Feuille d'exercices 13 : Dérivation

1 Nombre dérivé - fonction dérivée

Exercice 1. Soit I un intervalle ouvert de \mathbb{R} . Soient f et $g:I\to\mathbb{R}$ dérivables en $a\in I$. Déterminer les limites suivantes :

$$\lim_{x\to 0}\frac{f(a+x)-f(a-x)}{2x},\qquad \lim_{x\to a}\frac{f(x)g(a)-f(a)g(x)}{x-a}\quad \text{ et }\quad \lim_{h\to 0}\frac{f(a+h^2)-f(a+h)}{h}$$

Exercice 2. Etudier la dérivabilité en 0 des fonctions suivantes :

1.
$$f_n: \mathbb{R}^+ \to \mathbb{R}, x \mapsto \sqrt{x^{n+1} + x^n}, \text{ où } n \in \mathbb{N}^*,$$

2. $g: x \mapsto \begin{cases} x \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

Exercice 3. On considère la fonction définie par :

$$\forall x \in \left[\frac{\pi}{2}, \pi\right[, f(x) = \frac{1}{\sin(x)}.$$

- 1. Montrer que f réalise une bijection vers un intervalle que l'on précisera.
- 2. Sans déterminer f^{-1} , montrer que f^{-1} est dérivable sur un intervalle que l'on précisera et calculer $(f^{-1})'$.

Exercice 4. Soit f une fonction dérivable sur \mathbb{R} .

- 1. Montrer que f est paire si et seulement si f' est impaire.
- 2. Montrer que si f est impaire, f' est paire, que dire de la réciproque?
- 3. Montrer que si f est périodique, f' est périodique, que dire de la réciproque?

Exercice 5. Soit $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 telle que : $\forall x \in \mathbb{R}$, $(f \circ f)(x) = \frac{x}{2}$.

- 1. Montrer que : $\forall x \in \mathbb{R}, f\left(\frac{x}{2}\right) = \frac{f(x)}{2}$.
- 2. En déduire que : $\forall x \in \mathbb{R}, f'(x) = f'\left(\frac{x}{2}\right)$.
- 3. En déduire que f' est constante.
- 4. Déterminer l'ensemble des fonctions f de classe \mathcal{C}^1 vérifiant : $\forall x \in \mathbb{R}, (f \circ f)(x) = \frac{x}{2}$.

2 Dérivées n-ièmes et fonctions de classe \mathcal{C}^n ou \mathcal{C}^∞

Exercice 6. Soit n > 2, calculer la dérivée $n^{\text{ième}}$ de : $\begin{array}{ccc} \varphi : & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & (x^2 + 1)e^{3x} \end{array}$.

Exercice 7. Calculer la dérivée $n^{\text{ième}}$ de $f: x \mapsto x^n (1+x)^n$. En déduire $\sum_{k=0}^n \binom{n}{k}^2$.

Exercice 8. Déterminer, pour tout $n \in \mathbb{N}$, la dérivée $n^{\text{ième}}$ de :

$$f: x \mapsto (x^3 + x^2 + 1)e^{-x}$$

Exercice 9. Soit $n \in \mathbb{N}$. Déterminer la dérivée (n+1)-ième de : $f_n : x \mapsto x^n e^{1/x}$.

Exercice 10. Soit $n \in \mathbb{N}^*$. Calculer la dérivée n-ième de $t \mapsto t^{n-1} \ln t$.

Exercice 11. Déterminer, pour tout $n \in \mathbb{N}$, la dérivée $n^{\text{ième}}$ de :

$$x \mapsto \cos x \qquad \qquad x \mapsto \sin x$$

Exercice 12. Déterminer, pour tout $n \in \mathbb{N}$, la dérivée $n^{\text{ième}}$ de :

$$f_1: x \mapsto \cos^3 x$$
 $f_2: x \mapsto e^x \sin x$

3 Propriétés des fonctions dérivables

Exercice 13. Soit f une fonction continue sur $[0, +\infty[$ et dérivable sur $]0, +\infty[$ telle que $\lim_{x\to +\infty} f(x) = f(0)$. Montrer qu'il existe $x_0 \in]0, +\infty[$ tel que $f'(x_0) = 0$

Exercice 14. Soient $a, b, \lambda \in \mathbb{R}$ tels que 0 < a < b, soit f une fonction continue sur [a, b] et dérivable sur [a, b] telle que f(a) = f(b) = 0. Montrer que :

$$\exists c \in]a, b[, f'(c) = -\lambda \frac{f(c)}{c}.$$

Indication : on pourra appliquer le théorème de Rolle à $x \mapsto x^{\lambda} f(x)$.

Exercice 15. Soit I un intervalle ouvert de \mathbb{R} , soient $n, k \in \mathbb{N}$, soit $f \in \mathcal{F}(I, \mathbb{R})$ n fois dérivable sur I.

- 1. On suppose que f admet au moins k zéros dans I. Montrer que pour tout $l \in \mathbb{N}$ tel que $0 \le l \le k$ et $0 \le l \le n$, $f^{(l)}$ admet au moins k-l zéros dans I.
- 2. Montrer que si f s'annule n+1 fois sur I, alors $f^{(n)}$ s'annule en au moins un point de I.

Exercice 16. Soit $T \in \mathbb{R}^*$. Soit f une fonction dérivable et T-périodique.

Montrer que f' s'annule une infinité de fois.

Exercice 17. Soit f de classe C^1 sur [-1,1] et deux fois dérivable sur]-1,1[telle que f(-1)=-1, f(0)=0 et f(1) = 1. Montrer que :

$$\exists c \in]-1,1[, f''(c)=0.$$

Exercice 18. Soit $f:[a,b]\to\mathbb{R}$ une fonction de classe \mathcal{C}^2 telle que f(a)=f(b)=0. On pose $M=\sup_{x\in[a,b]}|f''(x)|$.

- 1. À quel type de fonction f correspond le cas M=0? On suppose dans la suite que M>0.
- 2. Montrer que pour tout $x \in [a, b]$, il existe $c_x \in]a, b[$ tel que $: f(x) = \frac{(x-a)(x-b)}{2} f''(c_x)$.
- 3. En déduire que : $\forall x \in [a,b], |f(x)| \leq \frac{M}{2}(x-a)(x-b)$, puis que : $|f'(a)| \leq \frac{M}{2}(b-a)$.

Exercice 19. Soit $a \in \mathbb{R}$. Soit f une fonction continue sur $[a, +\infty[$ et dérivable sur $]a, +\infty[$ telle que : $\lim_{x \to \infty} f(x) = \frac{1}{2} \int_{-\infty}^{\infty} f(x) \, dx$

 $g: [0,1] \rightarrow \mathbb{R}$ $x \mapsto \begin{cases} f\left(\frac{1}{x} + a - 1\right) & \text{si } x \neq 0 \\ f(a) & \text{si } x = 0. \end{cases}$ f(a). On pose:

- 1. Montrer que g est continue sur [0,1] et dérivable sur [0,1]
- 2. En déduire qu'il existe $c \in]a, +\infty[$ tel que f'(c) = 0.

Exercice 20. 1. Soient $a, b \in \mathbb{R}$ tels que a < b. Soient f et g deux fonctions continues sur [a, b] et dérivables sur a, b. Montrer que :

$$\exists c \in]a, b[, f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).$$

2. En déduire la règle de L'Hôpital :

si f et g sont deux fonctions continues sur $V = |x_0 - \alpha, x_0 + \alpha|$ et dérivables sur $V \setminus \{x_0\}$ telles que : $\forall x \in V \setminus \{x_0\}$, $g'(x) \neq 0$. Montrer que :

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = l.$$

3. Application : calculer les limites suivantes :

$$\lim_{x \to 0} \frac{x - \sin x}{x^3}, \quad \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2}.$$

2

Montrons que f peut se prolonger en une fonction qui est de classe C^1 sur \mathbb{R}_+ .

Exercice 22. On considère la fonction $f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & e^x \text{ si } x < 0 \\ x & \mapsto & ax^2 + bx + c \text{ sinon.} \end{array} \right.$

Peut-on déterminer a, b, c pour que f soit de classe C^2 ,

Exercice 23. Soit:

$$\begin{array}{ccc} f: &]0, +\infty[& \to & \mathbb{R} \\ & x & \mapsto & e^{-1/x^2} \end{array}$$

Montrer que f est prolongeable par continuité en 0 et que son prolongement par continuité en 0 est dérivable en 0.

Exercice 24. Résoudre l'équation différentielle sur \mathbb{R} : $xy' - (1+x)y = -x^2$

Exercice 25. Résoudre l'équation différentielle sur \mathbb{R} : $xy' - 2y = (x-1)(x+1)^3$.

Exercice 26. Résoudre l'équation différentielle sur \mathbb{R} : $xy' - 2y - x^4 = 0$.

Exercice 27. Résoudre l'équation différentielle sur \mathbb{R} : x(x-1)y' + (2x-1)y = 1,

Exercice 28. Montrer que :

$$\forall k \in \mathbb{N}^*, \ \frac{1}{k+1} \le \ln \frac{k+1}{k} \le \frac{1}{k}.$$

1. Montrer que : $\forall x \in \mathbb{R}^{+*}, \left(\frac{1+x}{x}\right)^x \le e \le \left(\frac{1+x}{x}\right)^{x+1}$. Exercice 29.

On pourra appliquer l'inégalité des accroissements finis à la fonction ln. 2. En déduire que $\forall n \in \mathbb{N}^*$, $\frac{(n+1)^n}{n!} \leq e^n \leq \frac{(n+1)^{n+1}}{n!}$.

Exercice 30. Montrer les inégalités suivantes :

$$1. \ \forall x \in]-1, +\infty[, \frac{x}{1+x} \le \ln(1+x) \le x,$$

2.
$$\forall (x,y) \in [0,1]^2, \ x < y, \ \frac{y-x}{\sqrt{1-x^2}} < \arcsin y - \arcsin x < \frac{y-x}{\sqrt{1-y^2}}.$$

Exercice 31. Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction dérivable. Montrer que si f' a une limite finie l en $+\infty$, alors

1. On définit la suite (u_n) par : $u_0 \in \mathbb{R}$, $\forall n \in \mathbb{N}$, $u_{n+1} = 2 + \frac{1}{2}\sin u_n$. Exercice 32.

Etudier la convergence de (u_n) .

2. On définit la suite (u_n) par : $u_0 \in \mathbb{R}$, $\forall n \in \mathbb{N}$, $u_{n+1} = \cos u_n$. Etudier la convergence de (u_n) .

Exercice 33. On définit la suite (u_n) par : $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = e^{-u_n}$. Montrer que :

$$\forall n \in \mathbb{N}, u_n \in [\frac{1}{e}, 1].$$

3

Montrer que (u_n) converge. On note l sa limite. Comment obtenir une valeur approchée de l à 10^{-3} près?

Exercice 34. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $u_0>0$ et $\forall n\in\mathbb{N},\ u_{n+1}=1+\frac{1}{2}\sin\left(\frac{1}{n}\right)$.

On pose donc $f: x \mapsto 1 + \frac{1}{2} \sin\left(\frac{1}{x}\right)$ pour $x \in \mathbb{R}^*$.

- 1. Montrer que f(x) > 0 pour tout x > 0, en déduire que la suite $(u_n)_{n \in \mathbb{N}}$ est bien définie. 2. Montrer que pour tout $n \geq 2$, $u_n \in [1, \frac{3}{2}]$.
- 3. Montrer que f admet un unique point fixe sur $\left[1, \frac{3}{2}\right]$.
- 4. Montrer que f est $\frac{1}{2}$ -lipschitzienne sur $[1, \frac{3}{2}]$ et déterminer la nature de la suite $(u_n)_{n \in \mathbb{N}}$.