Using Deep Convolutional Neural Networks for Object Recognition and Object Tracking

Bachelor-Thesis

submitted by

Thomas Engels

born in

Aachen

submitted at

14th September 2017

Supervisor:

Prof. Dr. Alexander Ferrein, Prof. Dipl.-Inf. Ingrid Scholl

Erklärung	
Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfaßt und kanderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass alle Steder Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden solche kenntlich gemacht sind und dass die Arbeit in gleicher oder ähnlicher Form rekeiner Prüfungsbehörde vorgelegt wurde.	ellen ı, als
Aachen, den 14. September 2017 Vorname Name	

Contents

1	Intr	$\operatorname{roducti}$	on	1
	1.1	Genera	al Introduction to this Thesis' Topic	2
	1.2	Short	Overview about the Motivation and Challenge of the Thesis	3
	1.3	Short	Explanation of the Approach	4
	1.4	Overvi	iew about Each Chapter of the Thesis	4
2	\mathbf{Rel}	ated W	Vorks	7
	2.1	Which	Related Works Exists in Known Literature?	7
		2.1.1	Segmentation with the Help of Ground Truth Information	8
		2.1.2	Other Related Works with Different Methods or Objectives	9
		2.1.3	Further Related Works:	12
	2.2	Where	ein Differs the Approach of the Thesis from State of the Art?	13
3	Ma	themat	tical/Technical Background	17
	3.1	Used 1	Models	17
		3.1.1	Tensor	17
		3.1.2	Artificial Neural Network	18
		3.1.3	Convolution	27
		3.1.4	Deconvolution	35
	3.2	Unwar	nted Effects in Neural Networks	37
		3.2.1	Overfitting	37
		3.2.2	Vanishing Gradient Problem	40
		3.2.3	Exploding Gradient Problem	41
	3.3	Which	Mathematical Methods are Known in Literature?	43
		3.3.1	The Neuron	43
		3.3.2	Forward propagation	44
		3.3.3	Backpropagation	46
		3.3.4	SGD	50
		3.3.5	Convolution	51
4	App	oroach		59
		4.0.6	Prerequisites	59
	4.1	Descri	ption of the Own Approach	60
		4.1.1	Object Detection	60
		4.1.2	Object Localization	64
	4.2	Object	t Tracking	69

5 Experimental Results				
	5.1	Which Criteria for Evaluation of the Approach Exists?	75	
	5.2	Which Experiments were carried out?	75	
	5.3	Which Data were Gained? Are those Data and Experiments Significant?	77	
	5.4	Statistical Evaluation	80	
	5.5	Detail of Implementation	83	
6	Further Analysis			
	6.1	Future Works	89	
	6.2	Summary and Conclusion	90	
	Lite	rature	93	

List of Figures

1.1	[SLJ+14, Page 3, Fig. 1.]	1
2.1 2.2	[Zha16, Page 6, Fig. 3.]	10 10
2.3	Network flow with PG	11
2.4	R-CNN caption boxes	11
2.5	[chr17]	12
2.6	[Page 3, Fig.1. YPW+07]	12
3.1	Perceptron-Network	19
3.2	illustration logistic regression	19
3.3	Feed Forward Network with one Hidden Layer	20
3.4	curved separation	20
3.5	topological distortion of the domain space	21
3.6	cutout of t-SNE visualizations of word embeddings. from [TRB10]	22
3.8	recognized features captured at different layers, from [ZF13]	24
3.10	transfer functions	25
3.11	$\mathrm{d}f/\mathrm{d}x$ of transfer functions	25
	simple CNN, from [LKF10]	27
3.13	one convolutional unit over a certain path of input pixels	28
	convolutional layer, from [Ola14a]	28
3.16	processed dataset	29
	local optimum	31
3.18	Example sentences generated by multimodal RNN [KF15, Page 7, Fig. 6.]	32
3.19	unlikely events for a Neural Network. from [GDDM13, Page 26, Fig. 6.]	32
	model AlexNet [KSH12, Page 2, Fig. 2.]	33
	inception modules [SLJ+14, Page 5, Fig. 2.]	35
	overfitting	38
3.25	vanishing gradient problem	40
	inference pattern (checker board artifact)	42
	a single neuron	43
	SGD illustration	51
	$(3.28a \text{ source } CIFAR-10 dataset) \dots \dots$	53
	convolution on multiple batches	55
4.1	residual network of the thesis approach	60
4.2	Residual learning: a building block, from [HZRS15]	61
4.3	ResNet, from [HZRS15]	62
4.5	ResNet training curves (18 and 34 layers), from [HZRS15, Page 5, Fig. 4.]	63
4.6	image decompression pattern through deconvolution	66
4.7	convolutional network with appended deconvolutional network	67

4.9	object localization with option 1
4.11	object localization with option 2
4.13	object localization with option 3 69
4.14	processing of the image "pyramid"
4.15	inference signal filter
4.16	image fragmentation
5.1	object localization with option 2
5.3	Cat or no-Cat Net
5.5	Cat or no-Cat Net zoomed
5.7	original cat image zoomed for comparison

Abbreviations

AI Artificial intelligence
AWS Amazon Web Services
CIFAR Canadian Institute for Advanced Research
CMOS Sensor active-pixel sensor using CMOS technology
CMOS Complementary Metal-Oxide-Semiconductor
CNN Convolutional Neural Network
CPU Central Processing Unit
DSSD Deconvolutional Single Shot Detector
FLOPS Floating Point Operations Per Second
GPU Graphics Processing Unit
HSV Hue Saturation Value (image color space)
ILSVRC ImageNet Large Scale Visual Recognition Challenge
JcF Jacobian of a Composition
Q Learning Quality Learning
R-CNN Region Based CNN
RAM Random-Access Memory
ReLU Rectified Linear Unit
ResNet Residual Network
RGB Red Green Blue (image color space)
RNN Recurrent Neural Network
ROI Region of Interest
SGD Stochastic Gradient Descent
SIFT Scale-Invariant Feature Transform