Demographic and Employment Data for Predictive Modelling

Contents

U Preparation of Data	5
1A Data Preprocessing	5
1A.1 Identify the type of attributes	5
1A.2 Summarizing Properties	6
1. Age	7
2.Fnlwgt	7
3. Education Year	8
4. Capital Gain	8
5. Capital Loss	9
6. Work Hours per Week	9
1A.3 Outliers and Clusters	11
	13
	14
Part 1B Data Preprocessing	16
1B.A Binning	16
1B.B Normalization	17
1. Min-Max Normalization	17
2. Z-Score Normalization	18
1B.C Discretize	19
1B.D Binary Conversation	20
Summary	21

List of Tables

Table 1- Attributes type Description	5
Table 2- Age Attribute Characteristics	7
Table 3- Fnlwgt Attribute Characteristics	7
Table 4-Education Year Attribute Characteristics	8
Table 5-Capital Gain Attribute Characteristics	8
Table 6-Capital Loss Attribute Characteristics	9
Table 7-Hours Per Week Attribute Characteristics	9
Table 8-Frequency according to Equi Width	16
Table 9- Age Category	19
Table 10-Discretise Frequency	20

List of Figures

Figure 1- ld column is added	5
Figure 2- Knime Implementation for Statistics	6
Figure 3- Values of the summarising Properties	6
Figure 4- Age Histogram	7
Figure 5- Fnlwgt Histogram	7
Figure 6- Education Year Histogram	8
Figure 7- Capital Gain Histogram	8
Figure 8- Capital Loss Histogram	9
Figure 9- Work hours per week Histogram	9
Figure 10-Row Count	10
Figure 11-Box Plot Sex According to Age	11
Figure 12- Box Plot of Salary according to Age	12
Figure 13- Knime Implementation for Box Plot	13
Figure 14-Box Plot of employment according to education years	13
Figure 15-Box plot of Race according to Age	14
Figure 16-Age comparison according to Race	15
Figure 17-Capital Gain vs Loss according to Age	15
Figure 18-Histogram Equi-Depth according to Age	16
Figure 19-Min-Max Normalization Formula	17
Figure 20-Min-Max Normalization output	17
Figure 21-Z-Score Normalization	18
Figure 22- Normalization in Knime	18
Figure 23-Z-Normalization graphical view	
Figure 24-Discretise Frequency graphical view	20

O Preparation of Data

For analysis purpose we have added an extra column of ID. By doing this we would be able to run our data under Knime software.

Figure 1- Id column is added

1A Data Preprocessing

1A.1 Identify the type of attributes

The table 1 shows the data attribute characterization based on their values and types

Attributes	Types
ID	Interval
Age	Ratio: Real number quantities
Employment	Nominal
Fnlwgt	Ratio: Real Number and represents the number of people in a particular group
Education	Ordinal
Level	Interval: Distance is defined and measured in fixed unit
Marital Status	Nominal
Occupation	Nominal
Sex	Nominal: No ordering between them
Capital Gain	Ratio
Capital Loss	Ratio
Native Country	Nominal
Salary	Ordinal: No distance between values defined and ordering exist

Table 1- Attributes type Description

1A.2 Summarizing Properties

Figure 2- Knime Implementation for Statistics

Row ID	§ Column	D Min	D Max	D Mean	D Std. deviation	D Variance	D Skewness	D Kurtosis	D Overall sum	D Median	Row count	的 Histogram
Age	Age	17	90	38.444	13.6	184.97	0.574	-0.224	76,850	37	2000	17 90
Fnlwgt	Fnlwgt	19,700	917,220	187,271.192	102,937.555	10,596,140,288.536	1,263	3.936	374,542,383	179,579.5	2000	19.700 917.220
Level	Level	1	16	10.072	2.505	6.273	-0.387	0.796	20,144	10	2000	1 16
Captial Gain	Captial Gain	0	99,999	1,063.991	7,208.102	51,956,739.872	11.976	158.249	2,127,982	0	2000	0 99,999
Capital Loss	Capital Loss	0	2,824	98.804	427.621	182,859.953	4.235	16.537	197,609	0	2000	0 2.824
Work Hours	Work Hours	2	99	40.342	12	143.99	0.08	2.813	80,684	40	2000	2 99

Figure 3- Values of the summarising Properties

We have used the statistic node to find out the different characteristics of the attributes. The figure 1 shows the implementation on Knime while the figure 2 illustrates the characteristic of each attribute like the minimum and maximum values in each attribute. Also the mean and standard deviation of each attribute can be seen in the figure 2.

1. Age

Min	17
Max	90
Mean	38.444
Std. Dev	13.597
Variance	184.877

Table 2- Age Attribute Characteristics

Figure 4- Age Histogram

2.Fnlwgt

Min	19700
Max	917220
Mean	187271.192
Std. Dev	102937.555
Variance	10596140288.536

Table 3- Fnlwgt Attribute Characteristics

Figure 5- Fnlwgt Histogram

3. Education Year

Min	1
Max	16
Mean	10.072
Std. Dev	2.505
Variance	6.273

Table 4-Education Year Attribute Characteristics

Figure 6- Education Year Histogram

4. Capital Gain

Min	0
Max	99999
Mean	1063.991
Std. Dev	1208.102
Variance	51956739.872

Table 5-Capital Gain Attribute Characteristics

Figure 7- Capital Gain Histogram

5. Capital Loss

Min	0
Max	2824
Mean	98.804
Std. Dev	427.621
Variance	182859.953

Table 6-Capital Loss Attribute Characteristics

Figure 8- Capital Loss Histogram

6. Work Hours per Week

Min	2
Max	99
Mean	40.342
Std. Dev	12
Variance	143.99.536

Table 7-Hours Per Week Attribute Characteristics

Figure 9- Work hours per week Histogram

The stats shown above, in point 1 to 6 for the different attributes has been processed through Knime Statistics Node. The consequential tables and graphs show the instances

values of specific attribute. By the Histogram graph spread, we can see the minimum and maximum value and their distribution.

Figure 10-Row Count

Figure 9 show that we can use different aggregate functions to illustrate the data. The row count depicts the number of data in specific attribute. In the above example, we can see the frequency of age like the age between 17 to 25 has frequency of 396.

1A.3 Outliers and Clusters

Figure 11-Box Plot Sex According to Age

The Figure 10 show the Box plot that illustrate the starting age of both male and female is 17.But the normal maximum age of female is 74 while male has age of 79.There are some outliers in both female and male that have more age than normal maximum limit.

Figure 12- Box Plot of Salary according to Age

In this figure 11, we made the comparison between two attributes one is Salary and the other one is Age. There is only one person who has the salary greater than fifty thousands. Also there are

more people who has age greater than 34 but less than 46 and who has the salary less than fifty thousands.

Figure 13- Knime Implementation for Box Plot

Figure 14-Box Plot of employment according to education years

In figure 13, we drew the box plot of people who are employed a different positions after getting number of years education. For Example more people are self employed who has the ten to thirteen years of education. Also from this figure we can see the education requirement for different employment positions. Like for federal government position the minimum education requirement is 7 years of education while there are more people employed at federal government position who have ten or more years of education. Also in this figure we can see some low outlier at private position.

Figure 15-Box plot of Race according to Age

In figure 14, the box plot for race according to age is shown that illustrate the average age of white people is 37 years while in case of black people it is 35 years. In case of white people there are some people who have the age over 79 years.

Figure 16-Age comparison according to Race

In Figure 16 a comparison been done between capital loss and gain according to age. From this we observe that people who have age of 65 had more capital gain ratio compared to others.

Figure 17-Capital Gain vs Loss according to Age

Part 1B Data Preprocessing

1B.A Binning

We have used equi width and equi depth binning techniques to smooth the data.

Equi-Width	Frequency
[17,27]	508
[28,38]	580
[39,49]	484
[50,60]	295
[61,71]	109
[72,82]	23
[83,93]	2

Table 8-Frequency according to Equi Width

Figure 18-Histogram Equi-Depth according to Age

In figure 11 we can see the euqi depth histogram that shows all data is equally binned.

1B.B Normalization

For stable convergences and biases of Age attribute, we have transformed it in same range of values. For this we have used two different normalization techniques

1. Min-Max Normalization

In this technique we have used the formula mentioned below

Where A is our data range, Min is the minimum value in our data set which is 17 and maximum value which is 90. Also the newMax value is set to 0 while the newMin value is set to zero.

$$A' = \frac{A - Min}{Max - Min}(newMax - newMin) + newMin$$

Figure 19-Min-Max Normalization Formula

The result for this normalization technique would lie between zero to one as shown in excel sheet. Like for the minimum value in our data set it would be zero and for maximum value it would be one.

Figure 20-Min-Max Normalization output

Figure 19 shows the output of Min-Max normalization, where y-axis represents the normalized values and x-axis represents the age.

2. Z-Score Normalization

$$A' = \frac{A - Mean}{StandardDeviation}$$

Figure 21-Z-Score Normalization

To calculate the Z-Score Normalization we have first calculated the Mean and Standard Deviation and then put them in the above mentioned formula. Where A is our data range, the results can be seen in Excel Spread Sheet.

We can also do the normalization in Knime by using normalizer node as shown in below figure that gives the same results as we have obtained through our manual calculation on excel file

Figure 22- Normalization in Knime

Figure 23-Z-Normalization graphical view

The figure 22 depicts the z-normalized values, where the x-axis represents the values for age and vertical axis represents the values of normalized outputs

1B.C Discretize

We have divided the Age attribute in five different categories as mentioned in table

Category	Range
Teenager	1-20
Young	21-30
Mid_Age	31-45
Mature	46-65
Old	66+

Table 9- Age Category

To achieve this we have used if statement in Excel

IF(A1:A2000<21,"Teenager",IF(A1:A2000<31,"Young",IF(A1:A2000<46"Mid_Age",IF(A1:A2000<66," Mature",IF(A1:A2000>=66,"Old")))))

Also to find out the frequency of each discretise element we have used the countif statement. The results are mentioned in below table and also can be seen in excel file

Discretise	Frequency
TeenAger	142
Young	531
Mid_Age	740
Mature	520
Old	66

Table 10-Discretise Frequency

Figure 24-Discretise Frequency graphical view

1B.D Binary Conversation

To convert the attribute Level into binary [0 and 1], we first calculated the mean value. And then we have used that mean value as in this case it is 10 as a mid point.

If
$$A < 10$$
 then Value = 0 If $A >= 10$ then Value = 1

So, the values greater than 10 are set to one while the values below it are set to zero. To achieve this we have applied the following statement in excel

Where A represents the Level attribute

Summary

During our analysis, we found that overall quality of data is very good. There are some attributes like Employment and Occupation who have some missing values in it but it does not affect the overall quality of data. Also there are some attributes like native country and fnlwgt that did not affect the results of classification if been removed from the dataset.

We found the person who have more education or they are more educated earn more. From the data we found that men lives more than female and similarly the white men has more age compared to black men.

During our examination, we scrutinize that certain attributes has quite influenced instances like in case of Capital Loss and Gain they have zero (0) as the leading value and United States as a leading value in Native Country.

From the given data we found that there are more people who have salary less than fifty thousands. Also the people who have more than 10 years of education are either federal employed or self employed.

From our analysis we observed that there is less capital loss at the age of 65 but more capital gain at the same age. This insight can be used to formulate the utmost amount of capital with the probable condition.

By using this data we can predict what sort of people will earn more by using their occupation and demographic details.