Episodio 8

Intersección y Suma de Subespacios.

Álgebra Lineal mfiuba@gmail.com

Departamento de Matemática FIUBA

11 de octubre de 2020

Vamos a empezar por ver qué pasa si realizamos con subespacios las operaciones más elementales entre conjuntos que son la intersección y la unión.

Recordemos, por las dudas: Si A y B son dos conjuntos cualesquiera:

$$A \cap B = \{x/x \in A \text{ y } x \in B\}$$

$$A \cup B = \{x/x \in A \text{ o } x \in B\}$$

¿Qué pasa cuando los conjuntos son subespacios? ¿Obtenemos otro subespacio al calcular el conjunto que resulta de intersecar dos subespacios o de unir dos subespacios? Para ejemplificar, miremos el caso particular de buscar en \mathbb{R}^3 la intersección de dos planos que pasan por el origen.

En \mathbb{R}^3 , la intersección de dos planos, que contienen al origen, es una recta que pasa por el origen.

Para lo que sigue S_1 , $S_2 \subset \mathbb{V}$ son subespacios de \mathbb{V} .

Observaciones:

Si S_1 , $S_2 \subset \mathbb{V}$ son subespacios de $\mathbb{V} \Rightarrow S_1 \cap S_2$ es un subespacio de \mathbb{V} .(Sólo tenemos que demostrar que se cumplen las tres condiciones.)

Como S_1 y S_2 son subespacios

$$\boxed{0_{\mathbb{V}} \in S_1 \text{ y } 0_{\mathbb{V}} \in S_2 \Rightarrow 0_{\mathbb{V}} \in S_1 \cap S_2.} \checkmark$$

Si u_1 y $u_2 \in S_1 \cap S_2$ esto quiere decir que:

 $u_1, u_2 \in S_1 \Rightarrow u_1 + u_2 \in S_1$, porque S_1 es subespacio.

 $u_1, u_2 \in S_2 \Rightarrow u_1 + u_2 \in S_2$, porque S_2 es subespacio.

Por lo tanto $u_1 + u_2 \in S_1 \cap S_2$. \checkmark

Por último, si $u \in S_1 \cap S_2$ y $\lambda \in \mathbb{K} \Rightarrow \lambda u \in S_1$ y $\lambda u \in S_2$ (¿por qué?)

Luego $\lambda u \in S_1 \cap S_2 \checkmark$

Demostramos que:

Si $S_1,\ S_2\subset \mathbb{V}$ son subespacios de $\mathbb{V}\ \Rightarrow S_1\cap S_2$ es un subespacio.

- b. Si $T \subset \mathbb{V}$ es un subespacio de \mathbb{V} tal que $T \subset S_1$ y $T \subset S_2$, entonces $T \subset S_1 \cap S_2$.
 - A veces se dice que $S_1 \cap S_2$ es el subespacio "más grande" incluido a la vez en S_1 y S_2 , pues cualquier otro que contenga elementos que están en S_1 y en S_2 , está incluido en la intersección.
 - La demostración es inmediata, pues si $T\subset S_1$ y $T\subset S_2$, por lo tanto si $x\in T\Rightarrow x\in S_1$ y $x\in S_2\Rightarrow x\in S_1\cap S_2$, en tonces $T\subset S_1\cap S_2$.

Veamos ahora que pasa con la unión de subespacios. Otra vez miremos un caso muy sencillo: la unión de dos rectas que contienen al origen en \mathbb{R}^2 .

La única condición necesaria para probar que un conjunto es un subespacio que no se cumple siempre, es la de ser **cerrado** para la suma.

Por eso se define la **suma** de subespacios:

Definición: Si S_1 y S_2 son subespacios de un espacio vectorial \mathbb{V} , se llama **suma** de S_1 y S_2 al conjunto:

$$S_1 + S_2 = \{ v \in V / v = s_1 + s_2, \text{ con } s_1 \in S_1 \text{ y } s_2 \in S_2 \}$$

Observaciones:

a. $S_1 + S_2$ es un subespacio. Tenemos que probar que se cumplen las tres condiciones que caracterizan a un subespacio.

En inmediato que
$$0_{\mathbb{V}}=\underbrace{0_{\mathbb{V}}}_{\in S_1}+\underbrace{0_{\mathbb{V}}}_{\in S_2}, \in S_1+S_2.\checkmark$$
 Si $u_1\in S_1+S_2$ y $u_2\in S_1+S_2$ tenemos que chequear si $u_1+u_2\in S_1+S_2$. Pero si $u_1\in S_1+S_2\Rightarrow$ existen $s_1\in S_1$ y $s_2\in S_2,\ u_1=s_1+s_2$ y lo mismo sucede con $u_2\in S_1+S_2$, existen t_1 y t_2 , tal que $u_2=t_1+t_2$. Luego:

$$u_1 + u_2 = (s_1 + s_2) + (t_1 + t_2)$$

$$= \underbrace{(s_1 + t_1)}_{\in S_1 \text{ pues es subespacio}} + \underbrace{(s_2 + t_2)}_{\in S_2 \text{ pues es subespacio}} \in S_1 + S_2.\checkmark$$

Tarea para el hogar demostrar la tercera condición.

b. Si
$$S_1 = \operatorname{gen}\{v_1 \dots v_k\}$$
 y $S_2 = \operatorname{gen}\{w_1, \dots, w_m\} \Rightarrow S_1 + S_2 = \operatorname{gen}\{v_1, \dots v_k, w_1, \dots, w_m\}$
Pues $v \in S_1 + S_2 \Longleftrightarrow v = s_1 + s_2$, pero como $S_1 = \operatorname{gen}\{v_1 \dots v_k\}$ y $S_2 = \operatorname{gen}\{w_1, \dots, w_m\}$, $s_1 = \alpha_1 v_1 + \dots + \alpha_k v_k$ y $s_2 = \beta_1 w_1 + \dots + \beta_m w_m$; $\operatorname{con}\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_m \in \mathbb{K}$. Entonces $v = s_1 + s_2 = \underbrace{\alpha_1 v_1 + \dots + \alpha_k v_k + \beta_1 w_1 + \dots + \beta_m w_m}_{\operatorname{comb. lineal de } v_1, \dots v_k, w_1, \dots, w_m}$. Por lo que $S_1 + S_2 = \operatorname{gen}\{v_1, \dots v_k, w_1, \dots, w_m\}$. \checkmark

c. $(S_1 \cup S_2) \subset (S_1 + S_2)$. Es directo, queda como tarea.

d. Todo subespacio que contiene a $S_1 \cup S_2$ incluye también a $S_1 + S_2$.

Sea $x \in S_1 + S_2$ y sea T un subespacio que contiene a $S_1 \cup S_2$, como $x \in S_1 + S_2 \rightarrow x = s_1 + s_2$ con $s_1 \in S_1$ y $s_2 \in S_2$, como T contiene a $S_1 \cup S_2 s_1 \in T$ y $s_2 \in T$, como además Tes subespacio $\Rightarrow s_1 + s_2 = x \in T$.

Demostramos que $\forall x \in S_1 + S_2 \Rightarrow x \in T$, por lo tanto queda demostrado que $S_1 + S_2 \subset T$.

Se dice que $S_1 + \overline{S_2}$ es el "menor" subespacio que incluye a $S_1 \cup S_2$, pues cualquier otro subespacio que contenga a la unión forzosamente contiene a $S_1 + S_2$.

Ejemplo simple:

Dados los subespacios de \mathbb{R}^4 ,

$$S_1 = \{x \in \mathbb{R}^4 / x_1 - x_2 + x_4 = 0, x_2 + x_3 = 0\} \text{ y}$$

 $S_2 = \text{gen}\{[1 \ 0 \ 1 \ 0]^T, \ [0 \ 0 \ 1 \ 1]^T\} \text{ encontrar } S_1 \cap S_2 \text{ y } S_1 + S_2.$

Resolución:

Empecemos por buscar los puntos en común de S_1 y S_2 : Si $x \in S_2 \Rightarrow x = \alpha [1 \ 0 \ 1 \ 0]^T + \beta [0 \ 0 \ 1 \ 1]^T$, con $\alpha, \beta \in \mathbb{R}$. Si además está en S_1 , tiene que cumplir sus ecuaciones. Entonces buscamos $\alpha, \beta \in \mathbb{R}$ tal que $x = [\alpha \ 0 \ \alpha + \beta \ \beta]^T \in S_1 \Leftrightarrow$

$$\alpha - 0 + \beta = 0$$
 y $0 + (\alpha + \beta) = 0 \Leftrightarrow \beta = -\alpha$.

Por lo tanto $x \in S_1 \cap S_2 \Leftrightarrow x = [\alpha \ 0 \ \underline{0} \ -\alpha]^T = \alpha [1 \ 0 \ 0 \ -1]^T$.

Entonces $S_1 \cap S_2 = \text{gen}\{[1 \ 0 \ 0 \ -1]^T\} \text{ y dim}(S_1 \cap S_2) = 1.$

Calculemos ahora $S_1 + S_2$, según lo que vimos en la observación **b.** basta con construir un conjunto generador formado por los generadores de S_1 y S_2 .

De la definición de S_1 , despejando de la primera ecuación obtenemos: $x_1 = x_2 - x_4$.

Y de la segunda ecuación:
$$x_3 = -x_2$$
 $x \in S_1$ si $x = [x_2 - x_4 \ x_2 \ -x_2 \ x_4]^T$ con x_2 , $x_4 \in \mathbb{R}$. $x \in S_1 \Leftrightarrow x = x_2[1 \ 1 \ -1 \ 0]^T + x_4[-1 \ 0 \ 0 \ 1]^T$ Por lo que $S_1 = \text{gen}\{[1 \ 1 \ -1 \ 0]^T, [-1 \ 0 \ 0 \ 1]^T\}$

Este conjunto es l.i, por lo que además sabemos que $dim(S_1)=2$.

Como ya encontramos $S_1 \cap S_2$, podemos encontrar una base de S_1 que contenga una base de $S_1 \cap S_2$, por ejemplo:

$$B_{S_1} = \{ [1 \ 1 \ -1 \ 0]^T, [1 \ 0 \ 0 \ -1]^T \}.$$

Busquemos ahora una base de S_2 que contenga una base $S_1 \cap S_2$, por ejemplo: $B_{S_2} = \{ [1 \ 0 \ 0 \ -1]^T, \ [0 \ 0 \ 1 \ 1]^T \}.$

Teniendo estas bases de S_1 y S_2 , resulta evidente que al formar el conjunto de generadores de $S_1 + S_2$, no vamos a repetir el generador de la intersección de los subespacios. Entonces obtenemos :

$$S_1 + S_2 = gen\{[1 \ 1 \ -1 \ 0]^T, [1 \ 0 \ 0 \ -1]^T, [0 \ 0 \ 1 \ 1]^T\}.$$

Obviamente $dim(S_1 + S_2) = 3$.

Se cumple que :

$$\dim(S_1+S_2)=\dim(S_1)+\dim(S_2)-\dim(S_1\cap S_2)$$

Esta última igualdad se cumple para todo par de subespacios finitos.

Teorema: Dados S_1 y S_2 subespacios de dimensión finita, entones: $\dim(S_1 + S_2) = \dim(S_1) + \dim(S_2) - \dim(S_1 \cap S_2)$

Demostración:

Si $\dim(S_1) = n$, $\dim(S_2) = m$ y $\dim(S_1 \cap S_2) = k$, $k \ge 0$, vamos a demostrar que dim $(S_1 + S_2) = n + m - k$.

La forma de demostrarlo será una generalización de la resolución del ejemplo.

Supongamos primero k > 1, entonces existe una base $B_{S_1 \cap S_2} = \{v_1, \dots, v_k\}$, podemos extender esa base a una base de $S_1, B_{S_1} = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$ y también a una base de $S_2, B_{S_2} = \{v_1, \ldots, v_k, w_{k+1}, \ldots, w_m\}$ Por lo visto sabemos que $S + T = gen\{v_1, \dots, v_k, v_{k+1}, \dots, v_n, w_{k+1}, \dots, w_m\}$

n elementos m-k elementos

Sólo tenemos que ver que este sistema de generadores es l.i.

Igualamos una combinación lineal a $0_{\mathbb{V}}$:

$$\lambda_1 v_1 + \cdots + \lambda_k v_k + \lambda_{k+1} v_{k+1} + \cdots + \lambda_n v_n + \beta_1 w_{k+1} + \cdots + \beta_{m-k} w_m = 0_{\mathbb{V}}$$
 (1)

$$\underbrace{\lambda_1 v_1 + \dots + \lambda_k v_k + \lambda_{k+1} v_{k+1} + \dots + \lambda_n v_n}_{\in S_1} = \underbrace{-\beta_1 w_{k+1} - \dots - \beta_{m-k} w_n}_{\in S_2}$$

Entonces:
$$-\beta_1 w_{k+1} - \cdots - \beta_{m-k} w_m \in S_1 \cap S_2 \Rightarrow$$

 $\Rightarrow -\beta_1 w_{k+1} - \cdots - \beta_{m-k} w_m = \gamma_1 v_1 + \cdots + \gamma_k v_k$
 $0_{\mathbb{V}} = \gamma_1 v_1 + \cdots + \gamma_k v_k + \beta_1 w_{k+1} + \cdots + \beta_{m-k} w_m$
Como $\{v_1, \dots, v_k, w_{k+1}, \dots, w_m\}$ es un conjunto l.i. pues es una base de S_2 concluimos que todos los escalares son nulos, en particular: $\beta_1 = \beta_2 = \cdots = \beta_{m-k} = 0$.
Reemplazamos en (1)

Reemplazamos en (1).

Y obtenemos:

$$\lambda_1 v_1 + \cdots + \lambda_k v_k + \lambda_{k+1} v_{k+1} + \cdots + \lambda_n v_n = 0_{\mathbb{V}}$$

Y de aquí, como $\{v_1, \ldots, v_n\}$ es un conj. I.i. obtenemos que $\lambda_1 = \cdots = \lambda_n = 0$

Como los escalares $\beta_1, \ldots, \beta_{m-k}, \lambda_1, \ldots, \lambda_n$ vienen de la combinación lineal (1), concluimos que

$$\{v_1, \dots, v_k, v_{k+1}, \dots, v_n, w_{k+1}, \dots, w_m - k\}$$
 es I.i.

Entonces podemos afirmar que :

 $\dim(S_1 + S_2) = n + m - k = \dim(S_1) + \dim(S_2) - \dim(S_1 \cap S_2)$ Queda como tarea para el hogar, verificar la fórmula cuando la intersección es el subespacio nulo, en ese caso no existe base de la intersección y directamente trabahjamos con las bases de cada subespacio.

Suma directa de subespacios.

Por definición, cada elemento del subespacio S_1+S_2 , puede expresarse en la forma $v=s_1+s_2$, con $s_1\in S_1$ y $s_2\in S_2$, pero esa descomposición no siempre es única.

En el ejemplo que vimos, si tomamos:

$$v = \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^T = \underbrace{\begin{bmatrix} 1 & 1 & -1 & 0 \end{bmatrix}^T + \begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}^T}_{\in S_1} + \underbrace{\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}}_{\in S_2}$$

$$v = \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^T = \underbrace{\begin{bmatrix} 2 & 1 & -1 & -1 \end{bmatrix}^T}_{\in S_1} + \underbrace{\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}}_{\in S_2}$$

Pero también podemos escribir:

$$v = \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^{T} = \underbrace{\begin{bmatrix} 1 & 1 & -1 & 0 \end{bmatrix}^{T}}_{\in S_{1}} + \underbrace{\begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}^{T}}_{\in S_{2}} + \underbrace{\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^{T}}_{\in S_{2}}$$

$$v = \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^{T} = \underbrace{\begin{bmatrix} 1 & 1 & -1 & 0 \end{bmatrix}^{T}}_{\in S_{1}} + \underbrace{\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^{T}}_{\in S_{2}}$$

Cuando cada $v \in S_1 + S_2$ puede descomponerse en forma única como suma de un elemento de S_1 y un elemento de S_2 , se dice que la suma es **directa**.

Definición: Se dice que la suma de S_1 y S_2 es **directa**, o que S_1 y S_2 están en suma directa si, para cada $v \in S_1 + S_2$ existen únicos $s_1 \in S_1$ y $s_2 \in S_2$ tal que $v = s_1 + s_2$. Cuando la suma es directa, se nota: $S_1 \oplus S_2$

Observación:

 S_1 y S_2 están en suma directa si y sólo si $S_1 \cap S_2 = \{0_{\mathbb{V}}\}$

 \Rightarrow) Supongamos que S_1 y S_2 están en suma directa y sea $v \in S_1 \cap S_2$.

$$v \in S_1 \Rightarrow v = \underbrace{v}_{\in S_1} + \underbrace{0_v}_{\in S_2}, v \in S_2 \Rightarrow v = \underbrace{0_v}_{\in S_1} + \underbrace{v}_{\in S_2}.$$

Pero si S_1 y S_2 están en suma directa la descomposición es única, por lo tanto $v=0_{\mathbb{V}}\Rightarrow S_1\cap S_2=\{0_{\mathbb{V}}\}.\checkmark$

 \Leftarrow) Ahora supongamos que $S_1 \cap S_2 = \{0_{\mathbb{V}}\}$ y sea $v \in S_1 + S_2$ tal que $v = s_1 + s_2$ y $v = t_1 + t_2$ con $s_1, t_1 \in S_1$ y $s_2, t_2 \in S_2$.

Entonces:
$$v = s_1 + s_2 = t_1 + t_2 \Rightarrow \underbrace{s_1 - t_1}_{\in S_1} = \underbrace{t_2 - s_2}_{\in S_2}$$

 $S_1 \cap S_2 = \{0_{\mathbb{V}}\} \Rightarrow s_1 - t_1 = 0_{\mathbb{V}} = t_2 - s_2, s_1 = t_1 \text{ y } s_2 = t_2.$ Demostramos que si $S_1 \cap S_2 = \{0_{\mathbb{V}}\} \Rightarrow S_1 \text{ y } S_2$ están en suma directa. \checkmark

- ▶ También se puede probar que si B_1 es base de S_1 y B_2 es base de S_2 , la suma $S_1 + S_2$ es directa si y sólo si $B = B_1 \cup B_2$ es l.i.
- ▶ Si $\mathbb V$ es un espacio vectorial de dimensión finita y S es un subespacio de $\mathbb V$, existe un subespacio W tal que : $S \oplus W = \mathbb V$ Si $S = \mathbb V$ o $S = \{0_{\mathbb V}\} \Rightarrow W = \{0_{\mathbb V}\}$ y $W = \mathbb V$ respectivamente.

Si $1 \le \dim S = k \le n-1$, existe una base $B_S = \{v_1, \ldots, v_k\}$ Sabemos que esta base puede extenderse a una base de \mathbb{V} , o sea, existen v_{k+1}, \ldots, v_n tales que

 $B = \{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ es una base de \mathbb{V} .

Entonces si consideramos $W = \text{gen}\{v_{k+1}, \dots, v_n\}$, se cumple que $S \oplus W = \mathbb{V}$.

De esta demostración es evidente que el subespacio W cumple $S \oplus W = \mathbb{V}$ no es único, para cualquier subespacio no trivial de \mathbb{V} .

Definición: Dado un subespacio $S\subset \mathbb{V},\mathbb{K}$ espacio vectorial, se dice que W es un suplemento de S si $S\oplus W=\mathbb{V}$