Создание блоков данных и типов данных, определенных пользователем

В этой главе

4

Блоки данных - это важная составная часть Вашей прикладной программы, так как они содержат все ее данные. В этой главе объясняется, как создаются блоки данных.

Типы данных, определенных пользователем (UDT), не существенны для программирования. Однако, они могут сэкономить много времени в ситуациях, когда Вам необходимо писать программы для похожих задач.

Обзор главы

В разделе	Вы найдете	на стр.
4.1	Создание блоков данных – обзор	4–2
4.2	Выбор метода	4–4
4.3	Редактирование таблицы описаний	4–5
4.4	Редактирование текущих значений данных	4–6
4.5	Создание типов данных, определенных пользователем (UDT)	4–8

4.1 Создание блоков данных - Обзор

Блоки данных

Блоки данных (DB) служат для управления данными. Поэтому в них отсутствует операторная часть. Программирование блоков данных включает в себя следующие части:

- Таблица описаний: В таблице описаний Вы устанавливаете структуру данных блока данных.
- Свойства блока: Свойства блока содержат такую дополнительную информацию, вносимую системой, как метку времени, язык программирования и путь. Кроме того, Вы сами можете указать имя, семейство, версию и автора и назначить системные параметры для блоков (см. гл. 5).

Типы блоков данных

Программа пользователя может содержать следующие блоки данных:

 Глобальные (разделяемые) блоки данных, к которым можно обращаться из всех логических блоков в программе. Данные продолжают храниться в блоках данных и после их закрытия.

Если Вам нужны несколько глобальных блоков данных с одинаковой структурой, то Вы можете их создать с помощью типов данных, определенных пользователем (UDT). Тогда речь идет о блоках данных с соответствующим UDT.

• Экземпляры блоков данных связываются с конкретными функциональными блоками и структурируются в соответствии с таблицей описания переменны FB. Вы можете создать экземпляр блока данных только в том случае, если уже существует соответствующий функциональный блок. Здесь речь идет о блоках данных с соответствующим функциональным блоком.

Методы создания блоков данных

В зависимости от вида создаваемого блока данных используются разные методы.

Глобальные блоки данных можно создавать следующими способами:

- Определить структуру для отдельного блока данных. Для этого Вы должны определить переменные и типы данных в желаемом порядке. Эта структура применима только к этому DB.
- Определить структуру для блока данных с помощью типа данных, определенного пользователем. В этом случае структура данных UDT определяет и структуру DB. Тип данных, определенный пользователем, может быть поставлен в соответствие многим блокам данных.

Если Вы создаете экземпляр блока данных, то

 поставьте в соответствие этому блоку данных существующий функциональный блок. В этом случае раздел описаний функционального блока определяет структуру блока данных. Одному функциональному блоку могут быть поставлены в соответствие несколько экземпляров блоков данных.

Указание

Если Вы изменяете раздел описаний FB, то Вы должны вновь создать все связанные с ним экземпляры блоков данных, чтобы обеспечить их совместимость. То же самое относится и к блокам данных, которые были созданы на основе UDT.

Рис. 4-1. Последовательность действий при программировании блоков данных

4.2 Выбор метода

Последовательность действий

При создании блока данных в SIMATIC Manager или в редакторе FUP Вы должны указать метод, который Вы желаете использовать. Вам будет предложено выбрать метод в диалоговом окне.

Рис. 4-2. Выбор метода и соответствие FB или UDT

При создании DB, основанного на UDT, или в качестве экземпляра блока данных, соответствующего FB, Вы делаете выбор из окна со списком, отображающего все существующие UDT и FB. UDT или FB уже должен существовать.

Дальнейшие действия

Дальнейшие действия зависят от того, создаете ли Вы DB путем сопоставления или с помощью отдельного описания.

- Так как соответствующий UDT или FB определяет структуру блока данных, то Вы фактически уже создали новый блок данных. Таблица описаний отображается на экране, но ее нельзя редактировать.
- Если Вы определяете структуру глобального блока данных, то Вы теперь должны отредактировать таблицу описаний, объявляющую имена переменных и типы данных и, если необходимо, начальные значения и комментарии (см. раздел 3.3).

4.3 Редактирование таблицы описаний

Назначение окна описаний

При создании отдельного глобального блока данных или UDT Вы должны описать их элементы (переменные) и их типы данных. Для этого используется таблица описаний в окне описаний. При работе с блоками данных Вы можете перейти в это окно командой меню $View \rightarrow Declaration\ View\ [Вид \rightarrow Окно\ описаний].$

Это не относится к блокам данных, соответствующим UDT или FB, так как это описание уже определено соответствующим UDT или FB.

Структура таблицы в окне описаний

Окно описаний блока данных отображает адреса, типы описаний (только для экземпляров DB), имена переменных (символы), начальные значения и комментарии. Пример показан на рис. 4–3:

Рис. 4-3. Описание блока данных

Столбцы имеют то же значение, что и в таблице описаний логического блока (см. раздел 3.3).

Последовательность действий

Для ввода нового описания напечатайте требуемый тип описания, имя переменной, тип данных, начальное значение (не обязательно) и комментарий (не обязательно). Вы можете перемещать курсор из одной ячейки в следующую, используя клавишу TAB или RETURN. При достижении конца строки переменной присваивается адрес.

Синтаксис проверяется после редактирования каждой ячейки, ошибки отображаются красным цветом. При этом Вы можете продолжать ввод и исправить ошибки позднее.

Указание

Редактирование окна описаний не отличается от редактирования таблицы описания переменных логического блока (см. раздел 3.4). Процедуры редактирования и ввода идентичны, и Вы должны так же действовать и при вводе массивов и структур.

4.4 Редактирование текущих значений данных

Начальное значение /текущее значение

При создании и первом сохранении блока данных объявленное (не обязательное) начальное значение автоматически используется в качестве текущего значения переменной. При обращении к блоку данных программа пользователя продолжает его использовать как текущее значение, пока Вы явно не определите новое текущее значение для переменной в программе пользователя.

Текущие значения переменных изменяются логическими блоками, которые производят запись в них при исполнении программы CPU. Вы имеете возможность отобразить текущие значения переменных и изменить их.

Окно данных блоков данных

Вам необходимо переключиться в окно данных, чтобы отобразить и редактировать текущие значения данных в блоках данных. Для переключения в окно данных откройте блок данных и используйте команду меню $View \rightarrow Data\ View\ [Bud \rightarrow Okho\ данных]$.

Единственная разница между окном данных и окном описаний блока данных состоит в дополнительном столбце "Actual Value" ["Текущее значение"]. В окне данных элементы переменных составного типа отображаются отдельно и с их полным символическим именем, так что каждое из их текущих значений может быть отображено и отредактировано (см. рис. 4—4).

Рис. 4-4. Блок данных в окне данных

Показанное текущее значение

Показанное текущее значение - это значение, которое переменная имела к моменту открытия блока данных, или самое последнее измененное и сохраненное значение.

Замечание

В блоках данных, открытых в режиме online, текущее значение циклически не обновляется.

Изменение и повторная инициализация текущих значений

Вы можете переписать текущие значения в столбце "Actual Value" ("Текущее значение"). Введенные значения должны быть совместимы с типом данных.

С помощью команды меню **Edit** \rightarrow **Initialize Data Block** [Редактировать \rightarrow Инициализировать блок данных] Вы можете повторно инициализировать весь блок данных. При текущие значения переменных заменяются начальными значениями, которые Вы объявили в окне описаний, или теми, которые были объявлены в соответствующем FB или UDT.

Сохранение текущих значений

Текущие значения становятся действительными, когда Вы их сохраняете.

- Для сохранения текущих значений данных, которые Вы изменили в режиме
 offline, выберите команду меню File → Save [Файл → Сохранить] или
 щелкните на кнопке "Save" [Сохранить] на панели инструментов. Даже если
 блок данных был открыт online, будет сохранен блок данных, существующий
 offline.
- Для загрузки измененных значений данных в CPU выберите команду меню **PLC** → **Download** [Контроллер →Загрузить] или щелкните на соответствующей кнопке на панели инструментов.

4.5 Создание типов данных, определенных пользователем (UDT)

Обзор

Типы данных, определенные пользователем, - это созданные Вами структуры данных, которые сохраняются в виде блоков. Однажды определив их, Вы можете их использовать под их абсолютными или символическими именами во всей программе пользователя. Вы можете использовать UDT следующим образом:

- как элементарные или составные типы данных в разделе описаний логических блоков (FC, FB, OB) или блоков данных (DB)
- как шаблоны для создания блоков данных с такой же структурой данных.

Последовательность действий

На рис. 4–5 показана принципиальная последовательность действий для создания типа данных, определенного пользователем:

Рис. 4-5. Создание типа данных, определенного пользователем

Редактирование таблицы описаний

После создания или открытия UDT в SIMATIC Manager или в инкрементном редакторе на экране отображается таблица описаний, в которой Вы должны задать структуру типа данных.

Рис. 4-6. Описание UDT

Первая и последняя строка окна описания для UDT заранее заданы и содержат ключевые слова STRUCT и END_STRUCT для начала и конца типа данных, определенного пользователем. Эти строки не могут редактироваться.

Вначале на экране отображаются две пустые строки, дающие Вам возможность описывать свои переменные. Вы должны ввести имя переменной и тип данных. Начальные значения и комментарии не обязательны. Вы можете создать новые пустые строки, используя команду меню $\mathbf{Insert} \to \mathbf{Declaration} \ \mathbf{Row} \to \mathbf{Before}$ $\mathbf{Selection} \ / \mathbf{After Selection} \ [\mathbf{B}\mathbf{C}\mathbf{T}\mathbf{B}\mathbf{D}\mathbf{C}\mathbf{T}\mathbf{D}\mathbf{C}\mathbf{D}\mathbf{D}\mathbf{C}\mathbf{D}\mathbf{D}\mathbf{C}\mathbf{D}\mathbf{D}\mathbf{C}\mathbf{D}\mathbf{D}\mathbf{C}\mathbf{D}\mathbf{D}\mathbf{C}\mathbf{D}\mathbf{D}\mathbf{C}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf$

Указание

Редактирование этой таблицы описаний аналогично редактированию таблицы описаний логических блоков и блоков данных.