

Vorlesungsskript

Falk Jonatan Strube

Vorlesung von Herrn Meinhold 29. Oktober 2015

Inhaltsverzeichnis

I.	Elementare Grundlagen	1
1.	Aussagen und Grundzüge der Logik	1
2.	Mengen	1
	2.1. Begriffe	1
	2.2. Mengenverknüpfungen	2
	2.3. Relationen	3
	2.3.1. Grundbegriffe	3
	2.3.2. Operationen auf Relationen	6
	2.3.3. Äquivalenzrelationen	9
	2.3.4. Ordnungsrelationen	10
	2.3.5. Funktionen	12
	2.4. Gleichmächtigkeit, Kardinalzahlen	15

Teil I.

Elementare Grundlagen

1. Aussagen und Grundzüge der Logik

2. Mengen

2.1. Begriffe

Menge: Zusammenfassung gewisser wohl unterscheidbarer Objekte (Elemente) mit einem gemeinsamen Merkmal zu einem Ganzen.

Diskussion: Naiver Mengenbegriff führt zu Widerpsrüchen. z.B. Menge X aller Mengen, die sich nicht selbst als Element enthalten.

$$X = \{A | A Menge, A \not\in A\}$$

$$X \in X$$
? Wenn $X \in X \Rightarrow X \notin X$ und $X \notin X \Rightarrow X \in X$ (Widerspruch!).

Diese Widersprüche können umgangen werden, wenn nur Teilmengen einer sogenannten Grundmenge betrachtet werden.

Bezeichungen:

- meist große Buchstaben für Mengen: A, B, ..., M, ..., X
- $x \in M$... x ist Element von M
- $x \notin M$... x ist kein Element von M

Schreibweise:

$$M = \{ \underset{\mathsf{Elemente}}{\dots} \} \text{ oder } M = \{x|p(x)\}$$

mit p(x) = Aussage, die genau für die Elemente x aus M wahr ist.

Wichtige Grundmengen:

- N . . . Menge der natürlichen Zahlen {0, 1, 2, 3, ...}
- $\mathbb{N}^* = \mathbb{N} \setminus \{0\} = \{1, 2, 3, ...\}$
- \mathbb{Z} ... Menge der ganzen Zahlen $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- \mathbb{Q} ... Menge der rationaln Zahlen $\{x|x=\frac{m}{n}, m\in\mathbb{Z}, n\in\mathbb{Z}, n\neq 0\}$
- ullet \mathbb{R} ... Menge der reelen Zahlen
- ullet $\mathbb C$... Menge der komplexen Zahlen $\{z|z=x+i\cdot y,\quad x,y\in\mathbb R, i^2=-1\}$

Bsp. 1:

 $M_1 \dots$ Menge der Primzahlen kleiner 10, $M_1 = \{2, 3, 5, 7\}$

 $M_2 \dots$ Menge der reelen Zahlen zwischen 0 und 1 $M_2 = \{x \in \mathbb{R} | 0 < x < 1\} =: (0,1)$

Def. 1: (Intervallschreibweisen)

Es seien a und b reele Zahlen mit a < b:

 $[a,b]:=\{x\in\mathbb{R}|a\leq x\leq b\}$... abgeschlossenes Intervall

 $(a,b) := \{x \in \mathbb{R} | a < x < b\} \dots$ offenes Intervall

 $[a,b) := \{x \in \mathbb{R} | a \le x < b\}$

 $(-\infty,a) := \{x \in \mathbb{R} | -\infty < x < a\} = \{x \in \mathbb{R} | x < a\}$

usw.

Leere Menge: z.B. $\{x \in \mathbb{R} | x = x+1\} = \{x \in \mathbb{R} | x^2+1=0\}$ enthält kein Element. Bezeichnung: \emptyset oder $\{\}$

2.2. Mengenverknüpfungen

Def. 2:

 $M_1 = M_2$:= $\forall x \ (x \in M_1 \Leftrightarrow x \in M_2)$ (Gleichheit)

Def. 3:

 $\boxed{M_1\subseteq M_2}:\equiv \boxed{orall x\;(x\in M_1\Rightarrow x\in M_2)}$ (Inkulsion) " M_1 ist Teilmenge von M_2 "

Diskussion:

Ist $M_1 \subseteq M_2$ aber $M_1 \neq M_2$ so kann man schreiben $M_1 \subset M_2$ (echte Teilmenge).

Def. 4:

1.) $A \cap B := \{x | x \in A \land x \in B\}$ Durchschnitt von A und B

2.) $A \cup B := \{x | x \in A \lor x \in B\}$ Vereinigung von A und B

 $\text{3.)} \ \, \begin{matrix} A \setminus B := \{x | x \in A \land x \not \in B\} \\ \textit{Differenz "A minus B"} \end{matrix}$

Bei Vorliegen einer Grundmenge E:

4.) $\overline{A} := E \setminus A$ Komplimentärmenge von A

Diskussion: (ausgewählte Rechenregeln)

1.) \cup und \cap sind kommutativ und assoziativ z.B. gilt $A \cup B = B \cup A$, $(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$

Mathematik I

2.) Allg. I ... Indexmenge, z.B. $\{1,2,...,n\}$, \mathbb{N} , \mathbb{Z} , \mathbb{R} dann: $\bigcup_{i\in I}A_i:=\{x|\exists i\in I\quad x\in A_i\}$ $\bigcap_{i\in I}A_i:=\{x|\forall i\in I\quad x\in A_i\}$

2.3. Relationen

2.3.1. Grundbegriffe

Def. 5:

Die Menge $M_1 \times M_2 := \{(x_1, x_2) | x_1 \in M_1 \land x_2 \in M_2\}$ heißt *kartesisches Produkt* der Mengen M_1 und M_2 (= Menge aller geordneten Paare)

Bsp. 2:

 \mathbb{R} ... Menge der reelen Zahlen, veranschaulicht durch die Zahlengerade $\mathbb{R}^2:=\mathbb{R}\times\mathbb{R}=\{(x,y)|x\in\mathbb{R}\wedge y\in\mathbb{R}\}$... x-y-Ebene

Def. 6:

Eine Teilmenge $T \subseteq M_1 \times M_2$ heißt (binäre) Relation.

Diskussion:

- 1.) Verallgemeinerung: $M_1 \times M_2 \times ... \times M_n = \{(x_1, x_2, ..., x_n) | x_1 \in M_1, ..., x_n \in M_n\}$ (= Menge geordneter n-Tupel) Eine Teilmenge $T \subseteq M_1 \times M_2 \times ... \times M_n$ heißt *n-stellige Relation*.
- 2.) Jede Teilmenge von $M_1 \times M_2$ ist eine Relation, also auch die Grenfälle \emptyset (gesamt leere Menge) und $M_1 \times M_2$ (vollständige Menge). Wichtig sind aber im allgemeinen die echten Teilmengen, die die verschiedensten Beziehungen zwischen den Elementen von M_1 und M_2 ausdrücken.

Def. 7: (Eigenschaften binärer Relationen in $M_1 \times M_2$)

Eine Relation $T \subseteq M_1 \times M_2$ heißt:

- a) linksvollständig (linkstotal), wenn für jedes $x_1 \in M_1$ (wenigstens) ein $x_2 \in M_2$ existiert mit $(x_1, x_2) \in T$.
- b) recthvollständig (rechtstotal, wenn für jedes $x_2 \in M_2$ (wenigstens) ein $x_1 \in M_1$ existiert mit $(x_1, x_2) \in T$.
- c) rechteindeutig, wenn für jedes $x_1 \in M_1$ höchstens ein $x_2 \in M_2$ existiert mit $(x_1, x_2) \in T$.
- d) *linkseindeutig*, wenn für jedes $x_2 \in M_2$ höchstens ein $x_1 \in M_1$ existiert mit $(x_1, x_2) \in T$.

Bsp. 3:

Es seien S bzw. L folgende Mengen von Städten bzw. Ländern:

 $S = \{Berlin, Dresden, K\"{o}ln, Paris, Ram, Neapel, Oslo\}$

 $L = \{D(eutschland), F(rankreich), B(elgien), I(talien), P(olen), N(orwegen)\}$

Die Relation $T \subseteq S \times L$ soll darstellen, welche Stadt in welchem Land liegt.

Man gebe T elementweise an und stelle die Relation graphisch dar!

Welche der Eigenschaften aus Def. 7 treffen zu?

- $T = \{(Berlin, D), (Dresden, D), (K\"{o}ln, D), (Paris, F), (Rom, I), (Neapel, I), (Oslo, N)\}$
- graphische Darstellung:

 $(x,y) \in T : x \to y$ (gerichteter Graph)

 Eigenschaften: linksvollständig nicht rechtsvollständig rechtseindeutig nicht linkseindeutig

(solche Relationen nennt man auch "Funktionen", eindeutige Zuordnung [von Stadt → Land])

Def. 8: (Eigenschaften binärer Relationen in $M \times M$)

Eine Relation $T \subseteq M \times M$ (Sprechweise auch "Relation auf M") heißt...

- a) reflexiv, wenn $(x, x) \in T$ für alle $x \in M$,
- b) symmetrisch, wenn $(x,y) \in T \Rightarrow (y,x) \in T$,
- c) antisymmetrisch, wenn $((x,y) \in T \land (y,x) \in T) \Rightarrow x = y$,
- d) asymmetrisch, wenn $(x,y) \in T \Rightarrow (y,x) \notin T$,
- e) transitiv, wenn $((x,y) \in T \land (y,z) \in T) \Rightarrow (x,z) \in T$
- ... jeweils für *alle* $x, y, z \in M$ gilt.

Bsp. 4:

Welche Eigenschaften aus Def. 8 besitzen folgende Relationen? Es sei P eine Menge von Personen.

- a) Eine Person $x \in P$ sei jünger als $y \in P$, wenn ihr Geburtstag später als der von y ist. $racktriangleright J \subseteq P \times P$ mit $J = \{(x,y)|x$ ist jünger als $y\}$. J ist offensichtlich asymmetrisch (damit auch antisymmetrisch [Die Prämisse der Implikation $((x,y) \in J \land (y,x) \in J) \Rightarrow x = y$ ist stets falsch, damit die Implikation stets wahr]) und transitiv. Eine solche Relation nennt man auch strikte strikte
- b) Zwei Personon $x \in P$ und $y \in P$ heißen gleichaltrig, wenn x und y das gleiche Geburtsjahr besitzen.
 - $\curvearrowright G \subseteq P \times P$ mit $G = \{(x,y)|x \text{ und } y \text{ sind gleichaltrig}\}.$ G ist offensichtlich reflexiv, symmetrisch und transitiv.

Derartige Relationen nennt man Äquivalenzrelationen, vgl. Abschnitt 2.3.3. Sie teilen P in disjunkte sogenannte Äquivalenzklassen auf (x äquivalent y heißt, x und y besitzen gleiches Geburtsjahr).

Graphische Darstellung von Relationen T in $M \times M$ (auf M). Möglichkeiten:

1.) Elemente von M nur einmal darstellen, Pfeildarstellun wie bisher, bei $(x,x)\in T$ eine Schlinge zeichnen.

(gerichteter Graph)

(Koordinatensystem)

Diese Variante ist auch bei Relationen in $M_1 \times M_2$ möglich.

Diskussion:

1.) Die Eigenschaften Reflexivität, Symmetrie und Transitivität lassen sich beim gerichteten Graphen leicht nachprüfen.

Reflexivität: Bei jedem Element ist eine Schlinge.

Symmetrie: Jeder Pfeil $x \to y \ (y \neq x)$ besitzt "umkehrpfeil" $(x \leftarrow y)$.

Antisymmetrie: Schlinge möglich, aber keine Umkehrpfeile.

Asymmetrie: weder Schlingen noch Umkehrpfeile.

Transitivität: Falls ein Pfeil $x \to y$ eine "Fortsetzung" $y \to z$ besitzt, so verläuft auch ein Pfeil von x nach z.

2.) Auch die Darsteellung von Koordinatensystem lassen sich die Eigenschaften Reflexivität und Symmetrie sofort überprüfen.

Reflexivität: Die Diagonale $I_M=\{(x,x)|x\in M\}$ gehört zu T (I_M heißt auch *Identitätsrelation*, diese Relation ist eine spezielle Funktion, identische Funktion $y=f(x))=x, x\in M$ später als Funktion auch mit i_M bezeichnet)

Symmetrie: T ist spiegelsymmetrisch bzgl. I_M

ist reflexiv aber nicht symmetrisch

ist symmetrisch aber nicht reflexiv

Alternative Schreibweisen: Es sei $T\subseteq M_1\times M_2$ eine binäre Relation.

Anstelle $(x,y) \in T$ kann man schreiben:

- xTy (x steht in Relation T zu y), für viele wichtige Relationen gibt es spezielle Zeichen, z.B. $x < y, x = y, g || h \text{ oder } A \subseteq B \text{ usw.}$
- Aussageformen (vgl. Prädikatenlogik): T(x,y) (auch mit mehreren Variablen möglich)

2.3.2. Operationen auf Relationen

Da Relationen spezielle Mengen sind, gibt es Operationen wie ∪, cap usw. auch hier. Weitere für Relationen wichtige Operationen in den folgenden Definitionen:

Def. 9:

Es sein T eine Relation in $U \times V$.

Die Menge $proj_1(T) = \{x \in U | \exists y \in V, (x,y) \in T\}$ heißt *Projektion* von T auf u (1. Faktor des kartesischen Produkts).

Analog ist $proj_2(T) = \{y \in V | \exists x \in U, (x,y) \in T\}$ die Projektion auf den 2. Faktor.

Veranschaulichung:

Bsp. 5:

Es sei $S = \{1, 2, 3, 4, 5\}$ eine Menge von Studenten und $F = \{a, b, c, d, e, f\}$ eine Menge von Fächern. Es sei $P \subseteq S \times F$ die Relation, die angibt, welcher Student in welchem Fach eine Nach- bzw. Wiederholungsprüfung im bevorstehenden Prüfungsabschnitt hat.

Die Studenten 1 und 3 haben keine Prüfung ausstehen, Student 2 muss die Prüfungen in a. d und e, 4 in b und f sowie 5 in b, d, e und f ablegen.

- a) Man gebe die Relation P elementweise an und stelle sie in einem Koordinatensystem dar.
- b) Man ermittle die Projektionen P auf S bzw. F und kennzeichne diese in der Skizze.

Lösung:

a)
$$P = \{(2, a), (2, d), (2, e), (4, b), (4, f), (5, b), (5, d), (5, e), (5, f)\}$$

Fach

proj₂(P)

c

Student

b) $proj_1(P) = \{2, 4, 5\} \subseteq S$

(= Menge der Studenten, die wenigsten eine N/W-Prüfung haben.) $proj_2(P) = \{a, b, d, e, f\} \subseteq F$

(= Menge der Fächer, in denen Student(en) eine N/W-Prüfung haben.)

Def. 10:

Es sei $T \subseteq M_1 \times M_2$ eine binäre Relation.

Die Relation $T^{-1} := \{(y,x) | (x,y) \in T\} \subseteq M_2 \times M_1$ heißt inverse Relation (bzw. kurz: Inverse) von T.

Bsp. 6: (vgl. Bsp. 5)

$$P^{-1} = \{(a,2), (b,4), (b,5), (d,2), (d,5), (e,2), (e,5), (f,4), (f,5)\}$$

Besonders wichtig ist die folgende Operation:

Def. 11:

Es seien $T_1 \subseteq M_1 \times M_2$ und $T_2 \subseteq M_2 \times M_3$ binäre Relationen.

Als Komposition (oder auch Verkettung) $T_1 \circ T_2$ (" T_2 nach T_1 ") wird die Relation $T_1 \circ T_2 := \{(x,z) \in T_1 \in T_2 : (x,z) \in T_2 : (x,z) \in T_1 \in T_2 : (x,z) \in T_2 : (x,z) \in T_1 \in T_2 : (x,z) \in T_2 : (x,z) \in T_1 : (x,z) \in T_2 : (x,z) \in T_2 : (x,z) \in T_1 : (x,z) \in T_2 : (x,z) \in T_1 : (x,z) \in T_2 : (x,z) \in T_1 : (x,z) \in T_2 : (x,z) \in T_2 : (x,z) \in T_1 : (x,z) \in T_2 : (x,z) \in T_1 : (x,z) \in T_2 : (x,z) \in T_1 : (x,z) \in T_2 : (x,z) \in T_2 : (x,z) \in T_1 : (x,z) \in T_2 : (x,z) \in T_2 : (x,z) \in T_1 : (x,z) \in T_2 : (x,z) \in T_2 : (x,z) \in T_1 : (x,z) \in T_2 : (x,z$ $M_1 \times M_3 | \exists y \in M_2 \quad (x,y) \in T_1 \land (y,z) \in T_2 \}$ in $M_1 \times M_3$ bezeichnet.

Bsp. 7:

Es sei M die Menge aller Menschen, die zu einem bestimmten Zeitpunkt leben. Weiter seien S= $\{(x,y)|x \text{ ist Mutter von } y\} \subseteq M \times M \text{ und } T = \{(y,z)|y \text{ ist verheiratet mit } z\} \subseteq M \times M.$

Dann bedeutet $(x, z) \in S \circ T$: Es gibt ein y, sodass x die Mutter von y ist $((x, y) \in S)$ und y mit zverheiratet $((y, z) \in T)$ ist, d.h. "x ist die Schwiegermutter von z".

Diskussion: Wichtige Eigenschaft der Komposition o:

• Die Operation \circ ist *assoziativ*, d.h. seien $T_1 \subseteq A \times B$, $T_2 \subseteq B \times C$ und $T_3 \subseteq C \times D$, dann gilt: $(\underbrace{T_1 \circ T_2}_{\subseteq A \times C}) \circ T_3 = \underbrace{T_1}_{\subseteq A \times B} \circ (\underbrace{T_2 \circ T_3}_{\subseteq B \times D}) = T_1 \circ T_2 \circ T_3 \subseteq A \times D$

Def. 12:

Es sei T eine Relation in $M \times M$ (auf M).

Als *transitive Hülle* T^+ von T bezeichnet man die kleinste Relation, die T enthält und transitiv ist.

Satz 1: Es gilt:
$$T^+ = T \cup (T \circ T) \cup (T \circ T \circ T) \cup \dots$$

Bemerkung:

Bezeichnung für $\underbrace{T \circ T \circ \dots \circ T}$ auch T^n

(Nicht verwechseln mit Mengenprodukt $\underbrace{T \times ... \times T}_{\text{n-mal}}$ bzw. Funktionen mit n-ten Potenz f^n !)

Damit ist
$$T^+ = \bigcup_{j=1}^{\infty} T^j$$

Beweis:

1.) T^+ ist transitiv, denn sei $(x,y) \in T^+$ und $(y,z) \in T^+$, dann existieren natürliche Zahlen $j_1, j_2 \ge 1$ mit $(x, y) \in T^{j_1}$ und $(y, z) \in T^{j_2}$,

d.h. y wird in j_1 Schritten von x aus erreicht und z in j_2 Schritten von y aus erreicht. Also wird z in $j_1 + j_2$ Schritten von x aus erreicht,

d.h.
$$(x, z) \in T^{j_1 + j_2} \subseteq T^+$$

Mathematik I

HI

2.) Es sei $T \subseteq S$ für eine transitive Relation S.

$$\Rightarrow T \circ T \subseteq S \circ S \subset S$$
 und für beliebiges $j \geq 1$:

 $T^j\subseteq S_{\infty}^j{\subseteq S}$ und somit:

$$T^+ = \bigcup_{j=1}^{3} T^j \subseteq S,$$

d.h. T^+ ist tatsächlich die kleinste transitive Relation, die T enthält.

Diskussion:

1.) Analog zur transitiven Hülle einer Relation T in $M \times M$ (auf M) werden die reflexive Hülle bzw. die symmetrische Hülle von T als die jeweils kleinsten Relationen die T enthalten und reflexiv bzw. symmetrisch sind definiert.

Die Ermittlung gestaltet sich etwas "einfacher" als bei der transitiven Hülle:

Reflexive Hülle von $T: T \cup I_M$ (dabei ist $I_M = \{(x,x) | x \in M\}$ [Diagonale / Identitätsrelation])

Symmetrische Hülle von T: $T \cup T^{-1}$

2.) Von Bedeutung ist auch die *reflexiv-transitive* Hüllo ven *T*:

$$T^* = T^+ \cup I_M$$
 (dabei $T^+ \dots$ transitive Hülle von T)

Bsp. 8:

Gegeben sei die Menge $M = \{a, b, c, d, e, f\}$ sowie die Relation $T = \{(a, b), (b, c), (c, e), (b, d), (d, e), (e, f)\}.$

a) *Transitive Hülle*: Zur Ermittlung der Komposition $S \circ T$:

Für jedes Element $(x,y) \in S$ alle Fortsetzungen $(y,z) \in T$ suchen (x,z) als Element von $S \circ T$ notieren, falls es noch nicht vorkommt.

Bspw.:

- (a,b), Fortsetzungen wären (b,c), $(b,d) \sim$ Elemente (a,c) und (a,d) notieren.
- (b,c), Fortsetzung $(c,e) \curvearrowright (b,e)$ notieren
- USW

$$\Rightarrow T\circ T=\{(a,c),(a,d),(b,e),(c,f),(d,f)\}=T^2$$

$$T^3=T\circ (T\circ T)=\{(a,e),(b,f)\} \text{ (ausgehend von } T\text{ in }T\circ T\text{ nach Fortsetzung suchen)}$$

$$T^4=T\circ T^3=\{(a,f)\}$$

$$\Rightarrow T^+ = T \cup \underbrace{(T \circ T)}_{\text{2 Schritte}} \cup \underbrace{(T \circ T \circ T)}_{\text{3 Schritte}} \cup \underbrace{(T \circ T \circ T \circ T)}_{\text{4 Schritte}} = T \cup T^2 \cup T^3 \cup T^4$$

(Formel bricht im endlichen Fall nach endlich vielen Schritten ab.)

b) Reflexive Hülle: $T \cup \{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f)\}$

c) Symmetrische Hülle: $T \cup T^{-1} = T \cup \{(b, a), (c, b), (e, c), (d, b), (e, d), (f, e)\}$

Zur Überprüfung der Eigenschaften aus Def. 8 ist folgender Satz nützlich:

Satz 2:

Es sei $T \subseteq M \times M$ eine binäre Relation. Dann gilt:

- a) T ist reflexiv $\Leftrightarrow I_M \subseteq T$ ($I_M \dots$ Identitätsrelation)
- b) T ist symmetrisch $\Leftrightarrow T^{-1} \subseteq T \quad [\Leftrightarrow T^{-1} = T]$
- c) T ist antisymmetrisch $\Leftrightarrow T \cap T^{-1} \subseteq I_M$
- d) T ist asymmetrisch $\Leftrightarrow T \cap T^{-1} = \emptyset$
- e) T ist transitiv $\Leftrightarrow T \circ T \subseteq T$

Disskussion:

- 1.) Beweise ergeben sich unmittelbar aus Def. 8, vgl. Übungsaufgabe 1.24 (für b) und e))
- 2.) Aus c) und d) ergibt sich z.B.

T asymmetrisch $\Rightarrow T$ antisymmetrisch (da \emptyset Teilmenge jeder Menge ist)

2.3.3. Äquivalenzrelationen

Def 13

Eine Relation $T \subseteq M \times M$ heißt Äquivalenzrelation auf M, wenn sie reflexiv, symmetrisch und transitiv ist

Diskussion:

- 1.) Durch eine Äuivalenzrelation wird M vollständig in paarweise elementfremde (disjunkte) Äquivalenklassen zerlegt. Die Menge aller Äquivalenzklassen von M bezüglich T heißt Quotientenmenge M/T.
 - Aufgrund der 3. Eigenschaft aus Def. 13 erhält eine Äquivalenzklasse alle Elemente, die untereinander erreichbar sind (=äquivalent) und nur diese.
- 2.) Äquivalenzklassen enthalten alle Elemente, die bezüglich einer bestimmten Eigenschaft nicht unterscheidbar sind, z.B. Bsp. 4 mit M=P (Menge von Personen), Äquivalenzrelation $G\subseteq P\times P$ mit $G=\{(x,y)|x$ und y haben gleiches Geburtsjahr $\}$, Äquivalenzklassen sind die Jahrgänge.
- 3.) Anstelle der Schreibweise $(x,y) \in T$, xTy oder T(x,y) verwendet man bei beliebigen Äquivalenzrelationen auf $x \sim y$. Bei vielen speziellen Äquivalenzrelationen spezielle Symbole, sie folgendes Beispiel.

Bsp. 9:

a) M sei eine beliebige Menge $T_1 = I_M = \{(x,y) \in M \times M | x = y\}$ (Identitätsrelation) ist eine Äquivalenzrelation.

Äquivalent heißt hier gleich!

Äquivalenzklassen sind sämtliche einelementige Teilmengen $\{x\}, x \in M$. T_1 heißt die feinste Zerlegung von M die möglich ist. Die größte Zerlegung liefert die Relation $T_2 = M \times M$, die trivialer Weise ebenfalls eine Äquivalenzrelation ist mit nur einer Äquivalenzklasse M. Für die Anwendungen sind natürlich Relationen wichtig, die eine feinere Zerlegung liefern.

- b) $M = \mathbb{Z}$ (ganze Zahlen), $m \in \mathbb{N}^*$, $T \subseteq \mathbb{Z} \times \mathbb{Z}$ mit
 - $(x,y) \in T :\equiv x$ und y lassen bei Division durch m den gleichen Rest"
 - Bezeichunung $x \equiv y \pmod{m} \dots x$ kongruent $y \pmod{m}$, z.B. $29 \equiv 8 \pmod{7}$
 - T ist eine Äquivalenzrelation auf \mathbb{Z} , Äquivalenzklassen: Restklassen modulo m (siehe Übungsaufgabe 1.19)
- c) $M \dots$ Menge aller Geraden einer Ebene, $T \subseteq M \times M$ mit
 - $(x,y) \in T :\equiv x$ ist zu y parallel", Bezeichnung: x||y $\sim T$ ist Äquivalenzrelation auf M (siehe Übungsaufgabe 1.21.)

2.3.4. Ordnungsrelationen

Def. 14:

- a) Eine Relation $T\subseteq M\times M$ heißt Ordnungsrelation auf M, wenn sie reflexiv, antisymmetrisch und transitiv ist.
- b) Eine Ordnungsrelation heißt *vollstandig* oder *linear*, wenn für alle $x,y\in M$ gilt $(x,y)\in T\vee (y,x)\in T$.

Def. 15:

Eine Relation $T\subseteq M\times M$ heißt *strikte Ordnungsrelation* auf M, wenn sie asymmetrisch und transitiv ist. Eine strikte Ordnungsrelation heißt vollständig, wenn für alle $x,y\in M$ mit $x\neq y$ gilt $(x,y)\in T\vee (y,x)\in T$.

Bsp. 10:

- a) $M = \mathbb{R}$, $T \subseteq \mathbb{R} \times \mathbb{R}$ mit $(x, y) \in T :\equiv x \leq y$ ist eine vollständige Ordnungsrelation auf \mathbb{R} .
- b) Die Relation "<" ist eine (vollständige) strikte Ordnungsrelation.
- c) E sei eiine Menge, M sei die *Menge aller Teilmengen von* E, d.h. M ist die Potenzmenge $M = \mathcal{P}(E)$ von E. $T \subseteq M \times M$ mit $A \subseteq E$ ist eine Ordnungsrelation auf $A \subseteq E$ (Inklusion).

Diskussion:

- 1.) In der Literatur wird manchmal die Relation im Sinne von Def. 14 als Halbordnung und nur eine vollständige als Ordnung als Ordnungsrelation bezeichnet.
- 2.) Zu jeder Ordnung T_1 (auf M) gehört eine strikte Ordnung T_2 und umgekehrt: $T_2 = T_1 \setminus I_M$ bzw. $T_1 = T_2 \cup I_M$ (T_1 eist die reflexive Hülle von T_2), z.B. (\leq , <) oder (\subseteq , \subset).

Mathematik I

3.) Die Symbole ≤ (bzw. <) können anstelle der Paarschreibweise auch bei beliebigen Ordnungen verwendet werden, falls keine anderen Zeichen dafür üblich sind.

Def. 16:

T sei eine Ordnungsrelation auf eine Menge M. Weiter sei A eine Teilmenge von M.

- a) Ein Element $a \in M$ heißt obere Schranke von A, wenn gilt: $\forall x \in A \quad x \leq a \quad (x \leq a \text{ d.h. } (x,a) \in T, \text{ vgl. 3.})$ der vorhergehenden Diskussion)
- b) Es sei B die Menge der oberen Schranken von A, diese sei nicht leer. Falls es eine *kleinste obere Schranke* s von A gibt, d.h. $\exists s \in B \quad \forall b \in B \quad s \leq b$, so heißt s das *Supremum von* A, $s = \sup A$
- c) Gilt $s \in A$, so heißt s das Maximum von A: s = max A = sup A
- d) Ein Element $m \in A$ heißt maximal, wenn es kein größeres Element in A gibt, d.h. $\forall x \in A \ (m \le x \Rightarrow m = x)$

Diskussion:

- 1.) Die Begriffe aus Def. 16 lassen sich auf strikte Ordnungen S übertragen, indem anstelle von S die reflexive Hülle $T = S \cup I_M$ verwendet wird.
- 2.) Bei Ordnungsrelationen T (auch für strikte Ordnungen) auf endlichen Mengen M kann ein vereinfachter Graph, das sogenannte HASSE-Diagramm, betrachtet werden.
 - a \longrightarrow b $(a \neq b)$ bedeutet $(a,b) \in T$ und es gibt kein Zwischenglied $c \neq a$ und $c \neq b$ mit $(a,c) \in T \land (c,b) \in T$ (a ist unmittelbarer Vorgänger von b bzw. b Nachfolger von a). Diesem Diagramm entspricht eine Teilrelation $U \subseteq T$, deren transitiv-reflexive Hülle (bzw. transitive Hülle bei strikten Ordnungen) T ist.
- 3.) Veranschaulichung von Def. 16 mit einem HASSE-Diagramm einer nicht vollständingen Ordnung (nicht linear)

z.B. Arbeitsgänge, die in einer bestimmten Reihenfolge durchgeführt werden müssen, A bspw. Teilarbeiten einer Zweigfirma

obere Schranken: e, f, g

$$sup A = e$$

Maximum von A: existiert nicht, da $e \notin A$

maximale Elemente von A: c, d

- 4.) Bei nichtlinearen Ordnungen müssene obere Schranken, Supremum und Maximum nicht existieren, es kann mehrere maximale Elemente $A\subseteq M$ geben. Bei linearen Ordungen auf *endlichen* Mengen gibt es genau ein maximales Element = $\max A = \max B$
- 5.) Analog zur Def. 16 werden die Begriffe untere Schranken a von A ($\forall x \in A \ a \leq x$), größte untere Schranke (Infinum) s von A ($B \neq \emptyset$... Menge der unteren Schranken, $\exists s \in B \ \forall a \in B \forall a \leq s$), Minimum von A ($min\ A = inf\ A = s$ falls $s \in A$) und minimales Element m von A ($\forall x \in A \ (x \leq m \Rightarrow x = m)$) definiert.

Bsp. 11:

Eine bestimmte Arbeitsaufgabe besteht aus mehreren Arbeitsgängen.

Es sei $A = \{1, 2, 3, 4, 5, 6\}$ die Menge der Arbeitsgänge. Die Arbeitsgänge $\{2, 3, 5\} =: S$ werden von einer Subfirma durchgeführt. Für die Reihenfolge gilt: 1 muss vor 2, 2 vor 3 und 5, 3 vor 4 sowie 5 vor 6 durchgeführt werden.

- a) Man beschreibe diese Forderungen durch eine Relation $U \subseteq A \times A$ und stelle sie graphisch dar (HASSE-Diagramm).
- b) Man ermittle die transitive Hülle U^+ von U.
- c) Man gebe (falls vorhanden) obere Schranken, Supremum, Maximum, max. Elemente sowie untere Schranken, Infinum, Minimum, min. Elemente von S an.

Lösung:

b)
$$U \circ U = \{(1,3), (1,5), (2,4), (2,6)\}$$

 $U \circ (U \circ U) = \{(1,4), (1,6)\}$
 $U^4 = \emptyset$

2.3.5. Funktionen

Def. 17:

Eine Relation $f \subseteq x \times y$ heißt Funktion (Abbildung) von X in Y, wenn sie linksvollständig und rechtseindeutig ist.

Diskussion:

• Gemäß Def. 7 a+c aus Kapitel 2.3.1 bedeutet linksvollständig *und* rechtseindeutig, dass zu jedem $x \in X$ genau ein $y \in Y$ mit $(x, y) \in f$ existiert, also eindeutige Zuordnung:

$$x \longmapsto y =: f(x)$$

 $\overline{\textit{Schreibweise: } f}:X\to Y \text{ (manchmal } f|X\to Y$

y = f(x) heißt auch Bild von x, x ein Urbild von y (muss nicht eindeutig sein).

• X = Db(f)... Definitionsbereich,

$$Wb(f) = \{y \in Y | \exists x \in x \quad (x,y) \in f\} \subseteq Y \dots$$
 Wertebereich

Schreibweise auch f(X) := Wb(f) (Menge aller Bilder).

$$f: \mathbb{R} \to \{0, 1\}$$

Def. 18:

a) Eine Abbildung f heißt *surjektiv* (Auch Abbildung auf Y),

b) Eine Funktion f heißt *injektiv*, wenn zu jedem $y \in Wb(f)$ genau ein $x \in Db(f)$ existiert mit $(x,y) \in f$:

$$y \longmapsto x =: f^{-1}(y)$$

$$\in Wb(f) \qquad \in Db(f)$$
(" f oben -1")

Die dadurch erklärte Abbildung $f^{-1}: Wb(f) \to Db(f)$ heißt *Umkehrfunktion* von f, vgl. auch Kap $\ref{eq:continuous}$?

c) Eine injektive und surjektive Abb. von X auf Y heißt bijektiv.

d) Gebräuchlich sind auch die Begriffe Surjektion, Injektion und Bijektion!

Bsp. 12:

Gegeben sind die Mengen $X = \{a, b, c\}$ und $Y = \{1, 2, 3, 4\}$ sowie folgende Relation in $X \times Y$:

a) T_1 : (X) (Y)

 T_1 ist eine Funktion $f(=T_1):f:X\to Y$ (1) diese ist injektiv, $Db(f)=X=\{a,b,c\}$, $Wb(f)=\{1,2,4\}=:W,\,f:X\to W$ (2) ist surjektiv, also sogar bijektiv. Als Relation sind (1) und (2) nicht zu unterscheiden, aber als Funktion.

b) T_2 : (X) (Y)

 T_2 ist keine Funktion, nicht linksvollständig. Betrachtet man $D=\{a,b\}\subset X$, so ist durch T_2 eine Funktion $f:D\to Y$ beschrieben, die Funktion ist injektiv und kann mit $W:=f(D)=\{1,3\}$ zu einer bijektiven Abbildung $f:D\to W$ umgewandelt werden.

c) T_3 : (X) (Y)

 T_3 ist keine Funktion, da nicht rechtseindeutig.

Bsp. 13:

a) $f:[0,\infty)\to\mathbb{R}$ mit " $x\to y=f(x)=\sqrt{x}$ ist eine Funktion einer reelen Veränderlichen (injektiv).

b) $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $(x,y) \longmapsto x^2 + y^2 = f(x,y) =: z$ Funktion zweier reeller Veränderlicher.

c) $f:\mathbb{N}\to\mathbb{R}$ mit $n\longmapsto f(n)=\frac{n}{n+1}$ ist eine (reelle) Zahlenfolge. $f(0)=1, f(1)=\frac{1}{2}, f(2)=\frac{2}{3}, \dots$ Bezeichnung meist mit Index: $a_n=f(n)\curvearrowright ZF(a_n)$ $n\in\mathbb{N}$

Def. 19:

Es seien $g:=X\to U$ mit $x\longmapsto u=g(x)$ und $f:U\to Y$ mit $u\longmapsto y=f(u)$ zwei Abbildungen. Dann stellt man die Zuordnung $x\longmapsto y=f(g(x))$ eine Abbildung von X in Y dar, eine sogenannte mittelbare Funktion (Komposition / Verkettung). Bezeichnung: $g\circ f:X\to Y$ mit $y=(g\circ f)(x)=f(g(x))$

Diskussion:

1.) $x\longmapsto u=g(x)\quad u\longmapsto f(u)=f(g(x))$ Paarschreibweise: $(x,u)\in g \qquad (u,y)\in f\curvearrowright (x,y)\in g\circ f$

2.) g wird zuerst angewendet, dann f. Wie bei beliebigen Relationen die die Schreibweise $g \circ f$

3.) In der Literatur findet man oft die Schreibweise $f \circ g$ angelehnt an die Schreibweise f(g(x)). Die Reihenfolge der Berechnung ast aber von innen nach außen, erst innere Funktion g, dann die äußere f.

Satz 3:

Es sei $f: X \to Y$ eine *Bijektion*, d.h. es existiert die Umkehrfunktion $f^{-1}: Y \to X$, weiter sei i_A für

eine beliebige Menge A die identische Abbildung (Identitätsrelation): $i_A:A\to A$ mit $i_A(x)=x$ für alle $x\in A$.

Es gilt dann:

$$f \circ f^{-1} = id_X$$
, d.h. $(f \circ f^{-1})(x) = f^{-1}(f(x)) = x(\forall x \in X)$ und $f^{-1} \circ f = id_Y$, d.h. $(f^{-1} \circ f)(y) = f(f^{-1}(y)) = y(\forall y \in Y)$

(Funktion und Umkehrfunktion nacheinander angewandt heben sich auf).

Satz 4:

Es seien $g=X \to U$ und $h:U \to Y$ zwei Bijektionen. Dann ist die Komposition $f:=g \circ h:X \to Y$ ebenfalls eine Bijektion und es gilt:

$$f^{-1} = (g \circ h)^{-1} = h^{-1} \circ g^{-1}$$

2.4. Gleichmächtigkeit, Kardinalzahlen

Es sei eine hinreichend mufassend Grundmenge, die alle für eine mathematische Theorie relevante Objekte (Zahlen, Funktionen, usw.) enthält. M sei die Potenzmenge von $E(d.h.\ M$ ist die Menge aller Teilmengen von $E,\ M=\mathcal{P}(E)$).

Def. 20:

Zwei Mengen A und B ($A \subseteq E, B \subseteq E$ bzw. $A \in M, B \in M$) heißen *gleichmächtig* (Bezeichnung $A \sim B$), wenn eine bijektive Abbildung von A auf B (damit auch B auf A) existiert.

Diskussion:

- 1.) Offensichtlich ist die Relation $T\subseteq M\times M$ mit $(A,B)\in T:\equiv A\sim B$ eine Äquivalenzrelation auf M.
- 2.) Äquivalenzklassen sind Mengen gleichmächtiger Teilmengen von E. Diese Äquivalenzklassen nennt man Kardinalzahlen.
- 3.) Bei endlichen Mengen bedeutet Gleichmächtigkeit:

Gleiche Anzahl von Elementen

$$A = \{a, b, c\}, B = \{X, Y, Z\}$$

(Abbildung bspw.
$$a \to X$$
 $b \to Y$ $c \to Z$)

Bezeichnung:
$$cardA = |A| = 3 \quad (= |B|)$$

Natürliche Zahlen sind die Kardinalzahlen endlicher Mengen.

4.) Die Anschauung versagt bei unendlichen Mengen.

Die Strecken A und B sind gleichmächtig, obwohl A länger als B ist.

Def. 21:

Eine Menge heißt abzählbar unendlich, wenn sie mit der Menge $\mathbb{N}=\{1,2,3,4,...\}$ der natürlichen Zahlen gleichmächtig ist.

Diskussion:

- 1.) M ist abzählbar unendlich heißt, es existiert eine $Z\ddot{a}hlvorschrift$, bei der jedes Element von Mnach endlich vielen Schritten erreicht wird.
- 2.) Die Menge Z der ganzen Zahlen ist abzählbar unendlich.

Andordnen nach steigendem Betrag:

$$\mathbb{Z} = \{0, -1, 1, -2, 2, -3, 3, ...\}$$

3.) \mathbb{Q}^+ ... Menge der pos. rationalen Zahlen

ABB 61

Zählvorschrift:

- a) (aufsteigend) Ordnen nach Summen von Zöhler und Nenner
- b) Zahlen mit gleicher Summe der Größe nach aufsteigend anordnen.
- c) Bereits enthaltene Zählen (=kürzbare Brücke) weglassen.

$$\mathbb{Q}^+ = \left\{ \frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \frac{3}{1}, \dots \right\}$$

analog zu \mathbb{Z} : Die Menge \mathbb{Q} aller rationalen Zahlen (also \mathbb{Q}^- zusammen mit \mathbb{Q}^+) ist abzählbar unendlich.

4.) Es gibt Mengen, die mächtiger sind als die Menge der natürlichen Zahlen: überabzählbare *Mengen* (B heißt *mächtiger* als A, wenn se eine injektive Abbildung $f: A \to B$ gibt, aber keine bijektive. Schreibweise: |A| < |B|).

z. B. gilt:

Satz 5: Die Menge $M = \{x \in \mathbb{R} | 0 < x < 1\} = (0, 1)$ ist überabzählbar.

Beweis: (CANTORsches Diagonalverfahren)

Indirekt, angenommen M = (0,1) sei abzhälbar unendlich, d.h. $M = \{x_1, x_2, x_3, ...\}$.

Für die Zahlen x_k wählen wir z.B. die eindeutige Darstellung als Dezimalbruch (9er Periode vermeiden). Also bspw. $0,39999... = 0,3\overline{9} = 0,4 = 0,40000...$

$$x_1 = 0, a_1^{(1)} a_2^{(1)} a_3^{(1)} \dots$$

$$x_2 = 0, a_1^{(2)} a_2^{(2)} a_3^{(2)} \dots$$

$$x_3 = 0, a_1^{(3)} a_2^{(3)} a_3^{(3)} \dots$$

Es sei
$$z=0, b_1b_2b_3...$$
 mit $b_k= \begin{cases} 1 & \text{falls } a_k^{(k)} \neq 1 \\ 2 & \text{falls } a_k^{(k)} = 1 \end{cases}$ für $k=1,2,3,...$

Damit unterscheiden sich x_k und z an der k-ten Stelle, d.h. $z \neq x_k$ für alle $k \geq 1$. z ist also nicht in der Folge x_1, x_2, x_3, \dots enthalten, also $z \notin M$.

Andererseits ist 0 < z < 1 also $z \in (0,1) = M$. 4 Widerspruch! #

Satz 6:

Es sei E eine Menge. Dann ist die Potenzmenge $M = \mathcal{P}(E)$ mächtiger als E. Beweis:

1.) Die Abbildung $f: E \to M$ mit $f(x) = \{x\}$, die jedem $x \in E$ die einelementige Menge $\{x\} \in M$ zuordnet, ist injektiv.

- 2.) Angenommen, es gäbe eine bijektive (damit auch surjektive) Abbildung $g: E \to M$. Es sei $A = \{x \in E | x \notin g(x)\} \in M$ (A Teilmenge von E). Da g surjektiv ist, gibt ein $a \in E$ mit g(a) = A. Fallunterscheidung:
 - a) $a \in A = g(a) \Rightarrow a \notin g(a) \not$ Widerspruch!
 - b) $a \notin A = g(a) \Rightarrow a \in g(a) \not$ Widerspruch!

Beide Fälle führen auf einen Widerspruch, es gibt keine surjektive und damit auch keine bijektive Abbildung von E auf $\mathcal{P}(E)$. #

Diskussion:

Satz 6 zeigt, dass es unendlich viele unendliche Mächtigkeiten gibt. So gilt bspw. $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathbb{N})|$ usw.

Satz 7:

Die Potenzmenge $\mathcal{P}(\mathbb{N})$ der Menge der natürlichen Zahlen ist gleichmächtig mit dem Intervall (0,1), also überabzählbar (Beweis: siehe Übungsaufgabe 1.38).