gps_base 节点

1.发布:

gps_pub=nh_local->advertise<gps::MyGPS_msg>("GPS_Base", 10); 发布 GPS 信息(自定义类型中的)

gps_fix_pub = nh_local->advertise<sensor_msgs::NavSatFix>("GPS_fix", 1);
(用于发布 GPS 的定位信息,包括纬度、经度、海拔高度以及定位质量等信息)
gps_raw_pub = nh_local->advertise<std_msgs::String>("GPSRaw_Base", 10);
2.订阅:

keyboard_sub = nh->subscribe<std_msgs::UInt16>("/keyboard", 10, &TGPS_Base::KeyboardCallback, this);

根据传递的键盘消息,设定模拟的 x、y和 yaw 的变换

joy_sub = nh->subscribe<sensor_msgs::Joy>("/joy", 10,

&TGPS_Base::JoyCallback, this);

用于处理手柄数据并模拟 GPS 数据

simpose_sub = nh->subscribe<geometry_msgs::PoseStamped>("/sim_pose", 10,
&TGPS_Base::SimPoseCallback, this);

处理接收到的模拟位姿(SimPose)数据

3.主函数:

调用 simdata 模拟 GPS 信号并发布,通过 UDP 或串口接收 GPS 数据,并将接收到的数据逐行传递给 DataProc 函数进行处理。

4.其他函数:

simdata 函数含义: void TGPS_Base::simdata()

模拟生成 GPS 数据并发布到 ROS 中,包括位置、速度、角度等信息,gps_pub.publish(gps_sim_msg);

DataProc 函数含义: int TGPS_Base::DataProc(const char *buf)

主要负责处理接收到的 GPS 数据并发布相关信息到 ROS 中,调用 Resolve 函数解析接收到的 GPS 数据,返回解析结果(可能包含位置、方向、速度等信息),将原始接收到的 GPS 数据以字符串形式发布到 ROS 的 gps_raw 话题中 gps_raw_pub.publish(strmsg); 发 布 gps_fix_pub.publish(Nav); 和 gps_pub.publish(msg);

Resolve 函数含义: int TGPSData::Resolve(const char *buf)

该函数用于解析接收到的 GPS 数据,提取其中的位置、方向、速度等信息, 并更新相关状态。返回 Ang_state

gps_pro 节点

1.发布:

path_load_pub = nh->advertise<nav_msgs::Path>("Path_Load", 10);(未发布)
path_save_pub = nh->advertise<nav_msgs::Path>("Path_Save", 10);机器人的路

marker_pub = nh->advertise<visualization_msgs::Marker>("car_marker", 1);可 视化工具中显示机器人的位置

2.订阅:

gps_base_sub = nh->subscribe<gps::MyGPS_msg>("/gps_base/GPS_Base", 10,
&TGPS_Pro::GPSDataCallback, this);

判断是否为点云匹配模式,如果不是则接受 GPS 传过来的信息,并<mark>调用</mark> PubPosition 函数

matching_loc_sub = nh->subscribe<nav_msgs::Odometry>("/laser_localization",
10, &TGPS Pro::matchingLocCallback, this);

判断是否为点云匹配模式,如果是则根据信息调用 PubPosition 函数

3.主函数: (未调用)

根据逻辑用于存储路径,调用 LoadPath 函数进行存储。

4.其他函数:

PubPosition 函数: void TGPS_Pro::PubPosition(geometry_msgs::Pose pose, int quality)

发布位置点 marker_pub.publish(displayCarPosition(pose_stamped, quality))可 视化工具中显示机器人的位置,

用于保存发布机器人的路径信息到 ROS 话题 path_save_pub.publish(path_msg) (saveflag 开 关 直 接 获 取 nh_local->getParam("saveflag", flag););

LoadPath 函数: void TGPS_Pro::LoadPath(char *filename)

从文件中加载轨迹信息,并根据零点坐标进行调整,最后存储在

PathLoadBuf 中。在加载时,还会输出加载的轨迹点数量。

rslidar_sdke 节点

重点:

包为厂家给的,只需要在 config 文件中进行修改雷达相关参数,并在 launch 文件中启动 rslidar_sdk_node 节点,发布原始点云信息为/rslidar_points (消息类型: sensor_msgs/PointCloud2)

节点: xsens_ros_mti_driver

重点:

包为厂家给的,直接调用/imu/data(消息类型 sensor_mags/Imu)

