OmniXRI TinyML 小學堂 2025

歐尼克斯實境互動工作室 (OmniXRI Studio) 許哲豪 (Jack Hsu)

簡報大綱

- ▶ 4.1. 常見硬體加速手法
- > 4.2. DSP (SIMD) 指令集
- > 4.3. Helium (MVE) 指令集
- > 4.4. Ethos-U MicroNPU

本課程完全免費,請勿移作商業用途!

歡迎留言、訂閱、點讚、轉發,讓更多需要的朋友也能一起學習。

完整課程大綱: https://omnixri.blogspot.com/2025/03/omnixri-tinyml-2025-0.html

課程直播清單: https://www.youtube.com/@omnixri1784/streams

4.1. 常見硬體加速手法

神經網路基本計算量

資料來源: https://omnixri.blogspot.com/2022/10/mcunputinyml.html

為什麼要加速?

Layer Name	$\begin{array}{c} Input \\ W \times H \times D \end{array}$	Kernel W×H×D/S	$\begin{array}{c} Output \\ W \times H \times D \end{array}$	Params	Mults
C1: conv2d	32×32×1	5×5×6	28×28×6	$1\times5\times5\times6+6=156$	28×28×1×5×5×6 =117,600
S2: pool/2	28×28×6	$2\times2/2$	14×14×6	0	0
C3: conv2d	14×14×6	5×5×16	10×10×16	$6 \times 5 \times 5 \times 16 + 16$ =2,416	$10 \times 10 \times 6 \times 5 \times 5 \times 16$ =240,000
S4: pool/2	10×10×16	$2\times2/2$	5×5×16	0	0
C5: conv2d	5×5×16	5×5×120	1×1×120	$16 \times 5 \times 5 \times 120 + 120$ =48,120	1×1×16×5×5×120 =48,000
F6: conv2d	1×1×120	1×1×84	1×1×84	$120 \times 1 \times 1 \times 84 + 84$ = 10,164	$120 \times 84 = 10,080$
F7: conv2d	1×1×84	1×1×10	1×1×10	84×1×1×10+10 =850	84×40 =840
			Total	61,706	416,520

以CNN LeNet-5 為例

- 輸入影像尺寸單色 32x32 pixel , 模型參數6萬個,推論一次需 416,520次乘加。(整數 or 浮點數)
- 訓練模型至少數千次到數十萬次 推論及修正。
- ➤ 主要計算集中在**乘加(MAC)**及 激勵函式複雜度。

$$y = a * x + b$$

整體推論速度還會卡在資料搬移 速度。

硬體加速手法 — 提高工作時脈

工作時脈(Clock) MHz, GHz

工作週期(Cycle) uS, nS

 $1MHz (10^{6}) \Leftrightarrow 1us(10^{-6})$

- 一個指令週期不一定等於一個工作週期。
- 不同指令所需工作週期不同。
- 浮點數計算通常工作週期會較長。
- 執行速度 MIPS 表示每秒可執行百萬指令

以早期8048 / 8051為例,時脈6MHz,一個指令6個週期,所以只有 1MIPS。

STM32F103x (Cortex-M3) 大多數指令為1個週期, 其速為 1.25 MIPS/MHz,故在 72MHz 下可達 90MIPS。

以新唐 Cortex-M4 為例

- ➤ M460系列 200MHz
- ➤ M480系列 192MHz
- ➤ M471系列 72/120MHz
- ➤ M451系列 72MHz

硬體加速手法 — 平行/向量指令集加速

 B_3

 B_4

向量指令集: Intel AVX, arm MVE, NEON, **RISC-V V**

資料來源: https://omnixri.blogspot.com/2022/10/mcunputinyml.html

 A_3

多資料流

(SIMD)

 C_3

arm DSP,

RISC-V P

硬體加速手法 — 多核心加速

Raspberry Pi Pico

Arduino Nano RP2040

Raspberry Pi Pico W

Arducam Pico4ML-BLE

RP2040-Zero

Raspberry RP2040 系列

arm cortex-m0+ 2 cores

133 MHz 264KB SARM 2MB Flash

Andes AX45MP 64bit RISC-V 4 cores

Sony Spresense

arm cortex-m4 6cores 156 MHz 1.5MB SARM 8MB Flash

OmniXRI整理製作, 2022/10/17

> MPU+MCU

多核心組成

> 同質多核

> 異質多核

> 同頻時脈

> 異頻時脈

▶ 分工作業

> 功耗調配

▶ 兼顧高效

> 作業系統

資料來源: https://omnixri.blogspot.com/2022/10/mcunputinyml.html

硬體加速手法 — NPU神經網路加速器

arm Ethos-U55

ALIF Ensemble, Nuvoton M55, Himax WE2, Infineon PSoC Edge, Synaptics Astra SR

> arm Ethous-U65

NXP i.MX93

> arm Ethous-U85

ALIF E8

ST Neural-ART Accelerator

STM32N6

NXP eIQ Neutron NPU

i.MX95, MCX-N54/94

Renasas DRP-AI

RZ/V2M, RZ/V2L, RZ/V2H, RZ/V2N

Others

Ceva, Tensilica, VeriSilicon, Synopsys, 耐能(Kneron), 英業達(Inventech) ...

4.2. DSP (SIMD) 指令集

常見 Arm 晶片 CPU 等級及指令集

資料來源: https://omnixri.blogspot.com/2024/01/vmaker-edge-ai-13-npuai.html

arm Cortex-M 指令集 (v6m, v7m)

指令集主要功能

- > 算術指令
- > 邏輯指令
- ➢ 分歧、控制指令
- > 記憶體處理指令
- > 中斷處理指令
- > 浮點運算指令

Thumb-1 v6m 純16bit

Thumb-2 v7m以上 16 / 32 bit混合

資料來源: https://ithelp.ithome.com.tw/m/articles/10267487

arm Cortex-M 指令集 (v8m)

資料來源: https://ithelp.ithome.com.tw/m/articles/10267487

基本乘法指令 MUL

32x32 位元乘法

Cortex M0 / M0+ / M1 / M23 取低32位元輸出。

Cortex M3 / M4 / M7 / M33 / M35P 得64位元輸出。

指令週期

Cortex M0 / M0+ / M23 ,1或32個週期。

Cortex M3 · 3 ~ 5個週期。

Cortex M4 / M7 / M33 / M35P, 1個週期。

基本乘加指令 MLA

乘積累加運算(Multiply Accumulate, MAC)

基本加法 ADD r0, r1, #5 (r0 = r1 + 5)

基本乘法 MUL r0, r1, r2 (r0 = r1 x r2)

基本乘加指令 MLA r0, r1, r2, r3 (r0 = r1 x r2 + r3)

基本乘減指令 MLS r0, r1, r2, r3 (r0 = r1 x r2 - r3)

Cortex M3 · 3 ~ 5個週期。

Cortex M4 / M7 / M33 / M35P, 1個週期。

OP,操作,即加減乘除。

OPS,每秒多少操作。

GOPS,每秒10億(10^9)次操作。

TOPS,每秒1兆(10^12)次操作。

常見 SIMD 並行指令

SIMD 指令 (Single Instruction Multiple Data)

SADD16 兩個16位元有號數相加

SADD16 Rd, Rn, Rm (Rd[15:0] = Rn[15:0] + Rm[15:0], Rd[31:16] = Rn[31:16] + Rm[31:16])

SMUAD 兩個16位元有號數乘法後相加

SMUAD Rd, Rn, Rm (Rd = Rn[15:0] * Rm[15:0] + Rn[31:16] * Rm[31:16])

SMLAD 兩個16位元有號數乘法後累加

SMLAD Rd, Rn, Rm, Ra (Rd = Rn[15:0] * Rm[15:0] + Rn[31:16] * Rm[31:16] + Ra)

SMAX16 2個16位元有號數取最大值

SMAX16 Rd, Rn, Rm (Rd[15:0] = max(Rn[15:0], Rm[15:0]), Rd[31:16] = max(Rn[31:16], Rm[31:16]))

資料來源: https://www.elec4.co.kr/article/articleView.asp?idx=17179

SIMD 飽和加法指令 QADD

飽和指令 (Saturation Instructions)

資料來源:https://www.elec4.co.kr/article/articleView.asp?idx=17179

浮點運算指令

Cortex-M4 不帶硬體浮點計算, M4F 有帶硬體浮點計算

指令以V開頭表示

基本算術運算: VADD.F32, VSUB.F32, VMUL.F32, VDIV.F32 ...

乘加乘減運算: VMLA.F32, VMLS.F32, VFMA.F32, VFMS.F32 ...

數學函式運算: VSQRT.F32, VABS.F32 ...

比較指令: VCMP.F32, VCMPE.F32...

數值存取: VLDR.F32, VSTR.F32, VMOV.F32...

數值轉換: VCVT.F32.S32, VCVT.S32.F32, VCVT.F32.U32 ...

加法、乘法通常為1個週期,除法和平方通常要14個週期

4.3. Helium (MVE) 指令集

Cortex-M 指令加速操作比較

處理器	指令集	OPs at 100MHz
Cortex- M3	多功能指令(MLA,2個OPS)需要2個週期。 由於處理器還需要執行NN處理的記憶體負載操作,假設Mac vs Load的比率為1:1,因此平均操作/週期為0.6。	0.06 GOPs/sec
Cortex- M4, Cortex- M33	DSP/SIMD指令支持雙MAC操作(4個操作)。 由於處理器還需要執行NN處理的記憶體加載操作,假設Mac vs Load的比率為1:1,因此平均操作/週期為2。	0.2 GOPs/sec
Cortex- M7	該處理器支持DSP/SIMD和記憶體負載的雙重問題, 因此平均操作/週期為4。	0.4 GOPs/sec
Cortex- M52	使用Helium技術,這些處理器可以與數據負載並聯處理4個MAC/ 週期。結果,平均操作/週期為8。	0.8 GOPs/sec
Cortex- M55, Cortex- M85	使用Helium技術,這些處理器可以與數據負載並聯處理8個MAC/循環。結果,平均操作/週期為16。	1.6 GOPs/sec

arm v8.1m (Helium) 指令集 M-Profile Vector Extension, MVE

資料來源:https://hackmd.io/@OmniXRI-Jack/arm_developer_cortexm55_ethosu55_guide

Cortex-M 指令集與加速計算

IP	指令集	Helium	DMIPS/ MHz	CoreMark /MHz
Cortex- M7	∨7E-M	X	2.31	5.29
Cortex- M55	v8.1-M	Dual- beat	1.69	4.40
Cortex- M85	∨8.1-M	Dual- beat	3.13	6.28
Cortex- M52	∨8.1-M	Single- beat	1.60	4.30

OmniXRI整理製作, 2024/01/15

資料來源: https://omnixri.blogspot.com/2024/01/vmaker-edge-ai-13-npuai.html

Cortex-M55 工作流水線

資料來源:https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-cortex-m55-processor-wp-tw.pdf

Cortex-M55 雙節拍工作模式

資料來源:https://omnixri.blogspot.com/2024/01/vmaker-edge-ai-13-npuai.html

DSP / Helium 指令集比較

特性	Helium (ARMv8.1-M)	Cortex-M4 DSP	Cortex-M4F 浮點
向量寬度	128 位	32 位	無(純量)
數據類型	8/16/32 位整數, FP16/FP32	8/16/32 位整數	FP32
指令數量	~150 種	~30 種	~20 種
主要應用	ML, DSP, 向量處理	傳統 DSP	浮點控制算法
硬件需求	ARMv8.1-M + 可選 FPU	ARMv7-M + MAC	ARMv7-M + FPU

4.4. Ethos-U MicroNPU

arm Micro NPU

arm Micro NPU

- > Ethos-U55
- > Ethos-U65
- > Ethos-U85

Energy efficiency

Cortex-M55 + Ethos-U55

資料來源:https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-cortex-m55-processor-wp-tw.pdf

Ethos-U55 系統架構圖

資料來源:https://hackmd.io/@OmniXRI-Jack/arm_developer_cortexm55_ethosu55_guide

Ethos-U55 可支援算子及操作

算子(Operators)

- Concat
- EspandDims
- > GRU
- Identity
- Logistic
- > LSTM
- Pack
- Reshape
- > Split

- Squeeze
- Stack
- Unpack
- Unstack
- Resize_Bilinear
- BatchRenorm
- StridedSlice
- > 1-Strides Only

操作(Operations)

- Convolution
- Depth-wise Convolution
- Pooling
- Vector-Product
- Elementwise
- Reduction

Ethos-U55 開發流程

參考文獻

▶ 許哲豪,臺灣科技大學資訊工程系「人工智慧與邊緣運算實務」(2021~2023)

https://omnixri.blogspot.com/p/ntust-edge-ai.html

▶ 許哲豪, OmniXRI's Edge AI & TinyML 小學堂 Youtube 直播課程總結

https://omnixri.blogspot.com/2024/06/omnixris-edge-ai-tinyml-youtube.html

➤ 許哲豪,歐尼克斯實境互動工作室系列發文—TinyML(MCU AI)系列

https://hackmd.io/1PK1URhIQ7GutcWgpgsWbg#TinyMLMCU-Al%E7%B3%BB%E5%88%97

Wiki – ARM Cortex-M

https://zh.wikipedia.org/wiki/ARM_Cortex-M

參考文獻

➢ 許哲豪,MCU攜手NPU讓tinyML邁向新里程碑

https://omnixri.blogspot.com/2022/10/mcunputinyml.html

許哲豪,誰說單晶片沒有神經網路加速器NPU就不能玩微型AI應用?

https://omnixri.blogspot.com/2024/01/vmaker-edge-ai-13-npuai.html

➤ Arm Cortex-M & Ethos-U55 ML開發者指南

https://hackmd.io/@OmniXRI-Jack/arm_developer_cortexm55_ethosu55_guide

➤ Arm Cortex-M55 處理器介紹

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-cortex-m55-processor-wp-tw.pdf

歐尼克斯實境互動工作室 (OmniXRI Studio) 許哲豪 (Jack Hsu)

Facebook: Jack Omnixri

FB社團: Edge Al Taiwan邊緣智能交流區

電子信箱: omnixri@gmail.com

部落格: https://omnixri.blogspot.tw 開源: https://github.com/OmniXRI

YOUTUBE 直播: https://www.youtube.com/@omnixri1784/streams