Introduction à la géométrie de Poisson

Mohamed Boucetta boucetta@fstg-marrakech.ac.ma

University Cadi-Ayyad Marrakech Morocco

E.N.S Rabat 19-23 Novembre 2013

Plan

- Quelques rappels en géométrie différentielle;
- Définition d'une variété de Poisson;
- Théorème de Darboux-Weinstein et feuilletage symplectique;
- Algébroides de Poisson
- Unimodularité des structures de Poisson
- Structures de Poisson linéaires;
- Structures de Poisson invariantes à gauche sur un groupe de Lie;
- Variétés de Riemman-Poisson

Rappels

Soit M une variété lisse de dimension d. On adoptera les notations suivantes :

- 1. $C^{\infty}(M)$ désignera l'algèbre commutative des fonctions C^{∞} à valeurs réels sur M.
- 2. $\mathcal{X}^1(M)$ l'espace des champs de vecteur sur M, c'est-à-dire les sections C^∞ du fibré tangent $p_M:TM\longrightarrow M$. Plus généralement, on notera, pour tout entier $2\leq q\leq d$, $\mathcal{X}^q(M)$ l'espace des champs de multivecteur de degré q, c'est-à-dire, les sections C^∞ du fibré vectoriel $p_M: \wedge^q TM \longrightarrow M$.

Dans un système de coordonnées (x_1, \ldots, x_d) , un champ de multivecteur $Q \in \mathcal{X}^q(M)$ s'écrit

$$Q = \sum_{1 \leq j_1 < \ldots < j_q \leq d} Q_{j_1 \ldots j_q} \partial_{j_1} \wedge \ldots \wedge \partial_{j_q}.$$

On pose
$$\mathcal{X}(M) = C^{\infty}(M) \oplus \mathcal{X}^{1}(M) \oplus \ldots \oplus \mathcal{X}^{d}(M)$$
.

3. Pour tout entier $1 \leq q \leq d$, $\Omega^q(M)$ désignera l'espace des q-formes différentielles sur M. Dans un système de coordonnées (x_1, \ldots, x_d) , une forme différentielle $\alpha \in \Omega^q(M)$ s'écrit

$$\alpha = \sum_{1 \leq j_1 < \ldots < j_q \leq d} \alpha_{j_1 \ldots j_q} dx_{j_1} \wedge \ldots \wedge dx_{j_q},$$

et sa différentielle

$$d\alpha = \sum_{1 \leq j_1 < \ldots < j_q \leq d} d\alpha_{j_1 \ldots j_q} \wedge dx_{j_1} \wedge \ldots \wedge dx_{j_q}.$$

On pose $\Omega(M) = C^{\infty}(M) \oplus \Omega^{1}(M) \oplus \ldots \oplus \Omega^{d}(M)$.

Notons les identifications suivantes qui sont très utiles.

• Pour tout $1 \le q \le d$, $\mathcal{X}^q(M)$ s'identifie à l'espace des applications

$$\overbrace{\Omega^1(M)\times\ldots\times\Omega^1(M)}^q\longrightarrow C^\infty(M)$$

qui sont $C^{\infty}(M)$ -multilinéaires alternées.

② Pour tout $1 \le q \le d$, $\Omega^q(M)$ s'identifie à l'espace des applications

$$\widetilde{\mathcal{X}^1(M) \times \ldots \times \mathcal{X}^1(M)} \longrightarrow C^{\infty}(M)$$

qui sont $C^{\infty}(M)$ -multilinéaires alternées.

Pour tout $Q \in \mathcal{X}^q(M)$ et tout $X \in \mathcal{X}^1(M)$, la dérivée Lie de Q dans la direction X, noté usuellement L_XQ sera noté [X,Q]. Pour tout $\alpha_1,\ldots,\alpha_q\in\Omega^1(M)$,

$$[X, Q](\alpha_1, \ldots, \alpha_q) = X.Q(\alpha_1, \ldots, \alpha_q) - \sum_{i=1}^q Q(\alpha_1, \ldots, L_X \alpha_j, \ldots, \alpha_q).$$

De même, si $\alpha \in \Omega^q(M)$, la dérivée de Lie de α dans la direction de X est donnée, pour tout $X_1, \ldots, X_q \in \mathcal{X}^1(M)$, par

$$L_X\alpha(X_1,\ldots,X_q) = X.\alpha(X_1,\ldots,X_q) - \sum_{q=1}^q \alpha(X_1,\ldots,[X,X_j],\ldots,X_q).$$

La différentielle d s'exprime à l'aide du crochet de Lie, c'est ainsi que pour tout $X_1, \ldots, X_{a+1} \in \mathcal{X}^1(M)$

$$d\alpha(X_{1},...,X_{q+1}) = \sum_{j=1}^{q+1} (-1)^{j-1} X_{j}.\alpha(X_{1},...,\hat{X}_{j},...,X_{q+1}) + \sum_{j=1}^{q+1} (-1)^{j+j} \alpha([X_{i},X_{j}],...,\hat{X}_{i},...,\hat{X}_{j},...,X_{q+1})$$

Noter que si $f \in C^{\infty}(M)$ considérée comme un champ de multivecteur de degré 0 ou comme une forme différentielle de degré 0, on a

$$[X,f]=L_Xf=df(X).$$

Pour tout entier $2 \le q \le d$, un **crochet de Leibniz d'ordre** q **ou multi-dérivation** sur M est une application

$$\overbrace{C^{\infty}(M) \times \ldots \times C^{\infty}(M)}^{q} \longrightarrow C^{\infty}(M) \\
(f_{1}, \ldots, f_{q}) \mapsto \{f_{1}, \ldots, f_{q}\},$$

telle que

- lacktriangle $\{$ $\}$ est ${
 m IR}$ -multilinéaire alternée;
- **②** $\{\ \}$ vérifie la règle de Leibniz, c'est-à-dire, pour tout $f, g, f_2, \ldots, f_q \in C^{\infty}(M)$,

$$\{fg, f_2, \dots, f_q\} = f\{g, f_2, \dots, f_q\} + g\{f, f_2, \dots, f_q\}.$$

On notera $\mathcal{D}^q(M)$ l'espace des crochets de Leibniz d'ordre q sur M.

Proposition.

Pour tout $1 \leq q \leq d$, l'application qui à un champ de multivecteur Q associe le crochet de Leibniz d'ordre q $\{$ $\}$ défini par

$$\{f_1,\ldots,f_q\}=Q(df_1,\ldots,df_q),$$

pour tout $f_1, \ldots, f_q \in C^{\infty}(M)$, réalise une bijection entre $\mathcal{X}^q(M)$ et $\mathcal{D}^q(M)$.

Les crochets d'ordre 2 vérifient une propriété remarquable. En effet, pour tout crochet de Leibniz d'ordre 2, on définit le **Jacobiateur** de { , } comme étant l'application

$$J: C^{\infty}(M) \times C^{\infty}(M) \times C^{\infty}(M) \longrightarrow C^{\infty}(M)$$

par

$$J(f,g,h) = \{f,\{g,h\}\} + \{g,\{h,f\}\} + \{h,\{f,g\}\}.$$

Proposition.

Le Jacobiateur est un crochet de Leibniz d'ordre 3.

Preuve. On a

$$J(f_1f_2, g, h) = \{f_1f_2, \{g, h\}\} + \{g, \{h, f_1f_2\}\} + \{h, \{f_1f_2, g\}\}$$

$$= f_1\{f_2, \{g, h\}\} + f_2\{f_1, \{g, h\}\} + \{g, f_1\{h, f_2\}\}$$

$$+ \{g, f_2\{h, f_1\}\} + \{h, f_1\{f_2, g\}\} + \{h, f_2\{f_1, g\}\}$$

$$= f_1\{f_2, \{g, h\}\} + f_2\{f_1, \{g, h\}\} + \{g, f_1\}\{h, f_2\}$$

$$+ f_1\{g, \{h, f_2\}\} + \{g, f_2\}\{h, f_1\} + f_2\{g, \{h, f_1\}\}$$

$$+ \{h, f_1\}\{f_2, g\} + f_1\{h, \{f_2, g\}\}$$

$$+ \{h, f_2\}\{f_1, g\} + f_2\{h, \{f_1, g\}\}$$

$$= f_1J(f_2, g, h) + f_2J(f_1, g, h).$$

Noter que si X et Y sont deux champs de vecteurs

$$[X,Y] = -[Y,X] \tag{1}$$

et que les opérateurs L_X , L_Y vérifient

$$L_{[X,Y]} = L_X \circ L_Y - L_Y \circ L_X.$$

Cette formule appliquée pour $Q \in \mathcal{X}^q(M)$ donne

$$[[X, Y], Q] = [X, [Y, Q]] - [Y, [X, Q]].$$
 (2)

Théorème.

(Schouten-Nijenhuis) Il existe sur $\mathcal{X}(M)$ un crochet $[\ ,\]$ appelé crochet de Schouten-Nijenhuis vérifiant :

- **1** [*A*, *B*] ∈ \mathcal{X}^{a+b-1} .
- $(A, B] = -(-1)^{(a-1)(b-1)}[B, A].$
- $[A, B \wedge C] = [A, B] \wedge C + (-1)^{(a-1)b} B \wedge [A, C], \text{ et } [A \wedge B, C] = A \wedge [B, C] + (-1)^{(c-1)b} [A, C] \wedge B.$
- 4

$$(-1)^{(a-1)(c-1)}[A, [B, C]] + (-1)^{(b-1)(a-1)}[B, [C, A]] + (-1)^{(c-1)(b-1)}[C, [A, B]] = 0.$$
 (3)

5 Si $X \in \mathcal{X}^a(M)$, $A \in \mathcal{X}^a(M)$ et $f \in C^{\infty}(M)$, alors

$$[X, A] = L_X A, [X, f] = X(f).$$

Soit $\{\ ,\ \}$ un crochet de Leibniz d'ordre 2 et soit J son Jacobiateur. Soient $A\in\mathcal{X}^2(M)$ et $A_J\in\mathcal{X}^3(M)$ définis par

$$\{f,g\} = A(df,dg)$$
 et $J(f,g,h) = A_J(df,dg,dh)$.

(4)

Proposition.

On a

$$A_J = \frac{1}{2}[A, A].$$

Dans la preuve de la proposition, nous avons établit que si *A* est un champ de bivecteur qui s'écrit

$$A = \sum_{i < i} A_{ij} \partial_i \wedge \partial_j$$

dans un système de coordonnées (x_1, \ldots, x_d) , le crochet de Schouten-Nijenhuis [A, A] s'écrit

$$[A,A] = 2\sum_{m < n < p} \left(\sum_{j} \left(A_{mj} \partial_{j} A_{np} + A_{nj} \partial_{j} A_{pm} + A_{pj} \partial_{j} A_{mn} \right) \right) \partial_{m} \wedge \partial_{n} \wedge \partial_{p}.$$

16

Exercice.

Pour tout champ de multivecteur Q sur une variété M, on notera $\{\ ,\}_Q$ le crochet de Leibniz associé.

Exprimer $\{\ ,\}_{[Q_1,Q_2]}$ en fonction de $\{\ ,\}_{Q_1}$ et $\{\ ,\}_{Q_2}.$

Définition d'une structure de Poisson et premières propriétés

Définition.

Une structure de Poisson sur une variété lisse M est la donnée d'un crochet de Leibniz d'ordre 2 sur M dont le Jacobiateur est nul, c'est-à-dire, la donnée de

$$\{\ ,\ \}:\ C^{\infty}(M)\times C^{\infty}(M) \longrightarrow C^{\infty}(M) \ (f,g) \mapsto \{f,g\}$$

tel que

- { , } est IR-bilinéaire alterné ;
- ② { , } vérifie la règle de Leibniz

$$\{fg,h\} = f\{g,h\} + g\{f,h\}, \quad f,g,h \in C^{\infty}(M);$$

③ { , } vérifie l'identité de Jacobi

$$\{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0,\quad f,g,h\in C^{\infty}(M).$$

Théorème.

La donnée d'une structure de Poisson sur une variété lisse M est équivalente à la donnée d'un champ de bivecteur $\pi \in \mathcal{X}^2(M)$ tel que

$$[\pi,\pi]=0.$$

Un tel champ de bivecteur est dit de Poisson.

Proposition.

Un champ de bivecteur exprimé dans un système de coordonnées (x_1, \ldots, x_d) par

$$\pi = \sum_{i < j} \pi_{ij} \partial_i \wedge \partial_j,$$

où $\pi_{ij} = \{x_i, x_j\} = \pi(dx_i, dx_j)$, est de Poisson si et seulement si

$$\sum_{j=1}^{d} \left(\pi_{mj} \partial_j \pi_{np} + \pi_{nj} \partial_j \pi_{pn} + \pi_{pj} \partial_j \pi_{mn} \right) = 0$$
 (6)

pour tout $1 \le m < n < p \le d$.

Exemple.

• Soit $((a_{ij})_{1 \le i,j \le n}$ une matrice anti-symétrique à coefficients réels. Alors le champ de bivecteur sur \mathbb{R}^n donné par

$$\pi = \sum_{i,j} a_{ij} \partial_i \wedge \partial_j$$

est de Poisson en vertu de (9).

2 Soit X_1, \ldots, X_n une famille de champs de vecteur sur une variété M qui commute deux à deux et soit $((a_{ij})_{1 \le i,j \le n}$ une matrice anti-symétrique à coefficients réels. Alors le champ de bivecteur sur M donné par

$$\pi = \sum_{i,j} a_{ij} X_i \wedge X_j$$

est de Poisson.

Soit (M, π) une variété de Poisson et soit (x_1, \ldots, x_d) un système de coordonnées et

$$\pi = \sum_{i < j} \pi_{ij} \partial_i \wedge \partial_j.$$

Le **crochet de Poisson** de deux fonctions f et g est donné par

$$\{f,g\}=\pi(df,dg)$$

soit, localement

$$\{f,g\} = \sum_{i < i} \pi_{ij} \left(\partial_i f \partial_j g - \partial_i g \partial_j f \right). \tag{7}$$

Le champ de vecteur X_f défini par

$$X_f(g) = \{f, g\}$$

est appelé **champ hamiltonien** associé à f et, localement, X_f s'écrit

$$X_f = \sum_{j=1}^d \left(\sum_{i=1}^d \pi_{ij} \partial_i f \right) \partial_j. \tag{8}$$

On a aussi

$$X_f = -[\pi, f] = -[f, \pi].$$
 (9)

Le champ de bivecteur π définit un morphisme fibré, appelé application d'ancrage,

$$\pi_{\#}:T^{*}M\longrightarrow TM$$

par

$$\beta(\pi_{\#}(\alpha)) = -\alpha(\pi_{\#}(\beta)) = \pi(\alpha, \beta), \quad \alpha, \beta \in T^*M.$$

Noter que $X_f = \pi_\#(df)$. On a, pour tout $1 \le i \le d$,

$$\pi_{\#}(dx_i) = \sum_{i=1}^d \pi_{ij} \partial_j. \tag{10}$$

Le rang de l'application linéaire $\pi_{\#}(p): T_p^*M \longrightarrow T_pM$ est appelé **rang de** π au point $p \in M$.

En vertu de (13), c'est le rang de la matrice anti-symétrique

$$(\pi_{ij}(p))_{1\leq i\leq j\leq d}$$

et il est donc pair.

L'ensemble des points de M où le rang est localement constant est un ouvert dense de M, appelé **ouvert régulier**, et noté M^{reg} . Un point de M^{reg} est dit **régulier** alors qu'un point dans $M \setminus M^{reg}$ est dit **singulier**

 $\phi: (M_1, \{\ ,\ \}_1) \longrightarrow (M_2, \{\ ,\ \}_2)$ est un **morphisme de Poisson** si $\phi^*: C^{\infty}(M_2) \longrightarrow C^{\infty}(M_1)$ est un morphisme d'algèbres de Lie, c'est-à-dire,

$$\{\phi^*f,\phi^*g\}_1=\phi^*\{f,g\}_2 \qquad \forall f,g\in C^\infty(M_2).$$

En notant, π_1 et π_2 les champs de bivecteur associés, respectivement, à $\{\ ,\ \}_1$ et $\{\ ,\ \}_2$, on a

$$(\phi_*\pi_1)=\pi_2\circ\phi.$$

Un champ de vecteurs X sur une variété de Poisson (M, π) est dit **champ de Poisson** si son flot présérve π , c'est-à-dire,

$$[X,\pi] = 0.$$

Proposition.

Soit (M, π) une variété de Poisson. Alors :

- Tout champ de vecteurs hamiltonien est un champ de Poisson.
- 2 Pour tout couple de fonctions f, g et tout champ de Poisson Y, on a

$$[X_f, X_g] = X_{\{f,g\}},$$
 (11)

$$[Y, X_f] = X_{Y(f)}. (12)$$

Exemple.

Soit f une fonction lisse sur \mathbb{R}^3 . On définit le champ de bivecteur π_f par

$$\pi_f = \frac{\partial f}{\partial x} \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial}{\partial z} \wedge \frac{\partial}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}.$$

Exercice.

Montrer que le champ de bivecteur $\partial_x \wedge (\partial_y + x \partial_z)$ sur \mathbb{R}^3 n'est pas de Poisson.

Exercice.

Reprendre le tensor de Poisson défini dans l'exemple 2.2 Montrer que $X_f = 0$.

Exercice.

Reprendre le tensor de Poisson défini dans l'exemple 2.2 avec $f = \frac{1}{2}(x^2 + y^2 + z^2)$. Montrer qu'il existe un système de coordonnées (u, v, w) au voisinage de (0, 0, 0) tel que

$$\{u, v\} = a_1 u + b_1 v + c_1 w, \ \{u, w\} = a_2 u + b_2 v + c_2 w,$$

 $\{v, w\} = a_3 u + b_3 v + c_3 w,$

où les a_i , b_i , c_i sont des constantes.

Théorème de Darboux-Weinstein et feuilletage symplectique

Théorème.

Soit (M, π) une variété de Poisson et soit $p \in M$ où le rang de π est 2r. Alors il existe un système de coordonnées $(q_1, \ldots, q_r, p_1, \ldots, p_r, y_1, \ldots, y_l)$ centré en p et tel que

$$\pi = \sum_{i=1}^{r} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i} + \sum_{i < j} \pi_{ij}(y_1, \dots, y_l) \frac{\partial}{\partial y_i} \wedge \frac{\partial}{\partial y_j},$$

avec

$$\pi_{ij}(p) = 0$$
 pour $i, j = 1, \dots, I$.

Ces coordonnées sont appelées coordonnées de Darboux-Weinstein.

Corollaire.

Soit (M, π) une variété de Poisson et soit $p \in M$ un point régulier où le rang de π est 2r. Alors il existe un système de coordonnées $(q_1, \ldots, q_r, p_1, \ldots, p_r, y_1, \ldots, y_l)$ centré en p et tel que

$$\pi = \sum_{i=1}^{r} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}.$$

Soit (M, π) une variété de Poisson telle que le rang de π est égale à la dimension de M partout. Alors $\pi_{\#}: T^*M \longrightarrow TM$ est un isomorphisme fibré et on peut alors définir la 2-forme ω par

$$\omega(u, v) = \pi(\pi_{\#}^{-1}(u), \pi_{\#}^{-1}(v)). \tag{13}$$

On obtient ainsi une 2-forme différentielle non dégénérée par construction. D'un autre côté, si $p \in M$, il existe, d'après Corollaire 3.1, un système de coordonnées $(q_1, p_1, \dots, q_d, p_d)$ tel que

$$\pi = \sum_{i=1}^{d} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}.$$

Ainsi, pour
$$i = 1, \ldots, d$$
,

$$\pi_{\#}(dq_i) = \frac{\partial}{\partial p_i} \quad \text{et} \quad \pi_{\#}(dp_i) = -\frac{\partial}{\partial a_i}.$$
 (14)

On déduit alors que

On déduit alors que
$$\omega = \sum_{i=1}^{d} da_{i} \wedge dp_{i}.$$
 35

Inversement, étant donné une 2-forme symplectique ω sur une variété lisse M. L'application $\omega^{\flat}: TM \longrightarrow T^*M$ qui à $v \mapsto \omega(v,.)$ est un isomorphisme fibré et on peut donc définir le champ de bivecteur π par

$$\pi(\alpha,\beta) = \omega(\omega^{\flat^{-1}}(\alpha),\omega^{\flat^{-1}}(\beta)). \tag{16}$$

Proposition.

Soit (M, ω) une variété symplectique. Alors le champ de bivecteur π défini par (19) est de Poisson.

Théorème.

(Théorème de Darboux) Soit (M, ω) une variété symplectique de dimension 2r et soit $p \in M$. Alors il existe un système de coordonnées $(q_1, p_1, \ldots, q_r, p_r)$ centré en p tel que

$$\omega = \sum_{i=1}^r dq_i \wedge dp_i.$$

Définition.

Un feuilletage singulier au sens de Stefan-Sussmann sur une variété lisse M de dimension d est une partition $\mathcal{F} = \{\mathcal{F}_{\alpha}\}_{(\alpha \in I)}$ de M en sous-variétés immergées et connexes \mathcal{F}_{α} , appelées feuilles, qui vérifie la propriété suivante :

• pour tout point $p \in M$, si \mathcal{F}_p est la feuille contenant p et r sa dimension, alors, il existe un système de coordonnées (y_1, \ldots, y_d) sur un ouvert U contenant p tels que la composante connexe de $U \cap \mathcal{F}_p$ contenant p est égale à $\{y_{r+1} = 0 \ldots = y_d = 0\}$ et, pour toute famille de constantes (c_{r+1}, \ldots, c_d) , la sous-variété $\{y_{r+1} = c_{r+1}, \ldots, y_d = c_d\}$ est contenue dans une feuille \mathcal{F}_α de \mathcal{F} .

Considérons maintenant une variété de Poisson (M, π) . On dira que deux points $p, q \in M$ sont en relation s'il existe une famille de fonctions f_1, \ldots, f_s sur M telle que

$$q = \phi_{t_1}^1 \circ \ldots \circ \phi_{t_s}^s(p),$$

où $\phi_{t_1}^1,\ldots,\phi_{t_s}^s$ sont, respectivement, les flots des champs hamiltoniens X_{f_1},\ldots,X_{f_s} . On obtient ainsi une relation d'équivalence \sim sur M et on notera $(\mathcal{S}_{\alpha})_{(\alpha\in I)}$ la répartition de M en classes d'équivalence de \sim .

Théorème.

Soit (M, π) une variété de Poisson et soit $(S_{\alpha})_{(\alpha \in I)}$ la répartition définie ci-dessus. Alors :

- pour tout $\alpha \in I$, S_{α} est une sous-variété immergée de M de dimension $2r_{\alpha}$ et, pour tout $p \in S_{\alpha}$, $T_{p}S_{\alpha} = Im\pi_{\#}(p)$;
- ② pour tout $\alpha \in I$, S_{α} admet une forme symplectique ω_{α} telle que $i : S_{\alpha} \hookrightarrow M$ est un morphisme de Poisson;
- **3** $(S_{\alpha})_{(\alpha \in I)}$ est un feuilletage singulier au sens de Stefan-Sussmann.

Algèbroides de Poisson

Soit (M, π) une variété de Poisson. Le **crochet de Koszul** associé à π est le crochet $[\ ,\]_{\pi}$ défini sur $\Omega^1(M)$ par

$$[\alpha, \beta]_{\pi} = L_{\pi_{\#}(\alpha)}\beta - L_{\pi_{\#}(\beta)}\alpha - d\pi(\alpha, \beta), \quad \alpha, \beta \in \Omega^{1}(M).$$
(17)

Soit (M, π) une variété de Poisson. Alors le crochet de Koszul vérifie les propriétés suivantes :

- ① $[,]_{\pi}$ est \mathbb{R} -bilinéaire anti-symétrique et $[df,dg]_{\pi}=d\{f,g\}$ pour tout $f,g\in C^{\infty}(M)$.
- ② $[\alpha, f\beta]_{\pi} = \pi_{\#}(\alpha)(f)\beta + f[\alpha, \beta]_{\pi}, \ \alpha, \beta \in \Omega^{1}(M)$ et $f \in C^{\infty}(M)$.
- lacktriangle [,] $_{\pi}$ vérifie l'identité de Jacobi, c'est-à-dire,

$$[[\alpha, \beta]_{\pi}, \gamma]_{\pi} + [[\beta, \gamma]_{\pi}, \alpha]_{\pi} + [[\gamma, \alpha]_{\pi}, \beta]_{\pi} = 0.$$

Soit (M,π) une variété de Poisson. Le crochet de Koszul et l'application d'ancrage permettent de définir, pour tout $0 \le q \le d$, une différentielle

$$d_{\pi}: \mathcal{X}^q(M) \longrightarrow \mathcal{X}^{q+1}(M),$$

et ce en copiant la formule (3) donnant la différentielle usuelles sur les formes, c'est-à-dire, pour $Q \in \mathcal{X}^q(M)$ et $\alpha_1, \ldots, \alpha_{q+1} \in \Omega^1(M)$,

$$d_{\pi}Q(\alpha_{1},...,\alpha_{q+1}) = \sum_{j=1}^{q+1} (-1)^{j-1} \pi_{\#}(\alpha_{j}).Q(\alpha_{1},...,\hat{\alpha}_{j},...,\alpha_{q+1}) + \sum_{i < j} (-1)^{i+j} Q([\alpha_{i},\alpha_{j}]_{\pi},\alpha_{1},...,\hat{\alpha}_{i},...,\hat{\alpha}_{j},...,\alpha_{q+1})$$

• Pour tout $Q \in \mathcal{X}(M)$,

$$d_{\pi}Q = -[\pi, Q]. \tag{19}$$

Les espaces de cohomologie

$$H^q_{\pi}(M) = \frac{Kerd_{\pi}}{Imd_{\pi}}$$

sont appelés espaces de cohomologie de Poisson.

Unimodularité des structures de Poisson

Soit (M,π) une variété différentiable orientable et μ une forme volume sur M. Rappelons que la divergence d'un champ de vecteur X par rapport à μ est la fonction $div_{\mu}X$ définie par

$$L_X\mu = (div_\mu X)\mu.$$

 $div_{\mu}([X, Y]) = X(div_{\mu}Y) - Y(div_{\mu}X),$

 $div_{\mu}(fX) = X(f) + fdiv_{\mu}X.$

 $div_{f\mu}X = X(\ln f) + div_{\mu}X.$

$$\epsilon_{\mu}X = X(\ln f) + div_{\mu}X.$$

46

(20)

(22)

Pour toute fonction f sur M, posons

$$X_{\mu}(f) = div_{\mu}X_{f}$$
.

Proposition.

- X_{μ} est un champ de Poisson sur M.
- 2 Pour toute fonction f > 0, on a

$$X_{f\mu} = -X_{\ln f} + X_{\mu}. \tag{23}$$

Dans la cohomologie de Poisson, la classe de cohomologie de X_{μ} ne dépend pas du volume choisi et définit donc une classe $\mathcal{M} \in H^1_{\pi}(M)$ appelée classe modulaire de π . La structure de Poisson est dite unimodulaire si $\mathcal{M} = 0$.

Proposition.

Soit (M, π) une variété de Poisson orientable. Alors les propriétés suivantes sont équivalentes.

- **1** (M, π) est unimodulaire.
- ② Il existe une forme volume μ sur M telle que, pour tout $f \in C^{\infty}(M)$,

$$L_{X_{\epsilon}}\mu=0.$$

Une structure de Poisson non nulle sur une variété de dimension 2 est unimodulaire si et seulement si elle est symplectique.

Proposition.

Soient M une variété de dimension 3, μ une forme volume sur M et α une 1-forme fermée sur M. Alors la relation

$$i_{\pi}\mu = \alpha$$

définit un champ de bivecteur de Poisson unimodulaire sur M.

Structures de Poisson linéaires

Soit V un \mathbb{R} -espace vectoriel de dimension finie n. Une structure de Poisson sur V est dite linéaire si le crochet de deux formes linéaires sur V et une forme linéaire sur V. Ainsi V^* munie du crochet de Poisson devient une algèbre de Lie de dimension finie.

Inversement, soit $(\mathcal{G},[\;,\;])$ une algèbre de Lie réelle de dimension finie n. L'espace \mathcal{G}^{**} bidual de \mathcal{G} s'identifie naturellement à \mathcal{G} et hérite donc d'une structure d'algèbre de Lie dont le crochet sera noté de la même manière que celui de \mathcal{G} . On obtient ainsi un crochet sur les formes linéaires de \mathcal{G}^* qui se prolonge à tout $C^\infty(\mathcal{G}^*)$ de la manière suivante. Pour tout couple $f,g\in C^\infty(\mathcal{G}^*)$ le crochet $\{f,g\}$ est définie par

$$\{f,g\}(\alpha) = <\alpha, [d_{\alpha}f, d_{\alpha}g]>, \quad \alpha \in \mathcal{G}^*.$$

Le crochet définit ci-dessus munit \mathcal{G}^* d'une structure de Poisson linéaire appelée structure de Lie-Poisson associée à $(\mathcal{G},[\;,\;])$.

Soit G un groupe de Lie connexe et $\mathcal{G}=\mathcal{T}_eG$ son algèbre de Lie. La représentation adjointe de G dans \mathcal{G} est l'endomorphisme de goupes

$$Ad: G \longrightarrow GL(\mathcal{G})$$

défini par

$$Ad_g u = rac{d}{dt}_{|t=0} gexp(tu)g^{-1}, \quad g \in G, u \in \mathcal{G}.$$

Sa différentielle à l'élement neutre définit une répresentation $\mathit{ad}: \mathcal{G} \longrightarrow \mathcal{G}\mathit{I}(\mathcal{G})$

donnée par
$$ad_{u}v = [u, v], \quad u, v \in \mathcal{G}.$$

Par dualité, on obtient les reprséntations coadjointes respectivement de G et de $\mathcal G$ à savoir

.
$$Ad^*: G \longrightarrow GL(\mathcal{G}^*)$$

définie par

$$\Lambda d^* \alpha = \Lambda d + \alpha 53 \pi \in C \quad \alpha \in C^*$$

• Pour tout $u \in \mathcal{G}$, le champ hamiltonien de la fonction de $\mathcal{G}^* \longrightarrow \mathbb{R}$ qui à $\alpha \mapsto \alpha(u)$, noté X_u , est donnée par

$$X_u(\alpha) = ad_u^*\alpha, \quad \alpha \in \mathcal{G}^*;$$
 (24)

et $Im\pi_{\#}^{I}(\alpha) = \{X_{u}(\alpha), u \in \mathcal{G}\}.$

 $m{Q}$ $\pi_\#^l: T^*\mathcal{G}^*=\mathcal{G}^* imes\mathcal{G}\longrightarrow T\mathcal{G}^*=\mathcal{G}^* imes\mathcal{G}^*$ est donné par

$$\pi'_{\#}(\alpha, \mathbf{u}) = (\alpha, \mathbf{ad}_{\mathbf{u}}^* \alpha).$$

• Le rang de π^l en un point $\alpha \in \mathcal{G}^*$ est égale à $\dim \mathcal{G} - \dim \mathcal{G}_{\alpha}$, en particulier, le rang de π^l à l'origine est nul.

Théorème.

Soit G un groupe de Lie connexe et soit G son algèbre de Lie. Alors les feuilles symplectiques de la structure de Lie-Poisson sur G^* coincident avec les orbites de la représentation coadjointe de G.

Structures de Poisson invariantes à gauche sur un groupe de Lie

Soit G un groupe de Lie connexe d'élément neutre e et de dimension n et soit $\mathcal{G}=T_eG$ son algèbre de Lie. Notons $\mathcal{X}^I(G)$ l'espace des champs de multivecteur invariant à gauche, c'est-à-dire, l'ensemble des champs de multivecteur Q tels que, pour tout $a\in G$,

$$L_{a*}Q=Q$$
.

où $L_a: G \longrightarrow G$ est la translation à gauche définie par $L_a(b) = ab$. D'une manière équivalente, $Q \in \mathcal{X}^l(G)$ si et seulement si, pour tout champ de vecteur invariant à droite,

$$[X, Q] = 0.$$

Puisque

$$[X, [Q_1, Q_2]] + [Q_1, [Q_2, X]] + (-1)^{(degQ_1-1)(degQ_2-1)}[Q_2, [X, Q_1]] = 0,$$

on déduit que le crochet de Shouten-Nijenhuis de deux champs de multivecteur invariants à gauche est invariant à gauche. D'un autre côté, l'application de

 $\mathcal{X}^{l}(G) \longrightarrow \wedge^{*}\mathcal{G} = \bigoplus_{k=0}^{n} \wedge^{k} \mathcal{G}$ qui à $Q \mapsto Q(e)$ est un isomorphisme. L'image réciprogne d'un élément $q \in \wedge^{*}\mathcal{G}$ sera

Lemma.

Etant donné une algèbre de Lie \mathcal{G} sur \mathbb{R} , il existe un unique crochet sur $\wedge^*\mathcal{G}$ qui étend le crochet d'algèbre de Lie sur \mathcal{G} et qui vérifie les propriétés suivantes :

- **1** Si $A \in \wedge^a \mathcal{G}$ et $B \in \wedge^b \mathcal{G}$ alors $[A, B] \in \wedge^{a+b-1} \mathcal{G}$.
 - 2 L'anti-commutativité graduée : si $A \in \wedge^a \mathcal{G}$ et $B \in \wedge^b \mathcal{G}$ alors

$$[A, B] = -(-1)^{(a-1)(b-1)}[B, A].$$

1 La régle de Leibniz graduée : si $A \in \wedge^a \mathcal{G}$, $B \in \wedge^b \mathcal{G}$ et $C \in \wedge^c \mathcal{G}$ alors

(25)

- $[A, B \wedge C] = [A, B] \wedge C + (-1)^{(a-1)b} B \wedge [A, C],$ (26) $[A \wedge B, C] = A \wedge [B, C] + (-1)^{(c-1)b} [A, C] \wedge B.$ (27)
- **1** L'identité de Jacobi graduée : si $A \in \wedge^a \mathcal{G}$, $B \in \wedge^b \mathcal{G}$ et $C \in \wedge^c \mathcal{G}$ alors

nul.

Une structure de Poisson invariante à gauche sur G est la donnée d'un champ de bivecteur π sur G invariant à gauche et tel que $[\pi,\pi]=0$. En vertu de ce qui prècède, ceci équivaut à la donnée d'un $r\in \wedge^2 \mathcal{G}$ tel que

$$[r,r]=0. (29)$$

Les éléments de $\wedge^2 \mathcal{G}$ vérifiant (39) sont appelés solutions de **l'équation de Yang-Baxter classique**.

Dans tout ce qui suit, pour tout $r \in \wedge^2 \mathcal{G}$, on notera

$$r: \mathcal{G}^* \longrightarrow \mathcal{G}$$

l'application définie par

$$\beta(r(\alpha)) = -\alpha(r(\beta)) = r(\alpha, \beta), \quad \alpha, \beta \in \mathcal{G}^*$$

et S_r le sous-espace vectoriel de G image de r.

Lemma.

Soit \mathcal{G} une algèbre de Lie et $r \in \wedge^2 \mathcal{G}$. Alors, pour tout $\alpha, \beta, \gamma \in \mathcal{G}^*$,

$$[r,r](\alpha,\beta,\gamma) = -2 \oint \alpha ([r(\beta),r(\gamma)]).$$

(30)

Soit \mathcal{G} une algèbre de Lie et $r \in \wedge^2 \mathcal{G}$. Définissons sur \mathcal{S}_r la 2-forme ω_r par

$$\omega_r(u, v) = r(\alpha, \beta),$$

où $u = r(\alpha)$ et $v = r(\beta)$. Il est clair que ω_r est bien définie et non dégénérée. C'est une forme symplectique sur \mathcal{S}_r . Inversement, étant donné un sous-espace vectoriel symplectique (\mathcal{S}, ω) de \mathcal{G} . La forme symplectique ω définit un isomorphisme $\omega^{\flat}: \mathcal{S}^* \longrightarrow \mathcal{S}$. L'application

$$r: \mathcal{G}^* \xrightarrow{i^*} \mathcal{S}^* \xrightarrow{\omega^{\flat}} \mathcal{S} \xrightarrow{i} \mathcal{G}$$

définit un élément $r \in \wedge^2 \mathcal{G}$ tel que $(\mathcal{S}_r, \omega_r) = (\mathcal{S}, \omega)$. Il y a donc une correspondance biunivoque entre les éléments de $\wedge^2 \mathcal{G}$ et les sous-espaces vectoriels symplectiques de \mathcal{G} . D'un autre côté, tout élément $r \in \wedge^2 \mathcal{G}$ définit un crochet $[\ ,\]_r$ sur \mathcal{G}^* par

$$[\alpha, \beta]_r = ad_{r(\beta)}^* \alpha - ad_{r(\alpha)}^* \beta, \quad \alpha, \beta \in \mathcal{G}^*.$$

Soit \mathcal{G} une algèbre de Lie et soit $r \in \wedge^2 \mathcal{G}$. Alors, les propriétés suivantes sont équivalentes :

- 1 r vérifie l'équation de Yang-Baxter classique.
- \mathcal{S}_r est une sous-algèbre de Lie de \mathcal{G} et, pour tout $u,v,w\in\mathcal{S}_r$,

$$\omega_r([u, v], w) + \omega([v, w], u) + \omega([w, u], v) = 0.$$
 (31)

En plus, si l'une des conditions est vérifiée alors $(\mathcal{G}^*,[\ ,\]_r)$ est une algèbre de Lie et $r:\mathcal{G}^*\longrightarrow\mathcal{G}$ est un morphisme d'algèbre de Lie.

Soit G un groupe de Lie connexe, soit G son algèbre de Lie et $r \in \wedge^2 G$ une solution de l'équation de Yang-Baxter classique. Notons S_r le sous-groupe connexe de G d'algèbre de Lie S_r . Alors :

- Le rang de r^l est constant égale à dim S_r et S_r est la feuille symplectique de r^l passant par l'élément neutre.
- 2 L'adhérence \bar{S}_r hérite d'une structure de Poisson invariante à gauche tel que $i:\bar{S}_r\longrightarrow G$ est un morphisme de Poisson et dont toutes les feuilles symplectiques sont denses.
- **1** Les fibres de la fibration $G \longrightarrow G/\overline{S}_r$ sont des sous-variétés de Poisson de G dont les feuilles symplectiques sont denses.

Lemma.

Soit $(G, <, >, \omega)$ une algèbre de Lie munie d'un produit scalaire bi-invariant et d'une forme symplectique telle que

$$\omega([u,v],w) + \omega([v,w],u) + \omega([w,u],v) = 0.$$

Alors G est abélienne.

Corollaire.

Soit G un groupe de Lie compact et G son algèbre de Lie. Alors il y a une correspondance biunivoque entre les solutions de l'équation de Yang-Baxter classique sur G et les sous-algèbres abéliennes de dimension paire de G.

Algèbroide de Lie d'une variété de Poisson

Soit (M, π) une variété de Poisson. Le **crochet de Koszul** associé à π est le crochet $[\ ,\]_{\pi}$ défini sur $\Omega^1(M)$ par

$$[\alpha, \beta]_{\pi} = L_{\pi_{\#}(\alpha)}\beta - L_{\pi_{\#}(\beta)}\alpha - d\pi(\alpha, \beta), \quad \alpha, \beta \in \Omega^{1}(M).$$
(32)

Soit (M, π) une variété de Poisson. Alors le crochet de Koszul vérifie les propriétés suivantes :

- $\mathbf{0}$ [,]_{π} est \mathbb{R} -bilinéaire anti-symétrique,
- $(\alpha, f\beta]_{\pi} = \pi_{\#}(\alpha)(f)\beta + f[\alpha, \beta]_{\pi}, \ \alpha, \beta \in \Omega^{1}(M) \text{ et } f \in C^{\infty}(M).$

$$[[\alpha, \beta]_{\pi}, \gamma]_{\pi} + [[\beta, \gamma]_{\pi}, \alpha]_{\pi} + [[\gamma, \alpha]_{\pi}, \beta]_{\pi} = 0.$$

Un algèbroide de Lie au dessus d'une variété M est la donnée d'un fibré vectoriel $p:A\longrightarrow M$, d'un morphisme de fibré $\#:A\longrightarrow TM$ (ancre) et un crochet $[\ ,\]_A$ sur $\Gamma(A)$ tels que :

Un algèbroide de Lie au dessus d'une variété M est la donnée d'un fibré vectoriel $p:A\longrightarrow M$, d'un morphisme de fibré $\#:A\longrightarrow TM$ (ancre) et un crochet $[\ ,\]_A$ sur $\Gamma(A)$ tels que :

• $(\Gamma(A), [,]_A)$ est une algèbre de Lie (de dimension infinie),

69

Un algèbroide de Lie au dessus d'une variété M est la donnée d'un fibré vectoriel $p: A \longrightarrow M$, d'un morphisme de fibré $\#: A \longrightarrow TM$ (ancre) et un crochet $[\ ,\]_A$ sur $\Gamma(A)$ tels que :

- $(\Gamma(A), [,]_A)$ est une algèbre de Lie (de dimension infinie),
- ② pour tous $a, b \in \Gamma(A)$, $f \in C^{\infty}(M)$,

$$[a, fb]_A = f[a, b]_A + \#(a)(f)b$$
. (Identity de Leibniz)

\$.

Un algèbroide de Lie au dessus d'une variété M est la donnée d'un fibré vectoriel $p:A\longrightarrow M$, d'un morphisme de fibré

- $\#: A \longrightarrow TM$ (ancre) et un crochet $[,]_A$ sur $\Gamma(A)$ tels que :
 - $(\Gamma(A), [\ ,\]_A)$ est une algèbre de Lie (de dimension infinie), • pour tous $a, b \in \Gamma(A), f \in C^{\infty}(M),$

$$[a, fb]_A = f[a, b]_A + \#(a)(f)b$$
. (Identity de Leibniz)

Comme conséquence, on aura $\#: \Gamma(A) \longrightarrow \mathcal{X}^1(M)$ est un morphisme d'algèbre de Lie, i.e.,

$$\#([a,b]_A) = [\#(a), \#(b)], \quad a,b \in \Gamma(A).$$

\$.

 $(TM, M, [,], Id_{TM})$ est un algèbroide de Lie.

å.

 $(TM, M, [,], Id_{TM})$ est un algèbroide de Lie.

Proposition.

Soit (M, π) une variété de Poisson. Alors $(T^*M, M, \pi_\#, [\ ,\]_\pi)$ est un algèbroide de Lie.

Soit (M, π) une variété de Poisson.

Soit (M, π) une variété de Poisson. Une connexion contravariante sur M est une application

$$\mathcal{D}:\Omega^1(M)\times\Omega^1(M)\longrightarrow\Omega^1(M)$$

telle que, pour tous $\alpha, \beta \in \Omega^1(M)$ et $f \in C^{\infty}(M)$

Soit (M, π) une variété de Poisson. Une connexion contravariante sur M est une application

$$\mathcal{D}:\Omega^1(M)\times\Omega^1(M)\longrightarrow\Omega^1(M)$$

telle que, pour tous $\alpha, \beta \in \Omega^1(M)$ et $f \in C^{\infty}(M)$

• D est IR-bilinéaire,

Soit (M, π) une variété de Poisson. Une connexion contravariante sur M est une application

$$\mathcal{D}:\Omega^1(M)\times\Omega^1(M)\longrightarrow\Omega^1(M)$$

telle que, pour tous $\alpha, \beta \in \Omega^1(M)$ et $f \in C^{\infty}(M)$

- D est IR-bilinéaire,

Soit (M, π) une variété de Poisson. Une connexion contravariante sur M est une application

$$\mathcal{D}:\Omega^1(M)\times\Omega^1(M)\longrightarrow\Omega^1(M)$$

telle que, pour tous $\alpha, \beta \in \Omega^1(M)$ et $f \in C^{\infty}(M)$

- D est IR-bilinéaire,

Compatibilités entre une métrique riemannienne et un tenseur de Poisson

Soit (M, π, g) une variété munie d'un tenseur de Poisson et d'une métrique riemannienne.

Compatibilités entre une métrique riemannienne et un tenseur de Poisson

*

Soit (M, π, g) une variété munie d'un tenseur de Poisson et d'une métrique riemannienne.

Théorème. (Théorème fondamental de la géométrie riemannienne :Connexion de Levi-Civita)

Il existe sur M une connexion covariante ∇ telle que, pour $X, Y, Z \in \mathcal{X}^1(M)$,

En plus, ∇ est donnée par la formule de Koszul :

$$2g(\nabla_X Y, Z) = X.g(Y, Z) + Y.g(X, Z) - Z.g(X, Y) + g([X, Y], Z) + g([Z, X], Y) + g([Z, Y], X).$$

.

On peut dire que (π,g) sont compatibles si

 $\nabla \pi = 0$.

On peut dire que (π, g) sont compatibles si

$$\nabla \pi = 0$$
.

Cette notion de compatibilité est très forte et implique que le rang de π est constant ce qui exclut beaucoup de classes de variétés de Poisson.

Soit (M, π, g) une variété munie d'un tenseur de Poisson et d'une métrique riemannienne.

&.

Soit (M, π, g) une variété munie d'un tenseur de Poisson et d'une métrique riemannienne.

Théorème. (Théorème fondamental de la géométrie de Riemann-Poisson :Connexion de Levi-Civita contravariante)

Il existe sur M une connexion contravariante \mathcal{D} telle que, pour $\alpha, \beta, \gamma \in \Omega^1(M)$,

En plus, ∇ est donnée par la formule de Koszul :

$$2g^{*}(\mathcal{D}_{\alpha}\beta,\gamma) = \pi_{\#}(\alpha).g^{*}(\beta,\gamma) + \pi_{\#}(\beta).g^{*}(\alpha,\gamma) - \pi_{\#}(\gamma).g^{*}(\alpha,\beta) + g^{*}([\alpha,\beta]_{\pi},\gamma) + g^{*}([\gamma,\alpha]_{\pi},\beta) + g^{*}([\gamma,\beta]_{\pi},\alpha),$$

$$g^{*}(df,dh) = g(\nabla f,\nabla h).$$

Variétés de Riemann-Poisson

Soit (M, π, g) une variété munie d'un tenseur de Poisson et d'une métrique riemannienne.

Variétés de Riemann-Poisson

Soit (M, π, g) une variété munie d'un tenseur de Poisson et d'une métrique riemannienne.

On dira que (M, π, g) est de Riemann-Poisson si

$$\mathcal{D}_{\alpha}\pi(\beta,\gamma) := \pi_{\#}(\alpha).\pi(\beta,\gamma) - \pi(\mathcal{D}_{\alpha}\beta,\gamma) - \pi(\beta,\mathcal{D}_{\alpha}\gamma) = 0,$$

où $\mathcal D$ est la connexion de Levi-Civita contravariante associée à (π,g) .

Soit (M, π, g) une variété de Riemann-Poisson et $S \subset M$ une feuille symplectique et ω_S sa forme symplectique.

Soit (M, π, g) une variété de Riemann-Poisson et $S \subset M$ une feuille symplectique et ω_S sa forme symplectique.

Pour tout $x \in S$, posons $\mathfrak{g}_x = \ker \pi_\#(x)$. On a

$$T_x^*M = \mathfrak{g}_x \oplus \mathfrak{g}_x^{\perp}, \quad T_xS = \{\pi_{\#}(\alpha), \alpha \in \mathfrak{g}_x^{\perp}\}.$$

Soit (M, π, g) une variété de Riemann-Poisson et $S \subset M$ une feuille symplectique et ω_S sa forme symplectique. Pour tout $x \in S$, posons $\mathfrak{g}_x = \ker \pi_\#(x)$. On a

$$T_x^*M = \mathfrak{g}_x \oplus \mathfrak{g}_x^{\perp}, \quad T_xS = \{\pi_{\#}(\alpha), \alpha \in \mathfrak{g}_x^{\perp}\}.$$

Posons

$$g_S(\pi_\#(\alpha), \pi_\#(\beta)) = g^*(\alpha, \beta),$$

 $\omega_S(\pi_\#(\alpha), \pi_\#(\beta)) = g_S(A\pi_\#(\alpha), \pi_\#(\beta)) \quad \alpha, \beta \in \mathfrak{g}_x^{\perp}.$

Soit (M, π, g) une variété de Riemann-Poisson et $S \subset M$ une feuille symplectique et ω_S sa forme symplectique. Pour tout $x \in S$, posons $\mathfrak{g}_x = \ker \pi_\#(x)$. On a

$$T_x^*M = \mathfrak{g}_x \oplus \mathfrak{g}_x^{\perp}, \quad T_xS = \{\pi_{\#}(\alpha), \alpha \in \mathfrak{g}_x^{\perp}\}.$$

Posons

$$g_S(\pi_\#(\alpha), \pi_\#(\beta)) = g^*(\alpha, \beta),$$

 $\omega_S(\pi_\#(\alpha), \pi_\#(\beta)) = g_S(A\pi_\#(\alpha), \pi_\#(\beta)) \quad \alpha, \beta \in \mathfrak{g}_x^{\perp}.$

Proposition.

 (S,g_S) est une variété riemannienne, $J_S=A(-A^2)^{-1/2}:TS\longrightarrow TS$ est une structure complexe et (S,g_S,J_S) est une variété Kählerienne.

Proposition.

 (S, g_S) est une variété riemannienne, $J_S = A(-A^2)^{-1/2} : TS \longrightarrow TS$ est une structure complexe et (S, g_S, J_S) est une variété Kählerienne.

Pour tout $\alpha, \beta \in \mathfrak{g}_x$, posons

$$[\alpha, \beta]_{\mathsf{x}} = [\widetilde{\alpha}, \widetilde{\beta}]_{\pi}(\mathsf{x}), \quad \langle \alpha, \beta \rangle_{\mathsf{x}} = \mathsf{g}^*(\alpha, \beta),$$

où
$$\widetilde{\alpha}(x) = \alpha$$
 et $\widetilde{\beta}(x) = \beta$.

Proposition.

 (S, g_S) est une variété riemannienne, $J_S = A(-A^2)^{-1/2} : TS \longrightarrow TS$ est une structure complexe et (S, g_S, J_S) est une variété Kählerienne.

Pour tout $\alpha, \beta \in \mathfrak{g}_x$, posons

$$[\alpha, \beta]_{x} = [\widetilde{\alpha}, \widetilde{\beta}]_{\pi}(x), \quad \langle \alpha, \beta \rangle_{x} = g^{*}(\alpha, \beta),$$

où
$$\widetilde{\alpha}(x) = \alpha$$
 et $\widetilde{\beta}(x) = \beta$.

Proposition.

 $(\mathfrak{g}_x,[\ ,\]_x)$ est une algèbre de Lie et $(\mathfrak{g}_x^*,\pi_I,\langle\ ,\ \rangle_x^*)$ est une variété de Riemann-Poisson.

Algèbres de Lie de Riemann-Poisson

Soit (G, [,]) une algèbre de Lie et \langle , \rangle un produit scalaire sur G.

Algèbres de Lie de Riemann-Poisson

Soit (\$\mathcal{G}\$,[\$,]) une algèbre de Lie et $\langle \; , \; \rangle$ un produit scalaire sur \$\mathcal{G}\$.

Le produit de Levi-Civita de (\mathcal{G} , [,], \langle , \rangle) est donné par la formule

$$2\langle uv, w \rangle = \langle [u, v], w \rangle + \langle [w, v], u \rangle + \langle [w, u], v \rangle.$$

Algèbres de Lie de Riemann-Poisson

Soit (\mathcal{G} ,[,]) une algèbre de Lie et \langle , \rangle un produit scalaire sur \mathcal{G} .

Le produit de Levi-Civita de (\mathcal{G} , [,], \langle , \rangle) est donné par la formule

$$2\langle uv,w\rangle=\langle [u,v],w\rangle+\langle [w,v],u\rangle+\langle [w,u],v\rangle.$$

Proposition.

 $(\mathcal{G}^*, \pi_I, \langle \;,\; \rangle^*)$ est une variété de Riemann-Poisson si et seulement si, pour tous $u, v, w \in \mathcal{G}$,

$$[u, [v, w]] = [uv, w] + [v, uw].$$

Définition.

Une algèbre de Lie de Riemann-Poisson est une algèbre de Lie $(\mathcal{G},[\;,\;])$ munie d'un produit scalaire $\langle\;,\;\rangle$ tels que le produit de Levi-Civita vérifie

$$[u, [v, w]] = [uv, w] + [v, uw], \quad u, v, w \in \mathcal{G}.$$

Définition.

Une algèbre de Lie de Riemann-Poisson est une algèbre de Lie (\mathcal{G} , [,]) munie d'un produit scalaire $\langle \ , \ \rangle$ tels que le produit de Levi-Civita vérifie

$$[u, [v, w]] = [uv, w] + [v, uw], \quad u, v, w \in \mathcal{G}.$$

Théorème.

Soit (G, [,]) une algèbre de Lie munie d'un produit scalaire \langle , \rangle . Les propriétés suivantes sont équivalentes :

- $lackbox{0}(\mathcal{G},[\;,\;],\langle\;,\;
 angle)$ est une algèbre de Lie de Riemann-Poisson.
- 2 La courbure du produit de Levi-Civita est nulle.
- $\mathfrak{G} = [\mathcal{G}, \mathcal{G}] \oplus S_{\langle \cdot, \cdot \rangle}$, où $[\mathcal{G}, \mathcal{G}]$ et $S_{\langle \cdot, \cdot \rangle}$ sont abéliens et

$$S_{\langle \cdot, \cdot \rangle} = \{ u \in \operatorname{ad}_u + \operatorname{ad}_u^* = 0 \} = [\mathcal{G}, \mathcal{G}]^{\perp}.$$

♣.

Soit (M, π, g) une variété de Riemann-Poisson régulière. Soit $\#: T^*M \longrightarrow TM$ l'isomorphisme défini par g.

å.

Soit (M, π, g) une variété de Riemann-Poisson régulière. Soit $\#: T^*M \longrightarrow TM$ l'isomorphisme défini par g. On a

 $\mathit{TM} = \mathit{TS} \oplus \#(\ker \pi_\#) \quad \mathit{et} \quad \mathit{TS} = \pi_\#(\ker \pi_\#^\perp).$

.

Soit (M, π, g) une variété de Riemann-Poisson régulière. Soit $\#: T^*M \longrightarrow TM$ l'isomorphisme défini par g.

$$\mathit{TM} = \mathit{TS} \oplus \#(\ker \pi_\#)$$
 et $\mathit{TS} = \pi_\#(\ker \pi_\#^\perp)$.

On définit une nouvelle métrique riemannienne g_{π} sur M par

$$g_{\pi}(u,v) = g(u,v), \ u,v \in \#(\ker \pi_{\#}), \ g_{\pi}(\pi_{\#}(\alpha),\pi_{\#}(\beta)) = g^{*}(\alpha,\beta), \ \alpha,\beta \in \ker \pi_{\#}^{\perp}, \ g_{\pi}(u,\pi_{\#}(\alpha)) = 0, \ \alpha \in \ker \pi_{\#}^{\perp}, u \in \#(\ker \pi_{\#}).$$

Théorème.

Pour tout couple de champs de vecteur (X,Y) préservant le feuilletage symplectique et g_{π} -orthogonal à ce feuilletage, $g_{\pi}(X,Y)$ est une fonction localement constante le long des feuilles. En particulier, le feuilletage symplectique est un feuilletage riemannien.

Quelques classes d'exemples

Soit (M,g) une variété riemannienne, (X_1,\ldots,X_p) une famille de champs de Killing qui commutent deux à deux et $(a_{ij})_{i,j=1}^p$ une matrice anti-symétrique.

Quelques classes d'exemples

Soit (M,g) une variété riemannienne, (X_1,\ldots,X_p) une famille de champs de Killing qui commutent deux à deux et $(a_{ij})_{i,j=1}^p$ une matrice anti-symétrique.

$$\pi = \sum_{i,j} a_{ij} X_i \wedge X_j.$$

Quelques classes d'exemples

Soit (M,g) une variété riemannienne, (X_1,\ldots,X_p) une famille de champs de Killing qui commutent deux à deux et $(a_{ij})_{i,j=1}^p$ une matrice anti-symétrique.

$$\pi = \sum_{i,j} a_{ij} X_i \wedge X_j.$$

Théorème.

 (M, π, g) est une variété de Riemann-Poisson.

Théorème.

Soient (M,g) une variété riemannienne de dimension 3 orientable, μ son volume riemannien et $\pi \in X^2(M)$. Alors les propriétés suivantes sont équivalentes :

- (M, π, g) est une variété de Riemann-Poisson.
- **2** La 1-forme $\alpha = \mathbf{i}_{\pi}\mu$ satisfait :

$$d\alpha = 0$$
 and $d|\alpha|^2 + \delta(\alpha)\alpha = 0$,

$$où \delta(\alpha) = -div(\#(\alpha)).$$