Model Based ECU Development An Integrated MiL, SiL, HiL Approach

Agenda

- Model-Based ECU Development Today
 - Model-in-the-Loop (MiL) Development
 - Software-in-the-Loop (SiL) Development
 - Hardware-in-the-Loop (HiL) Development
- Challenges of the Traditional Process
- Requirements of an Integrated MiL/SiL/HiL Aproach
- An ETAS Solutions
- Conclusions

Model-Based ECU Development -Today Process Steps

Goal:

 Rapid development, test and validation of new control strategies

Methodologies:

- Modeling
- Model-in-the-loop
- Software-in-the-loop
- Hardware-in-the-loop

Overall System Architecture

Migration to a Virtual Environment – 1/3

Migration to a Virtual Environment – 2/3

Migration to a Virtual Environment – 3/3

Model-in-the-Loop (MiL) Overview

- Objectives:
 - Functional validation and calibration of ECU sub-system models
 - Evaluate interactions between ECU sub-systems
 - Refinement of plant models
- Pre-requisites:
 - Plant models with adequate fidelity
 - All signal interface definitions (e.g. sensors)
 - Test scenarios for validation (e.g. test vectors, test stimuli)

Software-in-the-Loop (SiL) Overview ECU Functional Model

- Functional validation of ECU software architecture
 - → e.g. CAN bus configuration and load
- Verification of ECU software implementation against model
- Pre-requisites:
 - ECU software modules (C-code)
 - ECU communication architecture (e.g. CAN network)
 - Test scenarios from MiL (e.g. test vectors, test stimuli)

Hardware-in-the-Loop (HiL) Overview

Plant Model

Vehicle Model

Driver
Model

Virtual Signal Bus

- Objectives:
 - Validation of ECU software in real-time with actual sensor and actuator signals
 - Better calibration values
- Prerequisites:
 - Plant model should run in real-time
 - Emulation of all electrical interfaces of the ECU
 - All control models converted to ECU code

Challenges of the Traditional Process - 1/3

- Increasing complexity of plant models
 - Controls development needs domain specific models
 - → slow to execute on the PC (e.g. transmission hydraulics, fuel-cell stacks)
- Function oriented ECU development
 - Models are built in different environments or different versions of the same environment
 - Model data and interfaces are difficult to merge
- Distribution of electronic features over multiple ECUs
 - Higher system integration and validation complexity

Challenges of the Traditional Process - 2/3

- System and sub-system testing
 - Test cases for MiL cannot be reused in HiL
 - → Due to tool and configuration inconsistencies
 - Tests scripts have to be adapted when HiL hardware is switched
- Handling of C-code for SiL
 - Large number of legacy C-code modules are needed
 - → Current solutions are not modular and scalable
 - Limited access to C-code parameters for measurement and calibration
 - Production standards (ASAP, MSR, OSEK etc.) are not compatible

Challenges of the Traditional Process - 3/3

- Control over model execution in MiL and SiL
 - Execution may not adapt to PC compute power
 - Speed-up or slow-down not possible
- Relative timing behavior of control modules in MiL and SiL
 - No provision to schedule control modules to run according to production OS requirements (e.g. OSEK)
- User Interfaces and Data Exchange between MiL/SiL and HiL
 - Different tools require creation and maintenance of separate calibration and measurement profiles
 - Often, datasets cannot be easily exchanged

An Integrated MiL/SiL/HiL Approach Requirements - 1/4

Plant Models:

- Flexibility in coupling with plant models of different origins, platforms and interfaces
- Support for both homogeneous (single executable) and heterogeneous (co-simulation) modes on the PC
- Ability to control the run-time behavior on the PC
 → speed-up, slow-down as needed (available compute power)
- Re-use of the same plant model across MiL, SiL and HiL
- Re-use of stimuli sets (e.g. driver inputs, closed-loop drive profiles etc.) from MiL to SiL to HiL

An Integrated MiL/SiL/HiL Approach Requirements - 2/4

Control System Models:

- Maintain the modularity of function oriented ECU development
 - → i.e. integrate models from different modeling tools, versions and organizations into one system
- Ease of connecting control model signals with plant model signals
 - → i.e. creating the Virtual Signal Bus
- Support for upcoming standards
 - → e.g. AUTOSAR interface description files
- Ability to schedule various sub-systems to run under timer or event driven tasks on the PC
- Fast turnaround times for MiL and SiL
 - → i.e. incrementally build and compile model changes

An Integrated MiL/SiL/HiL Approach Requirements - 3/4

C-code integration:

- Ability to integrate C-code with models at different levels
 - → e.g. source code, object code, .dll files, .lib files
- Measure and calibrate C-code parameters in SiL
 - → e.g. re-use available ASAM-MCD-2MC description files
- Validate models and C-code while utilizing "platform services" on the desktop PC
 - → e.g., RTOS settings, timer and event based tasks etc.
- Maintain modular C-code architecture of the ECU in SiL

An Integrated MiL/SiL/HiL Approach Requirements - 4/4

Process:

- Identical user interface for control of plant and ECU software models
 - → especially important as one moves from PC (MiL/SiL) to HiL
- Ability to re-use MiL/SiL artifacts in HiL
 - Test-scripts
 - ECU model calibrations
 - Plant models
 - Data sets (e.g. stimuli, test data)

An Integrated MiL/SiL/HiL Approach ETAS Solution

INTECRIO

 A comprehensive PC based integration platform for MiL and SiL

LABCAR

 A HiL system with scalable hardware and open software architecture

INCA

 ECU measurement and calibration software

An Integrated MiL/SiL/HiL Approach

ETAS Solution

INTECRIO as a homogeneous MiL/SiL integration platform

INTECRIO as a heterogeneous MiL/SiL integration platform

An Integrated MiL/SiL/HiL Approach **ETAS Solution** Software Component C-code Synthesis Tool INCODIO[®] Object Code, Real-Time Info, .c, .h files SYSTECS Description files (ASAM, ODX, OSEK, AUTOSAR) Module Interface **INTECRIO** RTA-OSEK and RTE

Integrating C-code in INTECRIO via INCODIO for MiL and SiL

An Integrated MiL/SiL/HiL Approach ETAS Solution

Using INCA for Calibration and Measurement in MiL, SiL and HiL

An Integrated MiL/SiL/HiL Approach ETAS Solution

Using LABCAR-AUTOMATION for Testing in MiL, SiL and HiL

An Integrated MiL/SiL/HiL Approach Customer Success Stories

A major US OEM

- Major advance in calibration development:
 - → 75% in MiL, 100% in HiL
- Most software bugs removed before going into vehicle
- 3x improvement in turnaround times over standard process
 - → i.e., controls and plant model changes in MiL
- 7x improvement in model execution times on the PC

A major European OEM

- 5x improvement in model execution times on the PC
- Sharing experiments, data, stimuli between users

An Integrated MiL/SiL/HiL Approach Conclusions

INTECRIO, LABCAR, and INCA

A integrated tool suite for MiL, SiL and HiL development

Key Advantages:

- Reduce non value-added steps (e.g. data conversion, adaptation of test sequences, GUIs etc.)
- Re-use test scripts, stimuli, plant models and ECU data
- Reduce costs associated with the ECU development process
 - → do more in the virtual environment
 - → reduce dependence on fleet and dyno testing

Model Based ECU Development An Integrated MiL, SiL, HiL Approach

Thank you for your attention! Your questions are welcome.

