几何与代数(1) 考试样题一

- 一. 填空题(将答案填在下面的空格内,每题4分,合计32分)
- 1. 设矩阵 $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & a & 1 \\ 3 & -1 & 1 \end{pmatrix}$, 已知 B 为 3 阶 非零矩阵,满足 AB = 0,则矩阵 A 的

秩 r(A) =

- 2. 设矩阵 $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \end{pmatrix}$, 则矩阵 AB 的全体特征值为______.
- 3. 在 R^3 中,已知从基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵是 $\begin{pmatrix} 1 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,则从基

 $\beta_1, \beta_2, \beta_3$ 到基 $\alpha_1, \alpha_2, \alpha_3$ 的过渡矩阵是__

- 4. 已知矩阵 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix}$ 与矩阵 $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 相似,则 A 的行列式 |A| =_____.
- 5. 在直角坐标系中,已知平面 π 过点(1,1,0),(0,0,1),(0,1,1),则与平面 π 垂直

且过点(1,1,1)的直线的对称方程(标准方程)是

6. 设 4 元非齐次线性方程组 Ax = b 的系数矩阵 A 的秩为 3, η_1, η_2, η_3 为 Ax = b 的 3 个解,已知 $\eta_1 + \eta_2 = (1, 1, 0, 2)^T$, $\eta_2 + \eta_3 = (1, 0, 1, 3)^T$,则Ax = b的通解

为______.
7. 将 3 阶可逆矩阵 A 的第 1 列与第 3 列交换,然后将所得矩阵的第 1 列的 - 2 倍

加到第 2 列,得到矩阵 B,则矩阵 $A^{-1}B=$

8. $x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 - 4x_2x_3 = 1$ 表示的二次曲面是_____

- 二. 计算题 (每题 18 分, 合计 54 分)
- 9. 设 3 阶实对称矩阵 A 有 3 个特征值 3, 3, -3,已知属于特征值 -3 的特征向量为 $\alpha_1 = (1, -2, 1)^T$,求矩阵 A 及 A^{-1} .
- 10. 设 $\alpha_1, \alpha_2, \alpha_3$ 是 3 维线性空间V的一个基, σ 是V上的线性变换,已知 $\sigma(\alpha_1) = -\alpha_1 + 2\alpha_2 + 2\alpha_3$, $\sigma(\alpha_2) = 2\alpha_1 \alpha_2 2\alpha_3$, $\sigma(\alpha_3) = 2\alpha_1 2\alpha_2 \alpha_3$,
 - (1) 求线性变换 σ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵;
 - (2) 设由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为 $P = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,向量 γ 在基

 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标是 $X=\left(0,-1,2\right)^T$,求 $\sigma(\gamma)$ 在基 β_1,β_2,β_3 下的坐标.

11. 设 n元(n≥4)齐次线性方程组

$$\begin{cases} ax_1 + bx_2 + bx_3 + bx_4 + \dots + bx_n = 0 \\ bx_1 + ax_2 &= 0 \\ bx_1 &+ ax_3 &= 0 \\ -bx_1 &+ ax_4 + \dots + ax_n = 0 \end{cases}$$

其中 $b \neq 0$. 试讨论a,b,n取何值时,方程组只有零解;取何值时,方程组有非零解? 在有非零解时,写出方程组的基础解系.

- 三. 证明题 (第12题8分,第13题6分)
- 12. 设 $A \not\in m \times n$ 矩阵, $\beta \not\in m$ 维非零列向量,已知 $\beta \not\in m$ 是非齐次线性方程组Ax = b 的一个解, $\alpha_1, \alpha_2, \dots, \alpha_r$ 是导出组Ax = 0 的基础解系,试证明
 - (1) β , β + α_1 , β + α_2 , \dots , β + α_r 线性无关;
 - (2) Ax = b 的解集合的极大线性无关组含有r + 1个向量.
- 13. 设A为任意n阶实反对称矩阵(即 $A^T = -A$),试证明 $I A^2$ 是正定矩阵.