

Less than a Single Pass: Stochastically Controlled Stochastic Gradient Lihua Lei & Michael I. Jordan

Problem Setup

Composite Objectives

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

Assumptions

A1 f_i are smooth with L-Lipschitz gradients;

A2 f_i are strongly convex with modulus $\mu \ge 0$. ($\mu = 0$ is allowed.)

 $f_i(x)$ can be deterministic/dependent/not identically distributed!

Measure of Intrinsic Difficulty

Question: how difficult is the problem?

Initialization	$\Delta_0 = L x_0 - x^* ^2, D_0 = f(x_0) - f(x^*)$
Curvature	$\kappa = L/\mu$ (when $\mu > 0$)
Gradient Regularity	$G^2 = \max_i \sup_x \ \nabla f_i(x)\ ^2$
Heterogeneity	$\mathcal{H}^* = \sup_{x \to L} \frac{1}{nL} \sum_{i=1}^n \ \nabla f_i(x) - \nabla f(x)\ ^2$

A toy example: $f_i(x) = (x - b_i)^2$ with

1.
$$b = (b_1, \ldots, b_n) \in \mathcal{B}_0 = \{b : b_1 = b_2 = \ldots = b_n \in [-1, 1]\};$$

2.
$$b = (b_1, \ldots, b_n) \in \mathcal{B}_1 = \{b : b_1, b_2, \ldots, b_n \in [-1, 1]\}.$$

 \mathcal{B}_1 is strictly harder than \mathcal{B}_0 : heterogeneity matters!

 \mathcal{H}^* is too conservative: $\mathcal{H}^* = \infty$ in *various* realistic situations with unbounded domain! In our work, we define

$$\mathcal{H} = \inf_{x^* \in \arg\min f(x)} \frac{1}{nL} \sum_{i=1}^n \|\nabla f_i(x^*)\|^2.$$

- (i) $\mathcal{H} \leq \min\{\mathcal{H}^*, G^2/L\};$
- (ii) $\mathcal{H} = O_p(1)$ if $f_i(x)$ are i.i.d. (under standard conditions);
- (iii) H can be efficiently estimated for Generalized Linear Models;
- (iv) When $\mathcal{H} \ll n$ and ϵ is moderate, optimizing f(x) with less than a single pass of data is possible!

SCSG

Outer-Loop Update

Inputs: Initial value \tilde{x}_0 , block size B, stepsize η , number of epochs T, other parameter γ (non-strongly convex) or m (strongly convex)

Procedure:

- 1: **for** t = 1, 2, ..., T **do**
- $\tilde{x}_{i} \leftarrow \text{SCSGepoch}(\tilde{x}_{i-1}; B, \eta, \gamma, m)$
- 3: end for

Output: (non-strongly convex) $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T \tilde{x}_t$; (strongly convex) \tilde{x}_T .

Inner-Loop/Within-Epoch Update

SVRGepoch

SCSGepoch

- 1: Input: x_0, η 1: Input: x_0, η, B, γ (or m)
- 2: $\mathcal{I} \leftarrow [n]$ 2: Randomly pick \mathcal{I} with size B
- 3: $g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$ 3: $g \leftarrow \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} f_i'(x_0)$
- 4: Generate $N \sim \text{Geo}(\gamma)/U([m])$ 4: Generate $N \sim U([n])$
- 5: **for** $k = 1, 2, \dots, N$ **do**
 - Randomly pick $i \in [n]$
- 7: $\nu \leftarrow f_i'(x) f_i'(x_0) + g$ 7: $\nu \leftarrow f_i'(x) - f_i'(x_0) + g$
 - $x \leftarrow x \eta \nu$
- 9: end for
- 10: Output: x_N

- 5: **for** $k = 1, 2, \cdots, N$ **do**
- Randomly pick $i \in \mathcal{I}$
- 8: $x \leftarrow x \eta \nu$
- 9: end for
- 10: Output: x_N

Magic of The Geometric Distribution

$$N \sim \text{Geo}(\gamma) \Longrightarrow \mathbb{E}(W_N - W_{N+1}) = \frac{1 - \gamma}{\gamma}(W_1 - \mathbb{E}W_N), \quad \forall W_1, W_2, \dots$$

Computation Cost

Parameter Defaults of SCSG

- 1. Non-strongly Convex: $\eta < \frac{1}{5L}$, $B \ge n \land \frac{2\mathcal{H}}{\epsilon}$, $\gamma = \frac{B-1}{B}$
- 2. Strongly Convex: $\eta < \frac{1}{5(L+\mu)}$, $B \ge n \land \frac{8\mathcal{H}}{\epsilon}$, $m \ge \frac{1}{2L\mu n^2}$

	Non-strongly Convex	Strongly Convex	
SGD	$O\left(\frac{\mathcal{H}^*}{\epsilon^2}\right)$	$O\left(\frac{\mathcal{H}^*\kappa}{\epsilon}\log\frac{1}{\epsilon}\right)$	
AGD	$O\left(\frac{n}{\sqrt{\epsilon}}\right)$	$O\left(n\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$	
SVRG	_	$O\left((n+\kappa)\log\frac{1}{\epsilon}\right)$	
Katyush	a $O\left(n\log\frac{1}{\epsilon} + \sqrt{\frac{n}{\epsilon}}\right)$	$O\left((n+\sqrt{n\kappa})\log\frac{1}{\epsilon}\right)$	
SCSG	$O\left(\frac{\mathcal{H}}{\epsilon^2} \wedge \frac{n}{\epsilon}\right)$	$O\left(\left[\frac{\mathcal{H}}{\epsilon} \wedge n + \kappa\right] \log \frac{1}{\epsilon}\right)$	
SCSG+	$O\left(\frac{1}{\epsilon}\log\left(\frac{\mathcal{H}}{\epsilon}\wedge n\right) + \sqrt{\frac{\mathcal{H}\log n}{n\epsilon^3}}\right)$	$) O \left(\kappa e^{\sqrt{\log \frac{1}{\epsilon}}} + \sqrt{\frac{\kappa}{\epsilon}} \right) $	

Communication Cost

- When $B \leq$ memory limit $\ll n$, communication matters!
- Even sampling a data is costly (SVRG/its variants are inefficient);
- SCSG is efficient since SCSGepoch is implemented in memory.

	General Convex	Strongly Convex	Dimension
SCSG	$O\left(\left(n \wedge \frac{\mathcal{H}}{\epsilon}\right) \log \frac{1}{\epsilon}\right)$	$O\left(\left(n \wedge \frac{\mathcal{H}}{\epsilon}\right) \log \frac{1}{\epsilon}\right)$	O(d)
CoCoA	-	$O\left(m^2 \cdot \frac{n+\kappa}{n \wedge \frac{\mathcal{H}}{\epsilon} + \kappa} \log \frac{1}{\epsilon}\right)$	O(d)
DANE	_	$O\left(m\kappa\log\frac{1}{\epsilon}\right)$	$O(d^2)$
DiSCO	_	$O\left(m\sqrt{\kappa}\log\kappa\log\frac{1}{\epsilon}\right)$	$O(d^2)$

More Details on H

Generalized Linear Models: $f_i(x) = \rho(y_i, a_i^T x)$:

$$L\mathcal{H} \le \sup_{z,w} \rho_2^2(z,w) \cdot \frac{1}{n} \sum_i ||a_i||^2, \quad L \le \sup_{z,w} \rho_{22}(z,w) \cdot \max_i ||a_i||^2.$$

- 1. Multi-class logistic regression: $L\mathcal{H} \leq \frac{2}{n} \sum_{i} ||a_i||^2, L \leq \max_{i} ||a_i||^2$;
- 2. Linear regression: $L\mathcal{H} \leq \frac{\|y\|^2}{n} \cdot \max_i \|a_i\|^2, L \leq \max_i \|a_i\|^2$.

Experiments

- Multi-class logistic regression on MNIST ($L = 292.82, \mathcal{H} = 0.6$);
- Default parameters: $B = 2220, \eta_0 = 0.0017;$
- A 2.6M memory with 8 accesses of the disk is sufficient ($\epsilon = 10^{-3}$).

