WORKSHOP 11: §6.1-6.2 FEBRUARY 16, 2017

7 T					
	•	n	n	Δ	٠

- (1) Write an algorithm in pseudocode that tests whether an input sequence (a_1, \ldots, a_n) contains the same number twice, in the following two situations:
 - (a) The sequence is sorted in nondecreasing order.
 - (b) The sequence is not necessarily sorted.
- (2) Let $f(n) = 5n^3 7n^2 + n + 2$.
 - (a) Prove that f is $O(n^3)$. (Using $n_0 = 1$ will work; what c is needed?)
 - (b) Prove that f is $\Omega(n^3)$. (You could again use $n_0 = 1$, but it might be easier to use $n_0 = 2$.)
 - (c) Prove that f is NOT $\Omega(n^4)$.
- (3) Prove that if f = O(g) and g = O(h), then f = O(h). Here's a sketch:

Proof. We use a direct proof. Let f, g, h be arbitrary functions $(\mathbb{N} \to \mathbb{N})$ such that f = O(g) and g = O(h). Since f = O(g), there are positive constants n_0 and c such that for any $n \ge n_0$, ???. Since g = O(h), there are positive constants m_0 and d such that ?????. Therefore, for $n \ge$???, both $f(n) \le$?? and $g(n) \le$??, and so $f(n) \le$?????????? \le (??)h(n).

(4) An important measure of the difference between two equal-length strands of DNA is the number of nucleotides in which the DNA differ. This is calculated by lining up the first strand (a_1, a_2, \ldots, a_n) against the second strand (b_1, b_2, \ldots, b_n) (where all values are A, G, C, or T), and counting the indices i for which $a_i \neq b_i$.

Write an algorithm in pseudocode using a loop and an If-statement that computes the number of nucleotides in which two equal-length strands of DNA differ.

- (5) Prove the statements in zyBook's Figure 6.2.2: let f, g, and h be functions from \mathbb{R}^+ to \mathbb{R}^+ .
 - (a) If f = O(h) AND g = O(h), then f + g = O(h).
 - (b) If $f = \Omega(h)$ OR $g = \Omega(h)$, then $f + g = \Omega(h)$.
 - (c) If f = O(g) and c is a constant greater than 0, then $c \cdot f = O(g)$.
 - (d) If $f = \Omega(g)$ and c is a constant greater than 0, then $c \cdot f = \Omega(g)$.

Use the above to prove that the following are true also.

- (e) If $f = \Theta(h)$ and $g = \Theta(h)$, then $f + g = \Theta(h)$.
- (f) If $f = \Theta(g)$ and c is a constant greater than 0, then $c \cdot f = \Theta(g)$.