

AD-A121 699 PREPARATION AND PROPERTIES OF SUBSTITUTED IRON
TUNGSTATES(U) BROWN UNIV PROVIDENCE RI DEPT OF
CHEMISTRY K SIEBER ET AL. 17 NOV 82 TR-23

1/1

UNCLASSIFIED NOOO14-77-C-0387

F/G 20/12

NL

END
DATE
FILED
1-15
DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

12

SECURITY CLASSIFICATION OF THIS PAGE (If different from Report)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 23	2. PERFORMING ORGANIZATION NUMBER AD-101179	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) PREPARATION AND PROPERTIES OF SUBSTITUTED IRON TUNGSTATES	5. TYPE OF REPORT & PERIOD COVERED	
6. PERFORMING ORG. REPORT NUMBER 23	7. CONTRACT OR GRANT NUMBER(S) N00014-77-C-0387	
8. PERFORMING ORGANIZATION NAME AND ADDRESS Professor Aaron Wold Brown University, Department of Chemistry Providence, Rhode Island 02912	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR-359-653	
9. CONTROLLING OFFICE NAME AND ADDRESS Dr. David Nelson Code 472 Office of Naval Research Arlington, Virginia 22217	12. REPORT DATE November 17, 1982	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 23	
15. SECURITY CLASS. (of this report)		
15a. DECASSIFICATION DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES SUBMITTED TO THE JOURNAL OF SOLID STATE CHEMISTRY		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Substituted Wolframites Ordered α -PbO ₂ Structure N-Type Semiconductor		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Polycrystalline samples of members of the systems $Fe_{2-x}Cr_xW_0_6$ and $Fe_{1-x}Mn_xW_0_4$ were prepared and single crystals of $Fe_{1-x}Mn_xW_0_4$ were grown by chemical vapor transport. Their crystallographic parameters and electrical properties were characterized. $Fe_2W_0_6$ crystallizes with the tri- α -PbO ₂ structure and is an n-type semiconductor. For $0.3 \leq x \leq 2$, the system $Fe_{2-x}Cr_xW_0_6$ crystallizes with the inverse trirutile structure and is non-conducting due to blocking of iron(II)-iron(III) conduction paths by chromium(III). For $0 \leq x \leq 1$, the system (continued over)		

DTIC
ELECTE
S NOV 22 1982 D

DTIC FILE COPY

20. Abstract (Continued)

$Fe_{1-x}Mn_xWO_4$ crystallizes with the wolframite structure and shows p-type semiconducting behavior. The nature of the variation of resistivity with x of $Fe_{1-x}Mn_xWO_4$ suggests that interchain electron transfer may occur in this structure.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A	

OFFICE OF NAVAL RESEARCH

Contract N00014-77-C-0387

Task No. NR-359-653

TECHNICAL REPORT NO. 23

Preparation and Properties of Substituted Iron Tungstates

by

K. Sieber, H. Leiva, K. Kourtakis, R. Kershaw, K. Dwight,
and A. Wold

Department of Chemistry

Brown University

Providence, Rhode Island 02912

Prepared for Publication

in the

Journal of Solid State Chemistry

November 17, 1982

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited

INTRODUCTION

The use of iron(III) oxide as a potential photoanode for photoinduced electrolysis of water has been reported (1-5). The interest in this compound has been generated by its relatively narrow band gap (~ 2.2 eV) and its stability in aqueous solutions. It was found that pure α - Fe_2O_3 has a high resistivity ($> 10^6 \Omega\text{-cm}$ and shows no detectable photocurrent (6). Although the phase boundary between α - Fe_2O_3 and Fe_3O_4 is sharp (7), α - Fe_2O_3 can be made conducting by the introduction of small amounts of Fe_3O_4 by exposure to a reducing atmosphere. The spinel Fe_3O_4 contains both iron(II) and iron(III) on octahedral sites, and conduction occurs via electron transfer from iron(II) to iron(III). However, iron(III) oxide itself crystallizes with the corundum structure, which contains only trivalent iron, and cannot tolerate deviations from a metal-to-oxygen ratio of 2:3.

One of the problems in the search for new iron-containing oxide semiconductors for potential photoelectrodes is the relationship between electrical transport properties and structure. Compounds crystallizing with the α - PbO_2 , wolframite, and rutile structures are potentially interesting materials because they can contain varying amounts of iron(II) and iron(III) on equivalent sites. In the following sections, the preparation of some iron-containing transition metal tungstates crystallizing with the tri- α - PbO_2 , wolframite, and tri-rutile structures will be described, and the relationship between the observed electrical properties and certain structural features, such as cation distribution and geometry of octahedral linkages, will be discussed.

EXPERIMENTAL

The preparation of iron(III) tungstate Fe_2WO_6 has been described previously (8). Samples were prepared by a solid state reaction of Fe_2O_3 (obtained by decomposition of iron(II) oxalate in air) and WO_3 (obtained by heating 99.9% pure tungsten foil under flowing oxygen for four days at 1000°C). A finely ground mixture of the oxides was placed in a covered platinum crucible and heated in air at 950°C for six days. Polycrystalline samples of the solid solution $Fe_{2-x}Cr_xWO_6$ were prepared by heating finely ground mixtures of Fe_2O_3 (Mapico Red), Cr_2O_3 (obtained by thermal decomposition of $(NH_4)_2Cr_2O_7$ [Mallinkrodt, analytical reagent] at 600°C for 30 hours in air), and WO_3 for six days at 950°C in air in covered platinum crucibles.

Polycrystalline $FeWO_4$ was prepared by a solid state reaction of FeO and WO_3 (9). FeO was obtained by reacting freshly reduced iron metal (Leico) with Fe_2O_3 (Mapico Red) for three days at 900°C in sealed evacuated silica tubes and quenching the tubes rapidly into cold water to prevent disproportionation of FeO into Fe and Fe_3O_4 . A finely ground mixture of FeO and WO_3 was heated at 900°C for six days in a sealed evacuated silica tube. Polycrystalline samples of the solid solution $Fe_{1-x}Mn_xWO_4$ were prepared by heating finely ground mixtures of FeO , MnO , and WO_3 for six days at 900°C in sealed evacuated silica tubes. MnO was prepared by hydrogen reduction at 650°C of manganese(III) hydroxides obtained from alkaline peroxide oxidation of a manganese(II) sulfate solution.

Single crystals of $Fe_{1-x}Mn_xWO_4$ were grown from single-phase polycrystalline samples by chemical vapor transport using tellurium(IV) chloride as a

transport agent. A concentration of 2.3 mg TeCl_4 /cc was used; the temperature of the charge zone was 985°C and that of the growth zone 900°C .

Crystal growth proceeded for one week. All products were removed from the transport tube, washed immediately with dilute hydrochloric acid, then rinsed with water and dried with acetone. In all cases, crystals large enough for electrical measurements were formed.

X-ray diffraction patterns of the polycrystalline materials and ground single crystal powders were taken using a Philips Norelco diffractometer with monochromatic $\text{Cu K}\alpha_1$ radiation from a high-intensity copper source ($\lambda = 1.5405\text{\AA}$). Cell parameters were determined from slow-scan (0.25 degree $2\theta/\text{min}$) diffraction patterns over the range of $10^\circ < 2\theta < 70^\circ$; the reflections were indexed, and precise lattice parameters were obtained using a least squares refinement.

Sintered disks of Fe_2WO_6 were prepared as described previously (8) by hot-pressing aliquots of approximately 800 mg for 2 hours at 980°C at an applied pressure of 5000 psi. Dies and plungers of Diamonite (Al_2O_3) were used. The heating rate was about $12^\circ\text{C}/\text{hr}$, and at the end of the sintering process, the disks were allowed to cool at nearly the same rate. The product was x-rayed with $\text{Fe K}\alpha$ radiation ($\lambda = 1.9360\text{\AA}$) using the Debye-Scherrer method, and its pattern was compared with those of the corresponding starting compounds to confirm that the phase did not undergo any change during the sintering process. Sintered disks of $\text{Fe}_{2-x}\text{Cr}_x\text{WO}_6$ were prepared by pressing aliquots of approximately 200 mg at 90,000 psi; 10 drops of Carbowax were added to the sample before pressing in order to facilitate the formation of a well-sintered disk. The pressed disks were placed on a

bed of powder having the same composition, in an alumina crucible. The disks were heated at a rate of 50°C/hr to 950°C and maintained at that temperature for 7 hours. At the end of the sintering process, the disks were cooled at the same rate. The product was x-rayed with FeKa radiation ($\lambda = 1.9360\text{\AA}$) using the Debye-Scherrer method, and its pattern was compared with those of the corresponding starting materials (as was described for Fe_2WO_6).

The resistivities of both single crystals and sintered disks were measured using the van der Pauw technique (10). Contacts were made by the ultrasonic soldering of indium onto the samples, and their ohmic behaviors were established by measuring their current-voltage characteristics. The sign of the majority carriers was determined from qualitative measurement of the Seebeck effect.

RESULTS AND DISCUSSION

The structure of Fe_2WO_6 has been described by Senegas and Galy (11). Fe_2WO_6 crystallizes with the tri- α - PbO_2 structure, an ordered variant of the α - PbO_2 structure. It consists of a distorted hexagonal closed-packed array of oxygen anions in which one-half the octahedral interstices are occupied by iron and tungsten in an ordered manner. The cations are distributed in such a way as to give rise to skew-edge linked chains of octahedra extending along the c direction as shown in Figure 1. Separate chains are corner linked to each other. Senegas and Galy have indicated that ideally one third of these puckered chains contains only iron atoms,

and two thirds show a one-to-one ordering of iron and tungsten atoms. The 2:1 cation ordering causes a tripling of the b axis relative to the normal α - PbO_2 unit cell. The space group is Pbcn and the lattice parameters for the orthorhombic cell are:

$$a = 4.577\text{\AA}(1), \quad b = 16.750\text{\AA}(1), \quad c = 4.965\text{\AA}(1)$$

Fe_2WO_6 prepared from stoichiometric mixtures of the appropriate oxides always shows trace amounts of $\alpha\text{-Fe}_2\text{O}_3$ in the product, as indicated by the presence of some of the strongest reflections of this oxide (012, 110, 024, 116, 214) near the limit of detection. This material has been reported (8) to be an n-type semiconductor with an activation energy of .17 eV and a room temperature resistivity of $\sim 50\Omega\text{-cm}$. The presence of trace amounts of $\alpha\text{-Fe}_2\text{O}_3$ can be accounted for on the basis of a solid solution of small amounts of FeWO_4 in Fe_2WO_6 as shown by Leiva (8). Thus, the extrinsic n-type semiconducting behavior of Fe_2WO_6 is consistent with the solid solution of FeWO_4 in Fe_2WO_6 , thereby introducing iron(II) and iron(III) on equivalent sites so that conduction may occur along the chains of the tri- α - PbO_2 structure by electron hopping.

The solid solution $\text{Fe}_{2-x}\text{Cr}_x\text{WO}_6$ is single phase in the region $.3 \leq x \leq 2$ and crystallizes with the inverse trirutile structure, an ordered variant of the rutile structure, which has been described by Bayer (12) for Cr_2WO_6 . The inverse trirutile structure (space group $\text{P}4/2\text{mnm}$) can be described as a hexagonal close-packed array of oxygen anions in which one half of the octahedral interstices are occupied so as to give rise to straight chains of edge linked octahedra. There is a 2:1 cation ordering within the

All single-phase materials $Fe_{2-x}Cr_xWO_6$ for $.3 \leq x \leq 2$ were found to be non-conducting. This is consistent with chromium(III) effectively blocking any possible conduction pathways involving iron(II) and iron(III) in the straight chains of the inverse trirutile structure. Thus, substitution of chromium(III) in Fe_2WO_6 changes the structure from tri- α -PbO₂ to inverse trirutile, and electron hopping involving iron(II) and iron(III) in the straight chains of the inverse trirutile structure is effectively blocked.

FeWO_4 crystallizes with the monoclinic wolframite structure ($P2/c$), another ordered variant of the $\alpha\text{-PbO}_2$ structure, which has been described by Ülku (13) and Cid-Dresdner (14). It consists of a distorted hexagonally close-packed array of oxygen anions in which one half of the octahedral interstices are filled, giving rise to puckered skew-edge linked chains of octahedra along the c direction, as shown in Figure 3. The cation distribution within these chains differs from that of the tri- $\alpha\text{-PbO}_2$ structure; in the wolframite structure, the puckered chains are occupied entirely by either iron(II) or tungsten(VI). There are no mixed chains in the wolframite structure, and separate chains of unlike cations are corner linked to each other. The cell parameters of FeWO_4 determined from polycrystalline powders are: $a = 4.734\text{\AA}(1)$, $b = 5.708\text{\AA}(1)$, $c = 4.963\text{\AA}(1)$, and $\beta \sim 90^\circ$. Single

crystals of FeWO_4 grown by chemical vapor transport with tellurium(IV) chloride are p-type semiconductors with a room temperature resistivity of $\sim 100\Omega\text{-cm}$ and an activation energy of .16 eV (9). The extrinsic p-type semiconducting behavior of FeWO_4 is consistent with the presence of a small amount of iron(III) introduced by solid solution of some Fe_2WO_6 . Iron(II) and iron(III) would then be present on equivalent sites, allowing conduction to occur along the chains of the wolframite structure by electron hopping.

The solid solution $\text{Fe}_{1-x}\text{Mn}_x\text{WO}_4$ is single phase where $0 \leq x \leq 1$ and crystallizes with the wolframite structure. The variation of cell parameters with composition is shown in Table II, and the variation of cell volume with composition is consistent with Végar's law. The increase in cell volume with increasing manganese content is consistent with the slightly larger ionic radius of manganese(II) high spin, compared with that of iron(II) high spin.

The electrical properties of $\text{Fe}_{1-x}\text{Mn}_x\text{WO}_4$ were measured on single crystals grown by chemical vapor transport with TeCl_4 . The stoichiometry of each crystal measured was checked by grinding part of the crystal and determining the lattice parameters of the resulting powder. Comparison of the lattice parameters of the crystals with that of the polycrystalline powders showed good agreement. All crystals in this system having measurable resistivity showed p-type semiconducting behavior; however, the value of resistivity at room temperature increases from $100\Omega\text{-cm}$ for pure FeWO_4 to only $400\Omega\text{-cm}$ for the composition $\text{Fe}_{.8}\text{Mn}_{.2}\text{WO}_4$, and $5000\Omega\text{-cm}$ for $\text{Fe}_{.5}\text{Mn}_{.5}\text{WO}_4$.

Manganese(II) does not effectively block the conduction pathways in the structure, and this result suggests that electron delocalization may occur in the wolframite structure to give rise to interchain electron transfer.

The resistivity of these iron-containing phases crystallizing with the wolframite, tri- α -PbO₂, and inverse trirutile structures is affected by both cation distribution and geometry of octahedral linkage. It is found in Fe₂WO₆ that when the octahedral linkages are changed from skew-edge linked to straight-edge linked, the conduction pathways are blocked effectively by chromium(III). Similar results were reported by Khazai et al. (15) for the system Fe_{1-x}Cr_xNbO₄, where substitution of chromium(III) resulted in a structural change from wolframite to rutile with a large increase in resistivity. In manganese-substituted FeWO₄, the wolframite structure with its skew-edge linked chains is maintained. It is found that the conduction pathways in this system are not blocked effectively by manganese(II), possibly because of interchain electron delocalization. Thus, it appears that not only the cation distribution but also the structure type is important in determining the electrical properties of these phases.

CONCLUSIONS

— > Fe₂WO₆ is an n-type semiconductor crystallizing with the tri- α -PbO₂ structure, an ordered variant of the more basic α -PbO₂ structure. The extrinsic semiconducting behavior is consistent with the presence of both iron(II) and iron(III) in the puckered chains of the structure. The

presence of the two valence states of iron is due to a solid solution of a small amount of FeWO_4 in Fe_2WO_6 . Substitution of chromium(III) into Fe_2WO_6 changes the structure type to inverse trirutile, and it is found that chromium(III) effectively blocks any electron hopping between iron(II) and iron(III) in this structure.

FeWO_4 , on the other hand, is a p-type semiconductor crystallizing with the wolframite structure. The extrinsic semiconducting behavior of FeWO_4 is consistent with the presence of both iron(II) and iron(III) in the puckered chains produced by solid solution with a small amount of Fe_2WO_6 . Substitution of manganese(II) into FeWO_4 maintains the wolframite structure; however, the room temperature resistivity does not vary as markedly as anticipated for electron hopping between iron(II) and iron(III) along the puckered chains. This suggests that contributions to the electrical conductivity may occur by interchain electron transfer via $[\text{WO}_6]$ octahedra in the FeWO_4 structure.

ACKNOWLEDGMENTS

The authors acknowledge the support of the Office of Naval Research, Arlington, Virginia, for the support of Kurt Sieber, Hector Leiva, Kostantinos Kourtakis, and Kirby Dwight. Acknowledgment is also made to Brown University's Material Research Laboratory for the use of its facilities.

TABLE I

Crystallographic Data for $Fe_{2-x}Cr_xWO_6$

Space Group: P4/2mm

<u>x</u>	<u>a(Å)</u>	<u>c(Å)</u>	<u>V(Å³)</u>
2	4.580(1)	8.865(1)	186.0
1	4.607(1)	8.916(1)	189.2
.5	4.619(1)	8.941(1)	190.8
.3	4.627(1)	8.964(1)	192.0

TABLE II

Crystallographic Data for $Fe_{1-x}Mn_xWO_4$

Space Group: P2/c

<u>x</u>	<u>a(Å)</u>	<u>b(Å)</u>	<u>c(Å)</u>	<u>β</u>	<u>V(Å³)</u>
0	4.734(1)	5.709(1)	4.963(1)	$\sim 90^\circ$	134.1
.2	4.751(1)	5.718(1)	4.969(1)	$\sim 90^\circ$	135.0
.5	4.782(1)	5.733(1)	4.984(1)	$90.57(2)^\circ$	136.6
.8	4.811(1)	5.749(1)	4.992(1)	$90.90(2)^\circ$	138.1
1.0	4.829(1)	5.759(1)	4.998(1)	$91.16(2)^\circ$	139.0

1. K.L. Hardee and A.J. Bard; J. Electrochem. Soc. 123, 1024 (1976).
2. R.K. Quinn, R.D. Nasby, and R.J. Baughman; Mat. Res. Bull. 11, 1011 (1976).
3. K.L. Hardee and A.J. Bard; J. Electrochem. Soc. 124, 215 (1977).
4. L.R. Yeh and N. Hackerman; J. Electrochem. Soc. 124, 833 (1977).
5. H.H. Kung, H.S. Jarrett, A.W. Sleight, and A. Ferretti; J. Appl. Phys. 48 (6), 2463, (1977).
6. P. Merchant, R. Collins, R. Kershaw, K. Dwight, and A. Wold; J. Solid State Chem. 27, 307 (1979).
7. O.N. Salmon; J. Phys. Chem. 65, 550 (1961).
8. H. Leiva, K. Dwight, and A. Wold; J. Solid State Chem. 42, 41 (1982).
9. K. Sieber, K. Kourtakis, R. Kershaw, K. Dwight, and A. Wold; Mat. Res. Bull. 17, 721 (1982).
10. L.J. van der Pauw; Philips Res. Rep. 13, 1 (1968).
11. J. Senegas and J. Galy; J. Solid State Chem. 10, 5 (1974).
12. G. Bayer; J. Amer. Cer. Soc. 43, 495 (1960).
13. D. Ülkü; Zeit. Krist. 124, 192 (1967).
14. H. Cid-Dresdner and C. Escobar; Zeit. Krist. 127, 61 (1968).
15. B. Khazai, R. Kershaw, K. Dwight, and A. Wold; J. Solid State Chem. 39, 395 (1981).

FIGURE CAPTIONS

Figure 1 - The tri- α - PbO_2 structure: c-axis perspective of linked octahedra; light-shaded octahedra represent $[WO_6]$ units.

Figure 2 - The AB_2O_6 trirutile structure: showing cation ordering in straight chains of octahedra; light-shaded octahedra represent $[WO_6]$ units.

Figure 3 - The wolframite structure: c-axis perspective of skewed chains of octahedra; light-shaded octahedra represent $[WO_6]$ units.

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Office of Naval Research Attn: Code 413 800 North Quincy Street Arlington, Virginia 22217	2	Naval Ocean Systems Center Attn: Mr. Joe McCartney San Diego, California 92152	1
ONR Pasadena Detachment Attn: Dr. R. J. Marcus 1030 East Green Street Pasadena, California 91106	1	Naval Weapons Center Attn: Dr. A. B. Amster, Chemistry Division China Lake, California 93555	1
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Department of the Navy Washington, D.C. 20360	1	Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Dean William Tolles Naval Postgraduate School Monterey, California 93940	1
Dr. Fred Saalfeld Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375	1	Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380	1
U.S. Army Research Office Attn: CRD-AA-IP P. O. Box 12211 Research Triangle Park, N.C. 27709	1	Naval Ship Research and Development Center Attn: Dr. G. Bosmajian, Applied Chemistry Division Annapolis, Maryland 21401	1
Mr. Vincent Schaper DTNSRDC Code 2803 Annapolis, Maryland 21402	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1	Mr. A. M. Anzalone Administrative Librarian PLASTEC/ARRADCOM Bldg 3401 Dover, New Jersey 07801	1

TECHNICAL REPORT DISTRIBUTION LIST, 359

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Dr. Paul Delahay Department of Chemistry New York University New York, New York 10003	1	Dr. P. J. Hendra Department of Chemistry University of Southampton Southampton SOO 5NH United Kingdom	1
Dr. E. Yeager Department of Chemistry Case Western Reserve University Cleveland, Ohio 41106	1	Dr. Sam Perone Chemistry & Materials Science Department Laurence Livermore National Lab. Livermore, California 94550	1
Dr. D. N. Bennion Department of Chemical Engineering Brigham Young University Provo, Utah 84602	1	Dr. Royce W. Murray Department of Chemistry University of North Carolina Chapel Hill, North Carolina 27514	1
Dr. R. A. Marcus Department of Chemistry California Institute of Technology Pasadena, California 91125	1	Naval Ocean Systems Center Attn: Technical Library San Diego, California 92152	1
Dr. J. J. Auborn Bell Laboratories Murray Hill, New Jersey 07974	1	Dr. C. E. Mueller The Electrochemistry Branch Materials Division, Research and Technology Department Naval Surface Weapons Center White Oak Laboratory Silver Spring, Maryland 20910	1
Dr. Adam Heller Bell Laboratories Murray Hill, New Jersey 07974	1	Dr. G. Goodman Johnson Controls 5757 North Green Bay Avenue Milwaukee, Wisconsin 53201	1
Dr. T. Katan Lockheed Missiles and Space Co., Inc. P. O. Box 504 Sunnyvale, California 94088	1	Dr. J. Boechler Electrochimica Corporation Attn: Technical Library 2485 Charleston Road Mountain View, California 94040	1
Dr. Joseph Singer, Code 302-1 NASA-Lewis 21000 Brookpark Road Cleveland, Ohio 44135	1	Dr. P. P. Schmidt Department of Chemistry Oakland University Rochester, Michigan 48063	1
Dr. B. Brummer EIC Incorporated 55 Chapel Street Newton, Massachusetts 02158	1		
Library P. R. Mallory and Company, Inc. Northwest Industrial Park Burlington, Massachusetts 01803	1		

TECHNICAL REPORT DISTRIBUTION LIST, 359

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>		
Dr. H. Richtol Chemistry Department Rensselaer Polytechnic Institute Troy, New York 12181	1	Dr. R. P. Van Duyne Department of Chemistry Northwestern University Evanston, Illinois 60201	1
Dr. A. B. Ellis Chemistry Department University of Wisconsin Madison, Wisconsin 53706	1	Dr. B. Stanley Pons Department of Chemistry University of Alberta Edmonton, Alberta CANADA T6G 2G2	1
Dr. M. Wrighton Chemistry Department Massachusetts Institute of Technology Cambridge, Massachusetts 02139		Dr. Michael J. Weaver Department of Chemistry Michigan State University East Lansing, Michigan 48824	1
Larry E. Plew Naval Weapons Support Center Code 30736, Building 2906 Crane, Indiana 47522	1	Dr. R. David Rauh EIC Corporation 55 Chapel Street Newton, Massachusetts 02158	1
S. Ruby DOE (STOR) 600 E Street Providence, Rhode Island 02192	1	Dr. J. David Margerum Research Laboratories Division Hughes Aircraft Company 3011 Malibu Canyon Road Malibu, California 90265	1
Dr. Aaron Wold Brown University Department of Chemistry Providence, Rhode Island 02192	1	Dr. Martin Fleischmann Department of Chemistry University of Southampton Southampton 509 5NH England	1
Dr. R. C. Chudacek McGraw-Edison Company Edison Battery Division Post Office Box 28 Bloomfield, New Jersey 07003	1	Dr. Janet Osteryoung Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214	1
Dr. A. J. Bard University of Texas Department of Chemistry Austin, Texas 78712	1	Dr. R. A. Osteryoung Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214	1
Dr. M. M. Nicholson Electronics Research Center Rockwell International 3370 Miraloma Avenue Anaheim, California	1		

TECHNICAL REPORT DISTRIBUTION LIST, 359

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Dr. Donald W. Ernst Naval Surface Weapons Center Code R-33 White Oak Laboratory Silver Spring, Maryland 20910	1	Mr. James R. Moden Naval Underwater Systems Center Code 3632 Newport, Rhode Island 02840	1
Dr. R. Nowak Naval Research Laboratory Code 6130 Washington, D.C. 20375	1	Dr. Bernard Spielvogel U. S. Army Research Office P. O. Box 12211 Research Triangle Park, NC 27709	1
Dr. John F. Houlihan Shenango Valley Campus Pennsylvania State University Sharon, Pennsylvania 16146	1	Dr. Denton Elliott Air Force Office of Scientific Research Bolling AFB Washington, D.C. 20332	1
Dr. D. F. Shriver Department of Chemistry Northwestern University Evanston, Illinois 60201	1	Dr. David Aikens Chemistry Department Rensselaer Polytechnic Institute Troy, New York 12181	1
Dr. D. H. Whitmore Department of Materials Science Northwestern University Evanston, Illinois 60201	1	Dr. A. P. B. Lever Chemistry Department York University Downsview, Ontario M3J1P3 Canada	1
Dr. Alan Bewick Department of Chemistry The University Southampton, SO9 5NH England		Dr. Stanislaw Szpak Naval Ocean Systems Center Code 6343 San Diego, California 95152	1
Dr. A. Himy NAVSEA-5433 NC #4 2541 Jefferson Davis Highway Arlington, Virginia 20362		Dr. Gregory Farrington Department of Materials Science and Engineering University of Pennsylvania Philadelphia, Pennsylvania 19104	
Dr. John Kincaid Department of the Navy Strategic Systems Project Office Room 901 Washington, D.C. 20376		Dr. Bruce Dunn Department of Engineering & Applied Science University of California Los Angeles, California 90024	

TECHNICAL REPORT DISTRIBUTION LIST, 359

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
M. L. Robertson Manager, Electrochemical and Power Sonices Division Naval Weapons Support Center Crane, Indiana 47522	1	Dr. T. Marks Department of Chemistry Northwestern University Evanston, Illinois 60201	1
Dr. Elton Cairns Energy & Environment Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720	1	Dr. D. Cipris Allied Corporation P. O. Box 3000R Morristown, New Jersey 07960	1
Dr. Micha Tomkiewicz Department of Physics Brooklyn College Brooklyn, New York 11210	1	Dr. M. Philpot IBM Corporation 5600 Cottle Road San Jose, California 95193	1
Dr. Lesser Blum Department of Physics University of Puerto Rico Rio Piedras, Puerto Rico 00931	1	Dr. Donald Sandstrom Washington State University Department of Physics Pullman, Washington 99164	1
Dr. Joseph Gordon, II IBM Corporation K33/281 5600 Cottle Road San Jose, California 95193	1	Dr. Carl Kannewurf Northwestern University Department of Electrical Engineering and Computer Science Evanston, Illinois 60201	1
Dr. Robert Somoano Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91103	1	Dr. Edward Fletcher University of Minnesota Department of Mechanical Engineering Minneapolis, Minnesota 55455	1
Dr. Johann A. Joebstl USA Mobility Equipment R&D Command DRDME-EC Fort Belvoir, Virginia 22060	1	Dr. John Fontanella U.S. Naval Academy Department of Physics Annapolis, Maryland 21402	1
Dr. Judith H. Ambrus NASA Headquarters M.S. RTS-6 Washington, D.C. 20546	1	Dr. Martha Greenblatt Rutgers University Department of Chemistry New Brunswick, New Jersey 08903	1
Dr. Albert R. Landgrebe U.S. Department of Energy M.S. 6B025 Forrestal Building Washington, D.C. 20595	1	Dr. John Wassib Kings Mountain Specialties P. O. Box 1173 Kings Mountain, North Carolina 28086	1

TECHNICAL REPORT DISTRIBUTION LIST, 359

	<u>No.</u>	<u>Copies</u>
Dr. J. J. Brophy University of Utah Department of Physics Salt Lake City, Utah 84112	1	
Dr. Walter Roth Department of Physics State University of New York Albany, New York 12222	1	
Dr. Thomas Davis National Bureau of Standards Polymer Science and Standards Division Washington, D.C. 20234	1	
Dr. Charles Martin Department of Chemistry Texas A&M University	1	
Dr. Anthony Sammells Institute of Gas Technology 3424 South State Street Chicago, Illinois 60616	1	
Dr. H. Tachikawa Department of Chemistry Jackson State University Jackson, Mississippi 39217	1	
Dr. W. M. Risen Department of Chemistry Brown University Providence, Rhode Island	1	

LMEI
-83