PSTAT 100 Homework 3

```
In []: # Initialize Otter
    import otter
    grader = otter.Notebook("hw3-dds.ipynb")

In []: import numpy as np
    import pandas as pd
    import altair as alt
    import sklearn.linear_model #as lm
    from sklearn.linear_model import LinearRegression
    from sklearn.preprocessing import add_dummy_feature
    import warnings
    warnings.simplefilter(action='ignore', category=FutureWarning)
```

Background: California Department of Developmental Services

From Taylor, S. A., & Mickel, A. E. (2014). Simpson's Paradox: A Data Set and Discrimination Case Study Exercise. Journal of Statistics Education, 22(1):

Most states in the USA provide services and support to individuals with developmental disabilities (e.g., intellectual disability, cerebral palsy, autism, etc.) and their families. The agency through which the State of California serves the developmentally-disabled population is the California Department of Developmental Services (DDS) ... One of the responsibilities of DDS is to allocate funds that support over 250,000 developmentally-disabled residents. A number of years ago, an allegation of discrimination was made and supported by a univariate analysis that examined average annual expenditures on consumers by ethnicity. The analysis revealed that the average annual expenditures on Hispanic consumers was approximately one-third of the average expenditures on White non-Hispanic consumers. This finding was the catalyst for further investigation; subsequently, state legislators and department managers sought consulting services from a statistician.

In this assignment, you'll analyze the deidentified DDS data published with this article to answer the question: is there evidence of ethnic or gender discrimination in allocation of DDS funds?

Aside: The JSE article focuses on what's known as Simpson's paradox, an arithmetic phenomenon in which aggregate trends across multiple groups show the *opposite* of within-group trends. We won't emphasize this topic, though the data does provide a nice illustration - if you're interested in learning more, you can follow the embedded link to the Wikipedia entry on the subject.

Assignment objectives

You'll answer the question of interest employing exploratory and regression analysis techniques from class. In particular, you'll practice the following skills.

Exploratory analysis:

- grouped summaries for categorical variables;
- visualization techniques for categorical variables;
- hypothesis generation based on EDA.

Regression analysis:

- categorical variable encodings;
- model fitting and fit reporting;
- parameter interpretation;
- model-based visualizations.

In addition, in **communicating results** at the end of the assignment, you'll practice a few soft skills that may be helpful in thinking about how to report results for your independent class project:

- composing a concise summary (similar to an abstract) of background and key findings; and
- determining which results (figures/tables) to reproduce in a presentation context.

O. Getting acquainted with the DDS data

The data for this assignment are already tidy, so in this section you'll just familiarize yourself with basic characteristics. The first few rows of the data are shown below:

```
In []: dds = pd.read_csv('data/california-dds.csv')
    dds.head()
```

Out[]:		Id	Age Cohort	Age	Gender	Expenditures	Ethnicity
	0	10210	13 to 17	17	Female	2113	White not Hispanic
	1	10409	22 to 50	37	Male	41924	White not Hispanic
	2	10486	0 to 5	3	Male	1454	Hispanic
	3	10538	18 to 21	19	Female	6400	Hispanic
	4	10568	13 to 17	13	Male	4412	White not Hispanic

Take a moment to open and read the data documentation (data > california-dds-documentation.md).

Question 0 (a). Sample characteristics

Answer the following questions based on the data documentation.

(i) Identify the observational units.

Answer: The observational units are consumers (developmentally-disabled residents).

(ii) Identify the population of interest.

Answer: The population of interest are the 250,000 developmentally-disabled residents of California.

(iii) What type of sample is this (e.g., census, convenience, etc.)?

Answer: This is a random sample.

(iv) Is it possible to make inferences about the population based on this data?

Answer: Yes, it is possible to make inferences about the population based on this data, since the statistical properties of the sample are expected to match those of the population.

Question 0 (b). Variable summaries

Fill in the table below for each variable in the dataset.

Name	Variable description	Туре	Units of measurement
ID	Unique consumer identifier	Numeric	None
Age Cohort	Age range of consumer	Categorical	Years
Age	Exact Age of consumer	Numeric	Years
Gender	Gender of consumer	Categorical	None
Expenditures	Amount spent per yr. on consumer	Numeric	USD (\$)
Ethnicity	Ethnic group of consumer	Categorical	None

1. Exploratory analysis

Question 1 (a). Alleged discrimination

These data were used in a court case alleging discrimination in funding allocation by ethnicity. The basis for this claim was a calculation of the median expenditure for each group. Here you'll replicate this finding.

(i) Median expenditures by ethnicity

Construct a table of median expenditures by ethnicity.

- 1. Slice the ethnicity and expenditure variables from dds, group by ethnicity, and calculate the median expenditure. Store the result as median_expend_by_eth.
- 2. Compute the sample sizes for each ethnicity using .value_counts(): obtain a Series object indexed by ethnicity with a single column named n. You'll need to use .rename(...) to avoid having the column named Ethnicity. Store this result as ethnicity_n.
- 3. Use pd.concat(...) to append the sample sizes in ethnicity_n to the median expenditures in median_expend_by_eth.

 Store the result as tbl_1.

Print tbl_1.

```
In []: # compute median expenditures
median_expend_by_eth = dds.loc[:,['Ethnicity', 'Expenditures']].groupby('Ethnicity').median()

# compute sample sizes
ethnicity_n = dds.loc[:,'Ethnicity'].value_counts().rename('n')
#type(ethnicity_n)
```

```
# concatenate
tbl_1 = pd.concat([median_expend_by_eth, ethnicity_n], axis = 1)
# print
tbl_1
```

Out[]:

	Expenditures	n
American Indian	41817.5	4
Asian	9369.0	129
Black	8687.0	59
Hispanic	3952.0	376
Multi Race	2622.0	26
Native Hawaiian	40727.0	3
Other	3316.5	2
White not Hispanic	15718.0	401

(ii) Do there appear to be significant differences in funding allocation by ethnicity?

If so, give an example of two groups receiving significantly different median payments.

Answer

Yes, there appears to be significant differences in funding allocation by ethnicity. 'White not Hispanic' has a large sample size and a 15k+ median whereas 'Hispanic' and 'Asian' have only 3k - 9k for their median.

(iii) Which groups have small sample sizes? How could this affect the median expenditure in those groups?

Answer

'American Indian', 'Native Hawaiian', 'Multi Race', and 'Other' all have small sample sizes. Because of this, it can very easily skew the median to extremely large or small values for those groups and is not actually an acurate picture.

(iv) Display tbl_1 visually.

Construct a point-and-line plot of median expenditure (y) against ethnicity (x), with:

- ethnicities sorted by descending median expenditure;
- the median expenditure axis shown on the log scale;
- the y-axis labeled 'Median expenditure'; and
- no x-axis label (since the ethnicity group names are used to label the axis ticks, the label 'Ethnicity' is redundant).

Store the result as fig_1 and display the plot.

Hints:

- you'll need to use tbl_1.reset_index() to obtain the ethnicity group as a variable;
- recall that .mark_line(point = True) will add points to a line plot;
- sorting can be done using alt.X(..., sort = alt.EncodingSortField(field = ..., order = ...))

Question 1 (b). Age and expenditure

Here you'll explore how expenditure differs by age.

(i) Construct a scatterplot of expenditure (y) versus age (x).

Use the quantitative age variable (not age cohort). Display expenditure on the y axis on the log scale, and age on the x axis on the usual (linear) scale.

Store the plot as fig_2 and display the graphic.

(ii) Does the relationship seem linear?

If so, describe the direction (positive/negative) and approximate strength (steep/slight) of relationship. If not, describe the pattern of relationship, if any, in 1-2 sentences.

Answer

The relationship is somewhat linear in the beginning until around age 21. Past this age, the graph makes a jump and flattens out and we don not observe a linear relationship anymore. The overall direction is always positive. In the beginning this is a steep or strong relationship, and later becomes slight and less strong.

(iii) Overall, how does expenditure tend to change as age increases?

Answer

As age increases, up until around age 21, there is a positive relationship and trend with expenditures. An increase in age corresponds with an increase in spending. After this age, expenditure amount flatlines and is about the same for the rest of the ages.

(iv) What might explain the sudden increase in expenditure after age 20?

Answer

After age 20, most people are at the age when they move away from home or are graduating from school and begining to do things on their own. This means that they need a bit more money since their situations are changing and are moving towards a lifestyle that just costs more money. They might also have less help from family since they have moved out, and need to get that help from somewhere else.

Precisely because recipients have different needs at different ages that translate to jumps in expenditure, age has been discretized into age cohorts defined based on need level. Going forward, we'll work with these age cohorts -- by treating age as discrete, we won't need to attempt to model the discontinuities in the relationship between age and expenditure.

The cohort labels are stored as Age Cohort in the dataset. There are six cohorts; the cell below coerces the labels to an ordered category and prints the category levels.

Here is an explanation of how the cohort age boundaries were chosen:

The 0-5 cohort (preschool age) has the fewest needs and requires the least amount of funding. For the 6-12 cohort (elementary school age) and 13-17 (high school age), a number of needed services are provided by schools. The 18-21 cohort is typically in a transition phase as the consumers begin moving out from their parents' homes into community centers or living on their own. The majority of those in the 22-50 cohort no longer live with their parents but may still receive some support from their family. Those in the 51+ cohort have the most needs and require the most amount of funding because they are living on their own or in community centers and often have no living parents.

Question 1 (c). Age and ethnicity

Here you'll explore the age structure of each ethnic group in the sample.

(i) Group the data by ethnic group and tabulate the sample sizes for each group.

Use dds_cat so that the order of age cohorts is preserved. Write a chain that does the following.

- 1. Group by age cohort and ethnicity.
- 2. Slice the Id variable, which is unique to recipient in the sample.
- 3. Count the number of recipients in each group using .count().
- 4. Reset the index so that age cohort and ethnicity are dataframe columns.
- 5. Rename the column of ID counts 'n'.

Store the result as samp_sizes and print the first four rows.

```
In []: # solution
    samp_sizes = dds_cat.groupby(['Age Cohort', 'Ethnicity'])['Id'].count().reset_index().rename(columns={"Id": "n"})
# print
    samp_sizes
```

Out[]:		Age Cohort	Ethnicity	n
	0	0 to 5	American Indian	0
	1	0 to 5	Asian	8
	2	0 to 5	Black	3
	3	0 to 5	Hispanic	44
	4	0 to 5	Multi Race	7
	5	0 to 5	Native Hawaiian	0
	6	0 to 5	Other	0
	7	0 to 5	White not Hispanic	20
	8	6 to 12	American Indian	0
	9	6 to 12	Asian	18
	10	6 to 12	Black	11
	11	6 to 12	Hispanic	91
	12	6 to 12	Multi Race	9
	13	6 to 12	Native Hawaiian	0
	14	6 to 12	Other	0
	15	6 to 12	White not Hispanic	46
	16	13 to 17	American Indian	1
	17	13 to 17	Asian	20
	18	13 to 17	Black	12
	19	13 to 17	Hispanic	103
	20	13 to 17	Multi Race	7
	21	13 to 17	Native Hawaiian	0
	22	13 to 17	Other	2
	23	13 to 17	White not Hispanic	67
	24	18 to 21	American Indian	0
	25	18 to 21	Asian	41
	26	18 to 21	Black	9
	27	18 to 21	Hispanic	78
	28	18 to 21	Multi Race	2
	29	18 to 21	Native Hawaiian	0
	30	18 to 21	Other	0
	31	18 to 21	White not Hispanic	69
	32	22 to 50	American Indian	1
	33	22 to 50	Asian	29
	34	22 to 50	Black	17
	35	22 to 50	Hispanic	43
	36	22 to 50	Multi Race	1
	37	22 to 50	Native Hawaiian	2
	38	22 to 50	Other	0
	39	22 to 50	White not Hispanic	133
	40	51+	American Indian	2
	41	51+	Asian	13
	42	51+	Black	7
	43	51+	Hispanic	17
	44	51+	Multi Race	0
	45	51+ 51+	Native Hawaiian	1
	46	ムコエ	()thar	Ω

(ii) Visualize the age structure of each ethnic group in the sample.

Construct a point-and-line plot of the sample size against age cohort by ethnicity.

- 1. To preserve the ordering of age cohorts, create a new column in samp_sizes called cohort_order that contains an integer encoding of the cohort labels in order. To obtain the integer encoding, slice the age cohort variable as a series and use series.cat.codes.
- 2. Construct an Altair chart based on samp_sizes with:

Other

51+ White not Hispanic 66

46

47

51+

- sample size (n) on the y axis;
- the y axis titled 'Sample size' and displayed on a square root scale;
- age cohort on the x axis, ordered by the cohort variable you created;
- the x axis unlabeled; and
- ethnic group mapped to color.

Store the plot as fig_3 and display the graphic.

(Hint: sorting can be done using alt.X(..., sort = alt.EncodingSortField(field = ..., order = ...)).)

Out[]:

(iii) Are there differences in age structure?

If so, identify one specific example of two ethnic groups with different age structures and describe how the age structures differ.

Answer

There are differences in age structure, according to the chart created above. We can see that the red line is relatively flat and there are about the same number of people in each age group. However this is different from the pink line corresponding to "White not Hispanic" has an overall larger number for each group and the blue line for Hispanic is decreasing.

Question 1 (d). Correcting for age

Here you'll consider how the age structure among ethnic groups might be related to the observed differences in median expenditure.

(i) Distribution of Age by ethnic group

Construct the boxplots of the distribution of age by ethnic group.

- 1. Construct an Altair chart based on dds_cat with:
 - Ethnicity on the x axis;
 - Age on the y axis;
 - ethnic group mapped to color.

```
In []: # solution
    alt.Chart(dds_cat).mark_boxplot(outliers=True).encode(
        x = 'Ethnicity',
        y = 'Age',
        color = 'Ethnicity'
).properties(
        width = 500,
        title = 'Distribution of Age by Ethnic Group')
```


(ii) Why is the median expenditure for the multiracial group so low?

Look at the age distribution for Multi Race and consider the age-expenditure relationship. Can you explain why the median expenditure for this group might be lower than the others? Answer in 1-2 sentences.

In []:	<pre>dds_cat[dds_cat['Ethnicity'] == 'Multi Race']</pre>								
Out[]:		Id	Age Cohort	Age	Gender	Expenditures	Ethnicity	cohort_order	
	13	11189	13 to 17	17	Male	5340	Multi Race	2	
	30	12850	13 to 17	13	Male	3775	Multi Race	2	
	84	18383	0 to 5	0	Male	1149	Multi Race	0	
	145	22988	13 to 17	16	Male	4664	Multi Race	2	
	191	26437	0 to 5	0	Male	2296	Multi Race	0	
	243	31168	6 to 12	11	Female	2918	Multi Race	1	
	288	35360	6 to 12	10	Female	1622	Multi Race	1	
	330	39942	13 to 17	14	Male	3399	Multi Race	2	
	362	43291	6 to 12	11	Male	2140	Multi Race	1	
	393	45755	6 to 12	11	Male	1144	Multi Race	1	
	410	47043	22 to 50	25	Male	38619	Multi Race	4	
	443	50222	18 to 21	19	Female	7564	Multi Race	3	
	517	56736	18 to 21	18	Female	11054	Multi Race	3	
	569	61120	6 to 12	7	Male	3000	Multi Race	1	
	570	61187	6 to 12	11	Male	2885	Multi Race	1	
	668	69542	0 to 5	5	Female	1053	Multi Race	0	
	686	71073	13 to 17	14	Female	5062	Multi Race	2	
	839	84388	0 to 5	2	Female	697	Multi Race	0	
	871	87444	13 to 17	14	Female	1893	Multi Race	2	
	906	90953	6 to 12	10	Female	669	Multi Race	1	
	934	93628	6 to 12	6	Male	3259	Multi Race	1	
	948	94595	0 to 5	4	Female	2335	Multi Race	0	
	977	97426	0 to 5	1	Female	2359	Multi Race	0	
	978	97793	6 to 12	9	Female	1048	Multi Race	1	
	994	99529	0 to 5	2	Male	2258	Multi Race	0	
	997	99718	13 to 17	17	Female	3673	Multi Race	2	

Answer

The median expenditure for the Multi Race group is lower than others because if we look at the dataframe corresponding to only Multi Race, we can see that the maximum age is only 25. Previously, we saw that the expenditures is much higher after around age 20, so when this group has predominantly young ages, they require lower spend and therefore this group has a lower overall median.

(iii) Why is the median expenditure for the American Indian group so high?

Print the rows of dds_cat for this group (there aren't very many) and answer the question based on inspecting the rows.

```
In [ ]: # solution
         dds_cat[dds_cat['Ethnicity'] == 'American Indian']
Out[]:
                  Id Age Cohort Age Gender Expenditures
                                                                Ethnicity cohort_order
         231 30234
                                 78 Female
                                                   55430 American Indian
                            51+
         575 61498
                         13 to 17
                                  13 Female
                                                    3726 American Indian
                                                                                   2
         730 74721
                                                   58392 American Indian
                                                                                   5
                            51+
                                 90
                                     Female
         788 79645
                        22 to 50
                                 32
                                        Male
                                                   28205 American Indian
```

Answer

Out[]:

The median expenditure for the American Indian group is so high because there are only 4 observations and 2 of those are very large. This will skew the median and is not a good measure of the middle for this group.

(iv) Plot expenditure against ethnicity by age.

Hopefully, the last few prompts convinced you that the apparent discrimination *could* simply be an artefact of differing age structure. You can investigate this by plotting median expenditure against ethnicity, as in figure 1, but now also correcting for age cohort.

- 1. To preserve the ordering of age cohorts, create a new column in dds_cat called cohort_order that contains an integer encoding of the cohort labels in order. To obtain the integer encoding, slice the age cohort variable as a series and use series.cat.codes.
- 2. Construct an Altair point-and-line chart based on dds_cat with:
 - ethnicity on the x axis;
 - no x axis label;
 - median expenditure on the y axis (hint: altair can parse median(variablename) within an axis specification);
 - the y axis displayed on the log scale;
 - age cohort mapped to color as an ordinal variable (meaning, use :0 in the variable specification) and sorted in order of the cohort_order variable you created; and
 - lines connecting points that display the median expenditure for each ethnicity and cohort, with one line per age cohort.

Store the result as fig_4 and display the graphic.

(v) Do the data reflect a difference in median expenditure by ethnicity after accounting for age?

Answer based on figure 4 in 1-2 sentences.

Answer

No, the data does not reflect a difference in median expenditure by ethnicity. The increase in spending is related to the different age cohorts and not their respective ethnic groups. Across all ethnicities, the spending is about the same.

2. Regression analysis

Now that you've thoroughly explored the data, you'll use a linear model in this part to estimate the differences in median expenditure that you observed graphically in part 1.

More specifically, you'll model the log of expenditures (response variable) as a function of gender, age cohort, and ethnicity:

$$\log(\mathrm{expend}_i) = \beta_0 + \beta_1(6-12)_i + \cdots + \beta_5(51+)_i + \beta_6 \mathrm{male}_i + \beta_7 \mathrm{hispanic}_i + \cdots + \beta_{13} \mathrm{other}_i + \epsilon_i$$

In this model, *all* of the explanatory variables are categorical and encoded using indicators; in this case, the linear model coefficients capture means for each group.

Because this model is a little different than the examples you've seen so far in two respects -- the response variable is log-transformed and all explanatory variables are categorical -- some comments are provided below on these features. You can review or skip the comments, depending on your level of interest in understanding the model better mathematically.

Commments about parameter interpretation

In particular, each coefficient represents a difference in means from the 'baseline' group. All indicators are zero for a white male recipient between ages 0 and 5, so this is the baseline group and:

$$\mathbb{E}$$
 (log(expend) | male, white, 0-5) = β_1

Then, the expected log expenditure for a hispanic male recipient between ages 0 and 5 is:

$$\mathbb{E}(\log(\text{expend}) \mid \text{male}, \text{hispanic}, 0\text{-}5) = \beta_0 + \beta_7$$

So β_7 is the difference in mean log expenditure between hispanic and white recipients after accounting for gender and age. The other parameters have similar interpretations.

While the calculation shown above may seem a little foreign, you should know that the parameters represent marginal differences in means between genders (holding age and ethnicity fixed), between ages (holding gender and ethnicity fixed), and between ethnicities (holding age and gender fixed).

Comments about the log transformation

The response in this model is the *log* of expenditures (this gives a better model for a variety of reasons). The statistical assumption then becomes that:

$$\log(ext{expend})_i \sim N\left(\mathbf{x}_i'eta,\sigma^2
ight)$$

If the log of a random variable Y is normal, then Y is known as a *lognormal* random variable; it can be shown mathematically that the exponentiated mean of $\log Y$ is the median of Y. As a consequence, according to our model:

$$median(expend_i) = exp\{\mathbf{x}_i'\beta\}$$

You'll work on the log scale throughout to avoid complicating matters, but know that this model for the log of expenditures is *equivalently* a model of the median expenditures.

Reordering categories

The cell below reorders the category levels to match the model written above. To ensure the parameters appear in the proper order, this reordering is done for you.

Out[]:		Age Cohort	Gender	Expenditures	Ethnicity	cohort_order
	0	13 to 17	Female	2113	White not Hispanic	2
	1	22 to 50	Male	41924	White not Hispanic	4
	2	0 to 5	Male	1454	Hispanic	0
	3	18 to 21	Female	6400	Hispanic	3
	4	13 to 17	Male	4412	White not Hispanic	2
	•••					
	995	51+	Female	57055	White not Hispanic	5
	996	18 to 21	Male	7494	Hispanic	3
	997	13 to 17	Female	3673	Multi Race	2
	998	6 to 12	Male	3638	Hispanic	1
	999	22 to 50	Male	26702	White not Hispanic	4

1000 rows × 5 columns

Question 2 (a). Data preprocessing

Here you'll extract the quantities -- explanatory variable matrix and response vector -- needed to fit the linear model.

(i) Categorical variable encoding.

Use $pd.get_dummies(...)$ to encode the variables in reg_data as indicators. Be sure to set $drop_first = True$. Store the encoded categorical variables as x_df and print the first three rows and six columns. (There should be 13 columns in total.)

(*Hint*: reg_data can be passed directly to get_dummies(...), and quantitative variables will be unaffected; a quick way to find x_df is to pass reg_data to this function and then drop the quantitative variables.)

```
In []: # solution
         x_df = pd.get_dummies(reg_data, drop_first=True).drop(columns = ['Expenditures', 'cohort_order'])
         x_df.iloc[0:3, 0:6]
Out[]:
           Age Cohort_6 to 12 Age Cohort_13 to 17 Age Cohort_18 to 21 Age Cohort_22 to 50 Age Cohort_51+ Gender_Female
         0
                          0
                                                              0
                                                                                 0
                                                                                                0
                                            1
                                                                                                               1
         2
                                                                                 0
                                                                                                0
                                                                                                               0
                          0
                                            0
                                                              0
```

(ii) Add intercept.

Add an intercept column -- a column of ones -- to x_df using $add_dummy_feature(...)$. Store the result (an array) as x_mx and print the first three rows and six columns.

(iii) Response variable.

Log-transform the expenditures column of reg_data and store the result in array format as y . Print the first ten entries of y .

```
In []: # solution
        y = np.log(reg_data.Expenditures)
        y.iloc[0:11, ]
Out[]: 0
              7.655864
              10.643614
              7.282074
        3
              8.764053
        4
              8.392083
        5
              8.426393
        6
              8.272571
        7
              8.261785
        8
               8.521384
        9
               7.967973
        10
               8.331827
        Name: Expenditures, dtype: float64
```

Question 2 (b). Model fitting

In this part you'll fit the linear model and summarize the results. You may find it helpful to have lab 6 open as an example to follow througout.

(i) Compute the estimates.

Configure a linear regression module and store the result as mlr; fit the model to x_mx and y. Be sure **not** to fit an intercept separately, since there's already an intercept column in x_mx .

(You do not need to show any output for this part.)

```
In []: # solution
    mlr = LinearRegression(fit_intercept = False)
    mlr.fit(x_mx, y)
Out[]: LinearRegression(fit_intercept=False)
```

(ii) Parameter estimate table.

Construct a table of the estimates and standard errors for each coefficient, and the estimate for the error variance parameter. The table should have two columns, 'estimate' and 'standard error', and rows should be indexed by parameter name. Follow the steps below.

- 1. Store the dimensions of $x_m x$ as n and p.
- 2. Compute (X'X); store the result as xtx.
- 3. Compute $(\mathbf{X}'\mathbf{X})^{-1}$; store the result as xtx_inv .
- 4. Compute the residuals (as an array); store the result as resid.
 - (You can compute the fitted values as a separate step, or not, depending on your preference.)
- 5. Compute the error variance estimate, $var(resids) \times \frac{n-1}{n-p}$; store the result as sigmasqhat.
- 6. Compute the variance-covariance matrix of the coefficient estimates $\hat{\mathbf{V}} = \hat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}$; store the result as $v_{\mathtt{hat}}$.
- 7. Compute the coefficient standard errors, $\sqrt{\hat{v}_{ii}}$; store the result (an array) as coef_se.
 - Append an NaN (float('nan')) to the array (for the error variance estimate).
- 8. Create an array of coefficient labels by appending 'intercept' to the column names of x_df , followed by 'error_variance'; store the result as $coef_labels$.
- 9. Create an array of estimates by appending the fitted coefficients with sigmasqhat; store the result as coef_estimates.
- 10. Create a dataframe with coef_estimates as one column, coef_se as another column, and indexed by coef_labels. Store the result as coef_table.

Print coef_table.

```
In [ ]: # store dimensions
        n, p = x_mx.shape
        # compute x'x
        xtx = x_mx.transpose().dot(x_mx)
        # compute x'x inverse
        xtx_inv = np.linalg.inv(xtx)
        # compute residuals
        fitted_mlr = mlr.predict(x_mx)
        resid = y - fitted_mlr
        # compute error variance estimate
        sigmasqhat = ((n - 1)/(n - p)) * resid.var()
         # compute variance-covariance matrix
        v_hat = xtx_inv * sigmasqhat
         # compute standard errors
        se = np.sqrt(v_hat.diagonal())
        coef_se = np.append(se, float('nan'))
         # coefficient labels
        coef_labels = np.append("intercept", list(x_df.columns.values))
        coef_labels = np.append(coef_labels, 'error_variance')
        # estimates
        coef_estimates = np.append(mlr.coef_, sigmasqhat)
         # summary table
        coef_table = pd.DataFrame(
            data = {'coefficent estimate': coef_estimates, 'coefficient standard errors': coef_se},
            index = coef labels)
        # print
        coef_table
```

intercept	7.092439	0.041661
Age Cohort_6 to 12	0.490276	0.043855
Age Cohort_13 to 17	1.101010	0.042783
Age Cohort_18 to 21	2.023844	0.043456
Age Cohort_22 to 50	3.470836	0.043521
Age Cohort_51+	3.762393	0.049561
Gender_Female	0.039784	0.020749
Ethnicity_Hispanic	0.038594	0.024893
Ethnicity_Black	0.041713	0.045725
Ethnicity_Asian	-0.021103	0.033470
Ethnicity_Native Hawaiian	-0.030725	0.189967
Ethnicity_American Indian	-0.054396	0.164910
Ethnicity_Multi Race	0.041024	0.067680
Ethnicity_Other	-0.189877	0.232910
error_variance	0.107005	NaN

Now look at both the estimates and standard errors for each level of each categorical variable; if some estimates are large for at least one level and the standard errors aren't too big, then estimated mean log expenditures differ according to the value of that variable when the other variables are held constant.

For example: the estimate for Gender_Female is 0.04; that means that, if age and ethnicity are held fixed, the estimated difference in mean log expenditure between female and male recipients is 0.04. If $\log(a) - \log(b) = 0.04$, then $\frac{a}{b} = e^{0.04} \approx 1.041$; so the estimated expenditures (not on the log scale) differ by a factor of about 1. Further, the standard error is 0.02, so the estimate is within 2SE of 0; the difference could well be zero. So the model suggests there is no difference in expenditure by gender.

(iii) Do the parameter estimates suggest differences in expenditure by age or ethnicity?

First consider the estimates and standard errors for each level of age, and state whether any differences in mean log expenditure between levels appear significant; if so, cite one example. Then do the same for the levels of ethnicity. Answer in 2-4 sentences.

(Hint: it may be helpful scratch work to exponentiate the coefficient estimates and consider whether they differ by much from 1.)

```
In [ ]: # exponentiate age (not required)
        np.exp(coef_estimates)
         # 1.63276654e+00
         # 3.00720315e+00
         # 7.56735586e+00
         # 3.21636320e+01
         # 4.30513297e+01
Out[]: array([1.20283826e+03, 1.63276654e+00, 3.00720315e+00, 7.56735586e+00,
               3.21636320e+01, 4.30513297e+01, 1.04058576e+00, 1.03934836e+00,
               1.04259499e+00, 9.79118208e-01, 9.69742449e-01, 9.47056543e-01,
               1.04187723e+00, 8.27060911e-01, 1.11293969e+00])
In [ ]: # exponentiate ethnicity (not requried)
        np.exp(coef_estimates)
        # 1.03934836e+00
        # 1.04259499e+00
        # 9.79118208e-01
        # 9.69742449e-01
        # 9.47056543e-01
        # 1.04187723e+00
        # 8.27060911e-01
        # Most of these are close to 1
        array([1.20283826e+03, 1.63276654e+00, 3.00720315e+00, 7.56735586e+00,
Out[]:
               3.21636320e+01, 4.30513297e+01, 1.04058576e+00, 1.03934836e+00,
               1.04259499e+00, 9.79118208e-01, 9.69742449e-01, 9.47056543e-01,
               1.04187723e+00, 8.27060911e-01, 1.11293969e+00])
```

Answer

q2_b_ii passed! 💅

The parameter estimates differences suggest differences by age, and not by ethnicity.

Now as a final step in the analysis, you'll visualize your results. The idea is simple: plot the estimated mean log expenditures for each group. Essentially you'll make a version of your figure 4 from part 1 in which the points are estimated rather than observed. So the model

In order to construct a 'model version' of this plot, however, you'll need to generate estimated mean log expenditures for each unique combination of categorical variable levels. The cell below generates a 'grid' of every such combination.

```
In [ ]: # store unique levels of each categorical variable
        genders = reg_data.Gender.unique()
        ethnicities = reg_data.Ethnicity.unique()
        ages = reg_data['Age Cohort'].unique()
        # generate grid of each unique combination of variable levels
        gx, ex, ax = np.meshgrid(genders, ethnicities, ages)
        ngrid = len(genders)*len(ethnicities)*len(ages)
        grid_mx = np.vstack([ax.reshape(ngrid), gx.reshape(ngrid), ex.reshape(ngrid)]).transpose()
        grid_df = pd.DataFrame(grid_mx, columns = ['age', 'gender', 'ethnicity']).astype(
            {'gender': 'category', 'ethnicity': 'category', 'age': 'category'}
        # reorder category levels so consistent with input data
        grid_df['ethnicity'] = grid_df.ethnicity.cat.as_ordered().cat.reorder_categories(
            grid_df.ethnicity.cat.categories[[7, 3, 2, 1, 5, 0, 4, 6]]
        grid_df['gender'] = grid_df.gender.cat.as_ordered().cat.reorder_categories(['Male', 'Female'])
        grid_df['age'] = grid_df.age.cat.as_ordered().cat.reorder_categories(
            grid_df.age.cat.categories[[0, 5, 1, 2, 3, 4]]
        grid_df['cohort_order'] = grid_df.age.cat.codes
        # preview
        grid_df.head()
```

Out[]:	age		gender	ethnicity	cohort_order
	0	13 to 17	Female	White not Hispanic	2
	1	22 to 50	Female	White not Hispanic	4
	2	0 to 5	Female	White not Hispanic	0
	3	18 to 21	Female	White not Hispanic	3
	4	51+	Female	White not Hispanic	5

Question 2 (c). Model visualization

Your task in this question will be to add fitted values and standard errors to the grid above and then plot it.

(i) Create an explanatory variable matrix from the grid.

Pretend for a moment that you're going to treat <code>grid_df</code> as if it were the data. Create a new <code>x_mx</code> based on <code>grid_df</code>:

- 1. Use <code>pd.get_dummies(...)</code> to obtain the indicator variable encoding of <code>grid_df</code>; store the result as <code>pred_df</code>.
- 2. Add an intercept column to pred_df using add_dummy_feature(...); store the result (an array) as pred_mx.

Print the first three rows and six columns of pred_mx.

```
In [ ]: # variable encodings
    pred_df = pd.get_dummies(grid_df, drop_first=True).drop(columns = ['cohort_order'])
```

(ii) Compute fitted values and standard errors on the grid.

Now add a new column to grid_df called expenditure that contains the estimated log expenditure (hint: use mlr_predict(...)
with your result from (i) immediately above).

```
In []: # solution
    grid_df['expenditure'] = mlr.predict(pred_mx)
    grid_df
```

Out[]:		age	gender	ethnicity	cohort_order	expenditure
	0	13 to 17	Female	White not Hispanic	2	8.233233
	1	22 to 50	Female	White not Hispanic	4	10.603059
	2	0 to 5	Female	White not Hispanic	0	7.132223
	3	18 to 21	Female	White not Hispanic	3	9.156067
	4	51+	Female	White not Hispanic	5	10.894616
	•••				•••	•••
	91	22 to 50	Male	Native Hawaiian	4	10.532551
	92	0 to 5	Male	Native Hawaiian	0	7.061714
	93	18 to 21	Male	Native Hawaiian	3	9.085558
	94	51+	Male	Native Hawaiian	5	10.824108
	95	6 to 12	Male	Native Hawaiian	1	7.551990

96 rows × 5 columns

The cell below adds the standard errors for estimated log expenditure.

```
In []: # add standard errors
grid_df['expenditure_se'] = np.sqrt(pred_mx.dot(xtx_inv).dot(pred_mx.transpose()).diagonal() * sigmasqhat)
grid_df
```

Out[]:		age	gender	ethnicity	cohort_order	expenditure	expenditure_se
	0	13 to 17	Female	White not Hispanic	2	8.233233	0.029081
	1	22 to 50	Female	White not Hispanic	4	10.603059	0.026060
	2	0 to 5	Female	White not Hispanic	0	7.132223	0.041358
	3	18 to 21	Female	White not Hispanic	3	9.156067	0.029215
	4	51+	Female	White not Hispanic	5	10.894616	0.034409
	•••	•••				•••	
	91	22 to 50	Male	Native Hawaiian	4	10.532551	0.189774
	92	0 to 5	Male	Native Hawaiian	0	7.061714	0.193982
	93	18 to 21	Male	Native Hawaiian	3	9.085558	0.191777
	94	51+	Male	Native Hawaiian	5	10.824108	0.191167
	95	6 to 12	Male	Native Hawaiian	1	7.551990	0.192156

96 rows × 6 columns

(iii) Plot the estimated means and standard errors.

Construct a model visualization matching figure 4 in the following steps.

- 1. Construct a point-and-line plot called lines based on grid_df with:
 - ethnicity on the x axis;
 - no x axis title;
 - log expenditure on the y axis;
 - the y axis title 'Estimated mean log expenditure';
 - age cohort mapped to the color encoding channel as an *ordinal* variable and shown in ascending cohort order (refer back to your codes for figure 4).
- 2. Construct an error band plot called bands based on grid_df with:

- a .transform_calculate(...) step computing lower and upper band boundaries
 - lwr=expenditure-2xexpenditure_se
 - upr=expenditure+2xexpenditure_se
- ethnicity on the x axis;
- no x axis title;
- lwr and upr passed to the y and y2 encoding channels;
- the y channel titled 'Estimated mean log expenditure';
- age cohort mapped to the color channel exactly as in lines.
- 3. Layer lines and bands and facet the layered chart into columns according to gender. Store the result as fig_5.

Display fig_5.

(iv) Sanity check.

Does the model visualization seem to accurately reflect the pattern in your exploratory plots? Answer in 1 sentence.

Answer

The model visualization does seem to accurately reflect the pattern that we observed in the intial exploratory plots. There is hardly any difference in spending when accounting for gender or ethnicity. The only reason for an increase in spend is because of age, and this is what we expected to see.

(v) Which estimates have greater uncertainty and why?

Identify the ethnic groups for which the uncertainty band is relatively wide in the plot. Why might uncertainty be higher for these groups? Answer in 2 sentences.

(Hint: it may help to refer to figure 3.)

Answer

The uncertainty band is relatively wide for the 'American Indian', 'Native Hawaiian' and 'Other' groups. This is because the sample sizes for each of these are very low when compared to others. In figure 3, we can barely see the lines since the number in each age cohort is so small, less than 5 for each cohort, and this will surely create a larger uncertainty band.

3. Communicating results

Review your exploratory and regression analyses above, and then answer the following questions.

Question 3 (a). Summary

Write a one-paragraph summary of your analysis. Focus on answering the question, 'do the data provide evidence of ethnic or gender discrimination in allocation of DDS funds?'

Your summary should include the following:

- a one-sentence description of the data indicating observations, variables, and whether they are a random sample;
- one to two sentences describing any important exploratory findings;
- a one-sentence description of the method you used to analyze the data (don't worry about capturing every detail);
- one sentence desribing findings of the analysis;
- an answer to the question.

Answer

The DDS data in this homework contains observations of individuals of all different ages, genders, and ethnic backgrounds, and we were tasked with investigating the available data to see if there was evidence discrimination with how funds were allocated. The variables in this dataset include those mentioned previously, as well as expenditure amount, an ID varable, and 'Age Cohort' which is a range of ages that a person will fall into. This is also a random sample, because of course we are not given data on all 250,000+ people that funds are given to, and there is nothing specific as to the individuals in the dataset that we have for being included. As seen in the exploratory plots, spending tends to increase from age 0 - 22, where after that it stays relatively contstant. We also see that there are age differences across the age groups, but the median spending is about the same for each ethnic group, when accounting for the ones that have a sizeable amount of data. To analyze the data, multiple linear regression techniques were used as well as charting and data manipulation. Overall, after inspecting the data and creating several plots, we can clearly see that the data does not provide any evidence of ethnic or gender discrimination in the allocation of DDS funds The amount recieved is soley dependent upon individuals age.

Question 3 (b). Supporting information

Choose one table or figure from part 1 and one table and figure from part 2 that support your summary of results. Write a caption for each of your choices.

(i) First figure/table.

Plot of median expenditure by Ethnicity by Age Cohort.

(ii) Second figure/table.

Plot of esitmated means and standard errors (using MLR) of log expendiutre by Ethnicity, Age Cohort, and separated by Gender.

In []: grader.check_all()
Out[]: q2_b_ii results: All test cases passed!