

CS120: Computer Networks

Lecture 4. Framing and Error Detection

Zhice Yang

Quantifying Error

- The Shannon capacity only gives an upper bound, actual throughput is determined by modulation method and signal quality (S/N).
- Bit error rate (BER): error bits/transmitted bits
 - 10^-1, 10^-2, 10^-3, and so on.
- The trade off
 - High rate -> low reliability

We have to handle errors

Handling Error

- Error Detection
 - Parity Check
 - Checksum
 - Cyclic Redundancy Check (CRC)
- Error Correction
 - Hamming code
 - Others: convolutional code, fountain code, etc.

Parity Check

• Method: adding one extra bit to a 7-bit code to balance the number of 1s in the byte.

2D Parity Check

- Add one byte to check the "columns"
 - 1-bit error
 - 2-bit error
 - 3-bit error
 - 4-bit error
 - not all

Checksum

Method: add all the bytes up use ones' complement arithmetic;
 then take ones' complement of the result.

Ip header

Ones' Complement

Bits	Unsigned	Signed	Ones' Complement
1111	15	-1	-0
1110	14	-2	-1
1101	13	-3	-2
1100	12	-4	-3
1011	11	-5	-4
1010	10	-6	-5
1001	9	-7	-6
1000	8	-8	-7
0000	0	0	+0

Ones' Complement

- Calculation Examples
 - Signed -4 + (-2)
 - 1100+1110=11010
 - ignore carry
 - 1010 (i.e. -6)
 - Ones' Complement -4 + (-2)
 - 1101+1011=11000
 - shift and add carry
 - 1000+1=1001 (i.e. -6)

Checksum

• Method: add all the bytes up use ones' complement arithmetic; then take ones' complement of the result.

0x4500+0x012b+0x190a+0x0000+0xff11+0x0a14+0x4508+0xe000+0x00fb=0x28e5d =>0x8e5f=>0x71a0

Checksum

- Method: add all the bytes up use ones' complement arithmetic; then take ones' complement of the result.
 - Fast
 - Weak Protection

Cyclic Redundancy Check (CRC)

CRC Performance

- CRC v.s. Checksum
 - CRC protects more bits
 - CRC takes more time/resource to calculate
- CRC v.s. Hash
 - CRC does not protect data integration
 - Hash functions are more complex than CRC
- CRC Polynomials
 - http://users.ece.cmu.edu/~koopman/crc/

Table 2.3 Common CRC Polynomials CRC C(x) $x^8 + x^2 + x^1 + 1$ CRC-8 $x^{10} + x^9 + x^5 + x^4 + x^1 + 1$ CRC-10 $x^{12} + x^{11} + x^3 + x^2 + x + 1$ CRC-12 $x^{16} + x^{15} + x^2 + 1$ CRC-16 $x^{16} + x^{12} + x^5 + 1$ CRC-CCITT $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11}$ CRC-32 $+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$

Table 1. Example Hamming weights for data word size 48 bits.

CRC Size	CRC Polynomial		HD	Hamming weights for number of bits corrupted:					
(bits)				1 bit	2 bits	3 bits	4 bits	5 bits	6 bits
16	CCITT-16	0x8810	4	0	0	0	84	0	2 430
16	[Baicheva00] 0xC86C		6	0	0	0	0	0	2 191
15	CAN	0x62CC	6	0	0	0	0	0	4 314
12	CRC-12	0xC07	4	0	0	0	575	0	28809
12		0x8F8	5	0	0	0	0	1 452	13 258
8	DARC-8	0x9C	2	0	66	0	2 039	13 122	124 248
8	CRC-8	0xEA	4	0	0	0	2 984	0	253 084
7	CRC-7	0x48	3	0	0	216	2 690	27 051	226 856
7		0x5B	4	0	0	0	5 589	0	451 125

Handling Errors

- Error Detection
 - Parity Check
 - Checksum
 - Cyclic Redundancy Check (CRC)
- Error Correction
 - Hamming code
 - Others: convolutional code, fountain code, etc.
 - Trade off: efficiency or reliability
 - Retransmission is expensive
 - Storage, Satellite, etc.
 - Errors are probable
 - Wi-Fi, Cellular (channel is unstable, interference)

By Now

The Multiplexing Problem

How to Describe a Wave (2D)

$$A \cdot \sin(2\pi f t + \phi)$$

Frequency-division multiplexing (FDM)

• Synchronous Time-division Multiplexing (STDM)

Packet Switching

- Fixed Multiplexing
 - STDM, FDM (e.g. telecommunication network, WAN, etc.)
 - Predictable performance
 - Expensive
- Statistical Multiplexing
 - Packet Switching (e.g. Internet, etc.)
 - Performance is random
 - Cheap

Framing

- Why ?
 - One transmitter should not occupy the communication resource forever
- Functionality
 - Help receiver recognize the start and the end of the transmission
- Framing Design
 - Frame detection
 - Frame termination

Framing - Detection

- Sync signal: find accurate start through special pattern (e.g., Preamble, Pilot, etc.)
 - Add a special pattern before or after each frame
 - Correlate the special pattern ···

Framing - Termination

- Sentinel-Based Approach
 - Use special patterns (sentinel characters) to indicate the start and end of the frame
 - Similar patterns may exist in payload
 - Solution: character stuffing
 - e.g., disp ('abc''') in matlab shows abc'; ' is the escape character

Example: BISYNC Frame

Framing - Termination

- Counting-based Approach
 - Use special patterns to indicate the start of the frame
 - Use number to indicate the length of the frame
 - Count may contain error
 - Solution: use CRC to detect

Example: DDCMP Frame

Other Framing Method

- Clock-Based Framing
 - Synchronous Optical Network (SONET)/Synchronous Digital Hierarchy (SDH)

Other Framing Method

- Clock-Based Framing
 - Synchronous Optical Network (SONET)/Synchronous Digital Hierarchy (SDH)

By Now

Reference

- Textbook 1.2.3
- Textbook 2.3
- Textbook 2.4

Rate Selection

 When a baud rate (bandwidth) is selected, the number of different symbols must match S/N

- What if $R_b < C$
 - 100% correct?