

Interpreting & Predicting from GAMs

Fitting Models to Data, Not Data to Models Model Fitting Series - With Applications in R

Jesse Ghashti Source code by Stefano Mezzini October 29, 2025

Centre for Scholarly Communication
The University of British Columbia | Okanagan Campus | Syilx Okanagan Nation Territory

Workshop Series Overview

Session	Topic	Date/Time	
1	Simple Linear Regression	Oct 7, 9:00 AM	
2	Fitting Linear Models in R	Oct 8, 10:30 AM	
3	Multiple Linear Regression in R	Oct 16, 4:00 PM	
4	Interaction Terms & Hierarchical Linear Models	Oct 21, 11:00 AM	
5	Generalized Linear Models	Oct 23, 4:00 PM	
6	Generalized Additive Models (GAMs)	Oct 28, 11:00 AM	
7	Interpreting & Predicting from GAMs	Oct 29, 10:30 AM	
8	Hierarchical GAMs	Nov 4, 12:00 PM	
9	Penalized Models	Nov 18, 11:00 AM	
10	Survival Models	Nov 25, 11:00 AM	
11	Nonparametric Models	Dec 2, 11:00 AM	

New Here?

New to R? Check out the Fundamentals of R series!

GitHub code and slides for today's workshop (and previous workshops)

Alternatively, code/slides available at the bottom of https://csc-ubc-okanagan.github.io/workshops/

Last Time (Workshop 6) — Quick Recap

Key Concepts

- Learned about GAMs: replacing linear terms with smooth functions
- Used s(x) for smooths, s(x, bs = 'fs') for factor smooths
- Built hierarchical GAMs: common smooth + group deviations
- Visualized smooths with gratia::draw()
- Compared LM, GLM, and GAM predictions

Today: Interpreting & Predicting from GAMs

Today we will...

- Compare different GAM families (Gamma vs Tweedie)
- Interpret smooths on link vs response scales
- Make predictions for population vs individuals
- Compare models using AIC, BIC, and deviance explained
- Understand when to use discrete = TRUE vs FALSE
- Visualize uncertainty in predictions

Today we require...

```
library('dplyr')  # for data wrangling
library('tidyr')  # for expand_grid
library('mgcv')  # for modeling
library('ggplot2')  # for fancy plots
library('gratia')  # for ggplot-based model graphics
theme_set(theme_classic(base_size = 15))
```

Review: Gamma GAM from Last Week


```
# Gamma GAM (fast)
m_gamma <- bam(
formula = weight -
Diet +
s(Time, by = Diet, k = 5) +
s(Time, Chick, bs = 'fs', k = 5),
family = Gamma(link = 'log'),
data = ChickWeight,
method = 'fREML',
discrete = TRUE,
control = gam.control(trace = TRUE)

appraise(m_gamma, method = 'simulate')
```

Note that by = Diet creates dietspecific smooths (no shared common smooth)

What is the Tweedie Distribution?

Tweedie Family Properties

Flexibility:

- ullet Generalization of distributions via power parameter p
- 1 : Compound Poisson-Gamma (allows zeros)
- ullet p=1 : is Poisson, and p=2 : Gamma

Why use Tweedie?

- More flexible variance-mean relationship
- tw() estimates p from the data
- Often fits better than Gamma for positive continuous data

Trade-off is more flexibility but computationally slower than Gamma

Fitting a Tweedie GAM


```
# Tweedic GAM (slower but more flexible)

m_tw <- bam(
formula = weight --
Diet +
s(Time, by = Diet, k = 5) +
s(Time, Chick, bs = 'fs', k = 5),
family = tw(link = 'log'), # Tweedie family with power parameter
data = ChickWeight,
method = 'fREML',
discrete = TRUE,
control = gam.control(trace = TRUE))

appraise(m_tw, method = 'simulate')
```

tw() automatically estimates the power parameter p to best fit the variance structure

Two Model Summary


```
weight ~ Diet + s(Time, by = Diet, k = 5) + s(Time, Chick, bs = "fs"
                                                                   weight ~ Diet + s(Time, by = Diet, k = 5) + s(Time, Chick, bs = "fs"
   k = 5
                                                                       k = 5
Parametric coefficients:
                                                                   Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                                                               Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.44861
                       0.03085 144.223 < 2e-16 ***
                                                                   (Intercept) 4.44764
                                                                                          0.03098 143.570 < 2e-16 ***
            0.16484
                                3.142 0.00182 **
Diet2
                       0.05246
                                                                   Diet2
                                                                                0.16589
                                                                                          0.05270
                                                                                                   3.148 0.00179 **
            0.28367
                       0.05246
                                5.408 1.17e-07 ***
Diet3
                                                                                0.28470
                                                                                          0.05270
                                                                                                    5.402 1.22e-07 ***
                                                                   Die+3
Diet4
            0.28533
                       0.05247
                                5.438 9.99e-08 ***
                                                                   Diet4
                                                                                0.28630
                                                                                          0.05271
                                                                                                    5.432 1.05e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                                                                   Approximate significance of smooth terms:
                 edf Ref.df
                                  F p-value
                                                                                     edf Ref.df
                                                                                                      F p-value
s(Time):Diet1
               3.472
                      3.555 32.37 <2e-16 ***
                                                                   s(Time):Diet1
                                                                                   3.447
                                                                                          3.502 33.24 <2e-16 ***
s(Time):Diet2
               3.261
                                                                   s(Time):Diet2
                                                                                   3.224
                                                                                           3.286 24.85 <2e-16 ***
s(Time):Diet3
              2.955
                      3.072 35.21
                                                                   s(Time):Diet3
                                                                                   2.946
                                                                                           3.018 35.44
                                                                                                        <2e-16 ***
s(Time):Diet4 3.709
                     3.760 29.78
                                     <2e-16 ***
                                                                   s(Time):Diet4
                                                                                  3.703
                                                                                          3.735 30.00
                                                                                                        <2e-16 ***
s(Time, Chick) 203,070 239,000 111,07
                                                                   s(Time.Chick) 211.964 240.000 200.69
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                   Signif. codes: 0 '***' 0 001 '**' 0 01 '*' 0 05 ' ' 0 1 ' ' 1
R-sa.(adi) = 0.997 Deviance explained = 99.8%
                                                                   R-sq.(adj) = 0.997 Deviance explained = 99.8%
fREML = -724 Scale est. = 0.0009371 n = 578
                                                                   fREML = -379.4 Scale est. = 0.0016683 n = 578
```

Comparing GAMs: Which Model is Best?

Model Selection Criteria for GAMs

Information Criteria (penalize complexity):

- AIC: Akaike Information Criterion lower is better
- BIC: Bayesian Information Criterion penalizes complexity more
- Rule: $|\Delta {\rm AIC}| < 2$ suggests models are similar

Goodness of Fit:

- ullet Deviance Explained: Proportion of null deviance explained (like \mathbb{R}^2)
- Adjusted \mathbb{R}^2 : Accounts for effective degrees of freedom (edf)

Predictive Performance:

- RMSE: Root Mean Squared Error on response scale
- MAE: Mean Absolute Error robust to outliers

Model Comparison: Gamma vs Tweedie

```
AIC(m_gamma, m_tw)
BIC(m_gamma, m_tw)

summary(m_gamma)$dev.expl

summary(m_tw)$dev.expl

summary(m_gamma)$r.sq

summary(m_tw)$r.sq

# RMSE gamma

sqrt(mean((fitted(m_gamma) - ChickWeight$weight)^2))

# RMSE tw

sqrt(mean((fitted(m_tw) - ChickWeight$weight)^2))
```



```
> AIC(m_gamma, m_tw)
              df
                      ATC
m_aamma 222.1197 3194.142
       231 6524 3125 490
m tw
> BIC(m_aamma, m_tw)
              df
                      BTC
m gamma 222,1197 4162,489
       231 6524 4135 396
m tw
> summary(m_gamma)$dev.expl
Γ17 0.9982569
> summary(m_tw)$dev.expl
Γ17 0.9983795
> summarv(m_aamma)$r.sa
[1] 0.9968351
> summary(m_tw)$r.sa
Г17 0.996928
> # RMSE aamma
> sqrt(mean((fitted(m_gamma)
Γ17 3.144859
> # RMSE tw
> sqrt(mean((fitted(m_tw) -
[1] 3.059771
```

Model Comparison Results

Metric	Gamma GAM	Tweedie GAM		
AIC	3194.1	3125.5		
BIC	4162.5	4135.4		
Deviance Explained	99.83%	99.84%		
Adjusted \mathbb{R}^2	0.9968	0.9969		
RMSE	3.14 g	3.06 g		
Power parameter (p)	2 (fixed)	1.761 (estimated)		

So... what do we think?

Visualizing Smooths: Link Scale

Link scale:

- y-axis: $\log(\mu)$
- Effects are additive
- Centred at o
- Easier for testing

Visualizing Smooths: Response Scale

Response scale:

- y-axis: μ (weight in grams)
- Effects are multiplicative
- Centred at 1
- Easier interpretation

Link vs Response Scale: When to Use Each?

Link Scale

Use for:

- Statistical testing
- Model building
- Comparing effect sizes
- Constructing Cls

Interpretation:

- Additive effects
- Linear combinations
- Symmetry

Response Scale

Use for:

- Communication
- Visualization
- Subject-matter interpretation
- Practical decisions

Interpretation:

- Multiplicative effects
- Actual units (grams)
- Intuitive

Remember the best practice of working on link scale, present on response scale

Setting Up Prediction Data


```
# new dataset for predictions
newd <- expand_grid(
   Time = seq(0, 21, length.out = 400),
   Diet = unique(ChickWeight$Diet),
   Chick = ChickWeight$Chick[1])  # Placeholder for chick
# This gives us 400 × 4 = 1600 prediction points
dim(newd)</pre>
```

Why Chick = ChickWeight\$Chick[1]?

- We need some chick ID for the random effect structure
- We'll exclude it later for population-level predictions
- Or keep it for individual-level predictions

Population-Level Predictions


```
# predictions with 95% credible intervals (assuming Gaussian posterior on log scale)
preds <-
 bind cols(
   newd.
   predict(object = m_tw,
           newdata = newd.
           type = 'link',
                               # Predict on log scale
           se.fit = TRUE.
                                    # Include standard errors
           discrete = TRUE,
                             # Fast (only for levels in data)
           exclude = c('s(Time,Chick)')) %>% # EXCLUDE chick effects
     as.data.frame() %>%
     mutate(mu_hat = exp(fit),
            lwr 95 = exp(fit - 1.96 * se.fit). # CI on link, transform
            upr 95 = \exp(\text{fit} + 1.96 * \text{se.fit}))
preds
```

exclude = c('s(Time,Chick)') gives predictions for an "average" chick

Understanding discrete = TRUE vs FALSE

When to Use Each

discrete = TRUE (fast):

- Use when predicting for random effect levels in the dataset
- Example: Chick '1', Chick '2', etc.
- Much faster computation
- Required if you used discrete = TRUE in bam()

discrete = FALSE (slower):

- Use when predicting for new random effect levels
- Example: Chick 'new chick' (not in original data)
- Slower but necessary for new levels
- Also use when exclude parameter is needed with new levels

If using exclude with a new random effect level, must use discrete = FALSE

Visualizing Population-Level Predictions


```
# Plot together
p mean <- ggplot(preds) +
 geom_ribbon(aes(Time,
                 vmin = 1wr 95.
                 ymax = upr_95,
                 fill = Diet),
              alpha = 0.2) +
 geom_line(aes(Time, mu_hat,
               color = Diet).
           1md = 1) +
 xlab('Time (days)') +
 scale_v_continuous('Weight (g)'.
                    limits = c(0, NA)) +
 khroma::scale_color_bright() +
 khroma::scale_fill_bright()
p_mean
# Faceted by diet
p_mean +
 facet_wrap(~ paste('Diet', Diet))
```


Population Predictions by Diet

These represent the expected growth trajectory for an "average" chick on each diet

Individual-Level Predictions (Chick 1)


```
# Check which diet Chick 1 ate
ChickWeight[1, ] # Chick 1 ate Diet 1
# Predictions for Chick 1 specifically
preds 1 <-
  bind_cols(
   mutate(newd, Chick = '1').
   predict(object = m_tw,
            newdata = mutate(newd, Chick = '1'),
           type = 'link',
           se.fit = TRUE,
           discrete = TRUE) %>% # DON'T exclude s(Time, Chick) now!
      as.data.frame() %>%
      mutate(mu hat = exp(fit).
            lwr_95 = exp(fit - 1.96 * se.fit),
            upr_95 = exp(fit + 1.96 * se.fit))
preds_1
```

Notice no exclude — we want Chick 1's individual effect

Why Individual Predictions Differ

Population vs Individual

Population-level (exclude random effects):

- Represents the "average" individual
- Wider confidence intervals (between-individual variation)
- Shows the fixed effect structure only

Individual-level (include random effects):

- Represents a specific individual's trajectory
- Narrower Cls (within-individual variation only)
- Incorporates individual deviations from average
- Cls narrower for observed diet (e.g., Chick 1 ate Diet 1)

Interpreting the difference: if we know which chick we're measuring, we can predict more precisely.

Visualizing Individual Predictions (Chick 1)


```
# Plot for Chick 1
p 1 <- ggplot(preds 1) +
  geom_ribbon(aes(Time,
                  ymin = lwr_95,
                  ymax = upr_95,
                  fill = Diet).
              alpha = 0.2) +
  geom_line(aes(Time, mu_hat,
                color = Diet),
            1wd = 1) +
  xlab('Time (days)') +
  scale_y_continuous('Weight (g)',
                    limits = c(0, NA)) +
  khroma::scale color bright() +
  khroma::scale_fill_bright()
p_1 + facet_wrap(~ paste('Diet', Diet))
```

Notice that CIs are narrower for Diet 1 (Chick 1's actual diet)

Comparing Population vs Individual Predictions

Population (wider bands) vs Individual (narrower bands)

Understanding Prediction Uncertainty

Sources of Uncertainty

In our confidence intervals:

- Parameter uncertainty: Uncertainty in β s and smooth functions
- Captured by se.fit from predict()
- Assumes Gaussian distribution on link scale

Not included (but could be):

- Residual variance: Natural variation around fitted mean
- Would create prediction intervals (much wider than CIs)
- Use type = 'response' with simulation for full uncertainty

We showed uncertainty in the mean trajectory, not individual observations

Confidence Intervals vs Prediction Intervals

Aspect	Confidence Interval	Prediction Interval	
What it captures	Uncertainty in the mean	Uncertainty for a new observation	
Width	Narrower	Wider	
Includes	Parameter uncertainty	Parameter + residual vari- ance	
Interpretation	"Where is the true mean?"	"Where will a new value fall?"	
Use case	Model comparison, inference	Forecasting, planning	

Best Practices for GAM Predictions

Do's

- Always predict on the link scale, then transform
- Compute confidence intervals on link scale before transforming
- Use discrete = TRUE when possible for speed
- Visualize predictions with uncertainty bands
- Check if predictions are in reasonable range
- Use exclude for population-level, omit for individual-level

Don'ts

- Don't transform standard errors directly
- Don't extrapolate far beyond observed data range
- Don't forget about the random effect structure
- Don't ignore diagnostic plots before predicting

When Can GAM Predictions Mislead?

Common Pitfalls

Extrapolation:

- GAMs are data-driven behaviour outside data range is unpredictable
- Smooths can curve wildly beyond observed values

Boundary effects:

- Predictions near edges of data can be unreliable
- Wider uncertainty at boundaries

Sparse regions:

- Few observations in some regions ⇒ wider Cls
- Check data density before trusting predictions

Always check by plotting your data alongside predictions to see coverage.

Always Check Diagnostics Before Predicting


```
# diagnostic checks
# appraise(m_tw, method = 'simulate') # Overall model fit
# gam.check(m_tw) # Basis dimensions adequate?
# summary(m_tw) # Significant terms?
# concurvity(m_tw) # Smooths too correlated?
# Comparative diagnostics
# AIC(m_gamma, m_tw) # Which model is better?
```

Bad fit = unreliable predictions

REVISITING TRAINING AND TESTING SETS We compare Interaction GLMs with Gamma GAM

Validating Models: Train/Test Split

Why Split the Data?

The Problem:

- AIC/BIC computed on the same data used to fit the model
- Models can overfit perform well on training data, poorly on new data
- Need to test predictive performance on unseen observations

The Solution:

- Training set: Fit the model (typically 70-80% of data)
- Test set: Evaluate predictions (remaining 20-30%)
- More honest assessment of model performance

Always remember that a good in-sample fit doesn't guarantee good out-of-sample predictions.

Creating Train/Test Split


```
set.seed(2025)
uniqueCH <- unique(ChickWeight%Chick)
numCH <- length(uniqueCH)

# random assign 80% of chicks to training, 20% to test
trainCH <- sample (uniqueCH, size = floor(0.8 * numCH))
testCH <- setdif(uniqueCH, trainCH)

# train and test datasets
trainDATA <- ChickWeight %>% filter(Chick %in% trainCH)
testDATA <- ChickWeight %>% filter(Chick %in% testCH)
```

Notice how we are splitting by *chick*, not by observation.

Fitting Models on Training Data

notice we got rid of s(Time, Chick, bs = 'fs', k = 5) when we predict on testDATA, some Chick values would have never been seen during training,
Our goal is to predict new chicks (not seen in training), so we must exclude the Chick-specific smooth
gammaTRAIN <- bam(formula = weight ~ Diet + s(Time, by = Diet, k = 5), family = Gamma(link = 'log'), data = trainDATA, method = 'fREML', discrete summary(gammaTRAIN)
summary(yammaTRAIN)
summary(yammaTRAIN)

```
Family: Gamma
Link function: log
Formula:
weight ~ Diet + Time:Diet
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                       <2e-16 ***
(Intercept) 3.755336 0.029844 125.834
Diet2
           0.049355 0.049068 1.006
                                      0.3150
Diet3
           0.036770
                    0.049068 0.749
                                      0.4540
           0.106304
                    0 056269 1 889
                                      0.0595
Diet1:Time 0.071762
                     0 002403 29 862
                                       <2e-16 ***
Diet2:Time 0.081027
                     0.003031 26.729
                                       -20-16 ***
Diet3:Time 0 089897
                    0.003031 29.655
                                       -20-16 ***
Diet4:Time 0.083279 0.003713 22.431
                                      <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sa (adi) = 0.76 Deviance explained = 85.9%
-REML = -30.348 Scale est. = 0.045565 n = 461
```

```
Formula:
weight ~ Diet + s(Time, by = Diet, k = 5)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercent) 4.51805 0.01561 289.412 < 2e-16 ***
Diet2
            0.14791 0.02520 5.870 8.49e-09 ***
Diet3
            0.22995 0.02519 9.130 < 2e-16 ***
Diat4
            0.22771 0.02883 7.899 2.20e-14 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
               edf Ref. df
                             F n-value
s(Time):Die+1 2.307 2.792 348.7 <2e-16 ***
s(Time):Diet2 2.466 2.967 265.8 <2e-16 ***
s(Time):Diet3 2.321 2.809 343.3 <2e-16 ***
s(Time):Diet4 2.556 3.062 183.5 <2e-16 ***
Signif codes: 0 (**** 0 001 (*** 0 01 (*) 0 05 ( ) 0 1 ( ) 1
R-sa.(adi) = 0.776 Deviance explained = 87.1%
fRFMI = -35 077 Scale est = 0 041849 n = 461
```

Making Predictions on Test Data


```
predGLM <- predict(glmTRAIN, newdata = testDATA, type = 'response', discrete = FALSE)</pre>
predGAM <- predict(gamTRAIN, newdata = testDATA, type = 'response', discrete = FALSE)
# Calculate prediction errors
testDATA <- testDATA %>% mutate(pred glm = predGLM.
         pred_gam = predGAM,
         error_glm = weight - pred_glm,
         error_gam = weight - pred_gam,
         abs_error_glm = abs(error_glm),
         abs error gam = abs(error gam).
         sg error glm = error glm^2.
         sq_error_gam = error_gam^2)
# Root Mean Squared Error (RMSE)
glmRMSE <- sqrt(mean(testDATA$sq_error_glm))</pre>
gamRMSE <- sqrt(mean(testDATA$sq error gam))</pre>
# Mean Absolute Error (MAE)
glmMAE <- mean(testDATA$abs error glm)
gamMAE <- mean(testDATA$abs_error_gam)</pre>
# Mean Absolute Percentage Error (MAPE)
glmMAPE <- mean(abs(testDATA$error_glm/testDATA$weight))*100</pre>
gamMAPE <- mean(abs(testDATA$error_gam/testDATA$weight))*100</pre>
tibble(
  Model = c("GLM", "GAM").
  RMSE = c(glmRMSE, gamRMSE).
  MAE = c(glmMAE, tweedieMAE).
  MAPE = c(gammaMAPE, tweedieMAPE).
  AIC = c(AIC(glmTRAIN), AIC(gamTRAIN)),
  BIC = c(BIC(glmTRAIN), BIC(gamTRAIN)).
  ADJR = c(summary(glmTRAIN)$r.sq, summary(gamTRAIN)$r.sq))
```

Test Set Performance: GLM vs GAM

Model	RMSE (g)	MAE (g)	MAPE (%)	AIC	BIC	Adj. \mathbb{R}^2
Interact. GLM	35.6	24.3	16.4%	4193	4230	0.760
Gamma GAM	34.0	22.0	14.1%	4167	4233	0.776
Best?						

 ${\sf GAM\ outperforms\ GLM\ on\ unseen\ data--lower\ prediction\ errors\ across\ all\ metrics}$

The more flexible variance structure of GAM generalizes better to new chicks.

Visualizing Test Set Predictions

Perfect predictions fall on the diagonal line

Test Set Residuals: Checking for Bias


```
# residuals vs fitted
testDATA_long <- testDATA %>%
 pivot_longer(
   cols = c(error_glm, error_gam),
   names to = "model".
   values to = "residual".
   names_prefix = "error_") %>%
 pivot_longer(
   cols = c(pred_glm, pred_gam),
   names to = "pred model".
   values to = "predicted".
   names prefix = "pred ") %>%
 filter(substr(model, 1, 2) ==
          substr(pred_model, 1, 2))
ggplot(testDATA_long,
       aes(predicted, residual,
          color = model)) +
 geom_point(alpha = 0.5) +
 geom smooth(method = "loess") +
 geom hline(vintercept = 0.
            linetype = "dashed") +
 facet_wrap(~ model) +
 labs(x = "Predicted Weight (g)".
      y = "Residual (g)")
```


Beyond Simple Train/Test: Cross-Validation

K-Fold Cross-Validation

Limitation of single split:

- Results depend on which chicks happened to be in test set
- Single estimate of performance could be lucky or unlucky

Cross-validation solution:

- Split data into K folds (e.g., K=5 or K=10)
- ullet Train on K-1 folds, test on remaining fold
- ullet Repeat K times, rotating which fold is the test set
- Average performance across all folds

Better estimate of out-of-sample performance, uses all data for both training and testing

GAM Prediction Workflow Summary

- 1. Fit model: Choose appropriate family and smooth structure
- 2. Check diagnostics: appraise(), gam.check(), summary()
- 3. Compare models: AIC, BIC, deviance explained, RMSE
- 4. Create prediction data: expand_grid() with appropriate structure
- 5. Decide level: Population (exclude RE) vs Individual (include RE)
- 6. Set parameters: type = 'link', se.fit = TRUE, discrete = TRUE/FALSE
- 7. **Transform:** Apply inverse link function to fitted values and CIs
- 8. **Visualize:** Plot with uncertainty bands
- 9. Interpret: Consider what the predictions mean scientifically
- 10. Validate: Check predictions against held-out data if possible

You Try: Making and Comparing Predictions

Exercise: Predict and compare

```
# Use the Wage data from ISLR package
library(ISLR)
?Wage
# 1. Fit two models with different families
m1 <- gam(wage ~ s(age) + s(year) + education,
          data = Wage, family = Gamma(link = 'log'))
m2 <- gam(wage ~ s(age) + s(vear) + education.
          data = Wage, family = tw(link = 'log'))
# 2. Compare models
# - Which has lower AIC/RIC?
# - What's the deviance explained?
# - Compute RMSE for both
# 3. Make predictions for education = "HS Grad", varying age
# - Create prediction grid
# - Get both population-level predictions
# - Plot with confidence intervals
# - Compare the two models visually
# 4. Interpret
# - Do the models give similar predictions?
# - Where do they differ most?
# - Which would you trust more and why?
```

Key Takeaways

- Tweedie family more flexible than Gamma, estimates power parameter
- Compare models with AIC, BIC, deviance explained, and RMSE
- Visualize smooths on link scale (testing) or response scale (interpretation)
- Always predict on link scale, then transform to response scale
- Population-level: exclude random effects for average trajectory
- Individual-level: Include random effects for specific predictions
- Use discrete = TRUE for speed when predicting existing levels
- Confidence intervals show uncertainty in mean, not individual observations
- Always check diagnostics before making predictions!
- Plot predictions with data to verify they're reasonable

What's Next?

Additional Questions? Book an Appointment!

Next Workshop:

Hierarchical GAMs

- -> November 4, 12:00 PM
- -> More GAMs.

Thank You!

Questions?

Workshop Materials:

https://github.com/csc-ubc-okanagan/ubco-csc-modeling-workshop

Contact:

jesse.ghashti@ubc.ca