1 Approximation

1.1 Newton-Raphson process

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

1.2 Linear interpolation

Draw triangles, use similar triangles.

1.3 Interval bisection

а	f(a)	b	f(b)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$
2	-1	3	2	2.5	0.1569
2	-1	2.5	0.1569	2.25	-0.493

2 Summation of Series

2.1 Summation of Series

$$\sum_{x=1}^{n} x = \frac{n(n+1)}{2}$$
$$\sum_{x=1}^{n} x^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\sum_{x=1}^{n} x^3 = \frac{n^2(n+1)^2}{4}$$

2.2 Summation of Arithmetic Progression

$$S_n = a_1 n + \frac{(n)(n-1)d}{2}$$

$$S_n = a_0 n + \frac{(n)(n+1)d}{2}$$

$$S_n = \frac{n \times (a_1 + a_n)}{2}$$

$$S_n = n \times a_{\frac{n+1}{2}}$$

2.3 Summation of Geometric Progression

$$S_n = \frac{a_1 \times (1 - q^n)}{1 - q}$$
$$S_{\infty} = \frac{a_1}{1 - q}$$

1

3 Matrices

3.1 Transformations

3.1.1 Enlargement

- Stretch in x-direction by a scale factor k: $\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$
- Stretch in y-direction by a scale factor k: $\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$
- Enlargement with centre of the origin by a scale factor k: $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$

3.1.2 Reflection

• Reflection in x-axis: $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

• Reflection in y-axis: $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

• Reflection in y = x: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

• Reflection in y = -x: $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

3.1.3 Rotation

• Rotation about the origin by θ anti-clockwise: $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

3.2 Inverse matrix 2*2

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

 $\det A = ad - bc$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

If $\det A = 0$, A is singular, so A has no inverse.

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

3.3 Inverse matrix 3*3

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}^{-1} = \frac{1}{\Delta} \begin{pmatrix} A & -B & C \\ -D & E & -F \\ G & -H & I \end{pmatrix}^{T}$$

where

$$A = ei - hf$$

$$\Delta = aA - bB + cC$$

3.3.1 Transpose

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}^{T} = \begin{pmatrix} a & d & c \\ b & e & h \\ g & f & i \end{pmatrix}$$

3.4 Calculating area of an triangle

$$\begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

$$A = \frac{1}{2} (x_2 y_1 + x_3 y_2 + x_1 y_3 - x_1 y_2 - x_2 y_3 - x_3 y_1)$$

2

4 Complex Numbers

1) Translation

$$w = z + a + bi$$
: translation by $\begin{pmatrix} a \\ b \end{pmatrix}$

2) Enlargement

$$w = kz$$
: enlargement by a scale factor k

3) Enlargement followed by translation

$$w = kz + a + bi$$
: enlargement by a scale factor k followed by a translation by $\begin{pmatrix} a \\ b \end{pmatrix}$

4.1 Transformations

4.1.1 Example 1

Find the transformation $w = \frac{1}{z}$, z! = 0, find the locus of w when z lies on the line with equation y = 2x + 1

$$x + yi = \frac{1}{u + vi} = \frac{u - vi}{u^2 + v^2} = \frac{u}{u^2 + v^2} + \frac{-v}{u^2 + v^2}i$$

5 Differentiation

5.1 First order differentiation

$$f(x)\frac{dy}{dx} + f'(x)y = \frac{d(f(x)y)}{dx}$$

Integration factor: $e^{\int pdx}$

$$\frac{dy}{dx} + py = Q \Rightarrow \frac{d(\boxed{e^{\int pdx}}y)}{dx} = \boxed{e^{\int pdx}}Q$$

5.2 Second order differentiation

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

5.2.1 Auxiliary equation

$$am^2 + bm + c = 0$$

If $\Delta > 0$, it has two distinct roots α , β . General solution:

$$y = Ae^{\alpha x} + Be^{\beta x}$$

If $\Delta = 0$, it has two repeated roots. General solution:

$$y = (A + Bx)e^{\alpha x}$$

If $\Delta < 0$, it has two complex roots, p + qi and p - qi. General solution:

$$y = e^{px}(A\cos qx + B\sin qx)$$

5.2.2 Example for finding a general solution for Second order differentiation

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$$

$$a = 1, b = 5, c = 6$$

$$m^2 + 5m + 6 = 0$$

$$m = -2orm = -3$$

$$y = Ae^{-2x} + Be^{-3x}$$

5.2.3 Complementary functions

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$

Solution: y = complementary function + particular integral

Particular integral is the general form of f(x).

5.2.4 Complementary functions example

$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 12y = 36x$$

Step 1. State CF and PI

CF:
$$y = Ae^{2x} + Be^{6x}$$

PI:
$$y = \lambda x + \mu$$

Step 2. Differentiate PI

Obtain:

$$\frac{dy}{dx} = \lambda$$

$$\frac{dy}{dx} = \lambda$$
$$\frac{d^2y}{dx^2} = 0$$

Step 3. Substitute $\frac{d^2y}{dx^2}$, $\frac{dy}{dx}$, y into the differentiation equation.

Then find λ and μ .

5.3 Appendix: Particular Integrals

f(x)	Particular integral
k	λ
ax + b	$\lambda x + \mu$
$ax^2 + bx + c$	$\lambda x^2 + \mu x + \gamma$
ae ^{kx}	λe^{kx}
$a \sin kx$	
$a \sin kx$	$\lambda \sin kx + \mu \cos kx$
$a\sin kx + b\cos kx$	

6 Maclaurin and Taylor series

6.1 Maclaurin expansion

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f''(0)}{r!}x^r + \dots$$

6.1.1 Provided expansions

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, -1 < x < 1$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots, -1 < x < 1$$

6.2 Taylor expansion

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f''(a)}{r!}(x - a)^r + \dots$$
$$f(x - a) = f(a) + f'(a)x + \frac{f''(a)}{2!}x^2 + \frac{f''(a)}{r!}x^r + \dots$$

7 Polar Coordinates

7.1 Sketching Graphs in Polar Coordinates

7.2 Integration in Polar Coordinates

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$$

7.3 Differentiation in Polar Coordinates

Polar function $r = f(\theta)$ can be transformed to

$$y = r \sin \theta$$

$$x = r \cos \theta$$

Then differentiation:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

- For tangent parallel to initial line, $\frac{dy}{dx} = 0$, hence $\frac{dy}{d\theta} = 0$.
- For tangent perpendicular to initial line, $\frac{dy}{dx}$ is undefined, hence $\frac{dx}{d\theta}=0$

8 Hyperbolic Functions

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\operatorname{arsinh} x = \ln\left(x + \sqrt{x^2 + 1}\right)$$

$$\operatorname{arcosh} x = \ln\left(x \pm \sqrt{x^2 - 1}\right)$$

$$\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

8.1 Osborn's rule

Replace $\sin with \sinh, \cos with \cosh, \sin^2 with - \sinh^2 \sin^2 with - \sinh^2 with - had - h$

9 Further integration

9.1 General formulae

$$\int f'(x)f^n(x)dx = \frac{f^{n+1}(x)}{n+1}$$

9.2 Useful formulae

$$\cosh 2x = 2\cosh^2 x - 1 = 1 + 2\cosh^2(x)$$

$$\cosh^2(x) = \frac{\cosh 2x + 1}{2}$$

$$\sinh^2(x) = \frac{\cosh 2x - 1}{2}$$

$$\frac{d}{dx} (\operatorname{arsinh} x) = \frac{1}{\sqrt{1 + x^2}}$$

$$\frac{d}{dx} (\operatorname{arcosh} x) = \frac{1}{\sqrt{x^2 - 1}}$$

$$\frac{d}{dx} (\operatorname{artanh} x) = 1 - x^2$$

$$\frac{d}{dx} (\operatorname{tanh} x) = \operatorname{sech}^2 x$$

$$\frac{d}{dx} (\coth x) = -\operatorname{cosech}^2 x$$

$$\frac{d}{dx} (\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$

6

$$\frac{d}{dx}\left(\operatorname{cosech} x\right) = -\operatorname{cosech} x\operatorname{coth} x$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin(\frac{x}{a}) + C$$

(Results marked (*) are in the Edexcel formula booklet)
$$\int \sinh x \, dx = \cosh x + C \, (*)$$

$$\int \cosh x \, dx = \sinh x + C \, (*)$$

$$\int \operatorname{sech}^2 x \, dx = \tanh x + C$$

$$\int \operatorname{sech}^2 x \, dx = -\coth x + C$$

$$\int \operatorname{sech} x \tanh x \, dx = -\operatorname{sech} x + C$$

$$\int \operatorname{cosech} x \coth x \, dx = -\operatorname{cosech} x + C$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \arcsin \left(\frac{x}{a}\right), \ |x| < a \qquad (*)$$

$$\int \frac{1}{a^2 + x^2} \, dx = \arcsin \left(\frac{x}{a}\right) \qquad (*)$$

$$\int \frac{1}{1 + x^2} \, dx = \arctan x + C$$

$$\int \frac{1}{\sqrt{(a + x^2)}} \, dx = \operatorname{arcsinh} \left(\frac{x}{a}\right) \qquad (*)$$

$$\int \frac{1}{\sqrt{(1 + x^2)}} \, dx = \operatorname{arcsinh} x + C$$

$$\int \frac{1}{\sqrt{(x^2 - a^2)}} \, dx = \operatorname{arcsoh} \left(\frac{x}{a}\right), \ x > a \qquad (*)$$

$$\int \frac{1}{\sqrt{x^2 - 1}} \, dx = \operatorname{arcsoh} x + C$$

$$\int \frac{1}{a^2 - x^2} \, dx = \frac{1}{2a} \ln \left|\frac{a + x}{a - x}\right|, \ |x| < a \qquad (*)$$

$$\int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \ln \left|\frac{x - a}{x + a}\right| \qquad (*)$$

9.3 Substitution in Integration

$\int f(x)dx$	Substitution
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$ $\int \sqrt{a^2 - x^2} dx$	$x = a\sin\theta$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$ $\int \sqrt{x^2 - a^2} dx$	$x = a \cosh \theta$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$ $\int \sqrt{x^2 + a^2} dx$	$x = a \sinh \theta$
$\int \frac{1}{x^2 + a^2} dx$	$x = a \tan \theta$

9.4 Arc Length

$$S = \int_{x_A}^{x_B} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$S = \int_{y_A}^{y_B} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

$$S = \int_{t_A}^{t_B} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

9.5 Surface Area

Rotating about x-axis

$$S = 2\pi \int_{x_A}^{x_B} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$S = 2\pi \int_{x_A}^{x_B} y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dx$$

Rotating about y-axis

$$S = 2\pi \int_{x_A}^{x_B} x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$S = 2\pi \int_{x_A}^{x_B} x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dx$$

10 Further coordinates

Conics

	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$	$y^2 = 4ax$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$xy = c^2$
Parametric Form	$(a\cos\theta, b\sin\theta)$	$(at^2, 2at)$	$(a \sec \theta, b \tan \theta) $ $(\pm a \cosh \theta, b \sinh \theta)$	$\left(ct,\frac{c}{t}\right)$
Eccentricity	$e < 1$ $b^2 = a^2(1 - e^2)$	e = 1	$e > 1$ $b^2 = a^2(e^2 - 1)$	$e = \sqrt{2}$
Foci	(±ae, 0)	(a, 0)	(± ae, 0)	$(\pm\sqrt{2}c,\pm\sqrt{2}c)$
Directrices	$x = \pm \frac{a}{e}$	x = -a	$x = \pm \frac{a}{e}$	$x + y = \pm \sqrt{2}c$
Asymptotes	none	none	$\frac{x}{a} = \pm \frac{y}{b}$	x = 0, y = 0

10.1 Ellipses

10.1.1 Gradient of tangent for ellipse

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b\cos\theta}{-a\sin\theta}$$

10.2 Hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

10.2.1 Asymptotes

$$y = \pm \frac{b}{a}x$$

10.2.2 Intersections

$$x = \pm a$$

10.2.3 Parametric equations

$$\begin{cases} x = a \sec \theta \\ y = b \tan \theta \end{cases}$$
$$\begin{cases} x = a \cosh \theta \\ y = b \sinh \theta \end{cases}$$

10.2.4 Differentiation

$$\frac{dy}{dx} = \frac{b}{a}\csc\theta$$

$$\frac{dy}{dx} = \frac{b}{a} \coth \theta$$

10.3 Eccentricity

$$e = \frac{distance\ to\ focus}{distance\ to\ directrix}$$

- If 0 < e < 1, it's an ellipse. $foci(\pm ae, 0)$. directrix: $x = \pm \frac{a}{e}$
- If e = 1, it's an parabola.

Eccentricity for ellipse:

$$b^2 = a^2(1 - e^2)$$

$$e^2 = 1 - \frac{b^2}{a^2}$$

Eccentricity for hyperbola:

$$a^2 = b^2(e^2 - 1)$$

$$e^2 = 1 + \frac{a^2}{b^2}$$

11 Appendix: Formulas of Integration and Differentiation

$$\int \frac{f'(x)}{f(x)} dx = \ln(f(x))$$

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$

$$\int \sec x dx = \ln(\sec x + \tan x) + C$$

$$\int \csc x dx = -\ln(\csc x + \cot x) + C$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$