Théorie des langages : THL CM 2

Uli Fahrenberg

EPITA Rennes

S5 2021

Aperçu •00000000000

Programme du cours

- Langages rationnels
- Automates finis
- Langages algébriques, grammaires hors-contexte
- Automates à pile
- Parsage LL
- Parsage LR
- oflex & bison

Apercu

0000000000

Prochainement

Une simple grammaire:

Automates finis déterministes

```
Var ::= [a-zA-Z][a-zA-Z0-9]*
Num ::= -?[1-9][0-9]*
Aexp ::= Num | Var | Aexp + Aexp | Aexp - Aexp | Aexp * Aexp
Bexp ::= True | False | Aexp == Aexp | Aexp < Aexp
           |\neg \mathsf{Bexp}| \mathsf{Bexp} \land \mathsf{Bexp}| \mathsf{Bexp} \lor \mathsf{Bexp}
Stmt ::= Var = Aexp | Stmt ; Stmt | while Bexp Stmt
           if Bexp then Stmt else Stmt
```

Uli Fahrenberg Théorie des langages : THL 4/98

Dernièrement : mots

Apercu

00000000000

Soit Σ un ensemble fini.

• on appelle les éléments $a, b, \ldots \in \Sigma$ des symboles

On dénote Σ^* l'ensemble de tous les suites finies d'éléments de Σ .

- donc $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots = \bigcup_{n \geq 0} \Sigma^n$
- on appelle les éléments $u, v, w, \ldots \in \Sigma^*$ des mots

La concaténation de deux mots $a_1 \dots a_n$ et $b_1 \dots b_m$ est le mot

$$a_1 \ldots a_n b_1 \ldots b_m$$

- E: le mot vide
- l'opération « . » sur mots est associative et a ε comme élément neutre de deux côtés

La longueur |u| d'un mot $u \in \Sigma^*$: le nombre de symboles de u.

- \bullet $|\varepsilon| = 0$ et |uv| = |u| + |v|
- u^n : la concaténation de n copies de u
- $\bullet |u^n| = n|u|$

Uli Fahrenberg Théorie des langages : THL 5/98 Automates finis déterministes

Apercu

00000000000

Dernièrement : langages

Un langage est un sous-ensemble $L \subseteq \Sigma^*$.

- opérations ensemblistes : $L_1 \cup L_2$, $L_1 \cap L_2$, \overline{L}
- concaténation : $L_1 L_2 = \{u_1 u_2 \mid u_1 \in L_1, u_2 \in L_2\}$
- $L^n = L \cdots L$ (n copies de L)
- étoile de Kleene : $L^* = L^0 \cup L_1 \cup L^2 \cup \cdots = \bigcup_{n>0} L^n$

L'opération « . » sur langages est associative et a $\{\varepsilon\}$ comme élément neutre de deux côtés.

- $L.\emptyset = \emptyset.L = \emptyset$

Uli Fahrenberg

Théorie des langages : THL

Apercu

00000000000

Dernièrement : langages rationnels

Les expressions rationnelles sur Σ :

- \bigcirc \varnothing et ε sont des expressions rationnelles
- ② pour tout $a \in \Sigma$, a est une expression rationnelle
- \bigcirc e_1 et e_2 expressions rationnelles $\Rightarrow e_1 + e_2$, $e_1.e_2$ et e_1^* aussi

Le langage dénoté par une expression rationnelle e sur Σ :

- ② $L(a) = \{a\}$ pour tout $a \in \Sigma$
- $U(e_1+e_2)=L(e_1)\cup L(e_2), L(e_1.e_2)=L(e_1).L(e_2), L(e^*)=(L(e))^*$

Les langages rationnels sur Σ :

- \bigcirc \emptyset et $\{\varepsilon\}$ sont des langages rationnels
- ② pour tout $a \in \Sigma$, $\{a\}$ est un langage rationnel
- **③** L_1 et L_2 langages rationnels ⇒ $L_1 \cup L_2$, $L_1 \cdot L_2$ et L_1^* aussi

Théorème : $L \subseteq \Sigma^*$ est rationnel ssi il existe une expression rationnelle e telle que L = L(e).

> Uli Fahrenberg Théorie des langages : THL 7/98

Dans le poly

La dernière fois :

- chapitre 2, moins 2.3.2-5 et 2.4.4
- chapitre 3, moins 3.1.3
- plus démonstration que L rationnel \Rightarrow Pref(L) rationnel

Aujourd'hui:

chapitre 4, moins 4.1.3, 4.2.1, 4.3, 4.4

Uli Fahrenberg

Théorie des langages : THL

Sur alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, ., E\}$, donnez des expressions rationnelles pour les langages suivants :

10 les entiers positifs en base 10

Apercu

00000000000

$$(1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)^*$$

les entiers relatifs en base 10

les nombres décimaux positifs en base 10

$$[0-9]*.[0-9]*$$

les nombres décimaux relatifs en base 10

les nombres décimaux relatifs en base 10 en notation scientifique.

Uli Fahrenberg Théorie des langages : THL 9/ 98

Pour aller plus loin

Définition

Apercu

000000000000

Un monoïde est une structure algébrique $(S, \otimes, 1)$ telle que

- \bullet \otimes est une opération interne sur S
- qui est associative et a 1 comme élément neutre de deux côtés.
- structure algébrique fondamentale pour l'informatique
- exemples : $(\mathbb{N}, +, 0)$, $(\mathbb{N}, *, 1)$, $(\Sigma^*, ., \varepsilon)$

Théorème

 $(\Sigma^*, ., \varepsilon)$ forme le monoïde libre sur Σ .

donc tout monoïde qui contient Σ est un quotient de Σ*

Uli Fahrenberg Théorie des langages : THL 10/98

Définition

Apercu

00000000000

Un demi-anneau est une structure algébrique $(S, \oplus, \otimes, 0, 1)$ telle que

- (S, \oplus, \mathbb{O}) forme un monoïde commutatif,
- $(S, \otimes, 1)$ forme un monoïde,

Automates finis déterministes

• $x(y \oplus z) = zy \oplus xz$, $(x \oplus y)z = xz \oplus yz$ et x0 = 0x = 0

S est idempotent si $x \oplus x = x$.

- exemples : $(\mathbb{N}, +, *, 0, 1)$, $(\mathbb{N}^{n \times n}, +, *, \mathbf{0}, I)$, $(\mathcal{P}(\Sigma^*), \cup, ...\emptyset, \{\varepsilon\})$
- (seul le dernier est idempotent)

Théorème

L'ensemble de langages finis dans Σ^* forme le demi-anneau idempotent libre sur Σ .

> Uli Fahrenberg Théorie des langages : THL 11/98

Pour aller plus loin

Définition

Apercu

00000000000

Une algèbre de Kleene est un demi-anneau idempotent S équipé avec toutes les sommes géométriques $\bigoplus x^n$, pour tout $x \in S$, et telle que

$$x\Big(\bigoplus_{n>0}y^n\Big)z=\bigoplus_{n>0}(xy^nz)$$
 pour tout $x,y,z\in S$.

- on note $\mathbf{x}^* = \bigoplus_{n>0} x^n$
- exemple : $(\mathcal{P}(\Sigma^*), \cup, ., \emptyset, \{\varepsilon\})$

Théorème

L'ensemble de langages rationnels dans Σ^* forme l'algèbre de Kleene libre sur Σ .

• expressions rationnelles $\hat{=}$ calcul dans une algèbre de Kleene libre

Uli Fahrenberg Théorie des langages : THL 12/98

13/98

5 minutes de réflexion

Vrai ou faux?

Apercu

00000000000

- **①** Si L_1 et L_2 sont rationnels, alors $L_1 \cup L_2$ est rationnel
- ② Si L_1 et L_2 sont rationnels, alors $L_1 \cap L_2$ est rationnel
- **○** Chaque sous-ensemble d'un langage rationnel *L* est rationnel.

Pour chaque expression rationnelle suivante, trouvez deux mots qui appartiennent de leur langage et deux autres qui ne l'appartiennent pas :

- a*b*
- $a^* + b^*$
- (aaa)*
- $(a+b)^*ab(a+b)^*ba(a+b)^*$

Uli Fahrenberg Théorie des langages : THL

Apercu

00000000000

Vrai ou faux?

- **①** Si L_1 et L_2 sont rationnels, alors $L_1 \cup L_2$ est rationnel
- ② Si L_1 et L_2 sont rationnels, alors $L_1 \cap L_2$ est rationnel
- Ochaque sous-ensemble d'un langage rationnel L est rationnel.

Pour chaque expression rationnelle suivante, trouvez deux mots qui appartiennent de leur langage et deux autres qui ne l'appartiennent pas :

- a*b*
- $a^* + b^*$
- **◎** (aaa)*
- $(a+b)^*ab(a+b)^*ba(a+b)^*$

Uli Fahrenberg

Théorie des langages : THL

•0000000000

Uli Fahrenberg Théorie des langages : THL 15/98

Exemple

```
L'algorithme le plus simple qui décide le langage de tous les mots qui
commencent par ab: L = \{ab, aba, abb, abaa, abab, abba, ...\}
( en Python-èsque ) :
def startsab(stream):
    state = 0
    while x = next(stream):
         if state == 0:
              if x == "a":
                  state = 1
              else: return False
         elif state == 1:
              if x == "b":
                  state = 2
              else: return False
    if state == 2: return True
    else: return False
```

Automates finis déterministes

00000000000 0000000000

Exemple

```
L'algorithme le plus simple qui décide le langage de tous les mots qui
commencent par ab: L = \{ab, aba, abb, abaa, abab, abba, ...\}
( en Python-èsque ) :
def startsab(stream):
    state = 0
    while x = next(stream):
         if state == 0:
              if x == "a":
                  state = 1
              else: return False
         elif state == 1:
              if x == "b":
                  state = 2
              else: return False
    if state == 2: return True
    else: return False
```

Automates finis déterministes

Automates finis déterministes

Exemple

```
L'algorithme le plus simple qui décide le langage de tous les mots qui
commencent par ab: L = \{ab, aba, abb, abaa, abab, abba, \dots\}
( en Python-èsque ) :
def startsab(stream):
    state = 0
    while x = next(stream):
         if state == 0:
              if x == "a":
                  state = 1
              else: return False
         elif state == 1:
              if x == "b":
                   state = 2
              else: return False
    if state == 2: return True
    else: return False
```

Uli Fahrenberg Théorie des langages : THL 18/98 Automates finis déterministes

Exemple

```
L'algorithme le plus simple qui décide le langage de tous les mots qui
commencent par ab: L = \{ab, aba, abb, abaa, abab, abba, \dots\}
( en Python-èsque ) :
def startsab(stream):
    state = 0
    while x = next(stream):
         if state == 0:
              if x == "a":
                  state = 1
              else: return False
         elif state == 1:
              if x == "b":
                   state = 2
              else: return False
    if state == 2: return True
    else: return False
```

Uli Fahrenberg Théorie des langages : THL 19/98

Définition (4.1)

Un automate fini déterministe complet est une structure $(\Sigma, Q, q_0, F, \delta)$ où

- \bullet Σ est un ensemble fini de symboles,
- Q est un ensemble fini d'états.
- $q_0 \in Q$ est l'état initial,

0000000000

- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta: Q \times \Sigma \to Q$ est la fonction de transition.

• un graphe orienté avec arcs étiquetés dans Σ et certains nœuds distingués comme initial et/ou final

> Uli Fahrenberg Théorie des langages : THL 20/98

Exemple

$$\Sigma = \{a, b\}$$
 $Q = \{s_0, s_1, s_2 \}$
 $q_0 = s_0$
 $F = \{s_2\}$

Uli Fahrenberg

Théorie des langages : THL

Exemple

$$\Sigma = \{a, b\}$$
 $Q = \{s_0, s_1, s_2 \}$
 $q_0 = s_0$
 $F = \{s_2\}$

$$\frac{\begin{vmatrix} a & b \\ s_0 & s_1 \end{vmatrix}}$$

s2 **S**2

*s*₁

Uli Fahrenberg

Théorie des langages : THL

$$\Sigma = \{a, b\}$$
 $Q = \{s_0, s_1, s_2, s_3\}$
 $q_0 = s_0$
 $F = \{s_2\}$

Uli Fahrenberg Théorie des langages : THL 23/98

Comment ça marche

Un automate fini déterministe complet : $A = (\Sigma, Q, q_0, F, \delta)$:

- Σ , Q ensembles finis, $q_0 \in Q$, $F \subseteq Q$,
- $\delta: Q \times \Sigma \to Q$: la fonction de transition

On note $q \xrightarrow{a} r$ pour $\delta(q, a) = r$.

Automates finis déterministes

0000000000

Définition

- Un calcul dans A est une séquence $\sigma = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} q_n$.
 - donc $\delta(q_i, a_i) = q_{i+1}$ pour tout $i = 1, \dots, n-1$
- L'étiquette d'un calcul comme ci-dessus est

$$\lambda(\sigma)=a_1a_2\ldots a_{n-1}\in\Sigma^*.$$

- Un calcul comme ci-dessus est réussi si $q_1 = q_0$ et $q_n \in F$.
- Le langage reconnu par A est $L(A) = \{\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A\}.$

Uli Fahrenberg Théorie des langages : THL 24/98

25/98

00000000000

calculs dans A:

$$\bullet \ \ s_0 \stackrel{a}{\longrightarrow} s_1 \stackrel{a}{\longrightarrow} s_3 \stackrel{x_1}{\longrightarrow} \cdots \stackrel{x_n}{\longrightarrow} s_3$$

•
$$s_0 \xrightarrow{a} s_1 \xrightarrow{b} s_2 \xrightarrow{x_1} \cdots \xrightarrow{x_n} s_2$$

pour touts $x_1, \ldots, x_n \in \{a, b\}$

calculs réussis :

$$\bullet \ \ s_0 \stackrel{a}{\longrightarrow} s_1 \stackrel{b}{\longrightarrow} s_2 \stackrel{x_1}{\longrightarrow} \cdots \stackrel{x_n}{\longrightarrow} s_2$$

langage reconnu par A:

•
$$L(A) = L(ab(a+b)^*)$$

Uli Fahrenberg Théorie des langages : THL

26/98

5 minutes de réflexion

Vrai ou faux?

- ullet baba $\in L(A)$
- $oldsymbol{a}$ baab $\in L(A)$
- lacktriangle abaaab $\in L(A)$
- $\circ \varepsilon \in L(A)$
- $(b^*aa^*b) \subseteq L(A)$

Uli Fahrenberg Théorie des langages : THL

5 minutes de réflexion

Vrai ou faux?

• baba
$$\in L(A)$$

$$oldsymbol{0}$$
 baab $\in L(A)$

$$oldsymbol{a}$$
 $abab \in L(A)$

$$lacktriangle$$
 abaaab $\in L(A)$

$$\circ \varepsilon \in L(A)$$

$$(b^*aa^*b) \subseteq L(A)$$

,

X

/

v

/

Uli Fahrenberg Théorie des langages : THL 27/98

« Déterministe complet »?

Automate fini déterministe complet : $(\Sigma, Q, q_0, F, \delta)$:

- Σ , Q ensembles finis, $q_0 \in Q$, $F \subseteq Q$,
- $\delta: Q \times \Sigma \to Q$: la fonction de transition
- très utile dans la théorie

Automate fini déterministe :

- ullet δ fonction partielle
- très utile pour l'implémentation

Automate fini non-déterministe :

- \bullet δ relation
- très utile dans la théorie

Automate fini non-déterministe avec transitions spontanées :

• notion encore plus générale et utile (en théorie)

Uli Fahrenberg Théorie des langages : THL 28/98

Définition (4.4)

Un automate fini déterministe est une structure $(\Sigma, Q, q_0, F, \delta)$ où

- \bullet Σ est un ensemble fini de symboles,
- Q est un ensemble fini d'états,
- $q_0 \in Q$ est l'état initial,
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta: Q \times \Sigma \longrightarrow Q$ est la fonction partielle de transition.

 tout automate fini déterministe peut être complété en ajoutant un état puits :

Uli Fahrenberg

Théorie des langages : THL

Exemple

Automate fini déterministe et complétion :

```
def startsab(stream):
    state = 0
    while x = next(stream):
        if state == 0:
             if x == "a":
                                       S1
                 state = 1
             else: return False
                                         b
        elif state == 1:
             if x == "b":
                                       s2
                 state = 2
             else: return False
    if state == 2: return True
    else: return False
```

Uli Fahrenberg Théorie des langages : THL 30/ 98

Exemple

Automate fini déterministe et complétion :

```
def startsab(stream):
    state = 0
    while x = next(stream):
        if state == 0:
            if x == "a":
                 state = 1
            else: return False
        elif state == 1:
            if x == "b":
                 state = 2
            else: return False
    if state == 2: return True
    else: return False
```


Uli Fahrenberg Théorie des langages : THL 31/98

Complétion

Lemme

Pour tout automate fini déterministe A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

Automates finis déterministes

0000000000

- On construit $A' = (\Sigma, Q', q'_0, F', \delta')$ comme suit :
- $oldsymbol{q} q_0' = q_0 \text{ et } F' = F.$
- **1** La fonction $\delta': Q' \times \Sigma \to Q'$ est définie par

$$\delta'(q,a) =$$

Uli Fahrenberg Théorie des langages : THL 32/98

Complétion

Lemme

Pour tout automate fini déterministe A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

Automates finis déterministes

0000000000

- On construit $A' = (\Sigma, Q', q'_0, F', \delta')$ comme suit :
- $q_0' = q_0 \text{ et } F' = F.$
- \bullet La fonction $\delta': Q' \times \Sigma \to Q'$ est définie par

$$\delta'(q, a) = \left. egin{cases} \delta(q, a) & ext{si } q \in Q ext{ et } \delta(q, a) ext{ est défini}, \end{cases}
ight.$$

Uli Fahrenberg Théorie des langages : THL 33/98

Lemme

Pour tout automate fini déterministe A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

Automates finis déterministes

0000000000

- On construit $A' = (\Sigma, Q', q'_0, F', \delta')$ comme suit :
- $oldsymbol{q} q_0' = q_0 \text{ et } F' = F.$
- \bullet La fonction $\delta': Q' \times \Sigma \to Q'$ est définie par

$$\delta'(q, a) = \begin{cases} \delta(q, a) & \text{si } q \in Q \text{ et } \delta(q, a) \text{ est défini,} \\ q_p & \text{sinon.} \end{cases}$$

Uli Fahrenberg Théorie des langages : THL 34/98

Lemme

Pour tout automate fini déterministe A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

0000000000

- On construit $A' = (\Sigma, Q', q'_0, F', \delta')$ comme suit :
- $oldsymbol{q} q_0' = q_0 \text{ et } F' = F.$
- \bullet La fonction $\delta': Q' \times \Sigma \to Q'$ est définie par

$$\delta'(q, a) = \begin{cases} \delta(q, a) & \text{si } q \in Q \text{ et } \delta(q, a) \text{ est défini,} \\ q_p & \text{sinon.} \end{cases}$$

Maintenant il faut démontrer que, en fait, L(A') = L(A).

Uli Fahrenberg Théorie des langages : THL 35/98 Non-déterminisme

Uli Fahrenberg 36/98

Exemple

L'algorithme le plus simple qui décide le langage de tous les mots qui commencent par ab :

L'algorithme le plus simple qui décide le langage de tous les mots qui se terminent par ab:

Exemple

L'algorithme le plus simple qui décide le langage de tous les mots qui commencent par ab :

L'algorithme le plus simple qui décide le langage de tous les mots qui se terminent par ab:

Uli Fahrenberg Théorie des langages : THL 38/98

Exemple

L'algorithme le plus simple qui décide le langage de tous les mots qui commencent par ab :

L'algorithme le plus simple qui décide le langage de tous les mots qui se terminent par *ab* :

- pas un algorithme!
- abab ???

Conclusion

Automates finis (non-déterministes)

Définition (4.8)

Un automate fini est une structure $(\Sigma, Q, q_0, F, \delta)$ où

- ullet est un ensemble fini de symboles,
- Q est un ensemble fini d'états,
- $q_0 \in Q$ est l'état initial,
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta \subset Q \times \Sigma \times Q$ est la relation de transition.

Uli Fahrenberg

Définition (4.8)

Un automate fini est une structure $(\Sigma, Q, Q_0, F, \delta)$ où

- Σ est un ensemble fini de symboles,
- Q est un ensemble fini d'états.
- $Q_0 \subseteq Q$ est l'ensemble des états initiaux.
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta \subseteq Q \times \Sigma \times Q$ est la relation de transition.
- pas trop pratique pour l'implémentation
- mais bien utile en théorie!

Uli Fahrenberg

Comment ça marche

Un automate fini : $A = (\Sigma, Q, Q_0, F, \delta)$:

- Σ , Q ensembles finis, $Q_0, F \subseteq Q$,
- $\delta \subseteq Q \times \Sigma \times Q$: la relation de transition

On note $q \stackrel{a}{\longrightarrow} r$ si $(q, a, r) \in \delta$.

Définition

- Un calcul dans A est une séquence $\sigma = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} q_n$.
- L'étiquette d'un calcul comme ci-dessus est $\lambda(\sigma) = a_1 a_2 \dots a_{n-1} \in \Sigma^*$.
- Un calcul comme ci-dessus est réussi si $q_1 \in Q_0$ et $q_n \in F$.
- Le langage reconnu par A est $L(A) = \{\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A\}.$

Uli Fahrenberg Théorie des langages : THL 42/98

Comment ça marche

Un automate fini : $A = (\Sigma, Q, Q_0, F, \delta)$:

- Σ , Q ensembles finis, $Q_0, F \subseteq Q$,
- $\delta \subseteq Q \times \Sigma \times Q$: la relation de transition

On note $q \stackrel{a}{\longrightarrow} r$ si $(q, a, r) \in \delta$. \iff la seule chose qui a changé!

Définition

- Un calcul dans A est une séquence $\sigma = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} q_n$.
- L'étiquette d'un calcul comme ci-dessus est

$$\lambda(\sigma) = a_1 a_2 \dots a_{n-1} \in \Sigma^*.$$

- Un calcul comme ci-dessus est réussi si $q_1 \in Q_0$ et $q_n \in F$.
- Le langage reconnu par A est $L(A) = \{\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A\}.$

Uli Fahrenberg Théorie des langages : THL 43/98

44/98

5 minutes de réflexion

Vrai ou faux?

- $baba \in L(A)$
- $abab \in L(A)$
- $aaab \in L(A)$
- $aaaa \in L(A)$
- \circ $\varepsilon \in L(A)$
- $oldsymbol{1}$ $L(a^*ab^*b) \subseteq L(A)$

Uli Fahrenberg Théorie des langages : THL

5 minutes de réflexion

Vrai ou faux?

$$lacktriangle$$
 baba $\in L(A)$

$$oldsymbol{a}$$
 $abab \in L(A)$

$$lacksquare$$
 aaab $\in L(A)$

$$\bullet$$
 aaaa $\in L(A)$

$$\circ \varepsilon \in L(A)$$

$$oldsymbol{1}$$
 $L(a^*ab^*b) \subseteq L(A)$

/

/

X

,

Uli Fahrenberg Théorie des la

Langages reconnaissables

Définition

Un langage $L \subseteq \Sigma^*$ est reconnaissable si il existe un automate fini A tel que L = L(A).

Théorème

Un langage $L \subseteq \Sigma^*$ est reconnaissable ssi il existe un automate fini

- déterministe,
- déterministe complet, ou
- (non-déterministe) à transitions spontanées

A tel que L = L(A).

 donc sémantiquement c'est tout là même chose : automates finis non-déterministes, automates finis déterministes, automates finis déterministes complets

Uli Fahrenberg Théorie des langages : THL 46/98

Automates finis aux transitions spontanées

Définition (4.11)

Un automate fini à transitions spontanées est une structure $(\Sigma, Q, Q_0, F, \delta)$ où

- Σ est un ensemble fini de symboles,
- Q est un ensemble fini d'états.
- $Q_0 \subseteq Q$ est l'ensemble des états initiaux.
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$ est la relation de transition.
- peut changer de l'état spontanément sans lire un symbole

Uli Fahrenberg Théorie des langages : THL 47/98

48 / 98

Comment ça marche

Un automate fini à transitions spontanées : $A = (\Sigma, Q, Q_0, F, \delta)$:

- Σ , Q ensembles finis, $Q_0, F \subseteq Q$,
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$: la relation de transition

On note $q \stackrel{a}{\longrightarrow} r$ si $(q, a, r) \in \delta$. \iff donc a peut être ε

Définition

- Un calcul dans A est une séquence $\sigma = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} q_n$.
- L'étiquette d'un calcul comme ci-dessus est $\lambda(\sigma) = a_1 a_2 \dots a_{n-1} \in \Sigma^*$.
- Un calcul comme ci-dessus est réussi si $q_1 \in Q_0$ et $q_n \in F$.
- Le langage reconnu par A est $L(A) = \{\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A\}.$
- note $a \varepsilon b \varepsilon a \varepsilon b = abab$, par exemple

Uli Fahrenberg Théorie des langages : THL

Automates finis déterministes 0000000000 Déterminisme 0000000000 000 Déterminisation Théorème de Kleene Conclusion 00000000000 000 0000000000 000

Théorème de Kleene

Théorème (Kleene)

Un langage $L \subseteq \Sigma^*$ est rationnel ssi il est reconnaissable.

syntaxe

∜∩ aut. finis à trans. spontanées

expressions rationnelles

aut. finis dét. complets \cap aut. finis déterministes \cap automates finis \cap

sémantique

langages reconnaissables

|| ✓
langages reconnaissables
|| ?
langages reconnaissables
|| ?
langages reconnaissables

langages rationnelles

49/98

Uli Fahrenberg Théorie des langages : THL

Lemme

Pour tout automate fini à transitions spontanées A il existe un automate fini A' tel que L(A') = L(A).

• on note $q \xrightarrow{\varepsilon} r$ si il existe une suite $q \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} r$ de transitions spontanées

Démonstration.

Automates finis déterministes

- On construit $A' = (\Sigma, Q', Q'_0, F', \delta')$ comme suit :
- $Q' = Q, Q'_0 = Q_0,$
- $\delta' = \{ (p, a, r) \mid \exists q \in Q : p \xrightarrow{\varepsilon}^* q \text{ et } (q, a, r) \in \delta \}.$
- Maintenant il faut démontrer que, en fait, L(A') = L(A).

Uli Fahrenberg Théorie des langages : THL 50/98

5 minutes de réflexion

Vrai ou faux?

- \bigcirc acc $\in L(A)$
- $oldsymbol{a}$ $acb \in L(A)$
- $oldsymbol{a}$ $abc \in L(A)$
- \bigcirc abb $\in L(A)$

Construire l' ε -fermeture arrière de A.

Uli Fahrenberg

5 minutes de réflexion

Vrai ou faux?

$$oldsymbol{a}$$
 $acb \in L(A)$

$$lacktriangledown$$
 $abb \in L(A)$

Construire l' ε -fermeture arrière de A.

Uli Fahrenberg Théorie des langages : THL 52/98

Déterminisation

Uli Fahrenberg 53/98

Automate des parties

Définition

Soit $A=(\Sigma,Q,Q_0,F,\delta)$ un automate fini. L'automate des parties de A est l'automate fini déterministe complet $A'=(\Sigma,Q',q'_0,F',\delta')$ définit comme suite :

- $Q' = \mathcal{P}(Q)$, l'ensemble des parties de Q,
- $q_0' = Q_0$,
- $F' = \{ P \subseteq Q \mid P \cap F \neq \emptyset \}$, et
- $\delta'(P, a) = \{ q \in Q \mid \exists p \in P : (p, a, q) \in \delta \}.$

Uli Fahrenberg

Exemple (sur tableau)

Uli Fahrenberg

Théorème

Pour tout automate fini A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

- ② Soit A' l'automate des parties de A, on montre que L(A') = L(A).

Uli Fahrenberg

Théorème

Pour tout automate fini A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

- **1** Notons $A = (\Sigma, Q, Q_0, F, \delta)$.
- ② Soit A' l'automate des parties de A, on montre que L(A') = L(A).
- Soit $w \in L(A)$, alors il existe un calcul réussi $\sigma = q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} q_n$ dans A t.q. $\lambda(\sigma) = w$.

Uli Fahrenberg Théorie des langages : THL 57/98

Théorème

Pour tout automate fini A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

- ② Soit A' l'automate des parties de A, on montre que L(A') = L(A).
- Soit $w \in L(A)$, alors il existe un calcul réussi $\sigma = q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} q_n$ dans A t.q. $\lambda(\sigma) = w$.
- Soit $Q_1 = \delta'(Q_0, a_1), Q_2 = \delta'(Q_1, a_2)$ etc., alors $\sigma' = Q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} Q_n$ est un calcul dans A' t.g. $\lambda(\sigma') = w$.

Uli Fahrenberg Théorie des langages : THL 58/98

Théorème

Pour tout automate fini A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

- ② Soit A' l'automate des parties de A, on montre que L(A') = L(A).
- Soit $w \in L(A)$, alors il existe un calcul réussi $\sigma = q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} q_n$ dans A t.q. $\lambda(\sigma) = w$.
- Soit $Q_1 = \delta'(Q_0, a_1), Q_2 = \delta'(Q_1, a_2)$ etc., alors $\sigma' = Q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} Q_n$ est un calcul dans A' t.g. $\lambda(\sigma') = w$.
- $oldsymbol{0}$ On a $g_i \in Q_i$ pour tout i, donc $g_n \in Q_n \cap F$, c.à.d. $Q_n \in F'$, alors σ' est un calcul réussi, donc $w \in L(A')$.

Uli Fahrenberg Théorie des langages : THL 59/98

Conclusion

o non détarminione o no nove no

Le non-déterminisme ne paye pas

Théorème

Pour tout automate fini A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

- ② Soit A' l'automate des parties de A, on montre que L(A') = L(A).
- Soit $w \in L(A)$, alors il existe un calcul réussi $\sigma = q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} q_n$ dans A t.q. $\lambda(\sigma) = w$.
- Soit $Q_1 = \delta'(Q_0, a_1)$, $Q_2 = \delta'(Q_1, a_2)$ etc., alors $\sigma' = Q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} Q_n$ est un calcul dans A' t.q. $\lambda(\sigma') = w$.
- **⊙** On a $q_i ∈ Q_i$ pour tout i, donc $q_n ∈ Q_n ∩ F$, c.à.d. $Q_n ∈ F'$, alors σ' est un calcul réussi, donc w ∈ L(A').

Et l'autre direction?

Uli Fahrenberg Théorie des langages : THL 60/98

Le non-déterminisme paye

- le non-déterminisme est utile pour des spécifications partielles
- des automates finis non-déterministes peuvent être exponentiellement plus distinctes que des automates finis déterministes :

Exercice: Pour $n \geq 2$ soit A_n l'automate fini comme suit:

- **1** Trouver une expression rationnelle e_n telle que $L(e_n) = L(A_n)$.
- Quelle est le nombre d'états le plus petit d'un automate fini déterministe A'_n tel que $L(A'_n) = L(A_n)$?

Uli Fahrenberg Théorie des langages : THL 61/98

Le non-déterminisme paye

- le non-déterminisme est utile pour des spécifications partielles
- des automates finis non-déterministes peuvent être exponentiellement plus distinctes que des automates finis déterministes :

Exercice: Pour $n \geq 2$ soit A_n l'automate fini comme suit:

1 Trouver une expression rationnelle e_n telle que $L(e_n) = L(A_n)$.

$$(a+b)^*b(a+b)^{n-1}$$

Quelle est le nombre d'états le plus petit d'un automate fini déterministe A'_n tel que $L(A'_n) = L(A_n)$?

> Uli Fahrenberg Théorie des langages : THL 62/98

Le non-déterminisme paye

- le non-déterminisme est utile pour des spécifications partielles
- des automates finis non-déterministes peuvent être exponentiellement plus distinctes que des automates finis déterministes :

Exercice: Pour $n \geq 2$ soit A_n l'automate fini comme suit:

1 Trouver une expression rationnelle e_n telle que $L(e_n) = L(A_n)$.

$$(a+b)^*b(a+b)^{n-1}$$

 2^n

Quelle est le nombre d'états le plus petit d'un automate fini déterministe A'_n tel que $L(A'_n) = L(A_n)$?

> Uli Fahrenberg Théorie des langages : THL 63/98

Théorème de Kleene

Uli Fahrenberg 64/98 Automates finis déterministes Non-déterminisme Déterminisation Théorème de Kleene Conclusion 00000000000 0000 00000000000 0000

Théorème de Kleene

Théorème (Kleene)

Un langage $L \subseteq \Sigma^*$ est rationnel ssi il est reconnaissable.

syntaxe

aut, finis déterministes

∤∩

automates finis

 $\uparrow \cap$

aut. finis à trans. spontanées

expressions rationnelles

sémantique

langages reconnaissables

|| /

langages reconnaissables

| 🗸

langages reconnaissables

| 🗸

langages reconnaissables

II ?

langages rationnelles

Uli Fahrenberg Théorie des langages : THL 65/ 98

 $L(\cdot)$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration.

- Soit e une expression rationnelle.
- ② On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- lacktriangledown Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ (sans transitions).

Uli Fahrenberg Théorie des langages : THL 66/ 98

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration.

- Soit e une expression rationnelle.
- ② On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- \bigcirc Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ (sans transitions).
- **5** Si $e = \varepsilon$, alors soit $A(e) = \varepsilon$

Uli Fahrenberg Théorie des langages : THL 67/98

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration.

- Soit e une expression rationnelle.
- ② On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- \bigcirc Si $e = \emptyset$, alors soit $A(e) = \longrightarrow \bigcirc$ (sans transitions).

Uli Fahrenberg Théorie des langages : THL 68/98

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration.

- Soit e une expression rationnelle.
- On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- \bigcirc Si $e = \emptyset$, alors soit $A(e) = \longrightarrow \bigcirc$ (sans transitions).
- \circ Si $e = a \in \Sigma$, alors soit A(e) =

Uli Fahrenberg Théorie des langages : THL 69/98

Algorithme de Thompson

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration.

- Soit e une expression rationnelle.
- On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- lacktriangle Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ (sans transitions).

Uli Fahrenberg Théorie des langages : THL 70/98

Algorithme de Thompson

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

Si $e = e_1 e_2$, alors prenons $A(e_1) = \longrightarrow i_1 \longrightarrow Q_1 \longrightarrow f_1 \longrightarrow et$ $A(e_2) = \longrightarrow i_2 \longrightarrow Q_2 \longrightarrow f_2 \longrightarrow et$ construisons $A(e) = \longrightarrow (i_1) \longrightarrow Q_1 \longrightarrow (f_1) \longrightarrow (g_2) \longrightarrow Q_2 \longrightarrow (f_2) \longrightarrow (g_2) \longrightarrow (g_2)$

Uli Fahrenberg

Théorie des langages : THL

71/98

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

$$\text{ Si } e = e_1 + e_2, \text{ alors prenons } A(e_1) = \longrightarrow \underbrace{i_1} \longrightarrow \underbrace{Q_1} \longrightarrow \underbrace{f_1} \longrightarrow \underbrace{f_1} \longrightarrow \underbrace{f_2} \longrightarrow \underbrace$$

$$A(e) =$$

Uli Fahrenberg Théorie des langages : THL 72/98

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

• Si $e = e_1 + e_2$, alors prenons $A(e_1) = \longrightarrow (i_1) \longrightarrow Q_1 \longrightarrow f_1 \longrightarrow et$ $A(e_2) = \longrightarrow (i_2) \longrightarrow Q_2 \longrightarrow f_2 \longrightarrow et$ construisons

$$A(e) = \longrightarrow i \qquad \qquad \underbrace{\begin{array}{c} \varepsilon \\ i_1 \\ \vdots \\ i_2 \\ \end{array}} \longrightarrow \underbrace{\begin{array}{c} Q_1 \\ Q_2 \\ \end{array}} \longrightarrow \underbrace{\begin{array}{c} \varepsilon \\ f_2 \\ \varepsilon \end{array}} \longrightarrow \underbrace{\begin{array}{c} \varepsilon \\ f_2 \\ \end{array}} \longrightarrow \underbrace{\begin{array}{c} \varepsilon \\ f_$$

Uli Fahrenberg Théorie des langages : THL 73/98

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

 \bigcirc Si $e=e_1^*$, alors prenons $A(e_1)=\longrightarrow \overbrace{i_1}\longrightarrow \overbrace{Q_1}\longrightarrow \overbrace{f_1}\longrightarrow \underbrace{f_1}\longrightarrow \underbrace{f$

$$A(e) =$$

Uli Fahrenberg Théorie des langages : THL

74/98

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

 \bigcirc Si $e=e_1^*$, alors prenons $A(e_1)=\longrightarrow (i_1)\longrightarrow Q_1\longrightarrow f_1\longrightarrow f_1\longrightarrow f_1$ et construisons

$$A(e) = \longrightarrow i \longrightarrow \underbrace{i_1}_{\varepsilon} \longrightarrow \underbrace{Q_1}_{\varepsilon} \longrightarrow f_1 \longrightarrow \underbrace{f}_{\varepsilon}$$

Uli Fahrenberg Théorie des langages : THL 75/98

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

$$A(e) = \longrightarrow i \longrightarrow i_1 \longrightarrow Q_1 \longrightarrow f_1 \longrightarrow f$$

• Maintenant il faut démontrer que L(A(e)) = L(e) en chaque cas.

Uli Fahrenberg Théorie des langages : THL 76/98

Exercice

Utiliser l'algorithme de Thompson pour convertir l'expression rationnelle $a(b^*a + b)$ en automate fini à transitions spontanées.

Théorème de Kleene

Théorème (Kleene)

Un langage $L \subseteq \Sigma^*$ est rationnel ssi il est reconnaissable.

Démonstration.

- ⇒ algorithme de Thompson : convertir une expression rationelle dans un automate fini à transitions spontanées ✓
- ← algorithme de Brzozowski & McCluskey : convertir un automate fini dans une expression rationelle ← maintenant
 - outil : automates finis généralisés, avec transitions étiquetées en expressions rationnelles

Uli Fahrenberg Théorie des langages : THL 78/98

Automates finis généralisés

Définition

Un automate fini généralisé est une structure $(\Sigma, Q, Q_0, F, \delta)$ où

- Σ est un ensemble fini de symboles,
- Q est un ensemble fini d'états.
- $Q_0 \subseteq Q$ est l'ensemble des états initiaux.
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta \subseteq Q \times RE(\Sigma) \times Q$ est la relation de transition.
- un calcul dans $A: \sigma = q_1 \xrightarrow{e_1} q_2 \xrightarrow{e_2} \cdots \xrightarrow{e_{n-1}} q_n$
- l'étiquette d'un calcul : $\lambda(\sigma) = e_1 e_2 \dots e_{n-1} \in RE(\Sigma)$
- un calcul réussi : $q_1 \in Q_0$ et $q_n \in F$
- Le langage reconnu par A : $L(A) = \bigcup \{L(\lambda(\sigma)) \mid \sigma \text{ calcul réussi dans } A\}$

Théorie des langages : THL Uli_Fahrenberg 79/98

Algorithme de Brzozowski & McCluskey

- Soit A un automate fini
- « Convertir » A en automate fini généralisé
- Onvertir A en automate fini généralisé pure :
 - une unique transition entre chaque pair d'états
 - un état initial unique q_0 sans transitions entrantes
 - ullet un état final unique q_f sans transitions sortantes
- \bigcirc while $Q \neq \{q_0, q_f\}$:
 - supprimer un état $q \notin \{q_0, q_f\}$
 - corriger étiquettes
- return l'étiquette de la transition unique

Uli Fahrenberg Théorie des langages : THL 80/98

Exemple

Théorème de Kleene 000000000000

Exemple

tes Non-déterminisme Déterminisation Théorème de Kleene conclusion 00000000000 000 0000

Exemple

Exemple

Exemple

r finis déterministes Non-déterminisme Déterminisation Théorème de Kleene conclusion ooco conclusion conclusi

Exemple

Uli Fahrenberg

Exemple

Uli Fahrenberg

Exemple

Uli Fahrenberg

- **O** Soit $(\Sigma, Q, Q_0, F, \delta)$ un automate fini
- ② Convertir A en automate fini généralisé pure $(\Sigma, Q', q_0, f, \Delta)$:
 - une unique transition entre chaque pair d'états
 - un état initial unique q_0 sans transitions entrantes
 - un état final unique q_f sans transition sortante

Soit $(\Sigma, Q, Q_0, F, \delta)$ un automate fini

Automates finis déterministes

- ② Convertir A en automate fini généralisé pure $(\Sigma, Q', q_0, f, \Delta)$:
 - une unique transition entre chaque pair d'états
 - un état initial unique q₀ sans transitions entrantes
 - un état final unique q_f sans transition sortante
 - $Q' = Q \cup \{q_0, q_f\}$ pour $q_0, q_f \notin Q$
 - $\Delta: Q' \times Q' \to RE(\Sigma)$
 - $\Delta(q_1, q_2) = \sum \{ a \mid (q_1, a, q_2) \in \delta \}$ pour $q_1, q_2 \in Q$
 - c.à.d. $\Delta(q_1, q_2) = \emptyset$ si $\{a \mid (q_1, a, q_2) \in \delta\} = \emptyset$

Uli Fahrenberg Théorie des langages : THL 90/98

- **①** Soit $(\Sigma, Q, Q_0, F, \delta)$ un automate fini
- ② Convertir A en automate fini généralisé pure $(\Sigma, Q', q_0, f, \Delta)$:
- \bigcirc while $Q \neq \{q_0, q_f\}$:
 - supprimer un état $q \notin \{q_0, q_f\}$
 - corriger étiquettes

- **①** Soit $(\Sigma, Q, Q_0, F, \delta)$ un automate fini
- ② Convertir A en automate fini généralisé pure $(\Sigma, Q', q_0, f, \Delta)$:
- \bigcirc while $Q \neq \{q_0, q_f\}$:
 - supprimer un état $q \notin \{q_0, q_f\}$
 - corriger étiquettes
 - $Q' \leftarrow Q' \setminus \{q\}$
 - pour tout $p, r \in Q'$ (donc aussi pour p = q!):
- $\Delta(p,r) \leftarrow \Delta(p,r) + \Delta(p,q)\Delta(q,q)^*\Delta(q,r)$

Uli Fahrenberg

- Soit $(\Sigma, Q, Q_0, F, \delta)$ un automate fini
- Convertir A en automate fini généralisé pure $(\Sigma, Q', q_0, f, \Delta)$:
- \bigcirc while $Q \neq \{q_0, q_f\}$:
 - supprimer un état $q \notin \{q_0, q_f\}$
 - corriger étiquettes

Automates finis déterministes

- $Q' \leftarrow Q' \setminus \{q\}$
- pour tout $p, r \in Q'$ (donc aussi pour p = q!):
- $\Delta(p,r) \leftarrow \Delta(p,r) + \Delta(p,q)\Delta(q,q)^*\Delta(q,r)$
- return l'étiquette de la transition unique
- donc $\Delta(q_i, q_f)$

Uli Fahrenberg

Automates finis déterministes

Non-déterminisme

00000000000

Déterminisation

Théorème de Kleene

00000000000

0000

0000

Exercice

Utiliser

- ① l'algorithme de Thompson pour convertir l'expression rationnelle $a(b^*a + b)$ en automate fini à transitions spontanées A;
- ② l'algorithme de Brzozowski et McCluskey pour reconvertir A en expression rationnelle.

Uli Fahrenberg Théorie des langages : THL

94/98

Récapitulatif

- Mots, langages
- 2 Langages rationnels
- Expressions rationnelles

Automates finis déterministes

- Automates finis
- Langages reconnaissables
- poly chapitres 1-4
- moins 2.3.2-2.3.5, 2.4.4, 3.1.3, 4.1.3, 4.2.1, 4.3, 4.4

Uli Fahrenberg

Applications

- automate fini $\hat{=}$ algorithme en mémoire constante
- lien vers les algorithmes online / streaming
- parsage, analyse lexicale, grep etc.: expression rationnelle \rightarrow
 automate fini déterministe / non-déterministe (!)
- traduction automatique : automates probabilistes
- vérification : modélisation par automates probabilistes / pondérés / temporisés / hybrides / etc.

Uli Fahrenberg Théorie des langages : THL 97/98

