## Skript Mathe 2

## 28. Mai 2018

• n gerade  $\Rightarrow f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, x \mapsto x^n$  bijektiv In diesem Fall hat die Umkehrfunktion die Vorschrift

$$\sqrt[n]{}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, x \mapsto \underbrace{\sqrt[n]{x}}_{>0}$$

**Achtung:** Wenn n gerade, dann hat  $x^n = a$  für gegebenes  $a \in \mathbb{R}$ 

- -keine Lösung, falls a<0
- genaue eine Lösung, falls a=0 und zwar x=0
- genau zwei Lösungen, falls a>0 und zwar

$$x_1 = \underbrace{\sqrt[n]{a}}_{>0} \quad x_2 = \underbrace{-\sqrt[n]{a}}_{<0}$$

f) Polynome:  $p:\mathbb{R}\to\mathbb{R}, x\mapsto a_nx^n+a_{n-1}x^{n-1}+\ldots+a_0x^0=\sum_{k=0}^na_kx^k$   $a_0,\ldots,a_n\in\mathbb{R}$  heißen Koeffizienten

Falls  $a_n \neq 0$ , so heißt n Grad von p, man schreibt grad(p) = n

Für ein Polynom p von Grad n kann man zeigen:

- 1. p besitzt höchstens n Nullstellen
- 2. Falls n ungerade, ist p surjektiv und besitzt mindestens eine Nullstelle
- 3. Falls n gerade, ist p nicht surjektiv und kann daher auch keine Nullstelle haben

Bekannte Verfahren zur Berechnung von Nullstellen:

- $\operatorname{grad}(p) = 2$ : Mitternachtsformel/pq-Formel
- $\operatorname{grad}(p) \geq 3$ : Polynomdivision (Mathe III), numerische Verfahren (z.B Newton-Verfahren)
- g) Rationale Funktionen:

Quotienten von Polyonmen p,q mit  $f:D\to\mathbb{R}$ 

$$x \mapsto \frac{p(x)}{q(x)}$$
  $D = \{x \in \mathbb{R} \mid q(x) \neq 0\}$ 

h) Logarithmen und Exponentialfunktion:

1. der natürliche Logarithmus:

Man kann zeigen, dass für die Exponentialreihe unter 3.11 gilt:

- $\exp(\mathbb{R}) = \mathbb{R}_{>0}$
- $\exp: \mathbb{R} \to \mathbb{R}_{>0}$  ist bijektiv

Die Umkehrfunktion von  $\exp(x)$  ist der natürliche Logarithmus:

$$\ln: \mathbb{R}_{>0} \to \mathbb{R}, x \mapsto \ln(x)$$

2. Exponential funktion:

Sei 
$$q > 0, q \neq 0$$
. Für  $x \in \mathbb{Q}, x = \frac{a}{b}$  ist  $q^x = \sqrt[b]{q^a}$   $a \in \mathbb{Z}, b \in \mathbb{N}$ 

Mit Hilfe der Funktion  $\exp(x), \ln(x)$  kann man Exponentialfunktionen zu einer beliebigen gegebenen Basis q und  $x \in \mathbb{R}$  definieren:

$$f: \mathbb{R} \to \mathbb{R}_{>0}$$
  $x \mapsto q^x := \exp(x \cdot \ln(q))$ 

3. Aus 2. ergibt sich die Regel:

$$\ln(q^x) = x \cdot \ln(q) \quad \forall x \in \mathbb{R}$$

- 4. Man kann wegen 2. eine Basis q durch eine beliebige andere Basis ausdrücken, z.B:  $q^x = e^{x \cdot \ln(q)}$  (da  $\exp(x) = e^x$  (3.11))
- 5. Logarithmus zur Basis  $q>0, q\neq 1$ : Bilde die Umkehrfunktion von  $f(x)=q^x$  (unter 2.)

$$\log_q : \mathbb{R}_{>0} \to \mathbb{R} \quad x \mapsto \log_q(x)$$

6.  $\log_q$  lässt sich analog zu 4. durch jeden anderen Logarithmus ausdrücken, z.B ist

$$\ln(x) = \ln(q^{\log_q(x)}) = \log_q(x) \Leftrightarrow \log_q(x) = \frac{\ln(x)}{\ln(y)}$$

- 7. Rechenregeln:
  - für  $f(x)=q^x$  ergeben sich aus 2. und den Regeln für  $\exp(x)$  (3.11):

    - $q^{-x} = \frac{1}{q^x}$ , da  $1 = q^{x-x} q^x \cdot q^{-x} \quad \forall x \in \mathbb{R}$
  - für  $\log_q(x)$  ergeben sich aus denen für  $q^x$ :

$$\begin{split} \bullet & \log_q(xy) = \log_q(x) + \log_q(y) \quad \forall x,y > 0 \\ & \operatorname{denn} \text{ für } x = q^u, y = q^v \text{ ist} \\ & \log_q(xy) = \log_q(q^{u+v}) = u + v = \log_q(x) + \log_q(y) \\ \bullet & \log_q\left(\frac{q}{x}\right) = -\log_q(x) \quad \forall x > 0 \\ & [\text{mit } q^v = \log_q(x^\alpha) \underset{3./6.}{=} \alpha \cdot \log_q(x) \quad \forall x > 0, \alpha \in \mathbb{R}] \end{split}$$

## i) Trigonometrische Funktionen:



Winkel zwischen x-Achse und Strecke  $\overline{0~P_{\varphi}}$ 

Ankathete an  $\varphi$  in  $\Delta(0 A_{\varphi} P_{\varphi})$  $\cos \varphi$ :

Gegenkathete an  $\varphi$  in  $\Delta(0 A_{\varphi} P_{\varphi})$  $\sin \varphi$ :

Daraus ergeben sich die Winkelfunktionen:

 $\begin{array}{ll} \cos: & \mathbb{R} \to [-1,1], x \mapsto \cos(x) \\ \sin: & \mathbb{R} \to [-1,1], x \mapsto \sin(x) \end{array}$ 

 $\tan: \quad \mathbb{R} \setminus \{(k + \frac{1}{2})\pi \mid k \in \mathbb{Z}\} \to \mathbb{R}, x \mapsto \frac{\sin(x)}{\cos(x)}$  $\cot a: \quad \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{R}, x \mapsto \frac{\cos(x)}{\sin(x)}$