# 动态法测定良导体的热导率

# 雷逸鸣

## 1 实验条件

研究导热性质的对象为 Cu,实验中控制恒温端 冷却水流量 $Q_1$ ,脉动热源端水流量 $Q_2$ ,脉动热源周 期T为:

$$Q_1 = 0.3 L/min$$

$$Q_2 = 0.8 L/min$$

$$T = 180 s$$

实验材料基本参数:

$$c_{Cu} = 0.385 \times 10^{3} \, J \cdot kg^{-1} \cdot K^{-1}$$

$$\rho_{Cu} = 8.92 \times 10^{3} \, kg \cdot m^{-3}$$

$$\lambda_{Cu} = 4.01 \times 10^{2} \, W \cdot m^{-1} \cdot K^{-1}$$

## 2 实验测得的信号随时间的变化关系



图 1 5 组热电偶电压随时间变化关系



图 2 热电偶电压随时间变化关系

## 2.1 取动态稳定时3组峰值谷值时间

在图1中选取3组极值点列表。

表 1 动态稳定时 3 组峰值谷时间表 (指标 1, 3 对应谷值,指标 2 对应峰值)

| 序号 | $t_1/s$ | $U_1/\mathrm{m}V$ | $t_2/s$ | $U_2/\mathrm{m}V$ | t <sub>3</sub> /s | $U_3/\mathrm{m}V$ |
|----|---------|-------------------|---------|-------------------|-------------------|-------------------|
| 1  | 1458.04 | 374.2             | 1544.27 | 459.8             | 1637.68           | 375.0             |
| 2  | 1467.02 | 352.9             | 1549.66 | 415.6             | 1644.87           | 352.2             |
| 3  | 1472.21 | 332.9             | 1555.05 | 380.7             | 1652.05           | 334.3             |
| 4  | 1479.60 | 316.5             | 1560.44 | 352.9             | 1659.24           | 317.2             |
| 5  | 1492.17 | 305.8             | 1569.42 | 331.5             | 1670.02           | 305.8             |
| 6  | 1497.56 | 294.4             | 1578.40 | 314.4             | 1673.61           | 295.1             |
| 7  | 1501.16 | 281.6             | 1581.99 | 296.6             | 1682.59           | 280.9             |
| 8  | 1508.34 | 273.1             | 1590.98 | 285.9             | 1687.98           | 274.5             |

## 2. 2 拟合分析t<sub>1</sub>数据

将指标为1的数据进行拟合得到:



图 3 到达谷值时间与热电偶序号关系图由图表可知:

$$\Delta t = (7.3 \pm 0.3) \text{ s}$$

波速:

$$v = \frac{l_0}{\Delta t} = (2.74 \pm 0.11) \times 10^{-3} m/s$$

故热导率:

$$\kappa = \frac{v^2 c \rho}{4\pi} T_{period} = (369 \pm 31) w/(m \cdot K)$$

## 2.3 拟合分析t2数据

将指标为2的数据进行拟合得到:



图 4 到达峰值时间与热电偶序号关系图由图表可知:

$$\Delta t = (6.8 \pm 0.3) \text{ s}$$

波速:

$$v = \frac{l_0}{\Delta t} = (2.94 \pm 0.12) \times 10^{-3} m/s$$

故热导率:

$$\kappa = \frac{v^2 c\rho}{4\pi} T_{period} = (425 \pm 35) w/(m \cdot K)$$

## 2.4 拟合分析t3数据

将指标为3的数据进行拟合得到:



图 5 到达峰值时间与热电偶序号关系图由图表可知:

$$\Delta t = (7.34 \pm 0.21) \text{ s}$$

波速:

$$v = \frac{l_0}{\Delta t} = (2.74 \pm 0.07) \times 10^{-3} m/s$$

故热导率:

$$\kappa = \frac{v^2 c \rho}{4\pi} T_{period} = (369 \pm 19) w / (m \cdot K)$$

## 3 振幅衰减法测量导热率

#### 3.1 实验数据:

根据测量到的数据,取连续的3个周期,测量 其峰值、谷值,得到数据如下:

表 2 动态稳定时 3 组峰值谷电压值表

| 序号 | $U_{1 \stackrel{\leftrightarrow}{lpha}}/{ m m} V$ | $U_{1i\!k\!\!\!/}/\mathrm{m}V$ | $U_{2 \stackrel{\leftrightarrow}{lpha}}/{ m m}V$ | $U_{2} \stackrel{\text{\tiny th}}{=} / \text{m} V$ | $U_{3 \stackrel{\leftrightarrow}{lpha}}/{ m m}V$ | $U_{3} \not \bowtie /mV$ | 振幅U/mV |
|----|---------------------------------------------------|--------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------|--------|
| 1  | 371                                               | 455                            | 372                                              | 455                                                | 373                                              | 457                      | 84     |
| 2  | 350                                               | 413                            | 350                                              | 413                                                | 351                                              | 414                      | 63     |
| 3  | 332                                               | 378                            | 332                                              | 379                                                | 332                                              | 379                      | 47     |
| 4  | 318                                               | 352                            | 318                                              | 351                                                | 318                                              | 352                      | 34     |
| 5  | 306                                               | 331                            | 306                                              | 331                                                | 306                                              | 331                      | 25     |
| 6  | 294                                               | 313                            | 294                                              | 313                                                | 294                                              | 313                      | 19     |
| 7  | 279                                               | 294                            | 279                                              | 294                                                | 280                                              | 294                      | 14     |
| 8  | 270                                               | 282                            | 271                                              | 283                                                | 272                                              | 284                      | 12     |

## 3.2 对以上数据的振幅进行指数拟合:



图 6 振幅随到脉动热源的距离的关系 由拟合图表可知,振幅随距离衰减常数 $t_1$ 为:  $t_1 = (0.065 \pm 0.003) m$ 由教材 P294(25.5)式:

$$t_1 = \sqrt{\frac{2\alpha}{\omega}}$$

其中, 
$$\alpha = \frac{\kappa}{co}$$
.

故导热率:

$$\kappa = \frac{1}{2}\omega c\rho t_1^2 = (253 \pm 24)w/(m \cdot K)$$

波速:

$$v = \omega \cdot t_1 = (2.27 \pm 0.11) m/s$$

## 4 误差分析

## 4.1 读数误差:

在测量中,仪器的输出数据的最小分度值为 1mV,因而在峰值附近的较长一段区域内,电压的 数值是保持不变的,这对于判断峰值位置会带来误 差。同时,在使用振幅衰减法时,由于分度值的限 制,对于8号热电偶,相对不确定度接近10%。

但由于测量波速法会对曲线进行三角函数拟 合,所以可以适当的提高精度。反之,振幅衰减法 的误差也就更大一些。

## 4.2 实验条件与理论推导的差异:

在理论过程中,我们认为热流是一维传播的,并且认为波源的单色性良好,然而在实际实验中,我们采用的是方波波源,这会使起始的几个峰的高度偏高,对应到图像上就是相较于三角函数,偏尖一些。这使得振幅衰减法的误差相较于测量波速的方法误差更大。

## 4.3 振幅衰减法误差波速法大的原因

综上所述,振幅衰减法收到测量精度,波源单 色性等影响,表现出的误差更大

## 5 分析与讨论

## 5.1 数据稳定性:

观察表 2 中的数据可以发现,输出电压的波动约为 1 mV,数据的波动 $E_U = \frac{U_2 - U_1}{U_{mean}} \approx 0.3\%$ . 因而,数据的稳定性是很好的,这也说明在足够长时间(约 5 个周期)后,可以认为达到了动态稳定。

#### 5.2 数据周期性:

实验测得周期的相对误差 $E_t = \frac{T_2 - T_1}{T_{mean}} \approx 0.5\%$ . 因而,数据的周期性也是很好的。

| 姓名 雷鬼四 学   | 号 27000 11454  | 星期 - 第 「组          | 页码 01/ |
|------------|----------------|--------------------|--------|
| ¥₩± =      | 十五. 动态泻剂则      | 室良导作的 热导率.         |        |
| 、峰峰值 (衰减   | 121.           |                    |        |
| 城: 城       | क्षांभी / १८५५ | the therefore (mV) |        |
| 1          | 1544.27        | 459.8              |        |
| 2          | 1549.66        | 415.6              |        |
| 3          | 1555,05        | 380.7              |        |
| 4          | 1560.44        | 352.9              |        |
| \$         | 1569.42        | 331.5              |        |
| 6          | 1578.40        | 314.4              |        |
| 7          | 1581.99        | 296.6              |        |
| 8          | 1590.98        | 285.9              |        |
| 8          | 13 /0, /8      | 783.7              |        |
| /6.1 /km : | 3 17 360 36    |                    |        |
| <b>建筑</b>  | uting/s        | 热电影转(mV)           |        |
| 1          | 1637.68        | 0,275              |        |
| 2          | ,644.87        | 352.2              |        |
| 3          | 1652.05        | 334.3              |        |
|            | 1659.24        | 317.2              |        |
|            |                |                    |        |
|            | 1670.02        | 302.8              |        |
| 6          | 1673.61        | 295.1              |        |
| 7          |                | 269                |        |
| 8          | 1682.59        | 250.9              |        |
|            | 1687.98        | 274.5              |        |
|            |                |                    |        |
|            |                |                    |        |
|            |                |                    |        |
|            |                |                    |        |

|   | 姓名      | 学号_      |                                                             | 星期         | 第         | 组   | 页码 | / |
|---|---------|----------|-------------------------------------------------------------|------------|-----------|-----|----|---|
|   |         |          |                                                             |            |           |     |    |   |
|   | /6 2 ·  | 序号.      |                                                             | Auto/W ++T | = ( ) ( ) |     |    |   |
|   |         | A3.      | Hin]/s                                                      | 想地像时       | G (MV)    |     |    |   |
|   | 2       | 11/2/9/2 | 1458.04                                                     | 374.2      | 1 /23 /23 |     |    |   |
|   | 3       | 484      | 1472.21                                                     | 332.9      |           |     |    |   |
|   | 4       | 174      | 1479.60                                                     | 316.5      |           |     |    |   |
| E | 5       | Case     | 1492117                                                     | 301.8      |           |     |    |   |
|   | 6       | 76       | 1497.56                                                     | 294.4      |           |     |    |   |
|   | 7       | 7.18.    | 1501,216                                                    | 281.6      |           |     |    |   |
|   | 8       | 3.34     | 1508.74                                                     |            |           |     |    |   |
|   | 8       | A Miles  | 1300174                                                     | 273.1      |           |     |    |   |
|   | 二. 基本考數 | 0.20 = 1 | 7 7 9 3                                                     |            |           |     |    |   |
|   | 11 老游冷却 | *太流量:    | Q=03L/min                                                   |            |           | 7   |    |   |
|   | 棉动鹅渥满   | 户对水流量.   | Q2 = 0.8 L /mia                                             |            | 1 45.     | 4.1 |    |   |
|   | 操动数源的   | 1.       | $Q_1 = 0.3 L / min$ $Q_2 = 0.8 L / min$ $Q_3 = 0.8 L / min$ | 350/3      | 7/2       |     |    |   |
|   | 导热气质:   | Ca       | 9 3                                                         |            |           |     |    |   |
|   |         |          |                                                             |            |           |     |    |   |
|   |         |          |                                                             |            |           |     |    |   |
|   |         |          | W(17)                                                       |            |           |     |    |   |
|   |         | 1208     | Tra at )                                                    |            |           |     |    |   |
|   |         | 1286     |                                                             |            |           |     |    |   |
|   |         |          | No. 21                                                      |            |           |     |    |   |
|   |         | 24(1)    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     |            |           |     |    |   |
|   |         | 52.5     | 17.134                                                      |            |           |     |    |   |
|   |         |          |                                                             |            |           |     |    |   |
|   |         |          |                                                             |            |           |     |    |   |
|   |         |          |                                                             |            |           |     |    |   |
|   |         |          |                                                             |            |           |     |    |   |

