Curiosity project - Group 06 - Heart Disease

Submitters:

Tal Carmi, ID: 039161203

Anna Mosenzon, ID: 200320836 Rami Skolozub, ID: 316736396

Part I:

- 1. The Learning problem:
 - a. a classification problem to distinguish between presence or absence of heart disease based on dataset contains 13 features and 1 Label column (there is a heart disease or there is no heart disease.

The target variable: Heart Disease – Yes\No distributes as follows: 54% of the observations have heart disease and 46% have no heart disease.

Due to low correlation between the following features and the target we removed them from the data set (colored grey in the table below):

- trestbps
- chol
- fbs
- restecg

Column			
Name	Description	Comment	Data Type
age	Age in years		numeric
sex	The person's sex	1 = male, 0 = female	categorical
ср	The chest pain experienced (4 values)	Value 0: typical angina, Value 1: atypical angina, Value 2: non-anginal pain, Value 3: asymptomatic	categorical
trestbps	The person's resting blood pressure	mm Hg on admission to the hospital	numeric
chol	The person's cholesterol measurement in mg/dl		numeric
fbs	The person's fasting blood sugar	> 120 mg/dl, 1 = true; 0 = false	categorical
restecg	Resting electrocardiographic measurement	0 = normal, 1 = having ST-T wave abnormality, 2 = showing probable or definite left ventricular hypertrophy by Estes' criteria	categorical
thalach	The person's maximum heart rate achieved		numeric
exang	Exercise induced angina	1 = yes; 0 = no	categorical
oldpeak	ST depression induced by exercise relative to rest	ST' relates to positions on the ECG plot	Float
slope	the slope of the peak exercise ST segment	Value 0: upsloping, Value 1: flat, Value 2: down sloping	categorical
ca	number of major vessels colored by fluoroscopy		numeric
thal	A blood disorder called thalassemia	0 = null; 1 = fixed defect; 2 = normal; 3 = reversable defect	categorical
target	Heart disease	0 = no, 1 = yes	categorical

b. In this dataset we have 303 rows, 13 features and one label column called "target". Below are the distributions of each feature that was included in the calculations:

- 2. A. problem formulation with Bayesian inference:
 - i. The parameters of the Posterior are the mean and STD for Normal distribution data for each target value 0 and 1 as follows:
 - i. Target = 0

	Mean	STD
age	56.60145	9.067102
sex	0.826087	0.465241
ср	0.478261	1.030348
thalach	139.1014	22.86733
exang	0.550725	0.469019
oldpeak	1.585507	1.159157
slope	1.166667	0.615208
ca	1.166667	1.020918
thal	2.543478	0.611265

ii. Target = 1

	Mean	STD
age	52.49697	9.067102
sex	0.563636	0.465241
ср	1.375758	1.030348
thalach	158.4667	22.86733
exang	0.139394	0.469019
oldpeak	0.58303	1.159157
slope	1.593939	0.615208
ca	0.363636	1.020918
thal	2.121212	0.611265

i. The Prior for each variable are the μ and the σ according to the data for both target value – 0 and 1 as follows:

	μ	σ
age	54.36634	9.067102
sex	0.683168	0.465241
ср	0.966997	1.030348
thalach	149.6469	22.86733
exang	0.326733	0.469019
oldpeak	1.039604	1.159157
slope	1.39934	0.615208
ca	0.729373	1.020918
thal	2.313531	0.611265

3. a. ii. The information gain graph is:

b.i. You can see that there is a jump in the information gain after 165 samples, the reason is because our data is organize so that the first 165 samples are the "1" target value (have heart disease) while the rest of the 138 samples are the "0" target value (have no heart disease). So, we would expect that if we order the data so that there will "1" target value and "0" target value alternately we may gain the most of the information quicker.