Non contestualità

a.a. 2020-2021

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

Pumping lemma

Teorema

Sia $L\subseteq V_T^*$ un linguaggio non contestuale. Esiste allora una costante n tale che se $z\in L$ e $\mid z\mid \geq n$ allora esistono 5 stringhe $u,v,w,x,y\in V_T^*$ tali che

- i) uvwxy = z
- $ii) \mid vx \mid \geq 1$
- iii) $|vwx| \le n$
- iv) $\forall i \geq 0 \ uv^i w x^i y \in L$.

Pumping lemma: interpretazione come gioco a due

Se *L* è context free, Alice vince sempre questo gioco con Bob:

- 1. Alice fissa un intero n > 0 opportuno
- 2. Bob sceglie una stringa $z \in L$ con |z| > n
- 3. Alice divide z in cinque parti uvwxy con $|vwx| \le n$ e $|vx| \ge 1$
- 4. Bob sceglie un intero $i \ge 0$
- 5. Alice mostra a Bob che $uv^iwx^iy \in L$

Grammatica $\mathcal{G} = \langle V_T, V_N, P, S \rangle$ in CNF che genera $L = L(\mathcal{G})$ e sia $k = |V_N|$ il numero di simboli non terminali in \mathcal{G} .

Qualunque albero sintattico $A(\sigma)$ relativo ad una stringa $\sigma \in V_T^*$ derivata in $\mathscr G$ sarà tale da avere tutti i nodi interni (corrispondenti a simboli non terminali) di grado 2, eccetto quelli aventi foglie dell'albero come figli, che hanno grado 1.

- Se h è l'altezza di A (numero massimo di archi, e anche numero massimo di nodi interni, in un cammino dalla radice ad una foglia), il massimo numero di foglie l(h) è dato dal caso in cui l'albero è completo (i nodi interni hanno due figli, eccetto i padri di foglie, che ne hanno uno). Si può facilmente verificare che in tal caso abbiamo $l(h) = 2^{h-1}$, in quanto $l(1) = 1 = 2^0$ e $l(h+1) = 2 \cdot L(h) = 2 \cdot 2^{h-1} = 2^h$
- Se l'albero sintattico $A(\sigma)$ relativo alla stringa $\sigma \in L$ ha altezza $h(\sigma)$, la lunghezza di σ è allora $|\sigma| \le 2^{h(\sigma)-1}$, e quindi $h(\sigma) \ge 1 + \log_2 |\sigma|$
- Se σ è una stringa sufficientemente lunga (in questo caso, $|\sigma| > 2^{|V_N|-1}$), ne risulta che $h(\sigma) \ge 1 + \log_2 |\sigma| > |V_N|$
- Quindi, se $|\sigma| > 2^{|V_N|-1}$ esiste almeno un cammino c dalla radice ad una foglia di $A(\sigma)$ che attraversa almeno $|V_N|+1$ nodi interni

- I nodi interni di $A(\sigma)$ sono etichettati da simboli non terminali (le parti sinistre della produzioni nella derivazione di σ)
- Dato che i simboli non terminali sono $|V_N|$ mentre i nodi interni in c sono più di $|V_N|$, deve esistere (per il pigeonhole principle) un simbolo non terminale A che compare in due diversi nodi di c
- Di questi due nodi, indichiamo con r il nodo più vicino alla radice e con s il nodo associato ad A più vicino alla foglia
- Indichiamo con $r(\sigma)$ e $s(\sigma)$ le sottostringhe di σ corrispondenti alle foglie dei due sottoalberi $R(\sigma)$, $S(\sigma)$ di $A(\sigma)$ aventi radice r e s
- Dato che s è un discendente di r, necessariamente $s(\sigma)$ è una sottostringa di $r(\sigma)$, per cui esistono due sottostringhe di v, x di σ tali che $r(\sigma) = v \cdot s(sigma) \cdot x$

- La grammatica considerata è in CNF, per cui non sono presenti produzioni unitarie (a parte quelle relative alle foglie): di conseguenza, non può essere $s(\sigma) = r(\sigma)$, e quindi |vx| > 1
- Senza perdere generalità, possiamo assumere che $r(\sigma)$ sia il nodo in c più vicino alle foglie per il quale c'è un nodo sottostante $s(\sigma)$ associato allo stesso non terminale: quindi, il cammino più lungo da $r(\sigma)$ ad una foglia attraversa al più $|V_N|$ + 1 nodi interni (esso stesso incluso) .
- Dalle osservazioni precedenti, ne deriva che $r(\sigma)$ ha lunghezza al più $2^{|V_N|+1-1}=2^{|V_N|}$

Poniamo $s(\sigma) = w$ e quindi $r(\sigma) = vwx$.

- Gli alberi $R(\sigma)$ e $S(\sigma)$ possono essere sostituiti (avendo radice corrispondente allo stesso non terminale) l'uno all'altro all'interno di un qualunque albero sintattico
- Quindi, anche la stringa uwy è generata dalla grammatica (sostituendo, in $A(\sigma)$, $S(\sigma)$ a $R(\sigma)$
- Mediante la sostituzione opposta, anche la stringa uvvwxxy risulta generabile.

Pumping lemma

La proprietà mostrata fornisce soltanto una condizione necessaria perché un linguaggio sia context free: non può essere utilizzata per mostrare la non contestualità di un linguaggio, ma solo per dimostrarne la contestualità.

L non contestuale \implies pumping lemma verificato pumping lemma non verificato \implies L non contestuale

Pumping lemma: utilizzo come gioco a due

Se Alice vince sempre questo gioco con Bob, allora L non è CF

- 1. Bob sceglie un intero n > 0
- 2. Alice sceglie una stringa $z \in L$ con |z| > n
- 3. Bob divide z in cinque parti uvwxy con $|vwx| \le n$ e $|vx| \ge 1$
- 4. Alice sceglie un intero $i \ge 0$
- 5. Alice mostra a Bob che $uv^iwx^iy \notin L$

Esempio

$$L = \{a^k b^k c^k | k > 0\}$$
 non è CF

- 1. Bob sceglie un intero n > 0
- 2. Alice sceglie la stringa $a^nb^nc^n \in L$
- 3. Bob divide z in cinque parti uvwxy con $|vwx| \le n$ e $|vx| \ge 1$. vwx o è una sequenza di occorrenze dello stesso simbolo (ad esempio a^h , h > 0) o è composta di due sottosequenze di stessi simboli (ad esempio a^rb^s , r, s > 0). Quindi, almeno uno dei simboli a, b, c non compare in vwx e quindi né in v né in x
- 4. Alice sceglie i = 2
- 5. Alice mostra a Bob che $uv^2wx^2y \notin L$ in quanto almeno un simbolo ha aumentato il numero di occorrenze ed almeno un altro simbolo ha un numero di occorrenze invariato