FIG. 1A

	<u>GAATTC</u> TCTGGACTGAGGCTCCAGTTCTGGCCTTTGGGG												
TTCAAGATO	TTCAAGATCACTGGGACCAGGCCGTGATCTCTATGCCCGAGTCTCAACCCTCAACTGTC												
ACCCCAAGO	ACCCCAAGGCACTTGGGACGTCCTGGACAGACCGAGTCCCGGGAAGCCCCAGCACTGCC												

GCTGCCACA	ACTG	CCCT	GAGC	CCAA	ATGG	GGGA	GTGA	GAGG	CCA	TAG	CTG	TCT	GGC
S1			S 5					S10	_		•		S15
Met Gly 1	Leu	Ser	Thr	Val	Pro	Asp	Leu	Leu	Leu	Pro	Leu CTG	GTG	Leu CTC
216	CIC	22	5	GIG	23	4	010	24	3		25	52	
			S20					s25				s29	
Leu Glu I	Leu	LON	t/al	Gly	Ile	Tyr	Pro	Ser	Gly	Val CTT	Ile Amm	Gly	Leu
CTG GAG (CTG	TTG 27	GTG O	GGA	27	79	CCC	28	38	011	29	97	010
,	•	5					10					15	
Val Pro	His	Tou	Gly	Asp	Arg	Glu	Lys	Arg	Asp	Ser	Val	Cys	Pro
GTC CCT (CAC	CTA 31	GGG .5	GAC	AGG 32	GAG	AAG	AGA 33	33	AGI	34	131	
							25					30	
Gln Gly	Lys	20 Tyr	Ile	His	Pro	Gln	Asn	Asn	Ser	Ile	Cys	Cys	Thr
CAA GGA	AĀA	TAT	ATC O	CAC	CCT	CAA	AAT	AAT	TCG 78	ATT	TGC 38	TGT	ACC
351					50	, ,							
Lys Cys	Hie	35 Lvs	Glv	Thr	Tvr	Leu	40 Tyr	Asn	Asp	Cys	Pro	45 Gly	Pro
AAG TGC	CAC	AAA	GGA	ACC	TAC	TTG	TAC	AAT	GAC	TGT	CCA 43	GGC	CCG
396		40)5		43	L 4		42	23		4.		
Gly Gln	•	50	3	C	3 c-	C1	55 Cvs	Glu	Sar	Glv	Ser	60 Phe	ሞክድ
GGG CAG	ASP GAT	ACG	GAC	TGC	AGG	GAG	TGT	GAG	AGC	GGC	TCC	TIC	ACC
441		45			45	59		46	58		47	77	
		65	_		_		70	-	0	0	C	75	Crro
Ala Ser GCT TCA	Glu	ASR	His	Leu	Arg	His	TGC	CTC	AGC	TGC	TCC	AAA	TGC
486		49	95		50	04		53	13		52	22	
		80					85					90	_
Arg Lys CGA AAG	Glu	Met	Gly	Gln	Val	Glu	Ile	Ser TCT	Ser TCT	Cys TGC	Thr	Val GTG	Asp GAC
531	GMA		10	CAG	5	49	0	5!	58		5	67	

FIG. 1B

Arg Asp Thr CGG GAC ACC 576	95 Val Cys Gly GTG TGT GGC 585	Cys Arg I	100 Lys Asn Gln AAG AAC CAG 603	105 Tyr Arg His Tyr TAC CGG CAT TAT 612
TGG AGT GAA	110 Asn Leu Phe AAC CTT TTC 630	Gln Cys I CAG TGC T	115 Phe Asn Cys TTC AAT TGC 648	120 Ser Leu Cys Leu AGC CTC TGC CTC 657
AAT GGG ACC	125 Val His Leu GTG CAC CTC 675	Ser Cys (CAG GAG AAA	135 Gln Asn Thr Val CAG AAC ACC GTG 702
TGC ACC TGC	CAT GCA GGT	Phe Phe	145 Leu Arg Glu CTA AGA GAA 738	150 Asn Glu Cys Val AAC GAG TGT GTC 747
TCC TGT AGT	155 Asn Cys Lys AAC TGT AAG 765	Lys Ser :	160 Leu Glu Cys CTG GAG TGC 783	165 Thr Lys Leu Cys ACG AAG TTG TGC 792
CTA CCC CAG	170 Ile Glu Asn ATT GAG AAT 810	Val Lys (GGC ACT GAG	180 Asp Ser Gly Thr GAC TCA GGC ACC 837
Thr Val Leu ACA GTG CTG 846	185 Leu Pro Leu TTG CCC CTG 855	Val Ile 1	190 Phe Phe Gly TTC TTT GGT 873	195 Leu Cys Leu Leu CTT TGC CTT TTA 882
Ser Leu Leu TCC CTC CTC 891	200 Phe Ile Gly TTC ATT GGT 900	Leu Met '	205 Tyr Arg Tyr TAT CGC TAC 918	210 Gln Arg Trp Lys CAA CGG TGG AAG 927
Ser Lys Leu TCC AAG CTC 936	TAC TCC ATT	Val Cys	220 Gly Lys Ser GGG AAA TCG 963	225 Thr Pro Glu Lys ACA CCT GAA AAA 972
Glu Gly Glu GAG GGG GAG 981	230 Leu Glu Gly CTT GAA GGA 990	Thr Thr	235 Thr Lys Pro ACT AAG CCC 1008	240 Leu Ala Pro Asn CTG GCC CCA AAC 1017

FIG. 1C

Pro Ser CCA AGO 1026	TTC	245 Ser Pro AGT CCC 1035	CACT	CCA	GGC	Phe TTC	ACC	Pro CCC	Thr	Leu CTG 106	GGC	Phe TTC
AGT CCC	GTG	260 Pro Sec CCC AG 1080	Ser TCC	ACC	Phe TTC	Thr	Ser TCC	Ser AGC	Ser TCC	Thr	TAT	Thr ACC
CCC GGT	GAC	275 Cys Pro TGT CC 1125	Asn AAC	Phe TTT	Ala GCG	Ala GCT	CCC	Arg CGC	AGA	Glu GAG 115	GTG	Ala GCA
CCA CCC	TAT	290 Gln Gl CAG GG 1170	GCT	Asp GAC	Pro CCC	Ile ATC	Leu CTT	Ala GCG	Thr ACA	Ala GCC 119	CTC	Ala GCC
TCC GAG	CCC	305 Ile Pra ATC CC 1215	Asn AAC	Pro CCC	Leu CTT	CAG	Lys AAG	TGG	GAG	GAC	AGC	Ala GCC
His Lys CAC AAC 1251	CCA	320 Gln Se CAG AG 1260	CTA	GAC	Thr	Asp GAT	Asp GAC	CCC	GCG	ACG	CTG	Tyr TAC
Ala Val GCC GTC 1296	l Val G GTG	335 Glu As: GAG AA 1305	n Val C GTG	CCC	Pro CCG	340 Leu TTG	Arg CGC 132	TGG	AA S	3GAA 1332	rtc 2	

FIG. 2

FIG. 3A

FIG. 3B

FIG. 6A

pAD-CMV1 : 6414 bp

TCGACATTGA TTATTGACTA	GTTATTAATA	GTAATCAATT	ACGGGGTCAT	TAGTTCATAG	60
CCCATATATG GAGTTCCGCG	TTACATAACT	TACGGTAAAT	GGCCCGCCTG	GCTGACCGCC	120
CAACGACCCC CGCCCATTGA	CGTCAATAAT	GACGTATGTT	CCCATAGTAA	CGCCAATAGG	180
GACTTTCCAT TGACGTCAAT	GGGTGGAGTA	TTTACGGTAA	ACTGCCCACT	TGGCAGTACA	240
TCAAGTGTAT CATATGCCAA	GTACGCCCCC	TATTGACGTC	AATGACGGTA	AATGGCCCGC	300
CTGGCATTAT GCCCAGTACA	TGACCTTATG	GGACTTTCCT	ACTTGGCAGT	ACATCTACGT	360
ATTAGTCATC GCTATTACCA	TGGTGATGCG	GTTTTGGCAG	TACATCAATG	GGCGTGGATA	420
GCGGTTTGAC TCACGGGGAT	TTCCAAGTCT	CCACCCCATT	GACGTCAATG	GGAGTTTGTT	480
TTGGCACCAA AATCAACGGG	ACTTTCCAAA	ATGTCGTAAC	AACTCCGCCC	CATTGACGCA	540
AATGGGCGGT AGGCGTGTAC	GGTGGGAGGT	CTATATAAGC	AGAGCTCTCT	GGCTAACTAG	600
AGAACCCACT GCTTAACTGG	CTTATCGAAA	TTAATACGAC	TCACTATAGG	GAGACCCAAG	660
CTTCTGCAGG TCGACATCGA	TGGATCCGGT	ACCTCGAGCG	CGAATTCTCT	AGAGGATCTT	720
TGTGAAGGAA CCTTACTTCT	GTGGTGTGAC	ATAATTGGAC	AAACTACCTA	CAGAGATTTA	780
AAGCTCTAAG GTAAATATAA	AATTTTTAAG	TGTATAATGT	GTTAAACTAC	TGATTCTAAT	840
TGTTTGTGTA TTTTAGATTC	CAACCTATGG	AACTGATGAA	TGGGAGCAGT	GGTGGAATGC	900
CTTTAATGAG GAAAACCTGT	TTTGCTCAGA	AGAAATGCCA	TCTAGTGATG	ATGAGGCTAC	960
TGCTGACTCT CAACATTCTA	CTCCTCCAAA	AAAGAAGAGA	AAGGTAGAAG	ACCCCAAGGA	1020
CTTTCCTTCA GAATTGCTAA	GTTTTTTGAG	TCATGCTGTG	TTTAGTAATA	GAACTCTTGC	1080
TTGCTTTGCT ATTTACACCA	CAAAGGAAAA	AGCTGCACTG	CTATACAAGA	AAATTATGGA	1140
AAAATATTTG ATGTATAGTG	CCTTGACTAG	AGATCATAAT	CAGCCATACC	ACATTTGTAG	1200
AGGTTTTACT TGCTTTAAAA	AACCTCCCAC	ACCTCCCCCT	GAACCTGAAA	CATAAAATGA	1260
ATGCAATTGT TGTTGTTAAC	TTGTTTATTG	CAGCTTATAA	TGGTTACAAA	TAAAGCAATA	1320
GCATCACAAA TTTCACAAAT	AAAGCATTTT	TTTCACTGCA	TTCTAGTTGT	GGTTTGTCCA	1380
AACTCATCAA TGTATCTTAT	CATGTCTGGA	TCAATTCTGA	GAAACTAGCC	TTAAAGACAG	1440

FIG. 6B

A	CAGCTTTGT	TCTAGTCAGC	CAGGCAAGCA	TATGTAAATA	AAGTTCCTCA	GGGAACTGAG	1500
G	TTAAAAGAT	GTATCCTGGA	CCTGCCAGAC	CTGGCCATTC	ACGTAAACAG	AAGATTCCGC	1560
C	TCAAGTTCC	GGTTAACAAC	AGGAGGCAAC	GAGATCTCAA	ATCTATTACT	TCTAATCGGG	1620
T.	AATTAAAAC	CTTTCAACTA	AAACACGGAC	CCACGGATGT	CACCCACTTT	TCCTTCCCCG	1680
G	CTCCGCCCT	TCTCAGTACT	CCCCACCATT	AGGCTCGCTA	CTCCACCTCC	ACTTCCGGGC	1740
G	CGACACCCA	CGTGCCCTCT	CCCACCGAC	GCTAACCCCG	CCCCTGCCCG	TCTGACCCCG	1800
C	CCACCACCT	GCCCCGCCC	CGTTGAGGAC	AGAAGAAACC	CCGGGCAGCC	GCAGCCAAGG	1860
C	GGACGGGTA	GACGCTGGGG	GCGCTGAGGA	GTCGTCCTCT	ACCTTCTCTG	CTGGCTCGGT	1920
G	GGGACGCG	GTGGATCTCA	GGCTTCCGGA	AGACTGGAAG	AACCGGCTCA	GAACCGCTTG	1980
T	CTCCGCGGG	GCTTGGGCGG	CGGAAGAATG	GCCGCTAGAC	GCGGACTTGG	TGCGAGGCAT	2040
C	GCAGGATGC	AGAAGAGCAA	GCCCGCCGGG	AGCGCGCGC	TGTACTACCC	CGCGCCTGGA	2100
G	CGGCCACGC	CGGACTGGGC	GGGCCGGCC	TGGTGGAGGC	GGAGTCTGAC	CTCGTGGAGG	2160
CC	GGGCCTCT	GATGTTCAAA	TAGGATGCTA	GGCTTGTTGA	GGCGTGGCCT	CCGATTCACA	2220
AG	STGGGAAGC	AGCGCCGGGC	GACTGCAATT	TCGCGCCAAA	CTTGGGGGAA	GCACAGCGTA	2280
CA	GGCTGCCT	AGGTGATCGC	TGCTGCTGTC	ATGGTTCGAC	CGCTGAACTG	CATCGTCGCC	2340
GI	GTCCCAGA	ATATGGGCAT	CGGCAAGAAC	GGAGACCTTC	CCTGGCCAAT	GCTCAGGTAC	2400
TG	GCTGGATT	GGGTTAGGGA	AACCGAGGCG	GTTCGCTGAA	TCGGGTCGAG	CACTTGGCGG	2460
AG	ACGCGCGG	GCCAACTACT	TAGGGACAGT	CATGAGGGGT	AGGCCCGCCG	GCTGCTGCCC	2520
TI	GCCCATGC	CCGCGGTGAT	CCCCATGCTG	TGCCAGCCTT	TGCCCAGAGG	CGCTCTAGCT	2580
GG	GAGCAAAG	TCCGGTCACT	GGGCAGCACC	ACCCCCGGA	CTTGCATGGG	TAGCCGCTGA	2640
GA	TGGAGCCT	GAGCACACGT	GACAGGGTCC	CTGTTAACGC	AGTGTTTCTC	TAACTTTCAG	2700
GA	ACGAGTTC	AAGTACTTCC	AAAGAATGAC	CACCACCTCC	TCAGTGGAAG	GTAAACAGAA	2760
CC	TGGTGATT	ATGGGCCGGA	AAACCTGGTT	CTCCATTCCT	GAGAAGAATC	GACCTTTAAA	2820
GG	ACAGAATT	AATATAGTTC	TCAGTAGAGA	GCTCAAGGAA	CCACCACAAG	GAGCTCATTT	2880
rc	TTGCCAAA	AGTCTGGACC	ATGCCTTAAA	ACTTATTGAA	CAACCAGAGT	TAGCAGATAA	2940
AG	TGGACATG	GTTTGGATAG	TTGGAGGCAG	TTCCGTTTAC	AAGGAAGCCA	TGAATCAGCC	3000

FIG. 6C

AGGCCATCTC	AGACTCTTTG	TGACAAGGAT	CATGCAGGAA	TTTGAAAGTG	ACACGTTCTT	3060
CCCAGAAATT	GATTTGGAGA	AATATAAACT	TCTCCCAGAG	TACCCAGGGG	TCCTTTCTGA	3120
AGTCCAGGAG	GAAAAAGGCA	TCAAGTATAA	ATTTGAAGTC	TATGAGAAGA	AAGGCTAACA	3180
GAAAGATACT	TGCTGATTGA	CTTCAAGTTC	TACTGCTTTC	CTCCTAAAAT	TATGCATTTT	3240
TACAAGACCA	TGGGACTTGT	GTTGGCTTTA	GATCCTGTGC	ATCCTGGGCA	ACTGTTGTAC	3300
TCTAAGCCAC	TCCCCAAAGT	CATGCCCCAG	CCCCTGTATA	ATTCTAAACA	ATTAGAATTA	3360
TTTTCATTTT	CATTAGTCTA	ACCAGGTTAT	ATTAAATATA	CTTTAAGAAA	CACCATTTGC	3420
CATAAAGTTC	TCAATGCCCC	TCCCATGCAG	CCTCAAGTGG	CTCCCCAGCA	GATGCATAGG	3480
GTAGTGTGTG	TACAAGAGAC	CCCAAAGACA	TAGAGCCCCT	GAGAGCATGA	GCTGATATGG	3540
GGGCTCATAG	AGATAGGAGC	TAGATGAATA	AGTACAAAGG	GCAGAAATGG	GTTTTAACCA	3600
GCAGAGCTAG	AACTCAGACT	TTAAAGAAAA	TTAGATCAAA	GTAGAGACTG	AATTATTCTG	3660
CACATCAGAC	TCTGAGCAGA	GTTCTGTTCA	CTCAGACAGA	AAATGGGTAA	ATTGAGAGCT	3720
GGCTCCATTG	TGCTCCTTAG	AGATGGGAGC	AGGTGGAGGA	TTATATAAGG	TCTGGAACAT	3780
TTAACTTCTC	CGTTTCTCAT	CTTCAGTGAG	ATTCCAAGGG	ATACTACAAT	TCTGTGGAAT	3840
GTGTGTCAGT	TAGGGTGTGG	AAAGTCCCCA	GGCTCCCCAG	CAGGCAGAAG	TATGCAAAGC	3900
ATGCATCTCA	ATTAGTCAGC	AACCAGGTGT	GGAAAGTCCC	CAGGCTCCCC	AGCAGGCAGA	3960
AGTATGCAAA	GCATGCATCT	CAATTAGTCA	GCAACCATAG	TCCCGCCCCT	AACTCCGCCC	4020
ATCCCGCCCC	TAACTCCGCC	CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	ACTAATTTTT	4080
TTTATTTATG	CAGAGGCCGA	GGCGCCTCTG	AGCTATTCCA	GAAGTAGTGA	GGAGGCTTTT	4140
TTGGAGGCCT	AGGCTTTTGC	AAAAAAGCTA	ATTCAGCCTG	AATGGCGAAT	GGGACGCGCC	4200
CTGTAGCGGC	GCATTAAGCG	CGGCGGGTGT	GGTGGTTACG	CGCAGCGTGA	CCGCTACACT	4260
TGCCAGCGCC	CTAGCGCCCG	CTCCTTTCGC	TTTCTTCCCT	TCCTTTCTCG	CCACGTTCGC	4320
CGGCTTTCCC	CGTCAAGCTC	TAAATCGGGG	GCTCCCTTTA	GGGTTCCGAT	TTAGTGCTTT	4380
ACGGCACCTC	GACCCCAAAA	ACTTGATTAG	GGTGATGGTT	CACGTAGTGG	GCCATCGCCC	4440
TGATAGACGG	TTTTTCGCCC	TTTGACGTTG	GAGTCCACGT	TCTTTAATAG	TGGACTCTTG	4500
TTCCAAACTG	GAACAACACT	CAACCCTATC	TCGGTCTATT	CTTTTGATTT	ATAAGGGATT	4560

FIG. 6D

TTGCCGATT	T CGGCCTATTG	GTTAAAAAAT	GAGCTGATTT	AACAAAAATT	TAACGCGAAT	4620
TTTAACAA	A TATTAACGTT	TACAATTTCA	GGTGGCACTT	TTCGGGGAAA	TGTGCGCGGA	4680
ACCCCTATI	T GTTTATTTT	CTAAATACAT	TCAAATATGT	ATCCGCTCAT	GAGACAATAA	4740
CCCTGATA	A TGCTTCAATA	ATATTGAAAA	AGGAAGAGTA	TGAGTATTCA	ACATTTCCGT	4800
GTCGCCCTT	A TTCCCTTTTT	TGCGGCATTT	TGCCTTCCTG	TTTTTGCTCA	CCCAGAAACG	4860
CTGGTGAAA	G TAAAAGATGC	TGAAGATCAG	TTGGGTGCAC	GAGTGGGTTA	CATCGAACTG	4920
GATCTCAAC	A GCGGTAAGAT	CCTTGAGAGT	TTTCGCCCCG	AAGAACGTTT	TCCAATGATG	4980
AGCACTTTT	A AAGTTCTGCT	ATGTGGCGCG	GTATTATCCC	GTATTGACGC	CGGGCAAGAG	5040
CAACTCGGI	C GCCGCATACA	CTATTCTCAG	AATGACTTGG	TTGAGTACTC	ACCAGTCACA	5100
GAAAAGCAT	C TTACGGATGG	CATGACAGTA	AGAGAATTAT	GCAGTGCTGC	CATAACCATG	5160
AGTGATAAC	CA CTGCGGCCAA	CTTACTTCTG	ACAACGATCG	GAGGACCGAA	GGAGCTAACC	5220
GCTTTTTT	C ACAACATGGG	GGATCATGTA	ACTCGCCTTG	ATCGTTGGGA	ACCGGAGCTG	5280
AATGAAGCO	A TACCAAACGA	CGAGCGTGAC	ACCACGATGC	CTGTAGCAAT	GGCAACAACG	5340
TTGCGCAAA	C TATTAACTGG	CGAACTACTT	ACTCTAGCTT	CCCGGCAACA	ATTAATAGAC	5400
TGGATGGAG	g' cggataaagt	TGCAGGACCA	CTTCTGCGCT	CGGCCCTTCC	GGCTGGCTGG	5460
TTTATTGCT	G ATAAATCTGG	AGCCGGTGAG	CGTGGGTCTC	GCGGTATCAT	TGCAGCACTG	5520
GGGCCAGAT	G GTAAGCCCTC	CCGTATCGTA	GTTATCTACA	CGACGGGGAG	TCAGGCAACT	5580
ATGGATGAA	C GAAATAGACA	GATCGCTGAG	ATAGGTGCCT	CACTGATTAA	GCATTGGTAA	5640
CTGTCAGAC	C AAGTTTACTC	ATATATACTT	TAGATTGATT	TAAAACTTCA	TTTTAATTT	5700
AAAAGGATC	T AGGTGAAGAT	CCTTTTTGAT	AATCTCATGA	CCAAAATCCC	TTAACGTGAG	5760
TTTTCGTTC	C ACTGAGCGTC	AGACCCCGTA	GAAAAGATCA	AAGGATCTTC	TTGAGATCCT	5820
TTTTTTCTG	C GCGTAATCTG	CTGCTTGCAA	ACAAAAAAAC	CACCGCTACC	AGCGGTGGTT	5880
TGTTTGCCG	G ATCAAGAGCT	ACCAACTCTT	TTTCCGAAGG	TAACTGGCTT	CAGCAGAGCG	5940
CAGATACCA	A ATACTGTCCT	TCTAGTGTAG	CCGTAGTTAG	GCCACCACTT	CAAGAACTCT	6000
GTAGCACCG	C CTACATACCT	CGCTCTGCTA	ATCCTGTTAC	CAGTGGCTGC	TGCCAGTGGC	6060
GATAAGTCG	T GTCTTACCGG	GTTGGACTCA	AGACGATAGT	TACCGGATAA	GGCGCAGCGG	6120

FIG. 6E

TCGGGCTGAA	CGGGGGGTTC	GTGCACACAG	CCCAGCTTGG	AGCGAACGAC	CTACACCGAA	6180
CTGAGATACC	TACAGCGTGA	GCATTGAGAA	AGCGCCACGC	TTCCCGAAGG	GAGAAAGGCG	6240
GACAGGTATC	CGGTAAGCGG	CAGGGTCGGA	ACAGGAGAGC	GCACGAGGGA	GCTTCCAGGG	6300
GGAAACGCCT	GGTATCTTTA	TAGTCCTGTC	GGGTTTCGCC	ACCTCTGACT	TGAGCGTCGA	6360
тттттстсат	GCTCGTCAGG	GGGGCGGAGC	CTATGGAAAA	ACGCCAGCAA	CGCC	

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 7D

FIG. 8A

raTNF-R

,			
GAATTCCTTT TCTCCG	AGTT TTCTO	BAACTC TGGCT	CATGA TCGGGCTTAC TGGATACGAG 60
AATCCTGGAG, GACCGT	ACCC TGATI	TCCAT CTACCT	TCTGA CTTTGAGCCT TTCTAACCCG 120
			GATCG TCTTACTTCA TTCACCAGCG 180
	TGTC CCCAG	SCCCCA ATGGG	GGAGT GAGAGAGGCC ACTGCCGGCC 240
GGAC			
245/1			275/11
			G CTG TCA CTG GTG CTC CTG GCT CTG ATG
	Te ATT PRO	Gly Leu Leu	u Leu Ser Leu Val Leu Leu Ala Leu Leu Met 335/31
305/21 CAC CCA TO	CA GGG GTC	י ארר ההא ריים	G GTT CCT TCT CTT GGT GAC CGG GAG AAG AGG
			u Val Pro Ser Leu Gly Asp Arg Glu Lys Arg
365/41			395/51
	CC CAG GGA	AAG TAT GC	C CAT CCA AAG AAT AAT TCC ATC TGC TGC ACC
			a His Pro Lys Asn Asn Ser Ile Cys Cys Thr
425/61			455/71
			T GAC TGT CCA AGC CCA GGG CAG GAA ACA GTC
	ly Thr Tyr	Leu Val Sei	r Asp Cys Pro Ser Pro Gly Gln Glu Thr Val
485/81			515/91
TGC GAG CTC TCT C	AT AAA GGC	ACC TTT ACA	A GCT TCG CAG AAC CAC GTC AGA CAG TGT CTC
545/101	is ras eia	Thr Phe Thi	r Ala Ser Gln Asn His Val Arg Gln Cys Leu 575/111
	GT CGG AAA	GAA ATG TTO	C CAG GTG GAG ATT TCT CCT TGC AAA GCT GAC
Ser Cvs Lvs Thr C	vs Arg Lvs	Glu Met Phe	e Gln Val Glu Ile Ser Pro Cys Lys Ala Asp
605/121	4 ,2 -		635/131
ATG GAC ACC GTG T	GT GGC TGC	AAG AAG AAC	C CAA TTC CAG CGC TAC CTG AGT GAG ACG CAT
			n Gln Phe Gln Arg Tyr Leu Ser Glu Thr His
665/141			695/151
TTC CAG TGT GTG G	AC TGC AGC	CCC TGC TTC	C AAT GGC ACC GTG ACA ATC CCC TGT AAG GAG
Phe Gln Cys Val A	sp Cys Ser	Pro Cys Phe	e Asn Gly Thr Val Thr Ile Pro Cys Lys Glu
725/161	יה יהיי אאר		755/171 A GGA TTC TTT CTA AGC GGA AAT GAG TGC ACC
			a Gly Phe Phe Leu Ser Gly Asn Glu Cys Thr
785/181	ar cyc non	Cyo nio nia	815/191
	SC AAG AAA	AAT CAG GAA	A TGT ATG AAG CTG TGC CTA CCT CCA GTT GCA
			Cys Met Lys Leu Cys Leu Pro Pro Val Ala
845/201			875/211
AAT GTC ACA AAC CO	CC CAG GAC	TCA GGT ACT	F GCC GTG CTG TTG CCT CTG GTT ATC TTC CTA
	co Gln Asp	Ser Gly Thr	r Ala Val Leu Leu Pro Leu Val Ile Phe Leu
905/221	N	>ma maa >ma	935/231
Gly Lau Cys Lau Le	M TIC TIT	Tie Cye Tie	AGT CTA CTG TGC CGA TAT CCC CAG TGG AGG Ser Leu Leu Cys Arg Tyr Pro Gln Trp Arg
965/241	a rue rue	TTE CAS TIE	995/251
	C ATC ATT	TGT AGG GAT	T TCA GCT CCT GTC AAA GAG GTG GAG GGT GAA
			Ser Ala Pro Val Lys Glu Val Glu Gly Glu
1025/261			1055/271
GGA ATT GTT ACT A	G CCC CTA	ACT CCA GCC	TCT ATC CCA GCC TTC AGC CCC AAC CCC GGC
	s Pro Leu	Thr Pro Ala	Ser Ile Pro Ala Phe Ser Pro Asn Pro Gly
1085/281			1115/291
TTC AAC CCC ACT CT	'G GGC TTC	AGC ACC ACC	C CCA CGC TTC AGT CAT CCT GTC TCC AGT ACC
	eu Gly Phe	ser Thr Thr	Pro Arg Phe Ser His Pro Val Ser Ser Thr
1145/301		CCM 3CM 33C	1175/311
Pro Tle Ser Pro Va	I Phe Glu	Dro Car Res	TGG CAC AAC TTC GTG CCA CCT GTA AGA GAG Trp His Asn Phe Val Pro Pro Val Arg Glu
1205/321	- THE GTA	ETO SET WAN	1235/331
*	G GGT GCT	GAC CCT CTC	CTC TAC GGA TCC CTC AAC CCT GTG CCA ATC
Val Val Pro Thr Gl	n Gly Ala	Asp Pro Leu	Leu Tyr Gly Ser Leu Asn Pro Val Pro Ile
	- .	=	

FIG. 8B

1265/341 1295/351	_
CCC GCC CCT GTT CGG ANA TGG GAN GAC GTC GTC GCG GCC CAG CCA CAN CGG CTT GAC AC.	T
Pro Ala Pro Val Arg Lys Trp Glu Asp Val Val Ala Ala Gln Pro Gln Arg Leu Asp Thr	
1355/3/4	
CON CAC COT GCG ATG CTG TAT GCT GTG GTG GAT GGC GTG CCT CCG ACA CGC TGG AAG GAG	
Ala Asp Pro Ala Met Leu Tyr Ala Val Val Asp Gly Val Pro Pro Thr Arg Trp Lys Glu	
1205/391	
THE ARE ORE CITE OF GOO CITE AGE GAG CAE GAG ATE GAG CGG CTG GAG CTG CAG AAC GGG	
Phe Met Arg Leu Leu Gly Leu Ser Glu His Glu Ile Glu Arg Leu Glu Leu Gln Asn Gly	
1445/401	
CGT TGC CTC CGC GAG GCT CAT TAC AGC ATG CTG GAA GCC TGG CGG CGC CGC ACA CCG CGA	
Arg Cys Leu Arg Glu Ala His Tyr Ser Met Leu Glu Ala Trp Arg Arg Arg Thr Pro Arg	
1505/221 1535/431	
CAC GAG GCC ACG CTG GAC GTA GTG GGC CGC GTG CTT TGC GAC ATG AAC CTG CGT GGC TGC	
His Glu Ala Thr Leu Asp Val Val Gly Arg Val Leu Cys Asp Met Asn Leu Arg Gly Cys	
1565/441 1595/451	
CTG GAG AAC ATC CGC GAG ACT CTA GAA AGC CCT GCC CAC TCG TCC ACG ACC CAC CTC CCG	ı
Leu Glu Asn Ile Arg Glu Thr Leu Glu Ser Pro Ala His Ser Ser Thr Thr His Leu Pro	i
1625/461	
CGA TAA	
Arg Stop	
GGCCACACC CCACCICAGG AACGGGAGIG GIRIGGIIGGIIG	
GCCCTGCTTC CCTGTGAACC TCCTCTTTG TCCTCTAGGG GGGAAGGGTTGG	
CTCGATCTGG CAGCCACTTC CTTGGTGCTA CCGACTTGGT GTACATAGCT TTTCCCAGCT 1800 GCCGAGGACA GCCTGTGCCA GCCACTTGTG CATGGCAGGG AAGTGTGCCA TCTGCTCCCA 1860	
GCCGAGGACA GCCIGIGCCA GCCACIIGIG CAIGGCAGGG IZIGIGIGIGIG	
GACAGCTGAG GGTGCCAAAA GCCAGGAGAG GTGATTGTGG AGAAAAAGCA CAATCTATCT 1920 GATACCCACT TGGGATGCAA GGACCCAAAC AAAGCTTCTC AGGGCCTCCT CAGTTGATTT 1980	
CTGGGCCCTT TTCACAGTAG ATAAAACAGT CTTTGTATTG ATTATATCAC ACTAATGGAT 2040	
GAACGGTTGA ACTCCCTAAG GTAGGGGCAA GCACAGAACA GTGGGGTCTC CAGCTGGAGC 2100	
CCCCGACTCT TGTAAATACA CTAAAAATCT AAAAGTGAAA AAAAAAAAA AAAAAAAAA 2160	
AAAAAAGGAA TTC	
YETUNDOUN TIC	

FIG. 9A

huTNF-R

 $F\chi^{\lambda}_{,\bullet}={}_{\bullet}\,,$

GAATTCTCTG GACTGAGGCT CCAGTTCTGG CCTTTGGGGT TCAAGATCAC TGGGACCAGG 60 CCGTGATCTC TATGCCCGAG TCTCAACCCT CAACTGTCAC CCCAAGGCAC TTGGGACGTC 120 CTGGACAGAC CGAGTCCCGG GAAGCCCCAG CACTGCCGCT GCCACACTGC CCTGAGCCCA 180 AATGGGGGAG TGAGAGGCCA TAGCTGTCTG GC

243/11 213/1 ATG GGC CTC TCC ACC GTG CCT GAC CTG CTG CTG CCA CTG GTG CTC CTG GAG CTG TTG GTG Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu Leu Glu Leu Leu Val 303/31 273/21 GGA ATA TAC CCC TCA GGG GTT ATT GGA CTG GTC CCT CAC CTA GGG GAC AGG GAG AAG AGA Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg 363/51 333/41 GAT AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT CAA AAT AAT TCG ATT TGC TGT ACC Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr 423/71 393/61 AAG TGC CAC AAA GGA ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT ACG GAC Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp 483/91 453/81 TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT TCA GAA AAC CAC CTC AGA CAC TGC CTC Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu 543/111 AGC TGC TCC AAA TGC CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TGC ACA GTG GAC Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp 603/131 573/121 CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC CAG TAC CGG CAT TAT TGG AGT GAA AAC CTT Arg Asp Thr Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu 663/151 633/141 TTC CAG TGC TTC AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC TCC TGC CAG GAG Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu 723/171 693/161 AAA CAG AAC ACC GTG TGC ACC TGC CAT GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu Asn Glu Cys Val 783/191 753/181 TCC TGT AGT AAC TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC CTA CCC CAG ATT GAG Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr Lys Leu Cys Leu Pro Gln Ile Glu 843/211 813/201 AAT GTT AAG GGC ACT GAG GAC TCA GGC ACC ACA GTG CTG TTG CCC CTG GTC ATT TTC TTT Asn Val Lys Gly Thr Glu Asp Ser Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe 903/231 GGT CTT TGC CTT TTA TCC CTC CTC TTC ATT GGT TTA ATG TAT CGC TAC CAA CGG TGG AAG Gly Leu Cys Leu Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys 963/251 933/241 TCC AAG CTC TAC TCC ATT GTT TGT GGG AAA TCG ACA CCT GAA AAA GAG GGG GAG CTT GAA Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu Gly Glu Leu Glu 1023/271 993/261 GGA ACT ACT ACT AAG CCC CTG GCC CCA AAC CCA AGC TTC AGT CCC ACT CCA GGC TTC ACC Gly Thr Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser Phe Ser Pro Thr Pro Gly Phe Thr 1083/291 1053/281 CCC ACC CTG GGC TTC AGT CCC GTG CCC AGT TCC ACC TTC ACC TCC AGC TCC ACC TAT ACC Pro Thr Leu Gly Phe Ser Pro Val Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr 1143/311 1113/301 CCC GGT GAC TGT CCC AAC TTT GCG GCT CCC CGC AGA GAG GTG GCA CCA CCC TAT CAG GGG Pro Gly Asp Cys Pro Asn Phe Ala Ala Pro Arg Glu Val Ala Pro Pro Tyr Gln Gly 1203/331 1173/321 GCT GAC CCC ATC CTT GCG ACA GCC CTC GCC TCC GAC CCC ATC CCC AAC CCC CTT CAG AAG Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn Pro Leu Gin Lys

FIG. 9B

1233/341 1263/351	
TGG GAG GAC AGC GCC CAC AAG CCA CAG AGC CTA GAC ACT GAT GAC CCC GC	G ACG CTG TAC
Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp Thr Asp Asp Pro Al	a Thr Leu Tyr
1293/361 1323/371	
GCC GTG GTG GAG AAC GTG CCC CCG TTG CGC TGG AAG GAA TTC GTG CGG CG	C CTA GGG CTG
Ala Val Val Glu Asn Val Pro Pro Leu Arg Trp Lys Glu Phe Val Arg Ar	g Leu Gly Leu
1353/381 1383/391	-
AGC GAC CAC GAG ATC GAT CGG CTG GAG CTG CAG AAC GGG CGC TGC CTG CG	C GAG GCG CAA
Ser Asp His Glu Ile Asp Arg Leu Glu Leu Gln Asn Gly Arg Cys Leu Ar	g Glu Ala Gln
1413/401 1443/411	_
TAC AGC ATG CTG GCG ACC TGG AGG CGG CGC ACG CCG CGC GAG GCC AC	G CTG GAG CTG
Tyr Ser Met Leu Ala Thr Trp Arg Arg Arg Thr Pro Arg Arg Glu Ala Th	r Leu Glu Leu
1473/421 1503/431	
CTG GGA CGC GTG CTC CGC GAC ATG GAC CTG CTG GGC TGC CTG GAG GAC AT	C GAG GAG GCG
Leu Gly Arg Val Leu Arg Asp Met Asp Leu Leu Gly Cys Leu Glu Asp Il	e Glu Glu Ala
1533/441 1563/451	
CTT TGC GGC CCC GCC CTC CCG CCC GCG CCC AGT CTT CTC AGA TGA	1580
Leu Cys Gly Pro Ala Ala Leu Pro Pro Ala Pro Ser Leu Leu Arg Stop	2000
Ted CA2 GIA LIO WIE WIE HER LIO LIO WIE LIO DOT TOR TOR 1172 ACOD	•
GGCTGCGCCC CTGCGGGCAG CTCTAAGGAC CGTCCTGCGA 1620	
GATCGCCTTC CAACCCCACT TTTTTCTGGA AAGGAGGGGT CCTGCAGGGG CAAGCAGGAG	1680
CTAGCAGCCG CCTACTTGGT GCTAACCCCT CGATGTACAT AGCTTTTCTC AGCTGCCTGC	1740
GCGCCGCCGA CAGTCAGCGC TGTGCGCGCG GAGAGAGGTG CGCCGTGGGC TCAAGAGCCT	1800
GAGTGGGTGG TTTGCGAGGA TGAGGGACGC TATGCCTCAT GCCCGTTTTG GGTGTCCTCA	1860
CCAGCAAGGC TGCTCGGGGG CCCCTGGTTC GTCCCTGAGC CTTTTTCACA GTGCATAAGC	1920
AGTTTTTTT GTTTTGTTT TGTTTTGTTT TGTTTTTAAA TCAATCATGT TACACTAATA	·
GAAACTTGGC ACTCCTGTGC CCTCTGCCTG GACAAGCACA TAGCAAGCTG AACTGTCCTA	2040
AGGCAGGGG GAGCACGGAA CAATGGGGCC TTCAGCTGGA GCTGTGGACT TTTGTACATA	2100
	2141
CACTAAAATT CTGAAGTTAA AAAAAAAAA AAAAGGAATT C	~17L

