ESQUEMA DISCIPLE CIRCUIT

end_of_disc = Sinal dado pelo datapath indicando que o discípulo passou da borda do tabuleiro.

cg_sel = Sinal vindo do disciple control responsável por indicar o valor a ser escrito na memória (DISCIPLE,BLANCK ou DUO).

ng_cte_incr= Sinal para controlar o mux de NUM_GEN_DISC a fim de decidir a passagem do sinal aleatório ou da ULA.

alu_ctrl = Sinal utilizado para gerenciar o controle da ULA.

reg en = Sinal para dar enable aos registradores de REG BANK DISC.

reg_crtl = Sinal para controlar o mux que decide pela passagem do sinal dos registradores de REG_BANK_DISC.

MÁQUINA DE ESTADOS DISCIPLE CONTROL

START= Estado em que a máquina espera pelo sinal start_step = 1 para poder iniciar o discípulo.

RAND = Estado em que a máquina solicita um numero aleatório ao rand_num, fazendo neg_cte_incr = 0 e reg_en = 1 para passar o numero aleatório para o reg_disc.

WRITE_RAND = Estado em que a máquina escreve na memória de acordo com a posição aleatória gerada em RAND para o discípulo.

WAIT_COUNT_DISC= Estado em que a máquina espera pelo sinal de passo do discípulo cnt_disc_rdy = 1, para poder começar o processo de passo do discípulo.

INCR = Estado em que a máquina faz o incremento de posição do discípulo, fazendo alu_ctrl = 1, ng_cte_incr = 1 e reg_en = 1.

CHECK_LAST= Estado em que a máquina averigua se chegou ao final e pode prosseguir ou se deve escrever na posição, faz isso esperando pelo sinal go_disc =1 e averigua o sinal end_of_disc para selecionar o próximo estado.

CHECK_DUO = Estado em que a máquina averigua se o discípulo encontrou o guru, através do sinal duo_formed.

WRITE_DISC= Estado em que a máquina escreve DISCIPLE na memória no endereço indicado pelo valor de reg_disc, isso é feito com disc_wr_en = 1, disc_address = reg_disc,reg_ctrl = 0 e cg_sel = DISCIPLE (disc_data = DISCIPLE).

CLEAR_PREV= Estado em que a máquina escreve BLANCK na posição indicada em reg_disc_previous, faz isso reg_ctrl=1,disc_wr_en=1,disc_address = reg_disc_previous e cg_sel= BLANCK(disc_data = BLANCK).

WRITE_DUO= Estado em que máquina escreve DUO na memória no endereço indicado pelo valor de reg_disc, isso é feito com disc_wr_en = 1, disc_address = reg_disc,reg_ctrl = 0 e cg_sel = DUO (disc_data = DUO).

CHECK_BEHIND= Estado em que a máquina avalia se o guru está logo atrás do discípulo através do sinal guru_right_behind, e decide pelo estado seguinte.

LAST_WITH_GURU= Estado em que a máquina dá fim a jogada e não faz nada pois o guru está logo atrás.

LAST= Estado em que a máquina dá fim a jogada e apaga o discípulo da posição anterior, isso é feito escrevendo BLANCK na posição indicada em reg_disc_previous, para isso faz-se reg_ctrl=1,disc_wr_en=1,disc_address = reg_disc_previous e cg_sel= BLANCK(disc_data = BLANCK).

DISCIPLE DATAPATH

ALU= Unidade lógica e aritmética, usada para calcular o passo do guru de acordo com alu_ctrl.

NUM_GEN_DISC= módulo que decide pela passagem do número aleatório ou pela passagem do número incrementado pela ALU, para os registradores do discípulo.

CODE_GEN= Módulo que traduz o código BLANCK, DISCIPLE ou DUO para binário.

REG_BANK= módulo de registradores, responsável por guardar o endereço do disciple e o endereço anterior para coordenar os passos do mesmo.

COL_OVF_DISC= Módulo responsável por indicar transbordo para o disciple, isto é, passou da borda superior.