Sequential Logic III

Design of Sequential Circuits

Sequential Circuit Design

- The analysis of sequential circuits starts from a circuit diagram and culminates in a state table or state diagram.
- In sequential circuit design (synthesis), we reverse the process: we turn a set of descriptions/specifications into a working circuit.
 - We first make a state table or state diagram to express the computation.
 - Then we can turn that table or diagram into a sequential circuit, also known as *finite state machine* (FSM).

Finite State Machines

 There are two types of state machines: the Moore model, and the Mealy model.

• In the Moore model, the outputs are only a function of the current state. The outputs are synchronized.

Finite State Machines

- In the Mealy model, the outputs are a function of the current state and the external inputs.
- Outputs have immediate reaction to inputs without waiting for next clocking event. This means the outputs may change asynchronously.

Design Procedure

<u>Step 1:</u>

Make a state table based on the problem statement. The table should show the present states, inputs, next states and outputs. (It may be easier to find a state diagram first, and then convert into a table.)

<u>Step 2:</u>

Assign binary codes to the states in the state table. If you have n states, your binary codes will have at least $\geq \log_2 n$ digits, and your circuit will have at least $\log_2 n$ flip-flops.

<u>Step 3:</u>

For each flip-flop and each row of your state table, find the flip-flop input values that are needed to generate the next state from the present state. You can employ flip-flop excitation tables to do that.

<u>Step 4:</u>

Find simplified equations for the flip-flop inputs and the outputs.

Step 5:

Build the circuit!

Example: Sequence Recognizers

- A sequence recognizer is a special kind of sequential circuit that looks for a special bit pattern in some input.
- The recognizer circuit has only one input, X.
 - One bit of input is supplied on every clock cycle. For example, it would take 20 cycles to scan a 20-bit input.
 - This is an easy way to permit arbitrarily long input sequences.
- There is one output, Z, which is 1 when the desired pattern is found.
- Our example will detect the bit pattern "1001":

Inputs: 11100110100100110...

Outputs: 0000010000100100...

Here, one input and one output bit appear every clock cycle.

 This requires a sequential circuit because the circuit has to "remember" the inputs from previous clock cycles, in order to determine whether or not a match was found.

Step 1: Make a state table

- The first thing you have to figure out is precisely how the use of state will help you solve the given problem.
 - Make a state table based on the problem statement. The table should show the present states, inputs, next states and outputs.
 - Sometimes it is easier to first find a state diagram and then convert that to a table.
- This is usually the most difficult step. Once you have the state table, the rest of the design procedure is the same for all sequential circuits.
- Sequence recognizers are especially hard! They're the hardest example we'll see in this class, so if you understand this you're in good shape.

7

A basic state diagram (Mealy)

- What state do we need for the sequence recognizer?
 - We have to "remember" inputs from previous clock cycles.
 - For example, if the previous three inputs were 100 and the current input is 1, then the output should be 1.
 - In general, we will have to remember occurrences of parts of the desired pattern—in this case, 1, 10, and 100.
- We'll start with a basic state diagram:

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
С	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

UCD DUBLIN

Overlapping occurrences of the pattern

- What happens if we're in state D (the last three inputs were 100), and the current input is 1?
 - The output should be a 1, because we've found the desired pattern.
 - But this last 1 could also be the start of another occurrence of the pattern! For example, 1001001 contains two occurrences of 1001.
 - To detect overlapping occurrences of the pattern, the next state should be B.

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
С	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Filling in the other arrows

- Remember that we need *two* outgoing arrows for each node, to account for the possibilities of X=0 and X=1.
- The remaining arrows we need are shown in blue. They also allow for the correct detection of overlapping occurrences of 1001.

State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	None of the desired pattern (1001) has been input yet. We've already seen the first bit (1) of the desired pattern.
C	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Finally, making the state table

Remember how the state diagram arrows correspond to rows of the state table:

Present		Next	
State	Input	State	Output
A	0	A	0
A	1	В	0
В	0	C	0
В	1	В	0
C	0	D	0
C	1	В	0
D	0	Α	0
D	1	В	1

Step 2: Assign binary codes to states

- We have four states ABCD, so we need at least two flip-flops Q₁Q₀.
- The easiest thing to do is represent state A with $Q_1Q_0 = 00$, B with 01, C with 10, and D with 11.
- The state assignment can have a big impact on circuit complexity, but we won't worry about that too much in this class.

Present		Next	
State	Input	State	Output
Α	0	Α	0
A	1	В	0
В	0	C	0
В	1	В	0
С	0	D	0
C	1	В	0
D	0	Α	0
D	1	В	1

Pres	ent		Next		
Sto	ate	Input	Sto	ate	Output
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Step 3: Find flip-flop input values

- Next we have to figure out how to actually make the flip-flops change from their present state into the desired next state.
- This depends on what kind of flip-flops you use!
- We'll use two JKs. For each flip-flip Q_i, look at its present and next states, and determine what the inputs J_i and K_i should be in order to make that state change.

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	FI	ip flop	o input	·s	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K ₁	J_0	Ko	Z
0	0	0	0	0					0
0	0	1	0	1					0
0	1	0	1	0					0
0	1	1	0	1					0
1	0	0	1	1					0
1	0	1	0	1					0
1	1	0	0	0					0
1	1	1	0	1					1

Finding JK flip-flop input values

For JK flip-flops, this is a little tricky. Recall the characteristic table:

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

- If the present state of a JK flip-flop is 0 and we want the next state to be
 1, then we have two choices for the JK inputs:
 - We can use JK=10, to explicitly set the flip-flop's next state to 1.
 - We can also use JK=11, to complement the current state 0.
- So to change from 0 to 1, we must set J=1, but K could be either 0 or 1.
- Similarly, the other possible state transitions can all be done in two different ways as well.

JK excitation table

 An excitation table shows what flip-flop inputs are required in order to make a desired state change.

Q(†)	Q(†+1)	J	K	Operation
0	0	0	×	No change/reset
0	1	1	×	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

 This is the same information that's given in the characteristic table, but presented "backwards."

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Excitation tables for all flip-flops

Q(†)	Q(†+1)	۵	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

Q(†)	Q(†+1)	J	K	Operation
0	0	0	X	No change/reset
0	1	1	X	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

Q(†)	Q(†+1)	T	Operation
0	0	0	No change
0	1	1	Complement
1	0	1	Complement
1	1	0	No change

Back to the example

 We can now use the JK excitation table on the right to find the correct values for each flip-flop's inputs, based on its present and next states.

Q(†)	Q(†+1)	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	Fl	ip flop	input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	Ko	Z
0	0	0	0	0					0
0	0	1	0	1					0
0	1	0	1	0					0
0	1	1	0	1					0
1	0	0	1	1					0
1	0	1	0	1					0
1	1	0	0	0					0
1	1	1	0	1					1

Back to the example

 We can now use the JK excitation table on the right to find the correct values for each flip-flop's inputs, based on its present and next states.

Q(†)	Q(†+1)	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	FI	ip flop	o input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K ₁	J_0	K ₀	Z
0	0	0	0	0	0	X	0	X	0
0	0	1	0	1	0	X	1	×	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	X	X	0	0
1	0	0	1	1	X	0	1	X	0
1	0	1	0	1	X	1	1	×	0
1	1	0	0	0	X	1	X	1	0
1	1	1	0	1	X	1	X	0	1

Step 4: Find equations for inputs and outputs

- Now you can make Karnaugh-maps and find equations for each of the four flip-flop inputs, as well as for the output Z.
- These equations are in terms of the present state and the inputs.
- The advantage of using JK flip-flops is that there are many don't care conditions, which can result in simpler MSP equations.

Pres	sent		Next						
Sto	ate	Input	Sto	ate	Fl	ip flop	o input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	Ko	Z
0	0	0	0	0	0	X	0	X	0
0	0	1	0	1	0	X	1	×	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	X	X	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	X	1	1	×	0
1	1	0	0	0	×	1	X	1	0
1	1	1	0	1	X	1	X	0	1

$$J_1 = X' Q_0$$

 $K_1 = X + Q_0$

$$J_0 = X + Q_1$$
$$K_0 = X'$$

$$Z = Q_1Q_0X$$

Step 5: Build the circuit

 Lastly, we use these simplified equations to build the completed circuit.

$$J_1 = X' Q_0$$

$$K_1 = X + Q_0$$

$$J_0 = X + Q_1$$
$$K_0 = X'$$

$$Z = Q_1Q_0X$$

Building the same circuit with D flip-flops

- What if you want to build the circuit using D flip-flops instead?
- We already have the state table and state assignments, so we can
 just start from Step 3, finding the flip-flop input values.
- D flip-flops have only one input, so our table only needs two columns for D₁ and D₀.

Pres	sent		Next		Next Flip-flop		
Sto	ate	Input	St	ate	inp	uts	Output
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0			0
0	0	1	0	1			0
0	1	0	1	0			0
0	1	1	0	1			0
1	0	0	1	1			0
1	0	1	0	1			0
1	1	0	0	0			0
1	1	1	0	1			1

D flip-flop input values (Step 3)

- The D excitation table is pretty boring; set the D input to whatever the next state should be.
- You don't even need to show separate columns for D₁ and D₀; you can just use the Next State columns.

Q(†)	Q(†+1)	D	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

Pres	sent		Ne	ext	Flip	flop	
Sto	ate	Input	Sto	ate	inp	uts	Output
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

Finding Equations (Step 4)

You can do Karnaugh-maps again, to find:

$$D_1 = Q_1 Q_0' X' + Q_1' Q_0 X'$$

 $D_0 = X + Q_1 Q_0'$
 $Z = Q_1 Q_0 X$

Pres	sent		Ne	ext	Flip	flop	
Sto	ate	Input	Sto	ate	inputs		Output
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

Building the Circuit (Step 5)

Waveform Analysis

Asynchronous outputs possible for asynchronous inputs...

Waveform Analysis

26

Flip-flop Comparison

JK flip-flops are good because there are many don't care values in the flip-flop inputs, which can lead to a simpler circuit.

D flip-flops have the advantage that you don't have to set up flip-flop inputs at all, since Q(t+1) = D. However, the D input equations are usually more complex than JK input equations

In practice, D flip-flops are used more often.

- There is only one input for each flip-flop, not two.
- There are no excitation tables to worry about.
- D flip-flops can be implemented with slightly less hardware than JK flip-flops.

Moore machine

- Here we show how the same sequence detector could be implemented as a Moore machine
- In this case the output can only depend on the state, not on the inputs
- Therefore we show the outputs inside the state circles on the state diagram, not on the edges joining the states...
- This leads to one extra state required for the Moore machine compared to the Mealy in this case.
- Moore machines often require extra states, but they have the advantage of always generating a synchronous output.

A basic state diagram (Moore)

- Repeating the state diagram for the sequence detector, this time using the Moore machine approach, we require one extra state
- This is because we need a state that corresponds to the situation where the full sequence has been detected (1001)
- In the Mealy approach, when we had detected 100, we then returned to an earlier state, with the *output depending on the input* outputting a '0' if we got a '0', and a '1' if we got a one '1'

State	Meaning					
Α	None of the desired pattern (1001) has been input yet.					
В	We've seen the first bit (1) of the desired pattern.					
С	We've seen the first two bits (10) of the desired pattern.					
D	We've seen the first three bits (100) of the desired pattern.					
E	We've seen all four bits (1001) of the desired pattern.					

Finally, making the state table

- The final Moore state diagram is shown above
- We need two arrows from each state
- The rest of the process then proceeds as per the Mealy machine

Remember how the state diagram arrows correspond to rows of the state table for Moore machine:

present	ommo.	next
state/	input	state/
output		output

Present		Next	
State	Input	State	Output
Α	0	Α	0
Α	1	В	J
В	0	С	0
В	1	В	J
С	0	D	0
С	1	В	O
D	0	Α	0
D	1	Ε	U
Е	0	С	1
Е	1	В	1

