### Gradient Projeté

Alexandre Gramfort alexandre.gramfort@telecom-paristech.fr

Telecom ParisTech



SIGMA 201b

### Plan

- Rappels de convexité

#### Définition (ensemble convexe)

ullet Un ensemble  $\mathcal{C}\subset\mathbb{H}$  est convexe ssi

$$\forall x, y \in \mathcal{C}, \ \forall t \in [0\ 1], (1-t)x + ty \in \mathcal{C}$$

1 ensemble convexe et 2 non-convexes :







# Exemple convexe

#### **Exemples**

- Intervalle [a, b] sur  $\mathbb{R}$ .
- hyperplan  $\{x|a^Tx=b\}$  avec  $(a \neq 0)$
- hemiplan  $\{x | a^T x < b\}$  avec  $(a \neq 0)$
- boule euclidienne  $\mathcal{B}(x_c, b) = \{x | ||x x_c||_2 \le b\}$
- ellipsoide  $\{x | (x x_c)^T P^{-1} (x x_c) \le b\}$  avec  $P \in \mathcal{S}_n^{++}$

### Comment établir la convexité d'un espace?

Appliquer la définition :

$$x, y \in \mathcal{C}, t \in [0, 1] \Rightarrow tx + (1 - t)y \in \mathcal{C}$$

- Montrer que C est obtenu à partir d'ensembles convexes simples par opérations qui préservent la convexité :
  - intersection
  - application d'une fonction affine  $f: x \to Ax + b$

## Fonction convexe

#### Définition (Fonction convexe)

• Une fonction  $J: \mathcal{C} \to \mathbb{R} \cup \{+\infty\}$  est convexe si  $\mathcal{C}$  est convexe et si  $\forall x, y \in \mathcal{C}, \forall t \in [0 1],$ J((1-t)x + ty) < (1-t)J(x) + tJ(y)

*Remarque:* Si J est convexe on dit de -J est **concave**.

Remarque: J est convexe ssi toutes les fonctions g(t) = J(x + th) sont convexes.

#### Définition (stricte convexité)

• Une fonction  $J: \mathcal{C} \to \mathbb{R} \cup \{+\infty\}$  est strictement convexe si  $\mathcal{C}$ est convexe et si  $\forall x, y \in \mathcal{C}$  tels que  $x \neq y$ ,  $\forall t \in ]01[$ .

$$J((1-t)x + ty) < (1-t)J(x) + tJ(y)$$

Exemples : norme, fonctions affines

### Exemples de fonctions convexes

#### **Exemples**

- $J(x) = ||x||, x \in \mathbb{H}$  est strictement convexe
- $J(x) = a^T x + b$ ,  $a \in \mathbb{H}$  et  $b \in \mathbb{R}$  est convexe (et aussi concave).
- $J(x) = e^{ax}$ ,  $a \in \mathbb{R}$  et  $x \in \mathbb{R}$  est convexe.
- $J(x) = x^p, x \in \mathbb{R}_{++}$  avec  $p \ge 1$  ou  $p \le 0$  est convexe.
- $J(x) = |x|^p, x \in \mathbb{R}$  avec  $p \ge 1$  est convexe.
- $J(x) = x \ln(x), x \in \mathbb{R}_{++}$  est convexe.
- $J(x) = x^T A x b^T x$ ,  $A \in \mathcal{S}_n^+$  et  $b \in \mathbb{H}$  est convexe.

### Convexité

#### Définition (Domaine d'une fonction convexe)

Le domaine de J dom $(J) = \{x/J(x) < +\infty\}.$ 

*Remarque:* Si J est convexe, dom(J) est convexe

#### Définition (Fonction propre)

Si dom(J) est non vide, on dit que J est propre.

#### Théorème (continuité)

Toute fonction J convexe propre sur un espace de dimension finie est continue sur l'intérieur de dom(J)

## Fonctions elliptiques

#### Définition (fonction elliptique)

Soit  $J: \mathcal{C} \subset \mathbb{H} \to \mathbb{R}$ ; J est *elliptique*, ou  $\alpha$ -convexe, ssi il existe une constante d'ellipticité  $\alpha > 0$  telle que  $\forall x, y$ 

a) 
$$J((1-t)x + ty) \le (1-t)J(x) + tJ(y) - \frac{\alpha}{2}t(1-t)\|x - y\|^2$$

#### Proposition (critères d'ellipticité à l'ordre 1)

Si J est Gâteaux-différentiable. J est  $\alpha$ -convexe ssi

b) 
$$\forall x, y \in \mathcal{C}, J(y) \ge J(x) + (\nabla J(x), y - x) + \frac{\alpha}{2} ||x - y||^2$$
 ce qui équivalent à

c) 
$$\forall x, y \in \mathcal{C}, (\nabla J(y) - \nabla J(x), y - x) \ge \alpha ||x - y||^2$$

# Fonctions elliptiques

#### Proposition (critère d'ellipticité à l'ordre 2)

Si J est différentiable à l'ordre 2. J est elliptique ssi  $\exists \alpha > 0$  telle que

d)  $\forall x, h \in \mathcal{C}, (\nabla^2 J(x)h, h) > \alpha ||h||^2$ 

#### Exemple

• formes quadratiques  $J(x) = x^T A x - b^T x$ . A doit être définie positive.  $\alpha$  est la plus petite valeure propre.

Rappels de convexité

- 1 Rappels de convexité
- 2 Existence et unicité
- Conditions d'optimalité du 1er ordre
- 4 Méthode de gradient projeté

Méthode de gradient projeté

#### Résultats d'existence et d'unicité

#### Définition (Problème d'optimisation)

$$(\mathcal{P})$$
: min  $J(x), x \in \mathcal{C} \subset \mathbb{R}^n$ 

#### Théorème (Existence)

- On suppose que
  - L'est continue et C est un fermé non vide
  - Soit C est borné, soit J est coercitive
- Alors le problème (P) admet au moins une solution

### Théorème (Existence et unicité)

 Si de plus J est strictement convexe et C est convexe, alors  $(\mathcal{P})$  admet une solution unique

### Résultats d'existence et d'unicité

#### **Exemples**

$$C = \{x/h(x) = 0, g(x) \le 0\}, \text{ où }$$

- $\bullet$   $h = [h_1 \dots h_p], g = [g_1 \dots g_q], \text{ avec } h_i \text{ et } g_j \text{ continues. On a}$ alors  $\mathcal{C}$  fermé.
- $\bullet$   $h_i$  affines et  $g_i$  convexes (Définition d'un problème convexe).

# Plan

- 1 Rappels de convexité
- 2 Existence et unicité
- 3 Conditions d'optimalité du 1er ordre
- 4 Méthode de gradient projeté

# Condition générale d'optimalité

#### Théorème (condition nécessaire)

Si J est Gâteaux-différentiable et si  $\mathcal{C}$  est un convexe fermé, alors toute solution  $x^*$  de  $(\mathcal{P})$  vérifie  $\forall x \in \mathcal{C}, (\nabla J(x^*), x - x^*) \geq 0$ 

#### Théorème (condition nécessaire et suffisante)

Si de plus J est convexe, cette condition est nécessaire et suffisante

#### Remarque

- Si  $\mathcal{C} = \mathbb{R}^n$ , ou si  $x^* \in \operatorname{int\'erieur}(\mathcal{C})$ , alors  $\nabla J(x^*) = 0$
- Exemples : contour d'un disque dans  $\mathbb{R}^2$ , intérieur d'un disque dans  $\mathbb{R}^3$

# Conditions d'optimalité qualifiées

# Théorème (Conditions **nécessaires qualifiées** du 1er ordre (Karush, Kuhn et Tucker))

- On suppose que
  - J, h et g sont  $C^1$ ,
  - $x^*$  est solution de (P)
  - x\* est régulier pour les contraintes h et g.
- Alors les conditions de KKT sont vérifiées :  $\exists \lambda^* = (\lambda_1^* \dots \lambda_p^*)$  et  $\mu^* = (\mu_1^* \dots \mu_q^*)$  tels que
  - $h(x^*) = 0$  et  $g(x^*) \le 0$
  - $\forall j \in \{1 \dots q\}, \ \mu_i^* \geq 0 \ \text{et} \ \mu_i^* g_j(x^*) = 0$
  - $\nabla J(x^*) + \sum_{i=1}^p \lambda_i^* \nabla h_i(x^*) + \sum_{j=1}^q \mu_j^* \nabla g_j(x^*) = 0$

Existence et unicité

# Lagrangien

#### Définition (Lagrangien)

• On appelle Lagrangien du problème  $(\mathcal{P})$  la fonction  $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^p \times (\mathbb{R}^+)^q \to \mathbb{R}$  définie par

$$\mathcal{L}(x,\lambda,\mu) = J(x) + \sum_{i=1}^{p} \lambda_i h_i(x) + \sum_{j=1}^{q} \mu_j g_j(x)$$

#### Remarques

- Conditions KKT  $\Rightarrow \nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = 0$
- Si J et g sont convexes et h est affine, alors  $\forall \lambda \in \mathbb{R}^p$ ,  $\mu \in (\mathbb{R}^+)^q$ ,  $\mathcal{L}(x,\lambda,\mu)$  est convexe par rapport à x

# Conditions d'optimalité qualifiées

#### Dans le cas convexe :

# Théorème (Conditions nécessaires **et suffisantes** du 1er ordre (Karush, Kuhn et Tucker))

- On suppose que
  - J, h et g sont  $C^1$ ,
  - J et g sont convexes et h est affine,
  - x\* est régulier pour les contraintes h et g.
- Alors x\* est solution de (P) ssi les conditions de KKT sont vérifiées : ∃λ\* et μ\* tels que
  - $h(x^*) = 0$  et  $g(x^*) \le 0$
  - $\forall j \in \{1 \dots q\}, \ \mu_i^* \geq 0 \ \text{et} \ \mu_i^* g_i(x^*) = 0$
  - $\nabla J(x^*) + \sum_{i=1}^p \lambda_i^* \nabla h_i(x^*) + \sum_{i=1}^q \mu_j^* \nabla g_j(x^*) = 0$

### Plan

Existence et unicité

4 Méthode de gradient projeté

## Rappel: projection sur un convexe fermé

#### Théorème (projection sur un convexe fermé)

Soit C convexe, fermé, non vide, et  $x \in \mathbb{R}^n$ . Alors il existe un unique  $x^* \in \mathcal{C}$  qui minimise  $||x - x^*||^2$ , caractérisé par  $\forall v \in \mathcal{C}, (x - x^*, v - x^*) < 0$ 

#### Proposition (continuité)

On pose  $\pi_{\mathcal{C}}(x) = x^*$ . Alors la projection  $\pi_{\mathcal{C}}$  est continue. De plus,  $\pi_{\mathcal{C}}$  est une contraction :  $\forall x, y \in \mathbb{R}^n, \|\pi_{\mathcal{C}}(x) - \pi_{\mathcal{C}}(y)\| \leq \|x - y\|$ 

### Existence et unicité Méthode de gradient avec projection

- Hypothèse : C convexe, fermé, non vide
- Algorithme
  - Initialisation
    - k = 0: choix de  $x_0$  et de  $\beta_0 > 0$
  - Itération k

• 
$$x^{k+1} = \pi_{\mathcal{C}}(x^k - \beta_k \nabla J(x^k))$$

- Critère d'arrêt
  - Si  $||x^{k+1} x^k|| < \varepsilon$ , stop
  - Sinon, on pose k = k + 1, et on retourne à 2

# Méthode de gradient avec projection

#### Théorème (Convergence)

- Soit J  $C^1$ ,  $\alpha$ -convexe et de dérivée M-lipschitzienne
- Si  $\beta_k \in [\beta_{\min}, \beta_{\max}]$  tel que  $0 < \beta_{\min} < \beta_{\max} < 2\alpha/M^2$ ,
- ullet Alors l'algorithme converge vers la solution de  $(\mathcal{P})$

La dérivée de J est M-lipschitzienne si on a

$$\forall x, y \in \mathcal{C}, \|\nabla J(x) - \nabla J(y)\| \le M\|x - y\|$$

#### Éléments de preuve

- On remarque que  $x^* = \pi_{\mathcal{C}}(x^* \beta_k \nabla J(x^*))$
- On majore  $||x^{k+1} x^*||^2$  par une récurrence en utilsant l'optimalité de  $x^*$  et le fait que la projection est contractante.