Calculating Interest

Simple Interest is calculated just one time.

$$A = P(1+r)^t$$

where:

- A final amount
- **P** principal (starting balance)
- r annual interest rate (as a decimal)
- t time (in years)

Periodically Compounding Interest is expressed as a function of the number of times (n) the interst is applied:

• n - number of compounds per year

$$A = P\Big(1 + rac{r}{n}\Big)^{nt}$$

Bernoulli noticed that this sequence approaches a limit (the force of interest) with larger n and, thus, smaller compounding intervals. Compounding weekly (n = 52) yields \$2.692596..., while compounding daily (n = 365) yields \$2.714567... (approximately two cents more). The limit as n grows large is the number that came to be known as **e** Euler's Number. That is... with Continuously Compounding Interest, the account value will reach \$2.718281828...

$$1(1+\frac{1}{1})^{1*1}=2^1=2$$

$$1(1+\frac{1}{2})^{2*1}=1.5^2=2.25$$

$$1(1+\frac{1}{4})^{4*1}=1.25^4=2.4414$$

$$1(1+\frac{1}{365})^{365*1}=1.002739^{365}=2.714576$$

$$e=\lim_{n\to\infty}\sum_{i=1}^n(1+\frac{r}{n})^{nt}$$
 while $r=1$ and $t=1$ and after some simplification and clever rearranging...

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

so the Continuously Compounding Interest formula is:

$$A=Pe^{rt}$$

The 10X lie method demonstrated by tiny orange hands

▼ Tools Required:

- 1. Gold spray paint
- 2. Lack of morals

Instruction:

1. Repeat the steps below until Jack Smith indicts

Event	TV Delusion	Cash Reality	Stolen
Trumpian lie	+\$1,000,000	\$1	
	=\$1,000,000	\$1	
fraudulent loan #1		+\$100,000	+\$100,000
		=\$100,001	=\$100,000
2nd gold toilet	+\$1,000,000	(\$1)	
	=\$2,000,000	=\$100,000	
fraudulent loan #2		+ \$100,000	+\$100,000
		=\$200,000	=\$200,000
3rd gold toilet	+\$1,000,000	(\$1)	
	=\$3,000,000	=\$199,999	
fraudulent loan #3		+\$100,000	\$100,000
		=\$299,999	=\$300,000
4th gold toilet	+\$1,000,000	(\$1)	
	=\$4,000,000	=\$299,998	
fraudulent loan #4		+\$100,000	\$100,000
	\$4,000,000	=\$399,998	=\$400,000

print("I'm hella good at bizness!")

I'm hella good at bizness!