Open Economy IS/LM Model: Fixed Exchange Rate

Prof. Lutz Hendricks

Econ520

February 22, 2023

Exchange Rate Interventions

- ► Almost all central banks intervene in FX markets
- ▶ The mechanics: buy dollars and sell Euros (or vice versa)
- Each intervention changes the money supply.
- ► This produces a conflict: the CB has one instrument (*M*) but 3 targets
 - stable inflation
 - stable output
 - stable exchange rate

Exchange Rate Regimes

- Two extremes:
 - floating: the CB does not buy or sell FX
 - peg: the CB stands ready to buy/sell any amount of FX at a fixed E
- ► Reality is somewhere in between

Pegging and Monetary Control

How can the exchange rate be fixed when capital is mobile? UIP

$$1 + i = (1 + i^*)E^e/E \tag{1}$$

Fixing the exchange rate $(E = E^e)$ implies

$$i = i^* \tag{2}$$

The CB has no control over the interest rate

What happens if the Fed tries to change the interest rate?

- short answer: capital flows overwhelm the Fed
- long answer: below

Monetary control

Money market clearing

$$M/P = YL(i^*) \tag{3}$$

The CB has no control over the money supply either. Why?

- ▶ short answer: the Fed needs to set M/P to keep $i = i^*$
 - otherwise: capital flows overwhelm the Fed
- long answer: below

Equilibrium: Fixed Exchange Rate

$$IS: Y = C(Y - T) + I(Y, i^*) + G + NX(Y, Y^*, \varepsilon)$$
 (4)

$$LM: M/P = Y \times L(i^*)$$
 (5)

$$UIP: i = i^* \tag{6}$$

Exogenous: $E = E^e$, $i = i^*$, P, P^* , $\varepsilon = P/(EP^*)$, Y^* .

Endogenous: Y, M

Equilibrium: Intuition

UIP fixes the interest rate

ightharpoonup Caveat: We have assumed that the peg is credible $(E = E^e)$.

The interest rate determines aggregate demand

- because the exchange rate is fixed
- ightharpoonup low $i \Longrightarrow \text{high } I$
- \triangleright IS \Longrightarrow Y

The Fed is fully occupied with ensuring the $i = i^*$

 $ightharpoonup LM \Longrightarrow M.$

Fiscal Policy: Process

$$G \uparrow \Longrightarrow IS \to \Longrightarrow Y \uparrow$$

 $i \uparrow > i^* \Longrightarrow \text{capital inflows}$

Excess demand for dollars.

Fed sells dollars to clear the market.

$$M\uparrow \Longrightarrow LM \to \Longrightarrow Y\uparrow$$
 and $i\downarrow$

This continues until $i = i^*$ again.

Fiscal Policy: Comparison

Closed economy:

rising *i* dampens fiscal expansion

Fixed exchange rate:

- ► fiscal policy is extra powerful
- this is exactly what happens in a closed economy when G↑ and M↑

Floating exchange rate:

- fiscal policy is less powerful
- some expenditure "leaks out" into the foreign country

Open Market Operations

What happens if the CB tries to increase the money supply?

▶ Open market operation: buy bonds in exchange for money.

Open Market Operations

The CB buys bonds with high powered money

- ► *LM* shifts right: $M \uparrow, i \downarrow$
- downward pressure on the dollar

In the FX market: CB must buy dollars to keep the peg

- ► *LM* shifts left: $M \downarrow \Longrightarrow i = i^*$
- ► FX reserves ↓

Net result:

- ▶ The CB has effectively paid for the bonds with FX reserves.
- M stays unchanged (as required by UIP)

Open Market Operations: Comparison

Closed economy:

 $\triangleright Y \uparrow, i \downarrow$

Floating exchange rate:

- monetary policy is stronger
- ▶ because dollar depreciates (NX ↑)
- we borrow demand from abroad

Fixed exchange rate:

monetary policy does not work at all

Reality Check

- ▶ We have assumed perfect capital mobility (UIP)
- ► In reality, Central Banks have some control over the domestic interest rate
- Outcomes are somewhere in between closed economy and perfect capital mobility.

What is the effect of a tariff on imports?

Think of a tariff as improving NX for given (Y, Y^*, ε)

$$IS: Y = C(Y-T) + I(Y,i^*) + G + NX(Y,Y^*,\varepsilon,\tau)$$
(7)

Recall the floating outcome:

- the foreign currency depreciates
- ▶ this mostly undoes the effect of the tariff on *NX*

Do fixed exchange rates change this result?

Result: tariffs work! *NX*↑

But: $NX/Y \downarrow$

To see this:

- ► start from linear IS: $Y = C_0 + c_1(Y T) + b_1Y b_2i^* + NX$
- ▶ in changes: $\Delta Y = (c_1 + b_1) \Delta Y + \Delta NX$ or $\Delta Y (1 c_1 b_1) = \Delta NX$ implies $\Delta Y > \Delta NX$.

How does the rise in NX square with

$$NX = \underbrace{Y - T - C}_{S^p} + \underbrace{T - G}_{S^G} - I \tag{8}$$

We have $i = i^*$ unchanged and $Y \uparrow$.

Assumption (always): b+c < 1

- only part of the additional income is spent
- ▶ $S^p \uparrow$ and therefore $NX \uparrow$

But we will see later: When prices adjust, tariffs no longer "work."

Policy coordination

Countries can achieve domestic expansion in different ways:

- 1. $G \uparrow$: positive spillover on other countries $(NX \downarrow)$
- 2. Devaluation, tariffs: negative spillover

Policy coordination is important when exchange rates are fixed.

Review Questions

- 1. Real demand shocks are extra powerful under fixed exchange rates. Why?
- 2. Monetary policy does not work. Why?
- 3. What would happen if the dollar risk premium rose?

Reading

▶ Blanchard / Johnson, Macroeconomics, 6th ed., ch. 19, 20