Vivek L. Kale

Phone: 217-369-7996 | Email: viveklkale@gmail.com | LinkedIn: linkedin.com/in/vlkale Github: github.com/vlkale | Website: vlkale.github.io | US Citizen with Secret Clearance

Professional Summary

- Highly skilled computational scientist and software developer with expertise in high performance computing (HPC), runtime systems, and parallel programming models for GPU-based clusters.
- Proven track record of contributions to parallel programming standards, open-source software for Al-assisted HPC tools for profiling and debugging, and research on adaptive load balancing.
- Effective communicator and collaborator with a strong record of publications and software projects.

Relevant Experience

Sandia National Laboratories

Principal Member of Technical Staff II

July 2024 - Present

- Pathfinding and software engineering for tools for Kokkos integrated with (1) HPC performance monitoring and feedback via LDMS and (2) PMPI and adaptive runtime systems for MPI.
- Developed Al-assisted HPC Tools through LLMs (coderosetta.com) and autotuning (TAU+APEX) for Kokkos applications run on NVIDIA GPUs, resulting in a poster presentation at GTC 2025.
- Research and pathfinding on the use of Al chips, e.g., Cerebras WSE-3, for science simulations.
- Submitted two proposals on correctness tools for HPC, each with \$1.5M in funding for 3 years.

Senior Member of Technical Staff

August 2022 - June 2024

- Developed and maintained Kokkos Tools for the CMake and Spack build system, tooling overheads, CI/CD, auto-tuning, and nvtx/roctx/vtune integration, leading to 15 merged github PRs.
- Developed a debugging tool that detected 7 common Kokkos user bugs by analyzing LLVM IR of Kokkos programs via symbolic execution, leading to a paper at SC24's Correctness workshop.
- Implemented prototype LLVM OpenMP feature for index set splitting of an OpenMP loop, leading to a 1.2x speedup for an OpenMP + CUDA benchmark and to OpenMP 6.0's new split directive.
- Drafted standards for OpenMP multi-GPU features for NVIDIA DGX, and for GPUs for AWS, Google Cloud, and OCI, leading to 19 proposed features for OpenMP versions 6.1 and 7.0.

Brookhaven National Laboratory Assistant Computational Scientist May 2019 - August 2022

- Implemented OpenMP user-defined multi-GPU scheduling for LLVM, offering 2.1x speedup over using MPI parallelization, leading to papers at IWOMP 2020 and BCB 2021.
- Implemented performance optimizations in LLVM for OpenMP asynchronous GPU offloading that achieved a 1.2x speedup, leading to a paper at SC22's HiPar workshop.
- Developed performance benchmarks that evaluated 5 major vendor OpenMP GPU implementations, leading to an ACM journal paper and an IWOMP 2021 workshop paper.
- Demonstrated technical leadership as technical project manager for the ECP SOLLVE project, submitting 12 ECP milestone reports, organizing 7 GPU hackathons, and defining 3 project KPIs.

Charmworks Software Engineer May 2018 - May 2019

- Implemented, tested and experimented with User-defined Loop Schedules (UDS) for OpenMP, leading to a paper at IWOMP 2018 and a prototype library for LLVM and GCC.
- Added the UDS feature to RAJA and Charm++'s CkLoop, with 1 github PR merged in Charm++.

USC - Information Sciences Institute

Computer Scientist

Dec 2016 - May 2018

- Performance analysis and optimization of 3-D image reconstruction application on NVIDIA GPUs via CUPTI and auto-tuning, leading to a performance-enhanced CUDA version of the application.
- Developed tuning support for coordinated loop scheduling and load balancing in Charm++, leading to a 1.2x speedup on a particle-in-cell benchmark code and a Best Poster Candidate at SC18.

Charmworks

Software Developer

Jan 2016 - Dec 2016

• Extended Charm++ to offer a novel runtime system capability of coordinating inter-node load balancing and intra-node loop scheduling, leading to 2 github PRs merged in Charm++.

University of Illinois

Postdoctoral Associate

Jul 2015 - Dec 2015

• Sped up a plasma-physics Fortran MPI+OpenACC code by 1.2x via a combination of GPU offload optimizations and loop transformations on an NVIDIA K80 GPU.

Education

- Ph.D (Doctor of Philosophy), Computer Science, 2015, University of Illinois at Urbana-Champaign
 Dissertation: Low-Overhead Scheduling to Improve Performance of Scientific Applications
- B.S. (Bachelor of Science), Computer Science, 2007, University of Illinois at Urbana-Champaign

Technical Skills

Languages: C, C++, CUDA, python, Fortran, Java, bash, csh, VHDL, Matlab;

Libraries: OpenMP (gomp, Ilvm), Kokkos, MPI (mpich), Charm++, OpenACC (pgi), Globus, mpi4py, pyomp, matplotlib, pandas, numpy;

Tools: Kokkos Tools, PMPI, ompt, PAPI, nvtx, NVIDIA Nsight, tau, hpcToolkit, VTune, clang-tidy, KLEE, gprof, gdb;

Utilities: git, cmake, spack, vi, clang-format, gnuplot, emacs, autoconf, LaTeX, docker;

Open-source Software Projects

- 1. **OpenMP multi-GPU support**: User-defined multi-GPU loop scheduling for clang/LLVM OpenMP. *Repository*: https://github.com/vlkale/taskGPUSched
- 2. **Kokkos Tools**: Kokkos Tools and runtime systems for C++. *Repository*: https://github.com/kokkos/kokkos-tools
- 3. **MPI Slack Predictor**: MPI runtime tool using libunwind to predict slack trace *Repository*: https://github.com/vlkale/slack-trace