JEE EXPERT

PRACTICE TEST - 7 (04 APRIL 2020)

ANSWER KEY & SOLUTION

SECTION – I (Chemistry)

Part – A							
1. 5. 9.	D A CD	2. 6. 10.	A C CD	3. 7. 11. Part – B	A D AC	4. 8. 12.	D C ABCD
1. 2.	$\begin{array}{l} A \to QT \\ A \to T \end{array}$	$B \to R$ $B \to S$		$C \rightarrow S$ $C \rightarrow P$ Part - C		$\begin{array}{c} D \to P \\ D \to R \end{array}$	
1. 5.	9 8	2. 6.	1 2	3.	8	4.	6
SECTION – II (Physics)							
1. 5. 9.	A C CD	2. 6. 10.	B B AD	Part – A 3. 7. 11. Part – B	C A ACD	4. 8. 12.	B C AC
1. 2.	A →Q A →PRS	$B \rightarrow S$ $B \rightarrow PQ$		$C \rightarrow R$ $C \rightarrow S$ Part – C		$D \to P$ $D \to P$	
1. 5.	5 5	2. 6.	2 2	3.	1	4.	2
SECTION – III (Mathematics) Part – A							
1. 5. 9.	B A B,C	2. 6. 10.	A D A,B,D	3. 7. 11.	A C A,C,D	4. 8. 12.	D C B,C
1. 2.	$\begin{array}{l} A \to R \\ A \to S \end{array}$	$\begin{array}{c} B \to S \\ B \to R \end{array}$		Part – B $C \rightarrow Q$ $C \rightarrow P$ Part – C		$\begin{array}{c} D \rightarrow P \\ D \rightarrow Q \end{array}$	
4	6	2	0	1 411 – 0	1	1	2

HINTS & SOLUTIONS

SECTION – I (Chemistry) Part – A

- 1. In SN₂, nucleophile attack from rear position of the leaving group.
- 3. Acid-catalysed aldol condensation +aldol condensation + acetal formation

5.
$$NaNO_{2} + HCI \rightarrow \xrightarrow{H^{+}} \stackrel{\oplus}{N}O$$

$$\downarrow O - H + NO \rightleftharpoons \downarrow O - H - H^{+} \downarrow O$$

$$\uparrow O - H + NO \rightleftharpoons \downarrow O - H^{+} \downarrow O$$

$$\uparrow O - H + H^{+}/H_{2}O \rightarrow O$$

$$\uparrow O - H + H^{+}/H_{2}O \rightarrow O$$

- 6. A case of Hotmann bromamide reaction. Intramolecular attack (always more favourable) on isocyanate intermediate leads to result.
- 7. Retro-Dieckmann/then Diceekmann

10. The initially formed Gringnard reagent undergoes a rapid allylic rearrangement, each Grignard reagent in equilibrium can react with D_2O .

$$\begin{array}{c|c} CH_2-MgBr \\ & \rightleftharpoons \\ \hline & D_2O \\ \hline & CH_2D \\ \hline & CH_2D \\ \hline & CH_2D \\ \hline \end{array}$$

11. Urea
$$\xrightarrow{\text{HNO}_2}$$
 $\xrightarrow{\text{H}_2\text{N}-\text{C}-\text{OH}}$ $\xrightarrow{\text{CO}_2}$ \uparrow + $\xrightarrow{\text{NH}_3}$ $\xrightarrow{\text{Carbamic acid}}$ \downarrow $\xrightarrow{\text{HNO}_2}$ $\xrightarrow{\text{N}_2}$ + $\xrightarrow{\text{2H}_2\text{O}}$

Part – C

2. Trans-2-butene is converted into Cis-2-butene.

3.

The 6π electrons of benzene ring and 2π electron of phenoxide oxygen

6. Conjugate substitution. The compound [X] is

SECTION - I (Physics) Part - A

1.
$$S = 0 + \frac{1}{2}at^2 = \frac{1}{2}\frac{eV}{md}t^2$$

$$W = \int \vec{F} . d\vec{r} = \frac{-\lambda q_0}{2\pi\epsilon_0} \int_{3a}^{2a} \frac{dr}{r}$$

$$q_{in} = \lambda \left[2\sqrt{R^2 - y^2} \right]$$

$$\text{6.} \hspace{1cm} \text{B} = 2 \bigg[\frac{\mu_0 \text{I}}{4 \pi r \cos 45^{\circ}} \bigg] \big(\sin 90^{\circ} - \sin 45^{\circ} \, \big) + \frac{\mu_0 \text{I}}{4 \pi r} \bigg(\frac{\pi}{2} \bigg)$$

7.
$$W = \Delta U = BI\Delta A$$

8. Heat generated =
$$\frac{2r_0}{3r_0} \left[\frac{1}{2} C_0 E_0^2 \right]$$

9.
$$\tau = MB \sin 90^\circ = I\alpha$$

10.
$$R_1 = \frac{100^2}{25} = 400\Omega, R_2 = \frac{200^2}{100} = 400\Omega$$

$$R_{eq} = 500\Omega$$

1. (D)
$$E = \frac{kq}{r^2}$$

2. A $\rightarrow \theta = 0^{\circ}, 90^{\circ}$ and $0^{\circ} < \theta < 90^{\circ}$ C \rightarrow Changed particle will also gain velocity in the direction of electric field.

1. If
$$R = \infty \Rightarrow I = 0 \Rightarrow V = E$$
 when $R = 0, I = \frac{E}{r}$
$$2 = \frac{10}{r} \Rightarrow r = 5\Omega$$

$$3. \qquad \frac{1}{2}mv^2 = kq_1q_2\Bigg[\frac{1}{0.2} - \frac{1}{0.5}\Bigg]$$

- 4. at t =0, capacitor will not offer any resistance
- 5. mg = qVB

6.
$$F = IBL$$

$$F-f = ma$$

 $fr = I\alpha$

 $\boldsymbol{a} = \boldsymbol{r} \boldsymbol{\alpha}$