Pushdown Automata PDAs

Pushdown Automaton -- PDA

Initial Stack Symbol

The States

transition as push downationa Pop Push Input symbol symbol symbol

stack

A Possible Transition

A Bad Transition

The automaton Halts in state q_1 input string and Rejects the input string

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

No transition is allowed to be followed When the stack is empty

Empty stack

A Good Transition

These are allowed transitions in a Non-deterministic PDA (NPDA)

NPDA: Non-Deterministic PDA

Example:

Execution Example: Time 0

Input

Input

Input

Input

Input

Input

A string is accepted if there is a computation such that:

Control control control of state sension final

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

The input string aaabbb is accepted by the NPDA:

In general,

$$L = \{a^n b^n : n \ge 0\}$$

is the language accepted by the NPDA:

Another NPDA example

Execution Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \to \lambda$$

Input

Stack

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

 $\lambda, \$ \rightarrow \$$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Rejection Example:

Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \to \lambda$$

$$\lambda, \$ \rightarrow \$$$

Input

$$(a, \lambda \rightarrow a)$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

 $\lambda, \lambda \rightarrow \lambda$

$$\begin{array}{c}
a, \lambda \to a \\
b, \lambda \to b
\end{array}$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$
 q_2

Input

Guess the middle of string

 $a, \lambda \rightarrow a$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

 $\lambda, \lambda \to \lambda$

Input

Input

There is no possible transition.

Input is not consumed

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \to \lambda$$

Another computation on same string:

Time 0

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

who less from

Input

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

Stack

$$a, a \to \lambda$$

$$b, b \to \lambda$$

 $\lambda, \$ \rightarrow \$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$q_1$$
 $\lambda, \$ \rightarrow \$$

Input

No final state is reached

$$b, \lambda \rightarrow b$$

yszem elben releg pausang

$$\lambda, \lambda \to \lambda$$

 $\lambda, \$ \rightarrow \$$

There is no computation that accepts string *abbb*

 $abbb \notin L(M)$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2

A string is rejected if there is no computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

In other words, a string is rejected if in every computation with this string:

The input cannot be consumed input away

The input is consumed but the last state is not a final state

OR

opie auneumo lugal

The stack head moves below the bottom of the stack stall brandown Ry

Pushing Strings

Another NPDA example

Execution Example: Time 0

Input

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

current $\lambda, \$ \rightarrow \$$

Input

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$(a, 1 \rightarrow \lambda)$$

$$b, 0 \rightarrow \lambda$$

Stack

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$(a, 1 \rightarrow \lambda)$$

$$b, 0 \rightarrow \lambda$$

Stack

Formalities for NPDAs

(Generalizatext -> Sissoria Graphic mode

$$\underbrace{q_1}^{a, b \to w} q_2$$

Transition function:

$$\mathcal{S}(q_1,a,b) = \{(q_2,w)\}$$

Transition function:

$$\delta(q_1, a, b) \neq \{(q_2, w), (q_3, w)\}$$

Formal Definition

Non-Deterministic Pushdown Automaton

Instantaneous Description

Example:

Instantaneous Description

Example:

Instantaneous Description

 $(q_2,bb,aa\$)$

Time 5:

 $a, \lambda \rightarrow a$

$$(q_0)$$
 $\lambda, \lambda \rightarrow \lambda$

 $b, a \rightarrow \lambda$

We write:

$$(q_1,bbb,aaa\$)$$
 \Rightarrow $(q_2,bb,aa\$)$
Time 4

Time 5

A computation:

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ$$
 $(q_1, aabbb, a\$) \triangleright (q_1, abbb, aa\$) \triangleright (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \triangleright (q_2, \lambda,\$) \succ (q_3, \lambda,\$)$

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$)$$
 $\stackrel{*}{\succ}$ $(q_3, \lambda,\$)$

Formal Definition

Language L(M) of NPDA M:

Example:

$$(q_0,aaabbb,\$) \succ (q_3,\lambda,\$)$$

 $aaabbb \in L(M)$

NPDA M:

$$(q_0, a^n b^n, \$) \stackrel{*}{\succ} (q_3, \lambda, \$)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$a^n b^n \in L(M)$$

NPDA M:

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

NPDA M: