1-of-16 Decoder/Demultiplexer with Address Latch

High-Performance Silicon-Gate CMOS

The MC74HC4514 is identical in pinout to the MC14514B metal–gate CMOS device. The device inputs are compatible with standard CMOS outputs, with pullup resistors; they are compatible with LSTTL outputs.

This device consists of a 4-bit storage latch with a Latch Enable and Chip Select input. When a low signal is applied to the Latch Enable input, the Address is stored, and decoded. When the Chip Select input is high, all sixteen outputs are forced to a low level.

The Chip Select input is provided to facilitate the chip—select, demultiplexing, and cascading functions.

The demultiplexing function is accomplished by using the Address inputs to select the desired device output, and then by using the Chip Select as a data input.

- Output Drive Capability: 10 LSTTL Loads
- · Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 268 FETs or 67 Equivalent Gates

LOGIC DIAGRAM

MC74HC4514

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	- 1.5 to V _{CC} + 1.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Current, per Pin	± 25	mA
Icc	DC Supply Current, V _{CC} and GND Pins	± 50	mA
PD	Power Dissipation in Still Air Plastic DIP† SOIC Package†	750 500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq VCC. Unused inputs must always be tied to an appropriate logic voltage

level (e.g., either GND or V_{CC}). Unused outputs must be left open.

For high frequency or heavy load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
VCC	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)			VCC	V
TA	Operating Temperature, All Package Types			+ 125	°C
t _r , t _f	Input Rise and Fall Time V (Figure 1) V	/ _{CC} = 2.0 V / _{CC} = 4.5 V / _{CC} = 6.0 V	0 0 0	1000 500 400	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit			
Symbol	Parameter	Test Conditions	v _{CC}	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
VIH	Minimum High-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V
VIL	Maximum Low–Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V
VOH	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	٧
		$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{out}} \le 4.0 \text{ mA}$ $ I_{\text{out}} \le 5.2 \text{ mA}$	4.5 6.0	3.98 5.48	3.84 5.34	3.70 5.20	
VOL	Maximum Low–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{out}} \le 4.0 \text{ mA}$ $ I_{\text{out}} \le 5.2 \text{ mA}$	4.5 6.0	0.26 0.26	0.33 0.33	0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	± 0.1	± 1.0	± 1.0	μΑ
lcc	Maximum Quiescent Supply Current (per Package)	V _{in} = V _{CC} or GND I _{out} = 0 μA	6.0	8	80	160	μА

NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

^{*} Maximum Ratings are those values beyond which damage to the device may occur.

 $[\]label{thm:commended} \textbf{Functional operation should be restricted to the Recommended Operating Conditions}.$

[†]Derating — Plastic DIP: – 10 mW/°C from 65° to 125°C

SOIC Package: - 7 mW/°C from 65° to 125°C

AC ELECTRICAL CHARACTERISTICS ($C_L = 50$ pF, Input $t_f = t_f = 6$ ns)

			Guaranteed Limit			
Symbol	Parameter	v _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Chip Select to Output Y (Figures 1 and 5)	2.0 4.5 6.0	175 35 30	220 44 37	265 53 45	ns
[†] PLH	Maximum Propagation Delay, Input A to Output Y (Figures 2 and 5)	2.0 4.5 6.0	230 46 39	290 58 49	345 69 59	ns
[†] PHL		2.0 4.5 6.0	175 35 30	220 44 37	265 53 45	
[†] PLH	Maximum Propagation Delay, Latch Enable to Output Y (Figures 3 and 5)	2.0 4.5 6.0	230 46 39	290 58 49	345 69 59	ns
[†] PHL		2.0 4.5 6.0	175 35 30	220 44 37	265 53 45	
tTLH, tTHL	Maximum Output Transition Time, Any Output (Figures 1 and 5)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
C _{in}	Maximum Input Capacitance		10	10	10	pF

NOTES:

- 1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).
- 2. Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

		Typical @ 25°C, V _{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Package)*	70	pF

^{*}Used to determine the no-load dynamic power consumption: P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}. For load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).

TIMING REQUIREMENTS (Input $t_r = t_f = 6 \text{ ns}$)

			Guaranteed Limit			
Symbol	Parameter	V _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{Su}	Minimum Setup Time, Input A to Latch Enable (Figure 4)	2.0 4.5 6.0	100 20 17	125 25 21	150 30 26	ns
t _h	Minimum Hold Time, Latch Enable to Input A (Figure 4)	2.0 4.5 6.0	5 5 5	5 5 5	5 5 5	ns
t _W	Minimum Pulse Width, Latch Enable (Figure 3)	2.0 4.5 6.0	80 16 14	100 20 17	120 24 20	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 1)	2.0 4.5 6.0	1000 500 400	1000 500 400	1000 500 400	ns

NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

3

SWITCHING WAVEFORMS

90% tpLH → tTHL OUTPUT Y ____

Figure 1.

Figure 2.

— VALID -

50%

50%

INPUT A

- VALID -

^tPHL

 $^{\text{VCC}}$

GND

Figure 3.

Figure 4.

* Includes all probe and jig capacitance

Figure 5. Test Circuit

FUNCTION TABLE

Latch	Chip	Address Inputs			ıts	Selected Output
Enable	Select	А3	A2	A 1	A0	(High)
H	L L	L L	L	L L	ΙН	Y0 Y1
Н	L	L	L	Н	L	Y2
Н	L	L	L H	Н.	Н	Y3 Y4
H H	L L L	L L L	H H	L L H	L H L	Y5 Y6
Н	L	L	Н	Н	Н	Y7
H H H	L L L	H H H	L L L	L H H	LHLH	Y8 Y9 Y10 Y11
H H H	L L L	H H H H	нннн	LLHH	コエコエ	Y12 Y13 Y14 Y15
Х	Н	Х	Х	Х	Х	All Outputs = L
L	L	Х	Х	Х	Х	Latched Data

PIN DESCRIPTIONS

ADDRESS INPUTS

A0, A1, A2, A3 (Pins 2, 3, 21, 22)

Address Inputs. These inputs are decoded to produce a high level on one of 16 outputs. The inputs are arranged such that A3 is the most–significant bit and A0 is the least–significant bit. The decimal equivalent of the binary input address indicates which of the 16 data outputs, Y0–Y15, is selected.

OUTPUTS

Y0 - Y15 (Pins 11, 9, 10, 8, 7, 6, 5, 4, 18, 17, 20, 19, 14, 13, 16, 15)

Active—High Outputs. These outputs produce a high level when selected (Latch Enable = H, Chip Select = L) and are at a low level when not selected.

CONTROL INPUTS

Latch Enable (Pin 1)

Latch Enable Input. A low level on this input stores the data on the Address data inputs in the 4-bit latch. A high level on the Latch Enable input makes the latch transparent and allows the outputs to follow the inputs. Note that the data is latched only while the Latch Enable input is at a low level.

Chip Select (Pin 23)

Chip Select Input. A high on this input produces a low level on all outputs, regardless of what appears at the address or Latch Enable inputs. A low level on the Chip Select input allows the selected output to produce a high level.

TIMING DIAGRAM

EXPANDED LOGIC DIAGRAM

MICROPROCESSOR MEMORY DECODING

CODE TO CODE CONVERSION — HEXADECIMAL TO BCD

8

OUTLINE DIMENSIONS

NOTES:

- CHAMFERED CONTOUR OPTIONAL
- DIMENSION L TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 4. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	1.230	1.265	31.25	32.13	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.020	0.38	0.51	
Е	0.050	BSC	1.27 BSC		
F	0.040	0.060	1.02	1.52	
G	0.100	BSC	2.54 BSC		
J	0.007	0.012	0.18	0.30	
K	0.110	0.140	2.80	3.55	
L	0.300 BSC		7.62	BSC	
M	0°	15°	0°	15°	
N	0.020	0.040	0.51	1 01	

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS A AND B DO NOT INCLUDE
- MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 PER SIDE
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	15.25	15.54	0.601	0.612
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.41	0.90	0.016	0.035
G	1.27	BSC	0.050	BSC
J	0.23	0.32	0.009	0.013
K	0.13	0.29	0.005	0.011
M	0°	8°	0 °	8°
Р	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MC74HC4514/D

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.