TRIGONOMETRY

Chapter 06

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES I

HELICO - MOTIVACIÓN

EXISTEN TRIÁNGULOS RECTÁNGULOS EN LA VIDA COTIDIANA?

TRIÁNGULOS RECTÁNGULOS NOTABLES Y APROXIMADOS

TRIÁNGULOS NOTABLES

TRIÁNGULO APROXIMADO (PITAGÓRICO)

Luego aplicamos las definiciones de las razones trigonométricas del ángulo agudo.

$$\frac{\mathbf{a}}{\sqrt{\mathbf{b}}} = \frac{\mathbf{a}\sqrt{\mathbf{b}}}{\mathbf{b}}$$

Ejemplo:

$$csc60^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

α RT	sen	cos	tan	cot	sec	CSC
30°	1 2	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
60°	$\frac{\sqrt{3}}{2}$	1 2	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
37°	2 3 5	4 5	3 4	4 3	5 4	5 3
53 °	4 5	$\frac{3}{5}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{5}{3}$	$\frac{5}{4}$

Efectúe E = cos60°. cot37°. sen30°

$$\mathsf{E} = \left(\frac{1}{2}\right) \left(\frac{4}{3}\right) \left(\frac{1}{2}\right)$$

sena	cosa	tana	cota	seca	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

Efectúe A =
$$\sqrt{3 \tan^2 60^\circ}$$
. 8 sen 30°

$$A = \sqrt{3\left(\sqrt{3}\right)^2 \cdot 8^4 \left(\frac{1}{2}\right)}$$

$$A = \sqrt{3.3.4}$$

$$A = \sqrt{36}$$

sena	cosα	tana	cota	seca	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

Efectúe T =
$$\frac{\sqrt{8} \sec 45^{\circ} + \tan^{4} 60^{\circ}}{\sec 37^{\circ}, \sec 53^{\circ}}$$

$$T = \frac{\sqrt{8}\sqrt{2} + (\sqrt{3})^{\frac{2}{4}}}{(\frac{3}{5})(\frac{5}{3})} = \frac{\sqrt{16} + 3^{2}}{1}$$

$$T = \frac{4+9}{1}$$

$$T = 13$$

sena	cosa	tana	cota	seca	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

Efectúe Q =
$$\frac{32^{\text{sen}37^{\circ}} + 16^{\cos 60^{\circ}}}{\sqrt{6}^{2 \tan 45^{\circ}}}$$

$$\mathbf{Q} = \frac{(32)^{\frac{3}{5}} + (16)^{\frac{1}{2}}}{\sqrt{6}^{2(1)}} = \frac{\left(\sqrt[5]{32}\right)^3 + \sqrt{16}}{\sqrt{6}^2}$$

$$Q = \frac{(2)^3 + 4}{6} = \frac{8+4}{6}$$

sena	cosa	tana	cota	seca	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

Si cotβ = sen30°, siendo β un ángulo agudo; efectúe

 $\mathbf{M} = \sqrt{5} \; (\; \mathrm{sen}\beta \; + \; \mathrm{cos}\beta \;)$

RESOLUCIÓN

Según dato:

$$\cot \beta = \frac{1}{2} = \frac{CA}{CO}$$

$$CA = 1$$

$$2 = COK$$

Luego:

$$M = \sqrt{5} (sen\beta + cos\beta)$$

$$M = \sqrt{5} \left(\frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}} \right)$$

Mauro tiene 2 terrenos: uno en el distrito de Miraflores y otro en San Borja.- Si los terrenos tienen las dimensiones mostradas. ¿ Cuál de ellos tiene mayor área?

MIRAFLORES

(9 cot37°) m

(5 tan²60°) m

SAN BORJA

(30 sen30°) m

(7 sec²45°) m

RESOLUCIÓN

Calculamos las áreas:

$$A_{\rm M} = (5 \tan^2 60^{\circ}) (9 \cot 37^{\circ})$$

$$A_{\rm M} = (5\sqrt{3}^2) (9(\frac{4}{3})) = (15)(12)$$

$$A_{\rm M} = 180 \ {\rm m}^2$$

$$A_{SB} = (7 \text{ sec}^2 45^\circ) (30 \text{ sen} 30^\circ)$$

$$A_{SB} = (7\sqrt{2}^2)(30(\frac{1}{2})) = (14)(15)$$

$$A_{SB} = 210 \text{ m}^2$$

Rpta: El terreno de San Borja tiene mayor área.

A Víctor, el jardinero de mi escuela, le han propuesto cercar tres terrenos en forma de triángulos; para lo cual le pagarán s/.10 por cada metro del perímetro triangular que ha trabajado.- ¿ Cuál de las opciones le conviene más y cuánto es lo máximo que podría ganar?

2p (A) =
$$\tan^2 60^\circ + \sec^3 60^\circ + 9 \cot 45^\circ = \sqrt{3}^2 + 2^3 + 9(1) = 20 \text{ m}$$
 \$/20

2p (B) =
$$\csc^3 30^\circ + \sqrt{2} \sec 45^\circ + 8 \tan 45^\circ = 2^3 + \sqrt{2} (\sqrt{2}) + 8(1) = 18 \text{ m}$$
 \$/180

2p (C) =
$$2 \cot^2 30^\circ + 10 \sec 53^\circ + 20 \cos 60^\circ = 2\sqrt{3}^2 + 10(\frac{4}{5}) + 20(\frac{1}{2}) = 24 \text{ m}$$
 | s/ 240

