Lecture-30

Sushrut Tadwalkar; 55554711

November 24, 2023

Now $\hat{\mathcal{X}}=\{P[x]:x\in \mathrm{CS}(\mathcal{X})\}$ with metric D is a *complete* space implies that every Cauchy sequence converges. To show this, we start with a Cauchy sequence in $(\hat{\mathcal{X}},D)$, say A_1,A_2,\ldots , i.e., $A_p=P[x^{(p)}]$ for some $x^p\in \mathrm{CS}(\mathcal{X})$, i.e., $x^{(p)}=(x_1^{(p)},x_2^{(p)},x_3^{(p)},\ldots)$. To show that (A_p) converges in $(\hat{\mathcal{X}},D)$, we first identify a candidate $\hat{A}\in\hat{X}$ for the limit. We need $\hat{A}\in P[\hat{x}]$ for some $\hat{x}\in \mathrm{CS}(\mathcal{X})$, so we build that. We use the $\mathrm{CS}(\mathcal{X})$ property for each sequence $x^{(1)},x^{(2)},x^{(3)},\ldots$

Pick a sufficiently large n_1 such that $d(x_j^{(1)},x_k^{(1)})<1$, for all $j,k>n_1$ Pick a sufficiently large $n_2< n_1$ such that $d(x_j^{(2)},x_k^{(2)})<\frac{1}{2}$, for all $j,k>n_2$ Pick a sufficiently large $n_3< n_2$ such that $d(x_j^{(3)},x_k^{(3)})<\frac{1}{3}$, for all $j,k>n_3$

:

Each stage gives an element of \hat{x} :

$$\hat{x}_{1} = x_{n_{1}}^{(1)}$$

$$\hat{x}_{2} = x_{n_{2}}^{(2)}$$

$$\vdots$$

$$\hat{x}_{p} = x_{n_{p}}^{(p)}$$

$$\vdots$$

Claim 1. *Sequence* $(\hat{x})p$ *is Cauchy.*

Proof sketch. The bulk of the proof is left as an exercise. Start with

$$d(\hat{x}_p, \hat{x}_q) = d(x_{n_p}^{(p)}, x_{n_q}^{(q)}) \le d(x_{n_p}^{(p)}, x_j^{(p)}) + d(x_j^{(p)}, x_j^{(q)}) + d(x_j^{(q)}, \hat{x}_{n_q}^{(q)})$$

$$\le \frac{1}{p} + d(x_j^{(p)} - x_j^{(q)}) + \frac{1}{q}$$

provided $j \ge \max\{n_p, n_q\}$. Consider limit as $j \to \infty$, which tells us

$$d(\hat{x}_p, \hat{x}_q) \le \frac{1}{p} + D(P[x^{(p)}], P[x^{(q)}]) + \frac{1}{q} \dots$$

Claim 2. $\hat{A} = P[\hat{x}]$ obeys $\lim_{p \to \infty} A_p = \hat{A}$, i.e., $D(A_p, \hat{A}) \to 0$ as $p \to \infty$.

Proof. Left as an exercise. \Box

Note. After the construction succeeds, think of an original \mathcal{X} as a subset of $\hat{\mathcal{X}}$ (true embedding is $\{\Phi[x]: x \in \mathcal{X}\}$, but they are functionally indistinguishable). Then $\overline{\mathcal{X}} = \hat{X}$. However, before $\hat{\mathcal{X}}$ is built, original \mathcal{X} is closed as a subset of (\mathcal{X}, d) , so in that original setup, $\overline{\mathcal{X}} = \mathcal{X}$.

0.1 Cantor set

Consider the subset of $C_0 = [0,1]$ that we obtain by throwing away the middle third $\Omega_0 = \left(\frac{1}{3},\frac{2}{3}\right)$, i.e., $C_1 = C_0 \setminus \Omega_0$. This C_1 has 2 closed intervals: let Ω_1 be the 2 open middle third pieces: $\Omega_1 = \left(\frac{1}{9},\frac{2}{9}\right) \cup \left(\frac{7}{9},\frac{8}{9}\right)$. We have $C_2 = C_1 \setminus \Omega_1$, and we keep doing this.

Figure 1: Visualization of the middle-thirds Cantor set; the blue path is explained in part (ii) of the notable properties of the cantor set.

The cantor set is defined as

$$\mathcal{C} := \bigcap_{k=0}^{\infty} C_k,$$

which is considered a very rich example in analysis.

Some notable properties of the cantor set:

- (i) $C \neq \emptyset$ since clearly $0, 1 \in \mathcal{C}$. By self-similarity, endpoints of closed intervals in set C_k all lie in \mathcal{C} .
- (ii) $|\mathcal{C}| = |\mathbb{R}| \Rightarrow \mathcal{C}$ is uncountable. This is because any 0-1 sequence defines a left-right path down the tree, as shown in the diagram above, that selects a nested sequence of closed intervals with a 1-point intersection. Different sequences select different points of \mathcal{C} (number of 0-1 sequences equals $|\mathbb{R}|$).
- (iii) C' = C.
- (iv) $C^{\circ} = \emptyset$.
- (v) The total length of open sets removed from [0,1] to define C equal 1. If length has any meaning for set C, the only possible value is 0.