Math 251, Wed 30-Sep-2020 -- Wed 30-Sep-2020 Discrete Mathematics
Fall 2020

Wednesday, September 30th 2020

Wk 5, We

Topic:: Sequences and sums

Read:: Rosen 2.4

HW:: WW SequencesAndSeries due Sat.

HW:: PS07 due Mon.

Sequences

Definition 1: A **sequence** is a function $a: A \to B$ for which $A \subseteq \mathbb{Z}$.

- Most commonly, $A = \mathbb{N}$ or \mathbb{Z}^+ , the integers beginning with either 0 or 1.
- Since the domain of a includes only integers, you can talk about a(2), a(1000), etc., but not a(2.3).
- Usually a subscript notation is adopted, a_n instead of a(n), but both refer to the same thing, the value of the sequence for input n.
- The specification of inputs is somewhat arbitrary, less important than the outputs themselves. Different ways of naming the sequence

Patterns and formulas

Sey our first term is subscripted of o. Can you recognize a pattern and add several terms?

Sequences described with a recurrence relation. Write five terms for a sequence that follows this prescription. Answers can be checked for validity. The valid ones are called **solutions**.

1.
$$a_n = 2a_{n-1} - a_{n-2}$$
 0, 1, 2, 3, 4, ...

growthi 2. $a_n = \frac{1}{3}a_{n-1}$ 162, 54, 18, 6, 2, ...

3. $a_n = 2 - a_{n-2}$ 1, 1, 1, 1, ...

1, 3, 1,-1,),3,

Are solutions to these unique?

If not, could additional specifications make them unique? (initial conditions)

Special sequences: arithmetic and geometric

Arithmetic sequences: Weed starting value a_0 Recurrence relation $a_n = a_{n-1} + d$ (some set d)

Ex. $q_0=5$, d=11 quarates arithmetic say. 5, 16, 27, 38, ...

Therefore relation $q_n=q_{n-1}+11$.

 $\begin{array}{lll}
S_0 & \alpha_1 = \alpha_3 + 11 = (\alpha_2 + 11) + 11 = \alpha_2 + 2(11) = \alpha_1 + 3(11) = \alpha_0 + 4(11) \\
&= 5 + 4(11)
\end{array}$

More generally a = 5 + 11n closed/explicit formula

Geometric seguence: Need starting value a a multiplier v (common vatio)

Maurener relation: an = ran-1

 $(2a_1) = \frac{2}{a_1} = \frac{2}{a_2} = \frac{2}{a_1} = \frac{2}{a_2} = \frac{2}{a_1} = \frac{4}{a_2}$

Generally an = 2 a

Series: summing terms in a sequence

• summation notation

$$\sum_{j=0}^{5} a_{j} = a_{j} + a_{j} + a_{2} + a_{3} + a_{4} + a_{5}$$

• different forms but same sum

$$\int_{1}^{2} \left[\frac{1}{2} \left(\frac{1}{k+3} \right) - 1 \right]^{2} = \left(\frac{1}{2} \cdot \frac{3}{4} - \frac{1}{4} \right)^{2} + \cdots + \left(\frac{1}{2} \cdot \frac{7}{4} - \frac{1}{4} \right)^{2}$$

$$\int_{1}^{2} \left[\frac{1}{2} \left(\frac{1}{k+3} \right) - 1 \right]^{2} = \left(\frac{1}{2} \cdot \frac{3}{4} - \frac{1}{4} \right)^{2} + \cdots + \left(\frac{1}{2} \cdot \frac{7}{4} - \frac{1}{4} \right)^{2}$$

• examples

1. $\sum_{j=3}^{7} (2j-1)^2 = (2\cdot3-1)^2 + (2\cdot4-1)^2 + (2\cdot5-1)^2 + (2\cdot7-1)^2$ G: $=(2\cdot7-1)^2$