Chapitre 2 - Suites numériques

Terminales Spé Maths

1 Raisonnement par récurrence

Le raisonnement par récurrence ne peut être utilisé que lorsque que l'on souhaite montrer qu'une propriété \mathcal{P}_n est vraie pour tout $n \ge n_0$.

Théorème 1.1.

Soit $n_0 \in \mathbb{N}$ On considère la proposition \mathcal{P}_n définie pour tout $n \geq n_0$. Si les deux propositions suivantes sont vérifiées :

- 1. \mathcal{P}_n est vraie pour n_0 (Initialisation)
- 2. Pour tout $k \ge n_0$ si la proposition (\mathcal{P}_k vraie) implique que (\mathcal{P}_{k+1} vraie) (Hérédité)

Alors \mathcal{P}_n est vraie pour tout $n \geqslant n_0$.

Remarque.

la proposition (\mathcal{P}_k vraie) est appelée **Hypothèse de récurrence**

Exemple:

On considère une suite définie par $u_0 = 2$ et pour tout entier naturel $n; u_{n+1} = 0.3u_n + 7$. Démontrer par récurrence que pour tout entier naturel $n, u_n \leq 10$.

La proposition \mathcal{P}_n est $u_n \leq 10$.

- 1. **Initialisation**: $n_0 = 0$; $u_0 = 2 \le 10$ donc la propriété est vraie pour $n_0 = 0$
- 2. Hypothèse de récurrence : Supposons qu'il existe $k \geq n_0$ tel que \mathcal{P}_k est vraie, c'est à dire $u_k \leq 10$.
- 3. **Hérédité** : Alors $u_{k+1} = 0.3u_k + 7 \le 0.3 \times 10 + 7 \Leftrightarrow u_{k+1} \le 10$ donc on a montré que si \mathcal{P}_k est vraie alors \mathcal{P}_{k+1} est vraie.
- 4. Conclusion : La propriété $u_n \leq 10$ est vraie pour tout $n \geq 0$

EXERCICE 1

Démontrer une égalité par récurrence

EXERCICE 2

La suite (u_n) est définie par : $u_0 = 0$ et $u_{n+1} = 2u_n + 1$ pour tout n de \mathbb{N} .

Démontrer par récurrence, que, pour tout n de \mathbb{N} : $u_n = 2^n - 1$.

EXERCICE 3

Démontrer par récurrence que pour tout $n \in \mathbb{N}; 1+2+3+\ldots n = \frac{n(n+1)}{2}$

Propriété 1.1.

Inégalité de Bernoulli

Pour tout réel a > 0; Pour tout $n \in \mathbb{N}$; $(1+a)^n \ge 1 + na$

Démonstration. Initialisation : Pour n = 0; on a l'égalité $(1+a)^0 = 1$ et $1+0 \times a = 1$. La propriété est vraie.

Hypothèse de récurrence : On suppose qu'il existe k > 0 tel que $(1+a)^k \ge 1 + ka$

Hérédité : On veut montrer que $(1+a)^{k+1} \ge 1 + (k+1)a$

Partant de $(1+a)^{k+1} = (1+a)^k (1+a) \ge (1+ka)(1+a)$ d'après H.R.

 $(1+a)^{k+1} \geqslant 1 + ka + a + ka^2$

Or $ka^2 > 0$ donc

 $(1+a)^{k+1} \geqslant 1 + ka + a$

et en factorisant a

 $(1+a)^{k+1} \geqslant 1 + (k+1)a$

On a montré l'hérédité.

Conclusion: Pour tout $n \in \mathbb{N}$; $(1+a)^n \ge 1 + na$

CQFD

2 Limites finies et suites convergentes

2.1 Définitions et propriétés

Définition 2.1.

Soit l un réel. Une suite (u_n) a pour limite l quand n tend vers $+\infty$ lorsque tout intervalle ouvert contenant l contient tous les termes u_n à partir d'un certain rang n_0 . On dit alors que la suite (u_n) est **convergente** et qu'elle converge vers l.

Cela revient à dire que pour tout $\varepsilon > 0$, il existe un réel $n_0 > 0$ tel que pour tout $n \ge n_0$ on a $|u_n - l| < \varepsilon$.

Remarque.

Une suite divergente est une suite qui ne converge pas.

Exemple:

Sur le graphique ci-dessous, on voit qu'à partir d'un rang n_0 , tous les termes de la suites sont à une distance ε aussi petite que l'on veut de la limite l.

Propriété 2.1.

La limite d'une suite (u_n) convergente est unique. On note $\lim_{n\to+\infty} u_n = l$

 $D\'{e}monstration.$ Inégalité triangulaire : on part du résultat suivant pour démontrer cette propriété : pour tous réels a et b on a |a+b|<|a|+|b|

Supposons que la suite u_n tendent vers deux limites l et l' différentes.

pour tout $\varepsilon > 0$; il existe un entier n_0 tel que pour tout $n > n_0$; $|u_n - l| < \frac{\varepsilon}{2}$.

pour tout $\varepsilon > 0 > 0$ il existe un entier n_1 tel que pour tout $n > n_1$; $|u_n - l'| < \frac{\varepsilon}{2}$.

Donc pour tout $n > \max(n_0; n_1)$, on a $|l - l'| = |l - u_n + u_n - l'| < |l - u_n| + |u_n - l'|$ d'après l'inégalité triangulaire et donc

triangulaire et donc $|l-l'|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}<\varepsilon.$

On a montré que pour tout $\varepsilon > 0$ aussi petit que souhaité, $|l - l'| < \varepsilon$ donc l = l'. CQFD

Propriété 2.2. $1. \lim_{n \to +\infty} \frac{1}{n} = 0$

$$2. \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

$$3. \lim_{n \to +\infty} \frac{1}{n^2} = 0$$

4. pour
$$k \geqslant 1$$
; $\lim_{n \to +\infty} \frac{1}{n^k} = 0$

5. Si -1 < q < 1; $\lim_{n \to +\infty} q^n = 0$ Démonstration en fin de chapitre

Démonstration. Faite en classe.

CQFD

Remarque.

Limite finie Limite infinie

Exemple:

Etudier l'application - méthode 1 p131.

2.2 Théorème de convergence monotone

Définition 2.2. • Une suite (u_n) est majorée par un réel M lorsque pour tout entier $n; u_n \leq M$. On dit que M est un majorant de (u_n)

- Une suite (u_n) est minorée par un réel m lorsque pour tout entier $n; u_n \ge m$. On dit que m est un minorant de (u_n)
- Une suite (u_n) majorée et minorée est dite bornée.

Théorème 2.1 (admis). • Toute suite croissante et majorée est convergente.

• Toute suite décroissante et minorée est convergente.

Exemple:

Etudier l'application - méthode 2 p132.

3 Limites infinies

Définition 3.1.

Une limite (u_n) a pour limite $+\infty$ lorsque, pour pour tout réel A; l'intervalle $[A; +\infty[$ contient tous les termes de la suite (u_n) à partir d'un certain rang. C'est à dire que pour tout $A \in \mathbb{R}$, il existe un entier n_0 tel que pour tout $n \ge n_0$ on a $u_n \ge A$.

Exemple:

Sur le graphique ci-dessous, on voit que pour tout A choisi, il existe un rang n_0 à partir duquel tous les termes de la suite sont supérieurs à A.

 $\lim n = +\infty$

Propriété 3.1. •

- $\bullet \lim_{n \to +\infty} \sqrt{n} = +\infty$
- $\bullet \lim_{n \to +\infty} n^2 = +\infty$
- Pour $k \geqslant 1$; $\lim_{n \to +\infty} n^k = +\infty$
- Si q > 1; $\lim_{n \to +\infty} q^n = +\infty$ Démonstration en fin de chapitre

Définition 3.2.

Une limite (u_n) a pour limite $-\infty$ lorsque, pour pour tout réel A; l'intervalle $]-\infty;A][$ contient tous les termes de la suite (u_n) à partir d'un certain rang. C'est à dire que pour tout $A \in \mathbb{R}$, il existe un entier n_0 tel que pour tout $n \ge n_0$ on a $u_n \le A$.

Exemple:

Sur le graphique ci-dessous, on voit que pour tout A choisi, il existe un rang n_0 à partir duquel tous les termes de la suite sont inférieurs à A.

Propriété 3.2. • Toute suite croissante non majorée a pour limite $+\infty$

• Toute suite décroissante non minorée a pour limite $-\infty$

 $D\'{e}monstration.$ • Soit (u_n) une suite croissante non major\'ee et A un r\'eel.

 u_n est non majorée, donc il existe un rang n_0 tel que $u_{n_0} > A$.

 u_n est croissante donc pour tout $n \ge n_0$ alors $u_n \ge u_{n_0} > A$ donc $u_n > A$.

On a montré que pour A réel, il existe un rang n_0 tel que pour tout $n\geqslant n_0$ $u_n>A$. Donc $\lim_{n\to+\infty}u_n=+\infty$

• En exercice.

CQFD

Exemple:

Etudier Application et méthode 3 p 134.

4 Opérations sur les limites

4.1 Limite d'une somme de suites

Si (u_n) a pour limite	l	l ou $+\infty$	l ou $-\infty$	$+\infty$
et si (v_n) a pour limite	l'	$+\infty$	$-\infty$	$-\infty$
alors $(u_n + v_n)$ a pour limite	l + l'	+∞	$-\infty$	Forme in- déterminée

4.2 Limite d'un produit de suites

Si (u_n) a pour limite	l	$l \neq 0$	∞	0
et si (v_n) a pour limite	l'	∞	∞	∞
alors $(u_n \times v_n)$ a pour limite	$l \times l'$	∞ *	∞ *	Forme in- déterminée

^{*} le signe est déterminé par la règle des signes d'un produit.

4.3 Limite d'un quotient de suites

Limite d'un quotient si la limite du dénominateur n'est pas nulle

Si (u_n) a pour limite	l	l	∞	$\pm \infty$
et si (v_n) a pour limite	$l' \neq 0$	∞	$l' \neq 0$	$\pm \infty$
alors $\left(\frac{u_n}{v_n}\right)$ a pour limite	$\frac{l}{l'}$	0 *	∞ *	Forme In- déterminée

^{* :} on détermine le signe avec la règle des signes

Limite d'un quotient si la limite du dénominateur est nulle

Si (u_n) a pour limite	$l \neq 0$ ou ∞	0
et si (v_n) a pour limite	0 en gardant un signe constant	0
alors $\left(\frac{u_n}{v_n}\right)$ a pour limite	∞	Forme in- déterminée

Exemple:

Etudier les Applications et méthodes 4-5-6-7 p135-136-137

5 Limites et comparaison

Théorème 5.1 (Théorème de comparaison).

Soient (u_n) et (v_n) deux suites telles que $u_n \leq v_n$ à partir d'un rang n_0 .

- Si $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$
- Si $\lim_{n \to +\infty} v_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$

Démonstration. Il existe un rang n_0 tel que pour tout $n \ge n_0; u_n \le v_n$

- Si $\lim_{n \to +\infty} u_n = +\infty$ il existe un rang n_1 tel que pour tout $n \ge n_1$ alors $u_n > A$. Donc en prenant $N = \max(n_0; n_1)$ pour tout $n \ge N; v_n \ge u_n > A$ donc $\lim_{n \to +\infty} v_n = +\infty$
- Si $\lim_{n \to +\infty} v_n = -\infty$ il existe un rang n_1 tel que pour tout $n \ge n_1$ alors $v_n < A$. Donc en prenant $N = \max(n_0; n_1)$ pour tout $n \ge N; u_n \le v_n < A$ donc $\lim_{n \to +\infty} u_n = -\infty$

CQFD

Exemple:

Etudier l'application et méthode 8 p 139

Théorème 5.2 (Théorème des gendarmes).

Soient (u_n) , (v_n) et (w_n) trois suites telles que à partir d'un certain rang on a : $u_n \leq v_n \leq w_n$. Si (u_n) et (w_n) convergent vers une même limite l, alors (v_n) converge aussi vers l.

Exemple:

Etudier l'Application et méthode 9 p 139

Démonstration. Pté 2.2 et Pté 3.1

Si
$$q > 1$$
; $\lim_{n \to +\infty} q^n = +\infty$

Si
$$-1 < q < 1$$
; $\lim_{n \to +\infty} q^n = 0$

1. q>1 donc il existe a>0 tel que q=1+a, d'après l'inégalité de Bernoulli, $q^n=(1+a)^n\geqslant 1+na$ Or, $\lim_{n\to+\infty}1+na=+\infty$

Donc par comparaison $\lim_{n\to+\infty}q^n=+\infty$

2. $-1 < q < 1 \Leftrightarrow |q| < 1 \text{ donc } \frac{1}{|q|} > 1 \text{ donc } \lim_{n \to +\infty} \left(\frac{1}{|q|}\right)^n = +\infty.$ Par inverse, $\lim_{n \to +\infty} q^n = \lim_{n \to +\infty} |q|^n = 0$

CQFD