Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées

Année Universitaire: 2020/2021

Filière: AP2

Module: AP33-1

Prof.: Dr. A HADDAD

TDs – Electrocinétique - Série 2

Exercice 1:

Al Hoceima

Trouver la relation entre i, q₁, q₂ et u sur les schémas suivants :

a)
$$\downarrow$$
 $i(t)$ b) \downarrow $i(t)$ e) \downarrow $i(t)$ $q_1(t)$ $q_2(t)$ C \downarrow $u(t)$ $q_2(t)$ C \downarrow $u(t)$ \downarrow $u(t)$ \downarrow $u(t)$ $u(t)$

Exoercice 2:

La source idéale de courant du circuit ci-contre impose un échelon,

$$\eta(t) = \begin{cases} 0 & \text{si } t < 0 \\ I_0 & \text{si } t > 0 \end{cases}$$

Établir et résoudre l'équation différentielle vérifiée par la tension u pour t > 0.

Exercice 3:

On branche en série un générateur de f.e.m. $E=5\,\mathrm{V}$, un interrupteur trois positions, un résistor de résistance $R=1\,\mathrm{k}\Omega$ et une bobine d'inductance $L=100\,\mathrm{mH}$. À l'instant t=0, on passe l'interrupteur de la position 1 à la position 2.

- 1 Établir l'équation différentielle vérifiée par le courant i parcourant la bobine.
- 2 Indiquer sans calcul si le régime permanent est atteint au bout de 10 µs, 200 µs et 20 ms.
- 3 La résoudre après avoir déterminé les conditions initiales. Tracer l'allure du courant i(t).
- 4 Montrer que l'énergie initialement stockée dans la bobine est dissipée par effet Joule dans la résistance.

Université Abdelmalek Essaadi

Ecole Nationale des

Sciences Appliquées

Al Hoceima

Année Universitaire: 2020/2021

Filière: AP₂

Module: AP33-1

Prof.: Dr. A HADDAD

Exercice 4:

Considérons le circuit représenté ci-contre, dans lequel l'interrupteur K est brusquement fermé. Le générateur est une source idéale de tension.

Trouver l'expression de la tension u et tracer son allure.

Exercice 5:

Pour le circuit suivant, l'interrupteur est à la position initiale depuis longtemps. À t = 0, on commute l'interrupteur.

- 1. Calculer la valeur initiale de v_C .
- 2. Calculer la valeur finale de v_C .
- 3. Calculer la constante de temps du circuit, lorsque l'interrupteur est commuté.
- 4. Donner l'expression de $v_C(t)$ pour $t \ge 0$.
- 5. Donner l'expression de $i_C(t)$ pour $t \ge 0^+$.
- 6. À quel temps $v_C(t)$ devient-il 0?
- 7. Tracer le graphe de $v_C(t)$ et $i_C(t)$.

Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées Al Hoceima

Année Universitaire: 2020/2021

Filière: AP₂

Module: AP33-1

Prof.: Dr. A HADDAD

Exercice 6:

On considère le montage suivant :

- 1-En appliquant la loi d'additivité des tensions, trouver l'équation différentielle de la charge électrique q(t) dans le circuit.
- **2-**Juste après la fermeture de l'interrupteur K, un courant I_{θ} circule dans le circuit RC, trouver l'expression littérale de I_{θ} en fonction de R et E.
- **3-**Etablir l'équation différentielle à laquelle obéit le courant i(t).
- 4- La solution de cette équation et alors : $i(t)=Ae^{-t/\tau}$ avec $\tau=RC$. Trouver la constante A en fonction de I_0 .
- 5-Vérifier que le courant n'est pas une fonction continue à t=0s

Exercice 7:

On réalise un circuit RL (le montage de la figure ci-dessous), le circuit comporte une bobine d'inductance L et de résistance interne r, un conducteur ohmique de résistance R, un générateur idéal de tension continue E=6V. On règle la valeur de la résistance R à 50 Ω et on ferme le circuit .On mesure pour différentes dates l'intensité du courant dans le circuit, On groupe les résultats et on trace à l'aide d'un ordinateur l'évolution du courant i(t) en fonction du temps (La figure 2).

Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées Al Hoceima

Année Universitaire: 2020/2021

Filière: AP₂

Module: AP33-1

Prof.: Dr. A HADDAD

- **1-**Établir l'équation différentielle vérifiée par l'intensité i(t).
- 2- Déterminer graphiquement la valeur numérique Ip du courant dans le régime permanent.
- **3-** Relever graphiquement la valeur de la constante caractéristique du circuit τ .
- **4-**Réécrire l'équation différentielle de la question 1, dans le cas du régime permanent.
- **5**-En déduire la valeur littérale et numérique de la résistance interne de la bobine r, ainsi que la valeur d'inductance L.

Exercice 8:

Partie 1 : Décharge d'un condensateur dans un dipôle RL.

On monte en série, à un instant choisi comme nouvelle origine des dates t=0, un condensateur de capacité C, totalement chargé, avec une bobine d'inductance L=1H, de résistance interne $r=10\Omega$, un conducteur ohmique de résistance R=90 Ω .

Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées Al Hoceima

Année Universitaire: 2020/2021

Filière: AP₂

Module : AP33-1

Prof.: Dr. A HADDAD

La courbe de la figure présente l'évolution de la tension $u_c(t)$ aux bornes du condensateur.

1-quel est le régime d'oscillation mis en évidence par la courbe de la figure 2.

2-Etablir l'équation différentielle vérifiée par la tension u_c(t).

3-Sachant que la pseudopériode est égale à la période propre, trouver la capacité C du condensateur. (On pend $\pi^2=10$).

Parti 2 : Entretien des oscillations dans un circuit RLC série.

Pour entretenir les oscillations électriques dans le circuit précédent représenté sur la figure 1, on insère dans ce circuit un générateur G délivrant une tension proportionnelle à l'intensité du courant $U_G(t)=k.i(t)$. (Figure 3).

La courbe de la figure 6 représente l'évolution de l'intensité i(t) dans le circuit dans le cas K=K₀.

- 1-Trouver dans le système international l'unité, la valeur de K₀.
- **2-**Sachant que l'expression de l'intensité i(t) dans le circuit s'écrit ainsi : $i(t)=I_m \sin(\frac{2\pi}{T_0} t + \varphi)$ déterminer les valeurs de I_m , T_0 et φ .
- **3-**Déterminer l'énergie totale E_t du circuit.
- **4-**Trouver l'énergie électrique E_{el} emmagasiné dans le condensateur à l'instant t₁=16ms.