XP10N3R8IT

Halogen-Free Product

N-CHANNEL ENHANCEMENT MODE

POWER MOSFET

- ▼ 100% R_q & UIS Test
- **▼** Simple Drive Requirement
- **▼** Fast Switching Characteristic
- **▼** RoHS Compliant & Halogen-Free

BV_{DSS}	100V
R _{DS(ON)}	$\mathbf{3.88m}\Omega$
I_D	67.7A

Description

XP10N3R8 series are innovated design and silicon process technology to achieve the lowest possible on-resistance and fast switching performance. It provides the designer with an extreme efficient device for use in a wide range of power applications.

The TO-220CFM package is widely preferred for all commercial-industrial through hole applications. The mold compound provides a high isolation voltage capability and low thermal resistance between the tab and the external heat-sink.

Absolute Maximum Ratings@T_j=25°C(unless otherwise specified)

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	100	V
V_{GS}	Gate-Source Voltage	<u>+</u> 20	V
I _D @T _C =25°C	Drain Current, V _{GS} @ 10V	67.7	А
I _D @T _C =100°C	Drain Current, V _{GS} @ 10V	42.8	Α
I_{DM}	Pulsed Drain Current ¹	300	Α
P _D @T _C =25°C	Total Power Dissipation	32.8	W
P _D @T _A =25°C	Total Power Dissipation	1.92	W
E _{AS}	Single Pulse Avalanche Energy ³	211	mJ
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$

Thermal Data

Symbol	Parameter	Value	Units
Rthj-c	Maximum Thermal Resistance, Junction-case	3.8	°C/W
Rthj-a	Maximum Thermal Resistance, Junction-ambient	65	°C/W

Electrical Characteristics@T_j=25°C(unless otherwise specified)

		.				
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	100	-	-	V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V, I _D =35A	-	-	3.88	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	2	-	4	V
g _{fs}	Forward Transconductance	V_{DS} =5V, I_D =35A	-	90	-	S
I _{DSS}	Drain-Source Leakage Current	V_{DS} =80V, V_{GS} =0V	-	-	25	uA
I _{GSS}	Gate-Source Leakage	V _{GS} = <u>+</u> 20V, V _{DS} =0V	-	-	<u>+</u> 0.1	uA
Q_g	Total Gate Charge ⁴	I _D =35A	-	82	131	nC
Q_{gs}	Gate-Source Charge ⁴	V _{DS} =50V	-	20	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge ⁴	V _{GS} =10V	-	30	-	nC
t _{d(on)}	Turn-on Delay Time ⁴	V _{DS} =50V	-	20	-	ns
t _r	Rise Time⁴	I _D =35A	-	88	-	ns
$t_{d(off)}$	Turn-off Delay Time ⁴	$R_G=6\Omega$	-	65	-	ns
t _f	Fall Time ⁴	V _{GS} =10V	-	106	-	ns
C _{iss}	Input Capacitance ⁴	V _{GS} =0V	-	4100	6560	pF
C _{oss}	Output Capacitance ⁴	V _{DS} =80V	_	620	-	рF
C _{rss}	Reverse Transfer Capacitance ⁴	f=1.0MHz	-	20	-	рF
R_g	Gate Resistance	f=1.0MHz	-	2	4	Ω

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I_S =35A, V_{GS} =0V	-	-	1.3	V
t _{rr}	Reverse Recovery Time ⁴	I_S =35A, V_{GS} =0V,	-	75	-	ns
Q _{rr}	Reverse Recovery Charge ⁴	dl/dt=100A/μs	-	135	-	nC

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse test
- 3.Starting T_i =25°C , V_{DD} =50V , L=0.1mH , R_G =25 Ω , V_{GS} =10V
- 4. Guaranteed by design.

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT, AUTOMOTIVE OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

XSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

XSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE

RELIABILITY, FUNCTION OR DESIGN.

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 5. Forward Characteristic of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s.
Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 8. Typical Capacitance Characteristics

Fig 9. Maximum Safe Operating Area

Fig 10. Effective Transient Thermal Impedance

Fig 11. Drain Current v.s. Case Temperature

Fig 12. Transfer Characteristics

Fig 13. Typ. Drain-Source on State Resistance

Fig 14. Total Power Dissipation

MARKING INFORMATION

Package Outline: TO-220CFM-T

SYMBOLS	Millimeters			
	MIN	NOM	MAX	
A	4.30	4.50	4.70	
b	0.54	0.69	0.84	
b1	0.99	1.14	1.29	
c	0.45	0.62	0.79	
D	14.70	15.00	15.30	
D1	8.5 Ref.			
e		2.54 Ref.		
E	9.70	10.00	10.30	
F	2.50	2.70	2.90	
G	6.30	6.70	7.10	
L	12.50	13.00	13.50	
L1	1.80	2.30	2.80	
J	0.10	0.20		
Q	2.50	2.60	2.90	
Q1	2.90	3.10 3.30		
Q2	3.5 Ref.			
φR	3.00	3.20	3.40	
α	45° Ref.			

- 1.All dimension are in millimeters.
- 2.Dimension does not include burrs and mold flash/protrusions.
- 3.The outline schematic is not to scale and slightly different from the actual product appearance.

TO-220CFM-T FOOTPRINT:

