Report 2: Mycotoxin Prediction in Corn Using Machine Learning

Clipping Method is used for handling outlliers in target variable

1. Preprocessing Steps & Rationale

1.1 Data Cleaning & Normalization

- Outlier Removal: Applied the Interquartile Range (IQR) method to remove extreme values, ensuring model stability.
- **Feature Scaling:** Used **MinMaxScaler** to normalize spectral reflectance data, ensuring all features are within the same range for better model convergence.
- Clipping Extreme Values: Instead of log transformation, we applied IQR-based value clipping to the target variable.
 - **Rationale:** This prevents extreme target values from distorting predictions while maintaining meaningful variation.

1.2 Dimensionality Reduction (PCA)

- Applied Principal Component Analysis (PCA) to retain 95% variance, reducing 448 spectral bands to the top 5 most important components.
- Rationale: PCA helped remove noise and redundant information, improving model interpretability.
- Insights: PC2 and PC3 were consistently the most important features across all models.

2. Model Selection, Training & Evaluation

2.1 Models Tested

Model	MAE (Lower is Better)	RMSE (Lower is Better)	R ² Score (Higher is Better)	
-------	--------------------------	---------------------------	--	--

Model	MAE (Lower is Better)	RMSE (Lower is Better)	R ² Score (Higher is Better)
Random Forest	664.61	892.87	0.5275
XGBoost	650.61	934.76	0.4822
Tuned XGBoost	695.77	921.78	0.4964
MLP (500 iterations)	768.95	1059.00	0.335
MLP (2500 iterations)	702.12	943.41	0.4725
MLP (Tuned)	698.26	1020.17	0.3832

2.2 Best Model: Random Forest

• Performance:

MAE: 664.61RMSE: 892.87

• R² Score: 0.5275 (Best among all models tested)

• Feature Importance Insights:

PC2 (43.6%) & PC3 (23.9%) were the most important features.

3. Key Findings & Suggestions for Improvement

3.1 Key Findings

Random Forest performed best among all models tested based on R² score.

XGBoost showed competitive results, but tuning did not significantly improve performance.

MLP required more iterations to improve performance but still lagged behind tree-based models.

PCA significantly improved model accuracy by removing redundant spectral bands.

IQR-based value clipping effectively handled extreme values, but further analysis is needed to confirm its effectiveness compared to log transformation.

3.2 Observations

- Random Forest performed best overall, suggesting that simpler models work well for this dataset.
- MLP models required significantly more iterations to approach tree-based models' performance.
- XGBoost tuning did not lead to meaningful improvements, possibly due to data characteristics.

• PC2 and PC3 were consistently the most important principal components.

3.3 Areas for Improvement

Explore Hybrid Models \rightarrow Combine RF + XGB for ensemble learning.

Try Log Transformation Again \rightarrow Compare its effectiveness against clipping for handling extreme values.

Increase Dataset Size \rightarrow Deep learning models (MLP) may improve with more training data. Optimize Feature Engineering \rightarrow Instead of PCA, explore domain-specific spectral feature extraction.