Gaussian Kernel

The Gaussian kernel is defined as:

$$G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

Where:

- ullet x and y are the distances from the center of the kernel,
- ullet σ is the standard deviation, and
- * G(x,y) is the value of the Gaussian function at point (x,y).

Table-1: 5x5 Gaussian Kernel table

Kernel	Formatted Kernel				
[0.00291502 0.01306423 0.02153928 0.01306423 0.00291502]	[[1	4	7	4	1]
[0.01306423 0.05854983 0.09653235 0.05854983 0.01306423]	[4	20	33	20	4]
[0.02153928 0.09653235 0.15915494 0.09653235 0.02153928]	[7	33	54	33	7]
[0.01306423 0.05854983 0.09653235 0.05854983 0.01306423]	[4	20	33	20	4]
[0.00291502 0.01306423 0.02153928 0.01306423 0.00291502]	[1	4	7	4	1]]

Fig-1: Input grayscaled image and output convoluted image(gaussian)

Mean Kernel

Mathematically, the mean kernel is defined as a matrix of equal weights:

Table-2: 3x3 Mean Kernel Table

Kernel	Formatted Kernel
[0.11111111 0.11111111 0.11111111]	[1. 1. 1.]
[0.11111111 0.11111111 0.11111111]	[1. 1. 1.]
[0.11111111 0.11111111 0.11111111]	[1. 1. 1.]

Practical Experiment:

Fig-2: Input grayscaled image and output convoluted image(mean)

Laplacian kernel

Mathematically, Laplacian filter is defined as:

$$\Delta^{2} f = \frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}}$$

Table-3: 3x3 Center positive Laplacian kernel Table

Kernel	Formatted Kernel
[[-1 -1 -1]	[[-1 -1 -1]
[-1 8-1]	[-1 8-1]
[-1 -1 -1]]	[-1 -1 -1]]

Practical Experiment:

Fig-3: Input grayscaled image and output convoluted image(Laplacian center positive kernel)

Table-4: 3x3 Center negative Laplacian kernel Table

Kernel	Formatted Kernel
[1 1 1]	[1 1 1]
[1-8 1]	[1-8 1]
[1 1 1]	[1 1 1]

Fig-4: Input grayscaled image and output convoluted image(Laplacian center negative kernel)

LOG Kernel:

Mathematically, the LoG kernel is defined as the Laplacian of the Gaussian function:

$$LoG(x,y) = rac{1}{\pi\sigma^4} \left(1 - rac{x^2 + y^2}{2\sigma^2}
ight) e^{-rac{x^2 + y^2}{2\sigma^2}}$$

Where:

- ullet (x,y) are the spatial coordinates.
- ${}^{\bullet}$ $\,\sigma$ is the standard deviation of the Gaussian function, controlling the amount of smoothing.
- * LoG(x,y) represents the value of the LoG kernel at coordinates (x,y).

Fig-5: Input grayscaled image and output convoluted image(LoG kernel)

Sobel kernel

Horizontal Sobel Kernel	Vertical Sobel kernel
-1 -2 -1	-1 0 1
0 0 0	-2 0 2
1 2 1	-1 0 1

To compute the gradient magnitude, the horizontal and vertical gradients are convolved with the image using these kernels separately, and then combined using the following formula:

$$G=\sqrt{(G_x)^2+(G_y)^2}$$

Where:

- ullet G is the gradient magnitude.
- ullet G_x is the horizontal gradient.
- ullet G_y is the vertical gradient.

Fig-6: Horizontal, Vertical and output convoluted image(Sobel kernel)

Operation Type: HSV & RGB Difference

Fig-7: Original RGB image and output convoluted image

Fig-8: Original RGB image and output convoluted image

Fig-8: RGB convoluted image and HSV to RGB convoluted image

Fig-9: Difference between RGB convoluted image and HSV to RGB convoluted image