Equivalence (I)

Shurui Liu

§1. Reven

a connected reduntice gp /1k

Strilp =
$$\widetilde{N} \times \widetilde{S} \times \widetilde{N}$$

St = $\widetilde{G} \times \widetilde{S} \times \widetilde{N}$

Done:

1)
$$\not\equiv diag : Perf (\widetilde{N}/\widetilde{L}) \longrightarrow Shv_c (I LG/I)$$

2) anti-spherical projector =

Perf
$$(\widetilde{N}/\widetilde{\zeta})$$
 \otimes Perf $(\widetilde{N}/\widetilde{\zeta})$
Perf $(\check{g}^*/\widetilde{\zeta})$

I put is telly faithful.

4) Passing to right adjoint

how I is monoidal equi. onto loh.

Prop. Assume that

- 1) I lands in Coh
- 2) I has finite cohornshigical amplitude.
- 3) $\exists d \in \mathbb{Z}$ s.t. $\forall f \in Shv_c(I \setminus LG/I)$ if $H^i(f(f)) = 0$ for $i \in [-d,d]$ $\rightarrow PH^o(f) = 0.$

Then I is an = into Coh.

Se Coherence

F & Shuc (ILG/I), hant:

- (A) Vn, Hom° (-, F) | person is rep. by an object in Pert.
- (B) Im Hom (-, F) | Perb &m = 0.

(A) (=) Y F & Shu (I/LG/I)

(2) \(\vec{T} \) \(\vec{F} \) \(\text{F} \) \(\text{F} \) \(\vec{F} \) \(\vec{F}

(2) \(\overline{F} (FENT) = 0, \overline{F} n >> 0.

Lemma (1) is true.

knot () F is in the image of \$ pert , then (1) is true for F.

=> F= Jx + = + Jp, then (1) is true for F

e Shr. (ILG/I) is gen. by Ja + g + JB, G & Pen (B/G/B)

Box. Went to show $\widetilde{I}(F * J_{\widetilde{p}}(m)) = 0$, $\forall F \in Pen(B 4/B)$, $\forall m \neq 0$.

Prop implies $\widetilde{\mathbb{I}}(\Xi * J_{\beta})$ is by. \Rightarrow $\widetilde{\mathbb{I}}(F*J_{\beta})$ is by. for $F \in Pan (B)4/B)$

Recording above

Records to be replaced by

Monodronic sheares

But Check for $F = \Delta_w^{non}, \nabla_w^{mon}$

Ext' $(J_{-d} + \Xi + Z_{v} + J_{-\beta}, F) = 0$, $\forall i \neq 0$, $\forall \alpha, \beta, v \in \lambda_{x}(T)^{+}$. $\beta \in X_{y}(T)^{++}$.

*
$$L(dw) = L(d) + L(w)$$
, we W_{EA}

* $L(w_B) = l(\beta) - l(w)$

* $L(w_B) = l(w_B) - l(w_B)$

Pagey

IAB (6) has bounded degree [0, din g*] (maybe [-din g*, 0])

§ 3. Equidence.

Brop 3d>0, sit 4F & Shrc(I/LG/I) satisfying

Hom (Epar (O(1, M) OV), F) = 0,

∀i∈[-d,d], YA, M∈ X*(T), & V∈ Rep(a)

7 PHO(F)=0

Pt - Claim for $\lambda \in X_{X}(T)$ longe enough,

F + J is concentrated in des > d-2ding & <-d+2ding

Consulted this claim, F + Jx + J-x > d-2ding - dn G/13 < -d+2ding + dn G/13

proof of dein

test or Dw=jw!

!-supp (f & Jx) (S) c Wext

① !- Supp $(F + J_{\lambda}) \subset (!-supp(F)) + (!-supp(J_{\lambda}))$

finite set

@ if it is large enough,

S.X C Win. 1/4 (t)+.

each element is minimal in its right coset Wext/Wrin

Lenma F as above, I large enough, then for & WE Wext,

we have either $Hom(\Delta w, F * J_4) = 0$

or Hom (Dn, F + J1) ~ Hom (Un + E, F+J1)

Created this leave > Claim

()

Flom (Av , Dw , Av , (F + Ja))

- Hom (\$\mathbb{Z}_{AB}^{-1}(Av_* \Ow), \mathbb{Z}_{AB}^{-1}(-))

* \$\Prescript{\Delta_{B}}\$ bounded [o, dim \tilde{\textit{\textit{0}}}].

· Assumption => vanishing for F*J,

· loh (g/k) has bounded who dim g.

W min in right loset

· Dw + E has a fittetion of greeder being

O D WWF.

Hom (Own, F + J,) = 0, if W+ id

Rock (1) E tilting property, consolution property.

Perf $(X \overset{\circ}{\times} X)$ — $(\Delta_{M,N}) \mapsto (\Delta_{M,N}) \mapsto (\Delta_{M,N} \mapsto (\Delta_{M,N}) \mapsto (\Delta_{M,N}) \mapsto (\Delta_{M,N}) \mapsto (\Delta_{M,N} \mapsto (\Delta_{M,N}) \mapsto (\Delta_{M,N}) \mapsto (\Delta_{M,N} \mapsto (\Delta_{M$

Pageb