

LAB 5

Pengantar Sistem Digital

2023-2024 Gasal

RAI

Petunjuk Pengerjaan

- Kerjakan semua soal sesuai dengan spesifikasi tiap soal.
- Mohon baca setiap spesifikasi soal dengan saksama sebelum bertanya kepada asisten dosen.
- Jika ada soal yang membingungkan atau kesalahan pada soal, silakan bertanya kepada salah satu asisten dosen yang sudah *stand-by*.
- Lakukan submisi semua file (sesuai spesifikasi yang ada pada soal) di SCELE sebelum Kamis, 2 November 2023 pukul 14:50 (Toleransi keterlambatan pengumpulan yaitu 5 menit).
- Penalti sebesar 2 poin akan dikenakan untuk keterlambatan setiap menit.
 Contoh: telat 15 menit, maka dikenakan penalti sebesar 20 poin karena 2 * (15 5) = 20 dimana 5 menit pertama adalah waktu toleransi keterlambatan. Jika terlambat selama > 55 jam, lab tidak akan dinilai.

Pengumpulan Submisi

Kumpulkan satu file jawaban dengan format penamaan file:

Sirkuit Logisim diberi nama dengan format penamaan file:

Jawaban penjelasan diberi nama dengan format penamaan file:

Catatan: Tanda '[' dan ']' tidak perlu ditulis!

Contoh:

- LAB5_ABC_2306123456_PakEsde.zip
- LAB5_ABC_2306123456_PakEsde.circ
- LAB5_ABC_2306123456_PakEsde.pdf

Sequential Circuit Step-by-Step Design Procedure

Langkah dalam mendesain sebuah rangkaian sekuensial adalah sebagai berikut.

- 1. **Specification -** Menjelaskan perilaku sirkuit, *gate* yang digunakan, flip-flop yang digunakan, dan state assignment yang digunakan
- 2. Formulation Membuat state diagram dan state table.
- 3. **State Assignment -** Meng-assign state-state yang ada dari formulation ke dalam bentuk binary. Ada binary, one-hot, gray code state assignment, dan masih banyak lagi.
- 4. **Flip-Flop Input Equation Determination -** Meng-assign flip-flop input ke dalam tabel sesuai dengan flip-flop yang ingin digunakan dan state diagram/tabel yang telah dibuat.
- 5. **Output Equation Determination -** Meng-assign output ke dalam tabel sesuai dengan state diagram/tabel yang telah dibuat.
- 6. Optimization Mengoptimisasi output dan flip-flop input equation.
- 7. **Technology Mapping -** Membuat sirkuit di Logisim Evolution.
- 8. **Verification -** Mencoba sirkuit di Logisim Evolution.

Contoh Soal:

Buatlah sebuah <u>110 recognizer</u> dengan design procedure menggunakan <u>D flip-flop</u> dengan model <u>Mealy</u> pada desain yang dibuat.

Sequence recognizer adalah sebuah sessquential circuit yang menerima 1 input yang dapat berubah seiring waktu. Input tersebut berupa bilangan binary, antara 1 dan 0. Recognizer 110 akan menerima input tersebut dan mengecek apakah dari inputnya terdapat input beriringan '110'. Apabila terdapat input 110, outputnya akan mengeluarkan 1. Jika tidak, outputnya tetap 0.

Contoh kasus:

Dimasukkan input beriringan 00011101000. Karena terdapat 110, yaitu pada 0001**110**1000, maka setelah 110 tersebut, output akan menjadi 1. Pada saat yang lain, outputnya tetap 0.

Jawab:

Step-by-Step Design:

1. Specification

110 sequence recognizer dengan D-Flip Flop.

2. Formulation

State Diagram:

State Table:

Present State	Next	State	Output		
	X = 0	X = 1	X = 0	X = 1	
00	00	01	0	0	
01	00	10	0	0	
10	00	10	1	0	

3. State Assignment

Sudah ter-assign tiga state yaitu 00, 01, dan 10.

4. Flip-Flop Input Equation Determination

Membuat lagi state table yang lebih mendetail. Pada tabel ini, present state dan next state sudah menggunakan state assignment. Sebelum memasukkan flip-flop input, berikut state table yang sudah menggunakan state assignment:

Present State		Next State				Output	
Y1	Y0	X = 0		X = 1		X = 0	X = 1
0	0	0	0	0	1	0	0
0	1	0	0	1	0	0	0
1	0	0	0	1	0	1	0

Dari tabel di atas, sudah diketahui next state yang didapat dalam bentuk binary. Setelah itu, kita buat tabel baru dengan next state yang menggunakan flip-flop. Present state dan next state sebuah flip-flop dapat dilihat dari excitation table-nya.

Berikut tabel yang sudah dimasukkan flip-flop input-nya:

#PSDisFun

Present State		Next State (X=0)		Next State (X=1)		Output (Y)	
Y1	Y0	D1	D0	D1	D0	X = 0	X = 1
0	0	0	0	0	1	0	0
0	1	0	0	1	0	0	0
1	0	0	0	1	0	1	0

D1, dan D0 di sini berarti D flip-flop. Jadi, kita akan menggunakan 2 D flip-flop.

5. Output Equation Determination

Membentuk equation yang diperlukan dari tabel yang ada. Untuk kasus ini, diperlukan equation untuk D1, D0, dan output Y.

Dari tabel di atas, anggap Y1, Y0, dan x sebagai input, lalu D1, D0, dan Y sebagai output. Kita perlu mencari persamaan untuk D1, D0, dan Y. Kita bisa menggunakan K-Maps untuk mendapatkan persamaan boolean:

Namun, jika variabelnya terlalu banyak, akan susah menggunakan K-Maps. Selain K-Maps, kita juga bisa mendapatkan persamaan dengan menganalisis state table.

- a. Perhatikan D1. D1 akan bernilai 1 jika Y1 = 1, X = 1 atau jika Y1 = 0, X= 1. Jadi **D1 = Y1 X + Y0 X**
- b. Perhatikan D0. D0 akan bernilai 1 jika Y1 = 0, Y0 = 0, X=1. Jadi **D0=Y1' Y0' X**
- c. Perhatikan Y. Y akan bernilai 1 jika Y1 = 1, X = 0. Jadi Y= Y1 X'

6. Technology Mapping

Membuat sirkuit di Logisim Evolution.

Sequential Circuit langsung

Sequential circuit dengan memanfaatkan combinational circuit

Combinational circuit
 Input dan output dari sirkuit ini berdasarkan persamaan yang didapat
 pada langkah 5 yaitu Output Equation Determination

- Sequential circuit

Sequential Circuit Project 1

(100 Poin)

Rilis - 01/11/2023 Revisi 1 - 02/11/2023

Menambahkan contoh sirkuit

Pak Esde baru saja mendapat pesan rahasia dalam bentuk serangkaian string biner dari Sir Idees. Pak Esde diberi instruksi untuk mencari tiap substring berukuran 3 bit yang "naik-turun". Bantulah Pak Esde dengan membuat sebuah mesin untuk mendeteksi pola yang diinginkan.

Pada lab kali ini kalian perlu membuat "101" dan "010" recognizer yang mengeluarkan output 1 jika mendeteksi pola tersebut. **Buatlah sirkuit dengan memanfaatkan D Flip-flop**. Recognizer bersifat overlapping sehingga "0010100" akan menghasilkan output 1 sebanyak 3 kali, yaitu

- 0010100
- 0010100
- 0010100

dan "00011001" tidak mengeluarkan output 1 sama sekali.

Petunjuk pengerjaan:

- 1. Buatlah state diagram dengan model Moore
- 2. Buatlah state table dengan menggunakan binary counting order assignment
 - Hint: PPT Chapter 4 Sequential Circuits hal. 74
- 3. Buatlah tabel input determination
 - Hint: Akan ada antara 5 sampai 8 state, sehingga dibutuhkan 3 bit untuk present state (Y2, Y1, Y0) dan 3 bit untuk next state (D2, D1, D0) dengan,

```
    i. D2 = Y2(t + 1)
    ii. D1 = Y1(t + 1)
    iii. D0 = Y0(t + 1)
```

- 4. Carilah formula untuk tiap outputnya
- 5. Buatlah rangkaian combinational berdasarkan formula tersebut

Nama Rangkaian : Combinational
Input : Y2, Y1, Y0, X
Output : D2, D1, D0, Y

#PSDisFun

6. Buatlah rangkaian sequence recognizer dengan memanfaatkan rangkaian combinational

• Nama Rangkaian : Sequential

Input : XOutput : Y

Nomor 1-4 dapat dikerjakan melalui Word, Excel, PPT, atau tulis tangan lalu dikumpulkan dalam bentuk PDF. Nomor 5 dan 6 dikerjakan melalui Logisim.

Perhatikan bahwa plagiarisme adalah pelanggaran serius dengan sanksi nilai 0.