Université Paris 6 Pierre et Marie Curie Année 2009-2010 LM110 - Fonctions

C. Dupont

Développements limités usuels

Tous les développements limités sont donnés en 0. Dans la dernière égalité, α est un réel quelconque.

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \circ(x^n)$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \circ(x^{2n+2})$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \circ(x^{2n+1})$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \circ(x^n)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \circ(x^n)$$

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots - \frac{x^n}{n} + \circ(x^n)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + \circ(x^n)$$

$$(1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} x^n + \circ(x^n)$$