电子科技大学

2015 年攻读硕士学位研究生入学考试试题

考试科目: 820 计算机专业基础

注: 所有答案必须写在答题纸上,写在试卷或草稿纸上均无效。

《计算机操作系统》

—,	填空题(5分,每空1分)
1.	在生产者——消费者问题中,若 10 个生产者、5 个消费者共享容量为 8 的缓冲区,则互斥使用缓冲区的信号量的初值为。
2.	某简单段式存储管理系统中,地址长度为32位,若允许的最大段长为64KB,则段号占位。
3.	一一一点。 设文件 F1 的当前引用计数值为 1, 先建立文件 F1 的符号链接(软链接)文件 F2, 再建立文件 F1 的硬链接文件 F3, 然后删除文件 F1。此时, 文件 F2 和文件 F3 的引用计数值分别为、。
4.	某文件占 10 个磁盘块,现要把该文件磁盘块逐个读入主存缓冲区,并送用户区进行分析。假设一个缓冲区与一个磁盘块大小相同,把一个磁盘块读入缓冲区的时间为 200μs,将缓冲区的数据传送到用户区的时间为 100μs,CPU 分析一块数据的时间为 100μs,则在双缓冲区结构下,读入并分析完该文件的时间为μs。
Ξ,	选择题(10分,每题1分)
1.	提高单机资源利用率的关键技术是 ()。
2.	进程的基本状态()可以由其它两种基本状态转变而来。A. 就绪状态B. 执行状态C. 阻塞状态D. 新建状态
3.	在高响应比进程调度算法中,其主要影响因素是 ()。A. 等待时间B. 剩余运行时间C. 已运行时间D. 静态优先级
4.	系统中资源 R 的数量为 12, 进程 P1、P2、P3 对资源 R 的最大需求分别为 10、4、9。若当前已分配给 P1、P2、P3 的资源 R 的数量分别为 5、2、2,则系统()。A. 处于不安全状态B. 处于安全状态,且安全序列为 P1->P2->P3
	C. 处于安全状态,且安全序列为 P2->P3->P1
5.	D. 处于安全状态,且安全序列为 P2->P1->P3 分页系统中的页面为()。

B. 操作系统所感知

A. 用户所感知

C. 编译程序所感知

- D. 链接、装载程序所感知
- 6. 虚拟存储管理系统的基础是程序的()理论。
 - A. 动态性

B. 虚拟性

C. 局部性

- D. 共享性
- 7. DMA 是在()建立一条直接数据通路。
 - A. I/O 设备和主存之间

B. I/O 设备之间

C. I/O 设备和 CPU 之间

- D. CPU 和主存之间
- 8. 程序员利用系统调用打开 I/O 设备时,通常使用的设备标识是()。
 - A. 主设备号

B. 次设备号

C. 物理设备名

D. 逻辑设备名

- 9. 虚拟设备是指()
 - A. 允许用户以统一的接口使用物理设备
 - B. 允许用户使用比系统具有的物理设备更多的设备
 - C. 把一个物理设备变换为多个对应的逻辑设备
 - D. 允许用户程序部分装入内存即可使用系统中的设备
- 10. 对目录和文件的描述正确的是()。
 - A. 文件大小只受磁盘容量的限制
 - B. 多级目录结构形成一颗严格的多叉树
 - C. 目录也是文件
 - D. 目录中可容纳的文件数量只受磁盘容量的限制

三简答题(20分,每题10分)

1. 什么是临界资源、死锁?若采用以下算法解决哲学家就餐问题,是否会导致死锁?为什么?

```
semaphore fork[5] = \{1, 1, 1, 1, 1\};
void main()
     cobegin {
          philosopher(0);
          philosopher(1);
          philosopher(2);
          philosopher(3);
          philosopher(4);
     } coend
 }
void philosopher(int i)
      while(1) {
           thinking;
           if (i == 0) {
                P(fork[i]);
                P(fork[(i+1)\%5]);
           } else {
```

```
P(fork[(i+1)%5]);
P(fork[i]);
}
eating;
V(fork[i]);
V(fork[(i+1)%5]);
}
```

2. 文件物理结构是指一个文件在外存上的存储组织形式,主要有连续结构、链接结构和索引结构三种,请分别简述它们的优缺点。

四、分析计算题(40分,每题20分)

- 1. 某 32 位计算机采用二级页表的分页存储管理方式,按字节编址,页大小为 4KB,页表项大小为 4B。某进程的页表内容如下图所示(图中数字为十进制),请回答以下问题:
 - (1) 给出逻辑地址结构示意图,请说明理由;
 - (2) 计算逻辑地址 4206501 (十进制) 对应的物理地址。

2. 某双车道公路中一小段因发生塌方事故,变成了单车道(对向行驶的车辆无法同时通行),如下图所示。为保证车辆顺利通行,必须对经过塌方路段的车辆予以控制。请用信号量描述此控制过程,并说明信号量含义。

《数据结构》

一、填空题(共10分,每空1分)

1.	数据的逻辑结构是对数据之间关系的描述,	主要有	和两大类。		
2.	程序 for(int i=0;i <n;i+=5); th="" 的时间复杂度为<=""><th>o</th><th></th></n;i+=5);>	o			
3.	在单链表L中的p结点之后插入q结点的	操作是	和。		
4.	循环队列的容量为 MAXSIZE,采用牺牲一		造,队头指针是 front,队		
	尾指针是 rear,则队空的条件是	o			
5.	具有 512 个结点的完全二叉树的深度为				
6.	若以{5,6,7,8,9}作为叶结点的权值构造哈夫曼树,则其带权路径长度是。				
7.	G 是一个非连通无向图, 共有 15 条边, 则该图至少有个顶点。				
8.	8. 设有一组初始关键字序列(46,79,56,38,40,84),执行第一趟快速排序后所得				
	是。				
二、	单选题(共20分,每题2分)				
1	具有 n 个元素的线性表采用顺序存储结构,	左甘笋; 个位署场)) 一个新元麦的質注时间		
1.	复杂度为 () (1≤i≤n+1)。	在另外1 匹直四/	1 例几款印开石町門		
	A. O (1) B. O (i)	C. O (n)	D. $O(n^2)$		
2.	一个栈的输入序列为 1,2,3,, n, 若输出				
	个元素是()。	77777			
	A. n-i B. n-i-1	C. n-i	D. i		
3.	广义表((a, (b,c)),d,e)的表头是()				
	A. a B. (a, (b, c))		D. (b, c)		
4.	以下哪些遍历序列的组合可以还原二叉树				
	A. 先序遍历序列和后序遍历序列	B. 后序遍历序列和	中序遍历序列		
	C. 先序遍历序列和层序遍历序列	D. 中序遍历序列和	层序遍历序列		
5.	与克鲁斯卡尔(Kruskal)相比,普里姆(Prin	n) 算法更适于求哪和	中网的最小生成树()。		
	A. 边稠密的网 B. 边稀疏的网	C. 顶点稠密的网	D. 以上都不是		
6.	关键路径是事件结点网络中()。				
	A. 从源点到汇点的最短路径	B. 从源点到汇点边	数最多的路径		
	C. 从源点到汇点结点数最多的路径	D. 从源点到汇点的	最长路径		
7.	若用邻接矩阵存储有向图,矩阵中主对角约	浅以下元素均为零, 原	则关于该图拓扑序列的结		
	论是()。				
	• • • • • • • • • • • • • • • • • • • •	B. 存在,但不唯一			
		D . 无法确定是否存	在		
8.	在下列排序算法中,占用辅助空间最多的是				
	A. 归并排序 B. 快速排序				
9.	设哈希表长 m=9,哈希函数 H (key) =key%		· ·		
	空,如用二次探测再散列处理冲突,关键写 A. 1 B. 3 C. 7 D.		J.		
10			为县小估) 坛 \		
10.	已知关键字序列 5,8,12,19,28,20,15,22 是小根堆(堆顶元素为最小值),插入关键3,调整后得到的小根堆是()。				
	A. 3,5,12,8,28,20,15,22,19	B. 3,5,12,19,20,15,	22 8 28		
	11. 3,3,14,0,40,40,13,44,17	D. 3,3,14,19,40,13,	,44,0,40		

三、简答题(共20分,每题5分)

- 1. 对任何一颗二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,推导 n0 与 n2 的关系。
- **2.** 图 **1** 所示的平衡二叉树中,插入节点 **48**,请画出插入位置及插入后每个节点的平衡因子,并调整为新的平衡二叉树。

图 1 平衡二叉树

3. 给定下图 AOV 网,如图 2 所示,写出 5 个拓扑排序序列。

图 2 AOV 网

4. 设 G=(V, E)以邻接表存储,如图 3 所示,以顶点 v1 为根画出图的深度优先和广度优先生成树。

图3 G的邻接表

四、算法题(共25分)

- 1. (10 分)给定两个升序线性表 L1 和 L2,设计一个函数,将两个升序线性表合并为一个升序线性表 L,新线性表 L 中无重复数据。
- 2. (15 分)采用二叉链表的存储结构,用非递归算法(pop(s,t), push(s,t))交换二叉树的左右子树,要求:
 - (1) 给出算法的基本设计思想。
 - (2) 根据设计思想,设计一个算法。
 - (3) 说明你所设计算法的时间复杂度。