Ekonometria Finansowa Teoria efektywności informacyjnej rynku

mgr Paweł Jamer¹

Doktorant, Katedra Ekonometrii i Statystyki SGGW Ekspert ds. Modelowania Danych, Polskie Technologie Konsultant Zewnętrzny, Polkomtel

25 października 2016

¹pawel.jamer@gmail.com

Biały szum

Biały szum

Białym szumem nazwiemy szereg czasowy ϵ_t niezależnych zmiennych losowych o tym samym rozkładzie taki, że

$$\mathbb{E}(\epsilon_t) = 0,$$

$$Var(\epsilon_t) = \sigma^2.$$

Biały szum oznaczać będziemy symbolem WN $(0, \sigma^2)$.

Uwaga Bardziej złożone modele szeregów czasowych wykorzystują biały szum do opisu niepewności pomiaru opisywanych przez nie wielkości.

Błądzenie losowe

Błądzenie losowe (bez dryfu)

Szereg czasowy p_t nazwiemy błądzeniem losowym bez dryfu, jeżeli spełnia on równanie

$$p_t = p_{t-1} + \epsilon_t,$$

gdzie

• ϵ_t — biały szum.

Uwaga. Uzupełniając powyższy wzór o niezerową stałą α

$$p_t = \alpha + p_{t-1} + \epsilon_t$$

uzyskujemy proces błądzenia losowego z dryfem.

Błądzenie losowe

...jako generator cen instrumentu finansowego

Hipoteza

Cena instrumentu finansowego p_t jest błądzeniem losowym.

Rozważmy model

$$p_t = \alpha + \rho p_{t-1} + \epsilon_t.$$

Prawdziwość powyższej hipotezy jest równoznaczna z tym, że:

- ullet ho statystycznie nie różni się od jedności,
- \bullet ϵ_t jest białym szumem.

Ponadto, jeżeli zachodzi:

- $\alpha = 0$, to p_t jest błądzeniem losowym bez dryfu,
- $\alpha \neq 0$, to p_t jest błądzeniem losowym z dryfem.

Właściwości błądzenia losowego

Błądzenie losowe bez dryfu

Błądzenie losowe z dryfem

$$p_t = p_{t-1} + \epsilon_t,$$
 $p_t = \alpha + p_{t-1} + \epsilon_t,$ $p_t = p_0 + \sum_{h=0}^t \epsilon_{t-h},$ $p_t = p_0 + t\alpha + \sum_{h=0}^t \epsilon_{t-h},$ $\mathbb{E}(p_t) = p_0,$ $\mathbb{E}(p_t) = p_0 + t\alpha,$ $\mathbb{Var}(p_t) = t\sigma_{\epsilon_t}^2.$ $\mathbb{Var}(p_t) = t\sigma_{\epsilon_t}^2.$

Stopy zwrotu instrumentów finansowych

Rozważmy model błądzenia losowego bez dryftu dla logarytmu cen pewnego instrumentu finansowego

$$\log(p_t) = \log(p_{t-1}) + \epsilon_t.$$

Model ten przekształcić możemy do postaci

$$r_t = \log\left(\frac{p_t}{p_{t-1}}\right) = \epsilon_t.$$

Uwaga. Badanie czy logarytm cen p_t instrumentu finansowego jest błądzeniem losowym sprowadza się do ustalenia, czy logarytmiczne stopy zwrotu r_t tego instrumentu są białym szumem.

Krytyka

Optymalna prognoza ceny instrumentu finansowego na okres przyszły, to przyjęcie ceny tego instrumentu z okresu bieżącego.

Nie uwzględnia się rentowności zależnej od ryzyka.

Racjonalność zachowań

- Uczestnicy rynku działają racjonalnie...
 - ...znając cały zbiór informacji...
 - ...dysponując takim samym zbiorem narzędzi analiy rynku.x
- Uczestnicy rynku dążą do...
 - ...maksymalizacji zysku przy ustalonym z góry poziomie ryzyka.
 - ...minimalizacji ryzyka przy ustalonym z góry poziomie zysku.

Formy racjonalności zachowań

- Racjonalność instrumentalna uczestnik rynku posiadający nieograniczone zdolności i nieograniczony dostęp do informacji dąży do optymalizaji swojej funkcji celu.
- Racjonalność kognitywna uczestnik rynku posiadający zdoność konfrontowania posiadanych informacji z otoczeniem dąży do optymalizacji swojej funkcji celu.
- Racjonalność ograniczona uczestnik rynku posiadający ograniczone zdolności i ograniczony dostęp do informacji dąży do osiągnięcia zadowalającego dla siebie poziomu swojej funkcji celu.

Racjonalność przewidywań

Racjonalność przewidywań

Uczestnik rynku antycypuje przyszłość wykorzystując cały zbiór dostępnych mu informacji w najlepszy ze znanych mu i możliwych do zastosowania sposobów.

Warunki konieczne zachodzenia racjonalności przewidywań:

- uczestnik rynku optymalnie specyfikuje model zależności zmiennej objaśnianej od zbioru zmiennych objaśniających,
- uczestnik rynku posiada wystarczająco duży zbiór przeszłych wartości wszystkich występujących w modelu zmiennych,
- uczestnik rynku wykorzystuje metody estymacji prowadzące do uzyskania estymatorów nieobciążonych.

Racjonalność przewidywań

Racjonalne przewidywanie

Racjonalna predykcja wartości jaką r_t przyjmie w chwili t+1 dokonywana w chwili t przy założeniu posiadania wszystkich niezbędnych do dokonania predykcji informacji I_t , to

$$\mathbb{E}(r_{t+1} \mid I_t)$$
.

Uwaga. W efekcie niedoskonałości rynków finansowych wartość r_t w chwili t+1 nie będzie z reguły zgodna z prognozą. Nie powinna ona być jednak obciążona błędem systematycznym, tzn.:

$$r_{t+1} = \mathbb{E}\left(r_{t+1} \mid I_t\right) + \epsilon_{t+1},$$

gdzie ϵ_{t+1} to biały szum.

Formy efektywności rynków finansowych

Formy efektywności rynków finansowych.

- Efektywność alokacji przepływ kapitału pozwalający realizować najlepsze z punktu widzenia danej branży oraz całej gospodarki przedsięwzięcia.
- Efektywność operacyjna kojarzenie przez pośredników rynku finansowego osób posiadających kapitał oraz potrzebujących kapitału przy zachowaniu możliwie optymalnych warunków.
- Efektywność informacyjna odzwierciedlenie w cenie instrumentu finansowego wszystkich związanych z nim informacji przeszłych i obecnych, jak również rozsądnych przewidywań dotyczących przyszłości.

Uwaga. Wymienione wyżej formy efektywności są ze sobą silnie powiązane i uzupełniają się wzajemnie.

Hipoteza rynku efektywnego ^{Wprowadzenie}

Hipoteza rynku efektywnego (EMH)

Łączne zachodzenie efektywności alokacji, efektywności operacyjnej oraz efektywności informacyjnej.

Warunki wystarczające efektywności rynku:

- racjonalność zachowań uczestników rynku,
- powszechny dostęp do natychmiastowej, pewnej i bezpłatnej informacji,
- brak opłat oraz podatków na giełdzie.

Błądzenie losowe Racjonalność **Rynek efektywny** Efekty kalendarzowe

Hipoteza rynku efektywnego Wnioski

Wniosek 1 (nieprognozowalność)

Zgodnie z założeniami hipotezy rynku efektywnego nie jest możliwa prognoza ceny instrumentu finansowego na okres przyszły.

Wniosek 2 (losowość)

Zmiana ceny instrumentu finansowego w okresie następnym może nastąpić tylko na skutek napływu nowej informacji lub zaistnienia nieprognozowalnego zdarzenia.

Wniosek 3 (stabilność)

Jeżeli zbiór informacji na temat instrumentu finansowego w dwóch następujących po sobie okresach czasu I_t oraz I_{t+1} nie uległ zmianie, to również cena tego instrumentu finansowego na rynku efektymwnym nie ulegnie zmianie, tzn. $P_t = P_{t+1}$.

Hipoteza rynku efektywnego Realia rynku

Inwestorzy:

- nie dysponują takim samym zbiorem informacji,
- mają różne preferencje i cele,
- cechują się różnym poziomem wiedzy i doświadczenia,
- dysponują kapitałem różnej wielkości,
- stosują różne strategie inwestycyjne,
- ...

Wniosek. Ceny instrumentów finansowych podlegają pewnym wahaniom spowodowanym podejmowaniem przez inwestorów zróżnicowanych decyzji inwestycyjnych.

Hipoteza rynku efektywnego informacyjnie

Twierdzenie o efektywności rynku (Fama)

Efektywność informacyjna rynku finansowego przejawia się w trzech formach.

- Forma słaba w cenie instrumentu finansowego znajdują odzwierciedlenie wszystkich informacje historyczne z instrumentem powiązane.
- Forma półsilna w cenie instrumentu finansowego znajdują odzwierciedlenie informacje uwzględnione w słabej formie efektywności oraz ogólnie dostępne informacje bieżące.
- Forma silna w cenie instrumentu finansowego znajdują odzwierciedlenie informacje uwzględnione w półsilnej formie efektywności oraz bieżące informacje poufne.

Testowanie efektywności rynku

Hipotezę o słabej efektywności rynku weryfikować można:

- wykorzystując narzędzia analizy technicznej
 - rynek dyskontuje wszystko,
- stosując testy losowości
 - testy autokorelacji,
 - test ilorazów wariancji,
 - test serii,
 - ...

Testowanie autokorelacji

Cel

Badanie, czy stopy zwrotu instrumentu finansowego z różnych okresów są ze sobą powiązane.

Test Pearsona

Testujemy hipotezę

$$\begin{cases} H_0: & \rho_i = 0, \\ H_1: & \rho_i \neq 0 \end{cases}$$

wykorzystując w tym celu test

$$t = \frac{\hat{\rho}_i}{\sqrt{\frac{1-\hat{\rho}_i^2}{T-i-2}}} \sim t^{[T-i-2]}.$$

Test Ljunga-Boxa

Testujemy hipotezę

$$\begin{cases} H_0: & \sum_{i=1}^h \rho_i^2 = 0, \\ H_1: & \sum_{i=1}^h \rho_i^2 > 0 \end{cases}$$

wykorzystując w tym celu test

$$Q = T(T+2)\sum_{i=1}^{h} \frac{\hat{\rho}_i^2}{T-i} \sim \chi_h^2.$$

Test ilorazów wariancji

Cel

Badanie, czy stopy zwrotu instrumentu finansowego zmieniają się w losowy sposób.

Testujemy hipotezę

 H_0 : błądzenie losowe,

wykorzystując w tym celu test

$$SVR_h = \sqrt{rac{3hT}{2\left(2h-1
ight)\left(h-1
ight)}\left(VR_h-1
ight) \sim \mathcal{N}\left(0,1
ight)},$$

gdzie

•
$$VR_h = \frac{S^2(r_t + r_{t-1} + ... + r_{t-k+1})}{hS^2(r_t)}$$
,

• $S^2(r_t)$ — wariancja z szeregu czasowego r_t .

Test serii

Cel

Badanie, czy stopy zwrotu instrumentu finansowego mają charakter losowy.

Testujemy hipoteze H_0 : dane mają charakter losowy, wykorzystując w tym celu test

$$U = rac{K - \mathbb{E}(K)}{\sqrt{\mathsf{Var}(K)}} \sim \mathcal{N}(0, 1),$$

gdzie

- K liczba wszystkich serii obserwacji nieujemnych oraz obserwacji ujemnych,
- $\mathbb{E}(K) = \frac{2n_1n_2+n}{n}$ oraz $\text{Var}(K) = \frac{2n_1n_2(2n_1n_2-n)}{(n-1)n^2}$,
 - n, n_1, n_2 liczba odpowiednio wszystkich obserwacji, nieujemnych obserwacji, ujemnych obserwacji w szeregu.

Wprowadzenie

Idea

Na wschodzących rynkach finansowych zaobserwować można różne zachowanie instrumentów finansowych w różnych dniach tygodnia, okresach miesiąca lub fragmentach roku.

Problem

Występowanie efeków kalendarzowych na rynku finansowym stwarza warunki do budowania strategii inwestycyjnych pozwalających w krótkim czasie osiągnąć zysk bez ponoszenia ryzyka. Efekty kalendarzowe mogą zatem prowadzić do nieefektywności rynku finansowego.

Klasyfikacja

Efekt końca tygodnia

Rentowność instrumentów finansowych jest mniejsza na początku tygodnia, a większa pod koniec tygodnia.

Efekt końca miesiąca

Rentowność instrumentów finansowych jest większa w pierwszej połowie miesiąca, a mniejsza w drugiej połowie miesiąca.

Efekt końca roku

Rentowność instrumentów finansowych w grudniu maleje w stosunku do średniej rentowności rocznej, natomiast rentowność instrumentów finasnowych w styczniu rośnie w stosunku do średniej rentowności rocznej.

Test równości średnich

Testujemy hipotezę

$$\begin{cases} H_0: & \mathbb{E}(y_i) = \mathbb{E}(y_j) \\ H_1: & \mathbb{E}(y_i) \neq \mathbb{E}(y_j), \end{cases}$$

wykorzystując w tym celu statystykę testową:

$$u = \frac{\overline{y}_i - \overline{y}_j}{\sqrt{\frac{S_i^2}{T_i} + \frac{S_j^2}{T_j}}},$$

gdzie:

- \overline{y}_i średnia z obserwacji w szeregu z *i*-tego dnia tygodnia,
- S_i^2 wariancja obserwacji w szeregu z i-tego dnia tygodnia,
- T_i liczba obserwacji w szeregu z i-tego dnia tygodnia,
- i,j poniedziałek, wtorek, środa, czwartek, piątek, przy czym $i \neq j$.

Dla dużej próby $u \sim \mathcal{N}(0,1)$.

Test równości wariancji

Testujemy hipotezę

$$\begin{cases} H_0: & \sigma_1^2 = \sigma_2^2 \\ H_1: & \sigma_1^2 > \sigma_2^2, \end{cases}$$

wykorzystując w tym celu statystykę testową:

$$F = rac{\mathsf{max}\left(S_i^2, S_j^2
ight)}{\mathsf{min}\left(S_i^2, S_j^2
ight)} \sim \mathbb{F}^{[T_i - 1, T_j - 1]},$$

gdzie:

- S_1^2 , S_2^2 wariancje wyznaczone z pierwszej i drugiej próby,
- T₁, T₂ liczba obserwacji z pierwszej i drugiej grupy,
- i, j poniedziałek, wtorek, środa, czwartek, piątek, przy czym $i \neq j$.

Test istotności współczynników regresji liniowej

Rozważmy następujący model:

$$y_t = \alpha_1 PON_t + \alpha_2 WT_t + \alpha_3 SR_t + \alpha_4 CZW_t + \alpha_5 PT_t + \epsilon_t$$

gdzie:

- y_t obserwacja szeregu w okresie t,
- $D_t = \begin{cases} 1, & \text{gdy rozważamy oberwacje z dnia } D \\ 0, & \text{wpp.} \end{cases}$, przy czym $D \in (PON, WT, SR, CZW, PT)$,
- α_i współczynniki regresji dla $i \in \{1, 2, \dots, 5, \dots, 5\}$
- $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Test istotności współczynników regresji liniowej

Cel

Badanie, czy zmienna objaśniająca ma istotny wpływ na zmienną objaśnianą y.

Testujemy hipotezę

$$H_0: \alpha_i = 0$$

wobec hipotez alternatywnych

$$H_1: \alpha_i \neq 0, H_1: \alpha_i < 0, H_1: \alpha_i > 0,$$

wykorzystując w tym celu statystykę testową

$$t=\frac{\hat{\alpha}_i}{S\left(\hat{\alpha}_i\right)}\sim t^{[n-k]},$$

gdzie

- $\hat{\alpha}_i$ wyestymowana wartość parametru α_i ,
- $S(\hat{\alpha}_i)$ błąd szacunku.

Pytania?

Dziękuję za uwagę!