GePBench: Evaluating Fundamental Geometric Perception for Multimodal Large Language Models

Natural Language Processing Group, Nanjing University

邢尚禹 2025.03

Scan for paper

Scan for slides

- Multimodal large language models have achieved significant breakthroughs
- Various benchmarks are proposed to measure their capabilities

A critical gap:

- focus on real-world scenarios and assess high-level semantic understanding
- neglect fundamental perceptual challenges such as geometric perception

Geometric shapes are worth studying because they

1. Provide an ideal testbed for fundamental visual capabilities

- Geometric shapes require an understanding of spatial relationships and visual details for effective perception
- More complex tasks like visual reasoning and decision-making build on these basic perceptual abilities

Geometric shapes are worth studying because they

- 2. Lay the foundation for a wide range of downstream applications
 - Tasks like medical image analysis and fossil classification rely heavily on precise spatial perception and the interpretation of abstract visual patterns

Related Work

Other datasets involving geometric figure:

- GeoQA
- Geometry3K
- UniGeo
- GeomVerse
- GeoMM
- MAVIS

Calculation Problem

AB is the diameter of circle O and point C is on the circle. If \angle OCA = 25° (N0), then \angle BOC=().

A. 30° B. 40° C. 50° D. 60°

Answer: C.50°

Problem Solution:

 $:: OA = OC :: \angle OCA = \angle OAC = 25^{\circ} :: \angle BOC = 2\angle OAC = 50^{\circ}$

Annotated Program Sequence:

Equal | N0 | Double | V0

Proving Problem

Given VX=UW and TW=UX. U is the midpoint of TV. Complete the proof that $\angle T = \angle VUX$.

Proof	Reasons	Expressions
Step1	Midpoint	TU = UV
Step2	SSS	$\triangle TUW \cong \triangle UVX$
Step3	CPCTC	$\angle T = \angle VUX$

Midpoint | TU | = | UV | SSS | \triangle TUW | \cong | \triangle UVX | CPCTC | \angle T | = | \angle VUX

As shown in the figure, in \bigcirc O, AB is the chord, OC \perp AB, if the radius of \bigcirc O is 5 (N0) and CE=2 (N1), then the length of AB is ()

A. 2 B. 4 C. 6 D. 8

Answer: D. 8

Problem Text	Diagram	Choices			
Find y. Round to the nearest tenth.	32 y 54°	A. 18.8 B. 23.2 C. 25.9 D. 44.0 Answer: C			
Find the perimeter of \$\parallelogram\$ JKLM.	J K 6 cm 7.2 cm	A. 11.2 B. 22.4 C. 24 D. 44.8 Answer: B			

Related Work

Other datasets involving geometric figure ...

- Their focus is on mathematical reasoning capability
 - Tasks include numeric calculations, proof generation, relationship inference
- They depend on basic perceptual skills like spatial awareness and shape recognition, which we explicitly address

GePBench: a Novel Geometric Perception Benchmark

- 80K images and 285K standard multiple-choice questions
- 6 key dimensions of spatial and shape perception

Counting

Ouestion:

How many triangles are there in the image?

A. 0 C. 2 B. 1

D. 3

Answer:

D.3

Reference

Question:

Which shape presented is smaller than the circle? A. rectangle B. ellipse C. triangle D. hexagon

Answer:

A. rectangle

Location

Question:

Where is the ellipse relative to the spiral?

- A. upper left B. lower left
- C. upper right
- D. lower right

Answer: C. upper right

Size

Question:

If width and height of the image is 1, what is the area of the rectangle?

A. 0.14

B. 0.29

C. 0.44

D. 0.59

Answer: C. 0.44

Existence

Question:

Which of the following is absent in the image?
A. ellipse B. spiral
C. triangle D. pentagon

Answer:

C. triangle

Relationship

Question:

What is the relationship of the hexagon to the circle?

- A. tangent B. parallel
- C. circumscribed
- D. none of the above

Answer: B. circumscribed

Data construction pipeline:

1. Structured Description Generation (→ descriptions)

- i. Sample shapes from pool and randomly assign attributes
- ii. Sample relationships and shapes from pool and add to figure

Data construction pipeline:

2. Figure rendering (descriptions → image)

i. Use Matplotlib to draw figure and add noise to part of the shapes

Data construction pipeline:

3. Task Formulation (descriptions → questions)

- i. Create questions using pre-defined templates for each of the 6 dimensions
- ii. Category into easy/hard split according to shape number and noise level

Key statistics:

Figure 3: Key data distributions of GePBench.

Model Class	Ciao	A	Easy						Hard						
Wiodel Class SIZ	Size	Avg.	Ext.	Cnt.	Siz.	Loc.	Ref.	Rel.	Ext.	Cnt.	Siz.	Loc.	Ref.	Rel.	
Random guessing	-	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	
Human	-	99.3	99.8	99.6	98.5	98.7	99.3	99.9	99.1	99.5	98.9	98.7	99.4	99.6	
GPT-40	-	59.3	78.9	62.6	17.5	68.4	78.6	70.7	71.7	55.7	20.0	67.6	68.0	52.2	
Claude-3.5-Sonnet	-	50.3	76.2	69.6	17.9	55.3	62.5	64.5	72.4	57.8	16.9	24.9	30.4	54.7	
Gemini-1.5-pro	-	<u>68.4</u>	72.7	74.1	64.0	74.0	80.3	75.0	66.9	64.0	44.4	71.5	73.3	61.1	
BLIP2	3B	34.1	40.1	14.3	30.7	25.2	54.2	38.2	39.7	28.9	35.1	26.0	46.0	31.3	
InstructBLIP	3B	34.1	40.9	26.4	20.4	26.7	59.4	41.8	42.1	23.7	15.0	28.8	52.3	31.5	
MiniGPTv2	7B	31.4	29.8	42.6	28.2	24.6	33.7	32.7	27.5	40.4	28.1	26.2	31.9	30.6	
LLaVA-1.5	7B	39.2	40.0	48.9	28.4	45.5	42.1	51.2	32.1	31.0	28.0	40.2	38.1	45.1	
LLaVA-1.5	13B	40.8	46.2	57.4	13.0	51.9	52.0	47.4	37.3	39.4	11.4	49.5	45.1	39.2	
LLaVA-OneVision	7B	56.7	61.7	72.8	29.8	57.8	77.4	64.5	57.8	55.7	31.3	57.1	71.3	43.6	
LLaVA-OneVision	72B	<u>61.7</u>	75.8	74.3	25.0	62.2	81.2	76.7	67.9	58.7	24.0	65.1	76.6	52.9	
mPLUG-Owl3	7B	46.8	56.7	66.3	26.1	33.0	62.0	53.4	56.3	54.5	21.4	33.7	60.7	37.8	
InternVL-2.5	8B	55.7	68.7	64.8	15.4	64.2	72.8	63.8	64.7	52.0	20.8	67.2	62.0	51.6	
InternVL-2.5	26B	<u>61.1</u>	70.6	64.1	25.5	63.2	81.3	74.1	67.2	56.8	27.4	74.8	73.6	55.1	
InternVL-2.5	78B	<u>65.2</u>	75.7	72.1	37.3	72.6	80.9	77.4	72.1	62.1	25.3	73.3	78.2	55.5	
MiniCPM-V-2.6	8B	57.4	68.9	69.8	33.5	58.6	78.6	53.4	61.9	54.8	29.8	58.7	74.6	46.2	
GLM-4V	9B	54.2	64.2	73.9	20.2	52.7	80.9	62.7	50.7	54.3	19.1	54.4	72.6	44.9	
Mantis-Idefics2	8B	47.5	60.0	65.9	15.6	43.0	68.4	49.5	56.3	50.0	13.9	48.7	63.9	35.2	
Qwen2-VL	7B	56.5	65.8	72.3	22.6	62.2	82.7	62.4	59.7	55.2	17.6	60.6	74.5	42.3	
Qwen2-VL	72B	63.0	76.7	71.9	25.1	77.3	85.9	70.1	67.3	57.2	25.1	73.4	76.5	49.1	
LLaMA-3.2-Vision	90B	55.3	61.1	64.4	19.6	67.3	71.6	68.9	58.3	54.9	21.2	62.2	64.3	50.2	

Main observations:

- 1. Both closed-source and open-source models face significant challenges
 - Few reach the passing threshold
- 2. Scaling model size yields limited improvements
 - Compared with OpenCompass, improvements are lower
- 3. Size and Location are generally more challenging than other aspect
 - Most models perform worse than random guessing on Size aspect

Ablation study on number of shapes per image

Ablation study on visual encoders

- Higher resolution improves detail recognition but impacts spatial accuracy
- Different encoders specialize in different dimensions
- Mixed encoders underperform in geometric tasks

Encoder class	Resolution	Avg.	Easy							Hard					
			Ext.	Cnt.	Siz.	Loc.	Ref.	Rel.	Ext.	Cnt.	Siz.	Loc.	Ref.	Rel.	
CLIP	224^{2}	40.8	35.4	44.2	40.9	49.2	42.5	50.5	31.8	26.8	42.3	46.5	36.1	43.4	
CLIP	336^{2}	43.1	40.0	48.9	50.5	45.5	42.1	51.2	32.1	31.0	52.1	40.2	38.1	45.1	
OpenCLIP	224^{2}	43.1	35.8	42.1	50.4	53.6	42.4	52.4	33.7	24.7	51.6	49.4	39.3	42.0	
DINOv2	224^{2}	37.3	38.6	33.7	49.5	31.8	32.7	49.7	33.7	23.8	50.2	30.1	29.8	43.9	
SigLIP	224^{2}	42.6	37.5	49.4	50.5	43.9	39.7	53.7	35.6	24.9	52.0	45.1	36.1	42.7	
CLIP + DINOv2	$224^2 + 224^2$	38.2	35.9	43.6	40.1	38.3	39.2	47.9	34.1	24.5	38.1	37.3	35.3	44.0	
CLIP + DINOv2	$336^2 + 224^2$	37.3	34.4	30.0	50.2	28.5	38.2	52.8	33.1	16.8	51.6	29.8	37.7	44.6	

Ablation study on noise

- Not all models experience a performance decline
- May be attributed to training data:
 - i. Training data include scenarios with visual degradation
 - ii. Noisy figures might align more closely with the distribution of the real-world images

Geometric perception is beneficial to downstream tasks

- Source 300K samples from the same distribution
- Mix with LLaVA-1.5 two stage training data, train LLaVA-1.5-GeP from scratch

- We introduce GePBench, a large-scale benchmark dataset designed to evaluate geometric perception in MLLMs
- Extensive experiments highlight substantial room for improvements
- Enhancing geometric perception contributes to improved performance in downstream tasks

Thanks