Example

	Dependent/ Decision attributes				
Animal	Warm- blooded	Feathers	Fur	Swims	Lays Eggs
Ostrich	Yes	Yes	No	No	Yes
Crocodile	No	No	No	Yes	Yes
Raven	Yes	Yes	No	No	Yes
Albatross	Yes	Yes	No	No	Yes
Dolphin	Yes	No	No	Yes	No
Koala	Yes	No	Yes	No	No

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Entropy(4Y,2N):
$$-(4/6)\log_2(4/6) - (2/6)\log_2(2/6)$$

= 0.91829

Now, we have to find the IG for all four attributes Warm-blooded, Feathers, Fur, Swims

$$Gain(S,A) = Entropy(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

For attribute 'Warm-blooded':

Values(Warm-blooded): [Yes,No]

$$S = [4Y,2N]$$

$$S_{Yes} = [3Y,2N] E(S_{Yes}) = 0.97095$$

$$S_{No} = [1Y,0N] E(S_{No}) = 0$$
 (all members belong to same class)

Gain(S,Warm-blooded) =
$$0.91829 - [(5/6)*0.97095 + (1/6)*0]$$

= 0.10916

For attribute 'Feathers':

Values(Feathers) : [Yes,No]

$$S = [4Y,2N]$$

$$S_{Yes} = [3Y,0N] E(S_{Yes}) = 0$$

$$S_{No} = [1Y,2N] E(S_{No}) = 0.91829$$

Gain(S,Feathers) =
$$0.91829 - [(3/6)*0 + (3/6)*0.91829]$$

= 0.45914

For attribute 'Fur':

Values(Fur) : [Yes,No]

S = [4Y,2N]

 $S_{Yes} = [0Y, 1N] E(S_{Yes}) = 0$

 $S_{No} = [4Y,1N] E(S_{No}) = 0.7219$

Gain(S,Fur) = 0.91829 - [(1/6)*0 + (5/6)*0.7219] = 0.3167

For attribute 'Swims':

Values(Swims): [Yes,No]

S = [4Y, 2N]

 $S_{Yes} = [1Y,1N] E(S_{Yes}) = 1$ (equal members in both classes)

 $S_{No} = [3Y,1N] E(S_{No}) = 0.81127$

Gain(S,Swims) = 0.91829 - [(2/6)*1 + (4/6)*0.81127] = 0.04411

Gain(S, Warm-blooded) = 0.10916

Gain(S, Feathers) = 0.45914

Gain(S,Fur) = 0.31670

Gain(S, Swims) = 0.04411

Anim al	War m- blood ed	Feath ers	Fur	Swim s	Lays Eggs
Ostric h	Yes	Yes	No	No	Yes
Croco dile	No	No	No	Yes	Yes
Raven	Yes	Yes	No	No	Yes
Albatr oss	Yes	Yes	No	No	Yes
Dolph in	Yes	No	No	Yes	No
Koala	Yes	No	Yes	No	No

Gain(S,Feathers) is maximum, so it is considered as the root node

Animal	Warm- blooded	Feathers	Fur	Swims	Lays Eggs
Crocodile	No	No	No	Yes	Yes
Dolphin	Yes	No	No	Yes	No
Koala	Yes	No	Yes	No	No

We now repeat the procedure,

S: [Crocodile, Dolphin, Koala]

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Entropy(S) =
$$-(1/3)\log_2(1/3) - (2/3)\log_2(2/3)$$

= 0.91829

For attribute 'Warm-blooded':

Values(Warm-blooded) : [Yes,No]

$$S = [1Y,2N]$$
 $S_{Yes} = [0Y,2N]$ $E(S_{Yes}) = 0$

$$S_{No} = [1Y,0N]$$
 $E(S_{No}) = 0$

Gain(S, Warm-blooded) = 0.91829 - [(2/3)*0 + (1/3)*0] = 0.91829

For attribute 'Fur':

Values(Fur) : [Yes,No]

$$S = [1Y,2N]$$
 $S_{Yes} = [0Y,1N]$ $E(S_{Yes}) = 0$

$$S_{No} = [1Y,1N]$$
 $E(S_{No}) = 1$

$$Gain(S,Fur) = 0.91829 - [(1/3)*0 + (2/3)*1] = 0.25162$$

For attribute 'Swims':

Values(Swims) : [Yes,No]

$$S = [1Y,2N] S_{Yes} = [1Y,1N] E(S_{Yes}) = 1$$

$$S_{No} = [0Y, 1N]$$
 $E(S_{No}) = 0$

Gain(S,Swims) =
$$0.91829 - [(2/3)*1 + (1/3)*0] = 0.25162$$

Gain(S,Warm-blooded) is maximum

The final decision tree will be:

