Teoría de Números 2023

Lista 02

14.julio.2023

1. Probar que para cualesquiera $a,b,c\in\mathbb{N}$, valen

a)
$$[(a,b),(a,c)] = (a,[b,c]).$$

b)
$$(ab, ca, bc)(a, b, c) = (a, b)(c, a)(b, c)$$
.

- 2. Sea F_n la secuencia de números de Fibonacci, $F_1=1$, $F_2=2$, $F_n=F_{n-1}+F_{n-2}$, para $n\geq 3$. Muestre que para todo $n\geq 1$, si $a=F_n$ y $b=F_{n+1}$, entonces el algoritmo de Euclides para encontrar (a,b) ejecuta exactamente n divisiones.
- 3. ¿Cuáles de las siguientes ecuaciones tienen solución entera? En caso afirmativo, encuentre una solución de dicha ecuación.
 - i) 6x + 51y = 22.
 - ii) 14x + 35y = 93.
 - iii) 33x + 14y = 115.
- 4. Determine todos los pares ordenados $(a,b) \in \mathbb{N} \times \mathbb{N}$ tales que el menor múltiplo común de a y b es $2^3 \cdot 5^7 \cdot 11^{13}$.
- 5. Para $n \geq 1$, y $a, b \in \mathbb{Z}^+$, muestre que
 - a) Si (a, b) = 1, entonces $(a^n, b^n) = 1$.
 - b) Si $a^n \mid b^n$, entonces $a \mid b$.
- 6. ¿Cuál es la probabilidad de que al elegir al azar un divisor positivo de 2023⁹⁹, éste sea un múltiplo de 2023⁷⁷?
- 7. Un entero se llama **libre de cuadrados** si no es divisible por el cuadrado de ningún entero.
 - a) Pruebe que un entero n > 1 es un cuadrado si, y sólo si, en la factoración en primos canónica de n todos los exponentes son pares.
 - b) Muestre que n>1 es libre de cuadrados si, y sólo si, admite una factoración como producto de primos distintos.
 - c) Todo entero n>1 es el producto de un cuadrado perfecto, y un entero libre de cuadrados.
 - d) Verifique que todo entero $n \in \mathbb{Z}$ puede expresarse en la forma $n = 2^k m$, donde $k \ge 0$ y m es un número impar.
- 8. Si n>1 no es primo, entonces $M_n=2^n-1$ no es un primo de Mersenne. Esto es, muestre que si $d\mid n$, entonces $2^d-1\mid 2^n-1$. Verifique que $2^{35}-1$ es divisible por 31 y por 127.

9. Usando la prueba del Algoritmo de la División, elabore en Python una función que calcule el cociente y el residuo de dos enteros.

Su función debe recibir como argumentos $a,b\in\mathbb{Z}$, $a\neq 0$, y debe devolver el cociente y el residuo $q,r\in\mathbb{Z}$, tales que

$$b = aq + r, \qquad 0 \le r < |a|.$$

Testar su función con diferentes casos (positivos y negativos) y verificar que funciona correctamente.

10. **El problema de Basilea.** Considere una retícula rectangular en \mathbb{Z}^2 y tome R una región finita. Por ejemplo, un cuadrado $R = ([-r,r] \times [-r,r]) \cap \mathbb{Z}^2$.

Estimar la densidad de pares primos relativos (p,q) dentro de R, mediante un algoritmo que cuente los pares primos relativos.

Experimente con diferentes regiones, y proporcione evidencia de que la densidad de pares coprimos es $\frac{6}{\pi^2}$.