PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-253627

(43) Date of publication of application: 09.10.1989

51)Int.Cl.

G01L 9/12

A61B 5/00

G01L 1/14

21)Application number: 63-080398 22)Date of filing :

01.04.1988

(71)Applicant: RES DEV CORP OF JAPAN

(72)Inventor: ESASHI MASAKI

54) PRESSURE SENSOR AND MANUFACTURE THEREOF

57) Abstract:

PURPOSE: To implement low noises, to facilitate forming a elemetry system and to obtain a body embedded type pressure sensor, by forming a unitary body of a signal processing circuit and the pressure sensor, and employing a two-wire output vstem.

CONSTITUTION: A diaphragm 2 is formed in a silicon substrate 1 by a micromachining process. A signal processing circuit 3 is integrated on the substrate 1. Then an electrode pattern is formed on a glass substrate 4. Position alignment is performed, and the substrate 4 is bonded to the silicon substrate 1 by an anode bonding method. Thus, the electrode pattern of the glass substrate 4 is bonded to an N+ layer which is diffused on the silicon substrate and connected to the circuit 3. Then, twowire type output lines 5 which are commonly used for power supply and signal lines are connected to the circuit 3. The output lines 5 are fixed with a bonding agent 6. In this constitution, a capacitance sensor and a detecting circuit are arranged in the

close proximity. Therefore, mixing of noises from the outside is less. A compact pressure sensor which can be embedded in a body and which is characterized by small power consumption is obtained.

(9 日本国特許庁(JP)

(1) 特許出願公開

⑩ 公 開 特 許 公 報 (A) 平1-253627

@Int. Cl. 4

識別記号 庁内整理番号 43公開 平成1年(1989)10月9日

G 01 L

101

7507-2F

9/12 A 61 B G 01 L 1/14

M - 7437 - 4 C A - 7409 - 2 F 審査請求 未請求 請求項の数 4 (全 5 頁)

60発明の名称 圧力センサとその製造法

21)特 頭 昭63-80398

願 昭63(1988) 4月1日

宮城県仙台市八木山南1丁目11-9 @発 明 正喜 新技術開発事業団 東京都千代田区永田町2丁目5番2号 の出願 人

利夫 例代 理 人・ 弁理士 西澤

1. 発明の名称

圧力センサとその製造法 2. 特許請求の範囲

- シリコン基板の一部に形成したダイヤフ ラムと、その上部にギャップを介して配設した電 極とを有する、圧力の変化によって発生するダイ ヤフラムの変形を容量変化として検知する容量型 圧力センサからなることを特徴とする体内埋め込 み型の圧力センサ。
- (2) 雪板の一方がシリコン基板に接合したガ ラス基板上にあり、またシリコン基板上には、圧 力センサの信号を処理する信号処理回路を集積化 し、信号線をガラス基板に形成した穴より取り出 す構造とした請求項第(1)項記載の休内埋め込 み型の圧力センサ。
- (3) 母号処理同路の出力終を 雲源供給と僕 号伝達の面機能を有する2線式とした請求項額 (2)項記載の体内規め込み型の圧力センサ。

(4) 信号処理回路を有するシリコン基板の一 部にマイクロマシニング法を用いてエッチングし、 表面から所望の深さの位置にダイヤフラムを形成 し、そのダイヤフラムの表面に高伝導性の層を形 成せしめ容量型圧力センサの一方の電極とし、か つ容量型圧力センサの他の電極パターンを有する ガラス基板を位置合わせ装置を用いてシリコン基 板とのパターン合わせを行いつつ、陽極接合法を 用いてシリコン基板とガラス基板とを接合させる ことを特徴とする体内埋め込み型圧力センサの製 造法.

3. 発明の詳細な説明

(技術分野)

この発明は、圧力センサとその製造法に関する ものである。さらに詳しくは、この発明は、臨床 医学における血管圧や心臓内圧や脳内圧、膀胱内 圧などの生体圧を連続的にモニタリングすること のできる体内埋め込み型の圧力センサに関するよ のである.

(背景技術)

医療技術の進歩にともなって、生体の諸機能を モニタリングする機器を休内に埋め込む方式が往 目されている。

しかしながら、休内にセンサを埋め込むために は、従来にもまして、小類・低消費電力であり、 ほ号線の取り出しが容易であることと同時に、 長 期的にも安定であることが必要になっている。

- 3 -

て例示したものである。

この例においては、シリコン 高秋 (1) 上に、 ゲイヤフラム (2) を有する容景型圧力センサと、 等量を検出する信号処理回路 (3) とを集積化しており、またこれらを有する第千を完全に対止するために、ガラス蒸板 (4) をシリコン系板 (1) と振令し、信号処理回路 (3) からの信号級 (5) はガラズ基板 (4) に穴をおけることによって提 特利 (6) により固定して外容に取り出す構成と している。

この構造において、ダイヤフラム(2)の形成ができる。これは、ある種のによってエッチング液を用いることが、ある種のによってエッチングを学出することができることを ポロンを大量にドープした P 利用するものである。一般に、この日的のために用いるれるエッチング液は、 B P W (A T サンジングンロードロカテコールー米) 液 学 K O H 液 などか た 3、第 2 図は、このマイクロマシニングプロセカス 5、第 2 図は、このマイクロマシニングプロセカス 5、第 2 図は、このマイクロマシニングプロセカス 5、第 2 図は、このマイクロマシニングプロセカス

(発明の目的)

この発明は、上記の目的を実現するために、よ リコン基板の・都に形成したダイヤフラムと、そ の上部にギャップを介して軽疑した電極とを有す る、圧力の変化によって発生するダイヤフラムの 変形を容量変化として検知する容量促圧力センサ からなることを特徴とする体内型の込み型の圧力 センサを提供する。

また、この発明は、そのための製造法も提供する。

以下、図面に沿ってこの発明について詳しく説明する。

第1回は、この発明の基本的な構造を断面とし

- 4 -

によって形成したダイヤフラム(2)の構造を鉱 大して示したものである。この例においては、所 望のダイヤフラムの厚みと表面からの深さを得る ために、p*を拡散させている。

また、(100) 面の基板を用い、ダイヤフラム以外の窓分を、 SIO_2 娘をマスクとして上紀のエッチング後でエッチングし、(111) 面のエッチング 運収が遅いことを利用して第2図のようなダイヤフラムを形成している。

たとえば、具体的には、500μm×500 μm、原み20μmのグイヤフラム(2)を形成することができ、表面からの深さを1μmとすることができる。

この場合の 1 μ m の深さが、コンデンサを形成 するギャップとなり、また p ' 層をコンデンサの 一方の電極とすることができる。この点もこの発 明の大きな特数の一つである。

この発明はまた、信号処理同路(3)をシリコン基板(1)上に集積化したことも特徴としている。この点については、特に、1fP程度の微小

容量を検出するためには、容量センサとその検用 固階を非常に接近させ外部くる。また、体力を極力 あらすことが必要になるでは、3)の低低 込み型とするためには信減化 回野となるの。この表現 から、この発明におければ、2000年のでは が、この発明においては、電源供給と信えとができ 別とするこれが、2000年では のより、2000年では のまり、2000年では のまり、2000年で

さらにまた、センサを休内埋め込み型とするためには、ダイヤフラム(2)からなる容量型の圧力センサと信号規理回路(3)が完全に気密性を促っことが必要である。このためには、ガラス基板(4)とシリコン基板(1)との接合に隔を発力を発音を用いた完全シール装置技術を採用することがある。この方法に、この発明によって物のて実現されたものである。

すなわち、ガラス基板 (4) には、コンデンサ を構成するもう一方の電板パターンを Cr - Au などの蒸浴膜を用いて形成し、位置合わせ数置の

- 7 -

ドスルー部)を気密封止することが難しかったが、 この発明では、n、層(9)を用いて、ガラス基 板(4)側の電板と接続する構造とすることによ り、完全審関構造の形成を実現している。

また、この陽極接合の際に用いる高電界の影響 から信号処理回路(3)を保護するために、ガラ ス基板(4)の該当する部分に等電腦からなる野 電シールドを設けることも有利である。

次に、この発明の一つの実施例としての容量読 み出し回路の例を第4図に示す。

この回路は定電波派とフリップフロップ回路を 用い基準容量CRと圧力センサの容量CXを交互 に完放電することによって、容量をその大きさに 比較する時間関係の信号パルスに変換する方式で ある。

信号変化時にCMOS回路の消費電流が流れる 特長を利用し、集積化センサへの供給電流から上 記の債号パルスを取り出す。

信号処理回路(3)としては、もちろんこの実 施例に示したものに限定されることはない。また、 もとでシリコン基板(1)と接合する。この際の 接合技術としては、すでに知られている種々の手 法を用いることができる。このうちの舒適なもの としては陽極能合体がある。

類3回にはこの階極接合の一例を示している。 セラミックと一タ(7)上にシリコン基板(1) とガラス基板(4)をパターン位置合わせして重 の合わせる。ガラス基板(4)には、Cr − A 電板(8)をあらかじの形成してある。電圧は、 ガラス基板(4)側がマイナス、シリコン基板 (1)側がアラスになるように印加する。加熱温 底は、たとえば200~600℃程度の範囲とす ることができるが、紆渡には300~500℃と する。また、電圧はたとよば、300~1000 V程度の範囲とすることができるが舒遠には、 500 Vである。

Cr-Au電優(8)は、シリコン器板(1) 上に拡散したn*層(9)と接合し、信号処理回路(3)と接続する。従来の陽極接合法においては、内部からの電気配機部の取り出し部(フィー

- 8 -

誘導結合型電源供給方式とすることにより、無線 化することも可能であり、多チャンネル化することもできる。

この発明の以上の実施例の体内埋め込み製圧力 センサについての出力電圧と圧力との関係を具体 的に例示したものが第5回である。8.3 μV/V /malifeという高度を実現していることがわかる。 (発明の効果)

以上のように、この発明の体内埋め込み型圧力 センサは極めて高速度であり、かつ小型で低消費 電力の性能を有し、長期的に安定でもある。

この発明による医療の高度化への資献は極めて 大きなものとなる。

4. 図面の簡単な説明

第1図は、この発明の圧力センサの一例を示した断面図である。第2図は、ダイヤフラムを示した拡大断面図である。第3図は、この発明の陽極接合の一例を示した断面図である。

第4図は、容量読み出し回路を例示した回路図 ・ である。

第5回は、出力電圧と圧力との相関図である。

- 1 … シリコン基板
- 2 … ダイヤフラム
 - 3 … 信号処理回路
 - 4 … ガラス基板
 - 5 … 信号線
 - 6 … 接着剤
 - 7…セラミックヒータ
- 8 ··· C r A u 電板
- 9 ··· n * 層

代理人 弁理士 西 澤 利 失

-- 11 ---

2 ⊠

