Hoorcollege woensdag 24/09/2024

Introductie:

De cursus kopen is aan te raden

Op backboard:

- Sessies van 2021-2022 beschikbaar
- 3 doorjaarse taken (geen punten wel feedback)

Januari-examen:

- Maandag oefeningenexamen: 4u, schriftelijk, gesloten boek
- Dinsdag vrijdag: 8 groepen theorie-examen: halve dag / groep, mondeling met voorbereiding Zitplaatsen: 3de en 6de rij zoveel mogelijk leeg laten

Wat te verwachten v/d cursus:

- 1. Verzamelingen, relaties en functies ← Taak
- 2. Bewijstechnieken ← Taak
- 3. Combinatoriek (=telproblemen)
- 4. Kanstheorie ← Taak
- 5. Booleaanse Algebra (Overlap met CSA)
- 6. Genererende functies

Verzamelingen, relaties & Functies

Verzamelingen

Voorbeelden van verzamelingen:

- \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , (\mathbb{C} , complexe getallen worden niet bekeken)
- {kat, hond, vis}: opsomming
- {natuurlijke getallen}: beschrijving
- $\{3/4, 6/8, 12/16\} = \{3/4\} = A \rightarrow 3/4 \in A$

(Elke waarde kan maximaal 1 keer voorkomen per verzameling)

Verzamelingstheoretische schrijfwijze

- Algemeen: {a | voorwaarde op a}
- Bv. $\{x \mid 6 \le x \le 12\}$
- Vb. $\{x \in \mathbb{R} \mid 6 \le x \le 12\}$

Een paar mogelijke schrijfwijzen van de gehele drievouden

- {...-6, -3, 0, 3, -6...}
- $-\{3n \mid n \in \mathbb{Z}\}$
- $-\{a \mid a/3 \in \mathbb{Z}\}\$
- $\{q \mid \mathbb{Z} n \quad zodat q = 3n\}$
- $\{b \in \mathbb{Z} \mid a \pmod{3} = 0 \}$

Doorsneden en unies

Neem de verzamelingen A, B

 $-A \subset B \Leftrightarrow a \in A: a \in B$

- AND, doorsnede, $A \cap B$
- OR, unie A ∪ B
- XOR, symmetrisch verschil, A Δ B
- NOT, complement, complement $A = \bar{A}$
- Verschil, behalve, A \ B
- \Rightarrow A \triangle B = (A \ B) \cup (B \ A) of A \triangle B = (A \cup B) \ (A \cup B)

Eigenschappen van unies, doorsneden...

Commutativiteit:

- $-A \cup B = B \cup A$
- $-A \cap B = B \cap A$
- $-A \setminus B \neq B \setminus A$

Associativiteit:

 $(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$ (we note note a sounder hankjes)

- $(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$ (we note the additional condex)
- $-A \cap (B \cup C) \neq (A \cap B) \cup C \leftarrow Hier zijn haakjes wel noodzakelijk$

Distributiviteit:

- $-(A \cap B) \cap C = (A \cap B) \cup (A \cap C)$
- analoog bij omgewisseld

Indexverzamelingen

- Unies: \cup Ai = $\{x \mid \exists i \in I : x \in Ai\}\$ $i \in I$
- Doorsnede: ∩ Ai = $\{x \mid \forall i \in I : x \in Ai\}$

i€I

- Analoog aan som: $\Sigma^{10}(k=1)(k^2) = 1^2 + 2^2 + 3^2 + ... + 10^2$
- Voorbeeld: $\mathbb{Z} = \bigcup (n=0)\{n, -n\} = \bigcup (n \in \mathbb{N})\{n, -n\}$
- Voorbeeld: (i=1)-1/i, 1/i[=]-1, 1[\cap]-1/2, 1/2[\cap ... = {0}
- Verzameling met 1 element = singelton
- Verzameling met 0 elementen, lege verzameling = \emptyset = {}
- A en B zijn disjunct als A \cap B = \emptyset
- Universum = een grote verzameling waarin je werkt
 - Notatie: Ω , V, U
 - Hieruit volgt:

 $A \cup \Omega = \Omega$, $A \cup \emptyset = A$, $A \cap \Omega = A$, $A \cap \emptyset = \emptyset$, $\forall A : \emptyset \subset A$

Het complement van \emptyset is Ω , en omgekeerd

De wet van De Morgan:

Notities onvolledig (zie ook CSA)

Machtsverzameling van A:

- = De verzameling van alle deelverzamelingen van A
- Notatie: 2^A
- Voorbeeld: {Kat, Hond, Vis} = $A \leftarrow 3$ el.
 - $\rightarrow 2^{A} = {\emptyset, \{K\}, \{H\}, \{V\}, \{K,V\}, \{K,H\}, \{H,V\}, A\}} \leftarrow 2^{3} = 8 \text{ el.}$

Cartesisch product

A×B = {(a, b) | a ∈ A, b ∈ B} Voorbeeld: A = {1, 2}, B = {K, H, V} A×B = {(1, K), (2, K), (1, H), (2,H)...} $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = {(x, y) | x, y ∈ \mathbb{R}}$

 $\prod_{i=1}^{n} (i=1)(Ai) = A1 \times A2 \times ... \times An \leftarrow \text{Verzameling van n-tupels}$ $\prod_{i=1}^{n} A_i = A_1 \times A_2 \times ... \times A_n$

Analoog product aan product van getallen

Hoorcollege maandag 30/09/2024

Relaties: A, B verzamelingen, dan noemen we R een relatie als $R \subset A \times B$

Vb 1, 2: notities onvolledig

Domein v/e relatie $R = Dom(R) = \{a \in A | \exists b \in B : (a,b) \in R\} \subset A$

= alle elementen uit A waar een pijl vertrekt

Beeld of bereik van $R = Ran(R) = Im(R) \subset B$

= alle elementen van B waar een pijl toekomt

Notatie $aRb \stackrel{\text{def}}{=} (a,b) \in \mathbb{R}$: a staat in relatie tot b volgens R Vb 3: $S = \mathcal{L}(x,y) \in \mathbb{R}^2 (x-3)^2 + (y-2)^2 = 25 \mathcal{L}$ Dom(S)[-2,8]; Im(S) = [-3,7]

Vb 4: $A = \{appel, banaan, peer\}; B = \{a, b, c, ..., z\}$

R = ... bevat de letter ...; Een combinatie kan maar 1 keer voorkomen!

Dom(R) = A: er vertrekken pijlen vanuit elk element van a

 $Im(R) = \{a, b, e, l, n, p, r\}$: er komen pijlen aan in deze letters

 $X \subset A$; $R(X) = \{b \in B | \exists x \in X : (x,b) \in R(dit is xRb)\}$

= de elementen die je vanuit X bereikt

 $X = \{appel, peer\}$

$$--> R(X) = \{a, e, l, p, r\}$$

Eigenschappen:

1. $\forall X \subset A : R(X) \subset Im(R)$

2. R(A) = Im(R)

3. $R(\mathcal{O}) = \mathcal{O}$

4. $\forall X, Y \subset A : A \subset Y \rightarrow R(X) \subset R(Y)$

Opm.: $R(X) \subset R(Y) \rightarrow X$ subet Y GELDT NIET

Vb 5: A = {1, 2, 3, 4}; B = {1, 2}; R = {(1,1),(2,2),(3,2)}
X = {2, 3}; Y = {1, 2} dan R(X) = {2} en R(Y) = {1,2} dus
$$R(X) \subset R(Y)$$
 maar $X \not\subset Y$

Inverse relaties:

 $R \subset A \times B \text{ een relatie}: R^{-1} = (a,b) | (a,b) \in R$ = inverse relatie van R . $\subseteq B \times A$

Eigenschappen:

5. $\forall X, Y \subset B: X \subset Y \rightarrow R^{-1}(X) \subset R^{-1}(Y)$

= eig. 4 voor R^{-1} i.p.v. R

6. $(R^{-1})^{-1} = R$

7. $\forall X, Y \subset A : R(X \cup Y) = R(X) \cup R(Y)$

8. $\forall X, Y \subset A : R(X \cap Y) \subset R(X) \cap R(Y)$ Waarom niet gelijk? Zoek een tegenvoorbeeld!

Vb 6: variant vb. 5, met een paar extra pijlen

 $A = \{1, 2, 3, 4\}; B \{1, 2\}$

 $X = \{2, 3\}; Y = \{1, 2\} \text{ dus } R(X \cap Y) = R(\{2\}) = \{2\}$

 $R(X) = \{1, 2\}$

 $R(Y) = \{1, 2\} \text{ dus } R(X) \cap R(Y) = \{1, 2\} \cap \{1, 2\} = \{1, 2\}$

Samenstelling van 2 relaties:

 $R \subset A \times B$; $S \subset B \times C$

S na R: $S \circ R \subset A \times C$ $S \circ R = \{(a,c) \in A \times C | \exists b \in B : aRb \ en \ bSc\}$

Eigenschappen:

9.
$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$

10. $R \subset A \times B$; $S \subset B \times C$; $T \subset C \times D$: $T \circ (S \circ R) = (T \circ S) \circ R$: associatief

Functies:

Def.: Een relatie $R \subseteq A \times B$ is een functie als en slechts als

1. Dom(R) = A (uit elk element van A vertrekt minimum 1 pijl)

 $\forall a \in A, \exists b \in B: aRb$

2. $\forall a \in A, \forall b, b' \in B : aRb \ en \ aRb' \rightarrow b = b'$ (uit elk element van A vertrekt maximum 1 pijl)

Tezamen: Uit elk element van A vertrekt **precies** 1 pijl.

Anders gezegd: voor elke $a \in A$, $\exists ! b \in B : aRb$

We noemen het unieke beeld van a R(a)

Notatie: $F \subset A \times B$ functie

 $F: A \rightarrow B: x \rightarrow f(x)$

 $f \mathbb{R} \rightarrow \mathbb{R} : x \rightarrow x^2$

Injectieve functie:

Een functie $f: A \rightarrow B$ noemen we injectief als en slechts als $\forall a, a' \in A: f(a) = f(a') \rightarrow a = a'$ In elk element van b komt maximum 1 pijl toe **Surjectieve functie:** Een functie $f: A \rightarrow B$ noemen we injectief als en slechts als

$$\forall b \in B, \exists a \in A: f(a) = b$$

In elk element van b komt minimum 1 pijl toe

Bijectief: Een functie noemen we bijectief als er exact 1 pijl toekomt in elke b $\forall b \in B, \exists ! a \in A : f(a) = b$

Voorbeelden

1)
$$f:\{A,B,C,...,Z\} \rightarrow \{1,2,3,4,...,50\}$$

$$A \rightarrow 1; B \rightarrow 2; ...; Z \rightarrow 26$$

Deze functie is injectief, elk getal wordt max 1 keer bereikt

Deze functie is niet surjectief, de getallen groter dan 26 worden niet bereikt

2)
$$f:\{A,B,C,...,Z\} \rightarrow \{1,2,3,4,...,26\}$$

$$A \rightarrow 1; B \rightarrow 2; ...; Z \rightarrow 26$$

Deze functie is injectief, elk getal wordt max 1 keer bereikt

Deze functie is surjectief, alle getallen worden bereikt

$$3)A = \{ studenten \in deze \ klas \}; B = \{0,1,2,3...20, AFW, VER, WTV, FRD \}$$

 $f: a \rightarrow b: x \rightarrow$ score die x heeft op het examen Discrete Wiskunde \in januari

$$|A| = 105$$
; $|B| = 25$

f is een functie (iedereen krijgt *een* "score") maar f is geen injectieve functie (sommige scores worden meermaals bereikt), f surjectief als elke score bereikt zou worden

Eigenschap: een samenstelling van 2 functies is opnieuw een functie

Verder werkende op vorige voorbeeld:

C = {2de zit, geen 2de zit

$$q: B \to C: x \to geen 2 de zit als x \in \{10, 11, ..., 20\}; OF x \to 2 de zit als x \notin \{10, 11, ..., 20\}$$

$$g \circ f : A \rightarrow C : x \rightarrow g(f(x)) = (g \circ f)(x)$$

Eigenschappen: $A \rightarrow B$, functie, $g: B \rightarrow C$, functie (bewijzen hieronder)

- 1. Als f en g injectief, dan $g \circ f$ injectief
- 2. Als f en g surjectief, dan $g \circ f$ surjectief
- 3. $g \circ f$ injectief $\rightarrow f$ injectief
- 4. $g \circ f$ surejectief → g surjectief

BEWIJS 1, STAAT NIET IN DE CURSUS:

Geg:
$$f$$
 injectief, $dus \forall a, a' \in A: f(a) = f(a') \rightarrow a = a'B$

$$q$$
 injectief, $dus \forall b, b' \in B: q(b) = q(b') \rightarrow b = b'$

TB:
$$(g \circ f : A \rightarrow C)$$

 $g \circ f$ injectief: $\forall a, a' \in A: g(f(a)) = g(f(a')) \rightarrow a = a'$

Bewijs:

Kies a, a' ∈ A willekeurig zodat g(f(a)) = g(f(a'))

Neem b = f(a), b = f(a') Omdat g injectief: f(a) = f(a')

Omdat f injectief: a = a'

QED

Hoorcollege woensdag 02/10/2024

BEWIJS 2, STAAT NIET IN DE CURSUS:

Geg: 1. $\forall b \in B, \exists a \in A : f(a) = b$

 $2. \forall c \in C, \exists b \in B: g(b) = c$

TB: $\forall c \in C, \exists a \in A: (g \circ f)(a) = a$

Bewijs: Neem c uit C willekeurig

Uit $geg 2: \exists b \in B: g(b) = c$

Uit geg $1: a \in A: f(a) = b$

Hieruit volgt: $g(f(a))=(g \circ f)(a)=c$

QED

BEWIJS 3, STAAT NIET IN DE CURSUS:

Geg: $\forall a, a' \in A: (g \circ f)(a) = (g \circ f)(a') \Rightarrow a = a'$

TB: $\forall a, a' \in A: f(a) = f(a') \Rightarrow a = a'$

Bewijs Kies a, a' zodat f(a)=f(a')

Pas g toe: g(f(a)) = g(f(a'))

Uit geg: a = a'

QED

UOVT: Onderzoek het tegenovergestelde zelf

BEWIJS 4, STAAT NIET IN DE CURSUS:

Geg: $\forall c \in C, \exists a \in A: (g \circ f)(a) = c$

TB: $\forall c \in C, \exists b \in B: g(b) = c$

Bewijs: Neem c uit C willekeurig

Uit geg: $\exists a \in A : g(f(a)) = c$

Kies b = f(a), die bestaat want f is een functie (A bevat geen losse punten)

 $\Rightarrow \exists b \in B : g(b) = c$

UOVT: Onderzoek het tegenovergestelde zelf

Een paar definities:

1. Grootte van verzamelingen = **kardinaliteit**

Als A eindige verz., dan |A| = #elementen = kardinaliteit van A.

2. A en B zijn **equipotent** (~even machtig) als er een dijectie bestaat van A naar B.

Dan hebben A en B dezelfde kardinaliteit

Voorbeelden:

- 1. Eindige verzameling; $A = \{1, 2, 3\}$; $B = \{rood, groen, blauw\}$; bijectie R is bv. $\{(2, rood), \{1, blauw\}, \{3, groen\}$
- 2. Oneindige verzamelingen: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R}
- 3. Stel $||\mathbf{N}| = \aleph_0$ (uitgesproken aleph-0)
- 4. We noemen een verz. A **aftelbaar** als ze eindig is of als er een bijectie bestaat van \mathbb{N} naar A. Je kan de elementen op een rijtje zetten $(\mathbb{N} \to A : n \to a_n)$

Oefeningentjes:

1.is er een bijectie van $\mathbb{N} \rightarrow \mathbb{N}_0$? Ja!

$$f: \mathbb{N} \to \mathbb{N}_0: n \to n+1$$
 is een bijectie

 $\Rightarrow \mathbb{N} en \mathbb{N}_0$ zijn equipotent

$$\Rightarrow ||\mathbf{N}| = ||\mathbf{N}_0| = \aleph_0$$

2. is \mathbb{Z} aftelbaar?

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$
 Zo niet

$$\mathbb{Z} = \{0, -1, 1, -2, 2, -3, 3, ...\}$$
 Maar zo wel! Dus JA

Functievoorschrift: $f: \mathbb{N} \to \mathbb{Z}: n-even: n \to n/2: n-oneven: n \to -(n+1)/2$

3. Is **Q** aftelbaar? **EXAMENVRAAG-BEWIJS** Ja!

$$\mathbb{Q} = \{a/b | a \in \mathbb{Z}, b \in \mathbb{N}_0\}$$

Zoek een opsomming $\{a_0, a_1, a_2, ...\}$

 -4	-3	-2	-1	0	1	2	3	4	•••
 -4/2	-3/2	-2/2	-1/2	0/2	1/2	2/2	3/2	4/2	
 -4/3	-3/3	-2/3	-1/3	0/3	1/3	2/3	3/3	4/3	

$$\mathbb{Q} = \{0, 1, \frac{1}{2}, \frac{-1}{2}, -1, \frac{-2}{3}, ...\} \text{ Dus } |\mathbb{Q}| = \aleph_0$$

Notitites Discrete Wiskunde Mathijs Pittoors Stijn Symens, Hans Dierckx (2024-2025)

4. Is R aftelbaar? Neen!

$$||\mathbf{R}|| = C - hoekig > ||\mathbf{N}|| = \aleph_0$$

Bewijs "diagonaalelement van Cantor: uit het ongerijmde = bewijs door contradictie Stel: \mathbb{R} is aftelbaar

⇒ \exists bijectie \mathbb{N} → \mathbb{R} Voorbeeld $\{a_0, a_1, a_2, ...\}$

$$a_0 = 1.4142...; a_1 = 4.00000...; a_2 = 3.1415; a_30.0888888...$$

Maak een nieuw getal a het i-de cijfer na de komma is (het i-de cijfer van a_i) + 1

a = 2.159... zit niet in de opsomming en a∈ \mathbb{R} de opsomming is onvolledig en \mathbb{R} is **overaftelbaar**

C-hoekig = \aleph_1 ? (= 1 van de 23 vragen van Hilbert (1900)): Continuümhypothese, Gödel heeft gevonden dat het niet-bewijsbaar is

Hotel van Hilbert: zie die ene video

5. Is]-1,1[aftelbaar?

$$|]-1,1[|=||R||$$

Bewerking: vind een bijectie $\mathbb{R} \rightarrow]-1,1[$

Via de boogtangensfunctie $f: \mathbb{R} \rightarrow]-1$, 1[: $x \rightarrow \frac{2}{\pi} bgtan(x)$ is strikt stijgend, dus bijectie

Dus: $|]-1,1[|=|\mathbb{R}|$, beide overaftelbaar

Hoorcollege 07/10/2024

Stelling van Schröder-Bernstein:

Er bestaat een bijectie van $A \rightarrow B$

 \Leftrightarrow er bestaat een injectie van $A \rightarrow B$, en er bestaat een injectie van $B \rightarrow A$

[-1, 1] is overaftelbaar. Bewijs via bovenstaande:

- $\exists injectie[-1,1] \rightarrow \mathbb{R}$, namelijk $x \rightarrow x$
- $\exists injectie \mathbb{R} \rightarrow [-1,1], namelijk g: x \rightarrow \frac{2}{\pi} bgtan x$

$$=> ||\mathbf{R}| = ||-1,1||$$

Voorbeeld van een niet-injectieve functie: [-1, 1] → \mathbb{R}

$$y=x^2$$
 injectief: $f(a)=f(a') \rightarrow a=a'$
In dit geval: $f(1)=f(-1)maar-1 \neq 1$

Injectieviteit nagaan: trek horizontale rechten en als elke rechte max. 1 keer de grafiek snijdt, is de functie injectief.

Duivenhokprincipe:

Stel $\exists A$, $B||A|=|B|<\infty$, dan zijn deze eigenschappen equivalent: $f: A \rightarrow B$ is een bijectie $\Leftrightarrow f: A \rightarrow B$ is een injectie $\Leftrightarrow f: A \rightarrow B$ is een surjectie

A = {duiven}, B = {hokken}, alle duiven hebben een hokje, als je meerdere duiven in een hokje steekt zijn er lege hokjes.

Relaties van $A \rightarrow A$ (="relatie op A")

- (R)Reflexiviteit: $\forall a \in A : aRa$ (deze heeft lussen in elk element)
- (S)Symmetrie: $\forall a, b \in A : aRb \Rightarrow bRa$ (elke pijl die men kan trekken, bestaat ook in de andere richting, behalve bij lussen)
- (AS)Antisymmetrie: $\forall a, b \in A : aRb \ en \ bRa \Rightarrow a = b$ (geen enkele pijl bestaat ook in de andere richting)
- (T)Transitiviteit: $\forall a,b,c \in A$: $aRb\ en\ bRc \Rightarrow aRc$ (als je 2 pijlen achtereenvolgens kan trekken, is er ook een pijl die het middelste punt overslaat)

Voorbeeld 1: A = {studenten in deze klas} R: ... heeft dezelfde score op het examen DW als ... Eigenschappen:

- (R) zelfde score als zichzelf? Waar
- (S) als student 1 dezelfde score heeft als student 2, heeft s2 dan dezelfde score als s1?
 Waar
- o (AS) er zijn geen 2 mensen met dezelfde score? Niet waar
- (T) als s1 dezelfde score haalt als s2, en s2 als s3, heeft s1 dan dezelfde als s3? Waar *Truc*, als "dezelfde" in het voorschrift staat, dan (R) (S) en (T)

Equivalentierelatie: Als R voldoet aan (R), (S) en (T) dan is het een equivalentierelatie.

Notatie: $a \sim b$, $a \equiv b$

Voorbeeld 2: $A = \mathbb{R} en aRb \Leftrightarrow a^2 = b^2$

Eigenschappen:

- o (R) aRa? JA
- \circ (S) aRb \Rightarrow bRa? Ja
- (AS) aRb en bRa $\Rightarrow a = b$? neen bv. 3 en -3
- ∘ (T) Ja

 $R, S, T \Rightarrow equivalentie relatie$

Voorbeeld 3: $a \equiv b \Leftrightarrow 3 \mid (a-b) \in \mathbb{Z}$ By 5~8, -3~3

• (R) $a \equiv a, 3 | a - a? Ja$

- (S) $a \equiv b \Leftrightarrow 3 | a b \Rightarrow b \equiv a \ 3 | b a \ Ja$
- (T) $a \equiv b enb \equiv c$

 $\Rightarrow 3|a-ben 3|b-c$ Ja het is transitief

Bij een equivalentierelatie wordt A ingedeeld in groepjes:

- Voorbeeld 1: studenten met de dezelfde score. Je kan cirkels tekenen rond groepjes met dezelfde waarde
- Voorbeeld 2: $(a^2=b^2) \mathbb{Z} = \{0\} \cup \{-1,1\} \cup \{-2,2\}...$
- Voorbeeld 3: 3-vouden = {... -3, 0, 3, 6, ...}, {3-vouden + 1}, {3-vouden + 2}

Als A, \sim is een equivalentierelatie

[a] = $\{b \in A | a \sim b\}$, bijvoorbeeld:

• In vb. $3 \ a \equiv b \Leftrightarrow 3 \ |a-b| = \{b \in \mathbb{Z} \ | \ 0 \equiv b\} = \{b \in \mathbb{Z} \ | \ +b\} = \{..., -3, 0, 3, 6, 9, ...\} = [15], [0]$: equivalentieklasse, de 0 is de representant

$$[1] = {...,-2, 1, 4, ...}$$

$$[2] = {..., -1, 2, 5, ...}$$

Merk op:
$$[0] \cup [1] \cup [2] = \mathbb{Z}$$

Beschouw nu: $A = \{[a] | a \in A\}$: quotiëntverzameling

- Dus bij vb 3. is dit gelijk aan $\{\{...,0,3...\},\{...,-2,1,4....\},\{...,-1,2,5,...\}\}$
- Bij vb 1. {{studenten met score 1}, {studenten met score 2} ...}
- Bij vb 2. $a \equiv b \Leftrightarrow a^2 = b^2$: [4] = [4, -4]: $\mathbb{Z}/=$ = [{0}, {-1,1}, {-2,2},...]

Voorbeeld 3': $A = \{1, 2, 3, 4, 5, 6, 7, 8\} en a \sim b \Leftrightarrow 3|a-b|$

 $A/\sim = \{\{1,4,7\},\{2,5,8\},\{3,6\}\}\$, dit is een **partitie** van A, want elk element van A past slechts in 1 deelverzameling

Def.: Stel dat A een verzameling is. Dan is \land een partitie van A als: $\land \subset 2^A$

Voorbeeld:
$$A = \{1,2\} \ 2^A = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\$$

$$\forall x \in \mathbb{A} : x \neq \emptyset$$

NOTITIES ONVOLLEDIG

Eigenschap: de quotiëntverzameling van A, A / \sim is een partitie van A

1) Neem
$$A = A/$$
 = {[a] | $a \in A$ }

$$TB: x \in \mathbb{A} \Rightarrow x \neq \emptyset$$

Bewijs:
$$x \in \mathbb{A} \Rightarrow \exists a \in A : x = [a] \Rightarrow a \in x \Rightarrow x \neq \emptyset$$

2) TB:
$$U_{x \in A} x = a$$
? Bewijs: $\forall a \in A : a \in [a]$
 $\Rightarrow a \in U_{x \in A} x \text{ bevat alle } a \in A$
 $\Rightarrow U_{x \in A} x = A$

3) of well is
$$x = y[a] = [b] \Leftrightarrow a \sim b$$
 (3a)

ofwel
$$x \neq y \Rightarrow x \cap y = \emptyset$$
 (3b)

3a: [a] = [b]
$$TB: a \sim b \Rightarrow b \in [a] \Rightarrow a \sim b$$

3a omgekeerd:
$$a \sim b \Rightarrow [a] = [b]$$
, Stel $x \in [b]$ willekeuri $g \Rightarrow b \sim x$, $a \sim b \Rightarrow (T) a \sim x$ $\Rightarrow x \in [a] \Rightarrow [b] \subset [a]$ (*)

Verder
$$a \sim b \Rightarrow b \sim a \Rightarrow (*)[a] \subset [b]$$
 Uit *'s volgt dat [a] = [b]

3b) T.B:
$$x \neq y \Rightarrow x \cap y = \emptyset$$

Bewijs: door contradictie (uit het ongerijmde)

Stel $x \neq y en x \cap y \neq \emptyset$

Dan
$$\exists c \in x \cap y$$
, Noem $x = [a]en y = [b]$

$$\Rightarrow c \in [a] enc \in [b]$$

Uit
$$d$$
 ef $[a] \Rightarrow a \sim c$

Met (S)
$$\Rightarrow a \sim c en c \sim b$$

Met (T)
$$\Rightarrow a \sim b$$

Met
$$\exists a [a] = [b] \Rightarrow x = y \ én \ x \neq y : \textbf{contradictie} \Rightarrow x \cap y = \emptyset$$

Q.E.D.

Hoorcollege 09/10/2024

In een verzameling A: R is een **equivalentierelatie** als: (R), (Z), (T). Notatie \equiv *of* \sim R equivalentierelatie \Leftrightarrow \nsim een partitie = Elke partitie komt overeen met een equivalentierelatie

Voorbeeld: $A = \{0, 1, a, b, rood, groen\}$

Dan
$$\exists A = \{\{0, 1\}, \{a, b\}, \{rood, groen\}\}\$$

$$\operatorname{Def} p \equiv_{\star} q \Leftrightarrow \exists X \in \Lambda \Leftrightarrow p, q \in X$$

In een verzameling A: R is een **partiële orde** op A als: (R), (AS), (T). Notatie: \leq

Voorbeeld: $A = \mathbb{R}$, R: is kleiner of gelijk aan

- (R)? $\forall a \in \mathbb{R} : a \leq a Ja!$
- (AS)? $\forall a,b \in \mathbb{R}: a \leq benb \leq a \Rightarrow a = bJa!$
- (T)? $\forall a,b,c \in \mathbb{R}: a \leq benb \leq c \Rightarrow a \leq c Ja!$

R is een **totale orde** op A als (R), (AS), (T) én (TO): $\forall a, b \in A : a \le b \text{ of } b \le a \text{ (is te ordenen op een as)}$

• (TO)? $\forall a,b \in \mathbb{R}$: is $a \le b$ of $b \le a$ OK! $\mathbb{R} \le i$ is een totaal geordende verzameling

Voorbeeld: $A = \mathbb{N}_0$, $aRb \Leftrightarrow a|b$

- (R) $\forall a \in A : aRa ? \Leftrightarrow \forall a \in \mathbb{N}_0 : a|a \text{ OK}$
- (AS) $\forall a,b \in \mathbb{N}_0: a|benb|a \Rightarrow a=b$ OK
- (T) $\forall a,b,c \in \mathbb{N}_0: a|benb|c \Rightarrow a|c \text{ OK}$
- (TO) $\forall a,b \in \mathbb{N}_0: a|b \text{ of } b|a \text{ NIET OK}, vb.a=2,b=3$

Dus \mathbb{N}_0 , is een partieel geordende verzameling = **poset** "partially ordered set"

Eenvoudiger dan Bovenste: **Hasse-diagram van een poset**: Afspraken:

- Geen lussen tekenen
- Geen pijlen die volgen uit (T)
- Alle pijlen wijzen naar boven

Als X, \leq een poset $Y \subset X$

- We noemen $x \in X$ een bovengrens van Y als $\forall y \in Y : y \le x$
- We no men $x \in X$ een ondergrens van y als $\forall y \in Y : x \leq y$
- We noemen $a \in Y$ een maximum van Y als $\forall y \in Y : y \leq a$ In woorden: Een maximum is te bereiken uit elk element door de pijlen te volgen
- We noemen $a \in Y$ een minimaal van Y als $\forall y \in Y : a \leq y$ *In woorden: Elk element is te bereiken door pijlen te volgen uit het minimum*
- We noemen $a \in Y$ een maximaal element als $\forall y \in Y : a \le y \Rightarrow y = a$ In woorden: Uit een maximaal element vertrekken geen pijlen (naar andere elementen)
- We noemen $a \in Y$ een minimaal element als $\forall y \in Y : y \le a \Rightarrow y = a$ In woorden: In een minimaal element komen geen pijlen toe (uit andere elementen)

Voorbeeld: \mathbb{R} , ≤ $enY = [0,1] \subset \mathbb{R}$

- Bovengrens Y? Elke $r \in \mathbb{R}: r \ge 1$
- Ondergrens Y? Elke $r \in \mathbb{R}^-$
- Maximum: 1? Ja, want $\forall y \in [0,1]: 1 \le y \Rightarrow y = 1$
- Minimum: 0? Ja, want $\forall y \in [0,1]: 0 \le y \Rightarrow y = 0$

Algemeen: bij (TO), maximum = *uniek* maximaal element , minimum = *uniek* minimaal element

Voorbeeld: \mathbb{R} , ≤ $en Y =]0,1[\subset \mathbb{R}$

• Geen maximaal en minimaal element, boven en ondergrensen blijven gelijk aan vb^

Voorbeeld: A = $\{1,2,...,8\}$ (zie tekening \land) R=| A = y, $X = \mathbb{N}_0$

- Is 1 een minimum? $\forall y \in Y : 1 \leq y (indit geval \leq = |) : JA$
- Is 1 een minimaal element? $\forall y \in Y : y \le 1 \Rightarrow y = 1 \ (\sim \text{ er is een pijl van y naar 1}): JA$
- Er is geen maximum!
- 8, 6, 7, 5 zijn allemaal maximale elementen
- Ondergrens? $x \in \mathbb{N}_0$: $x \le y$, $\forall y \in Y$. 1 is een ondergrens

- Bovengrens? $x \in \mathbb{N}_0$: $y \le x$
 - ∘ k.g.v. is de kleinste bovengrens, in dit v.b. k.g.v.(1,2,3...8) $=2^3 \cdot 3 \cdot 5 \cdot 7 = 840$

Hoofdstuk 3: Bewijstechnieken

Wat is een bewijs?

Voor een wiskundige eigenschap is een bewijs: **een sluitende redenering waarom deze eigenschap klopt.**

Soorten bewijzen:

1.Triviaal bewijs

Vb. Eigenschap: als n>0 dan n n ≥ 0

Bewijs: triviaal, Q.E.D.

(Ook: uit onwaar \Rightarrow onwaar of uit onwaar volgt alles Vb. Als $\pi = 3$, dan $\forall x \in \mathbb{R}$: x > 0 Slaat nergens

op!, Bewijs: Triviaal

Voorbeeld: Als P onwaar, dan kan alles (Q) volgen

Elk mens met 5 hoofden is een genie

Elke lege relatie is transitief $\forall a,b,c \in A : aRb \in bRc \Rightarrow aRc \ dus \ R = \emptyset$ is transitief)

2. Rechtstreeks bewijs

Geg.: Stelling 0: S_0 , S_1 ,..., S_k

T.B: S_n

Bewijs: $S_0, S_1, ..., S_k \Rightarrow S_{k+1}; S_0, S_1, ..., S_{k+1} \Rightarrow S_{k+2} ... \Rightarrow S_{k+m} = S_n$

Voorbeeld:

Def: $n \in \mathbb{N}_0$ is een samengesteld geal als $n = a \cdot b \text{ met } a, b \in \mathbb{N} \text{ en } a, b \ge 2$

Eig: Elk samengesteld getal heeft een priemdeler $d \le \sqrt{n}$

Bewijs: Neem n een willekeurig samengesteld getal

Uit def: $n=a \cdot b \text{ met } a, b \in \mathbb{N}, n \ge 2$

Wlog (without loss of generality) $a \ge b$

 $\Rightarrow n = a \cdot b \ge b \cdot b = b^2$

 $\Rightarrow n \ge b^2$

 $\Rightarrow \sqrt{n} \ge b$ dus n heeft zeker een deler $b \le \sqrt{n}$

Er zijn nu 2 gevallen:

- 1. b is een priemgetal, dan : stel d = b \Rightarrow d | n en $d \leq \sqrt{n}$
- 2. b is niet priem, dan $b \ge 2$, $b \in \mathbb{N}$
- $\Rightarrow \exists$ priemgetal $d \le b : d|b$, zo vinden we d: d|b en $b|n \Rightarrow b|n$ en $d \le b$ en $b \le \sqrt{n}$

Q.E.D.

3. Bewijs via contrapositie

T.B: $A \Rightarrow B$

Dan bewijzen we $\neg B \Rightarrow \neg A$ (redenering: Als uit $\neg B$ ook A kan volgen dan $\neg B \Rightarrow A \Rightarrow B$, onmogelijk)

Voorbeeld:

Als het regent zet ik mijn kap op, als ik mijn kap niet op heb regent het niet Foute conclusie: Als ik mijn kap op heb regent het, of dat als het niet regent, ik mijn kap niet op heb

Voorbeeld:

Eig: p > 1 een heel getal is met geen enkele priemdeel $\leq \sqrt{p}$, dan is p een priemgetal Vb: is 103 een priemgetal? $\sqrt{103} \approx 11$

$$\Rightarrow$$
 als 2 \nmid 103,3 \nmid 103,5 \nmid 103 *en* 7 \nmid 103, dan 103 priem (klopt)

Contrapositie: Als p geen priemgetal is, dan heeft het een priemdeler $\leq \sqrt{p}$ Bewijs: zie vorige stelling, bij (2)

Hoorcollege 14/10/2024

4. Bewijs via contradictie (=Bewijs uit het ongerijmde)

Eigenschap: A

Bewijs: Stel dat $\neg A$ waar is $\Rightarrow ... \Rightarrow Q \Rightarrow ... \Rightarrow \neg Q$: Tegenspraak!

Dus A geldt

Voorbeeld: Eigenschap:√2 ∉ **Q**

Bewijs via contradictie: Stel $\sqrt{2} \in \mathbb{Q}$

$$\Rightarrow \sqrt{2} = \frac{a}{b} met \ a, b \in \mathbb{N}_0 en \ ggd(a, b) = 1$$

$$\Rightarrow b\sqrt{2} = a \Rightarrow 2b^2 = a^2 \Rightarrow 2|a^2 \Rightarrow 2|a^*$$

$$\Rightarrow a = 2 c met c \in \mathbb{N}_0$$

$$\Rightarrow 2b^2 = 4c^2 \Rightarrow b^2 = 2c^2 \Rightarrow 2|b|$$

Q.E.D.

(*): Lemma (= mini-stelling)

TB: a^2 even \Rightarrow a even, $A \Rightarrow B$

Bewijs door contrapositie: $\neg A \Rightarrow \neg B$

Bewijs: a is oneven

$$\Rightarrow \exists k \in \mathbb{N}: a=2k+1 \Rightarrow a^2 = (2k+1)^2 = 4k^2 + 4k + 1$$
 is oneven

 $\Rightarrow a^2$ is oneven

Q.E.D.

5. Splitsen in gevallen

Voorbeeld:

Eig: $\forall n \in \mathbb{N}: n^3 - 4n^2 + n \text{ is even.} (=T.B.)$

Bewijs via splitsen: $n \in \mathbb{N} \Rightarrow n$ is even of n is oneven

A. n is even $\Rightarrow n=2m, m \in \mathbb{N}$

$$\Rightarrow n^3 - 4n^2 + n = (2m)^3 - 4(2m)^2 + 2m$$
$$= 8m^3 - 16m^2 + 2m$$
$$= 2(4m^3 - 8m^2 + 2m) \Rightarrow is even$$

B. n is oneven $\Rightarrow n=2m+1, m \in \mathbb{N}$

$$\Rightarrow n^3 - 4n^2 + n = (2m+1)^3 - 4(2m+1)^2 + 2m+1$$

Uit merkwaardig product \Rightarrow 8 m^3 (4 m^2)+3(2 m)+1-4(4 m^2 +4 m+1)+2 m+1

$$=8 m^3 + 12 m^2 + 6 m + 1 - 16 m^2 + 16 m - 4 + 2 m + 1$$

= even + 1 + 1 is even.

Q.E.D.

6. Bewijs via inductie

Eig: $\forall n \in \mathbb{N} \text{ geldt} : S(n)$

Strategie:

- Basisgeval S(0)
- Inductiehypothese: als $S(k) \Rightarrow S(k+1)$, $\forall k \in \mathbb{N}_0$

Nadien is de conclusie:

$$S(0) \Rightarrow S(1) \Rightarrow S(2) \Rightarrow S(3) \Rightarrow ... \text{ a.d.h.v. inductiehypothese}$$

Voorbeeld 1:
$$\sum_{j=0}^{n} j = \frac{n(n+1)}{2}$$
 (formule KOE)

Bewijs via inductie naar n:

Basisgeval: n = 0: TB:
$$\sum_{i=0}^{0} j = 0 = \frac{0.1}{2}$$
 OK!

I.H.: als de formule klopt voor
$$n=k:\sum_{j=0}^{k} j = \frac{k(k+1)}{2}$$

T.B: de formule klopt voor n = k + 1:
$$\sum_{i=0}^{k+1} j = (k+1) \frac{((k+1)+1)}{2}$$

Bewijs:
$$LL = \sum_{j=0}^{k+1} j = 0 + 1 + 2 + k + (k+1) = (k+1)(\frac{k}{2} + 1) = (k+1)\frac{(k+2)}{2} = RL$$

Q.E.D.

Voorbeeld 2: Gegeven: n rechten in het vlak

"Het is steeds mogelijk om de ontstane gebieden in te kleuren met slechts 2 kleuren zodat aangrenzende gebieden een andere kleur hebben."

Bewijs via inductie naar n:

Basisgeval: n = 0

(Alles 1 kleur)

I.H.: eigenschap geldt voor k rechten, dan ook voor k+1 Bewijs:

Kleur de situatie met k rechten in (kan via IH)

Voeg de rechte opnieuw toe, aan één kant ervan wissel je R en G

- Grenzen langs de rechten ⇒ OK
- Alle interne grenzen rechts ⇒ OK links ⇒ OK

Uitbreiding:

• Starten vanaf andere n: basis S(m) met $m \neq 0$

Voorbeeld: Bewijs voor elke n-hoek dat de som van al zijn hoeken gelijk is aan $s = (n-2) \cdot 180^{\circ}$ Bewijs via inductie naar n:

• Algemeen geval: IH: als voor een k-hoek geldt s =
$$(k-2)\cdot180^{\circ}$$
, dan is s = $(k+1-2)\cdot180^{\circ}$

Bewijs:

$$s_{k+1} = s_k + \alpha + \beta + \gamma = (k-2)180^{\circ} + 180^{\circ} = (k-1)180^{\circ}$$

Variant: Basisgeval S(0) en S(1)

en inductiehypothese: uit S(k-1) en $S(k) \Rightarrow S(k+1)$

Voorbeeld: Rij van Fibonnacci:

Rij:
$$F_n = F_{n-1} + F_{n-2} en F_0 = 0$$
, $F_1 = 1$

Eigenschap/TB:
$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n + \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

Basisgevallen:

$$n=0:F_0=\frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^0+(\frac{1-\sqrt{5}}{2})^0)=\frac{1}{\sqrt{5}}(1-1)=0$$

$$n=1:F_1=\frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^1+(\frac{1-\sqrt{5}}{2})^1)=\frac{1}{\sqrt{5}}(\frac{1}{2}+\frac{\sqrt{5}}{2}-\frac{1}{2}+\frac{\sqrt{5}}{2})=1$$

Inductiehypothese: als de formule geldt voor n = k en n = k - 1, geldt ze ook voor n = k + 1

TB:
$$F_{k+1} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k+1} + \left(\frac{1-\sqrt{5}}{2} \right)^{k+1} \right)$$

$$\text{Bewijs: } F_{k+1} \stackrel{\text{def}}{=} F_k + F_{k-1} \stackrel{\text{def}}{=} \frac{1}{\sqrt{5}} \big(\big(\frac{1+\sqrt{5}}{2} \big)^k + \big(\frac{1-\sqrt{5}}{2} \big)^k \big) + \frac{1}{\sqrt{5}} \big(\big(\frac{1+\sqrt{5}}{2} \big)^{k-1} + \big(\frac{1-\sqrt{5}}{2} \big)^{k-1} \big)$$

$$\Rightarrow \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^k + \left(\frac{1+\sqrt{5}}{2} \right)^{k-1} - \left(\frac{1-\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^{k-1} \right]$$

$$\Rightarrow \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(\frac{1+\sqrt{5}}{2} + 1 \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{k-1} \left(\frac{1-\sqrt{5}}{2} + 1 \right) \right]$$

Nog te bewijzen: $\frac{1+\sqrt{5}}{2}+1=(\frac{1+\sqrt{5}}{2})^2$

$$LL = \frac{1 \pm \sqrt{5} + 2}{2} = \left(\frac{3 \pm \sqrt{5}}{2}\right)^2$$

$$RL = \left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{3\pm\sqrt{5}}{2} = LL$$

$$\Rightarrow F_{k+1} = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} + \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1} \right) = T.B.$$

Q.E.D.

Nog een voorbeeld van inductie: $Rij T_0, T_1, T_2, ... \Rightarrow T_n of (T_n)_n$

Voorbeeld: $T_0 = 2, T_1 = 3, T_2 = 6$

$$T_n = (n+4)T_{n-1} - 4nT_{n-2} + (4n-8)T_{n-3}$$

Dus $T_3 = (3+4)T_2 - 4 \cdot T_1 + (4 \cdot 3 - 8)T_0 = 7 \cdot 6 - 12 \cdot 3 + 4 \cdot 2 = 14$ (voorbeeld v/e **recursieformule**) $(T_n)_n = 2, 3, 6, 14, 40, 152, 784$

Olympiade: Volgende term, deze rij is een som van 2 bekende rijen, Welke?

Dus $T_n = a_n + b_n \Rightarrow b_n = T_n - a_n$

Een beetje testen: priemgetallen? Nee dan b_n is nonsens, 2^n Ja! Dan $b_n = n!$

Bewijs via inductie naar n:

Basisgevallen:
$$T_0 = 2^0 + 0! \stackrel{\text{def}}{=} 1 + 1 = 2$$
, $T_1 = 2^1 + 1! = 3$, $T_2 = 2^2 + 2! = 4 + 2 = 6$ 3x OK

Inductiehypothese: als $T_n = 2^n + n!$ voor n = k, n = k - 1 en n = k - 2, dan geldt die ook voor n = k + 1

TB:
$$T_{k+1} = 2^{k+1} + (k+1)!$$

Bewijs:
$$T_{k+1} \stackrel{\text{recursie met } n=k+1}{=} (k+1+4)T_k - 4(k+1)T_{k-1} + 4((k+1)-8)T_{k-2}$$

$$\stackrel{\text{IH}}{=}(k+5)(2^k+k!)-4(k+1)(2^{k-1}+(k-1)!)+(4k-4)(2^{k-2}+(k-2)!)$$

$$=(k+4)2^k+2^k-4k2^{k-1}-4\cdot 2^{k-1}+(2k-2)2^{k-1}+(k+5)k!-4(k+1)(k-1)!+4(k-1)(k-2)!$$

Faculteiten samenvoegen $= 2^{k-1}(2k+8+2-4k-4+2k-2)+4k!+(k+1)!-4k!-4(k-1)!+4(k-1)!$ $= 4\cdot 2^{k-1}+(k+1)!=2^{k+1}+(k+1)!$ Q.E.D.

Hoorcollege 16/10/2024

- Inductie
 - \rightarrow Variant: $\forall n \in \mathbb{N} \text{ met } n \text{ even} : Eig S(c)$
 - Optie 1: Stel n = 2k, inductie naar k. S(n)=S'(k) IH: $S'(k) \rightarrow S'(k+1)$
 - Optie 2: Basis S(0) IH: $S(k) \Rightarrow S(k+2)$

> Structurele inductie

- → Def: 1 knoop is een boom, deze knoop is de "root" van de boom.
- \rightarrow Recursieve definitie: Stel dat $B_1B_2\dots B_n$ bomen zijn met roots $r_1\dots r_n$ dan kan je een nieuwe boom maken door alle r_i te verbinden met een nieuwe knoop r, die de root van de nieuwe boom B zal zijn.

Stiin Symens, Hans Dierckx (2024-2025)

> Recursieve definitie van een structuur

- → Basisgeval: eenvoudige gevallen
- \rightarrow Recursieve def: gegeven $Y_1, Y_2, ..., Y_n$ maak Y
- ➤ Voor bomen geldt de eigenschap:
 - → Noem e = #verbindingen (edges) V = #knopen (vertices) Dan, V = e + 1
 - → Bewijs van de eigenschap via structurele inductie:
 - Basisgeval: 1 knoop, V=1, e=0 \Rightarrow v=e+1 OK
 - IH: veronderstel dat $v_i = e_i + 1 \forall boom(B_1, B_2, ..., B_n)$
 - TB: dan geldt v = e + 1 voor B gemaakt uit $B_1, B_2, ... B_n$
 - Bewijs: in de nieuwe boom B: (achter hoofd staat + n + 1) v = v + 1 Q.E.D.)

Stiin Symens, Hans Dierckx (2024-2025)

- Voorbeeld: Compilers werken met "expressions"
 - Eenvoudige versie:
 - Definitie van basisgeval: elke letter en elk getal zijn een expression.
 Vb: 12,3 a z -3
 - Recursieve definitie: als $E_1en\,E_2$ expressions zijn, dan ook $E_1+E_2, E_1\cdot E_2en(E_1)$ Vb: 12,3+3 a.b

Quiz:

Vraag 1: 0, 2, 8, 18, 32, 50, ?: $2n^2$, ?=72

Vraag 2: -3, -3, -3, 0, 9, 18, 27, 57, ?

TIP BIJ RIJEN, SCHRIJF STEEDS HET VERSCHIL OP TUSSEN DE WAARDE, TOT JE BIJ EEN CONSTANTE KOMT. DIT WERKT VAAK

Bewering: Als je na het nemen van n verschil rijen een constante rij uitkomt, dan voldoen de termen aan een veeltermvoorschrift van graad n.

Hoe vinden we de coëfficiënten van deze veeltermfunctie?

 \Rightarrow Methode van de onbepaalde coëfficiënten: $T_n = P(n)$ dus $T_0 = -3 = d$

$$T_1 = -3 = P(1) = a 1^3 + b 1^2 + c + d$$
, $T_2 = -3 = P(2) \dots T_3 = 0 P(3) \dots$

Tips:

- 1. Start met tellen bij 0
- 2. De hoogstegraadsterm $a = \frac{constante i \cdot n de laatste rij}{n!}$

Hoorcollege 21/10/2024

Heuristieken (deel 2):

In deze zullen minstens 5 mensen in dezelfde maand jarig zijn *Als aantal personen*> $4\cdot12=48$, want als het meer is dan zal móeten er meer dan 5 in elke maand zitten.

=duivenhokprincipe: Varianten

- *n*>*k*:∃*hok met minstens* 2 *duiven*
- n<k:∃leeghok
- $n>q\cdot k(q\in\mathbb{N}_0)$: $\exists hok met minstens(q+1) duiven$

n = k: als alle hokken gevuld zijn, zit er één duif \in elk hok (zie hfdst. II, relaties, $|A| = |B| < +\infty$ Inj. + Sur.)

Eigenschap: in een groep van 6 mensen kan je er steeds 3 vinden die elkaar kennen of 3 die elkaar niet kennen

Opm: Bewijzen via opsommen? #mogelijkheden = 2^{15} = #symm. Relaties waarbij $(a,a) \notin R$ Te Bewijzen: er bestaat groene, of rode driehoek

- Kijk vanuit A. ∃5 verbindeningen, in 2 kleuren: n = 5, k = 2
 Uit het duivenhokprincipe: ∃ kleur met 3 verbindingen
 W.l.o.g: A is verbonden met B,C,D in het groen
 - Kijk nu naar driehoek BCD, er zijn 2 gevallen:
 - BCD is rode driehoek $\Rightarrow \exists rode driehoek OK$
 - BCD heeft minstens 1 groene lijn $\Rightarrow \exists$ groene driehoek OK

VEREENVOUDIGEN:

Voorbeeld: eigenschap: als ab + bc + cd + da = $a^2 + b^2 + c^2 + d^2$, dan a = b = c = d (a, b, c, $d \in \mathbb{R}$)

Probeer eens met ab + ba = $a^2 + b^2 \Rightarrow a^{2-} 2ab + b^2 = 0 \Rightarrow (a - b)^2 = 0 \Rightarrow a - b = 0 \Rightarrow a = b$ Nu volledig: uit $^2 2a^2 + 2b^2 + 2c^2 + 2d^2 - 2ab - 2bc - 2cd - 2da = 0$

 \Rightarrow $(a^2-2ab+b^2)+...=0 \Rightarrow (a-b)^2+...=0$: elke term moet 0 zijn want allemaal positief dus a=b=c=d

Hoofdstuk 4: Tellen

Voorbeeld: kiezen €10, Eet ik kip, spaghetti **of** sushi of een van de 20 speelfilms.

Hoeveel keuzes? 20 + 3 = 23

En met €20? Eten EN film: 20 · 3 = 60

Somregel: $|A| = |B| = |A \cup B|$ (A, B disjunct)

n(A) manieren om A te doen

n(B) manieren om B te doen

dan zijn er n(A) + n(B) manieren om A **OF** B te doen

Productregel: $|A| \cdot |B| = |A \times B|$

n(A) manieren om A te doen

n(B) manieren om B te doen

dan zijn er $n(A) \cdot n(B)$ manieren om A EN B te doen

We maken dan koppels (a, b) met $a \in A$ en $b \in B$

<u>Voorbeeld 1</u>: Hoeveel bestandsnamen kan je maken met letters of cijfers? De lengte mag maximaal 32 karakters zijn. Je moet starten met een letter.

$$n = \sum_{k=1}^{32} 26.36^{k-1} = \sum_{j=0}^{31} 26.36^{j} = 26 \frac{36^{31} - 1}{36 - 1}$$
 (laatste stap met meetkundige reeks)

<u>Voorbeeld 2</u>: Trump bezoekt 50 (verschillende) staten, hoeveel mogelijke volgordes?

n = 50!

Uitbreiding: ... met kortste afgelegde afstand (= traveling salesmen (TSP))

Voorbeeld 3: Matrixvermenigvuldiging

$$C = AB \Leftrightarrow \sum_{i=1}^{n} a_{ij} b_{jk} = c_{ik} met A, B, C \in \mathbb{R}^{n \times m}$$

Hoeveel bewerkingen nodig in functie van n?

Opl:
$$\forall c_{ik}$$
: doe zoals voor $c_{11} = \sum_{j=1}^{n} a_{1j} b_{j1} = a_{11} b_{11} + a_{12} b_{21} + ...$

$$N=n^2(2n-1)(=O(n^3))$$

<u>Voorbeeld 4</u>: Hoeveel (positieve) delers heeft $n = p_1^{\alpha_1} + p_2^{\alpha_2} + ... + p_k^{\alpha_k}$ met p_i priem, alpha_i $\in \mathbb{N}$

Opl: elke deler d = $p_1^{\beta_1} + p_2^{\beta_2} ... p_k^{\beta_k}$

Voorbeeld: $12 = 2^2 \cdot 3 = 2^2 \cdot 3^1 \cdot 5^0$

Hoeveel manieren om β te kiezen? $\beta_i \in \{0,1,2,3...\alpha_i\}$ dus $\alpha_i + 1$ mogelijkheden

#mogelijkheden: # $d = \prod_{j=1}^{k} \alpha_j + 1$

Voorbeeld 5: Trouwfeest met 10 gasten aan 1 (ronde) tafel

#oplossingen? Enkel wie naast wie zit is belangrijk

 $n = \frac{10!}{10 \cdot 2} = 9 \frac{!}{2} \Leftarrow DELINGSREGEL$ (delen door 10 om draaiingen niet dubbel te tellen, 2 om spiegelingen niet dubbel te tellen)

Delingsregel:

n(A) manieren om A te doen

n(B) manieren om B te doen

en voor elke manier om B te doen, zijn er k manieren om A te doen

$$Dan n(B) = \frac{n(A)}{k}$$

Let op met delingsregels!

<u>Voorbeeld 6:</u> Barcode: dunne (0) en dikke (1) lijnen, W/Z

#verschillende barcodes kan je maken met 13 enen of nullen, gelet op symmetrie (ondersteboven scannen)?

#codes: 213

! codes die omgekeerd hetzelfde zijn? Palindroombarcode #p = 27

#niet-palindroombarcodes = $2^{13} - 2^7$

#bruikbare barcodes: (#niet-pal. /2) + #pal. $\frac{2^{13}-2^7}{2}$ + 2^7 = 2^{12} + 2^7 - 2^6

Voorbeeld 7: Rijbewijs? 7; Busabonnement? 22; Op kot? 7; R+B: 2; R+K: 2; B+K: 3; alle 3: 0

Stelling: Inclusie- exclusieprincipe...... Het antwoord is: 29

Inclusie- exclusieprincipe:

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} \left| A_{i} \right| - \sum_{1 \leq i < j \leq n} \left| A_{i} \cap A_{j} \right| + \sum_{1 \leq i < j < k \leq n} \left| A_{i} \cap A_{j} \cap A_{k} \right| + \dots + (-1)^{n-1} \left| \bigcap_{j=1}^{n} A_{i} \right|$$

Hoorcollege woensdag 23/10/2024

Voorbeeld 9: Trap met 5 treden

Op hoeveel manieren kan je deze oplopen?

Je stapt altijd op 0 en 5. #manieren = #deelverzamelingen van $\{1, 2, 3, 4\} = |2^A| = 2^4 = 16$

Alternatief: beslissingsboom. Teken een boom beginnende bij 0 en vertak steeds naar welke treden je nog kan gaan.

Combinatoriek

Voorbeeld 10: 52 studenten. Op hoeveel manieren kan ik 5 studenten hieruit op een rij zetten.

$$\# = \frac{52!}{47!} = Variatie \ van \ 5 \ uit \ 52 (k \le n) = V_n^k = \frac{n!}{(n-k)!} (= P(n,k))$$

- Volgorde van belang
- Geen herhaling

Als k = n: **Permutatie** $V_n^n = n! = P_n$

Voorbeeld 11: Op reis 2 uit 4 gezinsleden, op hoeveel manieren?

Combinatie =
$$C_n^k = \frac{n!}{k!(n-k)!} = \frac{4!}{2!2!} = 6$$

Tussenstappen: zet 2 gezinsleden op een rij P(2, 4), maar elk koppel wordt dubbel geteld: delingsregel: delen door k!

Algemeen:
$$C_n^k = \frac{V_n^k}{k!} = \frac{n!}{(n-k)!k!} = \binom{n}{k} = \text{binomiaalcoëfficiënt}$$

- Volgorde niet van belang
- Geen herhaling

Voorbeeld 12: Ontgrendelen van code van 6 cijfers

Herhalingsvariatie: $\overline{V}_n^k = n^k$

- Volgorde van belang
- Herhaling mag

<u>Voorbeeld 13</u>: Sint komt naar de klas. Iedere student kan kiezen uit een iPad, een iPhone, een macbook (Hans is een apple fanboy). Hoeveel keuzes zijn er in totaal met 54 studenten? $3^{54} = \overline{V_3^{54}}$

Hoeveel mogelijke lijstjes? k = 54, n = 3. Je kiest 54 keer uit 3 objecten

Herhalingscombinatie: $\overline{C_n^k} = C_{n+k-1}^{n-1}$

- Volgorde niet van belang
- Herhaling mag

Tussenstappentrucje: Teken 54 + 3 - 1 bolletjes (om scheidingslijnen een bolletje te geven. # manieren om een lijstje te maken = # aantal manieren om scheidingslijnen te zetten = C^2

<u>Voorbeeld 13b</u>: Hoeveel oplossingen over $\mathbb N$ heeft $x_1+x_2+...+x_n=k$, #opl. $\overline{C_n^k}$

<u>Voorbeeld 14</u>: Op hoeveel manieren kan je 30 balletjes in 3 bakken steken? Herhaling mag, volgorde niet belangrijk

$$n=3, k=30$$

manieren:
$$\overline{C_3^{30}} = C_{32}^2$$

Voorbeeld 15: RUIT. Hoeveel anagrammen? = 4!

Herhalingspermutatie: (=#anagrammen): $\overline{P}_n^{x,y,...,z} = \frac{n!}{x! y!...z!} = \binom{n}{x,y,...z} met x + y + ... + z = n$

- = multibinomiaalcoëfficiënt
- Herhaling mag
- Volgorde van belang

DRIEHOEK # =
$$\frac{8!}{2!}$$

PARALLELLEPIPEDUM # =
$$\frac{17!}{2!4!3!3!}$$

Uitbreiding: $\binom{n}{k}$ met $n \notin \mathbb{N} \ vb \cdot \binom{-1/2}{k} = \frac{1}{k!} [n(n-1)...(n-k+1)]$ er zijn k factoren

Dus
$$\binom{-1/2}{k} = \frac{1}{3!} ((\frac{-1}{2})(\frac{-1}{2}-1)(\frac{-1}{n}-2)) = \frac{-5}{16}$$
, toepassing zie later, vb. $(1+x)^{\frac{-1}{2}}$

Combinatorische gelijkheden:

1.
$$\binom{n}{k} = \binom{n}{n-k}$$
: Algabraïsch bewijs

Bewijs: LL =
$$\frac{n!}{(n-k)!k!}$$
 = RL

Optie 2: bewijs via combinatorisch argument.

2. De gelijkheid van Pascal

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Algebraïsch bewijs: RL uiteenhalen en op gelijke noemer zetten maal (n-k)/(n-k) bij LT k/k bij RT *Combinatorisch argument*:

Bewijs: LL: kies k elementen uit $V = \{1,2,..., n\}$

RL: is een som van:

manieren om te zorgen dat element n zeker wordt gekozen = (k-1) keer kiezen uit (n-1) elementen (want n al gekozen)

manieren waarbij we n niet kiezen = n-1 keer kiezen uit k elementen Dus totaal aanal manieren (doe n er in **of** er uit): som van vorige

Verband met driehoek van Pascal?

$$(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$$

Aantal manieren om 2·A te kiezen uit 3 = $\binom{3}{2}$

3. $\binom{n}{p}\binom{p}{k} = \binom{n}{k}\binom{n-k}{p-k}$: Algebraïsch bewijs

Bewijs via combinatorisch argument:

Vb. Rode duivels: selectie door bondscoach

men volgt n = 50 spelers

dan neemt men p = 23 spelers in de selectie, en hiervan kiest men k = 11 spelers voor de basisgeval

2 manieren om te kiezen:

- Manier 1: kies p uit n: $\binom{n}{p} = \binom{50}{23}$ en nadien: k uit deze $p:\binom{p}{k} = \binom{23}{11}$

mogelijkheden voor selectie en basis = $\binom{50}{23}\binom{23}{11} = \binom{n}{p}\binom{p}{k}$

- Manier 2: kies eerst de basis elf

$$\Rightarrow \# = \binom{50}{11} = \binom{n}{k}, kies\ dan\ de\ reserves\ (\ \emph{\i}\iota\ selectie\ ,\ niet\ i\ n\ basis\) := \binom{50-11}{23-11} = \binom{n-k}{p-k}$$

Dus linkerlid = rechterlid

Hoorcollege 28/10/2024

In de driehoek van Pascal is de som van elke rij: $\sum_{k=0}^{n} {n \choose k} = 2^{n}$

Idee: in elke rij wordt elk getal 2 keer gebruikt in de volgende rij

Algebraïsch bewijs via inductie naar n:

Basisgeval:
$$n=0$$
: $LL = \sum_{k=0}^{0} is({0 \atop k}) = ({0 \atop 0}) = 1 = RL = 2^{0} = 1$

IH: stel dat dit klopt voor n = m: $\sum_{k=0}^{m} {m \choose k} = 2^{m}$

TB: klopt voor n = m + 1:
$$\sum_{k=0}^{m+1} {m+1 \choose k} = 2^{m+1}$$

Bewijs van de inductiestap:

$$LL = \sum_{k=0}^{m+1} {m+1 \choose k} = {m+1 \choose 0} + \sum_{k=1}^{m} {m+1 \choose m+1} \stackrel{gelijkheid \, van \, Pascal}{=} 1 + \sum_{k=1}^{m+1} \left[{m \choose k-1} + {m \choose k} \right] + 1, \text{ neem k-1} = 1$$

$$= {m \choose m} + \sum_{k=0}^{m-1} {m \choose k} + \sum_{k=1}^{m} {m \choose k} + {m \choose 0} \stackrel{IH}{=} 2^m + 2^m = 2^{m+1}$$

Bewijs via combinatorisch argument:

 $LL = \sum_{k=0}^{n} {n \choose k} en {n \choose k}$: #manieren om k objecten uit n objecten te kiezen

= #deelverzamelingen met k elementen uit A, |A|=n

$$=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}=$$
 #deelverzamelingen met 0 el. + ... #deelverzamelingen met n el. (uit n)

=#deelverzamelingen van A als |A| = n

 $RL = \#deelverzamelingen van A = 2^n$

Q.E.D.

Volgende eigenschap:

Eigenschap:
$$\sum_{i=0}^{n} i \cdot {n \choose i} = n \cdot 2^{n-1}$$

Bewijs via combinatorisch argument:

LL=? Product: $\binom{n}{i}$ en dan vermenigvuldigen met i

Groep van n personen, je kiest i vertegenwoordigers.

In deze groep kies je één voorzit(s)ter. # = $\binom{i}{1}$ = i

#mogelijke delegaties: $\sum_{i=1}^{n} \binom{n}{i} \cdot i = \sum_{i=0}^{n} \binom{n}{i} \cdot i = LL$

RL: kies eerst de voorzit(s)ter \Rightarrow #=n

Kies nadien nog maximaal (n-1) vertegenwoordigers $\Rightarrow \#=2^{n-1}$: samen is dit $n \cdot 2^{n-1}$ Q.E.D.

Verwante eigenschap:
$$\sum_{i=1}^{n} \sum_{n=1 \text{ and termen met } i=0 \text{ en } i=1 \text{ zijn } 0}^{n} {n \choose i} i (i-1) = n(n-1) 2^{n-1},$$

Bewijs via combinatorisch argument:

Methode 1 (LL):

Kies een groep van i vertegenwoordigers (minstens 2) $\#=\binom{n}{i}$

Kies een voorzit(s)ter en een ondervoorzit(s)ter: #=i en #i-1

$$\# = \binom{n}{i}i(i-1)$$

Methode 2 (RL):

Kies 1 voorzit(s)ter en dan 1 ondervoorzit(s)ter: #n en #n-1 Vul aan met maximaal (n-2) vertegenwoordigers

$$\Rightarrow RL = n(n-1)2^{n-2}$$

Q.E.D.

Binomium van Newton:

$$(x+y)^2 = x^2 + 2xy + y^2$$

(x+y)³=x³+3x^{2y}+3xy²+y³

$$(x+y)^n = \sum_{k=0}^n x^k y^{n-k}$$
 want de som van de machten van x en y is n $n \in \mathbb{N}, k \in \{0,1,...n\}$

Bewijs via algebra (inductie naar n):

Basisgeval:
$$n = 0 LL = (x + y)^0 = 1$$

RL=
$$\sum_{k=0}^{0} {0 \choose k} x^{k} y^{-k} = {0 \choose 0} x^{0} y^{0} = 1 OK$$

IH:
$$(x+y)^m = \sum_{k=0}^m {m \choose k} x^k y^{m-k}$$

TB:
$$(x+y)^{m+1} = \sum_{k=0}^{m+1} {m+1 \choose k} k^k y^{(m+1)-k}$$

Bewijs via inductie naar n:

$$LL = (x+y)^{m+1} = (x+y)^m (x+y) \stackrel{\text{IH}}{=} \sum_{k=0}^m {m \choose k} x^k y^{m-k} (x+y)$$
$$= \sum_{k=0}^m {m \choose k} k^{k+1} y^{m-k} + \sum_{k=0}^m {m \choose k} x^k y^{m+1-k}$$

$$\stackrel{stel\,k+1=l\Rightarrow k=l-1}{=} \sum_{l=1}^{m+1} {m \choose l-1} x^l y^{m-(l-1)} + \sum_{l=0}^{m} {m \choose l} x^l y^{m+1-l}$$

$$= \sum_{l=1}^{m} {m \choose l-1} x^l y^{m-l+1} + {m \choose m} x^{m+1} y^0 + \sum_{l=1}^{m} {m \choose l-1} x^l y^{m-l+1} + {m \choose 0} x^{m+1} y^0 \text{ , Gelijkheid van Pascal}$$

$$= \sum_{l=1}^{m} {m+1 \choose l} x^{l} y^{m+1-l} + {m+1 \choose m+1} x^{m+1} + {m+1 \choose 0} y^{m+1}$$

$$= \sum_{l=0}^{m+1} {m+1 \choose l} x^{l} y^{m+1-l}$$

Q.E.D.

Bewijs via combinatorisch argument:

$$(x+y)^n = (x+y)(x+y)...n$$
 factoren...

 $= x^n + y^n + nx^{n-1}y + ...?$, n: op hoeveel manieren kan ik bij n factoren 1 y kiezen

Algemeen:
$$(x+y)^n = \sum_{k=0}^n A_k x^k y^{n-k} (met A_k een onbekende coëfficiënt)$$

Vanwaar is de term A_k afkomstig? $A_k x^k y^{n-k}$

Je moet k keer x kiezen (en dus automatisch (n - k) keer y uit n factoren

$$\Rightarrow A_k = \binom{n}{k}$$

Q.E.D.

Gevolg van binomium van Newton: Stel $x = y = 1 \Rightarrow 2^n = \sum_{k=0}^n {n \choose k} 1^k 1^{n-k} = vorige eigenschap$

Uitbreiding: Multinomium van Newton

$$(x_1+x_2+...x_r)^n = \sum {n \choose n_1, n_2, ...n_r} x_1^{n_1} x_2^{n_2} ...x_r^{n_r}$$

$$n_1 + n_2 ... n_r = n met n_i \in \mathbb{N} \text{ en } {n \choose n_1, n_2, ... n_r} = \frac{n!}{n_1! n_2! ... n_r!}$$

Voorbeelden:

$$(a+b+c)^3 = a^3 + b^3 + c^3 + a^2b + a^2c + b^2 + ab^2 + ac^2 + bc^2 + abc$$

Coëfficïent van
$$a^2b = \text{coëfficient van } a^2b^1c^0 = (\frac{3}{2,1,0}) = \frac{3!}{2!1!0!} = \frac{6}{2} = 3$$

Coëfficiënt van
$$a^1b^1c^1 = {3 \choose 1,1,1} = \frac{3!}{1!1!1!} = 6$$

Verdere uitbreiding:

Wat is
$$\sqrt{\frac{1006}{1000}} = \sqrt{1,006} = (1+0,006)^{\frac{1}{2}}$$
 is van de vorm $(x+y)^n$ met $x=1$, $y=0,006$, $n=\frac{1}{2}$

Stelling:
$$(x+y)^n = \sum_{k=0}^{+\infty} {n \choose k} x^k y^{n-k}$$
 als $|x| < |y|$: **De Binomiaalreeks**

Voorbeeld:

$$(x+1)^{1/2} = \sum_{k=0}^{+\infty} {1/2 \choose k} x^k 1^{1/2-k}$$
 Binomiaalreeks met $x=1$, $n=1/2$

$$= {\binom{1/2}{0}} 1^0 + {\binom{1/2}{1}} x^1 + {\binom{1/2}{2}} + {\binom{1/2}{3}} x^3 + \dots \text{ want } ({\binom{1/2}{0}}) = \frac{1}{0!}; {\binom{1/2}{1}} = \frac{1/2}{1!}; {\binom{1/2}{2}} = \frac{1/2(1/2 - 1)}{2!} \dots$$

$$=1+\frac{x}{2}-\frac{x^2}{8}+\frac{x^3}{16}-...$$

Gevolg:
$$\sqrt{1,006} \stackrel{x=0,006}{=} 1 + \frac{1}{2} (0,006) + ... \approx 1,003$$

$$\binom{\alpha}{k} met \ \alpha \in \mathbb{Z} : \binom{\alpha}{k} \stackrel{\text{def}}{=} \frac{\alpha (\alpha - 1) ... (\alpha - k + 1)}{k!} \binom{als \ \alpha \in \mathbb{N}}{=} \frac{\alpha!}{(\alpha - k)! \ k!}$$

$$= \frac{-|\alpha|(-|\alpha|+1)...-(|\alpha|-k-1)}{k!} = (-1)^k (k-1+|\alpha|)...\frac{(a+|\alpha|)\cdot |\alpha|}{k!} = (-1)^k \frac{(|\alpha|+k-1)!}{(|\alpha|-1)!k!}$$

$$\stackrel{\alpha=-1}{\Rightarrow} {\binom{\alpha}{k}} = (-1)^k \frac{(k-1-\alpha)!}{k!(\alpha-1)!} = met \ \alpha > 0 \ of \ (-1)^k \frac{(k-1+\alpha)!}{k!(\alpha-1)!}$$

Hoorcollege 30/10/2024

Kansrekening

Definities:

Voorbeeld 1: dobbelsteen $\Omega = \{1,2,3,4,5,6\}$

1) Kansruimte = **universum** = sample space

= gebeurtenisruimte

= verzameling van alle mogelijke uitkomsten bij een kanstheoretisch experiment Notatie, Ω , V, ...

- 2) **Gebeurtenis**: $A \subset \Omega$ Voorbeeld, een oneven getal gooien, $A = \{1,3,5\}$ Voorbeeld, hoger gooien dan 4, $B = \{5,6\}$ Voorbeeld, 2 of lager gooiten, $C = \{1,2\}$
- 3) Disjuncte gebeurtenis:

A en B disjunct $\Leftrightarrow A \cap B = \emptyset$

In dit voorbeeld, A en B zijn niet disjunct. B en C zijn disjunct

- 4) Verzameling met 1 element = "singleton"
- 5) Gebeurtenis met 1 element noemen we een **atomaire gebeurtenis** *Voorbeeld:* $D = \{6\}$, "een zes gooien"
- 6) Gebeurtenis met meer dan 1 element: Samengestelde gebeurtenissen.

Voorbeeld: A,B,C uit bovenstaande voorbeelden

7) Een kanstuimte is **equiprobabel** als alle atomaire gebeurtenissen met dezelfde kans voorkomen. *Voorbeeld: Gooien met 1 eerlijke dobbelsteen (kans op elke atomaire gebeurtenis is 1/6 = 1/|\Omega|*

Voorbeeld 2: werpen met 2 eerlijke dobbelstenen

 Ω_1 = de som van de ogen van beide dobbelstenen

 $= \{2,3,4,5,6,7,8,9,10,11,12\}$, kans op 7: 1/6, kans op 2 of 12: 1/36

<u>Voorbeeld 3</u>: werpen met 2 eerlijke dobbelstenen met elks een andere kleur: rood en blauw $\Omega_2 = \{alle\,tupels\,(worpRood\,,worpBlauw)\}$

deze kansruimte is equiprobabel, steeds 1/36

<u>Voorbeeld 4:</u> werpen met 2 identieke dobbelstenen, beschouw de koppels

Voorbeeld: $(2,3)\equiv(3,2)$, een 2 gooien met de ene en een 3 met de andere Notatie, <2,3>

$$\Omega_3 = \{<1,1>,<1,2>,<1,3>...<2,2>,<2,3>...<6,6>\}$$
 dus geen <2,1>...

Deze kansruimte is niet equiprobabel: <1,2>: 1/18, <1,1>: 1/36

7) **Kansmaat** op Ω is een functie

 $\mathbb{P}: 2^{\Omega}$ (=alle gebeurtenissen) $\rightarrow \{0,1]: A \rightarrow \mathbb{P}(A)$

die voldoet aan

$$\mathbb{P}(\mathcal{A}) = 0, \mathbb{P}(\Omega) = 1$$
, als A en B disjunct: is $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ (wiskundige definitie)

Voorbeeld 5: A={1,2,3} $\subset \Omega$ ={1,2,3,4,5,6}

$$\mathbb{P}(A) = P(\{1\} \cup \{2\} \cup \{3\}) = \mathbb{P}(\{1\}) + \mathbb{P}(\{2\}) + \mathbb{P}(\{3\}) \stackrel{eerlijke \ dobbelsteen}{=} \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6}$$

Gevolg: je kan \mathbb{P} vinden door te kijken naar atomaire gebeurtenissen:

Stel A = {e | e \in A} dan is
$$\mathbb{P}(A) = \sum_{e \in A} \mathbb{P}(\{e\})$$

Soms wordt ₱ gedefinieerd via de kans op atomaire gebeurtenissen

$$\underline{Alternatieve\ definitie:}\ \mathbb{P}\colon \Omega \to [0\,,1]: e \to \mathbb{P}(e)\ met\ \sum_{e\in \Omega} \mathbb{P}(e) = 1\ dan\ \mathbb{P}(A) = \sum_{e\in A} \mathbb{P}(e)$$

dit werkt voor eindige en aftelbare Ω (anders $0 \cdot \infty$)

We noemen een kansmaat equiprobabel als:

$$\exists a \in [0,1] zodat \mathbb{P}(\{e\}) = a, \forall e \in \Omega$$

Eigenschap: Als \mathbb{P} equiprobabel is en $0 < |\Omega| < +\infty$

dan is
$$a = \frac{1}{|\Omega|} en dus \mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

<u>Voorbeeld 6:</u> Som van de ogen van 2 dobbelstenen:

$$\mathbb{P}(\text{som} = 3) = \frac{|A|}{|\Omega_2|} = \frac{|\{(1,2),(2,1)\}|}{36} = \frac{2}{36}$$

$$\mathbb{P}(\text{som} = 4) = \frac{|A|}{|\Omega_2|} = \frac{|\{(1,3),(2,2),(3,1)\}|}{36} = \frac{3}{36} = \frac{1}{12}$$

$$\mathbb{P}(n) = \{ \frac{n-1}{36} : n \le 7; \frac{13-n}{36} : n > 7 \}$$

Alternatief, maak een tabel, en lees daar de waarde uit.

D1, D2	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Voorbeeld 7: kans dat de som van 2 dobbelsteenworpen oneven is?

 Ω ={2,3,4,...,12}(niet equiprobabel)

$$\mathbb{P}(\{3,5,7,9\}) = \mathbb{P}(\{3\}) + \mathbb{P}(\{5\}) + \mathbb{P}(\{7\}) + \mathbb{P}(\{9\})\mathbb{P}(\{11\})$$

$$=\frac{2}{36} + \frac{4}{36} + \frac{6}{36} + \frac{4}{36} + \frac{2}{36} = \frac{18}{26} = \frac{1}{2}$$

 $\mathbb{P}(\text{even som gooien}) = 1 - \mathbb{P}(\{3,5,7,9\}) = 1 - 0,5 = 0,5$

8) Het **complement** van A is \overline{A} : $\overline{A} = \Omega \setminus A$

aangezien
$$A \cap \overline{A} = \emptyset$$
, $A \cup \overline{A} = \Omega \Rightarrow \mathbb{P}(A) + \mathbb{P}(\overline{A}) = 1$

$$\mathbb{P}(\overline{A})=1-\mathbb{P}(A)$$

Wat als ... a en B niet disjuct zijn?

Voor equiprobabele kansmaten:

$$\mathbb{P}(A \cup B) = \frac{|A \text{ unino } B|}{|\Omega|} = \frac{|A|}{|\Omega|} + \frac{|B|}{|\Omega|} - \frac{|A \cap B|}{|\Omega|} = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

• Geldt dit ook voor niet-equiprobabele kansmaten? JA.

Eigenschap:
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Bewijs:
$$\mathbb{P}(A) = \mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B)$$
, want ze zijn disjunct

$$\Rightarrow \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

$$=\mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

$$\stackrel{\text{disjunct}}{=} \mathbb{P}((A \backslash B) \cup B) = \mathbb{P}(A \cup B)$$

Q.E.D.

Voorwaardelijke kans

1) A en B zijn **onafhankelijke gebeurtenissen** $\Leftrightarrow \mathbb{P}(A \cap B)_{=AenBteqelijk} = \mathbb{P}(A) \cdot \mathbb{P}(B)$

Dus de kansen van beide gebeurtenissen beïnvloeden elkaar niet.

Voorbeeld: tegelijk werpen met een rode en een blauwe dobbelsteen

$$\mathbb{P}(5,6) = \mathbb{P}(R) \cdot \mathbb{P}(B) = \mathbb{P}(\{5\}) \cdot \mathbb{P}(\{6\}) = 1/36$$

Voorbeeld: A = even gooien met rood

 $B = \ge 5$ gooien met blauw

Zijn deze gebeurtenissen onafhankelijk?

$$\mathbb{P}(A) = \mathbb{P}(\{2,4,6\}) = 1/3$$

$$\mathbb{P}(B) = \mathbb{P}(\{5,6\}) = 1/2$$

$$\mathbb{P}(A \cap B) = \mathbb{P}(\{(2,5),(2,6),(4,5),(4,6),(6,5),(6,6)\}) = 1/6$$

Dus onafhankelijke gebeurtenissen

<u>Voorbeeld:</u> A = 2 gooien met blauw, B = som van de ogen is acht

$$\mathbb{P}(A) = 1/6; \mathbb{P}(B) = \frac{13-8}{36} = \frac{5}{36} \Rightarrow \mathbb{P}(A) \cdot \mathbb{P}(B) = \frac{5}{216}$$

$$\mathbb{P}(A \cap B) = \mathbb{P}(\{(2,6)\}) = 1/36 = 6/216 \neq 5/216 \Rightarrow ze \ zijn \ niet \ onafhankelijk$$

Voorbeeld: A = 2 gooien met blauw, B = som van de ogen is zeven

$$\mathbb{P}(A) = \frac{1}{6}; \mathbb{P}(B) = \frac{7-1}{36} = \frac{1}{6} \Rightarrow \mathbb{P}(A) \cdot \mathbb{P}(B) = \frac{1}{36}$$

$$\mathbb{P}(A \cap B) = \mathbb{P}(\{(2,5)\}) = 1/36 \Rightarrow \text{ze zijn wel onafhankelijk}$$

Voorwaardelijke kans:

$$\mathbb{P}(A|B) = kans op A$$
, gegeven $B = kans op A$, wetende B

$$\stackrel{\text{\tiny def}}{=} \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

<u>Voorbeeld:</u> Kans op blauwe 2 gegeven som = 8 (met 2 dobbelstenen)

A = blauwe 2, B = (som = 8)
$$P(A|B) = \frac{\mathbb{P}A \cap B}{\mathbb{P}(B)} = \frac{\mathbb{P}(\{(2,6)\})}{\mathbb{P}(B)} = \frac{1/36}{\frac{18-8}{36}} = \frac{1}{5}$$

$$\mathbb{P}(\text{blauwe 2 gegeven dat de som 7 is}) = \mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(\{(2,5)\})}{1/6} = 1/6$$

$$\text{Eigenschap: } \mathbb{P}(A|B) = \mathbb{P}(A) \Leftrightarrow \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \Leftrightarrow A \textit{ en B onafhankelijk}$$

Hoorcollege 4/11/2024

Somregel:

$$A_i$$
: partitite $A_i \cap A_j = \emptyset$ als #j = $\bigcup_{i=1}^k A_i = A$

$$\mathbb{P}(B) = \sum_{i=1}^{i=1} \mathbb{P}(B|A_i) \mathbb{P}(A_i)$$

Stijn Symens, Hans Dierckx (2024-2025)

Bewijs:

$$\mathbb{P}(B) \stackrel{X \cap Y \Rightarrow \mathbb{P}(X \cup Y) = \mathbb{P}(X) + \mathbb{P}(Y)}{=} \mathbb{P}((B \cap A_1) \cup (B \cap A_2) \cup \ldots \cup (B \cap A_k)) = \mathbb{P}(B \cap A_1) + \ldots + \mathbb{P}(B \cap A_k) \text{ end}$$

$$\frac{\mathbb{P}(B \cap A_i)}{\mathbb{P}(A_i)} \stackrel{\text{def}}{=} \mathbb{P}(B|A_1) \Rightarrow \mathbb{P}(B \cap A_i) = \mathbb{P}(B|A_i) = \mathbb{P}(B|A_i) (A_i) = \sum_{i=1}^k \mathbb{P}(B \cap A_i) \stackrel{(*)}{=} \sum_{i=1}^k \mathbb{P}(B|A_i) \mathbb{P}(A_i)$$

Q.E.D

Gevolg: regel van Bayes:

$$\mathbb{P}(A_j|B) = \frac{\mathbb{P}(B|A_j)\mathbb{P}(A_j)}{\sum\limits_{i=1}^{k} \mathbb{P}(B|A_i)\mathbb{P}(A_i)}$$

Bewijs:
$$\mathbb{P}(A_j|B) = \frac{\mathbb{P}(A_j \cap B)}{\mathbb{P}(B)} \stackrel{\overset{(*)}{=}}{=} \frac{\mathbb{P}(B|A_j)\mathbb{P}(A_j)}{\sum_{i=1}^k \mathbb{P}(B|A_i)\mathbb{P}(A_i)}$$

Q.E.D.

Logische paradoxen: zie slides Blackboard

Keuze van een geneesmiddel (1):

Score van een geneesmiddel: \in {1,2,3,4,5,6}

Voor 46% van de bevolking is B het beste, voor 54% is A de beste (dus A is beter)

Keuze van een geneesmiddel (2):

Met 3 medicijnen A: ~30% B: ~36% C: ~34% (dus B is het beste en A is het slechtst)

Dus of C bestaat of niet bestaat, maakt dat A de beste of de slechtste is.

Kansverdeling:

Tot hier: $A \subseteq \Omega$ en bekijk $\mathbb{P}(A) \in [0,1]$

 $\textbf{Def} \hbox{: We noemen X een $\textbf{stochastische variabele} of \textbf{toevalsveranderelijke} \ als \ X \ een \ re\"{e}elwaardige}$

functie is: $X: \Omega \rightarrow \mathbb{R}$

Bv.: Je gooit met 2 eerlijke dobbelstenen.

$$\Omega = \{(1,1),(1,2)....(6,6)\}$$

$$X = \text{som van de ogen:} \qquad X((1,1))=2$$

$$\mathbb{P}(X=5) = \mathbb{P}(\{(1,4),(2,3),(3,2),(4,1)\}) = \frac{4}{36} = \frac{1}{9}$$

$$\mathbb{P}(\mathbf{X} = \mathbf{x}) = \mathbb{P}(\{s \in \Omega | X(s) = x\})$$

• Kansdichtheidsfunctie (probability density function = pdf)

$$f_X: \mathbb{R} \rightarrow [0,1]: x \rightarrow \mathbb{P}(X=x)$$

Voorbeeld met som van de ogen van een dobbelsteen: $f_x(x) = \{\frac{\frac{x-1}{36}}{2 \le x \le 7}, x \in \mathbb{N} \}$ $\frac{13-x}{7} < x \le 12, x \in \mathbb{N}$

Vaak: Im(X) → [0,1]

• Kansverdelingsfunctie (cumutative distribution function = cdf)

$$F_X: \mathbb{R} \rightarrow [0,1]: x \rightarrow \mathbb{P}(X \leq x)$$

Voorbeeld met som van de ogen van een dobbelsteen:

Overzicht van enkele verdelingen:

1. <u>Uniforme verdeling:</u>

<u>Vb.</u> X = #ogen bij werpen van 1 eerlijke dobbelsteen. (f_x Allemaal 1/6) Not.: $X \sim U(\{1t/m6\})$

Algemeen:
$$X \sim U(\{x_1, x_2, ..., x_n\} \ dr larrow \mathbb{P}(X = x_i) = \frac{1}{n}$$

2. **Bernoulliverdeling:**

Bernoulli-experiment: kanstheoretisch experiment met kans op slagen p en kans op falen (1-p=q)

$$\Omega = \{$$
 "slagen", "falen" $\}$

$$X("slagen") = 1$$

$$X("falen") = 0$$

$$f_x: \Omega \rightarrow [0,1]: \begin{array}{c} 1 \ als \ slagen \\ 0 \ als \ falen \end{array}$$

$$\mathbb{P}(X=x) = \begin{cases} p \, als \, x = 1 \\ 1 - p \, als \, x = 0 \end{cases}$$

<u>Vb.</u> Een 6 gooien met 1 dobbelsteen, is een Bernoulli-experiment met $p = \frac{1}{6}$; $q = \frac{5}{6}$

Hier $X \sim B(1, \frac{1}{6})$ (1= in 1 experiment) (1/6 = p) : B: Binomiale verdeling

3. **Binomiale verdeling:**

X~(n, p) komt overeen met het aantal successen in n Bernoulli-experimenten met kans op slagen p.

$$\mathbb{P}(X=k) = ?$$

Vinden van B(n, p)?

Noem succes: S, falen: F

Dan is elke reeks van n experimenten een woord met n letters (vb. $\underbrace{SFFFSS...FSSS}_{nletters}$)

Hoeveel woorden met k successen? $\binom{n}{k}$

Wat is de kans op zo 1 woord? $p^k \cdot q^{n-k} = p^k \cdot (1-p)^{n-k}$

In totaal: $\mathbb{P}(X=k) = \binom{n}{k} p^k \cdot (1-p)^{n-k}$

Hoorcollege 6/10/2024

Bewijs: Is de som van de kansen 1 voor de Binomiale verdeling?

$$\sum_{k=0}^{n} \mathbb{P}(X=k) = \sum_{k=0}^{n} {n \choose k} p^{k} q^{n-k} = (p+q)^{n} = 1^{n} = 1$$
Q.E.D

Voorbeeld: 10x een munt opgooien. X = #kop

$$X \sim B(10, \frac{1}{2})$$

$$\mathbb{P}(X=0) = {\binom{10}{0}} \cdot {(\frac{1}{2})}^{0} {(1-\frac{1}{2})}^{10} = \frac{1}{1024}, \ \mathbb{P}(X=1) = {(\frac{10}{1})} {(\frac{1}{2})}^{1} {(\frac{1}{2})}^{9} = \frac{10}{1024}...$$

4. Negatief Binomiale verdeling:

"Hoe vaak zal ik moeten gooiten met een dobbelsteen om n keer een 6 te gooien?"

Def: X~NB(n, p), doe onafhankelijke Bernoulli-experimenten met kans op succes p en stop wanneer je n successen hebt, #pogingen dat nodig was, is k.

Gevolg:
$$\mathbb{P}(X=k) = 0$$
 als $k < n$

Formule? Welk woord met letters S,F komt overeen met n-de succes na k pogingen? SFSSFFF ... S ← eindigen met succes

#woorden (lengte k-1, bevat n-1 keer S) = $\binom{k-1}{n-1}$

kans op zo'n woord = $p^n \cdot q^{k-n}$ met, n=#S; en k-n = #F

$$\Rightarrow \mathbb{P}(X=k)\binom{k-1}{n-1}p^nq^{k-n}als X \sim NB(n,p)$$

Controle dat de kans 1 is?

$$\sum_{k=n}^{\infty} \mathbb{P} \big(\, X \! = \! k \big) \! = \! \sum_{k=n}^{\infty} \binom{k-1}{n-1} \, p^n q^{k-n} \! = \underbrace{p^n \! \cdot \! \sum_{k=n}^{\infty} \binom{k-1}{n-1} q^{k-n}}_{\text{dit moet gelijk zijn } \text{aan} \frac{1}{n^n} \! = \! p^{-n}}_{\text{max}}$$

Nog te Bewijzen:
$$p^{-n} = \sum_{k=n}^{\infty} {k-1 \choose n-1} q^{k-n}$$

<u>Bewijs via binomiale reeks:</u> $(x+y)^{\alpha} = \sum_{l=0}^{\infty} {\alpha \choose l} x^{l} \cdot y^{\alpha-l} met |x| < |y|$, bij hoge machten van x

Stel -q=x, 1=y,
$$\alpha = -n$$

$$\stackrel{\textit{Binomiale reeks}}{=} \sum_{l=0}^{\infty} {\binom{-n}{l}} (-q)^l \mathbf{1}^{-n-l}$$

$$\stackrel{stel \, k = l+n, l=k-n}{\Rightarrow} = \sum_{k=n}^{\infty} (-q)^{k-n} {n \choose k-n} = \sum_{k=n}^{\infty} q^{k-n} (-1)^{k-n} {n \choose k-n} (*)$$

wegens
$$\binom{\alpha}{l} = \frac{\overbrace{\alpha(\alpha-1)...(\alpha-l+1)}^{l \text{ factoren}}}{l!} voor \alpha \in \mathbb{R}$$

$$\operatorname{met} (-1)^{k-n} \frac{\overbrace{(-n)(-n-1)...(-n-(k-n)+1)}^{(k-n)}}{(k-n)!} = \frac{n(n+1)(n+2)...(k-1)}{(k-n)!} = {k-1 \choose n-1} (**)$$

$$\binom{k-1}{n-1} \stackrel{\text{symmetrie}}{=} \binom{k-1}{(k-1)-(k-n)}$$

Dus
$$p^{-n} \stackrel{*}{=} \sum_{k=n}^{+\infty} q^{k-n} {k-1 \choose n-1} \Rightarrow \sum_{k=n}^{\infty} \mathbb{P}(X=k) = 1 \text{ Q.E.D}$$

5. Poissionverdeling

X telt het aantal keer dat "iets" gebeurt in een zekere tijdspanne

Voorbeeld: Hoeveel klanten komen de supermarkt binnen op woensdag tussen 10 en 11u?

$$X \sim P(\lambda)$$

$$\mathbb{P}(X=k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!} \text{ met } e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} (=\text{taylerreeks})$$

<u>Idee van de taylerreeks:</u> benader een functie door een veelterm van graad d zodat de (d-1) eerste afgeleiden in 1 punt gelijk zijn aan die van de oorspronkelijke functie.

$$\frac{d}{dx}(e^x) = e^x$$

$$e^x \approx 1 + x \approx 1 + x + \frac{x^2}{2}$$

Controle dat som van de kansen 1 is

$$\sum_{k=0}^{\infty} \mathbb{P}(X=k) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \cdot \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} \cdot e^{\lambda} = 1 \text{ OK } \mathcal{E}$$

Hoe meaken we nieuwe verdelingen?

Voorbeeld som van de ogen met 2 dobbelstenen

$$X = X_1 + X_2 \text{ met } X_1, X_2 \sim U(\{1,2,3,4,5,6\})$$

$$\mathbb{P}(X=5) = \mathbb{P}((1,4)) + \mathbb{P}((2,3)) + \mathbb{P}((4,1)) + \mathbb{P}((3,2))$$
$$= \mathbb{P}(1)\mathbb{P}(4) + \dots \text{ (want EN) (beide resultaten onafhankelijken)}$$

X₁ en X₂ zijn toevalsveranderelijken (TV)

$$X = X_1 + X_2$$

$$\mathbb{P}(X=k) = \sum_{l} \mathbb{P}(X_1 = l \ en \ X_2 = k - l), sommatie \ loopt \ o \ v \ er \ nuttige \ waarde \ voor \ k$$

Als X₁ en X₂ onafhankelijk zijn, dan

$$\mathbb{P}(X\!=\!k)\!=\!\sum_{l}\mathbb{P}(X_1\!=\!l)\!\cdot\!\mathbb{P}(X_2\!=\!k\!-\!l): \textbf{Convolutie product}$$

De kansdichtheidsfunctie van X is het convolutieproduct van de kansdichtheden van X₁ en X₂

Voorbeeld:
$$X_1 \sim B(n, p)$$
; $X_2 \sim B(m, p) \Rightarrow X = X_1 + X_2 \sim$? Hypothese: $X \sim (m+n, p)$

$$\mathbb{P}(X = k) = \mathbb{P}(X_1 + X_2 = k) = \sum_{i} \mathbb{P}(X_1 = k \text{ en } X_2 = k - l)$$

$$\stackrel{\textit{onafh.}}{=} \sum_{l=0}^{n} \mathbb{P}(X_{1}) \mathbb{P}(X_{2} = k - l) = \sum_{l=0}^{k} \binom{n}{l} p^{l} q^{(n-l)} \binom{m}{k-l} p^{k-l} q^{(m-(k-l))}$$

$$= \sum_{k=0}^{k} {n \choose l} {m \choose k-l} p^{k} q^{n-l+m-k+l} \text{ we verwachtten } \mathbb{P}(X=k) = {m+n \choose k} p^{k} q^{(m+n)-k}$$

Dus nog te bewijzen:
$$\sum_{l=0}^{k} {n \choose l} {m \choose k-l} = {m+n \choose k}$$

Bewijs via combinatorisch argument:

RL: kies k personen uit een groep met m+n mensen

LL: de groep bestaat uit m mannen en n vrouwen

kies l vrouwen uit n en k-l mannen uit m

$$\Rightarrow \#=\binom{n}{l}\binom{m}{k-l}$$
, en herhaal dit voor $l\in\{0,1,2,...n\}$ voor $n< l\leq k:\binom{n}{l}=0$

Dus $X \sim B(m+n, p)$

Hoorcollege 13/11/2024

Verwachtingswaarden en variantie

Stel X een stochast:

 $\mathbb{E}[x] = \sum_{k} k \mathbb{P}(X = k) : \mathbb{E} \ van' \ expectation \ value'$

score · kans dat de score optreedt.

Voorbeeld:
$$X \sim U\{x_1, x_2, ..., x_n\}) \mathbb{P}(x_i) = \frac{1}{n}$$

 $\Rightarrow \mathbb{E}[x] = x_1 \mathbb{P}(x_1) + x_2 \mathbb{P}(x_2) ... + x_n \mathbb{P}(x_n)$
 $= \frac{x_1}{n} + \frac{x_2}{n} + + \frac{x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Voor dobbelsteen: U({1,2,3,4,5,6})

$$\mathbb{E}[x] = \frac{1+2+3+4+5+6}{6} = 3,5$$

Voor 2 dobbelstenen, som van de ogen = <u>voor uniform</u>:

$$\mathbb{E}[x] = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + \dots + 12 \cdot \frac{1}{36} = 7$$

Eigenschap: $\mathbb{E}[x_1+x_2]=\mathbb{E}[x_1]+\mathbb{E}[x_2]$

Bewijs:

$$\begin{split} & \mathcal{E}\left[x_{1} + x_{2}\right] = \sum_{k} k \cdot \mathbb{P}\left(X_{1} + X_{2} = k\right) = \sum_{k} k \sum_{l} \mathbb{P}\left(X_{1} = l \, en \, X_{2} = k - l\right) \\ & \stackrel{Stel: \, x_{1} = l \, \Rightarrow \, x_{1} + x_{2} = k}{=} \sum_{x_{2}} \sum_{x_{1}} \left(x_{1} + x_{2}\right) \mathbb{P}\left(X_{1} = x_{1} \, en \, X_{2} en \, X_{2} = x_{2}\right) \\ & = \sum_{x_{2}} \sum_{x_{1}} x_{1} \mathbb{P}\left(X_{1} = x_{1} \, en \, X_{2} = x_{2}\right) + \sum_{x_{2}} \sum_{x_{1}} x_{2} \mathbb{P}\left(X_{1} = x_{1} \, en \, X_{2} = x_{2}\right) \end{split}$$

$$= \sum_{x_1} x_1 \sum_{x_2} \mathbb{P}(X_1 = x_1 en X_2 = x_2) + \sum_{x_2} \mathbb{P}(X_1 = x_1 en X_2 = x_2) = \mathbb{E}[x]$$

$$= \mathbb{P}(X = x_1) \text{ want alle kansen van } x_2 \text{ tezamen } zijn1, 1 \text{ en } Y = Y$$

$$= \sum_{x_1} x_1 \mathbb{P}(X_1 = x_1) + \sum_{x_2} x_2 \mathbb{P}(X_2 = x_2) = \mathbb{E}[x_1] + \mathbb{E}[x_2]$$
 Q.E.D.

Voor Bernouilli:

$$\mathbb{E}[\mathbf{x}] = \sum_{k} k \cdot \mathbb{P}(X = k) = 0 \cdot q + 1 \cdot p = p \text{ QED}$$

Voor Binomiaal:

$$\mathbb{E}[x] \stackrel{\text{def}}{=} \sum_{k=0}^{n} k\binom{n}{k} p^k q^{n-k}$$
 Tip: zoek vorm van binomium of binomiumreeks

Bewijs:

Lemma:

$$k \cdot \binom{n}{k} = \frac{n! \cdot k}{k! \cdot (n-k)!} = n \frac{(n-1)!}{(k-1)! \cdot (n-k)!} = n \binom{n-1}{k-1} (\mathbf{v})$$

$$\Rightarrow \mathbb{E}[x] = \sum_{k=0}^{n} n\binom{n-1}{k-1} p^{k} q^{n-k}$$

Stel
$$k-1 = l$$

$$= \sum_{l=0}^{n-1} n\binom{n-1}{l} p^{l+1} q^{(n-1)-l} = p \sum_{l=0}^{n-1} n\binom{n-1}{l} p^{l} q^{(n-1)-l} = np (p+q)^{n-1} = np, want \ p+q=1$$

Voor negatief binomiaal:

Affleiding steunt op:
$$\sum_{k=n}^{\infty} \mathbb{P}(X=k) = 1 \Rightarrow \sum_{k=n}^{\infty} {k-1 \choose n-1} p^n q^{k-n} = 1$$
 (*)

$$\mathbb{E}[x] = \sum_{k=n}^{\infty} k \cdot \mathbb{P}(X = k) = \sum_{k=n}^{\infty} k \binom{k-1}{n-1} p^n q^{k-n} : \blacktriangleleft \text{ met } k \text{ , } n \text{ omgewisseld} : n \binom{k}{n} = k \binom{k-1}{n-1}$$

$$=n\sum_{k=n}^{\infty} {k \choose n} p^n q^{k-n}$$
, Stel $k=K-1 \Rightarrow k-n=K-1-(N-1)=K-N$

$$= n \sum_{K=N}^{\infty} {K-1 \choose N-1} p^{N-1} q^{K-N} \stackrel{*}{=} \frac{n}{p}$$

Klopt dit met onze intuïtie?

Vb. 6 gooien met een dobbelsteen, hoeveel beurten zijn er nodig?

$$\mathbb{E}[x] = \frac{n}{p} = \frac{1}{1/6} = 6$$

Voor Poisson:

$$\mathbb{E}[x] = \sum_{k} k \mathbb{P}(X = k) = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^{k}}{k!} = e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!}$$

stel k-1=l = $e^{-e^{-\lambda}} \lambda \sum_{l=0}^{\infty} \frac{\lambda^{l}}{l!} = \lambda e^{\lambda} e^{-\lambda} = \lambda$

Wat is $\mathbb{E}[x]$ voor bekende verdelingen:

1. Uniform:
$$X \sim (\{x_1, x_2 ... x_n\})$$
 $\mathbb{P}(x_1) = \frac{1}{n}$ $\mathbb{E}[x] = \frac{1}{n} \sum_{i=1}^{n} x_i$

2. Bernouilli:
$$X \sim B(1, p)$$

$$\mathbb{P}(x) = \begin{cases} p: x = 1 \\ 1 - p = q: x = 0 \end{cases} \quad \mathbb{E}[x] = p$$

3. Binomiaal:
$$X \sim B(n, p)$$

$$\mathbb{P}(X = k) = \binom{n}{k} p^k q^{n-k} \qquad \mathbb{E}[x] = n \cdot p$$

4. Negatieve binomiaal:
$$X \sim NB(n, p)$$
 $\mathbb{P}(X=k) = {k-1 \choose n-1} p^n q^{k-n}$ $\mathbb{E}[x] = \frac{n}{p}$

5. Poisson:
$$X \sim P(\lambda)$$
 $\mathbb{P}(X=k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$ $\mathbb{E}[x] = \lambda$

Variantie:

Idee van spreiding

Mediaan: 50% hoger, 50% lager

Modus: defenitie

Probeer de breedte van een verdeling te meten en X- $\mathbb{E}[x]$ is een maat voor de afwijking.

• Probeer
$$\mathbb{E}[-\mathbb{E}[x]] = \sum_{k} ((k - \mathbb{E}[x]) \mathbb{P}(X = k))$$

= $\sum_{k} k \mathbb{P}(X = k) - \sum_{k} (\mathbb{E}[x] \cdot \mathbb{P}(X = k)) = \mathbb{E}[x] \cdot \mathbb{E}[x] \underbrace{\sum_{k} \mathbb{P}(X = k)}_{=1} = 0$, dus heeft geen zin

• Probeer $\mathbb{E}[|X - \mathbb{E}[x]|]$, rekent niet handig

Let op: Var(X) bevat een kwadraat, vb. Lichaamslengte: Var(X) in cm² $\Rightarrow \sigma_x = \sqrt{Var(X)}$: *standaardafwijking*

Berekenen?

$$Var(X) = \mathbb{E}[(x - \mathbb{E}[X])^2] = \mathbb{E}[X^2 - 2x\mathbb{E}[X] + \mathbb{E}[X]^2]$$
$$= \mathbb{E}[x^2] - \mathbb{E}[2X\mathbb{E}[X]] + \mathbb{E}[\mathbb{E}[X]^2]$$

Eigenschappen:

$$\mathbb{E}[aX] = a\sum_{k \in \mathbb{P}} (X = k) = a\mathbb{E}(X)$$

$$\mathbb{E}[a]=a$$

$$=\mathbb{E}[X^2]-2(\mathbb{E}[X])^2+\mathbb{E}[X]^2=\mathbb{E}[X^2]-(\mathbb{E}[X])^2$$

Let op:
$$\mathbb{E}[X^2] = \sum_{k} k^2 \mathbb{P}(X = k) \neq E[x]^2 = (\sum_{k} k \mathbb{P}(X = k))^2$$

Var(X) voor gekende verdelingen:

1. **Uniform:** $X \sim (\{x_1, x_2 ... x_n\})$

dan:
$$Var(X) = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sum_{i=1}^n x_i^2 \mathbb{P}(X = x_i) - (\sum_{i=1}^n x_i \mathbb{P}(X = x_i))^2$$

= $\frac{1}{n} \sum_{i=1}^n x_i^2 - (\frac{1}{n} \sum_{i=1}^n x_i)^2$

Speciaal geval: $x_i = i$

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} i^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} i\right)^{2} = \frac{1}{n} \frac{n(n+1)(n+2)}{12} - \left(\frac{1}{n} \cdot n \frac{(n+1)^{2}}{2}\right)$$

$$= \frac{n+1}{12} (2(2n+1) - 3(n+1)) = \frac{n+1}{12} (4n+2-3n-3) = \frac{(n+1)(n-1)}{12} = \frac{n^{2}-1}{12}$$

Voorbeeld: 1 dobbelsteen:
$$E[x]=3,5$$

 $Var(X)=\frac{35}{12}\approx 3$ $\Rightarrow \sigma_x = \sqrt{\frac{35}{12}}\approx 1,7$

2. Bernouilli: X~B(1,P)

$$Var(X) = \mathbb{E}[x^{2}] - \mathbb{E}[x]^{2} = \sum_{k=0}^{1} k^{2} \mathbb{P}(X = k) - p^{2} = 0 \cdot q + p - p^{2} = p(1 - p) = pq$$

$$\Rightarrow \sigma_{x} = \sqrt{pq}$$

3. Binomiaal: X~B(n, p)

$$Var(X) = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sum_{k=0}^{n} k^2 \binom{n}{k} p^k q^{n-k} - (np)^2$$

$$\stackrel{\text{ψ+start vanaf 1}}{=} \sum_{k=1}^{n} k \, n {n-1 \choose k-1} \, p^k \, q^{n-k} - p^2 \, n^2 \stackrel{n \, voorop, \, k=(k-1)+1}{=} \, n \sum_{k=1}^{n} \left(k-1\right) {n-1 \choose k-1} \, p^k \, q^{n-k} + n \sum_{k=1}^{n} {n-1 \choose k-1} \, p^k \, q^{n-k} - n^2 \, p^2 \, n^2 \, n$$

$$\stackrel{ \scriptstyle \bullet: \stackrel{k \to k-1}{\underset{n \to n-1}{\rightarrow} n-1}}{=} n \sum_{k=2}^{n} (n-1) \binom{n-2}{k-2} p^k q^{n-k} + \sum_{l=0}^{Stel \, k-1 = l} \binom{n-1}{l} p^{l+1} q^{n-(l+1)} - n^2 p^2$$

$$\stackrel{Stelk-2=j}{=} \sum_{i=0}^{n-2} {n-2 \choose i} p^{j+2} q^{n-(j+2)} + np \sum_{l=0}^{n-1} {n-1 \choose l} p^{l} q^{(n-1)-l} - n^{2} p^{2}$$

$$\stackrel{zonder+2af}{=} n(n-1) p^2 \underbrace{(p+q)^{n-2}}_{=1} + np(p+q)^{n-1} - n^2 p^2 = n^2 p^2 - np^2 + n^2 p^2 = np(1-p) = npq$$

Q.E.D.