

Web Security: Part I

Emilio Coppa

coppa@diag.uniroma1.it

Sapienza University of Rome

Credits

These slides are based on teaching material originally created by:

- Marco Squarcina (<u>marco.squarcina@tuwien.ac.at</u>), S&P Group, TU WIEN
- Mauro Tempesta (<u>mauro.tempesta@tuwien.ac.at</u>), S&P Group, TU WIEN
- Leonardo Querzoni (<u>querzoni@diag.uniroma1.it</u>), Sapienza University of Rome
- Fabrizio D'Amore (<u>damore@diag.uniroma1.it</u>), Sapienza University of Rome

The Cost of Vulnerabilities

DEFINITIONS

- A vulnerability is a weakness which allows an attacker to reduce system's information assurance.
- A vulnerability is the intersection of three elements:
 - o a system susceptibility or flaw
 - o attacker access to the flaw
 - o attacker capability to exploit the flaw

DEFINITIONS

Causes:

- o Bugs
- Design defects
- Misconfigurations
- Aging

Fostering factors

- System complexity
- Connectivity
- Incompetence

MOTIVATIONS

- Vulnerability in software is one of the major reasons for insecurity
 - 20 flaws per thousand lines of code (Dacey 2003)
 - Steady increase in vulnerability exploitations
- Fully secure software is unlikely
- 95% of breaches could be prevented by keeping systems up-to-date with patches (Dacey 2003)

Source: 25 Years of Vulnerabilities: 1988-2012,

VULNERABILITY LIFE CYCLE

CREATION

DISCOVERY

- Malicious users
- Benign users (final users, security firms, researchers, ...)

EXPLOITATION

DISCLOSURE

- Keep it secret
- Publicly disclose
- Sell
- PATCH

VULNERABILITY LIFE CYCLE: WHO PAYS THE COST?

Source: S. Frei, D. Schatzmann, B. Plattner and B. Trammell, Modelling the Security Ecosystem - The Dynamics of (In)Security,

RESPONSIBLE DISCLOSURE

- Forget about malicious users
- What process should a responsible user follow to disclose the vulnerability?
 - No consensus
 - Different vendors provides different guidelines for disclosure
 - O CERT (Computer Emergency Response Team) allows a 45-days grace period. OIS allows a 30-days grace period
 - Security firms follow their internal guidelines

DISCLOSURE POLICY EFFECTS

Full Vendor Disclosure

- Promotes secrecy
- Gives full control of the process to the vendor

• Immediate Public Disclosure

- Promotes transparency
- Gives the vendor a strong incentive to fix the problem
- Allows vulnerable users to take intermediate measures
- Immediate exposure to risks

Hybrid Disclosure

Promotes both secrecy and transparency

Google VRP, 2018

- Total Google
 Vulnerability
 Reward Program
 payouts, covering
 regular user-facing
 products (including
 web applications)
- → 3.4 million \$ of total rewards in 2018

Source: https://www.arturjanc.com/usenix2019/

HackerOne Top 10, 2018

Bubble size
represents volume
of reports, Y-axis
represents that
Weakness Types
percent of the
total bounties paid
to all Top 10
combined

HackerOne Top 10, 2018

- Bubble size
 represents volume
 of reports, Y-axis
 represents that
 Weakness Types
 percent of the
 total bounties paid
 to all Top 10
 combined
- Only 6 vulnerability types are on the OWASP Top 10, XXE is #15

FAQ

Eligible Research

We acquire zero-day exploits and innovative security research related to the following products:

Operating Systems

Remote code execution or local privilege escalation, or VM escape:

- Microsoft Windows
- Linux / BSD
- Apple macOS
- ESXi / HyperV

Web Browsers

Remote code execution, or sandbox bypass/escape, or both:

- Google Chrome
- Microsoft Edge
- Mozilla Firefox
- Apple Safari

Clients / Files

Remote code execution or information disclosure:

- MS Office (Word/Excel)
- MS Outlook / Mail App
- Mozilla Thunderbird
- Archivers (7-Zip/WinRAR/Tar)

Mobiles / Smartphones

Remote code execution, or privilege escalation, or any other research:

- Apple iOS
- Apple watchOS
- Android
- Windows Mobile

Web Servers

Remote code execution or information disclosure:

- Apache HTTP Server
- Microsoft IIS Server
- nginx web server
- PHP / ASP
- OpenSSL / mod_ssl

Email Servers

Remote code execution or information disclosure:

- MS Exchange
- Dovecot
- Postfix
- Fxim
- Sendmail

₩eb Apps / Panels

Remote code execution or information disclosure:

- cPanel / Plesk / Webmin
- WP / Joomla / Drupal
- vBulletin / MyBB / phpBB
- IPS Suite / IP.Board
- Roundcube / Horde

Research / Techniques

Research, exploits or new techniques related to:

- WiFi / Baseband RCE
- Routers / IoT RCE
- AntiVirus RCE/LPE
- Tor De-anonymization
- Mitigations Bypass

^{*} All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.

2019/01 © zerodium.com

Example: ProxyLogon (2021)

- ProxyLogon is a recent vulnerability found on Microsoft Exchange Servers
 - discovered by Orange Tsai
 (DEVCORE Research Team)
- Prerequisites for the attack:
 - o an open HTTPS port (443), i.e., the server is running!

o an unauthenticated attacker can execute arbitrary commands on the system (spawn a remote shell, leak all files, ...)

Example: ProxyLogon (2)

Vulnerability Disclosure Timeline:

October 01, 2020	DEVCORE started reviewing the security on Microsoft Exchange Server
December 10, 2020	DEVCORE discovered the first pre-auth proxy bug (CVE-2021-26855)
December 27, 2020	DEVCORE escalated the first bug to an authentication bypass to become admin
December 30, 2020	DEVCORE discovered the second post-auth arbitrary-file-write bug (CVE-2021-27065)
December 31, 2020	DEVCORE chained all bugs together to a workable pre-auth RCE exploit
anuary 05, 2021	DEVCORE sent (18:41 GMT+8) the advisory and exploit to Microsoft through the MSRC
	portal directly
anuary 06, 2021	MSRC acknowledged the pre-auth proxy bug (MSRC case 62899)
anuary 06, 2021	MSRC acknowledged the post-auth arbitrary-file-write bug (MSRC case 63835)
anuary 08, 2021	MSRC confirmed the reported behavior
anuary 11, 2021	DEVCORE attached a 120-days public disclosure deadline to MSRC and checked for
	bug collision
anuary 12, 2021	MSRC flagged the intended deadline and confirmed no collision at that time
ebruary 02, 2021	DEVCORE checked for the update
ebruary 02, 2021	MSRC replied "they are splitting up different aspects for review individually and got at
	least one fix which should meet our deadline"
ebruary 12, 2021	MSRC asked the title for acknowledgements and whether we will publish a blog
ebruary 13, 2021	DEVCORE confirmed to publish a blog and said will postpone the technique details for
	two weeks, and will publish an easy-to-understand advisory (without technique details)
	instead
ebruary 18, 2021	DEVCORE provided the advisory draft to MSRC and asked for the patch date
ebruary 18, 2021	MSRC pointed out a minor typo in our draft and confirmed the patch date is 3/9
ebruary 27, 2021	MSRC said they are almost set for release and wanted to ask if we're fine with being
	mentioned in their advisory
ebruary 28, 2021	DEVCORE agreed to be mentioned in their advisory
March 03, 2021	MSRC said they are likely going to be pushing out their blog earlier than expected and
	won't have time to do an overview of the blog
March 03, 2021	MSRC published the patch and advisory and acknowledged DEVCORE officially
March 03, 2021	DEVCORE has launched an initial investigation after informed of active exploitation
	advisory from Volexity
March 04, 2021	DEVCORE has confirmed the in-the-wild exploit was the same one reported to MSRC
March 05, 2021	DEVCORE hasn't found concern in the investigation
March 08, 2021	As more cybersecurity companies have found the signs of intrusion at Microsoft
	Exchange Server from their client environment, DEVCORE later learned that HAFNIUM
	was using ProxyLogon exploit during the attack in late February from Unit 42, Rapid 7,
	and CrowdStrike.
Auguest 06, 2021	DEVCORE has published the technique details and the story afterward

The Cursed Web

Types of Attackers

Web Attacker

- Attacker controls the domain attacker.com, for which it can acquire a valid TLS certificate. The user visits attacker.com (e.g., because of phishing, search results, click-hijacking, ...)
- Variation "gadget attacker": an iframe with malicious content included in an otherwise honest webpage visited by the user
- Variation "related-domain attacker": the attacker controls a related-domain of the target website, e.g., attacker.example.com
- The attacker is a user of a website. The target could be the website or other users. The website should be vulnerable to some attacks.

Network and Malware Attackers

Network attacker

- Passive: wireless eavesdropper
- Active: evil Wi-Fi router, DNS poisoning

Malware attacker

- Malicious code executes directly on victim's computer
- o software bugs, malware, ...

The Cursed Web

- Delusive simplicity for creating web apps
- Lack of security awareness
- Time- & resource limits during development
- Rapid increase in code complexity

Company's security focus shifts towards web

- Security perimeter moves from the network to the application layer
- Web apps intentionally expose functionality to the Internet while being connected to internal servers (e.g., databases)
- Blurred lines between mobile and web apps
 - Web content tightly integrated into mobile apps
 - Unintentional exposure of backend web APIs

Fundamental Problems of the Web Ecosystem

Network protocol issues

- MiTM (SSL Strip), mixed-content sites
- Cookies leaked over HTTP...

Mixing code and data

- SQL injections
- Cross-site scripting (XSS)

Unrestricted attack surface

- Cross-site request forgery (CSRF), Cross-site script inclusion (XSSI)
- Clickjacking, Cross-site search (XS-Search)

Legacy design

- Unsafe legacy APIs, Dangerous web features
- Poor security boundaries in cookie design/adoption

→ Partial list of attacks/issues caused by these fundamental problems

Countermeasures

Client

Hybrid

Server

- XSS Filters
- Sandboxes
- Site Isolation

- HSTS
- CSP
- CORS
- Fetch Metadata
- Trusted Types
- Cookie policies
- ,,

- Prepared statements
- Server-side filtering
- Web Application
 Firewalls
- CSRF tokenization

Countermeasures

Hybrid

- HSTS
- CSP
- CORS
- Fetch Metadata
- Trusted Types
- Cookie policies
- ...

Server

- Prepared statements
- Server-side filtering
- Web Application
 Firewalls
- CSRF tokenization

Countermeasures

Most Critical Web Security Risks

Source: https://owasp.org/www-project-top-ten/

OWASP 2017 top 10: [PDF]

OWASP Cheat sheet: [URL]

Prevalence of Vulnerabilities (HackerOne)

Threats & Defenses

Path Traversal

Path Traversal in a Nutshell

Source: https://portswigger.net/web-security/file-path-traversal

OWASP > A01:2021 - Broken Access Control > Path Traversal

Example of a Path Traversal Attack

```
cho file_get_contents("pages/" . $_GET["page"]);
?>
```

- Consider a web server whose webroot is /var/www/html (standard location on Linux servers)
 - The webroot is the topmost directory in which the files of a website are stored
 - o Files outside the webroot are not accessible
- The webroot contains the file show.php above and a directory pages containing some text files that can be included by the PHP script

Intended Usage

Attack

- Root cause of the problem: The user input provided through via page variable is not (correctly) filtered!
- Attacker can "climb up" multiple levels in the directory hierarchy (and exit the webroot) by using ../ (Linux) or ..\ (Windows) and get access to any file on the web server (sensitive operating system files, TLS keys, etc.)

root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin bin:x:2:2:bin:/bin:/usr/sbin/nologin sys:x:3:3:sys:/dev:/usr/sbin/nologin sync:x:4:65534:sync:/bin:/bin/sync games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

GET /show.php?page=../../etc/passwd HTTP/2

Host: example.com

Preventing Path Traversals

- Ideally: don't use user controlled input as (part of) filenames
- In the real world: Validate all user inputs!
 - If possible, allow only a (static) list of file paths
 - Otherwise, compute the canonical path of the required file and ensure it is not outside the webroot (or the expected directory)

```
<?php
  $pdir = "/var/www/html/pages/";
  $file = realpath($pdir . $_GET["file"]);

if ($file !== false && strncmp($file, $pdir, strlen($pdir)) === 0) {
    echo file_get_contents($file);
  } else {
    echo "Error: invalid input";
  }

?>
```

Preventing Path Traversals - Defense in Depth

- Reduced privileges of web server
 - Restrict access of web server to its own directory
 - Use sandbox environment (chroot jail, SELinux, containers,...) to enforce boundary between web server and the OS

This is a so-called defense-in-depth mechanism: it is a good idea to deploy it, but it should not be the only adopted defense mechanism!

Important directories

Document Root

folder in Web server designated to contain Web pages synonymous: start directory, home directory, web publishing directory, remote root etc. typical names of document root: htdocs, httpdocs, html, public_html, web, www etc.

Server Root

Contains logs & configurations. A few scripts put here their working directory

File permissions

- be aware of permissions given to directories
 - o document root, containing HTML documents
 - o server root, containing log & configuration files; often CGI scripts run here
 - the Common Gateway Interface (CGI) is a standard (RFC3875) that defines how Web server software can delegate the generation of Web pages to a console application. Such applications are known as CGI scripts; they can be written in any programming language, although scripting languages are often used
- good idea: purposely define user and group for the web server
 - o e.g., www & wwwgroup
 - HTML authors should be added to wwwgroup
 - the www should have access only to the right files

Other configurations

Web servers may have additional capabilities, that can increase the risk

- automatic directory listing: an attacker can see the content of directories... what it we have left some sensitive data (e.g., our editor has left a temp copy of our PHP file?), symbolic links, development logs, source code control directories.
- symbolic link following: it may allow an attacker to access unexpected directories
- server side include (SSI): ".shtml" dynamic pages in the 90s... directives for including other files and executing commands. Still enabled somewhere.
- user maintained directory: Still used in several organization, e.g., example.com/~user