$$y_{xx}'' = \frac{2(1+t^3)^4}{3(1-2t^3)^3}.$$
 (12)

Из (11) и (12) следует, что $y'_x < 0$ при $t \in (-\infty; -1)$, т. е. y(x) убывает при возрастании x от 0 до $+\infty$ (I часть кривой), а так как $y''_{xx} > 0$, то кривая выпукла вниз и, следовательно, подходит к асимптоте сверху. При $t \in (-1; 1/\sqrt[3]{2})$ функция

y(x) имеет минимум при t=0, т. е. x=0; при возрастании x от $-\infty$ до $x|_{t=1/\sqrt[3]{2}}=\sqrt[3]{4}$ значения y(x) сначала убывают от $+\infty$ до 0 (при x=0), а затем возрастают от 0 до $y|_{t=1/\sqrt[3]{2}}=$ $=\sqrt[3]{2}$. При этом $y''_{xx}>0$, кривая выпукла вниз и при $x\to -\infty$ подходит к асимптоте сверху. Поскольку $\lim_{t\to \frac{1}{\sqrt{2}}-0} y'_x=+\infty$ и $t\to \frac{1}{\sqrt[3]{2}}$

 $\lim_{t \to \frac{1}{\sqrt[3]{2}} + 0} y'_x = -\infty, \quad \text{касательная} \quad \text{к кривой в точке} \quad x = \sqrt[3]{4},$ $y = \sqrt[3]{2} \text{ (соответствует } t = 1/\sqrt[3]{2}) \text{ вертикальна.}$

На третьем интервале $t \in (1/\sqrt[3]{2}; +\infty)$ функция y(x) имеет максимум при $t = \sqrt[3]{2}$, а $x|_{t=\sqrt[3]{2}} = \sqrt[3]{2}$. Этот максимум равен $y|_{t=\sqrt[3]{2}} = \sqrt[3]{4}$. Поскольку $y''_{xx} < 0$, кривая выпукла вверх. Если $x \to +0$, что соответствует тому, что $t \to +\infty$, то $y'_x \to +\infty$, т. е. в точку (0;0) кривая «входит» с вертикальной касательной.

Таким образом, получено полное обоснование рис. 99 и найдены две дополнительные точки $(\sqrt[3]{4}; \sqrt[3]{2})$ и $(\sqrt[3]{2}; \sqrt[3]{4})$ с вертикальной и горизонтальной касательными.

21.1. Привести пример такой дифференцируемой функции $y = f(x), x \in (0; +\infty)$, что:

- 1) Ее график имеет асимптоту при $x \to +\infty$, но $\lim_{x \to +\infty} f'(x)$ не существует.
- 2) Ее график не имеет асимптоты при $x \to +\infty$, но $\lim_{x \to +\infty} f'(x)$ существует.
- 21.2. График функции y = f(x) имеет наклонную асимптоту при $x \to +\infty$. Доказать, что если f''(x) > 0 при $x \geqslant x_0$, то график приближается к этой асимптоте сверху, а если f''(x) < 0, то график приближается к асимптоте снизу.

Построить график функции (21.3—21.20):

21.3. 1)
$$y = x^3 - 3x^2 + 4$$
. 2) $y = -x^3 + 4x - 3$.

3)
$$y = (x-1)^2(x+2)$$
. 4) $y = \frac{x^3}{4} - 3x + 4$.

5)
$$y = x(x-1)^3$$
. 6) $y = (x+2)^2(x-1)^2$.

7)
$$y = (x-1)^3(x+1)^2$$
. 8) $y = 32x^2(x^2-1)^3$.

21.4. 1)
$$y = \frac{x^2 + x - 1}{x^2 - 2x + 1}$$
. 2) $y = \frac{4 + x - 2x^2}{(x - 2)^2}$. 3) $y = \frac{20x^2}{(x - 1)^3}$

4)
$$y = \frac{(x-1)^2}{(x+1)^3}$$
. 5) $y = \frac{x^3}{x-1}$. 6) $y = \frac{x^3 - 2x^2 - x + 2}{x}$.

7)
$$y = \frac{1+x^2}{1+(x-2)^2}$$
. 8) $y = \frac{5x^2+42x+77}{x^2+7x+14}$

21.5. 1)
$$y = \frac{x^3}{x^2 - 1}$$
. 2) $y = \frac{(x - 1)^3}{(x - 2)^2}$. 3) $y = \frac{(x - 5)^3}{(x - 7)^2}$.

4)
$$y = \frac{x^3 + 2x^2}{(x-1)^2}$$
. 5) $y = x + \frac{7}{x} - \frac{3}{x^2}$. 6) $y = (x+1)\left(\frac{x-1}{x-2}\right)^2$.

21.6. 1)
$$y = \frac{x^4}{x^3 + 2}$$
. 2) $y = \frac{x^4}{(x+1)^5}$. 3) $y = 3x + \frac{6}{x} - \frac{1}{x^3}$.

4)
$$y = \left(\frac{x+1}{x-1}\right)^4$$
. 5) $y = \frac{x^5}{(x^2-1)^2}$. 6) $y = \frac{(x-1)^5}{(x-2)^4}$.

7)
$$y = \frac{x^5 - 8}{x^4}$$
. 8) $y = \frac{x^5}{x^4 - 1}$.

21.7. 1)
$$y = x + \sqrt{x^2 - 1}$$
. 2) $y = x - \sqrt{x^2 - 2x}$.

3)
$$y = \sqrt[3]{(x+1)^2} + \sqrt[3]{(x-1)^2}$$
. 4) $y = \sqrt[3]{(x+2)^2} - \sqrt[3]{(x-2)^2}$.

5)
$$y = \sqrt{x^2 + 1} - 2\sqrt{x + 1}$$
. 6) $y = \frac{1}{3}\sqrt{(2x + 1)^3} + 4\sqrt{x}$.

21.8. 1)
$$y = \sqrt{2x^3 + 9x^2}$$
. 2) $y = \sqrt{x^2 - x^3}$. 3) $y = \sqrt{x^3 - 3x}$.

4)
$$y = x^2 \sqrt{x+1}$$
. 5) $y = x(x+1)^{3/2}$. 6) $y = \sqrt{x^4 - 4x^3}$.

21.9. 1)
$$y = \frac{x+2}{\sqrt{x^2+2}}$$
. 2) $y = \frac{x+8}{\sqrt{x^2+4x+16}}$. 3) $y = \frac{8x}{\sqrt{x^2-4}}$.

4)
$$y = \frac{\sqrt{4x^2 - 1}}{x}$$
. 5) $y = \frac{\sqrt{x^2 - 4x}}{2 - x}$. 6) $y = \frac{x^2 \sqrt{x^2 - 1}}{2x^2 - 1}$.

7)
$$y = \frac{3x-2}{\sqrt{x^2-1}}$$
. 8) $y = \sqrt{\frac{(x+6)^2}{x^2-4}}$. 9) $y = 4\sqrt{\frac{(x-1)^2}{x^3}}$.

10)
$$y = \sqrt{\frac{3x^2 - 4}{x^3}}$$
. 11) $y = \sqrt{\frac{x^2}{3} - \frac{2}{3x}}$.

12)
$$y = \frac{1}{3} \sqrt{\frac{x^3}{x-2}}$$
. 13) $y = \frac{4x}{\sqrt{x^2+1}} - \frac{x}{2}$.

21.10. 1)
$$y = \sqrt[3]{1-x^3}$$
. 2) $y = \sqrt[3]{x^2(3-x)}$.

3)
$$y = \sqrt[3]{x(x-1)^2}$$
. 4) $y = \sqrt[3]{x^3 - 4x}$.

5)
$$y = x\sqrt[3]{(x-5)^2}$$
. 6) $y = (x+1)^3\sqrt[3]{(x-1)^2}$.

7)
$$y = (1 + x) x^{2/3}$$
. 8) $y = x^3 (x - 1)^{2/3}$.

9)
$$y = (x^2 - 4)^{2/3}$$
. 10) $y = (x^2 + 8x + 12)^{2/3}$.

11)
$$y = \sqrt[3]{x(3-x)^2} - x$$
. 12) $y = \sqrt[3]{x^2} - \sqrt[3]{x^2-4}$.

21.11. 1)
$$y = \frac{x}{\sqrt[3]{x^2 - 1}}$$
. 2) $y = \frac{x}{\sqrt[3]{x + 1}}$. 3) $y = \frac{x}{\sqrt[3]{(x - 2)^2}}$.

4)
$$y = \sqrt[3]{\frac{x^2}{1+x}}$$
. 5) $y = \sqrt[3]{\frac{(3x-2)^2}{x-1}}$. 6) $y = \sqrt[3]{\left(\frac{x+1}{x+2}\right)^2}$.

7)
$$y = \frac{\sqrt[3]{x^2}}{x+2}$$
. 8) $y = \frac{\sqrt[3]{(x+1)^2}}{x^2}$.

21.12. 1)
$$y = |x|\sqrt{1-x^2}$$
. 2) $y = x\sqrt{|x^2-1|}$.

3)
$$y = 4 \frac{\sqrt{|x-1|}}{x-2} . \sqrt{4}$$
 $y = \sqrt{|3x^2 - x^3|}$.

$$\sqrt{5} \ \ y = (x+1) \sqrt{|x^2-1|}. \quad 6) \ \ y = \frac{\sqrt{1+|x-2|}}{1+|x|}. \ \ \forall$$

7)
$$y = (x^2 - 1)\sqrt{x + 1}$$
. 8) $y = \frac{\sqrt{|x| - 1}}{x - 2}$. \bigvee

9)
$$y = |x| \sqrt[3]{1 + 3x}$$
. 10) $y = \sqrt[3]{x^2 |2 - x|}$.

21.13. 1)
$$y = e^x - x$$
. 2) $y = xe^{-2x}$. 3) $y = x^2e^{-x}$.

4)
$$y = x^3e^{-x}$$
. 5) $y = (x^2 - 2)e^{-2x}$.

6)
$$y = (1-x)e^{3x+1}$$
. 7) $y = e^{1-x^2}$.

8)
$$y = e^{4x-x^2}$$
. 9) $y = xe^{-x^2/2}$.

10)
$$y = (x^2 + 2) e^{-x^2}$$
. 11) $y = \frac{e^{-x}}{1 - x}$.

21.14. 1)
$$y = e^{(1-x)/(1+x)}$$
. 2) $y = x^2 e^{1/x}$.

3)
$$y = (x-2)e^{-1/x}$$
. 4) $y = \frac{x^2 + 2x - 3}{x}e^{1/x}$. 5) $y = xe^{1/x^2}$.

21.15. 1)
$$y = \ln x - x + 1$$
. 2) $y = \frac{\ln x}{x}$. 3) $y = \frac{\ln x}{\sqrt{x}}$.

4)
$$y = x^2 \ln x$$
. 5) $y = x \ln^2 x$. 6) $y = \frac{\ln^2 x}{x}$.

7)
$$y = \frac{x}{\ln x}$$
. 8) $y = \ln \left| \frac{x-1}{x+1} \right| + \frac{6}{x+1}$. 9) $y = x^2 - 2 \ln x$.

21.16. 1)
$$y = \cos x + \frac{1}{2} \sin 2x$$
. 2) $y = \sin x + \frac{1}{2} \sin 2x$.

3)
$$y = \sin x - \sin^2 x$$
. 4) $y = \cos x - \frac{1}{2}\cos 2x$.

$$5) y = \cos 3x + 3\cos x.$$

21.17. 1)
$$y = \sin x \sin 3x$$
. 2) $y = \cos x \cos 2x$.

3)
$$y = \sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x$$
.

21.18. 1)
$$y = \frac{\cos 2x}{\cos x}$$
. 2) $y = \frac{\sin \left(x - \frac{\pi}{4}\right)}{\sin x}$. 3) $y = 2x - \lg x$.

21.19. 1)
$$y = \frac{x}{2} - \arctan x . \sqrt{2}$$
 $y = \frac{1}{\arctan x}$.

3)
$$y = x \operatorname{arctg} x$$
. 4) $y = \frac{x}{2} + 2 \operatorname{arcctg} x$.

5)
$$y = \frac{3}{2}x - \arccos\frac{1}{x} \sqrt{6}$$
 6) $y = \arcsin\frac{2x}{1+x^2}$.

7)
$$y = \arccos \frac{1-x^2}{1+x^2}$$
. 8) $y = \frac{x}{2} - \arccos \frac{2x}{1+x^2}$.

21.20. 1)
$$y = e^{\cos x}$$
. 2) $y = e^{-\arctan x}$. 3) $y = \sin x$ ln $\sin x$.

4)
$$y = x^x$$
. 5) $y = (1+x)^{1/x}$. 6) $y = \left(1 + \frac{1}{x}\right)^x$.

21.21. Построить графики функций без исследования выпукюсти:

1)
$$y = x^{1/x}$$
. 2) $y = x \left(1 + \frac{1}{x}\right)^x$, $x > 0$. 3) $y = \cos^3 x + \sin^3 x$.

4)
$$y = \sin 5x - 5 \sin x$$
. 5) $y = \frac{\sin^2 x}{2 - \sin x}$.

6)
$$y = \cos x + \frac{1}{2}\cos 2x + \frac{1}{3}\cos 3x$$
. 7) $y = 2\ln x - 5 \arctan x$.

8)
$$y = \frac{1}{1+x^2} e^{1/(1-x^2)}$$
. 9) $y = \frac{x^2}{x^2-A} e^{1/x}$.

21.22. Построить графики функций y = f(x), заданных параметрически уравнениями:

1)
$$x = t^3 + 3t + 1$$
, $y = t^3 - 3t + 1$.

2)
$$x = t^3 - 3\pi$$
, $y = t^3 - 6 \arctan t$.

3)
$$x = \frac{t^3}{1+t^2}$$
, $y = \frac{t^3 - 2t^2}{1+t^2}$

4)
$$x = \ln \sin (t/2)$$
, $y = \ln \sin t$.