Differential Equations, Dynamical Systems and Linear Algebra

Yunwei Ren

Contents

1	Firs	t Examples	2
	1.1	The Simplest Examples	2
	1.2	Linear Systems with Constant Coefficients	2

1 First Examples

1.1 The Simplest Examples

1.2 Linear Systems with Constant Coefficients

2.

Solution.

(a) $x_i(t) = k_i e^t$ where i = 1, 2, 3.

(b)
$$x_1(t) = k_1 e^t$$
, $x_2(t) = k_2 e^{-2t}$ and $x_3(t) = k_3$.

(b)
$$x_1(t) = k_1 e^t$$
, $x_2(t) = k_2 e^{-2t}$ and $x_3(t) = k_3$.
(b) $x_1(t) = k_1 e^t$, $x_2(t) = k_2 e^{-2t}$ and $x_3(t) = k_3 e^{2t}$.

4.

Solution.

$$x'(t) = \begin{bmatrix} e^t \\ 4e^{2t} \\ 8e^{2t} \end{bmatrix} = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 2 \end{bmatrix} \begin{bmatrix} e^t \\ 2e^{2t} \\ 4e^{2t} \end{bmatrix} = \begin{bmatrix} 1 & & \\ & 2 & \\ & 2 & 1 \end{bmatrix} \begin{bmatrix} e^t \\ 2e^{2t} \\ 4e^{2t} \end{bmatrix}.$$

6.

Solution. Suppose that $A = \operatorname{diag}(a_1, \ldots, a_n)$, then $x_i(t) = K_i \exp(a_i t)$. Hence, $x(t) \to 0$ as $t \to \infty$ for all solutions iff $a_i < 0$ for each i = 1, 2, ..., n.

8.

Proof.

(a) It follows immediately that both the differential operator and A are linear operators.

(b) Since every solution is of form $x(t) = (K_1 e^t, K_2 e^{-2t}), u(t) = (e^t, 0)$ and $v(t) = (0, e^{-2t})$ are two suitable solutions.