Per segnalare errori scrivini alla mail emanuele urso@studenti, umpd.it oppure correggi tu stesso usando ii file sorgente in LaTe y su GitHub cercando Baelish. Buona fortuna per l'esame!								$R = \frac{mv}{z}$
NOME:		\cdot Potenziale scalare V		· Conduttori in equilibrio	· Campo elettrico E generato		$dP = \mathbf{J}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) d\tau $ (95) $\cdot \mathbf{Resistori}$	$\frac{d}{dB}$ Periodo
COGNOME: MATRICOLA:		$V(\mathbf{r}) = \frac{U(\mathbf{r})}{q_0}$	(28)	All'interno – il campo è nullo	$\mathbf{E} = \frac{qd\left(2\cos\left(\theta\right)\mathbf{u}_r + \sin\left(\theta\right)\mathbf{u}_\theta\right)}{4\pi\varepsilon r^3}$	(71)		$T = \frac{2\pi m}{aB}$
■ FONDAMENTALI		$V(B) - V(A) = -\int_A^B \mathbf{E} \cdot d\mathbf{r}$	(29)	$\mathbf{E} = 0 \tag{52}$	· Momento torcente		$R_{eq} = \sum_{i=1} R_i \tag{96}$	Angolo deflessione elica (v 2 dimensioni
· Teorema (divergenza)		$\mathbf{E} = -\nabla V$	(30)	 il potenziale è costante 	$\mathbf{M} = \mathbf{a} \times q \mathbf{E}(x, y, z)$	(72)	T.	$\sin(\theta) = \frac{qBR}{}$
$\int_{\Sigma} \mathbf{F} \cdot d\mathbf{\Sigma} = \int_{\tau} \nabla \cdot \mathbf{F} d\tau$	(1)	· Energia di E		$\Delta V = 0 \tag{53}$	Se E uniforme	ĵ	$R_{eq} = \left(\sum_{i=1}^{r} \frac{1}{R_i}\right) \tag{97}$	mv Passo elica
Teorema (Stokes)		$U = \frac{1}{2} \int_{\mathbb{R}^3} \rho(\mathbf{r}) V(\mathbf{r}) d\tau$	(31)	Le cariche si distribuiscono sempre su superfici, mai all'interno	$\mathbf{M} = \mathbf{p} \times \mathbf{E}$ Torono non motorilo	(73)	· Generatore reale	$d = \frac{2\pi R}{1 + \frac{1}{2} \sqrt{2\Lambda}}$
$\oint_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\Sigma} \nabla \times \mathbf{F} d\Sigma$	(2)	$U = \frac{1}{2}\varepsilon_0 \int_{\mathbb{R}^n} \mathbf{E}^2 \mathrm{d}\tau$	(32)	Pressione elettrostatica	Eavoro per ruotario $\int_{W}^{\theta_f} \int_{W^{1,0}} dt$	1	$\Delta V = V_0 - r_i I \tag{98}$	$\tan(\theta)$
· Teorema (Gradiente)		2 Jec Equazione di Poisson		$\mathbf{p} = \frac{d\mathbf{F}}{d\Sigma} = \frac{\sigma^2}{2\varepsilon_0} \mathbf{u_n} = \frac{1}{2}\varepsilon_0 \mathbf{E}^2 $ (54)	$W = \int_{\theta_i} M \mathrm{d}\theta$ So E uniforme	(74)	· Leggi di Kirchhoff Legge dei nodi	■ INDUZIONE Coefficienti mutua induzione
$\phi_2 - \phi_1 = \int_{\gamma} \nabla \phi \cdot d\mathbf{s}$	(3)	$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$	(33)	· Capacità	$W = pE[\cos(\theta_i) - \cos(\theta_f)]$	(75)	$\sum_{k=0}^{N} I_k = 0 (99)$	$\Phi_{1,2} = MI_1$ $\Phi_{2,1} = MI_2$
· Flusso di un campo		E e V di particolari distribuzioni	uzioni	$C = \frac{Q}{\Lambda V} \tag{55}$	· Frequenza dipolo oscillante		r=v Legge delle maglie	ers
$\Phi_{\Sigma}(\mathbf{E}) = \oint_{\Sigma} \mathbf{E} \cdot \mathrm{d} \mathbf{\Sigma}$	(4)	Carica puntiforme $\mathbf{E} = \frac{q}{-\mathbf{u}_{x}} \mathbf{u}_{x}$	(34)	Il più delle volte c'è induzione com-	Se E costante e uniforme $1 \overline{pE}$	100	$\sum_{k=0}^{N} \Delta V_k = 0 \tag{100}$	$\Phi_{1,2} = NB_1\Sigma_2$
Equazioni di Maxwell		$4\pi\epsilon_0 r^2$, q		pred e o upende dana comiguazione geometrica.	$\nu = \frac{\nu}{2\pi} \sqrt{\frac{1}{I}}$	(q,)	■ MAGNETOSTATICA	· Induttanza क कामकीमञ्जू
Nel vuoto: $\nabla \cdot \mathbf{F} = \frac{\rho}{\rho}$	(2)	$V = \frac{1}{4\pi\varepsilon_0 r}$	(35)	· Condensatori Piano	· Energia del dipolo	ĺ	· Forza di Lorentz	Φ autonusso $\Phi(\mathbf{B}) = IL$
$\frac{1}{2}$	9	Siera carica uniformemente $Qr = \rho r$		$C = \frac{\varepsilon_0 \Sigma}{J} \tag{56}$	$U = -\mathbf{p} \cdot \mathbf{E}$	(77)	$\mathbf{F} = q\mathbf{v} \times \mathbf{B} \tag{101}$	Solenoide ideale
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{D}}{\partial t}$	(9)	$3\varepsilon_0$	(36)		• Forza agente sul dipolo $\mathbf{F} = \nabla(\mathbf{r}_0, \mathbf{F})$	(78)	ace	$L = \mu_0 \frac{N^2}{\sum} \sum_{i} \mu_0 n^2 L \sum_{i}$
$\nabla \cdot \mathbf{B} = 0$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \cdot \mathbf{B} = 0$	(<u>-</u>)	$(\frac{4\pi\varepsilon_0R^2}{4\pi\varepsilon_0R^2}$ serzn		$C = 4\pi\varepsilon_0 \frac{Rr}{R r} \tag{57}$	Energia pot. tra due dipoli	()	$\mathbf{B}(\mathbf{r}) = \frac{r_0 r}{4\pi} \oint \frac{\mathbf{d} \cdot \mathbf{d} \cdot \mathbf{r}}{r^2} \tag{102}$	L Toroide
$\mathcal{L} = \mathcal{L}_{0} = \mathcal{L}_{0} = \mathcal{L}_{0}$	<u> </u>		(37)	Cilindrico	$U = \frac{\left[\mathbf{p}_1 \cdot \mathbf{p}_2 - 3(\mathbf{p}_1 \mathbf{u}_r)(\mathbf{p}_2 \cdot \mathbf{u}_r)\right]}{\left[\mathbf{p}_2 \cdot \mathbf{u}_r\right]}$	(62)	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J} \cdot \mathbf{u}_r}{r^2} d\tau \tag{103}$	$L = \frac{\mu_0 N^2 \pi a}{a} \ln \left(\frac{R+b}{n} \right)$
$\int_{\Sigma} \mathbf{E} \cdot d\mathbf{\Sigma} = \frac{\epsilon_0}{\epsilon_0}$	6	$\left\{ \begin{array}{c} \frac{Q}{4\pi\varepsilon_0 r} & \text{se r} \ge R \end{array} \right.$		$C = \frac{2\pi\varepsilon_0 h}{\ln R} \tag{58}$	$4\pi\varepsilon_0 r^2$		$\mathbf{B}(\mathbf{r}) = \nabla_r \times \left(\frac{\mu_0}{4\pi} \int \frac{\mathbf{J}}{r} d\tau\right) \tag{104}$	Σπ (K)
$\oint_{\Gamma} \mathbf{E} \cdot d\mathbf{s} = -\frac{d\mathbf{r}(\mathbf{z})}{dt}$	(10)	Guscio sferico carico uniformemente	te	In serie	Forza tra dipon Dipoli concordi = F repulsiva		· Seconda legge di Laplace	$\Phi = r \mathrm{d}I$
$\oint_{\Sigma} \mathbf{B} \cdot d\mathbf{\Sigma} = 0$	(11)	2	(38)	$C_{-} = \left(\sum_{n=1}^{n} \frac{1}{n}\right)^{-1} \tag{50}$	$\mathbf{F} = \frac{3p_1p_2}{4\pi\varepsilon_0 r^4} \mathbf{u}_r$	(80)	$\mathbf{F} = \int I(\mathbf{ds} \times \mathbf{dB}) \tag{105}$	$\frac{d}{dt} = -\frac{d}{dt}$
$\oint_{\Gamma} \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{conc} + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$ Noi mozzi:	(12)	-			■ DIELETTRICI		· B di corpi notevoli (ATTENZIONE: viene indicata la direzione, il verso dipendi al alla competata di contra di cont	Fem indotta $\varepsilon = -\frac{\mathrm{d}\Phi(\mathbf{B})}{\mathrm{d}I} = -I_{c}\frac{\mathrm{d}I}{\mathrm{d}I}$
$\nabla \cdot \mathbf{D} = O_{ihoro}$	(13)	$V(r) = \begin{cases} 4\pi\varepsilon_0 R \\ \frac{Q}{C} \end{cases}$ se r > R	(39)	$\bigcup_{n} u = \bigcup_{n} u$	· Campo elettrico in un dielettrico	ico	de dalla corrente 1) Asse di una spira	dt = dt
$\frac{\partial \mathbf{D}}{\partial \mathbf{r}} + \frac{\partial \mathbf{D}}{\partial \mathbf{r}} = \mathbf{I} \nabla \mathbf{r}$	(14)	caric			$\mathbf{E}_k = \frac{\mathbf{E}_0}{k}$	(81)	$\mathbf{B}(z) = \frac{\mu_0 I r^2}{2(z^2 + r^2)^{3/2}} \mathbf{u}_z \tag{106}$. Corrente indotta $arepsilon_i = rac{arepsilon_i}{arphi} ext{d} \Phi(\mathbf{B})$
$ \oint_{\Omega} \mathbf{D} \cdot d\mathbf{\Sigma} = O_{\text{curv}} \cdot \partial t $	(15)	$\mathbf{E}(r) = \frac{\lambda}{2\pi c} \mathbf{u}_r$	(40)	Con dielettrico $C_{3:37} = k \cdot C_0 \tag{61}$	· Vettore P polarizzazione		Filo indefinito	$I = \frac{A}{R} = -\frac{A}{Rdt}$
$\oint_{\Sigma} \mathbf{u}_{\Delta Z} - \mathbf{v}_{emt,tro}$	(16)	$Z\pi \epsilon_0 r$	3	na del condensatore	$\mathbf{P} = \frac{dp}{d\tau}$	(83)	$\mathbf{B}(r) = \frac{\mu_0 I}{2\pi r} \mathbf{u}_{\phi} \tag{107}$	· Energia dell'induttanza Mutua (solo una volta ogni coppia):
$\int_{\Gamma} \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{s} = \frac{1}{conc, ib} + \frac{dt}{dt}$ · Discontinuità dei campi	(10)	$V(r) = \frac{1}{2\pi\varepsilon} \operatorname{Im} \left(\frac{r}{r} \right)$ Piano Σ infinito con carica uniforme	(41) ne	$U = \frac{Q^2}{\sigma G} = \frac{1}{\sigma}CV = \frac{1}{\sigma}QV \tag{62}$	· Dielettrici lineari			$U_{1,2} = \frac{1}{2}MI_1I_2 + \frac{1}{2}MI_2I_1$
Generali		$\mathbf{E} = \frac{\sigma}{2} \mathbf{u}_n$	(42)	0	$\mathbf{P} = \varepsilon_0 \chi_E \mathbf{E}_k = \varepsilon_0 (k-1) \mathbf{E}_k$	(83)	$\mathbf{B}(r) = \frac{1}{2\pi r \sqrt{r^2 + a^2}} \mathbf{u}_{\phi} \tag{108}$	Interna
$\Delta B_{\perp} = 0$	(17)	2ε ₀	(\$	$RQ'(t) + \frac{Q(t)}{\widetilde{a}} = V$ (63)	· Dens. superficiale di q polarizzata	zata	Solenoide ideale N_T	$U_L = \frac{1}{2}LI^2$
$\Delta E_{\parallel} = 0$ $\Delta D_{\perp} = \sigma_{L}$	(18)	$V(x) = \frac{1}{2\varepsilon_0}(x - x_0)$ Anello con carica uniforme (sull'asse)	(49) (ess)		$\sigma_p = \mathbf{P} \cdot \mathbf{u}_n = \frac{k-1}{k} \sigma_l$	(84)	$\mathbf{D} = \mu_0 \frac{1}{L} 1$ Toroide	In un circuito (conta una volta og
$\Delta E_{\perp} = rac{\sigma}{arepsilon}$	(20)	$\mathbf{E}(x) = \frac{\lambda Rx}{x}$	(4)	$Q(t) = Q_0 (1 - e^{-\frac{t}{RC}}) $ (64)	· Dens. volumetrica di q polarizzata	zata	$\mathbf{B}(\tau) = \frac{\mu_0 N I}{2\pi} \mathbf{u}_{\phi} \tag{110}$	induttanza ed una ogni coppia)
$\Delta H_{\parallel} = \mathbf{K}_c imes \mathbf{u}_n $	(21)	$\mathbf{L}(x) = 2\varepsilon_0(x^2 + R^2)^{3/2} \mathbf{u}_x$	(++)	Scarica	$ \rho_p = -\nabla \cdot \mathbf{P} $	(82)	xy, con K \mathbf{u}_x de	$U = \frac{1}{2} \sum_{i=1}^{N} (L_i I_i^2 + \sum_{i=1}^{N} M_{i,j} I_i I_j) i \neq j$
In ipotesi di linearità		$V(x) = \frac{\lambda R}{2\varepsilon_0 \sqrt{x^2 + R^2}}$	(45)	$Q(t) = Q_0 e^{-\frac{t}{RC}} \tag{65}$	· Spostamento elettrico	60	lineare di corrente ${\bf p}_{\bf L} = \mu_0 {\bf K}$, (111)	
$\frac{D_{1, }}{k_1} = \frac{D_{2, }}{k_2}$	(22)	Disco carico uniformemente		· Condensatore pieno	$\mathbf{D} = \varepsilon_0 \mathbf{E}_k + \mathbf{F} = \varepsilon_0 \kappa \mathbf{E}_k = \varepsilon_0 \mathbf{E}_0$	(86)		· Legge di Felici
Se $\sigma_L = 0$		$\mathbf{E}(x) = rac{\sigma}{2arepsilon_0} \left(1 - rac{1}{\sqrt{1 + rac{R^2}{x^2}}} ight) \mathbf{u}_x$	(46)	resistività ρ	■ CORRENTI · Lavoro del generatore		b spessore sonda, b // B, b \perp I, n car/vol	$Q(t) = \frac{\Phi(0) - \Phi(t)}{R}$
$k_1E_{1,\perp}=k_2E_{2,\perp}$ Riferentono limas di B	(23)	$V(x) = \frac{\sigma}{2c} \left(x - \sqrt{x^2 + R^2} \right)$	(47)	$RC = \varepsilon_0 \rho \tag{66}$	$W_{qen} = \int^{t_2} V \mathrm{d}q(t) = 2U_E$	(87)	$V_H = \frac{IB}{n q b} \tag{112}$	· Circuito RL in DC
$\tan(\theta_2) = \mu_2$	(16)	Disco carico uniformemente $(x \gt\gt R)$	R)	rmature	$\int_{t_1} \int_{t_2} \int_{t_3} \int_{t$,	\cdot Forza di Ampere Correctionesa = for attrattiva	L si oppone alle variazioni di I smorzai dole
$\tan(\theta_1) - \frac{1}{\mu_1}$	(*7)	$\mathbf{E}(x) = \frac{\sigma}{2\varepsilon_0} \frac{R^2}{x^2} \mathbf{u}_x$	(48)	$F = \frac{2}{2} \partial_x \left(\frac{\tilde{z}}{C} \right) \tag{67}$	$\mathbf{J} = nq\mathbf{v} = \frac{\mathbf{v}}{\mathbf{v}}$	(88)	$F = \frac{\mu_0}{\sigma} \frac{I_1 I_2 L}{I_2} \tag{113}$	Appena inizia a circolare corrente $I(t) = V_0 I_1 = \frac{R}{t} I_1$
■ ELETTROSTATICA · Forza di Conlomb		$V(r) = \frac{\sigma}{r} \frac{R^2}{r}$	(49)	ano	$^ au$. Intensità di corrente		ettore A	$I(t) = \frac{1}{R} \begin{pmatrix} 1 - e^{-t} \end{pmatrix}$ Quando il circuito viene aperto
$\mathbf{F} = \frac{q_1 q_2}{4\pi\pi} \mathbf{u}_{1,2}$	(25)	Guscio cilindrico uniformemente carico	arico	$F = \frac{\sqrt{c}}{2\epsilon_0} = \frac{\sqrt{c}}{2\epsilon_0 \Sigma} \tag{68}$	$I = \frac{\mathrm{d}q(t)}{\mathrm{d}t} = \int_{\Sigma} \mathbf{J} \cdot \mathrm{d}\Sigma$	(68)	$\nabla \times \mathbf{A} = \mathbf{B} \tag{114}$	$I(t) = I_0 e^{-\frac{R}{L}t}$
• Definizione campo elettrico			(50)	■ DIPOLO ELETTRICO	· Leggi di Ohm		$\mathbf{A}(\mathbf{r_1}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{j}(\mathbf{r_2})}{r_{2,1}} d\tau_2 \tag{115}$	· Circuiti con barra mobile (b lunghe
$\mathbf{E} = rac{\mathbf{F}(\mathbf{r}_0)}{}$	(36)	27		into di dipolo	V = RI	(06)	Invarianza di Gauge $\mathbf{A'} = \mathbf{A} + \nabla \mathbf{W} \tag{116}$	F.e.m. indotta
go		$V(r) = \begin{cases} 0 & \text{se } r < R \\ Q & \ln(\frac{r}{r}) & \text{se } r > R \end{cases}$	(51)	$\mathbf{p} = q\mathbf{a}$ (03)	$\mathrm{d}R = \int_{\Gamma} \frac{\rho}{\Sigma} \mathrm{d}l$	(61)	alomb	$\varepsilon(t) = -Bbv(t)$
Eu. potenziale due caricne q_1q_2	1	\mathbb{R}^{J}			$\mathbf{E} = ho \mathbf{J}$	(65)	$\nabla \cdot \mathbf{A} = 0 \tag{117}$	Corrente in un circuito chiuso
+ +				$h \cdot h \cdot h \cdot h \cdot h$	_	(00)		Bbv(t)

ienza conduttore obmico	· Moto ciclotrone	Lavoro fornito ner muovere la harra	· Dens. LINEARE di corrente sulla
$VI - RI^2 - \frac{V^2}{V}$ (94)		$(Bm(t))^2$	SUPERFICIE
	$R = \frac{mv}{dB} \tag{119}$	$W = \frac{\langle \langle \cdot \rangle \rangle}{R} \tag{139}$	$\mathbf{K_m} = \mathbf{M} \times \mathbf{u}_r \tag{159}$
		Forza magnetica sulla barra	$\mathbf{M} = M\mathbf{u}_z \qquad \mathbf{K_m} = K_m \mathbf{u}_\phi$
serie $-\frac{n}{2}$ $\frac{n}{2}$ $\frac{n}{2}$	$T = \frac{2\pi m}{qB} \tag{120}$	$F = m \frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{(Bb)^2 v(t)}{R} \tag{140}$	· Dens. SUPERFICIALE corrente
$= \sum_{i=1}^{n} h_i \tag{90}$		ATTENZIONE: per tenere v costante è necessaria una F esterna; altrimenti	$\mathbf{i_m} = \nabla \times \mathbf{M} \tag{160}$
parameto $-\binom{n}{n-1}^{-1}$	$\sin(\theta) = \frac{qBR}{mv} \tag{121}$	essa è opposta a v e il moto è smorzato esponenzialmente	m,c
		· Disco di Barlow	Dens. SUPERFICIALE corrente
eale	$d = \frac{2\pi R}{\tan(\theta)} \tag{122}$	Campo elettrico	A
$=V_0 - r_i I \tag{98}$		$\mathbf{E} = \frac{\mathbf{F}}{Q} = \mathbf{v} \times \mathbf{B} = \omega x B \mathbf{u}_x \tag{141}$	
ggi di Kirchhoff ge dei nodi	■ INDUZIONE Coefficienti mutua induzione	F.e.m. indotta	$\mathbf{j_1} = \nabla \times \mathbf{H} \tag{163}$ $\oint \mathbf{H} \cdot d\mathbf{l} = I. \tag{164}$
$I_k = 0$ (99)		$\varepsilon = \frac{1}{2}\omega Br^2 \tag{142}$	
	$\Psi_{1,2} = 101.1 \qquad \Psi_{2,1} = 101.2 \qquad \qquad = 1.2$	un circuito chinso	· Energia di B
шавпе	· Flusso generato da 1 attravers	$I = \frac{\omega B r^2}{(1.42)^2}$	$U_B = \frac{1}{2\mu_0} \int_{\mathbb{R}^3} \mathbf{B}^2 d\tau \tag{165}$
$\Delta V_k = 0 \tag{100}$:	$U_B = \frac{1}{\tilde{\gamma}} \int \mathbf{j} \cdot \mathbf{A} d\tau \tag{166}$
AGNETOSTATICA	\cdot Induttanza Φ autoflusso	Se mion el sono lorze esterne n moto e smorzato Momento foncanto	imi
$\mathbf{z}\mathbf{a}$ di Lorentz $q\mathbf{v} \times \mathbf{B}$ (101)		$\mathbf{M} = -\frac{\omega B r^4}{^{4}B} \mathbf{u}_z \tag{144}$	$U_B = \frac{1}{2} \sum_{i=1}^{N} I_i \Phi_i \tag{167}$
ma legge di Laplace		Velocità angolare	■ CIRCUITI RLC
		$\omega(t) = \omega_0 e^{-\frac{t}{\tau}}$ $\tau = \frac{2mR}{B^2 r^2}$ (145)	· Impedenza La somma delle impedenze in serie e
$r(t) = \frac{1}{4\pi} \int \frac{r^2}{r^2} d\tau$ (103)	$L = \frac{\mu_0 N^2 \pi a}{\ln \left(\frac{R+b}{1} \right)} \tag{127}$	■ DIPOLO MAGNETICO	paraneto segue le regote del resistori
$\Rightarrow \nabla_r \times \left(\frac{\mu_0}{4\pi} \int \frac{\mathbf{J}}{r} d\tau\right) $ (104)	2π (R)	· Momento di dipolo	$Z = R + i \left(\omega L + \frac{1}{\omega C} \right) \tag{168}$
onda legge di Laplace	undotta	$d\mathbf{m} = I d\Sigma \mathbf{u}_n \tag{146}$	2_
$\int I(\mathrm{d}\mathbf{s} \times \mathrm{d}\mathbf{B}) \tag{105}$	$\Phi = -L \frac{d}{dt} \tag{128}$	· Potenziale del dipolo	$ Z = \sqrt{R^2 + \left(\omega L + \frac{\omega}{\omega C}\right)} \tag{169}$
di corpi notevoli (ATTENZIONE	· Fen	$\mathbf{A} = \frac{\mu_0}{4\pi r^2} \left(\mathbf{m} \times \mathbf{u}_r \right) \tag{147}$	· RLC serie in DC smorzato Equazione differenziale
dalla corrente I)	$\varepsilon = -\frac{\mathrm{d}\mathbf{Y}(\mathbf{D})}{\mathrm{d}t} = -L\frac{\mathrm{d}}{\mathrm{d}t} \tag{129}$	· Campo magnetico B generato	$I''(t) + 2\gamma I'(t) + \omega_0 I(t) = 0 \tag{170}$
$\mu_0 I r^2$ (106)	•	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{\epsilon - \frac{2}{3}} [3\mathbf{u}_r(\mathbf{m} \cdot \mathbf{u}_r) - \mathbf{m}] \tag{148}$	$\omega_0 = \frac{1}{} \qquad \gamma \equiv \frac{R}{}$
$z_z = \frac{1}{2(z^2 + r^2)^{3/2}} \mathbf{u}_z$ (100)	$I = \frac{\varepsilon_i}{R} = -\frac{\mathrm{d}\Phi(\mathbf{B})}{R\mathrm{d}t} \tag{130}$		$\omega = \sqrt{LC} \qquad 2L$ $\omega = \sqrt{\omega_0^2 - \gamma^2} \qquad \tau = \frac{1}{L}$
		torcente	
$\gamma) = \frac{1}{2\pi r} \mathbf{u}_{\phi} \tag{101}$	Mutua (solo una volta ogni coppia):	(GET) C T T T T T T T T T T T T T T T T T T	$I(t) = I_0 e^{-\gamma t} \sin(\omega t + \varphi $ (171)
,	$U_{1,2} = \frac{1}{2}MI_1I_2 + \frac{1}{2}MI_2I_1 \tag{131}$	e sul dipolo	Smorz. FORTE $\gamma^2 > \omega_0^2$
$\gamma) = \frac{1}{2\pi r \sqrt{r^2 + a^2}} \mathbf{u}_{\phi} \tag{108}$		$\mathbf{F} = \nabla (\mathbf{m} \cdot \mathbf{B}) \tag{150}$	$I(t) = e^{-\gamma t} (Ae^{\omega} + Be^{-\omega}) $ (172)
leale		· Energia del dipolo	Smorz. CRITICO $\gamma^2 = \omega_0^2$
$\mu_0 \stackrel{\cdot}{L} I \tag{109}$	In un oimmita (aanta una valta	$U = -\mathbf{m} \cdot \mathbf{B} \tag{151}$	$I(t) = e^{-\gamma t} (A + Bt) $ (173)
	in un circuito (conta una votea ogin induttanza ed una ogni coppia)	· Energia pot. tra due dipoli	A, B e φ si ricavano impostando le
		$U = -\mathbf{m_1} \cdot \mathbf{B_2} = -\mathbf{m_2} \cdot \mathbf{B_1} \tag{152}$	condizioni iniziali
no infinito su xy, con K \mathbf{u}_x densità are di corrente	$O = \frac{1}{2} \sum_{i=1} (L_i I_i + \sum_{j=1}^{M_{i,j}} I_i I_j)$	B è il campo magnetico generato dall'altro dipolo	Forzante
$\frac{\mu_0 \mathbf{K}}{2} \mathbf{u}_y \tag{111}$	T 1: 17:11	· Forza tra dipoli	$\varepsilon(t) = \varepsilon_0 \cos(\Omega t + \Phi) \tag{174}$
	. Legge di Felici $\Phi(0) - \Phi(t)$	$F(r) = \frac{3\mu_0}{4\pi r^4} \left[\left(\mathbf{m_1} \cdot \mathbf{u_r} \right) \mathbf{m_2} + \left(\mathbf{m_2} \cdot \mathbf{u_r} \right) \mathbf{m_1} + \right.$	Equazione differenziale
bessore sonda, b // B, b \perp I, n car/vol IB	$A(t) = \frac{x(t)}{R} \tag{134}$	$+ (\mathbf{m_1} \cdot \mathbf{m_2}) \mathbf{u_r} - 5 (\mathbf{m_1} \cdot \mathbf{u_r}) (\mathbf{m_2} \cdot \mathbf{u_r}) \mathbf{u_r}]$	$I''(t) + 2\gamma I'(t) + \omega_0 I(t) = -\frac{\Omega \varepsilon_0}{L} \sin(\Omega t + \Phi)$
$= \frac{\overline{n q b}}{n q b} \tag{112}$	•	(153)	(175)
za di Ampere r. equiversa = for. attrattiva	dole American districts a sincelous comments	■ MAGNETISMO	
241002		· Campo magnetico nella materia	$I(t) = I_0(\Omega)\cos(\Omega t) \tag{176}$
$\frac{2\pi}{2\pi} \frac{d}{d} \tag{113}$		$\mathbf{B} = \mu_0(\mathbf{M} + \mathbf{H}) \tag{154}$	Corrente massima
e vettore A	Quando il circuito viene aperto	$\mathbf{B} = k_m \mathbf{B}_0 = (1 + \chi_m) \mathbf{B}_0 \tag{155}$	$I_0(\Omega) = \frac{\varepsilon_0}{ Z } = \frac{\varepsilon_0}{\sqrt{R^2 + (\omega L + \frac{1}{\omega C})^2}} (177)$
		\cdot Campo magnetizzazione M	Sfasamento
r_1) = $\frac{r_0}{4\pi}$ $\int \frac{3(\pi^2)}{r_{2,1}} d\tau_2$ (115)		$\mathbf{M} = n\mathbf{m} = \frac{d\mathbf{m}}{d\tau} \tag{156}$	$\frac{1}{\tan \Phi(O)} = \frac{L\Omega - \frac{1}{\Omega C}}{L\Omega - \frac{1}{\Omega C}} $ (178)
arianza di Gauge ≡ A + ∇Ψ (116)	F.e.m. indotta	$\mathbf{M} = \frac{\chi_m \mathbf{B}}{\mathbf{B}} \tag{157}$	
lomb			NOTA: Lo sfasamento di I rispetto a ε è $-\Phi$
	Corrente in un circuito chiuso $Bbv(t)$		
$\mathbf{A} = -\mu_0 \mathbf{j} \tag{118}$		$\mathbf{H} = \frac{1}{\mu_0} - \mathbf{IM} = \frac{1}{\mu} = \frac{1}{\mu_m \mu_0} = \frac{1}{\lambda_m}$ (158)	$Im(Z) = 0 \rightarrow \omega_0 = \sqrt{IC}$ (119)

•				•																																						
	(238)	,	(239)		(240)	(241)	a Police	(242)		(243)			(244)		(245)	(976)	(017)	(247)		(248)	(249)		ınterte- dei due	c	z (-	(250)		(251)		(252)		(253)		(254)	(271)	ĺ	(272)	(273)		(274)	x	(275)
$\begin{aligned} & \text{Massimi secondari} \\ & m \in \mathbb{Z} - \{kN, kN - 1 \text{ con } k \in \mathbb{Z}\} \end{aligned}$	$\delta = \frac{2m+1}{\cos x} \pi \to \sin \theta = \frac{2m+1}{\cos x} \frac{\lambda}{3}$	2N $2N$ d	$I_{SEC} = \frac{I_0}{\left(\sin\frac{\pi d\sin\theta}{\lambda}\right)^2}$	Minimi $m \in \mathbb{Z} - \{kN\}$	$\delta = \frac{2m}{N}\pi \to \sin\theta = \frac{m\lambda}{Nd}$	$I_{MIN} = 0$ Senarazione anerolare (distanza a		$\Delta heta pprox rac{1}{N} rac{\lambda}{d\cos heta}$	Potere risolutore	$\frac{\delta\lambda}{\lambda} = \frac{1}{Nn}$	· Diffrazione	Intensity $\left(\sin\left(\frac{\pi a \sin \theta}{\sqrt{1 - \lambda^2}}\right)\right)^2$	$I(\theta) = I_0 \left(\frac{\lambda}{\pi a \sin \theta} \right)$	Massimo pincipale in $\theta=0$	$I_{MAX} = I_0$ Massimi socondari $m \in \mathbb{Z} = J = 1 \mid 0 \mid$	$\sin \theta - \frac{2m+1\lambda}{3}$	$\frac{1}{2}$	$I_{SEC} = \frac{I_0}{\left(\frac{\pi(2m+1)}{2m+1}\right)^2}$	Minimi $m \in \mathbb{Z} - \{0\}$	$\sin\theta = \frac{m\lambda}{s}$	$I_{MIN} = 0$	· Reticolo di diffrazione	Sovrapposizione di diffrazione e interfe- renza, l'intensità è il prodotto dei due effetti		$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\frac{\pi a \sin \theta}{\lambda}} \right) \frac{\sin(\frac{N\pi d \sin \theta}{\lambda})}{\sin(\frac{\pi d \sin \theta}{\lambda})} \right)^2$: :	Dispersione	$D = \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{m}{d\cos\theta_m}$	Fattore molt. di inclinazione	$f(\theta) = \frac{1 + \cos \theta}{2}$	· Filtro polarizzatore Luce NON polarizzata	$I = \frac{I_0}{2}$	Luce polarizzata (Legge di Malus)	$I = I_0 \cos^2(\theta)$	$\int \frac{1}{(x^2 + r^2)^{3/2}} \mathrm{d}x = \frac{x}{r^2 \sqrt{r^2 + x^2}}$	T. J.	$\int \frac{x}{\sqrt{x^2 + r^2}} dx = \sqrt{r^2 + x^2}$	$\int \frac{x}{(x^2 + r^2)^{3/2}} \mathrm{d}x = -\frac{1}{\sqrt{r^2 + x^2}}$	$(1+\sin x)$	$\int \frac{1}{\cos x} dx = \log \left(\frac{1 + \sin x}{\cos x} \right)$	$\int_{-\infty}^{\infty} \frac{3a\cos ax}{a} \cos 3ax$	$\int \sin \frac{axux}{a} = -\frac{1}{4a} \qquad 12$
	(220)		(221)		(222)	(223)		(224)		(225)	(226)		(227)			(228)		(229)			(230)	ttile	(231)		(232)		(233)		(234)		(235)		(236)	(237)		(267)	(:)1	(268)			(269)	(270)
· Interferenza generica Onda risultante	$f(\mathbf{r},t) = Ae^{i(kr_1-\omega t + \alpha)}$	Ampiezza	$A = \sqrt{A_1^2 + A_2^2 + 2A_1 A_2 \cos \delta}$	Diff. cammino ottico	$\delta = \alpha_2 - \alpha_1 = (\Phi_2 - \Phi_1 + k(r_2 - r_1)$ Intensità	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$	Fase risultante α	$\tan \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_1 \cos \alpha_1 + A_2 \cos \alpha_2}$	Massimi	$\delta = 2n\pi$ Winimi	$\delta = (2n+1)\pi$	· Condizione di Fraunhofer	$ heta = rac{\Delta y}{L}$	L grande tale che tan $\theta \approx \theta$	· Interferenza in fase Diff. cammino ottico	$\delta = k(r_2 - r_1) = \frac{2\pi}{\lambda} d\sin\theta$	Costruttiva	$r_2 - r_1 = n\lambda \to \sin\theta = n\frac{\lambda}{d} n \in \mathbb{Z}$	Distruttiva	$r_2 - r_1 = \frac{2n+1}{2}\lambda \to \sin\theta = \frac{2n+1}{2}\frac{\lambda}{d}$		Interf. riflessione su lastra sottile $(n \text{ indice rifr.}, t \text{ spessore lastra})$	Diff. cammino ottico $\delta = \frac{2\pi}{100} \frac{2nt}{100}$	$\lambda \cos \theta_t$ Massimi $m \in \mathbb{N}$	$t = \frac{2m+1}{4n}\lambda\cos\theta_t$	Minimi $m \in \mathbb{N}$	$t = \frac{m}{2n}\lambda\cos\theta_t$	· Interferenza N fenditure Diff. cammino ottico	$\delta = \frac{2\pi}{100} d\sin\theta$	λ Intensità	$I(\theta) = I_0 \left(\frac{\sin(N\frac{\delta}{2})}{\sin\frac{\delta}{2}} \right)^2$	Massimi principali $m \in \mathbb{Z}$	$\delta = 2m\pi \to \sin\theta = \frac{m\lambda}{d}$	$I_{MAX} = N^2 I_0$	· Attrito viscoso Equazione differenziale	$v' + \frac{v}{-} = K$	Soluzione	$v(t) = k\tau \left(1 - e^{-\frac{t}{\tau}}\right)$	■ ANALISI MATEMATICA	· Integrali ricorrenti	$\int \frac{1}{x^2 + r^2} dx = \frac{1}{r} \arctan \frac{x}{r}$	$\int \frac{1}{\sqrt{x^2 + r^2}} \mathrm{d}x = \ln \sqrt{x^2 + r^2} + x$
(106)	(198)		(199)		(200)	(201)		(202)	(203)	(204)		(205)	(206)	(207)	(806)	(100)	(200)	(GO1)	(210)	(211)	(212)	sso non	(213)	(914)	(215)		(010)	(216)	(217)		(218)	(219)) V	-0124	(Foc)	(261)	(262)	(263)	(264)		(265)	(266)
Indice di rifrazione $\frac{c}{c} = \frac{c}{\sqrt{b^2 b^2}}$	$n = - = \sqrt{\kappa_e \kappa_m}$	· Legge di Snell-Cartesio	$n_1 \sin \theta_1 = n_2 \sin \theta_2$	· Coefficienti di Fresnel Definizione	$r = \frac{E_r}{E_i} \qquad R = \frac{P_r}{P_i} = \frac{I_r}{I_i}$	$t = \frac{E_t}{E_i} \qquad T = \frac{P_t}{P_i} = \frac{I_t}{I_i}$	Raggio RIFLESSO polarizzato	$r_{\sigma} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t + \theta_i)}$	$r_{\pi} = \frac{\tan(\theta_t - \theta_i)}{\cot(\theta_t - \theta_i)}$	$\tan(\theta_t + \theta_i)$ $R_{\sigma} = r_{\sigma}^2 \qquad R_{\pi} = r_{\pi}^2$	Raggio TRASMESSO polarizzato	$t_{\sigma} = \frac{2N_t \cos \theta_t}{n_t \cos \theta_t + n_t \cos \theta_t}$	$t_p i = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$	$T_{\sigma} = 1 - R_{\sigma} \qquad T_{\pi} = 1 - R_{\pi}$	Luce INOIN polarizzata $B = \frac{1}{L} \left(B + B \right) \left(T + T \right) (908)$	$10 = \frac{1}{2} \left(\frac{1}{10} + \frac{1}{10} \right) = \frac{1}{2} \left(\frac{1}{10} + \frac{1}{10} \right)$ Incidenza normale $\left(\cos \theta : \frac{2}{10} \cos \theta : \frac{1}{10} \right)$	$r = \frac{n_i - n_t}{n}$	$n_i + n_t$	$R = \left(\frac{n_i - n_t}{n_i + n_t}\right)^{\omega}$	$t = \frac{2n_i}{n_i + n_t}$	$T = \frac{4n_i n_t}{(n_1 + n_1)^2}$	Angolo di Brewster (il raggio riflesso non	na potat. pataneta) $\theta_i + \theta_t = \frac{\pi}{2} \to \theta_B = \theta_i = \arctan \frac{n_t}{2}$	$\frac{2}{2} \qquad n_i$ $R = \frac{1}{2} \cos^2(2\theta_i)$	T = 1 - R	· Pressione di radiazione	Superiore Association I_i	$p = \frac{-}{v}$ Superficie RIFLETTENTE	$n = \frac{I_t + I_t + I_T}{}$	v . Bannorto di nolarizzazione	$\beta_R = \frac{P_{\sigma}^R - P_{\pi}^R}{P_{\sigma}^R + P_{\sigma}^R}$	$\beta_T = \frac{P_T^\sigma - P_T^\pi}{P_T^\sigma - P_T^\pi}$	$P_T^0 + P_T^0$ - INTEREDEDENTA C. DIEEDATO	NE	· Lavoro	$F = \nabla W = -\nabla U$ $M_{\text{obs}} = -\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=$. Moto circolare unif. accelerato $v = \omega r$	$a = \frac{v^2}{r} = \omega^2 r$	$\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$	· Moto armonico Equazione differenziale	$x'' + \omega^2 x = 0$	$x(t) = A\sin(\omega t + \varphi)$
į	(180)		(181)		(182)			(183)	(184)			(185)		(186)		(187)	a di Σ		(188)		(189)		(190)	(191)		(192)		(193)		(194)	(195)	(301)	(190)	(197)		(255)	(256)	(257)	(258)	(259)		(260)
. Effetto Joule	$\langle P_R \rangle = \frac{1}{2R}$	· Potenza media totale	$\langle P \rangle = \frac{V_0 I_0}{2} \cos(\phi)$	· V e I efficace	$V_{eff} = \frac{\sqrt{2}}{2}V_0 \qquad I_{eff} = \frac{\sqrt{2}}{2}I_0$	■ CAMPO EM e OTTICA	· Campi in un'onda EM (Nel vuoto $v = c$)	$E(x,t) = E_0 \cos(kx - \omega t)$	$B(x,t) = \frac{E_0}{v} \cos(kx - \omega t)$	$\omega = kv k = \frac{2\pi}{\lambda} \lambda = \frac{v}{\nu}$	· Vettore di Poynting	$\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}$	\cdot Intensità media onda	$I = \langle S \rangle = \langle E^2 \varepsilon v \rangle$	· Potenza	$P = I\Sigma$	L'intensità varia in base alla scelta di Σ	· Equazioni di continuita Teorema di Poynting	$\nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{j} + \frac{\partial u}{\partial t} = 0$	Conservazione della carica	$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$	· Densità di en. campo EM	$u_{EM} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$	$U_{EM} = \int_{\mathbb{R}^3} u_{EM} \mathrm{d} au$	· Densità di quantità di moto	0.00 O.00	· Effetto Doppler	$\nu' = \nu \frac{v - v_{oss}}{v - v_{sorg}}$	· Oscillazione del dipolo	$I(r,\theta) = \frac{I_0}{r^2} \sin^2(\theta)$	$P = \int \int I(r,\theta) dr d\theta = \frac{8}{3}\pi I_0$. Velocità dell'onda $rac{1}{2}$	$v^{-} = \frac{k_e \in 0 k_m \mu_0}{1}$	$c^2 = \frac{1}{\varepsilon_0 \mu_0}$	■ UNITÀ DI MISURA	$H = \frac{Wb}{A} = Tm^2 = \frac{m^2 kg}{A^2 s^2}$	$\Omega = \frac{V}{A} = \frac{V^2}{W} = \frac{m^2 kg}{A^2 s^3}$	$T = \frac{N}{Am} = \frac{kg}{As^2}$	$V = \frac{J}{C} = \frac{W}{A} = \frac{m^2 kg}{s^3 A}$	$F = \frac{C}{V} = \frac{C^2}{J} = \frac{A^2 s^4}{m^2 kg}$	■ FISICA 1	. Momento torence $M=\mathbf{r} \times \mathbf{F} = I \alpha$

$\cos \alpha \sin \beta $ (288)	$\sin \alpha \sin \beta$ (289)	(290)	(291)	$\frac{\alpha}{\cos \alpha} \tag{292}$				
. Identità geometriche $\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta (288)$	$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta (289)$	$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$				
• Ic (282)	(283) (284)	× B) (285)	(586)	(287)	Cilindriche	$\frac{\partial f}{\partial r}\mathbf{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\theta + \frac{\partial f}{\partial z}\mathbf{z}$	$\frac{1}{r}\frac{\partial F_r}{\partial r} + \frac{1}{r}\frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$	$ \begin{pmatrix} \frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_{\phi}}{\partial z} \\ \frac{\partial F_r}{\partial z} - \frac{\partial (rF_z)}{\partial r} \\ \frac{1}{r} \begin{pmatrix} \partial (rF_{\phi}) & \partial F_r \\ \partial r & \partial \phi \end{pmatrix} $
. Identità vettoriali $\nabla\cdot \left(\nabla\times \mathbf{A}\right)=0$	$\nabla \times (\nabla f) = 0$ $\nabla \cdot (f\mathbf{A} = f\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$	$\nabla(\mathbf{A} \cdot \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$	$\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^{2} \mathbf{A}$	$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$	Sferiche	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \phi$	$\frac{1}{r^2}\frac{\partial r^2F_r}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial F_\theta \sin\theta}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi}$	$\frac{1}{\sin \theta} \left(\frac{\partial F_{\phi} \sin \theta}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \right)$ $\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial F_{r}}{\partial \phi} - \frac{\partial (rF_{\phi})}{\partial r} \right)$ $\frac{1}{r} \left(\frac{\partial (rF_{\theta})}{\partial r} - \frac{\partial F_{r}}{\partial \theta} \right)$
	(279)	(280)	$\operatorname{in}(\beta t)$ (281)					$\frac{1}{r \sin \theta} \left(\frac{1}{r \sin \theta} \right)$
ni 0	$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ Se $\Delta = 0$	$y(t) = c_1 e^{\lambda_1 t} + t c_2 e^{\lambda_2 t}$ Se $\Delta < 0$	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) (281)$	$\operatorname{con} \alpha = \operatorname{Re}(\lambda) \in \beta = \operatorname{Im}(\lambda)$	Cartesiane	$\frac{\partial f}{\partial x}\mathbf{x} + \frac{\partial f}{\partial y}\mathbf{y} + \frac{\partial f}{\partial z}\mathbf{z}$	$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$ \begin{pmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial x} - \frac{\partial F_z}{\partial x} \\ \frac{\partial z}{\partial x} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{pmatrix} $
	(276) $y(t) = c_1 \epsilon$ $Se \Delta = 0$		(278) y(t) = 0			Gradiente ($\nabla f =$)	Divergenza $(\nabla \cdot \mathbf{F} =)$	Rotore $(\nabla \times \mathbf{F} =)$
· Differenziale di primo ordine Forma generale	$y'(t) + a(t)y(t) = b(t)$ Soluzione $y'(t) = e^{-A(t)(c+\int b(t)e^{A(t)}dt)}$	Differenziale di secondo ordine omogeneo Forma generale	$y'' + ay' + by = 0 \qquad a, b \in \mathbb{R}$	$\lambda_{1,2} \in \mathbb{C}$ sono le soluzioni dell'equazione associata				

ll laplaciano di un campo scalare Φ , in qualunque coordinata, è $\nabla \cdot \nabla \Phi$