LECTURE 5, UNIPOTENT FLOWS ON X2 AND NONDIVERGENCE

RUNLIN ZHANG

CONTENTS

1.	Summary	1
2.	Proof of main theorem	2
3.	Proof of nondivergence	4
References		6

Notation:

$$\mathbf{u}_s := \left[\begin{array}{cc} 1 & s \\ 0 & 1 \end{array} \right], \; \mathbf{a}_t := \left[\begin{array}{cc} e^t & 0 \\ 0 & e^{-t} \end{array} \right], \; U := \{ \mathbf{u}_s, \; s \in \mathbb{R} \}.$$

$$X_2 = \left\{ \text{ unimodular lattices in } \mathbb{R}^2 \right\}$$

1. SUMMARY

The main reference for Lecture 5,6,7 would be Kleinbock's Clay notes [Kle10]. My exposition differs slightly and is less efficient compared to the reference.

Theorem. Assume Γ is a lattice in $SL_2(\mathbb{R})$. Let $X := SL_2(\mathbb{R})/\Gamma$ and $x_0 \in X$. Then

- 1. $U.x_0$ is either compact or dense;
- 2. a sequence of compact orbits $(U.x_n)$ with period increasing to ∞ becomes dense in X:
- 3. a sequence of compact orbits $(U.x_n)$ with period decreasing to 0 diverges in X.

We will prove the theorem in the case when $\Gamma = SL_2(\mathbb{Z})$ and leave the general case as an exercise to the reader. But note that in the proof we won't use the fact that $SL_2(\mathbb{Z})$ is a lattice.

Theorem 1.1. Recall $X_2 \cong SL_2(\mathbb{R}) / SL_2(\mathbb{Z})$. Let $\Lambda_0 \in X_2$. Then

- 1. $U.\Lambda_0$ is either compact or dense;
- 2. a sequence of compact orbits $(U.\Lambda_n)$ with period increasing to ∞ become dense in X_2 ;
- 3. a sequence of compact orbits $(U.\Lambda_n)$ with period decreasing to 0 diverge in X_2 .
- 4. $U.\Lambda_0$ is compact iff $\mathbf{a}_t.\Lambda_0$ diverges as $t \to -\infty$ iff Λ_0 contains a horizontal vector (i.e., a vector of the form (*,0) with $* \neq 0$).

Date: 2022.03.

2

When $\{u_s.\Lambda_0\}_{s\in\mathbb{R}}$ is dense, the discrete version $\{u_s.\Lambda_0\}_{s\in\mathbb{Z}_{\geq 0}}$ is also dense (Exercise). In this lecture we will only prove item 1 from the theorem. Item 2 is left as an exercise (using similar proof to the one presented here). Item 3 follows from the fact that injectivity radius is bounded from below on compact sets. The nontrivial part of item 4 is proved in Lem.2.3. Also note that in the present case all compact U-orbits form a one-parameter family indexed by a_t as t varies.

2. Proof of main theorem

Definition 2.1. *For* $\varepsilon > 0$ *, define*

$$\mathscr{C}_{\varepsilon} := \{ \Lambda \in X_2 \mid \operatorname{sys}(\Lambda) \geq \varepsilon \}.$$

Somehow I decide to use the more suggestive notation

$$\operatorname{sys}(\Lambda) := \inf_{v \in \Lambda, v \neq 0} \|v\|.$$

By Lem.2.9 from lec.3 (Mahler's criterion), $\mathscr{C}_{\varepsilon}$ is a compact set and every compact set in X_2 is contained in $\mathscr{C}_{\varepsilon}$ for some $\varepsilon > 0$.

Lemma 2.2. [Uniform non-divergence of unipotent flows for X_2] For every compact set $K \subset X_2$ and $\varepsilon \in (0,1)$, there exists $\delta = \delta(K,\varepsilon) > 0$ such that the following holds. For every interval (a,b) with a < b in $\mathbb R$ and $\Lambda_0 \in X_2$ satisfying $\mathbf u_{s_0}.\Lambda \in K$ for some $s_0 \in (a,b)$, we have that

$$\frac{1}{b-a} \operatorname{Leb} \{ s \in (a,b) \mid \boldsymbol{u}_s. \Lambda_0 \notin \mathscr{C}_{\delta} \} \leq \varepsilon.$$

Actually the choice of δ is also independent of the unipotent flow we use.

Lemma 2.3. If $\varepsilon \leq 1$ and $\Lambda \in X_2$ are such that $\mathbf{u}_s.\Lambda \notin \mathscr{C}_{\varepsilon}$ for every s in some interval of infinite length (i.e., something like $(a, +\infty), (-\infty, b), (-\infty, +\infty)$), then Λ contains a horizontal vector of length less than ε . That is to say, $(v_1, 0) \in \Lambda$ for some $0 < |v_1| < \varepsilon$.

The reader might have noticed that the converse also holds since U-action fixes the horizontal direction. Also note that such U-orbits are closed and compact. In this case, one may think of U-action on Λ as "Dehn-twist" along the closed geodesic represented by $(v_1,0) \in \Lambda = \pi_1(\mathbb{R}^2/\Lambda)$.

Proof of Theorem 1.1 assuming Lem.2.2 and 2.3. These two lemmas basically allow us to repeat the argument from Lec.2.

Take some $x_0 \in X_2$ such that $U.x_0$ is not compact. Let Y_0 be its closure. Consider

$$\{\overline{U.y} \mid y \in Y_0, U.y \text{ is not compact }\}$$

Let Y₁ be a (nonempty) minimal element whose existence is guaranteed by Lem.2.2 and Zorn's lemma. Thus for every $y \in Y_1$, U.y is either compact or dense in Y_1 .

There are two cases to discuss.

Case 1. Y_1 contains no compact U-orbit;

Case 2. Y_1 contains some compact U-orbit.

Let us start with Case 1. (of course, in the end we know that case 1 does not happen)

Take $x_1 \in Y_1$. By Lem 2.2 and 2.3, there are $s_n \to \infty$ such that $u_{s_n}.x_1 \in \mathcal{C}_1$. We may and do assume that $|s_n - s_m| > 1$ if $n \neq m$. As they are distinct from each other, we can find $x_n \neq y_n$ from this set such that $d(x_n, y_n) \to 0$. Thus we can find $A_n \in SL_2(\mathbb{R})$ with $A_n \to id$ such that

$$y_n = A_n.x_n.$$

For *n* large enough, $A_n \notin U$. Actually we are going to assume $c_n \neq 0$ and leave the other cases to the reader. Write

$$A_n = \operatorname{id} + \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix}$$
 with $a_n, b_n, c_n, d_n \to 0, c_n \neq 0$.

(ok, I slightly deviate from the notation in lec.2, a_n there is replaced by $1 + a_n$ and d_n replaced by $1 + d_n$)

Just as in Lec.2, for some s to be determined, take t = t(s) such that (see equa.(4) from Lec.2)

$$\boldsymbol{u}_t(\boldsymbol{u}_s A_n \boldsymbol{u}_s^{-1}) = \begin{bmatrix} (1+d_n-sc_n)^{-1} & 0 \\ c_n & 1+d_n-sc_n \end{bmatrix}.$$
 Fix a small parameter $\delta > 0$. If we set $s_{n,\delta}$ as in lec.2, then there is no guarantee that

 $u_{s_n \delta}.x_n$ would have a convergent subsequence. Thus we need to apply Lem.2.2 again, to $K = \mathcal{C}_1$ and $\varepsilon = 0.6$. So we get some $\delta_1 = \delta(\mathcal{C}_1, 0.6) > 0$ such that the conclusion there holds. Now we search for $s_{n,\delta}$ within $\frac{1}{c_n}\delta\lambda$ as λ varies from (0.5, 1).

By our choice of δ_1 , with Lem.2.2 applied to $(a,b)=(0,\frac{\delta}{c_n})$, we have that for some $\lambda_{n,\delta} \in (0.5,1)$, if we set

$$s_{n,\delta} := \frac{1}{c_n} \delta \lambda_{n,\delta}$$

 $s_{n,\delta}:=\frac{1}{c_n}\delta\lambda_{n,\delta},$ then $u_{s_{n,\delta}}.x_n\in\mathcal{C}_{\delta_1}.$ As before, with $s=u_{s_{n,\delta}}$ and t=t(s), let

$$x'_n := u_s.x_n, \quad y'_n := u_{t+s}.y_n.$$

By taking the limit along a subsequence, we get a pair $x_{\infty,\delta}$, $y_{\infty,\delta} \in Y_0$ such that

$$y_{\infty,\delta} = \exp\left(\left[\begin{array}{cc} (1+\lambda_{n,\delta}\delta)^{-1} & 0 \\ 0 & 1+\lambda_{n,\delta}\delta \end{array}\right]\right).x_{\infty,\delta}.$$

Let $B_{n,\delta}$ be this diagonal matrix. Then by minimality of Y_1 and by assumption of case 1, $B_{n,\delta}$, $Y_1 = Y_1$. By letting $\delta \to 0$, we have that Y_1 is invariant under the group consisting of positive diagonal matrices. The rest of the proof is similar to Lec.2. (well, the proof of lem.2.8 is slightly different for non-cocompact lattices, but still ok; actually in the present case $\Gamma = \operatorname{SL}_2(\mathbb{Z})$, it should be even easier by regarding $\operatorname{SL}_2(\mathbb{R})/B$ as the space of lines in \mathbb{R}^2 and it suffices to observe that rational lines are dense among all lines.)

So now turn to case 2.

We more-or-less repeat the above proof with x_n being on a fixed closed U-orbit $U.x_2$ contained in Y_1 . However, this time there is no need to, and we do not, modify the definition of $s_{n,\delta}$ from Lec.2. The end result would be

$$y_{\infty,\delta} = \exp\left(\begin{bmatrix} (1+\delta)^{-1} & 0\\ 0 & 1+\delta \end{bmatrix}\right).x_{\infty,\delta}$$

where $x_{\infty,\delta} \in U.x_2$. Modifying by certain u_s , we may and do assume that $x_{\infty,\delta} = x_2$. Thus, as δ varies, we get $B^+.x_2$ is contained in Y_1 . The rest of the proof is the same as in case 1.

3. Proof of nondivergence

Lemma 3.1. There exist $C_1 > 0$ and $\alpha_1 > 0$ such that for every interval (a, b) in \mathbb{R} , every $\mathbf{v} = (v_1, v_2) \in \mathbb{R}^2$ and every $\rho \in (0, 1)$, we have

$$\frac{1}{b-a} \operatorname{Leb} \left\{ s \in (a,b) \, \middle| \, \| \boldsymbol{u}_s.\boldsymbol{v} \| < \rho M_0 \right\} \le C_1 \rho^{\alpha_1}.$$

where $M_0 := \sup_{s \in (a,b)} \| \mathbf{u}_s \cdot \mathbf{v} \|$.

Proof. Take $C_1 = 2\sqrt{2}$ and $\alpha_1 = 1$.

Note $u_s.(v_1, v_2) = (v_1 + sv_2, v_2).$

If $|v_2| \ge \frac{1}{\sqrt{2}} M_0$ then for every $s \in (a,b)$, $\|\boldsymbol{u}_s.v\| \ge |v_2| \ge \frac{1}{\sqrt{2}} M_0$. So if $\rho \le \frac{1}{\sqrt{2}}$, then we are already done. Otherwise, $C_1 \rho^{\alpha_1} \ge 1$. Also ok.

So now we are left with the case when $|v_1 + s_0 v_2| \ge \frac{1}{\sqrt{2}} M_0$ for some $s_0 \in (a, b)$. Refer to the picture below, we see that

$$\frac{1}{b-a} \operatorname{Leb} \left\{ s \in (a,b) \, \middle| \, |v_1 + sv_2| < \rho M_0 \right\} \le 2 \frac{\rho}{1/\sqrt{2}} = C_1 \rho.$$

It remains only to note that $|v_1 + sv_2| < \|\boldsymbol{u}_s.(v_1, v_2)\|$.

Key observation. A rank 2 unimodular lattice $\Lambda \in X_2$ is not allowed to contain two linearly independent vector of length strictly smaller than 1. For otherwise, if v, w is such a pair,

$$\|\Lambda\| \le \|\mathbb{Z}v \oplus \mathbb{Z}w\| \le \|v\| \|w\| < 1,$$

contradicting against the assumption that Λ is unimodular.

we wather what the unimodular lattice is, you at most see a single line in a small nobld about \vec{O} .

Let

$$Prim(\Lambda) := \{ v_{\neq 0} \in \Lambda \mid \mathbb{R}. v \cap \Lambda = \mathbb{Z}. v \}$$

be the set of primitive vectors.

Proof of Lem.2.2. Find $\delta_0 \in (0,1)$ such that $K \subset \mathcal{C}_{\delta_0}$. We shall determine δ later, depending on δ_0 and ε .

Take $\Lambda_0 \in K \subset \mathscr{C}_{\delta_0}$. Let

$$I(\Lambda_0, \varepsilon_0) := \{ s \in (a, b) \mid \operatorname{sys}(\boldsymbol{u}_s.\Lambda_0) < \delta_0 \}$$

which decomposed as a disjoint union of open intervals

$$I(\Lambda_0,\varepsilon_0)=\bigsqcup_{\alpha\in\mathcal{A}}I_\alpha$$

with certain index set \mathcal{A} .

Take one $I_{\alpha} = (x_{\alpha}, y_{\alpha})$. By the remark right before the proof, for $s \in I_{\alpha}$, there exists a unique v_s (up to ± 1) in $Prim(\Lambda_0)$ with

$$\|\boldsymbol{u}_{s}.\boldsymbol{v}_{s}\| < \varepsilon_{0}.$$

By connectedness, this v_s has to be independent of $s \in I_\alpha$. For this reason denote it by v_α . By Lem.3.1,

$$\frac{1}{|I_{\alpha}|}\operatorname{Leb}\left\{s\in I_{\alpha}\,\middle|\, \|\boldsymbol{u}_{s},\boldsymbol{\nu}_{\alpha}\|<\rho\delta_{0}\right\}< C_{1}\rho^{\alpha_{1}}.$$

We take $\rho = \rho(\varepsilon)$ such that $C_1 \rho^{\alpha_1} < \varepsilon$. Let $\delta := \rho \delta_0$.

$$\{s\in(a,b)\,|\,\|\boldsymbol{u}_{s}.\boldsymbol{v}_{\alpha}\|<\delta\}=\bigsqcup_{\alpha\in\mathcal{A}}\big\{s\in I_{\alpha}\,\big|\,\|\boldsymbol{u}_{s}.\boldsymbol{v}_{\alpha}\|<\rho\delta_{0}\big\}$$

RUNLIN ZHANG

implying

6

$$\operatorname{Leb}\left\{s\in(a,b)\,|\,\|\boldsymbol{u}_{s}.\boldsymbol{v}_{\alpha}\|<\delta\right\} = \sum_{\alpha\in\mathcal{A}}\operatorname{Leb}\left\{s\in I_{\alpha}\;\middle|\,\|\boldsymbol{u}_{s}.\boldsymbol{v}_{\alpha}\|<\rho\delta_{0}\right\} < \sum_{\alpha\in\mathcal{A}}|I_{\alpha}|\cdot\varepsilon\leq(b-a)\varepsilon.$$

Proof of Lem.2.3 . Let *I* be this infinite interval. Since for each $s \in I$ there exists a unique (up to ± 1) v_s in Prim(Λ) with $\|\boldsymbol{u}_s.v_s\| < 1$. By connectedness argument, this $v = v_s$ is independent of $s \in I$. Thus $\|\boldsymbol{u}_s.v\| < 1$ for all $s \in I$. This happens only if *U* fixes v and we are done.

REFERENCES

[Kle10] Dmitry Kleinbock, Quantitative nondivergence and its Diophantine applications, Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc., vol. 10, Amer. Math. Soc., Providence, RI, 2010, pp. 131–153. MR 2648694