

EMI - TEST REPORT

- FCC Part 15.407, DFS -

Test Report No. : T34493-00-19HS

28. January 2011

Date of issue

Type / Model Name : MobilePanel277FIWLAN RF

Product Description: Mobile Human Machine Interface

Applicant: Siemens AG, I IA AS RD ST TT

Address : Werner-von-Siemens-Str. 50

92224 AMBERG, GERMANY

Manufacturer : Siemens AG, I IA AS

Address : Gleiwitzer Str. 555

90475 NUERNBERG, GERMANY

Licence holder : Siemens AG, I IA AS RD ST TT

Address : Werner-von-Siemens-Str. 50

92224 AMBERG, GERMANY

Test Result according to the standards listed in clause 1 test standards:	POSITIVE
--	----------

Ohmstrasse 2-4 · 94342 STRASSKIRCHEN · GERMANY Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

mikes-testingpartners gmbh

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

Contents

1 TEST STANDARDS	3
2 SUMMARY	4
B EQUIPMENT UNDER TEST	6
3.1 Photo documentation of the EUT – Detailed photos see attachment A	6
3.2 Power supply system utilised	6
3.3 Short description of the equipment under test (EUT)	6
4 TEST ENVIRONMENT	7
4.1 Address of the test laboratory	7
4.2 Environmental conditions	7
4.3 Statement of the measurement uncertainty	7
TEST CONDITIONS AND RESULTS	8
5.1 DFS (slave mode)	8
USED TEST EQUIPMENT AND ACCESSORIES	20

ATTACHMENT A, T34493

TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15, Subpart E – Unlicensed National Information Infrastructure Devices

(October, 2009)

Part 15, Subpart E, Section 15.407 Operation within the bands 5.15 - 5.25 GHz, 5.25 - 5.35 GHz, 5.47 -

5.725 GHz and 5.725 - 5.825 GHz

ET Docket No. 03-122, FCC 06-96 Released June 30, 2006, Memorandum Opinion and Order

concerning DFS

2 SUMMARY

GENERAL REMARKS:

The EUT consists of 1 WLAN Module and 1 RFID Module (13.56 MHz). The EUT can be configured as client only. The EUT has an input voltage stabilisation and a voltage stabilisation directly in the RF module. Therefore no influence will be expected by voltage variations. For this reason the tests have been performed with nominal voltage only. For the compliance of the RFID Module please refer to test report T34493-00-00AA by mikestestingpartners gmbh.

Available Features:

The WLAN miniPCI module is compatible with 802.11h technology. It is able to operate in the 5 GHz frequency band. The EUT has no ad-hoc or peer-to-peer mode.

- 802.11h Mode 5.25 GHz – 5.35 GHz and 5.470 GHz – 5.725 GHz

The module uses DSSS or OFDM modulation and is capable to provide following data rates:

- 802.11h 54, 48, 36, 24, 18, 12, 9, 6 Mbps, auto-fallback

The EUT is equipped with 2 internal WLAN antennas (gain = 3 dBi at 2.4 GHz, 5 dBi at 5 GHz) and 1 RFID antenna.

The EUT provides the following channels in 802.11h mode:

Channel	Frequency
52	5260
56	5280
60	5300
64	5320
100	5500
104	5520
108	5540
112	5560
116	5580
120	5600
124	5620
128	5640
132	5660
136	5680
140	5700

mikes-testingpartners gmbh
Ohmstrasse 2-4 · 94342 STRASSKIRCHEN · GERMANY
Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

FINAL ASSESSMENT:

Date of receipt of test sample : acc. to storage records

Testing commenced on : 22 November 2010

Testing concluded on : 29 November 2010

Checked by: Tested by:

Klaus Gegenfurtner Dipl.-Ing.(FH) Manager: Radio Group Hermann Smetana Dipl.-Ing.(FH) Radio Expert

3 EQUIPMENT UNDER TEST

3.1 Photo documentation of the EUT - Detailed photos see attachment A

3.2	Power	supply	system	utilised
-----	-------	--------	--------	----------

Power supply voltage : 7.2 VDC Battery

Power supply voltage (alternative) : Input: 100-240 VAC, 50-60 Hz, Output: 12 VDC

3.3 Short description of the equipment under test (EUT)

The MobilePanel277FIWLAN RF permits remote control to systems are controlled by more than one PLC. The HMI device communicates with the PLC via WLAN. The access to one of the system part is determined by a zone recognition function (RFID) of the HMI.

Number of tested samples: Serial number:	1 64					
EUT operation mode:						
The equipment under test was	opera	ited during th	e measurement	under the follo	owing conditior	ns:
- Data transmission (Client mo	de)					
- Continuous transmit mode (c	onduc	ted test mod	e only)			
EUT configuration:				_		

(The CDF filled by the applicant can be viewed at the test laboratory.)

The following peripheral devices and interface cables were connected during the measurements:

-	AC/DC power supply	Model : MEAN WELL GS60A12
_		Model:

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

mikes-testingpartners gmbh Ohmstrasse 2-4 94342 STRASSKIRCHEN GERMANY

4.2 Environmental conditions

	Durino	ว the	measuremen	it the	environmental	conditions	were	within	the	listed	range	S
--	--------	-------	------------	--------	---------------	------------	------	--------	-----	--------	-------	---

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader may notice that tolerances within the calibration of the equipment and facilities may cause additional uncertainty. The measurement uncertainty is calculated for all measurements listed in this test report acc. to CISPR 16-4-2 "Uncertainties, statistics and limit modelling — Uncertainty in EMC measurement" and documented in the mikes-testingpartners gmbh quality system acc. to DIN EN ISO/IEC 17025. For all measurements shown in this report, the measurement uncertainty of the test laboratory, mikes-testingpartners gmbh, is below the measurement uncertainty as defined by CISPR. Therefore, no special measures must be taken into consideration with regard to the limits according to CISPR. Furthermore, component diversity and modifications in production process of devices may result in additional deviation. If necessary, refer to the test lab for the actual measurement uncertainty for the specific test. The manufacturer has the sole responsibility of continued compliance of the EUT.

File No. **T34493-00-19HS**, page **7** of **20**

mikes-testingpartners gmbh
Ohmstrasse 2-4 · 94342 STRASSKIRCHEN · GERMANY
Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

5 TEST CONDITIONS AND RESULTS

5.1 DFS (slave mode)

For test instruments and accessories used see section 6 Part DFS.

5.1.1 Description of the test location

Test location: AREA4

5.1.2 General

The requirements and measurements applies are based on a client device without radar detection. The associated master device was an FCC approved Cisco AIR-AP1250 access point, certified under FCC ID: LDK102061.

5.1.3 Applicable standard

According to FCC Part 15 Subpart D, Section 15.407, (h)(2): Devices operating in the bands 5250 – 5350 MHz and 5470 – 5725 MHz shall comply with the following:

Table 1: Applicability of DFS requirements prior to use of a channel (FCC 06-96)

		Operational mode					
Requirement	Master	Client without radar	Client with radar				
	Master	detection	detection				
Non-Occupancy Period	Yes	Not required	Yes				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Availability Check Time	Yes	Not required	Not required				
Uniform Spreading	Yes	Not required	Not required				
U-NII Detection Bandwidth	Yes	Not required	Yes				

Table 2: Applicability of DFS requirements during normal operation (FCC 06-96)

	Operational mode				
Requirement	Master	Client without radar	Client with radar		
		detection	detection		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required	Yes		

5.1.4 Description of measurement

The measurement setup is regarding the ET Docket No.03-122 of FCC 06-96. System testing was performed with continuous ping from AP to the client creating continuous traffic.

File No. T34493-00-19HS, page 8 of 20

mikes-testingpartners gmbh
Ohmstrasse 2-4 · 94342 STRASSKIRCHEN · GERMANY
Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

5.1.1 Radar test waveforms

Table 5 – Short pulse radar test waveforms (FCC 06-96)

Radar type	Pulse width	PRI	Number of	Minimum percentage of	Minimum number of
rtadai typo	(µsec)	(µsec)	pulses	successful detection	trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
А	ggregate (Radai	Types 1-4)	80%	120

FCC Radar Types 1 to 4 system diagram

The appropriate radar test pattern is generated by an R&S SMBV100A (Vector SG with one ARB). The K6 sequencer software has been used for creating complex waveforms to generate the puls and burst sequence.

Table 6 – Long pulse radar test waveform (FCC 06-96)

Radar	Pulse	Chirp	PRI	Number of	Number	Minimum percentage	Minimum
type	width	width		pulses per	of <i>bursts</i>	of successful detection	number of
	(µsec)	(MHz)	(µsec)	burst			trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

FCC Radar Type 5 system diagram

The appropriate radar test pattern is generated by an R&S SMBV100A (Vector SG with one ARB). The K6 sequencer software has been used for creating complex waveforms to generate the puls and burst sequence.

Due to testing a client without radar detection the target is to show the performance in channel moving and closing and not in detecting several kinds of pulses. Therefore the client is tested with the radar puls 1 only.

5.1.2 Test setup and radiated calibration diagram for client with injection at the master

5.1.3

Test setup:

The interference radar detection threshold is as follows:

Table 3: DFS detection thresholds for master devices and client devices with radar detection (FCC 06-96)

Maximum Transmit Power	Value		
	(See Notes 1 and 2)		
≥ 200 milliwatt	-64 dBm		
< 200 milliwatt	-62 dBm		

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

The applied interference radar detection threshold conducted at the input of the AP is -64 dBm. Therefore the level at the AP connector + 1 dB variation in measurement equipment = -63 dBm. This calibration level is shown with the plot below.

5.1.4 Channel move time

Requirement according to FCC Part 15 Subpart D, Section 15.407, (h)(2)(iii): The requirement for channel move time applies in both the master and the slave operational modes.

Table 4: DFS response requirement values (FCC 06-96)

Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds, See Note 1.		
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over		
Challing Transmission Time	remaining 10 s period. See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 80% of the U-NII 99% transmission		
U-IVII Delection bandwidth	power bandwidth. See Note 3.		

Note 1: The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar *Burst* generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.
- Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required facilitating a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

5.1.4.1 Photo documentation of the test set-up

5.1.4.2 Test result

Channel 132, with normal traffic:

Short puls radar type 1:

Applied sample:

RADA	AR TYPE	Rohde & Schwarz K6 Pulse Sequencer		
Trial #	Number of Pulses per Burst	Pulse Width (µsec)	PRI (µs)	Detection (yes/no)
1	18	1	1428	У

Channel 132, shot to the master with short radar puls type 1:

mikes-testingpartners gmbh Ohmstrasse 2-4 \cdot 94342 STRASSKIRCHEN \cdot GERMANY Tel.:+49(0)9424-94810 \cdot Fax:+49(0)9424-9481240

File No. **T34493-00-19HS**, page **14** of **20**

Rev. No. 1.2, 9.9.2010

The plot starts at the beginning of the radar burst type 1 at $T_0 = 0$ s.

Calculation of the channel move time:

 T_{cmt} = all transmissions from T_1 (Marker1) to T_2 (Marker2)

Burst length of the radar pulses T_0 to T_1 : 24 ms; 491 ms:

End time of all transmissions T₂:

 $T_{cmt} = T_2 - T_1 = 491 \text{ ms} - 24 \text{ ms};$

 T_{cmt} = 467 ms;

Limit according to FCC Part 15 Subpart D, Section 15.407, (h)(2)(iii):

After the radar signal is detected, the device shall cease all transmissions on the operating channel within 10 s. Transmission during this period shall consist of normal traffic for a minimum 200 ms after detection of the radar signal. In addition, the intermittent management and control signals can be sent during the remaining time to facilitate vacating the operating channel.

The requirements are **FULFILLED**.

Remarks:				
			·	

5.1.5 Channel closing time

Requirement according to FCC Part 15 Subpart D, Section 15.407, (h)(2)(iv): The requirement for channel closing time is 200 ms + 60 ms. (See table 4)

5.1.5.1 Test result

Calculation of the Channel closing time:

Channel 116:

 T_{cct} = aggregate duration of all transmission from T1 to T2 of Client 6 pulses remain after radar detection. The pulswidth of one remaining puls is 330 µs.

 T_{cct} = 330 µs * 6 = 1.98 ms;

Limit according to FCC Part 15 Subpart D, Section 15.407, (h)(2)(iii): The channel closing time shall not exceed 200 ms.

The requirements are **FULFILLED**.

Remarks:			

5.1.6 Non-Occupancy period

Requirement according to FCC Part 15 Subpart D, Section 15.407, (h)(2)(iv):

The requirement for testing the non-occupancy period does not exist (see Table 1) but the EUT has to ensure that no transmission of any type occurred for 30 minutes.

5.1.6.1 Test result

Behaviour at "Power On" without association to the AP:

mikes-testingpartners gmbh
Ohmstrasse 2-4 · 94342 STRASSKIRCHEN · GERMANY
Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

File No. **T34493-00-19HS**, page **17** of **20**

Rev. No. 1.2, 9.9.2010

Behaviour at "Power On" associated to the AP:

 T_{on} = 2.88 s (time for boot and system setup)) T_{CAC} = 60 s (Channel availability check)

Non occupancy period for at least 30 min:

The requirements are **FULFILLED**.

Remarks:		

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used, in addition to the test accessories, are calibrated and verified regularly.

Test ID	Model Type	Equipment No.	Next Calib.	Last Calib.	Next Verif.	Last Verif.
DFS	AIR-AP1250 SMBV100A FSP 30 LOBB 18 6011	02-01/50-10-001 02-02/05-09-001 02-02/11-05-001 02-02/24-05-026 02-02/50-05-081	12/03/2012 04/05/2011 07/09/2011	12/03/2009 04/05/2010 07/09/2010	04/03/2011	04/03/2010

