BIOLOGIA/BIOMEDICINA

BIOESTATÍSTICA

Prof^a. Letícia Raposo profleticiaraposo@gmail.com

OBJETIVO DO CURSO

Apresentar um conjunto de *métodos estatísticos* que permitam ao estudante *ler, compreender e interpretar* os trabalhos técnicos e científicos que se utilizam da Estatística, assim como ter uma noção das técnicas envolvidas na *coleta, apresentação, análise e interpretação de dados* tanto na área de planejamento, como na de pesquisa.

DESCRITIVA (DEDUTIVA)

PROBABILÍSTICA

INFERENCIAL (INDUTIVA)

O QUE É A ESTATÍSTICA?

A ESTATÍSTICA PODE SER
DEFINIDA COMO A
CIÊNCIA QUE TEM POR
OBJETIVO A COLETA,
ANÁLISE E
INTERPRETAÇÃO DE
DADOS QUALITATIVOS E
QUANTITATIVOS.

CONTEÚDO PROGRAMÁTICO

PARTE I – UMA INTRODUÇÃO AO PROCESSO DE PESQUISA

Pesquisas e Dados

PARTE II – ESTATÍSTICA DESCRITIVA

- Estatística Descritiva Univariada
- Estatística Descritiva Bivariada

PARTE III – ESTATÍSTICA PROBABILÍSTICA

- Introdução à Probabilidade
- Variáveis Aleatórias e Distribuições de Probabilidade

CONTEÚDO PROGRAMÁTICO

PARTE IV – ESTATÍSTICA INFERENCIAL

- Amostragem
- Testes de Hipóteses
- Testes Não Paramétricos

PARTE VI – MODELOS LINEARES GENERALIZADOS

- Modelos de Regressão Simples e Múltipla
- Modelos de Regressão Logística

DANCEY, Christine P.; REIDY, John G.; ROWE, Richard. Estatística Sem Matemática para as Ciências da Saúde. Penso Editora, 2017.

MAGNUSSON, Willian E. Estatística [sem] matemática: a ligação entre as questões e a análise. Planta, 2003.

BARBETTA, Pedro Alberto. Estatística aplicada às ciências sociais. Ed. UFSC, 2008.

MATERIAL DIDÁTICO

POR QUE ESTUDAR ESTATÍSTICA?

ANÁLISE CRÍTICA

Aprender as ferramentas necessárias para ser capaz de avaliar criticamente a pesquisa de outros profissionais da sua área.

INDEPENDÊNCIA

Adquirir um conhecimento de trabalho sobre como conduzir sua própria pesquisa.

ANÁLISE ESTATÍSTICA

Efetuar análises estatísticas com os dados obtidos.

NINGUÉM COM GRIPE OU RESFRIADO NO INVERNO

EXEMPLO

YOGA TEM EFEITO PROTETOR CONTRA VÍRUS COMUNS???

POR QUE PESQUISAMOS?

DESEJAMOS RESPONDER QUESTÕES INTERESSANTES SOBRE O MUNDO

ETAPAS DE UMA PESQUISA

LEIA A LITERATURA RELEVANTE

GERE UMA IDEIA DE PESQUISA

GERE UMA HIPÓTESE DE PESQUISA

ETAPAS DE UMA PESQUISA

FAÇA O R
DELINEAMENTO
DO ESTUDO

REALIZE O ESTUDO ANALISE OS DADOS DECIDA SOBRE A VERACIDADE DA RESPOSTA

LEIA A LITERATURA RELEVANTE

REVISÃO DE LITERATURA

Para se iniciar qualquer processo de pesquisa, deve-se ter bem definido o problema a ser pesquisado. Isto normalmente envolve uma boa revisão da literatura sobre o tema em questão.

AUXÍLIO DA LITERATURA

- Ver como outros trabalhos tratam questões similares;
- Ter ideias a partir de trabalhos futuros;
- Saber se estão ou não na direção de um beco sem saída ou se outros já responderam sua questão.

FORMULAÇÃO DOS OBJETIVOS

PRECISAM SER CLAROS

As demais etapas da pesquisa tomam como base esses objetivos.

OBJETIVO GERAL

Fala o porquê de ter feito o trabalho.

OBJETIVOS ESPECÍFICOS

Devem fornecer uma primeira indicação das características que precisamos observar ou medir nos indivíduos a serem pesquisados.

HIPÓTESE

IDEIA

Existe uma ligação entre a personalidade e a capacidade de parar de fumar?

Participantes mais extrovertidos deixarão de fumar mais facilmente do que aqueles pouco extrovertidos?

- São características de uma população (amostra) em estudo, possível de ser medida, contada ou categorizada.
- Assumem diferentes valores, dependendo da pessoa, situação ou tempo.
- Um e apenas um resultado por respondente.
- Queremos descobrir como e por que elas podem variar, se elas se relacionam com outras variáveis.

VARIÁVEIS

CONCEITOS QUE FORAM MENSURADOS DE ALGUMA FORMA

NÃO MÉTRICA (QUALITATIVA)

- Representam
 características de um
 indivíduo, objeto ou
 elemento que não podem
 ser medidas ou
 quantificadas.
- As respostas são dadas em categorias.

MÉTRICA (QUANTITATIVA)

- Representam características de um indivíduo, objeto ou elemento resultantes de uma contagem (conjunto finito de valores) ou de uma mensuração (conjunto infinito de valores).
- São, em geral, mais informativas do que as qualitativas.

ESCALA DE MENSURAÇÃO

VARIÁVEL QUALITATIVA

- Nominal
- Ordinal

VARIÁVEL QUANTITATIVA

- Intervalar
- Razão

ESCALA NOMINAL

CLASSIFICA AS UNIDADES EM *CLASSES OU CATEGORIAS* EM RELAÇÃO À CARACTERÍSTICA

REPRESENTADA, *NÃO* ESTABELECENDO

QUALQUER RELAÇÃO DE GRANDEZA OU DE *ORDEM*.

Exemplos: sexo, cor dos olhos, fumante/não fumante, doente/sadio.

ESCALA ORDINAL

EXISTE ALGUM TIPO DE *ORDEM* PARA AS DIFERENTES CATEGORIAS NA ESCALA, MAS *NÃO* HÁ *INTERVALOS IGUAIS* ENTRE PONTOS ADJACENTES NA ESCALA.

Exemplos: avaliação do atendimento, grau de escolaridade, classe social, faixa etária.

ESCALA INTERVALAR

ORDENA AS UNIDADES QUANTO A
CARACTERÍSTICA MENSURADA E A DIFERENÇA
ENTRE PONTOS ADJACENTES É IGUAL, MAS NÃO
TEM UM PONTO ZERO (ORIGEM).

Exemplos: temperatura, altitude, QI, ano censitário.

ESCALA DE RAZÃO

ORDENA AS UNIDADES QUANTO A
CARACTERÍSTICA MENSURADA, POSSUI UMA
UNIDADE DE MEDIDA CONSTANTE, A ORIGEM É
ÚNICA E O VALOR ZERO EXPRESSA A AUSÊNCIA
DE QUANTIDADE, E É POSSÍVEL CALCULAR A
RAZÃO.

Exemplo: nº de sintomas de uma doença, renda, idade, distância percorrida.

NÍVEIS DE MEDIDA

NOMINAL

S/ ordem

ORDINAL

- C/ ordem
- S/ intervalos iguais

INTERVALAR

- C/ ordem
- C/ intervalos iguais
- S/ origem

- RAZÃO
- C/ ordem
- C/ intervalos iguais
- C/ origem

NÚMERO DE CATEGORIAS E ESCALAS DE PRECISÃO

VARIÁVEL QUALITATIVA

- Dicotômica ou Binária
- Policotômica

VARIÁVEL QUANTITATIVA

- Discreta
- Contínua

TENTE CATEGORIZAR AS SEGUINTES VARIÁVEIS QUANTO AOS SEUS NÍVEIS DE MEDIDA

- TIPOS DE TAREFAS REALIZADAS POR FUNCIONÁRIOS EM UMA LOJA;
- 2. AVALIAÇÕES PARA A SATISFAÇÃO DOS PACIENTES ATENDIDOS NO HOSPITAL;
- 3. NÚMERO DE COBRAS COLETADAS EM REGIÕES PRÉ-DEFINIDAS;
- 4. ESPAÇO DE TEMPO PARA RECOBRAR A CONSCIÊNCIA APÓS UMA ANESTESIA GERAL;
- 5. NÚMERO DE AULAS DO SEMESTRE;
- 6. TEMPERATURA DE CAMUNDONGOS APÓS RECEBER 5 ML DE MEDICAMENTO;
- 7. CLASSIFICAÇÃO ÉTNICA DE PACIENTES.

TESTES DE HIPÓTESES

AS ANÁLISES ESTATÍSTICAS NOS AJUDAM A DECIDIR SE TEMOS OU NÃO SUPORTE PARA A NOSSA HIPÓTESE.

O ALTO CONSUMO DE SAL ESTÁ LIGADO À PRESSÃO ALTA?

- Pessoas que apresentam um alto consumo de sal terão a pressão sanguínea mais alta do que aquelas que consomem menos -> diferença entre grupo de pessoas.
- Achamos que existe um relacionamento entre o consumo de sal e a pressão sanguínea -> mensurar os relacionamentos entre as variáveis.

DELINEAMENTOS DE PESQUISA

"Um delineamento falho levará a um resultado falso, independente do método de análise que se empregue." Fisher (1971)

TIPOS DE DELINEAMENTOS

PESQUISA DE LEVANTAMENTO (SURVEY) PROCURANDO POR DIFERENÇAS

DELINEAMENTOS CORRELACIONAIS CAUSAÇÃO

PESQUISA DE LEVANTAMENTO (SURVEY)

- Observam-se diversas características dos elementos de uma certa população ou amostra, utilizando-se questionários ou entrevistas.
- A observação é feita naturalmente e sem interferência do pesquisador.

PROCURANDO POR DIFERENÇAS

DELINEAMENTO ENTRE GRUPOS

- Interesse nas diferenças entre as médias de grupos distintos.
- Ex: Diferença do tempo de recuperação entre um grupo que experimenta um novo tratamento e outro que segue um tratamento padrão.

DELINEAMENTO DENTRE GRUPOS

- Comparar o mesmo grupo de pacientes sob condições distintas.
- Avaliar antes e depois.

DELINEAMENTOS CORRELACIONAIS

COMO UMA VARIÁVEL PODE SE ALTERAR À MEDIDA QUE OUTRA MUDA?

CAUSAÇÃO

SABER O QUE CAUSA A MUDANÇA DE UMA VARIÁVEL DE INTERESSE.

- O que causou o aumento de casos de asma na última década?
- Um aumento na dose de uma droga causa a diminuição nos sintomas de uma doença em particular?

SE ESTIVERMOS INTERESSADOS NESSES RELACIONAMENTOS CAUSAIS, EXECUTAREMOS ESTUDOS EXPERIMENTAIS – PODEREMOS VER QUAL EFEITO CAUSAL UMA MUDANÇA NA VARIÁVEL INDEPENDENTE TEM NA VARIÁVEL DEPENDENTE.

TIPOS DE ESTUDOS EPIDEMIOLÓGICOS

ECOLÓGICOS

- As unidades de análise são <u>grupos de pessoas</u> ao invés de indivíduos.
- Podem ser feitos comparando-se populações em diferentes lugares ao mesmo tempo ou comparando-se a mesma população em diferentes momentos.

TRANSVERSAIS (SECCCIONAIS)

- Medem a <u>prevalência da</u> <u>doença</u> e, por essa razão, são frequentemente chamados de estudos de prevalência.
- As <u>medidas</u> de exposição e efeito (doença) são realizadas ao <u>mesmo tempo</u>.

CASOS E CONTROLE

Casos

(ex: pacientes com câncer)

Histórico

Compara o histórico Tira conclusões

Controle (ex: não pacientes com câncer)

- Inclui <u>pessoas com a doença</u> (ou outro desfecho) e um <u>grupo</u> <u>controle</u> (não afetados pela doença ou desfecho).
- Os investigadores coletam dados sobre a <u>ocorrência da</u> <u>doença em um determinado</u> <u>momento no tempo</u> e sobre a <u>ocorrência de exposições em</u> <u>algum momento no passado</u>.
- São <u>longitudinais e</u> <u>retrospectivos</u> (busca, no passado, uma determinada causa (exposição) para a doença ocorrida).

COORTE

2000 2001 2002 2003 2004 2005 2006 2007

- Iniciam com um grupo de pessoas livres da doença, classificados em subgrupos, de acordo com a exposição a uma causa potencial da doença ou desfecho sob investigação.
- As variáveis de interesse são especificadas e medidas, e a <u>coorte inteira acompanhada</u> com o objetivo de ver se o surgimento de novos casos de doença (ou outro desfecho) difere entre os grupos, conforme a presença ou não de exposição.

A COLETA DOS DADOS

DADOS SECUNDÁRIOS

- Disponíveis em alguma publicação ou arquivo.
- Vantagem: reduz custo da pesquisa.

DADOS PRIMÁRIOS

- Informações que precisam ser levantadas, observando diretamente cada participante.
- Necessidade da construção de um instrumento de coleta – questionário.

ELABORAÇÃO DE UM QUESTIONÁRIO

DEVE FACILITAR A ANÁLISE DOS DADOS, SER COMPLETO, PORÉM NÃO DEVE SER LONGO.

ELABORAÇÃO DE UM QUESTIONÁRIO

Separar as características (variáveis) a serem levantadas. Tempo sem fumar, nível de extroversão.

Fazer uma revisão bibliográfica para verificar formas de mensurar as variáveis em estudo.

Estabelecer a forma de mensuração das variáveis a serem levantadas.

Tempo em dias? meses?, categorias - mais de 6 meses, menos de 6 meses?

Nível de extroversão: muito, mais ou menos, pouco?

ELABORAÇÃO DE UM QUESTIONÁRIO

Elaborar uma ou mais perguntas para cada variável. Quando começou a fumar? Quando parou? Teve recaída? Quantas vezes?

Verificar se a pergunta está suficientemente clara.

Verificar se a forma da pergunta não está induzindo alguma resposta.

Verificar se a resposta da pergunta não é óbvia

PRÉ- ESTAGEM

VERIFICAR SE UM
INSTRUMENTO ESTÁ BOM
ANTES DE INICIAR A
COLETA DOS DADOS.

- Aplica-se o questionário em alguns indivíduos com características similares aos indivíduos da população em estudo.
- Permite detectar algumas falhas:
 - Ambiguidade de alguma pergunta;
 - Resposta que não havia sido prevista;
 - Não variabilidade de respostas em alguma pergunta...
- Pode ser usado para estimar o tempo de aplicação do questionário.

MONTANDO GRUPOS

1. Formar grupos de <u>4 a 6 alunos</u> e pensar em algum problema que vocês gostariam de analisar.

Ex 1: avaliar a situação epidemiológica da malária na região amazônica brasileira nos anos 2000 e 2019;

Ex 2: avaliar o nível de satisfação dos usuários do bandejão da Unirio;

Ex 3: avaliar os casos de câncer de mama na população da cidade do Rio de Janeiro.

2. Verificar, inicialmente, a disponibilidade de obter dados secundários.

REFERÊNCIAS BIBLIOGRÁFICAS

- BARBETTA, Pedro Alberto. Estatística aplicada às ciências sociais. Ed. UFSC, 2008.
- DANCEY, Christine P.; REIDY, John G.; ROWE, Richard. Estatística Sem Matemática para as Ciências da Saúde. Penso Editora, 2017.
- MAGNUSSON, Willian E. Estatística [sem] matemática: a ligação entre as questões e a análise. Planta, 2003.

