Содержа	ние	
10.Base $[1/1]$		3
Задача 10А.	Min cost max flow [0.3 sec, 256 mb]	3
10.Advanced	[2/4]	4
Задача 10В.	В поисках невест [0.1 sec, 256 mb]	4
Задача 10С.	Задача о назначениях [1.5 sec, 256 mb]	5
Задача 10D.	План эвакуации [0.2 sec, 256 mb]	6
Задача 10Е.	Автоматное программирование [1 sec, 256 mb]	8
10.Hard [0/2]	9
Задача 10F.	k паросочетаний [1 sec, 256 mb]	9
Задача 10 G .	Кредитные операции 2 [0.3 sec, 256 mb]	10

Общая информация:

Bход в контест: http://contest.yandex.ru/contest/1192/

Дедлайн на задачи: 2 недели, до 3-го мая 23:59.

К каждой главе есть более простые задачи (base), посложнее (advanced), и сложные (hard).

В скобках к каждой главе написано сколько любых задач из этой главы нужно сдать.

Caйт курса: https://compscicenter.ru/courses/algorithms-2/2015-spring/

Семинары ведёт Сергей Владимирович Копелиович, контакты: burunduk30@gmail.com, vk.com/burunduk1

В каждом условии указан таймлимит для C/C++. Таймлиминт для Java примерно в 2-3 раза больше. Таймлиминт для Python примерно в 4-5 раз больше.

10.Base [1/1]

Задача 10A. Min cost max flow [0.3 sec, 256 mb]

Задан ориентированный граф, каждое ребро которого обладает пропускной способностью и стоимостью. Найдите максимальный поток минимальной стоимости из вершины с номером 1 в вершину с номером n.

Формат входных данных

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100$, $1 \le m \le 1000$). Следующие m строк содержат по четыре целых числа числа: номера вершин, которые соединяет соответствующее ребро графа, его пропускную способность и его стоимость. Пропускные способности и стоимости не превосходят 10^5 .

Формат выходных данных

В выходной файл выведите одно число — цену максимального потока минимальной стоимости из вершины с номером 1 в вершину с номером n. Ответ не превышает $2^{63} - 1$. Гарантируется, что в графе нет циклов отрицательной стоимости.

Примеры

mincost.in	mincost.out
4 5	12
1 2 1 2	
1 3 2 2	
3 2 1 1	
2 4 2 1	
3 4 2 3	

Подсказка по решению

В этой задаче достаточно несколько раз пустить Форд-Беллмана... Не забудьте, что Форд-Беллман с break гораздоб быстрее.

10.Advanced [2/4]

Задача 10В. В поисках невест [0.1 sec, 256 mb]

Однажды король Флатландии решил отправить k своих сыновей на поиски невест. Всем известно, что во Флатландии n городов, некоторые из которых соединены дорогами. Король живет в столице, которая имеет номер 1, а город с номером n знаменит своими невестами.

Итак, король повелел, чтобы каждый из его сыновей добрался по дорогам из города 1 в город n. Поскольку, несмотря на обилие невест в городе n, красивых среди них не так много, сыновья опасаются друг друга. Поэтому они хотят добраться до цели таким образом, чтобы никакие два сына не проходили по одной и той же дороге (даже в разное время). Так как король любит своих сыновей, он хочет, чтобы среднее время сына в пути до города назначения было минимально.

Формат входных данных

В первой строке входного файла находятся числа n, m и k — количество городов и дорог во Флатландии и сыновей короля, соответственно ($2 \le n \le 200, 1 \le m \le 2000, 1 \le k \le 100$). Следующие m строк содержат по три целых положительных числа каждая — города, которые соединяет соответствующая дорога и время, которое требуется для ее прохождения (время не превышает 10^6). По дороге можно перемещаться в любом из двух направлений, два города могут быть соединены несколькими дорогами.

Формат выходных данных

Если выполнить повеление короля невозможно, выведите на первой строке число -1. В противном случае выведите на первой строке минимальное возможное среднее время (с точностью 5 знаков после десятичной точки), которое требуется сыновьям, чтобы добраться до города назначения, не менее чем с пятью знаками после десятичной точки. В следующих k строках выведите пути сыновей, сначала число дорог в пути, и затем номера дорог в пути в том порядке, в котором их следует проходить. Дороги нумеруются, начиная с единицы, в том порядке, в котором они заданы во входном файле.

Пример

brides.in	brides.out
5 8 2	3.00000
1 2 1	3 1 5 6
1 3 1	3 2 7 8
1 4 3	
2 5 5	
2 3 1	
3 5 1	
3 4 1	
5 4 1	

Подсказка по решению

В этой задаче достаточно несколько раз пустить Форд-Беллмана... Не забудьте, что Форд-Беллман с break гораздоб быстрее.

Задача 10С. Задача о назначениях [1.5 sec, 256 mb]

Дана целочисленная матрица C размера $n \times n$. Требуется выбрать n ячеек так, чтобы в каждой строке и каждом столбце была выбрана ровно одна ячейка и сумма значений в выбранных ячейках было минимальна.

Формат входных данных

Первая строка входного файла содержит n ($2 \le n \le 300$). Каждая из последующих n строк содержит по n чисел: C_{ij} Все значения во входном файле неотрицательны и не превосходят 10^6 .

Формат выходных данных

В первую строку выходного файла выведите одно число — искомая минимизуруемая величина. Далее выведите n строк по два числа в каждой — номер строки и столбца клетки, участвующей в оптимальном назначении.

Пары чисел можно выводить в произвольном порядке.

Примеры

assignment.in	assignment.out
3	3
3 2 1	2 1
1 3 2	3 2
2 1 3	1 3

Подсказка по решению

В этой задаче нужно решение за $\mathcal{O}(n^3)$.

Для этого придётся писать Дейкстру с потенциалами.

Задача 10D. План эвакуации [0.2 sec, 256 mb]

В городе есть муниципальные здания и бомобоубежища, которые были специально построены для эвакуации служащих в случае ядерной войны. Каждое бомбоубежище имеет ограниченную вместительность по количеству людей, которые могут в нем находиться. В идеале все работники из одного муниципального здания должны были бы бежать к ближайшему бомбоубежищу. Однако, в таком случае, некоторые бомбоубежища могли бы переполниться, в то время как остальные остались бы наполовину пустыми.

Чтобы резрешить эту проблему Городской Совет разработал специальный план эвакуации. Вместо того, чтобы каждому служащему индивидульно приписать, в какое бомбоубежище он должен бежать, для каждого муниципального здания определили, сколько служащих из него в какое бомобоубежище должны бежать. Задача индивидального распределения была переложена на внутреннее управление муниципальных зданий.

План эвакуации учитывает количество служащих в каждом здании — каждый служащий должен быть учтен в плане и в каждое бомбоубежище может быть направлено количество служащих, не превосходящее вместимости бомбоубежища.

Городской Совет заявляет, что их план эвакуации оптиматен в том смысле, что суммарное время эвакуации всех служащих города минимально.

Мэр города, находящийся в постоянной конфронтации с Городским Советом, не слишком то верит этому заявлению. Поэтому он нанял Вас в качестве независимого эксперта для проверки плана эвакуации. Ваша задача состоит в том, чтобы либо убедиться в оптимальности плана Городского Совета, либо доказать обратное, представив в качестве доказательства другой план эвакуации с меньшим суммарным временем для эвакуации всех служащих.

Карта города может быть представлена в виде квадратной сетки. Расположение муниципальных зданий и бомбоубежищ задается парой целых чисел, а время эвакуации из муниципального здания с координатами (X_i, Y_i) в бомбоубежище с координатами (P_j, Q_j) составляет $D_{ij} = |X_i - P_j| + |Y_i - Q_j| + 1$ минут.

Формат входных данных

Входной файл содержит описание карты города и плана эвакуации, предложенного Городским Советом. Первая строка входного файла содержит два целых числа N ($1 \le N \le 100$) и M ($1 \le M \le 100$), разделенных пробелом. N — число муниципальных зданий в городе (все они занумерованы числами от 1 до N), M — число бомбоубежищ (все они занумерованы числами от 1 до M).

Последующие N строк содержат описания муниципальных зданий. Каждая строка содержит целые числа X_i, Y_i и B_i , разделенные пробелами, где X_i, Y_i ($-1000 \leqslant X_i, Y_i \leqslant 1000$) — координаты здания, а B_i ($1 \leqslant B_i \leqslant 1000$) — число служащих в здании.

Описание бомбоубежищ содержится в последующих M строках. Каждая строка содержит целые числа P_j, Q_j и C_j , разделенные пробелами, где P_j, Q_j ($-1000 \leqslant P_j, Q_j \leqslant 1000$) — координаты бомбоубежища, а C_j ($1 \leqslant C_j \leqslant 1000$) — вместимость бомбоубежища.

В последующихся N строках содержится описание плана эвакуации. Каждая строка представляет собой описание плана эвакуации для отдельного здания. План эвакуации из i-го здания состоит из M целых чисел E_{ij} , разделенных пробелами. E_{ij} ($0 \le E_{ij} \le 10000$) — количество служащих, которые должны эвакуироваться из i-го здания в j-е бомбоубежище.

Гарантируется, что план, заданный во входном файле, корректен.

Формат выходных данных

Если план эвакуации Городского Совета оптимален, то выведите одно слово $\mathtt{OPTIMAL}$. В противном случае выведите на первой строке слово $\mathtt{SUBOPTIMAL}$, а в последующих N строках

выведите Ваш план эвакуации (более оптимальный) в том же формате, что и во входном файле. Ваш план не обязан быть оптимальным, но должен быть лучше плана Городского Совета.

Пример

evacuate.in	evacuate.out
3 4	SUBOPTIMAL
-3 3 5	3 0 1 1
-2 2 6	0 0 6 0
2 2 5	0 4 0 1
-1 1 3	
1 1 4	
-2 -2 7	
0 -1 3	
3 1 1 0	
0 0 6	
0 3 0 2	
3 4	OPTIMAL
-3 3 5	
-2 2 6	
2 2 5	
-1 1 3	
1 1 4	
-2 -2 7	
0 -1 3	
3 0 1 1	
0 0 6 0	
0 4 0 1	

Подсказка по решению

В этой задаче можно с нуля строить mincost поток, но достаточно найти какой-нибудь цикл отрицательного в остаточной сети.

Задача 10E. Автоматное программирование [1 sec, 256 mb]

В один замечательный день в компанию «X» завезли k автоматов. И не простых автоматов, а автоматов-программистов! Это был последний неудачный шаг перед переходом на андроидов-программистов, но это уже совсем другая история.

В компании сейчас n задач, для каждой из которых известно время начала ее выполнения s_i , длительность ее выполнения t_i и прибыль компании от ее завершения c_i . Любой автомат может выполнять любую задачу, ровно одну в один момент времени. Если автомат начал выполнять задачу, то он занят все моменты времени с s_i по $s_i + t_i - 1$ включительно и не может переключиться на другую задачу.

Вам требуется выбрать набор задач, которые можно выполнить с помощью этих k автоматов и который принесет максимальную суммарную прибыль.

Формат входных данных

В первой строке записаны два целых числа n и k $(1 \le n \le 1000, 1 \le k \le 50)$ — количество задач и количество автоматов, соответственно.

В следующих n строках через пробелы записаны тройки целых чисел s_i, t_i, c_i $(1 \leq s_i, t_i \leq 10^9, 1 \leq c_i \leq 10^6), s_i$ — время начала выполнения i-го задания, t_i — длительность i-го задания, а c_i — прибыль от его выполнения.

Формат выходных данных

Выведите n целых чисел x_1, x_2, \ldots, x_n . Число x_i должно быть равно 1, если задачу i следует выполнить, и 0 в противном случае.

Если оптимальных решений несколько, то выведите любое из них.

Примеры

schedule.in	schedule.out
3 1	0 1 1
2 7 5	
1 3 3	
4 1 3	
5 2	1 1 0 0 1
1 5 4	
1 4 5	
1 3 2	
4 1 2	
5 6 1	

Замечание

В первом примере задания требуют выполнения в моменты времени 2 ...8, 1 ...3 и 4 ...4, соответственно. Первое задание пересекается со вторым и третьим, поэтому можно выполнять либо его одно (прибыль 5), либо второе и третье (прибыль 6).

Подсказка по решению

В этой задаче можно построить граф из $\mathcal{O}(n)$ вершин и рёбер.

10.Hard [0/2]

Задача 10F. k паросочетаний [1 sec, 256 mb]

Дан полный взвешенный двудольный граф с равным количеством вершин в долях. Требуется выбрать k максимальных попарно не пересекающихся паросочетаний так, чтобы их суммарный вес был минимален.

Формат входных данных

Первая строка входного файла содержит n и k — количество вершин в каждой из долей и количество паросочетаний ($2 \le n \le 50$, $1 \le k \le n$). Каждая из последующих n строк содержит по n чисел: C_{ij} — вес ребра, ведущего из i-й вершины левой доли в j-ю правой.

Все значения во входном файле неотрицательны и не превосходят 10^6 .

Формат выходных данных

В первую строку выходного файла выведите одно число — искомый суммарный вес паросочетаний. Следующие k строк должны содержать n чисел — номера вершины, правой доли, соответствующие вершинам левой.

Примеры

multiassignment.in	multiassignment.out
3 2	6
1 2 1	1 2 3
1 1 2	3 1 2
2 1 1	

Задача 10G. Кредитные операции 2 [0.3 sec, 256 mb]

Дана квадратная матрица a_{ij} из неотрицательных целых чисел. Найти такие целые неотрицательные $x_i, y_j \colon \forall i, j \ x_i + y_j \geqslant a_{ij}$ и при этом $\sum x_i + \sum y_j$ минимальна. В записи $a_{ij} \colon i$ номер строки ячейки, j – номер столбца ячейки.

Формат входных данных

На первой строке число $n \ (1 \le n \le 100)$.

Следующие n строк содержат матрицу $n \times n$ из целых чисел от 0 до 10^6 .

Формат выходных данных

На первой строке вектор x. На второй строке вектор y.

Примеры

credit.in	credit.out
4	2 0 1 2
5 8 4 3	3 6 3 2
3 6 2 1	
4 6 4 1	
4 3 5 4	