THREE HOURS

A list of Constants is enclosed

UNIVERSITY OF MANCHESTER

Year 3 General Paper

3 June 2011

14:00 - 17:00

(Physics, Physics with Astrophysics, Physics with Theoretical Physics, Physics with Technological Physics)

Answer as many questions as you can.

Marks will be awarded for your **THIRTEEN** best answers.

Each question is worth 10 marks

Electronic calculators may be used, provided that they cannot store text.

- 1. Calculate the wavelength in nanometres of the photon emitted when an electron in a hydrogen atom makes a transition from an energy level with n = 2 to one with n = 1. In what part of the electromagnetic spectrum does this lie?
- 2. A parallel plate capacitor has an area of 10⁻³ m² and a separation of 0.05 mm. It is filled with a dielectric of relative permittivity 5. What is its capacitance?
- 3. A string whose linear density is $\mu = 50 \text{ g m}^{-1}$ is maintained at a tension T = 5 N. A transverse wave with frequency f = 100 Hz is continuously excited along the string. Calculate the speed of propagation of the wave and its wavelength.
- 4. An electric field *E* is found to obey the equation:

$$\frac{\partial^2 E}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2}$$

Show that a solution exists which is periodic with an angular frequency ω and wavenumber k. Find the relationship between ω , k and $\mu_0\varepsilon_0$. What is the physical significance of this relationship?

- 5. The total annual energy usage in the UK is about $E = 10^{19}$ J. Assume that this energy is all put into a small spacecraft with a mass of m = 250 kg. What would the velocity of the spacecraft be?
- 6. Consider an electron confined in a box of size 10^{-15} m. What is the uncertainty in its momentum? Hence, by finding the typical kinetic energy of the electron, show that it is not possible for the electron to be confined within a nucleus (assume the typical binding energy of the electron in this case would be 1 MeV).
- Write down an expression for the entropy S of a system in terms of the number of quantum microstates Ω.
 For a change of entropy ΔS from state 1 to state 2, what is the ratio of microstates Ω₂/Ω₁? If ΔS is 1 J K⁻¹, what is Ω₂/Ω₁?
- 8. A plane wave of wavelength λ propagating in the z direction is diffracted from a rectangular aperture lying at the origin of the xy plane. The aperture dimensions are $d_y = 2 d_x$. Describe the intensity angular distribution of the diffraction pattern along the x direction and the y direction at a great distance from the aperture.

- 9. A 1-litre spherical flask contains molecular hydrogen at a temperature of 300 K. Estimate the pressure at which the mean free path of a molecule is larger than the diameter of the flask. You may take the diameter of the hydrogen molecule to be 2.2×10⁻¹⁰ m.
- 10. A spring with spring constant $k = 120 \text{ N m}^{-1}$ is cut into two pieces, one twice as long as the other. What are the spring constants of the two pieces?
- 11. An electromagnetic plane wave propagating in free space hits a flat dielectric surface (with refractive index n) at an angle i to the direction normal to the surface. If the incident light is unpolarised, the degree of polarisation of the reflected wave is maximised when $i + r = 90^{\circ}$, where r is the refracted wave angle. Find the relation between i and n in this condition. If the dielectric constant of the medium is equal to 2.25, calculate i.
- 12. A particle of mass m is constrained to lie within a one-dimensional box extending from x = -a/2 to x = +a/2, within which it can move freely. It has a wave function for its lowest energy state given by $\Psi(x,t) = A\cos\left(\frac{\pi x}{a}\right)\exp\left(-iEt/\hbar\right)$.

Sketch the space dependence of the wave function and hence state the expectation value of x.

By substituting the wave function into the Schroedinger equation $-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi}{\partial x^2} = i\hbar \frac{\partial \Psi}{\partial t}$, find an expression for the energy E of the particle.

- 13. In a cloud chamber for photographing the trails of α -particles, the temperature of the air is 10° C. If its volume is increased by 50% by a rapid expansion, calculate the final temperature of the air (the ratio of specific heats for air is 1.41).
- 14. You are holding a book by pushing it with your hand against a vertical wall. The force you apply is at an angle of θ with the upward direction (so $\theta = 0$ is up). The mass of the book is m and the coefficient of static friction between the book and the wall is μ .
 - a. Show that the minimum force to keep the book stationary against the wall requires you to push at an angle $\theta = \arctan \mu$.
 - b. Show that the force required to hold the book is given by $F = mg \cos \theta$.
- 15. A galaxy can be approximated by a sphere of uniform density ρ and radius R. Find expressions for the velocity v(r) of a star in a circular orbit of radius r about the galactic centre, considering the cases 0 < r < R and r > R. Make a sketch of v(r) and suggest why its observed behaviour for r > R might be different.

END OF EXAMINATION PAPER

PHYSICAL CONSTANTS AND CONVERSION FACTORS

SYMBOL	DESCRIPTION	NUMERICAL VALUE
С	Velocity of light in vacuum	$299792458 \text{ m s}^{-1}$, exactly
μ_0	Permeability of vacuum	$4\pi \times 10^{-7} \text{ N A}^{-2}$, exactly
€0	Permittivity of vacuum where $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$	$8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
$\int h$	Planck constant	$6.626 \times 10^{-34} \text{ J s}$
ħ	$h/2\pi$	$1.055 \times 10^{-34} \text{ J s}$
G	Gravitational constant	$6.674 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
e	Elementary charge	$1.602 \times 10^{-19} \text{ C}$
еV	Electronvolt	$1.602 \times 10^{-19} \text{ J}$
α	Fine-structure constant, $\frac{e^2}{4\pi\epsilon_0\hbar c}$	1137.0
m_e	Electron mass	$9.109 \times 10^{-31} \text{ kg}$
$m_e c^2$	Electron rest-mass energy	0.511 MeV
μ_B	Bohr magneton, $\frac{e\hbar}{2m_e}$	$9.274 \times 10^{-24} \text{ J T}^{-1}$
R_{∞}	Rydberg energy $\frac{\alpha^2 m_e c^2}{2}$	13.61 eV
a_0	Bohr radius $\frac{1}{\alpha} \frac{\hbar}{m_e c}$	$0.5292 \times 10^{-10} \text{ m}$
Å	Angstrom	10^{-10} m
m_p	Proton mass	$1.673 \times 10^{-27} \text{ kg}$
	Proton rest-mass energy	938.272 MeV
	Neutron rest-mass energy	939.565 MeV
	Nuclear magneton, $\frac{e\hbar}{2m_p}$	$5.051 \times 10^{-27} \text{ J T}^{-1}$
fm	Ferntometre or fermi	10^{-15} m
Ъ	Barn	10^{-28} m^2
u	Atomic mass unit, $\frac{1}{12}m(^{12}\text{C atom})$	$1.661 \times 10^{-27} \text{ kg}$
	Avogadro constant, atoms in gram mol	$6.022 \times 10^{23} \text{ mol}^{-1}$
T_t	Triple-point temperature	273.16 K, exactly
k	Boltzmann constant	$1.381 \times 10^{-23} \text{ J K}^{-1}$
R	Molar gas constant, $N_A k$	8.314 J mol ⁻¹ K ⁻¹
σ	Stefan-Boltzmann constant, $\frac{\pi^2}{60} \frac{k^4}{\hbar^3 c^2}$	$5.670 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
	Mass of Earth	$5.97 \times 10^{24} \text{ kg}$
R_E	Mean radius of Earth	$6.4 \times 10^6 \text{ m}$
g	Standard acceleration of gravity	9.80665 m s^{-2} , exactly
atm	Standard atmosphere	101 325 Pa, exactly
$\overline{M_{\odot}}$	Solar mass	$1.989 \times 10^{30} \text{ kg}$
-	Solar radius	$6.96 \times 10^8 \text{ m}$
	Solar luminosity	$3.84 \times 10^{26} \text{ W}$
	Solar effective temperature	$5.8 \times 10^3 \text{ K}$
	Astronomical unit, mean Earth-Sun distance	$1.496 \times 10^{11} \text{ m}$
	Parsec	$3.086 \times 10^{16} \text{ m}$
=	Year	$3.156 \times 10^7 \text{ s}$