U 8941-5490

Ans to the Question no 1 (a)

P(
$$c_n=1 \mid X_n$$
) $= P(X_n \mid c_1) P(c_1)$

P($c_n=2 \mid X_n$) $= P(X_n \mid c_2) P(c_2)$
 $= P(X_n \mid L_0, \Sigma_0) (1-T)$

So the likelihood of X_n and $C_n \mid L_n \mid L_n$

From en (1) we get can write -

log
$$P(X) = \sum_{n=1}^{N} \log P(X_n)$$

The $N(X_n | A_k, Z_k)$

855, = t 955, => &f = \f. \\ \SIZE' =: \frac{\delta \texp\files \frac{1}{2} (\texp\frac{1}{2} (\texp\frac{1}{2} (\texp\frac{1}{2} (\texp\frac{1}{2} (\texp\frac{1}{2}) \frac{1}{2} (\texp\frac{1}{2} (\texp\frac{1} (\texp\frac{1}{2} (\texp\frac{1}{2 = exp = (xn-hx) = [(xn-hx)] = (xn-hx) } S In [exp \(\frac{1}{2} (\text{Xn} - h_E) \) \(\text{Tk} \) \(\text{2n} \) = N(Xn/Ak, Zk). d In. N(Xn/Ak, Zk) * An dealing with I'm is horder we were the derivative wire with the simplify.

The further nimplify.

Ans to the Question no 1 (b)

Ans to the Question no 1 (c)

References for 1(a)

- 1. The Matrix Cookbook Mathematics
- 2. <u>Derivation of M-step in EM algorithm for mixture of Gaussians</u>
- 3. Derivative of Gaussian mixture model with respect to covariance matrix Σk
- 4. EM of GMM appendix (M-Step full derivations)