

AD-A171 042

An Incomplete Lipschitz-Hankel Integral of K_0 Part I

ALLEN R. MILLER

Engineering Services Division

Approved for public release; distribution unlimited.

86 8 21 007

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE					
18 REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16 RESTRICTIVE MARKINGS			
28 SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION AVAILABILITY OF REPORT			
26 DECLASS F CATION DOWNGRADING SCHEDULE		Approved for public release, distribution unlimited.			
4 PERFORMING ORGANIZATION REPORT NUMBER(S)		5 MONITORING ORGANIZATION REPORT NUMBER(S)			
NRL Report 8967					
Name of Performing Organization Naval Research Laboratory	66 OFFICE SYMBOL (If applicable) 2303.1	78 NAME OF MONITORING ORGANIZATION			
·	2303.1	3) 400000000	1 1000000		
6c ADDRESS (City, State, and ZIP Code) Washington, D.C. 20375-3000		76 ADDRESS (City, State, and ZIP Code)			
8a NAME OF FUNDING SPONSORING ORGANIZATION Naval Research Laboratory	8b OFFICE SYMBOL (if applicable) = 303.1	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
8: ADDRESS (City, State, and ZIP Code)		10 SOURCE O FUNDING NUMBERS			
Washington, D.C. 20375-5000		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO
11 TITLE (Include Security Classification)		l	L	<u> </u>	
An Incomplete Lipschitz-Hankel Integral of K_0 , Part I					
12 PERSONAL AUTHOR(S) Miller, Allea R.					
136 TYPE OF REPORT 136 TIME COVERED 1/86 TO 1/86		14 DATE OF REPOR	RT (Year, Month, i	Day) 15 9	PAGE COUNT
16 SUPPLEMENTARY NOTATION					
		Continue on reverse if necessary and identify by block number)			
FELD GROUP SUB-GROUP	GROUP Incomplete Lipschitz-H. Kampé de Fériet functio			ls	
	Special fun	ctions			
19 ABSTRACT (Continue on reverse if necessary and identify by block number)					
An incomplete Lipschitz Hankel cylindrical, and Kampe de Fériet fun derived	Integral of K_0 and ctions. Some of the	related integrals properties of th	s are given in 1 nese Kampé de	terms of e Fériet fur	lementary, nctions are
					
20 DISTRIBUTION AVAILABILITY OF ABSTRACT DINCLASS FLED UNLIMITED QUISAME AS RRT DITIC USERS		21 ABSTRACT SECURITY CLASS PICATION UNCLASSIBLE.			
22a NAME OF RESPONSIBLE PROPVIOUAL METERS By METTER	226 TELEPHONE (226 TELEPHONE (Include Area Code) 22c OFFICE SYMBOL (202) 767+2215 Code (2303) 1			
DD FORM 1473, 54 MAP 83 AP	Ried tion may be used used used used used as Alliother editions are o		SECUR TY		ON OF THIS PAGE

CONTENTS

INTRODUCTION	1
PRELIMINARY DEFINITIONS	1
SOME ELEMENTARY PROPERTIES OF $M[\alpha, \beta; \gamma, \delta; x, y]$	2
SOME ELEMENTARY PROPERTIES OF $L[\alpha, \beta; \gamma, \delta; x, y]$	5
A CLOSED FORM FOR $K_{c_0}(a, z)$	6
KING'S INTEGRAL	9
A DISTRIBUTION FOR THE ELEVATION OF A SINE WAVE	11
SOME INTEGRALS RELATED TO $K_{e_0}(a,z)$	12
CONCLUSIONS	13
REFERENCES	13

Accession For
NTIS GRAAI
DTIC TAB
Unannounced
Justification
By
Availability Codes
Special
H-11

AN INCOMPLETE LIPSCHITZ-HANKEL INTEGRAL OF K_0 PART I

INTRODUCTION

An incomplete Lipschitz-Hankel integral of cylindrical functions of order zero, C_0 , may be defined by

$$C_{e_0}(a,z) \equiv \int_0^z e^{at} C_0(t) dt$$

Of interest in applications are the functions $J_{e_0}(a, z)$, $I_{e_0}(a, z)$, and $N_{e_0}(a, z)$ where J denotes the Bessel function of the first kind, I denotes the modified Bessel function, and N denotes the Bessel function of the second kind or Neumann function. $J_{e_0}(a, z)$ and $N_{e_0}(a, z)$ occur in problems in the theory of diffraction in optical apparatus [1, p. 227]. The function $I_{e_0}(a, z)$ plays an important role in the study of oscillating wings in supersonic flow and arises in the study of resonant absorption in media with finite dimensions [1, p. 195].

In this report we are interested in

$$K_{e_0}(a,z) \equiv \int_0^z e^{at} K_0(t) dt \tag{1}$$

where K denotes the MacDonald function or Bessel function of imaginary argument. We shall show that $K_{e_0}(a,z)$ can be written in closed form in terms of elementary functions, K_0 , K_1 , and Kampé de Fériet double hypergeometric functions. As an application it shall be shown that $K_{e_0}(a,z)$ occurs when the statistical distribution of the maxima of a random function is applied to the amplitude of a sine wave in order to calculate the distribution of its ordinate. This latter distribution is of interest in the study of the scattered coherent reflected field from the sca surface [2].

Moreover we derive formulas for several integrals that are not readily available, and we exhibit some of the properties of the Kampé de Fériet functions associated with $K_{e_0}(a, z)$.

PRELIMINARY DEFINITIONS

The Pochhammer symbol $(a)_n$ is defined for nonnegative integers n as a ratio of gamma functions:

$$(a)_n \equiv \Gamma(a+n)/\Gamma(a) = a(a+1) \dots (a+n-1)$$

$$(a)_0 \equiv 1$$
(2)

Manuscript approved January 8, 1986.

Following Srivastava and Panda [3, p. 63] we define the Kampé de Fériet double hypergeometric functions:

$$F_{l:m;n}^{p;q;k}\begin{bmatrix} (a_p): (b_q); & (c_k); \\ (\alpha_l): (\beta_m); & (\gamma_n); & x, y \end{bmatrix} \equiv \sum_{r,s=0}^{\infty} \frac{\prod\limits_{j=1}^{p} (a_j)_{r+s} \prod\limits_{j=1}^{q} (b_j)_r \prod\limits_{j=1}^{k} (c_j)_s}{\prod\limits_{j=1}^{l} (\alpha_j)_{r+s} \prod\limits_{j=1}^{m} (\beta_j)_r \prod\limits_{j=1}^{n} (\gamma_j)_s} \frac{x^r}{r!} \frac{y^s}{s!}$$

where the Pochhamner symbols $(a)_n$ are defined by Eq. (2). For convergence

$$p + q < l + m + 1$$
, $p + k < l + n + 1$, $|x| < \infty$, $|y| < \infty$, or

$$p+q=l+m+1$$
, $p+k=l+n+1$, and

$$\begin{cases} |x|^{1/(p-l)} + |y|^{1/(p-l)} < 1 & p > l \\ \max\{|x|, |y|\} < 1 & p \leq l \end{cases}$$

As special cases we define

$$L[\alpha, \beta; \gamma, \delta; x, y] \equiv \sum_{m,n=0}^{\infty} \frac{(\alpha)_m(\beta)_n}{(\gamma)_{m+n}(\delta)_{m+n}} \frac{x^m}{m!} \frac{y^n}{n!} \quad |x| < \infty, |y| < \infty$$
 (3)

$$M(\alpha, \beta; \gamma, \delta; x, y) \equiv \sum_{m,n=0}^{\infty} \frac{(\alpha)_{m+n}(\beta)_n}{(\gamma)_{m+n}(\delta)_m} \frac{x^m}{m!} \frac{y^n}{n!} \qquad |x| < \infty, |y| < 1$$
 (4)

We may then write

$$L[\alpha, \beta; \gamma, \delta; x, y] = F_{2:0:0}^{0:1:1} \begin{bmatrix} - : \alpha; \beta; \\ \gamma, \delta; -; -; x, y \end{bmatrix}$$

$$M[\alpha, \beta; \gamma, \delta; x, y] = F_{1:1:0}^{1:0:1} \begin{bmatrix} \alpha : -; \beta; \\ \gamma : \delta : -; \end{bmatrix} x, y$$

SOME ELEMENTARY PROPERTIES OF $M[\alpha, \beta; \gamma, \delta; x, y]$

Substituting [4, p. 266]

$$\frac{(\alpha)_{p}}{(\gamma)_{p}} = \frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\gamma - \alpha)} \int_{0}^{1} t^{p+\alpha-1} (1-t)^{\gamma-\alpha-1} dt$$

where Re $\gamma > \text{Re } \alpha > 0$, and p = m + n into Eq. (4), we deduce an integral representation for M:

$$M[\alpha, \beta; \gamma, \delta; x, y] = \frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\gamma - \alpha)} \int_0^1 {}_0F_1[-; \delta; x_\ell] t^{\alpha - 1} (1 - t)^{\gamma - \alpha - 1} (1 - yt)^{-\beta} dt$$

$$= \frac{\Gamma(\gamma)\Gamma(\delta)}{\Gamma(\alpha)\Gamma(\gamma-\alpha)} x^{-\frac{\delta-1}{2}} \int_0^1 I_{\delta-1} (2\sqrt{xt}) t^{\alpha-\frac{\delta+1}{2}} (1-t)^{\gamma-\alpha-1} (1-yt)^{-\beta} dt$$

Here we have used the equation

$$I_{\nu}(z) = \frac{(z/2)^{\nu}}{\Gamma(\nu+1)} \,_{0}F_{1}[-; \nu+1; z^{2}/4] \tag{5}$$

We obtain directly from Eq. (4) the generating relation

$$M[\alpha, \beta; \gamma, \delta; x, y] = \sum_{n=0}^{\infty} \frac{(\alpha)_n}{(\gamma)_n(\delta)_n} \frac{x^n}{n!} {}_{2}F_{1}[n+\alpha, \beta; n+\gamma; y]$$
 (6)

We now prove the following

THEOREM: Suppose $-1 < \text{Re}(\gamma - \alpha - \beta) < 0$, $|\arg y| < \pi$, $|\arg(1 - y)| < \pi$. Then for $y \to 1$,

$$M[\alpha, \beta; \gamma, \delta; x, y] = \frac{\Gamma(\gamma) \Gamma(\gamma - \alpha - \beta)}{\Gamma(\gamma - \alpha) \Gamma(\gamma - \beta)} {}_{1}F_{2}[\alpha; \gamma - \beta, \delta; x]$$

$$+ \frac{\Gamma(\gamma) \Gamma(\alpha + \beta - \gamma)}{\Gamma(\alpha) \Gamma(\beta)} (1 - y)^{\gamma - x - \beta} {}_{0}F_{1}[-; \delta; x] + O(1 - y)$$
(7)

ог

$$M[\alpha,\beta;\gamma,\delta;x,y] = \frac{\Gamma(\gamma)\Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha)\Gamma(\gamma-\beta)} \, {}_1F_2[\alpha;\gamma-\beta,\delta;x] + O(1-y)$$

$$+ \Gamma(\alpha + \beta - \gamma) \frac{\Gamma(\gamma)\Gamma(\delta)}{\Gamma(\alpha)\Gamma(\beta)} x^{-\frac{\delta-1}{2}} (1 - y)^{\gamma - \alpha - \beta} I_{\delta-1}(2\sqrt{x})$$
 (8)

Proof: The following result is found in [4, Eq. (9.5.7), p. 249]: for $\alpha + \beta - \gamma \neq 0$, $\pm 1, \pm 2, \ldots$, $|\arg z| < \pi$, $|\arg (1-z)| < \pi$

$${}_{2}F_{1}[\alpha,\beta;\gamma;z] = \frac{\Gamma(\gamma)\Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha)\Gamma(\gamma-\beta)} {}_{2}F_{1}[\alpha,\beta;1+\alpha+\beta-\gamma;1-z]$$

$$+ (1-z)^{\gamma-\alpha-\beta} \frac{\Gamma(\gamma)\Gamma(\alpha+\beta-\gamma)}{\Gamma(\alpha)\Gamma(\beta)} {}_{2}F_{1}[\gamma-\alpha,\gamma-\beta;1-\alpha-\beta+\gamma;1-z]$$

Hence

$${}_{2}F_{1}[n+\alpha,\beta;n+\gamma;y] = \frac{\Gamma(n+\gamma)\Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha)\Gamma(n+\gamma-\beta)} {}_{2}F_{1}[n+\alpha,\beta;1+\alpha+\beta-\gamma;1-y]$$

$$+ (1-y)^{\gamma-\alpha-\beta} \frac{\Gamma(n+\gamma)\Gamma(\alpha+\beta-\gamma)}{\Gamma(n+\alpha)\Gamma(\beta)} {}_{3}F_{1}[\gamma-\alpha,n+\gamma-\beta;1-\alpha-\beta+\gamma;1-y]$$

Now suppose that $-1 < \text{Re}(\gamma - \alpha - \beta) < 0$. Then for $y \to 1$ we have

$${}_{2}F_{1}[n+\alpha,\beta;n+\gamma;y] = \frac{\Gamma(n+\gamma)\Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha)\Gamma(n+\gamma-\beta)} + \frac{\Gamma(n+\gamma)\Gamma(\alpha+\beta-\gamma)}{\Gamma(n+\alpha)\Gamma(\beta)} (1-y)^{\gamma-\alpha-\beta} + O(1-y)$$

$$= \frac{(\gamma)_{n}}{(\gamma-\beta)_{n}} \frac{\Gamma(\gamma)\Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\beta)\Gamma(\gamma-\alpha)} + \frac{(\gamma)_{n}}{(\alpha)_{n}} \frac{\Gamma(\gamma)\Gamma(\alpha+\beta-\gamma)}{\Gamma(\alpha)\Gamma(\beta)} (1-y)^{\gamma-\alpha-\beta} + O(1-y)$$

Substituting this result into Eq. (6) gives

$$M[\alpha, \beta; \gamma, \delta; x, y] = \frac{\Gamma(\gamma)\Gamma(\gamma - \alpha - \beta)}{\Gamma(\gamma - \alpha)\Gamma(\gamma - \beta)} \sum_{n=0}^{\infty} \frac{(\alpha)_n}{(\gamma - \beta)_n(\delta)_n} \frac{x^n}{n!} + \frac{\Gamma(\gamma)\Gamma(\alpha + \beta - \gamma)}{\Gamma(\alpha)\Gamma(\beta)} (1 - y)^{\gamma - \alpha - \beta} \sum_{n=0}^{\infty} \frac{x^n}{(\delta)_n n!} + O(1 - y)$$

from which we obtain Eq. (7). Then using Eq. (5) we obtain Eq. (8).

Employing series rearrangement we deduce

$$M[\alpha, \beta; \gamma, \delta; x, tx] = \sum_{n=0}^{\infty} \frac{(\alpha)_{p}(\beta)_{p}}{(\gamma)_{p}} \frac{x^{p}}{p!} t^{p} {}_{1}F_{2}[-p; \delta, 1-\beta-p; 1/t]$$
 (9)

Using a general result of Srivastava [3, Eq. (30), p. 145] we find Eq. (9) in a different form, viz,

$$M(\alpha, \beta; \gamma, \delta; tx, t) = \sum_{p=0}^{\infty} \frac{(\alpha)_p(\beta)_p}{(\gamma)_p} \frac{t^p}{p!} {}_1F_2[-p; \delta, 1-\beta-p; x]$$

From Eq. (9) it follows that

$$M[\alpha, \beta; \gamma, \delta; x, tx] = \sum_{n=0}^{\infty} \frac{(\alpha)_p}{(\gamma)_n(\delta)_n} \frac{x^p}{p!} {}_3F_0[\beta, -p, 1-\delta-p; -; t]$$
 (10)

Equation (10) may be obtained directly from [3, Eq. (60.ii), p. 194]

We remark that it may be shown that $M[\alpha, 1; \gamma, \delta; x, y]$ converges on the unit circle |y| = 1 if and only if ${}_{2}F_{1}[\alpha, 1; \gamma; y]$ converges on |y| = 1.

SOME ELEMENTARY PROPERTIES OF $L[\alpha, \beta; \gamma, \delta; x, y]$

Using series rearrangement we find

$$L[\alpha, \beta; \gamma, \delta; x, tx] = \sum_{p=0}^{\infty} \frac{(\alpha)_p}{(\gamma)_p(\delta)_p} \frac{x^p}{p!} {}_2F_1[\beta, -p; 1 - \alpha - p; t]$$

This can also be obtained from [3, Eq. (30), p. 145] in a different form. Using Vandermonde's theorem [5, Eq. (1.7.7), p. 28]

$$_{2}F_{1}[a,-p;c;1] = (c-a)_{p}/(c)_{p}$$

$$_{2}F_{1}[\beta, -p; 1-\alpha-p; 1] = \frac{(1-\alpha-\beta-p)_{p}}{(1-\alpha-p)_{p}} = \frac{(\alpha+\beta)_{p}}{(\alpha)_{p}}$$

so that we have a reduction formula for L, viz,

$$L[\alpha, \beta; \gamma, \delta; x, x] = \sum_{\rho=0}^{\infty} \frac{(\alpha + \beta)_{\rho}}{(\gamma)_{\rho}(\delta)_{\rho}} \frac{x^{\rho}}{\rho!} = {}_{1}F_{2}[\alpha + \beta; \gamma, \delta; x]$$
 (11)

This result can be obtained also by using the following general result of Srivastava [3, Eq. (20), p. 55] applied to Eq. (3):

$$\sum_{m,n=0}^{\infty} c_{m+n}(\rho)_m(\sigma)_n \frac{x^{m+n}}{m!n!} = \sum_{n=0}^{\infty} c_n(\rho + \sigma)_n \frac{x^n}{n!}$$

provided each series is absolutely convergent.

We obtain directly from Eq. (3) the generating relation

$$L[\alpha, \beta; \gamma, \delta; x, y] = \sum_{m=0}^{\infty} \frac{(\alpha)_m}{(\gamma)_m(\delta)_m} \frac{x^m}{m!} {}_1F_2[\beta; m+\gamma, m+\delta; y]$$
 (12)

Finally, using [3, Eq. (43), p. 150] we obtain

$$L[\alpha, \beta; \gamma, \delta; -x, x \tan^2 \theta] = (\cos^2 \theta)^{\beta} \sum_{n=0}^{\infty} \frac{(\beta)_n (\sin^2 \theta)^n}{n!} {}_1F_2[\alpha - n; \gamma, \delta; -x]$$

A CLOSED FORM FOR $K_{e_0}(a, z)$

From Eq. (1) we write

$$K_{e_0}(\alpha/\beta,\beta) = \beta \int_0^1 e^{\alpha t} K_0(\beta t) dt$$
 (13)

Using [6, p. 89] we find the following formulas:

$$\int_{0}^{1} s^{m} K_{0}(zs) ds = \frac{K_{0}(z)}{m+1} {}_{1}F_{2} \left[1; \frac{m+1}{2}, \frac{m+3}{2}; \frac{z^{2}}{4} \right]$$

$$+ \frac{z K_{1}(z)}{(m+1)^{2}} {}_{1}F_{2} \left[1; \frac{m+3}{2}, \frac{m+3}{2}; \frac{z^{2}}{4} \right] \qquad m = 0, 2, 4, \dots$$
(14)

$$\int_{0}^{1} s^{m} K_{0}(zs) ds = \frac{2^{m-1} \Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{m+1}{2}\right)}{z^{m+1}}$$

$$-\frac{(m-1)K_{0}(z)}{z^{2}} {}_{3}F_{0}\left[1, \frac{1-m}{2}, \frac{3-m}{2}; -; \frac{4}{z^{2}}\right]$$

$$-\frac{K_{1}(z)}{z} {}_{3}F_{0}\left[1, \frac{1-m}{2}, \frac{1-m}{2}; -; \frac{4}{z^{2}}\right] \qquad m = 1, 3, 5, \dots$$
(15)

Integrating term by term we find

$$\int_{0}^{1} \exp(\alpha t) K_{0}(\beta t) dt = \int_{0}^{1} \sum_{n=0}^{\infty} \frac{\alpha^{n} t^{n}}{n!} K_{0}(\beta t) dt = \sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!} \int_{0}^{1} t^{n} K_{0}(\beta t) dt$$

$$= \sum_{n=0,2,4, -\frac{\alpha^{n}}{n!}} \int_{0}^{1} t^{n} K_{0}(\beta t) at + \sum_{n=1,3,5, -\frac{\alpha^{n}}{n!}} \int_{0}^{1} t^{n} K_{0}(\beta t) dt$$

$$= \sum_{n=0}^{\infty} \frac{\alpha^{2n}}{(2n)!} \int_{0}^{1} t^{2n} K_{0}(\beta t) dt + \sum_{n=0}^{\infty} \frac{\alpha^{2n+1}}{(2n+1)!} \int_{0}^{1} t^{2n+1} K_{0}(\beta t) dt$$

so that using Eqs. (14) and (15)

$$\int_{0}^{1} \exp(\alpha t) K_{0}(\beta t) dt = \sum_{n=0}^{\infty} \frac{\alpha^{2n}}{(2n)!} \frac{K_{0}(\beta)}{2n+1} {}_{1}F_{2} \left[1; \frac{2n+1}{2}, \frac{2n+3}{2}; \frac{\beta^{2}}{4} \right]$$

$$+ \sum_{n=0}^{\infty} \frac{\alpha^{2n}}{(2n)!} \frac{\beta K_{1}(\beta)}{(2n+1)^{2}} {}_{1}F_{2} \left[1; \frac{2n+3}{2}, \frac{2n+3}{2}; \frac{\beta^{2}}{4} \right]$$

$$+ \sum_{n=0}^{\infty} \frac{\alpha^{2n+1}}{(2n+1)!} 2^{2n} \frac{\Gamma(n+1)\Gamma(n+1)}{\beta^{2n+2}}$$

$$- \sum_{n=0}^{\infty} \frac{\alpha^{2n+1}}{(2n+1)!} (2n) \frac{K_{0}(\beta)}{\beta^{2}} {}_{3}F_{0}[1, -n, 1-n; -; 4/\beta^{2}]$$

$$- \sum_{n=0}^{\infty} \frac{\alpha^{2n+1}}{(2n+1)!} \frac{K_{1}(\beta)}{\beta} {}_{3}F_{0}[1, -n, -n; -; 4/\beta^{2}]$$

$$(16)$$

We shall consider each of the above five sums in the order in which they appear. We find

$$\sum_{n=0}^{\infty} \frac{\alpha^{2n}}{(2n+1)!} {}_{1}F_{2}[1; n+1/2, n+3/2; \beta^{2}/4]$$

$$= \sum_{n=0}^{\infty} \frac{1}{(3/2)_{n}} \frac{(\alpha^{2}/4)^{n}}{n!} {}_{1}F_{2}[1; n+1/2, n+3/2; \beta^{2}/4] = L [1/2, 1; 1/2, 3/2; \alpha^{2}/4, \beta^{2}/4];$$

$$\sum_{n=0}^{\infty} \frac{\alpha^{2n}}{(2n+1)(2n+1)!} {}_{1}F_{2}[1; n+3/2, n+3/2; \beta^{2}/4]$$

$$= \sum_{n=0}^{\infty} \frac{(1/2)_{n}}{(3/2)_{n}(3/2)_{n}} \frac{(\alpha^{2}/4)^{n}}{n!} {}_{1}F_{2}[1; n+3/2, n+3/2; \beta^{2}/4] = L [1/2, 1; 3/2, 3/2, \alpha^{2}/4, \beta^{2}/4]$$

where in the latter two cases we have used Eq. (12);

$$\sum_{n=0}^{\infty} \frac{\alpha^{2n+1}}{(2n+1)!} 2^{2n} \frac{\Gamma(n+1)\Gamma(n+1)}{\beta^{2n+2}} = \frac{\sin^{-1}(\alpha/\beta)}{\sqrt{\beta^2 - \alpha^2}} \qquad |\alpha/\beta| \le 1, \quad \alpha \ne \pm \beta$$

where $\frac{1}{2}$ have used [9, Eq. (9.121-14), p. 1041] the result $_2F_1[1, 1; 3/2; \sin^2 z] = z/\sin z \cos z$;

$$\frac{\alpha^{2n+1}}{(2n+2)} = (n)_3 F_0[1,-n,1-n;-;4/\beta^2] = \sum_{n=0}^{\infty} \frac{\alpha^{2n+3}}{(2n+3)!} (2n+2)_3 F_0[1,-1-n,-n;-;4/\beta^2]$$

$$\frac{1}{n=0} \frac{(\alpha^2/4)^n}{(5/2)_n} \frac{(\alpha^2/4)^n}{n!} {}_3F_0[1,-1-n,-n;-;4/\beta^2] = \frac{\alpha^3}{3} M\left[2,1;\frac{5}{2},2;\frac{\alpha^2}{4},\frac{\alpha^2}{\beta^2}\right];$$

and finally

$$\sum_{n=0}^{\infty} \frac{\alpha^{2n+1}}{(2n+1)!} {}_{3}F_{0}[1,-n,-n;-1]4/\beta^{2}]$$

$$= \alpha \sum_{n=0}^{\infty} \frac{1}{(3/2)_n} \frac{(\alpha^2/4)^n}{n!} {}_{3}F_{0}[1, -n, -n; -; 4/\beta^2] = \alpha M \left[1, 1; \frac{\alpha^2}{4}, \frac{\alpha^2}{\beta^2}\right]$$

where in the latter two cases we have used Eq. (10).

Defining

$$L_0(x, y) \equiv \sum_{m,n=0}^{\infty} \frac{(1/2)_m (1)_n}{(3/2)_{m+n} (3/2)_{m+n}} \frac{x^m}{m!} \frac{y^n}{r!} = L[1/2, 1; 3/2, 3/2; x, y]$$

$$L_1(x, y) \equiv \sum_{m,n=0}^{\infty} \frac{(1/2)_m (1)_n}{(1/2)_{m+n} (3/2)_{m+n}} \frac{x^m}{m!} \frac{y^n}{n!} = L [1/2, 1; 1/2, 3/2; x, y]$$

$$M_0(x,y) \equiv \sum_{m,n=0}^{\infty} \frac{(1)_{m+n}}{(3/2)_{m+n}} \frac{(1)_n}{(1)_m} \frac{x^m}{m!} \frac{y^n}{n!} = M[1,1;3/2,1;x,y]$$

$$M_1(x, y) \equiv \sum_{m,n=0}^{\infty} \frac{(2)_{m+n}}{(5/2)_{m+n}} \frac{(1)_n}{(2)_m} \frac{x^m}{m!} \frac{y^n}{n!} = M[2, 1; 5/2, 2; x, y]$$

we have from Eq. (16) and the above results

$$\int_{0}^{1} \exp(\alpha t) K_{0}(\beta t) dt = K_{1}(\beta) \left[\beta L_{0}(\alpha^{2}/4, \beta^{2}/4) - \frac{\alpha}{\beta} M_{0}(\alpha^{2}/4, \alpha^{4}/\beta^{2}) \right]$$

$$+ K_{0}(\beta) \left[L_{1}(\alpha^{2}/4, \beta^{2}/4) - \frac{\alpha^{3}}{3\beta^{2}} M_{1}(\alpha^{2}/4, \alpha^{2}/\beta^{2}) \right] + \frac{\sin^{-1}(\alpha/\beta)}{\sqrt{\beta^{2} - \alpha^{2}}}$$
(17)

which we may write using Eq. (13)

$$K_{c_0}(a,z) = z K_1(z) \left[z L_0 \left(\frac{a^2 z^2}{4}, \frac{z^2}{4} \right) - a M_0 \left(\frac{a^2 z^2}{4}, a^2 \right) \right]$$

$$+ z K_0(z) \left[L_1 \left(\frac{a^2 z^2}{4}, \frac{z^2}{4} \right) - \frac{a^3 z}{3} M_1 \left(\frac{a^2 z^2}{4}, a^2 \right) \right] + \frac{\sin^{-1} a}{\sqrt{1 - a^2}}$$
(18)

We have then given $K_{e_0}(a, z)$ in terms of elementary, MacDonald, and Kampé de Fériet functions.

We remark that in view of Eq. (6) and the definitions of M_0 and M_1

$$M_0(x, y) = \sum_{n=0}^{\infty} \frac{1}{(3/2)_n} \frac{x^n}{n!} {}_2F_1[1, n+1; n+3/2; y]$$

$$M_1(x, y) = \sum_{n=0}^{\infty} \frac{1}{(5/2)_n} \frac{x^n}{n!} {}_2F_1[1, n+2; n+5/2; y]$$

Since each of the Gauss hypergeometric functions above is conditionally convergent on the unit circle |y|=1 except at y=1 we see that $M_0(x,y)$ and $M_1(x,y)$ are conditionally convergent on |y|=1 except at y=1. Hence Eq. (17) is valid for $|\alpha/\beta| \le 1$, $\alpha \ne \pm \beta$ and Eq. (18) is valid for $|a| \le 1$, $a \ne \pm 1$. We shall show shortly that Eq. (17) is valid in the limit even when $\alpha = \pm \beta$. See Ref. 1 for other representations of $K_{c_0}(a,z)$.

In a future report (Part II) it shall be shown that Eq. (18) is easily extended to the entire complex a-plane in terms of elementary, MacDonald and Kampé de Fériet functions.

KING'S INTEGRAL

Using properties of L and M we have derived earlier we shall derive (a formula for) King's integral [6, Eq. (12), p. 123]:

$$\int_0^{\pi} \exp t K_0(t) dt = \alpha \exp \alpha [K_0(\alpha) + K_1(\alpha)] - 1$$
(19)

that is we shall show Eq. (17) is valid in the limit for $\alpha = \beta$. Using Eq. (8) we find for $\alpha \to \beta$

$$M_0(\alpha^2/4, \alpha^2/\beta^2) = \frac{\pi}{2} \frac{I_0(\alpha)}{\sqrt{1 - \alpha^2/\beta^2}} - \cosh \alpha + O(1 - \alpha^2/\beta^2)$$

$$M_1(\alpha^{2/4}, \alpha^{2/\beta^2}) = \frac{3}{\alpha} \left[\frac{\pi}{2} \frac{I_1(\alpha)}{\sqrt{1 - \alpha^2/\beta^2}} - \sinh \alpha + O(1 - \alpha^2/\beta^2) \right]$$

^{*}Also see remark on top of p. 5

Substituting these equations into Eq. (17) gives

$$\int_0^1 \exp(\alpha t) K_0(\beta t) dt = \frac{\sin^{-1}(\alpha/\beta) - \frac{\pi}{2} \left[\alpha K_1(\beta) I_0(\alpha) + (\alpha^2/\beta) K_0(\beta) I_1(\alpha)\right]}{\sqrt{\beta^2 - \alpha^2}} + \frac{\alpha}{\beta} K_1(\beta) \cosh \alpha$$

$$+\frac{\alpha^2}{\beta^2}K_0(\beta)\sinh\alpha + K_0(\beta)L_1(\alpha^2/4,\beta^2/4) + \beta K_1(\beta)L_0(\alpha^2/4,\beta^2/4) + O(1-\alpha^2/\beta^2)$$
 (20)

Using the reduction formula Eq. (11) for L we deduce

$$L_0(x^2/4, x^2/4) = \frac{\sinh x}{x}$$

$$L_1(x^2/4, x^2/4) = \cosh x$$

Now holding β fixed and letting $\alpha \rightarrow \beta$ we obtain after simplification

$$\int_0^1 \exp(\beta t) K_0(\beta t) dt = [K_0(\beta) + K_1(\beta)] \exp\beta + \lim_{\alpha \to \beta} J(\alpha, \beta)$$

where $J(\alpha, \beta)$ is the first term on the right-hand side of Eq. (20). We find however that

$$\lim_{\alpha \to \beta} \left\{ \text{numerator } J(\alpha, \beta) \right\} = \frac{\pi}{2} \left\{ 1 - E K_1(\beta) I_0(\beta) - \beta K_0(\beta) I_1(\beta) \right\} = 0$$

$$\lim_{\alpha \to \beta} [\text{denominator } J(\alpha, \beta)] = 0$$

so that on applying L'hospital's rule we have

$$\lim_{\alpha \to \beta} J(\alpha, \beta) = -1/\beta$$

Hence

$$\int_0^1 \exp(\beta t) K_0(\beta t) dt = [K_0(\beta) + K_1(\beta)] \exp \beta - 1/\beta$$

and a simple transformation now gives Eq. (19). We may perform a similar analysis for $\alpha \rightarrow \beta$ to obtain

$$\int_0^1 \exp(-\beta t) K_0(\beta t) dt = [K_0(\beta) - K_1(\beta)] \exp(-\beta) + 1/\beta$$

A DISTRIBUTION FOR THE ELEVATION OF A SINE WAVE

Consider the random variable $y = H \sin \theta$, where H is a random variable with density $K(H, \epsilon)$, $|H| < \infty$, and θ is a random variable, independent of H, with density

$$U(\theta) = \pi^{-1} \qquad |\theta| \leqslant \pi/2$$
$$= 0 \qquad |\theta| > \pi/2$$

Let $D(y, \epsilon)$ be the density function for y. It is shown in Ref. 2 that

$$D(y,\epsilon) = \frac{1}{\pi} \int_{-\infty}^{-|y|} \frac{K(H,\epsilon) dH}{\sqrt{H^2 - y^2}} + \frac{1}{\pi} \int_{|y|}^{\infty} \frac{K(H,\epsilon) dH}{\sqrt{H^2 - y^2}}$$
(21)

Rice [7] and Cartwright and Longuet-Higgins [8] have derived an expression for the statistical distribution of the maxima of a random function that may be expressed in the form

$$K(H,\epsilon) = \frac{\epsilon}{\sigma_H \sqrt{2\pi}} \exp\left[\frac{-H^2}{2\epsilon^2 \sigma_H^2}\right] + \frac{\sqrt{1-\epsilon^2}}{2\sigma_H^2} H \exp\left[\frac{-H^2}{2\sigma_H^2}\right] \left[1 + \operatorname{erf}\left[\frac{\sqrt{2}}{2} \frac{H}{\sigma_H} \frac{\sqrt{1-\epsilon^2}}{\epsilon}\right]\right]$$
(22)

Here σ_H is the standard deviation of H, and $0 < \epsilon < 1$ is known as the spectral width parameter. It is shown in Ref. 2 that the standard deviation σ of y is given by

$$\sigma = \sigma_H/(\sqrt{2}\eta)$$

where η is defined by

$$\eta \equiv \left[1 + \frac{\pi}{2}(1 - \epsilon^2)\right]^{-1/2}$$

Substituting Eq. (22) into Eq. (21) and using the latter result gives

$$D(y,\epsilon) = \frac{\epsilon}{2\pi^{3/2}\eta\sigma} \exp\left(\frac{-y^2}{3\epsilon^2\eta^2\sigma^2}\right) K_0\left(\frac{y^2}{8\epsilon^2\eta^2\sigma^2}\right) + \frac{\sqrt{1-\epsilon^2}}{\pi\eta\sigma} \exp\left(\frac{-y^2}{4\eta^2\sigma^2}\right) \Psi\left(\frac{\sqrt{1-\epsilon^2}}{\epsilon},\frac{y}{2\eta\sigma}\right)$$
(23)

where the function $\Psi(k, u)$ is defined by

$$\Psi(k, u) \equiv \int_0^\infty \exp(-s^2) \operatorname{erf}(k\sqrt{u^2 + s^2}) ds \tag{24}$$

For real u and k it is shown in Ref. 2 that

$$\pi^{1/2} \int_0^\infty \exp(-s^2) \operatorname{erf} (k\sqrt{u^2 + s^2}) ds = \tan^{-1} k + \frac{k}{1 + k^2} \int_0^{\frac{1}{2}u^2(1 + k^2)} \exp\left(\frac{1 - k^2}{1 + k^2} s\right) K_0(s) ds$$

Using Eqs. (1) and (24) this may be written

$$\Psi(k, u) = \frac{\tan^{-1}(k)}{\pi^{1/2}} + \frac{1}{\pi^{1/2}} \frac{k}{1+k^2} K_{e_0} \left[\frac{1-k^2}{1+k^2}, \frac{1}{2} u^2 (1+k^2) \right]$$

We may then write Eq. (23)

$$\begin{split} D(y,\epsilon) &= \frac{\epsilon}{2\pi^{3/2}\eta\sigma} \exp\left[\frac{-y^2}{8\epsilon^2\eta^2\sigma^2}\right] K_0 \left[\frac{y^2}{8\epsilon^2\eta^2\sigma^2}\right] \\ &+ \frac{\sqrt{1-\epsilon^2}}{\pi^{3/2}\eta\sigma} \exp\left[\frac{-y^2}{4\eta^2\sigma^2}\right] \left[\cos^{-1}\epsilon + \epsilon\sqrt{1-\epsilon^2} K_{\epsilon_0}(2\epsilon^2 - 1, y^2/8\epsilon^2\eta^2\sigma^2)\right] \end{split}$$

where $K_{e_0}(a, z)$ is given by Eq. (18).

SOME INTEGRALS RELATED TO $K_{e_0}(a, z)$

The following integrals can easily be obtained from Eq. (17):

$$\int_{0}^{1} \sin(\alpha t) K_{0}(\beta t) dt = \frac{\sinh^{-1}(\alpha/\beta)}{\sqrt{\alpha^{2} + \beta^{2}}} - \frac{\alpha}{\beta} K_{1}(\beta) M_{0}(-\alpha^{2}/4, -\alpha^{2}/\beta^{2})$$

$$+ \frac{\alpha^{3}}{3\beta^{2}} K_{0}(\beta) M_{1}(-\alpha^{2}/4, -\alpha^{2}/\beta^{2}) \qquad |\alpha/\beta| \leq 1, \quad \alpha \neq \pm i\beta$$

$$\int_{0}^{1} \cos(\alpha t) K_{0}(\beta t) dt = \beta K_{1}(\beta) L_{0}(-\alpha^{2}/4, \beta^{2}/4) + K_{0}(\beta) L_{1}(-\alpha^{2}/4, \beta^{2}/4)$$

Further, using the result [2] for $0 < |\alpha| < 1, 0 < x$

$$K_{e_0}(\alpha, x) = \operatorname{sgn} \alpha \left\{ \exp(\alpha x) \left[\int_0^\infty \frac{\cos(\alpha x t) dt}{(1 + t^2)\sqrt{1 + \alpha^2 t^2}} + \int_0^\infty \frac{t \sin(\alpha x t) dt}{(1 + t^2)\sqrt{1 + \alpha^2 t^2}} \right] - \frac{\cos^{-1}(|\alpha|)}{\sqrt{1 - \alpha^2}} \right\}$$

we find for $0 < \alpha < \beta$

$$\int_{0}^{\infty} \frac{\cos{(\alpha x)} dx}{(1+x^{2})\sqrt{\beta^{2}+\alpha^{2}x^{2}}} = \cosh{\alpha} \left\{ \frac{\pi/2}{\sqrt{\beta^{2}-\alpha^{2}}} - \frac{\alpha}{\beta} K_{1}(\beta) M_{0}(\alpha^{2}/4, \alpha^{2}/\beta^{2}) - \frac{\alpha^{3}}{3\beta^{2}} K_{0}(\beta) M_{1}(\alpha^{2}/4, \alpha^{2}/\beta^{2}) \right\}$$
$$- \sinh{\alpha} \left\{ \beta K_{1}(\beta) L_{0}(\alpha^{2}/4, \beta^{2}/4) + K_{0}(\beta) L_{1}(\alpha^{2}/4, \beta^{2}/4) \right\}$$

$$\int_0^\infty \frac{x \sin(\alpha x) dx}{(1+x^2)\sqrt{\beta^2 + \alpha^2 x^2}} = \cosh \alpha \left\{ \beta K_1(\beta) L_0(\alpha^2/4, \beta^2/4) + K_0(\beta) L_1(\alpha^2/4, \beta^2/4) \right\}$$

$$- \sinh \alpha \left\{ \frac{\pi/2}{\sqrt{\beta^2 - \alpha^2}} - \frac{\alpha}{\beta} K_1(\beta) M_0(\alpha^2/4, \alpha^2/\beta^2) - \frac{\alpha^3}{3\beta^2} K_0(\beta) M_1(\alpha^2/4, \alpha^2/\beta^2) \right\}$$

In addition [9, Eq. (3.367), p. 316] we have

$$\int_0^{\infty} \frac{e^{-\rho t} \sin \theta dt}{(1+t+\cos \theta)\sqrt{t^2+2t}} = \exp\left[2\rho \cos^2 \frac{\theta}{2}\right] [\theta - \sin \theta \ K_{e_0}(-\cos \theta, \rho)] \qquad \text{Re } \rho > 0$$

CONCLUSIONS

The Kampé de Fériet functions have been used to put in closed form the incomplete Lipschitz-Hankel integral $K_{c_0}(a,z)$ and several related integrals that are not readily available and are of interest in mathematical physics and applications. Some of the properties of the Kampé de Fériet functions associated with $K_{c_0}(a,z)$ are derived. These properties are useful in deriving additional results quickly. As an example we have given an elementary derivation of a closed form for King's integral based on generating function techniques.

In addition, the utility of a closed form for $K_{c_0}(a, z)$ is indicated by deriving a certain density function that is associated with the scattered coherent return from the sea surface.

REFERENCES

- 1. M.M. Agrest and M.S. Maksimov, *Theory of Incomplete Cylindrical Functions and Their Applications*, Springer-Verlag, 1971.
- 2. A.R. Miller and E. Vegh, "A Family of Curves for the Rough Surface Reflection Coefficient," NRL Report 8898, July 1985.
- 3. H.M. Srivastava and H.L. Manocha, 4 Treatise on Generating Functions, Ellis Horwood Limited, 1984.
- 4. N.N. Lebedev, Special Functions and Their Applications, Dover, 1972.
- 5. L.J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, 1966.
- 6. Y.L. Luke, Integrals of Bessel Functions, McGraw-Hill, 1962.
- 7. S.O. Rice, "Mathematical Analysis of Random Noise," Bell System Tech. J. 24, 46, 1945
- 8. D.E. Cartwright and M.S. Longuet-Higgins, "The Statistical Distribution of the Maxima of a Random Function," *Proc. Royal Soc. London*, Series A, 237, 212-232, 1956.
- 9. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.