Defining Problem Statement and Analysing basic metrics

About Aerofit:

Aerofit is a leading brand in the field of fitness equipment. Aerofit provides a product range including machines such as treadmills, exercise bikes, gym equipment, and fitness accessories to cater to the needs of all categories of people.

Business Problem

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

- Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts.
- For each AeroFit treadmill product, construct two-way contingency tables and compute all conditional and marginal probabilities along with their insights/impact on the business.

Importing Libraries

```
In [4]:
         # This Python 3 environment comes with many helpful analytics libraries installed
         # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-pyt
         # For example, here's several helpful packages to Load
         import numpy as np # Linear algebra
         import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
         import matplotlib.pyplot as plt # data visualisation Library
         import seaborn as sns # data visualisation Library based on matplotlib
         from scipy import stats
         from scipy.stats import norm
         # Input data files are available in the read-only "../input/" directory
         # For example, running this (by clicking run or pressing Shift+Enter) will list all fil
         import os
         for dirname, _, filenames in os.walk('/kaggle/input'):
             for filename in filenames:
                 print(os.path.join(dirname, filename))
         # You can write up to 20GB to the current directory (/kaggle/working/) that gets preser
         # You can also write temporary files to /kaggle/temp/, but they won't be saved outside
```

Importing the dataset

```
In [5]: | gdown 1jyIrDhgS-OKwby2mctMIGOFyrXG2VMec
```

Downloading...

From: https://drive.google.com/uc?id=1jyIrDhgS-OKwby2mctMIGOFyrXG2VMec

To: /content/aerofit_treadmill.csv 100% 7.28k/7.28k [00:00<00:00, 22.7MB/s]

```
In [6]: df=pd.read_csv('/content/aerofit_treadmill.csv')
    df
```

Out[6]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47
		7/20	22	7427	ζ <u>ά</u>	11.	227	W3	222	2.5
	175	KP781	40	Male	21	Single	6	5	83416	200
	176	KP781	42	Male	18	Single	5	4	89641	200
	177	KP781	45	Male	16	Single	5	5	90886	160
	178	KP781	47	Male	18	Partnered	4	5	104581	120
	179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

Basic Analysis

Shape of the data

```
In [7]: df.shape
Out[7]: (180, 9)
```

Analysis

- 1. Shape of dataframe is 180 * 9
- 2. Number of rows = 180
- 3. Number of columns = 6

Columns in a DataFrame

First 5 rows

In [9]:	df.head(5)	

Out[9]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47

Data-type of all attributes(columns)

In [10]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Coun	t Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3) memory usage: 12.8+ KB

Analysis:

- 1. There are no missing values in a given dataframe
- 2. Most of the columns are numeric except Product, Gender and Marital Status

Statistical Summary

Statistical Summary of Numeric Columns

In [11]: df.describe().T

Out[11]:		count	mean	std	min	25%	50%	75%	max
	Age	180.0	28.788889	6.943498	18.0	24.00	26.0	33.00	50.0
	Education	180.0	15.572222	1.617055	12.0	14.00	16.0	16.00	21.0
	Usage	180.0	3.455556	1.084797	2.0	3.00	3.0	4.00	7.0

-	count	mean	std	min	25%	50%	75%	max
Fitness	180.0	3.311111	0.958869	1.0	3.00	3.0	4.00	5.0
Income	180.0	53719.577778	16506.684226	29562.0	44058,75	50596.5	58668.00	104581.0
Miles	180.0	103.194444	51.863605	21.0	66.00	94.0	114.75	360.0

Statistical Summary of Object Columns

In [12]:	df.describe	e(inclu	ide='obj	ect').T	
Out[12]:		count	unique	top	freq
	Product	180	3	KP281	80
	Gender	180	2	Male	104
	MaritalStatus	180	2	Partnered	107

Non-Graphical Analysis: Value counts and unique attributes

Product column

Unique

```
In [13]: df['Product'].unique()
Out[13]: array(['KP281', 'KP481', 'KP781'], dtype=object)
Analysis: Aerofit produces three treadmill models: KP281, KP481, and KP78
```

```
In [14]: df['Product'].nunique()
Out[14]: 3
```

Value counts

Insight:

Among the users, 44.44% prefer using the KP281 treadmill, while 33.33% opt for the KP481 treadmill, and only 22.22% of users favor the KP781 treadmill.

```
In [16]: df.head()

Out[16]: Product Age Gender Education MaritalStatus Usage Fitness Income Miles
```

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47

Age Column

Unique

```
In [17]: df['Age'].unique()
Out[17]: array([18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 50, 45, 48, 42])
In [18]: df['Age'].nunique()
Out[18]: 32
```

Value Counts

```
In [19];
           age_count=df['Age'].value_counts(normalize=True)*100
           age_count.round(2)
                13.89
Out[19]:
          23
                10.00
                 6.67
                 6.67
          26
          28
                 5.00
          35
                 4.44
          33
                 4.44
                 3.89
          30
          38
                 3.89
          21
                 3.89
          22
                 3.89
          27
                 3.89
          31
                 3.33
          34
                 3.33
          29
                 3.33
          20
                 2.78
                 2.78
          40
          32
                 2.22
          19
                 2.22
          48
                 1.11
          37
                 1.11
          45
```

```
47
                 1.11
                 0.56
          46
          50
                 0.56
          18
                 0.56
                 0.56
          44
                 0.56
          43
          41
                 0.56
          39
                 0.56
          36
                 0.56
          42
                 0.56
          Name: Age, dtype: float64
In [28]:
          age_count[(age_count.index>=20)&(age_count.index<=30)].sum().round(2)
          63.89
Out[20]:
```

Insight

Approximately 64% of Aerofit Treadmill users belong to the age group of 20-30.

Gender Column

Unique

```
In [21]: df['Gender'].unique()
Out[21]: array(['Male', 'Female'], dtype=object)
In [22]: df['Gender'].nunique()
Out[22]: 2
```

Value counts

Insight:

Aerofit has 57.78% male customers and 42.22% female customers.

MaritalStatus Column

Unique

```
In [24]: df['MaritalStatus'].unique()
Out[24]: array(['Single', 'Partnered'], dtype=object)
```

```
In [25]: df['MaritalStatus'].nunique()
Out[25]: 2
```

Value counts

```
In [26]: df['MaritalStatus'].value_counts(normalize=True)*100

Out[26]: Partnered 59.444444
Single 40.555556
Name: MaritalStatus, dtype: float64
```

Insight:

59.44% of Aerofit customers are married, while the remaining 40.5% are single.

Data Preprocessing

Missing Values and Outliers Detection

Handling Missing Values

Inference:

There are no missing values in a given dataframe.

Handling Outliers

Income Column

```
min 29562.000000
25% 44058.750000
50% 50596.500000
75% 58668.000000
max 104581.000000
Name: Income, dtype: float64
```

To find outliers in Income column we need to use box plot here. But before using the box plot we need find these 5 points:

- 1. q3 upper Quartile
- 2. q1 Lower Quartile
- 3. Median
- 4. Upper Bound
- 5. Lower Bound

```
# To find upper bound and Lower bound we need to find IQR ( inter quartile range)
IQR=q3-q1
IQR
```

Out[30]: 14609.25

Analysis:

IQR= 14609.75

```
In [31]: upper_bound=q3+1.5*IQR
lower_bound=q1-1.5*IQR
print("Upper Bound=",upper_bound)
print('Lower Bound=',lower_bound)
print('Median=',df['Income'].median())

Upper Bound= 80581.875
Lower Bound= 22144.875
Median= 50596.5

In [32]: sns.boxplot(data=df,x='Income')
plt.show()
```


- · As we see there are outliers in the 'Income' column.
- · all values > 80581.75 (upper bound) are outliers in the 'Income' column

Analysis:

10.5 % values in Income column are outliers but we choose not to drop them as these values may required to draw some valuable insights and it may be useful for customer profiling.

Miles Column

Like 'Income' we can perform same steps to find outliers in 'Miles' column

```
In [34]:
           df['Miles'].describe()
                   180.000000
          count
Out[34]:
          mean
                   103.194444
                    51.863605
          std
                    21.000000
          min
          25%
                    66.000000
          50%
                    94.000000
                   114.750000
          75%
                   360.000000
         max
          Name: Miles, dtype: float64
```

```
In [35]:
           q1=np.percentile(df['Miles'],25)
           q3=np.percentile(df['Miles'],75)
           IQR=q3-q1
           print('q1 =',q1)
           print('q3 =',q3)
           print('IQR =',IQR)
          q1 = 66.0
          q3 = 114.75
          IQR = 48.75
In [36]:
           upper_bound = q3+1.5*IQR
           lower_bound = q1-1.5*IQR
           print('Upper bound = ',upper_bound)
print('Lower bound = ',lower_bound)
          Upper bound = 187.875
          Lower bound = -7.125
In [37]:
           sns.boxplot(data=df,x='Miles')
           plt.show()
```


- · As we see there are outliers in the 'Miles' column.
- all values > 187.875 (upper bound) are outliers in the 'Miles' column

```
In [38]: (len(df.loc[df['Miles']>upper_bound])/len(df))*100
```

Analysis:

7.22 % values in 'Miles' column are outliers but we choose not to drop them as these values may required to draw some valuable insights and it may be useful for customer profiling.

Outlier detection using the z-score:

- We can detect outliers in numeric column using the z-score.
- If the z score of a data point is more than 3, it indicates that the data point is quite different from the other data points. Such a data point can be an outlier.
- z score= (x-mean)/std.deviation.

```
In [39]:
          outliers={}
          for col in df.select dtypes(include=np.number):
              #finding z-score for each value in a column
              z_score= np.abs((df[col]-df[col].mean()))/df[col].std()
              # if the z score of a value is a grater than 3 than the value is outlier
              column outliers=df[z score > 3][col]
              outliers[col]=column outliers
          for col, outlier values in outliers.items():
              print(f"Outliers for {col} column")
              print(outlier_values)
              print()
         Outliers for Age column
         Name: Age, dtype: int64
         Outliers for Education column
         157
                21
         161
                21
         175
                21
         Name: Education, dtype: int64
         Outliers for Usage column
         163
         166
         Name: Usage, dtype: int64
         Outliers for Fitness column
         Series([], Name: Fitness, dtype: int64)
         Outliers for Income column
         168
                103336
         174
                104581
                104581
         178
         Name: Income, dtype: int64
         Outliers for Miles column
```

```
167 280
170 260
173 360
```

Name: Miles, dtype: int64

INSIGHTS:

- The absence of outliers in the 'Fitness' column suggests that all customers fall within a reasonable range of self-rated fitness levels.
- The outliers in the 'Income' column indicate that a few customers have much higher incomes compared to the rest.
- The outliers in the 'Miles' column suggest that some customers expect to walk or run significantly more miles per week than others.

Adding New columns - Income group and Age group

Age group

To gain valuable insights, it is essential to categorize the age column into distinct groups, such as young, middle-aged, and old. It will allow us to understand the customer purchase behaviour.

```
In [40]:
          df['Age'].describe()
          count
                   180.000000
Out[40]:
                    28.788889
          mean
          std
                     6.943498
                    18.000000
          min
          25%
                    24.000000
          50%
                    26.000000
          75%
                    33.000000
                    50.000000
          max
          Name: Age, dtype: float64
In [41]:
          df['Age group']=pd.cut(df['Age'],bins=[17,29,39,50],labels=['Young','Middle-aged','Old'
         Age-groups:
         18-29:Young
         30-39:Middle-aged
         40-50: Old
In [42]:
          df['Age group'].value_counts()
                         113
          Young
Out[42]:
         Middle-aged
                          50
                          17
          Name: Age group, dtype: int64
```

Income group

Similary we will catgroize 'Income' values into 3 groups 'Low', 'Medium', 'High'. It will not only allow us to gain valuable insight but also help in customer profiling.

```
In [43]:
           df['Income'].describe()
          count
                       180.000000
Out[43]:
          mean
                     53719.577778
          std
                     16506.684226
                     29562.000000
          min
          25%
                     44058.750000
          50%
                     50596.500000
          75%
                     58668.000000
          max
                    104581.000000
          Name: Income, dtype: float64
In [44]:
           df['Income group']=pd.cut(df['Income'],bins=[29000,50000,75000,105000],labels=['Low','M
         Income groups:
           1. 29000-50000: Low
           2. 51000-75000: Medium
           3. 76000-105000: High
In [45]:
           df['Income group'].isnull().sum()
Dut[45]:
In [46]:
           df['Income group'].value counts()
                     83
          LOW
Out[46]:
                     76
          Medium
                     21
          Name: Income group, dtype: int64
In [47]:
           df.head()
Out[47];
                                                                                          Age
                                                                                                Income
             Product Age Gender Education MaritalStatus Usage Fitness Income Miles
                                                                                        group
                                                                                                 group
          0
               KP281
                       18
                             Male
                                          14
                                                    Single
                                                               3
                                                                           29562
                                                                                    112
                                                                                        Young
                                                                                                   Low
          1
               KP281
                       19
                             Male
                                          15
                                                    Single
                                                                      3
                                                                           31836
                                                                                        Young
                                                                                                   Low
               KP281
                       19
                           Female
                                          14
                                                 Partnered
                                                                           30699
                                                                                        Young
                                                                                                   Low
          3
               KP281
                       19
                             Male
                                          12
                                                    Single
                                                                           32973
                                                                                        Young
                                                                                                   Low
```

Univariate Analysis

Male

20

KP281

13

Partnered

4

35247

Young

Low

Categorical columns

Distribution of Treadmills among Aerofit customers

```
In [48]: plt.figure(figsize=(12,8))
    plt.subplot(2,2,1)
    sns.countplot(data=df,x=df['Product'],palette='pastel')
    plt.xlabel('Treadmill')
    plt.ylabel('Number of users')
    plt.subplot(2,2,2)
    plt.pie(df['Product'].value_counts(), labels=df['Product'].unique(),explode= (0.05,0.05
    plt.suptitle('Distribution of Treadmills among Aerofit Customers')
    plt.show()
```

Distribution of Treadmills among Aerofit Customers

Insight:

- Among the users, 44.44% prefer using the KP281 treadmill, while 33.33% opt for the KP481 treadmill, and only 22.22% of users favor the KP781 treadmill.
- KP281, being an entry-level and more affordable treadmill compared to the others, is the preferred choice among the majority of customers.
- 33.3% of customers favor the KP481 treadmill, drawn by its ideal fit for mid-level runners and its excellent value-for-money offering.
- KP781 treadmill, being more advanced and costlier than the other two options, is chosen by only 22.2% of customers.

Recommendations:

- Emphasize the budget-friendly nature of the KP281 treadmill to attract more customers.
- Highlight the key features of the KP281 that make it a great entry-level option for fitness enthusiasts.
- Provide special offers or discounts to further entice customers looking for a cost-effective option.
- Engage with fitness communities online to showcase the KP281's appeal to beginners.

- Focus marketing efforts on reaching out to mid-level runners, emphasizing how the KP481 is tailored to meet their specific fitness needs and goals.
- Showcase the competitive pricing and the outstanding features of the KP481 that make it a cost-effective choice for customers.
- Launch targeted marketing campaigns to increase awareness and interest in the KP781 among
 potential customers who may value its advanced capabilities. Utilize various channels such as
 social media, fitness forums, and influencer collaborations.
- Emphasize the unique features and benefits of the KP781 to justify its higher price. Highlight its
 advanced functionalities and how they enhance the workout experience, making it worth the
 investment.

Distribution of gender among Aerofit customers

```
plt.figure(figsize=(12,8))
plt.subplot(2,2,1)
sns.countplot(data=df,x=df['Gender'],palette='pastel')
plt.xlabel('Gender')
plt.ylabel('Number of users')

plt.subplot(2,2,2)
plt.pie(df['Gender'].value_counts(), labels=df['Gender'].unique(),explode= (0.05,0),col
plt.suptitle('Distribution of Gender among Aerofit Customers')
plt.show()
```

Distribution of Gender among Aerofit Customers

Insight:

Aerofit has 57.78% male customers and 42.22% female customers.

Recommendations:

- Create targeted advertisements and promotions that appeal to women, showcasing how fitness can positively impact their lives.
- Showcase the female-friendly features and benefits of Aerofit treadmills to attract more female customers.

3. Offer a diverse selection of treadmill models that cater to various fitness levels and preferences.

Distribution of Martial status of among Aerofit customers

```
plt.figure(figsize=(12,8))

plt.subplot(2,2,1)
sns.countplot(data=df,x='MaritalStatus',palette='pastel')
plt.xlabel('Marital Status')
plt.ylabel('Number of users')

plt.subplot(2,2,2)
plt.pie(df['MaritalStatus'].value_counts(), labels=['Partnered','Single'],explode= (0.0)

plt.suptitle('Distribution of Marital Status')
plt.show()
```

Distribution of Marital Status

Insight:

59.4% of Aerofit customers are married, while remaining 40.56% are single.

Distribution of Age-group across Aerofit customers

```
plt.figure(figsize=(12,8))

plt.subplot(2,2,1)
sns.countplot(data=df,x='Age group',palette='pastel')
plt.xlabel('Age group')
plt.ylabel('Number of users')

plt.subplot(2,2,2)
plt.pie(df['Age group'].value_counts(), labels=df['Age group'].unique(),explode= (0.05,
plt.suptitle('Age group distribution')
plt.show()
```

Age group distribution

Insight:

- Most of the Aerofit customer falls under young age-group (18-29).
- 2. 27.78 % of middle-aged(30-39) users prefer to use the Aerofit Treadmills.
- 3. 9.4% of users in the old (40-50) age group prefer purchasing Aerofit treadmills.

Recommendations:

Offer personalized assistance to help customers aged 40-50 select the ideal treadmill model, providing them with the tools to maintain an active and healthy lifestyle. With Aerofit's expert guidance, customers can feel confident and motivated to make the most of their treadmills effectively.

Distribution of Income group

```
plt.figure(figsize=(12,8))

plt.subplot(2,2,1)
sns.countplot(data=df,x='Income group',palette='pastel')
plt.xlabel('Income group')
plt.ylabel('Number of users')

plt.subplot(2,2,2)
plt.pie(df['Income group'].value_counts(), labels=df['Income group'].unique(),explode=
plt.suptitle('Income group distribution')
plt.show()
```

Income group distribution

Insight:

- Approximately 88% of Aerofit customers belong to the low-income (29000-50000 USD) and medium-income (51000-75000 USD) groups.
- Remaining 11.67% belongs to High income group (above 75000 usd).

Recommendations:

- Showcase the advanced features and premium quality of the KP781 treadmill, catering to the discerning needs of high-income customers.
- Highlight how the KP781 enhances their fitness experience with cutting-edge technology and superior performance.
- Offer exclusive incentives, such as personalized consultations and extended warranties, to attract and reward this income group for choosing the top-of-the-line KP781 treadmill.

Numeric columns

Distribution of Age

```
In [53]: plt.figure(figsize=(20,10))

# Histogram
plt.subplot(2,3,1)
sns.histplot(data=df,x='Age')
plt.xlabel('Age')
plt.ylabel('Number of users')

# KDE plot
plt.subplot(2,3,2)
sns.kdeplot(data=df,x='Age')
plt.xlabel('Age')
plt.xlabel('Age')
plt.ylabel('Probablity of buying Aerofit Treadmil')

#Boxplot
plt.subplot(2,3,3)
sns.boxplot(data=df,x='Age')
```

```
plt.suptitle('Age Distribution')
plt.show()
```

Age Distribution

Insight:

- The majority of Aerofit customers belong to the age group of 18-30, and there is a high probability of them purchasing Aerofit treadmills.
- There are very few users in the age group of 40-50, and the probability of them buying Aerofit treadmills is significantly low.

Distribution of Income

```
In [54]:
          plt.figure(figsize=(20,10))
          # Histogram
          plt.subplot(2,3,1)
          sns.histplot(data=df,x='Income')
          plt.xlabel('Income')
          plt.ylabel('Number of users')
          # KDE plot
          plt.subplot(2,3,2)
          sns.kdeplot(data=df,x='Income')
          plt.xlabel('Income')
          plt.ylabel('Probablity of buying Aerofit Treadmil')
          #Boxplot
          plt.subplot(2,3,3)
          sns.boxplot(data=df,x='Income')
          plt.suptitle('Income Distribution')
          plt.show()
```

Income Distribution

Insight:

- The majority of Aerofit customers fall within the income range of 40000-60000, and there is a high probability of them purchasing Aerofit treadmills.
- Surprisingly, customers with an income greater than 80000 have a significantly lower likelihood of buying Aerofit treadmills.

Distribution of Education

```
In [55]:
          plt.figure(figsize=(20,10))
          # Histogram
          plt.subplot(2,3,1)
          sns.histplot(data=df,x='Education')
          plt.xlabel('Education (in years)')
          plt.ylabel('Number of users')
          # KDE plot
          plt.subplot(2,3,2)
          sns.kdeplot(data=df,x='Education')
          plt.xlabel('Education (in years)')
          plt.ylabel('Probablity of buying Aerofit Treadmil')
          #BoxpLot
          plt.subplot(2,3,3)
          sns.boxplot(data=df,x='Education')
          plt.xlabel('Education (in years)')
          plt.suptitle('Education Distribution')
          plt.show()
```

Education Distribution

Insight:

- 1. Customers with 16 years of education are the primary purchasers of Aerofit treadmills.
- Customers with education greater than 18 years have a significantly lower probablity of purchasing the Aerofit treadmills,

Distribution of Fitness Levels

```
In [56]:
          plt.figure(figsize=(20,10))
          # Histogram
          plt.subplot(2,3,1)
          sns.histplot(data=df,x='Fitness')
          plt.xlabel('Fitness Level')
          plt.ylabel('Number of users')
          # KDE plot
          plt.subplot(2,3,2)
          sns.kdeplot(data=df,x='Fitness')
          plt.xlabel('Fitness Level')
          plt.ylabel('Probablity of buying Aerofit Treadmil')
          #BoxpLot
          plt.subplot(2,3,3)
          sns.boxplot(data=df,x='Fitness')
          plt.xlabel('Fitness Level')
          plt.suptitle('Fitness Levels Distribution')
          plt.show()
```

Fitness Levels Distribution

Insight:

The majority of Aerofit customers possess fitness level 3, which aligns with a high likelihood of them purchasing treadmills.

Distribution of Usage

```
In [57]: plt.figure(figsize=(20,10))

# Histogram
plt.subplot(2,3,1)
sns.histplot(data=df,x='Usage')
plt.xlabel('Usage of Treadmill(in days)')
plt.ylabel('Number of users')
```

```
# KDE plot
plt.subplot(2,3,2)
sns.kdeplot(data=df,x='Usage')
plt.xlabel('Usage of Treadmill(in days)')
plt.ylabel('Probablity of buying Aerofit Treadmil')

#Boxplot
plt.subplot(2,3,3)
sns.boxplot(data=df,x='Usage')
plt.xlabel('Usage of Treadmil(in days)')
plt.suptitle('Usage Distribution')
plt.show()
```

Usage Distribution

Insight: The majority of customers use treadmills three times a week, indicating a higher probability of them purchasing a treadmill from Aerofit.

Distribution of Miles

```
In [58]:
          plt.figure(figsize=(20,10))
          # Histogram
          plt.subplot(2,3,1)
          sns.histplot(data=df,x='Miles')
          plt.xlabel('Miles')
          plt.ylabel('Number of users')
          # KDE plot
          plt.subplot(2,3,2)
          sns.kdeplot(data=df,x='Miles')
          plt.xlabel('Miles')
          plt.ylabel('Probablity of buying Aerofit Treadmil')
          #BoxpLot
          plt.subplot(2,3,3)
          sns.boxplot(data=df,x='Miles')
          plt.xlabel('Miles')
          plt.suptitle('Miles Distribution')
          plt.show()
```

Miles Distribution

Insight:

- Customers who run 90-100 miles per week show a preference for using Aerofit treadmills.
- Hardcore runners, averaging 200-250 miles per week, tend to prefer jogging over using Aerofit treadmills.

Descriptive statistics of numeric columns

```
In [59]:
          for col in df.select dtypes(np.number):
              mean=df[col].mean().round(2)
              standard deviation=df[col].std().round(2)
              median=df[col].median().round(2)
              minimum=df[col].min()
              maximum=df[col].max()
              q1=np.percentile(df[col],25)
              q3=np.percentile(df[col],75)
              IQR=q3-q1
              upper bound=q3+1.5*IQR
              lower bound=q1-1.5*IQR
              print(f'--- Descriptive Statistics of {col} column ---')
              print(f'Mean : {mean}')
              print(f'Standard Deviation : {standard_deviation}')
              print(f'Median : {median}')
              print(f'Minimum : {minimum}')
              print(f'Maximum : {maximum}')
              print(f'25th Percentile : {q1}')
              print(f'75th Percentile : {q3}')
              print(f'Inter Quartile Range : {IQR}')
              print(f'Upper bound:{upper bound}')
              print(f'Lower bound: {lower_bound}')
              print()
```

```
--- Descriptive Statistics of Age column ---
Mean : 28.79
Standard Deviation : 6.94
Median : 26.0
Minimum : 18
Maximum : 50
25th Percentile : 24.0
75th Percentile : 33.0
Inter Quartile Range : 9.0
Upper bound: 46.5
Lower bound: 10.5
```

```
--- Descriptive Statistics of Education column ---
Mean : 15.57
Standard Deviation : 1.62
Median : 16.0
Minimum: 12
Maximum : 21
25th Percentile: 14.0
75th Percentile : 16.0
Inter Quartile Range : 2.0
Upper bound:19.0
Lower bound: 11.0
--- Descriptive Statistics of Usage column ---
Mean : 3.46
Standard Deviation: 1.08
Median: 3.0
Minimum : 2
Maximum : 7
25th Percentile: 3.0
75th Percentile: 4.0
Inter Quartile Range : 1.0
Upper bound:5.5
Lower bound: 1.5
--- Descriptive Statistics of Fitness column ---
Mean : 3.31
Standard Deviation: 0.96
Median : 3.0
Minimum : 1
Maximum : 5
25th Percentile: 3.0
75th Percentile: 4.0
Inter Quartile Range : 1.0
Upper bound:5.5
Lower bound: 1.5
--- Descriptive Statistics of Income column ---
Mean : 53719.58
Standard Deviation: 16506.68
Median : 50596.5
Minimum: 29562
Maximum : 104581
25th Percentile : 44058.75
75th Percentile: 58668.0
Inter Quartile Range : 14609.25
Upper bound:80581.875
Lower bound: 22144,875
--- Descriptive Statistics of Miles column ---
Mean : 103.19
Standard Deviation: 51.86
Median: 94.0
Minimum : 21
Maximum : 360
25th Percentile: 66.0
75th Percentile: 114.75
Inter Quartile Range: 48.75
Upper bound:187.875
Lower bound: -7.125
```

Bivariate Analysis

Distribution of gender across each Treadmill

```
In [68]:
          # Counting the number of customers for each gender in each product group
          gender_df = df.groupby(['Product', 'Gender']).size().unstack()
          gender_df
Out[60]:
          Gender Female Male
          Product
           KP281
                      40
                           40
           KP481
                      29
                           31
           KP781
                      7
                           33
In [61]:
          sns.countplot(data=df,x='Gender',hue='Product',palette='Paired')
          plt.suptitle('Gender Distribution by Treadmill Product', fontsize=14)
          plt.xlabel('Gender')
          plt.ylabel('Number of users')
          plt.show()
```

Gender Distribution by Treadmill Product

Insight:

- Both male and female customers prefer using the KP281 treadmill due to its entry-level status and cost-effectiveness compared to the other two options.
- Both male and female customers equally prefer the KP481 treadmill as it offers the best value for money among the other two options.
- Among male customers, the KP781 treadmill is the most preferred due to its advanced features following the KP281. However, the number of female customers using the KP781 treadmill is very low, possibly due to its higher cost compared to the other options.

```
gender_df.plot(kind='pie',subplots=True ,figsize=(10,5),explode=(0.005,0.005,0.005), au
plt.suptitle('Gender Distribution by Treadmill Product', fontsize=14)
plt.show()
```

Gender Distribution by Treadmill Product

Insight:

- Among male customers, 38.5% prefer KP281 as an entry-level and cost-effective option.
 Meanwhile, 29.8% opt for KP481 due to its value for money proposition, and 31.7% favor KP781 for its advanced features.
- Among female customers, 52.6% prefer KP281 as an entry-level and cost-effective option.
 Additionally, 38.2% opt for KP481 due to its value for money proposition, while only 9.2% favor KP781 due to its higher cost compared to the other two options.

Distribution of Martial Status among customers who purchased each treadmill

```
In [63]:
    sns.countplot(data=df,x='MaritalStatus',hue='Product',palette='Paired')
    plt.suptitle(' Distribution of Marital Status across each Treadmill', fontsize=14)
    plt.xlabel('Marital Status')
```

plt.ylabel('Number of users')
plt.show()

Distribution of Marital Status across each Treadmill

Insight:

- Married customers have a higher frequency of purchasing all treadmills compared to single customers.
- 2. The trend observed among both married and single customers reflects that KP281, being an entry-level treadmill, is the most frequently purchased option, while KP781, due to its higher cost, remains the least popular choice for both customer groups.
- 3. The purchase frequency for both married and single customers follows the trend of KP281 > KP481 > KP781, with KP281 being the most frequently purchased treadmill and KP781 being the least frequently purchased one.

```
In [64]:
# Counting the number of customers for each marital status in each product group
MaritalStatus_df = df.groupby(['Product', 'MaritalStatus']).size().unstack()

#pie charts indicating the distribution
MaritalStatus_df.plot(kind='pie',subplots=True ,figsize=(10,5),explode=(0.005,0.005,0.0)
plt.suptitle('Marital Status Distribution by Treadmill Product', fontsize=14)
plt.show()
```

Marital Status Distribution by Treadmill Product

Insight:

- Among married customers, the purchase distribution for Aerofit treadmills is as follows: 44.9% prefer KP281, 33.6% prefer KP481, and the remaining 21.7% prefer KP781.
- Among single customers, the purchase distribution for Aerofit treadmills is as follows: 43.8 % prefer KP281, 32.9% prefer KP481, and the remaining 23.3% pefer KP781.

Distribution of Age group for each Treadmill

```
In [65]:
    sns.countplot(data=df,x='Age group',hue='Product',palette='Paired')
    plt.title(' Distribution of Age group across each Treadmill', fontsize=14)
    plt.xlabel('Age group')
    plt.ylabel('Number of users')
    plt.show()
    print()
    print('---- Age groups ----')
    print('18-29: Young')
    print('30-39: Middle-aged')
    print('40-50: Old')
```


---- Age groups ----

18-29: Young

30-39: Middle-aged

40-50: Old

Insight:

- The majority of young users prefer the KP281 treadmill over the other two options. However, there is a significant number of young people using the KP781 treadmill, likely drawn to its advanced features.
- Surprisingly, among middle-aged customers, KP481 is the most popular compared to KP281, possibly due to its appeal to mid runners. However, only a few middle-aged customers prefer using the KP781 treadmill.
- Among old customers, KP281 remains the best choice for them, while KP481 and KP781 are equally preferred. It is important to note that the number of old customers is significantly less compared to the other two age groups.

```
In [66]: # Counting the number of customers for each marital status in each product group
AgeGroup_df = df.groupby(['Product', 'Age group']).size().unstack()

#pie charts indicating the distribution
AgeGroup_df.plot(kind='pie',subplots=True ,figsize=(20,5),explode=(0.005,0.005),
plt.suptitle('Age group Distribution by Treadmill Product', fontsize=14)
plt.show()
```

Age group Distribution by Treadmill Product

Insight:

- Among young customers, the purchase distribution for Aerofit treadmills is as follows: 46.9% prefer KP281, 29.2% prefer KP481, and the remaining 23.9% prefer KP781.
- Surprisingly, 44% of middle-aged customers prefer KP481 over the other two treadmills, while 40.0% prefer KP281, and only 16% prefer the KP781.
- 3. Among old customers, 41.2% prefer KP281, while 29.4% prefer both KP481 and KP781.

Distribution of Income-group across Treadmills

```
In [67]:
    sns.countplot(data=df,x='Income group',hue='Product',palette='Paired')
    plt.title(' Distribution of Income group across each Treadmill', fontsize=14)
    plt.xlabel('Income group')
    plt.ylabel('Number of users')
    plt.show()
    print()
    print('---- Income groups ----')
    print('29000-50000: Low')
    print('51000-75000: Middle')
    print('Above 76000: High')
```


---- Income groups ----29000-50000: Low

51000-75000: Middle Above 76000: High

Insight:

- Customers belonging to the low-income group prefer KP281 due to its affordability compared
 to the other two treadmills. Additionally, around 30 customers from this income group have
 purchased KP481. However, only a few customers in this income group have chosen to
 purchase the more expensive KP781 treadmill.
- Customers belonging to the middle-income group exhibit similar preference for both KP281 and KP481 treadmills, with a marginal difference in frequency. Additionally, approximately 15-20 customers from this group have also purchased the more expensive KP781 treadmill.
- Customers belonging to the high-income group exclusively prefer KP781 due to its advanced features and higher cost compared to the other two treadmills.

Distribution Miles and Education for each Treadmill

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	Age group	Income group
2	KP281	19	Female	14	Partnered	4	3	30699	66	Young	Low
3	KP281	19	Male	12	Single	3	3	32973	85	Young	Low
4	KP281	20	Male	13	Partnered	4	2	35247	47	Young	Low

```
In [69]: columns=['Education', 'Miles']
   plt.figure(figsize=(20,10))
   for i,col in enumerate(columns,1):
        plt.subplot(2,2,i)
        sns.boxplot(data=df,x='Product',y=col,palette='husl')
        plt.title(f'Distribution of {col} for each Treadmill')
   plt.show()
```


Insight:

- Customers with 14-16 years of education prefer the KP281 and KP481 treadmills. However, among all treadmills, the majority of customers with 16-18 years of education prefer the KP781 treadmill.
- 2. Customers who run 60-100 miles per week prefer the KP281 treadmill, while mid runners who run 60-120 miles per week opt for the KP481. On the other hand, hardcore runners who run 120-200 miles per week prefer the KP781 treadmill due to its advanced features.

Distribution of Usage and Fitness across each Treadmill

```
plt.figure(figsize=(20,5))
# Usage column
plt.subplot(1,2,1)
sns.countplot(data=df,x='Product',hue='Usage',palette='hls')
plt.xlabel('Treadmill')
plt.ylabel('Number of customers')
plt.title('Distribution of Usage across each Treadmill')

# Fitness column
plt.subplot(1,2,2)
sns.countplot(data=df,x='Product',hue='Fitness',palette='husl')
plt.xlabel('Treadmill')
plt.ylabel('Number of customers')
plt.title('Distribution of Fitness across each Treadmill')
```


Insight:

- Customers who use treadmills 3 times a week prefer both KP281 and KP481. However, customers who use treadmills 4-5 times a week favor the KP781 treadmill.
- Customers with fitness level 3 prefer both KP281 and KP481 treadmills, while customers with fitness level 5 predominantly use the most advanced KP781 treadmill.

Heatmap

```
plt.figure(figsize=(10,6))
sns.heatmap(df.corr(),annot=True,cmap='viridis',fmt='.2f')
plt.show()
```

<ipython-input-71-34cb935a882e>:2: FutureWarning: The default value of numeric_only in D
ataFrame.corr is deprecated. In a future version, it will default to False. Select only
valid columns or specify the value of numeric_only to silence this warning.
sns.heatmap(df.corr(),annot=True,cmap='viridis',fmt='.2f')

Analysis

- Age and Education: There is a positive correlation of approximately 0.28 between Age and Education. This indicates that as the customers' age increases, their education level tends to be higher.
- Age and Income: There is a moderate positive correlation of approximately 0.51 between Age and Income. This suggests that as the customers' age increases, their income tends to be higher.
- Education and Income: There is a relatively strong positive correlation of approximately 0.63
 between Education and Income. This suggests that customers with higher levels of education
 tend to have higher incomes.
- 4. Usage and Fitness: There is a strong positive correlation of approximately 0.67 between Usage and Fitness. This indicates that customers who plan to use the treadmill more frequently tend to have higher fitness levels.
- Fitness and Miles: There is a strong positive correlation of approximately 0.79 between Fitness and Miles. This indicates that customers with higher fitness levels also expect to walk/run more miles per week.
- Age and Fitness: There is a weak positive correlation of approximately 0.06 between Age and Fitness. Similar correlation can be observed with Age and Usage as well as Age and Miles.

Conditional and Marginal Probablities Impact of gender on purchasing the treadmill

```
In [72]:
           pd.crosstab(index=df['Product'],columns=df['Gender'],margins=True,margins_name='Total',
Out[72]:
           Gender Female Male Total
          Product
            KP281
                      0.22
                            0.22
                                  0.44
                            0.17
            KP481
                      0.16
                                  0.33
            KP781
                      0.04
                            0.18
                                  0.22
                            0.58
             Total
                      0.42
                                  1.00
```

Marginal Probablities

- P(KP281)= 0.44
- P(KP481) = 0.33
- P(kP781) = 0.22
- P(Male)= 0.58
- P(Female) = 0.42

Conditional Probablities

- P(KP281|Male) = 0.22
- P(KP281|Female) = 0.22
- P(KP481|Male) = 0.17
- P(KP481|Female) = 0.16
- P(KP781|Male) = 0.18
- P(KP781|Female)= 0.04

Impact of marital status on purchasing the Treadmill

```
In [73]:
           pd.crosstab(index=df['Product'],columns=df['MaritalStatus'],margins=True,margins_name='
          MaritalStatus Partnered Single Total
Out[73]:
               Product
                 KP281
                              0.27
                                     0.18
                                           0.44
                 KP481
                              0.20
                                     0.13
                                           0.33
                 KP781
                              0.13
                                     0.09
                                           0.22
                              0.59
                                     0.41
                                           1.00
                  Total
```

Marginal Probablities

- P(KP281) = 0.44
- P(KP481) = 0.33
- P(kP781) = 0.22

- P(Patnered) = 0.59
- P(Single)= 0.41

Conditional Probablities

- P(KP281|Partnered) = 0.27
- P(KP281|Single) = 0.18
- P(KP481|Partnered) = 0.20
- P(KP481|Single) = 0.13
- P(KP781|Partnered) = 0.13
- P(KP781|Single)= 0.09

Impact of Age groups on purchasing the treadmill

In [74]:	pd.cross	tab(ind	ex=df['Produ	ict'],	,colum
Out[74]:	Age group Product	Young	Middle-aged	Old	Total
	KP281	0.29	0.11	0.04	0.44
	KP481	0.18	0.12	0.03	0.33
	KP781	0.15	0.04	0.03	0.22
	Total	0.63	0.28	0.09	1.00

Age-groups:

18-29 : Young

30-39: Middle-aged

· 40-50: Old

Marginal Probablities

- P(KP281) = 0.44
- P(KP481)= 0.33
- P(kP781)= 0.22
- P(Young) = 0.63
- P(Middle-aged)= 0.28
- P(Old)= 0.09

Conditional Probablities:

- P(KP281|Young) = 0.29
- P(KP281|Middle-aged) = 0.11
- P(KP281|Old) = 0.04
- P(KP481|Young) = 0.18
- P(KP481|Middle-aged) = 0.12

- P(KP481|Old)= 0.03
- P(KP781|Young) = 0.15
- P(KP781|Middle-aged) = 0.04
- P(KP781|Old) = 0.03

Impact of Income groups on purchasing the treadmill

```
In [75]: pd.crosstab(index=df['Product'],columns=df['Income group'],margins=True,margins_name='T

Out[75]: Income group Low Medium High Total

Product

KP281 0.27 0.18 0.00 0.44

KP481 0.17 0.17 0.00 0.33

KP781 0.03 0.08 0.12 0.22

Total 0.46 0.42 0.12 1.00
```

Income-groups:

- 29000-50000 : Low
- 51000-75000 : Medium
- · 76000-105000 : High

Marginal Probablities

- P(KP281) = 0.44
- P(KP481) = 0.33
- P(kP781) = 0.22
- P(Low) = 0.46
- P(Medium)= 0.42
- P(High)= 0.12

Conditional Probablities:

- P(KP281|Low) = 0.27
- P(KP281|Medium) = 0.18
- P(KP281|High) = 0.00
- P(KP481|Low) = 0.17
- P(KP481|Medium) = 0.17
- P(KP481|High)= 0.00
- P(KP781|Low) = 0.03
- P(KP781|Medium) = 0.08
- P(KP781|High)= 0.12

Additional Questions on conditional Probablity

What is the probability that a customer has a specific fitness level (e.g., fitness = 4) given that they purchased a particular treadmill product (KP281, KP481, KP781)?

```
In [76]:
          # Total number of customers
          total=len(df)
          products=['KP281', 'KP481', 'KP781']
          fitness level=4
          #calculating the probablity for each product and fitness level
          probablities={}
          for product in products:
              #calculating the number of customers who purchased the specific product
              total product=len(df.loc[df['Product']==product])
              #calculating the number of customers who purchased the specific product and has fit
              total product fitness=len(df.loc[(df['Product']==product)&(df['Fitness']==fitness 1
              #calculating the conditional probablity
              conditional probablity=total product fitness/total product
              #storing the conditional probablity in the dictionary
              probablities[product]=conditional probablity
          for product, probablity in probablities.items():
              print(f'Probablity of customer having a fitness level {fitness_level} given that th
         Probablity of customer having a fitness level 4 given that they have purchased a KP281:
         Probablity of customer having a fitness level 4 given that they have purchased a KP481:
         Probablity of customer having a fitness level 4 given that they have purchased a KP781:
         0.17
```

What is the probability that a customer purchased a particular treadmill product (KP281, KP481, KP781) given that they runs 80 miles per week?

```
In [77]: # Total number of customers
    total=len(df)
    products=['KP281','KP481','KP781']
    miles=80

#calculating the probablity for each product and fitness Level
    probablities={}

for product in products:
    #calculating the number of customers who purchased the specific product
    total_miles=len(df.loc[df['Miles']==miles])

#calculating the number of customers who purchased the specific product and runs 80

total_product_miles=len(df.loc[(df['Product']==product)&(df['Miles']==miles)])
```

```
#calculating the conditional probablity

conditional_probablity=total_product_miles/total_miles

#storing the conditional probablity in the dictionary

probablities[product]=conditional_probablity

for product,probablity in probablities.items():
    print(f'Probablity of customer purchased a {product} given that they runs a {miles}
```

Probablity of customer purchased a KP281 given that they runs a 80 miles per week:0.0 Probablity of customer purchased a KP481 given that they runs a 80 miles per week:0.0 Probablity of customer purchased a KP781 given that they runs a 80 miles per week:1.0

What is the probability that a customer purchased a particular treadmill product (KP281, KP481, KP781) given that they use treadmill 3 times in a week?

```
In [78]:
          # Total number of customers
          total=len(df)
          products=['KP281', 'KP481', 'KP781']
          usage=3
          #calculating the probablity for each product and fitness Level
          probablities={}
          for product in products:
              #calculating the number of customers who purchased the specific product
              total_usage=len(df.loc[df['Usage']==usage])
              #calculating the number of customers who purchased the specific product and uses tr
              total product miles=len(df.loc[(df['Product']==product)&(df['Usage']==usage)])
              #calculating the conditional probablity
              conditional probablity=total product miles/total usage
              #storing the conditional probablity in the dictionary
              probablities[product]=conditional probablity
          for product, probablity in probablities.items():
              print(f'Probablity of customer purchased a {product} given that they uses treadmil
```

Probablity of customer purchased a KP281 given that they uses treadmill 3 times in a w eek:0.54

Probablity of customer purchased a KP481 given that they uses treadmill 3 times in a w eek:0.45

Probablity of customer purchased a KP781 given that they uses treadmill 3 times in a w eek:0.01

Customer Profiling

Potential Buyers for KP281 Treadmill

- Gender: Male and Female
- 2. Marital status: Both Partnered or single
- Age:18-29 as probablity of old customers purchasing the KP281 is low
- Income:29000-50000 USD as probability of customers belonging to high income group purchasing the KP281 treadmill is 0.
- 5. Education:14-16 years
- 6. Fitness level':3
- Usage: use treadmill 3 times in a week
- 8. Miles: Runs 60-100 miles per week

Potential Buyers for KP481 Treadmill

- 1. Gender: Both Male and Female
- 2. Marital status: Both Partnered or single
- 3. Age:18-39 years
- Income:29000-75000 USD as probability of customers belonging to high income group purchasing the KP481 treadmill is 0.
- Education:14-16 years
- 6. Fitness level':3
- Usage: use treadmill 3 times in a week
- Miles: Runs 80-120 miles per week --> Mostly midrunners.

Potential Buyers for KP781 Treadmill

- Gender: Only male customers as probablity of female customers buying KP781 is very low.
- Marital status: Only married customers as probablity of single customers buying KP781 is also low.
- 3. Age:18-39 years
- Income: 75000-105000 USD as probability of customers belonging to low and middle-income groups purchasing the KP781 treadmill is very low.
- 5. Education:16-18 years
- 6. Fitness level':5
- Usage: use treadmill 3 times in a week
- 8. Miles: Runs 120 200 miles per week --> Mostly hardcore runners.

Insights

- Among the users, 44.44% prefer using the KP281 treadmill, while 33.33% opt for the KP481 treadmill, and only 22.22% of users favor the KP781 treadmill.
- KP281, being an entry-level and more affordable treadmill compared to the others, is the preferred choice among the majority of customers.
- 33.3% of customers favor the KP481 treadmill, drawn by its ideal fit for mid-level runners and its excellent value-for-money offering.

- KP781 treadmill, being more advanced and costlier than the other two options, is chosen by only 22.2% of customers.
- Aerofit has 57.78% male customers and 42.22% female customers.
- Among male customers, 38.5% prefer KP281 as an entry-level and cost-effective option.
 Meanwhile, 29.8% opt for KP481 due to its value for money proposition, and 31.7% favor KP781 for its advanced features.
- 7. Among female customers, 52.6% prefer KP281 as an entry-level and cost-effective option. Additionally, 38.2% opt for KP481 due to its value for money proposition, while only 9.2% favor KP781 due to its higher cost compared to the other two options.
- 8. Probablity of female customers buying KP781 is 4% which is very low.
- Both female and male customers equally prefers KP281 with probablity 22.2%.
- Probablity of male customers buying KP481 is 17%
- Probablity of female customers buying KP481 is 16% which is also good.
- 12. 59.4% of Aerofit customers are married, while remaining 40.56% are single.
- Married customers have a higher frequency of purchasing all treadmills compared to single customers.
- 14. The trend observed among both married and single customers reflects that KP281, being an entry-level treadmill, is the most frequently purchased option, while KP781, due to its higher cost, remains the least popular choice for both customer groups.
- 15. The purchase frequency for both married and single customers follows the trend of KP281 > KP481 > KP781, with KP281 being the most frequently purchased treadmill and KP781 being the least frequently purchased one.
- The probability of single customers purchasing each of the treadmills is lower compared to that
 of married customers.
- 17. Most of the Aerofit customer falls under young age-group (18-29).
- 18. 27.78 % of middle-aged(30-39) users prefer to use the Aerofit Treadmills.
- 19. 9.4% of users in the old (40-50) age group prefer purchasing Aerofit treadmills.
- Among young customers, the purchase distribution for Aerofit treadmills is as follows: 46.9% prefer KP281, 29.2% prefer KP481, and the remaining 23.9% prefer KP781.
- Among middle-aged customers, suprisingly 44% prefer KP481 over the other two treadmills, while 40.0% prefer KP281, and only 16% prefer the KP781.
- 22. Among old customers, 41.2% prefer KP281, while 29.4% prefer both KP481 and KP781.
- 23. The probability of young customers buying the KP281 treadmill is 29%, while the probability of buying the KP481 treadmill is 18%, and the probability of buying the KP781 treadmill is 15%.
- 24. The probability of middle-aged customers buying the KP281 treadmill is 11%, while the probability of buying the KP481 treadmill is 12%, and the probability of buying the KP781 treadmill is 4%.
- 25. The probability of old customers buying the KP281 treadmill is 4%, while the probability of buying the KP481 treadmill is 3%, and the probability of buying the KP781 treadmill is 3%.
- 26. The probability of old customers purchasing each of the treadmills is lower compared to that of other age-group customers.
- Approximately 88% of Aerofit customers belong to the low-income (29000-50000 USD) and medium-income (51000-75000 USD) groups. Remaining 11.67% belongs to High income group

(above 75000 usd).

- 28. Due to its price of 2500 USD, the probability of customers belonging to the low-income and middle-income groups buying the KP781 treadmill is low compared to customers in the highincome group who can afford this higher-priced treadmill.
- Customers belonging to the high-income group exclusively prefer KP781 due to its advanced features and higher cost compared to the other two treadmills.
- Customers with 14-16 years of education prefer the KP281 and KP481 treadmills. However, among all treadmills, the majority of customers with 16-18 years of education prefer the KP781 treadmill.
- 31. Customers who run 60-100 miles per week prefer the KP281 treadmill, while mid runners who run 60-120 miles per week opt for the KP481. On the other hand, hardcore runners who run 120-200 miles per week prefer the KP781 treadmill due to its advanced features.
- Customers who use treadmills 3 times a week prefer both KP281 and KP481. However, customers who use treadmills 4-5 times a week favor the KP781 treadmill.
- Customers with fitness level 3 prefer both KP281 and KP481 treadmills, while customers with fitness level 5 predominantly use the most advanced KP781 treadmill.

Recommendations

Actionable Insight: Among the users, 44.44% prefer using the KP281 treadmill, while 33.33% opt for the KP481 treadmill, and only 22.22% of users favor the KP781 treadmill.

- 1. Emphasize the budget-friendly nature of the KP281 treadmill to attract more customers.
- Highlight the key features of the KP281 that make it a great entry-level option for fitness enthusiasts.
- Provide special offers or discounts to further entice customers looking for a cost-effective option.
- 4. Engage with fitness communities online to showcase the KP281's appeal to beginners.
- Focus marketing efforts on reaching out to mid-level runners, emphasizing how the KP481 is tailored to meet their specific fitness needs and goals.
- Showcase the competitive pricing and the outstanding features of the KP481 that make it a cost-effective choice for customers.
- Launch targeted marketing campaigns to increase awareness and interest in the KP781 among
 potential customers who may value its advanced capabilities. Utilize various channels such as
 social media, fitness forums, and influencer collaborations.
- Emphasize the unique features and benefits of the KP781 to justify its higher price. Highlight its
 advanced functionalities and how they enhance the workout experience, making it worth the
 investment.

Actionable Insight: The probability of female customers buying each of the treadmills compared to male customers is 42%:

 Create targeted advertisements and promotions that appeal to women, showcasing how fitness can positively impact their lives.

- Showcase the female-friendly features and benefits of Aerofit treadmills to attract more female customers.
- Offer a diverse selection of treadmill models that cater to various fitness levels and preferences.

Actionable Insight: The probability of female customers buying the KP781 treadmill is 4%, which is significantly lower compared to that of male customers:

Offer special incentives and discounts exclusively for female customers interested in purchasing the KP781 treadmill. This could include limited-time promotions, personalized offers, or package deals to make the treadmill more appealing and accessible to this customer segment. By providing targeted incentives, it can encourage more female customers to consider and invest in the KP781.

Actionable Insight: The probability of single customers purchasing each of the treadmills is lower compared to that of married customers:

- Appoint Virat Kohli as the brand ambassador for Aerofit, promoting the brand's values of fitness, health, and well-being. Virat's association with Aerofit will resonate with single customers, inspiring them to prioritize their fitness goals and consider Aerofit treadmills as a valuable addition to their fitness routines.
- Introduce exclusive offers and discounts for single customers as part of the collaboration with Virat Kohli. This can include special bundles, personalized packages, or limited-time promotions, providing added incentives for single customers to choose Aerofit treadmills.
- Organize virtual fitness challenges or competitions, endorsed by Virat Kohli, to engage single
 customers and encourage them to participate in fitness activities with Aerofit treadmills. Prizes
 and recognition for participants can further boost motivation and engagement.

Actionable Insight: The probability of old customers purchasing each of the treadmills is lower compared to that of other age-group customers:

Offer personalized assistance to help customers aged 40-50 select the ideal treadmill model, providing them with the tools to maintain an active and healthy lifestyle. With Aerofit's expert guidance, customers can feel confident and motivated to make the most of their treadmills effectively.

Actionable Insight: Due to its price of 2500 USD, the probability of customers belonging to the low-income and middle-income groups buying the KP781 treadmill is low compared to customers in the high-income group.

- Introduce tailored discounts and incentives exclusively for customers belonging to the low and middle-income groups. These offers can include limited-time promotions, cashback rewards, or bundle deals, making the KP781 treadmill more affordable and enticing for this target audience.
- Provide convenient EMI (Equated Monthly Installment) payment options for the KP781 treadmill. This will allow low and middle-income customers to spread the cost over several months, easing their financial burden and making the purchase more manageable.