

Norwegian University of Science and Technology Deptartment of Mathematical Sciences TMA4190 Introduction to Topology Spring 2018

Exercise set 1

- Show that every k-dimensional vector subspace V of \mathbb{R}^N is a manifold diffeomorphic to \mathbb{R}^k and that any linear map $V \to \mathbb{R}^m$ is smooth. (Remember that choosing a basis for V corresponds to choosing a linear isomorphism $\phi \colon \mathbb{R}^k \to V$. Expressing a vector in V in terms of this basis, means to attach coordinates to this vector. Since ϕ is linear, we refer to the corresponding coordinates as linear coordinates.)
- 2 a) Prove that the subspace of \mathbb{R}^3 , defined by $x^2 + y^2 z^2 = a$, is a manifold if a > 0.
 - **b)** Explain why $x^2 + y^2 z^2 = 0$ does not define a manifold.

- The torus T(a,b) is the set of points in \mathbb{R}^3 at distance b from the circle of radius a in the xy-plane, where 0 < b < a. Prove that each T(a,b) is diffeomorphic to $S^1 \times S^1 \subset \mathbb{R}^4$. What happens when b = a?
- 4 Let $N=(0,\ldots,0,1)\in S^k$ be the "north pole" on the k-dimensional sphere. The stereographic projection ϕ_N^{-1} from $S^k\setminus\{N\}$ onto \mathbb{R}^k is the map which sends a point

p to the point at which the line through N and p intersects the subspace in \mathbb{R}^{k+1} defined by $x_{k+1}=0$. (See the picture for k=2.)

a) Show that ϕ_N^{-1} is given by the formula

$$(x_1,\ldots,x_{k+1})\mapsto \frac{1}{1-x_{k+1}}(x_1,\ldots,x_k).$$

- b) Find a formula for the inverse ϕ_N of ϕ_N^{-1} , and check that both maps are smooth.
- c) Let $S = (0, ..., 0, -1) \in S^k$ be the "south pole". Describe the parametrization using the stereographic prjoction starting in S instead of N, and conclude that S^k is a k-dimensional manifold.

