CS3133 Foundations of Computer Science HW1

Keith DeSantis

8/25/21

Collaboration with Samuel Parks and Kush Shah

Went to Office Hours

LangProps)

For each part decide if there can be languages A and B with given property. If so, give a specific example, if not, explain why not.

1) AB = A

Can exist. If $B = \{\lambda\}$ then AB = A.

2) $AB = \emptyset$

Can exist. If A and $B = \emptyset$.

3) AB = BA

Can exist. If A = B.

4) $A^* = A$ and $A \neq \Sigma^*$

Can exist. If $A = \emptyset$ or $A = \{\lambda\}$.

5) AA = A

Can exist. If $A = \emptyset$ or $A = \{\lambda\}$.

6) $AA \subseteq A$ but $AA \neq A$

Can exist.

Example: $A = \{ b^n | n >= 1 \}$

$$AA = \{ b^n | n >= 2 \},\$$

Therefore, $AA \subseteq A$ and $AA \neq A$

7) AA ⊄ A.

Can exist. $A = \{\text{"computer"}\}, AA = \{\text{"computer omputer"}\}.$

8) $A \subseteq AA$ but $AA \neq A$.

Can exist. $A = \{\lambda, a\}, AA = \{\lambda, a, aa\}.$

9) $A^* \subset A$

Can't exist. By definition, $A \subseteq A^*$, therefore A^* cannot be a proper subset of A.

LangSubset)

1) For all A,B,C, $A(B \cup C) \subseteq AB \cup AC$

Let $y \in A(B \cup C)$.

Let y = ax where: $a \in A$ and $x \in (B \cup C)$.

Two cases for x:

x ∈ B:

In this case y is made of a and one element of B, therefore is an element of AB and an element of AB U AC.

x ∈ C:

In this case y is a concatenation of a and one element of C, therefore is an element of AC and an element of AB U AC.

Therefore, $A(B \cup C) \subseteq AB \cup AC$.

2) For all A, B, C, AB U AC \subseteq A(B U C)

Let $y \in AB \cup AC$.

There are two cases:

1) $y \in AB$:

Then y can be written as ab where a ϵ A and b ϵ B. ab is an element in A(B U C), so y ϵ A(B U C).

2) $y \in AC$:

Then y can be written as ac where a \in A and c \in C. ac is an element in A(B U C) so y \in A(B U C).

Therefore AB U AC \subseteq A(B U C).

3) For all A, B, C A(B n C) \subseteq AB n AC

Let $y \in A(B n C)$.

y can be written as ax, where $x \in (B \cap C)$.

Since $x \in B$, $ax \in AB$.

Similarly, $x \in C$, $ax \in AC$.

This leads to $x \in AB \cap AC$.

Therefore, $A(B n C) \subseteq AB n AC$.

4) For all A, B, C AB n AC \subseteq A(B n C)

Not true.

Counter example:

Therefore,

$$AB n AC = \{ aac \}$$

However,

$$A(B n C) = A\emptyset = \emptyset$$

So, AB n AC
$$\not\subset$$
 A(B n C)

DeltaFirst)

Definition:

$$\delta^{\wedge}(q,\,\lambda)=q$$

$$\delta^{\wedge}(q,\,ax)=\delta^{\wedge}(\,\delta(q,\,a),\,x)\qquad \text{ for } x\in\Sigma^{*},\,a\in\Sigma$$

Picture:

$$\begin{array}{c} a & x \\ q \xrightarrow{\blacktriangleright} \delta(q,a) \xrightarrow{\blacktriangleright} \xrightarrow{} \delta^{\wedge}(\delta(q,a),x) \end{array}$$

From q, reading the symbol a brings the DFA to state $\delta(q, a)$. From $\delta(q, a)$, reading in the string x brings the DFA to state $\delta^{\wedge}(\delta(q, a), x)$.

MIUM2 with Union Construction:

MINM with product intersection construction:

After drawing out the example above, it was clear that the relationship between M''and M1 U M2 is that they are the same DFA, since M1' n M2' (aka M') is simply the complement of M1 U M2, as is visualized in the above drawings. It follows that $L(M'') = L(M1 \ U \ M2)$.

DFAPuzzle)

Since L(M) n $L(N) = \emptyset$, there are no possible strings that the DFA of M n N will accept. Accordingly, the diagram shows there is no way to reach the only accepting state of (q1,t1).