Assiomi di numerabilità

Def. Un insieme A è numerabile se $\exists \varphi : A \to \mathbb{N}$ iniettiva.

Oss. A numerabile \Leftrightarrow A finito oppure in bijezione con \mathbb{N} .

Oss. A numerabile $\Leftrightarrow \exists \psi : \mathbb{N} \to A$ surjettiva.

 \mathbb{N} , \mathbb{Z} e \mathbb{Q} sono numerabili. Si può dimostrare che sono numerabili le unioni numerabili di insiemi numerabili e i prodotti finiti di insiemi numerabili \Rightarrow \mathbb{Q}^n numerabile. $\mathcal{P}(\mathbb{N})$ non è numerabile. \mathbb{R} non è numerabile (Cantor).

Def. Uno spazio topologico X è detto:

I-Numerabile se ogni punto $x \in X$ ammette base di intorni numerabile

$$\mathcal{J}_x = \{J_{x,n}\}_{n \in \mathbb{N}}.$$

II-Numerabile se X ammette base numerabile

$$\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}.$$

Oss. Metrizzabile \Rightarrow *I*-numerabile: $\mathcal{J}_x = \left\{B\left(x, \frac{1}{n}\right)\right\}_{n \in \mathbb{N}}$.

Esempio. \mathbb{R}_{ℓ} *I*-numerabile: $\mathcal{J}_x = \{[x, x + \frac{1}{n}[]_{n \in \mathbb{N}}]\}$. \mathbb{R}_{ℓ} non *II*-numerabile (lo mostreremo più avanti).

Esempio. \mathbb{R}_{dis} non *II*-numerabile.

Prop. II-numerabile \Rightarrow I-numerabile.

Dim. X spazio II-numerabile, $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ base numerabile per $X \rightsquigarrow \forall x \in X$, $\mathcal{J}_x = \{B_n \in \mathcal{B} \mid x \in B_n\}$ base di intorni numerabile di x.

N.B. *I*-numerabile \Rightarrow *II*-numerabile.

Def. $D \subset X$ è denso in X se $Cl_X D = X$.

Prop. $D \subset X$ è denso $\Leftrightarrow \forall U \subset X$ aperto non vuoto si ha $D \cap U \neq \emptyset$.

Dim. Segue subito dalla caratterizzazione dei punti della chiusura.

Oss. Se su X è data una base, è sufficiente considerare aperti basici.

Esempio. $\mathbb{Q} \subset \mathbb{R}$ denso numerabile. $\mathbb{Q}^n \subset \mathbb{R}^n$ denso numerabile.

Esempio. $\mathbb{R} - \{0\} \subset \mathbb{R}$ aperto denso.

Def. Uno spazio top. X è separabile se X ammette un denso numerabile.

Esempio. \mathbb{R}^n separabile: \mathbb{Q}^n denso numerabile.

Esempio. \mathbb{R}_{ℓ} separabile: \mathbb{Q} denso numerabile.

Prop. I-numerabile e II-numerabile sono proprietà topologiche ereditarie. Separabile è una proprietà topologica.

N.B. Separabile non è ereditaria.

Prop. Ogni spazio topologico II-numerabile è separabile.

Dim. X II-numerabile, $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ base numerabile di aperti non vuoti $\Rightarrow \forall n \in \mathbb{N} \exists a_n \in B_n \rightsquigarrow D = \{a_n \mid n \in \mathbb{N}\} \subset X$ denso numerabile. \square

N.B. Separabile \Rightarrow II-numerabile.

N.B. Si usa l'Assioma della scelta.

Teor. Ogni spazio metrizzabile separabile è II-numerabile.

Dim. (X, d) spazio metrico, $D = \{a_n \mid n \in \mathbb{N}\}$ denso numerabile in $X \rightsquigarrow$

$$\mathcal{B} = \left\{ \mathit{B}_{\mathit{d}}\!\left(a_{n}, rac{1}{k}
ight) \,\middle|\, n, k \in \mathbb{N}
ight\}$$

famiglia numerabile di bocce aperte, mostriamo che è base.

$$\forall U \subset X \text{ aperto, } \forall x \in U \Rightarrow \exists r > 0 \text{ t.c. } B_d(x,r) \subset U \rightsquigarrow \exists k \in \mathbb{N} \text{ t.c. } \frac{1}{k} < \frac{r}{2}$$

 $\rightsquigarrow \exists n \in \mathbb{N} \text{ t.c. } a_n \in B_d(x,\frac{1}{k}) \Rightarrow x \in B_d(a_n,\frac{1}{k}) \subset B_d(x,r) \subset U.$

Cor. X metrizzabile separabile e $Y \subset X \Rightarrow Y$ II-numerabile e separabile.

Dim. X II-numerabile
$$\Rightarrow$$
 Y II-numerabile \Rightarrow Y separabile.

Cor. \mathbb{R}^n , \mathbb{C}^n , \mathbb{B}^n , \mathbb{S}^n e \mathbb{T}^n sono I-numerabili, II-numerabili e separabili.

Successioni

Def. Una successione $(x_n)_{n\in\mathbb{N}}\subset X$ in uno spazio top. X converge a $x\in X$ se $\forall U\subset X$ intorno di x, $\exists N\in\mathbb{N}$ t.c. $x_n\in U\ \forall n\geqslant N$, e scriviamo

$$\lim_{n\to\infty}x_n=x.$$

N.B. Non è detto che il limite esista e se esiste non è detto che sia unico. Vale l'unicità del limite negli spazi di Hausdorff.

Esempio. $\forall (x_n)_{n \in \mathbb{N}} \subset X_{\text{ban}}$ converge a $\forall x \in X_{\text{ban}}$.

Prop. Sia (X, d) spazio metrico. $(x_n)_{n \in \mathbb{N}} \subset X$ converge a $x \in X \Leftrightarrow$

$$\lim_{n\to\infty}d(x_n,x)=0.$$

La dimostrazione è semplice e nota dall'Analisi.

Prop. Supponiamo X spazio metrizzabile e $A \subset X$ non vuoto. $\forall x \in X$ si ha $x \in \operatorname{Cl}_X A \Leftrightarrow \exists (a_n)_{n \in \mathbb{N}} \subset A \text{ t.c. } \lim_{n \to \infty} a_n = x.$

Dim. \Leftarrow Si usa il fatto che $x \in \operatorname{Cl}_X A \Leftrightarrow d(x, A) = 0$.

 \implies Scegliamo distanza d su X. $\forall n \in \mathbb{N} \exists a_n \in A \cap B_d(x, \frac{1}{n})$.

Cor. Supponiamo X metrizzabile. $D \subset X$ è denso in $X \Leftrightarrow \forall x \in X$, $\exists (a_n)_{n \in \mathbb{N}} \subset D$ t.c. $\lim_{n \to \infty} a_n = x$.

Oss. Generalizza il fatto che ogni numero reale è limite di numeri razionali.