CLAIMS

2

What is claimed is:

1.	1. A circuit, comprising:					
2	a first transistor coupled across a first capacitor included in a series of					
3	stacked capacitors; and					
4	a second transistor coupled across a second capacitor included in the series					
5	stacked capacitors, the first transistor coupled to the second transistor, the first					
6	capacitor coupled to the second capacitor, wherein the first and second transistors					
7	are adapted to provide a bleed current to the series of stacked capacitors to					
8	balance a leakage current imbalance in the series of stacked capacitors.					
1	2. The circuit of claim 1 further comprising a resistor divider network					
2	coupled to respective control terminals of the first and second transistors to define					
3	an input reference for the circuit.					
1	3. The circuit of claim 2 wherein the resistor divider network					
2	comprises at least two resistors coupled to the respective control terminals of the					
3	first and second transistors.					
1	4. The circuit of claim 1 wherein the first and second transistors are					
1	4. The circuit of claim 1 wherein the first and second transistors are					

coupled to a connection point between the first and second capacitors of the series

- 3 of stacked capacitors, the first and second transistors adapted to maintain a
- 4 voltage at the connection point within an input reference range.
- The circuit of claim 1 wherein the bleed current is substantially equal to the leakage current imbalance in the series of stacked capacitors.
- 1 6. The circuit of claim 1 wherein the bleed current is substantially
 2 equal to zero when a voltage at the connection point remains fixed at a voltage
 3 within an input reference range.
- 7. The circuit of claim 1 wherein the first and second transistors are coupled in a sink-source follower circuit configuration.
- 1 8. The circuit of claim 7 wherein the sink-source follower circuit is 2 coupled to receive an input reference that is a fraction of a voltage applied across 3 the series of stacked capacitors.
- 1 9. The circuit of claim 8 wherein the input reference is a range of voltages including upper and lower reference voltages, each of which is offset

from the fraction of the voltage applied across the series of stacked capacitors.

3

1	10.	The cheunt of claim 9	whereth the o	inset of the	Thher and	IOMEL	
2	reference volt	ages from the fraction of	of the voltage	applied acro	ss the ser	ies of	
3	stacked capac	itors is zero.					
			••				
1	11.	The circuit of claim 7	wherein the fi	irst and seco	ond transis	stors	
2	comprise bipo	olar junction transistors.	• .				
					•-		
1	12.	The circuit of claim 1	1 wherein the	first and sec	ond trans	istors	
2	comprise a Pl	NP transistor and an NP	N transistor.	٠.		4	
		•		•	٠.		
1	13.	The circuit of claim 12	2 further com	prising a fir	st resistor	coupled	
2	to a collector	of the first transistor to	limit the blee	d current th	rough the	first	
3	transistor, the	circuit further compris	ing a second r	resistor coup	oled to a c	ollector of	
4	the second tra	ansistor to limit the blee	d current thro	ough the sec	ond transi	stor.	
٠.			٠.				
1	14.	The circuit of claim 1	wherein the o	circuit is an	active circ	cuit	
2	included in a	power supply circuit.		٠.			
	• .						
1	15.	A method, comprising	g:				
2	providing a bleed current through a first transistor to a connection point						
.3	between first and second capacitors included in a series of stacked capacitors if a						
4	voltage at the connection point rises above an upper reference voltage; and						

- 5 providing the bleed current through a second transistor to the connection
- 6 point if the voltage at the connection point falls below a lower reference voltage.
- 1 16. The method of claim 15 wherein the voltage at the connection
- 2 point rises above the upper reference voltage as a result of a leakage current
- 3 imbalance in the series of stacked capacitors, the method further comprising
- 4 balancing the leakage current imbalance with the bleed current.
- 1 The method of claim 16 wherein the bleed current is substantially
 - 2 equal to a difference in leakage currents between the first and second capacitors.
 - 1 18. The method of claim 15 wherein the voltage at the connection
 - 2 point falls below the upper reference voltage as a result of a leakage current
 - 3 imbalance in the series of stacked capacitors, the method further comprising
 - 4 balancing the leakage current imbalance with the bleed current.
 - 1 19. The method of claim 18 wherein the bleed current is substantially
 - 2 equal to a difference in leakage currents between the first and second capacitors.
 - 1 20. The method of claim 15 further comprising maintaining the voltage
 - 2 at the connection point within an input reference voltage range defined by the
 - 3 upper and lower reference voltages.

- 1 21. The method of claim 20 wherein an offset between the upper and 2 lower reference voltages is substantially zero.
- 1 22. The method of claim 15 further comprising smoothing an output 2 voltage of a diode bridge of a power supply with the series of stacked capacitors.
- 1 23. The method of claim 15 further comprising switching off the first 2 and second transistors if the voltage at the connection point is between the upper 3 and lower reference voltages.
- 1 24. A circuit, comprising:

6

- a series of stacked capacitors including first and second capacitors coupled
 across a power supply input;
- a first transistor coupled across the first capacitor, the first transistor

 having a control terminal coupled to receive a first reference voltage; and
- 7 transistor have a control terminal coupled to receive a second reference voltage;

a second transistor coupled across the second capacitor, the second

- 8 the first and second capacitors coupled to the series of stacked capacitors at a
- 9 connection point between the first and second capacitors, the first and second
- transistors adapted to provide a bleed current to balance a leakage current
- imbalance in the series of stacked capacitors.

1	25.	The circuit of claim 24 further comprising.					
2	a first resistor coupled to the first transistor to limit the bleed current						
3	through the firs	st transistor; and					
4	a second resistor coupled to the second transistor to limit the bleed current						
5	through the second transistor.						
1	26.	The circuit of claim 24 further comprising a resistor network					
2	coupled to the first and second transistors to provide the first and second reference						
3	voltages.						
1	27.	The circuit of claim 26 wherein the first and second reference					
2	voltages provided by the resistor network are different from one another.						
1	28.	The circuit of claim 26 wherein the first and second reference					
2	voltages provided by the resistor network are the same.						