Gleichungen umformen und lösen

- 1. Löse die Gleichung 2x + 3 = 9. Lösung: x = 3
- 2. Gegeben ist die Gleichung $y = 2x^2 + 5$.
 - a) Stelle die Gleichung nach x um. Lösung: $x = \pm \sqrt{\frac{y-5}{2}}$
 - b) Für welche y ist die Gleichung definiert? Lösung: $y \ge 5$

Grundlegendes Verständnis von Funktionen

- 1. Gegeben ist die Funktion f(x) = 3x + 2.
 - a) Berechne f(0), f(1) und f(-2). Lösung: f(0) = 2, f(1) = 5, f(-2) = -4
 - b) Welche Steigung hat die Funktion? Lösung: m = 3
- 2. Wo schneidet die Funktion $f(x) = x^2 4$ die x- und wo die y-Achse? **Lösung:** x-Achse bei x = 2 und x = -2, y-Achse bei y = -4.
- 3. Bestimme die Gleichung der linearen Funktion f(x), die durch die Punkte P(-4,6) und Q(6,1) verläuft.

Lösung: $f(x) = mx + n \rightarrow P$ und Q einsetzen ergibt: 6 = -4m + n (I) und 1 = 6m + n (II)

Umstellen von (I) nach n und Einsetzen in (II) ergibt: $1 = 6m + 6 + 4m \rightarrow m = -\frac{1}{2}$

Einsetzen von $m = -\frac{1}{2}$ in (I) oder (II) ergibt: n = 4 und damit: $f(x) = -\frac{1}{2}x + 4$

Terme umformen

1. Vereinfache folgende Terme.

a)
$$x^3 \cdot x^2$$
 Lösung: x^5 e) $\frac{x^2 + 2x}{x}$ Lösung: $\frac{x(x+2)}{x} = x + 2$

b)
$$\frac{x^5}{x^2}$$
 Lösung: x^3 f) $\frac{2x^2 + 4x}{2x}$ Lösung: $\frac{2x(x+2)}{2x} = x+2$

c)
$$(x^2)^3$$
 Lösung: x^6 g) $(2x+5)^2$ Lösung: $4x^2+20x+25$

d)
$$2(x+3) - 4(x-1)$$

Lösung: $2x + 6 - (4x - 4) = 2x + 6 - 4x + 4$ h) $\frac{x^2 - 9}{x - 3}$ **Lösung:** $\frac{(x+3)(x-3)}{x - 3} = x + 3$

Grundlagen der Differentialrechnung

- 1. Nenne Beispiele aus dem alltäglichen Leben, bei denen die Änderungsrate einer Größe betrachtet wird. Lösung: Preis \rightarrow Inflation/Deflation, Position \rightarrow Geschwindigkeit \rightarrow Beschleunigung
- 2. Bilde mithilfe des Differenzenquotienten die Ableitung von $f(x) = 3x^2 4$. Lösung:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{3(x+h)^2 - 4 - (3x^2 - 4)}{h} = \lim_{h \to 0} \frac{3(x^2 + 2xh + h^2) - 4 - 3x^2 + 4}{h}$$
$$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 4 - 3x^2 + 4}{h} = \lim_{h \to 0} \frac{6xh + 3h^2}{h} = \lim_{h \to 0} \frac{h(6x + 3h)}{h} = \lim_{h \to 0} 6x + 3h = 6x$$

3. Bilde die Ableitungen folgender Funktionen:

a)
$$f(x) = -4x^3$$
 Lösung: $f'(x) = -12x^2$

b)
$$g(x) = x^3 + 2x$$
 Lösung: $g'(x) = 3x^2 + 2$

c)
$$h(x) = 4x^5 + 3x^3 - 6x^2 - 3$$
 Lösung: $h'(x) = 20x^4 + 9x^2 - 12x$

d)
$$i(x) = 5$$
 Lösung: $i'(x) = 0$

e)
$$j(x) = (x^3)^2$$
 Lösung: $j'(x) = 6x^5$

Ketten- und Produktregel

- 1. Gegeben ist die Funktion $f(x) = (x^3 + 1)^2$.
 - a) Bilde die Ableitung f'(x) mithilfe der Kettenregel.

Lösung:
$$f(x) = u(v(x)); \quad v(x) = x^3 + 1; \quad u(v) = v^2$$

 $\rightarrow f'(x) = u'(v(x)) \cdot v'(x) = 2(x^3 + 1) \cdot 3x^2 = (2x^3 + 2) \cdot 3x^2 = 6x^5 + 6x^2$

b) Multipliziere den Funktionsterm mit der binomischen Formel aus und bilde dann die Ableitung f'(x) nach klassischen Polynomregeln.

Lösung:
$$f(x) = (x^3 + 1)^2 = x^6 + 2x^3 + 1 \rightarrow f'(x) = 6x^5 + 6x^2$$

2. Bilde mithilfe der Kettenregel die Ableitungen folgender Funktionen.

a)
$$f(x) = (3x+1)^2$$
 Lösung: $f'(x) = 2(3x+1) \cdot 3 = 6(3x+1) = 18x+6$

b)
$$f(x) = (x^2 - 3)^7$$
 Lösung: $f'(x) = 7(x^2 - 3) \cdot 2x = 14x(x^2 - 3) = 14x^3 - 42x$

c)
$$f(x) = e^{x^2}$$
 Lösung: $f'(x) = e^{x^2} \cdot 2x$

d)
$$f(x) = \ln(3x+2)$$
 Lösung: $f'(x) = \frac{1}{3x+2} \cdot 3 = \frac{3}{3x+2}$

e)
$$f(x) = \ln(x^2 - 4x)$$
 Lösung: $f'(x) = \frac{1}{x^2 - 4x} \cdot (2x - 4) = \frac{2x - 4}{x^2 - 4x}$

f)
$$f(x) = (e^{2x} + 1)^3$$

Lösung: "Mehrfachkette"
$$f(g(h(x)))$$
 mit $g(x) = e^{2x} + 1$ und $h(x) = 2x$

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{\mathrm{d}f(x)}{\mathrm{d}g(x)} \cdot \frac{\mathrm{d}g(x)}{\mathrm{d}h(x)} \cdot \frac{\mathrm{d}h(x)}{\mathrm{d}x} \rightarrow \frac{\mathrm{d}f(x)}{\mathrm{d}x} = 3\left(e^{2x} + 1\right)^2 \cdot e^{2x} \cdot 2 = 6e^{2x}\left(e^{2x} + 1\right)^2$$

3. Bilde mithilfe der Produktregel die Ableitungen folgender Funktionen.

a)
$$f(x) = x(x+3)$$
 Lösung: $f'(x) = x \cdot 1 + 1 \cdot (x+3) = 2x + 3$

b)
$$f(x) = x \cdot e^x$$
 Lösung: $f'(x) = x \cdot e^x + 1 \cdot e^x = e^x(x+1)$

c)
$$f(x) = (2x-1)(x+4)$$

Lösung:
$$f'(x) = (2x - 1) \cdot 1 + 2 \cdot (x + 4) = 2x - 1 + 2x + 8 = 4x + 7$$

d)
$$f(x) = (x^2 + 2)(x - 1)$$

Lösung:
$$f'(x) = (x^2 + 2) \cdot 1 + 2x \cdot (x - 1) = x^2 + 2 + 2x^2 - 2x = 3x^2 - 2x + 2$$

e)
$$f(x) = (x^2 + 1)(x - 3)$$

Lösung:
$$f'(x) = (x^2 + 1) \cdot 1 + 2x \cdot (x - 3) = x^2 + 1 + 2x^2 - 6x = 3x^2 - 6x + 1$$

f)
$$f(x) = x^3 \cdot (2x^2 + x - 4)$$

Lösung:
$$f'(x) = x^3 \cdot (4x+1) + 3x^2 \cdot (2x^2 + x - 4) = 4x^4 + x^3 + 6x^4 + 3x^3 - 12x^2 = 10x^4 + 4x^3 - 12x^2$$

Kombination und Anwendung

- 1. Gegeben ist die Funktion $f(x) = x^2 6x + 8$.
 - a) Bestimme die Ableitung f'(x). Lösung: f'(x) = 2x 6
 - b) Bestimme den Tiefpunkt von f(x).

Lösung: Nullstelle von f'(x): $0 = 2x - 6 \rightarrow 2x = 6 \rightarrow x = 3$

- Einsetzen von x = 3 in f(x): $f(3) = 3^2 6 \cdot 3 + 8 = 9 18 + 8 = -1 \rightarrow \text{Tiefpunkt bei } T(3, -1)$
- 2. Gegeben ist die Funktion $f(x) = x^3 6x^2 + 9x 1$.
 - a) Bestimme die Ableitung f'(x). Lösung: $f'(x) = 3x^2 12x + 9$
 - b) Berechne die Funktionsgleichung der Tangente an f(x) an der Stelle x=2.

Lösung: Gesucht: t(x) = mx + n. Dabei gilt: $m = f'(2) = 3 \cdot 2^2 - 12 \cdot 2 + 9 = 12 - 24 + 9 = -3$ t(x) muss durch den Punkt (2, f(2)) verlaufen, wobei: $f(2) = 2^3 - 6 \cdot 2^2 + 9 \cdot 2 - 1 = 8 - 24 + 18 - 1 = 1$

Aus t(x) = mx + n folgt: $1 = -3 \cdot 2 + n = -6 + n \rightarrow n = 7 \rightarrow t(x) = -3x + 7$