平成22年度 日本留学試験(第2回)

試験問題

平成22年度(2010年度)日本留学試験

理科

(80分)

【物理・化学・生物】

- ※ 3科目の中から、2科目を選んで解答してください。
- ※ 1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 3. 各科目の問題は、以下のページにあります。

科目	ページ			
物理	1	~	21	
化学	23	~	32	
生物	33	~	45	

- 4. 足りないページがあったら手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもいいです。

Ⅲ 解答用紙に関する注意

- 1. 解答は、解答用紙に鉛筆 (HB) で記入してください。
- 2. 各問題には、その解答を記入する行の番号 **1**, **2**, **3**…がついています。解答は、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受	験番	号		*			*			
名	Ī	前								

物理

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「物理」を解答する場合は、右のように、解答用紙の左上にある「解答科目」の「物理」を○で囲み、その下のマーク欄をマークしてください。

<解答用紙記入例>
解答科目 Subject
物理 化 学 生 物 Physics Chemistry Biology
● ○ ○

科目が正しくマークされていないと、採点されません。

 $oxed{I}$ $2 \sim 8$ ページの問い $oxed{A}$ (問 1), $oxed{B}$ (問 2), $oxed{C}$ (問 3), $oxed{D}$ (問 4), $oxed{E}$ (問 5), $oxed{F}$ (問 6), $oxed{G}$ (問 7) に答えなさい。ただし,重力加速度(acceleration due to gravity)の大きさを g とし、空気の抵抗は無視できるものとする。

理科一2

A 国際単位系 (SI) では,長さ [m],質量 [kg],時間 [s],電流 [A] が基本単位の一部 として使われている。

問1 エネルギーと電圧の単位を、これらの基本単位の組み合わせで表すとどうなるか。 正しいものを、次の①~⑥の中から一つ選びなさい。 **1**

	エネルギー	電圧
1	[m·kg·s ⁻²]	$[m^2 \cdot kg \cdot s^{-1} \cdot A^{-1}]$
2	$[m^2 \cdot kg \cdot s^{-2}]$	$[m^2 \cdot kg \cdot s^{-1} \cdot A^{-1}]$
3	[m·kg·s ⁻²]	$[m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}]$
4	$[m^2 \cdot kg \cdot s^{-2}]$	$[m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}]$
(5)	[m·kg·s ⁻²]	$[m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}]$
6	$[m^2 \cdot kg \cdot s^{-2}]$	$[m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}]$

 ${f B}$ 次の図のように、小物体 ${f A}$ がなめらかな水平面上を一定の速さで運動している。 ${f A}$ は時刻 t=0 に、なめらかな面上から粗い面上に入った。

問2 A の運動エネルギー K の時間変化を表すグラフとして、最も適当なものを、次の $\mathbb{1}$ \sim $\mathbb{4}$ の中から一つ選びなさい。

理科一4

 $oldsymbol{C}$ 次の図は、平面内を運動している物体Aの軌道、ある時刻におけるAの位置 P_1 と速度ベクトル $\overrightarrow{v_1}$ 、および短い時間 Δt 後の位置 P_2 と速度ベクトル $\overrightarrow{v_2}$ を表している。

問3 P_1 の位置で、A の速度を変化させる原因となる力の向きを \Longrightarrow で表すとどうなるか。最も適当なものを、次の① \sim ⑥の中から一つ選びなさい。

D 次の図のように、2本の同じ棒が点Qでつながれ、片方の棒が点Pで壁につながれ ている。それぞれの棒は鉛直 (vertical) 面内で、P、Qを中心に自由に回転できる。P とQ、Qと点Rの距離はℓである。それぞれの棒の重心は、POの中点、ORの中点に ある。右の棒のQから距離 d の位置に糸をつけて鉛直方向に支えたら2本の棒は水平 になってつり合った。

問4 $\frac{d}{\ell}$ はいくらか。正しいものを、次の①~⑤の中から一つ選びなさい。 4

- ① $\frac{1}{6}$ ② $\frac{1}{5}$ ③ $\frac{1}{4}$ ④ $\frac{1}{3}$ ⑤ $\frac{1}{2}$

理科一6

 \mathbf{E} 次の図1のように、水平な床の上でばねの一端を左側の壁に固定し、他端に小球を 取り付けた。ばねが自然長にあるとき、小球と右側の壁までの距離をdとする。次に、 図2のようにばねを自然長から2d縮め、静かに手をはなしたところ、小球はばねか ら離れることなく運動し、右側の壁に衝突してはねかえった。はねかえり係数 ϵe と し、床との摩擦は無視できるものとする。

問5 小球がはねかえった後で、ばねが最も縮んだとき、ばねは自然長からどれくらい縮 んでいるか。正しいものを、次の①~④の中から一つ選びなさい。 5

- (1) $\sqrt{3} ed$
- (2) 2ed
- (3) $\sqrt{1+e^2}d$ (4) $\sqrt{1+3e^2}d$

F 次の図のように、小物体が傾斜角hetaの斜面上を高さhの位置から初速度0ですべり 下りる時間 t_1 と、同じ高さ h から初速度 0 で自由落下する時間 t_2 を比較する。小物 体と斜面との摩擦はないものとする。

問6 $\frac{t_1}{t_2}$ はいくらか。正しいものを、次の①~⑦の中から一つ選びなさい。 6

- ① $\frac{1}{\sqrt{\sin \theta}}$ ② $\frac{1}{\sin \theta}$ ③ $\frac{1}{\sin^2 \theta}$

理科一8

G 次の図は、水平に置かれた円板を上から見た図である。円板には中心〇を通る直線 状の溝 (trench) があり、その中に、ばね定数 k、自然長 ℓ_0 の軽いばねが置かれてい る。ばねの一端はOに固定され、他端には質量mの小球が取り付けられている。ば ねは溝に沿って伸び縮みし、小球も溝に沿ってなめらかに運動できる。この円板が一 定の角速度ωでΟを中心として図の向きに回転しているとき、小球は円板に対して 静止していた。

問7 このときのばねの長さはいくらか。正しいものを、次の①~⑥の中から一つ選びな 7 さい。

- ① $\frac{k\ell_0}{m\omega^2}$ ② $\frac{m\ell_0\omega^2}{k}$ ③ $\frac{k\ell_0}{k+m\omega^2}$

- $\textcircled{4} \quad \frac{(k+m\omega^2)\ell_0}{k} \qquad \textcircled{5} \quad \frac{k\ell_0}{k-m\omega^2} \qquad \textcircled{6} \quad \frac{(k-m\omega^2)\ell_0}{k}$

- II 次の問いA(問1), B(問2), C(問3)に答えなさい。
 - **A** 70°C, 400 g の水に 0°C の氷を入れたところ, 氷は全部融けて, 全体が 50°C の水となった。氷の融解熱 (heat of fusion) を 3.3 × 10² J/g, 水の比熱 (specific heat) を 4.2 J/(g·K) とする。熱は外部に逃げないものとする。

問1 入れた氷は何gか。最も適当な値を、次の① \sim ④の中から一つ選びなさい。 $\boxed{\bf 8}$ g

- ① 31
- ② 51
- **③** 62
- $4 1.0 \times 10^2$

B 次の図は、単原子分子理想気体(monatomic ideal gas)の状態変化 A→B を表して いる。横軸は絶対温度 T,縦軸は体積 V である。状態 A での気体の絶対温度は T_0 ,体 積は V_0 ,圧力は p_0 であり,状態Bでの絶対温度は $\frac{3}{2}T_0$,体積は $\frac{3}{2}V_0$ であった。

- 過程A→Bにおいて, 気体に与えられた熱量はいくらか。正しいものを, 次の①~④ 問2 9 の中から一つ選びなさい。

- ① $\frac{3}{4}p_0V_0$ ② $\frac{5}{4}p_0V_0$ ③ $\frac{9}{4}p_0V_0$ ④ $\frac{15}{4}p_0V_0$

 \mathbf{C} 次の図のように、熱を伝えない硬い材質で作られた容器 A(容積 V_{A})と薄くて硬 い材質で作られた容器 B (容積 $V_{\rm R}$) がある。B は A の中に入れられている。A. B の 中には同じ温度の同じ理想気体 (ideal gas) が入っている。A の中の圧力は p_{Δ} , B の *栓は閉じられていて中の圧力はppである。Bの厚さと栓の体積は無視できるものと する。

Bの栓を開けてじゅうぶん時間がたったとき、気体の圧力はいくらになるか。正し 問3 10 いものを、次の①~⑥の中から一つ選びなさい。

①
$$p_{\rm A} + p_{\rm B} \frac{V_{\rm B}}{V_{\rm A}}$$

①
$$p_A + p_B \frac{V_B}{V_A}$$
 ② $p_B + p_A \frac{V_A}{V_B}$ ③ $p_A + (p_B - p_A) \frac{V_B}{V_A}$

$$\textcircled{4} p_{\mathrm{B}} + (p_{\mathrm{A}} - p_{\mathrm{B}}) \frac{V_{\mathrm{A}}}{V_{\mathrm{B}}}$$

$$\textcircled{4} p_{\rm B} + (p_{\rm A} - p_{\rm B}) \frac{V_{\rm A}}{V_{\rm B}}$$
 $\textcircled{5} \frac{1}{V_{\rm A} + V_{\rm B}} (p_{\rm A} V_{\rm A} + p_{\rm B} V_{\rm B})$ $\textcircled{6} p_{\rm A} \frac{V_{\rm A}}{V_{\rm B}} + p_{\rm B} \frac{V_{\rm B}}{V_{\rm A}}$

理科-12

| Yの問いA(問1), B(問2), C(問3)に答えなさい。

 ${f A}$ x 軸上を進む正弦波形 (sinusoidal wave) をした進行波を考える。図 1 は、時刻 t=0 のときの進行波の波形を表している。図 1 に示した x 軸上の点 ${f A}$ での変位 (displacement) を時間 t の関数として表したものが図 2 である。図 1 では 1 つの目盛りが長さ a,図 2 では 1 つの目盛りが時間 b である。

問1 この波はx軸上の正の向きに進んでいるか、負の向きに進んでいるか。また、その速さはいくらか。正しい組み合わせを、次の \mathbb{I} へ \mathbb{I} の中から一つ選びなさい。 \mathbb{I} 1

	進む向き	速さ
1	正	$\frac{a}{2b}$
2	負	$\frac{a}{2b}$
3	正	$\frac{a}{b}$
4	負	$\frac{a}{b}$
(5)	正	$\frac{2a}{b}$
6	負	$\frac{2a}{b}$

B 次の図1のように、音源 (sound source) からの音を両端が開いている円筒に向け、共鳴する振動数を調べたところ、低い方から3番目に共鳴した振動数が840 Hz であった。

問2 図2のように、音源から遠い方の円筒の端を閉じて、同様の実験を行うとき、低い方から3番目に共鳴する振動数は何 Hz か。最も適当な値を、以下の①~④の中から一つ選びなさい。ただし、開口端の補正 (open end correction) は無視できるものとする。

C 屈折率 (refractive index) 1.73 ($=\sqrt{3}$) のガラスでできた直角三角柱がある。その 頂角は 30° と 60° である。次の図のように、この直角三角柱の点 P に、底面に平行な 面内で単色の光線を入射角 60° で入射させた。

問3 光線の経路として最も適当なものを、次の①~④の中から一つ選びなさい。 13

IV 次の問いA(問1, 問2), B(問3), C(問4), D(問5), E(問6)に答えなさい。

A 次の図のように、xy 平面上の点 (a,0) に電気量 +Q の正の電荷、点 (0,a) に電気量 -Q の負の電荷を置いた。さらに、点P(a,a) からの距離が $\sqrt{2}a$ のある点A に電気量 qをもった正の電荷を置いたところ、Pでの電場が0になった。

14 A はどこか。正しい座標を、次の①~④の中から一つ選びなさい。

- (1) (0,0) (2) (0,2a) (3) (2a,2a) (4) (2a.0)

15 q はいくらか。正しいものを,次の①~⑤の中から一つ選びなさい。 問 2

(1) Q (2) $\sqrt{2}Q$ (3) 2Q (4) $2\sqrt{2}Q$

B 次の図1のような、極板の面積がSで、極板間の距離がdの平行平板コンデンサー (parallel plate capacitor) がある。このコンデンサーの極板間に、面積 $\frac{S}{2}$ 、厚さ $\frac{d}{2}$ の 導体板を図2のように、極板に平行に挿入した。

- 問3 導体板を挿入したコンデンサーの電気容量は、挿入前の電気容量に比べて何倍になったか。最も適当なものを、次の①~④の中から一つ選びなさい。 **16** 倍
 - ① $\frac{3}{4}$
- ② $\frac{3}{2}$
- 3 2
- 4) 3

 \mathbf{C} 同じ電池2個と同じ抵抗4個を使用して、図1と図2の2つの回路を組み立てた。

問4 図2の回路中での全抵抗の消費電力は、図1で1個の抵抗が消費する電力の何倍か。 正しいものを、次の①~⑥の中から一つ選びなさい。ただし、電池の内部抵抗は無視 17 倍 できるものとする。

- ① $\frac{4}{9}$ ② $\frac{3}{5}$ ③ $\frac{2}{3}$ ④ $\frac{3}{2}$ ⑤ $\frac{5}{3}$ ⑥ $\frac{9}{4}$

D 図1のように、鉄心に導線を巻いたコイルに交流電源とスイッチを接続した。鉄心の右端近くに銅の円環を糸でつり下げた。円環は左右に動くことができる。コイルおよび円環に流れる電流の向きは、図1の鉄心の左端の矢印の向きを正とする。円環の自己インダクタンス(self-inductance)は無視できるものとする。いま、スイッチを入れたところ、コイルには図2のような電流 I₁ が流れた。

問5 スイッチを入れた直後、円環は左右のどちらの向きに動くか。また、スイッチを入れた後、円環に流れる電流 I_2 は時間 t とともにどのように変化するか。円環が動く向きと、 I_2 の時間変化を表した次の図の最も適当な組み合わせを、右ページの① \sim 8の中から一つ選びなさい。

	円環が動く向き	電流の時間変化
1	右	(a)
2	左	(a)
3	右	(b)
4	左	(b)
(5)	右	(c)
6	左	(c)
7	右	(d)
8	左	(d)

f E 十分に長い2本の直線導線が平行に置かれ,同じ向きに電流Iが流れている。次の図のように,2本の導線を含む平面内で導線に垂直にx軸をとる。2本の導線から等距離にあるx軸上の点を原点Oとする。

問6 紙面の表から裏への向きを磁場の正の向きとするとき、電流がx軸上につくる磁場を表すグラフはどうなるか。最も適当なものを、次の① \sim ④の中から一つ選びなさい。

物理の問題はこれで終わりです。解答欄の **20** ~ **75** はマークしないでください。 解答用紙左上の科目欄に「物理」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。