Endomorfismos. Diagonalización

Tema 3

- 1.- Si una matriz A 4x4 tiene como valor propio $\lambda = 8$
- a) ¿qué posibilidades hay para el rango de la matriz A-8I?
- b) ¿Qué posibilidades hay para la dimensión de S(8)?
- 2.- Si una matriz M 2x2 es diagonalizable y los valores propios son 3 y 0 con vectores propios correspondientes (4,1) y (1,1). Obtener M
- 3.- Sabiendo que los autovalores de una matriz son 1, -1, 2 hallar los autovalores de 4A, de A^t , de A^3 y de A^{-1}
- 4.- ¿Son diagonalizables...
 - Una matriz 2x2 con autovalores 3 y 5 simples?
 - Una matriz 3x3 con valores propios 6,7,8 simples?
 - Una matriz 3x3 con valor propio -3 doble?
 - Una matriz 3x3 con autovalores 9 doble y 1 simple?
- 5.- $f: V \longrightarrow V$ donde V es un espacio vectorial de dimensión finita n sobre un cuerpo K. Demostrar que si B es una base de V formada por autovectores de f, entonces la matriz $M_B(f)$ es diagonal
- 6.- Si A es una matriz $nxn y P(\lambda)$ es su polinomio característico, demostrar que
- a) Si n=2 $P(\lambda) = \lambda^2 (trA)\lambda + detA$
- b) Si n=3 $P(\lambda) = -\lambda^3 + (trA)\lambda^2 (A_{11} + A_{22} + A_{33})\lambda + detA$

 $con A_{ii} = Adj a_{ii} de la matriz A$

- 7.- Demostrar que si A es una matriz de orden n con polinomio característico
- $p(\lambda) = (a \lambda)^n$ $a \in K$, entonces A es diagonalizable si y sólo si es una matriz escalar, es decir si $A = aI_n$.
- 8.- Probar que una matriz cuadrada A y su traspuesta tienen los mismos valores propios. ¿Tienen también los mismos vectores propios?

9.- Estudiar si $A = \begin{pmatrix} -1 & -7 & 1 \\ 0 & 4 & 0 \\ -1 & 13 & -3 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$ son diagonalizables en R. En caso afirmativo, calcular su forma diagonal y su matriz de paso.

Estudiar si son diagonalizables las matrices:

$$10. - \begin{pmatrix} 1 & 0 & -1 & 0 \\ 2 & -1 & -3 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

11.-
$$A = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

$$12. - \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

13.- Sea f: el endomorfismo en R^3 tal que :

$$f(x,y,z)=(3x, -y+az, 3x+bz)$$

¿para qué valores de "a" y "b" es f diagonalizable?

14.- (Examen parcial 24 noviembre 2022) En \mathbb{R}^4 consideramos un endomorfismo f tal que:

$$Ker (f - Id)^3 = \{(x_1, x_2, x_3, x_4) / x_1 - x_2 + x_3 - x_4 = 0\}$$

$$\operatorname{Ker} (f - Id)^2 = \{(x_1, x_2, x_3, x_4) / x_1 - x_2 + x_3 = 0; x_4 = 0\}$$

$$\operatorname{Ker}(f - Id) = \{(x_1, x_2, x_3, x_4) / x_1 + x_3 = 0; x_4 = 0; x_2 = 0\}$$

$$Ker (f) = \{(x_1, x_2, x_3, x_4) / x_1 = x_2 = x_3 = 0\}$$

- a) Determinar una base B' de vectores tal que $M_{B'}(f)$ sea la forma canónica de Jordan de un endomorfismo f que cumpla las condiciones anteriores. Indicar cuál es la forma canónica de Jordan y qué condiciones verificará el endomorfismo.
- b) Calcular la matriz A asociada al endomorfismo f en la base canónica de R^4 y la expresión analítica de f.
- c) Determinar los autovalores de $(A 2I)^{-2}$

15.- Estudiar para qué valores de t es la matriz A diagonalizable en R

$$A = \begin{pmatrix} t+3 & t^2 - 10 \\ 1 & t+1 \end{pmatrix}$$

- a) Demostrar que A es diagonalizable y determinar una matriz P de paso que permita la diagonalización
- b) Diagonalizar A^2 y A^{-1}

17.- Dada la matriz
$$M = \begin{pmatrix} 3 & -1 & 0 \\ 6 & -3 & 2 \\ 8 & -6 & 5 \end{pmatrix}$$

- a) Demostrar que M no es diagonalizable en R
- b) Demostrar que es diagonalizable en C y hallar una matriz P de paso

18.- Examen parcial U-tad 24 noviembre 2022

Si f es un endomorfismo de \mathbb{R}^6 y A es su matriz asociada respecto a una base dada B. Si sabemos que rang $\mathbb{A}=1$

- a) ¿Qué puedes decir de los autovalores del endomorfismo?
- b) Determinar si existe algún caso en que f es diagonalizable
- c) Encontrar las posibles formas de Jordan del endomorfismo f razonando la elección de vectores.

19.- Examen parcial U-tad 28 noviembre 2023

Razonar en cada caso si existe un endomorfismo f de R^6 que tenga un único autovalor λ real de multiplicidad algebraica 6 tal que para cualquier matriz A se verifique:

a)
$$rang(A - \lambda I) = 4$$
 $rang(A - \lambda I)^2 = 2$ $rang(A - \lambda I)^3 = 1$ $rang(A - \lambda I)^4 = 0$

b) rang
$$(A - \lambda I) = 3$$
 rang $(A - \lambda I)^2 = 2$ rang $(A - \lambda I)^3 = 1$ rang $(A - \lambda I)^4 = 0$

En caso afirmativo, razonar cuál sería la forma de canónica de Jordan correspondiente y detallar cómo se realiza la construcción de la base de vectores correspondiente. Indicar además en su caso cuáles serían los autovectores y los subespacios invariantes.

20.- ¿para qué valores de las constantes a,b,c,d,e,f la matriz

$$A = \begin{pmatrix} 1 & a & d \\ 2 & b & e \\ 3 & c & f \end{pmatrix} \text{ tiene como vectores propios (1,0,1), (-1,1,0) y (0,1,-1)?}$$

¿Qué condición deben verificar a y b para que el endomorfismo admita una diagonalización ortogonal?

21.- Una ciudad A es de tránsito, estimándose que de los habitantes que tiene al principio de cada año, al final del mismo han emigrado 2/3 a otra región B y 1/3 a una región C. Por otra parte, dentro de ese mismo año, 1/3 de la población B y 1/3 de la población de C se establecen en la ciudad A. Calcular las poblaciones en régimen estacionario (al final de n años, cuando $n \rightarrow \infty$) sabiendo que en un año determinado las poblaciones de A, B y C eran respectivamente de 60, 200 y 300.

22.- Examen parcial U-tad 28 noviembre 2023

En \mathbb{R}^3 consideramos un endomorfismo f cuya matriz asociada en una base \mathbb{B} es

$$A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -1 & b \\ 3 & 0 & a \end{pmatrix}$$

- a) Determinar para qué valores de "a" y de "b" la matriz M es diagonalizable
- b) $Para\ a = -1\ y\ b = -1$ determinar una base B' de vectores tal que $M_{B'}(f)$ sea la forma canónica de Jordan del endomorfismo f. Indicar cuál es la forma canónica de Jordan y explicar adecuadamente el proceso y el significado de cada uno de los elementos.
- a) $Para\ a = -1\ y\ b = -1$, $utilizar\ el\ teorema\ de\ Cayley\ Hamilton\ para$ calcular A^9 (Dar expresión en función de A)
- 23.- ¿Existe alguna base de $P_2(x)$ formada por vectores propios, cuya matriz asociada, en la base $\{1,x,x^2\}$ sea

$$M = \begin{pmatrix} 1 & 2 & 3 \\ \frac{1}{2} & 1 & \frac{3}{2} \\ \frac{1}{3} & \frac{2}{3} & 1 \end{pmatrix}$$

En caso afirmativo, dar una base formada por vectores propios de f.

24.- Considera un endomorfismo de $P_2(x)$, cuya matriz, en la base $\{1,x,x^2\}$ es

$$\mathbf{M} = \begin{pmatrix} 0 & 3 & 9 \\ \frac{1}{3} & 0 & 3 \\ \frac{1}{9} & \frac{1}{3} & 0 \end{pmatrix}$$

- a) Probar que este endomorfismo es diagonalizable
- b) Encontrar una base de autovectores de $P_2(x)$
- c) Determinar M^{-1} a partir del teorema de Cayley-Hamilton
- d) Calcular M^p para cualquier p natural
- 25.- Calcular A^{-1} utilizando el teorema de Cayley-Hamilton

$$A = \begin{pmatrix} 2 & 0 & 3 & -5 \\ 1 & 2 & -7 & -5 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

- 26.- Dada la matriz $M = \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$, calcular su potencia n-sima
- a) por diagonalización
- b) por Cayley-Hamilton
- 27.- Dada la matriz real $A = \begin{pmatrix} -14 & 25 \\ -9 & 16 \end{pmatrix}$, calcular $\lim_{n \to \infty} \frac{1}{n} A^n$.
- 28.- Obtener la forma reducida de Jordan y la base en la que el endomorfismo queda representado por la misma:

$$\mathbf{M} = \begin{pmatrix} 4 & 0 & 0 & -1 & 1 \\ -1 & 3 & 0 & 1 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 1 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

29.- Obtener la forma reducida de Jordan y la base en la que el endomorfismo queda representado por la misma:

$$\mathbf{M} = \begin{pmatrix} -2 & 1 & 0 & -1 \\ 0 & -2 & 0 & 4 \\ -4 & 5 & 2 & -4 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

30.- Hallar la forma reducida de Jordan según los valores de α :

$$M = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & -\alpha & 1 + \alpha \end{pmatrix}$$

31.- Obtener la forma canónica de Jordan y la matriz de paso a la misma, según los valores del parámetro k:

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 2k & 1+k-k & k \\ 2k & 1+k & 1-k & k \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

32.- Si A es una matriz real 6x6 que tiene autovalores

- ➤ 1 con multiplicidad algebraica 2 y multiplicidad geométrica 1
- $\succ \ 2+i \ con \ multiplicidad \ algebraica \ 2 \ y \ multiplicidad \ geométrica \ 1$

Obtener su forma real de Jordan

33.- Obtener la forma real de Jordan y calcular la base en la que el endomorfismo correspondiente a la matriz dada queda representado por la misma

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & -1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

34.- Dadas A=
$$\begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
 $yB = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 1 & 3 \end{pmatrix}$ calcular e^A $y e^{At}$; e^B $y e^{Bt}$

35.- Dada la matriz
$$nxn \ M = \begin{pmatrix} \lambda & & \ddots & & \ddots \\ & \ddots & & \ddots & & \ddots \\ & & \ddots & & \ddots & & \lambda \end{pmatrix} calcular \ e^{M}$$

36.- Dada la matriz
$$nxn A = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix} calcular e^A$$

37.- Dada la matriz
$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 calcular e^A

38.- Si $A \in M_3(R)$ es una matriz real 3x3 que tiene autovalores:

½ con multiplicidad algebraica 1

1 con multiplicidad algebraica 2

Calcular, utilizando el teorema de Cayley-Hamilton el valor de

$$2A^4 - 7A^3 + 9A^2 - 5A + I$$

39.- B es una matriz 3x3 que tiene autovalores: 0, 1, 2

Realiza, si es posible con la información disponible, los siguientes cálculos, razonando en cualquiera de los casos cada paso o implicación.

- a) Rang B
- b) Det (B^tB)
- c) Los autovalores de B^tB
- d) Los autovalores de $(B^2 + I)^{-1}$