es. 1)

Dire se i sequenti spari sono comessi o no:

1) (Q, Te) NON è comesso:

Q von é interalla: ∀x,y ∈ Q ∃x ∈ IRIQ €.c. ×<x<y com x € Q

2) (\times , Tdiscreta): quali sour i suoi sottainsiemi camersi? $\{\times\}\subseteq \times$ è camers $\forall\times\in \times$

se Y S X & t.c. |Y| > 2 allow:

 $y \in Y \Rightarrow Y = \{y\} \cup \mathcal{C}_{y}(\{y\})$

⇒ {x}, X\{x} sour aperti disginati non bonoli ⇒ x non è comersor.

3) (x, Tbanale): quale sour i suoi sottainsiemi camersi?

Thouse = $\{\phi_i \times\} \Rightarrow \forall y \subseteq x \text{ si ha}:$

 $\frac{1}{A}A_{1}, A_{2} \text{ disgiuti non bonoli} \quad \text{t.c.} \quad \text{$Y = A_{1} \cup A_{2}$}$ $\Rightarrow \forall Y \subseteq X, Y = \text{ comessor.}$

4) (X, Toof) con X infinito, quale sono i suoi soltainsiemi comessi?

Mostro che $Y \subseteq X$ è conversa \iff Y infinita oppure $Y = \{x\}$ con $x \in X$

- Mostro che se Y \bar{e} finita alla non \bar{e} convesso. \Rightarrow Y finita \Rightarrow $Y = \{Y_1, ..., Y_n\}$ can $\{Y_1\} \in \mathbb{T}_{col}$: $\{Y_1\} = Y \cap (X \setminus \{Y_2, ..., Y_n\})$. Anche $\{Y_2, ..., Y_n\} \in \mathbb{T}_{col}$:

 $\{\gamma_2, \ldots, \gamma_n\} = \times \cap (\times \setminus \{\gamma_k\}) \Rightarrow \times \text{um } \bar{e} \text{ cauessa.}$

9. e. d.

es. 2)

Sioner (IR, Te), (IR, T(B)) com $B = \{[a, b) \mid a < b\}$ Dim. che i 2 spozi non sono amenunti

 \Rightarrow (IR, Te) i Caumerso, dimestro che (IR, T(B)) non è caumerso :

Sioner $A_1 = (-\infty, \alpha)$, $A_2 = [\alpha, +\infty) \in T(B)$ $\Rightarrow A_1 \cap A_2 = \phi \wedge A_1 \cup A_2 = |R| \Rightarrow (|R, T(B))$ non è Connersor $\Rightarrow (|R, T_e|) \in (|R, T(B)|)$ non sonor aucomonfi.

g.e.d_