

Progetto Machine Learning in Economics and Business.

Realizzato da:

- Mariangela Tafuri
- Vincenzo Picarelli
- > Simari Paolo

Descrizione Dataset.

Il set di dati contiene informazioni raccolte dal Servizio di censimento degli Stati Uniti in merito agli alloggi nell'area di Boston Mass.

Obiettivo principale dell'analisi è quello di prevedere il valore mediano del prezzo delle case (medv) sulla base di una serie di caratteristiche descritte dalle variabili di seguito riportate.

➤ Attività di selezione del modello migliore: in base all'insieme delle variabili, l'attività consiste nel identificare la funzione migliore, in termini di accuratezza, che prevede il prezzo delle abitazioni.

Features

CRIM - tasso di criminalità pro capite per città ZN - proporzione di terreno residenziale suddiviso in zone per lotti superiori a 25.000 piedi quadrati. INDUS - Percentuale di acri di attività non al dettaglio per città CHAS - Charles River variabile fittizia (= 1 se il tratto delimita il fiume; 0 altrimenti) NOX - Concentrazione di ossidi di azoto (parti per 10 milioni) RM - numero medio di stanze per abitazione AGE - Proporzione delle unità occupate dai proprietari costruite prima del 1940 DIS - Distanze ponderate per cinque centri per l'impiego di Boston RAD - Indice di accessibilità alle autostrade TASSA- aliquota dell'imposta sulla proprietà a valore pieno per \$ 10.000 PTRATIO - rapporto alunni-insegnanti per città B - 1000(Bk - 0,63)^2 dove Bk è la proporzione di neri per città LSTAT - % di popolazione sotto la soglia di povertà MEDV - Valore mediano delle case occupate dai proprietari in \$ 1000

Set.

➤ Training Set :

Set di dati su cui viene costruito e messo a punto il modello.

> Testing Set:

Set di dati su cui viene valutato il potere predittivo del modello.

Confusion Matrix

Valutazioni modelli.

> Frazione di accuracy delle previsioni che l'algoritmo/modello ottiene correttamente:

$$Accuracy = \frac{TP + TN}{TP + FN + FP + FN} =$$

> Sensibilità, T P R : è la probabilità che il prezzo di un'abitazione sia maggiore al valore mediano e sia classificato correttamente.

$$TPR = \frac{TP}{TP + FN} =$$

➤ Specificità, 1 – F P R : è la probabilità che il prezzo di un'abitazione sia maggiore al valore mediano e sia correttamente sia classificato come tale.

$$FPR = 1 - \frac{TN}{TN + FP} = \frac{FP}{FP + TN}$$

Risultati

➤ **Gradient Boosting Machines,** Area under the curve: **0.9588**

> LASSO, Area under the curve: 0.9475

Random Forest, Area under the curve:
0.9508

Neural Network, Area under the curve: 0.9302

	Accuracy :	0.8812	0.8416	0.8614	0.8614
	95% CI :	(0.8017, 0.9371)	(0.7555, 0.9067)	(0.7784, 0.9221)	(0.7784, 0.9221)
	No Information Rate:	0.505	0.505	0.505	0.505
	P-Value [Acc > NIR] :	1.158e-15	1.158e-12	<4.937e-14	4.937e-14
	Карра :	0.7625	0.6834	0.723	0.7229
	Mcnemar's Test P-Value :	0.3865	0.4533	0.4227	0.7893
	Sensitivity:	0.92	0.88	0.9000	0.8800
	Specificity:	0.8431	0.8039	0.8235	0.8431
	Pos Pred Value :	0.8519	0.8148	0.8333	0.8462
	Neg Pred Value :	0.9149	0.8723	0.8936	0.8776
	Prevalence :	0.4950	0.4950	0.495	0.4950
	Detection Rate :	0.4554	0.4356	0.4455	0.4356
	Detection Prevalence :	0.5347	0.5347	0.5347	0.5149
	Balanced Accuracy :	0.8816	0.8420	0.8618	0.8616

NO

RF

LASSO

NO

NN

NO

Boroughs:

'Positive' Class:

GBM

NO

Perfomance

- Le stime si basano sull'algoritmo di cross validation: addestra e testa il modello mettendo a punto i parametri con l'obiettivo di massimizzare la curva ROC.
- ➤ I migliori modelli in termini di AUC sono RF (0.9508) e GBM (0.9588) mentre LASSO (0.9475) e NN (0.9302) mostrano prestazioni inferiori.
- ➢ Il Migliore è il Gradient Boosting Machines poiché ha l'accuracy maggiore. E' opportuno guardare anche la non information rate misura della prevalenze della classe meno prevalente − poiché se le due misure dovessero coincidere vi sarebbe un problema nella classificazione. Tuttavia è possibile osservare che l' accuracy è statisticamente superiore al tasso di No Information Rate per ciascuno dei modelli presentati.

GBM				
Parametri	Valori			
	9			
N.trees:	150			
Interaction.depth:	3			
Shrinkage:	0.1			
N.Minobsinnode:	10			

RF				
Parametri	Valori			
	2			
Mtry:	2			

LASSO		
Parametri	Valori	
	9	
ALPHA:	0.1	
LAMBDA:	0.00667	

NN				
Parametri	Valori			
	6			
SIZE:	5			
DECAY:	0.1			

Feature Importance (FI): GBM

- La FI è data sia dal numero di volte che la feature è utilizzata nei diversi modelli sia per quanta varianza migliora in un determinato split.
- In particolare indica il guadagno medio prodotto dalla caratteristica su tutti gli alberi in cui il guadagno è misurato dall'indice di Gini.

Il fattore più importante risulta essere **LSTAT** (%
Popolazione sotto la soglia di povertà). Tra le altre
feature che hanno una maggiore importanza vi sono **RM** (numero medio di stanze per abitazione) e **PTRATIO**(rapporto alunni-insegnanti per città).

Feature LSTAT.

Osservando la funzione di distibuzione del valore medio degli appartamenti possono essere tratte alcune interessanti conclusioni.

La % di popolazione sotto la soglia di povertà sembra avere un effetto negativo sul valore medio degli appartamenti, infatti una bassa % di popolazione sotto la soglia di povertà contribuisce a determinare un prezzo degli appartamenti sopra il valore mediano. Viceversa nel caso opposto. Questo viene confermato anche dal grafico che segue.

