Comparação do desempenho de modelos propostos para o ajuste de dados de esportes coletivos

Mariana de Castro Pasqualini

2022-07-11

Introdução

Desde a década de 80, modelos estatísticos são aplicados em problemas relacionados à esportes. Um exemplo é prever o número de gols marcados por um time em uma partida de futebol, que podem ser modelados como dados de **contagem**.

Introdução

A distribuição de Poisson é uma das mais utilizadas para esse tipo de problema. Serão apresentados 5 modelos propostos na literatura para prever o número de gols nas partidas do Campeonato Brasileiro dos anos 2019, 2020 e 2021.

Os modelos foram implementados no Stan, um software para amostrar modelos bayesianos. O RS \tan foi utilizado como interface entre o Stan e o R.

O modelo de efeitos aleatórios proposto por Baio (2010) é definido da seguinte forma:

Seja $\mathbf{y}=(y_{g1},y_{g2})$ um um vetor de contagens, que são modelados como Poisson independentes condicionais aos parâmetros $\theta=(\theta_{g1},\theta_{g2})$

$$y_{gj}|\theta_{gj} \sim Poisson(\theta_{gj})$$

No qual j=1 representa o time jogando em casa e j=2 indica a equipe visitante. Assumindo um modelo de efeitos aleatórios com função de ligação log, temos:

$$\log \theta_{g1} = home + att_{h(g)} + def_{a(g)}$$
$$\log \theta_{g2} = att_{a(g)} + def_{h(g)}$$

Os índices h(g) representa o time que está jogando em casa no g-ésimo jogo e a(g) o visitante, indo de 1 a T=20.

Priori

A escolha das distribuições a priori do parâmetros se basearam no artigo e foram adaptadas para as parametrizações e particularidades do Stan.

Parâmetros

- ightharpoonup home \sim Normal(0,10)
- ightharpoonup att_t \sim Normal($\mu_{\mathsf{att}}, \sigma_{\mathsf{att}}$)
- ightharpoonup def_t \sim Normal(μ_{def}, σ_{def})

Hiperparâmetros

- $ightharpoonup \mu_{att} \sim Normal(0, 10)$
- $\blacktriangleright \mu_{def} \sim Normal(0, 10)$
- $ightharpoonup \sigma_{att} \sim Cauchy(0, 2.5)$
- $ightharpoonup \sigma_{def} \sim Cauchy(0, 2.5)$

Como **restrição de identificabilidade** nos efeitos específicos de cada time, apenas para o último time foi definido que

$$att_{t=20} = 0 \ def_{t=20} = 0$$

e, portanto, o vigésimo time é referência para interpretação dos efeitos das outras equipes. Essa restrição foi aplicada para todos os modelos deste trabalho.

Simulação

Para verificar a implementação e qualidade de estimação dos modelos, foi feita uma simulação com 1000 banco de dados de tamanho 380, representando o número de jogos de um campeonato com 20 times.

Simulação

Uma única cadeia de Markov foi utilizada para obter as amostras da distribuição a posteriori, com 5000 iterações no total, sendo 2500 de warmup/burnin.

Os dados do Campeonato Brasileiro foram disponibilizados por Gomide e Gualberto no repositório **caRtola**, disponível no Github. O formato dos dados é o seguinte:

home_team	away_team	home_score	away_score	home_team_index	away_team_index
282	314	2	1	10	16
315	285	2	0	17	13
262	283	3	1	1	11
276	263	2	0	8	2
293	267	4	1	15	6
265	264	3	2	4	3

Karlis e Ntzoufras (2003) propõe um modelo baseado na distribuição de Poisson bivariada, em que são definidas três variáveis aleatórias latentes X_1, X_2, X_3 que seguem, independentemente, uma Poisson com parâmetros $\lambda_1, \lambda_2, \lambda_3$.

Então, as variáveis aleatórias $X=X_1+X_3$ e $Y=X_2+X_3$ seguem conjuntamente uma distribuição de Poisson bivariada. Marginalmente, $E(X)=\lambda_1+\lambda_3$ e $E(Y)=\lambda_2+\lambda_3$. Ainda, $cov(X,Y)=\lambda_3$ e então tem-se uma medida de interdependência entre as variáveis aleatórias.

Utilizando o resultado anterior, podemos definir:

$$X_i \sim Poisson(\lambda_{1i})$$

 $Y_i \sim Poisson(\lambda_{2i})$

com *i* indicando o i-ésimo jogo. Daí, temos os preditores lineares definidos como:

$$\log(\lambda_{1i}) = \mu + home + att_{h_i} + def_{g_i}$$

 $\log(\lambda_{2i}) = \mu + att_{g_i} + def_{h_i}$
 $\log(\lambda_{3i}) = \alpha + \gamma_1 \alpha_{h_i}^{home} + \gamma_2 \alpha_{g_i}^{away}$

no qual as variáveis $dummy \ \gamma_1$ e γ_2 são indicadoras de quais efeitos queremos incluir na correlação entre o número de gols do time mandante e visitante.

Para o modelo 2 que estamos considerando, $\gamma_1=\gamma_2=0$. Ou seja, o parâmetro de correlação λ_{3i} depende apenas de um efeito fixo, α .

Originalmente, o artigo considera que o efeito de ataque e defesa para cada time é **fixo**, fazendo com que o modelo tenha um número muito grande de parâmetros. Por isso, o modelo proposto foi adaptado e ataque e defesa foram tratados como efeitos aleatórios, além da definição de prioris para os parâmetros.

Priori

Parâmetros

- \blacktriangleright $\mu \sim Normal(0, 10)$
- ightharpoonup home \sim Normal(0, 10)
- ightharpoonup att_t \sim Normal(0, σ_{att})
- ▶ $def_t \sim Normal(0, \sigma_{def})$
- $ightharpoonup lpha \sim Normal(0,1)$

Hiperparâmetros

- $ightharpoonup \sigma_{att} \sim Cauchy(0, 2.5)$
- $ightharpoonup \sigma_{def} \sim Cauchy(0, 2.5)$

Simulação

Uma simulação para o modelo 2 foi feita com 1000 banco de dados de tamanho 380, representando o número de jogos de um campeonato com 20 times.

Baseado na definição do modelo 2, o modelo 3 é definido com $\gamma_1=1, \gamma_2=0$, com parâmetro de correlação λ_{3i} sendo a soma do efeito **fixo** α mais um efeito que depende do time **mandante**.

O modelo 4 inclui todos os efeitos na correlação: o efeito **fixo** α , um efeito que depende do time da **casa** e também um efeito para o time **visitante**. Assim, $\gamma_1=1, \gamma_2=1$.

Já o modelo 5 inclui apenas o efeito fixo e o efeito do time **visitante**, definido com $\gamma_1=0, \gamma_2=1.$

Modelo 6

Comparação

► Medidas de qualidade relativa do modelo

Outros modelos

- ▶ Binomial negativa, para os casos de superdispersão
- ► Poisson inflada de zeros

Referências

Baio, Marta, Gianluca e Blangiardo. 2010. "Bayesian Hierarchical Model for the Prediction of Football Results." *Journal of Applied Statistics* 37 (2): 253–64. https://doi.org/10.1080/02664760802684177.