WS 17/18

Dr. W. Spann

F. Hänle, M. Oelker

9. Tutorium zur Linearen Algebra für Informatiker und Statistiker

- T33) Seien K ein Körper, V und W K-Vektorräume, $f:V\to W$ linear, $n\in\mathbb{N}$ und b_1,\ldots,b_n linear unabhängig in V. Zeigen Sie:
 - (a) $f(b_1), \ldots, f(b_n)$ Erzeugendensystem von $W \implies f$ surjektiv
 - (b) f injektiv $\implies f(b_1), \ldots, f(b_n)$ linear unabhängig in W

Sei K ein Körper, $m, n \in \mathbb{N}$, $A \in K^{m \times n}$. Folgern Sie aus (a) und (b):

- (c) rang $A = m \implies (\forall b \in K^m \exists x \in K^n : Ax = b)$
- (d) $\forall x \in K^n : (Ax = 0 \Rightarrow x = 0) \implies \operatorname{rang} A = n$
- T34) Gegeben sei der Untervektorraum von \mathbb{R}^4

$$U = \text{span}((-1, 2, 3, 2), (1, -1, 1, -3), (1, 1, 2, -7))$$
.

- (a) Liegt (-1, 3, 0, -1) in U?
- (b) Begründen Sie ohne Rechnung, dass es ein $b \in \mathbb{R}^4$ mit $b \notin U$ gibt.
- T35) Sei $n \in \mathbb{N}_0$, $\mathcal{P}_n := \{p : \mathbb{R} \to \mathbb{R}, p(x) = \sum_{k=0}^n a_k x^k, a_0, \dots, a_n \in \mathbb{R}\}$ (reelle Polynome vom Grad $\leq n$). Zeigen Sie:
 - (a) \mathcal{P}_n ist ein Untervektorraum des reellen Vektorraums Abb(\mathbb{R}, \mathbb{R}).
 - (b) Für $n \ge 1$ ist die Abbildung $\psi : \mathcal{P}_n \to \mathcal{P}_{n-1}, \ \psi(p) = p'$ linear und surjektiv.
- T36) Sei K ein Körper, $m,n\in\mathbb{N},\,M\in K^{m\times n}.$ Zeigen Sie:
 - (a) Ist n > m und $M \in K^{m \times n}$, dann besitzt das homogene Gleichungsystem Mx = 0 eine nichttriviale Lösung.
 - (b) rang $M = 1 \iff \exists a \in K^m \setminus \{0\}, b \in K^n \setminus \{0\} : M = ab^{\top}$