Lecture 2: Graphs

Joachim Gudmundsson

Lecture 2: Graphs

- Definitions
- Representations
- Breadth First Search
- Depth First Search
- Applications

Graph Definitions
Graph Representations
Breadth First Search
Transitive Closure
Depth First Search
Bipartite Graphs

3.1 Basic Definitions and Applications

Undirected Graphs G=(V,E)

- \vee = nodes (or vertices)
- E = edges between pairs of nodes
- Captures pairwise (symmetric) relationship between objects
- Graph size parameters: n = |V|, m = |E|

$$V = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$$

$$E = \{ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6, 7-8 \}$$

$$n = 8$$

$$m = 11$$

Directed Graphs G=(V,E)

Edge (u, v) goes from node u to node v.

Some Graph Applications

Graph	Nodes	Edges		
transportation	street intersections	highways		
communication	computers	fiber optic cables		
World Wide Web	web pages	hyperlinks		
social	people	relationships		
food web	species	predator-prey		
software systems	functions	function calls		
scheduling	tasks	precedence constraints		
circuits	gates	wires		

World Wide Web

- Node: web page.

- Edge: hyperlink from one page to another.

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge (undirected graph).
- Space proportional to n².
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
			1					
6			0					
7			1					
8	0	0	1	0	0	0	1	0

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- Two representations of each edge (undirected graph).
- Space proportional to m + n. degree = number of neighbors of u
- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes $\Theta(m + n)$ time.

Paths and Connectivity

Definition: A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Definition: A path is simple if all nodes are distinct.

Definition: An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

Definition: A cycle is a path $v_1, v_2, ..., v_{k-1}, v_k$ in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

Trees

Definition: An undirected graph is a tree if it is connected and does not contain a cycle.

Number of edges in a tree?

Trees

If the graph is connected and does not contain any cycle then it has n-1 edges

Definition: An undirected graph is a tree if it is connected and does not contain a cycle.

Number of edges in a tree?

Theorem: Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

3.2 Graph Traversal

Connectivity

s-t connectivity problem. Given two nodes s and t, is there a path between s and t?

Length of path = number of links along path

s-t shortest path problem. Given two nodes s and t, what is the length of the shortest path between s and t?

Applications.

Many. For example: Fewest number of hops in a communication network.

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding

nodes one "layer" at a time.

BFS algorithm.

- $L_0 = \{ s \}.$
- $-L_1 = all neighbors of L_0.$
- L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .

- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

 $s \subset L_1 \subset L_2 \subset \cdots \subset L_{n-1}$

BFS algorithm.

- $L_0 = \{ s \}.$
- $-L_1 = all neighbors of L_0.$
- L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Theorem: For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t if and only if t appears in some layer.

```
def BFS(G,s)
   layers = []
   next layer = [s]
   "mark every vertex except s as not seen"
   while "current layer not empty" do
      layers.append(current layer)
      for every u in current_layer do
         for every v in neighbourhood of u do
             if "haven't seen v yet" then
                next layer.append(v)
                "mark v as seen"
      current_layer = next_layer
      next layer = []
   return layers
```

What if G is not connected?

Breadth First Search

BFS produces a tree T rooted at the start vertex on the set of nodes in G reachable from s.

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

Breadth First Search: Analysis

Time Complexity: O(n+m) with adjacency list representation

Theorem: The above implementation of BFS runs in O(m + n) time if the graph is as an adjacency list.

Proof: Easy to prove O(n²) running time:

- at most n lists L[i]
- each node occurs on at most one list; for loop runs \leq n times
- when we consider node u, there are \leq n incident edges (u, v), and we spend O(1) processing each edge
- Actually runs in O(m + n) time:
 - when we consider node u, there are deg(u) incident edges (u, v)
 - total time processing edges is $\Sigma_{u \in V} \deg(u) = 2m$

each edge (u, v) is counted exactly twice in sum: once in deg(u) and once in deg(v)

```
def BFS(G,s)
   layers = []
   next layer = [s]
                                                          This takes
   "mark every vertex except s as not seen"
                                                         O(|V|) time
   while "current layer not empty" do
       layers.append(current layer)
       for every u in current_layer do
                                                         This loop takes
          for every v in neighbourhood of u do
                                                         O(|N(u)|) time
              if "haven't seen v yet" then
                  next layer.append(v)
                  "mark v as seen"
       current_layer = next_layer
       next_layer = []
                                             Adding up over all u, we
                                              get O(\Sigma_u | N(u) |) = O(|E|)
   return layers
```

BFS implementation

Complexity? Depends on graph representation

Traverse all neighbours of a node u:

- Adjacency list: O(number of neighbours) = O(|N(u)|)
- Adjacency matrix: O(n)

Check if u and v are connected by an edge:

- Adjacency list: O(number of neighbours) = O(|N(u)|) or O(|N(v)|)
- Adjacency matrix: O(1)

Space:

- Adjacency list: O(|V|+|E|)
- Adjacency matrix: O(|V|²)

Connected Component

Find all nodes reachable from s.

Connected component containing node 1

$$= \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$$

Connected Component

Find all nodes reachable from s.

R will consist of nodes to which s has a path Initially $R = \{s\}$ While there is an edge (u,v) where $u \in R$ and $v \notin R$ Add v to R Endwhile

Theorem: Upon termination, R is the connected component containing s.

Shortest paths

The shortest path between two nodes u, v in a graph G, is the path with the minimum number of edges that connects u and v (if it exists).

The shortest path problem:

Input: a graph G=(V,E), and a node s in V

Output: the length of the shortest path between s and all other nodes in V.

Shortest paths by BFS

Recall the BFS algorithm

```
def BFS(G,s)
   layers = []
   next layer = [s]
   "mark every vertex except s as not seen"
   while "current layer not empty" do
       layers.append(current_layer)
       for every u in current_layer do
          for every v in neighbourhood of u do
               if "haven't seen v yet" then
                  next_layer.append(v)
                  "mark v as seen"
       current layer = next layer
       next layer = []
   return layers
```

Shortest paths by BFS

Compute the shortest paths from a given node s to all other nodes

Let dist[u] = shortest path distance (hop distance) from s to u

```
def BFS(G,s)
   layers = []
   next layer = [s]
   "mark every vertex except s as not seen"
   while "current layer not empty" do
      layers.append(current_layer)
      for every u in current layer do
          for every v in neighbourhood of u do
             if "haven't seen v yet" then
                next layer.append(v)
                "mark v as seen"
      current_layer = next_layer
      next layer = []
   return layers
```

```
def BFS(G,s)
                                    Initialize dist[]
   layers = []
   next layer = [s]
   for all u set dist[u] = infinity
   dist[s] = 0
   "mark every vertex except s as not seen"
   while "current layer not empty" do
      layers.append(current layer)
      for every u in current layer do
          for every v in neighbourhood of u do
             if "haven't seen v yet" then
                next layer.append(v)
                "mark v as seen"
      current_layer = next_layer
      next layer = []
   return layers
```

```
def BFS(G,s)
   layers = []
   next layer = [s]
   for all u set dist[u] = infinity
   dist[s] = 0
   "mark every vertex except s as not seen"
   while "current layer not empty" do
      layers.append(current_layer)
      for every u in current_layer do
         for every v in neighbourhood of u do
             if "haven't seen v yet" then
                next layer.append(v)
                "mark v as seen"
                dist[v] = dist[u] + 1
      current_layer = next_layer
      next layer = []
   return layers
```

```
def ShortestPath(G,s)
   layers = []
   next layer = [s]
   for all u set dist[u] = infinity
   dist[s] = 0
   "mark every vertex except s as not seen"
   while "current layer not empty" do
      layers.append(current_layer)
      for every u in current_layer do
         for every v in neighbourhood of u do
             if "haven't seen v yet" then
                next layer.append(v)
                "mark v as seen"
                dist[v] = dist[u] + 1
      current_layer = next_layer
      next layer = []
   return dist
```

Transitive closure of a graph

The transitive closure graph of G is a graph G':

- with the same vertices as G, and
- with an edge between all pairs of nodes that are connected
 by a path in G

The transitive closure of an undirected tree is a complete graph

Closure graph by BFS

How do we change BFS to compute the closure?

```
def BFS(G,s)
   layers = []
   next layer = [s]
   "mark every vertex except s as not seen"
   while "current layer not empty" do
      layers.append(current layer)
      for every u in current layer do
         for every v in neighbourhood of u do
             if "haven't seen v yet" then
                next_layer.append(v)
                "mark v as seen"
      current_layer = next_layer
      next layer = []
```

The University of Sydney

return layers

```
def BFS closure(G,s)
   layers = []
   next layer = [s]
   "mark every vertex except s as not seen"
   while "current layer not empty" do
      layers.append(current layer)
      for every u in current layer do
         for every v in neighbourhood of u do
             if "haven't seen v yet" then
                next layer.append(v)
                "mark v as seen"
                add edge (s,v) to the graph G
      current layer = next layer
      next layer = []
   return the new graph
```

For s in V: BFS_closure(G,s)

```
def BFS closure(G,s)
                            Running time? O(|V| \cdot (|V| + |E|))
   layers = []
   next layer = [s]
   "mark every vertex except s as not seen"
   while "current layer not empty" do
      layers.append(current layer)
      for every u in current_layer do
          for every v in neighbourhood of u do
             if "haven't seen v yet" then
                 next layer.append(v)
                 "mark v as seen"
                 add edge (s,v) to the graph G
      current layer = next layer
      next layer = []
   return the new graph
```

For s in V: BFS_closure(G,s)

DFS - Depth first search

Algorithm: Pick a starting vertex, follow outgoing edges that lead to new vertices, and backtrack whenever "stuck".

```
Algorithm DFS(G,u)
  Input: graph G(V,E) and a vertex u in V

begin
  mark u as visited
  for each edge (u,v) in E do
    if v has not been visited then
       DFS(G,v)
  end
```


What if G is not connected?

```
Algorithm DFS(G,s)
  Input: graph G(V,E) and a vertex s in V

begin
    initialise a stack S with node s
    while S is not empty do
        u=pop(S)
    if u not visited then
        set u as visited
        for each edge (u,v) do
        add v to S
```


Properties of DFS

Time complexity: O(n+m) with adjacency list representation

Running time: O(n+m)

Subset of edges in DFS that "discover a new node" form a forest (a collection of trees).

A graph is **connected** if and only if **DFS** results in a **single tree**.

Each tree in the DFS result corresponds to a connected component

3.4 Testing Bipartiteness

Definition: An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications

- Stable marriage: men = red, women = blue.
- Scheduling: machines = red, jobs = blue.

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

a bipartite graph G

another drawing of G

An Obstruction to Bipartiteness

Lemma: (If a graph G is bipartite, it cannot contain an odd length cycle.)

Proof: Not possible to 2-color the odd cycle, let alone G.

Lemma: Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

156 (11) Page 45

Lemma: Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Proof: Case (i)

- Suppose no edge joins two nodes in the same layer.
- By previous lemma, this implies all edges join nodes on adjacent level.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

Lemma: Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Proof: Case (ii)

- Suppose (x, y) is an edge with x, y in same level L_i .
- Let z = lca(x, y) = lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y,
 then path from y to z, then path from z to x.
- Its length is 1 + (j-i) + (j-i), which is odd. ■
 (x,y) path from path from y to z z to x

Obstruction to Bipartiteness

Corollary: A graph G is bipartite if and only if it contain no odd length cycle.

bipartite (2-colorable)

not bipartite (not 2-colorable)

Testing bipartiteness

Theorem: Given a graph G=(V,E) one can test if G is bipartitie in O(n+m) time.

bipartite (2-colorable)

not bipartite (not 2-colorable)

Cut edges

Definition: In a connected graph, an edge e is called a "cuted edge" if its removal would disconnect the graph

- G=(V,E) is connected
- $G' = (V, E \setminus \{e\})$ is not connected

How do we find the cut edges of a graph?

Finding cut edges

Algorithm 1: (the straightforward one)

```
For every edge e in G
  remove e from G
  check if G is connected (running DFS for example)
```

Running time? O(m²+mn)

More efficient algorithm?

Finding cut edges

Algorithm 2:

The graph is connected

```
Run DFS on the graph G
For each edge in the DFS tree
remove that edge from the graph G
check if G is now disconnected (using DFS)
```

Running time? O(nm)

```
Algorithm DFS(G,u)
  Input: graph G(V,E) and a vertex u in V

begin
    mark u as visited
    for each edge (u,v) in E do
    if v has not been visited then
        DFS(G,v)
  end
```

In the DFS forest every non-tree edge is a back edge

Improved algorithm for finding cut edges

Let (u,v) be an edge we would like to test.
 Assume u is the parent of v in the DFS tree.

 If (u,v) is not a cut edge then there must be a back edge from v or a descendant to a node above u in the DFS tree.

Running time: O(n+m)

Summary: Graphs

Graph representation:

- adjacency matrix or adjacency list

Basic notations and definitions:

- cycle, simple, connected, path, tree, directed,...

Traversing a graph (BFS or DFS): O(n+m)

- Applications of BFS/DFS: min link path, transitive closure, testing bipartitness, cut edges...