

Interactive Systems (ISY)

Auditorium Exercise 02

Jan Feuchter jan.feuchter@hci.uni-hannover.de

Lectures

Session	Date	Topic	Details
1	2.4.	Introduction	human performance, empirical research, modeling
2	9.4.	Interaction elements	input devices, interaction elements, states, layouts
	16.4.	Event handling	events, bindings, reactive programming, scene graph
3	23.4.	Scene graphs	event delivery, coordinate systems, nodes, animation, concurrency
4	30.4.	Interaction techniques	alignment and pointing techniques
5	7.5.	Interaction techniques	
6	14.5.	Web-based user interfaces	document object model, client-server issues
	21.5.	Pfingstwoche	
7	28.5.	Web-based user interfaces	reactive Programming for the Web
8	4.6.	Experiments and data analysis	designing experiments, hypothesis testing
9	11.6.	Modeling interaction	descriptive and predictive models, keystroke-level model, regression
10	18.6.	Visualization	visual encodings, perceptual accuracy, treemaps, dynamic queries
11	25.6.	Human-Centered Al	introduction to human-centered AI, human control and automation, examples
12	2.7.	Deep learning in HCI	guidelines for human-Al interaction, neural networks
13	9.7.	Deep learning in HCI	convolutional and recurrent NNs, face recognition, gesture recognition

ASSIGNMENT 1

Assignment 01

- Korrekturen und Punkte können im Upload Tool eingesehen werden
 - Entweder nach Abgabe des nächsten Assignment
 - Oder durch "previous submissions" Button in Kursübersicht

N submissions

Exercise 1

Fragen

Zeigt sich ein Lerneffekt?

Wie lassen sich diese Ergebnisse erklären?

Exercise 2

Frage

Gab es bei euren Ergebnissen starke Abweichungen?

Praktisches Beispiel

AUSWERTUNG GESAMMELTER ERGEBNISSE

Auswertung gesammelter Ergebnisse

- Laden Sie sich dafür eine Kopie des Spreadsheets als CSV-Datei herunter:
 https://docs.google.com/spreadsheets/d/1WBpnhl_C96u3IQ5Qpulw1csWjGcQet-TiYBgXsmMhlo
 - Lesen Sie die CSV-Datei in Jupyter Notebook mit Pandas in ein Dataframe ein.
- Berechnen Sie über alle Teilnehmer das mittlere Alter und die Standardabweichung. Wie viele weibliche, diverse und m\u00e4nnliche Teilnehmer gab es? Wie viele Teilnehmer sind Rechts-, Links- oder Beidh\u00e4nder? Wie viele Teilnehmer haben an den jeweiligen Experimenten teilgenommen?
 - Sind die Ergebnisse repräsentativ für die Bevölkerung?
- Lesen Sie sich in der folgenden Veröffentlichung den Abschnitt "Participants" durch: <u>https://www2.hci.uni-hannover.de/papers/pfeiffer2015CHICruise.pdf</u>
 - Was sagt der Abschnitt aus? Warum ist dieser Abschnitt wichtig?
- Stellen Sie die Reaktionszeiten für jeden einzelnen Teilnehmer für das Experiment SR graphisch mit Seaborn in einem Plot dar. Wählen Sie eine Plot-Variante (barplot, boxplot oder violinplot) aus und begründen Sie, warum Sie sich für diese entschieden haben.

LECTURE RECAP

Single-Button Mouse

- Actions
 - Press, release, start move, stop move
- States
 - Pressed, released, moving, dragging
- State transition diagram

Two-Button Mouse

- 6 Actions
 - Left press, left release, right press, right release, start move, stop move
- 6 States
 - Left/right pressed, released, moving, left/right dragging
- State transition diagram

Two Mouse Buttons

- Distinction between
 - Press left-then-right
 - Press right-then-left

Useful?

+ dragging with both left + right

Two Mouse Buttons

- Distinction between
 - Press left-then-right
 - Press right-then-left
- Typical Applications?

Spatial Relationships

Learned relationship

DOF	Control	Display
Х		
у		/ +
z		
θх		
θу		
θz	+	

Natural relationship

DOF	Control	Display
Х		
У	+	+
Z		
θх		
θу		
θz		

MacKenzie: Human-Computer Interaction - An Empirical Research Perspective.

Spatial Relationships

Is this possible?

DOF	Control	Display
х	+ •	+
у	+ •	+
z	+ •	+
θх	+ •	+
θу	+ •	+
θz	+ •	+

Which spatial relationships is more natural? Why?

A: Wheel forward: content moves up

B: Wheel forward: content moves down

Spatial Relationships

Is the light on or off?

- Cultural influence
 - US, Canada, Europe:
 - UP = ON
 - UK, India, Australia:
 - UP = OFF
 - Germany:
 - "OHR-Regel"
 - Oben-Hinten-Rechts ist an

Control-Display (CD) Gain

How should the transfer function be designed so that

the mouse can be positioned optimally?

MacKenzie: Human-Computer Interaction - An Empirical Research Perspective.

Widgets (aka Controls)

- Widgets are tools to manipulate the conten
 - Each widget solves a specific interaction problen
- Verb-object relationship
 - Widgets (tools) are the verb
 - Content (data) are the objects
 - Example: Pick a color (tool, verb)
 from an image pixel (data, object)

"No Chrome" Example: Sublime Text Editor

- "Distraction free" mode for full concentration on text editing
 - "You and your text. Nothing else."

- Each function has a keyboard shortcut
- Function access through search interface ①+光+P
 - Supports discoverability
- Transient views
 - Widgets only shown while invoking a function

"No Chrome" Example: Sublime Text Editor

- Guter Ansatz?
- Vorteile? Nachteile?

Scene Graphs

- Scene graph: Set of trees of graphical objects (nodes)
 - Retained mode API: System maintains model of all graphical objects
- Commonly used in video games and 3D graphics
- Allows post-hoc transformations of the structure
 - Size changes
 - Structure changes
 - Animation
 - Effects, etc.
- Creating graphics by modifying the scene graph
- System manages details of graphics rendering
 - Efficiency
 - Less application code

Scene Graphs

- Represents hierarchy of GUI elements
 - Also used in video games and 3D graphics
- Allows post-hoc transformations of the structure
 - Size changes
 - Structure changes
 - Animation
 - Effects, etc.
- System manages details of graphics rendering
 - Efficiency
 - Less application code

http://docs.oracle.com/javase/8/javafx/scene-graph-tutorial/scenegraph.htm

JavaFX Hierarchy of Scene Graph Nodes in a Layout

https://docs.oracle.com/javase/8/javafx/user-interface-tutorial/accordion-titledpane.htm

Which elements would be the topmost nodes in this view?

Which user actions may affect the visible image?

Layout Panes

- UI layout: Position and size of UI elements
- Manually laying out widgets is tedious
- Layout panes implement the arrangement of UI elements
- When a window is resized, layout panes reposition and scale the UI elements they contain according to
 - their layout strategy
 - row, column, grid, flow, anchors, etc.
 - the size constraints of the widgets
 - preferred size, min/max size, alignment
 - not all nodes are resizable (Text, Group, shapes)

BorderPane

Why exactly was this layout chosen for the BorderPane?

BorderPane

- What happens if the window width is changed?
- A: left, right constant;
 top, center, bottom larger
- B: center constant; top, bottom, left, right larger
- C: all larger;Ratio left : center : right remains constant

Praktisches Beispiel

LAYOUTS IN JAVAFX

Example: FlowPane

- Nodes flow horizontally (rows) or vertically (columns) and wrap at the pane boundary
 - Similar to line wrap in a text editor
- Example

```
FlowPane flow = new FlowPane();
flow.setPadding(new Insets(5, 5, 5, 5));
flow.setVgap(5); flow.setHgap(5);
Rectangle[] rs = new Rectangle[8];
for (int i = 0; i < rs.length; i++) {
    Color c = new Color((double) i / rs.length, 0, 0, 1);
    rs[i] = new Rectangle(50, 50, c);
    flow.getChildren().add(rs[i]);
```


see also: TextFlow, TilePane

Praktisches Beispiel: FlowPane

35

Scene Graph: Flow Pane mit Scrollbar

ASSIGNMENT 2

Assignment 02

- Abgabe bis Montag (15.04. 23:59)
- PDFs für Aufgaben 1, 2 & 3
- Exportiert das Java Projekt als Zip Datei
 - Wenn die .zip Datei, die ihr an das
 Assignment System schickt, eine weitere .zip
 Datei beinhaltet, dann habt ihr alles richtig
 gemacht

