A Stochastic Performance Model for Pipelined Krylov Methods

Hannah Morgan¹, Matthew G. Knepley², Patrick Sanan³, L. Ridgway Scott¹

¹ University of Chicago, ² Rice University, ³ Università della Svizzera italiana

In a simple deterministic setting, during each iteration k of a Krylov method, each process takes a certain time c_p for local computation (yellow below) and w_p for waiting (red) so that the total running time is $T = \sum_k \max_p (c_p + w_p)$.

If we remove the synchronizations, the total running time is given by $T' = \max_{D} \sum_{k} (c_{D} + w_{D})$ so that no speedup is achieved.

$$ho=1$$
 $ho=0$

$$\text{speedup} = \frac{T}{T'} = \frac{\sum_k \max_p(c_p + w_p)}{\max_p \sum_k (c_p + w_p)} = 1$$

Instead, let T_p^k be a stochastic process time for process p and step k drawn from some distribution. The total time of a Krylov algorithm with synchronizations is given by $T = \sum_k \max_p T_p^k$ and the total time for the pipelined version is $T' = \max_p \sum_k T_p^k$.

$$speedup = \frac{E[T]}{E[T']} = \frac{\sum_{k} E[\max_{p} T_{p}^{k}]}{E[\max_{p} \sum_{k} T_{p}^{k}]} \approx \frac{E[\max_{p} T_{p}^{k}]}{\mu}$$

 $\frac{E[T]}{E[T']}$ has an integral representation and we can compute it for common distributions.

uniform distribution:
$$\frac{E[T]}{E[T']} = \frac{2P}{P+1} < 2$$
 for all P

exponential distribution:
$$\frac{E[T]}{E[T']} > 2$$
 for all $P \ge 4$

To show that our stochastic model is a reasonable, we fit observed PGMRES (left) and PIPECG (right) runtimes to some underlying distributions.

