Stochastische Modelle

3. Übung

Aufgabe 9. Es seien Y_0, Y_1, \ldots unabhängige identisch verteilte Zufallsvariablen mit $P(Y_0 = 0) = \frac{1}{3}$ und $P(Y_0 = 1) = \frac{2}{3}$. Für jedes $n \in \mathbb{N}_0$ sei $X_n = f(Y_n, Y_{n+1})$, wobei

$$f(y,z) = \begin{cases} 0, & y = z, \\ 1, & y \neq z. \end{cases}$$

(a) Gilt für alle $n \ge 1$ und alle $i_0, \dots, i_{n-1}, i_{n+1} \in \{0, 1\},$

$$P(X_{n+1} = i_{n+1} | X_0 = i_0, \dots, X_{n-1} = i_{n-1}) = P(X_{n+1} = i_{n+1})?$$

(b) Ist $\{X_n : n \in \mathbb{N}_0\}$ eine Markov-Kette?

Aufgabe 10. Geben Sie ein Beispiel für eine Markov-Kette $\{X_n : n \in \mathbb{N}_0\}$ mit Zustandsraum $\{0,1\}$ an, so dass es eine Menge $G \subset \{0,1\}$ gibt mit

$$P(X_1 \in G, X_0 = 1) > 0$$

und

$$P(X_2 = 1 | X_1 \in G, X_0 = 1) \neq P(X_2 = 1 | X_1 \in G).$$

Aufgabe 11.

- (a) Es seien B_1, B_2, \ldots disjunkte Ereignisse. Für das Ereignis A und alle Ereignisse B_n mit $P(B_n) > 0$ sei $P(A|B_n) = p$, wobei p nicht von n abhängt. Zeigen Sie, dass dann $P(A|\bigcup_n B_n) = p$ ist, sofern $P(\bigcup_n B_n) > 0$.
- (b) Zeigen Sie durch ein Gegenbeispiel, dass die Behauptung in (a) im Allgemeinen nicht gilt, wenn die B_n nicht disjunkt sind.

Aufgabe 12. Betrachten Sie eine Markov-Kette mit Zustandsraum $\{1,2\}$ und Übergangsmatrix

$$\begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}.$$

Berechnen Sie die *n*-Schritt Übergangswahrscheinlichkeiten $p_{ij}^{(n)}$ für alle $n \in \mathbb{N}_0$ und $i, j \in \{1, 2\}$.

Hinweis. Für $\alpha \neq 1$ ist die Rekursionsgleichung $x_{n+1} = \alpha x_n + \beta$ äquivalent zu

$$x_{n+1} - \frac{\beta}{1-\alpha} = \alpha \left(x_n - \frac{\beta}{1-\alpha} \right).$$