Quiniela

Alejandro Campos

August, 2023

Contents

1	Introducción		3
	1.1	Como funciona la quiniela	3
	1.2	¿Cuanto cuesta la quiniela?	3
	1.3	¿Como funcionan los premios de la quiniela?	3
2 Estudio Probabilidades Teoricas		3	
	2.1	Apuesta simple suponiendo p = $1/3$	3
	2.2	Apuesta simple suponiendo p = $27/56$	4

1 Introducción

En este documento analizaremos a fondo las probabilidades de la quiniela, tanto teorica como empiricamente. Además, también analizaremos las variables aleatorias de los premios, ya que no son fijos.

1.1 Como funciona la quiniela

La quiniela es un sorteo de loterias y apuestas del estado en el cual debes intentar adivinar el resultado de 14 partidos de futbol de una jornada, siendo los 3 posibles resultados = $\{1, X, 2\}$:

- 1 = Victoria Local
- $\bullet x = Empate$
- 2 = Victoria Visitante

1.2 ¿Cuanto cuesta la quiniela?

La quiniela cuesta 0,75cts por apuesta simple. Las apuestas complejas las veremos más adelante

1.3 ¿Como funcionan los premios de la quiniela?

Los premios de la quiniela dependen principalmente de dos factores:

- La recaudación total de esa semana
- El numero de personas que han acertado exactamente el mismo numero de partidos.

Según el numero de aciertos, el premio será a repartir entre los acertantes y corresponderá a los siguientes porcentajes de la recaudación total:

3

- 1. Acertar **10**: 9%
- 2. Acertar **11:** 7,5%
- 3. Acertar **12:** 7,5%
- 4. Acertar **13**: 7,5%
- 5. Acertar **14:** 16%

2 Estudio Probabilidades Teoricas

2.1 Apuesta simple suponiendo p = 1/3

Si suponemos:

- p = "Probabilidad de acertar" $=\frac{1}{3}$
- q = "Probabilidad de fallar" = $1 \frac{1}{3} = \frac{2}{3}$

Tenemos una distribución binomial: $X \sim BN(14, \frac{1}{3})$.

Por tanto, podemos calcular facilmente las probabilidades de acertar:

• Acertar
$$\mathbf{10} = \binom{14}{10} \cdot \left(\frac{1}{3}\right)^{10} \cdot \left(\frac{2}{3}\right)^{4} \simeq \frac{1}{299} = 0,0035$$

• Acertar
$$\mathbf{11} = \binom{14}{11} \cdot \left(\frac{1}{3}\right)^{11} \cdot \left(\frac{2}{3}\right)^3 \simeq \frac{1}{1.639} = 6, 1e - 4$$

• Acertar
$$\mathbf{12} = \binom{14}{12} \cdot \left(\frac{1}{3}\right)^{12} \cdot \left(\frac{2}{3}\right)^2 \simeq \frac{1}{13.157} = 7, 5e - 5$$

• Acertar
$$\mathbf{13} = \binom{14}{13} \cdot \left(\frac{1}{3}\right)^{13} \cdot \frac{2}{3} \simeq \frac{1}{170.820} = 5,85e - 6$$

• Acertar
$$\mathbf{14} = \left(\frac{1}{3}\right)^{14} \simeq \frac{1}{4.782.969} = 2, 1e - 7$$

14 y pleno al 15 es algo más complejo, debemos aplicar la siguiente propiedad. Siendo:

- \bullet A: "Acertar 14 partidos"
- B: "Acertar el pleno al 15"

$$P(A \cap B) = P(A) \cdot P(B|A)$$

Como son independientes: $P(A \cap B) = P(A) \cdot P(B)$

•
$$P(A) = 2.1e - 7$$

•
$$P(B) = \frac{\text{c.fav}}{\text{c.pos}} = \frac{1}{VR_4^2} = \frac{1}{4^2}$$

Pleno al
$$\mathbf{15} = \frac{2, 1e - 7}{4^2} \simeq \frac{1}{76.527.504} = 1.307e - 8$$

2.2 Apuesta simple suponiendo p = 27/56

Sabemos que la probabilidad de acertar un partido no es $\frac{1}{3}$, ya que cada partido tiene su propia probabilidad (Barça - Alcorcon no es la misma que Rayo - Cádiz). Por ello, hago un estudio con 112 muestras. De 112 partidos, mis encuestados han acertado 54, lo que nos da $p=\frac{27}{56}$

• Acertar
$$\mathbf{10} = \begin{pmatrix} 14\\10 \end{pmatrix} \cdot \left(\frac{27}{56}\right)^{10} \cdot \left(1 - \frac{27}{56}\right)^4 \simeq \frac{1}{20} = 0,049$$

• Acertar
$$\mathbf{11} = \begin{pmatrix} 14 \\ 11 \end{pmatrix} \cdot \left(\frac{27}{56} \right)^{11} \cdot \left(1 - \frac{27}{56} \right)^3 \simeq \frac{1}{60} = 0,0165$$

• Acertar
$$\mathbf{12} = \begin{pmatrix} 14 \\ 12 \end{pmatrix} \cdot \left(\frac{27}{56} \right)^{12} \cdot \left(1 - \frac{27}{56} \right)^2 \simeq \frac{1}{260} = 0,00385$$

• Acertar
$$\mathbf{13} = \begin{pmatrix} 14 \\ 13 \end{pmatrix} \cdot \left(\frac{27}{56} \right)^{13} \cdot \left(1 - \frac{27}{56} \right) \simeq \frac{1}{1.813} = 5,51e - 4$$

- Acertar $\mathbf{14} = \left(\frac{27}{56}\right)^{14} \simeq \frac{1}{27.261} = 3,67e 05$
- Pleno al $\mathbf{15} = \left(\frac{27}{56}\right)^{14} \cdot \frac{1}{4^2} \simeq \frac{1}{436.174} = 2,29e 6$