Position Based
Dynamics —
Oriented Particles
Dynamics

Davide Corigliano, Lucas Teissier, Thomas Poyet

Position based dynamics

Inputs:

Set of particles (x_i, v_i, m_i) .

Set of constraints (e.g springs)

For each time step:

 Estimate the new velocity (v) and position (p) using stored positions (x) and velocity (v)

•
$$v_i(t + dt) = v_i(t) + dt * g$$

•
$$p_i(t+dt) = x_i(t) + dt * v_i(t+dt)$$

- Damp velocities
- Correct each position with a corrective term, such that the constraints are satisfied (in a Gauss-Seidel fashion):

•
$$p_i(t + dt) = p_i(t) + \Delta p_i$$

•
$$\Delta p_i \propto abs(p_1 - p_2 - d) * \frac{(p_1 - p_2)}{abs(p_1 - p_2)}$$

Update the positions and velocities

•
$$v_i(t+dt) = \frac{p_i(t+dt)-x_i(t)}{dt}$$

•
$$x_i(t+dt) = p_i(t+dt)$$

Perform frictions with ground and particles

Position based dynamics – Damping tests

Observation: Bodies are stiffer

Oriented Particles Dynamics

Particles become ellipsoids: (x_i, v_i) $(x_i, v_i, q_i, \omega_i)$

We represent a mesh with a graph of ellipsoids

Each ellipsoid describes a local rigid transformation of the mesh, thanks to (x_i, q_i) . The inverse transformation will be done with skinning.

Mesh Generator: Inputs, process and outputs

Results of mesh generator

Parameters:

- max_radius = 0.90
- num_candidate_centers = 1500
- max_distance_neighbors = 1.75
- max_num_neighbors = 9

Parameters:

- max_radius = 0.90
- num_candidate_centers = 1500
- max_distance_neighbors = 1.4
- max_num_neighbors = 9

Results of mesh generator

Parameters:

- max_radius = 0.4
- num_candidate_centers = 1000
- max_distance_neighbors = 1.3
- max_num_neighbors = 9

Results of mesh generator

Observation: A graph with small particles can lead to entanglement

Oriented Particles Dynamics – Shape matching tests

Shape matching stiffness of 0.005

Observation: Simulate a soft body

Shape matching stiffness of 1.

Observation: Simulate a rigid body

Oriented Particles Dynamics – New damping

Simulation with σ = 1000 (weak damping)

Observation: Bodies are flying after impacts

Simulation with σ = 0.01 (strong damping)

Observation: Bounces are reduced

Oriented Particles Dynamics – Friction tests

Oriented Particles Dynamics - Skinning

Get the mesh back from the graph: each vertex is transformed according to the weighted local tranformations (rotation+translation) of its neighboring ellipsoids.

Stability and Time step

Time step: 3e-3 1 iteration in the solver

Observation: A correct simulation

Time step: 3e-2 (big)
1 iteration in the solver

Observation: Unrealistic deformation

Time step: 3e-2 (big)
100 iterations in the solver

Observation: Sliding

artifact

Stability and Time step

Time step: 3e-3
1 iteration in the solver

Observation: A correct simulation

Time step: 3e-2 (big)
100 iterations in the solver

— Group 11

Demo

Group 11

This project is implemented in python using Taichi, open3D and Numpy.
The rendering was performed in Blender.

Dragon and Bunny meshes from:

http://graphics.stanford.edu/data/3Dscanrep/

Textures from:

https://ambientcg.com/

The Duck by Davide Corigliano

Group 11

Questions?

