Making Classical Machine Learning Pipelines Differentiable: A Neural Translation Approach

Gyeong-In Yu^s, Saeed Amizadeh^m, Byung-Gon Chun^s, Matteo Interlandi^m, Markus Weimer^m, ^sSeoul National University, ^mMicrosoft

Motivation: Comparing Two Approaches of doing Machine Learning

	Classical Machine Learning (ML)	Deep Learning (DL)	
Frameworks	ML.NET learn H ₂ 0.ai Spark Mllib	i K mxnet	
How to Use?	 Compose trainable / non-trainable ops to form a pipeline Trainable ops require the estimation of parameters from input data (logistic regression, normalizer,) 	Compose multiple layers of nonlinear units Cascaded trainable operators 	
How to Train?	 Train trainable ops sequentially in topological order Use previous trainable ops as a fixed feature extractor Greedy approach; parameters are not globally optimized 	 Train layers simultaneously Use backpropagation Parameters are globally estimated to reach better (local) optimum FeedForward FeedForward BackPropagate BackPropagate	

What if we train ML pipelines globally as in DL training?

Neural Translation Framework

- Translate (possibly trained) ML pipelines into neural networks → fine tuning via backprop
 - ➤ Backpropagation instead of greedy op-wise training → improve accuracy
 - ➤ Enable GPU-acceleration without reinventing the wheel for ML pipelines

Translation Process

- Generate a neural network module out of each target op
 - Mirror the transformation logic & transfer parameters
- Compose all modules into a single neural network
 - > Follow the dependencies in the original ML pipeline

Examples

- PCA → fully-connected linear layer
- MinMaxScaler → element-wise multiplication
- Concatenator → tensor concatenation

Prototype Implementation

Referenced

- Each op is either translated or referenced
- Translation targets:
 - > Trainable ops
 - > Ops that follow other target ops (to enable backprop)
- Cache and reuse the output of referenced ops over epochs

trainable operators / modules non-trainable operators / modules ML.NET Pipeline PyTorch Model **Translator** f) Cache data Mapping Table PCA → Linear c) Pipeline d) Translate Scaler structure params b) Trained params a) Train g) Train e) Transform data ML.NET **PyTorch** GraphRunner Core (.NET) h) Translate back

Preliminary Evaluation

- A regression task 2.3K records for training
- Baselines
 - Original ML.NET pipeline
 - > Translated PTH model initialize params randomly

	ML.NET	PyTorch	Fine Tuning
Poisson Loss	13.67	15.60	12.01

Ongoing & Future Work

- Translate tree models into neural networks
- Hyperparameter tuning (because we train twice)
- Investigate how GPUs improve runtime performance
- System optimization (e.g., better caching)