VAE- a basic introduction

In this article I'll cover the basis of VAE — its intuition and a simple formulation. Its full name is **Variational Auto-Encoder**, which comprises of two parts: **variational** and **auto-encoder**. In this article, the two terms will be talked about respectively and then be combined together as the probablistic model VAE.

What is autoencoder

The origin of autoencoder comes from a thought — if you can't generate it, you don't understand it. An autoencoder is such a generative model which takes datapoints $\{x_i\}_{i=1}^N$ as input, encodes it as a real-value vector z following a specific conditional distribution $q_\phi(z|x)$, decodes the hidden state z to regenerate a sample \hat{x} using another distribution $p_\theta(x|z)$. It is a generative model, which can be used to both z represent and z generate a sample.

What is variational inference

For most probablistic models the true distribution is very complex and intractable. Variational inference is such a tool to make an approximation of the true distribution with regards to new parameters.

I haven't read enough materials about it. This part will be completed after I read more papers about it.

Variational Auto-Encoder

VAE, by its name, is an auto-encoder that applies variational inference. Why do we need variational method to help construct an auto-encoder? Let's first look at the objectives of an auto-encoder.

As an auto-encoder, it is expected to carry out two missions:

- 1. efficient approximation of posterior inference p(z|x). This is for the recognition of a given sample x.
- 2. efficient approximation of marginal inference of the sample p(x). This is for the purpose of generation.

For the first mission, we first assign a distribution to the posterior, usually a Gaussian distribution $z|x\sim N(\mu_x,\sigma_xI)$. For z itself, we also have to assign a distribution, similarly $z\sim N(0,I)$. Finally for the reconstruction a distribution is also needed. Let's make it as $x|z\sim N(\mu_z,\sigma_zI)$. Notice that the parameters like μ_x,σ_z can be a complex composition of other parameters, so we can parameterize them with a complex neural model and a set of parameters. Formally we denote

 $q_{\phi}(z|x)$ as the encoder and $p_{\theta}(x|z)$ as the decoder.

We cannot give an analytical solution to the parameters as we have to integrate over a complex distribution. So what we can do is to set an objective function and update the parameters iteratively. Usually we use Maximum Likelihood Estimation(MLE) or Maximum A Posteriori(MAP). As the posteriori is not tractable here, we use MLE to carry out parameter estimation.

MLE formulation

We want to maximize the likelihood of sample datapoints seen in the dataset, namely p(X), where $X=\{x_i\}_{i=1}^N$. For each datapoint x ,

$$egin{aligned} \log p(x) &= \int q_\phi(z|x) \log p(x) dz \ &= \int q_\phi(z|x) \log rac{p(x,z)}{p(z|x)} dz \ &= \int q_\phi(z|x) \log [rac{p(x,z)}{q_\phi(z|x)} rac{q_\phi(z|x)}{p(z|x)}] dz \ &= KL(q_\phi(z|x) \mid\mid p(z|x)) \ + \ \int q_\phi(z|x) \log rac{p(x,z)}{q_\phi(z|x)} dz \end{aligned}$$

It is now seperated as two terms. The first term refers to the *quality* of the approximation of the posterior inference. As the KL divergence is always greater than or equal to 0, the rightmost term can be seen as a **lower bound** of the likelihood:

$$\log p(x) \geq \int q_\phi(z|x) \log rac{p(x,z)}{q_\phi(z|x)} dz$$

We denote it as L_b . L_b can be further decomposed as:

$$egin{aligned} L_b &= \int q_\phi(z|x) \log rac{p(x|z)p(z)}{q_\phi(z|x)} dz \ &= KL(q_\phi(z|x) \mid\mid z) \, + \, E_{z\sim q_\phi(z|x)}[\log p(x|z)] \end{aligned}$$

The first term measures the deviance between our approximation and the distribution of z (as hypothesized, N(0,I)). This can be used to control the **variance** of our approximation, in order to avoid simply "memorizing" all the datapoints. It could also be viewed as a regularizer to keep away from overfitting. Take the Gaussian distribution we hypothesized before, we can directly compute this term with basic integral knowledge:

$$\begin{split} KL(q_{\phi}(z|x) \mid\mid z) &= \int q_{\phi}(z|x) \log p(z) dz - \int q_{\phi}(z|x) \log q_{\phi}(z|x) dz \\ &= \int N(z; \mu_x, \sigma_x I) \log N(z; 0, I) dz - \int N(z; \mu_x, \sigma_x I) \log N(z; \mu_x, \sigma_x I) \\ &= -\frac{J}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^{J} ((\sigma_x^i)^2 + (\mu_x^i)^2) + \frac{J}{2} \log(2\pi) + \frac{1}{2} \sum_{i=1}^{J} (1 + \log(\sigma_x^i)^2) \\ &= \frac{1}{2} \sum_{i=1}^{J} (1 + \log((\sigma_x^i)^2) - (\mu_x^i)^2 - (\sigma_x^i)^2) \end{split}$$

The second term is not directly computable. We can use **Monte Carlo** mothod to estimate this term. First we have to sample z for l times according to its distribution $q_\phi(z|x)$. For this step we can use a differentiable transformation $g_\phi(\epsilon,x)$ to represent this sampling process. Recall that $z|x\sim N(\mu_x,\sigma_xI)$, we sample z as $z=\mu_x+\sigma_x\circ\epsilon$, where $\epsilon\sim N(0,I)$. For the computation of p(x|z) we parameterize it with a model called *decoder* and a set of parameters θ . Thus the second term is computed as:

$$E_{z\sim q_{\phi}(z|x)}[p(x|z)] = rac{1}{L}\sum_{i=1}^{L}\log p_{ heta}(x_i|\mu_x + \sigma_x\circ\epsilon_i),\; \epsilon_i\sim N(0,I)$$

Now we can iteratively update our parameters and increase L_b as it is differentiable under our approximation. In a commonsense, if we continuously increase the lower bound L_b , we'll get a better estimation of p(z|x), because p(x) is a constant and $KL(q_\phi(z|x)||p(z|x))$ will be decreasing.

However, it is not the most accurate depiction of the object. Remind this formulation:

$$\log p(x) = KL(q_\phi(z|x) \mid\mid p(z|x)) + L_b$$

When we compute p(x|z) above, we actually utilize an approximation of this distribution, and it is factorized from p(x). So, the $\log p(x)$ is actually $\log p_{\theta}(x)$, and it changes as we update θ .

In my understanding, the purpose of jointly update θ and ϕ with respect to L_b is to provide a greater **lower bound** of the likelihood $\log p(x)$. More specificly, $\log p_{\theta}(x)$ is an approximation of $\log p(x)$, so there must be a gap between them. To update θ is to minimize the gap between $\log p_{\theta}(x)$ and $\log p(x)$. To update ϕ is to provide a greater lower bound **under the approximation** $\log p_{\theta}(x)$. They two jointly lift up the global lower bound of $\log p(x)$.