4. Divisibilidad

4.1. División con resto

Para obtener el cociente de una división con resto se utiliza la función **Quotient[x,y]** y para obtener el resto tenemos la función **Mod[x,y]**. Si queremos obtener los dos resultados a la vez, empleamos la función **QuotientRemainder[x,y]**. Esta función nos devuelve una lista, siendo la primera componente el cociente y la segunda el resto.

Ejercicios

Realiza las siguientes divisiones enteras:

a)7/4

b)89/33

c)(-5)/4

Nuevas funciones

Quotient, Mod, QuotientRemainder.

4.2. Números primos

Para saber si un número es primo utilizamos la función **PrimeQ[x]**. Si nos devuelve True, el número es primo. Si nos devuelve False entonces es compuesto.

Para obtener el primo n-ésimo se utiliza la función Prime[n]. Dado un número cualquiera, para saber cual es el número siguiente número primo a partir de él, se utiliza la función NextPrime[x,n]. Manejando el segundo argumento, podemos calcular también el primo anterior.

Ejercicios

 Comprueba si son primos o compuestos los siguientes números:

$$a)7$$
 $b)1000$ $c)4323$ $d)2^{32}+1$

- Calcula el primer número primo y el situado en la posición 168.
- Calcula el primer primo que sigue al número 1000.
 Calcula también el anterior.
- Intenta encontrar, mediante ensayo y error, la cantidad de números primos que son menores que 5000.
- Hacer el ejercicio anterior con la función **PrimePi**[x].

Nuevas funciones

PrimeQ, Prime, NextPrime, PrimePi.

4.3. Factorización

Para obtener la descomposición en números primos se utiliza la función **FactorInteger[n]**. La salida es una lista de lista. El primer elemento de la sublista es el factor y el segundo el exponente. También puede factorizar números negativos y fracciones. En el caso de la fracciones los factores del denominador aparecen con exponente negativo. Además se eliminan los factores repetidos (se factoriza la fracción irreducible).

Ejercicios

Factoriza los siguientes números:

$$a(a) = a(b) - 260$$
 $c(a) = a(b) = a$

Nuevas funciones

FactorInteger, Factorial.

4.4. Divisores, mcd y mcm

Divisors[n] nos devuelve el conjunto de divisores del número en cuestión. Para obtener el máximo común divisor de cualquier cantidad de números se utiliza el comando GCD[n,m,...]. Para el mínimo común múltiplo el comando es LCM[n,m,...].

Ejercicios

- Calcula los divisores de 23 y de 60.
- Calcula el *mcd* y el *mcm* de 612 y 5292.
- Calcula lo mismo para 612, 5292 y 48.

Nuevas funciones

Divisors, GCD, LCM.