

Politechnika Wrocławska

Struktury danych i złożoność obliczeniowa Wykład 4.

Prof. dr hab. inż. Jan Magott

Kodowanie danych wejściowych

Sposób kodowania danych wejściowych ma wpływ na rozmiar problemu (długość danych wejściowych)

Czy każdy z następujących sposobów kodowania liczb:

- Dziesiętny,
- Binarny,
- Jedynkowy

jest "właściwy"?

Alfabet jest skończonym zbiorem symboli. Alfabet oznaczamy symbolem Σ .

Przykłady

Alfabet dziesiętny $\Sigma = \{0,1,2,...,8,9,...\}$, gdzie ... jest separatorem.

Alfabet dwójkowy $\Sigma = \{0,1, \sqcup\}.$

Alfabet jedynkowy $\Sigma = \{1, \sqcup\}.$

Słowem alfabetu \sum nazywamy skończony ciąg symboli alfabetu $\sum \setminus \{ \sqcup \}$.

Szczególnym przypadkiem jest słowo puste czyli nie zawierające żadnego symbolu

Przykłady

Słowa dziesiętne: 536, 1429, 374502

Słowa dwójkowe: 10, 0, 1001011

Słowa jedynkowe: 111, 11111, 1, 11111111

Słownikiem alfabetu Σ jest zbiór wszystkich słów alfabetu $\Sigma \setminus \{ \sqcup \}$.

```
Przykłady
Słownik dziesiętny:
{0,1,2,...,9,10,11,...,99,100, 101, ...}
Słownik dwójkowy:
{0,1,10,11,100,101, ...}
Słownik jedynkowy:
{1,11,111,1111,...}
```


Językiem alfabetu \sum jest skończony ciąg słów tego alfabetu oddzielonych separatorami \square .

Przykłady

Język dwójkowy: 1011_101111_11_1000

Język jedynkowy: 11_1111_1_11111111

Reguła kodowania

- 1. Kolejność danych musi być określona
- 2. Każda dana jest reprezentowana jednym słowem alfabetu Σ
- 3. Musi istnieć metoda wyodrębniania poszczególnych danych
- 4. Dane o równych wartościach kodowane są tym samym słowem

Instancja I problemu podziału zbioru

Dane:

- $X = \{x_1, \dots, x_i, \dots, x_k\} = \{3,11,7,23,18\}$ zbiór pięciu elementów,
- B = 31, $\sum_{i=1}^{5} x_i = 2 \cdot B$.

Pytanie:

Czy istnieje podzbiór $X_1 \subset X$ taki, że $\sum_{x_i \in X_1} x_i = B$?

Zakodujmy dane instancji I w następujący sposób:

$$x_1 \sqcup x_2 \sqcup x_3 \sqcup x_4 \sqcup x_5 \sqcup B \sqcup \sqcup$$

Kodowanie w alfabecie dziesiętnym

$$3 - 11 - 7 - 23 - 18 - 31 - -$$

Długość łańcucha kodującego instancję I wynosi $N_{10}(I)=17$

Zakodujmy dane instancji *I* w następujący sposób:

 $x_1 \sqcup x_2 \sqcup x_3 \sqcup x_4 \sqcup x_5 \sqcup B \sqcup \sqcup$

Kodowanie w alfabecie dwójkowym 11∟1011∟111∟10111∟10010∟11111 ∟

Długość łańcucha kodującego instancję I wynosi $N_2(I)=31$

Zakodujmy dane instancji I w następujący sposób:

$$x_1 \sqcup x_2 \sqcup x_3 \sqcup x_4 \sqcup x_5 \sqcup B \sqcup \sqcup$$

Długość łańcucha kodującego instancję I wynosi $N_1(I) = 100$

Problem podziału zbioru

Dane:

- $X = \{x_1, \dots, x_i, \dots, x_k\}$ zbiór k elementów $x_i \in N_+$, gdzie $N_+ = \{1, 2, \dots\}$,
- $B \in N_+$,
- $\bullet \ \sum_{i=1}^k x_i = 2B.$

Pytanie:

Czy istnieje podzbiór $X_1 \subset X$ taki, że

$$\sum_{x_i \in X_1} x_i = B ?$$

Zakodujmy dane Problemu podziału w następujący sposób:

$$x_1 \sqcup x_2 \sqcup \ldots x_n \sqcup B \sqcup \sqcup$$

Długość łańcucha kodującego w alfabecie dziesiętnym $N_{10}(I) \approx \lceil log x_1 \rceil + 1 + \lceil log x_2 \rceil + 1 + \dots + \lceil log x_n \rceil + 1 + \lceil log B \rceil + 2 = \sum_{i=1}^{n} \lceil log x_i \rceil + n + \lceil log B \rceil + 2 \le (n+1) \cdot max_{j \in \{\overline{1,n}\}} \{\lceil log x_i \rceil + 1, \lceil log B \rceil\} + 2 \approx O(n \cdot max_{j \in \{\overline{1,n}\}} \{\lceil log x_i \rceil + 1, \lceil log B \rceil\})$

[x] - najmniejsza liczba całkowita nie mniejsza niż x

Zakodujmy dane Problemu podziału w następujący sposób:

$$x_1 \sqcup x_2 \sqcup \dots x_n \sqcup B \sqcup \sqcup$$

Długość łańcucha kodującego w alfabecie dwójkowym $N_2(I) \approx \lceil log_2 x_1 \rceil + 1 + \lceil log_2 x_2 \rceil + 1 + \dots + \lceil log_2 x_n \rceil + 1 + \lceil log_2 B \rceil + 2 = \sum_{i=1}^{n} \lceil log_2 x_i \rceil + n + \lceil log_2 B \rceil + 2 \le \le (n+1) \cdot \max_{j \in \{\overline{1,n}\}} \{\lceil log_2 x_i \rceil + 1, \lceil log_2 B \rceil\} + 2 \approx O(n \cdot \max_{j \in \{\overline{1,n}\}} \{\lceil log_2 x_i \rceil + 1, \lceil log_2 B \rceil\}$

 $\lceil x \rceil$ - najmniejsza liczba całkowita nie mniejsza niż x

Zakodujmy dane Problemu podziału w następujący sposób:

$$x_1 \sqcup x_2 \sqcup \ldots x_n \sqcup B \sqcup \sqcup$$

Długość łańcucha kodującego w alfabecie jedynkowym
$$N_1(I)=x_1+1+x_2+1+\cdots+x_n+1+B+2=\sum_{i=1}^n x_i+n+B+2$$
 $x_i\approx 10^{\log_{10}x_i}$

"Rozsądna i zwarta" reguła kodowania to reguła, która nie powoduje wykładniczego wzrostu rozmiaru danych wejściowych kodowanej instancji w stosunku do innych reguł kodowania.

"Rozsądne i zwarte" reguły kodowania instancji I dające łańcuchy o długościach $N_n(I),\,N_m(I)$ spełniają relacje:

 $N_n(I) \leq p(N_m(I))$ i $N_m(I) \leq p'(N_n(I))$ dla wielomianów p, p'. Jeśli ten wymóg nie jest spełniony i np. $N_n(I) \leq k^{N_m(I)}$ dla pewnej stałej k>1, to pierwsza jest "nierozsądna" (powoduje wykładniczy wzrost rozmiaru).

Zatem odrzucamy kodowanie danych wejściowych w alfabecie jedynkowym.