ゲーム理論と暗号理論

安永憲司

九州先端科学技術研究所 (ISIT)

暗号理論秋学校@河口湖セントビレッヂ 2012/9/24 - 27

ゲーム理論とは何か

- 複数の意思決定者が相互作用する状況(ゲーム 的状況)を研究する理論
 - 自分の利益が他者の行動に依存する状況
 - 一人での意思決定は(あまり)考えない
 - 意思決定を行うとき、 相手がどう行動するかを考えないといけない

■ 秋学校 A と秋学校 B が同時期の開催だと判明

- 秋学校 A と秋学校 B が同時期の開催だと判明
 - 例えば A は 9/24 27, B は 9/24 26

- 秋学校 A と秋学校 B が同時期の開催だと判明
 - 例えば A は 9/24 27, B は 9/24 26
- 日程が重ならなければともに参加者が増加

- 秋学校 A と秋学校 B が同時期の開催だと判明
 - 例えば A は 9/24 27, B は 9/24 26
- 日程が重ならなければともに参加者が増加
- しかし、一度決めた日程を変更するには 講師達の都合・場所の確保等の再調整が必要

- 秋学校 A と秋学校 B が同時期の開催だと判明
 - 例えば A は 9/24 27, B は 9/24 26
- 日程が重ならなければともに参加者が増加
- しかし、一度決めた日程を変更するには 講師達の都合・場所の確保等の再調整が必要
- 主催者として、自分たちだけの変更は不満

- 秋学校 A と秋学校 B が同時期の開催だと判明
 - 例えばAは9/24-27, Bは9/24-26
- 日程が重ならなければともに参加者が増加
- しかし、一度決めた日程を変更するには 講師達の都合・場所の確保等の再調整が必要
- 主催者として、自分たちだけの変更は不満

日程の変更は行われるだろうか?

- ■利得
 - 現状のまま → 10
 - 参加者増加 → + 4
 - 調整コスト → 3
 - 自分たちだけ変更 → 2

■利得

- 現状のまま → 10
- 参加者増加 → + 4
- 調整コスト → 3
- 自分たちだけ変更 → 2

秋学校 A \ 秋学校B	変更しない	変更する
変更しない	(10, 10)	(14, 9)
変更する	(9, 14)	(11, 11)

秋学校 A \ 秋学校B	変更しない	変更する
変更しない	(10, 10)	(14, 9)
変更する	(9, 14)	(11, 11)

■行動分析

秋学校 A \ 秋学校B	変更しない	変更する
変更しない	(10, 10)	(14, 9)
変更する	(9, 14)	(11, 11)

■ 行動分析

秋学校 A は、秋学校 B の行動によらず、 「変更しない」の方が高利得(B も同様)

秋学校 A \ 秋学校B	変更しない	変更する
変更しない	(10, 10)	(14, 9)
変更する	(9, 14)	(11, 11)

■ 行動分析

- 秋学校 A は、秋学校 B の行動によらず、 「変更しない」の方が高利得(B も同様)
- したがって、ともに「変更しない」を選択

秋学校 A \ 秋学校B	変更しない	変更する
変更しない	(10, 10)	(14, 9)
変更する	(9, 14)	(11, 11)

■ 行動分析

- 秋学校 A は、秋学校 B の行動によらず、 「変更しない」の方が高利得(B も同様)
- したがって、ともに「変更しない」を選択
- ともに「変更する」の方が高利得だが それを選択しない → 囚人のジレンマ

秋学校 A \ 秋学校B	変更しない	変更する
変更しない	(10, 10)	(10 + x, 10 + x - y - z)
変更する	(10 + x - y - z, 10 + x)	(10 + x - y, 10 + x - y)

- 利得を一般化
 - 参加者増加 → + x, 調整コスト → y, 不満 → z

秋学校 A \ 秋学校B	変更しない	変更する
変更しない	(10, 10)	(10 + x, 10 + x - y - z)
変更する	(10 + x - y - z, 10 + x)	(10 + x - y, 10 + x - y)

- 利得を一般化
 - 参加者増加 → + x, 調整コスト → y, 不満 → z
- x y < z であれば、同じ結果
 - 調整して参加者を増やすこと(x y) よりも 不満(z) が大きいとき

秋学校 A \ 秋学校B	変更しない	変更する
変更しない	(10, 10)	(10 + x, 10 + x - y - z)
変更する	(10 + x - y - z, 10 + x)	(10 + x - y, 10 + x - y)

- 利得を一般化
 - 参加者増加 → + x, 調整コスト → y, 不満 → z
- x y < z であれば、同じ結果
 - 調整して参加者を増やすこと(x y) よりも 不満(z) が大きいとき
- → 日程が重なった秋学校があれば、 それは主催者の不満が大きかったと考えられる(?)

ゲーム理論の用語

- プレイヤー: 意思決定を行う主体
- 行動:プレイヤーがもつ選択肢
- 戦略:行動計画
- 利得:ゲームを実行した結果として得られる数値 (大きい方が望ましい)
- 利得関数:ゲームの結果を数値に対応させる関数
- ゲームの解:ゲームにおいて予想される結果

ゲームのバリエーション

- ■戦略型ゲームと展開型ゲーム
 - 戦略型:すべてのプレイヤーが同時に行動
 - 展開型:それ以外
- 完備情報ゲームと不完備情報ゲーム
 - 完備情報:ゲームの情報(プレイヤー・利 得・行動の候補)に不確実性がないもの
- 完全情報ゲームと不完全情報ゲーム
 - 完全情報:自分以前のプレイヤーの行動選択がわかるとき(戦略型は不完全情報ゲーム)

解の見つけ方

解の見つけ方

- ■支配戦略を探す
 - 支配戦略:他のプレイヤーがどの戦略を とっても、自分の他の戦略よりも良い戦略
 - σ_i が支配戦略
 ∀ρ_i≠σ_i, ∀ρ_{-i}, U_i(σ_i, ρ_{-i}) > U_i(ρ_i, ρ_{-i})

解の見つけ方

- ■支配戦略を探す
 - 支配戦略:他のプレイヤーがどの戦略を とっても、自分の他の戦略よりも良い戦略
 - σ_i が支配戦略
 ∀ρ_i≠σ_i, ∀ρ_{-i}, U_i(σ_i, ρ_{-i}) > U_i(ρ_i, ρ_{-i})

- ■最適反応戦略を考える
 - 最適反応戦略:他のプレイヤーの戦略に対し、 自分の利得を最大化する戦略
 - σ_i が σ_{-i} の最適反応 ⇔ ∀ρ_i≠σ_i, U_i(σ_i, σ_{-i}) ≥ U_i(ρ_i, σ_{-i})

■ 檻の中に大きな豚と小さな豚

- 檻の中に大きな豚と小さな豚
- 離れた場所のボタンを押すとエサが出てくる

- 檻の中に大きな豚と小さな豚
- 離れた場所のボタンを押すとエサが出てくる
- 豚は餌を食べたいがなるべく動きたくない

- 檻の中に大きな豚と小さな豚
- 離れた場所のボタンを押すとエサが出てくる
- 豚は餌を食べたいがなるべく動きたくない
- 2匹とも押しに行くと、大豚がエサを全部食べる

- 檻の中に大きな豚と小さな豚
- 離れた場所のボタンを押すとエサが出てくる
- 豚は餌を食べたいがなるべく動きたくない
- 2匹とも押しに行くと、大豚がエサを全部食べる
- 大豚だけ押しに行くと、戻る間に小豚が半分食べる

- 檻の中に大きな豚と小さな豚
- 離れた場所のボタンを押すとエサが出てくる
- 豚は餌を食べたいがなるべく動きたくない
- 2匹とも押しに行くと、大豚がエサを全部食べる
- 大豚だけ押しに行くと、戻る間に小豚が半分食べる
- ■利得
 - エサを全部食べる → 10
 - ボタンを押しに行く → 2

- 檻の中に大きな豚と小さな豚
- 離れた場所のボタンを押すとエサが出てくる
- 豚は餌を食べたいがなるべく動きたくない
- 2匹とも押しに行くと、大豚がエサを全部食べる
- 大豚だけ押しに行くと、戻る間に小豚が半分食べる
- ■利得
 - エサを全部食べる → 10
 - ボタンを押しに行く → 2

どのような結果になるだろうか?

大きな豚 \ 小さな豚	ボタンを押しに行く	エサ場で待つ
ボタンを押しに行く	(8, -2)	(3, 5)
エサ場で待つ	(10, -2)	(0, 0)

大きな豚 \ 小さな豚	ボタンを押しに行く	エサ場で待つ
ボタンを押しに行く	(8, -2)	(3, 5)
エサ場で待つ	(10, -2)	(0, 0)

■ 小さな豚にとって「エサ場で待つ」が支配戦略

大きな豚 \ 小さな豚	ボタンを押しに行く	エサ場で待つ
ボタンを押しに行く	(8, -2)	(3, 5)
エサ場で待つ	(10, -2)	(0, 0)

- 小さな豚にとって「エサ場で待つ」が支配戦略
- 小さな豚が「エサ場で待つ」とき、 大きな豚は「ボタンを押しに行く」が最適反応

大きな豚 \ 小さな豚	ボタンを押しに行く	エサ場で待つ
ボタンを押しに行く	(8, -2)	(3, 5)
エサ場で待つ	(10, -2)	(0, 0)

- 小さな豚にとって「エサ場で待つ」が支配戦略
- 小さな豚が「エサ場で待つ」とき、 大きな豚は「ボタンを押しに行く」が最適反応

小さな豚がエサ場で待っていれば、 大きな豚がボタンを押しに行く

Nash 均衡

Nash 均衡

- すべてのプレイヤーの戦略が 最適反応戦略である戦略の組
 - $\sigma = (\sigma_1, ..., \sigma_n)$ が Nash 均衡 $\Leftrightarrow \forall i, \forall \rho_i, U_i(\sigma_i, \sigma_{-i}) \geq U_i(\rho_i, \sigma_{-i})$

Nash 均衡

- すべてのプレイヤーの戦略が 最適反応戦略である戦略の組
 - $\sigma = (\sigma_1, ..., \sigma_n)$ が Nash 均衡 $\Leftrightarrow \forall i, \forall \rho_i, U_i(\sigma_i, \sigma_{-i}) \geq U_i(\rho_i, \sigma_{-i})$
 - 他のプレイヤーがその戦略に従うとき、 どのような他の戦略をとっても、 利得を高くできないとき

Nash 均衡

- すべてのプレイヤーの戦略が 最適反応戦略である戦略の組
 - $\sigma = (\sigma_1, ..., \sigma_n)$ が Nash 均衡 $\Leftrightarrow \forall i, \forall \rho_i, U_i(\sigma_i, \sigma_{-i}) \geq U_i(\rho_i, \sigma_{-i})$
 - 他のプレイヤーがその戦略に従うとき、 どのような他の戦略をとっても、 利得を高くできないとき

戦略型ゲームの解は Nash 均衡であるべき (ただし、十分であるとは考えられていない)

戦略の弱支配関係

戦略の弱支配関係

- 戦略 σ_i が戦略 ρ_i を弱支配
 - \Leftrightarrow 他のプレイヤーがどの戦略をとっても σ_i が ρ_i より悪くなることはなく、かつ 他のプレイヤーのある戦略において、 σ_i が ρ_i より真に良い

戦略の弱支配関係

- 戦略 σ_i が戦略 ρ_i を弱支配
 - 他のプレイヤーがどの戦略をとっても
 σ_i が ρ_i より悪くなることはなく、かつ
 他のプレイヤーのある戦略において、
 σ_i が ρ_i より真に良い

合理的なプレイヤーは 弱支配される戦略を選択しないと考えられる

■ Nash 均衡は複数存在することがある

- Nash 均衡は複数存在することがある
- Nash 均衡は弱支配されることがある

- Nash 均衡は複数存在することがある
- Nash 均衡は弱支配されることがある
 - → 弱支配されない Nash 均衡が解であるべき

- Nash 均衡は複数存在することがある
- Nash 均衡は弱支配されることがある
 - → 弱支配されない Nash 均衡が解であるべき

1 \ 2	X	у
a	(5, 2)	(10, 0)
b	(2, 0)	(10, 2)

- Nash 均衡は複数存在することがある
- Nash 均衡は弱支配されることがある
 - → 弱支配されない Nash 均衡が解であるべき

1 \ 2	X	у
a	(5, 2)	(10, 0)
b	(2, 0)	(10, 2)

● (a, x) と (b, y) が Nash 均衡

- Nash 均衡は複数存在することがある
- Nash 均衡は弱支配されることがある
 - → 弱支配されない Nash 均衡が解であるべき

1 \ 2	X	у
a	(5, 2)	(10, 0)
b	(2, 0)	(10, 2)

- (a, x) と (b, y) が Nash 均衡
- しかし、戦略 b は戦略 a に弱支配→ (b, y) は解でないと考えられる

■ 純粋戦略 Nash 均衡は存在するとは限らない

• 純粋戦略: 行動が確定的

混合戦略:行動が確率的

■ 純粋戦略 Nash 均衡は存在するとは限らない

• 純粋戦略: 行動が確定的

混合戦略:行動が確率的

1 \ 2	表	裏
表	(1, -1)	(-1, 1)
裏	(-1, 1)	(1, -1)

■ 純粋戦略 Nash 均衡は存在するとは限らない

• 純粋戦略: 行動が確定的

混合戦略:行動が確率的

1 \ 2	表	裏
表	(1, -1)	(-1, 1)
裏	(-1, 1)	(1, -1)

■ 任意の有限ゲームにおいて、 混合戦略を含めれば Nash 均衡は存在

- すべてのプレイヤーが同時に行動するとは 限らないゲーム
 - ゲームは逐次的に行われる

- すべてのプレイヤーが同時に行動するとは 限らないゲーム
 - ゲームは逐次的に行われる
- ■プレイヤーの戦略は、 履歴を行動に対応させる関数
 - 戦略型では、一度決めるだけ

- すべてのプレイヤーが同時に行動するとは 限らないゲーム
 - ゲームは逐次的に行われる
- ■プレイヤーの戦略は、 履歴を行動に対応させる関数
 - 戦略型では、一度決めるだけ
- 利得関数は、 終着履歴(ゲームの結果)から数値への関数
 - 戦略型でも、ゲームの結果から数値への関数

■ T研究室の打ち上げが鍋のおいしい店で開催

- T研究室の打ち上げが鍋のおいしい店で開催
- ■もつ鍋のテーブルと水炊きのテーブルが用意

- T研究室の打ち上げが鍋のおいしい店で開催
- もつ鍋のテーブルと水炊きのテーブルが用意
- N 君と K 君はたくさん食べることで有名

- T研究室の打ち上げが鍋のおいしい店で開催
- もつ鍋のテーブルと水炊きのテーブルが用意
- N 君と K 君はたくさん食べることで有名
- 2人ともその日はもつ鍋が食べたい気分

- T研究室の打ち上げが鍋のおいしい店で開催
- ■もつ鍋のテーブルと水炊きのテーブルが用意
- N 君と K 君はたくさん食べることで有名
- 2人ともその日はもつ鍋が食べたい気分
- しかし、同じテーブルだとたくさん食べられない

- T研究室の打ち上げが鍋のおいしい店で開催
- ■もつ鍋のテーブルと水炊きのテーブルが用意
- N 君と K 君はたくさん食べることで有名
- 2人ともその日はもつ鍋が食べたい気分
- しかし、同じテーブルだとたくさん食べられない
 - 同じテーブルの時 K 君は先輩の N 君に遠慮する

- T研究室の打ち上げが鍋のおいしい店で開催
- もつ鍋のテーブルと水炊きのテーブルが用意
- N 君と K 君はたくさん食べることで有名
- 2人ともその日はもつ鍋が食べたい気分
- しかし、同じテーブルだとたくさん食べられない
 - 同じテーブルの時 K 君は先輩の N 君に遠慮する
- 2人が店に到着

- T研究室の打ち上げが鍋のおいしい店で開催
- ■もつ鍋のテーブルと水炊きのテーブルが用意
- N 君と K 君はたくさん食べることで有名
- 2人ともその日はもつ鍋が食べたい気分
- しかし、同じテーブルだとたくさん食べられない
 - 同じテーブルの時 K 君は先輩の N 君に遠慮する
- 2人が店に到着
 - → 2人はどちらのテーブルに着席すべきか?

- ■利得
 - 別々のテーブルでもつ鍋 → 100
 - 別々のテーブルで水炊き → 60
 - 同じテーブルでもつ鍋 → K 君 30, N 君 70
 - 同じテーブルで水炊き → K 君 20, N 君 40

- ■利得
 - 別々のテーブルでもつ鍋 → 100
 - 別々のテーブルで水炊き → 60
 - 同じテーブルでもつ鍋 → K 君 30, N 君 70
 - 同じテーブルで水炊き → K 君 20, N 君 40
- 2人が同時に着席する場合(戦略型ゲーム)

■利得

- 別々のテーブルでもつ鍋 → 100
- 別々のテーブルで水炊き → 60
- 同じテーブルでもつ鍋 → K 君 30, N 君 70
- 同じテーブルで水炊き → K 君 20, N 君 40
- 2人が同時に着席する場合(戦略型ゲーム)

K君\N君	もつ鍋	水炊き
もつ鍋	(30, 70)	(100, 60)
水炊き	(60, 100)	(20, 40)

■利得

- 別々のテーブルでもつ鍋 → 100
- 別々のテーブルで水炊き → 60
- 同じテーブルでもつ鍋 → K 君 30, N 君 70
- 同じテーブルで水炊き → K 君 20, N 君 40
- 2人が同時に着席する場合(戦略型ゲーム)
 - (もつ鍋, 水炊き), (水炊き, もつ鍋) が Nash 均衡

K君\N君	もつ鍋	水炊き
もつ鍋	(30, 70)	(100, 60)
水炊き	(60, 100)	(20, 40)

■ K 君が先に着席する場合

■ K 君が先に着席する場合

K 君

■ K 君が先に着席する場合

■ K 君が先に着席する場合

■ K 君が先に着席する場合

■ K 君が先に着席する場合 (K 君, N 君) (30, 70)もつ鍋 N君 もつ鍋 (100, 60)K 君 水炊き もつ鍋 N君 (60, 100)水炊き 水炊き (20, 40)

■ K 君が先に着席する場合 (K 君, N 君) (30, 70)もつ鍋 N君 もつ鍋 (100, 60)K 君 水炊き もつ鍋 N君 (60, 100)水炊き 水炊き (20, 40)

ゲームの解は何か?

- 先読みをする
 - K 君が「もつ鍋」のとき、N 君は「もつ鍋」

- 先読みをする
 - K 君が「もつ鍋」のとき、N 君は「もつ鍋」
 - K 君が「水炊き」のとき、N 君は「もつ鍋」

- 先読みをする
 - K 君が「もつ鍋」のとき、N 君は「もつ鍋」
 - K 君が「水炊き」のとき、N 君は「もつ鍋」
 - N 君はいずれにしても「もつ鍋」なので、 K君は「水炊き」を選ぶ

展開型ゲームにおける用語

- 手番:ゲーム木における(終点以外の)点
 - プレイヤーの意思決定が行われる
- 終点:ゲームの結果が判明する点
- 行動戦略:各プレイヤーが「すべての」手番で どのような行動をとるかを表すもの
- 行動戦略における Nash 均衡: 他のプレイヤーがその行動戦略に従うとき、 どのような他の行動戦略をとっても、 利得を高くできないとき

■ K 君が N 君に遠慮しない場合

■ K 君が N 君に遠慮しない場合

(K, N) = (もつ, (水炊, もつ)) は Nash 均衡

■ K 君が N 君に遠慮しない場合

(K, N) = (もつ, (水炊, もつ)) は Nash 均衡

(K, N) = (もつ, (水炊, 水炊)), (水炊, (もつ, もつ)) も Nash 均衡

■ (K, N) = (水炊, (もつ, もつ)) は Nash 均衡

- (K, N) = (水炊, (もつ, もつ)) は Nash 均衡
- しかし、K 君が「もつ鍋」を選んだとき、N 君が「もつ鍋」を選ぶとは考えにくい

- (K, N) = (水炊, (もつ, もつ)) は Nash 均衡
- しかし、K 君が「もつ鍋」を選んだとき、N 君が「もつ鍋」を選ぶとは考えにくい

→ 信憑性のない脅し

■ なぜ、信憑性のない脅しが存在するのか?

- なぜ、信憑性のない脅しが存在するのか?
- → Nash 均衡では、
 ゲーム開始前に行動戦略を決めてしまうから

- なぜ、信憑性のない脅しが存在するのか?
- → Nash 均衡では、
 ゲーム開始前に行動戦略を決めてしまうから
 - 相手の行動を観察してから行動する という要素が抜けている

- なぜ、信憑性のない脅しが存在するのか?
- → Nash 均衡では、
 ゲーム開始前に行動戦略を決めてしまうから
 - 相手の行動を観察してから行動する という要素が抜けている
 - 別の見方として、Nash 均衡では 実現パス以外のパスにおける均衡を考えない

- なぜ、信憑性のない脅しが存在するのか?
- → Nash 均衡では、
 ゲーム開始前に行動戦略を決めてしまうから
 - 相手の行動を観察してから行動する という要素が抜けている
 - 別の見方として、Nash 均衡では 実現パス以外のパスにおける均衡を考えない
 - → 部分ゲーム完全均衡でこの問題を解決

ここまでのまとめ

- ゲーム的状況 = 複数の意思決定者が相互作用する状況
- ■戦略型ゲーム
 - すべてのプレイヤーが同時に行動
 - 解の見つけ方
 - 1. 支配戦略を見つける
 - 2. 最適反応戦略を考える → Nash 均衡
 - Nash 均衡の問題点: 弱支配される可能性
- 展開型ゲーム
 - プレイヤーの行動が逐次的
 - 解の見つけ方 → 先読みをする
 - Nash 均衡の問題点: 信憑性のない脅しの可能性

暗号理論におけるゲーム理論

暗号理論 vs ゲーム理論

■ ともにプレイヤー間の相互作用に関する研究

暗号理論 vs ゲーム理論

■ ともにプレイヤー間の相互作用に関する研究

- ■暗号理論
 - プレイヤーは正直者 or 悪者
 - 正直者をどのように守るか?

- ■ゲーム理論
 - プレイヤーは合理的
 - 合理的なプレイヤーはどう振る舞うか?

暗号理論とゲーム理論に関する研究

- 暗号理論をゲーム理論に利用
 - 信頼できる仲介者を暗号技術で実現
 [DM00, ADGH06, LMPS04, ILM05, IML05, ASV08, ADH08, ILM08, AKL+09, ILM11, AKMZ12, CV12]
- ゲーム理論を暗号理論へ適用
 - 合理的なプレイヤーが暗号プロトコルを実行 [HT04, ADGH06, LT06, GK06, KN08a, KN08b, MS09, OPRV09, AL09, Gra10, FKN10, PS11, GKTZ12, Y12]
- ゲーム理論と暗号理論の概念間の関係
 - 暗号理論向けのゲーム理論の概念 [HP10, GLV10, PS11]
 - ゲーム理論の概念によって安全性を特徴付け [ACH11, GK12, HTYY12]

暗号理論とゲーム理論に関する研究

- 暗号理論をゲーム理論に利用
 - 信頼できる仲介者を暗号技術で実現
 [DM00, ADGH06, LMPS04, ILM05, IML05, ASV08, ADH08, ILM08, AKL+09, ILM11, AKMZ12, CV12]
- ゲーム理論を暗号理論へ適用
 - 合理的なプレイヤーが暗号プロトコルを実行 [HT04, ADGH06, LT06, GK06, KN08a, KN08b, MS09, OPRV09, AL09, Gra10, FKN10, PS11, GKTZ12, Y12]
- ゲーム理論と暗号理論の概念間の関係
 - 暗号理論向けのゲーム理論の概念 [HP10, GLV10, PS11]
 - ゲーム理論の概念によって安全性を特徴付け [ACH11, GK12, HTYY12]

暗号プロトコル

- ■正直者と悪者が存在
- 悪者がいたとしても、プロトコルに従えば、 正直者は目的を達成できる

■ 正直者は、いつもプロトコルに従うと仮定

- 正直者は、いつもプロトコルに従うと仮定
 - 自分の利益のためなら、プロトコルに従わないかもしれない

- 正直者は、いつもプロトコルに従うと仮定
 - 自分の利益のためなら、プロトコルに従わないかもしれない
 - → より強力な暗号プロトコルの必要性

例. 秘密分散における合理的なプレイヤー [HT04]

- 正直者は、いつもプロトコルに従うと仮定
 - 自分の利益のためなら、プロトコルに従わないかもしれない
 - → より強力な暗号プロトコルの必要性 例. 秘密分散における合理的なプレイヤー [HT04]
- ■悪者は、可能な限り正直者の邪魔をすると仮定
 - 別の目的をもって攻撃しているかもしれない

- 正直者は、いつもプロトコルに従うと仮定
 - 自分の利益のためなら、プロトコルに従わないかもしれない
 - → より強力な暗号プロトコルの必要性 例. 秘密分散における合理的なプレイヤー [HT04]
- 悪者は、可能な限り正直者の邪魔をすると仮定
 - 別の目的をもって攻撃しているかもしれない
 - → より効率的/既存の不可能性を回避した 暗号プロトコルの可能性

例. ビザンチン合意における合理的な敵 [GKTZ12]

ゲーム理論を応用する際の難しさ

- 計算能力の制限されたプレイヤー
 - ゲームの例(一方向性置換ゲーム)
 - 1. P_1 が $x \in \{0,1\}^n$ をランダムに選び f(x) を P_2 に送る
 - 2. P₂ が z ∈ {0,1}ⁿ を P₁ に送る
 - 3. P₂ は z = x のときに利得 1, それ以外で 1
- ■漸近的な議論
- (無視できる程度の)誤り確率

秘密分散とゲーム理論

■ 参加者: ディーラー1人とプレイヤー n 人

■ 分散フェーズ: ディーラーは、秘密からシェアを作り、 各プレイヤーにを配る

■ 分散フェーズ: ディーラーは、秘密からシェアを作り、 各プレイヤーにを配る

■ 分散フェーズ: ディーラーは、秘密からシェアを作り、 各プレイヤーにを配る

■ (m, n) しきい値型秘密分散 m 個以上のシェアから秘密を復元でき、 m 個未満では秘密についてわからない

■ (m, n) しきい値型秘密分散m 個以上のシェアから秘密を復元でき、m 個未満では秘密についてわからない

■ Shamir の秘密分散 ランダム (m - 1) 次多項式 g s.t. g(0)= s を選び、 g(1), ..., g(n) をシェアとし、多項式補間で復元

[Halpern, Teague 2004]

[Halpern, Teague 2004]

■ プレイヤーの利得

- 1. 秘密を復元したい
- 2. より少ない人数で復元したい

[Halpern, Teague 2004]

- ■プレイヤーの利得
 - 1. 秘密を復元したい
 - 2. より少ない人数で復元したい

Shamir の秘密分散プロトコルは 正しく実行されない

■ 復元フェーズで、全員がシェアを出すという戦略がよくない

■ 復元フェーズで、全員がシェアを出すという戦略がよくない

- 認証つき秘密分散を仮定すると プレイヤーの選択肢は実質的に2つ
 - シェアを「出す」
 - シェアを「出さない」

■ m = n のとき

■ m < n のとき

- m = n のとき
 - 「出す」 → n 人で復元
 - 「出さない」 → 1人で復元

■ m < n のとき

- m = n のとき
 - 「出す」 → n 人で復元
 - 「出さない」 → 1人で復元
 - Nash 均衡ではない
- m < n のとき

- m = n のとき
 - 「出す」 → n 人で復元
 - 「出さない」 → 1人で復元

Nash 均衡ではない

- m < n のとき
 - シェアを出しても出さなくても n 人で復元
 - 「出さない」が「出す」より悪い状況はなく、 また、ある状況では真に良い

- m = n のとき
 - 「出す」 → n 人で復元
 - 「出さない」 → 1人で復元

Nash 均衡ではない

- m < n のとき
 - シェアを出しても出さなくても n 人で復元
 - 「出さない」が「出す」より悪い状況はなく、 また、ある状況では真に良い

弱支配される Nash 均衡

[Gordon, Katz 08] のプロトコル

[Gordon, Katz 08] のプロトコル

■ (2, 2) 秘密分散の場合を考える

[Gordon, Katz 08] のプロトコル

■ (2, 2) 秘密分散の場合を考える

- プレイヤー P_i の利得
 - P_i だけが復元 → U⁺
 - 2人とも復元 → U
 - どちらも復元しない → U⁻
 - $U^+ > U > U^-$

GK08 プロトコルのアイディア

- ディーラーは P_1 , P_2 それぞれに、 無限個のシェア $(a_1, a_2, ...)$, $(b_1, b_2, ...)$ を用意
 - 各iについて(独立に)
 - 確率 δ で a_i + b_i = s (本物の秘密)
 - 確率 1 δで a_i + b_i = 」(偽物)
- 各ラウンド i において
 - 両プレイヤーはシェア a_i, b_i を同時に出す
 - a_i + b_i = s なら終了
 - a_i + b_i = 」なら次のラウンドへ
 - もし一人がシェアを出さなかったら終了

- P₁ が逸脱することを考える
 - Nash 均衡を考えるので P₂ は従うと仮定

- P₁ が逸脱することを考える
 - Nash 均衡を考えるので P₂ は従うと仮定
- P₁ がシェアを出さないとき、 P₁ は確率 δ で U⁺ を、確率 1 - δ で U⁻ を得る
 - → 期待利得は δ U⁺ + (1 δ) U⁻

- P₁ が逸脱することを考える
 - Nash 均衡を考えるので P₂ は従うと仮定
- P₁ がシェアを出さないとき、
 P₁ は確率 δ で U⁺ を、確率 1 δ で U⁻ を得る
 → 期待利得は δ U⁺ + (1 δ) U⁻
- P₁ がシェアを出すとき、利得は U

- P₁ が逸脱することを考える
 - Nash 均衡を考えるので P₂ は従うと仮定
- P₁ がシェアを出さないとき、
 P₁ は確率 δ で U⁺ を、確率 1 δ で U⁻ を得る
 → 期待利得は δ U⁺ + (1 δ) U⁻
- P₁ がシェアを出すとき、利得は U
- ここで、δ U⁺ + (1 δ) U⁻ < U ならば シェアを出すことは、弱支配ではない

- P₁ が逸脱することを考える
 - Nash 均衡を考えるので P₂ は従うと仮定
- P₁ がシェアを出さないとき、
 P₁ は確率 δ で U⁺ を、確率 1 δ で U⁻ を得る
 → 期待利得は δ U⁺ + (1 δ) U⁻
- P₁ がシェアを出すとき、利得は U
- ここで、δ U⁺ + (1 δ) U⁻ < U ならば シェアを出すことは、弱支配ではない
- ただし、同時にシェアを出すことに強く依存

実際のプロトコル

- 無限個のシェアを用意することはできない
- ディーラーは a + b = s となるシェアを用意
- 各ラウンド i において
 - P_1 と P_2 は安全なプロトコル(MPC)を利用して a_i と b_i を a と b から生成
 - ・残りは同様

[Fuchsbauer, Katz, Naccache 2010] プロトコル

[Fuchsbauer, Katz, Naccache 2010] プロトコル

- GK08 等のプロトコルはシェアを 同時に出すことを必要
 - → 同時ブロードキャスト通信路を仮定

[Fuchsbauer, Katz, Naccache 2010] プロトコル

- GK08 等のプロトコルはシェアを 同時に出すことを必要
 - → 同時ブロードキャスト通信路を仮定
- GK08 は MPC を毎ラウンド計算
 - 計算効率はよくない

[Fuchsbauer, Katz, Naccache 2010] プロトコル

- GK08 等のプロトコルはシェアを 同時に出すことを必要
 - → 同時ブロードキャスト通信路を仮定
- GK08 は MPC を毎ラウンド計算
 - 計算効率はよくない

■ FKN10 では上記の問題点を解決し、 かつ強い解概念をもつプロトコルを提案

- 基本アイディアは同じ:
 - 本物ラウンドと偽物ラウンドが存在
 - 本物である確率が十分小さいので、 プレイヤーは正しくシェアを出し続ける

- 基本アイディアは同じ:
 - 本物ラウンドと偽物ラウンドが存在
 - 本物である確率が十分小さいので、 プレイヤーは正しくシェアを出し続ける

- 既存プロトコルと異なる点:
 - 既存:本物ラウンドであるかをすぐに認識
 - FKN10:本物ラウンドであるかは後で認識

- 基本アイディアは同じ:
 - 本物ラウンドと偽物ラウンドが存在
 - 本物である確率が十分小さいので、 プレイヤーは正しくシェアを出し続ける
- 既存プロトコルと異なる点:
 - 既存:本物ラウンドであるかをすぐに認識
 - FKN10:本物ラウンドであるかは後で認識
- 検証可能ランダム関数 (VRF) を利用
 - 擬似ランダム関数であり、正しさを証明で検証可能。また、証明は1つしか存在しない

FKN10 プロトコル

- ディーラーは
 - 本物ラウンド r* を選ぶ(幾何分布に従う)
 - VRF の鍵を2種類生成: (pk_i, sk_i), (pk_i', sk_i'), i ∈ {1,2}
 - P₁ に以下のシェアを渡す(P₂ も同様)
 (sk₁, sk₁', pk₂, pk₂', shr₁ = F_{sk2}(r*) + s, sig₁ = F_{sk2}(r*+1))
- 各ラウンド r において(P₁ の立場)
 - F_{sk1}(r), F_{sk1},(r) とその証明を送る
 - y^(r) と z^(r) を受け取ったとき
 - sig₁ = z^(r) なら s^(r-1) = shr₁ + y^(r-1) を出力して終了
 - 相手が離脱 or 偽証明を送ったら s^(r-1) を出力し終了
 - それ以外の場合、次のラウンドへ

■ P₂ が従い、P₁ が逸脱することを考える

- P_2 が従い、 P_1 が逸脱することを考える
- 逸脱はラウンド r = r* + 1 または r < r* + 1 で可能</p>

- P_2 が従い、 P_1 が逸脱することを考える
- 逸脱はラウンド r = r* + 1 または r < r* + 1 で可能
 - r = r* + 1 で逸脱
 → P₂ も s を出力するので利得は U のまま

- P₂ が従い、P₁ が逸脱することを考える
- 逸脱はラウンド r = r* + 1 または r < r* + 1 で可能</p>
 - r = r* + 1 で逸脱
 → P₂ も s を出力するので利得は U のまま
 - r < r* + 1 で逸脱
 → r = r* であれば利得は U⁺ の可能性があるが、 本物ラウンドの確率は十分小さく、 期待利得は U より小さい(ように設定)

- P₂ が従い、P₁ が逸脱することを考える
- 逸脱はラウンド r = r* + 1 または r < r* + 1 で可能</p>
 - r = r* + 1 で逸脱
 → P₂ も s を出力するので利得は U のまま
 - r < r* + 1 で逸脱
 → r = r* であれば利得は U⁺ の可能性があるが、 本物ラウンドの確率は十分小さく、 期待利得は U より小さい(ように設定)
- r = r* + 1 での逸脱はプロトコル終了の印であり、 逸脱でないとみなすと、逸脱は真に利得を下げる

- P₂ が従い、P₁ が逸脱することを考える
- 逸脱はラウンド r = r* + 1 または r < r* + 1 で可能</p>
 - r = r* + 1 で逸脱
 → P₂ も s を出力するので利得は U のまま
 - r < r* + 1 で逸脱
 → r = r* であれば利得は U⁺ の可能性があるが、 本物ラウンドの確率は十分小さく、 期待利得は U より小さい(ように設定)
- r = r* + 1 での逸脱はプロトコル終了の印であり、 逸脱でないとみなすと、逸脱は真に利得を下げる
 → 狭義 Nash 均衡(強い解概念)

FKN10 プロトコルの特徴

FKN10 プロトコルの特徴

- 同時ブロードキャスト通信路を必要としない
 - P2P ネットワークで十分
- 計算効率がよい
 - VRF の部分は TDP で実現可能

FKN10 プロトコルの特徴

- 同時ブロードキャスト通信路を必要としない
 - P2P ネットワークで十分
- 計算効率がよい
 - VRF の部分は TDP で実現可能

- 秘密を見て秘密であることが確信できると問題
 - 秘密がパスワードで、正しさの確認ができる場合
 - この問題は非同時ブロードキャスト通信路では 避けられない [Asharov, Lindell 2010]

まとめ (秘密分散とゲーム理論)

- 正直者に合理性を仮定すると プロトコルの実現がとても大変になった例
 - 秘密の復元を独占したいと考えるプレイヤー ばかりだと、公平に復元することが大変
- 暗号理論として達成が困難(?)
 - 多くのプロトコルで同時ブロードキャスト
 - 非同時ブロードキャストだと 秘密自体にエントロピーが必要
 - → 妥当な仮定等をおいて簡単に実現できないか

ビザンチン合意とゲーム理論

ビザンチン合意問題

- 分散計算・暗号理論の代表的な問題
- Lamport, Shostak, Pease が導入 (1980/1982)
- 故障プロセッサが存在する場合の分散計算問題

■ ビザンチン帝国軍の将軍たちが、 軍隊を率いて敵の都市を囲っている状況

- ビザンチン帝国軍の将軍たちが、 軍隊を率いて敵の都市を囲っている状況
- 将軍たちは離れた場所にいるため、 使者を使ってメッセージを伝えあう

- ビザンチン帝国軍の将軍たちが、 軍隊を率いて敵の都市を囲っている状況
- 将軍たちは離れた場所にいるため、 使者を使ってメッセージを伝えあう
- 将軍たちは、攻撃するのか撤退するのか、 ひとつの計画に同意したい

- ビザンチン帝国軍の将軍たちが、 軍隊を率いて敵の都市を囲っている状況
- 将軍たちは離れた場所にいるため、 使者を使ってメッセージを伝えあう
- 将軍たちは、攻撃するのか撤退するのか、 ひとつの計画に同意したい
- 将軍たちの中に反逆者がいるかもしれない
 - それが誰なのかはわからない

- ビザンチン帝国軍の将軍たちが、 軍隊を率いて敵の都市を囲っている状況
- 将軍たちは離れた場所にいるため、 使者を使ってメッセージを伝えあう
- 将軍たちは、攻撃するのか撤退するのか、 ひとつの計画に同意したい
- 将軍たちの中に反逆者がいるかもしれない
 - それが誰なのかはわからない
- (反逆者でない)帝国軍の将軍たちが同じ計画 を選択する場合、その計画で同意したい

ビザンチン合意プロトコル

- n 人のプレイヤー P₁, ..., P_n が存在
- 各プレイヤー P_i は入力 v_i ∈ {0,1} をもつ
- 敵は n 人のうち t 人までを任意にコントロール
 - 残りの n t 人のプレイヤーを正直者と呼ぶ
- このときプロトコル実行後に以下を満たすこと
 - 1. すべての正直者は同じ値 w を出力
 - 2. すべての正直者の入力が同じ値のとき、 その値をwとして出力

ブロードキャストプロトコル

- n 人のプレイヤー P₁, ..., P_n が存在
- (送信者) P_i が入力 v ∈ {0,1} をもつ
- 敵は n 人のうち t 人までを任意にコントロール
- このときプロトコル実行後に以下を満たすこと
 - 1. すべての正直者が同じ値 w を出力
 - 2. P_i が正直者だった場合、v を w として出力

ビザンチン合意とブロードキャストの等価性 (t < n/2 の場合)

- ■ブロードキャストを使ったビザンチン合意
 - 各プレイヤーは自分の入力をブロードキャスト
 - 過半数の値を出力

- ビザンチン合意を使ったブロードキャスト
 - 送信者は自分の入力を他のプレイヤーに送信
 - 各プレイヤーは受信した値でビザンチン合意
 - ビザンチン合意の結果を出力

ビザンチン合意の可能性・不可能性

- ビザンチン合意が可能 ⇔ t < n/3
 - n = 3, t = 1, 送信者が敵対者の場合

■ 公開鍵暗号系(署名)の存在を仮定すると、 任意の t < n でビザンチン合意可能

ビザンチン合意の可能性・不可能性

t ≥ n/2 の場合はブロードキャスト通信路を仮定しても不可能

ビザンチン合意の可能性・不可能性

- t ≥ n/2 の場合はブロードキャスト通信路を仮定しても不可能
- 証明: P₁, ..., P_{n/2} の入力は 1, それ以外 0 とする
 - A. 敵が P₁, ..., P_{n/2} をコントロール → 正直者は 0 を出力
 - B. 敵が P_{n/2+1}, ..., P_n をコントロール → 正直者は 1 を出力
 - C. 敵が誰もコントロールしなかった $\rightarrow P_1, ..., P_{n/2}$ は B と区別できず 1 を出力 $P_{n/2+1}, ..., P_n$ は A と区別できず 0 を出力 \rightarrow 矛盾

- 合理的な敵がプレイヤーをコントロール
 - コントロールされないプレイヤーは正直者→ 合理的な敵 1 人によるゲーム

- 合理的な敵がプレイヤーをコントロール
 - コントロールされないプレイヤーは正直者→ 合理的な敵 1 人によるゲーム
- ■敵の利得
 - 0 で合意したとき → u₀
 - 1 で合意したとき → u₁
 - 合意しなかったとき → u₂
 - u₀, u₁, u₂ は異なる実数値と仮定

- 合理的な敵がプレイヤーをコントロール
 - コントロールされないプレイヤーは正直者→ 合理的な敵 1 人によるゲーム
- ■敵の利得
 - 0 で合意したとき → u₀
 - 1 で合意したとき → u₁
 - 合意しなかったとき → u₂
 - u₀, u₁, u₂ は異なる実数値と仮定
- 敵は正直者の入力値を知っていると仮定

安全性の定義

- 敵は利得関数 U をもち、n 人中 t 人までをコントロール
- ビザンチン合意(ブロードキャスト)プロトコルが安全であるとは、任意の敵に対して、ある戦略 S が存在し、以下を満たすこと
 - 1. S を実行して生じる最終出力分布 D において、 安全性は保たれている
 - 任意の S' ≠ S を実行して生じる出力分布 D' に対して、U(D) ≥ U(D')

既存の不可能性を回避

- ブロードキャスト通信路を仮定したとき、 任意の t < n で合理的な敵に対して安全な ビザンチン合意プロトコルが存在
 - 利得は u₂ > u₁ > u₀ を満たしていると仮定

既存の不可能性を回避

- ブロードキャスト通信路を仮定したとき、 任意の t < n で合理的な敵に対して安全な ビザンチン合意プロトコルが存在
 - 利得は u₂ > u₁ > u₀ を満たしていると仮定
- ■プロトコル
 - 1. 各プレイヤーは自分の入力をブロードキャスト
 - 2. 全プレイヤーが同じ値ならその値を、 そうでないときは 0 を出力
- 証明: 敵にとって 0 を出力されるくらいなら なるべく全員 1 を出力するように振舞った方がよい

利得に関する知識を仮定したプロトコル

- 任意の t < n で、合理的な敵に対して安全な ビザンチン合意プロトコルが存在
 - 利得 u₀, u₁, u₂ は知られていると仮定

利得に関する知識を仮定したプロトコル

- 任意の t < n で、合理的な敵に対して安全な ビザンチン合意プロトコルが存在
 - 利得 u₀, u₁, u₂ は知られていると仮定

■証明

アイディア: 先ほどのプロトコルと同様、 敵が安全性を破ろうとすると 敵に罰が与えられる仕組みを作る

証明の続き

- u₂ が最大値でないとき
 - プロトコル:
 - 1. 各プレイヤー P_i は入力値 v_i をすべての P_i に送る
 - 2. 各 P_j は、すべて同じ値を受け取ったらその値を、 そうでないとき、敵が最も好まない値 b' を出力
 - 安全である理由:
 正直者の入力値が同じときは 敵はそれを破る動機がなく、
 入力値が異なるときは b' が出力される

証明の続き

- u₂ が最大値のとき
 - プロトコル:
 - 1. 各プレイヤー P_i は検出可能ブロードキャストを使って 入力値 v_i をブロードキャスト
 - 離脱もしくは受け取った値の不一致がある場合、 敵が最も好まない値 b' を、 そうでない場合、全プレイヤーから送られた値を出力
 - 検出可能ブロードキャスト:正直者は離脱 or 受理し 0 or 1 を出力. 離脱なしなら、ブロードキャストとして安全. 離脱ありなら、敵は送信者の入力はわからない
 - 安全である理由:敵は、正直者に異なる値を出力 させることはできない。そして、1 - b'を出力さ せるように振舞ったほうが良い

まとめ(ビザンチン合意とゲーム理論)

- 敵に合理性を仮定することで 既存の不可能性を回避できた例
- 敵の合理性に関する知識は少ないほうがよい
 - u₂ が最大という知識だけ
 → 既存の不可能性が適用(t > n/3 は不可能)
 - u₂ が最小という知識だけ
 → t < n/2 ⇔ 安全なビザンチン合意が存在
 → t < n で安全なブロードキャストが存在
- → 合理性を仮定して不可能性を回避 or 効率改善となる他の例はないか?

まとめ

- ■ゲーム理論とは
 - 戦略型ゲーム・展開型ゲーム
 - ゲームの解とその見つけ方
 - 解概念:支配戦略・最適反応戦略・Nash 均衡
 - Nash 均衡の問題点

- ■暗号理論におけるゲーム理論
 - 秘密分散とゲーム理論
 - ビザンチン合意とゲーム理論