Упражнение «Поиск в ширину»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Дан неориентированный граф.

- Поиском в ширину найти кратчайшие пути из заданной вершины до всех остальных вершин.
- Поиском в ширину найти компоненты связности графа.

Вход

В первой строке текстового файла записано количество вершин графа N ($1 \le N \le 1000$). В следующих N строках записаны списки смежных вершин в формате: K v_1 v_2 ... v_K где K - длина списка, v_i - номер вершины, смежной с данной.

Выход

Запишите в выходной файл:

- Кратчайшие пути из вершины N во все остальные вершины, путь вывести в формате: $K \ v_1 \ v_2 \ ... \ v_K$, где K длина пути (количество рёбер), v_i вершины, составляющие путь (вершину N выводить не нужно). Если некоторая вершина не достижима из вершины N, вывести число 0;
- Количество связных компонент графа.

input.txt	output.txt
7	1 1
2 7 2	2 1 2
2 1 3	3 1 2 3
1 2	0
1 5	0
2 4 6	0
1 5	2
1 1	

Упражнение «0,1-BFS» Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

В не ориентированном графе все рёбра имеют или нулевую, или единичную длину. Найти кратчайший путь между двумя заданными вершинами графа.

Вход

В первой строке входного файла записано целые числа \mathbf{N} — количество вершин графа и \mathbf{M} — количество рёбер графа ($2 \le \mathbf{N} \le 10^5$, $1 \le \mathbf{M} \le 10^6$). Остаток файла содержит описание \mathbf{M} рёбер. Каждое ребро задано тройкой целых чисел \mathbf{u} , \mathbf{v} , \mathbf{d} , где \mathbf{u} , \mathbf{v} — номера вершин ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{N}$, $\mathbf{u} \ne \mathbf{v}$), \mathbf{d} — длина ребра ($\mathbf{d} = 0 \mid 1$).

Выход

Запишите в выходной файл минимальное расстояние между вершинами 1 и **N** графа. Если не существует пути в графе от вершины 1 до вершины **N**, запишите в выходной файл число -1 (минус единица).

input.txt	output.txt
3 3	0
1 2 0 2 3 0 1 3 1	

Упражнение «Поиск в глубину»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Дан неориентированный граф. Поиском в глубину найти компоненты связности графа.

Вход

В первой строке входного файла записано количество вершин графа \mathbf{N} ($1 \leq \mathbf{N} \leq 1000$). В остальных строках записаны рёбра графа. Каждое ребро задано парой натуральных чисел \mathbf{u} , \mathbf{v} ($1 \leq \mathbf{u}$, $\mathbf{v} \leq \mathbf{N}$, $\mathbf{u} \neq \mathbf{v}$).

Выход

В выходной файл запишите количество связных компонент графа

input.txt					output.txt
7					2
1 2	1 7	2 3	4 5	5 6	

Упражнение «Сильно связные компоненты»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 3 секунды на тест

Дан орграф. Найти сильно связные компоненты орграфа.

Вхол

В первой строке входного файла записано количество вершин графа N ($1 \le N \le 10^5$). В следующих N строках записаны списки смежных вершин в формате: K v_1 v_2 ... v_K , где K - длина списка, v_i - номер вершины, смежной с данной вершиной. Суммарное количество дуг не превосходит $5 \cdot 10^6$.

Выход

В выходной файл запишите количество сильно связных компонент орграфа.

примеры входи и выходи				
input.txt	output.txt			
7	2			
2 5 2				
1 6				
2 7 5				
1 2				
1 3				
1 4				
2 1 5				

Упражнение «Точки сочленения и мосты»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Дан неориентированный граф.

- Найти все его точки сочленения.
- Найти все его мосты.
- Найти двусвязную компоненту, в которую входит первая вершина.

Вход

Во входном файле записано количество вершин графа \mathbf{N} ($1 \le \mathbf{N} \le 1000$) и список ребер графа. Каждое ребро задано парой натуральных чисел \mathbf{u} , \mathbf{v} ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{N}$).

Выход

В выходной файл запишите:

- номера вершин графа, являющихся точками сочленения (в порядке возрастания);
- ребра графа, являющиеся мостами (в порядке не убывания меньшего номера вершины, для одинаковых меньших номеров в порядке возрастания большего номера вершины);
- номера вершин, входящих в двусвязную компоненту, порожденную вершиной 1 (в порядке возрастания).

inpu	t.txt					output.txt
8						1 4 7
5 1	1 3	3 5	8 7	4 6	1 4	1 4
2 7	6 2	7 4				7 8
						1 3 5

Лабораторная работа «Топологическая сортировка»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Выполнить топологическую сортировку заданного орграфа.

Вход

В первой строке входного файла записано количество вершин графа \mathbf{n} и количество дуг \mathbf{m} ($1 \le \mathbf{n} \le 10^5, \ 0 \le \mathbf{m} \le 10^6$). В остальных строках файла записано \mathbf{m} пар целых чисел \mathbf{u} , \mathbf{v} ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{n}$, $\mathbf{u} \ne \mathbf{v}$). Пара чисел \mathbf{u} , \mathbf{v} задаёт дугу (\mathbf{u} , \mathbf{v}).

Выход

В выходной файл запишите результаты номера вершин графа в порядке топологической сортировки. Если задача имеет несколько решений, выведите любое из них. Если задача не имеет решения, запишите в файл одно число -1 (минус единица).

input	input.txt					output.txt
7 14	ŀ					4 5 3 2 1 7 6
1 7	2 7	2 6	3 7	3 6	4 2	
4 3	4 5	4 6	4 7	5 3	5 7	
5 6	7 6					

Лабораторная работа «Эйлеров цикл»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 2 секунды на тест

Найти в заданном орграфе эйлеров цикл.

Вход

В первой строке входного файла записано количество вершин графа \mathbf{n} ($1 \leq \mathbf{n} \leq 10^5$). В следующих \mathbf{n} строках записаны списки смежных вершин в формате: $\mathbf{K} \mathbf{v_1} \dots \mathbf{v_K}$, где \mathbf{K} - длина списка, $\mathbf{v_i}$ - номера вершин, смежных с данной вершиной. Вершины нумеруются, начиная с 1. Суммарное количество дуг в графе не превышает $5 \cdot 10^6$.

Выход

В выходной файл запишите найденный цикл. Если граф не эйлеров, запишите в выходной файл одно число -1 (минус единица).

input.txt	output.txt
7	1 7 3 5 7 4 2 6 2 3 1
1 7	
2 6 3	
2 5 1	
1 2	
1 7	
1 2	
2 4 3	

Лабораторная работа «Система непересекающихся множеств»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Дан неориентированный граф. Найти компоненты связности графа, используя систему непересекающихся множеств.

Вход:

Во входном файле записано количество вершин графа N ($1 \le N \le 10^5$) и список ребер графа. Каждое ребро задано парой натуральных чисел u, v ($1 \le u$, $v \le N$, $u \ne v$). Количество рёбер не превосходит $2 \cdot 10^6$. Рёбра в списке могут повторяться.

Выход

Запишите в выходной файл количество связных компонент в графе.

input.txt	output.txt
7	3
4 6	
3 7	
5 2	
3 2	