

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

دورة: 2022

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: آداب وفلسفة، لغات أجنبية

الحتبار في مادة: الرياضيات المدة: 20 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (06 نقاط)

 $u_0+u_1=8$ و $u_0=3$ حيث: $u_0=1$ وحدها الأول $u_0=1$ وحدها الأول $u_0=1$

 u_{1443} بيّن أنّ: r=2 ثم اكتب عبارة u_n بدلالة r=2

 $S=u_{1443}+u_{1444}+\cdots+u_{2022}$: عيث أنّ : 4047 حدّ من حدود المتتالية (u_n) ثم احسب المجموع (u_n)

 $S_n = u_0 + u_1 + \dots + u_n$ نضع من أجل كلّ عدد طبيعي (3

 $S_n = n^2 + 4n + 3$: أنّ بيّن أنّ (أ

 $S_n = 120$ عيّن العدد الطبيعي n حتى يكون (ب

التمرين الثاني: (06 نقاط)

b = 1443 و a = 2022 : عددان طبیعیان حیث b = a

 $a+b\equiv 0$ من باقي القسمة الإقليدية لكلّ من a على b على 5 ثم استنتج أنّ : (1

4 هو 5 على 5 هو ($a+a^2+a^3$) على 5 هو ($(a+a^2+a^3)$ تحقّق أنّ باقي القسمة الإقليدية للعدد

5 عين قيم العدد الطبيعي n بحيث يقبل العدد $(a+a^2+a^3+n)$ القسمة على $(a+a^2+a^3+n)$

5 على قبل القسمة على (a+b+ab) $^a+(a+b+4)^b$ تحقّق أنّ: $a+b+4\equiv -1$ ثم بيّن أنّ العدد (a+b+ab) تحقّق أنّ

التمرين الثالث: (08 نقاط)

. $f(x) = -x^2 + 4x - 3$ الدالة العددية المعرّفة على $\mathbb R$ كما يلى: f

 $.\left(O\,; ec{i}\,, ec{j}
ight)$ سمياها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{f}
ight)$

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ (1)

ي أحسب f'(x) ثم ادرس اتجاه تغيّر الدالة f وشكّل جدول تغيراتها.

ا أكتب معادلة لـ (T) مماس المنحنى النقطة التي فاصلتها 1 أكتب معادلة لـ (T)

f(x) = (1-x)(x-3) ، x عدد حقیقی عدد من أجل كلّ عدد (4

. استنتج إحداثيي نقطتي تقاطع المنحنى $\left(C_f
ight)$ مع حامل محور الفواصل

. -3 اللتين ترتيبتهما (C_f) على حل في (C_f) اللتين ترتيبتهما (C_f) على حل في اللتين ترتيبتهما (C_f)

. $\left(C_f
ight)$ أنشئ المماس $\left(T
ight)$ ثم المنحنى (6

انتهى الموضوع الأول

الموضوع الثانى

التمرين الأول: (06 نقاط)

 $a+b\equiv 3$ و و 8 هو 8 محدان طبیعیان حیث باقی القسمة الإقلیدیة للعدد a عددان طبیعیان حیث باقی القسمة الإقلیدیة العدد

- بيّن أنّ باقي القسمة الإقليدية للعدد b على 9 هو 4 (1
 - 2 تحقّق أنّ العددين b و 103 متوافقان بترديد (2
 - $103^3 \equiv 1[9]$ و $a \equiv -1[9]$: آ) بيّن أنّ (3
 - $a^{2022} + (16 \times b)^{1443} \equiv 2[9]$:نّ بني تحقّق أنّ بني الم
- $a^{2022} + 103^3 + n \equiv 0$ 9] عيّن قيم العدد الطبيعي n حتى يكون (4

التمرين الثاني: (06 نقاط)

 $u_0 + u_1 + u_2 = 21$ و $u_0 = 3$: المتتالية الهندسية التي أساسها q موجب تماما وحدها الأول u_0

- q=2 بيّن أنّ $q^2+q-6=0$ ثم استنتج أنّ (1
 - u_2 أحسب ا u_1 و (2
 - n بدلالة u_n بدلالة الحد العام أ) أكتب عبارة الحد العام
- (u_n) هل العدد 96 حد من حدود المتتالية (پ
- $S_n = u_0 + u_1 + \dots + u_n$: حيث S_n المجموع n المجموع (1 (4
- $(32 = 2^5 : 32 = 2^5)$ عيّن العدد الطبيعي n حتى يكون $S_n = 93$

التمرين الثالث: (08 نقاط)

- ، $f(x) = (x-2)^2 (2x+1)$ الدالة العددية المعرّفة على $\mathbb R$ كما يلي: $f(x) = (x-2)^2 (2x+1)$
- . $\left(0\,; \vec{i}\,, \vec{j}
 ight)$ سمتاها البياني في المستوى المنسوب إلى المعلم المتعامد المتجانس $\left(C_f
 ight)$
 - $f(x) = 2 x^3 7 x^2 + 4 x + 4$ ، x عدد حقیقی عدد کلّ عدد (1
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ (2)
 - f'(x) = 2(x-2)(3x-1) ، x عدد حقیقی عدد کلّ عدد (3 ایّن أنّه من أجل کلّ عدد حقیقی
 - \mathbb{R} على f'(x) على أ) أدرس إشارة
 - ب) اِستنتج اتجاه تغیّر الدالة f علی $\mathbb R$ ثم شکّل جدول تغیراتها.
 - 0 أكتب معادلة لـ (T) مماس المنحنى (C_f) في النقطة التي فاصلتها (5
 - $B\left(\frac{-1}{2};\,0
 ight)$ و $A(2;\,0)$ يشمل النقطتين (C_f) و (C_f) المنحنى (C_f) و (C_f)
 - (C_f) ثم المنحنى (T) ثم المنحنى (T)

العلامة		<u> </u>	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
		التمرين الأول: (06 نقاط)	
2.50	0.50+0.50	$r=2$ لدينا $u_0+r=8$ معناه $u_0+u_1=8$ ومنه	
	0.50+0.50	$u_n = 2n + 3$ ومنه $u_n = u_0 + nr$	(1
	0.5	$u_{1443} = 2(1443) + 3 = 2889$	
	0.50+0.50	$n = 2022$ ومنه $2n + 3 = 4047$ ومنه $u_n = 4047$	
02	0.50+0.50	ومنه $S = \frac{2022 - 1443 + 1}{2} (u_{1443} + u_{2022})$	(2
		S = 290(2889 + 4047) = 2011440	
01.5	0.50+0.50	$S_n = \frac{n+1}{2}(u_0 + u_n) = n^2 + 4n + 3$ -1	(3
	0.25+0.25	$n=9$ ومنه $n^2+4n+3=120$ $S_n=120$	`
		التمرين الثاني: (06 نقاط)	
	0.50+0.50	$a \equiv 2[5]$ ومنه $2022 = 5 \times 404 + 2$	
02	0.3010.30	$b \equiv 3[5]$ ومنه $1443 = 5 \times 288 + 3$	(1
	0.50+0.50	$a+b\equiv 0[5]$ ومنه $a+b\equiv 2+3[5]$: استنتاج	
	0.50+0.50	$a+a^2+a^3\equiv 4[5]$ ومنه $a+a^2+a^3\equiv 2+4+8[5]$ ومنه أ- التحقّق	
02	0.50+0.50	$n+4\equiv 0$ [5] معناه $a+a^2+a^3+n\equiv 0$ [5] n ب- قیم $n=5k+1$	(2
	01	$a+b+4 \equiv -1[5]$ ومنه $a+b+4 \equiv 0+4[5]$: التحقق	
02	0.50+0.50	$(a+b+ab)^a + (a+b+4)^b \equiv 1^{2022} + (-1)^{1443} [5]$ -نبیان	(3
		$(a+b+ab)^a + (a+b+4)^b \equiv 0[5]$ ومنه	
		التمرين الثالث: (08 نقاط)	
01	0.50+0.50	$\lim_{x \to +\infty} f(x) = -\infty \qquad \lim_{x \to -\infty} f(x) = -\infty$	(1
	01	f'(x) = -2x + 4 -	
02.5	0.50	f'(x) - اشارة	
	0.25+0.25	$[2;+\infty[$ متزایدة تماما علی $[2;\infty-[$ ومتناقصة تماما علی f	
		f جدول تغیرات -	
	0.5	$ \begin{array}{c cccc} x & -\infty & 2 & +\infty \\ f'(x) & + & 0 & - \\ \hline f(x) & -\infty & -\infty \end{array} $	(2

	33		
01	0.50+0.50	(T): y = 2x - 2 معادلة المماس	(3
01	0.5	$(1-x)(x-3) = -x^2 + 4x - 3 = f(x)$	
	0.25	ب- استنتاج إحداثيي نقطتي	(4
		x = 1; x = 3 معناه $f(x) = 0$	(-
	0.25	$(C_f) \cap (xx') = \{A(1;0), B(3;0)\}$ ومنه	
01	0.5	حل المعادلة $f(x) = -3$ معناه $x = 4$ ومنه $x = 4$ أو	
	0.5	x = 0	(5
	0.5	0 ، 4 اللتين ترتيبهما -3 اللتين من $\left(C_f ight)$ اللتين ترتيبهما	
01.5	01+0.50	. $\left(C_f\right)$ $\left($	(6

	العلامة			
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)		
التمرين الأول: (06 نقاط)				
01	0.50+0.50	$b \equiv 4[9]$ ومنه $a \equiv 8[9]$ ومنه $b+8 \equiv 3[9]$	(1	
01	0.50+0.50	التحقّق أنّ العددين b و b متوافقان بترديد 9	(2	
		$103 \equiv b[9]$ ومنه $b \equiv 4[9]$ ومنه $b \equiv 4[9]$	(2	
		$103^3 \equiv 1[9]$ و $a \equiv -1[9]$: تبيان أنّ		
	01	$a \equiv -1[9]$ ومنه $a = 9 = 8 - 9[9]$ أي $a \equiv 8[9]$		
03	0.50+0.50	$103^3 \equiv 1[9]$ ومنه $[9]^3 \equiv 4^3[9]$ أي $103^3 \equiv 4[9]$	12	
03		$a^{2022} + (16 \times b)^{1443} \equiv 2[9]$:ن التحقّق أنّ	(3	
	0.50+0.25	$a^{2022} + (16 \times b)^{1443} \equiv (-1)^{2022} + 1^{1443} [9]$		
	0.25	$a^{2022} + (16 \times b)^{1443} \equiv 2[9]$		
01	0.50+0.50	$n = 9k + 7$ ھي $a^{2022} + 103^3 + n \equiv 0[9]$ ھي $n = 9k + 7$	(4	
		التمرين الثاني (06 نقاط)		
	0.25x2	$q^2+q-6=0$ تبیان أنّ –		
02	0.25x2	$1+q+q^2=7$ تكافئ $3+3q+3q^2=21$ تكافئ $u_0+u_1+u_2=21$	(1	
	0.50+0.50	$q=2$ تكافئ $q^2+q-6=0$ تكافئ $1+q+q^2=7$		
0.1	0.5.0.5	u_2 و u_1 حساب u_2	(2	
01	0.5+0.5	$u_1 = 6 \times 2 = 12$ $u_1 = 3 \times 2 = 6$	(2	
01.5	0.50+0.50	$u_n = 3 \times 2^n$: عبارة الحد العام	(3	
01.5	0.50	$n=5$ ب- $u_n=96$ معناه $2^n=96$ أي $u_n=96$	(5	
01.5	0.75+0.25	$S_n = 3(2^{n+1} - 1)$ - 1	(4	
01.5	0.50	$n=4$ ب- $S_n=93$ معناه $S_n=93$ أي $S_n=93$	(-	
		التمرين الثالث (08 نقاط)		
0.5	0.50	$(x-2)^2(2x+1) = 2x^3 - 7x^2 + 4x + 4$: التحقّق أن	(1	
01	0.5+0.5	$\lim_{x \to +\infty} f(x) = +\infty \qquad \lim_{x \to -\infty} f(x) = -\infty \qquad \text{and} \qquad $	(2	
01	0.5+0.5	$f'(x) = 6x^2 - 14x + 4 = 2(x-2)(3x-1)$ تبیان أنّ:	(3	
		f'(x) أ		
02	01	$x - \infty$ $\frac{1}{3}$ 2 $+\infty$	(4	
		f'(x) + 0 _ 0 +		
	0.25+0.25	f متناقصة تماما على $[\frac{1}{3};2]$ ومتزايدة تماما على كل من		

ىكالەرىا 2022	ية، لغات أحنسة.	الشعبة : آداب وفلسف	مادة: الرياضيات.	الإجابة النموذجية.

	٠٠٠ بال وري ١٠٠	الإجابة النموذجية. محمدة: الرياضيات. الشعبة : أداب وقلسفة، لعات اجنبيا	
		$\left[2;+\infty\left[\begin{array}{c} \\ \\ \end{array}\right]-\infty;\frac{1}{3}\right]$	
	0.5	$f = \frac{x}{-\infty} - \frac{1}{3} = \frac{1}{3} + \infty$ $f(x) + 0 = 0 + \frac{f(\frac{1}{3})}{f(x)} + \infty$	
01	0.75+0.25	(T): y = 4x + 4معادلة المماس	(5
	0.5+0.5	$Bigg(rac{-1}{2};0igg)$ و $Aig(2;0ig)$ يشمل و $Aig(2;0igg)$ يشمل و $fig(2ig)=0$, $fig(-rac{1}{2}ig)=0$	
02.5	01+0.5	(C_f) و (T) و T الشاء T	(6