Figure 1: cDNA sequence (and encoded amino acid sequence) of Cynomologous monkey Cathepsin ${\tt S}$

1 61	AGTTGAACTGAAATCTCCCTGCTGCTGCTTTGAAATCTTAGAAGAGAGCCCATCAATTCA AGGATTCTTACTGTAGGAGCACCTGCTGGTTCTATCACAATGAAACAGCTGGTTTGTGTG	
	M K O L V C V	
	<u>v</u> 2 √ c √	
121	CTCTTGGTGTGCTCCTCTGCAGTGGCGCAGTTGCATAAAGATCCTACCCTGGATCATCAC	
121	L L V C S S A V A O L H K D P T L D H H	
181	TGGCATCTCTGGAAGAAAACCTATGGCAAACAATACAAGGAAAAGAATGAAGAAGCAGTA	
101	W H L W K K T Y G K O Y K E K N E E A V	
241	CGACGTCTCATCTGGGAAAAGAATCTAAAGTTTGTGATGCTTCATAACCTGGAGCATTCA	
	R R L I W E K N L K F V M L H N L E H S	
301	ATGGGAATGCACTCATATGATCTGGGCATGAACCACCTGGGAGACATGACCAGTGAAGAA	
	M G M H S Y D L G M N H L G D M T S E E	
361	GTGATGTCTTTGATGAGTTCCCTGAGAGTTCCCAGCCAGTGGCAGAGAAATATCACATAT	
	V M S L M S S L R V P S Q W Q R N I T Y	
	1	
421	AAGTCAAACGCTAATCAGATATTGCCGGATTCTGTGGACTGGAGAGAGA	
	K S N A N Q I L P D S V D W R E K G C V	
481	ACTGAAGTGAAATATCAAGGTTCTTGTGGTGCTTGCTGGGGCTTTCAGTGCTGTGGGGGCC	
	T E V K Y O G S C G A C W A F S A V G A	
541	CTGGAAGCACAGCTGAAGCTGAAAACAGGAAAGCTGGTGTCTCTCAGTGCCCAGAACCTG	
	L E A Q L K L K T G K L V S L S A Q N L	
601	GTGGATTGCTCAACTGAAAAATATGGAAACAAAGGCTGCAATGGTGGCTTCATGACAAGG	
	V D C S T E K Y G N K G C N G G F M T R	
661	GCTTTCCAGTACATCATTGATAACAACGGCATCGACTCAGACGCTTCCTATCCCTACAAA	*
	A F Q Y I I D N N G I D S D A S Y P Y K	
· 721	GCCACGGATCAGAAGTGTCAATATGACTCAAAATATCGTGCTGCCACATGTTCAAAGTAT	
	AT D Q K C Q Y D S K Y R A A T C S K Y	
781	ACTGAACTTCCTTATGGCAGAGAAGATGTCCTGAAAGAAGTTGTGGCCAATAAAGGCCCA	
	TELPYGREDVLKEVVANKGP	
841	GTGTCTGTTGGTGTGGATGCGAGTCATCCTTCTTTCTTCCTCTACAGAAGTGGTGTCTAC	
004	V S V G V D A S H P S F F L Y R S G V Y	
901	TATGAACCATCCTGTACTCAGAATGTGAATCATGGTGTACTTGTGGTTGGCTATGGTGTT	
0.61	Y E P S C T Q N V N H G V L V V G Y G V	
961	CTTAACGGGAAAGAATACTGGCTTGTGAAAAACAGCTGGGGCCGCAACTTTGGTGAAGAA	
1021	L N G K E Y W L V K N S W G R N F G E E	
1021	GGATATATTCGGATGGCAAGAAATAAAGGAAATCATTGTGGGATTGCTAGTTTCCCCTCT G Y I R M A R N K G N H C G I A S F P S	
1081	G Y I R M A R N K G N H C G I A S F P S TACCCAGAAATCTAGAGAGAGATCTCTTCTTTTTTATAACAAATCAAGAAAATATGAAGCAC	
1001	Y P E T *	GDO TD NO 2
1141		SEQ ID NO:2
1201	TTTCTCTTAACTTAACTTTTTCCTGCTGTATCCAGAAGAAATAATTGTGTCACGATTAATG	
1261	TGTATTTACTGTACTAATTAAAAAATATAGTTTGAGGCCGGGCACGGTGGCTCACGCCTG	
1321	TAATCCCAGTACTTTGGGAGGCCAAGGCAGATATCAACTTGAGGCCAGGAGTTAAAGA CAGGCCTGGCTAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAACATTAGCGGAGC	•
1381	GTAATGGTGCATGCCTGTAATCCCAGCTACTTGGGAGGCTGAAGCACAAGATTCCTTGAA	
1441	CCCAAGAGTTGAGCTGTGAGCTGAGCTACTTGGGAGCTGAAGCACAAGATTCCTTGAA	
1501	AGAGTGGAGACTCTGTTTCAAAAAAACAGAAAAGATAATATAGTTTGATTCTTCGTTTTT	
1561	TAAAATTTGCAAACCTCAGGAAAAAGTTTGCTAAGTAAATTAGTTTGGTTACTATAGATAT	
1621	AACTGTATAAAAATTGTTCAACCTAAAACAATCTGTCATTGTTCATTGTTTTATTTA	
1681	CTCTTTGTCTTTTTAAGACCCCTGATAGCCTTTTGTAACTTGATGGCTTAAAAGTACTTA	
1741	ATAAATCTGCCATTTCAAATTTCATTTCAAAAAAAAAAA	SEO ID NO:1
		X ID 110.I

- ♦ = cleavage site for pre-sequence
- ↓ = cleavage site for pro-sequence

^{* =} stop codon

Figure 2: Alignment of cathepsin S amino acid sequences from Cynomologous monkey (SEQ ID NO:2, as shown in Fig. 1), human (Genbank accession number BC002642.2), monkey sml cells (Saimiri boliviensis), dog (Canis familiaris; Genbank accession number AY156692), and mouse (Mus musculus; Genbank gi3850787), followed by a consensus sequence.

"cyno cats preprotein" = Cynomologous monkey = SEQ ID NO:2
"smlmonkey cats" = monkey sml cells (Saimiri boliviensis) = SEQ ID NO:3
"hcats prepropro.txt" = human (Homo sapiens) = SEQ ID NO:4
"dog cats" = dog (Canis familiaris) = SEQ ID NO:5
"mouse cats prepro" = mouse (Mus musculus) = SEQ ID NO:6
(consensus sequence = SEQ ID NO:7)

ClustalW Formatted Alignments

Figure 3: Purification of monkey Cathepsin S (Gelcode stained gel)

