Introduction to Group Theory

Carson James

1

Contents

Notation			vii
P	refac	e Category Theory	1 2
1		Representation Theory Representations of Groups	
	1.2	1.1.2 Unitary representations	3
2	\mathbf{Gro}	oupoids	7

vi CONTENTS

Notation

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

2 Notation

0.1 Category Theory

• Hilb:

```
- Obj(Hilb) = \{H : H \text{ is a Hilbert space}\}
- Hom<sub>Hilb</sub>(H_1, H_2) = \{T \in \mathbf{Vect}_{\mathbb{C}}(H_1, H_2) : T \text{ is continuous}\}
```

• Mon

Chapter 1

Representation Theory

1.1 Representations of Groups

1.1.1 The Unitary Group

Definition 1.1.1.1. Let $H_1, H_2 \in \text{Obj}(\mathbf{Hilb})$. We define the unitary group from H_1 to H_2 , denoted $U(H_1, H_2)$, by

$$U(H_1, H_2) = \{ T \in \text{Iso}_{\mathbf{Hilb}}(H_1, H_2) : T^* = T^{-1} \}$$

We write U(H) in place of U(H,H). We equip $U(H_1,H_2)$ with the strong operator topology.

Exercise 1.1.1.2. Let $H \in \text{Obj}(\mathbf{Hilb})$. Then $\mathcal{T}^s_{U(H)} = \mathcal{T}^w_{U(H)}$. strong weak operator topologies coincide

Exercise 1.1.1.3. Let $H \in \text{Obj}(\text{Hilb})$. Then U(H) is a topological group.

Proof. content...

1.1.2 Unitary representations

Definition 1.1.2.1. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $H \in \text{Obj}(\mathbf{Hilb})$ and $\pi \in \text{Hom}_{\mathbf{TopGrp}}(G, U(H))$. Then (H, π) is said to be a **unitary representation of** G. We define the **dimension of** (H, π) , denoted $\dim(H, \pi)$, by $\dim(H, \pi) := \dim V$.

Definition 1.1.2.2. Let $G \in \text{Obj}(\mathbf{TopGrp})$, (H_{π}, π) , (H_{ρ}, ρ) unitary representations of G and $T \in \text{Hom}_{\mathbf{Hilb}}(H_{\pi}, H_{\rho})$. Then T is said to be (π, ρ) -equivariant if for each $g \in G$, $T \circ \pi(g) = \rho(g) \circ T$, i.e. the following diagram commutes:

$$\begin{array}{ccc} H_{\pi} & \xrightarrow{T} & H_{\rho} \\ \pi(g) & & & \downarrow \rho(g) \\ H_{\pi} & \xrightarrow{T} & H_{\rho} \end{array}$$

Definition 1.1.2.3. Let $G \in \text{Obj}(\mathbf{TopGrp})$. We define $\mathbf{URep}(G)$ by

- Obj(URep(G)) = $\{(H, \pi) : (H, \pi) \text{ is a unitary representation of } G\}$.
- for $(H_{\pi}, \pi), (H_{\rho}, \rho) \in \text{Obj}(\mathbf{URep}(G)),$

 $\operatorname{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho)) = \{ T \in \operatorname{Hom}_{\mathbf{Hilb}}(H_{\pi}, H_{\rho}) : T \text{ is } (\pi, \rho) \text{-equivariant} \}$

• for $(H_{\pi}, \pi), (H_{\rho}, \rho), (H_{\mu}, \mu) \in \text{Obj}(\mathbf{URep}(G)), T \in \text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$ and $S \in \text{Hom}_{\mathbf{URep}(G)}((H_{\rho}, \rho), (H_{\mu}, \mu)),$

$$S \circ_{\mathbf{URep}(G)} T = S \circ T$$

Exercise 1.1.2.4. Let $G \in \text{Obj}(\mathbf{TopGrp})$. Then $\mathbf{URep}(G)$ is a category.

Proof. FINISH!!! □

Definition 1.1.2.5. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a subspace. Then E is said to be

- nontrivial if $E \neq H, \emptyset$
- (H,π) -invariant if for each $g \in G$, $\pi(g)(E) \subset E$

Definition 1.1.2.6. Let $G \in \text{Obj}(\mathbf{Grp})$ and $\mathbb{K} \in \text{Obj}(\mathbf{Field})$ and $(V, \pi) \in \text{Obj}(\mathbf{Rep}(G, \mathbb{K}))$. Then (V, π) is said to be **irriducible** if for each subspace $E \subset V$, E is trivial or E is not (V, π) -invariant.

Definition 1.1.2.7. Let $G \in \text{Obj}(\mathbf{TopGrp})$. Let $(H_{\pi}, \pi), (H_{\rho}, \rho) \in \mathbf{URep}(G)$. Then (H_{π}, π) and (H_{ρ}, ρ) are said to be **unitarily equivalent** if there exists $\text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho)) \cap U(H_{\pi, H_{\rho}}) \neq \emptyset$.

1.2 Tannaka Duality

Definition 1.2.0.1. Let $G \in \text{Obj}(\mathbf{TopGrp})$. We define the **forgetful functor from URep**(G) **to Hilb**, denoted $U : \mathbf{Rep}(G) \to \mathbf{Hilb}$, by

- $U(H,\pi) = H$, $(H,\pi) \in \text{Obj}(\mathbf{URep}(G))$
- U(T) = T, $T \in \text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$.

Need to find out if quotienting by equivalence of isomorphism makes $\mathbf{URep}(G)$ a small category so that we can talk about the functor category $\mathbf{Hilb}^{\mathbf{URep}(G)}$ containing the forgetful functor as an object.

Definition 1.2.0.2. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $g \in G$. We define $\hat{g}: U \Rightarrow U$ by

$$\hat{g}_{(H,\pi)} = \pi(g)$$

Exercise 1.2.0.3. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $g \in G$. Then

- 1. $\hat{g}: U \Rightarrow U$ is a natural transformation.
- 2. $\hat{g} \in \operatorname{Aut}_{\mathbf{Hilb}^{\mathbf{URep}(G)}}(U)$

Proof.

1. (a) Let $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. By definition,

$$\hat{g}_{(H,\pi)} = \pi(g)$$

$$\in U(H)$$

$$\subset \operatorname{Aut}_{\mathbf{Hilb}}(U(H,\pi))$$

(b) Let $(H_{\pi}, \pi), (H_{\rho}, \rho) \in \text{Obj}(\mathbf{URep}(G))$ and $T \in \text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$. By definition, $T \in \text{Hom}_{\mathbf{Hilb}}(H_{\pi}, H_{\rho})$ and T is (π, ρ) -equivariant. Therefore

$$\begin{split} U(T) \circ \hat{g}_{(H_{\pi},\pi)} &= T \circ \pi(g) \\ &= \rho(g) \circ T \\ &= \hat{g}_{(H_{\rho},\rho)} \circ U(T) \end{split}$$

i.e. the following diagram commutes:

$$U(H_{\pi}, \pi) \xrightarrow{\hat{g}_{(H_{\pi}, \pi)}} U(H_{\pi}, \pi) \qquad H_{\pi} \xrightarrow{\pi(g)} H_{\pi}$$

$$U(T) \downarrow \qquad \qquad \downarrow U(T) \qquad = \qquad \downarrow T \qquad \qquad \downarrow T$$

$$U(H_{\rho}, \rho) \xrightarrow{\hat{g}_{(H_{\rho}, \rho)}} U(H_{\rho}, \rho) \qquad H_{\rho} \xrightarrow{\rho(g)} H_{\rho}$$

Thus $\hat{g}: U \Rightarrow U$ is a natural transformation.

2. Set $h = g^{-1}$. Part (1) implies that $\hat{g}, \hat{h} \in \text{End}_{\mathbf{Hilb}^{\mathbf{URep}(G)}}(U)$. Let $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. Then

$$(\hat{g} \circ \hat{h})_{(H,\pi)} = \hat{g}_{(H,\pi)}$$

The previous part implies that

$$\begin{split} \hat{g} &\in \mathrm{Hom}_{\mathbf{TopVect}^{\mathbf{Rep}(G,\mathbb{C})}_{\mathbb{C}}}(U,U) \\ &= \mathrm{End}_{\mathbf{TopVect}^{\mathbf{Rep}(G,\mathbb{C})}_{G}}(U) \end{split}$$

Definition 1.2.0.4. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(V, \pi) \in \text{Obj}(\mathbf{Rep}(G, \mathbb{C}))$. We define the (V, π) -projection, denoted $\pi_{(V,\pi)} : \text{End}_{\mathbf{TopVect}^{\mathbf{Rep}(G,\mathbb{C})}_{\mathbb{C}}}(U) \to \text{End}_{\mathbf{TopVect}^{\mathbb{C}}_{\mathbb{C}}}(V)$, by $\pi_{(V,\pi)}(\alpha) = \alpha_{(V,\pi)}$. We define the **topology** of endomorphisms of U, denoted $\mathcal{T}_{\mathcal{E}(U)}$, by

$$\mathcal{T}_{\mathcal{E}(U)} = \tau(\pi_{(V,\pi)} : (V,\pi) \in \mathbf{Rep}(G,\mathbb{C}))$$

Definition 1.2.0.5. define addition of endomorphisms of U pointwise

Exercise 1.2.0.6. Let $G \in \mathrm{Obj}(\mathbf{TopGrp})$. Then $(\mathrm{Aut}_{\mathbf{TopVect}^{\mathbf{Rep}(G,\mathbb{C})}_{\mathbb{C}}}(U), \mathcal{T}_{\mathcal{E}(U)})$ is a topological unital algebra.

Proof.

Chapter 2

Groupoids

Definition 2.0.0.1.

Bibliography

- [1] Introduction to Algebra
- [2] Introduction to Analysis
- [3] Introduction to Fourier Analysis
- [4] Introduction to Measure and Integration