

Embedding Based Recall: Practice, Progress and Perspectives

Zheng Liu, Jianxun Lian, Xing Xie Social Computing Group, MSRA Aug 15th, 2021

Outline

- Overview
 - Multi-Stage Pipeline
 - EBR: Pros and Cons
- Embedding learning algorithms
 - Negative Augmentation
 - Hard Negative Sampling
 - Diversified representation
 - Training as knowledge distillation
- Things beyond learning algorithms
 - Efficiency issues
 - Combo of sparse and dense

Overview: Multi-Stage Pipeline

Overview: Multi-Stage Pipeline

Overview: Multi-Stage Pipeline

Overview: EBR, Pros and Cos

Overview: EBR, Pros and Cons

Overview: EBR, Pros and Cons

Overview: EBR, Pros and Cons

$$\ell_{\mathrm{align}} \triangleq \underset{(x,x^+) \sim p_{\mathrm{pos}}}{\mathbb{E}} \|f(x) - f(x^+)\|^2$$

Alignment

$$\ell_{\text{uniform}} \triangleq \log \underset{x,y}{\mathbb{E}} e^{-2\|f(x) - f(y)\|^2}$$

$$\mathsf{Uniformity}$$

[1] SimCSE, Gao et.al.
[2] Understanding Contrastive
Learning ...
ICML 2020, Wang et. al.

Outline

- Overview
 - Multi-Stage Pipeline
 - EBR: Pros and Cons
- Embedding learning algorithms
 - Negative Augmentation
 - Hard Negative Sampling
 - Training as distillation
 - Diversified representation
- Things beyond learning algorithms
 - Efficiency issues
 - Combo of sparse and dense

Algos: Negative Augmentation

h

Algos: Negative Augmentation

Algos: Negative Augmentation

Virtual Differentiable Cross-Device Sharing (V-DCS)

- 1. Generate embeddings for each batch, one batch/device
- 2. Broadcast embeddings to all devices
- 3. Compute the global NCE-loss symmetrically on all devices, based on the broadcasted embeddings
- 4. Back-propagate and reduce the gradients on all devices

SoPQ, Xiao and Liu et.

Gross-device values

Algos: Hard Negative Sampling

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval (ANCE, Xiong et. al.)

- 1. Learn embedding model with in-batch negative
- 2. Build ANN index and get hard negatives
- 3. Update embedding model with hard negative
- 4. Repeat 2. and 3. until converge

Algos: Training as distillation

Training as distillation

- Training teacher model with labeled data
- Annotate unlabeled data with teacher
- Train student with labeled and weakannotated data

RocketQA, Ding et. al. Weak Annotation, Li et. al.

Algos: diversified representation

Algos: diversified representation

Elastic Multi-embedding Retrieval (Bloom-filter style interest extractor)

- Generate item embeddings
- Compute item embeddings' membership via learned hash
- Group items based on binary codes
- Aggregate items with the same binary codes for user embeddings

Octopus, Liu et. al.

Outline

- Overview
 - Multi-Stage Pipeline
 - EBR: Pros and Cons
- Embedding learning algorithms
 - Negative Augmentation
 - Hard Negative Sampling
 - Diversified representation
 - Training as knowledge distillation
- Things beyond learning algorithms
 - Efficiency issues
 - Combo of sparse and dense

Desired properties about ANN (HSWN, PQ, ANNOY ...)

- Accurate (high recall)
- Fast (low latency)
- Light (low mem cost)

FAISS, Facebook Al Research

DiskANN, Subramanya et. al.

- Bi-granularity structure:

 Vamana Graph + PQ,
 quantized embeddings and
 graph in MEM, full-precision
 embeddings in SSD
- Using full-precision embeddings to build graph
- Using quantized embeddings for coarsescreened search
- Using full-precision embeddings for refinement

Applying PLMs for user modeling

Encode all events with BERT

 Aggregate events embeddings for user embeddings

Rank	Team	AUC	MRR	nDCG@5	nDCG@10
1	chenghuige	0.7131	0.3608	0.3960	0.4521
2	oahciy	0.7096	0.3540	0.3883	0.4454
3	Ravox	0.7048	0.3505	0.3845	0.4416
3	Qinne	0.7032	0.3496	0.3830	0.43976
3	gcc_microsoft	0.6979	0.3479	0.3806	0.4373

MIND Competition, July – Sept, 2020

Rank	Team	AUC	MRR	nDCG@5	nDCG@10
1	chenghuige	0.7131	0.3608	0.3960	0.4521
2	oahciy	0.7096	0.3540	0.3883	0.4454
3	Ravox	0.7048	0.3505	0.3845	0.4416
3	Qinne	0.7032	0.3496	0.3830	0.43976
3	gcc_microsoft	0.6979	0.3479	0.3806	0.4373

MIND Competition, July – Sept, 2020

BERT	0.717	0.366	0.402	0.458
Only	4	0	2	4

~4 hours, with 4*Nvidia V100 GPUs

SpeedyFeed: Paper, Xiao & Liu et. al., GitHub

Repo

Feature Server, Centralized News

User Modeling, Prediction

(1) High Data Efficiency; (2) Full Reusability; (3) Load Balance A virtual super-big GPU device!

Things beyond: Sparse, Dense Combo

	Pros	Cons
Sparse	EfficientHighly robust (in many cases)	Inaccurate term selectionMismatch of lexical feature
Dense	Data drivenHighly generalizable	Expensive (data, host)Embedding ambiguity

Things beyond: Sparse, Dense Combo

Combo of Sparse and Dense Retrieval

- Use context-aware models (e.g., BERT) for term selection
- Use generation models (e.g., T5) for document expansion
- Do retrieval based on overlapped terms but estimate relevance based on embedding similarity

DeepCT, Dai et. al.
COIL, Gao et. al.
Uni-COIL, Lin et. al.

Sparse Representations			MRR@10	Notes	
1250	Term Weighting	Expansion			
(1a)	BM25	None	0.184	copied from (Nogueira and Lin, 2019)	
(1b)	BM25	doc2query-T5	0.277	copied from (Nogueira and Lin, 2019)	
(2a)	DeepCT	None	0.243	copied from (Dai and Callan, 2019)	
(2b)	DeepCT	doc2query-T5	?	no publicly reported figure	
(2c)	DeepImpact	None	?	no publicly reported figure	
(2d)	DeepImpact	doc2query-T5	0.326	copied from (Mallia et al., 2021)	
(2e)	COIL-tok $(d = 32)$	None	0.341	copied from (Gao et al., 2021a)	
(2f)	COIL-tok $(d = 32)$	doc2query-T5	0.361	our experiment	
(2g)	uniCOIL	None	0.315	our experiment	
(2h)	uniCOIL	doc2query-T5	0.352	our experiment	
Dense Representations		MRR@10	Notes		
(3a)	ColBERT		0.360	copied from (Khattab and Zaharia, 2020)	
(3b)	ANCE		0.330	copied from (Xiong et al., 2021)	
(3c)	DistillBERT		0.323	copied from (Hofstätter et al., 2020)	
(3d)	RocketQA		0.370	copied from (Qu et al., 2021)	
(3e)	TAS-B		0.347	copied from (Hofstätter et al., 2021)	
(3f)	TCT-ColBERTv2		0.359	copied from (Lin et al., 2021)	
Dense-Sparse Hybrids		MRR@10	Notes		
(4a)	la) CLEAR		0.338	copied from (Gao et al., 2021b)	
(4b)	COIL-full		0.355	copied from (Gao et al., 2021a)	
(4c)	TCT-ColBERTv2 + BM25 (1a)		0.369	copied from (Lin et al., 2021)	
(4d)	TCT-ColBERTv2 + doc2query-T5 (1b)		0.375	copied from (Lin et al., 2021)	
(4e)	TCT-ColBERTv2 + DeepImpact (2d)		0.378	our experiment	
(40)	TCT-ColBERTv2 + uniCOIL (2h)		0.378		
(4f)	TCT-ColBERTv2 + u	iniCOIL (2h)	0.378	our experiment	

Things beyond: Sparse, Dense Combo

MSMARCO Document Ranking

- Negative expansion
- Enhancement of negative sampling
- Utilization of sparse feature
- Multiple rankers of different

Largest single leap forward in recent month. Should still be a lot of room for enhancement

Summary

- Overall speaking, EBR (dense) is the future, but SBR (sparse) will continue to thrive.
- Improve EBR algorithmically: negative sampling, weaksupervision, joint training of language model and user model, etc.
- Efficiency: training, serving, unified solution