1- Cubic Spline Interpolation:

Cubic spline interpolation is the method to generate different cubic polynomial that spans the segment between every two knots. Therefore, the cubic spline is not a perfect method when there are more than a few data points to evaluate. But a cubic spline has less tendency than a polynomial one to oscillate between data points. So, slopes are continuous at each node. Also, the second derivatives of the start and end points are zero.

1.1 Generalized Formulation of Cubic Spline Interpolation:

We can denote the second derivative of the spline at knot i by k_i , and must have the same value k_i for the next and previous cubic polynomial;

$$f''_{(i-1),i}(x_i) = f''_{i,(i+1)}(x_i) = k_i$$

For the starting and end points;

$$k_1 = k_n = 0$$

If Lagrange interpolation is applied between two points;

$$f''_{i,(i+1)}(x_i) = (k_i * l_i(x)) + (k_{i+1} * l_{i+1}(x)) , l_i(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} , l_i(x) = \frac{x - x_i}{x_{i+1} - x_i}$$

$$f''_{i,(i+1)}(x_i) = \frac{k_i(x_i - x_{i+1}) - k_{i+1}(x - x_i)}{x_i - x_{i+1}}$$

Integrated twice;

$$f_{i,(i+1)}(x_i) = \frac{k_i(x - x_{i+1})^3 - k_{i+1}(x - x_i)^3}{6(x_i - x_{i+1})} + A(x - x_{i+1}) - B(x - x_i)$$

For $f_{i,(i+1)}(x_i) = y_i$;

$$A = \frac{y_i}{x_i - x_{i+1}} - \frac{k_i}{6} (x_i - x_{i+1})$$

For $f_{i,(i+1)}(x_{i+1}) = y_{i+1}$;

$$B = \frac{y_{i+1}}{x_i - x_{i+1}} - \frac{k_{i+1}}{6} (x_i - x_{i+1})$$

After A and B are substituted into $f_{i,(i+1)}(x_i)$;

$$k_{i-1}(x_{i-1} - x_i) + 2k_i(x_{i-1} - x_{i+1}) + k_{i+1}(x_i - x_{i+1}) = 6\left(\frac{y_{i-1} - y_i}{x_{i-1} - x_i} - \frac{y_i - y_{i+1}}{x_i - x_{i+1}}\right), i = 2, 3, \dots, n - 1$$

In the program, to solve the linear equation and find k values, the inverse matrix method is used;

$$\begin{aligned} k_{i-1}(x_{i-1} - x_i) + 2k_i(x_{i-1} - x_{i+1}) + k_{i+1}(x_i - x_{i+1}) &= 6 \left(\frac{y_{i-1} - y_i}{x_{i-1} - x_i} - \frac{y_i - y_{i+1}}{x_i - x_{i+1}} \right), i = 2, 3, \dots, n - 1 \\ & \rightarrow \begin{bmatrix} 2(x_1 - x_2) & x_2 - x_3 & 0 \\ x_2 - x_3 & 2(x_2 - x_4) & x_3 - x_4 \\ 0 & 2(x_3 - x_5) & x_4 - x_5 \end{bmatrix} \cdot \begin{bmatrix} k_2 \\ k_3 \\ k_4 \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix} \\ & \rightarrow \begin{bmatrix} 2(x_1 - x_2) & x_2 - x_3 & 0 \\ x_2 - x_3 & 2(x_2 - x_4) & x_3 - x_4 \\ 0 & 2(x_3 - x_5) & x_4 - x_5 \end{bmatrix}^{-1} \cdot \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix} = \begin{bmatrix} k_2 \\ k_3 \\ k_4 \end{bmatrix} \end{aligned}$$

1.2 C# Console Application for Cubic Spline Interpolation;

First, x and y values must be written to the "x Samples" and "y Samples" columns in order and then execute. Given x values must be in increased order.