STATIC AND DYNAMIC FRACTURE PROPERTIES FOR ALUMINUM ALLOY 7475-T651 AND T7351

UNIVERSITY OF DAYTON RESEARCH INSTITUTE

APRIL 1975

TECHNICAL REPORT AFML-TR-75-20 FINAL REPORT FOR PERIOD OCTOBER 1973 — DECEMBER 1974

Approved for public release; distribution unlimited

AIR FORCE MATERIALS LABORATORY Air Force Systems Command Wright-Patterson Air Force Base, Ohio

AIR FORCE SYSTEMS COMMAND
United States Air Force

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

DAVID C. WATSON

David C Watson

Project Monitor

FOR THE COMMANDER

ALBERT OLEVITCH

Chief, Materials Engineering Branch

albert Olevitch

Materials Support Division

Copies of this report should not be returned unless otherwise required by security considerations, contractual obligations, or notice on a special document. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AFML-TR-75-20		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
STATIC AND DYNAMIC FRACTI	URE	Final Report
PROPERTIES FOR ALUMINUM.	ALLOY	Oct. 1973 - Dec. 1974
7475-T651 AND T7351	1111101	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
R.R. Cervay		F33615-74-C-5024
R. R. Celvay		F 33015-74-C-5024
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
University of Dayton Research Ir	nstitute	AND A STORY OF THE MORE TO
300 College Park Avenue		73810678
Dayton, Ohio 45469		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Air Force Materials Laboratory		April 1975
Air Force Systems Command		13. NUMBER OF PAGES
Wright-Patterson Air Force Bas 14. MONITORING AGENCY NAME & ADDRESS(it differen	e, Ohio 45433	30 15. SECURITY CLASS. (of this report)
I MONTO MILE MODELLO I MANIE E MODELLO GLI ELIMINO		
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; dis	tribution unlimit	eed.
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	om Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and		
aluminum fatigue		ighness
AL 7475 crack gr		
tensile stress co		
fracture thermal	cycle	
20. ABSTRACT (Continue on reverse side if necessary and	d identify by block number)	
A broad base of mechanica	l property data	were developed on two
plates of Al 7475. One of the 1-		
dition and one was in the T651 co		
plate were higher than those of the		
toughness tests were invalid by		· · · · · · · · · · · · · · · · · · ·

indicate the material possesses good toughness. The conditional toughness values (K_Q) for identical test conditions indicate the T7351 processing

DD 1 FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

possesses the superior toughness property.

The smooth and notched fatigue properties were about equal to those of other 7000-series aluminum alloys. Constant amplitude fatigue crack growth resistance was better than some older 7000-series alloys and similar to other new 7000-series alloys while the stress corrosion cracking properties in a salt water environment were excellent.

Most of the tests were repeated using specimens that had been subjected to $250^{\circ} F$ ($121^{\circ} C$) for 1000 hours. This time-temperature exposure resulted in: (1) a slight reduction in tensile strength, (2) a slight increase in conditional toughness (K_Q) for the T651 plate and a small decrease in K_Q for the T7351 heat treated plate, (3) a slight reduction in fatigue properties, and (4) negligible effect on the fatigue crack growth rate and corrosion properties.

FOREW ORD

This final report was submitted by the University of Dayton Research Institute, Dayton, Ohio, under contract F33615-74-C-5024, Project No. 7381, "Materials Application", Task No. 738106, "Engineering and Design Data", Job Order 73810678, with the Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio. Mr. David Watson, AFML/MXE was the Laboratory Project Monitor.

The effort was over the period of October 1973 through December 1974. The author, Mr. Russell R. Cervay, is responsible for the program direction. The author would like to extend recognition to Messrs. Eblin, Marton, and Woleslagle of the University of Dayton Research Institute for performing the testing involved in this reported program, and to Mr. C. Houston of the Air Force Materials Laboratory for performing the chemical analysis.

This report was submitted by the author in April 1975.

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	1
II	MATERIALS, SPECIMENS, AND PROCEDURES	2
III	RESULTS AND DISCUSSION	10
IV	SUMMARY	29
	REFERENCES	30

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Microstructure of 7475-T651 Aluminum Alloy Rolled Plate (200X)	3
2	Microstructure of 7475-T7351 Aluminum Alloy Rolled Plate (200X)	4
3	Tensile Specimen Configuration	5
4	Compact Specimen Configuration	6
5	Notched Fatigue Specimen Configuration	7
6	Smooth Fatigue Specimen Configuration	8
7	Ultimate Strength of Aluminum Alloy 7475-T651 and T7351 Versus Temperature	14
8	Typical Room Temperature Tensile Stress-Strain Curves for Aluminum Alloy 7475-T651	16
9	Typical Room Temperature Tensile Stress-Strain Curves for Aluminum Alloy 7475-T7351	17
10	Smooth Fatigue Test Results for Aluminum Alloy 7475-T651 and T7351	20
11	Notched Fatigue Specimen (K_t =3.0) Test Results for Aluminum Alloy 7475-T651 and T7351	21
12	Smooth Fatigue Specimen ($K_t=1.0$) Test Results for Aluminum Alloy 7475-T651 and T7351 with Reference Data	22
13	Aluminum Alloy 7475-T651 and T7351 Plate (1.50-in thick) Crack Growth Rate Versus Stress Intensity Range	24
14	Room Temperature Cyclic Crack Growth Rate Versus Stress Intensity Range for As-Received Aluminum Alloy 7475-T651 and T7351 Plate (1.5 in -thick) and Specimens Thermal Cycled at 250°F (121°C) for 1000 Hours	25
15	Room Temperature Cyclic Crack Growth Rate Versus Stress Intensity Range for Aluminum Alloy 7475-T651 and T7351 Plate (1.50 in -thick) with Reference Test Data	26
16	Aluminum 7475-T651 Stress Corrosion Cracking	27

LIST OF TABLES

TABLE		PAGE
1	Chemical Composition, Weight Percent	2
2	Tensile Properties of Aluminum Alloy 7475-T7351 and T651 Plate (1.50-Inch Thick)	11
3	Aluminum 7475-T651 and T7351 Fracture Toughness Test Results for 1.5-Inch Thick Plate	18
4	Stress Corrosion Cracking Test Results for Aluminum 7475-T651 and T7351 in a 3.5%	
	NaCl Solution	28

SECTION I

INTRODUCTION

The test material was originally presented by its producer, ALCOA, as aluminum X7475 with a 467 processing. Subsequently the 467 processing was further refined into three heat treatments, T651, T7651, and T7351. The producer claims the T651 heat treatment is superior in strength, whereas the T7351 is superior in toughness and corrosion cracking resistance. Process T7651 was developed as a hybrid of the two heat treatments described above and was introduced as possessing strength and toughness capabilities flanked by the two extremes found in the T651 and T7351 processes. Herein are reported mechanical property test results on 1.5 inch thick rolled plates with T651 and T7351 processing. Due to difficulties in procuring the alloy 7475 in the T7651 heat treatment that alloy/temper is still in test and is left to be reported at a later date.

This program developed engineering mechanical property data for a new aluminum alloy, 7475, in two heat treatments, T651 and T7351. Alloy 7475 is a refinement of aluminum 7075 which has relatively poor fracture toughness and stress corrosion properties in the T6 condition. The T7351 condition of the 7075 has improved toughness and stress corrosion properties but these are obtained at a sacrifice to the tensile properties. The test alloy/heat treatments are represented by the producer, ALCOA, as being superior in strength, toughness, and fatigue strength (Ref. 1) compared to currently in-service 7000-series aluminum alloys/heat treatments. Prior testing performed in the Air Force Materials Laboratory on this alloy confirmed its high strength, good cyclic crack growth resistance, improved fatigue strength, and excellent exfoliation resistance. This program is a follow-on to the previous engineering design data program on alloy 7475-T761 and T61, 0.090 inch thick sheet stock, reported in AFML-TR-72-173 (Ref. 2). The encouraging findings associated with the referenced program conducted on the sheet stock prompted this follow-on program on a thicker product form.

SECTION II

MATERIALS, SPECIMENS, AND PROCEDURES

Two plates, 1.50-inch thick, were purchased from the Aluminum Company of America (ALCOA). Overall dimensions of the plates were 36×24 inches. The producer provided one plate in each of the heat treated conditions, T651 and T7351. The chemical compositions of the test plates are listed in Table 1. The longitudinal grain direction coincided with the 36-inch dimensions of the plates. Composite photomicrographs of the two plates are shown in Figures 1 and 2.

TABLE 1
CHEMICAL COMPOSITION, WEIGHT PERCENT

Heat Treat.	Zn	Mg	Cu	Cr	Si	Mn	Fe	Ti	A1
T7351	5.5	2.0	1.6	0.18	0.054	0.006	0.07	0.018	Balance
T651	5.6	2.0	1.5	0.19	0.056	0.006	0.07	0.024	Balance

Tensile specimens were machined in accordance with Figure 3. Compact specimens with a thickness of 1.5 inch (Figure 4) were fabricated for the longitudinal and transverse fracture toughness tests. Compact specimens of 3/4-inch thickness were employed for the cyclic crack growth tests, and 1/2-inch thick compact specimens were used for the short transverse oriented stress corrosion cracking tests and fracture toughness tests. Figures 5 and 6 illustrate the notched fatigue test samples with a stress concentration factor equal to 3.0, and smooth fatigue test samples, respectively.

The first digit of all specimen identification numbers, i.e. 6 or 7, discriminates the heat treatment of the plate, T651 or T7351, respectively, from which the specimen was taken. The orientation of the various specimens is designated with the lettering code: (L) longitudinal, (W) transverse, (T) short transverse.

(Text Continued on Page 9)

4

Figure 1. Microstructure of 7475-T651 Aluminum Alloy Rolled Plate (200X).

SHORT TRANSVERSE

Figure 2. Microstructure of 7475-T7351 Aluminum Alloy Rolled Plate (200X).

Figure 3. Tensile Specimen Configuration.

DIMENSIONS

SPECIMEN THICKNESS (INCHES)	А	В	W	w ₁	Н	D
(a) 1 1/2	1.650	1.500	3.000	3.750	1.800	0.625
(3.810)	(4.191)	(3.810)	(7.620)	(9.525)	(4.572)	(1.588)
(b) 3/4		0.750	1.500	1.875	0.900	0.375
(1.905)	(2.121)	(1.905)	(3.810)	(4.763)	(2.286)	(0.953)
(c) 1/2	0.550	0.500	1.000	1.250	0.600	0.250
(1.270)	(1.397)	(1.270)	(2.540)	(3.175)	(1.524)	(0.635)

Figure 4. Compact Specimen Configuration.

Figure 5. Notched Fatigue Specimen Configuration.

Figure 6. Smooth Fatigue Specimen Configuration.

Tensile tests were conducted at -65°F (-54°C), room temperature, and 200°F (94°C) in longitudinal and transverse directions. Fracture toughness tests were performed at -65°F (-54°C), room temperature, and 200°F (94°C) in three orientations, longitudinal (L-T), transverse (T-L), and short ransverse (S-L). The room temperature longitudinal tensile and fracture toughness tests were repeated using specimens that underwent a 250°F (121°C) 1000-hour time-temperature furnace exposure.

All of the cyclic crack growth test specimens were longitudinally oriented (L-T) and were subjected to test environments of either laboratory air or 3.5 percent salt water solution at room temperature. The room temperature laboratory air crack growth tests were repeated with specimens that underwent the thermal cycle described in the preceding paragraph. Crack growth was visually monitored with a 30x traveling microscope. A computer was employed to perform the cyclic crack growth data reduction.

Longitudinal and transverse-oriented fatigue specimens underwent test in both the smooth ($K_t = 1$) and notched ($K_t = 3$) configuration. Additional smooth, longitudinal fatigue tests were completed at room temperature in laboratory air following a test specimen exposure of 250°F (121°C) for 1000 hours.

The threshold for stress corrosion cracking was determined in a 3.5 percent by weight salt water solution. All stress corrosion cracking tests employed short transverse oriented compact specimens. These tests were repeated following the $250^{\circ} F$ ($121^{\circ} C$) 1000-hour time-temperature specimen exposure. Specimens were precracked with constant amplitude cyclic loading at a loading level less than one half of K_{TC} .

When an ASTM standard was available for a test it was followed. In the cases where an ASTM standard is non-existent, e.g. cyclic crack growth testing, the accepted test practices of the material testing community were followed.

SECTION III

RESULTS AND DISCUSSION

The following observations are based on test results from single plates of aluminum alloy 7475 in the T651 and T7351 heat treatments. Conclusions drawn could be altered by more in-depth testing that encompassed lot-to-lot variations.

The test material is a high strength 7000 series aluminum alloy, as indicated in Table 2 and Figure 7. The ultimate and yield strengths are approximately equal to those of the 7475 referenced literature (Ref. 1 and 2). However, over the temperature range of interest the test material is slightly inferior in strength and demonstrated considerably more elongation than did 7075-T76, 7178-T76 or 7175-T736 reported in References 3 and 4. The T651 heat treated plate possesses higher strength (10 to 17 percent) than the T7351 heat treated plate. Figure 7 shows the tensile strength of the two plates as a function of temperature. At a test temperature of 200°F (94°C) the load carrying capability has not yet started to radically taper off, indicating that 200°F(94°C) is probably an acceptable service temperature. For the specimens that were thermal-cycled at 250°F (121°C) for 1000 hours the ultimate strength decreased 6.7 percent for the T7351 heat treated plate and dropped 5.0 percent for the T651 heat treated plate. With the indicated drops in tensile strengths following the exposure, there were similarly small increases in the elongation and reduction of area. The variation in yield strength is essentially the same as that for the ultimate strength observed in Figure 7.

At room temperature, the transverse ultimate strength for the T651 plate is slightly higher than the longitudinal ultimate strength. This was unexpected and is not considered to be significant. Photomicrographs (Figures 1 and 2) were made to verify that the grain structure actually was as labeled by the producer.

(Text Continued on Page 15.)

1 . 11 . .

TENSILE PROPERTIES OF ALUMINUM ALLOY 7475-T7351 AND T651 PLATE (1.5-INCH THICK) TABLE 2

ion					
Reduction of Area (%)	49 49 45	59 39 57	52 59 56	58 42 36 34	27 26 31 28
Elong. In 1 inch G.L.(%)	15 15 14	15 16 16 18	17 19 18 19	19 17 15 16	16 14 14 14
ld ngth MPa	412 409 408	410 407 405 406	409 386 385 406	393 493 488 485	488 475 480 485 481
Yield Strength KSI MI	59.8 59.4 59.3	59.5 59.1 58.8 58.9	58.9 56.0 55.9 59.0	1	70.9 69.0 69.6 70.4
Ultimate Strength SI MPa	517 490 492	493 480 490 490	463 457 461	460 545 542 539	542 563 570 572 568
Ulti. Stre KSI	72.0 71.2 71.5	71.6 69.7 70.1 70.1	70.0 67.2 66.3 66.9	9 6 8 8	81.8 82.8 83.0 82.5
Orientation	Longitudinal	Transverse	Longitudinal	Longitudinal	Transverse
Test Temp.	R.T.	R.T.	R.T.	R.T.	R.T.
Heat Treatment	T7351	T7351	T7351	T651	T651
Specimen	7L4 7L5 7L6	Avg. 7T4 7T5 7T6	Avg. 7L1* 7L2* 7L3*	Avg. 6L4 6L5 6L6	Avg. 6T4 6T5 Avg.

*Denotes specimen underwent a thermal cycle of 250°F for 1000 hours before room temperature test.

TABLE 2 (Continued)

TENSILE PROPERTIES OF ALUMINUM ALLOY 7475-T7351

AND T651 PLATE (1.5-INCH THICK)

T		T		T	T		-	T	T								
Reduction of Area (%)	43 33 46	41	35	36	36	63	58	59	09	51	20	49	50	70	65	69	89
Elong. In 1 inch G. L. (%)	17.0 15.0 18.0	17.0		. 1	13.5	19.5		22.0	20.3	17.8	15.8	15.6	16.4	20.0	21.3	20.6	20.6
th MPa	445 465 443	448	437	435	435	ı	386	390	388	429	428	428	428	391	390	381	388
Yield Strength KSI	64.6 67.5 64.3	65.1	63.5	63.1	63.2	1	56.1	26.7	56.4	62.3	62.1	62.1	62.2	56.8	56.7	55.4	56.3
ate gth MPa	515 530 508	515	524 522	521	522	417	421	422	420	512	509	208	510	417	417	408	413
Ultimate Strength KSI MI	73.9 77.0 73.7	74.8	76.0	75.6	75.8	9.09	61.2	61.3	61.0	74.3	73.9	73.7	74.0	60.5	60.5	59.5	0.09
Orientation	Longitudinal	å	Longitudinal			Longitudinal	Tomburgue			Transverse				E	1 ransverse		
Test Temp.	R.T.		-65°F)		200°F	93°C			-65°F	-54°C	1		200°F	2000	2	
Heat Treatment	T651		T7351			T73E1	TCCIT			1702	16671			1000	17351		
Specimen	6L1* 6L2* 6L3*	Avg.	7L1 7L2	7L3	Avg.	7.17	8.17	71.9	Avg.	7.11	7.17	7T3	Avo		711	7T9	

* Denotes specimen underwent a thermal cycle of 250 °F for 1000 hours before room temperature test.

TABLE 2 (Concluded)
TENSILE PROPERTIES OF ALUMINUM ALLOY 7475-T7351
AND 7651 PLATE (1.5-INCH THICK)

	Heat	Test		Ultimate	Yield	Elong.	Reduction
Specimen	Treatment	Temp.	Orientation	Strength KSI MPa	Strength KSI MPa	In linch G.L.(%)	of Area (%)
6L1 6L2 613	T651	-65°F -54°C	Longitudinal	80.6 555 81.2 560	72.0 496 73.1 504	17.2	26 24 19
Avg.				2 5	0	18.2	23
6L7 6L8 6L9	T651	200°F 93°C	Longitudinal	70.8 488 70.5 486 71.9 495	66.5 458 68.0 468 67.6 466	24.0 20.5 21.4	56 56 53
Avg.				71.1 490	68.0 468	22.0	55
6T1 6T10 6T3	T651	-65°F -54°C	Transverse	86.9 599 86.8 598 89.7 618	74.2 511 73.9 509 76.8 529	12.8 14.3 14.1	19 18 15
Avg.				87.8 605	74.9 516	13.7	17
6T7 6T8 6T9	T651	200°F 93°C	Transverse	76.9 530 74.9 516 75.4 521	68.5 472 66.4 457 66.3 457	21.0	46 46 47
Avg.				7 5	0	20.1	46

Figure 7. Ultimate Strength of Aluminum 7475-T651 and T7351 versus Temperature.

Figures 8 and 9 present typical stress-versus strain curves for the T651 and T7351 materials, respectively for a room temperature test.

Fracture toughness test results are shown in Table 3. Nearly all of the fracture toughness test results are invalid by ASTM test standard E-399. The invalidity is attributed to gross crack front curvature (tunneling of the crack front) or insufficient specimenthickness. It must be cautioned that all of the observations with respect to the fracture toughness must be considered intuitive impressions since most of the test results are invalid by strict interpretation. Invalidity, in itself, is usually a good indication of the superior toughness of the test material.

The T7351 heat treatment gave higher conditional toughness test results, K_Q , than those found for the T651 plate. Short transverse (S-L) toughness results are appreciably lower than the longitudinal (L-T) or transverse (T-L) specimen test results. The observation is typical when short transverse toughness test results are available. For the T7351 heat treatment the K_Q toughness values decrease slightly with the 250°F (121°C) time-temperature exposure, whereas for the T651 processed plate the K_Q values increased following the time-temperature exposure.

Considerable scatter can be observed in the fatigue test results presented in Figures 10 and 11. The longitudinal and transverse fatigue test results plot in overlapping scatter bands. No distinction can be made as to which heat treatment demonstrated superior fatigue life. The time-temperature exposure reduced the fatigue life of both heat treatments; the fatigue life of the T7351 plate was more extensively diminished than that of the T651 plate (see Figure 10).

In Figure 12 the test alloy's fatigue life is compared to similar fatigue test data from References 1 and 5. The test alloy compares directly with the reference test materials of alloy 7475-T61 and -T761 sheet stock and alloy 7075-T6 sheet.

(Text Continued on Page 23.)

Typical Room Temperature Tensile Stress-Strain Curves for Aluminum Alloy 7475-T651. Figure 8.

Typical Room Temperature Tensile Stress-Strain Curves for Aluminum Alloy 7475-T7351. Figure 9.

TABLE 3

ALUMINUM 7475-T651 AND T7351 FRACTURE TOUGHNESS
TEST RESULTS FOR 1.5-INCH THICK PLATE

	Heat	Test	*	K _Q _	KO	ASTM
Specimen	Treat	Temp.	Orientation	KSIVIN	MPaV m	Valid?
6LW4	T651	70 °F	L-T	50.1	55.0	No
6LW5		21.1°C		49.0	53.8	No
6LW6				46.7	51.3	No
6WL4			T-L	42.0	46.1	No
6WL5				50.6	55.6	No
6WL6				41.9	46.0	No
6TL4			S-L	37.4	42.5	No
6TL5				34.8	38.2	No
6TL6				36.1	39.7	No
6LW1			L-T	55.9**	61.4	No
6LW2				56.5**	62.1	No
6LW3				52.2**	57.4	No
7LW4	T7351	70 °F	L-T	63.9	70.2	No
7LW5		21.1°C		66.2	72.4	No
7LW6				60.3	66.3	No
7WL4			T-L	59.7	65.6	No
7WL5				57.4	63.1	No
7WL6				61.0	67.0	No
7TL4			S-L	42.8	47.0	No
7TL5				33.3	36.6	Yes
7TL6				36.8	40.4	Yes
7LW1			L-T	60.2**	66.1	No
7LW2				60.8**	66.8	No
7LW3				57.1**	62.7	No
6LW1	T651	-65°F	L-T	45.0	49.4	No
6LW2		-53.8°C		45.5	50.0	No
6LW3				46.6	51.2	No
6WL1			T-L	34.7	38.1	No
6WL2		/ = 0 –	+	36.7	40.3	No
7LW1	T7351	-65°F	L-T	58.2	64.0	No
7LW2		-53.8°C		63.9	70.2	No
7LW3				60.1	66.0	No
7WL1			T-L	56.9	62.5	No
7WL2				56.7	62.3	No
7WL3				54.7	60.1	No

TABLE 3 (Concluded)

ALUMINUM 7475-T651 AND T7351 FRACTURE TOUGHNESS TEST RESULTS FOR 1.5-INCH THICK PLATE

Specimen	Heat Treat	Test Temp.	Orientation*	KSI VIN	K _Q MPa√m	ASTM Valid?
6LW7	T651	200°F	L-T	50.2	55.2	No
6LW8		93.3°C		49.8	54.7	No
6LW9				50.0	54.9	No
6WL7			T-L	49.1	54.0	No
6WL8				48.5	53.3	No
6WL9				49.3	54.2	No
7LW7	T7351	200°F	L-T	70.3	77.2	No
7LW8		93.3°C		65.8	72.3	No
7LW9				71.9	79.0	No
7WL7			T-L	65.3	71.8	No
7WL8				64.1	70.4	No
7WL9				62.9	63.0	No

^{*}L-T Denotes Longitudinal Orientation

T-L Denotes Transverse Orientation

S-L Denotes Short Transverse Orientation

^{**} Exposure to 250°F (121°C) for 1000 hours duration

Smooth Fatigue Test Results for Aluminum Alloy 7475-T651 and T7351 at 70°F (21.1°C). Figure 10.

Aluminum Alloy 7475-T651 and T7351, 1.50-inch Plate Notched Fatigue Specimen (Kt = 3.0) Test Results for at 70°F (21.1°C). Figure 11.

Alloy 7475-T651 and T7351 with Reference Data at 70°F (21.1°C) Smooth Fatigue Specimen ($K_t = 1.0$) Test Results for Aluminum Figure 12.

The constant amplitude cyclic crack growth test results shown in Figure 13 indicate that the T7351 heat treatment is slightly better in crack growth resistance than the T651. Crack growth rate is approximately doubled by the presence of a 3.5 percent NaCl solution. The cyclic crack growth test results for the material thermal-cycled at 250°F (121°C) for 1000 hours (Figure 14) plots in an overlapping scatter band to that of the unexposed material; crack growth resistance was not affected by the timetemperature exposure. Figure 15 is a replot of the unexposed material laboratory air test results along with the crack growth rate curves for alloy 7475, 0.090-inch sheet stock (Ref. 2), alloy/temper 7175-T736 forging (Ref. 4), and aluminum 7075-T651 plate (Ref. 6). Crack growth resistance of the test plate is identical to that of sheet stock. Alloy/temper 7175-T736 demonstrated better crack growth resistance than the alloy 7475 in either the T7351 or T651 temper; the aluminum 7075 manifests a faster crack growth rate than the test alloy. The test material demonstrated approximately the same cyclic loading crack propagating rate as those for other newly developed 7000-series alloys.

Figure 16 illustrates the pitting that occurred on the surfaces of the stress corrosion samples. Specimens with the two different tempers developed equal amounts of corrosion pitting. Corrosion test results are listed in Table 4. Neither heat treatment showed any susceptability to stress corrosion cracking in the sodium chloride test solution in either the as-received condition or following the thermal cycle conditioning. (Text Continued on Page 29.)

Figure 13. Aluminum Alloy 7475-T651 and T7351 Plate (1.50 in thick) Crack Growth Rate versus Stress Intensity Range.

Figure 14. Room Temperature Cyclic Crack Growth Rate Versus Stress Intensity Range for As-Received Aluminum Alloy 7475-T651 and T7351 Plate (1.50-in thick) and Specimens Thermal Cycled at 250°F (121°C) for 1000 Hours.

Figure 15. Room Temperature Cyclic Crack Growth Rate Versus Stress Intensity Range for Aluminum Alloy 7475-T651 and T7351 Plate (1.50-in thick) with Reference Test Data.

Figure 16. Aluminum 7475-T651 Stress Corrosion Cracking Sample (Top Free Surface).

STRESS CORROSION CRACKING TEST RESULTS FOR ALUMINUM 7475-T651 AND T7351 IN A 3.5% NaCl SOLUTION TABLE 4

Specimen	Heat	K _T (Initial)	nitial)	Test	Test Time	Exposure Prior to Test
No.*	Treat.	KSIVIN	MPAVm	Failure (hr)	No Failure (hr)	A. A. C.
683	T651	34.2	37.6	313.9		None
681		30.6	33.6		1036.4	None
751	T7351	30.5	33.5		1400	None
753		29.9	32.9		1082	None
6810	T651	36.7	40.3	19.5		250°F (121°C) for 1000 hours
6512		33.2	36.5		1134.9	250 °F (121 °C) for 1000 hours
787	T7351	56.9	29.6		827.7	250°F (121°C) for 1000 hours
759		27.8	30.5		1030.3	250°F (121°C) for 1000 hours

* Test at room temperature, all specimens are S-L orientation.

SECTION IV

SUMMARY

The following conclusions are based on test results of single plates of 7475 with the identical heat treatments. These findings could be altered by an in-depth program that included numerous lots of test material.

- 1. The test material is a high-strength 7000-series aluminum alloy.
- The T651 heat treatment possesses higher strength than the T7351 processing.
- 3. The T7351 heat treatment appears to have higher toughness than the T651 processing.
- 4. A test material thickness of 1.5 inches is insufficient to obtain ASTM valid fracture toughness test results.
- 5. The 250°F (121°C) 1000-hour thermal cycle did not affect any of the mechanical properties test results to a great degree.
- 6. The test material demonstrated good fatigue life, with no clear cut distinction between heat treatments and orientation.
- 7. Under a cyclic loading condition the test material demonstrated crack growth rates directly comparable to other new 7000-series alloys; the crack growth rate was unaffected by the time-temperature exposure of 250°F (121°C) for 1000 hours.
- 8. Although the material is extensively pitted by the 3.5 percent sodium chloride test solution the material demonstrated good resistance to stress corrosion cracking.

REFERENCES

- 1. Dickson, John A., "ALCOA 467 Process X7475 Alloy," Aluminum Company of America, October 1971.
- 2. Cervay, Russell R., "Engineering Design Data for Aluminum Alloy 7475 in the T761 and T61 Condition," Technical Report AFML-TR-72-173, September 1972.
- 3. Shultz, R.A., "ALCOA Alloys 7075-T76 and 7178-T76," Aluminum Company of America, January 1972.
- 4. Jones, R.E., "Fracture Toughness and Fatigue Crack Growth Properties of 7175-T736 Aluminum Alloy Forging at Several Temperatures," Technical Report AFML-TR-72-1, February 1972.
- 5. Military Standardization Handbook Metallic Materials and Elements for Aerospace Vehicle Structures, Volume 1 of 2 Volumes, MIL-HDBK-5B, September 1971.
- 6. Hall, L.R., et al., "Corrosion Fatigue Crack Growth in Aircraft Structural Materials," Technical Report AFML-TR-73-204, September 1973.

☆ U. S. GOVERNMENT PRINTING OFFICE: 1975-657-630/34