3节电池串联用电池保护IC

S-8233B系列

S-8233B系列是内置了高精度电压检测电路(±25 mV精度) 和延迟电路的锂离子可充电电池保护用IC。

这种IC最适合在3节串联用锂离子可充电电池组上使用。

■ 特点

- (1) 内置高精度电压检测电路
 - 过充电检测电压 3.80 ±0.025 V ~ 4.40 ±0.025 V 进阶单位为5 mV
 - 过充电解除电压 3.45 ±0.100 V ~ 4.40 ±0.100 V 进阶单位为5 mV (过充电解除电压与过充电检测电压的差可在0 V ~ 0.35 V的范围内以50 mV为进阶单位来选择)
 - 过放电检测电压 2.00 ±0.08 V ~ 2.80 ±0.08 V 进阶单位为50 mV
 - 过放电解除电压 2.00 ±0.10 V ~ 4.00 ±0.10 V 进阶单位为50 mV (过放电解除电压与过放电检测电压的差可在0 V ~ 1.2 V的范围内以50 mV为进阶单位来选择)
 - 过电流检测电压1 0.15 ±0.015 V ~ 0.5 ±0.05 V 进阶单位为50 mV
- (2) 耐高压元件 (绝对最大额定值 26 V)
- (3) 宽工作电压范围 2 V ~ 24 V
- (4) 可通过外接器件的电容设置各种检测时的延迟时间
- (5) 3段过电流检测(负载短路时的保护)
- (6) 内置通过控制端子的充放电禁止电路
- (7) 可选择电池电压0 V开始的充电功能
- (8) 低消耗电流
 - 工作时 50 μA 最大值 (+25°C)休眠时 0.1 μA 最大值 (+25°C)
- (9) 无铅产品

■ 用途

- 锂离子可充电电池组
- 锂聚合物可充电电池组

■ 封装

封装名	图面号码					
到衣有	封装图面	卷带图面	带卷图面			
16-Pin TSSOP	FT016-A	FT016-A	FT016-A			

■ 框图

备注 过电流检测2、3的延迟时间由IC内部的电路而被固定。不能通过外接电容来使延迟时间 产生变化。

图1

■ 产品型号的构成

1. 产品名

*1. 请参阅卷带图。

2. 产品名目录

表1

	过充电检测电压	过充电解除电压	过放电检测电压	过放电解除电压	过电流检测电压1	向0 V电池	状态检测	OT! \m+= *1
型号名称/项目	V _{CU}	V_{CD}	V_{DD}	V_{DU}	V _{IOV1}	充电功能	功能	CTL逻辑 *1
S-8233BAFT-TB-G	4.225 ±0.025 V	4.225 V *2	2.30 ±0.08 V	2.70 ±0.10 V	0.20 ±0.02 V	_	有	正
S-8233BBFT-TB-G	4.325 ±0.025 V	4.15 ±0.10 V	2.30 ±0.08 V	2.70 ±0.10 V	0.20 ±0.02 V	_	无	反
S-8233BCFT-TB-G	4.200 ±0.025 V	4.2 V	2.80 ±0.08 V	3.30 ±0.10 V	0.25 ±0.025 V	可能	有	正
S-8233BDFT-TB-G	4.325 ±0.025 V	4.15 ±0.10 V	2.00 ±0.08 V	2.70 ±0.10 V	0.50 ±0.05 V	_	无	反
S-8233BEFT-TB-G	4.080 ±0.025 V	3.90 ±0.10 V	2.50 ±0.08 V	2.75 ±0.10 V	0.20 ±0.02 V	可能	有	正

^{*1.} 因CTL逻辑的"正"、"反"的不同,通常工作时的CTL端子的输入电压会发生变化。 (有关详情,请参阅"**工作说明**"。)

备注 需要上述检测电压值以外的产品时,请向本公司营业部咨询。

^{*2.} 无过充电检测 / 解除滞后。

■ 引脚排列图

表2

		* 2
引脚号	符号	描述
1	DOP	放电控制用FET门极连接端子(CMOS输出)
2	NC	无连接^{*1}
3	COP	充电控制用FET门极连接端子(Nch开路漏极输出)
4	VMP	VCC-VMP间的电压检测端子(过电流检测端子)
5	COVT	过电流检测1延迟用的电容连接端子
6	CDT	过放电检测延迟用的电容连接端子
7	CCT	过充电检测延迟用的电容连接端子
8	VSS	负电源输入端子、电池3的负电压连接端子
9	CTL	充放电控制信号的输入端子
10	CD3	电池3的状态信号输出端子
11	VC2	电池2的负电压、电池3的正电压连接端子
12	CD2	电池2的状态信号输出端子
13	VC1	电池1的负电压、电池2的正电压连接端子
14	CD1	电池1的状态信号输出端子
15	NC	无连接 ^{*1}
16	VCC	正电源输入端子、电池1的正电压连接端子

*1. NC表示从电气的角度而言处于开放状态。 所以,与VCC或VSS连接均无问题。

■ 绝对最大额定值

表3

(除特殊注明以外: Ta=25°C)

项目	记号	适用端子	绝对最大额定值	单位
VCC – VSS间输入电压	V_{DS}	_	V _{SS} -0.3 ~ V _{SS} +26	V
输入端子电压	V _{IN}	VC1, VC2, CTL, CCT, CDT, COVT	V_{SS} -0.3 ~ V_{CC} +0.3	V
VMP输入端子电压	V_{VMP}	VMP	V_{SS} -0.3 ~ V_{SS} +26	V
CD1输出端子电压	V_{CD1}	CD1	V_{C1} -0.3 ~ V_{CC} +0.3	V
CD2输出端子电压	V_{CD2}	CD2	V_{C2} –0.3 ~ V_{CC} +0.3	V
CD3输出端子电压	V_{CD3}	CD3	V_{SS} -0.3 ~ V_{CC} +0.3	V
DOP输出端子电压	V_{DOP}	DOP	V_{SS} -0.3 ~ V_{CC} +0.3	V
COP输出端子电压	V_{COP}	COP	V_{SS} -0.3 ~ V_{VMP} +0.3	V
容许功耗	D	_	300 (基板未安装时)	mW
台计划社	P_{D}	_	1100 ^{*1}	mW
工作环境温度	T _{opr}	_	−20 ~ +70	°C
保存温度	T _{stg}	_	−40 ~ +125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm×76.2 mm×t1.6 mm

(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品 劣化等物理性损伤。

图 3 封装容许功耗 (基板安装时)

■ 电气特性

表4 (1/2)

(除特殊注明以外: Ta=25°C)

被測电圧							(19)(19)	注明以外:	
対充电格測电圧	项目	记号	条件	最小值	典型值	最大值	单位	测定条件	测定电路
	检测电压								
対応性熱別地圧	过充电检测电压1	V _{CU1}	3.80~4.40 V可调整	V _{CU1} -0.025	V _{CU1}	V _{CU1} +0.025	V	1	1
対応性解神性性 Vour	过充电解除电压1	V _{CD1}	3.45~4.40 V可调整	V _{CD1} -0.10	V _{CD1}	V _{CD1} +0.10	V	1	1
辺充电栓測电圧2	过放电检测电压1	V_{DD1}	2.00~2.80 V可调整	V _{DD1} -0.08	V_{DD1}	V _{DD1} +0.08	V	1	1
対応电解映电圧	过放电解除电压1	V_{DU1}	2.00~4.00 V可调整	V _{DU1} -0.10	V_{DU1}	V _{DU1} +0.10	V	1	1
以充电解熱电圧2 V _{CO2} 3.45 ~ 4.40 V可調整 V _{CO2} − 0.10 V _{CO2} V _{CO2} V _{CO2} + 0.10 V 2 1 1 2 放电解源电压2 V _{CO2} 2.00 ~ 4.00 V可調整 V _{CO2} − 0.08 V _{CO2} V _{CO2} + 0.00 V 2 1 1 2 放电解源电压3 V _{CO3} 3.80 ~ 4.40 V可调整 V _{CO2} − 0.02 V _{CO3} V _{CO2} + 0.00 V 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	过充电检测电压2	V _{CU2}	3.80~4.40 V可调整	V _{CU2} -0.025	V _{CU2}	V _{CU2} +0.025	V	2	1
対応电解映电压2	过充电解除电压2		3.45~4.40 V可调整	V _{CD2} -0.10	V_{CD2}	V _{CD2} +0.10	V	2	1
対応电解映电压2	过放电检测电压2	V_{DD2}	2.00~2.80 V可调整	V _{DD2} -0.08	V_{DD2}	V _{DD2} +0.08	V	2	1
近元电解除电压3	过放电解除电压2	V_{DU2}	2.00~4.00 V可调整	V _{DU2} -0.10	V_{DU2}	V _{DU2} +0.10	V	2	1
立放电检测电压3 Voo3 2.00~2.80 V可调整 Voo3 Voo3 Voo3 Voo3 Voo3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	过充电检测电压3	V _{CU3}	3.80~4.40 V可调整	V _{CU3} -0.025	V _{CU3}	V _{CU3} +0.025	V	3	1
过放电解除电匝3	过充电解除电压3	V _{CD3}	3.45~4.40 V可调整	V _{CD3} -0.10	V _{CD3}	V _{CD3} +0.10	V	3	1
対地	过放电检测电压3	V _{DD3}	2.00~2.80 V可调整	V _{DD3} -0.08		V _{DD3} +0.08	V	3	1
対电流检測电压2 V _{IOV2} V _{Cc} 基準 0.54 0.6 0.66 V 4 2 过电流检测电压3 V _{IOV3} V _{Sc} 基准 1.0 2.0 3.0 V 4 2 电压温度係数1 ² T _{CoE1} Ta=-20 - 70°C° ⁴ -1.0 0 1.0 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C	过放电解除电压3	V _{DU3}	2.00~4.00 V可调整		V _{DU3}	V _{DU3} +0.10	V	3	1
対电流检測电压2 V _{IOV2} V _{Cc} 基準 0.54 0.6 0.66 V 4 2 过电流检测电压3 V _{IOV3} V _{Sc} 基准 1.0 2.0 3.0 V 4 2 电压温度係数1 ² T _{CoE1} Ta=-20 - 70°C° ⁴ -1.0 0 1.0 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C 电压温度係数2 ³ T _{CoE2} Ta=-20 - 70°C° ⁴ -0.5 0 0.5 mV/°C	过电流检测电压1*1	V _{IOV1}	0.15~0.50 V可调整	V _{IOV1} x 0.9	V _{IOV1}	V _{IOV1} x 1.1	V	4	2
対电流检測电圧3			Vcc基准	0.54		0.66	V	4	2
电圧温度係数2 ³ Toot2 Ta=-20~70°C*4 -0.5 0 0.5 mV/°C 延迟时间 过充电检测延迟时间1 tou1 Cccr=0.47 μF 0.5 1.0 1.5 s 9 6 6 过充电检测延迟时间2 tou2 Cccr=0.47 μF 0.5 1.0 1.5 s 10 6 6 过充电检测延迟时间3 tcus Cccr=0.47 μF 0.5 1.0 1.5 s 11 6 6 过范电检测延迟时间1 too1 Cccr=0.1 μF 20 40 60 ms 9 6 6 过放电检测延迟时间2 too2 Cccr=0.1 μF 20 40 60 ms 9 6 6 过放电检测延迟时间3 tcos Cccr=0.1 μF 20 40 60 ms 10 6 6 过放电检测延迟时间3 tcos Cccr=0.1 μF 20 40 60 ms 11 6 6 过效电检测延迟时间3 tcos Cccr=0.1 μF 20 40 60 ms 11 6 6 过效电检测延迟时间3 tcos Cccr=0.1 μF 10 20 30 ms 12 7 过电流检测延迟时间1 tov1 Ccovr=0.1 μF 10 20 30 ms 12 7 工作电压 10 20 30 ms 12 7	过电流检测电压3	V _{IOV3}	Vss基准	1.0	2.0	3.0	V	4	2
選及時間 対策电検測延迟时间1	电压温度係数1 ^{*2}		Ta=-20 ~ 70°C*4	-1.0	0	1.0	mV/°C	_	_
対充电検測延迟时间1	电压温度係数2 ^{*3}	T _{COE2}	Ta=-20 ~ 70°C*4	-0.5	0	0.5	mV/°C	_	_
过充电检测延迟时间2	延迟时间				l.	l .	I	I .	I
対充电检测延迟时间2	过充电检测延迟时间1	t _{CU1}	C _{CCT} =0.47 μF	0.5	1.0	1.5	s	9	6
过放电检测延迟时间1 toD1 CCDT=0.1 μF 20 40 60 ms 9 6 1 対放电检测延迟时间2 toD2 CCDT=0.1 μF 20 40 60 ms 10 6 2	过充电检测延迟时间2	t _{CU2}		0.5	1.0	1.5	s	10	6
対放电检測延迟时间2	过充电检测延迟时间3	t _{CU3}	C _{CCT} =0.47 μF	0.5	1.0	1.5	S	11	6
过放电检测延迟时间3	过放电检测延迟时间1	t _{DD1}	C _{CDT} =0.1 μF	20	40	60	ms	9	6
过电流检測延迟时间1	过放电检测延迟时间2	t _{DD2}	C _{CDT} =0.1 μF	20	40	60	ms	10	6
対电流检測延迟时间2	过放电检测延迟时间3	t _{DD3}	C _{CDT} =0.1 μF	20	40	60	ms	11	6
対电流检測延迟时间3	过电流检测延迟时间1	t _{IOV1}	C _{COVT} =0.1 µF	10	20	30	ms	12	7
Trent T	过电流检测延迟时间2	t _{IOV2}	_	2	4	8	ms	12	7
VCC-VSS间工作电压*5 V _{DSOP} - 2.0 - 24 V	过电流检测延迟时间3	t _{IOV3}	FET门极电容=2000 pF	100	300	550	μs	12	7
消耗电流 通常工作消耗电流	工作电压			•		•		•	•
通常工作消耗电流	VCC-VSS间工作电压*5	V_{DSOP}	_	2.0	_	24	V	_	_
市1消耗电流 I _{CELL1} V1=V2=V3=3.5 V -300 0 300 nA 5 3 节2消耗电流 I _{CELL2} V1=V2=V3=3.5 V -300 0 300 nA 5 3 节3消耗电流 I _{CELL3} V1=V2=V3=3.5 V -300 0 300 nA 5 3 休眠时消耗电流 I _{PDN} V1=V2=V3=1.5 V - - 0.1 μA 5 3 内部电阻值(向0 V电池充电功能可能) V1=V2=V3=3.5 V 0.20 0.50 0.80 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.20 0.50 0.80 MΩ 6 3 VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.40 0.90 1.40 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 输入电压 A A A A A A A A A A A A <t< td=""><td>消耗电流</td><td></td><td></td><td>•</td><td></td><td>•</td><td></td><td>•</td><td>•</td></t<>	消耗电流			•		•		•	•
节2消耗电流 I _{CELL2} V1=V2=V3=3.5 V -300 0 300 nA 5 3 节3消耗电流 I _{CELL3} V1=V2=V3=3.5 V -300 0 300 nA 5 3 休眠时消耗电流 I _{PDN} V1=V2=V3=1.5 V - - 0.1 μA 5 3 内部电阻值(向0 V电池充电功能可能) V1=V2=V3=3.5 V 0.20 0.50 0.80 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.20 0.50 0.80 MΩ 6 3 P布电阻值(向0 V电池充电功能禁止) VCC-VMP间电阻 R _{VSM} V1=V2=V3=3.5 V 0.40 0.90 1.40 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 输入电压 A	通常工作消耗电流	I _{OPE}	V1=V2=V3=3.5 V	_	20	50	μA	5	3
节3消耗电流 I _{CELL3} V1=V2=V3=3.5 V -300 0 300 nA 5 3 休眠时消耗电流 I _{PDN} V1=V2=V3=1.5 V - - 0.1 μA 5 3 内部电阻值 (向0 V电池充电功能可能) VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.20 0.50 0.80 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.20 0.50 0.80 MΩ 6 3 内部电阻值 (向0 V电池充电功能禁止) VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.40 0.90 1.40 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 输入电压	节1消耗电流	I _{CELL1}	V1=V2=V3=3.5 V	-300	0	300	nA	5	3
休眠时消耗电流 I _{PDN} V1=V2=V3=1.5 V 0.1 μA 5 3 内部电阻值(向0 V电池充电功能可能) VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.20 0.50 0.80 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.20 0.50 0.80 MΩ 6 3 内部电阻值(向0 V电池充电功能禁止) VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.40 0.90 1.40 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 输入电压	节2消耗电流	I _{CELL2}	V1=V2=V3=3.5 V	-300	0	300	nA	5	3
内部电阻值 (向0 V电池充电功能可能) VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.20 0.50 0.80 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.20 0.50 0.80 MΩ 6 3 内部电阻值 (向0 V电池充电功能禁止) VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.40 0.90 1.40 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 输入电压	节3消耗电流	I _{CELL3}	V1=V2=V3=3.5 V	-300	0	300	nA	5	3
VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.20 0.50 0.80 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.20 0.50 0.80 MΩ 6 3 内部电阻值 (向0 V电池充电功能禁止) VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.40 0.90 1.40 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 输入电压	休眠时消耗电流	I _{PDN}	V1=V2=V3=1.5 V	_	_	0.1	μA	5	3
VSS_VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.20 0.50 0.80 MΩ 6 3 内部电阻值(向0 V电池充电功能禁止) VCC_VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.40 0.90 1.40 MΩ 6 3 VSS_VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 输入电压	内部电阻值 (向0 V电池充	电功能可能)							
内部电阻值 (向0 V电池充电功能禁止) VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.40 0.90 1.40 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 输入电压	VCC-VMP间电阻	R _{VCM}	V1=V2=V3=3.5 V	0.20	0.50	0.80	ΜΩ	6	3
VCC-VMP间电阻 R _{VCM} V1=V2=V3=3.5 V 0.40 0.90 1.40 MΩ 6 3 VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 输入电压	VSS-VMP间电阻	R _{VSM}	V1=V2=V3=1.5 V	0.20	0.50	0.80	ΜΩ	6	3
VSS-VMP间电阻 R _{VSM} V1=V2=V3=1.5 V 0.40 0.90 1.40 MΩ 6 3 输入电压	内部电阻值 (向0 V电池充	电功能禁止)							
輸入电压	VCC-VMP间电阻	R _{VCM}	V1=V2=V3=3.5 V	0.40	0.90	1.40	ΜΩ	6	3
	VSS-VMP间电阻	R _{VSM}	V1=V2=V3=1.5 V	0.40	0.90	1.40	ΜΩ	6	3
071 (1111)	输入电压			•	•	•	•	•	
CTL "H"輸入电压	CTL "H"输入电压	$V_{\text{CTL(H)}}$	_	V _{CC} x 0.8	_	_	V	16	1
CTL "L"输入电压 V _{CTL(L)} V _{CC} x 0.2 V 16 1	CTL "L"输入电压		_	_	_	V _{CC} x 0.2	V	16	1

表4 (2/2)

(除特殊注明以外: Ta=25°C)

						(1.3. 1.3.1.1	1 - 11 - 1	/
项目	记号	条件	最小值	典型值	最大值	单位	测定条件	测定电路
输出电压								
DOP "H"电压	$V_{DO(H)}$	I _{OUT} =10 μA	V _{CC} -0.5	_	_	V	7	4
DOP "L"电压	$V_{DO(L)}$	I _{OUT} =10 μA	_	_	V _{SS} +0.1	V	7	4
COP "L"电压	$V_{CO(L)}$	Ι _{ΟυΤ} =10 μΑ	_	_	V _{SS} +0.1	V	8	5
COP非泄漏电流	I _{COL}	V1=V2=V3=4.5 V	_	_	100	nA	14	9
CD1 "H"电压	V _{CD1(H)}	I _{OUT} =0.1 μA	V _{CC} -0.5	_	_	V	13	8
CD1 "L"电压	V _{CD1(L)}	Ι _{ΟυΤ} =10 μΑ	_	_	V _{C1} +0.1	V	13	8
CD2 "H"电压	V _{CD2(H)}	I _{OUT} =0.1 μA	V _{CC} -0.5	_	_	V	13	8
CD2 "L"电压	V _{CD2(L)}	Ι _{ΟυΤ} =10 μΑ	_	_	V _{C2} +0.1	V	13	8
CD3 "H"电压	V _{CD3(H)}	I _{OUT} =0.1 μA	V _{CC} -0.5	_	_	V	13	8
CD3 "L"电压	V _{CD3(L)}	Ι _{ΟυΤ} =10 μΑ	_	_	V _{SS} +0.1	V	13	8
向0 V电池充电功能 ^{*6}	与0 V电池充电功能 ^{*6}							
向0 V充电开始电压	V_{0CHAR}	V1=V2=V3=0 V	_	_	1.4	V	15	10

- *1. 在过电流检测电压1为0.50 V的情况下,过电流检测电压1与过电流检测电压2在0.54 V ~ 0.55 V范围内会发生重复,务必变为 V_{IOV2} > V_{IOV1} 。
- *2. 电压温度係数1表示过充电检测电压、过充电解除电压、过放电检测电压、过放电解除电压。
- *3. 电压温度係数2表示过电流检测电压。
- *4. 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。
- *5. 工作电压在DOP、COP的逻辑已经成立的情况下为前提。
- *6. 适用于向0 V电池充电功能可能的产品。

■ 测定电路

注意 在测定电路 (1)~(15)时,

CTL逻辑「正」的产品(S-8233BA, S-8233BC, S-8233BE), CTL端子=V_{SS}(V4=0 V)。

CTL逻辑「反」的产品(S-8233BB, S-8233BD), CTL端子=V_{cc}(V4=V1+V2+V3)。

(1) 测定条件1 测定电路1

在通常状态下,V1=V2=V3=3.5 V设置后,V1从3.5 V开始缓慢提升到COP="H"时V1的电压即为过充电检测电压1(V_{CU1}),之后V1缓慢降低到COP="L"时V1的电压即为过充电解除电压1(V_{CD1})。再接着,V1缓慢降低到DOP="H"时V1的电压即为过放电检测电压1(V_{DD1})。之后,V1缓慢提升到DOP="L"时V1的电压即为过放电解除电压1(V_{DU1})。

备注 电压的变化速度在150 V/s以下。

(2) 测定条件2 测定电路1

通在通常状态下,V1=V2=V3=3.5 V设置后,V2从3.5 V开始缓慢提升到COP="H"时V2的电压即为过充电检测电压2(V_{CU2}),之后V2缓慢降低到COP="L"时V2的电压即为过充电解除电压2(V_{CD2})。再接着,V2缓慢降低到DOP="H"时V2的电压即为过放电检测电压2(V_{DD2})。之后,V2缓慢提升到DOP="L"时V2的电压即为过放电解除电压2(V_{DU2})。

备注 电压的变化速度在150 V/s以下。

(3) 测定条件3 测定电路1

在通常状态下,V1=V2=V3=3.5 V设置后,V3从3.5 V开始缓慢提升到COP="H"时V3的电压即为过充电检测电压3(V_{CU3}),之后V3缓慢降低到COP="L"时V3的电压即为过充电解除电压3(V_{CD3})。再接着,V3缓慢降低到DOP="H"时V3的电压即为过放电检测电压3(V_{DD3})。之后,V3缓慢提升到DOP="L"时V3的电压即为过放电解除电压3(V_{DU3})。

备注 电压的变化速度在150 V/s以下。

(4) 测定条件4 测定电路2

通常状态下,设置V1=V2=V3=3.5 V、V5=0 V。V5从0 V开始缓慢提升到DOP="H"、COP="H"时V5电压即为过电流检测电压1(V_{IOV1})。

通常状态下,设置V1=V2=V3=3.5 V、V5=0 V。COVT端子固定在 V_{SS} ,V5从0 V开始缓慢提升到DOP="H"、COP="H"时V5电压即为过电流检测电压2(V_{IOV2})。

通常状态下,设置V1=V2=V3=3.5 V、V5=0 V。COVT端子固定在V_{SS},V5从0 V开始以400 μs以上2 ms以下的速度上升至DOP="H"、COP="H"时V5电压即为过电流检测电压3(V_{IOV3})。

(5) 测定条件5 测定电路3

通常状态下,在S1=ON、V1=V2=V3=3.5 V、V5=0 V设置后的状态下测量各种消耗电流。I1为通常状态消耗电流(I_{OPE}),I2为节2消耗电流(I_{CELI2}),I3为节3消耗电流(I_{CELI3})。

过放电状态下,在S1=ON、V1=V2=V3=1.5 V、V5=4.5 V设置后的状态下的消耗电流I1为休眠时消耗电流 $(I_{PDN})_{\circ}$

(6) 测定条件6 测定电路3

通常状态下,在S1=ON、V1=V2=V3=3.5 V、V5=10.5 V设置后的状态下,V5/I5为VCC-VMP间内部电阻 (R_{VCM})。

过放电状态下,在S1=ON、V1=V2=V3=1.5 V、V5=4.1 V设置后的状态下,(4.5 – V5)/I5为VSS-VMP间内部电阻(R_{VSM})。

(7) 测定条件7 测定电路4

通常状态下,在S1=ON、S2=OFF、V1=V2=V3=3.5 V、V5=0 V设置后的状态下,V6=0 V开始缓慢提升, $I6=10~\mu$ A流经时的V6电压即为DOP"L"电压($V_{DO(L)}$)。

过电流状态下,在S1=OFF、S2=ON、V1=V2=V3=3.5 V、V5= V_{IOV2} +0.1 V设置后的状态下,V7=0 V开始缓慢提升,I7=10 μ A流经时的V7电压即为DOP"H"电压($V_{DO(H)}$)。

(8) 测定条件8 测定电路5

通常状态下,在V1=V2=V3=3.5 V、V5=0 V设置后的状态下,V6=0 V开始缓慢提升,I6=10 μ A流经时的 V6电压即为COP"L"电压($V_{CO(L)}$)。

(9) 测定条件9 测定电路6

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V1从3.5 V开始瞬间(10 μ s以内)提升到4.5 V,从V1变为4.5 V开始,COP变为"H"为止的时间即为过充电检测延迟时间1(t_{CU1})。

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V1从3.5 V开始瞬间(10 μs以内)下降到1.9 V,从V1变为1.9 V开始,DOP变为"H"为止的时间即为过放电检测延迟时间1(t_{DD1})。

(10) 测定条件10 测定电路6

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V2从3.5 V开始瞬间(10 μ s以内)提升到4.5 V,从V2变为4.5 V开始,COP变为"H"为止的时间即为过充电检测延迟时间2(t_{CU2})。

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V2从3.5 V开始瞬间(10 μs以内)下降到1.9 V,从V2变为1.9 V开始,DOP变为"H"为止的时间即为过放电检测延迟时间2(t_{DD2})。

(11) 测定条件11 测定电路6

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V3从3.5 V开始瞬间(10 μ s以内)提升到4.5 V,从V3变为4.5 V开始,COP变为"H"为止的时间即为过充电检测延迟时间3(t_{CU3})。

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V3从3.5 V开始瞬间(10 μ s以内)下降到1.9 V,从V3变为1.9 V开始,DOP变为"H"为止的时间即为过放电检测延迟时间3(t_{DD3})。

(12) 测定条件12 测定电路7

通常状态下,在V1=V2=V3=3.5 V、S1=OFF设置后的状态下,V5从0 V开始瞬间(10 μs以内)提升到0.55 V,从V5变为0.55 V开始,DOP变为"H"为止的时间即为过电流检测延迟时间1(t_{IOV1})。

通常状态下,在V1=V2=V3=3.5 V、S1=OFF设置后的状态下,V5从0 V开始瞬间(10 μ s以内)提升到0.75 V,从V5变为0.75 V开始,DOP变为"H"为止的时间即为过电流检测延迟时间2(t_{IOV2})。

S1=ON时禁止过放电检测,在V1=V2=V3=4.0 V设置后的状态下,V5从0 V开始瞬间(1 μ s以内)提升到6.0 V,同时下降V1=V2=V3=2.0 V。从V5变为6.0 V开始,DOP变为"H"为止的时间即为过电流检测延迟时间 $3(t_{IOV3})$ 。

(13) 测定条件13 测定电路8

通常状态下,在S4=ON、S1=S2=S3=S5=S6=OFF、V1=V2=V3=3.5 V、V6=V7=V8=0 V设置后的状态下,V5从0 V开始缓慢提升,I5=10 μA流经时的V5电压即为CD1"L"电压(V_{CD1(L)})。

通常状态下,在S5=ON、S1=S2=S3=S4=S6=OFF、V1=V2=V3=3.5 V、V5=V7=V8=0 V设置后的状态下,V6从0 V开始缓慢提升,I6=10 μA流经时的V6电压即为CD2"L"电压(V_{CD2(L)})。

通常状态下,在S6=ON、S1=S2=S3=S4=S5=OFF、V1=V2=V3=3.5 V、V5=V6=V8=0 V设置后的状态下,V7从0 V开始缓慢提升,I7=10 μA流经时的V7电压即为CD3"L"电压(V_{CD3(L)})。

过充电状态下,在S1=ON、S2=S3=S4=S5=S6=OFF、V1=4.5 V、V2=V3=3.5 V、V5=V6=V7=0 V设置后的状态下,V8从0 V开始缓慢提升,I8=0.1 μA流经时的V8电压即为CD1"H"电压(V_{CD1(H)})。

过充电状态下,在S2=ON、S1=S3=S4=S5=S6=OFF、V2=4.5 V、V1=V3=3.5 V、V5=V6=V7=0 V设置后的状态下,V8从0 V开始缓慢提升,I8=0.1 μA流经时的V8电压即为CD2"H"电压(V_{CD2(H)})。

过充电状态下,在S3=ON、S1=S2=S4=S5=S6=OFF、V3=4.5 V、V1=V2=3.5 V、V5=V6=V7=0 V设置后的状态下,V8从0 V开始缓慢提升,I8=0.1 μA流经时的V8电压即为CD3"H"电压(V_{CD3(H)})。

(14) 测定条件14 测定电路9

在过充电状态下,设置V1=V2=V3=4.5 V,流入COP端子的电流I1即为非泄漏电流 (I_{COL}) 。

(15) 测定条件15 测定电路10

在V1=V2=V3=0 V、V5=2 V设置后的状态下,V5缓慢下降,COP="H" (V_{SS}+0.3 V以上)时的V5电压即为向 0 V充电开始电压(V_{OCHAR})。

(16) 测定条件16 测定电路1

因CTL逻辑的"正"、"反"的不同测定条件会发生变化。

<1> CTL逻辑为"正"的情况下

在V1=V2=V3=3.5 V、V4=0 V设置后的状态下,V4缓慢提升到COP="H"(V_{SS} +0.3 V以上)、DOP="H" (V_{SS} +0.3 V以上)时的V4电压即为CTL"H"输入电压($V_{CTL(H)}$)。之后,V4缓慢下降到COP="L"(V_{VMP} – 0.3 V以下) 、DOP="L"(V_{CC} – 0.3 V以下)时的V4电压即为CTL"L"输入电压($V_{CTL(L)}$)。

<2> CTL逻辑为"反"的情况下

在V1=V2=V3=3.5 V、V4=10.5 V设置后的状态下,V4缓慢下降到COP="H"(V_{SS} +0.3 V以上)、DOP="H"(V_{SS} +0.3 V以上)时的V4电压即为CTL"L"输入电压($V_{CTL(L)}$)。之后,V4缓慢提升到COP="L"(V_{VMP} – 0.3 V以下)、DOP="L"(V_{CC} – 0.3 V以下)时的V4电压即为CTL"H"输入电压($V_{CTL(H)}$)。

注意 在测定电路1~10时,

测定CTL逻辑为"正"的产品(S-8233BA, S-8233BC, S-8233BE)的情况下,CTL端子=V_{SS}(V4=0 V)。 测定CTL逻辑为"反"的产品(S-8233BB, S-8233BD)的情况下,CTL端子=V_{CC}(V4=V1+V2+V3)。

测定电路1

 $1~\text{M}\Omega$ COP VCC VMP V1 D CD1 CTL VC1 CCT V2 S-8233B CD2 CDT 1 VC2 V3 CD3 COVT VSS 测定电路2

图4 (1/2)

12

■ 工作说明

备注 请参阅"电池保护IC的连接例"。

通常状态

本IC可以监视被串联连接的3个电池的各种电压与放电电流,控制充放电。3个电池电压的总数在过放电检测电压(V_{DD})以上并且在过充电检测电压(V_{CU})以下,流经电池的电流在所定值以下(VMP端子的电压在过电流检测电压1以下)的情况下,充电用的FET和放电用的FET变为ON,可自由地进行充放电。这种状态称为通常状态。在通常状态下,VMP端子与VCC端子之间通过R_{VCM}的电阻而被短路。

过电流状态

本IC准备了3段的过电流检测电压值(V_{IOV1} , V_{IOV2} , V_{IOV3})和对应各自的过电流检测电压的过电流检测延迟时间 (t_{IOV1} , t_{IOV2} , t_{IOV3})。

在通常状态的放电中,放电电流在所定值以上(VMP端子的电压在过电流检测电压以上),并且这种状态保持在过电流检测延迟时间(t_{IOV1} ~ t_{IOV3})以上的情况下,放电用FET变为OFF,放电被停止。这种状态称为过电流状态。在过电流状态时,VMP端子与VCC端子之间,通过R_{VCM}的电阻而被短路。另外,充电用FET也变为OFF。

在放电用的FET变为OFF,负载被连接的期间,VMP端子的电压变为Vss电位。

从过电流状态的恢复,通过解除负载等手段,EB-端子与EB+端子之间(参阅**图9**的连接例)的阻抗在100 M Ω 以上时进行。解除了负载,因为VMP端子与VCC端子之间通过R $_{VCM}$ 的电阻被短路的缘故,恢复回V $_{CC}$ 电位。本IC在检测到VMP端子电位回到过电流检测电压1(V $_{IOV1}$)以下时(COVT端子固定在"L"电位,过电流检测1被禁止的情况下,过电流检测电压2(V $_{IOV2}$)以下),恢复回通常状态。

过充电状态

在通常状态的充电中,任意1个电池的电压超过过充电检测电压(V_{CU}),且这种状态保持在过充电检测延迟时间(t_{CU})以上的情况下,充电用的FET变为OFF,充电被停止。这种状态称为过充电状态。这时,在超过过充电检测电压(V_{CU})的电池电压变为过充电解除电压(V_{CD})以下为止,对应超过过充电检测电压的电池的状态端子输出"H"电位。通过外接Nch FET,可使此电池进行放电。放电电流可通过插入电阻R11、R12、R13进行限制(参阅**图9**的连接例)。在过充电状态时,VMP端子与VCC端子之间通过R $_{VCM}$ 的电阻而被短路。过充电状态的解除有以下的2种情况。

- <1> 超过过充电检测电压(V_{CU})的电池电压,下降到过充电解除电压(V_{CD})以下时,充电用的FET变为ON,恢复到通常状态。
- <2> 超过过充电检测电压(V_{CU})的电池电压,即使是在过充电解除电压(V_{CD})以上,只要取掉充电器而连接负载开始放电时,充电用的FET变为ON,恢复到通常状态。

解除工作的机械原理为,在连接负载开始放电之后,因为放电电流经充电用FET的内部寄生二极管而流入的缘故,在瞬间VMP端子从VCC端子开始下降约0.6 V。IC通过检测这个电压(过电流检测电压1以上),解除过充电状态而回到通常状态。

过放电状态

在通常状态的放电中,任意1个电池的电压在过放电检测电压(V_{DD})以下,且此种状态保持在过放电检测延迟时间(t_{DD})以上的情况下,放电用的FET变为OFF,放电被停止。这种状态称为过放电状态。放电用的FET变为OFF时,VMP端子电压变为 V_{SS} 电位,IC的消耗电流在休眠时消耗电流(I_{PDN})以下。这种状态称为休眠状态。在过放电状态以及休眠状态下,VMP端子与VSS端子之间通过 R_{VSM} 的电阻而被短路。

从休眠状态的解除,可通过连接充电器,使VMP-VSS间电压变为3.0 V以上(过电流检测电压3)时而进行。 从这种状态开始,接着全部电池的电压变为过放电解除电压(V_{DU})以上时,从过放电状态恢复回通常状态。

有关延迟电路

过充电检测延迟时间($t_{CU1} \sim t_{CU3}$)、过放电检测延迟时间($t_{DD1} \sim t_{DD3}$)、过电流检测延迟时间1(t_{IOV1})由于外接电容(C4 \sim C6)而产生变化。

各种延迟时间依照以下的公式可以计算求出。

最小值 典型值 最大值

t_{Cu} [s] =延迟係数 (1.07、 2.13、 3.19) x C4 [μF]

t_{DD} [s] =延迟係数 (0.20、 0.40、 0.60) x C5 [μF]

t_{IOV1} [s] =延迟係数 (0.10、 0.20、 0.30) x C6 [μF]

注意 过电流检测2、3的延迟时间由IC内部的电路而被固定。不能通过外接电容使延迟时间产生变化。

有关CTL端子

【CTL逻辑为"正"的产品的情况下】<S-8233BA, S-8233BC, S-8233BE>

在通常状态下CTL端子产生浮动时,CTL端子在IC内部上拉到 V_{CC} 电位,充电用FET和放电用FET的双方变为OFF,充电和放电的双方被禁止。CTL端子通过外接授予 V_{CC} 电位也同样,充电和放电的双方被禁止。这时,VMP端子与VCC端子之间通过 R_{VCM} 的电阻而被短路。

通过授予CTL端子至Vss电位,充放电的禁止状态被解除,回到依照各自的电池电压的状态。

【CTL逻辑为"反"的产品的情况下】<S-8233BB, S-8233BD>

通过从外部给CTL端子授予V_{SS}电位,充电用FET和放电用FET的双方变为OFF,充电和放电的双方被禁止。在通常状态下CTL端子产生浮动时,CTL端子在IC内部上拉到V_{CC}电位,充放电的禁止状态被解除,回到依照各自的电池电压的状态。通过从外部给CTL端子授予V_{CC}电位时也同样地,充放电的禁止状态被解除,回到依照各自的电池电压的状态。

注意 由于外接滤波器R_{VSS}、C_{VSS}的存在,当电源突变时,如向CTL端子输入低电位,此低电位与VSS产生电 位差,从而导致错误动作,务请注意。

壮	状态		过充电状态	休眠状态 (不连接充电器)			
CTL峁	CTL端子电压		High & Low 浮动		Low	浮动	
CTL逻辑"正"	COP(充电控制)	High	依照电池电压	High	Low	不定	
S-8233BA S-8233BC	DOP(放电控制)	High	依照电池电压	High	High	High	
S-8233BE	消耗电流	典型值 20 μA	典型值 20 μA	典型值 1 nA	典型值 1 nA	不定	
CTL逻辑"反"	COP(充电控制)	依照电池电压	High	Low	High	不定	
S-8233BB	DOP(放电控制)	依照电池电压	High	High	High	High	
S-8233BD	消耗电流	典型值 20 μA	典型值 20 μA	典型值 1 nA	典型值 1 nA	不定	

表5 因CTL端子而引起的状态变化

向0 V电池充电功能

放电解除电压(V_{DU})以上时,回到通常状态。

被串联连接的3本的电池通过自我放电从全部变为0 V的状态开始,可以进行充电的功能。通过连接充电器,VMP-VSS之间施加了0 V充电开始电压(V_{OCHAR})以上的电压,充电用FET的门极固定为V_{SS}电位。由于充电器电压,充电用FET的门极与源极之间电压变为导通电压以上时,充电用FET变为ON,开始充电。这时,放电用FET变为OFF,充电电流经放电用FET的内部寄生二极管而流入。全部的电池电压变为过

注意 向0 V电池充电功能可能的产品的情况下,VCC-VMP间电阻(R_{VCM})与VSS-VMP间电阻(R_{VSM})的电阻 值与无向0 V电池充电功能的产品相比,被设置为较低的值。因此,由于VMP端子的流入电流而引起 的外部电阻R5(参阅图9的连接例)的电压降下(过电流检测电压的误差)与无向0 V电池充电功能的产品 相比变得更大。

无向0 V电池充电功能的产品,全部电池电压(VCC-VSS间电压)在不满2.0 V的情况下,COP端子的状态变得不稳定。

关于电压温度係数

电压温度係数1表示过充电检测电压、过充电解除电压、过放电检测电压、过放电解除电压。

另外,电压温度係数2表示过电流检测电压。检测电压的温度特性在工作温度范围内为**图5**所示傾斜部的范围。

■ 工作时序图

1. 过充电检测

*1. <1>: 通常状态 <2>: 过充电状态 <3>: 过放电状态 <4>: 过电流状态

备注 假想充电器为定电流充电,V_{CHA}表示充电器的开放电压。

图6

2. 过放电检测

*1. <1>: 通常状态 <2>: 过充电状态 <3>: 过放电状态 <4>: 过电流状态

备注 假想充电器为定电流充电,V_{CHA}表示充电器的开放电压。

图7

3. 过电流检测

*1. <1>: 通常状态 <2>: 过充电状态 <3>: 过放电状态 <4>: 过电流状态

图8

■ 电池保护IC的连接例

「图9的说明]

- R11、R12、R13是用于调整电池的状态电流。过充电检测时的状态电流,在电阻为R的情况下,授予V_{CU}(过充电检测电压) / R。不使用状态功能的情况下,请把CD1、CD2、CD3设置为开放。
- 过充电检测延迟时间(t_{CU1} ~ t_{CU3})、过放电检测延迟时间(t_{DD1} ~ t_{DD3})、过电流检测延迟时间1(t_{IOV1}) 因 电容值(C4 ~ C6)而产生变化。请参阅电气特性表。
- R6是COP端子被开放时,使FET-B变为OFF的上拉电阻。请务必连接100 kΩ以上1 MΩ以下的电阻。
- R5在充电器被反向连接时,为了保护IC请务必连接10 kΩ以上50 kΩ以下的电阻。
- 没有电容C6,在连接电容性负载时,会发生冲击电流(突进电流)而进入过电流状态。为了防止这种情况,请务必连接电容。
- 没有电容C5,在过电流发生时,由于电池电压的变动有进入过放电状态的可能。在这种情况下,为了恢复回通常状态,有连接充电器的必要。为了防止这种情况,在C5处请连接0.01 µF以上的电容。
- 在延迟用电容连接端子(CCT, CDT, COVT)与VSS之间流入泄漏电流时,延迟时间变得更长而导致误差产生。请注意泄漏电流要在100 nA以下。
- 通过FET-C可以停止过放电检测。但是,请选用FET的OFF泄漏在0.1 μA以下的。另外,使用这个FET禁止过放电时,电池电压会下降,IC即使进入过放电检测状态,消耗电流也不会在0.1 μA以下。
- R1、R2、R3请设置在1 kΩ以下。
- R7是针对授予CTL端子V_{CC}以上的电压的情况下保护用的电阻。请连接300 Ω以上5 kΩ以下的电阻。 CTL端子在绝对不施加V_{CC}以上的电压的情况下(例如在V_{SS}固定的情况下)可以省略。

- 注意1. 上述连接例的参数有可能不经预告而作更改。
 - 2. S-8233B系列的人为本体模式的产品,如果不施加2000 V以上的静电气,可以不用R1、R2、R3、C1、C2、C3。
 - 3. 对上述连接例以外的电路未作动作确认,且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

■ 注意事项

- 在过放电状态下连接充电器,在低于过放电检测电压(V_{DD})的电池电压变为过放电解除电压(V_{DU})以上之前,任何的电池电压变为过充电检测电压(V_{CU})以上时,变为过放电并且过充电状态,充电用FET 和放电用FET的双方变为OFF。这时不能进行充电与放电。之后,由于内部放电,超过过充电检测电压(V_{CU})的电池电压下降到过充电解除电压(V_{CD})时,充电用FET变为ON。另外,在过充电并且过放电的状态下取掉充电器时,过充电状态被解除而且被认为是过放电状态。再一次连接充电器时,因为从那时开始监视电池状态,在过充电检测延迟时间后,充电用FET变为OFF,成为过充电并且过放电状态。
- 最先连接电池之时,至少1个电池的电压在过放电解除电压(V_{DU})以下的情况下,有不进入通常状态的可能。这时,一旦使VMP端子变为在V_{CC}电压以上(连接充电器)就可恢复回通常状态。
- 在休眠状态下,CTL端子为浮动的情况下,CTL端子由于在IC内部不被上拉,有CTL功能不能工作态的情况发生。这时,虽然放电被禁止,但是由于外来噪声使贯穿电流流入CTL端子,有可能导致消耗电流变大。在连接了充电器时,CTL端子被上拉,CTL功能可以正常地工作。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括 本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据(典型数据)

1. 检测电压的温度特性

过充电检测电压 温度依靠性

过放电检测电压 温度依靠性

过放电解除电压 温度依靠性

过电流1检测电压 温度依靠性

过电流2检测电压 温度依靠性

2. 消耗电流的温度特性

通常工作时消耗电流 温度依靠性

休眠时消耗电流 温度依靠性

3. 延迟时间的温度特性

过充电检测时间 温度依靠性

过放电检测时间 温度依靠性

过电流1检测时间 温度依靠性

过电流2检测时间 温度依靠性

过电流3 (负载短路) 检测时间 温度依靠性

4. 延迟时间的电源电压依靠性

过电流3 (负载短路) 检测时间 电源电压依靠性

注意 利用S-8233B系列的应用电路,请在充分考虑安全的基础上进行设计。

No. FT016-A-P-SD-1.1

TITLE	TSSOP16-A-PKG Dimensions				
No.	FT016-A-P-SD-1.1				
SCALE					
UNIT	mm				
Seiko Instruments Inc.					

No. FT016-A-C-SD-1.1

TITLE	TSSOP16-A-Carrier Tape				
No.	FT016-A-C-SD-1.1				
SCALE					
UNIT	mm				
Seiko Instruments Inc.					

Enlarged drawing in the central part

No. FT016-A-R-SD-1.1

TITLE	TS	TSSOP16-A- Reel				
No.	F	T016-A-R	R-SD-1.1			
SCALE		QTY.	2,000			
UNIT	mm					
On the department of the						
Seiko Instruments Inc.						

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料所记载产品,如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时,基于该法律,需得到日本国政府之出口 许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。