Given a set of integers, S, return all possible subsets.

Notation and terminology

We say that $S = \langle x_1, x_2, \dots, x_n \rangle$ is a *set*, in which all x_i are integers and all element placed in non-decending order, that is, $x_1 \leq x_2 \leq \cdots \leq x_n$.

We say that S' is a subset of S, when $\forall x \in S', x \in S$. In another word, $S' = \langle x_{i_1}, x_{i_2}, \dots, x_{i_m} \rangle$, in which, $i_1 < i_2 < \dots < i_m \le n$.

1 S Without Duplicate Elements

When S is a set without duplication elements, all elements are in ascending order:

$$x_1 < x_2 < \dots < x_n$$

The following defines a new set with all possible sets containing only the first k elements of S.

SUBSETS $(S, k) = \{ \sigma | \sigma = \langle x_{i_1}, x_{i_2}, \dots, x_{i_m} \rangle, \text{ in which } i_1 < i_2 < \dots < i_m \le n \}$

Lemma 1. $SUBSETS(S, k+1) - SUBSETS(S, k) = \{\sigma' | \sigma' = \sigma \cup \{x_{k+1}\}, \sigma \in a\}$ SUBSETS(S, k)

Proof. For $\forall \gamma \in \text{SUBSETS}(S, k+1), \ \gamma = \langle x_{i_1}, x_{i_2}, \dots, x_{i_m} \rangle$, in which $i_1 < i_2 < i_3 < i_4 < i_5 < i_6 < i_7 < i_8 < i_8 < i_8 < i_9 < i_9$ $\dots < i_m \le k+1 \le n.$

If $i_m \neq k+1$, then $x_{i_m} \neq x_{k+1}$. Because $x_k \neq x_{k+1}$, $\gamma \in \text{SUBSETS}(S, k)$. If $i_m = k+1$, then $x_{i_m} = x_{k+1}$. Because $x_{i_{m-1}} \neq x_{k+1}$, then $\langle x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}} \rangle \in$ SUBSETS(S, k).

S With Duplicate Elements

Recursive Formula. Let us define c[i,j] to be the length of an longest common subsequence of X_i and Y_j . If either i = 0 or j = 0, one of the sequences has length 0, and so LCS has length 0. Finally, if X_m is a subsequence of Y_n , c[m,n]=m.

$$c[i,j] = \begin{cases} 0, & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1], & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1], c[i-1,j]), & \text{if } i,j > 0 \text{ and } x_i \neq y_j, \end{cases}$$

The following table illustracts the constructed c[i,j] table with X as "rabbit" and Y as "rabbbit". The arrows within will be used in the next section of reconstructing the common sequence.

i	j	$0 \\ y_j$	$\frac{1}{r}$	$egin{array}{c} \mathcal{Z} \ a \end{array}$	$egin{array}{c} 3 \\ b \end{array}$	4 b	$\frac{5}{b}$	$rac{6}{i}$	$t ag{7}$
0	x_i								
1	r	0	0	0	0	0	0	0	0
		0	1	1	1	1	1	1	1
2	a			K					
9	1.	0	1	`2	< 2	2	2	2	2
3	b	0	1	2	3	► 3	3	3	3
4	b	0	1	2		<i>k</i>	9	4	3
		0	1	2	3	4	← 4		4
5	i							×	
		0	1	2	3	4	4	5	5
6	t								M
		0	1	2	3	4	4	5	6

Reconstruct Solution. A distinct subsequence is a distince path from c[m, n] to c[0, 0]. For instance, in our case,

1.
$$[6,7] \rightarrow [5,6] \rightarrow [4,5] \rightarrow [4,4] \rightarrow [3,3] \rightarrow [2,2] \rightarrow [1,1] \rightarrow [0,0]$$

$$2. \ [6,7] \rightarrow [5,6] \rightarrow [4,5] \rightarrow [3,4] \rightarrow [3,3] \rightarrow [2,2] \rightarrow [1,1] \rightarrow [0,0]$$

3.
$$[6,7] \rightarrow [5,6] \rightarrow [4,5] \rightarrow [3,4] \rightarrow [2,3] \rightarrow [2,2] \rightarrow [1,1] \rightarrow [0,0]$$