Mastering Algorithms Resources

1. Basic C++ STL and time complexity

- Resources
 - o <u>cppreference.com</u>
 - STL Containers C++ Reference
 - HackerEarth
 - STL for CP
 - Standard Template Library
 - o Power up C++ with the Standard Template Library: Part 1
 - o Power up C++ with the Standard Template Library: Part 2
 - C++ intro ♣
 - o Intro to codeforces
 - o STL 🎥
 - Time complexity
 - Time complexity guide for contests
 - Intro to CP
- Problems
 - https://codeforces.com/problemset/problem/855/B
 - https://codeforces.com/problemset/problem/740/B
 - https://leetcode.com/problems/maximal-rectangle/description/

Stacks

- o https://www.geeksforgeeks.org/problems/implement-two-stacks-in-an-array/1 -> two stacks implementation
- https://leetcode.com/problems/valid-parentheses/description/
- o https://leetcode.com/problems/largest-rectangle-in-histogram/description/
- https://codeforces.com/contest/548/problem/D
- o https://leetcode.com/problems/sum-of-subarray-minimums/description/
- https://codeforces.com/contest/797/problem/C

QUEUES

- o https://leetcode.com/problems/implement-queue-using-stacks/description/
- https://www.geeksforgeeks.org/problems/queue-reversal/1
- o https://leetcode.com/problems/sliding-window-maximum/description/
- o https://leetcode.com/problems/shortest-subarray-with-sum-at-least-k/description/
- https://leetcode.com/problems/longest-continuous-subarray-with-absolute-diff-less-than-or-equal-to-limit/description/

2. Mathematics for CP

Lecture link - https://colab.research.google.com/drive/13dRKA2SYS89yRAQFMtzKICXvkYXgDANs?usp=sharing

Number Theory

- a. Modulus arithmetic basic postulates
 - Suggested reading
 - 1. Chapter 1 from Number Theory for Computing by SY Yan [Recommended]
 - 2. 31.1, 31.3, and 31.4 from Cormen [optional]
 - 3. <u>www.topcoder.com/tc?module=Static&d1=tutorials&d2=primeNumbers</u>
 - Problems
 - 1. http://projecteuler.net/index.php?section=problems&id=64
 - 2. http://projecteuler.net/index.php?section=problems&id=65
- b. Fermat's theorem, Euler's Totient theorem (totient function, order, primitive roots)
 - Suggested Reading
 - 1. 1.6, 2.2 from Number Theory by SY Yan
 - 2. 31.6 , 31.7 from Cormen
 - Problems
 - 1. http://projecteuler.net/index.php?section=problems&id=70
 - 2. http://www.spoj.pl/problems/NDIVPHI/

- c. Chinese remainder theorem
 - Suggested Reading
 - 1. 1.6 from Number Theory by SY Yan
 - Problems
 - 1. Project Euler 271
 - 2. http://www.topcoder.com/stat?c=problem_statement&pm=10551&rd=13903
- d. Primality tests -
 - Deterministic O(sqrt(n)) approach
- e. Prime generation techniques Sieve of Eratosthenes
 - Suggested Problems PRIME1 on SPOJ
- f. Integer Factorization
 - Naive O(sqrt(n)) method
 - Pollard Rho factorization
 - Problems -
 - 1. http://www.topcoder.com/stat?c=problem_statement&pm=2986&rd=5862
 - 2. http://www.spoj.pl/problems/DIVSUM2/
 - 3. http://www.topcoder.com/stat?c=problem_statement&pm=4481&rd=6538
- g. Stirling numbers
- h. Wilson theorem
 - \blacksquare nCr % p in O(p) preprocess and O(log n) query
- i. Lucas Theorem
- j. Suggested Reading for Number Theory -
 - Number Theory for Computing by Song Y Yan
 - Concepts are also superficially covered in Chapter 31 of Introduction to Algorithms by Cormen
 - http://www.codechef.com/wiki/tutorial-number-theory
 - http://www.algorithmist.com/index.php/Category:Number_Theory
- k. Problems on Number Theory
 - http://www.algorithmist.com/index.php/Category:Number_Theory

Bit manipulation, Combinatorics, and Game theory [optional]

- Resources
 - Bit manipulation
 - o complete playlist for bit manipulation 🎥
 - o Combinatorics
 - o Problems discussion
 - Intro to Game Theory
- Problems

Bit manipulation

- https://codeforces.com/problemset/problem/1567/B
- https://codeforces.com/problemset/problem/1514/B
- https://codeforces.com/contest/1879/problem/D

Combinatorics and Game Theory

- \blacksquare Basic principles Pigeon hole principle, addition, multiplication rules
 - 1. Suggested problems
 - a. http://acm.timus.ru/problem.aspx?space=1&num=1690
 - b. http://www.topcoder.com/stat?c=problem_statement&pm=10805
 - 3. Suggested readings
 - a. http://en.wikipedia.org/wiki/Combinatorial_principles
 - b. http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=combinatorics
 - c. http://www.maa.org/editorial/knot/pigeonhole.html
- Inclusion-exclusion
 - 1. Suggested readings
 - a. http://en.wikipedia.org/wiki/Inclusion-exclusion_principle
 - 2. Suggested problems
 - a. http://www.topcoder.com/stat?c=problem_statement&pm=4463&rd=6536
 - b. http://www.topcoder.com/stat?c=problem_statement&pm=10238
- Basic Principles and Nim game[optional]
 - 1. Sprague grundy theorem, grundy numbers
 - 2. Suggested readings
 - 3.

- a. http://en.wikipedia.org/wiki/Sprague%E2%80%93Grundy_theorem
- b. http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=algorithmGames
- c. http://www.ams.org/samplings/feature-column/fcarc-games1
- d. http://www.codechef.com/wiki/tutorial-game-theory
- 4. Suggested problems
 - a. https://codeforces.com/contest/1965/problem/A
 - b. https://cses.fi/problemset/task/2207

3. Searching, Sorting, Divide and Conquer

• Problems

https://codeforces.com/problemset/problem/1843/A

https://codeforces.com/contest/456/problem/A

https://codeforces.com/contest/492/problem/B

https://codeforces.com/contest/755/problem/B

https://codeforces.com/contest/1260/problem/B

https://codeforces.com/problemset/problem/978/C

Rotated Array | Interviewbit

Search for a Range | Interviewbit

Allocate Books | Interviewbit

The median of two Sorted Arrays of Different Sizes - GeeksforGeeks

Inversion count in an Array

Binary Search Blog

4. Binary Heaps

- References
 - o https://www.geeksforgeeks.org/priority-queue-in-cpp-stl/
 - https://www.geeksforgeeks.org/building-heap-from-array/
 - https://leetcode.com/discuss/general-discussion/1127238/master-heap-by-solving-23-questions-in-4-patterns-category (optional)
- Problems
 - https://leetcode.com/problems/kth-largest-element-in-an-array/description/
 - https://leetcode.com/problems/ugly-number-ii/description/ (can also be solved using dynamic programming once taught)
 - https://leetcode.com/problems/design-twitter/description/
 - https://codeforces.com/contest/681/problem/C (Hard to do without knowing the greedy approach which will be taught later)

5. Recursion, Backtracking, Greedy Algorithms

Lecture link - https://colab.research.google.com/drive/1kYtT7Ntej81KfGIx-P78ZxkJCQzG73zd?usp=sharing

- Resources
 - USACO Greedy
 - Top coder Greedy
 - Recursion GFG
 - <u>Backtracking</u>

• Problems

- https://codeforces.com/problemset/problem/1896/C
- o https://cses.fi/problemset/task/1073
- o https://cses.fi/problemset/task/1643
- o https://www.geeksforgeeks.org/activity-selection-problem-greedy-algo-1/
- $\circ \quad \underline{https://codeforces.com/group/MWSDmqGsZm/contest/223339/problem/Y}$