Math 3770H: Assignment II

Jeremy Favro (0805980) Trent University, Peterborough, ON, Canada

October 5, 2025

Problem 1. Write the function

$$f(z) = z + \frac{1}{z} \qquad (z \neq 0)$$

in the form $f(z) = u(r, \theta) + iv(r, \theta)$

Solution 1. Writing f first in polar form to switch to a dependence on r = |z|, $\theta = \arctan(\operatorname{Im} z/\operatorname{Re} z)$,

$$z = re^{i\theta} = r\cos\theta + ir\sin\theta.$$

This is actually really nice here as it means we can easily write the inverse without using a fraction,

$$z^{-1} = r^{-1}e^{-i\theta} = r^{-1}\cos(-\theta) + ir^{-1}\sin(-\theta)$$
.

Which can be reworked further using the even/odd nature of cos and sin respectively giving:

$$f(z) = r \cos \theta + ir \sin \theta + r^{-1} \cos \theta - ir^{-1} \sin \theta$$
$$= r \cos \theta + r^{-1} \cos \theta + ir \sin \theta - ir^{-1} \sin \theta$$
$$= (r + r^{-1}) \cos \theta + (r + r^{-1}) \sin \theta$$

Problem 2. Sketch the region onto which the sector $r \le 1$, $0 \le \theta \le \pi/4$ is mapped by the transformation

(a)
$$w = z^2$$
;

(b)
$$w = z^3$$
; (c) $w = z^4$.

(c)
$$w = z^4$$

Solution 2. Generally the transform $w = z^n$ will give $w = r^n e^{in\theta}$, just by exponentiation laws. Our original region looks like:

Because our region only extends out to r=1 the radius won't change.

(a)

(b)

(c)

Problem 3. Use definition (2), Sec. 15, of the limit to prove that

(a)
$$\lim_{z\to z_0} \operatorname{Re} z = \operatorname{Re} z_0$$
; (b) $\lim_{z\to z_0} \overline{z} = \overline{z_0}$; (c) $\lim_{z\to 0} \frac{\overline{z}^2}{\overline{z}} = 0$.

(b)
$$\lim_{z \to z_0} \overline{z} = \overline{z_0}$$

(c)
$$\lim_{z \to 0} \frac{\overline{z}^2}{z} = 0$$

Solution 3.

(a) Let $\epsilon > 0$. Suppose $|z - z_0| < \delta$. If we take z = x + iy and $z_0 = x_0 + iy_0$ then we have

$$|\operatorname{Re} z - \operatorname{Re} z_0| = |x - x_0| \le |z - z_0|.$$

We can make that last statement because

$$|x - x_0| < |x - x_0 + iy - iy_0| = |z - z_0|.$$

This means that

$$|\operatorname{Re} z - \operatorname{Re} z_0| = |z - z_0| < \delta$$

by the $\epsilon - \delta$ definition we are using. Having this means that provided $|z - z_0| \le \delta = \epsilon$, then $|\operatorname{Re} z - \operatorname{Re} z_0| < \epsilon$ by transitivity.

(b) Let $\epsilon > 0$. Suppose $|z - z_0| < \delta$. We have

$$|\overline{z} - \overline{z_0}| = |\overline{z - z_0}| = |z - z_0| < \delta$$

all by properties of the complex conjugate. So provided $|z-z_0| < \delta = \epsilon$, then $|\overline{z} - \overline{z_0}| < \epsilon$.

(c) Let $\epsilon > 0$. Suppose $|z - z_0| < \delta$. We have

$$\left| \frac{\overline{z}^2}{z} - \frac{\overline{z_0}^2}{z_0} \right| = \left| \frac{\overline{z}\overline{z}}{z} - \frac{\overline{z_0}\overline{z_0}}{z_0} \right|$$

 $\lim_{z\to 0} = 0.$

Problem 4. With the aid of the theorem in Sec. 17, show that when

$$T(z) = \frac{az+b}{cz+d}$$
 $(ad-bc) \neq 0$

- (a) $\lim_{z\to\infty} T(z) = \infty$ if c=0:
- (b) $\lim_{z\to\infty} T(z) = \frac{a}{c}$ and $\lim_{z\to-d/c} T(z) = \infty$ if $c\neq 0$

Solution 4.

Problem 5. Use the method in Example 2, Sec. 19, to show that f(z) does not exist at any point z when (a) $f(z) = \operatorname{Re} z$; (b) $f(z) = \operatorname{Im} z$.

Solution 5.

Problem 6. Use the theorem in Sec. 24 to show that each of these functions is differentiable in the indicated domain of definition, and also to find f'(z):

- (a) $f(z) = 1/z^4$ $(z \neq 0)$;
- (b) $f(z) = e^{-\theta} \cos(\ln r) + ie^{-\theta} \sin(\ln r) \ (r > 0.0 < \theta < 2\pi).$

Solution 6.

Problem 7. With the aid of the theorem in Sec. 21, show that each of these functions is nowhere analytic: (b) $f(z) = 2xy + i(x^2 - y^2)$; (c) $f(z) = e^y e^{ix}$. (a) f(z) = xy + iy;

Solution 7.

Problem 8.A. Let the function f(z) = u(x,y) + iv(x,y) be analytic in a domain D, and consider the families of level curves $u(x,y)=c_1$ and $v(x,y)=c_2$, where c_1 and c_2 are arbitrary real constants. Prove that these families are orthogonal. More precisely, show that if $z_0 = (x_0, y_0)$ is a point in D which is common to two particular curves $u(x,y)=c_1$ and $v(x,y)=c_2$ and if $f'(z_0)\neq 0$, then the lines tangent to those curves at (x_0,y_0) are perpendicular.

Problem 8.B. Sketch the families of level curves of the component functions u and v when f(z) = 1/z, and note the orthogonality described in Exercise 2.

Solution 8.A.

Solution 8.B.