

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年10月15日

出 願 番 号 Application Number:

特願2002-300370

[ST. 10/C]:

[J P 2 0 0 2 - 3 0 0 3 7 0]

出 願 人
Applicant(s):

セイコーエプソン株式会社

2003年10月 6

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

J0094480

【提出日】

平成14年10月15日

【あて先】

特許庁長官 殿

【国際特許分類】

B41J 2/01

【発明の名称】

液状体の充填方法、液状体の充填装置、及び吐出装置

【請求項の数】

8

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

岡田 信子

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

川瀬 健夫

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

三浦 弘綱

【特許出願人】

【識別番号】

000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】

100089037

【弁理士】

【氏名又は名称】

渡邊 隆

【代理人】

【識別番号】

100064908

【弁理士】

【氏名又は名称】

志賀 正武

【選任した代理人】

【識別番号】

100110364

【弁理士】

【氏名又は名称】 実広 信哉

【手数料の表示】

【予納台帳番号】

008707

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9910485

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 液状体の充填方法、液状体の充填装置、及び吐出装置

【特許請求の範囲】

【請求項1】 液状体を貯留するキャビティと、該キャビティに連通するノ ズルと、前記キャビティ内に貯留された液状体を前記ノズルより吐出させるため の吐出手段とを有した吐出ヘッドを用いて液状体を所望箇所に充填する液状体の 充填方法であって、

予め用意した液状体に前記吐出ヘッドのノズルを接触させ、該ノズルから液状体を吸引し、吸引した液状体を前記キャビティ内に貯留する工程と、

キャビティ内に貯留した液状体を吐出手段によって前記ノズルより吐出させる 工程と、を備えたことを特徴とする液状体の充填方法。

【請求項2】 前記液状体と前記吐出ヘッドのノズルとの接触を、該吐出ヘッドを前記液状体内に浸漬することで行うことを特徴とする請求項1記載の液状体の充填方法。

【請求項3】 前記液状体と前記吐出ヘッドのノズルとの接触を、該吐出ヘッドのノズルを形成した面を上にしてその全てのノズルを覆うように前記液状体を配することにより、行うことを特徴とする請求項1記載の液状体の充填方法。

【請求項4】 前記液状体と前記吐出ヘッドのノズルとの接触を、該吐出ヘッドのノズルを形成した面を下側に向け、この面の下方よりディスペンサーでノズルに前記液状体を供給することで、行うことを特徴とする請求項1記載の液状体の充填方法。

【請求項5】 液状体を貯留するキャビティと、該キャビティに連通するノ ズルと、前記キャビティ内に貯留された液状体を前記ノズルより吐出させるため の吐出手段とを有した吐出ヘッドを備えてなる液状体の充填装置であって、

前記吐出ヘッドのノズルに前記液状体を供給して該液状体と前記ノズルとを接触させる液状体供給部と、

前記吐出ヘッドのキャビティ側に接続し、該キャビティを介して前記ノズルより吸引することで前記液状体供給部から供給された液状体をキャビティ内に吸引する吸引手段と、を備えたことを特徴とする液状体の充填装置。

【請求項6】 前記吐出ヘッドには、前記キャビティの前記ノズルと反対の側に液状体を貯留するためのリザーバが設けられ、

前記キャビティと前記リザーバとの間にこれらの間の流路を開閉するための開 閉弁が設けられていることを特徴とする請求項5記載の液状体の充填装置。

【請求項7】 前記吐出ヘッドには、前記キャビティの前記ノズルと反対の 側に液状体を貯留するためのリザーバが設けられ、

前記リザーバーには、前記キャビティを加圧するための加圧手段が設けられて いることを特徴とする請求項5記載の液状体の充填装置。

【請求項8】 請求項5~7のいずれかに記載の液状体の充填装置と、

前記液状体の充填装置の吐出ヘッドを移動させる移動機構と、を備えたことを特徴とする吐出装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、所望箇所に液状体を充填する方法及び装置に係わり、詳しくは高価な試薬や希少な検体などを充填する液状体の充填方法、及び液状体の充填装置、さらにはこの充填装置を備えた吐出装置に関する。

 $[0\ 0\ 0\ 2]$

【従来の技術】

近年における遺伝子構造の解析方法の進歩にはめざましいものがあり、ヒトの遺伝子をはじめとして、多数の遺伝子構造が明らかにされてきている。このような遺伝子構造の解析には、顕微鏡スライドグラス等の基板上に数千から一万種類以上の異なる種類のDNA断片をスポットとして整列固定させて被検査体とし、これを顕微鏡等で観察するなどの方法が採られている。

[0003]

しかし、このような被検査体の作製のように、数千以上のものを作製する場合 、その操作を全て人手で行うのでは極めて効率が悪く、したがって自動化が望ま れている。

自動化を行うための一つの手法として、試薬等の液状体を吐出して被検査体に

充填する、充填装置を用いることが考えられる。液状体を吐出する充填装置としては、例えば従来よりプリンターなどに用いられているインクジェット装置 (例えば、特許文献1参照。)と称される液滴吐出装置がある。

[0004]

【特許文献1】

特開2001-324505号公報

[0005]

【発明が解決しようとする課題】

前記の液滴吐出装置は、その吐出ヘッドの後方に液溜めタンクを設置し、ここから液状体を吐出ヘッドに供給して吐出ヘッドのノズルより液滴(液状体)を吐出するのが一般的である。

ところが、前述したような DNA 断片を用いる被検査体などの作製では、使用する DNA 等の検体が希少であり、また使用する試薬も高価な場合が多く、したがって液溜めタンクに試料となる液状体を多量に貯留し、これを吐出ヘッドを供給してそのノズルから液滴(液状体)を吐出するのは困難である。

[0006]

なぜなら、吐出ヘッドから液状体を吐出する場合、吐出ヘッド内に液状体を満たすのはもちろん、適正な吐出を行うためには空気(気泡)が吐出のための経路内に入ってそこに残留するのを防止し、または残留した気泡を取り除かなくてはならない。

しかしながら、前述したように液溜めタンクを設けた場合では、この液溜めタンクから吐出ヘッドに至る経路中に液状体を充填させなければならず、しかも混入した空気(気泡)を取り除くため試しの液状体吐出を行わなければならず、したがって多量の液状体(試料)を必要とするとともに、多くを無駄にしてしまうことになり、コスト的に不利になり、また希少である液状体には基本的に適用できないからである。

[0007]

本発明は前記事情に鑑みてなされたもので、その目的とするところは、高価な 試薬や希少な検体などについてもこれを容易にかつ確実に充填することのできる 、液状体の充填方法、及び液状体の充填装置、さらにはこの充填装置を備えた吐出装置を提供することにある。

[0008]

【課題を解決するための手段】

前記目的を達成するため本発明の液状体の充填方法では、液状体を貯留するキャビティと、該キャビティに連通するノズルと、前記キャビティ内に貯留された液状体を前記ノズルより吐出させるための吐出手段とを有した吐出ヘッドを用いて液状体を所望箇所に充填する液状体の充填方法であって、予め用意した液状体に前記吐出ヘッドのノズルを接触させ、該ノズルから液状体を吸引し、吸引した液状体を前記キャビティ内に貯留する工程と、キャビティ内に貯留した液状体を吐出手段によって前記ノズルより吐出させる工程と、を備えたことを特徴としている。

[0009]

この液状体の充填方法によれば、ノズルから液状体を吸引してキャビティ内に 貯留し、その後、貯留した液状体を吐出手段によってノズルより吐出させるよう にしたので、吐出手段によってキャビティからノズルを介して吐出できる最少限 の量だけ液状体を吐出ヘッドに吸引することが可能となり、したがって液状体が 高価であったり希少である場合にも、液状体を無駄にすることなく少量の吐出を 可能にすることができる。

[0010]

また、前記液状体の充填方法においては、前記液状体と前記吐出ヘッドのノズルとの接触を、該吐出ヘッドを前記液状体内に浸漬することで行うのが好ましい

このようにすれば、液状体を例えば吐出ヘッドより大きい容器に貯留しておく ことで、液状体とノズルとの接触を容易に行うことができる。

$[0\ 0\ 1\ 1]$

また、前記液状体の充填方法においては、前記液状体と前記吐出ヘッドのノズルとの接触を、該吐出ヘッドのノズルを形成した面を上にしてその全てのノズルを覆うように前記液状体を配することにより、行うのが好ましい。

このようにすれば、液状体を配する量を必要最少限の量とすることにより、液 状体の無駄を確実になくすことができる。

[0012]

また、前記液状体の充填方法においては、前記液状体と前記吐出ヘッドのノズルとの接触を、該吐出ヘッドのノズルを形成した面を下側に向け、この面の下方よりディスペンサーでノズルに前記液状体を供給することで、行うのが好ましい。

このようにすれば、吐出ヘッドのノズル形成面を下側に向けたままで処理を行えるため、液状体吸引後、直ちに吐出を行うことができるようになる。

[0013]

本発明の液状体の充填装置では、液状体を貯留するキャビティと、該キャビティに連通するノズルと、前記キャビティ内に貯留された液状体を前記ノズルより吐出させるための吐出手段とを有した吐出ヘッドを備えてなる液状体の充填装置であって、前記吐出ヘッドのノズルに前記液状体を供給して該液状体と前記ノズルとを接触させる液状体供給部と、前記吐出ヘッドのキャビティ側に接続し、該キャビティを介して前記ノズルより吸引することで前記液状体供給部から供給された液状体をキャビティ内に吸引する吸引手段と、を備えたことを特徴としている。

[0014]

この液状体の充填装置にあっては、液状体供給部と吸引手段とを備えたことにより、前述したように吸引手段によって液状体供給部から供給された液状体をノズルで吸引してキャビティ内に貯留し、その後、貯留した液状体を吐出手段によってノズルより吐出させるようにすれば、吐出手段によってキャビティからノズルを介して吐出できる最少限の量だけ液状体を吐出ヘッドに吸引することが可能となり、したがって液状体が高価であったり希少である場合にも、液状体を無駄にすることなく少量の吐出を可能にすることができる。

[0015]

また、前記液状体の充填装置においては、前記吐出ヘッドに、前記キャビティの前記ノズルと反対の側に液状体を貯留するためのリザーバが設けられ、前記キ

ャビティと前記リザーバとの間にこれらの間の流路を開閉するための開閉弁が設けられているのが好ましい。

このようにすれば、吸引手段によって一旦キャビティ内に吸引し貯留した液状体を、吐出手段によってノズルより吐出させる際、開閉弁によってキャビティとリザーバとの間の流路を閉じておくことにより、液状体がリザーバ側に逆流することなくノズル側より確実に吐出するようになる。

[0016]

また、前記液状体の充填装置においては、前記吐出ヘッドに、前記キャビティの前記ノズルと反対の側に液状体を貯留するためのリザーバが設けられ、前記リザーバーに、前記キャビティを加圧するための加圧手段が設けられているのが好ましい。

このようにすれば、吸引手段によって一旦キャビティ内に吸引し貯留した液状体を、吐出手段によってノズルより吐出させる際、加圧手段によってキャビティを加圧しておくことにより、液状体がリザーバ側に逆流することなくノズル側より確実に吐出するようになる。

$[0\ 0\ 1\ 7]$

本発明の吐出装置では、前記の液状体の充填装置と、この充填装置の吐出ヘッドを移動させる移動機構と、を備えたことを特徴としている。

この吐出装置によれば、移動機構によって前記充填装置の吐出ヘッドを移動させるようにしたので、吐出ヘッドからの液状体の吐出を所望する位置に行うことができる。また、前記充填装置による液状体の吐出の迅速化、効率化を図ることができる。

[0018]

【発明の実施の形態】

以下、本発明を詳しく説明する。

図1 (a)、(b)は本発明の液状体の充填装置の一例を示す図であり、図1 (a)中符号1は液状体の充填装置(以下、充填装置と記す)である。この充填装置1は、吐出ヘッド2と、吐出するための液状体を貯留する容器3と、吐出ヘッド2内に液状体を吸引するための吸引手段を備えた圧力コントローラ4とを備

えて構成されたものである。

[0019]

吐出ヘッド2は、図2(a)に示すように例えばステンレス製のノズルプレート12と振動板13とを備え、両者を仕切部材(リザーバプレート)14を介して接合したものである。ノズルプレート12と振動板13との間には、仕切部材14によって複数のキャビティ15…とリザーバ16とが形成されており、これらキャビティ15…とリザーバ16とは流路17を介して連通している。

[0020]

各キャビティ15とリザーバ16の内部とは液状体で満たされるようになっており、これらの間の流路17はリザーバ16からキャビティ15に液状体を供給する供給口として機能するようになっている。また、ノズルプレート12には、キャビティ15から液状体を噴射するための孔状のノズル18が縦横に整列した状態で複数形成されている。一方、振動板13には、リザーバ16内に開口する孔19が形成されており、この孔19には前記圧力コントローラ4がチューブ24(図1(a)参照)を介して接続されている。

$[0\ 0\ 2\ 1]$

また、振動板13のキャビティ15に向く面と反対の側の面上には、図2(b)に示すように圧電素子(ピエゾ素子)20が接合されている。この圧電素子20は、一対の電極21、21間に挟持され、通電により外側に突出するようにして撓曲するよう構成されたもので、本発明における吐出手段として機能するものである。

[0022]

このような構成のもとに圧電素子20が接合された振動板13は、圧電素子20と一体になって同時に外側へ撓曲し、これによりキャビティ15の容積を増大させる。すると、キャビティ15内とリザーバ16内とが連通しており、リザーバ16内に液状体が充填されている場合には、キャビティ15内に増大した容積分に相当する液状体が、リザーバ16から流路17を介して流入する。

そして、このような状態から圧電素子20への通電を解除すると、圧電素子20と振動板13はともに元の形状に戻る。よって、キャビティ15も元の容積に

戻ることから、キャビティ15内部の液状体の圧力が上昇し、ノズル18から液 状体の液滴22が吐出される。

[0023]

また、前記流路17には、これの開閉をなすための電磁弁(開閉弁)23が設けられている。したがって、電磁弁23が閉じられると、キャビティ15とリザーバ16との間が閉じられ、これによりキャビティ15内の液状体の、リザーバ16側への逆流が確実に防止される。すなわち、後述するように液状体を少量しか吸引できない場合、リザーバ16に液状体が十分満たされないことがあるが、そのような状態でノズル18から液状体を吐出させる場合に、電磁弁22によってキャビティ15とリザーバ16との間の流路17を閉じておくことにより、液状体をリザーバ16側に逆流させることなくノズル18側から吐出させることができるようになっているのである。

[0024]

なお、インクジェットヘッドの吐出手段としては、前記の圧電素子(ピエゾ素子)20を用いた電気機械変換体以外でもよく、例えば、エネルギー発生素子として電気熱変換体を用いた方式や、帯電制御型、加圧振動型といった連続方式、静電吸引方式、さらにはレーザーなどの電磁波を照射して発熱させ、この発熱による作用で液状体を吐出させる方式を採用することもできる。

[0025]

容器3は、本発明における液状体供給部となるもので、図1 (a)に示したようにその内部に液状体Lを貯留するものである。この容器3としては、その内部に前記吐出ヘッド2を入れて貯留した液状体中に吐出ヘッドを浸漬することができる形状・大きさであれば、特に限定されることなくいずれのものも使用可能であり、例えばビーカーやシャーレ、さらには試薬を入れるガラス瓶などが用いられる。ただし、特にその材質については、用いる液状体の種類に応じて、この液状体を変質させないものを用いる必要があるのはもちろんである。

[0026]

圧力コントローラ4は、前記吐出ヘッド2の孔19にチューブ24を介して接続されたもので、チューブ24に接続されたバッファ槽25と、このバッファ槽

25にチューブ26を介して接続された圧発生器27と、バッファ槽25にチューブ28を介して接続された圧力センサ29と、圧発生器27を制御する制御部30とを備えてなるものである。

[0027]

圧発生器27は、本例における吸引手段、さらには加圧手段として機能するもので、チューブ26を介して接続されたバッファ槽25内を減圧し、あるいは加圧することにより、吐出ヘッド2のリザーバ16内を減圧しあるいは加圧するものである。この圧発生器27としては、減圧ポンプ(真空ポンプ)や加圧ポンプ(送気ポンプ)を備えて三方弁などで減圧・加圧を切り換える機構のものや、ポンプ以外の手段、例えば水頭などを用いた負圧源・正圧源を用いる機構などが採用される。なお、本例においては減圧・加圧を行えるものとするが、この圧発生器27は必ずしも減圧・加圧の両方を行える必要はなく、少なくとも後述するような吐出ヘッド2を介しての吸引が行えるだけの減圧が行えれば十分である。

[0028]

圧力センサ29は、圧発生器27によって変圧されたバッファ槽25内の圧力を検出し、得られた電圧値を信号として制御部30に送るもので、市販されている従来公知の圧力センサからなるものである。

制御部30は、圧発生器27を制御してバッファ槽25内を設定した圧となるようにするもので、前記圧力センサ29で検出されたバッファ槽25内の圧力によって減圧度を変え、あるいは加圧度を変えるように圧発生器27を制御するものである。また、この制御部30は、圧発生器27によって形成するバッファ槽25の内圧を予め設定できるようになっており、さらに、前記吐出ヘッド2の流路17に設けられた電磁弁23の開閉も制御するようになっている。

[0029]

なお、このような構成の充填装置1については、前記吐出ヘッド2を移動させる移動機構を備えることにより、液状体を吐出ヘッド2によって所望位置に自動的に吐出することのできる、吐出装置として機能させることができる。ここで、移動機構は、充填装置1の吐出ヘッド2をX方向に移動させるX方向移送体と、Y方向に移動させるY方向移送体と、Z方向(高さ方向)移送体とを有したもの

で、これら移送体がリニアモータ等の駆動手段によって例えば1μm単位で移動 することにより、吐出ヘッッド2を水平方向であるXY方向と高さ方向(垂直方 向)であるZ方向に精度よく移動させることができるようになっている。

また、吐出ヘッド2は前記移動機構に対して着脱可能になっており、これによって手動で液状体の吐出・分滴を行いたいような場合にもその操作が行えるようになっている。

[0030]

次に、前記構成の充填装置 1 の使用方法に基づき、本発明の液状体の充填方法 の一例を説明する。

まず、充填目的とする液状体Lを用意し、これを容器3に入れる。ここで、本発明は特に高価な試薬や希少な検体などを充填するのに好適に用いられるものであり、したがって液状体Lとしても充填する最少限の量しかないものとする。なお、このような液状体Lに対しては、予め脱気しておくのが好ましい。

[0031]

次に、容器3内に吐出ヘッド2を入れて液状体L内に浸漬する。そして、圧力コントローラ5の圧発生器27の減圧側の機構を作動させ、バッファ槽25内を予め設定した所定圧力にまで減圧する。なお、この減圧時には、予め吐出ヘッド2の流路17における電磁弁23を閉めておく。このように電磁弁23を閉めておくと、吐出ヘッド2内のリザーバ16はチューブ24を介してバッファ槽25に接続していることにより、このリザーバ16内もバッファ槽25と同じ圧にまで減圧される。

[0032]

このようにしてバッファ槽25を所定圧まで減圧したら、制御部30によって前記電磁弁23を開く。すると、流路17が開通してキャビティ15がリザーバ16に連通することにより、このキャビティ15はリザーバ16、チューブ24を介してバッファ槽25に連通する。したがって、キャビティ15内が減圧されることにより、キャビティ15は容器3内の液状体Lをノズル18より吸引し、その内部に貯留する。

このようにしてキャビティ15内に液状体Lが充填され、さらにリザーバ16

にまで液状体Lが流入したら、制御部30によって前記電磁弁23を閉じる。または、圧発生器27の加圧側の機構(加圧手段)を作動させてバッファ槽25内を大気圧、あるいはこれより僅かに高い圧にまで加圧する。すると、ノズル18からの吸引が停止する。

[0033]

次いで、吐出ヘッド2を容器3から引き上げ、必要に応じて吐出ヘッド2のノズル18形成面に付着した液状体Lを拭き取る。

その後、吐出ヘッド2の圧電素子20を作動させることによってノズル18より所望箇所に液状体Lの液滴を吐出し、所望箇所に液状体Lを充填する。

なお、吐出ヘッド2にこれを移動させる移動機構を設けて充填装置1を吐出装置として機能させる場合には、移動機構を適宜に動作させることによって吐出ヘッド2を所望位置にまで移動させ、そこで液滴(液状体L)の吐出を行わせるようにする。

[0034]

このような液状体の充填方法にあっては、ノズル18から液状体Lを吸引してキャビティ15内に貯留し、その後、貯留した液状体Lを圧電素子20によってノズル18より吐出させるようにしたので、例えば吐出するのに必要な最少限の量だけを吐出ヘッド2に吸引することができる。したがって、液状体Lが高価であったり希少である場合にも、液状体Lを無駄にすることなく少量の吐出を行うことができる。

[0035]

また、キャビティ15とリザーバ16との間の流路17に電磁弁23を設けたので、圧電素子20によってノズル18から液状体Lを吐出させる際、電磁弁23によって流路を17を閉じることにより、液状体Lをリザーバ16側に逆流させることなくノズル18側より確実に吐出させることができる。よって、液状体Lが非常に少なく、リザーバ16内を十分に充填できない場合などに特に有利になる。

[0036]

一方、液状体Lが比較的多い場合には、リザーバ16内にも液状体Lを充填し

、さらにはチューブ24側にも液状体Lを充填させてこれを液溜めとして機能させた後、前述したように圧発生器27の加圧側の機構を作動させ、バッファ槽25内を大気圧あるいはこれより僅かに高い圧にまで加圧してこれを背圧とする。そして、この状態で圧電素子20を作動させて液状体Lをノズル18より吐出させることにより、液状体Lをリザーバ16側に逆流させることなくノズル18側より確実に吐出させることができる。

[0037]

なお、前記例では、液状体Lと吐出ヘッド2のノズル18との接触を、吐出ヘッド2を容器3内の液状体L中に浸漬することで行ったが、本発明はこれに限定されることなく、種々の接触法を採用することができる。

例えば、図3 (a)に示すように吐出ヘッド2を、そのノズル18形成面が上に向くように上下を逆にする。そして、その状態で図3 (b)、(c)に示すようにこのノズル18形成面の上に例えばディスペンサ31によって液状体Lを供給し、全てのノズル18を覆った状態にこれを配する。次いで、前記例と同様にしてノズル18形成面上に配した液状体Lをキャビティ15内に吸引し、さらに吐出ヘッド2の上下を元に戻してノズル18を下方に向けた後、前記例と同様にして吸引した液状体Lをノズル18より吐出する。

[0038]

このようにすれば、液状体Lを配する量を必要最少限の量としてこれを吐出ヘッド2のノズル18形成面上に配することにより、液状体の無駄を確実になくすことができる。

なお、ノズル18形成面上に配した液状体Lをキャビティ15内に吸引する際には、液状体Lとともに空気を吸入してしまうのを防止するため、例えばノズル18形成面上にディスペンサ31より液状体Lを適宜に補給するようにしてもよい。

[0039]

また、図4 (a) ~ (c) に示すように、吐出ヘッド2のノズル18を形成した面2aを下側に向けたままで、この面2aの下方よりディスペンサー31でノズル18に液状体Lを供給するようにしてもよい。すなわち、図4(b)に示す

ようにディスペンサ31の先端に表面張力で保持できるだけ液状体Lを押し出し、その状態でこのディスペンサ31をノズル18形成面に近づける。続いて、図4(c)に示すようにディスペンサ31とノズル18形成面2aとの間に液状体Lを保持させる。次いで、前記例と同様にして保持した液状体Lをキャビティ15内に吸引し、その後、前記例と同様にして吸引した液状体Lをノズル18より吐出する。なお、この場合には、ディスペンサ31からの液状体Lの供給と、キャビティ15内への液状体Lの吸引とのバランスをとり、吸引中は常にノズル18が液状体18で覆われ、したがって空気がキャビティ15内に流入しないようにする必要がある。

このようにすれば、図3に示した場合に比べ、吐出ヘッド2のノズル形成面2aを下側に向けたままで処理を行えるため、液状体Lを吸引した後、直ちに吐出を行うことができる。

[0040]

なお、前記例では、充填目的とする吐出用の液状体として、高価な試薬や希少な検体などとしたが、これらに限定されることなく、有機EL素子の形成材料や金属配線の材料となる金属コロイド、さらにはマイクロレンズ材料やカラーフィルタ材料、液晶材料などの各種の材料を用いることもできる。

【図面の簡単な説明】

【図1】 (a)、(b)は本発明の充填装置の概略構成図である。

【図2】 (a)、(b)は吐出ヘッドの概略構成図である。

【図3】 (a)~(c)は他の接触法を説明するための図である。

【 \mathbf{Z} \mathbf{Z}

【符号の説明】

1…充填装置、2…吐出ヘッド、3…容器(液状体供給部)、

4…圧力コントローラ(吸引手段)、20…圧電素子(吐出手段)、

23…電磁弁(開閉弁)、27…圧発生器、L…液状体

【書類名】 図面

【図1】

【図2】

【図3】

(b)

(c)

【図4】

(b)

(c)

ページ: 1/E

【書類名】 要約書

【要約】

【課題】 高価な試薬や希少な検体などについてもこれを容易にかつ確実に充填することのできる、液状体の充填方法、及び液状体の充填装置、さらにはこの充填装置を備えた吐出装置を提供する。

【解決手段】 液状体Lを貯留するキャビティと、キャビティに連通するノズルと、キャビティ内に貯留された液状体Lをノズルより吐出させるための吐出手段とを有した吐出ヘッド2を備えてなる液状体の充填装置1である。吐出ヘッド2のノズルに液状体Lを供給して液状体とノズルとを接触させる液状体供給部3と、吐出ヘッド2のキャビティ側に接続し、キャビティを介してノズルより吸引することで液状体供給部3から供給された液状体をキャビティ内に吸引する吸引手段4と、を備えている。

【選択図】 図1

認定・付加情報

特許出願の番号 特願2002-300370

受付番号 50201547917

書類名 特許願

担当官 田口 春良 1617

作成日 平成14年11月 1日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000002369

【住所又は居所】 東京都新宿区西新宿2丁目4番1号

【氏名又は名称】 セイコーエプソン株式会社

【代理人】 申請人

【識別番号】 100089037

【住所又は居所】 東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】 渡邊 隆

【代理人】

【識別番号】 100064908

【住所又は居所】 東京都新宿区高田馬場3丁目23番3号 ORビ

ル 志賀国際特許事務所

【氏名又は名称】 志賀 正武

【選任した代理人】

【識別番号】 100110364

【住所又は居所】 東京都新宿区高田馬場3丁目23番3号 ORビ

ル志賀国際特許事務所

【氏名又は名称】 実広 信哉

特願2002-300370

出願人履歴情報

識別番号

[000002369]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所

東京都新宿区西新宿2丁目4番1号

氏 名

セイコーエプソン株式会社