2.1. (a)
$$\frac{20}{3}$$
, (b) $\frac{71}{60}$, (c) $\frac{4 \ln 2}{3}$, (d) $\frac{1}{4} \left(e - \frac{1}{e} \right)$, (e) $\frac{3 \pi R^4}{2}$, (f) $\frac{2 a b \pi}{3}$, (g) π , (h) $\frac{8}{3}$, (i) $-\frac{135}{4}$.

$$\textbf{2.2.} \ (a) \ I = \int\limits_0^6 dx \int\limits_{x/2}^3 f(x,y) dy \ , \ (b) \ I = \int\limits_0^1 dy \int\limits_{y^2/2}^{1-\sqrt{1-y^2}} f(x,y) dx \ + \int\limits_1^2 dy \int\limits_{y^2/2}^2 f(x,y) dx \ + \int\limits_0^1 dy \int\limits_{1+\sqrt{1-y^2}}^2 f(x,y) dx \ ,$$

$$(c)\,I = \int\limits_{-1}^{1} \! dy \int\limits_{0}^{\sqrt{1-y^2}} \! f(x,y) dx \;, \; (d)\,I = \int\limits_{0}^{1} \! dx \int\limits_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \! (x,y) dy \;, \; (e)\,I = \int\limits_{0}^{\sqrt{2}} \! dx \int\limits_{x}^{\sqrt{4-x^2}} \! f(x,y) dy \;.$$

2.3. (a)
$$\frac{1}{6}$$
, (b) $\frac{15}{8}$ – 2 ln 2, (c) 1.

2.4. (a)
$$\frac{1}{2}$$
, (b) $\frac{e-1}{2}$, (c) $\frac{\pi}{12e} \left(1 - \frac{1}{e^3} \right)$, (d) 1.

2.5. (a)
$$I = \frac{\ln 2}{2} - \frac{5}{16}$$
, $S_{\Delta ABC} = \frac{\sqrt{3}}{2}$, $V_{OABC} = \frac{1}{6}$; (b) $I = \frac{\pi}{15}$, $S = \pi$, $V = \frac{\pi}{6}$.

2.6. (a)
$$\frac{\pi}{2}$$
, (b) $\frac{\pi}{3}$, (c) 4π , (e) 20π .

2.7. (a)
$$V_1 = \frac{16\pi}{3} - \frac{64}{9}$$
, $V_2 = \frac{16\pi}{3} + \frac{64}{9}$; (b) $\frac{3\pi}{2}$.

2.8. (a)
$$\frac{\pi}{2}$$
, (b) $\frac{49}{5}$, (c) 6π , (d) $\frac{4\pi a^3}{\sqrt{3}}$.