ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

The ordered mesoporous transition metal oxides for selective catalytic reduction of NO_x at low temperature

Xiuyun Wang^{a,b}, Wu Wen^a, Jinxing Mi^b, Xinxiong Li^a, Ruihu Wang^{a,*}

- ^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- ^b National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China

ARTICLE INFO

Article history: Received 7 February 2015 Received in revised form 15 April 2015 Accepted 17 April 2015 Available online 18 April 2015

Keywords: Order mesopore Environmental chemistry Nanocasting method NO_x removal Selective catalytic reduction

ABSTRACT

The ordered mesoporous Co_3O_4 , NiO and NiCo₂O₄ were synthesized by nanocasting method using mesoporous KIT-6 as a hard template. Their structural and textural properties were well characterized by powder X-ray diffraction, transmission electron microscopy and nitrogen physisorption. The surface areas of these catalysts are 380–426 m²/g. Selective catalytic reduction (SCR) of NO_x with hydrogen demonstrates that $NiCo_2O_4$ possesses the highest catalytic activity at 50–400 °C, whose NO_x conversion is more than 70% at 150 °C, and N_2 selectivity is more than 90% at 100–400 °C. In addition, $NiCo_2O_4$ exhibits better stability in the presence of 100 ppm SO_2 and 10 vol% H₂O in SCR of NO_x at 250 °C. XPS analyses show that surface adsorption oxygen concentration in $NiCo_2O_4$ is higher than that in Co_3O_4 and NiO. The synergetic effect between Ni and Co is responsible for the enhancement of low-temperature SCR activity and the improvement of regeneration performance in $NiCo_2O_4$. In comparison with $NiCo_2O_4$ -CP synthesized by co-precipitation method, the ordered mesoporous structure in $NiCo_2O_4$ provides larger surface area, more activated oxygen species and more reductive species, resulting in higher SCR performance at low temperature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nitrogen oxides (NO_x) are mainly derived from stationary pollution sources and the combustion of gasoline and diesel in transportation vehicles, which are hazardous to the environment and human health [1]. A number of techniques have been developed to reduce the emission of NO_x. Among them, selective catalytic reduction (SCR) of NO_x with either hydrocarbon (HC-SCR) or ammonia/urea (NH3-SCR) is an efficient technique to remove NO_x from diesel vehicles and stationary sources [2]. For decades, V₂O₅-WO₃ (MO₃)/TiO₂ are widely used as commercial NH₃-SCR catalysts [3]. However, many problems, such as ammonium sulfate deposition, ammonia slip, air heater fouling and high running cost, are encountered in the practical use of NH3-SCR. In comparison with NH₃-SCR, H₂-SCR is a promising alternative in NO_x removal because of high activity toward NO_x reduction and zero emission of greenhouse gases [4], especially for industrial sites where H₂ is readily available. Therefore, it is highly desirable to replace NH₃ with non-toxic and less expensive H_2 .

Pt-based and Pd-based catalysts have been revealed to possess good catalytic activity in H_2 -SCR of NO_x at low temperatures [5–7]. For examples, 0.3 wt%Pt/11wt%WO $_3$ /ZrO $_2$ was reported to show high NO_x conversion below 200 °C, superior N_2 selectivity of about 90%, outstanding hydrothermal stability and strong resistance against SO $_2$ in H_2 -SCR [5a]. 100% conversion of NO and 85% N_2 selectivity were obtained in 0.1 wt%Pt/MgO–CeO $_2$ when 1.5 vol% H_2 was used as a reductive agent [5b,c]. NO_x conversion of 89% and N_2 selectivity of 79% at 140 °C were found in 1 wt%Pt/Ti-MCM-41 [6]. NO_x conversion of more than 80% at 140–180 °C was presented in 1 wt%Pd/TiO $_2$ /Al $_2$ O $_3$ [7a]. However, high cost of precious metals and their sensitivity to sulfur poisoning have inhibited their large-scale applications. Many efforts have been devoted to searching for the alternatives of Pt-based catalysts in H_2 -SCR of NO_x .

Transition metal oxides have been widely used as catalysts in various reactions because of their low price, ready synthesis and good redox property [8]. Among them, highly ordered mesoporous materials are of particular advantages, such as regular texture, narrow pore size distribution and adjustable porous structure, which can result in promising applications in catalysis [9,10]. The nanocasting route using silica materials as hard templates is an effective method for the synthesis of ordered mesoporous transition metal oxides, the resultant oxides usually show high

^{*} Corresponding author. Tel.: +86 591 83711028; fax: +86 591 83714946. E-mail address: ruihu@fjirsm.ac.cn (R. Wang).

surface area and good stability under harsh reaction conditions [11]. Recently, highly ordered mesoporous Co₃O₄ was synthesized using mesoporous silica as a hard template, and displayed excellent catalytic activity for CO preferential oxidation in H2-rich gases [12]. Compared with single metal oxides, bi- or multi-metal oxides usually show superior general properties owing to synergetic interactions of their compositions [13,14]. It is known that Ni²⁺ and Co²⁺ can form a homogeneous solid solution owing to the similarity of their unit cell structures, the replacement of Co at octahedral sites with Ni can affect the bonding strength of metaloxygen, resulting in different adsorption energies for —OH species at catalytic sites [9,13]. The adsorbed OH can interact with NO at the interface of metal oxides, forming an intermediate NO2 and a hydrogen atom. Therefore, a combinational use of Ni and Co oxides may result in higher catalytic activities in SCR than single metallic counterparts. However, to our knowledge, the preparation and applications of ordered mesoporous bimetal oxides in SCR of NO_x have seldom been reported. In our continuous efforts to develop low-temperature and SO₂-tolerant catalysts for NO_x removal [15], herein, we report a series of transition metal oxides with highly ordered mesopores, Co₃O₄, NiO and NiCo₂O₄. The catalysts show superior NO_x conversion, high N_2 selectivity, strong resistance against SO_2 and H_2O in H_2 -SCR of NO_x .

2. Experimental

2.1. Catalyst preparations

Mesoporous KIT-6 was synthesized according to the literature methods [11]. Mesoporous NiCo₂O₄ was prepared using as-synthesized KIT-6 as a hard template. Briefly, Ni(NO₃)₂·6H₂O and Co(NO₃)₂·6H₂O (total mass:1.0 g) with the molar ratio of 1:2 were dissolved in ethanol (20 mL). After stirring at room temperature for 1 h, 0.5 g of KIT-6 was added. The suspension was stirred at room temperature for 12 h, and followed by calcination at 400 °C for 3 h, then treated with NaOH, washed and dried. The resultant sample was denoted as NiCo₂O₄. Mesoporous Co₃O₄ and NiO were prepared using the same procedures.

As a comparison, NiCo $_2$ O $_4$ –CP was also synthesized by co-precipitation method. A solution of Ni(NO $_3$) $_2$ ·6H $_2$ O and Co(NO $_3$) $_2$ ·6H $_2$ O (total mass:1.0 g) with the molar ratio of 1:2 in H $_2$ O (20 mL) was stirred at room temperature for 1 h, NaOH (0.24 mol/L) was dropwise added until pH to 10. After the mixture was stirred at room temperature for 12 h, the precipitate was collected by centrifugation, washed with distilled water and then calcined at 400 °C for 3 h.

2.2. Catalytic activity tests

SCR activity measurement was performed in a fixed-bed stainless steel reactor (inner diameter = 8 mm). Before each test, a 0.4 g of 20-30 mesh sample was reduced by 3.5 vol% H₂/Ar at 500 °C for 2 h. After cooled to test temperature, the feed gas (342 ppm NO, 1.5 vol% H_2 and 3 vol% O_2 balanced by Ar with H_2/NO ratio at 43.9) was introduced using mass-flow controllers at a total flow rate of $600 \,\mathrm{mL/min}$, the corresponding GHSV is $90,000 \,\mathrm{h^{-1}}$. H₂/NO feed ratios at 5, 7.5, 10 and 20 were also measured under the same conditions. SO₂ poisoning experiment was performed by exposing samples to feed gas containing additional 100 ppm SO₂ at 250 °C. Resistance against H₂O was examined through introducing 10 vol% H_2O into feed gas at 250 °C. The outlet NO_x concentration was monitored by an on-line chemiluminescence NO-NO₂-NO_x analyzer (Model 42i-HL, Thermo Scientific). N₂ selectivity was analyzed using a GC 7820A. The outlet N₂O and NH₃ were analyzed using an FTIR spectrometer (Nicolet Nexus 6700) with a heated, multiple-path gas cell. NO_x conversion was calculated according to the following equation after a steady state was achieved at the given temperature for 1 h.

$$NO_x \ \ Conversion \ \ (\%) = \frac{(NO_{xinlet} - NO_{xoutlet})}{NO_{xinlet}} \times 100\%.$$

Transient response method (TRM) of mesoporous $NiCo_2O_4$ was carried out at $150\,^{\circ}$ C, a feed gas of $350\,\mathrm{ppm}$ NO, $3\,\mathrm{vol}\%$ O_2 and $1.5\,\mathrm{vol}\%$ H_2 balanced by Ar was introduced. The outlet gas concentrations were continuously monitored by mass spectrometer and UV analyzer.

2.3. Characterizations

Powder X-ray diffraction (XRD) was performed on a Rigaku-DMax2500PC diffractometer using a Cu–Kα radiation $(\lambda = 1.5406 \text{ Å})$. N₂ physisorption measurement was performed on an ASAP 2020 apparatus, the sample was degassed in vacuo at 180 °C at least 6 h before each measurement. H₂ temperatureprogrammed reduction (H2-TPR) was performed on AutoChem II 2920 equipped with a TCD detector, in which the sample was pretreated under air flow (30 mL/min) at 500 °C for 0.5 h, followed by purging with Ar (30 mL/min) at the same temperature for 0.5 h. After cooling to room temperature, the temperature was increased to 800 °C at 5 °C/min by a temperature-programmed controller in a gas flow of $10 \text{ vol}\% \text{ H}_2/\text{Ar}$ (30 mL/min). For the repeated H_2-TPR , the sample was reduced from room temperature to 500 °C and hold at 500 °C for 0.5 h. Then, the sample was re-oxidized in 5 vol% O₂/Ar flow at 500 °C for 1 h to ensure complete oxidation of sulfides to sulfates. After cooling to room temperature, the test of the repeated H₂-TPR was performed. X-ray photoelectron spectroscopy (XPS) analysis was performed on Physical Electronics Quantum 2000, equipped with a monochromatic Al-K α source $(K\alpha = 1,486.6 \text{ eV})$ and a charge neutralizer. Transmission electron microscope (TEM) measurements were carried out on a JEM-2010 microscope operating at 200 kV in the mode of bright field.

3. Results and discussion

3.1. TEM and HR-TEM

TEM images of KIT-6 indicate that it possesses the expected cubic mesoporous structure [9], the corresponding distance between two lattice fringes is 10 nm (Fig. S1). As expected, Co₃O₄, NiO and NiCo₂O₄ show highly ordered mesoporous structures with particles size about 6-8 nm (Fig. 1), and the lattice fringes can be clearly observed in their HR-TEM, suggesting highly crystalline nature of mesoporous frameworks [9c]. The spacing distances between two fringes in Co₃O₄ are 0.46 and 0.24 nm, corresponding to (111) and (220) planes, respectively. The mesoporous structure of Co₃O₄ is comparable with analogues synthesized by nanocasting method [9c]. It was reported that (111) plane in Co_3O_4 mainly contains Co²⁺, while (2 2 0) plane only consists of Co³⁺ and provides favorable sites for oxygen adsorption in catalytic reactions [11]. In NiO, the lattice spacing of 0.21 and 0.25 nm corresponds to (200) and (111) planes of cubic Fm3m crystal lattices, respectively [10b]. The distances between the adjacent fringes in NiCo₂O₄ are 0.47, 0.28 and 0.23 nm, which are in conformity with (111), (220) and (222) planes, respectively [10a]. Selected-area electron diffraction (SAED) patterns (insets of Fig. 1) of the catalysts indicate that NiO and NiCo₂O₄ are polycrystalline [10c].

3.2. Structural and textural properties

The ordered mesoporous structures of the catalysts were further demonstrated by low-angle XRD patterns. As shown in Fig. 2a,

 $\textbf{Fig. 1.} \ \ \text{TEM images of (a, b) Co}_3O_4, (d, e) \ \text{NiO and (g, h) NiCo}_2O_4; \ \text{HR-TEM images and SAED patterns (insets) of (c) Co}_3O_4, (f) \ \text{NiO and (i) NiCo}_2O_4.$

 $\textbf{Fig. 2.} \ \ \text{Low-angle (a) and wide-angle (b) XRD patterns of } Co_3O_4, \text{NiO and NiCo}_2O_4.$

Fig. 3. The simulated structures of unit cells for (a) Co₃O₄, (b) NiO and (c) NiCo₂O₄.

a peak at 1.0-1.2° is observed in Co₃O₄, NiO and NiCo₂O₄, exhibiting the existence of well-ordered mesoporous structure, which is in good agreement with their TEM results. Notably, the peak in NiCo₂O₄ is much stronger than that of Co₃O₄ and NiO. The wideangle XRD patterns of Co₃O₄, NiO and NiCo₂O₄ are shown in Fig. 2b. For NiO, five well-defined diffraction peaks are observed at 2θ values of 37.2, 44.5, 51.9, 76.5 and 78.9°, which can be assigned to (111), (200), (220), (311) and (222) planes of the face-centered cubic NiO structure, respectively. In Co₃O₄, the diffraction peaks at 18.9, 31.3, 36.9, 44.9, 59.4 and 65.4° could be assigned to (111), (220), (311), (400), (511) and (440) crystal planes (JCPDS No. 42-1467), respectively. The diffraction peaks of NiCo₂O₄ are slightly shifted to low 2θ in comparison with those of Co_3O_4 , indicating a slight increment in unit cell size due to the partial substitution of Co by Ni [9c]. Interestingly, no obvious peaks of other impurities are detected in Co₃O₄, NiO and NiCo₂O₄, suggesting that it is appropriate to generate single phases by calcination of the catalyst precursors at 400 °C for 3 h. Pictures of the simulated structures of their unit cells are shown in Fig. 3, Co₃O₄ has a spinel structure, in which Co³⁺ and Co²⁺ are in the octahedral and tetrahedral coordination, respectively, while NiO spinel structure only contains Ni²⁺ of hexahedral coordination. For NiCo₂O₄ cubic spinel, Ni occupies the octahedral coordination sites, and Co is distributed over both octahedral and tetrahedral sites [9b], which affect the binding strength of metal-oxygen and surface oxygen vacancies.

 N_2 physisorption was performed to study textural properties of these catalysts. As shown in Fig. 4, nitrogen adsorption—desorption isotherms in Co_3O_4 , NiO and Ni Co_2O_4 show a typical type-IV curve with hysteresis loops, suggesting the existence of mesopores [16]. For NiO and Ni Co_2O_4 , the capillary condensation occurs in the relative pressure from 0.60 to 0.80 and from 0.45 to 0.85, respectively. However, the capillary condensation in Co_3O_4 is observed in the relative high pressure ranging from 0.8 to 1.0, suggesting that porous structures in Ni Co_2O_4 and NiO are quite open, and there are no significant delays in the capillary evaporation with respect to the capillary condensation of nitrogen when compared with that in Co_3O_4 [11]. For Co_3O_4 , the pore size under 10 nm mainly results from the pores in the sidewalls, while the pore size above 10 nm may be due to partial filling of one set of pores in

Table 1 Textural properties of Co_3O_4 , NiO, NiCo₂O₄ and NiCo₂O₄-CP.

Sample	BET surface area (m²/g)	Pore volume (cm³/g)	Average pore diameter (nm)
Co ₃ O ₄	419	0.37	4.62
$NiCo_2O_4$	426	0.36	2.92
NiO	380	0.23	3.41
NiCo ₂ O ₄ -CP	27	0.11	12.73

mesoporous KIT-6 template [17]. NiCo₂O₄ shows the maximum pore sizes at 2.2 and 3.7 nm, and NiO gives the maximum sizes at 3.4 and 7.4 nm. As shown in Table 1, BET surface area and pore volume of Co₃O₄, NiO and NiCo₂O₄ are in the range of 380–426 m²/g and 0.23–0.37 cm³/g, respectively, which are much higher than those of NiCo₂O₄–CP (27 m²/g and 0.11 cm³/g). The high BET surface area and large pore volume provide a possibility to obtain good SCR performance.

3.3. SCR activity test

It is well known that the oxidation of NO to NO₂ is an important process for NO_x reduction. NO to NO₂ conversion in Co₃O₄, NiO, $NiCo_2O_4$ and $NiCo_2O_4$ -CP are shown in Fig. 5a. For all catalysts, NO-to-NO₂ conversion at low temperatures is low due to kinetic limitation, and reaches the maximum at 350 °C, then a subsequent drop of conversion is observed due to thermodynamic limitation. Obviously, NO-to-NO₂ conversion is enhanced after Co is partially substituted by Ni, which may be related to the variation in the bonding strength of metal—oxygen and surface oxygen vacancies [9c], ultimately influencing the oxidation of NO to NO₂. Interestingly, NO to NO₂ conversion in NiCo₂O₄ is higher than that of NiCo₂O₄-CP, which may be attributed that the ordered mesoporous structures provide larger surface area and more activated oxygen species. The catalytic activities of Co₃O₄, NiO, NiCo₂O₄ and NiCo₂O₄-CP in H_2 -SCR of NO_x are presented in Fig. 5b. NO_x conversions of Co_3O_4 and NiO show negligible variation from 50 to 100 °C, and begin to gradually enhance after 100 °C, the maximum of 99% is reached at 250 and 200 °C, respectively. Notably, NO_x conversion of NiCo₂O₄ immediately increases as the temperature is elevated from 50 $^{\circ}$ C, and reaches the maximum of 99% at 200 °C. Generally, NO_x conversion at 50-200 °C follows the order: NiCo₂O₄ > NiO > Co₃O₄. This trend may be related to the difference of redox properties in transition metal oxides [18]. NO_x conversions at 100 °C in Co₃O₄, NiO and NiCo₂O₄ are 20, 27 and 38%, respectively, which are increased to 34, 52 and 75% at 150 °C, respectively. Apparently, NiCo₂O₄ shows higher NO_x conversion than Co₃O₄ and NiO at low temperature, which probably results from strong interactions between Ni and Co ions, leading to the abundance of the active oxygen species and the difference of the redox behavior. Notably, NiCo₂O₄-CP shows a lower NO_x conversion at 50–250 °C than the ordered mesoporous $NiCo_2O_4$. The superior NO_x conversion in $NiCo_2O_4$ is related to highly ordered mesoporous structures. It should be mentioned that NO_x conversion in these catalysts is more than 99% at 250–400 °C, and N₂ selectivity maintains more than 90% in 100–400 °C (Fig. S2). In mesoporous NiCo₂O₄, N₂O and NH₃ selectivities at 50–400 °C are less than 4% and 11%, respectively (Fig. S2b). H₂ conversion is less than 50% at 50–100 °C, and reaches more than 99% at 150–400 °C (Fig. S3). These results suggest that H₂ conversion is mainly ascribed

Fig. 4. N₂ physisorption isotherms and pore-size distribution curves (insert) of Co₃O₄, NiO and NiCo₂O₄.

to hydrogen combustion, and only a small amount of $\rm H_2$ takes part in the reduction of $\rm NO_x$.

 H_2 –SCR performance of the catalysts was reported to be associated with the ratios of H_2/NO [5b], the effects of H_2/NO feed ratios on NO_x conversion were further investigated using $NiCo_2O_4$. As

shown in Fig. S4a, NO_x conversion is apparently enhanced as H_2/NO feed ratio increases. For instances, H_2/NO ratios of 5, 7.5, 10, 20 and 43.9 at 200 °C gave rise to NO_x conversions of 67, 77, 82, 84 and 99%, respectively. The promotion may be ascribed to the enhancement of NO dissociation rate owing to more surface coverage of H in gas

Fig. 5. (a) NO to NO₂ conversion and (b) NO_x conversion of Co₃O₄, NiO, NiCo₂O₄ and NiCo₂O₄–CP at different temperatures.

Fig. 6. (a) Stability test, SO₂ poisoning and regeneration of the catalysts at 250 °C; (b) the effect of H₂O and H₂O+SO₂ on NO_x conversion of NiCo₂O₄ at 250 °C.

phase [5d]. NO_x conversions in Co_3O_4 and NiO with H_2/NO ratio of 10 are shown in Fig. S4b. As expected, NO_x conversion follows the order: $NiCo_2O_4 > NiO > Co_3O_4$, which is consistent with that from the original ratio of H_2/NO at 43.9 (Fig. 5b).

It was reported that NH_4NO_3 can be formed at low temperature owing to simultaneous existence of NH_3 and NO_2 in exhaust gases [3d]. TRM of mesoporous $NiCo_2O_4$ was conducted at 150 °C to indirectly estimate the amount of NH_4NO_3 according to N-balance. When a feed gas of 350 ppm NO_3 vol% O_2 and 1.5 vol% H_2 balanced by Ar was introduced into the system, the outlet NO_X ($NO+NO_2$) concentration is 87 ppm. After the system reaches a steady state, the formed N_2 , N_2O and NH_3 are 121, 3 and 8 ppm, respectively (Fig. S5). The lack of 7 ppm in the total amount of N evidences the formation of 3.5 ppm NH_4NO_3 in $NiCo_2O_4$.

The simultaneous existence of SO₂ and H₂O in exhaust gases is known as one deactivation cause of SCR catalysts at low temperature due to the formation of sulfite/sulfate [14], the improvement of SO₂ and H₂O tolerance is one of challenges in SCR of NO_x. SO₂ tolerance of Co₃O₄, NiO and NiCo₂O₄ was examined in feed gas containing the additional 100 ppm SO₂ at 250 °C. As illustrated in Fig. 6a, NO_x conversion in Co₃O₄, NiO and NiCo₂O₄ at 250 °C maintains 99% in the absence of SO₂. However, the presence of 100 ppm SO_2 results in a quick decrement of NO_x conversion from 99 to 52, 69 and 83%, respectively. After the supply of SO₂ is cut off, their NO_x conversion returns to 94, 75 and 94%, respectively, suggesting Co₃O₄ and NiCo₂O₄ possess relatively better regeneration ability than NiO. NO_x conversion was also tested in feed gas containing 10 vol% H₂O at 250 °C. The presence of H₂O leads to a decrement of NO_x conversion from 98 to 73% in NiCo₂O₄ (Fig. 6b). After cutting off the supply of H_2O , NO_x conversion is restored to 98% at 250 °C. The co-existence of 10 vol% H₂O and 100 ppm SO₂ results in a decrement of NO_x conversion from 98 to 58% in NiCo₂O₄. However, NO_x conversion is not recovered completely after the removal of SO₂ and H₂O, which is restored only to 91%.

3.4. TEM and XRD after SCR test

In order to investigate stability of these mesoporous catalysts after SCR test, XRD and TEM analyses of the aged Co_3O_4 , NiO and NiCo₂O₄ were carried out. As shown in Fig. 7, their TEM images show the particle sizes of the aged catalysts slightly increase, but the mesoporous structures are almost maintained after H₂–SCR. The main characteristic peaks of Ni species are observed in XRD spectrum of the aged NiO. Particle size in the aged NiO, estimated with Scherrer equation from the broadening of characteristic peak at 2θ = 44.5, is 25.8 nm, which is nearly twice as much as that from

Table 2 Data of H_2 -TPR profiles for Co_3O_4 , NiO, NiCo $_2O_4$ and NiCo $_2O_4$ -CP.

Sample	Peak position (°C)		Total H ₂ consumption (mmol/g)
	$\overline{T_1}$	T ₂	$n_1 + n_2$
Co ₃ O ₄	352	674	1.61
NiO	338	-	6.54
$NiCo_2O_4$	253	323	9.90
NiCo ₂ O ₄ -CP	250	354	3.94

TEM results (ca.14 nm). Ni, NiCo₂O₄ and NiCoO₂ species are found in the aged NiCo₂O₄, while CoO and Co₃O₄ species co-exist in the aged Co₃O₄.

3.5. H_2 -TPR analysis

In order to clarify correlation between redox property and SCR performance, Co₃O₄, NiCo₂O₄, NiO and NiCo₂O₄-CP were characterized by H₂-TPR. As shown in Fig. 9, there are two well-defined reduction peaks in Co₃O₄, which correspond to stepwise reduction of Co₃O₄. The first peak at 352 °C is attributed to the reduction of Co₃O₄ to CoO, and the second at 674°C is related to the reduction of CoO to Co° [10c]. It is noteworthy that only a broad reduction peak at 338 °C is found in NiO, which is attributed to the reduction of NiO to Ni. H2-TPR profile of NiCo2O4 exhibits one weak peak at 253 °C and one strong peak at 323 °C. The former is assigned to the reduction of NiCo₂O₄ to NiCoO₂, while the latter corresponds to the co-reduction of Ni²⁺ to Ni and Co²⁺ to Co, which are overlapped to form a strong and broad peak. These results are in good agreement with XRD analyses of the aged NiCo₂O₄ (Fig. 8). It should be mentioned that the reduction peaks of NiCo₂O₄ shift to lower temperatures than those of Co₃O₄ and NiO, further indicating the presence of a strong interaction between Co and Ni in NiCo₂O₄, resulting in the improvement of low-temperature reducibility. It would be beneficial for H2-SCR since the reduction of NO_x is proceeded via a Mars-van Krevelen (redox) mechanism [19]. H₂ consumptions of Co₃O₄, NiCo₂O₄ and NiO are listed in Table 2. The total amount of H₂ consumption in NiCo₂O₄ is 9.90 mmol/g, which is much higher than that of Co₃O₄ (1.61 mmol/g) and NiO (6.54 mmol/g), implying that NiCo₂O₄ possesses superior reduction ability at low temperature. In addition, H₂ consumption in mesoporous NiCo₂O₄ is much higher than that of NiCo₂O₄-CP (3.94 mmol/g), indicating mesoporous catalysts expose more reductive species, which are beneficial to improve SCR performance at low temperature.

Fig. 7. TEM images of (a-c) Co_3O_4 , (d-f) NiO and (g-i) $NiCo_2O_4$ after SCR test.

Fig. 8. XRD patterns of Co_3O_4 , NiO and NiCo_2O_4 after SCR test.

Fig. 9. H₂-TPR profiles of Co₃O₄, NiO, NiCo₂O₄ and NiCo₂O₄-CP.

Table 3 Surface valence state, S content, Co^{2+}/Co^{3+} and $O_{ads}/(O_{latt} + O_{ads})$ molar ratio.

Sample	Surface valence state	Co ²⁺ /Co ³⁺ molar ratio (%)	$O_{ads}/(O_{latt} + O_{ads})$ (%)	S 2p content ^a (%)
Co ₃ O ₄	Co ²⁺ , Co ³⁺	0.48	62.12	0.24 (0.11)
NiCo ₂ O ₄	Ni ²⁺ , Ni ³⁺ , Co ²⁺ , Co ³⁺	0.62	75.06	0.28 (0.11)
NiO	Ni ²⁺	_	63.76	0.30 (0.25)
NiCo ₂ O ₄ -CP	Ni ²⁺ , Ni ³⁺ , Co ²⁺ , Co ³⁺	-	26.71	-

^a The values in parentheses are from the regenerated catalysts.

3.6. XPS analysis

XPS is an effective technique to gain information of surface element compositions, metal oxidation states and the adsorbed species of a catalyst [20]. As shown in Fig. 10, XPS spectrum of Ni $2p_{3/2}$ shows that Ni²⁺ is the predominant specie in NiO, which is in good agreement with XRD and H_2 -TPR results. However, the coexistence of Ni²⁺ and Ni³⁺ is observed in NiCo₂O₄. XPS spectra of Co2p_{3/2} in Co₃O₄ and NiCo₂O₄ show two main peaks of binding energies at 780.2 and 784.2 eV, respectively, which are assigned to the surface Co³⁺ and Co²⁺ species, respectively [21]. The surface

 Co^{2+}/Co^{3+} molar ratio in NiCo $_2O_4$ is 0.62, which is higher than that of 0.48 in Co $_3O_4$ (Table 3).

The oxygen vacancies are known to play an important role in catalytic reactions [22], since the oxygen vacancies on catalyst surface may accelerate the adsorption and dissociation of oxygen molecules, resulting in the formation of highly active electrophilic oxygen molecules [10c]. It was reported that reducibility of metal oxides is closely associated with oxygen vacancies. The higher reduction ability in a metal oxide, the easier surface oxygen vacancies can be induced [10c]. In O1s XPS spectra of Co₃O₄, NiO and NiCo₂O₄ (Fig. 10), there are two peaks of binding energies,

Fig. 10. XPS spectra of Co2p, Ni2p, O1s and S2p in fresh and sulfated catalysts.

Fig. 11. The repeated H2-TPR profiles of the sulfated CO3O4, NiO and NiCO2O4.

corresponding to two types of oxygen species. The low binding energy peak at 530.2 eV is related to lattice oxygen [20], while high one in Co₃O₄, NiO and NiCo₂O₄ occurs at 531.6-532.8 eV, corresponding to the surface-adsorbed oxygen species, which are derived from the adsorption of gaseous O₂ on oxygen vacancies [22,23]. The $O_{ads}/(O_{latt} + O_{ads})$ ratio in these catalysts follows the trend: Co₃O₄ < NiO < NiCo₂O₄ (Table 3). More oxygen vacancies in NiCo₂O₄ are probably related to its superior reduction ability at low temperature over NiO and Co₃O₄ [10c], which promotes the oxidation of NO to NO2 at low temperature. Moreover, the $O_{ads}/(O_{latt} + O_{ads})$ ratio in NiCo₂O₄-CP (26.71%) are much lower than that of NiCo₂O₄ (75.06%), suggesting that the mesoporous structure may produce extra surface vacancies to activate oxygen, which could improve SCR performance at low temperature.

S2p XPS spectra of the sulfated Co₃O₄, NiO and NiCo₂O₄ are also shown in Fig. 10. The binding energy peak at 169.4 eV indicates the formation of sulfate species after exposure to SO₂ [18] Surface sulfur contents in the sulfated Co₃O₄, NiO and NiCo₂O₄ are 0.24, 0.30 and 0.28% (Table 3), respectively. After Co₃O₄, NiO and NiCo₂O₄ are regenerated using H₂ at 550 °C for 30 min, sulfur contents are decreased to 0.11, 0.25 and 0.11%, respectively. Obviously, Co₃O₄ and NiCo₂O₄ show superior regenerability over NiO, which is consistent with their SCR activity in the regenerated catalysts (Fig. 6).

3.7. Repeated H_2 -TPR

The repeated H₂-TPR experiments of the sulfated catalysts were performed to further investigate sulfur desorption performance, and the results are shown in Fig. 11. For Co₃O₄, the peak at 343 °C may be assigned to the reduction of Co₃O₄ to CoO, while the strong peak at 436 °C with a shoulder peak at 542 °C is related to the reduction of surface sulfates. A weak peak at 284 °C in NiCo₂O₄ may be assigned to the reduction of NiCo₂O₄ to NiCoO₂, and the broad peak at 395 °C corresponds to the reduction of surface sulfates. It should be mentioned that the sulfated NiO shows two peaks at 255 °C and 195 °C, which are related to the co-reduction of small amount of surface sulfates and NiO to Ni, respectively [21]. NiCo₂O₄ shows larger desorption peak areas of surface sulfates than Co₃O₄ and NiO, indicating that the sulfur desorption in NiCo₂O₄ is easier than that of the other two catalysts. As a result, NiCo₂O₄ possesses superior regeneration ability than Co₃O₄ and NiO in SCR.

4. Conclusions

A series of ordered mesoporous Co₃O₄, NiO and NiCo₂O₄ catalysts were prepared using mesoporous KIT-6 as a template. Compared with NiO and Co₃O₄, the bimetal NiCo₂O₄ exhibits

better catalytic performance, wider temperature window over 150-400 °C, stronger resistance against SO₂ and H₂O as well as higher regeneration ability in H₂-SCR of NO_x. The superior SCR properties in NiCo2O4 are associated with the characteristic of ordered mesoporous structure, better low-temperature reducibility, more surface adsorption oxygen species as well as synergetic catalytic effect between Ni and Co ions. In summary, this study has demonstrated that highly ordered mesoporous bimetal oxides may serve as promising H₂-SCR catalysts at low temperature, which provides a possibility for the development of efficient lowtemperature SCR catalysts.

Acknowledgement

This work was financially supported by Program (2011CBA00502, 2013CB933202), Major Project of Fujian Province (2013H0061).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb. 2015.04.038.

References

- [1] (a) D.Y. Yoon, J.H. Park, H.C. Kang, P.S. Kim, I.S. Nam, G.K. Yeo, J.K. Kil, M.S. Cha, Appl. Catal. B: Environ. 101 (2011) 275-282;
 - (b) X. Mou, B. Zhang, Y. Li, L. Yao, X. Wei, D. Su, W. Shen, Angew. Chem. Int. Ed. 51 (2012) 2989-2993.
- [2] (a) K. Paredis, L.K. Ono, F. Behafarid, Z. Zhang, J.C. Yang, A.I. Frenkel, B.R. Cuenya, J. Am. Chem. Soc. 133 (2011) 13455-13464;
- (b) C. Fang, D. Zhang, S. Cai, L. Zhang, L. Huang, H. Li, P. Maitarad, L. Shi, R. Gao, J. Zhang, Nanoscale 5 (2013) 9199-9207. [3] (a) S. Fogel, D.E. Doronkin, P. Gabrielsson, S. Dahl, Appl. Catal. B: Environ. 125
 - (2012) 457-464; (b) H. Chang, X. Chen, J. Li, L. Ma, C. Wang, C. Liu, J.W. Schwank, J. Hao,
 - Environ. Sci. Technol. 47 (2013) 5294-5301; (c) P.S. Kim, M.K. Kim, B.K. Cho, I.-S. Nam, S.H. Oh, J. Catal. 201 (2013) 65-76;
- (d) A. Grossale, I. Nova, E. Tronconi, Catal. Today 136 (2008) 18–27. A. Väliheikki, K.C. Petallidou, C.M. Kalamaras, T. Kolli, M. Huuhtanen, T Maunula, R.L. Keiski, A.M. Efstathiou, Appl. Catal. B: Environ. 156-157 (2014)
- 72-83. [5] (a) F.J.P. Schott, P. Balle, J. Adler, S. Kureti, Appl. Catal. B: Environ. 87 (2009) 18-29:
 - (b) C.N. Costa, P.G. Savva, J.L.G. Fierro, A.M. Efstathiou, Appl. Catal. B: Environ. 75 (2007) 147-156:
 - (c) C.N. Cost, A.M. Efstathiou, Appl. Catal. B: Environ. 72 (2007) 240-252;
- (d) R. Burch, M.D. Coleman, Appl. Catal. B: Environ. 23 (1999) 115-121. [6] L. Li, P. Wu, Q. Yu, G. Wu, N. Guan, Appl. Catal. B: Environ. 94 (2010) 254–262.
- [7] (a) G. Qi, R.T. Yang, F.C. Rinaldi, J. Catal. 237 (2006) 381-392; (b) L. Li, F. Zhang, N. Guan, E. Schreier, M. Richter, Catal. Commun. 9 (2008) 1827-1832
- [8] F.M. Auxilia, S. Ishihara, S. Mandal, T. Tanabe, G. Saravanan, G.V. Ramesh, N. Umezawa, T. Hara, Y. Yu, S. Hishita, et. al, Adv. Mater. 26 (2014) 4481-4485.
- (a) J. Rosen, G.S. Hutchings, F. Jiao, J. Am. Chem. Soc. 135 (2013) 4516-4521; (b) J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, ACS Appl. Mater. Interfaces 5 (2013)
- (c) J. Rosen, G.S. Hutchings, F. Jiao, J. Catal. 310 (2014) 2-9. [10] (a) Y. Liu, L. Zou, J. Li, K. Guo, X. Dong, X. Li, X.H. Xue Zhang, H. Yang,
 - Electrochim. Acta 129 (2014) 14-20; (b) M. Khairy, S.A. El-Safty, M. Ismael, H. Kawarada, Appl. Catal. B: Environ.
 - 127 (2012) 1-10: (c) Y. Liu, H. Dai, J. Deng, S. Xie, H. Yang, W. Tan, W. Han, Y. Jiang, G. Guo, J.
 - Catal. 309 (2014) 408-418;
 - (d) M. Chen, X. Zheng, J. Mol.r Catal. A 221 (2004) 77-80;
 - (e) S. Sun, Q. Gao, H. Wang, J. Zhu, H. Guo, Appl. Catal. B: Environ. 97 (2010)
- [11] (a) Y.J. Sa, K. Kwon, J.Y. Cheon, F. Kleitz, S.H. Joo, J. Mater. Chem. A 1 (2013) 9992-10001; (b) F. Jiao, A.H. Hill, A. Harrison, A. Berko, A.V. Chadwick, P.G. Bruce, J. Am.
- Chem. Soc. 130 (2008) 5262-5266. [12] Y. Liu, B. Liu, Q. Wang, C. Li, W. Hu, Y. Liu, P. Jing, W. Zhao, J. Zhang, J. Catal. 296 (2012) 65-76.
- [13] Y. Gou, X. Liang, B. Chen, J. Alloys Compd. 574 (2013) 181-187.
- [14] M. Richter, M. Langpape, S. Kolf, G. Grubert, R. Eckelt, J. Radnik, M. Schneider, M.-M. Pohl, R. Fricke, Appl. Catal. B: Environ. 36 (2002) 261–277.

- [15] (a) X. Wang, Z. Chen, Y. Luo, L. Jiang, R. Wang, Sci. Rep. 3 (2013) 1559; (b) X. Wang, Z. Chen, Y. Wang, R. Wang, ChemCatChem 6 (2014) 237–244; (c) X. Wang, X. Qi, Z. Chen, L. Jiang, R. Wang, K. Wei, J. Phys. Chem. C 118 (2014) 13743–13751;
 - (d) X. Wang, L. Jiang, J. Wang, R. Wang, Appl. Catal. B: Environ. 165 (2015) 700–705.
- [16] Y. Feng, L. Li, S. Niu, Y. Qu, Q. Zhang, Y. Li, W. Zhao, H. Li, J. Shi, Appl. Catal. B: Environ. 111–112 (2012) 461–466.
- [17] H. Yen, Y. Seo, S. Kaliaguine, F. Kleitz, Angew. Chem. Int. Ed. 51 (2012) 12032–12035.
- [18] S. Zuo, F. Liu, J. Tong, C. Qi, Appl. Catal. A Gen. 467 (2013) 1–6.
 [19] L. Chen, Z. Si, X. Wu, D. Weng, ACS Appl. Mater. Interfaces 6 (2014) 8134–8145.
- [20] S. Cai, D. Zhang, L. Shi, J. Xu, L. Zhang, L. Huang, H. Li, J. Zhang, Nanoscale 6 (2014) 7346–7353.
- [21] J. Li, C. Wang, C. Huang, Y. Sun, W. Weng, H. Wan, Appl. Catal. A: Gen. 382 (2010) 99–105.
- [22] C.Y. Ma, Z. Mu, J. Li, Y. Jin, J. Cheng, G. Lu, Z. Hao, S. Qiao, J. Am. Chem. Soc. 13 (2010) 2608–2613.
- [23] G. Bai, H. Dai, J. Deng, Y. Liu, F. Wang, Z. Zhao, W. Qiu, C.T. Au, Appl. Catal. A: Gen. 450 (2013) 42–49.