ITAM Maestría en Ciencia de Datos Estadística Computacional

Ariana Judith López Coronel Denisse Aneth Martínez Mejorado Eduardo David Martínez Neri

Corrección del Sesgo mediante Bootstrap

La estimación del sesgo en bootstrap se plantea como

$$\sum_{i=1}^{B} \left(\widehat{\theta}_{i}^{*} - \theta \right) / B = \overline{\theta}^{*} - \widehat{\theta}$$

El bootstrap puede ser utilizado para reducir el sesgo de una muestra finita de un estimador.

Para ejemplificar, sea X un vector aleatorio y fijemos $\mu = E(X)$. Considerando que el valor verdadero de θ es $\theta_o = g(u)$, donde g es una función continua conocida. Suponga que los datos consisten en una muestra aleatoria $\{X_i: i=1,...,n\}$ de X. Definiendo el vector $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$.

Entonces θ es estimado consistentemente por

$$\theta_n = g\left(\overline{X}\right) \tag{1}$$

Si θ_n tienen una media finita, entonces $E(\theta_n) = E\left[g\left(\overline{X}\right)\right]$. Sin embargo, $E\left[g\left(\overline{X}\right)\right] \neq g(u)$ en general, a menos de que g sea una función lineal. Por lo tanto, $E(\theta_n) \neq \theta_o$ y θ_n es un estimador sesgado de θ . En particular, $E(\theta_n) \neq \theta_o$ si θ_n es cualquier variedad de máxima verosimilitud o estimadores por método generalizado de momentos.

Para observar cómo un *bootstrap* puede reducir el sesgo de θ_n , suponga que g es cuatro veces continuamente diferenciable en el vecindario de μ y que los componentes de X tienen 4 momentos absolutos finitos. Dejemos que G_1 muestre el vector de primeras derivadas de g y G_2 muestre la matriz de segundas derivadas. Una expansión de series de Taylor agregada a la ecuación (1) sobre $\overline{X} = \mu$ da

$$\theta_n - \theta_o = G_1(u)' \left(\overline{X} - \mu \right) + \frac{1}{2} \left(\overline{X} - \mu \right)' G_2(u) \left(\overline{X} - \mu \right) + R_n$$
 (2)

donde R_n es el término remanente que satisface $E(R_n) = O(n^{-2})$. Por lo tanto, sacando la esperanza en ambos lados de la ecuación (2) obtenemos

$$E(\theta_n - \theta_o) = \frac{1}{2} E\left[\left(\overline{X} - \mu\right)' G_2(u) \left(\overline{X} - \mu\right)\right] + O\left(n^{-2}\right)$$
(3)

El primer elemento del lado derecho de la ecuación (3) tiene tamaño $O(n^{-1})^1$. Por lo que a través de $O(n^{-1})$ el sesgo de θ_n es

$$B_n = \frac{1}{2} E \left[\left(\overline{X} - \mu \right)' G_2(u) \left(\overline{X} - \mu \right) \right] \tag{4}$$

Ahora consideremos el bootstrap. El bootstrap muestrea la distribución empírica de los datos. Sea $\{X_i^*: i=1,...,n\}$ una muestra bootstrap que es obtenida de esta manera. Definiendo $\overline{X}^*=n^{-1}\sum\limits_{i=1}^n X_i^*$ como el vector de medias de la muestra bootstrap. El estimador bootstrap de θ es $\theta_n^*=g\left(\overline{X}^*\right)$. Condicional en los datos, la verdadera media de una distribución muestreada por bootstrap es \overline{X} . Por lo tanto, \overline{X} es el bootstrap análogo de θ_0 . El bootstrap análogo de la ecuación (2) es

$$\theta_n^* - \theta_n = G_1(\overline{X})'(\overline{X}^* - \overline{X}) + \frac{1}{2}(\overline{X}^* - \overline{X})'G_2(\overline{X})(\overline{X}^* - \overline{X}) + R_n^*$$
(5)

donde R^*_n es el término remanente del bootstrap. Sea E^* la esperanza bajo la muestra bootstrap, esto es, la esperanza relativa a la distribución empírica de los datos estimación. Sea $B_n^* \equiv E^*(\theta_n^* - \theta_n)$ el sesgo de θ_n^* como un estimador de θ_n . Calculando la esperanza E^* en los dos lados de la ecuación (5) se muestra que

$$B_{n} = \frac{1}{2} E^{*} \left[\left(\overline{X}^{*} - \overline{X} \right)' G_{2} \left(\overline{X} \right) \left(\overline{X}^{*} - \overline{X} \right) \right] + O\left(n^{-2} \right)$$
 (6)

Debido a que la distribución muestreada por bootstrap es conocida, B_n^* puede ser calculada con precisión arbitraria por una simulación Monte Carlo. Así, B_n^* es un estimador factible del sesgo de θ_n

Comparando las ecuaciones (4) y (6), se puede observar que las únicas diferencias entre B_n y el término principal de B_n^* es que \overline{X} reemplaza a μ en B_n^* y la esperanza empírica de E^* , reemplaza la esperanza de la población, E. Más aún, $E(B_n^*) = B_n + O\left(n^{-2}\right)$. Por lo tanto, a través de $O\left(n^{-1}\right)$, el uso de la estimación de sesgo bootstrap B_n^* provee la misma reducción del sesgo en la población que sería obtenido si utilizaramos B_n . Esta es la fuente de la habilidad del bootstrap para reducir el sesgo de θ_n . El estimador con sesgo corregido resultante de θ es $\theta_n - B_n^*$. Este satisface $E\left(\theta_n - \theta_o - B_n^*\right) = O\left(n^{-2}\right)$. Por tanto, el sesgo del estimador con sesgo corregido es $O\left(n^{-2}\right)$, mientras que el sesgo del estimador no corregido θ_n es $O\left(n^{-1}\right)$.

Se procedió a generar el siguiente ejercicio tomado de referencia: "Chapter 52: The Bootstrap" página 3,174 (http://www.unc.edu/~saraswat/teaching/econ870/fall11/JH_01.pdf):

Suponga $X \sim N(0,6)$ y n = 1,000. Suponga $g(\mu) = exp(\mu)$. Entonces $\theta_o = 1$ y $\theta_n = exp(\overline{X})$. B_n y el sesgo de $\theta_n - B_n^*$ se estima mediante el siguiente procedimiento Monte Carlo:

_

¹ el error en la aproximación del bootstrap a una distribución simétrica. Las aproximaciones asintóticas de primer orden a las distribuciones muestrales finitas de estadísticas chi cuadrada asintótica, típicamente genera errores de tamaño On^-1.

- 1) Se genera un set de datos para estimación de tamaño n muestreando de la distribución N(0,6). Se usan estos datos para calcular θ_n .
- 2) Para estimar B_n^* mediante Bootstrap Monte Carlo:
 - a) Se estima θ_n .
 - b) Se generan muestras bootstrap de tamaño n muestreando con reemplazo del set de datos. Se estima $\theta_n^* = g(\overline{X}^*)$.
 - c) Se estima $E^*\theta_n^*$ promediando los resultados de varias repeticiones del paso b. Obtenemos $B_n^* = E^*\theta_n^* \theta_n$.
- 3) Se estima $E(\theta_n \theta_o)$ y $E(\theta_n B_n^* \theta_o)$ promediando los resultados de varias repeticiones de los pasos 1 y 2. Se estiman los errores cuadráticos medios de θ_n y $\theta_n B_n^*$ a través de promediar los valores de $(\theta_n \theta_o)^2$ y $(\theta_n B_n^* \theta_o)^2$.

Ver ejercicio: https://eduardomtz.shinyapps.io/Bootstrap

Referencia:

http://www.unc.edu/~saraswat/teaching/econ870/fall11/JH 01.pdf