CS 4300: Compiler Theory

Chapter 4 Syntax Analysis

Dr. Xuejun Liang

Outlines (Sections)

- 1. Introduction
- 2. Context-Free Grammars
- 3. Writing a Grammar
- 4. Top-Down Parsing
- Bottom-Up Parsing
- 6. Introduction to LR Parsing: Simple LR
- 7. More Powerful LR Parsers
- 8. Using Ambiguous Grammars
- 9. Parser Generators

Quick Review of Last Lecture

- Bottom-Up Parsing
 - Stack Implementation of Shift-Reduce Parsing
 - Shift-reduce and reduce-reduce conflicts
- LR Parsing
 - LR(0) Items of a Grammar
 - The closure Operation for LR(0) Items
 - The goto Operation for LR(0) Items
 - Construct LR(0) Automaton of a Grammar
 - Use of the LR(0) Automaton
 - Examples

Model of an LR Parser

LR Parsing (Driver)

$$X_1 X_2 \dots X_m a_i a_{i+1} \dots a_n$$
 right-sentential form

Configuration (= LR parser state):

$$\underbrace{(s_0 \, s_1 \, s_2 \, \dots \, s_m, \, a_i \, a_{i+1} \, \dots \, a_n \, \$)}_{stack}$$

If $action[s_m, a_i] = shift s$ then push s, and advance input:

$$(s_0 s_1 s_2 \dots s_m s, a_{i+1} \dots a_n \$)$$

If $action[s_m, a_i] = \text{reduce } A \rightarrow \beta$ and $goto[s_{m-r}, A] = s$ with $r = |\beta|$ then pop r symbols, and push s:

$$(s_0 s_1 s_2 \dots s_{m-r} s, a_i a_{i+1} \dots a_n \$)$$

If $action[s_m, a_i] = accept then stop$

If $action[s_m, a_i] = \text{error then}$ attempt recovery

Example LR(0) Parsing Table

production #2

SLR Grammars

- SLR (Simple LR): SLR is a simple extension of LR(0) shiftreduce parsing
- SLR eliminates some conflicts by populating the parsing table with reductions $A \rightarrow \alpha$ on symbols in FOLLOW(A)

SLR Parsing Table

- Reductions do not fill entire rows
- Otherwise the same as LR(0)

State I_0 : $S \rightarrow {}^{\bullet}E$ $E \rightarrow {}^{\bullet}\mathbf{id} + E$ $E \rightarrow {}^{\bullet}\mathbf{id}$

State I_2 : $E \rightarrow \mathbf{id} \cdot + E$ $E \rightarrow \mathbf{id} \cdot$

> State I_1 : $S \to E \bullet$

State I_3 : $E \rightarrow id + \bullet E$

State I_4 : $E \rightarrow id + E \bullet$

SLR Parsing

- An LR(0) state is a set of LR(0) items
- An LR(0) item is a production with a (dot) in the right-hand side
- Build the LR(0) DFA by
 - Closure operation to construct LR(0) items
 - Goto operation to determine transitions
- Construct the SLR parsing table from the DFA
- LR parser program uses the SLR parsing table to determine shift/reduce operations

Constructing SLR Parsing Tables

- 1. Augment the grammar with $S' \rightarrow S$
- 2. Construct $C=\{I_0, I_1,..., I_n\}$, the collection of sets of LR(0) items. State i is constructed from I_i .
- 3. If $[A \rightarrow \alpha \bullet a\beta] \in I_i$ and $goto(I_i, a) = I_j$ then set action[i, a] = shift j, where a is a terminal
- 4. If $[A \rightarrow \alpha \bullet] \in I_i$ then set **action**[i, a]=reduce $A \rightarrow \alpha$ for all $a \in FOLLOW(A)$ (apply only if $A \neq S$)
- 5. If $[S' \rightarrow S \bullet]$ is in I_i then set **action**[i, \$]=accept
- 6. If $goto(I_i, A)=I_j$ then set goto[i,A]=j
- 7. Repeat 3-6 until no more entries added
- 8. The initial state *i* is the I_i holding item $[S' \rightarrow \bullet S]$

Example Grammar and LR(0) Items

Example SLR Parsing Table

LR(0)

Automaton for expression

Grammar:

$$E \to E + T \mid T$$
$$T \to T * F \mid F$$

$$F \rightarrow (E)$$

 $F \rightarrow id$

SLR Parse Table for Expression Grammar

				aci	tion				gota)
Grammar: S	tate	id	+	*	()	\$	E	T	F
$1. E \rightarrow E + T$	0	s5			s4	,		1	2	3
$2. E \rightarrow T$	1		s6				acc			
$3. T \rightarrow T * F$	2		r2	s7		r2	r2			
$4. T \rightarrow F$ $5. F \rightarrow (F)$	3		r4	r4		r4	r4			
$5. F \rightarrow (E)$ $6. F \rightarrow id$	4	s5			s4			8	2	3
0.1 / Id	5		r6	r6		r6	r6			
	6	(s5)			s4				9	3
Shift & goto 5	7	s5			s4					10
	8		s6			s11				
Dadwaa lee	9		rl	s7		r1	r1			
Reduce byproduction #1	10		r3	r3		r3	r3			
production #1	11		r5	r5		r5	r5			

F

 $T\! o\!\cdot\! F$

 $T \! \to \! F \cdot$

F

action

sto	ate	id	+	*	()	\$
	0	s5			s4		
<i>T</i>	1		s6				acc
F	2		r2	s7		r2	r2
	3		r4	r4		r4	r4
	4	s5			s4		
F.	5		r6	r6		r6	r6
	6	s5			s4		
	7	s5			s4		
).	8		s6			s11	
	9		r1	s7		r1	r1
	10		r3	r3		r3	r3
	11		r5	r5		r5	r5

Moves of an SLR parser on id * id + id Using the SLR Parse Table on Previous Slide

	STACK	SYMBOLS	INPUT	ACTION
(1)	0		id * id + id \$	shift
(2)	0.5	id	*id+id\$	reduce by $F \to \mathbf{id}$
(3)	0 3	F	*id+id\$	reduce by $T \to F$
(4)	0 2	T	*id + id \$	shift
(5)	0 2 7	T*	id + id \$	\mathbf{shift}
(6)	0 2 7 5	T * id	+ id\$	reduce by $F \to \mathbf{id}$
(7)	0 2 7 10	T * F	+ id\$	reduce by $T \to T * F$
(8)	0 2	T	+ id\$	reduce by $E \to T$
(9)	0 1	E	+ id \$	shift
(10)	0 1 6	E +	i d \$	\mathbf{shift}
(11)	$0\ 1\ 6\ 5$	E + id	\$	reduce by $F \to \mathbf{id}$
(12)	$0\ 1\ 6\ 3$	E + F	\$	reduce by $T \to F$
(13)	$0\ 1\ 6\ 9$	E + T	\$	reduce by $E \to E + T$
(14)	0 1	_E	\$	accept

Moves of an SLR parser on id * id + id Using the SLR Parse Table on Previous Slide

				ac	tion				gote)
sta	ate	id	+	*	()	\$	Е	T	F
	0	s5			s4			1	2	3
	1		s6				acc			
	2		r2	s7		r2	r2			
	3		r4	r4		r4	r4			
	4	s5			s4			8	2	3
	5		r6	r6		r6	r6			
	6	(s5)			s4				9	3
	7	s5			s4					10
	8		s6			s11				
	9		$\overline{\text{rl}}$	s7		r1	r1			
	10		r3	r3		r3	r3			
	11		r5	r5		r5	r5			

Grammar:

$$1. E \rightarrow E + T$$

$$2. E \rightarrow T$$

3.
$$T \rightarrow T * F$$

4.
$$T \rightarrow F$$

$$5. F \rightarrow (E)$$

$$6. F \rightarrow id$$

	STACK	SYMBOLS	Input	ACTION
(1)	0		id * id + id \$	shift
(2)	0.5	id	*id+id\$	reduce by $F \to id$
(3)	0 3	F	*id+id\$	reduce by $T \to F$
(4)	0 2	T	*id + id \$	shift
(5)	0 2 7	T*	id + id \$	shift
(6)	$0\ 2\ 7\ 5$	T * id	+ id\$	reduce by $F \to \mathbf{id}$
(7)	0 2 7 10	T * F	+ id\$	reduce by $T \to T * F$
(8)	0 2	T	+ id\$	reduce by $E \to T$
(9)	0 1	E	+ id \$	shift
(10)	0 1 6	E +	i d \$	shift
(11)	$0\ 1\ 6\ 5$	E + id	\$	reduce by $F \to \mathbf{id}$
(12)	$0\ 1\ 6\ 3$	E+F	\$	reduce by $T \to F$
(13)	$0\ 1\ 6\ 9$	E+T	\$	reduce by $E \to E + T$
(14)	0 1	E	\$	accept