PROBABILITÉS ET STATISTIQUES

N. B. — Dans la partie I, des résultats utiles pour les autres parties sont établis. Les parties II, III et IV sont indépendantes.

DÉFINITIONS, NOTATIONS ET RAPPELS

1º Dans tout le problème $\mathbb N$ désigne l'ensemble des entiers naturels, $\mathbb R$ l'ensemble des réels et pour tout $n \ge 1$, $\mathbb R^n$ l'ensemble des n-uples de réels. Si $(x_i, i \in I)$ désigne une famille de nombres réels, on notera sup x_i leur borne supérieure et inf x_i leur borne inférieure.

L'ensemble \mathbb{N}^2 des couples d'entiers naturels est muni de l'ordre partiel \leq défini par $(i,j) \leq (m,n)$ si et seulement si $i \leq m$ et $j \leq n$. Une suite $(x_{i,j},(i,j) \in \mathbb{N}^2)$ d'éléments d'un espace vectoriel normé $(E,\|.\|)$ converge vers un élément x de E si et seulement si :

$$\forall \ \varepsilon > 0, \quad \exists \ n \geqslant 0, \quad \forall \ i \geqslant n, \quad \forall \ j \geqslant n, \quad \left\| \ x_{i,j} - x \ \right\| < \varepsilon.$$

2° Soit (Ω, \mathcal{F}, P) un espace probabilisé. On dit que X est une variable aléatoire à valeurs dans \mathbb{R}^n si X est une application mesurable de (Ω, \mathcal{F}) dans $(\mathbb{R}^n, \mathcal{R}^n)$, où \mathcal{R}^n désigne la tribu borélienne de \mathbb{R}^n . Lorsque n=1 on dit que X est une variable aléatoire réelle (en abrégé v.a.r.). On note P_X la loi de X, c'est-à-dire la probabilité sur \mathcal{R}^n image de P par X. Par abus de langage X désigne aussi la classe de P-équivalence de l'application X. Pour tout $A \in \mathcal{R}^n$, notons $\{X \in A\} = X^{-1}(A)$.

On note 1_A la fonction indicatrice d'un ensemble $A \in \mathcal{F}$, c'est-à-dire la v.a.r. qui vaut 1 sur A et 0 sur le complémentaire de A. On note A^C le complémentaire de A dans Ω .

 \mathfrak{Z}° Un sous-ensemble \mathfrak{N} de l'ensemble $\mathfrak{T}(\Omega)$ des parties de Ω est une famille monotone si et seulement si :

- (i) $\Omega \in \mathfrak{M}$:
- (ii) $\forall A \in \mathfrak{M}, \forall B \in \mathfrak{M}, A \subset B \Rightarrow B \cap A^{C} \in \mathfrak{M};$
- (iii) Pour toute suite $(A_n, n \ge 0)$ d'éléments de \mathfrak{M} telle que $A_n \subset A_{n+1}$ pour tout $n \ge 0$, on $a \cup A_n \in \mathfrak{M}$.

Les candidats pourront utiliser dans la suite le résultat suivant : soient $\mathcal{C} \subset \mathfrak{N} \subset \mathfrak{L}(\Omega)$ tels que \mathcal{C} soit stable par intersection finie et \mathcal{M} soit une famille monotone; alors \mathcal{M} contient la tribu engendrée par \mathcal{C} .

- 4° Si $(\mathcal{F}_i, i \in I)$ désigne une famille de sous-tribus de \mathcal{F} on note $\bigvee \mathcal{F}_i$ la tribu engendrée par $\bigcup \mathcal{F}_i$, c'està-dire la plus petite sous-tribu de \mathcal{F} contenant toutes les tribus \mathcal{F}_i , $i \in I$. Si $(X_i, i \in I)$ est une famille de v.a.r., on note σ $(X_i, i \in I)$ la plus petite sous-tribu de \mathcal{F} rendant mesurables les applications X_i de Ω dans \mathbb{R} pour tout $i \in I$. On dit qu'une application α mesurable de $(\mathbb{R}^n, \mathcal{R}^n)$ dans $(\mathbb{R}, \mathcal{R})$ est borélienne. On rappelle que pour tout $n \geq 1$, une v.a.r. Y est mesurable de $(\Omega, \sigma(X_i, 1 \leq i \leq n))$ dans $(\mathbb{R}, \mathcal{R})$ si et seulement s'il existe une application borélienne α de \mathbb{R}^n dans \mathbb{R} telle que $Y = \alpha \circ (X_1, \ldots, X_n)$.
- 5° On note L¹ (Ω, \mathcal{F}, P) (respectivement L² (Ω, \mathcal{F}, P) ; L $^{\infty}(\Omega, \mathcal{F}, P)$) l'espace vectoriel des classes de P-équivalence de v.a.r. sur (Ω, \mathcal{F}, P) qui sont intégrables (respectivement de carré intégrable; bornées) muni de la norme $\|\cdot\|_1$ (respectivement $\|\cdot\|_2$; $\|\cdot\|_{\infty}$). Si X est une v.a.r. on note par exemple $X \in L^1$ (Ω, \mathcal{F}, P) par l'abus de langage précisé au 2°.
- 6° Si \mathcal{G} désigne une sous-tribu de \mathcal{F} , on désigne par $P_{\mathcal{G}}$ la restriction de P à \mathcal{G} . Si $X \in L^1(\Omega, \mathcal{F}, P)$ on note $E(X \mid \mathcal{G})$ l'espérance conditionnelle de X relativement à \mathcal{G} . C'est l'unique élément de $L^1(\Omega, \mathcal{G}, P_{\mathcal{G}})$ défini par l'égalité :

$$E(X|Y) = \int E(X \mid \mathcal{G}) Y dP_{\mathcal{G}}, \quad \forall Y \in L^{\infty}(\Omega, \mathcal{G}, P_{\mathcal{G}}).$$

Par abus de langage on note aussi $\mathbb{E}\left(X\mid\mathcal{G}\right)$ pour l'un des représentants de la classe de P-équivalence.

 $\text{On rappelle que si } X \in L^{2}\left(\Omega,\mathcal{F},P\right)\text{, alors } E\left(X\left|\mathcal{G}\right)\right. \in L^{2}\left(\Omega,\mathcal{G},P_{\widehat{\mathcal{G}}}\right) \text{ et } \left\|\left.E\left(X\left|\mathcal{G}\right.\right|\mathcal{G}\right)\right\|_{2} \leqslant \left\|\left.X\right.\right\|_{2}.$

Lorsque $\mathcal G$ est la tribu engendrée par la variable aléatoire Z à valeurs dans $\mathbb R^n$, on note $E(X\mid Z=z)$ l'unique élément de $L^1(\mathbb R^n,\mathcal R^n,P_Z)$ tel que pour toute fonction borélienne bornée f de $\mathbb R^n$ dans $\mathbb R$, on ait :

$$\mathbb{E}\left[X f(Z)\right] = \int_{\mathbb{R}^n}^{\infty} \mathbb{E}\left(X \mid Z = z\right) f(z) \, P_Z(dz),$$

c'est-à-dire tel que $E(X \mid \sigma(Z)) = E(X \mid Z = z) \circ Z$ p.s.

7º Soient $\mathcal G$ une sous-tribu de $\mathcal F$ et $(\mathcal F_i,\,i\in I)$ une famille de sous-tribus de $\mathcal F$. Les tribus $(\mathcal F_i,\,i\in I)$ sont conditionnellement indépendantes sachant $\mathcal G$ si et seulement si pour tout sous-ensemble fini J de I et pour toute famille d'ensembles $(A_j\in \mathcal F_j,\,j\in J)$ on a :

$$\mathbf{E}\left(\prod_{j \in \mathbf{J}} \mathbf{1}_{\mathbf{A}_j} | \mathcal{G}\right) = \prod_{j \in \mathbf{J}} \mathbf{E}\left(\mathbf{1}_{\mathbf{A}_j} | \mathcal{G}\right) \quad \text{p.s.}$$

On dit qu'une famille de v.a.r. $(X_i, i \in I)$ est conditionnellement indépendante sachant \mathcal{G} si les tribus $(\sigma(X_i), i \in I)$ le sont.

80 Une suite $(\mathcal{F}_n, n \ge 0)$ de sous-tribus de \mathcal{F} est croissante si $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ pour tout $n \ge 0$; on note $\mathcal{F}_{\infty} = \bigvee_{n \ge 0} \mathcal{F}_n$.

On dit que $T: \Omega \to \mathbb{N} \cup \{+\infty\}$ est un temps d'arrêt de la famille $(\mathcal{F}_n, n \geqslant 0)$ si et seulement si pour tout $n \in \mathbb{N}$, $\{T = n\} \in \mathcal{F}_n$. Si $(X_n, n \geqslant 0)$ est une suite de v.a.r. et si X_∞ est une v.a.r., notons X_T la v.a.r. définie par :

$$X_{T}(\omega) = X_{T(\omega)}(\omega).$$

9º Soient $(\mathfrak{F}_n, n \geqslant 0)$ une suite croissante de sous-tribus de \mathfrak{F} , $\mathfrak{F}_{\infty} = \bigvee_{n \geqslant 0} \mathfrak{F}_n$. Les candidats pourront admettre le résultat suivant :

Pour toute v.a.r. $X \in L^{\infty}(\Omega, \mathcal{F}, P)$, la suite de v.a.r. $(E(X \mid \mathcal{F}_n), n \ge 0)$ converge presque sûrement vers $E(X \mid \mathcal{F}_{\infty})$.

PREMIÈRE PARTIE

Les questions A, B et C sont indépendantes. Les résultats prouvés dans cette partie seront utilisés dans la suite.

A

1º Soient $\mathcal G$ une sous-tribu de $\mathcal F$, X et Y deux éléments de $L^1(\Omega,\mathcal F,P)$ tels que E(X)=E(Y). Montrer que l'ensemble des éléments G de $\mathcal G$ tels que $E(X1_G)=E(Y1_G)$ est une famille monotone.

2º Soient $\mathcal{A} \subset \mathcal{B}$ et \mathcal{C} des sous-tribus de \mathcal{F} telles que \mathcal{B} et \mathcal{C} soient indépendantes. Soit X une v.a.r. intégrable telle que $\sigma(X) \subset \mathcal{B}$. Montrer qu'on a :

$$E(X \mid \mathcal{A} \vee \mathcal{C}) = E(X \mid \mathcal{A})$$
 p.s.

3º Soient \mathcal{F}_1 , \mathcal{F}_2 et \mathcal{G} des sous-tribus de \mathcal{F} . Montrer que les conditions suivantes (i) - (iv) sont équivalentes :

Antalia de como en entra de la compansa en la final de la final

$$\begin{cases} (i) \ \mathcal{F}_1 \ \text{et} \ \mathcal{F}_2 \ \text{sont conditionnellement indépendantes sachant} \ \mathcal{G}; \\ (ii) \ \forall \ X_1 \in L^{\infty}(\Omega, \mathcal{F}_1, P), \ \forall \ X_2 \in L^{\infty}(\Omega, \mathcal{F}_2, P); \\ E(X, X_2 | \mathcal{G}) = E(X_1 | \mathcal{G}) \ E(X_2 | \mathcal{G}) \ \text{p.s.}; \end{cases}$$

(iii)
$$\forall A_1 \in \mathcal{F}_1, E(1A_1 | \mathcal{F}_2 \vee \mathcal{G}) = E(1A_1 | \mathcal{G}) \text{ p.s.};$$

$$(iv) \forall X_1 \in L^1(\Omega, \mathcal{F}_1, P), E(X_1 | \mathcal{F}_2 \vee \mathcal{G}) = E(X_1 | \mathcal{G}) \text{ p.s.}$$

4º Soient $\mathcal{A} \subset \mathcal{B}$ deux sous-tribus de \mathcal{F} et X une v.a.r. telle que pour toute fonction borélienne bornée α de \mathbb{R} dans \mathbb{R} , $E(\alpha(X) \mid \mathcal{A}) = E(\alpha(X) \mid \mathcal{B})$ p.s. Montrer que $\sigma(X)$ et \mathcal{B} sont conditionnellement indépendantes sachant \mathcal{A} .

5º Soient $\mathfrak G$ une sous-tribu de $\mathfrak F$ et $(\mathfrak F_n, n \geqslant 0)$ une suite de sous-tribus de $\mathfrak F$ conditionnellement indépendantes sachant $\mathfrak G$. Pour tout $k \geqslant 1$ définissons la suite de tribus $(\mathcal H_n, n \geqslant 0)$ par :

$$\mathcal{H}_0 = \bigvee_{0 \le i \le k} \widetilde{\mathcal{F}}_i \text{ et } \mathcal{H}_n = \mathcal{F}_{n+k} \text{ pour } n \ge 1.$$

Montrer que la suite $(\mathcal{H}_n, n \geqslant 0)$ est conditionnellement indépendante sachant \mathfrak{S} .

В

Soient $(\mathcal{F}_n, n \ge 0)$ une suite croissante de sous-tribus de $\mathcal{F}, \mathcal{F}_{\infty} = \bigvee_{n \ge 0} \mathcal{F}_n, X$ une v.a.r. bornée.

1º Montrer que la suite $(E(X | \mathcal{F}_n), n \ge 0)$ converge dans L² vers $E(X | \mathcal{F}_{\infty})$.

20 Soit $(\mathcal{A}_n, n \ge 0)$ une suite de sous-tribus de $\mathcal{A} \subset \mathcal{F}_{\infty}$ telle que pour tout $n \ge 0$ les v.a.r. $E(X \mid \mathcal{A}_n)$ et $E(X \mid \mathcal{F}_n)$ aient même loi.

$$\downarrow$$
 b. Montrer que $\| \mathbf{E}(\mathbf{X} \mid \mathfrak{F}_{\infty}) \|_{2} = \| \mathbf{E}(\mathbf{X} \mid \mathfrak{H}) \|_{2}$.

 \star c. Montrer que $E(X \mid \mathcal{F}_{\infty}) = E(X \mid \mathcal{A})$ presque sûrement.

C

Soient $(\mathcal{F}_n, n \ge 0)$ une suite croissante de sous-tribus de \mathcal{F} , $\mathcal{F}_{\infty} = \bigvee_{n \ge 0} \mathcal{F}_n$. Soient M un réel et $(Y_j, j \in \mathbb{N} \cup \{\infty\})$ une suite de v.a.r. telle que $(Y_j, j \in \mathbb{N})$ converge presque sûrement vers Y_{∞} et $|Y_j| \le M$ pour tout $j \in \mathbb{N}$. Fixons $k \ge 0$ et posons $Z_k = \sup_{j \ge k} |Y_j - Y_{\infty}|$.

1º Montrer que:

$$\lim_{n \to \infty} \sup_{t \ge n} | E(Y_t | \mathcal{F}_t) - E(Y_{\infty} | \mathcal{F}_{\infty}) | \le E(Z_k | \mathcal{F}_{\infty}) \text{ p.s.}$$

2º Montrer que la suite $(E(Z_k | \mathcal{F}_{\infty}), k \ge 0)$ converge presque sûrement vers zéro et en déduire que $(E(Y_j | \mathcal{F}_i), (i, j) \in \mathbb{N}^2)$ converge presque sûrement vers $E(Y_{\infty} | \mathcal{F}_{\infty})$.

DEUXIÈME PARTIE

Soit $(\mathfrak{F}_{i,j},(i,j)\in\mathbb{N}^2)$ une famille croissante de sous-tribus de \mathfrak{F} , c'est-à-dire telles que $(i,j)\leqslant (m,n)$ entraîne $\mathfrak{F}_{i,j}\subset\mathfrak{F}_{m,n}$; posons $\mathfrak{F}_{\infty}=\bigvee_{\substack{(i,j)\in\mathbb{N}^2\\n\geqslant 0}}\mathcal{F}_{i,j}$. Soit X un élément de $L^{\infty}(\Omega,\mathfrak{F},\mathbb{P})$. Pour tout $(i,j)\in\mathbb{N}^2$, posons $X_{i,j}=\mathbb{E}(X\,|\,\mathfrak{F}_{i,j})$, $\mathfrak{B}_i=\bigvee_{n\geqslant 0}\mathfrak{F}_{i,n}$ et $\mathfrak{B}_j=\bigvee_{n\geqslant 0}\mathfrak{F}_{n,j}$.

- 1. a. Montrer que pour toute suite croissante (i_n, j_n) d'éléments de \mathbb{N}^2 , la suite $(X_{i_n, j_n}, n \ge 0)$ converge dans $L^2(\Omega, \mathcal{F}_{\infty}, P)$.
 - b. Montrer que $(X_{i,j},(i,j) \in \mathbb{N}^2)$ converge dans $L^2(\Omega, \mathcal{F}_{\infty}, P)$ vers $E(X \mid \mathcal{F}_{\infty})$.
- 2º On suppose de plus que pour tout $(i,j) \in \mathbb{N}^2$ les tribus \mathcal{A}_i et \mathcal{B}_j sont conditionnellement indépendantes sachant $\mathcal{F}_{i,j}$.
 - a. On pose $X_{\infty,j} = \mathbb{E}(X \mid \mathcal{B}_j)$ pour tout $j \geq 0$. Montrer que $X_{i,j} = \mathbb{E}(X_{\infty,j} \mid \mathcal{A}_i)$ pour tout $(i,j) \in \mathbb{N}^2$.
 - X b. Montrer que $(X_{i,j}, (i,j) \in \mathbb{N}^2)$ converge presque sûrement vers $E(X \mid \mathfrak{F}_{\infty})$.
- 3º Soient $(Y_{i,j}, (i,j) \in \mathbb{N}^2)$ des v.a.r. indépendantes. Pour tout $(i,j) \in \mathbb{N}^2$ posons $\mathcal{F}_{i,j} = \sigma(Y_{m,n}, (m,n) \leq (i,j))$. Montrer que pour tout $(i,j) \in \mathbb{N}^2$ les tribus \mathcal{A}_i et \mathcal{B}_j sont conditionnellement indépendantes sachant $\mathcal{F}_{i,j}$.

TROISIÈME PARTIE

Pour tout ε tel que $0 < \varepsilon < 1$ et $m \in \mathbb{N}$ on dit qu'une partition $\pi = \{A, B_0, B_1, \ldots, B_m\}$ de Ω est de type (ε, m) si $A \in \mathcal{F}$, $B_i \in \mathcal{F}$ pour tout $i \leqslant m$, $P(A) = \varepsilon$ et $P(B_i) = \frac{1-\varepsilon}{m+1}$ pour $0 \leqslant i \leqslant m$. Si π est une partition de type (ε, m) , notons $\pi(i)$ la tribu engendrée par $A \cup B_i$, $0 \leqslant i \leqslant m$. La famille croissante $(\mathcal{F}_{i,j}, (i,j) \in \mathbb{N}^2)$ de sous-tribus de \mathcal{F} est construite sur la partition π de type (ε, m) si:

$$\begin{split} \mathcal{F}_{i, \ m-i} &= \pi(i) \text{ pour } 0 \leqslant i \leqslant m \,, \\ \mathcal{F}_{i, \ j} &= \left\{ \ \varnothing \,, \Omega \right\}, \text{ si } i \,+\, j < m \,\,, \\ \mathcal{F}_{i, \ j} &= \bigvee_{u \,\leqslant\, i \ v \,\leqslant\, j} \mathcal{F}_{u, \ v} \text{ si } i \,+\, j > m \,. \end{split}$$

1º Soit π une partition de type (ε, m) .

a. Montrer que pour tout $i \leqslant m$,

X

- $E(1_A | \pi(i)) = c(\varepsilon, m) = [1 + (1 \varepsilon)(m + 1)^{-1} \varepsilon^{-1}]^{-1}$ p.s. sur $A \cup B_t$.
- b. Soient k et u des entiers positifs tels que $k + u \leqslant m$. Montrer que:

$$P\left(\left\{\sup_{k \leq i \leq m-u} E\left(1_{A} \mid \pi(i)\right) = c(\varepsilon, m)\right\}\right) \geqslant 1 - \frac{k+u}{m+1}.$$

2º Soient $(\pi_k, k \ge 1)$ des partitions indépendantes de type (ε_k, m_k) . Pour tout $k \ge 1$ soit $(\mathcal{F}_{i,j}^{(k)}, (i,j) \in \mathbb{N}^2)$ la famille croissante de sous-tribus de \mathcal{F} construite sur π_k . Pour tout $(i,j) \in \mathbb{N}^2$, soit $\mathcal{F}_{i,j} = \bigvee_{k \ge 1} \mathcal{F}_{i,j}^{(k)}$. Notons

$$C = \bigcup_{k \ge 1} A_k$$
. On suppose que $m_k \varepsilon_k \to +\infty$ quand $k \to +\infty$ et $\sum_{k \ge 1} \varepsilon_k < +\infty$.

- a. Montrer que pour tout $(i, j) \in \mathbb{N}^2$ et tout $k \ge 1$, $\mathbb{E}(1_{\mathbf{A}_k} | \mathcal{F}_{i,j}^{(k)}) = \mathbb{E}(1_{\mathbf{A}_k} | \mathcal{F}_{i,j})$ p.s.
- b. Fixons $(i, j) \in \mathbb{N}^2$. Pour tout $k \ge 1$ tel que $i + j < m_k$, minorer

$$P\left(\left\{\sup_{u>i}\sup_{v>j} E\left(1_{A_k}|\mathcal{F}_{u,v}^{(k)}\right) \geqslant c\left(\varepsilon_k, m_k\right)\right\}\right).$$

c. Posons $M_{i,j} = \sup_{u > i} \sup_{v > j} E(1_C | \mathcal{F}_{u,v})$ et $M_{i,j}^{(k)} = \sup_{u > i} \sup_{v > j} E(1_{A_k} | \mathcal{F}_{u,v}^{(k)})$.

Montrer que :

$$\left\{\begin{array}{ll} \mathbf{M}_{i,j} = 1 \\ \end{array}\right\} \supset \bigcap_{n \geq 1} \left[\begin{array}{ll} \bigcup_{k \geq n} \left\{\begin{array}{ll} \mathbf{M}_{i,j}^{(k)} \geqslant c\left(\varepsilon_{k}, m_{k}\right) \\ \end{array}\right\}\right].$$

En déduire que M_{i,j} = 1 presque sûrement.

- d. Montrer que 0 < P(C) < 1 et que $A_k \in \mathcal{F}_{i,j}^{(k)}$ si $i + j > m_k$. En déduire que $C \in \mathcal{F}_{\infty} = \bigvee_{\{i,j\} \in \mathbb{N}'} \mathcal{F}_{i,j}$
- e. Montrer que lim inf inf $E(1_C \mid \mathcal{F}_{i,j}) = 0$ presque sûrement sur le complémentaire de C. En déduire que $(E(1_C \mid \mathcal{F}_{i,j}), (i,j) \in \mathbb{N}^2)$ n'est pas presque sûrement convergente.

QUATRIÈME PARTIE

Soit $(X_n, n \ge 1)$ une suite de v.a.r. On note $\mathbb Q$ la sous-tribu de $\mathcal F$ définie par $\mathbb Q = \bigcap_{n \ge 1} \sigma(X_i, i \ge n)$. Pour tout $n \ge 1$ soit $\mathcal F_n = \sigma(X_i, 1 \le i \le n)$. On dit que $(X_n, n \ge 1)$ est conditionnellement équidistribuée sachant $\mathbb Q$ si pour tout entier $n \ge 1$ et pour toute fonction α borélienne bornée définie sur $\mathbb R$:

$$E(\alpha(X_n)|Q) = E(\alpha(X_1)|Q)$$
 p.s.

Α

On suppose que la suite $(X_n, n \ge 1)$ est conditionnellement indépendante et conditionnellement équidistribuée sachant Q. Fixons un entier $k \ge 1$ et un temps d'arrêt T pour $(\mathcal{F}_n, n \ge 1)$ tel que $P(1 \le T < + \infty) = 1$.

1º Montrer que pour tout k-uple $(\alpha_i, 1 \le i \le k)$ de fonctions boréliennes bornées positives définies sur \mathbb{R} :

$$E\left(\prod_{1\leq i\leq k}\alpha_{i}\left(X_{T+i}\right)\mid \mathcal{Q}\right)=E\left(\prod_{1\leq i\leq k}\alpha_{i}\left(X_{i}\right)\mid \mathcal{Q}\right) \text{ p.s.}$$

2º En déduire que les variables aléatoires $(X_1, ..., X_k)$ et $(X_{T+1}, ..., X_{T+k})$ ont même loi.

On suppose que la suite $(X_n, n \ge 1)$ est telle que pour tout temps d'arrêt borné $T \ge 1$ pour $(\mathcal{F}_n, n \ge 1)$ et pour tout entier $k \ge 1$, les variables aléatoires $(X_1, ..., X_k)$ et $(X_{T+1}, ..., X_{T+k})$ ont même loi. On se propose de montrer la réciproque de la question A.

1º Fixons $n \ge 0$, $j \ge 1$, $k \ge 1$ et $F \in \mathbb{R}$. Posons S = j sur Ω et T = j sur $\{X_j \notin F\}$, T = j + n sur $\{X_j \in F\}$. Montrer que S et T sont des temps d'arrêt pour $(\mathfrak{F}_n, n \ge 1)$ et que pour toute fonction borélienne bornée α de \mathbb{R}^k dans \mathbb{R} :

$$E\left(\alpha\left(X_{j+1}, ..., X_{j+k}\right) 1_{\left\{X_{j} \in F\right\}}\right) = E\left(\alpha\left(X_{j+n+1}, ..., X_{j+n+k}\right) 1_{\left\{X_{j} \in F\right\}}\right).$$

En déduire que les vecteurs $(X_j, X_{j+1}, ..., X_{j+k})$ et $(X_j, X_{j+n+1}, ..., X_{j+n+k})$ ont même loi.

- 2º Fixons $n \ge 2$, $m \ge 2$ et une fonction borélienne bornée α de $\mathbb R$ dans $\mathbb R$.
 - a. Posons $\delta(z) = \mathbb{E}(\alpha(X_1) | (X_2, ..., X_n) = z)$ pour tout $z \in \mathbb{R}^{n-1}$. Montrer que : $\delta(X_m, X_{m+1}, ..., X_{m+n-2}) = \mathbb{E}(\alpha(X_1) | \sigma(X_i, m \le i \le m+n-2))$ p.s.
 - b. En déduire que $\mathbb{E}(\alpha(X_1) \mid \sigma(X_i, 2 \leq i \leq n))$ et $\mathbb{E}(\alpha(X_1) \mid \sigma(X_i, m \leq i \leq m + n 2))$ ont même loi.
- 3º Montrer que pour tout $m\geqslant 2$ et pour toute fonction borélienne bornée α de $\mathbb R$ dans $\mathbb R$:

$$E(\alpha(X_1) \mid \sigma(X_i, i \ge 2)) = E(\alpha(X_1) \mid \sigma(X_i, i \ge m))$$

$$= E(\alpha(X_1) \mid Q) \text{ p.s.}$$

- 4º a. Montrer que les tribus $\sigma(X_i)$ et $\sigma(X_i, i \ge 2)$ sont conditionnellement indépendantes sachant \mathfrak{Q} .
 - b. Plus généralement montrer que pour tout $j \ge 1$ les tribus $\sigma(X_i)$ et $\sigma(X_i, i \ge j + 1)$ sont conditionnellement indépendantes sachant Q.
 - c. En déduire que la suite $(X_n, n \ge 1)$ est conditionnellement indépendante sachant \mathfrak{Q} .
- 5° a. Montrer que pour tout $(m, n) \in \mathbb{N}^2$ tel que $1 \le m \le n$ et pour tout $k \ge 1$ les variables aléatoires $(X_1, X_{n+1}, ..., X_{n+k})$ et $(X_m, X_{m+1}, ..., X_{m+k})$ ont même loi.
 - b. En déduire que pour toute fonction borélienne bornée α de $\mathbb R$ dans $\mathbb R$:

$$\mathbb{E}(\alpha(X_1) \mid \sigma(X_i, i \ge n+1)) = \mathbb{E}(\alpha(X_m) \mid \sigma(X_i, i \ge n+1)) \text{ p.s.}$$

c. En déduire que les v.a.r. $(X_n, n \ge 1)$ sont conditionnellement équidistribuées sachant Q.