

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2012/13 8. Februar 2013

Prof. Dr. Fabien Morel Sandra Weigl

Lineare Algebra I

Klausur

Nachname:	Vorname:
Matrikelnr.:	Fachsemester:
Abschluss:	Bachelor, PO 🗖 2007 🗖 2010 📮 2011 Master, PO 🗖 2010 🗖 2011
	Lehramt Gymnasium: ☐ modularisiert ☐ nicht modularisiert
	□ Diplom □ Anderes:
Hauptfach:	□ Mathematik □ Wirtschaftsm. □ Inf. □ Phys. □ Stat. □
Nebenfach:	□ Mathematik □ Wirtschaftsm. □ Inf. □ Phys. □ Stat. □
Bitte schalten Lichtbild- und Bitte überprüf	der Credit Points für das Hauptfach Nebenfach (Bachelor / Master) Sie Ihr Mobiltelefon aus und legen es nicht auf den Tisch; legen Sie bitte Ihren Studienausweis sichtbar auf den Tisch. en Sie, ob Sie vier Aufgaben erhalten haben. bitte nicht in den Farben rot oder grün. Schreiben Sie auf jedes Blatt Ihren
Nachnamen Lösen Sie bitte	und Vornamen. e jede Aufgabe auf dem dafür vorgesehenen Blatt. Falls der Platz nicht ausreicht, bitte die leeren Seiten am Ende und vermerken dies auf dem Angabenblatt der
Bitte achten S deutlich durch	Sie darauf, dass Sie zu jeder Aufgabe nur eine Lösung abgeben; streichen Sie , was nicht gewertet werden soll.
Falls Sie einen	ie Ihre Aussagen! Übungsschein benötigen (nicht modularisiert), füllen Sie bitte das Formular auf
der folgenden S Durch Angabe	seines Pseudonyms links unten (z.B. die letzten vier Ziffern Ihrer Matrikelnum-

Sie haben 90 Minuten Zeit, um die Klausur zu bearbeiten.

Viel Erfolg!

mer) stimmen Sie der Veröffentlichung von Klausurergebnis und Pseudonym im Internet zu.

Pseudonym	1 1	2	3	4	Σ Σ
	·				
	/20	/10	/20	/20	/70

Name:	

Aufgabe 1.

[20 Punkte]

Sei $\phi_t : \mathbb{R}^3 \to \mathbb{R}^3$ eine \mathbb{R} -lineare Abbildung, in Abhängigkeit von einem Parameter $t \in \mathbb{R}$. Die darstellende Matrix von ϕ_t sei bezüglich der kanonischen Basis B gegeben durch:

$$M_t := M_{B,B}(\phi_t) = \begin{pmatrix} 0 & 1 & 1 \\ 1+t & 1-t & 2 \\ 1 & -1 & 0 \end{pmatrix} \in M_3(\mathbb{R}).$$

- a) Bestimmen Sie den Rang von M_t mit Hilfe des Gaußalgorithmus.
- b) Bestimmen Sie eine Basis von $\ker(\phi_t)$.
- c) Ergänze Sie die in b) gefundene Basis des Kerns von ϕ_t zu einer Basis C von \mathbb{R}^3 .
- d) Geben Sie die darstellende Matrix $M_{C,C}(\phi_t)$ von ϕ_t bezüglich der Basis C an.
- e) Bestimmen Sie das charakteristische Polynom $P_{\phi_t}(\lambda)$ von ϕ_t .
- f) Welche Eigenwerte hat die lineare Abbildung ϕ_t ?
- g) Zeigen Sie, dass M_t für $t \in \mathbb{R} \setminus \{0, -1\}$ diagonalisierbar ist.
- h) Ist M_t für $t \in \{0, -1\}$ diagonalisierbar?

Name:	ever	
Aufgabe 2.	*	[10 Punkte]
a) Kreuzen Sie für folgende Aussagen jeweils an, ob sie wahr oder fal eine Aussage als wahr, wenn sie immer zutrifft; sie ist falsch, wen Gegenbeispiel gibt. (Jede korrekte Antwort ergibt einen viertel Pur Antwort wird ein viertel Punkt abgezogen. Gar kein oder zwei Kreuzählen als falsche Antwort. Weniger als null Punkte für die gesamte Avergeben.)	n es mind nkt, für je ze bei eine	estens ein de falsche r Aussage
Sei K ein Körper, V ein K -Vektorraum und U ein K -Untervektorrau	m von V,	dann gilt:
• $u, v \in U \Rightarrow u + v \in U$	□ wahr	□ falsch
• $u, v \notin U \Rightarrow u + v \notin U$	\square wahr	\square falsch
• $u \in U, v \notin U \Rightarrow u + v \in U$	\square wahr	$\hfill\Box$ falsch
• $u \in U, v \in V, u + v \in U \Rightarrow v \in U$	\square wahr	$\hfill\Box$ falsch
$\bullet \ \ u \in U, v \notin U \Rightarrow u + v \notin U$	\square wahr	\Box falsch
• $s \in K, u \notin U \Rightarrow s \cdot u \notin U$	□ wahr	\Box falsch
Sind $\phi:U\to V$ und $\psi:V\to W$ lineare Abbildungen, dann gilt:		
• $\operatorname{Ker}(\psi \circ \phi) \subset \operatorname{Ker}(\phi)$	\square wahr	\Box falsch
$ullet$ $\operatorname{Ker}(\psi \circ \phi) \subset \operatorname{Ker}(\psi)$	\square wahr	\square falsch
$ullet$ $\operatorname{Ker}(\psi \circ \phi) \supset \operatorname{Ker}(\psi)$	\square wahr	□ falsch
$\bullet \ \operatorname{Ker}(\psi \circ \phi) \supset \operatorname{Ker}(\phi)$	□ wahr	$\hfill\Box$ falsch
• $\operatorname{Bi}(\psi \circ \phi) \subset \operatorname{Bi}(\phi)$	\square wahr	\square falsch
$ullet$ $\operatorname{Bi}(\psi \circ \phi) \subset \operatorname{Bi}(\psi)$	\square wahr	\square falsch
$ullet$ $\operatorname{Bi}(\psi \circ \phi) \supset \operatorname{Bi}(\phi)$	□ wahr	\square falsch
• $\operatorname{Bi}(\psi \circ \phi) \supset \operatorname{Bi}(\psi)$	□ wahr	□ falsch
Welche der fogenden Aussagen sind wahr?		
• Es gibt eine \mathbb{R} -lineare Abbildung $\phi: \mathbb{R}^3 \to \mathbb{R}^2$, die injektiv ist.	□ wahr	\Box falsch
• Es gibt eine \mathbb{R} -lineare Abbildung $\phi: \mathbb{R}^2 \to \mathbb{R}^3$, die injektiv ist.	\square wahr	\square falsch
• Es gibt eine \mathbb{R} -lineare Abbildung $\phi: \mathbb{R}^3 \to \mathbb{R}^2$, die surjektiv ist.	□ wahr	\square falsch
• Es gibt eine \mathbb{R} -lineare Abbildung $\phi: \mathbb{R}^2 \to \mathbb{R}^3$, die surjektiv ist.	□ wahr	□ falsch
• Jede \mathbb{R} -lineare Abbildung $\phi: \mathbb{R}^2 \to \mathbb{R}^3$ ist surjektiv.	□ wahr	\square falsch
• Jede \mathbb{R} -lineare Abbildung $\phi:\mathbb{R}^3 \to \mathbb{R}^2$ ist surjektiv.	□ wahr	\square falsch

- b) Seien $A, T \in GL_3(\mathbb{R})$, wobei $A := \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 13 & 5 \end{pmatrix}$ und $T := \begin{pmatrix} 2 & 5 & 1 \\ 3 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$
 - Geben Sie A^{-1} an:
 - Geben Sie die Determinante von A^{-1} an:
 - Geben Sie die Determinante von $(T \cdot A \cdot T^{-1})$ an:
 - \bullet Geben Sie das charakteristische Polynom von $(T\cdot A\cdot T^{-1})$ an:

Name:	
-------	--

Aufgabe 3.

[20 Punkte]

Sei K ein Körper mit $\operatorname{Char}(K) \neq 2$ und $a, b \in K$ mit $b \neq 0$. Für $n \in \mathbb{N}_{>0}$ sei zudem $f: K^{2n} \to K^{2n}$ eine K-lineare Abbildung, wobei die darstellende Matrix von f bezüglich der kanonischen Basis B wie folgt definiert ist: $A = (a_{ij})_{i,j} := M_{B,B}(f)$ mit

$$a_{ij} = egin{cases} a & ext{für } i = j \\ b & ext{für } i + j = 2n + 1 \ , & ext{d.h.: } A = egin{cases} a & a & 0 & b \\ & a & 0 & b \\ & & \ddots & & \ddots & \\ & 0 & & & 0 \\ & & & \ddots & & \ddots & \\ & b & 0 & & a \\ b & & & & a \end{pmatrix}$$

- a) Beweisen Sie mittels Induktion: $Det(A) = (a^2 b^2)^n$.
- b) Bestimmen Sie das charakteristische Polynom von f.
- c) Berechnen Sie die Eigenwerte von f und geben Sie eine Basis der zugehörigen Eigenräume an.
- d) Ist A diagonalisierbar?
- e) Was ändert sich, wenn die Charakteristik des Körpers 2 ist?

Name:

Aufgabe 4.

[20 Punkte]

Seien K ein Körper, V ein K-Vektorraum der Dimension $n < \infty$ und $C = (v_1, \ldots, v_n)$ eine Basis von V. Zudem sei $m \in \mathbb{Z}$ mit $1 \le m \le n$ und $W = \langle v_1, \ldots, v_m \rangle$. Sei nun $f: V \to V$ eine K-lineare Abbildung.

a) Zeigen Sie: W ist genau dann stabil unter f, d.h. $f(W) \subset W$, wenn $M_{C,C}(f)$ von der Form $\begin{pmatrix} G & H \\ 0 & J \end{pmatrix}$ ist, wobei $G \in M_m(K)$ und $J \in M_{n-m}(K)$.

Nehmen Sie ab nun an, dass W unter f stabil ist. Wir bezeichnen die Einschränkung von f auf W mit $f|_W:W\to W$.

- b) Zeigen Sie, dass $f':V/W\to V/W:\overline{x}\mapsto \overline{f(x)}$ eine K-lineare Abbildung ist.
- c) Zeigen Sie, dass $C' = (\overline{v_{m+1}}, \dots, \overline{v_n})$ eine Basis von V/W ist und dass $M_{C',C'}(f') = J$ gilt.
- d) Beweisen Sie: $Det(f) = Det(f|_W) \cdot Det(f')$.
- e) Beweisen oder widerlegen Sie die folgende Aussage: Es existiert immer ein unter f stabiler Untervektorraum W' von V so, dass V = W + W' gilt.