

Learning to Optimize Motion Planning

Team 2: Yufan Zhao, Mingyang Wang

Advisor: Johannes Tenhumberg

Technical University Munich

Advanced Deep Learning for Robotics, WS20/21

14. January 2021

Outlook

- Problem statement
 - Optimization based motion planning
 - Reinforcement learning for optimization
- First results
- Next step

Problem Statement - OMP

- Optimization-based motion planning(OMP)
 find a feasible path = minimize the objective function
 - collision free path -> lower cost
 - shorter path -> lower cost

(obstacle cost visualization)

Objective function = Obstacle cost + Length cost

$$U(\xi) = F_{obs}(\xi) + \lambda F_{length}(\xi)$$

with
$$\xi = \{x_1, x_2, \dots, x_n\}$$
 - trajectory

Problem Statement - Learning to optimize

- Learning to optimize
 - Goal: minimize the objective function $U(\xi) = F_{obs}(\xi) + \lambda F_{length}(\xi)$
 - First thought: gradient descent, momentum, Adam...
 - General idea: in each iteration, a step vector is computed using some update formula.
 - Can the step vector be chosen automatically?
 - Taking advantage of Reinforcement Learning
 - Learn an update policy which has better performance


```
Algorithm 1 General structure of optimization algorithms
                                                                                                                                                Algorithm 1 General structure of optimization algorithms
Require: Objective function f
                                                                                                                                                Require: Objective function f
   x^{(0)} \leftarrow \text{random point in the domain of } f
                                                                      Gradient Descent \phi(\cdot) = -\gamma \nabla f(x^{(i-1)})
                                                                                                                                                  x^{(0)} \leftarrow \text{random point in the dor}
   for i = 1, 2, ... do
                                                                                                                                                  for i = 1, 2, ..., do
        \Delta x \leftarrow \phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{i=0}^{i-1})
                                                                                                                                                       \Delta x \leftarrow \phi(\Phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{i=0}^{i-1}))
        if stopping condition is met then
                                                                                                                                                       if stopping condition is met then
                                                                      Learned Algorithm \phi(\cdot) = Neural Net
              return x^{(i-1)}
                                                                                                                                                       end
        end if
                                                                                                                                                      x^{(i)} \leftarrow x^{(i-1)} + \Delta x
                                                                                                                                                                                                     f(x^{(i)})
        x^{(i)} \leftarrow x^{(i-1)} + \Delta x
                                                                                                                                                  en \Phi(.)
   end for
                                                                                                                                                                                                  Cost
```


Problem Statement - Learning to optimize

- Use reinforcement learning to train the agent
 - State space → current trajectory
 - Action space
 → update step size (points' movement of the trajectory)
 - Observation space → gradient of current objective function(to be extended)
 - Reward → negative value of objective function.
 - → If a collision-free trajectory is found, increase the reward

--> encourage the agent to reach the goal

```
Algorithm 1 General structure of optimization algorithms
                                                                                                                                               Algorithm 1 General structure of optimization algorithms
Require: Objective function f
                                                                                                                                               Require: Objective function f
   x^{(0)} \leftarrow \text{random point in the domain of } f
                                                                                            \phi(\cdot) = -\gamma \nabla f(x^{(i-1)})
                                                                       Gradient Descent
                                                                                                                                                  x^{(0)} \leftarrow \text{random point in the dor}
   for i = 1, 2, ... do
                                                                                                                                                  for i = 1, 2, ..., do
        \Delta x \leftarrow \phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{i=0}^{i-1})
                                                                                                                                                      \Delta x \leftarrow \phi(\Phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{i=0}^{i-1}))
        if stopping condition is met then
                                                                                                                                                      if stopping condition is met then
                                                                      Learned Algorithm \phi(\cdot) = Neural Net
              return x^{(i-1)}
                                                                                                                                                      end
        end if
                                                                                                                                                                                                   f(x^{(i)})
                                                                                                                                                     x^{(i)} \leftarrow x^{(i-1)} + \Delta x
        x^{(i)} \leftarrow x^{(i-1)} + \Delta x
                                                                                                                                                 en Φ(.
   end for
                                                                                                                                                                                                Cost
```


Whole pipeline

1. Generate training MP environments:

- 2d point robot, 100 environments
- Boundary: [0,64]²
- 10 rectangle obstacles
- Random positions and random size [10,20]
- Random start and end point

3. Pretraining and Reinforcement learning:

- Supervised pretraining for policy network
- Training data: $\left(\frac{\partial U}{\partial x}, -\gamma \frac{\partial U}{\partial x}\right)$
- Reinforcement learning: PPO 10k iterations
- on 100 RL environments
- Policy network = learned optimization algorithm

2. Set up reinforcement learning framework:

- Objective function U(x) by a MP environment
- State: x
- Observation: gradient ^{∂U}/_{∂x}
- Action: update of optimization algorithm Δx
- State transition: $x = x + \Delta x$
- Reward: -U(x)

Test and evaluation:

- Easy test benchmark: 1000 MP test environments
- Environment generation same as training
- Hard test benchmark: 100 MP test environments
- 200 steps GD with straight line initialization fail

First result – comparison of RL and GD motion planner

With suitable hyperparameter, RL agent output performs GD agent

Policy Net	[20,64, 64,20]	[20,100, 100,20]	[20,20, 20,20]								
Reward factor	1	1	1	0.1	0.1	0.1	Only true	Only true	Only true	0.1	0.1
Train env	easy	hard	mix	easy	hard	mix	easy	hard	mix	mix	mix
GD V	73.60%	73.80%	73.40%	72.90%	73.30%	73.40%	71.70%	71.90%	69.90%	73.50%	69.40%
RL X GD X	19.70%	19.00%	18.40%	19.70%	19.10%	17.40%	17.90%	16.80%	18.90%	17.20%	19.80%
RL 🗸 GD 🗶	4.50%	5.20%	5.80%	4.50%	5.10%	6.80%	6.30%	3.60%	5.30%	7.00%	4.40%
RL X	2.20%	2.00%	2.40%	2.90%	2.50%	2.40%	4.10%	7.70%	5.90%	2.30%	6.40%
RL 🗸	78.10%	79.00%	79.20%	77.40%	78.40%	80.20%	78.00%	75.50%	75.20%	80.50%	73.80%
GD √	75.80%	75.80%	75.80%	75.80%	75.80%	75.80%	75.80%	79.60%	75.80%	75.80%	75.80%
RL V on hard	22.00%	23.00%	23.00%	22.00%	22.00%	31.00%	24.00%	13.00%	21.00%	30.00%	16.00%

Milestone Presentation - Advanced Deep Learning for Robotics - WS20/21

First result – visualization of RL and GD motion planner

Some local optima that stuck gradient descent can be avoided by the learned optimization algorithm

Env_1 with reinforcement learning

First result – visualization of RL and GD motion planner

Some local optima that stuck gradient descent can be avoided by the learned optimization algorithm
 Env_2 with gradient descent
 Env_2 with reinforcement learning

First result – larger observation space

• Observation space includes multiple steps' gradient, position and objective value:

$$-\left[\frac{\partial U}{\partial x}\big|_{\mathbf{x}^{(t)}},\mathbf{x}^{(t)},U(\mathbf{x}^{(t)})...\frac{\partial U}{\partial x}\big|_{\mathbf{x}^{(t-k)}},\mathbf{x}^{(t-k)},U(\mathbf{x}^{(t-k)})\right]$$

- Larger observation space did not yield better result as expected
- Only similar performance can be yielded
- Maybe we have not found the suitable hyperparameter to achieve better performance

Observation space	1grad+1pos +1val	1grad+1pos +1val	2grads	2grads	5grads	5grads
Policy Net	[41,128, 128,20]	[41,200, 200,20]	[40,128, 128,20]	[40,256, 256,20]	[100,320, 320,20]	[100,512, 512,20]
Reward factor	0.1	0.1	0.1	0.1	0.1	0.1
Train env	easy	easy	easy	easy	easy	easy
RL on easy	62.00%	42.00%	78.80%	54.80%	48.60%	48.10%
GD √ on easy	81.00%	72.00%	75.20%	75.80%	75.80%	75.80%
RL 🏏 on hard	10.00%	2.00%	20.00%	2.00%	0.00%	0.00%

Current progress - random multi-start

Multi-start for optimization-based motion planning
 previously: straight line from start to end point as initialization
 now: randomly generate points as initialization → more flexibility (1 straight line plus 9 random initialization now)

Table Performance comparison w vs. w/o random start (success rate in 1000 cases)

Training env	easy				hard				mix			
Benchmark	easy		hard		easy		hard		easy		hard	
Random start	x	✓	x	√	x	✓	x	✓	x	✓	x	✓
RL	77.4%	86.6%	22.0%	51.0%	87.0%	89.5%	15.9%	56.0%	80.5%	86.5%	16.8%	55.0%
GD	75.8%	85.9%	= 2	46.0%	86.0%	88.0%	-	48.0%	80.0%	85.5%	=	49.0%

Feasible solution infeasible result

Next step

- Curriculum learning
 - train the agent starting from easy environments, then increase the complexity of environments gradually
- Hyperparameter tuning
 - find better hyperparameters combination to improve rl agent performance
- Image as observation space
 - set the color image of MP environment and current path as observation

Thank you for your attention

Back up - cost calculation

- 1. Discretize the path to point $\{x_0, x_1 \dots x_n, x_{n+1}\}$, x_0 is the start point and x_{n+1} is the end point
- 2. On the line segment between x_i and x_{i+1} , we sample additional points: $\{\xi_1^{i,i+1} \dots \xi_s^{i,i+1}\}$
- 3. Obstacle cost: $\sum_{i=1}^{n} c(x_i) + \sum_{i=0}^{n} \sum_{j=1}^{s} c(\xi_j^{i,i+1})$

$$c(x) = \begin{cases} -\mathcal{D}(x) + \frac{\varepsilon}{2} & \text{if } \mathcal{D}(x) < 0\\ \frac{1}{2\varepsilon} (\mathcal{D}(x) - \varepsilon)^2 & \text{if } 0 < \mathcal{D}(x) \le \varepsilon\\ 0 & \text{otherwise} \end{cases}$$

 $\mathcal{D}(x)$ is the distance between x and its nearest obstacle

- 4. Length cost: $\sum_{i=0}^{n} (x_{i+1} x_i)^2$
- Final objective function:

$$U(x_1 \dots x_n) = \sum_{i=1}^n c(x_i) + \sum_{j=1}^s c(\xi_j^{i,i+1}) + \lambda \sum_{i=0}^n (x_{i+1} - x_i)^2$$

Back up - Objective function

- Set up motion planning environments
- Define objective function
 - = Obstacle cost + Smoothness cost

$$U(\xi) = F_{obs}(\xi) + \lambda F_{smooth}(\xi)$$

$$F_{obs}(\xi) = \frac{1}{N_S} \sum_{n=1}^{N} \sum_{n_s=1}^{N_S} c\left(x(\xi_{n,n_s})\right)$$

$$F_{smooth}(\xi) = \sum_{n=1}^{N-1} (x(\xi_{n+1}) - x(\xi_n))^2$$

Original environment

Obstacle cost Visualization (easy case)

Obstacle cost Visualization (hard case)

with
$$c(x) = \begin{cases} -D(x) + \frac{1}{2}\varepsilon, & \text{if } D(x) < 0\\ \frac{1}{2\varepsilon}(D(x) - \varepsilon)^2, & \text{if } 0 < D(x) \le \varepsilon\\ 0 & \text{otherwise} \end{cases}$$

where we use signed distance field for obstacle presentation

$$D(x) = d(x) - \dot{d}(x)$$