

Hidden Markov Models (HMM)

Kursfolien

Karin Haenelt

Themen

- Definitionen
 - Stochastischer Prozess
 - Markow Kette
 - (Visible) Markov Model
 - Hidden Markov Model
- Aufgaben, die mit HMMs bearbeitet werden
- Algorithmen
 - Viterbi-Algorithmus
- Formen vom Hidden Markov Models
 - state emission model / arc emission model
 - ergodic model

Hidden Markov Model

 Hidden Markov Models (HMM) sind stochastische Modelle, die auf Markow-Ketten beruhen

Stochastischer Prozess

Definition 1

Ein stochstischer Prozess oder Zufallsprozess ist eine Folge von elementaren Zufallsereignissen

$$X_1, X_2,..., X_i \in \Omega, i = 1,2,...$$

Definition 2

Die möglichen Zufallswerte in einem stochastischen Prozess heißen Zustände des Prozesses.

Man sagt, dass sich der Prozess zum Zeitpunkt t in Zustand X_t befindet.

Stochastischer Prozess

Beispiel

- Ein Textgenerator hat ein Lexikon mit drei Wörtern
- von denen an jeder Position jedes auftreten kann $\Omega = \{geschickt, werden, wir\}$
- wir beobachten an jeder Position, welches Wort generiert wurde
- Sei
 - O X₁ das Wort zum ersten Beobachtungszeitpunkt
 - X₂ das Wort zum zweiten Beobachtungszeitpunkt, usw.
- Dann ist die Folge der Wörter ein stochastischer Prozess mit diskreter Zufallsvariable und diskretem Zeitparameter

Stochastischer Prozess

- Für die vollständige Beschreibung eines Zufallsprozesses mit diskretem Zeitparameter benötigt man
 - 1. die Anfangswahrscheinlichkeit: die für jeden Zustand angibt, mit welcher Wahrscheinlichkeit er als Zustand X_1 beobachtet werden kann (d.h. den Startzustand bildet) $\pi_i = P(X_1 = s_i)$
 - 2. die Übergangswahrscheinlichkeit: die für jeden Zustand angibt, mit welcher Wahrscheinlichkeit er in einer Zustandsfolge auftritt:

$$P(X_{t+1} = x_{t+1} | X_1 = x_1, X_2 = x_2,...X_t = x_t)$$

Markow-Kette

Definition 3

Eine Markow-Kette ist ein spezieller stochastischer Prozess,

bei dem zu jedem Zeitpunkt die Wahrscheinlichkeiten aller zukünftigen Zustände nur vom momentanen Zustand abhängen

(= Markow-Eigenschaft)

d.h. es gilt:

$$P(X_{t+1} = x_{t+1} | X_1 = x_1, X_2 = x_2,...X_t = x_t) = P(X_{t+1} = x_{t+1} | X_t = x_t)$$

Brants, 1999: 30

endliche Markow-Kette

Definition 4

Für eine endliche Markow-Kette gibt es endlich viele Zustände, und die Kette muss sich zu jedem Zeitpunkt in einem dieser endlich vielen Zustände befinden

Brants, 1999: 31

Prozess "ohne Gedächtnis" (Def 3) mit endlich vielen Zuständen (Def 4), entspricht den Eigenschaften eines endlichen Automaten

Markow-Kette: Matrix-Darstellung

kann beschrieben werden durch die Angaben

Stochastische Übergangsmatrix A

$$a_{ij} = P(X_{t+1} = s_j \mid X_t = s_i)$$

$$\forall_{i, j} \quad a_{ij} \ge 0$$

$$\forall_{i} \quad \sum_{i=1}^{N} a_{i, j} = 1$$

$X_t = s_i$	$X_{t+1} = s_j$							
	geschickt	werden	wir					
geschickt	.3	.4	.3					
werden	.4	.2	.4					
wir	.3	.4	.3					

Anfangswahrscheinlichkeiten ∏

$$\pi_i = P(X_1 = s_i)$$

$$\sum_{i=1}^N \pi_i = 1$$

X t	π
geschickt	.2
werden	.3
wir	.5

Markow-Kette: Graph-Darstellung

kann beschrieben werden durch einen Zustandsübergangsgraphen

Markow-Kette: Berechnung einer Sequenz-Wahrscheinlichkeit

Wahrscheinlichkeit der Sequenz der Zustände X₁ ... X_T

$$P(X_1,...,X_T)$$

$$= P(X_1)P(X_2 | X_1)P(X_3 | X_2, X_1)...P(X_T | X_1,..., X_{T-1})$$

für eine Markow-Kette gilt:

$$= P(X_1)P(X_2 | X_1)P(X_3 | X_2)...P(X_T | X_{T-1})$$

$$= \pi_{X_1} \prod_{t=1}^{I-1} a_{X_t X_{t+1}}$$

Markow-Kette: Berechnungsbeispiel

Wahrscheinlichkeit der Sequenz der Zustände $X_1 \dots X_T$ $P(X_1 = wir, X_2 = werden, X_3 = geschickt)$

$$= P(X_1 = wir) \cdot$$

$$P(X_2 = werden \mid X_1 = wir) \cdot$$

$$P(X_3 = geschickt \mid X_2 = werden)$$

$$= (.5 \times .4 \times .4) = 0.08$$

X t	π
geschickt	.2
werden	.3
wir	.5

$X_t = s_i$	$X_{t+1} = s_j$		
	geschickt	werden	wir
geschickt	.3	.4	.3
werden	.4	.2	.4
wir	.3	.4	.3

Markow-Modell (MM)

- Ein Markow-Modell ordnet jedem Zustand (andere Variante: jedem Zustandsübergang) eine Ausgabe zu, die ausschließlich vom aktuellen Zustand (bzw. Zustandsübergang) abhängig ist
- Ausgabe: Sequenz von Ereignissen, die die Beobachtungen in der Beobachtungssequenz repräsentieren

Zur Unterscheidung auch Visible Markov Model (VMM) genannt

Hidden Markov Modell (HMM): Beschreibung

- Ein Hidden Markov Model ist ein Markow-Modell
 - bei dem nur die Sequenz der Ausgaben beobachtbar ist,
 - die Sequenz der Zustände verborgen bleibt
- Es kann mehrere Zustandssequenzen geben, die dieselbe Ausgabe erzeugen

Hidden Markov Modell: Beispiel

- in einem Text lassen sich nur die Ausgaben (= produzierte Wörter) beobachten (visible)
- die Sequenz von Zuständen (= Wortarten), die die Wörter ausgeben, (Satzmuster) lässt sich nicht beobachten (hidden)
- mehrere Sequenzen können dieselbe Ausgabe erzeugen:

Hidden Markov Model: Definition

Ein HMM wird spezifiziert durch ein Fünf-Tupel (S,K, Π, A, B)									
$S = \{S_1,, S_N\}$	Menge der Zustände								
$K = \{k_1,, k_M\}$	Menge der Ausgabesymbole								
$\Pi = \{\pi_i\}$	Wahrscheinlichkeiten der Startzustände								
	$\pi_i = P(X_1 = S_i)$		$\sum_{i=1}^{N} \pi_i = 1$						
$A = \{a_{ij}\}$	Wahrscheinlichkeiten der Zusta	Wahrscheinlichkeiten der Zustandsübergänge							
	$a_{ij} = P(X_{t+1} = S_j \mid X_t = S_i)$	$1 \le i,$ $j \le N$	$\sum_{j=1}^{N} a_{ij} = 1$						
$\mathbf{B} = \{\mathbf{b}_{\mathbf{j}}(\mathbf{k})\}$	Wahrscheinlichkeiten der Symb	olemissione	n in Zustand j						
	$b_j(k) = P(K_k \text{ in } t \mid X_t = S_j)$	$1 \le j \le N$ $1 \le k \le M$	$\sum_{k=1}^{M} b_j(k) = 1$						

Rabiner, 1989, S. 260/261

Ein Hidden Markov Model

	Überç	gangsma	atrix			Emissionsmatrix				Startwahr scheinlich keit	
X_{t}	X _{t+1}					O _t				π	
	Adje	AuxV	KopV	Nomn	Part	geschickt	werden	wir			
Adje	.2	.1	.1	.4	.2	.2	0	0	.8	.3	
AuxV	.2	.3	.1	.2	.2	0	.3	0	.7	.2	
KopV	.2	.2	.1	.4	.1	0	.5	0	.5	.1	
Nomn	.1	.4	.3	.1	.1	0	0	.2	.8	.3	
Part	.3	.1	.2	.1	.3	.4	0	0	.6	.1	

Hidden Markov Model: Gewinnung der Daten – Übersicht

- Annotation eines Corpus
- Auszählung der Sequenzen
- Umrechnung der Häufigkeiten in prozentuale Anteile

Hidden Markov Model: Gewinnung der Daten (1)

- Annotation eines Corpus
- Auszählung der Sequenzen
- Umrechnung der Häufigkeiten in prozentuale Anteile

```
wir werden geschickt vom König . nomn auxv part .. .. \Omega

Wir werden geschickt durch Übung . nomn kopv adje .. \Omega
```

Hidden Markov Model: Gewinnung der Daten (2)

- Annotation eines Corpus
- Auszählung der Sequenzen
- Umrechnung der Häufigkeiten in prozentuale Anteile

	Adje	AuxV	KopV	Nomn	Part	Ω	geschickt	werden	wir	•
Adje	-	-	-	-	-	1	1	-	-	-
AuxV	-	-	-	-	1	-	-	1	-	-
KopV	1	-	-	-	-	-	1	-	-	-
Nomn	-	1	1	-	-	-	-	-	2	-
Part	-	-	-	-	-	1	-	-	-	-
Ω	-	-		1	-	-	-	-	-	2

Hidden Markov Model: Gewinnung der Daten (3)

- Annotation eines Corpus
- Auszählung der Sequenzen
- Umrechnung der Häufigkeiten in prozentuale Anteile

	Adje	AuxV	KopV	Nomn	Part	Ω	geschickt	werden	wir	-
Adje	-	-	-	-	-	1.0	1.0	-	-	-
AuxV	-	-	-	-	1.0	-	-	1.0	-	-
KopV	1.0	-	-	-	-	-	1.0	-	-	-
Nomn	-	0.5	0.5	-	-	-	-	-	1.0	-
Part	-	-	-	-	-	1.0	-	-	-	-
Ω	-	-		1.0	-	-	-	-	-	1.0

Drei grundlegende Aufgaben, die mit HMMs bearbeitet werden

- 1. Dekodierung: Wahrscheinlichkeit einer Beobachtung finden
 - brute force
 - Forward-Algorithmus / Backward-Algorithmus
- 2. Beste Pfad-Sequenz finden
 - brute force
 - Viterbi-Algorithmus
- 3. Training: Aufbau des besten Modells aus Trainingsdaten

gegeben eine Sequenz von Beobachtungen

$$O = (o_1,...,o_T)$$

O=(wir,werden,geschickt)

ein Modell

$$\mu = (A, B, \Pi)$$

	Adje	AuxV	KopV	Nomn	Part	gʻschickt	werden	wir	
Adje	.2	.1	.1	.4	.2	.2	0	0	.8
AuxV	.2	.3	.1	.2	.2	0	.3	0	.7
KopV	.2	.2	.1	.4	.1	0	.5	0	.5
Nomn	.1	.4	.3	.1	.1	0	0	.2	.8
Part	.3	.1	.2	.1	.3	.4	0	0	.6

π	
.3	
.2	
.1	
.3	
.1	

gesucht

die Wahrscheinlichkeit

 $P(O | \mu)$

 $P(wir, werden, geschickt | \mu)$

Lösungsweg 1: brute force

Für alle möglichen Zustandsfolgen

- Berechnung der Wahrscheinlichkeit der Beobachtungen
- Summierung der Wahrscheinlichkeiten

$$P(O \mid \mu) = \sum_{X} P(O \mid X, \mu) P(X \mid \mu)$$

$$= \sum_{X_1...X_T} \pi_{X_1} b_{X_1O_1} \prod_{t=1}^{T-1} a_{X_tX_{t+1}} b_{X_{t+1}O_{t+1}}$$

$$\text{state transition symbol emission}$$

Lösungsweg 1: brute force: Beispiel

$$P(O \mid \mu) = \sum_{X_1...X_T} \pi_{X_1} b_{X_1O_1} \prod_{t=1}^{t-1} a_{X_tX_{t+1}} b_{X_{t+1}O_{t+1}}$$

$$P(wir, werden, geschickt \mid Adje Adje Adje, \mu) = 0.0$$

$$+ P(wir, werden, geschickt \mid Adje Adje AuxV, \mu)$$

$$+ ...$$

$$+ P(wir, werden, geschickt \mid Nomn AuxV Part, \mu) = 3 \times 2 \times 4 \times 3 \times 2 \times 4 = 0.000576$$

$$+ ...$$

$$+ P(wir, werden, geschickt \mid Nomn KopV Adje, \mu) = 3 \times 2 \times 3 \times 5 \times 2 \times 2 = 0.000360$$

$$+ ...$$

= ... =0.000936

=0.0

+ P(wir, werden, geschickt | Part Part Part, μ)

Lösungsweg 1: brute force: Effizienz

$$P(O \mid \mu) = \sum_{X_1...X_T} \pi_{X_1} b_{X_1O_1} \prod_{t=1}^{T-1} a_{X_tX_{t+1}} b_{X_{t+1}O_{t+1}}$$

Lösungsweg ist hoffnungslos ineffizient

Benötigt im allgemeinen Fall, d.h.

- Start in jedem Zustand möglich,
- Jeder Zustand kann auf jeden folgen

 $(2T - 1) \times N^{T}$ Multiplikationen

T Anzahl der Beobachtungen

Lösungsweg 2: Vorwärts- und Rückwärts-Verfahren

Forward procedure Backward procedure

Merken partieller Ergebnisse statt Wiederholter Berechnung

A2: Beste Pfadsequenz finden

gegeben eine Sequenz von Beobachtungen

$$O = (o_1,...,o_T)$$

O=(wir,werden,geschickt)

ein Modell

$$\mu = (A, B, \Pi)$$

	Adje	AuxV	KopV	Nomn	Part	gʻschickt	werden	wir	π
Adje	.2	.1	.1	.4	.2	.2	0	0	.3
AuxV	.2	.2	.2	.2	.2	0	.3	0	.2
KopV	.2	.2	.2	.3	.1	0	.5	0	.1
Nomn	.1	.4	.3	.1	.1	0	0	.2	.3
Part	.3	.1	.2	.1	.3	.4	0	0	.1

gesucht die wahrscheinlichste Pfadsequenz

 $P(wir, werden, geschickt | \mu)$

 $arg_x max P(X \mid O, \mu)$

A2: Beste Pfadsequenz finden

Lösungsweg 1: brute force:

Wie in [A1]: alle Varianten berechnen

die wahrscheinlichste auswählen

hoffnungslos ineffizient

Lösungsweg 2: beste Einzelzustände

Für jeden Zeitpunkt t

Zustand mit höchster Ausgabewahrscheinlichkeit auswählen

Zusammensetzung kann unwahrscheinliche Sequenzen ergeben

A2: Beste Pfadsequenz finden

Lösungsweg 3: Viterbi-Algorithmus

Speichert für jeden Zeitpunkt t die Wahrscheinlichkeit des wahrscheinlichsten Pfades, der zu einem Knoten führt

A3: Training der Modellparameter

gegeben eine Sequenz von Beobachtungen

 $O = (o_1, ..., o_T)$

In einem Trainingscorpus

gesucht ein Modell

 $\mu = (A, B, \Pi)$

das für die beobachteten Sequenzen im Trainingscorpus die maximalen Wahrscheinlichkeiten erzeugt

 $\arg \mu \max P(O_{Training} \mid \mu)$

A3: Training der Modellparameter

Lösung Baum-Welch oder

Forward-backward-Algorithmus

Formen von Hidden Markov Models: Emissionen

- auf den vorangehenden Folien wurde ein State Emission Model verwendet
- den allgemeinen Fall stellt ein Arc Emission Model dar
- ein State Emission Model kann in ein Arc Emission Model überführt werden, umgekehrt ist dies nicht immer möglich

 auf den folgenden Folien wird ein Arc Emission Model beschrieben

Formen von Hidden Markov Models: Emissionen

- Allgemeine Form: Arc Emission Model
 - Zur Zeit t emittiertesSymbolhängt ab von
 - Zustand zur Zeit t und
 - Zustand zur Zeit t+1

- Spezielle Form: State Emission Model
 - Zur Zeit t emittiertesSymbolhängt ab von
 - Zustand zur Zeit t

Formen von HMM: Emissionen: Beispiel

Arc Emission Model

State Emission Model

Arc Emission Model: Beispiel

- in einem Text lassen sich nur die Ausgaben (= produzierte Wörter) beobachten (visible)
- die Sequenz von Zuständen (= Wortarten), die die Wörter ausgeben, (Satzmuster) lässt sich nicht beobachten (hidden)
- mehrere Sequenzen können dieselbe Ausgabe erzeugen:

 $.3 \times .3 \times .2 \times .2 \times .3 \times .1 \times .4 = 0.0000432$

 $.3 \times .3 \times .2 \times .2 \times .5 \times .1 \times .2 = 0.000036$

Arc Emission Model:

Darstellung als Wahrscheinlichkeitsmatrix

	Übergangs	matrix								Start
X _t	X_{t+1}									
	Adje	AuxV	KopV	Nomn	Part	Punkt	π			
Adje	.2		.1	.1	.4	.1	.1	.3		
	Emissions									
	Ot									
	geschickt	werden	wir							
	.2	0	0	.8						
AuxV	.2				.3	.1	.1	.2	.1	.2
KopV	.2				.1	.1	.4	.1	.1	.1
	Emissions	Emissionsmatrix								
	Ot									
	geschickt	werden	wir							
	0.05	.5	.05	.4						
Nomn					.4	.3	.05	.1	.1	.3
Part	.3				.1	.1	.1	.3	.1	.1
Punkt	.2				.2	.1	.3	.1	.1	.1

Arc Emission Model:

Spezialfall: State Emission Model

Wenn die Emissionsverteilungen für alle Übergänge aus einem Zustand identisch sind, entspricht dies einem State Emission Modell

Arc Emission Model: Definition

Ein HMM wird spezifiziert durch ein Fünf-Tupel (S,K, Π, A, B)			
$S = \{S_1,, S_N\}$	Menge der Zustände		
$K = \{k_1,, k_M\}$	Menge der Ausgabesymbole		
$\Pi = \{\pi_i\}$	Wahrscheinlichkeiten der Startzustände		
	$\pi_i = P(X_1 = S_i)$		$\sum_{i=1}^{N} \pi_i = 1$
$A = \{a_{ij}\}$	Wahrscheinlichkeiten der Zustandsübergänge		
	$a_{ij} = P(X_{t+1} = S_j \mid X_t = S_i)$	$1 \le i,$ $j \le N$	$\sum_{j=1}^{N} a_{ij} = 1$
$\mathbf{B} = (\{b_{ijk}\})$	Wahrscheinlichkeiten der Symbolemissionen		
	$\begin{aligned} b_{ijk} &= P(K_k \text{ bei Übergang von} \\ X_t \text{ zu } X_{t+1} \mid X_t = S_j, X_{t+1} = S_j) \end{aligned}$	$1 \le j \le N$ $1 \le k \le M$	$\sum_{k=1}^{M} bijk = 1$

Lösungsweg 1: brute force

Für alle möglichen Zustandsfolgen

- Berechnung der Wahrscheinlichkeit der Beobachtungen
- Summierung der Wahrscheinlichkeiten

$$P(O \mid \mu) = \sum_{X} P(O \mid X, \mu) P(X \mid \mu)$$

$$= \sum_{X_{1...X_{t+1}}} \pi_{X_{1}} \prod_{t=1}^{T} a_{X_{t}X_{t}} b_{X_{t}X_{t+1}} b_{t} t + 1 b_{t} t$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \downarrow \uparrow \qquad \downarrow$$

Formen von Hidden Markov

Models: Verbindungen zwischen Zuständen

- ergodic model: jeder Zustand kann von jedem in einer endlichen Anzahl von Schritten erreicht werden:
- andere Arten z.B. in der Verarbeitung gesprochener Sprache verwendet

Rabiner, 1989, S. 266

Vielen Dank

Für das Aufspüren von Fehlern in früheren Versionen und Hinweise zur Verbesserung danke ich

Wiebke Petersen

Literatur

- Allen, James (1995): Natural Language Understanding. 2nd edition. Addison-Wesley Publishing Co.
- Brants, Thorsten (1999). *Statistische Methoden in der Sprachverarbeitung*. Seminarskript 15. Juni 1999
- Haenelt, Karin: Der Viterbi-Algorithmus. Eine Erläuterung der formalen Spezifikation am Beispiel des Part-of-Speech Tagging. Kursskript. 11.05.2002 http://kontext.fraunhofer.de/haenelt/kurs/folien/Viterbi-Tutor.doc
 http://kontext.fraunhofer.de/haenelt/kurs/folien/Viterbi-Tutor.htm
- Manning, Christopher D.; Schütze, Hinrich (1999): Foundations of Statistical Natural Language Processing. Cambridge, Mass., London: The MIT Press. (vgl.: http://www.sultry.arts.usyd.edu.au/fsnlp)
- Rabiner, Lawrence R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In: *Proceedings of the IEEE*, Vol. 77, No. 2, February. http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf