1 Review

 $H_0: \theta = \theta_0 \text{ vs } H_1: \theta = \theta_1. \text{ LRT is MP.}$

 $H_0: \theta \leq \theta_0 \text{ vs } H_1: \theta > \theta_0 \text{ MLR in } T(X) \implies \text{UMP test rejects when } T(x) \text{ large.}$

 $H_0: \theta = \theta_0 \text{ vs } H_1; \theta \neq \theta_0.$ Exponential families \implies UMPU rejects when T(x) extreme

2 Confidence sets/invertals

Model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$

Definition 2.1. C(X) is a $1 - \alpha$ confidence set for $g(\theta)$ if $\forall \theta$

$$P_{\theta}(g(\theta) \in C(X)) \ge 1 - \alpha \tag{2.1}$$

3 Duality of tests and intervals

Suppose we have a level- α test $\phi_{\theta_0}(x)$ of $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$ for each $\theta_0 \in \Theta$. Assume non-randomized.

Let $C(x) = \{\theta : \phi_{\theta}(x) = 0\}$. C(x) is a $1 - \alpha$ confidence set for θ .

$$P_{\theta}(\theta \notin C(x)) = P_{\theta}(\underbrace{\phi_{\theta}(x)}_{\text{level-}\alpha \text{ test}} = 1) \le \alpha$$
(3.1)

Alternatively, suppose C(x) is a $1-\alpha$ confidence set for θ . To test $H_0: \theta = \theta_0$ vs $H_1; \theta \neq \theta_0$

$$\phi(x) = 1_{\theta_0 \notin C(x)} \tag{3.2}$$

Example 3.1. $X \sim \text{Exp}(\theta) = \theta^{-1} e^{-x/\theta}$. CDF is $1 - \exp^{-x/\theta}$, x > 0.

Equal tailed test: $\phi_{\theta}(x)$ rejects θ unless

$$-\theta \log(1 - \alpha/2) \le X \le -\theta \log(\alpha/2) \tag{3.3}$$

 \iff reject θ unless

$$-x^{-1}\log(1-\alpha/2) \le \theta^{-1} \le -x^{-1}\log(\alpha/2) \tag{3.4}$$

Hence

$$C(x) = x \left(\frac{-1}{\log(\alpha/2)}, \frac{-1}{\log(1 - \alpha/2)} \right)$$
(3.5)

4 Testing with nuisance parameters

$$\mathcal{P} = \{ P_{\theta,\zeta} : (\theta,\zeta) \in \Omega \subset \mathbb{R}^{r+s} \}. \ \theta \in \mathbb{R}^s, \zeta \in \mathbb{R}^r.$$
$$H_0 : \theta \in \Theta_0 \text{ vs } H_1 : \theta \in \Theta_1.$$

Presence of ζ affects the distribution of the data, so power of test $\phi(\theta)$ depends on ζ . Goal is to control the dependence of the power of the test on the parameter ζ .

Example 4.1. $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$. $\sigma^2 > 0$ unknown. $H_0: \mu = 0$ vs $H_1: \mu \neq = 0$. Nuisance parameter in this case is σ^2 .

Example 4.2.

$$X_1, \cdots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$
 (4.1)

$$Y_1, \cdots, Y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\nu, \sigma^2)$$
 (4.2)

$$H_0: \mu \le \nu \text{ vs } H_1: \mu > \nu$$

 $\theta = \mu - \nu \ (\Longrightarrow H_0: \theta \le 0). \ \zeta = (\mu + \nu, \sigma^2)$

Example 4.3.
$$X_i \stackrel{\text{indep}}{\sim} \text{Pois}(\lambda_i), i = 1, 2.$$
 $H_0 :_1 \leq \lambda_2 \text{ vs } H_1 : \lambda_1 > \lambda_2.$

 $\theta = \lambda_1/\lambda_2$. $H_0: \theta \le 1$. Nuisance λ_1 or $\lambda_1\lambda_2$ or ...

Example 4.4.
$$X_1, \dots, X_n \stackrel{\text{iid}}{\sim} P. Y_1, \dots, Y_m \stackrel{\text{iid}}{\sim} Q.$$
 $H_0: P = Q \text{ vs } H_1: P \neq Q.$

4.1 Multi-parameter exponential families

Model:

$$p_{\theta,\zeta}(x) = e^{\theta T(X) + \zeta' U(X) - A(\theta,\zeta)} h(x)$$

. (4.3)

$$H_0: \theta = \theta_0 \text{ or } H_1: \theta \leq \theta_0.$$

Under the null hypothesis, $e^{\theta T(X)}$ is constant so only $e^{\zeta' U(X)}$ is the complete sufficient statistic; the power of the test does not depend on ζ :

$$p_{\theta,\zeta}(x \mid U(x) = u) = \frac{e^{\theta T(x) + \zeta' U(x) - A(\theta,\zeta)} h(x) 1_{U(x) = u}}{\int_{U(z) = u} e^{\theta T(z) + \zeta' u - A(\theta,\zeta)} h(z) dz}$$
(4.4)

$$= e^{\theta T(x) - \tilde{A}_u(\theta)} h(x) 1_{U=u} \tag{4.5}$$

Example 4.5.

$$p_{\lambda}(x) = \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} \frac{1}{x_1! x_2!}$$
(4.6)

$$=e^{x_1\log\lambda_1+x_2\log\lambda_2-\lambda_1-\lambda_2}\frac{1}{x_1!x_2!}$$
(4.7)

$$\propto \underbrace{e^{(X_1 - X_2)}}_{T(X)} \underbrace{e^{\left(\frac{\log \lambda_1 - \log \lambda_2}{2}\right)}}_{\theta} \underbrace{e^{(X_1 + X_2)}}_{U(x)} \underbrace{e^{\left(\frac{\log \lambda_1 + \log \lambda_2}{2}\right)}}_{\zeta} e^{\frac{1}{x_1! x_2!}} \tag{4.8}$$

Condition on $X_1 + X_2 = u$:

$$p_{\theta}(x \mid x_1 + x_2 = u) \propto e^{(x_1 - x_2)\theta} \frac{u!}{x_1! x_2!}$$
(4.9)

$$p_{\theta}(x \mid x_2 = u - x_1) = e^{(2x_1 - u)\theta} \binom{u}{x_1}$$
(4.10)

$$\propto e^{x_1 \log \frac{\lambda_1}{\lambda_2}} \binom{u}{x_1} \tag{4.11}$$

$$= \operatorname{Binom}(u, \frac{\lambda_1}{\lambda_1 + \lambda_2}) \tag{4.12}$$

Reject when $T(X) = X_1 - X_2$ large \iff Reject when X_1 large (conditioned on U). For $H_0: \lambda_1 \leq \lambda_2$ reject if X_1 large compared to Binom(u, 1/2).

For a composite null, conditioning on a sufficient statistic can reduce composite null to a simple null.

4.2 UMPU Tests with nuisance parameters

Theorem 4.6. Consider testing

- (a) $H_0: \theta = \theta_0 \ vs \ \theta \neq \theta_0$
- (b) $H_0: \theta \leq \theta_0 \text{ vs } \theta > \theta_0$

in model P of the form section 4.1.

 Ω open, \mathcal{P} full rank.

There is a UMPU test of the form $\phi^*(x) = \psi(T(x), U(x))$ where

$$\psi(t,u) = \begin{cases} 1, & \text{if } t < c_1(u) \text{ or } t > c_2(u) \\ 0, & \text{if } t \in (c_1(u), c_2(u)) \\ \gamma_i, & \text{if } t = c_i(x) \end{cases}$$
(4.13)

for (a), and

$$\psi(t,u) = \begin{cases} 1, & \text{if } t > c(u) \\ 0, & \text{if } t < c(u) \\ \gamma_i, & \text{if } t = c(u) \end{cases}$$

$$(4.14)$$

for (b), where $c(\cdot)$, $\gamma(\cdot)$ chosen so

$$\mathbb{E}_{\theta_0}[\phi(x) \mid U(x) = u] = \alpha \quad \forall u \text{ for (a), (b)}$$
(4.15)

$$\mathbb{E}_{\theta_0}[\phi(x) \mid U(x) = u] = \alpha \quad \forall u \text{ for (a), (b)}$$

$$\mathbb{E}_{\theta_0}[T(x)(\phi(x) - \alpha) \mid U(x) = u] = 0 \quad \forall u \text{ for (a)}$$

$$(4.15)$$

(1) ϕ^* is unbiased, level α Proof.

- (2) Any unbiased test has $\beta(\theta_0, \zeta) = \alpha \quad \forall \zeta$ (by continuity of β)
- (3) Power $\equiv \alpha$ on boundary $\implies \mathbb{E}[\phi(X) \mid U(X) = u] \stackrel{\text{a.s.}}{=} \alpha$ (by completeness of U(X))
- (4) $\phi^*(X)$ optimal among all unbiased tests with $E_{\theta_0}[\phi \mid U] \stackrel{\mathrm{a.s.}}{=} \alpha$ (by reduction to 1-param problem)