

5a.

Piezoelektrický jev

Piezoelektrické senzory

Přednášející: prof. Ing. Miroslav Husák, CSc.

husak@fel.cvut.cz,

http://micro.fel.cvut.cz

tel.: 2 2435 2267

Cvičící: Ing. Adam Bouřa, Ph.D.

Ing. Alexandr Laposa, Ph.D.

A) Piezoelektrický jev

https://www.americanpiezo.com/knowledge-center/piezo-theory.html

Piezoelektrický jev – historie

- □ 1880 Pierre a Jacques Curie Objev piezoelektricity v krystalu turmalínu
- □ 40. léta 20. stol. objev piezoelektricity ve feroelektrických piezokeramikách
- 40. léta 20. stol. výzkum piezoelektricity v biopolymerech (biologický materiál z rostlin, zvířat a člověka)
- 1969 objevena piezoelektricita v PVDF (piezoelektrický syntetický polymer)

Piezoelektrický jev – model

Piezoelektrický jev – podélný jev

F_x - Deformační síla *působí* ve směru elektrické osy x.

 P_e - Vektor polarizace je rovnoběžný s osou x a je úměrný působícímu mechanickému tlaku

$$P_{e} = k_{p}p_{x} = k_{p}\frac{F_{x}}{S_{x}}$$

piezoelektrická konstanta

Na každé stěně kolmé k elektrické ose vznikne elektrický náboj

$$Q_x = P_e S_x = k_p F_x$$

napětí na elektrodách

$$U_{x} = \frac{Q_{x}}{C} = \frac{k_{p}}{C} F_{x} = k_{u} F_{x} \qquad U_{xx} = k_{u} F_{x}$$

$$U_{xx} = k_u F_x$$

? Podélný piezoelektrický jev: Nakreslete princip činnosti piezoelektrického senzoru, Napište základní rovnice pro výpočet náboje a napětí

k,, je napěťová citlivost

Piezoelektrický jev – příčný jev

Zkou ška

F_y - deformační síla působí kolmo na elektrickou osu ve směru mechanické osy y.

 P_e - Vektor polarizace působí rovněž rovnoběžně s osou x, ale má opačný směr.

$$P_{e} = -k_{p}p_{y} = -k_{p}\frac{F_{y}}{S_{y}}$$

náboj na elektrodách

$$Q_x = P_e S_x = -k_p \frac{F_y S_x}{S_y} = -k_p \frac{b}{a} F_y$$

napětí na elektrodách

$$U_x = \frac{Q_x}{C} = -\frac{k_p}{C} \frac{b}{a} F_y = k_u \frac{b}{a} F_y$$

$$U_{xx} = k_u \frac{b}{a} F_y$$

? Příčný piezoelektrický jev: Nakreslete princip činnosti piezoelektrického senzoru, Napište základní rovnice pro výpočet náboje a napětí se zahrnutím vektoru polarizace, význam jednotlivých členů v rovnicích

kde k, je napěťová citlivost piezoelektrického elementu

Piezoelektrický jev – shrnutí

Podélný piezoelektrický jev (Fx)

$$Q_{xx} = k_p F_x \qquad Q_{xx} = CU_x$$

$$U_{xx} = k_u F_x \qquad k_x = \frac{k_p}{k_x}$$

Příčný piezoelektrický jev (Fy)

$$Q_{xx} = k_p \frac{b}{a} F_y$$

$$U_{xx} = k_u \frac{b}{a} F_y$$

k_p – piezoelektrická konstanta

k_u – napěťová citlivost senzoru

Piezoelektrický jev – přímý, nepřímý, materiály

Piezoelektrický jev

je založen na elastické deformaci a orientaci elektrických dipólů v krystalové struktuře. Základem je nesymetrická struktura krystalu, ve které se neshodují centra elektrického náboje a tak vytvářejí dipóly.

Přímý piezoelektrický jev

Přiložením vnější mechanické síly se deformují dipóly a na povrchu krystalu tak vzniká náboj.

Inverzní piezoelektrický jev

Přiložené elektrické pole způsobí deformaci dipólů a vzniká konstantní intenzita mechanického napětí

Dvě základní skupiny piezoelektrických materiálů

- a) materiály s vestavěnou sítí elektrických dipólových momentů (krystalická piezoelektrika)
- b) Materiály bez piezoelektrických vlastností, musejí být pólovány, aby se staly piezoelektrickými (Keramické a polymerní), Polyvinylfluorid natahování nebo elektrické pólování, PZT elektrické pole při zvýšené teplotě, aby se snížilo koercitivní pole s následným ochlazováním.

Piezoelektrický jev – princip polarizace

Polarizace:

- Polarizace aplikací silného stejnosměrného elektrického pole při teplotě těsně pod Curierovou teplotou – spontánně orientovaná zrnka jsou orientovány ve směru elektrického pole.
- Keramické (PZT) nemá po výrobě piezoelektrický efekt získá se krátkým průchodem proudu (polarizací), elektrické pole při zvýšené teplotě, aby se snížilo koercitivní pole s následným ochlazováním
- Polymerové (Polyvinylfluorid) natahování nebo elektrické pólování

Keramika bez piezoelektrických vlastností

Polarizace - při průtoku elektrického proudu

Zbytková polarizace

Piezoelektrický jev – materiály

- Zkou ška
- Monokrystaly (křemen, lithium niobát a lithium tantalát, amonium dihydrogen sulfát, lithium sulfát a Rochellova sůl), pro SAW
- ☐ Piezoelektrická keramika (Slinutá PZT keramika olovo zirkon titan, PLZT keramika (přidává se lanthan, 2-8x větší napětí než PZT keramika), Titaničitan barnatý, Titaničitan zirkoničitoolovnatý ...
- Piezoelektrické polymery (Polymery na bázi polyvinylfuoridu (PVFD))
- Piezoelektrické kompozity keramika/polymer
- Perovskity (skupina materiálů ABO_3 , se strukturou stejnou jako titaničitan Calcia ($CaTiO_3$). Materiály: itaničitan baria ($BaTiO_3$), titaničitan olova ($PbTiO_3$), zirkoničitan titaničitan olova ($PbZrTi_{1-x}O_3$ nebo PZT), zirkoničitan titaničitan olova lanthanu [$Pb_{1-x}La_x(Zr_y T_{1-y})_{1-x/4}O_3$ nebo PLZT] a niobát olova manganu [$PbMg_{1/3}Nb_{2/3}O_3$ nebo PMN].

? Piezoelektrické materiály: Napište alespoň 3 základní typy piezoelektrických materiálů, vysvětlete pojem polarizace piezoelektrického materiálu

Syntetické

Přírodní

Piezoelektrický jev – vlastnosti materiálů (Curie tepl)

ONE Nedostatky:

- Hystereze
- Vliv teploty
- Stárnutí

? Piezoelektrické materiály: Napište názvy 3 typických piezoelektrických materiálů, nakreslete příklad teplotní závislosti s Curie teplotou, jaký význam má tato teplota

Piezoelektrický jev – porovnání vlastností

Parametr	Keramika	Polymer	Kompozit keramika/polymer
Akustická impedance	Vysoká (-)	Nízká (+)	Nízká (+)
Vazební faktor	Vysoký (+)	Nízký (-)	Vysoký (+)
Falešné módy	Mnoho (-)	Málo (+)	Málo (+)
Dielektrická konstanta	Vysoká (+)	Nízká (-)	Střední (+)
Pružnost	Tuhá (-)	Pružná (+)	Pružná (+)
Cena	Nízká (+)	Vysoká (-)	Střední (+)

Piezoelektrický jev – příklad používaných materiálů

Název	seignettova sůl	křemen	titaničitan barnatý	titaničitan zirkoničitoolovnatý
chemický vzorec	Na KC ₄ H ₄ O ₆ , 4H ₂ O	SiO ₂	BaTiO ₃	PbZrTiO ₅
k _p [CN ⁻¹]	300	2.1	120	
k _u [VN ⁻¹]	18	5	1	
max. teplota [°C]	45	550	110	120
ε _r [-]	350	4,5	1200 ÷ 1700	2700
mechanická pevnost [MPa]	1.5 . 104	1.10	8.10	
meze relativní vlhkosti [%]	30 - 85	0 - 100	0 - 100	
hustota [kg.dm ⁻³]	1.77	2.6	5.5	7.6

B) Senzory s piezoelektrickým principem

Piezoelektrický jev – senzor, aktuátor

Princip činnosti – piezoelektrický senzor

Princip činnosti – piezoelektrický aktuátor

Piezoelektrický jev – princip činnosti senzor vibrací

Piezoelektrický jev – princip činnosti aktuátoru (zdroj vibrací)

Piezoelektrický jev – způsoby mechanického zatěžování

Princip činnosti aktuátorů – oscilační módy piezoelektrických rezonátorů

Změna podélného rozměru tenké pravoúhlé desky

Změna tloušťky tenké kruhové desky

Změna ve střihu

Planární změna tloušťky tenké kruhové desky

Podélná změna válce

Piezoelektrický jev – struktury aktuátorů

Nosník

 ≤ 1000 Posuv (µm) ≤ 5 Síla (N) Napětí (V) $60 \div 400$

a)

Torze

 $120 \div 1000$

Dilatace

 $60 \div 1000$

b) d) c)

? Piezoelektrický aktuátor: nakreslete alespoň 3 základní struktury piezoelektrických aktuátorů (nosník, torze, dilatace), porovnejte sílu a posun u těchto struktur

Piezoelektrický jev – baterie aktuátorů

Piezoelektrický aktuátor

C) Zpracování signálu z piezoelektrických senzorů

Piezoelektrický jev – model senzoru

Piezoelektrické senzory lze modelovat jako:

- Elektrický jako kondenzátor
- Mechanický jako tuhá pružina

Systém má dvě přirozené rezonanční frekvence, jedna je daná frekvencí vlastních oscilací pružiny a druhá je daná elektrickou kapacitou převodníku (typ. více než 200 MHz).

Nevýhoda - nemohou být využity k měření statických sil

Piezoelektrický jev – zpracování signálů ze senzorů

? Vyhodnocování signálů z piezoelektrických senzorů: Nakreslete náhradní elektrický model piezoelektrického senzoru, nakreslete připojení vyhodnocovacího obvodu, Definujte podmínku pro vstupní impedanci připojeného elektrického vyhodnocovacího obvodu.

Senzor je zdroj náboje → nutné impedanční přizpůsobení

Piezoelektrický jev – zpracování signálů ze senzorů

Impedanční převodník

Impedanční převodník

ve společném pouzdře se senzorem

Impedanční převodník

- Nábojový zesilovač

Piezoelektrický jev – příklad zpracování signálů LT3469

Zesilovač - vstupního řídicího signálu

Piezoelektrický jev – příklad zpracování signálů LT3469

Piezo Speaker Driver

D) Aplikace piezoelektrických senzorů a akčních členů

- Mechanická deformace
- ☐ Síla
- Výchylka (dráha)
- Akcelerace akcelerometry, jejichž setrvačná hmota působí na piezoelektrický element

Piezoelektrický ohybový senzor

Piezoelektrický jev – senzor tlaku

Senzor tlaku

Piezoelektrický jev – senzor vibrací

Senzor vibrací

Měření tlaku v hlavě válců

Piezoelektrická rezonanční mikrováha

- Piezoelektrický rezonátor
- Substrát obsahuje topný element, který udržuje pracovní teplotu na 45°C (teplotní stabilizace rezonančního kmitočtu senzoru)
- Oscilátor je zapojen do fázového závěsu vstup je přepínán ze všech 4 senzorů
 Oscilátor pracuje na kmitočtu 7,16 MHz
- Citlivost cca 510 Hz/µg
- Rozlišení 40 ng

Piezoelektrický jev – aktuátor (zapalovač plynu)

Zdroj vysokého napětí pro piezoelektrický zapalovač plynu

Piezoelektrický jev – piezoelektrický mikrofon

- Piezoelektrický senzor obsahuje tenkou membránu, která je vyrobena
 z piezoelektrického materiálu nebo mechanicky kontaktovaného nosníku
 skládajícího se ze dvou vrstev piezoelektrického materiálu s opačnou polarizací.
- Vertikální pohyb membrány zapříčiňuje vznik mechanického napětí v piezoelektrickém materiálu a dochází tak ke vzniku elektrického výstupního napětí.
- Mikrofony vykazují citlivost 50 μV.Pa⁻¹ 250 μV.Pa⁻¹ a kmitočtovou odezvu 10 Hz 10 kHz (pokles 5 dB).

Využití: Elektronické stetoskopy, detekce dýchání

Piezoelektrický křemíkový mikrofon obsahující 30 μm silnou membránu z Si o průměru 3 mm. Na vrchní straně membrány deponována vrstva 3-5 μm

Piezoelektrický jev – piezoelektrický mikrofon

- Elektronický fonendoskop pomocí filtrů umožňuje zvolit oblast vyšetření: plíce, srdce, břišní dutina.
- Detekce dýchání založena na snímání bioakustických signálů vznikajících v průdušnici při dýchání

Piezoelektrický jev – měření průtoku

- Při měření průtoku se využívá Dopplerova jevu: generované vlny se odrážejí od pohybující se struktury a jejich kmitočet je posunut.
- Posun kmitočtu závisí proporcionálně na rychlosti pohybující se struktury vzhledem k vysílači/přijímači a směr posuvu závisí na směru pohybu.
- Zařízení pro monitorování obvykle pracuje v kontinuálním módu, používající piezoelektrický transducer

Použití:

- Určení rychlosti a směru pohybu krve
- Monitorování srdeční činnosti plodu
- Detekce malých sraženin

Piezoelektrický jev – generátor elektrické energie

Piezoelektrický jev – typické použití piezoelektr. součástek

Huge Range of

Piezoelectric Transducers

For Sensing, Actuating, and Energy Harvesting

Piezoelectric Sensors

- Measure Pressure
- Measure Acceleration
- Measure Strain Force

More »

Piezoelectric Actuators

- Flow Valves
- Air Regulators
- Low Power Transducers

More »

Flexible Piezoelectrics

- · Conformable Actuator
- Adds Directionality
- For Curved Surfaces

More »

Piezoelectric Fan

- Low Power
- Easy Intergration
- Cooling systems

More »

Piezoelectric d33 effect

- Bonded Actuator
- High Strain Output
- Coupling Efficiency

More »

Piezoelectric Energy Harvester

- Vibration Harvesting
- Robust Scavenger
- Reliable

More »

Vibration Energy Harvester

Volture

More »

High Voltage Piezo Amplifier

QPA200

More »

Smart Materials Starter Kit

SMA Kit

More »

Piezoelectric Accessories

Piezo Cables etc.

More »

Control Forge Software

Control Toolbox

More »

DynaMod Software

System Identification

Otázky ke zkoušce

- 1. Podélný piezoelektrický jev: Nakreslete princip činnosti piezoelektrického senzoru, Napište základní rovnice pro výpočet náboje a napětí.
- 2. Příčný piezoelektrický jev: Nakreslete princip činnosti piezoelektrického senzoru, Napište základní rovnice pro výpočet náboje a napětí se zahrnutím vektoru polarizace, význam jednotlivých členů v rovnicích.
- 3. Piezoelektrické materiály: Napište alespoň 3 základní typy piezoelektrických materiálů, vysvětlete pojem polarizace piezoelektrického materiálu.
- 4. Piezoelektrické materiály: Napište názvy 3 typických piezoelektrických materiálů, nakreslete příklad teplotní závislosti s Curie teplotou, jaký význam má tato teplota.
- Piezoelektrický senzor: nakreslete základní typy mechanického zatěžování piezoelektrické struktury
- 6. Piezoelektrický aktuátor: nakreslete alespoň 3 základní struktury piezoelektrických aktuátorů (nosník, torze, dilatace), porovnejte sílu a posun u těchto struktur.
- 7. Vyhodnocování signálů z piezoelektrických senzorů: Nakreslete náhradní elektrický model piezoelektrického senzoru, nakreslete připojení vyhodnocovacího obvodu, Definujte podmínku pro vstupní impedanci připojeného elektrického vyhodnocovacího obvodu.
- 8. Vyhodnocování signálů z piezoelektrických senzorů: Nakreslete zjednodušeně příklady dvou impedančních oddělovačů připojovaných na výstup piezoelektrického senzoru a převádějících vysokou impedanci na nízkou.

