MATH 6270 HOMEWORK 2

COLTON GRAINGER OCTOBER 1, 2019

Note (Conventions and Symbols).

• We work with concrete categories C, i.e., categories for which there exists a faithful functor $F: C \hookrightarrow \mathsf{Set}$ that is injective from the set^1 of morphisms $\mathsf{Mor}(\mathsf{C})$ in C to the set of functions $\mathsf{Map}(\mathsf{Set})$ in Set).

4

2. Given. Let F(X), F(Y) be free groups over the sets X, Y.

To prove. If $F(X) \cong F(Y)$ are isomorphic as groups, then the sets $X \cong Y$ have the same cardinality.

Proof. We will argue that the free group functor $F \colon \mathsf{Set} \to \mathsf{Grp}$ is a fully faithful functor, in order to see that the isomorphism $F(X) \xrightarrow{\cong} F(Y)$ is induced by a unique bijection $X \xrightarrow{\cong} Y$. See figure.

3. Given. Consider a group presentation $G = \langle X \mid R \rangle$ with strictly more generators than relations: |X| > |R|.

To prove. G is infinite.

Proof. Define $Q = R \cup \{\text{simple commutators } [x,y] \text{ for all } x,y \in X\}$. The normal closure of Q includes the commutator subgroup of $\langle X \rangle$, which yields a quotient map $\langle X \mid R \rangle \twoheadrightarrow \langle X \mid Q \rangle$ onto an abelian group. Let Z denote the set of relations in Q which are not simple commutators. From our hypothesis, Z has cardinality strictly less than X. In the free abelian group $\mathbb{Z}\{X\}$, the relations in Z produce a underdetermined system of \mathbb{Z} -linear relations on the generators in X. In the vector space $\mathbb{Z}\{X\} \otimes \mathbb{Q}$, the dimension of the subspace spanned by the solutions to these relations has strictly positive codimension. Thence the quotient of $\mathbb{Z}\{X\} \otimes \mathbb{Q}$ is infinite. Taking fibers over both projections yields the proposition.

4. Given. Let $G = \langle \{a,b\} : \{a^n,b^m\} \rangle$ be a group presentation with the exponents $m,n \geq 2$.

To prove. G is infinite.

Proof. Consider the free group $F = F(\{a,b\})$ on two generators. Let F act on itself by right translation. I claim the orbit of the normal subgroup $N = \langle \{w(a^n,b^m)^g : g \in F\} \rangle$ is infinite.

Recall two cosets $N\alpha$ and $N\beta$ coincide if and only if $\alpha\beta^{-1} \in N$.

Let $\alpha = [a, b]^{\nu} := (aba^{-1}b^{-1})^{\nu}$ and $\beta = [a, b]^{\mu}$ for $\mu, \nu \in \mathbb{Z}$. Let $w \in N[a, b]^{\mu}$ be an arbitrary (non-empty) reduced word in the coset $N[a, b]^{\mu}$. We show that $\alpha \beta^{-1} \in N$ if and only if $\mu = \nu$.

Say $\mu \neq \nu$ and let \bar{w} be a (nonempty) reduced word in N. Note $\alpha \beta^{-1}$ is not empty. Now, because \bar{w} is a conjugate of some word $w(a^n, b^m)$ over the letters a^n and b^m , either the first or last letter of \bar{w} has exponent greater in magnitude than 1, where n, m > 1. However, both first and last letters of the reduced word $(aba^{-1}b^{-1})^{\nu}(aba^{-1}b^{-1})^{-\mu}$ has exponent no larger in magnitude than 1.

We have shown the representative reduced words $\alpha\beta^{-1} \neq \bar{w}$ are not equal, hence $\alpha\beta^{-1} \notin N$. If $\mu - \nu = 0$, we have the empty word $\alpha\beta^{-1} = \alpha\alpha^{-1} \in N$.

We have shown there are countably many cosets of N in F. Hence the quotient F/N is not finite.

¹At the risk of being evil, I'm requiring this collection of morphisms to be a set. This is about as much set theory as I'm prepared to handle. See also https://en.wikipedia.org/wiki/Concrete_category.

Figure 1. Sketch of proof

FIGURE 2. Cayley diagram for $F(\{a,b\})$