11.- Causal Anaysis_04_06_turismo_gasto_completo_v_01

June 15, 2023

#

CU55_Modelo agregado de estimación del gasto medio por turista

Citizenlab Data Science Methodology > II - Data Processing Domain *** > # 11.- ECA - Exploratory Causal Analysis

Exploratory causal analysis (ECA) is the process of discovering the root causes of problems in order to identify appropriate solutions.

0.1 Tasks

Define the key challenge or setback

Determine the causes and effects of the key challenge

Use a diagram or graph to organize information

Formulate a response to the primary causes of your challenge

Review your process and address new causes and effects

0.2 File

- Input File: CU_55_06_03_gasto_municipio.csv
- Sampled Input File: CU_55_07_03_gasto_municipio.csv
- Output File: No aplica

0.2.1 Encoding

Con la siguiente expresión se evitan problemas con el encoding al ejecutar el notebook. Es posible que deba ser eliminada o adaptada a la máquina en la que se ejecute el código.

```
In [1]: Sys.setlocale(category = "LC_ALL", locale = "es_ES.UTF-8")
    'LC_COLLATE=es_ES.UTF-8;LC_CTYPE=es_ES.UTF-8;LC_MONETARY=es_ES.UTF-8;LC_NUMERIC=C;LC_TIME=es_ES.UTF-8'
```

0.3 Settings

0.3.1 Libraries to use

```
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
0.3.2 Paths
In [3]: iPath <- "Data/Input/"</pre>
        oPath <- "Data/Output/"
0.4 Data Load
OPCION A: Seleccionar fichero en ventana para mayor comodidad
   Data load using the {tcltk} package. Ucomment the line if using this option
In [4]: # file_data <- tcltk::tk_choose.files(multi = FALSE)</pre>
   OPCION B: Especificar el nombre de archivo
In [5]: iFile <- "CU_55_06_03_gasto_municipio.csv"</pre>
        file_data <- paste0(iPath, iFile)</pre>
        if(file.exists(file_data)){
            cat("Se leerán datos del archivo: ", file_data)
        } else{
            warning("Cuidado: el archivo no existe.")
Se leerán datos del archivo: Data/Input/CU_55_06_03_gasto_municipio.csv
Data file to dataframe Usar la función adecuada según el formato de entrada (xlsx, csv, json, ...)
In [6]: data <- read_csv(file_data)</pre>
Rows: 50294 Columns: 9
Column specification
Delimiter: ","
chr (5): mes, pais_orig_cod, pais_orig, mun_dest, CMUN
```

```
dbl (4): mun_dest_cod, turistas, gasto, Target

Use `spec()` to retrieve the full column specification for this data.

Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

Visualizo los datos. Estructura de los datos:

```
In [7]: data |> glimpse()
```

```
Rows: 50,294
Columns: 9
                <chr> "2019-07", "2019-07", "2019-07", "2019-07", "2019-07", "
$ mes
$ pais_orig_cod <chr> "000", "010", "011", "030", "110", "121", "123", "126",
              <chr> "Total", "Total Europa", "Total Unión Europea", "Total A
$ pais_orig
$ mun_dest_cod <dbl> 28002, 28002, 28002, 28002, 28002, 28002, 28002, 28002,
$ mun_dest
                <chr> "Ajalvir", "Ajalvir", "Ajalvir", "Ajalvir", "Ajalvir", "
$ turistas
                <dbl> 338, 290, 268, 37, 56, 54, 37, 40, 157, 116, 109, 8461,
                <chr> "002", "002", "002", "002", "002", "002", "002", "002", "002",
$ CMUN
                <dbl> 86.78, 86.78, 86.78, 86.78, 76.36, 78.92, 93.65, 102.04,
$ gasto
$ Target
                <dbl> 86.78, 86.78, 86.78, 86.78, 76.36, 78.92, 93.65, 102.04,
```

Muestra de los primeros datos:

In [8]: data |> slice_head(n = 5)

	mes	pais_orig_cod	pais_orig	mun_dest_cod	mun_dest	turistas
A spec_tbl_df: 5 Œ 9	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
	2019-07	000	Total	28002	Ajalvir	338
	2019-07	010	Total Europa	28002	Ajalvir	290
	2019-07	011	Total Unión Europea	28002	Ajalvir	268
	2019-07	030	Total América	28002	Ajalvir	37
	2019-07	110	Francia	28002	Ajalvir	56

0.5 Exploratory causal analysis

REFERENCE https://bookdown.org/paul/applied-causal-analysis/ Select columns

```
# Load the ggplot2 package
library(ggplot2)

# Create scatterplots
for (col in cols) {
    if (is.numeric(data[[col]])) {
        p <- ggplot(data, aes_string(x = col, y = 'Target')) +
            geom_point() +
            geom_smooth(method = "lm", se = FALSE, color = "red") +
            theme_minimal() +
            ggtitle(paste("Scatterplot of", col, "and Target"))
            print(p)
        }
    }
}

`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'</pre>
```


 $[\]ensuremath{\mbox{`geom_smooth()`}}\ \mbox{using formula = 'y ~ x'}$

Este análisis no aporta información relevante.

0.6 REPORT

A continuación se realizará un informe de las acciones realizadas

0.7 Main Actions Carried Out

• Se ha realizado un análisis causal básico

0.8 Main Conclusions

• Los datos son adecuados para los modelos que se preveen