

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 3, 2002

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Теория обыкновенных дифференциальных уравнений

СИНТЕЗ РЕГУЛЯТОРА В ЗАДАЧЕ АБСОЛЮТНОЙ ИНВАРИАНТНОСТИ ДЛЯ НЕЛИНЕЙНЫХ СИСТЕМ

И.Е.ЗУБЕР

Россия, 198904, Санкт-Петербург, Петродворец, Библиотечная пл., д. 2, Санкт-Петербургский государственный университет, e-mail: zuber@EZ7332.spb.edu

Аннотация.

Рассматривается нелинейная система регулирования с скалярным выходом и скалярным произвольным возмущением.

Синтез абсолютно инвариантного регулятора, при котором одна компонента состояния стремится к нулю, а остальные ограничены, сводится к синтезу стабилизирующего по наблюдателю регулятора. Решение задачи стабилизации строится на базе специальных преобразований подобия для нелинейных систем.

1 Введение

Задача синтеза абсолютного универсального регулятора, обеспечивающего инвариантность выходной переменной системы регулирования от про-

 $^{^{0}}$ Работа выполнена при поддержке РФФИ, проекта 02-01-00544 и гранта 00-15-96028 Совета по грантам Президента РФ и государственной поддержке ведущих научных школ.

извольных внешних воздействий, рассмотрена в основном для линейных стационарных систем регулирования.

В статье [1] показано, что для линейных стационарных минимальнофазовых систем регулирования возможно совместное обеспечение абсолютной инвариантности и устойчивости системы, если в качестве одного из входов в регулятор взято внешнее воздействие.

В предлагаемой статье задача абсолютной инвариантности рассматривается для нелинейных систем. При этом требования к стабилизирующему регулятору задаются как в [2]: обеспечение устойчивости по одной переменной состояния и ограниченность остальных переменных.

2 Постановка задачи

Рассматривается нелинейная система регулирования

$$\dot{x} = A(x)x + b(x)u(x) + \varphi(x)g(x), \tag{1}$$

где $x = (x_1, \ldots, x_n)^*$ — вектор состояния $x \in \mathbb{R}^n$, $\varphi(x)$ — гладкая ограниченная скалярная функция времени, b(x), g(x) — заданные векторные функции распределения управления u(x) и возмущения $\varphi(x)$. Предполагается, что измеряется выход системы, задаваемый соотношением

$$y(x) = c^*(x)x, (2)$$

где c(x) — заданная векторная функция.

Предполагается:

$$\exists \gamma > 0 : |\det A(x)| \ge \gamma;$$

пара A(x), b(x) вполне управляема, причем для матрицы управляемости

$$G(x) = (L_0(x)b(x), L_1(x)b(x), \dots, L_{n-1}(x)b(x)), \tag{3}$$

где $L_0(x) = I$ и $L_j(x)$ — матрица j-той производной системы $\dot{x} = A(x)x$ (т.е. $L_k(x) = L_{k-1}(x) + L_{k-2}(x)A(x)$), выполняется условие

$$\exists \gamma_1 > 0: \quad |\det G(x)| \ge \gamma_1; \tag{4}$$

пара A(x), c(x) вполне наблюдаема, причем для матрицы наблюдаемости

$$M(x) = (L_0(x)c(x), L_1(x)c(x), \dots, L_{n-1}(x)c(x))$$
(5)

выполняется условие

$$\exists \gamma_2 > 0: \quad |\det M(x)| \ge \gamma_2. \tag{6}$$

Задача. Требуется определить скалярное управление u(x), при котором

$$x_n(t) \to 0$$
 при $t \to \infty$,
 $\exists m_j < \infty : |x_j(t)| < m_j, \quad j = \overline{1, n}$. (7)

3 Основные результаты

Будем искать управление u(x) в виде

$$u(x) = s^*(x)c^*(x)(x - x_0) + \alpha(x)\varphi(x), \tag{8}$$

где $\alpha(x)$ — скалярная функция, выбранная так, чтобы n-ные компоненты векторов $x(t), x_0$ совпадали. Вектор x_0 задается соотношением

$$A(x)x_0 + \alpha(x)\varphi(x)b(x) + \varphi(x)g(x) = 0, (9)$$

т. е.

$$x_0 = -\varphi(x)A^{-1}(x)(\alpha(x)b(x) + g(x)). \tag{10}$$

Тогда

$$\alpha(x) = -\frac{x_n(t) + \varphi(x)q_n^*(x)g(x)}{q_n^*(x)b(x)},\tag{11}$$

где $q_n^*(x)$ — n-я строка матрицы $A^{-1}(x)$. Отметим теперь, что вектор x_0 , заданный (9), (10), удовлетворяет уравнениям (1), при этом $\dot{x}_0 = 0$, т. е. $x_0 = \mathrm{const.}$ Введем в рассмотрение вектор

$$\widetilde{x}(t) = x(t) - x_0. \tag{12}$$

Тогда из уравнений (1), (9) следуют уравнения системы

$$\dot{\widetilde{x}}(t) = A(x)\widetilde{x}(t) + b(x)s^*(x)c^*(x)\widetilde{x}.$$
(13)

Таким образом, доказана следующая теорема.

Теорема 1 Абсолютно инвариантный регулятор, удовлетворяющий условиям (7), совпадает со стабилизирующим регулятором для системы (13).

Теорема 2 Пусть A(x), b(x), c(x) равномерно ограничены при всех $x \in \mathbb{R}^n$. Тогда существует и определяется в явном виде вектор обратной связи s = const, который обеспечивает экспоненциальную устойчивость в целом системы (13) относительно $\widetilde{x} = x - x_0$.

Доказательство. Система (13) представляет собой частный случай системы со сдвигом аргумента. Введем в рассмотрение преобразование подобия

$$y = T(x)\widetilde{x},$$

где матрица T(x) строится, как показано в [3], так, чтобы обеспечить матрице замкнутой преобразованной системы (13) форму Фробениуса независимо от вида вектора обратной связи. Явный вид матрицы T(x) задан в [3], причем выполняется соотношение $T(x)b(x)=(0,\ldots,0,1)^*=e_n$. Таким образом, преобразованная система (13) имеет вид

$$\dot{y} = \widetilde{A}(y)y + e_n \widetilde{s}^*(y)\widetilde{c}^*(y)y,$$

где $\widetilde{A}(y) = T(x)A(x)T^{-1}(x) + \dot{T}(x)T^{-1}(x),$ (14)
 $\widetilde{c}^*(y) = c^*(x)T^{-1}(x).$

Стабилизация системы (14) производится посредством построения экспоненциально устойчивого наблюдателя, как показано в [4].

4 Заключение

Задача синтеза абсолютно универсального регулятора свелась к решению задачи стабилизации при управлении по выходу системы со сдвигом аргумента специального вида, которое проводится как в [3, 4].

Отметим, что при $\varphi(x)=0$ $x(t)\to 0$, т. е. построенный регулятор превращается в стабилизирующий регулятор в обычном смысле слова.

Литература

[1] Якубович В.А. Универсальные регуляторы в задачах инвариантности и отслеживания // ДАН, 1995, Т.343, N 2, С.172-175.

- [2] Зубер И.Е., Петрова К.Ю. Синтез стабилизирующего регулятора для нестационарной модели автономного транспортного средства // Электронный журнал. Дифференциальные уравнения и процессы управления, 2000, вып. 4.
- [3] Зубер И.Е. Спектральная стабилизация нелинейных систем на базе специального преобразования подобия // Вестник СПбГУ, сер. 1, 2000, вып. 2, N 8, C.8-13.
- [4] Зубер И.Е. Стабилизация нелинейных систем управлением по выходу. // Вестник СПбГУ, сер. 1, 2002 (в печати).