Homework 1

Jichao Yang

Problem 1

Unless specifically mentioned, the sum and product operators below all range within set $\{x_1, \dots, x_8\}$.

(a) Likelihood function can be found as follow:

$$L = \prod P(X = x_i) = \prod e^{-\lambda} \frac{\lambda^{x_i}}{x_i!} = e^{-8\lambda} \cdot \frac{\lambda^{\sum x_i}}{\prod x_n!}$$

(b) The log likelihood can be found as follow:

$$\mathcal{L} = log(L) = -8\lambda + log(\lambda) \cdot \sum x_i - \sum log(x_i!)$$

(c) Function $\mathcal{L}(\lambda) = c_0 + c_1 \cdot \lambda + c_2 \cdot \ln(\lambda)$ is the sum of convex functions, hence \mathcal{L} is convex. Therefore \mathcal{L} reaches its maximum if and only if its derivative is 0. Solving this equation we have:

$$\frac{d}{d\lambda}\mathcal{L} = -8 + \frac{1}{\lambda} \cdot \sum x_i = 0$$
$$\lambda = \frac{1}{8} \sum x_i$$

Problem 2

(a) The estimation for λ is

```
import numpy as np

counts = np.array([32,25,28,22,31,34,23,17])
1 = sum(counts) / 8

print('The estimation for lambda is {}'.format(np.round(1,5)))
```

The estimation for lambda is 26.5

(b) Below is the function that calculates the negative log likelihood:

```
from scipy.special import factorial

def nll(1, counts):
    Returns the negative log likelihood of given observation counts and rate
    parameter 1.
    return 8*1 - np.log(1)*np.sum(counts) + np.sum(np.log(factorial(counts)))
```

(c) We use the Scipy optimizer to find the minimum negative loss:

```
# Using initial guess 20 which is decently close to 1
1_hat = minimize(nll, [20], args=counts).x[0]
# Does the analytic solution agree with the optimization?
assert np.isclose(1,1_hat)

print('The estimator found using scipy is {}'.format(np.round(1_hat, 5)))
print('The estimator calculated in Problem 1 is {}'.format(np.round(1, 5)))
```

The estimator found using scipy is 26.49999 The estimator calculated in Problem 1 is 26.5

The calculated estimator is reasonably close to the optimized estimator.

Problem 3

(a) Denote the value of the two dice d_1, d_2 . The conditional probability can be calculated with:

$$P(d_1=4|d_1+d_2=7) = \frac{P(d_1=4\cap d_1+d_2=7)}{P(d_1+d_2=7)} = \frac{(1/6)^2}{(1/6)^2\cdot 6} = \frac{1}{6}$$

(b) Denote families owning dogs D and cats C. The conditional probability can be calculated with:

$$P(D|C) = \frac{P(D \cap C)}{P(C)} = \frac{1/3 \cdot 0.6}{0.4} = \frac{1}{2}$$

Problem 4

(a) Denote the ordered set of throws $D = \{5, 3, 9, 3, 8, 4, 7\}$. We first calculate a few useful values for solving the problem:

$$P(D|A) = \frac{3 \cdot 3 \cdot 2}{20^7} = \frac{18}{20^7}; \quad P(D|B) = \frac{2^6}{20^7} = \frac{64}{20^7}; \quad P(D|E) = \frac{2^7}{20^7} = \frac{128}{20^7}$$

$$P(D) = P(D|A) \cdot P(A) + P(D|B) \cdot P(B) + P(D|E) \cdot P(E) = \frac{1}{3} \cdot \frac{210}{20^7}$$

Using the Bayes equation we have the following:

$$P(A|D) = \frac{P(D|A) \cdot P(A)}{P(D)} = \frac{18}{210}; \quad P(B|D) = \frac{64}{210}; \quad P(E|D) = \frac{128}{210}$$

(b) Take calculations done in step (a) as the prior. Denote D' as the final die roll of 10. We can calculate the following:

$$P(D') = P(D'|A)P(A) + P(D'|B)P(B) + P(D'|E)P(E) = 0 \cdot \frac{18}{210} + \frac{1}{20} \cdot \frac{64}{210} + \frac{2}{20} \cdot \frac{128}{210} = \frac{16}{210} + \frac{1}{20} \cdot \frac{1}{20} \cdot \frac{1}{20} = \frac{1}{20} \cdot \frac{1}{20} = \frac{1}{20} \cdot \frac{1}{20} \cdot \frac{1}{20} = \frac{1}{20} \cdot \frac{1}{20} \cdot \frac{1}{20} = \frac$$

$$P(A|D') = \frac{P(D'|A) \cdot P(A)}{P(D')} = \frac{0 \cdot 18/210}{16/210} = 0; \quad P(B|D') = \frac{1}{5}; \quad P(E|D') = \frac{4}{5}$$

(c) The consequences of A being impossible to roll a 10 is that the posterior probability of A is 0. In other words, the prior probability of A becomes 'distributed' among B and C after the additional roll.

(d) Recall that given a set of rolls D, there is a established 99:1 confidence between B and E if and only if

$$\frac{P(B|D)}{P(E|D)} \le \frac{1}{99} \text{ or } \frac{P(B|D)}{P(E|D)} \ge \frac{99}{1}$$

Given any prior rolls D, we can calculate the current value for P(B) and P(E). For new roll D', the probability can be updated as follow:

$$P(B|D') = \frac{P(D'|B)}{P(D')} \cdot P(B); \quad P(E|D') = \frac{P(D'|E)}{P(D')} \cdot P(E)$$

Hence the quotient can be updated as follow:

$$\frac{P(B|D')}{P(E|D')} = \frac{P(D'|B)}{P(D'|E)} \cdot \frac{P(B)}{P(E)}$$

For accuracy of calculation, we define the log confidence as

$$\mathcal{L} = log(\frac{P(B)}{P(E)})$$

Hence the log confidence can be iteratively updated by the following rule

$$\mathcal{L}' = \mathcal{L} + log(P(D'|B)) - log(P(D'|E))$$

until we reach the breaking condition

$$\mathcal{L}' \leq -log(99)$$
 or $\mathcal{L}' \geq log(99)$

Below is the implementation of the algorithm: