Definicja 1. $\mathbb{P}_x(A) = \mathbb{P}(A|X_0 = x)$ o ile $\mathbb{P}(X_0 = x) > 0$.

Fakt 2. (X_n) jednorodny ł.M. na $(\Omega, \mathcal{F}, \mathbb{P})$ z macierzą przejścia P taką, że $\mathbb{P}(X_0 = x) > 0$. Wtedy względem \mathbb{P}_x , $(X_n)_{n\geqslant 0}$ jest jednorodnym ł. M. z macierzą przejścia P, o rozkładzie poczatkowym δ_x , tzn. $\mathbb{P}_x(X_0 = x) = \delta_x(x) = 1$.

Definicja 3. Π układ probabilistyczny na E, wtedy $P_{\Pi}(A) = \sum_{x} \pi_{x} \mathbb{P}_{x}$.

Fakt 4. (X_n) j.ł.M. w $(\Omega, \mathcal{F}, \mathbb{P})$ taki, że $\forall_x \mathbb{P}(X_n = x) > 0$. Wtedy dla każdego rozkładu Π na E ciąg (X_n) jest j.ł.M. względem \mathbb{P}_{Π} z macierzą przejścia P i rozkładem początkowym P.

Fakt 5. $(X_n)_{n\geq 0}$ j.ł.M. z macierzą przejścia P, wtedy

- $\mathbb{P}_x(X_1 = x_1, \dots, X_n = x_n) = p_{xx_1} p_{x_1 x_2} \cdot \dots \cdot p_{x_{n-1} x_n}$
- $\mathbb{P}_x(X_1 = x_1, \dots, X_{n+m} = x_{n+m})$ = $\mathbb{P}_x(X_1 = x_1, \dots, X_n = x_n) \cdot \mathbb{P}_{x_n}(X_1 = x_{n+1}, \dots, X_m = x_{n+m}),$
- $\forall_{I \subset E^{n-1}, J \subset E^m} \mathbb{P}_x((X_1, \dots, X_{n-1}) \in I, X_n = x_n, (X_{n+1}, \dots, X_{n+m}) \in J)$ = $\mathbb{P}_x((X_1, \dots, X_{n-1}) \in I, X_n = x_n) \cdot \mathbb{P}_{x_n}((X_1, \dots, X_m) \in J).$

Definicja 6 (macierz przejścia w n krokach). $P(n) = (p_{x,y}(n))$, gdzie $p_{x,y}(n) = \mathbb{P}(X_n = y|X_0 = x) = \mathbb{P}_x(X_n = y)$.

Uwaga 7. $p_{x,y}(n+m) = \sum_{z} p_{x,z}(n) p_{z,y}(m)$.

 $Uwaga \ 8. \ P(0) = P^0 = Id$

Uwaga 9. $f_{x,y}(n) = \mathbb{P}_x(X_1 \neq y, \dots, X_{n-1} \neq y, X_n = y)$, wtedy $p_{x,y}(n) = \sum_{m=1}^n f_{x,y}(m) p_{y,y}(n-m)$.

Klasyfikacja stanów

Definicja 10. A. Ze stanu x da się dojść do stanu y, ozn. $x \to y$, jeśli $\exists_{n \ge 0} p_{x,y}(n) > 0$.

- B. Stany x, y się komunikują, jesli $x \to y$ oraz $y \to x$.
- C. Ł.M. jest nieprzywiedlny, jeśli każde dwa stany się komunikują.
- D. Stan x jest nieistotny, jeśli $\exists_y x \to y \land y \nrightarrow x$.
- E. Stan x jest pochłaniający, jeśli $p_{x,x}=1$.
- F. Zbiór stanów $C \subset E$ jest zamknięty, jeśli $\forall_{x \in C} x \to y \implies y \in C$.

Stany chwilowe i powracające

Definicja 11.
$$F_{x,y} = \sum_{n=1}^{\infty} f_{x,y}(n) = \sum_{n \geq 1} \mathbb{P}_x (\exists_{n \geq 1} X_n = y).$$

Definicja 12. Mówimy, że stan x jest:

- a) chwilowy, jeśli $F_{xx} < 1$,
- b) powracający, jeśli $F_{xx} = 1$.

 $Uwaga\ 13.\ x \to y, y \to z \implies x \to z.$

 $Uwaga 14. \leftrightarrow to relacja równoważności.$

Uwaga 15. C zamkniety, to można rozpatrywać ł.M. o zbiorze stanów C.

Uwaga 16. Ł.M. jest nieprzywiedlny wtw, gdy jedyne zamknięte zbiory to \varnothing , E.

Definicja 17 (liczba wizyt w stanie x). $N_x = \sum_{n=1}^{\infty} \mathbb{1}_{\{X_n = X\}}$

Fakt 18. Dla
$$k \geqslant 1$$
, $\mathbb{P}_x(N_y \geqslant k) = F_{xy}F_{yy}^{k-1}$.

Wniosek 19. Jeśli x chwilowy, to $\mathbb{P}_x(N_x = \infty) = 0$, czyli $\mathbb{P}_x(N_x < \infty) = 1$.

Wniosek 20. Jeśli x powracający, to $\mathbb{P}_x(N_x = \infty) = 1$.

Twierdzenie 21 (kryterium powracalności). Stan x jest powracający wtw, $gdy \sum_n p_{xx}(n) = \infty$.

Stan x jest chwilowy wtw, $gdy \sum_{n} p_{xx}(n) < \infty$.