# Kaiju Classification Tutorial 9

Joshua Boisvert Trung Hoang Wenhan Tan

## **Existing Classifiers Problems**

- <u>Lack of sensitivity</u> of overcoming evolutionary divergence (Large fractions of metagenomic reads remain unclassified)
- <u>Slow computational methods</u> with increasing volumes of microbial genome databases
  - New classifiers like Kraken depend on k-mers but <u>only</u> works best for samples have been previously sequenced and stored in the reference database (Also <u>restricted</u> at <u>DNA level</u>)
- <u>Sampling bias</u> (human microbiomes are <u>over-represented</u> in data since they are primary targets for microbial researches)
- <u>Protein level</u> classification is slow but increases accuracy and is more tolerant to sequencing errors (Degeneracy of the genetic code)
  - New classifiers like BastP are slow and report all alignments to the reference database, which need to be analysed further for taxonomic classification

## What is Kaiju?

#### A <u>protein-level</u> metagenome classifier

- High sensitivity and precision
- Works with underrepresented genera in reference databases
- Uses Burrow-Wheeler transform (<u>BWT</u>, converts sequences into an easily searchable representation, which allows for exact string matching)
- Uses maximum exact matches (<u>MEMs</u>) and a lookup table of occurrence counts of each alphabet letter (<u>FM-index</u>, proposed by Ferragina and Manzini)
- Reads are assigned to a species or strain or to higher level nodes in the taxonomic tree
- Two modes: MEMs and Greedy (slower but larger search space)

## Why MEMs?

- K-mer-based methods lack sensitivity and a big fraction of reads might remain unclassified
- MEMs is on protein level instead of nucleotide level to increase sensitivity
- Generally, MEMs on protein level comparison result in more classified reads



## **Algorithm**

#### Sequencing Read



- Minimum required length m: 11
- Minimum required score s: 65
  - Because amino acid substitution in homologous sequences are non-uniform, speed-up can be gained by prioritizing the most likely substitutions with a total score called BLOSUM62

## Determine Minimum Required Length (Same for minimum required score)

- Shuffled the microbial subset of NCBI NR protein database and search for MEMs between simulated reads and shuffled database
- 95% of data have length <= 11, 75% of wrong classification and 2% of correct classification have length <= 11



### Demo

We perform both Greedy and Mem on 2 dataset:

- Refseq:
  - Completely assembled and annotated reference genomes of Archaea, Bacteria, and viruses from the NCBI RefSeq database.)
  - 50.9 M Sequences (31 GBs)
- Nr\_euk:
  - Subset of NCBI BLAST database containing all proteins belonging to Archaea, Bacteria, Viruses, fungi and microbial eukaryotes
  - 178 M Sequences (83 GBs)

=> 4 combinations.

Repo: <a href="https://github.com/trung-hn/kaiju-classification">https://github.com/trung-hn/kaiju-classification</a>

## Results

- Greedy mode showed significantly higher precision (number of reads classified)
   than MFM mode for both databases
- There is an obvious trade off here between the % of the dataset that can be classified and the runtime of the algorithm
- As Greedy allows for mismatches it took substantially longer (several hours) than MEM for both reference databases
- We used the 'kaiju2krona' and kaiju2table' scripts on the following github repository for visualization and analysis of the data, respectively:
   <a href="https://github.com/bioinformatics-centre/kaiju">https://github.com/bioinformatics-centre/kaiju</a>

## Analysis of Kaiju Results (nr\_euk db)

| Run Mode                                      | Greedy          | MEM             |
|-----------------------------------------------|-----------------|-----------------|
| % taxa group agreement with<br>other run mode | 97.46 %         | 96.24 %         |
| Average # of reads per taxa group             | 3176            | 2913            |
| % of taxa groups with more reads              | 30 %            | 70 %            |
| # of reads unclassified                       | 19630123 (63 %) | 20548576 (66 %) |

## Analysis of Kaiju Results (refseq db)

| Run Mode                                      | Greedy          | MEM             |
|-----------------------------------------------|-----------------|-----------------|
| % taxa group agreement with<br>other run mode | 100 %           | 100 %           |
| Average # of reads per taxa<br>group          | 6442            | 4924            |
| % of taxa groups with more reads              | 71 %            | 29 %            |
| # of reads unclassified                       | 23122332 (71 %) | 24984233 (81 %) |