```
In [6]: ## Data Extraction
         import numpy as np
         import pandas as pd
         import csv
         ratings_data = pd.read_csv("ratings.csv")
         movie names = pd.read csv("movies.csv")
         movie_data = pd.merge(ratings_data, movie_names, on='movieId')
         movie data.head()
Out[6]:
```

	userld	movield	rating	timestamp	title	genres
0	1	1	4.0	964982703	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
1	5	1	4.0	847434962	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
2	7	1	4.5	1106635946	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
3	15	1	2.5	1510577970	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
4	17	1	4.5	1305696483	Toy Story (1995)	Adventure Animation Children Comedy Fantasy

```
In [9]:
        #preprocessing
```

```
In [18]: | movie_data['genres'] = movie_data['genres'].str.replace(r'|', '')
```

```
In [19]: | movie_data['genres']
```

```
Out[19]: 0
                   Adventure Animation Children Comedy Fantasy
                   Adventure Animation Children Comedy Fantasy
         1
         2
                   Adventure Animation Children Comedy Fantasy
                   Adventure Animation Children Comedy Fantasy
                   Adventure Animation Children Comedy Fantasy
                                                Action Thriller
         100831
         100832
                                             Action Crime Drama
         100833
                                          Action Drama Thriller
         100834
                                                Horror Thriller
         100835
                                                         Horror
         Name: genres, Length: 100836, dtype: object
```

```
In [20]: movie_data['title'] = movie_data['title'].str.replace('[(,)]', '')
```

```
In [21]:
         movie data['title']
Out[21]: 0
                                    Toy Story 1995
                                    Toy Story 1995
         1
         2
                                    Toy Story 1995
         3
                                    Toy Story 1995
                                    Toy Story 1995
         4
         100831
                                    Bloodmoon 1997
         100832
                   Sympathy for the Underdog 1971
         100833
                                       Hazard 2005
         100834
                                  Blair Witch 2016
         100835
                                           31 2016
         Name: title, Length: 100836, dtype: object
In [22]: movie data.groupby('title')['rating'].mean().head()
         movie data.groupby('title')['rating'].mean().sort values(ascending=False).head
         ()
         movie data.groupby('title')['rating'].count().sort values(ascending=False).hea
         d()
         ratings_mean_count = pd.DataFrame(movie_data.groupby('title')['rating'].mean
         ())
         ratings_mean_count['rating_counts'] = pd.DataFrame(movie_data.groupby('title')
         ['rating'].count())
         ratings_mean_count.head()
```

Out[22]:

rating rating_counts

title		
'71 2014	4.0	1
'Hellboy': The Seeds of Creation 2004	4.0	1
'Round Midnight 1986	3.5	2
'Salem's Lot 2004	5.0	1
'Til There Was You 1997	4.0	2

```
In [23]: #Visulization
```

```
In [24]: import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('dark')
%matplotlib inline
```

```
In [25]: plt.figure(figsize=(8,6))
    plt.rcParams['patch.force_edgecolor'] = True
    ratings_mean_count['rating_counts'].hist(bins=50)
```

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x21ddb4478e0>


```
In [26]: plt.figure(figsize=(8,6))
   plt.rcParams['patch.force_edgecolor'] = True
   ratings_mean_count['rating'].hist(bins=50)
```

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x21ddbc57a90>


```
In [27]: plt.figure(figsize=(8,6))
    plt.rcParams['patch.force_edgecolor'] = True
    sns.jointplot(x='rating', y='rating_counts', data=ratings_mean_count, alpha=0.
    4)
```

Out[27]: <seaborn.axisgrid.JointGrid at 0x21ddbd57fa0>

<Figure size 576x432 with 0 Axes>

In [29]: #similarties b/w movies user_movie_rating = movie_data.pivot_table(index='userId', columns='title', va lues='rating') forrest_gump_ratings = user_movie_rating['Forrest Gump 1994'] forrest_gump_ratings.head()

Out[29]: userId

- 1 4.0
- 2 NaN
- 3 NaN
- 4 NaN
- 5 NaN

Name: Forrest Gump 1994, dtype: float64

```
In [30]: # correlation
    movies_like_forest_gump = user_movie_rating.corrwith(forrest_gump_ratings)

    corr_forrest_gump = pd.DataFrame(movies_like_forest_gump, columns=['Correlation'])

    corr_forrest_gump.dropna(inplace=True)

    corr_forrest_gump.head()
```

C:\Users\Ali\anaconda3\lib\site-packages\numpy\lib\function_base.py:2526: Run
timeWarning: Degrees of freedom <= 0 for slice
 c = cov(x, y, rowvar)</pre>

C:\Users\Ali\anaconda3\lib\site-packages\numpy\lib\function_base.py:2455: Run
timeWarning: divide by zero encountered in true_divide
 c *= np.true divide(1, fact)

Out[30]:

Correlation

title	
'burbs The 1989	0.197712
*batteries not included 1987	0.892710
And Justice for All 1979	0.928571
10 Cent Pistol 2015	-1.000000
10 Cloverfield Lane 2016	0.752057

Out[31]:

Correlation rating_counts

title		
'burbs The 1989	0.197712	17
*batteries not included 1987	0.892710	7
And Justice for All 1979	0.928571	3
10 Cent Pistol 2015	-1.000000	2
10 Cloverfield Lane 2016	0.752057	14

In [32]: corr_forrest_gump[corr_forrest_gump ['rating_counts']>50].sort_values('Correla
tion', ascending=False).head()

Out[32]:

title		
Forrest Gump 1994	1.000000	329
Mr. Holland's Opus 1995	0.652144	80
Pocahontas 1995	0.550118	68
Grumpier Old Men 1995	0.534682	52
Caddyshack 1980	0.520328	52

In []: