多维随机变量的独立性及条件分布

一、作业(提交时间: Nov. 13, 2023)

1. [76-3] 设二维随机变量 (X,Y) 的联合分布列为

X	0	1
0	0.4	a
1	b	0.1

已知随机事件 $\{X = 0\}$ 与 $\{X + Y = 1\}$ 相互独立, 求 a, b 的值.

2. [75-1/81-1/88-1] 一个箱子中装有 100 件同类产品, 其中一、二、三等品分别有 70, 20, 10 件. 已知 (X_1, X_2) 的联合分布列, 以及 X_1, X_2 的边缘分布列如上次作业题的第 1 题所得. 试求:

- (1) X_1, X_2 是否互相独立? 为什么?
- (2) 给定条件 $\{X_1 = 1\}$ 下 X_2 的条件分布列;
- (3) 给定条件 $\{X_2 = 0\}$ 下 X_1 的条件分布列;
- (4) 给定条件 $\{X_2=0\}$ 下 X_1 的条件分布函数 $F_{X_1|X_2}(x_1\mid 0)$.

3.[86-9] 设 (X,Y) 的服从区域 G 上的均匀分布, 其中 G 由曲线 $y=\frac{1}{x}$ 以及直线 $y=0,\,x=1$ 与 $x=e^2$ 所围成. 求:

- (1) (X,Y) 的联合密度函数;
- (2) X,Y 的边缘密度函数;
- (3) X,Y 是否互相独立? 为什么?

4. [90-3] 设 (X,Y) 的服从区域 G 上的均匀分布, 其中 G 由直线 y=-x, y=x 与 x=2 所围成. 已知 (X,Y) 的联合密度函数, 以及 X,Y 的边缘密度函数如上次作业题的第 3 题所得. 求:

- (1) 条件密度函数 $f_{X|Y}(x \mid 1)$ 和 $f_{X|Y}(x \mid y)$, 其中 |y| < 2;
- (2) 条件概率 $P(X \le \sqrt{2} \mid Y = 1)$;
- (3) 给定条件 $\{Y = 1\}$ 下 X 的条件分布函数 $F_{X|Y}(x \mid 1)$;
- (4) 给定条件 $\{Y = y\}$ 下 X 的条件分布函数 $F_{X|Y}(x \mid y)$, 其中 |y| < 2.

5. [93-7] 设某班车起点站上客人数 X 服从 $\lambda(\lambda > 0)$ 的泊松分布, 每位乘客在中途下车的概率为 p (0), 且中途下车与否相互独立. 以 <math>Y 表示中途下车的人数. 求:

- (1) 发车时上车人数为 n 的条件下, 中途有 m 人下车的概率 $P(Y = m \mid X = n)$;
- (2) 二维随机变量 (X,Y) 的联合分布律;
- (3) 证明 Y 服从 λp 的泊松分布. [提示: $P(Y=m) = \sum_{n=m}^{\infty} P(X=n) P(Y=m \mid X=n)$.]

二、练习

1. [83-3] 设二维随机变量 (X,Y) 的联合分布列为

X	1	2	3
1	1/6	1/9	1/18
2	1/3	α	β

当 α 与 β 取何值时 X,Y 相互独立?

2. [76-2/82-2/89-2] 两名水平相当的棋手弈棋三盘. 设 X 表示某名棋手获胜的盘数, Y 表示他输赢盘数之差的绝对值. 假定没有和棋, 且每盘结果相互独立. 已知 (X,Y) 的联合分布列,以及 X,Y 的边缘分布列如上次练习题的第 1 题所得. 试求:

(1) X,Y 是否互相独立? 为什么?

- (2) 给定条件 $\{Y = 1\}$ 下 X 的条件分布列;
- (3) 给定条件 $\{X = 1\}$ 下 Y 的条件分布列.
- 3. [84-5] 已知随机变量 X, Y 的概率函数如下, 且 P(XY = 0) = 1. 试求: (1)(X, Y) 的联合分布列; (2)X, Y 是否互相独立? 为什么?

X	-1	0	1	Y	0	1
概率	1/4	1/2	1/4	概率	$\frac{1}{2}$	$\frac{1}{2}$

4. [92-4] 设 (X,Y) 的联合密度函数

$$f(x,y) = \begin{cases} 2e^{-(x+2y)}, & x > 0, y > 0 \\ 0, &$$
其他

求:

- (1) 条件密度函数 $f_{X|Y}(x \mid 1)$ 和 $f_{X|Y}(x \mid y)$, 其中 y > 0;
- (2) (X,Y) 的联合密度函数;
- (3) 概率 P(X < 1, Y > 2).
- 5. [93-6] 设随机变量 $X \sim E(1)$, 当已知 X = x 时, $Y \sim U(0,x)$, 其中 x > 0. 试求 (X,Y) 的联合密度函数.

三、加强

1. [92-3.3] 设二维随机变量 $(X,Y) \sim U(D)$, 其中 $D = \{x^2 + y^2 \le 1\}$. 求条件概率

$$P\left\{X > \frac{1}{2} \mid Y = 0\right\} .$$

2. [95-4.3] 设随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} Axy^2, & (x,y) \in (0,1) \times (0,1) \\ 0, & \text{otherwise} \end{cases}$$

求: X 和 Y 是否相互独立, 并证明.

3. [98-4.9] 设随机变量 X 与 Y 相互独立, 且服从 U(0,3). 求 $P(\max\{X,Y\} \le 1)$.