



## PLANTA DE HIDROGENO:

**OPORTUNIDADES PARA ARGENTINA** 

IEEE - COMODORO RIVADAVIA, CHUBUT





#### CONTENIDO



1 Potencial Eólico Patagonia

2 Instalaciones Hychico - Planta Hidrógeno

3 Proyectos Hidrógeno

4 Conclusiones



#### POTENCIAL EÓLICO DE PATAGONIA







#### POTENCIAL EÓLICO DE PATAGONIA



#### **GLOBAL CUMULATIVE INSTALLED WIND CAPACITY 2001-2017**







Energía para varias Argentina's



Generación Eléctrica: 2125 TWh

Consumo Argentina (2017): 138 TWh \*\*

Fuentes: (\*) www.gwec.net – (\*\*) CAMMESA Informe Anual



# HIDRÓGENO Y EL DESARROLLO SOSTENIBLE







#### CONTENIDO



1 Potencial Eólico Patagonia

2 Instalaciones Hychico - Planta Hidrógeno

3 Proyectos Hidrógeno

4 Conclusiones



#### PROYECTO HYCHICO







#### Planta de Hidrógeno y Oxígeno



Motogenerador 1,4 MW Electrolizadores 120 Nm<sup>3</sup>/h H<sub>2</sub> 60 Nm<sup>3</sup>/h O<sub>2</sub>

Despacho de Oxígeno



Gas de Yacimiento

Purificadores de Oxígeno

Compresor de Oxígeno



## GESTIÓN Y OPERACIÓN PLANTA DE HIDRÓGENO





- Capacidad de producción: 120 Nm³ H<sub>2</sub>/h 60 Nm³ O<sub>2</sub>/h
  - •Rango de Operación: 18 al 100 % (Extendido)
    - Pureza del H<sub>2</sub> y del O<sub>2</sub>: 99,998%
- H<sub>2</sub> apto para Celdas de Combustible y Motores a Combustión Interna

Producción Total de H<sub>2</sub> 2.557.642 Nm<sup>3</sup>



Combustible para 6,8 vueltas a la Tierra de una flota de 10 buses a H<sub>2</sub>



## GESTIÓN Y OPERACIÓN PLANTA DE HIDRÓGENO





•Importantes reducciones de:

CO<sub>2</sub>, CO y NO<sub>x</sub>

- Más de 75.000 hs. de operación
- Sin evidencia de ataque por H<sub>2</sub> en metales

- •Mezcla con Gas de Yacimiento: 0-42 % H<sub>2</sub>
- Eficiencia Térmica Promedio: 40 %





#### CONTENIDO



1 Potencial Eólico Patagonia

2 Instalaciones Hychico - Planta Hidrógeno

3 Proyectos Hidrógeno

4 Conclusiones



#### BALANCE DE POTENCIA







#### Almacenamiento de Energía





Comprobamos la estanqueidad al H<sub>2</sub>

#### Aplicaciones Posibles

- Almacenar energía renovable
- Abastecer de energía eléctrica en los momentos de demanda pico
- Aprovechar la respuesta rápida y flexible de los electrolizadores para lograr una gestión de potencia estable



# Transporte Sostenible Movilidad con Hidrógeno



| Ventajas Vehículos Eléctricos (con Baterías) |    |  |
|----------------------------------------------|----|--|
| Emisiones (In Situ)                          | ++ |  |
| Contaminación Sonora                         | ++ |  |
| Costo Mantenimiento                          | ++ |  |
| Costo Combustible                            | ++ |  |
| Eficiencia "Well to Wheel"                   | ++ |  |

| Mejoras a los Vehículos Eléctricos |    |  |
|------------------------------------|----|--|
| (H <sub>2</sub> + Baterías)        |    |  |
| Autonomía                          | ++ |  |
| Tiempo de Carga                    | ++ |  |
| Peso Especifico                    | ++ |  |
| Acumulación de Energía             | ++ |  |







Energías Renovables +

Hidrógeno Renovable

Movilidad Eléctrica Sostenible

Proyecto de Transporte para zonas urbanas: 2 – 10 buses



## TRANSPORTE SOSTENIBLE BUSES Y TRANSPORTE PESADO



Ciudades Europeas con Buses a H<sub>2</sub> (+ 5.000.000 km recorridos)



EE.UU (2025): Contrato 800 camiones Suiza (2023): Contrato 1.000 camiones







HONDA CLARITY

2016



**HYUNDAI NEXO** 2018

Vehículos comerciales a H<sub>2</sub> ~8.000 mundo

| Año   | 2020   | 2025    | 2030      |
|-------|--------|---------|-----------|
| Total | 70.200 | 398.500 | 2.660.000 |



# Mercado Internacional de Hidrógeno







#### **CONTENIDO**



1 Potencial Eólico Patagonia

2 Instalaciones Hychico - Planta Hidrógeno

3 Proyectos Hidrógeno

4 Conclusiones



#### Perspectivas y Conclusiones



- El Hidrógeno es un Vector Energético que permitiría asegurar un Desarrollo Sostenible del país, siendo nuestra Visión la producción de Hidrógeno Renovable para abastecer mercados locales e internacionales.
- La Industria, las instituciones educativas y el Gobierno deben trabajar en conjunto con objetivos a los fines de lograr Leyes y Reglamentaciones que permitan asegurar el Desarrollo de las Energías Renovables.
- Argentina debe estar prepara para los próximos desafíos permitiendo que se desarrollen nuevas industrias y nuevos profesionales.
- Hychico está abocado a proyectos y desafíos en forma articulada con otras instituciones nacionales e internacionales.





## **MUCHAS GRACIAS**

ARIEL PÉREZ: 011-5288-8832 (rperez@grupocapsa.com.ar)

**EZEQUIEL SERWATKA: 011-5288-8883** (Ezequiel.serwatka@grupocapsa.com.ar)



# Electrolizador como carga inteligente. Modelado en una micro red







Dr. Ing. Roberto Daniel Fernández

Depto. de Electrónica – Depto. Ing. Química

Facultad de Ingeniería

Universidad Nacional de la Patagonia

San Juan Bosco



## Electrolizador como carga inteligente







### Electrolizador como carga inteligente





Puede, el generador equivalente, evitar que la potencia hacia la red sea tan variable como el viento?



## Electrolizador como carga inteligente



Redes inteligentes, cargas inteligentes Cuáles son las constantes de tiempo involucradas?

# Línea principal Almacenam, gas

#### Respuesta al escalón del electrolizador



#### Variabilidad del viento



[1] Eichman, J; Harrison, K. and Peters, M. "Novel Electrolyzer Applications: Providing More than just Hydrogen". NREL/TP-5400-61758. Golden, CO: National Renewable Energy Laboratory, 2014.



# Modelado de un electrolizador en una micro red (con Leandro Martínez)









# Modelado de un electrolizador en una micro red (con Leandro Martínez)









# Modelado de un electrolizador en una micro red (con L.M.)











$$\dot{n}_{H_2} = \eta_f \frac{N_c I_{el}}{zF}$$

$$\eta_f = \frac{(I_{el}/A)^2}{f_1(T) + (I_{el}/A)^2} f_2(T)$$

$$\dot{n}_{H2} = \rho I_{el}$$



#### Modelado de una micro red (con L.M.) A HYCHIC • $V_{bat} = E_o - \frac{K}{SOC} + Ae^{-B \int I_{bat} dt}$ $I_{bat}R_b$ Capacitor $I_{bat} dt$ equivalente Ceq DC/DC $\mathbf{Y}_{int\_bat}$ H₂O **Batería** DC/DC 50°C 60°C 70°C 80°C Densidad de corriente (mA/cm<sup>c</sup> Rd 250 9

SOC = 1

P<sub>el</sub>=26kW

50

100

150

Tensión (V)

200

Densidad de corriente (mA/cm2)

20

Tensión (V)

2.2

Tensión por celda (V)







## Electrolizador como carga inteligente. Modelado en una micro red



- Es posible compensar la variabilidad no solamente de la energía eólica sino del sistema en general, mediante el uso de electrolizadores como cargas inteligentes.
- Si el tamaño de los electrolizadores no es suficiente, pueden utilizarse otros elementos de la red, motores de combustión interna, celdas de combustible, etc. (Control cooperativo)
- Desde el punto de vista del electrolizador, a) "respuesta a la demanda"; b) más hidrógeno a menor precio de la energía; c) controlar la potencia reactiva para ayudar con el control de tensión; d) salir o entrar en modo de isla.
- Una red inteligente posee múltiples objetivos e impone:
- a) una estrategia general y
- b) técnicas de control que aseguren la estabilidad de la red frente a
  - •I) fuertes perturbaciones en el sistema, II) restricciones en las variables, III) minimización de costos, etc.



# Electrolizador como carga inteligente. Modelado en una micro red







Dr. Ing. Roberto Daniel Fernández

Depto. de Electrónica – Depto. Ing. Química

Facultad de Ingeniería

Universidad Nacional de la Patagonia

San Juan Bosco