

MECH366: Modeling of Mechatronic Systems

L20 : Simulink Step response of overdamped systems

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

a place of mind

Modeling example based on FRF

-80

-100

a place of mind

Today's topic & class schedule

- L18: Nov 15 (Fri): Frequency response
- L19: Nov 18 (Mon): Bode diagram (Lab 4 report content, report due Nov 26)
- L20: Nov 22 (Fri): Simulink, overdamped system
- L21: Nov 25 (Mon): Stability, course summary

- Throughout the course, we have studies how to derive mathematical models for dynamic systems:
 - $\begin{cases} \dot{x} &= Ax + Bu \\ y &= Cx + Du \end{cases}$
 - Transfer function Y(s) = G(s)U(s)
 - Block diagram (indicating the system connections)
- How can we conduct time-domain simulations?

Model validation

 After modeling, we need to check how good the model is approximating the physical system.

Simulink

- Software to model and simulate a system, as well as to realize/program controllers in microcontrollers (Arduino, dSPACE etc.)
- Engineers use Simulink to solve engineering problems in many industries.
 - Automotive
 - Aerospace
 - Process industries
 - Communications
 - Industrial automation
 - Electronics

a place of mind

Start Simulink

- In MATLAB prompt, type "simulink".
- Then, Simulink Library Browser pops up.

Create a model

Click here. Then, a new blank model pops up.

MECH 366

Transfer function & state-space model

In the "Library", "Continuous", you can find blocks.

Realization of
$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

DC motor position control


```
>> Jm = 3.672e-5;
>> Bm = 6.744e-6;
>> Kb = 0.068;
>> Ki = 0.068;
>> La = 3e-3;
>> Ra = 1.63;
```

$$kg \cdot m^2$$
 $Nm/[rad/sec]$
 $Volt/[rad/sec]$
 Nm/A
 H
 Ω

Create a model (cont'd)

Simulate a model

Run Simulation time

Export to workspace

MATLAB & Simulink Tutorials (They are all free!)

 Interactive MATLAB & Simulink Based Tutorials (by Mathworks Inc.)

http://www.mathworks.com/academia/student_center/tutorials/

- MATLAB Tutorial
- Simulink Tutorial
- Signal Processing Tutorial
- Control Systems Tutorial
- Computational Mathematics Tutorial
- Control Tutorials for MATLAB & Simulink (by University of Michigan) ctms.engin.umich.edu

$$\frac{K}{Ts+1}$$

$$\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Step response

(L17) underdamped (L20) overdamped

Frequency response (L18)

Step response of 2nd-order system for various damping ratios (review)

Undamped

$$\zeta = 0$$

Underdamped

$$0 < \zeta < 1$$

Critically damped

$$\zeta = 1$$

Overdamped

$$\zeta > 1$$

Step response of 2^{nd} -order system Underdamped case $0 < \zeta < 1$

Math expression of y(t)

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s}$$

$$y(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \sin\left(\omega_d t + \cos^{-1} \zeta\right)$$

Damped natural frequency ——

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Step response of 2nd-order system

Critically damped case $\zeta = 1$ Overdamped case $\zeta > 1$

Math expression of y(t)

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s}$$

$$\mathcal{L}^{-1}$$

$$\mathcal{L}^{-1}$$
 $y(t) = 1 - (\omega_n t + 1)e^{-\omega_n t}$ $(\zeta = 1)$

$$y(t) = 1 - \frac{1}{2\omega_n \sqrt{\zeta^2 - 1}} (\lambda_1 e^{\lambda_2 t} - \lambda_2 e^{\lambda_1 t}) \qquad (\zeta > 1)$$

$$\lambda_1 := -\zeta \omega_n + \sqrt{\zeta^2 - 1}$$
$$\lambda_2 := -\zeta \omega_n - \sqrt{\zeta^2 - 1}$$

Pole locations & damping

Undamped

Underdamped

Critically damped

Overdamped

Example of overdamped system

Consider a 2nd order overdamped system

$$G(s) = \frac{10}{s^2 + 11s + 10} = \frac{10}{(s+1)(s+10)}$$

For unit step input, obtain (or estimate)

- steady state value,
- 2% settling time, and
- percent overshoot.
- Steady state value is the DC gain G(0)=1.
- No overshoot (overdamped!)

Example (cont'd)

Poles are -1 and -10.

$$G(s) = \frac{10}{s^2 + 11s + 10} = \underbrace{\frac{A}{s+1}}_{G_1(s)} + \underbrace{\frac{B}{s+10}}_{G_2(s)}$$

Time constant = 1

Time constant = 0.1

 Dominant poles: Poles closest to the imaginary axis and far away from remaining poles dominate the behavior of responses

Poles far left (5-10 times) from dominant poles may be ignored.

$$G(s) = \frac{10}{(s+1)(s+10)} \approx \frac{1}{s+1}$$

Same DC gain

Example (cont'd)

Summary

- Today's topics
 - Simulink
 - Step response of second-order overdamped systems
- Next is the last class!
 - Stability
 - Course summary
- Project: Friday Nov 29 (presentation)
- Lab 4 report: Due Nov 25 (Monday), 6pm