BINARY SEARCH ALGORITHM

Ref Book: Computer Algorithms, By Sartaj Sahni

 Can only be performed on a sorted (non decreasing order) list !!!

Uses divide and conquer technique to search list

- Search item is compared with middle element of list
- If search item < middle element of list, search is restricted to first half of the list
- If search item > middle element of list, search second half of the list
- If search item = middle element, search is complete

```
BinSearch(a,i,l,x)
//a[i:l] -sorted array - Whether x is present or not
     if(l==i){
                if(x==a[i])
                    return i;
                else
                    return 0;
     else{
              mid = (i+1)/2;
              if(x==a[mid])
                      return mid;
              else if(x<a[mid])</pre>
                      return BinSearch(a, I, mid-1, x);
              else
                             BinSearch(a, mid+1, 1, x);
                      rerun
```

- Problem P is divided into one sub problem.
- Division takes only O(1) time.
- Answer to subproblem is answer to original problem P;
 there is no need for any combining.

Example: sorted array of integer keys. Target=7.

Search for the target in the area before midpoint.

Example: sorted array of integer keys. Target=7.

Target = key of midpoint? NO.

Example: sorted array of integer keys. Target=7.

Target < key of midpoint? NO.

Example: sorted array of integer keys. Target=7.

Target > key of midpoint? YES.

Example: sorted array of integer keys. Target=7.

Search for the target in the area after midpoint.

Example: sorted array of integer keys. Target=7.

Find approximate midpoint.

Is target = midpoint key? YES.

• Element at middle element requires minimum comparison

100	110	125	150	170	190	200	210
• [0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

• Target =210

Low	high	middle	
0	7	3	150
4	7	5	190
6	7	6	200
7	7	7	210 <-Target

• Element at middle element requires minimum comparison

100	110	125	150	170	190	200	210
• [0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

• Target =205

Low	high	middle	
0	7	3	150
4	7	5	190
6	7	6	200
7	7	7	210 <-Target

- Successful Search
 - Best case: ⊖(1)
 - Average and worst case = $\Theta(\log_2 n)$
- Unsuccessful Search
 - $\Theta(\log_2 n)$
 - If n (no of elements) is in the range $[2^{k-1},2^k)$ then binarysearch makes at most K element comparisons for a successfully search and either k-1 or k comparisons for unsuccessfully search.(k=log2n)

Recurrence Relation for worst and average:

$$T(N) = \begin{cases} \Theta(1) & N == 1\\ T(\frac{N}{2}) + 1 & otherwise \end{cases}$$

- Solve this:
- Ans: $\Theta(log_2N)$

It means!!!

Let's say Tycho-2 star catalog contains information about the brightest **2,539,913** stars in our galaxy. Suppose that you want to search the catalog for a particular star, based on the star's name.

If the program examined every star in the star catalog in order starting with the first (an algorithm called **linear search**), the computer might have to examine all **2,539,913** stars to find the star you were looking for, in the worst case.

If the catalog were sorted alphabetically by star names, **binary search** would not have to examine more than **22 stars**, even in the worst case.