Rappel

En cryptographie, l'adversaire connait problablement votre algorithme, exemple: Enigma.

Le secret du chiffrement se cache dans la clé.

```
(Z/nZ) = Anneau commutatif unitaire
```

```
n premier \leftrightarrows corps
```

Division

Bezout, Algorithme d'Euclide Etendu

Z/nZ, diviser par ((a,n) = 1), c'est multiplier par a^{-1}

$$\exists s_1 \text{ t: s * a + t * n = 1}$$

$$a^{-1} \equiv s \pmod{n}$$

Exponentiation modulaire

```
a^{2q} = (a^q)^2
```

$$a^{2q+1} = a * (a^q)^2$$

Fonction indicatrice d'Euler

```
\Phi(n) = \#\{k \mid k \text{ inversible dans Z/nZ}\}\
```

```
= # { k | 1 \le k \le n - 1, k est premier avec n }
```

Remarque 1: : $\Phi(1) = 1$

Remarque 2: si p premier, $\#\{k \mid 1 \le p - 1, \text{ et } k \text{ premier avec } p\} = p - 1$

$$\Phi(p) = p - 1$$

$$n = 8 = 2^3$$

12345678

$$\Phi(8) = 4$$

$$n = 9 = 3^2$$

123456789

$$\Phi(9) = 6$$

En généralisant: $n = p^v$

1 2
$$\dots$$
 p (p + 1) \dots 2p \dots 3p \dots p^v

Sur les p^v 1 ... p^v [0 ... $(p^v$ - 1)], exactement $(1/p) * p^v$ (= p^{v-1}) divisibles par p

$$\Phi(p^v)$$
 = p^v - p^{v-1} = p^{v-1} * (p - 1) = p^v (1 - (1/p))

Proposition

Si m et n premiers entre eux, $\Phi(mn) = \Phi(m) * \Phi(n)$

Z/mnZ	\leftrightarrows	Z/mZ	Z/nZ
a	$\stackrel{\longleftarrow}{\Longrightarrow}$	a1	a2
inversible	\leftrightarrows	inversible	inversible
$\Phi(mn) = \Phi(m) * \Phi(n)$	$\stackrel{\longleftarrow}{\longrightarrow}$	$\Phi(m)$	$\Phi(n)$

Consequence:

Si n =
$$p_1^{v_1} \dots p_m^{v_m}$$

$$\Phi(\mathbf{n})$$
 = $\Phi(p_1v_1\dots\,\Phi(p_mv_m$ = $\prod_{i=1}^mp_i^{v_1-1}(p_i$ - 1)

=
$$\prod_{i=1}^{m} p_i^{v_i} (1 - (1/p_i)) = n \prod (1 - (1/p_i))$$

$$\mathsf{n} \leq 10^{1000}$$

$$n = p_1^{v_1} \dots p_m^{v_m}$$

$$2^m \le p_1 \ p_2 \dots \ p_m \le \mathsf{n} \le 10^{1000}$$

m * log2
$$\leq$$
 1000 * log10

$$m \leq 1000 * (\frac{log10}{log2}) \leq 3322$$

$$\mathsf{n} = p_1^{v_1} \dots \, p_m^{v_m}$$

$$\Phi(\mathbf{n})$$
 = $\prod_{i=1}^m p_i^{v_i-1}(p_i$ - 1)

= n
$$\prod_{i=1}^{m} (1 - \frac{1}{p_i})$$

Exemple

$$\Phi(210) = 2^{0}(2-1) * 3^{0}(3-1) * 5^{0}(5-1) * 7^{0}(7-1)$$

$$= 2 * 4 * 6$$

$$= 48$$

Si G est un groupe fini, avec n éléments

- en notation additif, (+, 0 élément neutre) $\forall x \exists p, q \in N \ p \neq q \ px = qx \ (p q)x = 0$, un multiple rx = 0, nx = 0
- en notation multiplicative: G, x, 1 \forall x, x^n = 1

$$Z/nZ \ \forall \ a \in Z/nZ$$
: na = 0

Elements inversibles de Z/nZ

Cet ensemble: note $(\mathbb{Z}/n\mathbb{Z})^X$

$$\# (Z/nZ)^X = \Phi(\mathbf{n})$$

Proposition: $(\mathbb{Z}/n\mathbb{Z})^X$, X est un groupe.

Il a Φ (n) éléments.

(
$$\forall \mathsf{a} \in \mathsf{Z/nZ}$$
) $a^{\Phi(n)}$ = 1

$$(\forall \mathsf{a} \in \mathsf{Z}) \, \mathsf{si} \, (\mathsf{a}, \, \mathsf{n}) \, a^{\Phi(n)} \, \mathsf{=} \, \mathsf{1} \, (\mathsf{mod} \, \mathsf{n})$$

Structure du groupe additif Z/nZ

$$\mathsf{Z/nZ} = \{\bar{0}, \bar{1}, \dots, n-1\}$$

$$\bar{0} = 0 * \bar{1}$$

$$\overline{1} = \overline{1} = 1 * \overline{1}$$

$$\bar{2} = \bar{1} + \bar{1} = 2 * \bar{1}$$

=
$$\{0 * \bar{1}, 1 * \bar{1}, ..., (n - 1) * \bar{1}\}$$

 $\bar{1}$ est générateur de Z/nZ

Z/nZ est cyclique

a premier avec n $\leftrightarrows \bar{a}$ générateur de Z/nZ

- 1. si \bar{a} générateur, $\bar{1}$ est un multiple de \bar{a} ! \exists k $\bar{1}$ = k * \bar{a} = \bar{k} * \bar{a} . \bar{a} inversible dans Z/nZ, a premier avec
- 2. Réciproquement, a premier avec n: Il existe s tq a * s \equiv 1 mod n Soit \bar{u} quelconque dans Z/nZ. \bar{u} = u * $\bar{1}$ = u * \bar{s} * \bar{a} = u * \bar{s} * \bar{a} = (u * s) * \bar{a} = (us) * \bar{a} Le nombre de générateurs de (Z/nZ, +) est Φ (n)