Anomaly Detection and Classification

Mathematical Models and Methods for Image Processing

Diego Carrera

May 11th 2022

The anomaly detection problem

The anomaly detection problem

The anomaly mask

Normal Patches

Learned Dictionary

Detections

Assignments

- Implement the anomaly detection based on I1 sparse coding
 - Use 15x15 patches
 - You can improve the results by fine tuning all the parameters
- Implement the classification based on sparse representation

References

- ADMM: Wahlberg, Bo, et al. "An ADMM algorithm for a class of total variation regularized estimation problems." *IFAC Proceedings* Volumes 45.16 (2012): 83-88.
- Anomaly Detection:
 - Carrera, Diego, et al. "Defect detection in SEM images of nanofibrous materials." *IEEE Transactions on Industrial Informatics* 13.2 (2016): 551-561.
 - Carrera, Diego, et al. "Scale-invariant anomaly detection with multiscale group-sparse models." 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016.
- Classification: J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, February 2009. doi:10.1109/tpami.2008.79