

Z⁰-Resonanz

Gliederung

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

Theorie

Experimentelle Untersuchung

Zusammenfassung

1979 Nobelpreis an Steven Weinberg, Sheldon Glashow und Abdus Salam [1]

2018

Theorie

Einordnung im Standardmodell der Elementarteilchen Elektroschwache Vereinheitlichung

Experimentelle Untersuchung

Zusammenfassung

Einordnung im Standardmodell der Elementarteilchen

 Z^0 -Boson:

- Lebensdauer $\tau \approx 3 \cdot 10^{-25} \, s$
- \triangleright Masse M=91,2~GeV
- ungeladen
- eigenes Antiteilchen

Standardmodell[3]

Austauschteilchen

- lacktriangle Photon ightarrow elektromagnetische Wechselwirkung
- ► Gluon → starke Wechselwirkung
- ightharpoons W-, Z-Boson ightharpoons schwache Wechselwirkung

Schwacher Isospin

	Fermionmultipletts			T	T_3	$z_{ m f}$
Leptonen	$\left(\begin{array}{c} \nu_{\mathrm{e}} \\ \mathrm{e} \end{array} \right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} \right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{\mathrm{L}}$	1/2	$^{+1/2}_{-1/2}$	$0 \\ -1$
Lej	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
Quarks	$\left(\begin{array}{c} u \\ d' \end{array}\right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
	u_{R}	c_{R}	t_{R}	0	0	+2/3
	d_{R}	s_{R}	b_{R}	0	0	-1/3

Schwacher Isospin[4]

Schwacher Isospin

 β^- -Zerfall[5]

Schwacher Isospin

Schwacher Isospin

Schwacher Isospin

Schwacher Isospin

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$\begin{aligned} |\gamma\rangle &= +\cos\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \sin\theta_{\mathrm{W}} \left| W^{0} \right\rangle \\ |Z^{0}\rangle &= -\sin\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \cos\theta_{\mathrm{W}} \left| W^{0} \right\rangle \end{aligned}$$

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$\begin{aligned} |\gamma\rangle &= +\cos\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \sin\theta_{\mathrm{W}} \left| W^{0} \right\rangle \\ |Z^{0}\rangle &= -\sin\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \cos\theta_{\mathrm{W}} \left| W^{0} \right\rangle \end{aligned}$$

➤ Weinbergwinkel:

$$\cos \theta_{\rm W} = \frac{M_{\rm W}}{M_{\rm Z}} \approx 0.88$$

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$\begin{aligned} |\gamma\rangle &= +\cos\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \sin\theta_{\mathrm{W}} \left| W^{0} \right\rangle \\ \left| Z^{0} \right\rangle &= -\sin\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \cos\theta_{\mathrm{W}} \left| W^{0} \right\rangle \end{aligned}$$

➤ Weinbergwinkel:

$$\cos \theta_{\rm W} = \frac{M_{\rm W}}{M_{\rm Z}} \approx 0.88$$

► Gekoppelte Ladungen:

$$e = g \cdot sin\theta_{W}$$

Theorie

Experimentelle Untersuchung

Erzeugung des Z⁰-Bosons Nachweis Präzisionsmessungen Eigenschaften Anzahl Neutrinogenerationen

Zusammenfassung

Erzeugung des Z⁰-**Bosons**

Feynmandiagramme zur Elektron-Positron-Annihilation

Erzeugung des Z^0 **-Bosons**

am Large Electron-Positron Collider (LEP)

- $ightharpoonup e^- + e^+
 ightarrow Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_e \geq M_Z c^2 pprox 91,6~GeV$
- $ightharpoonup e^- + e^+
 ightarrow W^+ + W^-$: benötigt $2E_e \geq 2M_W c^2 \approx 160.8 \, GeV$

Erzeugung des Z^0 **-Bosons**

am Super Proton Synchrotron (SPS/Sp\overline{p}S)

- ▶ $u + \overline{u} \rightarrow Z^0$: pp-Kollision benötigt $E_p \gtrsim 600 \ GeV$ ▶ $u + \overline{u} \rightarrow Z^0$: $p\overline{p}$ -Kollision benötigt $E_p \gtrsim 300 \ GeV$

Proton-Proton-Kollision [7]

Erzeugung des Z^0 **-Bosons**

Einfluss auf Beschleuniger durch Gezeiten

LEP Ausdehnung[8]

Erzeugung des Z^0 -**Bosons** Einfluss auf Beschleuniger durch Gezeiten

Relative Strahlenergieänderung[9]

Nachweis

des Z⁰-Bosons durch neutrale Ströme

- Neutrinostrahl durch $\pi^+ \rightarrow \mu^+ + \overline{\nu}_{\mu}$
- Blasenkammer: $\bar{v}_{\mu} + e^{-} \stackrel{Z^{0}}{\longrightarrow} \bar{v}_{\mu} + e^{-}$
- Elektron sendet
 Bremsstrahlung aus
- e^-e^+ -Paarbildung \rightarrow elektromagnetischer Schauer

[10][11]

Nachweis

Entdeckung des Z⁰ Bosons

"Lego-Diagramm" $q + \overline{q} \rightarrow Z^0 \rightarrow e^+ + e^-$ [4]

- ▶ 1983 UA2 Detektor am SppS
- Masse des Z⁰-Bosons entspricht der Summe der Energie von e[−] und e⁺
- Entgegengesetzte Impulse von e⁻ und e⁺

Large Electron Positron Collider (LEP, 1989-2000)

Beschleuniger am CERN 1996 [12]

L3 Detektoraufbau am LEP

L3 Detektor [9]

L3 Detektoraufbau am LEP

L3 Detektor [9]

Von Innen nach Außen:

- 1. Spurdetektor
- 2. Elektromagnetisches Kalorimeter
- 3. Hadronisches Kalorimeter
- 4. Myonenkammer

L3 Detektor (1993 am LEP)

 $e^- + e^+ \to Z^0 \to e^- + e^+$ [9]

- Energiemessung im elm. Kalorimeter
- ► Entgegengesetzte Ausbreitung

L3 Detektor (1993 am LEP)

 $e^- + e^+ \rightarrow Z^0 \rightarrow \text{hadronische Jets [9]}$

- Einzelnes Quark führt zu Quark-Antiquark-Paar Erzeugung, um isolierte Farbladung zu verhindern (Confinement)
- Reaktion äußert sich in hadronische Jets
- Energiemessung im Hadronischen Kalorimeter

L3 Detektor (1993 am LEP)

$$e^- + e^+ \to Z^0 \to \mu^+ + \mu^-$$
 [9]

- Messung der Spur der Myonen durch mehrere Myonenkammern
- ► I.A. keine Absorption

Z^0 -Resonanz bei \approx 91 GeV

Wirkungsquerschnitte bei e^-e^+ Kollision [13]

Wirkungsquerschnitte verschiedener Beschleuniger [14]

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - **Proof** Ruhemasse $M_7 = 91,188(2) \, GeV/c^2$
 - ightharpoonup Zerfallsbreite $\Gamma_Z = 2,495(2)$ GeV

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - Ruhemasse $M_7 = 91,188(2) \, GeV/c^2$
 - ightharpoonup Zerfallsbreite $\overline{\Gamma}_Z=2,495(2)~GeV$
- **Zerfall:**

$$Z^0
ightharpoonup e^- + e^+ \ \mu^- + \mu^+ \ \tau^- + \tau^+ \ v_{e,\mu,\tau} + \overline{v}_{e,\mu,\tau} \ Hadronen \ 3,363(4)\% \ 3,366(7)\% \ 3,370(8)\% \ 20,0(6)\% \ 69,91(6)\%$$

Wirkungsquerschnitt

$$\sigma_f \propto \frac{\Gamma_f \cdot \Gamma_e}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

Berechnung der Zerfallsbreite

$$\Gamma_Z = \sum_f \Gamma_{Z \to f \bar{f}}$$

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e},\mu,\tau} + \Gamma_{\nu_{e},\nu_{\mu},\nu_{\tau}} \end{split}$$

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} & \Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f| \sin^2 \theta_W)^2) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{\text{v_e,v_\mu,v_\tau}} \\ &= N_C \cdot 2 \cdot \Gamma_{\text{u}} + N_C \cdot 3 \cdot \Gamma_{\text{d}} + 3 \cdot \Gamma_{\text{e}} + N_V \cdot \Gamma_{\text{v}} \end{split}$$

N_C: Anzahl der Farbladungen

 N_{v} : Anzahl der Neutrinogenerationen

 G_F : Fermi-Kopplungskonstante

 Q_f : Ladung

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,}\mu,\tau} + \Gamma_{v_{e},v_{\mu},v_{\tau}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \end{split}$$

 N_C : Anzahl der Farbladungen

 N_v : Anzahl der Neutrinogenerationen

 G_F : Fermi-Kopplungskonstante

 Q_f : Ladung

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,}\mu,\tau} + \Gamma_{v_{e},v_{\mu},v_{\tau}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94.9 \, \text{MeV} + 3 \cdot 3 \cdot 122.4 \, \text{MeV} + 3 \cdot 83.3 \, \text{MeV} + 3 \cdot 165.8 \, \text{MeV} \end{split}$$

= 2.42 *GeV*

 N_C : Anzahl der Farbladungen

 N_{v} : Anzahl der Neutrinogenerationen

 G_F : Fermi-Kopplungskonstante

 Q_f : Ladung

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} & \Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,}\mu,\tau} + \Gamma_{\text{v_e,v_\mu,v_\tau}} \end{split}$$

$$= N_C \cdot 2 \cdot \Gamma_u + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_e + N_v \cdot \Gamma_v$$

$$= 3 \cdot 2 \cdot 94,9 \, \textit{MeV} + 3 \cdot 3 \cdot 122,4 \, \textit{MeV} + 3 \cdot 83,3 \, \textit{MeV} + 3 \cdot 165,8 \, \textit{MeV}$$

$$= 2,42 \, GeV$$

$$\xrightarrow{\text{Strahlungs-}} 2,497 \text{ GeV}$$

$$\xrightarrow{\text{korrektur}}$$
 2,497 GeV

 N_c : Anzahl der Farbladungen

Anzahl der Neutrinogenerationen

Fermi-Kopplungskonstante

Ladung

Vergleich Theorie und Experiment

Z ⁰ Zerfall	theoretisch	experimentell
$e^{-} + e^{+}$	3,34%	3,363(4)%
$V + \overline{V}$	19,92%	20,0(6)%
Hadronen	66,92%	69,91(6)%
ΓΖ	2,497 GeV	2,495(2) GeV

Wirkungsquerschnitt $e^+e^- \rightarrow Hadronen$ [4]

- OPAL-Detektor am LEP
- Messung bestätigt vermutete 3 Neutrinogenerationen
- Hinweis für 3 Generationen von Leptonen und Quarks

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

Zusammenfassung

- ightharpoonup Weinbergwinkel cos $\theta_{\rm W} \approx 0.88$
- ightharpoonup Zerfallsbreite $\Gamma_Z \approx 2,50 \, GeV$
- ➤ 3 Neutrinogenerationen

Quellen I

- Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225-putting-the-puzzle-together (besucht am 12.11.2018).
- The Nobel Prize in Physics 1984. URL: https://www.nobelprize.org/prizes/physics/1984/summary/ (besucht am 03.12.2018).
- Standardmodell. URL: https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).
- Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Kap. 12.

Quellen II

- Schwachewechselwirkung. URL: https://de.wikipedia.org/wiki/Schwache_Wechselwirkung (besucht am 04.12.2018).
- Donald H. Perkins. Introduction to High Energy Physics. Cambridge University Press, 2000.
- International Masterclasses. URL: http://atlas.physicsmasterclasses.org/de/index.htm (besucht am 04.12.2018).
- How is the beam energy calibrated through the resonant spin depolarization? URL: http://tlep.web.cern.ch/content/how-beam-energy-calibrated-through-resonant-spin-depolarization (besucht am 29.11.2018).

Quellen III

- Versuch ZO-Resonanz. URL: https://www.physik.hu-berlin.de/de/eephys/teaching/lab/zOresonance/index_html (besucht am 25.11.2018).
- F.J. Hasert u. a. "Search for elastic muon-neutrino electron scattering". In: Physics Letters B 46.1 (1973), S. 121–124. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(73)90494-2. URL: http://www.sciencedirect.com/science/article/pii/0370269373904942.
- Weak neutral current. URL: https://www.symmetrymagazine.org/article/august-2009/weak-neutral-current (besucht am 03.12.2018).

Quellen IV

- The LEP Accelerator. URL: http://www.hep.ucl.ac.uk/~jpc/all/ulthesis/node15.html (besucht am 03.12, 2018).
- L3 Home Page. URL: http://l3.web.cern.ch/l3/ (besucht am 03.12.2018).
- The ALEPH Collaboration u. a. "Precision Electroweak Measurements on the Z Resonance". In: (2005). DOI: 10.1016/j.physrep.2005.12.006. eprint: arXiv:hep-ex/0509008.

Vielen Dank für eure Aufmerksamkeit!

Fragen?