Metaalrooster en metaalbinding

dichte bolstapeling

metaalbinding

- → geleidbaarheid van metalen
- → vervormbaarheid van metalen

 CO_2

CO

 CO_3

 CO_2

CO

 \bigcirc 3

koolstofdioxide

koolstofmonoxide

 CO_2

CO

koolstofdioxide

koolstofmonoxide

Definitie:

Het **oxidatiegetal** van een element is een **getal** (geschreven als **Romeinse cijfer**) dat weergeeft **hoeveel elektronen** een **element bij binding** kan **opnemen** of **afgeven**. Dat getal is dus **negatief** of **positief**.

 CO_2

CO

koolstofdioxide

koolstofmonoxide

Definitie:

Het **oxidatiegetal** van een element is een **getal** (geschreven als **Romeinse cijfer**) dat weergeeft **hoeveel elektronen** een **element bij binding** kan **opnemen** of **afgeven**. Dat getal is dus **negatief** of **positief**.

Positieve en negatieve oxidatiegetallen (OG) van atomen uit de a-groepen van het periodiek systeem

Hoofdgroepen	1 Ia	2 Ila	13 Illa	14 IVa	15 Va	16 Vla	17 VIIa
Maximum aantal elektronen dat het atoom kan loslaten							
Hoogste positieve OG							
Maximum aantal elektronen dat het atoom kan aantrekken							
Laagste negatieve OG							

Positieve en negatieve oxidatiegetallen van atomen uit de a-groepen van het periodiek systeem

Hoofdgroepen	1 la	2 Ila	13 Illa	14 IVa	15 Va	16 Vla	17 VIIa
Maximum aantal elektronen dat het atoom kan loslaten	1	2	3	4	5	6	7
Hoogste positieve OG	+1	+11	+==	+IV	+V	+VI	+VII
Maximum aantal elektronen dat het atoom kan aantrekken				4	3	2	1
Laagste negatieve OG	be	estaat nic	et	-IV	-111	-11	-1

Oxidatiegetalen van stikstof

Bepalen oxidatiegetalen (OG): stof

Bepalen oxidatiegetallen: ion

Bepalen oxidatiegetallen bij ionen

	b		b	VI	llb
+1	+	+1	+11	+	+111
Cu ¹⁺	Cu ²⁺		Zn ²⁺	Fe ²⁺	Fe ³⁺
Ag ¹⁺		Hg ¹⁺	Hg ²⁺		

Voorbeeld van het molecule zwafelzuur

Voorbeeld van het molecule zwafelzuur

$$H_{2}SO_{4}$$

$$\begin{bmatrix}
+I \\
H \\
S \\
-II \\
O \\
-II \\
O \\
-II \\
O \\
-II \\
O \\
O\end{bmatrix}^{0}$$

$$(+2) + OG(S) + (-8) = OG(S) = 0 + 8 - 2 = 6$$

Voorbeeld van het molecule zwafelzuur

$$H_2SO_4$$

+		-11	
H_2	S	O ₄	
+2	+6	-8	= 0

Bepaal het oxidatiegetal OG van X in de stof Y.

Element X	Stof Y	OG
Cl	HCl	
S	H_2S	
N	N_2H_4	
C	CH ₄	
C	CO ₂	
C	Na ₂ CO ₃	

Bepaal het oxidatiegetal OG van X in de stof Y.

Element X	Stof Y	OG
Cl	HCl	-I
S	H_2S	-II
N	N_2H_4	-II
C	CH ₄	-IV
C	CO ₂	+IV
C	Na ₂ CO ₃	+IV

Bepaal de molecuulformule.

Na Cl

Na O

1. Plaats we het symbool van het element met de kleinste elektronegativiteit (*EN*) links, en rechts ervan het symbool van het element met de grootste elektronegativiteit.

Na Cl

NaO

2. Trek achter het eerste symbool een verticaal streepje.

+I -I Na CI

+1 -11 Na O

3. Schrijf, links en rechts van het streepje, het teken en de waarde van het OG.

+I -I Na Cl 2x(+I) -II Na O

4. Pas de equivalentieregel toe. Daarvoor gebruiken we het kleinste cijfer waarmee het OG vermenigvuldigd moet worden, zodat de som van de OG = 0.

Na Cl

Na₂O

5. Het laatst gevonden (Arabische) cijfer is het indexcijfer, dat achter het symbool in de formule geschreven moet worden.

Bepaal de molecuulformule.

Na Cl	Na O	Ca Cl
Na Cl	Na O	Ca CI
+I -I Na CI	+I -II Na O	+II -I Ca CI
+I -I Na CI	2x(+I) -II Na O	+II 2x(-I) Ca CI
Na Cl	Na ₂ O	Ca Cl ₂

Hartelijk dank en veel succes!

