Analysis of SARS-CoV-2 Spike Protein Mutations with Logistic Regression

Simón Rodríguez Santana, Roi Naveiro, Daniel García Rasines, Paula Ruiz-Rodriguez, Miguel Álvarez-Herrera, David Ríos Insua, Nuria E. Campillo, Eugenia Ulzurrun, Mireia Coscollá

Objective

Which mutations (individually or by pairs) of the COVID-19 genome are associated to important aspects of the infection?

- Severity Hospitalization (possibly death)
- Vaccine failure Breakthrough (full vacc. + hosp.)

Data

- Data sources: FISABIO (8.534) + GM hospital (386)
- Covariates: sex, age, sample month and genomic sequences (AA)
 - Hospitalization study: vaccination status as covariate

Preprocessing_

- Clean the dataset:
- Remove rows with >10% of missing values
- Patients with partial information samples
- Samples before 01/01/2021
- Genome positions without mutations (at least >1 type of AA)
- Full preprocessing only for Spike protein
 - → 331 Spike genome positions (out of 1.272)
 - \rightarrow 5.928 cases (out of 8.920)

Preprocessing_

- Clean the dataset:
 - Remove rows with >10% of missing values
 - Patients with partial information samples
 - Samples before 01/01/2021
 - Genome positions without mutations (at least >1 type of AA)
- Full preprocessing only for Spike protein
 - \rightarrow 331 Spike genome positions (out of 1.272)
 - \rightarrow 5.928 cases (out of 8.920)
- Preserve more data with imputation? Possible changes in the preprocessing?

Model____

logit[
$$P(Y = 1 | \mathbf{X})$$
] = $\beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i < j} X_{i:j} \beta_{i:j}$

Model

$$logit[P(Y = 1|\mathbf{X})] = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i < j} X_{i:j} \beta_{i:j}$$
$$argmin_{\beta} \mathcal{L}(\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^{p} \gamma_i ||\beta_i||_2$$

- Negative log-likelihood loss function
- *L1* reg. + *k*-fold CV regularization strength

Model____

$$\operatorname{logit}[P(Y = 1 | \mathbf{X})] = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i < j} X_{i:j} \beta_{i:j}$$
$$\operatorname{argmin}_{\beta} \mathcal{L}(\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^{p} \gamma_i ||\beta_i||_2$$

- Negative log-likelihood loss function
- L1 reg. + k-fold CV regularization strength

Model____

$$\operatorname{logit}[P(Y = 1 | \mathbf{X})] = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i < j} X_{i:j} \beta_{i:j}$$
$$\operatorname{argmin}_{\beta} \mathcal{L}(\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^{p} \gamma_i ||\beta_i||_2$$

- Negative log-likelihood loss function
- L1 reg. + k-fold CV regularization strength

Model

$$\operatorname{logit}[P(Y = 1 | \mathbf{X})] = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \sum_{i < j} X_{i:j} \beta_{i:j}$$
$$\operatorname{argmin}_{\beta} \mathcal{L}(\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^{p} \gamma_i ||\beta_i||_2$$

- Negative log-likelihood loss function
- L1 reg. + k-fold CV regularization strength

Model

Logistic regression with Hierarchical Group Lasso regularization

logit[
$$P(Y = 1|\mathbf{X})$$
] = $\beta_0 + \sum_{i=1}^p X_i \beta_i + \sum_{i < j} X_{i:j} \beta_{i:j}$

$$\operatorname{argmin}_{\beta} \mathcal{L}(\mathbf{Y}, \mathbf{X}, \beta) + \lambda \sum_{i=1}^{p} \gamma_i ||\beta_i||_2$$

- Negative log-likelihood loss function
- L1 reg. + k-fold CV regularization strength

Strong hierarchy:

$$\beta_{i:j} \neq 0 \Rightarrow \beta_i \neq 0, \beta_j \neq 0$$

Overparametrization:

For each position, the sum of its main effects is 0, as well as for its interaction coefficients

Hospitalization results

- 0.2

-0.1

0.0

-0.1

-0.2

Hospitalization results

Breakthrough results

Breakthrough results

Conclusions

- Several novel interaction found, some of interest
- Effects of well-known mutations are enhanced or diminished by mutations in other positions
 - Example: T478K vs. 478T in combination with 25P (hosp.)
- Further analysis:
 - Remaining parts of the genome
 - Characterization of the effects of the preprocessing pipeline
 - Augment with other data sources (available)

Conclusions

- Several novel interaction found, some of interest
- Effects of well-known mutations are enhanced or diminished by mutations in other positions
 - Example: T478K vs. 478T in combination with 25P (hosp.)
- Further analysis:
 - Remaining parts of the genome
 - Characterization of the effects of the preprocessing pipeline
 - Augment with other data sources (available)