NASAオープンデータ × CAEで挑む CubeSat設計

開発テーマ: Commercializing Low Earth Orbit (LEO)

CubeSatとCAE技術の融合

CubeSatとは

- -10cm立方体を基本単位とする小型衛星(1U)
- ・低コストで打ち上げ可能、宇宙開発の民主化を推進
- ・LEO環境の**急激な温度変化**に耐える素材選定が安定運用の鍵

CAE:シミュレーション技術

- ·熱伝導·構造変形·応力を**事前に再現**
- ·設計妥当性を**短時間で定量的に評価** 可能
- ・試作前にリスクを見える化

Advanced Computational Fluid Dynamics Tools for Accurate Rotorcraft Analysis and Design

価値提案とビジネスモデル

課題

素材選定が**経験則・試験依存**

→ コスト増・時間ロス

解決策

NASAオープンデータ+ CAE

→ 数時間で素材比較

提供価値

- ・ 設計リードタイム短縮
- ・ 打ち上げリスク低減
- ・ 低コスト教育環境

01

ターゲット市場

- · 大学·研究機関(教育/技術実証CubeSat)
- スタートアップ(低コスト衛星開発)
- ・ 部材メーカー(新素材の評価)

02

ビジネスモデル

Webアプリ: テンプレート解析を無料体験

収益源: 受託CAE解析(顧客モデルや素材解析)

技術デモの内容

データソース

LEO環境:NASA SORCE/TIM

NASA CERES Data

NASA Earth Fact Sheet

物性值:Materials data handbook

評価項目:温度差△T、変位、質量

3D Resources

材料	吸収率 α	放射率	密度 ρ [g/cm³]	ヤング率 E [GPa]	ポアソン比 v[-]	線膨張係数 α [×10⁻⁵/K]	基準温度 T。[°C]	熱伝導率 k [W/m·K]	比熱 c□ (J/kg·K)
Al6061-T6	0.45	0.82	2.76	68.9	0.33	23.6	0	167	896
Beryllium	0.35	0.2	1.85	287	0.07	11.3	0	200	1825
CFRP	0.9	0.95	1.67	0	0.3	1	0	5	800
PEEK	0.8	0.9	1.3	3.8	0.38	47	0	0.25	1300
Ti-6Al-4V	0.6	0.6	4.43	110	0.34	8.8	0	6.7	526

解析結果:素材特性の可視化

Al6061-T6 ΔT (Sunlit)
 Al6061-T6 ΔT (Eclipse)

Ti-6Al-4V ΔT (Sunlit)
Ti-6Al-4V ΔT (Eclipse)
CFRP ΔT (Sunlit)

CFRP(炭素繊維強化プラスチック)

軽量・安定、総合性能バランス

Al6061(アルミニウム合金)

実用性・加工性に優れる

Beryllium

高剛性・安定性、ただし安全性課題

Ti-6Al-4V(チタン合金)

高強度•汎用性

PEEK(ポリエーテルエーテルケトン)

軽量だが温度変化が大きい

Webアプリの紹介

太陽と地球のモデル 3D Resources

現状機能

事前計算した結果をブラウザで可視化

3Dモデル(GLB)+数値のインタラクティブ表示

CalculiX (ccx) を用いたリアルタイム解析

スタートアップ → 簡易な事前評価ツール

まとめと今後の展開

手法の実証

「短時間で結果を出せるアプローチ」の有効性を提示

解析の拡張

デブリ衝突・内部発熱シナリオへの対応

Webアプリの公開

誰でも体験可能な環境を提供

対象者の拡大

教育・研究・新規参入者の設計判断を支援