AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

In the Claims:

1. (Currently Amended) A compound of the formula

$$\begin{array}{c|c} & & & \\ \hline R_8 & & \\ \hline R_8 & & \\ \hline R_9 & & \\ \hline R_1 & & \\ \hline \end{array}$$

$$R_{6}$$
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5

wherein the bond of atoms C_{22} and C_{23} is a single or double bond;

n = is 0, 1 or 2;

p is 0 or 1;

R₁ is C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl or C₂-C₁₂-alkenyl;

is H_1 , C_1 - C_{12} -alkyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -hydroxyalkyl, OH, halogen, -N₃, SCN, NO₂, CN, C_3 - C_8 cycloalkyl unsubstituted or substituted by from one to three methyl groups, C_3 - C_8 halocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_2 - C_1 2alkenyl, C_2 - C_1 2haloalkenyl, C_2 - C_1 2haloalkenyloxy, C_2 - C_1 2alkynyl, C_3 - C_1 2alkynyloxy, C_3 - C_1 2haloalkynyloxy, -P(=O)(OC $_1$ C $_6$ alkyl) $_2$, -Si(C_1 - C_6 alkyl) $_3$, -(CH $_2$)-Si(C_1 - C_6 alkyl) $_3$, -Si(OC $_1$ - C_6 alkyl) $_3$, -N(R $_9$) $_2$, -(CH $_2$)-N(R $_9$) $_2$, wherein the two substituents R_9 are independent of each other, -C(=X)- R_7 , -(CH $_2$)-C(=X)- R_7 , -O-C(=X)- R_7 , -(CH $_2$)-O-C(=X)- R_7 , -S-C(=X)- R_7 , -(CH $_2$)-S-C(=X)- R_7 , -NR $_9$ C(=X) R_7 , -(CH $_2$)-NR $_9$ C(=X) R_7

NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -(CH₂)-NR₉-OR₁₀, -SR₉, -S(=O) R₁₁, -S(=O)₂R₁₁, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, SCN, -N₃, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₆alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyloxy and phenoxy;

or, when p is 1, R_2 together with R_3 is a bond; or R_2 together with R_4 is =0 or =S;

or R₂ together with R₄ form with the carbon to which they are bound a three- to seven-membered ring, which may be monocyclic or bicyclic, and may be saturated or unsaturated, and that may contain one or two hetero atoms selected from the group consisting of N, O and S, and which is either unsubstituted or independently of one another mono- to pentasubstituted with substituents selected from OH, =O, SH, =S, halogen, CN, -N₃, SCN, NO₂, aryl, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, phenoxy, phenyl-C₁-C₆alkyl, -N(R₉)₂ wherein the two R₉ are independent of each other, C₁-C₆alkylsulfinyl, C₃-C₈cycloalkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₃-C₈halocycloalkylsulfinyl, C₁-C₆haloalkylsulfonyl, C₁-C₆haloalkylsulfonyl and C₃-C₈halocycloalkylsulfonyl; or

 R_2 together with R_4 is =NN(R_{12})₂, wherein the two substituents R_9 are independent of each other;

or, when p is 0, R_2 together with R_4 and R_6 is $\equiv N$;

or when p is 0, R_2 together with R_6 is =NOR₁₂ or =NN(R_{12})₂, wherein the two substituents R_9 are independent of each other;

R₃ is H, C₁-C₁₂-alkyl, halogen, halo-C₁-C₂alkyl, CN, -N₃, SCN, NO₂, C₃-C₈cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆-alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆al

 $C_{6}alkyl,\ C_{3}-C_{8}cycloalkoxy,\ C_{1}-C_{12}haloalkoxy,\ C_{1}-C_{12}alkylthio,\ C_{3}-C_{8}cycloalkylthio,\ C_{1}-C_{12}haloalkylthio,\ C_{1}-C_{12}alkylsulfinyl,\ C_{3}-C_{8}cycloalkylsulfinyl,\ C_{1}-C_{12}haloalkylsulfinyl,\ C_{3}-C_{8}halocycloalkylsulfinyl,\ C_{1}-C_{12}haloalkylsulfinyl,\ C_{1}-C_{12}alkylsulfonyl,\ C_{2}-C_{8}cycloalkylsulfonyl,\ C_{1}-C_{12}haloalkylsulfonyl,\ C_{2}-C_{8}alkenyl,\ C_{2}-C_{8}alkynyl,\ C_{2}-C_{12}haloalkenyl,\ C_{2}-C_{12}haloalkynyl,\ C_{3}-C_{12}haloalkynyloxy,\ -N(R_{9})_{2},\ wherein the two substituents\ R_{9}$ are independent of each other, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to pentasubstituted by substituents selected from the group consisting of halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

or when p is 1, R₃ together with R₂ is a bond;

is H, C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, C₁-C₁₂-hydroxyalkyl, OH, halogen, NO₁₂, R_4 CN, C3-C8cycloalkyl unsubstituted or substituted by from one to three methyl groups, C3-C8halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₆alkoxy-C₁-C₆alkyl, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C_2 - C_{12} haloalkynyl, C_3 - C_{12} haloalkynyloxy, -P(=O)(OC₁-C₆alkyl)₂, -Si(C₁-C₆alkyl)₃, -(CH₂)-- $Si(C_1-C_6alkyl)_3$, $-Si(OC_1-C_6alkyl)_3$, $-N(R_9)_2$, $-(CH_2)-N(R_9)_2$, wherein the two substituent R_9 are independent of each other, -C(=X)-R₇, -(CH₂)-C(=X)-R₇, -O-C(=X)-R₇, -(CH₂)-O-C(=X)-R₇, -S-C(=X)-R₇, -(CH₂)-S- $C(=X)-R_7$, $-NR_9C(=X)R_7$, $-(CH_2)-NR_9C(=X)R_7$, $-NR_9NHC(=X)-R_7$, $-NR_9-OR_{10}$, $-(CH_2)-NR_9-OR_{10}$ OR_{10} , $-SR_{97}$, $-S(-O)R_{11}$, $-S(-O)_2R_{11}$, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, $C_2-C_8 alkenyl,\ C_2-C_8 alkynyl,\ C_2-C_2 haloalkenyl,\ C_2-C_{12} haloalkenyloxy,\ C_2-C_{12} haloalkynyl,\ C_3-C_1 haloalkenyloxy,\ C_2-C_2 haloalkenyloxy,\ C_3-C_1 haloalkenyloxy,\ C_3-C_1 haloalkenyloxy,\ C_3-C_2 haloalkenyloxy,\ C_3-C_1 haloalkenyloxy,\ C_3-C_1 haloalkenyloxy,\ C_3-C_2 haloalkenyloxy,\ C_3-C_1 haloalkenyloxy,\ C_3-C_2 haloalkenyloxy,\ C_3-C_3 haloalkenyloxy,\ C_3-C_3$ C₁₂haloalkynyloxy and phenoxy;

or R_4 together with R_2 forms =0 or =S;

or when p is 1, R₄ together with R₅ is a bond;

or, when p is 0, together with R_2 and R_6 is $\equiv N$;

R₅ and R₆ independently of each other are H, C₁-C₁₂-alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₃-C₈cycloalkyl that is unsubstituted or substituted by from one to two methyl groups, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy, C₃-C₈cycloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkylthio, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, -P(=O)(OC₁-C₆alkyl)₂, -CH₂- $P(=O)(OC_1-C_6alkyl)_2$, $-Si(OC_1-C_6alkyl)_3$, $-N(R_9)_2$, $-O-N(R_9)_2$, wherein the two substituents R_9 are independent of each other, -C(=X)-R₇, -CH=NOH, -CH=NOC₁-C₆alkyl, -O-C(=X)-R₇, -S- $C(=X)-R_7$, $-NR_9C(=X)R_7$, $-NR_9NHC(=X)-R_7$, $-NR_9-OR_{10}$, $-SR_9$, $-S(=O)R_{11}$, $-S(=O)_2R_{11}$, $-CH_2-CH_2$ S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy, -NR₉-heterocyclyl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, -CH₂-NR₉-C₁-C₂alkyl, -CH₂-heterocyclyl, -CH₂-O-heterocyclyl and -CH₂-NR₉-heterocyclyl; wherein the aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy and -NR₉-heterocyclyl radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, =O, SH, =S, halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C_{.1}-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, phenoxy, methylenedioxy, NH₂, $NH(C_1-C_{12}alkyl)$, $N(C_1-C_{12}alkyl)_2$ and $C_1-C_6alkylsulfinyl$; or

R₅ and R₆ are, together with the carbon atom to which they are bound, a five- to sevenmembered ring, which may be saturated or unsaturated, and which may contain one or two members selected from the group consisting of O, NR₈ and S; and which is optionally substituted with one to three substituents selected from C₁-C₁₂-alkyl, CN, NO₂, OH, halogen, halo-C₁- $C_2 alkyl, C_3 - C_8 cycloalkyl \ C_3 - C_8 halocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 alkoxy - C_1 - C_6 alkyl, C_1 - C_6 alkoxy - C_1 - C_6 alkyl, C_3 - C_8 cycloalkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} alkylthio, C_3 - C_8 cycloalkylthio, C_1 - C_{12} haloalkylthio, C_2 - C_{12} alkenyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkynyl, C_2 - C_{12} haloalkynyl and C_3 - C_{12} haloalkynyloxy;$

or when p is 1, R₅ together with R₄ is a bond;

or, when p is 0, R_6 together with R_2 and R_4 is $\equiv N$;

R₇ is H, OH, C₁-C_{.12}alkyl, C₁-C₁₂haloalkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₈alkenyloxy, C₃-C₈alkinyloxy, --N(R₈)₂ wherein the two R₈ are independent of each other, aryl, aryloxy, benzyloxy, heterocyclyl, heterocyclyloxy or heterocyclylmethoxy; and wherein the aryl, aryloxy, benzyloxy, heterocyclyl and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyloxy;

R₈ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, hydroxy and cyano, C₃-C₈-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, and C₁-C₁₂haloalkylthio;

 $R_9 \ is \ H, \ C_1\text{-}C_6 alkyl, \ C_1\text{-}C_6 cycloalkyl, \ C_1\text{-}C_6 alkoxy\text{-}C_1\text{-}C_6 alkyl, \ C_1\text{-}C_6 alkoxy\text{-}C_1\text{-}C_6 alkyl, \ C_2\text{-}C_{12} alkenyl, \ C_2\text{-}C_{12} alkynyl, \ benzyl, \ aryl \ or \ heteroaryl;$

R₁₀ H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, NO₂, hydroxy and cyano, C₁-C₁₂haloalkyl, C₂-C₁₂alkenyl, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂alkynyl, C₃-C₈-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl and C₃-C₁₂haloalkynyloxy;

 R_{11} is H, C_1 - C_6 alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, hydroxy and cyano, -N(R_9)₂ wherein the two substituents R_9 are independent of each other, C_3 - C_8 cycloalkyl, C_3 - C_8 halocycloalkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy, C_2 - C_{12} alkynyl, C_3 - C_{12} haloalkynyloxy, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} alkylthio, C_2 - C_{12} alkenyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkynyl and C_3 - C_{12} haloalkynyloxy;

 $R_{12} \ is \ H, \ C_1\text{-}C_6 alkyl, \ C_1\text{-}C_6 cycloalkyl, \ C_1\text{-}C_6 alkoxy-} C_1\text{-}C_6 alkyl, \ C_1\text{-}C_6 alkyl, \ C_1\text{-}C_6 alkyl, \ C_2\text{-}C_{12} alkenyl, \ C_2\text{-}C_{12} alkynyl, \ -C(=O)C_1\text{-}C_6 alkyl, \ -C(=O)OC_1\text{-}C_6 alkyl, \ -C(=O)OC_1\text{-}C$

X is O or S;

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form.

- 2. (Previously Presented): A pesticide composition which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- 3. (Previously Presented): A method for controlling pests comprising applying a composition as described in claim 2 to the pests or their habitat.
- 4. (Previously Presented): A process for preparing a composition as described in claim 2 comprising intimately mixing and/or grinding the active compound with at least one auxiliary.
- 5. (Canceled)
- 6. (Canceled)
- 7. (Previously Presented): A method for protecting plant propagation material, wherein the propagation material or the location where the propagation material is planted is treated, comprising applying a composition as described in claim 2.
- 8. (Previously Presented): Plant propagation material treated in accordance with the method described in claim 7.
- 9. (Currently Amended): The compound of claim 1, wherein
- R_1 is C_1 - C_6 -alkyl, C_5 - C_6 -cycloalkyl or C_2 - C_6 -alkenyl;
- is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, OH, halogen, -N₃, SCN, NO₂, CN, C₅-C₆cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halocycloalkyl, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkynyl, C₂-C₆haloalkynyl, C₃-C₆haloalkynyloxy, -(CH₂)-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -(CH₂)-C(=X)-R₇, -O-C(=X)-R₇, -

 (CH_2) -O-C(=X)-R₇, -S-C(=X)-R₇, - (CH_2) -S-C(=X)-R₇, - $NR_9C(=X)R_7$, - (CH_2) -NR₉C(=X)R₇, - (CH_2) -NR₉-OR₁₀, - (CH_2) -NR₁₀-OR₁₀, - (CH_2) -NR₁₀-OR₁₀-OR₁₀, - (CH_2) -NR₁₀-OR₁₀-OR₁₀, - (CH_2) -NR₁₀-OR

or, when p is 1, R_2 together with R_3 is a bond;

or R_2 together with R_4 is =0 or =S; or

 R_2 together with R_4 is =NN(R_{12})₂, wherein the two substituents R_9 are independent of each other;

or, when p is 0, R_2 together with R_4 and R_6 is $\equiv N$;

or when p is 0, R_2 together with R_6 is =NOR₁₂ or =NN(R_{12})₂, wherein the two substituents R_9 are independent of each other;

 R_3 is H, C_1 - C_6 -alkyl, halogen, halo- C_1 - C_2 alkyl, or when p is 1, R_3 together with R_2 is a bond;

 R_4 is H, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -hydroxyalkyl, OH, halogen, NO_{12} , CN, C_3 - C_8 cycloalkyl unsubstituted or substituted by from one to three methyl groups, C_3 - C_8 halocycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy-C

or R_4 together with R_2 forms =O or =S;

or when p is 1, R_4 together with R_5 is a bond;

or, when p is 0, together with R_2 and R_6 is $\equiv N$;

 R_5 and R_6 independently of each other are H, C_1 - C_6 -alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo- C_1 - C_2 alkyl, hydroxy- C_1 - C_2 alkyl, C_3 - C_8 cycloalkyl that is unsubstituted or substituted by from one to two methyl groups, C_3 - C_8 halocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 alkoxy-

C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₆haloalkylthio, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆haloalkynyl, C₃-C₆haloalkynyloxy, -P(=O)(OC₁-C₆alkyl)₂, -CH₂-P(=O)(OC₁-C₆alkyl)₂, -Si(OC₁-C₆alkyl)₃, -N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -CH=NOH, -CH=NOC₁-C₆alkyl, -O-C(=X)-R₇, -S- $C(=X)-R_7$, $-NR_9C(=X)R_7$, $-NR_9NHC(=X)-R_7$, $-NR_9-OR_{10}$, $-SR_9$, $-S(=O)R_{11}$, $-S(=O)_2R_{11}$, $-CH_2-CH_{11}$ S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy, -NR₉-heterocyclyl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, -CH₂-NR₉-C₁-C₂alkyl, -CH₂-heterocyclyl, -CH₂-O-heterocyclyl and -CH₂-NR₉-heterocyclyl; wherein the aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy and -NR₉-heterocyclyl radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, =O, SH, =S, halogen, CN, NO₂, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C_{.1}-C₆alkylthio, C₁-C₆haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆haloalkynyl, C₃-C₆haloalkynyloxy, phenoxy, methylenedioxy, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ and C₁-C₆alkylsulfinyl; or

when p is 0, R_6 together with R_2 and R_4 is $\equiv N$;

R₇ is H, OH, C₁-C_{.6}alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆haloalkynyloxy, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆haloalkynyloxy, C₂-C₈alkenyloxy, C₃-C₈alkinyloxy, --N(R₈)₂ wherein the two R₈ are independent of each other, aryl, aryloxy, benzyloxy, heterocyclyl, heterocyclyloxy or heterocyclylmethoxy; and wherein the aryl, aryloxy, benzyloxy, heterocyclyl and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO₂, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆haloalkylthio, C₁-C₆haloalkylthio, C₁-C₆haloalkynyl, C₂-C₈alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₈alkynyl, C₂-C₆haloalkynyloxy;

R₈ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆haloalkynyloxy, hydroxy and cyano, C₃-C₈-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkynyl, C₃-C₆haloalkynyl, C₃-C₆haloalkynyl, C₃-C₆haloalkynyloxy, and C₁-C₆haloalkylthio;

R₉ is H, C₁-C₆alkyl, C₁-C₆cycloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₂-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, benzyl, aryl or heteroaryl;

R₁₀ H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, NO₂, hydroxy and cyano, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkynyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₃-C₈-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆haloalkylthio, C₁-C₆haloalkylthio, C₂-C₆haloalkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkynyl, C₃-C₆haloalkynyl and C₃-C₆haloalkynyloxy;

R₁₁ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, hydroxy and cyano, -N(R₉)₂ wherein the two substituents R₉ are independent of each other, C₃-C₈cycloalkyl, C₃-C₈halocycloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₃-C₆haloalkynyloxy, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆haloalkyl, C₁-C₆haloalkyl, C₁-C₆haloalkylthio, C₂-C₆haloalkylthio, C₂-C₆haloalkylthio, C₁-C₆haloalkylthio, C₁-C₆ha

C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₂-C₆haloalkynyloxy;

 $R_{12} \ is \ H, \ C_1\text{-}C_6alkyl, \ C_1\text{-}C_6cycloalkyl, \ C_1\text{-}C_6alkoxy-C_1\text{-}C_6alkyl, \ C_1\text{-}C_6alkyl, \ C_2\text{-}C_{12}alkynyl, \ -C(=O)C_1\text{-}C_6alkyl, \ -C(=O)OC_1\text{-}C_6alkyl, \ -C(=O)$

X is O or S;

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form;

```
10. (Currently Amended) The compound of claim 9, wherein
```

n=1;

p = 1;

 R_2 is H or OH;

 R_3 is H, C_1 - C_6 -alkyl, or halo- C_1 - C_2 alkyl;

 R_4 is H;

 R_5 is H or C_1 - C_6 -alkyl; and

is H, C₁-C₆-alkyl, -N₃, OH, halogen, halo-C₁-C₂alkyl, N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, or -S (=O)₂R₁₁.

- 11. (Canceled)
- 12. (Canceled)
- 13. (Currently Amended) The compound of claim 9, wherein

n = 1;

p = 0;

and

 R_2 is H, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -hydroxyalkyl, or -C(=X)- R_7 ,

R₄ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

 R_7 is H, OH, or C_1 - C_6 alkoxy;

X is O; and

 R_6 is H, C_1 - C_6 -alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo- C_1 - C_2 alkyl, hydroxy- C_1 - C_2 alkyl, C_1 - C_1 - C_2 alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_1 - C_1 - C_1 - C_1 - C_2 - C_1 - $C_$

14. (Canceled)

15. (Currently Amended) The compound of claim 9, wherein

n=0;

p = 0;

R₂ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₄ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

 R_7 is H, OH, or C_1 - C_6 alkoxy;

X is O; and

 R_6 is H, C_1 - C_6 -alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo- C_1 - C_2 alkyl, hydroxy- C_1 - C_2 alkyl, C_1 - C_1 - C_2 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_1 - C_1 - C_1 - C_2 - C_3 - C_1 - C_3 - C_4 - C_1 - C_4 - C_5

16. (Previously Presented) The compound of claim 9, wherein

p = 0;

 R_2 together with R_4 is =O;

is H, C₁-C₆-alkyl, CN, OH, F, Cl, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkylthio, C₂-C₈alkenyl, C₂-C₁₂haloalkenyl, -N(R₉)₂ wherein the two substituents R₉ are independent of each other, pyrrolidinyl, morpholinyl, aryl, aryloxy, or benzyloxy; and R₉ is H or C₁-C₆alkyl.

17. (Currently Amended) The compound of claim 9, wherein

n=1;

p = 1;

R₂ together with R₃ is a bond;

 R_4 is H or C_1 - C_6 alkyl;

 R_5 is H, F, Cl, Br or C_1 - C_6 alkyl;

- is H, C₁-C₆-alkyl, CN, OH, F, Cl, Br, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy, C₁-C₆haloalkoxy, C₁-C₆haloalkylthio, -P(=O)(OC₁-C₆alkyl)₂, -CH₂-P(=O)(OC₁-C₆alkyl)₂, -Si(OC₁-C₆alkyl)₃, -C(=X)-R₇, -SR₉, S(=O)R₁₁, -S (=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, thiopheneyl, pyridyl, or -CH₂-NR₉-C₁-C₂alkyl; and
- R₇ is H, OH, C₁-C_{.6}alkyl, C₁-C₆haloalkyl, C₁-C₁₂alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy, aryl, furanylmethoxy, or 1,3,2-dioxaborolyl; and wherein the aryl, furanylmethoxy, 1,3,2-dioxaborolyl are unsubstituted or depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen and C₁-C₆alkyl.

18. (Currently Amended) The compound of claim 9, wherein

n=1;

p = 1;

 R_2 together with R_3 is a bond;

 R_4 is H or C_1 - C_6 alkyl;

 R_5 is H, F, Cl, Br or C_1 - C_6 alkyl;

- is H, C₁-C₆-alkyl, CN, OH, F, Cl, Br,, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy, C₁-C₆haloalkoxy, C₁-C₆haloalkylthio, -P(=O)(OC₁-C₆alkyl)₂, -CH₂-P(=O)(OC₁-C₆alkyl)₂, -Si(OC₁-C₆alkyl)₃, -C(=X)-R₇, $-S(=O)R_{11}$, $-S(=O)_2R_{11}$, $-CH_2-S(=O)_2R_{11}$, aryl, aryloxy, benzyloxy, thiopheneyl, pyridyl, or -CH₂-NR₉-C₁-C₂alkyl; and
- R₇ is H, OH, C₁-C_{.6}alkyl, C₁-C₆haloalkyl, C₁-C₁₂alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, aryl, furanylmethoxy, 1,3,2-dioxaborolyl; and wherein the aryl, furanylmethoxy, or 1,3,2-dioxaborolyl are unsubstituted or depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen and C₁-C₆alkyl.
- 19. (Currently Amended) The compound of claim 9, wherein

 $n \quad is \ 0 \ or \ 1;$

p is 0;

R₁ is sec-butyl or isopropyl;

 R_2 and R_4 is H;

 R_6 is hydroxy; and

the bond between atoms 22 and 23 is a double bond.

20. (Currently Amended) The compound of claim 9, wherein

n = is 1;

p is 1 and R₂ together with R₃ is a bond;

R₁ is sec-butyl or isopropyl;

R₄, R₅ and R₆ are H;

the bond between atoms 22 and 23 is a double bond.