II. Оценки $I(\lambda) := \int_{0}^{b} f(t) e^{\lambda S(t)} dt$

Используемые ниже обозначения, а также номера формул, условий и утверждений, не содержащие индекса "A", совпадают с использованными на лекции.

Простое объединение леммы 17.1, теоремы 17.2 и теоремы 17.3 приводит к следующему утверждению:

Теорема A17.4. Пусть выполнены условия (17.1) – (17.4), (17.6), (17.13) и (17.14). Тогда $\exists \ \varepsilon_1, \ \varepsilon_2 > 0$, такие, что для любого $\gamma > 0$ при $\lambda \to +\infty$ справедлива оценка

$$I(\lambda) = e^{\lambda S(t_0)} \int_{-\varepsilon_1}^{\varepsilon_2} f(\psi(\tau)) \psi'(\tau) e^{-\lambda \tau^2} d\tau \cdot \left[1 + o\left(\frac{1}{\lambda^{\gamma}}\right) \right],$$

где $\psi(au)\in C^\infty([-arepsilon_1,arepsilon_2])$ — функция, обратная по отношению κ

$$\varphi(t) := (t - t_0) \sqrt{\frac{S(t_0) - S(t)}{(t - t_0)^2}}.$$

На лекции стсюда и из леммы 17.4W были получены лишь главный член асимптотики $I(\lambda)$ при $\lambda \to +\infty$ и оценка остаточного члена (см. теорему 17.5W). На практике нередко бывает необходимо знать не только главный, но и следующие по порядку $\frac{1}{\lambda}$ члены. Примером может служить задача нахожления асимптотики разности двух функций, главные члены асимптотик которых совпадают.

 Если вместо леммы 17.4W воспользоваться леммой А17.3¹, то нетрудно получить (сделайте это самостоятельно) следу-

ющий результат, дающий асимптотику любого порядка для $I(\lambda)$:

Теорема A17.5. *Пусть выполнены условия* (17.1) - (17.4), (17.6), (17.13), (17.14), u

$$f(t) \in C^{2n+2}(\overline{\mathcal{M}}).$$

Tooda

$$I(\lambda) = e^{\lambda S(t_0)} \left[\sum_{m=0}^{n} a_{2m} \Gamma\left(m + \frac{1}{2}\right) \frac{1}{\lambda^{m+1/2}} + \right.$$

$$\left. + O\left(\frac{1}{\lambda^{n+3/2}}\right) \right] \quad npu \quad \lambda \to +\infty, \quad (A17.1)$$

soe

$$a_{2m} := \frac{d^{2m}}{dt^{2m}} \left[f(\psi(t))\psi'(t) \right]_{t=0}$$
 (A17.2)

Замечание. Равенства (A17.2) позволяют легко получить явное выражение для a_{2m} только при m=0. В самом деле, при $m\in\mathbb{N}$ коэффициенты a_{2m} будут выражаться через производные порядка выше первого функции $\psi(t)$. Сама же $\psi(t)$ была определена лишь как функция, обратная некоторой заданной явно (см. формулировку теоремы A17.4 выше).

Тем не менее, явные выражения для a_{2m} через f(t) и S(t) все же можно получить, и они имеют вид

$$c_{2m} = \frac{d^{2m}}{dt^{2m}} \left[f(t) \left(\frac{S(t_0) - S(t)}{(t - t_0)^2} \right)^{-m - 1/2} \right] \Big|_{t=t}$$

Интересно, что один из способов сделать это основан на использовании свойств интеграла Коши (см., например, $\phi e dopo pow M. B.$ Асимптотика: интегралы и ряды — М.: "Наука"; 1987, гл. II, \S 1, п. 1.1).

¹CM. tfcv-exp.narod.ru/the_rest.htm