Класична механіка: Основні закони та розв'язання задач

Ласкаво просимо, шановні студенти факультету математики, фізики та комп'ютерних наук ВДПУ ім. М. Коцюбинського! Сьогодні ми зануримося у фундаментальні принципи класичної механіки, які є основою для розуміння природних явищ. Ми дослідимо закони, що керують рухом тіл, вивчимо поняття сил та розглянемо типові задачі, які допоможуть закріпити отримані знання.

Програма презентації

Вступ до механіки

Визначення та основні розділи класичної механіки.

Закони Ньютона

Детальне вивчення трьох законів руху.

Види сил у механіці

Гравітація, тертя, нормальна сила, сила пружності.

Розв'язання задач

Покроковий підхід до типових фізичних задач.

Практичні застосування

Приклади застосування класичної механіки у реальному світі.

Що таке класична механіка?

Класична механіка— це розділ фізики, що вивчає рух макроскопічних тіл зі швидкостями, значно меншими за швидкість світла. Вона є фундаментом для багатьох інженерних дисциплін та астрономії. Її основні принципи були сформульовані Ісааком Ньютоном у XVII столітті.

- Кінематика: Опис руху тіл без урахування причин, що його викликають.
- Динаміка: Вивчення руху тіл із врахуванням взаємодії між ними (сил).
- Статика: Розгляд умов рівноваги тіл під дією сил.

Перший закон Ньютона: Закон інерції

Формулювання

Тіло зберігає свій стан спокою або рівномірного прямолінійного руху до тих пір, поки на нього не подіють інші тіла або поля, які змінять цей стан.

Ключові поняття

- Інерція: Властивість тіла зберігати свою швидкість.
- **Інерціальні системи відліку:** Системи, в яких виконується закон інерції (наприклад, Земля в більшості практичних задач).

Цей закон підкреслює, що для зміни стану руху (прискорення) завжди потрібна зовнішня дія— сила.

Другий закон Ньютона: Закон руху

Прискорення, яке набуває тіло, прямо пропорційне рівнодійній силі, що діє на нього, і обернено пропорційне його масі.

$$F = ma$$

- **F** рівнодійна сила (векторна величина, що вимірюється в Ньютонах [H]).
- m маса тіла (скалярна величина, що вимірюється в кілограмах [кг]).
- **а** прискорення тіла (векторна величина, що вимірюється в метрах на секунду в квадраті [м/с²]).

Цей закон є основою для кількісного опису руху під дією сил. Він дозволяє прогнозувати, як саме змінить свій рух тіло, якщо на нього подіє певна сила.

Третій закон Ньютона: Закон дії та протидії

Формулювання

Сили, з якими два тіла діють одне на одне, рівні за модулем і протилежні за напрямком.

$$F_{12} = -F_{21}$$

- **F**₁₂ сила дії тіла 1 на тіло 2.
- **F₂₁** сила дії тіла 2 на тіло 1.

Цей закон пояснює, що сили завжди виникають парами. Наприклад, коли ви штовхаєте стіну, стіна штовхає вас з такою ж силою у зворотному напрямку.

Основні види сил у механіці

Сила тяжіння (гравітація)

Сила, з якою Земля притягує тіла до себе. Визначається як $F_g=mg$, де $g\approx 9.81\, {
m M/c^2}-$ прискорення вільного падіння.

Сила нормальної реакції опори

Сила, з якою опора діє на тіло перпендикулярно до поверхні контакту. Врівноважує інші сили, що діють перпендикулярно до поверхні.

Сила тертя

Сила, що виникає при контакті поверхонь тіл і перешкоджає їхньому відносному руху. Розрізняють тертя спокою, ковзання та кочення.

Сила пружності

Сила, що виникає в деформованих тілах і намагається повернути їх у початковий стан. Описується законом Гука: $F_{\Pi} = -kx$.

Покроковий підхід до розв'язання задач

1. Проаналізуйте умову

Уважно прочитайте задачу, визначте, що дано і що потрібно знайти.

2. Зробіть схематичний рисунок

Зобразіть усі тіла, сили та вектори прискорення. Позначте осі координат.

3. Запишіть рівняння

Застосуйте другий закон Ньютона (F=ma) для кожного тіла в проєкціях на осі координат.

4. Розв'яжіть систему рівнянь

Математично знайдіть невідомі величини, використовуючи отримані рівняння.

5. Перевірте та проаналізуйте результат

Оцініть правдоподібність відповіді, перевірте одиниці виміру.

Приклад типової задачі: Брусок на похилій площині

Умова: Брусок масою 2 кг знаходиться на похилій площині, що утворює кут 30° з горизонтом. Коефіцієнт тертя ковзання між бруском і площиною становить 0.2. Знайдіть прискорення бруска.

- ullet Дано: m=2 кг, $lpha=30^\circ$, $\mu=0.2$.
- Знайти: *a*.

Розв'язання:

- 1. Сили: сила тяжіння (mg), нормальна сила (N), сила тертя (F_{TP}) .
- 2. Осі: Вісь Х вздовж площини, вісь У перпендикулярно до неї.
- 3. Рівняння за другим законом Ньютона:
 - $\circ \quad \mathsf{\Pio} \ \mathsf{oci} \ \mathsf{Y} \colon N mg \cos lpha = 0 \implies N = mg \cos lpha$
 - $\circ \quad \mathsf{\Pio} \ \mathsf{oci} \ \mathsf{X} \colon mg \sin lpha F_{\mathsf{TD}} = ma$
- 4. $F_{\mathsf{TP}} = \mu N = \mu mg \cos \alpha$
- 5. $mg\sin\alpha \mu mg\cos\alpha = ma$
- 6. $a = g(\sin \alpha \mu \cos \alpha)$
- 7. $a=9.81(\sin 30^\circ-0.2\cos 30^\circ)pprox 9.81(0.5-0.2 imes 0.866)pprox 9.81(0.5-0.1732)pprox 3.2\,{
 m M/c}^2$

Висновок та подальші кроки

Класична механіка є наріжним каменем фізики, що дозволяє нам зрозуміти фундаментальні принципи руху та взаємодії тіл.

Ключові висновки

- Закони Ньютона фундамент динаміки.
- Розуміння сил є критичним для аналізу руху.
- Систематичний підхід до розв'язання задач.

Наступні кроки

- Вирішуйте більше практичних задач.
- Дослідіть застосування механіки в інженерії та астрономії.
- Переходьте до вивчення інших розділів фізики.

Дякую за увагу! Задавайте свої запитання.