Outline of the Talk

1 Part 1: Preliminaries of Python

Part 2: Scientific Libraries

3 Part 3: Object Oriented Programming

Programming in Practice: Simulations

- We typically use simulations to understand the performance/behavior of a system
- Examples:
 - 1. manufacturing process simulation
 - 2. stock market simulation
 - 3. statistical processes simulation

Programming in Practice: Simulations

- We typically use simulations to understand the performance/behavior of a system
- Examples:
 - 1. manufacturing process simulation
 - 2. stock market simulation
 - 3. statistical processes simulation
- Typical steps of simulation:
 - Create a computational environment that mimics the real world
 - Generate (synthetic) or load data from sources
 - Test hypotheses

Programming in Practice: Simulations

- We typically use simulations to understand the performance/behavior of a system
- Examples:
 - 1. manufacturing process simulation
 - 2. stock market simulation
 - 3. statistical processes simulation
- Typical steps of simulation:
 - Create a computational environment that mimics the real world
 - Generate (synthetic) or load data from sources
 - Test hypotheses
- Examples:
 - 1. simulating a 2D random walk
 - 2. simulation of a discrete random variable

Why do we need an object-oriented code?

• Purpose: reuse a code that we need quite often

Why do we need an object-oriented code?

- Purpose: reuse a code that we need quite often
- data and function/method bound together, e.g., a list
 - list instance 1, method 1.append() or 1.sort()
 - ▶ when the object is passed, the methods are passed too

Why do we need an object-oriented code?

- Purpose: reuse a code that we need quite often
- data and function/method bound together, e.g., a list
 - list instance 1, method 1.append() or 1.sort()
 - when the object is passed, the methods are passed too
 - object is an instance of a class

Why do we need an object-oriented code?

- Purpose: reuse a code that we need quite often
- data and function/method bound together, e.g., a list
 - list instance 1, method 1.append() or 1.sort()
 - when the object is passed, the methods are passed too
 - object is an instance of a class
 - example: class rectangle, create an object of class rectangle, has parameters/data length and height, function of that data is area, longer side, shorter side, length of diagonal, area of the largest ellipse inscribed inside it

Why do we need an object-oriented code?

- Purpose: reuse a code that we need quite often
- data and function/method bound together, e.g., a list
 - list instance 1, method 1.append() or 1.sort()
 - when the object is passed, the methods are passed too
 - object is an instance of a class
 - example: class rectangle, create an object of class rectangle, has parameters/data length and height, function of that data is area, longer side, shorter side, length of diagonal, area of the largest ellipse inscribed inside it

abstract data types – defined by a class

Why do we need an object-oriented code?

- Purpose: reuse a code that we need quite often
- data and function/method bound together, e.g., a list
 - list instance 1, method 1.append() or 1.sort()
 - when the object is passed, the methods are passed too
 - object is an instance of a class
 - example: class rectangle, create an object of class rectangle, has parameters/data length and height, function of that data is area, longer side, shorter side, length of diagonal, area of the largest ellipse inscribed inside it
- abstract data types defined by a class
- object: collection of data and function, as defined in the class

Why do we need an object-oriented code?

- Purpose: reuse a code that we need quite often
- data and function/method bound together, e.g., a list
 - list instance 1, method 1.append() or 1.sort()
 - when the object is passed, the methods are passed too
 - object is an instance of a class
 - example: class rectangle, create an object of class rectangle, has parameters/data length and height, function of that data is area, longer side, shorter side, length of diagonal, area of the largest ellipse inscribed inside it
- abstract data types defined by a class
- object: collection of data and function, as defined in the class
- Example: simulation of LUDO game

Simulation using OOP

• discrete random variable with finite state space

Simulation using OOP

- discrete random variable with finite state space
- define the class of discrete random variables
- an instance of the class is a random variable, which has a distribution probability masses

Simulation using OOP

- discrete random variable with finite state space
- define the class of discrete random variables
- an instance of the class is a random variable, which has a distribution probability masses

how to draw a random variable of a given distribution

• inverse CDF method – true for discrete random variable too

Summary

This series of lectures discussed

- The basic syntaxes of python and its standard data types, loops and conditionals
- some implementations of numerical techniques

Summary

This series of lectures discussed

- The basic syntaxes of python and its standard data types, loops and conditionals
- some implementations of numerical techniques
- Four important set of scientific libraries

Summary

This series of lectures discussed

- The basic syntaxes of python and its standard data types, loops and conditionals
- some implementations of numerical techniques
- Four important set of scientific libraries
- Object-oriented programming in python

References

• [online course materials] Python for scientific computing, by Swaprava Nath: http://scientificcomputing.is-great.net/

• **[book]** Introduction to Computation and Programming using Python, by John Guttag, Prentice Hall of India.

• [online course materials] Lectures in Quantitative Economics, Thomas J. Sargent and John Stachurski:

https://lectures.quantecon.org/py/index.html