Contrôle 2

Durée : trois heures

Documents et calculatrices non autorisés

Nom: Prénom: Classe:

Entourer votre professeur de TD: Mme Boudin/Mme Daadaa/M. Ghanem/M. Goron/Mme Trémoulet

Consignes:

- vous devez répondre directement sur les feuilles jointes.
- aucune autre feuille, que celles agrafées fournies pour répondre, ne sera corrigée.
- aucune réponse au crayon de papier ne sera corrigée.
- toute personne ne respectant pas ces consignes se verra attribuer la note 00/20.

 \mathbf{E}

2. Via une intégration par parties, calculer $J=\int_0^1 \arctan(x) \,\mathrm{d}x.$

3. Via le changement de variable $u=\sqrt{x}$ puis une intégration par parties, calculer $K=\int_0^{\pi^2}\cos\left(\sqrt{x}\right)\mathrm{d}x$.

Exercice 2 (3 points)

Soient (u_n) et (v_n) deux suites réelles strictement positives telles que pour tout $n \in \mathbb{N}$,

$$\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$$

1. Montrer que si $v_n \xrightarrow[n \to +\infty]{} 0$ alors $u_n \xrightarrow[n \to +\infty]{} 0$.

2. Montrer que si $u_n \xrightarrow[n \to +\infty]{} +\infty$ alors $v_n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 3 (3 points)

Encadrer le numéro des questions contenant les énoncés vrais. Contrairement à d'habitude, *les réponses erronées ne retirent pas de point*!

- 1. Soient (u_n) une suite réelle et $\ell \in \mathbb{R}$. Alors l'assertion « si (u_n) converge vers ℓ alors, pour tout $n \in \mathbb{N}$, $u_n \leq \ell$ » est équivalente à l'assertion « s'il existe $n \in \mathbb{N}$ tel que $u_n > \ell$, alors (u_n) ne converge pas vers ℓ ».
- 2. Si (u_n) est une suite géométrique non nulle de raison $q \in \mathbb{R}^*$, alors $\left(\frac{1}{u_n}\right)$ est une suite géométrique de raison $\frac{1}{q}$.
- 3. Si (u_n) est une suite réelle bornée, il existe une suite extraite de (u_n) convergente.
- 4. Soit (u_n) une suite réelle. Alors (u_{6n}) est extraite de (u_{2n}) .
- 5. Soit (u_n) une suite réelle. Alors $(u_{3\cdot 2^{n+1}})$ est extraite de (u_{6n}) .
- 6. Rien de ce qui précède.

Exercice	4	(3)	points)	Ì
----------	---	-----	---------	---

Soient (u_n) et (v_n) définies pour tout $n \in \mathbb{N}$ par $u_n = \sum_{k=0}^{2n+1} \frac{(-1)^k}{(2k)!}$ et $v_n = u_n + \frac{1}{(4n+4)!}$.

Montrer que (u_n) et (v_n) sont adjacentes.

Exercice 5 (2 points)

Soit $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par $u_n=\frac{\ln(n!)}{n^2}$.

1. Soit $n \in \mathbb{N}^*$. Montrer (sans récurrence) que $\ln(n!) \leqslant n \ln(n)$.

2. En déduire la limite de la suite $(u_n)_{n\in\mathbb{N}^*}.$

Exercice 6 (5,5 points)

Soit (u_n) la suite réelle définie pour tout $n \in \mathbb{N}$ par $u_n = \sum_{k=0}^n \frac{1}{k!}$.

1. Soient $n \in \mathbb{N}^*$ et $q \in \mathbb{R} \setminus \{1\}$. Que vaut la somme $\sum_{k=1}^n q^{k-1} = 1 + q + q^2 + \dots + q^{n-1}$?

2. Soit $n \in \mathbb{N}^*$. Via la question précédente, montrer (sans récurrence), que $\sum_{k=1}^{n} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{n-1}}$.

3. Soit $k \in \mathbb{N}$ tel que $k \geqslant 2$. Montrer (sans récurrence) que $\frac{1}{k!} = \frac{1}{2 \times 3 \times \cdots \times k} \leqslant \frac{1}{2^{k-1}}$.

Vérifier que l'inégalité est encore vraie pour k=1.

5. Montrer (sans récurrence), via les questions 2 et 3, que pour tout $n \in \mathbb{N}$, $u_n \leq 3$.

6. (u_n) est-elle convergente? Justifier votre réponse.