

Running Whole Animal Genome Sequencing (WAGS) Pipeline in UGA GACRC Cluster

Sachin Subedi (PhD student)

Integrated Life Sciences, University of Georgia

October 25, 2023

Project Outline

- Utilizing the pipeline provided by our collaborators, we are able to generate GVCF outputs.
- For alignment of the raw data, we've selected the CanFam4 reference genome, a well-established reference for canine genetic research.
- This data was then systematically aligned to CanFam4 using the WAGS pipeline. The result of this alignment is a GVCF file, which we then integrate with other GVCF files.
- I have procured raw genomic data for both Collies and Shetland Sheepdogs (often referred to as Shelties) from the Sequence Read Archive (SRA).

Project Objective

- Our objective is to establish a comprehensive reference panel comprising genomes from all accessible Collie and Sheltie samples.
- This constructed panel will facilitate the imputation of data from low-pass sequencing or SNP arrays, aligning it with the whole genome sequence.

Project Pipeline

Implementation

Installing dependencies:

- Python
- Mamba or Conda
- Snakemake
- Snakemake-Profiles
- Miscellaneous Python modules pyaml, wget, and xlsxwriter
- Apptainer/Singularity

Downloading container that has reference genome:

wget https://s3.msi.umn.edu/wags/wags.sif

Implementation....

Cloning WAGS repository:

git clone https://github.com/jonahcullen/wags.git

Using fastq-dump to convert SRA to FASTQ

```
Q
interact --mem=10gb -c 4
                                                                                               Q
#!/bin/bash
#SBATCH -- job-name=fastq-dump_job
#SBATCH ——partition=batch
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=10
#SBATCH --mem=80gb
#SBATCH --time=120:00:00
#SBATCH --mail-type=ALL
#SBATCH --mail-user=ss11645@uga.edu
#SBATCH -o slurm_logs/%x_%j.out
#SBATCH -e slurm_logs/%x_%j.err
ml SRA-Toolkit/3.0.1-centos_linux64
SRA_ID_HERE="ERR11203059"
OUTPUT_DIR="download_data"
fastq-dump --split-files --gzip --outdir "$OUTPUT_DIR" "$SRA_ID_HERE"
```

Getting Input files (as input.csv)

dogid	breed	gender	fastq	
ERR11203059	ShetlandSheepDog	NA	ERR11203059	
ERR11203057	ShetlandSheepDog	NA	ERR11203057	
ERR11203035	ShetlandSheepDog	NA	ERR11203035	
ERR11223859	Collie	NA	ERR11223859	
ERR11203060	Collie	NA	ERR11203060	
ERR11257717	Collie	NA	ERR11257717	

Using pipeline to generate the slurm file for each inputs

```
#!/bin/bash
#SBATCH --job-name=wags_prep_subs
#SBATCH --partition=batch
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=16
#SBATCH --mem=1gb
#SBATCH --time=7-00:00:00
#SBATCH --error=log.%j.err
#SBATCH --mail-type=ALL
#SBATCH --mail-user=ss11645@uga.edu
cd $SLURM_SUBMIT_DIR
ml purge
ml Mamba/23.1.0-4
export PATH=${HOME}/minio-binaries:$PATH
source ~/.bashrc
conda activate snakemake
python /scratch/ss11645/LC/SRA/prefetchData/sra/wags2/wags/prep_subs.py \
--meta /scratch/ss11645/LC/SRA/prefetchData/sra/wags2/DTA/download_data/input.csv \
--fastqs /scratch/ss11645/LC/SRA/prefetchData/sra/wags2/DTA/download_data/ \
--ref canfam4 \
--out /scratch/ss11645/LC/SRA/prefetchData/sra/wags2/DTA/download_data/out \
--bucket RESULTS \
--snake-env snakemake \
--partition batch \
--email ss11645@uga.edu \
--account laclab \
```

Now the slurm file is generated

```
#!/bin/bash -l
#SBATCH --job-name=ShetlandSheepDog_ERR11203059.one_wag.slurm
#SBATCH --partition=batch
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=48
#SBATCH --mem=50gb
#SBATCH --time=60:00:00
#SBATCH --mail-type=ALL
#SBATCH --mail-user=ss11645@uga.edu
#SBATCH -o slurm logs/%j.ShetlandSheepDog ERR11203059.one wag.out
#SBATCH -e slurm_logs/%j.ShetlandSheepDog_ERR11203059.one_wag.err
#SBATCH -A laclab
#SBATCH -p batch
source ~/.bashrc
conda activate snakemake
cd $SLURM_SUBMIT_DIR
export _JAVA_OPTIONS=-Djava.io.tmpdir=/scratch/ss11645/LC/SRA/prefetchData/sra/wags2/DTA/download_da
FQ_DIR=/scratch/ss11645/LC/SRA/prefetchData/sra/wags2/DTA/download_data
PROC_DIR=/scratch/ss11645/LC/SRA/prefetchData/sra/wags2/DTA/download_data/out
# extract reference dict from container
singularity exec --bind $PWD /home/ss11645/.sif/wags.sif \
   cp /home/refgen/dog/canfam4/canFam4.dict $PWD
snakemake -s one_wag.smk \
   --use-singularity \
   --singularity-args "-B $PWD,$REF_DIR,$POP_VCF,$FQ_DIR,$PROC_DIR" \
   --profile slurm.go wags \
   --configfile canfam4_config.yaml \
    --keep-going
```

Recent Status of work

Jobs submitted for ShetlandSheepDog was failed due t issues related to time to run in cluster, data errors from SRA and memory specifications

(base) ss11	645@c4-20:~\$ sq	me						
JOBID	NAME	PARTITION	USER	NODES	CPUS	MIN_MEMORY	PRIORITY	TIME
25679784	interact	inter_p	ss11645	1	4	10G	87	1:26:27
25678875	snakejob.sort_a	batch	ss11645	1	12	24000M	61	3:26:30
25676224	snakejob.sort_a	batch	ss11645	1	12	24000M	61	6:36:09
25675806	snakejob.sort_a	batch Football Co	ss11645	R1oadc	12	96000M	F 61 Game	7:41:02
25675733	snakejob.sort_a	batch	ss11645	1	12	96000M	67	8:00:09
25675347	snakejob.sort_a		ss11645	1	12	48000M	67	9:01:42
25649963	Collie_ERR11257	batch Subscribe	ss11645	1	48	50G	158	1-22:36:37
25649917	Collie_ERR11223	batch	ss11645	1	48	50G	158	1-22:41:08

Limitations

- Navigating a new pipeline for both me and the cluster, leading to extended setup times.
- Dealing with huge files.
- Adjustments made by collaborator Dr. Jonah Cullen to rectify errors in the pipeline code.

What next?

- The current step is FASTQ to GVCF (OneWAG) which will give GVCFs.
- The next steps are:
 - 1. GVCFS to VCF (ManyWAGS)
 - 2. GVCFS to VCF (OnlyWAGS)

Illustrations

- WAGS pipeline (https://github.com/jonahcullen/wags)
- Clark Lab, WAGS repository (https://github.com/sachin11645/Whole-Animal-Genome-Sequencing)
- WAGS paper (https://doi.org/10.1093/g3journal/jkad117)
- Issues: (https://github.com/jonahcullen/wags/issues/38)

Acknowledgments

Dr. Leigh Anne Clark, Associate Professor, Department of Veterinary Pathology, UGA

Clark Lab Members:

Lizzie, Thais, Yueqi,

Dr. Jonah Cullen, University of Minnesota

Dr. Zhuofei Hou, Georgia Advanced Computing Resource Center(GACRC)/EITS, University of Georgia