Assignment-03

Submitted by: TASNIM RAHMAN MOUMITA

ID : 22301689

Course Code : C5E260

Course Title : Digital Logic Design

Section : 05

Date of Submission: 20.04 2025

Am. to the 9. NO - 01

Amwer to the g. No. -02 (a)

(a) 16:1 mux (single)

Given, $F(A, G, C, D) = \Sigma(0, 1, 2, 7, 8, 10, 11, 13, 15)$

	I.	19	1,	13	124	15	16	17	18	19	120	122	1_12	113	$\mathcal{I}_{\mu_{\!\!\!\!/}}$	7/15	I16
A'	0	1	2	3	4	5	6	7	3	9	20	11	12	13)	14	15)	16
A											1		1	als			

Amourt to the g. NO-02(b)

(b) single 8:1 mux

	Io	$\mathcal{I}_{\mathcal{I}}$	\mathcal{I}_2	I3	I_4	I_5	I_6	17
A	0	1	2	3	4	5	6	7
4	8	9	10	1	12	13	14	(25)
	1	A	1	A	0	A	0	1

Herre, A'+ A = 1

Amwer to the 9. NO - 03 (a)

(a) 4 x 16 decoder (5) only:

Herre,

4 inputs

16 outputs

Given,
$$F(A,B,C,D) = \sum_{0,1,2,7,8,10,11,13,15,18,21,19} (0,1,2,7,8,10,11,13,15,18,21,19)$$
input = 5

$$\therefore \text{ output} = 2^5 = 32$$

: we need to use two 4x16 decoders.

Implementation:

Amower to the g. NO-03 (b) (b) 2×4 decoder(s) only 3 D 2×4 DB E 100 100 100 04 2×4 2×4 D8-2×4 D9 D10. DI 2×4 D12 D13 D14 DIS E D16 2×4 Dia D18 D19 D20 2×4 2×4 D26 D27 [P.1.0] Given,

Am. to the g. NO - 04

 $F(A,B,C,D,E) = \Sigma(0,2,5,8,11,15,18,19,23,26,29)$ exactly five 3×8 decoders.

for 5 bit → 5 variables.

Непе,	00000 → 0
	00010 - 2
	00101 → 5
	01000 - 8
	010 11 -> 11
	01111 → 15
	10010 → 18
	10011 → 19
	10 111 - 23
	11010 → 26
	11101 -29

<u>M5B</u> A	<u>15B</u>	C
0	0	0
0	1	0
1	0	0
1	. 1	0

Now, for using exactly five 3x8 decoders,

there will be 32 outputs that will enter in "OR Grate".

herre,

24 2³ 2² 2¹ 2⁰

We Know,

C = 0 = Gircound

[P.T.O.]

communer to the g. NO-05

Design Implementation of A (a 4 bit number) using a 4 bit parallel adder ?

Ano. to the g. NO-06

BCD to Excess - 6 code converter using parallel adderc:

