$\begin{array}{c} {\rm COMP~550} \\ {\rm Algorithms~and~Analysis} \end{array}$

Spring 2020

Pop Quiz 8

Thursday, April 9, 2020

Don't forget to write your name on the quiz sheet. This quiz continues on the back.

- 1. What is an asymptotic bound for the time taken by the dynamic programming longest common subsequence algorithm on sequences of length m and n? Choose the best answer.
 - a) $\Theta(2^{m*n})$
 - b) $\Theta(2^{m+n})$
 - $c)\Theta(m*n)$
 - $d)\Theta(m+n)$
- 2. What is an asymptotic bound on the time taken to find the longest common subsequence of two sequences X and Y of length m and n by exhaustively considering all subsequences of X and checking which of them are subsequences of Y? Choose the best answer.
 - $a)\Theta(2^m*n)$
 - b) $\Theta(2^m + n)$
 - $c)\Theta(m*n)$
 - $d)\Theta(m+n)$

Consider a binary search tree where the probabilities of searching for each key are as indicated:

- 3. What is the expected number of nodes visited in a random successful search operation on this tree? _____
- 4. Is this an optimal binary search tree?

Consider the following table:

	a	b	a	c	b
c					
b					
a			A	В	С
b			D	E	F
a			G	Н	I

6. Fill in the blanks A through I with the numbers c[i,j] used in the longest common subsequence algorithm for those squares. A ____ B ___ C___ D___ E___ F___ G___ H___ I___ Show a longest common subsequence.