

VI SBQEE

21 a 24 de agosto de 2005 Belém – Pará – Brasil

Código: BEL 15 7523 Tópico: Qualidade da Energia e Educação

LABORATÓRIO VIRTUAL PARA ESTUDO DE AFUNDAMENTOS DE TENSÃO

R. P. S. C. R. SCHMIDLIN G. S. L. C. J. R. M. B. A. B. LEÃO* JR. FERREIRA SILVEIRA MARQUES MOREIRA

UFC

RESUMO

O presente artigo apresenta uma ferramenta computacional desenvolvida com o objetivo de contribuir com o estudo dos afundamentos de tensão, e instrumentar o processo de capacitação acadêmica e profissional na área de qualidade de energia elétrica. A ferramenta é dotada de interface gráfica amigável que permite a medição e visualização da tensão mediante ocorrência de curto-circuito. caracterização Α dos afundamentos de tensão considera a influência de fatores como o tipo de falta, o tipo de conexão da carga, e o tipo de conexão transformadores localizados entre a falta e a computacional Α ferramenta desenvolvida usando o software LabView por proporcionar facilidade no desenvolvimento de plataformas gráficas e manipulação de dados e equações, e adequada visualização numérica e gráfica de resultados.

PALAVRAS-CHAVE

Qualidade de Energia Elétrica, Afundamento de Tensão, Labview.

1.0 INTRODUÇÃO

Afundamentos de tensão são reduções de curta duração na tensão eficaz causadas por grandes e súbitas variações na corrente provocadas por curtos-circuitos, entrada de grandes cargas, e partida de grandes motores. O interesse pelo estudo de afundamentos de tensão decorre do fato de tratar-se de um distúrbio sempre presente

nos sistemas elétricos, com maior ou menor fregüência de ocorrência, no entanto de consequências que podem incorrer em vultosos prejuízos [1]. Sua caracterização é feita a partir consideração de parâmetros, magnitude, duração, frequência de ocorrência, ângulo de fase, e desequilíbrio. A importância da caracterização do afundamento de tensão está na informação capaz de ser obtida de modo a definir a origem do afundamento e o efeito sobre a carga elétrica. Existem vários estudos e propostas visando a caracterização afundamentos de tensão [2,3,4].

Este artigo apresenta uma ferramenta computacional, denominada SagView, desenvolvida com o objetivo de contribuir com o estudo dos afundamentos de tensão em sistemas elétricos trifásicos, bem como instrumentar o capacitação processo de acadêmica profissional na área de qualidade de energia elétrica. A ferramenta permite a medição e visualização da tensão remanescente no nos terminais de uma carga resultante de faltas por curto-circuito. O Sagview foi desenvolvido em linguagem de programação gráfica conhecida como linguagem G.

A caracterização do afundamento está baseada no método adotado por M. Bollen [1] com obtenção de magnitude e ângulo de fase dos fasores de tensão. Para tal, faz-se uso da teoria de componentes simétricas [5] e consideram-se as influências de fatores como o tipo de falta, o tipo de conexão da carga e o tipo de conexão dos

transformadores intermediários, localizados entre a falta e a carga na determinação da tensão resultante na barra da carga.

Ao se propagarem pela rede, os afundamentos de tensão sofrem mudanças em suas características de magnitude e ângulo de fase. A ferramenta gráfica *SagView* modela a influência de faltas por curto-circuito, simétrico e assimétrico, sobre os afundamentos de tensão. Os curtos-circuitos são a causa principal e mais comum de afundamentos de tensão.

Os transformadores à montante do ponto monitorado são classificados em três grupos: transformadores que não alteram as tensões em pu entre primário e secundário, transformadores que apenas eliminam a componente de seqüência zero da tensão, e transformadores que provocam deslocamento angular entre as tensões de primário e secundário e eliminam a componente de seqüência zero da tensão. Os transformadores são considerados ideais. A conexão da carga, delta ou estrela, é também levada em consideração sobre a influência nas características do afundamento de tensão.

2.0 TIPOS DE FALTAS

Os tipos de curtos-circuitos em sistemas trifásicos podem ser do tipo: trifásicos, bifásicos, bifásicos terra e monofásicos.

2.1 Faltas balanceadas

Os curtos-circuitos trifásicos, também chamados balanceados, provocam afundamentos de tensão que mantêm, mesmo durante a falta, o balanceamento das três fases do sistema.

No afundamento de tensão balanceado observase uma redução de igual magnitude para os fasores de tensão, sem alteração no ângulo de fase.

2.2 Faltas desbalanceadas

Os demais tipos de curtos-circuitos são assimétricos e causam afundamentos de tensão com desequilíbrio entre as fases, o que torna necessário o uso da teoria de componentes simétricas como ferramenta de análise.

3.0 CLASSIFICAÇÃO DAS FALTAS

Segundo M. Bollen [1] cada tipo de falta resulta em um tipo de afundamento de tensão.

TABELA I TIPOS DE AFUNDAMENTOS DE TENSÃO

Tipo de Falta	Tipo de Afundamento
Falta trifásica	Tipo A: Carga ∆ e Y

$V_a = I_a Z_f$	$V_a = h$
$V_b = I_b Z_f$	$V_b = -\frac{1}{2}h - \frac{1}{2}jh\sqrt{3}$
$V_c = I_c Z_f$	$V_{c} = -\frac{1}{2}h + \frac{1}{2}jh\sqrt{3}$
Falta monofásica	Tipo B: Carga Y
$I_b = 0$	$V_a = h$
$I_c = 0$	$V_{b} = -\frac{1}{2} - \frac{1}{2} j\sqrt{3}$
$V_a = I_a Z_f$	$V_{c} = -\frac{1}{2} + \frac{1}{2}j\sqrt{3}$
_	7° 2'2''
	Tipo C*: Carga Δ $V_a = 1$
	$V_{_{b}}=-\frac{1}{2}-\frac{1}{2}\bigg(\frac{1}{3}+\frac{2}{3}h\bigg)j\sqrt{3}$
	$V_{c} = -\frac{1}{2} + \frac{1}{2} \left(\frac{1}{3} + \frac{2}{3} h \right) j\sqrt{3}$
Falta bifásica	Tipo C: Carga Y
$I_a = 0$	$V_a = 1$
$I_b = -I_c$	$V_b = -\frac{1}{2} - \frac{1}{2} hj\sqrt{3}$
$V_{bc} = I_b Z_f$	$V_{c} = -\frac{1}{2} + \frac{1}{2} hj\sqrt{3}$
	Tipo D: Carga Δ V _a = h
	$V_b = -\frac{1}{2}h - \frac{1}{2}j\sqrt{3}$
	$V_c = -\frac{1}{2}h + \frac{1}{2}j\sqrt{3}$
Falta bifásica-	Tipo E: Carga Y
terra	$V_a = 1$
$I_a = 0$ $V_b = V_c$	$V_b = -\frac{1}{2}h - \frac{1}{2}hj\sqrt{3}$
$V_b = (I_b + I_c)Z_f$	$V_{\rm e} = -\frac{1}{2}h + \frac{1}{2}hj\sqrt{3}$
	Tipo F: Carga Δ $V_a = h$
	$V_{b} = -\frac{1}{2}h - \frac{1}{2}\left(\frac{2}{3} + \frac{1}{3}h\right)j\sqrt{3}$
	$V_{c} = -\frac{1}{2}h + \frac{1}{2}\left(\frac{2}{3} + \frac{1}{3}h\right)j\sqrt{3}$

Desconsiderando, *a priori*, a existência de transformadores entre a falta e a carga, verificase que a tensão residual observada no barramento de carga depende tanto do tipo de falta como da conexão da carga como mostra a Tabela I. Na primeira coluna da Tabela I são apresentadas as relações para cada tipo de falta, em que Z_f representa a impedância de falta [5]. As tensões V_a , V_b e V_c na segunda coluna representam as tensões residuais, em pu, de fase, para as cargas em estrela, ou de linha, para as cargas em delta, cuja magnitude e abertura angular é definida por h, fator que varia entre zero e um $(0 \le h \le 1)$.

As tensões de linha na Tabela I são obtidas a partir das tensões de fase, divididas por $\sqrt{3}$, multiplicadas pelo operador j e renomeadas, de modo que V_{bc} assume o eixo horizontal e passa a ser denominada de V_a , tornando-se a referência angular para os demais fasores V_b e V_c .

A falta trifásica resulta no mesmo tipo de afundamento de tensão, quer a carga esteja conectada em estrela ou em delta. Isto ocorre devido à consideração feita de rotação nos eixos das tensões de linha.

Observando a formulação matemática afundamentos tipo C e C* nota-se que são semelhantes, em que C* pode ser obtido a partir de C, simplesmente substituindo h por $\frac{1}{3} + \frac{2}{3}h$. Nos dois afundamentos, as fases V_b e V_c sofrem redução em magnitude, com o afundamento tipo C tornando-se mais severo que C* à medida que h tende a zero, o ângulo de abertura entre V_b e V_c diminui, e a fase V_a permanece inalterada. Isto significa que as características das tensões resultantes de uma falta monofásica sobre uma carga em delta e de uma falta bifásica sobre uma estrela semelhantes. carga em são Semelhantemente, os afundamentos tipo D e F apresentam a mesma disposição fasorial de redução nas três fases e maior abertura entre as fases V_a e V_b à medida que h tende a zero. Isto significa que faltas bifásicas e bifásicas-terra resultam em semelhantes tensões de linha.

O diagrama fasorial para cada tipo de afundamento pode ser observado na Figura 1, onde as linhas tracejadas e cheias indicam, respectivamente, as tensões pré-falta e durante a falta.

Diagramas fasoriais paras os afundamentos de tensão.

4.0 INFLUÊNCIA DOS TRANSFORMADORES

A presença de transformadores localizados entre a falta e a carga pode influenciar nas características do afundamento de tensão visto pela carga [1,6].

Os transformadores trifásicos podem ser classificados em três grupos de acordo com a influência do tipo de conexão na propagação das tensões entre primário e secundário. A Tabela II apresenta o fenômeno físico relacionado a cada grupo de transformador e o efeito sobre a tensão de secundário.

TABELA II
Grupos de transformadores

Crapes de transformadores							
Grupo	Fenômeno	Conseqüênci	Conexã				
Grupo	renomeno	а	0				
1	Não filtra a componente de seqüência zero da tensão e nem introduz defasa-mento	As tensões de primário e secundário em pu são iguais.	YNyn				
	angular.						

2	Filtra a componente de seqüência zero da tensão e não introduz defasa-mento angular.	A tensão de secundário é igual à primária menos a componente de seqüência zero.	Yy Dd Dz	
3	Além de filtrar a componente de seqüência zero da tensão, introduz defasamento angular entre as tensões primária e secundária.	Cada tensão secundária é igual à diferença entre duas tensões primárias.	Yd Dy Yz	

Nos transformadores dos grupos 2 e 3 as tensões em pu no lado secundário são iguais às tensões em pu no lado primário menos a componente de seqüência zero.

$$V_0 = \frac{1}{3} (V_a + V_b + V_c)$$

O afundamento de tensão tipo A é simétrico e, por conseguinte Vo é igual a zero. Os afundamentos de tensão tipo C*, D e F referemse à tensão de linha e, portanto não existe componente de seqüência zero. O afundamento de tensão tipo C é originado por falta bifásica, onde não há presença de componente de seqüência zero. Para os afundamentos de tensão tipo B e E a componente de següência zero é $V_0 = \frac{1}{3}(1-h)$ $V_0 = \frac{1}{3}(h-1)$ por е respectivamente. O afundamento de tensão tipo B e tipo E ao ser refletido para o secundário de transformadores que filtram a componente de seqüência zero resulta em tensões como mostradas na Tabela III.

TABELA III Tensão de Secundário sem Seqüência Zero

Primário	Secundário
Tipo B	Tipo D*
$V_{a} = h$ $V_{b} = -\frac{1}{2} - \frac{1}{2} j\sqrt{3}$ $V_{c} = -\frac{1}{2} + \frac{1}{2} j\sqrt{3}$	$\begin{split} V_{a} &= \frac{1}{3} + \frac{2}{3}h \\ V_{b} &= -\bigg(\frac{1}{6} + \frac{1}{3}h\bigg) - \frac{1}{2}j\sqrt{3} \\ V_{c} &= -\bigg(\frac{1}{6} + \frac{1}{3}h\bigg) + \frac{1}{2}j\sqrt{3} \end{split}$
Tipo E	Tipo G

$$\begin{aligned} V_{a} &= 1 \\ V_{b} &= -\frac{1}{2}h - j\frac{1}{2}h\sqrt{3} \\ V_{c} &= -\frac{1}{2}h + j\frac{1}{2}h\sqrt{3} \end{aligned}$$

$$V_{a} &= \frac{2}{3} + \frac{1}{3}h$$

$$V_{b} &= -\left(\frac{1}{3} + \frac{1}{6}h\right) - j\frac{1}{2}h\sqrt{3}$$

$$V_{c} &= -\left(\frac{1}{3} + \frac{1}{6}h\right) + j\frac{1}{2}h\sqrt{3}$$

Como observado para C e C*, os afundamentos de tensão D e D* são similares bastando substituir em D o valor de h por $^{1}/_{3}$ + $^{2}/_{3}$ h.

A Tabela IV sumariza o tipo de afundamento visto no secundário dos transformadores dos grupos 1, 2 e 3.

TABELA IV
Tipo de afundamento de tensão no secundário.

Grupo de	Afundamento de tensão no lado do primário								
Trafo	Tipo	Tipo	Tipo	Tipo	Tipo	Tipo	Tipo		
A B C			С	D	Е	F	G		
1	Α	В	С	D	Е	F	G		
2	Α	D*	С	D	G	F	G		
3	Α	C*	D	С	F	G	F		

Pela análise da Tabela IV pode-se verificar a presença de um novo tipo de afundamento denominado de tipo G, resultado da aplicação de afundamentos de tensão dos tipos E e F ao primário de transformadores dos grupos 2 e 3, respectivamente. Sua formulação matemática e diagrama fasorial são mostrados na Figura 2.

$$\begin{split} &V_{a}=\frac{2}{3}+\frac{1}{3}\,V\\ &V_{b}=-\frac{1}{3}-\frac{1}{6}V-\frac{1}{2}Vj\sqrt{3}\\ &V_{c}=-\frac{1}{3}-\frac{1}{6}V+\frac{1}{2}Vj\sqrt{3} \end{split}$$

FIGURA 2

Diagrama fasorial e equação para a falta do tipo G.

A Tabela V sumariza o tipo de afundamento de tensão levando em consideração ao tipo de falta, o tipo de conexão do transformador e o tipo de conexão da carga.

TABELA V
Tipo de afundamento de tensão versus tipo de conexão do transformador e tipo de carga.

	Tipo de Falta	Monofásica			Bifásica		Bifásica-terra		Trifásica				
	Tipo de	YNyn	Yd,	Yd,	YNyn	Yd,	Yd,	YNyn	Yd,	Yd,	YNyn	Yd,Dy,	Yd,Dy,
	Transformador		Dy,Dz	Dy,Yz		Dy,Dz	Dy,Yz		Dy,Dz	Dy,Yz		Dz	Yz
Tipo de	Delta	C*	C*	D*	D	D	С	F	F	G	Α	Α	Α
Carga	Estrela	В	D*	C*	С	С	D	Е	G	F	Α	Α	Α

5.0 FERRAMENTA SAGVIEW

A linguagem G, empregada pelo LabView da National Instruments, é um novo paradigma de linguagem de programação gráfica ou visual. A programação em linguagem G é similar à conhecida associação em diagramas de blocos, o que a torna extremamente

intuitiva e de fácil aprendizagem. Invés de escrever programas, a linguagem G permite a construção de diagramas de blocos sem a preocupação com a sintaxe encontrada na programação convencional.

A linguagem G utiliza uma programação em duas janelas, que são: painel frontal - janela vista pelo usuário, ou seja, é a tela de apresentação do programa, e diagrama de blocos - ambiente de programação propriamente dito, onde cada objeto nessa janela tem uma ligação direta com um instrumento virtual do painel frontal.

Na Figura 3 pode-se observar o fluxograma do software implementado *SagView*, onde são destacadas três áreas: entrada, processo e saída.

FIGURA 3 Fluxograma do programa SagView.

Na área de entrada são coletados os dados necessários para a simulação. No painel frontal, o usuário seleciona o tipo de falta (trifásica, bifásica, bifásica-terra, ou monofásica), o tipo de conexão do transformador (YNyn, Yy, Dd, Dz, Yd, Dy ou Yz) e o tipo de conexão da carga (∆ ou Y), além do valor de h. Os dados de entrada são enviados à área de processo. O resultado do

processamento, por sua vez, é enviado à área de saída do programa. Os principais dados mostrados são os diagramas fasoriais das tensões nos lados primário e secundário do transformador e os respectivos valores de magnitude e ângulo de fase para cada fasor. Na Figura 4 é mostrada a janela principal do programa onde está representada uma falta trifásica, tipo A, com h=0,5, através de transformador Dy com carga em delta.

O SagView mostra ainda as formas de onda e as componentes de seqüência das tensões de primário e secundário do transformador. Para facilitar a visualização de todos os dados, as formas de onda e as componentes de seqüências são mostrados em janelas secundárias mostradas nas Figuras 5 e 6.

FIGURA 4
Janela principal do SagView com os dados de entrada e diagramas fasorias das tensões no primário e secundário do transformador.

FIGURA 5
Janela secundária do SagView com as formas de onda de tensão de primário e de secundário.

FIGURA 6
Janela secundária do SagView com as componentes de seqüência do primário e do secundário.

6.0 AFUNDAMENTO DE TENSÃO POR FALTAS ASSIMÉTRICAS

Exemplos de faltas assimétricas serão apresentadas de modo a demonstrar a utilidade do programa *SagView*.

Para uma falta bifásica-terra, tipo E, h=0,5, à montante de um transformador Yy e com carga em estrela tem-se como resposta os fasores apresentados nas Figuras 7, 8 e 9. A Figura 7 mostra o diagrama fasorial das tensões de fase no primário e secundário do transformador Yy. Enquanto a tensão de primário representa um afundamento do tipo E, a tensão de secundário apresenta um afundamento tipo G, isto é, tensões de fase de primário menos a componente de seqüência zero (V₀=1/3(1-h)). A carga, conectada em Y, tem em seus terminais a tensão de fase de secundário mostrada na Figura 7. As componentes de sequências mostradas na Figura 9 atestam a ausência de següência zero nas tensões de secundário do transformador.

Se ao invés do transformador Yy for aplicada uma falta tipo E à montante de um transformador Y-Δ que alimenta uma carga em Y, as tensões de secundário sofrerão deslocamento angular em relação às tensões de primário tendo ao mesmo tempo a componente de seqüência zero filtrada. Assim, a tensão nos terminais da carga representa um afundamento tipo F. A componente de seqüência zero não está presente na tensão de secundário na Figura 10.

Quando a conexão da carga é mudada para Δ mantendo-se a falta bifásica e a conexão do transformador Y- Δ ocorre alteração nos fasores de entrada e de saída.

A Figura 11 representa a condição de uma falta tipo F que sofreu deslocamento angular ao passar por um transformador defasador.

FIGURA 7
Diagrama fasorial para falta tipo E, transformador Yy e carga conectada em Y.

FIGURA 8 Formas de onda de tensões para falta tipo E, h=0,5.

FIGURA 9
Componentes de seqüência das tensões de primário e secundário.

FIGURA 10
Diagrama fasorial de falta tipo E através de transformador Yd alimentando carga em Y.

7.0 CONCLUSÃO

Baseado no método proposto por M. Bollen [1], o qual considera a influência de fatores como o tipo de falta, o tipo de conexão da carga, e o tipo de conexão dos transformadores intermediários

localizados entre a falta e a carga sobre a tensão vista pela carga foi desenvolvido um programa capaz de mostrar numérica e graficamente as tensões no primário e secundário do transformador.

Falta.vi Fase A Fase B Fase C 0.50 0.76 0,76 -109.11 109,11 Ângulo 0,00 Tipos de Falta Bifásica-terra $\,\,
abla$ Magnitude da Falta 0,50 Tipo de Trafo Yd ▽ Tipo de Carga Fase A Fase B 0,60 0,83 0,60 133,90 Ângulo 0.00 -133,90 Secundário

FIGURA 11
Diagrama fasorial de falta tipo E através de transformador Yd alimentando carga em Y.

O programa *Sagview* apresenta o módulo e ângulo de fase das tensões, o diagrama fasorial, as formas de onda, e as componentes de seqüências em módulo, ângulo e disposição

fasorial. O *SagView* é uma ferramenta de suporte para o treinamento de profissionais interessados na compreensão de distúrbio de afundamento de tensão.

7.0 REFERÊNCIAS BIBLIOGRÁFICAS

- [1] M. H. J. Bollen, Understanding Power Quality Problems – Voltage Sags and Interruptions, IEEE Press Series on Power Engineering, 2.000, ISBN 0-7803-4713-7, IEEE Order Number PC5764, pp. 139-198.
- [2] IEC 61000-4-30 (2003-2) Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods.
- [3] Power Quality Indices and Objectives Final Draft WG Report for Approval. Joint Working Group Cigré C4.07. January 2004.
- [4] Magnus Öhrström and Lennart Söder. A comparison of two methods used for voltage dip characterization, IEEE Power Tech Conference. 2003. Bologna, Italy.
- [5] E. J. Borba, Introdução a Sistemas Elétricos de Potência – Componentes Simétricas, Edgard Blücher, São Paulo, 1973.
- [6] T. C. de Oliveira, J. M. de C. Filho, J. P. G. de Abreu e R. C. Leborgne, "Análise da Influência da Conexão de Transformadores Δ/Yaterrado na Propagação de Afundamentos de Tensão", apresentado no V Seminário Brasileiro sobre Qualidade da Energia Elétrica, Aracaju, Brasil, 2003.