Définition 0.1. Une norme sur \mathbb{R}^d est une application $N : \mathbb{R}^d \to \mathbb{R}$ tel que:

1.
$$N(\lambda X) = |\lambda| N(X)$$

2.
$$N(X + Y) \le N(X) + N(Y)$$

3.
$$N(X) \ge 0$$
 et $N(X) = 0 \iff X = 0_d$

Définition 0.2. Une distance sur \mathbb{R}^d est une application: $d : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ tel que:

1.
$$d(X,Y) = d(Y,X)$$

2.
$$d(X,Y) \le d(X,Z) + d(Z,Y)$$

3.
$$d(X,Y) \ge 0 \quad \forall X,Y \text{ et } d(X,Y) = 0 \iff X = Y$$