Financial Engineering & Risk Management Review of Basic Probability

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

Discrete Random Variables

Definition. The cumulative distribution function (CDF), $F(\cdot)$, of a random variable, X, is defined by

$$\mathsf{F}(x) := \mathsf{P}(X \le x).$$

Definition. A discrete random variable, X, has probability mass function (PMF), $p(\cdot)$, if $p(x) \ge 0$ and for all events A we have

$$\mathsf{P}(X \in A) = \sum_{x \in A} p(x).$$

Definition. The expected value of a discrete random variable, X, is given by

$$\mathsf{E}[X] \ := \ \sum_i x_i \, p(x_i).$$

Definition. The variance of any random variable, X, is defined as

$$\begin{aligned} \mathsf{Var}(X) &:= & \mathsf{E}\left[(X - \mathsf{E}[X])^2\right] \\ &= & \mathsf{E}[X^2] \, - \, \mathsf{E}[X]^2. \end{aligned}$$

The Binomial Distribution

We say X has a binomial distribution, or $X \sim Bin(n, p)$, if

$$P(X = r) = \binom{n}{r} p^r (1-p)^{n-r}.$$

For example, X might represent the number of heads in n independent coin tosses, where $p=\mathsf{P}(\mathsf{head}).$ The mean and variance of the binomial distribution satisfy

$$\begin{array}{rcl} \mathsf{E}[X] & = & np \\ \mathsf{Var}(X) & = & np(1-p). \end{array}$$

A Financial Application

- Suppose a fund manager outperforms the market in a given year with probability p and that she underperforms the market with probability 1-p.
- She has a track record of 10 years and has outperformed the market in 8 of the 10 years.
- Moreover, performance in any one year is independent of performance in other years.

Question: How likely is a track record as good as this if the fund manager had no skill so that p=1/2?

Answer: Let X be the number of outperforming years. Since the fund manager has no skill, $X\sim {\rm Bin}(n=10,p=1/2)$ and

$$P(X \ge 8) = \sum_{r=8}^{n} {n \choose r} p^{r} (1-p)^{n-r}$$

Question: Suppose there are M fund managers? How well should the best one do over the 10-year period if none of them had any skill?

The Poisson Distribution

We say X has a $Poisson(\lambda)$ distribution if

$$P(X = r) = \frac{\lambda^r e^{-\lambda}}{r!}.$$

$$\mathsf{E}[X] = \lambda \text{ and } \mathsf{Var}(X) = \lambda.$$

For example, the mean is calculated as

$$\begin{split} \mathsf{E}[X] \; &= \; \sum_{r=0}^\infty r \, \mathsf{P}(X=r) \; = \; \sum_{r=0}^\infty r \, \frac{\lambda^r \, e^{-\lambda}}{r!} &= \; \sum_{r=1}^\infty r \, \frac{\lambda^r \, e^{-\lambda}}{r!} \\ &= \; \lambda \, \sum_{r=1}^\infty \frac{\lambda^{r-1} \, e^{-\lambda}}{(r-1)!} \\ &= \; \lambda \, \sum_{r=1}^\infty \frac{\lambda^r \, e^{-\lambda}}{r!} \; = \; \lambda. \end{split}$$

Bayes' Theorem

Let A and B be two events for which $P(B) \neq 0$. Then

$$P(A | B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(B | A)P(A)}{P(B)}$$

$$= \frac{P(B | A)P(A)}{\sum_{j} P(B | A_{j})P(A_{j})}$$

where the A_{j} 's form a partition of the sample-space.

An Example: Tossing Two Fair 6-Sided Dice

	6	7	8	9	10	11	12
	5	6	7	8	9	10	11
	4	5	6	7	8	9	10
Y_2	3	4	5	6	7	8	9
	2	3	4	5	6	7	8
	1	2	3	4	5	6	7
		1	2	3	4	5	6
					Y_1		

Table : $X = Y_1 + Y_2$

- Let Y₁ and Y₂ be the outcomes of tossing two fair dice independently of one another.
- Let $X := Y_1 + Y_2$. Question: What is $P(Y_1 \ge 4 \mid X \ge 8)$?

Continuous Random Variables

Definition. A continuous random variable, X, has probability density function (PDF), $f(\cdot)$, if $f(x) \geq 0$ and for all events A

$$P(X \in A) = \int_A f(y) \ dy.$$

The CDF and PDF are related by

$$\mathsf{F}(x) = \int_{-\infty}^{x} f(y) \ dy.$$

It is often convenient to observe that

$$P\left(X \in \left(x - \frac{\epsilon}{2}, \ x + \frac{\epsilon}{2}\right)\right) \approx \epsilon f(x)$$

The Normal Distribution

We say X has a Normal distribution, or $X \sim N(\mu, \sigma^2)$, if

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

The mean and variance of the normal distribution satisfy

$$\begin{aligned} \mathsf{E}[X] &= & \mu \\ \mathsf{Var}(X) &= & \sigma^2. \end{aligned}$$

The Log-Normal Distribution

We say X has a log-normal distribution, or $X \sim \mathsf{LN}(\mu, \sigma^2)$, if

$$\log(X) \sim \mathsf{N}(\mu, \sigma^2).$$

The mean and variance of the log-normal distribution satisfy

$$\begin{aligned} \mathsf{E}[X] &=& \exp(\mu + \sigma^2/2) \\ \mathsf{Var}(X) &=& \exp(2\mu + \sigma^2) \; (\exp(\sigma^2) - 1). \end{aligned}$$

The log-normal distribution plays a very important in financial applications.

Financial Engineering & Risk Management

Review of Conditional Expectations and Variances

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

Conditional Expectations and Variances

Let X and Y be two random variables.

The conditional expectation identity says

$$\mathsf{E}[X] = \mathsf{E}\left[\mathsf{E}[X|Y]\right]$$

and the conditional variance identity says

$$\mathsf{Var}(X) = \mathsf{Var}(\mathsf{E}[X|\,Y]) + \mathsf{E}[\mathsf{Var}(X|\,Y)].$$

Note that $\mathsf{E}[X|Y]$ and $\mathsf{Var}(X|Y)$ are both functions of Y and are therefore random variables themselves.

A Random Sum of Random Variables

Let $W=X_1+X_2+\ldots+X_N$ where the X_i 's are IID with mean μ_x and variance σ_x^2 , and where N is also a random variable, independent of the X_i 's.

Question: What is E[W]?

Answer: The conditional expectation identity implies

$$\begin{aligned} \mathsf{E}[W] &=& \mathsf{E}\left[\mathsf{E}\left[\sum_{i=1}^{N} X_i \,|\, N\right]\right] \\ &=& \mathsf{E}\left[N\mu_x\right] \,=\, \mu_x\,\mathsf{E}\left[N\right]. \end{aligned}$$

Question: What is Var(W)?

Answer: The conditional variance identity implies

$$\begin{split} \mathsf{Var}(\mathit{W}) &= \mathsf{Var}(\mathsf{E}[\mathit{W}|\mathit{N}]) + \mathsf{E}[\mathsf{Var}(\mathit{W}|\mathit{N})] \\ &= \mathsf{Var}(\mu_x N) + \mathsf{E}[\mathit{N}\sigma_x^2] \\ &= \mu_x^2 \mathsf{Var}(\mathit{N}) + \sigma_x^2 \, \mathsf{E}[\mathit{N}]. \end{split}$$

An Example: Chickens and Eggs

A hen lays N eggs where $N \sim \mathsf{Poisson}(\lambda)$. Each egg hatches and yields a chicken with probability p, independently of the other eggs and N. Let K be the number of chickens.

Question: What is E[K|N]?

Answer: We can use indicator functions to answer this question.

In particular, can write $K = \sum_{i=1}^{N} 1_{H_i}$ where H_i is the event that the i^{th} egg hatches. Therefore

$$1_{H_i} = \begin{cases} 1, & \text{if } i^{th} \text{ egg hatches;} \\ 0, & \text{otherwise.} \end{cases}$$

Also clear that $\mathsf{E}[1_{H_i}] = 1 \times p + 0 \times (1-p) = p$ so that

$$\mathsf{E}[K|N] \ = \ \mathsf{E}\left[\sum_{i=1}^{N} 1_{H_i} \,|\, N\right] \ = \ \sum_{i=1}^{N} \mathsf{E}\left[1_{H_i}\right] \ = \ Np.$$

Conditional expectation formula then gives $E[K] = E[E[K|N]] = E[Np] = \lambda p$.

Financial Engineering & Risk Management

Review of Multivariate Distributions

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

Multivariate Distributions I

Let $\mathbf{X} = (X_1 \dots X_n)^{\top}$ be an *n*-dimensional vector of random variables.

Definition. For all $\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$, the joint cumulative distribution function (CDF) of \mathbf{X} satisfies

$$F_{\mathbf{X}}(\mathbf{x}) = F_{\mathbf{X}}(x_1, \dots, x_n) = P(X_1 \le x_1, \dots, X_n \le x_n).$$

Definition. For a fixed i, the marginal CDF of X_i satisfies

$$F_{X_i}(x_i) = F_{\mathbf{X}}(\infty, \dots, \infty, x_i, \infty, \dots \infty).$$

It is straightforward to generalize the previous definition to joint marginal distributions. For example, the joint marginal distribution of X_i and X_j satisfies

$$F_{ij}(x_i, x_j) = F_{\mathbf{X}}(\infty, \dots, \infty, x_i, \infty, \dots, \infty, x_j, \infty, \dots \infty).$$

We also say that **X** has joint PDF $f_{\mathbf{X}}(\cdot, \dots, \cdot)$ if

$$F_{\mathbf{X}}(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{\mathbf{X}}(u_1,\ldots,u_n) du_1 \ldots du_n.$$

Multivariate Distributions II

Definition. If $\mathbf{X_1} = (X_1, \dots X_k)^{\top}$ and $\mathbf{X_2} = (X_{k+1} \dots X_n)^{\top}$ is a partition of \mathbf{X} then the conditional CDF of $\mathbf{X_2}$ given $\mathbf{X_1}$ satisfies

$$F_{\mathbf{X_2}|\mathbf{X_1}}(\mathbf{x_2} \,|\, \mathbf{x_1}) = P(\mathbf{X_2} \leq \mathbf{x_2} \,|\, \mathbf{X_1} = \mathbf{x_1}).$$

If X has a PDF, $f_X(\cdot)$, then the conditional PDF of X_2 given X_1 satisfies

$$f_{\mathbf{X}_{2}|\mathbf{X}_{1}}(\mathbf{x}_{2}|\mathbf{x}_{1}) = \frac{f_{\mathbf{X}}(\mathbf{x})}{f_{\mathbf{X}_{1}}(\mathbf{x}_{1})} = \frac{f_{\mathbf{X}_{1}|\mathbf{X}_{2}}(\mathbf{x}_{1}|\mathbf{x}_{2})f_{\mathbf{X}_{2}}(\mathbf{x}_{2})}{f_{\mathbf{X}_{1}}(\mathbf{x}_{1})}$$
 (1)

and the conditional CDF is then given by

$$F_{\mathbf{X_2}|\mathbf{X_1}}(\mathbf{x_2}|\mathbf{x_1}) = \int_{-\infty}^{x_{k+1}} \cdots \int_{-\infty}^{x_n} \frac{f_{\mathbf{X}}(x_1, \dots, x_k, u_{k+1}, \dots, u_n)}{f_{\mathbf{X_1}}(\mathbf{x_1})} du_{k+1} \dots du_n$$

where $\mathit{f}_{\mathbf{X_1}}(\cdot)$ is the joint marginal PDF of $\mathbf{X_1}$ which is given by

$$f_{\mathbf{X}_1}(x_1,\ldots,x_k) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1,\ldots,x_k,u_{k+1},\ldots,u_n) \ du_{k+1}\ldots du_n.$$

Independence

Definition. We say the collection ${\bf X}$ is independent if the joint CDF can be factored into the product of the marginal CDFs so that

$$F_{\mathbf{X}}(x_1,\ldots,x_n) = F_{X_1}(x_1)\ldots F_{X_n}(x_n).$$

If X has a PDF, $f_X(\cdot)$ then independence implies that the PDF also factorizes into the product of marginal PDFs so that

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_1}(x_1) \dots f_{X_n}(x_n).$$

Can also see from (1) that if X_1 and X_2 are independent then

$$f_{\mathbf{X}_{2}|\mathbf{X}_{1}}(\mathbf{x}_{2}|\mathbf{x}_{1}) = \frac{f_{\mathbf{X}}(\mathbf{x})}{f_{\mathbf{X}_{1}}(\mathbf{x}_{1})} = \frac{f_{\mathbf{X}_{1}}(\mathbf{x}_{1})f_{\mathbf{X}_{2}}(\mathbf{x}_{2})}{f_{\mathbf{X}_{1}}(\mathbf{x}_{1})} = f_{\mathbf{X}_{2}}(\mathbf{x}_{2})$$

- so having information about X_1 tells you nothing about X_2 .

Implications of Independence

Let X and Y be independent random variables. Then for any events, A and B,

$$P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$$
 (2)

More generally, for any function, $f(\cdot)$ and $g(\cdot)$, independence of X and Y implies

$$\mathsf{E}[f(X)g(Y)] \ = \ \mathsf{E}[f(X)]\mathsf{E}[g(Y)]. \tag{3}$$

In fact, (2) follows from (3) since

$$\begin{array}{lcl} \mathsf{P}\left(X \in A, \; Y \in B\right) & = & \mathsf{E}\left[1_{\{X \in A\}}1_{\{Y \in B\}}\right] \\ & = & \mathsf{E}\left[1_{\{X \in A\}}\right]\mathsf{E}\left[1_{\{Y \in B\}}\right] & \mathsf{by}\;(3) \\ & = & \mathsf{P}\left(X \in A\right)\mathsf{P}\left(Y \in B\right). \end{array}$$

Implications of Independence

More generally, if $X_1, \ldots X_n$ are independent random variables then

$$\mathsf{E} \left[f_1(X_1) f_2(X_2) \cdots f_n(X_n) \right] \ = \ \mathsf{E} [f_1(X_1)] \mathsf{E} [f_2(X_2)] \cdots \mathsf{E} [f_n(X_n)].$$

Random variables can also be conditionally independent. For example, we say X and Y are conditionally independent given Z if

$$\mathsf{E}[f(X)g(Y) | Z] = \mathsf{E}[f(X) | Z] \mathsf{E}[g(Y) | Z].$$

- used in the (in)famous Gaussian copula model for pricing CDOs!

In particular, let D_i be the event that the i^{th} bond in a portfolio defaults.

Not reasonable to assume that the D_i 's are independent. Why?

But maybe they are conditionally independent given Z so that

$$\mathsf{P}(D_1, \dots, D_n \mid Z) = \mathsf{P}(D_1 \mid Z) \dots \mathsf{P}(D_n \mid Z)$$

- often easy to compute this.

The Mean Vector and Covariance Matrix

The mean vector of X is given by

$$\mathsf{E}[\mathbf{X}] := (\mathsf{E}[X_1] \dots \mathsf{E}[X_n])^{\top}$$

and the covariance matrix of X satisfies

$$\boldsymbol{\Sigma} := \mathsf{Cov}(\mathbf{X}) \; := \; \mathsf{E}\left[(\mathbf{X} - \mathsf{E}[\mathbf{X}]) \; (\mathbf{X} - \mathsf{E}[\mathbf{X}])^\top \right]$$

so that the $(i,j)^{th}$ element of Σ is simply the covariance of X_i and X_j .

The covariance matrix is symmetric and its diagonal elements satisfy $\Sigma_{i,i} \geq 0$.

It is also positive semi-definite so that $\mathbf{x}^{\top} \Sigma \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$.

The correlation matrix, $ho(\mathbf{X})$, has $(i,j)^{th}$ element $ho_{ij} := \mathsf{Corr}(X_i,X_j)$

- it is also symmetric, positive semi-definite and has 1's along the diagonal.

Variances and Covariances

For any matrix $\mathbf{A} \in \mathbb{R}^{k \times n}$ and vector $\mathbf{a} \in \mathbb{R}^k$ we have

$$\mathsf{E}\left[\mathbf{A}\mathbf{X} + \mathbf{a}\right] = \mathbf{A}\mathsf{E}\left[\mathbf{X}\right] + \mathbf{a} \tag{4}$$

$$Cov(\mathbf{AX} + \mathbf{a}) = \mathbf{A} Cov(\mathbf{X}) \mathbf{A}^{\top}.$$
 (5)

Note that (5) implies

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y).$$

If X and Y independent, then $\operatorname{Cov}(X,\,Y)=0$

but converse not true in general.

В

Financial Engineering & Risk Management

The Multivariate Normal Distribution

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

The Multivariate Normal Distribution I

If the $n\text{-dimensional vector }\mathbf{X}$ is multivariate normal with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ then we write

$$\mathbf{X} \sim \mathsf{MN}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

The PDF of X is given by

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

where $|\cdot|$ denotes the determinant.

Standard multivariate normal has $\mu=0$ and $\Sigma=\mathbf{I_n}$, the n imes n identity matrix is this case that Y 's any independent

- in this case the X_i 's are independent.

The moment generating function (MGF) of X satisfies

$$\phi_{\mathbf{X}}(\mathbf{s}) = \mathsf{E}\left[e^{\mathbf{s}^{\top}\mathbf{X}}\right] = e^{\mathbf{s}^{\top}\boldsymbol{\mu} + \frac{1}{2}\mathbf{s}^{\top}\boldsymbol{\Sigma}s}.$$

The Multivariate Normal Distribution II

Recall our partition of \mathbf{X} into $\mathbf{X_1} = (X_1 \ldots X_k)^{\top}$ and $\mathbf{X_2} = (X_{k+1} \ldots X_n)^{\top}$. Can extend this notation naturally so that

$$\mu \; = \; \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right) \qquad \text{and} \qquad \boldsymbol{\Sigma} \; = \; \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array} \right).$$

are the mean vector and covariance matrix of (X_1, X_2) .

Then have following results on marginal and conditional distributions of X:

Marginal Distribution

The marginal distribution of a multivariate normal random vector is itself normal. In particular, $\mathbf{X_i} \sim \mathsf{MN}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_{ii})$, for i=1,2.

The Bivariate Normal PDF

The Bivariate Normal PDF

The Multivariate Normal Distribution III

Conditional Distribution

Assuming Σ is positive definite, the conditional distribution of a multivariate normal distribution is also a multivariate normal distribution. In particular,

$$\mathbf{X_2} \mid \mathbf{X_1} = \mathbf{x_1} \sim \mathsf{MN}(\boldsymbol{\mu}_{2.1}, \boldsymbol{\Sigma}_{2.1})$$

where
$$\mu_{2.1} = \mu_2 + \Sigma_{21} \; \Sigma_{11}^{-1} \; (\mathbf{x}_1 - \mu_1)$$
 and $\Sigma_{2.1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$.

Linear Combinations

A linear combination, $\mathbf{A}\mathbf{X} + \mathbf{a}$, of a multivariate normal random vector, \mathbf{X} , is normally distributed with mean vector, $\mathbf{A}\mathsf{E}\left[\mathbf{X}\right] + \mathbf{a}$, and covariance matrix, $\mathbf{A}\;\mathsf{Cov}(\mathbf{X})\;\mathbf{A}^{\top}.$

Financial Engineering & Risk Management Introduction to Martingales

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

Martingales

Definition. A random process, $\{X_n:0\leq n\leq\infty\}$, is a martingale with respect to the information filtration, \mathcal{F}_n , and probability distribution, P, if

- 1. $\mathsf{E}^P[|X_n|] < \infty$ for all $n \ge 0$
- 2. $E^P[X_{n+m}|\mathcal{F}_n] = X_n$ for all $n, m \ge 0$.

Martingales are used to model fair games and have a rich history in the modeling of gambling problems.

We define a submartingale by replacing condition #2 with

$$\mathsf{E}^P[X_{n+m}|\mathcal{F}_n] \ge X_n$$
 for all $n, m \ge 0$.

And we define a supermartingale by replacing condition #2 with

$$\mathsf{E}^P[X_{n+m}|\mathcal{F}_n] \le X_n$$
 for all $n, m \ge 0$.

A martingale is both a submartingale and a supermartingale.

Constructing a Martingale from a Random Walk

Let $S_n := \sum_{i=1}^n X_i$ be a random walk where the X_i 's are IID with mean μ .

Let $M_n := S_n - n\mu$. Then M_n is a martingale because:

$$E_{n}[M_{n+m}] = E_{n} \left[\sum_{i=1}^{n+m} X_{i} - (n+m)\mu \right]
= E_{n} \left[\sum_{i=1}^{n+m} X_{i} \right] - (n+m)\mu
= \sum_{i=1}^{n} X_{i} + E_{n} \left[\sum_{i=n+1}^{n+m} X_{i} \right] - (n+m)\mu
= \sum_{i=1}^{n} X_{i} + m\mu - (n+m)\mu = M_{n}.$$

A Martingale Betting Strategy

Let X_1, X_2, \ldots be IID random variables with

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}.$$

Can imagine X_i representing the result of coin-flipping game:

- Win \$1 if coin comes up heads
- Lose \$1 if coin comes up tails

Consider now a doubling strategy where we keep doubling the bet until we eventually win. Once we win, we stop and our initial bet is \$1.

First note that size of bet on n^{th} play is 2^{n-1}

- assuming we're still playing at time n.

Let W_n denote total winnings after n coin tosses assuming $W_0 = 0$.

Then W_n is a martingale!

A Martingale Betting Strategy

To see this, first note that $W_n \in \{1, -2^n + 1\}$ for all n. Why?

1. Suppose we win for first time on n^{th} bet. Then

$$W_n = -(1+2+\dots+2^{n-2}) + 2^{n-1}$$

= -(2^{n-1}-1) + 2^{n-1}
= 1

2. If we have not yet won after n bets then

$$W_n = -(1+2+\cdots+2^{n-1})$$

= -2^n+1 .

To show W_n is a martingale only need to show $\mathsf{E}[\,W_{n+1}\,|\,W_n] = W_n$ — then follows by iterated expectations that $\mathsf{E}[\,W_{n+m}\,|\,W_n] = W_n.$

A Martingale Betting Strategy

There are two cases to consider:

1: $W_n = 1$: then $P(W_{n+1} = 1 | W_n = 1) = 1$ so

$$\mathsf{E}[W_{n+1} \mid W_n = 1] = 1 = W_n \tag{6}$$

2: $W_n = -2^n + 1$: bet 2^n on $(n+1)^{th}$ toss so $W_{n+1} \in \{1, -2^{n+1} + 1\}$. Clear that

$$P(W_{n+1} = 1 \mid W_n = -2^n + 1) = 1/2$$

$$P(W_{n+1} = -2^{n+1} + 1 \mid W_n = -2^n + 1) = 1/2$$

so that

$$E[W_{n+1} | W_n = -2^n + 1] = (1/2)1 + (1/2)(-2^{n+1} + 1)$$

= $-2^n + 1 = W_n$. (7)

From (6) and (7) we see that $E[W_{n+1} \mid W_n] = W_n$.

Polya's Urn

Consider an urn which contains red balls and green balls. Initially there is just one green ball and one red ball in the urn.

At each time step a ball is chosen randomly from the urn:

- 1. If ball is red, then it's returned to the urn with an additional red ball.
- 2. If ball is green, then it's returned to the urn with an additional green ball.

Let X_n denote the number of red balls in the urn after n draws. Then

$$P(X_{n+1} = k+1 | X_n = k) = \frac{k}{n+2}$$

$$P(X_{n+1} = k | X_n = k) = \frac{n+2-k}{n+2}.$$

Show that $M_n := X_n/(n+2)$ is a martingale.

(These martingale examples taken from "Introduction to Stochastic Processes" (Chapman & Hall) by Gregory F. Lawler.)

Financial Engineering & Risk Management Introduction to Brownian Motion

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

Brownian Motion

Definition. We say that a random process, $\{X_t: t \geq 0\}$, is a Brownian motion with parameters (μ, σ) if

1. For $0 < t_1 < t_2 < \ldots < t_{n-1} < t_n$

$$(X_{t_2}-X_{t_1}), (X_{t_3}-X_{t_2}), \ldots, (X_{t_n}-X_{t_{n-1}})$$

are mutually independent.

- 2. For s>0, $X_{t+s}-X_t \sim N(\mu s, \sigma^2 s)$ and
- 3. X_t is a continuous function of t.

We say that X_t is a $B(\mu, \sigma)$ Brownian motion with drift μ and volatility σ

Property #1 is often called the independent increments property.

Remark. Bachelier (1900) and Einstein (1905) were the first to explore Brownian motion from a mathematical viewpoint whereas Wiener (1920's) was the first to show that it actually exists as a well-defined mathematical entity.

Standard Brownian Motion

- When $\mu = 0$ and $\sigma = 1$ we have a standard Brownian motion (SBM).
- We will use W_t to denote a SBM and we always assume that $W_0 = 0$.
- Note that if $X_t \sim B(\mu, \sigma)$ and $X_0 = x$ then we can write

$$X_t = x + \mu t + \sigma W_t \tag{8}$$

where W_t is an SBM. Therefore see that $X_t \sim N(x + \mu t, \sigma^2 t)$.

Sample Paths of Brownian Motion

Information Filtrations

- ullet For any random process we will use \mathcal{F}_t to denote the information available at time t
 - the set $\{\mathcal{F}_t\}_{t\geq 0}$ is then the information filtration
 - so $E[\cdot | \mathcal{F}_t]$ denotes an expectation conditional on time t information available.
- Will usually write $E[\cdot | \mathcal{F}_t]$ as $E_t[\cdot]$.

Important Fact: The independent increments property of Brownian motion implies that any function of $W_{t+s}-W_t$ is independent of \mathcal{F}_t and that

$$(W_{t+s} - W_t) \sim \mathsf{N}(0, s).$$

A Brownian Motion Calculation

Question: What is $E_0[W_{t+s}W_s]$?

Answer: We can use a version of the conditional expectation identity to obtain

$$\mathsf{E}_{0} [W_{t+s} W_{s}] = \mathsf{E}_{0} [(W_{t+s} - W_{s} + W_{s}) W_{s}]
= \mathsf{E}_{0} [(W_{t+s} - W_{s}) W_{s}] + \mathsf{E}_{0} [W_{s}^{2}].$$
(9)

Now we know (why?) $\mathsf{E}_0 \left[W_s^2 \right] = s$.

To calculate first term on r.h.s. of (9) a version of the conditional expectation identity implies

$$\begin{array}{lcl} \mathsf{E}_{0} \left[\left(\, W_{t+s} - \, W_{s} \right) \, \, W_{s} \right] & = & \mathsf{E}_{0} \left[\, \mathsf{E}_{s} \left[\left(\, W_{t+s} - \, W_{s} \right) \, W_{s} \right] \right] \\ & = & \mathsf{E}_{0} \left[\, W_{s} \, \mathsf{E}_{s} \left[\left(\, W_{t+s} - \, W_{s} \right) \right] \right] \\ & = & \mathsf{E}_{0} \left[\, W_{s} \, 0 \right] \\ & = & 0. \end{array}$$

Therefore obtain $E_0[W_{t+s}W_s] = s$.

Financial Engineering & Risk Management Geometric Brownian Motion

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

Geometric Brownian Motion

Definition. We say that a random process, X_t , is a geometric Brownian motion (GBM) if for all $t \geq 0$

$$X_t = e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t}$$

where W_t is a standard Brownian motion.

We call μ the drift, σ the volatility and write $X_t \sim \mathsf{GBM}(\mu, \sigma)$.

Note that

$$X_{t+s} = X_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)(t+s) + \sigma W_{t+s}}$$

$$= X_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t + \left(\mu - \frac{\sigma^2}{2}\right)s + \sigma(W_{t+s} - W_t)}$$

$$= X_t e^{\left(\mu - \frac{\sigma^2}{2}\right)s + \sigma(W_{t+s} - W_t)}$$
(10)

a representation that is very useful for simulating security prices.

Geometric Brownian Motion

Question: Suppose $X_t \sim \mathsf{GBM}(\mu, \sigma)$. What is $\mathsf{E}_t[X_{t+s}]$?

Answer: From (10) we have

$$\mathsf{E}_{t}[X_{t+s}] = \mathsf{E}_{t} \left[X_{t} e^{\left(\mu - \frac{\sigma^{2}}{2}\right)s + \sigma(W_{t+s} - W_{t})} \right] \\
= X_{t} e^{\left(\mu - \frac{\sigma^{2}}{2}\right)s} \mathsf{E}_{t} \left[e^{\sigma(W_{t+s} - W_{t})} \right] \\
= X_{t} e^{\left(\mu - \frac{\sigma^{2}}{2}\right)s} e^{\frac{\sigma^{2}}{2}s} \\
= e^{\mu s} X_{t}$$

– so the expected growth rate of X_t is μ .

Sample Paths of Geometric Brownian Motion

Geometric Brownian Motion

The following properties of GBM follow immediately from the definition of BM:

- 1. Fix t_1, t_2, \ldots, t_n . Then $\frac{X_{t_2}}{X_{t_1}}, \frac{X_{t_3}}{X_{t_2}}, \ldots, \frac{X_{t_{n-1}}}{X_{t_{n-1}}}$ are mutually independent.
- 2. Paths of X_t are continuous as a function of t, i.e., they do not jump.
- 3. For s > 0, $\log\left(\frac{X_{t+s}}{X_t}\right) \sim \mathsf{N}\left((\mu \frac{\sigma^2}{2})s, \ \sigma^2 s\right)$.

Modeling Stock Prices as GBM

Suppose $X_t \sim \mathsf{GBM}(\mu, \sigma)$. Then clear that:

- 1. If $X_t > 0$, then X_{t+s} is always positive for any s > 0.
 - so limited liability of stock price is not violated.
- 2. The distribution of X_{t+s}/X_t only depends on s and not on X_t

These properties suggest that GBM might be a reasonable model for stock prices.

Indeed it is the underlying model for the famous Black-Scholes option formula.