1. Iris 데이터셋을 활용해 클래스별 변수 평균 차이를 검정

3. Species별 petal length 분포

4. 정규성검정

귀무가설(H_0): 각 species의 Petal Length는 정규분포를 따른다. 대립가설(H_1): 각 species의 Petal Length는 정규분포를 따르지 않는다.

setosa: p-value = 0.0548

귀무가설(H₀) 채택, p-value가 유의수준 0.05보다 크기 때문에 setosa의 Petal Length가 정규분포를 따른다고 볼 수 있다.

versicolor: p-value = 0.1585

귀무가설(H₀) 채택, p-value가 유의수준 0.05보다 크기 때문에 versicolor의 Petal Length가 정규분포를 따른다고 볼 수 있다.

virginica: p-value = 0.1098

귀무가설(H₀) 채택, p-value가 유의수준 0.05보다 크기 때문에 virginica의 Petal Length가 정규분포를 따른다고 볼 수 있다.

5. 등분산성 검정

귀무가설(H₀): 세 species의 Petal Length 분산은 모두 같다. 대립가설(H₁): 적어도 한 species의 Petal Length 분산이 다르다.

Levene 등분산성 검정 p-value = 3.1287566394085344e-08

귀무가설(Η₀) 기각, p-value가 유의수준 0.05보다 작기 때문에 등 분산성을 만족한다고 보기 어렵다.

6. 가설 수립

귀무가설(H₀): 3개 species의 평균 petal_length는 모두 같다. 대립가설(H₁): 적어도 한 species의 평균 petal_length는 다르다.

7. ANOVA

	sum_sq	df	F	PR(>F)		
C(species)	437.1028	2.0	1180.161182	2.856777e-91		
Residual	27.2226	147.0	NaN	NaN		
ANOVA p-value: 2.8568e-91						
귀무가설(He)	기각: 3개 종	의 평균이	통계적으로 유의미	하게 다르다.		

8. 사후검정

Multiple Comparison of Means - Tukey HSD, FWER=0.05						
group1	group2	meandiff	p-adj	lower	upper	reject
setosa	versicolor	2.798	0.0	2.5942	3.0018	True
setosa versicolor	virginica virginica	4.09 1.292		3.8862 1.0882		True True

9. 결과 요약

다.

Shapiro-Wilk 검정 결과, 세 집단(setosa, versicolor, virginica)의 Petal Length는 모두 정규성을 만족하였다(p > 0.05). 반면, Levene 검정을 통해 등분산성이 통계적으로 유의하게 성립하지 않음(p < 0.05).

이러한 조건 하에 수행된 ANOVA 결과, 세 집단 간 평균 Petal Length 에 유의한 차이가 있다.

사후검정으로 수행한 Tukey의 HSD 결과, 각 집단 간 쌍 비교 모두에서 통계적으로 유의한 차이가 존재하였다으며, 세 집단의 평균 Petal Length는 virginica > versicolor > setosa 순으로, virginica가 가

장 길고 setosa가 가장 짧았다. 이와 같은 결과는 시각화된 Boxplot 및 Tukey HSD 결과와 일관된 양 상을 보이며, 세 품종 간의 명확한 형태적 차이를 통계적으로도 뒷받침한

2. 실제 신용카드 사기 데이터셋을 활용해 클래스 불균형 상황에서 분류 모델을 학습

1. 데이터 로드 및 기본 탐색

2. 샘플링

```
Class
0 10000
1 492
Name: count, dtype: int64
Class
0 95.310713
1 4.689287
Name: proportion, dtype: float64
```

4. 학습 데이터와 테스트 데이터 분할

```
Train set class distribution:
Class
0 7999
1 394
Name: count, dtype: int64
Class
0 95.305612
1 4.694388
Name: proportion, dtype: float64
Test set class distribution:
Class
0 2001
1 98
Name: count, dtype: int64
Class
0 95.33111
1 4.66889
Name: proportion, dtype: float64
```

5 SMOTE 적용

Before SMOTE:					
Class					
0	7999				
1	394				
Name:	count,	dtype:	int64		
After	SMOTE:				
Class					
1 7	7999				
0	7999				
Name:	count,	dtype:	int64		

SMOTE 적용의 근거

SMOTE를 적용하는 이유는, 현재 학습데이터에서 사기거래의수가 현저히 적기 때문입니다. 이처럼 클래스 간 불균형이 심한데이터를 그대로 학습에 적용하면, 모델은 대부분의 경우를 정상거래오 예측하게 되기 때문에, 실제로 중요한 사기 거래를 제대로탐지하지 못하는 문제가 발생합니다. SMOTE를 활용하여 기존 의 사기 거래 데이터와 유사한 새로운 가상의 데이터를 생성함으로써 이러한 문제점을 해결할 수 있습니다.

6. 모델 학습

=== Classification Report ===						
pro	ecision	recall	f1-score	support		
0	1.00	0.99	0.99	2001		
1	0.81	0.93	0.86	98		
accuracy			0.99	2099		
macro avg	0.90	0.96	0.93	2099		
weighted avg	0.99	0.99	0.99	2099		
200						
=== PR-AUC (Precision-Recall AUC) ===						
0.9534699504261935						

7. 최종 성능 평가

데이터 셋이 범주형 자료이며 SMOTE를 활용하여 범주간의 데이터 개수의 차이를 맞추어 주었기에 가장 기본이 되는 로지스틱 회귀를 모델로 선정하였습니다.

테스트셋 기준으로 Recall(0.93), PR-AUC(0.95)는 달성하였지만 F1-score(0.86)으로 달성하지 못하였습니다. 하지만 전체적으로 모 델은 사기 거래를 잘 탐지하고 있으며 우수한 성능을 보였습니다. 목표 한 F1-score를 높이기 위해서는 예측 확률을 threshold 조정해주는 방법이 있습니다.