

Universidad de Ingeniería y Tecnología

Sílabo del curso - Periodo 2018-1

1. Código del curso y nombre: EL4001- Circuitos Analógicos

2. Créditos: 5 créditos

3. Horas por sesión (teoría y laboratorio): 2– teoría; 4 – laboratorio Número total de sesiones por tipo: 30 – teoría; 7 – laboratorio

4. Nombre, e-mail y horas de atención del instructor o coordinador del curso:

Coordinador: Luis Quineche

Instructor:

Ramiro Alfredo Moro Morey Atención previa coordinación con el profesor. rmoro@utec.edu.pe

5. Bibliografía: libro, título, autor y años de publicación:

a. Básica:

- "Electronic Devices and Circuit Theory", 11th edition, Boylestad y Nashelsky, 2012.
- "Principios de Electrónica", 7ma edición, Albert Malvino, 2007
- "Teoría de circuitos y dispositivos electrónicos," Robert L. Boylestad, 2009"

b. Complementaria:

- "Diseño Electrónico", Savant, Roden y Carpenter, 1992
- "Lab Manual for Electronic Devices and Circuit Theory", Boylestad, Nashelsky, y Monssen, 2012.

6. Información del curso

a. Breve descripción del contenido del curso

Este curso permite al estudiante adquirir una sólida base de conocimientos en electrónica de estado sólido, empezando con las propiedades físicas de los semiconductores y progresando a la construcción y características de los dispositivos activos basados en estos principios. Se estudia así las características eléctricas de los dispositivos semiconductores más comunes y sus interconexiones para formar circuitos electrónicos discretos e integrados. El curso complementa los conceptos teóricos con la simulación de dichos circuitos a través de software especializado y con el análisis a nivel de sistemas aplicado a circuitos electrónicos. Finalmente, este curso proveerá la oportunidad de poner en práctica el análisis y diseño de circuitos analógicos de baja potencia.

- b. Prerrequisitos o correquisitos: EL0065 Circuitos Eléctricos
- c. Indicar si es un curso obligatorio o electivo: Obligatorio de Ingeniería Electrónica

7. Objetivos del curso

a. Competencias

Al finalizar el curso el alumno estará en la capacidad de:

- a3: Capacidad de aplicar conocimientos de ingeniería (nivel 2)
- b1: Capacidad de diseñar y llevar a cabo experimentos (nivel 2)
- c1: Capacidad para diseñar un sistema, un componente o un proceso para satisfacer las necesidades deseadas dentro de restricciones realistas (nivel 2)

El curso aborda los siguientes resultados del estudiante ICACIT/ABET: a, b, e.

b. Resultados de aprendizaje

- Entender la naturaleza física de los materiales semiconductores y sus usos en la fabricación de dispositivos electrónicos como diodos, transistores y circuitos integrados.
- Representar diversos componentes semiconductores usando modelos eléctricos de sus comportamientos en circuitos discretos de baja potencia.
- Analizar la respuesta de circuitos electrónicos implementados con dispositivos analógicos discretos.
- Diseñar circuitos analógicos básicos que produzcan una respuesta de salida deseada dadas las señales de entrada al circuito.

8. Lista de temas a estudiar durante el curso

Semana Unidad de Formación 1 Presentación del curso

1. Introducción

2. Física de Semiconductores

Laboratorio 1: El Diodo Semiconductor

2 3. Tipos de diodos: Rectificadores, Zeners, diodos de emisión de Luz (LED), fotodiodos, diodos túnel, etc.

Semana Unidad de Formación

4. El Transistor Bipolar (BJT) Práctica Calificada 1a

Laboratorio 2: El Transistor Bipolar de Unión (BJT)

4 5. Análisis del Transistor Bipolar en Circuitos de Corriente Alterna

5	5. Análisis del Transistor Bipolar en Circuitos de Corriente Alterna Práctica Calificada 1b Laboratorio 3: El Transistor de Efecto de Campo: JFET y MOSFET
6	6. Transistores de Efecto de Campo
7	7. Polarización de los Transistores FET Práctica Calificada 2a Laboratorio 4: Respuesta en Frecuencia de Amplificadores Electrónicos
8	8. Análisis de Circuitos Amplificadores con Transistores FET Examen Parcial
9	9. Respuesta en Frecuencia de los BJT y los JFET
10	10. Amplificadores diferenciales y circuitos integradosPráctica Calificada 2bLaboratorio 5: El Amplificador Operacional y sus Aplicaciones
11	11. Retroalimentación negativa en circuitos y el amplificador operacional (OPAMP)
12	11. Retroalimentación negativa en circuitos y el amplificador operacional (OPAMP) Práctica Calificada 3a Laboratorio 6: Amplificadores Realimentados y Osciladores
13	12. Filtros activos
14	13. Osciladores electrónicos Práctica Calificada 3b Laboratorio 7: Lógica Digital CMOS
15	14. Soluciones de problemas de ingeniería con circuitos analógicos
16	Examen Final

9. Metodología y sistema de evaluación

Metodología:

Sesiones de teoría:

Clases en aula combinando presentaciones digitales (estilo PowerPoint) y desarrollo en pizarra. Para los ejercicios en clase, se selecciona alumnos aleatoriamente para su intervención.

Sesiones de Práctica:

Prácticas en laboratorio, teniendo como prioridad la seguridad de las personas, en donde se analicen los temas vistos en clase.

Desarrollo de proyectos:

El proyecto del curso busca el desarrollo e implementación de un sistema electrónico que realice una función específica, donde los estudiantes aplicarán lo aprendido en este y otros cursos. El tema del proyecto será elegido a más tardar en la semana 3. El proyecto será presentado durante la semana 12.

Trabajo de análisis:

Comprende el análisis crítico de *conference papers* de actualidad relacionados al contenido del curso. El tema del trabajo de análisis será asignado a más tardar en la semana 5 y presentado en la semana 10.

Desarrollo de monografías

El proyecto de clase será presentado en formato de artículo de conferencia IEEE: 4 páginas, 2 columnas, tamaño de letra 10 u 11 puntos, y será presentado durante la semana 13.

Exposiciones individuales o grupales:

Las exposiciones en este curso estarán relacionadas a la participación en el desarrollo de problemas en clase, a la exposición del trabajo de análisis y a la presentación del proyecto.

Lecturas:

Las lecturas estarán relacionadas al proyecto de clase, al trabajo de análisis y a tópicos seleccionados por el instructor.

Elaboración de Informes técnicos de aplicación:

Los informes técnicos serán el resultado del trabajo en los laboratorios.

Uso de multimedia:

Presentaciones utilizando PowerPoint y otras ayudas audiovisuales.

Ejercicios:

Desarrollo de ejercicios en clase, ejercicios propuestos para la casa (incluyendo simulación en PSPICE y/o Multisim), y seminarios opcionales de desarrollo de problemas.

Exposiciones del profesor:

Discusión no sólo de los temas de clase sino también de casos actuales relacionados al curso, con participación activa de los estudiantes.

Otras actividades en el aula:

Participación aleatoria de grupos de alumnos para resolver problemas en la pizarra.

Sistema de Evaluación:

El curso se evaluará mediante 3 prácticas calificadas en aula no anulables, 7 laboratorios no anulables, 2 exámenes, un trabajo de análisis y un proyecto del curso. El promedio de pruebas de laboratorio (Pb) será el promedio de los 7 laboratorios.

El promedio de pruebas de aula (Pa) se obtendrá de la siguiente manera:

Cada práctica calificada en aula constará de dos partes (a y b), cada una con un puntaje máximo de 10 puntos. Para obtener la nota final se sumarán ambas partes. Por ejemplo, PC1=PC1a+PC1b.

Se obtendrá el promedio TP de las notas de trabajo de análisis y del proyecto del curso.

El promedio de pruebas de aula (Pa) será obtenido mediante: Pa = (PC1 + PC2+PC3 + TP)/4.

Nota Final = $0.35 P_a + 0.25 P_b + 0.2 E_1 + 0.2 E_2$

donde:

 E_1 y E_2 = Exámenes parcial y final, respectivamente

Pa = Promedio de pruebas de aula

P_b= Promedio de pruebas de laboratorio