Engineering Applications for the Internet of Things

Pradeep K. Murukannaiah

Department of Computer Science North Carolina State University

1 / 45

Pradeep K. Murukannaiah: Short Bio

Education

PhD candidate in Computer Science, NCSU	2010-Present
MS in Computer Science, NCSU	2011
▶ BE in Information Science and Engineering, UVCE	2005

Work Experience

Intern, Google	Summer 2011
Intern, Duke University	Summer 2009
Software Engineer, Alcatel-Lucent	2005–2008

Professional Service

Informat	tion Director, ACM ToIT	2013-Present

- ► Reviewer: EMSE, ACM TIST, ACM TSC, IEEE IC
- ► PC: IEEE MS, AAAI, Social Computing@AAMAS

Outline

Introduction

Bridging Data and Intent (AAMAS 2014)

Machine Learning from IoT Data (TOSEM 2015)

Supporting Decentralized Computation (TOSEM 2015)

Exploiting Human Intelligence (RE 2015)

Directions (Ongoing)

Internet of Things (IoT): The next BIG challenge

Engineer applications to deliver a **personalized**, **context-specific**, and **privacy-preserving** experience on the *decentralized* IoT infrastructure

Infrastructure

Potential Applications

- ► Smart Homes: Automation, health, safety, entertainment
- ► Smart Cities: Energy, environment, transportation, defense

Engineering IoT Applications: Research Challenges

Software Engineering

- ► Formulate high-level abstractions to represent raw data, e.g., *context*, *trust*, and *norms*
- Incorporate those abstractions into software artifacts, e.g., requirements and design

Data Science

- Map raw sensor data to high-level abstractions of interest via machine learning
- Augment machine learning with human computation and collective intelligence

Engineering Science

Software

AAMAS 2014** IC 2012 **
RE 2015** RecSys 2014
TOSEM 2015** AI Mag 2015
ICSOC 2015
AAAI 2016

** Lead Author WWW 2016 **

Data

Empirical Methods

Four developer studies Two end-user studies Two social media studies One crowdsourcing study

Outline

Introduction

Bridging Data and Intent (AAMAS 2014)

Machine Learning from IoT Data (TOSEM 2015)

Supporting Decentralized Computation (TOSEM 2015)

Exploiting Human Intelligence (RE 2015)

Directions (Ongoing)

The Disconnect between Data and Intent

Intelligent Ringer: An example IoT application

Automatically sets ringer modes for incoming calls

Why does Intelligent Ringer consume NFC, audio, and Facebook data?

Modeling Intent

Tropos: An agent-oriented methodology

- Metamodel: Actor, goal, plan, belief, resource, and dependency
- Spans requirements, design, specification, and implementation phases

Intents and data are still disconnected

A Tropos model of Intelligent Ringer

Bridging Data and Intent

Xipho: An extension of Tropos

- Provides systematic steps to map agent capabilities to data abstractions
- Yields a specification grounded in data, e.g., Relationship = ?R₁ ∧ Neighbor's context = Casual ∧ Ambience = Noisy → Set as loud

Intents and data are now connected

A Xipho model of Intelligent Ringer

Xipho: Empirical Evaluation

What benefits does Xipho offer compared to Tropos?

A developer study

- 46 students from a graduate-level computer science course modeled two applications each and comprehended a third
- Application requirements were specified as three—four use cases

Phase	Task	Group 1	Group 2	Group 3
1	Practice	Alarm	Motivator	Reminder
2	Modeling	Motivator	Reminder	Alarm
3	Verification	Reminder	Alarm	Motivator

Xipho Developer Study: Results

Xipho significantly reduces time and effort required to model an application compared to Tropos

Xipho Developer Study: Results

Xipho models of an application are significantly easier to comprehend than Tropos models of the application

Outline

Introduction

Bridging Data and Intent (AAMAS 2014)

Machine Learning from IoT Data (TOSEM 2015)

Supporting Decentralized Computation (TOSEM 2015)

Exploiting Human Intelligence (RE 2015)

Directions (Ongoing)

Characteristics of IoT Data

- Multimodal and sporadic: Originating from multiple sensors
- Sparse: Sensing consumes energy

Stream of intermittent sensor data and place labels

Machine Learning from IoT Data

Unsupervised approaches

- Often require frequent sensing
- Do not capture subjective nuances

Supervised approaches

Require several labels for each place to perform well

Platys: A middle ground solution

- Active learning seeks to reduce labeling effort
- Semi-supervised learning deals with infrequent sensor data

15 / 45

Active Learning: Intuition

Uncertainty sampling: Ask the user about doubtful predictions

Stream of intermittent sensor data and place labels

Active learning enables intelligent place labeling

Semi-Supervised Learning: Intuition

Self training: Learn from confident predictions

User labeled data points Unlabeled data points Data points for place prediction

Stream of intermittent sensor data and place labels

Data points with Platys Reasoner assigned labels

Semi-supervised learning exploits latent structure

Platys: An ML Pipeline for IoT

Platys: Empirical Evaluation

What benefits does Platys offer over traditional supervised and unsupervised ML approaches?

An end-user study

- ▶ 10 users employed an Android phone installed with Platys middleware as their primary phone for 10 weeks
- Platys middleware collected sensor readings
 - GPS, WiFi, Bluetooth sensor readings, and Google POI data
- Each user labeled places of his interest multiple times
- Compare Platys to two unsupervised and two supervised approaches after data collection

Platys User Study: Results

- Platys achieves better F-measure than two traditional classifiers
- Both active learning and semi-supervised learning add value

Platys User Study: Results

- Platys achieves better F-measure than two unsupervised approaches
- No single choice of place parameter values is optimal for each user

Place Radius and Duration (log scale)

Outline

Introduction

Bridging Data and Intent (AAMAS 2014)

Machine Learning from IoT Data (TOSEM 2015)

Supporting Decentralized Computation (TOSEM 2015)

Exploiting Human Intelligence (RE 2015)

Directions (Ongoing)

IoT Applications: Current Setting

23 / 45

Current Setting: Shortcomings

Potential for privacy loss

Users' personal data stored by several third-parties

Fragmented user experience

Each application may interpret users' data differently

Difficult to deliver a personalized experience

Applications often rely on data aggregated from multiple users

IoT Applications: Proposed Setting

► The middleware maps raw sensor data into high-level contexts and shares contexts with applications, respecting user's privacy policies

Benefits of the Middleware Setting

Potential benefits to an end user

- Uniform information architecture
 - Enhances learnability
- Simplified interaction design
 - Enhances ease of use
- Middleware-based service design
 - Preserves privacy

Potential benefits to a developer

- Separation of concerns
 - ► Simplifies development process
 - Yields modular implementations

Implementation

Platys Middleware: Empirical Evaluation

What benefits does Platys middleware offer over traditional setting to an IoT application developer?

A developer study

- ▶ 46 students from a graduate-level computer science course implemented the Intelligent Ringer application
- Functional requirements specified as three—four use cases
- Usability requirement specified as broad-brush guidelines

27 / 45

Platys Developer Study: Results

Although developers employing Platys middleware spend more time in preparation, the extra effort pays off in later stages of implementation

Platys Developer Study: Results

 Applications implemented on the middleware setting are more modular than those implemented on the traditional setting

29 / 45

Outline

Introduction

Bridging Data and Intent (AAMAS 2014)

Machine Learning from IoT Data (TOSEM 2015)

Supporting Decentralized Computation (TOSEM 2015)

Exploiting Human Intelligence (RE 2015)

Directions (Ongoing)

Human Intelligence

- Humans are an integral part of the IoT
- ▶ No substitute for **human intelligence**, especially, for **creative** tasks

Can we systematically augment data analytics with human intelligence to accomplish creative tasks?

31 / 45

Resolve Goal Conflicts during Requirements Engineering

Intuition: Belief-based goal processing

- ▶ In order to activate, promote, drop, or suspend a goal, one has to provide or modify the appropriate beliefs [Castelfranchi and Paglieri, 2007]
- Elicit beliefs that support or oppose goals to resolve the conflict

Method: Combine data analytics and human intelligence

- ► Analytic method: Analysis of Competing Hypotheses (ACH)
- ▶ Human intelligence: Argumentation

Analysis of Competing Hypotheses (ACH)

ACH is a tool to aid judgement on issues requiring careful weighing of alternatives [Heuer and Pherson, 2014]

ACH Solution to a Case Study

► The PARC ACH tool can be used to construct the diagnosticity matrix and analyze sensitivity of conclusions

Argumentation-Based ACH (Arg-ACH)

Operates under the rubric of ACH, but with the following exceptions

- Construct an argument graph instead of a diagnosticity matrix
- ► Employ a set of domain-specific and domain-independent *argumentation* schemes [Walton et al., 2008] as critical thinking aids
- ► Assign *belief* (B), *disbelief* (D), and *uncertainty* (U) scores to each argument, such that B + D + U = 1 [Jøsang et al., 2001]

35 / 45

Argumentation Schemes

An argumentation scheme is an inferential structure: a reusable pattern of reasoning. For example, consider the scheme below

Argument from expert opinion

Major premise *E* is an expert in a domain *S* containing a proposition *A*Minor premise *E* asserts that proposition *A* is true (false)

Conclusion *A* is true (false)

Critical questions

- What did E assert that implies A?
- Is E's assertion based on evidence?
- How credible is E as an expert?
- Is A consistent with what other experts assert?

36 / 45

Case Study: Arg-ACH Solution (Partial)

Arg-ACH: Empirical Evaluation

What benefits does Arg-ACH offer over ACH?

An end-user study

Subjects 20 (15 graduate and five undergraduate students)

- Task Resolve conflicts in the enhancing security scenario. Elicit the necessary beliefs by searching a belief database using keywords
- Tools ACH subjects used the PARC ACH tool; Arg-ACH subjects used the Carneades editor [Gordon, 2014] for constructing the argument graphs

Arg-ACH User Study: Results

Arg-ACH analysts, compared to ACH analysts

- seek more evidence to resolve conflicts
- make more explicit assumptions, leaving an audit trail

Arg-ACH User Study: Results

 Arg-ACH leads more consensus among analysts' conclusion about a conflict compared to ACH

Outline

Introduction

Bridging Data and Intent (AAMAS 2014)

Machine Learning from IoT Data (TOSEM 2015)

Supporting Decentralized Computation (TOSEM 2015)

Exploiting Human Intelligence (RE 2015)

Directions (Ongoing)

Facilitating Crowd-RE

How can we elicit creative requirements from the crowd?

- Data: To be collected from MTurk
- Methods: Well-known, e.g., Delphi, genetic algorithm, personality and creativity surveys
- Tool: Developed

Collective Intelligence tool

Estimating Trust between Developers

How can we estimate trust between developers in an OSS project?

- Data: Available online, e.g., commit logs, and email interactions, and questions-and-answers
- Method: Developed [Kalia et al., 2015]

Trust antecedent framework

A CRF-based model

Acknowledgments

Adviser

Dr. Munindar P. Singh, Professor in Computer Science, NCSU

Sponsors

- NSF (Grant 0910868)
- NCSU Laboratory of Analytic Sciences (LAS)

Collaborators

Murukannaiah (NCSU)

- Anup Kalia, Dr. Chung-Wei Hang, Nirav Ajmeri, Dr. Nithyanthan Poosamani, Dr. Pankaj Telang, and Guangchao Yuan, NCSU
- Dr. Michael N. Huhns, University of South Carolina
- Drs. Tim Finin and Anupam Joshi, UMBC
- Dr. Laura Zavala, CUNY Graduate Center
- ► Ricard L. Fogues, U. Politecnica de Valencia, Spain
- Dr. Jose Such, Lancaster University, UK

44 / 45

SE for IoT

Thank You