SUP 1

A compound having a formula A:

X NA

(formula A)

wherein X is selected from the group consisting of

$$R_m$$
 R_q
 R_r
 R_r

$$R_u$$
 R_w R_x R_x

wherein D is selected from the group consisting of NR_aR_b , OR_a , SR_a , PR_aR_b , and R_c ;

and

wherein A is selected from the group consisting of:

wherein R_a , R_b , and R_c are the same or different and are each independently selected from the group consisting of: H; a linear, branched, or cyclic alkyl group; $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}OR_{A1}$; $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}NR_{A2}R_{A3}$; $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}CN$; $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}Cl$; $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}Br$; $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}I$; $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}-Phenyl$; $-(CH_2CH_2O)_{\alpha}-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}-Phenyl$;

wherein R_d , R_e , R_f , R_l , R_m , R_n , R_o , R_p , R_q , R_r , R_t , R_u , R_v , R_w , and R_x are the same or different and are each independently selected from the group consisting of: H; a linear, branched, or cyclic hydrocarbon group that is saturated or unsaturated; a linear, branched, or cyclic alkyl group; $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}OR_{A1}$; $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}NR_{A2}R_{A3}$;

 $-(CH_{2}CH_{2}O)_{\alpha}-(CH_{2})_{\beta}CN; -(CH_{2}CH_{2}O)_{\alpha}-(CH_{2})_{\beta}Cl; -(CH_{2}CH_{2}O)_{\alpha}-(CH_{2})_{\beta}Br;$

 $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}I; -(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}-Phenyl; -(CH_2)_{\alpha}(CF_2)_{\gamma}CF_3; \text{ and an aryl group; }$

wherein R_g , R_h , R_i , and R_k are the same or different and are each independently selected from the group consisting of: H; a linear, branched, or cyclic hydrocarbon group that is saturated or unsaturated; a linear, branched, or cyclic alkyl group; $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}OR_{A1}$;

 $-(CH_2CH_2O)_{\alpha} - (CH_2)_{\beta}NR_{A2}R_{A3}; -(CH_2CH_2O)_{\alpha} - (CH_2)_{\beta}CN;$

 $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}CI; -(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}Br; -(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}I;$

 $-(CH_2CH_2O)_{\alpha}-(CH_2)_{\beta}-Phenyl; \ an \ aryl \ group; \ -(CH_2)_{\alpha}(CF_2)_{\gamma}CF_3; \ -CO_2R_d; \ and \ -COR_d;$

wherein each aryl group is optionally independently selected from the group consisting of

wherein R_{A1} , R_{A2} , R_{A3} , R_{A4} , R_{A5} , R_{A6} / R_{A7} , and R_{A8} are the same or different and are each independently selected from the group consisting of H, a linear alkyl group, a branched alkyl group, and a cyclic alkyl group;

wherein E is selected from the group consisting of S, O, and NR_s ;

wherein the alkyl group is optionally substituted or unsubstituted and optionally includes up to 25 carbon atoms;

wherein α is an integer that is greater than or equal to 0 and less than or equal to 25;

wherein β is an integer that is greater than or equal to 0 and less than or equal to 25; and

wherein γ is an integer that is greater than or equal to 0 and less than or equal to 25.

- 2. A compound as claimed in Claim 1, wherein R_1 , R_m , R_n , R_o , R_p , R_q , R_r , R_t , R_u , R_v , R_w , and R_x are each H; wherein A is C(CN)(CN); and wherein D is R_y or OR_y , wherein R_y is selected from the group consisting of the linear alkyl group, the branched alkyl group, the cyclic alkyl group, and the aryl group.
- 3. A compound as claimed in Claim 1, wherein the compound is selected from the group consisting of Λ

$$CH_3$$
 CH_3
 CH_3

(II)

(IV)

- 4. A liquid-crystal dopant comprising a compound as claimed in Claim 1.
- 5. A liquid-crystal dopant comprising a compound as claimed in Claim 2.
- 6. A liquid-crystal dopant comprising a compound as claimed in Claim 3.
- 7. A liquid-crystal dopant having at about 20-30°C an absorption loss in the visible region of less than or equal to about 5%; having at about 20-30°C a dielectric anistropy of greater than about 50; and having at about 20-30°C a viscosity lower than about 50 centi-poise.
- 8. A composition comprising a liquid-crystal mixture and a liquid-crystal dopant as claimed in Claim 7, wherein the composition at about 20-30°C has a $\partial n/\partial T$ larger than about 0.005, wherein n is a refractive index of the composition at a visible wavelength and T is a temperature of the composition in °C.
- 9. A composition comprising a liquid-crystal mixture and a compound as claimed in Claim 1.
- 10. A composition as claimed in Claim 9, wherein the compound comprises less than or equal to about 50% by weight of the composition.
- 11. A method for reducing an operation voltage of a liquidcrystal mixture, the method comprising adding the compound claimed in Claim 1 to the liquid-crystal mixture.

12. A method as claimed in Claim 11, wherein an amount of the compound is added to and mixed with the liquid-crystal mixture to yield a resulting mixture, wherein the amount of the compound is less than or equal to about 50% by weight of the resulting mixture.

13. A method for tuning a clearing temperature of a liquidcrystal mixture, the method comprising adding the compound claimed in Claim 1 to the liquid-crystal mixture.

- 14. A method as claimed in Claim 13, wherein an amount of the compound is added to and mixed with the liquid-crystal mixture to yield a resulting mixture, wherein the amount of the compound is less than or equal to about 50% by weight of the resulting mixture.
- 15. A method for tuning birefringence of a liquid-crystal mixture, the method comprising adding the compound claimed in Claim 1 to the liquid-crystal mixture.
- 16. A method as claimed in Claim 15, wherein an amount of the compound is added to and mixed with the liquid-crystal mixture to yield a resulting mixture, wherein the amount of the compound is less than or equal to about 50% by weight of the resulting mixture.
- 17. A method for increasing a $\partial n/\partial T$ of a liquid-crystal mixture, the method comprising adding the compound claimed in Claim 1 to the liquid-crystal mixture to yield a resulting mixture, wherein the resulting mixture at about 20-30°C has a $\partial n/\partial T$ larger than about 0.005, wherein n is a refractive index of the resulting

mixture and T is a temperature of the resulting mixture in °C.

18. A method as claimed in Claim 17, wherein an amount of the compound is added to and mixed with the liquid-crystal mixture to yield the resulting mixture, wherein the amount of the compound is less than or equal to about 50% by weight of the resulting mixture.

19. A compound as claimed in Claim 1, wherein wherein when D is NR_aR_b, then α is greater than or equal to 1 and less than or equal to 25;

wherein when R_1 , R_m , R_n , R_q , and R_r are each H, and R_o , R_p , and D are each -CH3, A is not C(CN)(CN);

wherein when R_1 , R_n , R_n , R_o , and R_p are each H, and R_q , R_r , and D are each -CH₃, A is not C(CN)(CN);

wherein when R_1 , R_o , R_p , R_q , and R_r are each H, and R_n , R_m , and D are each -CH, A is not C(CN)(CN); and

wherein when $\rm R_1,\ R_m,\ R_n,\ R_o,\ R_p,\ R_q,\ and\ R_r$ are each H, and D is -CH_3, A is not C(CN)(CN).

20. A composition as claimed in Claim 9, wherein the composition is a liquidcrystal composition.

AND AND