- Let p be a polynomial with integer coefficients and let $a_1 < a_2 < \cdots < a_k$ be integers.
 - a) Prove that there exists $a \in \mathbb{Z}$ such that $p(a_i)$ divides p(a) for all i = 1, 2, ..., k.
 - b) Does there exist an $a \in \mathbb{Z}$ such that the product $p(a_1) \cdot p(a_2) \cdot \ldots \cdot p(a_k)$ divides p(a)?