Uvod u Arduino programiranje Internet stvari 2023. - I termin

Nenad Petrović

Univerzitet u Nišu, Elektronski fakultet

<u>nenad.petrovic@elfak.ni.ac.rs</u>, kancelarija 323

Materijali

- CS Moodle stranica kursa IoT prezentacije
 - o https://cs.elfak.ni.ac.rs/nastava/course/view.php?id=149
- Video materijali
 - o https://www.youtube.com/@penenadpi.science5630
- GitHub repozitorijum sa primerima
 - https://github.com/penenadpi/iot_course_2023

Uvod

- Arduino je pristupačna razvojna ploča zasnovana na open-source hardveru i softveru
 - o Bilo ko može da proizvodi Arduino ploče i sofzver za njih
- Inicijalni razvoj Ivrea (Italija) 2003. godine kao master teza, 2005. ozvaničen projekat, a 2008. osnovana kompanija Arduino LLC
 - o Inicijalno za ATMega 128 mikrokontrolere
 - o Od 2005. podrška za jeftinije Atmel 8-bit AVR mikrokontrolere
 - o Od 2012. i podrška za 32-bit ARM cortex
 - Veliki broj modela 2016 godine čak 17 različitih proizvoda
- Primarno namenjen edukaciji i razvoju prototipova
- Arduino Programming Languge
 - o Zasnovan na C-u
- Interakcija sa spoljašnjim svetom preko ulaza i izlaza (portova)
 - Reaguje na događaje iz spoljašnje sredine čita vrednosti sa senzora (temperatura, blizina, vlažnost...) i dugmića, a upravlja različitim aktuatorima (svetla, motori...)

Ključne prednosti Arduino platforme

- Ópen-source dizajn
- Lako rešavanje problema i odlična podrške zajednice
- Jednostavan USB interfejs
 - o Ploča sa čipom se dirketno može povezati na računar preko USB porta
 - Vidljiv od strane računara kao virtuelni serijski port
 - o Omogućena komunikacija kao bilo koji drugi serijski uređaj
- Udobno rukovanje napajanjem zahvaljujući ugrađenoj automatskoj regulaciji napona
 - o Može se povezati spoljašnji izvor napajanja do 12v, a regulacija će biti izvršena na 5v i 3.3v
 - o Direktno napajnje uz pomoć USB porta
- Pristupačna cena
 - Oficiejlni proizvod od oko 20e pa naviše
 - o Sam mikrokontroler ATmega328 se može naći online u prodaji za samo 3e
- Širok skup hardverskih mogućnosti
 - o Tajmeri, PWM piovi, eksterni i interni prekidi, više modova spavanja
- Laka proširivost
 - o Dodaci u vidu "shield"-ova
- Dovoljno brz za većinu primena
 - 16MHz u najrasprostranjenijim varijantama

Primene

- Ogromna zajednica korisnika
 - Oko 10 milina prodatih Arduino Uno uređaja
- Interesantna rešenja
 - o Arduboy
 - Ručna konzola za igre
 - Arduinome
 - MIDI kontroler
 - Ardupilot
 - Platforma za dronove
 - C-STEM Studio
 - Platforma za praktičnu integrisanu nastavu iz računarstva, inženjerstva i matermatike sa robotikom
 - Naučni radovi
 - Evidencija raznih podataka COVID-19 provere, rashladni i termički uređaji
 - o OBDuino
 - Pokretni dijagnostički interfejs za moderne automobile
 - o OpenEVSE
 - Open-source punjač za elekrična vozila

Pregled modela i varijanti

1 168164 Illoacia i varijariti			
Model	Opis	Ključne karakteristike	
Arduino Uno (R3)	Najrasprostranjenija varijanta – malih dimenzija i niske cene	 USB konekcija + eksterno napajanje 16MHz 8-bit ATmega328P mikrokontroler 32 KB programske memroije 14 digitalnih ulaza/izlaza (6 od njih za PWM) 6 analognih ulaza 	
Arduino Mega 2560	Standardnih dimenzija, obično se misli na ovaj uređaj kada se kaže Arduino, veća memorija i broj pinova od minijaturnih varijatni	 - ATMega 2560 mikrokontroler - 256 KB memorije - 54 ulaza/izlaza (15 od njih za PWM) - 16 analognih pinova 	
Arduino Nano	Još manji od Uno, namenjen uređajima minijaturnih veličina	 Atmega 328 mikrokontroler 22 digitalna u/i (6 za PWM) 8 analognih ulaza 	
Arduino Yun	Mogućnost pokretanja Linux-a pored Arduino sistema, a i komunikacija modula	- ATMega32U4 čip uparen sa Atheros AR9331 mikroprocesorom- WiFi konekcija	
LilyPad	Specijalizovana varijanta namenjena primeni u e-tekstilnim proizvodima i kao dodatak odeći, mogućnost ušivanja	 ATmega32u4 9 digitalnih pinova (4 za PWM) 8 MHz resonator micro USB konekcija 3.7V LiPo baterijad. 	
Zastarele varijante	Mega ADK – namenjen Android uređajima, NG, Diecimila, Duemilanove		
Arduino Due	Sličan kao Mega, ali 32-bit	32bit ARM Cortex-M3, 84Mhz. 512KB	

programske memorija

Različiti Arduino modeli

Arduino Mega 2560

- Ploča standardnih dimenzija, veći broj pinova od minijaturnih (Uno, Nano)
- Kompatibilian sa shieldovima legacy verzija (Duemilanove, Diecimila)

1	
Mikrokontroler	ATmega2560
Operativni napon	5V
Ulazni (preporučeni) napon	7-12V
Limit napona	6-20V
Digitalni U/I pinovi	54 (od kojih 15 imaju PWM izlaz)
Analogni ulazi	16
DC po I/O pinu	20 mA
DC za 3.3V Pin	50 mA
Flash programska memorija	256 KB od kojih je 8 KB rezervisano bootloader
SRAM	8 KB
EEPROM	4 KB
Takt	16 MHz
Ugrađeni LED	13
Dužina	101.52 mm
Širina	53.3 mm
Masa	37 g
Zvanična cena	42 eur

Digitalni interfejs

- Digitalni pinovi
 - o Imaju dva moguća stanja: HIGH/LOW, 1/0 ili 5V/0V

Ulazni pinovi

- Ulaz se obično koristi za osluškivanje prisustva napona kada se prekidač otvori ili zatvori
- Digitlalni ulazi kao osnvova za nebrojivo mnogo digitalnih komunikacionih protokola
- Binarni signal se može kreirati kao kombinacija HIGH ili LOW impulsa, što se može primeniti za čitanje digitalnih senzora, poput ultrazvučnog

Izlazni pinovi

- Primena za paljenje i gašenje uređaja (poput treptanja LED dioda)
- Omogućava digitalnu komunikaciju paljenjem/gašenjem pinova
- Prepoznat binarni signal koji se koristi u komunikacionim protokolima sa drugim uređajima

Analogni interfejs

- Analogni ulaz
 - o Osim digitalnih, Arduino poseduje i analogne ulazne pinove
 - Ovi pinovi primaju analogni signal i vrše 10-bitnu analognodigitalnu konverziju (ADC) sa ciljem da ga pretvore u broj između 0 i 1023 (koraci od po 4.9mV)
 - o Ovakav tip ulaza je pogodan za čitanje rezistivnih senzora
 - Rezistivni senzori funkcionišu tako što pružaju otpornost u kolu
 - Analogni ulazi se mogu koristiti za čitanje promenljivog signala napona u rasponu od 0 do 5V
 - Koristi se kod interakciju sa različitim analognim uređajima

Analogni izlaz

- Jedna od specijalnih funkcionalnosti Arduina jeste modulacija širine (trajanja) impulsa – Pulse Width Modulation (PWM)
- PWM predstavlja način kako Arduino zapravo može generisati izlazni signal koji nalikuje na analogni
- PWM radi tako što se naizmenično smenjuju HIGH i LOW (visok i nizan naponski nivo) sa ciljem simuacije analognog signala
 - Recimo ako 1 ms upaljen LED, a 9 ms ugašen, onda će delovati kao da je jačina svetlosti 1/10 (isto i za napon važi)
- PWM je jedna od ključnih tehnika u pozadini mnogih primena, kao što su generisanje zvuka, kontrola jačine osvetljenja i brzina motora

Kostur Arduino programa

- Arduino program se naziva i sketch (nacrt)
- Obično ima 5 delova
 - o Zaglavlje
 - Definicija globalih promenljivih
 - Obično inicijalizacija pomoćnih promenljivih
 - Dodeljivanje konstanti različitim Arduino pinovima
 - Setup rutina
 - Postavljamo inicijalne uslove promenljivih
 - Inicijalizacioni kod
 - Želimo da se izvrši samo jednom
 - o Loop rutina
 - Glavna rutina sketch-a
 - Ne samo što je ovo glavni program, već se i ponavlja neprestano dok se skeč izvršava
 - o Pomoćne funkcije
 - Korisnički efinisane
 - Mogu se izvršavati isključivo unutar setup i loop ruitna

```
// globalne promenljive, konstante
const int LEDPin = 9;
void setup()
 // inicijalizacija, jednom se izvršava
 f1();
void loop() {
 // glavni program, ponavlja se
 fN();
//funkcije
void f1() {
void fN() {
```

Karakteristike Arduino programa

- Samo dva dela programa su obavezna
 - o setup i loop rutine
- Kod se piše u Arduino jeziku koji liči na C
- Skoro sve naredbe se završavaju sa ;
 - Uslovne/grananja su izuzetak
- Promenljive moraju biti definisane (navedene u kodu) i imati eksplicitno naznačen tip pre nego što mogu da se koriste

Tipovi podataka

- boolean (8 bit)
 - o jednostvno true/false
- byte (8 bit)
 - o neoznačeni broj u opsegu 0-255
- char (8 bit)
 - o označeni broj od -128 do 127
- unsigned char (8 bit)
 - o isto kao bajt, preferira se upotreba 'byte'
- word (16 bit)
 - o neoznačeni broj 0-65535
- unsigned int (16 bit)
 - o isto kao 'word', preferirano koristiti 'word'
- int (16 bit)
 - o označeni brojevi od -32768 to 32767, najčešće se koriste za globalne pormenljive opšte namene
- unsigned long (32 bit)
 - o Neoznačeni broj u opsegu 0-4,294,967,295.
 - Najčešće se koristi za čuvanje rezultata koji vraća millis() funkcija broj milisekundi koliko se kod izvršava
- long (32 bit)
 - o označenu broj od -2,147,483,648 do 2,147,483,647
- float (32 bit)
 - o označeni broj od -3.4028235E38 do 3.4028235E38
 - o nije direktno podržan od Arduina, zahtevno za kompajler
 - o ne preporučuje se upotreba

Korisne funkcije – rad sa vremenom

- Unošenje čekanja/kašnjenja
 - delay(ms:int)
 - Čekanje pre nego što se izvrši sledeća linija koda
 - Argument ceo broj koji predstavlja milisekunde
- Pribavljanje trenutnog vremena
 - o milis() u milisekundama
 - o micros() u mikrosekundama
 - Meri koliko je prošlo od pokretanja ploče
 - o Korisno za merenje vremena izvršenja, koliko vremena prošlo

Rad sa digitalnim pinovima

- Upis vrednosti
 - o digitalWrite(pin, value)
 - pin redni broj digitalnog pina (0...broj-1)
 - Value HIGH ili LOW
- Čitanje vrednosti
 - o digitalRead(pin)
 - pin redni broj pina koji čitamo
 - Povratna vrednost: HIGH ili LOW
- Postavljanje režima
 - o pinMode(pin, mode)
 - Pin broj pina čiji smer postavljamo
 - Mode
 - o OUTPUT
 - izlaz
 - INPUT
 - ulaz
 - o INPUT_PULLUP
 - Ulaz sa omogućenim pullup provodinikom

Rad sa analognim pinovima – čitanje vrednosti

- Čitanje vrednosti
 - analogRead(pin)
 - pin redni broj pina koji čitamo
 - o A0-A5 na većini ploča
 - o A0-A7 na Nano
 - A0-A15 na Mega 2560
 - Povratna vrednost je celobrojnog tipa
 - o Zavisi od rezolucije ADC
 - o 0-1023 za 10bit, 0-4095 za 12bit

Rad sa analognim pinovima – upis vrednosti

analogWrite(pin, value)

- o pin: pin na koji se upisuje
- value: vreme ciklusa vrednost između 0 (uvek ugašen) i 255 (uvek upaljen)
- Upisuje analognu vrednost (PWM talas) na pin
- Recimo, može se primeniti za promenu jačina osvetljenja LED ili varijcije brzine motora
- Po pozviu analogWrite(), kreira se kontinulani kvadratni talas sa specificiranim ciklusom, sve dok se pozove neka od operacije za isti pin: analogWrite(), digitalRead() ili digitalWrite()
- Pregled PWM pinova po modelima
 - Kao dodatak, MIKR i Zero za razliku od ostalih imaju pravi analogni izlaz kada se analogWrite koristi za DACO() pin
 - Dodatno, Arduino Due ima pravi analogni
 izlaz za pin A0

PLOČA	PWM PINOVI	PWM FREKVENCIJA
Uno, Nano, Mini	3, 5, 6, 9, 10, 11	490 Hz (pinovi 5 i 6: 980 Hz)
Mega	2-13, 44-46	490 Hz (pinovi 4 i 13: 980 Hz)
Leonardo, Micro, Yun	3, 5, 6, 9, 10, 11, 13	490 Hz (pinovi 3 i 11: 980 Hz)
Uno WiFi Rev.2, Nano Every	3, 5, 6, 9, 10	976Hz
MKR boards *	0 - 8, 10, A3 (18), A4 (19)	732Hz
MKR1000 WiFi *	0 - 8, 10, 11, A3 (18), A4 (19)	732Hz
Zero *	3 - 13, A0 (14), A1 (15)	732Hz
Nano 33 loT *	2, 3, 5, 6, 9 - 12, A2, A3, A5	732Hz
Nano 33 BLE/BLE Sense	1 - 13, A0 - A7	500Hz
Due **	2-13	1000Hz
101	3, 5, 6, 9	Pinovi 3 i 9: 490 Hz, Pinovi 5 i 6: 980 Hz

Primer za analogni upis

- Postavljanje vrednosti jačine osvetljenja LED diode proporcionalno potenciometru
- Za ovaj slučaj nema potrebe podešavati smer pinova uz pomoć pinMode() ako je GND pin povezan
 - o annalogWrite već u sebi zove podešavanje smera kao izlaz
 - Ako GND nije povezan, onda mora da se ručno postavi smer kao izlazni u setup

```
int ledPin = 9; // LED spojen na digitalni pin 9
int analogPin = 3; // potenciometar na pinu 3
int val = 0; // promenljiva za čuvanje pročitane vrednosti

void setup() {
   pinMode(ledPin, OUTPUT); // postavi pin kao izlaz
}

void loop() {
   val = analogRead(analogPin); // čitanje vrednosti pina potenciometra
   analogWrite(ledPin, val / 4); // delimo sa 4, jer analogRead vraća 0-1023, a analogWrite očekuje 0-255
}
```

Instalacija AVR kompajlera za Proteus

- U editor koda
 - System->Compilers Configuration
- Pronaci Arduino AVR
 - Preuzeti i instalirati

Mega 2560 projekat u Proteusu

- Prilikom kreiranja novog projekta odabrati
 - From Development Board
 - Selektovati Arduino Mega 2560
- Odabrati Create PCB layout fromm...
 - Arduino MEGA 2560 rev3
- Kreirati Firmware project
 - o Family: Mega
 - Controller: Arduino Mega
 - Compiler: Arduino AVR (Proteus)

Zadatak 1

- Napisati Arduino program za ploču Mega 2560 koji svake sekunde naizmenično gasi i pali svake sekunde žutu LED diodu poezanu preko pina 13.
 - Setup
 - Pin 13 kao izlazni
 - o Loop
 - Gasimo LED na pinu 13
 - Pauza 1s
 - Palimo LED na pinu 13
 - Pauza 1s

```
void setup()
{ // put your setup code here, to run once:
   pinMode(13, OUTPUT);
}

void loop()
{ // put your main code here, to run repeatedly:
        digitalWrite(13, LOW);
        delay(1000);
        digitalWrite(13, HIGH);
        delay(1000);
}
```

