MEME11203/MECG15603/MCCG15603 Statistical Learning MEME19903/MECG11103/MCCG11103 Predictive Modelling Topic 2b: Supervised Learning: Naive Bayes

Dr Liew How Hui

May 2025

Outline

- Methods of Classification
 - Naive Bayes Classifiers
 - Gaussian NB
 - Categorical NB
 - Multinomial NB and Its Variations
- Results Interpretation
- Models Comparison
- Case Study
- 5 Lab Practice on Classification Method

Class Arrangement

- Week 9: Lecture 1–3pm (Naive Bayes Model).
 Practical 3–4pm
- Week 10: Lecture 1-3pm. Practical 3-4pm
- Week 11: Lecture 1–3pm. Practical 3–4pm
- Week 12: Lecture 1–3pm. Practical 3–4pm

Recall knowledge from Weeks 1–2: Supervised data has two parts

- input/feature columns $\mathbf{x} = x_1, ..., x_p$
- output/response column y

Supervised Learning

Problem	Output Y	Arrangement
regression	numerical/	Week 5-Week 8
	quantitative/	
	continuous	
classification	categorical/	Week 9-Week 12
	qualitative/discrete	
	of K classes	

Classification problems with $Y \in \{1, 2, \cdots, K\}$ can have a mathematical form

$$Y = (f(\mathbf{X}) + \epsilon \mod K) + 1.$$

Here, ϵ is a random variable generating integers 1 to K.

Dr Liew How Hui Stat Learning May 2025 4 / 61

Supervised Learning (cont)

Problem	Prediction \hat{Y}	Performance Measure-	
		ments	
regression	h(X),	SSE, MSE, RMSE	
	standard devi-	(root mean square	
	ation	error), R^2 ,	
classification	h(X),	contingency table/	
	conditional	confusion matrix, ac-	
	probability	curacy, kappa,	

Supervised Learning (cont)

Example 1: Let y_i be the actual observed output and \hat{y}_i be the prediction from a predictive model h for the same inputs \mathbf{x}_i .

3 A /.			
i	ŷi	Уi	
1	Α	В	
2	В	В	
3	Α	В	
4	Α	Α	
5	В	В	

Contingency table

		Observed/Actual	
		Α	В
Prediction	Α	1	2
	В	0	2

In R:

```
Yhat = c("A","B","A","A","B") # first column
Y = c("B","B","B","A","B") # second column
table(Yhat, Y) # Construct contingency table
```

Generative Models

Naive Bayes Models are generative models

$$\mathbb{P}(Y = y | \mathbf{X} = \mathbf{x}) = \frac{\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = y) \mathbb{P}(Y = y)}{\mathbb{P}(\mathbf{X} = \mathbf{x})}$$
(1)

based on the Bayes Theorem

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}.$$

Here: \mathbf{x} are inputs/features; y is the output/response. Note: ' \mathbb{P} ' is regarded as probability "mass" and "density" function when the variables are discrete and continuous respectively.

7/61

Generative Models (cont)

When the response variable Y is categorical and has K distinct values 1, ..., K, the generative model (1) becomes

$$\mathbb{P}(Y=j|\mathbf{X}=\mathbf{x}) = \frac{\mathbb{P}(\mathbf{X}=\mathbf{x}|Y=j)\mathbb{P}(Y=j)}{\sum_{k=1}^{K}\mathbb{P}(\mathbf{X}=\mathbf{x}|Y=k)\mathbb{P}(Y=k)},$$
(2)

where $j \in \{1, \dots, K\}$.

Dr Liew How Hui Stat Learning May 2025 8 / 61

Generative Models (cont)

From the generative model (2) for categorical response, we can derive the **generative classifier**

$$h_{D}(\mathbf{x}) = \underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} \mathbb{P}(Y = j | \mathbf{X} = \mathbf{x})$$

$$= \underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} \frac{\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = j) \mathbb{P}(Y = j)}{\mathbb{P}(\mathbf{X} = \mathbf{x})}$$

$$= \underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = j) \mathbb{P}(Y = j)$$

$$= \underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} [\ln \mathbb{P}(\mathbf{X} = \mathbf{x} | Y = j) + \ln \mathbb{P}(Y = j)]$$

$$(3)$$

9/61

Naïve Bayes Classifiers

A naïve Bayes classifier (NB) (https://en. wikipedia.org/wiki/Naive_Bayes_classifier) is a generative classifier (3) with strong independence assumptions on the likelihood function:

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = j)
= \mathbb{P}(X_1 = x_1, X_2 = x_2, ..., X_p = x_p | Y = j)
= \mathbb{P}(X_1 = x_1 | Y = j) \times \cdots \times \mathbb{P}(X_p = x_p | Y = j)
= \prod_{i=1}^{p} \mathbb{P}(X_i = x_i | Y = j).$$

◆□▶◆□▶◆□▶◆□▶ □ りQC

Naïve Bayes Classifiers (cont)

The strong independence assumptions allows the generative classifier (3) to be expressed as

$$h_D(\mathbf{x}) = \operatorname*{argmax}_{j \in \{1, \dots, K\}} \mathbb{P}(Y = j) \prod_{i=1}^p \mathbb{P}(X_i = x_i | Y = j)$$

$$= \operatorname*{argmax}_{j \in \{1, \dots, K\}} \ln \mathbb{P}(Y = j) + \left[\sum_{i=1}^p \ln \mathbb{P}(X_i = x_i | Y = j) \right]. \tag{4}$$

Dr Liew How Hui Stat Learning May 2025 11 / 61

Naïve Bayes Classifiers (cont)

The prior distribution $\mathbb{P}(Y = j)$ is usually estimated using maximum likelihood estimation (MLE) leading to

$$\widehat{\mathbb{P}(Y=j)} = \frac{\#\{i : y_i = j\}}{n}.$$
 (5)

If we know the theoretical distribution of the outcome Y to be uniformly distributed, we can use

$$\mathbb{P}(Y=j)=\frac{1}{K}.$$

Dr Liew How Hui Stat Learning May 2025 12 / 61

Naïve Bayes Classifiers (cont)

The features X_i can either be categorical or be numeric:

- One X_i is numeric Gaussian NB
- One X_i is categorical Categorical NB
- All X_i are binary Bernoulli NB
- All X_i are integral Multinomial NB & Complement NB(?)

Dr Liew How Hui Stat Learning May 2025 13 / 61

Gaussian Naïve Bayes

For continuous inputs X_i in (4), it is assume that X_i is 'normal' and satisfies the Gaussian distribution:

$$\mathbb{P}(X_i = x_{ki} | Y = j) = \frac{1}{\sigma_j \sqrt{2\pi}} \exp(-\frac{(x_{ki} - \mu_j)^2}{2\sigma_j^2}).$$
 (6)

The theoretical estimations of the mean μ_j and the standard deviation σ_j are

$$\mu_j = \mathbb{E}[X_i | Y = j], \quad \sigma_i^2 = \mathbb{E}[(X_i - \mu_j)^2 | Y = j].$$
 (7)

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Dr Liew How Hui Stat Learning May 2025 14 / 61

Gaussian Naïve Bayes (cont)

The maximum likelihood estimator for (7) provides us the following estimates:

$$\widehat{\mu}_{j} = \frac{1}{\sum_{k=1}^{n} I(y_{k} = j)} \sum_{k=1}^{n} x_{ki} I(y_{i} = j),$$

$$s_{j} = \sqrt{\frac{1}{(\sum_{k=1}^{n} I(y_{k} = j)) - 1} \sum_{k=1}^{n} (x_{ki} - \widehat{\mu}_{j})^{2} I(y_{i} = j)}.$$
(8)

Here n is the number of rows, j is one of the class in $\{1, 2, \dots, K\}$.

4 L P 4 B P 4 E P 4 E P 3 C V

15 / 61

Dr Liew How Hui Stat Learning May 2025

Categorical NB

If the feature X_i is **categorical** and takes on d_i possible values in $\{c_1^{(i)}, \dots, c_{d_i}^{(i)}\} =: \mathscr{C}_i$.

The maximum likelihood estimate of the likelihood function is

$$\mathbb{P}(X_i = c | Y = j) = \frac{\sum_{k=1}^{n} I(x_{ki} = c \land y_k = j)}{\sum_{k=1}^{n} I(y_k = j)}$$
(9)

for each $c \in \mathscr{C}_i$.

When there is no k such that $x_{ki} = c \wedge y_k = j$, the probability estimate $\mathbb{P}(X_i = c | Y = j) = 0$ and this may be bad for estimation.

Dr Liew How Hui Stat Learning May 2025 16 / 61

Categorical NB (cont)

Therefore, Laplace smoothing

$$\mathbb{P}(\widehat{X_i = c | Y} = j) = \frac{\alpha + \sum_{k=1}^{n} I(x_{ki} = c \land y_k = j)}{\alpha d_i + \sum_{k=1}^{n} I(y_k = j)}$$
(10)

is introduced to the categorical NB (9). Here, α is a **smoothing parameter** and d_i is the number of available categories of feature X_i .

When $\alpha = 0$, (10) is called **no/without Laplace** smoothing.

When $\alpha = 1$, (10) is called **(with) Laplace smoothing**.

When $0 < \alpha < 1$, (10) is called *Lidstone smoothing*,

Dr Liew How Hui Stat Learning May 2025 17 / 61

Categorical NB (cont)

A combination of Gaussian NB and Categorical NB is usually sufficient for business tabular data which consist categorical data columns and numeric data columns.

However, the combination is not sufficient for tabular data with integer entries (e.g. bag of words model for text data).

Statisticians have proposed multinomial NB, complement multinomial NB, Bernoulli NB.

18 / 61

Multinomial NB

The Naïve Bayes algorithm for multinomially distributed data is called a multinomial Naïve Bayes classifier.

Application: text classification

$$egin{aligned} &h_D(ext{document}) \ &= rgmax \, \mathbb{P}(ext{document} | \, Y = j) \mathbb{P}(\, Y = j) \ &= rgmax \, \mathbb{P}(\, wc_1, \, wc_2, \, \cdots, \, wc_\rho | \, Y = j) \mathbb{P}(\, Y = j) \ &= rgmax \, \mathbb{P}(\, wc_1, \, wc_2, \, \cdots, \, wc_\rho | \, Y = j) \mathbb{P}(\, Y = j) \end{aligned}$$

where wc_i is the number of times the word X_i , $i=1,\cdots,p$, occurred in the document, p is the size of the vocabulary.

Dr Liew How Hui

May 2025

19 / 61

Multinomial NB (cont)

Possible entries of "classes" for document are "scientific", "economic", "management", etc. A naïve estimate for $\mathbb{P}(Y = j)$ is

```
\mathbb{P}(Y=j) \approx \frac{\text{number of documents of class } j}{\text{number of documents, } n};
\mathbb{P}(X_i = wc_i | Y = j) 
\text{total number of the occurrences of}
\approx \frac{\text{the word } X_i \text{ in documents of class } j}{\text{total number of words } X_1, \cdots, X_p \text{ in documents of class } j} =: \theta_{ji}.
```

Dr Liew How Hui Stat Learning May 2025 20 / 61

Multinomial NB (cont)

A more robust estimate of the parameters $\theta_j := (\theta_{j1}, \dots, \theta_{jp})$ is given by a smoothed version of MLE:

$$\mathbb{P}(X_i = wc_i | Y = j) \approx \frac{N_{ji} + \alpha}{N_j + \alpha d_i}$$

where $N_{ji} = \sum_{y_i=j} wc_i$ is the number of times feature i appears in a sample of class j in the training set D, and $N_j = \sum_{i=1}^n N_{ji}$ is the total count of all features for class j. For the smoothing priors $\alpha \geq 0$,

 $\alpha < 1$ is called *Lidstone smoothing*,

 $\alpha = 1$ is called *Laplace smoothing*.

4 D > 4 A > 4 B > 4 B > 9 Q P

21 / 61

Dr Liew How Hui Stat Learning May 2025

Multinomial NB (cont)

The conditional probability is

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = j) = \frac{\left(\sum_{i=1}^{p} wc_i\right)!}{wc_1! \times \cdots \times wc_p!} \prod_{i=1}^{p} \theta_{ji}^{wc_i}. \quad (11)$$

According to https://scikit-learn.org/stable/modules/naive_bayes.html, the Multinomial Naïve Bayes classifiers is implemented as MultinomialNB.

from sklearn.naive_bayes import MultinomialNB
MultinomialNB(alpha=1.0, fit_prior=True,
 class_prior=None)

Dr Liew How Hui Stat Learning

Complement Multinomial NB

A complement Naïve Bayes (CNB) algorithm is an adaptation of the standard MNB algorithm that is particularly suited for imbalanced data sets.

The procedure for calculating the weights is as follows:

$$\widehat{\theta}_{ji} = \frac{\alpha_i + \sum_{k: y_j \neq j} d_{ij}}{\alpha + \sum_{k: y_j \neq j} \sum_{s} d_{sj}} \Rightarrow w'_{ji} = \ln \widehat{\theta}_{ji} \Rightarrow w_{ji} = \frac{w'_{ji}}{\sum_{k} |w'_{jk}|}$$

where the summations are over all documents k not in class j, d_{ij} is either the count or tf-idf value (term frequency-inverse document frequency, see https://en.wikipedia.org/wiki/Tf-idf) of term i in document j.

Complement Multinomial NB (cont)

In Python's Sklearn, CNB is implemented as ComplementNB and has the form:

```
from sklearn.naive_bayes import *
ComplementNB(alpha=1.0, fit_prior=True,
    class_prior=None, norm=False)
```

There is no CNB in R because it is inspired by text classification rather than having a firm statistical theory.

Bernoulli NB

Bernoulli Naïve Bayes is used when the data is distributed according to multivariate Bernoulli distributions i.e., x_i is a binary value. The conditional probability is

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = j) = \prod_{i=1}^{p} \theta_{ji}^{x_i} (1 - \theta_{ji}^{x_i})^{1 - x_i}$$
 (12)

It is implemented in Python as BernoulliNB:

```
from sklearn.naive_bayes import *
BernoulliNB(alpha=1.0, binarize=0.0,
   fit_prior=True, class_prior=None)
```

R Implementations

Python is more powerful than R when it comes to text processing. Therefore, Python has the variations of multinomial Naive Bayes available in the sklearn library but is a bit weak on the combination of categorical and Gaussian naive Bayes model.

In contrast, R has good supports the combination of categorical and Gaussian naïve Bayes models but only supports the standard multinomial NB.

```
library(naivebayes)
naive_bayes(formula, data, prior = NULL, laplace = 0,
   usekernel = FALSE, usepoisson = FALSE,
   subset, na.action = stats::na.pass, ...)
multinomial_naive_bayes(x, y, prior=NULL, laplace=0.5)
```

```
bnlearn::naive.bayes (which can only handle categorical data),
klaR::NaiveBayes (slow), etc.
```

Other choices: e1071::naiveBayes (slow),

Outline

- Methods of Classification
 - Naive Bayes Classifiers
 - Gaussian NB
 - Categorical NB
 - Multinomial NB and Its Variations
- Results Interpretation
- Models Comparison
- Case Study
- Lab Practice on Classification Method

27 / 61

Results Interpretation

The generative models are based strongly on the Bayesian statistics philosophy:

$$Posterior = \frac{Likelihood \times Prior}{Average \ Likelihood}$$

In the formula (1),

- $\mathbb{P}(Y = y)$ is called the **prior probability**;
- $\mathbb{P}(Y = y | \mathbf{X} = \mathbf{x})$ is called the **posterior probability**, i.e. the 'updated' probability based the input \mathbf{x} ;
- $\mathbb{P}(\mathbf{X} = \mathbf{x} | Y = y)$ is called the **likelihood function**, which encodes human experience on the distribution of inputs associated to the output y.
- $\mathbb{P}(X = x)$ is a 'scaling' and is constant w.r.t. to the output.

Dr Liew How Hui Stat Learning May 2025 28 / 61

Results Interpretation (cont)

The probabilistic framework that underlie the generative models is the **Maximum a Posteriori (MAP)**:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} P(\theta|D)
= \underset{\theta}{\operatorname{argmax}} P((\mathbf{x}_{y}, y_{1}), \cdots, (\mathbf{x}_{n}, y_{n}) \mid \theta) P(\theta).$$

The MAP obtains a point estimate of an unobserved quantity θ on the basis of empirical data (\mathbf{x}_i, y_i) . It is closely related to the method of MLE, but employs an augmented optimisation objective which incorporates a prior distribution over the quantity one wants to estimate. MAP estimation can therefore be seen as a regularisation of MLE.

Dr Liew How Hui Stat Learning May 2025 29 / 61

Results Interpretation (cont)

As a practical user, the simple differences are:

- Discriminative learning: We try to approximate $\mathbb{P}(Y|X)$ using
 - function approximation: (multinomial) logistic regression (LR), ANN;
 - data and distance: kNN
 - information, logic and statistics: decision tree, random forest, etc.
- Generative learning: We regard P(Y|X=x) as what happens when the prior P(Y) will change with new data X=x is given. This leads to the modelling of the likelihood P(X|Y):
 - Naive Bayes (NB)
 - Discriminative Analysis, e.g. LDA, QDA

Outline

- Methods of Classification
 - Naive Bayes Classifiers
 - Gaussian NB
 - Categorical NB
 - Multinomial NB and Its Variations
- Results Interpretation
- Models Comparison
- Case Study
- Lab Practice on Classification Method

Models Comparison

Since NB does not have any hyperparameters, the model comparison can only be conducted for NB with different subsets of input features based on the performance measurements on the empirical generalisation error:

- cross-validation: when the data size is not large, we can split the data to K blocks and calculate K accuracies (get the average)
- holdout method: split the historical data to training and testing datasets. Compute the accuracies (and/or sensitivity, etc.) and choose a model based on them.

Things become more complex when the class of models has hyperparameters such as kNN (k is the hyperparameter, last topic). The frequentist statistics recommends the model selection method below:

- cross-validation: when the data size is not large, we can take out a small portion (e.g. 10%) as an **independent** testing dataset and the remainder for cross-validation on the model by varying the hyperparameter. When the hyperparameter is selected, it is tested againsts the independent testing dataset.
- 3-way holdout: when the data size is large, we can split the historical data into 60% for training, 20% for testing to choose the hyperparameter and 20% for validating the model with the 'best' hyperparameter.

Dr Liew How Hui Stat Learning May 2025 33 / 61

In contrast to frequentist statistics's model comparison, in the Bayesian model comparison, prior probabilities are assigned to each of the models, and these probabilities are updated given the data according to Bayes rule.

Given an indexed set of predictive models M_1, \ldots, M_m and associatived prior beliefs in the appropriateness of each model $p(M_i)$, the Bayesian statistics framework uses the model posterior probability

$$p(M_i|D) = \frac{p(D|M_i)p(M_i)}{p(D)}, \quad p(D) = \sum_{i=1}^m p(D|M_i)p(M_i)$$

where D is the dataset.

・ロト・Φト・ミト・ミー り900

34 / 61

Dr Liew How Hui Stat Learning May 2025

When the model M_i is parameterised by θ_i , the model likelihood

$$p(D|M_i)p(M_i) = \int p(D|\theta_i, M_i)p(\theta_i|M_i)d\theta_i.$$

In discrete parameter space, the integral is replaced with summation. Note that the number of parameters $\dim(\theta_i)$ need not be the same for each model.

According to Bayesian statistics, two competing model hypotheses M_i and M_j can be compared using the **Bayes' factor**:

$$\underbrace{\frac{p(M_i|D)}{p(M_j|D)}}_{\text{Posterior odds}} = \underbrace{\frac{p(D|M_i)}{p(D|M_j)}}_{\text{Bayes' factor Prior odds}} \underbrace{\frac{p(M_i)}{p(M_j)}}_{\text{Bayes' factor Prior odds}}.$$

Dr Liew How Hui Stat Learning May 2025 35 / 61

For instance, consider a coin tossing problem. We want compare if the coin tossing is biased with M_{biased} and is fair with M_{fair} .

Suppose binomial distribution is used. For $D_1=5$ heads & 2 tails,

$$\frac{p(M_{fair}|D_1)}{p(M_{biased}|D_2)} = 1.09$$

Both models are equally OK.

For $D_2 = 50$ heads & 20 tails,

$$\frac{p(M_{fair}|D_2)}{p(M_{biased}|D_2)} = 0.109$$

 M_{fair} is only $\approx 11\%$ of the likelihood of M_{biased}

Dr Liew How Hui Stat Learning May 2025 36 / 61

Models Comparison (cont)

Computer simulation examples are given at https://bookdown.org/kevin_davisross/
bayesian-reasoning-and-methods/model-comparison.html
For theory, see
https://en.wikipedia.org/wiki/Bayes_factor

Dr Liew How Hui Stat Learning May 2025 37 / 61

Outline

- Methods of Classification
 - Naive Bayes Classifiers
 - Gaussian NB
 - Categorical NB
 - Multinomial NB and Its Variations
- Results Interpretation
- Models Comparison
- Case Study
- Lab Practice on Classification Method

Case Study 1: Categorical NB

Example 1: Table Q3(d) shows a data set containing 7 observations with 3 categorical predictors, X_1 , X_2 and X_3 .

Observation	X_1	X_2	<i>X</i> ₃	Y	
1	С	No	0	Positive	
2	Α	Yes	1	Positive	
3	В	Yes	0	Negative	
4	В	Yes	0	Negative	
5	Α	No	1	Positive	
6	С	No	1	Negative	
7	В	Yes	1	Positive	

Table Q3(d)

Without Laplace smoothing, predict the response, Y for an observation with $X_1 = B$, $X_2 = Y$ es and $X_3 = 1$ using Naïve Bayes approach. (5 marks)

Solution: Let '+' denote 'Positive' and '-' denote 'Negative'.

prior, $\mathbb{P}(Y)$	$\mathbb{P}(X_1 Y)$	$\mathbb{P}(X_2 Y)$	$\mathbb{P}(X_3 Y)$	ргор, П	Ŷ
$\mathbb{P}(+)=rac{4}{7}$	$\mathbb{P}(B +)=rac{1}{4}$	$\mathbb{P}(Yes +) = rac{1}{2}$	$\mathbb{P}(1 +)=rac{3}{4}$	0.0536	
$\mathbb{P}(-)=rac{3}{7}$	$\mathbb{P}(B -) = \frac{2}{3}$	$\mathbb{P}(Yes -) = rac{2}{3}$	$\mathbb{P}(1 -)=rac{1}{3}$	0.0635	√ , −

Since $\mathbb{P}(Y = -|X|) > \mathbb{P}(Y = +|X|)$, Y has higher probability to be "Negative".

Dr Liew How Hui Stat Learning May 2025 40 / 61

Case Study 2: Categorical NB

Example 2: Consider the following case given in

https://machinelearningmastery.com/

naive-bayes-tutorial-for-machine-learning/

Weather	Car	Y
sunny	working	go-out
rainy	broken	go-out
sunny	working	go-out
sunny	working	go-out
sunny	working	go-out
rainy	broken	stay-home
rainy	broken	stay-home
sunny	working	stay-home
sunny	broken	stay-home
rainy	broken	stay-home

Construct the categorical Naïve Bayes model for the above data.

Solution: Let X_1 =Weather, X_2 =Car. The categorical Naïve Bayes model:

$$\mathbb{P}(Y = j | \mathbf{X} = \mathbf{x})$$

 $\propto \mathbb{P}(Y = j) \times \mathbb{P}(X_1 = x_1 | Y = j) \times \mathbb{P}(X_2 = x_2 | Y = j)$

where Prior,
$$\mathbb{P}(Y) = \begin{cases} 0.5, & Y = out \\ 0.5, & Y = stay \end{cases}$$

$$\mathbb{P}(X_1|Y = out) = \begin{cases} \frac{4}{5}, & X_1 = sunny \\ \frac{1}{5}, & X_1 = rainy \end{cases}$$

$$\mathbb{P}(X_1|Y = stay) = \begin{cases} \frac{2}{5}, & X_1 = sunny \\ \frac{3}{5}, & X_1 = rainy \end{cases}$$

Dr Liew How Hui Stat Learning May 2025

Solution (cont):
$$\mathbb{P}(X_2|Y=out) = \begin{cases} \frac{4}{5}, & X_2 = working \\ \frac{1}{5}, & X_2 = broken \end{cases},$$

$$\mathbb{P}(X_2|Y=stay) = \begin{cases} \frac{1}{5}, & X_2 = working \\ \frac{4}{5}, & X_2 = broken \end{cases}$$

Dr Liew How Hui May 2025 43 / 61

Case Study 3: Gaussian NB

Example 3: The table below shows the data collected for predicting whether a customer will default on the credit card or not:

balance	student	Default			
500	No	N			
1980	Yes	Y			
60	No	N			
2810	Yes	Y			
1400	No	N			
300	No	N			
2000	Yes	Y			
940	No	N			
1630	No	Y			
2170	Yes	Y			
	500 1980 60 2810 1400 300 2000 940 1630	500 No 1980 Yes 60 No 2810 Yes 1400 No 300 No 2000 Yes 940 No 1630 No			

- Compute the probability density of customer with balance 2080, given Default=Y.
- Compute the probability of customer who is a student, given Default=Y.
- Calculate the "probability density" of default for a student customer with balance 2080 by using the Naïve Bayes assumption.

45 / 61

Dr Liew How Hui Stat Learning May 2025

Note: This question just asks for specific answer without the full model, so we don't need to write the full model.

(a) Solution:

$$\mathbb{P}(exttt{balance} = 2080 \mid exttt{Default} = Y)$$
 $= \frac{1}{s_Y \sqrt{2\pi}} \exp(-\frac{(2080 - \mu_Y)^2}{2s_Y^2}) = 0.0009162$

where
$$\mu_Y = \frac{1980 + 2810 + 2000 + 1630 + 2170}{5} = 2118$$
; $s_Y = 433.7857$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q Q

Dr Liew How Hui Stat Learning May 2025 46 / 61

Gaussian Naïve Bayes (cont)

(b) **Solution**:
$$\mathbb{P}(\text{student} = Yes \mid \text{Default} = Y) = \frac{4}{5}$$

(c) Solution:
$$\mathbb{P}(\text{student} = Yes \mid \text{Default} = N) = \frac{0}{5} = 0$$

$$\mathbb{P}(\text{Default} = Y \mid \text{balance} = 2080, \text{ student} = Yes)$$

$$= \frac{\mathbb{P}(\text{balance} = 2080, \text{ student} = Yes \mid \text{Default} = Y)\mathbb{P}(\text{Default} = Y)}{\mathbb{P}(\text{balance} = 2080, \text{ student} = Yes) =: \mathbb{P}(...)}$$

$$= \frac{\mathbb{P}(\text{balance} = 2080, \text{ student} = Yes \mid \text{Default} = Y)\mathbb{P}(\text{Default} = Y)}{\mathbb{P}(... \mid \text{Default} = Y)\mathbb{P}(\text{Default} = Y)}$$

$$= \frac{0.0009162 \times \frac{4}{5} \times \frac{5}{10}}{0.0009162 \times \frac{4}{5} \times \frac{5}{10}} = 1$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Dr Liew How Hui Stat Learning M

Remark on **Example** 3: Let x_1 =balance, x_2 =student, y=Default. The Naive Bayes Model is

$$h_D(x_1,x_2) = \operatorname*{argmax}_j \mathbb{P}(x_1|y=j)\mathbb{P}(x_2|y=j)\mathbb{P}(y=j).$$

where the prior
$$\mathbb{P}(y) = \begin{cases} 0.5 & y = N \\ 0.5 & y = Y \end{cases}$$

$$\mathbb{P}(x_2|y=N) = \begin{cases} 1 & x_2 = No \\ 0 & x_2 = Yes \end{cases}$$

$$\mathbb{P}(x_2|y=Y) = \begin{cases} 1/5 & x_2 = No \\ 4/5 & x_2 = Yes \end{cases}$$

◆ロト ◆個ト ◆星ト ◆星ト 星 りへで

Dr Liew How Hui Stat Learning May 2025 48 / 61

Remark on **Example** 3 (cont):

$$\mathbb{P}(x_1|y=N) = \frac{1}{\sqrt{2\pi}(533.6666)} \exp\left\{-\frac{(x_1 - 640)^2}{2(533.6666)^2}\right\}$$

$$\mathbb{P}(x_1|y=Y) = \frac{1}{\sqrt{2\pi}(433.7857)} \exp\left\{-\frac{(x_1 - 2118)^2}{2(433.7857)^2}\right\}$$

Dr Liew How Hui Stat Learning May 2025 49 / 61

Case Study 4: Gaussian NB

Example 4:

A more efficient marketing strategy can be achieved by targeting the customers who have higher probability to complete a purchase. Hence, you have been asked to predict whether a customer will buy the product based on their demographic data such as age, race, gender and income. Table Q3(c) shows the data collected from previous records.

Cust.	Age	Race	Gender	Income	Result
1	52	Indian	Male	RM 11,500	Not Buy
2	22	Chinese	Female	RM 6,500	Buy
3	30	Chinese	Male	RM 8,000	Buy
4	26	Malay	Male	RM 8,500	Buy
5	27	Indian	Female	RM 6,500	Buy
6	32	Chinese	Female	RM 9,500	Not Buy
7	33	Indian	Male	RM 4,000	Not Buy
8	50	Malay	Female	RM 10,000	Buy
9	31	Chinese	Female	RM 5,500	Buy
10	27	Malay	Male	RM 9,200	Not Buy

Table Q3(c)

- State an assumption used in Naïve Bayes approach.
 (1 mark)
- Using Naïve Bayes approach without Laplace smoothing, predict whether a Malay female customer, aged 29, with income RM7,800, will buy the product. (9 marks)

Case Study 5: Software Support

Gaussian Naïve Bayes (Classifier) is available in Python as GaussianNB of the form:

```
from sklearn.naive_bayes import GaussianNB
GaussianNB(priors=None, var_smoothing=1e-09)
```

All the above mentioned naïve Bayes models are available in R except the complement NB. R provides unified functions such as naivebayes::naive_bayes, e1071::naiveBayes, bnlearn::naive.bayes (which can only handle categorical data), klaR::NaiveBayes.

```
naive_bayes(formula, data, prior = NULL, laplace = 0,
  usekernel = FALSE, usepoisson = FALSE,
  subset, na.action = stats::na.pass, ...)
```

Dr Liew How Hui Stat Learning May 2025 53 / 61

Case Study 6: Categorical NB with Laplace Smoothing

An issue faced by a Naïve Bayes classifier with "discrete" data is the numerator in (9) being zero, i.e. $n_{X=c,Y=j}=0$. In this case, the posterior probability will become zero regardless of the value of other density functions and the Naïve Bayes classifier will fail.

Dr Liew How Hui Stat Learning May 2025 54 / 61

Dr Liew How Hui

Example 5: By using the data from **Example** 3, perform the following tasks.

- Compute the probability density of customer with balance 2080, given Default=N.
- Compute the probability of customer who is a student, given Default=N.
- © Calculate the "probability density" of non-default for a student customer with balance 2080 by using NB model without Laplace smoothing.
- Redo part (b) and (c) with Laplace smoothing.

May 2025

(a) Solution:
$$\mathbb{P}(\text{balance} = 2080 \mid \text{Default} = N) = \frac{1}{s_N\sqrt{2\pi}}\exp(-\frac{(2080-\mu_N)^2}{2s_N^2}) = 1.9616\times 10^{-5}$$
 where $\mu_N=\frac{500+60+1400+300+940}{5}=640$; $s_N=533.6666$ (b) Solution:

 $\mathbb{P}(\text{student} = Yes \mid \text{Default} = N) = \frac{0}{5} = 0$ (c) Solution:

$$\begin{split} &\mathbb{P}(\text{Default} = \textit{N} \mid \text{balance} = 2080, \; \text{student} = \textit{Yes}) \\ &= \frac{1.9616 \times 10^{-5} \times 0 \times \frac{5}{10}}{\mathbb{P}(\text{balance} = 2080, \; \text{student} = \textit{Yes})} = 0. \end{split}$$

4□ > 4□ > 4 = > 4 = > = 9

Dr Liew How Hui Stat Learning May 2025 56 / 61

Remark: This situation is normally happened to the categorical variable. To avoid the stated problem, *Laplace smoothing* or https:

//en.wikipedia.org/wiki/Additive_smoothing is applied to the Naïve Bayes classifier. Laplace smoothing modified the density function of categorical variable by adding α (by default, $\alpha=1$) to each variable per class:

$$\mathbb{P}(X = x_i | Y = k) = \frac{n_{X = x_i; Y = k} + \alpha}{n_{Y = k} + d\alpha}$$
(13)

where d is the number of classes in the categorical variable X.

4 D > 4 B > 4 B > 4 B > 4 B > 9 Q C

(d) Redo part (b) and (b) by applying Laplace smoothing:

The "continuous" variable is the same:

$$\mathbb{P}(exttt{balance} = 2080 \mid exttt{Default} = exttt{ extit{N}}) = 1.9616 imes 10^{-5}$$

The categorical variable needs the Laplace smoothing $(\alpha = 1, d = 2 \text{ for student=Yes or No})$

$$\mathbb{P}(\mathtt{student} = \mathit{Yes} \mid \mathtt{Default} = \mathit{N}) = \frac{0+1}{5+2}$$

Dr Liew How Hui Stat Learning

Therefore,

$$\mathbb{P}(ext{Default} = N \mid ext{balance} = 2080, ext{ student} = Yes) = rac{\mathbb{P}(2080, Yes \mid N)\mathbb{P}(N)}{\mathbb{P}(2080, Yes \mid N)\mathbb{P}(N) + \mathbb{P}(2080, Yes \mid Y)\mathbb{P}(Y)} = rac{1.9616 imes 10^{-5} imes rac{1}{7} imes rac{5}{10}}{1.9616 imes 10^{-5} imes rac{5}{7} imes rac{5}{10}} + 0.000916154 imes rac{5}{7} imes rac{5}{10}} = rac{1.401151 imes 10^{-6}}{1.401151 imes 10^{-6} + 0.0003271979} = 0.004264014$$

Dr Liew How Hui Stat Learning May 2025 59 / 61

Outline

- Methods of Classification
 - Naive Bayes Classifiers
 - Gaussian NB
 - Categorical NB
 - Multinomial NB and Its Variations
- Results Interpretation
- Models Comparison
- Case Study
- Lab Practice on Classification Method

Lab Practice on Classification Method

prac_cls1.R (Naive Bayes)

For a two-member or three-member group and work on Assignment 3. Inform lecturer of the group members.

Start reading the assignment and exploring the data in the assignment based on what you have learned from the Week 1 to Week 9 practicals.

Oral Presentation for Assignment 3 is in Week 12. First group to register presents last; ...; Last group to register presents first.

61 / 61

Dr Liew How Hui Stat Learning May 2025