Fundamental Theorem of Arithmetic

Some positive integers are prime numbers.

All the others can be written, in just one way, as a product of prime numbers. For example:

$$60=6\times10=2\times3\times2\times5=(2^2)(3)(5)$$

In general:

If N is any positive integer (except 1) then $N=(2^a)(3^b)(5^c)(7^d)(11^e)(...)$

where a,b,c,... are zero or positive integers.

Example 1

Highest common factor (HCF) and Lowest common multiple (LCM)

the factors of 24 are: 1, 2, 3, 4, 6, 8, 12, 24

the factors of 30 are: 1, 2, 3, 5, 6, 10, 15, 30

the common factors of 24 and 30 are: 1, 2, 3, 6

So HCF(24,30)=6

the multiples of 24 are: 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264 ...

the multiples of 30 are: 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330 ...

the common multiples of 24 and 30 are: 120, 240, ...

So LCM(24,30)=120

Example 2

$$A = (2^5)(3^1)(5^0)(7^6)(11^2)$$
 and $B = (2^3)(3^7)(5^4)(7^8)(11^0)$

 2^5 is a factor of A and 2^3 is a factor of B so HCF is a multiple of 2^3

 3^1 is a factor of A and 3^7 is a factor of B so HCF is a multiple of 3^1

etc

etc

So
$$HCF(A,B)=(2^3)(3^1)(5^0)(7^6)(11^0)$$

A is a multiple of 2^5 and B is a multiple of 2^3 so LCM is a multiple of 2^5

A is a multiple of 3^1 and B is a multiple of 3^7 so LCM is a multiple of 3^7

So $LCM(A,B) = (2^5)(3^7)(5^4)(7^8)(11^2)$

note

$$HCF(A,B) \times LCM(A,B) = (2^{8})(3^{8})(5^{4})(7^{14})(11^{2}) = AB$$

Example 3

$$N = (2^a)(3^b)(5^c)(7^d)(11^e)(...)$$

If *N* is a multiple of 5 then $c \ge 1$ If *N* is not a multiple of 5 then c = 0

If N is a multiple of 3 and a multiple of 7 then $b \ge 1$ and $d \ge 1$ So N is a multiple of 21

If N is a multiple of 6 then N is a multiple of 2 and a multiple of 3 so $a \ge 1$ and $b \ge 1$ If N is a multiple of 15 then N is a multiple of 3 and a multiple of 5 so $b \ge 1$ and $c \ge 1$ So if N is a multiple of 6 and a multiple of 15 then N must be a multiple of 30

In general:

If *N* is a multiple of *a* and a multiple of *b* then *N* is a multiple of LCM(a,b)

Example 4

$$N=(2)(3^2)(13^4)$$
 $M=(5^3)(7^5)(13)(23)$ so $NM=(2)(3^2)(5^3)(7^5)(13^5)(23)$

NM is a multiple of 3 because N is a multiple of 3

NM is a multiple of 7 because *M* is a multiple of 7

NM is not a multiple of 17 because neither N nor M is a multiple of 17 but:

NM is a multiple of 14 even though neither N nor M is a multiple of 14 this is because $14=2\times7$ and N is a multiple of 2 and M is a multiple of 7 also:

NM is a multiple of 35 but N and 35 have no common factor. So all the factors of 35 must appear in M So M must be a multiple of 35

In general: if p is prime:

NM is a multiple of p only if N or M (or both) is a multiple of p

In general: if N and r have no common factor:

NM is a multiple of r only if M is a multiple of r

see Exercise 1

Theorem

 $\sqrt{2}$ is irrational

Proof (by contradiction)

Assume $\sqrt{2}$ is rational

So:

 $\sqrt{2} = \frac{p}{q}$ where p and q are positive integers

So:

$$2q^2 = p^2$$

Now:

We can write q as a product of primes:

$$q = (2^a)(3^b)(5^c)(7^d)(11^e)(...)$$

So:

 $q^2 = (2^{2a})(3^{2b})(5^{2c})(7^{2d})(11^{2e})(...)$ the powers of all the primes are even

So:

$$2q^2 = (2^{2a+1})(3^{2b})(5^{2c})(7^{2d})(11^{2e})(...)$$
 the power of 2 is odd

Now:

We can write p as a product of primes:

$$p = \dots$$

So:

 p^2 =... all the powers of all the primes are even

But:

$$2q^2 = p^2$$

LHS, power of 2 is odd. RHS, power of 2 is even.

Contradiction.

There is another proof that $\sqrt{2}$ is irrational in the chapter: Proof by Contradiction But this proof is better, because it suggests why the result is true and it suggests further results.

See Exercise 2

EXERCISE 1

- 1) Write 5619250 in the form $(2^a)(3^b)(5^c)(7^d)(11^e)(...)$
- 2) Find HCF (36652, 38698) and LCM (36652, 38698)
- 3) $532400 = (2^4)(5^2)(11^3)$ How many factors has 532400 got?
- 4) This question is difficult
- a) If n^2 is a multiple of 7 show that n is a multiple of 7
- b) If n^2 is a multiple of 6 show that n is a multiple of 6
- c) If n^2 is a multiple of 12 show that n might not be a multiple of 12
- d) For what values of m is the following true:

If n^2 is a multiple of m then n must be a multiple of m?

EXERCISE 2

- 1) Prove $5^{1/3}$ is irrational
- 2) What happens when we try to prove $\sqrt{4}$ is irrational?

SOLUTIONS 1

- 1) $5619250 = (2)(5^3)(7)(13^2)(19)$
- 2) $36652=(2^2)(7^2)(11^1)(17^1)$ and $38698=(2^1)(11^1)(1759^1)$ $HCF(36652,38698)=(2^1)(11^1)=22$ $LCM(36652,38698)=(2^2)(7^2)(11^1)(17^1)(1759^1)=64470868$
- 3) $532400 = (2^4)(5^2)(11^3)$ so any factor can be written as $(2^p)(5^q)(11^r)$ where p = 0,1,2,3,4 and q = 0,1,2 and r = 0,1,2,3 We have 5 choices for the value of p and 3 choices for the value of q and 4 choices for the value of q so there are $5 \times 3 \times 4 = 60$ choices for p,q,r So 532400 has 60 factors (including 1 and 532400)
- 4) $n=(2^a)(3^b)(5^c)(7^d)(11^e)(...)$ $n^2=(2^{2a})(3^{2b})(5^{2c})(7^{2d})(11^{2e})(...)$

proof by contrapositive

- a) If n is not a multiple of 7 then d=0 and n^2 is not a multiple of 7
- b) If n is not a multiple of 6 then a=0 or b=0 and n^2 is not a multiple of 6
- c) If n is not a multiple of 12 then we cannot say a=0 or b=0 because we could have a=1 and b=1 for example if n=6

6² is a multiple of 12 but 6 is not a multiple of 12

d)
$$m=(2^a)(3^b)(5^c)(7^d)(11^e)(...)$$

The statement is true if a=0,1 b=0,1 c=0,1 etc

SOLUTIONS 2

1) Assume 5^{1/3} is rational

$$5^{1/3} = \frac{p}{q}$$
 where p and q are integers

$$5q^{3} = p^{3}$$

We can write q as a product of powers of primes:

$$q = (2^a)(3^b)(5^c)(7^d)(11^e)(...)$$

 $q^3 = (2^{3a})(3^{3b})(5^{3c})(7^{3d})(11^{3e})(...)$ all the powers of all the primes are multiples of three.

$$5q^3 = (2^{3a})(3^{3b})(5^{3c+1})(7^{3d})(11^{3e})(...)$$
 the power of 5 is not a multiple of three.

We can write p as a product of powers of primes:

$$p=...$$

 p^3 =... all the powers of all the primes are multiples of three

$$5q^{3} = p^{3}$$

LHS, power of 5 is not a multiple of three. RHS, power of 5 is a multiple of three.

Contradiction.

2) Claim

$$\sqrt{4}$$
 is irrational

Attempted proof (by contradiction)

Assume $\sqrt{4}$ is rational

$$\sqrt{4} = \frac{p}{q}$$
 where p and q are positive integers

$$4q^2 = p^2$$

We can write q as a product of primes:

$$q = (2^a)(3^b)(5^c)(7^d)(11^e)(...)$$

 $q^2 = (2^{2a})(3^{2b})(5^{2c})(7^{2d})(11^{2e})(...)$ the powers of all the primes are even

$$4q^2 = (2^{2a+2})(3^{2b})(5^{2c})(7^{2d})(11^{2e})(...)$$
 the power of 2 is still even!

This is where our proof falls apart.