccga agcttcaggc atcgnaatcc taggangctt gaaaaggccn      600
ggatcagttt ttcctattcn cttaacttga ttgaaacntt gata      644

<210> 722
<211> 510
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(510)
<223> n = A,T,C or G

<400> 722
cgaggtcgga gatctcgccg gcttacgtt cacctcggtg tctgcagcac cctccgcttc      60

```

cttccttagg	cgacgagacc	cagtggctag	aagttcacca	tgtctattct	caagatccat	120
gccaggaga	tcttgactc	tcgcggaaat	cccactgtt	aggttgatct	ttcacacctca	180
aaaggtctt	tcagagctgc	tgtgccagt	ggtgcttcaa	ctggtatcta	tgaggcccta	240
gagctccggg	acaatgataa	gactcgctat	atggggaaagg	gtgtctaaa	ggctgtttag	300
cacatcaata	aaacttgc	gcctgcctg	gttagcaaga	aactgaacgt	cacagaacaa	360
gagaagattt	acaaactgtat	gatcgagatg	gatggAACAG	aaaataaattc	taagtttgg	420
gccaacgcca	ttctgggggt	gtcccttgcc	gctgcaaagc	tggtgccgtt	gagaangggg	480
tccccctgtac	ctgcccngcgc	ggcgtcgaaa				510
<210>	723					
<211>	640					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(640)					
<223>	n = A,T,C or G					
<400>	723					
ggtaccaagg	gtatcagcat	tcacccctt	gcctcacatg	ccagtggct	caatcacaaac	60
cctgcctgt	aatctgtat	tgactcctca	acatttggag	aaggcaaagc	tccaggtccc	120
cctttcctc	aaacttgg	catagccaa	gtggccaccc	gcctcttcc	catccagctg	180
ggccagtcgt	agaaggagag	acctgaggag	gccaggagc	tggactcatc	tgatagggat	240
attagttcag	ctactgacat	ccagccagat	caggctgaga	ctgaagatac	agaagaagaa	300
ctagtagatg	gttggaaaga	ctgntgttagc	cgtgatgaga	atgaagagga	ggagggagac	360
tcagagtgt	cctcattaag	tgctgcctcc	ccagcgaatc	ggtggccatg	atctctagaa	420
ctgtatggaa	attctgacca	aaccccttcc	caatcatgag	aaaagttgtc	cgaccagcct	480
catctacagg	tcttccaaac	gttccctac	catctatttt	ggcactcggg	atgaaaaant	540
ggagaaaactt	tcctggaaac	cnangaagtt	gcttcnatgg	aagatgagcn	cagggacccc	600
aacattgcaa	ccnaccattt	gacggncccc	tttaatang			640
<210>	724					
<211>	593					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(593)					
<223>	n = A,T,C or G					
<400>	724					
ggtacctgcg	cgcctcgac	gtcaatgtgg	ccttgcgc当地	aatcgccaaac	ttgctgaagg	60
cagacaaaaga	gatcggtcgag	gacgggtgacc	atatgatcat	ccgcacgctg	agcactttta	120
ggaactacat	catggacttc	caggttggga	aggagttga	ggaggatctg	acaggcataa	180
atgaccgc当地	gtgc当地gaca	acagtggact	gggacggaga	caagctccag	tgtgtcaga	240
agggtgagaa	ggagggggcgt	ggctggaccc	atggatcga	gggtgatgag	ctgcacctgg	300
agatgagagt	ggaagggtgt	gtctgc当地a	aagtattcaa	gaagggtcgag	tgaggccc当地	360
gcagacaacc	ttgtcccaag	gaatcagcag	gatgtgtggg	ccaggatccc	ctttgc当地a	420
gcatgaggca	aaaatgtcca	ccacccccc当地	cattgttagc	agatctgctc	ttgctttgca	480
cttttcttcc	ttaaacaaca	ctgc当地aagt	gatctgtgtt	agaaaaactg	ccggcggcca	540
agcaatcacc	atgc当地gtct	atgaccactn	nncactgcna	tatgctantg	tct	593

```

<210> 725
<211> 606
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(606)
<223> n = A,T,C or G

<400> 725
acngcagctg ctccacggcc ccagcacgaa atgtatcaca ggcagcaatg aggacactga      60
agccattctc taacaaccag aaggaaatct tggcaagattt agtagatttc cccactccat      120
taacggccca gaaggtgacg acataagggc gctggcgacg ctgggcattcc atgatgtccc      180
ggagcatgtc tacacgacgc tgtggctgca gaatctgcac cagggactcc tgttagggctt      240
gctttactgt ggaagtcacc gtgctgaacg tcccccacac cttccctcc aacttgttgg      300
caacagatcc acagagctgg acggcaatgt ctgcagccac gttcttagca atgagatgat      360
cacgcattt gtccagcaca gattccatgt cttcacgact caagctctt gaaccacaaa      420
ggcccttcag cataccaaaccatg ccacccatgtt gtcgactan gtttggtaga      480
gttttgagca gcccttcgtc atcaanctgt gcattccagat ctgaactgcc ccagaccagc      540
cttgaatagg tgatgcctaa caggagcttag ggtcatgngg tggagactgg cgncacctag      600
gcaatc      606

<210> 726
<211> 594
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(594)
<223> n = A,T,C or G

<400> 726
accacatcat ccatgctgac atctaccgct gggttaacat ttcttttgcattttttggtc      60
gcaccacccac tccacagcag accaaaatca cccaggacat ttccacgcag ttgtgtaaac      120
gagggtttgt gctgcaagat actgtggagc aactgcgtat tgagcactgt gctcgcttcc      180
tggctgaccg cttctgtgg ggcgtgtgtc cttctgtgg ctatgaggag gctcggtgtg      240
accagtgtga caagtgtggc aagctcatca atgctgtcga gcttaagaag cctcagtgtta      300
aagtctgccg atcatgccct gtggtgcaatgtt cgagccagca cctgtttctg gacctgccta      360
agctggagaa ggcactggag gatgtggatgg ggaggacatt gcctgcactg actggacacc      420
caatgcccac ttatcaccgg ttcttgcttc nngatggcct caaccacgct gataacccga      480
gacctcaatg gggAACCTGT cctcggcgga cacctaggca atcacacact gcccgtct      540
agtgtatccac tcgaccactt gcgatatggta tantgtctgtttaatgatcgt acat      594

<210> 727
<211> 665
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

```

<222> (1) ... (665)
 <223> n = A,T,C or G

<400> 727
 gcgtggtcgc gcccgggtgc cgtcaaggag tagaaattgg tatgcttaga agcagattct 60
 aaaagcagg tcttttcaga acatctttt tcataccact tgataagcat cttgaaaacac 120
 catggctgtaa gctcagtaa aatgggtgat gtcaaagaga actatctga aacatttatt 180
 tccagtccaa aatggagctt tatattgtgt ttgtcataaaa tctacgtatt ctcccttacc 240
 agatgactat aattgcaacg tagagcttgc tctgacttct gatggcagga caatagtatg 300
 ctaccaccc tctgtggaca ttccatatga acacacaaaa cctatccctc ggccagatct 360
 gtgcataata atgaagaaac acatgtcaaa gtgctgaaaa ccagattgga agaaaaaagt 420
 gaacacccgg aggaaagacc tatgtatnac ccacttanc aaatggtcnt tactactaag 480
 caccctgtgn attccatg gacngnnntac agatgtcnta agaatctgaa tcctccaaag 540
 accgatgtg ccganggtcc tgggggatc aaaagaaaag ggncccatl gcatttggnna 600
 aaagccanct ggggttccn tattttttgt aaggaataat gntaaaaatc tttctntttt 660
 anaag 665

<210> 728
 <211> 624
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1) ... (624)
 <223> n = A,T,C or G

<400> 728
 ggttaccagg gcagtatctc tagagtccctt aacttaatat tagtaactaa agaaaaagggt 60
 tgcgcgtgtt gcaggactta acctaacatc tcacgcacacg agctgacgc aaccatgcac 120
 catctgtcat tctgttaacc tccactatat ctctatagct ttgcagaaga tgtcaagagt 180
 gggtaaggtt ctacgcgttag aatcaaatta aaccacatgc tccaccgcctt gtgcgggttc 240
 ccgtcaattc cttaaattt cactcttgcg agcataactac tcaggcggat catttaacgc 300
 gttagctcg ttagtggaaat tattccacca actaatgatc atcggttacg gcgtggacta 360
 ccagggtatc taatcctgtt tgctccccac gctttcgccctt tagtgc当地 tatataacca 420
 gttagctgcc ttgccttattt gggntcttcc taatatctac gcattccacc gcttcactag 480
 gaattccgtt acctctttat aatctatttgc gcaatcttca agcggctgaa gttagcttac 540
 acatttactt cagacttaca aaaactacgc gcttacgccc aatattccga tacgttgcac 600
 natgatttacc ggggtgtgcc aaaa 624

<210> 729
 <211> 449
 <212> DNA
 <213> Homo sapiens

<400> 729
 actgacacac aaagtgcctt cactggacct tacagttctc actgcccgtt gactccagtc 60
 cagctttggg gctggggaca agtcggcctc gcttgcaccc cagggccctct ctggggctgt 120
 cagtcggact tctctcagga agattattga ctgggacgga tttcgtgtt ggttctcgga 180
 ggtatgggcc tgaatctact gggctccgct gagcaactttt gacctttgtt gatctgtgc 240
 caccagctgt tggtttggag gactctgcaa gattttctt gcccggactc agtggggata 300
 gcgctaactt ctgtgcacc accggggggc tggcccagt tgccatggtt gttcttcgca 360
 ggtatataatgg gctaagtctt tcctgtcggg atgtcagcaa accctttctt tacaacttct 420

ggaagtccct ctggctcaaa ctcagtacc

449

<210> 730
<211> 646
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(646)
<223> n = A,T,C or G

<400> 730

actcattaat	cagggaggct	caatcttagt	aaaagattac	atttgaaga	ggacacccat	60
tcatgcagca	gcaacaatg	gtcattcaga	atgcttacgg	ctattaatag	gaaatgcaga	120
accacagaat	gcagtggata	ttaaagatgg	aatggacag	acgcctctga	tgttatctgt	180
tctcaacccgg	cacacagact	gtgtttactc	attgctgaac	aaaggagcaa	atgttagatgc	240
caaagataag	tgggaaagga	cagcgttcga	tagagggca	gttacaggcc	atgaagaatg	300
tgtatagatca	ttacttcaac	atggtgctaa	gtgttactt	cgggatagca	ggggccccgg	360
cgcctataca	cctgtctgt	gcctgtggac	acattgggt	tcttggagcc	ctttgcagt	420
cagcagcatc	tatggatgca	aatccagcca	cagcagacaa	tcatggatat	ccgnacttac	480
tgggcttgc	caatggtcac	gagacatgtg	tagaactgnt	tttagaacag	gaagtttcc	540
agaaaacgga	aggaaaatgct	tttagtccat	tgcatggngc	cgtataaat	gccacccaaag	600
ggctgttaaa	ngtttaattga	tcnttanggg	ccacattggg	aacccc		646

<210> 731
<211> 639
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(639)
<223> n = A,T,C or G

<400> 731

acagacttgt	ttttgagtgt	tgagtagcag	ggacaaaata	agggaatggt	attttttaag	60
aaaattcatt	ttcattgttg	tcccttcct	tttctgtgaa	agtccctcata	ctgagaaatt	120
tgtatattt	atattaaatc	acttactatt	gattttgtt	gtgatttca	aaggtggatt	180
cccacagata	aatcttggc	tattgccaa	aacatagtaa	agggtcacgt	gtgacttttt	240
ataatagaa	gaaaattctg	ccttgtgag	tgcacatgtc	cacatttcat	ccctccttcc	300
ctcaaaaacc	tagaggggg	cattaaagaa	ttgttcatgt	atatgcaatg	tctgttaaag	360
catgcactat	gtatccatc	ctcatttatt	gggtctggga	ctgaagttt	taacccacat	420
ggacctaacc	tacttttgg	gataaaaattc	tctgtttgg	acaggaaaa	ttctggatatg	480
gcgtgaatgc	catgggtcat	tctgaatata	tttttctgg	aatttatcat	acacgtgtt	540
gcaatacgtg	cttgggttt	taatttgaag	ccaaactttc	tactgtgaa	agacattttt	600
cccaactgg	ccttctanaa	tggagtctaa	gttaggncc			639

<210> 732
<211> 538
<212> DNA
<213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(538)
 <223> n = A,T,C or G

<400> 732

ggtaactcgctc	ccttcaaaca	gtaaaacaaga	aagtgcagac	aqtgctgcc	gagacaggag	60
gattttcaca	tgagactgaa	aaagccgaca	cacccttaca	actaagtcat	ggtcgagtcg	120
gacctgccccat	ccacccctccac	cagtccctgg	aaccggcag	gtcagagttt	tctctaattc	180
tattccccgg	catcaagtga	acactagaac	tcacacggaa	ggcccccagc	aaccactggc	240
ctcgccccgt	ggtgcaccca	ctccctcaccc	aggagattg	tcacaaaaaca	cgctaggggg	300
cagagacgct	gtaaaactgga	cacacacgga	acacaatgcc	cttccactt	acacagcgtg	360
gggatgataa	aaaggaatct	tttgagcaag	tctataattt	tacagaattt	agaggtggga	420
aagatggcca	atttcccttc	tttatgcctg	gggcagacca	cctgcttctg	ggtaaaagtg	480
tttgagaagg	aaaaagaccc	tgnacctgccc	nngggcggcg	ctcgaaaggc	caattcna	538

<210> 733
 <211> 351
 <212> DNA
 <213> Homo sapiens

<400> 733

cgaggtaccc	tatggcctat	gttgactata	agactgtgct	gcagattgtat	gataatgtga	60
cgtcagccgt	agaaggcatac	aacagaatga	ccagagctct	catggactcg	cttgggcctg	120
agtggcgcct	gaagctgccc	tcaatccct	tgggtcctgt	ttcagttcag	aagaggtgga	180
attccttgcc	ttcggagaaac	cacaaagaga	tggctaaaag	caaatccaaa	gaaaccacag	240
ctacaaagaa	cagagtgcct	tctgctgggg	atgtggagaa	agccagagtt	ctgaaggaag	300
aaggcaatga	gcttgtaaag	aaggaaacc	ataagaaagc	tattgagaag	t	351

<210> 734
 <211> 625
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(625)
 <223> n = A,T,C or G

<400> 734

cgaggtacaa	tccttgacct	tgtgcattat	agcattccat	tagcaagagt	tgtaccatcc	60
ttcatccaaa	tggcaacatc	acagagctcc	tcctgaagga	aggtttcgca	cgctgtgtgg	120
actggtcgt	tgcagtttac	acccggggcg	cagaaaagct	gagggcggca	gagaggttt	180
ccaaagagcg	caggctgaga	atatggagag	actatgtggc	tcccacagct	aatttggacc	240
aaaaggacaa	gcagtttgtt	gccaaagggtga	tgcaggttct	aatgtctgat	gccattgttg	300
tgaagctgaa	ctcaggcgat	tacaagacga	ttcacctgtc	cagcatccga	ccaccgaggc	360
tggagggggga	gaacacctag	gataagaaca	agaaaactgcg	tcccctgtat	gacattcctt	420
acatgtttga	ggccccggga	atttcttgc	aaaaagctta	ttggggaaaaaa	gtcaatgtga	480
cngtggacta	cattagacca	ccagccccagc	cacagagaca	gtgctgcctt	tcaaacgtcc	540
tgccggggcg	ccgtcaaaagg	cnattcacca	tggcggcg	tatggaccac	tcggaccact	600
gggaactggc	tactgtctgg	gaatg				625

<210> 735

<211> 677
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(677)
<223> n = A,T,C or G

<400> 735

actttctatg agaagcgtat gaccacagaa	gttgctgctg acgctctggg tgaagaatgg	60
aagggttatg tggccgaat cagtggggg aacgacaaac	aaggttccc catgaagca	120
ggtgtcttga cccatggccg tgcgcctg ctactgagta	aggggcattc ctgttacaga	180
ccaaggagaa ctggagaaaag aaagagaaaaa	tcaacttcgtg gttcattgt ggatgcaa	240
ctgagcggttc tcaacttggt tattgtaaaaa	aaaggagaga aggatattcc tgactgact	300
gatactacag tgctcgccg cctggggccc aaaagagcta	gcagaatccg caaactttc	360
aatctctcta aagaagatga tgcgcgcag tatgttgtaa	gaaagccctt aataanngaa	420
ggtaagaaac cttaggacca agcaccaaga ttcaannngtc	ttggtaactcc acgtgtctg	480
cagcacaaac cggcggtgtt ttgcnnnaaaaaccagcg	taccttnggc cgngaacacc	540
cttangggcg aatttccagn ccacttggcn ggccgnntct	aatgggaatc cancttegg	600
acccanctt ggccgaatca tggcatanc ttggttccct	gggtgaaaaat ggtattccgt	660
tcaaaaattcc nccaann		677

<210> 736

<211> 651
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(651)
<223> n = A,T,C or G

<400> 736

ggtactattg aagaactggc tccaaatcaa tatgtgatta	gtggtgagg agtattctt	60
aattctacaa ccattgaaat ctcagagctt cccgtcagaa	catggaccca gacatacaaa	120
gaacaaggccat gttgaatggc accgagaaga cacctctct	cataacagac	180
tatagggaat accatacaga taccactgtg aaatttgg	tgaagatgac tgaagaaaaaa	240
ctggcagagg cagagagat tggactacac aaagtcttca	aactccaaac tagtctcaca	300
tgcaactcta tggctttt tgaccacgta ggctgtttaa	agaaatatga cacggtgttg	360
gatattctaa gagactttt tgaactcaga cttaaatatt	atggattaag aaaagaatgg	420
ctccttagaa tgcttggc tgaatctgct	aaactgaata atcaggtctg ctttatctta	480
gagaaaatag atgcaaaat aatcattgga aataaggcta	agaaagaatt aattaaaggt	540
ctgattcaga nggatatga ttggatcct gtgaaggcnt	ggaaagaaac ccannaaang	600
gttcngatta agaaaaat naanaagagn gccancaaag	gaacttgaaa n	651

<210> 737

<211> 404
<212> DNA
<213> Homo sapiens

<400> 737

cgaggtactg tgtggccacc atgccatgtc tagagccagg	ctcccggtgt tggccatgcc	60
---	-----------------------	----

ttgcttgag gcttggctc tgcacgagac gccgcagaga acgtcttgat gcctcgctcc	120
ccttatcctc accacttctt tcttaggggt gaaaatgtg gatcaaaggg tcttcacgtt	180
ttctgacttt tccacgcattt gggtagcct gtgcctggaa gaccctgtga gcacacatgt	240
ccccagcgca gcttgtact cctgcctctc tgaccccgcc aggtggattt caaagctgac	300
gagtggctga tgaagaacat ggatcccctg aatgacaaca tcgccacact gctccaccag	360
tcctctgaca agttgtctc ggagctgtgg aaggatggta cctg	404
<210> 738	
<211> 250	
<212> DNA	
<213> Homo sapiens	
<400> 738	
acatcaaaga ttacatgaaa tcaatcaaag gggaaacttga agaacagaga ccagaaaagag	60
taaaacctt tatgacaggg gctgcagaac aaatcaagca catccttgct aatttcaaaa	120
actaccaattt ctttattgggt gaaaacatga atccagatgg catggttgct ctattggact	180
accgtgagga tggtgtgacc ccatatatga ttttctttaa ggatggttt gaaatggaaa	240
aaaaaaaaacc	250
<210> 739	
<211> 582	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(582)	
<223> n = A,T,C or G	
<400> 739	
acagtaagga caaccccaac ctgctgttca acatgtgtgg cttcgagtgc cgcatcctgc	60
ctaagtggccg caccagctat gaggagttca cccacaagga cggggcttgg aacctgcaga	120
atgaggttac taaggagcgc acagctcagt gttccttgcg tgtggacgt gagtcaatgc	180
agcgcttcca caaccgcgtg cgtcagattt tcatggcctc tgggtccacc accttcacca	240
agattgtgaa taagtggaa acagctctca ttggccttac gacatactt cgggaggctg	300
tggtaaacac ccaagagctc ttggacttac tggtaagtg tgagaacaaa atccagacac	360
gtatcaagat tggactcaac tccaagatgc caagtgcgtc ccccccgttg tggcttacac	420
ccctaaggag ttgggtggac tcggcatgtc ctcaatgggc catgtgctca tnccccaatc	480
cgacctcagg tgggtccaaa cagacngatg tagtatacac acacttcgt tcaggaatga	540
gccttgaaga agaccacttac ttcccacttgc nacctcgcc 99	582
<210> 740	
<211> 576	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(576)	
<223> n = A,T,C or G	
<400> 740	
ggtaggacac cgaacccctg attcagacag caaaaaccac gctgggtcc aaagtggta	60

acagttgtca	ccgacagatg	gctgagattg	ctgtgaatgc	cgtcctca	gtacagata	120
tggagcggag	agacgttgc	tttgagctta	tcaaagttaga	aggcaaagtgc	ggcgccaggc	180
tggaggcac	taaactgtt	aaggcgtga	tttgtggacaa	ggatttcagt	caccacaga	240
tgccaaaaaa	agtggaaatg	gcgaagattg	caattctcac	atgtccattt	gaaccaccca	300
aaccaaaaaa	aaagcataag	ctggatgtga	cctctgtcga	agattataaa	gcccttcaga	360
aatacggaaa	ggagaaattt	gaagagatga	ttcaacaat	taaagagact	ggtgctaacc	420
tacaatttgt	cagtggggct	ttgatgtga	agcaaatcac	ttacttcttc	agaacacttg	480
ccttgcggtt	ccttggtagg	aggacctgaa	atttagctga	ttgccatcgc	aacaggangg	540
cggatcgccc	cagttctcaa	gctnacagcc	gagaan			576

<210> 741
<211> 579
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(579)
<223> n = A,T,C or G

<400> 741						
accttatctg	aaactcttgc	acttccccaa	ccagggcaga	aatgagggtgg	gagaagtttg	60
actaaaaatga	gggatggggg	aaagtaaaag	atgtttttt	ttttttgaga	ctcgctttgt	120
cacccaggt	ggagtgcata	ggcacaatct	caactcaccg	caacctccgc	ctcccggtt	180
caagcgattc	tcctgcctca	gcctcccgag	tagttggat	tacaggegcc	tgcctccatg	240
cctggctaat	tttgtatttt	tagtagagac	agggtttctt	catgttggc	aggctggct	300
caaactccta	acctcggtat	ccgcctgcct	cgacctccca	aagtgcctgg	attacaggca	360
tgagccacca	tgcccagcca	aagatcattt	tttatatacg	acttcacccct	ttgtaaatac	420
tgtactgggg	gagtagatag	tagaaaaaaa	gtttagttaa	aacattgtt	tacaaattaa	480
cctttaaaaa	tntaattact	gctaaaaata	gaaggctgtt	ncccttaagg	aaaattagng	540
ccattttgg	aatganactt	gggcataaaa	tncaggtgg			579

<210> 742
<211> 578
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(578)
<223> n = A,T,C or G

<400> 742						
ggtaacttgg	gatgctttac	taggtgtttt	ccattagaat	tagaccttga	ttttaaatcc	60
aagcaagctt	gaagccccctt	ggcttacagc	atttgctgc	tgaatactaa	acactcacat	120
ggcaagagtt	gctctggaga	ggtagggcca	gaggaatgct	gctgcactgc	caactcaggc	180
acatgcttag	ctgtaaagg	aagcgagg	aagtgcgtct	gcagcgtatt	agagtaaaag	240
tctacccttc	tgaagcacta	ttaagcgtt	aaccgtat	ttaaatacta	ccatgtgcta	300
tctactgagg	aagattcatg	ttcaattatt	tggaaataat	gcaagcatcc	actaagggcc	360
tttaagctt	cttgattat	aattaagg	catttaagt	tnnnnnnn	ctttcaacca	420
gtgtgccatc	tccaaatattt	ctatagtata	ccaaaccaccc	caggaatgca	ctttaacaat	480
atcagggatt	tatataacca	aatgtttca	aatccaacaa	aattccctt	atgaacttcc	540
gcttttaag	actactgtat	ggtacctgccc	ggcgccggcc			578

<210> 743
 <211> 592
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(592)
 <223> n = A,T,C or G

<400> 743
 ggtctttaga aagtccatg attctgcata tactgtttga actgaatcat gatgtcttta 60
 gaaagtatat gcagaatcag aatgttccgg gaaatattga gtttaactgtg aatatcctga 120
 caatgggcta ttgccgaca tatgtgccta tggaaagttca tttaccacca gagatggtaa 180
 aacctcagga gatttcaag acatttacc taggcaaaca tagtggcagg aaacttcagt 240
 ggcagtcaac cctaggacac tgtgtgttaa agcagaattt aaagagggta aaaaggaact 300
 ccaggtctct cttttcaaa cactggtgct gctaatgttt aatgagggag aggagttcag 360
 tttagaaagag atcaagcagg caactggaat agaaggatgg agagtttaagg agaacactgc 420
 agtcatttagc ctgtggcaa aagctagagt tctggcgaaa aaatnccaan ggc当地
 ctttgaanat ggtacaagt tcantngta atngatgatt caaaccttaa actttcagga 480
 tnaaggatca atcaaatnca aaaaaaaaaa nnnaaaaaaaaaa agcttgcgttcc ga 540
 592

<210> 744
 <211> 578
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(578)
 <223> n = A,T,C or G

<400> 744
 ggtaccaaac atagccctta ggcctggct aggctctcaa aggtcttcc cagaaatgg 60
 ggcagcagta gcttcaaaaca ggcacaaaaa cagccaggag gaggcagcat ccactccatg 120
 aaggccttaag acaatgaaag gaagccagag caacagacca ctttggatc cggggagaag 180
 ggtaaaatggg caaaagggtt gtatccctg atgctctcag aacatcagac cacccatgt 240
 gaatttaagc aggacttt taagtgggaa aacaataacta gaagcatttgc gtgtatccc 300
 ctggcactca cctccttagt aagcaggaga gcgggacact caggagttgt gactaaactc 360
 acacttaagc tgccctgtcca gaccgtcccc ttggctgaac acaacactga aattgtggca 420
 gtgtctgttgc cnccagtggc cctncactta ctaatgagta tgtaaaacag angagccaca 480
 gtgaggcnnt tcacaaaacc canggctctt gggggaaaaa cgggttcca cttctgnct 540
 tttgggtgtc gaaagtnctt gagganaag aagttgn 578

<210> 745
 <211> 581
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(581)

<223> n = A,T,C or G

<400> 745

acagatcagg caactgtgga	aaatctaac	gaactgcgcc	aagatctgtc	aaaattccga	60
aatgaaataa gggatttacc	tggctttcgg	acttctaaat	atgctatgtt	ttatccaaga	120
aattaaccat ttcttaatc	atggagcgaa	taatttcaa	taacagatcc	aaaagactat	180
attgcataac ttgoaatgaa	attaatgaga	tatattatgt	aataaagaat	tatgtaaaaag	240
ccattctta aaatatttat	agcataaata	tatgttatgt	aaagtgtgta	tatagaatta	300
gtttttaaa ccttcgtta	gtggctttt	gcagaagcaa	aacagattaa	gtagatagat	360
ttttagca tgctgcttg	tttcttact	tagtgctta	aatgtttt	tttatgttt	420
aagaaggggc agttataaaa	tggacacatt	gcccaaaaag	gttttgaaa	antggaagac	480
ccagcaatg gtanggctt	accccttc	caaggataca	cttggaaata	tagaaagtta	540
tgtttaaata tctctggtt	aggagttcac	atatagttaa	g		581

<210> 746

<211> 506

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(506)

<223> n = A,T,C or G

<400> 746

ggtacaagct ttttttttt	ttttttttt	ttttttttt	taggttagtgg	gtgttgagct	60
tgaacgctt cttaatttgtt	ggctgnttt	aggcctacta	tgggtgttaa	atttttact	120
ctctctacaa ggnttttcc	tantgtccaa	agagctgttc	ctntttggac	taacagttaa	180
atttacaaaaagg gatataaaag	ggttctgtgg	gcaaatttaa	agttgaacta	agattctatc	240
ttggacaacc agctntcacc	aggctcgta	ggtttgcgc	ctctacccat	aaatcttccc	300
actatttgc tacatanacg	ggtgtgcct	tttanctgtt	cttaggtanc	tcgtctgggt	360
tcgggggtct tancttggc	tctccttgca	aagttatttc	tagttaattc	attatgcana	420
agnataggg gttaaagtc	tgctatatta	tgcttggta	taattttcat	cttncccttg	480
cggnacctgc ccggccggcc	gtttna				506

<210> 747

<211> 454

<212> DNA

<213> Homo sapiens

<400> 747

ggtactttgg cttaatgtat	tggcaacttc	tacaggggcc	agtctttga	actggacaac	60
cttacaagta tatgagtatt	atttataaggt	agttgtttac	atatgagtcg	ggaccaaaga	120
gaactggatc cacgtgaat	cctgtgtgt	gctggccct	acctggccag	tctcatttgc	180
accatagcc cccatctatg	gacaggctgg	gacagaggca	gatgggttag	atcacacata	240
acaataggt ctatgtcata	tcccaagtg	acttgagccc	tgtttggct	caggagatag	300
aagacaaaaat ctgtctccca	cgtctgc	ggcatcaagg	gggaagagta	gatggtgctt	360
gagaatggtg taaaatggtt	gccccatctag	gagtagatgg	cccggtcac	ttctggatc	420
tgtcaccctg agcccatgag	ctgccttta	gggt			454

<210> 748

<211> 569

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(569)

<223> n = A,T,C or G

<400> 748

ggtaccagct	ggcacaggag	cagggggcat	ggcacctcg	ttgtttatgc	ccatagcacc	60
tcccatagcc	atctgaccca	tccgaatetc	ctgctctc	gcatcaggga	aggttccett	120
gaatccctcc	tgctgtcgcc	gcatcatttc	ttcttgctgc	cggcgcatct	cttcttcacg	180
gcccctgcgc	tcttcctct	gcctgagctc	cagttgttt	cgaaaaatgc	cctcttggtt	240
gtgcagctc	tccatctcc	gaagttcttc	ttggcgctc	atcaaatcct	gtctcatttag	300
catgacccatgg	tgctcatggc	gtgcagctc	catctccatc	tccagcttct	cacgagcctc	360
cttgcgttgc	cggtccactt	ggtctgtgt	ctgtttctcc	atctcaatga	gtgccttnca	420
gcccattggca	tattcatact	caaaggaaacc	aggctgtgca	aatctgggtt	gctgctctcg	480
ttccttgtga	aatgtgggtt	ttataaccag	cttcnttgg	agccctcttc	atcaatctaa	540
cctggccat	gggctccaca	gtcacaagg				569

<210> 749

<211> 428

<212> DNA

<213> Homo sapiens

<400> 749

acatggatat	tcccaaacc	ttccattaga	aaactgccc	ccctgcacac	acaacaaaaa	60
cagcgctatt	tcctacac	attggactga	aagtgtttgg	aatggaaatg	gttttagaat	120
atgaagaaga	acacaaacc	agtagctgt	ggttgaacct	ggacgtgagc	tggctgcagg	180
gcccgtgggt	agaaaaccag	catctcataa	acaggtca	ccactggatg	gttgcact	240
ggatggttt	ttgggttggt	ggtcacaggc	gcaaaggaca	tgcacacggc	cacgctacgc	300
tactgttaacc	aagaggtgac	ttcagccatg	aataagggtg	agaggttaca	catctaccta	360
cggaaatataa	taacatacaa	tgacttataa	agtgactaca	tgcatatgag	caagcaaagt	420
acctcgcc						428

<210> 750

<211> 569

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(569)

<223> n = A,T,C or G

<400> 750

acctgcccaga	attagcaaga	gctttcttta	agaagacatt	tgtcaaactc	aacaaattga	60
aggtaaacac	cttaagagtt	gtagttactg	accagaaata	tggacagact	tcttagactt	120
ggaggaggta	tgcctggact	ggggcagggg	ccacccatag	atgctccctgc	agtggacaca	180
gcagaacaag	tctatatctc	ttccctggca	ctgttaaaaa	tgttaaaaaca	tggccgtgt	240
ggagttccaa	tggaagttat	gggtttgatg	cttggagaat	ttgttgatga	ttataccgtc	300
agagtgttgc	atgtgtttgc	tatgccacag	tcaggaacag	gtgtcagtgt	ggagggcgtt	360
gatccagtgt	tccaagctaa	aatgttgat	atgttgaagc	agacaggaag	gccggagatg	420
gttgggtt	gggtatcaca	gtcaccctgg	cttgggtgn	tggcttct	gtgtggat	480

caacactcag cagagcttg aagcttgtc gganagaact tgtggcaagt gggtgtggat	540
cccattcaga gtgtaaaagg aaaggttgc	569
<210> 751	
<211> 568	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(568)	
<223> n = A,T,C or G	
<400> 751	
acctgaagct caggaggaga tgaaagaagt agccaaacac ccaaagaatc ctgaggttgg	60
cttgaagct gtgtggata gtcggaaagt tttcattgaa ggtgctgtc cagagacttt	120
ttcggaggtt gagatggta cattataaa ttggggcaac ctcaacatta caaaaataca	180
caaaaatgca gatggaaaaaa tcatactct tgatgcaag ttgaatttgg aaaacaaaga	240
ctacaagaaa accactaagg tcacttggct tgcaagact acacatgtc ttcatttcc	300
agtaatctgt gtcactttagt agcacttgcataaaagcca gtgcttagaa aagacgagga	360
ctttaagcag tatgtcaaca agaacagtna gcatgaaagag ctaatgtcg gggatccctg	420
ccttaaggat tttggaaaaaa ggagatattata tacaacttca gagaagagga tttcatatg	480
tgatcaacct tatgaacctg taacccatgt agttgcaagg aanccgtgt gtttatata	540
cattcctgtat ggcacacaan gaaatgcc	568
<210> 752	
<211> 312	
<212> DNA	
<213> Homo sapiens	
<400> 752	
accggccaggg atgtcccttc cagccctggg atggactaga ggagcacagc caagccctga	60
gtggggaggct gccccccatt ctccagaatc agggaaactg aaggatggc ctcgtctct	120
aaggaaggca gagacctggg ttgagcagca gaataaaaaga tcttcttcca agaaatgca	180
acagaccgtt caccaccatc tccagctgtc cacagacacc agcaaagca tgcgtccctg	240
atcaagtata tttttaaaaa atcagagtca attaatttta attgaaaatt tctttatgt	300
tccaaagtgtat cc	312
<210> 753	
<211> 334	
<212> DNA	
<213> Homo sapiens	
<400> 753	
ggtacaagcg tctgcagcag actgtggcg gcgaaggagc aggattccag ggcgtgttg	60
ggcttggta cgaacgcccag cagcagggtt gcaaggccct tggggaaata gtctgtgc	120
accatgttgt tcagcgccat cagggggccg tacatttt tcccacggc caaaaatgc	180
ctaaggaagg gagaacataa taaagggtt tcttctctc ccttttctt tcacattaag	240
acctacacccat aaatattttc catagaaaaac catttccata attgtcttt gaatgaaatt	300
ctgacttggc gccacacaagga ctaatacccg ccga	334
<210> 754	
<211> 533	

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(533)

<223> n = A,T,C or G

<400> 754

ggtcgcccgc	actgtccggc	cacagctaa	cgctcttcgc	tgtcgttgc	ggtctcgcg	60
aggcgcccc	cggttcttgt	gtaattaaac	aaccaccatg	tgcggcaaaa		120
aggcaaac	caagaccacc	aagaagcgcc	ctcagcgtgc	aacatccaat	gtgttgcc	180
tgtttgacca	gtcacagat	caggagtca	aagaggcctt	caacatgatt	gtcagaaca	240
gggatggctt	catcgacaa	gaagattgc	atgatatgt	tgcttctcta	ggaaagaatc	300
ccactgtgc	ataacctgat	gccatgtga	atgaggcccc	agggcccattc	aatttcacca	360
tgttctgac	catgttgtt	gagaagttaa	atggcacaga	tcctgaagat	gtatcagaaa	420
cgcccttgct	tgcttgatg	aagaagnaca	ggcaccattc	aggaagatac	ctaagagact	480
gttgcacca	tgggggatc	gttacana	ataagaagt	gatgantgtc	ctg	533

<210> 755

<211> 571

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(571)

<223> n = A,T,C or G

<400> 755

ggtaccttat	tagaaagcg	cggcaaacta	tgtgccagca	gccgcggtaa	tacatagg	60
gcaagcgta	tccggaatta	ttggcgtaa	agcgccgt	ggtttttgc	taagtctgg	120
gttaaatgct	gaagctcaac	ttcagtcgc	tttggatact	ggcaaaatag	aattataaag	180
aggtagcg	aattcctagt	gaagcggtt	aatgcgtaga	tatttagaag	aacaccaata	240
ggcgaaggca	gctaactggt	tatatatg	cactaaggga	cgaaagtgt	gggagcaaac	300
aggattagat	accctggtag	tccacgcgt	aaacgatgt	cattagttgg	tggataatt	360
tcaactaacgc	agctaacgcg	ttaaatgatc	cgctctgat	gtatgctgc	angagtgaaa	420
tttaaaggaa	ttgacgggaa	cccgnaa	cggtggagca	tgtggttaa	tttngattct	480
acgcgtagaa	ccttacccac	tcttgacatc	ttctgcaagc	tatagagata	tagtggaggt	540
tacagaatga	cagatgg	atggttgtc	g			571

<210> 756

<211> 570

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(570)

<223> n = A,T,C or G

<400> 756

ggtccactgg	aaaggcaaca	tgaccaggct	gccccgcctc	ctggttctgc	ccaagttctc	60
------------	------------	------------	------------	------------	------------	----

cctggagact	gaagtgcacc	tca	gagaagcc	cct	agagaac	ctgg	aatga	ccgacatgtt	120
cagacagtt	cagg	tcactgact	tcac	gagtct	ttc	agaccaa	gag	cctctcc	180
ggcgctcgag	aa	agtgaaga	tcg	agggtgaa	cgag	agtggc	acgg	tgccct	240
agctgtcata	gt	ctcagcccc	gcat	ggcccc	cgagg	gagatc	atcat	ggaca	300
cttgggtc	cgg	cacaacc	ccac	aggaaac	agt	cttttc	atgg	ccaag	360
ctgaccctgg	gga	aaagacgc	ctt	catctgg	gacaaa	actg	gagatgc	atc	420
aaactccgaa	gaaa	agaatt	ttag	gttaa	tgact	ctttc	tga	aggaaga	480
ccttggta	aa	agatggta	aacc	agatct	gg	cttccaag	ac	ctngc	540
ac	cttagt	caa	actccct	at	ttc	ac	ttt	ggagg	570

<210> 757

<211> 578

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(578)

<223> n = A,T,C or G

<400> 757

acaagctttt	ttttttttt	ttttttttt	ttttttttgg	gagtaagaaa	agg	tg	gggat	60
taagaanacg	tttctggagg	cttagggacc	aaggctggc	tctttcccc	ctccc	aaaccc	cc	120
ccttgatccc	tttctctgat	caggggaaag	gagctgagtg	agggaggt	agg	tg	ggaaag	180
ggaaggattc	cacttgacag	antggcacan	actccctccag	agtanagctt	ggagg	ggagat	at	240
tgaaagtgga	gataatactg	ctgacaccc	ccttgaagct	nagatggaa	atgg	acatac	at	300
ttagaaattt	agtgacttta	atagccttga	tttccctntn	caaaaactttt	agaatggaaa	at	360	
atcccatccc	cttccttata	tagtgc	tacccactac	cttctaccat	tttctacttt	at	420	
gggcttatga	tgatggccat	tatctacatg	ngttttagn	accctggttt	ggtt	ctaaan	at	480
ggggatctt	gaacccnagn	ttnttggag	attttaaga	aggaagtttt	aact	gaacaa	aa	540
atggaatggg	cnccagaaag	aaatccagg	tnncccn					578

<210> 758

<211> 567

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(567)

<223> n = A,T,C or G

<400> 758

ggta	cgc	gat	tgaaagg	ttg	agg	gtt	tc	ac	tg	ca	gga	aa	at	60
atg	aaa	atg	g	ctgg	caa	ag	taa	acc	act	tat	atg	aa	at	120
aca	ag	atg	aa	ac	aa	ac	tt	tt	tt	tt	tt	tt	tt	180
aa	gg	at	tt	cc	aa	aa	tt	tt	tt	tt	tt	tt	tt	240
gg	gg	gg	tt	cc	aa	aa	tt	tt	tt	tt	tt	tt	tt	300
gg	gg	gg	tt	cc	aa	aa	tt	tt	tt	tt	tt	tt	tt	360
gg	gg	gg	tt	cc	aa	aa	tt	tt	tt	tt	tt	tt	tt	420
gg	gg	gg	tt	cc	aa	aa	tt	tt	tt	tt	tt	tt	tt	480
gg	gg	gg	tt	cc	aa	aa	tt	tt	tt	tt	tt	tt	tt	540
ta	ag	gt	aa	tt	gg	tt	tt	tt	tt	tt	tt	tt	tt	567

<210> 759
 <211> 266
 <212> DNA
 <213> Homo sapiens

<400> 759
 ggtcaccgac ctctctcccc agctgtatcc ccaaaatgtc gctttctaacc aagctgacgc 60
 tggacaagct ggacgttaaa gggaaaggccc tcgttatgag agtcgacttc aatgttccct 120
 tgaagaacaa ccagataaca aacaaccaga ggattaaggc tgctgtccca agcatcaaatt 180
 tctgcttgaa caatggagcc aagtccgttag tccttatgag ccaccttaggc cggcctgatg 240
 gtgtgcccat gcctgacaaag tacctg 266

<210> 760
 <211> 381
 <212> DNA
 <213> Homo sapiens

<400> 760
 ggtacactag aaagtctttt acaaaaataat catcttagat caacagaaga ccaatcttca 60
 atgtcgctt gcaagatggg ttactttaac atctccctt gtttctcca atgttctccct 120
 ttagtatggc tggtaattgt tttggtgatt gccacccctt cgagatgcct tgccataagt 180
 gctctgttgg ccactgttgt ctgcataatcc ctgtcccatat ccatagttcc catagttata 240
 cccagtataa tcatatccgc catagccact atagtttga tcaccaccat aggcactatt 300
 gtaatttcca tattccttgat cataatagtt attaaatcct tggttccagt tttggccctg 360
 acctcgccca cgaccctctcg 381

<210> 761
 <211> 401
 <212> DNA
 <213> Homo sapiens

<400> 761
 actcagctcc aattatctaa tattcttggaa aggatgctga tattgtttgg ttgtgtcccc 60
 ccacaaaatct caacctgaat tttatctccc agaattccca cgtgttgg gacagaccca 120
 gggggaggtt attaatcat gggggccagt ctttccctgt ctattctcgat gacagtgaat 180
 aagtctcatg agatctgtatc agtttatcgt ggggttctgc ttttgcattt tcctcatttt 240
 ttcttgccac aatgtaaagaa gtgtcttttgc cttccacca tgattctgag gcctccccag 300
 ccatgtggaa cttaaagtcc aattaaacca cttttcttc ccagtctcggt gtatgtcttt 360
 atcagcagcg tggaaacggc ctaatacagt aaatttggatc 401

<210> 762
 <211> 610
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(610)
 <223> n = A,T,C or G

<400> 762
 acgcttggat attcataatcc cataacttggat cttgaagtct tccaccaggc cctgcattt 60

tcttagctct	gagtccaggc	ggccccgttc	ccccacgatg	ctgtccagct	gcctcctgag	120
gttgttgatg	tacagtaaaa	acacatctaa	catcttgaa	gaccaaattt	cctgctgaac	180
agtattacag	atttcatgag	caactggaggt	tttgtttgca	gcgcttggtc	ttcttggcag	240
cattttgtgt	gtatTTggaa	acagaaacac	tagtgaactcg	agaagcagt	acagaaattc	300
ttggcattga	gccagatcgg	gagaaaggat	ttcatctgga	tgtagaagat	tatctctcag	360
gagttctaatt	tcttgcagt	gaactgtcga	ggctgtctgt	caacagcgtg	actgtggag	420
actactcccg	acccttccac	atctccacct	tcataatga	gctggatcc	ggtttcgcc	480
ttctcaacct	aaaaaatgac	tccctgagga	agcgctacga	cggattgaaa	tatgacgtga	540
agaaaagtaga	aggaagtgg	ctatgatctc	tncatccggg	ctttaataag	gagacggcag	600
cagcttgn						610
<210>	763					
<211>	578					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(578)					
<223>	n = A,T,C or G					
<400>	763					
cgaggtaccc	tgaagaactt	ccctaattgcc	atcgagcaca	ccctgcagtg	ggctcgggat	60
gagtttgaag	gcctcttcaa	gcagccagca	aaaaatgtca	accagtacgg	atgtacttg	120
tccaatgatg	gtaaaagggt	agtttactgg	ttgtcctccg	attcaggtta	gaatgaggag	180
gtctcgccgt	aggagtcaat	aaagtgattt	gcttagtggg	cgaaatatta	tgctttgttg	240
tttggatata	tggaggatgg	ggattattgc	taggatgagg	atggatagta	atagggcaag	300
gacgcctcct	agtttggtag	ggacggatcg	gagaatttgc	taggcgaaata	gaaatataca	360
ttcgggcttg	atgtggggag	gggtgtttaa	gggggtggct	agggtataat	tgtctgggtc	420
gcctangagg	tctggtgaga	atagtgtttaa	tgtcattaag	gagagaagga	agaagaagta	480
agccnaggc	gtctttgatt	gtgtantaag	ggtggaaaggt	gattttatcg	gaatgggaag	540
tgattcctaa	gggggttgggt	gatcccgttc	tgcaanan			578
<210>	764					
<211>	500					
<212>	DNA					
<213>	Homo sapiens					
<400>	764					
actatataaac	agttggcaca	acccacccca	caacagaaga	gaacacattt	ttctcaagca	60
tatgttggaaat	agtttccagg	agaaaccatg	tgttaggcca	caaaacaaat	cttaatgaaa	120
tgtaaaagac	tgaaacacaa	agtagcagcat	cactcgatt	ctgtgtccaa	tggccttagc	180
aggaagatg	cttcggaaat	tggcacgaac	catgccactg	tttccatggg	cccgagttac	240
ttttccccag	atgactctgg	ttttgtttgg	tttgccgcca	ggagtgaactg	tgttgttctt	300
tgctttatat	acataagcgc	atctcttgcc	caaataagaat	tctgtttcat	tttcggggcg	360
taaacaccc	caatTTtaag	aagagctgtg	tgctcccttt	ggttccggag	accccgctta	420
tagccagcaa	aaatggcctt	ggaccacaag	ccttcagac	atagttccctt	tagaagtccg	480
acttcggccg	gcgaccacgc					500
<210>	765					
<211>	578					
<212>	DNA					
<213>	Homo sapiens					

```

<220>
<221> misc_feature
<222> (1)...(578)
<223> n = A,T,C or G

<400> 765
ttccagagca tattgatgag agaaggatct gcaatgctgt ttctccagac aaggatgttg      60
atggcttca tgtaattaat gtaggacaa tgttttggc tcagtattcc atgttaccgg      120
ctactccatg gggtgtgtgg gaaataatca agcgaactgg cattccaacc cttaggaaaga      180
atgtggtgttgc ggctggaagg tcaaaaaacg ttgaatgcc cattgcaatg ttactgcaca      240
cagatggggc gcatgaacgt cccggagggt atgccactgt tacaatatct catcgatata      300
ctcccaaaga gcagttgaag aaacatacaa ttcttcaga tattgttaata tctgctgcag      360
gtattccaaa tctgtatcaca gcagatatga tcaaggaagg agcacagtca ttgatgtggg      420
gaataaatag agttcacgt cctgttaactg tcaaaaaacca gttgggttgc gatgtgggat      480
tttgaaggag tcagacaaaaa agctgggtat atcactccag ttccctgggan gtgtttggcc      540
ccatgacagt ggcaatgcta atgaagaata ccattttt      578

<210> 766
<211> 569
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(569)
<223> n = A,T,C or G

<400> 766
actgtattta tattgtttat attattttag taatgtaatg ttttgcttcc aaagattgcc      60
ttgccttac attttgtca aaaatagcag ctatacatta atgacataat aagatgtct      120
agtattattt aagtgcctat tcataatccc tcatacaaagg ttttatgaa tgattataat      180
gcattttcta taaaatatta ttgctttcac tgtataccag tgattcaaac ttattgtct      240
tcaacagcaa tgacatgaaa tcactctagt tgcccatcag tggtgattg gataaagaat      300
atgtggtaact atgtgactat cattgatgcc ccaggacaca gagactttt caaaaacatg      360
attacagggg acatctcaag ctgactgtgc tgtcctgatt gttgctgctg gtgttggta      420
atttgaagct ggtatctcca agaatggca gacccgaaag catgcccccc tggcttacac      480
ctgggtgtga aacaacctaa tggccggggt taccaaaaatg ggattccact ggaccaccta      540
cagccagaag agatntgaag gaaattnnt      569

<210> 767
<211> 580
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(580)
<223> n = A,T,C or G

<400> 767
acgaagctac ccagggagat ctgaatgatg ctaaaaaataa acagaaaattt gttttaaagg      60
tccaaaagcc tgccaaacccc tggaaattct acattggac ccagttgatg gaaagactaa      120

```

agccatctat	gcagcacatg	tttatgaagt	tctattctgc	ccacttattc	cagaatggca	180
gtgtattagt	aggagagctc	tacagctatg	gaacattatt	aatgcatt	aacctctata	240
aaaatacccc	tgaaaaagtg	atgcctcaag	gtcttgtcat	ctctttgtct	atgagaatgc	300
tttacatcat	tgagcaagtg	catgactgtg	aaatcattca	tggagacatt	aaaccagaca	360
atttcatact	tggaaacgga	tttttggAAC	aggatgtga	agatgattta	tctgctggct	420
tggcactgat	tgacactgggt	canagtatag	atatgaaact	tttccaaaa	ggaactatat	480
tcacagcaaa	gtgtgaaaca	tctgggntt	caatgggttt	gaaaatgctc	ancaacaaac	540
catgggaact	accagaatcg	attactttgg	ggttgctgca			580

<210> 768
<211> 355
<212> DNA
<213> Homo sapiens

<400> 768						
ggcaggtaacc	ctatggccta	tgttgactat	aagactgtgc	tgcagattga	tgataatgtg	60
acgtcaggccg	tagaaggcat	caacagaatg	accagagctc	tcatggactc	gcttgggcct	120
gagtggcgcc	tgaagtgc	ctcaatcccc	ttggtgccctg	tttcagctca	gaagagggtgg	180
aattccttc	cttcggagaa	ccacaaaagag	atggctaaaa	gcaaattccaa	agaaaccacaa	240
gctacaaaaga	acagagtgc	ttctgctggg	gatgtggaga	aagccagagt	tctgaaggaa	300
gaaggcaatg	agttgtaaa	gaaggggaaac	cataagaaaac	ctattgagaa	gtacc	355

<210> 769
<211> 611
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) ... (611)
<223> n = A,T,C or G

<400> 769						
cgaggtacca	cgatcctgat	gatgaaccag	tggccgatcc	ttatgatcag	tcctttgaaa	60
gcagggacct	ccttagat	gagtggaaaa	gcctgaccta	tgatgaagtc	atcagctttg	120
tgccaccacc	ccttgaccaa	gaagagatgg	agtcttgagc	acctgggttc	tgttctgttg	180
atcccacttc	actgtgaggg	gaaggccctt	tcacgggaaac	tctccaaata	ttattcaagt	240
gcctcttgg	gcagagattt	cctccatgg	ggaaggggggt	gtgccgtcg	tgtgcgtgcc	300
gtgttagtgt	gtgtgc	gtgtgtctgt	ctttgtggg	ggtaagaca	atatgaacaa	360
actatgatca	cagtgacttt	acaggaggtt	gtggatgctc	cagggcancc	ttcaccccttg	420
ctcttcttc	tgagaagttt	gcttaaggca	gaccaaganc	tgctggccct	tttaaggaaat	480
atgttcaatg	ccaaaggtaa	aaaaattntg	aaattggtcc	ccaaatnccc	ggcattgcc	540
tttcgcaact	ttnngcttct	tcctggngan	ccccacctt	gaccgggtgg	ggccgtanac	600
nttgcacaacn	n					611

<210> 770
<211> 508
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) ... (508)

<223> n = A,T,C or G

<400> 770

ggacaaaaacc	agctgaagat	gaaagtgtgg	agacccaggt	aatgacagc	atcagtgc	60
agacagcaga	gcagatggat	gtagatcagc	aggagcacag	tgctgaagag	ggttctgttt	120
gtgatcccc	acccgctacc	aaagctgact	ctgtggacgt	tgaagtgagg	gtgccagaaa	180
accatgcac	taaagttgaa	ggtgataata	ccaaagaaaag	agacttggat	agagccagtg	240
agaagggtg	accttagagat	gaagatttg	tggttagctca	gcaaataaaat	gcccaaaggc	300
ccgagccca	gtcagacaat	gattccagtg	ccacgtgcag	cgctgatgag	gatgtggatg	360
gagagccaga	gaggcagaga	atgtttctta	tggactcaa	gccttactg	ntaaacccca	420
ctggatctat	actcgncatca	tcttcggtn	aaacccaatt	cnctggatc	tggcccaant	480
tnancattna	ncttggnta	tttccnncc				508

<210> 771

<211> 587

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(587)

<223> n = A,T,C or G

<400> 771

acttgttttg	ggaatatatag	agagaagaaa	ctgctgagca	ggtcagtaaa	gaacagtcc	60
tttcagctgc	aggacagttc	tcttcccg	gacaaggcta	catagccctcc	aagggagcc	120
aactatccct	tccatgcaac	aagacaccc	gcatggatac	tctagccatg	acttgcttt	180
ggacaaaaat	caactgctaa	cgttttcat	ctctaataatc	attaacacca	tggagaaaaaa	240
agaaaaaaaaat	tcaaccctag	aaaacttgc	aacgagaata	agaaaatcca	caaggaaagg	300
tcatgctaaa	actgatttga	cagttgttcc	atcacccct	accacatggg	cttgagactg	360
gtgacttcat	ggatgcatcc	cttcgatgcc	ctgccaaatg	tcaagttcaa	gtctgtcagt	420
gaccccgatg	tgtatgtgcc	tgccttctat	tcaccaactn	ctattcaaga	gatccaagg	480
ggccttggc	cgtggtaagc	acanggacac	ncaggtgcca	agaagccca	gnaaccctt	540
tagaaaaactt	tgncctggta	tttggggccc	ggnaaccaac	cngtgg		587

<210> 772

<211> 577

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(577)

<223> n = A,T,C or G

<400> 772

ggtacactgc	aggagagtgc	ctggcaaaaa	gatcaaatgg	ggctggact	tctcattggc	60
caacctgcct	ttccccagaa	ggagtgattt	ttctatcgcc	acaaaagcac	tatatggact	120
ggtaatgggt	acaggttcag	agattacca	gtgaggcctt	attcctccct	tccccccaaa	180
actgacaccc	ttgttagcca	cctccccacc	cacatacatt	tctgccagtg	ttcacaatga	240
caactcagcgg	ccatgtctgg	acatgagtgc	ccagggata	tgccttgc	atgccttgc	300
ctcttgcatt	gtttgcattt	cactgggagc	ttgcactatg	cagctccagt	ttcctgcagt	360
gatcagggtc	ctgcaaggcag	ttgggaagg	ggccaaaggta	ttggaggact	ccctccagct	420

ttggaaggct catccgcgtg tgtgtgtgt tatgtgtaga caagctctn gctctgtcac	480
ccaagctgga attgcantgg tgcataatcatg gttcaacttgc agtcttgacc ttttggctca	540
agtgatcctt ccacctnacc tcctgagttac tgggacc	577
<210> 773	
<211> 580	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(580)	
<223> n = A,T,C or G	
<400> 773	
ggtaccacacct cctgttccta caaaaacccaa acagattaat ttgccttatt ttggacaaaac	60
taatcagccca ccttcagaca ttaagccaga cgaaaggttct cagcagttgt caacagttgt	120
tccgtccatg ggaactaaac caaaaacccagc agggcagcag ccgagagttgc tgcstatctcc	180
cagcataacct tcggttggcc aagaccagac cctttctcca ggttctaaac aagaaagtcc	240
acctgtgtct gccgtccggc ctttactcc ccagccttcc aaagacacct tacttccacc	300
cttcagaaaa cccccagaccg tggcagcaag ttcaatatat tccatgtata cgcaacagca	360
ggcgccagga aaaaacttca gcaggctgtc cagagcgcgt tgaccaagac tcataaccaga	420
ggggccacact tttcaagtgt atatggtaag cctgttaattt ctgntgncca aaatcaacag	480
cagcacccag agacatttt tcaatagcca gggcaaggctt ggcagtcaga acctgaacag	540
acctgttctt tagttcagga gaaccntgaa acnaaagaat	580
<210> 774	
<211> 680	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(680)	
<223> n = A,T,C or G	
<400> 774	
ggtacctggc catgggccttc cctccccacac ctgccaggac acagcctgca ggtcaggggg	60
ctaaactggg gagttttctc caaagttggg aaaggatggg aagagtaggt gggaatgggg	120
aagttacaca gctacagcag tcagggctgt ttagtaagaa gaatcacatt taatgagttt	180
ctttcttgca gtttcagatg ctcaagtaca agtaagttat atgacaacga taacacacag	240
gaggaaagcc acggaagcac actgttgtga agttctcatg ctctacgtga agtgttatct	300
ttttttcttta agtgcacgca agtttattaa gaaagttaaag gaataaaagg aatggctatt	360
tcattggcag agcaccaata aaatcatctg aagnagatt gtgatgagtt aaangcgtat	420
atgataaaacc tgaagaccaa cnagaaanta gcccacngag atnttagtgta ttaagttaac	480
caagggaaatt aacttgaatc attaaaaatt cttaatctgg gggAACCTT naanaaanggg	540
agcttacccc ttggggcaat tttnaaaccna aaggccaggtt gattgaattt aagcttacct	600
ttttcaata atccctttta aannaanggt tttnaacctt cncttaaang gcnnnnanttt	660
tcnaatttggaa nttaagccg	680
<210> 775	
<211> 658	
<212> DNA	

<213> Homo sapiens

<220>

<221> misc_feature

$\langle 222 \rangle$ (1) . . . (658)

<223> n = A, T, C or G

<400> 775

<210> 776

<211> 659

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) . . . (659)

<223> n = A, T, C or G

<400> 776

ggtaactttac	ggcctgatct	aattgaaagt	gcattcccttg	tttcaagttgg	caaagctgaa	60
ctcatcaaaa	cccatcacaa	tgacacagag	ctcatcagaa	ggttgagagaga	ggagggaaaa	120
gtaatagaac	ctctgaaaga	ttttcataaa	gatgaagtga	gaattttggg	cagagaactt	180
ggacttcagg	aaggatgtgt	ttccaggcat	ccatttccag	gtcctggcct	ggcaatcaga	240
gtaatatgtg	ctgaagaacc	tttatattgt	aaggacttcc	ctgaaaaccaa	caatattttg	300
aaaatagtag	ctgatTTTC	tttgcagttgt	taaaaggccca	cataccctat	tcagagatgc	360
aaaggcctgca	caacagaaga	ggatcaggag	aagctgtatgc	caaataccag	tctgcatttc	420
tgaatgcctt	cttgctgcca	atttaaactt	nagggtgtnc	nggtgaactg	gnngtnctac	480
cgnntccngn	ngnggaatnt	caggnaaaga	tgaaccctgc	tgggnaatcn	cttattttcn	540
ggntangnnt	aaaccttnga	tggggcaaac	cttacccnggt	ggttatTTT	tggncccccn	600
ntaaagaacc	tcntnaaang	tnccccnntt	ttganacggg	ggnttaaacc	tnccccgggg	659

<210> 777

<211> 728

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (1) . . . (728)

<223> n = A, T, C or G

<400> 777	60
actttttgca tgggtgcaca ttgtgtgtg agaatcagg gctgcctata tggctccact	120
gggagagggc agatggaagc cgtcgcctca tctgtcggt aacgtgtgt gtgcaccc	180
tcccttgc gatctaattc tctgtcctt tactgtata aactgttaact gtgagcctaa	240
cagtttccct gagtttagtg agtccttcta gcaaataaaa ggagggtgg ctggagacc	300
tatgaacctg caccgtcccc cgtcggtttt agggtctggc acaggggagg gaagggtctgg	360
gcctctttg gaagggggtc ttcaatccat ttgggggtcg gggtcccaac ttcttggang	420
ggcccaacgt tccttgccca gtttccaagn ctcttcttcc ttcttaagt ccccgancct	480
tgcaacccccc gggccctnt ggcttgga atcttggaa aaaactnngt cttttnntt	540
ancacttggaa tnngaanaac tggccattt actnaagccc ttgcattnnct tnactnctt	600
nnatgggcaa ccttnaaggg attcccaagg gnccctggg tttangaaaa taatgggggg	660
aaaattttt nogaanttna anaataancc ccccccaaaa ncggggganc ctnggggccc	720
gnaacccccc ttaagggccn aaattccngn canatntggg gggccggtn ctaaggggat	720
cccaaccc	720
<210> 778	
<211> 603	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(603)	
<223> n = A,T,C or G	
<400> 778	
caggtacact gctgccactg ttgtgtccctc gctctgtttt ctgttgccctc acggccaggcc	60
ccgtccctgccc gtgacaccct tcatacctacc ctggaaaccc caaggccaag ttggttcaaa	120
ctgttggaga acagagttgg cctgcattctg gaacacactt gtcctcagct taccatctcc	180
tcacacccca gagttggaaag gtgaacaccc tgcagctgagg ctggaaacag ttcttgggt	240
tgccctgaaa aatcttttagt acctcaggga ggctctgtct ctcttaaaag gtggagaaag	300
atgcctatct ctcctctaagg tctgggtggag tctccccatc ttgcataaccc ttctgcaagc	360
catctatctc tgctcaactt ccaatttgacc cgcctggaa caagggatga aggaggaagt	420
tgggggcttg ggggaatctt gccagttgtt gaancctgtg gcangaagga tatgtacnt	480
agagatctg atcttttnntn ancctgtgtt tggttggctt gnatatatgg atggtaactg	540
tttgnaaagn ggagtataag atgcctngt gatngngt tgctatgctn ttangatgg	600
ctg	603
<210> 779	
<211> 654	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(654)	
<223> n = A,T,C or G	
<400> 779	
cgagggtttt tttttttttt tttccagttt gtgtatgtgtt atttcaaaaat aggtcgaaac	60
ttcagagaaa tgaaaatcg gatatcgtt aagttattgc tctcggtgtt cctaattcc	120
ggacttccaa tgaagttcag tatgacccaa ggctnttcaa ccaatccaag ggtatggaca	180
gtggatttgc aggtggagaa gatgaaattt ataatgtttt tgatcaagcc tggagaggtt	240

gtaaaagat	ggcccagagt	atttataggc	ccagtaaaaa	tntggacaag	gacatgtatg	300
gtgatgacct	agaagccaga	ataaaagacca	acagatttg	tcccgacaag	gagttttctg	360
gttcaaaccg	taaacnngaga	ggccgagaag	gaccagtgc	gtttgaggaa	aatccctttt	420
gtttggacaa	gttttggaa	aaaacccaac	ngcatggng	ctntaaaaga	cccttagata	480
ccacccgcnc	aaggacnnag	cctgaagcca	gaaaaggnng	aaggattggc	caggtttcc	540
aagnaatga	cttanccta	acctaangag	ccagntnng	ggacccttnt	aaagggccgg	600
taaaaccnat	ttggggccca	nnccncctn	tttttctgg	gaaanggggg	gtta	654
<210>	780					
<211>	570					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(570)					
<223>	n = A,T,C or G					
<400>	780					
acagtgggca	caaaaacctgt	gcagagtccg	cagaagaggc	caataaccaa	gcgaccagg	60
atcagcatt	caaccgactt	agctacttta	cacagtccca	taaagcagcc	accagtgaca	120
gccaacacgt	tgacaatcg	cattgaattt	cgcctgc	agcggttgac	gaagagtccg	180
acggaaaagg	agccgatcat	accccngacg	gaaaatatgg	ccacagacaa	ggaccagaga	240
gacgtgagca	gcacccctcaga	gggtggggca	tttcccttgc	cgtcaaagt	ttattgataa	300
atcccttat	gatcttctca	ggagcattga	tgaccccagt	ggttgttaacc	naattggaaa	360
gaaccgattt	nagccactgg	tgatggccaa	tatcaaanc	gggggtgacct	tctggggccc	420
catcgcttgg	atctaattt	agtcatttt	aaagatctan	gggtgatttc	agaaaacnagn	480
tttnagggcc	acaaaacctt	aaanggcctt	ttaacagcaa	ggttnttcc	cgtcttagga	540
aggatncnaa	ncnttggcc	ggaaccncct				570
<210>	781					
<211>	664					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(664)					
<223>	n = A,T,C or G					
<400>	781					
acccaaagtt	ctctggggag	ggccagggaa	gaggctgggt	gtcaaaccaa	acagatttt	60
atttgcagtc	gtcaactgggg	ccgtttcttg	ctgcttattt	gtctgttagc	ctgctcttcc	120
agctgcattt	ccaggcgcaa	ggccttgatg	acatctcgca	gggctgagaa	atgcttggct	180
tgctggggca	gagcagatcc	cgctttgttc	acaaaaggct	ccaggtcata	gtctggctgc	240
tcggtcatct	cagagagctc	aagccaaatc	tggccttgc	tgtatgatct	ccttgagctc	300
ttccatagcc	ttctccctca	gcttctgtat	ctgaagtcat	ggctttcggt	aaaactggac	360
atctggaaa	gacagtccctt	ctctttcttg	gataaaattgg	cctggaaatca	ncgccccgg	420
aaaacaagct	tccatcttcc	tggccant	ttnattaact	ggttttcaact	ngnccactg	480
ngggggctt	ncttcttgac	ctggctggna	aatttaaggn	ggttnaagnt	tnttncccg	540
acatttncn	tggnnaaaac	cnnggaatna	tgcnagnctt	aaaattttnc	ccaangaagg	600
agtcccttaan	accngntaa	nttggnttta	cggaacnggg	tggnnacctt	gtttnccag	660
gncc						664

<210> 782
 <211> 669
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(669)
 <223> n = A,T,C or G

<400> 782

caggtacaag	ctttttttt	ttttttttt	tttttggaat	agaatacaac	tttattttca	60
gtcatttcta	tttcccttggt	tatgaacaaa	ggtagcaaag	tgcatgtta	tcagcagtgc	120
caatagaaat	tacagagttt	ttcacatccc	tttacagttt	gccacaggta	tcttaaaata	180
ttgnntacac	tcatctctct	ttagtttacc	attgtttaat	aggcctaccc	tcgatcttt	240
tattcaatat	gttataaaag	aaacctatac	acatagtac	accgttatca	ttttaaaaat	300
attttgacac	tgnatataaa	tataactagc	ttactttgga	atcctaccta	ttttaatgg	360
gnatgaaat	atttctga	aattagccng	gcntggnggt	gcatgcctan	aggcccagct	420
acttggaaag	cttaaggggg	aaggatccc	gaacccaagg	ganggcang	nttngggan	480
ctnggatgn	caatggctc	ancctngna	atngaatggg	anccctttt	aaaggaaagg	540
aaanggaaat	ttggattttg	gnaacngann	cctggnccaa	aaaaggcua	aancctgct	600
ggaangggcc	tntggacctt	aatgccccn	nccaaangng	gnnattncca	tttaannggn	660
cccnccagg						669

<210> 783
 <211> 735
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(735)
 <223> n = A,T,C or G

<400> 783

acacagaagc	agtgaaggac	tgcacagaag	ccctcaagct	ggatggaaag	aacgtgaagg	60
cattctacag	acgggctcaa	gcccacaaaag	cactcaagga	ctataaatcc	agctttgcag	120
acatcagcaa	cctcctacag	attgagccta	ggaatggtcc	tgcacagaag	ttgcggcagg	180
aagtgaagca	gaacctacac	taaaaaccca	acagggcaac	tggAACCCCT	gcctgacett	240
acccagagaa	gccccggcc	acctgctctg	tgcccgctcc	tggAAACCCAG	catgccccaa	300
gtgagctctg	aagcccccctc	ctcaatccct	tgatggcctc	caccctgtaa	gaagctttgc	360
tttggtcaaa	ttaaacttaa	gtgtaatcaa	accccagacc	atgggtgggt	gcaccccagaa	420
aggggnccac	tnagaaccta	aacgttgaag	ctgnaactt	ngcccttaat	tccnaagcc	480
caagttagct	tgtatccncc	accggaaatcc	ttattttagcc	aaagccnntt	ngggntttgg	540
ncctggnncc	aaanggggct	ttgaaaaact	ggaaggctt	gcccnnncca	agctttnccc	600
caaaaanccc	aaattnaatt	ggggagnntna	tttggaaacn	aaccttggc	tttttngggc	660
cccggtttg	gaaaggaagg	ggggataaaaa	ccttaaggc	cctggttcca	aaannanccc	720
tttttnaacc	gggg					735

<210> 784
 <211> 660
 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(660)

<223> n = A,T,C or G

<400> 784

cgaggtacac	attgtattat	atacaaacaa	gcaacaacaa	aaagttcat	catgtaaaaca	60
aaagaatata	aattatagac	ataattggaa	gttccaaaca	gtccttaaat	cattgtgagc	120
ttctctaaaa	ggcacaggtc	ttggagtgtg	ggcacagagc	cattagtcag	atgtctgggt	180
ggtctccat	aatagcaatg	tatactctaa	agtggcctt	ttgtgaactc	tgtcagggtg	240
aatgagttag	gcctctaaa	ggaatgaaat	gcttcacat	ttggggcaac	aagtgaaaaaa	300
tactgaaagg	agggatacaa	ctagggttag	atttatttgt	gacagtgatt	ttagaaatac	360
cactaaaaag	gtggtaaaag	atttcttagat	taaattctga	ctactgnaaa	tnagaaagga	420
tccttttgn	nctctacca	tggttngtga	aaaattaaaa	gggagaaagt	gaccaggag	480
aaaccnaatt	gggaagctan	ggaggttcca	gaaaatnccc	agtcttacac	gaaaaaacct	540
tganagggcc	tttttaaggc	caannnttggg	aaattacctt	tgtaacttaa	cttgaaaaan	600
acctgcccgc	ggccgttnaa	agncaattn	accnctggng	gcccgtttag	gnccncctc	660

<210> 785

<211> 254

<212> DNA

<213> Homo sapiens

<400> 785

actgctgctg	gttaaggtca	acctgggtg	caatgctgct	gtcttcatct	tcggtcccga	60
agtaatgctc	aataagatca	aaggccttt	ggtagatctc	ctggtttca	tgactctgt	120
agaactcaat	tttatccaga	ccataagctt	cttcaatcaa	agcacagtaa	gggttaatgc	180
cagtgcatt	ccttttggct	tcctgttctc	caagcctcag	gatatttcc	aagccattta	240
gggcaacctg	tacc					254

<210> 786

<211> 688

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(688)

<223> n = A,T,C or G

<400> 786

ggtaactggct	gagctggaag	tgccaaaaag	cactcctggc	tgcttctgg	tccatctgat	60
gatgatgtga	cacacactgc	tgaaaaggcc	caagcaggc	aagtggatg	gctgaaggag	120
ggaaggaggg	ggttcagaac	ccactggct	ggatgggaga	actgggtgg	ggcttccccca	180
agagggaga	cagataaaaca	aaacaaaaca	aaaactgggt	aaagaggaat	gaatcactca	240
gccctgatgt	ttcaattcta	cactgcattc	ctggccagtc	gcatttgtt	aatgcaggca	300
tggccacagc	tctcctagag	aattatctca	aagacccaga	agggacctgg	angaggccta	360
tttcttaagg	ttttccagtt	ggaccaaggg	aangantggg	ttcactttagc	ttctaaaaaa	420
ggntttgaac	cctaaggta	actgcctccg	gaagctgctt	gctttgggtt	tggcttcccc	480
aaaaggntt	agaatagntt	tggaccctt	anggaaactt	ggatcaagcc	cgnaancca	540
anacttnctt	ggtngnaaaa	tcaagggggg	ctnctgggg	nttancgg	agtttgggnc	600

aggntgtntt aacagggtgg ggantgacca nccngngcc caggggcctt antaacnnttg	660
ggaancccct gnganggaan ccttnacc	688
<210> 787	
<211> 708	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (708)	
<223> n = A,T,C or G	
<400> 787	
acagtaacac aacatcaaaa gcaacacagg ctgtatacag aaacgtgggt cattctttc	60
agccctaatt gagatgtaat taacagtatc gggactctg gaaaatcact ctgcagggtt	120
atatggacta catggagatc atatcctgtt gtgttagtggaa agctaagtcc tcaagagcca	180
tatgtataga tacacaatgt ttttaataaa tctttaaaac agagatcaa gttcattaa	240
gtcctgtttt cattaacaaa aataaaaatg aaataaaaat gggAACAAA tggatcatct	300
aaaaggtta aaaattccta aattgnccaa ttatccaac tgggtggaga cttaaattcag	360
ggttttggaa agtccaggac tggtttcagc tgaacccaga aggccccaa tttgcttac	420
tggacttgc cctggggtaa gncatggaa taaaatngct tancccttc ccctnggtt	480
tgaactttt gccgggtnga attattgggaa aaggcaggc tttaaaccac gtttnccac	540
ctgggttataacttggat cccattggaa aaaatttca aanggaatt ttttattagg	600
ggccatttca atcnaangga aaattntggg aactttggaa atnccgantc cttgntggaa	660
aaaaaaaacc cnngggaaat gggnnnnnnn nccttnggcc cccaaaccc	708
<210> 788	
<211> 647	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1) ... (647)	
<223> n = A,T,C or G	
<400> 788	
ggtaactctgt ctgctgggg aatgggttat tttgactccc atagaaagca ctggcttaag	60
tcaccaaattt actgcttggc ccccaactgaa gcagtgttagc tctccatagt atttttgggt	120
gttatggattt acatgtgtgg ccagctcatg ctttttcttgc agcaggggct gtccatgacc	180
tgtgctcata ccatgctttc taagttctct ttggacaggg cctcagctgc tgccctcagcc	240
tgagtttcag aggggtgtta ggagtcctgg taatcttgaa gcagtttgac cacctccaaa	300
tgggtgaact gcacagcattc atccagggga atggtgcctt cctgtccctt gcaaaaaggat	360
tcactttgca agccttgatc aggaattttaa caacttcgaa tgcgtcccttta nctgcagcaa	420
catgcnaanc tgggcnccaa gcataagctt tctggccat atccatggct gacaaggcaa	480
cctttnaana ncttancatt ggcnctntnn gcngcaaata ccaggtggcc nnagcttggg	540
cccaatttng gccttacncc cggggntaan tccaaaccaan gccttaggtt caaattnnggaa	600
aattgaanan accccacttt ggcaaactgg cccctnggtt gncccat	647
<210> 789	
<211> 650	
<212> DNA	

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(650)

<223> n = A,T,C or G

<400> 789

acctgcgcgc	cctcgacgtc	aatgtggcct	tgcgcaaaat	cgccaaacttg	ctgaagccag	60
acaaagagat	cgtgcaggac	ggtgaccata	tgatcatccg	cacgctgagc	acttttagga	120
actacatcat	ggacttccag	gttggaaagg	agtttgagga	ggatctgaca	ggcatagatg	180
accgcaagtg	catgacaaca	gtgagctggg	acggagacaa	gctccagtgt	gtgcagaagg	240
gtgagaagga	ggggcgtggc	tggacccagt	ggatcgaggg	tgatgagctg	cacctggaga	300
tgagagtgga	aggtgtggc	tgcaagcaag	tattcaagaa	ggtgcagtga	agcccaggca	360
gacnacctt	tcccaaagga	atcagcaagg	atgtgtggc	caagatcccc	ctntttgccc	420
agcatgaggg	aaaaatgtnc	agccaccca	ggcttnnta	acanagctgg	ctcttggtt	480
tggactttt	cctttctta	aacaaacctg	ccattaagng	anttggggtt	aaaaaaaaaa	540
aattntnnna	naataaaaan	ttttntctt	cgcaccnct	tnngggaaa	cncnantgng	600
gcggtnntt	ggancnctnn	tccncttgg	gnntangtat	aatntttttt		650

<210> 790

<211> 646

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(646)

<223> n = A,T,C or G

<400> 790

gggttaattcc	ggctgttgca	ccatggcgtc	catggggacc	ctcgccctcg	atgaatatgg	60
gcgcctttc	ctcatcatca	aggatcagga	ccgcaagtcc	cgtcttatgg	gacttgaggc	120
cctcaagtct	catataatgg	cagcaaaggc	tgtaccaaatt	acaatgagaa	catcaattgg	180
acccaaatggg	cttgataaga	tgatgggtga	taagatggg	gatgtactg	taactaatga	240
tggggccacc	atcttaagca	tgatggatgt	tgatcatcag	attgccaagc	tgatgggtga	300
actgnccaag	tctcaggatg	atgaaattgg	agatggAAC	acaggagttgg	ttgtcctggc	360
tggtgtccctt	gtagaagaag	cgagcaatt	gctanaccca	ggcattcacc	caatcagaat	420
annccatngc	tattaacaag	ctgnntcccg	ttgctattga	acactggaca	agaacaacga	480
taccnccctg	gtgacttaan	ggcacccgaa	cctgattaaa	ccgnaaaccc	cncntnggttc	540
aagnngnaca	gttgcncccc	cnatngttaa	atctggangc	cgcctntg	ccanttgac	600
ggaaacntta	tttgctttca	attaaggcaa	tggccgcagn	tgagan		646

<210> 791

<211> 656

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(656)

<223> n = A,T,C or G

<400> 791
accatgatat ctggcagatg tataagaagg cagaggcttc cttttggacc gccgaggagg 60
tggaccttc caaggacatt cagcactggg aatccctgaa acccgaggag agatattta 120
tatcccattgt tctggcttc ttgcagcaa gcgatggcat agtaaatgaa aacttggtgg 180
agcgatttag ccaagaagtt cagattacag aagcccgctg tttctatggc ttccaaattg 240
ccatggaaaa catacattct gaaatgtata gtcttcttgc tgacacttac ataaaagatc 300
ccaaagaaaa ggaatttctc ctcaatgcca ttgaaaacgt gccttggc aagaagaagg 360
cagactgggc ccttgcgtg gattggggac caagaggcta cctatggta acgtgttga 420
accttgcgtg cntggaaggc atttcttgc cggtctttg cgcgatattc tggcttaaga 480
aacgaggctg agcctggct acantttcta angaacttat taccganatt aagggttacn 540
ctgggatttgc ttgcgtgaa gttnaaccctc tggacctng gccgnaccctc ntangggcaa 600
ttccanccac tggngggccg tactaaggga accaacttgg gcccaacntg gggnat 656

<210> 792
<211> 640
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(640)
<223> n = A,T,C or G

<400> 792
ggctgacac aatcagaaaat tcgagacatc atcctggta tggagatctc ggcaccgtca 60
cagcagccgc agcagatcg ttagatcgag aagcagacca aggaacaatc gcagctgacg 120
gcaacacaga ctcgcactgt caacaagcat ggcgatgaga tcacatccctc caccaccagc 180
aactatgaga cccagactt ctcatccaaag actgagtgga gggtcaggc catctctgct 240
gccaacctgc acctaaggac caatcacatc tatgttcat ctgacgacat caaggagact 300
ggctacacct acatccctcc caaagaatgt gcttaagaaa gttcatctgc atatctgacc 360
ttcggggccca aattgcagga tacctatatg gggtagccc accagatacc cccaggtgaa 420
agagatcccc tgcattgtga tggtgccca atggggcctt accanaacgn gcacctgctg 480
gcaantgnct aactgagacc tgcccgccg ccgttcaang gcaattcnngn nactggngc 540
cgtctaaggg accnaacttgg gccaacttgg gnaatatggc nnactggtcc tggggaatgg 600
tntccgtcca ttcccanttc anccggaanc taanggtaa 640

<210> 793
<211> 615
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(615)
<223> n = A,T,C or G

<400> 793
acctacaact atatctactc cattttccaa aacagagagc tgatccggg ctgcaacacc 60
tccaattatc agaagctccc ttaattttagg attatcaatg tatttctttaa actgcttgat 120
gttattcaaa gtttgttcag ctaactcccg ggaaggttca acaatgagag ctggcggagc 180
attggggaga aactttgttt gtgtcacctg tgcattacatc gagtgctgtg atttgacaat 240
gtaaccatcc ggtgccttgg aaagagcaac aaagccatct tttgtggaa acttaaattc 300
ctcttcaccc gaagttaat ttcagttcag cattcttcaa aacacaggca gggaaagaggg 360

cttggtttt catatgtggt ggtattcaa atgccagacc aagancttt ccattttgg	420
agaacttgc acatccctat ctatattcng tacatccatg ggatcatgcc tagngaatnc	480
tttcataata tcaaatggtg gtatggaaatc ttctctgtccc caagccaatc caactggaga	540
ccttggccgc ccntanggca atcancctgn gccgctaggn ccactggcca ctggncacagg	600
cnntgtctgg aatgn	615

<210> 794
<211> 709
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(709)
<223> n = A,T,C or G

<400> 794	
acttctgaat aagttcagag ccaaccactc tcaagaaaat ggctgagggtt tggtttgcta	60
ctgctttggc taacaaggtt ttacctgtgc caggtggacc atagagaatg accccccttag	120
gaggctttat acccatctct tcataatatt caggatgggc gagaggaagc tccacagatt	180
ccttaatttc ctgaattttgg ttgtccaaacc ccccaatatac tgcataggc tcctgggggg	240
ccttttctac cttcatcaact gtgaccaggg gatccgtgtc atccatcagc acccctatca	300
cggnatgcac cttgtgggtt agcaggaccg agcagccagg ttccagcaga tccttgctac	360
aaatgaaaaga atgtgcacgt antgttctga gcccacagat gttagacacga atggcatgat	420
ggcatcaatg atctctttcc aaggttccta ctgacatcgg ggtccccctc agaatcatcc	480
acttttggat ctttccttcn tcttgntttt ccttctaaag gggttcaatt tgtncccg	540
atttcttaag ngtatcttc cttncnntga aaaaaaaaaaag gccnttnaaa tnctntttta	600
acctttangn aantttaaa cccggccctt gaattnnnaa gggggcnccc cnngggggcaa	660
ttttnctgg cnmnaatttg gggccctttt gggntnnntt tttttttt	709

<210> 795
<211> 693
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(693)
<223> n = A,T,C or G

<400> 795	
ggtacggcaa tcaatcttaa taatccagag agccagtcca tgcatttgg aaccagactt	60
gttcagctgg acatgtctat cagcatggaa ttgtggcagg aagcattcaa agctgtggaa	120
gatattcacg ggctattctc ttgtctaaa aaaccaccta aacctcagtt gatggcaaat	180
tactataaca aagtctcaac tttgttttgg aaatctggaa atgctctttt tcatgcac	240
acactccatc gtcttacca tctctctaga gaaatgagaa agaatctcac acaagacgag	300
atgcaaagaa tgctactag agtccttta gccactctt ccatccatat tactcctgag	360
ccgtacatgt gcataggaac tgggatatac acaggcacag ggtatggcac tggAACATAT	420
tctgnctnca agtatcatct gctgaccaag aattggntct catgtgaagg ttacagtaag	480
tacttttggc attggtaan ggttgccaaa aaactgnntt ggncttnan cncttgta	540
aggggttggaa aaaaggggtg gggcttaaac ctggcanttt nggtcnana agtntggaaa	600
ncctgganc ttaagggaaag ttttttangg gccntttga aatggcaatg tgggcncaat	660
ttggtggccc gtnaaaaacc ctnanncaag gtn	693

```

<210> 796
<211> 452
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(452)
<223> n = A,T,C or G

<400> 796
ggtagtggcg      60
ggtagtggcg      120
ggtagtggcg      180
ggtagtggcg      240
ggtagtggcg      300
ggtagtggcg      360
ggtagtggcg      420
ggtagtggcg      452
ggtagtggcg      60
ggtagtggcg      120
ggtagtggcg      180
ggtagtggcg      240
ggtagtggcg      300
ggtagtggcg      360
ggtagtggcg      420
ggtagtggcg      452
ggtagtggcg      60
ggtagtggcg      120
ggtagtggcg      180
ggtagtggcg      240
ggtagtggcg      300
ggtagtggcg      360
ggtagtggcg      420
ggtagtggcg      452

<210> 797
<211> 333
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(333)
<223> n = A,T,C or G

<400> 797
ngcgcacgtg      60
ngcgcacgtg      120
ngcgcacgtg      180
ngcgcacgtg      240
ngcgcacgtg      300
ngcgcacgtg      360
ngcgcacgtg      420
ngcgcacgtg      452
ngcgcacgtg      60
ngcgcacgtg      120
ngcgcacgtg      180
ngcgcacgtg      240
ngcgcacgtg      300
ngcgcacgtg      360
ngcgcacgtg      420
ngcgcacgtg      452

<210> 798
<211> 632
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(632)
<223> n = A,T,C or G

<400> 798
cagatcaatt      60
cagatcaatt      120
cagatcaatt      180
cagatcaatt      240
cagatcaatt      300
cagatcaatt      360
cagatcaatt      420
cagatcaatt      452
cagatcaatt      60
cagatcaatt      120
cagatcaatt      180
cagatcaatt      240
cagatcaatt      300
cagatcaatt      360
cagatcaatt      420
cagatcaatt      452

```

atcctgctga	ttccttggga	caagggttgtc	tgcctgggcc	tcantgcacc	ttcttgaata	240
cttgcttgc	aaccacacct	tccactctca	tctccaggtg	cagntcatca	ccctcgatcc	300
actgggtcca	gccacgcccc	tccctctcac	ccttctgcac	acactggagc	ttgnctccgc	360
cnagctca	gntgcatca	cttgcggcat	ctatgcctgn	caaatctcn	ttaaaactctt	420
tnccaacctg	gaagtncatg	gatgttagtcc	taaaaagtgtc	ancgngccga	tgatcatatg	480
gncacccggnc	tgnaccnact	tttggctggc	ttancaagtt	gcaattgcnn	aggccattga	540
cttaggcncc	agtcttccc	gcgecgtnaa	ggaatcncc	attggcggnn	tctagggncc	600
nntggncagt	tggtnatnng	caantntcng	ga			632

<210> 799
<211> 462
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(462)
<223> n = A,T,C or G

<400> 799

ggtaactgcgt	ctgtttttgt	taccccacaa	ggaccagcgc	cagatgttct	ttgtgatcag	60
cctggatccc	ccaaatcaagc	aaggccaaac	tcgctaccac	ttcctgatcc	tcctcttctc	120
caaggacgag	gacatttcgt	tgactctgaa	catgaacgag	gaagaagtgg	agaagcgctt	180
tgagggtcgg	ctcaccaaga	acatgtcagg	atccctctat	gagatggtca	gccgggtcat	240
gaaagcactg	gtaaaccgca	agatcacagt	gccaggcaac	ttccaagggc	actcaggggc	300
ccagtgcatt	acctgttctt	acaaggcaaa	gctcaggact	gctctacccg	ctggagcgggg	360
gcttcatcta	cgtccacaaa	gccacctgtg	cacatnccgt	tcgatgagac	tcctttgcaa	420
cnttgcgt	ggtacctgcc	cggccggncg	ttcgaaangg	cc		462

<210> 800

<211> 702
<212> DNA
<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)...(702)
<223> n = A,T,C or G

<400> 800

gaggtgtcct	ccccccaag	cagaccacct	gtccccttct	atcccagctc	agagcagctg	60
acccaactca	gaatctttt	cctacaggat	gaagtgcctt	ttgaatgtta	tttaagccg	120
agagtttaatt	tttctacaca	acatatttcc	agacatcttt	tagtctttt	ttgtctttaga	180
tactataaga	agatgaacat	gacaatttc	tagaacctgg	tagcgtgtgt	gtgtgtggcg	240
gggggtgctg	agggagggga	gtgagtcaca	ggagcctgtc	ccccaacagg	tgtgattgtc	300
ctgacaacct	gtggcatgt	gcagggtcag	gctctgtata	ggaggattc	atgactatgt	360
cattgnctcc	actcattttt	gaccggatgg	ggaatgtatc	tgcaatttgt	gtggctcaac	420
acttttagaa	acaatagaat	tattttatata	aataattctg	atggtgacca	atgttngnct	480
tggagggcca	caattttctt	ccttgaaaa	agtgacant	ncctggncac	ttctggnttt	540
ttaaaactta	ctngccatt	ccattttggg	ggttttttg	ggnnggtaaa	ttgggtttgg	600
gggttaaaaa	cccggttncc	agggaaaanc	ccctaaaaaa	ncctttggg	gaattttaaa	660
anggaaaaat	tctggntaa	atngggntt	ttttaaaaac	cc		702

```

<210> 801
<211> 719
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(719)
<223> n = A,T,C or G

<400> 801
aggtactgcc cagagaattt tggtagacatc aagaaaaactt tggaaacgaga gactcgccag      60
tgccaggctc tgggtgatctg gactgactgt gatagagaag gcgaaaaacat cgggttttag      120
attatccacg tggtaaggc tgtaaagccc aatctgcagg tggtgcgagc ccgattctct      180
gagatcacac cccatgccgt caggacagct tggaaaacc tgaccgagcc tgatcagagg      240
gtgagcgtg ctgtggatgt gaggcaggag ctggacactga ggattggagc tgcctttact      300
aggttccaga ccctgcggct tcagaggatt ttccctgagg tgctggcaga gcagctcatc      360
agttacggca gctgccagt ccccacactg ggctttgtgg tggaaccggc tcaaagccat      420
tcaggcttt gnacccttgg ggccgnaac accctaaggg ccgaatttcc agcacaactg      480
ggcggggcgt tactaagnng gantncgaa cttnnnnnn cccaaagctt gggcgtnaat      540
cattnnnnnnc ataaaacttgg gttcccccttgg nnngnnaaaa ttgggnntaaat cccgggtttna      600
caaattttcc cccccaactt ttccnnaac cccgggaaag cctttaaaaa ggggttnaaaaa      660
acccctnnggg ggnngccccctt aaatggagtn ggggncttta accttcnccc ttttanant      719

<210> 802
<211> 646
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(646)
<223> n = A,T,C or G

<400> 802
actcatcgcc attgacacctgg cctataactt gcacagtgcc tatggaaact gttcccagg      60
cagcaaggct ctcatacaac aggccatggc caagatcatg aaggcaaac ctgcccctgta      120
tgtgttacgt gaacggatcc gcaaggggct acagctctat tcatctgaac ccactgagcc      180
ttatattgtct tctcagaact atggtgagct cttctccaaac cagattatct gtttggta      240
tgacaccaac gtctacagag tgactattca caagacctt gaaggaaact tgacaaccaa      300
gccccatcaac ggagccatct tcatcttcaa cccacgcaca gggcagctgt tcctcaagat      360
aatccacacg tccgtgtggg ccgggacaga agcgtttggg gcagttggct aagtggaaaga      420
cagctganga ggtggccggc ctggatccga cttctggctt gtggaaaggaa cagcccaagc      480
cagaatcatt ggcancagg aanggcattgc tngacccact ngaagggnc cttactnnga      540
cttccccaaa attggcatt aaagggnntcn gggcttcaaa ttccctttc aggcncnggtt      600
tnanggnnggg aaaaatttgg ggaatttnat ccttaaagcc ntgnnc      646

<210> 803
<211> 544
<212> DNA
<213> Homo sapiens

<220>

```

```

<221> misc_feature
<222> (1)...(544)
<223> n = A,T,C or G

<400> 803
acacgtcgtc ctccggctc aggcctcaa agaaggggat gaggccagc agctccgtgt      60
ccgtcatgtc atcgaaccag gactgcacag gcactgcatt ctcaggatgg aagatgtatg    120
aggcaggggaa attgtcaaca atgatcaact tgctcagctc ccgcctaagg cgactcagg    180
ccttcacgta gttcccacga taaaaaacac atgattctct gaagagccgg gccccgaaaca   240
caccccaagcg gtctaggagg tcagccacag ggtctgcata cttggccaag ctggcagtaa   300
agagcacaca ttcaaaaagc tgcccatcct ctggaggaac tcgtccacat gtggccgctt   360
cagcacatac acctgatgta tagttccatc gattcaacccg gaacaataaa atnagcanta  420
ctaaataggc ttaaaacgaa ctgtgcacca atggttcatt ctaaatcaat ggaccaccca  480
ttctttcca tagtnagca ccgttacctn tggaaaang tnccttggc gngnaccccc  540
ttan                                              544

<210> 804
<211> 642
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(642)
<223> n = A,T,C or G

<400> 804
cgaggtacat ccttgtggaa gagaacctca tcaatttcca catttcttcc aagttcttctt  60
gccctgagac ggattctcat cgctttggaa ggacacctgaa agaagcaatg actgacatca 120
tcactttgtt tggctctagt tctaatttcca aaaagtaatt ccactggagc tgctggaaag 180
gaaaacgagc tcttctgtat caaaaaaaat gaaaaatagg cattaatcct gaccttagct 240
cgggatgaaa cactgtctt caaaaaaaatc agtttccctt ccagaaaaatg tgggtttttt 300
ttttcccttag aacagtatct ctccccctgtg aacgataacc ccactacttc cagacttgcc 360
ctcccttggg ggacatctga taaagtctcc cctgatgtct ccgcacatccg tcggattatt 420
aagggtatca aatcttgggtg agttaatnaa ngtattttaa ngggtgtgnn ttaccnncc 480
agtggatgg aatngggngt gctttntant ngcaannncg aaggcttaag ctttanggcc 540
tttaaccttt ntccangcng ggtaaacttt tggttgnntn aaaanaaaan tnnttnttaa 600
agttggggnc ccanttgagc taaccatttg ganngcctac cc                                642

<210> 805
<211> 261
<212> DNA
<213> Homo sapiens

<400> 805
cgaggtacta cagagccccct ggacgggtgtg atgttggaaa aggatgtttt ttctcaaccc 60
gaaatttagta atgaggctgt taatttgcata aatgttttac cagctgataa ttcatcaaca 120
ggatgctcta aatttgcgt tatagaacct ataagtgaat tgcagggatt tgaaaacatc 180
aagtcatcca catcattaaac tcttacagtt cgaagttcac ctgctccctc agaaaatact 240
catatttctc ctttgcataatgt t                                         261

<210> 806
<211> 311

```

<212> DNA
 <213> Homo sapiens
 <400> 806
 gcggagagcg gctgatcgca gtccggaggt gaggcgaaac tctgagcagg tgggccatta 60
 tggctgacat gaaaaatctg gtagaaaatg tgagggggc agtggccgc ctggaggcag 120
 tatctcatac ctcgacatg caccgtgggt atgcagacag tccttcaaaa gcaggagcag 180
 ctccatatgt gcaggcattt gactcgctgc ttgctggtcc tgtggcagag tactccagtt 240
 ctcaagccaga acccccgcaca ggtcttcct tatggatac cagccctca tacattgata 300
 aattgggtac c 311

<210> 807
 <211> 591
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(591)
 <223> n = A,T,C or G
 <400> 807
 ggtacctgtt ctttgcagt taagatacat atcttattat ctttgtttt ttcaagtcta 60
 tgctcctgtt tgaagctttt cctgttaattt agttgtctg tgaaataacct ataacatata 120
 attcctatag agtatgccac atttttttc taactcatt caaatgaaat tctctcagat 180
 tctagtttt gagcttgtcc actagatctg aaaataaaagc atccttcct gagtccactt 240
 gaactaattt tgaattttgtt acttaattta ctggcatctt gggaaacaag tttgctgtg 300
 gcaggaaggc tggggatggaa gtgagccgtt gaagtctact ctgggttgc gatgacattt 360
 cattaggggt tatttcctgn attaccatgt cccccctgtg gcaatataact ttatgacttg 420
 gaatgcaaca ccacccatcaa aagcctgggt tcaagttttt aaagcattgg ttctgtgntg 480
 ccataatctg aagttctgtt gaaggattat tnaagcttta aaccttncaa ggtaaaggcc 540
 aaattaggcc tggaaattacc tggaccttgg ncaaaaattn aaanattncn n 591

<210> 808
 <211> 641
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(641)
 <223> n = A,T,C or G
 <400> 808
 actaaatgga ggcacgtggg agaaggagg ggccatttag gaacaaaaat gtgttttaag 60
 gaagagatgg gaaagcagag accaggtaga ggagcttagt aagctgatag gtgttgtcat 120
 tggtagaaaa gaagaagata aatggatgtt aggattgggg ccttggaaag tagcataggc 180
 aggaaaaagag gaatttggaa aatacgtgaa gaagtgggaa tcatggctg ggaaggaaaa 240
 ttttggaaaa ggagcacatt aaggcagaaaa actcttttag acaatgtttt taaaacttca 300
 gcaatggta tcctttata caagtatccc ttactttggt atcccggaa gtaaaaggca 360
 cattcttgtt gaagttgggg aggagcactt ggaaccctgc ttgcttaact tttttcttt 420
 tggcccttg aagtgttagt tattttaaaa tccactggc tanaagggag tagttaagtt 480
 naaggaaaaaa aaggatgat tggaaaaaga tcngacccga agggacttt tgtnaccna 540

aaagtttng gtncccttgg aaagggaagg ggcccctttt nggaattang ggaaatggaa	600
acttggact gggnaant cctntnagct taacctgan g	641
<210> 809	
<211> 388	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(388)	
<223> n = A,T,C or G	
<400> 809	
acaagaggtt gggctgggcc aggatgcccgg aggctggcc acagccaccc ccctcaaagg	60
tgttgatgaa aaaagagaca ccttcttcct tgagaacatc tttcagccac aaatttagggg	120
atctgttgc tggcaataaa ggaacgaatt tataaaagag ttcaatggat ttgtgtcgac	180
attctgtctg gggctccca caatgagcta aaagccactt gaccagatcc aataaaacaca	240
atgatgcgga aggtggaaat cctcgcggca aacgtcgttt ctgtgtttt tttaaagaaa	300
catgctttt ttcattatgtt cgccataggt gatcaatggc atcacaacac tggtaattt	360
tacctcggnnc gngaccacgc taaaggcc	388
<210> 810	
<211> 175	
<212> DNA	
<213> Homo sapiens	
<400> 810	
ggtacatcct cggccggag tccccactgt ctctctacaa tgaggagctg gtgagcatga	60
acgtgcaggg tgatttatgg ccaactgtatg ccacccgggtt catcaacatc aattccctca	120
ggctgaagga atatcatgtt ctccagagca aggtcactgc caaatagacc cgtgt	175
<210> 811	
<211> 329	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(329)	
<223> n = A,T,C or G	
<400> 811	
ctgegecggtt gtttcttggc gcagcggttct tttatctccg tccgccttct ctcttaccta	60
agtgcgtgcc gcccacccgtt ggaagattcg atggacatgg acatgagccc cctgaggccc	120
cagaactatc ttttcgggtt tgaactaaag gccacaaaag attatoactt taaggtggat	180
aatgatgaaa atgagcacca gttatcttta agaacggtca gtttagggc tggtaaaag	240
gatgagttgc acattgttga agcagangca atgaattacg aaggcagtcc aattaaagta	300
acactggcaa ctttggaaat gtctgttacc	329
<210> 812	
<211> 668	
<212> DNA	

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(668)

<223> n = A,T,C or G

<400> 812

acggatgcta	cttgccaat	gatggtaaaa	ggtagctta	ctgggtgtcc	tccgattcag	60
tttagaatga	ggaggctgc	ggctaggagt	caataaagt	attggcttag	tggcgaaat	120
attatgctt	gttgttgg	tatatggagg	atggggatta	ttgctaggat	gaggatggat	180
agtaataggg	caaggacgcc	tcctagttt	ttagggacgg	atcgagaat	tgtgtangcg	240
aatagggaaat	atcattcggg	cttgatgtgg	ggaggggtgt	ttaagggtt	ggctagggtt	300
taattgtctg	ggtcgcctag	gagggcttgt	gagaatagt	ttaatgtcat	taaggagaga	360
aggaagagaa	gttnaccgaag	ggccttta	nttgtgtaat	aanggttgg	aggtgattt	420
tatccgnaat	tgggangtga	tccctaaggg	ggttgggtga	nccccnnttc	ctgcccanaaa	480
tagganggtg	ganttctgct	tagggcttcc	aataattgan	gggcctnaaa	tnaanttgn	540
aanggtaaat	aaaaccttt	naagggttgg	gacettgttt	cttngtnna	ncccccttan	600
nattccattg	gaacttaggc	ttggnccat	gtnttggan	tggcgataa	ttaanttttg	660
aaattncc						668

<210> 813

<211> 312

<212> DNA

<213> Homo sapiens

<400> 813

ggtacaggca	gggttagatct	aactatttgg	aggaatccct	aacacttttc	cagggtagaa	60
ttctggctag	tccaaaaagg	gtccttctt	taagggtttt	gagaaactag	acactgcaac	120
ttatttagtat	cggcgacgtt	tgtttggggc	aaattcagct	ccaggagctg	cacggttgaa	180
tgcaggagga	gttccaccaa	ttgccccat	tccttccatt	gtagcagcct	gaccaaagcg	240
ttcagttgtt	ggtgggtca	atcccaaagt	tccatccggc	atcatagtgg	caggtcctgg	300
aggagctggg	gt					312

<210> 814

<211> 551

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(551)

<223> n = A,T,C or G

<400> 814

caggtactct	gaagtataca	caacaggct	aaacatctcc	ttgtcgtaa	gtagttgtgt	60
aaaattcaag	ataaaagattt	agtctcatct	tttaatgtca	gttttttcc	ccatgttaaa	120
gggaatgagg	aggagtccctc	tttttattccc	ccacaagaaa	aagggagcca	cattaatatg	180
tgttatattcc	cataactcta	atgttaagtgc	ggatctccaa	agcctaggga	ttttcccgta	240
aaagagaggt	ggccgttctg	tttacccttt	tatagaagg	gtattccacc	acagagagcc	300
ggagggtttc	cagatgtgt	taagagagca	ggtgcgcaga	gcaagcaaat	gagcgc当地	360
agtattatgg	aaaacattt	agaagttagc	tccatgagga	ctgtggctt	cacaagagga	420
cicgactggg	tagccctggc	tgacanagga	cctgaaaaagc	ngagtattgc	ttcaaacttg	480

gaaccnntca taggagccta acactgttgg aagaagtacc ttggcnggac caccttangg	540
gcaattcnag c	551
<210> 815	
<211> 619	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(619)	
<223> n = A,T,C or G	
<400> 815	
ggtaactgata acttcttgct tcagttcatc tacaatgatc ttccctcta aatcccagat	60
cttgcgtgctg gggcctgtgg cagcacacag ccagtagcgg ttagggctga agcacaggc	120
gttgcgtatg tccccaccat ctgcgtgt aagggttttgc cttcggtga gatcccataa	180
catggcctgg ccattccttc cttccagaagc acagaggat ccattctggag agacagtac	240
cgtgttcaga tagcgtgtt ggcataatgtt gttggcttcc agttgcgt tagccagggtt	300
ccataccttgc accagcttgc cccaaaccaca ggagacgtat atagggttgc tgctgttgg	360
cgagaagcgg acacaagaca cccactctga gtggctctca tcctggacag tgtattttgc	420
acacaccagg ggtattccat agcttgggtt gtttacctgn ccggcggccg tcnaaanggc	480
gaattcacca tggcggccgt actagnatn caacttggnc caacttggcg gaatctggca	540
tactgggttcc tngggaaattt gtttcngtcc aattccncna aattnaaccg gaagnttaaa	600
ggtaaaaactt gggggccta	619
<210> 816	
<211> 658	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(658)	
<223> n = A,T,C or G	
<400> 816	
actccagcag ccaggcatcc cagatctcct gtcctggagg gtgctggggc ccctggctcc	60
ccagagtgtg caggcagacc cccagagccc tagctcatcc atttatccat tcctcataat	120
ccagtgtcca aagagtaccc ccagcaggc agggaaaggta cttccgggg tttacatgac	180
tgtttccatc tcagaggcga ccgtggcatc ccctgcgggc ccccgatagt gtttgaggag	240
ggggtttccct tcctcaggct ctgtgttgc tgcactccgtt caagctttttttttttttttt	300
ttttttttttt tggaggaga acaattttat tctaaaaataa gaacttggta acaatgaaat	360
accaaaaagct ggtcattata ataaaaagaa aagaanagttaaactttttttttttttttttttt	420
ttcnaaaattt atcaactataa tataactgcca actntggtna attngantttt gaatttatttc	480
ctttcatnngg attatttcaa gggaaattttt taaaatnngt ttttgccta aaaccttngg	540
ccgggnaccn cncttanggg gcnaaaattcc aatccaantt ggggggnccg taacttaagg	600
gggancccaa ctttgggnnc caancnttgg gngttaaatc atggggcana ncntgttt	658
<210> 817	
<211> 141	
<212> DNA	
<213> Homo sapiens	

<pre> <400> 817 actttcttct gccataactt cttcctcagt tcctacaggt gtgacacttt tcaacttctt tggaagaggc atttccactg tatcatcaga gacttggct gatgcttcta tggtgctatc ctcttcctct tcacgtgtac c </pre>	60 120 141
<pre> <210> 818 <211> 280 <212> DNA <213> Homo sapiens </pre>	
<pre> <400> 818 ggtaacttaag aactcaagta tagaaataaa ctgtgggctg aagtaacatt gtaacctgct cccaacatga ctgcataagggt gtctaaagggtt aagtgtgaag attactgtga ggtctcaagt tacttgacta atcaatccca tttgaatttc aatccaagca gcataattta cacacacctg aaggaaatat cttcagtgtg ttcatgtgtg tgtctatgtg catgtatgtg taggggatag gtgtaatttag ggaagggctg accgaacaac attgataagt </pre>	
<pre> <210> 819 <211> 635 <212> DNA <213> Homo sapiens </pre>	
<pre> <220> <221> misc_feature <222> (1)...(635) <223> n = A,T,C or G </pre>	
<pre> <400> 819 ggtaacttgag tccttctcat ggggtggggtg attgccttctt ctcatacgga gccaggagag agggggacag ataggagggtg gcccatagga gcagtcccgc tgcacaatgg taggcataagg ccatggcact ggactgcctc taaggactgc taaaaagaat atttttttgtt ggtgtcagaa ctggaaaaag cacttccct tcgggcattt ctggaaatga ttatataatcc acaaagaaga actctgtaaag ctttttcttgc aattgtancc agtgagaaaaa gcagatagac tgaagaatat gaaggatagc ttagctgtnc ctncatagtg gggcatgcct aggcatatgg ctggcttgg gactactgt gctttccct gagtttgcatt tgcaactgan gtatgccgg ctggggccac tgacttccca ntaatggaat ctgnthaaaaa ctgggggatt ccttagctt ntactggaa gaaaantttt gtancnaaaaa gatttataac cnnttagnaa taagttnc agcanccng gattttttt nngcttgggg gttnttggcg nccttannn aaggacnggg cntgnnnntt cntcttacn aggcttgcnt gntgancntgg agaan </pre>	
<pre> <210> 820 <211> 276 <212> DNA <213> Homo sapiens </pre>	
<pre> <400> 820 acatcttctt cctgagttac gcttacaaaaa ttttcaaaca tagcaaccat tgatggggcg gcaatcacat gacaattcac aagatcagat aaaaaacggc ccaaatacac ggcttcatta taattgtttg cttcaatga ttctttaagt tgacgaatca tggcttctac aaattctcca ccaaaattgt aattcctggc attcagtagt ccaactaatg ttgtataaat tgtcagcttc tcaggtataa ggcgtgcact ggattcataa atcacc </pre>	

<210> 821
<211> 728
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(728)
<223> n = A,T,C or G

<400> 821

acaatgatgc cagaagcttt	ccttcaagaa gctcagataa	tgaaaaaatt aagacatgat	60
aaacttgttc cactatatgc	tgttgtttct gaagaaccaa	tttacattgt cactgaattt	120
atgtcaaaag gaagcttatt	agatttcctt aaggaaggag	atggaaagta tttgaagctt	180
ccacagctgg ttgatatggc	tgctcagatt gctgatggta	tggcatatat taaaagaatg	240
aactatattc accgagatct	tcgggctgct aatattctt	taggaaaaaa tcgggtgtgc	300
aaaatagcag acttggttt	agcaaggnta attgaagaca	atgaatcac ac agcaagacaa	360
ggtgc当地 attccaatcaa	atggacaagc tcctgaagct	gcactgnatg ggccggntta	420
caataaaatc tgaaggcctg	gncatTTgg aattcttgca	aaccggact tagttaccca	480
aangggcccc aatngccntt	atcccagg antngggga	aaccgggnna aagtaacccn	540
ttggggcccg gaaaccacc	nccttaangg ggccnaaatt	ttccagcnn cnacttgggg	600
cggggcccg ttancttaag	ggggaaatcc ccnaacntt	ggggacccca anacnttgg	660
cgggggaaaac cnatnggggn	ccaaaanacc gnggntnccc	ccgnggnggg naaaaaattt	720
gnnttnnc			728

<210> 822
<211> 632
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(632)
<223> n = A,T,C or G

<400> 822

actttacggc ctgatcta at taaaatgc	tcccttggca caagtggcaa	agctgaactc	60
atcaaaaccc atcacaatga	cacagagctc atcagaaagt	tgagagagga gggaaaagta	120
atagaaccc taaaatgc	tcataaaatgaaat	ttttggcag agaacttgg	180
cttccagaag agttatgtt	caggcatcca tttccagg	ctggcctggc aatcagagta	240
atatgtgtg aaaaatgc	tatttgc	aaaccaacaa tattttgaaa	300
atagtagctg attttctgc	aagtgtaaa aagccacata	ccctattaca gagagtcaaa	360
gcctgcacaa cagaagagga	tcaggagaag ctgatgcaaa	ttacccagtc tgcatcact	420
aatgccttc ttgtgtggca	tttaaactgt aggtgtcan	ggtgactggc cgttcctcag	480
ntncttgc	gttaaactgtt	ggancactta tttttnggc	540
tangntaaa ccttncatng	gttaaactt tacccangt	gnttantatt tngnccccc	600
ttaanaccc tctncnngnt	cctccat	tttg	632

<210> 823
<211> 649
<212> DNA
<213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)...(649)
<223> n = A,T,C or G

<400> 823
actgctgcaa cccatgcagc gtcaacttcg ttcatttcac cacgaagatc tccattggat      60
cttgcattgaa ctgcggcgag actggacgga ttctttgtc caaggtagca ctgaacatca     120
tgacctgtt ctctgtgggg gtcattgcgaa aaatttcctg gacatcccga cgcatgtcga     180
gctgttcaag catcttatca cattcatcca aaataaaatgt tttaatgtgt ttgaggttga     240
ggcttattt tcgagccagg gctaggatac ggcttgaggt cccacgacg atatgcgggc     300
agttcttctt cagcacctct tcatccttct tgatagacag accacaaaaaaaacagcaa     360
ccttgacatt gggcatgtat tttagagaagc gctcatattc cttgctgatc taaaaagcca     420
actcccgagt ggtgacacca tcaccacgc agacacctgc ccagtaacct ggcttccaac     480
tggttgcant gnnngggccaa gaacaaacac tggtgccctt tccatgcccc natttggct     540
tggcnccagg aaatttcantt cccaaaatgg gcttgaaggg atgccntnt gcttggactt     600
ttgacgggat gtttaaggcc ccagnnnan aatggncccg gagcaattn     649

<210> 824
<211> 603
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(603)
<223> n = A,T,C or G

<400> 824
acccttata aaccagcaat gtcattgtg aggaagcaaa ttctcaagtg tctgtcattt      60
acttggttct ttttcttgc ggttttccacc ctataccct gaaaaagtct gtaattaccc     120
tagccaggaa gatagatggt catggcaagc gcacagcacc agacttactg gctcaccaag     180
atgatggaaa aaggcagatg attttttaaa aagccgtaat gactccctta gaccagccat     240
ttagcgttgtt aattttgaaa ggcctagctc cattgcagac ttccaaaggg tcagctctga     300
gactgcccctc caggtggggca gttgatttatttccaccatgttggccagag cttaaaactg     360
cctaagtgtac aactaccta gttggcagga aaagagacat atagtagaaa gtaaaaatg     420
agcagtattt gggcagatgc tatgggtac agttgaangg taaaanggac tttcttggg     480
aacccttata ccctgngaat atgacctngg cccgacacnt taaggcnatt cacnntgngg     540
gccgtctaann ggnncactt ggnancntt ngnaaaaaggc aaactgtnt gngnaatgtn     600
ccc                                         603

<210> 825
<211> 634
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(634)
<223> n = A,T,C or G

<400> 825
tgaaaaataa actattntat ttcaatgttt gtccttgcg gttcagaagc acatctactg      60

```

cctgggttggaa	acccaaggct	tttataaaaac	cgttagagaaaa	tatgagctct	atgtatagag	120
aaaatataca	tgttgattaa	ttgtgtgact	cttcctgtg	caaagcagaa	agttctaaat	180
gcaacagcat	gattctctcc	aagtccctcc	ctgggatttg	gggggcctg	gaggctgtga	240
tctcacctcc	aatagagaat	cccccaattct	tccagccaa	gggaggccca	gnCATgtaga	300
aagagcagga	gataaaagtca	aagctgacaa	ctcatgggtt	ccccaaagtt	ctccggggca	360
ggggctatgt	ttgggggct	taccctgcaa	agaaggggtt	gctggggtgc	cnaccttggt	420
gggttaagtgc	cacactggca	ctaaagctgt	tggaaagtct	agcattgcan	ccggccaggt	480
ttatggtna	accagggtgt	ccaangggtt	ttttcccta	aaactnnggg	ctnaaaggng	540
gggaccctng	gcncgaaccc	ccttanggcc	aaatcccgcc	aattggggc	cnttttaan	600
gggnnccaac	ttgggaccaa	acttggngna	atnn			634

<210> 826
<211> 507
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(507)
<223> n = A,T,C or G

<400> 826						
ggtacctgaa	gaacaatcc	cttcagggtt	aagctcgaca	ggacacttcc	cccagtccca	60
ggttccatt	tccctcattc	ccaaaagggg	ccctccctc	tccatgcgc	cacagaactt	120
ttcgctcacc	caaaaagtccc	ttctgtctga	tctttccca	tcatcttct	tcctctact	180
tactactccc	tctagaacag	tggattttaa	atatactaca	cctcaggggac	aaaaagaaaa	240
aagttaaagca	agcagggttc	caagtgcctc	tccccaactt	caacaagaat	gtgcctttta	300
cttccctggaa	ttccaaagta	agggatactg	tataaaagga	tcaccattgc	tgaagtttaa	360
aaccactgct	ctaaaagagt	tttctgcctt	aatgtgcctc	ttttccaaaa	ttcccttcc	420
cagcccatga	ttccacttct	tcacgtattc	ttctaantcc	tcttttctg	gctatgcac	480
tttctnangg	ctcaaaaactt	aaattcn				507

<210> 827
<211> 617
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(617)
<223> n = A,T,C or G

<400> 827						
cgccagcgct	gcaggagctg	acatggaccc	aaatcctcg	gccgcctgg	agcgccaaaca	60
gctccgcctt	cgggagcggc	aaaaattctt	cgaggacatt	ttacagccag	agacagagtt	120
tgtctttctt	ctgtcccatc	cgcattctcg	gtcccgagaa	ccccccatag	gtatgtatctc	180
atccatggaa	gtgaatgtgg	acacactgg	gcaagttagaa	cttattgacc	ttggggacc	240
ggatgcagca	gatgtgttct	tgccttgcga	agatcctcca	ccaacccccc	agtcgtctgg	300
gatggacaac	catttggagg	agctgagct	gccgggtgcct	acatcagaca	ggaccacatc	360
taggacctt	tctnctnctc	ctncgactcc	tnacccaacc	tgcataagcc	aaatccaagt	420
gatgatggag	cagatacgcc	cttggcacag	tcnatnaga	ggagaaaaag	gggtnttgg	480
ngggcaaaan	cttgannctg	cagntagcaa	tggccctgc	tanaantgnc	caccttggtn	540
ttttccaatn	nnacncaggc	caccnaactt	ttgganaaac	caantttnt	tgcgngggcc	600

aaggggaaagn nngggat

617

<210> 828
<211> 448
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(448)
<223> n = A,T,C or G

<400> 828

actgtcacct	ttttaagtgg	aaagaaaatat	agtgtggatg	atttacactc	aatggggagca	60
ggggatctgc	taaactctat	gttgaattt	agtgagaagc	taaatgccct	ccaacttagt	120
gatgaagaga	ttaggtttgtt	tacagctgtt	gtcctggtat	ctgcagatcg	atctggata	180
gaaaacgtca	gctctgtgga	ggctttcag	gaaactctca	ttcgtcact	aaggaccta	240
ataatgaaaa	accatccaaa	tgaggcctct	attttacaa	aactgcttct	aaagttgcca	300
gatcttcgat	ctttaaacaa	catgcactct	gaggagctct	tggcctttaa	agntcaccct	360
taaggccttn	gttatttaa	ncatgaactg	atggtaactg	nacctcngnc	gcgaccacnc	420
taaggccaaat	tccananaact	gnccggcg				448

<210> 829
<211> 619
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(619)
<223> n = A,T,C or G

<400> 829

cgaggtactt	ttaaaggcagg	gagtggggaa	aagtattttt	aggggacatt	ttcatcatca	60
tttcagcttt	ttttttttgg	tttgtgtct	ttttttgggg	ggttgggttt	gttggtttca	120
ctgaaacatt	taactacctg	taaaatctaa	acatggctgt	tagtgcaca	ccaattcggg	180
acacaaaatg	gctaacactg	gaagtatgt	gagagttcca	gagggggact	tgctcacggc	240
cagacacgga	atgtaaattt	gcacatcctt	cggaaaagctg	ccaagttgaa	aatggacgag	300
taatcgccctg	cttigattca	ttgaaaggcc	gttgctccag	ggagaactgc	aaatatcttc	360
atccacccccc	acataaaaaa	acgcagggttgg	agataaaatgg	acgcaataac	ttgattcagc	420
agaagaacat	ggccatgttg	gnccagcaaa	tgccactagn	ccatgccatg	atgcctggtg	480
cccattacaa	cccgngccat	ngtcaattt	nccaacttac	cnccatgcnt	aacagccgct	540
ttannccctt	tggacctttt	ttccanctt	gccccggcaaa	atttccant	ggccaatttg	600
ttccgggant	ccgggtcct					619

<210> 830
<211> 618
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(618)

<223> n = A,T,C or G

<400> 830

ggtagacccat	agccaacggg	acaaaatctta	gagggtataa	aatcatctc	gctcagataa	60
tcatgactta	gcaagaataa	gggcaaaaaa	tcctgtggc	ttaacgtcac	tgttccacct	120
ggtgtatat	ctctcatgac	agtgcaccca	aggaaagttg	actaagtcac	atgtaaaatta	180
ggagtgttt	aaagaatgcc	atagatgtt	attcttaact	gctacagata	acctgttaatt	240
gagcagattt	aaaattcagg	catactttc	catttatcca	agtgcattca	tttttccaga	300
tggcttcaga	agtaggctcg	tgggcagggc	gcagacctga	tctttatagg	gttgacata	360
aaagcagtaa	gttgggggtt	gaaagggcag	gttgcattca	aactctgtga	gttgcataatcc	420
ttnnctatac	ctccatgaac	attgactcg	gttgcagag	ccttggcct	ctntggngga	480
gtctngctnt	ttggcctctt	gggcattcctt	ttgaatagtc	actctgtaaa	actngccann	540
gcttgcacaa	tggtncctt	acccanggtg	naagggnctt	tgttggcctt	tanaagggtt	600
ggncatnctt	ccaaaacc					618

<210> 831

<211> 648

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(648)

<223> n = A,T,C or G

<400> 831

acatgaaaga	cacgtccaca	tcacagttgc	ccccaaactg	cctgtgtcc	tcgatgggt	60
ctctccctcc	agaaaaacgca	tgcttattga	ccttgggttt	gatctgttt	gcctgtcg	120
tgaggaagat	ggaggagttg	gggtcgctgg	cactcatttt	ggctctggcg	ccctgcagg	180
ctggaaagaa	ggtgaggatgc	aacagggtcg	gtttaggata	gccgatcctg	ggggcgacgt	240
cccttgcatt	tctaaatgtt	ggatcctgtt	caatggcaca	tggataagg	cactggat	300
ccgtcctgtc	tgcgaagatc	tgtggaaatg	agttgctgaa	ggagggagca	gcctggatgg	360
caggaaaact	gatctccca	atgcagtcgc	tgtcagtgaa	acncgaaaaa	tgcccttcac	420
tttggtttga	aggttacatg	ccttttggaa	tcttcaccac	atttttgtt	gaaaccttgg	480
nccttnatnc	cccatgtagn	nccaggttca	naanaatntt	gaaaagnctt	tggtaaagg	540
tcaaaaancnc	caggccaant	aaaggncctt	tggnaatttt	ttcccngngt	ataactttnt	600
nggcctgggn	ccaaaggtaa	nggccttcc	cnaannaact	ttttnggn		648

<210> 832

<211> 689

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(689)

<223> n = A,T,C or G

<400> 832

gtccccacga	actggcctgg	ccaaagcaccc	cacactggag	ccatctttc	ctcatatttc	60
agcagtgcag	ccggggggca	gggaagggca	ggcagggtct	gttggggct	cttttatcc	120
ttatccctcc	cccgaccta	ttgtctttgt	tctgtgatta	ttgggggaca	cccggtccc	180
tccagacaat	gccagcataa	atccatccat	ccaaaggcag	agaaccaaag	ggccatgga	240

aggttctctg	tgcctcctcct	acccttccag	tgccttaggc	ctggcgactg	cccctgcctt	300
ttagaccgc	ctccccctta	tacctgtct	tgnctactg	agaaaagcct	ctcagcaata	360
atgnnttc	gtcaacttcct	ccgnctcgg	gacgggcgtg	cctggacact	tgtaccttng	420
gcccgcgaac	cacgcttaag	gggcgaaatt	ccaagcacnc	ttggccggcc	ggttaccttn	480
gtngggatnc	ccaaccttng	gnnncccaa	ccttgggcgg	taaaccatng	ggnccttaac	540
ctngngtcc	ctgggggngn	aaaantngta	attccgggt	ttacccaatt	ttccnccccca	600
aacntntcc	caaancccg	gaaaacctt	aaaaggnggg	aaaaancccc	ttggggggggg	660
gccctnaann	nggagggtgg	ngcnettanc				689

<210> 833
 <211> 726
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(726)
 <223> n = A,T,C or G

<400> 833						
ggtaataatg	tgaattgttc	ctcagaaaacg	cttctttcc	atcctagtga	gaagctggcc	60
ctgcagggtgg	tggcagcaat	ggtgttgtaa	gatttcctcc	cgtagtttt	tctcctcatg	120
gatttgaatg	aatgccaat	aacacgtcca	cttcaacgt	gtagtttacg	cggagcacctt	180
tcgaggcctg	gccccgttgg	gcctacttct	cacctggcc	tatcttctga	actcgctagg	240
ttcttatcaa	cattggggg	ataactttgt	atatttttt	catnngctt	ttctttacca	300
gtttctgatt	tttattctca	atatatttt	gctaaaacct	atttcacaaa	tnaccaccnng	360
actgaaagtg	tgtgnntact	gatgcggccc	ttgagcttcc	atgggcgaaa	ggagtgactt	420
ttgcagcngc	cgtnaagaac	ccgnaaatct	ggtttnanag	cnccanggaa	agtnngaccac	480
cnnntanggg	agcccccneg	tangggggcg	cttgtaaang	ccnccnnggg	ggaacccccc	540
annnaccggt	gggggtcctt	aaaagnaana	nanaccgggg	gtctttaagc	ttntttcctt	600
gggcacncc	ccccaaannn	gggnntttcc	caattnntta	anacnctntc	ttnggggggg	660
tcctngggng	aatggngga	aaaaaangcc	cnmntrnnttg	ttngggggngg	gnaccncaan	720
gtggng						726

<210> 834
 <211> 628
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(628)
 <223> n = A,T,C or G

<400> 834						
ggtagcggag	tgtagccaaa	gtgagaggct	gagagcaaag	gagacatttt	tttcagtttt	60
gagtcgagta	tccagacaga	ggcaaatcat	tttgcataac	tttttattaa	agtgtacta	120
tagaaacaca	tcaatgatt	ttcacaagt	gagcactgtg	catacaatcg	gcaccccaga	180
agccccccgt	cagattccct	tccagttaa	tacctctcca	aggaaacca	ctatcctgag	240
ttctaagcgc	atagattgt	ttctgtctgg	tttggggaga	tatataatg	gaattatgca	300
ttcttcgtat	ctggttnctt	ttcaccaata	ttatgtttgt	gagatttttg	gtgcatgtat	360
ttgtacagnt	ttgtctgattt	taggtgttgc	gcctcattgg	gaacagttt	ctataggttg	420
aagagaaaat	ttgtcttcc	ggtttantgg	caccanggag	canaatgccc	ncagtgtntg	480

gnctcngata atgggtcgaa attgggangt gggctggacn tttttnactt gntctttctg	540
atctngantic ggtncctat tcnatatttg gntntctcg gaattnntg ntngaacttg	600
cctgggccng gctgttctan agggnnag	628
<210> 835	
<211> 602	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(602)	
<223> n = A,T,C or G	
<400> 835	
ggtaactgaaa tcacaagagc tataactgcc agagaaaaat taaatgggggt cttcaagtag	60
tgactgagcc agcaaactaa gtggccaaga gggagacaag agcagctcct aaagaagggtt	120
gaagtcaagc aatctccgga acacagagga tctgaagcat ctgggcagag ccacaggcag	180
gcanggaag gacacacagc acaccagagc agcaccgtcc ttcaactgtgt gagagcaact	240
ctcaggctgc agaaccaatt gccatctcca ctgcctacag ctcaggcttc caactaccag	300
atagggagta aaaaacagtt tgattttatt cacctaagt ctaaacacgg ngggaaaaaaaa	360
aactggctca nagatggaaa ctatatttca tgggggttta ttaaacagag aaagaggaga	420
attttcacat ttcacagggc tttcntgaa ataaaagactt gatctgaaaa ggcaccctta	480
tggcangctt taacttccta agntngggna gnncccaaat ttccanana tcttgggacc	540
ncttgccag tngattttt ttaaataact nagctnaatt gntnggntaa tttnataana	600
ng	602
<210> 836	
<211> 355	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(355)	
<223> n = A,T,C or G	
<400> 836	
acacaatgct tctgccagtc ctattcaggg ccaaggacat gtgcttataa ccatctgcca	60
aattttccaa actgtcacag taacaaccat caaattttag cagatctact ccccagtca	120
caaaggctcg ggcataatg tcgttagtac caaaaactccc agggaaagcct ggcgcaggtt	180
tatttccaaat atctgcataaa atccctagct tcagtcctt gctgtgaaca taattagcta	240
gctggcgaat cccatgagga aagcgctgag ggtctgcctg aagtctgcct tctgaatctc	300
tttggggagc catccaacag tcataatgc agaggtacct cggnncngac cacgc	355
<210> 837	
<211> 611	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)...(611)	

<223> n = A,T,C or G

<400> 837

ggttttttt ttcgtgattt	tattccata aagctttatt	tgtggactct	aaaatttga	60
tttatgtga ttccacata	tcacaaacat tcttctt	taattttc	taaccattaa	120
aattataaaa aactttctt	ttttgcagg ccataaaaa	ttaggcagt	ggccaaatct	180
ggccgctagt ttagaaggc	cacggtagtc tcgctcgag	gcatggcagt	tgagctggc	240
tggggcaccc tggttctct	ccacaaggcc ttcatec	cagaagtctg	aattggcctt	300
gttcatgca cttcagggc	agcattccaa gaggtggaag	ggagagctg	caaagacttc	360
tgaggctggc tccagacctc	actcagatc cccactgctc	catttcagtc	agagtnaagt	420
cactagtntc gcccagactc	aagggtatgaa gggactgnc	tntanctcat	gatgaagata	480
acntgtgaaa tactggggc	tgagttttc anttancnc	agggagtaat	tttcatggnt	540
taaanggcat tccccctt	tttgaagcc ntaantcng	gcnttanng	ggaantaatt	600
aaccnccctt a				611

<210> 838

<211> 650

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(650)

<223> n = A,T,C or G

<400> 838

ggtaacttcca cctcgggcac	attttggaa gttgcattcc	tttgtcttca	aactgtgaag	60
catttacaga aacgcatttca	gcaagaatat tgcattttt	agcagaaatt	tatcttca	120
agaggtatata ttgaaaaaaaa	aaaaagtata tgcaggatt	tttattgtt	ggggatctt	180
gagtnnnca ttgtcgctat	tgattttac ttcaatggc	tcttccaaaca	agaagaagc	240
ttgctggtag cacttgc	cctgagttca tccaggccc	actgtgagca	aggagcacaa	300
gccacaaatc ttccagagga	tgcttgcattc cagtggttct	gcttcaaggc	tttcaactgca	360
anacactaaa gatccaagaa	ggccattcatg gcccncnca	ngcccgatc	gggtanctgg	420
ccgggcnggn cngtnnnaaa	gggcnaaatt tcngcacact	tggccgnccg	ttactaagtn	480
ggantccnaa gcttggntan	ccaagcttgc gnnaattct	nggcattann	nctgggtnc	540
ttgnnggnaa aatgtnatc	cgttgcnnnaaa ttccctcan	cnnanctgan	cctgaaagct	600
ttaantgggn aaacnttggg	ggtcctaatt tnggggacn	taacntctnt		650

<210> 839

<211> 626

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(626)

<223> n = A,T,C or G

<400> 839

actaaacgag caggtgaagg	aggctgaagg atcgctgt	gaataacaaga	aagaaattga	60
ggaactaaag gaactgtac	ccgaaattag agagaagata	gaagatgcaa	aggagtctca	120
cgcttagtggg aatgttagct	aactggctct gaaagctact	ctggtgaga	gttctacttc	180
aggtttcaact cctggtgag	gaggcttctc agtctccatg	attgccagta	gaaagccaaac	240

agacgggtgct tcctcatcaa attgtgtac tgatatttcc caccttgtca gaaagaagcc	300
ttcacacaatta tatctttaga ggaaaccaga ggaaganagt ccncggaaaatgatgc当地	360
gaaaggccaaa caagagcncg gaagtgaacg gaaggcnntt ggggatgcct gtcccccaagt	420
gaaaaatgaa gttcngaaa acantggagg aggangctga naatcaggct gaaagccnng	480
ccnccaatgg aagggaccat tttangctt gganctcng gtngaaagcc ntgc当地	540
aaaaaangggg cccagnccct tcttccangg gaaaagggnnt ttggaaatta aangntttt	600
tnacnnttg ganggatcct tttgg	626

<210> 840
<211> 323
<212> DNA
<213> Homo sapiens

<400> 840	
ggtacacgcg cctctttgc tggaggccct tgaacttcct cctccttcctc gctgctgtcc	60
tcaactgtcac tggatgagc cttcttctta gctttcttag ccactggtcc atttgcctgt	120
aactttcgct ctgggaccc ttgagccaga agctatagat gtctaagagg	180
gaagaggccat tggcatctg ctgtgtagct cctgtcgctt tggcgaacctt attggccacc	240
tctgagagtt ggttatcgcg caggaagccg agcacgagg gatacaggc gctggaaacc	300
acgcggcgaa tgccggcgtc cgc	323

<210> 841
<211> 614
<212> DNA
<213> Homo sapiens

<220>	
<221> misc_feature	
<222> (1)...(614)	
<223> n = A,T,C or G	
<400> 841	
acattgaaaa tgaggtaag atgatcatgc aggataaact ggagaaggag cgaaatgatg	60
ctaagaacgc agtggaggaa tatgtgtatg aaatgagaga caagcttagt ggtaaatatg	120
agaagttgt gagtgaagat gatcgtaaca gtttacttt gaaactggaa gatactgaaa	180
attgggtgtt tgaggatgga gaagaccagc caaagcaagt ttatgtttagt aagttggctg	240
aattaaaaaa tctaggtcaa cctattaaga taccgttcc aggaatctga agaacgacca	300
aaattatttg aagaactagg ggaaacagat ccaacagtat atganaataa tcagctctt	360
caanaaaacaa ggaggacng tattgatcat ttggatgctg ctgacatgac caaggtagna	420
naaagcncaa atgaaagcaa tggaaattgga tgaataacca agcttaattc tgctgancaa	480
gcnatagttt gncattggnt nnagttgta ngtccnaaga gnattgaanc ttaaanttna	540
gggctgccaa ngncttggc cggnacncnc ntnagggcna tttcagccnc ttggcggccg	600
ttctatggnn ncnn	614

<210> 842
<211> 609
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(609)
<223> n = A,T,C or G

<400> 842
 ggtacacccg ctaaatttga atgggcangc agcaaactct gggaaagactt ctaatgcttt 60
 acgataacaag cgaactgcct cttcaatgtt tccctgttct cgtttgatat tggcttaggtt 120
 attcagagag tctgcattggg tgggacacag acggagagct gtattataac aatcttcgc 180
 ttcagcaacc tgtaaaaaat gcgtgcctct ttcaagacat ttccctaaatt gatataagca 240
 tccagaaagt ttgggtcaag ggtgacagcc tttcaaaagt gatgaattgc aagccaaatt 300
 tcccccttgtt cattgaaaac acagccaaaga ttactccaag ctactgcaaa gttcggttgc 360
 gtctcaattt ctttcaaaaat acatgccttgc ttcccttcca agcgacccaa ggcttttaca 420
 ggtnccccagg tcactgcgaa cacagtacct gccggggggc cgttcaaang gcgaaattca 480
 gcacacttgc ggnctganta gtggantncn agcnctggnc caacttgggn ntataatggg 540
 canaacttgtt ccctggggga aantggtnnc cnntaccatt tcnccacttn cgaccggaaag 600
 cttaaangg 609

<210> 843
 <211> 610
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(610)
 <223> n = A,T,C or G

<400> 843
 ggtttttttt cgcaaggatt tcctctgctt taatagacaa ttttagaaag acatgttaac 60
 gggggaaaat cacacaatac taaggatctg agggccataa acatcacata tggctgat 120
 gcttttagtt ttgtttccaa cagttctaa ccaatgttcc tggctgtaat cttaggtgcta 180
 gacgcactgc aaatcctcga aagtgtttaa gatgaaagag caatacactt aagatcttca 240
 aaagtttaca ttaacagaat aagcattagc tccttttaac acacacacac aactaaatta 300
 acaaataaaa tgggtctact ttatatatg cccataaaggc agacacttaa cattgaaatt 360
 tactatttta gattttcact cctttaagag ctatcaatat agacactnaa gataattcac 420
 attnaaaaaa ttatctacat ggaagaatag aacttcttta agaaggaaaa agaaaaagct 480
 ggtgaaacca aggattgcct ggggtnggaa ggaccgntt naacctggc cttaaatgnc 540
 ntgagnacaa ttgattggc nnncttggc tntnttggta acaccggcct tcanggttt 600
 cttgaccnc 610

<210> 844
 <211> 675
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(675)
 <223> n = A,T,C or G

<400> 844
 ggtacacccg aattccaggc caatgaagtt cgaaaagtga agaaatatga acagggattc 60
 atcacagacc ctgtggctt cagcccaag gatcgctgc gggatgttt tgaggccaa 120
 gcccggcatg gttctgcgg tatcccaatc acagacacag gccggatggg gagccgctt 180
 gtgggcatca tctccctccag ggacattgtat ttctcaaaag aggaggaaca tgactgtttc 240
 ttggaaagaga taatgacaaa gagggaaagac ttgggtggtag cccctgcagg catcacactg 300

aaggaggcaa atgaaattct gcagcgcagc aagaaggaa agttccccat taaaatgaa	360
gatgatgagc ttgtggccat cattgcccgg acagacctga agaagaatcg ggactaccca	420
ctagccttcc aaagatgccc aagaaaccag ctgtcttgcg ttggcaagg cattgggcac	480
ttcattgaag gattgaccaa ggttttangg ccttggacct ttggttggc cccaaggctt	540
tgggttttgg attgtaaatg gggtttttgg gactttttt nccangggg aaaatttccc	600
ttttttcnc nantccaat tttngatcc aaagtnccct tggccccggg gccggcccg	660
tttcaaaaan gggcc	675

<210> 845
<211> 620
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(620)
<223> n = A,T,C or G

<400> 845	
acagcctaag acacaaggat ctaggcgaag tagccgccaa ataaaaaaac gaagggtcat	60
atcagattct gagagtaca ttggtgctc tgatgtggaa ttaagccag acactaaggaa	120
ggaaggaagc agtcatgaaa taagcagtgg agtggggat agtgagatg aaggcctgaa	180
cagccctgcc aaagttgctc gaaagcggaa gagaatggtg actggaaatg gctctttaa	240
aaggaaaagc tcttaggaagg aaacccctc agccaccaa caagcaacta gcatttcattc	300
agaaaaccaag aatactttga gagcttctc tgccctcaa aattctgaat cccaagccca	360
cgttagtgg ggttgtatg acagtagtgc ctactgntt ggtatcatga aacttttagaa	420
tggcttaagg gaggaaaaga gaanaaatga ncncaggang aaggcctgat caccccgatt	480
ttgatgcctt tnccctntnt gggncctgga ggatttcntc aaatcttgg ancccttgcc	540
nnnacccccc ttangggcgn aatccagccc ttggnggncc gttcttaggg gatcncagct	600
ttggncacac tttgggttan	620

<210> 846
<211> 617
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(617)
<223> n = A,T,C or G

<400> 846	
caggtacata aagcagattc aagggttaaa ataaaaacag aattttggag tgggtcaaa	60
taaggtgcac agattccaga accctcagag ggctgctgg ccctctccag acattctgt	120
tccgtggc agaggctggg cccgtcccta acagctccgc actggcttag tgcaatgg	180
ctcacagttt caggaactac taggtgaagt gtctggctca agtctgcca gtgtcttac	240
tccatcgta gaagtggagc actatcccta ggttcgattt ccatgaaata ttttatgatt	300
tccatccctt ttggccgctc ttccaaataa ggcctgtga tgccaaacnaa gggggcatgg	360
ttgagggtct aagctctca ttagggctca attctgtgtg gatatnaaca catgacagac	420
acttgcgtca ncattnanga catttaaggc agaggggtca tttaangnta ctttncaaa	480
ttaatatttn gngatnggg cagttcttac ctgnactgg tnnttattgg gnaattttt	540
taccangggg ctgtctattt taaatngctt nggnattacn ngttngnac cctcnaannnn	600
ctngggaaac ttntncc	617

```

<210> 847
<211> 638
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(638)
<223> n = A,T,C or G

<400> 847
ggtacaagct ttttttttt tttttttt tagc ctttccttat gagcatgcct      60
gtgttgggtt gacagtgagg gtaataatga ctgttgggtt gatttagat attgggctgt 120
taattgtcag ttcaagtgttt taatctgacg caggcttatg cgaggagagaa tgtttcatg 180
ttacttatac taacattagt tcttctatag ggtgatagat tggtccaatt gggtgtgagg 240
agttcagta tatgtttggg attttttagg tagtgggtgt tgagcttcaa cgctttctta 300
attgggtggct gcttttaggc ctactatggg tttaaattt tttactctt ctacaagggt 360
ttttcctaann tggccaaaag agctggctt tctttggac taaccaggta aattttacca 420
ngggggaaatt taanaggggt tcttggggc caaattttaa aggtcngaac ttaagantct 480
tatcttgga caanccagn tttcaccagg ctttggnaag gtttngtcn gcctttaccc 540
aaaaaatctt tccnctant ttnctaccnn aaccgggggg cnctttaaa cgnnntttan 600
gggancccccc cnnggttng gggggtnaa ctttgcnn                           638

<210> 848
<211> 347
<212> DNA
<213> Homo sapiens

<400> 848
ggtttttttt ttttcaaca gacaaaaaaaaa gtttattgaa tacaaaactc aaaggcatca      60
acagtcctgg gcccaagaga tccatggcag gaagtcaaga gttctgcttc agggtcggtc 120
tggcgagccc tggaaagaagt cattgcacat gacagtgtat agtgcagga aaacagcata 180
ctcctggaaag tccacctgtt ggtcaactgtt ctcatccagg ctgcccata gcttcttcag 240
ccccctctca tccactttct cccccacaaa gctgggcagc tccttgca gaagttcctt 300
catttcccccc ttactcagct tgaacttgca gccctcttgg caggagt                         347

<210> 849
<211> 624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A,T,C or G

<400> 849
actgctggaa atacaatctt cagcagggtgc tgatgcaggc tggaaatttgg ctggagcgga      60
ccctcccat ggtttagaaat ttgcttttagt gggtggagca ggcttggctg gcatgctaacc 120
tttggcttcc tctagcatgg ccaataacctg atcttttagaa gttggctta gtttcccaagt 180
agccttggcc atttttcat atcctaaatg catcatgaag aatggcaagg catcttgggc 240
cttcttgc acatctccat ttcgatcttc taggcaggag tagagatgag gaacacaaaag 300

```

gataaggctt	gtaggggtgg	aacgaagagt	aggttagttc	tcaaccagcc	agcccagaag	360
ctcttgctc	aagaaggat	tttctttga	gctcttcaga	aagaacttct	ccttcaacca	420
ttccttnatg	cccantctgg	ttntggccaa	gcatttcaca	ggtcgctang	ggcaagact	480
tcaaacattg	gtcttgctt	ctccaaggac	ttgggaatna	angggangc	ctnaaatttt	540
ttancgggtg	gctaaaatt	tggggcnan	ggttattgcc	aaattgttcc	cagggattn	600
aacggttgg	tggncctcg	cccc				624
<210>	850					
<211>	636					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1)...(636)					
<223>	n = A,T,C or G					
<400>	850					
acaagttatc	aaacttctgt	ttggtaacag	aatcattgac	gttcatggcc	ggaacacaga	60
gcttcccagc	tttgagagc	tgatacagcc	tgtgaacacc	agtcacgctc	tcttccacaa	120
tgcctcgat	cttcttaaac	acgtttggat	acttcttata	aacccagtgg	gttaagtctc	180
ccccatcatc	caggatcatg	ttggcctgcc	accatccat	gttcacacag	cggtcaatac	240
accaccagaa	gtcatcttct	gactcgcct	tccaagcgaa	cactgcaact	ccagcctcag	300
ccagtgcgtc	agctacttca	ttctgagttg	agtagatgtt	acaagcagac	cagcggcact	360
gagccccag	agcacagagt	gtctcaatca	acacccgctg	tctggctgt	gatgtgtgt	420
tcttngggccg	ngaacangct	taagggcgaa	ttncacacaa	cttggcggcc	ggtaacttagt	480
gggaatccan	cttngntacc	caagcttggg	cgttaantcat	ngggcatang	cntggttcct	540
ngggaaant	ggtatnccgt	tanaanttcc	accaacnttc	naanccgga	agnnttaaan	600
gntaaaaanct	tngggggcct	aantgagnng	anmtac			636

This Page Blank (uspto)