《阻尼振动和受迫振动》实验报告

无88 刘子源 2018010895

一、实验目的

- 1、观测阻尼振动,学习测量振动系统基本参数的方法。
- 2、研究受迫振动的幅频特性和相频特性,观察共振现象。
- 3、观测不同阻尼对受迫振动的影响。

二、数据处理

1、不同阻尼状态下阻尼振动参数的测量

1.1阻尼开关置0挡

1) 无电磁阻尼

序号	θ	ln heta
1	144	4.970
2	142	4.956
3	141	4.949
4	140	4.942
5	139	4.934
6	137	4.920
7	136	4.913
8	134	4.898
9	132	4.883
10	131	4.875
11	130	4.868
12	129	4.858

13	128	4.852
14	127	4.844
15	126	4.836
16	125	4.828
17	124	4.820
18	123	4.812
19	122	4.804
20	121	4.796
21	120	4.787
22	119	4.779
23	118	4.771
24	117	4.762
25	116	4.754
26	115	4.745
27	114	4.736
27 28	114	4.736
28	113	4.727
28 29	113 112	4.727 4.718
28 29 30	113 112 112	4.727 4.718 4.718
28 29 30 31	113 112 112 110	4.727 4.718 4.718 4.700
28 29 30 31 32	113 112 112 110 110	4.727 4.718 4.718 4.700 4.700
28 29 30 31 32 33	113 112 112 110 110 109	4.727 4.718 4.718 4.700 4.700 4.691
28 29 30 31 32 33 34	113 112 112 110 110 110 109	4.727 4.718 4.718 4.700 4.700 4.691 4.682
28 29 30 31 32 33 34 35	113 112 112 110 110 110 109 108 107	4.727 4.718 4.718 4.700 4.700 4.691 4.682 4.673
28 29 30 31 32 33 34 35 36	113 112 112 110 110 110 109 108 107	4.727 4.718 4.718 4.700 4.700 4.691 4.682 4.673 4.663
28 29 30 31 32 33 34 35 36 37	113 112 112 110 110 110 109 108 107 106 105	4.727 4.718 4.718 4.700 4.700 4.691 4.682 4.673 4.663 4.654
28 29 30 31 32 33 34 35 36 37	113 112 112 110 110 110 109 108 107 106 105	4.727 4.718 4.718 4.700 4.700 4.691 4.682 4.673 4.663 4.654 4.644

	41		101		4.615		
	42		100		4.605		
	43		99		4.595		
	44		98		4.585		
	45		97		4.575		
	46		96		4.564		
	47		96		4.564		
	48		95		4.554		
	49		94		4.543		
	50		93		4.533		
序号	1	2	3	4	5		
$10\overline{T_d}$	15.344	15.374	15.396	15.417	15.438		

(1) 阻尼比及其不确定度的计算

♦I=25,

$$b=rac{1}{I}\overline{D}=rac{1}{I^2}\sum_{j=1}^{j=I}(ln heta_{j+I}-ln heta_j)$$

根据原始数据计算得到 $ln\theta_0 \sim i$ 关系中斜率

$$b=-8.70 imes 10^{-3}$$
 $S_{\overline{b}}=4.13 imes 10^{-5}$ $\Delta_b=t_p(49)S_{\overline{b}}=8.34 imes 10^{-5}$ $b=-0.0087\pm0.0001$

又可求得

$$b = -rac{2\pi}{\sqrt{\xi^{-2}-1}}, \xi = rac{1}{\sqrt{(rac{2\pi}{b})^2+1}}
onumber \ rac{\Delta_{\xi}}{\xi} = |rac{4\pi^2}{4\pi^2+b^2}rac{\Delta_b}{b}|$$

因此有

$$\xi=1.385\times10^{-3}$$

$$rac{\Delta_{\xi}}{\xi}=9.59 imes10^{-3}$$

则阻尼系数比计算结果可表示为

$$\xi = (1.385 \pm 0.013) \times 10^{-3}$$

(2) 固有频率 ω_0 的计算

根据原始数据可知, 平均阻尼振动周期

$$\overline{T_d} = 1.5394s$$

则有

$$\omega_0=rac{2\pi}{\overline{T_d}\sqrt{1-\xi^2}}=4.082rad/s$$

(3) 时间常数的计算

由于

$$au=rac{1}{eta}, \xi=rac{eta}{\omega_0}$$

则

$$\tau = \frac{1}{\omega_0 \xi} = 176.9s$$

(4) 品质因数的计算

$$Q=\frac{1}{2\xi}=361.0$$

1.2阻尼开关置1挡

序号	1	2	3	4	5	6	7	8	9	10
θ	118	109	100	92	85	78	72	66	61	56
$ln\theta$	4.771	4.691	4.605	4.522	4.443	4.357	4.277	4.190	4.111	4.025
$\overline{T_d}/s$	1.540	1.542	1.544	1.545	1.547	1.548	1.547	1.550	1.550	1.552

(1) 阻尼比及其不确定度的计算

$$b = -0.0828$$

$$S_{\overline{b}}=6.23 imes10^{-4}$$

$$\Delta_b=t_p(9)S_{\overline{b}}=1.41 imes 10^{-3}$$

$$\xi = rac{1}{\sqrt{(rac{2\pi}{b})^2 + 1}} = 0.0132$$

$$\Delta_{\xi}=\xi imes |rac{4\pi^2}{4\pi^2+b^2}rac{\Delta_b}{b}|=0.0002$$

$$\xi = (0.0132 \pm 0.0002)$$

(2) 固有频率的计算

$$\overline{T_d}=1.547s$$
 $\omega_0=rac{2\pi}{\overline{T_d}\sqrt{1-{m \xi}^2}}=4.062rad/s$

(3) 时间常数的计算

$$au=rac{1}{\omega_0 \xi}=18.65 s$$

(4) 品质因数的计算

$$Q = \frac{1}{2\xi} = 37.88$$

1.3阻尼开关置2挡

序号	1	2	3	4	5	6	7	8	9	10
θ	118	104	91	80	71	62	55	48	42	37
$ln\theta$	4.771	4.644	4.511	4.382	4.263	4.127	4.007	3.871	3.738	3.611
$\overline{T_d}/s$	1.539	1.542	1.545	1.547	1.549	1.550	1.552	1.552	1.553	1.553

(1) 阻尼比及其不确定度的计算

$$b=-0.1287$$
 $S_{\overline{b}}=8.50 imes 10^{-4}$ $\Delta_b=t_p(9)S_{\overline{b}}=1.92 imes 10^{-3}$ $\xi=rac{1}{\sqrt{(rac{2\pi}{b})^2+1}}=2.048 imes 10^{-2}$ $\Delta_\xi=\xi imes |rac{4\pi^2}{4\pi^2+b^2}rac{\Delta_b}{b}|=3.05 imes 10^{-4}$

$$\Delta _{\xi }=\xi imes |\overline{4\pi ^{2}+b^{2}}\,\overline{b}|=3.05 imes 1$$
 $\xi =(2.048\pm 0.031) imes 10^{-2}$

(2) 固有频率的计算

$$\overline{T_d}=1.548s$$
 $\omega_0=rac{2\pi}{\overline{T_d}\sqrt{1-\xi^2}}=4.060rad/s$

(3) 时间常数的计算

$$au=rac{1}{\omega_0 \xi}=12.03s$$

(4) 品质因数的计算

$$Q=\frac{1}{2\xi}=24.42$$

1.4阻尼开关置3挡

序号	1	2	3	4	5	6	7	8	9	10
θ	121	104	88	76	64	55	47	40	34	29
$ln\theta$	4.796	4.644	4.477	4.331	4.159	4.007	3.850	3.689	3.526	3.367

 $\overline{T_d}/s$ 1.539 1.542 1.546 1.548 1.550 1.551 1.552 1.553 1.553

(1) 阻尼比及其不确定度的计算

$$b = -0.1589$$

$$S_{\overline{b}}=1.17 imes 10^{-3}$$

$$\Delta_b=t_p(9)S_{\overline{b}}=2.64 imes10^{-3}$$

$$\xi = rac{1}{\sqrt{(rac{2\pi}{b})^2 + 1}} = 2.528 imes 10^{-2}$$

$$\Delta_{\xi} = \xi imes |rac{4\pi^2}{4\pi^2 + b^2} rac{\Delta_b}{b}| = 4.20 imes 10^{-4}$$

$$\xi = (2.528 \pm 0.042) \times 10^{-2}$$

(2) 固有频率的计算

$$\overline{T_d}=1.549s$$
 $\omega_0=rac{2\pi}{\overline{T_d}\sqrt{1-\xi^2}}=4.058rad/s$

(3) 时间常数的计算

$$au=rac{1}{\omega_0 \xi}=9.75 s$$

(4) 品质因数的计算

$$Q=\frac{1}{2\xi}=19.78$$

2、幅频特性曲线和相频特性曲线的绘制

2.1受迫振动数据整理

(1) 电磁阻尼在1挡

T/s	ω/ω_0	ω	$ heta/^\circ$	$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi=rac{\phi_1+\phi_2}{2}$	φ计算值	$rac{\phi-\phi_{\oplus}\;\pi}{\phi} imes 100\%$
1.582	0.9778	3.9716	88	30.5	31.0	30.75	30.40	1.14%
1.571	0.9846	3.9995	104	38.5	38.5	38.50	40.39	4.90%
1.556	0.9941	4.0380	130	51.5	52.0	51.75	65.85	27.24%
1.549	0.9986	4.0563	142	58.5	59.0	58.75	83.91	42.28%
1.541	1.0038	4.0773	156	72.5	73.0	72.75	105.95	45.63%
1.536	1.0070	4.0906	169	81.0	81.5	81.25	118.01	45.25%
1.532	1.0097	4.1013	173	89.0	89.5	89.25	126.12	41.31%
1.529	1.0116	4.1093	169	97.0	98.0	97.50	131.29	34.66%
1.525	1.0143	4.1201	166	110.0	111.0	110.50	137.12	24.09%
1.523	1.0156	4.1255	155	120.0	120.5	120.25	139.63	16.12%
1.522	1.0163	4.1282	127	130.0	130.5	130.25	140.80	8.10%
1.519	1.0183	4.1364	110	142.5	143.0	142.75	143.98	0.86%
(2))电磁阻尼	2在2挡						
(=)	/ - С над ј.т./ С	2 hr=1-1						
T/s	ω/ω_0	ω	$ heta/^\circ$	$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi=rac{\phi_1+\phi_2}{2}$	ϕ 计算值	$rac{\phi-\phi$ d x $}{\phi} imes 100\%$
1.606	0.9639	3.9123	58	31.5	32.0	31.75	28.93	8.90%
1.585	0.9764	3.9641	74	41.5	42.0	41.75	40.60	2.75%
1.572	0.9845	3.9969	88	51.5	52.0	51.75	52.60	-1.65%
1.563	0.9901	4.0199	98	62.5	63.0	62.75	64.17	-2.27%
1.556	0.9946	4.0380	105	70.0	70.5	70.25	75.16	-7.00%
1.550	0.9984	4.0536	110	77.0	78.0	77.50	85.64	-10.51%
1.544	1.0023	4.0694	112	88.5	89.0	88.75	96.45	-8.68%
1.538	1.0062	4.0852	110	99.5	100.0	99.75	106.87	-7.14%
1.533	4 000							
	1.0095	4.0986	103	110.5	111.0	110.75	114.81	-3.67%
1.528	1.0095	4.0986 4.1120	103 94	110.5 120.5	111.0 121.0	110.75 120.75	114.81 121.87	-3.67% -0.93%
1.528 1.522								

(3) 电磁阻尼在3挡

T/s ω/ω_0 ω $\theta/^\circ$ $\phi_1/^\circ$ $\phi_2/^\circ$ $\phi=rac{\phi_1+\phi_2}{2}$ ϕ 计算值 $rac{\phi-\phi_+*}{\phi} imes 100\%$

1.515 1.0215 4.1473 70 140.0 141.0 140.50 136.09 3.13%

1.605	0.9647	3.9147	55	37.0	37.5	37.25	35.12	5.72%
1.587	0.9756	3.9591	66	49.0	49.5	49.25	45.71	7.19%
1.574	0.9837	3.9918	74	60.0	60.5	60.25	56.97	5.44%
1.565	0.9893	4.0148	82	67.0	68.0	67.50	67.06	0.65%
1.557	0.9944	4.0354	87	78.0	78.0	78.00	77.57	0.56%
1.548	1.0002	4.0589	89	89.5	90.0	89.75	90.51	-0.84%
1.541	1.0047	4.0773	89	100.0	100.5	100.25	100.65	-0.4%
1.534	1.0093	4.0959	82	110.5	111.0	110.75	110.21	4.84%
1.528	1.0133	4.1120	79	121.0	121.5	121.25	117.62	2.99%
1.521	1.0179	4.1309	69	129.5	130.0	129.75	125.18	3.52%
1.512	1.0240	4.1555	60	139.0	140.0	139.50	133.22	4.50%
1.496	1.0349	4.2000	47	148.0	149.0	148.50	143.69	3.24%

2.2曲线绘制

(1) 幅频特性曲线

(2) 相频特性曲线

3、相频特性曲线理论与实测对比

将相位差的测量值和计算值绘制在一起进行比较,可以做出如下曲线,其中灰色线为计算值,橙色 线为测量值:

(1) 阻尼开关在1挡

可以看出1挡阻尼开关时测出的数据明显有问题,与理论曲线相比有着较大的偏差,在上面数据整理中 $\frac{\phi - \phi + \pi}{\phi} \times 100\%$ 最高达到了40%多也可以看出。考虑到我在实验时并没有严重操作失误,因为同样的测量方法测出的2挡、3挡的对应的相频曲线与理论曲线非常吻合,我认为第19实验台的仪器的1档有点问题......课上老师也提到过后几号的仪器存在一些问题。

(2) 阻尼开关在2挡

测量得出的曲线与计算得出的曲线比较吻合。

(3) 阻尼开关在3挡

测量得出的曲线与计算得出的曲线比较吻合。

三、思考题

1、如何判断受迫振动已处于稳定状态?

答: 当振幅不再改变时,即显示器上振幅数值闪烁3次以上不发生改变时,可以认为受迫振动处于稳定状态。

2、从幅频特性曲线的相对振幅比为1/2的点,也可以求出 β 值。试用你作出的幅频特性曲线进行计算,把结果与练习2的结果相比较。

答: 相对振幅比

$$R_m(\omega) = rac{2eta\sqrt{\omega_0^2-eta^2}}{\sqrt{(\omega_0^2-\omega^2)^2+4eta^2\omega^2}}$$

$$\omega_H^2 - \omega_L^2 = 4\sqrt{3}eta\sqrt{\omega_0^2 - eta^2}$$

 ω_H 和 ω_L 分别为对应相对振幅为1/2的频点。

对于阻尼开关位于1挡, $\omega_H=3.981rad/s, \omega_L=4.141rad/s$, 取 $\omega_0=4.061rad/s$, 得 $\beta=8.73\times10^{-2}$,阻尼比 $\xi=2.15\times10^{-2}$ 与阻尼振动测得的 ξ 的相对偏差为5.0%

对于阻尼开关位于2挡, $\omega_H=3.920rad/s, \omega_L=4.211rad/s$, 取 $\omega_0=4.051rad/s$, 计算得 $\beta=8.40\times 10^{-2}$,阻尼比 $\xi=2.07\times 10^{-2}$ 与阻尼振动测得的 ξ 的相对偏差为1.1%

对于阻尼开关位于3挡, $\omega_H=3.882 rad/s, \omega_L=4.252 rad/s$,取 $\omega_0=4.059 rad/s$,计算得 $\beta=0.108$,阻尼比 $\xi=2.63\times 10^{-2}$ 与阻尼振动测得的 ξ 的相对偏差为4.0%。

理论上计算出的阻尼系数的大小应该相等,误差主要来自于 ω_H 和 ω_L 的估读。

3、实验中如何判断达到共振? 共振频率是多少?

答:实验中通过根据相位差为90°来判断速度共振,共振频率分别为4.062rad/s (阻尼=1)、4.060rad/s (阻尼=2)、4.058rad/s (阻尼=3)。

实际上受迫振动的共振分为两种,根据 $\Delta\phi=\arctan\frac{2\beta\omega}{\omega^2-\omega_0^2}=\frac{\pi}{2}$,给出速度共振的频率为 $\omega_\phi=\omega_0$;根据 $\theta_m=\frac{\alpha_m\omega_0^2}{\sqrt{(\omega^2-\omega_0^2)^2+4\beta^2\omega^2}}, \frac{\partial\theta_m}{\partial\omega}=0$ 给出位移共振的频率为 $\omega_\theta=\sqrt{\omega_0^2-2\beta^2}$ 。

$$\omega_{\phi} = \omega_{0}$$
 叫 做 速 度 共 振 点 , 是 因 为 $\frac{\partial \theta(t)}{\partial t} = -\omega \frac{\alpha_{m}\omega_{0}^{2}}{\sqrt{(\omega^{2}-\omega_{0}^{2})^{2}+4\beta^{2}\omega^{2}}} sin(\omega t - \phi)$, 最 大 速 度 为 $v_{m}(\omega) = \omega \frac{\alpha_{m}\omega_{0}^{2}}{\sqrt{(\omega^{2}-\omega_{0}^{2})^{2}+4\beta^{2}\omega^{2}}} = \frac{\alpha_{m}\omega_{0}^{2}}{\sqrt{(\omega-\frac{\omega_{0}^{2}}{\omega})^{2}+4\beta^{2}}}$, 当 $\omega = \omega_{0}$ 时 v_{m} 取 极 大 值 。 可 以 估 算 , 取 $\xi = 0.025, \omega_{0} = 4rad/s$ 时, ω_{θ} 和 ω_{ϕ} 的绝对偏差为 $2.5 \times 10^{-3} rad/s$,相对偏差只有 0.6% ,在实验数据的不确定度范围内,因此两种共振频率可以不加区分,当阻尼较大时, ω_{ϕ} 和 ω_{θ} 的差异需要被充分考虑。

四、实验小结

1、对受迫振动稳定状态的进一步考虑

从定量角度考虑,在我们学的电路中可以认为,电路在 $3\tau\sim5\tau$ (τ 为时间常数)后达到稳态。对于本次实验来讲,简化处理,当振幅中的指数衰减想项 $e^{-\beta t}$ 减小至0.01后,即可认为受迫振动达到稳态,,对应着 $t_c=\frac{ln100}{\beta}=\frac{ln100}{\omega_0\xi}$,对于阻尼开关位于0,1,2,3挡,临界时间 t_c 分别为841.56s,85.89s,55.38s,44.89s,在实验中很难去等待这么长时间,但在实际测量中,只需观察十个周期左右,如果振幅不再变化,即可认为达到平衡态。

2、有关阻尼振动中周期减小的现象

测量阻尼振动的周期时,可以发现 T_d 单调下降,根据 $T_d = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}$,这应该是 β 减小导致的,我们假设励磁电流恒定,则气隙中磁场恒定,圆盘受到的安培力阻尼应近似与速度的平方成正比,随着振幅减小,切割速度减小, β 应会减小,因此在这部分实验中圆盘振幅不应该过大,以减小 β 的改变。

但是从另外一个角度考虑,圆盘幅度也不应该过小,因为如果起振太小的话,圆盘很有可能还没测量完就停下来了,尤其是阻尼开关位于高档位时,所以实验时要把握分寸,提前预判。

3、关于测量相位差时两次读数问题探究

实验中两次读数是为了消除玻璃盘和刻度盘中心不重合带来的偏心误差,但在实验时可以发现该误差并不恒定, $|\omega-\omega_0|$ 越大,此偏差越大。可能原因如下:

闪光灯必须等到平衡位置凹槽完全通过后才会闪光,否则仪器不知道是哪个凹槽通过了光电门,这就使得相邻半个周期闪光时,间隔并不严格代表半个周期,时间差为 $\frac{\Delta\theta}{\omega_m}$,当 $|\omega-\omega_0|$ 较大时,圆盘速度较慢,偏差时间 $\frac{\Delta\theta}{\omega_m}$ 长,两次读数差异变大。