

Tel: 021-51035886

Fax: 021-50277833

Email: sales@hitrendtech.com
Web: http://www.hitrendtech.com

版本更新说明

版本号	修改时间	修订人	修改内容
V1.0	2016-08-12		初版
			1.256K flash+1K information, 32k RAM;
			2. flash/info 分区操作;
			3. pmu 模块, Vsys 检测扩冲为 16 档可选, vbat 允许 5v 输入;
			4. 增加随机数发生模块
			5 增加 3 个外部中断(INT7/8/9)
			6. 增加 1 路 ADCIN3
			7. 红外调制增加 HRC 时钟源
			8. 增加 ECC 模块
V1. 1	2016-10-27		9. 去掉 ADCIN3 相关描述
			10. PIN27\28 去掉 VLCD 描述
			11. 双版块切换详见应用笔记
			12. WDT 不受 JTAGWDTEN 控制,详见 FAQ
			13. 增加说明 TEST pin 上升沿仅复位 DP 模块
			14. 增加 Vsys 可进入低功耗说明
			15. 增加 ECC256 功能,说明详见应用笔记
			16. TX 使能不放出,内部始终使能有效
			17. 修改 DMA 相关描述
			18. 修改 EMU 相关描述
			19. 修改同步缓存相关描述
			20. 修改 SAG\PEAK 相关描述,修改 Peak、Sag 寄存器名,使之
			对应其新设计的定义。
			21. 修改 EMUIE 增加的中断标志寄存器, 使之与中断使能 bit
			位对应。
			22. 按照 B 版规格修改"引脚定义"关于模拟滤波 2us 的描述,
			去掉 uart0 [~] 5 的模拟滤波 2us 描述
			23. 修改 uart 章节,去掉最大波特率 115200 描述,增加最高
			波特率达到 1Mbps 以上。
			24. 修改"引脚定义"说明: SW 模式下 PB13 (SWIO) / PB15 (SWCLK)
			开漏功能关闭。
			25. 修改 EMU "同步缓存" 描述为"随频采样 ADC 缓存"。
			26. 修改 PMU 模块 VDETPCFG 相关低功耗下电源检测分时开启
			检测时间为固定值。
V1. 20	2016-11-9		1. 修改 LCD 显示对比度 VRSEL 的值;
			2. 修改 LCDCON 对比度基准电压为 VCC 的百分比,修改充电模
			式的电阻网路值,增加 bit8FCSET2 描述。
			3. adc 输入电压的极限最大值
V1. 21	2017-5-22		1. lowFreq_isel 位定义修改

			2. Pstart/Qstar/Sstart/QPHSCAL 寄存器说修改
V1. 22	2017-8-18		1. ECC 章节 register 笔误,及寄存器增加详细说明。
			2. 修改 Flash 分区框图 B9 区大小为 31K。
			3. EMUIE 修改过零丢失/Buffer Full 的位置
V1.23	2018-4-17		1. Timer 章节举例定时最大周期公式计算笔误修正
			2. EMUCTRL 寄存器位笔误修正
			3. 随频采样 ADC 描述修正
			4. 修正 2. 5 小结写保护寄存器列表 GPIO 的功能复位值
			5. 修正 UART 波特率计算公式描述最大波特率到 1M
			6. 修正其他章节笔误
V1.24	2018-6-14		1. I0 写保护取消
			2.引脚定义 SCANIN1 有误,改为 JTAGWDTEN
			3. 删除 JTAGSTA 寄存器 bit2
V1.25	2018-8-21		1. 修正 ADCCON CFP 描述
			2. 细化校表时 HFCONST 计算描述
			3. 各章节寄存器定义格式修正统一及部分内容补充
			4. 修正 RANDSTR bit15 定义笔误
V1.26	2019-3-15		1. 添加 HT5029B 引脚图和封装
V1.27	2019-5-8		1. 统一 OVCyc 和 UdetCyc 为 OVCyc
			2. 修正捕获中断 CMPIE 为 CAPIE
			3. 修正 uart 波特率最大到 1Mbps 的描述,最大到 115200bps
V1.28	2019-7-29		1. 添加 HT5029 管脚图、引脚定义和封装
V1. 29	2019-8-8		1、修正 RTC 模块 DFi 寄存器描述,由 23bit 改为 21bit
			2、添加完善 hold 和 sleep 功耗范围
			3、修正 tbs 分时开启功耗说明、添加 adc 通道功耗说明
			4、修正 uart 波特率最大到 1Mbps
V1.30	2019-11-18		1. 修正部分编辑错误
			2.1.2.1 基本特点章节增加 48pin 封装描述
			3. 修改 HRC 频率描述错误
V1.31	2020-04-21		1. 修正引脚定义 SCANIN1
			2. 删除 HT5029B 引脚图和封装
V1.32	2020-6-9	hma	1. 修改 24. 6 章节 1rc 参数频率范围描述
			2. 修正 IO 口驱动能力典型值描述
V1.33	2020-7-17	hma	1. 修正 rtc 章节概述 tout 分频和寄存器 tout 位个数
			2. 删除 gpio 章节概述中的 gpio 驱动描述,详细见 DC 参数
V1.34	2020-8-21	hshan	1., 删除引脚定义 VLCD0-3"需外接滤波电容 4.7uF"说明
			2. 修正 CTRLBYFLASH 寄存器描述

目录

目	录		4
1	HT50	02X 概述	11
	1.1	简介	11
	1.2	特点	11
	1.2.1	1 基本特点	11
	1.2.2	2	11
	1.2.3	3	12
	1.3	缩略语	12
	1.4	框图	13
	1.5	引脚排列	14
	1.6	引脚定义	18
2	存储	f器模块	24
	2.1	概述	24
	2.2	存储器映射图	25
	2.3	FLASH 操作	26
	2.3.1	1 Flash 的读保护	26
	2.3.2	2 Code Flash 的操作说明	26
	2.3.3	3 256K Code Flash 操作说明	27
	2.3.4	4 Information Block 的操作说明	28
	2.4	FLASH 控制功能	28
	2.5	写保护寄存器列表	30
	2.6	特殊功能寄存器列表	31
	2.7	特殊功能寄存器说明	32
3	时钟	·单元	40
	3.1	时钟分类	40
	3.2	时钟框图	40
	3.3	时钟停振检测框图	42
	3.4	时钟说明	42
	3.4.1	1 内部低频 RC 时钟(Flrc)	42
	3.4.2	2 内部高频 RC 时钟(Fhrc)	42
	3.4.3	3 外部低频晶振时钟(Fosc)	42
	3.4.4	4 内部PLL 时钟(FpII)	43
	3.4.5	5 时钟安全机制	43
	3.4.6	6 时钟异常状态处理	44
	3.5	特殊功能寄存器列表	45
	3.6	特殊功能寄存器说明	46
4	电源	〔单元	55
	4.1	概述	55

	4.2	框图	56
	4.3	电源单元详细功能说明	57
	4.3.1	1 电源切换	57
	4.3.2	2	57
	4.3.3	3 <i>内建</i> 1.5V 电源	57
	4.3.4	4 BOR 检测功能(BOR_DET)	58
	4.3.5	5	60
	4.3.6	··· = , , , , , , , , , , , , , , , , ,	
	4.3.7		
	4.3.8	8 电池防钝化功能	62
	4.4	特殊功能寄存器列表	
	4.5	特殊功能寄存器说明	62
5	调试	代支持	70
	5.1	概况	70
	5.1	K/CL	
	5.3	SW 引脚使用说明	
	5.4	3W 引冲使用说明	
	5.5	推荐调试端口	
6	工作	=模式	72
	6.1	芯片电源域分配	72
	6.2	工作模式	72
	6.3	睡眠模式(SLEEP)	73
	6.3.1	1 SLEEP 模式下各模块开关	73
	6.3.2	2 SLEEP 模式下的唤醒	73
	6.3.3	3 从 SLEEP 模式唤醒后的唤醒方式确认	74
	6.3.4	4 <i>进入 SLEEP 模式</i>	74
	6.4	待机模式(HOLD)	75
	6.4.1	1 <i>进入</i> HOLD 模式	75
	6.4.2	2 模式转换图	75
	6.5	特殊功能寄存器列表	76
	6.6	特殊功能寄存器说明	76
7	GPIC	0 模块	80
	7.1	概述	0.0
	7.1 7.2	成企	
		芯片引脚描述	
	7.3 7.4	心方句牌细处	
	7.4 7.5	特殊功能寄存器说明	
8	中断	「模块	89
	8.1	中断向量说明	89
	8.2	中断使能和禁止	

	8.2.1	中断使能和禁止相关寄存器列表	
	8.2.2	中断使能和禁止相关寄存器说明	91
	8.3	外部中断特殊功能寄存器列表	92
	8.4	外部中断特殊功能寄存器说明	93
9	RESE	т 模块	96
	9.1	复位优先级	96
	9.2	复位说明	97
	9.2.1	上电复位	97
	9.2.2	低电压检测复位	98
	9.2.3	. 外部引脚复位	98
	9.2.4		99
	9.2.5	. 看门狗复位	99
	9.2.6		100
	9.2.7	. 调试复位	100
	9.2.8	. 唤醒复位	100
	9.3	特殊功能寄存器列表	101
	9.4	特殊功能寄存器说明	101
10	UAR	「/7816 通讯模块	106
	10.1	功能说明	106
		波特率计算	
		串口通讯模式说明	
	10.3.		
	10.3.		
	10.3.		
	10.3.		
	10.4	7816 接收和发送	110
	10.4.		
	10.4.	2 7816 数据接收	110
	10.4.		
	10.5	特殊功能寄存器列表	114
		特殊功能寄存器说明	
11	LCD 7	模块	121
	11.1	概述	121
		LCD 与 GPIO 口复用表	
		LCD 框图	
		内部电阻分压驱动	
		输出波形	
		MI G	
		特殊功能寄存器列表	
		特殊功能寄存器说明	
12		模块	
		w***	

1	2.1	概述		132
1	2.2	工作	模式	132
1	2.3	特殊	功能寄存器列表	133
1	2.4	特殊	功能寄存器说明	134
13	定	时器	模块	135
1	3.1	定时	器单元概述	135
	3.2		 定时功能	
1	3.3	PWN	1 功能	136
1	3.4	捕获	功能	138
1	3.5	事件	计数功能	138
1	3.6	中断	功能	139
	13.6.	.1	定时周期中断	139
	13.6.	.2	捕获中断	139
	13.6.	i.3	比较中断	139
	13.6.	.4	事件计数功能	139
1	3.7	特殊	功能寄存器列表	140
1	3.8	特殊	功能寄存器说明	140
14	SPI 相	模块		145
1.	4.1	概试		145
_	4.2		功能说明	
_	14.2.		SPI 主要特征	
	14.2		SPI 接口模块框图	
	14.2		SPI 接口传输格式	
	14.2.		主机模式传输格式	
	14.2		<u> </u>	
	14.2		中断功能	
1	4.3	特殊	功能寄存器列表	
1	4.4	特殊	功能寄存器说明	149
15	I2C 村			
1	5.1	拇法		152
	_			
_	5.2		描述	
1	5.5 15.3.		起始条件和停止条件	
	15.3.	-	数据传输格式	
	15.3.		时钟同步和数据仲裁	
	15.3. 15.3.	_	7 位地址格式	
	15.3.		串行时钟生成	
	15.3.	_	中断生成	
	15.3.	_	传输模式	
1	5.4		功能寄存器列表	
_			功能寄存器说明	
	٥.٥	1.3 1/1	20 II HH 00 24	±05

16	RTC	模块	168
16	5.1	概述	168
16	5.2	功能描述	168
16	5.3	时钟校正	168
16	5.4	RTC 补偿系数寄存器和 INFO FLASH 对应关系	169
16	5.5	时间和万年历	169
16	5.6	中断功能	170
16	5.7	RTC 指示寄存器读写流程	170
	16.7	.1	170
	16.7	7.2 写入 RTC 指示寄存器流程	171
16	5.8	校时记录	172
16	5.9	辅助 RTC	172
16	5.10	特殊功能寄存器列表	172
16	5.11	特殊功能寄存器说明	173
17	TBS	模块	192
17	7.1	概述	192
	7.2	功能描述	
	7.3	特殊功能寄存器列表	
17	7.4	特殊功能寄存器说明	193
18	AES	&GHASH&RAND 模块	201
15	3.1	AES&GHASH&RAND 概述	201
	3.2	框图	
	3.3	特殊功能寄存器列表	
	3.4	特殊功能寄存器说明	
		256 模块	
	9.1	概述	
	9.2	功能描述	
	9.3	ECC 运算加速模块	
	9.4	特殊功能寄存器列表	
	9.5	特殊功能寄存器说明	
20	DMA	A 功能	225
20	0.1	概述	225
20	0.2	功能描述	225
20	0.3	DMA 数据请求源列表	225
20	0.4	DMA 数据传输说明	227
20	0.5	特殊功能寄存器列表	228
20	0.6	特殊功能寄存器说明	228
21	捘	安键扫描模块(KEYSCAN)	233
21	1.1	概述	233

2	21.2	功能描述	233
2	21.3	特殊功能寄存器列表	233
2	21.4	特殊功能寄存器说明	234
22	COR	RTEX-M0 内核简要说明	235
2	22.1	概述	235
	22.2	系统定时器 SysTick	
2	22.3	中断优先级说明	235
2	22.4	CMSIS 函数说明	235
23	EMU	U 模块	237
2	23.1	概述	237
2	23.2	功能描述	237
	23.2	2.1 模数转换器	238
	23.2	2.2 ADC 采样输出和功率波形输出	238
	23.2	2.3 有功功率、无功功率和视在功率	238
	23.2	2.4	239
	23.2	2.5 电压线频率	240
	23.2	2.6 起动/潜动	240
	23.2	2.7 功率反向指示	240
	23.2	2.8 直流偏置校正	240
	23.2	2.9 电能脉冲输出	241
	23.2	2.10 窃电检测	242
	23.2	2.11 中断源	243
	23.2	2.12 PEAK/SAG 功能	244
	23.2	2.13 OVI 过压过流检测功能	245
	23.2	2.14	246
	23.2	2.15 随频采样 ADC 波形缓存	246
	23.2	2.16 Q 能量脉冲通道复用 P2	247
2	23.3	特殊功能寄存器列表与说明	247
	23.3	3.1 计量参数寄存器列表	247
	23.3	3.2 计量参数寄存器说明	249
	23.3	3.3 校表参数寄存器列表	259
	23.3	3.4 校表参数寄存器说明	261
2	23.4	校表过程	296
24	ŧ	电气规格	299
2	24.1	DC 参数	299
2	24.2	极限参数	300
2	24.3	功耗参数	300
2	24.4	计量 ADC 参数	302
2	24.5	TBS 模块 ADC 参数	303
2	24.6	内部 RC 模拟参数	304
封约	揍		306

1 HT502X 概述

1.1 简介

HT502X 是一颗低功耗、高性能的单相电能计量 SoC 芯片,片内集成 32-bit ARM 内核、256K flash、32K SRAM,支持断相防窃电功能的硬件 EMU 模块,带有温度自补偿功能的高精度 RTC 模块,以及 LCD 驱动等功能,为单相多功能、防窃电电能表提供高集成的单芯片解决方案。

1.2 特点

1.2.1 基本特点

- 工作电压范围: 2.2V~5.5V
- 工作温度范围: -40℃~85℃
- 无铅绿色封装: LQFP100: HT5023、LQFP80: HT5025、LQFP64: HT5027、LQFP48: HT5029B、LQFP48: HT5029

1.2.2 处理器及外设

- 基于 ARM 32-bit Cortex-MO CPU Core 设计,支持 Thumb-2 指令集,包含嵌套中断向量控制器 NVIC,以及可扩展的调试技术
- 存储器资源: 256K Flash+1K Information Block、32K SRAM
- 高速系统时钟: 采用 PLL 倍频模式

插入等待 CPU 最高工作频率 39.32MHz

无等待 CPU 最高工作频率 19.66MHz

- 系统低功耗: 待机模式(Hold 模式)下最低功耗 3.7uA 睡眠模式(Sleep 模式)下最低功耗 2.9uA
- 具有电源监测功能,外部系统电源 VSYS 和电池输入 VBAT 两个电源内部切换功能
- 内置 9.8MHz HRC、32KHz LRC, 具有多路时钟检测功能
- 支持 SW 调试协议
- RTC 模块:

外置 32K 低频晶体,内部集成晶体所需电阻、电容 自动温补:内置 RTC 温度曲线数字补偿系数,在全温度范围内,RTC 补偿无需用户软件参与 辅助 RTC:外部晶振 32.768KHz 停振时,系统可切换至内部低频 RC 获得计时时间

- 高精度温度传感器 TPS: -40 度 ~ +85 度温度范围内,温度传感器一致性优于±0.5 度
- LCD **驱动电阻分压方式**,支持 4COM,6COM,8COM 的 LCD 显示,SEG 接口最多支持 54 个
- 最多支持 6 路 UART,其中 2 路复用硬件 7816 协议功能
- 正常模式下,WDT模块不可关闭,保证系统可靠运行
- 内置硬件 AES/GHASH 加密/解密加速模块,支持 AES256/192/128

- 内置 ECC 加密/解密加速模块,支持 ECC256/244/192
- 内置 3 个通道 DMA 功能
- 内置按键扫描功能,最大支持 4*4 键盘扫描模式
- 支持 I2C, SPI, TIMER CC & PWM

1.2.3 电能计量

- 有功电能测量误差小于 0.1%, 动态范围大于 5000: 1, 支持 IEC62053-21、IEC62053-22、IEC62053-23
- $\Xi B \Sigma \Delta ADC$, 可同时输出两个计量通道的参数, 支持灵活的防窃电功能
- 提供有功功率、无功功率、视在功率,有功能量、无功能量、视在能量
- 支持有功、无功、视在脉冲输出,并开放脉冲计数寄存器
- 提供高精度有效值、频率、ADC 波形数据等计量参数
- 支持 SAG、PEAK 功能
- 提供多种能量累加方式选择
- 支持增益误差、相位误差的软件校表
- 分别提供两个计量通道的可配置防潜动功能
- 支持 EMU 低功耗模式: EMU 低功耗工作频率可配置为 204.8KHz 或 32KHz, 用于掉零线、掉火 线的防窃电计量, 低功耗连续计量, 系统功耗优于 650uA; 支持常数计量模式, 适用于电池辅助 掉零线防窃电计量功能
- 支持直流计量
- 支持单相三线计量制
- 片内基准电压: 1.2V, 温度系数±10ppm/℃

1.3 缩略语

缩略语	英文原文	中文含义
WDT	Watch Dog Timer	看门狗
GPIO	General Purpose IO	通用 I/O
TBS	Temperature Battery Sensor	温度&电池传感器
LVD	Low Voltage Detect	低电压检测
POR	Power On Reset	上电复位
BOR	Brown Out Reset	掉电复位
WKR	Wakeup Reset	唤醒复位
EMU	Energy Mearsurment Unit	电能计量单元
PMU	Power Management Unit	系统电源管理单元
CMU	Clock Management Unit	系统时钟管理单元
RTC	Real Time Clock	实时时钟
RSRV	Reserved	保留位

1.4 框图

1.5 引脚排列

1.6 引脚定义

100 PIN	80 PIN	64 PIN	48 PIN (HT 5029	标识 (IOCFG=0)	引脚 类型	第一复用 功能 (IOCFG=1 AFCFG=0)	第二复用 功能 (IOCFG=1 AFCFG=1)	引脚说明
1	1	1	1	OSCI	Ι			32KHz 时钟输入
2	2	2	2	PE. 9	I/0	LVDIN1		GPIO\外部电源检测
3	3			PE. 8	I/0	SEG37	ADCIN2	GPIO\LCD_SEG 驱动输出\外部 电压信号采样输入 2
4	4			PA. 13	I/0	SEG36	ADCIN1	GPIO\LCD_SEG 驱动输出\外部 电压信号采样输入1
5	5	3	3	PA. 12	I/0	SEG35	ADCINO	GPIO\LCD_SEG 驱动输出\外部 电压信号采样输入 0
6				PF. 7	I/0	SEG42	SEG42	GPIO\LCD SEG 驱动输出
7	6	4		PF. 2	I/0	SFOUT	SEG48	GPIO\电能脉冲输出(默认视在脉冲输出,可通过 EMCON 配置为 其 它 类 型 脉 冲 输出)\LCD) SEG 驱动输出输出驱动 5mA
8	7	5		PF. 1	I/0	QFOUT	QFOUT	GPIO\电能脉冲输出(默认无功脉冲输出,,可通过 EMCON 配置为其它类型脉冲输出)输出驱动 5mA
9	8	6	4	PF. 0	1/0	PFOUT	TOUT3	GPIO\电能脉冲输出(默认有功脉冲输出,可通过 EMCON 配置为其它类型脉冲输出)\秒脉冲输出
10	9			PA. 11	I/0	INT6	SEG50	GPIO\ 外 部 中 断 口 (滤 波 2us)\LCD_SEG 驱动输出, 输出驱动 5mA
11	10	7	5	VREF	OUT			1.185V 计量基准电压输出,需 外接滤波电容 0.1uF&1uF
12	11	8	6	AVREG	P			2.8V 内部模拟电源输出,需外接滤波电容 0.1uF&10uF
13	12	9	7	V1P	I			电流通道 1 模拟信号输入端 (正),内部 ESD 保护,最大信 号±800mVp
14	13	10	8	V1N	I			电流通道 1 模拟信号输入端(负),内部 ESD 保护,最大信

			l	T	T	ı	T	
								号±800mVp
								电流通道 2 模拟信号输入端
15	14	11	9	V2P	I			(正),内部 ESD 保护,最大信
								号±800mVp
								电流通道 2 模拟信号输入端
16	15	12		V2N	I			(负),内部 ESD 保护,最大信
								号±800mVp
								电压通道模拟信号输入端(正),
17	16	13	10	V3P	I			内部 ESD 保护,最大信号士
								800mVp
								电压通道模拟信号输入端(负),
18	17	14		V3N	I			内部 ESD 保护,最大信号士
								800mVp
19	18	15	11	AVSS	G			模拟地
20	19			PD. 0	I/0	SEG16		GPIO\LCD_SEG 驱动输出,
20	19			FD. 0	1/0	SEGIO		输出驱动 5mA
21	20			PD. 1	I/0	SEG17	SEG17	GPIO\LCD_SEG 驱动输出
								大功耗 GPIO\外部中断输入
22	21	16	12	PA. 7	I/0	INT2	SEG33	(滤波 2us)\LCD_SEG 驱动输出
								输出驱动 30mA
								GPIO\SPI 驱动数据输入\串口
23				PC. 4	I/0	SPI_MOSI	RX5	接收端
								输出驱动 5mA
								GPIO\ SPI 驱动数据输出\串口
24				PC. 5	I/0	SPI_MISO	TX5	发送端
								输出驱动 5mA
								GPIO\SPI 驱动时钟信号
25				PC. 6	I/0	SPI_CLK	SEG51	\LCD_SEG 驱动输出
								输出驱动 5mA
								GPIO SPI 驱动片选信号
26				PC. 7	I/0	SPI_CS	SEG52	\LCD_SEG 驱动输出
								输出驱动 5mA
27	22	17	13	PB. 0	I/0	SEG0		GPIO\LCD_SEG 驱动输出
28	23	18	14	PB. 1	I/0	SEG1		GPIO\LCD_SEG 驱动输出
	_				- 1			GPIO\LCD SEG 驱动输出\LCD
29	24	19	15	PB. 2	I/0	SEG2	VLCD0	电阻分压模式 bias 电压输出
	0-	a -			- /-	98.55		GPIO\LCD SEG 驱动输出\LCD
30	25	20	16	PB. 3	I/0	SEG3	VLCD1	电阻分压模式 bias 电压输出
2.1	0.5	6.1			- /-	c=::	, on -	GPIO\LCD_SEG 驱动输出\LCD
31	26	21	17	PB. 4	I/0	SEG4	VLCD2	电阻分压模式 bias 电压输出
2.0		00	1.0		T /0	CP.CF	III on a	GPIO\LCD_SEG 驱动输出\LCD
32	27	22	18	PB. 5	I/0	SEG5	VLCD3	电阻分压模式 bias 电压输出
L	1		I	l	1	<u> </u>	<u>l</u>	

								, , , , , , , , , , , , , , , , , , , ,
33	28	23		PB. 6	I/0	SEG6	SEG6	GPIO\LCD_SEG 驱动输出
34	29	24	19	VDD1P5	Р			内部 1.5V 输出, 需外接 0.1uF 滤波电容
35	30	25		GND	G			模拟地
36	31	26		PB. 7	I/0	SEG7	SEG7	GPIO\LCD_SEG 驱动输出
37	32			PB. 8	I/0	SEG8	SEG8	GPIO\LCD_SEG 驱动输出
38	33			PB. 9	I/0	SEG9	SEG9	GPIO\LCD_SEG 驱动输出
39	34			PB. 10	I/0	SEG10	SEG10	GPIO\LCD_SEG 驱动输出
40				PF. 3	I/0	SEG38	SEG38	GPIO\LCD_SEG 驱动输出
41				PF. 4	I/0	SEG39	SEG39	GPIO\LCD_SEG 驱动输出
42				PF. 5	I/0	SEG40	SEG40	GPIO\LCD_SEG 驱动输出
43	35	27	20	PA. 6	I/0	INT1	SCANIN1	大功耗 GPIO(输出驱动 30mA)\外部中断(滤波2us)\键盘扫描列线扫描输入口线仿真控制接口 JTAGWDTEN: 当TEST PIN 和此 PIN 同时为低电平时,系统进入仿真模式。
44	36	28	21	TEST	I			测试引脚,滤波 2us 当此 PIN 先于 JTAGWDTEN 为低 电平状态时,系统进入测试模 式。
45	37	29		PB. 12	I/0	SEG12	INT8	GPIO\LCD_SEG 驱动输出\外部 中断输入
46	38	30	22	PB. 13	I/0	SEG13	SWIO	GPIO\LCD_SEG 驱动输出\仿真 模式数据信号 SWIO
47	39	31	23	PB. 14	I/0	SEG14	INT9	GPIO\LCD_SEG 驱动输出\外部 中断输入
48	40	32	24	PB. 15	I/0	SEG15	SWCLK	GPIO\LCD_SEG 驱动输出\仿真 模式时钟信号 SWCLK
49	41			PC. 10	I/0	TMR3	SCANIN2	GPIO\定时器模块外部端口\键 盘扫描列线扫描输入口线 输出驱动 5mA
50				PC. 13	I/0	SCL	SCL	GPIO\IIC 模块时钟信号 IIC-CLK
51				PC. 14	I/0	SDA	SDA	GPIO\IIC模块数据信号IIC-IO
52	42	33	25	PD. 14	I/0	COM6	SEG26	GPIO\LCD_COM\LCD_SEG 驱动输 出
53	43	34	26	PD. 15	I/0	COM7	SEG27	GPIO\LCD_COM\LCD_SEG 驱动输出
54	44	35	27	PE. 1	I/0	TX4	TOUT2	GPIO\串口发送端\秒脉冲输出

								4A . I . 3E - I .
								输出驱动 5mA
55	45	36	28	PE. 2	I/0	RX4	7816_0	GPIO\串口接收端端\7816驱动端口
								GPI0\内部时钟分频输出端
56	46	37	29	PE. 3	I/0	CLKOUT	SEG53	(ESAM/CARD 时 钟 输
								出)\LCD_SEG驱动输出
		2.0	2.0		7. (0			GPIO\串口接收端\ 7816驱动
57	47	38	30	PE. 4	I/0	RX3	7816_1	端口
58	48	39	31	PE. 5	I/0	TX3	SEG49	GPIO\串口发送端\LCD_SEG驱
90	40	39	31	LE. 9	1/0	1 79	SE049	动输出
59	49			PB. 11	I/0	SEG11	SEG11	GPIO\LCD_SEG 驱动输出
60	50	40		PC. 8	I/0	TOUT1	INT7	GPIO\秒脉冲输出 1\外部中断
								输入
61				PA. 9	I/0	INT4	INT4	GPIO\外部中断输出(滤波2us)
62				PA. 10	I/0	INT5	INT5	GPIO\外部中断输出(滤波2us)
63	51	41		DGND	G			芯片数字地
								内部电源输入,提供内部数字
64	52	42	32	VDD	P			电源,必需由另一个 VDD 外部
65				PE. 0	I/0	TMRO	TMRO	连接供电 GPIO\定时器模块外部端口
66				PE. 6	I/0	TMR1	TMR1	GPIO\定时器模块外部端口
67								GPIO\LCD_SEG 驱动输出
	F0	40		PA. 0	I/0	SEG28	SEG28	GPIO\LCD_SEG 驱动输出
68	53	43		PA. 3	I/0	SEG31	SEG31	
69	54			PA. 4	I/0	SEG32	SEG32	GPIO\LCD_SEG 驱动输出
70	55	44		PD. 5	I/0	SEG21	SCANOUT3	GPIO\LCD_SEG 驱动输出\键盘 扫描行扫描输出口线
10	ออ	44		ΓD• 9	1/0	SEG21	SCANOUIS	新出驱动 5mA
								GPIO\LCD_SEG 驱动输出\键盘
71	56	45		PD. 4	I/0	SEG20	SCANOUT2	扫描行扫描输出口线
								输出驱动 5mA
								GPIO\LCD_SEG 驱动输出\键盘
72	57	46	33	PD. 3	I/0	SEG19	SCANOUT1	扫描行扫描输出口线
								输出驱动 5mA GPIO\LCD SEG 驱动输出\键盘
73	58	47	34	PD. 2	I/0	SEG18	SCANOUTO	扫描行扫描输出口线
		•	U I	12.2	1,0	52010	551110010	输出驱动 5mA
7.4	EO			DC 11	т /о	TVO	TVO	GPIO\串口发送端
74	59			PC. 11	I/0	TX2	TX2	输出驱动 5mA
75	60			PC. 12	I/0	RX2	RX2	GPIO\串口接收端

76	61	48		/RST	Ι			复位信号(低电平有效), 滤波 2us
77	62	49	35	PA. 8	1/0	INT3	SEG34	大功耗GPIO\外部中断输入(滤波 2us)\LCD_SEG 驱动输出输出驱动 30mA
78				PD. 7	I/0	SEG23	SEG23	GPIO\LCD_SEG 输出驱动 输出驱动 5mA
79	63			PD. 6	I/0	SEG22	SEG22	GPIO\LCD_SEG 输出驱动 输出驱动 5mA
80				PC. 9	I/0	TMR2	SCANIN3	GPIO\定时器模块外部端口\按 键扫描模块列扫描输入口线 输出驱动 5mA
81	64	50	36	PC. 3	I/0	TXO	SEG46	GPIO\串口发送端\LCD_SEG 驱 动输出
82	65	51	37	PC. 2	I/0	RXO	SEG45	GPIO\串口接收端\LCD_SEG 驱 动输出
83	66	52	38	PD. 13	I/0	COM5	SEG25	GPIO\LCD_COM\LCD_SEG 驱动输 出
84	67	53	39	PD. 12	I/0	COM4	SEG24	GPIO\LCD_COM\LCD_SEG驱动输 出
85	68	54	40	PD. 11	I/0	COM3	COM3	GPIO\LCD_COM 驱动输出
86	69	55	41	PD. 10	I/0	COM2	COM2	GPIO\LCD_COM 驱动输出
87	70	56	42	PD. 9	I/0	COM1	COM1	GPIO\LCD_COM 驱动输出
88	71	57	43	PD. 8	I/0	COMO	COMO	GPIO/LCD_COM 驱动输出
89				PA. 1	I/0	SEG29		GPIO\LCD_SEG 驱动输出
90				PA. 2	I/0	SEG30		GPIO\LCD_SEG 驱动输出
91	72	58	44	PA. 5	I/0	INTO	SCANINO	GPIO\外部中断输入(滤波 2us)\键盘扫描列扫描输入口 线
92	73	59	45	VBAT	P			电池供电输入
93	74	60	46	VSYS	P			系统电源输入
94	75	61	47	VDD	Р			系统电源输出
95	76	62		GND	G			模拟地
96	77			PC. 0	1/0	TX1	SEG43	大功耗 GPIO\串口发送端 \LCD_SEG 驱动输出 输出驱动 30mA
97	78			PC. 1	I/0	RX1	SEG44	GPIO\串口接收端 \LCD_SEG驱 动输出
98				PF. 6	I/0	SEG41	SEG41	GPIO\LCD_SEG 驱动输出
99	79	63		PE. 7	I/0	LVDINO	SEG47	GPIP\外部电源检测端口

	100	80	64	48	0SC0	0			外部低频时钟驱动输出	
--	-----	----	----	----	------	---	--	--	------------	--

- 注: 1. I=输入; O=输出; P=电源; G=地;
 - 2. 芯片引脚选择 GPIO 功能:

若方向寄存器配置为输出,开漏 OD 功能配置控制有效,上拉控制无效;

若方向寄存器配置为输入,开漏 OD 功能控制无效,上拉控制有效;

- 3. 复用功能为模拟功能: LVDINx、LCD_SEG\COM、POWIN、ADCINx、VBAT,除此之外的其它复用功能为数字功能。
- 4. 芯片引脚选择复用功能:

复用功能的数字输出引脚都可配开漏功能(Open Drain),上拉功能配置无效。

复用功能的数字输入引脚(除 RST/TEST/JTAGWDTEN,这三个引脚内部恒定上拉)都可配上拉功能, 开漏功能;

若配置为模拟输入 OD 控制和上拉控制都无效;

- 5. 端口数据寄存器 PTDAT 说明及数据读取
 - 1) 芯片引脚选择 GPIO 功能或复用数字功能

若方向寄存器配置为输出,PTDAT 读取值为寄存器设置值,不随外部 PIN 脚电平变化而变化;

若方向寄存器配置为输入,PTDAT 读取值为 PIN 脚状态值,反映外部 PIN 脚电平变化;

2) 芯片引脚选择复用模拟功能

PTDAT 相应 bit 位值,固定为 0

- 6. 数字输入引脚(除 RST/TEST/JTAGWDTEN,这三个引脚内部恒定上拉)都可配上拉功能。
- 7. PA. 6 引脚为一个特殊引脚, 当 TEST=0 时,该引脚为输入 JTAG WDTEN 功能。
- 8. 两个 VDD 引脚外部需要连接在一起。
- 9. PB13/PB15 当软件配置为复用功能 2 时,为调试端口
- 10. PB13/PB15 上电后默认为调试端口,即复用功能 2
- 11. 当 TEST=0, 且 JTAGWDTEN=0 时,则 PB13(SWIO)/PB15(SWCLK)恒定为 SW 调试端口,开漏功能关闭,配置开漏无效。
- 12. PF. 0 上电后默认为复用功能 1, 并且默认为 PFOUT 功能, PF. 0 还可配置为复用功能 2 TOUT3 (秒脉冲输出); PF. 1/PF. 2 上电后默认为复用功能 1, 并且分别默认为为 QFOUT/SFOUT 功能。

2 存储器模块

2.1 概述

HT502X 内置可编程高可靠 256K Flash+1KInformationBlock 和 32KSRAM。其中 Flash 具有读保护功能,可进行读、写、页擦除和全擦除操作, Flash 的特性如下:

- Flash 字节读取时间: 40ns
- Flash 字节写时间: 20us (max)
- Flash 页擦除时间: 2ms (max)
- Flash 全擦除时间: 10ms (max)
- Code Flash 页面大小: 1K bytes/page
- Information Block: 大小为 1K, 1K bytes/page
- 擦写次数: 100,000 次
- 数据保持时间: 20年 (min)
- 操作温度: -45 度到+105 度

2.2 存储器映射图

2.3 Flash 操作

2.3.1 Flash 的读保护

Flash 空间具有读保护功能,可以防止用户代码被读取。将 Flash 的 00000FC1H 地址写入非 0FFH 的 值后,开启读保护功能,256K Flash 空间的数据无法读出,Information Block 中的数据依旧可以读出。(在 线仿真时需要实时读取 Flash 内容,读保护下不能实现在线仿真)。

2.3.2 Code Flash 的操作说明

对 256KCodeFlash 擦写可按照下图分成 11 个区块:

	Reserved
0x0004 0400	1K Info Block
0x0004 0000 0x0003 FC00	CodeFlash_SectorB_1K
0x0003 1000	CodeFlash_Sector9_31K
	CodeFlash_Sector8_32K
0x0003 0000	CodeFlash_Sector7_32K
0x0002 8000	
00002 0000	CodeFlash_Sector6_32K
0x0002 0000	CodeFlash_SectorA_1K
0x0001 8000	CodeFlash_Sector5_31K
0x0001 0000	CodeFlash_Sector4_32K
00001 0000	CodeFlash_Sector3_32K
0x0000 8000	
0x0000 2000	CodeFlash_Sector2_24K
0x0000 0000	CodeFlash_Sector1_8K

对 CodeFlash 具体操作如下:

寄存器操作	对 Flash 的操作说明					
FLASHLOCK = 0x7A68	可以对整个 256KCodeFlash 进行全擦写或页擦写,无需考虑任					
意 sector FSnLOCK 是否被解锁						
以下对 256K Flash 分区块进行解	以下对 256K Flash 分区块进行解锁后,只能对解锁的区块进行页擦写,全擦无效。					
FLASHLOCK = 0x7A68 全擦写使	官能命令为最高覆盖等级,需要对 Flash 进行分区解锁操作时,					
FLASHLOCK 必需设置为非 0x7.	A68。					
FS1LOCK = 0x7161	只能对 8K CodeFlash 0x0 0000 – 0x0 1FFF 进行页擦写					
FS2LOCK = 0x7262	只能对 24K CodeFlash 0x0 2000- 0x0 7FFF 进行页擦写					
FS3LOCK = 0x7363	只能对 32K CodeFlash 0x0 8000- 0x0 FFFF 进行页擦写					

FS4LOCK = 0x7464	只能对 32K CodeFlash 0x10000- 0x1 7FFF 进行页擦写
FS5LOCK = 0x7565	只能对 31K CodeFlash 0x1 8000- 0x1 FBFF 进行页擦写
FSALOCK = 0x7A6A	只能对 1K CodeFlash 0x1 FC00 - 0x1 FFFF 进行页擦写
FS6LOCK = 0x7666	只能对 32K CodeFlash 0x2 0000- 0x2 7FFF 进行页擦写
FS7LOCK = 0x7767	只能对 32K CodeFlash 0x2 8000- 0x2 FFFF 进行页擦写
FS8LOCK = 0x7868	只能对 32KCodeFlash 0x3 0000- 0x3 7FFF 进行页擦写
FS9LOCK = 0x7969	只能对 31K CodeFlash 0x3 8000- 0x3 FBFF 进行页擦写
FSBLOCK = 0x7B6B	只能对 1K CodeFlash 0x3 FC00 - 0x3 FFFF 进行页擦写

2.3.3 256K Code Flash 操作说明

推荐首先使用宏定义的方式来实现对 Memory 中的地址写入操作,HT5X2X 支持字节操作,半字操作,字操作,但用户需注意对齐访问,否则会触发一个 HardFault。宏定义方式:

(1) 对 256K Code Flash 的字节写操作流程:

WPREG = 0xA55A;

FLASHLOCK = 0x7A68; //unlock flash memory

FLASHCON = 0x01; //program

M32(prog_address) = prog_data; //prog_data 为需要编写的数据(32bit),

//prog_address 为需要写入的 flash 地址

M16(prog_address) = prog_data; //prog_data 为需要编写的数据(16bit),

//prog_address 为需要写入的 flash 地址

M8(prog_address) = prog_data; //prog_data 为需要编写的数据(8bit),

//prog_address 为需要写入的 flash 地址

注: 为保证字对齐操作:

当进行字(32bit)写入时, prog_address 如果要增加,需以 4 为单位递增 当进行半字(16bit)写入时,prog_address 如果要增加,需以 2 为单位递增 当进行字节 (8bit)写入时,prog_address 如果要增加,需以 1 为单位递增

while (FLASHCON.BUSY) //等待 flash 写操作完成,最长 20us

(2) 对 256K Code Flash 的页擦除操作流程:

WPREG = 0xA55A:

FLASHLOCK = 0x7A68; //unlock flash memory

FLASHCON = 0x02; //page erase

M32(prog_address) = prog_data; //prog_data 可以为任意的数据(32bit),

//prog_address 为需要擦除的 Flash 页内的任意一个地址

while (FLASHCON.BUSY); //等待 flash 页擦除操作完成, 最长 2ms

(3) 对 256K Code Flash 的全擦除操作流程:

WPREG = 0xA55A;

FLASHLOCK = 0x7A68; //unlock flash memory

FLASHCON = 0x03; // mass erase

M32(prog_address) = prog_data; //prog_data 可以为任意的数据(32bit),

// prog_address 为 256K Flash 的任意地址

while (FLASHCON.BUSY); //等待 flash 全擦除操作完成, 最长 10ms

//全擦除会导致用户执行的代码全部被擦除掉

2.3.4 Information Block 的操作说明

Information Block 共 1K bytes(0x00040000~0x000403FF),共 1 页,1024 bytes/页,其中存储有芯片出厂信息,不建议进行擦写操作。

2.4 Flash 控制功能

HT5X2X微控制器中Flash 存储器的0FC0H~0FC3H 区域为Flash控制选项字节区域。当芯片打开电源或从复位状态重启时,系统自动参考选项字节,并按照其配置设置指定的功能。使用HT5X2X时,必须使用选项字节设置以下几项功能。

- Flash加密控制功能
- POR/LBOR复位RTC使能控制
- Info Block参数自动装载使能控制

HT502X Flash选项字控制作用如下:

Flash 控制功能说明			基地址: 偏移地址:					
Flash 地址	Bit7	6	5	4	3	2	1	Bit0
FC1H		FLASH[7:0]						
Reset:	1	1	1	1	1	1	1	1
Flash	Bit7	6	5	4	3	2	1	Bit0

地址								
FC0H	X	X	X	X	RTCRST	AUTOREL OAD	X	X
Reset:	1	1	1	1	0	0	1	0

位	功能描述					
FLASH[7:0]	如果 Flash[7:0]=0xFF,则 Flash 不加密					
	其他: Flash 加密,该寄存器位只能读,不能写					
RTCRST	=1, LBOR, POR 可以复位 RTC 计时寄存器					
	=0,LBOR,POR 不能复位 RTC 计时寄存器 可以写					
AUTORELOAD	=1, 自动装载功能使能					
	=0,自动装载功能屏蔽					

注: 其他位不可以修改, 保持默认值。

2.5 写保护寄存器列表

被写保护的寄存器分布在 CMU 模块, PMU 模块, RTC 模块,详细列表如下:

CMU 模块寄存器基	CMU 模块寄存器基地址: 0x4000F000							
偏移地址	名称	复位值	功能描述					
0x00	WPREG	0x0000	写保护控制寄存器					
0x04	SYSCLKCFG	0x0002	系统时钟配置寄存器 (写保护)					
0x08	JTAGSTA	0x0000	JTAG 状态寄存器(只读)					
0x0C	LRCADJ	0x0009	低频 RC 调整寄存器(写保护)					
0x10	HRCADJ	0x0040	高频 RC 调整寄存器(写保护)					
0x1C	SYSCLKDIV	0x0001	系统时钟分频寄存器(写保护)					
0x24	CLKOUTSEL	0x0002	CLKOUT 时钟选择寄存器 (写保护)					
0x28	CLKOUTDIV	0x0000	CLKOUT 时钟分频寄存器 (写保护)					
0x2C	CLKCTRLO	0x24A0	内部模块使能寄存器 0 (写保护)					
0x30	CLKCTRL1	0x0000	内部模块使能寄存器1(写保护)					
0x34	FLASHCON	0x0000	Flash 访问控制寄存器(写保护)					
0x3C	FLASHDLY	0x0000	Flash 延迟取指寄存器					
0x90	FLASHCON2	0x0000	Flash 访问控制寄存器 2(写保护)					

PMU 模块寄存器基地址: 0x4000F400						
偏移地址	名称 复位值 功能描述					
0x00	PMUCON	0x0017	PMU配置寄存器 (写保护)			

RTC 模块寄存器基	RTC 模块寄存器基地址:0x4000C000							
偏移地址	名称	复位值	功能描述					
0x18	SECR	0x0000	秒寄存器 (写保护)					
0x1C	MINR	0x0000	分寄存器 (写保护)					
0x20	HOURR	0x0000	时寄存器 (写保护)					
0x24	DAYR	0x0001	日寄存器 (写保护)					
0x28	MONTHR	0x0001	月寄存器(写保护)					
0x2C	YEARR	0x0000	年寄存器 (写保护)					
0x30	WEEKR	0x0001	周寄存器(写保护)					
0x200	SECR2	0x0000	秒寄存器2(写保护)					
0x204	MINR2	0x0000	分钟寄存器2(写保护)					
0x208	HOURR2	0x0000	小时寄存器2(写保护)					
0x20C	DAYR2	0x0001	天寄存器2(写保护)					
0x210	MONTHR2	0x0001	月寄存器2(写保护)					
0x214	YRR2	0x0000	年寄存器2(写保护)					
0x218	WEEKR2	0x0001	星期寄存器2(写保护)					

2.6 特殊功能寄存器列表

CMU模块寄存器	MU模块寄存器基地址: 0x4000F000							
偏移地址	名称	读写方式	复位值	功能描述				
0x00	WPREG	R/W	0x0000	写保护控制寄存器				
0x08	JTAGSTA	R	0x0000	JTAG 状态寄存器				
0x34	FLASHCON	R/W	0x0000	Flash 控制寄存器(写保护)				
0x38	FLASHLOCK	R/W	0x0000	Flash 锁定寄存器				
0x50	INFOLOCK	R/W	0x0000	Information Block 锁定寄存器				
0x60	FS1LOCK	R/W	0x0000	FlashSector1 锁定寄存器				
0x64	FS2LOCK	R/W	0x0000	FlashSector2 锁定寄存器				
0x68	FS3LOCK	R/W	0x0000	FlashSector3 锁定寄存器				
0x6C	FS4LOCK	R/W	0x0000	FlashSector4 锁定寄存器				
0x70	FS5LOCK	R/W	0x0000	FlashSector5 锁定寄存器				
0x74	FS6LOCK	R/W	0x0000	FlashSector6 锁定寄存器				
0x78	FS7LOCK	R/W	0x0000	FlashSector7 锁定寄存器				
0x7C	FS8LOCK	R/W	0x0000	FlashSector8 锁定寄存器				
0x80	FS9LOCK	R/W	0x0000	FlashSector9 锁定寄存器				
0x84	FSALOCK	R/W	0x0000	FlashSectorA 锁定寄存器				
0x88	FSBLOCK	R/W	0x0000	FlashSectorB 锁定寄存器				
0x90	FLASHCON2	R/W	0x0000	Flash 控制寄存器 2(写保护)				

2.7 特殊功能寄存器说明

WPREG			基地址:	0x4000F	000				
(写保护智	寄存器)		偏移地址:	00Н					
	Bit15	14	13	12	11	10	9	Bit8	
Read:		WDDDG[15_0]							
Write:		WPREG[15:8]							
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:		WDDDG [# o]							
Write:	WPREG[7:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
WPREG[15:0]	WPREG 写入 0xA55A,则关闭写保护功能,用户可以写操作被保护的寄存器。
	WPREG 写非 0xA55A,则开启写保护功能,用户禁止写操作被保护的寄存器。
	读该寄存器:
	0x0001:表示写保护关闭,用户可以写操作被保护的寄存器
	0x0000:表示写保护开启,用户禁止写操作被保护的寄存器

FLASHCON(写保护) (Flash 控制寄存器)			基地址: 偏移地址:	0x4000F 34H	000			
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	v	v	v	BUSY	EOD [1.0]
Write:	Write:		Λ	Λ	Λ	X	FOP[1:0]	
Reset:	0	0	0	0	0	0	0	0

位	功能描述			
BUSY	FLASH 忙标:	志位 (只读》		
	0:表示 Fla	ısh 空闲,可	丁以进行操作。	
	1:表示 Fla	ısh 正在进行	厅写/擦除操作。	
FOP[1:0]	FLASH 操作权	莫式选择		
	F0P1	FOP0	FLASH 操作模式	
	0	0	处于 Flash 只读模式	
	0	1	对 FLASH 执行 Flash 写操作	
	1	0	对 FLASH 执行 Flash 页擦除操作	
	1	1	对 FLASH 执行 Flash 全擦除操作	

FLASHLOCK			基地址:	0x4000F	0x4000F000				
(Flash 锁定寄存器)			偏移地址:	38H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:		VPV[15, 0]							
Write:		KEY[15:8]							
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:		VDV[7, 0]							
Write:	KEY[7:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述					
KEY[15:0]	Flash 锁定控制位					
	对该寄存器写入 0x7A68 后, FLASH 被解锁,用户可擦写操作 FLASH。					
	写入非 0x7A68 数据后, FLASH 被锁定,用户禁止擦写操作 FLASH。					
	默认值 0x0000 为锁定状态,Flash 不可执行写/页擦除/全擦除操作					
	用户写入的是 0x7A68, 读出值为 1; 写入的是非 0x7A68, 读出值为 0。					

FS1LOCK			基地址:	0x4000F	0x4000F000				
(FlashSector1 锁定寄存器)			偏移地址:	60H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:		WW [15 0]							
Write:		KEY[15:8]							
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:		VDV[77_0]							
Write:	KEY[7:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
KEY[15:0]	FlashSector1 锁定控制位
	对该寄存器写入 0x7161 后, 8K CodeFlash 0x00000 – 0x01FFF 被解锁, 用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7161 数据后,CodeFlash 0x00000 – 0x01FFF 被锁定,用户禁止擦写操作
	FLASH。
	默认为锁定状态
	用户写入的是 0x7161,读出值为 1;写入的是非 0x7161,读出值为 0

FS2LOCK		基地址:	0x4000F	₹000				
(FlashSector2 锁定寄存器)		偏移地址:	64H					
	Bit15	14	13	12	11	10	9	Bit8

Read:				KEV[-	15.0]				
Write:		KEY[15:8]							
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:		NDV[4 0]							
Write:	KEY[7:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
KEY[15:0]	FlashSector2 锁定控制位
	对该寄存器写入 0x7262 后,24K CodeFlash 0x02000 – 0x07FFF 被解锁,用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7262 数据后,CodeFlash 0x02000 – 0x07FFF 被锁定,用户禁止写操作
	FLASH。
	默认为锁定状态
	用户写入的是 0x7262, 读出值为 1; 写入的是非 0x7262, 读出值为 0

FS3LOCK	基地址:			0x4000F	000			
(FlashSector3 锁定寄存器)			偏移地址:	68H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				KEY[15.0]			
Write:				KEI [.	[0.6]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				NEA L	7.0]			
Write:	KEY[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
KEY[15:0]	FlashSector3 锁定控制位
	对该寄存器写入 0x7363 后, 32K CodeFlash 0x08000 – 0xFFFF 被解锁,用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7363 数据后,CodeFlash 0x08000 – 0xFFFF 被锁定,用户禁止写操作
	FLASH.
	默认为锁定状态
	用户写入的是 0x7363, 读出值为 1; 写入的是非 0x7363, 读出值为 0

FS4LOCK			基地址:	地址: 0x4000F000				
(FlashSector4 锁定寄存器)		偏移地址:	6CH					
	Bit15	14	13	12 11 10 9 Bit8			Bit8	
Read:				KEY[15:8]			

Write:									
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				KEVL	7.0]				
Write:		KEY[7:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
KEY[15:0]	FlashSector4 锁定控制位
	对该寄存器写入 0x7464 后,32K CodeFlash 0x10000 – 0x17FFF 被解锁,用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7464 数据后,CodeFlash 0x10000 – 0x17FFF 被锁定,用户禁止写操作
	FLASH。
	默认为锁定状态
	用户写入的是 0x7464, 读出值为 1; 写入的是非 0x7464, 读出值为 0

FS5LOCK	基地址:			0x4000F	7000			
(FlashSector5 锁定寄存器)			偏移地址:	70H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				KEY[15.0]			
Write:				KEI [.	10.6]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				KEVL	7.0]			
Write:	KEY[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
KEY[15:0]	FlashSector5 锁定控制位
	对该寄存器写入 0x7565 后,31K CodeFlash 0x18000 – 0x1FBFF 被解锁,用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7565 数据后,CodeFlash 0x18000 – 0x1FBFF 被锁定,用户禁止写操作
	FLASH.
	默认为锁定状态
	用户写入的是 0x7565, 读出值为 1;写入的是非 0x7565, 读出值为 0

FS6L0CK (FlashSec	FS6LOCK (FlashSector6 锁定寄存器)			0x4000F 74H	₹000			
	Bit15	14	13	12	11	10	9	Bit8
Read:		VPV[15 0]						
Write:	KEY[15:8]							

Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				VEV.	7.0]				
Write:		KEY[7:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
KEY[15:0]	FlashSector6 锁定控制位
	对该寄存器写入 0x7666 后,32K CodeFlash 0x20000 – 0x27FFF 被解锁,用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7666 数据后,CodeFlash 0x20000 – 0x27FFF 被锁定,用户禁止写操作
	FLASH.
	默认为锁定状态
	用户写入的是 0x7666, 读出值为 1; 写入的是非 0x7666, 读出值为 0

FS7LOCK			基地址:	0x4000I	F000			
(FlashSector7 锁定寄存器)			偏移地址:	78H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				KEY[15.07			
Write:				KEY L	15:8]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				MEN [7.07			
Write:	KEY[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
KEY[15:0]	FlashSector7 锁定控制位
	对该寄存器写入 0x7767 后,32K CodeFlash 0x28000 – 0x2FFFF 被解锁,用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7767 数据后,CodeFlash 0x28000 – 0x2FFFF 被锁定,用户禁止写操作
	FLASH。
	默认为锁定状态
	用户写入的是 0x7767, 读出值为 1; 写入的是非 0x7767, 读出值为 0

FS8LOCK			基地址:	0x4000F	0x4000F000				
(FlashSector8 锁定寄存器)			偏移地址:	7CH	7CH				
	Bit15	14	13	12	11	10	9	Bit8	
Read:	KEY[15:8]								
Write:	NEI[13.0]								
Reset:	0	0	0	0	0	0	0	0	

	Bit7	6	5	4	3	2	1	Bit0
Read:				NEAL	7.0]			
Write:				KEY[[[.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
KEY[15:0]	FlashSector8 锁定控制位
	对该寄存器写入 0x7868 后, 32K CodeFlash 0x30000 – 0x37FFF 被解锁,用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7868 数据后,CodeFlash 0x30000 – 0x37FFF 被锁定,用户禁止写操作
	FLASH.
	默认为锁定状态
	用户写入的是 0x7868, 读出值为 1; 写入的是非 0x7868, 读出值为 0

FS9L0CK	基地址:			0x4000F	0x4000F000			
(FlashSector8 锁定寄存器)		偏移地址:	80H					
	Bit15	14	13	12	11	10	9	Bit8
Read:				KEV[-	15.0]			
Write:		KEY[15:8]						
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				NEAL L	7.0]			
Write:	KEY[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
KEY[15:0]	FlashSector9 锁定控制位
	对该寄存器写入 0x7969 后,31K CodeFlash 0x38000 – 0x3FBFF 被解锁,用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7969 数据后,CodeFlash 0x38000 – 0x3FBFF 被锁定,用户禁止写操作
	FLASH。
	默认为锁定状态
	用户写入的是 0x7969, 读出值为 1; 写入的是非 0x7969, 读出值为 0

FSALOCK	基地址:			0x4000F	0x4000F000				
(FlashSector8 锁定寄存器)		偏移地址:	84H						
	Bit15	14	13	12	11	10	9	Bit8	
Read:				KEV[-	15.0]				
Write:		KEY[15:8]							
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	

Read:				KEY[7.0]			
Write:				KE I L	7.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
KEY[15:0]	FlashSectorA 锁定控制位
	对该寄存器写入 0x7A6A 后,1K CodeFlash 0x1FC00 – 0x1FFFF 被解锁,用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7A6A 数据后,CodeFlash 0x1FC00 – 0x1FFFF 被锁定,用户禁止写操作
	FLASH。
	默认为锁定状态
	用户写入的是 0x7A6A, 读出值为 1; 写入的是非 0x7A6A, 读出值为 0

FSBLOCK			基地址:	0x4000F	F000			
(FlashSector8 锁定寄存器)			偏移地址:	88H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				KEY[15.07			
Write:				KEI L.	10.6]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				VEV.	7.0]			
Write:	KEY[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
KEY[15:0]	FlashSectorB 锁定控制位
	对该寄存器写入 0x7B6B 后,1K CodeFlash 0x3FC00 – 0x3FFFF 被解锁,用户可以
	对其进行页擦写操作。(注:此时只能进行页擦除,全擦无效)
	写入非 0x7B6B 数据后,CodeFlash 0x3FC00 – 0x3FFFF 被锁定,用户禁止写操作
	FLASH。
	默认为锁定状态
	用户写入的是 0x7B6B, 读出值为 1; 写入的是非 0x7B6B, 读出值为 0

FLASHCON2(写保护) (Flash 控制寄存器)			基地址: 偏移地址:	0x4000F 90H	7 000			
	Bit15 14 13 12 11 10 9				Bit8			
Read:				CON[15.07			
Write:				CONL	10.6]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	CON[7:0]							

Write:								
Reset:	0	0	0	0	0	0	0	0

位	功能描述
CON[15:0]	Flash 读写控制寄存器
	当 FLASHCON2= 0xCA53 时,Flash 处于写状态
	当 FLASHCON2= 0xAC35 时,Flash 处于页擦状态
	当 FLASHCON2 写 其他任何值,Flash 处于读状态
	注:写 FLASHCON2 没有全擦状态,此寄存器为数据传递功能,最终作用于 FLASHCON 寄存器的相应功能,读取值为 0,如需判断 BUSY 状态,请读取 FLASHCON 的 BUSY 标志位

3 时钟单元

3.1 时钟分类

测试温度范围: -40℃~85℃

名称	频率	精度	功耗		
石 柳	<i>炒</i> 火华	作月/文	MIN	TYP	MAX
内部低频 RC 时钟(Flrc)	32KHz	13KHz~50KHz		1uA	
内部高频 RC 时钟(Fhrc)	9.8MHz	±3%		130uA	
外部低频 OSC 晶振(Fosc)	32.768KHz				1uA
内部 PLL (Fp11) 输出时钟	19.660800MHz/			320uA	
	39.321600MHz				

注: 内部高频 RC 时钟描述的频率是经过 HRCADJ 加载 Info Block 调整值之后的标称值,常温精度为 \pm 1%,全温度范围(- \pm 40 \pm 0~+ \pm 85 \pm 8)

3.2 时钟框图

时钟符号说明:

Flrc: 内部低频 RC 时钟(32KHz),也作为看门狗时钟源。

Fhrc: 内部高频RC时钟(9.8MHz),系统复位后默认运行在Fhrc。

Flf: 内部选择的低频时钟(32.768KHz),同Fosc时钟。

Fosc: 外部低频OSC晶振时钟(32.768KHz)。

Fp11: 内部PLL产生的高频时钟(39.321600MHz)或者PLL时钟2分频(19.660800MHz),来源为Fosc。

Fsys: 系统时钟,主要给各个外设提供时钟。

Fcpu: 给CPU、GPIO、DMA、CRC提供时钟。

注: 此图中,内部选择的低频时钟 Flf 为外部低频时钟 Fosc

3.3 时钟停振检测框图

3.4 时钟说明

3.4.1 内部低频 RC 时钟(Flrc)

内部低频 RC 时钟 Flrc 振荡频率为 32KHz,提供给看门狗使用,可以选择该低频 RC 时钟 Flrc 作为系统时钟(SYSCLK SEL[2:0]=000)。

内部低频 RC 时钟 Flrc 可以通过寄存器 LRCADJ 校准,以提高时钟准确度。

3.4.2 内部高频 RC 时钟(Fhrc)

内部高频 RC 时钟 Fhrc 频率为 9.8MHz,可以选择该高频 RC 时钟 Fhrc 的分频输出作为系统时钟 (SYSCLK SEL[2:0]=010)。

内部高频 RC 时钟 Fhrc 通过寄存器 HRCADJ 校准后,频率可达到 9.8MHz,常温精度可以达到 1%。

系统复位后,默认内部运行高频 RC 时钟 Fhrc (HRC_EN = 1), 系统时钟选择内部高频 RC 时钟 Fhrc (SYSCLK SEL[2:0]=010)。

选择内部高频 RC 作为系统时钟时,不能关闭内部高频 RC 时钟,对 HRC_EN 写"0"操作无效。

3.4.3 外部低频晶振时钟(Fosc)

芯片外接低功耗晶体震荡器,时钟频率 Fosc=32.768KHz,芯片内部集成了其震荡所需的电阻和电容, 匹配电容约为 12.5pF。

3.4.4 内部 PLL 时钟 (Fpll)

内部 PLL 通过对外部低频晶振时钟 Fosc(32.768KHz)倍频(倍频值=1200),可以对系统提供最高达39.321600MHz 的高频时钟 Fp11,PLL 稳定输出后稳定标志位 PLL_LOCK 置 1。在默认情况下(SEL_20M=0),PLL 输出 2 分频后的时钟,即 Fp11 为 19.660800MHz。

3.4.5 时钟安全机制

芯片内部集成有3个独立的时钟停振检测模块,分别对内部低频时钟Flf(来自Fosc),PLL输出时钟Fpl1,和内部高频时钟Fhrc作检测。低频时钟Flf停振检测功能默认开启,3个停振检测模块均可以由用户软件关闭,控制位分别为LF DET EN, PLL DET EN, HRC DET EN。

内部低频 RC 时钟 Flrc 默认不会停振(设计保证),作为时钟停振检测模块的时钟源。

当 Flf 停振检测开启检测到 Flf 停振,系统给出时钟停振标志 LF_FLAG; 如系统时钟 Fsys 选择 Flf 或 Fpll (Flf 为 Fpll 的时钟源) 时,系统会由硬件强制将系统时钟 Fsys 切换到内部低频 RC 时钟 Flrc,且产生中断(NMI 中断),同时将寄存器 $SYSCLK_SEL[2:0]$ 的值置为 000; 若系统时钟 Fsys 选择非 Flf 或非 Fpll 时,系统时钟不会切换,也不会发生 NMI 中断,但停振标志会产生。

当 Fpll 停振检测开启检测到 Fpll 停振,系统给出时钟停振标志 PLL_FLAG;如系统时钟 Fsys 选择 Fpll 时,系统会由硬件强制将系统时钟 Fsys 切换到内部低频 RC 时钟 Flrc,且产生中断(NMI 中断),同时将寄存器 SYSCLK_SEL[2:0]的值置为 000;若系统时钟 Fsys 选择非 Fpll 时,系统时钟不会切换,也不会发生 NMI 中断,但停振标志会产生。

当 Fhrc 停振检测开启检测到 Fhrc 停振,系统给出标志位 HRC_FALG,如系统时钟 Fsys 选择 Fhrc 时,系统不会由硬件强制切换系统时钟,此时系统将停止运行,等待看门狗复位。

3.4.6 时钟异常状态处理

- 1. 系统运行于低频时钟 Fosc 时,如 PLL 停振,芯片硬件不做任何处理,仅给出停振标志位 PLL FLAG。
- 2. 系统运行于低频时钟 Fosc 时,如 Fosc 的时钟源停振,系统时钟由硬件强制切换到 Flrc,同时产生 NMI 中断。
- 3. 系统运行于 PLL 时钟 Fpll 时,如 Fosc 停振或 Fpll 停振,系统时钟由硬件强制切换到 Flrc,同时产 生 NMI 中断。

3.5 特殊功能寄存器列表

偏移地址	名称	读写方式	复位值	功能描述
0x00	WPREG	R/W	0x0000	写保护控制寄存器
0x04	SYSCLKCFG	R/W	0x0002	系统时钟配置寄存器 (写保护)
0x08	JTAGSTA	R/W	0x0000	JTAG 状态寄存器(写保护)
0x0C	LRCADJ	R/W	0x0009	LRC 时钟调整寄存器(写保护)
0x10	HRCADJ	R/W	0x0040	HRC 时钟调整寄存器(写保护)
0x18	CLKSTA	R	0x0000	时钟状态寄存器(只读)
0x1C	SYSCLKDIV	R/W	0x0001	系统时钟分频寄存器(写保护)
0x24	CLKOUTSEL	R/W	0x0002	CLKOUT 时钟选择寄存器(写保护
0x28	CLKOUTDIV	R/W	0x0000	CLKOUT 时钟分频寄存器(写保护
0x2C	CLKCTRLO	R/W	0x24A0	内部模块使能寄存器 0(写保护)
0x30	CLKCTRL1	R/W	0x0000	内部模块使能寄存器1(写保护)
0.04	Dr. 16		0.0000	Flash 控制寄存器(写保护)
0x34	FLASHCON	R/W	0x0000	(详情参见章节<2 存储器模块>
		_ /		Flash 锁定寄存器
0x38	FLASHLOCK	R/W	0x0000	(详情参见章节〈2 存储器模块〉
0x3C	FLASHDLY	R/W	0x0000	Flash 延迟取指寄存器
0.00	Post Corr	D /W	0.000	FlashSector1 锁定寄存器
0x60	FS1LOCK	R/W	0x0000	(详情参见章节〈2 存储器模块〉)
0.04	Page ogr	D /W	0.0000	FlashSector2 锁定寄存器
0x64	FS2LOCK	R/W	0x0000	(详情参见章节〈2 存储器模块〉)
0.00	ECOLOGIA	D /W	0.0000	FlashSector3 锁定寄存器
0x68	FS3LOCK	R/W	0x0000	(详情参见章节<2 存储器模块>)
060			0000	FlashSector4 锁定寄存器
0x6C	FS4LOCK	R/W	0x0000	(详情参见章节<2 存储器模块>)
070	DCEL OCK	R/W	00000	FlashSector5 锁定寄存器
0x70	FS5LOCK	R/W	0x0000	(详情参见章节<2 存储器模块>)
0x74	FS6LOCK	R/W	0x0000	FlashSector6 锁定寄存器
UX14	FSOLUCK	K/W	0x0000	(详情参见章节<2 存储器模块>)
0x78	FS7LOCK	D/W	0**0000	FlashSector7 锁定寄存器
UX 18	FS/LUCK	R/W	0x0000	(详情参见章节<2 存储器模块>)
0x7C	FS8LOCK	R/W	0x0000	FlashSector8 锁定寄存器
0x7C	FSOLUCK	K/W	0x0000	(详情参见章节<2 存储器模块>)
0**80	ESOI OCK	D/W	0**0000	FlashSector9 锁定寄存器
0x80 FS9LOCK		R/W	0x0000	(详情参见章节<2 存储器模块>
0x84	FSALOCK	D/W	0v 0 000	FlashSectorA 锁定寄存器
UX04	LOUL	R/W	0x0000	(详情参见章节<2 存储器模块>
0x88	FSBLOCK	R/W	0x0000	FlashSectorB 锁定寄存器

0x90	FLASHCON2	R/W	0x0000	Flash 控制寄存器 2(写保护) (详情参见章节<2 存储器模块>)
0xF00	CHIPID	R	0x502x	芯片 ID 寄存器,只读

3.6 特殊功能寄存器说明

WPREG (写保护智	基地址:			0x4000F 00H	000			
	Bit15	14	13	12	11	10	9	Bit8
Read:				WPREG	15.0]			ı
Write:				WPKEG	[19:8]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				WPREG	[7.0]			
Write:				WENEG	[1.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
WPREG[15:0]	WPREG 写入 0xA55A,则关闭写保护功能,用户可以写操作被保护的寄存器。
	WPREG 写非 0xA55A,则开启写保护功能,用户禁止写操作被保护的寄存器。
	读该寄存器:
	0x0001:表示写保护关闭,用户可以写操作被保护的寄存器
	0x0000:表示写保护开启,用户禁止写操作被保护的寄存器

	(写保护) 钟配置寄存	器)	基地址: 偏移地址:	0x4000F000 04H				
()4()20/4 (Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	V	V	V	V	V	V
Write:	Å	λ	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	WCLKEN	X	X	X	X	CVC	SCLK SEL[2	.01
Write:	WCLKEN	Λ	Λ	Λ	Λ	313	OULN_SEL[Z	. 0]
Reset:	0	0	0	0	0	0	1	0

位	功能描述
WCLKEN	时钟配置寄存器写保护位 如果用户要更改系统时钟选择,必须同时将 WCLKEN 位置 1,例如: 'b1xxxxxxx, 才可以对系统时钟选择位 SYSCLK_SEL[2:0]进行写操作。

SYSCLK SEL[2:0]

系统时钟选择控制位:

SYSCLK_	系统时钟选择(Fsys)		
0	0	0	Flrc
0	0	1	Fosc
0	1	0	Fhrc(Default)
0	1	1	Fp11

- 1. 系统时钟可作为芯片内部硬件外设模块的时钟源, 经分频后也可作为 CPU 和 GPIO 的时钟源。
- 2. 复位后,系统时钟默认为内部高频 RC 时钟 Fhrc (SYSCLK SEL[2:0]=010)。
- 3. 当选择外部低频晶振时钟 Fosc 作为系统时钟时,检测到低频时钟 Fosc 发生停振,此时系统会由硬件强制将 Fsys 切换到内部低速 RC 时钟 Flrc,同时系统时钟控制位 SYSCLK_CLK[2:0]被置为 000
- 4. 当选择 PLL 输出时钟 Fpl1 作为系统时钟时,检测到低频时钟 Fosc 或者 PLL 发生停振,此时系统会由硬件强制将 Fsys 切换到内部低速 RC 时钟 Flrc,同时系统时钟控制位 SYSCLK CLK[2:0]被置为 000

JTAGSTA (芯片状态指示寄存器)			基地址: 偏移地址:	0x4000F 08H	000			
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:								FLASHST
	X	X	X	X	X	X	X	A
Write:								X
Reset:	0	0	0	0	0	0	0	1

位	功能描述					
FLASHSTA	内部状态保留位(只读)					

LRCADJ (RCADJ(写保护) 基地址:			0x4000F	F000			
(LRC 时钟调整寄存器)			偏移地址:	0CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V		I DC AD	T[0.0]	
Write:	X	X	X	X		LRC_AD	IJ[3:U]	
Reset:	0	0	0	0	1	0	0	1

位	功能描述
LRC_ADJ[3:0]	LRC 输出频率调节控制位

注:为保证 LRC 输出频率的准确性,建议客户只能加载 Info Block 存储的出厂测试值,不要自行修改为其它值。

HRCADJ (写保护)		基地址:	0x4000F	7000			
(HRC 时钟	(HRC 时钟调整寄存器)			10H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	v
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X			11	RC ADJ[6:0	.1		
Write:	Λ			П	NC_ADJ[0.0	']		
Reset:	0	1	0	0	0	0	0	0

位	功能描述
HRC_ADJ[6:0]	HRC 输出频率调节控制位

注:为保证 HRC 输出频率的准确性,建议客户只能加载 Info Block 存储的出厂测试值,不要自行修改为其它值。

CLKSTA (时钟状	CLKSTA (时钟状态寄存器)			0x4000F000 18H	0			
	Bit15	14	13	12	11	10	9	Bit8
Read: Write:	X	X	X	X	X	X	X	X
	0	0	0	0	0	0	0	0
Reset	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	PLL_LOCK	PLL_FLAG	HRC_FLAG	V	V	LF_FLAG
Write:	X	X	X	X	X	X	X	X
Reset	0	0	0	0	0	0	0	0

注: 此寄存器是只读状态寄存器

位	功能描述
PLL_LOCK	PLL 时钟锁定状态标志
	0: PLL 时钟未锁定。
	1: PLL 时钟锁定正常。
	注:用来指示芯片内部 PLL 的工作稳定状态,调试模式下,PLL_LOCK 固定为 1
PLL_FLAG	PLL 时钟 Fp11 停振标志
	0: 正常。
	1: 停振。
HRC_FLAG	内部高频 RC 时钟 Fhrc 停振标志

	0: 正常。
	1: 停振。
LF_FLAG	外部低频晶振时钟 Fosc 停振标志
	0: 正常
	1: 停振

	(写保护) 神分频寄存	Ω /	基地址: 偏移地址:	0x4000F 1CH	000			
(永纯时)							T -	
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	X	SEL 20M	CVC	SCLK DIV[2	. ^]
Write:	Λ	Λ	Λ	Λ	SEL_ZUM	31.	OCLK_DIV[Z	. 0]
Reset:	0	0	0	0	0	0	0	1

		功能描述								
SEL_20M	PLL输出时钟预分频寄存器控制位									
	=0: PL	L输出	19.66Ml	Hz 时钟						
	=1: PL	L输出	39.32MI	Hz 时钟						
	注:如果	提选择 €	PU 时争	中为 39.32M,且系统时钟	选择不分频(SYSCLK_DIV[2:0]					
	= 000B),则必	须提前	使能指令延迟取指功能((FLASHDLY. FLASH_DLY=1)。					
SYSCLK_DIV[2:0]	系统时	系统时钟分频得到 Fcpu,设置如下:								
	SYSCI	K_DIV	[2:0]	内核时钟 (Fcpu)						
	0	0	0	Fsys						
	0	0	1	Fsys/2(Default)						
	0	1	0	Fsys/4						
	0	1	1	Fsys/8						
	1	0	0	Fsys/16						
	1 0 1 Fsys/32									
	1	1	0	Fsys/64						
	1	1	1	Fsys/128						

	CLKOUTSEL(写保护) (CLKOUT 时钟选择寄存器)			0x4000F 24H	000			
	Bit15 14		13	12	11	10	9	Bit8
Read:	v	V	V	V	V	V	V	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0

HT502X 用户手册

	Bit7	6	5	4	3	2	1	Bit0
Read:	v	V	v	v	v	CLI	KOUT SEL[2	. ^]
Write:	Λ	Λ	Λ	Λ	Λ	CLI	1001_3EL[2	.0]
Reset:	0	0	0	0	0	0	1	0

位		功能描述								
CLKOUT_SEL[2:0]	CLKOUT	门脚田	付钟输品	出配置						
	CLKOU	JT_SEL	[2:0]	CLKOUT时钟选择						
	0	0	0	Flrc						
	0	0	1	Fosc						
	0	1	0	Fhrc(Default)						
	0	1	1	Fsys						
	1	X	X	Fosc						
				部时钟源从 CLKOUT 引脚输出,以观测 IDIV 寄存器将内部时钟分频后输出,						

CLKOUTDIV	(写保护)		基地址:	0x4000F	7000			
(CLKOUT)	(CLKOUT 时钟分频寄存器)			28H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V		CLVOUT	DTW[0.0]	
Write:	X	X	X	X		CLKOUT_I	DIV[3:U]	
Reset:	0	0	0	0	0	0	0	0

Ĺ	位	功能描述
	CLKOUT_DIV[3:0]	CLKOUT 输出频率 $=$ $CLKOUT$ 选择的时钟源 $2 \times (CLKOUT _DIV[30] + 1)$

CLKCTRLO (写保护)			基地址:	0x4000F	000			
(内部模块使能控制寄存器 0)			偏移地址:	2CH				
	Bit23	22	21	20	19	18	17	Bit16
Read:	v	V	V	v	V	V	V	ECC EN
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	ECC_EN
Reset:	0	0	0	0	0	0	0	0

	Bit15	14	13	12	11	10	9	Bit8
Read:	EMIL EN	AEC EM	1P5LB0R	CLKOUT_	MEA EM	OCC CLD	HRC_DET	PLL_DET
Write:	EMU_EN	AES_EN	_EN	EN	KEY_EN	OSC_SLP	_EN	_EN
Reset:	0	0	1	0	0	1	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	LF_DET_	PLL_LOC	IIDC EN	DII EM	TOC EN	CDI EM	I CD EN	V
Write:	EN	K_EN	HRC_EN	PLL_EN	I2C_EN	SPI_EN	LCD_EN	X
Reset:	1	0	1	0	0	0	0	0

位	功能描述
ECC_EN	ECC 模块使能信号
	0: 关闭 (default)
	1: 打开
EMU_EN	EMU 模块使能信号
	0: 关闭(default)
	1: 打开
AES_EN	AES 模块使能信号
	0: 关闭(default)
	1: 打开
1P5LBOR_EN	低功耗 LDO_1P5 内部 LBOR 使能信号 (用户不要修改该寄存器的默认值)
	0: 关闭
	1: 打开(default)
CLKOUT_EN	CLKOUT 使能信号
	0: 关闭(default)
MDM DN	1: 打开
KEY_EN	按键扫描功能使能
	0: 禁止(default) 1: 使能
OSC SLP	1:
030_311	0: 大功耗
	1: 小功耗 (default)
HRC DET EN	HRC 时钟检测模块控制信号
	0: 关闭 HRC 时钟停振检测单元 (default)
	1: 使能 HRC 时钟停振检测单元
PLL_DET_EN	PLL 时钟检测模块控制信号
	0: 关闭 PLL 时钟停振检测单元 (default)
	1: 使能 PLL 时钟停振检测单元
LF_DET_EN	LF 时钟检测模块控制信号
	0: 关闭 LF 时钟停振检测单元
	1: 使能 LF 时钟停振检测单元(default)
PLL_LOCK_EN	PLL 强制锁定使能控制位
	0: PLL 不强制锁定(default)
	1: PLL 强制锁定

	注意: 当使能该位时,相应的 PLL 锁定标志位 PLL_LOCK 固定为 1,反之锁定标志								
	位 PLL_LOCK 将反应 PLL 的实际工作状态。								
HRC_EN	HRC 时钟振荡器使能位								
	D: 关闭高频 RC 时钟模块;								
	1: 使能高频 RC 时钟模块;(default)								
	注意:								
	1. 当用户切换至 HRC 时钟作为系统时钟时,必须先保证 HRC_EN 开启。								
	2. 当用户选择 Fsys 为 Fpll 时,此时不能关闭 PLL_EN,该寄存器位写入无效								
PLL_EN	PLL 模块时钟使能位								
	0: 关闭 PLL 模块(default)								
	1: 使能 PLL 模块								
	注意:								
	1. 当用户切换至 PLL 时钟作为系统时钟时,必须先保证 PLL_EN 开启。								
	2. 当用户选择 Fsys 为 Fpll 时,此时不能关闭 PLL_EN,该寄存器位写入无效								
I2C_EN	I2C 模块时钟使能位								
	0: 关闭 I2C 模块(default)								
	1: 使能 I2C 模块								
SPI_EN	SPI 模块时钟使能位								
	0: 关闭 SPI 模块(default)								
	1: 使能 SPI 模块								
LCD_EN	LCD 模块时钟使能位								
	0: 关闭 LCD 模块(default)								
	1: 使能 LCD 模块								

CLKCTRL1	(写保护)		基地址:	0x4000F	7000			
(内部模块使能控制寄存器 1)			偏移地址:	30H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	LRC_RTC	LRC_TFR	X	X	v	v	UART5_E	UART4_7
Write:	2_EN	EQ_RTC2	Λ	Λ	X	X	N	816_EN
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	UART3_7	UART2_E	UART1_E	UARTO_E	TMD2 EM	TMD9 EM	TMD1 EM	TMDO EM
Write:	816_EN	N	N	N	TMR3_EN	TMR2_EN	TMR1_EN	TMRO_EN
Reset:	0	0	0	0	0	0	0	0

位	功能描述			
LRC_RTC2_EN	辅助 RTC 的工作使能位			
	0: 美闭			
	1: 开启			
LRC_TFREQ_RTC2	辅助 RTC 的测频使能位			
	0: 美闭			
	1: 开启			

	,,,,,
UART5_EN	UART5 时钟使能位
	0: 关闭
	1: 使能
UART4_7816	UART4 时钟使能位
_EN	0; 关闭
	1: 使能
UART3_7816	UART3 时钟使能位
_EN	0: 关闭;
	1: 使能
UART2_EN	UART2 时钟使能位
	0: 关闭
	1: 使能
UART1_EN	UART1 时钟使能位
	0: 关闭
	1: 使能
UARTO_EN	UARTO 时钟使能位
	0: 关闭
	1: 使能
TMR3_EN	Timer3 时钟使能位
	0: 关闭
	1: 使能
TMR2_EN	Timer2 时钟使能位
	0: 关闭
	1: 使能
TMR1_EN	Timer1 时钟使能位
	0: 关闭
	1: 使能
TMRO_EN	Timer0 时钟使能位
	0: 关闭
	1: 使能

FLASHDLY	(写保护)		基地址:	0x4000F	0x4000F000				
(Flash 控制寄存器)			偏移地址:	3CH					
	Bit7	6	5	4	3	2	1	Bit0	
Read:	v	v	v	v	v	v	V	FLASH_D	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	LY	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述			
FLASH_DLY	Flash 延迟取指控制			
	0:在 Flash 中取指令时不等待			
	1: 在 Flash 中取指令时等待			

系统时钟 Fsys 选择 39.32M 时,且系统时钟分频选择不分频(SYSCLKDIV. SYSCLK_DIV[2:0]= 000B),必须配置此控制位为 1。

CHIPID				0x4000F	000			
芯片版本寄存器			偏移地址:	F00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	CHIPID[15···8]							
Write:	X	X	X	X	X	X	X	X
Reset:	0	1	0	1	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	CHIPID[7···0]							
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	1	0	0	0	0	0

位	功能描述
CHIPID[15: 0]	芯片 ID: 0x502x, x 为内部 ID 识别码为 0~F 中任意值(只读)

4 电源单元

4.1 概述

PMU 为芯片的电源管理模块,功能如下:

- 工作电压范围: 2.2V~5.5V
- 内部比较器 VSYS_DET 监测系统电源 VSYS; LVDIN_DET 检测外部低电压检测输入端 LVDINO 和 LVDIN1, 当供电电压低于或高于设定阈值时可产生中断信号。
 - 自动完成 VSYS 电源和 VBAT 电源的切换,电源状态在 PMUSTA 寄存器中的状态位实时更新。
 - 监测芯片内部的工作电源 VDD,可以根据设定阈值产生 BOR 或 VSYS 检测中断信号
 - 监测芯片内部的工作电源 VDD,可以根据设定阈值产生 BOR、LBOR、POR 复位信号
 - 为计量模块提供 2.8V 电源
 - 为芯片内部数字模块提供 1.5V 电源

4.2 框图

图 4-1 芯片内部供电框图

4.3 电源单元详细功能说明

4.3.1 电源切换

外部供电电源的切换由芯片内部硬件自动完成。系统上电后,VSYS_DET模块将一直开启。VSYS_DET模块监测外部供电的VSYS电压,根据VSYS的电压状态,自动完成系统电源VSYS和电池电源VBAT之间的切换;同时将当前VSYS的电压状态更新到寄存器PMUSTA的状态位VSYS FLG。

当电池电源VBAT电压大于1.65V,VSYS_DET模块监测到VSYS的电压低于设定阈值时,切换到VBAT供电,即VDD连接到VBAT;当电池电源VBAT电压大于1.65V,VSYS_DET模块监测到VSYS的电压高于设定阈值时,切换到VSYS供电,即VDD连接到VSYS。

当电池电源VBAT电压小于1.65V,则系统一直保持VSYS供电,不受VSYS_DET模块影响。

4.3.2 电源实时监测

PMU单元共内置5个电源检测模块,分别实时监测工作电源状态,并将监测结果以中断信号和复位信号的形式反馈给用户。

● LVD DET模块:

监测外部引脚LVDINO或者LVDIN1的电压,当电压低于或高于1.21V时,置位LVDIN0IF/LVDIN1IF标志位:如果使能LVDIN0IE/LVDIN1IE中断,就会产生LVDIN中断。

● VSYS DET模块:

监测系统电源VSYS的电压,当电压低于或高于设定阈值时,置位VSYSIF标志位;如果使能VSYS 检测中断(VSYSIE),就会产生VSYS中断;检测阈值可通过寄存器VDETCFG的位VSYS_LVL[3:0]来设置。

● BOR DET模块:

监测系统电源VDD的电压,当电压低于或高于设定阈值时,置位BORIF标志位;如果设置了BOR复位(BORRST=1),将会立即产生BOR复位;如果没有设置BOR复位(BORRST=0),但使能了BOR检测中断(BORIE),就会产生BOR中断;检测阈值可通过寄存器VDETCFG的位BOR LVL[1:0]来设置。

● LBOR DET模块:

监测系统电源VDD的电压,当电压低于阈值1.9V时,产生LBOR掉电复位。

● POR_DET模块:

监测系统电源VDD的电压,当电压从低于0.3V到上升到阈值电压以上时,产生POR上电复位。

4.3.3 内建 1.5V 电源

芯片内部通过子模块 regulator 将 VDD 电压调制成 1.5V 电压,供芯片内部的 1.5V 工作域使用,并通过引脚 VDD 输出。在输出引脚 VDD 上需要外接 0.1uF 电容,以协助芯片提供稳定的 1.5V 内部数字电源。

4.3.4 BOR 检测功能(BOR_DET)

当 BOR 检测模块检查到系统电源 VDD 低于设定电压 Vbor1 时,BOR 检测模块内部信号 BOROUT 输出低电平,内部复位信号 IRST 也将变为低电平,复位状态寄存器 RSTSR 的 BOR 标志位被置为 1。当掉电检测电路检测到系统电源 VDD 电压高于设定电压 Vborh 时,BOR 检测模块内部信号 BOROUT 输出高电平,在该高电平持续的 1088 个 Flrc/Fosc 周期后,内部复位信号 IRST 也变为高电平。

Vborh 和 Vborl 之间的迟滞为 200mV, BOR 模块的检测阈值可通过 VDETCFG 中的 BOR_LVL[1:0]设置。 掉电复位 BOR 产生时,下面的事件将会发生:

- 产生一个 BOR 脉冲
- 内部复位信号 IRST 有效
- 计数 1088 个 Flrc/Fosc 周期
- 复位状态寄存器 RSTSR 的掉电复位标志位 BOR 被设置为 1。
- CPU 从 0000H 开始执行程序

LBOR_DET与 BOR_DET 的检测过程基本相同。

BOR 中断信号产生示意图

BOR 复位示意图

4.3.5 系统电源检测功能(VSYS_DET)

Normal 模式 Vsys 检测

Sleep/Hold 模式下 Vsys 分时检测

4.3.6 低电压检测功能(LVD_DET)

LVDIN 检测信号示意图

4.3.7 VSYS_DET, BOR_DET, LVD_DET 分时检测时序

系统在进入 Hold 或 Sleep 低功耗模式时,为进一步降低系统功耗,LVD_DET、VSYS_DET、BOR_DET 采用分时开启的方式工作:

VSYS_DET、LVD_DET、BOR_DET 在 Sleep/Hold 下的分时检测时序图请参考<4.3.5 系统电源检测功能>章节, Sleep/Hold 模式下 Vsys 分时检测框图。

其中 Period 为 LVD_DET、VSYS_DET 和 BOR_DET 检测模块分时开启的周期,可通过 VDETPCFG 寄存器的 VDET_PRD[2:0]位设置。 Δ t 是分时检测开启 LVD_DET、VSYS_DET 和 BOR_DET 采样时间,可通过 VDETPCFG 寄存器的 VDET_TIME[1:0]位设置。

建议用户在实际应用中:

上电时使用 VSYS_DET 或 BOR_DET 模块检测系统电源 VSYS 的电压,即检测电源的后级状态,以使系统能进入一个可靠的状态。

掉电时使用 LVD_DET 模块检测外部引脚 LVDIN 的电压,即检测电源的前级状态,以使系统能快速的检测到电源异常,并作相应的处理。

4.3.8 电池防钝化功能

当 VBAT Pin 连接外部电池时,如果置位 DISCHARGE_EN 控制位,则使能了电池防钝化功能,此时 VBAT Pin 上会流过一定量的电流,用户可以配置 DISCHARGE_CTRL 来控制这个防钝化电流的大小。

4.4 特殊功能寄存器列表

PMU 模块寄存器基地址: 0x4000F400									
偏移地址	名称	读写方式	复位值	功能描述					
0x00	PMUCON	R/W	0x001F	PMU配置寄存器(写保护)					
0x04	VDETCFG	R/W	0x0089	电源检测阈值配置寄存器					
0x08	VDETPCFG	R/W	0x0022	电源检测时间周期配置存器					
0x0C	PMUIE	R/W	0x0000	PMU中断使能寄存器					
0x10	PMUIF	R/W	0x0000	PMU中断标志寄存器					
0x14	PMUSTA	R	0x0000	PMU状态指示寄存器					
0x18	WAKEIF	R	0x00000000	唤醒源标志寄存器					

4.5 特殊功能寄存器说明

PMUCON (写保护)		基地址:	0x4000F	0x4000F400					
(PMU 配置	置寄存器)		偏移地址:	00H	00Н					
	Bit15	14	13	12	11	10	9	Bit8		
Read:	DISCHAR	X	X	X	X	X	X	X		
Write:	GE_EN	Λ	Λ	Λ	Λ	Λ	Λ	Λ		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	X	X	X	Hold_LD	LVDIN1_	LVDINO_	BORRST	BORDET_		
Write:	Λ	Λ	Λ	0	EN	EN	DURKSI	EN		
Reset:	0	0	0	1	1	1	1	1		

位	功能描述
DISCHARGE_EN	电池防钝化功能使能控制
	0: 电池防钝化功能关闭
	1: 电池防钝化功能开启
Hold_LDO	在 Hold 模式下选择打开/关闭 大功耗 LDO (默认打开)
	0: 关闭大功耗 LDO
	1: 打开大功耗 LDO (default)

F	_
LVDIN1_EN	LVD_DET 模块使能信号,监测 LVDIN1 输入引脚
	0: 关闭 LVDIN1_DET 模块
	1: 开启 LVDIN1_DET 模块(default)
LVDINO_EN	LVD_DET 模块使能信号,监测 LVDINO 输入引脚
	0: 关闭 LVDINO_DET 模块
	1: 开启 LVDINO_DET 模块(default)
BORRST	BOR复位/中断选择位
	0: VDD电压低/高于设定阈值时产生BOR中断
	1: VDD电压低于VDETCFG[1:0]设定阈值时产生BOR复位(default)
BORDET_EN	BORDET_EN 模块使能信号
	0: 关闭 BOR_DET 模块
	1: 开启 BOR_DET 模块(default)

VDETCFG			基地址:	0x4000F	°400			
(电源检测阈值配置寄存器)			偏移地址:	04H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	DISCHAR	X	X	X	X	X	X	X
Write:	GE_CTRL	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	RESERVE	X		VSYS LV	л [э.о]		DOD IV	I [1.0]
Write:	D	Λ		V313_L1	L[3.U]		BOR_LV	L[I.U]
Reset:	1	0	0	0	1	0	0	1

位			功)能描述	
DISCHARGE_CTRL	电池防钝化	功能,电流大	て小选择:		
	0: 1mA				
	1: 2mA				
Bit7	内部保留位,	应用时保持	步为默认值 1		
VSYS_LVL [3:0]	VSYS_DET检:	则阈值控制位	ጀ		_
		VSYS_L	VL[3:0]		检测电压
	0	0	0	0	2. 4V
	0	0	0	1	2. 6V
	0	0	1	0	2.8V (default)
	0	0	1	1	3. OV
	0	1	0	0	3. 2V
	0	1	0	1	3. 4V
	0	1	1	0	3. 6V
	0	1	1	1	3. 8V
	1	0	0	0	4. 0V

	1		0	1	4. 2V	
	1		U	1		
	1	0	1	0	4. 4V	
	1	0	1	1	4.6V	
	1	1	0	0	4.8V	
	1		0	1	5V	
	1	1	1	X	5V	
BOR_LVL[1:0]	BOR_DET检测	测阈值控制位				
	BOR_L	VL[1:0]	检测	电压		
	0	0	2.4V			
	0	1	2.2V (default)		
	1	0	2.8V			
	1	1	2.6V			

VDETPCFG			基地址:	0x4000F	0x4000F400					
(电源检测	则周期配置	存器)	偏移地址:	08H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:	X	X	V	v	V	V	V	v		
Write:	λ	λ	X	X	X	X	X	X		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read	V	V	DCDV	VDET TI	ME[1.0]	W	NET DDD [0.0	7 7		
Write	X	X	RSRV	VDET_TI	ME[1:0]	VI	DET_PRD[2:0	J		
Reset:	0	0	1	0	0	0	1	0		

位		功能描述							
RSRV	内部保留	位,POR	复位后默认为1,其它	复位不可改变其值。					
	应用时可	应用时可保留默认值 1,也可改写为 0。							
VDET_	Hold&Sle	ep 模式下	VSYS_DET, BOR_DET, L	VDIN_DET 分时检测的时间设定					
TIME[1:0]	VDET_Ti	me[1:0]	检测时间						
	0	0	1068us(default)						
	0	1	1068us						
	1	0	1068us						
	1	1	1068us						

VDET_PRD[2:0]	Hold&Sle	eep 模式	下 VSYS_I	DET, BOR_DET, LVDIN_DE	T 分时检测的周期设定
	VDE	ET_PRD[2	:0]	检测周期	
	0	0	0	16.5ms	
	0	0	1	33ms	
	0	1	0	67ms(default)	
	0	1	1	134ms	
	1	0	0	268ms	
	1	0	1	536ms	
	1	1	0	1072ms	
	1	1	1	2144ms	

PMUIE			基地址:	0x4000F	0x4000F400				
(PMU 中勝	f使能寄存器	器)	偏移地址:	0CH					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	V	V	V	V	V	v	V	v	
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read					LVDIN1I	LVDINOI			
Write	X	X	X	X	Е	Е	BORIE	VSYSIE	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
	LVDIN1检测中断使能位
LVDIN1IE	0: 关闭
	1: 允许
	LVDINO检测中断使能位
LVDINOIE	0: 关闭
	1: 允许
BORIE	BOR检测中断使能位
	0: 关闭
	1: 允许
VSYSIE	VSYS检测中断使能位
	0: 关闭
	1: 允许

注:设置 PMU 的中断,需要同时使能 PMU 中断的内核函数才有效。

 $NVIC_EnableIRQ(PMU_IRQn);$

PMUIF			基地址:	0x4000F	0x4000F400				
(PMU 中勝	标志寄存器	器)	偏移地址:	10H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read	V	V	V	V	LVDIN1I	LVDINOI	DODIE	VCVCTE	
Write	X	X	X	X	F	F	BORIF	VSYSIF	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
LVDIN1IF	LVDIN1检测中断标志位
	当外部引脚LVDIN电压下降到低于1.21V或上升到高于1.21V时,该位置1,软件写0清0。
LVDINOIF	LVDINO检测中断标志位
	当外部引脚LVDIN电压下降到低于1.21V或上升到高于1.21V时,该位置1,软件写0清0。
BORIF	BOR检测中断标志位
	当内部工作电压VDD下降到低于设定阈值或上升到高于设定阈值时,并且在BORRST=0
	的情况下,该位置1,软件写0清0。
VSYSIF	VSYS检测中断标志位
	当系统电源VSYS电压下降到低于设定阈值或上升到高于设定阈值时,该位置1,软件
	写0清0。

注: 该寄存器不能被 Wake_UP 唤醒复位。

PMUSTA			基地址:	0x40	00F400			
(PMU 状态寄存器寄存器)		偏移地址	: 14H					
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read	X	X	X	X	LVDIN1_FLG	LVDINO_FLG	BOR_FLG	VSYS_FLG
Write	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述	
LVDIN1_FLG	LVDIN1 引脚电压状态	
	0: 表示 LVDIN1 引脚电压小于 1.21V 阈值	
	1: 表示 LVDIN1 引脚电压大于 1.21V 阈值	
LVDINO_FLG	LVDINO 引脚电压状态	
	0:表示 LVDINO 引脚电压小于 1.21V 阈值	

	1: 表示 LVDINO 引脚电压大于 1.21V 阈值			
BOR_FLG	内部工作电压 VDD 电压状态			
	0: 表示 VDD 小于设定阈值 (BOR_LVL[1:0])			
	1:表示 VDD 大于设定阈值(BOR_LVL[1:0])			
VSYS_FLG	系统电源 VSYS 电压状态			
	0:表示 VSYS 小于设定阈值 (VSYS_LVL[1:0])			
	1:表示 VSYS 大于设定阈值 (VSYS_LVL[1:0])			

注: 该寄存器不能被 Wake_UP 唤醒 RESET。

WAKEIF (唤醒标志寄存器)			基地址: 偏移地址:	0x4000F 18H	F400			
() CHILLIAN	Bit31	30	29	28	27	26	25	Bit24
Read:	NMIWKIF	INT9WKI F	INT8WKI F	INT7WKI F	KEYWKIF	DMAWKIF	EMUWKIF	RSRV
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit23	22	21	20	19	18	17	Bit16
Read:	X	SPIWKIF	I2CWKIF	RTCWKIF	TBSWKIF	TMR3WKI F	TMR2WKI F	TMR1WKI F
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit15	14	13	12	11	10	9	Bit8
Read:	TMROWKI	RX5WKIF	RX4WKIF	RX3WKIF	RX2WKIF	RX1WKIF	RXOWKIF	INT6WKI F
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	INT5WKI F	INT4WKI F	INT3WKI F	INT2WKI F	INT1WKI F	INTOWKI F	ARGEWKI F	PMUWKIF
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述
NMIWKIF	NMI唤醒标志
	当系统唤醒时发生了不可屏蔽中断 NMI,设置标志位为 1
INT9WKIF	INT9唤醒标志
	SLEEP/HOLD模式下, INT9唤醒发生时,设置标志位为1
INT8WKIF	INT8唤醒标志
	SLEEP/HOLD模式下, INT8唤醒发生时,设置标志位为1
INT7WKIF	INT7唤醒标志
	SLEEP/HOLD模式下, INT7唤醒发生时,设置标志位为1
KEYWKIF	按键扫描唤醒标志

	1113024 月)
	SLEEP/HOLD模式下, KEY唤醒发生时,此位置为1
DMAWKIF	DMA唤醒标志
	HOLD模式下, DMA唤醒发生时,此位置为1
EMUWKIF	EMU唤醒标志
	HOLD模式下, EMU唤醒发生时, 此位置为1
RSRV	该位恒为0
SPIWKIF	SPI唤醒标志
	HOLD模式下, SPI唤醒发生时,此位置为1
I2CWKIF	I2C唤醒标志
	HOLD模式下, I2C唤醒发生时,此位置为1
RTCWKIF	RTC唤醒标志
	SLEEP/HOLD模式下RTC唤醒发生时,此位置为1。
	(具体是RTC哪个唤醒源,需要查看RTCIF寄存器)
TBSWKIF	TBS唤醒标志
	SLEEP/HOLD模式下TBS唤醒发生时,此位置为1。
	(具体是TBS哪个唤醒源,需要查看TBSIF寄存器)
TMR3WKIF	TMR3 唤醒标志
	HOLD模式下,TMR3唤醒发生时,此位置为1
TMR2WKIF	TMR3 唤醒标志
	HOLD模式下, TMR2唤醒发生时,此位置为1
TMR1WKIF	TMR3 唤醒标志
	HOLD模式下,TMR1唤醒发生时,此位置为1
TMROWKIF	TMR3 唤醒标志
	HOLD模式下,TMRO唤醒发生时,此位置为1
RX5WKIF	RX5唤醒标志
	SLEEP/HOLD模式下, RX5唤醒发生时,设置标志位为1
RX4WKIF	RX4唤醒标志
	SLEEP/HOLD模式下, RX4唤醒发生时,设置标志位为1
RX3WKIF	RX3唤醒标志
	SLEEP/HOLD模式下, RX3唤醒发生时,设置标志位为1
RX2WKIF	RX2唤醒标志
	SLEEP/HOLD模式下, RX2唤醒发生时,设置标志位为1
RX1WKIF	RX1唤醒标志
	SLEEP/HOLD模式下,RX1唤醒发生时,设置标志位为1
RXOWKIF	RX0唤醒标志
	SLEEP/HOLD模式下,RXO唤醒发生时,设置标志位为1
EXTI6WKIF	INT6唤醒标志
	SLEEP/HOLD模式下, INT6唤醒发生时,设置标志位为1
EXT15WKIF	INT5唤醒标志
	SLEEP/HOLD模式下, INT5唤醒发生时,设置标志位为1
EXTI4WKIF	INT4唤醒标志
	SLEEP/HOLD模式下, INT4唤醒发生时,设置标志位为1
EXT13WK1F	INT3唤醒标志

	SLEEP/HOLD模式下, INT3唤醒发生时,设置标志位为1
EXT12WKIF	INT2唤醒标志
	SLEEP/HOLD模式下, INT2唤醒发生时,设置标志位为1
EXTI1WKIF	INT1唤醒标志
	SLEEP/HOLD模式下, INT1唤醒发生时,设置标志位为1
EXTIOWKIF	INTO唤醒标志
	SLEEP/HOLD模式下, INTO唤醒发生时,设置标志位为1
ARGEWKIF	AES/RAND/GHASH/ECC 唤醒标志
	HOLD模式下,AES/RAND/GHASH/ECC唤醒发生时,此位置为1
PMUWKIF	PMU唤醒标志
	SLEEP/HOLD模式下, PMU唤醒发生时,此位置为1
	(具体那个PMU唤醒源需要查看PMUIF寄存器)

- 注: 1. Sleep 唤醒和 Hold 唤醒共用此标志位
- 2. DMAWKIF /EMUWKIF/ SPIWKIF/I2CWKIF/TMR3WKIF/ TMR2WKIF/ TMR1WKIF/ TMR0WKIF/ARGEWKIF, 只能在 Hold 下才能发生唤醒生效, sleep 模式不能唤醒。
- 3. 该寄存器为只读寄存器,它永远会保持上一次导致芯片唤醒的唤醒源头,当一个新的唤醒事件产生时候,由硬件产生新的唤醒源标志,同时将之前的唤醒标志清 0。该寄存器只能被 POR 复位。

5 调试支持

5.1 概况

HT502X采用的是 Cortex-M0 内核,该内核含有硬件调试模块。Cortex-M0 处理器支持以下调试特性:

- 程序的暂停、恢复以及单步执行;
- 访问处理器内核寄存器和特殊寄存器;
- 硬件断点 (最多4个);
- 软件断点 (BKPT 指令);
- 数据监视点 (最多两个);
- 动态存储器访问;
- 支持 SW 调试协议;

SW 为 2 针接口, 该接口包含的信号如下表

SW 信号	描述
SWIO	数据信号
SWCLK	时钟信号

5.2 SW 引脚分布

SW □	调试接口	引脚描述
类型	描述	
输入/输出	SW 数据	PB. 13/ SEG13/SWIO
输出	SW 时钟	PB.15/ SEG15/SWCLK

5.3 SW 引脚使用说明

管脚	软件配置为复用功能 2 TEST 为高电平	TEST=0, JTAGWDTEN=0	
PB. 13/ SEG13/ SWIO	SWIO	固定为 SWIO	
		(软件配置不起作用,OD 关闭)	
PB. 15/ SEG15/ SWCLK	SWCLK	固定为 SWCLK	
		(软件配置不起作用,OD 关闭)	

注: TEST=0, JTAGWDTEN=1 情况下芯片进入测试模式,用户应避免进入这种模式

5.4 调试模块复位说明

为了提高仿真和擦写操作的可靠性,芯片针对调试模块设计如下:

- 1.除了 DebugReset, 调试模块可以被其它任何复位所复位;
- 2.当 PB13/PB15 不作为 SW 口时(只要有一个不是),则调试模块处于复位状态;
- 3.当 TEST 和 JTAGWDTEN 由非 0(两个管脚不全是 0)变成 0(两个管脚都是 0)时,会使 JTAG 模块发生一次复位。
- 4.从非 Normal 模式(TEST 拉低,不管其他管脚)回到 Normal 模式(TEST 拉高),芯片发生一次彻底复位(除 RTC 计时寄存器外,其他都复位)。

5.5 推荐调试端口

推荐调试口配置如下:

说明:

- 1,前4个端口是程序下载必须要的(如果目标板有供电,VCC可以省去);
- 2, RST 的作用是当 SW 状态机发生紊乱时, 提供一种可靠的复位 SW 状态机的方式;
- 3, TEST 和 JTAGWDTEN 作用是当用户不小心将 SWCLK/SWIO 配置为其他功能(比如 GPIO 或者 SEG 功能), 强制将 PB13/PB15 配置为对应的 SW 口。

6 工作模式

6.1 芯片电源域分配

6.2 工作模式

芯片共有5种模式:正常模式,调试模式,测试模式,Sleep模式,Hold模式

TEST	JTAGWDTEN	工作模式
0	0	调试模式
		这种模式下,除了 PB13, PB15 被固定为 SW 接口外,其余与正常模式一致
0	1	测试模式
1	X	正常模式
		芯片内部所有模块电源正常供电,系统时钟和模块开关配置根据用户软件
		决定。
		在正常 normal 模式运行,看门狗不能被禁止
		这种模式下,用户可以通过将 PB13/15 配置为复用功能 2 (即 SW 口功能),
		进行调试模式操作。
		Sleep 模式
		在正常模式下,CPU通过执行如下指令进入Sleep模式:
		SCB->SCR = 0x0004;

WFI();
Hold 模式
在正常模式下,CPU通过执行如下指令进入Hold模式:
$SCB \rightarrow SCR = 0x0000;$
WFI();

芯片在正常模式下可以通过软件配置进入两种不同的低功耗模式,分别是 Sleep 模式和 Hold 模式。 Sleep 模式和 Hold 模式最主要有以下两点区别:

- Sleep 模式可以获得更低的功耗
- Sleep 模式的唤醒等同复位,而 Hold 模式唤醒则是接着原来运行的代码继续运行

6.3 睡眠模式 (SLEEP)

6.3.1 SLEEP 模式下各模块开关

- RTC供电模块不关闭,RTC相关的晶振电路,TBS模块,分频补偿电路一直开启;
- 进入Sleep后,如果用户配置开启LVD、BOR和VSYS检测功能,则LVD_DET、BOR_DET和VSYS_DET模块会由硬件控制自动进入分时开启模式以降低功耗;
- WDT默认开启,在SLEEP模式下,WDT计数溢出时,系统会发生WDT复位;
- 进入SLEEP之前,如果配置LCD、TBS模块开启,在进入SLEEP模式后,即可实现LCD静态显示,温度和电池电压测量功能;
- 为降低SLEEP模式下的功耗,可以在进入SLEEP模式之前,配置GPIO的状态(详见GPIO章节),控制好芯片和外设的状态,防止通过GPIO往外部漏电;
- 如果用户期望在Sleep达到最低功耗:
 - (1) CLKCTRL0寄存器配置为0x2400, CLKCTRL1寄存器全部清0
- 进入SLEEP 模式后,芯片内部会自动关闭LDO_1P5 (大功耗)输出,LDO_LowPower (低功耗)保持输出1.5V, LDO LowPower与外部引脚VDD1P5连接的开关断开,VDD1P5无输出。

6.3.2 SLEEP 模式下的唤醒

CPU从SLEEP状态下唤醒等同复位,因此不进入中断向量,不会执行中断服务程序,程序从复位地址 0000H开始执行。

在SLEEP模式下,Reset复位信号是不可被屏蔽的,包括POR,BOR,LBOR,外部RESET PIN上产生的外部复位信号,以及内部的WDT复位信号。当系统进入SLEEP模式后,如果以上复位信号产生,能够使芯片出现复位动作,程序从复位地址0000H开始执行。

要实现在SLEEP模式下的唤醒功能,进入SLEEP模式前需进行以下功能配置,且必需先使能模块的总中断:

(1) 外部INT中断和串口RX引脚唤醒:相应的PIN要配置为INT或RX功能(详细见GPIO单元),并使能外部中断和UART中断(NVIC_EnableIRQ(EXTIO_IRQn)、NVIC_EnableIRQ(UARTO_IRQn))。

若RX引脚唤醒,只要相应PIN上出现电平翻转并保持高/低电平不少于2个Fcpu的时间,CPU可从SLEEP

模式下唤醒,若外部INT唤醒,当相应PIN上出现**触发沿**并保持高/低电平不少于2个Fcpu的时间,CPU可从SLEEP模式下唤醒,触发沿类型由EXTIE寄存器的RIE和FIE控制位配置。

注意:

- ✓ 这里的Fcpu时钟为CPU时钟分频寄存器的输出时钟,如果用户在进入SLEEP之前CPU时钟分频寄存器SYSCLKDIV的分频值过大(如1/128),则会造成外部唤醒PIN上要给出很长时间(超过2个Fcpu时钟)的低电平信号,才能将CPU从SLEEP模式下唤醒。
- ✓ 若使用外部INT唤醒SLEEP, 必须要将PINFLT/PINFLT2寄存器中的相应的引脚数字滤波功能打开。
- (2) RTC中断唤醒:配置RTC模块中断使能(NVIC_EnableIRQ(RTC_IRQn)),配置对应RTC的子中断源(仅配置RTCIE相应位中断使能即可),当RTC使能的中断时间到时,或者RTC使能的闹钟定时或定时器定时时间到时,CPU从SLEEP模式下唤醒。
- (3) PMU中断和TBS中断唤醒:配置PMU/TBS模块中断使能(NVIC_EnableIRQ(PMU_IRQn)或NVIC_EnableIRQ(TBS_IRQn)),使能PMU/TBS对应的子中断源(配置PMUIE和TBSIE相应位中断使能),当电源检测超过阈值或温度检测超过阈值时,CPU从SLEEP模式下唤醒。
- (4) KEY中断唤醒:相应的PIN要配置为KEY扫描功能,配置按键扫描模块中断使能(NVIC EnableIRQ(KEY IRQn)),当检测到按键按下时,CPU从SLEEP模式下唤醒。

6.3.3 从 SLEEP 模式唤醒后的唤醒方式确认

从SLEEP模式唤醒后,可以查询复位标志(RSTSTA寄存器的WakeupRST和Sleep_Flag位),如果这两个标志位为1,则说明确实发生了唤醒复位,然后再通过唤醒标志寄存器WAKEIF确定具体的唤醒源,其中:

- (1) WAKEIF的RTCWKIF位为1,表示CPU是由RTC中断信号引起了唤醒.具体的中断源由RTC的8种中断源确定,可以查询RTCIF对应的位来确认是哪种RTC中断引起的唤醒,详细见RTC单元。
- (2) WAKEIF的PMUWKIF位为1,表示CPU是由PMU中断信号引起了唤醒.具体的中断源由PMU的3种中断源确定,可以查询PMUIF对应的位来确认是BORIF、VSYSIF、LVDINxIF,详细见PMU单元。
- (3) WAKEIF的TBSWKIF位为1,表示CPU是由TBS中断信号引起了唤醒。具体的中断源由TBS的9种中断源确定,可以查询TBSIF对应的位来确认是TPSIF、VbatIF、VDDIF、ADC0IF、ADC1IF、ADC2IF、VbatCMPIF、ADC0CMPIF、ADC1CMPIF,详细见TBS单元。
 - (4) WAKEIF的INTxWKIF(x=0~6)位为1,表示CPU是由相应的外部INT引脚信号引起了唤醒。
 - (5) WAKEIF的RXxWKIF(x=0~5) 位为1,表示CPU是由相应的RX引脚信号引起了唤醒。
 - (6) WAKEIF的KEYWKIF位为1,表示CPU是由按键信号引起了唤醒。

6.3.4 进入 SLEEP 模式

SLEEP模式通过CortexM0的系统自带指令WFI进入,即使在调试状态下,也是可以进入Sleep模式的。 进入Sleep指令如下:

SCB->SCR = 0x0004;

__WFI();

6.4 待机模式 (HOLD)

HOLD 模式与 SLEEP 模式的区别就是在 HOLD 模式下,LDO_1P5 由用户控制开关的,数字的 LDO_LowPower 供电一直打开,但是由于其低输出驱动能力(20-30uA),导致在这个状态下,很多数字功能模块不能工作正常,用户可配置开启大功耗大输出驱动能力的 LDO_1P5 来适应其应用的需求,即使能 PMUCON. Hold LDO (bit4)。

为了降低 HOLD 模式下的功耗, PMU 模块的 BOR_DET, VSYS_DET, LVDINx_DET 模块由芯片硬件控制自动进入分时开启模式。

如果系统在进入 HOLD 模式之前配置了中断使能,在进入 HOLD 模式后发生相应的中断事件,则芯片从 HOLD 模式下唤醒,并进入相应的中断处理程序。

在 HOLD 模式下, WDT 默认开启, WDT 计数溢出时, 系统会发生 WDT 复位。

6.4.1 进入 HOLD 模式

HOLD模式通过CortexMO的系统自带指令WFI进入。 进入HOLD指令如下:

 $SCB \rightarrow SCR = 0x00$;

WFI();

6.4.2 模式转换图

6.5 特殊功能寄存器列表

基地址: 0xE000ED00								
偏移地址	名称	读写方式	复位值	功能描述				
0x10	SCR	R/W	0x0000	系统控制寄存器				
模块寄存器基地	模块寄存器基地址: 0x4000F400							
偏移地址	名称	读写方式	复位值	功能描述				
0x18	WAKEIF	R	0x0000	唤醒源标志寄存器				

6.6 特殊功能寄存器说明

SCR	?			0xE000E	0xE000ED10				
(系统控制寄存器)		偏移地址:	10H						
	Bit31	30	29	28•	··11	10	9	Bit8	
Read:		agn [at a]							
Write:	SCR[31:8]								
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	X	X	X	SLEEPDE	v	X	
Write:	Λ	Λ	Λ	Λ	Λ	EP	X	Λ	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
SLEEPDEEP	=1: 在执行 WFI 指令后,芯片进入 Sleep 模式
	=0: 在执行 WFI 指令后,芯片进入 Hold 模式

WAKEIF			基地址:	基地址: 0x4000F400				
(唤醒标志	志寄存器)		偏移地址:	18H				
	Bit31	30	29	28	27	26	25	Bit24
Read:	NMIWKIF	INT9WKI	INT8WKI	INT7WKI	KEYWKIF	DMAWKIF	EMUWKIF	SelfTes
Write:	NMTMVTL	F	F	F	VEIMVIL	DMAWKIF	EMUWKIF	t
Reset:	0	0	0	0	0	0	0	0
	Bit23	22	21	20	19	18	17	Bit16
Read:	X	SPIWKIF	I2CWKIF	RTCWKIF	TBSWKIF	TMR3WKI	TMR2WKI	TMR1WKI
Write:	Λ	SLIMKIL	12CWKIF	KICWKIF	IDOMVIL	F	F	F
Reset:	0	0	0	0	0	0	0	0
	Bit15	14	13	12	11	10	9	Bit8
Read:	TMROWKI	RX5WKIF	RX4WKIF	RX3WKIF	RX2WKIF	RX1WKIF	RXOWKIF	INT6WKI
Write:	F	KVOMKIL	NATWNIF	IVYAMVIL	NAZWNIF	IVIMVIL	KAUWKIF	F

Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	INT5WKI	INT4WKI	INT3WKI	INT2WKI	INT1WKI	INTOWKI	ARGEWKI	DMIWMIE
Write:	F	F	F	F	F	F	F	PMUWKIF
Reset:	0	0	0	0	0	0	0	0

WAKEIF	忠寄存器)		基地址:	基地址: 0x4000F400 偏移地址: 18H				
() 大胜 () 人	Bit31	30	29	28	27	26	25	Bit24
Read:	NMIWKIF	INT9WKI F	INT8WKI F	INT7WKI F	KEYWKIF	DMAWKIF	EMUWKIF	SelfTes t
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit23	22	21	20	19	18	17	Bit16
Read:	X	SPIWKIF	I2CWKIF	RTCWKIF	TBSWKIF	TMR3WKI F	TMR2WKI F	TMR1WKI F
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit15	14	13	12	11	10	9	Bit8
Read:	TMROWKI	RX5WKIF	RX4WKIF	RX3WKIF	RX2WKIF	RX1WKIF	RXOWKIF	INT6WKI F
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	INT5WKI F	INT4WKI F	INT3WKI F	INT2WKI F	INT1WKI F	INTOWKI F	ARGEWKI F	PMUWKIF
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述
NMIWKIF	NMI唤醒标志
	SLEEP/HOLD 模式下, NMI 唤醒发生时,设置标志位为1
INT9WKIF	INT9唤醒标志
	SLEEP/HOLD模式下, INT9唤醒发生时,设置标志位为1
INT8WKIF	INT8唤醒标志
	SLEEP/HOLD模式下, INT8唤醒发生时,设置标志位为1
INT7WKIF	INT7唤醒标志
	SLEEP/HOLD模式下, INT7唤醒发生时,设置标志位为1
KEYWKIF	按键扫描唤醒标志
	SLEEP/HOLD模式下, KEY唤醒发生时,此位置为1
DMAWKIF	DMA唤醒标志
	HOLD模式下, DMA唤醒发生时,此位置为1

	H1502X 用户				
EMUWKIF	EMU唤醒标志				
	HOLD模式下, EMU唤醒发生时,此位置为1				
SelfTest	自测频中断,不能唤醒,该位恒为0				
SPIWKIF	SPI唤醒标志				
	HOLD模式下, SPI唤醒发生时,此位置为1				
I2CWKIF	I2C唤醒标志				
	HOLD模式下, I2C唤醒发生时,此位置为1				
RTCWKIF	RTC唤醒标志				
	SLEEP/HOLD模式下RTC中断发生时将会产生RTC唤醒,此位置为1。				
	(具体是RTC哪个唤醒源,需要查看RTCIF寄存器)				
TBSWKIF	TBS唤醒标志				
	SLEEP/HOLD模式下TBS中断发生时将会产生TBS唤醒,此位置为1。				
	(具体是TBS哪个唤醒源,需要查看TBSIF寄存器)				
TMR3WKIF	TMR3 唤醒标志				
	HOLD模式下, TMR3唤醒发生时,此位置为1				
TMR2WKIF	TMR3 唤醒标志				
	HOLD模式下, TMR2唤醒发生时,此位置为1				
TMR1WKIF	TMR3 唤醒标志				
	HOLD模式下, TMR1唤醒发生时,此位置为1				
TMROWKIF	TMR3 唤醒标志				
	HOLD模式下, TMRO唤醒发生时, 此位置为1				
RX5WKIF	RX5唤醒标志				
	SLEEP/HOLD模式下, RX5唤醒发生时, 设置标志位为1				
RX4WKIF	RX4唤醒标志				
	SLEEP/HOLD模式下, RX4唤醒发生时, 设置标志位为1				
RX3WKIF	RX3唤醒标志				
	SLEEP/HOLD模式下, RX3唤醒发生时, 设置标志位为1				
RX2WKIF	RX2唤醒标志				
	SLEEP/HOLD模式下, RX2唤醒发生时,设置标志位为1				
RX1WKIF	RX1唤醒标志				
	SLEEP/HOLD模式下, RX1唤醒发生时,设置标志位为1				
RXOWKIF	RXO唤醒标志				
	SLEEP/HOLD模式下, RXO唤醒发生时, 设置标志位为1				
EXT16WKIF	INT6唤醒标志				
DVOLENATO	SLEEP/HOLD模式下, INT6唤醒发生时,设置标志位为1				
EXT15WKIF	INT5唤醒标志				
DUMI AWATE	SLEEP/HOLD模式下, INT5唤醒发生时,设置标志位为1				
EXTI4WKIF	INT4唤醒标志				
DAMIONALD	SLEEP/HOLD模式下, INT4唤醒发生时, 设置标志位为1				
EXT13WK1F	INT3唤醒标志 CLEED (HOLD ## 4 T INT3 ## ## 4 # ## 4 ## 4 ## ## ## ## ## ## #				
DAMIONALD	SLEEP/HOLD模式下, INT3唤醒发生时,设置标志位为1				
EXT12WKIF	INT2唤醒标志 CLEED (HOLD ## 4-7 INTO HARRI ## 4-1 I				
	SLEEP/HOLD模式下, INT2唤醒发生时,设置标志位为1				

EXTI1WKIF	INT1唤醒标志
	SLEEP/HOLD模式下, INT1唤醒发生时,设置标志位为1
EXTIOWKIF	INTO唤醒标志
	SLEEP/HOLD模式下, INTO唤醒发生时,设置标志位为1
ARGEWKIF	AES/RAND/GHASH/ECC 唤醒标志
	HOLD模式下,AES/RAND/GHASH/ECC唤醒发生时,此位置为1
PMUWKIF	PMU唤醒标志
	SLEEP/HOLD模式下, PMU事件发生时将会产生PMU唤醒, 此位置为1
	(具体那个PMU唤醒源需要查看PMUIF寄存器)

- 注: 1. Sleep 唤醒和 Hold 唤醒共用此标志位
- 2. DMAWKIF/EMUWKIF/SPIWKIF/I2CWKIF/TMR3WKIF/TMR2WKIF/TMR1WKIF/TMR0WKIF/ARGEWKIF, 只能 Hold下才生效, sleep 模式不能唤醒。
- 3. 该寄存器为只读寄存器,它永远会保持上一次导致芯片唤醒的唤醒源头,当一个新的唤醒事件产生时候,由硬件产生新的唤醒源标志,同时将之前的唤醒标志清 0.

7 GPIO 模块

7.1 概述

HT5023提供PA[0..13], PB[0..15], PC[0..14], PD[0..15], PE[0..9], PF[0..7]并行端口,支持79个双向I/0引脚,可以分别配置成输入或者输出模式。作为输入方式时,内部上拉88K电阻可配置。

HT5025提供PA[3..8],PA[11..13],PB[0..15],PC[0..3],PC8,PC[10..12],PD[0..6],PD[8..15],PE[1..5],PE[7..9],PF[0..2]并行端口,支持59个双向I/0引脚,可以分别配置成输入或者输出模式。作为输入方式时,内部上拉88K电阻可配置。

HT5027 提供 PA3, PA[5..8], PA12, PB[0..7], PB[12..15], PC[2..3], PC8, PD[2..5], PD[8..15], PE[1..5], PE7, PE9, PF[0..2] 并行端口, 支持 43 个双向 I/0 引脚, 可以分别配置成输入或者输出模式。作为输入方式时,内部上拉 88K 电阻可配置。

7.2 芯片引脚结构说明

7.3 芯片引脚描述

详见章节<1.6 引脚定义>。

7.4 I/O 端口基地址列表

GPIO 模块寄存器基地址:

0x40011000(PA端口);

0x40011200(PC 端口);

0x40011300(PD端口);

0x40011400(PE 端口):

0X10011100 (1D AND H7);									
偏移地址	名称	读写方式	复位值	功能描述					
0x00	IOCFG	R/W	0x0000	端口功能配置寄存器 1					
0x04	AFCFG	R/W	0x0000	端口功能配置寄存器 2					
0x08	PTDIR	R/W	0x0000	端口方向配置寄存器					
0x0C	PTUP	R/W	0x0000	端口上拉配置寄存器					
0x10	PTDAT	R/W	0x0000	端口数据寄存器					
0x14	PTSET	W	0x0000	端口设置寄存器(只写)					
0x18	PTCLR	W	0x0000	端口复位寄存器(只写)					
0x1C	PTTOG	W	0x0000	端口翻转寄存器 (只写)					
0x20	PTOD	R/W	0xFFFF	端口 OD 功能配置寄存器					

GPIO 模块寄存器基地址:

0x40011100(PR 端口)。

0X40011100 (PB)	畑 口ノ;			
偏移地址	名称	读写方式	复位值	功能描述
0x00	IOCFG	R/W	0xA000	端口功能配置寄存器 1
0x04	AFCFG	R/W	0xA000	端口功能配置寄存器 2
0x08	PTDIR	R/W	0x0000	端口方向配置寄存器
0x0C	PTUP	R/W	0x0000	端口上拉配置寄存器
0x10	PTDAT	R/W	0x0000	端口数据寄存器
0x14	PTSET	W	0x0000	端口设置寄存器(只写)
0x18	PTCLR	W	0x0000	端口复位寄存器(只写)
0x1C	PTTOG	W	0x0000	端口翻转寄存器(只写)
0x20	PTOD	R/W	0xFFFF	端口 OD 功能配置寄存器

注:

PB15/SEG15/SWCLK 的复位默认功能配置为 SWCLK

PB13/SEG13/SWIO 的复位默认功能配置为 SWIO

即, HT_GPIOB->IOCFG 复位默认值 0xA000

HT_GPIOB->AFCFG 复位默认值 0xA000

GPIO 模块寄存器基地址:

0x40011600(PF 端口):

ON ICCITION (II	- July / - 3				
偏移地址	名称	读写方式	复位值 功能描述		
0x00	IOCFG	R/W	0x0007	端口功能配置寄存器 1	
0x04	AFCFG	R/W	0x0000	端口功能配置寄存器 2	
0x08	PTDIR	R/W	0x0000	端口方向配置寄存器	

0x0C	PTUP	R/W	0x0000	端口上拉配置寄存器
0x10	PTDAT	R/W	0x0000	端口数据寄存器
0x14	PTSET	W	0x0000	端口设置寄存器(只写)
0x18	PTCLR	W	0x0000	端口复位寄存器 (只写)
0x1C	PTTOG	W	0x0000	端口翻转寄存器(只写)
0x20	PTOD	R/W	0xFFFF	端口 OD 功能配置寄存器

注:

PF. O/PFOUT/TOUT3 的复位默认功能配置为 PFOUT

PF. 1/QFOUT 的复位默认功能配置为 QFOUT

PF. 2/SFOUT/SEG48 的复位默认功能配置为 SFOUT

即,HT_GPIOF->IOCFG 复位默认值 0x0007 HT_GPIOF->AFCFG 复位默认值 0x0000

GPIO 模块寄存器基地址: 0x40011500(大电流端口);							
偏移地址	名称	读写方式	复位值	功能描述			
0x00	HDPORT	R/W	0x0000	大电流端口配置寄存器			

7.5 特殊功能寄存器说明

IOCFG	基地均			0x40011	.0000x40	011400		
(端口功能配置寄存器1)			偏移地址:	00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				PT[1	5.0]			
Write:				PILI	٥.٥]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				PT[′	7.07			
Write:				FIL	1.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述			
PT[15:0]	端口 I0 功能配置位			
	0:对应的端口配置为 GPIO			
	1: 对应的端口配置为功能 PIN			

AFCFG	基地址:			0x40011	0x400110000x40011400			
(端口功能配置寄存器 2)		偏移地址:	04H					
	Bit15	14	13	12	11	10	9	Bit8
Read:				DΤ[1	5.0]			
Write:	PT[15:8]							
Reset:	0	0	0	0	0	0	0	0

	Bit7	6	5	4	3	2	1	Bit0
Read:				ከ ጥ [r	7.07			
Write:				PT [7	.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
PT[15:0]	端口复用功能配置位(此寄存器只在对应端口配置为功能 PIN 时才有效)
	0: 复用功能 1
	1: 复用功能 2

PTDIR	基地址:			0x40011	0x400110000x40011400			
(端口方向	句配置寄存	器)	偏移地址:	08H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				PT[1	E.0]			
Write:				FILI	0.0]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				PT[7	7.0]			
Write:				PIL	1.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
PT[15:0]	端口方向配置位(此寄存器只在对应端口配置为 GP10 时才有效)
	0: 输入
	1: 输出

PTUP	基地址:			0x40011	0x400110000x40011400			
(端口上拉	立配置寄存	器)	偏移地址:	ОСН				
	Bit15	14	13	12	11	10	9	Bit8
Read:				PT[1	5.0]			
Write:				LILI	J.OJ			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				PT[′	7.0]			
Write:				FIL	1.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
PT[15:0]	端口上拉配置位(此寄存器只在对应端口配置为数字输入时才有效)
	0: 使能上拉

1:禁止上拉(浮空)

注:

1. 芯片引脚选择 GPIO 功能:

若方向寄存器配置为输出,上拉控制无效;

若方向寄存器配置为输入,上拉控制有效;

2. 芯片引脚选择复用功能:

复用功能的数字输出引脚上拉功能配置无效。

复用功能的数字输入引脚(除RST/TEST/JTAGWDTEN,这三个引脚内部恒定上拉)都可配上拉功能;若配置为模拟输入上拉控制无效;

3. 复用功能为模拟功能: LVDINx、LCD_SEG\COM、POWIN、ADCINx、VBAT,除此之外的其它复用功能为数字功能。

PTDAT (端口数据寄存器)			基地址: 偏移地址:						
(畑口奴1)		1.4			-11	10		D: (O	
	Bit15	14	13	12	11	10	9	Bit8	
Read:		DT[15.0]							
Write:		PT[15:8]							
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				חת [י	7.07				
Write:	PT[7:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
PT[15:0]	端口数据位(此寄存器只在对应端口配置为 GPIO 时才有效)
	当端口配置为输入时为读到的 I0 口状态
	0: 读到的为低电平
	1: 读到的为高电平
	当端口配置为输出时
	0: 输出低电平
	1: 输出高电平

注:端口数据寄存器 PTDAT 说明及数据读取

1.芯片引脚选择 GPIO 功能或复用数字功能

若方向寄存器配置为输出,PTDAT 读取值为寄存器设置值,不随外部 PIN 脚电平变化而变化;若方向寄存器配置为输入,PTDAT 读取值为 pad 状态值,反映外部 PIN 脚电平变化;

2.芯片引脚选择复用模拟功能,PTDAT 相应 bit 位值,固定为 0

PTSET 基地址:				0x40011	0x400110000x40011400					
(端口设置	置寄存器)		偏移地址:	14H	14H					
	Bit15	14	13	12	12 11 10 9 Bit8					
Read:	X	X	X	X	X X X X X					

Write:		PT[15:8]									
Reset:	0	0 0 0 0 0 0 0									
	Bit7	6	5	4	3	2	1	Bit0			
Read:	X	X	X	X	X	X	X	X			
Write:		PT[7:0]									
Reset:	0	0	0	0	0	0	0	0			

注:本寄存器只可写入。

位	功能描述
PT[15:0]	端口设置位(此寄存器只在对应端口配置为 GPIO 且输出时才有效)
	0: 写 0 无效
	1: 写 1 将对应的端口输出高电平(同时更新 PxDA 中对应的值)

PTCLR			基地址:	0x40011	0x400110000x40011400				
(端口复位	立寄存器)		偏移地址:	18H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	PT[15:8]								
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	X	X	X	X	X	X	
Write:	PT[7:0]								
Reset:	0	0	0	0	0	0	0	0	

注:本寄存器只可写入。

位	功能描述
PT[15:0]	端口复位位(此寄存器只在对应端口配置为 GPIO 且输出时才有效)
	0: 写 0 无效
	1: 写 1 将对应的端口输出低电平(同时更新 PxDA 中对应的值)

PTTOG			基地址:	0x40011	0x400110000x40011400				
(端口翻转寄存器)			偏移地址:	1CH					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:		PT[15:8]							
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	X	X	X	X	X	X	
Write:	PT[7:0]								
Reset:	0	0	0	0	0	0	0	0	

注:本寄存器只可写入。

位	功能描述

PT[15:0]

端口翻转位(此寄存器只在对应端口配置为GPI0且输出时才有效)

0: 写 0 无效

1: 写 1 将使对应的端口输出电平发生翻转(同时更新 PxDA 中对应的值)

PTOD (端口开漏配置寄存器)			基地址: 偏移地址:		.0000x40	011400			
	Bit15	14	13	12	11	10	9	Bit8	
Read:		DW[15 o]							
Write:		PT[15:8]							
Reset:	1	1	1	1	1	1	1	1	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				DT [7.0]				
Write:	PT[7:0]								
Reset:	1	1	1	1	1	1	1	1	

位	功能描述
PT[15:0]	端口开漏配置位(此寄存器只在对应端口配置为数字输出时才有效)
	0: 开漏功能使能(PMOS 禁止)
	1: 开漏功能无效 (PMOS 使能)
	注:对于复用功能,比如 IIC 需要开漏功能,当用户将对应的 IO 配置为 IIC 功
	能时,且需配置开漏功能使能。

注:

1. 芯片引脚选择 GPIO 功能:

若方向寄存器配置为输出,开漏 OD 功能控制有效;

若方向寄存器配置为输入,开漏 OD 功能控制无效;

2. 芯片引脚选择复用功能:

复用功能的数字输出引脚都可配开漏功能(Open Drain)。

复用功能的数字输入引脚开漏功能无效;

若配置为模拟输入开漏 OD 控制无效;

3. 复用功能为模拟功能: LVDINx、LCD_SEG\COM、POWIN、ADCINx、VBAT,除此之外的其它复用功能为数字功能。

HDPORT			基地址:	0x40011	500			
(大电流端口配置寄存器)			偏移地址:	00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	X	PA8HD	PA7HD	DAGIID	PCOHD
Write:	Λ	Λ	Λ	Λ	ГАОПИ	ra/nD	PA6HD	PCOND

HT502X 用户手册

	Reset:	0	0	0	0	0	0	0	0
--	--------	---	---	---	---	---	---	---	---

注: 该寄存器为单独的起始地址

位	功能描述
PA8HD, PA7HD,	端口大电流驱动配置(分别对应 PA8, PA7, PA6, 和 PC0 端口)
PA6HD, PC0HD	0: 普通驱动能力 (2mA-3mA)
	1: 超大电流驱动能力 (20mA-30mA)

8 中断模块

8.1 中断向量说明

系统中断	中断号 IRQn	中断使能	中断标志	功能描述
NMI	-14			硬件强制切换低频 RC 时钟 Flrc中断
HardFault	-13			故障/异常触发中断
SVCall	-5			软件触发中断
PendSV	-2			软件触发中断
SysTick	-1			系统定时器周期中断
		以上	二为内核自带	
PMU	0	PMUIE. LVDINOIE	PMUIF. LVDINOIF	LVD检测中断
		PMUIE. LVDIN1IE	PMUIF.LVDIN1IF	LVD检测中断
		PMUIE. BORIE	PMUIF.BORIF	BOR检测中断
		PMUIE. VSYSIE	PMUIF. VSYSIF	VSYS检测中断
AES/ECC/RAND /GHASH	1	AESGHASHIE. AESI E	AESGHASHIF. AESIF	AES 中断
		AESGHASHIE. GHAS HIE	AESGHASHIF. GHASHI F	GHASH 中断
		AESGHASHIE. RAND IE	AESGHASHIF. RANDIF	RAND 中断
		ECCCON. ECCIE	ECCSTA. ECCFLG	ECC 中断
EXTIO-6	2-8	EXTIE. RIE[0:6]	EXTIF. RIF[0:6]	外部输入引脚上升沿中断
		EXTIE. FIE[0:6]	EXTIF. FIF[0:6]	外部输入引脚下降沿中断
UARTO-5	9-14	UARTCFG. RXIE	UARTSTA. RXIF	UART 接收中断
(UART 3和		UARTCFG. TXIE	UARTSTA. TXIF	UART 发送中断
UART 4有 7816		7816CFG. OVERIE	7816STA. OVERIF	7816 溢出中断(SCI3, SCI4)
功能)		7816CFG. RXIE	7816STA. RXIF	7816 接收中断(SCI3, SCI4)
		7816CFG. TXIE	7816STA. TXIF	7816 发送中断(SCI3, SCI4)
TMRO-3	15-18	TMRIE. CMPIE	TMRIF.CMPIF	比较中断
		TMRIE. CAPIE	TMRIF. CAPIF	捕获中断
		TMRIE. OVERIE	TMRIF. OVERIF	周期性溢出中断
TBS	19	TBSIE. ADC1CMPIE	TBSIF. ADCOCMPIF	ADC1 比较中断
		TBSIE. ADCOCMPIE	TBSIF. ADCOCMPIF	ADCO 比较中断
		TBSIE. VBATCMPIE	TBSIF. VBATCMPIF	电池电压比较中断
		TBSIE. ADC2IE	TBSIF. ADC2IF	ADC 通道 2 测量中断

		TBSIE. ADC1IE	TBSIF. ADC1IF	ADC 通道 1 测量中断
		TBSIE. ADCOIE	TBSIF. ADCOIF	ADC 通道 0 测量中断
		TBSIE. VDDIE	TBSIF. VDDIF	电源电压 VDD 测量中断
		TBSIE. VBATIE	TBSIF. VBATIF	电池电压 VDD 测量中断
		TBSIE. TMPIE	TBSIF. TMPIF	温度测量中断
RTC	20	RTCIE. ALMIE	RTCIF. ALMIF	闹钟中断
		RTCIE. RTC2IE	RTCIF. RTC2IF	RTC 定时器 2 中断
		RTCIE. RTC1IE	RTCIF. RTC1IF	RTC 定时器 1 中断
		RTCIE. MTHIE	RTCIF.MTHIF	RTC 月中断
		RTCIE. DAYIE	RTCIF. DAYIF	RTC 日中断
		RTCIE. HRIE	RTCIF. HRIF	RTC 小时中断
		RTCIE. MINIE	RTCIF. MINIF	RTC 分钟中断
		RTCIE. SECIE	RTCIF. SECIF	RTC 秒中断
I2C	21		I2CCON. SI	I2C 中断
SPI	22		SPIF	SPI 传输完成中断
			MODF	SPI 模式故障中断
_	23	-	_	_
_	24	_	_	_
EMU	25	EMUIE	子中断标志 EMUIF	EMU 中断
			见 EMU 章节中断说	
			明	
DMA	26	DMAIE. TCIE	DMAIF. TCIF	DMA 传输完成中断
		DMAIE. BCIE	DMAIF.BCIF	DMA 块传输完成中断
		DMAIE. TEIE	DMAIF. TEIF	DMA 传输错误中断
KEY	27		KEYIF. KEYIF	KEY 中断
EXTI7-9	28-30	EXTIE2. RIE[2:0]	EXTIF2. RIF[2:0]	外部输入引脚上升沿中断
EATT 3	20 30	EXTIE2. FIE[2:0]	EXTIF2. FIF[2:0]	外部输入引脚下降沿中断

注:

- 1.只有 UART3 和 UART4 有 7816 功能,因此只有这两个通讯端口有 7816 溢出中断,7816 接收中断,7816 发送中断;
- 2. 对于中断号大于等于 0 的中断,每个中断都有一个对应的中断使能信号,具体配置参见 22.4 CMSIS 函数说明。
- 3. NMI/HardFault/SVCall/PendSV/SysTick 为内核自带中断,这些中断没有专门的中断使能控制位。

8.2 中断使能和禁止

中断的使能和禁止使用的是 CortexMO 内核的 NVIC 模块,使用 CortexMO 软件系统自带的函数:

void NVIC_EnableIRQ(IRQn_Type IRQn) //中断使能
void NVIC_DisableIRQ(IRQn_Type IRQn) //中断关闭
void NVIC_SetPendingIRQ(IRQn_Type IRQn) //设置中断挂起
void NVIC_ClearPending IRQ(IRQn_Type IRQn) //清除中断挂起

unint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn) //获取中断挂起状态
void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) //中断优先级设置
uint32_t NVIC_GetPrioriy(IRQn_Type IRQn) //中断优先级获取

8.2.1 中断使能和禁止相关寄存器列表

寄存器地址	名称	读写方式	复位值	功能描述
0xE000E100	ISER	R/W	0x00000000	中断使能配置寄存器
0xE000E180	ICER	R/W	0x00000000	中断禁止配置寄存器
0xE000E200	ISPR	R/W	0x00000000	中断标志置位寄存器
0xE000E280	ICPR	R/W	0x00000000	中断标志清零寄存器
0xE000E400-0xE000E41C	IPRO-IPR7	R/W	0x00000000	中断优先级寄存器

8.2.2 中断使能和禁止相关寄存器说明

ISER (山紙価能配制客方界)			寄存器地址	止: 0xE000E	2100				
(中断使能配制寄存器)									
	Bit31···Bit0								
Read:	CETEMA[21.0]								
Write:	SETENA[31:0]								
Reset:	0	0	0 0 0 0 0 0						

中断使能寄存器,共32个控制位对应32个中断,每一位的对应关系见中断向量说明,如:

SETNA[0]对应 PMU

SETNA[1]对应 3DES

SETNA[2]对应 EXTIO

SETNA[3]对应 EXTI1

• • • • •

推荐使用 CortexMO 库函数中的 NVIC_Enable IRQ 来使能中断。

ICER			寄存器地址: 0xE000E180						
(中断禁止配置寄存器)									
		Bit31···Bit0							
Read:		CL DENIA [Q1 , Q]							
Write:	CLRENA[31:0]								
Reset:	0	0	0	0	0	0	0	0	

中断禁止寄存器,共32个控制位对应32个中断,每一位的对应关系见中断向量说明。 推荐使用CortexM0库函数中的NVIC Disable IRQ来禁止中断。

ISPR			寄存器地址: 0xE000E200						
(中断标志置位寄存器)									
		Bit31···Bit0							
Read:		CETTENT [91 A]							
Write:	SETPEND[31:0]								
Reset:	0 0 0 0 0 0 0							0	

中断标志置位寄存器,共32个控制位对应32个中断,每一位的对应关系见中断向量说明。 推荐使用CortexMO库函数中的NVICSetPendingIRQ来置位中断标志

ICPR (中断标》	达清零寄存	器)	寄存器地址	止: 0xE000E	280			
	Bit31···Bit0							
Read:	CLINDENIN[91 A]							
Write:	CLRPEND[31:0]							
Reset:	0	0	0	0	0	0	0	0

中断标志清零寄存器,共32个控制位对应32个中断,每一位的对应关系见中断向量说明。 推荐使用CortexM0库函数中的NVIC_ClearPendingIRQ来清零中断标志

IPRO	IPR7		寄存器地址: 0xE000E4000xE000E417						
(中断优约	七级寄存器)							
		Bit31···Bit0							
Read:		D : [01 0]							
Write:	Priority [31:0]								
Reset:	0 0 0 0 0 0 0							0	

推荐使用 CortexMO 库函数中的 NVIC_SetPriority 来设置中断优先级

8.3 外部中断特殊功能寄存器列表

基地址: 0x400	011800			
偏移地址	名称	读写方式	复位值	功能描述
0x00	EXTIE	R/W	0x0000	外部中断输入边沿控制寄存器
0x04	EXTIF	R/W	0x0000	外部中断输入滤波器设置
0x08	PINFLT	R/W	0x007F	引脚数字滤波器使能
0x10	EXTIE2	R/W	0x0000	外部中断边沿配置寄存器 2
0x14	EXTIF2	R/W	0x0000	外部中断标志寄存器 2
0x18	PINFLT2	R/W	0x0007	引脚数字滤波使能寄存器 2

8.4 外部中断特殊功能寄存器说明

EXTIE				0x40011	.800			
(外部中断边沿配置寄存器)			偏移地址:	00Н				
	Bit15	14	13	12	11	10	9	Bit8
Read:	V				RIE[6:0]			
Write:	X		KIE[O.U]					
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V				EIE[G.O]			
Write:	Å	X FIE[6:0]						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RIE[6:0]	INT 外部输入引脚上升沿中断使能
	0: 禁止
	1: 使能
FIE[6:0]	INT 外部输入引脚下降沿中断使能
	0: 禁止
	1: 使能

EXTIF	基地址:			0x40011800				
(外部中的	(外部中断标志寄存器)		偏移地址:	04H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X				RIF[6:0]			
Write:	Λ				KIF[O.U]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V				FIF[6:0]			
Write:	X				L1L[0:0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RIF[6:0]	INT 外部输入引脚上升沿中断标志
	0: 未产生中断
	1: 产生中断
FIF[6:0]	INT 外部输入引脚下降沿中断标志
	0: 未产生中断
	1: 产生中断

PINFLT				0x40011	800				
(外部引展	(外部引脚滤波器配置寄存器)		偏移地址:	08H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	V V			DVDI MEE O					
Write:	X	X	RXFLT[5:0]						
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X			,		1			
Write:	A				[NTFLT[6:0]	J			
Reset:	0	1	1	1	1	1	1	1	

位	功能描述
RXFLT[5:0]	RX 外部输入引脚数字滤波功能使能(RXO~RX5)
	0: 禁止
	1: 使能
INTFLT[6:0]	INT 外部输入引脚数字滤波功能使能(INTO~INT6)
	0: 禁止
	1: 使能

- 注: 1. RXO[~]5 和 INTO[~]6,除了数字滤波功能,内部还集成模拟滤波电路(2us),模拟滤波仅对下降沿有效,上升沿无效;数字滤波对上升沿河下降沿都有效;
- 2. 用户在使用 INT 外部中断引脚功能的时候,必须要将 PINFLT/PINFLT2 寄存器中的相应的引脚数字滤波功能打开。

EXTIE2	EXTIE2			0x40011	800			
(外部中的	(外部中断边沿配置寄存器 2)		偏移地址:	10H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	X		RIE[2:0]	
Write:	X	X	X	X	Λ	RIE[2.0]		
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	X	X		FIE[2:0]	
Write:	Λ	Λ	Λ	Λ	Λ		F1E[2.U]	
Reset:	0	0	0	0	0	0	0	0

位	功能描述				
RIE[2:0]	√T7-9 外部输入引脚上升沿中断使能				
	0: 禁止				
	1: 使能				
FIE[2:0]	INT7-9 外部输入引脚下降沿中断使能				
	0: 禁止				
	1: 使能				

EXTIF2	EXTIF2			0x40011	.800			
(外部中断标志寄存器 2)			偏移地址:	14H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	v	v	v	v	X		RIF[2:0]	
Write:	X		X	X	Λ	KIF[2.0]		
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	v	v	v	v		FIF[2:0]	
Write:	Λ	X	X	X	X		r1r[2:U]	
Reset:	0	0	0	0	0	0	0	0

位	功能描述			
RIF[2:0]	VT7-9 外部输入引脚上升沿中断标志			
	0: 未产生中断			
	1: 产生中断			
FIF[2:0]	INT7-9 外部输入引脚下降沿中断标志			
	0: 未产生中断			
	1: 产生中断			

PINFLT2			基地址: 偏移地址:	0x40011	1800			
(外部引	(外部引脚滤波器配置寄存器			18H				
2)	2)							
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	X	X		INTFLT[2:0]	1
Write:	Λ	Λ	Λ	Λ	Λ		INTELLZ.U	
Reset:	0	0	0	0	0	1	1	1

位	功能描述
INTFLT[2:0]	INT7-9 外部输入引脚数字滤波功能使能
	0: 禁止
	1: 使能

注: 1. $INT7^9$,除了数字滤波功能,内部还集成模拟滤波电路(2us),模拟滤波仅对下降沿有效,上升沿无效;数字滤波对上升沿河下降沿都有效;

2. 用户在使用 INT 外部中断引脚功能的时候,必须要将 PINFLT/PINFLT2 寄存器中的相应的引脚数字滤波功能打开。

9 Reset 模块

9.1 复位优先级

芯片共有8种复位方式,可分四种复位优先级。

RTC 模块为独立的,有其单独的 RTC 的 POR 模块, MCU 和其它外设的 POR 模块与 RTC 的 POR 模块分开。

序号	复位源	复位等	不能复位的寄存器
		级	
1	上电复位 (POR)		1,复位状态寄存器 RSTSR
2	低电压检测复位(LBOR)	一级	2,RTC 模块的寄存器
2	队电压位侧发型(LDOK)		3, LCD 相关寄存器 LCD_BUF[i]
3	外部引脚/RST 复位		1,复位状态寄存器 RSTSR
4	软件 POR/LBOR 复位		2, RTC 模块的寄存器
	MIT TONY BE ON CIE	二级	3, PMU 模块的寄存器
5	掉电复位 (BOR)		4,唤醒标志寄存器 WAKEIF
			5, LCD 相关寄存器 LCD_BUF[i]
			1,复位状态寄存器 RSTSR
			2, RTC 模块的寄存器
	看门狗复位(WatchDog)	三级	3, PMU 模块的寄存器
			4,唤醒标志寄存器 WAKEIF
6			5, GPIO 模块的寄存器: IOCFG, AFCFG, PTDIR, PTUP,
			PTDAT, PTOD
			6,LCD 相关寄存器: LCDCLK, LCDCON, LCD_BUF[i]
			7, CMU 相关寄存器: CLKCTRLO, CLKCTRL1, LRCADJ,
			HRCADJ
			1,复位状态寄存器 RSTSR
7	调试复位		2, RTC 模块的寄存器
,	(Debug Reset)		3, PMU 模块的寄存器
			4,唤醒标志寄存器 WAKEIF
	以 那 <i>信</i>		5, GPIO 模块的寄存器: IOCFG, AFCFG, PTDIR, PTUP,
8	唤醒复位	四级	PTDAT, PTOD
	(WakeUp Reset)		6, LCD 相关寄存器: LCDCLK, LCDCON, LCD_BUF[i]
			7, CMU 相关寄存器: CLKCTRLO, CLKCTRL1, LRCADJ, HRCADJ
	软件复位		8, EXT 模块寄存器: EXTIE, EXTIF
9	(Software reset)		9,TBS 模块寄存器(除 DAT 寄存器)
			10, KEY 模块寄存器

注:1. LRCADJ 会被 Watchdog 和 Debug Reset 复位

- 2. RSTSR 的 POR 复位标志和 LBOR 复位标志之间可以互相清除
- 3. 所有的复位均会复位掉 CLKCTRLO 的 HRC_EN 信号,复位之后系统跑 HRC (SYSCLK_SEL[2:0]=010)。

9.2 复位说明

任何复位源产生复位后, CPU 的程序指针恢复到 0000H, 绝大部分寄存器恢复到缺省值:

- 1) POR 和 LBOR 复位时,内部复位信号 IRST1 将保持有效,并保持 1088 个 Fosc/Flrc。
- 2) BOR 和外部 RST 复位时,内部复位信号 IRST2 将保持有效,并保持 1088 个 Fosc/Flrc。
- 3) WDT Reset 复位时,内部复位信号 IRST3 将保持有效,并保持 64 个 Fosc/Flrc。
- 4) SoftRese 和 Debug Reset 复位时,内部 IRST4 信号有效,并保持 64 个 Fosc/Flrc。
- 5) 只有 POR 复位会对 RTC 复位

复位预热计数的时钟源选择(Fosc/Flrc),由 Fosc 停振检测模块(LF_DET)的停振标志 LF_FLAG 控制, LF_FLAG=0,选择 Fosc 时钟; LF_FLAG=1,选择 Flrc 时钟; 若 Fosc 停振检测关闭, LF_FLAG 固定为 0,复位计数时钟强制选择 Fosc,此时 Fosc 停振,会影响复位预热计数功能,建议系统正常运行打开 Fosc 停振检测,增强复位可靠性。

9.2.1 上电复位

当电源第一次加到芯片上时,上电复位电路检测电源电压 VDD 上升到阈值 0.3V 时,POR 输出高电平,指示发生上电。内部复位信号 IRST1 保持为低电平,1088 个 Fosc/F1rc 后,IRST1 才会变为高电平。上电复位 POR 产生时,下面的事件将会发生:

- POR 输出高电平
- 第一次 POR 复位会将 RTC 模块复位(RTC 的复位只能由 VRTC 的电源的上电 POR 复位)
- 内部复位信号 IRST1 有效
- 计数 1088 个 Fosc/Flrc
- 复位状态寄存器 RSTSTA 的上电复位标志位 POR 被设置为 1, 其他 RSTSTA 为被清为 0。
- CPU 从地址 0000H 执行程序

上电复位 POR 说明

9.2.2 低电压检测复位

低电压检测复位(LBOR)在掉电后重新上电的复位过程与上电复位(POR)相同。

LBOR 复位说明

9.2.3. 外部引脚复位

外部复位引脚/RST 出现比 2us 宽的低电平时,内部复位信号 IRST2 有效,复位状态寄存器的复位标志位 RST 被设置为 1;内部复位信号 IRST2 有效脉宽为 1088 个 Fosc/Flrc。

如果/RST 低电平脉宽比 2us 窄,系统不发生复位。

外部引脚复位说明

9.2.4. 掉电复位

当掉电检测电路检查到电源电压低于电压 Vborl 时,BOR 输出低电平,内部复位信号 IRST2 将变为低电平,复位状态寄存器 RSTSTA 的 BOR 标志位被置为 1。当掉电检测电路检测到电源电压高于电压 Vborh时,BOR 输出高电平,IRST2 在 1088 个 Fosc/Flrc 时间之后变为高电平。

掉电复位 BOR 产生时,下面的事件将会发生:

- 产生一个 BOR 脉冲
- 内部复位信号 IRST2 有效
- 计数 1088 个 Fosc/Flrc
- 复位状态寄存器 RSTSTA 的掉电复位标志位 BOR 被设置为 1, 其他 RSTSTA 为被清为 0。
- CPU 从 0000H 开始执行程序

BOR 复位说明

9.2.5. 看门狗复位

WatchDog Timer 溢出时将会产生导致内部复位 IRST3 有效,复位状态寄存器的 WDT 复位标志位 WDT 被设置为 1。WDT 的复位脉宽为 1088 个 Fosc/Flrc。

WDT 复位

9.2.6. 软复位

当向系统控制块的应用中断与控制状态寄存器寄存器 AIRCR bit2 写入 1 时,则产生一个软复位 (Cortex-MO 自带功能)。

软复位

9.2.7. 调试复位

这种复位只在SW 调试状态下才有可能产生。

调试复位

9.2.8. 唤醒复位

出现 sleep 唤醒事件时,按照下面顺序执行:

- 内部复位信号 IRST4 有效
- 复位状态寄存器 RSTSTA 的掉电复位标志位 WKR 被设置为 1
- 计数 64 个 Fosc/Flrc 后,释放内部复位信号 IRST4

唤醒复位

9.3 特殊功能寄存器列表

基地值: 0x4000F400(与 PMU 模块相同)						
偏移地址	名称	读写方式	复位值	功能描述		
0x30	RSTSTA	R/W		复位标志寄存器		

注:该章节寄存器只有一个,故将这个寄存器位置放到 PMU 模块内。

基地值: 0x4000F400 (与 PMU 模块相同)							
偏移地址	名称	读写方式	复位值	功能描述			
0x18	WAKEIF	R	0x0000	唤醒源标志寄存器			

基地值: 0xE000ED00						
偏移地址	名称	读写方式	复位值	功能描述		
0x0C	AIRCR	R/W	应用中断与控制状态寄存			

注: 此寄存器为内核寄存器

9.4 特殊功能寄存器说明

RSTSTA			基地址:	0x4000F	400			
(复位标》	志寄存器)		偏移地址:	30H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	Hold_Fl	Sleep_	X	X	X	X	X	BORRST
Write:	ag	Flag	Λ	Λ	Λ	Λ	Λ	DOMNST
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	DebugRS	SoftRS	ExtRST	FlashWR	Wakeup	WDTRST	LBORRST	PORRST
Write:	T	T	EXTROL	_LBOR	RST	ופאועש	LDUMMSI	LOWEST

Reset: 0 0 0 0 0 0 0 0

位	功能描述
Hold_flag	Hold 模式下中断唤醒标志位
	0: 未发生 Hold 模式下中断唤醒标志位
	1: 发生了 Hold 模式下中断唤醒标志位
	写 0 清 0,不可写 1
Sleep_flag	Sleep 模式下中断唤醒标志位
	0: 未发生 Sleep 模式下唤醒
	1: 发生了 Sleep 模式下唤醒
	写 0 清 0
BORRST	BOR 复位标志位
	0: 未发生 BOR 复位
	1: 发生了 BOR 复位
	写 0 清 0,不可写 1
DebugRST	调试复位复位标志位
	0: 未发生 Debug Reset 复位
	1: 发生了 Debug Reset 复位
	写 0 清 0 ,不可写 1
SoftRST	软复位复位标志位
	0: 未发生 Soft Reset 复位
	1: 发生了 Soft Reset 复位
	写 0 清 0
ExtRST	外部 RST 复位标志位
	0: 未发生 RST 复位
	1: 发生了 RST 复位
	写 0 清 0, 不可写 1
WakeupRST	唤醒复位复位标志位
	0: 未发生 Wakeup Reset 复位
	1: 发生了 Wakeup Reset 复位
	写 0 清 0,不可写 1
WDTRST	Watch Dog 复位标志位
	0: 未发生 WDT 复位
	1: 发生了 WDT 复位
	写 0 清 0, 不可写 1
LBORRST	LBOR 复位标志位
	0: 未发生 LBOR 复位
	1: 发生了 LBOR 复位
Donasa	写 0 清 0, 不可写 1
PORRST	POR 复位标志位
	0: 未发生 POR 复位
	1: 发生了 POR 复位
	写 0 清 0,不可写 1

注: 当 LBOR 和 POR 复位发生时,会将其它复位标志全部进行复位;除 LBOR 和 POR 两种复位之外的其它复位,不会清除寄存器的已有的复位标志。

WAKEIF			基地址:	0x4000F	400			
(唤醒标志寄存器)			偏移地址:	18H				
	Bit31	30	29	28	27	26	25	Bit24
Read:	NMIWKIF	INT9WKIF	INT8WKIF	INT7WKIF	KEYWKIF	DMAWKIF	EMUWKIF	RSRV
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit23	22	21	20	19	18	17	Bit16
Read:	X	SPIWKIF	I2CWKIF	RTCWKIF	TBSWKIF	TMR3WKIF	TMR2WKIF	TMR1WKIF
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit15	14	13	12	11	10	9	Bit8
Read:	TMROWKIF	RX5WKIF	RX4WKIF	RX3WKIF	RX2WKIF	RX1WKIF	RXOWKIF	INT6WKIF
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	INT5WKIF	INT4WKIF	INT3WKIF	INT2WKIF	INT1WKIF	INTOWKIF	ARGEWKIF	PMUWKIF
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述
NMIWKIF	NMI唤醒标志
	SLEEP/HOLD 模式下, NMI 唤醒发生时,设置标志位为 1
INT9WKIF	INT9唤醒标志
	SLEEP/HOLD模式下, INT9唤醒发生时,设置标志位为1
INT8WKIF	INT8唤醒标志
	SLEEP/HOLD模式下, INT8唤醒发生时,设置标志位为1
INT7WKIF	INT7唤醒标志
	SLEEP/HOLD模式下, INT7唤醒发生时,设置标志位为1
KEYWKIF	按键扫描唤醒标志
	SLEEP/HOLD模式下, KEY唤醒发生时,此位置为1
DMAWKIF	DMA唤醒标志
	HOLD模式下, DMA唤醒发生时, 此位置为1
EMUWKIF	EMU唤醒标志
	HOLD模式下, EMU唤醒发生时, 此位置为1
RSRV	不能唤醒,该位恒为0
SPIWKIF	SPI唤醒标志
	HOLD模式下, SPI唤醒发生时,此位置为1
I2CWKIF	I2C唤醒标志

	111302A /TJ/
	HOLD模式下, I2C唤醒发生时,此位置为1
RTCWKIF	RTC唤醒标志
	SLEEP/HOLD模式下RTC中断发生时将会产生RTC唤醒,此位置为1。
	(具体是RTC哪个唤醒源,需要查看RTCIF寄存器)
TBSWKIF	TBS唤醒标志
	SLEEP/HOLD模式下TBS中断发生时将会产生TBS唤醒,此位置为1。
	(具体是TBS哪个唤醒源,需要查看TBSIF寄存器)
TMR3WKIF	TMR3 唤醒标志
	HOLD模式下,TMR3唤醒发生时,此位置为1
TMR2WKIF	TMR3 唤醒标志
	HOLD模式下, TMR2唤醒发生时,此位置为1
TMR1WKIF	TMR3 唤醒标志
	HOLD模式下, TMR1唤醒发生时,此位置为1
TMROWKIF	TMR3 唤醒标志
	HOLD模式下, TMRO唤醒发生时,此位置为1
RX5WKIF	RX5唤醒标志
	SLEEP/HOLD模式下, RX5唤醒发生时,设置标志位为1
RX4WKIF	RX4唤醒标志
	SLEEP/HOLD模式下, RX4唤醒发生时,设置标志位为1
RX3WKIF	RX3唤醒标志
	SLEEP/HOLD模式下, RX3唤醒发生时,设置标志位为1
RX2WKIF	RX2唤醒标志
	SLEEP/HOLD模式下, RX2唤醒发生时,设置标志位为1
RX1WKIF	RX1唤醒标志
	SLEEP/HOLD模式下, RX1唤醒发生时,设置标志位为1
RXOWKIF	RX0唤醒标志
	SLEEP/HOLD模式下,RXO唤醒发生时,设置标志位为1
EXTI6WKIF	INT6唤醒标志
	SLEEP/HOLD模式下, INT6唤醒发生时,设置标志位为1
EXTI5WKIF	INT5唤醒标志
	SLEEP/HOLD模式下, INT5唤醒发生时,设置标志位为1
EXTI4WKIF	INT4唤醒标志
	SLEEP/HOLD模式下, INT4唤醒发生时,设置标志位为1
EXT13WK1F	INT3唤醒标志
	SLEEP/HOLD模式下, INT3唤醒发生时,设置标志位为1
EXTI2WKIF	INT2唤醒标志
	SLEEP/HOLD模式下, INT2唤醒发生时,设置标志位为1
EXTI1WKIF	INT1唤醒标志
	SLEEP/HOLD模式下, INT1唤醒发生时,设置标志位为1
EXTIOWKIF	INTO唤醒标志
	SLEEP/HOLD模式下, INTO唤醒发生时,设置标志位为1
ARGEWKIF	AES/RAND/GHASH/ECC 唤醒标志
	HOLD模式下,AES/RAND/GHASH/ECC唤醒发生时,此位置为1

PMUWKIF	PMU唤醒标志
	SLEEP/HOLD模式下, PMU事件发生时将会产生PMU唤醒,此位置为1
	(具体那个PMU唤醒源需要查看PMUIF寄存器)

- 注: 1. Sleep 唤醒和 Hold 唤醒共用此标志位
- 2. DMAWKIF/EMUWKIF/SPIWKIF/I2CWKIF/TMR3WKIF/TMR2WKIF/TMR1WKIF/TMR0WKIF/ARGEWKIF, 只能 Hold下才生效,sleep 模式不能唤醒。
- 3. 该寄存器为只读寄存器,它永远会保持上一次导致芯片唤醒的唤醒源头,当一个新的唤醒事件产生时候,由硬件产生新的唤醒源标志,同时将之前的唤醒标志清 0.

AIRCR			基地址:	0xE000E	ED00			
(应用中断与控制状态寄存器)		偏移地址:	0CH					
	Bit31	30	29	28•	··11	10	9	Bit8
Read:				A TDCD	[21.0]			
Write:		AIRCR [31:8]						
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	v	v	v	SYSRESE	DCDV	v
Write:	X	X	X	X	X	TREQ	RSRV	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述
SYSRESETREQ	=1: 芯片发生软复位
	=0: 无效
RSRV	请用户保持此位为0。
(BIT1)	

10 UART/7816 通讯模块

10.1 功能说明

UART 串行通信模块实现与外部设备的异步串行通信。 特点:

- 共六路 UART
- UART3, UART4 分别与两路 7816 接口复用,通过 MODESEL 寄存器选择
- 波特率可软件设置,最高波特率可达 1Mbps
- 全双工通信口,可配置为红外调制输出,红外调制极性可选
- 发送支持1个停止位或2个停止位
- 数据位宽支持7或8位
- 硬件自动完成奇偶校验,数据接收完成的同时判断并提示奇偶校验错误,给出标志。
- 接收/发送中断使能分别独立

串口提供灵活的全双工异步通信的接收器/发送器,通过寄存器 UARTCON 配置串口工作在不同的工作模式,列举如下:

- 方式 1: 通过 TX 发送或通过 RX 接收 7 个数据位, 无奇偶校验, 波特率可变。
- 方式 2: 通过 TX 发送或通过 RX 接收 7 个数据位,和 1 个奇偶校验位,波特率可变。
- 方式 3: 通过 TX 发送或通过 RX 接收 8 个数据位, 无奇偶校验, 波特率可变。
- 方式 4: 通过 TX 发送或通过 RX 接收 8 个数据位,和 1 个奇偶校验位,波特率可变。

6路UART的输出TX0[~]TX5都可以调制成38K红外信号。调制信号的占空比可调,最大波特率不超过2400bps。

6 路 UART 的输入 PIN 配置为 RXO^RX5 复用功能(详细见 GPIO 单元),并使能 UART 中断 (NVIC_EnableIRQ(UARTO_IRQn)),可实现在 SLEEP 模式下的外部通信唤醒功能,类似外部中断。 HOLD模式下UART唤醒,为功能唤醒,需开启UART模块,接收/发送中断发生,唤醒HOLD模式。

芯片最多提供两路IS07816接口 , 支持2个外部7816设备。

7816接口主要特点如下:

- 两路 7816 接口与 UART3, UART4 分别复用, 通过 MODESEL 寄存器选择
- 波特率设置与 UART 波特率设置相同,常用波特率覆盖
- 响应位长度支持 1、1.5 或 2bit, 发送奇偶校验支持奇、偶和固定校验
- 支持收发数据状态查询,硬件给出接收/发送数据正确性,给出标志
- 接收/发送中断使能分别独立,支持错误重收发功能和重收发次数设置

10.2 波特率计算

在串口波特率由波特率生成器的值确定:

波特率 =
$$\frac{Fsys}{2 \times (SREL + 1)}$$

其中 SREL 是 16 位无符号数; Fsys 是系统时钟。

10.3 串口通讯模式说明

10.3.1方式1

方式 1 是一种标准的异步通信方式,每帧包含 9 或 10 位数据信息:1 位起始位(0),7 位数据位(低位在前),1 或 2 位停止位(1)。在这种方式中,TX 引脚为数据发送端,RX 引脚为数据接收端,其波形如下图所示:

图示: 方式1时串行发送数据时序

图示: 方式1时串行接收数据时序

在方式 1 中,发送状态时,当一帧中最后一个数据发送完时,发送中断标志 TI 置 "1",接收状态时,接收完最后一个数据位时,接收中断标志 RI 置 1。

10.3.2方式 2

方式 2 是每帧包含 10 或 11 位数据信息: 1 位起始位(0), 7 位数据位(低位在前), 1 位奇偶校验数据位, 1 或 2 位停止位(1)。TX 引脚为数据发送端, RX 引脚为数据接收端, 其波形如下图所示:

图示: 方式2时串行接收数据时序

10.3.3方式3

方式 3 是一种标准的异步通信方式,每帧包含 10 或 11 位数据信息: 1 位起始位 (0), 8 位数据位 (低位在前), 1 或 2 位停止位 (1)。在这种方式中, TX 引脚为数据发送端, RX 引脚为数据接收端,其波形如下图所示:

图示: 方式3时串行发送数据时序

图示: 方式3时串行接收数据时序

10.3.4方式 4

方式 4 是使用第 9 位数据的通信方式,每帧包含 11 或 12 位数据信息: 1 位起始位 (0),8 位数据位 (低位在前),1 个奇偶校验或自定义数据位,1 或 2 位停止位 (1)。TX 引脚为数据发送端,RX 引脚为数据接收端,其波形如下图所示:

图示: 方式4时串行接收数据时序

10.4 7816 接收和发送

10.4.17816 数据发送

对数据缓冲寄存器SBUF3/4进行写操作即可以启动一次发送数据流程,该流程包括几个步骤。

1. 发送起始位(0); **(第1ETU)**

2. 发送 8bit 数据位; (第2-9ETU)
 3. 发送 1bit 校验位; (第10ETU)

4. 读取接收到的ACK信号;如果ACK=0,TXERRSTAT置为"1",如果ACK=1,TXERRSTAT置为"0";

(第11ETU)

5. 处于发送等待状态; (第12-13ETU)

6. 此时一个数据帧发送完成, SDIF= "1",如果SDIE=1,则此状态结束时,产生发送中断。如果ACK=1,或禁止自动重发(AUTOTXEN=0),则UART接口回到IDLE 状态。如果ACK=0,且使能自动重发(AUTOTXEN=1),则UART接口进入重发等待状态。

7. 重新开始发送一帧数据。

10.4.27816 数据接收

在IDLE状态下,如果在7816端口(IO)上检测到下降沿,即启动一次接收数据流程。该流程包括几个步骤,每一步均需要一个或者几个ETU。

接收起始位(0);
 接收 8bit 数据位;
 接收 1bit 校验位;
 验证校验位;
 第1ETU)
 第2-9ETU)
 (第10ETU)

5. (第10.5ETU) 向发送端发送ACK信号:如果校验正确,或者禁止自动重收(AUTORXEN=0),则发送1,否则发送0。(ACK的宽度,可以通过ACKLEN来配置)

校验位	AUTORXEN	7816I0
正确	"0"禁止自动重收	"1"
正确	"1"使能自动重收	"1"
错误	"0"	"0"
错误	"1"	"0"

6. 此状态结束时,回到 IDLE 状态,产生接收中断。在中断中判断,如果校验正确,读取接收 SBUF中的数据。(在接收的过程中,如果程序有对SBUF3/4写入的动作,该写入是无效的)

10.4.37816 通讯示意图

7816 通讯数据示意图

进行通信时,收发一个bit 需要的时间被定义为基础时间单位ETU(Elementary Time Unit)。发送端发送完一个数据帧后,接收端需要一定的时间对接收到的数据进行校验,发送端需要等待响应结果,然后再根据校验结果发送下一个数据帧或重发上一帧数据,即,连续发送两个数据帧之间的等待时间,该等待时间被定义为检测时间GT(Guarding Time),一般,1 GT = 3 ETU。

收发数据成功时序

收发数据失败时序

10.5 特殊功能寄存器列表

UART模块寄存器基地址:
0x40005000(UART0端口);
0x40006000 (UART1端口);
0x40007000 (UART2端口);
0x40008000 (UART3端口);
0x40009000(UART4端口);

0x40000000(UART5端口):

ON 10000000 (0	on to to the total of the total							
偏移地址	名称	读写方式	复位值	功能描述				
0x00	MODESEL	R/W	0x0000	串口功能选择寄存器				
0x04	UARTCON	R/W	0x0000	UART 功能配置寄存器				
0x08	ISO7816CON	R/W	0x0000	IS07816 功能配置寄存器				
0x0C	SREL	R/W	0x0000	串口波特率发生寄存器				
0x10	SBUF	R/W	0x0000	串口数据缓冲寄存器				
0x14	UARTSTA	R/W	0x0000	UART 状态寄存器				
0x18	ISO7816STA	R/W	0x0000	IS07816 状态寄存器				
0x30	IRCON	R/W	0x0000	红外调制控制寄存器				
0x34	IRDUTY	R/W	0x0000	红外调制脉宽调整寄存器				

注: IS07816 的相关寄存器只对 UART3 与 UART4 的基地址有效

10.6 特殊功能寄存器说明

MODESEL (串口功能	龙选择寄存	器)	基地址: 偏移地址:		5000—0x400	009000; 0x	40000000	
Bit15 14			13	12	11	10	9	Bit8
Read:	V	V	V	V	v	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	v	V	V	Ma Ja
Write:	X	X	X	X	X	X	X	Mode
Reset:	0	0	0	0	0	0	0	0

位	功能描述
Mode	串口功能选择控制位: 0: UART 功能
	1: IS07816 功能

UARTCON (UART 功能配置寄存器)			基地址: 偏移地址:		000—0x400	009000; 0x	40000000	
Bit15 14			13	12	11	10	9	Bit8
Read:	X	X	V	V	V	MECETY	LINEC	CTODORI
Write:	Λ	λ	X	X	X	NEGFIX	UNEG	STOPSEL
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	LENCEL	DADITVC	EL [1.0]	PARITYE	DVIE	TVIE	DVEN	TVEN
Write:	LENSEL	PARITYSEL[1:0]		N	RXIE	TXIE	RXEN	TXEN
Reset:	0	0	0	0	0	0	0	0

位	功能描述
NEGFIX	UART 通讯中的逻辑锁定:
	0:由用户软件控制 UART 通讯是正逻辑还是负逻辑,通过 UNEG 控制位
	1:由硬件自动配置 UART 通讯是正逻辑还是负逻辑,UNEG 控制位无效
UNEG	UART 通讯中的正逻辑或者是负逻辑
	0: 正逻辑 (default)
	1: 负逻辑
STOPSEL	UART 通讯停止位长度选择位
	0: 1bit
	1: 2bit

	, , , ,
LENSEL	UART 通讯数据长度选择位
	0: 8bit
	1: 7bit
PARITYSEL	UART 奇偶校验选择位
	00: 固定为 0
	01: 奇校验
	10: 偶校验
	11: 固定为 1
PARITYEN	UART 奇偶校验使能位
	0: 禁止
	1: 使能
RXIE	UART 接收中断使能位
	0: 禁止
	1: 使能
TXIE	UART 发送中断使能位
	0: 禁止
	1: 使能
RXEN	UART 接收使能位
	0: 禁止
	1: 使能
TXEN	UART 发送使能位
	0: 禁止
	1: 使能

IS07816C0	IS07816C0N			基地址: 0x40008000—0x40009000				
(IS07816 功能配置寄存器)			偏移地址:	08H				
Bit15 14			13	12	11	10	9	Bit8
Read:	X	X	X	X	X	v	7816PAR	AUTORXE
Write:	Λ	Λ	Λ	Λ	Λ	X	ITY	N
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	AUTOTXE	REPTR1	REPTRO	ACKLEN1	ACKLENO	PRDIE	RXIE	TXIE
Write:	N	KEF K	REFIRU	ACKLENI	ACKLENU	LUTE	KAIE	IAIE
Reset:	0	0	0	0	0	0	0	0

位	功能描述
7816PARITY	奇偶校验选择位
	1: 奇校验
	0: 偶校验
AUTORXEN	自动重接收使能位
	1: 使能
	0: 禁止

AUTOTXEN	自动重发送使能位
	1: 使能
	0: 禁止
REPTR[1:0]	自动重收重发的次数上限
	00:0次
	01: 1 次
	10:2次
	11: 3 次
ACKLEN[1:0]	响应位的长度
	00: 1bit
	01: 1.5bit
	10: 2bit
	11: 2bit
PRDIE	IS07816 上溢中断使能位
	1: 使能
	0: 禁止
RXIE	接收中断使能位
	1: 使能
	0: 禁止
TXIE	发送中断使能位
	1: 使能
	0: 禁止

SREL			基地址:	基地址: 0x40005000—0x40009000; 0x40000000					
(串口波特率发生寄存器)			偏移地址:	0CH					
	Bit15	14	14 13 12 11 10		9	Bit8			
Read:		CDEL [15.0]							
Write:	SREL[15:0]								
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	CDEL [7, 0]								
Write:	SREL[7:0]								
Reset:	0	0	0	0	0	0	0	0	

串口/IS07816波特率发生寄存器,是一个16 位的波特率分频系数,其值可为0[~]65535 之间的任一整数,最高波特率为1Mbps。波特率计算公式:

波特率
$$=\frac{Fsys}{2\times(SREL+1)}$$

SBUF	基地址:	0x40005000—0x40009000; 0x40000000
(串口数据缓冲寄存器)	偏移地址:	10H

	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:		CDUD[7 A]						
Write:	SBUF[7:0]							
Reset:	0	0	0	0	0	0	0	0

低 8 位有效,对寄存器 SBUF 写操作,则串口将开始向外传输发送缓存数据;对寄存器 SBUF 读操作,则串口将从串行接收缓存中读取数据。

UARTSTA (UART 状:	态寄存器)		基地址: 偏移地址:		5000—0x400	009000; 0x	40000000	
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	X	V	V	DADITV	DVIE	TVIE
Write:	X	X	λ	X	X	PARITY	RXIF	TXIF
Reset:	0	0	0	0	0	0	0	0

位	功能描述
PARITY	接收时奇偶校验的状态
	1: 错误
	0: 正确
	写 0 清零,写 1 无效。
RXIF	接收中断标志
	1: 接收数据完成,可从寄存器 SBUF 中读出
	0: 接收数据还未完成
	写 0 清零,写 1 无效。
TXIF	发送中断标志
	1: 发送完成
	0: 发送未完成
	写 0 清零,写 1 无效。

IS07816STA 基地址:				0x40008	3000—0x400	009000		
(IS07816 状态寄存器)			偏移地址:	18H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	v	V	v	v	v	V	v	v
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ

Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	v	RXERRST	TXERRST	PRDIF	RXIF	TXIF
Write:	Λ	Λ	Λ	AT	AT	PKDIF	КА1Г	1 1 1 1
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RXERRSTAT	接收数据的状态
	1: 错误
	0: 正确
	写 0 清零,写 1 无效。
TXERRSTAT	发送数据的状态
	1: 错误
	0: 正确
	写 0 清零,写 1 无效。
PRDIF	IS07816 接收上溢中断标志
	1: 产生上溢;
	0: 未产生上溢;
	写 0 清零,写 1 无效。
RXIF	接收中断标志
	1:接收数据完成,可从寄存器 SBUF 中读出
	0:接收数据还未完成
	写 0 清零,写 1 无效。
TXIF	发送中断标志
	1: 发送完成
	0: 发送未完成
	写 0 清零,写 1 无效。

IRCON (红外调制	削控制寄存	器)	基地址: 偏移地址:		5000—0x400	009000; 0x	40000000	
Bit15 14		13	12	11	10	9	Bit8	
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	Х	v	v	IR38kSo	TDI VI	TDTV
Write:	X	X	λ	X	X	urce	IRLVL	IRTX
Reset:	0	0	0	0	0	0	0	0

位	功能描述
IR38kSource	红外 38k 调制信号来源选择
	1: 红外 38k 调制信号来源于 HRC(经 HRCADJ 补偿之后未经分频的 HRC 时钟)

	0: 红外 38k 调制信号来源于 PLL (未经分频的 PLL 时钟)
IRLVL	红外调制输出极性选择
	1: 负极性
	0: 正极性
IRTX	红外调制功能使能控制
	1: 使能 TX 输出的红外调制功能
	0: 关闭 TX 输出的红外调制功能

IRDUTY			基地址:	0x40005	5000—0x40	009000; 0x	4000000	
(红外调制脉宽寄存器)			偏移地址:	34H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	V	V	TDDUT	7[1.0]
Write:	X	X	X	X	X	X	IRDUT	[U:U]
Reset:	0	0	0	0	0	0	0	0

位	功能描述
IRDUTY[1:0]	调制波形占空比配置
	00: 50%
	01: 25%
	10: 12.5%
	11: 6.25%

11 LCD 模块

11.1 概述

HT5023 (100pin)的 LCD 驱动单元最多可以支持 50 (Segment) * 8 (Common)输出。 HT5025 (80pin)最多可以支持 39 (Segment) * 8 (Common)输出。 HT5027 (64pin)最多可以支持 27 (Segment) * 8 (Common)输出。

主要特征如下:

- LCD 驱动模式:内部电阻分压驱动
- 内部电阻分压驱动

50 Seg * 8 Com (100pin) | 39 Seg * 8 Com (80pin) | 27 Seg * 8 Com (64pin) 52 Seg * 6 Com (100pin) | 41 Seg * 6 Com (80pin) | 29 Seg * 6 Com (64pin) 54 Seg * 4 Com (100pin) | 43 Seg * 4 Com (80pin) | 31 Seg * 4 Com (64pin)

- 软件控制对比度可调(电阻分压)
- LCD 充电方式可选: 大电流模式, 小电流模式和快速充电模式(电阻分压)
- 1/3 Bias, 1/4 Bias 可选
- 1/4 , 1/6, 1/8 Duty 可选

11.2 LCD 与 GPIO 口复用表

LCD 引脚定义(100PIN)	功能引脚定义	芯片引脚定义		
COMO-COM3	PD. 8—PD. 11	COMO/PD.8 - COM3/PD.11		
COM4/SEG24—COM5/SEG25	PD. 12 - PD. 13	SEG24/COM4/PD.12 - SEG25/COM5/PD.13		
COM6/SEG26 - COM7/SEG27	PD. 14-PD. 15	SEG26/COM6/PD.14 - SEG27/COM7/PD.15		
SEGO-SEG15	PB. 0-PB. 15	SEGO/PB. 0 - SEG15/PB. 15		
SEG16-SEG17	PD. 0-PD. 1	SEG16/PD. 0 - SEG17/PD. 1		
SEG18-SEG21	PD. 2-PD. 5	SCANOUTO/SEG18/PD. 2-SCANOUT3/SEG21/PD. 5		
SEG22-SEG23	PD. 6-PD. 7	SEG22/PD. 6-SEG23/PD. 7		
SEG28-SEG32	PA. 0-PA. 4	SEG28/PA. 0-SEG32/PA. 4		
SEG33-SEG34	PA. 7-PA. 8	SEG33/INT2/PA. 7-SEG34/INT3/PA. 8		
SEG35-SEG36	PA. 12-PA. 13	SEG35/ADCINO/PA12-SEG36/ADCIN1/PA13		
SEG37	PE. 8	SEG37/ADCIN2/PE.8		
SEG38-SEG42	PF. 3-PF. 7	SEG38/PF. 3-SEG42/PF. 7		
SEG43-SEG46	PC. 0-PC. 3	SEG43/TX1/PC.0, SEG44/RX1/PC.1		
		SEG45/RX0/PC. 2, SEG46/TX0/PC. 3		
SEG47	PE7	PE. 7/LVDINO/SEG47		
SEG48	PF2	PF. 2/SFOUT/SEG48		
SEG49	PE5	PE. 5/TX3/SEG49		
SEG50	PA. 11	PA. 11/INT6/SEG50		

SEG51	PC. 6	PC. 6/SPI_CLK/SEG51
SEG52	PC. 7	PC. 7/SPI_CS/SEG52
SEG53	PE. 3	PE. 3/CLKOUT/SEG53

80PIN 封装去除引脚: SEG23, SEG28-30, SEG38-42, SEG51-52

64PIN 封装去除引脚: SEG8-11, SEG16-17, SEG22, SEG32, SEG36-37, SEG43-44, SEG50

11.3 LCD 框图

LCD 驱动单元采用 2 种工作方式: 1/3 Bias 和 1/4 Bias,由 BIASCTL 位控制。LCD 的电源由 VLCD 提供,LCD 驱动电压 VLCD1、VLCD2、VLCD3、VLCD4 由内部的驱动电压发生模块生成,VLCD3 仅 1/4 Bias 有效。

DUTY[2:0]用于控制 LCD 波形 Duty,参考第 11.5 输出波形章节。

LCD 单元的时钟源为 Fosc/Flrc,由停振检测经过分频之后作为 LCD 波形扫描频率 Flcd, Flcd 可以通过寄存器 LCLK[2:0]进行配置。LCD 帧扫描频率 Ffrm=Flcd*duty。如: 1/4 duty 时,帧扫描频率 Ffrm=Flcd/4。详情参考特殊功能寄存器 LCDCLK 说明部分。

LCD 的显示数据放入 LCD BUF中,,用于控制 LCD segment 的开关。当将某一段对应的 SEG 和 COM 控制位(LCD BUF 对应位)为 1 时,该段就会被点亮;否则不被点亮。

在不需要 LCD 显示时,LCD_EN(CLKCTRLO. 1)写为 0 ,可以关闭 LCD 单元。LCD 关闭后,所有的 SEG和 COM 都输出高电平,内部驱动电压发生模块以及模拟电路被关闭,LCD 单元的时钟也被关闭。

LCD 模块功能框图

11.4 内部电阻分压驱动

LCD 驱动模式控制位可以选择内部电阻分压驱动模式。

此模式下,VLCD0、VLCD1、VLCD2、VLCD3 和 VLCD4 由内部电阻分压网络产生,最高档 VLCD0≤VDD。 VRSEL[3:0]用于控制 LCD 对比度,参考特殊功能寄存器 LCDCON 相关 LCD 对比度部分 VRSEL 配置。 FC, LC 用于控制 LCD 充电模式。

LCD 内部电阻分压驱动

11.5 输出波形

LCD 输出波形的 Duty, 取决于需要的 COMMON 数, 提供三种 Duty:

- DUTY[1:0]=00: 1/4 duty——COMO、COM1、COM2、COM3 被使用
- DUTY[1:0]=01: 1/6 duty--COMO 到 COM5 都被使用
- DUTY[1:0]=1x: 1/8 duty--COMO 到 COM7 都被使用

COM 波形(1/3 Bias, 1/4 Duty):

使用 COMO/1/2/3, 1 帧等于 4 个 LCD 波形时钟周期。

SEGMENT 输出波形(1/4 Duty):

Duty=1/4 SEGx Output

COM 波形(1/4Bias, 1/4Duty)

SEGMENT 输出波形(1/4Bias, 1/4Duty)

HT502X 用户手册

1/4Duty 1/4Bias SEGx Output

11.6 LCD 显示操作

LCD 的显示数据寄存器写功能:

LCD 单元的显示输出是采用往 LCD BUFF 内写入和对应得 SEG 输出的数据来输出显示的 LCD 段码。 40 Bytes 寄存器做为 LCD BUFF,操作方式与一般寄存器相同,同时与 LCD 的对应关系如下:

```
地址 LCD_BUF[0]对应 SEG0 (COM7—COM0)
地址 LCD_BUF[1]对应 SEG1 (COM7—COM0)
地址 LCD_BUF[2]对应 SEG2 (COM7—COM0)
……
地址 LCD_BUF[41]对应 SEG41 (COM7—COM0)
地址 LCD_BUF[42]对应 SEG42 (COM7—COM0)
地址 LCD_BUF[43]对应 SEG43 (COM7—COM0)
地址 LCD_BUF[44]对应 SEG44 (COM7—COM0)
地址 LCD_BUF[45]对应 SEG45 (COM7—COM0)
地址 LCD_BUF[46]对应 SEG46 (COM7—COM0)
地址 LCD_BUF[46]对应 SEG46 (COM7—COM0)
```

地址 LCD_BUF[53]对应 SEG46 (COM7—COM0)

11.7 特殊功能寄存器列表

基地址: 0x4000D000								
偏移地址	名称	读写方式	复位值	功能描述				
0x00	LCDCLK	R/W	0x0080	LCD 时钟频率选择寄存器				
0x04	LCDCON	R/W	0x0089	LCD 驱动控制寄存器				
0x0C	LCDOUT	R/W	0x0001	LCD 输出控制寄存器				
$0x10+i\times4 (i=0^{5}3)$	LCD_BUF[i]	R/W		LCD 显示数据寄存器				
				此寄存器为 RAM 类型,复位值为随机值				

11.8 特殊功能寄存器说明

LCDCLK			基地址:	0x4000I	0000				
(LCD 时争	帅频率选择 都	寄存器)	偏移地址:	00Н					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	V	V	V	V	v	V	V	V	
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	BIASCTL	X	X	DUTY	DUTY[1:0]		LCLK[2:0]		
Write:			Λ	DOTT	D011[1.0]		LCLK[2.0]		
Reset:	1	0	0	0	0	0	0	0	

位	功能描述								
	偏压驱动油	选择位							
	1: 表示选	1: 表示选择1/3 bias 偏压驱动							
DIACCTI	0: 表示选	0: 表示选择1/4 bias 偏压驱动							
BIASCTL	为了更好均	也提高显示效	效果,在设置DUTY1:0]	=01 or 1x时, 1/	4duty建议选择				
	1/3bias, 1	/8 duty建议	义选择1/4 bias 偏压9	区动,1/6 duty根扎	居液晶屏的参数选择				
	1/3bias或	1/3bias或者1/4bias。							
	LCD的duty控制选择位								
	DUTY1	DUTY0	COMMON选择	LCD波形Duty]				
DUTY[1:0]	0	0	Com0~Com3	1/4 duty]				
	0	1	Com0~Com5	1/6 duty]				
	1	0	Com0~Com7	1/8 duty]				
	LCD扫描频率选择位:								
1011/20 0]	LCD 单元的时钟来自低频时钟频率 F(1f), F(1f)经过分频之后作为 LCD 波形扫描								
LCLK[2:0]	频率 flcd	,flcd 可以	通过寄存器 LCLK [2:0]]进行配置(详见]	F表)。LCD 帧扫描频				
	率 F(frm):	=flcd*duty	。如: 1/4 duty时,「	帧扫描频率 F(frm)	=flcd/4.				

	LCLK[2:0]		Divide	Flcd		frame rate(Hz	z)
LCLK2	LCLK1	LCLKO	Ratio	(Hz)	1/4	1/6	1/8
1	0	0	64	512	128	85. 3	64
0	0	0	128	256	64	42. 7	32
0	0	1	256	128	32	21. 3	16
0	1	0	512	64	16	10. 7	8
0	1	1	1024	32	8	5. 3	4

注: BIASCTL, DUTY[2:0]的设置参考液晶规格! LCLK[2:0]应设为 64Hz~100Hz。

LCDCON (LCD 驱动	力控制寄存 器		基地址: 偏移地址:	0x4000I 04H	0000			
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	FCSET2
Write:	X	X	X	X	X	X	X	FUSE12
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	FCSET[1:0]		EC	I.C		VDCEL	[2.0]	
Write:			FC LC		VRSEL[3:0]			
Reset:	1	0	0	0	1	0	0	1

位	功能描述					
FCSET2	电阻分压结构控制位					
	0: 保持原有	可的电阻分压结	构(default)			
	1: 改善后电	1阻分压结构(大电流模式的电流更大,小电流模式的电流更小)			
	改善后的结	构,选择快速充	色电模式,显示效果更优,功耗更小(详见 FAQ)			
	快速充电时间选择位					
	FCSET1	FCSET0	快速充电时间			
	0	0	1/16个flcd周期			
FCSET[1:0]	0	1	1/32个flcd周期			
	1	0	1/64个flcd周期			
	1	1	1/128个flcd周期			
	详见下图"	快速充电时序图	<u>"</u>			
	快速充电模:	式选择位				
	和LC配	合使用,用于硝	角定LCD充电模式。			
	缺省状态	态下,LCD 分压	医网络的电阻 RLCD 为 $23K\Omega$ 。根据 LCD 差异,可以选择			
FC	RLCD=138KΩ,此时流过电阻网络的电流较小。					
	在选择RLCD=138KΩ时,设置控制位FC位1,可以选择快速充电模式,也就是					
	说,每次LCI	输出波形改变	时,先选择RLCD=23KΩ进行快速充电,然后再切换到			
	RLCD= 138K Ω	模式。快速充	电时间可以通过FCSET[1:0]进行选择。			

慢速充电模式选择位 和FC配合,用于确定LCD充电模式 FC LC LCD充电模式 RLCD默认结构阻值 RLCD改善后结构阻值 0 大电流充电模式 RLCD=23K Ω RLCD= $12K \Omega$ 0 1 小电流充电模式 RLCD=138K Ω RLCD=**700K Ω**

短时间大电流, 快速充电模式

LC

VRSEL[3:0]

LCD显示对比度设置位

1

1

LCD显示	LCD显示对比度设置位								
VRSEL3	VRSEL2	VRSEL1	VRSELO	1/3 bias 对比度	1/4 bias 对比度				
VIOLLO	VNSELZ	VKSELI	VKSELO	(% of VCC)	(% of VCC)				
0	0	0	0	97.4	99.1				
0	0	0	1	92.4	94.0				
0	0	1	0	85.8	88.8				
0	0	1	1	80.0	84.2				
0	1	0	0	75.0	80.0				
0	1	0	1	70.6	76.2				
0	1	1	0	66.6	72.8				
0	1	1	1	63.2	69.6				
1	0	0	0	60.0	66.6				
1	0	0	1	57.2	64.0				
1	0	1	0	54.6	60.0				
1	0	1	1	52.2	59.2				
1	1	0	0	50.0	57.2				
1	1	0	1	48.0	55.2				
1	1	1	0	46.2	53.4				
1	1	1	1	44.4	51.6				

快速充电时序图

LCDOUT			基地址:	0x4000I	0000			
(LCD 输	(LCD 输出控制寄存器)		偏移地址:	0CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	v	v	v	v	v	v	v	v
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	v	v	v	v	v	OUTEN
Write:	X	X	X	X	X	X	X	OUTEN
Reset:	0	0	0	0	0	0	0	1

位	功能描述			
OUTEN	LCD 输出使能 0: LCD 输出关闭 1: LCD 输出打开(default)			

12 WDT 模块

12.1 概述

看门狗只有复位功能,没有中断功能,看门狗的开关会受到两个信号控制:

- (1) 当芯片处于(TEST=0/JTAGWDTEN=0)(调试模式)时,看门狗一定被关闭;
- (2) 当芯片处于 TEST=1 时,看门狗是否能正常运行受到低频 RC 的开关控制,只要低频 RC 正常运行,看门狗在非调试模式下永不关断。

Watchdog Timer 是一个特殊的定时器,其时钟为内部低频 RC 时钟 Flrc,计时器计满预定时间则发出溢出脉冲,产生 WDT 复位信号:在溢出脉冲发生前将执行喂狗操作,则不会发出 WDT 复位。特点如下:

- 采用硬件狗设计
- 可以通过外部引脚 TEST和JTAG WDTEN进行控制

功能框图如下:

12.2 工作模式

当正常模式时WDT均被使能;当TEST=0且JTAGWDTEN=0时(调试模式),关闭WDT计数,并且将WDTCNT进行清零。

TEST	JTAGWDTEN	WDT 模块
0	0	关闭
1	X	是否开启根据低频 RC (LRC) 的开关决定

注意: 当关闭低频 RC 时钟导致 WDT 被关闭时,需要同时对 WDTCLR 进行喂狗操作,确保 WDT 重新打开后,计时是从 0 开始进行。

12.3 特殊功能寄存器列表

WDT 模块寄存器基地值: 0x40010000					
偏移地址	名称	读写方式	复位值	功能描述	
0x04	WDTCLR	R/W	0x0040	看门狗喂狗与时间配置寄存器	
0x08	WDTCNT	R	0x0000	看门狗计数寄存器(只读)	

12.4 特殊功能寄存器说明

WDTCLR			基地址:	0x40010	0000			
(WDT 喂狗	可与时间配置	置寄存器)	偏移地址:	04H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	CLR[7:0]							
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				CET	7.0]			
Write:	SET[7:0]							
Reset:	0	1	0	0	0	0	0	0

位	功能描述
CLR[7:0]	WDT 喂狗控制位:
	当该 8bit 写入 OxAA,则清狗,重新加载 WDT 内部计数器 WDTCNT 初值,写入其他
	值无效,该高 8bit 只能写入,不能读取,读出值永远为 0
SET[7:0]	WDT 溢出时间设置:
	WDT 溢出时间=64ms * (1+SET[7:0])
	SET[7:0]为 8 位无符号数,由上面公式可以得出,最短的定时时间为 64ms, 最长
	为 16384ms, 默认为 4160ms。该默认值是按照 LRC 为 32KHz 来计算的,实际值应该
	是根据具体 LRC 的频率来计算

WDTCNT			基地址:	0x40010	0x40010000					
(WDT 计数寄存器)			偏移地址:	08H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:	X	X	CNT[13:0]							
Write:	X	X	X	X	X	X	X	X		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	CNT[7:0]									
Write:	X	X	X	X	X	X	X	X		
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
CNT[15:0]	WDT 计数寄存器:
	指示当前 WDT 内部的计数值
	执行喂狗操作 WDTCLR = OxAAxx, 系统对 SET[7:0]8bits 取反,载入 CNT[13:6],
	CNT[5:0]被清零,向上重新开始计数,当 CNT[13:0]计到 0x3FFF, 发生 WDT 复位

13 定时器模块

13.1 定时器单元概述

HT502X 共有 4 路定时器,定时器 0、1、2、3 的时钟源即系统时钟 Fsys,可根据 SYSCLK_SEL[2:0] 选择为:内部低频 RC 时钟(Flrc),内部高频 RC 时钟(Fhrc),低频晶体时钟(Fosc)和内部高频时钟(Fp11)。

所有定时器单元相关寄存器的配置,都需要在CLKCTRL1寄存器中使能相应的定时器模块后才能配置。 定时器主要包括以下功能:

- 1. 定时功能
- 2. PWM 功能
- 3. 捕获功能
- 4. 事件计数功能

13.2 周期定时功能

通用定时器包括一个 16 位计数器和周期寄存器。计数器的时钟由系统时钟(Fsys)通过定时器单元内的 预分频器(TMRDIV)分频得到,当使能计数器(CNTEN=1)后,定时器的计数器从 0 开始计数,当计数寄存器(TMRCNT)的值等于设定的周期寄存器(TMRPRD+1)时会置位周期定时中断标志(PRDIF=1),如果使能周期定时中断(PRDIE=1),则会触发定时器周期中断,进入相应的周期中断服务程序。

当周期定时中断标志置位后(PRDIF=1), TMRCNT的值自动清零, 然后重新开始计数。

TMRPRD 如被修改,在完成本次定时之后下一次生效。

功能主要相关寄存器: TMRCNT, TMRPRD。

13.3 PWM 功能

PWM 功能可通过寄存器 TMRCON. MODE [1:0] 配置,同时需将对应的 GPIO 配置为 TMR 功能,配置成功后,相应的 TMR 引脚会输出 PWM 波形。PWM 的周期和占空比可通过寄存器 TMRPRD、TMRCMP 进行配置。

PWM 计数方式可以分为向上计数,向下计数以及中央对齐方式。

下图为向上计数方式。当使能计数器(CNTEN=1)之后,计数器开始从0计数,当计数寄存器(TMRCNT)的值等于设定的比较寄存器(TMRCMP+1)时,PWM输出管脚发生电平翻转,同时置位比较中断标志(CMPIF=1)。计数器继续向上计数,当计数寄存器(TMRCNT)的值等于设定的周期寄存器(TMRPRD+1)时,PWM输出管脚再次发生电平翻转,同时置位周期定时中断标志(PRDIF=1)。PWM输出波形如下图所示:

下图为向下计数方式。当使能计数器(CNTEN=1)之后,计数器开始从(TMRPRD+1)向下计数,当计数寄存器(TMRCNT)的值等于设定的比较寄存器(TMRCMP+1)时,PWM 输出管脚发生电平翻转,同时置位比较中断标志(CMPIF=1)。计数器继续向下计数,当计数寄存器(TMRCNT)的值等于 0 时,PWM 输出管脚再次发生电平翻转,同时置位周期定时中断标志(PRDIF=1)。PWM 输出波形如下图所示:

下图为中央计数方式时,当计数寄存器(TMRCNT)从 0 开始向上计数,其值等于比较寄存器(TMRCMP+1)时,PWM 输出管脚发生电平翻转。计数器继续向上计数,当计数寄存器(TMRCNT)的值等于等于设定的周期寄存器(TMRPRD+1)时,置位周期定时中断标志(PRDIF=1),但 PWM 输出管脚不发生电平翻转,计数器从周期寄存器(TMRPRD+1)的值开始向下继续计数,当计数寄存器(TMRCNT)的值再次等于设定的比较寄存器(TMRCMP+1)时,PWM 输出管脚发生电平翻转。PWM 输出波形如下图所示:

假如系统时钟选择为 PLL 产生的 19.660800MHz 时钟,Timer 预分频寄存器(TMRDIV)默认值为 0 (不分频),定时器 0 选择 PWM 模式,向上计数方式,初始电平为高电平。若要想 PWM 占空比(高电平时间与周期之比)为 30%,则(TMRCMP+1)/(TMRPRD+1)=30%,根据需要的周期值来确定 TMRPRD 寄存器的值。TMRPRD 能配置的最大周期定时时间为:

 $(TMRPRD+1)/(19.660800M/(TMRDIV+1))=(0xFFFF+1)/(19.660800M/(0xFFFF+1))\approx 218.46ms$

TMRCMP, TMRPRD 如被修改,均是在完成本次计数之后下一次生效。功能主要相关寄存器: TMRCNT, TMRCMP, TMRPRD。

13.4 捕获功能

在输入捕获模式下,假如设定上升沿检测,当 TMRO^{*}TMR3 管脚检测到上升沿,计数寄存器(TMRCNT)的当前值被锁定到捕获数据寄存器(TMRCAP)中。当捕获事件发生时,置位捕获中断标志(CAPIF=1),如果使能捕获中断(CAPIE=1),将产生捕获中断,进入相应的捕获中断服务程序。

捕获过程中,如果没有检测到沿,当计数寄存器(TMRCNT)的值和设定的周期寄存器(TMRPRD+1)相等时会置位周期定时中断标志(PRDIF=1),同时周期寄存器(TMRCNT)从 0 开始计数。如使能了周期定时中断(PRDIE=1),会进入相应的周期中断服务程序。

捕获检测可以选择上升沿,下降沿方式。

功能主要相关寄存器: TMRCAP, TMRCNT, TMRPRD。

13.5 事件计数功能

在输入事件计数模式下,假如设定下降沿检测,当 Timer0[~]Timer3 管脚上检测到一次下降沿,计数 寄存器 (TMRCNT) 的当前值加 1。当计数寄存器 (TMRCNT) 的值等于设定的比较寄存器 (TMRCMP+1)时,会置位事件计数中断标志(ACIF=1),同时计数寄存器 (TMRCNT)自动清零,重新开始计数。如果使能了事件计数中断 (ACIE=1),将产生事件计数中断,进入相应的事件计数中断服务程序。

事件计数过程中,在 TMRCMP>TMRPRD 情况下,当计数寄存器(TMRCNT)的值等于设定的周期寄存器(TMRPRD+1)时会置位周期定时中断标志(PRDIF=1),计数寄存器(TMRCNT)继续计数直到等于设定的比较寄存器(TMRCMP+1),如果使能了周期定时中断(PRDIE=1)会进入周期中断服务程序。

单次最大计数个数为 0xFFFF,可以配合周期中断实现任意次数的组合。事件计数检测可以选择上升沿,下降沿方式,该功能可用于 MCU 发脉冲。

比较寄存器(TMRCMP)如被修改,如果修改后的值小于当前计数寄存器(TMRCNT)的值,则立刻触发事件计数中断,同时计数寄存器(TMRCNT)清零,重新开始计数;如果修改后的值大于当前计数寄存器(TMRCNT)的值,则继续本次计数。

功能主要相关寄存器: TMRCNT, TMRCMP, TMRPRD。

13.6 中断功能

13.6.1 定时周期中断

当计数寄存器(TMRCNT)的值等于设定的周期寄存器(TMRPRD+1)时,如果使能周期定时中断(PRDIE=1),则发生周期定时中断。此中断在任何功能模式下都可以产生。

13.6.2捕获中断

当检测到外部输入信号相应沿时,如使能了捕获中断(CAPIE=1),则发生捕获中断。计数寄存器(TMRCNT)的值被锁定到捕获数据寄存器(TMRCAP)中。

13.6.3比较中断

当计数寄存器(TMRCNT)的值等于设定的比较寄存器(TMRCMP+1)时,如使能了PWM 比较中断(CMPIE=1),则发生比较中断。

13.6.4事件计数功能

当检测到设定次数的外部输入信号相应沿时,如使能了事件计数中断(ACIE=1),则发生事件计数中断。

在输入事件计数模式下,假如设定下降沿检测,当 Timer0[~]Timer3 管脚上检测到一次下降沿,计数器的当前值加一。当计数器的值和设定的比较寄存器 TMRCMP 值相等时,相应的事件计数中断标志 TMRIF. 3 被置 1,如果使能中断(TMRIE. 3=1),将产生中断。产生事件计数中断标志后计数器 TMRCNT 自动清零,重新开始计数。

事件计数过程中,在 TMRCMP > TMRPRD 情况下,当 TMRCNT 计数值增加到和 TMRPRD 相等时会产生周期中断标志,如使能了周期中断会进入中断服务程序,之后 TMRCNT 继续计数直到等于 TMRCMP 值。单次最大计数个数为 0xFFFF,可以配合周期中断实现任意次数的组合。

事件计数检测可以选择上升沿,下降沿方式,该功能可用于 MCU 发脉冲。

功能主要相关寄存器: TMRCNT, TMRCMP。

TMRCMP 如被修改,如果修改后的值小于当前 TMRCNT 的值,则立刻触发事件计数中断,之后 TMRCNT 计数器清零,重新开始计数;如果修改后的值大于当前 TMRCNT 的值则继续本次计数。

注: Timer4/5 不具有此功能

13.7 特殊功能寄存器列表

0x40001000 (TMR0);

0x40002000 (TMR1);

0x40003000 (TMR2);

0x40004000 (TMR3);

	,			
偏移地址	名称	读写方式	复位值	功能描述
0x00	TMRCON	R/W	0x0000	控制寄存器
0x04	TMRDIV	R/W	0x0000	预分频寄存器
0x08	TMRPRD	R/W	0x0000	周期寄存器
0x0C	TMRCAP	R/*W	0x0000	捕获数据寄存器
0x10	TMRCNT	R/*W	0x0000	计数器寄存器
0x14	TMRCMP	R/W	0x0000	比较器寄存器
0x18	TMRIE	R/W	0x0000	中断使能寄存器
0x1C	TMRIF	R/W	0x0000	中断标志寄存器

13.8 特殊功能寄存器说明

TMRCON			基地址:	地址: 0x400010000x40004000					
(定时器控制寄存器)			偏移地址:	00H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	RESERVED	PWMHL	PWMC	[1.0]	CCMODE	MODI	E[1:0]	CNTEN	
Write:	RESERVED	F W MITL	PWMC	[1.0]	CCMODE	MODI		CNIEN	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
RESERVED	内部保留位,应用中固定为0
PWMHL	PWM 初始电平选择:
	0: 高电平
	1: 低电平
PWMC[1:0]	PWM 工作模式选择: (PWM 计数方式)
	00: 向上计数
	01: 向下计数
	1X: 中央对齐
CCMODE	捕获电平沿选择:

	0: 上升沿
	1: 下降沿
MODE[1:0]	Timer 功能选择:
	00: 事件计数
	01: PWM 功能
	10: 捕获功能
	11: 周期定时功能
	需将 GPIO 配置为 TMRx 功能
CNTEN	计数器使能位:
	0: 关闭
	1: 使能

TMRDIV			基地址:	0x40001	0x400010000x40004000				
(预分频寄存器)			偏移地址:	04H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:				тмриті	/[7·0]				
Write:		TMRDIV[7:0]							
Reset:	0 0 0 0 0 0 0				0				
	Bit7	6	5	4	3	2	1	Bit0	
Read:				тмррти	1[7.0]				
Write:	TMRDIV[7:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
TMRDIV[15:0]	预分频的范围在 0-65535 之间
	经预分频器后的频率等于输入频率的 1/(TMRDIV[15:0] +1)

TMRPRD	IRPRD			0x40001	0x400010000x40004000			
(周期寄存器)			偏移地址:	08H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				TMRPRD	[15.0]			
Write:				IMRPKD	[10.6]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:		TMRPRD[7:0]						
Write:				IMAL)[1.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
TMRPRD[15:0]	该寄存器是一个 16 的周期寄存器

计数的周期寄存器和 PWM 的周期寄存器都是该寄存器 在使用任何模式功能之前,需要设置周期寄存器。

TMRCAP (捕获数据寄存器)			基地址: 偏移地址:		.0000x400	004000		
	Bit15	14	13	12	11	10	9	Bit8
Read:		WWDQAD[15 Q]						
Write:	TMRCAP[15:8]							
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:		TMRCAP[7:0]						
Write:				1 MRCAI	[[.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
TMRCAP[15:0]	当发生捕获事件事,当前计数器的值被存到该寄存器里

TMRCNT (计数寄存	字器)		基地址: 偏移地址:		.0000x400	004000		
	Bit15	14	13	12	11	10	9	Bit8
Read:				TMRCNT	[15.0]			
Write:				IMRONI	[10.6]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:		TMRCNT[7:0]						
Write:				I MRCN	[[1:0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
TMRCNT[15:0]	计数器当前的计数值

TMRCMP (比较寄存器)			基地址: 偏移地址:	0x400010000x40004000 14H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:		TMDCMD[15.0]							
Write:		TMRCMP[15:8]							
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	TMRCMP[7:0]								

Write:								
Reset:	0	0	0	0	0	0	0	0

位	功能描述
TMRCMP[15:0]	比较寄存器有两个功能: (1)Timer 做 PWM 功能的时候,当计数器达到(TMRCMP+1)的设定值时,PWM 输出翻 tt 同时器分比较为数据表表。(2)PDD 1),如体数表表现以及转动数据(2)PDD 1)。图像
	转,同时置位比较中断标志(CMPIF=1),如使能了 PWM 比较中断(CMPIE=1),则发生比较中断。 (2)Timer 做事件计数功能的时候,当计数寄存器(TMRCNT)的值等于设定的比较寄存器(TMRCMP+1)时,会置位事件计数标志(ACIF=1),同时计数寄存器(TMRCNT)会从 0 开始重新计数,如果使能了事件计数中断(ACIE=1),则芯片会产生事件计数中断。

TMRIE			基地址:	0x40001	0x400010000x40004000				
(定时器中断使能寄存器)			偏移地址:	18H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	V	V	V	ACTE	CMDIE	CADIE	DDDTE	
Write:	Å	X	X	X	ACIE	CMPIE	CAPIE	PRDIE	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
ACIE	事件计数中断使能
	0: 关闭
	1: 使能
CMPIE	比较中断使能
	0: 关闭
	1: 使能
CAPIE	捕获中断使能
	0: 关闭
	1: 使能
PRDIE	周期性溢出中断使能
	0: 关闭
	1: 使能

TMRIF	基地址:	0x400010000x40004000
(定时器中断标志寄存器)	偏移地址:	1CH

	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	λ	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	X	ACTE	CMPIF	CAPIF	PRDIF
Write:	Λ	Λ	Λ	Λ	ACIF	CMFIF	CAPIF	דועאז
Reset:	0	0	0	0	0	0	0	0

位	功能描述
ACIF	事件计数中断标志
	0: 未产生中断
	1: 产生中断 (写 0 清 0)
CMPIF	比较中断标志
	0: 未产生中断
	1: 产生中断 (写 0 清 0)
CAPIF	捕获中断标志
	0: 未产生中断
	1: 产生中断 (写 0 清 0)
PRDIF	周期性溢出中断标志
	0: 未产生中断
	1: 产生中断 (写 0 清 0)

14 SPI 模块

14.1 概述

SPI 模块可以实现在 MCU 和外围设备(包含外部 MCU)之间的全双工同步串行通讯。这里提到的 MCU 或者外围设备必须包含 SPI 模块。包含下列特征:

- 全双工模式
- 三线同步传输
- 主机和从机模式
- 7种主机波特率
- 从机时钟最高至 fcpu/4
- 极性和相位可编程的串行时钟
- 写冲突处理机制
- 8位数据传输,高字节在前,低字节在后
- 8位从机选择接口,控制外部从机
- 与主机 CPU 的专用功能寄存器接口
- 无二义端口,标准的 SPI

14.2 详细功能说明

串行外设接口(SPI)允许芯片与其他设备以半/全双工、同步、串行方式通信。此接口可以被配置成主模式,并为从设备提供通信时钟(SCK)。

14.2.1SPI 主要特征

- 3线全双工同步传输
- 主模式或从模式操作
- 7 个主模式频率(fcpu 的 2/4/8/16/32/64/128 分频)
- 在输入引脚 SPI CS 上的电平和下降沿侦测
- 可编程的时钟极性和相位
- 可触发中断的专用发送和接收标志

14.2.2SPI 接口模块框图

14.2.3SPI 接口传输格式

下图显示了数据传输的主要格式。根据 SPI 模块的设置,数据的每一位在主时钟(SCK)的上升沿(CPOL=0)或下降沿(CPOL=1)被传送。数据在主时钟(SCK)的下降沿(CPOL=0)或上升沿(CPOL=1)被接收。这适用于主模式或从模式的传输器/接收器,前提是 SCK 是传输过程中的主时钟。如果 CPHA 被置位,第一位(MSB)将在 SCK 的第一个动态沿时通过 MOSI/MISO 被发送。如果 CPHA 被清零,第一位(MSB)将在 SCK 的第一个动态沿之前半个周期被发送。

除此之外,输入数据在每一位传输一半时被取样,在这个时钟周期的相反的电平上,数据被移位到输出信号 MOSI上。

14.2.4主机模式传输格式

SPI 默认为主机模式。

在主机模式中,SPI 等待程序向寄存器 SPDAT 中写入数据。如果向 SPDAT 的写入动作完成,传输就开始。在时钟 SCK 的发送沿,数据被移位到输出引脚 MOSI 上。同时,从从机传送过来的另一字节的数据被移位到主机的输入引脚 MISO 上。

14.2.5从机模式传输格式

首先,需要写寄存器 SPCFG 中的 MSTR=0,以配置 SPI 进入从机模式。另外配置 SPI_EN=1 以打开 SPI 模块使能。

从模式数据传输格式

在从机模式中,SPI 等待输入信号 SPI_CS 的低电平,当抓到 SPI_CS 的下降沿,传输开始,直到传输完成,SPI_CS 都需要保持低电平状态。寄存器 SPCON 中 CPHA 的状态决定传输的开始位置,当 CPHA 被清

零,从机必须在 SCK 信号的第一个下降沿之前开始传输;当 CPHA 被置位,从机会把 SCK 信号的第一个下降沿做为传输的开始标志。

14.2.6中断功能

名称	SPI 中断标志描述
SPIF	当传输完成,该标志位被硬件置位
MODF	当 SPI_CS 的状态与主从模式设置有冲突

14.3 特殊功能寄存器列表

SPI 模块寄存器基地址: 0x4000B000								
偏移地址	名称	读写方式	复位值	功能描述				
0x00	SPICON	R/W	0x0000	SPI 控制寄存器				
0x04	SPISTA	R/W	0x0000	SPI 状态寄存器				
0x08	SPIDAT	R/W	0x0000	SPI 数据寄存器				
0x0C	SPISSN	R/W	0x00FF	SPI 从机选择寄存器				

14.4 特殊功能寄存器说明

SPICON			基地址:	0x4000H	0x4000B000				
(控制寄存	(控制寄存器)			00Н	00Н				
	Bit15	14	13	12	11	10	9	Bit8	
Read:	V	V	V	V	V	V	V	V	
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	CCDIC		con[o.o]		CDIIA	CDOL	мстр	CDI EN	
Write:	SSDIS		SPR[2:0]		СРНА	CPOL	MSTR	SPI_EN	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述					
SSDIS	SS控制位					
	0: 在主/从模式中打开SPI_CS输入					
	1: 在主/从模式中关闭 SPI_CS 输入,该情况下不会产生 MODF 中断请求;在从					
	模式中,若 CPHA=0,则该位无效					

SPR[2:0]	2571的钾速率	SPI时钟速率控制位(主模式时用)							
		SPR[2:0]		SPI时钟速率					
	0	0	0	Fsys/2					
	0	0	1	Fsys/4					
	0	1	0	Fsys/8					
	0	1	1	Fsys/16					
	1	0	0	Fsys/32					
	1	0	1	Fsys/64					
	1	1	0	Fsys/128					
	1	1	1	不产生主时钟					
(PHA	一时知知	时钟相位 0:表示高位(MSB)将在SCK的第一个动态沿之前半个周期被发送 1:表示高位(MSB)将在SCK的第一个动态沿通过MOSI/MISO被发送							
СРНА	0: 表示高位								
СРНА	0: 表示高位 1: 表示高位 时钟极性 0: "sck"	立(MSB)将 在空闲状态E		动态沿通过MOSI/MISO被发送 L平					
	0: 表示高位 1: 表示高位 时钟极性 0: "sck"	立(MSB)将在空闲状态。在空闲状态。在空闲状态。 在空闲状态。 译位	在SCK的第一个。 时被设置为低电	动态沿通过MOSI/MISO被发送 L平					

SPISTA (状态寄存器)		基地址: 偏移地址:	基地址: 0x4000B000 偏移地址: 04H					
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	X	X	X	X	V	V	V
Write:	X	A	Λ	Λ	Λ	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	CDIE	WCOI	CCEDD	MODE
Write:	X	X	X	X	SPIF	WCOL	SSERR	MODF
Reset:	0	0	0	0	0	0	0	0
位				J	功能描述			
数据传输完成标志位 SPIF 当传输完成时由硬件置位;传输过程中由硬件复位,也可通过读寄存器"sp SPDAT来复位。						r "spsta"		
WCOL		写冲突标志位 当写SPDAT冲急		置位;当传输	俞完成无冲?	突发生时由码	更件复位,也	也可通过访

	问寄存器"spsta"SPDAT复位。
	同步从机错误标志位
SSERR	在接收完成前当SPI_CS输入有效时,被硬件置位;关闭SPI模块可清除该位(设置
	spen=0) 。
	模式故障标志位
MODF	当SPI_CS引脚状态与设置的模式有冲突时,硬件自动置位;当SPI_CS引脚恢复合
	适的电平状态时,硬件自动复位;也可以由软件读"spsta"寄存器来复位。

SPIDAT (数据寄存器)			基地址: 偏移地址:		0x4000B000				
(数据町1			13	 12	11	10	9	Bit8	
	D1 (19	14	10	14	11	10	9	DITO	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	CDDAT[7, 0]								
Write:	SPDAT[7:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
SPIDAT[7:0]	寄存器 SPIDAT 是"接收数据"寄存器的一个读/写缓冲。当向 SPIDAT 中写入数据,
	是直接写入移位寄存器中(没有传输缓冲);从 SPIDAT 中读数据,返回的是接收
	缓冲中的数据,而非移位寄存器。

SPISSN			基地址:	0x4000E	0x4000B000				
(从机选排	(从机选择寄存器)			0CH	ОСН				
	Bit15	14	13	12	11	10	9	Bit8	
Read:	V	V	V	V	V	V	V	v	
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	V	V	V	V	V	V	V	CCNO	
Write:	X	X	X	X	X	X	X	SSN0	
Reset:	1	1	1	1	1	1	1	1	

注: SPSSN是一个可读/写寄存器,它的每一位都可用来选择一个独立的外部SPI从机设备。

位	功能描述					
	当芯片做 SPI 通讯的主机时,使用 SSNO 控制位可以控制芯片外部 SPI_CS 引脚的高					
SSN0	低电平。					
	在使能 SPI 情况下(且为主机), 写 1 拉高 CS, 写 0 拉低 CS。					

15 I2C 模块

15.1 概述

I2C 模块提供一个符合 Philips I2C 总线规范的串行接口,用两根线实现设备与总线之间的数据传输,通过状态寄存器 I2CSTA 反映了 I2C 总线控制器的实时状态。

15.2 框图

图 1 I2C 模块功能框图

15.3 功能描述

I2C 用两根线实现设备与总线之间的数据传输: 串行时钟 SCL 和串行数据 SDA。每一个与总线相连的设备都有一个唯一的地址。支持主机模式(Master)和从机模式(Slave),允许发送数据(Transmitter)和接收数据(Receiver)。I2C 是一个真正的多主机总线,它包含冲突侦测和仲裁机制,以防止多个主机同时开始数据传输时的数据丢失。

15.3.1起始条件和停止条件

I2C 通讯协议定义了两个特殊的波形: 起始条件和终止条件。

在时钟线为高电平时数据线的下降沿定义为起始条件;在时钟线为高电平时数据线的上升沿定义为 终止条件。起始条件和终止条件均由主机发出。

主机可以发起和终结一次传输。当主机发送一个起始条件时开始一次传输,发送一个终止条件时结束本次传输。在起始条件和终止条件之间,总线定义为"忙碌"状态。其它主机不应该去试图发起传输。在"忙碌"状态下,如果主机再次发送起始条件,则定义为"重复起始条件",表示主机希望不放弃总线的情况下开始一次新的传输。发送重复起始条件后,总线仍处于"忙碌"状态,一直到总线出现终止条件。鉴于重复起始条件和起始条件性质完全一致,除非特别声明,本文中将采用起始条件来代替两者。

15.3.2数据传输格式

数据传输中数据线上每一位的传输均需要时钟线上一个脉冲。在时钟高电平时数据线应保持稳定。但发送起始条件和终止条件时不需要遵守此规则。

I2C 采用从高到低逐位进行传输,所有数据包(包括地址包)均有9位组成,包括1个字节和一个应答位。主机负责发出时钟和起始及终止条件,接收者负责给出应答信号。

接收者通过在第九个时钟脉冲处将数据线拉低发出"应答(ACK)"信号;或维持第九个脉冲处维持高电平表示"不应答(NACK)"信号。当接收方接收到最后一个字节,或因某种原因无法继续接收数据时,应回应"不应答(NACK)"信号。

一次传输通常包括一个起始条件,地址+读/写,一个或多个数据包和一个终止条件。仅包含起始条件和终止条件的数据格式是不合通讯规则的。

15.3.3时钟同步和数据仲裁

当多个主机同时希望控制总线时,总线将依据"线与"原则决定时钟线高低电平。

时钟同步:

时钟线由高到低跳变将导致所有参与传输的器件开始低电平计时。每一个器件计时达到自己低电平 要求时释放时钟线,在时钟线变为高电平之前进入高电平等待期;当所有器件均计满低电平周期时,时 钟线才变为高电平。之后所有器件开始对高电平进行计时,第一个计满高电平周期的器件将拉低时钟线, 进入下一个时钟周期。

这样,产生的同步 SCL 时钟的低电平周期由低电平时钟周期最长的器件决定,而高电平周期由高电平时钟周期最短的器件决定。

值得注意的是"线与"结构给主机和从机之间的握手信号提供了方便。当主机相对太快或从机需要 处理其它事务时,从机可以通过拉低时钟线来拉长时钟线的低电平时间,从而降低通讯频率。从机可以 拉长时钟线低电平周期但不会影响到时钟线高电平的周期。

数据仲裁

主机只有在总线处于"空闲"状态时才能开始一次传输。两个或多个主机可能在最小保持时间(t HD:STA))内同时发送起始条件,从而在总线上只看到一个起始条件。

由于发送起始条件的主机无法知道是否有其它主机在竞争总线,只能靠时钟高电平时对数据线的仲裁判断哪个主机占用总线。当有主机传输低电平时,传输高电平的主机将失去仲裁,断开它的数据输出级。

失去仲裁的主机将继续发送时钟,直到当前传输字节发送完毕。当两个主机同时访问一个从机时,可能会顺利通过地址阶段,仲裁会继续比较数据位(如果是主机发送器)或者比较响应位(如果是主机接收器)。因此I2C总线的地址和数据信息由赢得仲裁的主机决定,在仲裁过程中不会丢失信息

如果该主机同时开启了从机模式,在发送地址阶段失去仲裁后应检测线上的地址是否与自己相匹配; 如果是对自己的访问,应立即切换到从机模式,接收信息。

在串行传输时,当重复起始条件或停止条件发送到I2C总线的时侯,仲裁过程仍在进行。 仲裁不能在下面情况之间进行:

- 1. 重复起始条件和数据
- 2. 数据和终止条件
- 3. 终止条件和重复起始条件 从机不参与仲裁。

15.3.47 位地址格式

I2C 总线的寻址过程是通常在起始条件后的第一个字节决定了主机选择哪一个从机。从机的地址匹配单元检验所收到的地址是否与寄存器 I2CADR 中的 7 位地址相匹配。如果广播呼叫地址使能位 I2CADR[0]被置位,也将检测是否与广播呼叫地址 00H 相匹配。当地址匹配时,控制单元将产生合适的动作及相应的状态码。

第一个字节的头 7 位组成了从机地址,最低位 LSB 是第 8 位,它决定了报文的方向。第一个字节的最低位是"0"表示主机会写信息到被选中的从机,"1"表示主机会向从机读信息。

当发送了一个地址后,系统中的每个器件都在起始条件后将头 7 位与它自己的地址比较,如果一样,器件会认为它被主机寻址,至于是从机接收器还是从机发送器都由 R/W 位决定。

起始条件后第一字节

15.3.5串行时钟生成

当 I2C 处于主机模式时,可编程的时钟发生器提供 SCL 时钟; 当 I2C 处于从机模式时,时钟发生器被关闭,接收来自主机的时钟。时钟发生器的输出频率可以由寄存器 I2CCON 中的位 CR[2:0]控制。其中包含 I2CCON[0···1], I2CCON[7···14]。

15.3.6中断生成

使能 ENS1, 启动 I2C 模块, I2C 模块实时监测 I2C 总线状态,并根据用户设置对总线进行相应的操作及回应。当检测到总线有应用需求情况时,寄存器 I2CCON 中的标志位 SI 会被置位,并将当前应用状态写入状态寄存器 I2CSTA 中。若 I2C 中断使能打开,则产生 I2C 中断。

中断标志 SI 被置起后,时钟线 SCL 被拉低,通讯被暂停,用户需清除标志才能继续通讯。

15.3.7传输模式

I2C 数据传输是以 8-bit 进行双向数据传输,标准模式下可达 100kbit/s 的传输速率。它可以下边四种模式工作:

- 主机发送模式:串行数据通过 SDA 输出,串行时钟通过 SCL 输出
- 主机接收模式:串行数据通过SDA输入,串行时钟通过SCL输出
- 从机接收模式:串行数据通过SDA输入,串行时钟通过SCL输入
- 从机发送模式:串行数据通过 SDA 输出,串行时钟通过 SCL 输入

下面将分别介绍 I2C 通讯的四种主要模式,并对所有可能的状态码进行了描述。下图中有如下缩写:

S: 开始条件

Rs : 重复开始条件

R : 读控制位

W : 写控制位

A : 应答位

Ā : 无应答位

DATA : 8 位数据

P : 终止条件

SLA: 从机地址

圆形用于表示中断标志已被置起。其中的数字表示当前状态寄存器 I2CSTA 中被掩去低三位的状态码。在 SI 被清除之前,I2C 通讯会暂停,应用软件必须决定是继续通讯还是终止当前传输。对每一个状态码,所需要的软件动作和随后的传输细节均有描述。

I2C 主机发送模式:

主机发送模式中,主机发送一系列数据到从机。一个开始条件(S),随后一个从机地址(SLA)+写控制字(W),表示进入主机发送模式。

状态		应用程序配置					
八心	I2C 状态	I2CDAT		I2C	CON		I2C 硬件响应
7 (14-3)		12CDA1	sta	sto	si	aa	
H80	起始条件	加载 SLA+W	X	0	0	X	SLA+W 将被发送
	已被发送						ACK 将被接收
10H	重复起始	加载 SLA+W	X	0	0	X	同上
	条件已被	或者加载	X	0	0	X	SLA+R 将被发送
	发送	SLA+R					I2C 将转换为"主接收器"模式
18H	SLA+W 己被	加载数据字节	0	0	0	X	数据字节将被发送; ACK 将被接收
	发送;	或无动作	1	0	0	X	重复起始条件将被发送
	ACK 己被接	或无动作	0	1	0	X	终止条件将被发送; sto 标志将被复位
	收	或无动作	1	1	0	X	起始条件被发送后将再发送一个终止条
							件; sto 标志将被复位
20H	SLA+W 己被	加载数据字节	0	0	0	X	数据字节将被发送; ACK 将被接收
	发送;	或无动作	1	0	0	X	重复起始条件将被发送
	"not ACK"	或无动作	0	1	0	X	终止条件将被发送; sto 标志将被复位
	已被接收	或无动作	1	1	0	X	起始条件被发送后将再发送一个终止条
							件; sto 标志位将被复位
28H	i2cdat 的	加载数据字节	0	0	0	X	数据字节将被发送;将发送 ACK 字节
	数据字节	或无动作	1	0	0	X	重复起始条件将被发送。
	己被发送;	或无动作	0	1	0	X	终止条件将被发送; sto 标志将被复位
	ACK 己被接	或无动作	1	1	0	X	起始条件被发送后将再发送一个终止条
	收						件; sto 标志将被复位
30H	i2cdat 的	数据字节	0	0	0	X	数据字节将被发送; ACK 将被接收
	数据字节	或无动作	1	0	0	X	重复起始条件将被发送;
	已被发送	或无动作	0	1	0	X	终止条件将被发送; sto 标志将被复位
		或无动作	1	1	0	X	起始条件被发送后将再发送一个终止条
							件; sto 标志将被复位
38H	SLA+R/W 或	无动作	0	0	0	X	I2C 总线将被释放;将进入"未寻址从
	数据字节						机"状态;
	仲裁失败	或无动作	1	0	0	X	当总线空闲时将发送一个起始条件

I2C 主机接受模式:

主机接收模式中,主机从从机接收一系列数据。一个开始条件(S),随后一个从机地址(SLA)+读控制字(R)表示进入主机接收模式。

状		应用	程序四	记置			
态	 I2C 状态			I2C	CON		
代码	120 ग (सह	I2CDAT	sta	sto	si	aa	120 政 [十四]
08H	起始条件已被发 送	加载 SLA+R	X	0	0	X	SLA+R 将被发送; ACK 将被接收
10H	重复起始条件已	加载 SLA+R	X	0	0	X	同上
	被发送	或者加载 SLA+W	X	0	0	X	SLA+W 将被发送;
							I2C 将转换为"主接收器"模式
38H	"not ACK"位仲	无动作	0	0	0	X	I2C 总线将被释放; I2C 将会进入"从
	裁失败						机"模式
		或者无动作	1	0	0	X	当总线空闲时将发送一个起始条件
40H	SLA+R 已被发送;	无动作	0	0	0	0	数据字节将被接收;将返回"not ACK"
	ACK 己被接收	或者无动作	0	0	0	1	数据字节将被接收;将返回"not ACK"
48H	SLA+R 已被发送;	无动作	1	0	0	X	重复起始条件将被发送
	"not ACK"己被	或无动作	0	1	0	X	终止条件将被发送; sto 标志将被复
	接收						位
		或无动作	1	1	0	X	起始条件被发送后将再发送一个终
							止条件; sto 标志将被复位
50H	数据字节已被接	读取数据字节	0	0	0	0	数据字节将被接收;将返回"not ACK"
	收;	或读取数据字节	0	0	0	1	数据字节将被接收;将返回 ACK
	己返回 ACK						
58H	数据字节将被接	读取数据字节	1	0	0	X	重复起始条件将被发送
	收;	或读取数据字节	0	1	0	X	终止条件将被发送; sto 标志将被复
	己返回"not ACK"						位
		或读取数据字节	1	1	0	X	起始条件被发送后将再发送一个终
							止条件 ; sto 标志将被复位

I2C 从机接受模式:

从机接收模式中,从机从主机接收一系列数据。

进入从机模式前,需设置从机地址, I2CADR 中 I2CADR[7..1]位为从机地址。如果 I2CADR[0]置位,从机也将响应广播呼叫地址(00H), 否则将不响应广播呼叫地址。

从机模式中, I2C 模块等待总线对本机地址或广播呼叫地址(如果 I2CADR[0]被置位)的寻址。如果读写数据位是'写',则 I2C 进入从机接收模式,否则将进入从机发送模式。

地址和读写数据位接受完成后,中断标志(SI)置位,状态寄存器 I2CSTA 写入当前状态。

状			程序四	 记 置			用1502A 用广子则
态	rog the	,, ,	1,122,4	I2C	CON		TOO THE ALL WAS AND
代码	I2C 状态	I2CDAT	sta	sto	si	aa	· I2C 硬件响应
60Н	自身的 SLA+W 已被 接收;	无动作	X	0	0	0	数据字节将被接收并返回"not ACK"
	已返回 ACK	或无动作	X	0	0	1	数据字节将被接收并返回 ACK
68Н	主机 SLA+R/W 仲裁 失败; 自身的	无动作	X	0	0	0	数据字节将被接收并返回"not ACK"
	SLA+W 已被接收, 返回 ACK	或无动作	X	0	0	1	数据字节将被接收并返回 ACK
70H	呼叫地址(00H) 已被接收;已返回	无动作	X	0	0	0	数据字节将被接收并返回"not ACK"
	ACK	或无动作	X	0	0	1	数据字节将被接收并返回 ACK
78H	主机 SLA+R/W 仲裁 失败;呼叫地址已	无动作	X	0	0	0	数据字节将被接收并返回"not ACK"
	被接收,返回 ACK	或无动作	X	0	0	1	数据字节将被接收并返回 ACK
80H	预先写入自身 SLV 地址; DATA 字节已	读取数据字节 或者	X	0	0	0	数据字节将被接收并返回"not ACK"
	被接收;返回ACK	读取数据字节	X	0	0	1	数据字节将被接收并返回 ACK
88H	预先写入自身 SLA; DATA 字节已	读取数据字节 或者	0	0	0	0	切换为"未寻址从机"模式;不识别自身从机地址或呼叫地址
	被接收;返回"not ACK"	读取数据字节 或者	0	0	0	1	切换为"未寻址从机"模式;识别 自身从机地址或呼叫地址
		读取数据字节 或者	1	0	0	0	切换为"未寻址从机"模式;不识别自身从机地址或呼叫地址;当总 线空闲时将发送一个起始条件
		读取数据字节	1	0	0	1	切换为"未寻址从机"模式;识别 自身从机地址或呼叫地址;当总线 空闲时将发送一个起始条件
90Н	预先写入呼叫地址; DATA 字节已被	读取数据字节 或者	X	0	0	0	数据字节将被接收并返回"not ACK"
	接收;返回ACK	读取数据字节	X	0	0	1	数据字节将被接收并返回 ACK
98Н	预先写入呼叫地址; DATA 字节已被	读取数据字节 或者	0	0	0	0	切换为"未寻址从机"模式;不识别自身从机地址或呼叫地址
	接收;返回ACK	读取数据字节 或者	0	0	0	1	切换为"未寻址从机"模式;识别 自身从机地址或呼叫地址
		读取数据字节 或者	1	0	0	0	切换为"未寻址从机"模式;不识别自身从机地址或呼叫地址;当总 线空闲时将发送一个起始条件
		读取数据字节	1	0	0	1	切换为"未寻址从机"模式;识别 自身从机地址或呼叫地址;当总线 空闲时将发送一个起始条件

HT502X 用户手册

АОН	终止条件或重复	无动作	0	0	0	0	切换为"未寻址从机"模式;不识
	起始条件在被配	或者					别自身从机地址或呼叫地址
	置为 SLV/REC 或	无动作	0	0	0	1	切换为"未寻址从机"模式;识别
	SLV/TRX 时被接收	或者					自身从机地址或呼叫地址
		无动作	1	0	0	0	切换为"未寻址从机"模式;不识
		或者					别自身从机地址或呼叫地址; 当总
							线空闲时将发送一个起始条件
		无动作	1	0	0	1	切换为"未寻址从机"模式;识别
							自身从机地址或呼叫地址;当总线
							空闲时将发送一个起始条件

I2C 从机发送模式:

从机发送模式中, 从机发送一系列数据到主机。

进入从机模式前,需设置从机地址, I2CADR 中 I2CADR[7..1]位为从机地址。如果 I2CADR[0]置位,从机也将响应广播呼叫地址(00H),否则将不响应广播呼叫地址。

从机模式中, I2C 模块等待总线对本机地址或广播呼叫地址(如果 I2CADR[0]被置位)的寻址。如果读写数据位是'写',则 I2C 进入从机接收模式,否则将进入从机发送模式。

地址和读写数据位接受完成后,中断标志(SI)置位,状态寄存器 I2CSTA 写入当前状态。

状		应用	程序四	记置				
态	 I2C 状态			I2C	CON		I2C 硬件响应	
代	120 仏恋	I2CDAT	sta	sto	si	aa	120 设件啊应	
码						aa		
A8H	自身 SLA+R 已被	加载数据字节	X	0	0	0	最后一个数据字节将被发送并接	
	接收;返回ACK	或者					收 ACK	
		加载数据字节	X	0	0	1	数据字节将被发送; ACK 将被接收	
ВОН	主机 SLA+R 仲裁	加载数据字节	X	0	0	0	最后一个数据字节将被发送并接	
	失败;自身 SLA+R	或者					收 ACK	
	己被接收;返回	加载数据字节	X	0	0	1	数据字节将被发送; ACK 将被接收	
	ACK							
В8Н	数据字节已被发	加载数据字节	X	0	0	0	最后一个数据字节将被发送并接	
	送; ACK 已被接收	或者					收 ACK	
		加载数据字节	X	0	0	1	数据字节将被发送; ACK 将被接收	
СОН	数据字节已被发	无动作	0	0	0	0	切换为"未寻址从机"模式;不识	
	送; "not ACK"						别自身从机地址或呼叫地址	
	已被接收	或者无动作	0	0	0	1	切换为"未寻址从机"模式;识别	
							自身从机地址或呼叫地址	
		或者无动作	1	0	0	0	切换为"未寻址从机"模式;不识	
							别自身从机地址或呼叫地址; 当总	
							线空闲时将发送一个起始条件	
		或者无动作	1	0	0	1	切换为"未寻址从机"模式;识别	
							自身从机地址或呼叫地址; 当总线	
							空闲时将发送一个起始条件	
C8H	最后一个数据字	无动作	0	0	0	0	切换为"未寻址从机"模式;不识	
	节已被发送; ACK						别自身从机地址或呼叫地址	
	已被接收	或者无动作	0	0	0	1	切换为"未寻址从机"模式;识别	
							自身从机地址或呼叫地址	
		或者无动作	1	0	0	0	切换为"未寻址从机"模式;不识	
							别自身从机地址或呼叫地址; 当总	
							线空闲时将发送一个起始条件	
		或者无动作	1	0	0	1	切换为"未寻址从机"模式;识别	
							自身从机地址或呼叫地址; 当总线	
							空闲时将发送一个起始条件	

I2C 复合状态:

ΛΤΖ - Κ -		应用	程序面	置			
状态 代码	I2C 状态	I2CDAT	I2CCON				I2C 硬件响应
一人が		12CDA1	sta	sto	si	aa	
F8H	没有可利用信息	无动作		无动	力作		等待或继续进行传递
	的相关状态;						
	si=0						
00Н	MST 或选择从机	无动作	0	1	0	X	只有当被配置为"主机"或
	模式中的总线错						"从机"模式时 I2C 硬件才
	误						会被触发
							在所有情况下,总线将被释
							放并且 I2C 将切换到"未寻
							址从机"模式。sto 标志将
							被复位

15.4 特殊功能寄存器列表

微控制器与 I2C 组件的接口通过以下四个特殊功能寄存器来实现:

I2C 模块寄存器	I2C 模块寄存器基地址: 0x4000A000										
偏移地址	名称	读写方式	复位值	功能描述							
ООН	I2CDAT	R/W	0000Н	I2C数据寄存器							
04Н	I2CADR	R/W	0000Н	I2C地址寄存器							
08Н	I2CCON	R/W	4000H	I2C控制寄存器							
ОСН	I2CSTA	R/W	00F8H	I2C状态寄存器							

15.5 特殊功能寄存器说明

I2CDAT			基地址:	0x4000A	7000				
(I2C 数据	寄存器)		偏移地址:	00H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	v	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				TOCDA	r[7.0]				
Write:	I2CDAT[7:0]								
Reset:	0	0	0	0	0	0	0	0	

寄存器I2CDAT是将要被传送到总线上的数据,或者是刚从总线上接收到的数据。寄存器I2CDAT没有设置 影子寄存器,也没有双缓存,所以当I2C中断发生时,MCU需要及时从它读取数据,以免数据丢失。

I2CADR			基地址:	0x4000A	7000						
(地址寄存	字器)		偏移地址:	04H	04H						
	Bit15	14	13	12	11	10	9	Bit8			
Read:	X	X	X	X	X	X	X	X			
Write:	X	Λ	Λ	Λ	Λ	Λ	Λ	Λ			
Reset:	0	0	0	0	0	0	0	0			
	Bit7	6	5	4	3	2	1	Bit0			
Read:				TOCADI	2[7.0]						
Write:	I2CADR[7:0]										
Reset:	0	0	0	0	0	0	0	0			

位	功能描述						
I2CADR[7:1]	I2C从机地址(7位)						
I2CADR[0]	广播呼叫地址确认位						
	当此位置1时,广播呼叫地址可以被响应,否则不能被响应。						

I2CCON			基地址:	0x4000A000							
(控制寄存	字器)		偏移地址:	08H							
	Bit15	14	13	12	11	10	9	Bit8			
Read:	X		CR[9:3]								
Write:	Λ	CK[9.5]									
Reset:	0	1	0	0	0	0	0	0			
	Bit7	6	5	4	3	2	1	Bit0			
Read:	CDO	EMC 1	СТА	CTO	CT	4.4	CR[1:0]				
Write:	CR2	ENS1	STA	ST0	SI	AA					
Reset:	0	0	0	0	0	0	0	0			

位	功能描述
CR[9:0]	I2C时钟频率控制位
	I2C CLOCK=fsys/(CR[9:0]+1)/4
ENS1	I2C使能位
	1: 打开I2C模块;
	0: 关闭I2C模块;
STA	开始标志位
	1: 检查I2C总线的状态,如果空闲则生成开始信号;
	0: 不会生成开始信号;
ST0	停止标志位
	1: 当处于主机模式,则向总线传输停止信号
	0: 不向总线传输停止信号;
SI	中断标志位
	当进入25种I2C状态之一时,SI由硬件置位,唯一不置位的状态是"F8h",写0清0,
	写1无影响。
AA	生成应答标志位
	1: 应答在以下情况下被返回: 接收到自身作为从机的地址; I2CADR[0]被置位的情
	况下接收到广播呼叫地址; 主机接收模式下一个字节接收完成; 从机接收模式下一
	个字节接收完成;
	0: 非应答在以下情况下被返回: 主机接收模式下一个字节接收完成; 从机接收模
	式下一个字节接收完成;

I2CSTA(オ	犬态寄存器)	基地址: 偏移地址:		0x4000A000 0CH					
	Bit15	14	13	12	11	10	9	Bit8		
Read:	V	V	V	V	V	V	V	Х		
Write:	X	X	X	X	X	X	X	Λ		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:		,	FOCCTA [4.0		V	V	V			
Write:			[2CSTA[4:0]	J		X	X	X		
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
I2CSTA[4:0]	I2C状态码 反映I2C模块的实时状态。这个寄存器的低三位始终为0。总共有26种可能的状态。当进入25种状态的其中一种时,都会产生中断;唯一一种不产生中断的情况是状态
	F8h.

16 RTC 模块

16.1 概述

RTC 单元提供实时时钟、日历功能,自动闰年调整,支持闹钟和周期性中断。

RTC 模块在各种工作模式下都不会被关闭,在低功耗下仍然正常运行。

RTC 输出寄存器、RTC 时钟校正寄存器不会被复位,以保持 RTC 的准确性。

RTC 模块工作电压最低可至 1V (注:因为 TBS 最低工作电压为 2V,所以如果要保证 RTC 精度,工作电压至少要达 2V)

16.2 功能描述

- 提供时钟和日历功能:输出寄存器包含秒、分、时、日、月、年和星期
- 具有自动闰年闰月调整功能
- 1个闹钟中断功能
- 2个定时器周期性中断功能
- 5个时间中断功能(秒、分、时、日、月)
- TOUT PIN 可输出频率为 1Hz/2Hz/4Hz/8Hz 的方波信号
- 可输出每秒补偿的校验脉冲
- 只读寄存器,用于保存校时的次数以及最后一次校时前的时间

16.3 时钟校正

由 RTC 模块读取 TPS 输出的温度值,根据低频晶体时钟 Fosc 的温度特性,计算实时频率偏差 dFi,送至分频模块进行时钟校正。芯片内置了一个可修改系数的多项式补偿曲线。DFi 计算公式如下:

DFi= (DFA+DFB*(TMPDAT- Toff)+DFC*(TMPDAT- Toff)^2+ DFD*(TMPDAT- Toff)^3+DFE*(TMPDAT- Toff)^4) >>2

DFA/DFB/DFC/DFD/DFE 为 0 次到 4 次项补偿系数,TMPDAT 为温度传感器输出值,Toff 为温度传感器偏置校正。

DFi 每个 LSB 表示 0.06ppm(对于 OSC, 每个 LSB 表示 1/512Hz)。

16.4 RTC 补偿系数寄存器和 Info Flash 对应关系

RTC 的补偿系数寄存器在芯片上电后会自动装载,考虑到系统的可靠性,用户可以软件读取 Information Block 的对应地址的值(0x00040104~0x00040138),然后再写入到对应的 RTC 模块的寄存器中。

寄存器偏移地址	寄存器名称	Information Block 对应偏移地址
(RTC 模块寄存器基地址:		(Information Block 基地址:
0x4000C000)		0x00040000)
0x50	DFAH	0x104
0x54	DFAL	0x108
0x58	DFBH	0x10C
0x5C	DFBL	0x110
0x60	DFCH	0x114
0x64	DFCL	0x118
0x68	DFDH	0x11C
0x6C	DFDL	0x120
0x70	DFEH	0x124
0x74	DFEL	0x128
0x78	Toff	0x12C
0x7C	MCON01	0x130
0x80	MCON23	0x134
0x84	MCON45	0x138
		0x13c

注:

- 1. 当 Flash 的 0x0FC0 地址的 bit2 为 1 时,上电后,系统自动加载 Info_Flash 中的 RTC 补偿系数 (0x00040104~0x00040138) 到对应的寄存器中。
- 2. (0x00040000+0x13c) 存放从 (0x00040000+0x104) 到 (0x00040000+0x138) 的 32 位无符号数累加和,如果累加和正确,则说明 info 中数据有效,否则则认为 info 中数据无效。这个是方便用户软件判断。
- 3. MCONxx 寄存器为内部控制寄存器,上电后也需要一同装载。
- 4. 自动加载功能为系统发生某些复位,CPU 运行之前自动完成的,触发自动加载的复位:系统软复位 NVIC_SystemReset(),WDT 复位,BOR 复位,外部引脚复位 PINRESET,POR 复位,软件 POR 复位 (SoftPOR)。
- 5. 自动装载以32位形式加载。

16.5 时间和万年历

RTC 提供秒、分、时、日、月、年和星期输出寄存器。

通过 RTC 的输出寄存器,可以得到自动闰年校正的万年历功能,其范围从 2000 年 1 月 1 日到 2099 年 12 月 31 日。

16.6 中断功能

RTC 一共提供 8 种中中断源, 共用 MCU 的 IRQ-RTC 中断向量 12。RTC 的 8 种中断源由 RTCIE (AAH) 分别控制其使能。

具体的中断产生条件和中断清除步骤如下:

ALMF: 闹钟中断标志

当小时和分钟与设定的闹钟匹配时,产生闹钟中断,ALMF被置为1。

对该位写 0 清标志。

RTC1F: RTC 定时器 1 中断标志

如设置 RTC1CNT=X, 使能计数 RTC1EN 后, 经过(X+1)*1S 后, 该标志位置位 1.

对该位写0清标志。

RTC2F: RTC 定时器 2 中断标志

如设置 RTC2CNT=X, 使能计数 RTC2EN 后, 经过(X+1)*0.0625S 后, 该标志位置位 1.

对该位写0清标志。

MTHF: 月中断

月计数器 MTHR 加 1 时,产生一个月中断,MTHF 被置为 1。

对该位写0清标志。

DAYF: 日中断

日期计数器 DAYR 加1时,产生一个日中断,DAYF 被置为1。

对该位写 0 清标志。

HRF: 小时中断

小时计数器 HRR 加 1 时,产生一个小时中断,HRF 被置为 1。

对该位写 0 清标志。

MINF: 分钟中断

分钟计数器 MINR 加 1 时,产生一个分钟中断,MINF 被置为 1。

对该位写 0 清标志。

SECF: 秒中断

秒计数器 SECR 加 1 时,产生一个秒中断,SECF 被置为 1。

对该位写 0 清标志。

16.7 RTC 指示寄存器读写流程

16.7.1读取 RTC 指示寄存器流程

在用户需要读取 RTC 指示寄存器(SECR, MINR, HRR, DAYR, MTHR, YRR, DOWR)的时候,用户应该按照以下流程操作:

注:辅助RTC 读流程与上图一致,只是读控制寄存器为RTCRD2

16.7.2写入 RTC 指示寄存器流程

在用户需要更新 RTC 指示寄存器(SECR, MINR, HRR, DAYR, MTHR, YRR, DOWR)的时候,用户应该按照以下流程操作,并且按照年、月、日、时、分、秒、周的顺序操作:

RTC 指示寄存器写流程

注:辅助 RTC 写流程与上图一致,只是写控制寄存器为 RTCWR2

16.8 校时记录

当对年(YRR)、月(MTHR)、日(DAYR)、时(HRR)、分(MINR)、秒(SECR)、周(DOWR)这七个寄存器中任何一个寄存器进行写操作时,则校时次数寄存器(RTCCNT)加1。

校时次数增加以一次 UpdatFlag 置 1 为准,即使一次更新多个寄存器,但是只有一次 UpdatFlag 置 1,则 RTCCOUNT 加 1.

如果用户写入的值超过正常范围导致写失败(比如月寄存器写 13),那么只要 UpdatFlag 置 1,则 RTCCNT 加 1。

16.9 辅助 RTC

系统内建 1 个辅助 RTC 模块,提供第二套年/月/日/时/分/秒/周寄存器,由 LRC 作为时钟源。当外部 OSC 停振时,系统时钟可切换至内部低频 RC,启用辅助 RTC 可获得持续计时时间。辅助 RTC 读写流程与第一套类似,其有单独的控制信号 RTCWR2 和 RTCRD2。

16.10特殊功能寄存器列表

RTC 模块寄存	RTC 模块寄存器基地址: 0x4000C000						
偏移地址	名称	读写方式	复位值	功能描述			
0x00	RTCCON	R/W	0x0000	RTC 控制寄存器			
0x04	RTCIE	R/W	0x0000	RTC 中断使能寄存器			
0x08	RTCIF	R/W	0x0000	RTC 中断标志寄存器			
0x0C	ALMR	R/W	0x0000	闹钟寄存器			
0x10	RTCTMR1	R/W	0x0000	RTC 定时器 1 计数设置			
0x14	RTCTMR2	R/W	0x0000	RTC 定时器 2 计数设置			
0x18	SECR	R/W	0x0000	秒寄存器 (写保护)			
0x1C	MINR	R/W	0x0000	分寄存器 (写保护)			
0x20	HOURR	R/W	0x0000	时寄存器 (写保护)			
0x24	DAYR	R/W	0x0001	日寄存器 (写保护)			
0x28	MONTHR	R/W	0x0001	月寄存器 (写保护)			
0x2C	YEARR	R/W	0x0000	年寄存器 (写保护)			
0x30	WEEKR	R/W	0x0001	周寄存器 (写保护)			
0x34	RTCCNTH	R/W	0x0000	校时次数寄存器高 16 位			
0x38	RTCCNTL	R/W	0x0000	校时次数寄存器低 16 位			
0x3C	RTCRd	R/W	0x0000	RTC 读控制寄存器			
0x40	RTCWr	R/W	0x0000	RTC 写控制寄存器			
0x50	DFAH	R/W	0x0000	RTC 硬件补偿常数项系数高位			
0x54	DFAL	R/W	0x0000	RTC 硬件补偿常数项系数低位			
0x58	DFBH	R/W	0x0000	RTC 硬件补偿一次项系数高位			
0x5C	DFBL	R/W	0x0000	RTC 硬件补偿一次项系数低位			

HT502X 用户手册

0x60	DFCH	R/W	0x0000	RTC 硬件补偿二次项系数高位
0x64	DFCL	R/W	0x0000	RTC 硬件补偿二次项系数低位
0x68	DFDH	R/W	0x0000	RTC 硬件补偿三次项系数高位
0x6C	DFDL	R/W	0x0000	RTC 硬件补偿三次项系数低位
0x70	DFEH	R/W	0x0000	RTC 硬件补偿四次项系数高位
0x74	DFEL	R/W	0x0000	RTC 硬件补偿四次项系数低位
0x78	Toff	R/W	0x0000	温度偏置寄存器
0x7C	MCONO1	R/W	0x0000	Mems 控制寄存器(保持默认值)
0x80	MCON23	R/W	0x0000	Mems 控制寄存器(保持默认值)
0x84	MCON45	R/W	0x8600	Mems 控制寄存器(保持默认值)
0x88	DFiH	R/W	0x0000	频率误差寄存器高5位
0x8C	DFiL	R/W	0x0000	频率误差寄存器低 16 位
0x100	CTRLByF1ash	R/*W		
0x104	LRCCOMAND	W	0	LRC 写关闭命令寄存器

辅助 RTC 模块	辅助 RTC 模块寄存器基地址: 0x4000C000								
偏移地址	名称	读写方式	复位值	功能描述					
0x200	SECR2	R/W	0x0000	辅助秒寄存器,写保护					
0x204	MINR2	R/W	0x0000	辅助分钟寄存器,写保护					
0x208	HOURR2	R/W	0x0000	辅助小时寄存器,写保护					
0x20C	DAYR2	R/W	0x0001	辅助天寄存器,写保护					
0x210	MONTHR2	R/W	0x0001	辅助月寄存器,写保护					
0x214	YEARR2	R/W	0x0000	辅助年寄存器,写保护					
0x218	WEEKR2	R/W	0x0001	辅助星期寄存器,写保护					
0x21C	RTC2CAL	R/W	0x7FFF	辅助 RTC2 校正寄存器					
0x220	RTCRD2	R/W	0x0000	辅助 RTC 读控制寄存器					
0x224	RTCWR2	R/W	0x0000	辅助 RTC 写控制寄存器					
0x228	FRE_LRC	R/W	0x0000	辅助 LRC 的频率测量寄存器					

16.11 特殊功能寄存器说明

RTCCON			基地址:	0x40000	0x4000C000				
(RTC 控制寄存器)		偏移地址:	00H						
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	v	X	X	v	v	X	
Write:	Λ	Λ	X	Λ	Λ	X	X	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	RTC2EN	RTC1EN	X		TOUT[2:0]		AutoC	
Write:	Λ	KICZEN	KICIEN	Λ		1001[2.0]		Autoc	

Reset: 0 0 0 0 0 0 0

位	功能描述							
	RTC 定时器 2 使能位							
RTC2EN	RTC2EN=0: RTC 定时器 2 被关闭							
	RTC2EN=	1: RTC	定时器 2	2被使能,溢出产生	生 RTC2IF 标志。			
	RTC 定时	器1使	能位					
RTC1EN	RTC1EN=	O: RTC	定时器1	被关闭				
	RTC1EN=	1: RTC	定时器1	被使能,溢出产生	生 RTC1IF 标志。			
	TOUT输出	比频率						
	Т	OUT[2:0)]	TOUT	TOUT (PLL 使能)			
	0	0	0	0	0			
	0	0	1	1	1			
TOUT[0.0]	0	1	0	32768Hz	32768Hz			
TOUT[2:0]	0	1	1	内部 RTC 1Hz	由高频补偿 128Hz 后得到的 1Hz			
	1	0	0	内部 RTC 2Hz	由高频补偿 128Hz 后得到的 2Hz			
	1	0	1	内部 RTC 4Hz	由高频补偿 128Hz 后得到的 4Hz			
	1	1	0	内部 RTC 8Hz	由高频补偿 128Hz 后得到的 8Hz			
	1	1	1	内部 RTC 1Hz	内部 RTC 1Hz			
	自动补偿控制位							
AutoC	0: 使能	自动补付	尝,此时	用户对 DFiH/ DFi	iL 写无效。			
	1: 手动	补偿,	补偿值(频率差值)由用户	自写入 DFiH/ DFiL 寄存器。			

RTCIE			基地址:	0x40000	000			
(RTC 中断使能寄存器)			偏移地址:	04H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	ALMIE	DTCOIL	DTC1 IE	MTHIE	DAVIE	IIDIE	MINIE	CECLE
Write:	ALMIE	RTC21E	RTC11E	MTHIE	DAYIE	HRIE	MINIE	SECIE
Reset:	0	0	0	0	0	0	0	0

位	功能描述
ALMIE	闹钟中断使能位
	0: 关闭
	1: 打开
RTC2IE	RTC 定时器 2 中断使能位
	0: 关闭
	1: 打开

RTC1IE	RTC 定时器 1 中断使能位
	0: 关闭
	1: 打开
MTHIE	RTC 月中断使能位
	0: 关闭
	1: 打开
DAYIE	RTC 日中断使能位
	0: 关闭
	1: 打开
HRIE	RTC 小时中断使能位
	0: 关闭
	1: 打开
MINIE	RTC 分钟中断使能位
	0: 关闭
	1: 打开
SECIE	RTC 秒中断使能位
	0: 关闭
	1: 打开

RTCIF			基地址:	0x40000	0000			
(RTC 中断标志寄存器)			偏移地址:	08H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	ALMIE	DTCOIL	RTC11F	МТИТЕ	DAVIE	IIDIE	MINIE	CECLE
Write:	ALMIF	RTC21F	RICIIF	MTHIF	DAYIF	HRIF	MINIF	SECIF
Reset:	0	0	0	0	0	0	0	0

位	功能描述
ALMIF	闹钟中断标志位
	0: 未产生中断
	1: 产生中断, 写 0 清 0
RTC2IF	RTC 定时器 2 中断标志位
	0: 未产生中断
	1: 产生中断,写 0 清 0
RTC1IF	RTC 定时器 1 中断标志位
	0: 未产生中断
	1: 产生中断, 写 0 清 0
MTHIF	RTC 月中断标志位
	0: 未产生中断

	1: 产生中断, 写 0 清 0
DAYIF	RTC 日中断标志位
	0: 未产生中断
	1: 产生中断, 写 0 清 0
HRIF	RTC 小时中断标志位
	0: 未产生中断
	1: 产生中断, 写 0 清 0
MINIF	RTC 分钟中断标志位
	0: 未产生中断
	1: 产生中断, 写 0 清 0
SECIF	RTC 秒中断标志位
	0: 未产生中断
	1: 产生中断, 写 0 清 0

ALMR (闹钟寄ィ	ケ鬼 \		基地址: 偏移地址:	0x40000 0CH	0000			
(阿ザ可介	す品 り Bit15	14	13 13	12	11	10	9	Bit8
	DICIO	14	10	12	11	10	3	DITO
Read:	X	X	X			ALMH[5:0]		
Write:	Λ	Λ	Λ			ALMIT[0.0]		
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X			ALMM	[[.0]		
Write:	Λ	Λ			ALMM	[0.0]		
Reset:	0	0	0	0	0	0	0	0

位	功能描述
ALMH[4:0]	闹钟中断小时设置,允许写入0-23以外的数,但是闹钟中断将永远不会产生。
ALMM[5:0]	闹钟中断分钟设置,允许写入0-59以外的数,但是闹钟中断将永远不会产生。
	说明: 当小时和分钟寄存器与闹钟寄存器中的值相匹配时(且秒寄存器为0),才
	会产生中断。

RTCTMR1	基地址			0x40000	0000			
(RTC 定时	(RTC 定时器 1 寄存器)			10H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				CNT [15.0]			
Write:				CNI L.	[0.6]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				CNT [7:0]			
Write:								

Reset: 0 0 0 0 0 0 0

位	功能描述
CNT[15:0]	最小分格为 1s,即最小可以每 1 秒产生一次中断,最大可以每 65536 秒产生
	一次中断,当计数溢出时,置位 RTC1IF 标志。
	CNT[15: 0]用来表示一个 16BIT 的二进制的无符号整数,如果设置 CNT[15:
	0]=00H,表示 RTC 内部的秒表功能中断每经过(00H+1)*1S =1*1S=1S 的计时周期
	后,置位 RTC1 IF 标志。
	说明: 当定时器溢出时,如果用户没有关闭定时器,则定时器将从0开始重
	新计数。

RTCTMR2 (RTC 定时	け器 2 寄存器	器)	基地址: 偏移地址:	0x40000 14H	0000			
	Bit15	14	13	12	11	10	9	Bit8
Read:				CNT [15.0]			•
Write:				CN1 L.	[5:8]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				CMT	7.0]			
Write:				CNT [1.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
CNT[15:0]	最小分格为 0.0625s, 即最小可以每 0.0625s 秒产生一次中断, 最大可以每
	4096 秒产生一次中断,当计数溢出时,置位 RTC2IF 标志。
	CNT[15:0]用来表示一个 16BIT 的二进制的无符号整数,如果设置 CNT[15:0]
	= 00H , 表示 RTC 内部的秒表功能中断每经过(00H+1)*0.0625S
	=1*0. 0625S=0. 0625S 的计时周期后,置位 RTC2IF 标志。
	说明: 当定时器溢出时,如果用户没有关闭定时器,则定时器将从0开始重
	新计数。

SECR			基地址:	0x40000	0000			
(RTC 秒寄存器)			偏移地址:	18H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	V	V	V	V	V	V	V
Write:	λ	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v			SEC[[E.O]		
Write:	X	X			SECL	[0.0]		
Reset:	0	0	0	0	0	0	0	0

位	功能描述
SEC[5:0]	秒计数器:
	可设范围: 0-59。写入 0-59 以外的任何数值,寄存器无法写入成功。

MINR			基地址:	0x40000	0000			
(RTC 分寄存器)			偏移地址:	1CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	V	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	X	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V			MTM	[.0]		
Write:	X	X			MIN[[0:0]		
Reset:	0	0	0	0	0	0	0	0

位	功能描述
MIN[5:0]	分计数器:
	可设范围: 0-59。写入 0-59 以外的任何数值,寄存器无法写入成功。

HOURR			基地址:	0x40000	0x4000C000				
(RTC 时管	存器)		偏移地址:	20H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	X			HOUR[4:0]			
Write:	Λ	Λ	Λ			11001([4.0]			
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
HOUR[4:0]	时计数器:
	可设范围: 0-23。写入 0-23 以外的任何数值,寄存器无法写入成功。

DAYR			基地址:	0x40000	0x4000C000			
(RTC 日嵜	存器)		偏移地址:	24H	24H			
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X

HT502X 用户手册

Write:									
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	v	V	V			DAV[4.0]			
Write:	Λ	Λ	Λ	DAY[4:0]					
Reset:	0	0	0	0	0	0	0	0	

位	功能描述						
DAY[4:0]	日计数器: 可设范围: 1-28/29/30/31。写入与年、月不匹配的任何数值,寄存器无法写入成功。						

MONTHR			基地址:	0x40000	0000			
(RTC 月奇	存器)		偏移地址:	28H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V		MONTH	[[2.0]	
Write:	X	X	X	X	MONTH[3:0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
MONTH[3:0]	月计数器:
	可设范围: 1-12。写入 1-12 以外的任何数值,寄存器无法写入成功。

YEARR			基地址: 0x4000C000					
(RTC 年寄	存器)		偏移地址:	2CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	v
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X				YEAR[6:0]			
Write:	Λ				ILAK[O.U]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
YEAR[6:0]	年计数器:

可设范围: 0-99。写入 0-99 以外的任何数值,寄存器无法写入成功。

WEEKR			基地址:	0x40000	0000				
(RTC 周嵜	存器)		偏移地址:	30H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	V	V	V	V	V		WEEK[0.0]		
Write:	X	X	X	X	X		WEEK[2:0]		
Reset:	0	0	0	0	0	0	0	0	

位	功能描述						
WEEK[2:0]	周计数器:						
	可设范围: 1-7。写入 1-7 以外的任何数值,寄存器无法写入成功。						

RTCCNTH (RTC 校时	RTCCNTH : (RTC 校时次数寄存器高 16 位)			0x40000 34H	0000				
		Bit15···Bit0							
Read:									
Write:		RTCCNTH[15:0]							
Reset:	0	0	0	0	0	0	0	0	

RTCCNTL (RTC 校时	 次数寄存器	暑低 16 位)	基地址: 偏移地址:		0x4000C000 38H				
	Bit15···Bit0								
Read:	DTCCNTL [15.0]								
Write:	RTCCNTL[15:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述						
RTCCNTH[15:0]	RTCCNTH 和 RTCCNTL 构成 32 位寄存器,用于记录校时次数,该寄存器只读。						
RTCCNTL[15:0]							

RTCRD			基地址:	0x40000	0x4000C000			
(RTC 读控制寄存器)			偏移地址:	5地址: 3CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X

Write:								
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	v	V	V	READFLA
Write:	Λ	λ	Λ	λ	λ	λ	Λ	G
Reset:	0	0	0	0	0	0	0	0

位	功能描述
READFLAG	RTC 指示寄存器读控制位,具体使用参见 16.7.1 RTC 指示寄存器读写流程

RTCWR (RTC 写哲	2制寄存器)		基地址: 偏移地址:	0x40000 40H	0000			
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	V	V	V	UDDATE
Write:	X	X	X	X	X	X	X	UPDATE
Reset:	0	0	0	0	0	0	0	0

位	功能描述
UPDATE	RTC 指示寄存器写控制位,具体使用参见 16.7.2 RTC 指示寄存器读写流程

DFAH			基地址:	0x40000	0x4000C000					
(常数项语	高7位)		偏移地址:	50H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:	X	X	X	X	X	X	X	X		
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	v				DFx[22:16]					
Write:	X		DFX[22.10]							
Reset:	0	0	0	0	0	0	0	0		

DFAL 基地址:					0x4000C000					
(常数项化	氐 16 位)		偏移地址:	54H						
	Bit15	14	13	12	12 11 10 9 Bit8					
Read:	DE_[15.0]									
Write:	DFx[15:8]									

Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:		DE [7.0]								
Write:		DFx[7:0]								
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
DFx[22:0]	DFAH/DFAL 构成 23 位有符号数, 为频率误差计算的常数项

DFBH (常数项语	高7位)		基地址: 偏移地址:	0x40000 58H	0000			
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X				DFx[22:16]			
Write:	Λ		DΓX[22.10]					
Reset:	0	0	0	0	0	0	0	0

DFBL			基地址:	0x40000	0000				
(常数项值	(常数项低 16 位)			5CH					
	Bit15	14	13	12	11	10	9	Bit8	
Read:		DD [15 0]							
Write:		DFx[15:8]							
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				DE [7.0]				
Write:	DFx[7:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DFx[22:0]	DFAH/DFAL 构成 23 位有符号数, 为频率误差计算的一次项

DFCH (常数项语	高7位)		基地址: 偏移地址:		0x4000C000 60H			
	Bit15	14	13	12	11	10	9	Bit8
Read:	v	v	v	v	v	v	v	v
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	X
Reset:	0	0	0	0	0	0	0	0

	Bit7	6	5	4	3	2	1	Bit0		
Read:	V DE-[22.16]									
Write:	Λ		DFx[22:16]							
Reset:	0	0	0	0	0	0	0	0		

DFCL				0x40000	0x4000C000					
(常数项值	氐 16 位)		偏移地址:	64H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:		DFx[15:8]								
Write:	DFX[15:8]									
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:				DE[7.0]					
Write:	DFx[7:0]									
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
DFx[22:0]	DFAH/DFAL 构成 23 位有符号数, 为频率误差计算的二次项

DFDH (常数项语	高7位)		基地址: 偏移地址:	0x40000 68H	0000			
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X				DFx[22:16]			
Write:	Λ	DI'X [22.10]						
Reset:	0	0	0	0	0	0	0	0

DFDL			基地址:	0x40000	000			
(常数项值	(常数项低 16 位)			6CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	DFx[15:8]							
Write:	DFX[15:8]							
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				DE[7.0]			
Write:	DFx[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DFx[22:0]	DFDH/DFDL 构成 23 位有符号数, 为频率误差计算的三次项

DFEH			基地址:	0x40000	0000			
(常数项语	高7位)		偏移地址:	70H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	v	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	X	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X				DFx[22:16]			
Write:	Λ		DIX [22.10]					
Reset:	0	0	0	0	0	0	0	0

DFEL (常数项低 16 位)			基地址: 偏移地址:	0x40000 74H	0000			
(1) 30-20	Bit15	14	13	12	11	10	9	Bit8
Read:	DD-[15.0]							
Write:	DFx[15:8]							
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				DE [7.0]			
Write:	DFx[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DFx[22:0]	DFEH/DFEL 构成 23 位有符号数, 为频率误差计算的四次项

Toff			基地址: 偏移地址:	0x40000	000				
(温度偏置	(温度偏置寄存器)			78H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:		DFx[15:8]							
Write:	DFX[15:8]								
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				DE[7.0]				
Write:	DFx[7:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
---	------

DFx[15:0] 16 位有符号数

DFiH			基地址:	0x40000	000					
(常数项语	高5位)		偏移地址:	88H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:	v	X	X	X	X	X	X	X		
Write:	X	Λ	Λ	Λ	Λ	Λ	Λ	Λ		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	v	v	v		DD: [00 16]					
Write:	X	X	X		DFi[20:16]					
Reset:	0	0	0	0	0	0	0	0		

DFiL (常数项值	氐7位)		基地址: 偏移地址:	0x40000 8CH	0000			
	Bit15	14	13	12	11	10	9	Bit8
Read:				DFi[15.0]			
Write:				DΓ1 [.	[5:8]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				DE: [7.0]			
Write:				DFi[1.0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DFi[22:0]	23 位寄存器, 最高位为符号位。
	当 AutoC 为 0 时,此时用户对 DFiH/ DFiL 写无效。
	当 AutoC 为 1 时,手动补偿方式,补偿值由用户写入 DFiH/ DFiL 寄存器。用户必
	须先写高位,再写低位(即按照 DFiH—DFiL 顺序写寄存器)。

CTRLByFlash			基地址: 0 偏移地址:)x4000C000				
			‴′多地址:	100H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				FLASH	[7.0]			
Write:				ГГЧЭП	[1:0]			
Reset:	X	X	X	X	X	X	X	X
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	X	Dagawad	AUTOREL	LRC_CTR	X
Write:	Λ	Λ	Λ	Λ	Reseved	OAD	L	Λ
Reset:	X	X	X	X	X	X	X	X

位	功能描述
FLASH[7:0]	代码空间加密位
	如果 Flash[7:0]=0xFF,则 Flash 不加密
	其他: Flash 加密,该寄存器位只能读,不能写
RTCRST	=1, LBOR, POR 可以复位 RTC 计时寄存器
	=0,LBOR,POR 不能复位 RTC 计时寄存器 可以写
AUTORELOAD	自动装载使能位
	=1, 自动装载功能使能
	=0, 自动装载功能屏蔽
	该寄存器位只能读,不能写
LRC_CTRL	低频 RC 控制位
	=1: 打开低频 RC
	=0: 关闭低频 RC
	注:在 LRC_CTRL 等于 0 情况下,用户还应向 LRCCOMAND 寄存器先写入 0x5555 再
	写入 0xAAAA,才能真正关闭 LRC。
	该寄存器位可读可写。

注: 其他位不可以修改,保持默认值。该寄存器上电初始值等于 0XFC0 地址控制字的值

LRCCOMMAN	D	基地址: 0x4000C000						
(LRC 写关	闭命令寄存	字器)	偏移地址:	104H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				LRCCOMMA	ND[15.0]			
Write:				LKCCOMMA	[19.6]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				I DCCOMM	NID[7.0]			
Write:		LRCCOMMAND[7:0]						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
Bit[15:0]	在 LRC_CTRL 等于 0 情况下,向 LRCCOMAND 寄存器先写入 0x5555 再写入 0xAAAA,
	才能真正关闭LRC。

以下寄存器为辅助 RTC 时钟寄存器,这套时钟是以 LRC 为时钟源头:

SECR2			基地址:	址: 0x4000C000				
(辅助 RT	C 秒寄存器))	偏移地址:	200H	200Н			
	Bit15	14	13	12	12 11 10 9 Bit8			
Read:	X	X	X	X	X	X	X	X

Write:										
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	V	V			CEC [E.0]				
Write:	Λ	Λ		SEC[5:0]						
Reset:	0	0	0	0	0	0	0	0		

位	功能描述						
SEC[5:0]	辅助秒计数器(以 LRC 为时钟基准):						
	可设范围: 0-59。写入 0-59 以外的任何数值,对该寄存器没有影响。						

MINR2 (辅助 RT	C 分寄存器))	基地址: 偏移地址:		0x4000C000 204H				
	Bit15	14	13	12	11	10	9	Bit8	
Read:	V	V	V	V	V	V	V	V	
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	V	V			MTM	[.0]			
Write:	X	X	MIN[5:0]						
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
MIN[5:0]	辅助分计数器:
	可设范围: 0-59。写入 0-59 以外的任何数值,对该寄存器没有影响。

HRR2			基地址:	0x40000	0x4000C000				
(辅助 RTG	C时寄存器)	偏移地址:	208H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	v	v	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	X	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	V	V	V			HOUD [4.0]			
Write:	X	X	X			HOUR[4:0]			
Reset:	0	0	0	0	0	0	0	0	

位	功能描述					
HOUR[4:0]	辅助时计数器(以 LRC 为时钟基准):					
	可设范围: 0-23。写入 0-23 以外的任何数值,对该寄存器没有影响。					

DAYR2			基地址: 偏移地址:	0x40000	000			
(辅助 RT	(辅助 RTC 日寄存器)			20CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	v			DAV[4.0]		
Write:	X	X	X			DAY[4:0]		
Reset:	0	0	0	0	0	0	0	0

位	功能描述					
DAY[4:0]	辅助日计数器(以 LRC 为时钟基准):					
	可设范围: 1-28/29/30/31。写入与年、月不匹配的任何数值,对该寄存器没有影					
	响。					

MOUTHR2			基地址:	0x40000	0000			
(辅助 RTC 月寄存器)			偏移地址:	210H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	v	v
Write:	Λ	Λ	Λ	Λ	Λ	Λ	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	MONTHEO			
Write:	X	X	X	X	MONTH[3:0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
MONTH[3:0]	辅助月计数器(以LRC为时钟基准):
	可设范围: 1-12。写入 1-12 以外的任何数值,对该寄存器没有影响

YEARR2			基地址:	0x40000	0x4000C000			
(辅助 RTC 年寄存器)			偏移地址:	214H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	v	V	v	v	v	V	v	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0

Read:	v				VEAD[6.0]			
Write:	Λ		YEAR[6:0]					
Reset:	0	0	0	0	0	0	0	0

位	功能描述
YEAR[6:0]	辅助年计数器(以 LRC 为时钟基准):
	可设范围: 0-99。写入 0-99 以外的任何数值,对该寄存器没有影响。

WEEKR2			基地址:	0x40000	0000			
(辅助 RTC 周寄存器)			偏移地址:	218H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	v	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	V		WEEK[0.0]	
Write:	X	X	X	X	X		WEEK[2:0]	
Reset:	0	0	0	0	0	0	0	0

位	功能描述					
WEEK[2:0]	辅助周计数器(以 LRC 为时钟基准):					
	可设范围: 1-7。写入 1-7 以外的任何数值,对该寄存器没有影响。					

RTC2CAL			基地址:	0x40000	000			
(辅助 RTC 校正寄存器)			偏移地址:	21CH				
	Bit23	22	21	20	19	18	17	Bit16
Read:	X	X	X	X	X	X	X	CAL16
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	CALTO
Reset:	0	1	1	1	1	1	1	1
	Bit15	14	13	12	11	10	9	Bit8
Read:	CAL 1E	CAL 14	CAL 12	CAL12	CAL 11	CAL 10	CALO	CAL8
Write:	CAL15	CAL14	CAL13	CALIZ	CAL11	CAL10	CAL9	CALO
Reset:	1	1	1	1	1	1	1	1
	Bit7	6	5	4	3	2	1	Bit0
Read:	CALT	CALC	CALE	CALA	CALO	CALO	CALI	CALO
Write:	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CALO
Reset:	1	1	1	1	1	1	1	1

位		功能描述	
CAL[160]	辅助 RTC 的校正寄存器,	用于配置秒脉冲的时间基准,	由于 LRC 时钟的初值不准

确,通过此寄存器来配置决定计数多少个 LRC 的时钟为 1s 例:

如果该寄存器用户配置为 2000,则代表计数 2000 个 LRC 的时钟就产生一个秒脉冲

RTCRD2 (辅助 RTC 读控制寄存器)			基地址: 偏移地址:	0x40000 220H	0000			
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	V	V	V	READFLA
Write:	X	X	X	X	X	X	X	G
Reset:	0	0	0	0	0	0	0	0

位	功能描述					
READFLAG	RTC 指示寄存器读控制位,	具体使用参见	RTC 指示寄存器读写流程			

RTCWR2			基地址:	0x40000	0x4000C000				
(辅助 RTC 写控制寄存器)			偏移地址:	224H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	V	X	X	X	X	X	X	
Write:	Λ	X	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	V	V	v	V	V	UDDATE	
Write:	Λ	Λ	X	X	X	X	X	UPDATE	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
UPDATE	RTC 指示寄存器写控制位,具体使用参见 RTC 指示寄存器读写流程

FRE_LRC (RTC2 校正寄存器自动测试)			基地址: 偏移地址:	0x40000 228H	0000			
	Bit23	22	21	20	19	18	17	Bit16
Read:	v	V	v	v	v	v	v	LRC16
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	LKC10

Reset:	0	0	0	0	0	0	0	0
	Bit15	14	13	12	11	10	9	Bit8
Read:	LRC15	LDC14	LRC13	LDC19	LRC11	LDC10	I DCO	LRC8
Write:	LKC19	LRC14	LKC15	LRC12	LKCII	LRC10	LRC9	LRCO
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	LDC7	I DCG	LDCE	I DC4	I DC2	I DC0	I DC1	I DCO
Write:	LRC7	LRC6	LRC5	LRC4	LRC3	LRC2	LRC1	LRC0
Reset:	0	0	0	0	0	0	0	0

位	功能描述
LRC[160]	LRC 频率寄存器:
	该寄存器主要为配合 RTC2CAL 使用,使用 CLKCTRL1. 14 使能测 LRC 频率功能以后,芯片会以 LRC 时钟作为基础时钟来测量芯片的第一套 RTC 秒脉冲,测得值会直接写入 FRE_LRC 寄存器,也就是 LRC 的时钟频率,推荐用户直接将该值写入 RTC2CAL,通过这种方式,可以使辅助 RTC 的寄存器和第一套的 RTC 寄存器尽可能的同步。

17 TBS 模块

17.1 概述

芯片可以对温度和 5 路 ADC (VDD, VBAT, ADCINO, ADCIN1, ADCIN2) 进行定量的测量,并将测量的结果保存在相应的寄存器中。

17.2 功能描述

TBS主要包括两部分功能:

- 测量 IC 基底的温度
- 测试5路 ADC 电压 (VDD, VBAT, ADCINO, ADCIN1, ADCIN2)

VBAT 检测内阻为30K(R_{BAT1}为24K,R_{BAT2}为6K), VDD 检测内阻为42K(R_{VDD1}为36K,R_{VDD2}为6K)。 ADCINO, ADCIN1, ADCIN2内部均无内阻。

17.3 特殊功能寄存器列表

TBS 模块寄存	TBS 模块寄存器基地址: 0x4000E000								
偏移地址	名称	读写方式	复位值	功能描述					
ООН	TBSCON	R/W	0x0101	TBS设置寄存器					
04H	TBSPRD	R/W	0x0000	TBS打开周期设置寄存器					
08Н	TBSIE	R/W	0x0000	TBS中断使能寄存器					
ОСН	TBSIF	R/W	0x0000	TBS中断标志寄存器					
10H	TMPDAT	R/W	0x0000	温度测量输出值					
14H	VBATDAT	R/W	0x0000	电池电压测量输出值					
18H	VDDDAT	R/W	0x0000	电源电压测量输出值					
1CH	ADCODAT	R/W	0x0000	ADC通道0测量输出值					
20Н	ADC1DAT	R/W	0x0000	ADC通道1测量输出值					
24H	ADC2DAT	R/W	0x0000	ADC通道2测量输出值					
28Н	VBATCMP	R/W	0x0000	电池电压比较寄存器					
2CH	_	-	_						
34H	ADCOCMP	R/W	0x0000	ADC0比较值,16位有符号数,					
38H	ADC1CMP	R/W	0x0000	ADC1比较值,16位有符号数					

17.4 特殊功能寄存器说明

TBSCON			基地址:	基地址: 0x4000E000					
(TBS 设置寄存器)			偏移地址:	00H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	v	ADC1CMP	ADCOCMP	X	Filter1	Filter0	
Write:	Λ	Λ	X	En	En	Λ	riiteii	riftero	
Reset:	0	0	0	0	0	0	0	1	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	DCDV	VbatCMP	ADC9E ₂₂	ADC1En	ADC0En	VDDEn	Vho+En	TPSEn	
Write:	KSKV	RSRV En ADC2En	ADCIEN	ADCUEN	VDDEII	VbatEn	irsen		
Reset:	0	0	0	0	0	0	0	1	

位	功能描述
	此位只在 ADC1En 使能的情况下才有效
ADC1CMPEn	ADC1CMPEn =0: 关闭 ADC1DAT 与 ADC1CMP 两个寄存器的比较
	ADC1CMPEn =1: 使能 ADC1DAT 与 ADC1CMP 两个寄存器的比较
	此位只在 ADCOEn 使能的情况下才有效
ADCOCMPEn	ADCOCMPEn =0: 关闭 ADCODAT 与 ADCOCMP 两个寄存器的比较
	ADCOCMPEn =1: 使能 ADCODAT 与 ADCOCMP 两个寄存器的比较
Filter[10]	只对温度测量:

	Filter [10] =00b: 对 ADC 输出的值经数字直接输出						
	Filter [10] =01b: 对 ADC 输出的 2 次数值做平均						
	Filter [10] =10b: 对 ADC 输出的 4 次数值做平均						
	Filter [10] =11b; 对 ADC 输出的 8 次数值做平均						
RSRV	建议保留此位为 0.						
	此位只在 VbatEn 使能的情况下才有效						
VbatCMPEn	VbatCMPEn=0: 关闭 VBATDAT 与 VBATCMP 两个寄存器的比较						
	VbatCMPEn=1: 使能 VBATDAT 与 VBATMP 两个寄存器的比较						
	ADC2En =0: ADC 通道 2 关闭						
ADC2En	ADC2En =1: ADC 通道 2 使能						
	注:如使用该功能,用户需在GPIO模块将对应Pin配置为ADC输入Pin才行						
	ADC1En =0: ADC 通道 1 关闭						
ADC1En	ADC1En =1: ADC 通道 1 使能						
	注:如使用该功能,用户需在GPIO模块将对应Pin配置为ADC输入Pin才行						
	ADCOEn =0: ADC 通道 0 关闭						
ADC0En	ADCOEn =1: ADC 通道 0 使能						
	注:如使用该功能,用户需在GPIO模块将对应Pin配置为ADC输入Pin才行						
VDDEn	VDDEn =0: VDD 测量关闭						
VDDEII	VDDEn =1: VDD 测量使能						
VbatEn	VbatEn =0: 电池电压测量关闭						
VDATEN	VbatEn =1: 电池电压测量使能						
TDCE.	TDCEn =0: 温度测量关闭						
TPSEn	TDCEn =1: 温度测量使能						

TBSPRD			基地址:	0x4000E	E000			
(TBS 打开周期设置寄存器)			偏移地址:	04H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	ADC2PRD	ADC2PRD	ADC1PRD	ADC1PRD
Write:	Λ	Λ	Λ	Λ	1	0	1	0
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	ADC0PRD	ADCOPRD	VDDDDD1	MUUUUUU	VbatPRD	VbatPRD	TDCDDD1	TDCDDDO
Write:	1	0	VDDPRD1	VDDPRD0	1	0	TPSPRD1	TPSPRD0
Reset:	0	0	0	0	0	0	0	0

位		功能描述
ADC2PRD[10]	ADC2PRD[10]=00b	ADC 通道 2 1s 打开一次
	ADC2PRD[10]=01b	ADC 通道 2 4s 打开一次
ADC2FRD[10]	ADC2PRD[10]=10b	ADC 通道 2 8s 打开一次
	ADC2PRD[10]=11b	ADC 通道 2 32s 秒打开一次
ADC1PRD[10]	ADC1PRD[10]=00b	ADC 通道 1 1s 打开一次
	ADC1PRD[10]=01b	ADC 通道 1 4s 打开一次

	ADC1PRD[10]=10b ADC 通道 1 8s 打开一次
	ADC1PRD[10]=11b ADC 通道 1 32s 打开一次
ADCODDD[1 0]	ADCOPRD[10]=00b ADC 通道 0 1s 打开一次
	ADCOPRD[10]=01b ADC 通道 0 4s 打开一次
ADCOPRD[10]	ADCOPRD[10]=10b ADC 通道 0 8s 打开一次
	ADCOPRD[10]=11b ADC 通道 0 32s 打开一次
	VDDPRD [10]=00b VDD 检测 1s 打开一次
WDDDDD[1 0]	VDDPRD [10]=01b VDD 检测 4s 打开一次
VDDPRD[10]	VDDPRD [10]=10b VDD 检测 8s 打开一次
	VDDPRD [10]=11b VDD 检测 32s 打开一次
	VbatPRD [10]=00b Vbat 检测 1s 打开一次
VI + DDD [1 0]	VbatPRD [10]=01b Vbat 检测 4s 打开一次
VbatPRD[10]	VbatPRD [10]=10b Vbat 检测 8s 打开一次
	VbatPRD [10]=11b Vbat 检测 32s 打开一次
	TPSPRD [10]=00b TPS 检测 1s 打开一次
TDCDDD[1 0]	TPSPRD [10]=01b TPS 检测 8s 打开一次
TPSPRD[10]	TPSPRD [10]=10b TPS 检测 32s 打开一次
	TPSPRD [10]=11b TPS 检测 1/8s 打开一次(打开频率 8Hz,即 1s 打开 8 次)

注:推荐正常模式下, TMPPRD 打开频率都为最快。 低功耗模式下,建议 8s 及以上打开一次。 TPS 分时开启:每次开启的峰值功耗为 345uA,持续时间为 7ms,各 ADC 通道采集和温度通道一样。 例如 1s 分时开启示意图如下

TPS 分时1s开启一次的 功耗&开启时间 示意图

TBSIE			基地址:	0x4000F	E000			
(TBS 中断使能寄存器)			偏移地址:	08H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	ADC1CMP	ADCOCMP
Write:	Å	Λ	Λ	Λ	Λ	Λ	IE	IE
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	DCDV	VbatCM	ADC2IE	ADC11E	ADCOIE	VDDIE	VbatIE	TPSIE
Write:	RSRV	PIE	ADC21E	ADCITE	ADCUTE	VDDIE	voatie	IFSIE
Reset:	0	0	0	0	0	0	0	0

位	功能描述

RSRV	建议保持此位为 0
ADC1CMPIE	ADC1CMPIE =0: ADC1 测量比较功能中断关闭
ADCICMFIE	ADC1CMPIE =1: ADC1 测量比较功能中断使能
ADCOCMPIE	ADCOCMPIE =0: ADCO 测量比较功能中断关闭
ADCOCMFIE	ADCOCMPIE =1: ADCO 测量比较功能中断使能
VbatCMPIE	VbatCMPIE=0: 电池电压比较功能中断关闭
VDatCMFIE	VbatCMPIE=1: 电池电压比较功能中断使能
ADC2IE	ADC2IE=0: ADC 通道 2 检测中断关闭
ADC21E	ADC2IE=1: ADC 通道 2 检测中断使能
ADC1IE	ADC1 IE=0: ADC 通道 1 检测中断关闭
ADCITE	ADC1 IE=1: ADC 通道 1 检测中断使能
ADCOIE	ADC0IE=0: ADC 通道 0 检测中断关闭
ADCUTE	ADCOIE=1: ADC 通道 0 检测中断使能
VDDIE	VDDIE=0: VDD 测量中断关闭
VDDIE	VDDIE=1: VDD 测量中断使能
What ID	VbatIE=0: 电池电压测量中断关闭
VbatIE	VbatIE=1: 电池电压测量中断使能
TDCIE	TPSIE =0: 温度测量中断关闭
TPSIE	TPSIE =1: 温度测量中断使能

TBSIF			基地址:	0x4000H	E000			
(TBS 中断标志寄存器)			偏移地址:	0CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	X	V	ADC1CMP	ADCOCMP
Write:	X	Λ	X	X	Λ	X	IF	IF
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	VbatCM	ADC21F	ADC1 IE	ADCOTE	VDDIF	What IE	TDCIE
Write:	X	PIF	ADC21F	ADC11F	ADCOIF	אועטיי	VbatIF	TPSIF
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	ADC1CMPIF =0: 未发生 ADC1 测量比较功能中断
ADC1CMPIF	ADC1CMPIF =1: 发生 ADC1 测量比较功能中断
	写 0 清 0
	ADCOCMPIF =0: 未发生 ADCO 测量比较功能中断
ADCOCMPIF	ADCOCMPIF =1: 发生 ADCO 测量比较功能中断
	写 0 清 0
	VbatCMPIF=0: 未发生电池电压比较功能中断
VbatCMPIF	VbatCMPIF=1: 发生电池电压比较功能中断
	写 0 清 0
ADC2IF	ADC2IF=0: 未发生 ADC 通道 2 检测中断

	ADC2IF=1: 发生 ADC 通道 2 检测中断
	写 0 清 0
	ADC1IF=0: 未发生 ADC 通道 1 检测中断
ADC1IF	ADC1IF=1: 发生 ADC 通道 1 检测中断
	写 0 清 0
	ADCOIF=0: 未发生 ADC 通道 0 检测中断
ADCOIF	ADCOIF=1: 发生 ADC 通道 0 检测中断
	写 0 清 0
	VDDIF=0:未发生 VDD 测量中断
VDDIF	VDDIF=1: 发生 VDD 测量中断
	写 0 清 0
	VbatIF=0: 未发生电池电压测量中断
VbatIF	VbatIF=1: 发生电池电压测量中断
	写 0 清 0
	TPSIF =0: 未发生温度测量中断
TPSIF	TPSIF =1: 发生温度测量中断
	写 0 清 0

TMPDAT (温度测量输出寄存器)			基地址: 偏移地址:	0x4000E 10H	0000			
		Bit15···Bit0						
Read:		DAT[15:0]						
Write:	X	X X X X X X X X						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[15:0]	温度测量输出寄存器,16位有符号数

温度计算公式:

温度 Tr =12.9852 - TMPDAT *0.0028

其中: Tr为实际的温度(℃)

VBATDAT			基地址:	0x4000E	0x4000E000			
(电池电压测量输出寄存器)			偏移地址:	14H				
	Bit15···Bit0							
Read:		DAT[15:0]						
Write:	X	X X X X X X X X						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[15:0]	电池电压测量输出寄存器,16位有符号数

电池电压计算公式:

VBAT = 0.0897*VBATDAT+2946.2662; 其中: VBAT为实际电池电压 (mV)

VDDDAT (电源电压测量输出寄存器)			基地址: 偏移地址:	0x4000F 18H	E000			
		Bit15···Bit0						
Read:		DAT[15:0]						
Write:	X	X X X X X X X X						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[15:0]	电源电压 VDD 测量输出寄存器, 16 位有符号数

VDD 电压计算公式:

VDD = 0.0897*VDDDAT + 2998.1189;

其中: VDD为实际VDD电压 (mV)

ADCODAT			基地址:		0x4000E000				
(ADCO 测量输出寄存器)			偏移地址:	1CH					
		Bit15···Bit0							
Read:		DAT[15:0]							
Write:	X X X X X X X X				X				
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[15:0]	ADC 通道 0 测量输出寄存器, 16 位有符号数

ADC 通道 0 测量电压计算公式:

VADCIN0 = 0.0128*ADC0DAT+425.5623;

其中: VADCIN0为实际ADC测量电压(mV)

ADC1DAT			基地址:	0x4000E	0x4000E000				
(ADC1 测量输出寄存器)			偏移地址:	20H					
	Bit15···Bit0								
Read:		DAT[15:0]							
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[15:0]	ADC 通道 1 测量输出寄存器, 16 位有符号数

ADC 通道 1 测量电压计算公式同通道 0。

ADC2DAT (ADC2 测量输出寄存器)			基地址: 偏移地址:	0x4000E 24H	0000			
		Bit15···Bit0						
Read:		DAT[15:0]						
Write:	X	X X X X X X X X						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[15:0]	ADC 通道 2 测量输出寄存器, 16 位有符号数

ADC 通道 2 测量电压计算公式同通道 0。

VBATCMP (电池电压比较寄存器)			基地址: 偏移地址:		0x4000E000 28H				
		Bit15···Bit0							
Read:		DAT[15:0]							
Write:	X	X X X X X X X X X							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[15:0]	电池电压测量比较寄存器,16位有符号数

当使能了电池电压测量(VBATEn)功能并且使能电池电压比较中断(VbatCMPIE)后,VBATDAT 低于 VDRCMP 时将产生中断。

ADC0CMP			基地址:	0x4000E	E000			
(ADCO 测量比较寄存器)			偏移地址:	34H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	DFx15	DFx14	DFx13	DFx12	DFx11	DFx10	DFx9	DFx8
Write:	DLX19	DI'X14	סוגיום	DIXIZ	DIXII	סואוט	פאיום	סגיוע
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	DE7	DEG	DE E	DE 4	DE**3	DFx2	DE _{**} 1	DEO
Write:	DFx7	DFx6 D	DFx5	DFx4	DFx3	DF XZ	DFx1	DFx0
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DFx[150]	ADCO 测量比较寄存器, 16 位有符号数

当 ADCO 测量值大于 ADCOCMP 寄存器值时,产生中断。

ADC1CMP			基地址:	0x4000E	E000			
(ADC1 测量比较寄存器)			偏移地址:	38H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	DFx15	DE14	DFx13	DFx12	DFx11	DFx10	DFx9	DFx8
Write:	DLX19	x15 DFx14	סראוס	DFX12	DIXII	DIXIO	פאיום	υгхо
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	DE7	DEG	DEE	DE 4	DE9	DE0	DE1	DE0
Write:	DFx7	DFx6	DFx5	DFx4	DFx3	DFx2	DFx1	DFx0
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DFx[150]	ADC1 测量比较寄存器, 16 位有符号数

当 ADC1 测量值小于 ADC1CMP 寄存器值时,产生中断。

18 AES&Ghash&RAND 模块

18.1 AES&Ghash&RAND 概述

HT502X 内部集成了 AES 硬件加密/解密硬件加速器模块,符合 FIPS197 标准,AES 的密钥长度支持 128bit,192bit,256bit。通过该硬件模块和 Ghash 乘法器模块,大大的缩短了了用户软件实现 AES 算法以及 EBC/CBC/CTR/GCM/GMAC 多种不同的加密/解密模式的时间。

HT502X 内部还集成了随机数发生器模块,一次产生 32 bits 随机数,可用于 ECC 加密中随机数的产生。

18.2 框图

18.3 特殊功能寄存器列表

AES 模块寄存	AES 模块寄存器基地址: 0x40012000									
偏移地址	名称	读写方式	复位值	功能描述						
ООН	AESCON	R/W	0x0000	AES配置寄存器						
04H	AESSTR	W	0x0000	AES启动命令寄存器						
08Н	AESFLG	R	0x0000	AES标志寄存器						
ОСН	AESINLL	R/W	0x00000000	AES输入待加/解密数据						
10H	AESINML	R/W	0x00000000	AES输入待加/解密数据						
14H	AESINHM	R/W	0x00000000	AES输入待加/解密数据						
18H	AESINHH	R/W	0x00000000	AES输入待加/解密数据						
1CH	AESOUTLL	R/W	0x00000000	AES输出已加/解密数据						

20Н	AESOUTML	R/W	0x00000000	AES输出已加/解密数据
24Н	AESOUTHM	R/W	0x00000000	AES输出已加/解密数据
28Н	AESOUTHH	R/W	0x00000000	AES输出已加/解密数据
2CH	AESKEYO	R/W	0x00000000	AES密钥寄存器
30H	AESKEY1	R/W	0x00000000	AES密钥寄存器
34H	AESKEY2	R/W	0x00000000	AES密钥寄存器
38H	AESKEY3	R/W	0x00000000	AES密钥寄存器
3СН	AESKEY4	R/W	0x00000000	AES密钥寄存器
40H	AESKEY5	R/W	0x00000000	AES密钥寄存器
44H	AESKEY6	R/W	0x00000000	AES密钥寄存器
48H	AESKEY7	R/W	0x00000000	AES密钥寄存器

RAND 模块寄存	RAND 模块寄存器基地址: 0x40012080									
偏移地址 名称 读写方式 复位值 功能描述										
ООН	RANDSTR	R/W	0x0000	真随机数启动命令寄存器						
04H	RANDDAT	R/W	0x00000000	真随机数数据寄存器						

GHASH 模块寄	GHASH 模块寄存器基地址: 0x40012100									
偏移地址	名称	读写方式	复位值	功能描述						
ООН	GHASHSTR	W	0x0000	GHASH启动命令寄存器						
04H	GHASHFLG	R	0x0000	GHASH标志寄存器						
08H	INPUT1LL	R/W	0x00000000	GHASH输入数据1寄存器						
ОСН	INPUT1ML	R/W	0x00000000	GHASH输入数据1寄存器						
10H	INPUT1HM	R/W	0x00000000	GHASH输入数据1寄存器						
14H	INPUT1HH	R/W	0x00000000	GHASH输入数据1寄存器						
18H	INPUT2LL	R/W	0x00000000	GHASH输入数据2寄存器						
1CH	INPUT2ML	R/W	0x00000000	GHASH输入数据2寄存器						
20H	INPUT2HM	R/W	0x00000000	GHASH输入数据2寄存器						
24H	INPUT2HH	R/W	0x00000000	GHASH输入数据2寄存器						
28H	OUTPUTLL	R/W	0x00000000	GHASH输出数据寄存器						
2CH	OUTPUTML	R/W	0x00000000	GHASH输出数据寄存器						
30H	OUTPUTHM	R/W	0x00000000	GHASH输出数据寄存器						
34H	OUTPUTHH	R/W	0x00000000	GHASH输出数据寄存器						
38H	AESGHASHIE	R/W	0x0000	AES, Ghash中断使能寄存器						
3СН	AESGHASHIF	R/W	0x0000	AES, Ghash中断标志寄存器						

18.4 特殊功能寄存器说明

AESCON			基地址:	0x40012	2000			
(AES 配置寄存器)			偏移地址:	00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	V	KEA MOI	DE[1.0]	MODE
Write:	X	X	X	X	X	KEY_MOI	DE[I.U]	MODE
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	密钥模式选择:
	00: AES-128,密钥为 128bits(KEY0—KEY3)KEY0 为高位,KEY3 为低位
KEY_MODE[1:0]	01: AES-192,密钥为 192bits(KEY0—KEY5)KEY0 为高位,KEY5 为低位
	10: AES-256,密钥为 256bits(KEY0—KEY7)KEY0 为高位,KEY7 为低位
	11: AES-256,密钥为 256bits(KEY0—KEY7)KEY0 为高位,KEY7 为低位
	编码/解码模式选择控制:
MODE	0: 加密
	1: 解密

AESSTR	TR 基地址:				0x40012000				
(AES 启动寄存器) 偏移			偏移地址:	04H					
		Bit15···Bit0							
Read:				Σ	Κ				
Write:		DAT[15:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[15:0]	寄存器写入 0x8329,则启动 AES 加密/解密
	该控制寄存器只能写入,不能读取。该寄存器读出永远为 0
	寄存器写入 0x8581, 当 Key 不变的时候,启动明文编码,这种方式可以提升 AES
	计算时间,当用户配置的 KEY 不修改的时候,不需要反复的计算 AES 运算中需要的
	KEY 转换部分。

AESFLG (AES 标志寄存器)		基地址: 偏移地址:		0x40012000 08H				
	Bit15	14	13	12	11	10	9	Bit8

Read:	v	v	v	v	v	v	v	v
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	v	v	v	V	v	BUSY
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述
BUSY	1: AES 加密/解密未完成
	0: AES 加密/解密完成
	该寄存器位只读
	当加密/解密完成的时候,会产生相应的中断标志,如果中断使能打开,会进入相
	应的中断。AES 对应中断向量号为 1。

AESINLL (AES 数据输入中低位)			基地址: 偏移地址:		0x40012000 0CH			
				Bit31	··BitO			
Read:				DATE	01.07			
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	AES 输入待加密/解密数据 128bit 的 bit0-bit31

AESINML			基地址:	0x40012	0x40012000			
(AES 数据输入中低位)			偏移地址:	18H				
				Bit31	∙•Bit0			
Read:				DATE	21.07			
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	AES 输入待加密/解密数据 128bit 的 bit32-bit63

AESINHM		基地址:	0x40012000
(AES 数据输入中高位)		偏移地址:	10H
			Bit31···Bit0
Read:			DAT[31:0]

Write:								
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	AES 输入待加密/解密数据 128bit 的 bit64-bit95

AESINHH			基地址:	0x40012	0x40012000			
(AES 数据输入高位)			偏移地址:	14H				
				Bit31	··BitO			
Read:				DATE	21.07			
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	AES 输入待加密/解密数据 128bit 的 bit96-bit127

AESOUTLL (AES 数据输出低位)			基地址: 偏移地址:		0x40012000 1CH			
				Bit31	∙•BitO			
Read:				DATE	01.07			
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	AES 输出已加密/解密数据 128bit 的 bit0-bit31

AESOUTML (AES 数据输出中低位)			基地址: 偏移地址:		0x40012000 20H				
		Bit31···Bit0							
Read:		DAMEOT OF							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	AES 输出已加密/解密数据 128bit 的 bit32-bit63

AESOUTHM	基地址:	0x40012000
(AES 数据输出中高位)	偏移地址:	24Н

	Bit31···Bit0									
Read:										
Write:		DAT[31:0]								
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
DAT[31:0]	AES 输出已加密/解密数据 128bit 的 bit64-bit95

AESOUTHH (AES 数据输出高位)			基地址: 偏移地址:		0x40012000 28H				
		Bit31···Bit0							
Read:		DAMEOT OF							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	AES 输出已加密/解密数据 128bit 的 bit96-bit127

AESKEY0			基地址:	0x40012	2000					
(AES 密钥 0)			偏移地址:	2CH						
		Bit31···Bit0								
Read:		DATES A								
Write:		DAT[31:0]								
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
DAT[31:0]	AES 密钥 128bit 的 bit96-bit127,该寄存器可以写入也可以读出
	AES 密钥 192bit 的 bit160-bit191,该寄存器可以写入也可以读出
	AES 密钥 256bit 的 bit224-bit256,该寄存器可以写入也可以读出

AESKEY1	EY1 基地址:				2000					
(AES 密钥 1)			偏移地址:	30H						
		Bit31···Bit0								
Read:		DAT[01_0]								
Write:		DAT[31:0]								
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
DAT[31:0]	AES 密钥 128bit 的 bit64-bit95,该寄存器可以写入也可以读出

AES 密钥 192bit 的 bit128-bit159, 该寄存器可以写入也可以读出 AES 密钥 256bit 的 bit192-bit223, 该寄存器可以写入也可以读出

AESKEY2 (AES 密钥 2)			基地址: 偏移地址:		0x40012000 34H				
		Bit31···Bit0							
Read:		DATE OF O							
Write:	DAT[31:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	AES 密钥 128bit 的 bit32-bit63,该寄存器可以写入也可以读出
	AES 密钥 192bit 的 bit96-bit127,该寄存器可以写入也可以读出
	AES 密钥 256bit 的 bit160-bit191,该寄存器可以写入也可以读出

AESKEY3 (AES 密钥 3)			基地址: 偏移地址:	0x40012000 38H					
		Bit31···Bit0							
Read:		DAMEOT OF							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	AES 密钥 128bit 的 bit0-bit31,该寄存器可以写入也可以读出
	AES 密钥 192bit 的 bit64-bit95,该寄存器可以写入也可以读出
	AES 密钥 256bit 的 bit128-bit159, 该寄存器可以写入也可以读出

AESKEY4			基地址:	0x40012000					
(AES 密钥 4)			偏移地址:	3CH					
		Bit31···Bit0							
Read:		DAT[01 0]							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	AES 密钥 192bit 的 bit32-bit63,该寄存器可以写入也可以读出
	AES 密钥 256bit 的 bit96-bit127,该寄存器可以写入也可以读出

AESKEY5			基地址:	0x40012	0x40012000				
(AES 密钥 5)			偏移地址:	40H					
		Bit31···Bit0							
Read:		DAT[01_0]							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	AES 密钥 192bit 的 bit0-bit31,该寄存器可以写入也可以读出
	AES 密钥 256bit 的 bit64-bit95,该寄存器可以写入也可以读出

AESKEY6 (AES 密钥 6)			基地址: 偏移地址:		0x40012000 44H				
(122 Д у	4 0 /		MA D A CAME	Bit31•	··BitO				
Read:		DATE(01 O)							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	AES 密钥 256bit 的 bit32-bit63,该寄存器可以写入也可以读出

AESKEY7			基地址:	0x40012	0x40012000				
(AES 密钥 7)			偏移地址:	48H					
		Bit31···Bit0							
Read:		DAT[01.0]							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	AES 密钥 256bit 的 bit0-bit31,该寄存器可以写入也可以读出

RANDSTR (随机数启动控制寄存器)			基地址:	0x40012	080			
			偏移地址	: 00H	00Н			
	Bit15	14	13	12	11	10	9	Bit8
Read:	RANDEN	V	V	V	V	V	V	X
Write:	KANDEN	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0

	Bit7	6	5	4	3	2	1	Bit0
Read:	V	v	V	V	RESERVE	Ctoret	V	V
Write:	Λ	λ	λ	λ	D	Start	λ	λ
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RANDEN	随机数模块使能位 0: 随机数模块关闭 1: 随机数模块使能 当 RANDEN 使能之后,对 Start 写 1 才有效
RESERVED	内部状态位,写操作无效,读取值请忽略
Start	启动控制位 该寄存器位写 1 则启动真随机数生成器,该控制位在随机数生成器生成随机数后由 硬件清 0

RANDDAT (随机数数据寄存器)			基地址: 偏移地址	0x4001	2080				
				Bit31•	··BitO				
Read:				רותר	1.07				
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	真随机数数据寄存器,共32位

GHASHSTR (GHASH 启动寄存器)			基地址: 偏移地址:		0x40012100 00H				
				Bit15	··BitO				
Read:				Σ	<u> </u>				
Write:	DAT[15:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述						
DAT[15:0]	寄存器写入 0x0501 则启动 GHASH 乘法计算						
	该控制寄存器只能写入,不能读取。该寄存器读出永远为0						

GHASHFLG (GHASH 标志寄存器)			基地址: 偏移地址:	0x40012 04H	2100			
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	v	v	v	v	v	BUSY
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述
BUSY	1: GHASH 乘法运算未完成
	0: GHASH 乘法运算完成
	该寄存器位为只读
	当乘法运算完成的时候,会产生相应的中断标志,如果中断使能打开,会进入相应
	的中断。AESGHASH 对应中断向量号为 1。

INPUT1LL (数据1输入低位)			基地址: 偏移地址:		0x40012100 08H				
				Bit31	∙•BitO				
Read:				DATE	01.07				
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit0-bit31

INPUT1ML			基地址:	0x40012	0x40012100				
(数据1输入中低位)			偏移地址:	0CH					
				Bit31	···Bit0				
Read:		DATE OF							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit32-bit63

INPUT1MH			基地址:	0x40012	0x40012100			
(数据1输入中高位)			偏移地址:	10H				
		Bit31···Bit0						
Read:		DAT[01 0]						
Write:		DAT[31:0]						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit64-bit95

INPUT1HH			基地址:	0x40012	0x40012100			
(数据1输入高位)			偏移地址:	14H				
		Bit31···Bit0						
Read:				DATE	01.07			
Write:		DAT[31:0]						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit96-bit127

INPUT2LL			基地址:	0x40012	0x40012100				
(数据2输入低位)			偏移地址:	18H					
				Bit31	∙•Bit0				
Read:				DATE	01.07				
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit0-bit31

INPUT2ML			基地址:	0x40012	0x40012100				
(数据2输入中低位)			偏移地址:	1CH					
		Bit31···Bit0							
Read:		DAMEOT OF							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit32-bit63

INPUT2MH (数据 2 输入中高位)			基地址: 偏移地址:	0x40012 20H	:100			
				Bit31	∙∙BitO			
Read:				DATE	21.07			
Write:		DAT[31:0]						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit64-bit95

INPUT2HH (数据 2 输入高位)			基地址: 偏移地址:	0x40012 24H	2100			
				Bit31	··BitO			
Read:				DATE	01.07			
Write:		DAT[31:0]						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit96-bit127

OUTPUTLL (数据输出低位)		基地址: 偏移地址:		0x40012100 28H				
		Bit31···Bit0						
Read:		DATE() O						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit0-bit31

OUTPUTML			基地址:	0x40012	0x40012100			
(数据输出中低位)			偏移地址:	2CH				
		Bit31···Bit0						
Read:		DAT[01_0]						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit32-bit63

OUTPUTMH (数据输出中高位)			基地址: 偏移地址:	0x40012 30H	2100			
	Bit31···Bit0							
Read:		DAT[01_0]						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit64-bit95

OUTPUTHH (数据输出高位)			基地址: 偏移地址:		0х40012100 34Н			
				Bit31	···Bit0			
Read:		DAMEST OF						
Write:		DAT[31:0]						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	Ghash 输入计算数据 1 的 128bit 的 bit96-bit127

AESGHASHIE			基地址:	0x40012	2100			
(AESGHASH 中断使能)			偏移地址:	38H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	v	DANDIE	CHACHTE	AECTE
Write:	X	X	X	X	X	RANDIE	GHASHIE	AESIE
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RANDIE	随机数中断使能
GHASHIE	GHASH 计算中断使能
AESIE	AES 计算中断使能

AESGHASHIF			基地址:	0x40012	2100			
(AESGHAS	(AESGHASH 中断标志)			3CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	V	DANDIE	CHACHTE	AECTE
Write:	X	X	X	X	X	RANDIF	GHASHIF	AESIF
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RANDIF	随机数中断标志
GHASHIF	中断标志
AESIF	AES 计算中断标志

19 ECC256 模块

19.1 概述

HT502X 的 ECC256 模块为椭圆曲线 (EC, Elliptic Curve) 运算加速模块,可显著提高基于椭圆曲线的加密协议的实现效率。本模块支持的加密协议或算法包括 ECDSA (EC Digital Signature Algorithm), ECDH(EC Deffie-Hellman)及相关变种协议。

19.2 功能描述

- 支持基于简化 Weierstrass 方程(**y**²=**x**³+**ax**+**b mod p**)的所有素域 GF(p)上椭圆曲线,此椭圆曲线在 **NIST, SEC2, Brainpool** 等协议中被定义为常用椭圆曲线
- 支持 ECDSA 签名/认证运算
- 支持公钥是否在椭圆曲线上验证运算
- 支持椭圆曲线点运算

点乘运算(ECSM,EC Scalar Multiplication)

点加运算(ECA, EC Addition)

倍加运算(ECD, EC Doubling)

- 支持大数模运算
 - 模加运算(MA,Modular Addition)
 - 模减运算(MS,Modular Subtraction)
 - 模乘运算(MM,Modular Multiplication)
 - 模除运算(MD, Modular Division)
 - 模逆运算(MI,Modular Inversion)
- 支持 ECC256, 且向下兼容 ECC244 和 ECC192
- 可阻挡 STA 攻击 (both Simple and Statistical Timing side channel Attacks)和 SPA 攻击 (Simple Power Analysis attacks)

Clkctr10 中的 AES_EN 为 AES/RAND 共用使能控制位,Clkctr10 新增控制位 ECC_EN 独立控制 ECC 模块,位置 bit 16 (Clkctr10. <16>),应用 ECC 模块前需使能此控制位。每次关闭再使能 ECC_EN,ECC 模块会被复位。

Secret key 与内部 256-bits 寄存器相连,用户将私钥存储于 Flash 地址 0x0003FC00~0x0003FC1F中;用户可配置 ECCCON. 6<SE>选择 Secretkey或 KEYREG作为私钥。每次自加载时,则 0x0003FC00~0003FC1F中的数据被加载到内部 256-bits 寄存器中,低位存于 0x0003FC00,高位存于 0003FC1F;内部 256-bits 寄存器不开放,用户无法操作。

19.3 ECC 运算加速模块

ECC 各运算寄存器配置:

加速模块输入/输出			
	运算模式	输入参数寄存器	输出结果寄存器
ECDSA		PREG: 大素数 p AREG: 椭圆曲线参数 a	RXREG: 签名结果 r 参数 RYREG: 签名结果 s 参数
运算	签名	PXREG: 椭圆曲线基点 x 坐标 PYREG: 椭圆曲线基点 y 坐标	ECCSTA: ECC 状态寄存器 [3:3]ECDSA S = 0(若为1, 重新获取
	运算	SXREG: 基点的阶参数 KEYREG: 私钥 k	随机大整数,重新运算) [0:0]ECCFLG = 1
		SYREG: 随机大整数 MREG: HASH 后的消息摘要	
	认证 运算	PREG: 大素数 p AREG: 椭圆曲线参数 a PXREG: 椭圆曲线基点 x 坐标 PYREG: 椭圆曲线基点 y 坐标 SXREG: 基点的阶参数 KEYREG: 公钥 x 坐标 SYREG: 公钥 y 坐标 MREG: HASH 后的消息摘要 RXREG: 签名结果 r 参数 RYREG: 签名结果 s 参数	ECCSTA: ECC 状态寄存器 [0:0]ECCFLG = 1 [2:2]ECDSA_V = 1(认证通过) = 0(认证失败)
点 在		PREG: 大素数 p	ECCSTA: ECC 状态寄存器
曲线	公钥	AREG: 椭圆曲线参数 a SYREG: 椭圆曲线参数 b	[0:0]ECCFLG = 1 [4:4]PKV = 1(验证通过)
上验	验证	PXREG: 公钥 x 坐标	= 0(验证失败)
证		PYREG: 公钥 y 坐标	

			11150221 / 13 / 13 / 13
ECC		P(X1, Y1) + S(X2, Y2) = R(X)	(3, Y3)
点		PREG: 大素数 p	RXREG: 点加结果 x 坐标
		AREG: 椭圆曲线参数 a	RYREG: 点加结果 y 坐标(结果点在是椭
运	点加运算	PXREG: 椭圆曲线第 1 点 x 坐标	圆曲线上)
算		PYREG: 椭圆曲线第1点y坐标	ECCSTA: ECC 状态寄存器
71		SXREG: 椭圆曲线第2点x坐标	[0:0]ECCFLG = 1
		SYREG: 椭圆曲线第2点y坐标	
		2 *P(X1, Y1) = R(X3, Y3)	
		PREG: 大素数 p	RXREG: 点加结果 x 坐标
	倍 加	AREG: 椭圆曲线参数 a	RYREG: 点倍加结果 y 坐标 (结果点在是
	运算	PXREG: 椭圆曲线第1点x坐标	椭圆曲线上)
	~	PYREG: 椭圆曲线第1点y坐标	ECCSTA: ECC 状态寄存器
			[0:0]ECCFLG = 1
		k*P(X1, Y1) = R(X3, Y3)	
	上乖	PREG: 大素数 p	RXREG: 点加结果 x 坐标
	点乘	AREG: 椭圆曲线参数 a	RYREG: 点乘结果 y 坐标(结果点在是椭
	运算	PXREG: 椭圆曲线点 x 坐标	圆曲线上)
		PYREG: 椭圆曲线点 y 坐标	ECCSTA: ECC 状态寄存器
		KEYREG: 标量系数 k	[0:0]ECCFLG = 1
标	L.D. I	$PX + PY \pmod{n} = RX$	
量	模 加	PREG: 模运算参数 n	RXREG: 模加结果标量
	运算	PXREG: 第1个标量	ECCSTA: ECC 状态寄存器
模		PYREG: 第2个标量	[0:0]ECCFLG = 1
运	hills v. h	$PX - PY \pmod{n} = RX$	
算	模减	PREG: 模运算参数 n	RXREG: 模减结果标量
21	运算	PXREG: 第1个标量	ECCSTA: ECC 状态寄存器
		PYREG: 第2个标量	[0:0]ECCFLG = 1
		PX * PY (mod n) = RX	
	模乘	PREG: 模运算参数 n	RXREG: 模乘结果标量
	运算	PXREG: 第1个标量	ECCSTA: ECC 状态寄存器
		PYREG: 第2个标量	[0:0]ECCFLG = 1
		PY / PX (mod n) = RX	
	模除	PREG: 模运算参数 n	RXREG: 模除结果标量
	运算	PXREG: 第1个标量	ECCSTA: ECC 状态寄存器
	, , ,	PYREG: 第2个标量	[0:0]ECCFLG = 1
		$PX^{-1} \pmod{n} = RX$	<u>, 7 7 </u>
	模逆	PREG: 模运算参数 n	RXREG: 模逆结果标量
	运算	PXREG: 第1个标量	ECCSTA: ECC 状态寄存器
	~ ~ ~	TANDO. ANT TANDE	[0:0] ECCFLG = 1
	L		[0.0] Door Do

19.4 特殊功能寄存器列表

ECC 模块寄存装	ECC 模块寄存器基地址: 0x40017000								
偏移地址	名称	读写方式	复位值	功能描述					
0x00	ECCCON	R/W	0x0000	ECC 模块控制寄存器					
0x04	ECCSTA	R/W	0x0000	ECC 模块状态寄存器					
0x08	PXREG	R/W	0x0000	基点 x 坐标寄存器					
0x0C	PYREG	R/W	0x0000	基点 y 坐标寄存器					
0x10	KEYREG	R/W	0x0000	私钥寄存器					
0x14	AREG	R/W	0x0000	椭圆曲线参数 a					
0x18	PREG	R/W	0x0000	大素数 p					
0x1C	RXREG	R/W	0x0000	ECC 运算输出点 x 坐标					
0x20	RYREG	R/W	0x0000	ECC 运算输出点 y 坐标					
0x24	SXREG	R/W	0x0000	ECC 运算第二操作数 x 坐标					
0x28	SYREG	R/W	0x0000	ECC 运算第二操作数 y 坐标					
0x2C	MREG	R/W	0x0000	Hash 算法消息摘要(for ECDSA)					

19.5 特殊功能寄存器说明

ECCCON			基地址:	0x40017	7000			
(ECC 模块控制寄存器)			偏移地址:	00H				
Bit15 14			13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	SE	ECCIE	OP SEL3	OP SEL2	OP SEL1	OP SELO	OP STR
Write:	Λ	SL	LOCIL	OI_SLLS	OI_SELZ	OI_SEEI	OI_DLLO	01_51K
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	私钥选择控制位
SE	1: 强制 Secret Key 作为私钥,代替 KEYREG 寄存器中的值
	0: KEYREG 寄存器值作为私钥
	ECC 中断使能控制(中断向量与 AES 共用)
ECCIE	1: 使能 ECC 中断
	0: 关闭 ECC 中断
OP_SEL[3:0]	运算模式选择位
	0000: 点乘运算

	0001: 点加运算
	0010: 倍加运算
	0011: 模加运算
	0100: 模减运算
	0101: 模乘运算
	0110: 模除运算
	0111: 模逆运算
	1000: ESDA 签名运算
	1001: ESDA 认证运算
	1010: 公钥曲线上验证
	其他:保留
	开始运算:
OP_STR	1: 开始已设置的运算,运算结束硬件清零
	0: 运算完成

ECCSTA			基地址:	0x40017	7000			
(ECC 模块状态寄存器)			偏移地址:	0 4 H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	Х	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	v	DIAN	ECDCA C	ECDCA V	DUCV	ECCFLG
Write:	X	X	X	PKV	ECDSA_S	ECDSA_V	BUSY	CCCFLG
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	公钥曲线上验证标志
PKV	0: 验证失败
FKV	1: 验证通过
	此位需 ECCFLG=1, 即运算完成之后,读取有效
	ECDSA 签名重试标志
ECDSA S	0: 签名完成
ECD3A_3	1: 满足重试条件
	此位需 ECCFLG=1, 即运算完成之后,读取有效
	ECDSA 认证标志
ECDSA V	0: 认证失败
ECD3A_V	1: 认证通过
	此位需 ECCFLG=1, 即运算完成之后,读取有效
	计算模块状态位
BUSY	0: 模块空闲
	1: 模块忙碌

 ECC 运算完成标志位

 0: 未完成

 1: 已完成

 Note: 写 0 清零此标志

PXREG (基点 x	坐标寄存器	¦)	基地址: 偏移地址:	0x40017 08H	000			
		Bit31···Bit0						
Read:		DAMENT OF						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	基点 X 坐标数据入口(4 bytes 分段)
	写入:
	位宽为 256bit 的数据,写入 8 次寄存器,从最低 4 个有效 bytes 开始(自右向左
DAT[01.0]	写入,寄存器 bit0 对应数据低位)若实际位宽小于 256bit, 高位补零
DAT[31:0]	读取:
	4bytes 分段,读取 8 次寄存器,得到数据,首先读取的为最高 4 个有效 bytes (自
	左向右读取,寄存器 bit32 为数据高位, bit0 为低位)
	若实际位宽小于 256bit, 读取的数据高位为 0

PYREG	基地址:			0x40017	0x40017000				
(基点 Y 坐标寄存器)		偏移地址: 0CH							
		Bit31···Bit0							
Read:		DAT[01_0]							
Write:	DAT[31:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
	基点Y坐标数据入口(4 bytes 分段)
	写入:
	位宽为 256bit 的数据,写入 8 次寄存器,从最低 4 个有效 bytes 开始(自右向左
DAT[31:0]	写入,寄存器 bit0 对应数据低位)若实际位宽小于 256bit,高位补零
DAT[31:0]	读取:
	4bytes 分段,读取 8 次寄存器,得到数据,首先读取的为最高 4 个有效 bytes (自
	左向右读取,寄存器 bit32 为数据高位,bit0 为低位)
	若实际位宽小于 256bit, 读取的数据高位为 0

KEYREG (私钥寄存器)			基地址: 偏移地址:	0x40017 10H	7000			
		Bit31···Bit0						
Read:		DAM[01 0]						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	私钥寄存器数据入口(4 bytes 分段)
	写入:
	位宽为 256bit 的数据,写入 8 次寄存器,从最低 4 个有效 bytes 开始(自右向左
DAT[31:0]	写入,寄存器 bit0 对应数据低位)若实际位宽小于 256bit, 高位补零
DAT[31.0]	读取:
	4bytes 分段,读取 8 次寄存器,得到数据,首先读取的为最高 4 个有效 bytes (自
	左向右读取,寄存器 bit32 为数据高位, bit0 为低位)
	若实际位宽小于 256bit, 读取的数据高位为 0

AREG	基地址: 0x40017000							
(椭圆曲线参数 a)			偏移地址:	14H				
		Bit31···Bit0						
Read:		DAMEOT OF						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	椭圆曲线参数 a 数据入口(4 bytes 分段)
	写入:
	位宽为 256bit 的数据,写入 8 次寄存器,从最低 4 个有效 bytes 开始(自右向左
DAT[21.0]	写入,寄存器 bit0 对应数据低位)若实际位宽小于 256bit, 高位补零
DAT[31:0]	读取:
	4bytes 分段,读取 8 次寄存器,得到数据,首先读取的为最高 4 个有效 bytes (自
	左向右读取,寄存器 bit32 为数据高位, bit0 为低位)
	若实际位宽小于 256bit, 读取的数据高位为 0

PREG 基地址: 0x40017000								
(大素数 p)			偏移地址:	18H				
		Bit31···Bit0						
Read:		DAT[01.0]						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	大素数p数据入口(4 bytes 分段)
	写入:
	位宽为 256bit 的数据,写入 8 次寄存器,从最低 4 个有效 bytes 开始(自右向左
DAT[21.0]	写入,寄存器 bit0 对应数据低位)若实际位宽小于 256bit,高位补零
DAT[31:0]	读取:
	4bytes 分段,读取 8 次寄存器,得到数据,首先读取的为最高 4 个有效 bytes (自
	左向右读取,寄存器 bit32 为数据高位,bit0 为低位)
	若实际位宽小于 256bit, 读取的数据高位为 0

RXREG			基地址:		0x40017000			
(ECC 运算输出点 x 坐标)		坐标)	偏移地址:	1CH				
		Bit31···Bit0						
Read:		DAMEST OF						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	ECC 运算输出点 x 坐标数据入口 (4 bytes 分段)
	写入:
	位宽为 256bit 的数据,写入 8 次寄存器,从最低 4 个有效 bytes 开始(自右向左
DATE 01 07	写入,寄存器 bit0 对应数据低位)若实际位宽小于 256bit, 高位补零
DAT[31:0]	读取:
	4bytes 分段,读取 8 次寄存器,得到数据,首先读取的为最高 4 个有效 bytes (自
	左向右读取,寄存器 bit32 为数据高位, bit0 为低位)
	若实际位宽小于 256bit, 读取的数据高位为 0

RYREG	RYREG 基均			0x40017	0x40017000			
(ECC 运算输出点 y 坐标)		偏移地址: 20H						
		Bit31···Bit0						
Read:		DAT[01.0]						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	ECC 运算输出点 y 坐标数据入口(4 bytes 分段)
	写入:
DAT[31:0]	位宽为 256bit 的数据,写入 8 次寄存器,从最低 4 个有效 bytes 开始(自右向左
DAT[31.0]	写入,寄存器 bit0 对应数据低位) 若实际位宽小于 256bit,高位补零
	读取:
	4bytes 分段,读取 8 次寄存器,得到数据,首先读取的为最高 4 个有效 bytes (自

左向右读取,寄存器 bit32 为数据高位,bit0 为低位) 若实际位宽小于 256bit,读取的数据高位为 0

SXREG (ECC 运算第二操作数 x 坐 标)			基地址: 偏移地址:	0x40017000 24H				
		Bit31···Bit0						
Read:		DATE OF O						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	ECC 运算第二操作数 x 坐标数据入口(4 bytes 分段)
	写入:
	位宽为 256bit 的数据,写入 8 次寄存器,从最低 4 个有效 bytes 开始(自右向左
DAT[21.0]	写入,寄存器 bit0 对应数据低位)若实际位宽小于 256bit, 高位补零
DAT[31:0]	读取:
	4bytes 分段,读取 8 次寄存器,得到数据,首先读取的为最高 4 个有效 bytes (自
	左向右读取,寄存器 bit32 为数据高位,bit0 为低位)
	若实际位宽小于 256bit, 读取的数据高位为 0

SYREG (ECC 运算第二操作数 y 坐 标)			基地址: 偏移地址:	0х40017 28Н	7000			
		Bit31···Bit0						
Read:		DAMEST OF						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	ECC 运算第二操作数 y 坐标数据入口(4 bytes 分段)
	写入:
	位宽为 256bit 的数据,写入 8 次寄存器,从最低 4 个有效 bytes 开始(自右向左
DAT[31:0]	写入,寄存器 bit0 对应数据低位)若实际位宽小于 256bit, 高位补零
DAT[31.0]	读取:
	4bytes 分段,读取 8 次寄存器,得到数据,首先读取的为最高 4 个有效 bytes (自
	左向右读取,寄存器 bit32 为数据高位, bit0 为低位)
	若实际位宽小于 256bit, 读取的数据高位为 0

MREG

(Hash ş	草法消息摘要	要)	偏移地址:	2CH				
	Bit31···Bit0							
Read:	DAT[01 0]							
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	Hash 算法消息摘要数据入口(4 bytes 分段)
	写入:
	位宽为 256bit 的数据,写入 8 次寄存器,从最低 4 个有效 bytes 开始(自右向左
DAT[31:0]	写入,寄存器 bit0 对应数据低位)若实际位宽小于 256bit, 高位补零
DAT[31:0]	读取:
	4bytes 分段,读取 8 次寄存器,得到数据,首先读取的为最高 4 个有效 bytes (自
	左向右读取,寄存器 bit32 为数据高位,bit0 为低位)
	若实际位宽小于 256bit, 读取的数据高位为 0

注: 传送信息经 HASH 算法之后,获得的信息摘要最多 256bit 可参与 ECDSA 运算,将信息摘要输入此 寄存器作为参与 ECDSA 运算的参数。

20 DMA 功能

20.1 概述

DMA 模块提供高速的数据传输在外设和 RAM 之间或者 RAM 和 RAM 之间,在 DMA 数据搬运的过程中不需要 CPU 的参与,但是占用系统总线。

20.2 功能描述

- DMA 模块共有 3 个独立的可配置通道
- DMA 的传输可以外设到外设,外设到存储器,存储器到外设,存储器到存储器
- DMA 与 CPU 之间交替占用总线
- DMA 支持最多 32 个外部数据请求源,每个通道还有一个软件请求源
- 三个通道有优先级的设置,一旦一个通道的一次传输开始后不能被打断。当三个通道同时请求 DMA 传输时,优先级高的被响应。优先级低的通道只有在高优先级的通道传输完成后才能被响 应
- 当两个通道选择了同一个外部请求源时,只有优先级高的通道响应此请求
- DMA 支持两种传输方式:一次请求传输一个数据、一次请求传输所有的数据
- DMA 支持三种中断: 传输完成中断, 传输错误中断, 块传输完成中断
- 在非循环模式下, DMA 完成数据传输后自动关闭相应通道, 当选择为循环模式的时候, 用户可配置循环次数 CHNxBULKNUM[8:15], 达到循环次数后自动关闭相应通道

20.3 DMA 数据请求源列表

DMA_CTL[812]	说明
0	Soft request
1	UART0 发送
2	UART0 接收
3	UART1 发送
4	UART1 接收
5	UART2 发送
6	UART2 接收
7	UART3 发送
8	UART3 接收
9	UART4 发送
10	UART4 接收
11	UART5 发送

12	UART5 接收
13	ISO7816_0 发送
14	ISO7816_0 接收
15	ISO7816_1 发送
16	ISO7816_1 接收
17	SPI 发送
18	SPI 接收
19	I2C 发送
20	I2C 接收
21	EMU 电压波形数据
22	EMU 电流通道 1 波形数据
23	EMU 电流通道 2 波形数据
24	Timer0
25	Timer1
26	Timer2
27	Timer3
28	保留
29	保留
30	保留
31	保留
32	保留

注: 当选择 DMA 发送或接收串口数据(UART)时,UART 对应的 TXIF/RXIF 会置位。

20.4 DMA 数据传输说明

数据块自增模式

通道传输数量设置寄存器

通道传输完成数据个数

通道块传输个数设置

OCH

10H

14H

20.5 特殊功能寄存器列表

DMA 模块寄	DMA 模块寄存器基地址: 0x40016000									
偏移地址	名称	读写方式	复位值	功能描述						
ООН	DMAIE	R/W	0000Н	DMA中断使能寄存器						
04H	DMAIF	0000Н	DMA中断标志寄存器							
08Н	CHNSTA	R	0000Н	DMA状态寄存器						
DMA 通道面	DMA 通道配置寄存器基地址:									
0x4001600C	(Channel0)									
0x40016024	(Channel1)									
0x4001603C	(Channel2)									
偏移地址	名称	读写方式	复位值	功能描述						
ООН	00H CHNCTL R/W 0000H 通道控制寄存器									
04H	CHNSRC	R/W	0000Н	通道源地址寄存器						
08Н	CHNTAR	R/W	0000Н	通道目的地址寄存器						

R/W

R

R/W

0000H

H0000

0000H

20.6 特殊功能寄存器说明

CHNCNT

CHNTCCNT

CHNBULKNUM

DMAIE			基地址:	0x40016	6000			
(DMA 中断使能寄存器)			偏移地址:	00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	TEIE2	TEIE1	TEIEO
Write:	Λ	Λ	Λ	Λ	Λ	TEIE2	TEIEI	TEIE0
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	DCIE2	DCIE1	DCIEO	V	TOTES	TCIE1	TOTEO
Write:	X	BCIE2	BCIE1	BCIE0	X	TCIE2	TCIE1	TCIE0
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	通道 0/1/2 传输结束中断使能
TCIE[20]	0: 禁止
	1: 使能
	通道 0/1/2 块传输中断使能(仅块传输模式有效)
BCIE[2…0]	0: 禁止
	1: 使能

通道 0/1/2 传输错误中断使能

TEIE[2…0]

0: 禁止

1: 使能

DMAIF			基地址:	0x40016	6000			
(DMA 中断标志寄存器)			偏移地址:	04H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	TEIE	TEIE1	TELEO
Write:	X	X	X	X	X	TEIF2	TEIF1	TEIF0
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	D CITY	D.CIE1	D.CIEO	V	TOILS	TOTE1	TOTEO
Write:	X	BCIF2	BCIF1	BCIF0	X	TCIF2	TCIF1	TCIF0
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	通道 0/1/2 传输结束中断标志
TCIF[2…0]	0: 未产生中断
	1: 产生中断
	通道 0/1/2 块传输完成中断标志
BCIF[2…0]	0: 未产生中断
	1: 产生中断
	通道 0/1/2 传输错误中断标志
TEIF[2•••0]	0: 未产生中断
	1: 产生中断

注意:

1.BCIE[2···0]和 BCIF[2···0]位只有传输模式为块传输时(TMOD=1)有效,单次传输模式无效;

2.传输模式设置为块传输,BCIF[2···0]在每次块传输完成时置位,所有数据块(CHNCNT 设置传输数量)

传输完成 TCIF[2···0]和 BCIF[2···0]同时置位。

CHNSTA			基地址:	0x40016	6000			
(DMA 状态寄存器)			偏移地址:	08H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	X	X	BUSY2	BUSY1	BUSY0
Write:	Λ	Λ	Λ	Λ	Λ	X	X	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述
	通道 0/1/2 传输 BUSY 标志
BUSY[20]	0: 空闲
	1: 忙碌

CHNCTL (DMA 通道控制寄存器)			基地址: 偏移地址:		500C, 0x40	016024, 0x	4001603C	
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	Daguagt 4	Daguagt?	Daguagt?	Daguagt1	Daguagt0	DESTIN
Write:	X	X	Request4	Request3	Request2	Request1	Request0	_INC1
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	DESTIN	SOURC_	SOURC_	CVCLE	TMOD	DCIZE1	DCIZEO	DMA_C
Write:	_INC0	INC1	INC0	CYCLE	TMOD	PSIZE1	PSIZE0	HNx_EN
Reset:	0	0	0	0	0	0	0	0

位	功能描述
Request[40]	触发数据源选择,根据 20.3 章节所列 DMA 数据请求源列表来定
DESTIN_INC[10]	目的地址增量模式
SOURC_INC[10]	源地址增量模式 00: 不增加 01: 增加 10: 数据块内循环增加 11: 数据块内循环增加
CYCLE	循环模式配置0: 不循环模式1: 循环模式
TMOD	传输模式配置 0: 单次传输模式 1: 块传输模式(1块数据传输过程中不会被打断)
PSIZE[10]	数据源的传送位数 00: 8 位 01: 16 位 10: 32 位 11: 32bit
DMA_CHNx_EN	DMA 通道使能(x=0\1\2) 0: 禁止 1: 使能

CHNSRC			基地址:	0x40016	600C, 0x40	016024, 0x	4001603C	
(DMA 通道	(DMA 通道源地址寄存器)			04H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	ADDR15	ADDR14	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8
Write:	ADDRIS	ADDR14	ADDK13	ADDK12	ADDKII	ADDKIU	ADDK9	ADDK8
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	ADDD7	ADDR6	ADDR5	A DDD 4	ADDR3	A DDD2	A DDD 1	A DDDO
Write:	ADDR7	ADDRO	ADDKS	ADDR4	ADDRS	ADDR2	ADDR1	ADDR0
Reset:	0	0	0	0	0	0	0	0

位	功能描述
ADDR[150]	数据传输源地址寄存器

CHNTAR			基地址:	0x40016	00C, 0x40	016024, 0x	4001603C	
(DMA 通道目的地址寄存器)			偏移地址:	08H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	4 DDD 15	4 DDD14	ADDD12	ADDD12	ADDR11	ADDR10	A DDDO	A DDD0
Write:	ADDR15	ADDR14	ADDR13	ADDR12	ADDKII	ADDRIU	ADDR9	ADDR8
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	ADDD7	A DDDC	ADDD5	ADDD4	ADDD2	A DDD2	A DDD 1	A DDDO
Write:	ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0
Reset:	0	0	0	0	0	0	0	0

位	功能描述
ADDR[150]	数据传输目的地址寄存器

CHNCNT			基地址:	基地址: 0x4001600C, 0x40016024, 0x4001603C				
(DMA 通道传输数量寄存器)			偏移地址:	0CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	Num15	Num14	Num13	Num12	Num11	Num10	Num9	Num8
Write:	Nulli13	Null114	Nulli13	Null112	Nullill	Nulli10	Nulli9	INUIIIO
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	N7	N	N	N 4	N2	N2	N1	N0
Write:	Num7	n7 Num6	Num5	Num4	Num3	Num2	Num1	Num0
Reset:	0	0	0	0	0	0	0	0

位	功能描述
Num[15…0]	DMA 数据传输个数设置寄存器
	最大设置到 65535 个传输数据
	如果用户设置的是块传输,那么该寄存器则表示用户需要传输的数据块个数

CHNTCCNT			基地址:	0x40016	600C, 0x40	016024, 0x	4001603C	
(DMA 通道已传输数据个数)			偏移地址:	10H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	Num15	Num14	Num13	Num12	Num11	Num10	Num9	Num8
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	Num7	Num6	Num5	Num4	Num3	Num2	Num1	Num0
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述
Num[15…0]	指示 DMA 已经传输完成的数据个数
	如果用户设置的是块传输,那么该寄存器则表示 DMA 已经传输完成的数据块个数

CHNBULKNUM			基地址:	基地址: 0x4001600C, 0x40016024, 0x4001603C				
(DMA 通道	(DMA 通道块传输设置寄存器)			14H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	Num7	Num6	Num5	Num4	Num3	Num2	Num1	Num0
Write:	INUIII/	INUIIIO	Num5	Nulli4	Nulli3	Nulli2	INUIIII	INUIIIO
Reset:	0	0	0	0	0	0	0	0

位	功能描述
NUM[70]	块传输数据个数选择
	表示每一个数据块内有多少个数据:范围 0 — 255 个
	如果用户设置的是块传输,那么该寄存器则表示每一个数据块内有多少个数据

21 按键扫描模块(KEYSCAN)

21.1 概述

KEYSCAN 模块内建 4*4 键盘自动扫描功能,包含 4 个列线扫描输入口线 SCANINO² 3 引脚和 4 个行扫描输出口线 SCANOUTO⁴ 引脚。用户如果需要使用按键扫描功能,则必须把对应引脚配置为 SCANINx 或 SCANOUTx 复用功能。

21.2 功能描述

- 支持最大 4*4 按键
- 支持 SLEEP\hold 模式下按键唤醒
- 仅支持下降沿触发
- 仅支持单键检测

若用户想要配置 4*1 键盘,则(4SCANIN + 1 SCANOUT)或(1 SCANIN + 4 SCANOUT)的引脚配置为相应复用功能即可,如果配置 4*2 键盘,则(4 SCANIN + 2 SCANOUT)或(2 SCANIN + 4 SCANOUT)的引脚配置为相应复用功能即可。

配置 CLKCTRLO 的 KEY_EN=1,同时配置相应 I/O 口为 SCANIN/SCANOUT 功能,用户可以根据需要选择 SCANOUT 的数量,最多 4 个,被选择为 SCANIN 模式的引脚出现下降沿并保持最多 20 个 fosc 的低电平时间,则按键扫描中断标志置位,查看状态寄存器 KEYSTA,可定位具体的按键位置,若开启中断使能 (NVIC EnableIRQ(KEY IRQn)),则发生按键中断,按键扫描中断号为 27。

被使用的 SCANIN 引脚,上拉电阻必须使能有效;被使用的 SCANOUT 引脚,开漏功能必须关闭。

21.3 特殊功能寄存器列表

KEYSCAN 模块寄存器基地址: 0x40014000								
偏移地址 名称 读写方式 复位值 功能描述								
ООН	KEYSTA	R	0000Н	KEYSCAN状态寄存器				
04H	KEYIF	R/W	0000Н	按键中断标志寄存器				

21.4 特殊功能寄存器说明

KEYSTA			基地址:	0x40014	1000			
(KEYSCAN	V 状态寄存器	器)	偏移地址:	00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	STA15	STA14	STA13	STA12	STA11	STA10	STA9	STA8
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位 STA[15:0]	功能描述 指示被按下的 KEY 的位置,最多支持 16 个 KEY,也就是 16 个状态 该寄存器共 16bit,也就是代表了 16 个 KEY 的状态,如果有相应的 KEY 被按下, 则相应的状态位被置 1,如果有两个按键同时被按下,则相应的两个位被置 1								
		SCANINO	SCANIN1	SCANIN2	SCANIN3				
	SCANOUT0	STA0	STA4	STA8	STA12				
	SCANOUT1	STA1	STA5	STA9	STA13				
	SCANOUT2	STA2	STA6	STA10	STA14				
	SCANOUT3	STA3	STA7	STA11	STA15				

KEYIF			基地址:	0x40014	0x40014000					
(KEY 标志寄存器)			偏移地址:	04H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:	X	X	X	X	X	X	X	X		
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	X	v	v	v	v	v	v	KEVIE		
Write:	Λ	X	X	X	X	X	X	KEYIF		
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
KEYIF	按键中断标志寄存器
	该寄存器写 0 清 0

22 Cortex-M0 内核简要说明

22.1 概述

Cortex-MO 处理器基于一个高集成度、低功耗的 32 位处理器内核,采用一个 3 级流水线冯·诺伊曼结构 (Von Neumann architecture)。通过简单、功能强大的指令集以及全面优化的设计(提供包括一个单周期乘法器在内的高端处理硬件),Cortex-MO 处理器可实现极高的能效。

Cortex-MO 处理器采用 ARMv6-M 结构,基于 16 位的 Thumb 指令集,并包含 Thumb-2 技术。提供了一个现代 32 位结构所希望的出色性能,代码密度比其他 8 位和 16 位微控制器都要高。

22.2 系统定时器 SysTick

推荐用户用 CMSIS 接口函数 SysTick Config(uint32 t ticks) 去配置系统定时器。

例如: Fcpu 为 19.660800MHz, 如果将 SysTick 配置为 100mS 周期中断,则只需按照如下方式调用函数即可:

SysTick_Config (19660800*0.1); //带入 Fcpu*timing = 19660800*0.1s 注意: 由于 SysTick 计数器只有 24 位,用户需保证 ticks 不能超过 0xFFFFFF.

22.3 中断优先级说明

Cortex-MO 处理器紧密集成了一个可配置的嵌套向量中断处理器(NVIC),提供业界领先的中断性能。 NVIC 具有以下功能:

- 包含一个不可屏蔽的中断 (NMI), 优先级固定为-2, 为最高
- 包含一个异常处理中断 (HardFault), 优先级固定为-1, 仅低于 NMI
- 其余中断可以配置 4 个优先级,但优先级都低于以上两个中断

4 个可配置中断优先级为 0x0, 0x1, 0x2, 0x3, 其中 0x0 优先级最高, 0x3 优先级最低。

推荐用户用 CMSIS 接口函数 NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)去配置中断优先级。比如配置 DMA 中断优先级为 0 (最高),则可以按照如下方式调用函数即可:

NVIC_SetPriority (DMA_IRQn, 0x0);

注: DMA_IRQn 为 DMA 中断的中断号。更多中断号参见 8.1 中断向量说明

22.4 CMSIS 函数说明

以下表格罗列了部分 CMSIS 函数,方便用户配置中断等相关功能。建议用户统一使用 CMSIS 函数 去配置内核寄存器,不要直接去操作内核寄存器。

CMSIS 函数	函数说明
enable_irq()	使能全局中断
disable_irq()	关闭全局中断
	(注: NMI 和 HardFault 不会被屏蔽)
void NVIC_EnableIRQ(IRQn_Type IRQn)	使能中断号为 IRQn 的中断
	(注: 需满足 IRQn>=0,对 IRQn<0的中
	断,没有中断使能位)
void NVIC_DisableIRQ(IRQn_Type IRQn)	屏蔽中断号为 IRQn 的中断
	(注: 需满足 IRQn>=0, 对 IRQn<0 的中
	断,没有中断使能位)
uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)	获取中断号为 IRQn 中断的挂起状态
void NVIC_SetPendingIRQ(IRQn_Type IRQn)	设置中断号为 IRQn 中断的挂起状态
	(注:如果对应的中断已经使能,则调用
	此函数会触发芯片进入相应的中断处理程
	序)
void NVIC_ClearPendingIRQ(IRQn_Type IRQn)	清除中断号为 IRQn 中断的挂起状态
	(注: 进入相应中断处理程序后,中断挂
	起状态会被自动清除)
void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)	设置中断号为 IRQn 中断的优先级
	(注: NMI 和 HardFault 不可设置优先级,
	优先级设置范围为 0x0—0x3)
uint32_t NVIC_GetPriority(IRQn_Type IRQn)	获取中断号为 IRQn 的中断优先级
void NVIC_SystemReset(void)	系统软复位
uint32_t SysTick_Config(uint32_t ticks)	系统定时器配置
	(注:ticks 不能超过 0xFFFFFF)

注:中断号 IRQn 详细见 8.1 中断向量说明

23 EMU 模块

23.1 概述

提供单相电能计量所需要的全部功能,包括有功功率与有功电能、无功功率与无功电能、视在功率与视在电能、电压有效值、电流有效值及频率计算等,支持灵活的防窃电方案和校表方案。

- 在动态范围 5000: 1 内有功误差小于 0.1%
- 无功精度远优于国标 2 级要求
- 有功功率与有功电能;无功功率与无功电能;视在功率与视在电能
- 同时提供两个通道有功功率,两个通道无功功率
- 电压、电流有效值
- 电压频率测量
- 有功功率、无功功率、视在功率波形数据
- 灵活的防窃电方案,窃电阈值通过寄存器可调
- 灵活的潜动与启动方案
- 直流偏置自动校正
- 多种能量计算模式,支持正反向电能单独计量
- 开放快速脉冲计数寄存器,防止上下电时丢失电能
- 脉冲输出 PF/QF/SF 脉宽可选
- 支持单相三线制
- 过零中断检测信号
- 无功移相补偿
- 有效值偏置校正
- 有功功率 P, 无功功率 Q 偏置校正
- 支持超低功耗灵活的断零线窃电计量与常数计量
- Q 通道能量脉冲可复用为 P2 能量脉冲
- 任意一路 ADC 随频采样波形缓存 BUFFER
- 提供 3 路 ADC 自动/手动温度补偿功能

23.2 功能描述

HT502X EMU 内含三路完全独立的二阶 Σ-ΔADC 以及数字信号处理部分。三路 ADC 完成两路电流信号和一路电压信号的采样,数字信号处理部分完成有功功率与有功电能、无功功率与无功电能、视在功率与视在电能、电压有效值、电流有效值及频率计算等计量功能。

通过 SFR 寄存器和中断的方式,可以对数字信号处理部分进行校表参数配置和计量参数读取;计量的结果还通过 PF/OF/SF 引脚输出,也即校表脉冲输出,可以直接接到标准表进行误差对比。

23.2.1模数转换器

HT502X 内置三路完全独立的二阶 Σ - Δ ADC,每路 ADC 都有一个模拟增益放大器(PGA),内部有一个 1.2V 的高稳定度片内基准电压,每路 ADC 可以独立开关,通过寄存器 EMUCTRL 进行设置。

模拟增益放大器(PGA)完成输入差分信号的幅度放大,放大后的信号再送给 ADC 进行采样,在极小信号输入时能够保证测量的线性度。通过寄存器 <u>ADCCON(68H)</u>可以对三路 ADC 独立配置模拟放大倍数。

通过寄存器 <u>ADCCON(68H)</u>可以对三路 ADC 采到的信号进行数字增益设置,三路 ADC 通道有 1、2、4、8 倍四种设置。在大信号不溢出的情况下,数字增益放大可以增加小信号计算的有效位数,进一步提高计量精度。

3路 ADC 默认关闭,可以通过校表参数寄存器 EMUCTRL 单独选择关闭或者开启。

第 2 路电流通道 ADC 同时提供增益校正寄存器 <u>I2GAIN(30H)</u>,可以对第 2 路电流通道 ADC 的幅值 进行相对于通道 1 的比例缩放,以用在自动防窃电等功能上。

23.2.2ADC 采样输出和功率波形输出

HT502X 将三路 ADC 输出的 22bit 波形数据 SPLI1 (00H)、SPLI2(04H)、SPLU(08H)开放给用户。同时也将作为电能累加的功率波形数据 SPLP(0CH)、SPLQ(10H)开放给用户,波形采样数据可通过寄存器 ADCCFG(50H.WaveSel)配置为高通前或高通后。

EMU 的系统时钟频率可通过 EMUCTRL 配置为 Femu=819.2 KHz 和 409.6KHz, 波形数据更新频率可通过 ADCCFG(50H SPL[2: 0])选择为 12.8kHz、6.4kHz、3.2kHz、1.6kHz、0.8kHz。

注意:由于波形数据更新频率最快可以达到 12.8KHz,因此 ADC_IRQ 的中断请求最快也可以达到 12.8KHz。用户在编程时需要注意 CPU 程序是否有足够的时间来响应中断。

23.2.3有功功率、无功功率和视在功率

HT502X 同时输出两路计量通道的有功功率、无功功率,并提供两路独立的校表参数,提供视在功率输出寄存器。

功率计算和补偿

有功功率通过电压、电流相乘经过低通滤波器后得到。

无功功率计算时,先将电压移相 90 度,然后通过移相后电压和电流相乘,经过低通滤波器得到。 视在功率通过电压有效值与电流有效值相乘得到。

对于通道 1 和通道 2 的功率分别提供增益校正和相位校正,同时针对小信号的精度问题,提供了偏置校正来消除外界干扰。

HT502X 对增益校正做了优化,即 GP 寄存器对 PowerP/Q/S 同时产生作用,而原 GQ/GS 寄存器已无效。

23.2.4有效值

HT502X 同时输出两路电流和一路电压的有效值。 有效值可以保证在动态范围为 3000: 1 时,精度达到 0.5%。

正常模式下(即 EMU 工作时钟为 819.2KHz/408.6kHz),有效值寄存器输出如上图所示,用户可根据需要选择快速或慢速有效值。

低功耗计量模式下(即 EMU 工作时钟为 204.8KHz/32kHz),芯片只提供快速有效值,更新时间为

0.5s/1s/2s/4s。可通过校表寄存器 ROSICTRL(94H)的 LpCtrl[1:0]来设置,此时慢速有效值寄存器读出固定为 0。

23.2.5 电压线频率

通过对电压采样信号过零点计数的方式,提供电压频率输出。 频率的精度可以保证准确到 0.01Hz。

23.2.6起动/潜动

HT502X 提供了灵活的潜动与启动功能,通过设置校表寄存器 P/Q/S Start(40H/44H/48H),用户可以完成防潜动与起动的功能。用户同时可通过寄存器 EMUCTRL.StartSel (74H.Bit13)选择潜动启动方式。

StartSel 未使能时(Default), 启动/潜动根据PQ 单独方式判断:

|P|小于 PStart 时,有功脉冲 PF 不输出脉冲。

|Q|小于 QStart 时, 无功脉冲 QF 不输出脉冲。

S小于 SStart 时,视在脉冲 SF不输出脉冲。

StartSel 使能时, 启动/潜动根据 PIO 联合方式判断:

- 1) 当|P| 大于 PStart 或|Q|大于 QStart 两条件满足至少一个时,有功脉冲 PF 和 QF 均输出脉冲。相应 NOQLD1、NOPLD1 标志都为 0,或者 NOQLD2、NOPLD2 标志都为 0。
- 2) 当[P] 小于 PStart 且[Q]小于 QStart 时, PF 和 QF 不输出脉冲, NOQLD1、NOPLD1 标志都为 1, 或者 NOOLD2、NOPLD2 标志都为 1。

HT502X内部计量参数寄存器提供快速(24H~38H)、慢速(48H~5CH)两组功率寄存器,用户可通过校表寄存器ADCCFG(50H)中的控制位PQSStarScouceSel[1.0]选择快速或者慢速功率作为判断源,其中选择快速功率作为起动功率源头可以有效满足动态负荷试验,而选择慢速功率作为起动功率源头有利于可靠防潜。

另外状态寄存器 EMUSR(00H)的 NOQLD1 NOPLD1 NOQLD2 NOPLD2 能够实时显示两路电能是否起动,方便用户对阈值的选取。

23.2.7功率反向指示

通过状态寄存器 EMUSR(00H)的 REVQ、REVP 可以指示无功功率、有功功率是否反向。REVQ、REVP 在 PF、QF 发脉冲的开始沿同步更新。

23.2.8 直流偏置校正

用户通过 CHNLCR(54H)的 HPFONU、HPFONI2、HPFONI1 可以分别控制电压和两路电流的高通滤波器环节是否打开。当这些位为 1 时,表示高通开启,反之高通关闭。

当高通滤波器关闭后,直流信号可以进入后续计算通道,可以通过偏置校正寄存器 I1Off(34H)、

I2Off(38H)、UOff(3CH)对采样到的数据进行直流偏置校正。

进行直流偏置校正时,需要将输入通道短接(即输入为 0),读取 ADC 采样输出波形寄存器 SPL_II(00H)、SPL_I2(04H)、SPL_U(08H)进行平均后,写入偏置校正寄存器 IIOff(34H)、I2Off(38H)、UOff(3CH),即完成直流偏置校正。

23.2.9 电能脉冲输出

HT502X 提供有功能量寄存器 ENERGY_P(60H)、无功能量寄存器 ENERGY_Q(64H)和视在能量寄存器 ENERGY S(68H),同时提供相应的脉冲输出引脚 PF、QF 和 SF 用于校准。

能量计量和脉冲输出

脉冲输出前的内部电能累加方式可以通过 EMCON(58H)的 QMOD、PMOD 选择正向计量、绝对值计量、代数和计量、正反向分别计量四种累加方式。

内部功率值寄存器对功率进行累加,溢出后会产生一个溢出脉冲到快速脉冲寄存器 PFCNT(5CH)、QFCNT(60H)、SFCNT(64H)、PFCNTN(118H)和 QFCNTN(11CH)。快速脉冲计数寄存器对溢出的次数进行累加计数。当快速脉冲寄存器中的计数绝对值大于等于输出脉冲频率设置寄存器 HFConst(4CH)的设置时,即发出一个 CF 脉冲,同时相应能量寄存器的值增加 1。

HT502X 开放了快速脉冲计数器 PFCNT/QFCNT/SFCNT/PFCNTN/QFCNTN,可以通过掉电时读取这些寄存器内不足一个脉冲的能量值并保存,重新上电时再将保存值写回快速脉冲计数器寄存器,可以防止掉电时少计电能。

脉冲输出管脚 PF/QF/SF 是否输出和能量寄存器是否累加受到 EMCON(58H)的 PRun/QRun/SRun 以及 PQStart(40H)的控制。用户可以通过 POS(54H.Bit6)选择 PF/QF/SF 的有效电平。POS 为 0 时,脉冲高电平有效; POS 为 1 时,脉冲低电平有效。

PFOUT/QFOUT/SFOUT引脚默认功能分别为电能脉冲输出有功、无功、视在电能,也可通过EMCON(58H)寄存器中的CFxCFG分别配置为输出不同的电能脉冲,同时可通过控制位POS(54H.BIT6)选择PF/OF/SF引脚输出的有效电平。

用户也可配置使能EMUCTRL.P2EN(74H.BIT11)将第二电量模块QFCNT的脉冲输出复用为P2有功能量的脉冲输出,从而实现双通道的有功能量输出。

PF/OF/SF输出满足下面时序关系:

脉冲输出波形

时序特性:

参数	指标	单位	测试条件及注释
t4	80	ms	PF/QF/SF输出的高电平脉宽
t5	_	S	PF/QF/SF输出的周期

注意: 当脉冲输出周期小于 180ms 时, 脉冲以等 duty 形式输出。

HT502X 可以实现输出脉冲宽度(t4)可调,通过 CFP[1:0](68H.[7:6])进行设置。

23.2.10 窃电检测

可以通过防窃电模块对两路电流或者两路功率大小进行比较,选用较大的一路电流或功率进行计量。

自动防窃电方案

可以通过 FLTON(50H.5)设置是否开启自动防窃电功能。FLTON=0 时,用户可以根据 CHNSEL(50H.4) 进行通道选择; FLTON=1 时,防窃电单元根据用户的设置,自动选择相应的通道进行计量。

通过 ICHK(70H)用户可以设置发生窃电的比例,比如可以设置 0x10,表示两路电流有效值相差到 6.25% 时认为发生了窃电。

当两路电流的有效值(或者功率值)均小于 IPTAMP(6CH)的值时,增加寄存器位 CHNFix(50H.8)可选:

- (1) 默认选择通道 1 为计量单元
- (2) 不切换, 选择之前的计量通道。

I2GT1(00H.6)为0表示I1大于I2,为1时表示I2大于I1。

TAMP(00H.7)为1表示发生了窃电,即两路电流相比超过了设定的防窃电阈值。

自动防窃电设置步骤:(以电流防窃电为例)

- a) 通过 EMUCTRL (74H.5)开启电流通道 2ADC。
- b) 通过 I2GAIN(30H)对电流通道 2 的输出校正,保证同样的输入电流时,两个通道的有效值输出一 致。
- c) 根据需要的防窃电阈值,设置 ICHK(70H)。
- d) 根据需要检测防窃电的最小电流或功率,设置 IPTAMP(6CH)。
- e) 设置 FLTON(0x50H.5)为 1, 开启自动防窃电功能。

在自动防窃电功能打开后,CHNSEL 和 CIADD 处于只读状态,通道选择由防窃电的结果决定,可以通过寄存器位 CHSTS /TAMP/I2GTI1 查看防窃电状态。

23.2.11 中断源

HT502X 的 EMU 提供 17 个中断源,在 EMU 中断使能寄存器(EMUIE,04H)中定义: ZXlost_IRQ、Buffer_Full_IRQ、Tamp_IRQ、DCUpdate_IRQ、SlowRmsUpdate_IRQ、FastRmsUpdate_IRQ、ZXI2_IRQ、ZXI1_IRQ、I2OV_IRQ、PF_IRQ、QF_IRQ、SF_IRQ、SPL_IRQ、ZXU_IRQ、I1OV_IRQ、UOV_IRQ 和 SAG_IRQ,分别表示电压过零丢失中断请求、同步缓存数据存满中断请求、窃电中断请求、直流有效值更新中断请求、慢速有效值更新中断请求、I2 过零中断请求、I1 过零中断请求、I2 过零中断请求、I1 过零中断请求、无功脉冲中断请求、视在脉冲中断请求、ADC 原始数据刷新中断请求、电压过零中断请求、I1 过流中断请求、电压过压中断请求和电压跌落中断请求。过零方式通

过 ZXD1 和 ZXD0 可以选择正向过零或者反向过零或者双向过零(详见 74H)。

EMU 17 个中断共用一个中断向量 IRQ_EMU。通过 EMU 中断使能寄存器 EMUIE 和 EMU 中断标志 寄存器 EMUIF,用户可以实现中断的控制和管理。

用户读取 EMUIF 后即可清除所有 EMU 中断标志。

23.2.12 PEAK / SAG 功能

PEAK 事件定义为: 系统对电压通道高通后数据以正负过零方式进行半周波检测峰值,同时将峰值更新至 Upd_Half 寄存器(0x88)。当某次 Upd_Half 绝对值大于 UOVLVL 寄存器(0xAC)设定的 PEAK 阈值,我们定义为 Peak_Start 事件,系统内部的计数器开始对 Peak_Start 事件进行计数,直至某次 Upd_Half 绝对值小于设定阈值,将计数值更新至 UdetCNT,同时内部计数器清零。若内部的计数器计数大于等于 OVCyc 设定的周期数,则 Start_If 标志位置 1(读后清零),同时 Peak_If 标志位置 1(读后清零),直至某次 Upd_Half 绝对值小于设定阈值,将计数更新至 UdetCNT,内部计数器清零,Start_If 标志位清 0,同时 Peak If 标志位清 0,End If 置 1(读后清零)。PEAK 事件时序图如下图所示:

版权归钜泉光电科技(上海)股份有限公司所有 Page244 of 307

SAG 事件定义为: 系统对电压通道高通后数据以正负过零方式进行半周波检测峰值,同时将峰值更新至 Upd_Half 寄存器 (0x88)。当某次 Upd_Half 绝对值小于 USAGLVL 寄存器 (0xA4) 设定的 PEAK 阈值,我们定义为 Sag_Start 事件,系统内部的计数器开始对 Sag_start 事件进行计数,直至某次 Upd_Half 绝对值大于设定阈值,将计数值更新至 UdetCNT,同时内部计数器清零。若内部的计数器计数大于等于设定的周期数 (OVCyc),则 Start_If 标志位置 1 (读后清零),同时 Sag_If 标志位置 1 (读后清零),直至某次 Upd_Half 绝对值大于设定阈值,将计数更新至 UdetCNT,内部计数器清零,Start_If 标志位置 0,同时 Sag_If 标志位置 0,后时 Sag_If 标志位置 0,后d If 置 1 (读后清零)。

其中,电压通道的 SAG 事件和 PEAK 事件共用 UdetCNT, Start_If, End_If 寄存器。SAG 事件时序 图如下图所示:

Sag 事件

23.2.13 OVI 过压过流检测功能

过压过流检测(OVI),此模块工作在正常计量模式下,属于电能质量范畴。该功能使用的数据是高通

后的数据,如果高通关闭,则选择 ADCOFFSET 后的数据。

以半周波为单位(2个过零点之间),找到 ADC 采样值绝对值的最大值。OVI 事件的判据为: 电压或者电流波形采样值绝对值的峰值的高 16 位大于电压或电流峰值检测阈值设置寄存器 UOVLVL(ACH)或 IOVLVL(B4H)的设置值,且持续时间为长度设置寄存器 OVCyc(B0H)设定的半周波数,则判定电压过压或者电流过流事件发生。当 OVCyc=0x0000 时,关闭 OVI 功能。

相关寄存器:

- 1) 观测长度寄存器 OVCyc (B0H): 以半周波为单位;
- 2) 阈值设置寄存器 UOVLVL(ACH)或 IOVLVL(B4H): 给定的比较阈值,与 ADC 采样值高 16bit 对 齐:
 - 3) OVI 中断使能位 UOVIE、I1OVIE、I2OVIE(04H): 置1可使能过压、过流中断输出。
- 4) OVI 状态标志位 UOVIF、I1OVIF、I2OVIF (08H): 读到 1 表示发生过压事件、过流事件,读后清 0:
- 5)计量寄存器: 电压波形点最值 Upd_Half (88H)、I1Peak (8CH)、I2Peak (90H): 波形点的最大峰值,有符号数,该寄存器为 24bit,Bit21—Bit23 为符号位。

另该功能未设置专门的使能开关,复位后即保持工作状态,数据源取经高通后的电压、电流波形点。

23.2.14 掉零线计量模式(Loss of Voltage)

HT502X 在用户进入失压模式,为兼顾计量精度与功耗的矛盾,提供了几种可配置的掉零线计量功能:

1. 芯片内部使用寄存器 UCONST 替代电压有效值信号与电流有效值相乘计算视在功率、视在电能,可配置从有功电能输出引脚(PF)输出视在脉冲信号。

在失压模式下,用户需要配置的寄存器如下;

- (1) UCONST: 用于替代电压有效值的电压常数,用于低频连续计量模式,常数计量模式不使用
- (2) HFCONST: 用于在 100% Ib 点对视在电能脉冲输出进行精度校正(粗调)
- (3) GP: 用于在 100% Ib 点对视在电能脉冲输出进行精度校正(细调)
- (4) ADCx EN: 用于选择开启哪一路电流通道(控制失压模式下的功耗)
- (5) Channel_Sel: 用于选择使用哪一路电流通道计量电能
- (6) SRUN: 用于打开视在电能计量
- (7) PSSel: 用于配置视在电能脉冲从有功电能脉冲引脚(PF)输出
- 2.芯片内部提供低功耗连续计量模式,可配置 EMU 时钟为 204.8KHz 或 32KHz,详细应用可见应用笔记;
- 3. 芯片内部支持自定义常数计量模式,当用户写入常数功率寄存器后,使能常数功率计量,芯片内部会一直用该常数功率累加发脉冲并累加电能,而系统可在保持EMU模块打开的情况下进入低功耗状态,直到下次唤醒可根据实际负载更新常数功率寄存器。

23.2.15 随频采样 ADC 波形缓存

HT502X 内置 128*16bit 的随频采样 ADC 波形缓存 buffer,用于存放随频率变化的 ADC 同步采样数据,供用户做进一步的分析。通过配置校表参数寄存器 BufferStart(10CH)指定需要缓存的通道与增益,并通过校表参数寄存 BufferCoff(110H)调整采样率,将相应 ADC 波形数据保存到随频采样缓存 Buffer

中,写指针自动加1,直到缓存 buffer 存满为止。存满可产生中断标志,设置 EMUIE 寄存器的 Buffer_Full IE 使能 Buffer 满中断功能即可。在用户发送新的缓存命令之前,缓存的数据将会一直保持上一次的数据;若缓存未满,又重新发送了启动缓存命令,命令会即刻执行,并从缓存 buff 的地址 0000H 开始重新保存数据。随频缓存功能不可以在低功耗计量模式下使用。

缓存数据手动调整系数: 用户可通过手动校表寄存器的调整系数 BufferCoff(110H)的方式,使 128*16bit 的随频缓存数据调整为两个完整信号周波,即每周波 64 个点。输入信号范围 45Hz~65Hz。

随频缓存数据的读取: Buffer 数据存满后,用户可通过读计量寄存器 R_Buffer (ACH) 取出数据。 每读一次此寄存器,内部缓存地址指针自动加 1,直到缓存 Buffer 的值全部被读出。建议用户在启动了波 形缓存功能后,必须等到 Buffer 存满之后才能进行读出操作(存满有中断标志)。如果在存入 Buffer 的过程中提前进行读操作,读出的数据有可能会出错(表现为第 1 个点错)。

缓存的数据格式: 16bitADC 数据为补码格式,实际位数 Bit12-Bit0 是数据,Bit15-Bit13 是 3 个符号位。因此信号大小为 Buffer / 2^13 / PGA,位数和 PGA 无关。

23.2.16 Q 能量脉冲通道复用 P2

HT502X 的无功电能模块可配置为第二通道计量的有功能量脉冲输出。通过配置寄存器 EMUCTRL (74H.BIT11) P2EN 使能之后,第二计量通道的有功电能 P2 代替了 QFCNT 的电能脉冲输出,从而实现双通道的有功能量同时输出。

23.3 特殊功能寄存器列表与说明

23.3.1 计量参数寄存器列表

EMU 模块计量	EMU 模块计量寄存器基地址:								
计量寄存器:	0x40013000								
偏移地址	名称	读写方式	有效字长	复位值	功能描述				
H00	SPLI1	R	3	0x000000	电流通道 1 的 ADC 采样数				
					据,22bit				
04H	SPLI2	R	3	0x000000	电流通道 2 的 ADC 采样数				
					据,22bit				
08H	SPLU	R	3	0x000000	电压通道的 ADC 采样数据				
					22bit				
0CH	SPLP	R	4	0x000000	有功功率波形数据				
10H	SPLQ	R	4	0x000000	无功功率波形数据				
14H	FastRMSI1	R	3	0x000000	快速电流通道 1 的有效值				
18H	FastRMSI2	R	3	0x000000	快速电流通道 2 的有效值				
1CH	FastRMSU	R	3	0x000000	快速电压通道的有效值				
20H	FreqU	R	2	0xFFFF	电压频率				
24H	FastPowerP1	R	4	0x000000	快速第一路有功功率				

					111302A/ J/ J
28H	FastPowerQ1	R	4	0x000000	快速第一路无功功率
2CH	FastPowerP2	R	4	0x000000	快速第二路有功功率
30H	FastPowerQ2	R	4	0x000000	快速第二路无功功率
34H	FastPowerS1	R	4	0x000000	快速第一路视在功率
38H	FastPowerS2	R	4	0x000000	快速第二路视在功率
3CH	RMSI1	R	3	0x000000	慢速电流通道1的有效值
40H	RMSI2	R	3	0x000000	慢速电流通道 2 的有效值
44H	RMSU	R	3	0x000000	慢速电压通道的有效值
48H	PowerP1	R	4	0x000000	慢速第一路有功功率
4CH	PowerQ1	R	4	0x000000	慢速第一路无功功率
50H	PowerP2	R	4	0x000000	慢速第二路有功功率
54H	PowerQ2	R	4	0x000000	慢速第二路无功功率
58H	PowerS1	R	4	0x000000	慢速第一路视在功率
5CH	PowerS2	R	4	0x000000	慢速第二路视在功率
60H	EnergyP	R	3	0x000000	有功能量
64H	EnergyQ	R	3	0x000000	无功能量
68H	EnergyS	R	3	0x000000	视在能量
6CH	EnergyPC	R	3	0x000000	读后清0型有功能量
70H	EnergyQC	R	3	0x000000	读后清0型无功能量
74H	EnergySC	R	3	0x000000	读后清0型视在能量
78H	DC_UAverage	R	4	0x000000	直流电压平均值
7CH	DC_I1Average	R	4	0x000000	直流电流通道1平均值
80H	DC_I2Average	R	4	0x000000	直流电流通道2平均值
84H	Checksum	R	3	0x008EBA	校表寄存器校验和寄存器
88H	Upd_Half	R	3	0x000000	电压半波周期峰值寄存器, 19bit。
8CH	I1pd_Half	R	3	0x000000	I1 半波周期峰值寄存器, 19bit。
90H	I2pd_Half	R	3	0x000000	I2 半波周期峰值寄存器, 19bit。
94H	PFCNT_Photo	R	3	0x000000	PFCNT 快照
98H	QFCNT_Photo	R	3	0x000000	QFCNT 快照
9CH	SFCNT_Photo	R	3	0x000000	SFCNT 快照
A0H	AutoUgain	R	2	0x000000	U通道温度自动补偿系数
A4H	AutoIlgain	R	2	0x000000	I1 通道温度自动补偿系数
A8H	AutoI2gain	R	2	0x000000	I2 通道温度自动补偿系数
ACH	R_Buffer	R	4	0x000000	ADC 缓存 buffer 读取数据 寄存器
вон	Reserved	R	4	0x000000	保留寄存器
В4Н	Reserved	R	4	0x000000	保留寄存器
B8H	UdetCNT	R	3	0x000000	SAG/Peak 工况持续时间计数寄存器

23.3.2计量参数寄存器说明

SPLI1			基地址:	0x40013	0x40013000				
			偏移地址:	00H	ООН				
		Bit23···Bit0							
Read:		DAT[23:0]							
Write:		X							
Reset:	0	0	0	0	0	0	0	0	

SPLI2			基地址: 0x40013000 偏移地址: 04H						
		Bit23···Bit0							
Read:		DAT[23:0]							
Write:		X							
Reset:	0	0	0	0	0	0	0	0	

SPLU	SPLU			0x40013 08H	3000					
	Bit23···Bit0									
Read:				DAT [2	23:0]					
Write:		X								
Reset:	0 0 0 0 0 0 0							0		

波形寄存器的更新速度由时钟配置寄存器 FreqCFG. [2:0]的 3 个 bit 控制。此 3 个寄存器有效位数为 22 位,其中 bit21 到 bit23 为扩展的符号位,bit20~bit0 为数据。ADC 波形寄存器可通过 ADCCFG(50H.WaveSel)配置为高通前或高通后的数据,数据采用二进制补码格式。

SPLP			基地址:	0x40013	3000					
	偏			0CH						
				Bit31	∙•Bit0					
Read:				DAT[3	81:0]					
Write:		X								
Reset:	0	0	0	0	0	0	0	0		

SPLQ	基地址:	0x40013000
	偏移地址:	10H
		Bit31···Bit0
Read:		DAT[31:0]

Write:		X								
Reset:	0	0	0	0	0	0	0	0		

功率波形寄存器的更新速度由时钟配置寄存器 FreqCFG. [2:0]的 3个 bit 控制。此2个寄存器有效位数为32位,bit31为符号位。ADC 波形寄存器可通过 ADCCFG(50H.WaveSel)配置为高通前或高通后的数据。数据采用二进制补码格式。

FastRMSI	l		基地址: 偏移地址:	0x40013 14H	3000					
				Bit23	Bit23···Bit0					
Read:				DAT [2	23:0]					
Write:		X								
Reset:	0	0	0	0	0	0	0	0		

FastRMSI2	2		基地址: 偏移地址:	0x40013 18H	8000				
	Bit23···Bit0								
Read:				DAT [2	23:0]				
Write:		X							
Reset:	0 0 0 0 0 0							0	

FastRMSU			基地址:	0x40013	3000				
			偏移地址:	1CH					
	Bit23···Bit0								
Read:				DAT [2	23:0]				
Write:		X							
Reset:	0 0 0 0 0 0 0							0	

快速有效值寄存器是 24 位的无符号数,最高位恒为 0。当 EMU 时钟频率为 819.2KHz 时,参数更新频率默认为 5Hz,可配置 EMUCTRL[1: 0]到最高 20Hz。

如果用户需要在小信号时得到更加准确的有效值寄存器值,则需要通过 I1RMSOFFSET 和 I2RMSOFFSET 这两个寄存器对有效值进行零漂校正。

FreqU			基地址:	0x4001	3000					
			偏移地址:	20H						
	Bit15···Bit0									
Read:				DAT [15:0]					
Write:		X								
Reset:	0	0	0	0	0					

频率值是一个16位的无符号数,参数格式化公式为:

$$Frequency = \frac{femu}{(UFREQ \times 2)}$$

其中:

femu—— 计量模块工作频率,默认 819.2KHz

例如:

如果 EMU 时钟(femu)选择为 819.2KHz,寄存器 UFREQ=8192,

那么测量到的实际频率为: Frequency=819.2KHz/2/8192=50Hz。

FastPower	·P1		基地址: 偏移地址:	0x40013 24H	8000			
				Bit31	··BitO			
Read:				Σ	Z.			
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

FastPower	Q1		基地址: 偏移地址:	0x40013 28H	8000				
	Bit31···Bit0								
Read:				Σ	ζ				
Write:		DAT[31:0]							
Reset:	0 0 0 0 0 0 0								

FastPower	rP2		基地址: 偏移地址:		0x40013000 2CH				
			,,,,	Bit31	··Bit0				
Read:				Σ	<u>C</u>				
Write:		DAT[31:0]							
Reset:	0 0 0 0 0 0 0							0	

FastPower	rQ2		基地址:	0x40013	3000				
			偏移地址:	30H					
				∵ Bit0					
Read:				Σ	ζ				
Write:		DAT[31:0]							
Reset:	0	0 0 0 0 0 0 0							

FastPowerS1			基地址:	0x40013	0x40013000				
			偏移地址:	: 34Н					
	Bit31···Bit0								
Read:	X								
Write:	DAT[31:0]								
Reset:	0	0	0	0	0	0	0	0	

FastPower	rS2		基地址: 偏移地址:	0x40013000 : 38H				
		Bit31···Bit0						
Read:	X							
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

快速功率为 32 位二进制补码格式,最高位为符号位,快速功率寄存器参数默认更新频率为 5Hz (EMU 时钟频率为 819.21KHz,配置 EMU 时钟为 409.6KHz 时则为 2.5Hz),可通过配置 EMUCTRL[1:0]到最高 20Hz。

设寄存器中的数据为 FastPowerP1,则供计算用的 Preg 为:
Preg=FastPowerP1 ; 如果 FastPowerP1<2^31
Preg=FastPowerP1-2^32 ; 如果 FastPowerP1>=2^31
用于显示的转换比例系数计算方法详见慢速功率寄存器描述。

RMSI1			基地址: 偏移地址:	0x40013000 3CH					
		Bit23···Bit0							
Read:		DAT[23:0]							
Write:		X							
Reset:	0	0	0	0	0	0	0	0	

RMS12			基地址: 偏移地址:		0x40013000 40H					
	Bit23···Bit0									
Read:		DAT[23:0]								
Write:		X								
Reset:	0	0	0	0	0	0	0	0		

RMSU			基地址: 偏移地址:	0x40013000 44H					
	Bit23···Bit0								
Read:		DAT[23:0]							
Write:		X							
Reset:	0	0	0	0	0	0	0	0	

慢速有效值 Rms 是 24 位的无符号数,最高位恒为 0。当 EMU 时钟频率为 819.2KHz 时,参数更新频率默认为**在快速的基础上降低到 1/4 即 1. 25Hz**,可配置 EMUCTRL 寄存器配置为相应快速的 1/2,到最高 10Hz。

如果用户需要在小信号时得到更加准确的有效值寄存器值,则需要通过 I1RMSOFFSET 和 I2RMSOFFSET 这两个寄存器对有效值进行零漂校正。

PowerP1	基地址:	0x40013000
	偏移地址:	48H

		Bit31···Bit0							
Read:		X							
Write:				DAT[3	81:0]				
Reset:	0	0	0	0	0	0	0	0	

PowerQ1			基地址:	0x40013	3000				
			偏移地址:	4CH					
		Bit31···Bit0							
Read:		X							
Write:		DAT[31:0]							
Reset:	0 0 0 0 0 0 0						0		

PowerP2			基地址:	0x40013	8000				
		偏移地址: 50H							
		Bit31···Bit0							
Read:		X							
Write:		DAT[31:0]							
Reset:	0 0 0 0 0 0 0							0	

PowerQ2			基地址:	0x40013	3000				
偏移地址: 54H									
	Bit31···Bit0								
Read:		X							
Write:		DAT[31:0]							
Reset:	0 0 0 0 0 0 0						0		

PowerS1			基地址:	0x40013	3000				
	偏移地址: 58H								
		Bit31···Bit0							
Read:		Х							
Write:		DAT[31:0]							
Reset:	0 0 0 0 0 0							0	

PowerS2			基地址:	0x40013	3000				
			偏移地址:	5CH					
	Bit31···Bit0								
Read:		X							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0		

慢速功率都为 32 位二进制补码格式,最高位为符号位,慢速功率寄存器参数默认频率为 1.25Hz (EMU 时钟频率为 819.21KHz,配置 EMU 时钟为 409.6KHz 时则为 0.625Hz),通过配置 EMUCTRL [7]调整更新速率,可对应到快速有效值更新速率的 1/2 或 1/4。

设寄存器中的数据为 PowerP1,则供计算用的 Preg 为: Preg=PowerP1 ;如果 PowerP1<2^31 Preg=PowerP1-2^32 ;如果 PowerP1>=2^31

设显示的有功功率为 P,转换系数为 Kpqs,则:

 $P = Preg \times Kpqs$

Kpqs 为额定有功功率输入时,额定功率与 PowerP1 读数的比值。 无功功率和视在功率做显示时的系数与有功功率的系数 Kpqs 相同。

例:

输入 1000w 有功功率, PowerP1 读数平均为 0x00C9D9(51673), 则

Kpqs = 1000/51673 = 0.01935

当 PowerP1 读数为 0xFFFF4534 时,其代表的功率值为:

P=Kpqs*Preg=0.01935*(-47820) = -925.3 w

其中 Preg=PowerP1-2^32=-47820

EnergyP	EnergyP 基地址: 0x40013000 偏移地址: 60H								
		Bit23···Bit0							
Read:		X							
Write:		DAT[23:0]							
Reset:	0 0 0 0 0 0 0							0	

EnergyQ			基地址:	0x40013	8000				
		偏移地址: 64H							
	Bit23···Bit0								
Read:		X							
Write:		DAT[23:0]							
Reset:	0 0 0 0 0 0 0							0	

EnergyS			基地址:	0x40013	3000				
			偏移地址:	68H					
		Bit23···Bit0							
Read:		Х							
Write:		DAT[23:0]							
Reset:	0 0 0 0 0						0	0	

EnergyP / EnergyQ / EnergyS 能量累加寄存器为读后不清 0 型能量寄存器,该寄存器的最小单位代表的能量为 1/EC kWh。

例: 脉冲常数EC为3200imp/kWh,寄存器读数为0x001000(4096)时,其代表的能量为 E=4096/3200=1.28 kWh

EnergyPC			基地址: 偏移地址:	0x40013 6CH	3000				
	Bit23···Bit0								
Read:		X							
Write:		DAT[23:0]							
Reset:	0 0 0 0 0 0							0	

EnergyQC			基地址: 偏移地址:	0х40013 70Н	3000				
	Bit23···Bit0								
Read:				Σ	ζ				
Write:		DAT[23:0]							
Reset:	0 0 0 0 0 0						0		

EnergySC	EnergySC			0x40013 74H	8000				
	Bit23···Bit0								
Read:		X							
Write:		DAT[23:0]							
Reset:	0 0 0 0 0 0						0		

EnergyP / EnergyQ / EnergyS 能量累加寄存器为读后清 0,该寄存器的最小单位代表的能量为 1/EC kWh。例:脉冲常数EC为3200imp/kWh,寄存器读数为0x001000(4096)时,其代表的能量为 E=4096/3200=1.28 kWh

DC_UAvera	age		基地址:	0x40013	000			
				78H				
				Bit31	··BitO			
Read:				Σ	<u>C</u>			
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

DC_I1Ave	rage		基地址: 偏移地址:	0x40013 7CH	8000				
	Bit31···Bit0								
Read:	X								
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

DC_I2Average	基地址:	0x40013000
	偏移地址:	80H

		Bit31···Bit0									
Read:		X									
Write:		DAT[31:0]									
Reset:	0	0 0 0 0 0 0									

直流平均值 DC_Average 是 32 位有符号数,最高位为符号位。当 EMU 时钟频率为 819.2KHz 时,参数 更新频率默认为 3.125Hz。配置 EMUCTRL [9:8](74H)调整更新速率可配最高 25Hz。

如果用户需要在小信号时得到更加准确的直流平均值,则需要通过直流 Uoff、Iloff、I2off 寄存器进行零漂校正。

Checksum			基地址: 偏移地址:	0x40013 84H	3000				
	Bit23···Bit0								
Read:		X							
Write:		DAT[23:0]							
Reset:	0 0 0 0 0						0	0	

参数和校验寄存器为所有校表参数寄存器的和,包含基地址 0x40013800,偏移地址 0CH---104H(计算不包含 5CH-64H 寄存器)的校表参数寄存器。

计算方式为:

对所有的校验寄存器采用三字节的无符号数加法,两/单字节寄存器高位补0。

若配置过校表寄存器,此校验和寄存器随即更新,等待时间为 2us 左右,可忽略不计。

Upd_Half			基地址: 偏移地址:	0x40013 88H	8000				
	Bit23···Bit0								
Read:				Σ	K				
Write:		DAT[23:0]							
Reset:	0 0 0 0 0 0 0								

I1pd_Half			基地址:	0x40013	000				
			偏移地址:	8CH					
	Bit23···Bit0								
Read:		X							
Write:		DAT[23:0]							
Reset:	0 0 0 0 0 0							0	

I2pd_Half			基地址: 偏移地址:	0x40013 90H	3000					
	Bit23···Bit0									
Read:				Y	X					
Write:		DAT[23:0]								
Reset:	0	0	0	0	0	0	0	0		

峰值寄存器,每次 ADC 过零,将该寄存器更新,得到此半波时间内的 ADC 波形绝对值的最大值,该寄存器取自高通后的数据。为了和 ADC 的位数对齐,该寄存器有效位数为 19bit,即 Bit0~Bit17 为数据,Bit18~Bit23 均为扩展的符号位。数据采用二进制补码格式。

PFCNT_Pho	PFCNT_Photo			0x40013 94H	3000			
	Bit15···Bit0							
Read:				DAT [1	[5:0]			
Write:	X							
Reset:	0	0	0	0	0	0	0	0

QFCNT_Pho	QFCNT_Photo			0x40013 98H	3000					
	Bit15···Bit0									
Read:				DAT []	15:0]					
Write:		X								
Reset:	0	0	0	0	0	0	0	0		

SFCNT_Pho	oto		基地址:	0x40013	3000				
			偏移地址:	9CH					
	Bit15···Bit0								
Read:		DAT[15:0]							
Write:		X							
Reset:	0	0	0	0	0	0	0	0	

快速能量脉冲快照寄存器,当用户读取有功能量寄存器时(不清零型能量寄存器/清零型能量寄存器),芯片会在 5 个 EMU CLK 时间内把 PFCNT 抓取放入 PFCNT_Photo 寄存器,以提高能量寄存器的分辨率。例如:读取 PFCNT_Photo 的值为 0x20,Hfconst 寄存器值为 0x40,则 PFCNT_Photo 表示的电能为:(0x20/0x40)/EC ,单位为 kWh。

QFCNT_Photo SFCNT_Photo 功能相同。

AutoUgair	1		基地址:	0x40012	2000				
				АОН					
	Bit15···Bit0								
Read:				Y	Κ				
Write:		DAT[15:0]							
Reset:	0	0	0	0	0	0	0	0	

当自动温度补偿功能开启后,该寄存器的值表示在不同温度点的 U 通道温度自动补偿值。

AutoI1gai	in	基地址: 偏移地址:	0x40012000 A4H
			Bit15···Bit0

Read:		X						
Write:		DAT[15:0]						
Reset:	0	0 0 0 0 0 0 0						

当自动温度补偿功能开启后,该寄存器的值表示在不同温度点的 II 通道温度自动补偿值。

AutoI2gain			基地址:	0x40012	2000			
			偏移地址:	A8H				
	Bit15···Bit0							
Read:		X						
Write:	DAT[15:0]							
Reset:	0	0	0 0 0 0 0					0

当自动温度补偿功能开启后,该寄存器的值表示在不同温度点的 12 通道温度自动补偿值。

R_Buffer			基地址: 偏移地址:	0x40012 ACH	2000				
		Bit15···Bit0							
Read:		Х							
Write:		DAT[15:0]							
Reset:	0	0 0 0 0 0 0 0					0		

同步波形数据缓存寄存器,在启动缓存之后其数据才有效。缓存寄存器启动:校表寄存器 BufferStar (0100H) 写入 0xCCCX。ADC 同步采样数据存满产生缓存结束中断标志(Buffer_FullIF 置位),用户可读取 R_Buffer 获取缓存 buff 的数据。

R_Buffer 存放的是首个 ADC 波形同步缓存数据,每读一次 R_Buffer,内部计数器自动更新为下一个 ADC 波形数据地址。当读取次数达到 128,或者重新启动 ADC 波形数据缓存时,R_Buffer 将回到缓存 buff 的首地址。

Reserved	deserved 4			0x40012 B0H	2000			
		Bit15···Bit0						
Read:		Х						
Write:	DAT[15:0]							
Reset:	0	0	0	0	0	0	0	0

Reserved			基地址:	0x40012	2000			
	偏移地址:			B4H				
		Bit15···Bit0						
Read:		X						
Write:	DAT[15:0]							
Reset:	0	0	0	0	0	0	0	0

UdetCNT			基地址: 偏移地址:	0x40013 B8H	3000			
	Bit23···Bit0							
Read:		X						
Write:	DAT[23:0]							
Reset:	0	0 0 0 0 0 0 0						0

SAG/PEAK 工况持续时间计数寄存器,当电压通道 SAG/PEAK 检测使能,且检测到 SAG/PEAK 事件开始建立, UdetCnt 以半周波数为单位计数,直到检测到退出 SAG/PEAK 事件,更新 UdetCNT 寄存器值。此寄存器记录的是 SAG/PEAK 事件持续的半周波数。

23.3.3校表参数寄存器列表

EMU 模块	校表寄存器基地	也址:			
校表寄存器	: 0x40013800				
偏移地址	名称	读写方式	有效字长	复位值	功能描述
00H	EMUSR	R/W	2	0x0000	EMU 状态标志寄存器
04H	EMUIE	R/W	3	0x000000	EMU 中断使能寄存器
08H	EMUIF	R/W	3	0x000000	EMU 中断标志寄存器
0CH	GP1	R/W	2	0x0000	通道1的有功功率校正寄存器
10H	RSRV	R/W	2	0x0000	
14H	RSRV	R/W	2	0x0000	
18H	GPhs1	R/W	2	0x0000	通道1的相位校正寄存器
1CH	GP2	R/W	2	0x0000	通道2的有功功率校正寄存器
20H	RSRV	R/W	2	0x0000	
24H	RSRV	R/W	2	0x0000	
28H	GPhs2	R/W	2	0x0000	通道2的相位校正寄存器
2CH	QPhsCal	R/W	2	0x0000	无功相位补偿寄存器
30H	I2Gain	R/W	2	0x0000	电流通道 2 增益补偿寄存器
34H	I10ff	R/W	2	0x0000	I1 直流偏置校正寄存器
38H	I20ff	R/W	2	0x0000	I2 直流偏置校正寄存器
3CH	UOff	R/W	2	0x0000	U通道直流偏置校正寄存器
40H	PStart	R/W	2	0x0040	起动功率设置寄存器
44H	QStart	R/W	2	0x0080	起动功率设置寄存器
48H	SStart	R/W	2	0x0090	起动功率设置寄存器
4CH	HFConst	R/W	2	0x0080	输出脉冲频率设置寄存器
50H	ADCCFG	R/W	2	0x0003	ADC 控制寄存器
54H	CHNLCR	R/W	2	0x0607	通道控制寄存器
58H	EMCON	R/W	2	0x1870	能量计量控制寄存器
5CH	PFCnt	R/W	2	0x0000	快速有功脉冲计数寄存器
60H	QFCnt	R/W	2	0x0000	快速无功脉冲计数寄存器

HT502X 用户手册

64H	SFCnt	R/W	2	0x0000	快速视在脉冲计数寄存器
68H	ADCCON	R/W	2	0x0000	ADC 通道增益选择配置寄存器
6CH	IPTAMP	R/W	2	0x0020	窃电检测域值寄存器
70H	ICHK	R/W	2	0x0010	窃电阈值设置寄存器
74H	EMUCTRL	R/W	2	0x0382	EMU 控制寄存器
78H	P10FFSET	R/W	2	0x0000	通道1有功功率小信号偏置校正寄存器
7011		R/W	2	0x0000	通道2有功功率小信号偏置校正寄存
7CH	P20FFSET	K/W	2	000000	器 器
80H	Q10FFSET	R/W	2	0x0000	通道1无功功率小信号偏置校正寄存器
84H	Q20FFSET	R/W	2	0x0000	通道2无功功率小信号偏置校正寄存器
88H	I1RMSOFFSET	R/W	2	0x0000	电流通道1有效值小信号校正寄存器
8CH	I2RMSOFFSET	R/W	2	0x0000	电流通道2有效值小信号校正寄存器
90H	URMSOFFSET	R/W	2	0x0000	电压通道有效值小信号校正寄存器
94H	RosiCtrl	R/W	2	0x4000	罗氏线圈使能控制寄存器
98H	ANA_control	R/W	2	0x27A6	模拟控制寄存器
9CH	UCONST	R/W	2	0x0000	失压计量电压寄存器
АОН	LpIdleTime	R/W	2	0x0000	低功耗计量分时空闲时间设置寄存器
A4H	USAGLVL	R/W	2	0x0000	电压跌落检测阈值寄存器
A8H	IpeakCyc	R/W	2	0x0020	电流 I1 I2 PEAK 检测周期寄存器
ACH	UOVLVL	R/W	2	0x0000	电压 PEAK 检测阈值寄存器
ВОН	OVCyc	R/W		0x0001	电压 SAG\PEAK 检测周期寄存器
B4H	IOVLVL	R/W	2	0x0000	电流过流阈值寄存器
B8H	ZXILVL	R/W		0x0000	电流过零阈值寄存器
ВСН	PDataCpH	R/W	2	0x0000	常数有功功率累加高 16 位寄存器
СОН	PDataCpL	R/W	2	0x0000	常数有功功率累加低 16 位寄存器
С4Н	QDataCpH	R/W	2	0x0000	常数无功功率累加高 16 位寄存器
С8Н	QDataCpL	R/W	2	0x0000	常数无功功率累加低 16 位寄存器
ССН	SDataCpH	R/W	2	0x0000	常数视在功率累加高 16 位寄存器
D0H	SDataCpL	R/W	2	0x0000	常数视在功率累加低 16 位寄存器
D4H	FilterCtrl	R/W	2	0x02F7	滤波器系数选择控制寄存器
D8H	TUgain	R/W	2	0x0000	电压通道手动温度补偿系数设置寄 存器
DCH	TIlgain	R/W	2	0x0000	I1 通道手动温度补偿系数设置寄存器
ЕОН	TI2gain	R/W	2	0x0000	I2 通道手动温度补偿系数设置寄存器

HT502X 用户手册

E4H	UTCcoffA	R/W	2	0x0000	U 通道自动温补 VrefGain 的二次系
					数设置寄存器
E8H	UTCcoffB	R/W	2	0x0000	U 通道自动温补 VrefGain 的一次系
					数设置寄存器
ECH	UTCcoffC	R/W	2	0x0000	U 通道自动温补 VrefGain 的常数项
					设置寄存器
F0H	I1TCcoffA	R/W	2	0x0000	I1 通道自动温补 VrefGain 二次系数
					设置寄存器
F4H	I1TCcoffB	R/W	2	0x0000	I1 通道自动温补 VrefGain 一次系数
					设置寄存器
F8H	I1TCcoffC	R/W	2	0x0000	I1 通道自动温补 VrefGain 的常数项
					设置寄存器
FCH	I2TCcoffA	R/W	2	0x0000	I2 通道自动温补 VrefGain 的二次系
					数设置寄存器
100H	I2TCcoffB	R/W	2	0x0000	I2 通道自动温补 VrefGain 的一次系
					数设置寄存器
104H	I2TCcoffC	R/W	2	0x0000	I2 通道自动温补 VrefGain 的常数项
					设置寄存器
以下寄存器	不参与 Checksur	n 校表参数校验	俭和计算:		
108H	LoadDataCp	R/W	2	0x0000	常数计量启动寄存器
10CH	BufferStart	R/W	2	0x0000	缓存数据启动寄存器
110H	BufferCoff	R/W	2	0x0100	缓存数据手动调整系数寄存器
114H	SRSTREG	R/W	1	0x00	EMU 软件复位寄存器
118H	PFCntN	R/W	2	0x0000	反向快速有功脉冲计数寄存器
11CH	QFCntN	R/W	2	0x0000	反向快速无功脉冲计数寄存器

23.3.4校表参数寄存器说明

EMUSR			基地址:	0x40013	0x40013800						
EMU 状态寄存器			偏移地址:	00H	00Н						
	Bit15	14	13	12	11	10	9	Bit8			
Read:	X	X	X	X	SFOF	PEOF	QEOF	CHSTS			
Write:	Λ	Λ	Λ	Λ	SPOP	FEOR	ØEOI.	CIISTS			
Reset:	0	0	0	0	0	0	0	0			
	Bit7	6	5	4	3	2	1	Bit0			
Read:	TAMP	I2GTI1	NoQLd2	NoPLd2	NoQLd1	NoPLd1	REVQ	REVP			
Write:	1 / XIVII	X	X	X	X	X	X	X			
Reset:	0	0	0	0	0	0	0	0			

位	功能描述
---	------

	П1502A 用)⁻¬
	视在电能寄存器溢出标志
SFOF	1: 视在电能溢出
5FUF	0: 未发生溢出
	写 0 清零
	有功电能寄存器溢出标志
PEOF	1: 有功电能溢出
I EOI	0: 未发生溢出
	写 0 清零
	无功电能寄存器溢出标志
EOF	1: 无功电能溢出
Loi	0: 未发生溢出
	写 0 清零
	计量通道状态标志
CHSTS	1: 指示使用电流通道 2 计量
	0: 指示使用电流通道1计量
	窃电标志
	1: 表示发生窃电,
TAMP	当TampSel =0,表示: I1Rms>I2Rms*(1+IChk)或者I2Rms>I1Rms*(1+IChk);
1 / tivii	当TampSel =1,表示: Power1>Power2*(1+IChk)或者Power2>Power1*(1+IChk);
	0:表示未发生窃电,I1Rms 与 I2Rms 或者 Power1 与 Power2 相差不到设定的 IChk
	范围。
	通道2电流或功率大于通道1电流或功率标志
	1: 通道2电流或功率大于通道1
	当TampSel =0,表示: I2Rms>I1Rms
I2GTI1	当TampSel =1,表示: Power2>Power1
	0: 通道2电流或功率小于通道1
	当TampSel =0,表示: I2Rms <i1rms< td=""></i1rms<>
	当 TampSel =1,表示: Power2 <power1< td=""></power1<>
	通道2无功功率潜动标志位
NoQLd2	1: 当无功功率 2 小于起动功率时,NoQLd1 被置为 1;
	0: 当无功功率大于/等于起动功率时 NoQLd2 清为 0
	通道2有功功率潜动标志位
NoPLd2	1: 当有功功率 2 小于起动功率时,NoPLd2 被置为 1;
	0: 当有功功率大于/等于起动功率时 NoPLd2 清为 0
	通道1无功功率潜动标志位
NoQLd1	1: 当无功功率 1 小于起动功率时,NoQLd1 被置为 1;
	0: 当无功功率大于/等于起动功率时 NoQLd1 清为 0。
	通道1有功功率潜动标志位
NoPLd1	1: 当有功功率 1 小于起动功率时,NoPLd1 被置为 1;
	0: 当有功功率大于/等于起动功率时 NoPLd1 清为 0。
	反向无功功率指示标识
REVQ	1: 当检测到负无功功率时,该信号为1
	0: 当再次检测到正无功功率时,该信号为0

	在 QF 发脉冲时更新该值。
	反向有功功率指示标识
REVP	1: 当检测到负有功功率时,该信号为1;
KEVP	0: 当再次检测到正有功功率时,该信号为0
	在 PF 发脉冲时更新该值。

注:公用标识(REVP、REVQ、SEOF、PEOF、QEOF)表示当前有效计量通道的状态.

EMUIE EMU 中断	· 使能寄存器	<u>.</u>	基地址: 0x40013800 偏移地址: 04H					
	Bit23	22	21	20	19	18	17	Bit16
Read:	V	V	V	V	V		ZXlostI	Buffer_
Write:	X	X	X	X	X		Е	Full IE
Reset:	0	0	0	0	0	0	0	0
	Bit15	14	13	12	11	10	9	Bit8
Read:	UdetIE	TAMPIE	DCaveUp	S1owRm	FastRms	ZXI2IE	ZXI1IE	I20VIE
Write:	odetin	TAMFIL	dIE	sUpdIE	UpdIE	ZAIZIE	ZXIIIE	120VIE
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	PFIE	QFIE	SFIE	SPLIE	ZXIE	I10VIE	UOVIE	SAGIE
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位名称	描述
ZXlostIE	过零丢失中断使能
	0: 禁止
	1: 使能
Buffer_Full IE	缓存结束中断使能
	0: 禁止
	1: 使能
UdetIE	电压通道 SAG/PEAK 事件进入/退出中断使能
	0: 禁止
	1: 使能
TAMPIE	窃电发生中断使能
	0: 禁止
	1: 使能
DCaveUpdIE	直流平均值更新中断使能
	0: 禁止
	1: 使能
SlowRmsUpdIE	慢速有效值更新中断使能
	0: 禁止
	1: 使能

	快速有效值更新中断使能
FastRmsUpdIE	0: 禁止
	1: 使能
ZXI2IE	I2 发生用户指定的过零中断使能
	0: 禁止
	1: 使能
ZXI1IE	I1 发生用户指定的过零中断使能
	0: 禁止
	1: 使能
I20VIE	I2 通道过流中断使能
	0: 禁止
	1: 使能
PFIE	PF 脉冲中断使能
	0: 禁止
	1: 使能
QFIE	QF 脉冲中断使能
	0: 禁止
	1: 使能
SFIE	SF 脉冲中断使能
	0: 禁止
	1: 使能
SPLIE	波形寄存器更新中断使能
	0: 禁止
	1: 使能
ZXIE	U通道发生用户指定的过零方式中断使能
	0: 禁止
	1: 使能
I10VIE	I1 通道过流中断使能
	0: 禁止
	1: 使能
UOVIE	过压中断使能
	0: 禁止
	1: 使能
SAGIE	U 通道 SAG 中断使能
	0: 禁止
	1: 使能
	电压跌落低于设定阈值并时间超出用户指定半周波数时的中断使能

EMUIF 基地址:				0x40013	8800			
EMU 中断标志寄存器			偏移地址:	5地址: 08H				
	Bit23	22	21	20	20 19 18 17 Bit			
Read:	X	X	X	X	X	ZXlostI	Buffer_	Uend

Write:						F	FullIF	
Reset:	0	0	0	0	0	0	0	0
	Bit15	14	13	12	11	10	9	Bit8
Read:	Hatant	TAMPIF	DCAveUp	S1owRm	FastRms	ZXI2IF	ZXI1IF	I20VIF
Write:	Ustart	TAMPIF	dIF	sUpdIF	UpdIF	ΖΛ1Ζ1Γ	ΖΛΙΙΙΓ	14011
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	PFIF	QFIF	SFIF	SPLIF	ZXIF	I10VIF	UOVIF	SAGIF
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位名称	描述
ZXlostIF	过零丢失中断标志位
	1: 发生过零中断丢失
	0: 未发生过零中毒丢失
Buffer_FullIF	缓存结束中断标志位
	1: ADC 数据缓存结束中断
	0: 未发生 ADC 数据缓存结束
Uend	电压通道退出 SAG/PEAK 事件中断标志
	1: 退出 SAG/PEAK 事件中断发生
	0: 未发生退出 SAG/PEAK 事件
	读后清零
Ustart	电压通道进入 SAG/Peak 事件中断标志
	1: 进入 SAG/PEAK 事件中断发生
	0: 未发生进入 SAG/PEAK 事件
	读后清零
TAMPIF	当发生窃电时的中断标志
	1: 发生窃电
	0: 未发生窃电
	读后清零
DCAveUpdIF	直流平均值更新中断标志
	1: 直流平均值更新
	0: 未更新
	读后清零
SlowRmsUpdIF	慢速有效值更新中断标志
	1: 慢速有效值更新
	0: 未更新
	读后清零
FastRmsUpdIF	快速有效值更新中断标志
	1: 快速有效值更新
	0: 未更新
	读后清零
ZXI2IF	I2 通道发生用户指定的过零中断标志

	111302A/13/
	1: I2 通道发生用户指定的过零
	0: 未发生
	读后清零
ZXI1IF	I1 通道发生用户指定的过零中断标志
	1: I1 通道发生用户指定的过零
	0: 未发生
	读后清零
I20VIF	I2 通道过流中断标志
	1: I2 通道发生过流中断
	0: 未发生过流
	I2Peak 持续 OVCyc 个半周波都超过 IOVLVL 阈值发生置位,读后清零
PFIF	PF 脉冲中断标志
	1: PF 发出脉冲中断
	0: 未发生 PF 脉冲
	在 PF 发脉冲的开始沿置位,读后清零
QFIF	QF 脉冲中断标志
	1: QF 发出脉冲中断
	0: 未发生 QF 脉冲
	在 QF 发脉冲的开始沿置位,读后清零
SFIF	SF 脉冲中断标志
	1: SF 发出脉冲中断
	0: 未发生 SF 脉冲
	在 SF 发脉冲的开始沿置位,读后清零
SPLIF	波形寄存器更新中断标志
	1: SPL 波形寄存器发生数据更新
	0: 未发生
	读后清零
ZXIF	U 通道发生用户指定方式过零中断标志
	1: 电压通道发生用户指定方式过零
	0: 未发生
	读后清零
I10VIF	I1 通道过流中断标志
	1: I1 通道发生过流中断
	0: 未发生过流
	I1pd_Half 持续 OVCyc 个半周波都超过 IOVLVL 阈值发生置位,读后清零
UOVIF	U 通道过压中断标志
	1: U 通道发生过压中断
	0: 未发生过压
	Upd_Half 持续 OVCyc 个半周波都超过 UOVLVL 阈值发生置位,读后清零
SAGIF	U 通道 SAG 事件中断标志
	1: SAG 事件发生
	0: 未发生
	持续电压跌落低于设定阈值并超出用户指定半周波数,读后清零

GP1 通道1有功功率校正寄存器			基地址: 偏移地址:		0x40013800 0CH			
	Bit15···Bit0							
Read:	CD1[15 A]							
Write:	GP1[15:0]							
Reset:	0	0	0	0	0	0	0	0

该寄存器为16位有符号数,最高位为符号位。

功率因数为1的情况下,用户在校表过程中测得的误差为: Err%

Pgain = -Err% / (1+Err%)

如果 Pgain 为正数,则 GP1 的写入值为: Pgain *32768

如果 Pgain 为负数,则 GP1 的写入值为: 65536+Pgain *32768

GP1 寄存器写入 Pgain 之后,通道 1 的有功增益/无功增益/视在增益(GP1/GQ1/GS1)同时被校正。

GPHS1 通道 1 相位校正寄存器			基地址: 偏移地址:		0x40013800 18H				
	Bit15···Bit0								
Read:		ODUG1[15 0]							
Write:	GPHS1[15:0]								
Reset:	0	0	0	0	0	0	0	0	

PQ 方式校相位计算公式如下:

用户在信号输入为阻性的时候通过 GP 寄存器将输出误差校正到 0 附近

将信号输入调整为 0.5L, 此时观察误差为 Err%

如果 Err 为负数: Gphs1 = -Err%*32768/1.732

如果 Err 为正数: Gphs1 = 65536 - Err%*32768/1.732

GP2 通道 2 有 ²	功 率校正 符	寄存器	基地址: 偏移地址:	0x40013800 1CH					
		Bit15···Bit0							
Read:		CD0[15 0]							
Write:	GP2[15:0]								
Reset:	0	0	0	0	0	0	0	0	

该寄存器为16位有符号数,最高位为符号位。

功率因数为1的情况下,用户在校表过程中测得的误差为: Err%

Pgain = -Err% / (1+Err%)

如果 Pgain 为正数,则 GP2 的写入值为: Pgain *32768

如果 Pgain 为负数,则 GP2 的写入值为: 65536+Pgain *32768

GP2 寄存器写入 Pgain 之后,通道 2 的有功增益/无功增益/视在增益(GP2/GQ2/GS2)同时被校正。

GPHS2			基地址:	0x40013	3800			
通道2相位校正寄存器			偏移地址:	28H				
	Bit15···Bit0							
Read:				CDUCO	15.0]			
Write:		GPHS2[15:0]						
Reset:	0 0 0 0 0 0 0					0		

OCH~28H 寄存器都是二进制补码格式,最高位为符号位。具体的定义参见校表过程。

PQ 方式校相位计算公式如下:

用户在信号输入为阻性的时候通过 GP 寄存器将输出误差校正到 0 附近

将信号输入调整为 0.5L, 此时观察误差为 Err%

如果 Err 为负数: Gphs2 = -Err%*32768/1.732

如果 Err 为正数: Gphs2 = 65536 - Err%*32768/1.732

QPHSCal 无功相位	QPHSCal 无功相位补偿寄存器			0x40013 2CH	3800			
				Bit15	∙•Bit0			
Read:				ODUCC - 1	[15.0]			
Write:	QPHSCal[15:0]							
Reset:	0	0	0	0	0	0	0	0

该寄存器默认值 0000H。

无功相位补偿寄存器也采用二进制补码形式,最高位为符号位。

QphsCal 默认为 0x0000, Femu 为 819.2KHz,对应到 50hz 输入信号 OSR128(EMCON bit7)选择 64 时,QphsCal 为 0x005E,可以实现准确的 90 移相。如果 OSR128 选择 128 时,QphsCal 为 0x0028。对应到 60Hz 输入信号 OSR128 选择 64 时,QphsCal 为 0x44。

I2Gain			基地址:	0x40013	800					
I2 增益补偿寄存器			偏移地址:	30H						
					Bit15···Bit0					
Read:				IlCoin	[15.0]					
Write:	I2Gain[15:0]									
Reset:	0 0 0 0 0 0					0				

I2 相对于 I1 的有效值增益校正,采用二进制补码形式,最高位为符号位。

做防窃电时,需要对两个通道的电流有效值或者功率进行比较,因而在同样电流输入下,通道 1 与通道 2 的寄存器值应该相等。

通过通道 2 增益校正寄存器 I2GAIN(30H),使输入同样电流情况下,二者寄存器的值一致。

假设输入同样额定电流,电流通道1有效值寄存器读数为I1rms,电流通道2有效值寄存器读数为I2rms,电流通道1有功功率Power1,电流通道2有功功率Power2

如果选择电流防窃电方式:

则 Gain=I1rms/I2rms - 1

如果选择功率防窃电方式:

则 Gain=Power1/Power2 - 1

如果 Gain>=0, I2Gain=Gain*2^15; 如果 Gain<0, I2Gain=Gain*2^15+2^16

I10ff			基地址:	0x40013	800			
I1 通道直流偏置校正寄存器			偏移地址:	34H				
				Bit15	∵ Bit0			
Read:				T10ff[15.0]			
Write:	I10ff[15:0]							
Reset:	0 0 0 0 0 0						0	0

在测量直流信号的情况下使用,先关闭高通,当输入通道信号为 0 的时候,连续几次读寄存器 00H 的值平均后,得到 I10ff 寄存器的值,用户得到后将这个值存储起来,每次重新上电将之前存储的 I10ff 值重新写入寄存器。

该寄存器与 ADC 输出数据的 bit [19] bit [4] 位对齐。

该寄存器主要目的是当用户期望测试直流信号时,将芯片内部高通关闭,I1/I2/U 必须一起关高通, 否则会引入相位误差。通过这个寄存器校正外部输入信号为 0 时的 ADC 零漂,一般来说用户测试交流信 号不需要配置直流偏执校正寄存器。

I20ff I2 通道直	I20ff I2 通道直流偏置校正寄存器			0x40013 38H	800			
				Bit15•	∙•Bit0			
Read:				12044	15.0]			
Write:	I20ff[15:0]							
Reset:	0 0 0 0						0	0

在测量直流信号的情况下使用,先关闭高通,当输入通道信号为 0 的时候,连续几次读寄存器 04H 的 值平均后,得到 I20ff 寄存器的值,用户得到后将这个值存储起来,每次重新上电将之前存储的 I20ff 值重新写入寄存器。

该寄存器与 ADC 输出数据的 bit [19] bit [4] 位对齐。通道直流偏置校正只在高通环节关闭后使用。 I1/I2/U 必需一起关高通,否则会引入相位误差。

UOff U 通道直》	UOff U 通道直流偏置校正寄存器			0x40013 3CH	800			
				Bit15	··BitO			
Read:				MOSS	15.0]			
Write:	U0ff[15:0]							
Reset:	0 0 0 0 0 0 0						0	

在测量直流信号的情况下使用,先关闭高通,当输入通道信号为 0 的时候,连续几次读寄存器 08H 的值平均后,得到 U0ff 寄存器的值,用户得到后将这个值存储起来,每次重新上电将之前存储的 U0ff 值重新写入寄存器。

该寄存器与 ADC 输出数据的 bit [19] bit [4] 位对齐。通道直流偏置校正只在高通环节关闭后使用。 I1/I2/U 必需一起关高通,否则会引入相位误差。

PStart 有功功率	自动设置寄	存器	基地址: 偏移地址:	0x40013 40H	800			
				Bit15	∵ Bit0			
Read:				DOC+ and	[15.0]			
Write:	PQStart[15:0]							
Reset:	0	0	0	0	0	0	0	0

Default 值: 0x0040

PStart 是 16 位无符号数,做比较时,将其与 PowerP 绝对值的 bit8—bit23 进行比较,以作起动判断。

|P|小于 PStart 时, PF 不输出脉冲。同时将 REVP 反向标志清 0。 应用方式:

- 1,校表结束后,输入 Ib, Un。
- 2, 读出 PowerP 的值为 32bit, 取其高 24bit 为 x1, 如果 x1 为正数, x2 = x1; 如果 x1 为负数, 取其原码为 x2;
- 3,设写入 PStart 的值为 Y,假如要求 0.4% Ib 电表能够启动,则: Y <x 2 *0.4 %
 - 一般推荐值为计算值的一半。

QStart		2 - 1111	基地址:	0x40013	8800			
无功功率启动设置寄存器			偏移地址:	44H				
				Bit15•	∵ Bit0			
Read:				DOC+ and	[15.0]			
Write:	PQStart[15:0]							
Reset:	0	0	0	0	0	0	0	0

Default 值: 0x0080

QStart 是 16 位无符号数,做比较时,将其与 PowerQ 绝对值的 bit8—bit23 进行比较,以作起动判断。

|Q|小于 QStart 时,QF 不输出脉冲。同时将 REVQ 反向标志清 0。 应用方式:

- 1,校表结束后,输入 Ib, Un。
- 2, 读出 PowerQ 的值为 32bit, 取其高 24bit 为 x1, 如果 x1 为正数, x2 = x1; 如果 x1 为负数, 取其原码为 x2;
- 3,设写入 QStart 的值为 Y,假如要求 0.4% Ib 电表能够启动,则:

Y < x 2 *0.4 %

一般推荐值为计算值的一半。

SStart	基地址:	0x40013800
视在功率启动设置寄存器	偏移地址:	48H
		Bit15···Bit0

Read:				DOS+ ont	[15.0]					
Write:		PQStart[15:0]								
Reset:	0	0	0	0	0	0	0	0		

Default 值: 0x0090

SStart 是 16 位无符号数,做比较时,将其与 PowerS 值的 bit8—bit23 进行比较,以作起动判断。 |S|小于 SStart 时,SF 不输出脉冲。

应用方式:

- 1,校表结束后,输入 Ib, Un。
- 2, 读出 PowerS 的值为 32bit, 取其高 24bit 为 x2,
- 3,设写入 SStart 的值为 Y,假如要求 0.4%Ib 电表能够启动,则: Y <x 2 *0.4 %
- 一般推荐值为计算值的一半。

HT502X 提供了两种起动潜动方式:单独起动潜动与联合起动潜动。具体参考 23. 2. 6 章节起动/潜动功能描述。

HFConst 高频脉冲常	高频脉冲常数设置寄存器			0x40013 4CH	800			
	Bit15		Bit14···Bit0					
Read:	v			III	Conat [14.0)]		
Write:	Λ		HFConst[14:0]					
Reset:	0	0	0 0 0 0 0 0					

Default 值: 0x0080

HFConst 是 15 位无符号数,做比较时,将其作为低 15 位与快速脉冲计数寄存器 $0x6FH^{\circ}0x71H$ 寄存器值的绝对值做比较,如果大于等于 HFConst 的值,那么就会有对应的 PF/QF/SF 脉冲输出。

ADCCFG			基地址:	0x40013	8800			
计量 ADC 的	配置寄存器		偏移地址:	50H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	PQSStar	PQSStar		Add		TompCao	IDTompC	
Write:	tSrcSel	tSrcSel	Vref_En		WaveSe1	TampSrc	IPTampS	CHNFix
	1	0		_CIADD		Sel	rcSel	
Reset:	0	0	1	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	IPTamp_	Town Col	FLTON	CHNSEL	CIADD	SPL2	SPL1	SPL0
Write:	Sel	TampSe1	FLION	CHNSEL	CIADD	SFL2	SELI	SELU
Reset:	0	0	0	0	0	0	1	1

位名称	描述				
PQSStartSrcSel[1:0]	PQS 起动潜动比较源头	控制位			
	PQSStartSrcSel1 PQSStartSrcSel0 PQS 起动潜动源头				

200			111302/1/13/			
	0	0	快速功率			
	0	1	慢速功率			
	1	X	瞬时功率			
Vref_En	Vref 使能控制(<u> </u>				
	0:关闭 Vref;					
	1: 使能 Vref;					
Add_CIADD	单相三线模式	下累加模式控制位				
	0: 绝对值累加	方式;				
	1: 代数和累加	方式;				
WaveSel	ADC 波形数据的]源头选择控制位				
	0: 选择 ADC 波	形数据为未经高通的	原始数据;			
	1: 选择 ADC 波	形数据为经过高通的	数据;			
TampSrcSe1	自动防窃电比较	交源头选择控制位				
	0: 选择比较源	头为慢速有效值或慢	速功率值;			
	1: 选择比较源	头为快速有效值或快	速功率值;			
IPTampSrcSe1	防窃电阈值判断源头的快速/慢速选择位					
	0: 选择阈值源头为慢速有效值/功率值;					
	1: 选择阈值源	: 选择阈值源头为快速有效值/功率值;				
CHNFix	小信号通道切换配置位					
	0: 在两路电流通道都降低到 IPTAMP 以下的时候,选择固定第一电流通					
	道计量;					
	1: 在两路电流通道都降低到 IPTAMP 以下的时候,不切换通道,保持前					
	一个通道计量。					
IPTamp_Se1	防窃电阈值判定依据					
	0: 决定 IPTamp 寄存器是选择有效值做为防窃电阈值。					
	1: 决定 IPTamp 寄存器是选择功率做为防窃电阈值。					
TampSe1	防窃电比较源乡	上选择位				
	0: 选择电流有效值做防窃电					
	1: 选择有功功	率做防窃电				
FLTON	自动防窃电模均	央开关位				
	0: 自动防窃电关闭					
	1: 自动防窃电	开启				
CHNSEL	计量通道选择位					
	0: 通道1计量					
	1: 通道2计量					
CIADD	单相三线累加模	莫式选择位				
	0: 单通道方式					
	1: 功率累加和	模式				

SPL[2:0]

波形采样中断频率选择控制位

当 Femu=819. 2K 时,选择的频率如下:

SPL2	SPL1	SPL0	波形采样频率
0	0	0	1.6k Hz (femu/512)
0	0	1	3.2k Hz (femu/256)
0	1	0	6.4k Hz (femu/128)
0	1	1	12.8k Hz (femu/64)
1	X	X	12.8k Hz (femu/64)

注: 当 femu=409.6KHz 时,选择的波形采样频率与上表相比等比例调整即可。

注: 功率相加模式下,每路通道用各自的校表参数数据。在 FLTON=1,即开启自动防窃电模块时,CIADD 和 CHNSEL 可以读写,但是无效;只有 FLTON=0 时 CIADD 和 CHNSEL 可有效读写。

输入信号			输出信号	
FLTON	CIADD	CHNSEL	CHSTS	能量累加
1	X	X	指示自动防窃电	根据 CHSTS 来决定采用哪一路功
			的通道选择结果	率参与计量
0	0	0	0	选择通道1参与计量(default)
0	0	1	1	选择通道2参与计量
0	1	X	0	单相三线模式

CHNLCR			基地址:	0x40013	800			
计量通道排	空制寄存器		偏移地址:	54H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	PDatacp	QDatacp	SDatacp	Ipeak_En	Udet_En	RmsLpfEn	PQLpfEn	Add_Dat
Write:	En	En	En					aCP
Reset:	0	0	0	0	0	1	1	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	I DM - J -	DOC	LP	Haanat En	DCC - 1	IIDEONIO	HDEONT 1	HDEOMH
Write:	LPMode	POS	FreqSel	UconstEn	PSSe1	HPFONI2	HPFONI1	HPFONU
Reset:	0	0	0	0	0	1	1	1

位	功能描述
PDatacpEn	有功功率常数计量使能位
	1: 使能常数计量
	0: 关闭常数计量(default)
QDatacpEn	无功功率常数计量使能位
	1: 使能常数计量
	0: 关闭常数计量(default)
SDatacpEn	视在功率常数计量使能位
	1: 使能常数计量

	111302A / [] /
	0: 关闭常数计量 (default)
Ipeak_En	电流通道过流检测使能位
	1:使能过流检测
	0: 关闭过流检测
Udet_En	电压通道 SAG\PEAK 检测使能
	1:使能 SAG\PEAK 检测
	0: 关闭 SAG\PEAK 检测
RmsLpfEn	有效值低通使能控制位
	1: 开启有效值通道的低通滤波器(default)
	0: 关闭有效值通道的低通滤波器
PQLpfEn	功率低通使能控制位
	1: 开启功率通道的低通滤波器(default)
	0: 关闭功率通道的低通滤波器
Add_DataCP	常数计量下,能量累加速度选择位:
	1: 选择累加速度为 BS 位流速度
	0: 选择累加速度为 32k 速度
LPMode	EMU 低频计量模式配置位
	1: EMU 时钟频率切换到低频计量模式
	0: femu 为高频计量模式,根据 EMU_ClkCtrl 配置的高频计量频率
	脉冲有效电平选择位
POS	1:表示PF/QF/SF为低电平有效
	0: 表示PF/QF/SF为高电平有效
	低功耗计量模式下时钟源选择位
LP FreqSel	1: 表示选择225K时钟 (PLLOn)
	0: 表示选择32K时钟 (OSC时钟, PLLOff)
	低功耗电压使能位
UconstEn	1: 使用Uconst寄存器和电流通道有效值计算视在功率
	0: 使用电压通道有效值和电流通道有效值计算视在功率
	脉冲输出类型选择位
PSSe1	1: PF口输出视在脉冲, SF口输出有功脉冲
P3361	0: PF口输出有功脉冲, SF口输出视在脉冲
	此功能可适用于掉零线计量模式下,在有功脉冲口输出视在脉冲的情况。
	U通道高通滤波器开关位
HPFONU	1: 开启
	0: 关闭
	I2 高通滤波器开关位
HPFONI2	1: 开启
	0: 关闭
	I1 高通滤波器开关位
HPFONI1	1: 开启
	0: 关闭

EMCON			基地址:	0x40013	3800			
能量累加技	空制寄存器		偏移地址:	58H				
	Bit15	14	13	12	11	10	9	Bit8
Read: Write:	CF1CFG0	CF1CFG 0	CF2CFG0	CF2CFG1	CF3CFG1	CF3CFG0	AverPow erCal	AverPow erSourc e
Reset:	0	0	0	1	1	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read: Write:	OSR128	SRun	QRun	PRun	QMOD1	QMODO	PMOD1	PMOD0
Reset:	0	1	1	1	0	0	0	0

0.	T	I					
位	功能描述						
CF1CFG[1:0]	CF1 口输出配置控制位:						
	CF1CFG1	CF1CFG 0	CF1				
	0	0	P (default)				
	0	1	Q				
	1	0	S				
	1	1	P				
CF2CFG[1:0]	CF2 口输出配置控制	位:					
	CF2CFG1	CF2CFG 0	CF2				
	0	0	P				
	0	1	Q (default)				
	1	0	S				
	1	1	Р				
CF3CFG[1:0]	CF3 口输出配置控制位:						
	CF3CFG1	CF3CFG 0	CF3				
	0	0	Р				
	0	1	Q				
	1	0	S (default)				
	1	1	Р				
AverPowerCal	能量累加源头选择位		<u> </u>				
	1:选择平均功率作为	內能量累加源头					
	0:选择瞬时功率作为	內能量累加源头					
	当使能平均功率累加	时(AverPowerCal =1 日	付),平均功率的源头选择:				
AverPowerSource	1: 选择快速平均功率	室作为平均功率累加源头					
	0: 选择慢速平均功率作为平均功率累加源头						
OSR128	正常计量模式下 OSR	选择位:					
	1: OSR =128						
	0: OSR=64						
	仅对正常计量模式起	作用,低功耗计量模式了	下无用				
SRun	视在能量累加使能位						

			11100211/13/				
1: 允许视	l在计量						
0: 停止视	l在计量						
无功能量	累加使能位						
1: 允许无	功计量						
0: 停止无	功计量						
有功能量	累加使能位						
1: 允许有	可计量						
0: 停止有	功计量						
无功能量累加模式选择位							
QMOD1	QMODO	累加功率Qm Qn	无功能量累加方式选择				
0	0	Qm=DataQ	脉冲能量按代数和方式对无功				
		Qn=0	功率累加				
0	1	DataQ≥0,Qm=DataQ;	脉冲能量只累加正向无功功率,				
		DataQ<0,Qm=0 Qn=0	不累加负向无功功率				
1	0	Qm= DataQ	脉冲能量按绝对值方式对无功				
		Qn=0	功率累加				
1	1	DataQ≧0, Qm=DataQ	脉冲能量对正向、反向无功功率				
		DataQ<0, Qn= DataQ	分别累加				
有功能量	累加模式选	择位					
PMOD1	PMOD0	累加功率Pm Pn	有功能量累加方式选择				
0	0	Pm=DataP	脉冲能量按代数和方式对有功				
		Pn=0	功率累加				
0	1	DataP≥0, Pm=DataP;	脉冲能量只累加正向有功功率,				
		DataP<0, Pm=0 Pn=0	不累加负向有功功率				
1	0	Pm= DataP	脉冲能量按绝对值方式对有功				
		Pn=0	功率累加				
1	1	DataP≥0, Pm=DataP	脉冲能量对正向、反向有功功率				
		DataP<0, Pn= DataP	分别累加				
	0: 停止视 无功能等于 0: 停止视 1: 个。	1: 允许无功计量 0: 停止无功计量 有功能量累加使能位 1: 允许有功计量 0: 停止有功计量 无功能量累加模式选 QMOD1 QMOD0 0 0 1 1 1 0 1 1 1 有功能量累加模式选 PMOD1 PMOD0 0 0 1 1 1 0	 7. 存止视在计量 元功能量累加使能位 1: 允许无功计量 0: 停止无功计量 有功能量累加使能位 1: 允许有功计量 无功能量累加模式选择位 QMOD1 QMOD0 累加功率Qm Qn 0 Qm=DataQQQn=0 0 DataQ≥0, Qm=DataQQQn=0 1 DataQ≥0, Qm=DataQQQn=0 1 DataQ≥0, Qm=DataQQQn=0 1 DataQ≥0, Qm=DataQQQn=0 1 DataQ≥0, Qm=DataQQQn=0 7功能量累加模式选择位 PMOD1 PMOD0 累加功率Pm Pn 0 Pm=DataPQQn=0 1 DataP≥0, Pm=DataP; DataP DataP≥0, Pm=DataP Pn=0 1 DataP≥0, Pm=DataP Pn=0 1 DataP≥0, Pm=DataP 				

PFCnt	基地址:			0x40013	0x40013800				
快速有功脉冲计数寄存器			偏移地址:	5CH					
	Bit15···Bit0								
Read:	DECMID[15 0]								
Write:	PFCNT[15:0]								
Reset:	0	0	0	0	0	0	0	0	

QFCnt		基地址:	0x40013800
快速无功服	脉冲计数寄存器	偏移地址:	60Н
			Bit15···Bit0
Read:			QFCNT[15:0]
Write:			ALCMI[19.0]

Reset: 0 0 0 0 0 0 0

SFCnt 快速视在脉冲计数寄存器			基地址: 偏移地址:	0x40013 64H	8800			
	Bit15···Bit0							
Read:	ODOME[15 A]							
Write:	SFCNT[15:0]							
Reset:	0	0	0	0	0	0	0	0

为了防止上下电时丢失电能,掉电时 MCU 将寄存器 PFCnt/QFCnt/SFCnt 值读回并进行保存,然后在下次上电时 MCU 将这些值重新写入到 PFCnt/QFCnt/SFCnt 中去。

当快速脉冲计数寄存器 PFCnt/QFCnt/SFCnt 计数的值大于等于 HFconst 时,相应的 PF/QF/SF 会有脉冲溢出,能量寄存器的值会相应的加 1。

ADCCON ADC 通道均	ADCCON ADC 通道增益控制寄存器			0x40013 68H	8800			
	Bit15	14	13	12	11	10	9	Bit8
Read: Write:	X	X	DGI3	DGI2	DGI1	DGI0	DGU1	DGU0
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read: Write:	CFP1	CFP0	PGA3	PGA2	PGA1	PGA0	UPGA1	UPGAO
Reset:	0	0	0	0	0	0	0	0

位					功能描述	롼			
	电流通道数字增益选择位								
	DGI1	DGIO	I1数 ²	字增益	DGI3	DG	12	I2数字增益	
DGI[3:0]	0	0	DG=1		0	0		DG=1	
DG1[9.0]	0	1	DG=2		0	1		DG=2	
	1	0	DG=4		1	0		DG=4	
	1	1	DG=8		1	1		DG=8	
	电压通道数字增益选择位								
	DGU 1			DGU 0			电压	通道数字增益	
DGU[1:0]	0			0			DG=1		
DGU[1:0]	0	0			1			DG=2	
	1			0			DG=4		
	1			1			DG=8		
	脉宽选择位								
CFP[1:0]	即脉冲轴	俞出的t4参	参数,	LPF/QF/SF时序特性					
	CFP1	CFI	P0	脉宽(f	emu=819.2	2KHz)	·	

	0		0	80ms				
	0		1	40ms				
	1		0 20ms					
	1		1	10ms				
	电流通道	模拟增益	1选择位	Ĺ				
	PGA1	PGA0	电流过	通道1	PGA3	PGA2	电流通道2	
PGA[3: 0]	0	0	PGA=1	•	0	0	PGA=1	
PGA[3: U]	0	1	PGA=2	PGA=2		1	PGA=2	
	1	0	PGA=8	}	1	0	PGA=8	
	1	1	PGA=1	.6	1	1	PGA=16	
	电压通道	模拟增益	1选择位	Ĺ				
		UPGA1		UPO	GAO	电压	通道增益	
IIDCA [1.0]	HDCA[1 O]			(O	PGA=	1	
UPGA[1:0]		0			1	PGA=	-2	
	1			(0	PGA=	4	
		1			1	PGA=	-8	

IPTAMP 窃电检测域值寄存器			基地址: 偏移地址:		0x40013800 6CH					
	Bit15···Bit0									
Read:	TDTAND[15 0]									
Write:	IPTAMP[15:0]									
Reset:	0	0	0	0	0	0	0	0		

该寄存器默认值为 0x0020。

格式同电流有效值寄存器或功率寄存器,IPTAMP[15:0]是中间 16 位的电流有效值寄存器或功率寄存器。 当选择窃电阈值为功率时,对应功率寄存器的 Bit27—Bit12;

当选择窃电阈值为电流有效值时,对应有效值寄存器的Bit19—Bit4。

自动防窃电处理模块开启时:

若选择使用电流有效值做为防窃电阈值的判断,当通道 1 和 2 的电流有效值都低于 IPTAMP 时,选择通道 1 作为有效输入或者保持之前的计量通道,TAMP、I2GTI1 均为 0。

若选择使用功率 P 的绝对值做为防窃电阈值的判断,当 PowerP1 和 PowerP2 都低于 IPTAMP 时,选择通道 1 做为有效输入或者保持之前的计量通道,TAMP、I2GTI1 均为 0。

IChk		基地址:	0x40013800					
窃电阈值设置寄存器			偏移地址: 70H					
	Bit7···Bit0							
Read:	TOLL [7, 6]							
Write:	IChk[7:0]							
Reset:	0	0	0	1	0	0	0	0

窃电阈值电流寄存器采用二进制补码形式,表示范围(0,+1),计算公式如下:

 $ICHK=ICK7*2^{(-1)} + ICK6*2^{(-2)} + ICK5*2^{(-3)} + \cdots + ICK1*2^{(-7)} + ICK0*2^{(-8)}$

当选择电流有效值作为防窃电判断源头时,|I2Rms-I1Rms|/I1Rms 或|I2Rms-I1Rms|/I2Rms 大于 ICHK 时,置位窃电标志。

当选择功率作为防窃电判断源|PowerP1/|PowerP1||或者|PowerP2-PowerP1/|PowerP1||大于 ICHK 时,置位窃电标志。

当且仅当 Check Register 的某一个 Bit 为 1 时,对应的阈值如下表:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1000 0000	0100 0000	0010 0000	0001 0000	0000 1000	0000 0100	0000 0010	0000 0001
0.5	0. 25	0. 125	0.0625	0. 03125	0. 015625	0.007813	0.003906

例如: Check Register=0x1A 时,窃电阈值为 0.0625+0.03125+0.007813=10.1563% 默认为: Check Register=0x10, 也即 0.0625 或 6.25%。

开启自动防窃电后:

当选择电流有效值作为防窃电的源头时,I1 和 I2 两者之差比,即(|I2Rms-I1Rms|/I1Rms 或者 |I2Rms-I1Rms|/I2Rms)超过窃电阈值电流值,则自动选择大的电流值参与功率计量,同时 I3 TAMP=1。如果 I2 大于 I1,则将标志位 I2GTI1 置为 I3,否则标志位 I3GTI1 为 I40。

当选择功率作为防窃电的源头时,PowerP1 和 PowerP2 两者之差比(|PowerP2-PowerP1|/|PowerP1|或 |PowerP2-PowerP1|/|PowerP1|) 超过窃电值,则自动选择大的功率值参与功率计量,同时 TAMP=1。

EMUCTRL			基地址:	0x40013	800			
EMU 和 ADC	控制寄存	器	偏移地址:	7 4 H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	StartSe	Vref_LP	DOEM	EMU_C1k	DC	DC
Write:	X	X	1	_En	P2EN	Ctrl	PRFCFG1	PRFCFG0
Reset:	0	0	0	0	0	0	1	1
	Bit7	6	5	4	3	2	1	Bit0
Read:	SlowPRM	Adc_ilo	Adc_i2o	A.1	711	7 10	DDECEC1	DDECECO
Write:	S	n	n	Adc_uon	Zxd1	Zxd0	PRFCFG1	PRFCFG0
Reset:	1	0	0	0	0	0	1	0

位	功能描述							
StartSel	防潜方式选择位							
	1: PQ 联合判断潜动,即至少满足 P >PStar 和 Q >QStar 任一条件,PQ 都会启							
	动计量							
	0: P 根据 PStart 判断潜动, Q 根据 QStart 判断潜动(default)							
Vref_LP_En	低功耗计量基准使能位							
	1: 开启							
	0: 关闭							
	此位与 LDO_EMU_En 、EMU_En Vref_LP_En 共同起作用,详细见下表:							
	EMU_En LDO_EMU_En Vref_LP_En Vref_LP 输出							

					111302/1/				
	0		X	X	0				
	X		0	X	0				
	1		1	0	0				
	1		1	1	1				
P2EN	P2 替换 Q1 t		<u> </u>						
	1: P2		-						
	0: Q1								
EMU ClkCtrl	EMU 时钟控制	 钊位:							
_		.09.6K(需要注	主意脉冲宽度)					
	0: femu为8								
DC PRFCFG[1:0]	直流平均值。	更新速度控制器	寄存器						
	PRFCFG1								
	0	0	25Hz						
	0	1	12.5Hz						
	1	0	6. 25Hz						
	1	1	3.125Hz (default)					
	慢速有效值&								
S1owPRMS		基础上降低到		ılt)					
	0: 在快速的基础上降低到 1/2								
Adc_ilon	I1 ADC 使能位								
_	1: 打开第一路电流 ADC (default)								
	0: 关闭第一	路电流 ADC							
Adc_i2on	I2_ADC 使能	 位							
	1: 打开第二	路电流 ADC							
	0: 关闭第二	路电流 ADC (de	efault)						
Adc_uon	U_ADC 使能位	Ĭ							
	1: 打开电压	ADC							
	0: 关闭电压	ADC(default))						
Zxd[1:0]	电压电流过	零中断方式选择	译控制位						
	ZXD1	ZXD0	电压电流	瓦过零中断方式					
	0	0	正向过0	中断					
	0	1	负向过0	中断					
	1	X	双向过0	中断					
PRFCFG[1:0]	快速有效值功	力率更新速度技	空制位		,				
	PRFCFG1	PRFCFG0	有效值更	更新速度 (EMU 频	率 = 819.2kHz)				
	0	0	20Hz						
	0	1	10Hz						
	1	0	5Hz (det	fault)					
	1	1	2.5Hz						

P10FFSET	基地址:	0x40013800

通道1有项	边偏执校正 征	寄存器	偏移地址:	78H						
		Bit15···Bit0								
Read:		DIOPPOET[15.0]								
Write:	P10FFSET[15:0]									
Reset:	0	0	0	0	0	0	0	0		

计量通道 1 有功功率校正寄存器采用二进制补码形式。P10FFSETH 与 32 位寄存器 PowerP1 的 bit [18..3] 位对齐,公式如下:

$$P1_offset = \frac{\text{Preal*EC*HFConst*2^28 *(-Err\%)}}{2.304*10^{10}}$$

P20FFSET 通道 2 有功偏执校正寄存器		基地址: 偏移地址:	0x40013 7CH	3800				
		Bit15···Bit0						
Read:		DOODDOOM[15 o]						
Write:	P20FFSET[15:0]							
Reset:	0	0	0	0	0	0	0	0

计量通道 2 有功功率校正寄存器采用二进制补码形式。P20FFSETH 与 32 位寄存器 PowerP2 的 bit [18..3] 位对齐,公式如下:

$$P2_offset = \frac{\text{Preal*EC*HFConst*2^28 *(-Err\%)}}{2.304*10^{10}}$$

Q10FFSET 通道 1 无功偏执校正寄存器		基地址: 偏移地址:	0x40013 80H	8800				
				Bit15	···BitO			
Read:		010000000[15 0]						
Write:	Q10FFSET[15:0]							
Reset:	0	0	0	0	0	0	0	0

计量通道 1 无功功率校正寄存器采用二进制补码形式。Q10FFSETH 与 32 位寄存器 PowerQ1 的 bit [18..3] 位对齐,公式如下:

$$Q1_offset = \frac{\text{Qreal*EC*HFConst*2^28 *(-Err\%)}}{2.304*10^10}$$

Q20FFSET		基地址:	0x40013	3800				
通道2无功偏执校正寄存器		偏移地址:	84H					
		Bit15···Bit0						
Read:	000000000000000000000000000000000000000							
Write:	Q20FFSET[15:0]							
Reset:	0	0	0	0	0	0	0	0

计量通道 2 无功功率通道 2 校正寄存器采用二进制补码形式。Q20FFSETH 与 32 位寄存器 PowerQ2 的 bit[18..3]位对齐,公式如下:

$Q2_offset = \frac{\text{Qreal*EC*HFConst*2^28 *(-Err\%)}}{2.304*10^10}$

I1RMSOFFSET		基地址:	0x40013	8800				
I1 有效值偏执校正寄存器		偏移地址:	88H					
		Bit15···Bit0						
Read:		T1DMGODDGDW[15 A]						
Write:	I1RMSOFFSET[15:0]							
Reset:	0	0	0	0	0	0	0	0

I1 有效值校正寄存器采用二进制无符号数形式。计算公式为:

 $I1RMSOFFSET = (I1RMS^2)/(2^15)$

当输入信号为 0 的时候, 多次读取 I1RMS, 取平均值后, 然后按照上面的公式计算。

如果外部噪声很大,则会导致通过上述公式计算出的 I1RMSOFFSET 超限,此时就只能通过用户自行写软件来去除板级过大的噪声,该寄存器不能完全消除这种零漂噪声

I2RMSOFFSET I2 有效值偏执校正寄存器			基地址: 偏移地址:	0x40013 8CH	3800			
		Bit15···Bit0						
Read:		TODWGODDGDW[15 o]						
Write:	I2RMSOFFSET[15:0]							
Reset:	0	0	0	0	0	0	0	0

I2 有效值校正寄存器采用二进制无符号数形式。计算公式为:

 $I2RMSOFFSET = (I2RMS^2)/(2^15)$

当输入信号为0的时候,多次读取 I2RMS,取平均值后,然后按照上面的公式计算。

如果外部噪声很大,则会导致通过上述公式计算出的 I2RMSOFFSET 超限,此时就只能通过用户自行写软件来去除板级过大的噪声,该寄存器不能完全消除这种零漂噪声

URMSOFFSE	MSOFFSET			0x40013	0x40013800			
电压有效值偏执校正寄存器		偏移地址:	90H					
		Bit15···Bit0						
Read:	UDMOODDODE [15 o]							
Write:	URMSOFFSET[15:0]							
Reset:	0	0	0	0	0	0	0	0

电压有效值校正寄存器采用二进制无符号数形式。计算公式为:

 $URMSOFFSET = (URMS^2) / (2^15)$

当输入信号为 0 的时候, 多次读取 URMS, 取平均值后, 然后按照上面的公式计算。

如果外部噪声很大,则会导致通过上述公式计算出的 URMSOFFSET 超限,此时就只能通过用户自行写软件来去除板级过大的噪声,该寄存器不能完全消除这种零漂噪声

Rosi_ctrl	register		基地址:	0x4001380	00			
罗氏线圈技	空制寄存器		偏移地址:	94H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	Auto_Tc	Clkdelay	ClkDelay	Clkdelay	Adci_ct	Adci_ct	Adci_ct	DC En
Write:	_ EN	2	1	0	r12	rl1	r10	DC_En
Reset:	0	1	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	DC C E	XboFiter	LpIdleEn	LpStaCtr	I C+ 1 1	I C+10	Rosi_i2	Rosi_i1
Write:	DC_S_En	50Hz 60Hz		1	LpCtrl1	LpCtr10	_en	_en
Reset:	0	0	0	0	0	0	0	0

注:罗氏线圈使能是打开内部滤波器,将罗氏线圈送进来的微分信号进行积分还原,故外部通道使用罗氏线圈,一定要开启这一通道的罗氏线圈使能。

氏线圈,一定要开	启这一通道的罗氏线图	圈使能。						
位		功能	描述					
Auto_Tc_EN	自动温度补偿控制位	Ĭ						
	1: 自动温度补偿功	能开启,开启后,在	不同的温度点补偿值会	会在计量参数寄存				
	器中给出当前温度点	器中给出当前温度点下的补偿值。						
	0: 自动温度补偿功能关闭 (default)							
Clkdelay[2:0]	模拟数字之间的 clk	delay						
Adci_ctr[2:0]	ADC 工作电流控制位	ADC 工作电流控制位						
	Adci_ctr[1]	Adci_ctr[0]	偏置电流					
	0	0	10uA (default)					
	0	1	1.5 uA					
	1	0	3 uA					
	1	1	5 uA					
	ADC 的工作电流越大	,相应 ADC 的功耗越	大;					
	在低频 32K 计量模式	(下,推荐用户配置)	为[01], 用偏置电流 1.	5uA.				
DC_En	直流计量使能位	直流计量使能位						
		1: 使能直流平均值计算功能, 计量参数的直流平均值寄存器(地址 78H\7CH\80H)						
	有效							
		十算功能, 计量参数的	的直流平均值寄存器(划	也址 78H\7CH\80H)				
	无效							
DC_S_En	直流S使能控制位							
			采用直流平均值 U I1	[2(计量寄存器地				
	· · ·	行直接计算,S脉冲						
			来源于 Urms 和 Irms 的	相乘。				
XboFiter 50Hz	陷波滤波器频率控制	•						
60Hz	1: 陷波中心频率为							
	0: 陷波中心频率为							
LpIdleEn	低功耗计量分时开启							
			ime = 0 时,空闲时间	为 1s				
	0: 低功耗计量为连							
LpStaCtrl	低功耗计量模式下,	, , , , , , , , , , , , , , , , , , , ,						
	1: 固定丢 1024 个点	Ā						

	0: 固定丢 512 个点	0: 固定丢 512 个点 (default)					
LpCtrl[1:0]	低功耗计量模式下	低功耗计量模式下,平均时间控制位					
	LpCtrl [1]	LpCtrl [0]	平均时间(s)				
	0	0	0. 5				
	0	1	1				
	1	0	2				
	1	1	4				
	I2的罗氏线圈使能	泣					
Rosi_i2_en	1: 使能电流通道2	罗氏线圈功能					
	0: 关闭电流通道2罗氏线圈功能						
	I1的罗氏线圈使能	<u></u>					
Rosi_i1_en	1: 使能电流通道1	罗氏线圈功能					
	0: 关闭电流通道1	罗氏线圈功能					

ANA_contr 模拟控制智	ol registe 寄存器	er	基地址: 偏移地址:	0x40013 98H	8800			
	Bit15	14	13	12	11	10	9	Bit8
Read:	ldo_emu	X	Vref_	Vref_	Vref_	Chop_	RSRV	Adc_Cho
Write:	_en	Λ	ctrl2	ctrl1	ctrl0	Vref_en	KSKV	p_En
Reset:	0	0	1	0	0	1	1	1
	Bit7	6	5	4	3	2	1	Bit0
Read:	uchop_e n	RSRV	RSRV	RSRV	RSRV	RSRV	Vref_Ch op_buf_ en	lowFreq _isel
Reset:	1	0	1	0	0	1	1	0

位	功能描述
ldo_emu_en	EMU Analog 供电 LDO 使能控制位:
	1: 开启 EMU 的 LDO
	0: 关闭 EMU 的 LDO (default)
	进入低功耗模式不需要开启 EMU 模块可关闭此位,或常数计量掉零线进入 hold
	模式时关闭此位,以降低功耗。
Vref_Ctrl[2:0]	VrefTC 顶点调整
	Default = 100
Chop_Vref_en	Vref chop 使能控制位
	1: Vref chop on (default)
	0: Vref chop off
RSRV	建议保持此位为 1.
Adc_Chop_En	Adc chop 使能控制位
	1: 使能 Adc chop
	0: 关闭 Adc chop (default)
uchop_en	电压采样的 chop 使能位

	1: 使能 U 通道 chop 功能(default) 0: 关闭 U 通道 chop 功能 建议在正常计量模式下保持 U 通道的 chop 功能开启,在掉零线计量模式下,因 U 通道关闭,需关闭 U 通道的 chop 功能。
RSRV[BIT6, BIT2]	建议保持默认值配置: 01001
	Vref chop buf使能控制位
Vref_Chop_buf_en	1: 开启
	0: 关闭
	LowFreq偏置电流控制位
lowFreq_isel	1: 偏置电流为5Ua
	0: 偏置电流为10Ua(default)

UCONST		基地址:	0x40013	0x40013800					
失压计量电压常量寄存器			偏移地址:	9CH	9СН				
				Bit15	···BitO				
Read:	TIGONOME 1 E O								
Write:	UCONST[15:0]								
Reset:	0 0 0 0 0 0 0 0					0			

此寄存器采用二进制无符号数形式。该寄存器主要目的是替代 Urms 寄存器的值参与掉零线计量,用户也可以根据需要写入自己需要的值。该寄存器与 Urms 的对应关系如下:

URms 是 24 位寄存器,其中最高位恒为 0,即 23 位有效;而 UCONST 是 16 位有效位寄存器,所以在正常信号输入下读出来的寄存器 URms 值要右移 7 位,即除以 2^7 ,就可以得到 Uconst 的值

LpIdleTim	LpIdleTime		基地址:	0x40013	0x40013800				
低功耗计量分时空闲时间设置			偏移地址:	AOH					
				Bit9•	··BitO				
Read:				I T T T T T T T T T T T T T	[0.0]				
Write:		LpIdleTime [9:0]							
Reset:	0	0 0 0 0 0 0 0							

低功耗计量模式下,分时模式的空闲时间设置寄存器。

默认为 0, 即空闲 1S, 再打开固定时间;

空闲时间可写范围 0---599, 即空闲 1S--600S, 再开固定时间。

注意在低功耗模式下,慢速有效值,慢速视在功率是没有值的。

当使能 LpIdleEn 低功耗分时模式之后,并进入低功耗计量模式,LpIdleTime(A0H)默认为 0 即 1S。当设置 A0H 为 0x0009 就是 10 秒。以此为例,在这种配置下,ADC 采样一次值,FastI1RMS 和 FastPowerS 寄存器的值保持 10 秒,并按照这个功率值去累加脉冲,然后再去采一次,再保持 10S 这样。

USAGLVL		基地址:	0x40013800
电压跌落检	ì测阈值寄存器	偏移地址:	A4H
			Bit15···Bit0

Read:				IIS ACI VI	[15.0]				
Write:		USAGLVL[15:0]							
Reset:	0	0	0	0	0	0	0	0	

该寄存器为无符号数据,其 16bit 和 22bit 的 ADC 波形寄存器高对齐, ADC 波形寄存器的绝对值和 USAGLVL 相比较, 在用户设定的 0VCyc 个半周期时间内, 如果 ADC 波形都小于 USAGLVL 寄存器,则在 0VCyc 的最后一个半周波,更新 SAG 标志。

计量参数寄存器 Upd_Half (88H)。USAGLVL 寄存器,16bit 无符号数据,与波形采样采样的绝对值高对齐。

有效值和峰值之间存在 1.414 倍的关系。所以有如下关系:

Upd_Half = Urms*1.414/2⁵

USAGLVL 阈值如果设成峰值的 80%,则:

USAGLVL= 0.8* Upd_Half /2^3 = 0.8*Urms*1.414/2^8

IpeakCyc I1 I2 PEAK 检测周期设置			基地址: 偏移地址:						
	Bit15···E								
Read:	T 10 [15 0]								
Write:	IpeakCyc [15:0]								
Reset:	0	0 0 0 0 0 0 0							

该寄存器默认值为 0x0020。注意:

16 位无符号数,用于设定过流检测数据长度,即 IPeak 功能检测设定的数据长度后给出峰值。

1个LSB对应半个周波。

UOVLVL			基地址:	0x40013	0x40013800				
电压 PEAK 检测阈值寄存器		偏移地址:	ACH						
					···Bit0				
Read:				HOW W	[15.0]				
Write:	UOVLVL[15:0]								
Reset:	0	0	0	0	0	0	0	0	

该寄存器为无符号数据,其 16bit 和 22bit 的 ADC 波形寄存器高对齐,ADC 波形寄存器的绝对值和 UOVLVL 相比较,在用户设定的 **OVCyc** 内,如果 ADC 波形超过 UOVLVL 寄存器,则在 **OVCyc** 的最后一个半周波,更新 UOVIF 标志。

Upd_Half 寄存器,22bit 有符号数据,采用二进制补码格式,与波形采样数据对齐。UOVLVL 寄存器,16bit 无符号数据,与波形采样采样的绝对值高对齐。

有效值和峰值之间存在 1.414 倍的关系。所以有如下关系:

Upd_Half= Urms*1.414/2⁵

UOVLVL 阈值如果设成峰值的 120%,则:

UOVLVL= 1. 2*Upd Half /2^3 = 0. 8*Urms*1. 414/2^8

OVCyc	OVCyc		基地址:	0x40013	0x40013800			
电压 SAG\PEAK 检测周期寄存器		偏移地址:	ВОН					
				Bit15	···BitO			
Read:				OVC	[15.0]			
Write:	OVCyc[15:0]							
Reset:	0	0 0 0 0 0 0 0						

该寄存器默认值为 0x0001。 注意:

16 位无符号数,用于设定 Udet 检测数据长度,即电压通道 Peak/SAG 值在检测设定的数据长度后给出峰值。

1个LSB对应半个周波,当检测值超过设定的阈值后,给出中断标志。

IOVLVL 电流过流间	IOVLVL 电流过流阈值寄存器			0x40013 B4H	800			
	Bit15···Bit0							
Read:	TOWN [15 o]							
Write:	IOVLVL[15:0]							
Reset:	0	0 0 0 0 0 0						

该寄存器为无符号数据,其 16bit 和 22bit 的 ADC 波形寄存器高对齐,ADC 波形寄存器的绝对值和 IOVLVL 相比较,在用户设定的 **IpeakCyc** 内,如果 ADC 波形超过 IOVLVL 寄存器,则在 **IpeakCyc** 的最后一个半周波,更新 UOVIF 标志。

Ipeak 寄存器,22bit 有符号数据,采用二进制补码格式,与波形采样数据对齐。IOVLVL 寄存器,16bit 无符号数据,与波形采样采样的绝对值高对齐。

有效值和峰值之间存在 1.414 倍的关系。所以有如下关系:

Ipeak = $Irms*1.414/2^5$

IOVLVL 阈值如果设成峰值的 120%,则:

 $IOVLVL = 1.2* Ipeak /2^3 = 0.8*Irms*1.414/2^8$

ZXILVL 电流过零	阈值寄有	学器	基地址: 0x40013800 偏移地址: B8H				
	Bit15	14	13	12 3	2	1	Bit0
Read:	ZX15	ZX4	ZX13	ZC12···ZC3	ZC2	ZC1	ZC0
Write:	ZVIO	LΛ4	ZAIS	2012***203	202	ZCI	ZCO
Reset:	0	0	0	0	0	0	0

电流有效值与 ZXILVL 相比较。ZXILVL 对应 IRMS 的低 16 位 Bit15···bit0。

过零电流域值设置寄存器,当电流有效值小于用户设定的电流过零域值设置寄存器的时候,则不输出电流用户指定的过零信号,内部输出恒为0。

PDataCpH 常数有功	功率累加高 16 位	基地址: 偏移地址:	0x40013800 BCH
			Bit15···Bit0

Read:				DDo+oCr.I	I [15.0]				
Write:		PDataCpH [15:0]							
Reset:	0	0	0	0	0	0	0	0	

PDataCpL 常数有功功	PDataCpL 常数有功功率累加低 16 位			0x40013 COH	8800			
				Bit15	···BitO			
Read:								
Write:	PDataCpL [15:0]							
Reset:	0	0 0 0 0 0 0 0						0

常数计量下,常数有功功率的高、低 16 位组成 32 位常数视在功率,当用户使能常数计量功能后,由 PDATACP 代替有功功率发脉冲和能量累加。

QDataCpH 常数无功功率累加高 16 位			基地址: 偏移地址:	0x40013800 С4Н				
				Bit15	···BitO			
Read:	OD + C H [15.0]							
Write:	QDataCpH [15:0]							
Reset:	0	0	0	0	0	0	0	0

QDataCpL			基地址:	0x40013	0x40013800				
常数无功功率累加低 16 位			偏移地址:	C8H					
	Bit15···Bit0								
Read:	OD-+-C-I [15.0]								
Write:	- QDataCpL [15:0]								
Reset:	0	0	0	0	0	0	0	0	

常数计量下,常数无功功率的高低 16 位,组成 32 位常数视在功率,当用户使能常数计量功能后,由 QDATACP 代替无功功率发脉冲和能量累加;

SDataCpH			基地址:	0x40013800				
常数视在功率累加高 16 位			偏移地址:	CCH				
				Bit15	···Bit0			
Read:	SDataCpH[15:0]							
Write:	Spatacpn[15.0]							
Reset:	0	0	0	0	0	0	0	0

SDataCpL		基地址:	0x40013800			
常数视在功率累加低 16 位		偏移地址:	DOH			
			Bit15···Bit0			
Read:	SDataCpL [15:0]					
Write:			SDataCpt [13.0]			

HT502X 用户手册

_										
	_									
	Reset	()	()	()	()	()	()	()	()	

常数计量下,常数有功功率的高低 16 位,组成 32 位常数视在功率,当用户使能常数计量功能后,由SDATACP 代替有功功率发脉冲和能量累加;

	rol register 数控制寄存	X	基地址: 偏移地址:	0x40013 D4H	3800			
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	X	X	RosiPga	RosiPga	ZXsourc	PahseSh	PahseSh
Write:	X	Λ	Λ	Ctr1	Ctr0	eSe1	iftCtr1	iftCtr1
Reset:	0	0	0	0	0	0	1	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	RosiCtr	RosiCtr	HpfCt12	HpfCt11	HpfCt10	LpfCt12	LpfCt11	LpfCt10
Write:	1	0						
Reset:	1	1	1	1	0	1	1	1

位	功能描述							
RosiPgaCtr[1:0]	两路电流罗氏线圈	增益控制档						
	RosiPgaCtr1	RosiPgaCtr0	Rosi 增益					
	0	0	1 (default)					
	0	1	2					
	1	0	4					
	1	1	8					
ZXsourceSel	电流电压过零源头	选择位						
	1: 选择电压过零分	为90 度移相后,电流过	零为经 rosi 后					
	0: 选择电压电流过零源头为高通后							
PahseShiftCtr[1:0]	90 度移相滤波器系数控制档							
	PahseShiftCtr1	PahseShiftCtr0	移相滤波器档位					
	0	0	11					
	0	1	12					
	1	0	13(default)					
	1	1	14					
RosiCtr[1:0]	两路电流罗氏线圈	滤波器系数控制档						
	RosiCtr1	RosiCtr0	Rosi 滤波器档位					
	0	0	11					
	0	1	12					
	1	0	13					
	1	1	14(default)					

HpfCt1[2:0]	高通系数选择控	制位		
	HpfCt12	HpfCt11	HpfCt10	高通系数
	0	0	0	4
	0	0	1	5
	0	1	0	6
	0	1	1	7
	1	0	0	8
	1	0	1	9
	1	1	0	10 (default)
	1	1	1	11
LpfCt1[2:0]	低通系数选择控	制位		
	HpfCt12	HpfCt11	HpfCt10	低通系数
	0	0	0	4
	0	0	1	5
	0	1	0	6
	0	1	1	7
	1	0	0	8
	1	0	1	9
	1	1	0	10
	1	1	1	11 (default)

TUgain U 通道手动温度补偿系数设置			基地址: 偏移地址:	0x40013800 D8H					
				Bit15	···BitO				
Read:	771 · [15 0]								
Write:	TUgain [15:0]								
Reset:	0	0	0	0	0	0	0	0	

TIlgain			基地址:		0x40013800					
I1 通道手	通道手动温度补偿系数设置			DCH						
		Bit15···Bit0								
Read:		TI1 : [15 0]								
Write:		TI1gain [15:0]								
Reset:	0	0	0	0	0	0	0	0		

TI2gain	<u>=</u>		0x40013800
I2 通道手	动温度补偿系数设置	偏移地址:	ЕОН
			Bit15···Bit0
Read:			TI2gain [15:0]
Write:			112gain [13.0]

Reset: 0 0 0 0 0 0 0	Reset:	0	0	0	0	0	0	0	0
------------------------------------	--------	---	---	---	---	---	---	---	---

温度手动补偿寄存器 TUgain, TI1gain, TI2gain。用于用户手动补偿温度对三路通道的影响。

对 3 路 ADC 增加了手动增益校正,主要针对 VREF 和外围由于温度的变化引起 ADC 发生的变化。

举例:

已知:由于 Vref 和外围变化导致的 U 通道有效值变化 err%,注意是有效值的 err%。

计算公式: gain =(-err%)/(1+err%)

如果 gain>=0,则 TUgain=INT[gain*2^15]

否则 gain<0,则 TUgain=INT[2¹⁶+gain*2¹⁵]

TI1gain 和 TI2gain 手动补偿寄存器的计算方式与 TUgain 一样。

自动温度补偿曲线系数寄存器:

UTCcoffA			基地址:	0x40013	800				
U 通道自动	边温补 Vref	Gain 的二	偏移地址:	E4H					
次系数设置									
	Bit15···Bit0								
Read:		LITO CCA [15 O]							
Write:	UTCcoffA [15:0]								
Reset:	0	0	0	0	0	0	0	0	

U通道自动温度补偿曲线二次项系数。

UTCcoffB U 通道自动 次系数设置	力温补 Vref	Gain 的一	基地址: 偏移地址:	0x40013 E8H	3800					
		Bit15···Bit0								
Read:		HTCCCD [1E.O]								
Write:	UTCcoffB [15:0]									
Reset:	0	0	0	0	0	0	0	0		

U通道自动温度补偿曲线一次项系数。

Bit 15—bit13 为一次系数的整数部分,最高位为符号位,可以表示正负 3 (应该为 -4 --- +3 范围),bit12—bit0 表示一次系数的小数部分,最高位为符号位,可表示正负 1。

所以 UTCoffB = Bit15 (符号) bit14—bit13 + bit12 (符号) bit11—bit0

举例如下:

如果 UTCoffB 值为 0x1400 则系数为:整数部分为 0 ,小数部分为 $-(2^13-0x1400)/2^12=-0.75$ 则 UTCoffB = 0+-0.75=-0.75

如果 UTCoffB 值为 0x2400 则系数为:整数部分为 1,小数部分为 0x400/2 12 = 0.25

则 UTCoffB = 1 + 0.25 = 1.25

UTCcoffC U 通道自动温补 VrefGain 的常			基地址: 偏移地址:	0x40013 ECH	8800				
数项系数记	设置								
	Bit15···Bit0								
Read:		TITO CCO [1E A]							
Write:	UTCcoffC [15:0]								
Reset:	0	0	0	0	0	0	0	0	

U通道自动温度补偿曲线常数项。

自动温度补偿使能后,TPScode 值为芯片内部TPS 寄存器的高10位。

TPS code 为二进制补码格式。

自动温度电压补偿输出值为:

A0H	AutoUgain	R	2	0x000000	U通道温度自动补偿系数
-----	-----------	---	---	----------	-------------

实际内部计算公式:

AutoUgain = UTCcoffA/32768* (TPSCODE/256) 2 + UTCcoffB* (TPSCODE/256) + UTCcoffC/32768 注意: UTCcoffB 分为整数部分和小数部分,各自都有符号位,UTCoffC 也是有符号数,表示范围 -32768---32767。

I1TCcoffA I1 通道自动温补 VrefGain 的二 次系数设置寄存器			基地址: 偏移地址:		0x40013800 FOH					
		Bit15···Bit0								
Read:				T1TC CC	A [1E.O]					
Write:	I1TCcoffA [15:0]									
Reset:	0	0	0	0	0	0	0	0		

I1 通道自动温度补偿曲线二次项系数。

I1TCcoffB	3		基地址:	0x40013	3800				
I1 通道自动温补 VrefGain 的一		偏移地址:	F4H	F4H					
次系数设置寄存器									
		Bit15···Bit0							
Read:				I1TC off	D [15.0]				
Write:	I1TCcoffB [15:0]								
Reset:	0	0 0 0 0 0 0 0							

I1 通道自动温度补偿曲线一次项系数。

Bit 15—bit13 为一次系数的整数部分,最高位为符号位,可以表示正负 3 (应该为 -4 --- +3 范围),bit12—bit0 表示一次系数的小数部分,最高位为符号位,可表示正负 1。

I1TCcoffC	基地址:	0x40013800

	动温补 Vref 设置寄存器		偏移地址:	F8H					
		Bit15···Bit0							
Read:				I1TCooff	C [15.0]				
Write:		I1TCcoffC [15:0]							
Reset:	0	0 0 0 0 0 0 0							

I1 通道自动温度补偿曲线常数项。

I2TCcoffA I2 通道自动温补 VrefGain 的二 次系数设置寄存器			基地址: 偏移地址:	0x40013 FCH	3800			
		Bit15···Bit0						
Read:				Introoff	·A [15.0]			
Write:	I2TCcoffA [15:0]							
Reset:	0	0 0 0 0 0 0 0						

I2 通道自动温度补偿曲线二次项系数。

I1 通道自	I2TCcoffB I1 通道自动温补 VrefGain 的一 次系数设置寄存器		基地址: 偏移地址:		0x40013800 100Н				
		Bit15···Bit0							
Read:				IOTCooff	D [15.0]				
Write:	I2TCcoffB [15:0]								
Reset:	0	0 0 0 0 0 0 0							

¹² 通道自动温度补偿曲线一次项系数。

Bit 15—bit13 为一次系数的整数部分,最高位为符号位,可以表示正负 3 (应该为 -4 --- +3 范围), bit12—bit0 表示一次系数的小数部分,最高位为符号位,可表示正负 1。

I2TCcoffC I1 通道自动温补 VrefGain 的常 数项系数设置寄存器			基地址: 偏移地址:	0x40013 104H	800			
	Bit15···Bit0							
Read:				IOTCooff	C [15·0]			
Write:	I2TCcoffC [15:0]							
Reset:	0	0	0	0	0	0	0	0

I1 通道自动温度补偿曲线常数项。

注: 两路电流的自动温度补偿系数计算方式与电压通道一样。

LoadDataCp	基地址:	0x40013800
------------	------	------------

常数计量局	数计量启动寄存器			108H						
		Bit15···Bit0								
Read:		I ID. (. C . [15.0]								
Write:		LoadDataCp [15:0]								
Reset:	0	0	0	0	0	0	0	0		

当用户向 LoadDataCp 写入 0x00BC 后,常数计量 DATACPload 进入累加源头。

BufferStart			基地址:	0x40013	3800			
缓存数据启动寄存器		偏移地址:	10CH					
	Bit15	14	13	12	11	10	9	Bit8
Read:	Des C.C. a. C. t. a	[1E.0]						
Write:	Bullersta	BufferStar[15:8]						
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:		D., ££ C.	[7 . 4]		v	V	V	V
Write:		BufferS	tar[1:4]		X	X	X	X
Reset:	0	0	0	0	0	0	0	0

注意:默认值:0x0000 缓存启动寄存器,缓存启动之后,该寄存器重新复位为0x0000。

BIT15--4 启动位写入 OCCCH 启动 buffer 缓存

位	功能描述		
bit[3:2]	Buf dec gain		
	Bit3	Bit2	增益
	0	0	1
	0	1	2
	1	0	4
	1	1	8
bit[1:0]	buffer 源头选择		
	Bit1	Bit0	源头选择
	0	0	U
	0	1	I1
	1	0	I2
	1	1	U

BufferCoff 缓存数据手动调整系数寄存器		基地址: 偏移地址:		0x40013800 110H					
		Bit8···Bit0							
Read:				DuffanCa	££ [0.0]				
Write:	BufferCoff [8:0]								
Reset:	0	0	0	0	0	0	0	0	

当采样信号为 50Hz 时,此寄存器为 0x0100(Default)

缓存数据手动调整系数 bit8-0 写入范围 196—284, 大于 284 取值 284 小于 196 取值 196 系数计算方法: 为实际线频率。

$$BufferCoff = \frac{EMUCLK}{Freq \times 64}$$

EMUCLK 为 819.2KHz 或 409.6KHz,

Freq 为信号的线频率,频率范围为 45Hz \sim 65Hz 之间,超出这个范围就不适用了。用户可手动调整此系数,以获得缓存数据为两个整周波信号。

SRSTREG			基地址:	0x40013	0x40013800			
EMU 软件复	位寄存器		偏移地址:	114H				
		Bit7…Bit0						
Read:		CDCTDDQ [7 0]						
Write:	SRSTREG [7:0]							
Reset:	0	0	0	0	0	0	0	0

当用户写入 0x55, 复位所有校表参数寄存器, 当用户写入 0xAA 复位整个 EMU 模块。

PFCntN 反向快速不	有功脉冲计	数寄存器	基地址: 偏移地址:	0x40013800 : 118H				
	Bit15···Bit0							
Read:				DEC ₂₂ +N	[15.0]			
Write:	PFCntN [15:0]							
Reset:	0	0	0	0	0	0	0	0

默认值为 0x0000

QFCntN 反向快速ラ	尼功脉冲计	数寄存器	基地址: 偏移地址:	0x40013800 11CH				
	Bit15···Bit0							
Read:		ODG -N [15 0]						
Write:	QFCntN [15:0]							
Reset:	0	0	0	0	0	0	0	0

当快速脉冲计数寄存器 PFCntN/QFCntN 计数的值大于等于 HFconst 时,相应的 PF/QF 会有脉冲溢出,能量寄存器的值会相应的加 1。为了防止上下电时丢失电能,掉电时寄存器 PFCntN/QFCntN 可保存不足一个脉冲的能量值,MCU 可将此值读回并进行保存,然后在下次上电时 MCU 将这些值重新写入到 PFCntN/QFCntN中去参与能量累加。

23.4 校表过程

第一步: 高频脉冲常数设置(同一批表只需同样的 HFCONST)

通过 HFConst 寄存器将用户样表的误差精度调整到 10%以内。有两种方式计算。

方案一:

HFCONST 寄存器的默认值为 0x0080

用户观察电表的初始误差为 Err%,则按照下面公式将误差调整到 10%以内:

 $HFCONST = 0x0080 \times (1 + Err\%)$

举例说明:

电表表常数 EC 设置为 3200imp/KWh, 功率因数为 1, HFCONST 寄存器为默认值 0x0080, 观察标准表上显示的误差为 52.8%。

根据公式: HFCONST = 0x0080×(1+ Err%)

计算得到: HFCONST = 0x0080×(1+52.8%) = 0x00C3

将 0x00C3 写入校表寄存器 HFCONST (4CH),写入校正值之后,标准表显示误差应该在 10%以内。

方案二:

ADC 采样频率 fs 为 12.8KHz 时(即 Femu = 819.2KHz, OSR = 64, fs = Femu/OSR), HTConst 的计算公式如下:

$$HFConst = \frac{2.332 \times Vu \times Vi \times 10^{10}}{EC \times Iln \times Ib}$$

Vu: 额定电压输入时, 电压通道的电压(引脚上电压×放大倍数)

Vi: 额定电流输入时,电流通道的电压(引脚上电压×放大倍数)

Un: 额定输入的电压

Ib: 额定输入的电流

EC: 电表常数

当 ADC 的采样频率 fs 为其他值时,HFConst 按等比例变化即可,如 fs 缩小一倍,HFConst 的值等比例缩小一倍。

举例说明:

电表表常数 EC 设置为 3200imp/KWh,功率因数为 1,fs 保持默认值为 12.8KHz。 Un(额定电压)为 220V,Ib(额定电流)为 5A,Vu(电压通道的电压)为 0.22V Vi(电流通道的电压)为 1.75mV,内部电流通道 16 倍增益,Vi*16=28mV 根据公式:

$$HFConst = \frac{2.332 \times Vu \times Vi \times 10^{10}}{EC \times Un \times Ib}$$

计算得到:

HFConst = $2.332 \times 0.22 \times 0.028 \times 10^{10} / (3200 \times 220 \times 5) = 0x0028$

将 0x0028 写入校表寄存器 HFCONST (4CH),写入后标准表的显示误差应该在 10%以内。

第二步:第一通道有功、无功和视在增益校正

只需要在额定输入、功率因数为1时根据有功计算。通常有功、无功和视在增益写入相同的值。 己知:

标准表上读出误差为 err%

计算公式:

$$Pgain = \frac{-err\%}{1 + err\%}$$

如果 Pgain>=0,则 GP1=INT[Pgain×2¹⁵]

否则 Pgain<0,则 GP1=INT[2¹⁶+Pgain×2¹⁵]

将计算出值写入有功增益寄存器 GP1,芯片内部会自动将此值写入到无功增益 GO1 和视在增益 GS1。

举例说明:

功率源上输出 220V、5A、功率因数为 1 的信号,标准表上显示的误差为 3.8%

则 Pgain=-0.038/(1+0.038)=-0.0366

该数小于 0, 需转换为补码,则-0.0366×2^15+2^16=0xFB50H

将 0xFB50H 写入 GP1(0CH)寄存器,无功和视在阻性增益也同时得到校正,即完成所有阻性增益校正。

第三步:第一通道相位校正

在阻性增益已经校正好之后,进行相位增益校正,需要将功率因素调整到 0.5L 状态处进行校正。

已知: 0.5L 处标准表误差读数为 err%

相位补偿公式:

$$\theta = \frac{-err\%}{1.732}$$

如果
$$\theta \geq 0$$
, $GPhs = \theta \times 2^{15}$

否则
$$\theta < 0$$
, $GPhs = 2^{16} + \theta \times 2^{15}$

举例说明:

校完阻性增益后,将功率因数调整为0.5L,如果这时标准表显示的误差为-0.4%,则

 $\theta = -(-0.004)/1.732 = 0.0023$

Gphs1=0.0023×2^15=75.3

取整后为 0x4BH, 写入相位校正寄存器 Gphs1(18H)即可。

第四步: 电流通道 2 增益校正(做防窃电时必需)

做防窃电时,需要对两个通道的电流有效值或者功率进行比较,因而在同样电流输入下,通道 1 与通道 2 的有效值或功率寄存器值应该相等。

通过调整通道 2 增益校正寄存器 I2GAIN(30H),使外部输入相同负载的情况下,两个通道有效值或功率寄存器的值一致。

输入同样额定电流,电流通道 1 有效值寄存器读数为 I1rms,电流通道 2 有效值寄存器读数为 I2rms,电流通道 1 有功功率 Power1,电流通道 2 有功功率 Power2,

如果选择比较电流防窃电方式:

则 Gain=I1rms/I2rms – 1

如果选择比较功率防窃电方式:

则 Gain=Power1/Power2 - 1

如果 Gain>=0,I2Gain=Gain×2^15;如果 Gain<0,I2Gain=Gain×^15+2^16

第五步: 第二通道阻性增益校正、相位校正

第二通道阻性增益校正、相位校正与通道1类似。

第六步: Poffset 校正(小信号有功功率偏置校正) 在经过以上步骤之后,用户在 Ib = 100%的时候电表误差校正到 0 附近; 观察小信号 x%Ib(5%, 2%)点的电表误差为 Err%, x%Ib点在阻性下读取标准表上输出的有功功率值 Preal 根据公式计算:

$$P1_offset = \frac{\text{Preal*EC*HFConst*2^28 *(-Err\%)}}{2.304*10^{10}}$$

举例说明:

额定电压 220V,额定电流(Ib)5A,表常数为 3200,快速脉冲寄存器(HFCONST)读取为 0x66; 电表在 Ib = 100%时误差校正在 0 附近,观察小信号 5%点的电表误差为 0.5%; 从标准表上读取小信号 5%点的输出功率为 55.02 (Preal 为标准表上的显示功率输出) 根据公式计算得到:

Poffset = $(Preal \times EC \times HFCONST \times 2^28 \times (-Err\%)) / (2.3 \times 10^10)$

 $= (55.02 \times 3200 \times 102 \times 2^28 \times (-0.5\%)) / (2.3 \times 10^10)$

= -1047.98

由于 Poffset < 0, 所以写入寄存器 P1offset 的值为 2^16 + Poffset =63444 取整数 64488 即 0xFBE8,

将 0xFBE8 写入通道一小信号偏置寄存器 P1offset(78H)。

第七步: Irms、Urms 和两个通道的功率显示转换系数校正

这些参数没有相应的寄存器,需要由用户根据需要自行计算获取。

举例说明:

以电流通道 1 有效值为例,电流通道 1 标准台输出 5A 电流有效值,电流通道 1 有效值寄存器 RMSI1(3CH) 的值读取得 0x03BA55,如果用户希望在液晶上显示出 5A,则需要自行计算两者之间的转换系数如下: $K = 5/0x03BA55 = 2.046 \times 10^{\circ}(-5)$

这里的 K 就是电流有效值显示值转换系数,之后用户可根据读取的寄存器 RMSI1 的值乘这个 K 系数,则得到实际外部输入的电流。详见有效值输出章节和功率参数输出章节。

24 电气规格

24.1 DC 参数

符号	参数说明	测试条件	最小	典型	最大	单 位
VCC	输入电源	输入电源引脚上的电压	2.2	3.3	5. 5	V
Vih1		Reset 引脚,TEST 引脚	0.8VCC			V
Vih2	高电平输入	PC9, PC10, PE0, PE3, PE6	0.6VCC			V
Vih3	电压	除了电源和地,除了 Reset, TEST, PC9, PC10, PE0, PE3, PE6 之外的所有引脚	0. 7VCC			V
Vil	低电平输入 电压	除了电源和地之外的所有引 脚			0. 2VCC	V
Ioh1 大电流 IO	高电平输出电流1	VCC=5.0V I/O 口上电压 Voh 降低到 0.9VCC 测试引脚为: PA.6, PA.7, PA.8, PC.0		10		mA
Iol1 大电流 IO	低电平输出电流1	VCC=5.0V I/O 口上电压 Vol 升高到 0.1VCC 测试引脚为: PA.6, PA.7, PA.8, PC.0		20		mA
Ioh2	高电平输出电流 2	PA. 6, PA. 7, PA. 8, PC. 0 I/0 口上电压 Voh 降低到 0. 9VCC 测试引脚为: 5 (VCC=5. 0V) PD. 4, PD. 5, PD. 6, PD. 7 3 (VCC=3. 3V) PC. 5, PC. 6, PC. 7, PC. 8, PC. 9, PC. 10, PC. 11, PE. 1			mA	
Iol2	低电平输出电流2	I/O 口上电压 Vol 降低到 0.1VCC 测试引脚为: PD. 4, PD. 5, PD. 6, PD. 7 PC. 5, PC. 6, PC. 7, PC. 8, PC. 9, PC. 10, PC. 11, PE. 1		5 (VCC=5. 0V) 3 (VCC=3. 3V)		mA
Ioh3	高电平输出电流3	VCC=5.0V I/O 口上电压 Voh 降低到 0.9VCC 测试引脚为:		2. 5 (VCC=5. 0V) 1. 5 (VCC=3. 3V)		mA

		除了 PA. 6, PA. 7, PA. 8, PC. 0,		
		PD. 4, PD. 5, PD. 6, PD. 7 PC. 5, PC. 6, PC. 7, PC. 8, PC. 9,		
		PC. 10, PC. 11, PE. 1		
		VCC=5. 0V		
		I/O 口上电压 Vio 降低到		
		0. 1VCC		
Io13	低电平输出	测试引脚为:	2.5 (VCC=5.0V)	mA
1013	电流 3	除了 PA. 6, PA. 7, PA. 8, PC. 0,	1.5 (VCC=3.3V)	IIIA
		PD. 4, PD. 5, PD. 6, PD. 7		
		PC. 5, PC. 6, PC. 7, PC. 8, PC. 9,		
		PC. 10, PC. 11, PE. 1		

24.2 极限参数

符号	参数说明	测试条件	最小	最大	单位
VCC	输入电源	输入电源引脚上的电压	2. 2	5. 5	V
Vi	输入电压	所有的数字引脚	0	5.5	V
Via	ADC 输入极限电	测试 ADC 引脚输入电压,高于此电压可能	0	3.0	V
	压	会导致该引脚损坏			
Vib	VBAT 输入极限	测试 VBAT 引脚输入电压,高于此电压可	0	5.0	V
	电压	能会导致该引脚损坏			
Idd	输入电流	VCC 电源引脚		50	mA
Iss	地上电流	所有 GND 引脚		50	mA
Tstg	存储温度	芯片的极限存储温度	-65	+150	\mathbb{C}
Vesd	静态 ESD	ADC 输入引脚	-6000	+6000	V
	(HBM)	芯片所有的引脚	-8000	+8000	

注: VCC 输入的系统电压可承受 1.5 倍标称电压。

24.3 功耗参数

测试条件说明		最小	典型	最大	单位
测试条件: 以下功耗参数均为在 3.3V 供电下测试得到					
芯片处于 Hold 模式下最低功耗(具体功耗值会根据用	-45°C		2.2		uA
户在 Hold 模式下打开不同的数字模块而不同)	常温	1	3.9	7. 5	
	85℃		34. 3		
芯片处于 Sleep 模式下最低功耗	-45°C		1.9		uA

	常温	1	2.9	6.9	
	85℃		16.0		
芯片在低频 32768Hz 下运行, LCD 开启时的功耗	常温		48		uA
Hold 下,LCD 开启功耗	常温		12. 2		uA
高频 RC 下运行, 高频 RC 配置为 9.5M, CLKOUT 关闭,	常温		2.85		mA
所有数字模块打开/关闭			/1.52		
高频 RC 下运行,高频 RC 配置为 8M, CLKOUT 关闭,	常温		2. 19		mA
所有数字模块打开/关闭			/0.86		
高频 RC 下运行,高频 RC 配置为 4.8M, CLKOUT 关闭,	常温		1.75		mA
有数字模块打开/关闭			/0.53		
高频 RC 下运行,高频 RC 配置为 2.4M,CLKOUT 关闭,	常温		1.42		mA
有数字模块打开/关闭			/0.35		
高频 RC 下运行,高频 RC 配置为 1.2M, CLKOUT 关闭,	常温		1.25		mA
有数字模块打开/关闭			/0.27		
高频 RC 下运行,高频 RC 配置为 600K, CLKOUT 关闭,	常温		1. 17		mA
有数字模块打开/关闭			/0.23		
高频 RC 下运行,高频 RC 配置为 300K, CLKOUT 关闭,	常温		1.13		mA
有数字模块打开/关闭			/0.21		
PLL 时钟下运行,CPU 运行 PLL 时钟 39. 32M,	常温		8. 76		mA
所有数字模块打开/关闭			/5.64		
PLL 时钟下运行,CPU 运行 PLL 时钟 19.66M,	常温		5. 78		mA
所有数字模块打开/关闭			/4. 03		
PLL 时钟下运行,CPU 运行 PLL 时钟 9.83M,	常温		3.63		mA
所有数字模块打开/关闭			/2.69		
PLL 时钟下运行,CPU 运行 PLL 时钟 4.915M,	常温		2.53		mA
所有数字模块打开/关闭			/1.00		
PLL 时钟下运行,CPU 运行 PLL 时钟 2. 45M,	常温		1.96		mA
所有数字模块打开/关闭			/0.66		
PLL 时钟下运行,CPU 运行 PLL 时钟 1.22M,	常温		1.68		mA
所有数字模块打开/关闭			/0.48		
PLL 时钟下运行,CPU 运行 PLL 时钟 620k,	常温		1.54		mA
所有数字模块打开/关闭			/0.39		
EMU 单路 ADC 功耗(偏置电流 1. 5uA 时)	常温		130		uA
EMU 单路 ADC 功耗(偏置电流 10uA 时)	常温		600		uA

测试条件说明	最小	典型	最大	单		
				位		
测试条件: 以下功耗参数均为在 3.3V 供电下测试得到						
高频 RC 模块功耗(HRC)		116		uA		
低频 RC 模块功耗 (LRC)		0.9		uA		
PLL 模块功耗		205		uA		
LCD 模块功耗(快速充电模式)		6.9		uA		

LCD 模块功耗(小电流模式)	8.3	uA
LCD 模块功耗(大电流模式)	35.2	uA
BOR 模块功耗	8	uA
LVDIN 模块	7	uA

24.4 计量 ADC 参数

符号	参数说明	测试条件(常温)	最小	典型	最大	单位
V3P/V3N	电压通道		0		±1000	mVp
V1P/V1N	电流1通道		0		±800	mVp
V2P/V2N	电流 2 通道		0		±800	mVp
Fc	ADC 转换频率	VCC=3.3V	1/16		1	Hz
Res	分辨率	VCC=3.3V		0.012		mv/LSB
Vref	计量基准电压			1.20000		V
Vref TC	计量基准温度系数		10	15	20	ppm/°C
VrefLP	辅助计量基准电压			1.20000		V
VrefLPTC	辅助计量基准温度系数		15	20	30	ppm/°C

附: 基准温度漂移曲线

24.5 TBS 模块 ADC 参数

符号	参数说明	测试条件	最小	典型	最大	单位
VCC	工作电压		2.4		5. 5	V
Iadc	工作电流			350		uA
Res	分辨率				16	Bit
ENOB	有效位			12		Bit
Vrefadc	参考电压	常温	-2%	1.258V	+2%	
	(内置)					
VREF TC	参考电压温度系数			100ppm		/℃
Fsample	工作频率			32. 768k		Hz
Cin	输入电容			0.515		pF
Rin	输入电阻 (等效)			30M		Ω
ADCINx 通道			•			
Vadcin	ADC 输入范围	Vrefadc=1.258V,常温	0		800	mV
Resadcin	分辨率	理论		0.0128		mV/LSB
	计算公式	实际拟合	VADCINO =			mV
			0.0128*AD	CODAT+425	. 5623;	
			其中: VAI	DCINO 为实	际 ADC 测	
			量电压(m	V)		
温度传感器 T	PS 通道					
Adjtps	温度检测精度			+-1		$^{\circ}\mathbb{C}$
Restps	分辨率	理论		0.00278		°C/LSB
	计算公式		Tr =12. 985	52 - TMPDA	Г *0. 0028	$^{\circ}\!\mathbb{C}$

			其中: Tı	其中: Tr 为实际的温度(℃)		
VBAT 通道			<u>.</u>			
Vbatin	VBAT 输入范围		1.0		5. 5	V
Resvbat	分辨率	理论		0. 08958		mV/LSB
Rinbat	VBAT 输入电阻(内置)			220k		Ω
Div	分压系数 (内置)			1/7		
	计算公式	实际拟合	VBAT =	VBAT =		mV
			0. 0897*\	0.0897*VBATDAT+2946.2662; 其中: VBAT 为实际电池电压		
			其中: \			
			(mV)	(mV)		
VDD 通道						
VDDin	VBAT 输入范围		2. 4		5. 5	V
Restps	分辨率	理论		0. 08958		mV/LSB
Rinvdd	VBAT 输入电阻(内			42k		Ω
	置)					
Div	分压系数(内置)			1/7		
	计算公式	实际拟合	VDD = 0.	VDD = 0.0897*VDDDAT+		mV
			2998. 118	2998. 1189;		
			其中:VDI	其中:VDD 为实际 VDD 电压(mV)		

注:使用 VBAT 和 VDD 通道,工作电流为 ADC 工作电流和输入电阻对地电流之和

24.6 内部 RC 模拟参数

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
电源电压	VCC	@PVT	1.2	5	5.5	V
最低可操作电压		@TT		1		V
静态功耗	Icc			400	600	nA
LRC 全温度输出频率			13	32	50	KHz
				1.6(25℃)		
上电最低工作电压		@VCC=3V		1.3(-45℃)		V
				1.3(85℃)		
				1.4(25℃)		
掉电最低工作电压		@VCC=3V		1(-45℃)		V
				1.1(85℃)		

封装

HT5023: LQFP100

/ghannanananananananan<u>/</u>

SYMBOL	MILLIMETER			
SIMBUL	MIN	NOM	MAX	
A		_	1.60	
A1	0.05	0.15	0.25	
A2	1.30	1.40	1.50	
A3	0.54	0.64	0.74	
b	0.19	_	0.27	
ь1	0.18	0.20	0.23	
с	0.13	_	0.18	
c1	0.12	0.13	0.14	
D	15.80	16.00	16.20	
D1	13.80	14.00	14.20	
E	15.80	16.00	16.20	
E1	13.80	14.00	14.20	
е	0.50BSC			
L	0.40	0.60	0.80	
L1	1.00BSC			
θ	0	_	8°	
	256*256			
L/F载体尺寸	276*276			
(mil)	2	230*230)	
	:	354*354	ţ	

HT5025: LQFP80

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX	
A.			1.60	
A1	0.05	+	0.15	
A2:	1.35	1.40	1:45	
A3	0.59	0.64	0.69	
Ь	0.18	-	0.27	
b1	0.17	0.20	0.23	
Č.	0.13		0.18	
61	0.12	0.127	.0.134	
0	13.80	14.00	14.20	
01	11.90	12.00	12:10	
Ε	13.80	14.00	14.20	
E1	11.90	12.00	12.10	
e .	0.40	0.50	0.60	
L	0.45	0.60	0.75	
L1	1.00REF			
1.2	0.25BSC			
RI	0.08	-		
R2	0.08	-	0.20	
θ	0,	3.5	7"	
0.1	0,		-	
0.2	11"	12*	135	
0.3	11"	12"	13"	

NOTES:

ALL DIMENSIONS REFER TO JEDEC STANDARD MS-026 BDD DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

HT5027: LQFP64

	COM	NOM	DIMENSIONS
(UNITS	OF	MEAS	URE=MILLIMETER)

SYMBOL	MIN	NOM	MAX		
Α	-	-	1.60		
A1	0.05	-	0.15		
A2	1.35	1.40	1.45		
A3	0.59	0.64	0.69		
Ь	0.18	-	0.27		
b1	0.17	0.20	0.23		
С	0.13	-	0.18		
c1	0.12	0.127	0.134		
D	11.80	12.00	12.20		
D1	9.90	10.00	10.10		
E	11.80	12.00	12.20		
E1	9.90	10.00	10.10		
е	0.50BSC				
L	0.45	0.60	0.75		
L1	1.00REF				
L2	0.25BSC				
R1	0.08	-	-		
R2	0.08	-	0.20		
S	0.20	_	-		
θ	0,	3.5*	7*		
θ 1	0,	_	-		
θ 2	11"	12°	13*		
θ 3	11°	12*	13°		

NOTES:

ALL DIMENSIONS MEET JEDEC STANDARD MS-026 BCD DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

HT5029: LQFP48

