Chapitre 5 : Fonctions réelles

Intervalles 1

1.1 Segments

Définition 1.1. Soit $a \leq b \in \mathbb{R}$

On définit le segment $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$

Proposition 1.2. Soit $a \leq b \in \mathbb{R}$

On a $[a, b] = \{(1 - \lambda)a + \lambda b \mid \lambda \in [0, 1]\}$

1.2 Intervalles

Définition 1.3. Une partie $I \subseteq \mathbb{R}$ est un intervalle si $\forall x, y \in I, x \leq y \implies [x, y] \subseteq I$

2 Généralités sur les fonctions réelles

Définition 2.1. Soit $D \subseteq \mathbb{R}$, $f,g:D \to \mathbb{R}$ et $\lambda \in \mathbb{R}$

On définit :

- definit:

 * Le produit $\lambda f: \begin{cases} D \to \mathbb{R} \\ x \mapsto \lambda f(x) \end{cases}$ * La somme $f + g: \begin{cases} D \to \mathbb{R} \\ x \mapsto f(x) + g(x) \end{cases}$ * Le produit $fg: \begin{cases} D \to \mathbb{R} \\ x \mapsto f(x)g(x) \end{cases}$

2.1 Symétrie

Définition 2.2. Soit T > 0

- * On appelle domaine *T*-périodique une partie $D \subseteq \mathbb{R}$ telle que $\forall x \in D, (x+T \in D \text{ et } x-T \in D)$
- * Soit *D* un domaine *T*-périodique.

Une fonction $f: D \to \mathbb{R}$ est dite *T*-périodique si $\forall x \in D$, f(x+T) = f(x)

Proposition 2.3. Soit T > 0

- * Une partie $D \subseteq \mathbb{R}$ est T-périodique si et seulement si $\forall x_0 \in D, \forall x_1 \in \mathbb{R}, x_0 \equiv x_1 \pmod{T} \implies x_1 \in D$
- * Soit D un domaine T-périodique et $f: D \to \mathbb{R}$

Alors f est T-périodique si et seulement si $\forall x_0, x_1 \in D, x_0 \equiv x_1 \pmod{T} \implies f(x_0) = f(x_1)$

Proposition 2.4. Soit T > 0

- * La somme et le produit de deux fonctions *T*-périodiques est *T*-périodique.
- * Si f est T-périodique, toute composée $g \circ f$ est également T-périodique.

Définition 2.5.

- * Une partie $D \subseteq \mathbb{R}$ est dite symétrique (par rapport à 0) si $\forall x \in D, -x \in D$
- * Soit $D \subseteq \mathbb{R}$ symétrique et $f: D \to \mathbb{R}$

On dit que f est :

- paire si $\forall x \in D$, f(-x) = f(x)
- impaire si $\forall x \in D$, f(-x) = -f(x)

Proposition 2.6.

- * La somme de deux fonctions $\begin{cases}
 paires & \text{est } \\
 impaires
 \end{cases}$ * Le produit de deux fonctions $\begin{cases}
 paires & \text{est } \\
 impaires
 \end{cases}$ * est paire.
- * Le produit d'une fonction paire et d'une impaire est impaire.
- * Une composée $g \circ f$ où f est paire est paire.
- * Si les deux fonctions sont paires ou impaires, $g \circ f$ a la parité suivante :

$f \setminus g$	p	i
p	p	р
i	р	i

2.2 Monotonie

Définition 2.7. Soit $D \subseteq \mathbb{R}$ et $f : D \to \mathbb{R}$

On dit que:

- * f est croissante si $\forall x, y \in D, x \leq y \implies f(x) \leq f(y)$
- * f est strictement croissante si $\forall x, y \in D, x < y \implies f(x) < f(y)$
- * f est décroissante si $\forall x, y \in D, x \le y \implies f(x) \ge f(y)$
- * f est strictement décroissante si $\forall x, y \in D, x < y \implies f(x) > f(y)$
- * f est (strictement) monotone si elle est (strictement) croissante ou (strictement) décroissante.

Proposition 2.8.

- * La somme de deux fonctions { croissantes décroissantes } est { croissante décroissante }

 * La somme d'une fonction { croissante décroissante } est d'une fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante décroissante }

 * La composée de deux fonction { croissante decroissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux fonction { croissante }

 * La composée de deux f
- * La composée de deux fonctions (strictement) monotones est (strictement) monotone, et la monotonie de $g \circ f$ est donnée par :

$$\begin{array}{c|cccc}
f \setminus g & \nearrow & \searrow \\
\hline
\nearrow & \nearrow & \searrow \\
\hline
\searrow & \searrow & \nearrow
\end{array}$$

[Injectivité des fonctions strictement monotones] Soit $D \subseteq \mathbb{R}$ est $f: D \to \mathbb{R}$

- * Si f croît strictement, alors : $\forall x, y \in D, f(x) \leq f(y) \implies x \leq y$
- * Si f décroît strictement, alors : $\forall x, y \in D, f(x) \leq f(y) \implies x \geq y$
- * Dans les deux cas, f est injective.

Proposition 2.9. Soit $D, E \subseteq \mathbb{R}$ et $f: D \to E$

- * Si f est bijective et croissante, alors f est strictement croissante et $f^{-1}: E \to D$ aussi.
- * Si f est bijective et décroissante, alors f est strictement décroissante et $f^{-1}: E \to D$ aussi.

2.3 Bornes et extrema

Définition 2.10. Soit $D \subseteq \mathbb{R}$ et $f: D \to \mathbb{R}$

On dit que f:

- * Est majorée si $\exists M \in \mathbb{R} : \forall x \in D, f(x) \leq M$
- * Est minorée si $\exists m \in \mathbb{R} : \forall x \in D, f(x) \geq m$
- * Est bornée si elle est minorée est majorée.
- * Admet un maximum si $\exists c \in D : \forall x \in D, f(x) < f(c)$
- * Admet un minimum si $\exists d \in D : \forall x \in D, f(x) \geq f(d)$

Proposition 2.11. Soit $D \subseteq \mathbb{R}$ et $f: D \to \mathbb{R}$

Alors f est bornée si et seulement si $\exists c \in \mathbb{R}_+ : \forall x \in D, |f(x)| \leq c$

Proposition 2.12.

- * La somme de deux fonctions $\left\{ egin{array}{ll} \mbox{minorées} & \mbox{est} \mbox{minorée} \mbox{majorée} \end{array} \right.$
- * La somme et le produit de deux fonctions bornées sont bornés.

$$* \ \text{Si} \ g \ \text{est} \ \begin{cases} \ \text{minor\'ee} \\ \ \text{major\'ee} \\ \ \text{born\'ee} \end{cases} \ \text{alors toute compos\'ee de la forme} \ g \circ f \ \text{est} \ \begin{cases} \ \text{minor\'ee} \\ \ \text{major\'ee} \\ \ \text{born\'ee} \end{cases}$$

2.4 Transformations d'un graphe

Étant donné $f: D \to \mathbb{R}$

* Pour $a \in \mathbb{R}$, le graphe de $f + a : \begin{cases} D \to \mathbb{R} \\ x \mapsto f(x) + a \end{cases}$

est l'image de gr(f) par la translation de vecteur $\begin{pmatrix} 0 \\ a \end{pmatrix}$

* Pour $a \in \mathbb{R}$, le graphe de $f(\cdot + a) : \begin{cases} D - a \to \mathbb{R} \\ x \mapsto f(x + a) \end{cases}$

est l'image de gr(f) par la translation de vecteur $\begin{pmatrix} -a \\ 0 \end{pmatrix}$

* Pour $a \in \mathbb{R}$, le graphe de $f(a - \cdot)$: $\begin{cases} D' \to \mathbb{R} & \text{où } D' = \{x \in \mathbb{R} \mid a - x \in D\} \\ x \mapsto f(a - x) & \text{où } D' = \frac{a}{2} \end{cases}$ est l'image de gr(f) par la réflexion d'axe, la droite d'équation $x = \frac{a}{2}$

* Pour $\lambda \neq 0$, le graphe de $\lambda f : \begin{cases} D \to \mathbb{R} \\ x \mapsto \lambda f(x) \end{cases}$

est l'image de $\operatorname{gr}(f)$ par $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ \lambda y \end{pmatrix}$ * Pour $\lambda \neq 0$, le graphe de $f(\lambda \cdot)$: $\begin{cases} D' \to \mathbb{R} \\ x \mapsto f(\lambda x) \end{cases}$ où $D' = \{x \in \mathbb{R} \mid \lambda x \in D\}$ est l'image de $\operatorname{gr}(f)$ par $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{x}{\lambda} \\ y \end{pmatrix}$

2.5 Limites

À partir de maintenant, I est un intervalle non trivial et x_0 est un élément ou une borne de I

Définition 2.13. Soit $l \in \mathbb{R}$

On dit que f <u>converge (ou tend)</u> vers l en x_0 et on note $f(x) \xrightarrow[x \to x_0]{} l$ si $\forall \varepsilon > 0$, $\exists \delta > 0 : \forall x \in I$, $|x - x_0| \le \delta \implies |f(x) - l| \le \varepsilon$

2.6 Continuité

Ici, I est un intervalle $x_0 \in I$ et $f: I \to \mathbb{R}$

Définition 2.14.

- * La fonction f est continue en x_0 si $f(x) \xrightarrow[x \to x_0]{} f(x_0)$
- * La fonction f est <u>continue</u> si elle est continue en tout point de I On note $C^0(I) = C^0(I; \mathbb{R})$ l'ensemble des fonctions $I \to \mathbb{R}$ continues.

Théorème 2.15. L'ensemble des fonctions continues est stable par somme, par produit, par quotient (si le dénominateur ne s'annule pas), par composition...

2.7 Dérivabilité

Ici, *I* est un intervalle, $x_0 \in I$, $f : I \to \mathbb{R}$

Définition 2.16.

* On appelle le taux d'accroissement de f en x_0 la fonction

$$\tau_{[f,x_0]}: \begin{cases} I \setminus \{x_0\} \to \mathbb{R} \\ x \mapsto \frac{f(x) - f(x_0)}{x - x_0} \end{cases}$$

- * On dit que f est <u>dérivable en x_0 </u> si $\tau_{[f,x_0]}$ admet une limite finie en x_0
- * Si c'est le cas, on note

$$f'(x_0) = \lim_{x \to x_0} \tau_{[f, x_0]}(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

le nombre dérivé de f en x_0

- * On dit que f est dérivable si elle est dérivable en tout point de I
- * Si c'est le cas, on note

$$f': \begin{cases} I \to \mathbb{R} \\ x \mapsto f'(x) \end{cases}$$

Définition 2.17. Si $f: I \to \mathbb{R}$ est dérivable en x_0 , la tangente à gr(f) en x_0 est la droite passant par $\begin{pmatrix} x_0 \\ f(x_0) \end{pmatrix}$ et de pente $f'(x_0)$, càd la droite d'équation $y = f'(x_0)(x - x_0) + f(x_0)$

Proposition 2.18. Si f est dérivable en x_0 , elle est continue en x_0 On note $D^1(I) = D^1(I; \mathbb{R})$ l'ensemble des fonctions dérivables sur I D'après la proposition précédente, $D^1(I) \subseteq C^0(I)$

Théorème 2.19. L'ensemble des fonctions dérivables est stable par somme, produit, quotient (si le dénominateur ne s'annule pas).

4

Théorème 2.20. Soit I et J deux intervalles de \mathbb{R} et $f:I\to J$ et $g:J\to\mathbb{R}$ deux fonctions dérivables. Alors $g\circ f$ est dérivable et $(g\circ f)'=(g'\circ f)\times f'$

2.8 Tableau de variations

Dans toute la section, $I \subseteq \mathbb{R}$ est un intervalle non trivial et $f: I \to \mathbb{R}$

Théorème 2.21. Supposons $f: I \to \mathbb{R}$ dérivable.

- * La fonction f est constante ssi $\forall x \in I$, f'(x) = 0
- * La fonction f est croissante ssi $\forall x \in I, f'(x) \ge 0$
- * Si f' est > 0 sur I, à l'exception éventuelle d'un nombre fini de points, alors f est strictement croissante.

Théorème 2.22 (des valeurs intermédiaires). Soit $a \le b$ deux éléments de I

Notons J le segment joignant f(a) et f(b) (donc [f(a), f(b)] ou [f(b), f(a)] suivant le cas) Supposons f continue.

Alors $\forall y \in J$, $\exists x \in [a, b] : f(x) = y$

Théorème 2.23 (de bijection monotone, version segments). Soit $a \le b$ deux éléments de I

- * On suppose f dérivable et $\forall x \in]a, b[, f'(x) > 0$ Alors f induit une bijection strictement croissante $[a, b] \rightarrow [f(a), f(b)]$
- * On suppose f dérivable et $\forall x \in]a, b[, f'(x) < 0$ Alors f induit une bijection strictement décroissante $[a, b] \rightarrow [f(a), f(b)]$

Théorème 2.24. Soit $a \le b$ deux éléments de I.

On suppose $f: I \to \mathbb{R}$ continue et strictement monotone sur [a, b]

Alors f induit une bijection $[a,b] o \begin{cases} [f(a),f(b)] \\ [f(b),f(a)] \end{cases}$ suivant les cas.

Théorème 2.25 (de la bijection monotone, version intervalles ouverts).

Soit a < b deux réels et $f :]a,b[\to \mathbb{R}$ une fonction dérivable, de dérivée > 0

Alors f admet des limites en a et b et induit une bijection strictement croissante $]a,b[\rightarrow]\lim_a f,\lim_b f[$

2.9 Fonctions réciproques

Ici, I et J sont deux intervalles de \mathbb{R} et $f: I \to J$ est une bijection.

Graphiquement, gr(f) et $gr(f^{-1})$ sont symétriques par rapport à la droite d'équation y = x

Théorème 2.26 (Continuité de la réciproque).

Si $f: I \to J$ est bijective et continue, alors $f^{-1}: J \to I$ est continue.

Théorème 2.27 (Critère de dérivabilité des réciproques).

Supposons $f: I \to J$ bijective et dérivable. Soit $x_0 \in I$ et $y_0 = f(x_0) \in J$

Alors f^{-1} est dérivable en y_0 si et seulement si $f'(x_0) \neq 0$

Si c'est la cas,

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

2.10 Étude d'une fonction : le plan

Étant donné une fonction, on peut l'étudier en six (ou sept) étapes.

(0. Si sule une expression est donnée, on détermine un domaine de définition.

On a alors une fonction $f: D \to \mathbb{R}$)

- 1. On examine les propriétés de symétrie de la fonction. Si on peut, on l'étudie sur un domaine plus petit.
- 2. On examine la régularité de la fonction : continuité, dérivabilité?
- 3. Là où c'est possible, on calcule la dérivée (en cherchant la forme la plus "multiplicative" possible)
- 4. Tableau de variations.
- 5. Limites.
- 6. Esquisse de graphe.

Proposition 2.28. On a $\forall x \in]-1, +\infty[$, $\ln(1+x) \le x$

3 Fonctions usuelles

3.1 Exponentielle

On a vu que $\forall z \in \mathbb{C}$, $\exp(\overline{z}) = \overline{\exp(z)}$. En particulier, $\forall x \in \mathbb{R}$, $\exp(x) \in \mathbb{R}$

Définition 3.1. On appelle exponentielle (réelle) la fonction $\exp : \mathbb{R} \to \mathbb{R}$ induite par l'exponentielle complexe.

6

Proposition 3.2. L'exponentielle $\mathbb{R} \to \mathbb{R}$

- * Est strictement positive : $\forall x \in \mathbb{R}$, $\exp(x) > 0$
- * Est dérivable et exp' = exp
- * Admet des limites $\begin{cases} \exp(x) \xrightarrow[x \to -\infty]{} 0 \\ \exp(x) \xrightarrow[x \to +\infty]{} +\infty \end{cases}$
- * Vérifie la propriété fondamentale : $\forall x, y \in \mathbb{R}$: $\exp(x + y) = \exp(x) \exp(y)$

Lemme 3.3. On a $\forall x \in \mathbb{R}$, $\exp(x) \ge x + 1$

Corollaire 3.4. exp induit une bijection $\mathbb{R} \to \mathbb{R}_+^*$

3.2 Logarithme

Définition 3.5. On note $\ln : \mathbb{R}_+^* \to \mathbb{R}$ la réciproque de exp

Proposition 3.6.

- * In est une bijection strictement croissante $\mathbb{R}_+^* \to \mathbb{R}$
- * In est dérivable et $\forall y \in \mathbb{R}_+^*$, $\ln'(y) = \frac{1}{y}$
- * On a $\ln(y) \xrightarrow[y\to 0]{} -\infty$ et $\ln(y) \xrightarrow[y\to +\infty]{} +\infty$
- * On a $\forall y_1, y_2 \in \mathbb{R}_+^*$, $\ln(y_1y_2) = \ln(y_1) + \ln(y_2)$

Proposition 3.7. $\forall x \in]-1, +\infty[$, $\ln(1+x) \le x$

3.3 Puissances

Définition 3.8. Soit $r \in \mathbb{R}_+^*$ et $a \in \mathbb{R}$

On définit $r^a = \exp(a \ln(r))$

Proposition 3.9. Soit $r, s \in \mathbb{R}_+^*$ et $a, b \in \mathbb{R}$

On a:

$$* r^{a+b} = r^a r^b$$

$$* (r^a)^b = r^{a^b}$$

$$* (rs)^q = r^q s^q$$

Soit $r \in \mathbb{R}_+^*$: L'exponentielle de base $r : x \mapsto r^x$

Elle est:

- * Strictement décroissante si r < 1
- * Constante (égale à 1) si r = 1
- * Strictement croissante si r > 1

La fonction "puissance *a*-ième" : $x \mapsto x^a$ est :

- * Strictement décroissante si a < 0
- * Constante (égale à 1) si a = 0
- * Strictement croissante si a > 0

Définition 3.10. Soit $r \in [0, 1] \cup [1, +\infty[$

On définit le logarithme en base $r:\log_r:\mathbb{R}_+^*\to\mathbb{R}$ comme la réciproque de $\begin{cases}\mathbb{R}\to\mathbb{R}_+^*\\x\mapsto r^x\end{cases}$

Proposition 3.11. Soit $r \in]0,1[\cup]1,+\infty[$ et $x \in \mathbb{R}_+^*$

On a

$$\log_r(x) = \frac{\ln(x)}{\ln(r)}$$

3.4 Croissances comparées

Théorème 3.12. La fonction $x \mapsto x$ est négligeable devant exp au voisinage de $+\infty$:

$$\forall \varepsilon, A > 0, \quad \frac{x^A}{\exp(x)^{\varepsilon}} \xrightarrow[x \to +\infty]{} 0$$

$$\forall \varepsilon, A > 0, \quad \frac{\ln(x)^A}{x^{\varepsilon}} \xrightarrow[x \to +\infty]{} 0$$

$$\forall \varepsilon, A > 0, \quad \frac{\left|\ln(x)\right|^A}{\left(\frac{1}{x}\right)^{\varepsilon}} = x^{\varepsilon} \left|\ln(x)\right|^A \xrightarrow[x \to 0]{} 0$$

7

3.5 Trigonométrie hyperbolique

Définition 3.13. On définit les fonctions (co)sinus hyperbolique :

$$\cosh: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{e^x + e^{-x}}{2} \end{cases}$$

$$\sinh: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{e^x - e^{-x}}{2} \end{cases}$$

Proposition 3.14.

* cosh est paire, dérivable, de dérivée

$$\cosh' = \sinh$$

et possède les limites $\cosh(x) \xrightarrow[x \to \pm \infty]{} + \infty$

* sinh est impaire, dérivable, de dérivée

$$sinh' = cosh$$

et
$$sinh(x) \xrightarrow[x \to -\infty]{} -\infty$$
 et $sinh(x) \xrightarrow[x \to +\infty]{} +\infty$
* On a $cosh^2 - sinh^2 = 1$

Définition 3.15. On définit la fonction tangente hyperbolique :

$$\tanh: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{\sinh(x)}{\cosh(x)} \end{cases}$$

Proposition 3.16. La fonction tanh est impaire, dérivable, de dérivée

$$\tanh' = 1 - \tanh^2 = \frac{1}{\cosh^2}$$

et vérifie $tanh(x) \xrightarrow[x \to \pm \infty]{} \pm 1$

3.6 Fonctions trigonométriques réciproques

Définition 3.17. On appelle $\underline{\operatorname{arc\ cosinus}}$ $\operatorname{arccos}: [-1,1] \to [0,\pi]$ la réciproque de la bijection induite $\operatorname{cos}^{\lfloor [-1,1]}_{\lfloor [0,\pi]}$ On appelle $\underline{\operatorname{arc\ sinus}}$ $\operatorname{arcsin}: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$ la réciproque de la bijection induite $\operatorname{sin}^{\lfloor [-1,1]}_{\lfloor [-\frac{\pi}{2}]}$

Proposition 3.18. On a $\forall y \in [-1,1]$, $\cos(\arcsin(y)) = \sin(\arccos(y)) = \sqrt{1-y^2}$

Proposition 3.19. arccos et arcsin sont non dérivables en -1 et 1, mais dérivables en tout $y \in]-1,1[$ et $\forall y \in]-1,1[$:

$$\arcsin'(y) = \frac{1}{\sqrt{1 - y^2}} \qquad \qquad \arccos'(y) = \frac{-1}{\sqrt{1 - y^2}}$$

3.7 Tangente

Définition 3.20. On note $D_{tan} = \{x \in \mathbb{R} \mid x \not\equiv \frac{\pi}{2} \pmod{\pi}\} = \cos^{-1}[\mathbb{R}^*]$ On définit la fonction <u>tangente</u>

$$\tan: \begin{cases} D_{\tan} \to \mathbb{R} \\ x \mapsto \frac{\sin(x)}{\cos(x)} \end{cases}$$

Proposition 3.21. tan est impaire, π -périodique, dérivable de dérivée

$$\tan' = 1 + \tan^2 = \frac{1}{\cos^2}$$

8

et on a
$$\tan(x) \xrightarrow[x < \frac{\pi}{2}]{x < \frac{\pi}{2}} + \infty$$
 et $\tan(x) \xrightarrow[x > \frac{\pi}{2}]{x > \frac{\pi}{2}} - \infty$

Proposition 3.22. Soit $x, y \in D_{tan}$

* Si
$$x + y \in D_{tan}$$
, on a

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

* Si
$$x - y \in D_{tan}$$
, on a

$$tan(x - y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

Proposition 3.23. Soit $x \in \mathbb{R}$ tel que $x \not\equiv \pi \pmod{2\pi}$

On peut exprimer $\cos(x)$ et $\sin(x)$ en fonction de $t = \tan(\frac{x}{2})$

$$\cos(x) = \frac{1 - t^2}{1 + t^2}$$

$$\sin(x) = \frac{2t}{1 + t^2}$$

3.8 Arc tangente

Par le théorème de la bijection monotone, tan induit une bijection $]-\frac{\pi}{2},\frac{\pi}{2}[\to \mathbb{R}$

Définition 3.24. On appelle arc tangente la fonction arctan : $\mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ réciproque de la bijection induite $\tan_{\left|\right| = \frac{\pi}{2}, \frac{\pi}{2} \left[}$

Proposition 3.25. arctan est une fonction impaire, dérivable, de dérivée

$$\arctan': y \mapsto \frac{1}{1+y^2}$$

et telle que $\arctan(x) \xrightarrow[x \to +\infty]{} \pm \frac{\pi}{2}$

Proposition 3.26. Soit $z=a+ib\in\mathbb{C}^*$ que l'on écrit $z=re^{i\theta}$, où r>0, $\theta\in\mathbb{R}$

On a
$$\begin{cases} a = \text{Re}(z) = r\cos(\theta) \\ b = \text{Im}(z) = r\sin(\theta) \end{cases}$$

Supposons $a \neq 0$ (càd $z \notin i\mathbb{R}$)

On a alors

$$\frac{b}{a} = \frac{r\cos(\theta)}{r\sin(\theta)} = \tan(\theta)$$

Donc θ est un antécédent de $\frac{b}{a}$ par tan

$$\theta \equiv \arctan\left(\frac{b}{a}\right) \pmod{\pi}$$

Proposition 3.27. On a $\forall x \in \mathbb{R}^*$

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \operatorname{sgn}(x)\frac{\pi}{2}$$

Brève extension aux fonctions à valeurs complexes 4

Soit $I \subseteq \mathbb{R}$ un intervalle.

Définition 4.1. Soit $f: I \to \mathbb{C}$

On dit que f est dérivable si les fonctions $\begin{cases} \operatorname{Re}(f):I\to\mathbb{R}\\ \operatorname{Im}(f):I\to\mathbb{R} \end{cases}$ sont dérivables. Si c'est la cas, on définit la dérivée de f

Si c'est la cas, on définit la dérivée de
$$f$$

$$f' = \operatorname{Re}(f)' + i\operatorname{Im}(f)'$$

Proposition 4.2. Soit $f,g:I\to\mathbb{C}$ dérivables et $\lambda\in\mathbb{C}$

Alors:

- * λf est dérivable et $(\lambda f)' = \lambda f'$
- * f + g est dérivable et (f + g)' = f' + g'
- * fg est dérivable et (fg)' = f'g + fg'
- * Si g ne s'annule pas, $\frac{f}{g}$ est dérivable et $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$
- * $\exp \circ f$ est dérivable et $(\exp \circ f)' = f' \cdot (\exp \circ f)$

5 Dérivée d'ordre supérieur

Ici, I est un intervalle de \mathbb{R} non trivial.

5.1 Définition

Définition 5.1. Soit $f: I \to \mathbb{R}$

- * On dit que f est <u>deux fois dérivable</u> si f est dérivable et que f' est dérivable. On note alors f'' = (f')'
- * Par récurrence, pour tout $n \ge 2$, \underline{f} est n fois dérivable si f est (n-1) fois dérivable et que $f^{(n-1)}$ est dérivable.

On note alors $f^{(n)} = (f^{(n-1)})'$ la dérivée n-ième.

- * On note $D^n(I) = D^n(I; \mathbb{R})$ l'ensemble des fonctions n fois dérivables.
- * On dit que f est <u>lisse</u> ou <u>de classe C^{∞} </u> si elle est n fois dérivable pour tout $n \in \mathbb{N}$ On note $C^{\infty}(I) = C^{\infty}(I; \mathbb{R})$ l'ensemble des fonctions lisses.

Convention : Toute fonction est "0 fois dérivable" et $f^{(0)} = f$

5.2 Propriétés de stabilité

Proposition 5.2. Soit $f, g : I \to \mathbb{R}$ n fois dérivable et $\lambda \in \mathbb{R}$ Alors λf est n fois dérivable et $(\lambda f)^{(n)} = \lambda f^{(n)}$

Et f + g est n fois dérivable et $(f + g)^{(n)} = f^{(n)} + g^{(n)}$

Corollaire 5.3. Toute combinaison linéaire de fonctions lisses est lisse.

Théorème 5.4 (Formule de Leibniz). Soit $f,g:I\to\mathbb{R}$ n fois dérivables.

Alors fg est n fois dérivable et

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$$

Corollaire 5.5. Le produit de deux fonctions lisses est lisse.

Théorème 5.6. La composée de deux fonctions n fois dérivables est n fois dérivables.

Corollaire 5.7. La composée de deux fonctions lisses est lisse.