Teop. 17.4

Действительная и мнимая части аналитической в области $\mathcal{D} \subset \mathbb{C}$ функции имеют в этой области непрерывные частные производные всей порядков .

Δ

Для производной арифметической функции f(z) = U(x, y) + i V(x, y) существуют различные формулы.

$$f'(z) = U'_x + i V'_x = V'_y + i V'_x = U'_x - i U'_y = V'_y - i U'_y.$$
(17.5)

Но формула f'(z) в свою очередь дифференцируема (как сумма некоторого сходящегося степенного ряда), и, значит, непрерывна в \mathcal{D} . Отсюда вытекает непрерывность всех частных производных первого порядка для функций U и V. Рассматривая на основ. (17.5) аналогичные представления для f''(x), f'''(x) и т.д., приходим к требуемому.

 ∇

Напомним, что вещественная функция $\varphi(x, y)$, называется гармонической в некоторой области, если в этой области она имеет непрерывные частные производные до второго порядка включительно и удовлетворяет всюду в \mathcal{D} уравнению Лапласа:

$$\triangle \varphi = \varphi_{x^2}'' + \varphi_{y^2}'' \equiv 0.$$

Как следствие из теоремы 17.4 получим следующее свойство:

Teop . 17.5

Действительная и мнимая части аналитической в области $\mathcal{D} \subset \mathbb{C}$ функции $f = U + i \ V$ являются гармоническими в этой области функциями.

Δ

В данном случае функции U(x, y) и V(x, y) имеют в области \mathcal{D} непрерывные частные производные второго порядка и удовлетворяют условиям (C - R):

$$\begin{bmatrix} \ddot{U}_X' = V_X' \\ U_Y' = -V_X' \end{bmatrix}$$

Дифференцируется здесь первое равенство по x, а второе по y, и складывая их почленно, получим, что $\Delta U \equiv 0$. Аналогично, дифференцируется первое равенство по y, а второе по x, и вычитая их почленно, имеем: $\Delta U \equiv 0$.

 ∇

Теор. 17.6. (Дж. Мореры)

Пусть f(z) — непрерывная в области $\mathcal{D} \subset \mathbb{C}$ функция и интеграл $\oint f(z) \, dz = 0$, то любой замкнутый спрямляемой кривой $\mathcal{L} \subset \mathcal{D}$. Тогда f — аналитическая в \mathcal{D} функция.

Δ

В данном случае на основании теоремы 15.2 функция $F(z) = \int_{z_0}^z f(t) \, dt.$

является аналитической в \mathcal{D} и, кроме того F'(z) = f(z). Но производная аналитической функции также является аналитической, т.е. f(z) — аналитическая в \mathcal{D} функция.

 ∇

Эта теорема является в некотором смысле обратной интегральной теореме Коши для односвязной области. Разница лишь в том, что область \mathcal{D} в теореме Мореры может быть многосвязной, а на f накладывается условие непрерывности. Это условие существенно.

Пример 17.1

Пусть
$$(z) = \left\{ \begin{array}{ll} 0, \ z \in \mathbb{C} \setminus \{\mathbb{Z}_0\} & \square \\ 1, \ z = z_0 & \square \end{array} \right.$$

Тогда $\oint f(z) dz = 0$ по любой замкнутой спрямляемой кривой $\mathcal{L} \subset \mathcal{D}$. Но f(z) не является аналогичной в \mathcal{D} , ибо она не является тоже непрерывной (в точке z_0).

Теор. 17.7. (К. Вейерштрасса о равномерно сходящихся рядах аналитических функций)

Пусть члены ряда $\sum_{k=1}^{\infty} f_k(z) \, (f(z) = \infty)$ — аналитический в области $\mathcal{D} \subset \mathbb{C}$ функции, а сам ряд сходится равномерно на любом компакте из области \mathcal{D} . Тогда:

- 1) сумма ряда f(z) является аналитической в $\mathcal D$ функций.
- 2) ряд можно почленно дифференцировать любое число раз

$$f^{(n)}(z) = \sum_{k=1}^{\infty} f_k^{(n)}(z), \ z \in \mathcal{D} \, (n=1,\,2,\,\,\ldots).$$