Application No	240310547548	
Candidate Name	SUKHRAJ SINGH	
Roll No	PB121204159	
Test Date	04/04/2024	
Test Time	9:00 AM - 12:00 PM	
Subject	B. Tech	

Section: Mathematics Section A

There are 5 points P_1 , P_2 , P_3 , P_4 , P_5 on the side AB, excluding A and B, of a triangle ABC. Similarly there are 6 points P_6 , P_7 , . . ., P_{11} on the side BC and 7 points P_{12} , P_{13} , . . ., P_{18} on the side CA of the triangle. The number of triangles, that can be formed using the points P_1 , P_2 , . . ., P_{18} as vertices, . .

Options 1. 776

2. 796

^{3.} 751

4. 771

Question Type : MCQ

Question ID: 87827055434 Option 1 ID: 878270218266 Option 2 ID: 878270218267 Option 3 ID: 878270218268 Option 4 ID: 878270218265 Status: Not Answered

Q.2 Three urns A, B and C contain 7 red, 5 black; 5 red, 7 black and 6 red, 6 black balls, respectively. One of the urn is selected at random and a ball is drawn from it. If the ball drawn is black, then the probability that it is drawn from urn A is:

Options

- $\frac{5}{18}$
- 2. $\frac{7}{18}$
- 3. $\frac{5}{16}$
- 4. $\frac{4}{17}$

Question Type : MCQ

Question ID: 87827055446
Option 1 ID: 878270218315
Option 2 ID: 878270218316
Option 3 ID: 878270218313
Option 4 ID: 878270218314

Status : **Answered** Chosen Option : **4**

Q.3 Let α , $\beta \in \mathbb{R}$. Let the mean and the variance of 6 observations -3, 4, 7, -6, α , β be 2 and 23, respectively. The mean deviation about the mean of these 6 observations is :

Options

- 1. $\frac{16}{3}$
- 2. $\frac{11}{3}$
- 3. $\frac{13}{3}$
- 4. $\frac{14}{3}$

Question Type: MCQ

Question ID: 87827055447
Option 1 ID: 878270218318
Option 2 ID: 878270218317
Option 3 ID: 878270218320
Option 4 ID: 878270218319
Status: Not Answered

Let the sum of the maximum and the minimum values of the function $f(x) = \frac{2x^2 - 3x + 8}{2x^2 + 3x + 8}$ be $\frac{m}{n}$, Q.4 where gcd(m, n) = 1. Then m + n is equal to:

- Options 1. 182
 - 2. 195
 - 3. 201
 - 4. 217

Question Type: MCQ

Question ID: 87827055439 Option 1 ID: 878270218285 Option 2 ID: 878270218286 Option 3 ID: 878270218287 Option 4 ID: 878270218288 Status: Not Answered

Chosen Option: --

Q.5 One of the points of intersection of the curves $y = 1 + 3x - 2x^2$ and $y = \frac{1}{x}$ is $(\frac{1}{2}, 2)$. Let the area of the region enclosed by these curves be $\frac{1}{24}(l\sqrt{5}+m)-n\log_e(1+\sqrt{5})$, where $\emph{l},m,n\in N$. Then l+m+n is equal to

- Options 1. 31

 - 3. 32
 - 4. 30

Question Type : MCQ

Question ID: 87827055440 Option 1 ID: 878270218291 Option 2 ID: 878270218290 Option 3 ID: 878270218292 Option 4 ID: 878270218289 Status: Not Answered

Let $f: \mathbf{R} \to \mathbf{R}$ be a function given by

$$f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2}, & x < 0 \\ \alpha, & x = 0, \\ \frac{\beta\sqrt{1 - \cos x}}{x}, & x > 0 \end{cases}$$

where α , $\beta \in \mathbf{R}$. If f is continuous at x = 0, then $\alpha^2 + \beta^2$ is equal to :

Options 1. 6

- ^{3.} 48
- 4. 12

Question Type: MCQ

Question ID: 87827055433 Option 1 ID: 878270218262 Option 2 ID: 878270218261 Option 3 ID: 878270218264 Option 4 ID: 878270218263 Status: Not Answered

Chosen Option: --

Let $f(x) = \begin{cases} -2, & -2 \le x \le 0 \\ x - 2, & 0 < x \le 2 \end{cases}$ and h(x) = f(|x|) + |f(x)|. Then $\int_{-2}^{2} h(x) dx$ is equal to:

Options 1. 2

- 4. 6

Question Type: MCQ

Question ID: 87827055437 Option 1 ID: 878270218278 Option 2 ID: 878270218279 Option 3 ID: 878270218277 Option 4 ID: 878270218280 Status: Not Answered

If the system of equations

$$x + (\sqrt{2}\sin\alpha)y + (\sqrt{2}\cos\alpha)z = 0$$

$$x + (\cos\alpha)y + (\sin\alpha)z = 0$$

$$x + (\sin\alpha)y - (\cos\alpha)z = 0$$

has a non-trivial solution, then $\alpha \in \left(0, \frac{\pi}{2}\right)$ is equal to :

Options

- 1. $\frac{7\pi}{24}$
- 2. $\frac{11\pi}{24}$
- 3. $\frac{5\pi}{24}$
- 4. $\frac{3\pi}{4}$

Question Type: MCQ

Question ID: 87827055431 Option 1 ID: 878270218254 Option 2 ID: 878270218256 Option 3 ID: 878270218255 Option 4 ID: 878270218253 Status: Not Answered

Chosen Option: --

Q.9 A square is inscribed in the circle $x^2+y^2-10x-6y+30=0$. One side of this square is parallel to y=x+3. If (x_i, y_i) are the vertices of the square, then $\sum (x_i^2 + y_i^2)$ is equal to :

- Options 1. 152
 - 2. 156
 - 3. 148
 - 4. 160

Question Type: MCQ

Question ID: 87827055442 Option 1 ID: 878270218298 Option 2 ID: 878270218299 Option 3 ID: 878270218297 Option 4 ID: 878270218300 Status: Not Answered

Let a unit vector which makes an angle of 60° with $2\hat{i} + 2\hat{j} - \hat{k}$ and an angle of 45° with $\hat{i} - \hat{k}$

be
$$\overrightarrow{C}$$
. Then \overrightarrow{C} + $\left(-\frac{1}{2}\overrightarrow{i} + \frac{1}{3\sqrt{2}}\overrightarrow{j} - \frac{\sqrt{2}}{3}\overrightarrow{k}\right)$ is:

Options

1.
$$\frac{\sqrt{2}}{3} \hat{i} - \frac{1}{2} \hat{k}$$

2.
$$\left(\frac{1}{\sqrt{3}} + \frac{1}{2}\right)\hat{i} + \left(\frac{1}{\sqrt{3}} - \frac{1}{3\sqrt{2}}\right)\hat{j} + \left(\frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{3}\right)\hat{k}$$

3.
$$\frac{\sqrt{2}}{3} \hat{i} + \frac{1}{3\sqrt{2}} \hat{j} - \frac{1}{2} \hat{k}$$

4.
$$-\frac{\sqrt{2}}{3} \hat{i} + \frac{\sqrt{2}}{3} \hat{j} + \left(\frac{1}{2} + \frac{2\sqrt{2}}{3}\right) \hat{k}$$

Question Type: MCQ

Question ID: 87827055445 Option 1 ID: 878270218311 Option 2 ID: 878270218309 Option 3 ID: 878270218312 Option 4 ID: 878270218310 Status: Not Answered

Chosen Option: --

Let the first three terms 2, p and q, with $q \neq 2$, of a G.P. be respectively the 7th, 8th and 13th terms of an A.P. If the 5th term of the G.P. is the nth term of the A.P., then n is equal to:

Options 1. 169

- 2. 151
- ^{3.} 163
- 4. 177

Question Type: MCQ

Question ID: 87827055436 Option 1 ID: 878270218275 Option 2 ID: 878270218273 Option 3 ID: 878270218274 Option 4 ID: 878270218276 Status: Not Answered

Q.12 If the solution y = y(x) of the differential equation $(x^4 + 2x^3 + 3x^2 + 2x + 2)dy - (2x^2 + 2x + 3)dx = 0$ satisfies $y(-1) = -\frac{\pi}{4}$, then y(0) is equal to :

Options

$$1. - \frac{\pi}{12}$$

Question Type : MCQ

Question ID: 87827055441 Option 1 ID: 878270218296 Option 2 ID: 878270218295 Option 3 ID: 878270218294 Option 4 ID: 878270218293 Status: Not Answered

Chosen Option: --

Q.13 Let α and β be the sum and the product of all the non-zero solutions of the equation $(\overline{z})^2 + |z| = 0$, $z \in \mathbb{C}$. Then $4(\alpha^2 + \beta^2)$ is equal to :

Options 1. 8

Question Type: MCQ

Question ID: 87827055429 Option 1 ID: 878270218248 Option 2 ID: 878270218245 Option 3 ID: 878270218247 Option 4 ID: 878270218246 Status: Not Answered

Q.14

The sum of all rational terms in the expansion of $\left(2^{\frac{1}{5}} + 5^{\frac{1}{3}}\right)^{15}$ is equal to :

- Options 1. 6131
 - 2. 3133
 - 3. 931
 - 4. 633

Question Type: MCQ

Question ID: 87827055435 Option 1 ID: 878270218272 Option 2 ID: 878270218270 Option 3 ID: 878270218269 Option 4 ID: 878270218271 Status: Not Answered

Chosen Option: --

Q.15 If 2 and 6 are the roots of the equation $ax^2 + bx + 1 = 0$, then the quadratic equation, whose roots are $\frac{1}{2a+b}$ and $\frac{1}{6a+b}$, is:

Options 1.
$$2x^2 + 11x + 12 = 0$$

$$x^2 + 8x + 12 = 0$$

3.
$$4x^2 + 14x + 12 = 0$$

4.
$$x^2 + 10x + 16 = 0$$

Question Type: MCQ

Question ID: 87827055430 Option 1 ID: 878270218251 Option 2 ID: 878270218249 Option 3 ID: 878270218250 Option 4 ID: 878270218252 Status: Not Answered

Let $f(x) = x^5 + 2e^{x/4}$ for all $x \in \mathbb{R}$. Consider a function g(x) such that $(g \circ f)(x) = x$ for all $x \in \mathbb{R}$. Then the value of 8g'(2) is : Options 1. 2 Question Type : MCQ Question ID: 87827055438 Option 1 ID: 878270218281 Option 2 ID: 878270218282 Option 3 ID: 878270218284 Option 4 ID: 878270218283 Status: Not Answered Chosen Option: --Q.17 Let the point, on the line passing through the points P(1, -2, 3) and Q (5, -4, 7), farther from the origin and at a distance of 9 units from the point P, be (α, β, γ) . Then $\alpha^2 + \beta^2 + \gamma^2$ is equal to : Options 1. 155 2. 160 ^{3.} 150 4. 165 Question Type: MCQ Question ID: 87827055444 Option 1 ID: 878270218308 Option 2 ID: 878270218307 Option 3 ID: 878270218305 Option 4 ID: 878270218306

Status: Not Answered

Q.18

If the domain of the function $\sin^{-1}\left(\frac{3x-22}{2x-19}\right) + \log_{e}\left(\frac{3x^2-8x+5}{x^2-3x-10}\right)$ is $(\alpha, \beta]$, then $3\alpha+10\beta$ is equal

to:

Options 1. 98

- 2. 100
- 3. 97
- 4. 95

Question Type : MCQ

Question ID: 87827055428
Option 1 ID: 878270218243
Option 2 ID: 878270218244
Option 3 ID: 878270218242
Option 4 ID: 878270218241
Status: Not Answered

Chosen Option: --

Q.19 The vertices of a triangle are A(-1, 3), B(-2, 2) and C(3, -1). A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is:

Options

1.
$$x+y-(2-\sqrt{2})=0$$

$$^{2.} x + y + (2 - \sqrt{2}) = 0$$

3.
$$-x+y-(2-\sqrt{2})=0$$

4.
$$x-y-(2+\sqrt{2})=0$$

Question Type: MCQ

Question ID: 87827055443
Option 1 ID: 878270218301
Option 2 ID: 878270218302
Option 3 ID: 878270218304
Option 4 ID: 878270218303
Status: Not Answered

Q.20

Let $\alpha \in (0, \infty)$ and $A = \begin{bmatrix} 1 & 2 & A \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$. If $\det(\operatorname{adj}(2A - A^T) \cdot \operatorname{adj}(A - 2A^T)) = 2^8$, then $(\det(A))^2$ is equal

Options 1. 36

- 4. 16

Question Type: MCQ

Question ID: 87827055432 Option 1 ID: 878270218259 Option 2 ID: 878270218260 Option 3 ID: 878270218257 Option 4 ID: 878270218258 Status: Not Answered

Chosen Option: --

Section: Mathematics Section B

Q.21

Let A be a square matrix of order 2 such that |A| = 2 and the sum of its diagonal elements is -3. If the points (x, y) satisfying $A^2 + xA + yI = O$ lie on a hyperbola, whose transverse axis is parallel to the x-axis, eccentricity is e and the length of the latus rectum is e1, then $e^4 + e^4 + e^4 = e^4 + e^4 + e^4 + e^4 + e^4 = e^4 + e^4 +$

Given --Answer:

Question Type: SA

Question ID: 87827055454 Status: Not Answered

Q.22

In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let m and n respectively be the least and the most number of students who studied all the three subjects. Then m+n is equal to _

Given --Answer:

Question Type: SA

Question ID: 87827055448 Status: Not Answered

Q.23

If $\int_0^{\frac{\pi}{4}} \frac{\sin^2 x}{1 + \sin x \cos x} dx = \frac{1}{a} \log_e \left(\frac{a}{3} \right) + \frac{\pi}{b\sqrt{3}}$, where $a, b \in \mathbb{N}$, then a + b is equal to _____.

Given --

Answer:

Question Type: SA

Question ID: 87827055452 Status: Not Answered

Let
$$a = 1 + \frac{{}^{2}C_{2}}{3!} + \frac{{}^{3}C_{2}}{4!} + \frac{{}^{4}C_{2}}{5!} + \dots$$

$$b = 1 + \frac{{}^{1}C_{0} + {}^{1}C_{1}}{1!} + \frac{{}^{2}C_{0} + {}^{2}C_{1} + {}^{2}C_{2}}{2!} + \frac{{}^{3}C_{0} + {}^{3}C_{1} + {}^{3}C_{2} + {}^{3}C_{3}}{3!} + \dots$$

Then $\frac{2b}{a^2}$ is equal to _____.

Given --

Answer:

Question Type : SA

Question ID: 87827055450 Status: Not Answered

Q.25

Let ABC be a triangle of area $15\sqrt{2}$ and the vectors $\overrightarrow{AB} = \hat{i} + 2\hat{j} - 7\hat{k}$, $\overrightarrow{BC} = a\hat{i} + b\hat{j} + c\hat{k}$ and

 $\overrightarrow{AC} = 6\hat{i} + d\hat{j} - 2\hat{k}$, d > 0. Then the square of the length of the largest side of the triangle ABC is

Given --

Answer:

Question Type : SA

Question ID: 87827055457

Status: Not Answered

Q.26

Let A be a 3×3 matrix of non-negative real elements such that $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Then the maximum value of det(A) is _____.

Given --

Answer:

Question Type: SA

Question ID : 87827055449

Status: Not Answered

Q.27

Let the solution y = y(x) of the differential equation $\frac{dy}{dx} - y = 1 + 4\sin x$ satisfy $y(\pi) = 1$. Then

$$y\left(\frac{\pi}{2}\right) + 10$$
 is equal to _____.

Given --

Answer:

Question Type: SA

Question ID: 87827055453

Status: Not Answered

Q.28 Let the length of the focal chord PQ of the parabola $y^2 = 12x$ be 15 units. If the distance of PQ from the origin is p, then $10p^2$ is equal to _____.

Given --Answer :

Question Type : SA

Question ID : 87827055455

Status : Not Answered

Q.29

If the shortest distance between the lines $\frac{x+2}{2} = \frac{y+3}{3} = \frac{z-5}{4}$ and $\frac{x-3}{1} = \frac{y-2}{-3} = \frac{z+4}{2}$

is $\frac{38}{3\sqrt{5}}$ k, and $\int_0^k [x^2] dx = \alpha - \sqrt{\alpha}$, where [x] denotes the greatest integer function, then $6\alpha^3$ is equal to ______.

Given --

Answer:

Question Type : SA

Question ID: 87827055456 Status: Not Answered

Q.30

If $\lim_{x \to 1} \frac{(5x+1)^{\frac{1}{3}} - (x+5)^{\frac{1}{3}}}{(2x+3)^{\frac{1}{2}} - (x+4)^{\frac{1}{2}}} = \frac{m\sqrt{5}}{n(2n)^{\frac{2}{3}}}$, where gcd(m, n) = 1, then 8m+12n is equal to

Given --Answer :

Question Type : SA

Question ID: 87827055451 Status: Not Answered

Section: Physics Section A

Q.31 An electron is projected with uniform velocity along the axis inside a current carrying long solenoid. Then:

Options

- the electron path will be circular about the axis.
- 2 the electron will be accelerated along the axis.

3.

the electron will experience a force at 45° to the axis and execute a helical path.

4.

the electron will continue to move with uniform velocity along the axis of the solenoid.

Question Type: MCQ

Question ID: 87827055469
Option 1 ID: 878270218376
Option 2 ID: 878270218375
Option 3 ID: 878270218377
Option 4 ID: 878270218378
Status: Not Answered

Q.32 Which of the following nuclear fragments corresponding to nuclear fission between neutron $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ n and uranium isotope $\begin{pmatrix} 235 \\ 92 \end{pmatrix}$ is correct :

Options

$$\begin{array}{cc} 1 & \frac{144}{56} \text{Ba} + \frac{89}{36} \text{Kr} + 4\frac{1}{0} \text{n} \end{array}$$

2.
$$^{153}_{51}$$
Sb + $^{99}_{41}$ Nb + 3^{1}_{0} n

3.
$$_{56}^{144}$$
Ba + $_{36}^{89}$ Kr + 3_{0}^{1} n

4.
$$_{56}^{140}$$
Xe + $_{38}^{94}$ Sr + 3_{0}^{1} n

Question Type: MCQ

Question ID: 87827055474 Option 1 ID: 878270218398 Option 2 ID: 878270218395 Option 3 ID: 878270218396 Option 4 ID: 878270218397 Status: Answered

Chosen Option: 3

Q.33 The resistances of the platinum wire of a platinum resistance thermometer at the ice point and steam point are 8 Ω and 10 Ω respectively. After inserting in a hot bath of temperature 400°C, the resistance of platinum wire is:

Options 1. $8~\Omega$

^{2.} 16 Ω

3. 10 Ω

 $^{4.}$ $^{2}\Omega$

Question Type: MCQ

Question ID: 87827055468 Option 1 ID: 878270218371 Option 2 ID: 878270218373 Option 3 ID: 878270218372 Option 4 ID: 878270218374 Status: Not Answered

Q.34 A body travels 102.5 m in n^{th} second and 115.0 m in $(n+2)^{th}$ second. The acceleration is :

Options

- 1. 6.25 m/s²
- 2. 5 m/s^2
- 3. 9 m/s^2
- 4. 12.5 m/s^2

Question Type: MCQ

Question ID: 87827055461
Option 1 ID: 878270218344
Option 2 ID: 878270218343
Option 3 ID: 878270218346
Option 4 ID: 878270218345
Status: Not Answered

Chosen Option: --

The equation of stationary wave is:

$$y = 2a \sin\left(\frac{2\pi nt}{\lambda}\right) \cos\left(\frac{2\pi x}{\lambda}\right).$$

Which of the following is NOT correct:

Options

- 1. The dimensions of x is [L]
- 2. The dimensions of n/λ is [T]
- 3. The dimensions of nt is [L]
- 4. The dimensions of n is $[LT^{-1}]$

Question Type: MCQ

Question ID: 87827055458
Option 1 ID: 878270218332
Option 2 ID: 878270218334
Option 3 ID: 878270218331
Option 4 ID: 878270218333
Status: Answered

Q.36 The electric field in an electromagnetic wave is given by $\overrightarrow{E} = \hat{i} 40 \cos(t - \frac{z}{C}) N C^{-1}$. The magnetic field induction of this wave is (in SI unit):

Options

1.
$$\overrightarrow{B} = \hat{j} \frac{40}{c} \cos\omega(t - \frac{z}{c})$$

2.
$$\overrightarrow{B} = \hat{j} 40 \cos \omega \left(t - \frac{z}{c} \right)$$

3.
$$\overrightarrow{B} = \hat{i} \frac{40}{c} \cos(t - \frac{z}{c})$$

4.
$$\overrightarrow{B} = \hat{k} \frac{40}{c} \cos(t - \frac{z}{c})$$

Question Type: MCQ

Question ID: 87827055471 Option 1 ID: 878270218385 Option 2 ID: 878270218383 Option 3 ID: 878270218386 Option 4 ID: 878270218384 Status: Answered

Chosen Option: 4

Q.37 To measure the internal resistance of a battery, potentiometer is used. For $R=10~\Omega$, the balance point is observed at l = 500 cm and for R = 1 Ω the balance point is observed at l = 400 cm. The internal resistance of the battery is approximately:

Options 1. $0.4~\Omega$

 $^{2.}$ $0.1~\Omega$

3. 0.2 Ω

4. 0.3 Ω

Question Type: MCQ

Question ID: 87827055477 Option 1 ID: 878270218410 Option 2 ID: 878270218407 Option 3 ID: 878270218408 Option 4 ID: 878270218409 Status: Not Answered

Options

Question Type : MCQ

Question ID: 87827055460
Option 1 ID: 878270218339
Option 2 ID: 878270218342
Option 3 ID: 878270218340
Option 4 ID: 878270218341

Status : Answered

Chosen Option : $\boldsymbol{3}$

Q.39 P-T diagram of an ideal gas having three different densities $\rho_1,\,\rho_2,\,\rho_3$ (in three different cases) is shown in the figure. Which of the following is correct:

Options 1.
$$\rho_1 > \rho_2$$

2.
$$\rho_1 = \rho_2 = \rho_3$$

3.
$$\rho_2 < \rho_3$$

4.
$$\rho_1 < \rho_2$$

Question Type: MCQ

Question ID: 87827055466 Option 1 ID: 878270218366 Option 2 ID: 878270218365 Option 3 ID: 878270218364 Option 4 ID: 878270218363

Status: Answered

Q.40 Given below are two statements:

Statement I: When speed of liquid is zero everywhere, pressure difference at any two points depends on equation $P_1 - P_2 = \rho g(h_2 - h_1)$.

Statement II: In ventury tube shown $2gh = v_1^2 - v_2^2$

In the light of the above statements, choose the **most appropriate** answer from the options given below.

Options 1.

Both Statement I and Statement II are incorrect.

2 Statement I is correct but Statement II is incorrect.

3. Statement I is incorrect but Statement II is correct.

4. Both Statement I and Statement II are correct.

Question Type : MCQ

Question ID: 87827055464
Option 1 ID: 878270218356
Option 2 ID: 878270218357
Option 3 ID: 878270218358
Option 4 ID: 878270218355
Status: Answered

Q.41 Which figure shows the correct variation of applied potential difference (V) with photoelectric current (I) at two different intensities of light ($I_1 < I_2$) of same wavelengths :

Options

Question Type : MCQ

Question ID: 87827055473
Option 1 ID: 878270218391
Option 2 ID: 878270218392
Option 3 ID: 878270218394
Option 4 ID: 878270218393

Status: Marked For Review

Chosen Option : ${\bf 1}$

If a rubber ball falls from a height h and rebounds upto the height of h/2. The percentage loss of total energy of the initial system as well as velocity ball before it strikes the ground, respectively,

Options

1.
$$50\%, \sqrt{\frac{gh}{2}}$$

2.
$$50\%, \sqrt{gh}$$

3.
$$50\%, \sqrt{2gh}$$

Question Type: MCQ

Question ID: 87827055462 Option 1 ID: 878270218350 Option 2 ID: 878270218347 Option 3 ID: 878270218348 Option 4 ID: 878270218349

Status: Answered Chosen Option: 2

Q.43 The value of net resistance of the network as shown in the given figure is:

Options 1.
$$6 \Omega$$

2.
$$(15/4) \Omega$$

з.
$$(30/11) \Omega$$

4.
$$(5/2) \Omega$$

Question Type: MCQ

Question ID: 87827055475 Option 1 ID: 878270218402 Option 2 ID: 878270218400 Option 3 ID: 878270218399 Option 4 ID: 878270218401 Status: Answered

The co-ordinates of a particle moving in x-y plane are given by : x=2+4t, $y=3t+8t^2$.

The motion of the particle is:

Options 1.

uniformly accelerated having motion along a straight line.

2. uniformly accelerated having motion along a parabolic path.

- 3. non-uniformly accelerated.
- 4. uniform motion along a straight line.

Question Type: MCQ

Question ID: 87827055459 Option 1 ID: 878270218336 Option 2 ID: 878270218337 Option 3 ID: 878270218335 Option 4 ID: 878270218338 Status: Answered

Chosen Option: 2

Q.45 On celcius scale the temperature of body increases by 40°C. The increase in temperature on

Options 1. 75°F

2. 70°F

3. 72°F

4. 68°F

Question Type: MCQ

Question ID: 87827055465 Option 1 ID: 878270218361 Option 2 ID: 878270218360 Option 3 ID: 878270218359 Option 4 ID: 878270218362 Status: Not Answered

- Q.46 In an ac circuit, the instantaneous current is zero, when the instantaneous voltage is maximum. In this case, the source may be connected to:
 - A. pure inductor.
 - pure capacitor.
 - pure resistor.
 - combination of an inductor and capacitor.

Choose the correct answer from the options given below:

Options

- 1. A, B and D only
- 2. B, C and D only
- 3. A, B and C only
- 4. A and B only

Question Type: MCQ

Question ID: 87827055470 Option 1 ID: 878270218381 Option 2 ID: 878270218380 Option 3 ID: 878270218379 Option 4 ID: 878270218382 Status: Not Answered

Chosen Option: --

Q.47 An effective power of a combination of 5 identical convex lenses which are kept in contact along the principal axis is 25 D. Focal length of each of the convex lens is :

- Options 1. 25 cm
 - 500 cm
 - 20 cm
 - 4. 50 cm

Question Type: MCQ

Question ID: 87827055472 Option 1 ID: 878270218390 Option 2 ID: 878270218389 Option 3 ID: 878270218387 Option 4 ID: 878270218388

Status: Answered

Q.48 A metal wire of uniform mass density having length L and mass M is bent to form a semicircular arc and a particle of mass m is placed at the centre of the arc. The gravitational force on the particle by the wire is:

Options

$$1. \frac{GmM\pi^2}{L^2}$$

2.
$$\frac{2GmM\pi}{L^2}$$

3. 0

4.
$$\frac{GMm\pi}{2L^2}$$

Question Type : MCQ

Question ID: 87827055463
Option 1 ID: 878270218352
Option 2 ID: 878270218353
Option 3 ID: 878270218351
Option 4 ID: 878270218354
Status: Answered

Chosen Option: 3

Q.49 In an experiment to measure focal length (f) of convex lens, the least counts of the measuring scales for the position of object (u) and for the position of image (v) are Δu and Δv , respectively. The error in the measurement of the focal length of the convex lens will be:

Options

$$1. f^2 \left[\frac{\Delta u}{u^2} + \frac{\Delta v}{v^2} \right]$$

$$2. \ \frac{\Delta u}{u} + \frac{\Delta v}{v}$$

3.
$$2f\left[\frac{\Delta u}{u} + \frac{\Delta v}{v}\right]$$

4.
$$f\left[\frac{\Delta u}{u} + \frac{\Delta v}{v}\right]$$

Question Type: MCQ

Question ID: 87827055476
Option 1 ID: 878270218406
Option 2 ID: 878270218405
Option 3 ID: 878270218404
Option 4 ID: 878270218403
Status: Not Answered

Q.50 An infinitely long positively charged straight thread has a linear charge density λ Cm $^{-1}$. An electron revolves along a circular path having axis along the length of the wire. The graph that correctly represents the variation of the kinetic energy of electron as a function of radius of circular path from the wire is:

Question Type: MCQ

Question ID: 87827055467
Option 1 ID: 878270218370
Option 2 ID: 878270218369
Option 3 ID: 878270218368
Option 4 ID: 878270218367
Status: Not Answered

Q.51 Twelve wires each having resistance 2 Ω are joined to form a cube. A battery of 6 V emf is joined across point a and c. The voltage difference between e and f is ______ V.

Given --Answer :

Question Type : SA

Question ID: 87827055483 Status: Not Answered

Q.52 A soap bubble is blown to a diameter of 7 cm. 36960 erg of work is done in blowing it further. If surface tension of soap solution is 40 dyne/cm then the new radius is _____ cm Take $\left(\pi = \frac{22}{7}\right)$.

Given --Answer :

Question Type : SA

Question ID: 87827055480 Status: Not Answered

Q.53 A alternating current at any instant is given by $i = \left[6 + \sqrt{56} \sin(100\pi t + \pi/3)\right] A$. The *rms* value of the current is _____ A.

Given --Answer :

Question Type : SA

Question ID: 87827055485 Status: Not Answered

An infinite plane sheet of charge having uniform surface charge density $+\sigma_s$ C/m² is placed on x-y plane. Another infinitely long line charge having uniform linear charge density $+\lambda_e$ C/m is placed at z=4 m plane and parallel to y-axis. If the magnitude values $|\sigma_s|$ = 2 $|\lambda_e|$ then at point (0, 0, 2), the ratio of magnitudes of electric field values due to sheet charge to that of line charge is $\pi\sqrt{n}$:1. The value of n is ______.

Given --Answer :

Question Type: SA

Question ID : **87827055482** Status : **Not Answered**

above the initial level. The ratio $h_1:h_2$ is $\frac{n}{10}$. The value of n is Given Answer: Question Type: SA Question ID: 87827055479 Status: Not Answered Q.56 A hydrogen atom changes its state from $n=3$ to $n=2$. Due to recoil, the percentage change in the wave length of emitted light is approximately 1×10^{-n} . The value of n is [Given Rhc=13.6 eV, hc=1242 eV nm, h=6.6×10 ⁻³⁴ J s mass of the hydrogenatom=1.6×10 ⁻²⁷ kg]	A solid sphere and a hollow cylinder roll up without slipping on same inclined plane with same initial speed v . The sphere and the cylinder reaches upto maximum heights h_1 and h_2 , respectively,				
Given Answer: Question Type: SA Question ID: 87827055479 Status: Not Answered Q.56 A hydrogen atom changes its state from n=3 to n=2. Due to recoil, the percentage change in the wave length of emitted light is approximately 1×10 ⁻ⁿ . The value of n is [Given Rhc=13.6 eV, hc=1242 eV nm, h=6.6×10 ⁻³⁴ J s mass of the hydrogenatom=1.6×10 ⁻²⁷ kg] Given	value of n is				
Q.56 A hydrogen atom changes its state from n = 3 to n = 2. Due to recoil, the percentage change in the wave length of emitted light is approximately 1×10 ⁻ⁿ . The value of n is [Given Rhc=13.6 eV, hc=1242 eV nm, h=6.6×10 ⁻³⁴ J s mass of the hydrogenatom=1.6×10 ⁻²⁷ kg] Given	Given				
wave length of emitted light is approximately 1×10^{-n} . The value of n is [Given Rhc=13.6 eV, hc=1242 eV nm, h=6.6×10 ⁻³⁴ J s mass of the hydrogenatom=1.6×10 ⁻²⁷ kg]	Question ID : 87827055479				
	wave length of emitted light is approximately 1×10^{-n} . The value of n is				
Answer:					
Question Type : SA Question ID : 87827055487 Status : Not Answered	Question ID : 87827055487				
Q.57 Two wavelengths λ_1 and λ_2 are used in Young's double slit experiment. λ_1 =450 nm and λ_2 =650 nm. The minimum order of fringe produced by λ_2 which overlaps with the fringe produced by λ_1 is n. The value of n is					
Given Answer :					
Question Type : SA Question ID : 87827055486 Status : Not Answered	Question ID : 87827055486				
Q.58 An elastic spring under tension of 3 N has a length a . Its length is b under tension 2 N. For its length $(3a-2b)$, the value of tension will be N.	a. Its length is b under tension 2 N. For itsN.				
Given 5.0 Answer:					
Question Type : SA Question ID : 87827055481 Status : Answered	Question ID: 87827055481				
Q.59 Two forces \overline{F}_1 and \overline{F}_2 are acting on a body. One force has magnitude thrice that of the other force and the resultant of the two forces is equal to the force of larger magnitude. The angle between					
\overrightarrow{F}_1 and \overrightarrow{F}_2 is $\cos^{-1}\left(\frac{1}{n}\right)$. The value of $ n $ is					
Given 6.0 Answer:					
Question Type : SA Question ID : 87827055478 Status : Answered	Question ID : 87827055478				

The magnetic field existing in a region is given by $\overrightarrow{B} = 0.2 (1 + 2x) \hat{k} T$. A square loop of edge 50 cm carrying 0.5 A current is placed in x-y plane with its edges parallel to the x-y axes, as shown in figure. The magnitude of the net magnetic force experienced by the loop is __mN.

Given --Answer:

Question Type: SA

Question ID: 87827055484 Status: Not Answered

Section: Chemistry Section A

In the precipitation of the iron group (III) in qualitative analysis, ammonium chloride is added before adding ammonium hydroxide to $\,:\,$

- options increase concentration of Cl ions
 - 2. prevent interference by phosphate ions
 - 3. decrease concentration of OH ions
 - 4. increase concentration of NH_4^+ ions

Question Type: MCQ

Question ID: 87827055499 Option 1 ID: 878270218467 Option 2 ID: 878270218466 Option 3 ID: 878270218465 Option 4 ID: 878270218468

Status: Answered

Q.62 Number of elements from the following that CANNOT form compounds with valencies which match with their respective group valencies is _ B, C, N, S, O, F, P, Al, Si

- Options 1. 3

Question Type : MCQ

Question ID: 87827055494 Option 1 ID: 878270218446 Option 2 ID: 878270218447 Option 3 ID: 878270218448 Option 4 ID: 878270218445

Status: Answered

Chosen Option: 4

Q.63 What pressure (bar) of H2 would be required to make emf of hydrogen electrode zero in pure water at 25°C?

- Options 1. 0.5
 - 2. 10 7
 - 3. 1
 - 4. 10 14

Question Type: MCQ

Question ID: 87827055492 Option 1 ID: 878270218440 Option 2 ID: 878270218437 Option 3 ID: 878270218439 Option 4 ID: 878270218438 Status: Answered

Given below are two statements:

Statements I: Acidity of α -hydrogens of aldehydes and ketones is responsible for Aldol reaction. Statement II: Reaction between benzaldehyde and ethanal will NOT give Cross - Aldol product. In the light of the above statements, choose the most appropriate answer from the options given

- Both Statement I and Statement II are incorrect
 - 2. Both Statement I and Statement II are correct
 - 3. Statement I is correct but Statement II is incorrect
 - 4. Statement I is incorrect but Statement II is correct

Question Type: MCQ

Question ID: 87827055505 Option 1 ID: 878270218490 Option 2 ID: 878270218489 Option 3 ID: 878270218491 Option 4 ID: 878270218492

Status: Answered

$$\xrightarrow{\text{CH}_2\text{Br}} \xrightarrow{\text{NaOH}_{\text{(alc)}}} \textcircled{B} \xrightarrow{\text{Ether}} \textcircled{C}$$

Identify (B) and (C) and how are (A) and (C) related? (B) (C)

Options 1.

2.

3.

4.

Question Type : MCQ

Question ID: 87827055503 Option 1 ID: 878270218481 Option 2 ID: 878270218484 Option 3 ID: 878270218482 Option 4 ID: 878270218483 Status: Marked For Review

Q.66 Match List I with List II:

List - I

Mechanism steps

(I) – E effect

List - II Effect

- (B) $+ H^+ \longrightarrow +$
- (II) R effect
- (C) $+\bar{C}N \rightarrow -$
- (III) + E effect

(IV) + R effect

Choose the correct answer from the options given below:

Options

Question Type: MCQ

Question ID: 87827055501 Option 1 ID: 878270218476 Option 2 ID: 878270218473 Option 3 ID: 878270218475 Option 4 ID: 878270218474

Status: Answered

The correct sequence of ligands in the order of decreasing field strength is:

Options 1.
$$-OH > F^- > NH_3 > CN^-$$

² NCS
$$^-$$
 > EDTA $^{4-}$ > CN $^-$ > CO

3.
$$S^{2-} > {}^{-}OH > EDTA^{4-} > CO$$

4.
$$CO > H_2O > F^- > S^{2-}$$

Question Type : MCQ

Question ID: 87827055497 Option 1 ID: 878270218459 Option 2 ID: 878270218458 Option 3 ID: 878270218460 Option 4 ID: 878270218457

Status: Marked For Review

Identify the product in the following reaction:

$$\begin{array}{c}
O \\
HCI
\end{array}$$
Product

Options

Question Type : MCQ

Question ID: 87827055506 Option 1 ID: 878270218495 Option 2 ID: 878270218494 Option 3 ID: 878270218493 Option 4 ID: 878270218496 Status: Not Answered

Q.69 What will be the decreasing order of basic strength of the following conjugate bases ? $^{-}$ OH, $^{-}$ RO, CH _3 COO, C $^{\overline{1}}$

Options

- 1 $\overline{CI} > ^{-}OH > \overline{RO} > CH_{3}CO\overline{O}$
- ^{2.} $^{-}$ OH > \overline{RO} > $\overline{CH_3COO}$ > \overline{CI}
- 3. $\overline{RO} > \overline{OH} > \overline{CH_3COO} > \overline{CI}$
- ^{4.} $\overline{Cl} > \overline{RO} > \overline{OH} > \overline{CH_3COO}$

Question Type: MCQ

Question ID: 87827055490
Option 1 ID: 878270218431
Option 2 ID: 878270218429
Option 3 ID: 878270218430
Option 4 ID: 878270218432
Status: Marked For Review

Chosen Option: 3

Q.70 Which one of the following molecules has maximum dipole moment?

Options 1. NH_3

- 2. CH₄
- 3. PF₅
- 4. NF₃

Question Type: MCQ

Question ID: 87827055489
Option 1 ID: 878270218426
Option 2 ID: 878270218427
Option 3 ID: 878270218428
Option 4 ID: 878270218425
Status: Answered

Q.71 Number of molecules/ions from the following in which the central atom is involved in ${\rm sp}^3$ hybridization is _____. NO_3^- , BCl_3 , ClO_2^- , ClO_3 Options 1. 3 4. 1 Question Type : MCQ Question ID: 87827055495 Option 1 ID: 878270218451 Option 2 ID: 878270218450 Option 3 ID: 878270218452 Option 4 ID: 878270218449 Status: Marked For Review Chosen Option : 1

Question 1 JD: 87827055507
Option 1 ID: 878270218498
Option 2 ID: 878270218497
Option 3 ID: 878270218499
Option 4 ID: 878270218500

Status: Marked For Review

Chosen Option: 2

Q.73 The Molarity (M) of an aqueous solution containing 5.85 g of NaCl in 500 mL water is : (Given: Molar Mass Na: 23 and Cl: 35.5 gmol-1)

Options 1.

- 2

- 4. 20

Question Type: MCQ

Question ID: 87827055488 Option 1 ID: 878270218424 Option 2 ID: 878270218421 Option 3 ID: 878270218423 Option 4 ID: 878270218422 Status: Answered

Chosen Option: 3

Q.74 The correct order of first ionization enthalpy values of the following elements is :

- (A) O
- N (B)
- Be (C)
- F (D)
- (E)

Choose the correct answer from the options given below:

Question Type: MCQ

Question ID: 87827055493 Option 1 ID: 878270218443 Option 2 ID: 878270218442 Option 3 ID: 878270218441 Option 4 ID: 878270218444 Status: Answered

Q.75	TI	he element which shows only one oxidation state other than its	elemental form is :	
Options				
•	1. Scandium			
	2.	Titanium		
	3.	Nickel		
	4.	Cobalt		
			Question Type : MCQ Question ID : 87827055496 Option 1 ID : 878270218454 Option 2 ID : 878270218455 Option 3 ID : 878270218456 Option 4 ID : 878270218453 Status : Answered Chosen Option : 1	
Q.76	Number of complexes from the following with even number of unpaired "d" electrons is $ [V(H_2O)_6]^{3+}, [Cr(H_2O)_6]^{2+}, [Fe(H_2O)_6]^{3+}, [Ni(H_2O)_6]^{3+}, [Cu(H_2O)_6]^{2+} $ [Given atomic numbers: $V=23$, $Cr=24$, $Fe=26$, $Ni=28$ $Cu=29$]			
ptions	s 1.	2		
	2.	1		
	3.	5		
	4.	4		
			Question Type: MCQ Question ID: 87827055498 Option 1 ID: 878270218462 Option 2 ID: 878270218461 Option 3 ID: 878270218464 Option 4 ID: 878270218463 Status: Answered Chosen Option: 1	

Q.77 Which among the following is incorrect statement?

- Options 1. Electromeric effect dominates over inductive effect
 - The electromeric effect is, temporary effect

3.

Hydrogen ion (H⁺) shows negative electromeric effect

4.

The organic compound shows electromeric effect in the presence of the reagent only.

Question Type: MCQ

Question ID: 87827055502 Option 1 ID: 878270218479 Option 2 ID: 878270218478 Option 3 ID: 878270218480 Option 4 ID: 878270218477

Status: Answered Chosen Option: 4

Q.78 Identify the correct set of reagents or reaction conditions 'X' and 'Y' in the following set of transformation.

$$CH_3 - CH_2 - CH_2 - Br \xrightarrow{\ 'X'} Product \xrightarrow{\ 'Y'} CH_3 - CH - CH_3$$

$$Rr$$

Options

1.
$$X = \text{dil.aq. NaOH}$$
, 20°C, $Y = \text{Br}_2/\text{CHCl}_3$

- 2. X=conc.alc. NaOH, 80°C, Y=HBr/acetic acid
- 3. X=dil.aq. NaOH, 20°C, Y=HBr/acetic acid
- 4 X = conc.alc. NaOH, 80°C , $Y = \text{Br}_2/\text{CHCl}_3$

Question Type: MCQ

Question ID: 87827055504 Option 1 ID: 878270218487 Option 2 ID: 878270218486 Option 3 ID: 878270218485 Option 4 ID: 878270218488 Status: Not Answered

Q.79 One of the commonly used electrode is calomel electrode. Under which of the following categories, calomel electrode comes?

- Options

 Metal ion Metal electrodes
 - 2. Gas Ion electrodes
 - 3. Metal Insoluble Salt Anion electrodes
 - 4. Oxidation Reduction electrodes

Question Type : MCQ

Question ID: 87827055491 Option 1 ID: 878270218434 Option 2 ID: 878270218433 Option 3 ID: 878270218435 Option 4 ID: 878270218436 Status: Marked For Review

Chosen Option: 4

Which of the following nitrogen containing compound does not give Lassaigne's test?

Options

- Phenyl hydrazine
- 2. Urea
- 3. Glycene
- 4. Hydrazine

Question Type: MCQ

Question ID: 87827055500 Option 1 ID: 878270218472 Option 2 ID: 878270218469 Option 3 ID: 878270218470 Option 4 ID: 878270218471 Status: Not Answered

Chosen Option: --

Section: Chemistry Section B

Q.81 The number of the correct reaction(s) among the following is ______

(D)
$$(D)$$
 (D) (D)

Given --Answer :

Question Type : SA

Question ID: 87827055516 Status: Not Answered

Q.82 2.5 g of a non-volatile, non-electrolyte is dissolved in 100 g of water at 25°C. The solution showed a boiling point elevation by 2°C. Assuming the solute concentration is negligible with respect to the solvent concentration, the vapor pressure of the resulting aqueous solution is _____ mm of Hg (nearest integer)

[Given: Molal boiling point elevation constant of water $(K_b) = 0.52$ K. kg mol $^{-1}$, 1 atm pressure = 760 mm of Hg, molar mass of water = 18 g mol $^{-1}$]

Given --Answer :

Question Type: SA

Question ID: 87827055511 Status: Not Answered

Q.83 The enthalpy of formation of ethane (C_2H_6) from ethylene by addition of hydrogen where the bond-energies of C-H, C-C, C=C, H-H are 414 kJ, 347 kJ, 615 kJ and 435 kJ respectively is - kJ

Given **560.0** Answer:

Question Type : SA

Question ID : **87827055510** Status : **Answered**

Q.84 X g of ethylamine is subjected to reaction with NaNO₂/HCl followed by water; evolved dinitrogen gas which occupied 2.24 L volume at STP. X is $____\times 10^{-1}$ g.

Given --Answer :

Question Type: SA

Question ID: 87827055517 Status: Not Answered

Q.85	Number of molecules/species from the following having one unpaired e O_2 , O_2^{-1} , NO, CN^{-1} , O_2^{2-}	lectron is		
Giver Answer				
		Question Type : SA Question ID : 87827055509 Status : Answered		
Q.86	The number of different chain isomers for C_7H_{16}	is		
Giver Answer				
		Question Type : SA Question ID : 87827055515 Status : Not Answered		
Q.87	The de-Broglie's wavelength of an electron in the 4^{th} orbit is πa_0 . (a_0 = Bohr's radius)			
Giver Answer				
		Question Type : SA Question ID : 87827055508 Status : Answered		
Q.88	Only 2 mL of KMnO ₄ solution of unknown molarity is required to reach the end point of a titration of 20 mL of oxalic acid (2 M) in acidic medium. The molarity of KMnO ₄ solution should be M.			
Giver Answer				
		Question Type : SA Question ID : 87827055514 Status : Not Answered		
Q.89	Consider the following transformation involving first order elementary reconstant temperature as shown below. $A+B \xrightarrow{Step \ 1} C \xrightarrow{Step \ 2} P$ Some details of the above reactions are listed below.	eaction in each step at		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9)		

If the overall rate constant of the above transformation (k) is given as $k=\frac{k_1\,k_2}{k_3}$ and the overall activation energy (Ea) is 400 kJ mol⁻¹, then the value of Ea3 is _____ kJ mol⁻¹ (nearest integer)

Given **150.0**

Answer:

Question Type : SA

Question ID: 87827055512 Status : **Answered**

Consider the following reaction $\begin{array}{l} MnO_2 + KOH + O_2 \rightarrow A + H_2O. \\ Product 'A' \ in \ neutral \ or \ acidic \ medium \ disproportionate \ to \ give \ products 'B' \ and 'C' \ along \ with \ water. \ The \ sum \ of \ spin-only \ magnetic \ moment \ values \ of \ B \ and \ C \ is \ _____ BM. \ (nearest \ integer) \ (Given \ atomic \ number \ of \ Mn \ is \ 25) \\ \end{array}$

Given 8 Answer:

Question Type : SA

Question ID: 87827055513 Status: Answered