The Membrane Voltage

Neurons are excitable cells

Computational Neuroscience University of Bristol

M Rule

Learning outcomes:

- ► Leak channels, Na⁺/K⁺ATPase
- Nernst potential
- ► Effective circuit for passive membrane
- ► Detail the role of Na⁺, K⁺, Cl⁻ ions in the membrane voltage.

Neurons are excitable

- ► They maintain a voltage difference across their cell membrane
- ► Charged ions with differing intracellular/extracelluar concentrations → chemical "batteries"
 - Effective voltage depends on ion's charge & concentration difference
 - Powers voltage dynamics for computation & communication
 - Active pumps set and maintain concentration differences

Neurons are excitable

- ► They maintain a voltage difference across their cell membrane
- ► Charged ions with differing intracellular/extracelluar concentrations → chemical "batteries"
 - Effective voltage depends on ion's charge & concentration difference
 - Powers voltage dynamics for computation & communication
 - Active pumps set and maintain concentration differences

Consider: ion C with charge z, concentrations $[C]_{out}$, $[C]_{in}$.

Moving ion inside:

- ► ∆Energy *zFV*
- ► Δ Entropy $R \ln \left(\frac{[C]_{\text{out}}}{[C]_{\text{in}}} \right)$

Electrical work

Chemical work

Balance?

$$\Delta \text{Energy} = T \cdot \Delta \text{Entropy}$$

$$zFV \propto RT \ln \left(\frac{[C]_{\text{out}}}{[C]_{\text{in}}} \right)$$

$$\vdots \qquad \qquad \frac{R}{F} = \frac{\text{Gas constant}}{\text{Faraday constant}}$$

$$V = \frac{T}{z} \frac{R}{F} \ln \left(\frac{[C]_{\text{out}}}{[C]_{\text{in}}} \right)$$

$$= \frac{1}{z} E_0 \ln \left(\frac{[C]_{\text{out}}}{[C]_{\text{in}}} \right)$$
 Nernst potential

Often use T=310.15 K (37°C), such that $E_0:=TR/F\approx 26.7$ mV

► F: Faraday's constant \approx 96,485 $\mathrm{C} \,\mathrm{mol}^{-1}$

- ► T: Temperature (Kelvin, assume ~ 310.15 °K, i.e. 37°C + 273.15)
- ► R: Ideal gas constant $\approx 8.3145 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

Example: Chloride reversal potential in mature pyramidal neuron

z = -1: lon charge

 $E_0 \approx 26.7$

[Cl⁻]_{out}: 110 mM

[Cl⁻]_{in}: 7 mM

 E_{C1}^- : Cl⁻ reversal potential (voltage)

$$E_{\text{Cl}^-} = \frac{1}{z} E_0 \ln \left(\frac{[\text{Cl}^-]_{\text{out}}}{[\text{Cl}^-]_{\text{in}}} \right) = (-26.7 \text{ mV}) \ln \left(\frac{110 \text{ mM}}{7 \text{ mM}} \right) \approx 73.5 \text{ mV}$$

Goldman–Hodgkin–Katz (GHK) voltage equation

In practice, multiple leak channels set resting voltage, and channels may be permiable to multiple ions; To calculate reversal potentials with multipl ionic fluxes you need to use the Goldman-Hodgkin-Katz (GHK) voltage equation.

$$E_m = E_0 \ln \left(\frac{P_{\text{Na}}[\text{Na}^+]_{\text{out}} + P_{\text{K}}[\text{K}^+]_{\text{out}} + P_{\text{Cl}}[\text{Cl}^-]_{\text{in}}}{P_{\text{Na}}[\text{Na}^+]_{\text{in}} + P_{\text{K}}[\text{K}^+]_{\text{in}} + P_{\text{Cl}}[\text{Cl}^-]_{\text{out}}} \right)$$

$$e^{E_m/E_0} =$$
 (permeability \cdot concentration) weighted average ... $= \frac{\sum_i w_i e^{z_i(E_i/E_0)}}{\sum_i w_i}$

$$w_i = P_i \cdot \begin{cases} [i]_{\text{in}} & \text{if } z_i \text{ positive} \\ [i]_{\text{out}} & \text{if } z_i \text{ negative} \end{cases}$$

Some of the voltage and ligand (i.e. neurotransmitter) gated channels we will cover are also permiable to multiple ions (at least in part), and require a similar treatment. But, each ion channel can be reduced to an effective reversal potential and conductance.

Modelling Scales

... Quantum Chemistry, Molecular dynamics

Physiological, Quantitative

Biological Realism, Data needed to identify parameters Gillespi

Molecules

Gillespie, Master Equation

Concentrations

Mass-Action Kinetics

Conductance Models

Hodgkin-Huxley

Spiking Models

Leaky Integrate and Fire

Rate Neurons

Neural Mass/Field Models

Poisson Neurons

Generalized Linear Models

Binary Neurons

McCulloch-Pitts, Hopfield, Perceptron

Cognitive Neuroscience, Psychology ...

Computational Efficiency, Mathematical Tractability

Phenomenological, Qualitative

where are we now?

Jargon

depolarize v_m increases

repolarize v_m decreases towards resting potential

hyperpolarize v_m is driven below resting potential

Sign conventions

Let $v_m = v_{\rm interior} - v_{\rm exterior}$ denote a neuron's membrane voltage

A positive current applied to a neuron makes v_m _____?

- ► Engineer: increase
- ► Electrophysiologst: decrease!

Compromise:

- ightharpoonup inward current makes v_m more positive
- outward current makes the membrane voltage more negative

Nernst: Intuitive

Consider ion C^z and two equal, small volumes in the exterior/interior of the cell with extracellular/intracellular concentrations $[C]_{\mathrm{out}}$ and $[C]_{\mathrm{in}}$, respectively. Let $N = [C]_{\mathrm{out}} + [C]_{\mathrm{in}}$ be the total number of ions, and define $p = [C]_{\mathrm{in}}/N$, the portion $p \in [0,1]$ inside the cell.

The Nernst potential describes a relationship between p and membrane voltage V that minimizes free energy.

$$F = \text{energy} - T \cdot \text{entropy} \tag{1}$$

We will consider a voltage clamp experiment, which fixes V and allows p to relax to equilibrium. To minimize free energy in p, differentiate F and set to zero $\frac{\mathrm{d}}{\mathrm{d}p}F(p)=0$, yielding the relation:

$$\frac{\mathrm{d}}{\mathrm{d}p}\mathrm{energy} = T\frac{\mathrm{d}}{\mathrm{d}p}\mathrm{entropy}.\tag{2}$$

Nernst: Intuitive

Entropy: Diffusion wants to equalize interior and exterior concentrations. The entropy is how many questions we need to ask to know whether a given ion is inside or outside the cell. We use entropy of a Bernoulli distribution for a coin-toss with $Pr(success \sim inside) = p$:

$$\frac{\mathrm{d}}{\mathrm{d}p}\operatorname{entropy} \propto \frac{\mathrm{d}}{\mathrm{d}p}\left\{-p\ln(p) - (1-p)\ln(1-p)\right\} = \ln\left(\frac{1-p}{p}\right). \tag{3}$$

Energy: The energy used to move p ions with charge z into a cell with electric potential difference V is

$$\frac{\mathrm{d}}{\mathrm{d}p}\mathrm{energy} \propto \frac{\mathrm{d}}{\mathrm{d}p} \left\{ zVp \right\} = zV. \tag{4}$$

Equating (3) and (4) per (2) gives the Nernst equation:

$$V = \frac{T}{z}\alpha \ln\left(\frac{1-p}{p}\right),\tag{5}$$

This V is the reversal potential for a given ion concentration $[C]_{\text{out}}/[C]_{\text{in}}=(1-p)/p$.

To recover physical units, use $\alpha = \frac{\text{Ideal gas constant}}{\text{Faraday's constant}} = \frac{R}{F}$.

