SYMPLECTIC GEOMETRY

github.com/danimalabares/stack

Contents

1.	Coadjoint orbits and KKS theorem	1
2.	Hamiltonian actions and moment map	1
3.	Noether's principle	2
4.	Symplectic quotient	2
5.	Toric varieties	3
6.	(Completely) integrable systems	3
7.	Vertex algebras	5
References		5

1. Coadjoint orbits and KKS Theorem

The coadjoint action induces orbits in \mathfrak{g}^* . The tangent space at any point of a coadjoint orbit is given by infinitesimal vector fields, that is,

$$T_{\xi}\mathcal{O} = \{u_{\mathfrak{g}^*}(\xi) : \forall u \in \mathfrak{g}\}.$$

We may introduce a symlpectic form $\omega \in \Lambda^2 T_\xi^* \mathcal{O}$ on the tangent space at some point of a coadjoint orbit by

$$\omega_{\xi}(X,Y) := \xi([u,v]) = -u_{\mathfrak{q}^*}(\xi)v = v_{\mathfrak{q}^*}(\xi)(u)$$

which does not depend on $u, v \in \mathfrak{g}$.

Theorem 1.1 (KKS). $\xi \mapsto \omega_{\xi}$ is symplectic on \mathcal{O} .

Proof. Non degeneracy is easy. Then show that ω is G-invariant. Closedness follows from Jacobi identity.

2. Hamiltonian actions and moment map

To warm-up we define real symplectic and Hamiltonian actions.

- **Definition 2.1.** An \mathbb{R} -action is *symplectic* if $\psi_t^* \iff L_X \omega = 0$, that is, X is a symplectic field.
 - An \mathbb{R} -action is hamiltonian if X is Hamiltonian, that is, if there exists a function $H \in C^{\infty}(M)$ such that $X = X_H$.

To define moment map suppose there exists a map $\hat{\mu}$ such that

Note that if $\hat{\mu}$ exists, it's not uniquely determined, and that we may suppose that it is linear.

It's equivalente to define $\hat{\mu}$ as a map $\hat{\mu}: \mathfrak{g} \to C^{\infty}(M)$ or as a map

$$\begin{split} \mu: M &\longrightarrow \mathfrak{g}^* \\ \hat{\mu}(u)(x) &= \langle \mu(x), u \rangle \,. \end{split}$$

Definition 2.2. • A G-action is symplectic if $\psi_g^*\omega = \omega$ for all $g \in G$, that is, if

• A symplectic action $G \overset{\psi}{\curvearrowright} (M, \omega)$ is weakly Hamiltonian if there exists a map $\mu: M \to \mathfrak{g}^*$ (or equivalently, $\hat{\mu}: \mathfrak{g} \to C^\infty(M)$ linear) such that

$$i_{u_M}\omega = d\langle \mu, u \rangle, \quad \text{(resp. } u_M = X_{\hat{\mu}(u)}).$$

• A weakly Hamiltonian action is *Hamiltonian* if it is also μ -equivariant, that is, $\mu: G \curvearrowright M \to g^* \stackrel{\operatorname{Ad}^*}{\curvearrowleft} G$,

$$\mu \circ \psi_q = (\mathrm{Ad}^*)_q(\mu).$$

In this case we call μ a moment map.

3. Noether's principle

Theorem 3.1 (Noether's principle). Let (M, ω, μ) be a Hamiltonian G-space with Hamiltonian $H \in C^{\infty}(M)$. H is G-invariant if and only if μ is preserved by the Hamiltonian flow.

Proof. one line
$$\Box$$

4. Symplectic quotient

In symplectic geometry we cannot always take quotients. We need to use level-sets of the moment map.

Theorem 4.1 (Marsden-Weinstein, Megre). Let $G \cap (M, \omega)$ be a Hamiltonian action with moment map $\mu: M \to \mathfrak{g}^*$. Suppose $0 \in \mathfrak{g}^*$ is a regular value. By the equivariance of μ , we have an action $G \cap \mu^{-1}(0)$ given as follows. For $x \in \mu^{-1}(0)$, $\mu(\psi_g(x)) = Ad_g^*(\mu(x)) = 0$. Suppose that this action is regular (this will be defined later), that $\mu^{-1}(0)/G$ is smooth, and that the projection is a submersion. Then there exists a unique symplectic form ω_{red} in M_0 such that $i^*\omega = \pi_0^*\omega_{red}$.

That is, the pullback of the symplectic form to the 0 level-set of μ passes to the quotient:

$$G \curvearrowright \mu^{-1}(0) \stackrel{\longleftarrow}{\longrightarrow} M$$

$$\downarrow^{\pi_0}$$

$$(M_0 := \mu^{-1}(0)/G, \omega_{\text{red}})$$

A slightly more general setting is the following. Hamiltonian action $G \sim (M, \omega)$, and moment map $\mu: M \to \mathfrak{g}^*$. $\xi \in \mathfrak{g}^*$ regular, $G_{\xi} \subseteq G$ stabilizer of ξ . Then we have

$$G_{\xi} \curvearrowright \mu^{-1}(\xi) \xrightarrow{i_{\xi}} M$$

$$\downarrow^{\pi_{\xi}}$$

$$(M_{\xi} = \mu^{-1}(\xi)/G_{\xi}, \omega_{\text{red}}).$$

5. Toric varieties

For any compact connected symplectic manifold with an action of a torus, $\mathbb{T}^n \curvearrowright (M^{2n}, \omega) \xrightarrow{\mu}$ $\mathbb{R}^n = (\mathfrak{t}^n)^*$, the image of μ is a polytope. By [Guilleimin-Sternberg] and [Atiyah], this polytope is convex. Further, if the dimension of the torus is exactly half the dimension of the manifold, by [Delzant], the moment polytope determines the manifold, i.e. there is a one-to-one correspondence between Delzant polytopes and symplectic toric varieties. Moduli space of polygons is an example of this.

In fact, this situation of having a torus action of half the dimension is what we may call a "totally integrable system".

6. (Completely) integrable systems

Let (M, ω) be a symplectic manifold. Recall that

If $\{f,g\} = 0$ then the Hamiltonian flows of f and g commute.

Definition 6.1. Let (M^{2n}, ω) and $H \in C^{\infty}(M)$. (M, ω, H) is a completely integrable system (in Liouville's sense) if there exist functions $f_1, \ldots, f_n \in C^{\infty}(M)$ such that

- (1) $H = f_1, \ldots, f_n$ are linearly independent (df_1, \ldots, df_n) are linearly independent dent in every point).
- (2) $\{f_i, f_j\} = 0$ for all i, j.

Note that $F = (f_1, \ldots, f_n) : M \to \mathbb{R}^n$ is a submersion. For all $c \in \mathbb{R}^n$, $F^{-1}(c)$ are Lagrangian submanifolds. $F^{-1}(c)$ is invariant by the flow of X_{f_i} for $i = 1, \ldots, n$.

Explanation: $F^{-1}(c)$ is a level-set submanifold of M, whose tangent space is generated by the df_i . These are all in the kernel of dF by the integrability condition, namely $dF = (df_1, \dots, df_n), df_i(X_{f_i}) = \{f_i, f_j\} = 0.$

The idea is that finding these "conserved quantities" we manage to describe the Hamiltonian dynamics completely. Showing that a system is integrable is a victory. The moduli space of polygons is an example, and I think that so is $(\mathbb{C}^2)^{[n]}$.

There is another method of using "bihamiltonian actions" (two Hamiltonian actions yielding the same dynamics) /Lax pairs (defining the system using eigenvalues of matrices). Examples of this are Toda, Caolengo-Moser.

The following theorem says that the connected component of a symplectic manifold with an integrable system

Theorem 6.2 (Arnold-Liouville). Let (M^{2n}, ω) , $H = f_1, \ldots, f_n$ be completely intgrable system and $F: M \to \mathbb{R}^n$, $F = (f_1, \ldots, f_n)$. Let M_c be the connected component of $F^{-1}(c)$. Then

- (1) If M_c is compact, then $M_c \simeq \mathbb{T}^n = \mathbb{R}^n/2\pi\mathbb{Z}^n = \{(\theta_1, \dots, \theta_n) \mod 2\pi\}.$
- (2) In angular coordinates, the Hamiltonian flow is linear, that is, $\frac{d}{dt}^{-1}(t) = \alpha \in \mathbb{R}^n$ implies that $\theta(t) = \theta_0 + \alpha t$.

The proof of item 1 is given by the following proposition putting N=M and $X_1=X_{f_1},\ldots,X_n=X_{f_n}$.

Proposition 6.3. Let N be complete, connected, of dimension n. Let X_1, \ldots, X_n be linearly independent vector fields on N such that $[X_i, X_j] = 0$ for all j. Then $N \simeq \mathbb{T}^n$.

Proof. First we present the steps:

- (1) Flows of X_1, \ldots, X_n define an action $\mathbb{R}^n \curvearrowright N$.
- (2) This action is transitive. Then $N \simeq \mathbb{R}^n/\Gamma$ where Γ is the stabilizer.
- (3) Since dim N = n, then Γ is a lattice of \mathbb{R}^n .
- (4) Since N is compact, then Γ is of maximum rank, that is, $\Gamma = 2\pi \mathbb{Z}^n \subset \mathbb{R}^n$.

Let φ_t^i be the flow of X_i (which are complete since N is compact). Since $[X_i, X_j] = 0$, then $\varphi_t^i \varphi_s^j = \varphi_s^j \varphi_t^i$. Thus we have an action $\mathbb{R}^n \cap N$ given by moving along the flows of the vector fields, that is

$$\underbrace{(t_1, \dots, t_n)}_{\mathbf{t}} \cdot x = \underbrace{\varphi_{t_1}^1 \circ \dots \circ \varphi_{t_n}^n(x)}_{\varphi_{\mathbf{t}}(x)}$$

To prove transitivity we can show that the orbit maps of this action are surjective. Indeed, the image of the orbit map is open since it is a local diffeomorphism (it's derivative is given by the vector fields, which are linearly independent!), and it is closed by a taking a point in the boundary and using the flow at this point (and commutativity of the flows).

To check that the stabilizer Γ of this action is trivial first note that all stabilizers are equal (not only conjugate) since \mathbb{R}^n is abelian. Further, since the orbit map is a local diffeomorphism, Γ is discrete. Thus, it must be a lattice of rank $k \leq n$.

To show that in fact k = n consider a linear map T that maps the generators of Γ to the first k canonical vectors of \mathbb{R}^n . By the following diagram, the arrow on the bottom is well defined as in fact a bijective local diffeomorphism, that is, a diffeomorphism.

$$\mathbb{R}^{k} \times \mathbb{R}^{n-k} \cong \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$$

$$\downarrow p \qquad \qquad \downarrow \psi_{x} \circ T \qquad \qquad \downarrow \psi_{x} = \underset{\text{map}}{\text{orbit}}$$

$$\mathbb{T}^{k} \times \mathbb{R}^{n-k} \longrightarrow N$$

Thus the factor \mathbb{R}^{n-k} must be a point since N is compact by hypothesis.

Item 2 from Theorem 6.2 is obtained by considering the flows on the latter diagram and is left as an exercise.

In the case that N is not compact we just conclude that it M_c is a product of a torus with an Euclidean space.

Perhaps the simplest example of an integrable system is given by taking an open ball about the origin $B \subseteq \mathbb{R}^n$ and $B \times \mathbb{T}^n = \{(I_1, \dots, I_n, \phi_1, \dots, \phi_n)\}$ with the symplectic form $\omega = \sum_{i=1}^n dI_1 \wedge d\phi_i$ with $\{I_1, I_j\} = 0$.

The following theorem says that in fact the **symplectic form** of every level set of the kind M_c , which we just proved that is a torus, may is described locally as such a product.

Theorem 6.4. There is a neighbourhood U of M_c and a symplectomorphism

$$\sum d\mathcal{I} \wedge d\phi_i \longrightarrow B \times \mathbb{T}^n \xrightarrow{r} U \subseteq M \longrightarrow \omega$$

$$\downarrow F$$

$$B \xrightarrow{\simeq} F(U)$$

The coordinates $(I_1, \ldots, I_n, \phi_1, \ldots, \phi_n)$ are called *action-angle* coordinates.

The case when h(I) does not depend on the angle coordinates ϕ_i we can solve the Hamiltonian equations easily:

$$\begin{cases} \dot{I}_i = 0\\ \dot{\phi}_i = -\frac{\partial h}{\partial I}(I) \end{cases}$$

so that $\phi_i(t) = \phi_0 + \alpha t$ for some constants α . This is why integrable systems are actually easy to solve!

7. Vertex algebras

Mônadas, álgebras sobre mônadas. Exemplo: ultrafiltros (Manes, 1976). Campo quântico, como serie de Fourier. Exemplo: Heisenberg algebra.

Problema: o producto de campos quânticos não é bem definido.

References