Skript Numerik I

von Prof. Dr. Luise Blank im WS14/15

Gesina Schwalbe

21. Januar 2015

Inhaltsverzeichnis

1	Einf	ührung		5
2	Line	are Gle	ichungssysteme: Direkte Methoden	13
	2.1		ches Eliminationsverfahren	13
		2.1.1	Vorwärtselimination	13
		2.1.2	Rückwärtselimination	15
		2.1.4	Weitere algorithmische Anmerkungen	16
		2.1.7	Algorithmus: Gauß-Elemination zur Lösung von $Ax = b$	17
		2.1.8	Rechenaufwand gezählt in "flops"	17
		2.1.10	Allgemeines zur Aufwandsbetrachtung	18
		2.1.11	Formalisieren des Gauß-Algorithmus: LR-Zerlegung	19
	2.2	Gaußs	ches Eliminationsverfahren mit Pivotisierung	22
		2.2.1	Spaltenpivotisierung	22
		2.2.3	Algorithmus: Gauß-Elimination mit Spaltenpivotisierung	24
		2.2.5	Lösen eines Gleichungssystems $Ax = b$	27
3	Fehl	eranaly	rse	29
	3.1	Zahlen	darstellung und Rundungsfehler	29
		3.1.3	Bit-Darstellung zur Basis 2	30
		3.1.4	Verteilung der Maschinenzahlen	31
		3.1.6	Rundungsfehler	32
		3.1.8	Auslöschung von signifikanten Stellen	33
	3.2	Kondi	tion eines Problems	34
	3.3	Stabili	tät von Algorithmen	46
		3.3.13	Allgemeine Faustregeln für die LR-Zerlegung	52
	3.4	Beurte	eilung von Näherungslösungen linearer GLS	53
4	Line	are Gle	ichungssysteme: Direkte Methoden (Fortsetzung)	55
	4.1	Gaußs	ches Eliminationsverfahren mit Aquilibrierung und Nachiteration .	55
		4.1.1	Äquilibrierung der Zeilen	55
		4.1.2	Äquilibrierung der Spalten	55
		4.1.4	Nachiteration	56
	4.2	Choles	sky-Verfahren	56
		4.2.3	Cholesky-Zerlegung	59
		191	Rechengulary and in flore	50

In halts verzeichn is

	4.3	Linear	e Ausgleichsprobleme	
		4.3.2	Lineares Ausgleichsproblem	
		4.3.5	Lösung der Normalgleichung	
	4.4	Orthog	gonalisierungsverfahren	
		4.4.1	Givens-QR-Algorithmus	69
		4.4.3	Aufand des Givens-QR-Algorithmus	70
		4.4.5	Speicherung	74
		4.4.6	Householder QR-Algorithmus	
		4.4.7	Berechnung von $Q^T b$	75
		4.4.8	Aufwand für den Householder-QR-Algorithmus	75
5	Nun	nerische	e Lösung nichtlinearer Gleichungssysteme	77
	5.1	Einfüh	nrung	77
		5.1.2	Das Bisektionsverfahren	78
	5.2	Fixpu	nktiteration	79
	5.3	Konve	rgenzordnung und Fehlerabschätzungen	83
	5.4	Newto	n-Verfahren für skalare Gleichung	85
		5.4.1	Iterationsschritt des Newton(-Kantorowitsch)-Verfahrens	86
		5.4.5	Newton-Verfahren: Iterativer Linearisierungsprozess	88
		5.4.7	Iterationsschritt des Sekantenverfahrens	89
	5.5	Das N	ewton-Verfahren im Mehrdimensionalen	91
		5.5.1	Iterationsschritt des Newton-Verfahrens	91
		5.5.2	Newton-Verfahren	92
		5.5.4	Aufwand pro Iteration	92
	5.6	Abbru	chkriterien beim Newton-Verfahren	94
		5.6.1	Der Monotonietest	95
		5.6.2	Kriterium für erreichte Konvergenz	95
	5.7	Varian	ten des Newton-Verfahrens	96
		5.7.1	Iterationsschritt des vereinfachten Newton-Verfahrens	96
		5.7.2	Das Broyden-Verfahren	96
		5.7.3	Das gedämpfte Newton-Verfahren	97
6	Inte	rpolatio	on	99
	6.1	Polyno	om-Iterpolation	100
		6.1.3	Schema von Neville	102
		6.1.4	Das Horner-Schema zur Auswertung $p(x)$	102
		6.1.8	Das Schema der dividierten Differenzen	104
	6.2	Stücky	weise polynomiale Approximation durch Splines	113
		6.2.3	Nachteile der Splineraumbasis	114
		6.2.6	Gestalt der B-Splines	116
		6.2.8	Auswertung von s an der Stelle \overline{x}	
		6.2.13		122
		6.2.14	Lineare B-Splines	122
		6.2.15	Kubische B-Spline-Interpolation	123

		6.2.18 Berechnung der natürlichen Splines mittels B-Splines	125
7	Nun	nerische Integration/Quadratur	129
	7.1	v	129
		7.1.2 Mittelpunktregel	130
		7.1.3 Trapezsumme	131
	7.2	Interpolatorische Integrationsformeln	131
		7.2.3 Newton-Cotes-Formeln	132
		7.2.4 Tabelle (Newton-Cotes-Gewichte)	133
		7.2.9 Tabelle: Fehler für Newton-Cotes-Formeln	135
		7.2.10 Iterierte (wiederholte) Newton-Cotes-Formeln	136
		7.2.12 Iterierte (oder summierte) Simpsonregel (Keplersche Fassregel)	137
	7.3	Extrapolationsmethode und klassische Rombert-Quadratur	137
		7.3.2 Idee der Extrapolation	138
		7.3.4 Aufwand	139
		7.3.5 Klassische Romberg-Folge zur Romberg-Quadratur	139
		7.3.6 Bulirsch-Folge	140
		7.3.7 Verfahren und Abbruch	140
	7.4	Gauß-Quadratur und Orthogonalsysteme	143
		7.4.1 Voraussetzungen an w	143
		7.4.10 Vergleich und Bemerkungen	146
8	Eige	enwertabschätzung	147
	8.1	Eigenwertabschätzungen	147
	8.2	Potenzmethode (Vektoriteration, power method)	148
		8.2.1 Voraussetzung für die Potenzmethode	148
		8.2.2 Vektoriteration	149
		8.2.3 Direkte Potenzmethode/Vektoriteration	150
	8.3	Inverse Vektoriteration	151
		8.3.1 Inverse Vektoriterations mit Spektralverschiebung	152
	8.4	Klassische (stationäre) Verfahren	154
9	Line	eare Gleichungssysteme: Iterative Methoden	157
	9.1	<u> </u>	157
			159
	9.2	Klassische (stationäre) Verfahren	159
Lit	teratı	ur	167

9.1 Einführung

Beispiel 9.1.1 (Approximation der Poisson-Gleichung). Betrachte $\Delta u = u_{xx} - u_{yy} = f$ in $\Omega = (0,1)^2$ mit u=0 auf $\delta\Omega$

9 Lineare Gleichungssysteme: Iterative Methoden

Abb. 9.1.0 Gitter mit Unbekannten

Es gibt N^2 Unbekannte, $N^2 \times N^2$. Also $A \in \mathbb{R}^{n \times n}$ mit $n = N^2$.

$$(x_0, y_0), (x_1, y_0), (x_2, y_0), \dots, (x_{N+1}, y_0), (x_0, y_1), (x_1, y_1), \dots, (x_{N+1}, y_{N+1})$$

 $\Rightarrow 0 \dots 0 \underbrace{-1 \ 0 \dots 0 \ -1}_{N} \ 4 \underbrace{-1 \ 0 \dots 0 \ -1}_{N} \ 0 \dots 0 \quad i\text{-te Zeile von } A$

-1

Damit sind nur maximal 5 Elemente verschieden von Null je Zeile und Au benötigt ca. $5n = 5N^2$ Multiplikationen (statt $n^2 = N^4$).

$$A = \begin{pmatrix} A_{11} & -I & 0 \\ -I & \ddots & \ddots & \\ & & -I \\ 0 & & -I & A_{nn} \end{pmatrix} \quad \text{mit } A_{ii} = \begin{pmatrix} 4 & -1 & \\ -1 & \ddots & \ddots & \\ & & & -1 \\ & & -1 & 4 \end{pmatrix} \in \mathbb{R}^{n \times n}$$
(9.1.1)

9.1.2 Typische Aufgabenstellung

Zu lösen ist Ax = b mit

- $A \in \mathbb{R}^{n \times n}$, n sehr groß
- \bullet A dünn besetzt
- A hat Blockstruktur

s. Folien

9.2 Klassische (stationäre) Verfahren

Betrachte

$$Ax = b (9.2.1)$$

Wähle nun für A eine **Aufspaltung** A = M - N mit einer einfach invertierbaren Matrix M, s.d.

$$Mx = Nx + b \tag{9.2.2}$$

Die **Iterationsvorschrift** ist dann: Löse zu einem gegebenen Startwert $x^{(0)}$ als Schätzung für x für k = 0, -1, 2, ...

$$Mx^{(k+1)} = Nx^{(k)} + b (9.2.3)$$

Es ergeben sich folgende Äquivalenzen

$$(9.2.3) \Leftrightarrow x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b \tag{9.2.4}$$

$$\Leftrightarrow x^{(k+1)} = x^{(k)} + M^{-1}r^{(k)}$$
 (9.2.5)

mit $r^{(k)} = b - Ax^{(k)}$ (Residuum im k-ten Schritt).

Als Abbruchkriterium

a) sollte immer eine maximale Iterationszahl angegeben werden und

- 9 Lineare Gleichungssysteme: Iterative Methoden
- b) wird oft für eine gegebene Toleranz $tol \ge ||r^{(k)}||$ oder wie diskutiert $tol \cdot ||b|| \ge ||r^{(k)}||$ verwendet.

Nach (9.2.4) ergibt sich also die **Fixpunktiteration**

$$x^{(k+1)} = Gx^{(k)} + d = g(x^{(k)})$$
(9.2.6)

zur Fixpunktgleichung

$$x^* = Gx^* + d = g(x^*)$$

mit der Iterationsmatrix

$$G = M^{-1}N = I - M^{-1}A = g'(x)$$
(9.2.7)

und $d = M^{-1}b$. Weiterhin folgt

$$x^{(k+1)} - x^* = G(x^{(k)} - x^*) = G^{k+1}(x^{(0)} - x^*)$$

und hiermit gilt elementweise (falls $x^{(0)} - x^* \notin ker(G^{k+1})$)

$$\lim_{k \to \infty} x^{(k)} = x^* \quad \Leftrightarrow \quad \lim_{k \to \infty} G^k = 0$$

Satz 9.2.1 (Konvergenzkriterien). Sei $G \in \mathbb{R}^{n \times n}$. Dann sind folgende Aussagen äquivalent:

- i) Die Iteration (9.2.6) konvergiert für jeden Startwert $x^{(0)} \in \mathbb{R}^n$
- ii) Es gilt $\lim_{k\to\infty} G^k = 0$
- iii) Für den Spektralradius $\rho(G) := \max_i |\lambda_i| \text{ mit } \lambda_i \in \mathbb{C} \text{ Eigenwert zu } G \text{ gilt}$

$$\rho(G) < 1 \tag{9.2.8}$$

Beweis. i) \Leftrightarrow ii): siehe oben.

- ii) \Rightarrow iii): Ist $\rho(G) \ge 1$ dann existiert ein Eigenwert $\lambda \in \mathbb{C}$ mit $|\lambda| > 1$ und Eigenvektor $v \ne 0$ zu G. Damit ist $G^k v = \lambda^k v$. Mit $\lim_{k \to \infty} \lambda^k \ne 0$ (falls existent) folgt $\lim_{k \to \infty} G^k \ne 0$.
- iii) \Rightarrow ii): Sei $\rho(G) < 1$. Da $\left(TGT^{-1}\right)^k = TG^kT^{-1}$ für eine invertierbare Matrix T, reicht es, für die Jordansche Normalform $J = TGT^{-1}$ von G zu zeigen, dass $\lim_{k\to\infty} J^k = 0$

gilt. Da
$$J^k = \begin{pmatrix} J_1^k & 0 \\ & \ddots & \\ 0 & & J_m^k \end{pmatrix}$$
 mit den Jordankästchen $J_i = \begin{pmatrix} \lambda_i & 1 & 0 \\ & \ddots & \ddots & \\ & & & 1 \\ 0 & & & \lambda_i \end{pmatrix} =: \lambda_i I + S_i$

$$\text{mit } S_i = \begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & & 1 \\ 0 & & & 0 \end{pmatrix} \text{ ist, ist nur } \lim_{k \to \infty} J_i^k \text{ zu untersuchen.}$$

$$J_i^k = (\lambda_i I + S_i)^k$$

$$= \sum_{l=0}^k \binom{k}{l} \lambda_i^{k-l} S_i^l$$

$$= \sum_{l=0}^{n-1} \binom{k}{l} \lambda_i^{k-l} S_i^k$$

für $k \geq n$, da für $S_i \in \mathbb{R}^{r \times r}$ gilt $S_i^r = 0$ und mit $r \leq k$ ist dann $\lim_{k \to \infty} S_i^k = 0$. Weiterhin gilt $\binom{k}{l} \leq k^l$ und wegen $|\lambda_i| < 1$

$$\left| \begin{pmatrix} k \\ l \end{pmatrix} \right| \cdot \left| \lambda_i^{k-l} \right| \le \left| \lambda_i^k \right| \cdot \left| \frac{k}{\lambda_i} \right|^l \le \left| \lambda_i \right|^k \cdot \left| \frac{k}{\lambda_i} \right|^n \overset{k \to \infty}{\longrightarrow} 0$$

Also $J_i^k \longrightarrow 0$ für $k \longrightarrow \infty$.

Lemma 9.2.2. Für jede von einer Vektornorm induzierten Matrixnorm ||•|| gilt

$$\rho(G) \le \|G\| \tag{9.2.9}$$

Beweis. Sei λ Eigenwert von G zum Eigenvektor v. Dann gilt $\frac{\|Gv\|}{\|v\|} = |\lambda|$ und daraus folgt direkt

$$||G|| \ge \sup_{v \in V} \frac{||Gv||}{||v||} \ge |\lambda| \quad \forall \lambda$$

 $\|G\| < 1$ ist meist leichter zu prüfen als $\rho(G) < 1$. Desweiteren gilt die Fehlerabschätzung

$$||x^{(k)} - x^*|| \le ||G||^k ||x^{(0)} - x^*||$$
 (9.2.10)

für submultiplikative Matrixnormen.

Index

Äquilibrierung	absoluter Rundungsfehler, 32
Spalten-, 55	Fortpflanzung, 48
Zeilen-, 55	relativer, 34
,	Fehlerschranke, 130
abgebrochene Potenz, 114	Fixpunktiteration, 78, 79
Abstiegsrichtung, 97	floating point, 29, 30
affin-invariant, 92	floating point operations, 17
Algorithmus, 48	flops, 17
Approximationsfehler, 135	Frobeniusmatrix, 20
Ausgleichsproblem	,,
linear, 59, 61	Güte
D 1 1 D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Algorithmus, 50
Banachscher Fixpunktsatz, 81	Gauß-Eleminator, 17
Basis, 30	Gaußsches Eliminationsverfahren, 13, 19
Bildraum, 61	Genauigkeit
Bisektionsverfahren, 78	Maschinengenauigkeit, 32
Broyden-Verfahren, 96	relative Rechengenauigkeit, 32
Bulirsch-Folge, 140	Gerschgorin-Kreise, 147
Cholesky-Zerlegung, 58, 59, 64	Givens-QR-Algorithmus, 69
Cholesky-Zeriegung, 96, 99, 04	Givens-Rotation, 68
de Boor-Punkte, 121	Gleitkommazahl, 30
dividierte Differenzen, 103	,
Fehlerdarstellung, 108	Hamiltonsches Prinzip, 124
Leibnizregel, 105	Hermite-Interpolationspolynom, 106
Schema, 104	Horner-Schema, 102
verallgemeinerte Form, 107	Householder Reflexion, 72
double, 30	Householdervektoren, 74
Drei-Term-Rekursionsformel, 144	Hutfunktion, 116
Dreieckszerlegung, 13, 17	T 1 10
Broteenszeriegung, 15, 11	Implementation, 48
elementar ausführbar, 48	integer, 29
entkoppelt, 43	Integrationsformel
Euler-Maclaurinsche Summenformel, 137	interpolatorische/Newton-Cotes-Formeln, 131
Fehler, 29, 34	Interpolation
absoluter, 34	-eigenschaft, 99

Index

-polynom, 100	Euklidische Norm, 35, 111
Konvergenz, 111	Frobeniusnorm, 35
Lagrange-Formel, 100	Hölder-Norm, 35
iterativer Linearisierungsprozess, 88	Matrixnorm, 35
	Maximumsnorm, 35
Kondition	Spaltensummennorm, 36
Addition, 37	submultiplikative, 35
gut/schlecht konditioniert, 36	Summennorm, 35
komponentenweise, 44	verträglich, 35
Matrix, 40	normalisierte Gleitkommazahl, 30
normweise, absolut, 36	normweise Kondition, 36
normweise. relativ, 36	Nullstellenbestimmung, 77
Kontraktion, 80	Numerische Quadratur, 129
Konvergenz	,
global, 84	orthogonale Projektion, 62
linear, 83	Orthogonalisierung, 66
lokal, 84	
Ordnung, 83, 85	p-Norm, 35
quadratisch, 83	Peano-Kern, 134
superlinear, 83	Permutationsmatrix, 24
1	Pivotelement, 16
längenerhaltend, 65	Pivotisierung, 22
Lagrange-Polynome, 100	halbmaximale, 22
Landau-Symbole, 18	partielle, 22
Legendre-Polynom, 111	Spalten-, 22
Lemma von Aitken, 101, 107	vollständige, 23
LR-Zerlegung, 19	Zeilen-, 23
Mantisse, 30	Polynomraum, 100
Maximum-Likelihood-Methode, 61	Newtonsche Darstellung, 104
Mehrschrittverfahren, 91	Problem, 34
Moment, 143	Projektionssatz, 62
Wilding, 149	Oue due trunferme el
Nachiteration, 56	Quadraturformel
Neumannsche Reihe, 41	abgeschlossen, 132
Neville-Schema, 102	Ordnung, 136
Newton-Cotes-Formeln	Rückwärtsanalyse, 50
wiederholt, 136	Rückwärtssubstitution, 15
Newton-Polynome, 103	Realisierung, 48
Newton-Verfahren, 85	Rechenaufwand, 17, 18
Korrekturschritt, 92	Restglieddarstellung, 109
mehrdimensional, 91	Romberg-Folge, 139
Newton-Korrektur, 92	Rundungsfehler, 29
vereinfacht, 96	, -
Norm, 34, 110	scharf, 38

Sekantenverfahren, 89 Simpsonregel, 137 Singulärwert, 36 Skalarprodukt, 143 Skalierung Spalten-, 55 Zeilen-, 55 spd Matrix, 56 Spline, 113 B-Splines, 116 kubisch, 114 linear, 114 Splineraumbasis, 114 $S_{1,\Delta}$ -Basis, 115 $S_{2,\Delta}$ -Basis, 115 Stützstelle, 99 Stützwert, 99 Stabilität, 50 strikt diagonal dominant, 52 Tangentenverfahren, 86 Toleranz, 95 Trapezregel, 131 Tschebyscheff-Polynom, 110 Tschebyscheff-Punkte, 110 unipotent, 58 Vektoriteration, 149 Verfahren von Crout, 21 Vorwärtselimination, 13, 26 Vorwärtssubstitution, 13, 15, 17 Zahlendarstellung, 29 Zeilensummennorm, 36

Literatur

- [Boo01] Carl de Boor. A Practical Guide to Splines. Applied Mathematical Sciences. Springer New York, 2001. ISBN: 9780387953663.
- [DH08] Peter Deuflhard und Andreas Hohmann. <u>Numerische Mathematik. 1</u>. 4. Aufl. de Gruyter Lehrbuch. Eine algorithmisch orientierte Einführung. Walter de Gruyter & Co., Berlin, 2008. ISBN: 978-3-11-020354-7.
- [DR08] Wolgang Dahmen und Arnold Reusken. Numerik für Ingenieure und Naturwissenschaftler.
 2. Aufl. Springer-Lehrbuch. Springer-Verlag, Berlin, 2008. ISBN: 978-3-540-76493-9.
- [FH07] R.W. Freund und R.H.W. Hoppe. Stoer/Bulirsch: Numerische Mathematik 1. Springer-Lehrbuch Bd. 1. Springer-Verlag Berlin Heidelberg, 2007. ISBN: 9783540453901. URL: https://books.google.de/books?id=2aYfBAAAQBAJ.
- [GO96] Gene Golub und James M. Ortega. <u>Scientific computing</u>. Eine Einführung in das wissenschaftliche Rechnen und Parallele Numerik, Übersetzung des englischsprachigen Originals von 1993. B. G. Teubner, Stuttgart, 1996. ISBN: 3-519-02969-3. DOI: 10.1007/978-3-322-82981-8.
- [HH94] Günther Hämmerlin und Karl-Heinz Hoffmann. Numerische Mathematik. 4. Aufl. Springer-Lehrbuch. Grundwissen Mathematik. Springer-Verlag, Berlin, 1994. ISBN: 3-540-58033-6. DOI: 10.1007/978-3-642-57894-6.
- [Pre+02] William H. Press u. a. <u>Numerical recipes in C++</u>. The art of scientific computing, Second edition, updated for C++. Cambridge University Press, Cambridge, 2002. ISBN: 0-521-75033-4.
- [SB90] Josef Stoer und Roland Bulirsch. Numerische Mathematik. 2. 3. Aufl. Springer-Lehrbuch. Eine Einführung—unter Berücksichtigung von Vorlesungen von F. L. Bauer. Springer-Verlag, Berlin, 1990. ISBN: 3-540-51482-1. DOI: 10.1007/978-3-662-22250-8.
- [SW05] Robert Schaback und Holger Wendland. <u>Numerische Mathematik</u>. Springer-Lehrbuch. Springer-Verlag Berlin Heidelberg, 2005. ISBN: 9783540267058. URL: https://books.google.de/books?id=wdgmBAAAQBAJ.