SQL PROJECT

COFFE STORE DATABASE

INTRODUCTION

THE PROJECT MAINLY FOCUSES ON ANALYZING COFFEE STORE DATASET TO SOLVE BUSINESS PROBLEMS AND EXTRACT INSIGHTS ON ORDERS, CUSTOMERS AND PRODUCT PREFERENCES. THE DATA IS PROCESSED USING MYSQL AND THE ANALYSIS HELPED IN PROVIDING RECOMMENDATIONS FOR OPTIMISING BUSINESS OPERATIONS.

SCHEMA

THE SCHEMA IS DESIGNED TO CREATE RELATIONSHIP BETWEEN THE TABLES TO ENSURE INTEGRITY AND FACILITATE COMPLEX QUERYING.

DATABASE NAME

COFFEE STORE

TABLE NAME

PRODUCTCS

COLUMNS

ID INT

NAME VARCHAR(30)

PRICE DECIMAL(3,2)

COFFEE_ORIGIN VARCHAR(30)

TABLE NAME

ORDERS

COLUMNS

- ID INT
- **♦** PRODUCT_ID INT
- ◆ CUSTOMER_ID INT

 ORDER TIME DATETIME

TABLE NAME

CUSTOMERS

COLUMNS

ID INT

FIRST_NAME VARCHAR(30)

LAST_NAME VARCHAR(30)

GENDER ENUM('M', 'F')

PHONE_NUMBER VARCHAR(11)

ENTITY RELATIONSHIP DIAGRAM

AN ENTITY RELATIONSHIP DIAGRAM IS A DIAGRAM THAT REPRESENTS RELATIONSHIPS AMONG ENTITIES IN A DATABASE. IT IS COMMONLY KNOWN AS AN ER DIAGRAM. AN ER DIAGRAM IN DBMS PLAYS A CRUCIAL ROLE IN DESIGNING THE DATABASE.

CREATING DATABASE

STEPS TO CREATE DATABASE:

- CREATE A NEW DATABASE CALLED COFFEE STORE.
- USE THE COFFEE_STORE DATABASE.
- CREATE ALL THE THREE TABLES WITH COLUMNS, ADD THEIR DATA **TYPES AND CONSTRAINTS** (PRODUCTS, ORDERS, CUSTOMERS).
- ENSURE TO CHECK ALL THE TABLES.
- INSERT VALUES INTO ALL THE THREE TABLES.

NOTE: DM FOR PRACTISE TEXT DATASET

CODE FOR YOUR REFERENCE:

```
SHOW DATABASES;
CREATE DATABASE COFFEE STORE:
USE COFFEE STORE;
CREATE TABLE PRODUCTS (
 ID INT AUTO INCREMENT PRIMARY KEY,
 NAME VARCHAR(30),
 PRICE DECIMAL(3,2)
CREATE TABLE CUSTOMERS(
 ID INT AUTO INCREMENT PRIMARY KEY,
 FIRST_NAME VARCHAR(30),
 LAST_NAME VARCHAR(30),
 GENDER ENUM('M','F'),
 PHONE NUMBER VARCHAR(11)
CREATE TABLE ORDERS(
 ID INT AUTO INCREMENT PRIMARY KEY,
 PRODUCT ID INT.
 CUSTOMER ID INT,
 ORDER TIME DATETIME,
 FOREIGN KEY (PRODUCT_ID) REFERENCES
PRODUCTS(ID),
 FOREIGN KEY (CUSTOMER ID) REFERENCES
CUSTOMERS(ID)
SHOW DATABASES;
USE COFFEE STORE;
SHOW TABLES:
```


QUERYING REQUIRED DATA

WE ARE DONE WITH CREATING DATABASE, IT'S TIME TO PLAY...

EXERCISE 1

FROM THE CUSTOMERS TABLE, SELECT THE FIRST NAME, PHONE NUMBER OF ALL THE FEMALE EMPLOYEES WHO HAVE THE LAST NAME BLUTH.

SELECT FIRST NAME, PHONE NUMBER FROM CUSTOMERS WHERE LAST NAME = 'BLUTH' AND GENDER = 'F';

EXERCISE 2

FROM THE PRODUCTS TABLE, SELECT THE NAME FOR ALL PRODUCTS THAT HAVE A PRICE GREATER THAN 3.00 OR A COFFEE ORIGIN OF SRI LANKA.

SELECT NAME FROM PRODUCTS WHERE PRICE > 3.00 OR COFFEE_ORIGIN = 'SRI LANKA';

EXERCISE 3

HOW MANY MALE CUSTOMERS DON'T HAVE A PHONE NUMBER ENTERED IN THE CUSTOMERS TABLE?

SELECT * FROM CUSTOMERS WHERE GENDER = 'M' AND PHONE_NUMBER IS NULL;

EXERCISE 4

FROM THE PRODUCTS TABLE, SELECT THE NAME AND PRICE OF ALL PRODUCTS WITH A COFFEE ORIGIN EOUAL TO COLUMBIA OR INDONESIA. SORT THE RESULTS BY NAME A-Z.

SELECT NAME, PRICE FROM PRODUCTS WHERE COFFEE ORIGIN IN ('COLUMBIA', 'INDONESIA') **ORDER BY NAME;**

EXERCISE 5

FROM THE ORDERS TABLE, SELECT ALL THE ORDERS FROM FEBRUARY 2023, FOR CUSTOMERS WITH IDS OF 19,20,21 OR 24.

SELECT * FROM ORDERS

WHERE (MONTH(ORDER_TIME) = 02 AND YEAR(ORDER_TIME) = 2023) AND CUSTOMER_ID IN (19,20,21,24);

EXERCISE 6

FROM THE CUSTOMERS TABLE, SELECT THE FIRST NAME AND PHONE NUMBER OF ALL THE CUSTOMERS WHOSE LAST NAME CONTAINS A PATTERN 'AR'

EXERCISE 7

FROM THE CUSTOMERS TABLE, SELECT ALL THE DISTINCT LAST NAMES AND ORDER THEM ALPHABETICALLY (A-Z)

SELECT DISTINCT LAST_NAME FROM CUSTOMERS ORDER BY LAST_NAME ASC;

EXERCISE 8

SELECT THE FIRST 4 ORDERS PLACED FOR THE PRODUCT WITH ID 3, IN FEBRUARY 2023.

WHERE PRODUCT_ID = 3 AND (MONTH(ORDER_TIME) = 2 AND YEAR(ORDER_TIME) = 2023)

ORDER BY ORDER TIME

LIMIT 4;

EXERCISE 9

SELECT THE NAME, PRICE, COFFEE_ORIGIN FROM THE PRODUCTS TABLE, BUT RENAME THE PRICE COLUMN TO RETAIL PRICE IN THE RESULT SET.

SELECT NAME, PRICE AS RETAIL_PRICE, COFFEE_ORIGIN FROM PRODUCTS;

EXERCISE 10

SELECT THE ORDER ID AND CUSTOMER'S PHONE NUMBER FOR ALL ORDERS OF PRODUCT ID 4.

SELECT O.ID, C.PHONE_NUMBER FROM ORDERS O
JOIN CUSTOMERS C ON C.ID = O.CUSTOMER_ID
WHERE PRODUCT_ID = 4;

EXERCISE 11

SELECT THE PRODUCT NAME AND ORDER TIME, FOR FILTER COFFEES SOLD BETWEEN JANUARY 1ST 2023 AND MARCH 31ST 2023.

SELECT NAME, ORDER_TIME FROM PRODUCTS

JOIN ORDERS ON ORDERS.PRODUCT_ID = PRODUCTS.ID

WHERE NAME = 'FILTER' AND ORDER_TIME BETWEEN '2023-01-01' AND '2023-03-31';

EXERCISE 12

SELECT THE PRODUCT NAME, PRICE AND ORDER TIME FOR ALL ORDERS FROM FEMALES IN JANUARY 2023.

SELECT P.NAME, P.PRICE, O.ORDER_TIME FROM PRODUCTS P

JOIN ORDERS O ON O.PRODUCT_ID = P.ID

JOIN CUSTOMERS C ON C.ID = O.CUSTOMER_ID

WHERE GENDER = 'F' AND (MONTH(ORDER_TIME) = 01 AND YEAR(ORDER_TIME) = 2023);

THANKYOU

SRINU

LET'S MAKE IT TOGETHER

