SS G515 - Data Warehousing: Dimensional Modeling

Dr. Yashvardhan Sharma Assistant Professor, CS & IS Dept. BITS-Pilani

Four -Step Dimensional Design Process

Initial definitions

- 1. Select the business process to model
 - Example of business process
 - raw materials purchasing, orders, shipments, invoicing, inventory
- 2. Declare the grain of the business process
 - Example of grain declarations
 - an line item on a bill received from a doctor, an individual boarding pass to get on a flight
- Choose the dimensions that apply to each fact table row Example of dimensions
 - :date, product, customer, transaction type, status
- 4. Identify the numeric facts that will populate each fact table row "What are we measuring?" the answer is used to determine the facts

Brief description of the retail business (1/2)

- ◆ We work in the headquarters of a large grocery chain
- Our business has 100 grocery stores spread over a five-state area
- Each of the stores has a full complement of departments, including grocery, frozen foods, dairy, meat, produce, bakery, floral, and health/beauty aids
- ◆ Each store has roughly 60,000 individual products
- ◆ The individual products are called stock keeping units (SKUs)
- About 55,000 of the SKUs come from outside manufacturers and have bar codes imprinted on the product package
- ◆ These bar codes are called universal product codes (UPCs)
- ◆ UPCs are at the same grain as individual SKUs
- Each different package variation of a product has a separate UPC and hence is a separate SKU

Brief description of the retail business (2/2)

- ◆ The remaining 5,000 SKUs come from departments such as meat, produce, bakery, or floral
- While these products don't have nationally recognized UPCs, the grocery chain assigns SKU numbers to them
- ◆ The bar codes are not UPCs, they are certainly SKU numbers
- Our modern grocery store scans the bar codes directly into the point-of-sale (POS) system
- At the grocery store, management is concerned with the logistics of ordering, stocking, and selling products while maximizing profit
- Some of the most significant management decisions have to do with pricing and promotions

Dimensional Design Process

- ◆ Step1. Select the business process
 - "POS retail sales" business process to analyze
 - what products are selling in which stores
 - on what days
 - under what promotional conditions
- Step2. Declare the grain
 - The most granular data is an individual line item on a POS transaction
- Step3. Choose the dimensions
 - Once the grain the fact table has been chosen,
 - The date, product, and store primary dimensions fall out immediately
 - It is possible to add more dimensions to the basic grain of the fact table
 - We can ask whether other dimensions can be attributed to the data, such as the promotion under which the product is sold

Dimensional Design Process

- ♦ Step3. Choose the dimensions
 - Fig 2.2 Preliminary retail sales schema

(TBD means to be determined)

Dimensional Design Process

- Step4. Identify the facts
 - Fig 2.3 Measured facts in the retail sales schema

(TBD means to be determined)

- Sales quantity, sales dollar amount, and cost dollar amount are additive across all the dimensions
- Gross profit is additive across all the dimensions
 - Storing it eliminates the possibility of user error
- Percentages and ratios, such as gross margin, are nonadditive
 - · The numerator and denominator should be stored in the fact table
- Unit price is also a nonadditive fact
 - Summing up unit price across any of the dimensions results in a meaningless number

Focus on filling the dimension tables with robust attributes

Date Dimension

- ◆ is the one dimension nearly guaranteed to be in every data mart
 - because virtually every data mart is a time series
- ◆ Fig 2.4 <u>Date dimension in the retail sales schema</u>

Date Dimension

◆ Fig 2.5 Date dimension table detail

Date Key	Date	Full Date Description	Day of Week	Calendar Month	Calendar Year	Fiscal Year- Month	Holiday Indicator	Weekday Indicator
1	01/01/2002	January 1, 2002	Tuesday	anuary	2002	F2002-01	Holiday	Weekday
2	01/02/2002	January 2, 2002	Wednesday	anuary	2002	F2002-01	Non-Holiday	Weekday
3	01/03/2002	January 3, 2002	Thursday	anuary	2002	F2002-01	Non-Holiday	Weekday
	01/04/2002		Friday	January	2002	F2002-01	Non-Holiday	Weekday
5	01/05/2002	January 5, 2002	Saturday	January	2002	F2002-01	Non-Holiday	Weekend
6	01/06/2002	January 6, 2002	Sunday	January	2002	F2002-01	Non-Holiday	Weekend
7	01/07/2002	January 7, 2002	Monday	January	2002	F2002-01	Non-Holiday	Weekday
8	01/08/2002	January 8, 2002	Tuesday	January	2002	F2002-01	Non-Holiday	Weekday

Product Dimension

- describes every stock keeping unit (SKU) in the grocery store
- Fig 2.7 Product dimension in the retail sales schema

Product Dimension

◆ Fig 2.6 Product dimension table detail

Product Key	Product Description	Brand Description	Category Description	Department Description	Fat Content
1	Baked Well Light Sourdough Fresh Bread	Baked Well	Bread	Bakery	Reduced Fat
2	Fluffy Sliced Whole Wheat	Fluffy	Bread	Bakery	Regular Fat
3	Fluffy Light Sliced Whole Wheat	Fluffy	Bread	Bakery	Reduced Fat
4	Fat Free Mini Cinnamon Rolls	Light	Sweeten Bread	Bakery	Non-Fat
5	Diet Lovers Vanilla 2 Gallon	Coldpack	Frozen Desserts	Frozen Foods	Non-Fat
6	Light and Creamy Butter Pecan 1 Pint	Freshlike	Frozen Desserts	Frozen Foods	Reduced Fat
7	Chocolate Lovers 1/2 Gallon	Frigid	Frozen Desserts	Frozen Foods	Regular Fat
8	Strawberry Ice Creamy 1 Pint	lcy	Frozen Desserts	Frozen Foods	Regular Fat
9	Icy Ice Cream Sandwiches	Icy	Frozen Desserts	Frozen Foods	Regular Fat

Store Dimension

- describes every store in our grocery chain
- is the primary geographic dimension in our case study
 - Each store can be thought of as a location
 - We can roll stores up to any geographic attribute, such as ZIP code county, and state in the United States
- Fig 2.8 Store dimension in the retail sales schema

Promotion Dimension

- is potentially the most interesting dimension in our schema
- describes the promotion conditions under which a product was sold
 - Temporary price reductions, end-aisle displays, newspaper ads, and coupons
- is often called a causal dimension (as opposed to a casual dimension)
 - It describes factors thought to cause a change in product sales
- Fig 2.9 Promotion dimension in the retail sales schema

26

Promotion Dimension

- ◆ The various possible causal conditions are highly correlated
 - A temporary price reduction is associated with an ad and an end-aisle display
 - Coupons often are associated with ads

For four major causal mechanisms (price reductions, ads, displays, and coupons)

- ◆ The tradeoffs in favor of keeping the four dimensions together
 - The combined single dimension can be browsed efficiently to see how the various causal mechanisms are used together
- The tradeoffs in favor of separating the four causal mechanisms into distinct dimension tables
 - The separated dimensions may be more understandable to the business community

Degenerate Transaction Number Dimension

- ◆ Degenerate Dimension (DD)
 - The resulting dimension is empty
- POS transaction number
 - The natural operational ticket number, such as the POS transaction number, sits by itself in the fact table without joining to a dimension table
- ◆ Degenerate Dimensions are very common
 - When the grain of a fact table represents a single transaction or transaction line item
- Degenerate Dimensions often play an integral role in the fact table's primary key
 - In this case study, the primary key of the retail sales fact table consists of the degenerate POS transaction number and product key

Degenerate Dimension

- A degenerate dimension is represented by a dimension key attribute(s) with no corresponding dimension table
- Occurs usually in line-item oriented fact table design

Degenerate Transaction Number Dimension

◆ Fig 2.10 Querying the retail sales schema

Denormalized Fact Tables

Too Many Dimensions

◆ Fig 2.13 Centipede fact table with too many dimensions

- ◆ Centipedes fact tables appear to have nearly 100 legs
- The compact fact table has turned into an unruly monster that joins to literally dozens of dimension tables

Denormalized Fact Tables

Too Many Dimensions

- Designing a fact table with too many dimensions leads to significantly increased fact table disk space requirements
- The numerous joins are an issue for both usability and query performance
- Most business processes can be represented with less than 15 dimensions in the fact table
- ◆ If our design has 25 or more dimensions, we should look for ways to combine correlated dimensions into a single dimension
 - Perfectly correlated attributes, such as the levels of a hierarchy, as well as attributes with a reasonable statistical correlation, should be part of the same dimension

Dimensional Modeling Myths

- Dimensional models and data marts are for summary data only
- Dimensional models and data marts are departmental, not enterprise, solutions
 - Data marts are process-centric, not department-centric
- Dimensional models and data marts are not scalable
- 4. Dimensional models and data marts are only appropriate when there is a predictable usage pattern
- Dimensional models and data marts can't be integrated and therefore lead to stovepipe solutions
 - Most certainly can be integrated if they conform to the DW bus architecture