A Primer on Data-Driven Many-Body Models

Paesani Research Group

July 14, 2025

Department of Chemistry and Biochemistry, UC San Diego

Consider a two-body system comprised by **A** and **B**. What is their interaction energy?

Consider a two-body system comprised by **A** and **B**. What is their interaction energy?

The energy of interaction between **A** and **B** is given by:

$$\Delta E = E_{\rm AB} - E_{\rm A} - E_{\rm B} \tag{1}$$

3

What is stored in ΔE ?

The theory of molecular interactions aims to DECOMPOSE and UNDERSTAND the nature of the interaction.

The energy of interaction between **A** and **B** is given by:

$$\Delta E = E_{\rm AB} - E_{\rm A} - E_{\rm B} \tag{2}$$

- How are the properties of **A** affected by the *presence* of **B**?
- Can understanding *single molecule* properties help us predict or rationalize *collective* behavior?

4

What is the (total) energy of system **ABCD**?

What is the (total) energy of system **ABCD**?

$$E_{\text{ABCD}} \neq E_{\text{A}} + E_{\text{B}} + E_{\text{C}} + E_{\text{D}}$$

$$\Delta E^{\text{AB}} + \Delta E^{\text{AC}} + \Delta E^{\text{AD}}$$

$$+ \Delta E^{\text{BC}} + \Delta E^{\text{BD}} + \Delta E^{\text{CD}}$$
(3)

This is only a first approximation: $E_{ABCD} \approx \sum_{i} \varepsilon_{1B} + \sum_{i>j} \varepsilon_{2B}$

To better approximate $E_{\rm ABCD}$, we can *correct* for the next n-body term, and so on.

7

Introductions: More than A and B

Contribution	Additive?	Sign	Comment
Long-range $(U \sim R^{-n})$			
Electrostatic	Yes	±	Strong orientation dependence
Induction	No	_	
Dispersion	approx.	_	Always present
Resonance	No	±	Degenerate states only
Magnetic	Yes	±	Very small
Short-range $(U \sim e^{-aR})$			
Exchange-repulsion	approx.	+	Dominates at very short range
Exchange-induction	approx.	_	
Exchange-dispersion	approx.	_	
Charge transfer	No	-	Donor-acceptor interaction

Figure 1: Contributions to the energy of interaction between molecules. Stone, Anthony. *The theory of intermolecular forces.* oUP oxford, 2013.

Many-Body Expansion of the Energy

For any N-body system composed of N atoms or molecules, the total energy of this system, E_N , can be written in terms of the many-body expansion (MBE):

$$E_{N}(\mathbf{r}_{1},..,\mathbf{r}_{N}) = \sum_{i=1}^{N} \varepsilon_{1B}(\mathbf{r}_{i})$$

$$+ \sum_{i=1}^{N} \sum_{j>i}^{N} \varepsilon_{2B}(\mathbf{r}_{i},\mathbf{r}_{j})$$

$$+ \sum_{i=1}^{N} \sum_{j>i}^{N} \sum_{k>j>i}^{N} \varepsilon_{3B}(\mathbf{r}_{i},\mathbf{r}_{j},\mathbf{r}_{k})$$

$$+ ... + \varepsilon_{NB}(\mathbf{r}_{1},..,\mathbf{r}_{N})$$
(5)

where ε_{1B} represents the energy of an isolated monomer, ε_{2B} a dimer... etc.

Many-Body Expansion of the Energy

For any N-body system composed of N atoms or molecules, the total energy of this system, E_N , can be written in terms of the many-body expansion (MBE):

$$E_{N}(\mathbf{r}_{1},..,\mathbf{r}_{N}) = \sum_{i=1}^{N} \varepsilon_{1B}(\mathbf{r}_{i})$$

$$+ \sum_{i=1}^{N} \sum_{j>i}^{N} \varepsilon_{2B}(\mathbf{r}_{i},\mathbf{r}_{j})$$

$$+ \sum_{i=1}^{N} \sum_{j>i}^{N} \sum_{k>j>i}^{N} \varepsilon_{3B}(\mathbf{r}_{i},\mathbf{r}_{j},\mathbf{r}_{k})$$

$$+ ... + \varepsilon_{NB}(\mathbf{r}_{1},..,\mathbf{r}_{N})$$

$$(6)$$

The MBE is a *finite series* that, when carried to N-th order, yields the exact energy.

Many-Body Expansion of the Energy

The MBE is a *finite series* that, when carried to N-th order, yields the exact energy (fine print!)

- Offers a systematic path to numerically exact models, provided that each n-body term is treated at this level.
- Computationally practical when the MBE converges rapidly,
 i.e. at small n.

The n-body energies, ε_{nB} , are defined recursively for $1 \leq n \leq N$ by the expression

$$\varepsilon_{\text{nB}} = E_{\text{n}}(1, ..., n) - \sum_{i=1}^{N} \varepsilon_{1\text{B}}(\mathbf{r}_{i}) - \sum_{i=1}^{N} \sum_{i < j}^{N} \varepsilon_{2\text{B}}(\mathbf{r}_{i}, \mathbf{r}_{j})$$

$$- \sum_{i=1}^{N} \sum_{i < j}^{N} \sum_{i < j < k} \varepsilon_{3\text{B}}(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}) - \cdots$$

$$\cdots - \sum_{i < j < k < ...}^{N} \varepsilon_{(n-1)\text{B}}(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}, ...).$$
(7)

How many single point calculations do you need to run?

How many single point calculations do you need to run?

Each n-body term subtracts lower-order contributions to avoid double-counting.

Total number of terms:
$$\sum_{n=1}^{N} {N \choose n} = 2N-1$$

Example 1: Water Hexamer (N = 6)

How many single point calculations do you need to run?

Each n-body term subtracts lower-order contributions to avoid double-counting.

Total number of terms:
$$\sum_{n=1}^{N} \binom{N}{n} = 2N-1$$

Example 1: Water Hexamer (N = 6)

- 6 one-body terms: $\binom{6}{1}$
- 15 two-body terms: $\binom{6}{2}$
- 20 three-body terms: $\binom{6}{3}$
- 15 four-body terms: $\binom{6}{4}$
- 6 five-body terms: $\binom{6}{5}$
- 1 six-body term: $\binom{6}{6}$

Total: 63 total energy calculations.

Example 2: N = 100

Total: \sim 1.4-million for 4-body approximation

MBE^[1] converges quickly for systems with large bandgaps and/or localized electron densities, such as H₂O ($\varepsilon_g \sim 9$ eV)^[2].

[1] J. Chem. Phys. 53, 4544 (1970)

Theory: MB-nrg potential energy

functions

MB-nrg: Functional form

The **MB-nrg** theoretical/computational framework generalizes the MB formalism introduced with the MB-pol data-driven many-body potential for water.

MB-nrg approximates the MBE defined in Eq. 6 as:

$$E_N = V^{1B} + V^{2B} + V^{3B} + \dots + V^{nB} + V_{elec}$$
 (8)

where $n \leq N$ and N is the total number of 1-mers in the system.

MB-nrg: Functional Form

Each $V^{n\mathrm{B}}$ term of an MB-nrg PEF includes an n-body machine-learned term $(V^{n\mathrm{B}}_{\mathrm{ML}})$ for each n-mer.

Each $V_{
m ML}^{n{
m B}}$ is expressed as a product of a switching function and a PIP (i.e., $V_{
m ML}^{n{
m B}}=s^{n{
m B}}V_{
m PIP}^{n{
m B}}).$

The switching function (s^{nB}) ensures contributions from associated $V_{\rm ML}^{nB}$ go to zero as any subset of the 1-mers in an n-mer is separated from the rest.

MB-nrg: Functional Form

Following MB-pol: a given n-body PIP takes the following form:

$$V_{\text{PIP}}^{nB}(\mathbf{M}_{1}, \mathbf{M}_{2}, \dots, \mathbf{M}_{n} | \nu(\mathbf{M}_{1}, \mathbf{M}_{2}, \dots, \mathbf{M}_{n})) = \sum_{l=1}^{L} c_{l} \cdot \eta_{l}(\xi_{1}, \xi_{2}, \dots, \xi_{\lambda})$$
(9)

 M_1, M_2, \ldots, M_n are n 1-mers which compose an n-mer of type $\nu(M_1, M_2, \ldots, M_n)$,

L: number of linear coefficients

 c_l : the linear coefficients

 η_l : symmetrized monomials built from the variables $\xi_{1-\lambda}$

Frame Title

The 1-body term is a machine-learned PIP representing the 1-body energy:

$$V_{\mathrm{ML}}^{\mathrm{1B}}\left(\mathbf{M}_{i}|\nu(\mathbf{M}_{i})\right) = V_{\mathrm{PIP}}^{\mathrm{1B}}\left(\mathbf{M}_{i}|\nu(\mathbf{M}_{i})\right) \tag{10}$$

The 2-body term of an MB-nrg PEF, V^{2B} in Eq. 8, is explicitly written as follows:

$$V^{2B} = \sum_{\substack{i=1\\j>i}}^{N} V_{\text{ML}}^{2B} (M_i, M_j | \nu(M_i, M_j)) + V_{\text{disp}}^{2B}$$
 (11)

$$V_{\rm ML}^{\rm 2B}(M_i, M_j | \nu(i, j)) = s^{\rm 2B}(M_i, M_j | \nu(M_i, M_j)) V_{\rm PIP}^{\rm 2B}(M_i, M_j | \nu(M_i, M_j))$$
(12)

MB-nrg: Dispersion

 $V_{
m disp}^{
m 2B}$ is the total 2-body dispersion energy calculated as a sum of pairwise additive contributions associated with each pair of atoms located on the two 1-mers in a 2-mer:

$$V_{\text{disp}}^{\text{2B}} = \sum_{\substack{i=1\\j>i}}^{N} \left[\sum_{k \in \mathcal{M}_i} \sum_{l \in \mathcal{M}_j} -f(\mathbf{b}_{kl} R_{kl}) \frac{\mathbf{C}_{6,kl}}{R_{kl}^6} \right]$$
(13)

 R_{kl} is the distance between atoms k and l located on 1-mers \mathbf{M}_i and \mathbf{M}_j .

 $C_{6,kl}$ is the corresponding dispersion coefficient.

 $f(b_{kl}R_{kl})$ is the Tang-Toennies damping function.

MB-nrg: Arbitrary ML *n*-body terms

All other explicit $V^{n\mathrm{B}}$ in Eq. 8 take the following form:

$$V^{nB} = \sum_{\substack{i=1\\j > i\\l > k}}^{N} V_{\text{ML}}^{nB} \left(\mathbf{M}_i, \mathbf{M}_j, \dots, \mathbf{M}_l | \nu(\mathbf{M}_i, \mathbf{M}_j, \dots, \mathbf{M}_l) \right)$$
 (14)

where each $V_{\mathrm{ML}}^{n\mathrm{B}}\left(\mathrm{M}_{i},\mathrm{M}_{j},\ldots,\mathrm{M}_{l}|\nu(\mathrm{M}_{i},\mathrm{M}_{j},\ldots,\mathrm{M}_{l})\right)$ is built as the product of a switching function s^{nB} and a PIP, as shown previously.

MB-nrg PEFs are systematically improvable with $V^{
m nB}$

MB-nrg: Electrostatics

In MBX, $V_{\rm elec}$ is represented by four terms describing charge-charge interactions $(V_{\rm qq})$, charge-dipole interactions $(V_{\rm q\mu})$, dipole-dipole interactions $(V_{\mu\mu})$, and the polarization energy $(V_{\rm pol})$, respectively:

$$V_{qq} = \sum_{i}^{N} \sum_{j>i} q_{i} \widehat{T}_{ij} q_{j}$$

$$V_{q\mu} = \sum_{i}^{N} \sum_{j>i} \left(\mu_{i}^{\alpha} \widehat{T}_{ij}^{\alpha} q_{j} - q_{i} \widehat{T}_{ij}^{\alpha} \mu_{j}^{\alpha} \right)$$

$$V_{\mu\mu} = -\sum_{i}^{N} \sum_{j>i} \mu_{i}^{\alpha} \widehat{T}_{ij}^{\alpha\beta} \mu_{j}^{\beta}$$

$$V_{pol} = \frac{1}{2} \sum_{i=1}^{N} \mu_{i} \widehat{\alpha}_{i}^{-1} \mu_{i}$$

$$(15)$$

MBX

MBX is a C++ library for the calculation of n-body energies (it is an energy *calculator*, not a *force* engine).

It has over 20+ MB-nrg PEFs implemented for several systems... and it is open source!

MBX

We can track the contributions of n-body terms to structural and, consequentially, thermodynamic properties.

Enables going beyond the blackbox in "first-principles" simulations, term-by-term design and understanding. $_{\text{Chem. Sci., 2019, 10, 8211}}$

Summary

What have we discussed?

- MBE offers a path towards numerically-exact models
- MB-nrg very accurately approximates MBE, by integrating ML terms with physics-based terms
- rigorously represents short-range and long-range interactions
- systematically improvable
- open source

What is today's goal?

Learn to use MB-nrg models in MBX

What is tomorrow's goal?

Learn to make/implement MB-nrg models in MBX

 $[{\sf Cambria\text{-}Math.ttf}]$