Введение в нейронные сети. Урок 3. TensorFlow

План вебинара

- 1. Инструменты для создания нейронных сетей.
- 2. Общие сведения о TensorFlow
- 3. Синтаксис TensorFlow
- 4. Практика

Mecto TensorFlow среди др. инструментов GeekBrains

Основы синтаксиса

TensorFlow 2.0

Easy

Simplified APIs. Focused on Keras and eager execution

Powerful

Flexibility and performance.

Power to do cutting edge research and scale to > 1 exaflops

Scalable

Tested at Google-scale. Deploy everywhere

GeekBrains

Основы синтаксиса - Тензор

- Сумма тензоров
- Сумма двух векторов это тензор 1-го ранга

• Тензор 1 ранга

$$C = A B = [a1+b1 \quad a2+b2 \quad a3+b3]$$

GeekBrains

- Произведение тензора и скаляра
- Произведение вектора (тензор 1-го ранга) и В A=<a1, a2, a3>, В
- Тензор 1-го ранга

$$C = A B = \begin{bmatrix} Ba1 & Ba2 & Ba3 \end{bmatrix}$$

GeekBrains

- Произведение тензоров
- Произведение двух векторов это тензор 2-го ранга A=<a1, a2, a3>, B=<b1,b2, b3>
- Тензор второго ранга диада

$$C = A^{T}B = \begin{bmatrix} a1b1 & a1b2 & a1,b3 \\ a2b1 & a2b2 & a2b3 \\ a3b1 & a3b2 & a3b3 \end{bmatrix}$$

- Операции над тензорами приводят к тензорам
- Произведение двух тензоров ранга n и ранга m тензор n+k -го ранга

$$C_{ksmij} = B_{ksm} * A^{ij}$$

Основы синтаксиса - Тензор

TensorFlow

- У тензоров есть имена.
- Существует понятие формы тензора.
- Тензоры типизированы и типы для них задаются из библиотеки.

Оптимизаторы

SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

```
while True:
    dx = compute_gradient(x)
    x += learning_rate * dx
```

SGD+Momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x += learning_rate * vx
```

https://www.reg.ru/blog/stehnfordskij-kurs-lekciya-4-vvedenie-v-nejronnye-seti/

Оптимизаторы

Nesterov Momentum

Оптимизаторы

Nesterov Momentum

$$\begin{vmatrix} v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t) \\ x_{t+1} = x_t + v_{t+1} \end{vmatrix}$$

- SGD

SGD+Momentum

Nesterov

Оптимизаторы: Adam

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)

x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
```

Momentum

Bias correction

AdaGrad / RMSProp

Функция Потерь

1. Абсолютная

$$L(X_i, W) = |y_i(X, W) - \hat{y}|$$

2. Квадратичная

$$L(X_i, W) = (y_i(X, W) - \hat{y})^2$$

Функция Потерь

3. Кросс – Энтропия – Бинарная \ Binary cross entropy

$$L(X_{i}, W) = -\frac{1}{N} (\hat{y} \cdot \log(y_{i}(X, W)) + (1 - \hat{y}) \cdot \log(1 - y_{i}(X, W)))$$

4. Взвешенная Кросс – Энтропия – Бинарная \ Weighted Binary cross entropy

$$L(X_i, W) = -\frac{1}{N} (\beta \cdot \hat{y} \cdot \log(y_i(X, W)) + (1 - \hat{y}) \cdot \log(1 - y_i(X, W)))$$

5. Balanced binary cross entropy

$$L(X_{i}, W) = -\frac{1}{N} (\beta \cdot \hat{y} \cdot \log(y_{i}(X, W)) + (1 - \beta)(1 - \hat{y}) \cdot \log(1 - y_{i}(X, W)))$$

Функция Потерь

6. Дице коэффициент - Dice index

$$L(X,W) = 2 \frac{\left| y_i(X,W) \cap \hat{y}_i \right|}{\left| y_i(X,W) \right| + \left| \hat{y}_i \right|}$$

7. Jaccard loss - степень сходства

$$L(X_{i}, W) = \frac{\sum_{i=1,N} y_{i}(X, W) \cdot \hat{y}_{i}}{\sum_{i=1,N} y_{i}(X, W) + \sum_{i=1,N} \hat{y}_{i} - \sum_{i=1,N} y_{i}(X, W) \hat{y}_{i}}$$

Практическое задание

1. Попробуйте улучшить работу нейронной сети(разобранную на уроке) обучавшейся на датасет Fashion-MNIST.

Опишите в комментарии к уроку - какого результата вы добились от нейросети? Что помогло вам улучшить ее точность?

- 2. Поработайте с документацией TensorFlow 2. Попробуйте найти полезные команды TensorFlow, не разобранные на уроке.
- *3. Попробуйте обучить нейронную сеть на TensorFlow 2 на датасете imdb_reviews.

Опишите в комментарии к уроку - какого результата вы добились от нейросети? Что помогло вам улучшить ее точность?