LIMIT GAUGES - 14

					Nom	inal size					Nomenclature
GAUGES			иріо	180 mm			over 1	80 mm			Link Mark of and 1 days
for	size	ga	uges	referenc	ze gauge	Barna	æ	reference	gauge	G,	high limit of workpiece.
		basic size	mfg tol	basic size	mfg tol	basic size	mfg tol	basic size	mig tol	Н,	tolerance on cylindrical, plug or cyl. bar gauges,
	<u> </u>									H ₈ ,	tolerance on spherical gauges,
Inside measure- ments	NO GO	G	± H or			G = α	оr			Z,	distance between centre of tolerance zone of new GO guages for holes and GO workpiece limit.
			± Hg				± * H / 2			ĸ,	low limit of workpiece
	GO(new)	K+Z	± <u>H</u>		_	K + Z	± H	_	-	у,	margin, outside of the GO work- piece limit, of the wear limit of gauges of holes
	·				•		± H ₂			α,	safety zone provided for compensating measuring uncertainties of gauges
	wear limit	К — у				K−y+ α	_			у _з ,	margin, as of y for shafts instead of holes.
Outside measure-	Wear linsit	G + y ₁	_	n + v.	<u> </u>	G + y _i - α,		Gir	, H _b	Z ₁ ,	as of Z above, for shafts instead of holes
ments	-4-			O , ,,	- 2	O τ y₁ − α₁		O+y₁- α	± -2~	$\mathbf{H}_{\mathbf{t}_{\mathbf{t}}}$	tolerance on gauges for shafts
	GO (new)	G - Z,	± H ₁	G - Z ₁	+ H ₂	G ~ Z _t	± .H1	G - Z ₁	± Hp	Н _Р .	tolerance on reference discs for gap gauges
							_			α _i ,	as of α above, for shafts instead of holes.
	NO GO	K	± H _L	K	± -2	Κ + αι	± H ₁	K + α,	$\pm \frac{H_p}{2}$	T,	workpiece tolerance = G - K
						· .	_		-		H, Hs, y, Z, & refer table 2
IS : 3455	5 — 1971						<u> </u>		3 8	T,	$H_1, H_p, y_{ii} Z_i, \alpha_1 \dots 3$

*For gauges other than apherical.

.—————————————————————————————————————	TOLERAN	CES FOR C	HECKING	HOLES			All dir	mensions i	a micron Table
Nominal size,		Symbol			WORK TO	E GRADE	GRADES		
Over	upto & includ		6	7	8	9	ło	11	12
-	3	T H/2 y Z	6 0.6 1 1	10 1 1.5 1.5	14 1 3 2	25 1 0 5	40 1 0 5	60 2 0 10	100 2 0 10
3	6	T H/2 y Z	9 0.75 1 1,5	12 1.25 1,5 2	18 1.25 3 3	30 1.25 0 6	48 1.25 0 6	75 2.5 0 12	120 2.5 0 12
6	10	T H/2 Hs/2 Y Z	9 0,75 0,75 1 1.5	15 1.25 0.75 1.5	22 1.25 0,75 3	36 1.25 0.75 0	58 1.25 0.75 0	90 3 2 0 14	150 3 2 0 14
10	18	T H/2 H _a /2 y Z	11 1 1 1.5 2	18 1.5 1 2 2.5	27 1.5 1 4 4	43 1.5 1 0 8	70 1.5 1 0 8	110 4 2.5 0 16.	180 4 2.5 0 16
18	30	T H/2 H _a /2 y Z	13 1.25 1.25 1.5 2	21 2 1.25 3	33 2 1.25 4 5	52 2 1.25 0 9	84 2 1.25 0 9	130 4.5 3 0 19	210 4.5 3 0 19
30	50	T H/2 H•/2 y Z	1.25 1.25 1.25 2 2.5	25 2 1.25 3 3.5	39 2 1.25 5 6	62 2 1.25 0 11	100 2 1.25 0 11	160 5.5 3.5 0 22	250 5.5 3.5 0
50	80	T H/2 H _e /2 y Z	19 1.5 1.5 2 2.5	30 2.5 1.5 3 4	46 2.5 1.5 5 7	74 2.5 1.5 0 13	120 2.5 1.5 0 13	190 6.5 4 0 25	300 6.5 4 0 25
80	120	T H/2 H _a /2 y Z	22 2 2 3 3	35 3 2 4 5	54 3 2 6 8	87 3 2 0 15	140 3 2 0 15	220 7.5 5 0 28	350 7.5 5 0 28
20	180	T H/2 H _e /2 y Z	25 2.5 2.5 2.5 3	40 4 2.3 4 6	63 4 2.5 6	100 4 2.5 0 18	160 4 2.5 0 18	250 9 6 0 32	400 9 6 0 32

GAUGE TOLERANCES FOR CHECKING HOLES

Table 2 (Contd)

All dimensions in microns.

Nominal Size,		Shal			WORK	TOLERANCE	GRADES		
Over	upto & includ.	Symbol -	6	7	В	9	10	11	12
		T	29	46	72	115	185	290	460
		H/2	3.5	5	5	5	5	10	10
80	250	$H_{\bullet}/2$	3.5	3.5	3.5	3.5	3.5	7	7
		y	4	6	7	0	0	Ó	ò
		Z	5	7	12	21	24	40	45
		σc	2	3	4	4	7	10	15
		Υ	32	52	81	130	210	320	520
		H/2	4	6	6	6	6	11.5	11.5
250	315	H _e /2	4 .	4	4	4	4	8	8
		y	5	7	9	0	0	ō	Ď,
		Z	6	8	14	24	27	45	50
		α .	3	4	6	6	9	15	20
		T	36	57	89	140	230	360	570
		H/z	4.5	6.5	6,5	- 6.5	6.5	12,5	12,5
15	400	H _a /2	4,5	4.5	4.5	4.5	4.5	9	9
		у	6	8	9	0	0	0	0
		Z	7	10	16	28	32	50	65
		c c	4	6	7	7	11	15	30
		т	40	63	97	155	250	400	630
W 18 2 7 18 1		H/2	5	7,5	7.5	7.5	7.5	13.5	13.5
00	500	H _• /2	_ \$	5	5	5	5	10	10
		У	7 .	9	31	O	0	0	0
		Z	В	13	18	32	37	55	70
		αx.	5	7	9	9	14	20	35

All dimensions in microns : Table 3

Nominal Size,			WORK TOLERANCE GRADES							
)ver	mm upto & includ.	Symbol	5	6	7	8	9	.10	11	12
_	3	T H ₂ /2 H ₂ /2 Y ₁ Z ₁	4 0.6 0.4 1 1	6 1 0.4 1.5 1.5	10 1 0.4 1.5 1.5	14 1,5 0.6 3 2	25 1.5 0.6 0 5	40 1.3 0.6 0 5	60 2 0.6 0	100 2 0.6 0 10
3	6	τ H ₁ /2 H _P /2 Y ₁ Z ₁	5 0.75 0.5 1 1	8 1.25 0.5 1.5 2	12 1.25 0.5 1.5 2	18 2 0.75 3	30 2 0.75 0 6	48 2 0.75 0 6	75 2.5 0.75 0	120 2.5 0.75 0 12
6	10	T H ₁ /2 H _P /2 Y ₁ Z ₁	6 0,75 0.3 1	9 1,25 0,5 1,5 2	15 1,25 0,5 1,5 , 2	22 2 0.75 3	36 2 0,75 0 7	58 2 0,75 0 7	90 3 0,75 0 14	150 3 0.75 0 14
0	18	T H ₁ /2 H _p /2 y ₁ Z ₁	8 t 0.6 1.5 1.5	11 1.5 0.6 2 2.5	18 1.5 0.6 2 2.5	27 2.5 1 4	43 2.5 1 0 8	70 2.5 I 0 8	110 4 1 0 16	180 4 1 0 16
8	30	T H ₁ /2 H _P /2 Y ₁ Z ₁	9 1.25 0.75 2 1.5	13 2 0.75 3	21 2 0.75 3	33 3 1.25 4 5	52 3 1.25 0 9	84 3 1.25 0	130 4.5 1.25 0 19	210 4.5 1,25 0 19
10	50	T H ₁ /2 H _P /2 Y ₁ Z ₁	11 1.25 0.75 2 2	16 2 0.75 3 3.5	25 2 0.75 3 3.5	39 3.5 1.25 5	62 3.5 1.25 0	100 3.5 1.25 0	160 5.5 1.25 0 22	250 5.5 1.25 0 22
50	80	T H ₁ /2 H _p /2 y ₃ Z ₁	13 1.5 1 2 2	19 2.5 1 3 4	30 2.5 1 3 4	46 4 1.5 5	74 4 1.5 0 13	120 4 1.5 0	190 6.5 1.5 0 25	300 6.5 1.5 0 25
3 0	120	T H ₁ /2 H _p /2 y ₁ Z ₁	J5 2 1.25 3 2.5	22 3 1.25 4 5	35 3 1,25 4 5	54 5 2 6	87 5 ,2 0	140 5 2 0 15	220 7.5 2 0 28	350 7.5 2 0 28

GAUGE TOLERANCES FOR CHECKING SHAFTS

All dimensions in microns

Table 3 (Contd.)

Nominal mm	Size,	Symbol =			WOR	K TOLEF	RANCE C	RADES		
Over	upto & includ	аупают =	5	6	7	8	9	10	11	12
		T	18	25	40	63	100	160	250	400
		$H_1/2$	2.5	4	4	6	6	6	9	9
120 -	180	$H_p/2$	1,75	1.75	1.75	2.5	2.5	2.5	2.5	2.5
		у:	3	4	4	6	Ü	0	0	Đ
		Z ₁ .	3	6	6	. 9	18	18	32	32
		τ	. 20	29	46	72	115	185	290	460
		$H_1/2$	3.5	5	5	7	7	7	10	10
180	250	H _p /2	2.25	2.25	2.25	3.5	3.5	3.5	3,5	3.5
		y,	3	5	6	. 7	0	0	0	0
-	· •	Z_1	4	7	7	12	21	24	40	45
	- 1	αı	L	2	3	4	4 ५ <u>७०७ व</u> ु र	7	10	15
.		Т	23	32	52	81	130	210	320	520
		$H_1/2$	4	6	6	8	8	8	11.5	11.3
250	315	H _P /2	3	3	3	' 4	4	4	4	. 4
		$\mathbf{y}_{\mathbf{i}}$	3	6	7	9	0	O´	0	0
		Z,	5	8	8	14	24	27	45	50
		α,	1.5	3	4	6	6	9	15	20
		Т	25	36	57	89	140	230	360	570
		$H_1/2$	4.5	6.5	6.5	9	9	9	12.5	12.5
315	400	$\mathrm{H}_{\mathbf{p}}/2$	3.5	3.5	3.5	4.5	4.5	4.5	4.5	4.5
		Υı	4	-6	8	9	0	Ò	0	0
		Z,	6	i0 -	10	16	28 7	32	50	65
		α1	2.5	4	6	7	Ť 	11	15	30
	•	T	27	40	63	97	155	250	400	630
		$H_1/2$	5	7.5	7.5	10	10	10	13.5	13,:
400	500	$H_{\rm p}/2$	4	4 .	4	5	5	5	5	5
		Уı	4	7	9	11	0.,	0 、	0	0
		Z,	7	11	11	18	32	37	55	70
		æ,	3	5	7	9	9	14	20	35

RECOMMENDED TYPES OF GAUGES

WORKPIECE	GAUGES	Diameter in mm								
į		Over		6	10	120	315			
		upto	6	10	120	315	_			
RIGID PARTS	GO	CY	L. PLUG		•	SEG. CYL.	ROD			
(HOLES)	NO GO	CY	L. PLUG	SEG. CYL. SEG. SPHER			ROD			
NON RIGID PARTS	GO	CYL. PLUG		-		SEG. SPHER	ROD			
(HOLES)	NO GO	ÇY	L. PLUG		FULL FORM SPHER					
RIGID PARTS	GO	CY	I. RING							
(SHAFTS)	NO GO	G/	\P							
NON RIGID PARTS (SHAFTS)	GO & NO GO	C	/L. RING			•				

APPENDIX

METRIC - SI CONVERSION TABLE

Quantity	Metric units	equivalent S.J. units	Dimension
FORCE & Weight	I kgf	9.81 N	MLT-*
TORQUE	l kgfm	9.81 Nm	ML*F-*
Surface tension	l dyne/¢m	to—¹N/m	мт-ч
Spring stiffness	1 kgf/cm	0.981 N/mm	, 31
pressure, stress	l kgf/cm²	98.1 × 10 ^a N/m²	ML- ⁱ T
	i mm of water	9.81 N/m ²	15
	l mm of Hg	133.3 N/m²)ı
	l atmosphere	$101.3 \ \times \ 10^3 \ N/m^2$	m
Dynamic Viscosity	i kgf sec./m*	9.81 Ns/m*	ML-IT-I
Kinematic Viscosity	1 cm ^t /sec. (=stoke)	10—* m²/s	L-T-1
Energy, work, heat	l erg	10-1 J	MLzT-1
	! kWh	3.6 × 10° 3	n
	l k cal	4.187 × 10° J	75
	l kg(m	9.81 j	39
Power	1 hp	746 W	ML*T-*
	1 hp (metric)	736 W	"
	1 kgf m/Sec	9.81 W	PP.
Temperature	*C + 273	ĸ	9
Specific enthalpy, latent heat, Calorific Value	î k c <u>a</u> l/kg	4,187 × 10° J/kg	Ľ*T⊷²
Specific heat	k ¢al/kg °C	4.187 J/kg K	Γ*T-* θ-*
Specific entropy	1 k cal/kg	4.187 J/kg	F ₄ L=4
Heat flow rate	l k cal/m²hr	1.163 W/m²	MT-*
Thermal conductivity	l k cal/m hr °C	1.163 W/mK	MLT6
Heat transfer Coefft	t k cai/m² hr °C	1.163 W/m³ K	MT-*8
N, Newton		L, Length	
J. Joule		. M, Mass	
K, Degree Keivin		T, Time	
m, metre		0, temperature	
W, Watt			
kg, kilogram mass			