2. Given $A \in \mathbb{R}^{n \times n}$ and A is an invertible matrix.

Maximum magnification of A:

maximag $(A) = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2$

Minimum magnification of A:
minmag (A) = min $||Ax||_2$ = min $||Ax||_2$ $||X||_2 = ||X||_2 = ||X||_2 = ||X||_2 = ||X||_2$

We define the 2-norm of a matrix A as:- $||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}$

Note that $\|A\|_2$ is same as maxing (A).

Now, Condition number of A:

cond (A) = 11 A 112 11 A-1 112

(a) To prove: - maximag (A) = \frac{1}{\text{minmag}(A^{-1})}

We are given that A is non-singular (invertible) So, $Ax=0 \iff x=0$.

Also, A is invertible > A is one-one.

So, maxmag (A) = $x \neq 0$ $\frac{1|Ax|_2}{||X||_2}$

$$=\frac{1}{\|A^{-1}y\|_{2}}$$

$$=\frac{1}{\|A^{-1}y\|_{2}}$$

$$=\frac{1}{\|Y\|_{2}}$$

$$=\frac{1}{\|Y\|$$