Numer indeksu:

000000

Logika dla informatyków

Sprawdzian nr 2, 1 grudnia 2011

Rozwiązania wszystkich zadań powinny zmieścić się w odpowiednich prostokątach lub na odwrocie tej kartki.

Zadanie 1 (4 punkty). Niech $R = \{\langle m, m+2 \rangle \mid m \in \mathbb{N} \}$. W prostokąt poniżej wpisz taką formulę φ , że $\{\langle m, n \rangle \mid \varphi \}$ jest przechodnim domknięciem relacji R.

$$m \in \mathbb{N} \land n \in \mathbb{N} \land \exists k \in \mathbb{N} \ k \ge 1 \land m + 2k = n$$

Zadanie 2 (4 punkty). W prostokąt poniżej wpisz dowód tautologii $\exists x \varphi \Rightarrow \exists x (\varphi \lor \psi)$ w systemie naturalnej dedukcji.

Zadanie 3 (4 punkty). Jeśli inkluzja $\bigcup_{t,s\in T}(A_t\cap B_s)\subseteq\bigcup_{t\in T}(A_t\cap B_t)$ zachodzi dla dowolnych indekso-

wanych rodzin zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$T=\{1,2\},\ A_1=\{1\},A_2=\{2\},\ B_1=\{2\},B_2=\{1\}$$

Zadanie 4 (4 punkty). Udowodnij, że dla dowolnych zbiorów A i B zachodzi równość $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

Rozwiązanie. Zauważmy najpierw, że zachodzi następujący lemat.

Lemat. Dla dowolnych zbiorów X,A i B mamy $X\subseteq A\cap B$ wtedy i tylko wtedy, gdy $X\subseteq A$ oraz $X\subseteq B.$

Dowód lematu jest tak łatwy, że go pominiemy.

Z zasady ekstensjonalności wystarczy pokazać, że dla dowolnego x zachodzi $x \in \mathcal{P}(A \cap B)$ wtedy i tylko wtedy, gdy $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Weźmy zatem dowolny x. Z definicji zbioru potęgowego mamy, że $x \in \mathcal{P}(A \cap B)$ wtedy i tylko wtedy, gdy $x \subseteq A \cap B$. Z naszego lematu otrzymujemy, że ostatnia własność jest równoważna $x \subseteq A$ oraz $x \subseteq B$, co z definicji zbioru potęgowego oraz definicji przekroju zbiorów jest równoważne $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

Zadanie 5 (4 punkty). Rozważmy relację binarną $R \subseteq A \times A$. Definiujemy $R^1 = R$ oraz $R^{n+1} = R^n R$ dla wszystkich $n \ge 1$.

Udowodnij, że dla wszystkich liczb naturalnych $i,j\geq 1$ zachodzi równość $R^iR^j=R^{i+j}$. Wskazówka: indukcja względem j.

Rozwiązanie.

Podstawa indukcji: Dla j=1 mamy pokazać, że $R^iR^1=R^{i+1}$. W trywialny sposób wynika to z definicji R^{i+1} oraz R^1 .

Krok indukcyjny: Weżmy dowolne $j \geq 1$ i załóżmy, że $R^iR^j = R^{i+j}$. Pokażemy, że $R^iR^{j+1} = R^{i+j+1}$. Z definicji R^{j+1} mamy $R^iR^{j+1} = R^i(R^jR)$. Z łączności składania relacji wiemy, że $R^i(R^jR) = (R^iR^j)R$. Z założenia indukcyjnego $(R^iR^j)R = R^{i+j}R$ a z definicji R^{i+j+1} dostajemy $R^{i+j}R = R^{i+j+1}$. Zatem $R^iR^{j+1} = R^{i+j+1}$, co kończy dowód.

Logika dla informatyków

Sprawdzian nr 2, 1 grudnia 2011

Rozwiązania wszystkich zadań powinny zmieścić się w odpowiednich prostokątach lub na odwrocie tej kartki.

Zadanie 1 (4 punkty). Niech $R = \{\langle m, m+m \rangle \mid m \in \mathbb{N} \}$. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle m, n \rangle \mid \varphi \}$ jest przechodnim domknięciem relacji R.

$$m \in \mathbb{N} \wedge n \in \mathbb{N} \wedge \exists k \in \mathbb{N} \ k \geq 1 \wedge m \cdot 2^k = n$$

Zadanie 2 (4 punkty). W prostokąt poniżej wpisz dowód tautologii $\exists x \, (\varphi \land \psi) \Rightarrow \exists x \, \varphi$ w systemie naturalnej dedukcji.

$$\begin{array}{c}
\exists \times (\varphi \wedge \psi) \times \exists \\
 & \times \forall \varphi \wedge \forall (\psi \wedge \psi) \times \exists \\
 & \times \forall \varphi \wedge \forall (\psi \wedge \psi) \times \exists \\
 & \times \forall \varphi \wedge \forall (\psi \wedge \psi) \times \exists \\
 & \times \forall \varphi \wedge \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall \varphi \wedge \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall \varphi \wedge \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall \varphi \wedge \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \forall \forall (\psi \wedge \psi) \times \exists \\
 & \Rightarrow \forall (\psi \wedge \psi) \times \exists \forall (\psi \wedge \psi) \times \exists \forall \forall (\psi \wedge \psi) \times \exists \forall$$

Zadanie 3 (4 punkty). Jeśli inkluzja $\bigcap_{t \in T} (A_t \cup B_t) \subseteq \bigcap_{t \in T} A_t \cup \bigcap_{t \in T} B_t$ zachodzi dla dowolnych indeksowanych rodzin zbiorów $\{A_t\}_{t \in T}$ i $\{B_t\}_{t \in T}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$T = \{1, 2\}, A_1 = \{1\}, A_2 = \{2\}, B_1 = \{2\}, B_2 = \{1\}$$

Zadanie 4 (4 punkty). Udowodnij, że dla dowolnych zbiorów A i B zachodzi inkluzja $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. Czy dla wszystkich zbiorów A, B zachodzi także inkluzja odwrotna?

Rozwiązanie. Zauważmy najpierw, że zachodzi następujący lemat.

Lemat. Dla dowolnych zbiorów X, A i B mamy jeśli $X \subseteq A$ to $X \subseteq A \cup B$.

Dowód lematu jest tak łatwy, że go pominiemy.

Wystarczy pokazać, że dla dowolnego x jeśli $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$ to $x \in \mathcal{P}(A \cup B)$. Weźmy zatem dowolny $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Z definicji sumy zbioru mamy, że $x \in \mathcal{P}(A)$ lub $x \in \mathcal{P}(B)$. Rozważmy dwa przypadki. Jeśli $x \in \mathcal{P}(A)$ to z definicji zbioru potęgowego $x \subseteq A$. Z naszego lematu otrzymujemy, że $x \subseteq A \cup B$, czyli $x \in \mathcal{P}(A \cup B)$. Podobnie, jeśli $x \in \mathcal{P}(B)$ to z definicji zbioru potęgowego mamy $x \subseteq B$; z lematu otrzymujemy, że $x \subseteq A \cup B$, czyli $x \in \mathcal{P}(A \cup B)$.

Inkluzja odwrotna nie zachodzi dla wszystkich zbiorów A i B. Aby pokazać kontrprzykład, wystarczy przyjąć $A = \{1\}, B = \{2\}$. Wtedy $\{1,2\} \in \mathcal{P}(A \cup B)$, ale $\{1,2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.

Zadanie 5 (4 punkty). Rozważmy relację binarną $R \subseteq A \times A$. Definiujemy $R^1 = R$ oraz $R^{n+1} = R^n R$ dla wszystkich $n \ge 1$.

Udowodnij, że dla każdej liczby naturalnej $n \ge 1$ zachodzi równość $R^n R = R R^n$.

Rozwiązanie. Pokażemy indukcyjnie, że $R^n R = RR^n$.

Podstawa indukcji: Dla n=1 mamy pokazać, że $RR^1=R^1R$. W trywialny sposób wynika to z faktu, że $R^1=R$.

Krok indukcyjny: Weżmy dowolne $n \ge 1$ i załóżmy, że $R^nR = RR^n$. Pokażemy, że $R^{n+1}R = RR^{n+1}$. Z definicji R^{n+1} mamy $R^{n+1}R = (R^nR)R$. Z założenia indukcyjnego $(R^nR)R = (RR^n)R$. Z łączności składania relacji wiemy, że $(RR^n)R = R(R^nR)$ i ponownie z definicji R^{n+1} otrzymujemy $R(R^nR) = RR^{n+1}$. Zatem $R^{n+1}R = RR^{n+1}$, co kończy dowód.