"Unveiling Hidden Markov Models in Marketing"

Oded Netzer

Is This Model Dynamic?

$$U_{ijt} = \alpha_j - \beta_1 price_{ijt} + \beta_2 adv_{ijt} + \beta_3 display_{ijt} + \varepsilon_{ijt}$$

Individual i

Brand j

Time t

$$U_{iit} = V_{iit} + \varepsilon_{iit}$$

$$U_{ijt} = V_{ijt} + \varepsilon_{ijt}$$

$$P(choice_{it} = j) = \frac{\exp(V_{ijt})}{\sum_{j} \exp(V_{ijt})}$$

Dynamic Parameters – State Space Models

$$U_{ijt} = \alpha_{ij\underline{0}} - \beta_{i\underline{0}} price_{ijt} + \beta_{i\underline{0}} adv_{ijt} + \beta_{i\underline{3}\underline{0}} display_{ijt} + \varepsilon_{ijt}$$

Individual i Brand j Time t

Dynamic Parameters - Kalman Filter

$$Y_{ijt} = \mathbf{\beta_{it}} \mathbf{X_{ijt}} + \varepsilon_{ijt}$$
 Observation Equation

$$\beta_{it} = T_t \beta_{it-1} + \nu_{it} \qquad \text{Transition Equation}$$

Where

 β_{ii} is a state vector (MX1)

 X_{ij} is covariates vector (1XM)

 T_t is a transition matrix (MXM) (subscript t is optional)

$$\boldsymbol{\varepsilon}_{iij} \sim N(0, \sigma_{\varepsilon}^2); \ \boldsymbol{v}_{it} \sim N(0, \Omega_{v}^2); \ \boldsymbol{v}_{i0} \sim N(\boldsymbol{m_0}, \boldsymbol{c_0})$$

References:

Meinhold and Singpurwalla (1983, TAS); Naik, Mantrala and Sawyer (1998, MS); Laachab, Ansari, Jedidi, and Trabelsi (2006, QME).

Kalman Filter – Special Cases

 $Y_{ijt} = \beta_{it} X_{ijt} + \varepsilon_{ijt}$ Observation Equation

 $\beta_{it} = T_t \beta_{it+1} + v_{it}$ Transition Equation

For $T_t = I$ and $v_{it} = 0$ we get...

For $T_t = I$ we get...

Other Special Cases...

Kalman Filtering on other latent states

Markov Models

HMMs- Applications

Engineering

- Speech/image recognition (e.g., Jiang and Rabinar 1991)
- Robot Navigation (e.g., Hannford and Lee 1991)

Biology

- DNA sequence information (e.g., Krogh 1998)
- Ultrasound movement data (e.g., Leroux and Puterman 1992)

Education

■ Students interest dynamics (e.g., Vermunt, Langeheine, Böckenholt 1999)

Meteorology

Precipitation prediction (e.g., Hughes and Guttorp 1994)

■ Economics and Finance

- Predict stock market behavior (e.g., Ryden, Terasvirta and Asbrink 1998)
- Identifying economic downturn (e.g., Hamilton 1989, 1990; Albert and Chib 1993)

...More examples in Zucchini and MacDonald 2009...

HMMs – Marketing Applications (incomplete list)

- Dynamic segmentation- Poulsen (1990); Brangule-Vlagsma, Pieters and Wedel (2002); Lemmens, Croux and Stremersch (2011)
- Internet browsing Montgomery, Li, Srinivasan and Liechty (2004)
- Family lifecycle Du and Kamakura (2006)
- Visual attention states Liechty, Pieteres and Wedel (2003, 2008); van der Lans, Pieters and Wedel (2008)
- Augmenting competitive response Moon, Kamakura and Ledolter (2007)
- CRM Netzer, Lattin and Srinivasan (2008); Ascarza, Netzer and Hardie (2018); Zhang, Watson and Palmatier (2016)
- Marketing mix allocation Montoya, Netzer and Jedidi (2010)
- Social media interventions Ma, Sun and Kekre (2015)
- **B2B relationships** Sriram et al. (2011); Zhang, Netzer and Ansari (2014); Lue and Kumar (2013)
- Competitive dynamics Ebbes, Grewal and DeSarbo (2010)
- Portfolio choice Paas, Vermunt and Bijmolt (2007); Schweidel, Bradlow and Fader (2011)
- Cyclical buying Park and Gupta (2011)
- Search Stuttgen, Boatwright and Monroe (2012)
- Multi-channel Mark et al. (2013); Mark, Lemon and Vandenbosch (2014)
- Dynamics learning in behavioral games Ansari, Montoya and Netzer (2012); Shachat and Wei (2012)
- Predicting churn Ascarza and Hardie (2013)
- Buy till you die models Schmittlein, Morrison and Colombo (1987); Fader, Hardie and Huang (2004);
 Schwartz, Bradlow and Fader (2014)

Today's plan

- Definition
- Components and Likelihood
- Estimation and model inference
- HMMs in Marketing
- Hands-on experience with R

The HMM Components

HMM - Initial State Membership

State membership at time 1

$$\boldsymbol{\pi} = [\pi_1, \pi_2 ..., \pi_S] \qquad \sum_{s=1}^{S} \pi_s = 1 \qquad 0 \le \pi_S \le 1$$

Several options

- 1. Determine the distribution a-priori (e.g., π ' = [1,0,0,...,0])
- 2. Assume the stationary distribution $\pi = \pi Q$
- з. Estimate $\pi_1,\pi_2...,\pi_{S-1}$

HMM - Transition Matrix

$$\sum_{s'=1}^{S} q_{itss'} = 1 \ \forall \ s$$

- Homogenous HMM $-Q_{it} = Q_{ir} \forall t, r$
- Non-Homogenous HMM (Netzer et al. 2008) $Q_{iss'} = f(Z_{it})$ Could be modeled as logit or ordered logit
- Restrictions on the transition matrix (e.g., absorbing state)

HMM - State Dependent Behavior

The modular aspect of the HMM

- Binary choice binary logit/probit
- Multinomial choice multinomial logit/probit
- Count data Poisson
- Continuous Normal, Exponential, Gamma
- Multinomial Multinomial distribution
- Multiple observations Any combination of the above...

Can be a function of variables and covariates

HMM - State Dependent Behavior - Logit

■ The dichotomous choice given the state

$$m_{it|s} = \frac{\exp(\beta_{0s} + \mathbf{x_{it}'\beta_s})}{1 + \exp(\beta_{0s} + \mathbf{x_{it}'\beta_s})} \qquad s=1,...,S$$

$$\mathbf{m_{it}'} = \left[m_{it|s=1}, m_{it|s=2}, \dots, m_{it|s=N}\right]$$

x_{it} are immediate influence covariates (e.g., price)

- Label Switching problem
 - Could put restrictions $\beta_{01} \le \beta_{02} \le ... \le \beta_{0S}$
 - Constrained permutation sampler Fruhwirth-Schnatter (2001)

Generating the HMM Likelihood

- _{1.} Draw the Initial state membership $~\pi$
- 2. Draw observation from the state dependent behavior m_t
- 3. Generate a transition from the current state s_t to s_{t+1} following the transition matrix Q_t
- 4. Repeat steps 2-3 until the last observation

HMM Likelihood Function

$$\begin{split} L_{iT} &= P(Y_{i_1}, ..., Y_{i_t}, ..., Y_{i_T}) \\ &= \sum_{X_{i_1}=1}^{S} ... \sum_{X_{i_T}=1}^{S} P(Y_{i_1}, ..., Y_{i_T} \mid X_{i_1}, ..., X_{i_T}) P(X_{i_1}, ..., X_{i_T}) \\ &= \sum_{X_{i_1}=1}^{S} ... \sum_{X_{i_T}=1}^{S} P(Y_{i_1} \mid X_{i_1}) \times P(Y_{i_T} \mid X_{i_T}) P(X_{i_1}) P(X_{i_2} \mid X_{i_1}) ... P(X_{i_T} \mid X_{i_{T-1}}) \\ &= \sum_{X_{i_1}=1}^{S} ... \sum_{X_{i_T}=1}^{S} P(X_{i_1}) P(Y_{i_1} \mid X_{i_1}) P(X_{i_2} \mid X_{i_1}) P(Y_{i_2} \mid X_{i_2}) ... P(X_{i_T} \mid X_{i_{T-1}}) P(Y_{i_T} \mid X_{i_T}) \end{split}$$

■ "Simplified" likelihood function (S^T elements!)

$$L_{iT} = P(Y_{i1}, Y_{i2}, ..., Y_{iT}) = \boldsymbol{\pi_i}(\tilde{\mathbf{m}_{i1}} \otimes \mathbf{I}_S) \mathbf{Q_{ii2}}(\tilde{\mathbf{m}_{i2}} \otimes \mathbf{I}_S) ... \mathbf{Q_{iT-1T}}(\tilde{\mathbf{m}_{iT}} \otimes \mathbf{I}_S) \mathbf{1'}$$

Today's plan

- Definition
- Components and Likelihood
- Estimation and model inference
- HMMs in Marketing
- Hands-on experience with R

HMM Estimation

■ Baum-Welch EM Algorithm

- Based on the forward/backward probabilities
- References: Baum et al. (1970); Baum (1972); Zucchini and MacDonald 2009 (book)

■ Maximum Likelihood

- Maximizing the likelihood function from before
- References: Zucchini and MacDonald 2009 (book); Netzer, Lattin and Srinivasan (2008) – Bayesian version

■ Bayesian Estimation – Augmenting the states

- Latent states are treated as missing data
- References: Frühwirth-Schnatter (2006) book; Albert and Chib (JBES 1993); Scott S. (JASA 2002)

HMM Estimation - MLE

Advantages

- Easy to estimate with standard maximum likelihood optimizer
- Easy to handle missing data and constraints
- Can be extended to HB framework to account for heterogeneity

Difficulties

- Numerical underflow of the L_{it} (see solution in ZM p. 46-47)
- Local maxima
- Initial state distribution
- MCMC Adaptive tuning constant Atchade (2006)

MLE code provided at the workshop

HMM State Recovery

State transition

$$P(S_{it} | S_{it-1}) = \pi_{it-1} Q_{it-1t}$$

■ Filtering

$$P(S_{it} | Y_{i1}...Y_{it}) = L_{it}(s^{th} \text{ element}) / L_{it} = L_{it}(s^{th} \text{ element}) / \sum_{j=1}^{S} L_{it}(j^{th} \text{ element}) = \pi_{i}(\tilde{\mathbf{m}}_{i1} \otimes \mathbf{I}_{S}) \mathbf{Q}_{i12}(\tilde{\mathbf{m}}_{i2} \otimes \mathbf{I}_{S}) ... \mathbf{Q}_{it-1t.s} m_{it|s} / L_{it}$$

Smoothing

$$\overset{\kappa}{Q}_{it\text{-1t.s}}$$
 is the sth column of Q

$$P(S_{it} | Y_{i_1}...Y_{i_T}) = \pi_{i}(\tilde{\mathbf{m}}_{i_1} \otimes \mathbf{I}_{s})\mathbf{Q}_{i_12}(\tilde{\mathbf{m}}_{i_2} \otimes \mathbf{I}_{s}) \cdot \mathbf{Q}_{i_{t-1t,s}}m_{i_{t/s}}\mathbf{Q}_{i_{tt+1s,s}}\tilde{\mathbf{m}}_{i_{t+1}} \otimes \mathbf{I}_{s})\mathbf{Q}_{i_{1t+2}}(\tilde{\mathbf{m}}_{i_{t+1}} \otimes \mathbf{I}_{s})...\mathbf{Q}_{i_{1T}}(\tilde{\mathbf{m}}_{i_T} \otimes \mathbf{I}_{s})\mathbf{1}' / L_{i_T}$$

$$\alpha(s) \qquad \beta(s)$$

HMM Prediction

Prediction

$$P(Y_{it+1} \mid Y_{i1}, ..., Y_{it}) = L_{it+1} / L_{it} = \frac{\pi_{i}(\tilde{\mathbf{m}}_{i1} \otimes \mathbf{I}_{S}) \mathbf{Q}_{i12}(\tilde{\mathbf{m}}_{i2} \otimes \mathbf{I}_{S}) ... \mathbf{Q}_{it-1t}(\tilde{\mathbf{m}}_{it} \otimes \mathbf{I}_{S}) \mathbf{Q}_{itt+1}(p(Y_{it+1/jS} \otimes \mathbf{I}_{S}) \mathbf{1'}}{\pi_{i}(\tilde{\mathbf{m}}_{i1} \otimes \mathbf{I}_{S}) \mathbf{Q}_{it2}(\tilde{\mathbf{m}}_{i2} \otimes \mathbf{I}_{S}) ... \mathbf{Q}_{it-1t}(\tilde{\mathbf{m}}_{it} \otimes \mathbf{I}_{S}) \mathbf{1'}}$$

$$P(Y_{it+h} | Y_{i1}, ..., Y_{it}) = \frac{\pi_{i}(\tilde{\mathbf{m}}_{i1} \otimes \mathbf{I}_{S}) \mathbf{Q}_{i12}(\tilde{\mathbf{m}}_{i2} \otimes \mathbf{I}_{S}) ... \mathbf{Q}_{it-1t}(\tilde{\mathbf{m}}_{it} \otimes \mathbf{I}_{S}) \mathbf{Q}_{itt+1} \mathbf{Q}_{it+1t+2} ... \mathbf{Q}_{it+h-1t+h}(p(Y_{it+ht/is} \otimes \mathbf{I}_{S})\mathbf{1}'}{\pi_{i}(\tilde{\mathbf{m}}_{i1} \otimes \mathbf{I}_{S}) \mathbf{Q}_{it2}(\tilde{\mathbf{m}}_{i2} \otimes \mathbf{I}_{S}) ... \mathbf{Q}_{it-1t}(\tilde{\mathbf{m}}_{it} \otimes \mathbf{I}_{S})\mathbf{1}'}$$

Can predict several periods a head

Selecting the Number of States

- Similar to latent class models model selection criteria
- Classic estimation
 - Penalized fit measures: e.g., BIC, AIC.
 - Markov Switching Criterion (MSC)- Smith, Naik and Tsai (2006)
 - Predictive measures
- Bayesian Estimation
 - Log Marginal Density Bayes factor
 - DIC
 - Posterior predictive distributions
- Interpretation and parsimony considerations

Incorporating Heterogeneity

- Why is it important in dynamic models?
- Heterogeneity in:
 - Initial state distribution
 - Transitions
 - State dependent choice
- Relating the distribution of heterogeneity to observed individual characteristics

Discrete vs. Continuous States HMM vs. Kalman Filter

- Semi-parametric (HMM) vs. parametric (KF) form of dynamics
- Regime shift dynamics
- HMM with a large number of states should approximate KF (but it can become very expensive)
- HMM is often easier to interpret and communicate

Today's plan

- Definition
- Components and Likelihood
- Estimation and model inference
- HMMs in Marketing
- Hands-on experience with R

The Conditional Choice Behavior

We identified three states of relationships with the following donation rates:

State	Donation Probability	Name
State 1	0%	"Dormant"
State 2	32%	"Occasional"
State 3	99%	"Active"

Netzer, Lattin and Srinivasan 2008

The Transition Matrices

No Alumni-University Interactions				
- <u>t</u> -/	Dormant	Occasional	Active	
Dormant	97%	3%	0%	
Occasional	18%	73%	9%	
Active	0%	22%	78%	

Reunion Attendance				
t-1 t	Dormant	Occasional	Active	
Dormant	67%	33%	0%	
Occasional	4%	62%	34%	
Active	0%	21%	79%	

- The states are relatively "sticky"
- Twice as likely to fall down than go up from occasional
- Reunion attendance
 - Strong effect on dormant and occasional
 - Minimal effect on active

Netzer, Lattin and Srinivasan 2008

Crossing the States with Survey Data

Question	Scale	Dormant	Occasional	Active
Satisfaction with your experience at Stanford	1-5	4.51	4.75	4.80
Strong feeling about Stanford	1-5	4.31	4.50	4.60
Pride in your Degree	1-4	3.47	3.62	3.69
University experience helped shape your life	1-4	2.89	3.24	3.43
Emotional connection	1-4	2.72	<u>3.14</u>	3.22
Responsibility	1-4	2.28	2.66	3.03
Affinity with graduating class	1-4	1.94	2.52	2.26
Recommend to prospective students	1-4	3.35	3.67	3.74
University serves your needs as an alum?	1-4	2.74	2.93	2.96
University values its alumni	1-3	2.25	2.41	2.55
Parents have a degree from Stanford	Yes/No	19%	18%	12%
Received financial aid	Yes/No	40%	40%	39%
Median Lifetime donation		\$100	\$475	\$1382
Sample Size (N)		64	29	35

- * Bolded means are significantly different across the states at the 0.05 level
- Active alumni show favorable ratings

Netzer, Lattin and Srinivasan 2008

Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability (Montoya, Netzer and Jedidi 2010)

- A drug for treating a medical condition in postmenopausal women
- New drug introduction
- Several competing brands
- Two years of monthly-level data
- Sample of 300 physicians
- Monthly data:
 - Prescriptions of the drug
 - Prescriptions in the category
 - Sampling and detailing at the physician-level

	Mean	95% C. I.	
Prescriptions	1.62	0.54	3.21
Details	2.18	1.22	3.71
Samples	9.07	4.17	16.33
Category prescriptions	22.5	10.10	37.79
Share-of- prescriptions	0.079	0.026	0.143

• Average monthly statistics across physicians

Short and Long-Term Effects of Marketing Actions

Probability of prescribing - Share

State	Intercept	Detailing	Sampling
Inactive	0.4 %	0.7%	0.4%
Infrequent	6.2 %	6.5%	6.7%
Frequent	19.6%	18.7%	20.1%

Transition Matrix Detailing				
ı	0.62	0.38	0.00	
IF	0.16	0.79	0.05	
F	0.15	0.45	0.40	
	I	IF	F	

Transition Matrix No Marketing			
I	0.75	0.25	0.00
IF	0.17	0.78	0.05
F	0.15	0.46	0.39
	I	IF	F

	Transition Matrix Sampling				
ı		0.70	0.30	0.00	
П	F	0.13	0.81	0.06	
F	=	0.10	0.41	0.49	
		I	IF	F	

- Detailing mainly affect physicians in the Inactive states
- Sampling mainly affect physicians only in the Frequent state

Montoya, Netzer and Jedidi 2010

Duration of Marketing Actions

- 25% of the total effect of detailing occurs the first month
- 35% of the total effect of sampling occurs the first month

Montoya, Netzer and Jedidi 2010

From Estimation to Control Model Estimation Observable States Unobservable States HMM Hidden Markov Model Montoya, Netzer and Jedidi 2010

Dynamic Targeted Pricing in B2B Settings (Zhang, Netzer and Ansari 2014)

Two Buying Behavior States

	"Relaxed" State	"Vigilant" State
Quote request prob.	23%	86%
Bid accept prob.	65%	52%
Average quantity	432 lb	502 lb
Inter-purchase time	5.5 weeks	8.1 weeks
Average price elasticity	1.3	3.4
Average loss aversion parameter	0.92	3.11
Average sensitivity to market characteristics	0.8	6.7

Zhang, Netzer and Ansari 2014

Transition Matrices

Average price

Relaxed (t+1) Vigilant (t+1)

RCIAACU (t+1)	vigitant (t+1)
86.2%	13.8%
7.1%	92.9%

- Both states are sticky
- 10% price increase -> 50% increase of transition from relaxed state to vigilant state
- Loss aversion
- Capturing long-term effect of reference prices

Zhang, Netzer and Ansari 2014

Site Activity

	State 1 - Non Job Seeker	State 2 - Passive Job Seeker	State 3 - Active Job Seeker
Profile update	3%	17%	23%
Job search	1%	12%	40%
Total searches	1.7	1.6	5.0
Page views	7.7	37.9	112.2

(calibrated on monthly data)

Job seekers leverage the LinkedIn website while being an active searcher

Ebbes and Netzer 2016

Social Network Activity

	State 1 - Non Job Seeker	State 2 - Passive Job Seeker	State 3 - Active Job Seeker
Invitations outside company > inside company	2%	8%	37%
Invitations sent	1.7	1.3	2.4
Invitations received / sent	0.84	0.74	0.49
# connections formed	1.3	1.8	3.1
# connections invitees	19.8	20.6	26.2

Active job seekers (try to) grow their network faster, in a strategic way, but are also a bit the "Homers"

Ebbes and Netzer 2016

Definition Components and Likelihood Estimation and model inference HMMs in Marketing

Today's plan

□ Hands-on experience with R

R code – To recap...

- Simulation: Data generating process
- Likelihood building
- Maximize likelihood
 - Local optima
 - Fit measures
- Model inferences
 - Parameters
 - States
- Model variants
 - # states
 - Continuous vs. Discrete (e.g., #purchases)

Conclusions

■ HMMs in marketing can be used to:

- dynamically segment the firm's customer base
- understand how customers transition among segments over time (possible due to touch points with the firm)
- capture the long and short-term effect of marketing actions and pricing decisions
- capture transitions between distinct behaviors (e.g. learning rules)
- augment unobserved behaviors
- identify behavioral states in behavioral research
- fuse different sources of data

References - General

Books

- Zucchini and MacDonalnd 'Hidden Markov Models for Time Series"
- Cappe, Moulines and Ryden "Inference in Hidden Markov Models"
- Elliot, Aggoun and Moore "Hidden Markov Models"
- Kim and Nelson "State-space Models with Regime Switching"
- Fruhwirth-schnatter "Finite Mixture And Markov Switching Models"

Tutorials

- Rabiner, L. (1989) "A Tutorial in Hidden Markov Models and Selected Applications in Speech Recognition," *Proceedings of the IEEE*, 77(2): 257-286.
- Visser I. (2011) "Seven Things to Remember about Hidden Markov Models: A Tutorial on Markovian Models for Time Series," Journal of Mathematical Psychology, 55, 403-415
- Netzer Oded, Peter Ebbes and Tammo Bijmolt (2017), "Hidden Markov Models in Marketing." Advanced Methods for Modeling Markets, edited by Peter Leeflang, Jaap Wieringa, Koen Pauwels, Springer