

Лекция 5. Метрики качества

Образовательный партнер курса

misis.ru

Генеральный партнер курса

Партнеры курса

raiffeisen-digital.ru

academy.yandex.ru

На прошлой лекции

- Решающие деревья
- Ансамбли деревьев
- Общие идеи построения ансамблей
- Извлечение и простые преобразования признаков
- Отбор признаков

Немного мотивации: топ ошибок в индустрии

- 1. Постановка задачи отсутствует или неправильная (например, метрику вообще выбрали случайно)
- 2. А/В тест не проводится или не валиден
- 3. Утечка и переобучение

Субъективный топ причин

- 1. Безответственность: «и так сойдет»
- 2. Невнимательность, особенно в период «авралов»
- 3. Нехватка экспертизы: незнание, что вопросы, которые мы обсудим на этой лекции, существуют и важны

1. Метрики в задачах регрессии

План

2. Метрики в задачах классификации

3. Пример выбора метрики

1. Метрики в задачах регрессии

Функционал ошибки (loss)

- MAE
- RMSE
- MAPE
- •SMAPE
- logloss

MEAN AVERAGE ERROR

- Отклонение прогноза от исходного значения
- Усредненное по всем наблюдениям

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

ROOT MEAN SQUARED ERROR

- Корень из среднего квадратичного отклонения прогноза от исходного значения
- Сильнее штрафует за бОльшие по модулю отклонения

RMSE =
$$\sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

MEAN AVERAGE PERCENTAGE ERROR

• Ошибка прогнозирования оценивается в процентах

$$\mathrm{M} = rac{100}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|$$

SYMMETRIC MEAN AVERAGE PERCENTAGE ERROR

• Ошибка оценивается в процентах

$$ext{SMAPE} = rac{100\%}{n} \sum_{t=1}^n rac{|F_t - A_t|}{(|A_t| + |F_t|)/2}$$

SYMMETRIC MEAN AVERAGE PERCENTAGE ERROR

• Ошибка оценивается в процентах

$$ext{SMAPE} = rac{100\%}{n} \sum_{t=1}^n rac{|F_t - A_t|}{(|A_t| + |F_t|)/2}$$

$$ext{SMAPE} = rac{100\%}{n} \sum_{t=1}^{n} rac{|F_t - A_t|}{|A_t| + |F_t|}$$

SYMMETRIC MEAN AVERAGE PERCENTAGE ERROR

• По-разному штрафует за перепрогнозирование и недопрогнозирование

• Перепрогнозирование:

$$A_t = 100, F_t = 110 \sim \text{SMAPE} = 4.76\%$$

• Недопрогнозирование:

$$A_t = 100, F_t = 90 \sim \text{SMAPE} = 5.26\%$$

Log Loss

- Логарифмическая ошибка
- Хорошо оценивает вероятность

LogLoss =
$$-\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

Пусть
$$p_i = P(y_i = 1|x_i)$$
, тогда $1 - p_i = P(y_i = 0|x_i)$

Пусть $p_i = P(y_i = 1|x_i)$, тогда $1 - p_i = P(y_i = 0|x_i)$ Теперь заметим, что выражение $p_i^{\ y_i}(1-p_i)^{(1-y_i)}$ - просто запись вероятности того класса, к которому x_i фактически принадлежит

Пусть
$$p_i = P(y_i = 1|x_i)$$
, тогда $1 - p_i = P(y_i = 0|x_i)$

Теперь заметим, что выражение $p_i^{\ y_i}(1-p_i)^{(1-y_i)}$ - просто запись вероятности того класса, к которому x_i фактически принадлежит

Произведение вероятностей фактических классов объектов из выборки – правдоподобие выборки:

$$\prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{(1-y_i)}$$

Пусть
$$p_i = P(y_i = 1|x_i)$$
, тогда $1 - p_i = P(y_i = 0|x_i)$

Теперь заметим, что выражение $p_i^{\ y_i}(1-p_i)^{(1-y_i)}$ - просто запись вероятности того класса, к которому x_i фактически принадлежит

Произведение вероятностей фактических классов объектов из выборки – правдоподобие выборки:

$$\prod_{i=1}^{N} p_i^{y_i} (1 - p_i)^{(1-y_i)}$$

Если взять логарифм и умножить на -1 – получим log loss

Log Loss константного прогноза

Рассмотрим выборку из n объектов с одинаковыми векторами признаков x, на pn из которых таргет равен 1, а на остальных – 0.

Log Loss константного прогноза

Рассмотрим выборку из n объектов с одинаковыми векторами признаков x, на pn из которых таргет равен 1, а на остальных – 0.

Пусть a(x) = c, тогда log loss минимален при:

$$\left(\sum_{i=1}^{n} y_i \ln c + (1 - y_i) \ln(1 - c)\right)_c' = 0$$

Log Loss константного прогноза

$$\left(\sum_{i=1}^{n} y_i \ln c + (1 - y_i) \ln(1 - c)\right)_c' = 0$$

$$\frac{pn}{c} - \frac{n - pn}{1 - c} = 0$$

$$pn - cpn = cn - cpn$$

$$pn = cn$$

$$c = p$$

История про MAE вместо log loss

- Заказчик очень хотел, чтобы алгоритм оценивал вероятности в задаче бинарной классификации
- Немного знал про функции потерь
- Просил решать задачу регрессии на ответах 0 и 1 оптимизируя МАЕ, думал ответы будут между 0 и 1
- Ответы получились только 0 и 1

Упражнение

1. Показать, что если вместо log loss оптимизировать МАЕ в задаче с ответами 0 и 1, прогноз алгоритма будет округляться к 0 или к 1

2. Показать, что константный прогноз в регрессии, оптимизирующий MSE – среднее значение таргетов

2. Метрики в задачах классификации

Метрики качества

- Accuracy
- Precision
- Recall
- F-measure
- ROC-AUC

Доля правильных ответов при классификации

Доля правильных ответов при классификации

target: 101000100

Доля правильных ответов при классификации

target: 101000100

predicted: 0 0 1 0 0 0 0 1 1 0

Доля правильных ответов при классификации

target: 101000100

predicted: 0 0 1 0 0 0 0 1 1 0

Доля правильных ответов при классификации

target: 1010000100

predicted: 0 0 1 0 0 0 0 1 1 0

accuracy = 8/10 = 0.8

Метрики качества

- Accuracy
- Precision
- Recall
- F-measure
- ROC-AUC

Precision & Recall

- Precision точность
- Recall полнота

Сбитые самолеты

Сбитые самолеты

y = (0000101101)

 $\hat{y} = (011010101)$

Precision

Precision – точность выстрелов:

Количество сбитых самолётов

Количество выстрелов

$$y = (0000101101)$$

 $\hat{y} = (011010101)$

Recall

Recall – «полнота» сбивания самолетов:

Количество сбитых самолётов

Общее количество самолётов

$$y = (0000101101)$$

 $\hat{y} = (011010101)$

Обычно объясняется так:

à		Actual Class	
		Yes	No
Predicted Class	Yes	True Positive	False Positive
	No	False Negative	True N egative

$$egin{aligned} & ext{Precision} = rac{tp}{tp + fp} \ & ext{Recall} = rac{tp}{tp + fn} \end{aligned}$$

F-measure (F-score, F1)

• Среднее гармоническое между precision и recall:

$$F1 = 2 * \frac{precision * recall}{precision + recall}$$

• Значение F-measure ближе к меньшему из precision и recall

Метрики качества

- Accuracy
- Precision
- Recall
- F-measure
- ROC-AUC

ROC-AUC

- Применяется для оценки «вероятностной» классификации*
- «Качество» ранжирования объектов по вероятности принадлежности к целевому классу
- Доля «правильно» отранжированных пар
- Вероятность встретить объект целевого класса раньше, чем объект нецелевого класса

ROC

r.s		Actual Class	
		Yes	No
Predicted Class	Yes	True Positive	False Positive
	No	False Negative	True N egative

$$TPR = \frac{True \ positives}{True \ positives + False \ negatives}$$

$$FPR = \frac{False \ positives}{False \ positives + True \ negatives}.$$

ROC

ROC

• Как оценить кривую численно?

ROC-AUC

• Как оценить кривую численно?

• Измерить площадь под кривой – area under the curve!

ROC-AUC

ROC-AUC по-простому

Рассмотрим всевозможные пары объектов из выборки. ROC-AUC – доля тех пар, которые алгоритм отранжировал правильно.

История про ROC-AUC по 0 и 1

История про ROC-AUC по 0 и 1

Упражнение

- Показать, что треугольный ROC-AUC для константного ответа равен 0.5
- Показать, что треугольный ROC-AUC для случайного ответа 0 или 1 (с любой вероятностью ответа 1) тоже равен 0.5
- Показать, что обычный ROC-AUC для случайных ответов из равномерного распределения на [0, 1] равен 0.5

Дополнительные материалы

Рассказ про ROC-AUC в блоге Александра Дьяконова:

https://dyakonov.org/2017/07/28/auc-roc-площадь-подкривой-ошибок/

Подумайте, почему мы вводили ROC-AUC не с помощью движения по сетке вправо и вверх (подсказка: ответ кроется в шаге с сортировкой)

3. Выбор метрики (пример: рекомендации)

Что можем делать

- Прогнозировать, какие товары будут куплены
- Максимизировать прибыль

Остается вопрос: какие прогнозы нужны и как их использовать, чтобы денег стало больше?

Максимизация количества покупок

Товар 1	Товар 2	Товар 3	Товар 4

Максимизация количества покупок

Danageria				
Вероятность:	p_1	p_2	p_3	p_4

Максимизация дохода

Товар 1 Товар 2	Товар 3	Товар 4
-----------------	---------	---------

Вероятность:	p_1	p_2	p_3	p_4
Цена:	c_1	c_2	c_3	c_4

Максимизация дохода

Puma Ветровка 3 490 руб. Crocs Сланцы 1 990 руб. Топу-р Слипоны 1 999 руб. 1 590 руб. Champion Брюки спортивные 3 599 руб. 1 970 руб.

Вероятность:	0.05	0.02	0.015	0.009
Цена:	3490	1990	1590	1970

Максимизация прибыли

Puma Ветровка 3 490 руб. Crocs Сланцы 1 990 руб. Топу-р Слипоны 1 999 руб. 1 590 руб. Champion Брюки спортивные 3 599 руб. 1 970 руб.

Вероятность:	0.05	0.02	0.015	0.009
Цена:	3490	1990	1590	1970
Маржинальность	0.1	0.4	0.4	0.2

Мини-задача

Как изменится построение модели, если нам нужно максимизировать количество просмотренных пользователем товаров?

Точность (Precision@k)

k – количество рекомендаций

Precision@k =
$$\frac{\text{купленное из рекомендованного}}{k}$$

AveragePrecision@k - усредненный по сессиям Precision@k

Полнота (Recall@k)

k – количество рекомендаций

Recall@
$$k = \frac{\text{купленное из рекомендованного}}{\text{количество покупок}}$$

AverageRecall@k - усредненный по сессиям Recall@k

Взвешенный ценами recall@k

Рекомендованные товары

Синяя футболка – 1000р

Красная футболка – 1200р

Кроссовки – **3500**р

Кепка – 900р

Зеленая футболка – 800р

Купленные товары

Красная футболка – 1200р

Кеды – 3000р

Кепка – 900р

AverageRecall@k - усредненный по сессиям Recall@k

Качество классификации против качества рекомендаций

Пример – 2 решения для прогноза купит/не купит товар:

	Алгоритм 1	Алгоритм 2
AUC классификатора	0.52	0.85
Recall@5	0.72	0.71

1. Метрики в задачах регрессии

План

2. Метрики в задачах классификации

3. Пример выбора метрики

Data Mining in Action

Лекция 5

Группа курса в Telegram:

https://t.me/joinchat/B1OlTk74nRV56Dp1TDJGNA