```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb
import scipy.stats as stats
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor
In [2]: df = pd.read_csv('fake_data.csv')
```

Functions

```
In [3]: # Detect Null's and Outliers
        def data_quality(column):
            line\_break = '-' * 25
            #Null's
            empty = df[column].isnull().sum()
            print(f"{line_break}\n{column}\nNumber of Null's: {empty}\n")
            if column in quantitative:
                 #Outliers based on IQR
                 Q1 = df[column].quantile(0.25)
                 Q3 = df[column].quantile(0.75)
                 IQR = Q3 - Q1
                 lower\_bound = Q1 - 1.5 * IQR
                 upper_bound = Q3 + 1.5 * IQR
                 # Count outliers
                 IQR_outliers = ((df[column] < lower_bound) | (df[column] > upper_bound)
                 print(f"Number of outliers according to IQR score: {IQR_outliers}")
                 #Outliers based on z-score
                 df_temp = df.copy()
                 df_temp['zscore'] = stats.zscore(df_temp[column])
                 #count outliers
                 Zscore_outliers = df_temp['zscore'].loc[(df_temp['zscore'] >= 3) | (
                 print(f"Number of outliers according to z score: {Zscore_outliers}")
                 #visualize
                 fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 6))
                 sb.boxplot(y=df[column], ax=axs[0])
                 sb.histplot(df[column], kde=True, ax=axs[1])
                 plt.tight_layout(rect=[0, 0, 1, 0.95])
                 plt.show()
            return
```

```
In [4]: def data_summary():
            line_break = '-' * 25
            #Summary statistics of Categorical variables
            for col in categorical:
                counts = df[col].value_counts()
                 percentages = (counts / counts.sum()) * 100
                print(f"{line_break}\n{col}\n{percentages}")
            #Summary statistics of Quantitative variables
            #create summary data frame
            cols = ['mean', 'median', '25%', '50%', '75%']
            summary_df = pd.DataFrame(columns=cols)
            for column in quantitative:
                #define statistics
                desc = df[column].describe()
                median = df[column].median()
                summary_data = pd.Series({
                     'mean': desc['mean'],
                     'median': median,
                     '25%': desc['25%'],
                     '50%': desc['50%'],
                     '75%': desc['75%']
                }, name=column)
                # Append the summary statistics of the current variable to the summa
                summary_df = pd.concat([summary_df, summary_data.to_frame().T])
            return summary_df
```

```
In [5]: # univariate visualization
        def uni vis(columns, title):
            count = len(columns)
            rows = int(count / 3) + (1 if count % 3 else 0)
            fig, axs = plt.subplots(rows, 3, figsize=(15,15))
            axs = axs.flatten()
            # Loop over the columns and create the plots
            for i, column in enumerate(columns):
                    axs[i].hist(df[column])
                    axs[i].set_title(column)
                    axs[i].set_xlabel(column)
                    axs[i].set_ylabel('Frequency')
            plt.tight_layout(rect=[0, 0.03, 1, 0.95])
            fig.suptitle(title, verticalalignment='top')
            plt.show()
        #bivariate visualization
        def bi_vis(df, y_col, x_cols, title):
            count = len(x_cols)
            rows = int(count / 3) + (1 if count % 3 else 0)
            fig, axs = plt.subplots(rows, 3, figsize=(15, rows * 5))
            axs = axs.flatten()
            # Loop over the columns and create the point plots
            for i, column in enumerate(x_cols):
                if column in categorical:
                    sb.pointplot(data=df, x=column, y=y_col, ax=axs[i])
                    axs[i].set_title(column)
                    axs[i].set_xlabel(column)
                    axs[i].set_ylabel('Total Charge')
                     sb.scatterplot(data=df, x=column, y=y_col, ax=axs[i])
                    axs[i].set_title(column)
                    axs[i].set_xlabel(column)
                    axs[i].set_ylabel('Total Charge')
            plt.tight_layout(rect=[0, 0.03, 1, 0.95])
            fig.suptitle(title, verticalalignment='top')
            plt.show()
```

```
In [8]: # get a summary of characteristics of residuals
        def residual_eval(model):
            #get residuals
            residuals = model.resid
            #calculate Residual Standard Error (RSE)
            RSE = np.sqrt((residuals**2).sum() / 9968)
            print(f'Residual Standard Error:{RSE}\n')
            #other metrics
            adjr2 = model.rsquared_adj
            AIC = model.aic
            print(f'Adjusted R-square:{adjr2}\nAIC:{AIC}')
            #Homoscedacity
            y_hat = model.predict()
            #Visualize
            sm.qqplot(residuals, line = '45', fit = True)
            plt.title('Residual test of normality')
            plt.show();
            plt.hist(residuals)
            plt.title('Residual test of normality')
            plt.xlabel('Residual')
            plt.ylabel('Count')
            plt.show();
```

Variables

```
In [9]: target = ['CWPM']
         predictors = [
                         'Check-in_AM', 'Respectful_AM', 'Responsible_AM', 'Safe_AM', 'Check-in_PM', 'Respectful_PM', 'Responsible_PM',
                            'Safe PM'
                        1
         all_variables = [
                             'Check-in_AM', 'Respectful_AM', 'Responsible_AM', 'Safe_AM'
                           'Check-in_PM', 'Respectful_PM', 'Responsible_PM',
                            'Safe_PM', 'CWPM'
         categorical = [
                          'Check-in_AM', 'Check-in_PM'
         one_hots = [
                       'Check-in_AM', 'Check-in_PM'
         quantitative = [ 'Respectful_AM', 'Responsible_AM', 'Safe_AM',
                            'Respectful_PM', 'Responsible_PM',
                            'Safe_PM', 'CWPM']
```

Cleaning

Responsible_AM Number of Null's: 0

Number of outliers according to IQR score: 3 Number of outliers according to z score: 0

Safe_AM
Number of Null's: 0

Number of outliers according to IQR score: 4 Number of outliers according to z score: 0 $\,$

Check-in_PM

Number of Null's: 0

Respectful_PM

Number of Null's: 0

Number of outliers according to IQR score: 0 Number of outliers according to z score: 0

Responsible_PM
Number of Null's: 0

Number of outliers according to IQR score: 0 Number of outliers according to z score: 0

8 of 18

Safe_PM

Number of Null's: 0

Number of outliers according to IQR score: 1 Number of outliers according to z score: 1

CWPM

Number of Null's: 0

Number of outliers according to IQR score: 0 Number of outliers according to z score: 0 $\,$

Treatment

Explore Summary statistics

```
In [12]: data_summary()
          Check-in_AM
          Yellow
                     40.0
                     25.0
          Green
          Blue
                     25.0
                     10.0
          Name: Check-in_AM, dtype: float64
          Check-in_PM
          Green
                     35.0
          Blue
                     30.0
                     20.0
          Yellow
          Red
                     15.0
          Name: Check-in_PM, dtype: float64
Out[12]:
                          mean median 25% 50%
                                                    75%
            Respectful_AM
                           4.95
                                    4.5
                                          4.0
                                                4.5
                                                     6.25
          Responsible_AM
                          4.95
                                    6.0
                                          4.0
                                                6.0
                                                     6.25
                 Safe_AM
                           8.50
                                    9.0
                                          9.0
                                                9.0
                                                     9.00
            Respectful_PM
                           5.30
                                    6.0
                                          3.0
                                                6.0
                                                     8.25
          Responsible_PM
                           5.50
                                    6.0
                                          3.0
                                                6.0
                                                     9.00
                 Safe_PM
                           7.40
                                    9.0
                                          6.0
                                                9.0
                                                     9.00
                   CWPM 42.05
                                   45.0
                                         32.0 45.0 52.25
```

Visualize

In [13]: #visualize univariate plots
uni_vis(all_variables, 'Univariate Plots')

Transformation

```
In [14]: #one hot encoding
df_clean = pd.get_dummies(df, columns = one_hots, drop_first=True)
df_clean
```

Out[14]:	Re	espectful_AM	Responsible_AM	Safe_AM	Respectful_PM	Responsible_PM	Safe_PM (
	0	9	9	9	9	9	9
	1	7	7	9	9	9	9
	2	4	6	9	9	9	9
	3	2	4	9	3	3	5
	4	4	4	9	3	3	9
	5	6	7	6	3	3	6
	6	2	0	9	0	0	0
	7	5	5	6	0	0	3
	8	4	6	9	6	6	9
	9	7	8	9	3	3	6
	10	6	4	6	6	6	9
	11	4	4	9	0	0	6
	12	2	0	9	9	9	9
	13	6	6	9	9	9	9
	14	7	6	8	6	6	9
	15	4	6	9	8	8	9
	16	6	6	9	4	5	6
	17	2	0	9	8	8	9
	18	4	4	9	3	5	8
	19	8	7	9	8	9	9
In [15]:	df.columns						
Out[15]:	<pre>Index(['Check-in_AM', 'Respectful_AM', 'Responsible_AM', 'Safe_AM',</pre>						
	<pre>'Check-in_PM', 'Respectful_PM', 'Responsible_PM', 'Safe_PM', 'CWP M'], dtype='object')</pre>						
In [16]:	df_cl	df_clean.columns					
Out[16]:	<pre>Index(['Respectful_AM', 'Responsible_AM', 'Safe_AM', 'Respectful_PM',</pre>						

['Respectful_AM', 'Responsible_AM', 'Safe_AM', 'Respectful_PM', 'Responsible_PM', 'Safe_PM', 'Check-in_AM_Green', 'Check-in_AM_Red', 'Check-in_AM_Yellow', 'Check-in_PM_Green', 'Check-in_PM_Red', 'Check-in_PM_Yellow']

Initial Model

```
In [261: X = df_clean[predictors]
X = sm.add_constant(X)
Y = df_clean[target]

model = sm.OLS(Y, X)
result = model.fit()
In [27]: result.summary()
```

Out[27]:		OLS Regres	sion Res	sults				
	Dep. Variable:	CM	/PM	R-sq	uared:	0.920		
	Model:	(OLS	Adj. R-sq	uared:	0.783		
	Method:	Least Squa	ares	F-statistic:		6.719		
	Date:	Sun, 07 Apr 2	024 P r	ob (F-sta	tistic):	0.00896		
	Time:	12:33	3:39	Log-Likel	ihood:	-61.342		
	No. Observations:		20		AIC:	148.7		
	Df Residuals:		7		BIC:	161.6		
	Df Model:		12					
	Covariance Type:	nonrok	oust					
			_					
		coef	std err	t	P> t	[0.025	0.975]	
	cons	5.0048	45.075	0.111	0.915	-101.581	111.590	
	Respectful_Al	M -1.6997	2.791	-0.609	0.562	-8.300	4.900	
	Responsible_Al	M 0.4282	1.575	0.272	0.794	-3.295	4.151	
	Safe_Al	M 0.6151	4.065	0.151	0.884	-8.997	10.228	
	Respectful_PI	M 0.9223	4.767	0.193	0.852	-10.350	12.195	
	Responsible_PI	M -0.1013	4.855	-0.021	0.984	-11.582	11.379	
	Safe_PI	M 1.8307	2.337	0.783	0.459	-3.695	7.357	
	Check-in_AM_Gree	n 11.4913	10.390	1.106	0.305	-13.077	36.059	
	Check-in_AM_Re	d 27.9051	13.598	2.052	0.079	-4.249	60.059	
	Check-in_AM_Yello	w 22.1167	7.637	2.896	0.023	4.057	40.176	
	Check-in_PM_Gree	n 12.7957	7.594	1.685	0.136	-5.161	30.753	
	Check-in_PM_Re	d -24.9460	18.015	-1.385	0.209	-67.545	17.653	
	Check-in_PM_Yello	w 24.9337	8.627	2.890	0.023	4.533	45.334	

Omnibus: 2.313 Durbin-Watson: 2.656

Prob(Omnibus): 0.315 Jarque-Bera (JB): 1.569

Skew: 0.681 **Prob(JB):** 0.456

Kurtosis: 2.836 **Cond. No.** 387.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Reduce Model

```
In [37]:
          #reduce manually based on t-stat, p-values, and potential multicollinearity
          manual reduce = [
                   'Check-in_PM_Yellow', 'Check-in_PM_Green',
                    'Check-in_AM_Yellow', 'Safe_PM', 'Respectful_AM'
          X = df_clean[manual_reduce]
          \#X = sm.add\_constant(X)
          manual\_red\_model = sm.OLS(Y, X)
          manual_red_result = manual_red_model.fit()
          manual_red_result.summary()
                                   OLS Regression Results
Out[37]:
              Dep. Variable:
                                     CWPM
                                                R-squared (uncentered):
                                                                          0.973
                    Model:
                                       OLS Adj. R-squared (uncentered):
                                                                          0.964
                   Method:
                                                            F-statistic:
                               Least Squares
                                                                          108.4
                      Date: Sun, 07 Apr 2024
                                                      Prob (F-statistic): 3.16e-11
                     Time:
                                   12:41:56
                                                        Log-Likelihood: -68.759
          No. Observations:
                                        20
                                                                  AIC:
                                                                          147.5
               Df Residuals:
                                         15
                                                                  BIC:
                                                                          152.5
                  Df Model:
           Covariance Type:
                                  nonrobust
                                  coef std err
                                                    t P>|t| [0.025 0.975]
          Check-in_PM_Yellow
                               30.5856
                                        5.464
                                                5.598 0.000 18.940
                                                                    42.231
                               12.9302
                                                2.404 0.030
           Check-in_PM_Green
                                         5.378
                                                              1.466 24.394
          Check-in_AM_Yellow
                                9.9375
                                         4.613
                                                2.154 0.048
                                                              0.104
                                                                     19.771
                     Safe_PM
                                3.9126
                                         0.709
                                                5.522 0.000
                                                              2.402
                                                                      5.423
                                         0.927 -0.349 0.732 -2.300
                Respectful_AM -0.3236
                                                                      1.653
```

Omnibus: 0.161 Durbin-Watson: 2.703

Prob(Omnibus): 0.923 Jarque-Bera (JB): 0.034

Skew: -0.049 **Prob(JB):** 0.983

Kurtosis: 2.825 **Cond. No.** 29.5

Notes:

[1] R² is computed without centering (uncentered) since the model does not contain a constant.

[2] Standard Errors assume that the covariance matrix of the errors is correctly specified. result = manual_red_result

Out[38]:		VIF Factor	features		
	0	1.495203	Check-in_PM_Yellow		
	1	2.621424	Check-in_PM_Green		
	2	2.239277	Check-in_AM_Yellow		
	3	4.099763	Safe_PM		

Residual Evaluation

In [39]: #Residual Standard Error

$$RSE = \sqrt{rac{\sum_{i=1}^{n}(y_{i} - \hat{y}_{i})^{2}}{n - p - 1}}$$

```
In [41]: #orginal full model
    residual_eval(result)
```

Residual Standard Error:0.23281184793100002

Adjusted R-square:0.783160913141995

AIC:148.684613827833

Reduced based on a stepwise function of eliminating variables based on max p-values until all p-values are less than .05

residual_eval(reduced_model)

