Эффективное агрегирование по меткам для задачи последовательностей событий

Галина Леонидовна Боева Научный руководитель: к.ф.-м.н. А. А. Зайцев

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 09.04.01 Информатика и вычислительная техника

Агрегирование по меткам для задачи последовательностей событий

Проблема

Современные подходы фокусируются на архитектуре преобразования последовательных данных, агрегируя данные по временным меткам, но теряя информацию о взаимозависимостях меток.

Цель работы

Создание подхода, основанного на механизме собственного внимания над метками, предшествующими прогнозируемому шагу.

Задачи

- 1. разработка метода на основе внимания для предсказания множества меток
- 2. формирование теоретического обоснования эффективности применения агрегирования по меткам
- 3. обоснование причинно-следственных связей с помощью построения графа на основе внимания

Постановка задачи предсказания временных наборов меток

- 1. $U = \{u_1, u_2, \dots, u_N\}$ множество из N элементов
- 2. $Y = \{y_1, y_2, \dots, y_M\}$ словарь меток размера M
- 3. $s \subset Y$ произвольное подмножество меток
- 4. $S_i = \{s_i^1, s_i^2, \dots, s_i^T\}$ временная последовательность из T множеств для элемента u_i

Задача:

Для заданной последовательности исторических множеств $S_i = \{s_i^1, s_i^2, \dots, s_i^T\}$ элемента $u_i \in U$ предсказать следующее множество меток \hat{s}_i^{T+1} .

Предложенный метод на основе внимания на метках

- $1. \; X \in \mathbb{R}^{M imes D}$ матрица эмбеддингов меток
- 2. $t_i \in \mathbb{R}^D$ временные эмбеддинги (позиционное кодирование)
- 3. $Z \in \mathbb{R}^{M \times D}$ временные признаки: $Z^{(m,:)} = \sum_{j \mid v_m \in s_j^j} t_j$
- 4. $G = X \oplus Z \in \mathbb{R}^{M \times 2D}$ конкатенированные признаки

Постановка задачи агрегирования по меткам

```
Агрегация по меткам: N_m = \sum_{t=1}^T \mathbf{1}(y_m \in s_t), \quad \mathbf{Z}_{\mathsf{label}}(m,:) = N_m \cdot \mathbf{x}_m Агрегация по времени: \mathbf{Z}_{\mathsf{time}}(m,:) = \sum_{t: y_m \in s_t} \mathbf{t}_t Теорема 1 (Боева, 2025, об эффективности агрегирования по меткам) Если M \ll T, то: T_{\mathsf{label}} = O(M^2 D) \ll T_{\mathsf{time}} = O(T^2 D)
```

Эффективное агрегирование по меткам

Лемма: Пусть $G \in \mathbb{R}^{L \times D}$ — матрица входных представлений, где L — количество объектов (меток или временных событий), а D — размерность эмбеддинга. Тогда время выполнения одного трансформерного слоя внимания:

$$T_{\rm attn} = O(L^2D).$$

- для агрегирования по меткам: $T_{\mathsf{label}} = O(M^2 D)$
- для агрегирования по времени: $T_{\mathsf{time}} = O(T^2 D)$

Сравнение вычислительной сложности:

Рассмотрим отношение времени работы моделей:

$$\frac{T_{\text{label}}}{T_{\text{time}}} = \frac{O(M^2 D)}{O(T^2 D)} = O\left(\frac{M^2}{T^2}\right)$$

Если выполняется условие $M \ll T$, то есть $\lim_{T \to \infty} \frac{M}{T} = 0$, то:

$$rac{T_{\mathsf{label}}}{T_{\mathsf{time}}} o 0 \quad \Rightarrow \quad T_{\mathsf{label}} \ll T_{\mathsf{time}}$$

Предложенный метод на основе внимания на метках

Общий пайплайн получения глобальных представлений

Вычислительный эксперимент: Данные

Статистика наборов данных для прогнозирования временных наборов.

Dataset	#Sets	Mdr	nSS MaxSS	Vocab	MnLen	#Seqs
Mimic III	17 849	5	23	169	2.7	6636
Instacart	115 604	6	43	134	16.5	7000

- ▶ Mimic III датасет, состоящий из медицинских карт пациентов из отделения интенсивной терапии. Событие, связанное с пациентом, включает в себя время поступления в больницу и набор классификационных кодов заболеваний.
- ▶ Instacart набор данных содержит записи о заказах товаров пользователями. Товары из маркетплейсов и магазинов.

Вычислительный эксперимент: Основные результаты

Сравнение подхода our LANET с существующими моделями для прогнозирования временных наборов на основе четырех наборов данных. Выделены наилучшие значения, а вторые по значению подчеркнуты.

Data	Model	Weighted F1↑	Weighted ROC-AUC↑	Hamming Loss↓
Mim	SFCNTSP	0.3791 ± 0.0081	0.7034 ± 0.0024	0.0377 ± 0.0004
	DNNTSP	0.3928 ± 0.0030	0.6926 ± 0.0003	0.0365 ± 0.0003
	GPTopFreq	0.4291 ± 0.0073	0.6912 ± 0.0028	0.0398 ± 0.0005
	TCMBN	0.4979 ± 0.0180	0.8670 ± 0.0095	0.0305 ± 0.0008
	LANET(ours)	0.8214 ± 0.0224	0.9852 ± 0.0023	0.0220 ± 0.0001
Ins	SFCNTSP	0.1672 ± 0.0112	0.6852 ± 0.0448	0.0581 ± 0.0004
	DNNTSP	0.4160 ± 0.0009	0.7913 ± 0.0004	0.0541 ± 0.0002
	GPTopFreq	0.4087 ± 0.0079	0.7736 ± 0.0039	0.0529 ± 0.0008
	TCMBN	0.3687 ± 0.0065	0.8187 ± 0.0030	0.0530 ± 0.0005
	LANET(ours)	0.6159 ± 0.0029	0.9445 ± 0.0008	0.0474 ± 0.0003

Вычислительный эксперимент: Дополнительные исследования

Зависимость качества LANET от размера векторных представлений.

Зависимость качества LANET от количества голов во внимании.

Зависимость качества LANET от количества слоев энкодера.

Графовая интерпретация внимания на метках

Пусть G = (V, E) — исходный граф, где: V — множество вершин (меток товаров), E — множество рёбер (зависимостей между метками).

После удаления вершины $v_{\max} \in V$, соответствующей метке с наибольшим суммарным весом внимания, получаем новый граф:

$$G' = (V', E')$$
, где: $V' = V \setminus \{v_{\mathsf{max}}\}, E' = E \cap (V' \times V')$.

Красные линии — обозначают близость или частое совместное появление меток в корзинах покупок. Такие связи могут быть не причинными, а статистическими.

Синие двунаправленные стрелки — указывают на сложные взаимодействия между метками, часто через скрытые общие причины (например, сезонность, вкусовые предпочтения).

Черные односторонние стрелки — представляют собой направленные причинные связи: если $A \rightarrow B$, это означает, что метка $A \rightarrow B$.

Зеленые стрелки — обратные связи, где метка является дочерней по отношению к другой.

Графовая интерпретация внимания на метках

Временные точечные процессы

Рассмотрим точечный процесс $\{N_t\}_{t\geq 0}$, где N_t — количество событий на интервале [0,t]. Точечный процесс - это стохастический процесс, описывающий случайные моменты времени $t_1 < t_2 < \cdots < t_n$, в которые происходят события.

$$\lambda_t = \lim_{\Delta t \to 0^+} \frac{\mathbb{E}\left[N_{t+\Delta t} - N_t \mid \mathcal{H}_{t^-}\right]}{\Delta t},\tag{1}$$

где $\mathcal{H}_{t^-} = \sigma(\mathit{N}_s: 0 \leq s < t)$ — предыстория до момента t

Процесс Хокса — это разновидность точечного процесса, в котором каждое событие увеличивает вероятность возникновения будущих событий: $\lambda_t \mu + \int_0^t g(t-s) dN_s$, где $\mu > 0$ — базовая интенсивность, $g: \mathbb{R}_+ \to \mathbb{R}_+$ — ядро возбуждения.

Агрегирование по меткам в процессах Хокса

Рассмотрим многомерный процесс Хокса $\{N_t^m\}_{t\geq 0}$, где m=1,...,M обозначает тип события (метку), и интенсивность определяется как:

$$\lambda_t^m = \mu_m + \sum_{m=1}^M \int_0^t g_{mn}(t-s) \, dN_s^n.$$

Рассмотрим агрегированный сигнал: $S_t^m = \frac{1}{t} \int_0^t \phi(m, N_s) ds$.

Теорема 2 (Боева, 2025, применение к процессам Хокса)

Если $\phi(m,N_s)$ является достаточной статистикой для λ_t^m , то существует последовательность оценок $\{\hat{\lambda}_t^m\}_{t\geq 0}$, основанных на $\{S_t^m\}_{t\geq 0}$, такая что:

$$\lim_{t\to\infty} \mathbb{E}\left[\ell(\hat{\lambda}_t^m, \lambda_t^m)\right] = 0,$$

и эта сходимость равномерна по m = 1, ..., M.

Выносится на защиту

- 1. Доказана теорема об эффективности агрегирования по меткам над агрегированием по времени.
- 2. Разработана модель LANET, которая основана на агрегировании данных по меткам.
- 3. Выполнены ряд экспериментов для задачи классификации с несколькими метками на двух различных выборках и сравнение с базовыми подходами в данной области.
- 4. Проанализированы причинно-следственные связи в self-attention, где используется графовый подход на основе построения PAG для взаимосвязи меток.
- 5. Сформированы выводы о зависимости метрик от гиперпараметра, отвечающего за размер входных представлений, количество голов во внимании и также количества слоев энкодера.

Список работ автора по теме диплома

Статья опубликована в октябре 2024 года на конференцию ранга А ЕСАІ.

- 1. Elizaveta Kovtun, Galina Boeva, Andrey Shulga, and Alexey Zaytsev. Label Attention Network for Temporal Sets Prediction: You Were Looking at a Wrong Self-Attention, IOS Press, October 2024.
- 2. Vladislav Zhuzhel, Galina Boeva, Vsevolod Grabar, Artem Zabolotnyi, Alexander Stepikin, Vladimir Zholobov, Maria Ivanova, Mikhail Orlov, Ivan Kireev, Evgeny Burnaev, Rodrigo Rivera-Castro, Alexey Zaytsev. Continuous-time convolutions model of event sequences (2023). Статья подана в журнал Experts Systems With Applications.
- 3. Ilya Kuleshov, Galina Boeva, Vladislav Zhuzhel, Evgeni Vorsin, Evgenia Romanenkova, Alexey Zaytsev. DeNOTS: Stable Deep Neural ODEs for Time Series (2024). Статья подана на NeurIPS 2025.

Вклад: создание теоретического обоснования подхода в виде двух теорем, разработка идеи статьи, базовые подходы, исследование устойчивости модели и графовая интерпретация внимания.