5/23/24, 3:07 AM floodprobability-spritam

Regression with a Flood Prediction Dataset (Playground Series - Season 4, Episode 5)

Descriptions

The dataset for this competition (both train and test) was generated from a deep learning model trained on the Flood Prediction Factors dataset. Feature distributions are close to, but not exactly the same, as the original.

Files train.csv - the training dataset; FloodProbability is the target test.csv - the test dataset; your objective is to predict the FloodProbability for each row sample_submission.csv - a sample submission file in the correct format

Objectives

The goal of this competition is to predict the probability of a region flooding based on various factors.

About Author

Name: Shuvendu Pritam Das

Email Id: shuvendupritamdas181@gmail.com

LinkedIn Id: https://www.linkedin.com/in/shuvendupritamdas/

1. Importing Libraries and Data sets

1.1 Libraries

```
In [1]:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import sklearn
```

```
import plotly.express as px
import warnings
warnings.filterwarnings('ignore')
```

1.2 Data Sets

In [2]: df_train = pd.read_csv(r"C:\Users\shuve\Desktop\ML((GFG)\Kaggle Comp\Fload\train.csv")
 df_test = pd.read_csv(r"C:\Users\shuve\Desktop\ML((GFG)\Kaggle Comp\Fload\test.csv")

In [3]: df_train.head(3)

id MonsoonIntensity TopographyDrainage RiverManagement Deforestation Urbanization ClimateChange DamsQuality Siltation AgriculturalPractic Out[3]: 0 1 2

3 rows × 22 columns

4										•
In [4]:	df_test.h	ead(3)								
Out[4]:	id	MonsoonIntensity	TopographyDrainage	RiverManagement	Deforestation	Urbanization	ClimateChange	DamsQuality	Siltation	Agricultural

 1117957 1117958 1117959

3 rows × 21 columns

◆

[n [5]: df_train.columns

```
Index(['id', 'MonsoonIntensity', 'TopographyDrainage', 'RiverManagement',
Out[5]:
                'Deforestation', 'Urbanization', 'ClimateChange', 'DamsQuality',
                'Siltation', 'AgriculturalPractices', 'Encroachments',
                'IneffectiveDisasterPreparedness', 'DrainageSystems',
                'CoastalVulnerability', 'Landslides', 'Watersheds',
                'DeterioratingInfrastructure', 'PopulationScore', 'WetlandLoss',
                'InadequatePlanning', 'PoliticalFactors', 'FloodProbability'],
               dtvpe='object')
In [6]: df test.columns
        Index(['id', 'MonsoonIntensity', 'TopographyDrainage', 'RiverManagement',
Out[6]:
                'Deforestation', 'Urbanization', 'ClimateChange', 'DamsQuality',
                'Siltation', 'AgriculturalPractices', 'Encroachments',
                'IneffectiveDisasterPreparedness', 'DrainageSystems',
                'CoastalVulnerability', 'Landslides', 'Watersheds',
                'DeterioratingInfrastructure', 'PopulationScore', 'WetlandLoss',
                'InadequatePlanning', 'PoliticalFactors'],
               dtvpe='object')
```

1.3 Defining Features and Targets

Features:

- 1. 'id'
- 2. 'MonsoonIntensity'
- 3. 'TopographyDrainage'
- 4. 'RiverManagement'
- 5. 'Deforestation'
- 6. 'Urbanization'
- 7. 'ClimateChange'
- 8. 'DamsQuality'
- 9. 'Siltation'
- 10. 'AgriculturalPractices'
- 11. 'Encroachments'
- 12. 'IneffectiveDisasterPreparedness'
- 13. 'DrainageSystems'
- 14. 'CoastalVulnerability'

- 15. 'Landslides'
- 16. 'Watersheds'
- 17. 'DeterioratingInfrastructure'
- 18. 'PopulationScore'
- 19. 'WetlandLoss'
- 20. 'InadequatePlanning'
- 21. 'PoliticalFactors'
 - #### Target:
- 22. 'FloodProbability'

2.Data Exploration

2.1 Dimensions

```
In [7]: df_train.shape,df_test.shape
Out[7]: ((1117957, 22), (745305, 21))
```

2.2 Statistical Summary

```
In [8]: df_train.info()
```

```
RangeIndex: 1117957 entries, 0 to 1117956
Data columns (total 22 columns):
#
    Column
                                    Non-Null Count
                                                      Dtype
    ____
                                    _____
    id
 0
                                    1117957 non-null int64
    MonsoonIntensity
                                    1117957 non-null int64
    TopographyDrainage
                                    1117957 non-null int64
    RiverManagement
                                    1117957 non-null int64
    Deforestation
                                    1117957 non-null int64
    Urbanization
                                    1117957 non-null int64
    ClimateChange
                                    1117957 non-null int64
7
    DamsOuality
                                    1117957 non-null int64
    Siltation
                                    1117957 non-null int64
    AgriculturalPractices
                                    1117957 non-null int64
    Encroachments
                                    1117957 non-null int64
11 IneffectiveDisasterPreparedness 1117957 non-null int64
12 DrainageSystems
                                    1117957 non-null int64
13 CoastalVulnerability
                                    1117957 non-null int64
14 Landslides
                                    1117957 non-null int64
15 Watersheds
                                    1117957 non-null int64
16 DeterioratingInfrastructure
                                    1117957 non-null int64
17 PopulationScore
                                    1117957 non-null int64
18 WetlandLoss
                                    1117957 non-null int64
19 InadequatePlanning
                                    1117957 non-null int64
20 PoliticalFactors
                                    1117957 non-null int64
21 FloodProbability
                                    1117957 non-null float64
```

dtypes: float64(1), int64(21)
memory usage: 187.6 MB

<class 'pandas.core.frame.DataFrame'>

2.3 Dropping Id Column

```
In [9]: df_train.drop(columns= ["id"], inplace=True)
    df_train.head(2)
```

Out[9]:		MonsoonIntensity	TopographyDrainage	RiverManagement	Deforestation	Urbanization	ClimateChange	DamsQuality	Siltation	AgriculturalPractices
	0	5	8	5	8	6	4	4	3	3
	1	6	7	4	4	8	8	3	5	4

2.4 Check for Duplicacy

```
In [10]: df_train.duplicated().sum()
Out[10]: 0
```

Remark: No duplicacy found

2 rows × 21 columns

2.5 Check for Null values

In [11]: df_train.isnull().sum()

Out[11]:	MonsoonIntensity	0
ouc[II].	TopographyDrainage	0
	RiverManagement	0
	Deforestation	0
	Urbanization	0
	ClimateChange	0
	DamsQuality	0
	Siltation	0
	AgriculturalPractices	0
	Encroachments	0
	IneffectiveDisasterPreparedness	0
	DrainageSystems	0
	CoastalVulnerability	0
	Landslides	0
	Watersheds	0
	DeterioratingInfrastructure	0
	PopulationScore	0
	WetlandLoss	0
	InadequatePlanning	0
	PoliticalFactors	0
	FloodProbability	0
	dtype: int64	

Remark: No Null value Found

2.6 Descriptive Analytics

```
In [12]: df_train.describe()
```

Out[12]:		MonsoonIntensity	TopographyDrainage	RiverManagement	Deforestation	Urbanization	ClimateChange	DamsQuality	Siltation	Agricultural
	count	1.117957e+06	1.117957e+06	1.117957e+06	1.117957e+06	1.117957e+06	1.117957e+06	1.117957e+06	1.117957e+06	1.11
	mean	4.921450e+00	4.926671e+00	4.955322e+00	4.942240e+00	4.942517e+00	4.934093e+00	4.955878e+00	4.927791e+00	4.947
	std	2.056387e+00	2.093879e+00	2.072186e+00	2.051689e+00	2.083391e+00	2.057742e+00	2.083063e+00	2.065992e+00	2.06
	min	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000
	25%	3.000000e+00	3.000000e+00	4.000000e+00	4.000000e+00	3.000000e+00	3.000000e+00	4.000000e+00	3.000000e+00	3.000
	50%	5.000000e+00	5.000000e+00	5.000000e+00	5.000000e+00	5.000000e+00	5.000000e+00	5.000000e+00	5.000000e+00	5.000
	75%	6.000000e+00	6.000000e+00	6.000000e+00	6.000000e+00	6.000000e+00	6.000000e+00	6.000000e+00	6.000000e+00	6.000
	max	1.600000e+01	1.800000e+01	1.600000e+01	1.700000e+01	1.700000e+01	1.700000e+01	1.600000e+01	1.600000e+01	1.600

8 rows × 21 columns

3. EDA

3.1 Univariate Analysis

3.1.1 Distributions

```
In [13]: for i in df_train.columns:
    plt.figure(figsize = (3,3))
    print(sns.histplot(df_train[i],kde = True))
    plt.show()
```

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

3.1.2 Box-Plot

```
In [14]: for i in df_train.columns:
    plt.figure(figsize = (3,3))
    print(sns.boxplot(df_train[i]), end = " ")
    plt.title(i)
    plt.show()
```

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

Axes(0.125,0.11;0.775x0.77)

5/23/24, 3:07 AM floodprobability-spritam

3.2 Multivariate Analysis

3.2.2 Correlation Matrix

In [15]: df_train.corr()

Out[15]:

	MonsoonIntensity	TopographyDrainage	RiverManagement	Deforestation	Urbanization	ClimateChange	DamsQuality	S
MonsoonIntensity	1.000000	-0.007362	-0.008070	-0.007251	-0.009309	-0.008031	-0.007787	-0
TopographyDrainage	-0.007362	1.000000	-0.009924	-0.008548	-0.010532	-0.009619	-0.007607	-0
RiverManagement	-0.008070	-0.009924	1.000000	-0.008574	-0.012292	-0.009237	-0.008711	-0
Deforestation	-0.007251	-0.008548	-0.008574	1.000000	-0.012248	-0.008266	-0.009356	-0
Urbanization	-0.009309	-0.010532	-0.012292	-0.012248	1.000000	-0.011199	-0.011128	-0
ClimateChange	-0.008031	-0.009619	-0.009237	-0.008266	-0.011199	1.000000	-0.008427	
DamsQuality	-0.007787	-0.007607	-0.008711	-0.009356	-0.011128	-0.008427	1.000000	
Siltation	-0.007836	-0.009824	-0.010058	-0.011536	-0.010153	-0.009457	-0.009401	1
AgriculturalPractices	-0.008232	-0.009496	-0.010783	-0.010039	-0.010559	-0.011517	-0.009033	-0
Encroachments	-0.010309	-0.012887	-0.011615	-0.013175	-0.010784	-0.012533	-0.010890	-0
$In effective {\tt Disaster Preparedness}$	-0.008032	-0.010746	-0.010675	-0.009512	-0.012685	-0.011346	-0.009515	-0
DrainageSystems	-0.009716	-0.010056	-0.011277	-0.010490	-0.012572	-0.009650	-0.010439	-0
CoastalVulnerability	-0.010659	-0.012526	-0.011680	-0.012388	-0.014497	-0.013005	-0.012096	-0
Landslides	-0.009121	-0.010240	-0.008994	-0.009257	-0.010582	-0.009352	-0.009924	-0
Watersheds	-0.008900	-0.011067	-0.011412	-0.010671	-0.012107	-0.009882	-0.009085	-0
DeterioratingInfrastructure	-0.008486	-0.006628	-0.005827	-0.008862	-0.010656	-0.006324	-0.009831	-0
PopulationScore	-0.008679	-0.010815	-0.006727	-0.011777	-0.011485	-0.010332	-0.009599	-0
WetlandLoss	-0.006811	-0.010267	-0.010069	-0.011004	-0.011023	-0.009376	-0.009372	-0
InadequatePlanning	-0.008155	-0.011617	-0.009673	-0.010424	-0.011584	-0.010772	-0.011374	-0
PoliticalFactors	-0.008474	-0.012350	-0.011550	-0.009661	-0.013005	-0.011379	-0.013081	-0
FloodProbability	0.189098	0.187635	0.187131	0.184001	0.180861	0.184761	0.187996	0

21 rows × 21 columns

Remark: As correlation coefficients are tends to 0, no dependent feature exists

3.2.3 Correlation Heatmap

```
In [16]: plt.figure(figsize =(15,10))
    sns.heatmap(df_train.corr())
    plt.show()
```


4. Feature Engineering

4.1 Feature Transformation

4.1.2 Scaling

4.1.2.1 Standardization

```
In [17]: x_train = df_train.iloc[:,:20]
          y_train = df_train.iloc[:,-1]
          x test = df test.iloc[:,1:]
In [18]: x train = (x train - x train.mean())/x train.std()
          x_test = (x_test - x_test.mean())/x test.std()
In [19]: x train.head(2)
Out[19]:
             MonsoonIntensity TopographyDrainage RiverManagement Deforestation Urbanization ClimateChange DamsQuality
                                                                                                                           Siltation AgriculturalPractices
          0
                     0.038198
                                         1.467768
                                                           0.021561
                                                                         1.490362
                                                                                      0.507578
                                                                                                    -0.453941
                                                                                                                 -0.458881
                                                                                                                          -0.933107
                                                                                                                                              -0.939124
                     0.524488
                                         0.990186
                                                          -0.461021
                                                                        -0.459251
                                                                                      1.467551
                                                                                                     1.489938
                                                                                                                 -0.938943
                                                                                                                           0.034951
                                                                                                                                              -0.455692
```

4.2 Feature Extreaction

4.2.1 Principal Component Analysis

```
In [20]: from sklearn.decomposition import PCA
In [21]: x_trn = x_train
pca = PCA()
x_trn = pca.fit_transform(x_train)
```

```
explained_variance = pca.explained_variance_ratio_
print(explained_variance)

[0.05098534  0.05087619  0.0508146  0.05078321  0.0506943  0.05066361
  0.05063026  0.05061952  0.05058528  0.05051905  0.05045643  0.05041462
  0.05038968  0.05034189  0.0503254  0.05029073  0.05025888  0.05023953
  0.05011   0.04000149]
```

Remark: As it can be observed that for 95% proportion of variance explained, the number of principal components are 20. So, it is not suggested to go for PCA, as it will not reduce a significant dimension.

4.3 Feature Selection

4.3.1 Filter Method (Pearson Correlation Coefficient)

```
In [22]: for i in x_train.columns:
    if np.corrcoef(x_train[i],y_train)[1][0] > 0.56:
        print(i,"is poorly related to `Target Variable","Corr_coeff :",np.corrcoef(x_train[i],y_train)[1][0])
else:
    print("All are considered to be significant for now.")
All are considered to be significant for now.
```

Remark: As, no independent variable is highly related to dependent variable, all are taken into consideration.

5. Model Building

5.1 Splitting Training data into Model Training and Hold data (For Model Training)

```
In [23]: from sklearn.model_selection import train_test_split
    x_trn,x_tst,y_trn,y_tst=train_test_split(x_train,y_train,test_size=0.25)
```

5.1.1 Shape of Training and Test Data for Models

```
In [24]: x_trn.shape,x_tst.shape,y_trn.shape,y_tst.shape
```

```
Out[24]: ((838467, 20), (279490, 20), (838467,), (279490,))
```

5.2 Model Building

5.2.1 Importing Libraries

```
In [29]: from sklearn.ensemble import GradientBoostingRegressor
    import xgboost as xgb
    import lightgbm as lgb
    import catboost as cb
    from sklearn.experimental import enable_hist_gradient_boosting
    from sklearn.ensemble import HistGradientBoostingRegressor
```

5.2.2 Baseline Models

```
In [30]: base_model_gb = GradientBoostingRegressor(random_state=42,max_depth=10)
    base_model_xgb = xgb.XGBRegressor(random_state=42)
    base_model_lgb = lgb.LGBMRegressor(random_state=42)
    base_model_cb = cb.CatBoostRegressor(random_state=42, verbose=False)
    base_model_hgb = HistGradientBoostingRegressor(random_state=42,)
    from sklearn.model_selection import GridSearchCV
```

5.2.2.1 GradientBoostingRegressor

5.2.3 Model Accuracy of each Base models

```
In [31]: from sklearn.metrics import mean_squared_error,r2_score
```

5.2.3.1 Model Accuracy of GradientBoostingRegressor

```
In [32]: base_model_gb.fit(x_trn, y_trn)
    y_prd_1 = base_model_gb.predict(x_tst)
    mse_trn_1 = mean_squared_error(y_tst, y_prd_1)
    r2_score_trn_1 = r2_score(y_tst, y_prd_1)
    print("Gradient Boosting MSE:", mse_trn_1)
    print("Gradient Boosting r2_score:", r2_score_trn_1)
```

```
Gradient Boosting MSE: 0.000510660798632034
Gradient Boosting r2_score: 0.8042536260425572
```

5.2.3.2 Model Accuracy of XGBoostingRegressor

```
In [33]: base_model_xgb.fit(x_trn, y_trn)
y_prd_2 = base_model_xgb.predict(x_tst)
mse_trn_2 = mean_squared_error(y_tst, y_prd_2)
r2_score_trn_2 = r2_score(y_tst, y_prd_2)
print("XG Boosting MSE:", mse_trn_2)
print("XG r2_score:", r2_score_trn_2)
XG Boosting MSE: 0.0004971473252938768
```

5.2.3.3 Model Accuracy of LGBMRegressor

XG r2 score: 0.8094336073777232

```
In [34]: base_model_lgb.fit(x_trn, y_trn)
    y_prd_3 = base_model_lgb.predict(x_tst)
    mse_trn_3 = mean_squared_error(y_tst, y_prd_3)
    r2_score_trn_3 = r2_score(y_tst, y_prd_3)
    print("lg Boosting MSE:", mse_trn_3)
    print("lg r2_score:", r2_score_trn_3)

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.010661 seconds.
    You can set `force_row_wise=true` to remove the overhead.
    And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 369

[LightGBM] [Info] Number of data points in the train set: 838467, number of used features: 20
[LightGBM] [Info] Start training from score 0.504498
lg Boosting MSE: 0.0006103419392396314
lg r2_score: 0.7660438753075315
```

5.2.3.4 Model Accuracy of CatBoostRegressor

```
In [35]: base_model_cb.fit(x_trn, y_trn)
    y_prd_4 = base_model_cb.predict(x_tst)
    mse_trn_4 = mean_squared_error(y_tst, y_prd_4)
    r2_score_trn_4 = r2_score(y_tst, y_prd_4)
    print("cat Boosting MSE:", mse_trn_4)
    print("cat r2_score:", r2_score_trn_4)
```

cat Boosting MSE: 0.0004007679097207242 cat r2 score: 0.8463777416702328

5.2.3.5 Model Accuracy of HistGradientBoostingRegressor

```
In [36]: base_model_hgb.fit(x_trn, y_trn)
y_prd_5 = base_model_hgb.predict(x_tst)
mse_trn_5 = mean_squared_error(y_tst, y_prd_5)
r2_score_trn_5 = r2_score(y_tst, y_prd_5)
print("Hist Gradient Boosting MSE:", mse_trn_5)
print("Hist Gradient r2_score:", r2_score_trn_5)
Hist Gradient Boosting MSE: 0.00061027484237711
Hist Gradient r2_score: 0.7660695948606628
```

5.2.4 Voting Regressor

5.2.5 Final Model

```
In [39]: voting_regressor.fit(x_trn, y_trn)

[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.031670 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 369
[LightGBM] [Info] Number of data points in the train set: 838467, number of used features: 20
[LightGBM] [Info] Start training from score 0.504498
```


6.Model Accuracy

6.1 Model Accuracy on Hold data (Model Training Data)

```
In [40]: y_prd = voting_regressor.predict(x_tst)
    mse_trn = mean_squared_error(y_tst, y_prd)
    r2_score_trn = r2_score(y_tst, y_prd)
    print("Final model MSE:", mse_trn)
    print("Final model r2_score:", r2_score_trn)

Final model MSE: 0.00046095654976258175
Final model r2 score: 0.8233062467107912
```

7. Model Prediction

7.1 Model Prediction on Test data (Model Testing Data)

```
In [41]: y_test = voting_regressor.predict(x_test)
In [46]: y_test
Out[46]: array([0.55586725, 0.44691242, 0.45401758, ..., 0.59006637, 0.53860149, 0.49536748])
```

7.2 Submission

7.2.1 Addition of Id in final submission

```
In [42]: df_test.head()
```

Out[42]:		id	MonsoonIntensity	TopographyDrainage	RiverManagement	Deforestation	Urbanization	ClimateChange	DamsQuality	Siltation	Agricultural
	0	1117957	4	6	3	5	6	7	8	7	
	1	1117958	4	4	2	9	5	5	4	7	
	2	1117959	1	3	6	5	7	2	4	6	
	3	1117960	2	4	4	6	4	5	4	3	
	4	1117961	6	3	2	4	6	4	5	5	

5 rows × 21 columns

```
In [43]: submission_df = pd.DataFrame({
        'id': df_test['id'],
        'FoodPrediction': y_test
})
In [44]: submission_df.head()
Out[44]: id FoodPrediction
O 1117957 0.555867
```

```
0 1117957 0.555867
1 1117958 0.446912
2 1117959 0.454018
3 1117960 0.456258
4 1117961 0.457879
```

```
In [45]: submission_df.to_csv('submission1.csv', index=False)
print("Submission file created successfully.")
```

Submission file created successfully.