Team Information

Team ID: LTVIP2025TMID60228

Team Size: 4

Team Leader: Pusapati Lakshmi Malakonda Raju

Team member: Sankurathri Venkatesh

Team member: Shaik Abdulaleem

Team member: Sooragani Hemalatha

1. INTRODUCTION

1.1 Project Overview

This project focuses on classifying pollen grains using deep learning techniques. A CNN-based model is trained on labeled pollen images and deployed via a Flask web interface.

1.2 Purpose

To provide a fast, accurate, and automated system for pollen grain classification to support environmental monitoring and biological research.

2. IDEATION PHASE

2.1 Problem Statement

Manual identification of pollen grains is labor-intensive and subjective. Automating this process enhances accuracy and saves time.

2.2 Empathy Map Canvas

Users: Botanists, Environmental Scientists, Students

Needs: Speed, Accuracy

Pains: Manual work, Human error

Gains: Efficient analysis, High precision

2.3 Brainstorming

Discussed use of traditional methods vs. deep learning. Chose CNN due to better performance and scalability. Decided on Flask for lightweight deployment.

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

User uploads pollen image -> Preprocessing -> Prediction by CNN -> Output Display

3.2 Solution Requirement

Functional: Image upload, prediction output. Non-functional: Fast, accurate, simple UI.

3.3 Data Flow Diagram

Frontend -> Flask Backend -> CNN Model -> Output

3.4 Technology Stack

Python, TensorFlow, Flask, HTML/CSS, OpenCV

4. PROJECT DESIGN

4.1 Problem-Solution Fit

The system reduces reliance on experts and enables faster pollen identification.

4.2 Proposed Solution

Train a CNN model and deploy it in a Flask-based application for real-time predictions.

4.3 Solution Architecture

HTML Upload Page -> Flask Server -> CNN Prediction -> Result Page

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Week 1: Dataset setup

Week 2: Model training

Week 3: Web integration

Week 4: Testing and documentation

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

Accuracy ~92%, minimal overfitting observed during training and validation. Functional testing confirmed reliable results through the web app.

7. RESULTS

7.1 Output Screenshots

Below are screenshots showing the interface and sample results of the classifier.

10. FUTURE SCOPE

Improve dataset diversity, add more species, deploy to cloud, and build a mobile-friendly version.

11. APPENDIX

Source Code

Available on GitHub (link to be added)

Dataset

Local dataset folder used for training

GitHub & Demo Link

https://github.com/yourusername/pollen-classification

Sample UI & Results

8. ADVANTAGES & LIMITATIONS

Advantages:

- Accurate and automated classification
- User-friendly web interface
- Reduces dependency on manual identification
- Lightweight model deployable on local machines

Limitations:

- Classification accuracy may drop for poor-quality or out-of-distribution images
- Requires retraining to add new pollen types
- Limited dataset diversity may affect generalization

9. CONCLUSION

The pollen classification system efficiently demonstrates how deep learning can automate a previously manual task. By leveraging convolutional neural networks and a lightweight Flask interface, this project presents a scalable and practical tool for scientific research and environmental monitoring. The results confirm that even small-scale models can deliver reliable performance with properly curated datasets.