Claims

5

10

15

1. A photoresist composition comprising a photoacid generator and at least one novel polymer comprising at least one unit as described by structure 1,

 $\begin{array}{c|c}
R_{1} \\
(X)_{m} \\
R_{f} - C - R_{2} \\
0 \\
0 \\
(R_{3} - C - R_{4})_{p} \\
C = 0 \\
0 \\
0 \\
R_{5}
\end{array}$ (1)

where, either

- (i) R_1 is an aliphatic cyclic unit of a polymer, R_2 is selected from H, F, (C_1 - C_8)alkyl, (C_1 - C_8)fluoroalkyl, cycloalkyl, cyclofluoroalkyl, and (CR_3R_4)p(CO)OR₅, and R_f is selected from F, H, (C_1 - C_8)alkyl, or a fully or partially fluorinated alkyl, and cyclofluoroalkyl, or
- (ii) R_1 and R_2 combine to form an aliphatic cyclic unit of a polymer, and R_f is selected from F, H, (C_1-C_8) alkyl and a fully or partially fluorinated alkyl, and cyclofluoroalkyl, or
- (ii) R_1 and R_f combine to form an aliphatic cyclic unit of a polymer, and R_2 is selected from H, F, (C_1-C_8) alkyl, (C_1-C_8) fluoroalkyl, cycloalkyl, cyclofluoroalkyl, and $(CR_3R_4)p(CO)OR_5$; and,

 R_3 and R_4 are independently H, F, (C_1-C_8) alkyl, (C_1-C_8) fluoroalkyl, cycloalkyl, cyclofluoroalkyl, $(CR_3R_4)p(CO)OR_5$, R_3 and R_4 may combine to form an alkylspirocyclic or a fluoroalkylspirocyclic group,

X is selected from (C_1-C_8) alkylene, (C_1-C_8) fluoroalkylene, $O(C_1-C_8)$ alkylene, $O(C_1-C_8)$ fluoroalkylene, cycloalkyl and fluorinatedcycloalkyl,

 R_5 is H or an acid labile group, m=0-1, and p=1-4.

25

2. The composition according to claim 1, where the polymer comprising the unit of structure 1 is a reaction product of polymer containing an aliphatic cyclic fluoroalcohol unit with a compound capable of functionalizing the fluoroalcohol unit with an alkyloxycarbonylalkyl group.

5

- 3. The composition according to claim 1, where the cyclic unit is an aliphatic multicyclic unit or an aliphatic monocyclic unit.
- 4. The composition according to claim 1, where the unit of structure 1 is selected from those derived from the following monomers,

where, in the above structures, R_1 - R_7 are independently H, F, (C1-C8)alkyl, (C1-C8)fluoroalkyl, and at least one of R_1 - R_6 forms the unit described in structure 1.

15 5. The composition according to claim 1, where the unit of structure 1 is selected from the group derived from the following monomers,

$$F_{3}C$$

$$CH_{2}$$

$$F_{3}C$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{4}$$

$$CH_{5}$$

$$C$$

6. The composition according to claim 1, where the aliphatic cyclic unit is a monocyclic unit.

5

10

7. The composition according to claim 1, where the polymer comprising the unit of structure 1 is a reaction product of polymer containing an aliphatic monocyclic fluoroalcohol unit with a compound capable of functionalizing the fluoroalcohol unit with an alkyloxycarbonylalkyl group, and further where the monocyclic fluoroalcohol polymer is selected from,

Rf is a fluoroalkyl group (C₁-C₈)

Y is independently alkyl or fluoroalkyl spacer group (C1-C8)

Ra, Rb, Rc, Rd, Re, Rg, Rh are independently alkyl, fluoroalkyl, fluorocycloalkyl, and Ra-Re and Rg can independently be substituted with alkyl, fluoroalkyl, cycloakyl, fluorocycloalkyl or with a spirofluoroalkyl or spiroalkyl subsituent

X is independently $\ensuremath{\mathsf{CF}}_2$ and $\ensuremath{\mathsf{O}}$

- 8. The composition of claim 2, where the alkyloxycarbonylalkyl group is selected from t-butyloxycarbonylmethyl, methyl-adamantyloxycarbonylmethyl, t-amyloxycarbonylmethyl, methyl-norbornyloxycarbonylmethyl, t-
- 5 butyloxycarbonylpropyl and t-butyloxycarbonyldifluorobutyl.

9. The composition of claim 1, where the acid labile group is selected from secondary and tertiary alkyls, acetals and ketals, trimethylsilyl, β-trimethylsilyl substituted alkyls, tetrahydrofuranyl, tetrahydropyranyl, substituted or unsubstituted methoxymethoxycarbonyl, and β-trialkylsilylalkyl.

5

10. The composition of claim 1, where the polymer comprises further units containing nonacid labile groups and/or acid labile groups.

10 |

- 11. The composition of claim 1, where the polymer is selected from poly(bicyclo[2.2.1]hept-5-en-2-yl)-1,1,1-trifluoro-2-(trifluoromethyl)propan-2-ol), poly(1,1,2,3,3-pentafluoro-4-trifluoromethyl-4-hydroxy-1,6-heptadiene and poly(1,1,2,3,3-pentafluoro-4-trifluoroalkyl-4-hydroxy-1,6-heptadiene).
- 12. The composition of claim 1, where the polymer comprises a mixture of

polymers comprising monocyclic units and polymers comprising multicyclic units.

13. The composition o

13. The composition of claim 12, where the polymer mixture is poly(bicyclo[2.2.1]hept-5-en-2-yl)-1,1,1-trifluoro-2-(trifluoromethyl)propan-2-ol) with poly(1,1,2,3,3-pentafluoro-4-trifluoromethyl-4-hydroxy-1,6-heptadiene).

20

15

14. The composition of claim 1, where the composition further comprises a dissolution inhibitor.

•

- 15. The composition of claim 1, where the composition further comprises a base or a photobase.

 - 16. The composition of claim 1, further comprising secondary polymers.
- 30 di
- 17. The composition of claim 1, where the photoacid generator is selected from diazonium salts, iodonium salts, sulfonium salts, triazines, oxazoles, oxadiazoles, thiazoles, substituted 2-pyrones, phenolic sulfonic esters and mixtures thereof.
 - 18. A process for imaging a photoresist composition comprising the steps of:

- a) forming on a substrate a photoresist coating from the photoresist composition of claim 1;
- b) image-wise exposing the photoresist coating;

5

10

20

- c) postexposure baking the photoresist coating; and
- d) developing the photoresist coating with an aqueous alkaline solution.
- 19. The process according to claim 18, where the image-wise exposure wavelength is below 200 nm.
- 20. The process according to claim 18, where the aqueous alkaline solution comprises tetramethylammonium hydroxide.
- 21. The process according to claim 18, where the aqueous alkaline solution further comprises a surfactant.
 - 22. A process for making the polymer of claim 1, where a polymer comprising an aliphatic cyclic fluoroalcohol unit is reacted with a compound capable of functionalizing the fluoroalcohol unit with an alkyloxycarbonylalkyl group, in the presence of a mixture comprising at least one organic base.
 - 23. The process of claim 22, where the organic base is selected from an ammonium base, a phosphonium base and a sulfonium base.
- 25 24. The process of claim 22, where the organic base is $(R_1')(R_2')(R_3')(R_4')NOH$, and wherein R_1', R_2', R_3' and R_4' are independently (C_1-C_{20}) alkyl.
 - 25. The process of claim 22, where the mixture further comprises a salt selected from an ammonium salt, phosphonioum salt and sulfonium salt.
 - 26. The process of claim 22, where the organic base is selected from tetramethyl ammonium hydroxide, tetrabutyl ammonium hydroxide and mixtures thereof.

- 26. The process of claim 22, where the cyclic unit is an aliphatic multicyclic unit or an aliphatic monocyclic unit.
- 27. The process of claim 22, where the alkyloxycarbonylalkyl group is selected from t-butyloxycarbonylmethyl, methyl-adamantyloxycarbonylmethyl, t-amyloxycarbonylmethyl, methyl-lnorbornyloxycarbonylmethyl, t-butyloxycarbonylpropyl and t-butyloxycarbonyldifluorobutyl.