Monopoles

Linden Disney-Hogg

November 2020

Contents

1	Introduction	1
	1.1 Preamble	1
	1.2 Preliminaries	1
2	The Monopole Equations	2
3	The ADHM construction	2

1 Introduction

1.1 Preamble

I already have notes on Gauge Theory, Algebraic Geometry, Solitons, and Algebraic Topology, but I have yet to actually make any notes on Monopoles. The purpose of these notes is to be a comprehensive cover of the knowledge required to understand [2]. This will include previous works by Atiyah, Donaldson, Hitchin, Nahm, and more.

1.2 Preliminaries

As with all my projects, the preliminaries will undoubtably end up being too long, but I will try keep this minimal this time:

Definition 1.1. The annihilator of $U \leq V$ is

$$U^0 = \{ f \in V^* \mid \forall u \in U, f(u) = 0 \} \le V^*$$

If V has bilinear $\langle \cdot, \cdot \rangle$ we can use the isomorphism of $V^* \cong V$ to understand

$$U^0 = \{ v \in V \mid \forall u \in U, \langle u, v \rangle = 0 \} \le V$$

Lemma 1.2. THe annihilator is a subspace, $\dim U^0 = \dim V - \dim U$.

Definition 1.3. A subspace U is called **isotropic** if $U \subset U^0$.

2 The Monopole Equations

Definition 2.1. Take a principal G-bundle $P \to M$, ω_{vol} an orientation on M, and $\langle \cdot, \cdot \rangle$ to be an ad-invariant inner product on \mathfrak{g} . Then the **Yang-Mills-Higgs actions** on M is

$$S_{YMH}[A,\phi] = \int_{M} \left[|F|^2 + |D\phi|^2 + V(\phi) \right] \omega_{vol}$$

where $F = dA + A \wedge A$ is the curvature associated to a section $A \in \Gamma(T^*M \otimes \operatorname{ad}(P))$, D = d + A is the associated covariant derivative, and $\phi \in \Gamma(\operatorname{ad}(P))$.

Remark. A common choice of potential function V is $V(\phi) = \lambda \left(1 - |\phi|^2\right)^2$, the ϕ^4 -potential.

Proposition 2.2. The variational equations corresponding to S_{YMH} are the Yang-Mills-Higgs equations

$$DF = 0 \quad (Bianchi)$$

$$D \star F = - [\phi, D\phi]$$

$$D \star D\phi = -V'(\phi)$$

3 The ADHM construction

This section follows the work first laid out in [1]. Suppose we have the following information:

- ullet W a k-dimensional vector space
- V a 2k+2-dimensional vector space with skew, non-degenerate bilinear form $(\cdot,\cdot): \wedge^2 V \to \mathbb{C}$.
- $z=(z_i)\in\mathbb{C}^4$
- $A(z) = \sum_i A_i z_i \in \text{End}(W, V)$ s.t.

$$\forall z \neq 0, \ U_z \equiv A(z)W \subset V$$
 is isotropic and k-dimensional

We now state some important properties:

Lemma 3.1. Let $E_z = \frac{U_z^0}{U_z}$, then

- $\dim E_z = 2$
- \bullet E_z inherits a non-degenerate skew bilinear
- $\forall \lambda \in \mathbb{C}^{\times}, E_z = E_{\lambda z}$.

Proof. We go point by point:

- $\dim E_z = \dim U_z^0 \dim U_z = (\dim V \dim U_z) \dim U_z = 2k + 2 2k = 2.$
- The bilinear on W is only degenerate in U_z^0 on U_z , so by quotienting by this it descends directly to E_z .

• $A(\lambda z) = \lambda A(z)$, so $A(\lambda z)(\lambda^{-1} w) = A(z)(w)$. Hence we can see $U_{\lambda z} = U_z$ and so result.

Corollary 3.2. We get a vector bundle $E \to \mathbb{CP}^3$ with group $SL(2,\mathbb{C})$.

References

- [1] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, Yu. I. Manin. Construction of instantons. *Physics Letters A*, 65(3):pp. 185-187, 1978. ISSN 0375-9601. doi:10.1016/0375-9601(78)90141-X.
- [2] H. W. Braden, V. Z. Enolski. The construction of monopoles. Communications in Mathematical Physics, 362(2):p. 547-570, 2018. ISSN 1432-0916. doi:10.1007/s00220-018-3199-4.