Python Fundamentals: (Matplotlib, Various types of Plots, Curve Fitting, Pandas)

Lecturer¹/Ph.D. Scholar²

¹ Devendra Raj Upadhyay ¹Department of Physics, Amrit Campus, IoST, Tribhuvan University ²Central Department of Physics, IoST, Tribhuvan University

devendra.upadhyay@ac.tu.edu.np

National Campion on Data Analysis and Scientific Documentation-2024

(NCDASD-2024)

May 13, 2024

Contents

- Introduction
- Applications
- Statistics
- Coding/Plotting (65 min)
- Summary/Discussion (20 min)
- References

Introduction

Introduction¹

Types of most famous Programming Language ²

Python ³

Founder of Python Language: Guido van Rossum

History: When he began implementing Python, Guido van Rossum was also reading the published scripts from "Monty Python's Flying Circus" a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was short, unique, and slightly mysterious, so he decided to call the language Python.

Introduction: Python 3.11.3, released on 5 April 2023 ⁴

Applications 5

Statistics

- Slope (m) = $\frac{dy}{dx}$
- ② Intercept (c) = y-mx
- Pearson's correlation coefficient $(r) = \frac{\sum (x_i \bar{x})(y_i \bar{y})}{\sqrt{\sum (x_i \bar{x})^2 \sum (y_i \bar{y})^2}}$
- p-values: to assess the strength of evidence against a null hypothesis.
- \mathbf{O} $Q_1, Q_2 Q_3$
- Minimum, Maximum and Range
- Mean, Median, Mode

- Standard deviation $(\sigma) = \sqrt{\frac{\sum (x_i \bar{x})^2}{n}}$
- Standard error (SE) = $\frac{\sigma}{\sqrt{n}}$
- Mean Absolute Deviation (MAD) = $\frac{\sum |x_i \mu|}{n}$
- Variance = $\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$
- $CV = \left(\frac{\text{Standard Deviation}}{\text{Mean}} \right) \times 100\%$
- Skewness = $\frac{\sum_{i=1}^{n} (x_i \bar{x})^3}{n \cdot \sigma^3}$
- Wurtosis = $\frac{\sum_{i=1}^{n} (x_i \bar{x})^4}{n \cdot \sigma^4} 3$

Coding/plotting 6

Symbol	Functionality
+	addition
_	subtraction
*	multiplication
/	division
%	modulo (yields remainder after division)
//	integer division (truncates toward zero)
**	exponentiation
abs(a)	absolute value of the number a , $ a $
math.sin(x)	sine of x radians (other trigonometric functions are also available)
math.factorial(n)	factorial of n, n!
math.log(a,b)	$log_b(a)$ (defaults to natural logarithm, if no base b specified)
math.sqrt(x)	square root of x , \sqrt{x}

Coding/plotting ⁷

Everything you need to get started in data science on your workstation.

- Free distribution install
- Thousands of the most fundamental DS, AI, and ML packages
- Manage packages and environments from desktop application
- Deploy across hardware and software platforms

E Download

Coding and plotting

- Online Coding: https://nb.anaconda.cloud/jupyterhub/user
- Offline Coding: https://www.anaconda.com/
- w3schools: https://www.w3schools.com/python/
- Nuclear Physics: https://github.com/Devendra20-20/Nuclear_Physics
- Astrophysics: https://github.com/Devendra20-20/Astrophysics
- NPS School of Computing: https://npshub.github.io/

Acknowledgements

- Workshop Organizing Committee
- Supervisor, Prof. Raju Khanal, Central Department of Physics, TU
- IoST, TU
- UGC, Nepal

References

Ekmekci, B., McAnany, C. E., & Mura, C. (2016). An introduction to programming for bioscientists: a Python-based primer. *PLoS computational biology*, 12(6), e1004867.

Garcia, M. B., & Revano, T. F. (2021). Assessing the Role of Python Programming Gamified Course on Studentsâ Knowledge, Skills Performance, Attitude, and Self-Efficacy. In 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM) (pp. 1–5).

Landau, R. H., Páez, M. J., & Bordeianu, C. C. (2015). Computational physics: Problem solving with python. John Wiley & Sons.

Thank you !!!