昆山厚臀電子科技有限公司 KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

ISO14001 ISO/TS16949

Specification for Approval

Customer : 深圳市立创电子商务有限公司

Product Name: LEAD-FREE METAL FILM FIXED RESISTORS

Part Name : MFR SERIES $\pm 1\% \cdot \pm 2\% \cdot \pm 5\%$

Part No. : MFR0**F*****0; MFR0**G******0; MFR0**J******0

65 Dengta Road, Yushan Town, Kun Shan City, Jiang Su Province

TEL: 86 512 57631411 / 22 / 33

FAX: 86 512 57631431

E-mail: globalsales@uniohm.com localsales@uniohm.com

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	1/13

昆山厚臀電子科技有限公司 KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

Contents

Introduction	Page
1.0 Scope	4
2.0 Ratings & Dimension	4
3.0 Construction	5
4.0 Resistor marked	5~6
5.0 Derating Curve	6
6.0 Performance Specification	7
7.0 Explanation of Part No. System	8~9
8.0 Ordering Procedure	10
9.0 Standard Packing	10~12
10.0 Precaution for storage/Transportation	13

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	2/13

昆山厚臀電子科技有限公司 KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

File Name: MFR SERIE	ES ±1% \ ±2% \ ±5%	Date	2015.9.22	Edition No.	1	
	Amendmer	nt Record		Signature		
Edition	Prescription of amendment	Amend Page	Amend Date	Amended by	Checked by	

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	3/13

科 技 限 司 有

KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

1.0 Scope:

This specification for approve relates to Lead-Free Metal Film Fixed Resistors manufactured by UNIOHM.

2.0 Ratings & Dimension:

For 1/8W, 1/4WS, 0.4WSS

Other

2.1 Normal size

Tuno		Dimension(mm)			Max	Max Overload	Dielectric	Tolerance	Resistance	
Туре	D	L	d ±0.05	H ±3			Withstanding Voltage	Tolerance	Range	
MF 1/8W	1.9±0.3	3.3±0.3	0.45	28	200V	400V	400V	±1%、±2%	10 Ω~ 1M Ω	
IVII 1/OVV	1.9±0.5	3.3±0.3	0.40	20	200 V	1 00 v	400 V	±5%	1Ω~1MΩ	
MF 1/4W	2.2±0.3	6.5±1.0	0.54	28	250V	500V	500V	±1% \ ±2%	10 Ω~ 1M Ω	
IVII 1/4VV	2.2±0.3	0.5±1.0	0.54	20	250 V	300 V	3007	±5%	1Ω~1MΩ	
MF 1/2W	3.0±0.6	9.5±1.0	0.54	28	350V	700V	700V	±1% \ ±2%	10 Ω~ 1M Ω	
IVIF 1/2VV	3.0±0.0	9.5±1.0	0.54	20	350 V	7000	7000	±5%	1 Ω~ 1M Ω	
MF 1W	4.5±0.6	11.5±1.0	0.65	28	500V	1000V	1000V	±1% \ ±2%	51.1 Ω ~1 M Ω	
IVII IVV	4.5±0.0	11.5±1.0	0.05	20	300 V	1000 v	1000 V	±5%	1Ω~1MΩ	
MF 2W	5.0±0.6	15.5±1.0	0.70	28	500V	1000V	1000V	±1% \ ±2%	51.1 Ω ~1 M Ω	
IVII ZVV	5.0±0.0	13.3±1.0	0.70	20	300 V	10007	1000 V	±5%	1 Ω~ 1M Ω	
MF 3W	6.0±0.6	17.5±1.0	0.75	28	500V	1000V	1000V	±1%、±2%	51.1 Ω ~1 M Ω	
IVIE 3VV	0.0±0.6	17.5±1.0	0.75	20	3007	10007	10007	±5%	1 Ω~ 1M Ω	

2.2 Small Size & Extra Small Size

Z.Z Siliali s		a Small Size			I	ı	I		T	
T		Dimension(m	nm)		Max	Max	Dielectric	Talamanaa	Resistance	
Туре	D	L	d ±0.05	H ±3	Working Voltage	Overload Voltage	Withstanding Voltage	Tolerance	Range	
MF 1/4WS	1.9±0.5	3.3±0.3	0.45	28	200V	400V	200V	±1%、±2%	10 Ω~ 1M Ω	
171170	1.0_0.0	0.0_0.0	0.10	20	2001	100 V	2001	±5%	1Ω~1MΩ	
MF 0.4WSS	1.9±0.5	3.3±0.3	0.45	28	200V	400V	200V	±1%、±2%	10 Ω~ 1M Ω	
WII 0.4VV33	1.9±0.5	5.5±0.5	0.43	20	200 V	400 V	200 V	±5%	1Ω~1MΩ	
MF 1/2WSS	2.2±0.5	6.5±0.5	0.54	28	250V	500V	250V	±1%	10 Ω~ 1M Ω	
IVIF 1/2VV33	2.2±0.5	0.5±0.5	0.54	20	250 V	300 V	250 V	±2%、±5%	1Ω~1MΩ	
MF 1/2WS	2.7±0.5	9.0±1.0	0.54	28	350V	700V	700V	±1% \ ±2%	10 Ω~ 1M Ω	
IVIF 1/2VV3	2.7±0.5	9.011.0	0.54	20	350 V	7000	7000	±5%	1Ω~1MΩ	
MF 0.6WS	2.2±0.5	6.5±1.0	0.54	28	250V	500V	250V	±1%	10 Ω~ 1M Ω	
IVIF U.OVV S	2.2±0.5	6.5±1.0	0.54	20	250 V	300 V	2507	±2% \ ±5%	1Ω~1MΩ	
MF 1WS	3.5±0.6	9.5±1.0	0.60	28	350V	700V	350V	±1% \ ±2% \ ±5%	0.1 Ω~ 1M Ω	
MF 2WS	4.0±0.6	11.5±1.0	0.65	28	500V	1000V	350V	±1%、±2%、±5%	10Ω~1ΜΩ	
MF 3WS	5.0±0.6	15.5±1.0	0.70	28	500V	1000V	350V	±1% \ ±2% \ ±5%	10Ω~1ΜΩ	

Approved	Checked	Prepared File NO.		Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	4/13

限 昆 技 科 有 司

KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

245468

3.0 Construction:

No.	Name	Material
1	Basic Body	Rod type ceramics
2	Resistor	Metal Film
3	End Cap	Cold steel plated with copper/tin
4	Lead Wire	Tin solder coated copper wire
5	Joint	By Welding
6	Coating	(1). Celluloid paint (2) Insulated Resin (Normal size; 1/2WS): Blue (Small size): Light Green 0.4WSS: Deep Green
7	Color Code	Epoxy resin

4.0 Resistor marked:

Resistors shall be marked with color coding Colors shall be in accordance with JIS C 0802 For 1/8W, ,1/4WS,0.4WSS (±1%)

For 1/8W,1/6W,1/4WS,0.4WSS (±2%,±5%)

The other

The other

Approved	Checked	Prepared File NO.		Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	5/13

昆 技 司

KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

ISO14001 ISO/TS16949

4.1 Label:

Label shall be marked with following items:

- (1) Type and style
- (2) Nominal resistance
- (3) Resistance tolerance
- (4) Quantity
- (5) Lot number
- (6) PPM

Example:

Example:					
METAL FILM FIXED RESISTORS					
WATT: 1/2WSS	VAL:2M Ω				
Q'TY: 5,000	TOL: 5%				
LOT: 3021548	PPM: 200				

5.0 Derating Curve:

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55°C to 70°C. For temperature in excess of 70°C, the load shall be derate as shown in figure 1

Figure1

5.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = Rated DC or RMS AC continuous working voltage at

commercial-line frequency and waveform (VOLT.)

R= nominal resistance (OHM)The overload voltage is 2.5 times RCWV or P = power rating (WATT.)

Max. Overload voltage whichever is les

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	6/13

昆山厚臀電子科技有限公司

KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

6.0 Performance Specification:

Uni Ohm al need it!

Characteristic		Limits	Test Method (JIS-C-5201&5202)
	±1%	±50PPM/°C Max	4.8 natural resistance changes per temp. Degree centigrade R ₂ -R ₁
Temperature Coefficient	±2%	±100PPM/°C Max.	$R_1(T_2-T_1)$ × 10^6 (PPM/°C) $R_1(T_2-T_1)$ · · · · · · · · · · · · · · · · · · ·
	±5%	±200PPM/°C Max	R ₂ :Resistance value at room temp.+100 $^{\circ}$ C ((T ₂) Test pattern: room temp. (T ₁), room temp. +100 $^{\circ}$ C(T ₂)
Short-time overload	±(0.5%+	nce change rate is: 0.05Ω)Max. With no e of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds.
Dielectric withstanding voltage	damage down.	ence of flashover mechanical , arcing or insulation break	4.7 Resistors shall be clamped in the trough of a 90°metallic v-block and shall be tested at ac potential respectively specified in the above list for 60-70 seconds.
Pulse overload	± (1%+0 evidence	nce change rate is: 0.05Ω) Max. With no e of mechanical damage.	4.28 Resistance change after 10,000 cycles (1 second "ON", 25 seconds "OFF") at 4 times RCWV.
Resistance to soldering heat	± (1%+0	nce change rate is: 1.05Ω) Max. With no e of mechanical damage	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}\text{C}\pm5^{\circ}\text{C}$ solder for 10 ± 1 seconds.
Resistance to solvent		rioration of protective & markings	4.29 Specimens shall be immersed in a bath of trichloroethylene completely for 3 min. With ultrasonic
Terminal strength	No evide	ence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.
Solderability	95% cov	verage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245°C±3°C Dwell time in solder: 2~3seconds.
Temperature cycling	±(1%+0.	nce change rate is: 05Ω) Max With no e of mechanical damage.	4.19 Resistance change after continuous five cycles for duty cycle specified: Step Temperature Time 1 -55°C ± 3°C 30mins 2 Room temp. 10 − 15mins 3 +155°C ± 2°C 30mins 4 Room temp. 10 − 15min
Load life in humidity	Normal t	type: ±1.5%; tardant type: ±5%	7.9 resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at RCWV in a humidity test chamber controlled at $40^{\circ}\pm2^{\circ}$ and 90 to 95% relative humidity.
Load life		type: ±1.5%; etardant type: ±5%	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $70^{\circ}\text{C}\pm2^{\circ}\text{C}$ ambient.

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	7/13

技 昆 司

KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

ISO14001 ISO/TS16949

7.0 Explanation of Part No. System:

The standard Part No. includes 14 digits with the following explanation:

7.1 Coated type, the 1st to 3rd digits are to indicate the product type and 4th digit is the special feature.

Example: MFRF= Metal Film Fixed Resistors Non-flame type;

7.2 5th~6th digits:

7.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U=Extra Small Size; "1" ~ "G" to denotes "1" ~ "16" as Hexadecimal:

1/16W~1/2W (<1W)

Wattage	1/2	1/3	1/4	1/5	1/6	1/8	0.6	0.4
Normal Size	W2	W3	W4	W5	W6	W8	/	/
Small Size	S2	S3	S4	S5	S6	S8	06	/
Extra Small Size	U2	U3	U4	U5	U6	U8	/	04

1W~16W (≥1W)

Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1W	2W	3W	5W	7W	8W	9W	AW	FW
Small Size	1S	2S	3S	5S	7S	8S	9S	AS	FS
Extra Small Size	1U	2U	3U	5U	7U	8U	9U	AU	FU

7.2.2 For power rating less than 1 watt, the 5th digit will be the letters W, S or U to represent the size required & the 6th digit will be a number or a letter code.

Example: WA=1/10W; U2=1/2W-SS.

7.2.3 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W, S or U.

Example: AW=10W; 3S=3W-S

7.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

F=±1% G=±2% J=±5%

- 7.4 The 8th to 11th digits is to denote the Resistance Value.
- 7.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	8/13

昆 司

For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the 11th digit is the zeros following.

7.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

 $6=10^6$ $0=10^{0}$ $3=10^3$ $4=10^4$ $5=10^5$ $K=10^{-2}$ $L=10^{-3}$ $1=10^1$ $2=10^2$ J=10⁻¹ $M=10^{-4}$ 7.4.3 The 12th, 13th & 14th digits.

The 12th digit is to denote the Packaging Type with the following codes:

A=Tape/Box (Ammo pack) B=Bulk/Box T=Tape/Reel P=Tape/Box of PT-26 products

7.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. Except for Chip products Bulk packing, this digit should be filled "0" or other products with Bulk/Box packing requirement. The following letter code and number is to be used for some packing quantities:

> 1=1000pcs 2=2000pcs A=500pcs B=2500pcs

7.4.5 For the FORMED type products, the 13th & 14th digits are used to denote the forming types of the product with the following letter codes:

MF=M-type with flattened lead wire F0= F-type MK= M-type with kinked lead wire F1= F1-type ML= M-type with normal lead wire F2= F2-type MC= M type with kinked lead and narrow pitch wire F3= F3-type

7.4.6 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

P=Panasert type 1=Avisert type 1 2=Avisert type 2

3=Avisert type 3 A=Cutting type CO 1/4W-A type B= Cutting type CO 1/4W-B type

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	9/13

昆山厚臀電子科技有限公司

KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

Tolerance (& TCR):

G=±2% ±100PPM

±50PPM

±200PPM

 $F=\pm 1\%$

J=±5%

9.0 Standard Packing:

9.1 Tapes in Box Packing

Packing Type:

A=Tape/Box

T=Tape/Reel

B=Bulk/Box

P=Tape/Box of PT-26 product

"L1-L2=1.0 Max. ZW: 0

**S=0.5 Max. PT-26: 0.8 Max.

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	10/13

技 有 司

KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

ISO14001 ISO/TS16949

Dimension of T/B (mm)

Part No.	0	P	A±5	B±5	C±5	Qty/Box
MF 1/8W	52±1	5±0.3	75	70	255	5,000pcs
MF 1/4WS	52±1	5±0.3	75	70	255	5,000pcs
MF 1/4W	52±1	5±0.3	75	98	255	5,000pcs
MF 0.4WSS	52±1	5±0.3	75	70	255	5,000pcs
MF 1/2WSS	52±1	5±0.3	75	116	255	5,000pcs
MF 1/2WS	52±1	5±0.3	75	70	255	2,000pcs
MF 1/2W	52±1	5±0.3	75	45	255	1,000pcs
MF 0.6WS	52±1	5±0.3	75	116	255	5,000pcs
MF 1WS	58±1	5±0.3	80	70	255	1,000pcs
MF 1W	58±1	5±0.3	80	82	255	1,000pcs
MF 2WS	58±1	5±0.3	80	82	255	1,000pcs
MF 2W	65±5	10±0.5	90	88	255	1000pcs
MF 3WS	65±5	10±0.5	90	119	255	1000pcs
MF 3W	65±5	10±0.5	90	88	255	500pcs

9.2 Tapes in Reel Packing

Dimension of Reel (mm)

				2111011	or recei (mm)
Part No.	A	W±5	H±5	L±5	Qty/Box
MF 1/8W	73±2	85	295	293	5,000pcs
MF 1/4WS	73±2	85	295	293	5,000pcs
MF 1/4W	73±2	85	295	293	5,000pcs
MF 0.4WSS	73±2	85	295	293	5,000pcs
MF 1/2WSS	73±2	85	295	293	5,000pcs
MF 1/2WS	73±2	85	295	293	4,000pcs
MF 1/2W	73±2	85	295	293	4,000pcs
MF 0.6WS	73±2	85	295	293	5,000pcs
MF 1WS	73±2	85	295	293	2,500pcs
MF 1W	73±2	85	295	293	2,500pcs
MF 2WS	73±2	85	295	293	2,500pcs
MF 2W	80±5	95	295	293	1,000pcs
MF 3WS	80±5	95	295	293	1,000pcs
MF 3W	80±5	95	295	293	1,000pcs

9.3 Bulk in Box Packing

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	11/13

昆山厚臀電子科技有限公 司

KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

Dimension of Box (mm)

			Difficusion of Dox (IIIII)				
Part No.	A±5	B±5	C±5	Qty/Box			
MF 1/8W	140	80	240	1,000/20,000pcs			
MF 1/4WS	140	80	240	1,000/20,000pcs			
MF 1/4W	140	80	240	500/20,000pcs			
MF 0.4WSS	140	80	240	1,000/20,000pcs			
MF 1/2WSS	140	80	240	500/10,000pcs			
MF 1/2WS	140	80	240	500/8,000pcs			
MF 1/2W	140	80	240	250/2,000pcs			
MF 0.6WS	140	80	240	500/10,000pcs			
MF 1WS	140	80	240	200/4,000pcs			
MF 1W	140	80	240	100/2,500pcs			
MF 2WS	140	80	240	100/2,500pcs			
MF 2W	140	80	240	100/1,500pcs			
MF 3WS	140	80	240	100/1,500pcs			
MF 3W	140	80	240	100/1,500pcs			

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	12/13

昆 技 司

KUNSHAN FUNTEX ELECTRONICS TECHNOLOGY CO., LTD

10.0 Precaution for storage/Transportation:

- 10.1 UNIOHM recommend the storage condition temperature: 15°C ~35°C, humidity:25%~75%. (Put condition for individual product)
 - Even under UNIOHM recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.
- 10.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 10.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic
 - b. Storage in direct sunshine \ rain and snow or condensation
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S₂ NH₃, SO₂, NO_2 .

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Zhang Yuting	JL-01-006	1	2015.9.22	13/13