APUNTS

La segona meitat del 1r curs

AUTOR: EDUARDO PÉREZ MOTATO

Índex

1	Programació Orientada als Objectes	1
2	Càlcul en Diverses Variables $2.1 \text{Boles a } \mathbb{R}^n \dots \dots$	2
3	Algorítmia i Combinatòria en Grafs. Mètodes Heurístics	4
4	Probabilitat	5
5	Càlcul Numèric	6

Programació Orientada als Objectes

Càlcul en Diverses Variables

Definició: $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R}\}$

Definició: Siguin $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ i $(y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, definim $(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) > = x_1y_1 + x_2y_2 + \dots + x_ny_n$ com a pro(producte escalar)

ducte escalar.

Definició: $||(x_1, x_2, \dots, x_n)|| = +\sqrt{\langle x, x \rangle}$ on $x = (x_1, x_2, \dots, x_n)$. Això és la distància del punt x a $(0, 0, \dots, 0)$.

Propietats de la norma:

- 1. $||x|| \ge 0$ per tot $x \in \mathbb{R}^n$
- 2. $||\lambda x|| = |\lambda|||x||$ per tot $x \in \mathbb{R}^n$ i $\lambda \in \mathbb{R}$
- 3. Designaltat triangular: $||x+y|| \le ||x|| + ||y||$ per tot $x, y \in \mathbb{R}^n$

Desigualtat de Cauchy-Schwartz: $< x,y> \le ||x||||y||$ per tot $x,y\in \mathbb{R}^n$. Això ho acceptem.

Observem que
$$-1 \le \frac{\langle x,y \rangle}{||x||||y||} \le 1$$
 i definim l'angle entre els vectors x i y com l'angle α tal que $\cos \alpha = \frac{\langle x,y \rangle}{||x|||||y||}$, és a dir, $\langle x,y \rangle = ||x||||y||\cos \alpha$.

■ Exemple Trobem els valors de $\mathbb{R}^3 \perp (-1, -2, 1)$. Busquem $(x_1, x_2, x_3) \in \mathbb{R}^n$ tal que $< (x_1, x_2, x_3), (-1, -2, 1) >= 0 \Leftrightarrow -x_1 - 2x_2 + x_3 = 0$.

2.1 Boles a \mathbb{R}^n

<u>Si n = 2</u> la bola de centre (x_0, y_0) i radi R és $\{(x, y) \in \mathbb{R}^2 : ||(x, y) - (x_0, y_0)|| < R\} = (\text{disc}) = \{(x, y) \in \mathbb{R}^2 : (x - x_0)^2 + (y - y_0) < R^2\}$. Això és una bola oberta, denotada per

Notació. Fem servir $\mathfrak{B}_R(x_0, y_0, \dots)$ la bola oberta (< R) i $\overline{\mathfrak{B}_R}(x_0, y_0, \dots)$ la tancada $(\le R)$. Es farà servir més la bola oberta.

Definició: Sigui $A \subset \mathbb{R}^n$, definim $\mathring{A} = \{ \vec{x} \in \mathbb{R}^n : R > 0 | \mathfrak{B}_R(\vec{x}) \subset A \}$

- Exemple 1. $A = \{(x, y) : x \ge 0\}$, llavors $\mathring{A} = \{(x, y) : x > 0\}$
 - 2. $A = \{(x, y, z) : -a \le x \le a, -b \le y \le b, -c \le z \le c\}$, llavors $\mathring{A} = \{(x, y, z) : -a < x < a, -b < y < b, -c < z < c\}$

Definició: Un conjunt $A \subset \mathbb{R}^n$ es diu obert si $A = \mathring{A}$, és a dir, si tot punt del conjunt A és també un punt d' \mathring{A} .

Algorítmia i Combinatòria en Grafs. Mètodes Heurístics

Probabilitat

Càlcul Numèric