Année : 2024/2025	DS 1 -S1-	2bac pc 9
fkih ben salah	durée 2h	biranzarane

PROBLÈME

I - soit la fonction u définie sur $\mathbb R$ par :

$$u(x) = x^3 + x^2 + 4x - 3$$

- 1. étudier les variations de \boldsymbol{u} sur \mathbb{R}
- 2. montrer que l'équation u(x)=0 admet une solution unique α dans $\mathbb R$ et vérifier que $0\prec \alpha \prec 1$
- 3. montrer que

$$egin{cases} orall x \geq lpha & : & u(x) \geq 0 \ orall x \leq lpha & : & u(x) \leq 0 \end{cases}$$

II - soient \boldsymbol{f} définie sur \mathbb{R}_+^* et \boldsymbol{g} définie sur \mathbb{R}_+ par :

$$f(x) = x^2 \sqrt{x} - \frac{3}{\sqrt{x}} + 1$$
 et $g(x) = 1 - (4 + x)\sqrt{x}$

- 1. a montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J qu'on déterminera
 - b vérifier que $\forall t \in \mathbb{R} : t^3 + 4t 5 = (t-1)(t^2 + t + 5)$
 - c déduire $g^{-1}(-4)$
 - d montrer que g^{-1} est dérivable en -4
 - e déterminer l'équation de la tangente á $C_{g^{-1}}$ au point d'abscisse -4
 - f on pose $a = g^{-1}(-1)$ et $h(x) = \tan(g(x))$.

montrer que h est continue sur [0, a]

- 2. a montrer que $\forall x \succ 0 : f'(x) = \frac{5x^3 + 3}{2x\sqrt{x}}$
 - b déduire que $\forall x \in]1, +\infty[:f(x)+1 \succ 0]$
 - c montrer que $f(\sqrt[6]{2}) 1 = 2^{rac{5}{12}} 3.2^{-rac{1}{12}}$
- 3. a montrer que $\forall x \succ 0: \sqrt{x} (f(x) g(x)) = u(x)$
 - b déduire que la courbe C_f se trouve au dessus de la courbe C_g sur l'intervalle $]\alpha,+\infty[$

EXERCICE

soit f une fonction deux fois dérivable sur \mathbb{R}_+^* . ci-joins la courbe de f.

 \bullet déterminer les variations de \boldsymbol{f} et le signe de \boldsymbol{f}'' sur \mathbb{R}_+^*