Predikátová logika

Logika pojmy

Axiom je výchozí tvrzení dané teorie, které nedokazujem, jejich platnost se předpokládá.

Důsledek je tvrzení odvozené z dedukcí axiomů.

Bezespornost- vyvozené důsledky nesmějí obsahovat dané tvrzení a jeho negaci.

Symboly tvoří abecedu torií, spojením vznikají slova - formule.

Prvotní formule p,q,... jsou jednoduché výroky, které dále neanalyzujeme. Složitější výroky konstruujeme pomocí spojek \neg , &, \bigvee , \longrightarrow , \equiv a závorek.

Pravdivostní ohodnocení formulí je zobrazení do množiny {0,1}, kde 1 znamená pravdivé hodnocení.

Tautologie jsou formule, které jsou pravdivé při libovolném ohodnocení, píšeme ⊨, např.:

- zákon vyloučení třetího: A ∨ ¬A
- lacksquare zákon dvojí negace: eg
 eg A
- zákon vyloučení sporu: $\neg (A \& \neg A)$

Logicky ekvivalentní formule mají stejne pravdivostní ohodnocení při libovolném ohodnocení jejich částí.

Obsah

- 1 Logika pojmy
- 2 Jazyk predikátové logiky 1. řádu
 - 2.1 Logické symboly
 - 2.2 Speciální symboly
 - 2.3 Pojmy
- 3 Sémantika
- 4 Logické formule
 - 4.1 Výskyty proměnných ve formuli
- 5 Dokazování logických formulí
 - 5.1 Axiomy predikátové logiky
 - 5.2 Řešený příklad
 - 5.3 Příklady k procvičení
- 6 Věty o úplnosti a kompaktnosti
- 7 Prenexní tvar formulí
 - 7.1 Postup
 - 7.1.1 1. Vyloučení zbytečných kvantifikátorů
 - 7.1.2 2. Přejmenování proměnných
 - 7.1.3 3. Eliminace ekvivalence
 - 7.1.4 4. Přesun negace dovnitř
 - 7.1.5 5. Přesun kvantifikátorů doleva
 - 7.2 Řešený příklad
 - 7.3 Příklady k procvičení

Jazyk predikátové logiky 1. řádu

je specifikován jeho funkčními a predikátovými symboly (určují oblast, kterou jazyk popisuje). Predikátová logika 1. řádu umožňuje kvantifikovat pouze proměnné pro individua, ne množiny nebo relace $(\forall_{n=0}^{\infty}x)$

Logické symboly

- Proměnné označují libovolný prvek z daného oboru objektů.
- Konstanty označují jediný objekt (většinou něčím význačný).
- Logické spojky a pomocné symboly jsou definovány stejně jako ve výrokové logice (negace, konjunkce, disjunkce, implikace, ekvivalence)
- Kvantifikátoryoznačují platnost pro všechny objekty oboru, popř. existenci požadovaného objektu (v dalším textu označuje symbol Q predikáty ∀ nebo ∃)
- Závorky ()
- Predikátový symbol rovnosti =

Speciální symboly

- Funkční symboly (f, g, ...) označují operace nad objekty. Mají aritu (četnost) celé číslo, které udává počet argumentů (konstanta je nulární funkce).
- Predikátové symboly (p, q, ...) označují vlastnosti objektů (predikáty) a vztahy mezi nimi (je menší než, rovná se,...), také mají aritu.

Pojmy

- Termy jsou tvrzení sestavená pomocí proměnných, konstant a funkčních symbolů.
- Atomické formule jsou tvrzení sestavená pomocí termů a predikátových symbolů.

• Formule jsou tvrzení sestavená pomocí atomických formulí (termy + predikátové symboly), logických spojek a kvantifikátorů.

- Vázaný výskyt proměnné x ve formuli φ znamená, že proměnná x se nachází v podformuli φ tvaru $\forall x \varphi$. Pak se φ nazývá obor kvantifikátoru, jinak je proměnná x volnou proměnnou.
- Uzavřená formule = výrok, neobsahuje žádnou volnou proměnnou.

Sémantika

Realizací jazyka L je algebraická struktura \mathcal{M} , složená z:

- univerzum M neprázdná množina objektů
- fukční zobrazení $f_{\mathcal{M}}:\ M^n o M$
- predikátová relace $p_{\mathcal{M}} \subset M^n$

Ohodnocení proměnných je libovolné zobrazení e všech proměnných do M.

Formule φ je splněna v realizaci \mathcal{M} , pokud je pravdivá při každém ohodnocení e. Píšeme $\mathcal{M} \models \varphi$. Je-li φ uzavřená, pak říkáme, že φ je pravdivá v \mathcal{M} .

Formule arphi je logicky platná, pokud pro každou realizaci $\mathcal M$ platí $M \models arphi$

Formule φ a ψ jsou logicky ekvivalentní, pokud při libovolné realizaci \mathcal{M} a libovolném ohodnocení e je $\mathcal{M} \models \varphi[e]$ právě když $\mathcal{M} \models \psi[e]$.

Každá formule φ je ekvivalentní nějaké formuli ψ , ve které se nevyskytuje jeden kvantifikátor, popř. takové, ve které se vyskytují pouze spojky \neg a \longrightarrow a kvantifikátor \forall .

Substituce termů za proměnné: Pokud v termu *t* dosadíme za proměnné další termy, *t* zůstává termem. Dosazením termů za proměnné ve formuli vytvoří opět formuli. Ne vždy je to vhodné, proměnná musí být *substituovatelná*.

Substituovatelná proměnná x je taková, že žádný její volný výskyt neleží v oboru kvantifikátoru proměnné y, která je obsažená v substituovaném termu. Např. S(y) není substituovatelný za x ve formuli $x \to \exists y (x = S(y))$.

Logické formule

Výskyty proměnných ve formuli

Vázaný výskyt proměnné x ve formuli φ znamená, že proměnná x se nachází v podformuli φ tvaru $\forall x \varphi$ nebo $\exists x \varphi$. Pak se φ nazývá obor kvantifikátoru, jinak je proměnná x volnou proměnnou.

Příklad

Majme formulu $arphi:\exists x orall y p(x,z)$. Potom

- y nie je volná v Ψ,
- z je volná v φ ,

Predikátová logika – FITwiki

x je viazaná v Ψ.

Příklad 2

Majme formulu $\forall y (\exists x P(x,y) \to \exists z R(y,z)) \to \forall x S(x,y)$. P, R, S sú nejaké predikáty. Potom

- y je viazaná v podformuli $\forall y (\exists x P(x,y) \rightarrow \exists z R(y,z))$.
- z je viazaná v podformuli $\forall y (\exists x P(x,y) \rightarrow \exists z R(y,z))$.
- y je volná v podformuli $(\exists x P(x,y) \to \exists z R(y,z))$,
- z nie je (volná) v podformuli $\exists x P(x, y)$,
- z je viazaná v podformuli $(\exists x P(x,y)
 ightarrow \exists z R(y,z))$.

Dokazování logických formulí

Axiomy predikátové logiky

Axiomy lze definovat pouze za použití spojek \neg a \rightarrow a kvantifikátoru $\forall . \exists x \varphi$ znamená $\neg (\forall x (\neg \varphi))$.

Výrokové axiomy

- 1. $\varphi \rightarrow (\psi \rightarrow \varphi)$
- 2. $(\varphi \to (\psi \to \eta)) \to ((\varphi \to \psi) \to (\varphi \to \eta))$
- 3. $((\neg \psi) \rightarrow (\neg \varphi)) \rightarrow (\varphi \rightarrow \psi)$

Axiom kvantifikátoru

$$(\forall x(arphi
ightarrow \psi))
ightarrow (arphi
ightarrow (\forall x \psi))$$
, x nemá volný výskyt v $arphi$.

Axiom substituce

$$(orall x arphi)
ightarrow arphi_x[t]$$
, kde t je term substituovatelný za x

Axiomy rovnosti

$$x_1=y_1 \to (x_2=y_2 \to (\dots (x_n=y_n \to f(x_1,\dots,x_n)=f(y_1,\dots,y_n))\dots))$$
, obdobně pro predikáty.

Odvozovací pravidlo Modus Ponens (Pravidlo odloučení)

Z formulí $arphi, arphi o \psi$ (předpoklady) lze odvodit ψ (závěr).

Pravidlo zobecnění

Pro libovolnou proměnnou x z arphi lze odvodit orall x(arphi)

Dedukce

$$T \vdash \varphi \rightarrow \psi$$
 právě tehdy, když $T, \varphi \vdash \psi$.

Řešený příklad

1) Dokažte větu $\exists x(\neg\varphi) \rightarrow (\forall x\varphi \rightarrow \psi)$.

Postup:

- 1. Použijte tautologii $\varphi \to \neg \neg \varphi$.
- Proveďte distribuci kvantifikátoru ∀
- 3. Užijte třetí axiom výrokové logiky ve tvaru $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$
- 4. Aplikujte pravidlo odloučení.
- 5. Použijte tautologii $\neg(\forall x\varphi) \rightarrow (\forall x\varphi \rightarrow \psi)$ 5. $\neg(\forall x\varphi) \rightarrow (\forall x\varphi \rightarrow \psi)$
- 6. Složte implikace ze 4. a 5.

Řešení:

- 1. $\varphi \rightarrow \neg \neg \varphi$
- 2. $\forall x \varphi \rightarrow \forall x \neg \neg \varphi$
- 3. $(\forall x \varphi \rightarrow \forall x \neg \neg \varphi) \rightarrow (\neg \forall x \neg \neg \varphi \rightarrow \neg \forall x \varphi)$
- 4. $\neg \forall x \neg \neg \varphi \rightarrow \neg \forall x \varphi$
- 6. $\neg \forall x \neg \neg \varphi \rightarrow (\forall x \varphi \rightarrow \psi)$
- 7. $\exists x \neg \varphi \rightarrow (\forall x \varphi \rightarrow \psi)$

7. Proveďte úpravu (nahraďte kvantifikátor $\forall x$ kvantifikátorem $\exists x$).

Příklady k procvičení

[2007/2008 - nekompletné zadanie, neznámy zdroj - TODO doplnit]

To, že platí $\vdash \forall x \forall y \phi(x,y) \rightarrow \forall x \phi(x,x)$, můžete dokázat dle následujícího návodu:

- 1. Vezměte formuli $\vdash orall x orall y \phi(x,y)$ jako předpoklad, pak užijte
- 2. axiom substituce
- 3. pravidlo odloučení
- 4. axiom substituce
- 5. pravidlo odloučení
- 6. pravidlo zobecnění
- 7. výsledek úvah 1-6 ve tvaru vztahu o dokazatelnosti formule z předpokladu
- 8. větu o dedukci.

Zadání vypádá kompletní. Řešení dle mě je:

- 1. $\vdash \forall x \forall y \phi(x,y)$
- 2. $\vdash \forall x \forall y \phi(x, y) \rightarrow \forall y \phi(y, y)$
- з. $\vdash \forall y \phi(y,y)$
- 4. $\vdash \forall y \phi(y, y) \rightarrow \phi(x, x)$
- $5. \vdash \phi(x,x)$
- 6. $\vdash \forall x \phi(x, x)$
- 7 $\forall x \forall y \phi(x, y) \vdash \forall x \phi(x, x)$
- 8. $\vdash \forall x \forall y \phi(x, y) \rightarrow \forall x \phi(x, x)$

Věty o úplnosti a kompaktnosti

Teorie T je libovolná množina formulí daného jazyka L a má svou realizaci M.

Teorie T je uplná, pokud je bezesporná a pro každou uzavřenou formuli platí buď $T \models \phi$ nebo $T \models \neg \phi$

Postova věta o úplnosti: Dokazatelné formule jsou tautologiemi ($\vdash A \Leftrightarrow \models A$).

Věta o úplnosti (Goedel): Teorie *T* je bezesporná, právě když má nějaký model.

Věta o kompaktnosti: Nechť T je množina formulí jazyka L. Pak teorie T má nějaký model právě když každá její konečná podmnožina $Q \subseteq T$ má model.

Prenexní tvar formulí

Postup

Převedení formule na prenexní tvar probíhá v 5 krocích v tomto pořadí

1. Vyloučení zbytečných kvantifikátorů

Vynecháme $\forall x$ resp. $\exists x$ v podformulích $\forall xB$ resp. $\exists xB$, pokud se proměnná x nevyskytuje v B.

2. Přejmenování proměnných

Predikátová logika – FITwiki

Nejlevější podformuli QxA (x se nevyskytuje volně v A), pokud má další výskyt ve výchozí formuli, nahradíme Qx'A', kde x' je různá od ostatních proměnných. Opakujeme, až všechny kvantifikátory mají různé proměnné a žádná proměnná není v nové formuli současně volná a vázaná.

3. Eliminace ekvivalence

$$A \Leftrightarrow B$$
 nahradíme za $(A \to B) \land (B \to A)$

4. Přesun negace dovnitř

Provádíme postupně náhrady, než se spojka negace vyskytne nevýše bezprostředně před atomickými formulemi.

$$\neg \forall x A \cdots \exists x \neg A$$

$$\neg \exists x A \cdots \forall x \neg A$$

$$\neg (A \rightarrow B) \cdots A \wedge \neg B$$

$$\neg (A \vee B) \cdots \neg A \wedge \neg B$$

$$\neg (A \wedge B) \cdots \neg A \vee \neg B$$

$$\neg (\neg A) \cdots A$$

5. Přesun kvantifikátorů doleva

Přesun kvantifikátorů doleva pro B, ve které se nevyskytuje x, provádíme náhrady dle schemat:

$$(QxA) \lor B - Qx(A \lor B)$$

 $(QxA) \land B - Qx(A \land B)$
 $(QxA) \rightarrow B - (\neg Q)x(A \rightarrow B)$
 $B \rightarrow (QxA) - Qx(B \rightarrow A)$

Řešený příklad

1) Převed'te negaci formule $[\forall xp(x,y) \to \exists x \forall yq(x,y)] \land \exists y [\forall xp(y,y) \to \forall xp(x,y)]$ do prenexního tvaru.

[2008/2009 | půlsemestrálka | skupina A,B | příklad 2]

Řešení:

1. odstranění implikace

$$[\neg \forall x p(x,y) \lor \exists x \forall y q(x,y)] \land \exists y [\neg \forall x p(y,y) \lor \forall x p(x,y)]$$

2. negace formule

$$[\forall x p(x,y) \land \neg(\exists x \forall y q(x,y))] \lor \forall y [\forall x p(y,y) \land \neg(\forall x p(x,y))]$$

3. odstranění zbytečných kvantifikátorů, přejmenování proměnných

$$[\forall x' p(x', y') \land \neg (\exists x'' \forall y'' q(x'', y''))] \lor \forall y [p(y, y) \land \neg (\forall x p(x, y))]$$

4. úprava negovaných kvantifikátorů

$$[\forall x' p(x', y') \land \forall x'' \exists y'' \neg q(x'', y'')] \lor \forall y [p(y, y) \land \exists x \neg p(x, y)]$$

5. přesunutí kvantifikátorů doleva

$$\forall x' \forall x'' \exists y'' \forall y \exists x [p(x', y') \land \neg q(x'', y'')] \lor [p(y, y) \land \neg p(x, y)]$$

29.5.2011 17:00

6. pouze jedna logická spojka V

Tento krok je už zbytečný a je v něm podle mě chyba(JamesScott), protože:

$$p(x,y) \lor q(x,y) = \neg[\neg p(x,y) \land \neg q(x,y)]$$

$$\forall x' \forall x'' \exists y'' \forall y \exists x [\neg p(x', y') \lor q(x'', y'') \lor \neg p(y, y) \lor p(x, y)]$$

Příklady k procvičení

- 1) Najděte prenexní tvar formule, kde P, R a S jsou binární predikáty.
- $\forall y (\exists x P(x,y) \to \exists u R(y,u)) \to \forall x S(x,y)$
- $\forall x (P(x) \rightarrow \forall y (R(x,y) \rightarrow \neg \forall z S(y,z)))$
- 2) Převeďte formuli do prenexního tvaru a znegujte.
- $\blacksquare \exists x \varphi(x,y) \to \forall x (\psi(x) \lor \chi(y,z))$
- $\forall x \varphi(x, y) \to \exists x (\psi(x) \lor \chi(y, z))$
- 3) Formuli $\forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$ převeďte do prenexního tvaru tak, aby neobsahovala logickou spojku negace.
- 4) Formuli φ , která je negací formule $\forall x (\neg f(x) \land \forall y \exists x (g(x,y) \to \exists z \neg h(x,y)))$ napište tak, aby se v ní nevyskytovala spojka \neg . Pak jí převeďte do prenexního tvaru.
- 5) K formuli $\forall x \exists y (x.y=1) \rightarrow \forall x \forall y \forall z (x.z=y.z \rightarrow x=y)$ najděte ekvivalentní formuli v prenexním tvaru, přičemž 1 je konstanta a . binární funkční symbol.
- 6) Převeďte negaci formule do prenexního tvaru.
- $\forall x[p(x,y) \land \forall yq(x,y)] \rightarrow \exists y[\forall xp(y,y) \rightarrow \forall xp(x,y)]$ [2008/2009 | půlsemestrálka | skupina C,D | příklad 2]

Kategorie: Matematické pahýly | Matematické struktury v informatice | Státnice MGM | Státnice MAT | Státnice 2011

Stránka byla naposledy editována 25. 5. 2011 v 14:18.