INTRO TO DATA SCIENCE LECTURE 2: MACHINE LEARNING

AGENDA

- I. WHAT IS MACHINE LEARNING?
- II. MACHINE LEARNING ALGORITHMS
- III. PYTHON TOOLS FOR ML
- IV. LAB: PRACTICE

INTRO TO DATA SCIENCE

I. WHAT IS MACHINE LEARNING?

WHAT IS MACHINE LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

source: http://en.wikipedia.org/wiki/Machine_learning

WHAT IS MACHINE LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."

- "Field of study that gives computers the ability to learn without being explicitly programmed" ~Arthur Samuel
- "Improve on task, **T**, with respect to performance metric, **P**, based on experience, **E**" ~*Tom Mitchell*

QUESTION

WHAT IS MACHINE LEARNING USED FOR?

WHAT IS MACHINE LEARNING USED FOR?

Prediction

Pattern Recognition

Search Engines

Diagnostics

Bioinformatics

Machine Translation

Summarization

MACHINE LEARNING STRENGTHS

- finding patterns in large data sets
- scaling out decision making that is time-consuming or repetitive for humans

MACHINE LEARNING WEAKNESSES

- algorithms vary in ability to generalize over patterns
- possibility of over-generalizing
- limited by available data

INTRO TO DATA SCIENCE

II. MACHINE LEARNING ALGORITHMS

Types of machine learning algorithms

1. supervised

2. unsupervised

TYPES OF MACHINE LEARNING ALGORITHMS

- 1. supervised
 - > making predictions
- 2. unsupervised

Types of machine learning algorithms

- 1. supervised
 - > making predictions
- 2. unsupervised
 - > extracting structure

SUPERVISED LEARNING

- Outcome measurement Y, (also called dependent variable, response, target)
- Vector of p predictor measurements X (also called inputs, regressors, covariates, features, independent variables)
- In *regression*, Y is quantitative (e.g. price, temperature)
- In classification, Y has values in a finite, unordered set (survived/died, cancer class of tissue sample, category of document)

SUPERVISED LEARNING

On the basis of training data $(x_1, y_1),...,(x_N, y_N)$ we would like to:

- accurately predict unseen test cases
- understand which inputs affect the outcome, and how
- asses the quality of our predictions and inferences

UNSUPERVISED LEARNING

- No outcome variable, just a set of predictors (features) measured on a set of samples
- objective is less clear-- find features/groups of samples that behave similarly, find linear combinations of features with the most variation
- difficult to know how well you are doing
- can be useful as a pre-processing step for supervised learning

spam filtering

- spam filtering
- character recognition

- spam filtering
- character recognition
- document clustering

- spam filtering
- character recognition
- document clustering
- fraud detection

- spam filtering
- character recognition
- document clustering
- fraud detection
- dimensionality reduction

INTRO TO DATA SCIENCE

III. PYTHON TOOLS IV. LAB PRACTICE