can 实验 3 网络层相关实验

学生姓名	孙成	学 号	20203101694	专业班级	智能科学与技术
					一班
实验地点	信息学院 118	实验日期	2023/12/3	指导教师	石瀚洋
实验环境	Windows Cisco Packet Tracer			实验学时	2 学时
实验类型		综合		实验成绩	

一、实验目的

- 1. 理解并掌握在 Packet Tracer 中配置路由器的 IP 地址和直连网络。
- 2. 理解 RIP 和 Static 路由的原理,掌握 RIP 和 Static 路由协议的配置方法。

二、实验要求

- 1. 认真阅读实验内容;
- 2. 上机调试,根据命令参数实现相应功能。
- 3. 截图保存运行结果,并结合命令参数进行分析。

三、基础知识和基本原理

1. 路由器 IP 地址配置及直连网络

IP 地址是网络层中使用的地址,网络层依靠 IP 地址和路由协议将数据报从源 IP 主机发送到目的 IP 主机。既然是一个地址,那么一个 IP 地址就只能代表一个接口,否则会造成地址的二义性;接口则不同,一个接口可以配置多个 IP 地址,这并不会在成地址的二义性。

路由器是互联网的核心设备,它在 IP 网络间转发数据报,这使得路由器的每个接口都连接一个或多个网络,而两个接口却不可以代表一个网络。路由器的一个配置了 IP 地址的接口所在的网络就是路由器的直连网络。对于直连网络,路由器并不需要额外对其配置路由,当接口被激活后,路由器会自动将直连网络加入到路由表中。

常用的配置命令如表 1 所示。

命令格式	含义
ip_address IP 地址_子网掩码	在接口模式下给当前接口配置 IP 地址
show ip route	在特权模式下查看路由器的路由表
do show ip route	在非特权模式下查看路由器的路由表
no shutdown	在接口模式下激活当前接口

表 1 常用的路由器 IP 配置命令

2. RIP 路由协议配置

RIP(Routing Information Protocols)属于内部网关协议(IGP),用于一个自

治系统内部,是一种基于距离向量的分布式路由选择协议,实现简单,应用较为 广泛,当前常用的是 RIPv2 版本。

RIP 协议的特点:

- (1) 在 RIP 协议中, 距离最短的路由就是最好的路由。
- (2) RIP 中路由的更新是通过定时广播实现的,接收对象为邻居。
- (3) RIP 中会存在环路问题,如好消息传播得快,坏消息传播得慢。常用的配置命令如表 2 所示。

次 Z 11/111111111111111111111111111111111			
命令格式	含义		
hostname 路由器名称	配置路由器名称		
route rip	启动 RIP 路由协议		
version 版本号	设置 RIP 版本,可为1或者2		
network 网络号	网络号应为路由器直连的网络号,是分类网络号		
debug ip rip	显示 RIP 路由的动态更新		
auto-summary	路由汇总		
show ip protocols	显示路由协议配置与统计等信息		
pasasive-interface	将端口设置为被动端口,此端口不再发送路由信息		

表 2 常用的路由器 RIP 配置命令

四、实验内容和操作

- 1. 配置路由器的 IP 地址、直连网络、静态路由和默认路由
- (1)布置如图 1 所示的网络,路由器连接了两个网络,这两个网络都属于路由器的直连网络。

图 1 本实验的网络拓扑图

(2) 配置主机的 IP 地址,如表 3 所示。

表 3 本实验主机的 IP 地址设置

主机	IPv4 地址	子网掩码	默认网关
PC0	192.168.1.1	255.255.255.0	192.168.1.254

PC1	192.168.1.2	255.255.255.0	192.168.1.254
PC2	192.168.2.1	255.255.255.0	192.168.2.254
PC3	192.168.2.2	255.255.255.0	192.168.2.254

(路由器选择 2911 型号) 配置路由器的 IP 地址,单击打开路由器 Route0 的选项卡,如图 2 所示,选择 Config 选项卡,在左侧选择 GigabitEthernet0/0/0,输入 IPv4 地址 192.168.1.254 和子网掩码 255.255.255.0;再选择 GigabitEthernet0/0/1,输入 IPv4 地址 192.168.2.254 和子网掩码 255.255.255.0。

图 2 路由器 RouteO 的选项卡

(3) 查看路由表,在特权模式下输入"show ip route" 查看路由器 Route0 的路由表,如图 3 所示,此时的路由表应该是空的。

```
Router#show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set
```

图 3 初始路由表

(4) 激活端口,在特权模式下进入路由器配置,输入"interface

GigabitEthernet 0/0/0 (0/0/1)", "no shutdown"激活端口。如图 4 所示。

Router>enable
Router#
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface GigabitEthernet0/0/0
Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface GigabitEthernet0/0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/0, changed state to up

图 4 激活端口

(5) 查看路由表,观察路由表的变化,注意以 C 打头的路由条目为直连路

由。如图5所示。

```
Router#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
        192.168.1.0/24 is directly connected, GigabitEthernet0/0/0
L
        192.168.1.254/32 is directly connected, GigabitEthernet0/0/0
     192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
C
       192.168.2.0/24 is directly connected, GigabitEthernet0/0/1
        192.168.2.254/32 is directly connected, GigabitEthernet0/0/1
L
```

图 5 路由表的变化情况

(6)测试网络的连通性,只选择 ARP 协议,让主机 PC0 ping PC3,观察 ARP 分组的发送情况。

2. RIPv2 配置与实验

(1) 构建如图 6 所示的网络,并配置 IP 地址,具体 IP 地址设置如表 4 所示。

图 6 本实验的网络拓扑图

表 4 具体 IP 地址配置

设备	端口	IP 地址	默认网关
	Gig0/0/0	192.168.1.97/30	
路由器 Route5	Gig0/0/1	192.168.1.62/27	
	Gig0/0/2	192.168.1.94/27	
	Gig0/0/0	192.168.1.98/30	
路由器 Route6	Gig0/0/1	192.168.1.190/27	
	Gig0/0/2	192.168.1.158/27	
PC0	Fa0	192.168.1.33/27	192.168.1.62/27
PC1	Fa0	192.168.1.65/27	192.168.1.94/27
PC2	Fa0	192.168.1.129/27	192.168.1.158/27
PC3	Fa0	192.168.1.161/27	192.168.1.190/27

(2) 在路由器上配置 RIPv2 的路由,分别如图 7 和图 8 所示。

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config) #route rip

Router(config-router) #version 2

Router(config-router) #network 192.168.1.32

Router (config-router) #network 192.168.1.64

Router(config-router) #network 192.168.1.96

Router(config-router) #no auto-summary

Router(config-router) #passive-interface GigabitEthernet0/0/1

Router(config-router) #passive-interface GigabitEthernet0/0/2

图 7 路由器 Route5 的路由配置

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config) #router rip

Router(config-router) #version 2

Router (config-router) #network 192.168.1.96

Router(config-router) #network 192.168.1.128

Router(config-router) #network 192.168.1.160

Router(config-router) #no auto-summary

Router(config-router) #passive-interface GigabitEthernet0/0/1

Router(config-router) #passive-interface GigabitEthernet0/0/2

图 8 路由器 Route6 的路由配置

(3) 查看路由表信息。在特权模式下输入"show ip route"查看路由器此时的路由表。路由器 Route5 的路由表如图 9 所示。

Router#show ip route Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is not set

```
192.168.1.0/24 is variably subnetted, 8 subnets, 3 masks

C 192.168.1.32/27 is directly connected, GigabitEthernet0/0/1
L 192.168.1.62/32 is directly connected, GigabitEthernet0/0/1
C 192.168.1.64/27 is directly connected, GigabitEthernet0/0/2
L 192.168.1.94/32 is directly connected, GigabitEthernet0/0/2
C 192.168.1.96/30 is directly connected, GigabitEthernet0/0/0
L 192.168.1.97/32 is directly connected, GigabitEthernet0/0/0
R 192.168.1.128/27 [120/1] via 192.168.1.98, 00:00:22, GigabitEthernet0/0/0
R 192.168.1.160/27 [120/1] via 192.168.1.98, 00:00:22, GigabitEthernet0/0/0
```

图 9 路由器 Route5 的路由表

请同学们们自行查看路由器 Route6 的路由表。

- (4) 查看 RIP 路由的动态更新。在特权模式下输入"debug ip rip"查看。
- (5) 在主机间相互 ping,测试网络的连通性。

思考题: 若采用 Static 静态路由如何配置和 ping 通?

2.3 配置路由

假设您要将路由器连接到另一个网络(目标网络)并配置静态路由。

假设路由器接口IP地址为 192.168.1.1,目标网络IP地址为 10.0.0.0/24,目标网络的下一跳 网关为 192.168.1.2。

输入以下命令配置静态路由:

Copy code

ip route 10.0.0.0 255.255.255.0 192.168.1.2

此命令将告诉路由器,目标网络10.0.0.0/24通过网关192.168.1.2访问。

2.4 退出配置模式

输入以下命令退出配置模式:

arduino 🗅 Copy code end

步骤 3: 测试连接

3.1 配置PC

选择要测试连接的PC,并确保其IP地址属于目标网络(例如,PC IP地址为 10.0.0.2)。

3.2 Ping 测试

在PC的命令提示符(或终端)中输入以下命令进行ping测试:

Copy code

ping 10.0.0.1

其中,10.0.0.1 是路由器接口的IP地址(如果路由器接口配置在这个IP地址上)。

注意事项:

- 确保路由器接口与目标网络是直接相连的。
- 路由器和目标网络设备之间的防火墙设置需要允许 ICMP (ping) 流量通过。
- 检查路由器和目标网络设备的配置,确保网关和IP地址没有错误。

五、实验说明

请同学们每次实验记得签到,并保存好每次上机内容的截图,将所有的实验报告压缩为:班级+学号+姓名,统一发给班长,班长在所有实验课结束之后发到我的邮箱。