

Subject: Probability statistics & Numerical Analysis (MA0314) and Integral Transforms & Numerical Methods (MA0315)

B.Tech.-All Branches SEM-3

Tutorial- UNIT-3 Interpolation

Q.(1) Use **newton's forward interpolation formula** find the approximate value of f(2.3) from the following data:

Х	2	4	6	8
f(x)	4.2	8.2	12.2	16.2

Answer:- 4.8

Q.(2) Use **newton's forward interpolation formula** find the value of(218) from the following data:

Х	100	150	200	250	300	350	400
f(x)	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Answer:- 15.6993

Q.(3) The population of a town is given below. Estimate the population for the year 1895 and 1930 using **suitable interpolation**.

Year x	1891	1901	1911	1921	1931
Population(in thousand) y	46	66	81	93	101

Answer: - 54.8528, 100.4705

Q.(4) Using **Stirling's formula,** estimate the value of tan 16° .

Х	0°	5°	10°	15°	20°	25°	30°
y = tanx	0	0.0875	0.1763	0.2679	0.3640	0.4663	0.5774

Answer: - 0.2867

Q.(5) Compute f(4) form the tabular values given:

_					
- 1					
- 1		1	2	_	_
- 1	X	,		ר ה	/
- 1	^	_	9	•	,

f(x)	0.1506	0.3001	0.4517	0.6259
. (/-/)	0.200	0.000_	0	0.0_00

Using Lagrange's interpolation formula.

Answer:- 0.3896

Q.(6) Find the Lagrange interpolation polynomial form the following data:

Х	0	1	4	5
f(x)	1	3	24	39

Answer: $1/20(3x^3 + 10x^2 + 27x + 20)$

Q.(7) Using **Newton's divided difference interpolation** evaluate f(9) using the following table:

Х	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Answer:-810

Q.(8) Using Newton's divided difference interpolation find a polynomial from the given data:

Х	1	2	4	7
f(x)	10	15	67	430

Answer:- $2x^3 - 7x^2 + 12x + 3$

Q.(9) Evaluate $\int_{1}^{2} \frac{dx}{1+x^2}$ taking h = 0.2 using **trapezoidal rule.**

Answer:- 0.3228

Q.(10) Calculate $\int_0^1 2e^x dx$ with n=10 using trapezoidal rule.

Answer: - 3.4394

Q.(11) Evaluate $\int_0^5 \frac{dx}{4x+5}$ by using Simpson's 1/3 rule, taking n=10.

Answer:- 0.4026

Q.(12) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using (i) trapezoidal rule (ii) Simpson's 1/3 rule (iii) Simpson's 3/8 rule

Answer:- (i) 1.4108 (ii) 1.3662 (iii) 1.3571

Q.(13) Given the following table of x and y

Х	1.00	1.05	1.10	1.15	1.20	1.25	1.30
у	1.000	1.025	1.049	1.072	1.095	1.118	1.140

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.05; Applying Newton forward differentiation formula

Q.(14) Given the following table of x and y

Х	1.00	1.05	1.10	1.15	1.20	1.25	1.30
у	1.000	1.025	1.049	1.072	1.095	1.118	1.140

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.25; Applying Newton Backward differentiation formula