复习练习 14 的笔记

计数规则

规则 1 (一般乘法规则)。令 S 是长度为 k 的序列。如果存在

- \mathbf{n} \mathbf{n}_1 可能的第一入口
- \mathbf{n} \mathbf{n}_2 可能的对第一入口的第二入口
- \mathbf{n} \mathbf{n}_3 可能的第一和第二入口的组合的入口,等等

那么:

$$|S| = n_1 \cdot n_2 \cdot n_3 \cdots n_k$$

一个 k 到 1 的函数映射 k 个定义域中的元素到每个那个范围内的元素。例如,函数映射每个耳朵到它的拥有者是 2 到 1 的映射:

一般乘积规则

问题 1 求解以下计数问题, 使用一般乘法规则。

(a) 下个星期,我们将很惬意。在第一天,我们连续5分钟。以后每天我们比前一天多练习0,1,2和3分钟。例如,我在下星期中的7年中的练习的分钟数可以是5,6,9,9,9,11,22。多少这样的序列是可能的?

解:在第一天的分钟数可能在一种方式中选择。每个后学天的分钟数能在 4 种方式种选择。因此,通过扩展乘法规则练习的序列是 $1 \cdot 4^6$ 。

(b) 一个集合的 r 组合是那个集合的 r 个不同的元素的序列。例如这里有 $\{a,b,c,d\}$ 的二组合:

$$(a,b)$$
 (a,c) (a,d)
 (b,a) (b,c) (b,d)
 (c,a) (c,b) (c,d)
 (d,a) (d,b) (d,c)

一个 n 个元素集合种有多少个 r 组合? 使用阶乘的方法表示您的答案。

解:存在n种方式选择第一个元素,n-1 种方式选择第二个,n-2 种方式选择第三个,...,有n-r+1 种方式选择第r 个元素。因此n 个元素集合中存在:

$$n \cdot (n-1) \cdot (n-2) \cdots (n-r+1) = \frac{n!}{(n-r)!}$$

有个r组合。

(c) 从 $\{1,...,p\}$ 有不同的入口有多少个 $n \times n$ 个矩阵?这里 $p \ge n^2$?解:有 p 种方式选择第一个入口,p-1 种方式选择第二个,同样有 p-2 种方式选择的第三个,依次类推。总共有

$$p(p-1)(p-2)\cdots(p-n^2+1) = \frac{p!}{(p-n^2)!}$$

种这样的矩阵。另一种可替换的,这是一个p个元素集合的 n^2 组合,也就是 $p!/(p-n^2)!$ 。

簿记员的道

问题 2 在这个问题中,我们通过对单词簿记员沉思来寻找启迪。

- (a) 单词 POKE 中的字母有多少种排列方法?
- 解:有4!种排列方法,对应于集合{P,O,K,E}的4!种组合。
- (b) 有多少种方式安排在单词 BO_1O_2K 中的字母中? 观察我们的 O 通过下标来区分其是不同的符号。
- 解:有4!种排列,对应于集合{B,O1,O2,K}的4!种组合。
- (c) 假设我们映射在 BO_1O_2K 中的字母到删除了下标的在 BOOK 的字母。用箭头说明怎么把 在左边的排列映射到右边的排列?

 O_2BO_1K KO_2BO_1 O_1BO_2K KO_1BO_2 BO_1O_2K BO_2O_1K

BOOK OBOK KOBO

. . .

. . .

(d) 这个是什么类型的映射, 小蚂蚱?

解。2对1的映射。

(e) 根据除法法则,在 BOOK 中有多少个排列?

解。 4! /2

(f)很好,年轻的师父!在 $KE_1K_2PE_3R$ 中的字母有多少个排列?

解: 6!

(g)假设我们通过删除下标映射每个 $KE_1E_2PE_3R$ 到 KEEPER。列举所有的 $KE_1E_2PE_3R$ 的不同的排列,以这样的方式映射到 REPEEK 中。

 $M: RE_1PE_2E_3K, RE_1PE_3E_2K, RE_2PE_1E_3K, RE_2PE_3E_1K, RE_3PE_1E_2K, RE_3PE_2E_1K$

(h)这个映射是什么类型的映射?

解: 3! 到1的映射。

(i) 在 KEEPER 中的字母有多少个平排列?

解: 6!/3!

(j) 现在您准备面对簿记员!

BO₁O₂K₁K₂E₁E₂PE₃R 的有多少个排列?

解: 10!

(k) BOOK₁K₂E₁E₂PE₃R 的有多少个组合?

解: 10!/2!

(1) BOOKKE₁E₂PE₃R 的多少个安排有?

解: 10!/(2! · 2!)

(m) BOOKKEEPER 有多少个组合?

解. 10! /(2! 2! · 3!)

(n) VOODOODOLL 有多少个组合?

解: 10!/(2!2!·5!)

(o) (重要)多少 n bit 序列包括 k 个 0 和(n-k)个 1?

解: $n!/(k! \cdot (n-k)!)$

这个数量表示为 $\binom{n}{k}$,读了"n选择 k"。从现在起,您几乎每天将看见它直到在 6.042 期末的结束。

记住你已经絮叨的东西:有下标、无下标。这就是簿记员的道。

问题 3 求解以下计数问题。在你知道大小的集合之间定义一个合适的映射(双射或者 k 到 1) 且集合是在问题中的。

- (a) (重要) 从 n 个元素的集合 $\{x_1, x_2, \dots, x_n\}$ 有多少种方式选择 k 种元素?解: 一个从 n bit 的序列有 k 个 1 的一双射。 序列 (b_1, \dots, b_n) 映射到包含 x_i 的子集,当
- 且仅当 b_i =1。的子集。 所以,这样子集的个数是: $\binom{n}{k}$ 。
- (b) 如果四个品种是可利用的,有多少个不同的方式选择一打油炸圈饼?解: 有从一打油炸圈饼的选择到对 15 bit 序列选择 3 个 1 的双射。 特别是,假设品种给上釉,巧克力、柠檬和波士顿奶油。 那么选择 g 上釉, c 巧克力、1 柠檬和 b 波士顿奶油映射对序列:

$$(g \ 0's) \ 1 \ (c \ 0's) \ 1 \ (l \ 0's) \ 1 \ (b \ 0's)$$

所以,选择的数量与15 bit 中有3个1的序列的个数恰好是相等的是:

$$\frac{15!}{3!\ 12!} = \binom{15}{3}$$

(c)从(0,0)到(10,20)有多少步,包括向右的步骤(增长第一个坐标)和向上步骤(增加第二个坐标)?

解:存在有从 10 个 0 和 20 个 1 的序列的双射。序列($b_1,...,b_{30}$)映射到一个路径,这里第 i 步是向右的如果 b_i =0,且如果 b_i =1 是向上的。因此路径的个数是 $\binom{30}{10}$ 。

(d) 独立生活组是招待 8 个预科学生,亲切地称为 $P_1,...,P_8$,通过永久居民。每个预科学生必须分配一个任务,2 个必须洗盘子,2 必须清理厨房,1 必须清理卫生间,1 个必须清理普通区域,2 必须服务晚餐。 $P_1,...P_8$ 有多少中方式来有效地使用?

解: 存在一个包括两个 P 两个 K 一个 B 一个 C 和两个 D 的一个映射。特别地,序列($t_1,...,t_8$)对应于分配 P_i 洗碗如果 $t_i=P$,清理厨房,如果 $t_i=K$,清理卫生间,如果 $t_i=B$ 等等。因此,可能的分配是:

8! 2! 2! 1! 1! 2!

(e) Grumperson 夫妇为了圣诞节有多少种方法把 13 块不可区分的媒分配到两个,不是,3 个孩子?

解:存在一个从有两个 1 的 15 bit 字符串的双射。特别是,bit 字符串 $0^a 10^b 10^c$ 映射到 a 煤块

到第一个孩子,b 块煤到第二个,c 块到第三个。因此有: $\binom{15}{2}$ 个分配。

(f) 在满足以下等式的自然数上的解有多少呢?

$$x_1 + x_2 + \ldots + x_{10} \leq 100$$

解: 从有 $10 \land 1$ 到 110 bit 序列到等式的双射。特别的 x_i 是在第 $i \land 1$ 前面的 0 的个数,但

是在(i-1)个 1 的后面(或者在序列的开设)。因此有 $\binom{110}{10}$ 个解。

(e) (测试 2, 03 年秋季) 假设两个同样的 52 牌混合在一起。两个双倍大小的副牌种有多少种方式安排牌?

解: 104 张包含每张牌 2 个是序列号的个数是: 104!/(2!)52。