Q 1.	The see	r ie lha bie	her books	: avuery(r	1) / avery (M+1) tembili				23K 01)51 Er	nman f	<i>+</i> 1;	
					ry - yuerge									
	avueny (n) >avueny (**+1) downh	in										
	using 1	ill Climbina	Algorithn	n :										
	det fina	x_peak(1	v):											
	CUrve	nt = 0												
	While	current c	∠ N:											
	i¢	omeny (a	arrent)∠q	vuery Courr	en+1) :									
		curren++	= 1											
		else:												
		break												
		return	current											
	This pse	udo ode	enipped .	depicts d	UTu star1-	index a	at D							
	teeps m	oving riq	nt as lt	ie elevat	ton incr	eases and	d Then							
	rcturns	Trev er	ndex for	the de	cueaning	elevatio	on,							

Dry run of unromosome ((shown)	Time used COSH (timex (OSH)
Tank 1 → f3 (00)+=q, thme=5)	F1: 7+6+3=16 Task 1 -> 45
Task 2 \rightarrow F2 (00st = 14, time = 8)	F2: $8+9=17$ Task 2 \longrightarrow 112
Task 3 \rightarrow F3 (lost =7, time = 4)	F3: 5+4 = 9 Task3 -> 28
Task 4 \rightarrow f1 (cost=12, time=7)	Task 4 -> 84
Task $5 \rightarrow fl$ (cost = 14, time = 6)	Task 5 → 84
Task $6 \rightarrow FI$ ($cosh = a$, time = 3)	Task 6 -> 27
Task $7 \longrightarrow f2$ (cost=12, time $\leq a$)	Task 7 -> 108
	Total = 448
	No penalty -> fitness
Rowlette Wheel Selection:	
parents chosen for crossover ((1, (2)	Mutation:
The lower the costs the better.	20% chance
	c1: [3,1,3,2,1,1,3]
One-Poini- Cross Over:	random swap of tasks in any chromosome
selected position: 3	
C1: [3,2,3,1,1,1,2]	Repetition 9- all 8- line following steps:
c2: [2,1,3,2,2,1,3]	-sucution
after crossover	- Crestover
cl: [3,2,3,2,1,1,2]	- Mutation
Cz:[2,1,3,1,2,1,3]	- Evaluation

Question 4

You are the X player, looking at the board shown below, with five possible moves. You want to look ahead to find your best move and decide to use the following evaluation function for rating board configurations:

```
value V = 0
do over all rows, columns, diagonals R:
    if R contains three Xs, V = 1000
    else if R contains three Os, V = -1000
        else when R contains only two Xs, V = V + 100
        else when R contains only one X, V = V + 10
        else when R contains only two Os, V = V - 100
        else when R contains only one O, V = V - 100
    end do
return V
```

Draw the four configurations possible from the leftmost and rightmost board configurations below. Use the above static evaluation function to rate the 8 board configurations and choose X's best move. (A reminder: The board configurations that you draw will show possibilities for 0's next move.)

Question 5:

A. Consider the game tree shown below. Explore the tree using the alpha-beta procedure. Indicate all parts of the tree that are cut off, and indicate the winning path or paths. Strike out all static evaluation values that do not need to be computed.

B. Now consider the tree shown below. which is a mirror image of the tree shown above. Explore the tree using the alpha-beta procedure. Indicate all parts of the tree that are cut off. Indicate the winning path or paths. Strike out all static evaluation values that do not need to be computed.

0-6.								
Players								
	iender): defends	etie network						
	-acker): Increases							
		1						
Decisio	n- Making:							
	etendur): Will p	redict the atta	cken next mo	ve				
	ender will use pre							
Min (Attacker): To	16 to find a c	weakness in	the defens	e			
Stocha	astic (Random) Elements:						
Zeno 2	day Exploits lea	id to a uncun	eainty of &	access. While	the			
	cannot predict							
	w therefore, it					utch		
	applied.	3						

The Debender which is Max will pick the ben-from the highlighted outlones.

Optimal move is deploy firman at node value - 15 (assumed values via EV)

Under the guise of the Attacker always chooses the worst-case for Max.

Max evaluates au possible outcomes to pick the best worst case

Deploy firewall -> Patching reduces risk -> lamoring alents

The Max action that gives the least damage in the worst case is the right move

Expected value = -8 x D·S + -2 x D·S = -5 (firewall) d. Expected value = -12x0 5+-1x0·5= -6.5 (Patch) Experted value = -14x0.5 + -4x0.5 = -9 (19more) 2. Mates Max more flexiable, Max utilises probability therfore it has better tackling power for outcomes. A fitting plan of action here for the detender would be to use the expected values and tent the venuts accordingly.