June 20, 2022

1 Solving PDEs with Jax - Problem 6

1.1 Description

1.1.1 Average time of execution

Between 3 and 4 minutes on GPU

1.1.2 PDE

We will try to solve the problem 6 of the article https://ieeexplore.ieee.org/document/712178

$$\begin{split} \Delta \psi(x,y) &= f(x,y) \text{ on } \Omega = [0,1]^2 \\ \text{with } f(x,y) &= e^{-\frac{ax+y}{5}} \{ [-\frac{4}{5}a^3x - \frac{2}{5} + 2a^2] \cos(a^2x^2 + y) + [\frac{1}{25} - 1 - 4a^4x^2 + \frac{a^2}{25}] \sin(a^2x^2 + y) \} \end{split}$$
 If we take a=3, we will have $f(x,y) = e^{-\frac{3x+y}{5}} \{ [-\frac{108}{5}x + \frac{88}{5}] \cos(9x^2 + y) - [\frac{3}{5} + 324x^2] \sin(9x^2 + y) \}$

1.1.3 Boundary conditions

$$\psi(0,y) = e^{-\frac{y}{5}}\sin(y), \ \psi(1,y) = e^{-\frac{3+y}{5}}\sin(9+y), \ \psi(x,0) = e^{-\frac{3x}{5}}\sin(9x^2) \ \text{and} \ \psi(x,1) = e^{-\frac{3x+1}{5}}\sin(9x^2+1)$$

1.1.4 Loss function

The loss to minimize here is $\mathcal{L} = ||\Delta \psi(x,y) - f(x,y)||_2$

1.1.5 Analytical solution

The true function ψ should be $\psi(x,y)=e^{-\frac{ax+y}{5}}\sin(a^2x^2+y)$. Thus, for a=3, we have the analytical solution: $\psi(x,y)=e^{-\frac{3x+y}{5}}\sin(9x^2+y)$

1.1.6 Approximated solution

We want find a solution
$$\psi(x,y) = A(x,y) + F(x,y)N(x,y)$$
 s.t:
$$F(x,y) = \sin(x-1)\sin(y-1)\sin(x)\sin(y)$$

$$A(x,y) = (1-x)e^{-y/5}\sin(y) + xe^{-\frac{3+y}{5}}\sin(9+y) + (1-y)\{e^{-\frac{3x}{5}}\sin(9x^2) - xe^{-\frac{3}{5}}\sin(9)\} + y\{e^{-\frac{3x+1}{5}}\sin(9x^2+1) - [(1-x)e^{-\frac{1}{5}}\sin(1) + xe^{-\frac{4}{5}}\sin(10)]\}$$

1.2 Importing libraries

```
[73]: # Jax libraries
from jax import value_and_grad,vmap,jit,jacfwd
from functools import partial
from jax import random as jran
from jax.example_libraries import optimizers as jax_opt
from jax.nn import tanh,sigmoid
from jax.lib import xla_bridge
import jax.numpy as jnp

# Others libraries
from time import time
import matplotlib.pyplot as plt
import numpy as np
import os
import pickle
print(xla_bridge.get_backend().platform)
```

gpu

1.3 Multilayer Perceptron

```
[74]: class MLP:
              Create a multilayer perceptron and initialize the neural network
          Inputs:
              A SEED number and the layers structure
          # Class initialization
          def __init__(self,SEED,layers):
              self.key=jran.PRNGKey(SEED)
              self.keys = jran.split(self.key,len(layers))
              self.layers=layers
              self.params = []
          # Initialize the MLP weigths and bias
          def MLP_create(self):
              for layer in range(0, len(self.layers)-1):
                  in_size,out_size=self.layers[layer], self.layers[layer+1]
                  std_dev = jnp.sqrt(2/(in_size + out_size ))
                  weights=jran.truncated_normal(self.keys[layer], -2, 2, __
       ⇒shape=(out_size, in_size), dtype=np.float32)*std_dev
                  bias=jran.truncated_normal(self.keys[layer], -1, 1, shape=(out_size,_
       →1), dtype=np.float32).reshape((out_size,))
                  self.params.append((weights, bias))
```

```
return self.params

# Evaluate a position XY using the neural network

@partial(jit, static_argnums=(0,))

def NN_evaluation(self,new_params, inputs):
    for layer in range(0, len(new_params)-1):
        weights, bias = new_params[layer]
        inputs = sigmoid(jnp.add(jnp.dot(inputs, weights.T), bias))
    weights, bias = new_params[-1]
    output = jnp.dot(inputs, weights.T)+bias
    return output

# Get the key associated with the neural network

def get_key(self):
    return self.key
```

2 PDE operators

```
[75]: class PDE_operators:
              Class with the most common operators used to solve PDEs
          Input:
              A function that we want to compute the respective operator
          # Class initialization
          def __init__(self,function):
              self.function=function
          # Compute the two dimensional laplacian
          def laplacian_2d(self,params,inputs):
              fun = lambda params,x,y: self.function(params, x,y)
              @partial(jit)
              def action(params,x,y):
                  u_xx = jacfwd(jacfwd(fun, 1), 1)(params,x,y)
                  u_yy = jacfwd(jacfwd(fun, 2), 2)(params,x,y)
                  return u_xx + u_yy
              vec_fun = vmap(action, in_axes = (None, 0, 0))
              laplacian = vec_fun(params, inputs[:,0], inputs[:,1])
              return laplacian
          # Compute the derivative in x
          @partial(jit, static_argnums=(0,))
          def du_dx(self,params,inputs):
              fun = lambda params, x, y: self.function(params, x, y)
              @partial(jit)
```

```
def action(params,x,y):
    u_x = jacfwd(fun, 1)(params,x,y)
    return u_x

vec_fun = vmap(action, in_axes = (None, 0, 0))
    return vec_fun(params, inputs[:,0], inputs[:,1])

# Compute the derivative in y

@partial(jit, static_argnums=(0,))

def du_dy(self,params,inputs):
    fun = lambda params,x,y: self.function(params, x,y)
    @partial(jit)

def action(params,x,y):
    u_y = jacfwd(fun, 2)(params,x,y)
    return u_y

vec_fun = vmap(action, in_axes = (None, 0, 0))
    return vec_fun(params, inputs[:,0], inputs[:,1])
```

3 Physics Informed Neural Networks

```
[76]: class PINN:
                                11 11 11
                                Solve a PDE using Physics Informed Neural Networks
                                             The evaluation function of the neural network
                                # Class initialization
                                def __init__(self,NN_evaluation):
                                            self.operators=PDE operators(self.solution)
                                            self.laplacian=self.operators.laplacian_2d
                                            self.NN evaluation=NN evaluation
                                # Definition of the function A(x,y) mentioned above
                                @partial(jit, static_argnums=(0,))
                                def A_function(self,inputX,inputY):
                                            A1=jnp.multiply(1-inputX, jnp.multiply(jnp.exp(-inputY/5), jnp.
                      →sin(inputY)))
                                            A2=jnp.multiply(jnp.multiply(inputX,jnp.exp(-(3+inputY)/5)),jnp.

sin(9+inputY))
                                             A3=jnp.multiply(1-inputY,jnp.add(jnp.multiply(jnp.exp(-3*inputX/5),jnp.add(jnp.multiply(jnp.exp(-3*inputX/5)),jnp.add(jnp.multiply(jnp.exp(-3*inputX/5)),jnp.add(jnp.multiply(jnp.exp(-3*inputX/5)),jnp.add(jnp.multiply(jnp.exp(-3*inputX/5)),jnp.add(jnp.multiply(jnp.exp(-3*inputX/5)),jnp.add(jnp.multiply(jnp.exp(-3*inputX/5)),jnp.add(jnp.multiply(jnp.exp(-3*inputX/5)),jnp.add(jnp.multiply(jnp.exp(-3*inputX/5)),jnp.add(jnp.multiply(jnp.exp(-3*inputX/5)),jnp.add(jnp.multiply(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnp.exp(-3*inputX/5)),jnp.add(jnpe.exp(-3*inputX/5)),jnp.add(jnpe.exp(-3*inputX/5)),jnp.add(jnpe.exp(-3*inputX/5)),jnp.add(jnpe.exp(-3*inputX/5)),jnp.add(jnpe.exp(-3*inputX/5)),jnp.add(jnpe.exp(-3*inputX/5)),jnp.add(jnpe.exp(-3*inputX/5)),jnp.add(jnpe.exp(-3*inputX/5)),jnp.add(j
                      \rightarrowsin(9*inputX**2)),-inputX*jnp.exp(-3/5)*jnp.sin(9)))
                                            A4=jnp.multiply(inputY,jnp.add(jnp.multiply(jnp.exp(-(3*inputX+1)/5),jnp.
                      \rightarrowsin(9*inputX**2+1)),-jnp.add((1-inputX)*jnp.exp(-1/5)*jnp.sin(1),inputX*jnp.
                      \rightarrowexp(-4/5)*jnp.sin(10)))
                                            return jnp.add(jnp.add(A1,A2),jnp.add(A3,A4)).reshape(-1,1)
```

```
# Definition of the function F(x,y) mentioned above
   @partial(jit, static_argnums=(0,))
   def F_function(self,inputX,inputY):
       F1=jnp.multiply(jnp.sin(inputX),jnp.sin(inputX-jnp.ones_like(inputX)))
       F2=jnp.multiply(jnp.sin(inputY),jnp.sin(inputY-jnp.ones_like(inputY)))
       return jnp.multiply(F1,F2).reshape((-1,1))
   # Definition of the function f(x,y) mentioned above
   Opartial(jit, static_argnums=(0,))
   def target_function(self,inputs):
       t_f1=jnp.multiply(-108/5*inputs[:,0]+88/5,jnp.cos(jnp.add(9*inputs[:
\rightarrow,0]**2,inputs[:,1])))
       t_f2=-jnp.multiply(3/5+324*inputs[:,0]**2,jnp.sin(jnp.add(9*inputs[:
\rightarrow,0]**2,inputs[:,1])))
       t_f3=jnp.exp(-jnp.add(3*inputs[:,0],inputs[:,1])/5)
       return jnp.multiply(t_f3,jnp.add(t_f1,t_f2)).reshape(-1,1)
   # Compute the solution of the PDE on the points (x,y)
   Opartial(jit, static_argnums=(0,))
   def solution(self,params,inputX,inputY):
       inputs=jnp.column_stack((inputX,inputY))
       NN = vmap(partial(jit(self.NN_evaluation), params))(inputs)
       F=self.F_function(inputX,inputY)
       A=self.A_function(inputX,inputY)
       return jnp.add(jnp.multiply(F,NN),A).reshape(-1,1)
   # Compute the loss function
   Opartial(jit, static_argnums=(0,))
   def loss_function(self,params,batch,targets):
       targets=self.target_function(batch)
       preds=self.laplacian(params, batch).reshape(-1,1)
       return jnp.linalg.norm(preds-targets)
   # Train step
   Opartial(jit, static_argnums=(0,))
   def train_step(self,i, opt_state, inputs, pred_outputs):
       params = get_params(opt_state)
       loss, gradient = value_and_grad(self.loss_function)(params,inputs,_
→pred_outputs)
       return loss, opt_update(i, gradient, opt_state)
```

4 Initialize neural network

```
[77]: # Neural network parameters

SEED = 351

n_features, n_targets = 2, 1  # Input and output dimension

layers = [n_features,30,30,n_targets]  # Layers structure

# Initialization

NN_MLP=MLP(SEED,layers)

params = NN_MLP.MLP_create()  # Create the MLP

NN_eval=NN_MLP.NN_evaluation  # Evaluate function

solver=PINN(NN_eval)

key=NN_MLP.get_key()
```

5 Train parameters

```
[78]: batch_size = 10000
num_batches = 25000
report_steps=500
loss_history = []
```

6 Adam optimizer

It's possible to continue the last training if we use options=1

```
[79]: opt_init, opt_update, get_params = jax_opt.adam(0.001)

options=0
if options==0:  # Start a new training
    opt_state=opt_init(params)

else:  # Continue the last training
    # Load trained parameters for a NN with the layers [2,30,30,1]
    best_params = pickle.load(open("./NN_saves/NN_jax_params.pkl", "rb"))
    opt_state = jax_opt.pack_optimizer_state(best_params)
    params=get_params(opt_state)
```

7 Solving PDE

```
[80]: # Main loop to solve the PDE

for ibatch in range(0,num_batches):
    ran_key, batch_key = jran.split(key)
    XY_train = jran.uniform(batch_key, shape=(batch_size, n_features), minval=0, □
    →maxval=1)
```

```
targets = solver.target_function(XY_train)
loss, opt_state = solver.train_step(ibatch,opt_state, XY_train,targets)
loss_history.append(float(loss))

if ibatch%report_steps==report_steps-1:
    print("Epoch n°{}: ".format(ibatch+1), loss.item())
if ibatch%5000==0:
    trained_params = jax_opt.unpack_optimizer_state(opt_state)
    pickle.dump(trained_params, open("./NN_saves/NN_jax_checkpoint.pkl",u

"wb"))
```

Epoch n°500: 440.803466796875 Epoch n°1000: 95.96310424804688 Epoch n°1500: 47.0954475402832 Epoch n°2000: 43.77584457397461 Epoch n°2500: 42.837059020996094 Epoch n°3000: 42.07849884033203 Epoch n°3500: 41.4610481262207 Epoch n°4000: 12.413284301757812 Epoch n°4500: 10.878263473510742 Epoch n°5000: 9.588128089904785 Epoch n°5500: 8.208154678344727 Epoch n°6000: 6.623982906341553 Epoch n°6500: 5.031591892242432 Epoch n°7000: 3.8925867080688477 Epoch n°7500: 3.327918291091919 Epoch n°8000: 3.0145041942596436 Epoch n°8500: 2.7829487323760986 Epoch n°9000: 2.607973575592041 Epoch n°9500: 2.4742391109466553 Epoch n°10000: 2.370198965072632 Epoch n°10500: 2.2852537631988525 Epoch n°11000: 2.218566417694092 Epoch n°11500: 2.159852981567383 Epoch n°12000: 2.111814022064209 Epoch n°12500: 2.0678865909576416 Epoch n°13000: 2.026113748550415 Epoch n°13500: 1.9999103546142578 Epoch n°14000: 1.970981240272522 Epoch n°14500: 1.9449925422668457 Epoch n°15000: 1.9077969789505005 Epoch n°15500: 1.8958704471588135 Epoch n°16000: 1.872464895248413 Epoch n°16500: 1.8571228981018066 Epoch n°17000: 1.8350434303283691 Epoch n°17500: 1.819772481918335 Epoch n°18000: 1.8042713403701782

```
Epoch n°18500:
                1.7832424640655518
Epoch n°19000:
                1.7727572917938232
Epoch n°19500:
                1.7534531354904175
Epoch n°20000:
                1.7425590753555298
Epoch n°20500:
                1.7251068353652954
Epoch n°21000:
                1.709639310836792
Epoch n°21500:
                1.7076295614242554
Epoch n°22000:
                1.6874972581863403
Epoch n°22500:
                1.6759374141693115
Epoch n°23000:
                1.660073161125183
Epoch n°23500:
                1.6646336317062378
Epoch n°24000:
                1.6427518129348755
Epoch n°24500:
                1.6284480094909668
Epoch n°25000:
                1.6234050989151
```

8 Plot loss function

```
[81]: fig, ax = plt.subplots(1, 1)
    __=ax.plot(np.log10(loss_history))
    xlabel = ax.set_xlabel(r'${\rm Step}$')
    ylabel = ax.set_ylabel(r'$\log_{10}{\rm (loss_function)}$')
    title = ax.set_title(r'${\rm Training}$')
    plt.show
```

[81]: <function matplotlib.pyplot.show(close=None, block=None)>

9 Approximated solution

We plot the solution obtained with our NN

10 True solution

We plot the true solution, its form was mentioned above

11 Absolut error

We plot the absolut error, it's |true solution - neural network output|

```
[84]: plt.figure()
  params=get_params(opt_state)
  n_points=100000
  ran_key, batch_key = jran.split(key)
```

```
XY_test = jran.uniform(batch_key, shape=(n_points, n_features), minval=0, \( \to \)
maxval=1)

predictions = solver.solution(params, XY_test[:,0], XY_test[:,1])[:,0]
true_sol = true_solution(XY_test)
error=abs(predictions-true_sol)

plt.scatter(XY_test[:,0], XY_test[:,1], c=error, cmap="viridis", s=2)
plt.colorbar()
plt.title("Absolut error")
plt.show()
```


12 Save NN parameters

```
[85]: trained_params = jax_opt.unpack_optimizer_state(opt_state) pickle.dump(trained_params, open("./NN_saves/NN_jax_params.pkl", "wb"))
```