ALGEBRA QUALIFYING EXAMINATION FALL 1983

You are to do at least two problems from each of sections I-IV. Additional credit will be awarded for additional problems correctly solved.

- I. Groups
- 1. Let $f:G_1 \to G_2$ be a homomorphism of groups and let H_2 be a subgroup of G_2 . Prove that $f^{-1}(H_2)$ is a subgroup of G_1 .
- 2. Let Z be a cyclic group of order n > 0, and let H = Aut(Z) be its group of automorphisms.
 - (a) Show that $H = U(\mathbb{Z}/(n))$ (the group of units of the ring $\mathbb{Z}((n))$; thus H has order $\phi(n)$.
 - (b) Using (a) prove the number-theoretic congruence:

$$(a,n) = 1 \Rightarrow a^{(n)} = 1 \pmod{n}$$

- 3 Prove that (0,+) is not a free abelian group
- 4. Prove that no group of order 120 can be a simple group
- 5. Let G be a group and let Ω be a set.
 - \mathbb{A} (a) Define what it means for G to act on Ω
 - (b) If G is a finite p-group (p = prime) and if Ω is finite with $p/|\Omega|$, show that $\exists \omega \in \Omega$ such that $g \cdot \omega = \omega$ for all $g \in G$.
 - (c) Conclude from (b) that any finite p-group has a nontrivial center
- 6. Prove that any group admits a nontrivial automorphism.
- II. Rings and Modules
- 1. (a) Define a Euclidean domain.
 - (b) Define a principal ideal domain (p.i d).
 - (c) Prove that a Euclidean domain is a p i.d
 - (d) Define a unique factorization domain (u f d)
 - (e) It is known that the polynomial ring $\mathbb{Z}\{x\}$ is a u f d. Prove that it is not a p.i.d

2. Let p be a prime number, and let $\mathbb{Z}_{(p)}$ be the subring of the rational numbers, given by

$$\mathbb{Z}_{(p)} = \{\frac{a}{b} \in \mathbb{Q} | \text{if } (a,b) = 1, \text{ then } p \} b \}.$$
Prove that $\mathbb{Z}_{(p)}$ contains a unique maximal ideal M, viz..

Prove that $\mathcal{U}_{(p)}$ contains a <u>unique</u> maximal ideal M, viz. $M = \{\frac{a}{b} \in \mathbb{Z}_{(p)} | p | a \}.$

- Let R be a ring with identity and let M be a unital left R-module.
 - (a) Define what it means for M to be irreducible
 - (b) Define what it means for M to be indecomposable.
 - (c) Give an example of a ring R and a unital left R-module M which is indecomposable but not irreducible.
- 4. Let R be a ring with identity and let M be a unital left R-module. Assume that there exist a family $\{M_{\alpha}|\alpha:A\}$ of irreducible submodules of M with $M=\sum_{\alpha}M_{\alpha}$. Prove that Ξ subset $A_0\subseteq A$ such that $M=\bigoplus_{\alpha\in A_0}M_{\alpha}$. (This involves a Zorn's $\alpha\in A_0$ Lemma argument.)
- 5. Let R be a commutative ring with identity and let $\ \ \ \ \$ be an ideal of R
 - (a) Define what it means for I to be a prime ideal.
 - (b) Prove that I is a prime ideal if and only if the quotient ring R/I is an integral domain.
 - (c) Let $R = \mathbb{Z}[x]$ and let I be the ideal $I = \{2f(x) + 3xg(x) | f(x), g(x) \in \mathbb{Z}[x]\}.$

Prove that $R/I \stackrel{\sim}{=} \mathbb{Z}/(2)$, and therefore (why?) I is a prime ideal of R.

- III. Linear Algebra.
- 1. Let V be a vector space over the field F, and let $\{v_1,\ldots,v_n\}\subseteq V$. If $w\in [v_1,\ldots,v_n]$ but $w\notin [v_2,\ldots,v_n]$, prove that $v_1\in \{w,v_2,\ldots,v_n\}$.

- Let V be a finite dimensional vector space over F, and let T be a linear transformation on V.
 - (a) Define the minimal polynomial $m_{T}(x) \in F(x)$ of T
 - (b) Prove that $m_{\mathbf{p}}(\mathbf{x})$ exists
- 3. Let V be an n-dimensional vector space over F and let T be a linear transformation on V. Prove that V admits a basis consisting of eigenvectors of T if and only if $\mathbf{m_T}(\mathbf{x}) = (\mathbf{x} \alpha_1)(\mathbf{x} \alpha_2) (\mathbf{x} \alpha_k)$, where $k \leq n$ and where the α_i 's are in F, and are distinct.
- 4. Give an example of a matrix A, with rational entries such that

(a)
$$c_{A}(x) = (x - \frac{1}{2})^{4} (x - 2)^{3} (x + 6)^{3}$$
 (characteristic polynomial)

(b)
$$m_A(x) = (x - \frac{1}{2})^2 (x - 2)^2 (x + 6)$$

5. Let F be a field and let $a_0, a_1, \dots, a_{n-1} \in F$ For the n-by-n matrix

show that $m_A(x) = \sum_{k=0}^n a_k x^k$, where $a_n = 1$.

- IV. Fields and Galois Theory.
- Let F

 K be fields.
 - (a) Define [K:F], the degree of K over F
 - (b) Let $\{K:F\}$ n and let $\alpha \in K$ Then α induces an F-linear transformation $T_\alpha:K+K$, given by $T_\alpha(\beta)=\alpha\beta$, $\beta \in K$. Show that the minimal polynomial of T_α is an irreducible polynomial in F[x].

- (a) State what it means for K to be normal over F.
- (b) Is $Q(^3/2)$ normal over Q, where $^3/2$ is the real cube root of 2? Why or why not?
- (c) State what it means for K to be separable over F
- (d) Let x be an indeterminate over $\mathbb{Z}/(2)$; show that $\mathbb{Z}/(2)(x) \supset \mathbb{Z}/(2)(x^2)$ is not a separable field extension.
- 3. Let K be a splitting field over Q for the polynomial $f(x) = x^4 + 2$. Show that $Gal(K/Q) = D_8$, the dihedral group of order 8
- 4. Let p be a prime and let $q = p^a$, a = positive integer. Let K be a splitting field over $F = \mathbb{Z}/(p)$ for the polynomial $f(x) = x^q x$. Show that Gal(K/F) is cyclic of order a and is generated by the F-automorphism $(\alpha + \alpha^p)$, $\alpha \in K$.
- 5. Let F = C(x), the field of rational functions where x is an indeterminate over C and where C is the complex field. Let $f(T) = T^3 x \in F[T]$ and let K be a splitting field over F for f(T). Show that Gal(K/F) is cyclic of order 3, and has generator determined by (y = 5y) where y is a root of f(T) and where $S = e^{2\pi i/3}$.
- 6. Let $K \supseteq F$ be a (possibly infinite) normal field extension and let $\sigma: K \to K$ be a homomorphism which acts as the identity on F. Prove that σ is an isomorphism.