Ω -spectrum and cohomology theory

1 Introduction

Introduction

- 2 Ω -spectrum
- Ω -spectrum and Reduced Cohomology Theory
- Reference

Outline

- 1 Introduction
- 2 Ω-spectrum
- Ω -spectrum and Reduced Cohomology Theory
- 4 Reference

Notation

Outline

単位閉区間 [0,1] を I と表す.

基点付き位相空間 (X,x), (Y,y) の基点を保つ連続写像のホモトピー類の集合を $\langle X,Y\rangle$ と表す.

群 G と自然数 n に対し, (G, n) 型 Eilenberg-MacLane 空間をK(G, n) と表す.

 $O = \lim_{n \to \infty} O(n)$ と表し, $U = \lim_{n \to \infty} U(n)$ と表す.

Notation

Outline

集合と写像のなす圏を Set と表す.

基点付き位相空間と基点を保つ連続写像のなす圏を Top_{*} と表す.

基点付き CW 複体のなす Top_* の充満部分圏を CW_* と表す.

アーベル群と群準同型写像のなす圏を Ab と表す.

Top の間の錐をとる関手を C: **Top** \rightarrow **Top** と表す.

Top の間の懸垂をとる関手を S: **Top** \rightarrow **Top** と表す.

Homotopy Theory

Outline

ホモトピーとは, 位相空間や連続写像を連続的に変形するという ことを定式化した概念であり, 位相空間や連続写像から代数的な 対象と準同型写像を与える.

ホモトピー論とは, 1930 年代に Poincare や Hopf などの手により発展しはじめたホモトピーを用いて, 位相空間や連続写像を研究する理論である.

Ω-spectrum and Reduced Cohomology Theory

Category Theory

圏と関手は, 数学的対象とその間の関係を抽象的に扱える概念であり, 圏と関手は様々な応用先があるため, 現代数学では欠かせないものになっている.

圏論とは, 1940 年代に Eilenberg や MacLane がホモロジーやコホモロジーを定式化するために発展しはじめた圏と関手の理論である.

Ω-spectrum and Reduced Cohomology Theory

Outline

CW 複体は胞体を貼り合わせて得られる空間であり, 議論しやすく, 圏論的に優れた性質をもつ.

CW 複体は 1940 年代にホモトピー論の研究の中で Whitehead により定義され, 現代数学でも重要な空間である.

Ω-spectrum

Outline

Outline

- 2 Ω -spectrum

Reduced Cohomology Theory

Definition 1.1 (簡約コホモロジー論)

 CW_* 上の簡約コホモロジー論とは, 整数 n に対し. 関手 $\tilde{h^n}$: $CW_*^{\text{op}} \to Ab$ と CW 対 (X,A) に対し, 自然な双対境界準同型写像 δ^n : $\tilde{h^n}(A) \to h^{\tilde{n}+1}(X/A)$ が与 えられ、以下をみたすものである.

 $(\pi + F)$ ((X, x), (Y, y)) と整数 n に対し, $\tilde{h}^n(f) = \tilde{h}^n(g) \in \operatorname{Hom}_{\mathsf{Ab}}(\tilde{h}^n(Y), \tilde{h}^n(X))$ (完全列公理) CW対 (X, A) に対し, 長完全列

$$\dots \xrightarrow{\delta^{n-1}} \tilde{h^n}(X/A) \xrightarrow{\tilde{h^n}(q)} \tilde{h^n}(X) \xrightarrow{\tilde{h^n}(i)} \tilde{h^n}(A) \xrightarrow{\delta^n} h^{\tilde{n}+1}(X/A) \xrightarrow{h^{\tilde{n}+1}(i)} \dots$$

が存在する.

(ウェッジ和公理) 包含写像 $i_{\alpha}: X_{\alpha} \hookrightarrow \bigvee X_{\alpha}$ は整数 n に対し, 同型

$$\prod_{\alpha} \tilde{h^n}(i_{lpha}) \colon \tilde{h^n}\left(\bigvee_{\alpha} X_{lpha}
ight) \stackrel{\cong}{\longrightarrow} \prod_{\alpha} \tilde{h^n}(X_{lpha})$$
 を誘導する.

Top_{*} の間に重要な随伴関手が存在する.

基点付き位相空間 (X,x) に対し, 基点付き位相空間 $(SX/(\{x\} \times I), [x])$ を対応させ、基点を保つ連続写像 f に対し、 S(f) の商写像を対応させることにより, 関手 Σ : **Top*** \to **Top*** を 得る.

基点付き位相空間 (X,x) に対し, ループ空間を対応させ, 基点を保 つ連続写像 f に対し

対応させることにより, 関手 Ω : **Top*** \to **Top*** を得る.

Outline

Adjoint Functor

Outline

これらの関手は以下のように随伴関手となる.

Theorem 1.2

Loop Space and Homotopy Group

位相空間 K と自然数 n に対し.

$$\pi_{n+1}(K) = \langle S^{n+1}, K \rangle = \langle SS^n, K \rangle = \langle \Sigma S^n, K \rangle = \langle S^n, \Omega K \rangle = \pi_n(\Omega K)$$

Ω-spectrum and Reduced Cohomology Theory

となる. つまり. ループ空間を考えることでホモトピー群の次元を 下げることができる. 特に, $\Omega K(G, n)$ は K(G, n-1) である.

Observation of Reduced Cohomology Theory

 \mathbf{CW}_* 上の簡約コホモロジー論はまず、基点付き \mathbf{CW} 複体に対し、アーベル群の列を定めたいのであった.

基点付き CW 複体 (X,x), (K,k) に対し, $\langle X,\Omega K \rangle$ はループ積が誘導する演算により, 群となる.

同様に, n-重ループ空間 $\Omega^n X$ を考えることで, アーベル群 $\langle X, \Omega^n K \rangle$ を得る.

I は局所コンパクトハウスドルフ空間なので, $K^{I \times I} \cong (K^I)^I$ が成立する. よって, $\Omega^n K$ は連続写像 $I^n \to K$ で ∂I^n を基点に移すものの空間とみなせる.

Observation of Reduced Cohomology Theory

Proposition 2.1

基点付き位相空間 (X,x),(K,k),(M,m) に対し, 弱ホモトピー同 値 $K \to \Omega M$ が存在すれば、 $\langle X, K \rangle = \langle X, \Omega M \rangle$ となる.

Ω-spectrum and Reduced Cohomology Theory

上の命題により、K はループ空間でなくてもループ空間と弱ホモ トピー同値で十分であることがわかる。

簡約コホモロジー論の完全列公理より, CW 対 (CX, X) に対し, 長完全列

$$\dots \xrightarrow{\delta^{n-1}} \tilde{h^n}(CX/X) \xrightarrow{\tilde{h^n}(q)} \tilde{h^n}(CX) \xrightarrow{\tilde{h^n}(i)} \tilde{h^n}(X) \xrightarrow{\delta^n} h^{\tilde{n}+1}(CX/X) \xrightarrow{h^{\tilde{n}+1}(q)} \dots$$

つまり,

$$\dots \xrightarrow{\delta^{n-1}} \tilde{h^n}(\Sigma X) \xrightarrow{\tilde{h^n}(q)} \tilde{h^n}(X) \xrightarrow{\tilde{h^n}(i)} \tilde{h^n}(X) \xrightarrow{\delta^n} h^{\tilde{n}+1}(\Sigma X) \xrightarrow{h^{\tilde{n}+1}(q)} \dots$$

を得る.

したがって, 自然同型 $\tilde{h^n}(X) \cong h^{\tilde{n}+1}(\Sigma X)$ が成立するが, $\tilde{h^n}(X) = \langle X, K_n \rangle$ とすると, この同型はループ空間への弱ホモトピー同値から誘導される.

これらの観察により, Ω-spectrum を以下のように定義するのが妥 当である。

Ω-spectrum and Reduced Cohomology Theory

Definition 2.2 (Ω -spectrum)

各整数 n に対し, 弱ホモトピー同値 $K_n \to \Omega K_{n+1}$ が存在する CW 複体の列 $(K_n)_{n\in\mathbb{Z}}$ を Ω-spectrum という.

Example of Ω -spectrum

Example 2.3 (Eilenberg-MacLane spectrum)

CW 複体である Eilenberg-MacLane 空間の列 $(K(G, n))_{n \in \mathbb{Z}}$ は Ω -spectrum である.

Bott 周期性定理より, 弱ホモトピー同値 $O \rightarrow \Omega^8 O \stackrel{\sim}{\sim} U \rightarrow \Omega^2 U$ が存在するため. O や U は周期的な Ω -spectrum を与える. これは K 理論で重要である.

- 1 Introduction
- 2 Ω-spectrum
- ${\bf 3}$ Ω -spectrum and Reduced Cohomology Theory
- 4 Reference

Ω -spectrum define Reduced Cohomology Theory

任意の Ω -spectrum は簡約コホモロジー論を定める.

Theorem 3.1

任意の Ω -spectrum $(K_n)_{n\in\mathbb{Z}}$ は各 n に対し, 関手 $\tilde{h^n}(X) = \langle X, K_n \rangle$ とすることで CW。上の簡約コホモロジー論を定める。

Ω-spectrum and Reduced Cohomology Theory

000000000

000000000

Sketch of Proof

ホモトピー公理と完全列公理とウェッジ和公理をみたすことを確かめる.

基点を保つ連続写像 $f:(X,x) \to (Y,y)$ は各 n に対し, 準同型写像

を誘導し, $f \simeq g$ ならば $\tilde{h^n}(f) = \tilde{h^n}(g)$ となるため, ホモトピー公理をみたす.

Sketch of Proof

CW 対 (X, A) に対し, Puppe sequence

$$A \longrightarrow X \longrightarrow X/A \longrightarrow \Sigma A \longrightarrow \Sigma X \longrightarrow \Sigma (X/A) \longrightarrow \dots$$

と Proposition 2.1 より, 完全列

を得るため, 完全列公理をみたす.

Sketch of Proof

Outline

包含写像 $i_{\alpha}: X_{\alpha} \hookrightarrow \bigvee_{\alpha} X_{\alpha}$ は整数 n に対し, 同型写像

$$\begin{split} \prod_{\alpha} \tilde{h}^{n}(i_{\alpha}) \ : \quad \left\langle \bigvee_{\alpha} X_{\alpha}, K_{n} \right\rangle &= \left\langle \bigvee_{\alpha} X_{\alpha}, \Omega K_{n+1} \right\rangle &\longrightarrow & \prod_{\alpha} \langle X_{\alpha}, K_{n} \rangle = \prod_{\alpha} \langle X_{\alpha}, \Omega K_{n+1} \rangle \\ &[m] &\longmapsto & \prod_{\alpha} [m | X_{\alpha} \circ i_{\alpha}] \end{split}$$

を誘導するため,
$$\prod_{\alpha} \tilde{h^n}(i_{\alpha})$$
: $\tilde{h^n}\left(\bigvee_{\alpha} X_{\alpha}\right) \stackrel{\cong}{\longrightarrow} \prod_{\alpha} \tilde{h^n}(X_{\alpha})$ を

得る. よってウェッジ和公理をみたす.

Theorem 3.2

Introduction

Outline

CW_{*} 上の簡約コホモロジー論 \tilde{h} が $n \neq 0$ に対し, $\tilde{h^n}(*) = 0$ をみ たすとき,任意の CW 複体 X と任意の n に対し.自然同型 $\tilde{h^n}(X) \cong \tilde{H^n}(X; \tilde{h^0}(*))$ が成立する.

Eilenberg-MacLane spectrum を考えると以下が得られる.

Corollary 3.3

任意の CW 複体 X と任意の n > 0 と任意のアーベル群 G に対し. 自然同型 $\langle X, K(G, n) \rangle \cong \tilde{H}^n(X; G)$ が成立する.

任意の Ω -spectrum は簡約コホモロジー論を定めたが. 驚くべきこ とに逆も成立する。

Theorem 3.4

任意の CW_* 上の簡約コホモロジー論はある Ω -spectrum $(K_n)_{n \in \mathbb{Z}}$ を用いて, $\tilde{h^n}(X) = \langle X, K_n \rangle$ と表現できる.

Brown Functor

Outline

Definition 3.5 (Brown 関手)

関手 $F: CW^{op} \rightarrow Set$ が以下をみたすとき. Brown 関手という.

- $f \simeq g \in \operatorname{Hom}_{\mathsf{CW}^{\mathrm{op}}}((X,x),(Y,y))$ に対し, $F(f) = F(g) \in \operatorname{Hom}_{\operatorname{Set}}(F(Y), F(X))$

$$\prod_{\alpha} F(i_{\alpha}) \colon F\left(\bigvee_{\alpha} X_{\alpha}\right) \cong \prod_{\alpha} F(X_{\alpha})$$
 を誘導する.

• $A, B \in X$ の部分複体とし、次の図式を考える.

$$F(A \cap B) \xleftarrow{F(i_A)} F(A)$$

$$F(i_B) \uparrow \qquad \qquad \uparrow^{F(i_A)}$$

$$F(B) \xleftarrow{F(i_B)} F(X)$$

このとき, $a \in F(A)$, $b \in F(B)$ で $F(i_A)(a) = F(i_B)(b)$ とな るならば, $x \in F(X)$ で $F(i_A)(x) = a$ かつ $F(i_B)(x) = b$ となる ものが存在する.

Brown Representability Theorem

Theorem 3.6

Brown 関手は表現可能であり, CW 複体である分類空間が存在し, 分類空間は弱ホモトピー同値を除いて一意である.

000000000

Ω-spectrum and Reduced Cohomology Theory

簡約コホモロジー群をとる関手は Brown 関手であり. 分類空間は Eilenberg-MacLane 空間である.

Spectrum and Brown Representability Theorem

Spectrum は元々は幾何学的な構成に基いた概念だったが、そのホ モトピー圏が三角圏をなすことからも分かるように、ホモロジー代 数を一般化する枠組みとしても用いることができるようになった。

000000000

Ω-spectrum and Reduced Cohomology Theory

[Neeman] では三角圏での Brown Representability Theorem を考え ている。

現代では安定モデル圏という枠組みも存在する.

Outline

- 1 Introduction
- Ω -spectrum
- Ω -spectrum and Reduced Cohomology Theory
- 4 Reference

[Hatcher] Allen Hatcher(著) · 「Algebraic Topology」 · Cambridge University Press • 2001

[荒木] 荒木 捷朗 (著)・「一般コホモロジー」・紀伊國屋書店・1975

[河野, 玉木] 河野 明 (著), 玉木 大 (著)・「一般コホモロジー」・岩 波書店・2008

[西田] 西田 吾郎 (著)・「ホモトピー論」・共立出版・1985

[Neeman] Amnon Neeman (著) · 「Triangulated Categories」 · Princeton University Press • 2014