PRESENTACIÓN DE TRABAJO DE TÍTULO:

IMPLEMENTACIÓN Y ANÁLISIS DE HERRAMIENTA DE MAPEO DE ENTORNOS FRUTÍCOLAS MEDIANTE SENSOR LIDAR Y CÁMARA ESTÉREO MONTADOS EN PLATAFORMA ROBÓTICA MÓVIL WARTHOG

Ignacio Andrés Vásquez Vásquez

Profesor guía: Rodrigo Verschae

Profesor co-guía: Robert Guamán

Comisión evaluadora: Luis Cossio, Alfonso Ehijo, Christopher Flores

- 01 INTRODUCCIÓN
- ESTADO DEL ARTE
- MATERIALES Y MÉTODOS
- RESULTADOS
- 05 CONCLUSIÓN
- REFERENCIAS

INTRODUCCIÓN

• Importancia de la agricultura:

Vital para alimentación y empleo.

• Presiones sobre recursos:

 Crecimiento poblacional y cambio climático generan presión en tierra y agua.

• Actividad agropecuario-silvícola:

• El PIB presentó una caída del 0.6%, determinado principalmente por la actividad agropecuario-silvícola (-4.1%) (Banco Central de Chile, s. f.).

• Agricultura de precisión (AP):

o Maximiza rendimiento y optimiza recursos con tecnologías avanzadas.

• Plataforma robótica Warthog.

OBJETIVO GENERAL

Generar un mapa del entorno frutícola mediante la recopilación de datos provenientes de sensor LiDAR¹ y cámara estéreo integrados en una plataforma robótica móvil, en el contexto de la agricultura de precisión.

OBJETIVOS ESPECÍFICOS

- Realizar una revisión de literatura sobre plataformas robóticas móviles, el uso de sensores en robótica y el mapeo de entornos con robots.
- Implementar un algoritmo de mapeo del entorno frutícola mediante la información recopilada a través del equipo experimental y uso de herramientas de mapeo.

- Realizar la configuración del equipo experimental mediante el uso de algoritmos y técnicas de calibración.
- Evaluar el algoritmo de mapeo utilizando un software de simulación y en campo, mediante un análisis cualitativo y cuantitativo.
- Habilitar una herramienta de visualización de los datos mapeados.

ESTADO DEL ARTE - APLICACIONES Y USOS DE PLATAFORMAS ROBÓTICAS MÓVILES

- MINERÍA Y RESCATE
- MANTENIMIENTO FERROVIARIO
- AGRICULTURA DE PRECISIÓN
 - o Utilización de UGV robóticos en tareas agrícolas diversas (Botta et al., 2022).
 - o Aplicación en monitoreo y sensado remoto en agricultura.
 - Ejemplos notables como Husky, BoniRob, Robotanist y Thorvald (Gil et al., 2023).
 - o Contribución a la optimización en la agricultura de precisión.

ESTADO DEL ARTE - SENSORES Y SU IMPORTANCIA EN LA ROBÓTICA

Sensor	Aplicación	Referencia		
Cámara	Medición de la altura de los cultivos y creación mapas tridimensionales.	(Kim et al., 2021) (Rovira-Más et al., 2008)		
LiDAR ¹	Detección de estructuras, digitalización árboles y plantas, y toma decisiones.	(Rivera et al., 2023)		
GPS ²	Determinación de posición y altitud, permitiendo la navegación en tiempo real.	(Vieira et al., 2022) (Rovira-Más et al., 2008)		
IMU ³	Se combina con GPS para determinar la posición y altitud en vehículos autónomos, mejorando la navegación.	(Vieira et al., 2022) (Rovira-Más et al., 2008)		

¹ LiDAR: Light Detection and Ranging

² GPS: Global Position System

³ IMU: Inertial Measurement Unit

ESTADO DEL ARTE - MAPEO DEL ENTORNO

Recolección de frutas con robots, utilizando aprendizaje profundo y "OctoMap" para la percepción visual y modelado de frutas en huertos no estructurados (**Kang y Chen, 2019**).

METODOLOGÍA

PLATAFORMA ROBÓTICA WARTHOG

- Vehículo terrestre no tripulado (UGV).
- Comercializado por la empresa Clearpath Robotics.
- Plataforma no holonómica.
- Tracción en las cuatro ruedas y capacidad anfibia.

Características	Especificaciónes				
Dimensiones	1.52 x 1.38 x 0.83 m				
Peso	280 kg				
Peso máximo de carga	272 kg				
Velocidad máxima	18 km/h				
Autonomía	3 horas				

SENSORES INTEGRADOS

Sensor	Resolución	FOV	FPS	Hz
LiDAR¹ - Velodyne Puck (VLP-16)	2.0°	360° x 30°	-	10
Cámara estéreo - Stereolab ZED 2	1920 x 1080	110° x 70°	30	-
Cámara - FLIR Blackfly S	3072 × 2048	-	59.6	-
Cámara Termográfica - FLIR A400	640 x 480	42°	30	-
IMU² UM7	0.01°	-	-	20
GPS³ - SwiftNav Duro RTK	1cm	-	-	10

¹ LiDAR: Light Detection and Ranging

² GPS: Global Position System

³ IMU: Inertial Measurement Unit

SOFTWARE Y HARDWARE

- Equipado con dos computadoras con sistema operativo Ubuntu 20.04 y ROS.
- ROS (Robot Operating System).
- Software de simulación: Gazebo.

CALIBRACIÓN Y CONFIGURACIÓN ODOMETRÍA

- Técnica utilizada para estimar la posición y orientación del robot con respecto a la posición inicial.
- Paquete de ROS robot_localization.
- La configuración de odometría en ROS se realizan en un archivo YAML.

$$M = \begin{bmatrix} x & y & z \\ roll & pitch & yaw \\ \dot{x} & \dot{y} & \dot{z} \\ roll & pitch & yaw \\ \ddot{x} & \ddot{y} & \ddot{z} \end{bmatrix}$$

• Odometría utilizando datos del GPS. Proporciona información sobre la posición, velocidad y dirección del desplazamiento.

$$1^{\circ} latitud = 111321 [m]$$

$$1^{\circ} longitud = \frac{40075000 * cos (latitud[^{\circ}])}{360} [m]$$

Fuente: elaboración propia

Fuente: elaboración propia

CALIBRACIÓN Y CONFIGURACIÓN CONFIGURACIÓN "MANUAL"

- URDF (*Unified Robot Description Format*) es un archivo XML que permite describir al robot, incluyendo información sobre la geometría, cinemática y sensores del robot.
- Paquete de ROS tf (Transform Frames).

CALIBRACIÓN Y CONFIGURACIÓN

CALIBRACIÓN DE CÁMARA

- La calibración de la cámara consiste en corregir la distorsión y errores presentes en la imagen (distorsión radial o tangencial)
- Paquete de ROS camera_calibration .
- Tablero de ajedrez de tamaño A2, disposición de 8x6 intersecciones entre las cuadrículas. Cada cuadrícula del tablero mide 0.058 metros.
- Parámetros de calibración:
 - Coeficientes de distorsión.
 - Regional Matriz de rectificación.
 - Matriz de cámara
 - Matriz de proyección.

$$K = \begin{bmatrix} fx & 0 & cx \\ 0 & fy & cy \\ 0 & 0 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} fx & 0 & cx \\ 0 & fy & cy \\ 0 & 0 & 1 \end{bmatrix} \qquad P = \begin{bmatrix} fx' & 0 & cx' & Tx \\ 0 & fy' & cy' & Ty \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

CALIBRACIÓN Y CONFIGURACIÓN CALIBRACIÓN DE CÁMARA Y SENSOR LIDAR

- La calibración cámara-LiDAR consiste en ajustar los parámetros extrínsecos entre ambos sensores.
- Trabajo propuesto **extend_lidar_camera_calib** permite realizar esta calibración.
 - **FLOAM:** permite obtener una nube de puntos densa (archivo PCD).
 - livox_camera_calib: realiza la calibración extrínseca entre sensores.
 - RANSAC.
 - Canny.
- La traslación y rotación relativa entre la cámara y el LiDAR esta dada por la matriz E.

• Sistemas de referencias para cada sensor empleado por el algoritmo:

Fuente: elaboración propia

$$E = \begin{bmatrix} r_{00} & r_{01} & r_{02} & t_x \\ r_{10} & r_{11} & r_{12} & t_y \\ r_{21} & r_{21} & r_{22} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \longrightarrow E = \begin{bmatrix} 0.0 & -1.0 & 0.0 & t_x \\ 0.0 & 0.0 & -1.0 & t_y \\ 1.0 & 0.0 & 0.0 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotación realizada: (90, -90, 0)

ADQUISICIÓN DE DATOS

- Paquete de ROS rosbag.
- Los archivos de registro resultantes se guardan en formato ".bag".
- Monitoreo de almacenamiento con interfaz en tiempo real.
- Información utilizada en el trabajo de título:
 - o Ubicación: Fundo La Torre en Rengo, Chile
 - Descripción: El recorrido se centró en las hileras 66 a 73, que albergan árboles de cerezo y tienen una longitud de aproximadamente 140 metros.
 - o Dos salidas a terreno: 13-09-23 / 24-11-23.

ALGORITMO DE MAPEO "OCTOMAP"

- Herramienta de mapeo 3D que utiliza una representación octree (árbol octal) para dividir el espacio 3D en pequeños bloques.
- Un **octree** es una estructura de datos jerárquica que divide el espacio en ocho regiones. Cada región puede ser dividida a su vez en ocho regiones, y así sucesivamente.
- Cada octante puede contener información detallada sobre la ocupación del espacio, indicando si una región está ocupada por un objeto o vacía. La información de ocupación se almacena en cada celda del octree, siendo binaria (ocupada o no) o un valor real que representa la probabilidad de ocupación.

Fuente: (Hornung et al., 2013)

EVALUACIÓN DEL ALGORITMO DE MAPEO

HERRAMIENTA DE VISUALIZACIÓN

- Herramienta 3D para visualizar robots, nubes de puntos y mapas, facilitando la exploración interactiva de entornos mapeados.
- Configuración de RVIZ según necesidades específicas.
- Código de Python como interfaz entre usuario y RVIZ.
- Archivo .launch automatiza la apertura de RVIZ con configuraciones predefinidas y ejecuta el código Python para la selección.

RESULTADOS

CALIBRACIÓN Y CONFIGURACIÓN ODOMETRÍA

CALIBRACIÓN Y CONFIGURACIÓN ODOMETRÍA

CALIBRACIÓN Y CONFIGURACIÓN CONFIGURACIÓN "MANUAL"

CALIBRACIÓN Y CONFIGURACIÓN CONFIGURACIÓN "MANUAL"

Problema con traslación de sensores.

CALIBRACIÓN Y CONFIGURACIÓN CALIBRACIÓN DE CÁMARA

CALIBRACIÓN Y CONFIGURACIÓN

CALIBRACIÓN DE CÁMARA Y SENSOR LIDAR

- Rotación de 90 grados para la nube de puntos.
- Configuración de algoritmo de calibración extrínseca.

$$E = \begin{bmatrix} 0.0 & -1.0 & 0.0 & -0.1965 \\ 0.0 & 0.0 & -1.0 & -0.12365 \\ 1.0 & 0.0 & 0.0 & -0.41011 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

CALIBRACIÓN Y CONFIGURACIÓN CALIBRACIÓN DE CÁMARA Y SENSOR LIDAR

• Parámetros extrínsecos resultantes:

$$E = \begin{bmatrix} -0.0698172 & -0.99756 & 0.000516412 & -0.191322 \\ -0.15612 & 0.0104152 & -0.987683 & -0.161197 \\ 0.985268 & -0.0690379 & -0.156466 & -0.45126 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Rotación obtenida (en grados):

(-156.19154358, -80.15287841, -114.0941451)

• Representación visual de los parámetros obtenidos:

ADQUISICIÓN DE DATOS

Primera salida a terreno: 13 - 09 - 2023

Segunda salida a terreno: 24 - 11 - 2023

Fuente: elaboración propia

ENTORNO DE SIMULACIÓN MAPEADO

ENTORNO REAL MAPEADO

Fuente: RISLab

MAPEO EN ENTORNO DE SIMULACIÓN

Mapeo sobre múltiples hileras - Cámara estéreo

Mapeo sobre múltiples hileras - Sensor LiDAR

Fuente: elaboración propia

MAPEO EN ENTORNO REAL

13 - 09 - 2023

24 - 11 - 2023

EVALUACIÓN CUALITATIVA DEL ALGORITMO DE MAPEO - SIMULACIÓN

EVALUACIÓN CUALITATIVA DEL ALGORITMO DE MAPEO - ENTORNO REAL

3

EVALUACIÓN CUANTITATIVA DEL ALGORITMO DE MAPEO

Monitorización de procesos: **HTOP**

Sensor utilizado	Datos reales				Simulación					
_				MA 1 -2023)	TOMA 2 (24-11-2023)		TOMA 1		TOMA 2	
	RAM	CPU	RAM	CPU	RAM	CPU	RAM	CPU	RAM	CPU
Sensor LiDAR	6,1	100,8	4,6	100,8	7,3	101,3	2,1	102,1	4,6	102,6
Cámara estéreo	4,0	100,8	3,3	97,3	3,8	98,1	2,0	113,3	3,2	111,2

EVALUACIÓN CUANTITATIVA DEL ALGORITMO DE MAPEO

HERRAMIENTA DE VISUALIZACIÓN

CONCLUSIÓN Y TRABAJOS FUTUROS

• Importancia de la odometría:

- o Entrada del algoritmo de mapeo.
- o Necesidad de abordar el problema de rotación.

• Calibración de sensores:

• Crucial para obtener resultados precisos y confiables.

• Adquisición de datos:

- o Implementación offline de algoritmos.
- Base para trabajos futuros.

• Algoritmo de mapeo:

- o Capacidad de generar mapas en entornos frutícolas.
- o Complejidad del mundo real se ve reflejada en resultados.
- o Alto porcentaje de uso de CPU por cantidad de datos.

• Aporte a la agricultura de precisión:

 Permite a los agricultores comprender patrones y tomar decisiones estratégicas en la gestión de cultivos.

PROPUESTA 1 - ODOMETRÍA (IMU)

PROPUESTA 2 - POSICIONAMIENTO DE SENSORES

PROPUESTA 3 - ALGORITMO DE MAPEO RGB

REFERENCIAS

- Botta, A., Cavallone, P., Baglieri, L., Colucci, G., Tagliavini, L., & Quaglia, G. (2022). A Review of Robots, Perception, and Tasks in Precision Agriculture. En Applied Mechanics (Vol. 3, Número 3, pp. 830–854). MDPI. https://doi.org/10.3390/applmech3030049
- Chen, M., Tang, Y., Zou, X., Huang, Z., Zhou, H., & Chen, S. (2021). 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM. Computers and Electronics in Agriculture, 187. https://doi.org/10.1016/j.compag.2021.106237
- Gil, G., Casagrande, D. E., Cortés, L. P., & Verschae, R. (2023). Why the low adoption of robotics in the farms? Challenges for the establishment of commercial agricultural robots. Smart Agricultural Technology, 3. https://doi.org/10.1016/j.atech.2022.100069
- Han, B., Wei, J., Zhang, J., Meng, Y., Dong, Z., & Liu, H. (2023). GardenMap: Static point cloud mapping for Garden environment. Computers and Electronics in Agriculture, 204. https://doi.org/10.1016/j.compag.2022.107548
- Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34(3), 189–206. https://doi.org/10.1007/s10514-012-9321-0
- Informe de Cuentas Nacionales de Chile primer trimestre de 2023—Banco Central de Chile. (s. f.). Recuperado 23 de septiembre de 2023, de https://www.bcentral.cl/contenido/-/detalle/informe-de-cuentas-nacionales-de-chile-primer-trimestre-de-2023
- Kamegawa, T., Akiyama, T., Sakai, S., Fujii, K., Une, K., Ou, E., Matsumura, Y., Kishutani, T., Nose, E., Yoshizaki, Y., & Gofuku, A. (2020). Development of a separable search-and-rescue robot composed of a mobile robot and a snake robot. Advanced Robotics, 34(2), 132–139. https://doi.org/10.1080/01691864.2019.1691941
- Kang, H., & Chen, C. (2019). Visual Perception and Modelling in Unstructured Orchard for Apple Harvesting Robots. https://doi.org/10.1109/ACCESS.2020.2984556
- Kim, W. S., Lee, D. H., Kim, Y. J., Kim, T., Lee, W. S., & Choi, C. H. (2021). Stereo-vision-based crop height estimation for agricultural robots. Computers and Electronics in Agriculture, 181. https://doi.org/10.1016/j.compag.2020.105937
- Rahman, M., Liu, H., Cardenas, I. D., Starr, A., Hall, A., & Anderson, R. (2021). Towards an Autonomous RIRS: Design, Structure Investigation and Framework. 2021 7th International Conference on Mechatronics and Robotics Engineering, ICMRE 2021, 164–168. https://doi.org/10.1109/ICMRE51691.2021.9384846
- Rivera, G., Porras, R., Florencia, R., & Sánchez-Solís, J. P. (2023). LiDAR applications in precision agriculture for cultivating crops: A review of recent advances. En Computers and Electronics in Agriculture (Vol. 207). Elsevier B.V. https://doi.org/10.1016/j.compag.2023.107737
- Rovira-Más, F., Zhang, Q., & Reid, J. F. (2008). Stereo vision three-dimensional terrain maps for precision agriculture. Computers and Electronics in Agriculture, 60(2), 133–143. https://doi.org/10.1016/j.compag.2007.07.007
- Szrek, J., Jakubiak, J., & Zimroz, R. (2022). A Mobile Robot-Based System for Automatic Inspection of Belt Conveyors in Mining Industry. Energies, 15(1). https://doi.org/10.3390/en15010327
- Vieira, D., Orjuela, R., Spisser, M., & Basset, M. (2022). Positioning and Attitude determination for Precision Agriculture Robots based on IMU and Two RTK GPSs Sensor Fusion. IFAC-PapersOnLine, 55(32), 60–65. https://doi.org/10.1016/j.ifacol.2022.11.115
- Wang, B. H., Diaz-Ruiz, C., Banfi, J., & Campbell, M. (2021). Detecting and Mapping Trees in Unstructured Environments with a Stereo Camera and Pseudo-Lidar. Proceedings IEEE International Conference on Robotics and Automation, 2021-May, 14120–14126. https://doi.org/10.1109/ICRA48506.2021.9562056
- Wang, H., Zhang, C., Song, Y., Pang, B., & Zhang, G. (2020). Three-Dimensional Reconstruction Based on Visual SLAM of Mobile Robot in Search and Rescue Disaster Scenarios. Robotica, 38(2), 350–373. https://doi.org/10.1017/S0263574719000675

ANEXOS

APLICACIONES Y USOS DE PLATAFORMAS ROBÓTICAS MÓVILES

MINERÍA Y RESCATE

- Uso de robots móviles en inspección de cintas transportadoras en minas subterráneas (Szerk et al., 2022).
- Combinación de robots
 móviles y serpientes en tareas
 de búsqueda y rescate
 (Kamegawa et al., 2020).
- Propuesta de plataforma móvil para reconstrucción tridimensional (Wang et al., 2020).

MANTENIMIENTO FERROVIARIO

- Robots móviles benefician la automatización en ferrocarriles.
- Propuesta de Sistema
 Autónomo de Inspección y
 Reparación Robótica (RIRS)
 (Rahman et al., 2021).

AGRICULTRA DE PRECISIÓN

- Utilización de UGV robóticos en tareas agrícolas diversas (Botta et al., 2022).
- Aplicación en monitoreo y sensado remoto en agricultura.
- Ejemplos notables como
 Husky, BoniRob, Robotanist y
 Thorvald (Gil et al., 2023).
- Contribución a la optimización en la agricultura de precisión.

ESTADO DEL ARTE - MAPEO DEL ENTORNO

Recolección de frutas con robots, utilizando aprendizaje profundo y "OctoMap" para la percepción visual y modelado de frutas en huertos no estructurados (**Kang y Chen, 2019**).

Estrategia de detección y mapeo de árboles en entornos forestales con cámaras estéreo. Utilizaron detector de objetos en 3D para identificar árboles (Wang et al., 2021).

Enfoque en percepción 3D y cartografía global en huertos no estructurados utilizando visión estéreo "eye-in-hand" y SLAM (**Chen et al., 2021**).

- Propuesta del algoritmo "GardenMap" para mapear nubes de puntos estáticos en jardines, mejorando la localización y navegación de robots en entornos de jardines (**Han et al., 2023**).
- Investigación sobre mapas semánticos en agricultura de precisión. Propusieron un método para la creación de mapas semánticos 3D en huertos de cítricos en tiempo real (Xiong et al., 2023)

CALIBRACIÓN Y CONFIGURACIÓN CALIBRACIÓN DE CÁMARA

• Parámetros de calibración:

- Coeficientes de distorsión: Incluye k1, k2, t1, t2 y k3, utilizados para corregir distorsiones en la imagen.
- Matriz de rectificación: Se utiliza en cámaras estéreo para alinear el sistema de coordenadas de la cámara con el plano de imagen estéreo ideal (cámaras estéreo).

Matriz de proyección/cámara: Esencial en cámaras estéreo para proyectar puntos 3D en coordenadas de píxeles 2D.

$$K = \begin{bmatrix} fx & 0 & cx \\ 0 & fy & cy \\ 0 & 0 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} fx & 0 & cx \\ 0 & fy & cy \\ 0 & 0 & 1 \end{bmatrix} \qquad P = \begin{bmatrix} fx' & 0 & cx' & Tx \\ 0 & fy' & cy' & Ty \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

CALIBRACIÓN Y CONFIGURACIÓN **ODOMETRÍA**

CALIBRACIÓN Y CONFIGURACIÓN ODOMETRÍA

Coordenada X / Latitud

CALIBRACIÓN Y CONFIGURACIÓN CONFIGURACIÓN "MANUAL"

Sensor	Traslación (x y z) [m]			Rotación (roll pitch yaw) [°]		
Antena	-0.05579	0.35807	0.21	0	0	0
Swiftnav Antena	-0.02	-0.425	0.29816	0	0	0
Duro RTK	-0.0525	-0.326075	-0.06471	0	0	0
Blackfly S	-0.02	-0.008	0.31809	0	0	0
ZED 2	-0.01	-0.188	0.339	0	0	0
VLP-16	-0.02	O	0.40451	0	0	0
FLIR A400	0.0038	O	0.21328	0	0	90
IMU UM7	0.227	0	-0.02	0	0	-90

CALIBRACIÓN Y CONFIGURACIÓN CALIBRACIÓN DE CÁMARA

Matriz de cámara intrínseca

$$K = \begin{bmatrix} 1085.131537 & 0.000000 & 1149.659319 \\ 0.000000 & 1081.897829 & 642.082505 \\ 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

Coeficientes de distorsión
$$D = [-0.006433 \quad 0.018901 \quad -0.001205 \quad 0.000886 \quad 0.000000]$$

Matriz de rectificación
$$R = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 1.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.0000000 \end{bmatrix}$$

Matriz de proyección/cámara
$$P = \begin{bmatrix} 1112.624146 & 0.000000 & 1148.601028 & 0.000000 \\ 0.000000 & 1108.668091 & 638.554862 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \end{bmatrix}$$

ADQUISICIÓN DE DATOS

Lugar / Fecha	Nombre del archivo	Tamaño	Descripción	
Fundo la Torre, Rengo-Chile / 13-09-2023	toma1.bag	50,2 GB	Ida y vuelta por hilera 66 desde el este.	
	toma_camara.bag	64,1 GB	lda y vuelta por hilera 66 desde el este.	
	giro.bag	17,3 GB	Giro sobre propio eje de Warthog.	
Fundo la Torre, Rengo-Chile / 24-11-2023	toma1.bag	91,0 GB	Ida y vuelta por hilera 66 desde el este. 0.32 m/s a 1,3 m de distancia.	
	toma2.bag	121,0 GB	Recorrido por hileras 66 a 73. 0.5 m/s aproximadamente a 1,5 m de distancia.	

ALGORITMO DE MAPEO "OCTOMAP"

MAPAS GENERADOS CON ODOMETRIA ERRÓNEA

SIMULACIÓN MAPEO SOBRE UNA HILERA - CÁMARA ESTÉREO

SIMULACIÓN MAPEO SOBRE UNA HILERA - SENSOR LIDAR

DATOS SALIDA A TERRENO / 24-11-2023 MAPEO SOBRE UNA HILERA - CÁMARA ESTÉREO

DATOS SALIDA A TERRENO / 24-11-2023 MAPEO SOBRE UNA HILERA - SENSOR LIDAR

VIDEO DE MAPA GENERADO

PRESENTACIÓN DE TRABAJO DE TÍTULO:

IMPLEMENTACIÓN Y ANÁLISIS DE HERRAMIENTA DE MAPEO DE ENTORNOS FRUTÍCOLAS MEDIANTE SENSOR LIDAR Y CÁMARA ESTÉREO MONTADOS EN PLATAFORMA ROBÓTICA MÓVIL WARTHOG

Ignacio Andrés Vásquez Vásquez

Profesor guía: Rodrigo Verschae

Profesor co-guía: Robert Guamán

Comisión evaluadora: Luis Cossio, Alfonso Ehijo, Christopher Flores

