Sets of conjunctive queries 3.3

Let Q_1, Q_2, \ldots, Q_n be conjunctive queries over a database schema \mathcal{R} as follows

$$ans(\vec{U}) \leftarrow R_{i1}(\vec{U}_{i1}), \dots, R_{in_i}(\vec{U}_{in_i}),$$

where $n_i > 1$ for 1 < i < n.

■ Let P_1, P_2, \ldots, P_m be conjunctive queries also over \mathcal{R} as follows

$$ans(\vec{V}) \leftarrow S_{j1}(\vec{V}_{j1}), \dots, S_{jm_i}(\vec{V}_{jm_i}),$$

where $m_i \geq 1$ for $1 \leq j \leq m$.

■ The answer-literals of *Q*'s and *P*'s have the same arity.

- Let $Q = \{Q_1, Q_2, \dots, Q_n\}$ and $\mathcal{P} = \{P_1, P_2, \dots, P_m\}$ be sets of conjunctive queries.
- We have $\mathcal{Q} \sqsubseteq \mathcal{P}$, \mathcal{Q} is contained in \mathcal{P} iff for each instance \mathcal{I} of \mathcal{R} there holds:

$$\bigcup_{i=1,\ldots,n} Q_i(\mathcal{I}) \subseteq \bigcup_{j=1,\ldots,m} P_j(\mathcal{I}).$$

• Whenever $\mathcal{Q} \sqsubseteq \mathcal{P}$ and $\mathcal{P} \sqsubseteq \mathcal{Q}$, then \mathcal{P} and \mathcal{Q} are equivalent, $\mathcal{P} \equiv \mathcal{Q}$.

Example:

$$egin{array}{lll} Q_1: & ans(X,Y): -E(X,X), E(X,Y) \ Q_2: & ans(X,Y): -E(X,W), E(W,Y) \ ans(X,Y): -E(X,Y), E(X,U), E(U,Y) \end{array}$$

We have $Q_1 \sqsubseteq Q_3 \sqsubseteq Q_2$. Moreover $\{Q_1, Q_2, Q_3\} \equiv \{Q_2, Q_3\} \equiv \{Q_2\}.$

Containment

A set $\mathcal Q$ is contained in a set $\mathcal P$ of queries, if any query in $\mathcal Q$ is contained in at least one query of $\mathcal P$.

Is this condition necessary as well?

A containment relation is given as mapping Ω from $\mathcal Q$ to $\mathcal P$ as follows:

if
$$\Omega(Q_i) = P_j$$
, then $Q_i \sqsubseteq P_j$, where $1 \le i \le n$, $1 \le j \le m$.

Theorem

Let \mathcal{Q}, \mathcal{P} be sets of conjunctive queries. $\mathcal{Q} \sqsubseteq \mathcal{P}$ iff there exists a containment relation Ω from \mathcal{Q} to \mathcal{P} .

Proof

- (1) A containment relation Ω exists. Then $\mathcal{Q} \sqsubseteq \mathcal{P}$.
- (2) $Q \sqsubseteq P$.

Assume there exists a Q_i such that for all P_i there holds $Q_i \not\sqsubseteq P_i$. Construct a canonical instance \mathcal{I}_{Q_i} and let τ the corresponding canonical substitution.

As $\mathcal{Q} \sqsubseteq \mathcal{P}$, it follows

$$au(\mathsf{ans}(ec{U})) \in igcup_{j=1,...,m} P_j(\mathcal{I}_{Q_i}).$$

Therefore there exists $j', 1 \le j' \le m$, such that $\tau(ans(\vec{U})) \in P_{i'}(\mathcal{I}_{Q_i})$. However then $Q_i \sqsubseteq P_{i'}$, a contradiction.

3.4 Datalog

Snippet of a graph DB;
Query: MATCH (X:Airport Location:"FFT") -[:Flight*]-> (Y:Airport) RETURN Y

How can we compute the answers for arbitrary instances?

Datalog: Databases in logic.

- Queries are expressed as rules (akin to triggers in SQL).
- Fully logic-based query language different to SQL resembling the *Prolog* programming language; recurrently studied in database research.

Datalog Queries: Rules

- Queries are expressed as rules.
- A rule is an implication of the form

$$H(\vec{U}) \leftarrow L_1, \ldots, L_n,$$

such that $(1 \le i \le n)$:

 L_1, \ldots, L_n are literals and H(U) is an atom, where $H \in \mathcal{R}$.

The L_i 's are atoms $R_i(\tilde{U_i})$ or negated atoms $R_i(\tilde{U_i})$, where $R_i \in \mathcal{R}$ and

- \vec{U}, \vec{U}_i vectors of variables and constants.
- Left to ← is the <u>head</u> of the query, and to the right there is the <u>body</u>. The <u>literals in the body</u> are also called <u>subgoals</u>.
- A set of rules is called program.

Possible relational representation of a flight Graph DB instance

Relational schema: Flight[Company, From, To, Start, End]; Instance (specifying daily flight connections):

Company	From	То	Start	End
LH	FFT	BER	9:00	10:00
AA	ST	NY	9:30	16:00
LH	MUE	ROMA	10:00	12:00
BA	DAL	LON	17:00	24:00
LH	FFT	DAL	8:00	16:00
BA	LON	NY	10:00	15:00

Which destinations are reachable from Frankfurt (FFT) with direct flight connection?

Datalog

$$FDest(X) \leftarrow Flight(_, 'FFT', X, _, _)$$

Note:

The placeholder "-" is a shortcut for a unique (undistinguished) variable that appears only in the body of the rule.

Which destinations can be reached from Frankfurt (FFT) when starting at 9:00 and changing the plane at most once?

 $FDest9am(X) \leftarrow Flight(_, 'FFT', X, '9:00', _)$ $FDest9am(Y) \leftarrow Flight(_, 'FFT', X, '9:00', _), Flight(_, X, Y, _, _)$

Which destinations can be reached from Frankfurt (FFT)? Recursion!

$$\begin{array}{lll} \mathsf{DestRec}(\mathsf{X}) \leftarrow \mathsf{Flight}(_, \, `\mathsf{FFT'}, \, \mathsf{X}, _, _) \\ \mathsf{DestRec}(\mathsf{Y}) \leftarrow \mathsf{DestRec}(\mathsf{X}), \, \mathsf{Flight}(_, \, \mathsf{X}, \, \mathsf{Y}, _, _) \\ \end{array}$$

Which destinations can be reached from Frankfurt (FFT) taking only Lufthansa (LH) flights?

Datalog

All destinations that can be reached from Frankfurt except those for which a Lufthansa-only (!) connection exists. Negation!

$$\overline{\text{Destination}}(X) \leftarrow \text{DestRec}(X)$$

Formal Framework

Additional Definitions

Consider a Datalog rule of the form

$$H \leftarrow L_1, \ldots, L_n$$

- If n = 0, then its body is empty and the rule is called *fact*
- Relation symbols that appear solely on the body of rules are called extensional; the remaining relational symbols are called intensional
- Accordingly, we distinguish between the extensional database (EDB) and the intensional database (IDB)

From Datalog Rules to Datalog Programs

- **A** set of rules ρ is called *program* Π.
- **Let** Π be a program. The *dependency graph* of Π is a directed, labeled digraph (V, E) containing two types of edges (positive and negative edges) defined as follows:
 - $lue{V}$ is the set of relational symbols appearing in the rules of ρ
 - Let P be a relational symbol of a positive literal appearing in the body of some rule ρ in Π and let Q be the relational symbol of ρ 's head. Then the (positive) edge $P \longrightarrow Q$ is contained in E.
 - Let P be the relational symbol of a negative literal appearing in the body of some rule ρ in Π and let Q be the relational symbol of ρ 's head. Then the (negative) edge $P \xrightarrow{\neg} Q$ is contained in E.
- We call a program *recursive*, if its dependency graph has a cycle.
- Note: the definition of recursiveness ignores edge labels; we will come back to these labels at a later point

Example: Dependency Graph

Consider the Datalog program Π defined by the rules

```
\begin{aligned} \mathsf{DestRec}(\mathsf{X}) &\leftarrow \mathsf{Flight}(\_, \mathsf{`FFT'}, \mathsf{X}, \_, \_) \\ \mathsf{DestRec}(\mathsf{Y}) &\leftarrow \mathsf{DestRec}(\mathsf{X}), \mathsf{Flight}(\_, \mathsf{X}, \mathsf{Y}, \_, \_) \\ \mathsf{NotDestRec}(\mathsf{X}) &\leftarrow \mathsf{City}(\mathsf{X}), \neg \mathsf{DestRec}(\mathsf{X}) \end{aligned}
```

Then the dependency graph of Π is defined as G := (V, E) , where

```
\begin{split} V &:= \{ \text{DestRec}, \text{Flight}, \text{City}, \text{NotDestRec} \}, \\ E &:= \{ \text{Flight} \longrightarrow \text{DestRec}, \text{DestRec} \longrightarrow \text{DestRec}, \\ &\quad \text{City} \longrightarrow \text{NotDestRec}, \text{DestRec} \stackrel{\longrightarrow}{\longrightarrow} \text{NotDestRec} \}. \end{split}
```

This program is recursive (cycle: $DestRec \longrightarrow DestRec$).

Definition: Active Domain

- The active domain of an instance $\mathcal{I}(Adom(\mathcal{I}))$, is defined as the set of all constants appearing in \mathcal{I} .
- The active domain of a Datalog program Π w.r.t. input \mathcal{I} adom(Π, \mathcal{I}), is the set of all constants appearing in Π and \mathcal{I} .

Safe Datalog

- Let Π be a Datalog program and let \mathcal{I}_E be an instance of extensional relational symbols (input) and \mathcal{I}_A be an instance of the intensional relational symbol (output, i.e. set of answers).
- A rule is called safe if every variable appears in a positive literal in its body

Lemma

Let Π be a Datalog program. If every rule of Π is safe and \mathcal{I}_E is finite, then the output \mathcal{I}_A of Π is finite.

Example: Safe Datalog Program

 $\mathsf{DestRec}(\mathsf{X}) \leftarrow \mathsf{Flight}(_, \, \mathsf{`FFT'}, \, \mathsf{X}, \, _ \, , \, _)$

 $\mathsf{DestRec}(\mathsf{Y}) \leftarrow \mathsf{DestRec}(\mathsf{X}), \, \mathsf{Flight}(_, \, \mathsf{X}, \, \mathsf{Y}, \, _, \, _)$

show to dure in a portion lettolight gray

Example: Non-safe Datalog Program

 $Goal(X) \leftarrow Flight(_, 'FFT', Y, _, _)$

Return, because x is not making any bound Syntax is correct but has no sens

Example: Non-safe Datalog Program

 $Goal(X) \leftarrow \bigcap Flight(_, 'FFT', X, _, _)$

Note

The result of non-safe Datalog programs may depend on the underlying domain - we are interested to evaluate them w.r.t. the active domain, only.

Outlook: Datalog

In the following, we study (some of the) different fragments of Datalog:

Name	Informal Description
Datalog ⁺	Positive Datalog, i.e. Datalog without
	negated literals
Datalog [¬]	Datalog with positive and negated subgoals
Datalog ¬¬	An extension of Datalog, where we also
	allow head predicates to be negated
Stratified Datalog	An important subclass of Datalog [¬] , obtained
	from a syntactic restriction (will be defined later)
$NR ext{-}Datalog^{ ext{-}}$	Non-recursive Datalog with negation
Datalog ^{wff} , Datalog ^{stable}	Datalog beyond stratification

Datalog⁺

Definition

A set of safe positive rules is called Datalog⁺ program.

Datalog⁺ rules are of the following form:

$$H(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}),$$

where H and the R_i 's are relational symbols out of \mathcal{R} .

Naive Evaluation Algorithm for Datalog⁺ Programs

Goal: compute the output \mathcal{I}_A of some Datalog⁺ program Π w.r.t. the input \mathcal{I}_E

- Begin: initialize the relations of the intensional relational symbols R with \emptyset , i.e. $\mathcal{I}_{\Delta}^{0}(R) = \emptyset$. Set i := 0.
- (2) (a) Set i := i + 1. Let ρ be a rule from Π of the form $H \leftarrow G$, where $H = R(a_1, ..., a_k)$ with variables or constants a_i $(1 \le i \le k)$. Set $\mathcal{I}_{\rho}(R) := \{(\nu(a_1), ..., \nu(a_k))\}$ $(\mathcal{I}_E \cup \mathcal{I}_A^{j-1}) \models_{\nu} G, \nu$ is a variable assignment for G }
 - (b) Let R be an intensional relational symbol and let $\rho_1^R, ..., \rho_l^R$ be the rules having predicate R in their head. Put

$$\mathcal{I}_A^j(R) := \cup_{i=1}^l \mathcal{I}_{\rho_i}(R)$$

Repeat step (2) until $\mathcal{I}_{\Lambda}^{j}(R) = \mathcal{I}_{\Lambda}^{j-1}(R)$ for all intensional relational symbols R.

Examples: Naive Evaluation Algorithm

■
$$Dest('FFT', X) \leftarrow Flight(_, 'FFT', X, _, _)$$

 $DestRec(X) \leftarrow Flight(_, 'FFT', X, _, _)$ $DestRec(Y) \leftarrow DestRec(X), Flight(_, X, Y, _, _)$

```
\mathcal{I}_A (DestRec)
     {BER, DAL}
  {BER, DAL, LON}
{BER, DAL, LON, NY}
{BER, DAL, LON, NY}
```

Given a Datalog $^+$ program Π , the naive evaluation algorithm always terminates.

Proof Sketch

Follows from the observation that the computation in steps (2a) and (2b) is monotonic and the finiteness of the output (Datalog⁺ is safe).

Example ancestor

$$(1) \ a(X,Y) \leftarrow p(X,Y)$$

$$(2) \ a(X,Y) \leftarrow p(X,Y)$$

$$a(X,Y) \leftarrow p(X,Z), p(Z,Y)$$

$$a(X,Y) \leftarrow p(X,Z), a(Z,Y)$$

(3)
$$a(X, Y) \leftarrow p(X, Y)$$

 $a(X, Y) \leftarrow a(X, Z), a(Z, Y)$

$$(1)$$
 j $\mathcal{I}_A(a)$

$$(2) \underline{j} \quad \mathcal{I}_A(a) \underline{\qquad}$$

$$(3)$$
 j $\mathcal{I}_A(a)$

Example same generation

SG:
$$sg(X,X) \leftarrow p(X,Y)$$

 $sg(X,Y) \leftarrow p(X_1,X), sg(X_1,Y_1), p(Y_1,Y)$
 $p = \underbrace{parent \quad kid}_{Abraham \quad Isaac}$
 $Abraham \quad Ishmael$
 $Isaac \quad Jacob$
 $Ishmael \quad Nebaioth$
 $Jacob \quad Joseph$
 $Joseph \quad Ephraim$
 $\underbrace{j \quad \mathcal{I}_A(sg)}_{0} \emptyset$

Semi-naive Evaluation

Naive bottom-up evaluation is highly inefficient because of redundant computations.

Observation:

To derive in round i+1 a new, previously not derived fact, we have to use a fact having been derived in round i as a new fact.

consider a non-recursive, however infinite, version of the ancestor Datalog program.

anc':
$$\Delta_a^1(X,Y) \leftarrow p(X,Y)$$

$$\Delta_a^2(X,Y) \leftarrow \Delta_a^1(X,Z), p(Z,Y)$$

$$\vdots$$

$$\Delta_a^{i+1}(X,Y) \leftarrow \Delta_a^i(X,Z), p(Z,Y)$$

$$\vdots$$

The final result is given by computing the union of all Δ^i , $i \geq 0$.

... this is the underlying idea of semi-naive computation of Datalog programs.