Unconstrained optimization

Ludovic Stourm

June 25, 2025

1 Introduction

This document describes various methods to numerically minimize a function f(x):

$$\min_{x} f(x) \tag{1}$$

We use the notations:

- f: objective function
- x: argument of f (vector of dimension $[J \times 1]$)
- ∇f : gradient of f ([$J \times 1$] vector of 1st-degree derivatives)
- H_f : Hessian of f ([$J \times J$] matrix of 2nd-degree derivatives)
- d: Direction of an update ($[J \times 1]$ vector)
- α : Step size of an update (scalar)
- $s = \alpha d$: Update ([$J \times 1$] vector)

We consider different methods. Some of them requires one to evaluate not only f but also its gradient ∇f , and some even the Hessian H_f . This is summarized in the table below:

Method	Requires gradient	Requires Hessian
Newton-Raphson	✓	✓
Gradient descent	\checkmark	
BFGS	\checkmark	
Nelder-Mead		

2 Newton-Raphson

- 1. Set $k \leftarrow 0$
- 2. Initialize starting point x_0
- 3. Evaluate $f(x_k)$, $g_k \leftarrow \nabla f(x_k)$, and $H_k \leftarrow H_f(x_k)$
- 4. Set direction of update: $d_k \leftarrow -H_k^{-1}g_k$.
- 5. Set step size $\alpha_k \leftarrow 1$ or find a better value through a line search procedure.
- 6. Update point: $x_{k+1} \leftarrow x_k + \alpha_k d_k$
- 7. Set $k \leftarrow k + 1$ and go to step 3.

3 Gradient descent

- 1. Set $k \leftarrow 0$
- 2. Initialize starting point x_0
- 3. Evaluate $f(x_k)$ and $g_k \leftarrow \nabla f(x_k)$
- 4. Set direction of update: $d_k \leftarrow -g_k$.
- 5. Set step size α_k a priori (constant step size α), or find a better value through a line search procedure.
- 6. Update point: $x_{k+1} \leftarrow x_k + \alpha_k d_k$
- 7. Set $k \leftarrow k+1$ and go to step 3.

4 BFGS (quasi-Newton method)

This method uses evaluations of f and its gradient ∇f . The Hessian H (or rather, its inverse H^{-1}) is "approximated" at each iteration (although there is no guarantee that it converges to the true Hessian!).

- 1. Set $k \leftarrow 0$
- 2. Initialize starting point x_0 , inverse Hessian H_0^{-1}
- 3. Evaluate $f(x_k)$ and $g_k \leftarrow \nabla f(x_k)$
- 4. Set the direction of update $d_k = -H_k^{-1}g_k$.
- 5. Find a "good" step size α_k through a line search procedure (more on this later).
- 6. Set update $s_k \leftarrow \alpha_k d_k$

- 7. Update point $x_{k+1} = x_k + s_k$
- 8. Update Hessian $H_{k+1}^{-1} = H_k^{-1} + \frac{(s_k' y_k + y_k' H_k^{-1} y_k)(s_k s_k')}{(s_k' y_k)^2} \frac{H_k^{-1} y_k s_k' + s_k y_k' H_k^{-1}}{s_k' y_k}$. where $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$.
- 9. Set $k \leftarrow k + 1$ and go to step 3.

5 Nelder-Mead

This method only uses evaluations of f and does not require an evaluation of the gradient or the Hessian (which may not even exist). This algorithm **minimizes** function f.

- 1. Initialize $\alpha \leftarrow 1$, $\gamma \leftarrow 2$, $\rho \leftarrow 0.5$, $\sigma \leftarrow 0.5$.
- 2. Evaluate $f(x_0)$
- 3. Initial simplex: define $x_j = x_0 + \epsilon \times u_j$ and evaluate $f(x_j)$ for each dimension j (where u_j is the corresponding unit vector in that direction and ϵ is some small value)
- 4. Define the (J+1) initial vertices as $[x_0, x_1, ..., x_J]$
- 5. Sort the (J+1) vertices x_j by increasing values of $f(x_j)$
- 6. Compute centroid based on the J first vertices $xo \leftarrow 1/J \times \sum_{j=0}^{J-1} x_j$
- 7. Compute $xr \leftarrow xo + \alpha(xo x_J)$
- 8. If $f(xr) \ge f(x_0)$ and $f(xr) < f(x_{J-1})$:
 - (a) $x_J \leftarrow xr$ (reflect)
 - (b) Go to 5.
- 9. If $f(xr) < f(x_0)$:
 - (a) Compute $xe \leftarrow xo + \gamma(xr xo)$
 - (b) If f(xe) < f(xr):
 - i. $x_J \leftarrow xe$ (expand)
 - ii. Go to 5.

Else:

- i. $x_J \leftarrow xr$ (reflect)
- ii. Go to 5.
- 10. If $f(xr) < f(x_J)$:
 - (a) $xc \leftarrow xo + \rho(xr xo)$
 - (b) If f(xc) < f(xr)

- i. $x_J \leftarrow xc$ (contract outside)
- ii. Go to 5.

Else: $xc \leftarrow xo + \rho(x_J - xo)$

- (a) $xc \leftarrow xo + \rho(xr xo)$
- (b) If $f(xc) < f(x_J)$
 - i. $x_J \leftarrow xc$ (contract outside)
 - ii. Go to 5.
- 11. For all j in 1, ..., J: do $x_j \leftarrow x_0 + \sigma(x_j x_0)$ (shrink)
- 12. Go to 5.