Team 19: Last-Mile Drone Delivery

Kuzey Isil
Thiago Kalife
Taashi Kapoor
Zachary Marshall
Caleb Patrick

Problem Scope

Last-Mile Business-to-Consumer (B2C) Shipping Challenges:

- Delivery demand densities vary by time and location
- E-commerce sales and subsequent cargo traffic volumes are surging
- Customers expect progressively cheaper and quicker shipping options

Mission Statement

To develop a drone package delivery system that performs last-mile delivery of goods in a **faster**, **safer**, and **cheaper** manner than current delivery methods.

Stakeholders

	OPERATORS of delivery system								ACTURERS ry system	
UPS	FedEx	DHL	Amazon	USPS	Grubhub	DoorDash	DJI	Yuneec	Parrot	Blade

<u>Packages:</u> Primary Market

<u>Food:</u> Secondary Market

REGULATORS of airspace					ERS space		PRODUCERS & CONSUMERS of delivered goods		
FAA	ICAO	Federal, State, & Local Authorities	Airports	Airlines	Military	Business	General	various business & individuals	

Customer Needs

Drone shall notify customers of impending deliveries.

22

Group	Rank	Need	Group	Rank	Need
	8	Drone shall transport cargo faster than ground shipping.		30	Drone shall limit its noise, light, and air pollution.
	7	Drone shall transport cargo cheaper than ground shipping.		27	Drone shall avoid harming wildlife in the sky or ground.
	9	Drone shall provide the range to bridge the last-mile gap.		5	Drone shall avoid flying within restricted airspace.
	11	Drone shall carry multiple medium-sized packages.	Dogulators	1	Drone shall comply with FAA Part 135 regulations.
	19	Drone shall efficiently plan and navigate delivery routes.	Regulators	2	Drone shall comply with NextGen ATC LAANC regulations.
Operators	10	Drone shall detect and avoid obstacles in its course.		3	Drone shall yield to commands from authorities.
	23	Drone shall operate normally in mild precipitation and winds.		4	Drone shall avoid contacting nearby persons or structures.
	25	Drone shall operate normally in reduced visibility environments.		6	Drone shall notify other airspace users of its presence.
	24	Drone shall operate normally after repeated hard landings.		18	Drone shall protect itself from criminal activities.
	13	Drone shall offer a remote piloting capability.		17	Drone shall limit maintenance downtime.
	12	Drone shall regularly transmit tracking data to a control center.	D.d.o.o.u.fo.o.tu.u.o.u.o	26	Drone shall limit its power draw.
	14	Drone shall be securely and expediently unloaded.	Manufacturers	28	Drone shall prevent cargo movement.
Producers	15	Drone shall deliver its payload in a safe and convenient location.		16	Drone shall be easily serviceable and reliable.
&	21	Drone shall insulate its payload from weather conditions.		29	Drone shall store performance data for evaluation.
Consumers		Drone shall protect its payload from excessive loading.			

System Requirements

Drone system mean time to failure (years)

Vehicle Performance

System mtc to ops time ratio (#)

Drone light pollution (lumens)

Drone noise pollution (decibels)

.01

.03

.01

.01

Weight	Specification	Marginal Value	Target Value	Weight	Specification	Marginal Value	Target Value	
.15	Drone delivery cost (\$/mi.)	\$3.00/mi	\$2.50/mi	.1	Payload size (cu in.)	2016 cu in	3024 cu in	
.1	Drone cruise speed (mph)	50	60	.1	Payload weight (lbs)	10 lbs	12 lbs	
.1	Drone delivery range (mi.)	20	30	.03	Payload on/off-loading time (sec)	90 sec	60 sec	
.02	Drone flight endurance (hr)	1 hr	1.25 hr	.02	Payload on/off-loading steps (#)	5 steps	3 steps	
.02	Drone flight ceiling (ft)	500 ft	750 ft	.03	Payload acceleration exposure (Gs)	3 Gs	2 Gs	
.05	Drone navigational positioning error (ft)	5 ft	1 ft	.05	Payload delivery location error (ft)	10 ft	5 ft	
.02	Drone power draw (Ah)	20 Ah	15 Ah	.01	Datalink bandwidth capacity (Mbps)	5 Mbps	10 Mbps	
.03	Obstacle detection distance (ft)	400 ft	500 ft	.01	Datalink latency time (sec)	2 sec	1 sec	
.05	Obstacle separation distance (ft)	100 ft	150 ft	Payload Delivery				
.01	Tolerable wind speed (mph)	15 mph	25 mph					
.01	Drone system annual loss rate (%/year)	5%	2%				_	

10 years

.05

1000 lum

50 dB

5 years

.1

1200 lum

90 dB

 Weight
 Specification
 Value

 N/A
 Compliance with CFR Part 135 (binary)
 Yes

 N/A
 Compliance with FAA LAANC ATC (binary)
 Yes

 System Regulations

		House of Quality											
		Direction of Improvement	0	•	A	A	A	▼	A	A	•		
Ranking	Normalized Weight	Customer Requirements	Compliance with FAA LAANC ATC directives	Fleet Loss Rate	Tracks distances from obstacles during entire flight	Flight Range	Variation in altitude, longitude and latitude	Maximum power draw	Flight Speed and acceleration	Payload weight, size and temperature regulation	Crash probability, speed and acceleration	Remote control with low latency	Ease of loading and unloading
10	6%	Delivers packages at a faster and cheaper speed than ground shipping	0	0	0	1	0	-2	1	-1	-1	0	1
5	3%	Generates efficient routes and identifies landing sites automatically for safe delivery.	0	0	1	2	1	-1	0	0	0	0	0
6	3%	Can hold and lift multiple medium-sized packages.	0	0	0	-1	0	-1	0	2	0	0	2
9	5%	Can takeoff and land vertically, and hover in place.	0	0	0	0	2	-2	1	-1	0	0	0
10	6%	Does not collide with terrain, buildings, wildlife, or people and avoids restricted airspaces	2	-2	2	1	2	0	2	-1	2	1	0
10	6%	Regularly transmits its telemetry data to air traffic control centers and company network operations centers.	2	0	0	0	2	-1	0	0	0	2	0
4	2%	Requires minimal maintenance and charging downtime	0	1	0	-1	0	1	0	0	-2	0	0
9	5%	Resists external damage due to weather or stresses.	1	0	2	-1	2	0	2	0	2	0	0
8	4%	Has the range to bridge the last mile gap between distribution centers and consumer households.	1	0	0	2	0	-1	0	-1	0	0	1
6	3%	Protects itself and its cargo from criminal activities, such as hacking, vandalism, or theft.	0	2	0	0	1	0	1	0	2	2	1
7	4%	Operates normally in mild precipitation and winds; quickly and safely returns to base during severe weather conditions.	0	1	1	1	-1	-1	0	2	1	0	0
8	4%	Can be interfaced, stopped, and deactivated by police and rescue authorities.	2	1	0	0	0	0	0	0	0	1	1
10	6%	Retains the option to be piloted by a remote, manual operator.	1	0	0	0	0	0	0	0	0	2	0
7	4%	Is visible during the day and night to individuals on the ground.	1	0	0	2	1	-1	0	0	1	1	0
3	2%	Can be interfaced by individuals with visual or auditory disabilities.	0	0	0	0	0	0	0	0	0	0	2
178	1	Absolute Value Sums	14	12	14	14	12	15	12	12	12	12	12
		Sums	14	8	12	12	12	-11	12	12	12	12	12
		Importance Rating Sum (Importance x Relationship)	0.662921348	0.5	0.539325843	0.539325843	0.47752809	0.584269663	0.47752809	0.47752809	0.47752809	0.47752809	0.47752809
		Relative Weight	1	4	3	3	5	2	5	5	5	5	5
		Our Product											

House of Quality

Functional Analysis

Load Package Function

Fly to Destination Function

Unload Package Function

Emergency Operations Function

Concept Generation – Vehicle Configuration

Multicopter

Industry baseline; common, affordable, and proven vehicle design

Forward and Vertical Props

Combination of forward engines for cruise and vertical engines for takeoff and landing

Tiltrotor

Directional propellers reduces the number of necessary engines

Concept Generation – Vehicle Configuration

Catapulted Fixed-Wing

Assisted takeoff accommodates heavier payloads while fixedwing plane improves range

Helicopter

Relatively simple, inexpensive, and developed vehicle design

Coaxial and Pusher

Tested, fast, less complex to control

Modular Multicopter

Modular engine and battery pods allow operators to tailor vehicle configuration to payload

Concept Generation – Vehicle Configuration

Blimp

Small, autonomous blimps allow very precise delivery

Rocket

Reusable, guided rockets offer very fast delivery

Santa

Peak Performance

Criteria	<u>Baseline</u> Multicopter	Forward & Vertical Props	Tiltrotor	Plane Catapult	Modular Multicopter	Traditional Helicopter	Coaxial Rotors & Push Prop	Rocket	Santa	Blimp
Speed	0	1	1	1	0	0	1	1	1	-1
Cost	0	-1	-1	1	-1	-1	-1	-1	-1	-1
Range	0	1	1	1	0	-1	-1	1	1	1
Safety	0	1	-1	-1	-1	0	0	-1	1	-1
Durability	0	-1	-1	0	1	1	-1	-1	1	-1
Delivery Capability	0	0	0	-1	0	0	0	-1	1	-1
Payload Capacity	0	1	0	1	1	-1	-1	1	1	1
Maneuverability	0	1	-1	-1	0	-1	-1	-1	-1	-1
Score	0	3	-2	1	0	-3	-4	-2	4	-4
Rank	4	2	6	3	4	8	9	6	1	9
Continue?	Yes	Yes	Yes	Yes	Yes	No	No	No	Busy	No

Concept Selection – Iteration 1 Vehicle Configuration

Vehicle Configuration: Concept Changes

Criteria	Weight	Regular Multicopter	Forward & Vertical Props	Tiltrotor	Plane Catapult	Modular Multicopter	Tailsitter
Speed	0.13	2	4	5	5	1	3
Cost	0.17	4	2	1	2	2	3
Range	0.13	3	4	4	5	3	4
Safety	0.21	4	5	2	3	3	2
Durability	0.08	3	2	1	3	4	3
Delivery Capability	0.17	4	4	4	1	4	3
Payload Capacity	0.08	3	4	4	5	4	3
Maneuverability	0.04	4	5	3	2	4	1
Score		3.46	3.75	2.92	3.13	2.96	2.83
Rank		2	1	5	3	4	6
Continue?		No	Yes	No	No	No	No

Concept Selection – Iteration 2 Vehicle Configuration

Concept Generation – Payload Delivery

Landing

Current standard; common and proven delivery method

Tether

Lowering packages on ropes mitigates safety concerns of landing

Parachute

Reusable parachutes offer relative simplicity and speed

Concept Generation – Payload Delivery

Robotic Arm & Claw

Precise control over package placement improves delivery convenience

Drop

Simplicity of aerial release reduces added vehicle weight

Glider

Booster

Criteria	Baseline Landing	Drop	Parachute	Tether	Glider	Booster	Robotic Arm & Claw
Speed	0	1	1	1	1	1	-1
Cost	0	1	1	1	-1	-1	-1
Safety	0	-1	-1	1	-1	-1	1
Power	0	1	1	-1	1	-1	-1
Payload Weight	0	-1	-1	1	-1	-1	-1
Payload Size	0	-1	1	-1	-1	-1	-1
Delivery Accuracy	0	-1	-1	-1	-1	-1	1
Delivery Convenience	0	-1	-1	0	-1	-1	-1
Score	0	-2	0	1	-4	-6	-3
Rank	2	4	2	1	6	7	5
Continue?	Yes	Yes	Yes	Yes	No	No	No

Concept Selection – Iteration 1 Payload Delivery

Payload Delivery: Concept Changes

Criteria	Weight	Landing	Drop	Parachute	Tether
Speed	0.17	1	4	3	2
Cost	0.04	2	4	1	3
Safety	0.21	2	1	3	4
Power	0.04	1	3	4	2
Payload Weight	0.13	3	2	1	4
Payload Size	0.08	3	2	1	4
Delivery Accuracy	0.21	4	1	2	3
Delivery Convenience	0.13	4	1	2	3
Score		2.67	1.92	2.21	3.21
Rank		2	4	3	1
Continue?		No	No	No	Yes

Concept Selection – Iteration 2 Payload Delivery

10	Purpose	Failure Modes	Failure Mechanism	Failure Detection	Failure Compensation	Failure Effects	Risk Level (1-Low, 5-High)	Severity	Preventative Measures	Risk Score
							POSE CANNO (2-COM, 5-reign)	severny	Construct of sturdy material, frequent	nak store
Lifting Rotors	Vertical Takeoff/Hover	Broken blade	Impact, overstress, fatigue	Flight control system	Redundancy, transition to gliding flight	Loss of lift in hover/vertical flight	3	4	inspection	12
		Motor Failure	Temperature, contamination, over/under- supply of power, missture, lack of labrication (https://www.dibr.net/bis/js- things-thist-commonly-cause-electrical- motor-failures/)	Flight control system	Redundancy, transition to gliding flight	Loss of lift in hover/vertical flight	3	4	Construct of sturdy material, frequent inspection	12
Propulsion Rotors	Forward/Neverse Thrust	Broken Blade	Impact, overstress, fatigue	Flight control system	Redundancy, transition to gliding flight	Loss of forward/reverse thrust	3	2	Construct of sturdy material, frequent inspection	6
		Motor Failure	Temperature, contamination, over/under- supply of power, moisture, lack of labication (https://www.dib.net/blog/S- things-that-commercy-cause-electrical- motor-failures/)	Flight control system	Redundancy, transition to gliding flight	Loss of forward/reverse thrust	3	2	Construct of sturdy material, frequent inspection	6
Wings	Provide lift in forward flight	Structural failure	Impact, overstress, fatigue	Inspection	Transition to vertical flight	Loss of lift in forward flight	2	3		6
Control surfaces	Control drone flight	Structural (control surface) failure	Impact, overstress, fatigue	Inspection	Usage of other control surfaces/lifting motors for flight control	Inability to control aircraft	1	5	Construct of sturdy material, frequent inspection	S
		Failure of control surface actuator	Temperature, contamination, over/under- supply of power, missture, lack of ladorisation (https://www.dib.net/biory- things-that-commary-came-electrical- mosts-data-exy)	Inspection/Testing	Usage of other control surfaces/lifting motors for flight control	hability to control aircraft	2	5	Frequent Inspection, Use reliable motors	10
		Control surface binding	Lack of lubrication, warping of components	Inspection/Testing	Usage of other control surfaces/lifting motors for flight control	Inability to control aircraft	2	5	Testing in many conditions	10
Vision System	Detect and identify obstacles, delivery zones, landing zones	Failure to detect	blocked line of sight, softwarefailure	Inspection/testing	Redundancy	Loss of ability to avoid obstacles, deliver package, take off and land safety	2	4	Redundant systems, frequent inspection	8
Flight Control System	Direction of drone for naviation and safe flight	Navigation Failure	Software	Software testing and validation	Return to base, emergency landing	Loss of ability to find base, dropoff zone, or waypoints	3	3	Extensive testing	9
			Bad input	Input accuracy validation	Return to base, emergency landing	Loss of ability to find base, dropoff zone, or waypoints	2	3	Extensive testing	6
		Control failure	Bad input from air data system	Air data system validation from redundant sensors	Redundancy, emergency landing	Loss of control	3	s	Frequent inspection of air data system	15
			Control software malfunction	Software testing and validation	Emergency landing	Loss of control	3	5	Extensive software validation	15
Power System	Provide power to flight control system and propulsive sources	Battery Failure	Chemical, impact	Voltage Sensor, Inspection	Redundancy	Loss of power in all systems	2	5	Use a reliable battery, swap batteries often	10
		Power Distribution Failure	Wires severed	Voltage Sensors, Inspection	Redundancy	Loss of power in some or all systems	3	4	Frequent Inspection	12
Package Carrying System	Safely retain package, protect package from damage	Retention motorfailure	Motor Failure	Inspection	Speed and Altitude Reduction, Emergency landing or return to base, redundancy	Uncomanneed Release of Cargo	3	4	Frequent Inspection	12
		Retention latch failure	Impact, overstress, fatigue	Inspection	Speed and Albitude Reduction, Emergency landing or return to base, redundancy	Uncomanneed Release of Cargo	2	4	Frequent Inspection	8
		Package container failure	Impact, overstress, fatigue	Inspection	Speed and Altitude Reduction, Emergency landing or return to base	Uncommanded Release of Cargo, Loss of cargo protection	3	3	Frequent inspection and replacement	9
Package Lowering Tether	Lower package to ground at a safe rate	Cable structural failure	Impact, overstress, fatigue	Inspection		Uncommanded release of cargo	2	4	Frequent Inspection	8
		Lowering Motor Failure	Temperature, contamination, over/order- sophy of power, misture, lack of its transport of the contamination of the things-that-commonly-cause-electrical- motor-failures()	Inspection	Use of ratchet mechanism to retain package, emergency landing	Uncommanded release of cargo	,	4	Frequent Inspection, Use reliable motor	12
		Cable Ratchet Failure	Impact, overstress, fatigue	Inspection	Use of motor to secure package	Uncommanded release of cargo	3	4	Frequent Inspection	12
		Hook Failure	Impact, overstress, fatigue	Inspection	Use of retention latches to restrain package, return to base	Uncommanded release of cargo	2	4	Frequent Inspection	8
		Premature Package release	Altimeter failure, structural failure of release mechanism, release motor mechanism failure, software failure	Inspection		Uncommanded release of cargo	1	4	Frequent Inspection, Testing of Altimeter and release software	4

FMECA

ID	Purpose	Failure Modes	Failure Mechanism	Failure Detection	Failure Compensation	Failure Effects	Risk Level (1- Low, 5-High)	Severity	Preventative Measures	Risk Score
Lifting Rotors	Vertical Takeoff/Hover	Broken Blade	Impact, overstress, fatigue	Flight control system	Redundancy, transition to gliding flight	Loss of lift in hover/vertical flight	3	4	Construct of sturdy material, frequent inspection	12
		Motor Failure	Temperature, contamination, over/under-supply of power, moisture, lack of lubrication (https://www.dfliq.net/blog/5-things-that-commonly-cause-electrical-motor-failures/)	Flight control system	Redundancy, transition to gliding flight	Loss of lift in hover/vertical flight	3	4	Construct of sturdy material, frequent inspection	12
Propulsion Rotors	Forward/Reverse Thrust	Broken Blade	Impact, overstress, fatigue	Flight control system	Redundancy, transition to gliding flight	Loss of forward/reverse thrust	3	2	Construct of sturdy material, frequent inspection	6
		Motor Failure	Temperature, contamination, over/under-supply of power, moisture, lack of lubrication (https://www.dfliq.net/blog/5-things-that-commonly-cause-electrical-motor-failures/)	Flight control system	Redundancy, transition to gliding flight	Loss of forward/reverse thrust	3	2	Construct of sturdy material, frequent inspection	6
Wings	Provide lift in forward flight	Structural failure	Impact, overstress, fatigue	Inspection	Transition to vertical flight	Loss of lift in forward flight	2	3		6
Control surfaces	Control drone flight	Structural (control surface) failure	Impact, overstress, fatigue	Inspection	Usage of other control surfaces/lifting motors for flight control	Inability to control aircraft	1	5	Construct of sturdy material, frequent inspection	5
		Failure of control surface actuator	Temperature, contamination, over/under-supply of power, moisture, lack of lubrication (https://www.dfliq.net/blog/5-things-that-commonly-cause-electrical-motor-failures/)	Inspection/Testing	Usage of other control surfaces/lifting motors for flight control	Inability to control aircraft	2	5	Frequent Inspection, Use reliable motors	10
		Control surface binding	Lack of lubrication, warping of components	Inspection/Testing	Usage of other control surfaces/lifting motors for flight control	Inability to control aircraft	2	5	Testing in many conditions	10
Vision System	Detect and identify obstacles, delivery zones, landing zones	Failure to detect	Blocked line of sight, software failure	Inspection/testing	Redundancy	Loss of ability to avoid obstacles, deliver package, take off and land safely	2	4	Redundant systems, frequent inspection	8

FMECA: Top Half

ID	Purpose	Failure Modes	Failure Mechanism	Failure Detection	Failure Compensation	Failure Effects	Risk Level (1- Low, 5-High)	Severity	Preventative Measures	Risk Score
Flight Control System	Direction of drone for naviation and safe flight	Navigation Failure	Software	Software testing and validation	Return to base, emergency landing	Loss of ability to find base, dropoff zone, or waypoints	3	3	Extensive testing	9
			Bad input	Input accuracy validation	Return to base, emergency landing	Loss of ability to find base, dropoff zone, or waypoints	2	3	Extensive testing	6
		Control failure	Bad input from air data system	Air data system validation from redundant sensors	Redundancy, emergency landing	Loss of control	3	5	Frequent inspection of air data system	15
			Control software malfunction	Software testing and validation	Emergency landing	Loss of control	3	5	Extensive software validation	15
Power System	Provide power to flight control system and propulsive sources	Battery Failure	Chemical, impact	Voltage Sensor, Inspection	Redundancy	Loss of power in all systems	2	5	Use a reliable battery, swap batteries often	10
		Power Distribution Failure	Wires severed	Voltage Sensors, Inspection	Redundancy	Loss of power in some or all systems	3	4	Frequent Inspection	12
Package Carrying System	Safely retain package, protect package from damage	Retention motor failure	Motor Failure	Inspection	Speed and Altitude Reduction, Emergency landing or return to base, redundancy	Uncomannded Release of Cargo	3	4	Frequent Inspection	12
		Retention latch failure	Impact, overstress, fatigue	Inspection	Speed and Altitude Reduction, Emergency landing or return to base, redundancy	Uncomannded Release of Cargo	2	4	Frequent Inspection	8
		Package container failure	Impact, overstress, fatigue	Inspection	Speed and Altitude Reduction, Emergency landing or return to base	Uncommanded Release of Cargo, Loss of cargo protection	3	3	Frequent inspection and replacement	9
Package Lowering Tether	Lower package to ground at a safe rate	Cable structural failure	Impact, overstress, fatigue	Inspection		Uncommanded release of cargo	2	4	Frequent Inspection	8
		Lowering Motor Failure	Temperature, contamination, over/under-supply of power, moisture, lack of lubrication (https://www.dfliq.net/blog/5-things-that-commonly-cause-electrical-motor-failures/)	Inspection	Use of ratchet mechanism to retain package, emergency landing	Uncommanded release of cargo	3	4	Frequent Inspection, Use reliable motor	12
		Cable Ratchet Failure	Impact, overstress, fatigue	Inspection	Use of motor to secure package	Uncommanded release of cargo	3	4	Frequent Inspection	12
		Hook Failure	Impact, overstress, fatigue	Inspection	Use of retention latches to restrain package, return to base	Uncommanded release of cargo	2	4	Frequent Inspection	8
		Premature Package release	Altimeter failure, structural failure of release mechanism, release motor mechanism failure, software failure	Inspection		Uncommanded release of cargo	1	4	Frequent Inspection, Testing of Altimeter and release software	4

FMECA Bottom Half

Concept of Operations

Financial Analysis – Inputs

Cont Contain			Units				
Cost Center	-	Pessimistic	Realistic			Optimistic	Units
Development							
Sensor Processing		2500		2000		1500	lines of code
Vehicle Control		6000		5000		4000	lines of code
Payload Weight		5		10		15	pounds
Empty Weight		12.5		25		37.5	pounds
Office Space	\$	1,500.00	\$	1,000.00	\$	500.00	(\$/month)
Engineer Wage	\$	10,000.00	\$	8,210.00	\$	7,500.00	(\$/month)
Procurement							
Materials	\$	12,000.00	\$	10,000.00	\$	7,500.00	(\$)
Assembly	\$	6,000.00	\$	5,000.00	\$	3,500.00	(\$)
Data Storage	\$	750.00	\$	500.00	\$	250.00	(\$)
Factory Space	\$	2,000.00	\$	1,500.00	\$	1,000.00	(\$)
Operation - Drone Syste	m			11/11/			1
Utility Rate		33%		35%		40%	(% flying time per day)
Loss Rate		10%		5%		3%	(% fleet lost per year)
Hazard Rate		5%		2%		1%	(% fleet broken per year)
Discount Rate		9%		10%		11%	(% financial return per year
Speed		50		55		60	(mph)
Endurance		0.75		1		1.25	(hrs)
Power		0.6		0.5		0.4	(MW)
Electricity	\$	109.10	\$	104.50	\$	100.25	(\$/MWh)
Technician Wage	\$	33.92	\$	29.12	\$	26.90	(\$/hr)
Controller Wage	\$	44.58	\$	37.98	\$	34.62	(\$/hr)
Repair Factor		15%		10%		8%	(% of price per repair)
Data Link	\$	1.25	\$	1.00	\$	0.75	(\$/hour)
Operation - Truck Altern	ative						
Truck Economy		6		8		12	(mpg)
Truck Speed		25		35		50	(mph)
Truck Maintenance	\$	2.00	\$	1.75	\$	1.00	(\$/mi)
Gas Price	\$	3.43	\$	3.07	\$	2.66	(\$/gal)
Driver Wage	\$	31.43	\$	27.83	\$	17.92	(\$/hr)

Main Drivers:

Costs:

- Equivalent Lines of Code
- Operating Weight and Payload Capacity

Savings:

- Gas Prices
- Truck Economy & Maintenance

Discount Rate: 10%

Financial Analysis – Model

Realistic		Annually														
Object		Costs						Voor		Doct Volue		Present				
	Coefficent	Exponent	Months	Engineers		Software		Hardware		Overhead	Year		-	Past Value		Value
VC Code	74.37	1.71	98.24	8.19	\$	806,587.99	\$	117,500.00	\$	98,244.58		(1.00)	\$	1,022,332.57	\$	1,124,565.82
SP Code	3.15	1.38	1000							1 - 1 - 1		Energy.	1, 1,	1200.18,000.10		
Payload Weight	8,000	325														
Empty Weight	1,500	-	i													

F	Realistic			Annually								
Year	Perfor	rmance			Costs				Savings		Future	Present
Teal	Availability	Usage (mi.)	Power	Overhead	Manager	Repair	Mechanic	Fuel	Truck	Driver	Value	Value
1	100%	462	\$ 438.90	\$ 8.40	\$ 319.03	\$ 285.60	\$ 254.34	\$ 177.29	\$ 808.50	\$ 367.36	\$ 17,108.56	\$ 15,553.24
2	97%	448	\$ 425.38	\$ 8.14	\$ 309.20	\$ 276.80	\$ 251.11	\$ 171.83	\$ 783.59	\$ 356.04	\$ 14,901.97	\$ 12,315.67
3	94%	434	\$ 412.27	\$ 7.89	\$ 299.68	\$ 268.27	\$ 247.74	\$ 166.54	\$ 759.45	\$ 345.07	\$ 12,847.32	\$ 9,652.38
4	91%	421	\$ 399.57	\$ 7.65	\$ 290.44	\$ 260.01	\$ 244.26	\$ 161.41	\$ 736.05	\$ 334.44	\$ 10,935.76	\$ 7,469.27
5	88%	408	\$ 387.26	\$ 7.41	\$ 281.50	\$ 252.00	\$ 240.68	\$ 156.43	\$ 713.38	\$ 324.13	\$ 9,158.88	\$ 5,686.94
6	86%	395	\$ 375.33	\$ 7.18	\$ 272.82	\$ 244.23	\$ 237.02	\$ 151.61	\$ 691.40	\$ 314.15	\$ 7,508.74	\$ 4,238.49
7	83%	383	\$ 363.77	\$ 6.96	\$ 264.42	\$ 236.71	\$ 233.27	\$ 146.94	\$ 670.10	\$ 304.47	\$ 5,977.83	\$ 3,067.57
8	80%	371	\$ 352.56	\$ 6.75	\$ 256.27	\$ 229.42	\$ 229.47	\$ 142.42	\$ 649.45	\$ 295.09	\$ 4,559.07	\$ 2,126.84
9	78%	360	\$ 341.70	\$ 6.54	\$ 248.38	\$ 222.35	\$ 225.61	\$ 138.03	\$ 629.44	\$ 286.00	\$ 3,245.75	\$ 1,376.52
10	75%	349	\$ 331.17	\$ 6.34	\$ 240.72	\$ 215.50	\$ 221.72	\$ 133.78	\$ 610.05	\$ 277.19	\$ 2,031.54	\$ 783.25
11	73%	338	\$ 320.97	\$ 6.14	\$ 233.31	\$ 208.86	\$ 217.78	\$ 129.65	\$ 591.26	\$ 268.65	\$ 910.44	\$ 319.10
12	71%	327	\$ 311.08	\$ 5.95	\$ 226.12	\$ 202.42	\$ 213.83	\$ 125.66	\$ 573.04	\$ 260.37	\$ (123.19)) \$ (39.25)
13	69%	317	\$ 301.49	\$ 5.77	\$ 219.15	\$ 196.19	\$ 209.86	\$ 121.79	\$ 555.38	\$ 252.35	\$ (1,074.70)) \$ (311.30)
14	67%	308	\$ 292.21	\$ 5.59	\$ 212.40	\$ 190.14	\$ 205.88	\$ 118.04	\$ 538.27	\$ 244.57	\$ (1,949.13)) \$ (513.27)
15	65%	298	\$ 283.20	\$ 5.42	\$ 205.86	\$ 184.29	\$ 201.90	\$ 114.40	\$ 521.69	\$ 237.04	\$ (2,751.24)) \$ (658.62)

Financial Analysis – Outputs

Profitability Metrics:

• Break-Even Time: 3.04 years

• <u>Cost-per-Mile:</u> **\$2.82**

Analysis Limitations:

- Regulatory & Insurance Costs
- Driver Estimates

Summary	Pessimistic	Realistic	Optimistic	Year(s)		
Development	\$ 1,417,365.86	\$ 1,124,565.82	\$ 991,027.51	-1		
Procurement	\$ 20,750.00	\$ 17,000.00	\$ 12,250.00	0		
Operation	\$ 24,904.74	\$ 62,589.28	\$ 93,661.05	1-15		
Net (per unit)	\$ 4,154.74	\$ 45,589.28	\$ 81,411.05			

Questions?

