Engenharia de Software Diagrama de Estado

Marcello Thiry

marcello.thiry@gmail.com

LQPS

http://www.univali.br/lqps

Sistema Dinâmico x Sistema Estático

- ☐ Um **Sistema Dinâmico** evolui ao longo do tempo, sendo que em geral seu comportamento depende do passado
- ☐ Um **Sistema Estático** é aquele em que seu comportamento depende exclusivamente de sua situação no instante considerado

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

Sistemas discretos

- □ Sistemas dinâmicos em que uma ou mais variáveis podem mudar apenas em instantes discretos de tempo
- ☐ Estes instantes especificam o momento em que é feita alguma medida física ou o em que é lida a memória de um computador digital
- □ O intervalo de tempo entre dois instantes discretos é considerado suficientemente pequeno, de tal forma que os dados para os tempos entre estes instantes discretos podem ser aproximados por interpolação simples → o intervalo pode ser desconsiderado
- ☐ Sistemas de tempo discreto diferem dos de tempo contínuo, em que os sinais para o sistema de tempo discreto estão na forma amostrada

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

3

Modelo e Estado

■ Modelo

- □ O estudo de um sistema, qualquer que seja, se dá pela constituição de um modelo, definido como um dispositivo que de alguma maneira **descreve o comportamento de um sistema**
- ☐ Em geral definimos para o modelo variáveis de entrada e variáveis de saída, esperando-se dele estabelecer relações entre estas variáveis

□ Estado

- ☐ Conceito fundamental para o estudo de sistemas dinâmicos
- ☐ Informação necessária para se conhecer o valor futuro das variáveis do modelo, desde que se conheçam as entradas
- □ A partir de uma entrada e conhecendo-se o estado atual do sistema, é possível predizer qual será o próximo estado

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

Conceito geral de estado
□ De acordo com o [Michaelis]:
□ Modo de ser ou estar
□ Condição, disposição
☐ Situação em que se acha uma pessoa ou coisa
□ Exemplos gerais de estado:
□ Civil
□ da matéria
□ de um semáforo
□ de saúde
Prof. Marcello Thiry – ES 0119 (Diagrama de Estado) 5

Conceito de estado					
□ Situação ou disposição de um sistema □ Sistemas <u>discretos</u>					
□ Situação determinada completamente □ Variáveis de Estado (VE)					
 □ VE pode assumir valores □ Numéricos (inteiros, reais, complexos,) □ Simbólicos (strings, grafismos,) 					
 □ Informação completa sobre todas as variáveis de estado em um instante de tempo → estado do sistema 					
Prof. Marcello Thiry – ES 0119 (Diagrama de Estado) 6					

Exemplo de estado Seu estado civil pode ser uma VE e assumir valores Solteiro, casado, viúvo, separado, divorciado, etc Um semáforo: verde, amarelo, vermelho "Solteiro", "Casado", "Verde", "Vermelho", etc, são exemplos de valores de uma variável de estado VE assume apenas um valor por vez

Onde representar os estados? Usualmente, sistemas dinâmicos Que mudam sua condição ou estado Tal mudança é chamada Transição de Estado Eventos que resultam na mudança do estado Representação: Diagrama de Estado Diagramas de estado devem ser determinísticos

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado) - Página 5

Matriz de Estado/Transição

☐ Visualização de um diagrama de estado na forma de uma matriz

Transição Estado	Casou	Cônjuge faleceu	Separou	Concluiu divórcio
1 - Solteiro	2	-	-	-
2 - Casado	-	3	4	-
3 – Viúvo	2	-	-	-
4 – Separado	-	-	-	5
5 – Divorciado	2	-	-	-

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

11

Sistemas com mais de 1 VE

- □ Aproveitamento escolar
 - Notas
 - □ Freqüência
- □ Saúde de uma empresa
 - □ Capital de giro, dívida, crédito, etc.
- □ Problema produtor-consumidor
 - □ Produtor, consumidor, buffer

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

Diagrama de Estado na UML □ Técnica conhecida para descrever o comportamento de um sistema □ Permite descrever todos os estados possíveis que um objeto pode estar e como o seu estado é afetado por eventos que o atingem □ Diagrama na UML: baseado no trabalho de David Harel (1987) □ O diagrama de estados é usualmente projetado para uma classe, permitindo analisar o comportamento ao longo do tempo de vida de um único objeto □ Em OO, os diagramas de estado são utilizados para objetos com comportamento dinâmico significante

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

13

□ Um estado é uma condição na qual um objeto pode se encontrar em um determinado momento do seu tempo de vida, por alguma quantidade de tempo finita □ Um objeto, quando em um estado, pode: □ Executar uma atividade □ Aguardar por um evento □ Satisfazer uma ou mais condições □ Imprimindo □ Disponível □ Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

Transições

- ☐ Uma **transição** é mudança do estado de um objeto para outro (ela dispara quando um evento de interesse a um dado objeto ocorre)
- □ Uma transição também pode disparar incondicionalmente quando o objeto está pronto para mover-se de um estado para outro, usualmente porque a atividade associada com o estado atual foi completada (transição sem gatilho)
- □ Uma ação pode estar associada com uma transição, onde esta ação é executada incondicionalmente (a não ser que exista uma guarda) antes do objeto entrar no próximo estado
- □ Um objeto não precisa mudar de estado sempre que uma transição ocorre (uma auto-transição é aquela onde o estado origem e destino são o mesmo)

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

15

Transições

 Um objeto no estado original irá realizar um conjunto de ações e entrar no estado destino quando um evento especificado ocorrer ou quando certas condições (guarda) forem satisfeitas

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

Exemplo

Considere o controle de uma pequena planta química. Os níveis de temperatura e pressão devem ser monitorados por razões de segurança. Sensores são instalados para gerar sinais apropriados quando determinados níveis são excedidos. Quando um dos sinais é disparado, uma ação de recuperação é automaticamente invocada (existe uma ação para temperatura e outra para pressão). Se, depois de algum tempo, a recuperação tem sucesso, o sistema retorna ao estado normal. Se a recuperação falhar, a planta deve ser desligada. O sistema deve ser também desligado quando ele estiver em uma ação de recuperação para uma anomalia (uma para temperatura e outra para pressão) e outro sinal for disparado. Considere que os dois sinais não podem ocorrer simultaneamente.

[Exemplo adaptado de Ghezzi at all, 1991]

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

Eventos e ações internas □ On Entry: executada quando o objeto entra no estado ou na atividade □ On Exit: executada quando o objeto deixa o estado ou a atividade. □ On Do: executada enquanto o objeto estiver naquele estado ou atividade □ On Event: executada apenas quando um determinado evento é recebido

Quando utilizar diagramas de estados? □ Quando se deseja modelar o comportamento de um objeto □ Não é necessário modelar um diagrama para toda classe no sistema □ Dificuldade em modelar uma colaboração de objetos □ Aplicar em combinação com outras técnicas

Diagrama de Estado: Exercício

- Modelar as seguintes partes de um sistema produtorconsumidor
 - ☐ Considere as entidades produtor, consumidor e buffer
 - ☐ Um produtor produz mensagens e as coloca em buffer de 2 posições
 - ☐ Um consumidor lê as mensagens e as remove do mesmo buffer
 - ☐ Se o buffer está cheio, o produtor deve esperar até que o consumidor esvazie o buffer
 - ☐ Se o buffer está vazio, o consumidor deve esperar até que uma mensagem seja inserida pelo produtor

Prof. Marcello Thiry - ES 0119 (Diagrama de Estado)

23

Contato

Marcello Thiry

marcello.thiry@gmail.com

LQPS

http://www.univali.br/lqps

Prof. Marcello Thiry – ES 0119 (Diagrama de Estado)