Networked Federated Learning

Alexander Jung (Aalto University)

https://www.linkedin.com/in/aljung/

https://www.youtube.com/channel/UC tW4Z GfJ2WCnKDtwMuDUA

https://twitter.com/alexjungaalto

GTVMin as NFL Principle

The Dual of GTVMin

Interpretations

Computational Aspects

Statistical Aspects

GTVMin as NFL Principle

The Dual of GTVMin

Interpretations

Computational Aspects

Statistical Aspects

In a nutshell:

organize data, models and computation for

Networked Federated Learning

Federated Learning

Machine Learning

Three Components of ML

Plain Old Machine Learning.

Networked Federated Learning

Networked Data

Networked Data=Graph Database

https://neo4j.com/developer/graph-database/

Weather Stations.

ImageNet.

"...ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns), in which each node of the hierarchy is depicted by hundreds and thousands of images..."

https://image-net.org/

WordNet.

"...Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept... The resulting network of meaningfully related words and concepts can be navigated....."

Wikidata.

https://www.wikidata.org/wiki/Wikidata:Main_Page

Diseases.

Liu, Jiaqi et.al..

Comorbidity Analysis According to Sex and Age in Hypertension Patients in China. International Journal of Medical Sciences. 13. 99-107. 10.7150/ijms.13456.

WSN.

Anchors.

A. Jung, Networked Federated Learning

Abstraction – The Empirical Graph.

local dataset $\mathcal{X}^{(i)}$

edge weights $A_{i,j}$ quantify "statistical similarities"

How To Measure Statistical Sim.?

```
>>> from scipy.stats import ks_2samp
>>> import numpy as np
>>>
>>> np.random.seed(12345678)
>>> x = np.random.normal(0, 1, 1000)
>>> y = np.random.normal(0, 1, 1000)
>>> z = np.random.normal(1.1, 0.9, 1000)
>>>
>>> ks 2samp(x, y)
>>> ks_2samp(x, z)
Ks_2sampResult(statistic=0.41800000000000004, pvalue=3.7081494119242173e-77)
```

https://stackoverflow.com/questions/10884668/two-sample-kolmogorov-smirnov-test-in-python-scipy

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

19

Geometric Dataset Distances via Optimal Transport

David Alvarez-Melis 1 Nicolò Fusi 1

"In this work we propose an alternative notion of distance between datasets that (i) is model-agnostic, (ii) does not involve training,...

https://arxiv.org/pdf/2002.02923.pdf

Networked Models

Networked Models.

Networked Parametric Models.

Smoothness/Clustering Assumption.

model params $w^{(i)}$

require similar params at ends of edge e

 $e = \{i, j\}$ penalty function measures "tension"

A. Jung, Networked Federated Learning

Generalized Total Variation (GTV)

Two Special Cases of GTV.

total variation
$$\phi(\mathbf{u}) = \|\mathbf{u}\|_2$$

graph Laplacian quadratic from is GTV with

$$\phi(\mathbf{u}) = \|\mathbf{u}\|_2^2$$

Smooth Graph Signals.

GTV Minimization.

28

Local Loss Functions.

 $\mathbf{w}^{(i)}$ model params $\mathbf{w}^{(i)}$

measure quality of params by local loss function

29

GTV Minimization.

$$\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} L^{(i)}(\mathbf{w}^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(\mathbf{w}^{(i)} - \mathbf{w}^{(j)})$$

increasing λ average local loss

"clusteredness"

Special Case: Network Lasso.

$$\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} ||w^{(i)} - w^{(j)}||$$

Network Lasso: Clustering and Optimization in Large Graphs

by D Hallac · 2015 · Cited by 206 — Network Lasso: Clustering and Optimization in Large

Graphs ... Keywords: Convex Optimization, ADMM, Network Lasso. Go to: ... 2013 [Google

Scholar]. 2.

Abstract · INTRODUCTION · CONVEX PROBLEM... · EXPERIMENTS

Special Case: "MOCHA"

$$\min_{w} \sum_{i \in M} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} ||w^{(i)} - w^{(j)}||^{2}$$

https://papers.nips.cc > paper > 7029-federated-m... ▼ PDF

Federated Multi-Task Learning - NIPS Proceedings

by V Smith · 2017 · Cited by 501 — 3.2 MOCHA: A Framework for **Federated Multi-Task Learning**. In the **federated** setting, the aim is to train statistical models directly on the edge, and thus we solve (1) while assuming that the data {X1,..., Xm} is distributed across m nodes or devices.

GTVMin as NFL Principle

The Dual of GTVMin

Interpretations

Computational Aspects

Statistical Aspects

"Massaging" GTV Minimization.

$$\widehat{\mathbf{w}} \in \underset{\mathbf{w} \in \mathcal{W}}{\arg \min} \ f(\mathbf{w}) + g(\mathbf{D}\mathbf{w})$$

with
$$f(\mathbf{w}) := \sum_{i \in \mathcal{V}} L_i(\mathbf{w}^{(i)})$$
, and $g(\mathbf{u}) := \lambda \sum_{e \in \mathcal{E}} A_e \phi(\mathbf{u}^{(e)})$.

with incidence matrix/operator

$$\mathbf{D}: \mathcal{W} \to \mathcal{U}: \mathbf{w} \mapsto \mathbf{u} \text{ with } \mathbf{u}^{(e)} = \mathbf{w}^{(e_+)} - \mathbf{w}^{(e_-)}.$$

Fenchel's Duality

$$\min_{\mathbf{w} \in \mathcal{W}} f(\mathbf{w}) + g(\mathbf{D}\mathbf{w}) = \max_{\mathbf{u} \in \mathcal{U}} -g^*(\mathbf{u}) - f^*(-\mathbf{D}^T\mathbf{u}).$$

R. T. Rockafellar, *Convex Analysis*. Princeton, NJ: Princeton Univ. Press, 1970. https://en.wikipedia.org/wiki/Fenchel%27s_duality_theorem

Dual of GTVMin.

$$\max_{\mathbf{u} \in \mathbb{R}^{n|\mathcal{E}|}} -g^*(\mathbf{u}) - f^*(-\mathbf{D}^T \mathbf{u}).$$

$$f^*(\mathbf{w}) := \sup_{\mathbf{z} \in \mathbb{R}^{n|\mathcal{V}|}} \mathbf{w}^T \mathbf{z} - f(\mathbf{z}) \qquad g^*(\mathbf{u}) := \sup_{\mathbf{z} \in \mathbb{R}^{n|\mathcal{E}|}} \mathbf{u}^T \mathbf{z} - g(\mathbf{z})$$

$$f(\mathbf{w})$$

$$-f^*(\mathbf{u})$$
A. Jung, Networked Federated Learning

The Dual of GTVMin.

$$\max_{\mathbf{u} \in \mathcal{U}} - \sum_{i \in \mathcal{V}} L_i^* \left(\mathbf{w}^{(i)} \right) - \lambda \sum_{e \in \mathcal{E}} A_e \phi^* \left(\mathbf{u}^{(e)} / (\lambda A_e) \right)$$
subject to $-\mathbf{w}^{(i)} = \sum_{e \in \mathcal{E}} \sum_{\mathbf{u}^{(e)}} \mathbf{u}^{(e)} - \sum_{\mathbf{u}^{(e)}} \mathbf{u}^{(e)}$ for all nodes $i \in \mathcal{V}$.

dual variables $\mathbf{u}^{(e)}$ for each (oriented) edge e = (j, i)

Primal and Dual Optimality.

$$\sum_{e \in \mathcal{E}} \sum_{i=e_{+}} \widehat{\mathbf{u}}^{(e)} - \sum_{i=e_{-}} \widehat{\mathbf{u}}^{(e)} = -\nabla L_{i} \left(\widehat{\mathbf{w}}^{(i)}\right) \text{ for all nodes } i \in \mathcal{V}$$

 $\widehat{\mathbf{w}}^{(e_+)} - \widehat{\mathbf{w}}^{(e_-)} \in (\lambda A_e) \partial \phi^* (\widehat{\mathbf{u}}^{(e)} / (\lambda A_e))$ for every edge $e \in \mathcal{E}$.

GTVMin as NFL Principle

The Dual of GTVMin

Interpretations

Computational Aspects

Statistical Aspects

Smooth Graph Sig. Recovery

$$\min_{w} \sum_{i \in M} (y^{(i)} - w^{(i)})^2 + \lambda \sum_{\{i,j\}} A_{i,j} (w^{(i)} - w^{(j)})^2$$

Multi-Task Learning

A. Jung, Networke

learn params jointly for every node

Locally Weighted Learning

William S. Cleveland, Susan J. Devlin, Eric Grosse, "Regression by local fitting: Methods, properties, and computational algorithms," Journal of Econometrics, Volume 37, Issue 1, 1988.

A. Jung, Networked Federated Learning

Generalized Convex Clustering

$$\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} \| w^{(i)} - a^{(i)} \|^2 + \lambda \sum_{\{i,j\}} A_{i,j} \| w^{(i)} - w^{(j)} \|_p$$

D. Sun, K.-C. Toh, Y. Yuan;

Convex Clustering: Model, Theoretical Guarantee and Efficient Algorithm, JMLR, 22(9):1–32, 2021

(Probabilistic) Graphical Model

separate prob. space for each local dataset

traditionally, PGMs use a common prob. space for all local datasets

AJ, "Networked Exponential Families for Big Data Over Networks," in *IEEE Access*, vol. 8, pp. 202897-202909, 2020, doi: 10.1109/ACCESS.2020.3033817.

A. Jung, Networked Federated Learning

Approx. Hierarch. Bayes' Model

Vector-Valued Min-Cost-Flow

augmented "collector node"

A. Jung, Networked Federated Learning

Electrical Network.

Kirchhoff's Current Law

$$\sum_{e \in \mathcal{E}} \sum_{i=e_+} \widehat{\mathbf{u}}^{(e)} - \sum_{i=e_-} \widehat{\mathbf{u}}^{(e)} = -\nabla L_i \left(\widehat{\mathbf{w}}^{(i)}\right) \text{ for all nodes } i \in \mathcal{V}$$

$$\widehat{\mathbf{w}}^{(e_+)} - \widehat{\mathbf{w}}^{(e_-)} \in (\lambda A_e) \partial \phi^* (\widehat{\mathbf{u}}^{(e)} / (\lambda A_e))$$
 for every edge $e \in \mathcal{E}$.

Generalized Ohm Law

GTVMin as NFL Principle

The Dual of GTVMin

Interpretations

Computational Aspects

Statistical Aspects

Computational Aspects.

$$\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(w^{(i)} - w^{(j)})$$

- solve in ad-hoc nets of low-cost devices
- robustness against node/link failures
- robustness against "stragglers"

Our Toy NFL Setting

Another NFL Setting...

https://www.google.com/about/datacenters/

https://en.wikipedia.org/wiki/Optical fiber

Two Main Flavours

Primal (Gradient) Methods

Primal-Dual Methods

Two Main Flavours

Primal (Gradient) Methods

Primal-Dual Methods

Gradient Descent

$$\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(w^{(i)} - w^{(j)})$$

$$f(w)$$

optimality condition $\nabla f(w) = 0$

$$w^{(k+1)} = w^{(k)} - \alpha^{(k)} \nabla f(w^{(k)})$$

Subgradient Descent (SGD)

$$\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(w^{(i)} - w^{(j)})$$

$$f(w)$$

optimality condition $0 \in \partial f(w)$

$$w^{(k+1)} = w^{(k)} - \alpha^{(k)} g^{(k)}$$
 $g^{(k)} \in \partial f(w^{(k)})$

Distributed SGD

A. Nedić and A. Olshevsky, "Distributed Optimization Over Time-Varying Directed Graphs," in *IEEE Transactions on Automatic Control*, 2015,

A. Nedic (M.S., University of Belgrade, 1991)

A. Nedić and A. Olshevsky, "Stochastic Gradient-Push for Strongly Convex Functions on Time-Varying Directed Graphs," in *IEEE Transactions on Automatic Control*, 2016,

A. Nedic and A. Ozdaglar, "Distributed Subgradient Methods for Multi-Agent Optimization," in *IEEE Transactions on Automatic Control*, Jan. 2009.

SGD Requires Many Iter.

57

Complexity of SGD

Theorem 3. Let $L_{\ell}, R > 0$ and $\gamma \in (0,1]$. There exists a matrix W of eigengap $\gamma(W) = \gamma$, and n functions f_i satisfying (A2), where n is the size of W, such that for all $t < \frac{d-2}{2} \min(\tau/\sqrt{\gamma}, 1)$ and all $i \in \{1, ..., n\}$,

$$\bar{f}(\theta_{i,t}) - \min_{\theta \in B_2(R)} \bar{f}(\theta) \ge \frac{RL_\ell}{108} \sqrt{\frac{1}{(1 + \frac{2t\sqrt{\gamma}}{\tau})^2} + \frac{1}{1+t}}.$$
 (19)

K. Scaman, F. Bach, S. Bubeck, L. Massoulié, Y Lee, Optimal Algorithms for Non-Smooth Distributed Optimization in Networks, NeurIPS 2018.

SGD as Fixed Point Iteration

$$w^{(k+1)} = \mathcal{T}^{(k)}\big(w^{(k)}\big)$$
 with
$$\mathcal{T}^{(k)}\big(w^{(k)}\big) = w^{(k)} - \alpha^{(k)}\partial f\big(w^{(k)}\big)$$

AJ, "A Fixed-Point of View on Gradient Methods for Big Data", Front. Appl. Math. Stat., 2017.

Plenary on Fixed-Point Tools

$$w^{(k+1)} = \mathbb{Q}^{(k)} \left(w^{(k)} \right)$$

Jean-Christophe Pesquet

Jean-Christophe Pesquet (II in 1987, the Ph.D. and HDF 1999, he was a Maître de Couniversity Paris-Est, and fro the university. He is currer Director of the CVN (Inria to 2021. In 2005, J.-C. Pesquer was a member of the SPTM IEEE SPL (2004-2006). He journal (2010-2015), and a row an associate editor of methods in data science.

Fixed Point Strategies in Signal and Image Processing

Two Main Flavours

Primal (Gradient) Methods

Primal-Dual Methods

Dual of GTVMin = Min. Cost Flow

Primal-Dual Optimality Conditions.

(assuming convexity of loss functions and GTV penalty)

primal and dual variables \hat{w} , \hat{u} optimal if and only if

$$\mathbf{M}^{-1} \begin{pmatrix} \partial f & \mathbf{D}^T \\ -\mathbf{D} & \partial g^* \end{pmatrix} \begin{pmatrix} \widehat{\mathbf{w}} \\ \widehat{\mathbf{u}} \end{pmatrix} \ni \mathbf{0} \text{ with } \mathbf{M} := \begin{pmatrix} \mathbf{T}^{-1} & -\mathbf{D}^T \\ -\mathbf{D} & \mathbf{\Sigma}^{-1} \end{pmatrix}$$

$$(\mathbf{\Sigma})_{e,e} := \sigma_e \mathbf{I}_n, \text{ for } e \in \mathcal{E}, (\mathbf{T})_{i,i} := \tau_i \mathbf{I} \text{ for } i \in \mathcal{V},$$

with
$$\sigma_e := 1/2$$
 for $e \in \mathcal{E}$ and $\tau_i := 1/|\mathcal{N}_i|$ for $i \in \mathcal{V}$.

R. T. Rockafellar , <u>CONVEX ANALYSIS</u>, Princeton Univ. Press, 1970.

Proximal Point Algorithm.

primal and dual variables \hat{w} , \hat{u} optimal if and only if

$$\mathbf{M}^{-1} \begin{pmatrix} \partial f & \mathbf{D}^T \\ -\mathbf{D} & \partial g^* \end{pmatrix} \begin{pmatrix} \widehat{\mathbf{w}} \\ \widehat{\mathbf{u}} \end{pmatrix} \ni \mathbf{0} \text{ with } \mathbf{M} := \begin{pmatrix} \mathbf{T}^{-1} & -\mathbf{D}^T \\ -\mathbf{D} & \mathbf{\Sigma}^{-1} \end{pmatrix}$$

solve iteratively by proximal point algorithm

$$\begin{pmatrix} \widehat{\mathbf{w}}^{(k+1)} \\ \widehat{\mathbf{u}}^{(k+1)} \end{pmatrix} = \begin{pmatrix} \mathbf{I} + \mathbf{M}^{-1} \begin{pmatrix} \partial f & \mathbf{D}^T \\ -\mathbf{D} & \partial g^* \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \widehat{\mathbf{w}}^{(k)} \\ \widehat{\mathbf{u}}^{(k)} \end{pmatrix}$$

A. Chambolle, T. Pock. An introduction to continuous optimization for imaging. Acta Numerica, 2016.

After Some Manipulations.

Algorithm 1 Primal-Dual Method for Networked FL

```
Input: empirical graph G = (V, E, A); training set \{X^{(i)}\}_{i \in M}; regularization parameter \lambda; loss L;
GTV penalty \phi
Initialize: k := 0; \widehat{\mathbf{w}}_0 := \mathbf{0}; \widehat{\mathbf{u}}_0 := \mathbf{0}; \sigma_e = 1/2 and \tau_i = 1/|\mathcal{N}_i|
   1: while stopping criterion is not satisfied do
                 for all nodes i \in \mathcal{V} do \widehat{\mathbf{w}}_{k+1}^{(i)} := \widehat{\mathbf{w}}_k^{(i)} - \tau_i \sum_{e \in \mathcal{E}} D_{e,i} \widehat{\mathbf{u}}_k^{(e)}
                  end for
                 for nodes in the training set i \in \mathcal{M} do
                         \widehat{\mathbf{w}}_{k+1}^{(i)} := \mathcal{P}\mathcal{U}^{(i)}\{\widehat{\mathbf{w}}_{k+1}^{(i)}\}
                  end for
                                                                                                                                                                                                                                   node i
                  for all edges e \in \mathcal{E} do
                         \widehat{\mathbf{u}}_{k+1}^{(e)} := \widehat{\mathbf{u}}_{k}^{(e)} + \sigma_{e} \left( 2 \left( \widehat{\mathbf{w}}_{k+1}^{(e_{+})} - \widehat{\mathbf{w}}_{k+1}^{(e_{-})} \right) - \left( \widehat{\mathbf{w}}_{k}^{(e_{+})} - \widehat{\mathbf{w}}_{k}^{(e_{-})} \right) \right)
  9:
                         \widehat{\mathbf{u}}_{k+1}^{(e)} := \mathcal{D}\mathcal{U}^{(e)}\{\widehat{\mathbf{u}}_{k+1}^{(e)}\}
10:
                  end for
11:
12:
                  k := k+1
13: end while
```

Algorithm 1 is Attractive for NFL...

- > decentralized implementation (mess. pass.)
- > robust against various imperfections
 - > approximate primal/dual updates
 - node/link failures
- > privacy friendly; no raw data exchanged

Local Computations in Algorithm 1.

node-wise primal update: $\mathcal{P}\mathcal{U}^{(i)}\{\mathbf{v}\} := \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^n} L^{(i)}(\mathbf{z}) + (1/2\tau_i) \|\mathbf{v} - \mathbf{z}\|^2$.

edge-wise $\mathcal{D}\mathcal{U}^{(e)}\{\mathbf{v}\}:=\operatorname*{argm}_{\mathbf{z}\in\mathbb{R}}$

 $\mathcal{D}\mathcal{U}^{(e)}\{\mathbf{v}\} := \underset{\mathbf{z} \in \mathbb{R}^n}{\operatorname{argmin}} \lambda A_e \phi^* (\mathbf{z}/(\lambda A_e)) + (1/2\sigma_e) \|\mathbf{v} - \mathbf{z}\|^2.$

Spreading Local Results.

- for all nodes $i \in \mathcal{V}$ do $\widehat{\mathbf{w}}_{k+1}^{(i)} := \widehat{\mathbf{w}}_k^{(i)} \tau_i \sum_{e \in \mathcal{E}} D_{e,i} \widehat{\mathbf{u}}_k^{(e)}$ 3:
- end for
- for all edges $e \in \mathcal{E}$ do

9:
$$\widehat{\mathbf{u}}_{k+1}^{(e)} := \widehat{\mathbf{u}}_{k}^{(e)} + \sigma_e \left(2 \left(\widehat{\mathbf{w}}_{k+1}^{(e_+)} - \widehat{\mathbf{w}}_{k+1}^{(e_-)} \right) - \left(\widehat{\mathbf{w}}_{k}^{(e_+)} - \widehat{\mathbf{w}}_{k}^{(e_-)} \right) \right)$$

Networked Data as RVs

P. Bianchi, W. Hachem, A. Salim.

A Fully Stochastic Primal-Dual Algorithm. Optimization Letters, Springer Verlag, 2020,

Random Node/Link Failures.

Stochastic Primal-Dual Hybrid Gradient Algorithm with **Arbitrary Sampling and Imaging Applications**

Antonin Chambolle, Matthias J. Ehrhardt, Peter Richtárik, and Carola-Bibiane Schönlieb

SIAM Journal on Optimization 2018 28:4, 2783-2808

Privacy-Preservation.

- Huang, Z. and Gong, Y., "Differentially Private ADMM for Convex Distributed Learning: Improved Accuracy via Multi-Step Approximation", <i>arXiv e-prints</i>, 2020.
- Huang, Z., Hu, R., Guo, Y., Chan-Tin, E., and Gong, Y., "DP-ADMM: ADMM-based Distributed Learning with Differential Privacy", <i>arXiv e-prints</i>, 2018.
- J. C. Duchi, M. I. Jordan, and M. J. Wainwright, "Local privacy and statistical minimax rates," in Proc. IEEE Annu. Symp. Found. Comput. Sci., pp. 429–438, 2013.

 A. Jung, Networked Federated Learning

Bottom Line.

PD method solves GTVMin in distributed, robust and privacy-friendly way

...., however

Are GTVMin Solutions Any Good?

$$\min_{\mathbf{w}} \sum_{i \in \mathbf{M}} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(w^{(i)} - w^{(j)})$$

• training/sampling set \mathcal{M}

which combination of signal model (choice of ϕ) and sampling set M ensure solutions of GTVMin are "sensible"?

A. Jung, Networked Federated Learning

Statistical Aspects of GTVMin

Statistical Aspects.

$$min_{w} \sum_{i \in M} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(w^{(i)} - w^{(j)})$$

statistical properties of GTVMin solutions?

- sampling theorems (signal processing)
- generalization bounds (ML perspective)

Statistical Aspects.

$$min_{w} \sum_{i \in M} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(w^{(i)} - w^{(j)})$$

statistical properties of GTVMin solutions?

- sampling theorems (signal processing)
- generalization bounds (ML perspective)

Signal Processing Perspective.

M. Tsitsvero, S. Barbarossa and P. Di Lorenzo, "Signals on Graphs: Uncertainty Principle and Sampling," in *IEEE Transactions on Signal Processing*, 2016,

Our Perspective: Flows.

A. Jung, "On the Duality Between Network Flows and Network Lasso," in *IEEE Signal Processing Letters*, vol. 27, pp. 940-944, 2020. A. Jung, Networked Federated Learning

Cluster-wise Pooling.

parameter vectors can only change over saturated links
A. Jung, Networked Federated Learning

Leaky Training Set.

Personalization vs. Globalization

small lambda - > pooling reduces to single local datasets

everybody is a single cluster

large lambda -> pooling more and more local datasets

> everybody assigned to larger and larger cluster

Measure Connectivity by Flows.

connectivity measured by flow ρ that can be routed over boundary edge

Statistical Error vs. Connectivity.

A. Jung and N. Tran, "Localized Linear Regression in Networked Data," in *IEEE Signal Processing Letters*, vol. 26, no. 7, pp. 1090-1094, July 2019.

Clustering Assumption in SBM.

- intra-cluster edge prob p_{in}
- inter-cluster edge prob p_{out}
- S training nodes in each cluster
- critical value for S*pin/pout

A. Jung,

"Clustering in Partially Labeled Stochastic Block Models via Total Variation Minimization," 54th Asilomar Conference on Signals, Systems, and Computers, 2020,

Mathematical Device.

- flow conservation/Hoffman's circulation theorem
- concentration of cuts in random graphs

R. Karger,
Random sampling in cut, flow, and network design problems,
A. Jung, Methy Oper Res def 1299 pp. 383–413.

85

Wrap Up.

- GTVMin paradigm for NFL
- Dual of GTVMin is Network Flow Optim.
- solve GTVMin. with primal-dual method
- scalable and robust implementation as message passing
- GTV min. adaptively pools similar datasets

Thank you for your attention!

Interested in doing a Phd in the happiest country in the world?

About 26.100.000 results (1,15 seconds)

https://www.visitfinland.com/en/

Finland

1. **Finland**. For the fifth year in a row, Finland is number one when it comes to happiness. 31 Mar 2022