Institute of Artificial Intelligence Innovation Department of Computer Science

Operating System

Lecture 00: Couse Overview & Historical Prospective

Shuo-Han Chen (陳碩漢), shch@nycu.edu.tw

Wed. 10:10 - 12:00 EC115 + Fri. 11:10 - 12:00 Online

Course Information

- Operating System
 - Mandarin Lecture + English Materials
 - Designed for students in graduate school
- Course Time and Place Lecture (2 + 1 hours)
 - Wed. 10:10 12:00 EC115
 - Friday 11:10 12:00 Online
- Course Material & Video
 - Please check the MS Teams
 - Code: ig0604f

Visit the NYCU portal to apply MS365 account first and log into MS teams

Course Instructor & Teaching Assistant

- Course Instructor
 - Prof. Shuo-Han Chen (陳碩漢)
 - Office: EF373
 - Office Hours: By Request
 - Email: shch@nycu.edu.tw
- Teaching Assistant
 - 徐翊安
 - 簡子茸
 - Message TA through MS Teams message

Prerequisites

- Addend & Interact
- Comfortable with C/C++
- Already taken the Operating System Course
- Not afraid of English

And, of course, willing to learn more about
 Operating System

Course Assessment

- Assignment: 40 %
 - 4 homework in total (2-people group homework, single-person group is allowed)
 - Upload your HW to the course GitLab (Account will be provided after collecting group info)
 - https://css-nachos.hopto.org/gitlab
 - https://css-nachos.hopto.org/jenkins
- Midterm Exam: 30 %
- Final Exam: 25 %
 - Closed-book book
 - Week 8 & Week 16 on Wed. 10:10 12:00
- Course Attendance: 5% (By deduction)
 - Response to course questionnaire, up to 2 times
 - Random roll call, up to 3 times

Textbook

- Textbook:
 - "Operating System Concepts, 9th Edition" by Silberschatz, Galvin, and Gagne. John Wiley & Sons, Inc

Prerequisites: Data Structures, Computer Organization, and C++ Language

Homework: NachOS

Features:

- an educational OS developed at UC Berkeley
- clean, simple to trace, compared with Linux
- widely used by many universities in USA
- · you will add system call, memory manager, process scheduler and file system

Pre-request Knowledge:

- C++ Language
- Linux coding environment
- Code tracing

Grading Policy

- Correctness of the code Verify through Jenkins automation testing
- Report
 - Team member information
 - Individual contribution
 - Name, Percentage, Briefly describe the contribution
 - Explanation of your implementation As detail as possible
- Following rules will be strictly enforced
 - 0 will be given to cheaters (copying cats)
 - Late submission
 - 3 days: 90%
 - 1 week: 80%
 - 2 weeks: 70%
 - 3 weeks: 60%
 - Further, will not be accepted

Textbook Content

PART 1	Overview
PART 2	Process Management
PART 3	Process Coordination
PART 4	Memory Management
PART 5	Storage Management
PART 6	Protection And Security
PART 7	Distributed Systems
PART 8	Special Purpose Systems
PART 9	Case Studies

Course Content

PART 1	Overview	
Lec01	Introduction	
Lec02	System Structures (HW01)	
PART 2	Process Management	
PART 3	Process Coordination	
PART 4	Memory Management	
PART 5	Storage Management	
PART 6	Protection And Security	
PART 7	Distributed Systems	
PART 8	Special Purpose Systems	
PART 9	Case Studies	

Course Content

PART 1 Overview **Process Management** PART 2 **Process Concept** Lec03 Multithreaded Programming Lec04 Process Scheduling (HW03) Lec05 PART 3 **Process Coordination** Lec06 Synchronization Lec07 Deadlocks **Memory Management** PART 4 Storage Management PART 5 PART 6 **Protection And Security Distributed Systems** PART 7

Course Content

PART 1 Overview **Process Management** PART 2 PART 3 **Process Coordination** PART 4 **Memory Management Memory-Management Strategies** Lec08 Virtual-Memory Management (HW02) Lec₀₉ PART 5 **Storage Management** File System (HW04) Lec₁₀ Implementing File Systems Lec11 Mass Storage Structure Lec₁₂ I/O Systems Lec₁₃

Course Syllabus

- Introduction (Lec01-Lec02)
 - MP1
- Process (Lec03)
- Memory (Lec08-Lec09)
 - MP2
- Midterm
- Threading & CPU Scheduling (Lec04-Lec05)
 - MP3
- Synchronization & Deadlock (Lec06-Lec07)
- File System & I/O Systems (Lec10-Lec13)
 - MP4
- Final Exam

Course Schedule

W	Date	Lecture	Online	Homework
1	Sept. 4	Lec01: Couse Overview & Historical Prospective		
2	Sept. 11	Lec02: Introduction	V	
3	Sept. 18	Lec03: OS Structure	V	HW01
4	Sept. 25	Lec04: Processes Concept	V	
5	Oct. 2	Lec08: Memory Management	V	
6	Oct. 9	Lec09: Virtual Memory Management	V	HW02
7	Oct. 16	Lec05: Process Scheduling	V	
8	Oct. 23	School Midterm Exam		
9	Oct. 30	Lec06: Process Synchronization	V	
10	Nov. 6	Lec07: Deadlocks	V	HW03
11	Nov. 13	Lec10: File System Interface	V	
12	Nov. 20	School Event – No class		
13	Nov. 27	Lec11: File System Implementation	V	HW04
14	Dec. 4	Lec12: Mass Storage System	V	
15	Dec. 11	Lec13: IO Systems V		
16	Dec. 18	School Final Exam		

Questionnaire & Join MS teams today

Please help me understand you more

How to apply MS account

- And, Join MS teams right after the class
- Code: ig0604f

System Category

- Mainframe Systems
- Computer-system architecture
- Special-purpose Systems

System Category

- Mainframe Systems
 - Batch
 - Multi-programming
 - Time-Sharing
- Computer-system architecture
- Special-purpose Systems

Mainframe Systems

- One of the earliest computers
 - Slow I/O devices: card reader/printer, tape drivers
- Evolution:
 - Batch → Multi-programing → Time-shared
- Still exists in today's world...
 - For critical application with better reliability & security
 - Bulk data processing
 - Widely used in hospitals, banks

IBM 704 mainframe in 1954

Mainframe: Batch Systems

- Processing steps:
 - Users submit jobs (program, data, control card)
 - Operator sort jobs with similar requirements
 - OS simply transfer control from one job to the next

Mainframe: Batch Systems

- Drawbacks:
 - One job at a time
 - No interaction between users and jobs
 - CPU is often idle
 - I/O speed << CPU speed (at least 1:1000)
- OS doesn't need to make any decision

Mainframe: Multi-programming System

- Overlaps the I/O and computation of jobs
 - Keeps both CPU and I/O devices working at higher rates
- Spooling (Simultaneous Peripheral Operation On-Line)
 - I/O is done with no CPU intervention
 - CPU just needs to be notified when I/O is done

Mainframe: Multi-programming System

 Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them

Mainframe: Multi-programming System

- OS tasks
 - Memory management (Lec09) the system must allocate the memory to several jobs
 - CPU scheduling (Lec06) the system must choose among several jobs ready to run.
 - I/O system (Lec13) I/O runtime supplied by the system, allocation of devices

Mainframe: Time-sharing System (Multi-tasking System)

- An interactive system provides direct communication between the users and the system
 - CPU switches among jobs so frequently that users may interact with programs
 - Users can see results immediately (response time < 1s)
 - Usually, keyboard/screen are used
- Multiple users can share the computer simultaneously
- Switch job when
 - Finish
 - Waiting I/O
 - a short period of time

Mainframe: Time-sharing System (Multi-tasking System)

- OS tasks
 - Virtual memory (Lec10) jobs swap in and out of memory to obtain reasonable response time
 - File system and disk management (Lec11, 12) manage files and disk storage for user data
 - Process synchronization and deadlock (Lec07, 08) support concurrent execution of programs

Mainframe System Summary

	Batch	Multi-programming	Time-sharing (Multi-tasking)
System Model	Single user Single job	Multiple prog.	Multiple users Multiple prog.
Purpose	Simple	Resource utilization	Interactive Response time
OS features	N.A	CPU scheduling Memory Mgt. I/O system	File system Virtual memory Synchronization Deadlock

System Category

- Mainframe Systems
- Computer-system architecture
 - Desktop Systems: single processor
 - Parallel Systems: tightly coupled
 - Distributed Systems: loosely coupled
- Special-purpose Systems

Desktop Systems: Personal Computers

- Personal computers (PC) computer system dedicated to a single user
- User convenience and responsiveness GUI
- I/O devices keyboards, mice, screens, printers
- Several different types of operating systems
 - Windows, MacOS, Unix, Linux
- Lack of file and OS protection from users
 - Worm, Virus

Parallel Systems

- A.k.a multiprocessor or *tightly coupled system*
 - More than one CPU/core in close communication.
 - Usually communicate through shared memory
- Purposes
 - Throughput, Economical ,Reliability

Parallel Systems

- Symmetric multiprocessor system (SMP)
 - Each processor runs the same OS
 - Most popular multiple-processor architecture
 - Require extensive synchronization to protect data integrity
- Asymmetric multiprocessor system
 - Each processor is assigned a specific task
 - One Master CPU & multiple slave CPUs
 - More common in extremely large systems

Multi-Core Processor

- A CPU with multiple cores on the same die (chip)
- On-chip communication is faster than between-chip communication
- One chip with multiple cores uses significantly less power than multiple single-core chips

blade servers:

Each blade-processor board boots independently and run its own OS

Many-Core Processor

- Nvidia General-Purpose GPU
 - First release in Apr. 2008
 - Utilize a graphics processing unit (GPU)
 - Single Instruction Multiple Data
 - 2,880 thread processor, 1.43TGlops (x200 faster than a single Intel Core i7)
 - 245 WATTS, Clock freq. 600~750 MHz
 - \$3000 USD
- Intel Xeon Phi
 - First release in Nov. 2012
 - A coprocessor computer architecture based on Intel Many Integrated Core (MIC)
 - 61 cores , 1.2TFlops, 300WATTS
- TILE64
 - A mesh network of 64 "tiles"
 - Each tile houses a general purpose processor

Memory Access Architecture

Uniform Memory Access (UMA):

Most commonly represented today by Symmetric Multiprocessor

(SMP) machines

Identical processors

- Equal access times to memory
- Example: most commodity computers
- Non-Uniform Memory Access (NUMA):
 - Often made by physically linking two or more SMPs
 - One SMP can directly access memory of another SMP
 - Memory access across link is slower
 - Example: IBM Blade server

CPU

Memory

CPU

CPU

CPU

Distributed Systems

- Also known as *loosely* coupled system
 - Each processor has its own local memory
 - processors communicate with one another through various communication lines (I/O bus or network)
 - Easy to scale to large number of nodes (hundreds of thousands, e.g. Internet)
- Purposes
 - Resource sharing
 - Load sharing
 - Reliability
- Architecture: peer-to-peer or client-server

Client-Server Distributed System

- Easier to manage and control resources
- But, server becomes the bottleneck and single failure point

Peer-to-Peer Distributed System

- Every machine is identical in its role in the distributed system decentralized
- Example: ppStream, bitTorrent, Internet

Clustered Systems

- Definition:
 - Cluster computers share storage and are closely linked via a local area network (LAN) or a faster interconnect, such as InfiniBand (up to 300Gb/s).
- Asymmetric clustering. one server runs the application while other servers standby
- *Symmetric clustering*: two or more hosts are running application and are monitoring each other

System Architecture Summary

Tightly coupled

Loosely coupled

System Category

- Mainframe Systems
- Computer-system architecture
- Special-purpose Systems
 - Real-Time Systems
 - Multimedia Systems
 - Handheld Systems

Real-Time Operating Systems

- Well-defined fixed-time constraints
 - "Real-time" doesn't mean speed, but keeping deadlines
- Guaranteed response and reaction times
- Often used as a control device in a dedicated application:
 - Scientific experiments, medical imaging systems, industrial control systems, weapon systems, etc
- Real-time requirement: hard or soft

Soft vs. Hard Real-Time

- Soft real-time requirements:
 - Missing the deadline is unwanted, but is not immediately critical
 - A critical real-time task gets priority over other tasks, and retains that priority until it completes
 - Examples: multimedia streaming
- Hard real-time requirements:
 - Missing the deadline results in a fundamental failure
 - Secondary storage limited or absent, data stored in short term memory, or read-only memory (ROM)
 - Examples: nuclear power plant controller

Multimedia Systems

- A wide range of applications including audio and video files (e.g. ppstream, online TV)
- Issues:
 - Timing constraints: 24~30 frames per second
 - On-demand/live streaming: media file is only played but not stored
 - Compression: due to the size and rate of multimedia systems

Handheld/Embedded Systems

- Personal Digital Assistants (PDAs)
- Cellular telephones
- HW specialized OS
- Issues
 - Limited memory
 - Slow processors
 - Battery consumption
 - Small display screens

Computer Systems

- Which system to use? How to use it?
- They have many things in common, but also with different design decisions for their OS.

Q&A

Thank you for your attention