Solution

To find the vertex, we look at the coefficients in the function $\mathsf{e}\left(\mathsf{q}\right) = \mathsf{aq}^2 + \mathsf{bq} + \mathsf{c}$

in this equation, a = 3 and b = 3The first coordinate of the vertex has the formula: $\frac{-b}{2a}$ now, plugging into formula to get:

 $\frac{-b}{2a} = -\frac{3}{2(3)} = -\frac{1}{2}$

$$=-\frac{3}{2(3)}=-\frac{1}{2}$$
e second coordinate of the vertex is $e(-\frac{1}{2}) = 3(-\frac{1}{2})^2 + 3(-\frac{1}{2}) - 4$

The second coordinate of the vertex is $e(-\frac{1}{2}) = 3(-\frac{1}{2})^2 + 3(-\frac{1}{2}) - 4$

 $=-\frac{19}{4}$

Therefore, the vertex of the graph of f is $(-\frac{1}{2},-\frac{19}{4})$