

HARDWARE-BESCHREIBUNGSSPRACHEN

Hardwareentwurf mit VHDL

21. Oktober 2021 Revision: b941727 (2021-01-16 01:57:51 +0100)

Steffen Reith

Theoretische Informatik Studienbereich Angewandte Informatik Hochschule **RheinMain**

CONSTRAINTS & SYNTHESE

Notizen			
lotizen			

EINLEITUNG

Bei der Umsetzung von VHDL-Beschreibungen müssen die **Eigenschaften der realen Hardware** beschrieben und **die Synthese gesteuert** werden:

- → I/O-Standard der I/O-Schnittstellen (z.B. 3.3V Logik)
- → Zuordnung von Signalen und physikalischen Pins
- → Verwenden verschiedener Grundblöcke (Block-RAM, Distributed-RAM, LUT-RAM, DSP-Slices, Mixed-Mode Clock Manager)
- → Beeinflussung von Routing (sollen Signale, wenn möglich, entfernt werden) und Placement (wo auf dem FPGA sollen Elemente benutzt werden)
- → Welche Laufzeit zwischen den Bauteilen ist noch zulässig (Taktfrequenz)

91

Constraints & Synthese

EINLEITUNG (II)

Vivado verwendet zur Beschreibung diese Nebenbedingungen (engl. **Constraints**) sogenannte XDC-Files (Xilinx Design Constraints). XDC-Anweisungen sind TCL-Kommandos, die an Synopsys Design Constraints (SDC) angelehnt sind und Xilinx-spezifische Erweiterungen enthalten. UCF-Constraints (Xilinx ISE-Tools) werden von Vivado nicht mehr unterstützt. Beispiel:

create_clock -period 10.000 -name clk -waveform {0.000 5.000} [get_ports clk]
set_property PACKAGE_PIN E16 [get_ports reset]

TCL (Tool command language) ist eine extrem simple ("radically simple") und erweiterbare **Skriptsprache** ohne reservierte Schlüsselwörter. Jede Variable hat einen String ("everything is a string") als Wert. TCL erlaubt selbstmodifizierenden Code und kann als Bibliothek leicht in eigene Programme integriert werden.

lotizen				
lotizen				
Jotizen				

PINS UND SIGNALE

Auf den verbreiteten FPGA-Entwicklungsplatinen sind die Pins der Bausteine speziell markiert. So beschreibt U9 auf dem Nexys4-Board den Schiebeschalter 0 und L14 entspricht dem H-Sync Pin des VGA-Steckers.

93

Constraints & Synthese

PINS UND SIGNALE (II)

Die Pins werden mit den entsprechenden Signalen wie folgt verbunden, wenn der Baustein

```
1 entity toplevel is
2 port (
3 ....
4 switches : in std_logic_vector(15 downto 0);
5 hsync : out std_logic;
6 ...
7 );
8 end entity;
```

verdrahtet werden soll:

set_property PACKAGE_PIN U9 [get_ports {switches[0]}]
set_property PACKAGE_PIN L14 [get_ports hsync]

Notizen			
Notizen			

SPANNUNGSVERSORGUNG UND I/O-STANDARDS

Das Nexys4-Board arbeitet mit einer Spannungsversorgung von 3.3 V. Dies wird durch die folgenden Constraints beschrieben:

set_property CFGBVS Vcco [current_design]
set_property CONFIG_VOLTAGE 3.3 [current_design]

Peripheriebausteine mit 3.3V können durch

set_property PACKAGE_PIN H14 [get_ports oe_n]
set_property IOSTANDARD LVCMOS33 [get_ports oe_n]
set_property SLEW FAST [get_ports oe_n]
set_property IOB TRUE [get_ports oe_n]

spezifiziert werden. Dabei zwingt set_property IOB TRUE das Synthesetool für das Signal oe_n einen I/O-Block zu verwenden.

95

Constraints & Synthese

EINIGE I/O-STANDARDS

I/O Standard		V _{IL}	V _{II}	Н	V _{OL}	V _{OH}	I _{OL}	I _{OH}
i/O Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
HSTL_I	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8.00	-8.00
HSTL_I_18	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8.00	-8.00
HSTL_II	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16.00	-16.00
HSTL_II_18	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16.00	-16.00
HSUL_12	-0.300	V _{REF} - 0.130	V _{REF} + 0.130	V _{CCO} + 0.300	20% V _{CCO}	80% V _{CCO}	0.10	-0.10
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 3	Note 3
LVCMOS15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	Note 4	Note 4
LVCMOS18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} - 0.450	Note 5	Note 5
LVCMOS25	-0.300	0.7	1.700	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 4	Note 4
LVCMOS33	-0.300	0.8	2.000	3.450	0.400	V _{CCO} - 0.400	Note 4	Note 4
LVTTL	-0.300	0.8	2.000	3.450	0.400	2.400	Note 5	Note 5
MOBILE_DDR	-0.300	20% V _{CCO}	80% V _{CCO}	V _{CCO} + 0.300	10% V _{CCO}	90% V _{CCO}	0.10	-0.10
PCI33_3	-0.400	30% V _{CCO}	50% V _{CCO}	V _{CCO} + 0.500	10% V _{CCO}	90% V _{CCO}	1.50	-0.50
SSTL135	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	13.00	-13.00
SSTL135_R	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	8.90	-8.90
SSTL15	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	13.00	-13.00
SSTL15_R	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	8.90	-8.90
SSTL18_I	-0.300	V _{REF} - 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	V _{CCO} /2 - 0.470	V _{CCO} /2 + 0.470	8.00	-8.00
SSTL18_II	-0.300	V _{REF} - 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	V _{CCO} /2 - 0.600	V _{CCO} /2 + 0.600	13.40	-13.40

Quelle: Xilinx, DS181, Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics, Table 8

Notizen			
			_
			_
Notizen			
			_
			_
			_
			_

SWITCHING CHARACTERISTICS

		-		•	-														
			T _I	OPI					T _{IC}	OOP					T _i	ОТР			
			Speed	Grade	•				Speed	Grad	В				Speed	Grade	•		
I/O Standard		1.5	οv		0.95V	0.9V		1.	υV		0.95V	0.9V		1.0	οv		0.95V	0.9V	Units
	-3	-2/ -2LE	-1	-1Q/ -1M	-1LI	-2LE	-3	-2/ -2LE	-1	-1Q/ -1M	-1LI	-2LE	-3	-2/ -2LE	-1	-1Q/ -1M	-1LI	-2LE	
LVTTL_S4	1.26	1.34	1.41	1.53	1.41	1.58	3.80	3.93	4.18	4.18	4.18	4.41	3.82	3.96	4.20	4.20	4.20	4.05	ns
LVTTL_S8	1.26	1.34	1.41	1.53	1.41	1.58	3.54	3.66	3.92	3.92	3.92	4.15	3.56	3.69	3.93	3.93	3.93	3.78	ns
LVTTL_S12	1.26	1.34	1.41	1.53	1.41	1.58	3.52	3.65	3.90	3.90	3.90	4.13	3.54	3.68	3.91	3.91	3.91	3.77	ns
LVTTL_S16	1.26	1.34	1.41	1.53	1.41	1.58	3.07	3.19	3.45	3.45	3.45	3.68	3.09	3.22	3.46	3.46	3.46	3.31	ns
LVTTL_S24	1.26	1.34	1.41	1.53	1.41	1.58	3.29	3.41	3.67	3.67	3.67	3.90	3.31	3.44	3.68	3.68	3.68	3.53	ns
LVTTL_F4	1.26	1.34	1.41	1.53	1.41	1.58	3.26	3.38	3.64	3.64	3.64	3.86	3.28	3.41	3.65	3.65	3.65	3.50	ns
LVTTL_F8	1.26	1.34	1.41	1.53	1.41	1.58	2.74	2.87	3.12	3.12	3.12	3.35	2.76	2.90	3.13	3.13	3.13	2.99	ns
LVTTL_F12	1.26	1.34	1.41	1.53	1.41	1.58	2.73	2.85	3.10	3.10	3.10	3.33	2.74	2.88	3.12	3.12	3.12	2.97	ns
LVTTL_F16	1.26	1.34	1.41	1.53	1.41	1.58	2.56	2.68	2.93	2.93	2.93	3.16	2.57	2.71	2.95	2.95	2.95	2.80	ns
LVTTL_F24	1.26	1.34	1.41	1.53	1.41	1.58	2.52	2.65	2.90	3.23	2.90	3.22	2.54	2.68	2.91	3.24	2.91	2.86	ns
LVDS_25	0.73	0.81	0.88	0.89	0.88	0.90	1.29	1.41	1.67	1.67	1.67	1.86	1.31	1.44	1.68	1.68	1.68	1.50	ns
MINI_LVDS_25	0.73	0.81	0.88	0.89	0.88	0.90	1.27	1.40	1.65	1.65	1.65	1.88	1.29	1.43	1.66	1.66	1.66	1.52	ns
BLVDS_25	0.73	0.81	0.88	0.88	0.88	0.90	1.84	1.96	2.21	2.76	2.21	2.44	1.85	1.99	2.23	2.77	2.23	2.08	ns
RSDS_25 (point to point)	0.73	0.81	0.88	0.89	0.88	0.90	1.27	1.40	1.65	1.65	1.65	1.88	1.29	1.43	1.66	1.66	1.66	1.52	ns
PPDS_25	0.73	0.81	0.88	0.89	0.88	0.90	1.29	1.41	1.67	1.67	1.67	1.88	1.31	1.44	1.68	1.68	1.68	1.52	ns
TMDS_33	0.73	0.81	0.88	0.92	0.88	0.90	1.41	1.54	1.79	1.79	1.79	1.99	1.43	1.57	1.80	1.80	1.80	1.63	ns
PCI33_3	1.24	1.32	1.39	1.52	1.39	1.57	3.10	3.22	3.48	3.48	3.48	3.71	3.12	3.25	3.49	3.49	3.49	3.34	ns
HSUL_12_S	0.67	0.75	0.82	0.88	0.82	0.87	1.81	1.93	2.18	2.18	2.18	2.41	1.82	1.96	2.20	2.20	2.20	2.05	ns
HSUL_12_F	0.67	0.75	0.82	0.88	0.82	0.87	1.29	1.41	1.67	1.67	1.67	1.90	1.31	1.44	1.68	1.68	1.68	1.53	ns
DIFF_HSUL_ 12_S	0.68	0.76	0.83	0.86	0.83	0.88	1.81	1.93	2.18	2.18	2.18	2.21	1.82	1.96	2.20	2.20	2.20	1.84	ns

Quelle: Xilinx, DS181, Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics, Table17

97

Constraints & Synthese

CLOCKS

Für Timing-Analysen müssen Clock-Beschreibungen durch geeignete Constraints angelegt werden:

Dies beschreibt einen 100 MHz Takt mit einem Tastverhältnis von 50%, da alle Einheiten in **ns** gegeben werden.

Weitere Hinweise zum Umgang mit Clocks findet sich in UG903, Vivado Design Suite User Guide, Using Constraints

Notizen			
Notizen			

CLOCKS (II)

Auch andere Tastverhältnisse sind möglich:

Aus einem Taktsignal **abgeleitete** Takte werden von Vivado erkannt und **entsprechend** in die Timinganalyse **übernommen**.

Mit verschiedenen Primitiven auf einem FPGA können nahezu beliebige Takte erzeugt werden. Auf den verwendeten Artix7-Bausteinen stehen z.B. Mixed-Mode Clock Manager (MMCM) zur Verfügung.

99

Constraints & Synthese EIN MMCM

Notizen			
Notizen			

Constraints & Synthese

EIN MMCM (II)

Solche Clock Manager können mit dem "Clock-Wizard" von Vivado instantiiert werden oder durch besondere VHDL-Beschreibungen, die das Synthesetool automatisch erkennt (siehe: UG768, Xilinx 7 Series FPGA Libraries Guide for HDL Designs)

```
1 library ieee;
2 use ieee.std_logic_1164.all;
3
4 library unisim;
5 use unisim.vcomponents.all;
6
7 entity ClkGen is
8
9 port (reset : in std_logic;
10 clkIn : in std_logic;
11 clkOut : out std_logic);
12
13 end ClkGen;
```

101

Constraints & Synthese

EIN MMCM (III)

Kleiner Ausschnitt:

```
-- Instantiate a input clock buffer
   clkInBuffer : IBUFG
    port map (0 => clkInI,
             I => clkIn);
    -- Instantiate a clock buffer for the internal feedback signal
   feedbackBuffer : BUFG
   port map (0 => clkfbIBuf,
             I => clkfbI);
   -- Instantiate a clock manager
   clkgen : MMCME2_ADV
  generic map (
  CLKFBOUT_MULT_F
                        => 8.000,
                                     -- multiply feedback for 80Mhz
   --CLKFBOUT_MULT_F => 10.000, -- multiply feedback for 100Mhz
13
   CLKFBOUT_PHASE
                        => 0.000, -- phase of feedback output
   CLKFBOUT_USE_FINE_PS => false, -- Don't enable fine shift
    ...)
```

lotizen			
lotizen			
lotizen			