파생금융상품론 7주차 과제

2018320161 송대선

2020년 11월 15일

예제1 (a))

$$S_0 = 37, T = 6/12, t = 2/12, r = 0.05, K = 40, P = 1$$
 $K = 40, P = 1$ $P < K$

$$K - S_0 = 3, P = 1$$

 $K - S_0 > P$
 $K > p + S_0$

 $S_0 < K$

따라서 차익거래 전략은

- 1. 기초자산 매수,
- 2. 풋옵션 매수,
- 3. *K*만큼 채권 차입,
- $4. K P S_0$ 만큼 채권 매수하는 전략이다.
- $S_0 < K$ 이므로, 풋옵션 매수와 동시에 행사를 하게 된다.

│ 전략	현재시점	$ S_0 < K$ 인 상태에서 풋옵션 행사
K만큼 채권 차입	K	-K
풋옵션 매수	-P	$K-S_0$
기초자산 매수	$-S_0$	S_0
$K-P-S_0$ 만큼 채권 매수	$-(K-P-S_0)$	$K-P-S_0$
합계	0	$K-P-S_0$

전략	현재시점	$S_0 < K$ 인 상태에서 풋옵션 행사
K만큼 채권 차입	40	-40
풋옵션 매수	-1	3
기초자산 매수	-37	37
$K-P-S_0$ 만큼 채권 매수	-2	2
합계	0	2

2만큼의 수익이 발생한다.

예제1 (b))

$$S_0 = 37, T = 6/12, t = 2/12, r = 0.05, K = 40, P = 42 \\ K = 40, P = 42 \\ P > K$$

$$K - S_0 = 3, P = 42$$

 $K - S_0 < P$

따라서 차익거래 전략은

- 1. 풋옵션을 매도,
- 2. K만큼 채권 매수
- 3. P K만큼 채권 매수 하는 전략이다.

	현재 시점	t시점 상대방 풋옵션 행사
전략		$S_t < K$
풋옵션을 매도	P	$S_t - K$
K만큼 채권 매수	-K	Ke^{rt}
P − K만큼 채권 매수	-(P-K)	$(P-K)e^{rt}$
합계	0	$S_t - K + Pe^{rt}$

	만기 시점		
전략	$S_T > K$	$S_T < K$	
풋옵션을 매도	0	$S_T - K$	
K만큼 채권 매수	Ke^{rT}	Ke^{rT}	
P − K만큼 채권 매수	$(P-K)e^{rT}$	$(P-K)e^{rT}$	
합계	Pe^{rT}	$-K + Pe^{rT} + S_T$	

	현재 시점	t시점 상대방 풋옵션 행사
전략		$S_t < K$
풋옵션을 매도	42	$S_t - 40$
K만큼 채권 매수	-40	40.3347
P − K만큼 채권 매수	-2	2.0167
합계	0	$2.3515 + S_t$

	만기 시점	
전략	$S_T > K$	$S_T < K$
풋옵션을 매도	0	$S_T - 40$
K만큼 채권 매수	41.0126	41.0126
P − K만큼 채권 매수	2.0506	2.0506
합계	43.0632	$3.0632 + S_T$

예제2 (a))

$$S_0 = 31, T = 3/12, t = 1/12, r = 0.1, K = 30, P = 2.25, C = 3$$

$$S_0 - K = 1, C - P = 0.75$$

$$S_0 - K > C - P$$

$$S_0 - Ke^{-rT} \approx 1.7407$$

 $C - P < S_0 - Ke^{-rT}$

따라서 차익거래 전략은

- 1. 기초자산 공매도
- 2. 풋옵션 매도
- 3. 콜옵션 매수
- 4. *K*만큼 채권 매수
- 5.A만큼 채권 매수 하는 전략이다.

where $A = S_0 + P - C - K$

	현재 시점	t시점 상대방 풋옵션 행사
전략		$S_t < K$
기초자산 공매도	S_0	$-S_t$
풋옵션 매도	P	$S_t - K$
콜옵션 매수	-C	C
K만큼 채권 매수	-K	$K * e^{rt}$
A만큼 채권 매수	-A	$A * e^{rt}$
합계	0	$C + Ke^{rt} - K + Ae^{rt}$

	만기 시점		
전략	$S_T > K$	$S_T < K$	
기초자산 공매도	$-S_T$	$-S_T$	
풋옵션 매도	0	$S_T - K$	
콜옵션 매수	$S_T - K$	0	
K만큼 채권 매수	Ke^{rT}	Ke^{rT}	
A만큼 채권 매수	Ae^{rT}	Ae^{rT}	
합계	$\mathrm{Ke}^{rT} - K + Ae^{rT}$	$Ke^{rT} - K + Ae^{rT}$	

	현재 시점	t시점 상대방 풋옵션 행사
전략		$S_t < K$
기초자산 공매도	31	$-S_t$
풋옵션 매도	2.25	$S_t - 30$
콜옵션 매수	-3	3
K만큼 채권 매수	-30	30.251
A만큼 채권 매수	-0.25	0.2521
합계	0	3.499 + C

	만기 시점		
전략	$S_T > K$	$S_T < K$	
기초자산 공매도	$-S_T$	$-S_T$	
풋옵션 매도	0	$S_T - 30$	
콜옵션 매수	$S_T - 3$	0	
K만큼 채권 매수	-30	30.251	
A만큼 채권 매수	-0.25	0.2521	
합계	0	3.499	

예제2 (b))

$$\begin{split} S_0 &= 31, T = 3/12, t = 1/12, r = 0.1, K = 30, P = 1, C = 3\\ C - P &= 2\\ S_0 - Ke^{-rT} \approx 1.7407\\ C - P &> S_0 - Ke^{-rT} \end{split}$$

따라서 차익거래 전략은

- 1. 기초자산 매수
- 2. 풋옵션 매수
- 3. 콜옵션 매도

 $4. \ Ke^{-rT}$ 만큼 채권 차입 $5.C + Ke^{-rT} - P - S_0$ 만큼 채권 매수 하는 전략이다. where $A = C + Ke^{-rT} - P - S_0$

		<i>t</i> 시점		
전략		$S_t > K$	$S_t < K$	
콜옵션 매도	C	$-(S_t - K)$	$-\mathrm{C}_t$	
Ke^{-rT} 만큼 채권 차입	Ke^{-rT}	$-Ke^{-r(T-t)}$	$-Ke^{-r(T-t)}$	
풋옵션 매수	-P	P_t	$K-S_t$	
기초자산 매수	$-S_0$	S_t	S_t	
A만큼 채권 매수	-A	Ae^{rt}	Ae^{rt}	
합계	0	$K - Ke^{-r(T-t)} + P_t + Ae^{rt}$	$K - Ke^{-r(T-t)} + C_t + Ae^{rt}$	

	만기 시점	
전략	$S_T > K$	$S_T < K$
콜옵션 매도	$K-S_T$	0
Ke^{-rT} 만큼 채권 차입	-K	-K
풋옵션 매수	0	$K-S_T$
기초자산 매수	S_T	S_T
A만큼 채권 매수	Ae^{rT}	Ae^{rT}
합계	Ae^{rT}	Ae^{rT}

		t 시점	
전략		$S_t > K$	$S_t < K$
콜옵션 매도	3	$30 - S_t$	$-C_t$
Ke^{-rT} 만큼 채권 차입	29.2593	-29.5041	-29.5041
풋옵션 매수	-1	P_t	$30 - S_t$
기초자산 매수	-31	S_t	S_t
A만큼 채권 매수	-0.2593	0.2615	0.2615
합계	0	$0.7573 + P_t$	$0.7573 + C_t$

	만기 시점	
전략	$S_T > K$	$S_T < K$
콜옵션 매도	$30-S_T$	0
Ke^{-rT} 만큼 채권 차입	-30	-30
풋옵션 매수	0	$30-S_T$
기초자산 매수	S_T	S_T
A만큼 채권 매수	0.2659	0.2659
합계	0.2659	0.2659

10.11)

$$S_0 = 64, T = 4/12, t = 1/12, r = 0.12, K = 60, D = 0.8, c = 5$$

 $S_0 - De^{-rt} - Ke^{-rT} = 5.5606$
 $c = 5$
 $c < S_0 - De^{-rt} - Ke^{-rT}$

- $c < S_0 De^{-rt} Ke^{-rT}$ $c + De^{-rt} + Ke^{-rT} < S_0$
- 따라서 차익거래 전략은
- 1. 기초자산 공매도
- 2. T시점 만기인 콜옵션 매수
- $3.\ \mathrm{t}$ 시점 만기인 채권 De^{-rt} 만큼 매수
- 4. T시점 만기인 채권 Ke^{-rT} 만큼 매수
- 5. T시점 만기인 채권 $S_0-c-De^{-rt}-Ke^{-rT}$ 만큼 채권 매수 하는 전략이다. where $A=S_0-c-De^{-rt}-Ke^{-rT}$

전략	현재 시점	t시점
기초자산 공매도	S_0	-D
T시점 만기 콜옵션 매수	-c	0
${ m t}$ 시점 만기 채권 De^{-rt} 만큼 매수	$-De^{-rt}$	D
T 시점 만기 채권 Ke^{-rT} 만큼 매수	$-Ke^{-rT}$	0
T시점 만기 채권 A만큼 매수	-A	0
합계	0	0

	만기 시점	
전략	$S_T > K$	$S_T < K$
기초자산 공매도	$-S_T$	$-S_T$
T시점 만기 콜옵션 매수	$S_T - K$	0
t 시점 만기 채권 De^{-rt} 만큼 매수	0	0
T 시점 만기 채권 Ke^{-rT} 만큼 매수	K	K
T 시점 만기 채권 Ae^{-rT} 만큼 매수	Ae^{rT}	Ae^{rT}
합계	Ae^{rT}	$Ae^{rT} + K - S_T$

전략	현재 시점	t시점
기초자산 공매도	64	-0.8
T시점 만기 콜옵션 매수	-5	0
t 시점 만기 채권 De^{-rt} 만큼 매수	-0.792	0.8
T 시점 만기 채권 Ke^{-rT} 만큼 매수	-57.6474	0
T시점 만기 채권 A만큼 매수	-0.5606	0
합계	0	0

	만기 시점	
전략	$S_T > K$	$S_T < K$
기초자산 공매도	$-S_T$	$-S_T$
T시점 만기 콜옵션 매수	$S_T - 60$	0
t 시점 만기 채권 De^{-rt} 만큼 매수	0	0
T 시점 만기 채권 Ke^{-rT} 만큼 매수	60	60
T시점 만기 채권 A만큼 매수	0.5835	0.5835
합계	0.5835	$60.5835 - S_T$

따라서, 최소한 0.5835의 수익을 얻는다.

10.11 - 2)

$$S_0 = 4, T = 4/12, t = 1/12, r = 0.12, K = 60, D = 0.8, c = 5$$
 $S_0 - De^{-rt} = 3.208$ $c = 5$

 $c > S_0 - De^{-rt}$

 $c + De^{-rt} > S_0$

따라서 차익거래 전략은

- 1. T시점 만기 콜옵션 매도
- 2. t시점 만기인 채권 De^{-rt} 만큼 차입
- 3. 기초자산 매수
- 4. T시점 만기인 채권 $c+De^{-rt}-S_0$ 만큼 채권 매수 하는 전략이다. where $A=c+De^{-rt}-S_0$

전략	현재 시점	t시점
T시점 만기 콜옵션 매도	c	0
t 시점 만기 채권 De^{-rt} 만큼 차입	De^{-rt}	-D
기초자산 매수	$-S_0$	D
T시점 만기 채권 A만큼 매수	-A	0
합계	0	0

	만기 시점	
전략	$S_T > K$	$S_T < K$
T시점 만기 콜옵션 매도	$-(S_T-K)$	0
t 시점 만기 채권 De^{-rt} 만큼 차입	0	0
기초자산 매수	S_T	S_T
T시점 만기 채권 A만큼 매수	Ae^{rT}	Ae^{rT}
합계	$Ae^{rT} + K$	$Ae^{rT} + S_T$

전략	현재 시점	t시점
T시점 만기 콜옵션 매도	5	0
t 시점 만기 채권 De^{-rt} 만큼 차입	0.792	-0.8
기초자산 매수	-4	0.8
T시점 만기 채권 A만큼 매수	-1.792	0
합계	0	0

	만기 시점	
전략	$S_T > K$	$S_T < K$
T시점 만기 콜옵션 매도	$60-S_T$	0
t 시점 만기 채권 De^{-rt} 만큼 차입	0	0
기초자산 매수	S_T	S_T
T시점 만기 채권 A만큼 매수	1.8652	1.8652
합계	61.8652	$1.8652 + S_T$

따라서, 최소한 61.8652의 수익을 얻는다.

예제3 (a))

$$S_0=4, T=4/12, t=1/12, r=0.12, K=60, D=0.8, p=5$$
 $Ke^{-rT}-S_0+De^{-rt}=54.4394$ $p=5$ $p $p+S_0 따라서 차익거래 전략은 1. T시점 만기 풋옵션 매수$$

- 2. t시점 만기인 채권 De^{-rt} 만큼 차입
- 3. 기초자산 매수

4. T시점 만기인 채권 Ke^{-rT} 만큼 차입 5. T시점 만기인 채권 $Ke^{-rT}+De^{-rt}-p-S_0$ 만큼 채권 매수 하는 전략이다. where $A=Ke^{-rT}+De^{-rt}-p-S_0$

전략	현재 시점	t시점
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Ke^{-rT}	0
t 시점 만기 채권 De^{-rt} 만큼 차입	De^{-rt}	-D
T시점 만기 풋옵션 매수	-p	0
기초자산 매수	$-S_0$	D
T시점 만기 채권 A만큼 매수	-A	0
합계	0	0

	만기 시점	
전략	$S_T > K$	$S_T < K$
T 시점 만기 채권 Ke^{-rT} 만큼 차입	-K	-K
t 시점 만기 채권 De^{-rt} 만큼 차입	0	0
T시점 만기 풋옵션 매수	0	$K-S_T$
기초자산 매수	S_T	S_T
T시점 만기 채권 A만큼 매수	Ae^{rT}	Ae^{rT}
합계	$Ae^{rT} - K + S_T$	Ae^{rT}

값들을 대입하면

전략	현재 시점	t시점
$ ag{T시점 만기 채권 Ke^{-rT}만큼 차입$	57.6474	0
t 시점 만기 채권 De^{-rt} 만큼 차입	0.792	-0.8
T시점 만기 풋옵션 매수	-5	0
기초자산 매수	-4	0.8
T시점 만기 채권 A만큼 매수	-49.4394	0
합계	0	0

	만기 시점		
전략	$S_T > K$	$S_T < K$	
T 시점 만기 채권 Ke^{-rT} 만큼 차입	-60	-60	
t 시점 만기 채권 De^{-rt} 만큼 차입	0	0	
T시점 만기 풋옵션 매수	0	$60-S_T$	
기초자산 매수	S_T	S_T	
T시점 만기 채권 A만큼 매수	51.4571	51.4571	
합계	$-8.5429 + S_T$	51.4571	

따라서, 최소한 51.4571의 수익을 얻는다.

예제3 (b))

$$S_0 = 64, T = 4/12, t = 1/12, r = 0.12, K = 4, D = 0.8, p = 5$$

$$Ke^{-rT} = 3.8432, p = 5$$

 $p > Ke^{-rT}$

따라서 차익거래 전략은

- 1. 풋옵션을 매도,
- $2. Ke^{-rT}$ 만큼 채권 매수
- $3. p Ke^{-rT}$ 만큼 채권 매수 하는 전략이다.

	현재 시점	만기 시점		
전략		$S_T \geq K$	$S_T \leq K$	
풋옵션을 매도	p	0	$S_T - K$	
Ke^{-rT} 만큼 채권 매수	$-Ke^{-rT}$	K	K	
$p - Ke^{-rT}$ 만큼 채권 매수	$-(p - Ke^{-rT})$	$pe^{rT} - K$	$pe^{rT} - K$	
합계	0	pe^{rT}	$pe^{rT} - K + S_T$	

값들을 대입하면

	현재 시점	만기 시점	
전략		$S_T \ge 4$	$S_T \le 4$
풋옵션을 매도	5	0	$S_T - 4$
3.8432만큼 채권 매수	-3.8432	4	4
1.1568만큼 채권 매수	-1.1568	1.2041	1.2041
합계	0	5.2041	$1.2041 + S_T$

최소한 5.2041만큼의 수익이 발생한다.

예제4 (a))

$$S_0 = 29, T = 6/12, t = 2/12, r = 0.1, K = 30, D = 0.5, c = 2, p = 3$$

$$c + De^{-rt} + Ke^{-rT} = 31.0286, p + S_0 = 32$$

$$c + De^{-rt} + Ke^{-rT}$$

따라서 차익거래 전략은

- 1. T시점 만기인 풋옵션을 매도,
- 2. 기초자산 공매도,
- 3. T시점 만기인 콜옵션 매수,
- 4. T시점 만기인 채권 Ke^{-rT} 만큼 매수
- 5. t시점 만기인 채권 De^{-rt} 만큼 매수
- 6. T시점 만기인 채권 A만큼 매수 하는 전략이다.

where
$$A = p + S_0 - c - De^{-rt} - Ke^{-rT}$$

	현재 시점	t시점	만기	시점
전략			$S_T \geq K$	$S_T \leq K$
풋옵션을 매도	p	0	0	$S_T - K$
기초자산 공매도	S_0	-D	$-S_T$	$-S_T$
콜옵션을 매수	-c	0	$S_T - K$	0
Ke^{-rT} 만큼 채권 매수	$-Ke^{-rT}$	0	K	K
De^{-rt} 만큼 채권 매수	$-De^{-rt}$	D	0	0
A만큼 채권 매수	-A	0	Ae^{rT}	Ae^{rT}
합계	0	0	Ae^{rT}	Ae^{rT}

	현재 시점	t시점	만기	시저
	단계 기 ㅁ	07 11 12		<u> </u>
전략			$S_T \geq K$	$S_T \leq K$
풋옵션을 매도	3	0	0	$S_T - 30$
기초자산 공매도	29	-0.5	$-S_T$	$-S_T$
콜옵션을 매수	-2	0	$S_T - 30$	0
Ke^{-rT} 만큼 채권 매수	-28.5369	0	30	30
De^{-rt} 만큼 채권 매수	-0.4917	0.5	0	0
A만큼 채권 매수	-0.9714	0	1.0212	1.0212
합계	0	0	1.0212	1.0212

1.0212만큼의 수익이 발생한다.

예제4 (b))

$$\begin{array}{l} S_0=29, T=6/12, t=2/12, r=0.1, K=30, D=0.5, c=2, p=1\\ c+De^{-rt}+Ke^{-rT}=31.0286, p+S_0=30\\ c+De^{-rt}+Ke^{-rT}>p+S_0 \end{array}$$

따라서 차익거래 전략은

- 1. T시점 만기인 콜옵션을 매도,
- 2. 기초자산 매수,
- 3. T시점 만기인 풋옵션 매수,
- 4. T시점 만기인 채권 Ke^{-rT} 만큼 차입
- $5. \text{ t시점 만기인 채권 } De^{-rt}$ 만큼 차입
- 6. T시점 만기인 채권 A만큼 매수 하는 전략이다. where $A=c+De^{-rt}+Ke^{-rT}-p-S_0$

	현재 시점	t시점	만기	시점
전략			$S_T \geq K$	$S_T \leq K$
T시점 만기 콜옵션 매도	c	0	$K-S_T$	0
t 시점 만기 채권 De^{-rt} 만큼 차입	De^{-rt}	-D	0	0
T 시점 만기 채권 Ke^{-rT} 만큼 차입	Ke^{-rT}	0	-K	-K
기초자산 매수	$-S_0$	D	S_T	S_T
T시점 만기 풋옵션 매수	-p	0	0	K
T시점 만기 채권 A만큼 매수	-A	0	Ae^{rT}	Ae^{rT}
합계	0	0	Ae^{rT}	Ae^{rT}

	현재 시점	t시점	만기	시점
전략			$S_T \geq K$	$S_T \leq K$
T시점 만기 콜옵션 매도	2	0	$30-S_T$	0
t 시점 만기 채권 De^{-rt} 만큼 차입	0.4756	-0.5	0	0
T 시점 만기 채권 Ke^{-rT} 만큼 차입	28.5369	0	-30	-30
기초자산 매수	-29	0.5	$+S_T$	$+S_T$
T시점 만기 풋옵션 매수	-1	0	0	$30 - S_T$
T시점 만기 채권 A만큼 매수	-1.0286	0	1.0814	1.0814
합계	0	0	1.0814	1.0814

약 1.0814만큼의 수익을 얻는다.

10.14)

$$S_0=29, T=6/12, t_1=2/12, t_2=5/12, r=0.1, K=30, D_1=0.5, D_2=0.5, c=2 \\ D=D_1e^{-rt_1}+D_2e^{-rt_2}=0.9713 \\ c+D+Ke^{-rT}=p+S_0 \\ p=c+D+Ke^{-rT}-S_0 \\ p=2.5082$$

10.15)

$$S_0=29, T=6/12, t_1=2/12, t_2=5/12, r=0.1, K=30, D_1=0.5, D_2=0.5, c=2, p=3$$
 $D=D_1e^{-rt_1}+D_2e^{-rt_2}=0.9713$ $c+D+Ke^{-rT}=31.5082$ $p+S_0=32$ $c+D+Ke^{-rT}< p+S_0$ where $A=S_0+p-c-D-Ke^{-rT}$ 따라서 차익거래 전략은 1. 기초자산 공매도

- 2. T기간 만기 풋옵션 매도
- 3. T기간 만기 콜옵션 매수
- $4. t_1$ 기간 만기 채권 $D_1 e^{-rt_1}$ 만큼 매수
- 5. t_2 기간 만기 채권 $D_2e^{-rt_2}$ 만큼 매수
- 6. T가간 만기 채권 Ke^{-rT} 만큼 매수
- 7. T기간 만기 채권 A만큼 매수

전략	현재시점	t_1 시점	t_2 시점
기초자산 공매도	S_0	$-D_1$	$-D_2$
T기간 만기 풋옵션 매도	p	0	0
T기간 만기 콜옵션 매수	-c	0	0
t_1 기간 만기 채권 $D_1e^{-rt_1}$ 만큼 매수	$-D_1e^{-rt_1}$	D_1	0
t_2 기간 만기 채권 $D_2e^{-rt_2}$ 만큼 매수	$D_2e^{-rt_2}$	0	D_2
T 가간 만기 채권 Ke^{-rT} 만큼 매수	$-Ke^{-rT}$	0	0
T기간 만기 채권 A만큼 매수	-A	0	0
합계	0	0	0

	만기 시점	
전략	$S_t > K$	$S_t < K$
기초자산 공매도	$-S_T$	$-S_T$
T기간 만기 풋옵션 매도	0	$-(K-S_T)$
T기간 만기 콜옵션 매수	$S_T - K$	0
t_1 기간 만기 채권 $D_1e^{-rt_1}$ 만큼 매수	0	0
t_2 기간 만기 채권 $D_2e^{-rt_2}$ 만큼 매수	0	0
Γ 가간 만기 채권 Ke^{-rT} 만큼 매수	K	K
T기간 만기 채권 A만큼 매수	Ae^{rT}	Ae^{rT}
합계	Ae^{rT}	Ae^{rT}

숫자를 대입하면,

전략	현재시점	t_1 시점	<i>t</i> ₂ 시점
기초자산 공매도	29	-0.5	-0.5
T기간 만기 풋옵션 매도	3	0	0
T기간 만기 콜옵션 매수	-2	0	0
t_1 기간 만기 채권 $D_1e^{-rt_1}$ 만큼 매수	-0.4917	0.5	0
t_2 기간 만기 채권 $D_2e^{-rt_2}$ 만큼 매수	-0.4796	0	0.5
T 가간 만기 채권 Ke^{-rT} 만큼 매수	-28.5369	0	0
T기간 만기 채권 A만큼 매수	-0.4918	0	0
합계	0	0	0

	만기 시점	
전략	$S_t > K$	$S_t < K$
기초자산 공매도	$-S_T$	$-S_T$
T기간 만기 풋옵션 매도	0	$-30 + S_T$
T기간 만기 콜옵션 매수	$-30 + S_T$	0
t_1 기간 만기 채권 $D_1e^{-rt_1}$ 만큼 매수	0	0
t_2 기간 만기 채권 $D_2e^{-rt_2}$ 만큼 매수	0	0
T 가간 만기 채권 Ke^{-rT} 만큼 매수	30	30
T기간 만기 채권 A만큼 매수	0.517	0.517
합계	0.517	0.517

따라서, 약 0.517만큼의 수익이 발생한다. **10.22**)

$$\begin{array}{l} S_0=19, T=3/12, t=1/12, r=0.1, K=20, D=1, c=3, p=3\\ c+De^{-rt}+Ke^{-rT}=23.4979, p+S_0=22\\ c+De^{-rt}+Ke^{-rT}>p+S_0 \end{array}$$

따라서 차익거래 전략은

- 1. T시점 만기인 콜옵션을 매도,
- 2. 기초자산 매수,3. T시점 만기인 풋옵션 매수,
- 4. T시점 만기인 채권 Ke^{-rT} 만큼 차입
- 5. t시점 만기인 채권 De^{-rt} 만큼 차입
- 6. T시점 만기인 채권 A만큼 매수 하는 전략이다. where $A=c+De^{-rt}+Ke^{-rT}-p-S_0$

	현재 시점	t시점	만기 시점	
전략			$S_T \geq K$	$S_T \leq K$
T시점 만기 콜옵션 매도	c	0	$K-S_T$	0
${ m t}$ 시점 만기 채권 De^{-rt} 만큼 차입	De^{-rt}	-D	0	0
T 시점 만기 채권 Ke^{-rT} 만큼 차입	Ke^{-rT}	0	-K	-K
기초자산 매수	$-S_0$	D	S_T	S_T
T시점 만기 풋옵션 매수	-p	0	0	K
T시점 만기 채권 A만큼 매수	-A	0	Ae^{rT}	Ae^{rT}
합계	0	0	Ae^{rT}	Ae^{rT}

값들을 대입하면

	현재 시점	t시점	만기 시점	
전략			$S_T \ge K$	$S_T \leq K$
T시점 만기 콜옵션 매도	3	0	$20-S_T$	0
${ m t}$ 시점 만기 채권 De^{-rt} 만큼 차입	0.9753	-1	0	0
T 시점 만기 채권 Ke^{-rT} 만큼 차입	19.5062	0	-20	-20
기초자산 매수	-19	1	$+S_T$	$+S_T$
T시점 만기 풋옵션 매수	-3	0	0	$20-S_T$
T시점 만기 채권 A만큼 매수	-1.4979	0	1.5358	1.5358
합계	0	0	1.5358	1.5358

약 1.5358만큼의 수익을 얻는다.