a)
$$\chi_e = \chi - \chi_c$$
 $\chi_c = 1.u(t)$
 $\chi_e = \chi - \chi_c$ $\chi_c = \chi_c$
 $\chi_e = \chi_c = \chi_c$ $\chi_e = \chi_c$
 $\chi_e = \chi_c = \chi_c$
 $\chi_e = \chi_c$
 $\chi_e = \chi_c = \chi_c$
 $\chi_e = \chi_c = \chi_c$
 $\chi_e = \chi_c = \chi_c$
 $\chi_e = \chi_e$
 $\chi_e = \chi$

$$X(s) = \frac{0.1F_1X_1}{s(s+0.0a)}$$

pole s = 0s = -0.02

No the poles are not affected by the parameter

c) three settling time to = 30 whome to is the

$$SK(E) - (-0.02 + a) \times (E) = [-0.02 + a + (0.1 + b) F] + d + \times e(0)$$

 $X(E) (S + 0.02 - a) = [-0.02 + a + (0.1 + b) F] + d + \times e(0)$

$$S(S+0.02-a)$$
 = $\frac{d}{S(S+0.02-a)} + \frac{V_{e}(a)}{(S+0.02-a)}$

$$\frac{A}{S} + \frac{B}{(3+0.02-a)} = at F_{1}b = a + 0.2b$$

$$A(s+0.02-a) + B(s) = a + 0.2b$$

$$A(0.02-a) = a + 0.2b$$

$$A = \underbrace{a + 0.2b}_{0.02 - a}$$

when
$$s + 0.02 - a = 0$$

$$S = a - 0.02$$

$$B(a-0.0a) = a + 0.2b$$

$$B = \frac{\alpha + 0.00}{\alpha - 0.00}$$

$$\frac{C}{S} + \frac{D}{(S+0.02-a)} = \frac{d}{S(S+0.02-a)}$$

 $((S+0.02-a) + D(S) = d$
when $S=0$

when
$$s=0$$

$$C = \frac{d}{0.02-a}$$

when
$$s=a-0.02$$

$$D(a-0.02)=d$$

$$D=\frac{d}{a-0.02}$$

Laplace Transforms of Common Signals

Name	Time function, $f(t)$	Laplace tx., $F(s)$
Unit impulse	$\delta(t)$	1
Unit step	1(<i>t</i>)	$\frac{1}{s_1}$ e^{-at} $\frac{1}{s_1}$
Unit ramp	$t \cdot 1(t)$	3 74
nth order ramp	$t^n \cdot 1(t)$	$\frac{s_{n!}}{s_{n+1}}$ $te^{-at} \frac{1}{(s+a)^2}$
Sine	$\sin(bt)1(t)$	$\frac{b}{s^2 + b^2}$
Cosine	$\cos(bt)1(t)$	$\frac{\dot{s}}{s^2+b^2}$
Damped sine	$e^{-at}\sin(bt)1(t)$	$\frac{b}{(s+a)^2+b^2}$ $\frac{s+a}{s+a}$
Damped cosine	$e^{-at}\cos(bt)1(t)$	$\frac{s+a}{(s+a)^2+b^2}$ $\frac{2bs}{2bs}$
Diverging sine	$t\sin(bt)1(t)$	$\frac{2bs}{(s^2 + b^2)^2} \\ s^2 - b^2$
Diverging cosine	$t\cos(bt)1(t)$	$\frac{(s^2 - b^2)}{(s^2 + b^2)^2}$

$$X[E] = \frac{a + 0.2h}{0.02 - a} + \frac{a + 0.2h}{a - 0.00} + \frac{d}{0.02 - a} + \frac{d}{a - 0.00}$$

$$= A + Be^{(-0.00 + a)t} + (+ De^{(-0.00 + a)t} + Xe^{(a)}e^{(-0.00 + a)t}$$

2a)
$$V(t) = P(X_C - X) + I \int_0^t (X_C - X) dT$$
 with $X(0) = 0$
 $\dot{X} = -0.02X + 0.1P(X_C - X) + 0.1 \int_0^t (X_C - X) dT$
 $SX = -0.02X + 0.1(P + 1/SI)(X_C - X)$