Science-1

Kunwar Shaanjeet Singh Grover

Contents

1	Lecture 1																3																	
	1.1	Maps.																																3

2 CONTENTS

Chapter 1

Lecture 1

1.1 Maps

A map is a mathematical function $f: \mathbb{R} \leftarrow \mathbb{R}$

$$f(x) = c \leftarrow \text{Constant Map}$$

 $f(x) = mx \leftarrow \text{Linear Map}$ (We should also consider shift but for the properties we are going to look at, only scale matters)

Repeated Iteration: $x_0, f(x_0), f(x_1), \dots f(x_{n-1}) : x_n = f(f(f \dots f(x_0)))$

For a linear map, $x, mx, m.mx, m.m^2x, \ldots, m^nx$

The properties of f depend on m but not that much on x as $n \leftarrow \infty$ Cases:

- 1. $m = 0 : x, 0, 0, \dots$
- 2. $m = 1 : x, x, x, \dots$
- 3. $m = -1 : x, -x, x, \dots$
- 4. $m \in (1, \infty)$: $x(1, m, m^2, \dots, m^n)$ the scale blows up to ∞ . Behavior: Diverging, Monotonic
- 5. $m \in (0,1): x(1,m,m^2,\ldots,m^n)$ the function occilates with decreasing value of |m|

Behavior: Converging, Ossillatory

- 6. $m \in (-1,0)$: the function occilates with increasing value of |m| Behavior: Diverging, Ossilattory
- 7. $m \in (-\infty, -1)$ the function blows up to $-\infty$ Behavior: Diverging, Monotonic

Exercise: m is a complex number. m = a + ib.