信号与线性系统

总复习

1.两大类 连续信号与系统 离散信号与系统 因果信号/因果系统 线性时不变系统

2.分析手段 时域分析 变换域分析

连续:频域,复频域

离散:频域,z域

连续时间系统分析主线

离散时间系统分析主线

信号的分类与常用信号

- 信号的分类
 - 连续时间信号,离散时间信号
 - 因果信号
 - 右边序列(因果序列),左边序列,双边序列
- 连续时间信号
 - 单位冲激信号 , 单位阶跃信号
 - 矩形脉冲
- 离散时间序列
 - 单位函数,单位阶跃函数
 - 矩形序列

信号的运算(时域)

- 基本运算
 - 信号间的相互表示
 - 平移、反折、尺度变换、线性、微积分等
 - 波形的变化
- 卷积积分/卷积和
 - 定义
 - 求解
 - 性质
 - 应用

信号的变换(变换域)

▶ 傅里叶级数/傅里叶变换

- 常用函数的傅里叶级数/变换,频谱特点
- 线性、缩放、对称性、时移频移、微积分、卷积定理等

拉普拉斯变换

- 常用函数的拉普拉斯变换,收敛区
- 线性、缩放、时移频移、微积分、卷积定理、初值终值定理等
- 反变换的求取 部分分式分解,利用性质

z变换

- 常用函数的z变换,收敛区
- 线性、缩放、时移频移、卷积定理、初值终值定理等
- 反变换的求取 部分分式分解法,注意与收敛区的关系

DTFT

- **■** 定义
- 周期性、线性、时移频移、频域微分、卷积定理等

系统的性质

■ 线性,时不变性,因果性,稳定性

系统的表示

- 电路或实际问题 需要通过建模的过程得到方程
- 微分方程/差分方程
- **■** 方程、直接(I)型模拟框图之间的转换
- 系统函数

■ 系统的响应

- 零输入响应和零状态响应
- 单位冲激响应/单位函数响应
- 系统响应的时域求解,变换域求解

- 系统函数
 - 系统函数H(s)/H(z)
 - 系统函数的极点分布对系统稳定性的影响
 - 系统函数零极点分布对频响特性的影响

频响函数

- 频响函数H(jω)/H(e^{jω})
- 频响特性曲线
- 滤波特性

应用

- 理想低通滤波器,信号通过系统不失真传输的条件,
- 调制解调
- 理想抽样,抽样定理

冲激函数的性质

$$\frac{du(t)}{dt} = \delta(t) \qquad \int_{-\infty}^{t} \delta(\tau)d\tau = u(t)$$

$$f(t)\delta(t - t_0) = f(t_0)\delta(t - t_0)$$

$$\int_{-\infty}^{\infty} f(t)\delta(t - t_0)dt = f(t_0)$$

$$\delta(t) = \delta(-t)$$

$$\delta(at) = \frac{1}{|a|}\delta(t)$$

$$f(t) * \delta(t - t_0) = f(t - t_0)$$

卷积积分/卷积和

两个连续时间信号 $f_1(t)$ 和 $f_2(t)$ 的卷积积分定义如下:

$$f(t) = f_1(t) * f_2(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t - \tau) d\tau$$

两个序列 $f_1(k)$ 和 $f_2(k)$ 的卷积和定义如下:

$$f(k) = f_1(k) * f_2(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i)$$

练习:计算下列卷积

$$(1) \varepsilon(t) * \varepsilon(t)$$

(2) 两个矩形脉冲函数的卷积

(3)
$$e^{-3t}\varepsilon(t) * \varepsilon(t)$$

$$(4) e^{-3t} \varepsilon(t) * e^{-2t} \varepsilon(t)$$

解: (1) $t\varepsilon(t)$

(2) 梯形脉冲

$$(3)\frac{1}{3}(1 - e^{-3t})\varepsilon(t)$$

$$(4)(e^{-2t} - e^{-3t})\varepsilon(t)$$

(1)
$$\varepsilon(k) * \varepsilon(k)$$

(2)
$$\varepsilon(k-1) * \varepsilon(k-2)$$

(3)
$$0.3^k \varepsilon(k) * \delta(k)$$

$$(4) \left(\frac{1}{2}\right)^k \varepsilon(k) * \varepsilon(k)$$

(5)
$$2^k \varepsilon(k) * 2^k \varepsilon(k)$$

解:
$$(1)(k+1)\varepsilon(k)$$

 $(4)\left(2-\left(\frac{1}{2}\right)^k\right)\varepsilon(k)$
 $(5)(k+1)2^k\varepsilon(k)$

傅里叶级数/傅里叶变换/序列傅里叶变换

- > 傅里叶级数公式
- > 基波、谐波
- ▶ 周期信号频谱的特点
- > 常用信号的傅里叶级数
- > 画信号的频谱
- > 傅里叶变换公式
- ▶ 非周期信号频谱的特点
- > 性质
- > 常用信号的傅里叶变换
- ▶ 画信号的频谱

- > 序列傅里叶变换公式
- > 离散信号频谱的特点
- > 性质
- ➢ 常用序列的傅里叶变换
- ▶ 画信号的频谱

常用傅里叶变换对

编号	f(t)	$F(j\omega)$
1	$g_{ au}(t)$	$ au$ Sa $\left(\frac{\omega au}{2}\right)$
2	$ au$ Sa $\left(\frac{ au t}{2}\right)$	$2\pi g_{\tau}(\omega)$
3	$e^{-\alpha t} \varepsilon(t), \alpha > 0$	$\frac{1}{\alpha+j\omega}$
4	$te^{-\alpha t}\varepsilon(t), \alpha > 0$	$\frac{1}{(\alpha+\mathrm{j}\omega)^2}$
5	$e^{-\alpha t }, \alpha > 0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$
6	$\delta(t)$	1
7	1	$2\pi\delta(\omega)$
8	$\delta(t-t_0)$	e ^{-jat} 0
9	$\cos \omega_0 t$	$\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0)$
10	$\sin \omega_0 t$	$\frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]$

续表

编号	f(t)	$F(\mathrm{j}\omega)$
11	$\varepsilon(t)$	$\pi\delta(\omega) + \frac{1}{\mathrm{j}\omega}$
12	$\operatorname{Sgn}(t)$	$\frac{2}{\mathrm{j}\omega}, F(0)=0$
13	$\frac{1}{\pi t}$	-j Sgn(ω)
14	$\delta_T(t)$	$\Omega\delta_{lpha}(\omega)$
15	$\sum_{n=\infty}^{\infty} F_n e^{jn\Omega t}$	$2\pi\sum_{n=-\infty}^{\infty}F_{n}\delta(\omega-n\Omega)$
16	$\frac{t^{n-1}}{(n-1)!}e^{-at}\varepsilon(t), a>0$	$\frac{1}{(a+\mathrm{j}\omega)^n}$

性质名称	时 域	频 域	
线性 $a_1f_1(t)+a_2f_2(t)$		$a_1F_1(j\omega)+a_2F_2(j\omega)$	
时移	$f(t-t_0)$	$F(\mathrm{j}\omega)\mathrm{e}^{-\mathrm{j}\omega t_0}$	
频移	$f(t)e^{\mathrm{j}\omega_0t}$	$F(j(\omega-\omega_0))$	
海鱼	$f(t) \cos \omega_0 t$	$\frac{1}{2} \big[F(j(\omega - \omega_0)) + F(j(\omega + \omega_0)) \big]$	
调制	$f(t) \sin \omega_0 t$	$\frac{1}{2j} \big[F(j(\omega - \omega_0)) - F(j(\omega + \omega_0)) \big]$	
尺度变换	f(at)	$\frac{1}{ a }F\left(j\frac{\omega}{a}\right)$	
对称性	F(jt)	$2\pi f(-\omega)$	
卷积	$f_1(t) * f_2(t)$	$F_1(\mathrm{j}\omega) \cdot F_2(\mathrm{j}\omega)$	
相乘	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi}F_1(\mathrm{j}\omega)*F_2(\mathrm{j}\omega)$	
时域微分	$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n}$	$(j\omega)^n F(j\omega)$	
时域积分	$\int_{-\infty}^{r} f(x) \mathrm{d}x$	$\pi F(0)\delta(\omega) + \frac{F(j\omega)}{j\omega}$	
频域微分	$(-\mathrm{j}t)^n f(t)$	$\frac{\mathrm{d}^n F(\mathrm{j}\omega)}{\mathrm{d}\omega^n}$	
频域积分	$\pi f(0)\delta(t) + \frac{f(t)}{-\mathrm{j}t}$	$\int_{-\infty}^{\omega} F(j\eta) d\eta$	
帕塞瓦尔等式	$\int_{-\infty}^{\infty} f^2(t) \mathrm{d}t$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\mathrm{j}\omega) ^2\mathrm{d}\omega$	

拉普拉斯变换

定义

性质

常用信号的拉普拉斯变换

u(t)	$\frac{1}{s}$	
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	
tu(t)	$\frac{1}{s^2}$	
$te^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^2}$	
$\delta(t)$	1	

定义、收敛区

性质

常用信号的z变换

$$(1) \mathcal{Z}{\delta(k)} = 1$$

$$(2) \mathcal{Z}\{\varepsilon(k)\} = \frac{z}{z-1} \qquad |z| > 1$$

$$(3) \mathcal{Z}\{-\varepsilon(-k-1)\} = \frac{z}{z-1} \qquad |z| < 1$$

(4)
$$\mathcal{Z}\{\alpha^k \varepsilon(k)\} = \frac{z}{z - \alpha}$$
 $|z| > |\alpha|$

(5)
$$\mathcal{Z}\lbrace -\alpha^k \varepsilon(-k-1)\rbrace = \frac{z}{z-\alpha} \qquad |z| < |\alpha|$$

(6)
$$\mathcal{Z}\lbrace k\varepsilon(k)\rbrace = \frac{z}{(z-1)^2} \qquad |z| > 1$$

	序号	性质	信号	2 变换	收敛域
7	0	定义	x(n)	$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$	R
Z	1	线性	$ax_1(n)+bx_2(n)$	$aX_1(z)+bX_2(z)$	至少 $R_1 \cap R_1$
变	2	移序	$x(n-n_0)$	$z^{-n_0}X(z)$	R, 但在原点或无穷远点 可能加上或删除
换	序号	性质	信号	Z 变换	收敛域
的	3	频移	$e^{j\omega n}x(n)$	$X(\mathrm{e}^{\mathrm{j}\omega}z)$	R
基	4	尺度变换	$z_0^n x(n)$	$X(z_0^{-1}z)$	$ z_0 R$
本	5	z域微分	nx(n)	$-z\frac{\mathrm{d}}{\mathrm{d}z}X(z)$	R
	6	卷积	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	至少 $R_1 \cap R_1$
性	7	时间反转	x(-n)	$X(z^{-1})$	R的倒置
质	8	求和	$\sum_{n=-\infty}^{n} x(n)$	$\frac{1}{1-z^{-1}}X(z)$	$R \cap (z > 1)$
	9	初值定理	$x(0) = \lim_{z \to \infty} X(z)$		
202	10	终值定理	$x(\infty) = \lim_{z \to 1} (z - 1)X(z)$		

系统的因果性与稳定性

因果

响应不先于激励

$$h(t) = 0, t < 0$$

h(n) = 0, n < 0

激励最高序号不大于响应 最高序号

稳定

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty$$

認定 因 果

$$\int_{0}^{\infty} |h(t)| dt < \infty$$

$$\sum_{n=0}^{\infty} |h(n)| < \infty$$

系统函数H(s)的所有 极点全部位于s平面的 左半开平面

系统函数H(z)的所有 极点全部位于z平面的 单位圆内

系

统

系统的响应

零输入响应 单位冲激响应/单位函数(样值)响应 零状态响应

系统响应的时域求解、变换域求解

自然响应/强迫响应 暂(瞬)态响应/稳态响应

系统函数

- 1. H(s)/H(z)与h(t)/h(k)之间的关系。
- 2. H(s)/H(z)可由微分/差分方程直接得到。
- 3.系统函数与转移算子之间的关系。
- 4.系统函数的极点分布对系统稳定性的影响。
- 5.由系统函数零极点分布粗略画出频响曲线。
- 6.混合系统的单位冲激响应,系统函数。

频响函数

1.定义及物理意义 $H(j\omega)/H(e^{j\omega})$

2.几组关系

$$h(t) \to H(j\omega) \to H(s)$$

$$h(k) \to H(z) \to H(e^{j\omega})$$

3. 画频响特性曲线

4.滤波特性:低通,高通,带通,带阻,全通

5.混合系统的频响函数

应用:理想低通滤波器

理想低通滤波器的频响

$$H(j\omega) = Ke^{-j\omega t_0} \qquad |\omega| < \omega_c$$

(ω_c: 截止频率)

理想低通滤波器的单位冲激响应

$$h(t) = \frac{\omega_c}{\pi} Sa[\omega_c(t - t_0)]$$

信号通过系统产生失真。 系统物理上不可实现。 可自行推导出信号通过系统 不产生失真的条件。

信号的时域取样

$$f(t) = f_s(t)$$

$$f_{\scriptscriptstyle S}(t) = f(t)p(t)$$

理想取样:抽样脉冲p(t)是冲激函数序列,即

$$p(t) = \delta_{T_S}(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT_S)$$

$$f_S(t) = f(t) \sum_{n = -\infty}^{\infty} \delta(t - nT_S)$$

$$= \sum_{n = -\infty}^{\infty} f(nT_S)\delta(t - nT_S)$$

理想抽样示意图

2023/5/25 信号与系统总复习

27

Shannon 取样定理:一个在频谱中不包含有大于频率 f_m 的分量的有限频带的信号,由对该信号以不大于 $\frac{1}{2f_m}$ 的时间间隔进行取样的取样值唯一地确定。当这样地取样信号通过截止频率 ω_c 满足 $\omega_m \leq \omega_c \leq \omega_s - \omega_m$ 的理想低通滤波器后,可以完全重建原信号。

考试

- 闭卷考试,不用带草稿纸,需要用到铅笔、直尺、 橡皮等
- 遵守考试纪律,诚实作答
- 选择题,简单计算题,综合分析题
- 主要考查基础知识的理解和应用
- 考试时间:以学院通知为准

及早准备,横纵对比,全面复习

该背的要背熟

该练手的要练手:计算,画图

信号、系统要分清

连续、离散忌混淆

时域 ← 变换域

变换域 ← 受换域

请保持对未知的好奇心,

让自己变得更优秀。

感谢大家两个多月来的辛苦付出。

祝愿大家取得理想的成绩!