2-3 Counting

Hengfeng Wei

hfwei@nju.edu.cn

March 12, 2020

The Analysis of Algorithms

"People who analyze algorithms have double happiness ..."

Donald E. Knuth (1938 \sim)

Unfortunately, you have to master some mathematics.

Counting

Sums \sum Binomials (

Counting

tuples
permutations
combinations

compositions partitions

Counting # of functions under (twelve) different restrictions

Counting vs. Generating

Generating is about algorithms.

Counting # of functions under (twelve) different restrictions

$$f: N \to M \qquad (|N| = n, \quad |M| = m)$$

$$12 = (2 \times 2) \times 3$$

Elements of N	Elements of M	Any f	Injective f	Surjective f
distinguishable	distinguishable			
in distinguishable	distinguishable			
distinguishable	in distinguishable			
in distinguishable	in distinguishable			

Table: The Twelvefold Way.

Balls	Bins	unrestricted	≤ 1	≥ 1
unlabeled	unlabeled			
labeled	unlabeled			
unlabeled	labeled			
labeled	labeled			

Table: The Twelvefold Way (Balls into Bins Model).

(unrestricted)

labeled balls into labeled bins

unlabeled balls into labeled bins

Only the # of balls in each bin matters.

(unrestricted)

labeled balls into labeled bins

labeled balls into unlabeled bins ...

(unrestricted)

unlabeled balls into labeled bins

Only the # of balls in each bin matters.

Elements of N	Elements of M	Any f	Injective f	Surjective f
distinguishable	distinguishable			
in distinguishable	distinguishable			
distinguishable	in distinguishable			
in distinguishable	in distinguishable			

Table: The Twelvefold Way.

	Any f	Injective f	Surjective f
f			
$f \circ S_n$			
$S_m \circ f$			
$S_m \circ f \circ S_n$			

Table: The Twelvefold Way.

$$S_n = \{ f : N \stackrel{\text{onto}}{\longleftrightarrow} N \}$$

(unrestricted)

labeled balls into labeled bins

unlabeled balls into labeled bins

$$f: 1 \mapsto A, \quad 2 \mapsto B$$

$$f': 2 \mapsto A, \quad 1 \mapsto B$$

$$f' = f \circ (h: 1 \mapsto 2, \quad 2 \mapsto 1)$$

Passing out Apples to Children

k-Permutation (CS: 1.2-5)

We need to pass out k distinct apples (pieces of fruit) to n children such that each child may get at most one apple.

- (a) $k \le n$?
- (b) What if k > n?

$$n^{\underline{k}} \triangleq n(n-1)\cdots(n-k+1)$$

0

Multisets (CS: 1.5-4)

Use multisets to determine the number of ways to pass out k identical apples to n children. Assume that a child may get more than one apple.

$$x_i$$
: the # of apples the *i*-th child gets

$$x_1 + x_2 + \dots + x_n = k, \quad x_i \ge 0$$

Integer composition (The order matters!)

$$y_i \triangleq x_i + 1$$

$$y_1 + y_2 + \dots + y_n = n + k, \qquad \mathbf{y_i} \ge 1$$

$$\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

Multisets (CS: 1.5-4)

Use **multisets** to determine the number of ways to pass out k identical apples to n children. Assume that a child may get more than one apple.

Q: k-multiset of $[1 \cdots n]$ vs. n-multiset of $[1 \cdots k]$

$$k=7$$
 $n=5$

Integer Partition (CS: 1.5-4 Extended)

What is the number of ways to pass out k identical apples to n- . Assume that a child may get more than one apple.

Integer partition of k into $\leq n$ parts (The order does not matter!)

Theorem (G. H. Hardy, Ramanujan (1918))

$$p(k) \triangleq \sum_{x=1}^{x=k} p_x(k) \sim \frac{1}{4\sqrt{3}k} \exp\left(\pi\sqrt{\frac{2k}{3}}\right)$$

Set Partition (CS: 1.5-4 Extended)

What is the number of ways to pass out k distinct apples to n-. Assume that a child may get more than one apple.

Set partition of $[1 \cdots k]$ into $\leq n$ parts

Set Partition (CS: 1.5 - 12)

$$S(n,k)$$
 $\left\{ n \atop k \right\}$: # of set partitions of $[1 \cdots n]$ into k classes

Stirling number of the second kind

Theorem (Recurrence for S(n,k))

$$S(0,0) = 1, \quad S(n,0) = S(0,n) = 0 \ (n > 0)$$

$$S(n,k) = S(n-1,k-1) + kS(n-1,k), \quad n > 0, k > 0$$

Proof.

$$S(n,k) = \underbrace{S(n-1,k-1)}_{n \text{ is alone}} + \underbrace{kS(n-1,k)}_{n \text{ is not alone}}$$

Bell number:
$$B_n = \sum_{k=0}^{k=n} {n \brace k}$$

Theorem (Berend & Tassa (2010))

$$B_n < \left(\frac{0.792n}{\ln(n+1)}\right)^n, n \in \mathbb{Z}^+$$

Theorem (de Bruijn (1981))

As $n \to \infty$,

$$\frac{\ln B_n}{n} = \ln n - \ln \ln n - 1 + \frac{\ln \ln n}{\ln n} + \frac{1}{\ln n} + \frac{1}{2} \left(\frac{\ln \ln n}{\ln n} \right)^2 + O\left(\frac{\ln \ln n}{(\ln n)^2} \right)$$

THE TWELVEFOLD WAY

balls per urn	unrestricted	≤ 1	≥ 1	
n labeled balls, m labeled urns	n-tuples of m things	n-permutations of m things	partitions of $\{1, \ldots, n\}$ into m ordered parts	
n unlabeled balls, m labeled urns	n-multicombinations of m things	n-combinations of m things	compositions of n into m parts	
n labeled balls, m unlabeled urns	partitions of $\{1, \dots, n\}$ into $\leq m$ parts	n pigeons into m holes	partitions of $\{1, \dots, n\}$ into m parts	
n unlabeled balls, m unlabeled urns	partitions of n into $\leq m$ parts	n pigeons into m holes	partitions of n into m parts	

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn