Introduction

Présentation du problème

• On cherche à résoudre l'équation :

$$f(x) = 0$$

où f(x) est une fonction réelle à une variable réelle,

- On ne s'intéresse qu'aux racines réelles de l'équation,
- Utilisation d'algorithmes de recherche de racine (root finding),
- Dans un premier temps, on détermine un domaine D = [a; b] qui ne contient qu'une seule racine,
- Il est souhaitable voire nécessaire que la fonction f soit monotone sur le domaine D.

Introduction

Présentation du problème

Cas pour trois racines r_1 , r_2 et r_3 pour trois intervalles D_1 , D_2 et D_3 .

Principe

- On suppose que le domaine $D = [x_a; x_b]$ contient une et une seule racine r; on pose $x_1 = x_a$ et $x_2 = x_b$,
- On a $f(x_1) \times f(x_2) < 0$ On teste le signe de $S = f(x_1) \times f(x_3)$. Si S < 0 alors x_1 prend la valeur de x_3 et x_2 reste inchangé sinon, x_2 prend la valeur de x_3 et x_1 reste inchangé,
- Itérations successives jusqu'à ce que les valeurs de x_1 et x_2 soient suffisament proches au regard de la précision ε demandée pour l'évaluation numérique de r:

$$r\simeq\frac{1}{2}\left(x_1+x_2\right)$$

pour

$$|x_1-x_2|<2\varepsilon$$

Principe

- Méthode sûre : on trouve toujours la solution,
- Lente : nombre d'itérations importante avant de converger vers la racine à la précision souhaitée.

Principe

- Méthode valable lorsqu'on est capable de déterminer la dérivée f' de la fonction f dans le domaine $D = [x_a; x_b]$,
- Développement de Taylor de la fonction f autour d'une valeur
 x pas trop éloignée de la racine r :

$$f(r) = f(x) + f'(x)(x - r) + \cdots$$

On cherche :

$$f(r) = 0$$

d'où au premier ordre du développement de Taylor :

$$r \simeq x - \frac{f(x)}{f'(x)}$$

Principe

- Pour une valeur x₀ donnée, supposée proche de r, il est possible de trouver une valeur x₁ plus proche de r que ne l'est x₀,
- On réitère la procédure plusieurs fois :

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$\vdots \qquad \vdots$$

$$x_{n} = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

• Itérations successives au bout de n itérations lorsque :

$$|x_n-x_{n-1}|<\frac{\varepsilon}{10}$$

Cas délicats

- Il existe des cas où la différence $x_n x_{n-1}$ devient inférieure à la précision souhaitée ε alors que $x_n \neq r$ à ε près.
- Conduit à des résultats erronés,
- Illustration :

Cas délicats : conclusion

- Existence de points d'inflexion (termes de dérivée seconde): mise en défaut de la méthode (convergence basée sur un DL au premier ordre),
- Domaine avec fonction monotone : condition non suffisante,
- Solution : réduire la recherche de racine à un domaine plus limité sans points d'inflexion.

Cas délicats : autre type de problème

- Ne jamais laisser l'algorithme « sortir » du domaine initial,
- Illustration :

Conclusion

- Convergence de la méthode non garantie,
- Possibilité de résultat biaisé,
- Précautions nécessaires : choix du domaine de recherche, de la valeur initiale,
- Méthode rapidement convergente.

Principe

- Similaire à la méthode de Newton dans le cas où l'on ne connaît pas la dérivée f'(x),
- Elle opère un encadrement de la racine comme pour la dichotomie,
- Une estimation de la dérivée est évaluée en utilisant une méthode de dérivation numérique à partir de deux abscisses x₀ et x₁ encadrant la racine r,
- Intersection x_3 de la corde M_0M_1 avec 0x, où $M_0\equiv (x_0,f(x_0))$ et $M_1\equiv (x_1,f(x_1))$,
- Itérations jusqu'à convergence vers une précision souhaitée.

Exemple

Comparaison de trois méthodes

• Equation :

$$sin(x) = 0$$

avec
$$x \in \left[\frac{\pi}{2}; 3\frac{\pi}{2}\right]$$
,

- Solution analytique connue : $x_r = \pi$,
- Evolution de la précision avec laquelle est évaluée la racine en fonction du nombre n d'itérations pour chaque algorithme,

Exemple

Conclusion

Différentes méthodes

- Importance du choix de l'intervalle initial,
- Performances :
 - Dichotomie : sure et lente,
 - Newton, Lagrange : rapide, précautions d'utilisation,
- Méthode de dérivation numérique combinée avec recherche de racine : algorithme de recherche d'extrema de fonction.