Содержание

1	Комплексная дифференцируемость. Условия Коши-Римана	2
2	Связность. Теорема о голоморфной в области функции, производная которой равна нулю.	3
3	Теорема об обратной функции	4
4	Степенные ряды. Формула Коши-Адамара	5
5	Степенные ряды. Свойства экспоненты и тригонометрических.	6
6	Первообразная и полный дифференциал в области. Условия	8
7	Лемма Гурса и теорема Коши для выпуклой области	9
8	Интеграл Коши и его свойства	11
9	Интегральная формула Коши для круга	12
10	Теорема Морера. Теорема о среднем.	12
11	Целые функции и теорема Луивилля	13
12	Ряд Тейлора и теорема единственности	14
13	Приращение аргумента вдоль кривой. Индекс точки	15
14	Общая форма теоремы Коши и интегральной формулы Коши	17
15	Разложение голоморфной функции в ряд Лорана	19
16	Изолированные особые точки	20
17	Вычеты и формулы для их вычисления. Теорема Коши о вычетах.	22

1 Комплексная дифференцируемость. Условия Коши-Римана

Определение 1.1. Окрестностью назовём

$$B_r(z_0) = \{ z \in \mathbb{C} \mid |z - z_0| < r \}$$

Проколотой окрестностью назовём

$$\dot{B}_r(z_0) = \{ z \in \mathbb{C} \mid 0 < |z - z_0| < r \}$$

Замкнутой окрестностью назовём

$$\overline{B}_r(z_0) = \{ z_0 \in \mathbb{C} \mid |z - z_0| \leqslant r \}$$

Замечание. Введём обозначения:

$$\Delta x = x - x_0; \quad \Delta y = y - y_0; \quad \Delta z = z - z_0 = \Delta x + i \Delta y$$

$$\Delta u = u(x, y) - u(x_0, y_0); \quad \Delta v = v(x, y) - v(x_0, y_0); \quad \Delta f = f(x, y) - f(x_0, y_0) = \Delta u + i \Delta v$$

Определение 1.2. Говорят, что $f: B_r(z_0) \to \mathbb{C}$ дифференцируема в точке z_0 , если

$$\exists A \in \mathbb{C}: f(z) = f(z_0) + A(z - z_0) + o(z - z_0), |z - z_0| \to 0$$

Лемма 1.1. $f: B_r(z_0) \to \mathbb{C}$ дифференцируема в $z_0 \Leftrightarrow \exists f'(z_0), A = f'(z_0)$.

Теорема 1.1. Условие Коши-Римана.

 $f:\ B_r(z_0) o\mathbb{C}\ \partial u$ фференцируема в z_0 тогда и только тогда, когда

- u(x,y), v(x,y) дифференцируемы в (x_0,y_0)
- Выполняется условие Коши-Римана:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \end{cases}$$

При этом

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) - i\frac{\partial u}{\partial y}(x_0, y_0)$$

Доказательство. (\Rightarrow)

Пусть

$$\exists f'(z_0) = a + ib = A \in \mathbb{C}$$

Значит, по определению дифференцируемости

$$\Delta f = A\Delta z + \alpha(\Delta z); \quad \alpha(\Delta z) := \alpha_1(\Delta x, \Delta y) + i\alpha_2(\Delta x, \Delta y)$$

Где $\alpha(\Delta z) = o(\Delta z), |\Delta z| \to 0$

Тогда, раскрыв это выражение по каждой координате, получим

$$\begin{cases} \Delta u = a\Delta x - b\Delta y + \alpha_1(\Delta x, \Delta y) \\ \Delta v = b\Delta x + a\Delta y + \alpha_2(\Delta x, \Delta y) \end{cases}$$

Из того, что $|\alpha_1| \leq |\alpha(\Delta z)|$ и $|\alpha_2| \leq |\alpha(\Delta z)| \Rightarrow \alpha_1, \alpha_2 = o(\Delta z), |\Delta z| \to 0$. Значит, u дифференцируема, причём

$$\frac{\partial u}{\partial x} = b; \quad \frac{\partial u}{\partial y} = -b$$

Аналогично для v, причём

$$\frac{\partial v}{\partial x} = b; \quad \frac{\partial v}{\partial y} = a$$

Видим, что УКР выполняется.

 (\Leftarrow)

Пусть u, v дифференцируемы в (x_0, y_0) и выполняется УКР. Тогда

$$\Delta f = \Delta u + i\Delta v = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \alpha_1(\Delta Z) + i\left(\frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + \alpha_2(\Delta z)\right) = \Delta u + i\Delta v = \frac{\partial u}{\partial x} \Delta x - \frac{\partial v}{\partial x} \Delta y + \alpha_1(\Delta Z) + i\left(\frac{\partial v}{\partial x} \Delta x + \frac{\partial u}{\partial x} \Delta y + \alpha_2(\Delta z)\right) = \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) \cdot (\Delta x + i\Delta y) + \alpha_1(\Delta z) + i\alpha_2(\Delta z)$$

Значит,

$$\exists f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

2 Связность. Теорема о голоморфной в области функции, производная которой равна нулю.

Определение 2.1. Если $u: G \to \mathbb{R}, G \subseteq \mathbb{R}^2$ – область, причём

$$u\in C^2(G), \Delta u=0$$

где
$$\Delta =
abla^2 = rac{\partial^2}{\partial x^2} + rac{\partial^2}{\partial y^2}$$

Определение 2.2. Функция $f:G\to \mathbb{C}$, где $G\subseteq \mathbb{C}$ – область, называется регулярной (аналитической, голоморфной), если

$$\forall z \in G \, \exists f'(z)$$

Определение 2.3. Функция $f: G \to \mathbb{C}, G \subseteq \mathbb{C}$ называется регулярной в точке $z_0 \in G$, если

$$\exists r > 0, B_r(z_0) \subseteq G: f$$
 регулярна на $B_r(z_0)$

Определение 2.4. Множество $E\subseteq \overline{\mathbb{C}}$ называется связным, если не существует открытых G_1,G_2 :

- 1. $G_1 \cup G_2 \supset E$
- 2. $E \cap G_1 \cap G_2 = \emptyset$

3.
$$E \cap G_1 \neq \emptyset$$
 и $E \cap G_2 \neq \emptyset$

Определение 2.5. Непустое открытое связное множество в $\overline{\mathbb{C}}$ называется областью.

Определение 2.6. Область D называется односвязной, если $\overline{\mathbb{C}} \setminus D$ – связно.

Теорема 2.1. Пусть f голоморфна в области D u

$$\forall z \in D: f'(z) \equiv 0$$

 $Tor\partial a \ f \equiv const$

Доказательство. Любые $(x_0, y_0) \in D$ лежат вместе с каким-то отрезком $[(x_0, y_0), (x_0, y_0 + \Delta y)]$. Тогда

$$f' = u_x + v_x i \Rightarrow u_x \equiv v_x \equiv 0 \Rightarrow u_y \equiv v_y \equiv 0$$

Применим теорему Лагранжа к u(x,y). Аналогично к $v(x,y) \Rightarrow f \equiv const$ на всех вертикальных отрезках.

Аналогично на горизонтальных. Тогда $f \equiv const$ на D в силу связности. \square

3 Теорема об обратной функции

Теорема 3.1. Пусть $f:G\to H\subseteq C,g:H\to\mathbb{C}$ регулярны. Тогда $\zeta(z)=g(f(z))$ также регулярна, причём

$$\forall z \in G: \ \zeta'(z) = g'(f(z))f'(z)$$

Доказательство. Зафиксируем $z_0 \in G, w_0 = f(z_0) \in G$.

Из дифференцируемости

$$\Delta f = f(z_0)\Delta z + o(\Delta z), |\Delta z| \to 0; \quad \Delta g = g'(w_0)\Delta w + o(\Delta w), |\Delta w| \to 0$$

Пусть $\Delta w = \Delta f$, тогда

$$\frac{\Delta\zeta}{\Delta z} = g'(w_0) \frac{\Delta f}{\Delta z} + \frac{o(\Delta f)}{\Delta f} \cdot \frac{\Delta f}{\Delta z} \stackrel{\Delta z \to 0}{\to} g'(w_0) f'(z_0) + 0$$

Теорема 3.2. Об обратной фнуции.

Пусть $f: G \to \mathbb{C}$ регулярная и непрерывно дифференцируема на G. Пусть $z_0 \in G, w_0 = f(z_0), f'(z_0) \neq 0$. Тогда $\exists B_{\delta}(z_0), B_{\varepsilon}(w_0), makue, что$

- 1. $\forall z \in B_{\delta}(z_0) : f'(z) \neq 0$
- 2. $\forall \hat{w} \in B_{\varepsilon}(w_0)$ уравнение $\hat{w} = f(z)$ имеет в $B_{\delta}(z_0)$ единственное решение \hat{z} , то есть на $B_{\varepsilon}(w_0)$ определена обратная функция $g: B_{\varepsilon}(w_0) \to B_{\delta}(z_0)$, то есть

$$\forall w \in B_{\delta}(w_0) : f(g(w)) = w$$

3. g регулярна на $B_{\varepsilon}(w_0)$, причём

$$\forall w \in B_{\varepsilon}(w_0) : g'(w) = \frac{1}{f'(g(w))}$$

Доказательство. Первые два пункта выполняется благодаря обычной теореме об обратной функции из матана.

Пусть f(z) = u(x,y) + iv(x,y). Имеем отображение $\mathbb{R}^2 \to \mathbb{R}^2$. В силу непрерывной дифференцируемости этих двух функций запишем якобиан и преобразуем согласно УКР:

$$J(x,y) = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} u_x & -v_x \\ v_x & u_x \end{vmatrix} = (u_x)^2 + (v_x)^2 = |f'(z)|^2 \Rightarrow J(x_0, y_0) \neq 0$$

Третий пункт выполняется благодаря предыдущей теореме:

$$g(f(z)) = z \Rightarrow g'(f(z))f'(z) = 1 \Rightarrow g'(f(z)) = \frac{1}{f'(z)} = g'(w) = \frac{1}{f'(g(w))}$$

4 Степенные ряды. Формула Коши-Адамара...

Определение 4.1. Ряд $\sum_{n=1}^{\infty}$ сходится, если сходится последовательность $\{\sum_{k=1}^{n} g_k(z)\}_{n=1}^{\infty}$. Сходимость бывает условной и абсолютной.

Определение 4.2. Степенным рядом называется ряд вида

$$\sum_{n=0}^{\infty} a_n z^n, a_n \in \mathbb{C}$$

Теорема 4.1. Признак Вейерштрасса.

 $\Pi ycmb$

$$\forall n \ \forall z : |g_n(z)| \leqslant \alpha_n$$

причём $\sum_{n=1}^{\infty} \alpha_n < +\infty$. Тогда ряд $\sum_{n=1}^{\infty} g_n(z)$ сходится абсолютно равномерно.

Теорема 4.2. Пусть $\frac{1}{R}:=\overline{\lim}\sqrt[n]{|a_n|}, R\in[0,+\infty]$. Тогда

- 1. Если $|z| \le r < R$, то степенной ряд сходится равномерно и абсолютно.
- 2. Если |z| > R, то ряд расходится
- 3. $f(z) = \sum_{n=0}^{\infty} a_n z^n$ голоморфна при |z| < R и её производная $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$

Доказательство. 1. Пусть $\rho \in (r,R) \Rightarrow \frac{1}{R} < \frac{1}{\rho} < \frac{1}{r}$. По определению верхнего предела

$$\exists N \in \mathbb{N} \ \forall n > N : \ \sqrt[n]{a_n} < \frac{1}{\rho}$$

Тогда (в условиях текущего пункта):

$$\exists N \in \mathbb{N} \ \forall n > N : \ |a_n z^n| \leqslant \left(\frac{r}{\rho}\right)^n, \frac{r}{\rho} < 1$$

Тогда по теореме Вейшерштрасса мы можем ограничить рассматриваемый ряд сходящимся числовым (геометрическая прогрессия) и всё доказали.

2. Пусть |z|>R, то есть $\frac{1}{|z|}<\frac{1}{R}$. Значит

$$\exists \varepsilon > 0: \ \frac{1}{|z|} \leqslant \frac{1}{R} - \varepsilon \Rightarrow |z| \geqslant \frac{1}{\frac{1}{R} - \varepsilon}$$

По определению верхнего предела:

$$\exists \{n_k\}_{k=1}^{\infty} \, \forall k: \, \sqrt[n_k]{|a_{n_k}|} > \frac{1}{R} - \varepsilon \Rightarrow |a_{n_k}z^{n_k}| \geqslant \left(\frac{1}{R} - \varepsilon\right)^{n_k} \cdot \left(\frac{1}{\frac{1}{R} - \varepsilon}\right)^{n_k} \geqslant 1$$

Получили, что не выполнено необходимое условие сходимости ряда.

3. Заметим, что у $g(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ ряд сходимости такой же в силу $\sqrt[n]{n} \to 1$, то есть он сходится при |z| < R.

Заметим, что частичные суммы $G_n = F'_n$, то есть равна производной соответствующей частичной суммы f.

Распишем производную f через частичные суммы:

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{F_N(z) - F_N(z_0)}{z - z_0} + \frac{H_N(z) - H_N(z_0)}{z - z_0} = \left(\frac{F_N(z) - F_N(z_0)}{z - z_0} - F_N'(z_0)\right) + \left(F_N'(z_0) - g(z_0)\right) + g(z_0) + \left(\frac{H_N(z) - H_N(z_0)}{z - z_0}\right)$$

Устремляя $N \to +\infty$, получим

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = g(z_0)$$

так как

$$\frac{H_N(z) - H_N(z_0)}{z - z_0} = \sum_{n=N}^{\infty} a_n \frac{z^n - z_0^n}{z - z_0} = \sum_{n=N}^{\infty} \left[a_n \sum_{k=0}^{n-1} z^k z_0^{n-1-k} \right] \Rightarrow \left| \frac{H_N(z) - H_N(z_0)}{z - z_0} \right| \leqslant \sum_{n=N}^{\infty} |a_n| \cdot n \cdot r^{n-1}$$

Проследнее выражение стремится к нулю, как остаток сходящегося ряда.

5 Степенные ряды. Свойства экспоненты и тригонометрических.

Определение 5.1. Голоморфные в С функции называют целыми

Определение 5.2. Определим эскпоненту

$$e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

 $R_{\rm cx} = +\infty \Rightarrow e^z$ целая.

Лемма 5.1. Свойства экспоненты:

1.
$$(e^z)' = e^z$$

$$2. \ e^{z_1+z_2} = e^{z_1}e^{z_2}$$

3.
$$\forall z \in \mathbb{C} : e^z \neq 0$$

Доказательство. 1. Сразу следует из пункта 3 предыдущей теоремы.

2. Покажем эквивалентное свойство $e^{a-z}e^z=e^a$. Пусть

$$q(z) := e^{a-z}e^z \Rightarrow q'(z) = -e^{a-z}e^z + e^{a-z}e^z = 0$$

А это значит, что $g \equiv const$, так как голоморфна.

Посчитаем $g(0) = e^{a-0}e^0 = e^a \Rightarrow g(z) \equiv e^a$, что и требовалось доказать.

3. $\forall z \in \mathbb{C}$ выполняется:

$$e^z e^{-z} = e^0 = 1$$

Значит в $e^z e^{-z}$ никто не может быть нулём.

Определение 5.3. Определим тригонометрические функции на \mathbb{C} :

$$\cos(z) := \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}; \quad \sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

Лемма 5.2. Свойства тригонометрических функций:

$$1. e^{iz} = \cos(z) + i\sin(z)$$

2.
$$|e^z| = e^{Re z}$$

3. Ecau
$$e^{z+T}=e^z$$
, mo $T=2\pi i k, k\in\mathbb{Z}$

Доказательство. 1. Очевидно

2. Очевидно

3. Заметим, что

$$e^T = 1 \Leftrightarrow \text{Re } T = 0 \Leftrightarrow T = i\beta$$

Тогда

$$e^{i\beta} = \cos(\beta) + i\sin(\beta) = 1 \Leftrightarrow \beta = 2\pi k \Rightarrow T = 2\pi ki, k \in \mathbb{Z}$$

6 Первообразная и полный дифференциал в области. Условия...

Определение 6.1. Кривая γ – класс эквивалентных параметризаций

$$z(t) = x(t) + iy(t), t \in [t_0, t_1]$$

Определение 6.2. Кривая γ называется гладкой, если существует параметризация

$$z(t) = x(t) + iy(t), x \in C^{1}([t_0, t_1]), y \in C^{1}([t_0, t_1]); \forall t \in [t_0, t_1]: z'(t) \neq 0$$

Определение 6.3. Гладкая кривая γ называется замкнутой, если

$$z(t_0) = z(t_1); \ z'(t_0 + 0) = z'(t_1 - 0)$$

Определение 6.4. Кривая γ называется кусочно гладкой, если

$$\exists t_0 = \theta_0 < \theta_1 < \dots < \theta_{n-1} < \theta_n = t_1$$

ОТР

$$\forall k:\ z_k(t), t\in [heta_{k-1}, heta_k]$$
 - это гладкая кривая

Определение 6.5. Пусть $g: G \to \mathbb{C}$ на области G. Назовём это первообразной непрерывной функции $f: G \to \mathbb{C}$, если g регулярна на G и

$$\forall z \in G: g'(z) = f(z)$$

Определение 6.6. Выражение f(z)dz называется полным дифференциалом в области G, если существует первообразная g для f на G, то есть

$$f(z)dz = g'(z)dz$$

Теорема 6.1. Пусть $f: G \to \mathbb{C}$ непрерывна на области G. Тогда:

1. Если fdz – полный дифференциал на G, то для любой замкнутой $K\Gamma K \ \dot{\gamma} \subseteq G$ выполняется

$$\int_{\dot{\gamma}} f(z)dz = 0$$

2. Если для любой замкнутой ломаной кривой γ выполняет равенство выше, то fdz – полный дифференциал.

 \square Доказательство. 1. По условию $\exists g: G \to \mathbb{C}$, регулярная, такая, что g'(z) = f(z). Тогда

$$\int_{\dot{\gamma}} f(z)dz = \int_{t_0}^{t_1} g'(z(t))z'(t)dt = \int_{t_0}^{t_1} \frac{d}{dt}(g(z(t)))dt = g(z(t_1)) - g(z(t_0)) = g(z(t_0)) - g(z(t_0)) = 0$$

2. Фиксируем $a \in G$ как начальную точку ломаной γ . Тогда $\forall z \in G: \exists \gamma_{az}$ – ломаная с началом в a и концом в z.

$$g(z) = \int_{\gamma} f(z)dz$$

не зависит от γ_{az} , а лишь от z.

Действительно, если $\exists \gamma_{az} \not\sim \tilde{\gamma}_{az}$, то пусть $\dot{\gamma} = \gamma_{az} \cup \tilde{\gamma}_{az}^{-1}$, тогда по аддитивности интеграла

 $\int_{\dot{\gamma}} f(z)dz = 0 = \int_{\gamma_{az}} f(z)dz - \int_{\tilde{\gamma}_{az}} f(z)dz$

Докажем, что $\forall z: g'(z)=f(z)$. Рассмотрим $z_0: \exists \varepsilon>0: B_{\varepsilon}(z_0)\subseteq G$ и приращение $\Delta z: 0<|\Delta z|<\varepsilon.$ Тогда $z_0+\Delta z\in G$. Рассмотрим

$$\frac{g(z_0 + \Delta z) - g(z_0)}{\Delta z} = \frac{1}{\Delta z} \int_{[z_0, z_0 + \Delta z]} f(z) dz$$

Значит

$$\left| \frac{\Delta g}{\Delta z} - f(z_0) \right| = \left| \frac{1}{\Delta z} \int_{[z_0, z_0 + \Delta z]} (f(z) - f(z_0)) dz \right|$$

В силу непрерывности f(z), найдём $r(\varepsilon)$ – радиус шара, где $|f(z)-f(z_0)|<\varepsilon$, тогда

$$\forall z \in B_{r(\varepsilon)}(z_0) \cap B_{\varepsilon}(z_0) : \left| \frac{\Delta g}{\Delta z} - f(z_0) \right| \leqslant \left| \frac{\varepsilon \min\{r(\varepsilon), \varepsilon\}}{\min\{r(\varepsilon), \varepsilon\}} \right| = \varepsilon$$

7 Лемма Гурса и теорема Коши для выпуклой области

Лемма 7.1. *Гурса*.

 Π усть G – область, $f:G\to\mathbb{C}$ регулярна. Тогда для любого треугольника из G верно

$$\int_{\partial \triangle} f(z)dz = 0$$

Доказательство. Зафиксируем $\triangle ABC \subseteq G$. Тогда будем рассматривать

$$I := \int_{\partial \triangle ABC} f(z) dz$$

Разобьём треугольник средними линиями:

$$\triangle ABC = \bigcup_{k=1}^{4} \triangle_k$$

Тогда

$$I = \sum_{k=1}^{4} \int_{\partial \triangle_k} f(z) dz$$

Докажем, что

$$\exists k_0: \left| \int_{\partial \triangle_{k_0}} f(z) dz \right| \geqslant \frac{|I|}{4}$$

Очевидно от противного, так как триангуляции с ориентацией, то если бы все были меньше, то нельзя было бы набрать I. Обозначим найдённый треугольник за $\triangle^1 := \triangle_{k_0}$, а $\triangle^0 := \triangle ABC$. Аналогично построению \triangle^1 из \triangle^0 можем построить бесконечную последовательность $\{\triangle^N\}_{N=0}^\infty$, и для них

$$\left| \int_{\partial \triangle^N} f(z) dz \right| \geqslant \frac{|I|}{4^N}$$

Теперь заметим, что $P_N = \frac{P_0}{2^N}$, где P_N – периметр N-го треугольника. В силу компактности

$$\exists z_0 \in \bigcap_{N=1}^{\infty} \triangle^N$$

Так как f дифференцируема в z_0 , то по определению:

$$\exists_{\delta_0}(z_0) \, \forall z \in B_{\delta_0}(z_0) : f(z) = f(z_0) + f'(z_0)(z - z_0) + o(z - z_0)$$

А для *о*-малого верно:

$$\forall \varepsilon > 0 \ \exists \delta_1 \leqslant \delta_0 \ \forall z \in B_{\delta_1}(z_0) : \ |o(z - z_0)| \leqslant \varepsilon |z - z_0|$$

Теперь можем расписать интеграл:

$$\int_{\partial \triangle^{N}} f(z)dz = f(z_0) \int_{\partial \triangle^{N}} dz + f'(z_0) \int_{\partial \triangle^{N}} zdz - z_0 f'(z_0) \int_{\partial \triangle^{N}} + \int_{\partial \triangle^{N}} o(z - z_0)dz = \int_{\partial \triangle^{N}} o(z - z_0)dz$$

Интегралы по 1 и z равны нулю, так как они, очевидно, полные дифференциалы. Причём полагаем N таким, что

$$\forall z \in \triangle^N : |z - z_0| < \delta_1$$

Тогда

$$\left| \int_{\partial \triangle^N} f(z) dz \right| \leqslant \int_{\partial \triangle^N} |o(z - z_0)| \cdot |dz| \leqslant \varepsilon \int_{\partial \triangle^N} |z - z_0| \cdot |dz| \leqslant \varepsilon P_N^2 \leqslant \varepsilon \frac{P_0^2}{4^N}$$

Получили, что

$$|I| \leqslant \varepsilon \frac{P_0^2}{4^N}$$

В силу произвольности ε : I=0.

Теорема 7.1. Коши для выпуклой области.

Пусть D – выпуклая область, f – голоморфна в $D\setminus\{0\}$, f – непрерывна в D. Тогда $\forall \gamma$ – кусочно-гладкой замкнутой кривой

$$\int_{\gamma} f dz = 0$$

Доказательство. По лемме Гурса

$$\forall \triangle \subseteq D: \ \int_{\partial \triangle} f dz = 0$$

Тогда мы можем триангулировать любую ломаную \Rightarrow по одной из теорем fdz – полный дифференциал (нужна была непрерывности и нулевой интеграл по всем ломаным).

А как мы знаем, интеграл по любой замкнутой кривой от полного дифференциала нулевой. \Box

8 Интеграл Коши и его свойства

Определение 8.1. Пусть γ – кусочно-гладкая кривая в \mathbb{C} . Тогда $\forall \varphi \in C(\gamma)$ определим интеграл Коши, как

$$F_n(z,\varphi) = \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n} d\xi$$

Теорема 8.1. Свойства интеграла Коши:

1. $F_n(z,\varphi)$ - голоморфна (\Rightarrow непрерывна) в $\mathbb{C}\setminus\gamma$

2.
$$F'_n(z,\varphi) = nF_{n+1}(z,\varphi)$$

Доказательство. Вначале покажем непрерывность для n = 1:

$$F_1(z,\varphi) - F_1(z_0,\varphi) = \int_{\gamma} \frac{\varphi(\xi)(z - z_0)}{(\xi - z)(\xi - z_0)} d\xi = (z - z_0) \cdot F_1\left(z, \frac{\varphi(\xi)}{\xi - z_0}\right)$$

Введём $\delta=\rho(z_0,\gamma)$. Для $z_0\in\mathbb{C}\setminus\gamma$ оно, очевидно, не равно нулю.

Тогда

$$\left| (z - z_0) \cdot F_1 \left(z, \frac{\varphi(\xi)}{\xi - z_0} \right) \right| \le \frac{const}{\delta^2} |z - z_0|$$

что и гарантирует непрерывность.

Из того же тождества

$$\frac{F_1(z,\varphi) - F_1(z_0,\varphi)}{z - z_0} = F_1\left(z, \frac{\varphi(\xi)}{\xi - z_0}\right) \stackrel{z \to z_0}{\to} F_1\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right) = F_2(z_0, \varphi(\xi))$$

Доказали голоморфность существованием производной.

Далее по индукции: пусть F_{n-1} голоморфна в D:

$$F'_{n-1}(z,\varphi) = (n-1)F_n(z,\varphi)$$

Распишем приращение с помощью умного нуля:

$$F_{n}(z,\varphi) - F_{n}(z_{0},\varphi) = \int_{\gamma} \left[\left(\frac{1}{(\xi - z)^{n}} - \frac{1}{(\xi - z)^{n-1}(\xi - z_{0})} \right) + \frac{1}{(\xi - z)^{n-1}(\xi - z_{0})} - \frac{1}{(\xi - z_{0})^{n}} \right] \varphi(\xi) d\xi = (z - z_{0}) \int_{\gamma} \frac{\varphi(\xi) d\xi}{(\xi - z)^{n}(\xi - z_{0})} + F_{n-1} \left(z, \frac{\varphi(\xi)}{\xi - z_{0}} \right) - F_{n-1} \left(z_{0}, \frac{\varphi(\xi)}{\xi - z_{0}} \right)$$

Сходимость к нулю первого слагаемого доказывается аналогично предыдущему пункту с непрерывностью, а последние два слагаемых дают приращение непрерывной функции, которое также стремится к нулю при $z \to z_0$.

Поделим предыдущее выражение на $z-z_0$ и посчитаем производную:

$$\frac{F_n(z,\varphi) - F_n(z_0,\varphi)}{z - z_0} = \int_{\gamma} \frac{\varphi(\xi)d\xi}{(\xi - z)^n(\xi - z_0)} + \frac{F_{n-1}\left(z, \frac{\varphi(\xi)}{\xi - z_0}\right) - F_{n-1}\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right)}{z - z_0} \xrightarrow{z \to z_0} F_n\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right) + F'_{n-1}\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right) = F_n\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right) + (n-1)F_n\left(z_0, \frac{\varphi(\xi)}{\xi - z_0}\right) = n \cdot F_{n+1}(z_0, \varphi(\xi))$$

Таким образом, $F_n(z,\varphi)$ – бесконечно дифференцируемая.

9 Интегральная формула Коши для круга...

Теорема 9.1. Пусть f – голоморфна в D, причём $\overline{O}_r(a) \subset D$. Тогда

$$\forall z \in O_r(a) : f(z) = \frac{1}{2\pi i} \int_{|z-a|=r} \frac{f(\xi)}{\xi - z} d\xi$$

Доказательство. Благодаря замкнутости

$$\exists R > r : \overline{O}_R(a) \subseteq D$$

Фиксируем $z \in O_r(a)$:

$$g(\xi) = \begin{cases} \frac{f(\xi) - f(z)}{\xi - z}, \xi \neq z \\ f'(z), \xi = z \end{cases}$$

 $g(\xi)$ — голоморфна в $O_R(a)\setminus\{z\}$ (как отношение голоморфных функций) и непрерывна в $O_R(a)\Rightarrow \forall \gamma_r$ — замкнутого контура по теореме Коши:

$$\int_{\gamma_r} g(\xi)d\xi = 0$$

То есть

$$\int_{\gamma_r} \frac{f(\xi)d\xi}{\xi - z} = f(z) \int_{\gamma_r} \frac{d\xi}{\xi - z} =: G(z)$$

G(z) – голоморфна в $O_r(a), G'=\int_{\gamma_r} \frac{d\xi}{(\xi-z)^2}\equiv 0 \Rightarrow G\equiv const \Rightarrow G(a)=2\pi i \Rightarrow G(z)$

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(\xi)d\xi}{\xi - z}$$

Следствие. 1. f – голоморфна в $D \Rightarrow f$ – интеграл $Kowu \Rightarrow f'$ – голоморфна в D.

2. f – голоморфна в $D \Rightarrow \forall n \in \mathbb{N}: f^{(n)}$ – голоморфна в D.

3. В условии формулы Коши для круга:

$$f^{(n)}(z) = \frac{n!}{2\pi} \int_{|z-a|=r} \frac{f(\xi)d\xi}{(\xi-z)^{n+1}}$$
 (1)

10 Теорема Морера. Теорема о среднем.

Теорема 10.1. Мореры.

 $\Pi y cm \circ f$ – непрерывна в области D и

$$\forall \overline{\triangle} \subseteq D : \int_{\partial \triangle} f(z) dz = 0$$

Tогда f – голоморфна в D.

Доказательство. Заметим, что $\overline{O}_r(a) \subseteq D$ – выпукло, поэтому применяем лемму:

$$\forall z \in O_r(a) \, \exists F : F' = f$$

В этом круге по одному из следствий F голоморфна $\Rightarrow f$ – голоморфна в $O_r(a)$. Это верно $\forall a \in D \Rightarrow f$ – голоморфна в D.

Теорема 10.2. О среднем.

Пусть f – голоморфна в $\overline{O}_r(a) \subseteq D$, тогда

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}r) d\theta$$

Доказательство. Пусть $\xi = a + re^{i\theta}$. Тогда

$$f(a) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(a + re^{i\theta})ire^{i\theta}d\theta}{re^{i\theta}} = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta})d\theta$$

11 Целые функции и теорема Луивилля

Определение 11.1. f – целая, если f голоморфна в \mathbb{C} .

Теорема 11.1. Луивимя.

Eсли f – целая u

$$\exists M, m, R \, \forall z, |z| > R : |f(z)| < M \cdot |z|^m$$

Тогда f(z) – полином степени $\leq m$.

Доказательство. Знаем, что

$$\forall z \in \mathbb{C} : f(z) = \sum_{n=0}^{\infty} c_n z^n, R_{\text{cx}} = \infty$$

Тогда по (12.1)

$$c_n = \frac{1}{2\pi i} \oint_{|\xi| = \rho} \frac{f(\xi)d\xi}{\xi^{n+1}}$$

Оценим сверху

$$|c_n| \leqslant \frac{1}{2\pi} \int_{|\xi|=\rho} \frac{|f(\xi)||d\xi|}{|\xi^{n+1}|} \leqslant \frac{M}{2\pi} \int_{|\xi|=\rho} \frac{|\xi|^m}{|\xi|^{n+1}} |d\xi| = \frac{M}{2\pi} \int_{|\xi|=\rho} \frac{1}{|\xi|^{n+1-m}} |d\xi| = \frac{M}{\rho^{n-m}} = M\rho^{m-n}$$

При n > m:

$$|c_n| \leqslant \frac{M}{\rho^{n-m}} \stackrel{\rho \to +\infty}{\to} 0 \Rightarrow \forall n > m : |c_n| = 0 \Rightarrow f(z) = \sum_{n=0}^{m} c_n z^n$$

12 Ряд Тейлора и теорема единственности...

Теорема 12.1. Ряд Тейлора.

Пусть f – голоморфна в $D, O_R(a) \subseteq D$. Тогда

$$\forall z \in O_R(a) : f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n, c_n = \frac{f^{(n)}(a)}{n!}$$

Доказательство. Пусть r < R, f – голоморфна в $\overline{O_r(a)} \Rightarrow$

$$2\pi i f(z) = \int_{\gamma_r} \frac{f(\xi)d\xi}{\xi - z}$$

Тогда распишем

$$\frac{1}{\xi - z} = \frac{1}{(\xi - a) - (z - a)} = \frac{1}{\xi - a} \cdot \frac{1}{1 - \frac{z - a}{\xi - a}} \stackrel{|z - a| \le |\xi - a|}{=}$$

$$\frac{1}{\xi - a} \sum_{n=0}^{\infty} \left(\frac{z - a}{\xi - a}\right)^n = \sum_{n=0}^{\infty} \frac{(z - a)^n}{(\xi - a)^{n+1}}$$

Полученный ряд сходится равномерно, а значит можно умножить на $f(\xi)$ и почленно интегрировать

$$2\pi i f(z) = \sum_{n=0}^{\infty} \int_{\gamma_r} \frac{f(\xi)d\xi}{(\xi - a)^{n+1}} (z - a)^n = \sum_{n=0}^{\infty} 2\pi i c_n (z - a)^n \Rightarrow f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

Причём по (1):

$$c_n = \frac{f^{(n)}(a)}{n!}$$

В завершение скажем

$$\forall z : |z - a| < R \,\exists r < R \,z \in O_r(a) \Rightarrow$$

формула верна во всём $O_R(a)$.

Определение 12.1. Пусть $f \neq 0$ – голоморфна в $O_r(a), f(a) = 0$, тогда m – это порядок нуля в точке a. если

$$\forall k = \overline{0, m-1} : f^{(k)}(a) = 0, f^{(m)}(a) \neq 0$$

Утверждение 12.1. f имеет нуль порядка $m \Leftrightarrow \exists g(z)$ – голоморфная в $O_r(a), g(a) \neq 0$:

$$f(z) = (z - a)^m \cdot g(z)$$

Доказательство. (\Rightarrow)

БОО a=0. Тогда

$$f(z) = \sum_{n=0}^{\infty} c_n z^n = \sum_{n=m}^{\infty} c_n z^n = z^m \sum_{n=0}^{\infty} c_{n+m} z^n$$

Пусть $g(z) := \sum_{n=0}^{\infty} c_{n+m} z^n$, причём $g(0) \neq 0$, так как $c_m \neq 0$. (\Leftarrow) Пусть $f(z) = (z-a)^m g(z)$. Дифференцируя получаем

$$\forall k = \overline{0, m-1} : f^{(k)}(a) = 0, f^{(m)} \neq 0$$

Замечание. Пусть f – голоморфна в окрестности a, f(a) = 0. Тогда

$$\exists \rho > 0 \ \forall z \ |z - a| \in (0, \rho) : \ f(z) \neq 0$$

Доказательство. Очевидно следует из предыдущего утверждения.

Теорема 12.2. О единственности.

Пусть f и g – голоморфны в области $D, E \subseteq D$, причём в D есть хотя бы одна предельная точка E. Тогда если

$$\forall z \in E : f(z) = q(z)$$

mo

$$\forall z \in D : f(z) = g(z)$$

Доказательство. Пусть h=f-g,a – предельная точка $E,a\in D.$ Тогда введём

$$Z = \{ z \in D \mid h(z) = 0 \}$$

Тогда по непрерывности $a \in Z$, причём a – предельная точка $Z \Rightarrow h(z) \equiv 0$ в окрестности a (12).

Пусть $G_1:=\inf Z$ – открытое непустое, так как $a\in G_1$. Тогда если $G_2:=D\setminus G_1$ открытое, то из-за связности $D\Rightarrow G_2$ – пустое, что доказывает теорему.

Пусть G_2 неоткрыто. Пусть $z^* \in G_2$, причём z^* – предельная точка G_1 . Тогда $\exists z_n \to z^*, z_n \in G_1$. Тогда $h(z_n) = 0 \stackrel{\text{непрерывность}}{\Rightarrow} h(z^*) = 0 \Rightarrow z^* \in G_1$ – противоречие.

13 Приращение аргумента вдоль кривой. Индекс точки...

Определение 13.1. Пусть γ – кусочно гладкая кривая в D,

$$\Gamma = f(\gamma) = \{ w = f(z(t)) \mid t \in [\alpha, \beta] \}$$

Причём Γ – кусочно гладкая, $\Gamma \subseteq \mathbb{C} \setminus \{0\}$. Тогда приращением аргумента вдоль кривой называется

$$\Delta_{\Gamma} w := \operatorname{Im} \int_{\Gamma} \frac{dw}{w} = \operatorname{Im} \int_{\gamma} \frac{f'(z)dz}{f(z)} =: \Delta_{\gamma} f$$

Лемма 13.1. Свойства приращения аргумента:

1.
$$\Delta_{\gamma}(c \cdot f) = \Delta_{\gamma}(f), c \neq 0$$

2.
$$\Delta_{\gamma}(f_1 \cdot f_2) = \Delta_{\gamma}(f_1) + \Delta_{\gamma}(f_2)$$

3.
$$\Delta_{\gamma} \frac{1}{f} = -\Delta_{\gamma} f$$

4.
$$\Delta_{-\gamma}(f) = -\Delta_{\gamma}(f)$$

Доказательство. 1. Следует из второго пункта (приращение константы равно нулю)

2. Для доказательство достаточно заметить

$$\frac{(f_1 f_2)'}{f_1 f_2} = \frac{f_1'}{f_1} + \frac{f_2'}{f_2}$$

И воспользоваться линейностью интеграла.

- 3. Очевидно из предыдущего пункта
- 4. Очевидно

Определение 13.2. Индекс a относительно кривой γ , где γ – кусочно гладкая замкнутая кривая в $\mathbb{C}, a \in \mathbb{C} \setminus \gamma$, называется

$$J_{\gamma}(a) = \frac{\Delta_{\gamma}(z-a)}{2\pi} \in \mathbb{Z}$$

Иными словами, это количество оборотов кривой вокруг a.

Лемма 13.2. Пусть γ – замкнутая кусочно-гладкая кривая в \mathbb{C} . Тогда

- 1. $J_{\gamma}(z) \equiv const$ в кажедой компоненте связности $\mathbb{C} \setminus \gamma$
- 2. Если какая-то компонента содержит ∞ , то $J_{\gamma}(z)\equiv 0$ в ней.

Доказательство. Действительно,

$$J_{\gamma}(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a}$$

интеграл Коши \Rightarrow голоморфна в $\mathbb{C}\backslash\gamma\Rightarrow$ непрерывна и, так как принимает только значения из \mathbb{Z} , постоянна в своих компонентах связности. Это следует из того, что

$$J_{\gamma}'(z)=rac{1}{2\pi i}\int_{\gamma}rac{d\xi}{(\xi-z)^2}=0 \Rightarrow J_{\gamma}(a)\equiv const$$
 в компоненте связности

Для неограниченной компоненты

$$f(z) := \operatorname{dist} (\gamma, z) = \min_{\zeta \in \gamma} |z - \zeta| > 0$$

Тогда

$$|J_{\gamma}(z)| = \left|\frac{1}{2\pi i} \int_{\gamma} \frac{d\xi}{\xi - z}\right| \leqslant \frac{1}{2\pi d(z)} \int_{\gamma} |d\xi|$$

Ho $d(z) \to \infty$ при $z \to \infty \Rightarrow J_{\gamma}(z) = 0$.

14 Общая форма теоремы Коши и интегральной формулы Коши...

Лемма 14.1. Общая теорема Коши.

 Π усть D – область в \mathbb{C}, f – голоморфна в области D. Тогда

1. Функция

$$g(\xi, z) := \begin{cases} \frac{f(\xi) - f(z)}{\xi - z}, \xi \neq z \\ f'(z), \xi = z \end{cases}$$

непрерывна в $D \times D$.

2. \forall кусочно гладкой $\gamma \subset D$:

$$h(z) = \int_{\gamma} g(\xi, z) d\xi$$

голоморфна в D.

Доказательство. 1. При $\xi \neq z$ непрерывна как отношение непрерывных функций.

При $\xi = z$ зафиксируем $z_0 \in D$, по открытости $D \Rightarrow \exists \overline{O}_r(z_0) \subset D$. Тогда будем рассмотримвать сколь угодно близкие $z, \xi \in O_{\varepsilon}(z_0), \varepsilon < r$.

Распишем в этой окрестности ряд Тейлора для двух точек:

$$f(z) - f(z_0) = \sum_{n=1}^{\infty} c_n (z - z_0)^n$$
$$f(\xi) - f(z_0) = \sum_{n=1}^{\infty} c_n (\xi - z_0)^n$$

Далее нам понадобится следующая оценка:

$$\left| \frac{(z - z_0)^n - (\xi - z_0)^n}{z - \xi = [(z - z_0) - (\xi - z_0)]} \right| = \left| \sum_{k=0}^{n-1} (z - z_0)^{n-1-k} (\xi - z_0)^k \right| \le n\varepsilon^{n-1}$$

Рассмотрим приращение

$$|g(z,\xi) - g(z_0, z_0)| = |g(z,\xi) - f'(z_0)| = \left| \sum_{n=2}^{\infty} c_n \frac{(z - z_0)^n - (\xi - z_0)^n}{z - \xi} \right| \le \sum_{n=2}^{\infty} |c_n| \cdot n \cdot \varepsilon^{n-1} \le \varepsilon \sum_{n=2}^{\infty} |c_n| \cdot n \cdot r^{n-2} = \varepsilon M$$

Где $M<\infty$ взяли из сходимости ряда Тейлора путём дифференцирования $(\exists R>r:O_R(z_0)\subseteq D\ \overline{O}_r(z_0)\subseteq D).$

Заметим, что мы доказали непрерывность, оценив приращение g.

2. Видно, что h – непрерывна в D. Тогда для $\overline{\triangle} \subset D$:

$$\int_{\partial \triangle} h(z)dz = \int_{\partial \triangle} \int_{\gamma} g(\xi, z)d\xi dz = \int_{\gamma} \int_{\partial \triangle} g(\xi, z)dz d\xi = 0$$

Это верно, так как $g(\xi_0,\cdot)$ голоморфна в $D\setminus\{\xi\}$, непрерывна в $D\Rightarrow$ по лемме Гурса $\int_{\partial\wedge}g(\xi,z)dz=0.$

В итоге можем применить теорему Морера, из которой будет следовать, что h – голоморфна.

Теорема 14.1. Интегральная теорема Коши.

Пусть D – область в \mathbb{C}, f – голоморфна в D. Пусть Γ – цикл в D, причём $\Gamma \sim 0 (\mod D).$ Тогда

1.
$$\forall z \in D \setminus \Gamma : J_{\Gamma}(z) \cdot f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z}$$

2.
$$\int_{\Gamma} f(z)dz = 0$$

Доказательство. $(1 \Rightarrow 2)$

Применим 1 к $\hat{f}(z) = (z-a)f(z)$. Где $a \in \mathbb{C} \setminus \Gamma$, если f(a) определена (или $a \in D \setminus \Gamma$). Тогда

$$0 = J_{\Gamma}(a)(a-a)f(a) = J_{\Gamma}(a) \cdot \tilde{f}(a) = \int_{\Gamma} \frac{\tilde{f}(\xi)d\xi}{\xi - a} = \int_{\Gamma} f(\xi)d\xi$$

Докажем первый пункт.

Введём

$$G := \{ z \in \mathbb{C} \setminus \Gamma \mid J_{\Gamma}(z) = 0 \}$$

- открытое множество. Рассмотрим две функции

$$2\pi i \cdot \tilde{h}(z) = \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z}$$

- голоморфна в G, как интеграл Коши.

$$2\pi i \cdot h(z) = \int_{\Gamma} \frac{f(\xi) - f(z)}{\xi - z} d\xi$$

- голомофрна в D, как функция из второго пункта предыдущей теоремы.

Заметим, что $\forall z \in G \cap D: \ h(z) = \tilde{h}(z),$ так как

$$\tilde{h}(z) = h(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)d\xi}{\xi - z} = f(z)J_{\Gamma}(z) = 0$$

Тогда введём новую функцию

$$F(z) := \begin{cases} h(z), z \in D \\ \tilde{h}(z), z \in C \setminus D \subseteq G \text{ так как } \Gamma \sim 0 (\mod D) \end{cases}$$

Получается, F(z) – голоморфна в \mathbb{C} .

Заметим, что

$$\lim_{z \to \infty} F(z) = 0$$

Так как

$$|\tilde{h}(z)| \leqslant \frac{1}{2\pi} \int_{\Gamma} \frac{\max_{\Gamma} |f| \cdot |d\xi|}{d(z)} \stackrel{z \to \infty}{\to} 0$$

Где, $d(z) = \text{dist } (z, \Gamma) \Rightarrow d(z) \to \infty$.

Тогда по теореме Луивилля:

$$F(z) \equiv 0$$

Тогда в $D \setminus \Gamma$: h(z) = F(z) = 0, то есть

$$f(z) \cdot \frac{1}{2\pi i} \int_{\Gamma} \frac{d\xi}{\xi - z} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z} \Rightarrow$$
$$f(z) \cdot J_{\Gamma}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z}$$

Следствие. Для односвязной области.

Пусть D – односвязная область, f голоморфна в D, γ – замкнутая кусочно гладкая кривая в D. Тогда

$$\int_{\Gamma} f(z)dz = 0$$

Доказательство. Заметим, что $\forall a \notin D: J_{\Gamma}(a) = 0$, так как a лежит в компоненте связности, содержащей $\infty \Rightarrow$ можем использовать интегральную теорему Коши.

Следствие. Коши для многосвязной области.

Пусть область D ограничена циклом Γ , f голоморфна в области $D' \supset D$. Тогда

1.
$$\forall z \in D : f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z}$$

2.
$$\int_{\Gamma} f(z)dz = 0$$

Доказательство. Имеем 0 оборотов вокруг D', а также один оборот вокруг $D \Rightarrow J_{\Gamma}(z) = 1 \Rightarrow$ по предыдущей теореме верен первый пункт, а второй выводится аналогично.

15 Разложение голоморфной функции в ряд Лорана...

Теорема 15.1. Пусть f голоморфна в $K := \{z \mid r < |z - a| < R\}$. Тогда

$$\forall z \in K : f(z) = \sum_{-\infty}^{+\infty} c_n (z - a)^n$$

 $e \partial e$

$$c_n = \frac{1}{2\pi i} \cdot \int_{\gamma_a} \frac{f(\xi)d\xi}{(\xi - a)^{n+1}}$$

где γ_{ρ} – положительно ориентированная окружность радиуса $\rho \in (r,R)$ с центром в точке a.

Доказательство. Докажем, что интегральная формула для c_n не зависит от ρ . Возьмём две окружности радиуса ρ и ρ' .

Пусть $\Gamma:=\gamma_{\rho}-\gamma_{\rho'}$. Применим теорему Коши для многосвязной области к функции $\frac{f(\xi)}{(\xi-a)^{n+1}}$ (голоморфной в $K\supset K_{(\rho,\,\rho')}$). Тогда

$$\int_{\Gamma} \frac{f(\xi)d\xi}{(\xi-a)^{n+1}} = 0 \Leftrightarrow \int_{\gamma_{\rho}} \frac{f(\xi)d\xi}{(\xi-a)^{n+1}} = \int_{\gamma_{\rho'}} \frac{f(\xi)d\xi}{(\xi-a)^{n+1}}$$

Рассмотрим r < r' < R' < R. Тогда $\forall z \in K'_{(r',R')}$:

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z} = \frac{1}{2\pi i} \left(\int_{\gamma_{R'}} \frac{f(\xi)d\xi}{\xi - z} - \int_{\gamma_{r'}} \frac{f(\xi)d\xi}{\xi - z} \right) =: f_1(z) + f_2(z)$$

Заметим, что

$$f_1(z) = \int_{\gamma_{R'}} \frac{f(\xi)d\xi}{\xi - z}$$

голоморфна в $O_{R'}(a) \Rightarrow$

$$f_1(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

где $c_n = \frac{f^{(n)}(a)}{n!}.$ Осталось разложить f_2 :

$$\frac{1}{z-\xi} = \frac{1}{(z-a)-(\xi-a)} = \frac{1}{z-a} \cdot \frac{1}{1-\frac{\xi-a}{z-a}} = \sum_{n=0}^{\infty} \frac{(\xi-a)^n}{(z-a)^{n+1}}$$

при $\left|\frac{\xi-a}{z-a}\right| < 1$. Значит

$$f_2(z) = \sum_{n=0}^{\infty} \frac{1}{(z-a)^{n+1}} \cdot \left[c_{-n-1} := \frac{1}{2\pi i} \int_{\gamma_{r'}} f(\xi) (\xi - a)^n d\xi \right]$$

Получается, разложили так, что от r' и R' коэффициенты c_n не зависят.

Определение 15.1. Такие ряды называются рядами Лорана для голоморфной функции f.

Теорема 15.2. Теорема о единственности ряда Лорана.

Eсли $f(z)=\sum_{n=-\infty}^{+\infty}c_n(z-a)^n$ при $z\in K$, то f - голоморфна в кольце K, причём

$$c_n = \frac{1}{2\pi i} \cdot \int_{\gamma_\rho} \frac{f(\xi)d\xi}{(\xi - a)^{n+1}}$$

Доказательство. f голоморфна как предел сходящегося ряда Проверим равенство коэффициентов. Вначале для n = -1

$$\int_{\gamma_{\varrho}} f(z)dz = \sum_{n=-\infty}^{+\infty} c_n \cdot \int_{\gamma_{\varrho}} (z-a)^n dz = 2\pi i \cdot c_{-1}$$

При $n \neq -1$ обращаемся . . .

Изолированные особые точки 16

Определение 16.1. *а* – устранимая особая точка, если

$$\exists A \in \mathbb{C} : \lim_{z \to a} f(z) = A$$

Определение 16.2. а полюс, если

$$\lim_{z \to a} f(z) = \infty$$

Определение 16.3. а – существенная особая точка, если

$$\exists \lim_{z \to a} f(x)$$

Теорема 16.1. a – $YOT \Leftrightarrow f$ ограниченна в $\dot{O}_{\delta}(a)$ для некоторого δ .

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

 (\Leftarrow)

Положим $M_{\rho}(f) = \max_{\gamma_{\rho}} |f|$. Тогда

$$|c_n| \leqslant \frac{1}{2\pi} \int_{\gamma_o} \frac{|f||d\xi|}{\rho^{n+1}} \leqslant \frac{M_\rho(f)}{2\pi\rho^{n+1}} \int_{\gamma_r} |d\xi| = \frac{M_\rho(f)}{\rho^n}, n \in \mathbb{Z}$$

По условию f ограниченный в $\dot{O}(a) \Rightarrow$

$$\exists M \ \forall z \in O_{\delta}(a) : |f| < M$$

Тогда из неравенства для $|c_n|$ следует

$$\forall \rho > 0, \rho < \delta \Rightarrow \forall n < 0 : \frac{1}{\rho^n} \stackrel{\rho \to 0}{\to} 0 \Rightarrow \forall n < 0 : c_n = 0$$

Значит

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

она имеет предел в точке a, равный c_0 .

Теорема 16.2. Пусть a – изолированная особая точка f. Тогда a полюс \Leftrightarrow конечное число коэффициентов b главной части ряда Лорана отличны от нуля.

Доказательство. (\Leftarrow)

По условию

$$f(z) = \frac{c_{-m}}{(z-a)^m} + \dots + \frac{c_{-1}}{z-a} + h(z)$$

где h – голоморфна в окрестности a.

Значит $\varphi(z) := f(z)(z-a)^m$ – голоморфная в этой области, причём $\varphi(a) = c_{-m} \neq 0 \Rightarrow$

$$\lim_{z \to a} f(z) = \frac{\lim f(z)(z-a)^m}{\lim (z-a)^m} = \infty$$

 (\Rightarrow)

По условию

$$\lim_{z \to a} f(z) = \infty \Rightarrow \lim_{z \to a} \frac{1}{f(z)} = 0 \Rightarrow$$

функция $\frac{1}{f(x)}$ имеет в т.a УОТ \Rightarrow она голоморфна в окрестности a. При этом $\frac{1}{f} \neq 0 \Rightarrow$

$$\frac{1}{f(z)} = (z - a)^m h(z), h(a) \neq 0 \Rightarrow f(z) = \frac{1}{(z - a)^m} \frac{1}{h(z)}$$

Где $\frac{1}{h(z)}$ – голоморфная в окрестности \Rightarrow раскладывается в Тейлора.

Теорема 16.3. Сохоцкого.

Пусть f голоморфна в $\dot{O}(a), a$ – COT. Тогда

$$\forall A \in \overline{\mathbb{C}} \ \exists z_n \to a : \ f(z_n) \to A$$

Доказательство. 1. Для $A = \infty$ очевидно – если A – не предельная, то f ограничена ⇒ a – УОТ.

2. Если $A \neq \infty$, то введём

$$g(z) := \frac{1}{f(z) - A}$$

Пусть A — не предельная. Тогда

$$\exists \varepsilon \ \exists \delta > 0 \ \forall z \in \dot{O}_{\delta}(a) : |f(z) - A| \geqslant \varepsilon$$

Значит g(z) голоморфна в $\dot{O}_{\delta}(a)$ как отношение голоморфных функций. Причём $g(z) \neq 0$ в $\dot{O}_{\delta}(a)$. Также $|g(z)| \leqslant \frac{1}{\varepsilon} \Rightarrow g$ — ограниченная, то есть точка a — УОТ. Тогда

$$\forall z \in \dot{O}_{\delta}(a) : f(z) = A + \frac{1}{g(z)}$$

Если $g(a) \neq 0$, то a – УОТ для f.

Если $g(a)=0\Rightarrow \frac{1}{g(z)}$ имеет полюс в точке $a\Rightarrow$ у f точка a – полюс. Противоречие. \Box

17 Вычеты и формулы для их вычисления. Теорема Koши о вычетах.

Определение 17.1. Если f голоморфна в $\dot{O}_r(a), a \neq \infty$, то определим вычет f, как

$$\operatorname{res}_{a} f = \frac{1}{2\pi i} \int_{\gamma_{a}} f(z) dz$$

Утверждение 17.1. Вычеты определены корректно (независят от γ).

Доказательство. Если $f(z)=\sum_{n=-\infty}^{+\infty}c_nz^n, z\in \dot{O}_r(a),$ то

$$\frac{1}{2\pi i} \int_{\gamma_{\rho}} f(z)dz = \sum_{n=-\infty}^{+\infty} \frac{1}{2\pi i} c_n \int_{\gamma_{\rho}} (z-a)^n dz = \frac{1}{2\pi i} c_{-1} 2\pi i = c_{-1}$$

Теорема 17.1. Коши о вычетах.

Пусть D ограничена циклом $\Gamma = \gamma_0 - \gamma_1 - \dots - \gamma_n$ (то есть в условиях теореме Коши для многосвязной области).

Пусть $A = \{a_1, \cdots, a_N\} \subseteq D, f$ – голоморфна в $D' \setminus A$, где $D' \supseteq D$. Тогда

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) dz = \sum_{i=1}^{N} res_{a_i} f$$

Доказательство. Очевидно, что

$$\exists R > 0 \ \forall i \neq j : \ \overline{O}_R(a_i) \cap \overline{O}_R(a_j) = \varnothing$$

и $\overline{O}_R(a_i) \subseteq D$.

Обозначим за обход $\delta_k = \partial O_R(a_k)$ (обход против часовой стрелки, то есть положительно ориентировано).

Обозначим $\tilde{\Gamma} = \Gamma - \sum_{i=1}^N \delta_i, \tilde{D} = D \setminus \bigcup_{k=1}^N \overline{O}_R(a_k)$ и $\tilde{D}' = D' \setminus A$. Тогда $\partial \tilde{D} = \tilde{\Gamma}$ и f голоморфна в \tilde{D}' .

Причём $\tilde{D}'\supseteq \tilde{D}$. Более того, $\tilde{\Gamma}\sim 0$ (mod \tilde{D}'), и $\forall z\not\in \tilde{D}':\ J_{\tilde{\Gamma}}(z)=0$. Аналогично проверим для

1.
$$z \notin D' \Rightarrow \begin{cases} J_{\Gamma}(z) = 0 \\ J_{\delta_i}(z) = 0 \end{cases} \Rightarrow J_{\tilde{\Gamma}}(z) = 0$$

2.
$$z \in A \ (z = a_i) \Rightarrow \begin{cases} J_{-\delta_i}(a_i) = -1 \\ J_{-\delta_j}(a_i) = 0 \ (i \neq j) \\ J_{\gamma_k}(a_i) = 0 \\ J_{\Gamma}(a_i) = 1 \end{cases} \Rightarrow J_{\tilde{\Gamma}}(z) = 0$$

Тогда по теореме Коши для многосвязной области \tilde{D} :

$$\int_{\tilde{\Gamma}} f(z)dz = 0 \Rightarrow \sum_{i=1}^{N} \int_{\delta_{i}} f(z)dz = \int_{\Gamma} f(z)dz \Rightarrow 2\pi i \sum_{i=1}^{N} \mathrm{res}_{a_{i}}(f) = \int_{\Gamma} f(z)dz$$

Следствие. $\mathit{Ecau}\ a - \mathit{YOT} \Rightarrow \mathit{res}_a f = 0$

Следствие. $\mathit{Ecnu}\ a$ – $\mathit{nonoc}\ m$ -ого $\mathit{nopsdka} \Rightarrow$

$$res_a f = \frac{1}{(m-1)!} \lim_{z \to a} (f(z)(z-a)^m)^{(m-1)}$$

Доказательство. f имеет вид

$$f = \sum_{n=-m}^{\infty} c_n (z-a)^n$$

Тогда

$$res_a f = c_{-1} = \frac{1}{(m-1)!} \lim_{z \to a} (f(z)(z-a)^m)^{(m-1)}$$