CZ4041/SC4000: Machine Learning

Additional Notes: Nonseparable & Kernel SVMs

Li Boyang, Albert
School of Computer Science and Engineering,
NTU, Singapore

Acknowledgements: some figures are adapted from the lecture notes of the book "Introduction to Data Mining" (Chap. 5). Slides are modified from the version prepared by Dr. Sinno Pan.

Linear SVMs: Separable Case

Optimization problem of linear SVM

No training data locate within the margin

Linear SVMs: Nonseparable Case

• What if the problem is not separable?

Slack variables $\xi_i \ge 0$ need to be introduced to absorb errors

Slack Variables

• For Separable Case:

$$\mathbf{w} \cdot \mathbf{x}_i + b \ge 1$$
, if $y_i = 1$
 $\mathbf{w} \cdot \mathbf{x}_i + b \le -1$, if $y_i = -1$ OR $y_i \times (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$

For Nonseparable Case:

 $y_i \times (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$

$$w \cdot x_i + b \ge 1 - \xi_i$$
 if $y_i = 1$ $\xi_i \ge 0$
 $w \cdot x_i + b \le -1 + \xi_i$ if $y_i = -1$ Slack variables

OR

If $\xi_i = 0$, there is no problem with x_i

If $0 < \xi_i < 1$, x_i is correctly classified but in the margin

$$y_{i} \times (\mathbf{w} \cdot \mathbf{x}_{i} + b) \ge 1 - \xi_{i}$$

$$y_{i} \times (\mathbf{w} \cdot \mathbf{x}_{i} + b) \ge k$$

$$0 < k < 1$$

If $\xi_i = 1$, x_i is on the decision boundary (random guess)

Can be positive

If
$$\xi_i > 1$$
, x_i is misclassified

$$y_i \times (\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \ge 1 - \xi_i$$

$$y_i \times (\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \ge -k$$

Can be negative

$$\mathbf{w} \cdot \mathbf{x}_i + b \ge -k$$
, if $y_i = 1$

$$\mathbf{w} \cdot \mathbf{x}_i + b \le k$$
, if $y_i = -1$

Soft Error

- The number of misclassifications is $\#\{\xi_i > 1\}$
- The number of nonseparable points is $\#\{\xi_i > 0\}$
- Soft errors:

$$\sum_{i} \xi_{i}$$

Linear SVMs: Nonseparable Case

• Linear SVMs with soft errors:

$$\min_{\mathbf{w}, b, \xi_i} \frac{\|\mathbf{w}\|_2^2}{2} + C \left(\sum_{i=1}^N \xi_i \right)$$

Penalize the decision boundary with large values of slack variables

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i, \quad i = 1, \dots, N$$
$$\xi_i \ge 0$$

 $C \ge 0$ is a parameter to tradeoff the impact of margin maximization and tolerable errors

Nonnegative ξ_i provides an estimate of the error of the decision boundary on the training example x_i

Nonlinear SVMs

• What if decision boundary is not linear?

Kernel trick in the dual form

Nonlinear SVMs (cont.)

- How to generalize linear decision boundary to become nonlinear?
- Key idea: transform x_i to a higher dimensional space to "make life easier"
 - Input space: the space the point x_i are located
 - Feature space: the space of $\varphi(x_i)$ after transformation
- <u>Assumption:</u> in a higher dimensional space, it is easier to find a linear hyperplane to classify data

Feature Mapping

• The original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVMs (cont.)

Optimization problem of nonlinear SVMs

$$\min_{\substack{w,b \\ \text{s.t.}}} \frac{\|w\|_2^2}{2}$$
s.t. $y_i \times (w \cdot \varphi(x_i) + b) \ge 1, i = 1, ..., N$

$$w \cdot \varphi(x_i) + b = 0$$
Hyperplane in feature space

- Computation in the feature space can be costly because it is high dimensional
 - The feature space is typically very high dimensional!
- The kernel trick comes to rescue

Nonlinear SVM: Kernel Trick

• Suppose $\varphi(\cdot)$ is given as follows, mapping an instance from 2-dimensional space to 6-dimensional space:

$$\varphi([X_1, X_2]) = \left[1, \sqrt{2}X_1, \sqrt{2}X_2, X_1^2, X_2^2, \sqrt{2}X_1X_2\right]$$

• Given two data instances: $\boldsymbol{a} = [A_1, A_2]$ and $\boldsymbol{b} = [B_1, B_2]$

$$\varphi(\mathbf{a}) = \left[1, \sqrt{2}A_1, \sqrt{2}A_2, A_1^2, A_2^2, \sqrt{2}A_1A_2\right]$$

$$\varphi(\mathbf{b}) = \left[1, \sqrt{2}B_1, \sqrt{2}B_2, B_1^2, B_2^2, \sqrt{2}B_1B_2\right]$$

• Inner product of the two instances after feature mapping:

$$\varphi(\mathbf{a}) \cdot \varphi(\mathbf{b}) = 1 + 2A_1B_1 + 2A_2B_2 + A_1^2B_1^2 + A_2^2B_2^2 + 2A_1A_2B_1B_2$$
$$= (1 + A_1B_1 + A_2B_2)^2$$

Kernel Trick (cont.)

• Inner product of the two instances after feature mapping:

$$\varphi(\boldsymbol{a}) \cdot \varphi(\boldsymbol{b}) = 1 + 2A_1B_1 + 2A_2B_2 + A_1^2B_1^2 + A_2^2B_2^2 + 2A_1A_2B_1B_2$$
$$= (1 + A_1B_1 + A_2B_2)^2$$

• So, if we define the kernel function as follows, there is no need to carry out $\varphi(\cdot)$ explicitly

$$k(\mathbf{a}, \mathbf{b}) = (1 + A_1B_1 + A_2B_2)^2 = (1 + \mathbf{a} \cdot \mathbf{b})^2$$

• This use of kernel function to avoid carrying out $\varphi(\cdot)$ explicitly is known as the <u>kernel trick</u>

Kernel Trick: General Idea

• If $\varphi(\cdot)$ satisfies some conditions, then we can find a function $k(\cdot, \cdot)$ such that

Kernel function
$$\rightarrow k(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j)$$

$$\varphi(\bullet)$$

Feature space

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{2\sigma^2}\right)$$

How to Apply Kernel Trick?

• Optimization problem for nonlinear SVMs (separable)

$$\min_{\substack{w,b\\ \text{s.t.}}} \frac{\|w\|_2^2}{2}$$
s.t.
$$y_i \times (w \cdot \varphi(x_i) + b) \ge 1, i = 1, ..., N$$

Instances in the feature space do not appear in the form of inner products

- The kernel trick is not applicable
- How about its dual form?

Lagrange multiplier method

Lagrange Multiplier Method: Idea

• Given: an objective $f(\mathbf{w})$ to be minimized, with a set of inequality constraints to be satisfied $h_i(\mathbf{w}) \le 0, i = 1, 2, ..., q$

$$\min_{\mathbf{w}} f(\mathbf{w})$$
s.t. $h_i(\mathbf{w}) \le 0$, $i = 1, ..., q$

• The Lagrangian for the optimization problem:

$$L(\mathbf{w}, \lambda) = f(\mathbf{w}) + \sum_{i=1}^{q} \lambda_i h_i(\mathbf{w})$$

$$\lambda = (\lambda_1, ..., \lambda_q)$$
 The Lagrange multipliers

The Dual Form (Separable)

• By using Lagrangian Multiplier method

$$\min_{\substack{\mathbf{w},b\\\mathbf{w},b}} \frac{\|\mathbf{w}\|_2^2}{2}$$
 Primal Form
s.t. $y_i \times (\mathbf{w} \cdot \varphi(\mathbf{x}_i) + b) \ge 1, i = 1, ..., N$

$$\max_{\lambda} L_D(\lambda) = -\left(\frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j (\varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)) - \sum_{i=1}^N \lambda_i\right)$$

Dual Form

Dual Optimization Problem

- The dual Lagrangian involves only the Lagrange multipliers and the training data
- The negative sign in the dual Lagrangian transforms a minimization problem of the primal form to a maximization problem of the dual form
- The objective is to maximize $L_D(\lambda)$
 - Can be solved using numerical techniques such as quadratic programming

Dual Optimization Problem (cont.)

• Once the λ_i 's are found, we can obtain the feasible solutions for \boldsymbol{w} and \boldsymbol{b} from

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \varphi(\mathbf{x}_i)$$
 AND $\lambda_i (y_i (\mathbf{w} \cdot \varphi(\mathbf{x}_i) + b) - 1) = 0$

The decision boundary can be expressed as

$$\mathbf{w} \cdot \varphi(\mathbf{x}) + b = \left(\sum_{i=1}^{N} \lambda_i y_i \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x})\right) + b = 0$$

If x_i is a support vector, then the corresponding $\lambda_i > 0$, otherwise, $\lambda_i = 0$

Dual Optimization Problem (cont.)

• For a test instance x^* , it can be classified using

$$f(\mathbf{x}^*) = \operatorname{sign}\left(\sum_{i=1}^N \lambda_i y_i \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}^*) + b\right)$$

Nonlinear SVM via Kernel Trick

Training:
$$\max_{\lambda} \left(\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j (\varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)) \right)$$

Decision boundary:
$$\sum_{i=1}^{N} \lambda_i y_i (\varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}^*)) + b = 0$$

- The data points only appear as inner product
- As long as the inner product in the feature space can be calculated, no need for the explicit mapping

Nonlinear SVM via Kernel Trick (cont.)

• Replace inner product in feature space by kernel function

Training:
$$\max_{\lambda} \left(\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j) \right)$$

Decision boundary:

$$\sum_{i=1}^{\lambda_i} \lambda_i v_i k(x_i, x^*) + b = 0$$

$$k(x_i, x^*) = \varphi(x_i) \cdot \varphi(x^*)$$

If x_i is a support vector, then the corresponding $\lambda_i > 0$, otherwise, $\lambda_i = 0$

$$k(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)$$

Kernel Functions: Examples

Linear kernel

$$k(\boldsymbol{x}_i,\boldsymbol{x}_j) = \boldsymbol{x}_i \cdot \boldsymbol{x}_j$$

• Radial basis function kernel with width σ

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{2\sigma^2}\right)$$

Polynomial kernel with degree d

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j + 1)^d$$

Soft Margin Dual Form

By using Lagrangian Multiplier method

$$\min_{\boldsymbol{w}, b, \xi_i} \frac{\|\boldsymbol{w}\|_2^2}{2} + C \left(\sum_{i=1}^N \xi_i \right)$$

s.t.
$$y_i(\mathbf{w} \cdot \varphi(\mathbf{x}_i) + b) \ge 1 - \xi_i, i = 1, ..., N,$$

 $\xi_i \ge 0, i = 1, ..., N,$

$$\min_{\lambda} L_D(\lambda) = -\left(\frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \left(\varphi(x_i) \cdot \varphi(x_j)\right) - \sum_{i=1}^N \lambda_i\right)$$

s.t., $0 \le \lambda_i \le C$

Kernel trick can be applied

Soft Margin Dual Form (cont.)

$$\mathbf{w} \cdot \varphi(\mathbf{x}) + b = \left(\sum_{i=1}^{N} \lambda_i y_i \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x})\right) + b = 0$$

Kernel trick can be applied

• For a test instance x^* , it can be classified using

$$f(\mathbf{x}^*) = \operatorname{sign}\left(\sum_{i=1}^N \lambda_i y_i \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}^*) + b\right)$$

$$k(\mathbf{x}_i, \mathbf{x}^*)$$

Popular Toolboxes of SVMs

- LIBSVM
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- LIBLINEAR
 - http://www.csie.ntu.edu.tw/~cjlin/liblinear/

- SVM-light
 - http://svmlight.joachims.org/
- SVM-struct
 - http://www.cs.cornell.edu/People/tj/svm light/svm struct.html
- SVM-perf
 - http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html
- SVM-rank
 - http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html

Further Readings

- A Tutorial on Support Vector Machines for Pattern Recognition, by Christopher J. C. Burges, DMKD, 1998
- *Convex Optimization*, by Stephen Boyd and Lieven Vandenberghe, Cabridge University Press, 2004
- Learning with Kernel, by Bernhard Scholkopf and Alex Smola, The MIT Press, 2002
- *Statistical Learning Theory*, by Vladimir N. Vapnik, Wiley-Interscience, 1998

Thank you!