MATH 323: Probability

Allan Wang

Last updated: January 16, 2019

Contents

1	Discrete Random Variables	2
	3.2-3 Discrete Probability Distribution	2
	3.4 Binomial Probability Distribution	2
	3.5 Geometric Probability Distribution	2
	3.6 Negative Binomial Probability Distribution	3
	3.8 Poisson Probability Distribution	3
	3.9 Moment & Moment-Generating Functions	3
	3.11 Tchebysheff's Theorem	3
	Chernoff Inequality	3
	Jenson's Inequality	4
	Markov Inequality	4
	Bernoulli Trial	4
2	Final Review	4
	Inequality	4
	Independence	5
	Moment Generation Function	5
	Transformation	5

1 Discrete Random Variables

A random variable is discrete if it only has a finite or countably infinite number of distinct values

3.2-3 Discrete Probability Distribution

- $0 \le p(y) \le 1 \quad \forall y$
- $\sum_{y} p(y) = 1$
- $E(Y) = \sum_{y} yp(y)$
- $V(Y) = E[(Y \mu)^2] = E(Y^2) \mu^2$
- $E(c) = \sum_{y} cp(y) = c \sum_{y} p(y)$
- E[cg(Y)] = cE[g(Y)]

3.4 Binomial Probability Distribution

Consists of n identical independent trials, resulting in either success (p) or failure (q). Goal is to find number of successes in k trials for some k.

- $p(y) = \binom{n}{y} p^y q^{n-y}$
- E(Y) = np
- $\sigma^2 = V(Y) = npq$

3.5 Geometric Probability Distribution

Same constraints as binomial probability distribution, but we are interested in finding the odds that Y is the index of the first success.

- $p(y) = q^{y-1}p$
- $\bullet \ \mu = E(Y) = \frac{1}{p}$
- $\sigma^2 = V(Y) = \frac{1-p}{p^2}$

3.6 Negative Binomial Probability Distribution

Same constraints as binomial probability distribution, but we are interested in finding the position for the k^{th} success, for some k

•
$$p(y) = \begin{pmatrix} y-1 \\ r-1 \end{pmatrix} p^r q^{y-r}$$

•
$$\mu = E(Y) = \frac{r}{p}$$

•
$$\sigma^2 = V(Y) = \frac{r(1-p)}{p^2}$$

3.8 Poisson Probability Distribution

Used to express probability that a certain number of events occur at a fixed time interval, given λ is the average, granted that the events are independent and identical

•
$$p(y) = \frac{\lambda^y}{y!}e^{-\lambda}$$

•
$$\mu = E(Y) = \lambda$$

•
$$\sigma^2 = V(Y) = \lambda$$

3.9 Moment & Moment-Generating Functions

$$\bullet \ {\mu'}_k = E(Y^k)$$

•
$$\mu_k = E\left[(Y - \mu)^k \right]$$

•
$$m(t) = E(e^{tY})$$

•
$$\frac{d^k m(t)}{dt^k}\Big|_{t=0} = m^{(k)}(0) = \mu'_k$$

3.11 Tchebysheff's Theorem

If $\mu < \infty$ and $\sigma^2 < \infty$, then $\forall k > 0$:

$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$
 or

$$P(|Y - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Chernoff Inequality

Given a random variable x, moment generating function $M_x(t)$, and c > 0:

1.
$$P(X \ge c) \le e^{-tc} \cdot M_x(t) \quad \forall t > 0$$

2.
$$P(X \le c) \le e^{-tc} \cdot M_x(t) \quad \forall t < 0$$

Jenson's Inequality

If f(x) is a convex function, for $0 \le a \le 1 \ \forall x_1, x_2 \le \text{Domain of } f$: $a \cdot f(x_1) + (1-a) \cdot f(x_2) \ge f(ax_1 + (1-a) \cdot x_2)$

If
$$E(f(x)) < \infty$$
, then $E(f(x)) \ge f(E(x))$

Markov Inequality

If
$$E(X) < \infty$$
, then $P(X \ge c) \le \frac{E(X)}{c} \ \forall c > 0$

Bernoulli Trial

Random experiment for which, given 0 , <math>P(Y = 1) = p, P(Y = 0) = q = 1 - p

- 1. Random variable: x
- 2. Realization: x = 1 (success), x = 0 (failure)
- 3. Probability Mass Function: $p_x(x) = p^x(1-p)^{1-x} = p^xq^{1-x}$ x = 0, 1
- 4. Moment Generating Function: $M_x(t) = E(e^{tx}) = \sum_{x=0}^1 e^{tx} \cdot p^x \cdot (1-p)^{1-x} = q + p \cdot e^t$
- 5. Expectation = p, Variance = pq

2 Final Review

Inequality

• Kolmogorov's Axioms

Last point: If $A_i \cap A_j = \emptyset$, then $P(A_i \cup A_j) = P(A_i) + P(A_j)$

• Boole's Inequality

For
$$A_1, A_2, ... \in F$$
, $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$

Prove using disjoint settings, using axiom above for summation, and showing that an intersection $A \cap B$ is always less than or equal to A.

• Bonferroni's Inequality

For
$$A_1, A_2, ... \in F$$
, $P(\bigcap_{i=1}^{\infty} A_i) \ge 1 - \sum_{i=1}^{\infty} P(A_i^C)$

Prove using DeMorgan's, then Boole's to form the inequality.

Independence

Prove that A is independent from B iff A^C is independent from B

Moment Generation Function

Used to calculate moments (expectation and variance) and showing that distributions are equal.

To find the expectation, derive MGF and set t = 0, or derive log(MGF) and set t = 1An MGF is composed of the normalizing constant and the kernel

Transformation

- Jacobian
- \bullet CDF

$$P(Y \le y) = P(g(X) \le y)$$

$$= P(X \le g^{-1}(y))$$

$$= P_x(g^{-1}(y))$$

$$f_y(y) = F'_y(y)$$

$$= F'_x(f^{-1}(y))\frac{d}{dy}g^{-1}(y)$$
(1)