Modèle linéaire et extension Régression linéaire simple

M1 Math et Interactions - UEVE/ENSIIE

semestre d'automne 2016

http://julien.cremeriefamily.info/teachings_M1MINT_Reg.html

Plan

Modèle

Estimation

Résidus et Prédiction

Analyse de la variance

Diagnosti

Régression simple Objectif général

Idée

Expliquer les variations d'une variable **quantitative** Y à partir des valeurs observées d'une variable quantitative x.

Exemples

- ▶ Tension artérielle = f(age)
- ► Rendement de blé = f(dose de fertilisant)
- Concentration ozone = f(température)
- Effet d'un traitement = f(dose)
- ▶ Taux de DDT = f(age du brochet)

Régression simple Précision sur les variables en jeu

Vocabulaire

Les rôles de Y et x ne sont **pas symétriques**:

- Y est la variable réponse, ou à expliquer
- ► x est la variable explicative, covariable, ou prédictive

Remarques

- Y est une variable aléatoire
- ▶ la covariable peut être aléatoire X ou contrôlée x
 - ightharpoonup on la considère fixe ici (d'où le x)
- attention à la différence de notation majuscule/minuscule

On suppose que la vraie relation entre Y et x est linéaire:

$$Y = \beta_0 + \beta_1 x + \varepsilon,$$

- \triangleright β_0 est la constante (intercept)
- \triangleright β_1 est la **pente** (ou **slope**)
- \triangleright ε est appelé terme d'erreur ou **résidu**
 - représente une erreur de mesure,
 - la variabilité individuelle
 - un/des facteur(s) non expliqué par le modèle

 \rightsquigarrow En pratique, β_0, β_1 et ε sont inconnus

Hypothèses statistiques

→ Nécessaire pour faire de l'inférence (tests, ...)!

Hypothèses sur les résidus

- $ightharpoonup \mathbb{E}(\varepsilon) = 0$
- $\mathbf{V}(\varepsilon) = \sigma^2$
- $ightharpoonup \varepsilon \sim N(0, \sigma^2)$

Collecte de données / échantillonnage aléatoire

Soit $\{(Y_i, x_i)\}_{i=1}^n$ un n-échantillon. On a

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

avec $\{\varepsilon_i\}_{i=1}^n$ indépendants, identiquement distribués.

Linéarité en les paramètres

Le modèle est linéaire en ses paramètres (pas nécessairement en x)

```
## true parameters
beta0 <- 3; beta1 <- 5; sigma <- .5
## simulation parameters
n < -100
x \leftarrow runif(n.0.1)
epsilon <- rnorm(n,0,sigma)
## data generation
## linear in x and (beta0, beta1)
d1 <- data.frame(x=x,y=beta0 + beta1 * x + epsilon)
## linear in (beta0.beta1)
d2 <- data.frame(x=x,y=beta0 + beta1 * x^2 + epsilon)
## linear in (beta0.beta1)
d3 \leftarrow data.frame(x=x,y=beta0 + beta1 * log(x) + epsilon)
## linear in (beta0, beta1) (after log transoform)
d4 <- data.frame(x=x,y= beta0 *exp(beta1 * x) + epsilon)
## not linear in (beta0.beta1)
d5 <- data.frame(x=x,y= beta0 *exp(sin(beta1 * x)) + epsilon)
```

Linéarité en les paramètres (modèle 1)

Linéarité en les paramètres (modèle 2)

Régression linéaire simple Linéarité en les paramètres (modèle 3)

ggplot(d3,aes(x,y)) + geom_point() + stat_smooth(method="lm", formula=y~I(log(x)))

Linéarité en les paramètres (modèle 4)

Linéarité en les paramètres (modèle 5)

Régression linéaire simple En résumé

Objectifs statistiques

- 1. Estimer les paramètres β_0, β_1 et σ^2
- 2. Tester la nullité des paramètres β_0,β_1
- 3. Prédire Y pour une nouvelle observation x_0
- 4. Tester la pertinence générale du modèle

Exemple récurrent

Données Kyoto (I)

```
#### Infos
# European contries
# Population: Thousands
# Emissions: Mil. tons CO2
# US population for prediction: 291049
Kyoto <- read.table(file='Emissions.txt',header=F)</pre>
colnames(Kyoto) <- c("Country", "Population", "Emissions")</pre>
head(Kyoto)
##
      Country Population Emissions
## 1 Allemagne
                 82545.1
                           1017.5
## 2 Autriche 8091.9 91.6
     Belgique 10396.7 147.7
## 4 Danemark 5397.6 74.0
## 5 Espagne 40977.6 402.3
## 6 Finlande
                5220.2 85.5
```

Exemple récurrent

Données Kyoto (II)

ggplot(Kyoto, aes(Population,Emissions,label=Country)) + geom_point(colour="red") -1000 -750 -500 -Espegne 250 -Pays Bas

40000

60000

20000

15

Plan

Modèle

Estimation

Estimateur des moindres carrés ordinaires Estimateur du maximum de vraisemblance Propriétés des estimateurs Tests sur les paramètres

Résidus et Prédiction

Analyse de la variance

Diagnostic

Plan

Modèle

Estimation

Estimateur des moindres carrés ordinaires

Estimateur du maximum de vraisemblance Propriétés des estimateurs Tests sur les paramètres

Résidus et Prédiction

Analyse de la variance

Diagnosti

Moindres carrés ordinaires Intuition

On dispose de points de l'échantillon.

18

Moindres carrés ordinaires Idée

La "vrai" droite passe au plus près des points de la population.

Moindres carrés ordinaires Idée

On cherche celle passant au plus près des point de l'échantillon

Formalisme

- distance à un point de l'échantillon: $(y_i x_i\beta_1 \beta_0)^2$
- distance à l'ensemble des points: $\sum_{i=1}^{n}(y_i-x_i\beta_1-\beta_0)^2$

 \sim Meilleure droite: constante β_0 et pente β_1 tels que $\sum_{i=1}^n (y_i - x_i \beta_1 - \beta_0)^2$ soit minimum parmi tous les β_0, β_1 possible.

Estimateurs OLS

Les valeurs estimées (estimations) de β_0 et β_1 par OLS vérifient

Formalisme

- distance à un point de l'échantillon: $(y_i x_i\beta_1 \beta_0)^2$
- distance à l'ensemble des points: $\sum_{i=1}^{n} (y_i x_i \beta_1 \beta_0)^2$

 \sim Meilleure droite: constante $\hat{\beta}_0$ et pente $\hat{\beta}_1$ tels que $\sum_{i=1}^n (y_i - x_i \beta_1 - \beta_0)^2$ soit minimum parmi tous les β_0, β_1 possible.

Estimateurs OLS

Les valeurs estimées (estimations) de β_0 et β_1 par OLS vérifient

Formalisme

- distance à un point de l'échantillon: $(y_i x_i\beta_1 \beta_0)^2$
- distance à l'ensemble des points: $\sum_{i=1}^{n} (y_i x_i \beta_1 \beta_0)^2$
- \leadsto Meilleure droite: constante $\hat{\beta}_0$ et pente $\hat{\beta}_1$ tels que $\sum_{i=1}^n (y_i x_i \beta_1 \beta_0)^2$ soit minimum parmi tous les β_0, β_1 possible.

Estimateurs OLS

Les valeurs estimées (estimations) de β_0 et β_1 par OLS vérifient

Formalisme

- distance à un point de l'échantillon: $(y_i x_i\beta_1 \beta_0)^2$
- distance à l'ensemble des points: $\sum_{i=1}^{n} (y_i x_i \beta_1 \beta_0)^2$

 \sim Meilleure droite: constante $\hat{\beta}_0$ et pente $\hat{\beta}_1$ tels que $\sum_{i=1}^n (y_i - x_i \beta_1 - \beta_0)^2$ soit minimum parmi tous les β_0, β_1 possible.

Estimateurs OLS

Les valeurs estimées (estimations) de β_0 et β_1 par OLS vérifient

$$(\hat{\beta}_0^{\text{ols}}, \hat{\beta}_1^{\text{ols}}) = \underset{\beta_0, \beta_1 \in \mathbb{R}}{\arg\min} \left\{ \sum_{i=1}^n (y_i - x_i \beta_1 - \beta_0)^2 \right\}$$

21

Formalisme

- distance à un point de l'échantillon: $(y_i x_i\beta_1 \beta_0)^2$
- ▶ distance à l'ensemble des points: $\sum_{i=1}^{n} (y_i x_i \beta_1 \beta_0)^2$

 \leadsto Meilleure droite: constante $\hat{\beta}_0$ et pente $\hat{\beta}_1$ tels que $\sum_{i=1}^n (y_i - x_i \beta_1 - \beta_0)^2$ soit minimum parmi tous les β_0, β_1 possible.

Estimateurs OLS

Les valeurs estimées (estimations) de β_0 et β_1 par OLS vérifient

$$(\hat{\beta}_0^{\mathsf{ols}}, \hat{\beta}_1^{\mathsf{ols}}) = \underset{\beta_0, \beta_1 \in \mathbb{R}}{\operatorname{arg \ min}} \left\| \mathbf{y} - \mathbf{x}\beta_1 - \mathbf{1}_n \beta_0 \right\|_2^2$$

21

Moindres carrés ordinaires

Théorème

Les estimateurs des moindres carrés ordinaires ont pour expressions :

$$\begin{split} \hat{B}_0^{\mathsf{ols}} &= \overline{Y} - \hat{\beta}_1 \overline{x} \\ \hat{B}_1^{\mathsf{ols}} &= \frac{\sum_{i=1}^n (x_i - \overline{x}) (\, Y_i - \overline{Y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{S_{xY}}{S_x x}. \end{split}$$

Preuve: en annulant les dérivées de la fonction objectif, qui est convexe.

Remarques

- ▶ ne repose pas sur l'hypothèse gaussienne des résidus
- attention à la différence estimateur/estimation (v.a./réalisation)
- ightharpoonup ne dit rien sur σ^2 ...

Moindres carrés ordinaires

Théorème

Les estimateurs des moindres carrés ordinaires ont pour expressions :

$$\begin{split} \hat{B}_0^{\text{ols}} &= \overline{Y} - \hat{\beta}_1 \overline{x} \\ \hat{B}_1^{\text{ols}} &= \frac{\sum_{i=1}^n (x_i - \overline{x}) (Y_i - \overline{Y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{S_{xY}}{S_x x}. \end{split}$$

Preuve: en annulant les dérivées de la fonction objectif, qui est convexe.

Remarques

- ▶ ne repose pas sur l'hypothèse gaussienne des résidus
- ▶ attention à la différence estimateur/estimation (v.a./réalisation)
- ne dit **rien sur** σ^2 ...

Moindres carrés ordinaires

Application aux données Kyoto

```
x <- Kyoto$Population
y <- Kyoto$Emissions
beta1.ols \leftarrow cov(x,y) / var(x)
beta0.ols <- mean(y) - beta1.ols * mean(x)
beta1.ols
## [1] 0.01082331
beta0.ols
## [1] 3.915303
coefficients(lm(y~x)) ## sanity check
## (Intercept)
   3.91530293 0.01082331
```

Plan

Modèle

Estimation

Estimateur des moindres carrés ordinaires Estimateur du maximum de vraisemblance Propriétés des estimateurs Tests sur les paramètres

Résidus et Prédiction

Analyse de la variance

Diagnostic

Formalisme

- lacktriangle vraisemblance d'un point de l'échantillon: $L(y_i)=f(y_i)$
- ightharpoonup vraisemblance du n-échantillon: $L(y_1,\ldots,y_n)=\prod_{i=1}^n f(y_i)$
- ▶ log-vraisemblance : $\log L(y_1, \ldots, y_n) = \sum_{i=1}^n \log f(y_i)$

Estimateurs du MV

Formalisme

- ightharpoonup vraisemblance d'un point de l'échantillon: $L(y_i) = f(y_i)$
- ▶ vraisemblance du *n*-échantillon: $L(y_1, ..., y_n) = \prod_{i=1}^n f(y_i)$
- ▶ log-vraisemblance : $\log L(y_1, ..., y_n) = \sum_{i=1}^n \log f(y_i)$

Estimateurs du MV

Formalisme

- ightharpoonup vraisemblance d'un point de l'échantillon: $L(y_i) = f(y_i)$
- vraisemblance du n-échantillon: $L(y_1,\ldots,y_n)=\prod_{i=1}^n f(y_i)$
- ▶ log-vraisemblance : $\log L(y_1, \ldots, y_n) = \sum_{i=1}^n \log f(y_i)$
- \leadsto Meilleurs estimateurs: (β_0,β_1,σ) maximisant L ou $\log L$, indiquant à quel point les valeurs courantes des paramètres sont **vraisemblables** au vu des données (fixées)

Estimateurs du MV

Formalisme

- ightharpoonup vraisemblance d'un point de l'échantillon: $L(y_i) = f(y_i)$
- ▶ vraisemblance du *n*-échantillon: $L(y_1, ..., y_n) = \prod_{i=1}^n f(y_i)$
- ▶ log-vraisemblance : $\log L(y_1, \ldots, y_n) = \sum_{i=1}^n \log f(y_i)$

Estimateurs du MV

$$(\hat{\beta}_0^{\mathsf{mv}}, \hat{\beta}_1^{\mathsf{mv}}, \hat{\sigma}^{\mathsf{mv}}) = \underset{\beta_0, \beta_1 \in \mathbb{R}, \sigma > 0}{\operatorname{arg\ max}} \log L(y_1, \dots, y_n)$$

Formalisme

- ightharpoonup vraisemblance d'un point de l'échantillon: $L(y_i) = f(y_i)$
- ▶ vraisemblance du *n*-échantillon: $L(y_1, ..., y_n) = \prod_{i=1}^n f(y_i)$
- ▶ log-vraisemblance : $\log L(y_1, ..., y_n) = \sum_{i=1}^n \log f(y_i)$

Estimateurs du MV

$$(\hat{\beta}_0^{\mathsf{mv}}, \hat{\beta}_1^{\mathsf{mv}}, \hat{\sigma}^{\mathsf{mv}}) = \underset{\beta_0, \beta_1 \in \mathbb{R}}{\arg\min} \left\{ -\frac{n}{2} \log(2\pi) - n \log(\sigma) - \frac{1}{2\sigma^2} \left\| \mathbf{y} - \mathbf{x}\beta_1 - \mathbf{1}_n \beta_0 \right\|_2^2 \right\}$$

Maximum de vraisemblance l

Maximum de vraisemblance II

Intuition

Maximum de vraisemblance Estimateurs

Théorème

Les estimateurs du maximum de vraisemblance ont pour expression :

$$\hat{B}_0 = \overline{Y} - \hat{\beta}_1 \overline{x}$$

$$\hat{B}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$S^2 = \frac{1}{n} \|\mathbf{y} - \mathbf{x}\beta_1 - \mathbf{1}_n \beta_0\|_2^2$$

Preuve:

En annulant les dérivées de la fonction objectif, qui est concave.

Maximum de vraisemblance

Estimation pratique de la variance des résidus

On ne connaît pas β_1 et β_0 ! Si on remplace par les valeurs estimées

$$\frac{1}{n} \|\mathbf{y} - \mathbf{x}\hat{\beta}_1 - \mathbf{1}_n \hat{\beta}_0\|_2^2,$$

on obtient un estimateur biasé. En pratique, on utilise

$$S^{*2} = \frac{1}{n-2} \|\mathbf{y} - \mathbf{x}\hat{\beta}_1 - \mathbf{1}_n \hat{\beta}_0\|_2^2$$

Remarque

Le "-2" provient des 2 degrés de liberté perdus en estimant $\beta_0,\beta_1.$

Maximum de vraisemblance I

Application aux données Kyoto

```
x <- Kyoto$Population
y <- Kyoto$Emissions
n <- length(y)
beta1 <- seq(-0.15,0.15,len=100)
logL.1 <- sapply(beta1, loglik, x=x, y=y , beta0=40,sigma=30)
logL.2 <- sapply(beta1, loglik, x=x, y=y , beta0=40,sigma=50)
logL.3 <- sapply(beta1, loglik, x=x, y=y , beta0=40,sigma=70)
sigma.hat <- sqrt(sum(residuals(lm(y~x))^2)/(n-2))
sigma.hat
## [1] 51.50069</pre>
```

Maximum de vraisemblance II

Application aux données Kyoto

Plan

Modèle

Estimation

Estimateur des moindres carrés ordinaires Estimateur du maximum de vraisemblance

Propriétés des estimateurs

Tests sur les paramètres

Résidus et Prédiction

Analyse de la variance

Diagnosti

Propriétés des estimateurs de β_0 et β_1 (I)

Cas général

 \hat{B}_0 et \hat{B}_1 sont des estimateurs sans biais de eta_0 et eta_1 de variance

$$\mathbb{V}(\hat{B}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right),$$

$$\mathbb{V}(\hat{B}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2},$$

et de covariance
$$\operatorname{cov}(\hat{B}_0, \hat{B}_1) = -\frac{\sigma^2 \overline{x}}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

Cas gaussien

Si les résidus sont gaussien, i.e. $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, alors

$$\triangleright B_0 \sim \mathcal{N}(\beta_0, \mathbb{V}(B_0))$$

Propriétés des estimateurs de β_0 et β_1 (I)

Cas général

 \hat{B}_0 et \hat{B}_1 sont des estimateurs sans biais de eta_0 et eta_1 de variance

$$\mathbb{V}(\hat{B}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right),$$

$$\mathbb{V}(\hat{B}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2},$$

et de covariance
$$\operatorname{cov}(\hat{B}_0, \hat{B}_1) = -\frac{\sigma^2 \overline{x}}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

Cas gaussien

Si les résidus sont gaussien, i.e. $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, alors

- $\hat{B}_0 \sim \mathcal{N}(\beta_0, \mathbb{V}(\hat{B}_0))$
- $\qquad \qquad \hat{B}_1 \sim \mathcal{N}(\beta_1, \mathbb{V}(\hat{B}_1))$

Propriétés des estimateurs de B_0 et B_1 (II)

Théorème de Gauss-Markov

- ► Cas gaussien \hat{B}_0 et \hat{B}_1 sont les meilleurs estimateurs sans biais (i.e. de variance minimale).
- ► Cas non gaussien \hat{B}_0 et \hat{B}_1 sont les meilleurs estimateurs linéaires sans biais (i.e. de variance minimale).

Théorème

La variance σ^2 est estimée sans biais par :

$$S^{\star 2} = \frac{1}{n-2} \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

Si les résidus sont normalement distribués, on a de plus

$$(n-2)S^{\star 2} \sim \sigma^2 \chi_{n-2}^2$$

Propriétés des estimateurs de B_0 et B_1 (II)

Théorème de Gauss-Markov

- ► Cas gaussien \hat{B}_0 et \hat{B}_1 sont les meilleurs estimateurs sans biais (i.e. de variance minimale).
- ► Cas non gaussien \hat{B}_0 et \hat{B}_1 sont les meilleurs estimateurs linéaires sans biais (i.e. de variance minimale).

Théorème

La variance σ^2 est estimée sans biais par :

$$S^{\star 2} = \frac{1}{n-2} \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

Si les résidus sont normalement distribués, on a de plus

$$(n-2)S^{\star 2} \sim \sigma^2 \chi_{n-2}^2$$

Plan

Modèle

Estimation

Estimateur des moindres carrés ordinaires Estimateur du maximum de vraisemblance Propriétés des estimateurs

Tests sur les paramètres

Résidus et Prédiction

Analyse de la variance

Diagnostic

Tests sur les paramètres du modèle: pente

Sous hypothèse de normalité des résidus

Hypothèse testée: nullité de β_1 (la pente)

$$\begin{cases} H_0: & \beta_1 = 0 \\ H_1: & \beta_1 \neq 0 \end{cases}$$

Statistique de test et règle de décision

$$T_{\beta_1} = \frac{\beta_1}{\sqrt{\frac{S^{\star 2}}{\sum_{i=1}^n (x_i - \overline{\mathbf{x}})^2}}} \underset{H_0}{\sim} \mathcal{T}_{n-2}, \text{ on rejette } H_0 \text{ si } |T_{\beta_1}| \geq t_{n-2,1-\frac{\alpha}{2}}$$

$$\P_{H_0}\left(|\mathcal{T}_{n-2}| \ge t_{\beta_1}(\text{obs})\right)$$

Tests sur les paramètres du modèle: pente

Sous hypothèse de normalité des résidus

Hypothèse testée: nullité de β_1 (la pente)

$$\begin{cases} H_0: & \beta_1 = 0 \\ H_1: & \beta_1 \neq 0 \end{cases}$$

Statistique de test et règle de décision

$$T_{\beta_1} = \frac{\beta_1}{\sqrt{\frac{S^{\star 2}}{\sum_{i=1}^n (x_i - \overline{\mathbf{x}})^2}}} \underset{H_0}{\sim} \mathcal{T}_{n-2}, \text{ on rejette } H_0 \text{ si } |T_{\beta_1}| \geq t_{n-2,1-\frac{\alpha}{2}}$$

$$\P_{H_0}\left(|\mathcal{T}_{n-2}| \ge t_{\beta_1}(\text{obs})\right)$$

Tests sur les paramètres du modèle: pente

Sous hypothèse de normalité des résidus

Hypothèse testée: nullité de β_1 (la pente)

$$\begin{cases} H_0: & \beta_1 = 0 \\ H_1: & \beta_1 \neq 0 \end{cases}$$

Statistique de test et règle de décision

$$T_{\beta_1} = \frac{\beta_1}{\sqrt{\frac{S^{\star 2}}{\sum_{i=1}^{n}(x_i-\overline{\mathbf{x}})^2}}} \sim \mathcal{T}_{n-2}, \text{ on rejette } H_0 \text{ si } |T_{\beta_1}| \geq t_{n-2,1-\frac{\alpha}{2}}$$

$$\P_{H_0}\left(|\mathcal{T}_{n-2}| \geq t_{\beta_1}(\text{obs})\right)$$

Tests sur les paramètres du modèle: constante Sous hypothèse de normalité des résidus

Hypothèse testée: nullité de β_0 (la constante)

$$\begin{cases} H_0: & \beta_0 = 0 \\ H_1: & \beta_0 \neq 0 \end{cases}$$

Statistique de test et règle de décision

$$T_{\beta_0} = \frac{\beta_0}{\sqrt{s^{\star 2} \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)}} \underset{H_0}{\sim} \mathcal{T}_{n-2}, \text{ on rejette } H_0 \text{ si } |T_{\beta_0}| \ge t_{n-2,1-2}$$

$$\P_{H_0}\left(|\mathcal{T}_{n-2}| \ge t_{\beta_0}(\text{obs})\right)$$

Tests sur les paramètres du modèle: constante Sous hypothèse de normalité des résidus

Hypothèse testée: nullité de β_0 (la constante)

$$\begin{cases} H_0: & \beta_0 = 0 \\ H_1: & \beta_0 \neq 0 \end{cases}$$

Statistique de test et règle de décision

$$T_{\beta_0} = \frac{\beta_0}{\sqrt{s^{\star 2} \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)}} \underset{H_0}{\sim} \mathcal{T}_{n-2}, \text{ on rejette } H_0 \text{ si } |T_{\beta_0}| \ge t_{n-2, 1 - \frac{\alpha}{2}}$$

$$\P_{H_0}\left(|\mathcal{T}_{n-2}| \ge t_{\beta_0}(\text{obs})\right)$$

Tests sur les paramètres du modèle: constante Sous hypothèse de normalité des résidus

Hypothèse testée: nullité de β_0 (la constante)

$$\begin{cases} H_0: & \beta_0 = 0 \\ H_1: & \beta_0 \neq 0 \end{cases}$$

Statistique de test et règle de décision

$$T_{\beta_0} = \frac{\beta_0}{\sqrt{s^{*2} \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)}} \overset{\sim}{\sim} \mathcal{T}_{n-2}, \text{ on rejette } H_0 \text{ si } |T_{\beta_0}| \ge t_{n-2,1-\frac{\alpha}{2}}$$

$$\P_{H_0}\left(|\mathcal{T}_{n-2}| \ge t_{\beta_0}(\text{obs})\right)$$

Test sur les paramètres

Application aux données Kyoto (I)

```
model <- lm(Emissions~Population,data=Kyoto)</pre>
summary(model)
##
## Call:
## lm(formula = Emissions ~ Population, data = Kyoto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -94.983 -33.297 3.004 22.605 120.173
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 3.915e+00 1.861e+01 0.21 0.837
## Population 1.082e-02 5.128e-04 21.11 1.93e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.5 on 13 degrees of freedom
## Multiple R-squared: 0.9716, Adjusted R-squared: 0.9695
## F-statistic: 445.4 on 1 and 13 DF, p-value: 1.925e-11
```

Test sur les paramètres Application aux données Kyoto (II)

Plan

Modèle

Estimation

Résidus et Prédiction

Analyse de la variance

Diagnosti

Prédiction, prédicteur

Problème

La valeur prédite par le modèle pour le $i^{\rm e}$ individu est

$$Y_i = \beta_0 + \beta_1 X_0 + \varepsilon_i,$$

mais β_0, β_1 et ε_i sont inconnus.

Idée

Les estimateurs et estimations de β_0 et β_1 permettent de définir

- un prédicteur: $\hat{Y}_i = \hat{B}_0 + \hat{B}_1 x_i$
- une **prédiction**: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

Estimation des résidus

Proposition

Soit $\hat{\varepsilon}_i = Y_i - \hat{Y}_i$ l'erreur de prévision au $i^{\rm e}$ point. On a :

$$\mathbb{E}(\hat{\varepsilon}_i) = 0$$

$$\mathbb{V}(\hat{\varepsilon}_i) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_i - \bar{\mathbf{x}})^2}{\sum_{i=1}^n (x_i - \bar{\mathbf{x}})^2} \right)$$

Remarques

- ightharpoonup On a $\sum \hat{arepsilon}_i = 0$
- lacktriangle Contrairement à $arepsilon_i$, les résidus estimés $\hat{arepsilon}_i$ ne sont pas indépendants
- La variance de l'erreur de prédiction est d'autant plus grande que x_i est éloigné de la moyenne $\bar{\mathbf{x}}$

Prédiction d'une nouvelle observation

Valeur prédite

Soit x_0 une nouvelle observation. La valeur prédite par le modèle est $Y_0=\beta_0+\beta_1X_0+\varepsilon_0$. Cette valeur peut être approchée par :

$$\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0$$

Remarques

Deux types d'erreurs entâchent cette prédiction :

- ightharpoonup La non connaissance de $arepsilon_0$
- lacktriangle L'incertitude sur l'estimation des paramètres eta_0 et eta_1

Prédiction: intervalle de confiance

Soit x_0 une nouvelle observation et \hat{Y}_0 le prédicteur associé.

Proposition

Loi de \hat{Y}_0 Sous l'hypothèse gaussienne, on déduite de la loi jointe de (B_0,B_1) que

$$\hat{Y}_0 \sim \mathcal{N}\left(\beta_0 + \beta_1 x_0, \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{\mathbf{x}})^2}{\sum_{i=1}^n (x_i - \bar{\mathbf{x}})^2}\right)\right)$$

Remarques

$$ightharpoons \mathbb{V}(\hat{Y}_0) = \mathbb{V}(B_0 + B_1 x) \neq \mathbb{V}(B_0) + \mathbb{V}(B_1 x) \text{ car } cov(B_0, B_1) \neq 0.$$

- $ightharpoonup \mathbb{V}(\hat{Y}_0)$ tient compte de l'erreur faite en estimant $\beta_0 + \beta_1 x$.
- ▶ Plus l'on cherche à estimer $\mathbb{E}(Y_0)$ d'un point x_0 proche (resp.) éloigné de $\bar{\mathbf{x}}$, plus la variance est petite (resp. grande).

Prédiction: intervalle de confiance

Soit x_0 une nouvelle observation et \hat{Y}_0 le prédicteur associé.

Proposition

Loi de \hat{Y}_0 Sous l'hypothèse gaussienne, on déduite de la loi jointe de (B_0,B_1) que

$$\hat{Y}_0 \sim \mathcal{N}\left(\beta_0 + \beta_1 x_0, \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{\mathbf{x}})^2}{\sum_{i=1}^n (x_i - \bar{\mathbf{x}})^2}\right)\right)$$

Remarques

- $\mathbb{V}(\hat{Y}_0) = \mathbb{V}(B_0 + B_1 x) \neq \mathbb{V}(B_0) + \mathbb{V}(B_1 x) \text{ car } cov(B_0, B_1) \neq 0.$
- ▶ $\mathbb{V}(\hat{Y}_0)$ tient compte de l'erreur faite en estimant $\beta_0 + \beta_1 x$.
- ▶ Plus l'on cherche à estimer $\mathbb{E}(Y_0)$ d'un point x_0 proche (resp.) éloigné de $\bar{\mathbf{x}}$, plus la variance est petite (resp. grande).

Prédiction: intervalle de prédiction

Pour l'intervalle de confiance de **prédiction**, il faut rajouter le bruit incompressible estimé, i.e., $\hat{\sigma}^2$.

Intervalle de confiance de la prédiction

$$IC_{1-\alpha}(y_0) = \left[\hat{Y}_0 \pm q_{t_{n-2}, 1-\frac{\alpha}{2}} \sqrt{s^{*2} \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right)} \right]$$

→ pour une nouvelle valeur observée, s'ajoute l'aléa du tirage.

Prédiction, résidus

Application aux données Kyoto (I)

```
model <- lm(Emissions~Population,data=Kyoto)</pre>
## résidus estimés
head(residuals(model))
##
## 120.1732717 0.1035334 31.2579624 11.6647847 -45.1286796 25.0848403
sum(residuals(model))
## [1] -7.81597e-14
## valeurs estimés
head(fitted(model))
## 897.32673 91.49647 116.44204 62.33522 447.42868 60.41516
```

Prédiction, résidus

Application aux données Kyoto (II)

Prédiction, résidus Application aux données Kyoto (III)

Prédiction, résidus

Application aux données Kyoto (IV)

Population US pour la prédiction: 291049

```
Emission.US <- predict(model, newdata=data.frame(Population=291049), interval="contains to the contains to the
 Emission. US
 ## fit lwr upr
 ## 1 3154.03 2858.296 3449.764
 Emission.US <- predict(model, newdata=data.frame(Population=291049), interval="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction="prediction=
 Emission. US
 ## fit lwr upr
 ## 1 3154.03 2838.059 3470
Kvoto2 <- data.frame(</pre>
                                  Country = c(Kyoto$Country , "US"),
                                  Population = c(Kyoto$Population, 291049),
                                  Emissions = c(Kyoto$Emissions , Emission.US[1]),
                                  status = factor(c(rep("observed",nrow(Kyoto)), "predicted")))
```

Prédiction, résidus

Application aux données Kyoto (V)

Prédiction: attention! Application aux données Kyoto (VI)

Si l'individu prédit ne suit pas le même modèle que les autres...

```
ggplot(Kyoto2,aes(x=Population,y=Emissions,colour=status,shape=status)) +
    geom_point() + stat_smooth(method=lm,colour="blue",fullrange=TRUE) +
    annotate("point", 291049, 6900, colour="red", size=10, shape=10)
```


Plan

Modèle

Estimation

Résidus et Prédiction

Analyse de la variance

Diagnostic

Décomposition de la variance

Théorème fondamental

$$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{SCT} = \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{SCR} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{SCM}$$

Vocabulaire

- ► SCR = Somme des carrés résiduelle
 ∨ variabilité non expliquée par le modèle

Décomposition de la variance Interprétation

Théorème fondamental (Pythagore)

Avec
$$\mathbf{Y}=(Y_1,\ldots,Y_n)^{\top}$$
 et $\hat{\mathbf{Y}}=(\hat{Y}_1,\ldots,\hat{Y}_n)^{\top}$, on
$$SCT=SCR+SCM$$

$$\|\mathbf{Y}-\bar{\mathbf{Y}}\|_2^2=\|\mathbf{Y}-\hat{\mathbf{Y}}\|_2^2+\|\hat{\mathbf{Y}}-\bar{\mathbf{Y}}\|_2^2$$

Et ainsi

$$(\mathbf{Y} - \hat{\mathbf{Y}}) = \hat{\boldsymbol{\varepsilon}} \perp (\hat{\mathbf{Y}} - \bar{\mathbf{Y}}) \Leftrightarrow SCR \perp SCM,$$

- ▶ la variabilité expliquée par le modèle est **indépendente** de la résiduelle.
- ▶ géométriquement, $\hat{\mathbf{Y}}$ est la **projection orthogonale** $\hat{\mathbf{Y}}$ sur le sous espace de \mathbb{R}^n engendré par $\hat{\mathbf{x}}$.

Décomposition de la variance Interprétation

Théorème fondamental (Pythagore)

Avec
$$\mathbf{Y}=(Y_1,\ldots,Y_n)^{\top}$$
 et $\hat{\mathbf{Y}}=(\hat{Y}_1,\ldots,\hat{Y}_n)^{\top}$, on
$$SCT=SCR+SCM$$

$$\|\mathbf{Y}-\bar{\mathbf{Y}}\|_2^2=\|\mathbf{Y}-\hat{\mathbf{Y}}\|_2^2+\|\hat{\mathbf{Y}}-\bar{\mathbf{Y}}\|_2^2$$

Et ainsi

$$(\mathbf{Y} - \hat{\mathbf{Y}}) = \hat{\boldsymbol{\varepsilon}} \perp (\hat{\mathbf{Y}} - \bar{\mathbf{Y}}) \Leftrightarrow SCR \perp SCM,$$

- ▶ la variabilité expliquée par le modèle est indépendente de la résiduelle.
- ▶ géométriquement, $\hat{\mathbf{Y}}$ est la **projection orthogonale** \mathbf{Y} sur le sous espace de \mathbb{R}^n engendré par \mathbf{x} .

Coefficient d'ajustement

Coefficient d'ajustement

Le coefficient d'ajustement (ou de détermination) est défini par :

$$R^2 = \frac{SCM}{SCT} = 1 - \frac{SCR}{SCT}$$

Remarque

Le coefficient d'ajustement peut être interprété comme le pourcentage de variance expliquée par le modèle

55

Coefficient d'ajustement

Interprétation pour la régression simple

Modèle avec juste la constante

$$\underset{\beta_0}{\operatorname{arg min}} \sum_{i \in \mathcal{D}} (y_i - \beta_0)^2 = \bar{\mathbf{y}}.$$

Coefficient d'ajustement

Interprétation pour la régression simple

Modèle avec la constante et la pente

$$\underset{\beta_0,\beta_1}{\operatorname{arg min}} \sum_{i \in \mathcal{D}} (y_i - \underbrace{\beta_0 - \beta_1 x_{i1}}_{f_i})^2$$

Coefficient d'ajustement

Interprétation pour la régression simple

Coefficient d'ajustement

$$R^{2} = 1 - \frac{\sum (y_{i} - f_{i})^{2}}{\sum (y_{i} - \bar{\mathbf{y}})^{2}} = 1 - \frac{SCR}{SCT}$$

Test du modèle (I)

Hypothèse testée: nullité de β_1 (la pente)

$$\begin{cases} \mathcal{M}_0 : \text{ modèle le plus simple} \\ \mathcal{M}_1 : \text{ modèle le plus complexe} \end{cases} \Leftrightarrow \begin{cases} \mathcal{M}_0 : Y_i = \beta_0 + \varepsilon_i \\ \mathcal{M}_1 : Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \end{cases}$$

Loi des sommes de carrés sous H_0

- $ightharpoonup SCR = (n-2)S^{*2} \sim \sigma^2 \chi_{n-2}^2$
- Sous l'hypothèse $\{H_0: eta_1=0\}: SCT \underset{H_0}{\sim} \sigma^2 \chi_{n-1}^2$
- ▶ Sous l'hypothèse $\{H_0: \beta_1=0\}: SCM \underset{H_0}{\sim} \sigma^2 \chi_1^2$

De plus, $SCR \perp \!\!\! \perp SCM$

Test du modèle (I)

Hypothèse testée: nullité de β_1 (la pente)

$$\begin{cases} \mathcal{M}_0 : \text{ modèle le plus simple} \\ \mathcal{M}_1 : \text{ modèle le plus complexe} \end{cases} \Leftrightarrow \begin{cases} \mathcal{M}_0 : Y_i = \beta_0 + \varepsilon_i \\ \mathcal{M}_1 : Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \end{cases}$$

Loi des sommes de carrés sous H_0

- $SCR = (n-2)S^{*2} \sim \sigma^2 \chi_{n-2}^2$
- lacksquare Sous l'hypothèse $\{H_0: eta_1=0\}: SCT \underset{H_0}{\sim} \sigma^2\chi^2_{n-1}$
- ▶ Sous l'hypothèse $\{H_0: \beta_1=0\}: SCM \underset{H_0}{\sim} \sigma^2 \chi_1^2$

De plus, $SCR \perp \!\!\! \perp SCM$

Test du modèle (II)

Statistique de test: Fisher

Intuitivement, on rejette lorsque la valeur observée de la statistique ${\cal F}$ est "grande":

$$F = \frac{SCM/1}{SCR/(n-2)} \underset{H_0}{\sim} \mathcal{F}_{1,n-2}$$

Preuve...

Règle de décision et p-valeur

On rejette H_0 si $F \ge f_{1,n-2;1-\alpha}$ $p - \mathsf{val} = \P_{H_0}\left(\mathcal{F}_{1,n-2} \ge f(\mathsf{obs})\right)$

Test du modèle (II)

Statistique de test: Fisher

Intuitivement, on rejette lorsque la valeur observée de la statistique F est "grande":

$$F = \frac{SCM/1}{SCR/(n-2)} \underset{H_0}{\sim} \mathcal{F}_{1,n-2}$$

Preuve...

Règle de décision et p-valeur

On rejette
$$H_0$$
 si $F \geq f_{1,n-2;1-\alpha}$ $p - \mathsf{val} = \P_{H_0}\left(\mathcal{F}_{1,n-2} \geq f(\mathrm{obs})\right)$

Analyse de la variance

Tableau de synthèse

	Degrés de	Sommes	Carrés	
Source	liberté	des carrés	moyens	F
Modèle	1	SCM	SCM	$F = \frac{(n-2)SCM}{SCR}$
Résiduelle	n-2	SCR	$\frac{SCR}{(n-2)}$	5010
Total	n-1	SCT	(** =)	

Analyse de la variance du modèle de régression simple l' Application aux données Kyoto

```
M0 <- lm(Emissions~1,Kyoto)
M1 <- lm(Emissions~Population,Kyoto)
anova(M0,M1)

## Analysis of Variance Table
##
## Model 1: Emissions ~ 1
## Model 2: Emissions ~ Population
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 14 1215852

## 2 13 34480 1 1181371 445.41 1.925e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Analyse de la variance du modèle de régression simple II Application aux données Kyoto

Analyse de la variance du modèle de régression simple III Application aux données Kyoto

```
summary(M1)
##
## Call:
## lm(formula = Emissions ~ Population, data = Kyoto)
##
## Residuals:
      Min 1Q Median 3Q
##
                                    Max
## -94.983 -33.297 3.004 22.605 120.173
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.915e+00 1.861e+01 0.21 0.837
## Population 1.082e-02 5.128e-04 21.11 1.93e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.5 on 13 degrees of freedom
## Multiple R-squared: 0.9716, Adjusted R-squared: 0.9695
## F-statistic: 445.4 on 1 and 13 DF, p-value: 1.925e-11
```

Plan

Modèle

Estimation

Résidus et Prédiction

Analyse de la variance

Diagnostic

Rappels des hypothèses

Liées aux variables résiduelles

- 1. Résidus centré: $\mathbb{E}(Y) = \beta_0 + \beta_1 x$, soit $\mathbb{E}(\varepsilon_i) = 0$
- 2. Résidus homoscédastiques : $\mathbb{V}(\varepsilon_i) = \sigma^2$ pour tout i,
- 3. Résidus indépendents, $\mathbb{V}(\varepsilon_i) \perp \mathbb{V}(\varepsilon_j)$, pour tout $i \neq j$
- 4. Résidus gaussiens: $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$.

Analyse des résidus

Diagnostic et solutions envisageables

À défaut de diposer de ε_i , on diagnostique $\hat{\varepsilon}_i$

- 1. analyse du graphe des résidus
 - recherche d'une tendance, hétéroscédasticité, perte de centrage
 - transformation des Y_i et/ou des x_i
- 2. Test d'indépendance (Durbin-Watson)
- 3. Test de normalité (Shapiro, Kolmogorov, χ^2)

Tolérance

- écart à la loi normale: assez peu d'impact, d'autant moins que la distributions des résidus est symétrique
- indépendance des résidus: importante pour les résultas d'estimation et de test.

Analyse des résidus

Diagnostic et solutions envisageables

À défaut de diposer de ε_i , on diagnostique $\hat{\varepsilon}_i$

- 1. analyse du graphe des résidus
 - recherche d'une tendance, hétéroscédasticité, perte de centrage
 - transformation des Y_i et/ou des x_i
- 2. Test d'indépendance (Durbin-Watson)
- 3. Test de normalité (Shapiro, Kolmogorov, χ^2)

Tolérance

- écart à la loi normale: assez peu d'impact, d'autant moins que la distributions des résidus est symétrique
- indépendance des résidus: importante pour les résultas d'estimation et de test.

Diagnostic

Application aux données Kyoto (I)

Homoscédasticité ? résidus centrés ? hum...

```
M1 <- lm(Emissions~Population, Kyoto)
Kyoto <- cbind(Kyoto, residuals=residuals(M1))
ggplot(Kyoto, aes(Population, residuals)) + geom_point()</pre>
```


Diagnostic: données originales

Application aux données Kyoto (II)

Diagnostic: transformation racine carrée Application aux données Kyoto (III)

Diagnostic: transformation racine carrée

Application aux données Kyoto (IV)

```
M1.sqrt <- lm(sqrt(Emissions)~sqrt(Population), Kyoto)
Kyoto <- cbind(Kyoto, residuals.sqrt=residuals(M1.sqrt))</pre>
summary(M1.sqrt)
##
## Call:
## lm(formula = sqrt(Emissions) ~ sqrt(Population), data = Kyoto)
##
## Residuals:
##
      Min 1Q Median 3Q Max
## -2.1188 -0.9248 0.3296 0.9923 2.4512
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.99048 0.69618 1.423 0.178
## sqrt(Population) 0.09905 0.00437 22.667 7.79e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.347 on 13 degrees of freedom
## Multiple R-squared: 0.9753, Adjusted R-squared: 0.9734
## F-statistic: 513.8 on 1 and 13 DF, p-value: 7.786e-12
```

Diagnostic: transformation racine carrée

Application aux données Kyoto (V)

Diagnostic: transformation logarithmique Application aux données Kyoto (VI)

Diagnostic: transformation logarithmique

Application aux données Kyoto (VII)

```
M1.log <- lm(log(Emissions)~log(Population), Kyoto)
Kyoto <- cbind(Kyoto, residuals.log=residuals(M1))</pre>
summary(M1.log)
##
## Call:
## lm(formula = log(Emissions) ~ log(Population), data = Kyoto)
##
## Residuals:
## Min
                10 Median 30
                                          Max
## -0.49102 -0.03698 0.02216 0.13590 0.29505
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.97210 0.43865 -6.776 1.31e-05 ***
## log(Population) 0.84816 0.04586 18.493 1.02e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2357 on 13 degrees of freedom
## Multiple R-squared: 0.9634, Adjusted R-squared: 0.9606
## F-statistic: 342 on 1 and 13 DF, p-value: 1.018e-10
```

ggplot(Kyoto, aes(log(Population), residuals.log)) + geom_point()

Diagnostic: transformation logarithmique

Application aux données Kyoto (VII)

Diagnostic: test de normalité Application aux données Kyoto (VIII)

```
##
## Shapiro-Wilk normality test
##
## data: residuals(M1.sqrt)
## W = 0.94777, p-value = 0.4901
```

Diagnostic: test de normalité

Application aux données Kyoto (IX)

qqnorm(residuals(M1.sqrt)); qqline(residuals(M1.sqrt))

Theoretical Quantiles

Diagnostic: test d'indépendance Application aux données Kyoto (X)

Tests d'indépendance des résidus

```
library(car)
durbinWatsonTest(M1.sqrt)

## lag Autocorrelation D-W Statistic p-value
## 1   -0.3678903   2.31636   0.474

## Alternative hypothesis: rho != 0
```

Modèle final

Application aux données Kyoto (XI)

