如,我们可以 \mathbb{N} 上定义一个关系 $R_1 = \{\langle x, y \rangle \mid x, y \in \mathbb{N} \land y = x + 1\}$ 。注意到,对任意 $k \in \mathbb{N}$, $R_1^k = \{\langle x, y \rangle \mid x, y \in \mathbb{N} \land y = x + k\}$,从而不存在 $m, n \in \mathbb{N}$,使得 $m \neq n \land R_1^m = R_1^n$ 。

2.27 先证两个引理。

引理 2.1 对任意二元关系 R_1, R_2 ,有: $\operatorname{dom}(R_1 \circ R_2) \subseteq \operatorname{dom} R_2$ 和 $\operatorname{ran}(R_1 \circ R_2) \subseteq \operatorname{ran} R_1$ 。特别地,对所有 $m \in \mathbb{N}_+$,有 $\operatorname{dom}(R_1^m) \subseteq \operatorname{dom} R_1$ 和 $\operatorname{ran}(R_1^m) \subseteq \operatorname{ran} R_1$ 。证明:

 $\forall x, y$

 $\langle x, y \rangle \in R_1 \circ R_2$

 $\iff \exists z (\langle x, z \rangle \in R_2 \land \langle z, y \rangle \in R_1)$ (合成运算定义)

 $\implies \exists z (\langle x, z \rangle \in R_2) \land \exists z (\langle z, y \rangle \in R_1)$ (一阶谓词推理定律)

 $\iff x \in \text{dom } R_2 \land y \in \text{ran } R_1 \tag{dom, ran } \hat{\mathbb{Z}} X)$

这就证明了 $dom(R_1 \circ R_2) \subseteq dom R_2$ 和 $ran(R_1 \circ R_2) \subseteq ran R_1$.

令 $R_2 = R_1$ 并对 m 作归纳即得此引理的特殊情况: $\forall m \in \mathbb{N}_+, \operatorname{dom}(R_1^m) \subseteq \operatorname{dom} R_1 \wedge \operatorname{ran}(R_1^m) \subseteq \operatorname{ran} R_1$ 。

引理 2.2 对任意二元关系 R_1, R_2 ,若 $\operatorname{fld} R_1 \cap \operatorname{fld} R_2 = \emptyset$,则 $\forall m, n \in \mathbb{N}_+(R_1^m \circ R_2^n = \emptyset)$ 。

证明: 先证: $\forall R_1, R_2((\operatorname{fld} R_1 \cap \operatorname{fld} R_2 = \varnothing) \Rightarrow (R_1 \circ R_2 = \varnothing))$ 。

若不然,就有 $\langle x,y\rangle\in (R_1\circ R_2)$ 。由合成运算定义知, $\exists z(\langle x,z\rangle\in R_2\wedge\langle z,y\rangle\in R_1)$ 。从而有 $z\in\operatorname{ran} R_2\subseteq\operatorname{fld} R_2$ 和 $z\in\operatorname{dom} R_1\subseteq\operatorname{fld} R_1$,于是有 $z\in\operatorname{fld} R_1\cap\operatorname{fld} R_2$,与前题矛盾。

这就证明了: $\forall R_1, R_2((\operatorname{fld} R_1 \cap \operatorname{fld} R_2 = \emptyset) \Rightarrow (R_1 \circ R_2 = \emptyset))$ 。

下面证原命题。

由引理 2.1 知, $dom(R_1^m) \subseteq dom R_1 \perp Iran(R_1^m) \subseteq ran R_1$,从而有:

fld (R_1^m) = dom (R_1^m) \cup ran (R_1^m) (fld 定义)

 $\subseteq \operatorname{dom} R_1 \cup \operatorname{ran} R_1$ (引理 2.1、引理 1.4)

 $= \operatorname{fld} R_1$ (fld 定义)

同理可得 $\operatorname{fld}(R_2^n) \subseteq \operatorname{fld} R_2$ 。从而有:

 $\operatorname{fld}(R_1^m) \cap \operatorname{fld}(R_2^n) \subseteq \operatorname{fld} R_1 \cap \operatorname{fld} R_2 \tag{月里 1.5}$

 $=\emptyset$ (题设)

使用本证明前半部分的结论,就有: $R_1^m \circ R_2^n = \emptyset$ 。

下面证原题。

证明:用归纳法证明。

当 m = 0 时:

由于 $R_1 \cup R_2$ 仍是 A 上的二元关系。故有:

$$(R_1 \cup R_2)^0 = I_A \tag{幂运算定义}$$

$$=I_A \cup I_A$$
 (幂等律)

$$=R_1^0 \cup R_2^0 \tag{幂运算定义}$$

设 m = k 时 $(k \in \mathbb{N})$, 等式成立, 即有: $(R_1 \cup R_2)^k = R_1^k \cup R_2^k$.

则, 当 m = k + 1 时:

$$(R_1 \cup R_2)^{k+1} = (R_1 \cup R_2)^k \circ (R_1 \cup R_2)$$
 (幂运算定义)
= $(R_1^k \cup R_2^k) \circ (R_1 \cup R_2)$ (归纳前提)
= $(R_1^k \cup R_2^k) \circ R_1 \cup (R_1^k \cup R_2^k) \circ R_2$ (教材定理 2.6(1))