CONCLUSIONS AND FUTURE WORK

You're bound to be unhappy if you optimize everything.

— Donald Knuth

HE growing adoption of WebAssembly requires efficent code analysis and hardening techniques. This thesis contributes to this effort with a comprehensive set of methods and tools for Software Diversification in WebAssembly. We introduce three technical contributions in this dissertation: CROW, MEWE, and WASM-MUTATE. Additionally, we present specific use cases for exploiting the diversification created for WebAssembly programs. In this chapter, we summarize the technical contributions of this dissertation, including an overview of the empirical findings of our research. Finally, we discuss future research directions in WebAssembly Software Diversification.

5.1 Summary of technical contributions

This thesis expands the field of Software Diversification within WebAssembly by implementing two distinct methods: compiler-based and binary-based approaches. Taking source code and LLVM bitcode as input, the compiler-based method generates WebAssembly variants. It uses enumerative synthesis and SMT solvers to produce numerous functionally equivalent variants. Importantly, these generated variants can be converted into multivariant binaries, thus enabling execution path randomization. Our compiler-based approach specializes in producing high-preservation variants. However, the use of SMT solvers for functional verification lowers the diversification speed when compared with the binary-based method. Furthermore, this method can only modify the code and function sections of WebAssembly binaries.

On the other hand, the method based on binary utilizes random e-graph traversals to create variants. This approach eliminates the need for modifications to existing compilers, ensuring compatibility with all existing WebAssembly

 $^{^{0}}$ Compilation probe time 2023/11/21 12:05:12

binaries. Additionally, it offers a swift, efficient and novel method for generating variants through inexpensive random e-graph traversals. Consequently, our binary-based approach can produce variants at a scale at least one order of magnitude larger than our compiler-based approach. The binary-based method can generate variants by transforming any segment of the Wasm binary. However, the preservation of the generated variants is lower than the compiler-based approach.

We have developed three open-source tools that are publicly accessible: CROW, MEWE, and WASM-MUTATE. CROW and MEWE utilize a compiler-based approach, whereas WASM-MUTATE employs a method based on binary. These tools automate the process of diversification, thereby increasing their practicality for deployment. At present, WASM-MUTATE is integrated in the wasmtime project¹ to improve testing. Our tools are complementary, providing combined utility. For instance, when the source code for a WebAssembly binary is unavailable, WASM-MUTATE offers an efficient solution for the generation of code variants. On the other hand, CROW and MEWE are particularly suited for scenarios that require a high level of variant preservation. Finally, one can use CROW and MEWE to generate a set of variants, which can then serve as rewriting rules for WASM-MUTATE. Moreover, when practitioners need to quickly generate variants, they could employ WASM-MUTATE, despite a potential decrease in the preservation of variants.

5.2 Summary of empirical findings

We demonstrate the practical application of Offensive Software Diversification in WebAssembly. In particular, we diversify 33 WebAssembly cryptomalware automatically, generating numerous variants. These variants successfully evade detection by state-of-the-art malware detection systems. Our research confirms the existence of opportunities for the malware detection community to strengthen the automatic detection of cryptojacking WebAssembly malware. Specifically, developers can improve the detection of WebAssembly malware by using multiple malware oracles. Additionally, these practitioners could employ feedbackguided diversification to identify specific transformations their implementation is susceptible to. For instance, our study found that the addition of arbitrary custom sections to WebAssembly binaries is a highly effective transformation for evading detection. In practice, no WebAssembly engine uses custom sections, so injecting them does not impact the performance of the WebAssembly binary. This logic also applies to other transformations, such as adding unreachable code, another effective method for evading detection.

Moreover, our techniques enhance overall security from a Defensive Software Diversification perspective. We facilitate the deployment of unique, diversified

¹https://github.com/bytecodealliance/wasm-tools

and hardened WebAssembly binaries. As previously demonstrated, WebAssembly variants produced by our tools exhibit improved resistance to side-channel attacks. Our tools generate variants by modifying malicious code patterns such as embedded timers used to conduct timing side-channel attacks. Simultaneously, they can produce variants that introduce noise into the execution side-channels of the original program, concurrently altering the memory layout of the JITed code generated by the host engine.

To sum up, our methods remarkably generate tens of thousands of variants in minutes. The swift production of these variants is due to the rapid transformation of WebAssembly binaries. This swift generation of variants is particularly advantageous in highly dynamic scenarios such as FaaS and CDN platforms. We have empirically tested the effectiveness of moving target defense techniques? on the Fastly edge computing platform. In this scenario, we incorporate multivariant executions[?]. Fastly can redeploy a WebAssembly binary across its 73 datacenters worldwide in 13 seconds on average. This enables the practical deployment of a unique variant per node using our tools. However, a 13second window may still pose a risk despite each node potentially hosting a distinct WebAssembly variant. To mitigate this, we use multivariant binaries, invoking a unique variant with each execution. Our tools can generate dozens of unique variants every few seconds, each serving as a multivariant binary packaging thousands of other variants. This illustrates the real-world application of Defensive Software Diversification to a WebAssembly standalone scenario.

5.3 Future Work

Along with this dissertation we have highlighted several open challenges related to Software Diversification in WebAssembly. These challenges open up several directions for future research. In the following, we outline two concrete directions.

Improving WebAssembly malware detection via canonicalization: Malware detection is a well-known problem in the field of computer security, as outlined in works like Cohen's 1987 study on computer viruses [?]. This issue is exacerbated in environments where predictability is high and malware is expected to be replicated identically across multiple victims. In such scenarios, attackers can exploit this predictability to their advantage. For example, malicious actors could craft functionally equivalent malware to evade detection by malware detection systems. Indeed, our research has shown that employing Software Diversification can be an effective method for evading malware detection systems. This technique involves creating varied versions of a program, thereby reducing its predictability and making detection more challenging.

In response to this challenge, our future research focuses on the potential effectiveness of program normalization in enhancing the accuracy of malware detection systems. This approach involves transforming a program into a

standardized, or "canonical," form before comparing it against a known dataset of malware signatures. By doing this, we aim to rapidly and efficiently identify malicious programs. A key strategy we explore is the pre-compiling of WebAssembly binaries, which can be done at a minimal cost. For example, a Wasm binary might first be JIT compiled to machine code. This step effectively reduces the number of malware variants that need to be considered, making it easier for classifiers to identify malicious software.

However, this method is not without its challenges. It relies heavily on the degree to which malware variants can be normalized. If a malware variant is highly preserved, meaning it maintains its original form and structure even after compiling to machine code, it might be difficult to normalize and subsequently detect. This limitation suggests that while program normalization can significantly improve the efficiency and precision of malware detection systems, it is not a foolproof solution. The ability to detect highly preserved malware variants remains an area for further research.

Feedback-guided Diversification: As presented in Chapter 4, feedback-guided diversification can facilitate the identification of specific transformations aiding particular objectives such as malware evasion and side-channel protection. On the contrary, stochastic diversification may generate variants that do not align with the specific objective. For instance, our approaches have shown less impact on ret2spec and pht side-channel attacks compared to btb attacks when using stochastic diversification. We can conceptualize this problem as an issue of search space exploration. By dividing the diversification search space, we can more efficiently focus the diversification process. The main benefit of this division is a narrowed search space, which can speed up and refine the process of diversification.

We intend to research into the previously mentioned concept. Our strategy could potentially incorporate feedback-directed methods that rely on specific code patterns, such as the disruption of embedded timers, to combat these problems. This method might also be modified to lessen the impact of particular types of side-channel attacks, such as port contention [?]. For instance, one might count the number of instructions that result in port contention and use this data to choose or eliminate variants with a high or low count of instructions leading to port contention.