ACTIVE LEARNING OF GAV SCHEMA MAPPINGS

[©]Balder ten Cate, ^{⋄,⊕}Phokion G. Kolaitis, [⋄]Kun Qian, and [©]Wang-Chiew Tan [©]Google Inc. [⋄]IBM Research – Almaden [©]UCSC [©]Megagon Labs

PODS 2018 Houston, TX USA

Schema Mappings and Data Exchange

Schema mapping: triple $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ with Σ constraints between S and T

- Data exchange problem: given an S-instance \mathbf{I} , find a T-instance \mathbf{J} so that (I,J) satisfies Σ .
- Schema-mapping language: GAV (Global-As-View) constraints

$$\forall \mathbf{x} (\varphi(\mathbf{x} \to T(\mathbf{x}))$$

Example: $\forall v \forall u (\text{Node}(v) \land \text{Node}(u) \rightarrow \text{Edge}(v, u))$

Table Q ···

Learnability of GAV Mappings

- Theorem ([ten Cate et al., 2013]). GAV mappings are efficiently learnable with equivalence and labeling queries.
 - **Labeling oracle**: given a source instance I, return the canonical universal solution J for I.
 - **Equivalence oracle:** given two GAV mappings M and M^* , check if M and M^* are logically equivalent; if not, a counter-example is returned.
- Fact. The ExactGAV algorithm from [ten Cate et al., 2013] is hard to implement
 - A black-box implementation can serve as the labeling oracle.
 - However, an equivalence oracle may not be available in practice.

Motivation: GAV Reverse Engineering

- Angluin's Learning Model: Identify an unknown "goal concept" by asking queries
 - Typical queries asked to an oracle:
 - membership/labeling queries
 - equivalence queries

GAVLearn: An Active Learning Algorithm

- Adapted from the ExactGAV algorithm
- Main idea: replace the equivalence oracle with conformance testing

G – a black-box implementation of the goal GAV mapping

E – a set of universal examples for G

Output: H – a GAV mapping that fits E whose size is at most the size of G

- **Conformance testing**: Use **E** to check if the behavior of H on E conforms to the specification of G
 - Accept H if it agrees with G on every example $(I, J) \in E$.
 - Otherwise, there is an example $(I,J) \in E$, on which H and G disagree
 - Use counter-example to actively do experiments

Example

Goal Mapping - G

 $\begin{array}{c} \operatorname{M}(x,y) \wedge \operatorname{N}(y,z) \to \operatorname{Q}(x,y,z) \\ \operatorname{S}(x,y) \wedge \operatorname{R}(y,z) \to \operatorname{T}(x,z) \end{array}$

 $(I,J) I = \{S(a,b), R(b,c), M(a,b), N(b,c)\},\$ $J = \{T(a,c), Q(a,b,c)\}$

Examples - E

Many mappings can perfectly describe the semantics of (I,J)

$$\{\mathcal{M}(x,y) \land \mathbf{N}(y,z) \to \mathcal{T}(x,z), \mathcal{S}(x,y) \land \mathbf{R}(y,z) \to \mathcal{Q}(x,y,z)\}$$

 $\{M(x,y) \land R(y,z) \rightarrow T(x,z), S(x,y) \land N(y,z) \rightarrow Q(x,y,z)\}$

Run GAVLearn on G and E

1st iteration

1(a) - Initialize an $H = \{ \}$. We have that H and G disagree on (I,J). Choose T(a,c) from J and form a counter-example $(I, \{T(a,c)\})$

Active learning $I \rightarrow \{S(a,b), R(b,c), M(a,b), N(b,c)\}$ Apply G $\{Q(a,b,c)\}$ Keep S(a,b)1(b) $I \rightarrow \{S(a,b), \frac{R(b,c)}{M(a,b)}, N(b,c)\} \xrightarrow{Apply G} \{Q(a,b,c)\} Keep R(b,c)$ $I \rightarrow \{S(a,b), R(b,c), \frac{M(a,b)}{M(a,b)}, N(b,c)\} \xrightarrow{Apply G} \{T(a,c)\} \text{ Remove } M(a,b)$ $I \rightarrow \{S(a,b), R(b,c), \frac{M(a,b), N(b,c)}{N(b,c)}\} \xrightarrow{Apply G} \{T(a,c)\} \text{ Remove N(b.c)}$

1(c) - Construct a GAV constraints from {S(a,b), R(b,c)} and T(a,c) and add it to H $H = \{ S(x, y) \land R(y, z) \rightarrow T(x, z) \}$

2nd iteration

2(a) – H and G disagree on (I,J). By chasing I with H, we obtain T(a,c) but miss Q(a,b,c). Choose Q(a,b,c) and form a new counter-example $(I, \{Q(a,b,c)\})$

> Repeat the active learning process in 1(b) to obtain **2(b)** $I = \{M(a,b), N(b,c)\}\ and\ F'=Q(a,b,c)$

2(c) – Construct a GAV constraint from {M(a,b), N(b,c)} and Q(a,b,c) and add it to H

$$H = \{S(x,y) \land R(y,z) \rightarrow T(x,z), M(x,y) \land N(y,z) \rightarrow Q(x,y,z)\} = G$$

Results - Part I: Theoretical Guarantees

Theorem. GAVLearn is an Occam algorithm for GAV mappings.

Occam learnability implies PAC learnability (Blumer et al., 1987)

Corollary. GAVLearn is a PAC algorithm for GAV mappings.

Results - Part II: Experiments

- Use iBench (Arocena et al., 2015) to generate:
 - SIMPLE, MODERATE, and COMPLEX mapping scenarios
 - Data examples for each scenario (split 50-50 into training and testing)

Table 4: Results of GAVLEARN on complex type

α	n	E	\overline{Comp}	\overline{Rep}	Recall	F_{S}	Time	
	10	5	0.53±5%	0.87±10%	$0.882 \pm 10\%$	0.937	17.8s	
	30	15					20.7s	
0.1	50	25	$0.60 \pm 0\%$	1	1	1	17.6s	
	70	35	0.00±0%	1	1	1	22.4s	
	90	45					19.7s	
	10	5	$0.60\pm0\%$				1m26s	1
	30	15	$0.60 \pm 1\%$	1	1	1	1m35s	•
0.3	50	25	$0.60 \pm 0\%$	1	1	1	1m34s	
	70	35	$0.60 \pm 1\%$				1m33s	
	90	45	$0.60 \pm 0\%$	$0.98 \pm 2\%$	0.999	0.999	1m45s	
	10	5	0.63±3%	0.98±2%	$0.998\pm4\%$	0.999	4m15s	
	30	15	$0.64 {\pm} 4\%$	$0.92 \pm 5\%$	$0.997 \pm 2\%$	0.998	4m43s	
0.5	50	25	$0.69 \pm 3\%$	$0.92 \pm 4\%$	0.998±1%	0.999	6m55s	
	70	35	$0.73 \pm 4\%$	$0.87 \pm 9\%$	0.998±1%	0.999	5m44s	
	90	45	$0.74 \pm 2\%$	$0.88 \pm 8\%$	0.998±1%	0.999	10m9s	

In all cases, F-scores are above 90% (many of them are 100%)

F-scores

• Comparison to GAVFit (Alexe et al., 2012) and TALOS (Tran et al., 2014)

GAVLearn outperforms GAVFit ant TALOS

6

Knowledge Refinement via Rule Selection (AAAI-19)

Phokion G. Kolaitis, Lucian Popa, and Kun Qian [⊕] UC Santa Cruz, [♦] IBM Research – Almaden

Motivation

Rules (Horn formulas) are ubiquitous in AI $\forall x,y,z \; (PARENT(x,z) \land PARENT(y,z) \rightarrow SIBLING(x,y))$ SIBLING(x,y) :- PARENT(x,z), PARENT(y,z)

Association rules

TID	ltems	(0.1.3. (0.431.3			
1	Cake, Milk	{Cake} -> {Milk}			
2	Cake, Diaper, Beer	{Cake, Diaper} -> {Beer}			
3	Diaper, Beer, Coke	{Diaper} -> {Beer}			
4	Beef, Diaper, Beer	{Beef, Diaper} -> {Beer}			
5	Diaper, Bread, Milk, Coke	•••••			

Entity resolution rules

Matching publications

DBLP(id, title, authors, venue, year)

 \land ACM(id', title, authors, venue, year') \rightarrow Same(id,id')

Setting:

- A large set C of possible rules is available.
- The actual semantics of the task is given via data: a premise database I together with a conclusion database J that represents the expected output of the task on input I.

Question: Can we capture the semantics via a small subset of C?

Min Rule Selection Problem

Total error = false positives + false negatives

Definition. Min Rule-Select Problem

Given an input-ouput databases (I, J) and a set C of rules, compute a subset C* of C such that the total error of Eval(C*, I) w.r.t. J is minimized.

Theorem 1

Min Rule-Select is an NP-hard optimization problem.

Unless NP=P, there is no polynomial time algorithm that solves the problem exactly.

Are there PTIME approximation algorithms with formal guarantees?

Theorem 2

Min Rule-Select is approximable within a factor of $2\sqrt{|C|} + |J| \cdot \log |J|$, where |C| is the number of input rules and |J| is the size of the conclusion instance.

We show that Min Rule-Select is "equivalent" to the Positive-Negative Partial Set-Cover Problem [Miettinen, 2008]

Bi-objective and Bi-level Optimization

What if we want to optimize both the error and the size of the set of rules (error and size are incomparable quantities).

Definition. Pareto Optimal Solution

Given a set C of rules and an input-output databases (I,J), a subset C* of C is a *Pareto-Optimal* solution if there is no subset C' of C such that size(C') < size(C*) and error(C')<error(C*)

Definition. Bi-level Optimial Solution

Given a set C of rules and an input-output databases (I,J), a subset C* of C is a Bi-level Optimal solution if it has minimum error and also has minimum size among all minimum-error solutions.

Theorem 3

The following problems are coNP-complete: given an input-output database (I,J) and a C of rules, and given subset C* of C:

- is C* a Pareto optimal solution?
- is C* a bi-level optimal solution?

Summary of Results and Future Work

		False Positive Errors	False Positive + False Negative Errors	
Ru	le-Select	NP-complete	NP-complete	
Exact	Rule-Select	DP-complete	DP-complete	
	approx. upper bound	$2\sqrt{ \mathcal{C} \log J }$	$2\sqrt{(\mathcal{C} + J)\log J }$	
Min Rule-Select	approx. lower bound	$2^{\log^{1-\epsilon}(\mathcal{C})}$, for every $\epsilon>0$	$2^{\log^{1-\epsilon}(J)}$, for every $\epsilon > 0$	
Pareto O	ptimal Solution	coNP-complete	coNP-complete	
Pareto Fro	ont Membership	DP-complete	DP-complete	
Bi-level O	ptimal Solution	coNP-complete	coNP-complete	
Bi-level	Optimal Value	DP-complete	DP-complete	

Directions for future work

- Approximating the Pareto front of the rule selection problem.
- Experimental evaluation.