Question

A null hypothesis claims a population has a mean $\mu = 33$. You decide to run two-tail test on a sample of size n = 10 using a significance level $\alpha = 0.05$.

You then collect the sample:

46.6	23.9	43.2	38.2	48.9
	44.5			

Answerlist

- Determine the *p*-value.
- Do you reject the null hypothesis?

Solution

State the hypotheses.

$$H_0$$
 claims $\mu = 33$

$$H_A$$
 claims $\mu \neq 33$

Find the mean and standard deviation of the sample.

$$\bar{x} = 39.02$$

$$s = 8.106$$

Determine the degrees of freedom.

$$df = 10 - 1 = 9$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{8.106}{\sqrt{10}} = 2.563$$

Make a sketch of the null's sampling distribution.

Find the t score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{39.02 - 33}{2.563} = 2.35$$

Find the p-value.

$$p$$
-value = $P(|T| > 2.35)$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 9.)

$$P(|T| > 2.4) = 0.04$$

$$P(|T| > 2.26) = 0.05$$

Basically, because t is between 2.4 and 2.26, we know the p-value is between 0.04 and 0.05.

$$0.04 < p$$
-value < 0.05

Compare the p-value and the significance level ($\alpha = 0.05$).

$$p$$
-value $< \alpha$

Yes, we reject the null hypothesis.

Answerlist

- 0.04 < p-value < 0.05
- Yes, we reject the null hypothesis.

Meta-information

extype: num exsolution: 0.0434 exname: binomial exact extol: 0.01