Lecture 6 **outline**, Wednesday, 2/8

Prof. Yaron Singer

Spring 2017

1 Overview

Definition. A non-negative random variable X has a **power law distribution** if there exist constants $c, \alpha > 0$ s.t.:

$$Pr(X \ge x) = c \cdot x^{-\alpha}.$$

In the case where X is a discrete random variable, then there exist constants $c', \alpha' > 0$ s.t.:

$$Pr(X = x) = c' \cdot x^{-\alpha'}.$$

2 Power-Laws in Graphs

- The **configuration model**: generating random graphs with arbitrarily degree distribution:
 - We are given a degree distribution (d_1, \dots, d_n) , indicating that node i has degree d_i .
 - For each $i \in \{1, ..., n\}$, create d_i "half-edges" exiting v_i .
 - Connect the half edges by choosing a matching uniformly at random, i.e., create disjoint pairs of half-edges uniformly at random.¹
- Generating a **power-law like** degree distribution on a *finite* graph:
 - The largest degree in a graph is Δ .
 - There is exactly one node with degree Δ .
 - Thus:

$$\Pr(X = \Delta) = c \cdot \Delta^{-\alpha} = \frac{1}{n}$$

and we get that $\Delta = (c \cdot n)^{1/\alpha}$.

3 The Rich Get Richer Model

- Nodes arrive in order $1, \ldots, n$;
- When node j arrives it generates a link as follows:
 - With probability p, j connects to $i \in \{1, \dots, j-1\}$ uniformly at random;
 - With probability 1-p, j chooses $i \in \{1, \dots, j-1\}$ uniformly at random and connects to the node i connects to.

¹It is possible that we end up with self-loops though this is rare.