Value Function Iteration

January 2019

Some Stuff on VFI

Value Function Iteration is an application of the Contraction Mapping Theorem to get the fixed point of the operator:

$$(Tv)(x) = \max_{y \in \Gamma(x)} \left\{ F(x,y) + \beta v(y) \right\}.$$

Why? The CMT implies two things relevant to this problem:

- 1. For some metric space (S,d) and contraction $T:S\to S$, there's a unique fixed point $v^*\in S$ (i.e. $v^*=Tv^*$)
- 2. From any v_0 the sequence $\{v_n\}_{n=1}^{\infty}$ defined by $v_n = Tv_{n-1}$ converges geometrically to v^* by rate of the modulus β .

So, that's cool. What that tells us is if we take some starting v_0 , any starting v_0 , and keep applying the contraction T (satisfying Blackwell's Sufficient Conditions for a contraction) we'll get to the unique fixed point that we want. That's the basic justification for VFI and it gives you the algorithm, which is basically:

- 1. Apply $F(x,y) + \beta v^{n-1}(y)$ over a grid of values.
- 2. Take the max over the grid of y and repeat until you get close enough.

A Problem

In this problem, you will use brute force to solve for the value function in the neoclassical growth model. Suppose that the household's utility function is $\frac{c^{1-\sigma}}{1-\sigma}$ and that the production function is k^{α} . Assume parameter values of $\beta=0.96$, $\alpha=0.3$, $\sigma=3$, $\delta=0.08$.

- 1. Compute the maximum sustainable level of capital \bar{k} and the steady state level of capital k^* .
- 2. Create a grid of N=25 equally spaced points $\{k_i\}_{i=1}^{25}$ in the interval $[\bar{k},\underline{k}]$ with $\underline{k}=0.1k^*$
- 3. Guess $\{V_{0,i}\}_{i=1}^N = 0$ at these grid points and iteratively update these values according to the following procedure:
 - (a) For all pairs i, j compute:

$$V_{ij}^{n} = u(f(k_i) + (1 - \delta)k_i - k_j) + \beta V_i^{n-1}$$

(b) Update by the rule

$$V_i^n = \max_i V_{ij}^n$$

- (c) Compute $R = ||V_i^n V_i^{n-1}||$.
- (d) If R < 1e 5 or some other stopping condition, then end the algorithm. Otherwise, continue.
- 4. Plot the value and policy functions. Comment.
- 5. Plot the transition paths starting from a value of k below k^* and for an initial value above k^* . Do the paths converge to the steady state?
- 6. Now solve for the value function with grids of size N = 50, 100, 200, 400, 800. Plot all the value functions on one graph and all the policy functions on another. Does doubling the number of grid points substantially increase accuracy?
- 7. Make a table containing the number of iterations and time to convergence in each case. Explain why you see the patterns that emerge.