Estimating ARMA models

Example: $\Delta \ln(GDP)$ for Belgium

Assignment Project Exam Help

Sample: 1971:2 2007:4 Included observations: 147

notos scholara regiones.com

	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	С	0.005831	0.001143	5.101796	0.0000
T	Valenda	0.704082	0.058970	11.93958	0.0000
Y	R-squared 114	0.495746	Mean depende	nt var	0.005838
	Adjusted R-squared	0.492268	S.D. dependen	t var	0.005754
	S.E. of regression	0.004100	Akaike info crit	erion	-8.141966
	Sum squared resid	0.002438	Schwarz criteri	ion	-8.101280
	Log likelihood	600.4345	F-statistic		142.5535
	Durbin-Watson stat	1.578452	Prob(F-statistic	:)	0.000000
	Inverted AR Roots	.70			93

Estimating ARMA models

Assignment Project Exam Help

1	Variable / / 4	Coefficient	Std. Error	t-Statistic	Prob.
h	LNGDP(-1)	0.704082	0.058970	7.732 11.93958	0.0005 0.0000
•	R-squared Adjusted P-squared	0.495746 0.492268	Mean depend		0.005838 0.005754
V	SE o legression 21		Akaki ing q	rices	-8.141966 -8.101280
	Log likelihood Durbin-Watson stat	600.4345 1.578452	F-statistic Prob(F-statist	tic)	142.5535 0.000000

□ Estimating ARMA models

Assignment Project Exam Help

Included observations: 147 Convergence achieved after 2 iterations

httn/ariable//tu	Coefficient	Std. Error	t-Statistic	Prob.
	0.005850	0.000847	6.909419	0.0000
AR(1)	0.911463	0.079576	11.45394	0.0000
AR(2)	-0.294443	0.079501	-3.703648	0.0003
Resourced Resource S.E. of regression	0.539802	tiveantepen Sol depend	ertes nters	0.005838 0.005754
S.E. of regression	0.003932	Akaike info o	riterion	-8.219349
Sum squared resid	0.002226	Schwarz crit	erion	-8.158320
Log likelihood	607.1222	F-statistic		84.38646
Durbin-Watson stat	2.146360	Prob(F-statis	tic)	0.000000
Inverted AR Roots	.4629i	.46+.29i		

□ Estimating ARMA models

Assignment Project Exam Help

Included observations: 147
Convergence achieved after 3 iterations

https://t	Confficient	Std_Error	t-Statistic	Prob.
	0.005871	0.000653	8.988452	0.0000
AR(1)	0.834814	0.080774	10.33520	0.0000
AR(2)	-0.058590	0.106640	-0.549416	0.5836
AR(3)	-0.257529	0.080482	-3.199851	0.0017
Western 1	0.5.0365	Mean dene	er CaS	0.005838
Adjusted R-squared	0.561351	S.D. depend		0.005754
S.E. of regression	0.003811	Akaike info o	riterion	-8.274898
Sum squared resid	0.002077	Schwarz crit	erion	-8.193526
Log likelihood	612.2050	F-statistic		63.28015
Durbin-Watson stat	2.058299	Prob(F-statis	tic)	0.000000
Inverted AR Roots	.6345i	.63+.45i	43	

Estimating ARMA models

Assignment Project Exam Help

Included observations: 147

Convergence achieved after 9 iterations Backcast: 1971:1.

https://t	Joseph I	Sto Error	Sta is c	Prob.
С	0.005841	0.000652	8.952723	0.0000
MA(1)	0.884440	0.039768	22.24020	0.0000
Respond 12	0.470870	tweat tepender	nCeS	0.005838 0.005754
S.E. of regression	0.004200	Akaike info cri		-8.093824
Sum squared resid	0.002558	Schwarz criter	ion	-8.053138
Log likelihood	596.8961	F-statistic		129.0381
Durbin-Watson stat	1.876355	Prob(F-statistic	c)	0.000000
Inverted MA Roots	88			

Estimating ARMA models

Assignment Project Exam Help

Included observations: 147

Convergence achieved after 19 iterations

Backcast: 1970:4 1971:1

https://t	Utol	GtSENT OTAIS	c Prob.
С	0.005824	0.000707 8.23625	4 0.0000
MA(1)	0.658915	0.075300 8.75051	0.0000
MA(2)	0.429536	0.075302 5.70415	2 0.0000
Vesque la	0.488078	Mean dependent var	0.005838
Adjusted R-squared	0.491107	S.D. dependent var	0.005754
S.E. of regression	0.004105	Akaike info criterion	-8.132996
Sum squared resid	0.002427	Schwarz criterion	-8.071967
Log likelihood	600.7752	F-statistic	71.44862
Durbin-Watson stat	1.692709	Prob(F-statistic)	0.000000
Inverted MA Roots	33+.57i	3357i	,,

Estimating ARMA models

Assignment Project Exam Help

Convergence achieved after 6 iterations

Backcast: 1971:1

http://t	dottout	CtSError () tais ic	Prob.
С	0.005839	0.001000	5.836744	0.0000
AR(1)	0.581263	0.092106	6.310777	0.0000
MA(1)	0.270706	0.108949	2.484704	0.0141
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.5 298 0.516355 0.004002 0.002306 604.5154 1.941688	Mean Jepende S.D. depende Akaike info cr Schwarz crite F-statistic Prob(F-statist	iterion rion	0.005838 0.005754 -8.183883 -8.122854 78.93724 0.000000
Inverted AR Roots Inverted MA Roots	.58 27			

Estimating ARMA models

Assignment Project Exam Help

Convergence achieved after 29 iterations

Backcast: 1970:4 1971:1

http://timesole//timesole/	Coefficient	Ctd Error det	tistic Prob.
	0.005832	0.001026 5.68	2222 0.0000
AR(1)	0.484945	0.123080 3.94	0075 0.0001
MA(1)	0.287716	0.124995 2.30	1818 0.0228
MA(2)	0.350002	0.099621 3.51	3348 0.0006
R-layeled 12	0.5 551	Mear de endent va	0.005838
Adjusted R-squared	0.535976	S.D. dependent var	
S.E. of regression	0.003920	Akaike info criterior	-8.218661
Sum squared resid	0.002197	Schwarz criterion	-8.137289
Log likelihood	608.0716	F-statistic	57.21298
Durbin-Watson stat	1.882080	Prob(F-statistic)	0.000000
Inverted AR Roots	.48		
Inverted MA Roots	1457i	14+.57i	

Estimating ARMA models

Assignment Project Exam Help

Convergence achieved after 14 iterations

Backcast: 1971:1

_			
http://ariable//ti	nicofficient	CtoSErroc OStatisti	Prob.
	0.005800	0.000623 9.30643	6 0.0000
AR(1)	1.335567	0.150299 8.88609	5 0.0000
AR(2)	-0.610058	0.104117 -5.85936	6 0.0000
MA(1)	-0.464456	0.178054 -2.60850	0.0101
R-Gualed 1	0.5 2620	Mean rependent var	0.005838
Adjusted R-squared	0.553444	S.D. dependent var	0.005754
S.E. of regression	0.003845	Akaike info criterion	-8.257033
Sum squared resid	0.002115	Schwarz criterion	-8.175661
Log likelihood	610.8920	F-statistic	61.31567
Durbin-Watson stat	2.085756	Prob(F-statistic)	0.000000
Inverted AR Roots	.6741i	.67+.41i	
Inverted MA Roots	.46		

Estimating ARMA models

Assignment Project Exam Help

Convergence achieved after 15 iterations

Backcast: 1970:4 1971:1

htt	11 Clariable / 1	Clefficient	Std-Error +St	atistic Prob.
110		0.005903	0.001008 5.89	57344 0.0000
	AR(1)	-0.204331	0.136337 -1.49	98720 0.1362
	AR(2)	0.467106	0.081719 5.7	16035 0.0000
	MA(1)	1.163758	0.151428 7.68	85222 0.0000
TT 7	MA(2)	0.172362	0.149734 1.15	51122 0.2516
W	C quired N a	0.502113	Mean dependent vi	0.005838
	Adjusted R-squared	0.549778	S.D. dependent va	r 0.005754
	S.E. of regression	0.003861	Akaike info criterio	n -8.242268
	Sum squared resid	0.002117	Schwarz criterion	-8.140553
	Log likelihood	610.8067	F-statistic	45.57109
	Durbin-Watson stat	1.960197	Prob(F-statistic)	0.000000
	Inverted AR Roots	.59	79	
	Inverted MA Roots	17	- 99	

Estimating ARMA models

Assignment Project Exam Help

Convergence achieved after 37 iterations Backcast: 1970:4 1971:1

	William Street, Market and Control of the Control o				
ht	Varjable /+1	Coefficient	Std. Error	t-Statistic	Prob.
nu					0.0000
	•	0.005825	0.000630	9.244649	0.0000
	AR(1)	0.536431	0.114057	4.703173	0.0000
	AR(2)	0.501768	0.125699	3.991834	0.0001
	AR(3)	-0.486215	0.088530	-5.492067	0.0000
** *	MA(1)	0.445704	0.078565	5.673066	0.0000
W	e Maaat	•-0.538773	1.002185	246.8091	0.0000
* *	R-squared	0.594152	Mean depend	dent var	0.005838
	Adjusted R-squared	0.579761	S.D. depend		0.005754
	S.E. of regression	0.003730	Akaike info o	riterion	-8.304646
	Sum squared resid	0.001962	Schwarz crite	erion	-8.182588
	Log likelihood	616.3915	F-statistic		41.28419
	Durbin-Watson stat	2.100323	Prob(F-statis	tic)	0.000000
	Inverted AR Roots	.6838i	.68+.38i	81	
	Inverted MA Roots	.54	99		

☐ Diagnostic Checking

Example: $\Delta \ln(GDP)$ for Belgium

Assignments the geing for the AR(3) taken Help ARMA(3,2) model

 $https{\text{-}/{\text{thom}}}_{962}^{0.002077} = 0.001962)/2 \\ \text{-} \\ \text$

where the 5% critical values \approx 3.07.

Wesche joint agnificant tuth Officients needed for going from the ARMA(3,2) to the ARMA(4,4) model

$$F = \frac{(0.001962 - 0.001630)/3}{0.001630/(147 - 9)} = 9.38$$

where the 5% critical values \approx 2.68.

Backcast: 1970:2 1971:1

Fitting ARMA models to the data

☐ Diagnostic Checking

Assignment 1971 2070 1ect Exam Help Convergence achieved after 19 iterations

1 4	Variable /	Coefficient	Std. Error	t-Statistic	Prob.
htt	DS: //II	.05358	0.00650	8 23 1 6	0.0000
	AR(1)	0.645318	0.215114	2.999885	0.0032
_	AR(2)	0.327534	0.227127	1.442073	0.1515
	AR(3)	-0.038514	0.208333	-0.184865	0.8536
	AR(4)	-0.110431	0.156096	-0.707455	0.4805
***	MA(1)	0.239632	0.202097	1.185727	0.2378
\mathbf{A}	MA OF	· -0.408088	6 1 2 22 0 8	-3 209241	0.0011
_ V V C		-0.182807	0 19 93 76	1 41 458	0.1583
	MA(4)	-0.512935	0.106673	-4.808488	0.0000
	R-squared	0.662905	Mean depen	dent var	0.005838
	Adjusted R-squared	0.643363	S.D. depend		0.005754
	S.E. of regression	0.003437	Akaike info	criterion	-8.449443
	Sum squared resid	0.001630	Schwarz crit	erion	-8.266355
	Log likelihood	630.0340	F-statistic		33.92249
	Durbin-Watson stat	2.025286	Prob(F-statis	stic)	0.000000
	Inverted AR Roots	.75	.64	3730i	37+.30i
	Inverted MA Roots	.99	1472i	14+.72i	95

☐ Diagnostic Checking

▶ Residual diagnostics: note that for both the AR(3) and the

SSignment Project Exam Help

The fitted ARMA models are not rich enough to capture all of the dynamics in $\Delta \ln(GDP)$ for Belgium

Note that especially the correlation at lag 4 looks significant. As we have quarterly data, this might be a seasonal effect. In our to cooper for seasonal type, an additional MA coefficient at lag 4 is added. For truly seasonal patterns, such an MA-component best captures spikes (and not decay) at the quarterly lags. Also note that the MA(4) is highly significant in the ARMA(4,4) model.

▶ An ARMA(1,(2,4)) model has the smallest AIC and SBC with the residuals being \approx white noise.

Figure 63: Correlogram estimated residuals from AR(3) model for Project Exam Help Sample: 1971:2 2007-4 included observations: 147

	Q-statistic probabilities adjusted for 3 ARMA term(s)						
_	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	
https	://tu	itoro	1 0 033 2 050 3 0.160	0.049 0.049	4.7500	n	
1	<u></u>	.	4 -0.243	-0.241 0.076	13.759 15.179	0.000	
	100	100	6 -0.034		15.360	0.001	
	1 📠	1 🔳	7 0.121		17.633	0.001	
	1 🗓 1	1111		-0.037	18.180	0.003	
TTI	11 11 1			0.137	19.101	0.004	
WeC	nat	cst	1 0.08	0.094	19.469 19.23 21.34	0.012 (0.01)	
	' ! !	1 1	13 -0.097	0.067	23.058	0.011	
	1.5	1.1	14 0.107 15 -0.053	-0.034	24.940	0.009	
	111	1 27		-0.097	25.400	0.013	
	i i		17 -0.002		25.983	0.026	
	1 1	10		-0.025	25.984	0.038	
	· ·	101	19 -0.117		28.333	0.029	
	16 1	101	20 -0.094		29.843	0.028	
	19.1	19.1	21 -0.063		30.522	0.033	
	111	1 17	22 -0.016	-0.012	30.565 31.526	0.045	
	100		24 -0.077		32.571	0.049	
	176	111	25 0.084			0.051	

Fitting ARMA models to the data

[☐] Diagnostic Checking

Assignment Project Exam Help

Included observations: 147
Q-statistic probabilities adjusted for 5 ARMA term(s)

Autocorrelation Partial Correlation AC

	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
https	://tu	itoro	1 0 053 2 183 3 0 03	0.181 0.181	5.4 5.4 2 5.874	$\overline{\mathbf{n}}$
	= 1		4 -0.226	-0.265	13.494	
	1 10	1 11	5 0.064			
	그만	1 1	6 -0.039	0.072	14.360	
	1 -		7 0.165			
	. (5)	1 1	8 0.086 9 0.108	0.034	19.771 21.630	0.000
	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10-0 048			
$\mathbf{M}/\mathbf{\Delta}$	nat	i est	1 0.055		22 50	
WeC	Hat.		2 0 1 01	0.03	23.305	
			13 -0.135	-0.094	26.986	0.001
			14 0.123	0.112		0.001
	10.1	1111	15 -0.064	-0.036	30.143	0.001
	1	1 1 1	16 0.121	0.012	32.603	0.001
	0.00	100	17 -0.043			0.001
	1 11	1 1		0.091	33.043	
	= -	-	19 -0.149			0.001
	101	1111	20 -0.089			
	191	'E'	21 -0.081			
	111	1 1	22 -0.021	0.072		0.002
	1.51	1 11	23 0.077	0.002		0.002
	111	1111	24 -0.049 25 0.088			0.002
	1 10	1 11	23 0.000	0.004	42.231	0.003

Fitting ARMA models to the data

[☐] Diagnostic Checking

☐ Diagnostic Checking

$Assignmental ARMA(1,(2,4)) \ \text{model for } \Delta \ln(\textit{GDP}) \ \text{Belgium Help} \\ Assignmental ARMA(1,(2,4)) \ \text{model for } \Delta \ln(\textit{GDP}) \ \text{Belgium Help} \\ \text{Included observations: } 147$

Convergence achieved after 11 iterations

Backcast: 1970:2 1971:1

http://ti	Confficient	Ctd Erroc	Statistic	Prob.
	0.005305	0.000206	25.74216	0.0000
AR(1)	0.826454	0.048550	17.02258	0.0000
MA(2)	-0.221029	0.065615	-3.368584	0.0010
MA(4)	-0.695479	0.066347	-10.48250	0.0000
Wscan nat	0.638776		In Car S	0.005838
Adjusted R-squared	0.651617	S.D. depende		0.005754
S.E. of regression	0.003397	Akaike info c		-8.505295
Sum squared resid	0.001650	Schwarz crite	erion	-8.423922
Log likelihood	629.1392	F-statistic		92.02632
Durbin-Watson stat	1.918171	Prob(F-statis	tic)	0.000000
Inverted AR Roots	.83			
Inverted MA Roots	.98	0085i -	.00+.85i	98

Assignment Project Exam Help

Included observations: 147
Q-statistic probabilities adjusted for 3 ARMA term(s)
Autocorrelation Partial Correlation AC

_	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
https	://tu	itoro	1 0 033 2 0021 3 0 0	0.023	9.4650 0.2341 1.8363	$\overline{\mathbf{n}}$
T			4 0.000 5 -0.101	0.007	1.8063 3.3674 5.3151	0.179 0.186 0.150
			7 0.114 8 0.136 9 0.096	0.130 0.118 0.064	7.3407 10.275 11.740	0.119 0.068 0.068
WeC	hat	: cst	10 0.012 1 1.08 2 1.00	0.010	12.900	0. 46 0.16
				-0.085	14.847 18.757 19.316	0.138 0.066 0.081
	30		17 -0.063	0.041	19.778 20.438 21.566 26.302	0.101 0.117 0.120 0.050
			20 -0.135 21 -0.074	-0.077	29.444 30.406 30.638	0.031 0.034 0.044
				0.005 -0.087	30.889 31.705	0.057 0.063 0.060

Fitting ARMA models to the data

[☐] Diagnostic Checking

☐ Diagnostic Checking

☐ Diagnostic Checking

▶ Parameter stability test: note that the DGP appears to

Assignment Project Exam Help split the sample in two sub-samples, e.g. 1970:1-1994:4 and 1995:1-2007:4, and perform Chow test.

$$https{}_{(0.001650-(0.000539+0.000809))/4}^{(0.001650-(0.000539+0.000809))/4} = 7.79$$

where the 5% critical values ≈ 2.45 .

Especially if you want to predict future output growth, you better estimate the ARMA process over a smaller sample size in order to avoid parameter instability. The model estimated over the period 1995:1-2007:4 passes the diagnostic checks, i.e. no autocorrelation in the residuals and no parameter instability (check!).

☐ Diagnostic Checking

Assignment Project Exam Help

☐ Diagnostic Checking

Assignment Project Exam Help

Sample: 1971:2 1994:4 Included observations: 95

Convergence achieved after 25 iterations

Backcast: 1970:2 1971:1

htt	na //+	110		$\alpha \alpha m$		
	√a iable /	taeficien	Std Erro	t-3t atj tij	Prob.	
	С	0.004986	0.00217	7 2.290402	0.0243	
	AR(1)	0.885904	0.04742	4 18.68061	0.0000	
	MA(2)	-0.190398	0.18685	6 -1.018953	0.3109	
$W\epsilon$	MAY 21	- 0.772815	4-0.13276	11.	0.0000	
R-so	quared	0.855801	Mean dep	endent var	0.006057	
Adju	sted R-squared	0.851047	S.D. depe	endent var	0.006304	
S.E.	S.E. of regression		Akaike inf	-9.158194		
Sum	Sum squared resid		Schwarz o	Schwarz criterion		
Log	Log likelihood		F-statistic		180.0238	
Durl	bin-Watson stat	0.808649	Prob(F-sta	atistic)	0.000000	
Inve	rted AR Roots	.89				
Inve	rted MA Roots	.99	00+.89i	0089i	99	

☐ Diagnostic Checking

As 1915 Project Exam Help

Included observations: 52

Convergence achieved after 11 iterations

Backcast: 1994:1 1994:4

n	tt Diable / t	Total Cin	CHEROC	t tistic	Prob.
	С	0.005406	0.000286	18.88504	0.0000
	AR(1)	0.435196	0.134607	3.233077	0.0022
	MA(2)	-0.272897	0.127385	-2.142310	0.0373
W	/e ^{(MA)4} hat	0.528349	1991	14.162999	0.0001
•	R-squared	0.255307	Mean depen	dent var	0.005436
	Adjusted R-squared	0.208764	S.D. depend	ent var	0.004615
	S.E. of regression	0.004105	Akaike info o	-8.079476	
	Sum squared resid	0.000809	Schwarz crit	erion	-7.929381
	Log likelihood	214.0664	F-statistic		5.485364
	Durbin-Watson stat	2.104329	Prob(F-statis	tic)	0.002533
	Inverted AR Roots	.44			
	Inverted MA Roots	.94	.0078i ·	.00+.78	94

☐ Building Forecasts

Assignment Project Exam Help

Building Forecasts

Figure 73: Using an AR(1) model to forecast $\Delta \ln(GDP)$ from 2005:1

Assyrginimental Project Exam Help

Building Forecasts

Forecasting Accuracy

Assing an MA(2) model to forecast $\Delta \ln(GDP)$ from 2005:1

Assing in the Project Exam Help

Forecasting Accuracy

Assyrganimocopeid: Project Exam Help

Forecasting Accuracy

Figure 77: Using an ARMA(1,(2,4)) model to forecast $\Delta \ln(GDP)$ from Asymptotic formula (1,0,4) and <math>Asymptotic formula (1,0,4) and Asymptotic formula (1,0,4) and Asympt

Forecasting Accuracy

Assign for coast accuracy of an MA(2) modeling forecasting Help

Forecast: DLNGDPF
Actual: DLNGDP

http://orecast.parinter.2005g.2007jm

Root Mean Squared Error 0.002336

We Mean Absolute Error 0.001556

Mean Absolute Error 0.001556

Mean Absolute Error 0.001556

9.68930

Theil Inequality Coefficient 0.197821

Bias Proportion 0.038087

Variance Proportion 0.579495

Covariance Proportion 0.382418

└ Forecasting Accuracy

Assignment on art (Sipar Gerild, 1991) 4:Help

Forecast: DLNGDPF Actual: DLNGDP

http://decomposervations: 92 COm

Root Mean Squared Error 0.002339

We have Absolute Error 0.001507

Mean Absolute Error 0.001507

Mean Absolute Error 0.001507

Mean Absolute Error 0.001507

Mean Absolute Error 0.001507

Theil Inequality Coefficient 0.198067

Bias Proportion 0.036135

Variance Proportion 0.338478

Forecasting Accuracy

A SS 1 9 1) from 100 11 Convert (Signature beried) model in forecasting p

Forecast: DLNGDPF
Actual: DLNGDP

The Forecast sample: F005G 2007311

The forecast sample: F005G 2007311

Root Mean Squared Error 0.002013

We Mean Absolute Error 0.001275

Mean Absolute Error 0.001275

Mean Absolute Error 0.001275

Mean Absolute Error 0.001275

School 18

Theil Inequality Coefficient 0.166328

Bias Proportion 0.014317

Variance Proportion 0.482558

Covariance Proportion 0.503125

Forecasting using ARMA models