Appunti di teoria per l'esame di Laboratorio di Meccanica e Termodinamica

Alberto Zaghini

a.a. 2022-2023

Indice

1	1 Grandezze fisiche, dimensioni, cifre significative						
		1.0.1	Analisi dimensionale	Ş			
	1.1	Misura	1	3			
		1.1.1	Sistema internazionale	9			

Grandezze fisiche, dimensioni, cifre significative

Scopo dell'attività scientifica = comprensione dei fenomeni naturali. Alla base di ciò si hanno osservazioni (serie di) \rightarrow riconoscimento aspetti ricorrenti (caratteristici).

Caratteristiche Osservabili (analisi preliminare $qualitativa) \longrightarrow$ misurabili (analisi quantitativa) =ESPERIMENTI.

Metodo scientifico galileiano

- 1. Osservazione acritica
- 2. Riduzione delle osservazioni \rightarrow selezione delle informazioni (*)
- 3. Formulazione delle leggi
- 4. verifica sperimentale : $\begin{cases} NO & \to 1. \\ \\ SI' & \to \text{Legge convalidata} \end{cases}$

La verifica sperimentale avviene in condizioni privilegiate (*).

- 1,2 introduzione di nuove quantità caratterizzanti \rightarrow migliore descrizione dei fenomeni
- 3 modello interpretativo
- 4 rafforzamento / falsificazione

Leggi = relazioni funzionali tra quantità misurabili \rightarrow Grandezze fisiche = proprietà quantificabili Ogni grandezza \in classe = dimensione ([1] = adimensionali, come gli argomenti di tutte le funzioni trascendenti) -i ogni classe contiene tutte le grandezze omogenee che sole sono confrontabili e sommabili/sottraibili.

Per tutte le grandezze fisiche possibile stabilire tramite un parametro d'ordine (> = <) relazione d'ordine transitiva. Grandezze per cui è definita anche regola di composizione (somma, differenza) sono **additive**, non additive in caso contrario.

Stessa classe = stesso significato ma differente procedura:

- Misura diretta
- Misura indiretta (derivazione attraverso procedura matematica)

Angolo piano

$$\alpha = \frac{\widehat{AB}}{r}$$
 $0 \le \alpha \le 2\pi$ in radianti (rad)

1.1. MISURA 3

Angolo solido

$$\Omega = \frac{A}{r^2}$$
 $0 \le \Omega \le 4\pi$ in steradianti (sr)

1.0.1 Analisi dimensionale

$$G = cA^{\alpha}B^{\beta}C^{\gamma} \implies [G] = [A]^{\alpha}[B]^{\beta}[C]^{\gamma}$$

1.1 Misura

Grandezza fisica \rightarrow processo di **misurazione (o misura)** \rightarrow assegnazione di un **valore numerico** (misura). 3 elementi:

- 1. Materiale / oggetto (o sistema di oggetti)
- 2. Grandezza caratterizzante materiale/sistema
- 3. Procedura utilizzata per misura

$1,2,3 \rightarrow$ precisa descrizione.

Valore numerico permette confronto con **campione di riferimento (= unità di misura)** = grandezza omogenea → rapporto numerico quantitativo.

1.1.1 Sistema internazionale

Sistema di unità di misura = insieme di

- Definizioni delle unità fondamentali / di base misurate (solitamente) in modo diretto
- Regole per la definizione di grandezze derivate : il coefficiente moltiplicativo nell'espressione come funzione di grandezze fondamentali è sempre 1 (coerenza sistema di udm)

Definizioni devono essere quanto più

- 1. Indipendenti da tempo e luogo (stabili)
- 2. Precise
- 3. Riproducibili (legato a 1.)
- \Rightarrow Aggiornamento.

7 grandezze fondamentali definite sulla base di 7 costanti fisiche fondamentali. La loro scelta garantisce

- Indipendenza reciproca
- Completezza (sufficienti per ottenere tutte le derivate)

I multipli ed i sottomultipli devono essere decimali.

Bureau International des Poids et Mesures stabilisce unità e costanti e presiede all'aggiornamento delle definizioni e dei campioni di riferimento

Unità e costanti

Convenzioni d'uso

- nomi comuni: iniziale minuscola
- invarianti al plurale
- se
- **non** accompagnate da numero: scritte per esteso (*Il metro*)
- accompagnate da numero: simbolo (maiuscola) non in corsivo, no seguito da punto, dopo il valore

Esponenti derivate $\in \mathbb{Z}$

1.1. MISURA 4

$\mathbf{Grandezza}$	\mathbf{udm}	Costante
tempo	secondo s	frequenza di transizione iperfine Cesio
lunghezza	metro m	velocità della luce nel vuoto
massa	chilogrammo kg	costante di Planck
temperatura termodinamica	kelvin K	carica elementare
q.tà di sostanza	mole mol	numero di Avogadro
intensità luminosa	candela cd	efficacia luminosa
intensità di corrente	ampère A	carica elementare

Multipli e sottomultipli solo un prefisso! (per kg si fa riferimento a g)

10^{18}	exa (E)	10^{-1}	deci (d)
10^{15}	peta (P)	10^{-2}	centi (c)
10^{12}	tera (T)	10^{-3}	milli (m)
10^{9}	giga (G)	10^{-6}	micro μ
10^{6}	mega (M)	10^{-9}	nano (n)
10^{3}	kilo (k)	10^{-12}	pico (p)
10^{2}	etto (h)	10^{-15}	femto (f)
10	deca (da)	10^{-18}	atto (a)

1.1.2 Cifre significative

=tutte le cifre di un numero a partire dalla prima ${\bf diversa}\ {\bf da}\ {\bf 0},$ lette da sx a dx.

Per evitare ambiguità con **zeri non significativi**, si utilizza **notazione scientifica** (gli zeri in mezzo od in fondo **sono significativi**, in quanto le c.s. descrivono la precisione di una misura)

$$A \times 10^n$$
 $1 \le A < 10$ $n \in \mathbb{Z}$

ove A non termina con 0.

Operazioni e CS

Regola generale:

numero di cifre significative nel risultato di operazioni condotte su due o più misure di grandezze fisiche = numero di cifre significative della misura meno accurata

Arrotondamento

- $\bullet\,$ prima cifra eliminata ≥ 5 : si aumenta ultima c.s. di 1
- se < 5 (escluso) : ultima c.s. invariata

Addizione e sottrazione ultima c.s. = ultima ottenuta da somma o differenza c.s. delle due misure iniziali

Prodotto e quoziente numero di c.s. = minimo numero di c.s. tra le misure iniziali

Numeri esatti \rightarrow considerati come n. con infinite c.s.

Ordine di grandezza = prima cifra a s
x $\neq 0$ (dopo arrotondamento) moltiplicata per opportuna potenza di 10

Utilizzate in confronto grandezze omogenee.

Incertezze

ad ogni misura è associata un'incertezza

Non è mai eliminabile del tutto (per quanto riducibile) x due ragioni:

- 1. Sensibilità strumentale limitata (soglia di risoluzione, sotto cui impossibile distinguere grandezze)
- 2. Inevitabilità errori nell'effettuazione dell'operazione di misura

Processo di misura = confronto grandezze con udm \rightarrow determina Intervallo di valori:

$$n_0 u + \frac{n_1}{10} u + \ldots + \frac{n_k}{10^k} u < G < n_0 u + \frac{n_1}{10} u + \ldots + \frac{(n_k + 1)}{10^k} u$$

- Limite di riproducibilità di scala
- Soglia di riproducibilità : condizioni del sistema o dell'ambiente che pregiudicano riproducibilità operazione di misura

Perché ridurre l'incertezza?

- Evidenziare fenomeni precedentemente ignorati / nascosti
- Permettere confronto tra misure omogenee: valutazione compatibilità reciproca e con grandezze di riferimento

2.1 Misure dirette

incertezza = risoluzione strumento = più piccola variazione di grandezza che str. riesce ad apprezzare

misura = localizzazione punto su scala graduata / display digitale

- Strumenti analogici: risoluzione = metà minima distanza tra tacche
- Str. digitali: ris = mezza unità digit meno significativo

Ogni strumento è dotato di data sheet che specifica

- 1. Range (portata)
- 2. Risoluzione
- 3. Condizioni ambientali adatte all'utilizzo

Per digitali: risoluzione diminuisce aumentando numero di bit in uscita.

2.2. DISCREPANZA 6

2.1.1 Incertezza assoluta

Per una grandezza x è Δx (chiaramente le due sono grandezze omogenee) L'esito di una misura è espresso secondo

$$x = (x_{best} \pm \Delta x)$$
 u.m.

inc si rappresenta graficamente tramite **barra di errore**; si suppone il *valor vero* della grandezza da misurare ricada nell'intervallo di misura così definito.

Regole

- 1. L'incertezza va arrotondata a una sola c.s.
- 2. L'ultima c.s. della x_{best} deve essere dello stesso ordine di grandezza dell'ultima c.s. di Δx (ovvero stessa posizione decimale se espresse in notazione scientifica con stessa potenza di 10)

Incertezze strumentali o di lettura = sinonimi; entrambe si riferiscono a incertezze massime.

Precisione = incertezza relativa = rapporto inc assoluta / valore ottimale

$$\frac{\Delta x}{x_h}$$

- 1. Può essere espressa in percentuale
- 2. É adimensionale (rapporto omogenee) \rightarrow permette confronto tra misure di grandezze non omogenee

2.1.2 Errore

Non è sinonimo di incertezza!

Corrisponde a differenza tra valore reale grandezza (che si ipotizza esista) e valore best trovato

$$E = |X - x_b|$$

Non si misura! L'incertezza ne è la miglior stima

2.2 Discrepanza

= differenza tra due valori misurati della stessa grandezza (omogenei \rightarrow confrontabili). Se entrambi espressi come

$$x_i = (x_b^i \pm \Delta x_i)$$

allora

$$discr = \left| x_b^2 - x_b^1 \right|$$

Può essere

• Significativa se non \exists valori compatibili con entrambi gli intervalli di misura (non si sovrappongono)

$$[x_1 \pm \Delta x_1] \cap [x_2 \pm \Delta x_2] = \emptyset$$

• Non s. se si ha almeno un punto di sovrapposizione

Data una grandezza con valore accettato X noto e misure x_i , se la discrepanza $|X - x_i|$ è

- Significativa: la misura x_i è incompatibile con X
- Non significativa: la misura x_i è **compatibile** con X

2.3 Incertezze sistematiche

= dovute a fattori non controllati (ma controllabili) insiti nell'apparato di misura o dovuti ad operazioni errate di misura. Non includono sbagli occasionali (e.g. letture errate)

Portano a **sottostima / sovrastima** sistematica (ovvero sempre nel medesimo verso e - circa - della stessa entità).

Possibili sorgenti

- Calibrazione errata (offset) di uno strumento o riproduzione errata di u.m. nella scala di uno strumento
- Condizioni ambientali differenti da quelle prescritte per la procedura di misura (che possono dare e.g. effetti termici non considerati)
- Presenza di fattori che influiscono sulla grandezza stessa che si va a misurare (e.g. mancato isolamento termico o presenza di fondo radioattivo)

Come rilevarli? si ripete misura in condizioni sperimentali differenti, cercando di ottenere sistematico trascurabile rispetto a risoluzione e quindi incertezza. Generalmente **non** si hanno **regole fisse** (non sono computabili e riducibili come incertezze massima