Измерение удельной теплоёмкости воздуха при постоянном давлении (2.1.1).

Зайнуллин Амир Б05-206

6 мая 2023 г.

1 Аннотация

Цель работы: измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

В работе используются: Теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

2 Теоретические сведения и методика измерений

Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{dT} \tag{1}$$

Рис. 1: Нагрев газа при течении по трубе

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в которой установлен нагревательный элемент (см. рис. 1). Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm=qdt, где q [кг/с] — массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q=(N-N_{\text{пот}})dt$. С другой стороны, по определению теплоёмкости (1): $\delta Q=cdm\Delta T$, где $\Delta T=T_2-T_1$ — приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, поэтому можно принять, что $P_1\approx P_2=P_0$,

где P_0 — атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_P . Таким образом, получаем

$$c_P = \frac{N - N_{\text{пот}}}{q\Delta T} \tag{2}$$

3 Эксперементальная установка:

Схема установки изображена на рис. 2. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов.

Рис. 2: Схема эксперементальной установки

Мощность нагрева равна

$$N = UI \tag{3}$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй — в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T \tag{4}$$

где $\beta=40.7\frac{\text{мкB}}{^{\circ}C}$ — чувствительность медно-константановой термопары в рабочем диапазоне температур (20–30 °C). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком ГС. Для регулировки расхода служит кран К. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. Объёмный расход равен $\frac{\Delta V}{\Delta t}$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{5}$$

где ρ_0 — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева—Клапейрона: $\rho_0 = \frac{\mu P_0}{RT_0}$, где P_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu = 29,0$ г/моль — средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T \ll T_0$) мощность потерь тепла $N_{\text{пот}}$ прямо пропорциональна разности температур:

$$N_{\text{HOT}} = \alpha \Delta T \tag{6}$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (c_P q + \alpha) \Delta T \tag{7}$$

Следовательно, при фиксированном расходе воздуха (q=const) подводимая мощность и разность температур связаны прямой пропорциональностью($\Delta T(N)$ — линейная функция).

Методика измерений

- 1. Подготовим к работе газовый счетчик.
- 2. Охладим калориметр до комнатной температуры.
- 3. Проверим, что при постоянном расходе стрелка газового счетчика вращается равномерно.
- 4. Запишем данные окружающей среды.
- 5. Измерим несколько раз максимальный расход прокачиваемого воздуха. Найдем q_{max} .
- 6. Оценим величину тока нагревателя I_0 , требуемого для нагрева воздуха на $\Delta T = 1$ градус. Сравним с теоретическим значением.
- 7. Проведем измерение зависимости разности температур от мощности нагрева $\Delta T(N)$ при максимальном расходе воздуха $q_1 = q_{\text{max}}$. Измерить 4-5 точек в диапазоне температур ΔT от 2°C до 10 °C. После этого охладим калориметр до комнатной температуры.

4 Результаты измерений и обработка данных

Данные окружающей среды

$P, \Pi a$	σ_P , Π a	T, K	σ_T , K	φ	$P_{\scriptscriptstyle \mathrm{H}}$, $\Pi \mathrm{a}$	$ ho_0$ кг/м 3	$\sigma_{ ho_0}$ κΓ/ ${ m M}^3$
100300	100	295	0,1	0,48	2480	1,17	0,01

Таблица 1: Начальные условия

Массовый расход найдем по формуле (5), найдя плотность по следующей формуле:

$$\rho_0 = \frac{\mu \left(P_0 - \varphi P_{\text{H. II.}} \right)}{RT_{\text{K}}} = 1.17 \pm 0.01 \, \frac{\text{K}\Gamma}{\text{M}^3};$$

Измерения при первом расходе

С помощью газового счетчика и секундомера измерим максимальный расход воздуха $\frac{\Delta V}{\Delta T}$ (в л/с). Измерения представлены в таблице 2. По найденным значениям определим среднее значение расхода и массовый расход воздуха q_{max} [г/с].

Nº	ΔV , л	σ_V , Л	ΔT , c	σ_T , c	q_{max} г/с	$σ_q$ $Γ/c$
1	5	0,05	52,14	0,3	0,112	0,003
2	5	0,05	52,12	0,3	0,112	0,003
3	5	0,05	52,3	0,3	0,112	0,003

Таблица 2: Измерение первого расхода

$\langle q_{max} \rangle$ Γ/c	$\sigma_q^{ m cлуч}$ г/с	$σ_q^{\text{сист}}$ Γ/c
0,112	0,0002	0,003

Таблица 3: Окончательные результаты

Относительная погрешность косвенных измерений может быть найдена по формуле

$$\frac{\sigma_{q_{max}}}{q_{max}} = \sqrt{(\frac{\sigma_{T_0}}{T_0})^2 + (\frac{\sigma_{P_0}}{P_0})^2 + (\frac{\sigma_t}{t})^2}$$

Окончательное значение расхода

$$q_{max} = 0.112 \pm 0.003 \frac{\Gamma}{c}$$

Оценим величину тока нагревателя I_0 , требуемого для нагрева воздуха на $\Delta T=1$ К. $C_p=3.5R\mu\approx 1\,\frac{\rm Дж}{\rm r\cdot K}.$

Оценим минимальную мощность N_0 , необходимую для нагрева газа при максимальном расходе. $N_0 = c_p q \Delta T \approx 0.112 \mathrm{Bt}$.

Учитывая, что сопротивление проволоки нагревателя составляет приблизительно $R_{\rm H} \approx 35~{\rm Om}$ и в процессе опыта практически не меняется, искомое значение тока $I_0 = q N_0 R_{\rm H} \approx 56~{\rm mA}$.

Проведем измерение зависимости разности температур от мощности нагрева $\Delta T(N)$ при максимальном расходе воздуха $q_0 = q_{max}$. Следует отметить, что погрешность измерения тока: $\sigma_I = 0.4$ мA, а напряжения: $\sigma_U = 0.03$ мB.

I, M	$A \mid$	U,B	N, Br	$\sigma_N, \operatorname{Br}$	$R_{\rm H}$, Om	ε , м B	σ_{ε} , м B	$\Delta T, K$	$\sigma_{\Delta T}$, K
111.	3	3,831	0,426	0,003	34,42	0,124	0,006	3,05	0,15
138	8	4,782	0,664	0,003	34,45	0,189	0,009	4,64	0,23
183	5	6,333	1,162	0,004	34,51	0,335	0,017	8,23	0,41

Таблица 4: Результаты измерений при первом расходе

По данным таблицы построим график.

Рис. 3: График для первого расхода

Найдем коэффициент наклона графика по МНК.

$$k_1 = 7.06 \pm 0.13 \; \mathrm{K/Br}$$

Измерения при втором расходе

Проведем те же измерения для второго расхода.

Nº	ΔV , л	σ_V , л	ΔT , c	σ_T , c	q_{max} г/с	σ_q г/с
1	5	0,05	30,74	0,3	0,191	0,005
2	5	0,05	30,75	0,3	0,191	0,005
3	5	0,05	30,66	0,3	0,191	0,005
4	5	0,05	30,64	0,3	0,191	0,005

Таблица 5: Измерение второго расхода

$\langle q_{max} \rangle$ г/с	$\sigma_q^{ m cлуч}$ г/с	$σ_q^{\text{сист}}$ Γ/c
0,191	0,0003	0,005

Таблица 6: Окончательные результаты

Окончательное значение расхода

$$q_{max} = 0.191 \pm 0.005 \frac{\Gamma}{c}$$

Полученная мощность и ток для этого расхода $N_0 = c_p q \Delta T \approx 0.191$ Вт. $I_0 = \sqrt{\frac{N_0}{R_{\scriptscriptstyle \rm H}}} \approx 73$ мА.

$$I_0 = \sqrt{\frac{N_0}{R_{\scriptscriptstyle \mathrm{H}}}} \approx 73 \; \mathrm{mA}.$$

I, MA	U, B	N, B_{T}	$\sigma_N, \operatorname{Br}$	$R_{\rm h}$, Om	ε , MB	σ_{ε} , мВ	ΔT , K	$\sigma_{\Delta T}$, K
99,6	3,424	0,341	0,002	34,38	0,063	0,003	1,55	0,08
127,2	4,375	0,557	0,003	34,39	0,101	0,005	2,48	0,12
158,4	5,448	0,863	0,004	34,39	0,158	0,008	3,88	0,19
186,6	6,428	1,199	0,004	34,45	0,218	0,011	5,36	0,27
209,5	7,233	1,515	0,005	34,53	0,271	0,014	6,66	0,33
234,1	8,104	1,897	0,006	34,62	0,338	0,017	8,30	0,42

Таблица 7: Результаты измерений при втором расходе

По данным таблицы построим график.

Рис. 4: График для второго расхода

Найдем коэффициент наклона графика по МНК.

$$k_2 = 4.34 \pm 0.03 \; \mathrm{K/Bt}$$

Зависимость наклона $k_{\text{накл}}$ от расхода q.

Из уравнения (7) теоретических сведений найдем α и c_P , решив систему уравнений:

$$\begin{cases} c_P q_1 + \alpha = \frac{1}{k_1} \\ c_P q_2 + \alpha = \frac{1}{k_2} \end{cases}$$

Путем математических преобразований получаем:

$$c_{P} = \frac{k_{2} - k_{1}}{(q_{1} - q_{2}) k_{1} k_{2}} \qquad \alpha = \frac{\frac{q_{1}}{k_{2}} - \frac{q_{2}}{k_{1}}}{q_{1} - q_{2}}$$

$$c_{P} = 1124 \frac{\text{Дж}}{\text{кг K}} \qquad \alpha = 0.016 \frac{\text{Дж}}{K}$$

Оценим погрешности:

$$\sigma_{c_P} \approx c_P \sqrt{\left(\frac{\sigma_{k_1}}{k_1}\right)^2 + \left(\frac{\sigma_{k_2}}{k_2}\right)^2 + \left(\frac{\sigma_{q_1}}{q_1}\right)^2 + \left(\frac{\sigma_{q_2}}{q_2}\right)^2} = 47 \frac{\text{Дж}}{\text{кг K}}$$

$$c_P = 1124 \pm 47 \frac{\text{Дж}}{\text{кг K}}$$

$$\alpha = 0.016 \pm 0.001 \frac{\text{Дж}}{K}$$

5 Вывод

- 1. В данной лабораторной работе мы измеряли повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу.
- 2. По результатам измерений зависимости $\Delta T(N)$ построили графики для двух расходов. Нашли их коэффициенты наклона. Исходя из теоретической формулы (7) нашли теплоемкость воздуха при постоянным давлении.
- 3. Сравним его с табличным. $c_{\text{табл}} = 1030 \frac{\text{Дж}}{\text{кг K}}$. Видно расхождение составило 8 процентов. Возможное расхождение могло получиться из за того, что теоретические упрощение, что мы измеряем при постоянном давлении не совсем так. Возможно в некоторых случаях мы не дожидались теплового равновесия при установлении новых условий.
- 4. Также видно, что график $\Delta T(N)$ для второго расхода не идет из нуля, возможно из за поспешного начала измерений.
- 5. Мощность тепловых потерь в нашей лабораторной работе $N_{\rm nor} = 0.016 \pm 0.001~{\rm \frac{Дж}{K}}$