Friday Lemmas Model based explanations

Schedule for today

- Motivation for lemmas
- Towards a complexity model
- Model interaction and computation

Motivation for lemmas

Remember: proofs are hard

- Full proofs have mind numbing detail
- You need to know the proof theory
 - Which proof theory?
 - Proofs may be difficult to compute
- Way more proofs than justifications
- Proofs are not repair oriented
- Are proofs always (or ever) needed?
- Excellent tools needed!

What do we want?

- Explanation should yield/provoke understanding (What sort?)
- Some tasks
 - I. Debugging an unsatisfiable class
 - 2. Explaining an entailment to someone
 - 3. Verifying a possible entailment
 - (Debugging the reasoner)
- Other goals: formalism mastery, understanding reasoners

What else?

- Don't make things worse
 - Ever (if possible); definitely not often
- Integrate with existing
 - Tools
 - Practice
- Good cost/benefit
- Beware confounding factors and wishful thinking

Operationalization

- Measure understanding via task performance
 - Objective(ish) metrics
 - Clear role for subjective factors
 - Isolates benefits
- Doesn't capture overall effects
 - Or long terms ones

Problems with Justs?

Three kinds

- I. Finding them (solved by services)
- 2. Their number (presentation issue?)
- 3. Understanding them individually

Not always necessary to successful repair ~> domain knowledge!

Open Question

→ Are there justifications that are too hard?

Example

```
\mathcal{J} = \{
                 Person □ ¬Movie
                RRated 

CatMovie
              CatMovie 

☐ Movie
                RRated = 3 hasScript. ThrillerScript
                            ∃ hasViolenceLevel 

Movie }
                                     ⊨ Person □ ⊥
```

RRated: Movie viewers under 17 (18) to be accompanied by adult CatMovie: Categorised movie

Example

```
\mathcal{J} = \{ \text{InverseProperties(hasPet, isPetOf)} \}
         isPetOf(Rex, Mick)
         Domain(hasPet, Person)
         Male(Mick)
         reads(Mick, DailyMirror)
         drives(Mick, Q123ABC)
         Van(Q123ABC)
         Van 

☐ Vehicle
         WhiteThing(Q123ABC)
         Driver \equiv Person \sqcap \exists drives. Vehicle
         Driver \sqsubseteq Adult
         Man \equiv Adult \sqcap Male \sqcap Person
         White Van Man \equiv Man \sqcap \exists drives. (Van \sqcap White Thing)
         White Van Man \sqsubseteq \forall reads. Tabloid
         Tabloid \sqsubseteq Newspaper \} \models Tabloid(DailyMirror)
```

Justification Hardness

- Not obvious for key user base
 - Description logics are restricted
 - People use them in constrained ways
 - People "know their ontologies"
 - Justifications support experimentation
- Even if a just is hard, a proof might not help
 - E.g., destroys relation to repair

```
\mathcal{J} = \{ A \sqsubseteq B \\ C \sqsubseteq \exists R.E \\ B \sqsubseteq \exists R.D \\ \exists R.E \sqsubseteq A \\ \exists R.D \sqsubseteq F \} \models C \sqsubseteq F
```

```
\mathcal{J} = \{ C \sqsubseteq \exists R.E \\ \exists R.E \sqsubseteq A \\ A \sqsubseteq B \\ B \sqsubseteq \exists R.D \\ \exists R.D \sqsubseteq F \} \models C \sqsubseteq F
```

```
\mathcal{J} = \{ C \sqsubseteq \exists R.E \\ \exists R.E \sqsubseteq A \\ A \sqsubseteq B \\ B \sqsubseteq \exists R.D \\ \exists R.D \sqsubseteq F \} \models C \sqsubseteq F
```

Changing the order of the axioms helps.

```
\mathcal{J} = \{ Person \sqsubseteq \neg \mathsf{Movie} RRated \sqsubseteq \mathsf{CatMovie} CatMovie \sqsubseteq \mathsf{Movie} RRated \equiv \exists \mathsf{hasScript.ThrillerScript} \sqcup \forall \mathsf{hasViolenceLevel.High} \exists \mathsf{hasViolenceLevel} \sqsubseteq \mathsf{Movie} \} \models \mathsf{Person} \sqsubseteq \bot
```


The University of Manchester

A hard example?

```
\mathcal{J} = \{
                 Person □ ¬Movie
                RRated 

CatMovie
              CatMovie 

☐ Movie
                RRated = 3 hasScript. ThrillerScript
                            ∃ hasViolenceLevel 

Movie }
                                     ⊨ Person □ ⊥
```

Changing the order of the axioms doesn't seem to make this easier.

How to Proceed?

Study users!

- Determine if justifications are hard
- Determine what makes them hard
- Distinguish inherent hardness from "newbie" hardness

Towards a complexity model

Is the Problem Real?

User Study

Are some justifications difficult or impossible to understand?

How to people fare with justifications they can understand?

How do people read through justifications?

What makes justifications difficult to understand?

User Study—Participants

- Number: 6
 - Staff+students from CS department
 - Divided into two rounds, 12+4
- Experience: ≤6 months ... ≥4 years
- Background: Users of ontology editors (e.g., Protégé)

Procedure

000	Explanation study - Participant: 1248274078 - 2	
ОК		
Explanation: ExB.ow		
●C1 ⊑ C4		
C1	l ⊑ ∃ propa.C3	
C1	L ⊑ CO	
•	C0 ⊑ C2	
C4	1 ≡ C2 ⊓ (∃ propa.C3)	
Reset orderi	ing	Manchester Syntax DL Syntax

ne University Manchester

Participant Ranking versus Time

Manchester

Participant Ranking versus Time

Manchester

Participant Ranking versus Time

The University of Manchester

Observations

People arrive at intermediate conclusions as they read justifications

With difficult justifications people don't spot intermediate conclusions

People can comfortably work with justifications: everyone could understand simple justifications

~> Can we design a service that makes these steps explicit?

Lemmas for Justifications

Lemmas for Justifications

Lemmas for Justifications

Lemmas for Justifications

Complexity(\mathcal{J} , η) > Complexity(\mathcal{J}' , η)

Lemmas for Justifications

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

Complexity(\mathcal{J} , η) > Complexity(\mathcal{J}' , η)

Lemmas

```
\mathcal{J}
A \sqsubseteq B
B \sqsubseteq \exists R.D
R \sqsubseteq S
E \equiv \exists S. \top
```

$$\models A \sqsubseteq E$$

Lemmas

$$\begin{array}{c}
\mathcal{J} \\
A \sqsubseteq B \\
B \sqsubseteq \exists R.D
\end{array}$$

$$A \sqsubseteq \exists S.D$$

$$R \sqsubseteq S \\
E \equiv \exists S.T$$

Lemmas

Example ctd.

```
\mathcal{J} = \{ Person \sqsubseteq \neg \mathsf{Movie} RRated \sqsubseteq \mathsf{CatMovie} CatMovie \sqsubseteq \mathsf{Movie} Movie RRated \equiv \exists \mathsf{hasScript.ThrillerScript} \sqcup \forall \mathsf{hasViolenceLevel.High} \exists \mathsf{hasViolenceLevel} \sqsubseteq \mathsf{Movie} \} \models \mathsf{Person} \sqsubseteq \bot
```


The University of Manchester

A lemmatised explanation

```
Person ☐ ↓

Person ☐ ¬Movie
¬Movie ☐ ↓
```

```
Person \sqsubseteq \bot
Person \sqsubseteq \neg Movie
\neg Movie \sqsubseteq \bot
\neg Movie \sqsubseteq Movie
\neg Movie \sqsubseteq \neg RRated
```

 $\neg RRated \sqsubseteq Movie$

```
Person □ ⊥
 Person □ ¬Movie
 ¬Movie □ ⊥
     ¬Movie □ Movie
        \negMovie \Box \negRRated
             RRated □ CatMovie
             CatMovie 

☐ Movie
        ¬RRated □ Movie
             \neg RRated \sqsubseteq \exists hasViolenceLevel. \top
             ∃hasViolenceLevel. ☐ Movie
```

```
Person □ ¬Movie
 ¬Movie □ ⊥
     ¬Movie □ Movie
         \negMovie \Box \negRRated
             RRated □ CatMovie
             CatMovie 

☐ Movie
         ¬RRated □ Movie
             \neg RRated \sqsubseteq \exists hasViolenceLevel. \top
                 RRated \equiv \ldots \sqcup \forall has Violence Level. High
             ∃hasViolenceLevel. ☐ Movie
```

Complexity Model

Two parts:

- Structure based considers structure of axioms and their interactions; abstracts from the logic
- Phenomena based considers certain patterns; takes the logic into account

Complexity Model

Structure based criteria

- Number of different types of axioms and class expressions
- Signature flow
 How much is the signature spread within a justification?

Complexity Model

Phenomena based criteria

- Non-explicit synonyms of Top $\mathcal{J} \models \top \sqsubseteq A$ and this is not explicitly asserted in \mathcal{O}
- Universal implication \mathcal{J} contains $\forall R.C \sqsubseteq \dots$: $\forall R.C$ includes all individuals that have no R-successor
- Presence of GCIs (general concept inclusions) \mathcal{J} contains $C \sqsubseteq D$, where C is not a class name

he University f Manchester MANCHESTER 1824

Participant Ranking versus Model Prediction

The University of Manchester

Participant Ranking versus Model Prediction

Computing Lemmatised Justifications

Time for a demo ...

- See the Explanation workbench at http://owl.cs.manchester.ac.uk/explanation
- This tool is work in progress.

Time for a demo ...

Conclusions

- Justifications for entailments in real ontologies can be difficult or impossible to understand
- Lemmatised justifications presented as a solution
- Steps are driven by a complexity model
- Practical to compute lemmatised justifications
- For use in other services,
 e.g. construction of justification-oriented proofs

The University of Manchester

State of the art

Tools

Theory

Model interaction and computation

Current Explanation

- Revolves around explaining entailments
 - Esp. undesirable ones
- Focus I: Isolating parts of the ontology
 - Justifications and Laconic justifications
- Focus 2: explicating how parts entail
 - Lemmas and Proofs

Current Explanation

- Revolves around explaining entailments
 - Esp. undesirable ones
- Focus I: Isolating parts of the ontology
 - Justifications and Laconic justifications
- Focus 2: explicating how parts entail
 - Lemmas and Proofs

Proof-based Explanations!

What about models?

- Logics are all about the models!
 - Ontologies describe a set of models
 - Users rarely, if ever, think about models
- Model-theoretic notions of quality
 - Categorial theories
 - Verified ontologies
- If you don't know the models...do you understand?

Obviously Yes

- Model-oblivious users obviously function
 - And often well
 - At various tasks
- But clearly, there is information in models
 - That might help
 - Er...at something!!!

Problems

- Models come in all shapes and sizes
 - Often infinite
 - Often hard to compute
- Infinite numbers of models
 - Even without isomorphism
- So, which ones are good for what?

Find some task!!

- A Classic Story: Non-entailment
 - I. A countermodel is an (the best) explanation
 - 2. We get them for free from reasoners!
 - 3. Dump and display!!
- Sound familiar?

Additional Problem

- Which non-entailments are wrong?
 - Detecting non-entailment is "easy"
 - Detecting wrong non-entailments....?!?!?
 - Domain dependence?
 - User state of mind?
- No canonical test cases

Other tasks?

- Ontology profiling
 - Problem: Model size kills reasoner
 - Goal: Additional constraints to guide the reasoner
- Concept understanding
 - What does some instance "look like"

Looking at Tweezers

Asserted Types

Individual Name: root

white_thing

Asserted Types

van

vehicle

white_thing

Individual Name: root

Asserted Types

van

vehicle

white_thing

Individual Name: root

not plant

Time for a demo ...

See SuperModel at http://www.cs.man.ac.uk/~bauerj/supermodel/

MANCHESTER 1824

•••