Cálculo

28.
$$D: P_4 \to P_3; Dp(x) = p'(x)$$

29. $T: P_4 \to P_4; Tp(x) = xp'(x) - p(x)$ **Cálculo**

Cálculo

30.
$$D: P_n \to P_{n-1}; Dp(x) = p'(x)$$

31.
$$D: P_2 \to P_2; Dp(x) = x^2 p''(x)$$

Cálculo

32.
$$D: P_2 \to P_2; Dp(x) = p''(x) + 2p'(x) + p(x)$$

33.
$$T: P_4 \to P_4; Tp(x) = p''(x) + xp'(x) + 2p(x)$$

Cálculo

Cálculo

34.
$$D: P_n \to P_{n-k}$$
; $Dp(x) = p^{(k)}(x)$

35.
$$T: P_n \to P_n$$
; $Tp(x) = x^n p^{(n)}(x) + x^{n-1} p^{(n-1)}(x) + \dots + xp'(x) + p(x)$

Cálculo

36.
$$J: P_n \to \mathbb{R}; Jp = \int_0^1 p(x) dx$$

37.
$$J: \mathbb{P}_n \to \mathbb{P}_{n+1}; Jp = \int_0^x p(t)dt$$

38.
$$T: \mathbb{R}^3 \to \mathbb{P}_2; T\begin{pmatrix} a \\ b \\ c \end{pmatrix} = a + bx + cx^2$$

39.
$$T: \mathbb{P}_3 \to \mathbb{R}^3$$
; $T(a_0 + a_1 x + a_2 x^2 + a_3 x^3) = \begin{pmatrix} a_3 - a_2 \\ a_1 + a_3 \\ a_2 - a_1 \end{pmatrix}$

40. Defina
$$T: \mathbb{M}_{qp} \to \mathbb{M}_{pq}$$
 por $TA = A^{\mathsf{T}}$. Encuentre A_T respecto a las bases canónicas en M_{mn} y M_{nm} .

- *41. Defina $T: \mathbb{C}^2 \to \mathbb{C}^2$ por $T\begin{pmatrix} x \\ v \end{pmatrix} = \begin{pmatrix} x + iy \\ (1 + i)v x \end{pmatrix}$. Encuentre A_T .
- **42.** Sea $V = \text{gen } \{1, \text{ sen } x, \cos x\}$. Encuentre A_D , donde $D: V \to V$ está definida por Df(x) = f'(x). Encuentre imagen D y nu D.
- **43.** Conteste las preguntas del problema 42 dado $V = \text{gen } \{e^x, xe^x, x^2e^x\}$.

44. Defina
$$T: \mathbb{C}^2 \to \mathbb{C}^2$$
 por $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + iy \\ (1+i)y - (3+4i)x \end{pmatrix}$. Encuentre A_T .

- **45.** Demuestre el teorema 7.3.2.
- **46.** Demuestre el teorema 7.3.4.

De los problemas 47 al 54 describa en palabras las transformaciones lineales $T: \mathbb{R}^2 \to \mathbb{R}^2$ que tienen la representación matricial A_T.

47.
$$A_T = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$$

48.
$$A_T = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$$

47.
$$A_T = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$$
 48. $A_T = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$ **49.** $A_T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ **50.** $A_T = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

50.
$$A_T = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

51.
$$A_T = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}$$
 52. $A_T = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix}$ **53.** $A_T = \begin{pmatrix} 1 & 0 \\ -7 & 1 \end{pmatrix}$ **54.** $A_T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

52.
$$A_T = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix}$$

53.
$$A_T = \begin{pmatrix} 1 & 0 \\ -7 & 1 \end{pmatrix}$$

54.
$$A_T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$