

 $J(\alpha) = \begin{cases} \frac{1}{x^2 - 1} & = \\ \frac{1}{x^2 - 1} &$ =2g(10+1)=[lg1]2) Show that I fear from dn 2 Hence Deduce that & Sinn on Solitet I(a) = Sean Sinn dr

Then by me of DUIS $\frac{dI}{da} = \int \frac{\partial f}{\partial a} dn = \int \frac{Sinn}{x} e^{-ax} (-x) \left[-x \right] \frac{1}{1 + s} = \frac{1}{2} \left[-x \right] \frac{1}$ Integrating b.s. w.r.to a

[-1 da = cot (a) + c

To find
$$C$$
, [put $a = \infty$]

LH: S . $\Rightarrow I(0) = \int_{0}^{\infty} e^{-\infty} \sin n dn = 0$

R.H: S . $\Rightarrow \cot^{-1}(\infty) + C = 0 + C$
 $\Rightarrow C = 0$

I $(a) = \cot^{-1}(a)$

For deduction, $a = 0$
 $I(0) = \begin{cases} e^{-\cos} \sin n & dn = 0 \\ \sin n & dn \end{cases}$
 $I(0) = \begin{cases} e^{-\cos} \sin n & dn = 0 \\ \sin n & dn \end{cases}$
 $\int_{0}^{\infty} \sin n & dn = I(0) = \cot^{-1}(0)$

$$I(a) = \int_{-a+1}^{a+1} \frac{1}{a} \int_{-a}^{a} \frac{\sin a}{1 + a^{2}} dx = I(a) = \cot^{2}(a)$$

$$= \frac{\pi}{2}$$

$$|\int_{-a}^{a} \frac{\sin a}{1 + a^{2}} dx = I(a) = \cot^{2}(a)$$

$$|\int_{-a}^{a} \frac{\sin a}{1 + a^{2}} dx = I(a) = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

$$= \frac{1}{a} \int_{-a}^{a} \frac{1}{1 + a^{2}} dx = I(a)$$

Problems

A)
$$\frac{1}{\sqrt{2}}$$

Let $\frac{1}{\sqrt{2}}$

Sol : By rule of $\frac{1}{\sqrt{2}}$

Sol : By rule of $\frac{1}{\sqrt{2}}$

To find $\frac{1}{\sqrt{2}}$

To find $\frac{1}{\sqrt{2}}$
 $\frac{1$

dI = lg(1+a) Integrating w.r.to a I(a) = \ lig(1+a) da = $log(1+a)(a) - \int \frac{a}{1+a} da + c$ $I(a) = a lg(1+a) - \int \frac{a+1-1}{a+1} da + c_2$ = alg(1+a) - a + lg(1+a) + (2) = (a+1) lg(a+1) - a + (2) $Put \quad \alpha = 0$ $L.H.S. = I(0) = \int_{n}^{\infty} e^{-\frac{\pi}{n}} \left(-\frac{1}{n} + \frac{1}{n}\right) dn = 0$ $R/1/5 = 1 lg(1) - 0 + C_2 = C_2$

RHS. =
$$1 \frac{1}{9}(1) - 0 + (2 = 12)$$

$$\overline{1(a)} = (a+1) \frac{1}{9}(a+1) - a$$

DUIS (Two Parameter)

1) Prove that $\int_{0}^{\infty} (\tan^{-1} ax - \tan^{-1} bx) dx$

Sol : Let $\overline{1(a)} = \int_{0}^{\infty} (\tan^{-1} ax - \tan^{-1} bx) dx$

By Rule of OUIS

$$\frac{d\overline{1}}{da} = \int_{0}^{\infty} \frac{d}{a} dx = \int_{0}^{\infty} (\tan^{-1} ax - \tan^{-1} bx) dx$$

$$= \int_{0}^{\infty} \frac{1}{a} dx = \int_{0}^{\infty} (\tan^{-1} ax - \tan^{-1} bx) dx$$

$$= \int_{0}^{\infty} \frac{1}{a} dx = \int_{0}^{\infty} (\tan^{-1} ax - \tan^{-1} bx) dx$$

$$= \int_{0}^{\infty} \frac{1}{a} dx = \int_{0}^{\infty} (\tan^{-1} ax - \tan^{-1} bx) dx$$

$$= \int_{0}^{\infty} \frac{1}{a} dx = \int_{0}^{\infty} \frac{1}{a} dx$$

$$= \int_{0}^{\infty} \frac{1}{a} dx = \int_{0}^{\infty} \frac{1}{a} dx$$

$$= \int_{0}^{\infty} \frac{1}{a} dx = \int_{0}^{\infty} \frac{1}{a} dx$$

PHS = $\overline{1} \frac{1}{a} \frac{1}{a} \frac{1}{a} bx - \frac{1}{a} \frac{1}{a} \frac{1}{a} bx$

$$= \int_{0}^{\infty} \frac{1}{a} \frac{1}{a} \frac{1}{a} dx$$

$$= \int_{0}^{\infty} \frac{1}{a} \frac{1}{a} \frac{1}{a} \frac{1}{a} \frac{1}{a} dx$$

Therefore $\int_{0}^{\infty} \frac{1}{a} \frac{1}{a}$

let I(a) =

Sol: Let
$$I(\alpha) = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$$

By Rule of $DUIS$
 $dI = \int_{0}^{\infty} dx = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $dI = \int_{0}^{\infty} dx = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $dI = \int_{0}^{\infty} dx = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $dI = 2 \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dy$
 $dI = 2 \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dy = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $dI = 2 \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2})} dx = -2I$

To find $C = \int_{0}^{\infty} e^{-(x+\frac{1}{2})} dx$
 $e^{-(x+\frac{1}{2})} dx = -2I$
 $e^{-(x+\frac{1}{2}$

DUIS Page 6

df = gdfdn = gebry (5)sin To obtain the integral, (Integration by parts) $p_{n}t - bn^{2} = t \Rightarrow -2bndn = dt$ $n = \int e^{t} \left(\frac{dt}{b}\right) = \frac{e^{t}}{b} = \frac{e^{-bn^{2}}}{b}$ $= \int e^{t} \left(\frac{dt}{b}\right) = \frac{e^{t}}{b} = \frac{e^{-bn^{2}}}{b}$ (e-bn²(-2n)dn 2a/Sebn2cos 2an dn D.E. (U.S./linear)

DUIS Page 7