Alternating-direction-method of Multipliers-Based Adaptive Nonnegative Latent Factor Analysis: Supplementary Materials

Yurong Zhong, Shangce Gao, Senior Member, IEEE, and Xin Luo, Senior Member, IEEE

This is the supplementary file for the paper entitled *Alternating-direction-method of Multipliers-Based Adaptive Nonnegative Latent Factor Analysis*. Detailed convergence proof of A²NLF and additional figures are presented here.

I. CONVERGENCE OF A²NLF

A. Proof of Lemma 1

Note that learning objective of A²NLF-PSO/A²NLF-TPE is non-convex. According to [48], any of its limit points where the gradient becomes zero can be a local/global optimum, or saddle point. Hence, such a limit point can be treated as a solution. Supposing that the optimal solution to $a_{u,k(q)}$ by (4c) is $a'_{u,k(q)}$. Thus, it fulfills the following condition:

$$\lambda_{(q)}^{t} \left| \Lambda(u) \right| \left(p_{u,k(q)}^{t} - a_{u,k(q)}^{t} + \frac{h_{u,k(q)}^{t-1}}{\lambda_{(q)}^{t} \left| \Lambda(u) \right|} \right) = 0.$$
 (S1)

Following (4e) and (5c), by applying the update rule of $h_{u,k(q)}$ to (S1), we have:

$$h'_{u,k(q)} = \left(\eta'_{(q)} - 1\right) \lambda'_{(q)} \left| \Lambda(u) \right| \left(p'_{u,k(q)} - a'_{u,k(q)}\right). \tag{S2}$$

Then (22a) stands based on (S2). Following the same principle, we can derive the optimality condition of (5b) related to $x_{i,k(a)}$:

$$\lambda_{(q)}^{t} \left| \Lambda(i) \right| \left(z_{i,k(q)}^{t} - x_{i,k(q)}^{t} + \frac{w_{i,k(q)}^{t-1}}{\lambda_{(q)}^{t} \left| \Lambda(i) \right|} \right) = 0, \implies w_{i,k(q)}^{t} = \left(\eta_{(q)}^{t} - 1 \right) \lambda_{(q)}^{t} \left| \Lambda(i) \right| \left(z_{i,k(q)}^{t} - x_{i,k(q)}^{t} \right). \tag{S3}$$

Then (22b) holds based on (S3). Hence, *Lemma* 1 holds, and **Step 1** is implemented. □

B. Proof of Lemma 2

Considering the difference between $g\left(p_{u,k(q)}^{t}, z_{i,k(q)}^{t}, a_{u,k(q)}^{t-1}, x_{i,k(q)}^{t-1}, \psi_{2(q)}^{t-1}\right)$ and $g\left(\psi_{1(q)}^{t-1}, \psi_{2(q)}^{t-1}\right)$, we have:

$$\begin{split} g\left(p_{u,k(q)}^{t},z_{i,k(q)}^{t},a_{u,k(q)}^{t-1},x_{i,k(q)}^{t-1},y_{2(q)}^{t-1}\right) - g\left(y_{1(q)}^{t-1},y_{2(q)}^{t-1}\right) \\ &= \left(\sum_{i \in \Lambda(u)} z_{i,k(q)}^{t-1} \left(y_{u,i} - \sum_{l_{1}=1}^{k-1} p_{u,l_{1}(q)}^{t} z_{i,l_{1}(q)}^{t} - p_{u,k(q)}^{t-1} z_{i,k(q)}^{t-1} - \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1}\right) - \lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right| \left(p_{u,k(q)}^{t} - a_{u,k(q)}^{t-1} + \frac{h_{u,k(q)}^{t-1}}{\lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|}\right) \left(p_{u,k(q)}^{t-1} - p_{u,k(q)}^{t}\right) \\ &+ \left(\sum_{u \in \Lambda(i)} p_{u,k(q)}^{t-1} \left(y_{u,i} - \sum_{l_{1}=1}^{k-1} p_{u,l_{1}(q)}^{t} z_{i,l_{1}(q)}^{t} - p_{u,k(q)}^{t-1} z_{i,k(q)}^{t} - \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1}\right) - \lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right| \left(z_{i,k(q)}^{t} - x_{i,k(q)}^{t-1} + \frac{w_{i,k(q)}^{t-1}}{\lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|}\right) \left(z_{i,k(q)}^{t-1} - z_{i,k(q)}^{t}\right) \\ &- \frac{1}{2} \left(\sum_{i \in \Lambda(u)} \left(z_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|\right) \left(p_{u,k(q)}^{t} - p_{u,k(q)}^{t-1}\right)^{2} - \frac{1}{2} \left(\sum_{u \in \Lambda(i)} \left(p_{u,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|\right) \left(z_{i,k(q)}^{t} - z_{i,k(q)}^{t-1}\right)^{2}. \end{split}$$

where (*) performs the second-order Taylor expansion of the left term. Then, considering (5a)'s optimality condition, (S4) is

transformed as:

$$g\left(p_{u,k(q)}^{t}, z_{i,k(q)}^{t}, a_{u,k(q)}^{t-1}, x_{i,k(q)}^{t-1}, \psi_{2(q)}^{t-1}\right) - g\left(\psi_{1(q)}^{t-1}, \psi_{2(q)}^{t-1}\right)$$

$$= -\frac{1}{2} \left(\sum_{i \in \Lambda(u)} \left(z_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|\right) \left(p_{u,k(q)}^{t} - p_{u,k(q)}^{t-1}\right)^{2} - \frac{1}{2} \left(\sum_{u \in \Lambda(t)} \left(p_{u,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|\right) \left(z_{i,k(q)}^{t} - z_{i,k(q)}^{t-1}\right)^{2}.$$
(S5)

Thus, the difference between $g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t-1}\right)$ and $g\left(p_{u,k(q)}^{t},z_{i,k(q)}^{t},a_{u,k(q)}^{t-1},x_{i,k(q)}^{t-1},\psi_{2(q)}^{t-1}\right)$ is:

$$g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t-1}\right) - g\left(p_{u,k(q)}^{t},z_{i,k(q)}^{t},a_{u,k(q)}^{t-1},x_{i,k(q)}^{t-1},\psi_{2(q)}^{t-1}\right) = -\left(\lambda_{(q)}^{t}\left|\Lambda(u)\right|/2\right)\left(a_{u,k(q)}^{t}-a_{u,k(q)}^{t-1}\right)^{2} - \left(\lambda_{(q)}^{t}\left|\Lambda(i)\right|/2\right)\left(x_{i,k(q)}^{t}-x_{i,k(q)}^{t-1}\right)^{2}. \tag{S6}$$

Moreover, $g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t}\right)$ and $g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t-1}\right)$ yields:

$$\begin{split} g\left(\psi_{1(q)}^{t}, \psi_{2(q)}^{t}\right) - g\left(\psi_{1(q)}^{t}, \psi_{2(q)}^{t-1}\right) \\ &= \left(p_{u,k(q)}^{t} - a_{u,k(q)}^{t}\right) \left(h_{u,k(q)}^{t} - h_{u,k(q)}^{t-1}\right) + \left(z_{i,k(q)}^{t} - x_{i,k(q)}^{t}\right) \left(w_{i,k(q)}^{t} - w_{i,k(q)}^{t-1}\right) \\ &= \frac{1}{\eta_{(q)}^{t} \lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|} \left(h_{u,k(q)}^{t} - h_{u,k(q)}^{t-1}\right)^{2} + \frac{1}{\eta_{(q)}^{t} \lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|} \left(w_{i,k(q)}^{t} - w_{i,k(q)}^{t-1}\right)^{2} \\ &\leq \frac{2\left|\Lambda\left(u\right)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} p_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} p_{u,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} a_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} a_{u,k(q)}^{t-1}\right)^{2} \right) \\ &+ \frac{2\left|\Lambda\left(i\right)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} z_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} z_{i,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} x_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} x_{i,k(q)}^{t-1}\right)^{2} \right), \end{split}$$

where (I) is based on the update rules of $(h_{u,k(q)}, w_{i,k(q)})$ given in (4e), (4f) and (5c), and (II) is achieved with *Lemma* 1. With (S5)-(S7), we have the following deduction:

$$g\left(\psi_{1(q)}^{t}, \psi_{2(q)}^{t}\right) - g\left(\psi_{1(q)}^{t-1}, \psi_{2(q)}^{t-1}\right)$$

$$\leq -\frac{1}{2} \left(\sum_{i \in \Lambda(u)} \left(z_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(u)\right|\right) \left(p_{u,k(q)}^{t} - p_{u,k(q)}^{t-1}\right)^{2} - \frac{\lambda_{(q)}^{t}}{2} \left|\Lambda(u)\right| \left(a_{u,k(q)}^{t} - a_{u,k(q)}^{t-1}\right)^{2}$$

$$-\frac{1}{2} \left(\sum_{u \in \Lambda(u)} \left(p_{u,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(i)\right|\right) \left(z_{i,k(q)}^{t} - z_{i,k(q)}^{t-1}\right)^{2} - \frac{\lambda_{(q)}^{t}}{2} \left|\Lambda(i)\right| \left(x_{i,k(q)}^{t} - x_{i,k(q)}^{t-1}\right)^{2}$$

$$+ \frac{2\left|\Lambda(u)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} p_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} p_{u,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} a_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} a_{u,k(q)}^{t-1}\right)^{2}$$

$$+ \frac{2\left|\Lambda(i)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} z_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} z_{i,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} x_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} x_{i,k(q)}^{t-1}\right)^{2}\right).$$

$$(S8)$$

Owing to (24a), (25a) stands, which indicates that the augmented Lagrangian function (3) related to $s_{(q)}$ or τ_q is non-increasing as $a_{u,k(q)} > 0$ and $a_{i,k(q)} > 0$. Then after the t-th iteration, the partial objective from (3) related to $s_{(q)}$ or τ_q is formulated as:

$$\begin{split} &g\left(\psi_{1(q)}^{t}, \psi_{2(q)}^{t}\right) \\ &= \frac{1}{2} \sum_{y_{u,t} \in \Lambda} \left(y_{u,i} - \sum_{l_{1} = 1}^{k} p_{u,l_{1}(q)}^{t} z_{i,l_{1}(q)}^{t} - \sum_{l_{2} = k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1}\right)^{2} \\ &+ \sum_{u} \left(\left(\sum_{l_{1} = 1}^{k} h_{u,l_{1}(q)}^{t} \left(p_{u,l_{1}(q)}^{t} - a_{u,l_{1}(q)}^{t}\right)\right) + \left(\sum_{l_{2} = k+1}^{d} h_{u,l_{2}(q)}^{t-1} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t-1}\right)\right)\right) + \sum_{i} \left(\left(\sum_{l_{1} = 1}^{k} w_{i,l_{1}(q)}^{t} \left(z_{i,l_{1}(q)}^{t} - x_{i,l_{1}(q)}^{t}\right)\right) + \left(\sum_{l_{2} = k+1}^{d} w_{i,l_{2}(q)}^{t-1} - x_{i,l_{2}(q)}^{t-1}\right)\right)\right) \\ &+ \sum_{u} \frac{\lambda_{(q)}^{t} \left|\Lambda\left(u\right)\right|}{2} \left(\sum_{l_{1} = 1}^{k} \left(p_{u,l_{1}(q)}^{t} - a_{u,l_{1}(q)}^{t}\right)^{2} + \sum_{l_{2} = k+1}^{d} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t-1}\right)^{2}\right) + \sum_{i} \frac{\lambda_{(q)}^{t} \left|\Lambda\left(i\right)\right|}{2} \left(\sum_{l_{1} = 1}^{k} \left(z_{i,l_{1}(q)}^{t} - x_{i,l_{1}(q)}^{t}\right)^{2} + \sum_{l_{2} = k+1}^{d} \left(z_{i,l_{2}(q)}^{t-1} - x_{i,l_{2}(q)}^{t-1}\right)^{2}\right). \end{split}$$

(S9)

By substituting (S2) and (S3) into (S9), we have:

$$g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t}\right)$$

$$=\frac{1}{2}\sum_{y_{u,i}\in\Lambda}\left(y_{u,i}-\sum_{l_{i}=1}^{k}p_{u,l_{1}(q)}^{t}z_{i,l_{1}(q)}^{t}-\sum_{l_{2}=k+1}^{d}p_{u,l_{2}(q)}^{t-1}z_{i,l_{2}(q)}^{t-1}\right)^{2}$$

$$+\sum_{u}\left|\Lambda\left(u\right)\right|\left(\left(\eta_{(q)}^{t}-1\right)\lambda_{(q)}^{t}\sum_{l_{i}=1}^{k}\left(p_{u,l_{1}(q)}^{t}-a_{u,l_{1}(q)}^{t}\right)^{2}+\left(\eta_{(q)}^{t-1}-1\right)\lambda_{(q)}^{t-1}\sum_{l_{2}=k+1}^{d}\left(p_{u,l_{2}(q)}^{t-1}-a_{u,l_{2}(q)}^{t-1}\right)^{2}\right)$$

$$+\sum_{i}\left|\Lambda\left(i\right)\right|\left(\left(\eta_{(q)}^{t}-1\right)\lambda_{(q)}^{t}\sum_{l_{i}=1}^{k}\left(z_{i,l_{1}(q)}^{t}-x_{i,l_{1}(q)}^{t}\right)^{2}+\left(\eta_{(q)}^{t-1}-1\right)\lambda_{(q)}^{t-1}\sum_{l_{2}=k+1}^{d}w_{i,l_{2}(q)}^{t}\left(z_{i,l_{2}(q)}^{t-1}-x_{i,l_{2}(q)}^{t-1}\right)^{2}\right)$$

$$+\sum_{u}\frac{\lambda_{(q)}^{t}\left|\Lambda\left(u\right)\right|}{2}\left(\sum_{l_{i}=1}^{k}\left(p_{u,l_{1}(q)}^{t}-a_{u,l_{1}(q)}^{t}\right)^{2}+\sum_{l_{2}=k+1}^{d}\left(p_{u,l_{2}(q)}^{t-1}-a_{u,l_{2}(q)}^{t-1}\right)^{2}\right)+\sum_{i}\frac{\lambda_{(q)}^{t}\left|\Lambda\left(i\right)\right|}{2}\left(\sum_{l_{i}=1}^{k}\left(z_{i,l_{1}(q)}^{t}-x_{i,l_{2}(q)}^{t-1}-x_{i,l_{2}(q)}^{t-1}\right)^{2}\right).$$
(S10)

(S10) indicates that if (24b) is fulfilled, (25b) holds, thereby making (3) related to $s_{(q)}$ or τ_q lower-bounded as $a'_{u,k(q)} > 0$ and $x'_{i,k(q)} > 0$. Based on the above inferences, *Lemma* 2 stands, and **Step 2** is implemented.

C. Proof of Theorem 1

Part a. Following Lemma 2, $g\left(\psi_{1(q)}^{t}, \psi_{2(q)}^{t}\right)$ converges as $t \to \infty$, indicating that:

$$\lim_{t \to \infty} g\left(\psi_{1(q)}^{t}, \psi_{2(q)}^{t}\right) - g\left(\psi_{1(q)}^{t-1}, \psi_{2(q)}^{t-1}\right) \to 0.$$
(S11)

With (24), when (S1) is fulfilled, the upper-bound of $g\left(\psi_{1(q)}',\psi_{2(q)}'\right) - g\left(\psi_{1(q)}',\psi_{2(q)}'\right)$ is zero as $t \to \infty$, thereby achieving (26). Following (S8) and (26), we have [24]:

$$\lim_{t \to \infty} \left(p_{u,k(q)}^t - p_{u,k(q)}^{t-1} \right) \to 0, \tag{S12a}$$

$$\lim_{t \to \infty} \left(z_{i,k(q)}^t - z_{i,k(q)}^{t-1} \right) \to 0, \tag{S12b}$$

$$\lim_{t \to \infty} \left(a_{u,k(q)}^t - a_{u,k(q)}^{t-1} \right) \to 0, \tag{S12c}$$

$$\lim_{t \to \infty} \left(x_{i,k(q)}^t - x_{i,k(q)}^{t-1} \right) \to 0, \tag{S12d}$$

$$\lim_{t \to \infty} \left(\left(\left(\eta_{(q)}^{t} - 1 \right) \lambda_{(q)}^{t} p_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1 \right) \lambda_{(q)}^{t-1} p_{u,k(q)}^{t-1} \right)^{2} + \left(\left(\eta_{(q)}^{t} - 1 \right) \lambda_{(q)}^{t} a_{u,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1 \right) \lambda_{(q)}^{t-1} a_{u,k(q)}^{t-1} \right)^{2} \right) \to 0, \tag{S12e}$$

$$\lim_{t \to \infty} \left(\left(\left(\eta_{(q)}^{t} - 1 \right) \lambda_{(q)}^{t} z_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1 \right) \lambda_{(q)}^{t-1} z_{i,k(q)}^{t-1} \right)^{2} + \left(\left(\eta_{(q)}^{t} - 1 \right) \lambda_{(q)}^{t} x_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1 \right) \lambda_{(q)}^{t-1} x_{i,k(q)}^{t-1} \right)^{2} \right) \to 0.$$
 (S12f)

Based on (22) and (S12), we have the following inferences:

$$\lim_{t \to \infty} \left(h_{u,k(q)}^t - h_{u,k(q)}^{t-1} \right) \to 0, \tag{S13a}$$

$$\lim_{t \to \infty} \left(w_{i,k(q)}^t - w_{i,k(q)}^{t-1} \right) \to 0. \tag{S13b}$$

Based on (4e), (4f) and (S13), we conclude that (27) is fulfilled.

Part b. Firstly, following (4a), (4b) and (5a), the update rules of $(p_{u,k(q)}, z_{i,k(q)})$ can be rearranged as:

$$\left(p_{u,k(q)}^{t-1} - p_{u,k(q)}^{t}\right) \left(\sum_{i \in \Lambda(u)} \left(z_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(u)\right|\right) \\
= \sum_{i \in \Lambda(u)} z_{i,k(q)}^{t-1} \left(\sum_{l_{1}=1}^{k} p_{u,l_{1}(q)}^{t} z_{i,l_{1}(q)}^{t} + \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1} - y_{u,i}\right) + \lambda_{(q)}^{t} \left|\Lambda(u)\right| \left(p_{u,k(q)}^{t-1} - a_{u,k(q)}^{t-1}\right) + h_{u,k(q)}^{t-1},$$
(S14a)

$$\left(z_{i,k(q)}^{t-1} - z_{i,k(q)}^{t}\right) \left(\sum_{u \in \Lambda(i)} \left(p_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(i)\right|\right)$$

$$= \sum_{u \in \Lambda(i)} p_{u,k(q)}^{t-1} \left(\sum_{l_{1}=1}^{k} p_{u,l_{1}(q)}^{t} z_{i,l_{1}(q)}^{t} + \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1} - y_{u,i}\right) + \lambda_{(q)}^{t} \left|\Lambda(i)\right| \left(z_{i,k(q)}^{t-1} - x_{i,k(q)}^{t-1}\right) + w_{i,k(q)}^{t-1}.$$
(S14b)

Then by substituting (27) and (S12) into (S14), we have:

$$\sum_{i \in \Lambda(u)} z_{i,k(q)}^{t-1} \left(\sum_{l_i=1}^k p_{u,l_i(q)}^t z_{i,l_i(q)}^t + \sum_{l_2=k+1}^d p_{u,l_2(q)}^{t-1} z_{i,l_2(q)}^{t-1} - y_{u,i} \right) + h_{u,k(q)}^{t-1} \to 0,$$
(S15a)

$$\sum_{u \in \Lambda(i)} p_{u,k(q)}^{t-1} \left(\sum_{l_i=1}^k p_{u,l_1(q)}^t z_{i,l_1(q)}^t + \sum_{l_2=k+1}^d p_{u,l_2(q)}^{t-1} z_{i,l_2(q)}^{t-1} - y_{u,i} \right) + w_{i,k(q)}^{t-1} \to 0.$$
 (S15b)

Hence, considering a limit point $\{\psi_{1(q)}^*, \psi_{2(q)}^*\}$ of a sequence $\{\psi_{1(q)}^t, \psi_{2(q)}^t\}$ generated by the update rules of $\{\psi_{1(q)}, \psi_{2(q)}\}$ based on (4) and (5), the following KKT conditions are satisfied with (27) and (S15):

$$\sum_{i \in \Lambda(u)} z_{i,k(q)}^* \left(\sum_{k=1}^d p_{u,k(q)}^* z_{i,k(q)}^* - y_{u,i} \right) + h_{u,k(q)}^* \to 0,$$
 (S16a)

$$\sum_{u \in \Lambda(i)} p_{u,k(q)}^* \left(\sum_{k=1}^d p_{u,k(q)}^* z_{i,k(q)}^* - y_{u,i} \right) + w_{i,k(q)}^* \to 0,$$
 (S16b)

$$p_{u,k}^* - a_{u,k}^* \to 0,$$
 (S16c)

$$z_{i,k}^* - x_{i,k}^* \to 0.$$
 (S16d)

Afterwards, considering the remaining KKT conditions regarding constraints $a_{u,k(q)}>0$ and $x_{i,k(q)}>0$, we extend the original augmented Lagrangian g:

$$g_{(q)}^{\#} = g_{(q)} - Tr\left(M_{(q)}\left(A_{(q)}\right)^{T}\right) - Tr\left(N_{(q)}\left(X_{(q)}\right)^{T}\right) = g_{(q)} - \sum_{(u,k)} m_{u,k(q)} a_{u,k(q)} - \sum_{(i,k)} n_{i,k(q)} x_{i,k(q)},$$
(S17)

where the operator $Tr(\cdot)$ computes the trace of an enclosed matrix, and the definition of g(q) is given by:

$$g_{(q)} = \frac{1}{2} \sum_{y_{u,i} \in \Lambda} \left(y_{u,i} - \sum_{k=1}^{d} p_{u,k(q)} z_{i,k(q)} \right)^{2} + \sum_{(u,k)} h_{u,k(q)} \left(p_{u,k(q)} - a_{u,k(q)} \right) + \sum_{(u,k)} \frac{\lambda_{(q)} \left| \Lambda(u) \right|}{2} \left(p_{u,k(q)} - a_{u,k(q)} \right)^{2} + \sum_{(i,k)} w_{i,k(q)} \left(z_{i,k(q)} - x_{i,k(q)} \right) + \sum_{(i,k)} \frac{\lambda_{(q)} \left| \Lambda(i) \right|}{2} \left(z_{i,k(q)} - x_{i,k(q)} \right)^{2}.$$
(S18)

For the partial derivatives of $g_{(q)}^{\#}$ with $a_{u,k(q)}$ and $x_{i,k(q)}$, we have:

$$\begin{cases} \frac{\partial g_{(q)}^{\#}}{\partial a_{u,k}} = -\lambda_{(q)} \left| \Lambda(u) \right| \left(p_{u,k(q)} - a_{u,k(q)} + \frac{h_{u,k(q)}}{\lambda_{(q)} \left| \Lambda(u) \right|} \right) - m_{u,k(q)} = 0, \\ \frac{\partial g_{(q)}^{\#}}{\partial x_{i,k}} = -\lambda_{(q)} \left| \Lambda(i) \right| \left(z_{i,k(q)} - x_{i,k(q)} + \frac{w_{i,k(q)}}{\lambda_{(q)} \left| \Lambda(i) \right|} \right) - n_{i,k(q)} = 0, \end{cases} \Rightarrow \begin{cases} m_{u,k} = -\lambda_{(q)} \left| \Lambda(u) \right| \left(p_{u,k(q)} - a_{u,k(q)} + \frac{h_{u,k(q)}}{\lambda_{(q)} \left| \Lambda(u) \right|} \right), \\ m_{i,k} = -\lambda_{(q)} \left| \Lambda(i) \right| \left(z_{i,k(q)} - x_{i,k(q)} + \frac{w_{i,k(q)}}{\lambda_{(q)} \left| \Lambda(i) \right|} \right). \end{cases}$$

$$(S19)$$

Then, with the KKT conditions of $\forall m_{u,k(q)}$, $a_{u,k(q)}$: $m_{u,k(q)}a_{u,k(q)}=0$ and $\forall n_{i,k(q)}$, $x_{i,k(q)}$: $n_{i,k(q)}x_{i,k(q)}=0$ for (S17), we achieve the following equations based on (S19) [19, 21, 24, 39]:

$$\begin{cases} a_{u,k(q)} \left(-\lambda_{(q)} \left| \Lambda(u) \right| \left(p_{u,k(q)} - a_{u,k(q)} + \frac{h_{u,k(q)}}{\lambda_{(q)} \left| \Lambda(u) \right|} \right) \right) = 0, \\ x_{i,k(q)} \left(-\lambda_{(q)} \left| \Lambda(i) \right| \left(z_{i,k(q)} - x_{i,k(q)} + \frac{w_{i,k(q)}}{\lambda_{(q)} \left| \Lambda(i) \right|} \right) \right) = 0, \end{cases} \begin{cases} a_{u,k(q)} = p_{u,k(q)} + \frac{h_{u,k(q)}}{\lambda_{(q)} \left| \Lambda(u) \right|}, \\ x_{i,k(q)} = z_{i,k(q)} + \frac{w_{i,k(q)}}{\lambda_{(q)} \left| \Lambda(i) \right|}. \end{cases}$$
(S20)

To satisfy the nonnegativity of output LFs $a_{u,k(q)}$ and $x_{i,k(q)}$, (S20) can be rewritten as:

$$\begin{cases} a_{u,k(q)} = \max\left(0, p_{u,k(q)} + \frac{h_{u,k(q)}}{\lambda_{(q)} |\Lambda(u)|}\right), \\ x_{i,k(q)} = \max\left(0, z_{i,k(q)} + \frac{w_{i,k(q)}}{\lambda_{(q)} |\Lambda(i)|}\right). \end{cases}$$
(S21)

Note that (S21) is consistent with the update rules of $a_{u,k(q)}$ and $x_{i,k(q)}$ based on (4c) and (4d). Therefore, (S17)-(S21) show that learning rules of A²NLF-PSO/A²NLF-TPE are closely connected with the KKT conditions of its learning objective.

Then considering the KKT conditions related to $a_{u,k(q)}$:

$$\frac{\partial g_{(q)}^{\#}}{\partial a_{u,k(q)}}\Big|_{a_{u,k(q)}=a_{u,k(q)}^{*}} = -\lambda_{(q)}^{*} \left| \Lambda(u) \right| \left(p_{u,k(q)}^{*} - a_{u,k(q)}^{*} + \frac{h_{u,k(q)}^{*}}{\lambda_{(q)}^{*}} \left| \Lambda(u) \right| \right) - m_{u,k(q)}^{*} = 0, \tag{S22a}$$

$$m_{u,k(q)}^* a_{u,k(q)}^* = 0,$$
 (S22b)

$$a_{u,k(q)}^* \ge 0, \tag{S22c}$$

$$m_{u,k(q)}^* \ge 0, \tag{S22d}$$

where $a_{u,k(q)}^*$ is a KKT stationary point of $a_{u,k(q)}$, and $m_{u,k(q)}^*$ is a limit point of the sequence $\{m_{u,k(q)}^i\}$ generated by the update rules of $m_{u,k}$ based on (S19). According to (S17)-(S21) and $a_{u,k(q)}^i$ =0, conditions (S22a)-(S22c) are satisfied. Thus, we have:

$$m_{u,k(q)}^* = -\lambda_{(q)}^* \left| \Lambda(u) \right| \left(p_{u,k(q)}^* - a_{u,k(q)}^* + \frac{h_{u,k(q)}^*}{\lambda_{(q)}^* \left| \Lambda(u) \right|} \right). \tag{S23}$$

Thus, we focus on condition (S22d). Since $a_{u,k(q)}^{t} > 0$ in this case, the update rule for $a_{u,k(q)}$ is given as:

$$a_{u,k(q)}^* \leftarrow p_{u,k(q)}^* + \frac{h_{u,k(q)}^*}{\lambda_{(a)}^* |\Lambda(u)|}.$$
 (S24)

By substituting (S24) into (S23), we have $m_{u,k(q)}^*=0$. Hence, conditions (S22c) and (S22d) are fulfilled. Note that as $x'_{i,k(q)}>0$ in this case, the proof regarding the KKT conditions of $x_{u,k(q)}$ can be achieved similarly. *Theorem* 1 stands, and **Step 3** is implemented. \Box

D. Proof of Lemma 3

The difference between $g\left(p_{u,k(q)}^{t},z_{i,k(q)}^{t},a_{u,k(q)}^{t-1},x_{i,k(q)}^{t-1},\psi_{2(q)}^{t-1}\right)$ and $g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t-1}\right)$ in this case is also given by (S5). Considering the fact of $a_{u,k(q)}^{t}=0$ and, $x_{i,k(q)}^{t}>0$ the difference between $g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t-1}\right)$ and $g\left(p_{u,k(q)}^{t},z_{i,k(q)}^{t},a_{u,k(q)}^{t-1},x_{i,k(q)}^{t-1},\psi_{2(q)}^{t-1}\right)$ is:

$$g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t-1}\right) - g\left(p_{u,k(q)}^{t},z_{i,k(q)}^{t},a_{u,k(q)}^{t-1},x_{i,k(q)}^{t-1},\psi_{2(q)}^{t-1}\right) = -\frac{\lambda_{(q)}^{t}\left|\Lambda\left(u\right)\right|}{2}\left(a_{u,k(q)}^{t-1}\right)^{2} - \frac{\lambda_{(q)}^{t}\left|\Lambda\left(i\right)\right|}{2}\left(x_{i,k(q)}^{t}-x_{i,k(q)}^{t-1}\right)^{2}.$$
(S25)

Moreover, $g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t}\right)$ and $g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t-1}\right)$ yields:

$$\begin{split} &g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t}\right)-g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t-1}\right)\\ &=\left(p_{u,k(q)}^{t}-a_{u,k(q)}^{t}\right)\left(h_{u,k(q)}^{t}-h_{u,k(q)}^{t-1}\right)+\left(z_{i,k(q)}^{t}-x_{i,k(q)}^{t}\right)\left(w_{i,k(q)}^{t}-w_{i,k(q)}^{t-1}\right)\\ &=\eta_{(q)}^{t}\lambda_{(q)}^{t}\left|\Lambda\left(u\right)\right|\left(p_{u,k(q)}^{t}-a_{u,k(q)}^{t}\right)^{2}+\frac{1}{\eta_{(q)}^{t}\lambda_{(q)}^{t}\left|\Lambda\left(i\right)\right|}\left(w_{i,k(q)}^{t}-w_{i,k(q)}^{t-1}\right)^{2}\\ &\stackrel{\text{(II)}}{\leq}\eta_{(q)}^{t}\lambda_{(q)}^{t}\left|\Lambda\left(u\right)\right|\left(p_{u,k(q)}^{t}\right)^{2}+\frac{2\left|\Lambda\left(i\right)\right|}{\eta_{(q)}^{t}\lambda_{(q)}^{t}}\left(\left(\left(\eta_{(q)}^{t}-1\right)\lambda_{(q)}^{t}z_{i,k(q)}^{t}-\left(\eta_{(q)}^{t-1}-1\right)\lambda_{(q)}^{t-1}z_{i,k(q)}^{t-1}\right)^{2}+\left(\left(\eta_{(q)}^{t}-1\right)\lambda_{(q)}^{t}x_{i,k(q)}^{t}-\left(\eta_{(q)}^{t-1}-1\right)\lambda_{(q)}^{t-1}x_{i,k(q)}^{t-1}\right)^{2},\end{split}$$

where (I) is based on the update rules of $(h_{u,k(q)}, w_{i,k(q)})$ given in (4e), (4f) and (5c), and (II) is achieved with (22b) and $a'_{u,k(q)}$ =0. With (S5), (S25) and (S26), we have the following deduction:

$$g\left(\psi_{1(q)}^{t}, \psi_{2(q)}^{t}\right) - g\left(\psi_{1(q)}^{t-1}, \psi_{2(q)}^{t-1}\right)$$

$$\leq -\frac{1}{2} \left(\sum_{i \in \Lambda(u)} \left(z_{i,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(u)\right| \right) \left(p_{u,k(q)}^{t} - p_{u,k(q)}^{t-1}\right)^{2} - \frac{\lambda_{(q)}^{t} \left|\Lambda(u)\right|}{2} \left(a_{u,k(q)}^{t-1}\right)^{2}$$

$$-\frac{1}{2} \left(\sum_{u \in \Lambda(i)} \left(p_{u,k(q)}^{t-1}\right)^{2} + \lambda_{(q)}^{t} \left|\Lambda(i)\right| \right) \left(z_{i,k(q)}^{t} - z_{i,k(q)}^{t-1}\right)^{2} - \frac{\lambda_{(q)}^{t} \left|\Lambda(i)\right|}{2} \left(x_{i,k(q)}^{t} - x_{i,k(q)}^{t-1}\right)^{2}$$

$$+ \eta_{(q)}^{t} \lambda_{(q)}^{t} \left|\Lambda(u)\right| \left(p_{u,k(q)}^{t}\right)^{2} + \frac{2\left|\Lambda(i)\right|}{\eta_{(q)}^{t} \lambda_{(q)}^{t}} \left(\left(\left(\eta_{(q)}^{t} - 1\right)\lambda_{(q)}^{t} z_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right)\lambda_{(q)}^{t-1} z_{i,k(q)}^{t-1}\right)^{2} + \left(\left(\eta_{(q)}^{t} - 1\right)\lambda_{(q)}^{t} x_{i,k(q)}^{t} - \left(\eta_{(q)}^{t-1} - 1\right)\lambda_{(q)}^{t} x_{i,k(q)}^{t-1}\right)^{2}\right). \tag{S27}$$

Owing to (29), (25a) stands, which indicates that the augmented Lagrangian function (3) related to $s_{(q)}$ or τ_q is non-increasing as $a'_{u,k(q)}$ =0 and $x'_{i,k(q)}$ >0 in this case. Then after the t-th iteration, we substitute $a'_{u,k(q)}$ =0 into (S10):

$$g\left(\psi_{1(q)}^{t},\psi_{2(q)}^{t}\right) = \frac{1}{2} \sum_{y_{u,l} \in \Lambda} \left(y_{u,i} - \sum_{l_{i}=1}^{k} p_{u,l_{i}(q)}^{t} z_{i,l_{i}(q)}^{t} - \sum_{l_{2}=k+1}^{d} p_{u,l_{2}(q)}^{t-1} z_{i,l_{2}(q)}^{t-1}\right)^{2} + \left(p_{u,k_{i}(q)}^{t}\right)^{2} + \left(p_{u,k_{i}(q)}^{t}\right)^{2} + \left(p_{u,k_{i}(q)}^{t-1}\right) \lambda_{(q)}^{t-1} \sum_{l_{2}=k+1}^{d} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t}\right)^{2} + \left(p_{u,k_{i}(q)}^{t-1}\right)^{2} + \left(p_{u,l_{2}(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} \sum_{l_{2}=k+1}^{d} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t-1}\right)^{2} \right) + \sum_{i} \left| \Lambda(i) \right| \left(\left(\eta_{(q)}^{t} - 1\right) \lambda_{(q)}^{t} \sum_{l_{i}=1}^{k} \left(z_{i,l_{i}(q)}^{t} - x_{i,l_{i}(q)}^{t}\right)^{2} + \left(\eta_{(q)}^{t-1} - 1\right) \lambda_{(q)}^{t-1} \sum_{l_{2}=k+1}^{d} w_{i,l_{2}(q)}^{t} \left(z_{i,l_{2}(q)}^{t-1} - x_{i,l_{2}(q)}^{t-1}\right)^{2} \right) + \sum_{i} \frac{\lambda_{(q)}^{t} \left| \Lambda(u) \right|}{2} \left(\sum_{l_{i}=1}^{k-1} \left(p_{u,l_{i}(q)}^{t} - a_{u,l_{i}(q)}^{t}\right)^{2} + \sum_{l_{2}=k+1}^{d} \left(p_{u,l_{2}(q)}^{t-1} - a_{u,l_{2}(q)}^{t-1}\right)^{2} \right) + \sum_{i} \frac{\lambda_{(q)}^{t} \left| \Lambda(i) \right|}{2} \left(\sum_{l_{i}=1}^{k} \left(z_{i,l_{i}(q)}^{t} - x_{i,l_{i}(q)}^{t}\right)^{2} + \sum_{l_{2}=k+1}^{d} \left(z_{i,l_{2}(q)}^{t-1} - x_{i,l_{2}(q)}^{t-1}\right)^{2} \right) \right)$$

(S28) indicates that if (24b) is fulfilled, (25b) holds, thereby making (3) related to $s_{(q)}$ or τ_q lower-bounded as $a'_{u,k(q)}$ =0, and $x'_{i,k(q)}$ >0 in this case. Based on the above inferences, *Lemma* 2 stands, and **Step 4** is implemented.

E. Proof of Theorem 2

Part a. Following Lemma 3, $g\left(\psi_{1(q)}^{t}, \psi_{2(q)}^{t}\right)$ converges as $t \to \infty$, indicating that (S11) is fulfilled. With (26), (29) and (S27), we have (S12a), (S12b), (S12d), (S12f) and the following inferences:

$$\lim_{t \to \infty} a_{u,k(q)}^{t-1} \to 0, \tag{S29a}$$

$$\lim_{t \to \infty} p_{u,k(q)}^t \to 0. \tag{S29b}$$

Then according to (S12f), (S13b) is fulfilled. Hence, based on (S13b), (S29b) and $a'_{u,k(q)}=0$, (27) is fulfilled.

Part b. Firstly, considering a limit point $\{\psi_{1(q)}^*, \psi_{2(q)}^*\}$ of a sequence $\{\psi_{1(q)}^t, \psi_{2(q)}^t\}$ generated by the update rules of $\{\psi_{1(q)}, \psi_{2(q)}\}$ based on (4) and (5), according to (27) and (S15), (S16) holds when $a'_{u,k(q)}=0$, and $x'_{i,k(q)}>0$ in this case. Then considering the KKT conditions related to $a_{u,k(q)}$, i.e., (S22).

According to (S17)-(S21) and with $a'_{u,k(q)}$ =0, conditions (S22a)-(S22c) are naturally satisfied. Thus, we focus on analyzing condition (S22d). Since we have $a'_{u,k(q)}$ =0 in this case, the following inequality holds:

$$p_{u,k(q)}^* + \frac{h_{u,k(q)}^*}{\lambda_{(q)}^* |\Lambda(u)|} \le 0.$$
 (S30)

Note that (S30) indicates that:

$$m_{u,k(q)}^* = -\lambda_{(q)}^* \left| \Lambda(u) \right| \left(p_{u,k(q)}^* + \frac{h_{u,k(q)}^*}{\lambda_{(q)}^* \left| \Lambda(u) \right|} \right) \ge 0.$$
 (S31)

Thus, condition (S22) are all fulfilled in this case. Note that as $x'_{i,k(q)} > 0$ in this case, the proof regarding the KKT conditions of $x_{u,k(q)}$ can be achieved similarly. *Theorem* 2 stands, and **Step 5** is implemented.

II. ADDITIONAL FIGURES

Fig. S1. Processing flow of an NMF model.

Fig. S2. Processing flow of an NLFA model.

III. ADDITIONAL TABLES

TABLE S.I. Optimal Hyper-parameters during M1's ten times' training process on D1-4

No.	Туре	1	2	3	4	5	6	7	8	9	10
D1	RMSE	$\lambda = 2^{-4}, \eta = 2$	$\lambda = 2^{-4}, \eta = 2$	$\lambda = 2^{-4}, \eta = 2$	$\lambda = 2^{-2}, \eta = 1$	$\lambda = 2^{-4}, \eta = 2$	$\lambda = 2^{-2}, \eta = 1$	$\lambda = 2^{-4}, \eta = 2$			
ы	MAE	$\lambda = 2^{-2}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-2}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-2}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$	$\lambda = 2^{-4}, \eta = 1$
D2	RMSE	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-1}$	λ =1, η =1	$\lambda=1, \eta=2$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$
D2	MAE	$\lambda=1, \eta=2$	$\lambda=1, \eta=2$	$\lambda = 1, \eta = 2^{-1}$	λ =1, η =1	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=2$
D3	RMSE	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	λ =1, η =1	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$
DS	MAE	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-2}$	$\lambda=1, \eta=2$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-2}$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=2$
D4	RMSE	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$
D4	MAE	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda=1, \eta=1$	$\lambda=1, \eta=2$	$\lambda=1, \eta=2$	$\lambda=1, \eta=1$	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-1}$	$\lambda = 1, \eta = 2^{-1}$

TABLE S.II. Optimal Hyper-parameters during M2's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
D1	RMSE	$\lambda=1.6$	$\lambda=1.6$	λ =1.6	λ =1.8	λ =1.6	$\lambda=1.8$	$\lambda=1.6$	$\lambda=1.8$	$\lambda=1.6$	λ=1.6
ъ1	MAE	$\lambda=1.8$	$\lambda=1.8$	λ =1.8	λ =1.8	λ =1.8	$\lambda=1.8$	$\lambda=1.2$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.2$
D2	RMSE	$\lambda=1.8$	$\lambda=1.8$	λ =1.8	λ =1.8	λ =1.8	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$
D2	MAE	$\lambda=1.8$	$\lambda=1.8$	λ =1.8	λ =1.8	λ =1.8	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$
D3	RMSE	$\lambda=1.8$	$\lambda=1.8$	λ =1.8	$\lambda=1.8$	λ =1.8	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$
DS	MAE	λ=1.8	λ=1.8	$\lambda=1.8$	$\lambda=1.8$	$\lambda=1.8$	λ=1.8	λ=1.8	λ=1.8	λ=1.8	λ=1.8
D4	RMSE	¹ Failure									
D4	MAE	¹ Failure									

¹M2 fails to obtain the final results on D4: their memory requirements are too large to meet on our experimental environment as shown in Table VI.

TABLE S.III. Optimal Hyper-parameters during M3's ten times' training process on D1-4

No.	Туре	1	2	3	4	5	6	7	8	9	10
	RMSE	$\mu=2^{-1}$,	$\mu = 2^{-1}$,	$\mu = 2^{-1}$,	$\mu = 2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu = 2^{-1}$,	$\mu = 2^{-1}$,	$\mu = 2^{-1}$,	$\mu=2^{-1}$,
D1	KWISE	p=1.9	p = 1.8	p=1.7	p=1.8	p=1.8	p=1.7	p = 1.8	p=1.9	p=1.8	p=1.8
DΊ	MAE	$\mu = 2^{-1}$,	$\mu = 2^{-1}$,	$\mu = 2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu = 2^{-1}$,	$\mu=2^{-1}$,	$\mu=2^{-1}$,	$\mu = 2^{-1}$,
	MAE	p=1.8	p=1.9	p=1.8	p=1.7	p=1.8	p=1.7	p = 1.8	p = 1.8	p=1.9	p=1.9
D2	RMSE	μ =2, p =1.9	μ=4, p=1.9	μ=4 p=1.9	$\mu=2^{-1},$ $p=1.8$	$\mu=2^{-1},$ $p=1.9$	μ =2, p =1.9	$\mu=2^{-1},$ $p=1.8$	μ =2, p =1.9	μ =2, p =1.8	μ =2, p =1.8
DZ	MAE	$\mu=4, p=1.9$	μ =2, p =1.9	μ =2, p =1.8	$\mu=4, p=1.9$	$\mu=4, p=1.9$	μ =2, p =1.9	$\mu=1, p=1.9$	μ =2, p =1.8	μ =2, p =1.8	μ =2, p =1.9
-	RMSE	$\mu=4, p=1.9$	$\mu=4, p=1.9$	μ =2, p =1.8	μ =2, p =1.8	μ =4, p =1.9	μ =4, p =1.9	μ =2, p =1.9	μ =2, p =1.9	μ =2, p =1.9	μ =2, p =1.9
D3	MAE	μ =2, p =1.9	μ =2, p =1.8	μ =2, p =1.9	μ =2, p =1.8	μ =4, p =1.9	μ =4, p =1.9	μ =4, p =1.9	μ =2, p =1.8	μ =2, p =1.9	μ =2, p =1.9
D4	RMSE	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure
D4	MAE	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure	¹ Failure

¹M3 fails to obtain the final results on D4: their memory requirements are too large to meet on our experimental environment as shown in Table VI.

TABLE S.IV. Optimal Hyper-parameters during M4's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
	RMSE	$\alpha = 10^4$,	$\alpha = 10^4$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^4$,			
D1	RMSE	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{4}$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{3}$
DΙ	MAE	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^3$,					
	WIAE	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{4}$	$\beta = 10^4$					
	RMSE	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^{3}$,	$\alpha = 10^{3}$,	$\alpha = 10^4$,	$\alpha = 10^{3}$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^{3}$,
D2	KNISE	$\beta = 10^4$	$\beta = 10^{2}$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{2}$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{2}$	$\beta = 10^{3}$
DZ	MAE	$\alpha = 10^3$,	$\alpha = 10^{3}$,	$\alpha = 10^3$,	$\alpha = 10^{3}$,	$\alpha = 10^{3}$,	$\alpha = 10^4$,	$\alpha = 10^{3}$,	$\alpha = 10^{3}$,	$\alpha = 10^{3}$,	$\alpha = 10^{3}$,
	MAE	$\beta = 10^4$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{4}$	$\beta = 10^4$	$\beta = 10^{3}$
	RMSE	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^3$,	$\alpha = 10^4$,
D3	KNISE	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^4$	$\beta = 10^{4}$	$\beta = 10^{3}$
DS	MAE	$\alpha = 10^3$,	$\alpha = 10^{3}$,	$\alpha = 10^4$,	$\alpha = 10^4$,	$\alpha = 10^4$,	$\alpha = 10^3$,	$\alpha = 10^{3}$,	$\alpha = 10^3$,	$\alpha = 10^4$,	$\alpha = 10^{3}$,
	MAE	$\beta = 10^4$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{3}$	$\beta = 10^{4}$	$\beta = 10^4$	$\beta = 10^4$	$\beta = 10^{3}$	$\beta = 10^4$
D4	RMSE	¹ Failure									
<i>D</i> 4	MAE	¹ Failure									

¹M4 fails to obtain the final results on D4: their memory requirements are too large to meet on our experimental environment as shown in Table VI.

TABLE S.V. Optimal Hyper-parameters during M5's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
D1	RMSE	$ ho = 2^{-5}$	$\rho = 2^{-5}$	$\rho = 2^{-5}$	$ ho = 2^{-5}$	$ ho = 2^{-5}$	$ ho = 2^{-5}$	$ ho = 2^{-5}$	$\rho = 2^{-5}$	$ ho = 2^{-5}$	$\rho = 2^{-5}$
D1	MAE	$\rho = 2^{-7}$	$\rho = 2^{-5}$	$\rho = 2^{-7}$	$\rho = 2^{-5}$	$\rho = 2^{-5}$	$ ho = 2^{-7}$	$\rho = 2^{-5}$	$\rho = 2^{-5}$	$\rho = 2^{-7}$	$\rho = 2^{-5}$
D2	RMSE	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$
D2	MAE	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$
D2	RMSE	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$
D3	MAE	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$	$\rho = 2^{-13}$	$\rho = 2^{-15}$	$\rho = 2^{-15}$	$\rho = 2^{-13}$
D4	RMSE	¹ Failure									
D4	MAE	¹ Failure									

¹M5 fails to obtain the final results on D4: their memory requirements are too large to meet on our experimental environment as shown in Table VI.

TABLE S.VI. Optimal Hyper-parameters during M6's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
'		$\lambda = 10^{-4}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-4}$,	λ=10-5,	$\lambda = 10^{-3}$,	λ=10-5,	$\lambda = 10^{-4}$,	$\lambda = 10^{-3}$,
	RMSE	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,
D1		1bs=512	bs=512								
DΙ	•	$\lambda = 10^{-5}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-2}$,			
	MAE	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,
		bs=512									
		$\lambda = 10^{-4}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-1}$,	$\lambda = 10^{-1}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-1}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-1}$,	$\lambda = 10^{-4}$,
	RMSE	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,
D2		bs=64									
DZ		$\lambda = 10^{-4}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,
	MAE	$\eta = 10^{-2}$,	$\eta = 10^{-3}$,	$\eta = 10^{-2}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,				
		bs=64									
		$\lambda = 10^{-4}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-4}$,				
	RMSE	$\eta = 5 \times 10^{-4}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-4}$,	$\eta = 5 \times 10^{-4}$,	$\eta = 5 \times 10^{-4}$,				
D3		bs=128									
DS		$\lambda = 10^{-5}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-4}$,					
	MAE	$\eta = 10^{-3}$,									
		bs=128									
		$\lambda = 10^{-3}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-4}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-3}$,
	RMSE	$\eta = 10^{-4}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-4}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-4}$,
D4		bs=512									
υ4		$\lambda = 10^{-2}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-5}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,	$\lambda = 10^{-2}$,			
	MAE	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,
		bs=512									

¹The abbreviation 'bs' denotes the batch size adopted by M6 on an HDI matrix.

TABLE S.VII. Optimal Hyper-parameters during M7's ten times' training process on D1-4

No.	Type	1	2	3	4	5	6	7	8	9	10
		$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 5 \times 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 5 \times 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,
	RMSE	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-2}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-2}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-2}$,	$\eta = 5 \times 10^{-2}$,	$\eta = 10^{-3}$,
D1		1bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048
DΙ		$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 5 \times 10^{-3}$,	$\lambda = 10^{-3}$	$\lambda = 10^{-3}$,	$\lambda = 5 \times 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,
	MAE	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-2}$,
-		bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048
		$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,
	RMSE	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,
D2		bs=1024	bs=1024	bs=1024	bs=1024	bs=1024	bs=1024	bs=1024	bs=1024	bs=1024	bs=1024
DZ		$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 5 \times 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,
	MAE	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,
-		bs=1024	bs=1024	bs=1024	bs=1024	bs=1024	bs=1024	bs=1024	bs=1024	bs=1024	bs=1024
		$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 5 \times 10^{-3}$,	$\lambda = 5 \times 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,
	RMSE	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-2}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-2}$,	$\eta = 10^{-3}$,
D3		bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048
DS		$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 5 \times 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,
	MAE	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-2}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,
		bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048	bs=2048
		$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,
	RMSE	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-2}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,
D4		bs=4096	bs=4096	bs=4096	bs=4096	bs=4096	bs=4096	bs=4096	bs=4096	bs=4096	bs=4096
D4		$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 5 \times 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 5 \times 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,	$\lambda = 10^{-3}$,
	MAE	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,	$\eta = 5 \times 10^{-3}$,	$\eta = 10^{-3}$,
		bs=4096	bs=4096	bs=4096	bs=4096	bs=4096	bs=4096	bs=4096	bs=4096	bs=4096	bs=4096

¹The abbreviation 'bs' denotes batch size adopted by M7 on an HDI matrix.

TABLE S.VIII. RMSE, MAE and Time Cost of M1, M8 and M9 on D1-4.

Dataset	Model	Case	Prediction Accuracy	¹ Tuning Time Cost (Secs)	² Testing Time Cost (Secs)	Total Time Cost (Secs)
	M1	RMSE	0.2373 ±2.2E-6	428±22.7	6±2.4	434±25
	M1	MAE	0.1815±1.1E-6	439±25.4	6±2.8	445 ±28
D1	M8	RMSE	0.2339±2.7E-4	-	-	46±4
DI	M8	MAE	0.1793±3.3E-4	-	-	60±5
	M9	RMSE	0.2573±1.4E-6	-	-	387 ±33
	NI9	MAE	0.2015 ±2.8E-6	-	-	396±46
	M1	RMSE	1.0187±1.1E-6	271 ±45.4	4±1.7	275 ±47
	IVII	MAE	0.8079±2.5E-6	305±38.3	3±0.9	308±39
D2	M8	RMSE	1.0158±6.4E-4	-	-	25±5
DZ	IVIO	MAE	0.7848±9.3E-4	-	-	29±8
	M9	RMSE	1.0209 ±2.0E-5	-	-	87 ±11
		MAE	0.7883±1.3E-5	-	-	85±9
	M1 -	RMSE	0.8665±7.8E-4	739±72.3	21 ±14.7	759 ±87
		MAE	0.6829±1.7E-6	756±53.8	3±0.5	763 ±54
D3	M8	RMSE	0.8673±1.3E-3	-	-	26±6
DЗ	IVIO	MAE	0.6785±9.6E-5	-	-	30±9
	M9	RMSE	0.8684±4.7E-4	-	-	487 ±59
	NI9	MAE	0.6793 ±2.8E-5	-	-	268±40
	M1	RMSE	0.8096±2.9E-6	2,934±353.8	38±24.6	3,972±378
	IVII	MAE	0.6221 ±7.9E-7	9,203 ±828.9	33±20.4	9,236±849
D4	M8	RMSE	0.8091 ±3.0E-3	-	-	334±46
D4	1/10	MAE	0.6191±1.7E-4	-	-	358±31
	M9	RMSE	0.8086±6.0E-5		-	3731±311
	IVI9	MAE	0.6199±7.1E-6	-	-	5532±566

¹Time cost consumed by M1 for manually grid-searching optimal hyper-parameters; ²Time cost consumed by M1 with obtained hyper-parameters.

TABLE S.IX. RMSE/MAE of M1-9 on D1-4, including Win/Loss counts and Friedman Rank, where ● indicates that both M8 and M9 have higher RMSE/MAE than the rival models

No.	Case	M1	M2	M3	M4	M5	M6	M7	M8	M9
D1	RMSE	0.2373 _{±2.2E-6}	0.3058 _{±5.0E-4}	$0.3047_{\pm 4.3E-5}$	$0.2384_{\pm 1.0E-4}$	$0.4913_{\pm 1.0E-4}$	●0.2302 _{±2.6E-3}	$0.2504_{\pm 4.7E-4}$	0.2339 _{±2.7E-4}	0.2573 _{±1.4E-6}
D1	MAE	$0.1815_{\pm 1.1E-6}$	$0.2439_{\pm 4.4E-5}$	$0.2422_{\pm 3.2E-5}$	0.1832 _{±4.8E-5}	$0.4111_{\pm 1.6E-2}$	●0.1792 _{±7.9E-5}	$0.1953_{\pm 8.9E-4}$	0.1793 _{±3.3E-4}	0.2015 _{±2.8E-6}
D2	RMSE	$1.0187_{\pm 1.1E-6}$	1.1281 _{±7.2E-3}	$1.1257_{\pm 1.8E-4}$	1.0787 _{±8.6E-7}	$1.8808_{\pm 2.8E-2}$	$1.1494_{\pm 4.1E-5}$	1.0255 ±4.5E-4	1.0158 _{±6.4E-4}	1.0209 _{±2.0E-5}
D2	MAE	$0.8079_{\pm 2.5E-6}$	$0.9256_{\pm 1.5E-3}$	$0.9229_{\pm 1.9E-4}$	$0.8580_{\pm 6.2E-6}$	1.5403 _{±2.6E-2}	$0.9257_{\pm 2.1E-4}$	$0.7945_{\pm 1.6E-3}$	0.7848±9.3E-4	$0.7883_{\pm 1.3E-5}$
D3	RMSE	●0.8665 _{±7.8E-4}	1.0336 _{±5.4E-4}	$1.0848_{\pm 5.3E-5}$	$0.8713_{\pm 3.7E-4}$	$2.2963_{\pm 9.8E-3}$	$0.8845_{\pm 1.1E-3}$	$0.8972_{\pm 8.2E-3}$	$0.8673_{\pm 1.3E-3}$	$0.8684_{\pm 4.7E-4}$
D3	MAE	$0.6829_{\pm 1.7E-6}$	$0.8832_{\pm 4.0E-4}$	$0.9021_{\pm 4.2E-5}$	$0.6802_{\pm 3.3E-4}$	1.9190 _{±9.6E-3}	$0.7021_{\pm 5.5E-3}$	$0.7036_{\pm 3.6E-3}$	0.6785 _{±9.6E-5}	0.6793 _{±2.8E-5}
D4	RMSE	$0.8096_{\pm 2.9E-6}$	¹ Failure	¹ Failure	¹ Failure	¹ Failure	$0.8436_{\pm 1.2E-3}$	$0.8574_{\pm 1.2E-3}$	$0.8091_{\pm 3.0E-3}$	0.8086 _{±6.0E-5}
D4	MAE	$0.6221_{\pm 7.9E-7}$	¹ Failure	¹ Failure	¹ Failure	¹ Failure	$0.6530_{\pm 4.9E-3}$	$0.6647_{\pm 3.3E-3}$	0.6191 _{±1.7E-4}	0.6199 _{±7.1E-6}
Wir	n/Loss	8/1	9/0	9/0	9/0	9/0	7/2	9/0	-	-
F-l	Rank	2.875	7.375	7.125	5	8.625	4.5	4.875	1.5	3.125

¹M2-M5 fails to obtain the final results on D4 on our experimental environment as shown in Table VI.

TABLE S.X. Total time cost of M1-9 in RMSE/MAE on D1-4 (Secs), including Win/Loss counts and Friedman Rank

No.	Case	M1	M2	M3	M4	M5	M6	M7	M8	М9
D1	RMSE	434 _{±25}	$38,499_{\pm 2,332}$	$43,271_{\pm 2,962}$	$209,670_{\pm 36,625}$	$3,856_{\pm 578}$	$10,804_{\pm 832}$	$2,011,581_{\pm 481,806}$	46±4	387 _{±33}
D1	MAE	445 _{±28}	51,443 _{±2,643}	$189,090_{\pm 29,135}$	210,745 ±27,190	$3,912_{\pm 103}$	$13,432_{\pm 2,219}$	$1,809,472_{\pm 393,344}$	60±5	$396_{\pm 46}$
D2	RMSE	275 _{±47}	236±35	128 _{±21}	$138_{\pm 39}$	55 _{±7}	$2,109_{\pm 295}$	$888,704_{\pm 223,355}$	25±5	87 _{±11}
D2	MAE	308 _{±39}	32 _{±3}	128 _{±27}	$766_{\pm 64}$	56 _{±6}	$2,256_{\pm 633}$	$2,015,970_{\pm 861,492}$	29 _{±8}	85±9
D3	RMSE	759 _{±87}	$42,578_{\pm 3,258}$	$71,927_{\pm 2,718}$	$45,849_{\pm 2,479}$	717 _{±22}	$8,359_{\pm 532}$	$883,008_{\pm 63,588}$	26 _{±6}	487 _{±59}
	MAE	$763_{\pm 54}$	$1,906_{\pm 291}$	12,294 _{±2,478}	$48,821_{\pm 2,363}$	716 _{±53}	$7,700_{\pm 219}$	$676,921_{\pm 41,748}$	30±9	268 _{±40}
D4	RMSE	$3,972_{\pm 378}$	1Failure	¹ Failure	¹ Failure	¹ Failure	$266,885_{\pm 12,775}$	$45,533,828_{\pm 8,105,384}$	334±46	3731 _{±311}
D4	MAE	$9,236_{\pm 849}$	1Failure	¹ Failure	¹ Failure	¹ Failure	$232,974_{\pm 13,157}$	$50,643,155_{\pm 6,301,613}$	358±31	5532 _{±566}
Win	n/Loss	9/0	9/0	9/0	9/0	9/0	9/0	9/0	-	-
F-1	Rank	4.125	5.75	6.625	7.25	4.25	5.625	8	1	2.375

¹M2-M5 fails to obtain the final results on D4 on our experimental environment as shown in Table VI.