Unit 2

LOS 1. Gaussian elimination

- ullet form: Ax=b where A is an m imes n matrix, x is a m column vector and ${\bf b}$ is a m column vector
- augmented matrix: $[A \mid b]$
- steps for Gaussian elimination
 - choose a pivot (any element in the matrix): for example the underlined positions in the below matrix are pivots

$$\begin{pmatrix} \frac{1}{5} & 2 & 3 & 4 \\ 5 & \underline{6} & 7 & 8 \\ 6 & 7 & \underline{8} & 9 \end{pmatrix}$$

- \circ carry out row operations i.e. R1-R2 such that the elements in the same column that are below the pivot becomes 0
- \circ repeat for a pivot on a different column until the A part of the augmented matrix becomes an upper triangular matrix
- back substitution

LOS 2. Row reduced row echelon form (RREF)

- steps:
 - o after getting the upper triangular matrix, carry out further row operations such that in the pivot columns, the other elements other than the pivot are zero
 - o divide the rows such that all pivots take the value of 1
 - o pivot columns: columns containing pivot
 - o non-pivot columns: columns not containing pivot

LOS 3. Computing inverses

• inverses are a combination of Gaussian elimination problems

$$\Delta \Delta^{-1} - I$$

 $Aa_i^{-1}=e_i$ where a_i is the i-th column of A^{-1} and e_i is the i-th column of I

• form:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$AugA = A = \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0 \\ 7 & 8 & 9 & 0 & 0 & 1 \end{pmatrix}$$

• Solve augmented matrix using RREF or Gaussian elimination

LOS 4. Elementary matrices

- identity matrix with one of the zeros replaced by a number
- ullet Gaussian elimination is equivalent to multiplying A by elementary matrices
- ullet $M_3M_2M_1A=U$ where $U\in {
 m upper}$ triangular matrix (the final result of Gaussian elimination)

LOS 5. LU Decomposition

- $\bullet \quad A = LU \text{ where } L = M_1^{-1} M_2^{-1} M_3^{-1}$
- $\bullet \ \ {\rm Solving} \ (LU)x = b$
 - \circ Let y=Ux
 - \circ Solve Ly=b for y
 - $\circ \ \ \operatorname{Solve} Ux = y \operatorname{for} x$