Project Initiative

			Max			Max	
Symbol	High Price	Max Rise	Daily	Low Price	Max Drop	Daily	Top 3 Months in Volume
			Profit %			Loss %	
ADA	2021-09-02	2021-02-09	33	2020-03-11	2020-03-11	41	2021-02, 2021-05, 2021-01
BNB	2021-05-02	2021-02-18	70	2020-03-11	2020-03-11	44	2021-02, 2020-09, 2021-05
BTC	2021-11-07	2021-02-07	19	2020-03-11	2020-03-11	39	2020-03, 2021-05, 2021-01
ETH	2021-11-07	2021-01-02	26	2020-03-11	2020-03-11	44	2021-01, 2021-05, 2020-03
LTC	2021-05-08	2021-05-23	30	2020-03-11	2020-03-11	38	2021-05, 2020-12, 2021-01

- Intense amount of data makes impossible for manual high-frequency trading
- ☐ Cross-currency price prediction as coins share similar trends

My Role and Responsibility

- Constructed data warehouse and data streaming
- Designed recurrent neural network to forecast next-day Bitcoin price

Data Wrangling Process

Historical Kline Data is

requested from Binance API and stored in key-value database directly from cloud IDE, to be read into either cloud or local tensorflow shell to train neural network model

Live stream data is

requested after connecting to web socket and writen into local relational database, later being used for live price forecast using predefined neural network

Stream Data: Relational Database

Benefit

- Live stream data is well-structured
- ☐ Fast writing speed
- Running on local server reduce latency

```
cnx = create engine('mysql+pymysql://root:Sun990722@127.0.0.1/Bitcoin')
bm = BinanceSocketManager(client)
ts = bm.multiplex_socket(['btcusdt@ticker', 'ethusdt@ticker', 'bnbusdt@ticker']
                          'solusdt@ticker', 'adausdt@ticker'])
async with ts as tscm:
    while True:
       msg = await ts.recv()
       frame = createframe(msg)
       if frame.iloc[0,0] == 'BTCUSDT':
            frame.to_sql('BTC', cnx, if_exists = 'append', index = False)
       elif frame.iloc[0,0] == 'ETHUSDT':
            frame.to sql('ETH', cnx, if exists = 'append', index = False)
       elif frame.iloc[0,0] == 'BNBUSDT':
           frame.to sql('BNB', cnx, if exists = 'append', index = False)
       elif frame.iloc[0,0] == 'SOLUSDT':
           frame.to_sql('SOL', cnx, if_exists = 'append', index = False)
       elif frame.iloc[0.0] == 'ADAUSDT':
           frame.to_sql('ADA', cnx, if_exists = 'append', index = False)
       print(frame)
               -0.734
0 BNBUSDT 2021-11-30 05:36:13.308 607.80000000 613.80000000 634.20000000
            low traded base asset volume traded quote asset volume \
0 604.20000000
                       1116517.84400000
                                               692088530.81090000
  number of trades
                         best bid best bid quantity
                                                        hest ask \
                                      49.82400000 613.80000000
```

Real Time Read & Write

Limitation

- Coins information stored in seperate table
- Multiple joins required to query desired format

Model Construction

Goal

- ☐ Use daily trade data of five cryptocurrencies from 2018 to predict future Bitcoin price
- Generate likelihood between 0 to 1 of next-day price increase

Long Short Term Memory

- Stateful in theory
- All states are propagated to the next batch
- Alleviate vanishing gradient problem: train longer sequence

Hyperparameter Tuning: Bayesian Optimization

- ☐ Faster than exhaustive search
- 'Smarter' than random search learn from past results to determine next best parameter

Model Summary

Architecture:

- Wide neural network
 - Better memorization than generalization
- RMSprop is commonly used optimizer in RNN
- Hyperbolic tangent function produces better prediction compared to relu function

Insight:

More neurons in Ethereum and Binance coin hidden layers

Accuracy:

□ 0.54 ROC AUC

Model Performance

One-day Buy Sell Strategy

- ☐ Use LSTM model to predict next-day Bitcoin price
- Buy if prediction value is above certain threshold and sell at the end of the same day
- Avoid consecutive buying

Backtesting (0.1% transaction fee)

- **582%** market return from March 2020 to November 2021 (0.05 threshold)
- ☐ 364% benchmark return if buy and sell without price forecast
- Model avoids small market crash.

