Práctica 1

Estudio de la eficiencia de algoritmos

Norberto Fernández de la Higuera Algorítmica, 2º DGIIM

Índice

Introducción	3
Eficiencia empírica	4
1- Algoritmos de ordenación	4
1.1- Orden cuadrático (O(n²))	4
1.2- Orden n-logarítmico (O(nlog(n)))	5
1.3- Comparación	
2- Algoritmo de Floyd (O(n³))	
3- Algoritmo de Hanoi (O(2n))	
4- Comparación total	
Eficiencia híbrida	11
1- Algoritmos de ordenación	11
1.1- Burbuja	11
1.2- Inserción	
1.3- Selección	13
1.4- Mergesort	13
1.5- Quicksort	
1.6- Heapsort	
2- Algoritmo de Floyd	
3- Algoritmo de Hanoi	
Uso de variaciones	

Introducción

A lo largo del documento se expondrán los datos obtenidos durante el desarrollo de la práctica, así como tablas y gráficas que las representan (apartados de análisis empírico).

Además se estudiará el ajuste del orden de eficiencia para cada uno de los algoritmos (eficiencia empírica), a partir de las tablas anteriores, indicando el nivel de ajuste mediante el dato "varianza residual", la cual estudia la varianza de las diferencias entre las imágenes de los puntos y la que le proporciona la gráfica (se busca que éste valor sea el mínimo posible). A su vez se intentará cambiar el tipo de ajuste, para estudiar las posibles diferencias con el original.

Para terminar, se realizará un pequeño estudio sobre la variación de la escala del tiempo debido al uso de diferentes niveles de optimización del ejecutable (en este caso se ha elegido el algoritmo de las torres de Hanoi).

Eficiencia empírica

1- Algoritmos de ordenación

1.1- Orden cuadrático (O(n²))

Tamaño	Burbuja	Inserción	Selección
500	0.001311	0.001092	0.00035719
1500	0.007047	0.003372	0.00261264
2500	0.017844	0.007137	0.007685
3500	0.022229	0.013268	0.016741
4500	0.039783	0.019037	0.023002
5500	0.061048	0.028616	0.034087
6500	0.088834	0.039232	0.047873
7500	0.121957	0.053949	0.063287
8500	0.16015	0.067547	0.081399
9500	0.207358	0.087403	0.103103
10500	0.25534	0.103835	0.125322
11500	0.30851	0.123986	0.149912
12500	0.368633	0.147122	0.17692
13500	0.434771	0.17068	0.20509
14500	0.50592	0.196732	0.236309
15500	0.579439	0.225098	0.271882
16500	0.661685	0.255474	0.306598
17500	0.751912	0.288498	0.343751
18500	0.841164	0.319619	0.384171
19500	0.944326	0.355745	0.426748
20500	1.04575	0.394738	0.471934
21500	1.15543	0.433908	0.521653
22500	1.27277	0.475005	0.571422
23500	1.3934	0.517875	0.621192
24500	1.51766	0.562875	0.677699

1.2- Orden n-logarítmico (O(nlog(n)))

Tamaño	Mergesort	Quicksort	Heapsort
1000	0,000118155	0,000139	0,000109
401000	0,088325	0,05352	0,078204
801000	0,188027	0,106695	0,170013
1201000	0,259292	0,166469	0,265585
1601000	0,380561	0,219734	0,370825
2001000	0,427156	0,281037	0,473523
2401000	0,546385	0,337812	0,58647
2801000	0,699583	0,397209	0,70904
3201000	0,78901	0,461403	0,839178
3601000	0,776646	0,523649	0,965665
4001000	0,885384	0,579218	1,0977
4401000	0,998976	0,648723	1,23494
4801000	1,11561	0,704559	1,37
5201000	1,23798	0,770336	1,51107
5601000	1,36945	0,831854	1,64857
6001000	1,4982	0,911785	1,79165
6401000	1,65366	0,952609	1,94106
6801000	1,50561	1,02687	2,09642
7201000	1,61642	1,09359	2,24099
7601000	1,73001	1,14948	2,39218
8001000	1,8434	1,211	2,53263
8401000	1,96071	1,27463	2,69338
8801000	2,07867	1,33254	2,8528
9201000	2,19567	1,40248	3,00626
9601000	2,31942	1,47669	3,17427

Tamaño	Mergesort	Quicksort	Heapsort
500	5,87E-05	3,50E-05	7,90E-05
1500	0,00020683	0,00012	0,000406
2500	0,00034141	0,000235	0,000716
3500	0,00042617	0,000299	0,000526
4500	0,00060328	0,000436	0,000689
5500	0,000831745	0,000527	0,000857
6500	0,00081689	0,000629	0,001057
7500	0,00099898	0,000741	0,001217
8500	0,00117791	0,000865	0,001698
9500	0,00138862	0,000993	0,001912
10500	0,00161601	0,001072	0,002133
11500	0,00186474	0,001457	0,001551
12500	0,0021405	0,00144	0,001741
13500	0,0018621	0,001604	0,001831
14500	0,00202306	0,001732	0,001931
15500	0,00221986	0,001795	0,002472
16500	0,00242854	0,001869	0,002658
17500	0,00263394	0,002044	0,002725
18500	0,00285428	0,002785	0,002751
19500	0,00308117	0,002104	0,002975
20500	0,00331664	0,002235	0,004273
21500	0,00356593	0,002372	0,003447
22500	0,00382874	0,002688	0,003695
23500	0,004356	0,003142	0,003796
24500	0,00434365	0,003329	0,005502

1.3- Comparación

2- Algoritmo de Floyd (O(n³))

Tamaño	Floyd
25	2,55E-04
60	0,00309
95	0,009714
130	0,013252
165	0,023836
200	0,040295
235	0,064654
270	0,097323
305	0,141312
340	0,194466
375	0,258094
410	0,337823
445	0,430337
480	0,5407
515	0,667034
550	0,812562
585	0,976406
620	1,163
655	1,36855
690	1,60272
725	1,85235
760	2,13302
795	2,44512
830	2,78404
865	3,15061

3- Algoritmo de Hanoi (O(2ⁿ))

Tamaño	Hanoi
5	4,00E-06
6	6,00E-06
7	2,00E-06
8	2,00E-06
9	4,00E-06
10	8,00E-06
11	1,30E-05
12	2,50E-05
13	5,00E-05
14	9,70E-05
15	0,000193
16	0,000386
17	0,000769
18	0,001537
19	0,003089
20	0,005846
21	0,015505
22	0,023595
23	0,046132
24	0,091187
25	0,181641
26	0,362962
27	0,725599
28	1,45384
29	2,9018

4- Comparación total

Eficiencia híbrida

1- Algoritmos de ordenación

1.1- Burbuja

Ajuste cuadrático de la forma an²+bn+c, con los siguientes valores:

a = 2.73093e-09

b = -5.3206e-06

c = 0.00836257

Varianza residual = 4.89886e-06

Si probamos con un ajuste lineal an+b obtenemos:

a = 6.29526e-05

b = -0.276337

Varianza residual = 0.0174563 (3563 veces mayor que en el ajuste anterior)

1.2- Inserción

Ajuste cuadrático de la forma an²+bn+c, con los siguientes valores:

a = 9.40443e-10

b = -1.1628e-07

c = 0.00128

Varianza residual = 6.80367e-07

1.3- Selección

Ajuste cuadrático de la forma an²+bn+c, con los siguientes valores:

a = 1.12452e-09

b = -1.21801e-08

c = 0.000709697

Varianza residual = 1.056e-06

1.4- Mergesort

Ajuste n-logarítmico de la forma anlog(n) + bn + c, con los siguientes valores:

a = 3.26563e-06

b = 0.000206765

c = -0.00237343

Varianza residual = 0.00323216

Si probamos con un ajuste cuadrático an² + bn + c obtenemos:

a = 4.83438e-10

b = 0.000232541

c = -0.00502347

Varianza residual = 0.00323092 (peor que el anterior pero se acerca bastante)

1.5- Quicksort

Ajuste n-logarítmico de la forma anlog(n) + bn + c, con los siguientes valores:

a = 8.2128e-06

b = 7.78047e-05

c = 0.000327126

Varianza residual = 2.74406e-05

1.6- Heapsort

Ajuste n-logarítmico de la forma anlog(n) + bn + c, con los siguientes valores:

a = 6.60876e-05

b = -0.000279362

c = 0.0252957

Varianza residual = 7.53947e-05

2- Algoritmo de Floyd

Ajuste cúbico de la forma an 3 + bn 2 + cn + d, con los siguientes valores:

a = 4.87271e-09

b = -1.689e-08

c = 8.0178e-06

d = 0.00151371

Varianza residual = 2.88024e-06

3- Algoritmo de Hanoi

Ajuste exponencial de la forma $a2^n + b$, con los siguientes valores:

a = 5.40244e-09

b = 0.000489004

Varianza residual = 1.22483e-06

Uso de variaciones

Algoritmo de Hanoi con distintos niveles de optimización:

Tamaño	Hanoi	Hanoi -O1	Hanoi -O2
5	4,00E-06	3,00E-06	2,00E-06
6	6,00E-06	4,00E-06	2,00E-06
7	2,00E-06	3,00E-06	2,00E-06
8	2,00E-06	2,00E-06	2,00E-06
9	4,00E-06	4,00E-06	3,00E-06
10	8,00E-06	6,00E-06	4,00E-06
11	1,30E-05	1,00E-05	8,00E-06
12	2,50E-05	1,80E-05	1,50E-05
13	5,00E-05	3,40E-05	2,90E-05
14	9,70E-05	6,70E-05	5,40E-05
15	0,000193	0,000127	9,40E-05
16	0,000386	0,000255	0,000188
17	0,000769	0,000507	0,000374
18	0,001537	0,001025	0,000689
19	0,003089	0,002024	0,001305
20	0,005846	0,004303	0,002574
21	0,015505	0,006797	0,005194
22	0,023595	0,012029	0,010279
23	0,046132	0,023704	0,017984
24	0,091187	0,047535	0,033402
25	0,181641	0,094831	0,06629
26	0,362962	0,183495	0,130661
27	0,725599	0,377845	0,262774
28	1,45384	0,747256	0,525612
29	2,9018	1,50962	1,04687

