Datenbanken FS 2021 Übungsstunde

Tatjana Meier

1. Juni 2021

Nachbesprechung Serie 12

Serie 12, Aufgabe 1a und 1b

Durch die folgende Tabelle ist eine Relation auf einem Schema gegeben:

Α	В	С
1	1	1
2	1	1
3	1 3	2
4	1	1 2 8 8
5	3	8

- Bestimmen Sie alle bestehenden nicht-trivialen funktionalen Abhängigkeiten!
- Wie müsste man die Tabelle ändern, damit sie die funktionale Abhängigkeit

$$C \rightarrow B$$

erfüllt?

Serie 12, Lösung für Aufgabe 1a und 1b

- a) nicht-triviale funktionale Abhängigkeiten: $\{A \rightarrow B, A \rightarrow C, A \rightarrow BC, AB \rightarrow C, AC \rightarrow B, A \rightarrow ABC\}$
- Abhängigkeit $C \rightarrow B$: Ersetze zum Beispiel im letzten Tupel den Wert von Attribut C. Beispieltabelle:

Α	В	С		Α	В	С
1	1	1		1	1	1
2	1	1	\Rightarrow	2	1	1
3	3	2	\Rightarrow	3	3	2
4	1	8		4	1	8
5	3	8		5	3	7

Alternativ: Spalte C belassen und dafür in Spalte B die beiden letzten Zeilen gleich.

Serie 12, Aufgabe 2a und 2b

$$F := \left\{ \begin{array}{l} A \to B, \quad C \to CB, \\ AB \to D, \quad B \to D \end{array} \right\} \qquad G := \left\{ \begin{array}{l} A \to B, \\ AC \to C \end{array} \right\}$$

- Berechnen Sie die Attributhülle A^+ bezüglich F.
- **b)** Berechnen Sie die Hülle G^+ .

$$F := \left\{ \begin{array}{l} A \to B, \quad C \to CB, \\ AB \to D, \quad B \to D \end{array} \right\} \qquad G := \left\{ \begin{array}{l} A \to B, \\ AC \to C \end{array} \right\}$$

a) Berechnen Sei die Attributhülle A^+ bezüglich F.

Von A nach A
$$\Rightarrow$$
 A⁺ = {A, ...}
Von A nach B \Rightarrow A⁺ = {A, B...}
Von B nach D \Rightarrow A⁺ = {A, B, D...}
fertig. Also A⁺ = {A, B, D}

$$G := \{A \rightarrow B, AC \rightarrow C\}$$

Berechnen Sei die Hülle G^+ .

Serie 12, Aufgabe 2b)

$$G := \{A \to B, AC \to C\}$$

Berechnen Sei die Hülle G^+ .

$$A \rightarrow A$$
 $AB \rightarrow A$ $AC \rightarrow A$ $BC \rightarrow B$ $ABC \rightarrow A$
 $A \rightarrow B$ $AB \rightarrow B$ $AC \rightarrow C$ $BC \rightarrow C$ $ABC \rightarrow B$
 $A \rightarrow AB$ $AB \rightarrow AB$ $AC \rightarrow B$ $BC \rightarrow BC$ $ABC \rightarrow C$
 $B \rightarrow B$ $AC \rightarrow AC$ $ABC \rightarrow AB$
 $C \rightarrow C$ $AC \rightarrow AB$ $ABC \rightarrow AC$
 $AC \rightarrow BC$ $ABC \rightarrow BC$
 $AC \rightarrow ABC$ $ABC \rightarrow ABC$

btw.: $\{A, C\}$ ist ein Schlüssel für das Schema $S = \{A, B, C\}$ bezüglich G, denn

- **1** $AC \rightarrow ABC \in G^+$, daher Superschlüssel
- 2 $A \rightarrow ABC \notin G^+$ und $C \rightarrow ABC \notin G^+$, daher Schlüssel

Serie 12, Aufgabe 3)

```
ProfessorenAllerlei : {[PersNr, Name, Rang, Raum, VorlNr, VorlTag,
                             Hörsaal, AssiPersNr, AssiName,
                             DiplomandenMatrNr]}
funktionale Abhängigkeiten:
                             PersNr \rightarrow Name, Rang, Raum
                              Raum \rightarrow PersNr
                             VorINr \rightarrow PersNr
                   VorlNr, VorlTag \rightarrow Hörsaal
                        AssiPersNr \rightarrow AssiName, PersNr
             DiplomandenMatrNr \rightarrow AssiPersNr
```

Schlüssel: $S:=\{VorlNr, VorlTag, DiplMatrNr\}$ Dies ist der einzige mögliche Schlüssel:

- {Name, Rang,Raum, PersNr} $^+ \subseteq \{VorINr\}^+$ und VorINr kann von nichts anderem abgeleitet werden, also ist **VorINr** in jedem Superschlüssel drin.
- Für Hörsaal brauchts VorlTag, also ist VorlTag in jedem Superschlüssel drin.
- {AssiPersNr, AssiName, PersNr}⁺ ⊆ {DiplomandenMatrNr}⁺ und DiplomandenMatrNr kann ebenfalls nur von sich selbst abgeleitet werden, also ist **DiplomandenMatrNr** in jedem Superschlüssel drin.

Da {VorlNr, VorlTag, DiplomandenMatrNr} $^+$ = ProfessorenAllerlei liegt ein Superschlüssel vor. Da keine echte Teilmenge von S ein Superschlüssel ist, ist S selbst ein Schlüssel.

- 1. Normalform okay.
- 2. Normalform:

```
Schlüssel {VorlNr, VorlTag, DiplMatrNr} weiter gilt {VorlNr, VorlTag} \subseteq {VorlNr, VorlTag, DiplMatrNr} und VorlNr, VorlTag\rightarrow Hörsaal
```

- \Rightarrow Hörsaal nicht prim und partiell von Schlüssel abhängig also ist die 2. NF nicht erfüllt.
 - ⇒1. Normalform

Bemerkung zur Aufgabe 3c): Algorithmus für 3. NF

Gegeben Schema \mathcal{S} und *minimale* Menge F von funktionalen Abhängigkeiten. Für jede Abhängigkeit $X \to A \in F$ definieren wir ein Schema $\mathcal{S}_{X \to A}$, so dass $\mathcal{S}_{X \to A} = X \cup \{A\}$.

EINGABE:
$$\mathcal{S}$$
, F

$$\mathcal{Z} := \{\mathcal{S}_{X \to A} \mid X \to A \in F\}$$
IF kein $\mathcal{S}_{X \to A} \in \mathcal{Z}$ enthält Schlüssel für \mathcal{S} bez. F THEN wähle Schema \mathcal{K} , welches Schlüssel für \mathcal{S} ist

Ausgabe: Z

Die so erhaltene Ausgabemenge \mathcal{Z} ist dann die gewünschte Zerlegung von \mathcal{S} in 3NF bezüglich F.

 $\mathcal{Z} := \mathcal{Z} \cup \{\mathcal{K}\}$

Vereinfachung für leichtere Lesbarkeit

$$P \rightarrow N, R1, R2$$
 $R1 \rightarrow P$
 $V1 \rightarrow P$
 $V1, V2 \rightarrow H$
 $A1 \rightarrow A2, P$
 $D \rightarrow A1$

1. Minimale Überdeckung

(Aufspalten liefert nur einfache Abhängigkeiten, redundante Attribute entfernen (-), redundante Abhängigkeiten entfernen (-)): $H. A1 \rightarrow A2, A1 \rightarrow P, D \rightarrow A1$

イロト 不倒り イヨト イヨト

2. Überführen in die 3. Normalform Eingabe:

 $\{P, N, R1, R2, V1, V2, H, A1, A2, D\}$ und F''' in 3.NF-Algorithmus.

Nach der ersten Zeile erhalten wir.

$$\mathcal{Z} = \{\{P, N\}, \{P, R1\}, \{R1, P\}, \{V1, P\}, \{V1, V2, H\}, \{A1, A2\}, \{A1, P\}, \{D, A1\}\}$$

2. Überführen in die 3. Normalform Eingabe:

```
\{P, N, R1, R2, V1, V2, H, A1, A2, D\} und F''' in 3.NF-Algorithmus.
```

Da wir Mengen haben ist
$$\{P,R1\} = \{R1,P\}$$

 $\mathcal{Z} = \{\{P,N\}, \{P,R1\}, \{R1,P\}, \{V1,P\}, \{V1,V2,H\}, \{A1,A2\}, \{A1,P\}, \{D,A1\}\}$

Ergänzen mit Schlüssel und (freiwillig) markieren der Schlüssel anhand der funktionalen Abhängigkeiten:

$$\mathcal{Z} = \{ \{\underline{P}, N\}, \{\underline{P}, R1\}, \{\underline{P}, R2\}, \{\underline{V1}, P\}, \{\underline{V1}, V2, H\}, \{\underline{A1}, A2\}, \{\underline{A1}, P\}, \{\underline{D}, A1\}, \{\underline{V1}, V2, \underline{D}\}$$

Fakultativ. Vereinfachen des Schemas:

$$F = \{\{\underline{P}, N, R1, R2\}, \{\underline{V1}, P\}, \{\underline{V1}, V2, H\}, \{\underline{A1}, A2, P\}, \{\underline{D}, A1\}, \{\underline{V1}, V2, \underline{D}\}$$

Die Zerlegung ist bereits in BCNF!

Boyce–Codd Normalform (BCNF): S ist in *Boyce–Codd Normalform* bezüglich F, falls S in erster Normalform ist und für alle $X \to Y$ aus F^+ mindestens eine der folgenden zwei Bedingungen erfüllt ist:

(BCNF.1)
$$Y \subseteq X$$
;

(BCNF.2) X ist ein Superschlüssel von S.

Die Zerlegung ist bereits in BCNF! Überprüfen der einzelnen Schemas

```
Die Zerlegung ist bereits in BCNF! 
Überprüfen der einzelnen Schemas 
Beispiel \{P, N\}: 
Betrachte die Projektion von F bezüglich \{P, N\}: 
\Pi_{PN}(F) = \{P \to P, P \to N, P \to PN, N \to N, PN \to P, PN \to PN, N \to N, PN \to PN, PN \to PN,
```

 $N, PN \rightarrow PN$

Die Zerlegung ist bereits in BCNF!

Überprüfen der einzelnen Schemas

Beispiel $\{P, N\}$:

Betrachte die Projektion von F bezüglich $\{P, N\}$:

$$\Pi_{PN}(F) = \{P \rightarrow P, P \rightarrow N, P \rightarrow PN, N \rightarrow N, PN \rightarrow P, PN \rightarrow N, PN \rightarrow PN\}$$

Der Schlüssel bezüglich $\Pi_{PN}(F)$ ist nur P.

Die einzige funktionale Abhängigkeit $X \to Y$ für die nicht $Y \subseteq X$ gilt ist $P \to N$. Da P ein Superschlüssel ist, ist damit BCNF.2 erfüllt.

Die Zerlegung ist bereits in BCNF!

Überprüfen der einzelnen Schemas

Beispiel $\{P, N\}$:

Betrachte die Projektion von F bezüglich $\{P, N\}$:

$$\Pi_{PN}(F) = \{P \rightarrow P, P \rightarrow N, P \rightarrow PN, N \rightarrow N, PN \rightarrow P, PN \rightarrow N, PN \rightarrow PN\}$$

Der Schlüssel bezüglich $\Pi_{PN}(F)$ ist nur P.

Die einzige funktionale Abhängigkeit $X \to Y$ für die nicht $Y \subseteq X$ gilt ist $P \to N$. Da P ein Superschlüssel ist, ist damit BCNF.2 erfüllt.

Für die restliichen Zerlegungen analog.

