Segment Routing with MPLS Data Plane

SR-MPLS

The objective of this presentation is to discuss the need and benefits of **Segment Routing** with MPLS data plane (SR-MPLS) along with some shortcomings of LDP/RSVP-TE based MPLS in production network.

This presentation maybe useful for a network engineer running typical MPLS network for years to learn "Segment Routing" from very basic and also for a CxO to think about to move towards SDN era for the sake of service quality.

MPLS Intro

IP Based Forwarding

- A method to forward packets
 - Based on destination IP address
 - Same lookup process at each hop takes time
- Replaced Frame Relay, ATM in telecommunication network
 - IP came as a best effort forwarding capability
 - Variable length packet header
 - Connectionless; reliability ensured by transport layer
 - Flexible but has less QoS capability
- TE not possible

MPLS Intro

- A label-based approach to forward traffic
 - Labels are in a fixed 32-bit header
 - Label Distribution Protocol (LDP)
 - Label Operation: PUSH, SWAP, POP
- Overlay tunnelling for customer services
 - L3VPN, L2VPN
 - BGP-free core; RR requires for large network
- TE possible: RSVP-TE

MPLS LDP

Control Plane Label distribution from R4 to R1

MPLS LDP

Forwarding Plane Traffic forwarding from R1 to R4

- To steer traffic through longer path
 - To utilize unused links
 - To avoid congestion on busy links
- RSVP-TE
 - Creates circuits; state is signalled hop-by-hop
 - Need to configure link constraints (BW and other attributes)
 - Distribute TE info using IGP extension
 - PCALC (CSPF) to calculate best path
 - Carries TE labels to signal tunnel from head-end to tail-end PE
- Push traffic into the tunnel
 - Manual, Auto-route
 - Tunnel fallback provides less traffic disruption

Control Plane

RSVP PATH messages reserve BW and request for MPLS label

Control Plane

RSVP RESV messages carry MPLS label

TE PATH is signaled "hop-by-hop" based on ERO !!!

Shortcomings:

- Tunnel is not bidirectional
- IGP tracks link constraints and floods periodically
 - Maintains state
 - TE tunnel need to be re-optimized frequently
- RSVP-TE isn't ECMP friendly (N²*K tunnel required)
 - Doesn't scale well with inter-domain (IGP) network

Additional overhead for both router and it's administrator

Why is RSVP-TE still useful?

- Pre-computed backup path
 - Backup next-hop installed in forwarding table
 - Minimize reconvergence time
 - Can be used to protect tunnels (links/nodes)
 - Widely used in carrier backbone
- Must have LFA Loop Free Alternative
- Doesn't provide optimum path all the time
- Very difficult to configure and manage

FRR with Loop Free Alternative (LFA)

Case-1

FRR with Loop Free Alternative (LFA)

FRR with Remote Loop Free Alternative (RLFA)

FRR with RLFA is also not always Loop Free

IGP-LDP Sync

Primary Path Goes Down (!)

Customer traffic re-routed via alternative path

IGP-LDP Sync

Primary Path Goes Up (!!!)

Customer traffic dropped when re-routed via primary path – BROKEN LSP

IGP-LDP Sync requires to be configured on each LDP enabled link

FRR with RSVP-TE

Link Protection

Node Protection

SRLG Protection

Typical FRR may provide sub-optimal path

MPLS (Cont.)

Shortcomings:

- Doesn't deal with performance anymore
 - CEF, ASIC etc
- Requires IGP-LDP synchronization
- TE is not scalable
- FRR is supported but very difficult to configure and manage
- Not suitable for very large carrier network

SR-MPLS Intro

- LDP+RSVP control plane is complex
- SR control plane with IGP
 - SR is an extension of IGP
 - MPLS is still as the forwarding plane
- No LDP, No RSVP-TE are required

- Source routing paradigm SPRING
 - SPRING Source Packet Routing in Networking
 - Source node can encapsulate path information using label stack
 - Intermediate nodes don't need to maintain any state
- Inserts an "ordered list of segment" with the packet
 - A segment is an instruction topological, service chaining etc
 - Segment ID (SID) is equivalent to the LDP Label (in case of SR-MPLS)
 - Each SID indicates a segment; the top SID indicates active segment
- IGP carries SID information
 - No LDP, No RSVP

Prepared by - M Abdullah Al Naser

30

Control Plane Label generation on each router to reach R4

SRGB (all router) 16000 - 23999

In Label = SRGB Base + Originator Node's SID Index

Out Label = Next-hop's SRGB Base + Originator Node's SID Index Transport (Out) labels are consistent

Forwarding Plane Traffic forwarding from R1 to R4

Transport (Out) labels are consistent TE and FRR would be easier

Transport (Out) labels are inconsistent

Forwarding Plane Traffic forwarding from R1 to R4

Transport (Out) labels are inconsistent TE and FRR would be difficult

Global Segment

- Global segments are for routers' loopback
- Assigned from Segment Routing Global Block (SRGB)
 - Ranges from 16000 to 23999 for interoperability
 - Intended design; highly recommended to keep it same on all router
- Keeps transport label consistent per segment (i.e. within IGP domain)

Local Segment

- Local segments are for routers' P2P links
 - Assigned from dynamic label range
- Supports advanced traffic engineering and FRR
 - TE path doesn't need to be signalled hop-by-hop

Segment ID

Segment ID

- Prefix SID: for routers' loopbacks
 - Assigned from SRGB

SID List

- Explicit path can be defined using local segments
- Useful for TE and FRR

SR-MPLS Features

- FRR with TI-LFA
 - Avoids micro-looping
- Scalable TE
 - SR Policy; and no more tunnel
- Can be a part of SDN (for inter-domain network)
 - PCEP and BGP-LS

SR-MPLS Fast Convergence

Segment Routing TI-LFA

Please Note:

- This slide deck is a continuation of previous one "SR-MPLS 101"
- Audience are expected to have prior basic knowledge on MPLS and Segment Routing

Fast Reroute with TI-LFA

- Topology Independent LFA
 - Sub 50ms convergence time
 - Minimizes amount of dropped traffic during convergence
- Protects links, nodes and SRLGs
- Maintains better SLA

TI-LFA Link Protection

Topology is fully functional R1's Primary path is in forwarding table

TI-LFA Link Protection

R1 is aware of the backup path in advance in case of link failure to R2

TI-LFA Link Protection

R1 prunes protected link before link failure occurs and find out post convergence path

TI-LFA Link Protection

R1 defines the P Node

P Node is such node which can reach source (R1) R7 10 without using protected link 10 **Protected Link** PLR R3 R1 R2 CE1 CE2 $(\mathbf{1})$ R4 R6 R5 **5** 10 **IGP COST**

TI-LFA Link Protection

R1 defines the Q Node

TI-LFA Link Protection

P Space and Q Space

TI-LFA Link Protection

R1 builds SID-list based on each segment it found along the post convergence path

TI-LFA Link Protection

R1 programs the precomputed SID-List it in forwarding table

TI-LFA Node Protection

Topology is fully functional R1's Primary path is in forwarding table

TI-LFA Node Protection

R1 is aware of the backup Node in advance in case of failure of R2

TI-LFA Node Protection

R1 prunes protected node before node failure occurs and find out post convergence path

TI-LFA Node Protection

R1 defines the P Node

TI-LFA Node Protection

Prepared by - M Abdullah Al Naser

R1 defines the Q Node

TI-LFA Node Protection

P Space and Q Space

TI-LFA Node Protection

R1 builds SID-list based on each segment it found along the post convergence path

TI-LFA Node Protection

R1 programs the precomputed SID-List it in forwarding table

Fast Reroute with TI-LFA

- SR must be implemented to have TI-LFA
- 100% topology coverage
- Avoids micro-loop
- ECMP friendly
- Protects IP and LDP traffic also

SR-MPLS Fast Convergence

TI-LFA: Few more...

LFA Condition

Distance (N, D) < Distance (N, PLR) + Distance (PLR, D)

Case 1:

63

LFA Condition

Distance (N, D) < Distance (N, PLR) + Distance (PLR, D)

Case 2:

LFA Condition

Distance (N, D) < Distance (N, PLR) + Distance (PLR, D)

Case 3:

RLFA Condition

- P node: Closest Node to PLR whose backup path is not via protected link
- Q node: Closest Node to DESTINATION whose backup path is not via protected link
- A PQ node can be used as RLFA

RLFA Condition

- P node: Closest Node to PLR whose backup path is not via protected link
- Q node: Closest Node to DESTINATION whose backup path is not via protected link
- A PQ node can be used as RLFA

- Destination (Prefix) based FRR; not based on links
 - Results in more optimized path

- Link protection sometimes can protect the node also
- Node protection can always protect the link

Case: 1

Also protects the node

- Link protection sometimes can protect the node also
- Node protection can always protect the link

Case: 2

Microloop

- Microloop: Transient packet forwarding loop during path convergence
- Reasons of microloop:
 - Topological change propagation may need few times
 - Forwarding table may not be updated at the same time or in a proper order
 - Depends on CPU, Memory and link utilization also
 - Intermittent Link flapping

Microloop

- Without TI-LFA
 - Causes packet loss due to microloop

Microloop

- With TI-LFA; but no microloop avoidance enabled
 - Much faster convergence but still microloop is there

Microloop Avoidance

- With TI-LFA; and microloop avoidance enabled
 - Much faster convergence and no microloop is there

TI-LFA Load Balancing

- Prefix-SID is ECMP aware
- PLR can load balance over multiple PQ pairs
 - Selects one PQ pair per destination (based on hash function)

TI-LFA Load Balancing

- Prefix-SID is ECMP aware
- PLR can load balance over multiple PQ pairs
 - Selects one PQ pair per destination (based on hash function)

TI-LFA Load Balancing

- Prefix-SID is ECMP aware
- PLR can load balance over multiple PQ pairs
 - Selects one PQ pair per destination (based on hash function)

SR-MPLS Fast Convergence

Lab - Demo of Microloop Prevention and Load Balancing

SR-MPLS Fast Convergence

Lab - Demo of TI-LFA FRR vs RSVP FRR

SR-MPLS Traffic Engineering

Segment Routing TE (SR-TE)

Please Note:

- This slide deck is a continuation of previous one "SR-MPLS 101"
- Audience are expected to have prior basic knowledge on MPLS and Segment Routing

Segment Routing Traffic Engineering

- To steer traffic through longer path
- SR Policy to be implemented at ingress PE
 - No more tunnel from head-end to tail-end
- No state to be maintained at intermediate nodes
 - No RSVP-TE means no additional signalling
- Supports built-in FRR with TI-LFA
- ECMP friendly

Segment Routing Traffic Engineering

- SR Policy
 - Intended design
 - Highly scalable
 - Better optimization
 - Automated traffic steering
- Can be applied in either centralized or distributed manner
 - Explicit Path: CLI or SDN Controller
 - Dynamic Path: Based on constrain (i.e link delay)

RSVP-TE

SR-TE

SR-TE

SR-MPLS Traffic Engineering

SR Policy: Configuration example

```
segment-routing
 traffic-eng
   policy POLICY1
                                                  Policy Name
     color 10 end-point ipv4 10.1.1.3
                                                  End-point
     candidate-paths
                                                  Color value
       preference 100
                                                  Path Preference
         explicit segment-list SID-LIST1
                                                  Path Name
segment-list name SID-LIST1
 index 10 mpls label 16002
                                                 Node/Link to follow
 index 20 mpls label 24023
 index 30 mpls label 16004
                                                  Pah Sequence
```

A SR Policy is consisting of "headend, color, endpoint"


```
policy POLICY2
color 20 end-point ipv4 10.1.1.3
```


- Color is an intent or business requirements
 - Shortest Path, Minimum Delay, To avoid any link/node, Automated traffic steering etc
- Color is a numeric value and must be unique per H, E pair

- Candidate Path
 - SR policy contains one or more Candidate Path (cPath)
 - cPath has a preference value
 - Higher value is preferred; Not based on any protocol priority
 - cPath can be configure by CLI or PCE or dynamically

```
policy POLICY1

color 10 end-point ipv4 10.1.1.3

candidate-paths

preference 100

explicit segment-list SID-LIST1

preference 150

explicit segment-list SID-LIST2
```

- Candidate Path
 - Multiple SID-LIST can be configured using weight value
 - Weight is used to load share the traffic

cPath 1

cPath 2

```
policy POLICY1

color 10 end-point ipv4 10.1.1.3

candidate-paths

preference 100

explicit segment-list SID-LIST1

preference 150

explicit segment-list SID-LIST2

weight 4

explicit segment-list SID-LIST3

weight 1
```

- Candidate Path
 - Multiple cPath can be source of an active path; and programmed in forwarding table
 - A path must be valid to be an active path
 - Tie-breaker also available in case of multiple active path

- Explicit cPath
 - Configured by CLI or PCE
- Dynamic cPath
 - Configured dynamically based on link attributes (like low delay)
 - SR Native Algorithm to translate intent to SID-LIST

```
cPath 1
(Explicit)

cPath 2
(Dynamic)

policy POLICY1

color 10 end-point ipv4 10.1.1.3

candidate-paths

preference 100

explicit segment-list SID-LIST1

preference 150

dynamic

metric

type delay
```

- Explicit cPath can be configured:
 - By defining SID (MPLS Label)
 - By defining Segment Descriptor (Prefix or Adjacency)
- Headend needs to validate SID-LIST before using it

```
SID-LIST1

segment-list name SID-LIST1
index 10 mpls label 16002
index 20 mpls label 24023
index 30 mpls label 16004

SID-LIST2

segment-list name SID-LIST2
index 10 address ipv4 10.1.1.2
index 20 address ipv4 10.1.23.2
index 30 address ipv4 10.1.1.4
```

- Dynamic cPath can be configured:
 - By headend or by PCE
 - By defining SID (MPLS Label), or by defining Segment Descriptor (Prefix or Adjacency)
 - Path re-computed automatically
- May have optimization objectives
 - Minimum metric or delay
- May have set of constraints
 - Maximum cumulative metric, delay or other constraints

- Dynamic cPath
 - Database contains all information
 - Headend's SR-TE DB may contain info of the local domain only
 - PCE's SR-TE DB contains info of all domains
 - Computation Engine to compute optimized path
 - Translate intents into SID-List
 - Distributed computation
 - Centralized computation
 - Headend and PCE use same algorithm
 - SR Native Algorithm

- Dynamic cPath Distributed Computation
 - Done by headend router
 - Headend may contain low delay path
 - Flooded by IGP
 - Stored in SR-TE-DB
- Dynamic cPath Centralized Computation
 - Done by PCE
 - PCE collects info from PCC (headend) using BGP-LS
 - PCC requests for path info (based on optimization objectives and constraints)
 - Path Request, Reply and Report
 - PCE sends path to PCC in the form of a SID-List
 - PCC can delegate the path option to PCE

Some use cases:

- SID-List
 - Controller based multi domain network
 - Doesn't have full visibility at headend
 - No need multiple resolve
- Segment Descriptor
 - In case of full visibility
 - Operator may need headend monitoring
 - Dynamic labels (Adj-SID) are difficult to guess
 - Exception: Adj-SID, Peering SID can also be configured manually

- Binding SID (BSID)
 - BSID is the identifier of a SR Policy
 - Configured automatically; or can be configured manually
 - Can be used as In Label in multi-domain network

```
policy POLICY1

color 10 end-point ipv4 10.1.1.3

binding-sid mpls 40001

candidate-paths

preference 100

explicit segment-list SID-LIST1

preference 150

explicit segment-list SID-LIST2
```

- Binding SID (BSID)
 - BSID is the identifier of a SR Policy
 - Configured automatically; or can be configured manually
 - Can be used as In Label in multi-domain network

- Constraints based TE
- Constraints can be:
 - Include and/or exclude TE Affinity
 - Include and/or exclude IP Address
 - Include and/or exclude SRLG
 - Shared Link Resource Group
 - Maximum accumulated metric
 - IGP, TE, Delay
 - Maximum number of SID in the SID-LIST
 - Disjoint path from another SR Policy

Link / Node Exclusion

Link Exclusion

```
#All Router#
router ospf 1
  distribute link-state
#R1, R4#
segment-routing
  traffic-eng
    affinity-map
      color PINK bit-position 0
#R4#
interface gi0/0/0/1
  affinity color PINK
```

```
#R1#

policy POLICY1

color 10 end-point ipv4 10.1.1.3

candidate-paths

preference 100

dynamic

metric type te

constraints

affinity

exclude-any color PINK
```

R1, Pink, R3
Path: R1 > R4 > R5 > R3
Exclude: R4-R5 (Upper Link)

Node Exclusion

```
#R1#
prefix-set PSET1
10.1.1.4
end-set
```

R1, Green, R3 Path: R1 > R6 > R7 > R3 Exclude: Node R4

```
#R1#
policy POLICY2
color 20 end-point ipv4 10.1.1.3
candidate-paths
preference 100
dynamic
metric type te
constraints
address
exclude PSET1
```

- SRLG Exclusion
 - SRLG means multiple links share same resource
 - i.e. Fiber path, conduit, patch panel etc

- SRLG Exclusion
 - Shared Link Resource Group

```
#R4#
srlg
interface gi0/0/0/1
10 value 1111
interface gi0/0/0/1
10 value 1111
```

R1, Pink, R3 Path: R1 > R6 > R7 > R3 Exclude: R4 SRLG

```
#R1#
policy POLICY1
color 10 end-point ipv4 10.1.1.3
candidate-paths
preference 100
dynamic
metric type te
constraints
srlg
exclude 1111
```

- Disjoint Path
 - SR-TE can compute a path which is disjoint from another path in same disjoint-group
 - Link, Node, SRLG
 - Plain A, Plain B etc
 - Avoid congestion, maintaining SLA, Load balancing etc.

Path Validation

Explicit Path

- SID-List must be validated:
 - Should have at least one SID
 - Weight should be larger than 0
 - default is 1
 - Headend to resolve IPs in exp-path in to MPLS labels
 - Headend to resolve first SID to find out reachable next-hop
 - Any constraints can be considered (optional)
- If any intermediary link fails:
 - Adj-SID is withdrawn
 - Corresponding node will perform TI-LFA
 - For around 15 minutes at maximum

Path Validation

Dynamic Path

- SID-List must be validated:
 - Should have at least one SID
 - Weight should be larger than 0
 - default is 1
 - Headend to resolve IPs in exp-path in to MPLS labels
 - Headend to resolve first SID to find out reachable next-hop
 - Any constraints can be considered (optional)
- If any intermediary link fails:
 - Adj-SID is withdrawn
 - Corresponding node will perform TI-LFA
 - For around 15 minutes at maximum

Prepared by - M Abdullah Al Naser

Traffic Steering

Auto Route

- IGP steers all the traffic towards destination and other downstream nodes
- Localized behaviour on headend

Traffic Steering

- Auto Route
 - Limited to local IGP area
 - Limited to per-BGP next-hop
 - Streets all service traffic destined for BGP next-hop
- Policy Based Routing
 - Can steer traffic for any specific VPN, or PW
- Static Route
 - Requires static route to specified next-hop for individual services
- Anything better than these?
 - Automated Steering

SR-MPLS Traffic Engineering

Lab - Demo of SR Policy

Thank you!