Lecture Notes: Abstract Algebra (Course by: Alvaro Lozano-Robledo)

Thobias K. Høivik

March 2, 2025

Lagrange's Theorem

Let G be a finite group and let H be a subgroup of G. Then the order of H is a divisor of $G \to |G| = k|H|, k \in \mathbb{Z} \Leftrightarrow |G| \equiv 0 \mod |H|$

Examples

$$\{0,3\} \le \mathbb{Z}/6\mathbb{Z} \land \{0,2,4\} \le \mathbb{Z}/6\mathbb{Z}$$

 $|\{0,3\}| = 2 \land |\{0,2,4\}| = 3$
 $\{1,6\} \le (\mathbb{Z}/7\mathbb{Z})^x$
and many more.

Coset Definition

Let $< G, \star >$ be a group and let H be a subgroup of G. A left coset of H with representative $g \in G$ is $gH = g \star H = \{g \star h | h \in H\}$ and a right coset is $\{h \star g | h \in H\}$. Trivially, G abelian $\Rightarrow gH = Hg \ \forall H \leq G, \ gH = Hg \ \text{means H}$ is a **normal subgroup**.

Partition Theorem

Let G be a group and H a subgroup of G. The left cosets of H in G,

$$gH = \{gh \mid h \in H\}, \quad g \in G,$$

form a partition of G. That is:

- 1. Every element of G belongs to some left coset of H.
- 2. Any two left cosets of H are either disjoint or identical.

Proof:

(1) Every element of G belongs to some coset: Let $q \in G$. Since $e \in H$, we have

$$g = ge \in gH$$
.

Thus, every element of G is contained in some left coset of H.

(2) Cosets are either disjoint or identical: Suppose $g_1H \cap g_2H \neq \emptyset$, meaning there exists some $x \in g_1H \cap g_2H$. Then we can write:

$$x = g_1 h_1 = g_2 h_2$$
, for some $h_1, h_2 \in H$.

Rearranging gives

$$g_2^{-1}g_1 = h_2h_1^{-1} \in H,$$

so g_1 and g_2 belong to the same left coset of H, implying

$$g_1H=g_2H.$$

Therefore, the left cosets of H form a partition of G. \square

The Index of H in G Definition

Let G be a group and H a subgroup. The index of H in G, denoted by [G:H] is the number of disjoint left-cosets of H in G.

Example

$$G = \mathbb{Z}/6\mathbb{Z} \le \{0, 2, 4\} = H, [G : H] = 2 : (0 + H) \sqcup (1 + H) = G$$

Proposition

Let H be a subgroup of G. Then every coset of H has the same number of elements.

Proof:

Let H be a subgroup of G, and let $g \in G$, consider gH.

Let $\lambda: H - > gH, \lambda(h) = g \star h$

- 1. Well defined: $h \in H \Rightarrow q \star h \in qH$
- 2. Injective: $\lambda(q) = \lambda(q^*) \Rightarrow qh = qh^* \Rightarrow h = h^*$
- 3. Surjective: $f \in gH \Rightarrow \exists h \in H \text{ s.t } f = gh \Rightarrow \lambda(h) = gh = f$

Hence λ is a bijection $\rightarrow |H| = |gH| = |g^*H|$

Proof of Lagrange's Theorem

Let G be a finite group and H a subgroup of G. Then, $[G:H] = \frac{|G|}{|H|}$ is the number of distinct cosets of H in G.

In particular $|H| \times [G:H] = |G|$.

Thus |H| divides |G|.

$$H \leq G$$
.

Then
$$G = g_1 H \sqcup g_2 H \sqcup \cdots \sqcup g_n H$$
, where $n = [H : G]$

Then
$$G = g_1 H \sqcup g_2 H \sqcup \cdots \sqcup g_n H$$
, where $n = [H : G]$
Prop $\to |g_1 H| = |g_2 H| = \cdots |g_n H|$ and $\therefore |G| = \sum_{i=1}^n |g_i H| = |H| \times n = |H| \times [G : H]$
In particular $|G| = |H| \times [G : H] \to [G : H] = \frac{|G|}{|H|} \square$

In particular
$$|G| = |H| \times [G:H] \rightarrow [G:H] = \frac{|G|}{|H|}$$