Chapter 8

Many-Body Systems

8.1 The Many-Body Problem

11/1: • Announcements.

- Exam room locations are on Canvas.
- Notice that we skipped Kibble and Berkshire (2004), Chapter 6.
- Recap: 2-body systems.
 - In such a system, we have two particles: m_1, \vec{r}_1 and m_2, \vec{r}_2 . Their mass sum is $M = m_1 + m_2$, their center of mass is at $\vec{R} = (m_1 \vec{r}_1 + m_2 \vec{r}_2)/(m_1 + m_2)$, their reduced mass is $\mu = m_1 m_2/(m_1 + m_2)$, and their relative position is $\vec{r} = \vec{r}_1 \vec{r}_2$.
 - Under a constant external force, their EOMs uncouple into $M\ddot{R}_i = Mg_i$ and $\mu \ddot{r}_i = -\partial V_{\rm int}/\partial r_i$ where $V_{\rm int}(\vec{r})$ is the interaction potential energy.
 - Jerison will now give a better answer to last time's question, "what is the reduced mass?"
 - Let's look at two important cases to start.
 - 1. If $m_1 = m_2$, $\mu = m_1/2 = m_2/2$ and the particles are maximally affecting each other.
 - 2. If $m_1 \ll m_2$, then

$$\mu = \frac{m_1 m_2}{m_2 (1 + m_1/m_2)} \approx m_1 \left(1 - \frac{m_1}{m_2}\right) + \text{H.O.T.} \rightarrow m_1$$

where H.O.T. stands for "higher order terms."

- Additionally, as $m_1/m_2 \to 0$, we have $M \to m_2$, $\vec{R} \to \vec{r_2}$, $\vec{r_2}^* \to 0$, $\mu \to m_1$, and $\vec{r} \to \vec{r_1}^*$.
 - > Essentially, we approach the limit of 1 body orbiting a fixed object.
 - ➤ This justifies the approximation made in earlier chapters of the Earth orbiting a fixed sum or a satellite orbiting the fixed Earth or more.
 - ightharpoonup Additional consideration of $\vec{r}_2^* = -m_2/M \cdot \vec{r}$??
- Today: Many-body systems.
 - Lagrangian, CM frame.
 - Rockets.
- Call our particle indices $\alpha = 1, \dots, N$.
 - Kibble and Berkshire (2004) uses a different notation! They just say \vec{r}_i .
 - The mass sum in this case is

$$M = \sum_{\alpha} m_{\alpha}$$

- The center of mass in this case is

$$\vec{R} = \frac{1}{M} \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}$$

- The linear momentum in this case is

$$\vec{P} = \sum_{\alpha} m_{\alpha} \dot{\vec{r}}_{\alpha} = M \dot{\vec{R}}$$

• In the CM frame (still denoted *), we have

$$\vec{r}_{\alpha} = \vec{R} + \vec{r}_{\alpha}^*$$

- Moreover, within the frame, we still have $\dot{\vec{R}}^* = 0$ and hence $\vec{P}^* = 0$.
- Using the above, we may define the kinetic energy for the system

$$T = \frac{1}{2} \sum_{\alpha} m_{\alpha} \dot{\vec{r}_{\alpha}}^{2}$$

$$= \frac{1}{2} \sum_{\alpha} m_{\alpha} (\dot{\vec{R}} + \dot{\vec{r}_{\alpha}}^{*})^{2}$$

$$= \frac{1}{2} \left(\dot{\vec{R}}^{2} \sum_{\alpha} m_{\alpha} + 2 \dot{\vec{R}} \cdot \sum_{\alpha} m_{\alpha} \dot{\vec{r}_{\alpha}}^{*} + \sum_{\alpha} m_{\alpha} (\dot{\vec{r}_{\alpha}}^{*})^{2} \right)$$

$$= \frac{1}{2} M \dot{\vec{R}}^{2} + \frac{1}{2} \sum_{\alpha} m_{\alpha} (\dot{\vec{r}_{\alpha}}^{*})^{2}$$

$$= T_{\text{CM}} + T^{*}$$

- We may now define the Lagrangian for the system.
 - Note that

$$\begin{split} V &= -\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} \cdot \vec{g} + V_{\text{int}}(\{\vec{r}_{\alpha} - \vec{r}_{\beta}\}) \\ &= -M \vec{g} \cdot \vec{R} + V_{\text{int}}(\{\vec{r}_{\alpha} - \vec{r}_{\beta}\}) \end{split}$$

where $\{\vec{r}_{\alpha} - \vec{r}_{\beta}\}$ denotes the vector with all pairwise differences.

- Combining this result with the above, we obtain

$$egin{aligned} L &= T - V \ &= rac{1}{2} M \dot{ec{R}}^2 + M ec{g} \cdot ec{R} + rac{1}{2} \sum_{lpha} m_lpha (\dot{ec{r}_lpha}^*)^2 - V_{
m int} (\{ec{r}_lpha - ec{r}_eta\}) \end{aligned}$$

• Thus, the EOMs separate into

$$M\ddot{\vec{R}} = M\vec{g} \qquad m_{\alpha}\ddot{r}_{\alpha_{i}}^{*} = -\frac{\partial V_{\rm int}}{\partial r_{\alpha_{i}}^{*}}$$

where we have three of these, one for each $i = q_1, q_2, q_3$ component of particle α .

• Moreover, we get two conservation laws.

$$\frac{1}{2}M\dot{\vec{R}}^2 - M\vec{g} \cdot \vec{R} = E \qquad \qquad T^* + V_{\rm int} = E_{\rm int}$$

• In the more general case wherein other forces act on the system, we have

$$m_{lpha}\ddot{\vec{r}}_{lpha} = \sum_{eta} \vec{F}_{lphaeta} + \vec{F}_{lpha}$$

- The $\vec{F}_{\alpha\beta}$ are internal pairwise forces.
- The singular \vec{F}_{α} represents an external force.
- Linear momentum in this case.

$$\begin{split} \dot{\vec{P}} &= \sum_{\alpha} m_{\alpha} \ddot{\vec{r}}_{\alpha} \\ &= \sum_{\alpha} \sum_{\beta} \vec{F}_{\alpha\beta} + \sum_{\alpha} \vec{F}_{\alpha} \end{split}$$

– Since $\vec{F}_{\alpha\beta} = -\vec{F}_{\beta\alpha}$, the left term above cancels, leaving us with

$$\dot{\vec{P}} = \sum_{\alpha} \vec{F}_{\alpha} = M\ddot{\vec{R}}$$

- Recall that if there are no external forces, \vec{P} is constant.
- Angular momentum in this case.

$$\vec{J} = \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} \times \dot{\vec{r}}_{\alpha}$$

- It follows that

$$\begin{split} \dot{\vec{J}} &= \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} \times \ddot{\vec{r}}_{\alpha} \\ &= \sum_{\alpha} \vec{r}_{\alpha} \times \sum_{\beta} \vec{F}_{\alpha\beta} + \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha} \\ &= \sum_{\alpha} \sum_{\beta} \vec{r}_{\alpha} \times \vec{F}_{\alpha\beta} + \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha} \end{split}$$

- If $\vec{F}_{\alpha\beta}$ are central (i.e., parallel to $\vec{r}_{\alpha} \vec{r}_{\beta}$), then the left term above is zero.
- This leaves us with

$$\dot{\vec{J}} = \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha}$$

i.e., \vec{J} is only affected by external forces in the central $\vec{F}_{\alpha\beta}$ case.

- Thus, if $\vec{F}_{\alpha} = 0$, \vec{J} is constant.
- Additionally, if \vec{F}_{α} are central, then \vec{J} is constant because the cross product cancels.
- In the CM frame...
 - Recall that $\vec{r}_{\alpha} = \vec{R} + \vec{r}_{\alpha}^*$.
 - Thus,

$$\begin{split} \vec{J} &= \sum_{\alpha} m_{\alpha} (\vec{R} + \vec{r}_{\alpha}) \times (\dot{\vec{R}} + \dot{\vec{r}_{\alpha}}) \\ &= \left(\sum_{\alpha} m_{\alpha} \right) \vec{R} \times \dot{\vec{R}} + \underbrace{\left(\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{*} \right)}_{0 = \vec{R}^{*}} \times \dot{\vec{R}} + \vec{R} \times \underbrace{\left(\sum_{\alpha} m_{\alpha} \dot{\vec{r}_{\alpha}}^{*} \right)}_{0 = \vec{P}^{*}} + \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{*} \times \dot{\vec{r}_{\alpha}}^{*} \\ &= M \vec{R} \times \dot{\vec{R}} + \vec{J}^{*} \end{split}$$

where

$$\vec{J}^* = \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^* \times \dot{\vec{r}}_{\alpha}^*$$

- It follows that

$$\begin{split} \dot{\vec{J}}^* &= \dot{\vec{J}} - \frac{\mathrm{d}}{\mathrm{d}t} \Big(M \vec{R} \times \dot{\vec{R}} \Big) \\ &= \dot{\vec{J}} - M \vec{R} \times \ddot{\vec{R}} \\ &= \dot{\vec{J}} - \vec{R} \times \sum_{\alpha} \vec{F}_{\alpha} \\ &= \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha} - \vec{R} \times \sum_{\alpha} \vec{F}_{\alpha} \\ &= \sum_{\alpha} \vec{r}_{\alpha}^* \times \vec{F}_{\alpha} \end{split}$$

- An application of these multi-body systems: Rockets!
 - Consider a rocket traveling forward at velocity v.
 - To propel itself forward, it ejects mass dm at a constant speed u relative to the rocket.
 - After the ejection, the mass dm travels backwards at speed v-u and the remaining rocket M-dm travels forward at velocity v+dv.
 - We have conservation of momentum in this "explosion," so

$$(M - dm)(V + dv) + dm (v - u) = Mv$$

$$Mv + M dv - v dm - u dm + v dm = Mv$$

$$M dv = u dm$$

$$= -u dM$$

$$\frac{dv}{u} = -\frac{dM}{M}$$

$$\frac{v}{u} = -\ln \frac{M}{M_0}$$

$$M = M_0 e^{-v/u}$$

```
Midtern 1 Equation sheet.
                                                                                                                                                                                                                                                                                                                                                                                                                                                Jerisan
                                                                 Relative coordinates: \vec{v}_{ij} = \vec{v}_i - \vec{v}_j

SHO! m\ddot{x} + kx^2 = 0, k < 0 = 7 x(t) = \frac{1}{2} A e^{pt} + \frac{1}{2} B e^{-pt} for y = \sqrt{-k/m}
  1×
                                                                             V(x) \approx \frac{2}{l} V''(0) x^{2}, \quad x \ll \frac{V''(0)}{V''(0)}, \quad E = \frac{2}{l} k \alpha^{2} \left(\alpha^{2} \text{ amplifulf}\right)
 (n) k
                                                                                       · k > 0 = 7 x (t) = c cos (wt) + d sin(wt) for w= \( \text{k/m} \) and c=x(0)=x0, d=\( \frac{\sqrt{0}}{w} = \frac{\ddx(0)}{w} 
  111 40
  \geq_{*}
                                                                                                                                                                           = a cos (wt-0), c= a cos 0, d= a sino
                                                                                       M = \frac{\lambda}{5 \, \mu} \lambda = \frac{\Lambda}{5 \, \mu} t = \frac{\lambda}{1}
                                                                                       = x(t)= \frac{1}{2}Aeiwt + \frac{1}{2}Be^{-iwt} = \frac{1}{2}ae^{-i\theta}e^{iwt} + \frac{1}{2}ae^{i\theta}e^{-iwt} = a cos(wb-\theta) = Re(Aeiwt) = Re(ae^{-i\theta}e^{iwt})
                                                            & Sanita checki Unids!
  X X
                                                                           P= T= Fx
                                                                     Damped SHO! mx + 2 x + kx = 0; &= \frac{2}{2m}, \omega_0 = \sqrt{\frac{1}{2m}} = ) \times + 2 x \times + \omega x \times 0
                                                                                  · p = - 1 = 1 82 - mg
                                      Userdomping ( \delta > \omega_0): \delta_{\pm} = \delta \pm \sqrt{\delta^2 - \omega_0^2}; \chi(t) = \frac{1}{2}Ae^{-\delta_1 t} + \frac{1}{2}Be^{-\delta_2 t}; \frac{1}{\delta_2} > \frac{1}{\delta_1}, so \delta_- dominates as t \neq \infty.

Underdomping (\delta < \omega_0): \omega = \sqrt{\omega_0^2 - \delta^2} \neq \omega_0, \chi(t) = \frac{1}{2}Ae^{-i\omega t} - \delta t + \frac{1}{2}Be^{-i\omega t} - \delta t = \alpha e^{-\delta t} (as (\omega t - \theta))
                                              (+: fiel . (8 = Wo): x(t) = (+ bt) e - 8t
                                                                        Forced, damped SMO: x + 2 \frac{1}{2} \frac{1}{x} + w_0^2 x = \frac{F_1}{m} \cos(w, t)
\times x(t) = a_1 \cos(w, t - \theta_1) + transient, \quad tan \theta_1 = \frac{2 \frac{\pi}{2} w_1}{m_0^2 - w_1^2}, \quad a_1 = \frac{F_1/m}{\sqrt{(w_0^2 - w_1^2)^2 + 4 \frac{\pi}{2} w_1^2}}.
                                                                                                                                                                                                                                                                                                                                                                                                                                                        Half width ailma, wet ) = 1
                                                                                          · Resonance: dymax at wres = \( \int_{w_0}^2 - \text{2} \text{ 2 \int_{w_0}} \ \ \int_{w_0} \ \i
in j<sub>k</sub>
                                                                                                   Resonance amplitude: a. (w., w.) = Fi a. (wo, wres) = Fi where w= \( \sigma_i - \frac{7}{2} \), a. (w., 0) = \( \frac{F_1}{mw_i^2} \)
                                                                  Conservative force condition \hat{F} = -\vec{\nabla} V \vec{\nabla} \times \vec{F} = 0 = \left(\frac{\partial F_0}{\partial y} - \frac{\partial F_0}{\partial z} - \frac{\partial F_0}{\partial z} - \frac{\partial F_0}{\partial y} - \frac{\partial F_0}{\partial y}\right) (VI) \xrightarrow{x=resido} z=z Sphi z=resido V <math>\vec{\nabla} \times \vec{F} = 0 = \left(\frac{\partial F_0}{\partial y} - \frac{\partial F_0}{\partial z} - \frac{\partial F_0}{\partial z} - \frac{\partial F_0}{\partial z} - \frac{\partial F_0}{\partial y}\right) (VI) \xrightarrow{x=resido} z=z Sphi z=resido V <math>\vec{F}_0 = 0 \vec{F}_0 = 0 \vec{F}_0
                                                                         Polen coords! F=Fcos0 +fsino, 6 ==fsino+fcos0, x=rcos0, y=rsin0, x=rcos0 -resino, y=rsin0+recos0
                                                                       Torque! \vec{b} = \vec{r} \times \vec{F} = \vec{J}, Angular trumenton \vec{J} = \vec{r} \times \vec{p} (entral force; \vec{J} = mr^2 \hat{\theta} \ge \frac{1}{2m})

Kepler's 2nd law: \frac{dA}{db} = \frac{1}{2}n^2 \hat{\theta} = \frac{J}{2m}

Spherical Forces: \vec{F}_r = \frac{JV}{dr}, \vec{F}_0 = -\frac{1}{2m}
                                                                                                                                                                                                                                                                                                                                                                Spherical Fores: Fr= 30 Fo= - 10 Fo= - 1 30 Fo= - 1 30
                                                                        Lugrangian michanis, LoT-V, dt ( ) ai) = dt / L+ dt f(qi,t) = L+ Z df i; + dt
                                                                       Lagrange undetermined multipliers \frac{\partial L}{\partial a_i} - \frac{\partial l}{\partial b} \left( \frac{\partial L}{\partial a_i} \right) + \sum_{j=1}^{n} \lambda_j(t) \frac{\partial f_j}{\partial a_j} = 0, f_j(a_i, t) = 0
                                                                        Central conservative forcis ?
                                                                           2 conservation laws 1 2 m (+2+ +2 02) + V(r)= E J=mr2 0
                                                                          Radial energy equationi & mr2 + 32 + V(v) = E, Effective Potential Energy; V(r)= 3mr2 + V(r)
                                                                          Orbit eq untion; In (du)2 + 32 42 + V(m) = E, 42 1/2
                                                                         Inverse square law! k>0=7 repulsive, leco = altractive.
                                                                                    · Length scale: l = \frac{\sqrt{3}}{m|\Omega|} |V(r)|^2 |k| \left(\frac{4}{2r^2} - \frac{1}{r}\right) |V(\frac{1}{2})|^2 = 0, |V_{min}|^2 |V(\frac{1}{2})|^2 - \frac{1kl}{24}
                                                                                    · 4 passible trajectories based on E! (E=Umin) T= 111 V= VINT N=Q; (Umin CE<0) Ellipse bounded (E=0) peroble
```

```
· Examples; 18 = 6 Mm 18 4480 } (1-al) = 17 = 18 = 18 1 = 18 1 = 3 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 
 \frac{1}{(k>0)} \text{ repulsion, } r\left(e\cos(\theta-\theta_0)-1\right)=1, \ e^2=\frac{2EI}{16I}+1 
 \frac{1}{(k<0)} \text{ otherwise, } r\left(e\cos(\theta-\theta_0)+1\right)=1, \ \frac{(x+at)^2}{a^2}+\frac{y^2}{b^2}=1, \ a^2=\frac{1}{1-e^2}, \ b=\frac{1}{\sqrt{1-e^2}}=\frac{1}{2}\frac{1}{2}\frac{1}{16I}=\sqrt{0.1} 
 \frac{1}{(2\pi)^2}=\frac{1}{16I}=\sqrt{0.1} 
 \frac{1}{(2\pi)^2}=\frac{1}{16I}=\sqrt{0.1} 
 \frac{1}{(2\pi)^2}=\frac{1}{16I}=\sqrt{0.1} 
         · b= q cot ( + 0)
```

Scuttering

5 Alsolute es, relative velocity: df=++wxr, w=wf=wcos0+wsin0A

·mr=mdt-2mwxr-mwx(wxr), r=-9+2wsin0r,+wRsin00 moif "= - Zwoodig-wi Raindrad, is = Zwoodin - Zwaindin

Magnetini Frank B, w= - 1 B, r= mv, w= aB Larmor! " = - 1 P ; ellipses in rotating fram!, w= 2m