

Our Pipeline

- understanding tasks
 - With annotations like semantic object labels, depth maps
- Multi-view Rendering: Given the 3D scenes, we can generate panoramas from various viewpoints

Floor Plan Estimation

 Estimate the room layout by identifying the junctions between the ceiling, walls, and floor.

3D Mesh Generation

- Use existing datasets such as 3D-FUTURES to get furniture meshes OR
- Create furniture meshes using **InstantMesh** from web-scraped real images
- Point cloud registration to adjust scale and orientation of meshes

3D Furniture Mesh Generation

Point cloud registration

Optimal Furniture Layout Estimation

- Use LEGO-Net to generate for our custom floor plans and furniture objects
- LEGO-Net follows a Transformer-based architecture to predict organized furniture positions and orientations

QA Wei et al. "LEGO-Net: Learning Regular Rearrangements of Objects in Rooms", CVPR 2023

Physics Based Rendering

Reasons for using Open3D:

- Accurate Spatial Representation
- Flexibility in Customization
- Realistic Visualization

Pipeline Outcomes

- Render high fidelity details in RGB and Semantic map with 200 floor plans with permutation of 22 object classes
- Render multiple viewpoints of same indoor scene under various lighting conditions
- Account better for occlusions of objects from camera positions
- Output additional data such as depth maps, camera configurations

High Fidelity semantic labels

Semantic annotations from multiple viewpoints

Future work

- Using our pipeline for indoor scene understanding:
 - Export equirectangular images of the 3D renderings
 - Evaluate generated dataset on downstream tasks such as indoor scene segmentation
- Refining the data generation pipeline:
 - Fine-tune legonet with floor plans from Structured 3D dataset and random furniture initializations

360 Panoramas & Equirectangular images

3D Rendering: Advantages

- Render high fidelity details in RGB and Semantic map
- Account for better occlusions of objects from camera positions

High Fidelity semantic labels

3D Rendering: Advantages

- Render multiple viewpoints of same indoor scene under various physics based simulations
- Output additional data such as depth maps, camera configurations

3D Rendering: Annotations

High fidelity textured images from multiple viewpoints

3D Rendering: Annotations

Semantic annotations from multiple viewpoints

PanoMixSwap

Augmentation done by applying a stretching technique to each of the walls in the transformed layout.

This leads to distortion in the augmented images as showr below.

3D model texture outputs