PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10143838 A

(43) Date of publication of application: 29.05.98

(51) Int. CI

G11B 5/66 C10M107/38 G11B 5/72 // C10N 40:18

(21) Application number: 08295039

(22) Date of filing: 07.11.96

(71) Applicant:

SHOWA DENKO KK

(72) Inventor:

KOBAYASHI KAZUO MASUYAMA SOICHIRO YAMAUCHI YUTAKA TAKANASHI SACHIYO

(54) MAGNETIC RECORDING MEDIUM

(57) Abstract:

PROBLEM TO BE SOLVED: To improve sliding durability by forming a protective layer from carbon-based or oxide ceramic materials and forming a lubricant layer of a mixture of first and second fluorine-contg. compds. expressed by specified formulae on the protective film layer.

SOLUTION: A Ni-P plating film is formed on an aluminum alloy substrate, and then successively a base film, magnetic recording layer and protective film layer are deposited thereon. A fluorine-contg. compd. expressed by formula I having 500 to 5000 number average mol.wt. and a second fluorine-contg. compd. expressed by formula II having 500 to 5000 number average mol.wt. are mixed by 25 to 400wt.% proportion to obtain a lubricant and to prepare a coating compsn. In formulae I, II, (p) and (q) are integers. The obtd. compsn. is applied to 20Å film thickness by dipping method on the surface of the protective film layer. Thereby, the obtd. medium shows excellent lubricating property and wear resistance, chemical stability even at high temp. for a long time,

and improved reliability.

COPYRIGHT: (C) 1998, JPO

HOCHa-CFaO-(CFaCFaO) a-(CFaO) a-CFa-CHaOB

Π

最終頁に続く

特開平10-143838

(51) Int.Cl.⁶

[新女献3]

(19) 日本国特許庁 (JP)

識別記号

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平10-143838

(43)公開日 平成10年(1998) 5月29日

G11B 5/6 C10M 107/3 G11B 5/73 # C10N 40:18	8 2	G11B 5/66 C10M 107/38 G11B 5/72					
		審査請求 未請求 請求項の数2 OL (全 6 頁)					
(21)出願番号	特願平8-295039	(71) 出願人 000002004 昭和電工株式会社					
(22)出顧日	平成8年(1996)11月7日	東京都港区芝大門1丁目13番9号					
		(72)発明者 小林 一雄 千葉県市原市八幡海岸通 5 - 1 昭和電工 株式会社HD工場内					
		(72)発明者 増山 聡一郎					
		千葉県市原市八幡海岸通 5 - 1 昭和電工 株式会社HD工場内					
		(72)発明者 山内 豊					
		千葉県市原市八幡海岸通5-1 昭和電工 株式会社HD工場内					
		(74)代理人 弁理士 福田 武通 (外2名)					

(54) 【発明の名称】 磁気記録媒体

(57) 【要約】

【課題】 磁気ディスク装置に用いられる磁気記録媒体 に関し、特に長期安定性、摺動耐久性に優れた潤滑層を 有する磁気記録媒体を提供する。

【解決手段】 非磁性基板1上に少なくとも強磁性薄膜層4と保護膜層5とを設けた磁気記録媒体において、保護膜層5は炭素系又は酸化セラミックス系のうちから選択されるものであり、該保護膜層5の表面に化学式

【化13】

 $HOCH_z-CF_zO-(CF_zCF_zO)_p-(CF_zO)_q-CF_z-CH_zOH$

【式中、p. qは整数、数平均分子量は 500~5000である。】 で表される含フッ素化合物と、化学式

【化14】

HO-CH_CH-CH_OCH_CF_O-(CF_CF_O)_-(CF_O)_-CF_CH_OCH_-CHCH_-OH | | OH

[式中、p, gは整数、数平均分子量は 500~5000である。] で表される含フッ素化合物とを混合した潤滑層 6 を有する。

2 ページ

【特許請求の範囲】

【請求項1】 非磁性基板上に少なくとも強磁性薄膜層と保護膜層とを設けた磁気記録媒体において、

保護膜層は炭素系又は酸化セラミックス系のうちから選択されるものであり、該保護膜層の表面に化学式

HOCH2-CF20-(CF2CF20)p-(CF20)q-CF2-CH2OH

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される含フッ素化合物と、化学式

【化2】

HO-CH₂CH-CH₂OCH₂CF₂O-(CF₂CF₂O)_p-(CF₂O)_q-CF₂CH₂OCH₂-CHCH₂-OH

| OH OH

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される含フッ素化合物とを混合した潤滑層を有することを特徴とする磁気記録媒体。

【請求項2】 潤滑層は、

【化3】

 $HOCH_2-CF_2O-(CF_2CF_2O)_p-(CF_2O)_q-CF_2-CH_2OH$

[式中、p, gは整数、数平均分子量は 500~5000である。]

で表される含フッ素化合物に対して25~400wt% 【化4】

 $\label{eq:ho-ch2ch-ch2ch2cf2} $$ HO-CH_2CH_2CF_2O-(CF_2CF_2O)_p-(CF_2O)_q-CF_2CH_2OCH_2-CHCH_2-OH_2-CHCH_2-CHCH_2-OH_2-CHCH_2-CHCH_2-OH_2-CHCH_2-OH_2-CHCH_2-OH_2-CHCH_2-CHCH_2-OH_2-CHCH_2-CHCH_2-OH_2-CHCH_2-CHCH_2-OH_2-CHCH_2-CHCH_2-OH_2-CHCH_2-CH_2-CHCH_2-OH_2-CHCH$

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される含フッ素化合物を含んでなることを特徴とする請求項1に記載の磁気記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気ディスク装置 に用いられる磁気記録媒体に関し、特に長期安定性、摺 動耐久性に優れた潤滑層を有する磁気記録媒体に関する ものである。

[0002]

【従来の技術】薄膜型の磁気記録媒体においては、強磁性金属又はその合金を、スパッタ、蒸着、無電解メッキ法等によって非磁性基板上に被着させて製造される。実

際の使用時においては、しばしば磁気ヘッドと磁気記録媒体とが高速で接触摺動するので、摩耗損傷を受けたり、磁気特性の劣化を起こしたりする。そのため、磁性層上に保護膜や潤滑層を設けることによって接触摺動の際の静/動摩擦を極力低減させ、耐摩耗性を向上させることが行われている。このような保護膜層としては、炭素質膜、SiO2、ZrO2の酸化物膜、窒化物膜、ホウ化物膜等が一般的に利用され、また潤滑層としては、一般的にパーフロロボリエーテル(Perfluoro Polyethers)化合物がディスク表面に塗布されている。上記パーフロロボリエーテル化合物としては、

【化5】

 $HOCH_2-CF_2O-(CF_2CF_2O)_p-(CF_2O)_q-CF_2-CH_2OH$

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される商品名「フォンブリン ゼットドール (FOMB LIN ZDOL)」 (アウジモント (AUSIMONT) 社製) が知られている。

【0003】前記のように、使用時においてはしばしば 磁気ヘッドと磁気記録媒体とが高速で接触摺動する。即 ち、磁気記録媒体の起動時においては、ディスク媒体が 停止状態から急速に回転加速されるのに伴ってヘッドが 浮上するが、電源が切断されてディスク媒体を回転させ ているモータが停止すると、ディスク媒体とヘッドが高 速で接触しながら摺動するのである。一方、面記録密度 を高める目的で、ヘッドの低浮上化並びにディスク回転 の高速化が求められており、近年では媒体基板はより平滑になる方向にある。そして、潤滑層を設けて動摩擦係数を低減することは、前記の接触摺動によって生ずる摩耗損傷や磁気特性の劣化を抑制する目的においては極めて有効であるものの、特にこの潤滑層の膜厚が厚い場合や媒体基板が平滑である場合には、ヘッドとディスクとの間に吸着現象が生じ易いため、静摩擦係数が増加し、ヘッドがディスクに張り付いたまま動作不能となる。しかもこのような吸着現象は、媒体基板を平滑にするにつれて発生し易くなる。逆に潤滑層の膜厚が薄い場合には前記吸着現象の発生を抑制できるものの、十分な耐久性

が得られずに高速の接触摺動に起因する摩耗損傷や磁気特性の劣化が生じ易いものとなる。そこで、潤滑層に用いる潤滑剤を精選することにより、上述の問題を解消しようとする試みが種々なされている。例えば前記「フォンブリン ゼットドール」は、分子の両末端にCH₂ OH基を有しているために保護膜層の表面との結合が強く、優れた耐摺動特性を付与するものとなる。

[0004]

【発明が解決しようとする課題】しかしながら、「フォンプリン ゼットドール」は、文献 ("Degradation of perfluoropolyethers catalyzed by aluminum oxid e", Paul H. Kasai, Wing T. Tang and Patrick Wheeler, Applied Surface Science, 51 (1991) 201~211) で示されているように、分子中にOーCF2 一〇単位の結合を有しているため、磁気ヘッドの構成成分である酸化アルミニウム(αーAl2 O3)の存在下では200℃程度の温度で容易に分解する。加えて、CSS (コンタクトスタート ストップ)時には磁気記録媒体と磁気ヘッ

ドの両者間の接触により局所的な瞬間温度は、90~4

50℃或いはそれ以上の高温となる。したがって、磁気へッドのスライダー部分の構成成分である酸化アルミニウムが触媒となり、「フォンブリン・ゼットドール」が分解する。このように潤滑剤の分解が生ずると、分解した成分が揮発して潤滑層の膜厚が減少することにより、動摩擦係数が増大し、その結果、高速の接触摺動に起因する摩耗損傷や磁気特性の劣化が生じ易いという問題を生じていた。さらに、分解した成分の一部が磁気ヘッドに付着することにより、ヘッドの浮上量が増加して再生出力の低下を引き起こしたり、ヘッドが記録媒体表面に吸着する等の問題をも生じていた。

【0005】尤も、前記のように「フォンブリン ゼットドール」は、分子の両末端の極性官能基が炭素系、又は酸化物セラミックス系の保護膜層との間に高い結合性を示し、優れた摺動特性が付与されるという利点を有するので、このように利点を保持したままで磁気ヘッドによる接触分解を抑制させる方法が希求されていた。

【0006】また、化学式【化6】

HO-CH₂CH-CH₂OCH₂CF₂O-(CF₂CF₂O)_p-(CF₂O)_q-CF₂CH₂OCH₂-CHCH₂-OH

| OH OH

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される化合物〔商品名「フォンブリン ゼットテトラオール」(アウジモント社製)〕は、前記「フォンブリン ゼットドール」と同様に分子中に〇一CF2 一〇単位の構造を含むにも係わらず、極性官能基の多座配位構造によりヘッドのスライダー部の酸化アルミニウムとの接触反応(分解)が緩和され、化学的に安定である。また、その両末端の極性官能基が炭素系、又は酸化物セラミックス系の保護膜との間に高い親和性を示し、スピンオフ性の向上に寄与するので、安定性に優れている。【0007】しかしながら、両末端の極性官能基と炭素系、又は酸化物セラミックス系の保護膜との間の親和性が高過ぎて、耐久性向上に寄与する潤滑層の上側の自由

に動ける潤滑剤成分がほとんどない。このため、疑似接触型のヘッドのとの組み合わせでは摺動耐久性が劣る。 【0008】

【課題を解決するための手段】本発明は、上記に鑑み提案されたもので、耐久性に優れた潤滑層組成を選択することにより長年月の使用に耐える高記録密度の磁気記録媒体を提供することを目的とするものであって、非磁性基板上に少なくとも強磁性薄膜層と保護膜層とを設けた磁気記録媒体において、保護膜層は炭素系又は酸化セラミックス系のうちから選択されるものであり、該保護膜層の表面に化学式

【化7】.

[化8]

HOCH2-CF2O-(CF2CF2O)p-(CF2O)a-CF2-CH2OH

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される含フッ素化合物(以下、第一の含フッ素化合物という)と、化学式

HO-CH₂CH-CH₂OCH₂CF₂O-(CF₂CF₂O),-(CF₂O),-CF₂CH₂OCH₂-CHCH₂-OH | | OH

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される含フッ素化合物(以下、第二の含フッ素化合物という)とを混合した潤滑層を有することを特徴とする。

[0009]

【発明の実施の形態】本発明における潤滑層に用いられる第一の含フッ素化合物は、前記従来の技術にて説明した商品名「フォンブリン ゼットドール (FOMBLIN ZDO L)」 【アウジモント (AUSIMONT) 社製】をそのまま用

特開平10-143838 4 √-ジ

いることができ、前記のように分子の両末端の極性官能 基が炭素系、又は酸化物セラミックス系の保護膜層との 間に高い結合性を示し、優れた摺動特性が付与されると いう利点を有するものである。その反面、磁気ヘッドの スライダー部分の構成成分である酸化アルミニウムが触 媒となり、分解し易く、分解した成分が揮発して潤滑層 の膜厚が減少することにより、動摩擦係数が増大し、そ の結果、高速の接触摺動に起因する摩耗損傷や磁気特性 の劣化が生じ易いという欠点がある。また、第二の含フ ッ素化合物についても、前記商品名「フォンブリン ゼ ットテトラオール」(アウジモント社製)をそのまま用 いることができ、前記のように極性官能基の多座配位構 造によりヘッドのスライダー部の酸化アルミニウムとの 接触反応(分解)が緩和され、化学的に安定であり、そ の両末端の極性官能基が炭素系、又は酸化物セラミック ス系の保護膜との間に高い親和性を示し、スピンオフ性 の向上に寄与するので、安定性に優れているという利点 を有するものである。その反面、両末端の極性官能基と 炭素系、又は酸化物セラミックス系の保護膜との間の親 和性が髙過ぎて、耐久性向上に寄与する潤滑層の上側の 自由に動ける潤滑剤成分がほとんどなく、疑似接触型の ヘッドのとの組み合わせでは摺動耐久性が劣るという欠 点がある。これら第一の含フッ素化合物と第二の含フッ 素化合物との混合潤滑層は、両者を適当な割合に混合す ることによって、前記第一の含フッ素化合物の欠点であ る接触分解がなくなり、且つ第二の含フッ素化合物の欠 点である摺動特性を克服することができる。このため、 長期安定性、摺動耐久性に優れている。しかも、単に二

種類の含フッ素化合物の特性が組み合わされるばかりでなく、特異的に動摩擦係数及び静摩擦係数が低いものが得られることが見いだされた。その結果、磁気記録媒体の信頼性が飛躍的に向上する。

【0010】磁気記録媒体の更なる耐久性向上において、第一の含フッ素化合物に対する第二の含フッ素化合物の混合割合は、25~400wt%であることが望ましい。第一の含フッ素化合物に対する第二の含フッ素化合物の混合割合が25wt%に満たないと長期安定性が十分でなく、400wt%を越えると摺動耐久性が十分でない。尚、この潤滑層の形成方法、即ち前記潤滑剤の塗付方法は、公知のディップ法、スピン法、スプレイ法等のどの方法で行ってもよい。

【0011】尚、本発明における保護膜層として炭素系膜を用いる場合は、水素化或いは窒素化或いはフッ素化した炭素膜を用いてもよい。また、酸化物系のセラミックス系膜を用いる場合には、 SiO_2 、 ZrO_2 を用いることが好ましい。

[0012]

【実施例】 (試験用磁気ディスクの作製)

【化9】

 $HOCH_2-CF_2O-(CF_2CF_2O)_p-(CF_2O)_q-CF_2-CH_2OH$

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される数平均分子量2000の第一の含フッ素化合 【化10】物と、化学式

HO-CH2CH-CH2OCH2CF2O-(CF2CF2O) p-(CF2O) q-CF2CH2OCH2-CHCH2-OH | OH

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される数平均分子量2000の第二の含フッ素化合物を、4:1の割合(重量比)で混合してフロン系溶剤〔商品名「AK225」,旭硝子社製〕中に濃度0.06wt%となるように溶解して塗布用組成物を調製した。そして、前記保護膜層5の上面に、上記のように調製した塗布用組成物をディップ法により膜厚20A(ESCAを用いて測定)になるように塗布して潤滑層6を形成し、実施例1の磁気ディスクを得た。

【0013】 [実施例2] 第一の含フッ素化合物と第二の含フッ素化合物の混合割合(重量比)を2:1にした以外は前記実施例1と同様にして実施例2の磁気記録媒体を得た。

【0014】 [実施例3] 第一の含フッ素化合物と第二の含フッ素化合物の混合割合(重量比)を3:2にした以外は前記実施例1と同様にして実施例3の磁気記録媒体を得た。

【0015】 [実施例4] 第一の含フッ素化合物と第二の含フッ素化合物の混合割合(重量比)を1:1にした以外は前記実施例1と同様にして実施例4の磁気記録媒体を得た。

【0016】 [実施例5] 第一の含フッ素化合物と第二の含フッ素化合物の混合割合(重量比)を1:2にした以外は前記実施例1と同様にして実施例5の磁気記録媒体を得た。

[0017] [実施例6]第一の含フッ素化合物と第二の含フッ素化合物の混合割合(重量比)を1:4にした

体を得た。

【0018】 [比較例1] 潤滑剤として化学式

以外は前記実施例1と同様にして実施例6の磁気記録媒

【化11】

HOCH2-CF20-(CF2CF20)p-(CF20)q-CF2-CH20H

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される数平均分子量2000の第一の含フッ素化合物を単独で用いた以外は前記実施例1と同様にして比較例1の磁気記録媒体を得た。

[0019] [比較例2] 潤滑剤として化学式 【化12】

HO-CH₂CH-CH₂OCH₂CF₂O-(CF₂CF₂O)_p-(CF₂O)_q-CF₂CH₂OCH₂-CHCH₂-OH

|
OH
OH

[式中、p, qは整数、数平均分子量は 500~5000である。]

で表される数平均分子量2000の第二の含フッ素化合物を単独で用いた以外は前記実施例1と同様にして比較例2の磁気記録媒体を得た。

 $1\sim6$ 、比較例1, 2に用いた各含フッ素化合物に触媒として、A 1_2 O_3 を添加し、2 5 0 \odot に加熱した。表1 に加熱をはじめて4 時間後の重量減少量を示した。

【0020】 (試験1;長期安定性テスト) 前記実施例

【表1】

				,	1		к	
試験項目及び試験結果	実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	比較例1	比較例2
混合比率(*)	4:1	2:1	3:2	1:1	1:2	1:4	1:0	0:1
1. 長期安定性テスト 重量減少量 (%)	40	37	33	30	28	26	99	26
2. ボンデッド比 (%)	55	59	67	69	75	80	2 1	82
3. CSS耐久性テスト 動摩擦係数	0.31	0.24	0. 27	0.35 -	0.39	0.40	1. 15	0. 61
4. CSS耐久性テスト 静摩擦係数	0. 68	0.71	0. 91	0. 91	0. 94	1. 00	3. 80	2. 53

*;第一の含フッ素化合物と第二の含フッ素化合物の混合比率(重量比)

上記表1より明らかなように、実施例1~6及び比較例2に用いた各フッ素化合物については重量減が殆ど観察されなかったのに対し、比較例1に用いた含フッ素化合物については殆どが分解して蒸発してしまった。

【0021】(試験2;ボンデッド比測定・保護膜との密着性の測定)前記実施例1~6、比較例1,2の各磁気ディスクをESCAにより半径20mmにおける膜厚を測定した。その後、ディスクをフッ素系溶剤〔商品名「PF5052」、ミネソターマイニングーアンドーマニュファクチュアリング社製〕中に15分間浸渍し、取り出した後、再度ESCAにより半径20mmにおける膜厚を測定した。フッ素系溶剤「5052」に浸渍前後の膜厚の比(ボンデッド比)を求め、この値を表1に示した。前記表1より明らかなように、比較例1の磁気デー・

ィスクではボンデッド比が非常に小さく、潤滑剤の中で保護膜と強固に結合しているのは2割程度しかないことが分かる。実施例1~6及び比較例2の各磁気ディスクについてはボンデッド比が55%以上あり、潤滑剤の中で保護膜と強固に結合している成分が多いことを示している。

【0022】〈試験3; CSS耐久性テストー動摩擦係数の測定〉前記実施例 $1\sim6$ 、比較例1, 2の各磁気ディスクのCSS(Contact-Start-Stop)試験を行った。CSS試験機には市販のCSSテスター(マツボー社製)を、磁気ヘッドには Al_2O_3-TiC スライダーヘッドを用いて10000回のCSSを行った。100000回後の動摩擦係数の値を表1に示した。前記表1より明らかなように、実施例 $1\sim6$ の各磁気ディスクにつ

特開平10-143838 6 ページ

いては動摩擦係数がCSS10000回の後でも約0. 3と低いが、比較例1, 2の各磁気ディスクでは動摩擦係数が0. $6\sim1$. 2と高い値を示していた。

【0023】〈試験4;CSS耐久性テストー静摩擦係数の測定〉前記実施例 $1\sim6$ 、比較例1, 2の各磁気ディスクのCSS(Contact-Start-Stop)試験を行った。CSS試験機には市販のCSSテスター(マツボー社製)を、磁気ヘッドにはA 1_2 O $_3$ -TiCスライダーヘッドを用いて4O $_5$ 、80%RH雰囲気下で5000回のCSSを行った。ディスクとヘッドを24時間静置させた後の静摩擦係数の値を表1に示した。前記表1より明らかなように、実施例 $1\sim6$ の各磁気ディスクについては静摩擦係数が0. $7\sim1$. 0と低いが、比較例の磁気ディスクでは静摩擦係数が $2\sim4$ と高い値を示していた。

【0024】尚、保護膜層として、 SiO_2 、 ZrO_2 を用いた場合も同様に試験用磁気ディスクを作成して前記試験3, 4を行ったが、前記と同様の結果が得られ

た。

【0025】以上本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載の構成を変更しない限りどのようにでも実施することができる。

[0026]

【発明の効果】以上説明したように本発明の磁気記録媒体は、優れた潤滑性及び耐摩耗性を有し、しかも長期間に亙って高温でも化学的に安定な潤滑層を精選したので、特にヘッドの低浮上化に対応した平滑な基板を用いた場合にも、良好な摺動耐久性と長期に亙る十分な安定性とを有するものとなる。したがって、本発明の磁気記録媒体は、データ記録密度を増大させることが可能となると共に、長期にわたり信頼性の高いものとなる。

【図面の簡単な説明】

【図1】本発明に係るハードディスクの一例を模式的に示す断面図である。

【図1】

フロントページの続き

(72) 発明者 髙梨 幸代

千葉県市原市八幡海岸通 5 - 1 昭和電工 株式会社HD工場内