

Applied Statistical Analysis II

Replication Study by 23335541 Dan Zhang

Date: April 2024

It's Not Just What You Have, but Who You Know: Networks, Social Proximity to Elites, and Voting in State and Local Elections

- Source:
 - Cambridge University Press, 23 February 2017
 - Doi: 10.1017/S000305541600071X
- Authors:
 - Matthew T. Pietryka and Donald A. Debats

Paper Overviews

Question:

How individual electoral voting behavior and vote choice are affected by an individual's social proximity to elites in a social network?

Hypothesis:

Individuals more socially proximate to a city's elites should be more likely to turnout to vote in elections.

Data

- From the 1859 statewide elections in Alexandria, Virginia
- The data set has the ability to identify the network locations of potential voters and a candidate running for local elected office

hhwealth [‡]	hhwealthlog [‡]	midstatus [‡]	highstatus [‡]	owner ‡	age ‡	agelog [‡]	church ‡	usborn [‡]	z1ev ÷	z1elite_avgprox
0.050	-2.975929737	0	0	0	60	4.094345	0	1	4.57110691	0.828745
0.050	-2.975929737	Alovania	lria datå	0	35	3.555348	0	1	-0.22592667	-0.088215
0.050	-2.975929737	Alexanic	ırıa uata	0	45	3.806663	0	1	-0.22599848	-0.350204
0.530	-0.632993340	0	0	0	42	3.737670	0	0	4.57082939	0.828745
0.052	-2.937463284	1	0	0	52	3.951244	1	0	-0.14933088	1.068902
0.021	-3.816712856	1	0	0	43	3.761200	0	1	-0.22235741	0.774164

Method-interest of variables

- Explanatory variables:
- Personal attributes (Control variables)
- An individual's weighted eigenvector network centrality
- An individual's social proximity to elites

- Outcome variables:
- An individual's probability of voting

Method-Models

Model approaches:	Logistic regression models are used to predict an Individual's probability of voting		
For each interest outcome, run 3 difference	Model 1: only include Personal attributes (Control variables)		
models with difference explanatory variables:	Model 2: introduce An individual's weighted eigenvector network centrality		
onplanatory variables.	Model 3: introduce measure of an individual's elite proximity(Social proximity to elites)		

Replication

Original paper: add the status occupation as two separate variables

Replication study: consider an ordered status occupation variable for the models

Replication-Check model assumptions

- First, let's check the assumptions:

Replication-Check model assumptions

- Conduct a Hosmer and Lemeshow goodness fit:

```
Hosmer and Lemeshow goodness of fit (GOF) test

data: alexandria_turnout_1$y, fitted(alexandria_turnout_1)

X-squared = 1.5468, df = 8, p-value = (0.9919)

Hosmer and Lemeshow goodness of fit (GOF) test

data: alexandria_turnout_2$y, fitted(alexandria_turnout_2)

X-squared = 10.424, df = 8, p-value = (0.2365)

Hosmer and Lemeshow goodness of fit (GOF) test

data: alexandria_turnout_3$y, fitted(alexandria_turnout_3)

X-squared = 6.0518, df = 8, p-value = (0.6414)
```

P values greater than 0.05, can not reject null hypothesis.

Replication -Create ordered status occupation variable

```
# Create 'statuslevel' based on 'midstatus' and 'highstatus'
```

alexandria_data\$statuslevel <- ifelse(alexandria_data\$midstatus == 1, "middle status", ifelse(alexandria_data\$highstatus == 1, "high status", "non-status"))

Convert 'statuslevel' to an ordered factor

alexandria_data\$statuslevel <- factor(alexandria_data\$statuslevel, levels = c("non-status", "middle status", "high status"), ordered = TRUE)

Replication-Apply ordered status variables

```
# Create new control variables
new_controls <- c(
   "hhwealth", # Household wealth (thousands of dollars)
   "hhwealthlog", # ln(Household wealth)
   "statuslevel", # Status occupation , ordered
   "owner", # Owns home?
   "age", # Age (years)
   "agelog", # ln(Age)
   "church", # Is church member?
   "usborn" # Is U.S. born?
) %>%
   paste(collapse = " + ")
```

Replication-Fit new models

```
# MODEL 7
alexandria_turnout_7 <- paste("turnout ~ ",
             new_controls) %>% formula() %>%
 glm(data = alexandria_data,
  family = binomial(link = "logit"))
# MODEL 8
alexandria_turnout_8 <- paste("turnout ~ ",
             new_controls,
              "+ z1ev") %>% formula() %>%
 glm(data = alexandria_data,
  family = binomial(link = "logit"))
# MODEL 9
alexandria_turnout_9 <- paste("turnout ~ ",
             new_controls,
             "+ z1ev + z1elite_avgprox") %>% formula() %>%
 glm(data = alexandria_data,
  family = binomial(link = "logit"))
```

Replication-Compare with original models

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-13.500 *	-13.806 *	-14.244 *	-12.983 *	-13.456 *	-13.952
	(2.146)	(2.148)	(2.167)	(2.150)	(2.154)	(2.174)
hhwealth	-0.011 *	-0.010 *	-0.010 *	-0.011 *	-0.010 *	-0.010
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
hhwealthlog	0.063 *	0.041	0.043 *	0.063 *	0.041	0.043
	(0.021)	(0.022)	(0.022)	(0.021)	(0.022)	(0.022)
midstatus	0.687 *	0.417 *	0.290 *	7		
	(0.103)	(0.119)	(0.123)			
highstatus	0.864 *	0.633 *	0.587 *	┙		
	(0.186)	(0.193)	(0.194)			
owner	0.765 *	0.802 *	0.781 *	0.765 *	0.802 *	0.781
	(0.150)	(0.151)	(0.152)	(0.150)	(0.151)	(0.152)
age	-0.091 *	-0.097 *	-0.099 *	-0.091 *	-0.097 *	-0.099
	(0.020)	(0.020)	(0.021)	(0.020)	(0.020)	(0.021)
agelog	4.378 *	4.615 *	4.738 *	4.378 *	4.615 *	4.738
	(0.808)	(0.810)	(0.817)	(0.808)	(0.810)	(0.817)
church	0.881 *	0.879 *	0.582 *	0.881 *	0.879 *	0.582
	(0.106)	(0.107)	(0.125)	(0.106)	(0.107)	(0.125)
usborn	0.723 *	0.606 *	0.543 *	0.723 *	0.606 *	0.543
	(0.119)	(0.123)	(0.124)	(0.119)	(0.123)	(0.124)
z1ev		-0.162 *	-0.235 *		-0.162 *	-0.235
		(0.038)	(0.041)		(0.038)	(0.041)
z1elite_avgprox			0.557 *			0.557
٥.			(0.125)			(0.125)
statuslevel.L				0.611 *	0.448 *	0.415
				(0.131)	(0.136)	(0.137)
statuslevel.Q				-0.208 *	-0.082	0.003
`				(0.090)	(0.094)	(0.096)
AIC	2697.508	2680.728	2659.522	2697.508	2680.728	2659.522
BIC	2754.543	2743.466	2727.964	2754.543	2743.466	2727.964
Log Likelihood	-1338.754	-1329.364	-1317.761	-1338.754	-1329.364	-1317.761
Deviance	2677.508	2658.728	2635.522	2677.508	2658.728	2635.522
Num. obs.	2216	2216	2033.322	2216	2038.728	2033.322

^{*} p < 0.05

Replication-Check model fitting again

```
data: alexandria_turnout_7$y, fitted(alexandria_turnout_7)
X-squared = 1.5468, df = 8, p-value = 0.9919

    Hosmer and Lemeshow goodness of fit (GOF) test

data: alexandria_turnout_8$y, fitted(alexandria_turnout_8)
X-squared = 10.424, df = 8, p-value = 0.2365

    Hosmer and Lemeshow goodness of fit (GOF) test

data: alexandria_turnout_9$y, fitted(alexandria_turnout_9)
X-squared = 6.0518, df = 8, p-value = 0.6414
```

Hosmer and Lemeshow goodness of fit (GOF) test

No too much difference between the two models, GDF and LRT tests show the evidence.