STATS271/371: Applied Bayesian Statistics

Bayesian Mixture Models and (Collapsed) Gibbs Sampling

Scott Linderman

April 21, 2021

Box's Loop

Blei DM. 2014. Annu. Rev. Stat. Appl. 1:203–32

Lap 4: Bayesian Mixture Models and (Collapsed) Gibbs Sampling

- ► Model: Bayesian mixture models
- ► Algorithm: Gibbs sampling
- ► **Criticism:** Posterior predictive checks
- ► Algorithm II: Collapsed Gibbs sampling

Motivation: Clustering scRNA-seq data

From Kiselev et al. [2019]

Motivation: Foreground/background segmentation

https://ai.stanford.edu/~syyeung/cvweb/tutorial3.html

Motivation: Density estimation

Notation

Constants: Let

- N denote the number of data points.
- ► *K* denote the number of mixture components (i.e. clusters)

Data: Let

 $ightharpoonup \mathbf{x}_n \in \mathbb{R}^D$ denote the *n*-th data point.

Latent Variables: Let

► $z_n \in \{1, ..., K\}$ denote the *assignment* of the *n*-th data point.

Notation II

Parameters: Let

- $ightharpoonup \eta_k$ denote the *natural parameters* of component k
- lacktriangledown $\pi \in \Delta_K$ denote the component *proportions* (i.e. probabilities).

Hyperparameters: Let

- $ightharpoonup \phi$, ν denote hyperparameters of the prior on η
- lacktriangledown $a \in \mathbb{R}_+^K$ denote the concentration of the prior on proportions.

Generative Model

1. Sample the proportions from a Dirichlet prior:

$$\pi \sim \mathrm{Dir}(\alpha)$$

 $\eta_{\nu} \stackrel{\text{iid}}{\sim} p(\boldsymbol{\eta} \mid \boldsymbol{\phi}, \nu) \quad \text{for } k = 1, \dots, K$

2. Sample the parameters for each component:

4. Sample data points given their assignments:

 $\mathbf{x}_n \sim p(\mathbf{x} \mid \boldsymbol{\eta}_{z_n})$ for $n = 1, \dots, N$

3. Sample the assignment of each data point:

$$z_n \stackrel{\text{iid}}{\sim} \pi$$
 for $n = 1, \dots, N$

(1)

(2)

(3)

(4)

9/25

Joint distribution

This generative model corresponds to the following factorization of the joint distribution,

$$p(\boldsymbol{\pi}, \{\boldsymbol{\eta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{\nu}, \boldsymbol{\alpha}) = p(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K p(\boldsymbol{\eta}_k \mid \boldsymbol{\phi}, \boldsymbol{\nu}) \prod_{n=1}^N p(\boldsymbol{z}_n \mid \boldsymbol{\pi}) p(\boldsymbol{x}_n \mid \boldsymbol{z}_n, \{\boldsymbol{\eta}_k\}_{k=1}^K)$$
(5)

Equivalently,

$$p(\boldsymbol{\pi}, \{\boldsymbol{\eta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{\nu}, \boldsymbol{\alpha}) = p(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K p(\boldsymbol{\eta}_k \mid \boldsymbol{\phi}, \boldsymbol{\nu}) \prod_{n=1}^N \prod_{k=1}^K \left[\Pr(\boldsymbol{z}_n = k \mid \boldsymbol{\pi}) p(\boldsymbol{x}_n \mid \boldsymbol{\eta}_k) \right]^{\mathbb{I}[\boldsymbol{z}_n = k]}$$
(6)

Substituting in the assumed forms

$$p(\boldsymbol{\pi}, \{\boldsymbol{\eta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{\alpha}) = \operatorname{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K p(\boldsymbol{\eta}_k \mid \boldsymbol{\phi}, \boldsymbol{\nu}) \prod_{n=1}^N \prod_{k=1}^K \left[\pi_k p(\boldsymbol{x}_n \mid \boldsymbol{\eta}_k) \right]^{\mathbb{I}[\boldsymbol{z}_n = k]}$$
(7)

Exponential family mixture models

What about $p(\mathbf{x} \mid \boldsymbol{\eta}_k)$ and $p(\boldsymbol{\eta}_k \mid \boldsymbol{\phi}, \boldsymbol{\nu})$?

Recall the *exponential family* distributions from Lap 2. Let's assume an exponential family likelihood,

$$p(\mathbf{x} \mid \boldsymbol{\eta}_k) = h(\mathbf{x}_n) \exp\left\{ \langle t(\mathbf{x}_n), \boldsymbol{\eta}_k \rangle - A(\boldsymbol{\eta}_k) \right\}. \tag{8}$$

Then assume a conjugate prior,

$$\rho(\eta_k \mid \boldsymbol{\phi}, \boldsymbol{\nu}) \propto \exp\left\{\langle \boldsymbol{\phi}, \eta_k \rangle - \boldsymbol{\nu} A(\eta_k)\right\}. \tag{9}$$

The hyperparmeters ϕ are pseudo-observations of the sufficient statistics (like statistics from fake data points) and v is a pseudo-count (like the number of fake data points).

Note that the product of prior and likelihood remains in the same family as the prior. That's why we call it conjugate.

Example: Gaussian mixture model

Assume the conditional distribution of \mathbf{x}_n is a Gaussian with mean $\mathbf{\eta}_{z_n} \in \mathbb{R}^D$ and identity covariance,

$$p(\mathbf{x}_n \mid \boldsymbol{\eta}_k) = \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\eta}_k, \boldsymbol{I})$$

$$= (2\pi)^{-D/2} \exp\left\{-\frac{1}{2}(\mathbf{x}_n - \boldsymbol{\eta}_k)^{\top}(\mathbf{x}_n - \boldsymbol{\eta}_k)\right\}$$

$$= (2\pi)^{-D/2} \exp\left\{-\frac{1}{2}\mathbf{x}_n^{\top}\mathbf{x}_n + \mathbf{x}_n^{\top}\boldsymbol{\eta}_k - \frac{1}{2}\boldsymbol{\eta}_k^{\top}\boldsymbol{\eta}_k\right\},$$
(12)

which is an exponential family distribution with base measure $h(\mathbf{x}_n) = (2\pi)^{-D/2} e^{-\frac{1}{2}\mathbf{x}_n^{\top}\mathbf{x}_n}$, sufficient statistics $t(\mathbf{x}_n) = \mathbf{x}_n$, and log normalizer $A(\eta_k) = \frac{1}{2}\eta_k^{\top}\eta_k$.

Then assume a Gaussian prior on the component parameters. It's conjugate,

$$p(\eta_k \mid \boldsymbol{\phi}, \boldsymbol{\nu}) = \mathcal{N}(\boldsymbol{\nu}^{-1}\boldsymbol{\phi}, \boldsymbol{\nu}^{-1}\boldsymbol{I}) \propto \exp\left\{\boldsymbol{\phi}^{\top}\eta_k - \frac{\boldsymbol{\nu}}{2}\eta_k^{\top}\eta_k\right\} = \exp\left\{\boldsymbol{\phi}^{\top}\eta_k - \boldsymbol{\nu}\boldsymbol{A}(\eta_k)\right\}. \tag{13}$$

Note that ϕ sets the location and ν sets the precision (i.e. inverse variance).

MAP inference via coordinate ascent

Before diving into fully Bayesian inference algorithms, let's first consider MAP inference.

Idea: find the mode of $p(\pi, {\{\eta_k\}_{k=1}^K, \{z_n\}_{n=1}^N \mid \{\mathbf{x}_n\}_{n=1}^N, \boldsymbol{\phi}, \nu, \boldsymbol{\alpha})}$ by **coordinate ascent**.

For now, set $\phi = 0$, and v = 0 so that the prior is an (improper) uniform distribution. Then maximizing the posterior is equivalent to maximizing the likelihood.

While we're simplifying, let's even fix $\pi = \frac{1}{K} \mathbf{1}_K$.

Coordinate ascent in the Gaussian mixture model

For the Gaussian mixture model (with uniform prior and $\pi = \frac{1}{K} \mathbf{1}_K$), coordinate ascent amounts to:

1. For each n = 1, ..., N, fix all variables but z_n and find z_n^* that maximizes

$$p(\boldsymbol{\pi}, \{\boldsymbol{\eta}_k\}_{k=1}^K, \{(z_n, \mathbf{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{\nu}, \boldsymbol{\alpha}) \propto p(\mathbf{x}_n \mid z_n, \{\boldsymbol{\eta}_k\}_{k=1}^K) = \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\eta}_{z_n}, \boldsymbol{I})$$
(14)

The cluster assignment that maximizes the likelihood is the one with the closest mean to \mathbf{x}_n , so set

$$z_n^* = \arg\min_{k \in \{1, \dots, K\}} \|\mathbf{x}_n - \boldsymbol{\eta}_k\|_2. \tag{15}$$

Coordinate ascent in the Gaussian mixture model II

2 For each $k=1,\ldots,K$, fix all variables but η_k and find η_k^{\star} that maximizes,

$$\rho(\boldsymbol{\pi}, \{\boldsymbol{\eta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{\nu}, \boldsymbol{\alpha}) \propto \prod_{n=1}^N \rho(\boldsymbol{x}_n \mid \boldsymbol{\eta}_k)^{\mathbb{I}[\boldsymbol{z}_n = k]}$$

$$\propto \exp\left\{\sum_{k=1}^N \mathbb{I}[\boldsymbol{z}_n = k] \left(\boldsymbol{x}_n^\top \boldsymbol{\eta}_k - \frac{1}{2} \boldsymbol{\eta}_k^\top \boldsymbol{\eta}_k\right)\right\}$$
(16)

Taking the derivative of the log and setting to zero yields,

$$\boldsymbol{\eta}_{k}^{\star} = \frac{1}{N_{k}} \sum_{n=1}^{K} \mathbb{I}[\boldsymbol{z}_{n} = k] \boldsymbol{x}_{n}, \tag{18}$$

where
$$N_k = \sum_{n=1}^N \mathbb{I}[z_n = k]$$
.

This is the **k-means algorithm**!

Aside: EM in the Gaussian mixture model

We'll talk more about coordinate ascent variational inference (CAVI) and expectation-maximization (EM) next week. Not to spoil the surprise, but we'll see that they have a similar flavor. Instead of assigning z_n^* to the closest cluster, we compute responsibilities for each cluster:

1. For each data point *n* and component *k*, set the *responsibility* to,

$$\omega_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\eta}_k, \boldsymbol{l})}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\eta}_j, \boldsymbol{l})}.$$
 (19)

2. For each component *k*, set the mean to

$$\boldsymbol{\eta}_{k}^{\star} = \frac{1}{N_{\nu}} \sum_{n}^{N} \omega_{nk} \boldsymbol{x}_{n}, \tag{20}$$

where $N_k = \sum_{n=1}^N \omega_{nk}$.

Note that EM allows for arbitrary proportions π . Those can be updated as well: for each component k, set $\pi_k = \frac{N_k}{N}$.

Lap 4: Bayesian Mixture Models and (Collapsed) Gibbs Sampling

- ► Model: Bayesian mixture models
- ► Algorithm: Gibbs sampling
- Criticism: Posterior predictive checks
- Algorithm II: Collapsed Gibbs sampling

Gibbs sampling in Bayesian mixture models

Idea: just like in coordinate ascent, update one variable at a time. But rather than setting it to its conditional mode, sample from its conditional distribution.

Gibbs sampling in Bayesian mixture models II

1. For each data point n, sample a new assignment from the complete conditional distribution

$$z_n \sim p(z_n \mid \{\mathbf{x}_n\}_{n=1}^N, \{z_{n'}\}_{n' \neq n}, \{\eta_k\}_{k=1}^K, \pi, \phi, \nu, \alpha).$$
 (21)

Thanks to the factorization of the joint distribution,

$$Pr(z_n = k \mid -) \propto Pr(z_n = k \mid \pi) p(x_n \mid \eta_k)$$
 (22)

In the Gaussian mixture model, this is,

$$\Pr(z_n = k \mid -) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \mathbf{\eta}_k, \mathbf{I})}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n \mid \mathbf{\eta}_j, \mathbf{I})}$$

$$= \omega$$
(23)

$$\equiv \omega_{nk}$$
. (24)

I.e., Gibbs sampling generates *random* assignments by sampling according to the responsibilities.

Gibbs sampling in Bayesian mixture models III

2 For each component k, sample new parameters from their complete conditional.

$$\eta_k \sim p(\eta_k \mid \{(\mathbf{x}_n, z_n)\}_{n=1}^N, \{\eta_{k'}\}_{k' \neq k}, \pi, \phi, \nu, \alpha).$$

Thanks to the factorization of the joint distribution.

$$p(\eta_k \mid -) \propto p(\eta_k \mid \phi, \nu) \prod p(x_n \mid \eta_k).$$

In an Gaussian mixture model,

$$p(\boldsymbol{\eta}_k \mid -) \propto \exp \left\{ \left(\boldsymbol{\phi} + \sum_{n=1}^N \mathbb{I}[z_n = k] \boldsymbol{x}_n \right)^\top \boldsymbol{\eta}_k - \frac{v + N_k}{2} \boldsymbol{\eta}_k^\top \boldsymbol{\eta}_k \right\}$$

$$\infty \mathcal{N}\left(\eta_k \mid (\nu + N_k)^{-1} \left(\phi + \sum_{n=1}^N \mathbb{I}[z_n = k] \mathbf{x}_n\right), (\nu + N_k)^{-1} \mathbf{I}\right)$$
where $N_k = \sum_{n=1}^N \mathbb{I}[z_n = k]$. What happens when $N_k \to \infty$?

(27)

(25)

(26)

(28)

20/25

Gibbs sampling in Bayesian mixture models IV

3 Finally, sample new component proportions from their complete conditional,

$$\pi \sim p(\pi \mid \{(\mathbf{x}_n, z_n)\}_{n=1}^N, \{\eta_k\}_{k=1}^K, \phi, \nu, \alpha).$$
 (29)

Thanks to the factorization of the joint distribution,

$$p(\pi \mid -) \propto \operatorname{Dir}(\pi \mid \alpha) \prod_{n=1}^{N} p(z_n \mid \pi)$$
(30)

$$\propto \prod_{k=1}^K \pi_k^{\alpha_k-1} imes \prod_{n=1}^N \prod_{k=1}^K \pi_k^{\mathbb{I}[z_n=k]}$$

$$\propto \operatorname{Dir}(\pi \mid [\alpha_1 + N_1, \dots, \alpha_K + N_K])$$

where $N_k = \sum_{n=1}^N \mathbb{I}[z_n = k]$. What happens when $N_k \to \infty$?

21/25

(31)

(32)

Gibbs sampling in Bayesian exponential family mixture models

What happens in general exponential family models? Step 2 becomes,

2 For each component k, sample new parameters from their complete conditional,

$$\rho(\boldsymbol{\eta}_{k} \mid -) \propto \exp\left\{\left\langle \boldsymbol{\phi} + \sum_{n=1}^{N} \mathbb{I}[z_{n} = k] t(\boldsymbol{x}_{n}), \boldsymbol{\eta}_{k} \right\rangle - (\nu + N_{k}) A(\boldsymbol{\eta}_{k})\right\}$$

$$= \rho\left(\boldsymbol{\eta}_{k} \mid \boldsymbol{\phi} + \sum_{n=1}^{N} \mathbb{I}[z_{n} = k] t(\boldsymbol{x}_{n}), \nu + N_{k}\right)$$
(34)

where
$$N_k = \sum_{n=1}^N \mathbb{I}[z_n = k]$$
.

Opportunities for parallelism

- In all three algorithms above, the updates of z_n are independent of one another (once you fix $\{\eta_k\}_{k=1}^K$) and hence can be performed in parallel.
- Likewise, the updates of η_k are independent of one another (once you fix $\{z_n\}_{n=1}^N$) and hence can be performed in parallel.
- ► In fact, we can write these as simple map-reduce algorithms and take advantage of parallel hardware if it's available.
- ► In the Gibbs sampling case, updating many variables at once from their combined conditional distribution is called **blocked Gibbs sampling**, and it's particularly easy when the variables are conditionally independent, as in the Bayesian mixture model.

Next time

- ► Show that **Gibbs is a special case of MH** and, as such, asymptotically generates samples from the posterior distribution.
- ► Talk about **posterior predictive checks** and ways of choosing *K*.
- ► Introduce collapsed Gibbs sampling, which will allow us to generalize to nonparametric Bayesian mixture models.

References I

Vladimir Yu Kiselev, Tallulah S Andrews, and Martin Hemberg. Challenges in unsupervised clustering of single-cell RNA-seq data. *Nat. Rev. Genet.*, 20(5):273–282, May 2019.