Worksheet 18: Orthogonal Projections and Least-Squares (§5.4)

(c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

Problem 1.

- (a) Show that for any $m \times n$ matrix A, $\ker(A^{\top}) = \operatorname{im}(A)^{\perp}$.
- (b) Rewrite the equation from part (a) in three other equivalent ways using the fact that for any matrix A and subspace V of \mathbb{R}^n , $(A^{\top})^{\top} = A$ and $(V^{\perp})^{\perp} = V$.
- (c) Show that for any $m \times n$ matrix A, $\ker(A) = \ker(A^{\top}A)$.

Solution:

(a) Let A be an $m \times n$ matrix. For all $\vec{x} \in \mathbb{R}^m$,

$$\vec{x} \in \ker(A^{\top}) \iff A^{\top}\vec{x} = \vec{0}$$

$$\iff \vec{x} \cdot A\vec{e}_j = 0 \text{ for all } 1 \le j \le n$$

$$\iff \vec{x} \cdot \vec{y} = 0 \text{ for all } \vec{y} \in \operatorname{im}(A)$$

$$\iff \vec{x} \in \operatorname{im}(A)^{\perp}.$$

(b) The equation $\ker(A^{\top}) = \operatorname{im}(A)^{\perp}$ can be rewritten in the following equivalent ways:

$$\ker(A) = \operatorname{im}(A^{\top})^{\perp}$$
$$\ker(A)^{\perp} = \operatorname{im}(A^{\top})$$
$$\ker(A^{\top})^{\perp} = \operatorname{im}(A)$$

(c) If $\vec{x} \in \ker(A)$, then $A^{\top}A\vec{x} = A^{\top}\vec{0} = \vec{0}$, so $\vec{x} \in \ker(A^{\top}A)$. Conversely,

$$A^{\top}A\vec{x} = \vec{0} \quad \Rightarrow \quad A\vec{x} \in \operatorname{im}(A) \cap \ker(A^{\top}) \quad \Rightarrow \quad A\vec{x} = \vec{0} \quad \Rightarrow \quad \vec{x} \in \ker(A).$$

Problem 2. Let V be a subspace of \mathbb{R}^n with ordered basis $\mathcal{B} = (\vec{v}_1, \dots, \vec{v}_r)$. We know that the orthogonal projection map onto V is a linear transformation, so it has a standard matrix P. Let's try to find P in terms of the matrix $A = [\vec{v}_1 \cdots \vec{v}_r]$ whose columns are the basis vectors in \mathcal{B} .

(a) Explain why $A^{\top}A$ is invertible.

Solution: Since the columns of A are linearly independent, we know that $\ker(A) = \{\vec{0}\}$. Thus since $\ker(A) = \ker(A^{\top}A)$ by Problem 1(c), we have $\ker(A^{\top}A) = \{\vec{0}\}$, which implies that $A^{\top}A$ is invertible because $A^{\top}A$ is square.

(b) Show that for any $\vec{x} \in \mathbb{R}^n$, $A^{\top}\vec{x} = A^{\top}A\vec{c}$ where \vec{c} is the \mathcal{B} -coordinate vector of $\operatorname{proj}_V(\vec{x})$.

Solution: Let $\vec{x} \in \mathbb{R}^n$, and let $\vec{c} = [\operatorname{proj}_V(\vec{x})]_{\mathcal{B}}$, so $A\vec{c} = \operatorname{proj}_V(\vec{x})$. Note that $\vec{x} - \operatorname{proj}_V(\vec{x}) \in V^{\perp} = \ker(A^{\top})$, so $A^{\top}\vec{x} = A^{\top}\operatorname{proj}_V(\vec{x})$. Then $A^{\top}\vec{x} = A^{\top}\operatorname{proj}_V(\vec{x}) = A^{\top}A\vec{c}$.

(c) Conclude that $P = A(A^{T}A)^{-1}A^{T}$. What is P if \mathcal{B} is orthonormal?

Solution: From parts (a) and (b), we see that for all $\vec{x} \in \mathbb{R}^n$, $(A^{\top}A)^{-1}A^{\top}\vec{x} = [\operatorname{proj}_V(\vec{x})]_{\mathcal{B}}$, and thus

$$A(A^{\top}A)^{-1}A^{\top}\vec{x} = A[\operatorname{proj}_V(\vec{x})]_{\mathcal{B}} = \operatorname{proj}_V(\vec{x}).$$

Hence $P = A(A^{\top}A)^{-1}A^{\top}$. If \mathcal{B} is orthonormal, then $A^{\top}A = I_n$, so $P = AA^{\top}$.

(d) What are P^2 and P^{\top} ?

Solution: By direct computation using $P = A(A^{T}A)^{-1}A^{T}$, we see that both P^{2} and P^{T} equal P.

Problem 3. Let A be an $m \times n$ matrix, let $V = \operatorname{im}(A)$, let $\vec{b} \in \mathbb{R}^m$, and consider the linear system $A\vec{x} = \vec{b}$.

- (a) If the system $A\vec{x} = \vec{b}$ is consistent, what is $\text{proj}_V(\vec{b})$?
- (b) Must the linear system $A\vec{x} = \text{proj}_V(\vec{b})$ be consistent?

Solution:

- (a) If $A\vec{x} = \vec{b}$ is consistent, then $\vec{b} \in V = \operatorname{im}(A)$, so $\operatorname{proj}_V(\vec{b}) = \vec{b}$.
- (b) Yes, because $\operatorname{proj}_V(\vec{b}) \in V = \operatorname{im}(A)$.

Definition: Let A be an $m \times n$ matrix. A vector $\vec{x}^* \in \mathbb{R}^n$ is called a *least-squares solution* of the linear system $A\vec{x} = \vec{b}$ if $||A\vec{x}^* - \vec{b}|| \le ||A\vec{x} - \vec{b}||$ for all $\vec{x} \in \mathbb{R}^n$.

Problem 4. As in Problem 3, let A be an $m \times n$ matrix, let V = im(A), let $\vec{b} \in \mathbb{R}^m$, and consider the linear system $A\vec{x} = \vec{b}$.

(a) If $A\vec{x} = \vec{b}$ is consistent, what are its least-squares solutions?

Solution: If a linear system is consistent, then its least-squares solutions are just its solutions.

(b) Prove that $\operatorname{proj}_V(\vec{b})$ is the vector in V that is closest to \vec{b} ; that is, prove that $\|\vec{b} - \operatorname{proj}_V(\vec{b})\| \le \|\vec{b} - \vec{v}\|$ for all $\vec{v} \in V$. (Hint: draw a picture, and use the Pythagorean Theorem).

Solution: For all $\vec{v} \in V$,

$$(\vec{v} - \operatorname{proj}_V(\vec{b})) \cdot (\vec{b} - \operatorname{proj}_V(\vec{b})) = 0$$

since $\vec{v} - \operatorname{proj}_V(\vec{b}) \in V$ and $\vec{b} - \operatorname{proj}_V(\vec{b}) \in V^{\perp}$. So by the Pythagorean Theorem,

$$\|\vec{v} - \mathrm{proj}_V(\vec{b})\|^2 + \|\vec{b} - \mathrm{proj}_V(\vec{b})\|^2 \ = \ \|\vec{b} - \vec{v}\|^2.$$

Thus $\|\vec{b} - \operatorname{proj}_V(\vec{b})\|^2 \leq \|\vec{b} - \vec{v}\|^2$, from which the claim follows by taking square roots.

(c) Using (b), show that \vec{x}^* is a least-squares solution of $A\vec{x} = \vec{b}$ if and only if $A^{\top}A\vec{x}^* = A^{\top}\vec{b}$.

Solution: By (b), \vec{x}^* is a least-squares solution of $A\vec{x} = \vec{b}$ if and only if $A\vec{x}^* = \text{proj}_V(\vec{b})$. But since $V^{\perp} = (\text{im}A)^{\perp} = \text{ker}(A^{\top})$, we have

$$\begin{split} A\vec{x}^* &= \mathrm{proj}_V(\vec{b}) &\iff A\vec{x}^* - \vec{b} \in V^{\perp} \\ &\iff A\vec{x}^* - \vec{b} \in \ker(A^{\top}) \\ &\iff A^{\top}(A\vec{x}^* - \vec{b}) = \vec{0} \\ &\iff A^{\top}A\vec{x}^* = A^{\top}\vec{b}. \end{split}$$

(d) The equation $A^{\top}A\vec{x}^* = A^{\top}\vec{b}$ is called the *normal equation* of the system $A\vec{x} = \vec{b}$. Is the normal equation of a linear system necessarily consistent? Why or why not?

Solution: Yes, because any solution of the consistent system $A\vec{x} = \text{proj}_V(\vec{b})$ is a solution of $A^{\top}A\vec{x} = A^{\top}\vec{b}$.

Problem 5. Find a least-squares solution of the linear system $A\vec{x} = \vec{b}$ where

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}.$$

Solution: The least-squares solutions of $A\vec{x} = \vec{b}$ are the solutions of $A^{\top}A\vec{x} = A^{\top}\vec{b}$; in this case there is only one such solution, namely $\begin{bmatrix} 5/3 \\ 0 \end{bmatrix}$.