Constructs representations of SL2(Z).

0.1

24 September 2021

Siu-Hung Ng

Yilong Wang

Samuel Wilson

Siu-Hung Ng

Email: rng@math.lsu.edu

Yilong Wang

Email: wyl@bimsa.cn

Samuel Wilson

Email: swil311@lsu.edu

Contents

1	Introduction			
	1.1	Installation	3	
	1.2	Usage	3	
2	Description			
	2.1	Construction	4	
	2.2	Weil representation types	5	
3	Lists of representations			
	3.1	Lists by degree	8	
	3.2	Lists by level	8	
	3.3	Lists of exceptional representations	9	
4	Methods for testing			
	4.1	Testing	10	
5	Irreducible representations of prime-power level			
	5.1	Representations of type D	11	
	5.2	Representations of type N	12	
	5.3	Representations of type R	12	
References		ices	14	
Index			15	

Introduction

This package, SL2Reps, provides methods for constructing and testing matrix presentations of the representations of $SL_2(\mathbb{Z})$ whose kernels are congruence subgroups of $SL_2(\mathbb{Z})$.

Irreducible representations of prime-power level are constructed individually by using the Weil representations of quadratic modules, and from these a list of all representations of a given degree or level can be produced. The format is designed for the study of modular tensor categories in particular.

1.1 Installation

To install SL2Reps, first download it from https://github.com/ontoclasm/sl2-reps, then place it in the pkg subdirectory of your GAP installation (or in the pkg subdirectory of any other GAP root directory, for example one added with the -l argument).

```
SL2Reps is then loaded with the GAP command gap> LoadPackage( "SL2Reps" );
```

1.2 Usage

Specific irreducible representations may be constructed via the methods in Chapter 5, while lists of irreducible representations with a given degree or level may be constructed with those in Chapter 3.

This package uses an InfoClass, InfoSL2Reps. It may be set to 0 (silent), 1 (info), or 2 (verbose). To change it, use

```
gap> SetInfoLevel(InfoSL2Reps, k);
```

Description

The group $SL_2(\mathbb{Z})$ is generated by $\mathfrak{s} = \llbracket [0,1], \llbracket -1,0 \rrbracket \rrbracket$ and $\mathfrak{t} = \llbracket [1,1], \llbracket 0,1 \rrbracket \rrbracket$ (which satisfy the relations $\mathfrak{s}^4 = (\mathfrak{s}\mathfrak{t})^3 = \mathrm{id}$). Thus, any complex representation ρ of $SL_2(\mathbb{Z})$ on \mathbb{C}^n (where $n \in \mathbb{Z}^+$ is called the *degree* of ρ) is determined by the $n \times n$ matrices $S = \rho(\mathfrak{s})$ and $T = \rho(\mathfrak{t})$.

This package constructs irreducible representations of $SL_2(\mathbb{Z})$ which factor through $SL_2(\mathbb{Z}/\ell\mathbb{Z})$ for some $\ell \in \mathbb{Z}^+$; the smallest such ℓ is called the *level* of the representation. One may equivalently say that the kernel of the representation is a congruence subgroup. It has been shown that any representation of $SL_2(\mathbb{Z})$ arising from a modular tensor category has this property [DLN15].

We therefore present representations in the form of a record rec(S, T, degree, level, name), where the name follows the conventions of [NW76].

Note that our definition of \mathfrak{s} follows that of [Nob76]; other authors prefer the inverse, i.e. $\mathfrak{s} = [[0,-1],[1,0]]$ (under which convention the relations are $\mathfrak{s}^4 = \mathrm{id},(\mathfrak{st})^3 = \mathfrak{s}^2$). When working with that convention, one must invert the *S* matrices output by this package.

Throughout, we denote by **e** the map $k \mapsto e^{2\pi i k}$ (an isomorphism from \mathbb{Q}/\mathbb{Z} to the group of finite roots of unity in \mathbb{C}).

2.1 Construction

Any representation ρ of $SL_2(\mathbb{Z})$ can be decomposed into a direct sum of irreducible representations (irreps). Further, if ρ has finite level, each irrep can be factorized into a tensor product of irreps whose levels are powers of distinct primes (using the Chinese remainder theorem). Therefore, to characterize all finite-dimensional representations of $SL_2(\mathbb{Z})$ of finite level, it suffices to consider irreps of $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ for primes p and positive integers λ .

2.1.1 Weil representations

Such representations may be constructed using Weil representations as described in [Nob76, Section 1]. We give a brief summary of the process here. First, if M is any additive abelian group, a *quadratic* form on M is a map $Q: M \to \mathbb{Q}/\mathbb{Z}$ such that Q(-x) = Q(x) for all $x \in M$ and B(x,y) = Q(x+y) - Q(x) - Q(y) defines a \mathbb{Z} -bilinear map $M \times M \to \mathbb{Q}/\mathbb{Z}$.

Now let p be a prime number and $\lambda \in \mathbb{Z}^+$. Choose a $\mathbb{Z}/p^{\lambda}\mathbb{Z}$ -module M and a quadratic form Q on M such that the pair (M,Q) is of one of the three types described in Section 2.2. Each such M is a ring, and has at most 2 cyclic factors as an additive group. Those with 2 cyclic factors may be identified with a quotient of the quadratic integers, giving a norm on M. Then the *quadratic module*

(M,Q) gives rise to a representation of $\mathrm{SL}_2(\mathbb{Z}/p^\lambda\mathbb{Z})$ on the vector space $V=\mathbb{C}^M$ of complex-valued functions on M. This representation is denoted W(M,Q).

We may construct subrepresentations $W(M,Q,\chi)$ of W(M,Q) as follows. Let

$$Aut(M,Q) = \{ \varepsilon \in Aut(M) \mid Q(\varepsilon x) = Q(x) \text{ for all } x \in M \}$$

and denote by $\mathfrak{A} \leq \operatorname{Aut}(M,Q)$ the abelian subgroup defined in Section 2.2. Note that \mathfrak{A} has at most two cyclic factors, whose generators we denote by α and β . Let $\chi \in \widehat{\mathfrak{A}}$ be a 1-dimensional representation (character) of \mathfrak{A} , and define

$$V_{\chi} = \{ f \in V \mid f(\varepsilon x) = \chi(\varepsilon) f(x) \text{ for all } x \in M \text{ and } \varepsilon \in \mathfrak{A} \} ,$$

which is a $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ -invariant subspace of V. We then denote by $W(M,Q,\chi)$ the subrepresentation of W(M,Q) on V_{χ} .

2.1.2 Primitive characters

We will frequently refer to a character χ as being *primitive*. With the exception of a single family of modules of type R (the *extremal* case, for which see Section 2.2.3) primitivity amounts to the following: there exists some $\varepsilon \in \mathfrak{A}$ such that $\chi(\varepsilon) \neq 1$ and ε fixes the submodule pM pointwise. In the extremal case, $\mathfrak{A} = \langle \alpha \rangle \times \langle -1 \rangle$ (see Section 2.2.3 for an explicit definition of α) and χ is primitive if $\chi(\alpha) = -1$.

Explicit descriptions of the primitive characters for each type are given in Section 2.2.

2.1.3 Irrep types

The prime-power irreps then fall into three cases.

- The overwhelming majority are of the form $W(M,Q,\chi)$ for χ primitive and $\chi^2 \neq 1$; we call these *standard*. This includes the primitive characters from the extremal case.
- A finite number, and a single infinite family arising from the extremal case (Section 2.2.3), are instead constructed by using non-primitive characters or primitive characters χ with $\chi^2 = 1$. We call these *non-standard*.
- Finally, 18 *exceptional* irreps are constructed as tensor products of two irreps from the other two cases.

All the finite-dimensional irreducible representations of $SL_2(\mathbb{Z})$ of finite level can now be constructed by taking tensor products of these prime-power irreps. Note that, if two representations are defined by pairs [S1,T1] and [S2,T2], then their tensor product may be calculated via the GAP command KroneckerProduct, namely as [KroneckerProduct(S1,S2),KroneckerProduct(T1,T2)].

2.2 Weil representation types

2.2.1 Type D

Let p be prime. If p=2 or p=3, let $\lambda \geq 2$; otherwise, let $\lambda \geq 1$. Then the Weil representation arising from the quadratic module with $M=\mathbb{Z}/p^{\lambda}\mathbb{Z}\oplus\mathbb{Z}/p^{\lambda}\mathbb{Z}$ and $Q(x,y)=\frac{xy}{p^{\lambda}}$ is said to be of type D and

denoted $D(p,\lambda)$. Information on (M,Q) may be obtained via SL2ModuleD (5.1.1), and subrepresentations of $D(p,\lambda)$ with level p^{λ} may be constructed via SL2IrrepD (5.1.2).

Here we define

$$\mathfrak{A} \cong (\mathbb{Z}/p^{\lambda}\mathbb{Z})^{\times}$$

acting on M by $a(x,y) = (a^{-1}x,ay)$; see [NW76, Section 2.1]. This group has the following structure. When p = 2, $\mathfrak{A} = \langle \alpha \rangle \times \langle \beta \rangle$ with $\alpha = 5$ (of order $2^{\lambda - 2}$; notably, for $\lambda = 2$, α is trivial) and $\beta = -1$. Otherwise, \mathfrak{A} is cyclic; in this case, we write $\mathfrak{A} = \langle \alpha \rangle \times \langle \beta \rangle$ with $\alpha = p+1$ (of order $p^{\lambda-1}$; for $\lambda = 1$, α is trivial) and β an arbitrarily chosen element of order p+1.

For type D, a non-trivial character of $\mathfrak A$ is primitive if and only if it is injective on the cyclic subgroup of $\mathfrak A$ of maximal p-power order, which is generated by α . As a particular case, when α is trivial (i.e. p = 2 and $\lambda = 2$ or p odd and $\lambda = 1$), all non-trivial characters are primitive.

2.2.2 Type N

Let p be prime and $\lambda \geq 1$. If $p \neq 2$, choose an integer u so that $u \equiv 3 \mod 4$ with -u a quadratic non-residue mod p; if p = 2, define u = 3. Then the Weil representation arising from the quadratic module with $M = \mathbb{Z}/p^{\lambda}\mathbb{Z} \oplus \mathbb{Z}/p^{\lambda}\mathbb{Z}$ and $Q(x,y) = \frac{x^2 + xy + \frac{1+\mu}{4}y^2}{p^{\lambda}}$ is said to be of type N and denoted $N(p,\lambda)$. Information on (M,Q) may be obtained via SL2ModuleN (5.2.1), and subrepresentations of $N(p,\lambda)$ with level p^{λ} may be constructed via SL2IrrepN (5.2.2).

Here we define

$$\mathfrak{A} = \{ \varepsilon \in M^{\times} \mid \operatorname{Nm}(\varepsilon) = 1 \}$$

acting on M by multiplication; see [NW76, Section 2.2]. This group has the following structure. When $\lambda \ge 2$, it is generated by α and β : for p=2, $|\alpha|=2^{\lambda-2}$ and $|\beta|=6$, while for $p\ne 2$, $|\alpha|=p^{\lambda-1}$ and $|\beta| = p + 1$. On the other hand, when $\lambda = 1$, $\mathfrak A$ is cyclic; in this case, we choose a generator β with $|\beta| = p + 1$ and (for simplicity) say $\alpha = 1$.

For type N with p = 2, $\lambda = 2$, a non-trivial character of $\mathfrak A$ is primitive if and only if $\chi(-1) = -1$. For all other type N cases, a character of $\mathfrak A$ is primitive if and only if it is injective on the subgroup $\langle \alpha \rangle \leq \mathfrak{A}$. Note that, when $\lambda = 1$, $\alpha = 1$, so all non-trivial characters are primitive.

2.2.3 Type R

The structure of (M,Q) of type R depends upon three additional parameters: σ , r, and t. The relevant values thereof depend on whether p = 2, as follows.

First, if p is an odd prime, let $\lambda \ge 2$, $\sigma \in \{1, ..., \lambda\}$, and $r, t \in \{1, u\}$ with u a quadratic non-residue

mod p. Then define $M = \mathbb{Z}/p^{\lambda}\mathbb{Z} \oplus \mathbb{Z}/p^{\lambda-\sigma}\mathbb{Z}$ and $Q(x,y) = \frac{r(x^2+p^{\sigma}ty^2)}{p^{\lambda}}$.

On the other hand, if p = 2, let $\lambda \geq 2$, $\sigma \in \{0, \dots, \lambda - 2\}$ and $r, t \in \{1, 3, 5, 7\}$. Then define $M = \mathbb{Z}/2^{\lambda-1}\mathbb{Z} \oplus \mathbb{Z}/2^{\lambda-\sigma-1}\mathbb{Z}$ and $Q(x,y) = \frac{r(x^2+2^{\sigma}ty^2)}{2^{\lambda}}$.

In either case, the resulting representation is said to be of type R and denoted $R(p, \lambda, \sigma, r, t)$. Information on (M,Q) may be obtained via SL2ModuleR (5.3.1), and subrepresentations of $R(p,\lambda,\sigma,r,t)$ with level p^{λ} may be constructed via SL2IrrepR (5.3.2).

There are two special cases to consider. First, if $\sigma = \lambda$ for $p \neq 2$, then the second factor of M is trivial (and hence t is irrelevant); this special case is handled by SL2IrrepRUnary (5.3.3) (which is called by SL2IrrepR (5.3.2) when appropriate).

Second, if $\sigma = \lambda - 2$ for p = 2, $\lambda > 2$, then the second factor of M is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, and collapses in 2M; we call this case the *extremal* family. Here, Aut(M,Q) is itself abelian, so we let $\mathfrak{A} = \operatorname{Aut}(M, Q)$. This group has the following structure:

- For $\lambda = 2$, t = 1, $\mathfrak{A} = \langle \tau \rangle$ where $\tau : (x, y) \mapsto (y, x)$; a character χ is primitive if $\chi(\tau) = -1$.
- For $\lambda = 2$, t = 3, \mathfrak{A} is trivial; there are no primitive characters.
- For $\lambda = 3$ or 4, $\mathfrak{A} = \{\pm 1\}$; there are no primitive characters.
- Finally, for $\lambda \geq 5$, $\mathfrak{A} = \langle \alpha \rangle \times \langle -1 \rangle$ with $\alpha \neq -1$ of order 2, and a character $\chi \in \widehat{\mathfrak{A}}$ is primitive if $\chi(\alpha) = -1$. Note that, for this special case, the usual test for primitivity (described in Section 2.1) fails, as there are no elements of \mathfrak{A} fixing 2M pointwise.

Outside of the above two special cases, we define

$$\mathfrak{A} = \{ \varepsilon \in M^{\times} \mid \mathrm{Nm}(\varepsilon) = 1 \}$$

acting on M by multiplication; see [NW76, Section 2.3 - 2.4]. The structure of $\mathfrak A$ is as follows, and a character is primitive if it is injective on $\langle \omega \rangle \leq \mathfrak A$, with $\omega = \alpha$ except when specified:

- Suppose $p \neq 2$, $\lambda \geq 2$, $\sigma \in \{1, \dots, \lambda 1\}$. As a special case, if p = 3, $\lambda \geq 3$, and $\sigma = t = 1$, then $\mathfrak{A} = \langle \alpha \rangle \times \langle \beta \rangle$ with α of order $3^{\lambda 2}$ and β of order 6. Otherwise, $\mathfrak{A} = \langle \alpha \rangle \times \langle -1 \rangle$ with α of order $p^{\lambda \sigma}$.
- Suppose p = 2, $\lambda \ge 3$, $\sigma \in \{0, ..., \lambda 3\}$. Then the structure of (M, Q)) depends on r, t, but only up to an equivalence class described in [Nob76, Satz 4]; we assume without loss of generality that r, t are minimal positive representatives thereunder. Then:
 - If $\sigma = 0$, $r \in \{1,3\}$, t = 1, and $\lambda = 3$, then $\mathfrak{A} = \langle \beta \rangle$ with $\beta = (0,1)$ of order 4. Here $\omega = -1 = \beta^2$.
 - If $\sigma = 0$, $r \in \{1,3\}$, t = 1, and $\lambda \ge 4$, then $\mathfrak{A} = \langle \alpha \rangle \times \langle \beta \rangle$ with $\alpha = (1 \mod 4, 4)$ of order $2^{\lambda 3}$ and $\beta = (0, 1)$ of order 4.
 - If $\sigma = 0$, $r \in \{1,3\}$, t = 5, and $\lambda = 3$, then $\mathfrak{A} = \langle \beta \rangle$ with $\beta = (2,1)$ of order 4. Here $\omega = -1$.
 - If $\sigma = 0$, $r \in \{1,3\}$, t = 5, and $\lambda \ge 4$, then $\mathfrak{A} = \langle \alpha \rangle \times \langle -1 \rangle$ with $\alpha = (2,3 \mod 4)$ of order $2^{\lambda-2}$. Here $\omega = -\alpha^2$ when $\lambda = 4$ and $\omega = \alpha$ otherwise.
 - If $\sigma = 0$, r = 1, $t \in \{3,7\}$, and $\lambda = 3$, then $\mathfrak{A} = \langle -1 \rangle$. Here $\omega = -1$.
 - If $\sigma = 0$, r = 1, $t \in \{3,7\}$, and $\lambda \ge 4$, then $\mathfrak{A} = \langle \alpha \rangle \times \langle -1 \rangle$ with $\alpha = (1 \mod 4, 4)$ of order $2^{\lambda 3}$.
 - If $\sigma = 1$, then $\mathfrak{A} = \langle \alpha \rangle \times \langle -1 \rangle$ with $\alpha = (1 \mod 4, 2)$ of order $2^{\lambda 3}$.
 - If $\sigma = 2$, then $\mathfrak{A} = \langle \alpha \rangle \times \langle -1 \rangle$ with $\alpha = (1 \mod 4, 2)$ of order $2^{\lambda 4}$.
 - If $\sigma > 3$, then $\mathfrak{A} = \langle \alpha \rangle \times \langle -1 \rangle$ with $\alpha = (1 \mod 4, 1)$ of order $2^{\lambda \sigma 1}$.

Lists of representations

3.1 Lists by degree

3.1.1 SL2PrimePowerIrrepsOfDegree

(function)

Returns: a list of records of the form rec(S, T, degree, level, name)

Constructs a list of all irreps of $SL_2(\mathbb{Z})$ that are exactly the given degree and have prime power level.

3.1.2 SL2PrimePowerIrrepsOfDegreeAtMost

 ${\tt \triangleright \; SL2PrimePowerIrrepsOfDegreeAtMost(\it max_degree)}$

(function)

Returns: a list of records of the form rec(S, T, degree, level, name)

Constructs a list of all irreps of $SL_2(\mathbb{Z})$ that are at most the given degree and have prime power level.

3.1.3 SL2IrrepsOfDegree

▷ SL2IrrepsOfDegree(degree)

(function)

Returns: a list of records of the form rec(S, T, degree, level, name)

Constructs a list of all irreps of $SL_2(\mathbb{Z})$ that are exactly the given degree.

3.1.4 SL2IrrepsOfDegreeAtMost

▷ SL2IrrepsOfDegreeAtMost(degree)

(function)

Returns: a list of records of the form rec(S, T, degree, level, name)

Constructs a list of all irreps of $SL_2(\mathbb{Z})$ that are at most the given degree.

3.2 Lists by level

3.2.1 SL2PrimePowerIrrepsOfLevel

▷ SL2PrimePowerIrrepsOfLevel(p, lambda)

(function)

Returns: a list of records of the form rec(S, T, degree, level, name)

Constructs a list of all irreps of $SL_2(\mathbb{Z})$ with level exactly p^{λ} .

3.3 Lists of exceptional representations

3.3.1 SL2ExceptionalIrreps

▷ SL2ExceptionalIrreps(arg)

(function)

Returns: a list of records of the form rec(S, T, degree, level, name) Constructs a list of the 18 exceptional irreps of $SL_2(\mathbb{Z})$.

Methods for testing

4.1 Testing

4.1.1 SL2WithConjClasses

▷ SL2WithConjClasses(p, 1d)

(function)

Returns: the group $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ with conjugacy classes set to the format we use.

4.1.2 SL2ChiST

 \triangleright SL2ChiST(S, T, p, 1d)

(function)

Returns: a list representing a character of $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$

Converts the modular data (S,T), which must have level dividing p^{λ} , into a character of $\mathrm{SL}_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$, presented in a form matching the conjugacy classes used in SL2WithConjClasses.

4.1.3 SL2IrrepPositionTest

▷ SL2IrrepPositionTest(p, lambda)

(function)

Returns: a boolean

Constructs and tests all irreps of level dividing p^{λ} by checking their positions in Irr(G).

Irreducible representations of prime-power level

Methods for generating individual irreducible representations of $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ for a given level p^{λ} .

In each case (except the unary type R, for which see SL2IrrepRUnary (5.3.3)), the underlying module M is of rank 2, so its elements have the form (x, y) and are thus represented by lists [x, y].

Characters of the abelian group $\mathfrak{A} = \langle \alpha \rangle \times \langle \beta \rangle$, have the form $\chi_{i,j}$, given by $[\dot{i,j}(\alpha_{v}\beta_{v}) \mathbf{e}\left(\frac{vi}{\alpha_{v,j}}, given by \mathbf{e}\left(\frac{vi}{\alpha_{v,j}}\right)^*, given by $$ \mathbb{E}(\dot{j,j}) \mathbf{e}\left(\frac{vi}{\alpha_{v,j}}\right)^*, where i and j are integers. We therefore represent each character by a list <math>[i,j]$. Note that in some cases α or β is trivial, and the corresponding index i or j is therefore irrelevant.

5.1 Representations of type D

See Section 2.2.1.

5.1.1 SL2ModuleD

▷ SL2ModuleD(p, 1d)

(function)

Returns: a record rec(Agrp, Bp, Char, IsPrim) describing (M,Q)Constructs information about the underlying quadratic module (M,Q) of type

Constructs information about the underlying quadratic module (M,Q) of type D, for p a prime and $\lambda \geq 1$.

Agrp is a list describing the elements of $\mathfrak A$. Each element $a\in \mathfrak A$ is represented in Agrp by a list [v, a, a_inv], where v is a list defined by $a=\alpha^{v[1]}\beta^{v[2]}$. Note that β is trivial, and hence v[2] is irrelevant, when $\mathfrak A$ is cyclic.

Bp is a list of representatives for the \mathfrak{A} -orbits on M^{\times} , which correspond to a basis for the $\mathrm{SL}_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ -invariant subspace associated to any primitive character $\chi \in \widehat{\mathfrak{A}}$ with $\chi^2 \not\equiv 1$. For other characters, we must use different bases which are particular to each case.

Char(i,j) converts two integers i, j to a function representing the character $\chi_{i,j} \in \mathfrak{A}$. IsPrim(chi) tests whether the output of Char(i,j) represents a primitive character.

5.1.2 SL2IrrepD

▷ SL2IrrepD(p, ld, chi_index)

(function)

Returns: a list of lists of the form [S, T]

Constructs the modular data for the irreducible representation(s) of type D with level p^{λ} , for p a prime and $\lambda \geq 1$, corresponding to the character χ indexed by chi_index = [i,j] (see the discussion of Char(i,j) in SL2ModuleD (5.1.1)).

Depending on the parameters, W(M,Q) will contain either 1 or 2 such irreps.

5.2 Representations of type N

See Section 2.2.2.

5.2.1 SL2ModuleN

▷ SL2ModuleN(p, 1d)

(function)

Returns: a record rec(Agrp, Bp, Char, IsPrim, Nm, Prod) describing (M,Q)

Constructs information about the underlying quadratic module (M,Q) of type N, for p a prime and $\lambda > 1$.

Agrp is a list describing the elements of $\mathfrak A$. Each element $a\in \mathfrak A$ is represented in Agrp by a list [v, a], where v is a list defined by $a=\alpha^{v[1]}\beta^{v[2]}$. Note that α is trivial, and hence v[1] is irrelevant, when $\mathfrak A$ is cyclic.

Bp is a list of representatives for the \mathfrak{A} -orbits on M^{\times} , which correspond to a basis for the $\mathrm{SL}_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ -invariant subspace associated to any primitive character $\chi \in \widehat{\mathfrak{A}}$ with $\chi^2 \not\equiv 1$. For other characters, we must use different bases which are particular to each case.

Char(i,j) converts two integers i, j to a function representing the character $\chi_{i,j} \in \widehat{\mathfrak{A}}$.

IsPrim(chi) tests whether the output of Char(i,j) represents a primitive character.

Nm(a) and Prod(a,b) are the norm and product functions on M, respectively.

5.2.2 SL2IrrepN

▷ SL2IrrepN(p, ld, chi_index)

(function)

Returns: a list of lists of the form [S, T]

Constructs the modular data for the irreducible representation(s) of type N with level p^{λ} , for p a prime and $\lambda \geq 1$, corresponding to the character χ indexed by chi_index = [i,j] (see the discussion of Char(i,j) in SL2ModuleN (5.2.1)).

Depending on the parameters, W(M,Q) will contain either 1 or 2 such irreps.

5.3 Representations of type R

See Section 2.2.3.

5.3.1 SL2ModuleR

```
ightharpoonup 	ext{SL2ModuleR}(p, 1d, sigma, r, t)  (function) 
 Returns: a record rec(Agrp, Bp, Char, IsPrim, Nm, Ord, Prod, c, tM) describing (M,Q)
```

Constructs information about the underlying quadratic module (M,Q) of type R, for p a prime. The additional parameters λ , σ , r, and t should be integers chosen as follows.

If p is an odd prime, let $\lambda \geq 2$, $\sigma \in \{1, ..., \lambda - 1\}$, and $r, t \in \{1, u\}$ with u a quadratic non-residue mod p. Note that $\sigma = \lambda$ is a valid choice for type R, however, this gives the unary case, and so is not handled by this function, as it is decomposed in a different way; for this case, use SL2IrrepRUnary (5.3.3) instead.

If
$$p = 2$$
, let $\lambda \ge 2$, $\sigma \in \{0, ..., \lambda - 2\}$ and $r, t \in \{1, 3, 5, 7\}$.

Agrp is a list describing the elements of \mathfrak{A} . Each element a of \mathfrak{A} is represented in Agrp by a list [v, a], where v is a list defined by $a = \alpha^{v[1]}\beta^{v[2]}$.

Bp is a list of representatives for the \mathfrak{A} -orbits on M^{\times} , which correspond to a basis for the $\mathrm{SL}_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ -invariant subspace associated to any primitive character $\chi \in \widehat{\mathfrak{A}}$ with $\chi^2 \not\equiv 1$. For other characters, we must use different bases which are particular to each case.

Char(i, j) converts two integers i, j to a function representing the character $\chi_{i,j} \in \widehat{\mathfrak{A}}$.

IsPrim(chi) tests whether the output of Char(i, j) represents a primitive character.

Nm(a), Ord(a), and Prod(a,b) are the norm, order, and product functions on M, respectively.

c is a scalar used in calculating the S-matrix; namely $c = \frac{1}{|M|} \sum_{x \in M} \mathbf{e}(Q(x))$. Note that this is equal to $S_Q(-1)/\sqrt{|M|}$, where $S_Q(-1) = \frac{1}{\sqrt{|M|}} \sum_{x \in M} \mathbf{e}(Q(x))$ is also known as the central charge.

tM is a list describing the elements of the group M - pM.

5.3.2 SL2IrrepR

▷ SL2IrrepR(p, 1d, sigma, r, t, chi_index)

(function)

Returns: a list of lists of the form [S,T]

Constructs the modular data for the irreducible representation(s) of type R with parameters p, λ , σ , r, and t, corresponding to the character χ indexed by chi_index = [i,j] (see the discussions of σ , r, t, and Char(i,j) in SL2ModuleN (5.2.1)).

Depending on the parameters, W(M,Q) will contain either 1 or 2 such irreps.

If $\sigma = \lambda$ for $p \neq 2$, then the second factor of M is trivial (and hence t is irrelevant), so this falls through to SL2IrrepRUnary (5.3.3).

5.3.3 SL2IrrepRUnary

▷ SL2IrrepRUnary(p, 1d, r)

(function)

Returns: a list of lists of the form [S, T]

Constructs the modular data for the irreducible representation(s) of unary type R (that is, the special case where $\sigma = \lambda$) with p an odd prime, λ a positive integer, and $r \in \{1, u\}$ with u a quadratic non-residue mod p.

In this case, W(M,Q) always contains exactly 2 such irreps.

References

- [DLN15] Chongying Dong, Xingjun Lin, and Siu-Hung Ng. Congruence property in conformal field theory. *Algebra Number Theory*, 9(9):2121–2166, 2015. 4
- [Nob76] Alexandre Nobs. Die irreduziblen Darstellungen der Gruppen $SL_2(Z_p)$, insbesondere $SL_2(Z_2)$. I. Comment. Math. Helv., 51(4):465–489, 1976. 4, 7
- [NW76] Alexandre Nobs and Jürgen Wolfart. Die irreduziblen Darstellungen der Gruppen $SL_2(Z_p)$, insbesondere $SL_2(Z_p)$. II. Comment. Math. Helv., 51(4):491–526, 1976. 4, 6, 7

Index

```
SL2ChiST, 10
{\tt SL2ExceptionalIrreps}, 9
SL2IrrepD, 12
SL2IrrepN, 12
{\tt SL2IrrepPositionTest},\, 10
SL2IrrepR, 13
{\tt SL2IrrepRUnary}, 13
SL2IrrepsOfDegree, 8
{\tt SL2IrrepsOfDegreeAtMost, 8}
SL2ModuleD, 11
{\tt SL2ModuleN},\,{\tt 12}
SL2ModuleR, 12
{\tt SL2PrimePowerIrrepsOfDegree},\, 8
{\tt SL2PrimePowerIrrepsOfDegreeAtMost}, 8
{\tt SL2PrimePowerIrrepsOfLevel}, 8
{\tt SL2WithConjClasses}, 10
```