1. α_R for different types of equations

We consider the benchmark Poisson equation, i.e. $u = e^{-(x-1/2)^2}$, but we extend it to diffusion and Helmholtz equations by choosing different d(x) and r(x), see Table 1 for the settings. The variables in d(x) and r(x) are denoted as c_d and c_h , respectively, for which the values of the former ranges from 1 to 10^4 , and that of the latter is equal to 1.

	"Poisson"	"diffusion"	"Helmholtz"
d(x)	1	$1 + 0.5\sin(c_d x)$	$1 + 0.5\sin(x)$
r(x)	0	0	Ch

 ${\bf Table\ 1\ Settings\ of\ the\ Poisson,\ diffusion\ and\ Helmholtz\ equations.}$

The offset α_R for the three types of equations using the standard FEM (P_2 elements) and the mixed FEM ($P_4/P_3^{\rm disc}$ elements) are shown in 2 writing 1 1d summary of offsets.

It shows that the offset α_R is generally not affected by the types of equations considered. However, if we increase c_h for the Helmholtz equation, α_R for the solution and first derivative would decrease, see Fig. 1.

Fig. 1. Absolute errors for the Helmholtz equation using the standard FEM for different c_h .