	DREI	MI DI	(CO)	NVERG	ENZA	_(J A	icobi	GAL	JSS -	SEI	DEL)			
•	Tene	EMA —	Supr	oniamo	che la 1	matrice	$A \in \mathbb{C}^{n}$	n sodd	isfi alm	neno u	na delle	seque	nti con	ndizioni:
	IEUR	El Wi												I
							le domi				,			
							le domi							
							le domi							
				• A	1 e a di	iagonai	le domi	nante	n sen	so stre	etto per	color	nne.	
			A	llora i	metodi	di Jaco	bi e Ga	uss-Sei	del per	risol	vere un	sister	na lin	eare
			+		1100000						+	00000	1000 0070	
						ai	matrice	A 807	10 001	iverge	ни.			
SSFR	VAZIO	NE →Se	$A \in \mathbb{C}$	$n \times n$ soc	ldisfa al	lmeno u	ına delle	condi	zioni d	el Teo	rema s	allo	ora:	1 1
		oile per								-		,		
gli el	ementi	diagonal	li di A	sono di	iversi da	a 0. In	fatti, se	per as	surdo	ce ne	fosse u	no ugu	ıale a	0, allor
tutta	la cor	risponden	ıte riga	(o color	nna) sar	rebbe n	ulla in q	uanto .	Aèad	iagona	ale dom	inante	e (o a c	liagonal
domi	nante	per colon	me): ci	ò è imp	possibile	e perché	é A è in	vertibi	le e no	n può	avere	una ri	ga (o	colonna
nulla														
		$\in \mathbb{C}^{n \times n}$ so							ema 4.3	s, i me	todi di .	Jacobi	e Gau	ıss-Seide
ono ar	plicab	ili per ris	olvere 1	un siste	ma line	are di r	natrice .	A.	1 1	1 1	I		1	I I
:MiK	Dim	ostriam	o il te	orema	per il	metod	o di G	auss-S	eidel s	sotto	l'ipote	si che	9	
							inante e							
	Dob	hiomo d								A à 1	motri	00 42		i an a
	Don	biamo d	mostr	are che	$e^{\rho(G)}$	< 1, (dove G	= 1 -	- E	нев	i maur	ice d i	terazi	ione
						del	metodo	di Ga	uss-Se	idel.				
	Ær	l'osserva	azione	"Ems	oli	مليد	valor:	ہا: رہے	Somo	اما	بنجرياح	no:	طمالاء	011276
		10556. 46	32.0.10		· · · · 3.	J	78011	J	300	- 10	CO. C.		<u> </u>	3443210
							1.							
						det	(XE+	A-E)	=0					
		m=4												
	Her			1 1	1 1									
	rer						1.	1			ı			
	rer						λa_{11}	a_{12}	a_{13}	a_{14}	-			
	rer			1		77)	$\begin{vmatrix} \lambda a_{11} \\ \lambda a_{21} \end{vmatrix}$	a_{12} λa_{22}	a_{13} a_{23}	a_{14} a_{24}	_			
	rer			$\det(\lambda)$	$\lambda E + A$	- E) =	$= \begin{vmatrix} \lambda a_{11} \\ \lambda a_{21} \\ \lambda a_{21} \end{vmatrix}$	a_{12} λa_{22}	a_{13} a_{23}	a_{14} a_{24}				
	rer			$\det(\lambda)$	$\lambda E + A$	- E) =	$= \begin{vmatrix} \lambda a_{11} \\ \lambda a_{21} \\ \lambda a_{31} \end{vmatrix}$	a_{12} λa_{22} λa_{32}	a_{13} a_{23} λa_{33}	a_{14} a_{24} a_{34}				
	rer			$\det(\lambda$	$\lambda E + A$	- E) =	$=egin{array}{c} \lambda a_{11} \ \lambda a_{21} \ \lambda a_{31} \ \lambda a_{41} \end{array}$	a_{12} λa_{22} λa_{32} λa_{42}	a_{13} a_{23} λa_{33} λa_{43}	a_{14} a_{24} a_{34} λa_{44}				
	rer			det(2	$\lambda E + A$	- E) =	$= \begin{vmatrix} \lambda a_{11} \\ \lambda a_{21} \\ \lambda a_{31} \\ \lambda a_{41} \end{vmatrix}$	a_{12} λa_{22} λa_{32} λa_{42}	a_{13} a_{23} λa_{33} λa_{43}	a_{14} a_{24} a_{34} λa_{44}				
	ı numei	ro λ di mo		≥ 1 può	essere ra	adice di	i questo	polinor	nio. In	fatti, s	$ a \ge a \ge a $			
E + E	i numer $4-E$ è	a diagon	ale don	≥ 1 può	essere ra	adice di	i questo	polinor te com	nio. In e A, pe	fatti, s	$ a \ge a \ge 1$	bile (Геогеп	na 3.7)
E + E dunq	numei numei $A-E$ è que det(a diagon $(\lambda E + A -$	ale don	≥ 1 può	essere ra	adice di	i questo	polinor te com	nio. In e A, pe	fatti, s	$ a \ge a \ge 1$	bile (Геогеп	na 3.7)
E + E dunq	i numer $4-E$ è	a diagon $(\lambda E + A -$	ale don	≥ 1 può	essere ra	adice di	i questo	polinor te com	nio. In e A, pe	fatti, s	$ a \ge a \ge 1$	bile (Геогеп	na 3.7)
E + E dunq	numer $A-E$ è que $\det(\rho(G)<$	a diagon $\lambda E + A - 1$	ale don	≥ 1 può	essere ra	adice di	i questo	polinor te com	nio. In e A, pe	fatti, s	$ a \ge a \ge 1$	bile (Геогеп	na 3.7)
E + E dunq	numei numei $A-E$ è que det(a diagon $\lambda E + A - 1$	ale don	≥ 1 può	essere ra	adice di	i questo	polinor te com	nio. In e A, pe	fatti, s	$ a \ge a \ge 1$	bile (Геогеп	na 3.7)
E + E dunq	numer $A-E$ è que $\det(\rho(G)<$	e a diagon $\lambda E + A - 1$.	tale dom $(E) \neq (E)$	≥ 1 può ninante 0. In de	essere ra e irridua efinitiva	adice di cibile es	i questo sattamer tovalori	polinor ite com λ di G	nio. In e A, pe sono p	fatti, s er cui c er forz	$ a \ge a \ge 1$	bile (Геогеп	na 3.7)
E + E dung	numer $A-E$ è que $\det(\rho(G)<$	e a diagon $\lambda E + A - 1$.	se $ \lambda $	≥ 1 può ninante 0. In de	essere ra e irridua efinitiva	adice di cibile es , gli au atrice)	i questo sattamer tovalori $\Delta E + A$	polinor the com λ di G	nio. In e A, pe sono p	fatti, s er cui e er forz	$ a = \lambda \ge 1$ invertigation mo	bile (Todulo 1	reoren minori	na 3.7) di 1 e
E + E dung	numer $A-E$ è que $\det(\rho(G)<$	e a diagon $\lambda E + A - 1$.	se $ \lambda $	≥ 1 può ninante 0. In de	essere ra e irridua efinitiva	adice di cibile es , gli au atrice)	i questo sattamer tovalori $\Delta E + A$	polinor the com λ di G	nio. In e A, pe sono p	fatti, s er cui e er forz	$ a = \lambda \ge 1$ invertigation mo	bile (Todulo 1	reoren minori	na 3.7) di 1 e
E + A dunq perciò	numer $A-E$ è que det $(\rho(G) < G$	e a diagon $\lambda E + A - 1$.	se $ \lambda \ge$	≥ 1 può minante 0. In de ≥ 1 allo ttament	essere ra e irridua efinitiva ora la ma te come	adice di cibile es a, gli au atrice λ	i questo sattamer tovalori $\Delta E + A$ dimostr	polinor ate com λ di G	nio. In e A, pe sono p	fatti, s er cui e er forz	$ a = \lambda \ge 1$ invertigation module of	bile (Todulo 1	reoren minori	na 3.7) di 1 e eguenti.
E + A dunq perciò	numer $A-E$ è ue det $(\rho(G) < \frac{1}{2}$	e a diagon $\lambda E + A - 1$.	sale don $-E$) \neq se $ \lambda $ \geq pile esale element	≥ 1 può minante 0. In de ≥ 1 allo ttament	essere ra e irridua efinitiva ora la ma te come	adice di cibile es a, gli au atrice λ	i questo sattamer tovalori $\Delta E + A$ dimostr	polinor ate com λ di G	nio. In e A, pe sono p	fatti, s er cui e er forz	$ a = \lambda \ge 1$ invertigation module of	bile (Todulo 1	reoren minori	na 3.7) di 1 e eguenti.
E + A dunq perciò	numer $A-E$ è ue det $(\rho(G) < \frac{1}{2}$	e a diagon $\lambda E + A - \frac{1}{2}$ e irriducib $-E \text{ ha gl}$	sale don $-E$) \neq se $ \lambda $ \geq pile esale element	≥ 1 può minante 0. In de ≥ 1 allo ttament	essere ra e irridua efinitiva ora la ma te come	adice di cibile es a, gli au atrice λ	i questo sattamer tovalori $\Delta E + A$ dimostr	polinor ate com λ di G	nio. In e A, pe sono p	fatti, s er cui e er forz	$ a = \lambda \ge 1$ invertigation module of	bile (Todulo 1	reoren minori	na 3.7) di 1 e eguenti.

Pertanto, per ogni $\mathbf{y} \neq \mathbf{0}$,

$$\mathbf{y}^*(A - G^*AG)\mathbf{y} = \mathbf{y}^*F^*DF\mathbf{y}$$

$$= (F\mathbf{y})^*D(F\mathbf{y})$$

$$= \mathbf{u}^*D\mathbf{u} \qquad (\mathbf{u} = F\mathbf{y} \neq \mathbf{0} \text{ perché } \mathbf{y} \neq \mathbf{0} \text{ e } F \text{ è invertibile})$$

$$= \sum_{i=1}^n a_{ii}|u_i|^2 > 0 \qquad (a_{ii} > 0 \text{ per ogni } i = 1, \dots, n \text{ perché } A \text{ è hermitiana definita positiva; }$$
vedere Esercizio 3.3)

per cui $A-G^*AG$ è definita positiva per il Teorema 3.1. (NO DIM.)

Parte 2. Dimostriamo che se λ è un autovalore di G allora $|\lambda| < 1$. Una volta fatto questo, avremo $\rho(G) < 1$ e la tesi è dimostrata. Sia dunque λ un autovalore di G e sia $\mathbf{y} \neq \mathbf{0}$ un corrispondente autovettore: $G\mathbf{y} = \lambda \mathbf{y}$. Siccome $A - G^*AG$ è hermitiana definita positiva,

$$0 < \mathbf{y}^*(A - G^*AG)\mathbf{y} = \mathbf{y}^*A\mathbf{y} - \mathbf{y}^*G^*AG\mathbf{y} = \mathbf{y}^*A\mathbf{y} - (G\mathbf{y})^*A(G\mathbf{y}) = \mathbf{y}^*A\mathbf{y} - (\lambda\mathbf{y})^*A(\lambda\mathbf{y})$$

$$= \mathbf{y}^*A\mathbf{y} - \overline{\lambda}\mathbf{y}^*A(\lambda\mathbf{y}) \qquad \text{(vale in generale } (\alpha B)^* = \overline{\alpha}B^* \text{ per ogni } \alpha \in \mathbb{C} \text{ e ogni matrice } B)$$

$$= \mathbf{y}^*A\mathbf{y} - |\lambda|^2\mathbf{y}^*A\mathbf{y}$$

$$= (1 - |\lambda|^2)\mathbf{y}^*A\mathbf{y}.$$

Poiché $\mathbf{y}^*A\mathbf{y} > 0$ per il Teorema 3.1 (essendo A hermitiana definita positiva per ipotesi), deve essere $1 - |\lambda|^2 > 0 \text{ cioè } |\lambda| < 1.$

