Floating Point

Adapted for CS367 @ GMU

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value
Representation

5 3/4 **101.11**₂

2 7/8 **10.111**₂

1 7/16 1 . **0111**₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

• Use notation $1.0 - \varepsilon$

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

```
    Value Representation
    1/3 0.01010101[01]...2
    1/5 0.001100110011[0011]...2
    1/10 0.0001100110011[0011]...2
```

- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	ехр	frac
	•	

Precision options

■ Single precision: 32 bits

Double precision: 64 bits

Extended precision: 80 bits (Intel only)

"Normalized" Values

$$v = (-1)^s M 2^E$$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x₂
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

$$v = (-1)^s M 2^E$$

E = Exp - Bias

- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = 1.1101101101101_2 x 2^{13}

Significand

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:

0 10001100 11011011011010000000000000 s exp frac

Practice Problem

The bias of the exponent is always 2^(e-1)-1, for e bits of exp. What is the bias for each width of floating points?

- 8 bit fp (one of many "minifloat" formats), with 4 exp bits
- 16 bit fp ("binary16"), with 5 exp bits
- 32 bit fp ("single precision"), with 8 exp bits
- 64 bit fp ("double precision"), with 11 exp bits
- 128 bit fp ("quadruple precision"), with 15 exp bits
- Why do you think the exponent is usually a small portion of the total available bits?
 - What would happen if we had mostly exp and very little frac?

Practice Problem

Identify the values represented by these 8-bit floating point values. All are normalized. 1 sign bit, 4 exp bits, 3 frac bits. Bias = $2^{(4-1)}-1 = 8-1=7$.

- 0 1001 010
- 1 0111 100
- 0 1110 000

Denormalized Values

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- **■** Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Practice Problem

Identify the values represented by these 8-bit floating point values. All are <u>de</u>normalized. 1 sign bit, 4 exp bits, 3 frac bits. Bias = $2^{(4-1)}$ -1 = 8-1=7.

- · 0 0000 010
- · 1 0000 100
- · 0 0000 000

Special Values

- **■** Condition: exp = **111**...**1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Practice Problem

■Classify each of these 12-bit floating point numbers as normalized, denormalized, or special (and indicate what special value).

```
• 0 00101 110111
```

- · 1 00000 111111
- 0 11111 000000
- 0 00000 100110
- · 1 11111 111111
- 0 00000 000000
- 1 00001 101010

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only) $v = (-1)^s M 2^E$

-	s	exp	frac	E	Value			n: E = Exp - Bias
	0	0000	000	-6	0			d: $E = 1 - Bias$
	0	0000	001	-6	1/8*1/64	=	1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64	=	2/512	0.0000110 20.0
numbers	•••							
	0	0000	110	-6	6/8*1/64	=	6/512	
	0	0000	111	-6			•	largest denorm
	0	0001	000	-6	8/8*1/64	=	8/512	smallest norm
	0	0001	001	-6	9/8*1/64	=	9/512	Sindiest norm
	0	0110	110	-1	14/8*1/2	=	14/16	
	0	0110	111	-1	15/8*1/2	=	15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	=	1	
numbers	0	0111	001	0	9/8*1	=	9/8	closest to 1 above
	0	0111	010	0	10/8*1	=	10/8	Closest to 1 above
	•••							
	0	1110	110	7	14/8*128	=	224	
	0	1110	111	7	15/8*128	=	240	largest norm
	0	1111	000	n/a	inf			

Examples: binary to float

1. 0 0101 110

exp = 5, so E =
$$5 - 7 = -2$$

frac = $6/8$, so M = $14/8$ = $14/8 * 2^{-2} = 7/16$

2. 1 1010 011

exp = 10, so E =
$$10 - 7 = 3$$

frac = $3/8$, so M = $11/8$ = $-11/8 * 2^3 = -11.0$

з. **0 0000 010**

exp = 0, so denormalized. E = -6, (-bias + 1) frac = 2/8, so M = 2/8 = 2/8 * 1/64 = 1/256

Examples: float to binary

- 1. 52.0 = 1.625 * 2⁵
- E = 5 so exp must be 12
- \cdot 1.625 = 13/8 so frac = 5/8 = 0 1100 101
- Could also do this way: 52 is 110100 in 6-bits.
- Dividing by 2 5 times gives us 1.10100
- $2. \quad 7/64 = 14/8 * 1/2^4$
- E = -4 so exp must be 3
- frac = 6/8 = 0.0011.110

24

Practice Problem

- What is the largest denormalized value for 8-bit numbers? (bit pattern, value)
- What is the smallest normalized value for 8-bit numbers? (bit pattern, value)

Practice Problem

Write each of these numbers in base two scientific notation. Then, represent them as 8-bit floating point values.

- a. 3
- b. 32
- c. 40
- d. 100
- e. 3/512
- f. 5/64
- g. 1

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\blacksquare x +_f y = Round(x + y)$$

$$\blacksquare$$
 x \times_f y = Round(x \times y)

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.10_{2}	(1/2—down)	2 1/2

FP Multiplication

- $-(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

- \blacksquare (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - ■if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?

Yes

- But may generate infinity or NaN
- Commutative?

Yes

Associative?

No

- Overflow and inexactness of rounding
- \bullet (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
- 0 is additive identity?
- Every element has additive inverse?

Yes

Yes, except for infinities & NaNs

Almost

- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$?

Almost

Except for infinities & NaNs

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?

Yes

- But may generate infinity or NaN
- Multiplication Commutative?

Yes

• Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
- 1 is multiplicative identity?

Yes

• Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- \bullet 1e20*(1e20-1e20)=0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity
 - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c$?

Almost

Except for infinities & NaNs

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
a) x == (int) (float) x
b) x == (int) (double) x
c) f == (float) (double) f
d) d == (double) (float) d
e) f == -(-f);
f) 2/3 == 2/3.0
g) d < 0.0 \Rightarrow ((d*2) < 0.0)
h) d > f \Rightarrow -f > -d
i) d * d >= 0.0
i) (d+f) -d == f
```

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction

Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	1000000
13	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.0000000	7
13	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

Round up conditions

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
13	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
13	1.101	3		13
17	1.000	4		16
19	1.010	4		20
138	1.001	7		144
63	10.000	5	1.000/6	64

Interesting Numbers

{single, double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
■ Smallest Pos. Denorm. ■ Single $\approx 1.4 \times 10^{-45}$ ■ Double $\approx 4.9 \times 10^{-324}$	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
 Largest Denormalized Single ≈ 1.18 x 10⁻³⁸ Double ≈ 2.2 x 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. Normalized	0001	0000	$1.0 \times 2^{-\{126,1022\}}$
Just larger than largest denormalized			
One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 x 10³⁸ Double ≈ 1.8 x 10³⁰⁸ 	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

Ariane 5

- ■Exploded 37 seconds after liftoff
- ■Cargo worth \$500 million

Why did this happen?

- ■Computed horizontal velocity as floating point number
- ■Converted to 16-bit integer
- ■Worked OK for Ariane 4
- Overflowed for the more powerful Ariane 5

Used same software without re-checking assumptions

