I claim:

- 1. Double universal joint for transmitting uniform rotary motion from an input end-shaft to an output end-shaft having shaft axes intersecting with each other at a variable angle, comprising:
 - the two end-shafts,
 - the middle-shaft,
 - an input intermediate element being connected pivotally
- with the one end of said middle-shaft having input middle cross-axis intersecting perpendicularly the middle-shaft axis and
- with said input end-shaft having end cross-axis intersecting perpendicularly the input end-shaft axis,
 - an output intermediate element being connected pivotally
- with the other end of said middle-shaft having output middle cross-axis intersecting perpendicularly the middle shaft axis and
- with said output end-shaft having end cross-axis intersecting perpendicularly the output end-shaft axis,

each two cross-axes intersecting perpendicularly with each other,

- two input-swingers, rotatably mounted at one end of said middleshaft about said input middle cross-axis,
- means for angle couppling of said two input swingers with the end of said input end-shafts, for turning of said two input-swingers at same direction about said input middle cross-axis when the input end-shaft is turning about said input middle cross-axis and for turning of said two input swingers at two opposite directions about said input middle cross-axis when the input end-shaft is turning about the respective end cross-axis,
- two output-swingers, rotatably mounted at the other end of said middle-shaft about said output middle cross-axis,
- means for angle coupling of said two output-swingers with the end of said output end-shaft, for turning of said two output-swingers at same direction about said output middle cross-axis when the output end-shaft is turning about said output middle cross-axis and for turning of said two output swingers at two opposite directions about said output middle cross-axis when the output end-shaft is turning about the respective end cross-axis,
- means for parallel couppling of each input-swinger with the respective output-swinger located at the same side of the middle-shaft

axis, for symmetrically transmitting of each input end-shaft direction to the output end-shaft direction for transmitting of uniform motion.

- 2. Double universal joint for transmitting uniform rotary motion from an input end-shaft (1) to an output end-shaft (2) having shaft axes (40, 42) intersecting with each other at a variable angle, comprising:
 - the two end-shafts (1, 2),
 - the middle-shaft (3),
 - an input pivot-cross being connected pivotally
- with the one end of said middle-shaft (3) having input middle cross-axis (46) intersecting perpendicularly the middle-shaft axis (41) and
- with said input end-shaft (1) having end cross-axis (45) intersecting perpendicularly the input end-shaft axis (40),
 - an output pivot-cross being connected pivotally
- with the other end of said middle-shaft (3) having output middle cross-axis (48) intersecting perpendicularly the middle shaft axis (41) and
- with said output end-shaft (2) having end cross-axis (47)intersecting perpendicularly the output end-shaft axis (42), each two cross-axes (45, 46 and 47, 48) intersecting perpendicularly with each other,

- two input-swingers (26,27), rotatably mounted at one end of said middle-shaft (3) about said input middle cross-axis (46),
- bevel teeth (36, 37) mounted on each of said two input swingers (26, 27) and bevel teeth (34) mounted on each input end-shafts (1) being couppled with the bevel teeth of each input-swinger (26,27),

for turning of said two input-swingers (26, 27) at same direction about said input middle cross-axis (46) when the input end-shaft (1) is turning about said input middle cross-axis (46) and for turning of said two input swingers (26, 27)at two opposite directions about said input middle cross-axis (46) when the input end-shaft (1) is turning about the respective end cross-axis (46),

- two output-swingers (28, 29), rotatably mounted at the other end of said middle-shaft (3) about said output middle cross-axis (48),
- bevel teeth (38, 39) mounted on each of said two output-swingers (28, 29) and bevel teeth (35) mounted on each output end-shaft (2),

for turning of said two output-swingers (28, 29) at same direction about said output middle cross-axis (48) when the output end-shaft (2) is turning about said output middle cross-axis (48) and for turning of said two output swingers (28, 29) at two opposite directions about said output middle cross-axis (48)when the output end-shaft (2) is turning about the respective end cross-axis (48),

- parallel teeth couppling (30, 31 and 32, 33) of each input-swinger (26, 27)with the respective output-swinger (28, 29) located at the same side of the middle-shaft axis (41) for symmetrically transmitting of each input end-shaft direction to the output end-shaft direction for transmitting of uniform motion.