Определение 1. Padukanbhas ocb двух неконцентрических окружностей — это множество таких точек M, что касательные, проведённые из M к этим окружностям, имеют равные длины.

Задача 1. Докажите, что радикальная ось двух непересекающихся окружностей — прямая. Напишите уравнение этой прямой, если радиусы окружностей имеют длины r_1 и r_2 , а их центры имеют координаты (-a,0) и (a,0) соответственно. Нарисуйте окружности и их радикальную ось, если a=5, $r_1=2,\ r_2=3$ и если $a=2,\ r_1=1,\ r_2=6$.

Задача 2. Найдите радикальную ось двух а) пересекающихся; б) касающихся окружностей.

Определение 2. Пусть дана окружность S радиуса r с центром в точке O. Степень точки M относительно окружности S — это число, равное $MO^2 - r^2$.

Задача 3. Прямая, проходящая через точку M, пересекает окружность S в точках A и B. Докажите, что степень точки M относительно окружности S равняется произведению длин отрезков MA и MB, взятому со знаком («+», если векторы \overrightarrow{MA} и \overrightarrow{MB} одинаково направлены, и «-», если векторы \overrightarrow{MA} и \overrightarrow{MB} противоположно направлены).

Задача 4. Даны две окружности S_1 и S_2 . Опишите геометрическое место таких точек M, что степень M относительно S_1 такая же, как и степень M относительно S_2 .

Определение 3. Две окружности, пересекающиеся в точках A и B, называют nepnendukyлярными, если касательные, проведённые к ним в точке A, пересекаются под прямым углом.

Задача 5. Докажите, что радикальная ось двух неконцентрических окружностей S_1 и S_2 совпадает с множеством центров окружностей, перпендикулярных одновременно и S_1 , и S_2 .

Пучки окружностей

Определение 4. Пучок окружностей — это множество всех окружностей и прямых, перпендикулярных к двум данным окружностям S_1 и S_2 (или к окружности и прямой, или к двум прямым). Говорят, что S_1 и S_2 задают этот пучок.

Задача 6. Нарисуйте пучки, задаваемые двумя неконцентрическими окружностями, которые

а) пересекаются (но не касаются); б) касаются; в) не пересекаются.

Задача 7. Нарисуйте пучок, задаваемый двумя

- а) параллельными прямыми;
- б) пересекающимися прямыми;
- в) концентрическими окружностями.

Задача 8. Какие пучки могут задаваться прямой и окружностью (нарисуйте)?

Задача 9. Докажите, что окружность, перпендикулярная некоторым двум окружностям одного пучка, перпендикулярна всем окружностям этого пучка.

Задача 10. Докажите, что множество окружностей и прямых, перпендикулярных всем окружностям данного пучка, также является пучком (он называется *перпендикулярным* данному).

Задача 11. Нарисуйте пучки, перпендикулярные пучкам а) из задачи 6; б) из задачи 7.

Задача 12. Докажите, что радикальная ось любых двух окружностей одного пучка проходит через центры окружностей, задающих этот пучок. (Таким образом, радикальная ось — одна и та же для каждых двух окружностей одного пучка.)

Задача 13. а) Любые ли две окружности принадлежат некоторому пучку окружностей? **б)** Если такой пучок существует, то однозначно ли он определяется?

- **Задача 14.** а) Пусть пучок задан двумя пересекающимися (но не касающимися) окружностями. Докажите, что через каждую точку плоскости проходит единственная окружность или прямая пучка. б) Что можно сказать в случае, когда окружности, задающие пучок, касаются? в) А если окружности, задающие пучок, не пересекаются?
- Задача 15. а) Даны две непересекающиеся окружности S_1 и S_2 из некоторого пучка. Пусть S ещё одна окружность из того же пучка. Докажите, что для всех точек M на окружности S отношение степени M относительно S_1 к степени M относительно S_2 одно и то же (обозначим его k(S)) и равно OO_1/OO_2 , где O, O_1, O_2 центры S, S_1, S_2 соответственно. б) Верно ли, что для различных окружностей S и S' нашего пучка числа k(S) и k(S') также различны? в) Для каких чисел k найдется окружность S из нашего пучка, у которой k(S) = k? г) Что можно сказать, если исходные окружности S_1 и S_2 касаются или пересекаются?
- **Задача 16.** Прямая l пересекает две неконцентрические окружности S_1 и S_2 в точках A, B и C, D соответственно. Пусть l_A, l_B, l_C, l_D касательные, проведённые к S_1 и S_2 в соответствующих точках. Докажите, что точки пересечения прямых l_A, l_B с прямыми l_C, l_D а) лежат на радикальной оси S_1 и S_2 , если l проходит через центр подобия этих окружностей; б) лежат на некоторой окружности S в противном случае. в) Докажите, что окружность S принадлежит тому же пучку, что и окружности S_1 и S_2 .

Разные задачи

- **Задача 17.** Даны три окружности с различными центрами. Проведём для каждой пары из этих окружностей прямую, содержащую радикальную ось этой пары. Докажите, что три проведённые прямые либо параллельны, либо пересекаются в одной точке.
- Задача 18*. а) Шестиугольник описан около окружности. Докажите, что найдутся три окружности с таким свойством: каждая главная диагональ нашего шестиугольника будет лежать на радикальной оси каких-то двух из этих окружностей. б) (*Теорема Брианшона*) Шестиугольник описан около окружности. Докажите, что его главные диагонали пересекаются в одной точке.
- **Задача 19.** Докажите, что прямые, проведённые через общие хорды трёх попарно пересекающихся окружностей, пересекаются в одной точке или параллельны друг другу.
- **Задача 20.** Дана окружность S_1 и точка M вне её. Через точку M проводится переменная окружность S, пересекающая S_1 в точках A и B. Найдите геометрическое место точек пересечения прямой AB с касательной к S в точке M.
- Задача 21. Как циркулем и линейкой построить радикальную ось двух данных окружностей?
- **Задача 22*.** а) Даны точка A и две неконцентрические окружности S_1 и S_2 . Всегда ли найдётся окружность, проходящая через точку A и перпендикулярная окружностям S_1 и S_2 ? **б**) Как с помощью циркуля и линейки построить такую окружность (если она существует)?
- Задача 23*. а) В выпуклом бумажном многоугольнике сделаны несколько одинаковых круглых дырок. Можно ли разрезать этот многоугольник на несколько меньших выпуклых многоугольников так, чтобы в каждом из них оказалось ровно по одной дырке? б) А если дырки круглые, но не обязательно одинаковые?

1	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	3	4	5	6 a	6 6	6 B	$\begin{bmatrix} 7 \\ a \end{bmatrix}$	7 б	7 B	8	9	10	11 a	11 б	12	13 a	13 б	14 a	14 б	14 B	15 a	15 б	15 B	15 Г	16 a	16 б	16 B	17	18 a	18 б	19	20	21	$\begin{vmatrix} 22 \\ a \end{vmatrix}$	22 б	23 <mark>23</mark> а б	