2021 2학기

인공지능응용프로그래밍 텐서플로기반딥러닝프로그래밍

컴퓨터정보공학과
강 환수 고수

교과목 소개

- 인공지능응용프로그래밍, 텐서플로기반딥러닝프로그래밍 개요
 - 파이썬 라이브러리
 - numpy, pandas, matplotlib
 - 머신러닝과 딥러닝 개요
 - 사이킷런, 텐서플로
 - 텐서플로 기반 딥러닝 구현
 - ANN, CNN, RNN, LSTM, GRU
- 준비와 Q&A
 - 구글 colab
 - 주피터 노트북 클라우드 버전
 - 구글 계정, 깃허브 계정
 - "원격수업시스템"의 Q&A 활용

교과목 소개

- 평가
 - 중간고사 30%, 기말고사 40%, 과제물 및 퀴즈 10%
 - 코로나로 대면 시험을 못하면 평가 비중이 수정될 수 있음
 - 원칙적으로 시험은 대면 시험
 - 과제물은 "원격수업시스템"에 업로드
 - "원격수업시스템"에 반드시 제출
 - 제출기간이 지나면 0점 처리 원칙
 - _ 메일로는 불가능
 - 출석 20%(학교 규정, 학업성적 처리 지침에 따름)
 - 수업은 그 주에 꼭 시청
 - "원격수업시스템"에 명확히 시청 기간이 명시
 - _ 미 시청 시 결석 처리
- 교재
 - 시작하세요! 텐서플로 2.0 프로그래밍, 위키북스, 김환희 저
 - 파이썬 딥러닝 머신러닝 입문, 정보문화사, 오승환 저
 - 케라스 창시자에게 배우는 딥러닝, 길벗, 박해선 옮김

강좌 깃허브

- 강좌 자료
 - 전체 깃허브
 - https://github.com/ai7dnn
 - 강좌 자료 저장소
 - https://github.com/ai7dnn/2021-2-DNN
 - https://github.com/ai7dnn/2020-2-Al
 - https://github.com/lee7py

텐서플로 기반 딥러닝

컴퓨터정보공학과
강 환수 고수

텐서플로 기반 딥러닝 소개

• 인공지능 개요

- 머신러닝과 딥러닝
- _ 딥러닝
 - 인공신경망
- 머신러닝 딥러닝 라이브러리
 - 사이킷런, 텐서플로, pytorch, theano, cntk

• 주요 내용

- 텐서플로
- 인공신경망
- 심층신경망
- 회귀분석과 분류
- CNN
- RNN, LSTM

수업 개요

• 강의계획서

데이터과학 분야의 핵심 언어 파이썬

파이썬 언어의 인기

9

파이썬의 활용 영역

• 데이터 과학 학습 순서

데이터과학, 인공지능과 딥러닝

파이썬의 간결성

atilt

```
static void main(String args[]){
    int 软 = 0
    for(int i=0; i< voc.length; i++){</pre>
        String = VOC.get(i);
        boolean 돼 = 의견.matches("박불");
        if(%は){
            软 += 1
        }
    }
}
```

正的经

파이썬의 확장성

주 개발환경

- 파이썬
- 아나콘다

인공지능과 딥러닝 개요

사고나 학습, 문제해결 능력 등 인간 지능 수준의 지적 능력을 컴퓨터 하드웨어와 소프트웨어로 구현하는 기술

강한 인공지능

약한 인공지능

AI 시작

- 인간의 두뇌를 모델로 한 퍼셉트론의 원류
 - 1943년 논리학자인 월터 피츠(Walter Pitts)와 신경외과의 워렌 맥컬럭 (Warren Mc Cullonch)
 - 인간 두뇌에 관한 최초의 논리적 모델
 - 인간의 신경인 뉴런(neuron)의 작용을 2진법 논리 모델로 설명
- 앨런 튜링
 - 1950년, 논문 <Computing machinery and intelligence>을 발표
 - 생각하는 기계의 구현 가능성에 대한 내용
 - 'The Imitation Game'에서 '튜링 테스트'를 제안
 - 튜링 테스트
 - 기계도 인간의 질문에 대답한다면 '기계도 지능이 있다'라고 판단할 수 있는 있다는 테스트
 - 지금의 챗봇
 - 논문의 의미
 - 지능적 기계의 개발 가능성과 학습하는 기계 등에 관해 연구
 - 인공지능의 개념적 토대를 제공
 - 전기를 영화로 제작
 - https://www.youtube.com/watch?v=O-9qtGSEXRI

AI 용어의 등장

- 인공지능(Artificial Intelligence) 용어의 첫 사용
 - 당시 다트머스 대학에 있던 존 매카시 주관으로 개최
- 1956년 다트머스대 학술대회
 - 존 매카시가 제안한 인공지능이라는 용어가 처음 사용
 - 생각하는 기계'를 구체화하면서 '인간의 지식을 모방한 지능'인 인공지능을 논의
 - 마빈 민스키, 너대니얼 로체스터, 클로드 섀넌 등 10여명의 석학이 참석
 - 세계 최초의 AI 프로그램인 논리 연산기(Logic Theorist)를 발표

حادداء عساددا

기호주의와 연결주의

- 1950년대의 인공지능 연구의 두 부류
 - 기호주의(Symbolism)와 연결주의(Connectionism) 두 가지 분야로 구분
- 기호주의
 - 인간의 지능과 지식을 기호화하여 학습시키는 방법
 - 기호와 규칙을 사용하는 규칙 기반(Rule-based) 인공지능
 - 민스키와 매카시 등에 의해 발전
 - 전문가시스템으로 발전
- 연결주의
 - 두뇌 신경 조직을 모형화
 - 여러 신경을 네트워크 구조로 연결해 연결 강도를 학습시키는 방법
 - 신경망(Neural Network) 기반 인공지능
 - 로젠블럿과 힌턴 등에 의해 발전
 - 딥러닝으로 발전

AI와 딥러닝 역사

- 1940년대 부터 시작한 분야
 - 두 번의 혹한기를 지냄

'인공지능의 겨울', 혹한기, 암흑기: 연구, 투자, 자금 지원이 위축되는 시기를 일컫는 말이다.

- AI의 첫번째 암흑기 1974-1980
 - 마빈 민스키(Marvin Minsky):
 - 인공 신경망(Artificial Neural Network)인 퍼셉트론(Perceptron)에 대한 비판으로 촉발
- AI의 두번째 암흑기 1987-1993
 - 규칙 기반의 전문가시스템의 의구심과 한계

Python

AI와 딥러닝 역사

- 2010년 이후 여러 문제 해결
 - 최고의 전성기를 누림

이번 이야기의 주저는 사람이 아닌 모델입니다. 신경세포의 초기모델로 불리는 아달라인은 스탠포드 대학의 버나도 위드로 교수와 제2나 레드 호프가 1960년에 개반한 모델입니다

천달러로 원숭이 정도의

지능의 AI 능력

왜 지금 딥러닝이 인기?

- 딥러닝의 문제가 해결되고 있는 과정
 - 빅데이터, 계산 속도, 알고리즘

BIG DATA

인공지능 개욕

동양미래대학교 컴퓨터정보공학과 강환수 교수

인공지능과 머신러닝, 딥러닝

- 인공지능(Al: Artificial Intelligence)
 - 컴퓨터가 인간처럼 지적 능력을 갖게 하거나 행동하도록 하는 모든 기술
 - 머신러닝(machine learning)
 - 머신러닝은 기계가 스스로 학습할 수 있도록 하는 인공지능의 한 연구 분야
 - SVM(Support Vector Machine): 수학적인 방식의 학습 알고리즘
 - 딥러닝
 - 다중 계층의 신경망 모델을 사용하는 머신러닝의 일종.

머신러닝

- 기계학습이라고도 부르는 머신러닝(machine learning)
 - 주어진 데이터를 기반으로
 - 기계가 스스로 학습하여
 - 성능을 향상시키거나 최적의 해답을 찾기 위한 학습 지능 방법

머신러닝

- 스스로 데이터를 반복적으로 학습하여 기술을 터득하는 방식
 - 명시적으로 프로그래밍(explicit programming)을 하지 않아도 컴퓨터가 학습을 할수 있도록 해주는 인공지능의 한 형태
 - 더 많은 데이터가 유입되면, 컴퓨터는 더 많이 학습을 하고, 시간이 흐르면서 더 스마트 해져서 작업을 수행하는 능력과 정확도가 향상

Traditional Programming

머신러닝 분류 개요

- 머신러닝은 지도학습과 자율학습, 그리고 강화학습으로 분류
 - 지도학습(supervised learning)
 - 올바른 입력과 출력의 쌍으로 구성된 정답의 훈련 데이터(labeled data)로부터 입출력 간의 함수를 학습시키는 방법
 - k-최근접 이웃 (k-Nearest Neighbors)
 - - 선형 회귀 (Linear Regression)
 - - 로지스틱 회귀 (Logistic Regression)
 - - 서포트 벡터 머신 (Support Vector Machines (SVM))
 - - 결정 트리 (Decision Tree)와 랜덤 포레스트 (Random Forests)
 - 비지도(자율)학습(unsupervised learning)
 - 정답이 없는 훈련 데이터(unlabeled data)를 사용하여 데이터 내에 숨어있는 어떤 관계를 찾아내는 방법
 - clustering
 - 강화학습(reinforcement learning)
 - 잘한 행동에 대해 보상을 주고 잘못한 행동에 대해 벌을 주는 경험을 통해 지식을 학습하는 방법
 - _ 딥마닝의 알파고
 - 자동 게임분야

비지도 학습과 지도 학습

- 지도 학습
 - 정답이 있는 예측
- 비지도(자율) 학습
 - 군집화(클러스터링) 알고리즘

비지도학습과 강화학습

• 비지도학습

- 군집 (Clustering)
 - - k-평균 (k-Means)
 - - 계층 군집 분석 (Hierarchical Cluster Analysis (HCA))
 - - 기댓값 최대화 (Expectation Maximization)
- 시각화 (Visualization)와 차원 축소(Dimensionality reduction)
 - - 주성분 분석 (Principal Component Analysis (PCA))
 - - 커널 (kernel PCA)
 - - 지역적 선형 임베딩 (Locally-Linear Embedding (LLE))
- 연관 규칙 학습 (Association rule learning)
 - · 어프라이어리 (Apriori)
 - - 이클렛 (Eclat)

• 강화학습

 Agent가 어떤 행동을 해야 많은 보상을 받을 수 있는지 찾아내는 방법으로 학습 데이터 없이 스스로의 시행 착오만으로 학습을 진행

(그림 출처 : Hands-On Machine Learning 도서 - 한빛미디어)

머신 러닝 분류

머신러닝의 데이터

- 데이터 집합(data set)
 - 머신러닝은 데이터에 숨겨진 정보를 찾는 분야
 - 데이터가 무엇보다 중요
- 중고 자동차 데이터를 예
 - 엑셀의 테이블 형태 자료
 - 자동차의 제조사와 모델, 색상, 사용기간, 배기량, 주행거리, 연료, 신차가격
 - 특징 또는 특징 벡터
 - 중고가격
 - _ 정답
 - 표본(sample), 인스턴스(instance) 또는 데이터 포인터(data pointer)
 - 실제 중고 자동차 개개의 자료인 행
 - 데이터 수인 행 수가 표본 수(# of samples)

머신러닝과 딥러닝 비교(1)

• 머신러닝

머신러닝과 딥러닝 비교(2)

딥러닝 인공신경망(ANN) 사용 Deep learning Feature vector Label Train Data 3 connected layers (170, 35, 169, 51, 38, ...) (Bicycle) (86, 79, 50, 181, 25, ...) (Boat) ---> (13, 157, 90,178, 145, ...) (Car) (94, 90, 202, 25, 158, ...) (Plane) Test Data Feature vector Label Inference Output (?) ===== (Car) (213, 167, 7, 54, 23, ...)

머신러닝과 딥러닝(3)

Machine Learning

머신러닝과 딥러닝 비교(4)

머신 러닝과 딥 러닝의 차이점

	기계 학습	딥 러닝
데이터 의 존성	중소형 데이터 세트에서 탁월한 성능	큰 데이터 세트에서 뛰어난 성능
하드웨어 의존성	저가형 머신에서 작업하십시오.	GPU가있는 강력한 기계가 필요합니다. DL은 상당한 양의 행렬 곱셈을 수행합니다.
기능 공학	데이터를 나타내는 기능을 이해해야 함	데이터를 나타내는 최고의 기능을 이해할 필요가 없 습니다
실행 시간	몇 분에서 몇 시간	최대 몇 주. 신경망은 상당한 수의 가중치를 계산해 야합니다.

머신러닝과 딥러닝 비교(5)

• 특징과 데이터가 많을수록 딥러닝에 적합

인공신경망과 RNN

동양미래대학교 컴퓨터정보공학과 강환수 교수

인공신경망에서 시작된 딥러닝

- 퍼셉트론(perceptron)
 - 세계 최초의 인공신경망을 제안
 - 1957년 코넬대 교수, 심리학자인 프랭크 로젠블랫(Frank Rosenblatt)
 - 신경망에서는 방대한 양의 데이터를 신경망으로 유입
 - 데이터를 정확하게 구분하도록 시스템을 학습시켜 원하는 결과를 얻어냄

퍼셉트론

인공뉴런과 ANN

- 인공뉴런
 - 인간의 뇌는 1000억개의 뉴런으로 구성
 - 뇌를 구성하는 신경세포 뉴런(Neuron)의 동작 원리에 기초한 기술
 - 인간의 신경세포인 뉴런(neuron)을 모방하여 만든 가상의 신경
 - 뇌와 유사한 방식으로 입력되는 정보를 학습하고 판별하는 신경 모델
- 인공신경망(ANN: Artificial Neural Network)
 - 인공신경망(人工神經網, 영어: artificial neural network, ANN)
 - 기계학습과 인지과학에서 생물학의 신경망(동물의 중추신경계중 특히 뇌)에서 영 감을 얻은 수리적 학습 알고리즘

인공신경망 구조와 MLP

- MLP(Multi Layer Perceptron)
 - 입력층(input layer)과 출력층(output layer)
 - 다수의 신호(input)를 입력 받아서 하나의 신호(output)를 출력
 - 중간의 은닉층(hidden layer)
 - 여러 개의 층으로 연결하여 하나의 신경망을 구성

그림 10.27 ▶ 뉴런과 퍼셉트론, 신경망 개념

DNN(deep neural network)

- 심층신경망(Deep Neural Network)
 - 다중 계층인 심층신경망(deep neural network)을 사용
 - 학습 성능을 높이는 고유 특징들만 스스로 추출하여 학습하는 알고리즘
 - 입력 값에 대해 여러 단계의 심층신경망을 거쳐 자율적으로 사고 및 결론 도출
 - 초기에는 3층 이상 정도 였으나 현재는 수 백층 이상을 쌓기도

그림 10.28 ▶ 단일계층과 딥러닝의 다중계층 신경망

AI 역사와 딥러닝

https://www.youtube.com/watch?v=BUTP-YsD3nM

PNN 활용과 GPU

동양미래대학교 컴퓨터정보공학과 강환수 교수

딥러닝 활용

과거 수개월 소요되었던 딥러닝이 몇 분~수시간 만에 처리가 가능

• 이세돌을 이긴 알파고

- 2016년 3월

다중 계층의 신경망 구조로 반복 계산에는 많은 계산 능력이 필요하고 이를 고성능의 컴퓨터로 해결

• 발전

 스마트폰, 자동자, 스피커, 냉장고, TV 등 모든 주변 기기들에 인공지능이 더해져 지 능화되고 있음

구글 딥마인드

• 딥마인드(DeepMind)

- 원래 데미스 하사비스(Demis Hassabis)가 2010년 창업한 영국의 벤처 기업
- 2014년에 구글에 4억달러에 인수

• 2016년의 알파고

- 구글의 딥마인드에서 개발한 인공지능 바 둑 프로그램
 - 머신러닝의 강화학습과 신경망의 딥러닝 이 적용
- 인터넷상에 있는 3000만 건의 기보 데이터를 기반으로 1차적으로 학습
 - 다시 컴퓨터끼리 대국을 시켜 경험을 반복 학습하는 방식으로 알파고의 기력을 향상
- 딥마인드의 알파고는 2017년 말에 바둑 프로그램의 역할을 종료

딥러닝 활용

- 인간과 대화하는 지능형 에이전트와 실시간 채팅이 가능한 챗봇 (chatbot)
 - 음성인식과 자연어처리, 자동번역 등의 분야
 - 애플의 시리, 삼성의 빅스비, IBM 의 왓슨, 구글 나우, 마이크로소프트의 코타나, 아마존의 알렉사와 대시 등
- 언어 번역과 다양한 인식 분야
 - 필기체 인식, 얼굴을 비롯한 생체인식, 사물 인식, 자동자 번호판 인식
- 의료분야와 자율 주행
 - X-ray 사진 판독과 각종 진단
 - 항공기나 드론의 자율비행, 자동차의 자율주행 분야
- 예측과 생성 분야
 - 주식이나 펀드, 환율 일기예보, 경제 분야
 - 음악의 작곡과 그림을그리는 회화,소설을 쓰는 분야 등에도 활용

적대적 생성 신경망

GAN(Generative Adversarial Network)

그래픽처리 장치 GPU의 인기

- 그래픽 처리 장치 GPU(Graphics Processing Unit)
 - 그래픽 연산 처리를 하는 전용 프로세서
 - GPU 란 용어는 1999년 엔비디아(Nvidia)에서 처음 사용
- GPGPU(General Purpose Graphic Processing Unit)
 - 일반 CPU 프로세서를 돕는 보조프로세서(coprocessor)로서의 GPU
 - 중앙 처리 장치(CPU)가 맡았던 응용 프로그램들의 계산에 GPU를 사용하는 기술
 - GPU 컴퓨팅이란 GPGPU를 연산에 참여
 - 고속의 병렬처리로 대량의 행렬과 벡터를 다루는 데 뛰어난 성능을 발휘
 - 딥러닝의 심층신경망에서 빅데이터를 처리하기 위해 대량의 행렬과 벡터를 사용
 - GPU 사용이 매우 효과적
 - 12개 GPU가 2,000개의 CPU와 비슷한 계산 능력

https://www.youtube.com/watch?v=-P28LKWTzrl

CUDA

- GPU 업체인 NVIDIA의 GPU를 사용하기 위한 라이브러리 소프트웨어
 - Compute Unified Device Architecture의 약자

GPU 활용

딥러닝 라이브러리와 GPU

구글의 TPU

- 구글은 2016년
 - 텐서 처리 장치(Tensor Processing Unit)를 발표
 - 텐서란 벡터·행렬 을 의미
 - TPU는 데이터 분석 및 딥러닝용 칩으로서 벡터·행렬연산의 병렬처리에 특화
 - 텐서플로(TensorFlow)
 - TPU를 위한 소프트웨어

딥러닝을 위한 수업의 주 개발 환경

- 구글의 Colab
 - 파이썬과 머신러닝, 딥러닝 개발 클라우드 서비스
 - https://colab.research.google.com/
- 구글 계정 필요
 - 구글 드라이브를기본 저장소로 사용

인공지능

https://www.ibm.com/blogs/business-analytics/why-finance-professionals-need-artificial-intelligence/

휴머노이드, 동물 로봇

- 휴머노이드, 동물 로봇
 - https://www.youtube.com/watch?v=NR32ULxbjYc
 - https://www.youtube.com/watch?v=MT2OLv-2IEA
- 소프트뱅크의 스폿(spot)과 페퍼(pepper)
 - https://www.youtube.com/watch?v=G9p9jdmJQOQ
- 보스톤 다이나믹스 현대 인수
 - https://www.youtube.com/watch?v=0fZWjwl-Ns0
 - https://www.youtube.com/watch?v=SNbGwLh8fe0

HOME > 산업 > 자동치

현대차그룹, 로봇 기업 '보스턴 다이내믹스' 11억달러에 인수

음 김혜빈 기자 │ ② 승인 2020.12.12 09:18 │ ⊝ 댓글 0

- 소프트뱅크로 부터 인수...현대차그룹 80% 지분 보유

(사진=보스턴 다이나믹스 SNS)

현대자동차그룹이 미래사업 경쟁력 강화, 기업가치 제고, 신성장 동력 마련을 위해 로보틱스 사업을 본격화한다. 이번 보스턴 다이내믹스 인수 합의는 글로벌 로봇 시장이 기술 혁신과 로 봇 자동화 수요로 급성장할 것으로 예상된 데 따른 것이다.

현대차그룹은 총 11억달러 가치의 미국 로봇 전문 업체 '보스턴 다이내믹스(Boston Dynamics)'에 대한 지배 지분을 '소프트뱅크그룹(SoftBank Group)'으로부터 인수하기로 최종합의했다고 11일 밝혔다.

딥러닝 참고 사이트

- 텐서플로
 - https://www.tensorflow.org/
- 머신러닝 단기집중과정
 - https://developers.google.com/machine-learning/crash-course
- Naver D2
 - https://d2.naver.com/home
- Naver Tech Talks
 - https://d2.naver.com/news/2657726
- Naver edwith 인공지능
 - https://www.edwith.org/search/index?categoryId=71
- 논문으로 짚어보는 딥러닝의 맥
 - https://www.edwith.org/deeplearningchoi
- 모두를 위한 머신러닝/딥러닝(성김 교수)
 - https://hunkim.github.io/ml/
- 모두를 위한 딥러닝 시즌 2
 - https://deeplearningzerotoall.github.io/season2/

딥러닝 이해 영상

- 딥러닝 영상
 - https://www.youtube.com/watch?v=aircAruvnKk