Prvi Tjedan

Q

1. Objasniti što podrazumijevamo pod pojmom skupa te na koje načine možemo skup zadati.

Pod pojmom skup podrazumijevamo bilo koju množinu elemenata.

2. Navesti definicije pojmova: podskup, jednakost skupova, pravi podskup, prazan skup, partitivni skup, disjunktni skupovi.

Podskup ... skup A je podskup skupa B ako za bilo koji $x \in A$ također vrijedi $x \in B$ i to pišemo kao $A \subseteq B$. Jednakost ... kažemo da su skupovi A i B jednaki ako vrijedi $A \subseteq B$ i $B \subseteq A$ te pišemo A = B.

Pravi podskup ... kažemo da je skup A pravi podskup skupa Bako vrijedi $A\subseteq B$ i $A\neq B$ te pišemo $A\subset B.$

Prazan skup ... onaj koji ne sadrži elemente, pišemo \emptyset . Za svaki skup A vrijedi $\emptyset \subseteq A$.

Partitivni skup ... za bilo koji skup A možemo definirati skup koji kao svoje elemente sadrži podskupove od A, skup svih podskupova od A zovemo partitivni skup i pišemo $\mathcal{P}(A)$.

Disjunktni skupovi ... za dva skupa A i B vrijedi da su disjunktni ako je njihov presjek prazan skup.

3. Definirati skupovne operacije: unija, presjek, komplement, razlika, simetrična razlika, te navesti svojstva svih tih operacija.

Unija ... za dva skupa A i B sadržanih u univerzalnom skupu definiramo uniju skupova A i B kao skup svih elemenata x za koje vrijedi $x \in A$ ili $x \in B$, takav skup označavamo sa $A \cup B$.

Presjek ... za dva skupa A i B sadržanih u univerzalnom skupu definiramo presjek skupova A i B kao skup svih elemenata x za koje vrijedi $x \in A$ i $x \in B$, takav skup označavamo sa $A \cap B$.

Komplement ... za skup A koji je sadržan u univerzalnom skupu definiramo komplement skupa A kao skup svih elemenata x za koje vrijedi $x \notin A$, a označavamo A^{\complement} ili \overline{A} .

Razlika ... za dva skupa A i B sadržanih u univerzalnom skupu definiramo razliku skupova A i B kao skup svih elemenata x za koje vrijedi $x \in A$ i $x \notin B$, te pišemo $A \setminus B$.

Simetrična razlika ... za dva skupa A i B sadržanih u univerzalnom skupu definiramo simetričnu razliku skupova A i B kao skup svih elemenata x za koje vrijedi $x \in A$, $x \in B$ i $x \notin A \cap B$, te pišemo $A \triangle B$.

Neka su A, B i $C \in 2^X$, tada vrijede sljedeća svojstva operacija nad skupovima:

idempotentnost

$$A \cup A = A$$
, $A \cap A = A$

asocijativnost

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

komutativnost

$$A \cup B = B \cup A, \quad A \cap B = B \cap A$$

distributivnost

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• De Morgan

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

• ostala pravila

$$A \cup \emptyset = A, \quad A \cap X = A$$

 $A \cup \overline{A} = X, \quad A \cap \overline{A} = \emptyset$
 $\overline{\overline{A}} = A$

4. Dokazati De Morganove formule za dva proizvoljna skupa.

Prema De Morganovim formulama vrijedi da za dva skupa $A, B \in 2^X$ vrijedi:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Dokažimo prvo prvu formulu.

Neka je $x \in \overline{A \cup B}$, odnosno $x \notin A \cup B$. Tada također vrijedi $x \notin A$ i $x \notin B$, drugim riječima $x \in \overline{A}$ i $x \in \overline{B}$ ali to samo znači $x \in \overline{A} \cap \overline{B}$ pa time vrijedi $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$.

Sada neka je $x \in \overline{A} \cap \overline{B}$, odnosno $x \in \overline{A}$ i $x \in \overline{B}$. Uočavamo da onda vrijedi i $x \notin A$ i $x \notin B$, odnosno $x \notin A \cup B$, drugim riječima $x \in \overline{A \cup B}$ pa time vrijedi $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

Pokazali smo da vrijedi

$$\overline{A \cup B} \subseteq \overline{A} \cap \overline{B} \quad i \quad \overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$$

Te zaključujemo

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Dokažimo sada drugu formulu.

Neka je $x \in \overline{A \cap B} \Longrightarrow x \notin A \cap B \Longrightarrow x \notin A$ ili $x \notin B \Longrightarrow x \in \overline{A}$ ili $x \in \overline{B} \Longrightarrow x \in \overline{A} \cup \overline{B}$ pa vrijedi $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$.

Sada neka je $x \in \overline{A} \cup \overline{B} \Longrightarrow x \in \overline{A}$ ili $x \in \overline{B} \Longrightarrow x \notin A$ ili $x \notin B \Longrightarrow x \notin A \cap B \Longrightarrow x \in \overline{A \cap B}$ pa vrijedi $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$.

Pokazali smo da vrijedi

$$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B} \quad i \quad \overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$$

Te zaključujemo

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

5. Definirati pojam Kartezijevog produkta n - proizvoljnih skupova.

Ako su A_1, A_2, \ldots, A_n neprazni skupovi, onda definiramo Kartezijev produkt

$$A_1 \times A_2 \times \ldots \times A_n$$

kao skup svih uređenih parova (a_1, a_2, \dots, a_n) takvih da je $a_k \in A_k$ za sve $k = 1, 2, \dots, n$

6. Definirati pojmove konačan skup, beskonačan skup, ekvipotentni skupovi, prebrojiv skup, neprebrojiv skup.

Konačan skup ... za neprazan skup A kažemo da je konačan ako postoji $n \in \mathbb{N}$ i bijekcija takva da

$$f: \{1, 2, \dots, n\} \to A$$

Beskonačan skup \dots za skup A kažemo da je beskonačan ako nije konačan.

Ekvipotentni skupovi ... Skup A je ekvipotentan sa skupom B ako postoji bijekcija takva da $f: A \to B$.

Prebrojivi skup ... za beskonačan skup A kažemo da je prebrojiv ako se skup njegovih elemenata može poredati u beskonačan niz $A = \{a_1, a_2, \ldots\}$.

Neprebrojiv skup \dots za beskonačan skup A kažemo da je neprebrojiv ako se ne može poredati u niz.

7. Dokazati da je funkcija $f:A\to B$ injektivna akko je surjektivna, pri čemu su A i B konačni skupovi s jednakim brojem elemenata.

Dokažimo prvo u jednom smjeru.

Neka je f injektivna funkcija, tada skupovi A i f(A) imaju isti broj elemenata. Također znamo da vrijedi |A| = |B| pa znamo |f(A)| = |B|.

Za svaku funkciju vrijedi da je slika funkcije podskup kodomene odnosno $f(A) \subseteq B$, ali uz dodatan uvjet |f(A)| = |B| sada imamo f(A) = B, odnosno funkcija je surjekcija.

Sada dokažimo u drugom smjeru.

Neka je f surjektivna funkcija, tada znamo da je f(A) = B, odnosno |f(A)| = |B|. Uz uvjet |A| = |B| sada imamo |f(A)| = |A|, drugim riječima domena i slika funkcije imaju jednak broj elemenata pa je funkcija injekcija.

8. Definirati pojam kardinalnog broja skupa te prokomentirati ekvipotentnost kod konačnih i beskonačnih skupova.

Za konačan skup A s n elemenata definiramo kardinalni broj skupa kao |A| = n.