# **MEEN 673**

# Homework 4

Jicheng Lu 525004048

#### **Problem 1: SS-3 square plate**

$$P = \frac{q_0 a^4}{E_2 h^4}$$

$$\overline{\sigma}_{xx,\text{max}} = \sigma_{xx,\text{max}} \left( \frac{a^2}{E_2 h^2} \right), \ \overline{\sigma}_{xy,\text{max}} = \sigma_{xy,\text{max}} \left( \frac{a^2}{E_2 h^2} \right)$$

Use 8×8L4 and 4×4Q9 elements to solve this problem.

(1) 8×8L4 mesh

Box 1.1. Input file of SS-3 square plate (8×8L4 mesh)

```
MODEL,NPE,MESH,NPRNT,IGRAD,NONLIN
2
                               NIPL,NIPN,NITS,NSTR
    1
        1
    8
                              NX. NY
0.0 0.625 0.625
                 0.625  0.625  0.625  0.625  0.625  0.625
                                                             X0, (DX(I), I=1,NX)
    0.625  0.625  0.625  0.625  0.625  0.625  0.625
                                                            Y0, (DY(I), I=1,NY)
                                NSPV and next lines ISPV, VSPV
85
11
      12
           14
                 15
                       2.2
                            25
                                   32
                                        35
                                              42
                                                    45
                                                                5 5
62
           72
                 7 5
                       82
                             8 5
                                   91
                                        92
                                              93
                                                    95
                                                          10 1
                                                                104
                 28 4 37 1 37 4 46 1 46 4 55 1 55 4 64 1
      19 4 28 1
                                                                64 4
     18 2 18 3 27 1 27 2 27 3 36 1
                                        36 2 36 3 45 1 45 2
18 1
                                                               453
     54 2 54 3 63 1 63 2 63 3 72 1
                                        72 2 72 3 73 1
     74 1 74 2 74 3 75 1 75 2 75 3
                                        761 762 763 771 772
     78 1 78 2 78 3 79 1 79 2 79 3 80 1 80 2 80 3 81 1 81 2
813
0.0 \quad 0.0
                                                    0.0
0.0 0.0 0.0 0.0 0.0 0.0
                            0.0 0.0
                                     0.0 0.0
                                              0.0
                                                    0.0
0.0
   0.0 0.0 0.0 0.0 0.0
                            0.0 0.0
                                     0.0 0.0
                                               0.0
                                                    0.0
0.0
    0.0 \quad 0.0
    0.0
         0.0 0.0 0.0 0.0
                            0.0 0.0
0.0
    0.0
         0.0 0.0 0.0 0.0
                            0.0 0.0
                                     0.0 0.0
                                                    0.0
    0.0 0.0 0.0 0.0 0.0
                            0.0 0.0 0.0 0.0
0.0
0
                                  NSSV
10.0 10.0 1.0
                                 XL,YL,THIKNS
7.80E6 2.60E6 1.30E6 1.30E6 1.30E6 0.25 0.8333
                                                E1,E2,G12,G13,G23,ANU12,AKS
1300.0 0.0 0.0
                                   Q0,QX,QY
                                       ICONV
32
     20
           0.001 0.0
                                      NLS, ITMAX, EPS, GAMA
```

Table 1.1. Numerical results of SS-3 square plate (8×8L4 mesh)

| P   | W/h     | $ar{\sigma}_{\scriptscriptstyle xx,	ext{max}}$ | $ar{\sigma}_{\scriptscriptstyle xy,	ext{max}}$ |
|-----|---------|------------------------------------------------|------------------------------------------------|
| 5   | 0.16032 | 2.4625                                         | 0.76131                                        |
| 10  | 0.29023 | 4.7325                                         | 1.3932                                         |
| 15  | 0.39108 | 6.6571                                         | 1.901                                          |
| 20  | 0.47189 | 8.2996                                         | 2.3223                                         |
| 25  | 0.53912 | 9.7337                                         | 2.6844                                         |
| 30  | 0.59678 | 11.012                                         | 3.0042                                         |
| 35  | 0.64737 | 12.171                                         | 3.2922                                         |
| 40  | 0.69255 | 13.236                                         | 3.5557                                         |
| 45  | 0.73346 | 14.225                                         | 3.7994                                         |
| 50  | 0.77091 | 15.15                                          | 4.027                                          |
| 55  | 0.8055  | 16.022                                         | 4.2411                                         |
| 60  | 0.83769 | 16.849                                         | 4.4436                                         |
| 65  | 0.86782 | 17.636                                         | 4.6361                                         |
| 70  | 0.89618 | 18.389                                         | 4.82                                           |
| 75  | 0.923   | 19.111                                         | 4.9961                                         |
| 80  | 0.94845 | 19.807                                         | 5.1655                                         |
| 85  | 0.97269 | 20.478                                         | 5.3286                                         |
| 90  | 0.99585 | 21.127                                         | 5.4862                                         |
| 95  | 1.018   | 21.756                                         | 5.6387                                         |
| 100 | 1.0393  | 22.367                                         | 5.7867                                         |
| 105 | 1.0598  | 22.962                                         | 5.9304                                         |
| 110 | 1.0796  | 23.541                                         | 6.0701                                         |
| 115 | 1.0987  | 24.106                                         | 6.2063                                         |
| 120 | 1.1171  | 24.657                                         | 6.339                                          |
| 125 | 1.135   | 25.197                                         | 6.4687                                         |
| 130 | 1.1523  | 25.724                                         | 6.5954                                         |
| 135 | 1.1692  | 26.242                                         | 6.7193                                         |
| 140 | 1.1856  | 26.749                                         | 6.8407                                         |
| 145 | 1.2015  | 27.246                                         | 6.9596                                         |
| 150 | 1.2171  | 27.735                                         | 7.0762                                         |
| 155 | 1.2322  | 28.215                                         | 7.1907                                         |
| 160 | 1.247   | 28.687                                         | 7.3031                                         |

### (2) 4×4Q9 mesh

Box 1.2. Input file modification of SS-3 square plate (4×4Q9 mesh)

| 2   | 9    | 1 | 0    | 1 2  | MOD  | MODEL,NPE,MESH,NPRNT,IGRAD,NONLIN |  |  |  |  |  |
|-----|------|---|------|------|------|-----------------------------------|--|--|--|--|--|
| 3   | 2    | 2 | 2    |      |      | NIPL,NIPN,NITS,NSTR               |  |  |  |  |  |
| 4   | 4    |   |      |      |      | NX, NY                            |  |  |  |  |  |
| 0.0 | 1.25 | i | 1.25 | 1.25 | 1.25 | X0, (DX(I), I=1,NX)               |  |  |  |  |  |
| 0.0 | 1.25 | i | 1.25 | 1.25 | 1.25 | Y0, (DY(I), I=1,NY)               |  |  |  |  |  |

Table 1.2. Numerical results of SS-3 square plate (4×4Q9 mesh)

| P   | W/h     | $ar{\sigma}_{_{xx,	ext{max}}}$ | $ar{\sigma}_{\scriptscriptstyle xy,	ext{max}}$ |
|-----|---------|--------------------------------|------------------------------------------------|
| 5   | 0.16024 | 2.4741                         | 0.81402                                        |
| 10  | 0.2897  | 4.7495                         | 1.4888                                         |
| 15  | 0.38996 | 6.6739                         | 2.0305                                         |
| 20  | 0.47021 | 8.3135                         | 2.48                                           |
| 25  | 0.53694 | 9.7436                         | 2.8665                                         |
| 30  | 0.59413 | 11.018                         | 3.2078                                         |
| 35  | 0.64431 | 12.172                         | 3.5155                                         |
| 40  | 0.68911 | 13.232                         | 3.7969                                         |
| 45  | 0.72968 | 14.216                         | 4.0573                                         |
| 50  | 0.76681 | 15.137                         | 4.3006                                         |
| 55  | 0.80111 | 16.005                         | 4.5294                                         |
| 60  | 0.83303 | 16.827                         | 4.746                                          |
| 65  | 0.86291 | 17.61                          | 4.9519                                         |
| 70  | 0.89103 | 18.359                         | 5.1486                                         |
| 75  | 0.91762 | 19.078                         | 5.337                                          |
| 80  | 0.94286 | 19.77                          | 5.5182                                         |
| 85  | 0.9669  | 20.437                         | 5.6928                                         |
| 90  | 0.98987 | 21.083                         | 5.8616                                         |
| 95  | 1.0119  | 21.709                         | 6.0249                                         |
| 100 | 1.033   | 22.317                         | 6.1833                                         |
| 105 | 1.0533  | 22.908                         | 6.3372                                         |
| 110 | 1.0729  | 23.484                         | 6.4869                                         |
| 115 | 1.0918  | 24.046                         | 6.6328                                         |
| 120 | 1.1101  | 24.595                         | 6.7751                                         |
| 125 | 1.1279  | 25.132                         | 6.914                                          |
| 130 | 1.1451  | 25.657                         | 7.0498                                         |
| 135 | 1.1618  | 26.172                         | 7.1827                                         |
| 140 | 1.1781  | 26.677                         | 7.3129                                         |
| 145 | 1.1939  | 27.172                         | 7.4404                                         |
| 150 | 1.2093  | 27.658                         | 7.5655                                         |
| 155 | 1.2244  | 28.136                         | 7.6883                                         |
| 160 | 1.239   | 28.607                         | 7.8089                                         |

### **Problem 2: Clamped square plate**

Use  $8\times8L4$  and  $4\times4Q9$  elements to solve this problem.

(1) 8×8L4 mesh

Box 2.1. Input file of clamped square plate (8×8L4 mesh)

| 2    | 4    | 1 (   | ) 1 |        |        |       |       |      | _      |          |        | NONL    | SL4 III<br>IN | (2011)              |
|------|------|-------|-----|--------|--------|-------|-------|------|--------|----------|--------|---------|---------------|---------------------|
| 2    |      | 1 1   |     | _      |        |       |       |      |        | S,NST    |        |         |               |                     |
| 8    | 8    |       |     |        |        |       | X, NY |      | ,      | ,        |        |         |               |                     |
| 0.0  | 0.62 | 25 0. | 625 | 0.62   | 5 0.6  | 525 ( |       |      | 525    | 0.625    | 0.625  | 5       |               | X0, (DX(I), I=1,NX) |
| 0.0  | 0.62 | 25 0. | 625 | 0.62   | 5 0.6  | 525 ( | 0.625 | 0.6  |        | 0.625    | 0.625  |         |               | Y0, (DY(I), I=1,NY) |
|      |      |       |     |        |        |       |       |      |        |          |        |         |               | , , , , , , ,       |
| 117  |      |       |     |        |        |       | NSP   | V an | d nex  | kt lines | ISPV,  | VSPV    |               |                     |
| 1 1  | 1 2  | 1     | 4   | 1 5    | 22     | 2 5   | 3 2   | 3    | 5      | 42       | 4 5    | 5 2     | 5 5           |                     |
| 62   | 6 5  | 7     | 2   | 7 5    | 8 2    | 8 5   | 91    | 9    | 2      | 93       | 9 4    | 95      | 10 1          |                     |
| 10 4 | 19   | 1 19  | 9 4 | 28 1   | 28 4   | 37 1  | 37    | 4 4  | 6 1    | 46 4     | 55 1   | 55 4    | 64 1          |                     |
| 64 4 | 18   | 1 18  | 3 2 | 18 3   | 18 4   | 18 5  | 27    | 1 2  | 7 2    | 27 3     | 27 4   | 27 5    | 36 1          |                     |
| 36 2 | 36   | 3 36  | 5 4 | 36 5   | 45 1   | 45 2  | 45    | 3 4  | 5 4    | 45 5     | 54 1   | 54 2    | 54 3          |                     |
| 54 4 | 54   | 5 63  | 3 1 | 63 2   | 63 3   | 63 4  | 63    | 5 7  | 2 1    | 72 2     | 72 3   | 72 4    | 72 5          |                     |
| 73 1 | 73   | 2 73  | 3 3 | 73 4   | 73 5   | 74 1  | 74    | 2 7  | 4 3    | 74 4     | 74 5   | 75 1    | 75 2          |                     |
| 75 3 | 75   | 4 75  | 5 5 | 76 1   | 76 2   | 76 3  | 76    | 4 7  | 6 5    | 77 1     | 77 2   | 77 3    | 77 4          |                     |
| 77 5 | 78   | 1 78  | 8 2 | 78 3   | 78 4   | 78 5  | 79    | 1 7  | 9 2    | 79 3     | 79 4   | 79 5    | 80 1          |                     |
| 80 2 | 80   | 3 80  | 0 4 | 80 5   | 81 1   | 81 2  | 81    | 3 8  | 1 4    | 81 5     |        |         |               |                     |
|      |      |       |     |        |        |       |       |      |        |          |        |         |               |                     |
| 0.0  | 0.0  | 0.0   | 0.0 | 0.0    | 0.0    | 0.0   | 0.0   | 0.0  | 0.0    | 0.0      | 0.0    |         |               |                     |
| 0.0  | 0.0  | 0.0   | 0.0 | 0.0    | 0.0    | 0.0   | 0.0   | 0.0  | 0.0    | 0.0      | 0.0    |         |               |                     |
| 0.0  | 0.0  | 0.0   | 0.0 | 0.0    | 0.0    | 0.0   | 0.0   | 0.0  | 0.0    | 0.0      | 0.0    |         |               |                     |
| 0.0  | 0.0  | 0.0   | 0.0 | 0.0    | 0.0    | 0.0   | 0.0   | 0.0  | 0.0    | 0.0      | 0.0    |         |               |                     |
| 0.0  | 0.0  | 0.0   | 0.0 | 0.0    | 0.0    | 0.0   | 0.0   | 0.0  | 0.0    | 0.0      | 0.0    |         |               |                     |
| 0.0  | 0.0  | 0.0   | 0.0 | 0.0    | 0.0    | 0.0   | 0.0   | 0.0  | 0.0    | 0.0      | 0.0    |         |               |                     |
| 0.0  | 0.0  | 0.0   | 0.0 | 0.0    | 0.0    | 0.0   | 0.0   | 0.0  | 0.0    | 0.0      | 0.0    |         |               |                     |
| 0.0  | 0.0  | 0.0   | 0.0 | 0.0    | 0.0    | 0.0   | 0.0   | 0.0  | 0.0    | 0.0      | 0.0    |         |               |                     |
| 0.0  | 0.0  | 0.0   | 0.0 | 0.0    | 0.0    | 0.0   | 0.0   | 0.0  | 0.0    | 0.0      | 0.0    |         |               |                     |
| 0.0  | 0.0  | 0.0   | 0.0 | 0.0    | 0.0    | 0.0   | 0.0   | 0.0  |        |          |        |         |               |                     |
|      |      |       |     |        |        |       |       |      |        |          |        |         |               |                     |
| 0    |      |       |     |        |        |       | NSS   |      |        |          |        |         |               |                     |
| 10.0 | 10.  | .0 1. | 0   |        |        |       | XL,Y  | L,T  | HIKN   |          |        |         |               |                     |
|      |      |       |     | E6 1.3 | 0E6 1. | .30E6 |       |      |        | E1,      | E2,G12 | 2,G13,0 | G23,AN        | NU12,AKS            |
| 1300 | 0.0  | 0.0   | 0.0 |        |        |       | Q0    |      | ,QY    |          |        |         |               |                     |
| 0    |      |       |     |        |        |       |       |      | ONV    |          |        |         |               |                     |
| 32   | 20   |       |     | 0.0    |        |       |       | NLS  | S, ITI | MAX,     | EPS, G | SAMA    |               |                     |
| 1.0  | 1.0  |       | 1.0 |        |        |       | 1.0   | 1.0  | 1.0    |          |        |         |               |                     |
| 1.0  | 1.0  | 1.0   | 1.0 | 1.0    | 1.0    | 1.0   | 1.0   | 1.0  | 1.0    |          |        |         |               |                     |
| 1.0  | 1.0  | 1.0   | 1.0 | 1.0    | 1.0    | 1.0   | 1.0   | 1.0  | 1.0    |          |        |         |               |                     |
| 1.0  | 1.0  |       |     |        |        |       |       |      |        |          |        | DP(I)   |               |                     |

Table 2.1. Numerical results of clamped square plate ( $8 \times 8L4$  mesh)

| P   | W/h      | $ar{\sigma}_{\scriptscriptstyle xx,	ext{max}}$ | $ar{\sigma}_{xy,	ext{max}}$ |
|-----|----------|------------------------------------------------|-----------------------------|
| 5   | 0.051359 | 1.6429                                         | 0.17851                     |
| 10  | 0.10223  | 3.308                                          | 0.35731                     |
| 15  | 0.15216  | 4.9818                                         | 0.53484                     |
| 20  | 0.20078  | 6.6522                                         | 0.70975                     |
| 25  | 0.24782  | 8.3087                                         | 0.88091                     |
| 30  | 0.2931   | 9.9429                                         | 1.0475                      |
| 35  | 0.33653  | 11.549                                         | 1.2089                      |
| 40  | 0.37809  | 13.122                                         | 1.3649                      |
| 45  | 0.41779  | 14.66                                          | 1.5153                      |
| 50  | 0.45571  | 16.162                                         | 1.6601                      |
| 55  | 0.49192  | 17.627                                         | 1.7994                      |
| 60  | 0.52651  | 19.056                                         | 1.9334                      |
| 65  | 0.5596   | 20.449                                         | 2.0623                      |
| 70  | 0.59127  | 21.808                                         | 2.1863                      |
| 75  | 0.62162  | 23.134                                         | 2.3084                      |
| 80  | 0.65074  | 24.428                                         | 2.4273                      |
| 85  | 0.67872  | 25.692                                         | 2.5423                      |
| 90  | 0.70563  | 26.926                                         | 2.6537                      |
| 95  | 0.73156  | 28.134                                         | 2.7617                      |
| 100 | 0.75656  | 29.315                                         | 2.8663                      |
| 105 | 0.78071  | 30.471                                         | 2.9679                      |
| 110 | 0.80405  | 31.603                                         | 3.0665                      |
| 115 | 0.82663  | 32.713                                         | 3.1622                      |
| 120 | 0.84852  | 33.801                                         | 3.2553                      |
| 125 | 0.86974  | 34.869                                         | 3.3458                      |
| 130 | 0.89034  | 35.917                                         | 3.4339                      |
| 135 | 0.91036  | 36.947                                         | 3.5197                      |
| 140 | 0.92983  | 37.958                                         | 3.6033                      |
| 145 | 0.94878  | 38.952                                         | 3.6848                      |
| 150 | 0.96724  | 39.93                                          | 3.7642                      |
| 155 | 0.98523  | 40.892                                         | 3.8417                      |
| 160 | 1.0028   | 41.84                                          | 3.9173                      |

### (2) 4×4Q9 mesh

Box 2.2. Input file modification of clamped square plate (4×4Q9 mesh)

|     |     |     |    |     |    | 1  |       |               |             | 1          | 1   | ,  | _ | , |  |  |
|-----|-----|-----|----|-----|----|----|-------|---------------|-------------|------------|-----|----|---|---|--|--|
| 2   | 9   | 1   | l  | 0   | 1  | 2  | MODEI | ,NPE,MESH,NPI | RNT,IGR     | AD,NO      | ONL | IN |   |   |  |  |
| 3   | 2   | 2   | 2  | 2   |    |    |       | NIPL,NIPN,NIT | ΓS,NSTR     |            |     |    |   |   |  |  |
| 4   | 4   |     |    |     |    |    |       | NX, NY        |             |            |     |    |   |   |  |  |
| 0.0 | ) 1 | .25 | 1. | .25 | 1. | 25 | 1.25  | X0, (DX)      | (I), I=1,ΝΣ | <b>(</b> ) |     |    |   |   |  |  |
| 0.0 | ) 1 | .25 | 1. | .25 | 1. | 25 | 1.25  | Y0, (DY       | (I), I=1,NY | <i>(</i> ) |     |    |   |   |  |  |

Table 2.2. Numerical results of clamped square plate  $(4 \times 4Q9 \text{ mesh})$ 

| P   | W/h      | $ar{\sigma}_{_{xx,	ext{max}}}$ | $ar{\sigma}_{\scriptscriptstyle xy,	ext{max}}$ |  |  |  |  |
|-----|----------|--------------------------------|------------------------------------------------|--|--|--|--|
| 5   | 0.051456 | 1.6964                         | 0.18199                                        |  |  |  |  |
| 10  | 0.1024   | 3.4152                         | 0.36407                                        |  |  |  |  |
| 15  | 0.15237  | 5.1421                         | 0.54461                                        |  |  |  |  |
| 20  | 0.20099  | 6.864                          | 0.72241                                        |  |  |  |  |
| 25  | 0.24797  | 8.57                           | 0.89692                                        |  |  |  |  |
| 30  | 0.29314  | 10.251                         | 1.0671                                         |  |  |  |  |
| 35  | 0.33642  | 11.902                         | 1.2323                                         |  |  |  |  |
| 40  | 0.37778  | 13.517                         | 1.3924                                         |  |  |  |  |
| 45  | 0.41726  | 15.095                         | 1.5472                                         |  |  |  |  |
| 50  | 0.45493  | 16.634                         | 1.6967                                         |  |  |  |  |
| 55  | 0.49087  | 18.134                         | 1.841                                          |  |  |  |  |
| 60  | 0.52519  | 19.596                         | 1.9803                                         |  |  |  |  |
| 65  | 0.55799  | 21.02                          | 2.1147                                         |  |  |  |  |
| 70  | 0.58937  | 22.409                         | 2.2444                                         |  |  |  |  |
| 75  | 0.61943  | 23.763                         | 2.3697                                         |  |  |  |  |
| 80  | 0.64826  | 25.084                         | 2.4909                                         |  |  |  |  |
| 85  | 0.67595  | 26.373                         | 2.608                                          |  |  |  |  |
| 90  | 0.70258  | 27.632                         | 2.7213                                         |  |  |  |  |
| 95  | 0.72823  | 28.863                         | 2.8311                                         |  |  |  |  |
| 100 | 0.75296  | 30.066                         | 2.9375                                         |  |  |  |  |
| 105 | 0.77684  | 31.244                         | 3.0406                                         |  |  |  |  |
| 110 | 0.79992  | 32.397                         | 3.1406                                         |  |  |  |  |
| 115 | 0.82225  | 33.527                         | 3.2377                                         |  |  |  |  |
| 120 | 0.84389  | 34.634                         | 3.3321                                         |  |  |  |  |
| 125 | 0.86487  | 35.72                          | 3.4238                                         |  |  |  |  |
| 130 | 0.88524  | 36.786                         | 3.513                                          |  |  |  |  |
| 135 | 0.90503  | 37.833                         | 3.5998                                         |  |  |  |  |
| 140 | 0.92427  | 38.861                         | 3.6844                                         |  |  |  |  |
| 145 | 0.94301  | 39.872                         | 3.7667                                         |  |  |  |  |
| 150 | 0.96126  | 40.866                         | 3.8469                                         |  |  |  |  |
| 155 | 0.97904  | 41.843                         | 3.9252                                         |  |  |  |  |
| 160 | 0.9964   | 42.806                         | 4.0015                                         |  |  |  |  |



Fig 1. Load vs center deflection of the SS-3 and clamped boundary condition



Fig 2. Load vs maximum stress ( $\overline{\sigma}_{xx,max}$ ) of the SS-3 and clamped boundary condition



Fig 3. Load vs maximum stress ( $\bar{\sigma}_{xy,max}$ ) of the SS-3 and clamped boundary condition