Problem 1

Let D_i represent the disagreement set for the i^{th} element-wise comparison during the most general unification algorithm, Unify(x, y, θ) (figure 9.1 in AIMA). θ is the substitution list built up so far.

Part A

$$S_0 = \{P(A, B, B), P(x, y, z)\}$$

 $\theta = \{x/A, y/B, z/B\}$ is the most general unifier.

Part B

```
\begin{split} S_0 &= \{Q(y,G(A,B)),Q(G(x,x),y)\} \\ D_0 &= \{y,G(x,x)\} \\ \theta &= \{y/G(x,x)\} \\ S_1 &= \{Q(G(x,x),G(A,B)),Q(G(x,x),G(x,x))\} \\ D_1 &= \{A,x\} \\ \theta &= \{y/G(x,x),x/A\} \\ S_2 &= \{Q(G(A,x),G(A,B)),Q(G(A,x),G(A,X))\} \\ D_2 &= \{B,x\} \text{ No unification possible.} \end{split}
```

Part C

```
S_0 = \{R(x, A, z), R(B, y, z)\}
 \theta = \{x/B, y/A, z/z\} \text{ is the most general unifier.}
```

Part D

```
S_0 = \{Older(Father(y), y), Older(Father(x), John)\}
D_0 = \{y, x\}
\theta = \{y/x\}
S_1 = \{Older(Father(x), x), Older(Father(x), John)\}
D_1 = \{x, John\}
\theta = \{y/John, x/John\} \text{ is the most general unifier.}
```

Part E

```
S_{0} = \{Knows(Father(y), y), Knows(x, x)\}
D_{0} = \{Father(y), x\}
\theta = \{x/Father(y)\}
S_{1} = \{Knows(Father(y), y), Knows(Father(y), Father(y))\}
D_{1} = \{y, Father(y)\} \text{ No unification possible.}
```

Problem 2

Consider the following sentences:

- 1. John likes all kinds of food.
- 2. Apples are food.
- 3. Chicken is food.
- 4. Anything anyone eats and isnt killed by is food.
- 5. If you are killed by something, you are not alive.
- 6. Bill eats peanuts and is still alive.*
- 7. Sue eats everything Bill eats.

Part A

Translation of sentences 1-7 into FOL formulae:

$$\forall x [food(x) \Rightarrow likes(John, x)] \tag{S1}$$

$$\forall x [apple(x) \Rightarrow food(x)] \tag{S2}$$

$$\forall x [chicken(x) \Rightarrow food(x)] \tag{S3}$$

$$\forall x [\exists y \ eats(y, x) \land \neg killed(x, y) \Rightarrow food(x)] \tag{S4}$$

$$\forall x [\exists y \ killed(y, x) \Rightarrow \neg alive(x)] \tag{S5}$$

$$[eats(Bill, peanuts) \land alive(Bill)] \tag{S6}$$

$$\forall x [eats(Bill, x) \Rightarrow eats(Sue, x)] \tag{S7}$$

Part B

 $\forall x[apple(x) \Rightarrow food(x)]$

Conversion of formulae of part A into CNF (also called clausal form).

$$\forall x [food(x) \Rightarrow likes(John, x)]$$

$$\forall x [\neg food(x) \lor likes(John, x)]$$

$$[\neg food(x) \lor likes(John, x)]$$
(C1)

$$\forall y[\neg apple(y) \lor food(y)] \tag{S2}$$
$$[\neg apple(y) \lor food(y)] \tag{C2}$$
$$\equiv food(apples) \tag{C2}$$

$$\equiv food(apples)$$
 (C2)

$$\forall x [chicken(x) \Rightarrow food(x)]$$
 (S3)
$$\forall z [\neg chicken(z) \lor food(z)]$$
 (S3)
$$[\neg chicken(z) \lor food(z)]$$
 (C3)
$$\equiv food(chicken)$$
 (C3)

(S2)

$ \forall x [\exists y \; eats(y,x) \land \neg killed(x,y) \Rightarrow food(x)] $ $ \forall x [\neg (\exists y \; eats(y,x) \land \neg killed(x,y)) \lor food(x)] $ $ \forall x [\forall y \neg (eats(y,x) \land \neg killed(x,y)) \lor food(x)] $ $ \forall u [\forall v (\neg eats(v,u) \lor killed(u,v)) \lor food(u)] $ $ [\neg eats(v,u) \lor killed(u,v) \lor food(u)] $	(S4) (S4) (S4) (S4) (C4)
$ \forall x [\exists y \ killed(y, x) \Rightarrow \neg alive(x)] $ $ \forall x [\neg (\exists y \ killed(y, x)) \lor \neg alive(x)] $ $ \forall s [\forall t \ \neg killed(t, s) \lor \neg alive(s)] $ $ [\neg killed(t, s) \lor \neg alive(s)] $	(S5) (S5) (S5) (C5)
$[eats(Bill, peanuts) \land alive(Bill)]$ [eats(Bill, peanuts)] [alive(Bill)]	(S6) (C6) (C7)
$ \forall x [eats(Bill, x) \Rightarrow eats(Sue, x)] $ $ \forall q [\neg eats(Bill, q) \lor eats(Sue, q)] $ $ [\neg eats(Bill, q) \lor eats(Sue, q)] $	(S7) (S7) (C8)

Part C

Prove that John likes peanuts using resolution. Let $\alpha = likes(John, peanuts)$. Then, $\neg \alpha = \neg likes(John, peanuts)$. $KB \models \alpha \Leftrightarrow KB \land \neg \alpha$ is unsatisfiable. KB: $[\neg food(x) \lor likes(John, x)]$ (C1) [food(apples)](C2)[food(chicken)](C3) $[\neg eats(v, u) \lor killed(u, v) \lor food(u)]$ (C4) $[\neg killed(t,s) \lor \neg alive(s)]$ (C5)[eats(Bill, peanuts)](C6)[alive(Bill)](C7)(C8) $[\neg eats(Bill, q) \lor eats(Sue, q)]$ $\neg \alpha$: $\neg likes(John, peanuts)$ (C9) $[\neg likes(John, peanuts)], [\neg food(x) \lor likes(John, x)]$ (C9 and C1) $\theta = \{x/peanuts\}$ $[\neg food(peanuts)]$ (C10) $[eats(Bill, peanuts)], [\neg eats(v, u) \lor killed(u, v) \lor food(u)]$ (C6 and C4) $\theta = \{v/Bill, u/peanuts\}$ $[killed(peanuts, Bill) \lor food(peanuts)]$ (C11) $[\neg killed(t, s) \lor \neg alive(s)], [killed(peanuts, Bill) \lor food(peanuts)]$ (C5 and C11) $\theta = \{t/peanuts, s/Bill\}$ $[\neg alive(Bill \lor food(peanuts))]$ (C12) $[alive(Bill)], [\neg alive(Bill) \lor food(peanuts)]$ (C7 and C12)[food(peanuts)](C13) $[\neg food(peanuts)], [food(peanuts)]$ (C10 and C11) (C13)Ø Thus, KB $\wedge \neg \alpha$ is unsatisfiable by resolution, and we can conclude that John likes peanuts.

food and Sue eats peanuts. \blacksquare

Part D

Let $\alpha = \exists x [food(x) \land eats(Sue, x)].$ Then, $\neg \alpha = \neg \exists x [food(x) \land eats(Sue, x)] \equiv \forall x \neg [food(x) \land eats(Sue, x)] \equiv \forall m [\neg food(m) \lor \neg eats(Sue, m)].$ $[\neg food(x) \lor likes(John, x)]$ (C1)[food(apples)](C2)[food(chicken)](C3) $[\neg eats(v, u) \lor killed(u, v) \lor food(u)]$ (C4) $[\neg killed(t,s) \lor \neg alive(s)]$ (C5)[eats(Bill, peanuts)](C6)[alive(Bill)](C7) $[\neg eats(Bill, q) \lor eats(Sue, q)]$ (C8) $[\neg food(m) \lor \neg eats(Sue, m)]$ (C9)(C6 and C4) $[eats(Bill, peanuts)], [\neg eats(v, u) \lor killed(u, v) \lor food(u)]$ $\theta = \{v/Bill, u/peanuts\}$ $[killed(peanuts, Bill) \lor food(peanuts)]$ (C11) $[\neg killed(t, s) \lor \neg alive(s)], [killed(peanuts, Bill) \lor food(peanuts)]$ (C5 and C11) $\theta = \{t/peanuts, s/Bill\}$ $[\neg alive(Bill \lor food(peanuts))]$ (C12) $[alive(Bill)], [\neg alive(Bill) \lor food(peanuts)]$ (C7 and C12) [food(peanuts)](C13) $[eats(Bill, peanuts)], [\neg eats(Bill, q) \lor eats(Sue, q)]$ (C6 and C8) $\theta = \{q/peanuts\}$ [eats(Sue, peanuts)](C14) $[eats(Sue, peanuts)], [\neg food(m) \lor \neg eats(Sue, m)]$ (C14 and C9) $\theta = \{m/peanuts\}$ $[\neg food(peanuts)]$ (C15) $[food(peanuts)], [\neg food(peanuts)]$ (C13 and C15) (C16)

We reach a contradiction when $\theta = \{m/peanuts\}$, and KB $\models \alpha$ when $\theta = \{m/peanuts\}$. Thus, peanuts are

Part E

rait E	
"If you dont eat, you die," becomes $\forall x [\forall y \neg eats(x,y) \Rightarrow dies(x)]$ "If you die, you are not alive," becomes $\forall x [dies(x) \Rightarrow \neg alive(x)]$	
"Bill is alive," becomes $alive(Bill)$.	
$\forall x [\forall y \neg eats(x,y) \Rightarrow dies(x)]$	(S6)
$\forall x [\forall y eats(x,y) \lor dies(x)]$	(S6)
$[eats(a,b) \lor dies(a)]$	(C6)
$\forall x[dies(x) \Rightarrow \neg alive(x)]$	(S7)
$\forall x [\neg dies(x) \vee \neg alive(x)]$	(S7)
$[\neg dies(c) \vee \neg alive(c)]$	(C7)
[alive(Bill)]	(C8)
Then, we have KB:	
$[\neg food(x) \lor likes(John, x)]$	(C1)
[food(apples)]	(C2)
[food(chicken)]	(C3)
$[\neg eats(v, u) \lor killed(u, v) \lor food(u)]$	(C4)
$[\neg killed(t,s) \vee \neg alive(s)]$	(C5)
$[eats(a,b) \lor dies(a)]$	(C6)
$[\neg dies(c) \vee \neg alive(c)]$	(C7)
[alive(Bill)]	(C8)
$[\neg eats(Bill,q) \lor eats(Sue,q)]$	(C9)
$\neg \alpha$:	
$[\neg food(m) \lor \neg eats(Sue, m)]$	(C10)
$[\neg eats(v,u) \lor killed(u,v) \lor food(u)], [\neg killed(t,s) \lor \neg alive(s)]$	(C4 and C5)
$\theta = \{v/s, u/t\}$	(C4 and C5)
$[\neg eats(s,t) \lor \neg alive(s) \lor food(t)]$	(C11)
$[\neg eats(s,t) \lor \neg alive(s) \lor food(t)], [eats(a,b) \lor dies(a)]$	(C11 and C6)
$\theta = \{s/a, t/b\}$,
$[\neg alive(a) \lor food(b) \lor dies(a)]$	(C12)
$[\neg alive(a) \lor food(b) \lor dies(a)], [\neg dies(c) \lor \neg alive(c)]$	(C12 and C7)
$\theta = \{a/c\}$	
$[\neg alive(c) \lor food(b)]$	(C13)

Prianna Ahsan		Assignment #6
UID: 704-068-040	COM SCI 161 (Sec 1B	November 25, 2014

$$[\neg eats(Bill,q) \lor eats(Sue,q)], [\neg food(m) \lor \neg eats(Sue,m)]$$
 (C9 and C10)
$$\theta = \{q/m\}$$
 [
$$\neg eats(Bill,m) \lor \neg food(m)]$$
 (C14)
$$[\neg eats(Bill,m) \lor \neg food(m)], [eats(a,b) \lor dies(a)]$$
 (C14 and C6)
$$\theta = \{a/Bill, m/b\}$$
 (C15)
$$[\neg dies(c) \lor \neg alive(c)], [dies(Bill) \lor \neg food(b)]$$
 (C7 and C15)
$$\theta = \{c/Bill\}$$
 [
$$\neg alive(Bill) \lor \neg food(b)]$$
 (C16)
$$[\neg alive(Bill) \lor \neg food(b)], [\neg alive(c) \lor food(b)]$$
 (C16 and C13)
$$\theta = \{c/Bill\}$$
 [
$$\neg alive(Bill) \lor \neg food(b)], [\neg alive(c) \lor food(b)]$$
 (C17 and C8)
$$\theta = \{c/Bill\}$$
 (C17 and C8)
$$\theta = \{c/Bill\}$$

We reach a contradiction when $\theta = \{c/Bill\}$. KB $\models \alpha$ when $\theta = \{c/Bill\}$. Thus, we can conclude that there is some food that Sue eats.