Computer	Science	320 Midterm	Test	2
Feb19 2015	Out of 48	marks		

NAME:		

Recall that for a string w, $\#_{\sigma}(w)$ is the number of occurrences of σ in w.

1. (2 mark) Either find, if they exist, a regular language L_1 and a context-free language L_2 whose intersection is regular, or explain why no such two languages exist.

I many examples where the intersection is \$000 one example that results in an infinite but regular language of L, and of L2.

L:= L(ab*c*), L== {a'b'ck: i=j or i=k3.

2. (4 marks) True or False:

- (a) The union of a (possibly infinite) number of regular languages can be non-regular
- (b) $\underline{\mathcal{L}}_1$ is regular and L_2 is context-free, then $L_1 \cup L_2$ is also context-free.
- (c) \perp Given a regular grammar G, each string in L(G) has a unique derivation in G.
- (d) \coprod If L is context-free, then so is L^* .

we did not cover this

3. (6 marks) Give an algorithm to determine if a given Context-Free Grammar G is usable. Recall that a grammar is usable if there exists at least one string of terminals that can be derived from the start symbol of the grammar. In your answer, let the grammer be $G = (V, \Sigma, R, S)$, where

S is the start symbol,

 Σ is the alphabet of terminals,

V is set of variables, and

R is the sets of production rules.

You may refer to the *left side* of a rule, which consists of a single variable, and the *right side* of a rule, which consists of a string from $(V \cup \Sigma)^*$.

Algorithm Usable (G)

Vsable Variables = Ø; grows = True;

While grows &

grows = False;

for each rule in R of form X > X

if X & Usable Variables

if X & Usable Variables

& add X to Usable Variables;

grows = TRUE

if Sé Usable Variables return TRUE else return False.

- - (b) (4 marks) Give a PDA for the language given in part (a).

-push a "b" for every symbol in first half -non-det. decide when at (or before) the middle.

- pop-and-match b's till end of string.

(c) (4 marks) Give a Context-Free Grammar for the language given above.

5-> a56 656 6 E.

5. (4 marks) Give a Context-Free Grammar for the following: $\{a^{i+j}b^ic^j:i,j\geq 0\}$

 $S \rightarrow aSc \mid X$ $\times \rightarrow aXb \mid \epsilon$ 6. (4 marks) Give a PDA for the above language.

7. (4 marks) Give a Context-Free Grammar for the following: $\{a^nb^m: 2n=5m-4, \text{ and } n, m \geq 0\}$

8. (4 marks) Give a Context-Free Grammar for the following: $\{w \in \{a,b\}^* : w = w_1w_2, where w_1 \text{ and } w_2 \text{ are palindromes}\}$

9. (4 marks) Give a PDA for the above language.

10. (4 marks) Give a Context-Free Grammar for the following: $\{w \in \{(,)\}^* : \#_{(}(w) = \#_{)}(w) \text{ and every suffix of } w \text{ has at least as many ('s as)'s}\}$

[observe: in a "normal" balanced string of parens
every suffix must have at least as many")" as "(".

Hence in this question, "(" and ")" have been swapped

11. (4 marks) Give a PDA for the above language.

