6. Der Dualraum IK Korper, V Veretorræren über IK Def. 6.1. Die llenge V = Homk (V, K) = = fe:V-> IK/e linear} nennt man den Dualraum von V. Seine Elemente heisen Linearformen oder lineare Funktionen auf V. (dim V= 00 ist hier erlaubt.) Bem. (1) V* ist ein K-Vektorræum. YveV Der Nullveretor ist die Mellabbildung: VHO. $(\alpha \ell)(v) = \alpha(\ell(v)) = \alpha \ell(v)$, also $\alpha \ell \in V^* \forall \ell \in V, \alpha \in K$. Wenn $\ell_1, \ell_2 \in V^*$, down $(\ell_1 + \ell_2)(v) = \ell_1(v) + \ell_2(v)$. (2) Falls dim V=n < 0, gilt es dim V=n. Sei $\{v_{s},...,v_{n}\}$ eine Bæsis von V.

Wir betræchten die Linearformen $v_{s}^{*},...,v_{n}^{*} \in V$ Wo $v_{i}^{*}(v_{j}) = \{0, i \neq j\}$ No $v_{i}^{*}(v_{j}) = \{0, i \neq j\}$ Merken $\ell(y_1v_1 + y_nv_n) = \sum_{i=1}^{n} y_i \ell(v_i), \forall \ell \in V^*$ Insb. $v_i^*(\sum_{j=1}^{n} y_j v_j) = y_i$. Auch $\ell = \sum_{i=1}^{n} \ell(v_i) v_i^*$ Es folgt $V^* = \langle v_1^*, ..., v_n^* \rangle$. Linear unabhangig: \(\sum_{i=1}^{\int} \lambda_i \cdot \varphi_i \rangle \sum_{i=1}^{\int} \lambda_i \cdot \varphi_i^{\int} = 0 =) = (52;v;*)(v;)=0 Vj=) 2;=0 Vj.

Die Basis dyt, , vn* I nennt man die Zu dy, -, uns duale Basis. Beispil. \mathbb{K}^n mit $de_{1,-}, e_{n}$, $e_{i} = \left|\frac{1}{0}\right|^{i}$. Sei $e_{i} = e_{i}^{*} e_{i} (\mathbb{K}^{n})^{*}$. Dann $\mathcal{E}_{i}\left(\frac{g_{i}}{g_{n}}\right) = g_{i}$. $(\mathbb{R}^{n})^{*} \cong \mathbb{R}^{n}$. Für $u \in \mathbb{R}^{n}$ konn man $l_u(v) := u^t v$ definieren, $l_u \in (\mathbb{R}^n)^{\times}$ Def. 6.2. Man nonnt $V^* = (V^*)^*$ den Bidualraum von V. Sei vel, lel' Setzen Lu(l):= l(v). Das ist eine lineare Function: $L_{v}(\lambda_{1}l_{1}+\lambda_{2}l_{2})=(\lambda_{1}l_{1}+\lambda_{2}l_{2})(v)=\lambda_{1}l_{1}(v)+\lambda_{2}l_{2}(v)$ und 2, Lylls) + 2, Lyllz) = 2, ls(v) + 2, l2(v). Lemma 6.3. Die Abbildung V->V*x ist injentiv und linear, llan nennt sie die koenonische Einbettung. Bew. Linear: $L(2v_1+d_2v_2)(l)=l(d_1v_1+d_2v_2)=$ = $d_1(v_1) + d_2(v_2) = d_1 L_{v_1}(\ell) + d_2 L_{v_2}(\ell) =$ = (d1 Lv1 + d2 Lv2)(l). Gezeigt. Injectiv: 2.2. Lv=0=> V=0.

Wenn dim V=n und vEV, v +0, finden (2) wir eine Basis du, ..., Uns, wo V1 = S. Hier $V_1^*(v) \neq 0 = \sum_{v} L_v(v_1^*) \neq 0 = \sum_{v} L_v \neq 0$. Wenn dim V= 00, geht der Beweis ähnlich, nur muss man dæs Lemmæ von Zorn (also llengenlehre) benut zen. Bem, Falls dimV=n<00, sind V und V** Kanonisch isomorph, V -> Lv, Lv(e)= l(v). Satz 6.4. Sei dim/=n<00, US Vein Unterroum Ann(U) = LeeV* / l(u) = 0 fuells, der Annullator von U. Dann 184 Ann(U) ein Unterraum von V* mit dim U+ dim Anu(U) = n. Bew. Wir wählen eine Basis flus, ..., um von U und ergänzen diese zu einer Basis [1/4, _, vn] von V ($m = dim \mathcal{U}$; $\mathcal{V}_i = \mathcal{U}_i$, $1 \le i \le m$). Jedes Element le V* 184 eine Linear Rombination l= Zyivi* und le Ann(u) = Yi= 0 für 1 si m. So gilt: Ann(U)= (Vm+1,-, Vn*) und SVm+s, = , Vn f 18t eine Basis von Ann(U). ■ Def. 6.5. Leien V, W Vereforraime und sei f:V->W linear. Die <u>duale</u> (oder transponierte) Abbildung 184 f*: W*->V* mit

 $(f''(s))(v) = S(f(v)) \forall v \in V, s \in W^*$ Beæchten Sie, dass die duale Abbildung "in die umgezehrte Richtung" geht. $V \xrightarrow{\dagger} W \xrightarrow{S} K$, $f^*(S) = S \circ f$. Bem. f* ist linear. $(f^*(J_1S_1+J_2S_2))(v)=(J_1S_1+J_2S_2)(f(v))=$ $= \lambda_1 S_1(f(v)) + \lambda_2 S_2(f(v)) = (\lambda_1 f^*(S_1))(v) +$ $+(\lambda_2 f^*(S_2))(v) = (\lambda_1 f^*(S_1) + \lambda_2 f^*(S_2))(v).$ Weitere Eigenschaften: (i) (idy)*= idy*, Klar. (ii) Seien f: V->W, h: W-> U linear. Dann (hof) = foh. (Achtung!) $h'(u) = u \circ h, \quad f^*(u \circ h) = u \circ h \circ f = (h \circ f)^*(u).$ Satz 6.6. Gegeben seien endlich dimensionale Vertorräume V, W und eine lineare Abbildung f:V->W. Für die duale Abbildung f:W*>V* gilt dann: (i) $\ker f^* = Ann(Imf);$ (ii) $Im f^* = Ann(\ker f).$

Bew. (i) $S \in Kerf$ (=) $S \circ f = O \Leftrightarrow 3$ (=) S(W)=0 \text{WE Imf (=) SE Ann (Imf). (ii) Sei l∈ Imf*, also l= sof für ein s∈W*. Dann sof (v) = 0, falls f(v) = 0. D.h. Imf" = Ann(Kerf). Weiter. dim (Imf*) = dimW-dim(Kerf*) = dimW-- dim Ann (Imf) = dimW- (dimW-dim(Imf)) = = dim (Imf) = dim V-dim (Kerf) = dim Ann (Kerf).

S.6.4. Eine darstellende llatrix der dualen Abbildung f:V->Weinear, Bist eine Bæsis von V, Teine Basis von W, $|B| = n < \infty$, $|T| = m < \infty$. Seien B^* , T^* die dwalen Basen von V und W^* . Satz 6.7. B^* $[f^*]_{T^*} = ([f^*]_B)^t$. Bew. Sei SEW*, *[S] der Spæltenveretor von S. Wie schon bemerkt, $S(W) = (+[S])^t \cdot T[W] \forall W \in W. Daher$ $f^*(S)(v) = S(f(v)) = (T*[S])^t - [f]_B [v] =$ $= \left(\left(- \left[+ \right]_{\mathcal{B}} \right)^{t} \cdot \left[s \right] \right)^{t} \cdot \left[v \right] \quad \forall v \in V.$

Hom_{IK}
$$(V,W) = \{f:V \rightarrow W \text{ linear }\} \cong \text{Mat}_{m \times n}(K)$$
 $\text{Hom}_{K}(W,V^*) \cong \text{Mat}_{n \times m}(K)$
 $A \mapsto A^{\dagger}$
 Kor. Sind $V \text{ und } W \text{ endlich dimensional,}$

So gilt $(f^*)^* = f \quad \forall \quad f:V \rightarrow W \text{ linear.}$
 Bem. $f \varphi: V \rightarrow V^* \text{ linear }\} \stackrel{\text{1:1}}{\longleftrightarrow} \{D_{i} \in Bilinear.\}$
 $\varphi \mapsto \theta \quad , \quad \theta(V,W) = \varphi(V)(W).$
 $\theta \mapsto \varphi \quad , \quad \varphi(V)(U) = \theta(V,U).$
 $\varphi \text{ ist ein Isomorphismus } (\Rightarrow)$
 $\varphi \text{ ist ein Isomorphismus } (\Rightarrow)$
 $\varphi \text{ ist nicht entartet.}$
 $\text{Beispiel.} V = \mathbb{R}^2, \quad \varphi(e_1) = \mathcal{E}_2, \quad \varphi(e_2) = \mathcal{E}_1.$
 $\theta(e_i, e_j) = \mathcal{E}_i. \{e_j\} = \begin{cases} 1, & i \neq j \\ 0, & i \neq j \end{cases}$
 $\text{Die Matrix von } \theta \text{ ist } (0, i), \text{ genew } (0,$

7. Der Quotientræeem IK-Körper, V-Vewtorræum, U = Unterræum (·) v~v' ←) v-v'∈ U Das 18t eine Aquivalenz relation: ひ~ ひ, V~ V'=) V'~ V, V~ V', V'~ V'=) V~ V'. Die Äquivalenzelæsse von Vist $(\ell(v) = \int v + u | u \in \mathcal{U}_{\delta} = : v + \mathcal{U} \subseteq V$. Diese Teilmenge nennt man œuch die Restrlæsse von v bez. U. (Das ist wie modulo U zu rechnen.) Die llenge aller Restklæsse bezeichnet man durch $V/U = \{v + U | v \in V\}.$ Beispiele: (1) V= IR2, U= (e1, e2). $V/U = \{ ae_3 + U \mid a \in \mathbb{R} \}.$ (2) $V = \mathbb{R}^{4}$, $\mathcal{U} = \{e_{1}, e_{3}\}$. $V/\mathcal{U} = \{ae_{2} + be_{4} + \mathcal{U} \mid a, b \in \mathbb{R}\}$. Auf V/U de finieren wir "+" und die llultiplikætion mit den Skælæren. $u + ": (v_1 + u) + (v_2 + u) := (v_1 + v_2) + u;$ $(k \times V/u \rightarrow V/u : a(v + u) = av + u.$

Lemma 7.1. Die Addition und die Multiplikeation mit den Skalaren sind auf VIU Wohlde finiert. Row Soion V.~V. V. W. W. W. D.

Bew. Seien $V_{1} \sim V_{3}', V_{2} \sim V_{2}', V_{2} \sim V'_{2}$. Dann $(V'_{1} + U) + (V'_{2} + U) = (V'_{3} + V'_{2}') + U =$

 $= V_{1} + (V_{3}' - V_{4}) + V_{2} + (V_{2}' - V_{2}) + U = V_{1} + V_{2} + U;$ $\alpha(v' + U) = \alpha v' + U = \alpha v + \alpha(v' - v) + U = \alpha v + U.$

 $\frac{\mathcal{B}_{em}}{a((v_1+u)+(v_2+u))} = 1_{k} v + u = v + u;$ $a((v_1+u)+(v_2+u)) = a((v_1+v_2)+u) = a(v_1+v_2)+u = a(v_1+v_2)+u$

 $= (\alpha V_1 + \alpha V_2) + \mathcal{U} = (\alpha V_1 + \mathcal{U}) + (\alpha V_2 + \mathcal{U}) =$

 $=\alpha(V_1+\mathcal{U})+\alpha(V_2+\mathcal{U});$

 $(a+b)(v+u) = (a+b)v+u = \alpha(v+u) + b(v+u);$

(ab)(v+u)=(ab)v+u=a(bv+u).

Alle Axiome, die einen IK-Vereforræerm definieren, sind erfüllt, (V/U,+) ist eine abeliehe

Def. 7.2. Der Vertorraum V/U heist der Quotient von V nach U.

Lemma 7.3. p: V -> V/U mit p(v) = v+U ist eine surjective Cineare Abbildung (die Ranonische Projection.)

Bew. $v \in p^{-1}(v + u) \Rightarrow p$ ist surjectiv. Q P(d1V1+d2V2)=(d1V1+d2V2)+U= $= (J_1V_1 + U) + (J_2V_2 + U) = J_1 P(V_1) + J_2 P(V_2) . \square$ Bem. Wenn U={ov}, dann ist pein Isomorphismus. Allgemein, $\bar{Q}_{1/2} = \bar{Q} + \mathcal{U} = \mathcal{U}$. Also p(v) = O/u () VEU und Kerp = U. Kor. dim V/U = dim V - dim U, falls dim V - . Setz 7.4. (Universelle Eigenschaft) Sei f:V->W linear mit US Kerf. Dann existiert genau eine lineare Abbildung h: V/U -> W, s.d. f = hop. (llan sægt, dass das Diagramm (P) ih Leommutativ ist.)

Bew Eindeutigkeit: $h(v+u) = h \circ p(v) = f(v)$.

Durfen wir h so definieren? Ja, weil f(v') = f(v),

wenn $v'-v \in U$. Also h(v'+u) = f(v') = f(v).

Linear: $h(J_1(V_1+u) + J_2(V_2+u)) = h(J_1V_1 + J_2V_2) + U = f(J_1V_1 + J_2V_2) = J_1f(V_1) + J_2f(V_2) = J_1h(V_1+u) + f(v_2+u)$.

Satz 7.5. Jede lineare Abbildung

f: V >> W induziert einen Vertorraum
somorphismus V/Kerf => Im f.

Bew. f: V >> W linear => f: V >> Im f,

wo Imf \(\subseteq \text{W}, \) ist auch eine lineare

Abbildung Setzen \(U = \text{Kerf}, \) Vach dem

V \(\subseteq \) Im f

\(\subseteq \text{Nuch dem} \)

\(\subseteq \subseteq \text{Im f} \)

\(\subseteq \subseteq \text{Im f} \)

\(\subseteq \subseteq \text{Im f} \)

\(\subseteq \subseteq \text{Im f}, \text{sd}. \)

\(\subseteq \subseteq \text{Im f}, \text{sd}. \)

\(\subseteq \text{VU} \rightarrow \text{Im f}, \text{sd}. \)

Für jeden Verfor $v \in V$ ist es: h(v+u) = f(v). Also Im h = Im f.Sei es $h(v+u) = \bar{Q}_{W}. \text{ Dann } f(v) = \bar{Q}_{W} \text{ und}$ $v \in \text{Kerf } (v \in U). \text{ Hier } v+U=U=\bar{Q}_{V/u}$ Wir sehen, dass $\text{Kerh} = \hat{Q}_{V/u}$ Die Abbildung $h \text{ ist injertiv, surjertiv und linear.} \quad \boxtimes$ $V/u \text{ und } \text{ Hom}_{K}(V,V)$

Sei f: V-> V linear und s.d. f(U) \(\sigma\) Un Dann können wir f æuf U einschränken, f Auch f(v+U) = f(v) + U ist eine wohlde finierte Abbildung Falls dimV=n < \infty und \lambda v_s, v_m, v_n\} eine Basis von V ist, wo \(\lambda v_s, \lambda, v_m\) eine Basis Von U ist, dann haben die Abbildungen fund f die folgenden Matrizen: [f] und [f], $[f] = \begin{pmatrix} 0 & [\hat{f}] & \chi & \chi \\ 0 & [\hat{f}] & \chi \\ 0 &$