

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

# Resultados Fundamentales de Computabilidad

Departamento de Informática Universidad de Oviedo

#### CONTENIDO

- 1 Codificación de los programas
- 2 Universalidad
- 3 Parametrización

## Parte I

## CODIFICACIÓN DE LOS PROGRAMAS

# RESULTADOS FUNDAMENTALES Y CODIFICACIÓN DE LOS PROGRAMAS

- En este tema, estudiaremos dos de los principales resultados de la Computabilidad
  - Universalidad
  - Parametrización
- En estos resultados, las funciones computables (programas) serán la entrada de otras funciones computables (programas)
- Necesitamos una forma de codificar programas mediante números naturales

## EL PROGRAMA UNIVERSAL



## Parte II

# ENUMERACIÓN DE LOS ALGORITMOS

## La idea de la codificación

- Codificar un programa mediante un número natural nos permitiría utilizar programas como entrada de otros programas
- La idea para codificar es muy simple: asignamos un número único a cada programa
- La arquitectura von Neumann está basada en algo similar, ya que los programas y los datos se almacenan de la misma forma
- El primero en utilizar una codificación de un sistema formal fue Kurt Gödel en la demostración de sus famosos Teoremas de Incompletitud

## NUESTRA CODIFICACIÓN

- Hay muchas formas (equivalentes computacionalmente) de codificar programas
- Una de las más simples consiste en imitar la forma en la que codificamos programas en nuestros ordenadores:
  - Primero, asignamos un número de 8 bits a cada posible símbolo (su código ASCII)
  - Después, concatenamos los números de todos los simbolos del programa
- El resultado será un número natural (que normalmente será enorme) que será único para cada programa y al que llamaremos el código del programa

#### Un ejemplo

Considera el siguiente programa

Su código en binario sería

| 01100010 | 01100101 | 01100111 | 01101001 |
|----------|----------|----------|----------|
| 01101110 | 00001010 | 00100000 | 00100000 |
| 01011000 | 00110001 | 00111010 | 00111101 |
| 00110000 | 00001010 | 01100101 | 01101110 |
| 01100100 |          |          |          |

 Que corresponde al número natural 33482460930773914958281235596343704383076

## PROPIEDADES DE LA CODIFICACIÓN

- Si extendemos el modelo de los programas while para incluir variables y operaciones de manipulación de caracteres, la codificación descrita es claramente computable
- Por tanto, la función

#### $\operatorname{\mathsf{cod}}:\operatorname{\mathsf{Programas}} o \mathbb{N}$

es computable

- cod es también total (todo programa tiene un código) e inyectiva (programas diferentes tienen códigos diferentes)
- Además, dado un número que codifica un programa, podemos obtener de nuevo dicho programa
- Sin embargo, hay números que no son el código de ningún programa (por ejemplo, 0)

## Definiendo decod

• Definimos la función  $decod : \mathbb{N} \to Programas$  como sigue

$$decod(n) = \begin{cases} P & \text{si existe } P \text{ tal que } cod(P) = n \\ Q & \text{en otro caso} \end{cases}$$

donde Q es un programa fijo, por ejemplo

## PROPIEDADES DE LA CODIFICACIÓN (II)

- Obsérvese que decod puede devolver Q en infinitos casos (uno para cada número que no codifique ningún programa)
- Esto no es importante porque:
  - Sólo estamos interesados en las funciones computadas por los programas
  - Cada función computable es computada por infinitos programas diferentes (la función semántica de un programa no cambia si añadimos una o más veces una instrucción como X2 := 0 al final)
- Es fácil comprobar que decod(cod(P)) = P
- También se puede ver que decod es total (trivial) y computable (se podría comprobar si un número codifica un programa while correcto utilizando expresiones regulares y gramáticas libres de contexto)

#### EN RESUMEN

Hemos definido funciones

$$cod: Programas \rightarrow \mathbb{N}$$

У

$$decod : \mathbb{N} \rightarrow Programas$$

- Ambas son totales y computables
- cod es además inyectiva
- Se cumple decod(cod(P)) = P
- Pregunta: ¿Se cumple cod(decod(n)) = n?

## ALGO DE NOTACIÓN

 Recuerda que a cada programa P le corresponden infinitas funciones computables, una por cada posible aridad:

$$\varphi_P^{(j)}: \mathbb{N}^j \to \mathbb{N}$$

• En lugar de *P*, utilizaremos a menudo el código de *P* como subíndice en la expresión anterior. Es decir:

$$\varphi_{\mathbf{e}}^{(j)} = \varphi_{P}^{(j)}$$

$$si e = cod(P)$$

## Parte III

## Universalidad

## LA IDEA DE UNA FUNCIÓN UNIVERSAL

- Ahora que ya podemos codificar programas mediante números, podemos tratar las entradas de una función como si fuesen programas
- Por ejemplo, considérese la función

$$\Phi(e, x) = \varphi_e(x)$$

 Esta función, siendo e el código de un programa, y x un número, devolverá el resultado de ejecutar el programa
 P = decod(e) con entrada x

## LA IDEA DE UNA FUNCIÓN UNIVERSAL

- Decimos que esta función es universal porque podemos utilizarla para reproducir el comportamiento de cualquier función computable unaria ya que
  - Universal en cuanto a programas: El primer argumento e de la función de Universalidad Φ(e, x) es la codificación de un programa. Al recorrer dicho argumento todos los naturales, se alcanzan todos los programas que existen.
  - Universal en cuanto a entradas: El resto de los argumentos son las entradas para el programa P<sub>e</sub> que se debe "simular" con Φ(e, x), fijada de antemano la aridad j de su función semántica.
- Es más, podemos considerar una función universal para cada aridad:

$$\Phi(e, x_1, x_2, \ldots, x_j) = \varphi_e^{(j)}(x_1, x_2, \ldots, x_j)$$

## LA FUNCIÓN UNIVERSAL ES COMPUTABLE

- Aunque al principio parece casi increible, es posible probar que cada función universal Φ(e, x<sub>1</sub>, x<sub>2</sub>,...,x<sub>j</sub>) es computable
- Podemos proceder como sigue:
  - Primero, obtenemos P = decod(e) (ya sabemos que eso es computable)
  - Después, simulamos la ejecución de P con entrada x<sub>1</sub>, x<sub>2</sub>,..., x<sub>j</sub>
  - Para acabar, devolvemos el resultado de la computación anterior
- El segundo paso requiere una demostración larga y tediosa, pero se puede probar que siempre es computable
- Es comparable al funcionamiento de un intérprete o un sistema operativo

#### EL TEOREMA DE UNIVERSALIDAD

 La conclusión de la diapositiva anterior es tan importante que debemos ponerla en forma de teorema

#### TEOREMA DE UNIVERSALIDAD

Para cada  $j \ge 1$ , la función universal

$$\Phi: \mathbb{N}^{j+1} \to \mathbb{N}$$

$$\Phi^{(j+1)}(e, x_1, x_2, \dots, x_j) = \varphi_e^{(j)}(x_1, x_2, \dots, x_j)$$

$$\forall e, x_1, x_2, \dots, x_j$$

es computable

#### La Macro de Universalidad

- Ya que las funciones universales son computables para cualquier aridad, hay programas while que las computan y los podemos utilizar como macros
- A partir de ahora, en nuestros programas while podremos utilizar macro-instrucciones como

$$Z := U(X, Y)$$

- Cuando esta macro se ejecuta, el valor φ<sub>X</sub>(Y) (es decir, el resultado de ejecutar el programa P = decod(X) con entrada Y) se almacenará en Z
- Obsérvese que φ<sub>X</sub>(Y) podría ser indeterminado, en cuyo caso el programa se quedará permanentemente atascado en la ejecución de la macro

## Parte IV

# PARAMETRIZACIÓN

## La idea de la Parametrización

- A veces, cuando tenemos una función, es útil fijar algunas de sus entradas para obtener otras funciones
- Por ejemplo, si tenemos

$$f(x,y)=x*y$$

y fijamos x = 2 obtendremos una nueva función, con una única variable, a la que podemos llamar g:

$$g(y) = f(2, y) = 2 * y$$

 Ocurre algo similar en algunos lenguajes de programación, como C++ o Python, cuando definimos funciones con parámetros por defecto

## PARAMETRIZACIÓN Y PROGRAMAS

• Supón que tenemos un programa P que computa f(x, y) = x \* y. Ahora considera el programa Q

```
begin
X2:=X1;
X1:=2;
P
end
```

Claramente, la función unaria semántica de Q es

$$g(y)=f(2,y)=2*y$$

y si conocemos cod(P) podríamos computar facilmente cod(Q)

## PARAMETRIZACIÓN Y PROGRAMAS (II)

 Podemos generalizar el ejemplo anterior. Considérese el siguiente programa:

donde C es una constante.

- Entonces, la función unaria semántica de este nuevo programa es h(y) = f(C, y) = C \* y
- Más importante, podemos computar el código de este nuevo programa a partir de cod(P) y del valor C

## PARAMETRIZACIÓN Y PROGRAMAS (III)

- El programa P de los ejemplos no tiene nada de particular, así que podemos utilizar cualquier programa P
- Cuando variamos P, estamos considerando todas las funciones computables binarias  $\varphi_P(x,y)$  y obtenemos las funciones computables unarias

$$g_{(P,C)}(y) = \varphi_P(C,y)$$

- Nótese que reducimos (fijamos) un parámetro y la nueva función depende de P y de C
- De hecho, no sólo podemos considerar funciones de dos variables, sino de todas las variables que queramos

## PARAMETRIZACIÓN EN GENERAL

- Considera un programa P, un número de variables m que se fijan, y un número de variables n que seguirán libres
- Considera también m constantes  $C_1, \ldots, C_m$  y el programa begin

```
begin
Xm+1:=X1;
...
Xm+n:=Xn;
X1:=C_1;
...
Xm:=C_m;
P
end
```

- La función semántica n-aria de este programa es  $h(x_1, \ldots, x_n) = \varphi_P^{(m+n)}(C_1, \ldots, C_m, x_1, \ldots, x_n)$
- Y, de nuevo, **podemos computar** el código de este nuevo programa a partir de cod(P) y de los valores  $C_1, \ldots, C_m$

## EL TEOREMA DE PARAMETRIZACIÓN

 Todo el razonamiento anterior nos lleva al Teorema de Parametrización (también conocido como el Teorema s-m-n)

#### TEOREMA DE PARAMETRIZACIÓN

Para cada  $m \ge 1$  y  $n \ge 1$  existe una función total y computable  $s_n^m$  tal que

$$\varphi_{\mathbf{s}_n^m(\mathbf{e},y_1,\ldots,y_m)}^{(n)}(x_1,\ldots,x_n)=\varphi_{\mathbf{e}}^{(m+n)}(y_1,\ldots,y_m,x_1,\ldots,x_n)$$

para todo  $e, y_1, \ldots, y_m, x_1, \ldots, x_n$