Dạng 3: Các dạng bài tập về hàm số bậc hai

Hàm số bậc hai lớp 10 và cách giải các dạng bài tập – Toán lớp 10

1. Lý thuyết:

Xét hàm số $y = ax^2 + bx + c (a \neq 0)$:

- +) Tập xác định: $D = \mathbb{R}$.
- +) Đồ thị:

Đồ thị $y = ax^2 + bx + c$ ($a \ne 0$) là 1 parabol (P) có:

- Đỉnh I $\left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$ với $\Delta = b^2 4ac$.
- Trục đối xứng: $x = -\frac{b}{2a}$.
- Với a > 0 parabol có bề lõm quay lên trên.
- Với a < 0 parabol có bề lõm quay xuống dưới.

+) Sự biến thiên:

Với a > 0, hàm số đồng biến trên khoảng $\left(-\frac{b}{2a}; +\infty\right)$ và nghịch biến trên khoảng

 $\left(-\infty; -\frac{b}{2a}\right)$. Ta có bảng biến thiên:

X	$-\infty$	$-\frac{b}{2a}$	+∞
у	+∞	$-\frac{\Delta}{4a}$	+∞

Với a < 0, hàm số đồng biến trên khoảng $\left(-\infty; -\frac{b}{2a}\right)$ và nghịch biến trên khoảng $\left(-\frac{b}{2a}; +\infty\right)$. Ta có bảng biến thiên:

2. Các dạng bài tập:

Dạng 3.1: Xác định hệ số a, b, c của hàm số bậc hai

a. Phương pháp giải:

- * Giả sử hàm số cần tìm có dạng $y = ax^2 + bx + c$ ($a \ne 0$). Căn cứ theo giả thiết bài toán để thiết lập và giải hệ phương trình với ẩn a, b, c từ đó suy ra hàm số cần tìm.
- * Một số kiến thức cần nhớ:
- Một điểm $(x_0; y_0)$ thuộc đồ thị hàm số y = f(x) khi và chỉ khi $y_0 = f(x_0)$.

- Đồ thị hàm số có đỉnh là
$$I(x_1; y_1) \Leftrightarrow \begin{cases} -\frac{b}{2a} = x_1 \\ y_1 = ax_1^2 + bx_1 + c \text{ (hay } y_1 = -\frac{\Delta}{4a} \text{)} \end{cases}$$

b. Ví dụ minh họa:

Ví dụ 1: Cho hàm số bậc hai có đồ thị là parabol (P). Tìm hàm số đó biết:

a. (P) đi qua A(8; 0) và có đỉnh I(6; -12)

b. (P) có đỉnh I(2; 0) và cắt trục Oy tại điểm M(0; -1).

Hướng dẫn:

a. Giả sử hàm số bậc hai cần tìm có dạng: $y = ax^2 + bx + c$ ($a \ne 0$)

Do (P) có đỉnh I(6; -12) nên ta có:
$$-\frac{b}{2a} = 6 \Leftrightarrow 12a + b = 0$$
 (1)

(P) đi qua A(8; 0) và I(6; -12) nên ta có:

$$\begin{cases} 0 = a.8^{2} + b.8 + c \\ -12 = a.6^{2} + b.6 + c \end{cases} \Leftrightarrow \begin{cases} 64a + 8b + c = 0 \\ 36a + 6b + c = -12 \end{cases}$$
 (2)

$$T\mathring{u} \ (1) \ v\grave{a} \ (2) \ ta \ c\acute{o} : \begin{cases} 12a+b=0 \\ 36a+6b+c=-12 \Leftrightarrow \begin{cases} a=3 \\ b=-36 \, . \end{cases} \\ 64a+8b+c=0 \end{cases}$$

Vậy hàm số cần tìm là : $y = 3x^2 - 36x + 96$.

b. Giả sử hàm số bậc hai cần tìm có dạng: $y = ax^2 + bx + c$ ($a \neq 0$)

Theo bài ra, (P) có đỉnh
$$I(2;0) \Rightarrow \begin{cases} -\frac{b}{2a} = 2\\ -\frac{\Delta}{4a} = -\frac{b^2 - 4ac}{4a} = 0 \end{cases} \Leftrightarrow \begin{cases} b = -4a\\ b^2 = 4ac \end{cases}$$
 (1)

Lại có (P) cắt Oy tại điểm M(0;-1) suy ra $y(0) = -1 \Leftrightarrow c = -1$ (2)

 $T\dot{u}$ (1), (2) suy ra:

$$\begin{cases} b = -4a \\ b^2 = 4ac \Leftrightarrow \begin{cases} b = -4a \\ b^2 = -4a \Leftrightarrow \end{cases} \begin{cases} b = -4a \\ b^2 = b \end{cases} \Leftrightarrow \begin{cases} b = -4a \\ b(b-1) = 0 \Leftrightarrow \begin{cases} a = -\frac{1}{4} \\ b = 1 \\ c = -1 \end{cases} \end{cases}$$

(vì với $b = 0 \Rightarrow a = 0$ loại)

Vậy hàm số cần tìm là : $y = -\frac{1}{4}x^2 + x - 1$.

Ví dụ 2: Xác định parabol (P): $y = mx^2 + 2mx + m^2 + 2m (m \ne 0)$ biết parabol có đỉnh nằm trên đường thẳng y = x + 7.

Hướng dẫn:

Với $m \neq 0$ thì (P): $y = mx^2 + 2mx + m^2 + 2m$ có đỉnh là:

$$I\left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right) \Rightarrow I\left(-1; m^2 + m\right)$$

Vì đỉnh nằm trên đường thẳng y = x + 7 nên ta có:

$$m^2 + m = -1 + 7 \Leftrightarrow m^2 + m - 6 = 0 \Leftrightarrow \begin{bmatrix} m = 2 \\ m = -3 \end{bmatrix}$$

Vậy parabol cần tìm là: $y = 2x^2 + 4x + 8$ hoặc $y = -3x^2 - 6x + 3$.

Dạng 3.2: Xét sự biến thiên và vẽ đồ thị hàm số

a. Phương pháp giải:

Cho hàm số bậc hai $y = ax^2 + bx + c (a \neq 0)$

- * Sự biến thiên của hàm số:
- Với a>0, hàm số đồng biến trên khoảng $\left(-\frac{b}{2a};+\infty\right)$ và nghịch biến trên khoảng

$$\left(-\infty; -\frac{b}{2a}\right)$$
. Ta có bảng biến thiên:

X		$-\frac{b}{2a}$	+∞
y	+∞	$\frac{\Delta}{4a}$	***

- Với a < 0, hàm số đồng biến trên khoảng $\left(-\infty; -\frac{b}{2a}\right)$ và nghịch biến trên khoảng $\left(-\frac{b}{2a}; +\infty\right)$. Ta có bảng biến thiên:

* Cách vẽ đồ thị hàm số:

Bước 1: Xác định tọa độ đỉnh I $\left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$.

Bước 2: Vẽ trục đối xứng $x=-\frac{b}{2a}$. Đây là đường thẳng đi qua điểm $\left(-\frac{b}{2a};0\right)$ và song song với trục Oy.

Bước 3: Xác định thêm một số điểm thuộc đồ thị như: giao điểm với trục tung, trục hoành,...

Bước 4: Vẽ parabol.

b. Ví dụ minh họa:

Ví dụ 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số $y = 3x^2 - 4x + 1$

Hướng dẫn:

+) Xét hàm số
$$y = 3x^2 - 4x + 1$$
 có: $a = 3$; $b = -4$; $c = 1$; $-\frac{b}{2a} = \frac{2}{3}$; $\Delta = b^2 - 4ac = 4$; $-\frac{\Delta}{4a} = -\frac{1}{3}$

+) Parabol có đỉnh
$$I\left(\frac{2}{3}; -\frac{1}{3}\right)$$

- +) Trục đối xứng: $x = \frac{2}{3}$
- +) Giao điểm với trục Oy là C(0; 1)
- +) Giao điểm với trục Ox là A(1; 0); $B\left(\frac{1}{3};0\right)$
- +) Vì a=1>0 nên hàm số đồng biến trên khoảng $\left(\frac{2}{3};+\infty\right)$ và nghịch biến trên khoảng $\left(-\infty;\frac{2}{3}\right)$. Ta có bảng biến thiên:

X	$-\infty$ $\frac{2}{3}$	+∞
y	$+\infty$ $-\frac{1}{3}$	+∞

+) Vẽ đồ thị:

Ví dụ 2: Khảo sát sự biến thiên và vẽ đồ thị hàm số $y = -x^2 + 4x - 3$ **Hướng dẫn:**

+) Xét hàm số
$$y = -x^2 + 4x - 3$$
 có: $a = -1$; $b = 4$; $c = -3$; $-\frac{b}{2a} = 2$; $\Delta = b^2 - 4ac = 4$; $-\frac{\Delta}{4a} = 1$

- +) Parabol có đỉnh I(2;1)
- +) Trục đối xứng: x = 2
- +) Giao điểm với trục Oy là C(0; -3)
- +) Giao điểm với trục Ox là A(1; 0); B(3; 0)
- +) Vì a = -1 < 0 nên hàm số đồng biến trên khoảng $(-\infty;2)$ và nghịch biến trên khoảng $(2;+\infty)$

Ta có bảng biến thiên:

X	$-\infty$	2	+∞
у	-∞	, 1	∞

+) Vẽ đồ thị:

Dạng 3.3: Tìm tọa độ giao điểm của hai đồ thị

a. Phương pháp giải:

Muốn tìm giao điểm của hai đồ thị y = f(x) và y = g(x). Ta xét phương trình hoành độ giao điểm f(x) = g(x) (1).

- -Nếu phương trình (1) có n nghiệm thì hai đồ thị có n điểm chung.
- -Để tìm tung độ giao điểm ta thay nghiệm x vào y = f(x) hoặc y = g(x).

b. Ví dụ minh họa:

Ví dụ 1: Tìm tọa độ giao điểm của parabol (P): $y = x^2 - 3x + 2$ và đường thẳng d: y = x - 1

Hướng dẫn:

Phương trình hoành độ giao điểm của d và (P) là:

$$x^{2}-3x+2=x-1 \Leftrightarrow x^{2}-4x+3=0 \Leftrightarrow \begin{bmatrix} x=1\\ x=3 \end{bmatrix}$$

Với
$$x = 1 \Rightarrow y = x - 1 = 1 - 1 = 0$$

Với
$$x = 3 \Rightarrow y = x - 1 = 3 - 1 = 2$$

Vậy tọa độ giao điểm cần tìm là: (1; 0); (3; 2).

Ví dụ 2: Cho hai parabol có phương trình $y = x^2 + x + 1$ và $y = 2x^2 - x - 2$. Biết hai parabol cắt nhau tại hai điểm A và B ($x_A < x_B$). Tính độ dài đoạn thẳng AB.

Hướng dẫn:

Phương trình hoành độ giao điểm của hai parabol:

$$2x^{2} - x - 2 = x^{2} + x + 1 \Leftrightarrow x^{2} - 2x - 3 = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 3 \end{bmatrix}.$$

Thay x = -1 và x = 3 vào $y = x^2 + x + 1$ ta được:

$$x = -1 \Rightarrow y = 1$$
; $x = 3 \Rightarrow y = 13$

Do đó hai giao điểm của hai parabol là A(-1;1) và B(3;13).

Từ đó
$$AB = \sqrt{(3+1)^2 + (13-1)^2} = 4\sqrt{10}$$
.

Dạng 3.4: Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số

a. Phương pháp giải:

Cho hàm số $f(x) = ax^2 + bx + c$ $(a \ne 0)$ có đồ thị là parabol.

* Để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [a; b], ta thực hiện các bước sau:

Bước 1: Xác định tọa độ đỉnh của parabol và dấu của hệ số a.

Bước 2: Lập bảng biến thiên của hàm số và xác định đoạn [a; b] trên bảng biến thiên

Bước 3: Dựa vào bảng biến thiên để đưa ra kết luận.

* Trong trường hợp tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên $\mathbb R$, ta có:

+) Với a < 0, hàm số chỉ có giá trị lớn nhất bằng f $\left(-\frac{b}{2a}\right) = -\frac{\Delta}{4a}$ và không tồn tại giá trị nhỏ nhất

+) Với a > 0, hàm số chỉ có giá trị nhỏ nhất bằng f $\left(-\frac{b}{2a}\right) = -\frac{\Delta}{4a}$ và không tồn tại giá trị lớn nhất

b. Ví dụ minh họa:

Ví dụ 1: Tìm giá trị nhỏ nhất, giá trị lớn nhất của các hàm số sau:

a.
$$f(x) = 2x^2 + x - 3$$

b.
$$f(x) = -3x^2 + x + 2$$

Hướng dẫn:

a. Xét hàm số $f(x) = 2x^2 + x - 3$ có a = 2; b = 1; c = -3.

Do a = 2 > 0 nên hàm số chỉ có giá trị nhỏ nhất.

Suy ra min
$$f(x) = f\left(-\frac{b}{2a}\right) = f\left(-\frac{1}{4}\right) = -\frac{25}{8}$$
.

Vậy hàm số đã cho đạt giá trị nhỏ nhất là $-\frac{25}{8}$ tại $x = -\frac{1}{4}$.

b. Xét hàm số
$$f(x) = -3x^2 + x + 2$$
 có $a = -3$; $b = 1$; $c = 2$.

Do a = -3 < 0 nên hàm số chỉ có giá trị lớn nhất.

Suy ra max
$$f(x) = f\left(-\frac{b}{2a}\right) = f\left(\frac{1}{6}\right) = \frac{25}{12}$$
.

Vậy hàm số đã cho đạt giá trị lớn nhất là $\frac{25}{12}$ tại $x = \frac{1}{6}$.

Ví dụ 2: Tìm giá trị nhỏ nhất của hàm số $y = 5x^2 + 2x + 1$ trên đoạn [-2;2]

Hướng dẫn:

Xét hàm số
$$y = 5x^2 + 2x + 1$$
 có $a = 5 > 0$; $b = 2$; $c = 1$; $-\frac{b}{2a} = -\frac{1}{5}$;

$$-\frac{\Delta}{4a} = -\frac{b^2 - 4ac}{4a} = \frac{4}{5}.$$

Ta có bảng biến thiên:

Từ bảng biến thiên suy ra giá trị nhỏ nhất của hàm số trên đoạn $\left[-2;2\right]$ là $\frac{4}{5}$.

3. Bài tập tự luyện:

a. Tự luận

Câu 1: Tìm khoảng đồng biến, nghịch biến của hàm số $y = x^2 - 4x + 3$.

Hướng dẫn:

Hàm số $y = x^2 - 4x + 3$ có a = 1 > 0 nên đồng biến trên khoảng $\left(-\frac{b}{2a}; +\infty\right)$,

nghịch biến trên khoảng $\left(-\infty; -\frac{b}{2a}\right)$.

Vì vậy hàm số đồng biến trên $(2;+\infty)$ và nghịch biến trên $(-\infty;2)$.

Câu 2: Có bao nhiều giá trị nguyên dương của tham số m để hàm số $y = x^2 - 2(m+1)x - 3$ đồng biến trên khoảng (4;2018)?

Hướng dẫn:

Hàm số có a = 1 > 0, $\frac{-b}{2a} = m + 1$ nên hàm số đồng biến trên khoảng $(m + 1; +\infty)$.

Do đó để hàm số đồng biến trên khoảng (4;2018) thì ta phải có

$$(4;2018) \subset (m+1;+\infty) \Leftrightarrow m+1 \leq 4 \Leftrightarrow m \leq 3$$
.

Vậy có ba giá trị nguyên dương của m thỏa mãn yêu cầu bài toán là 1; 2; 3.

Câu 3: Xác định các hệ số a và b để parabol (P): $y = ax^2 + 4x - b$ có đỉnh I(-1;-5).

Hướng dẫn:

Ta có đỉnh I(-1; -5)
$$\Rightarrow -\frac{4}{2a} = -1 \Rightarrow a = 2$$
.

Hơn nữa $I \in (P)$ nên $-5 = a - 4 - b \Rightarrow b = 3$.

Câu 4: Biết đồ thị hàm số $y = ax^2 + bx + c$ $(a \ne 0)$ đi qua điểm A(2;1) và có đỉnh I(1;-1). Tính giá trị biểu thức $T = a^3 + b^2 - 2c$.

Đồ thị hàm số $y = ax^2 + bx + c$ đi qua điểm A(2;1) và có đỉnh I(1;-1) nên ta có hệ phương trình:

$$\begin{cases} 4a + 2b + c = 1 \\ -\frac{b}{2a} = 1 \\ a + b + c = -1 \end{cases} \Leftrightarrow \begin{cases} 4a + 2b + c = 1 \\ b = -2a \\ a + b + c = -1 \end{cases} \Leftrightarrow \begin{cases} c = 1 \\ b = -2a \\ -a + c = -1 \end{cases} \Leftrightarrow \begin{cases} c = 1 \\ b = -4 \\ a = 2 \end{cases}$$

Vậy
$$T = a^3 + b^2 - 2c = 22$$
.

Câu 5: Xác định hàm số $y = ax^2 + bx + c$ biết hàm số có đồ thị là một parabol như hình sau :

Hướng dẫn:

Đồ thị hàm số cắt trục tung tại điểm (0; -1) nên c = -1.

Tọa độ đỉnh là I(1; -3) nên ta có phương trình:

$$\begin{cases} -\frac{b}{2a} = 1 \\ a \cdot 1^2 + b \cdot 1 - 1 = -3 \end{cases} \Leftrightarrow \begin{cases} 2a + b = 0 \\ a + b = -2 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = -4 \end{cases}.$$

Vậy hàm số cần tìm là: $y = 2x^2 - 4x - 1$.

Câu 6: Tìm giá trị nhỏ nhất của hàm số $y = x^2 - 4x + 1$.

Hướng dẫn:

Hàm số bậc hai $y = x^2 - 4x + 1$ có a = 1 > 0

Suy ra min
$$f(x) = f\left(-\frac{-4}{2.1}\right) = f(2) = -3$$

Vậy hàm số đã cho đạt giá trị nhỏ nhất là -3 tại x = 2.

Câu 7: Tìm tổng giá trị nhỏ nhất và giá trị lớn nhất của hàm số $y = x^2 - 4x + 3$ trên đoạn $\begin{bmatrix} -1;4 \end{bmatrix}$

Hướng dẫn:

Ta có:
$$-\frac{b}{2a} = 2 \in [-1;4]$$
; $a = 1 > 0$

Xét trên đoạn [-1;4] thì hàm số có bảng biến thiên là:

Từ bảng biến thiên suy ra: Giá trị lớn nhất của hàm số bằng 8 và giá trị nhỏ nhất của hàm số bằng -1 nên tổng giá trị lớn nhất và giá trị nhỏ nhất là 8+(-1)=7.

Câu 8: Giá trị nhỏ nhất của hàm số $y = x^2 + 2mx + 5$ bằng 1 khi giá trị của tham số m bằng bao nhiêu?

Hướng dẫn:

Hàm số $y = x^2 + 2mx + 5$ có a = 1 > 0 nên hàm số đạt giá trị nhỏ nhất khi $x = -\frac{b}{2a}$

Theo đề bài ta có:

$$y\left(-\frac{b}{2a}\right) = 1 \Leftrightarrow y\left(-m\right) = 1 \Leftrightarrow m^2 - 2m^2 + 5 = 1 \Leftrightarrow m^2 = 4 \Leftrightarrow m = \pm 2.$$

Câu 9: Tìm tọa độ giao điểm của parabol (P): $y = x^2 - 4x$ với đường thẳng d: y = -x - 2

Hoành độ giao điểm của (P) và d là nghiệm của phương trình:

$$x^{2}-4x=-x-2 \Leftrightarrow x^{2}-3x+2=0 \Leftrightarrow \begin{bmatrix} x=1\\ x=2 \end{bmatrix}$$

Với x = 1 suy ra y = -3

Với x = 2 suy ra y = -4

Vậy tọa độ giao điểm của (P) và d là M(1;-3), N(2;-4).

Câu 10: Tìm tất cả các giá trị nguyên của m để đường thẳng d: y = mx - 3 không có điểm chung với parabol (P): $y = x^2 + 1$?

Hướng dẫn:

Phương trình hoành độ giao điểm của d và (P) là:

$$x^{2} + 1 = mx - 3 \iff x^{2} - mx + 4 = 0$$
 (*)

Đường thẳng y = mx - 3 không có điểm chung với parabol $y = x^2 + 1$

 \Leftrightarrow Phương trình (*) vô nghiệm $\Leftrightarrow \Delta < 0 \Leftrightarrow m^2 - 16 < 0 \Leftrightarrow -4 < m < 4$.

 $Vi \ m \in \mathbb{Z} \Longrightarrow m \in \left\{-3; -2; -1; 0; 1; 2; 3\right\}.$

b. Trắc nghiệm:

Câu 1: Hàm số $y = ax^2 + bx + c$, (a > 0) đồng biến trong khoảng nào sau đây?

A.
$$\left(-\infty; -\frac{b}{2a}\right)$$
.

B.
$$\left(-\frac{b}{2a};+\infty\right)$$
.

$$C.\left(-\frac{\Delta}{4a};+\infty\right).$$

D.
$$\left(-\infty; -\frac{\Delta}{4a}\right)$$
.

Chon B.

Với a>0, hàm số đồng biến trên khoảng $\left(-\frac{b}{2a};+\infty\right)$ và nghịch biến trên khoảng $\left(-\infty;-\frac{b}{2a}\right)$.

Câu 2: Cho hàm số $y = -x^2 + 6x - 1$. Hàm số nghịch biến trên khoảng nào dưới đây?

- A. $(-\infty;3)$.
- B. $(-\infty;6)$.
- C. $(3;+\infty)$.
- D. $(6;+\infty)$.

Hướng dẫn:

Chọn C.

Ta có a = -1 < 0, $\frac{-b}{2a} = \frac{-6}{2(-1)} = 3$. Suy ra hàm số nghịch biến trên khoảng $(3; +\infty)$.

Câu 3: Cho parabol (P): $y = 3x^2 - 2x + 1$. Điểm nào sau đây là đỉnh của (P)?

- A. I(0;1).
- B. $I\left(\frac{1}{3}; \frac{2}{3}\right)$.
- C. $I\left(-\frac{1}{3}; \frac{2}{3}\right)$.
- D. $I\left(\frac{1}{3}; -\frac{2}{3}\right)$.

Hướng dẫn:

Chọn B.

Hoành độ đỉnh của (P): $y = 3x^2 - 2x + 1$ là $x = -\frac{b}{2a} = \frac{1}{3}$. Suy ra tung độ đỉnh của

(P) là:
$$y = 3\left(\frac{1}{3}\right)^2 - 2 \cdot \frac{1}{3} + 1 = \frac{2}{3}$$
.

Vậy
$$I\left(\frac{1}{3}; \frac{2}{3}\right)$$
.

Câu 4: Cho parabol $(P): y = x^2 + mx + n$ (m; n tham số). Xác định m; n để (P) nhận I(2;-1) là đỉnh.

A.
$$m = 4$$
; $n = -3$

B.
$$m = 4$$
; $n = 3$

C.
$$m = -4$$
; $n = -3$

D.
$$m = -4$$
; $n = 3$

Hướng dẫn:

Chọn D.

Parabol (P): $y = x^2 + mx + n$ nhận I(2;-1) là đỉnh, khi đó ta có

$$\begin{cases} 4+2m+n=-1 \\ -\frac{m}{2}=2 \end{cases} \Leftrightarrow \begin{cases} 2m+n=-5 \\ m=-4 \end{cases} \Leftrightarrow \begin{cases} n=3 \\ m=-4 \end{cases}.$$

Vậy m = -4, n = 3.

Câu 5: Bảng biến thiên của hàm số $y = -2x^2 + 4x + 1$ là bảng nào sau đây?

	х	-∞	1	+∞
	y		<i>y</i> 3	
B.		_∞/		√ -∞

Chọn B.

Hàm số $y = -2x^2 + 4x + 1$ có đỉnh I(1;3), hệ số a = -2 < 0 nên hàm số đồng biến trên khoảng $(-\infty;1)$, nghịch biến trên khoảng $(1;+\infty)$.

Câu 6: Cho parabol $y = ax^2 + bx + c$ có đồ thị như hình vẽ dưới đây. Khẳng định nào dưới đây đúng?

A.
$$a < 0$$
; $b > 0$; $c < 0$.

B.
$$a < 0$$
; $b < 0$; $c < 0$.

C.
$$a < 0$$
; $b > 0$; $c > 0$.

D.
$$a < 0$$
; $b < 0$; $c > 0$.

Chon C.

Parabol quay bề lõm xuống dưới \Rightarrow a < 0.

Parabol cắt Oy tại điểm có tung độ dương \Rightarrow c > 0.

Đỉnh của parabol có hoành độ dương $\Rightarrow \frac{-b}{2a} > 0 \Rightarrow \frac{b}{a} < 0$ mà a < 0 nên suy ra b > 0.

Câu 7: Cho parabol (P): $y = ax^2 + bx + c$, $(a \ne 0)$ có đồ thị như hình dưới đây. Khi đó 2a + b + 2c có giá trị là:

- A. -9.
- B. 9.
- C. -6.
- D. 6.

Hướng dẫn:

Chọn C.

Parabol (P): $y = ax^2 + bx + c$, $(a \ne 0)$ đi qua các điểm A(-1; 0), B(1; -4),

 $C\big(3;\ 0\big) \text{ nên có hệ phương trình: } \begin{cases} a-b+c=0\\ a+b+c=-4\\ 9a+3b+c=0 \end{cases} \Leftrightarrow \begin{cases} a=1\\ b=-2\\ c=-3 \end{cases}$

Khi đó: 2a + b + 2c = 2.1 - 2 + 2(-3) = -6.

Câu 8: Tìm m để hàm số $y = x^2 - 2x + 2m + 3$ có giá trị nhỏ nhất trên đoạn [2,5] bằng -3.

A. m = 0.

B. m = -9.

C.m = 1.

D. m = -3.

Hướng dẫn:

Chọn D.

Ta có hàm số $y = x^2 - 2x + 2m + 3$ có hệ số a = 1 > 0, b = -2, trục đối xứng là đường thẳng $x = -\frac{b}{2a} = 1$ nên có bảng biến thiên

Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên đoạn [2;5] suy ra giá trị nhỏ nhất trên đoạn [2;5] bằng f(2). Theo giả thiết f(2) = $-3 \Leftrightarrow 2m + 3 = -3 \Leftrightarrow m = -3$

Câu 9: Tọa độ giao điểm của đường thẳng d: y = -x + 3 và parabol (P): $y = -x^2 - 4x + 1$ là:

A. (-1;4), (-2;5).

B. (2;0), (-2;0).

C. $\left(1; -\frac{1}{2}\right), \left(-\frac{1}{5}; \frac{11}{50}\right).$

D. $\left(\frac{1}{3};-1\right)$.

Chon A.

Phương trình hoành độ giao điểm của parabol (P) và đường thẳng d là:

$$-x^{2} - 4x + 1 = -x + 3 \Leftrightarrow x^{2} + 3x + 2 = 0 \Leftrightarrow \begin{bmatrix} x = -1 \Rightarrow y = 4 \\ x = -2 \Rightarrow y = 5 \end{bmatrix}$$

Vậy giao điểm của parabol (P) và đường thẳng d có tọa độ (-1;4) và (-2;5).

Câu 10: Tìm tất cả các giá trị m để đường thẳng y = mx + 3 - 2m cắt parabol $y = x^2 - 3x - 5$ tại 2 điểm phân biệt có hoành độ trái dấu.

A. m < -3.

B. -3 < m < 4.

C. m < 4.

D. $m \le 4$.

Hướng dẫn:

Chọn C.

Phương trình hoành độ giao điểm của đường thẳng y = mx + 3 - 2m và parabol $y = x^2 - 3x - 5$ là:

$$x^2 - 3x - 5 = mx + 3 - 2m \iff x^2 - (m+3)x + 2m - 8 = 0$$
 (*).

Đường thẳng cắt parabol tại hai điểm phân biệt có hoành độ trái dấu khi và chỉ khi phương trình (*) có hai nghiệm trái dấu \Leftrightarrow a.c < 0 (theo định lý Vi-et)

$$\Leftrightarrow 2m-8<0 \Leftrightarrow m<4$$
.