Oblig 8

Oskar Idland

A Diskusjonsoppgaver

Oppgave 1

a)

Hvis $E < qV_0$ vil ikke ringen kunne krysset gapet og vil vil reise tilbake der den kom fra

b)

Hvis $E > qV_0$ vil ringen krysset gapet og fortsette å bevege seg på den andre siden.

c)

Hvis vi gjentar dette 100 ganger med $E < qV_0$ vil ringen reise tilbake der den kom fra 100/100 ganger.

d)

Hvis $E < V_0$ vil majoriteten av elektronene ikke krysse over til område C, men bli sendt tilbake der de kom fra. Hvis $E > V_0$ vil alle elektronene krysse over til område C.

e)

(a) Skisse av bølgefunksjonen med energiEsom reiser over potensialet $V_0,$ hvor $E < V_0$

(b) Skisse av bølgefunksjonen med energi E som reiser over potensialet V_0 hvor $E > V_0$

Figur 1: To scenario hvor energien E til elektronene er både større og mindre enn potensialet V_0 . I begge tilfeller er bølgelengden konstant både før og etter å ha reist over V_0 .

Oppgave 2

Riktig svar er påstand A. $\underline{\psi}$ har samme bølgelengde på begge sider av barrieren. Ettersom bølgefunksjonen er på formen $\psi(x) = Ae^{ikx} + Be^{-ikx}$, med forskjellige koeffisienter A og B før, inni og etter barrieren vil den ha samme bølgelengde på begge sider av barrieren, men varierende amplitude.

B Regenoppgaver