Feuille d'exercices n° 9 : primitives et équations différentielles

Exercice 1. Donner une primitive de la fonction $f: t \mapsto \cos^4(t)$.

Exercice 2. Calculer une primitive pour chacune des fonctions suivantes :

$$1. \ f(x) = \frac{\tan x}{\cos^2 x}$$

3.
$$f(x) = 2x\sqrt{x^2 - 1}$$

$$5. \ f(x) = \frac{1}{\operatorname{ch}(x)}$$

2.
$$f(x) = \frac{e^x}{(1 - 3e^x)}$$

4.
$$f(x) = \frac{1+2x}{\sqrt{1-x^2}}$$

Exercice 3. Calculer les primitives ou les intégrales suivantes :

$$1. \int (t^2 - t)e^t dt$$

3.
$$\int \arccos x \, dx$$

2.
$$I_2 = \int_1^2 (3s^2 + 3) \ln s \, ds$$

4.
$$I_4 = \int_0^1 \cos(2x)e^x dx$$

Indication : Faire des intégrations par parties, parfois plusieurs.

Pour la quatrième, faire deux intégrations par parties. Retrouver I_4 dans le résultat.

Exercice 4. Calculer une primitive pour les fonctions suivantes :

1.
$$f_1(x) = \frac{1}{x^2 - 2x + 2}$$

3.
$$f_3(x) = \frac{2x+3}{x^2-2x+2}$$

2.
$$f_2(x) = \frac{2x-2}{x^2-2x+2}$$

4.
$$f_4(x) = \frac{4x-7}{x^2+x-2}$$

Exercice 5. Calculer les intégrales suivantes :

1.
$$I_1 = \int_1^e \frac{\ln t}{t + t(\ln t)^2} dt$$
 en posant : $x = \ln t$

3.
$$I_3 = \int_0^1 \frac{e^{2x}}{e^x + 1} dx$$
 en posant : $t = e^x$

2.
$$I_2 = \int_1^2 \frac{1}{t\sqrt{t^2 - 1}} dt$$
 en posant : $s = \sqrt{t^2 - 1}$

 $Indication: \text{Pour la troisième}, \ \frac{x}{x+1} = \frac{x+1}{x+1} - \frac{1}{x+1}$

Exercice 6. Résoudre les équations suivantes :

$$1. xy' - 2y = x^3$$

4.
$$\begin{cases} z' = \frac{x+z}{x} \\ z(-1) = 3 \end{cases}$$

2.
$$x^2y' - xy = 4$$
 avec $y(-1) = 1$

5.
$$xy' + (1-x)y = \frac{xe^x}{x^2+1}$$
 avec $y(-1) = 3$

 $3. \ y'\cos x + y\sin x = 1 + \sin x$

Exercice 7. Résoudre les équations suivantes :

1.
$$\begin{cases} y'' + 9y = x^2 + 1 \\ y(0) = y'(0) = 0 \end{cases}$$

2.
$$\begin{cases} \ddot{u} - 4\dot{u} + 3u = e^{3t} \\ u(0) = 0, \dot{u}(0) = 0. \end{cases}$$

3.
$$y'' + 2y' + y = 2\sinh x$$
.

Exercice 8. Résoudre l'équation du second ordre suivante : xy'' - y' = 0

Indication: Faire un changement de fonctions: z = y'

Exercice 9. Résoudre l'équation suivante : (E): y''' - y'' - y' + y = 0 en posant : z = y' - y.

Exercice 10. Soient deux fonctions X et Y de la variable t, vérifiant le système : (S): $\begin{cases} X' = 4X + Y \\ Y' = -4X + e^t \end{cases}$

Montrer que X est une fonction deux fois dérivable, et vérifie l'équation : $X'' - 4X' + 4X = e^t$ Résoudre le système (S) avec les conditions X(0) = Y(0) = 1.

Indication: Dériver la première équation et remplacer Y' par sa valeur.

Exercice 11. Une équation de Ricatti.

Soit (E) l'équation différentielle : (E) $y' = y + y^2$.

Pour résoudre (E) on effectue le changement de fonction inconnue défini par $z = \frac{1}{y}$.

- 1. Déterminer l'équation différentielle (F) que vérifie z.
- 2. Résoudre (F).
- 3. En déduire la résolution de (E).

Exercice 12. On considère l'équation suivante : (E): $yy'' - (y')^2 + xy^2 = 0$. La résoudre en posant (quand c'est possible) $z = \frac{y'}{y}$.

Exercice 13. Une équation de Bernoulli.

Soit (E) l'équation différentielle suivante : $(1+t^2)y' = 4ty + 4t\sqrt{y}$. On cherche les solutions y strictement positives. On pose $z = \sqrt{y}$.

- 1. Déterminer une équation différentielle linéaire (E_1) que vérifie z.
- 2. Résoudre (E_1) .
- 3. En déduire les solutions de (E).

Exercice 14. Soit l'équation différentielle (E): $z' = z \sin x - z^2 \sin x$, sur \mathbb{R} .

Pour résoudre (E) on effectue le changement de fonction inconnue défini par $y = \frac{1}{z}$.

Déterminer l'équation différentielle que vérifie y, la résoudre, et en déduire la résolution de (E).

Exercice 15. Soit l'équation différentielle (E): $x^2(1-x)y'' - x(1+x)y' + y = 0$.

- 1. Montrer que la fonction $f: x \mapsto \frac{x}{1-x}$ est solution de (E) sur $]-\infty,1[$ et sur $]1,+\infty[$.
- 2. Résoudre (E) en posant y = z(x)f(x), et en résolvant l'équation différentielle du second degré vérifiée par z.

Exercice 16. On veut résoudre l'équation suivante sur \mathbb{R}_+^* : (E): 4xy''(x) + 2y'(x) - y(x) = 0.

- 1. On pose $t = \sqrt{x}$ et $y(x) = y(t^2) = z(t)$. Déterminer une équation différentielle (E_1) que vérifie z.
- 2. Résoudre (E_1) .
- 3. En déduire les solutions de (E) sur $]0, +\infty[$

Exercice 17. Résolution d'une équation d'Euler.

On cherche à résoudre sur $]0, +\infty[$ l'équation différentielle suivante :

(E):
$$x^2y''(x) - 3xy'(x) + 4y(x) = 0$$

- 1. Soit y une solution de (E) sur $]0, +\infty[$. Montrer que la fonction définie par $z(t) = y(e^t)$ vérifie une équation différentielle du second ordre à coefficients constants.
- 2. En déduire l'ensemble des solutions de (E) sur $]0, +\infty[$.

Indication: Dériver $z(t) = y(e^t)$) par rapport à t (attention, c'est une composée). Calculer z'(t) et z''(t) (attention, il y a un produit). Sachant que y vérifie (E), trouver une équation que vérifie z.

Exercice 18. Déterminer l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que $\forall x \in \mathbb{R}, f'(x) = 2f(-x) + x$.

Indication: Dériver l'égalité : f'(x) = 2f(-x) + x et trouver une équation différentielle d'ordre deux que vérifie f.

Pour s'entrainer

Exercice 19. Résoudre les équations suivantes sur le plus grand intervalle possible.

$$1. \ y' = y \tan x + \cos x$$

2.
$$\begin{cases} y' \ln t = \frac{y}{t} + 1 - \ln t \\ y(2) = 0 \text{ puis } y(1/2) = 0 \end{cases}$$

3.
$$(1+x^2)y' + xy = x$$

4.
$$xy' + y = \arctan(x)$$

5.
$$x^2(1+x)y' + y = x$$

6.
$$(x^2 + x + 2)y' + x^2y = x^3 + x^2 + x + 2$$

7.
$$y = y' \tan x + \cos x$$

Exercice 20. Calculer les intégrales suivantes.

1.
$$\int_0^{\pi/2} \frac{\sin x}{1 + \sin x} dx$$

$$2. \int_0^\pi \frac{dt}{1 + \sqrt{2}\sin^2 t}$$

3.
$$\int_{2}^{3} \cos(2x)e^{x} dx$$

4.
$$\int_0^1 x^2 \arctan x \ dx$$

Exercice 21. Calculer les intégrales suivantes :

$$I_1 = \int_0^1 \frac{\sqrt{x+2}}{x+3} dx \quad \text{(on posera } s = \sqrt{x+2}\text{)}$$

$$I_2 = \int_0^1 \sqrt{\frac{1-x}{1+x}} \, dx \quad \text{(on posera } x = \cos(2t)\text{)}$$

Exercice 22. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, \qquad f(x+y) = f(x)f(y)$$

Exercice 23. Déterminer toutes les applications $f: \mathbb{R} \to \mathbb{R}$ deux fois dérivables vérifiant

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) + f(x-y) = 2f(y)f(x)$$

Exercice 24. Déterminer une primitive de $\frac{1}{\sin x}$. (indication : on pensera aux formules avec l'arc moitié.)

Exercice 25. Soit θ un nombre réel tel que $0 \le \theta < \frac{\pi}{2}$.

- 1. Résoudre dans \mathbb{C} l'équation $z^2 \cos^2 \theta 2z \sin \theta \cos \theta + 1 = 0$. Déterminer le module et un argument des solutions éventuelles de cette équation.
- 2. Résoudre l'équation différentielle (dans \mathbb{R}) : (E) $\cos^2 \theta y'' 2 \sin \theta \cos \theta y' + y = 00$.
- 3. Déterminer les solutions éventuelles vérifiant les conditions initiales y(0) = 1 et y'(0) = 0.

Exercice 26. Déterminer les fonctions y définies sur \mathbb{R} , ne s'annulant jamais et vérifiant $y' + 3y + y^2 = 0$ (on pourra poser $z = \frac{1}{y}$). Cette équation est un cas particulier d'équation de Ricatti.

Exercice 27. On cherche les solutions définies sur \mathbb{R} de l'équation différentielle $x^2y' + xy = 1$. Commencer par résoudre cette équation sur chacun des intervalles \mathbb{R}^{+*} et \mathbb{R}^{-*} . Conclure.

Exercice 28. Résoudre les équations différentielles suivantes; étudier les éventuels recollements des solutions.

1.
$$y'' = y + xe^x - e^{-x}$$

$$2. \ y' = y + \cos x + \sin x$$

3.
$$y'' - 2y' + y = \text{ch}x$$

$$4. \ y'' + 4y = \sin(at)$$

5.
$$y'' + y = \cos^2 t$$

$$6. xy' \ln x = (3\ln x + 1)y$$

7.
$$y'' + 2y' + y = 2x \cos x \cosh x$$

8.
$$iy' + y = \sin x \text{ avec } y(0) = 1$$

9.
$$(x^2-1)y'+xy=x^3-x$$

10.
$$y' \sin x = 2y \cos x$$

11.
$$2x(1+\sqrt{x})y'' + (1+2\sqrt{x})y' = 0$$

12.
$$y'(3x^2 - 2x) = y(6x - 2)$$

13.
$$y' - y \tan x = \frac{1}{\cos^3 x}$$

14.
$$x(x^2 - 1)y' + 2y = x^2$$
.

15.
$$x^2y' + y = x^2 \text{ sur } \mathbb{R}_+^*$$
; limite des solutions en 0^+ ?

16.
$$2xyy' = x^2 + y^2$$
 avec $y(1) = 2$.

17.
$$\frac{1}{2}(1-x^2)y'' + xy' - y = 0.$$

Exercice 29. Résoudre les équations différentielles suivantes en précisant à chaque fois le ou les intervalles de résolution choisis :

1.
$$y' - 2y = \operatorname{sh}(x) - 2x\operatorname{ch}(x)$$
.

$$2. ty' + y = \cos(t).$$

3.
$$y' + y = \frac{1}{1 + e^t}$$
.

4.
$$y' + y = (x^2 - 2x + 2)e^{2x}$$
.

5.
$$xy' \ln x - y = 3x^2 \ln^2 x$$
.

6.
$$y' + 2y = x^2$$
.

7.
$$y' + x^2y + x^2 = 0$$

(déterminer une solution vérifiant $y(0) = 0$).

8.
$$\sqrt{1-x^2}y'-y=1$$
.

9.
$$2ty' + y = t^n \quad (n \in \mathbb{N}).$$

10.
$$y' + y = \sin(x) + \sin(2x)$$
.

11.
$$y' - 3y = x^2 e^x + x e^{3x}$$
 (en imposant de plus $y(0) = 1$).

12.
$$ch(x)y' - sh(x)y = sh^3(x)$$
.

Exercice 30. Résoudre l'équation différentielle $(yy'' - (y')^2)\sin^2 x + y^2 = 0$ (on pourra poser $u = \frac{y'}{y}$).