NOM:

INTERRO DE COURS – SEMAINE 28

Exercice 1 – Soit *f* la fonction définie par $f(x) = \ln(x^2 - 7x + 12)$.

1. Déterminer l'ensemble de définition de la fonction f.

Solution : La fonction f est définie lorsque $x^2 - 7x + 12 > 0$.

Je résous l'inéquation $x^2 - 7x + 12 > 0$.

Le discriminant vaut $\Delta = (-7)^2 - 4 \times 1 \times 12 = 49 - 48 = 1 = 1^2 > 0$.

Il y a donc deux racines

$$x_1 = \frac{7-1}{2} = 3$$
 et $x_2 = \frac{7+1}{2} = 4$.

J'en déduis le tableau de signe suivant :

x	$-\infty$		3		4		+∞
$x^2 - 7x + 12$		+	0	-	0	+	

Et donc la fonction f est définie sur $]-\infty,3[\cup]4,+\infty[$.

2. Calculer les limites de f aux bornes de son ensemble de définition.

Solution : Je dois calculer les limites de f en $-\infty$, 3^- , 4^+ et $+\infty$.

$$\lim_{x \to -\infty} x^2 - 7x + 12 = \lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} \ln(X) = +\infty$$
Par composition,
$$\lim_{x \to -\infty} \ln(x^2 - 7x + 12) = +\infty.$$

$$\lim_{x \to 3^-} x^2 - 7x + 12 = 0^+$$

$$\lim_{x \to 0^+} \ln(X) = -\infty$$
Par composition,
$$\lim_{x \to 2^-} \ln(x^2 - 7x + 12) = -\infty.$$

$$\lim_{x \to 4^+} x^2 - 7x + 12 = 0^+$$

$$\lim_{x \to 4^+} \ln(X) = -\infty$$
Par composition,
$$\lim_{x \to 3^+} \ln(x^2 - 7x + 12) = -\infty.$$

$$\lim_{x \to +\infty} x^2 - 7x + 12 = \lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} \ln(X) = +\infty$$
Par composition,
$$\lim_{x \to 3^+} \ln(x^2 - 7x + 12) = -\infty.$$

$$\lim_{x \to +\infty} \ln(X) = +\infty$$
Par composition,
$$\lim_{x \to +\infty} \ln(x^2 - 7x + 12) = +\infty.$$

3. Étudier les variations de la fonction f.

Solution : Pour étudier les variations de la fonction f, il faut connaître la dérivée f' puis étudier son signe. La fonction f est de la forme $f = \ln(u)$ avec $u(x) = x^2 - 7x + 12$. Alors u'(x) = 2x - 7 et donc

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{2x - 7}{x^2 - 7x + 12}.$$

Je connais déjà le signe de $x^2 - 7x + 12$, positif sur tout l'ensemble de définition. J'étudie maintenant le signe de 2x - 7: $2x - 7 \ge 0 \iff 2x \ge 7 \iff x \ge \frac{7}{2}$. J'en déduis alors le tableau de signe de f'(x) et le tableau de variation de f:

x	$-\infty$	3		$\frac{7}{2}$		4		+∞
2x-7	_		_	0	+		+	
$x^2 - 7x + 12$	+	0	_		_	0	+	
f'(x)	_						+	
f	+∞					-0	0	+∞

4. Tracer l'allure de la courbe de la fonction f.

