

Unit 4: Association Rules

Section 2: Advanced Concepts and Algorithms

Continuous and Categorical Attributes

How to apply association analysis formulation to non-asymmetric binary variables?

Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	ΙE	No
2	China	811	10	Female	Netscape	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	ΙE	Yes
5	Australia	123	9	Male	Mozilla	No

Example of Association Rule:

{Number of Pages \in [5,10) $^{\land}$ (Browser = Mozilla)} \rightarrow {Buy = No}

Handling Categorical Attributes

- *Transform categorical attribute into asymmetric binary variables
- XINTRODUCE A NEW "ITEM" FOR EACH DISTINCT ATTRIBUTE-VALUE PAIR
 - *Example: replace Browser Type attribute with
 - * Browser Type = Internet Explorer
 - * Browser Type = Mozilla
 - * Browser Type = Mozilla

Handling Categorical Attributes

*POTENTIAL ISSUES

- *What if attribute has many possible values
 - * Example: attribute country has more than 200 possible values
 - * Many of the attribute values may have very low support*Potential solution: Aggregate the low-support attribute values
- *What if distribution of attribute values is highly skewed
 - * Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) itemPotential solution: drop the highly frequent items

Handling Continuous Attributes

XDIFFERENT KINDS OF RULES:

```
\timesAge \in [21,35) ^{\wedge} Salary \in [70k,120k) \rightarrow Buy
```

 \star Salary ∈ [70k,120k) $^{\land}$ Buy \rightarrow Age: μ =28, σ =4

XDIFFERENT METHODS:

- xDiscretization-based
- **x**Statistics-based
- xNon-discretization based
 - x minApriori

Handling Continuous Attributes

bin₁

- **X**USE DISCRETIZATION
- **X**UNSUPERVISED:
 - xEqual-width binning
 - xEqual-depth binning
 - **x**Clustering

*****SUPERVISED:

Attribute values, v

Class	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇	V ₈	V 9
Anomalous	0	0	20	10	20	0	0	0	0
Normal	150	100	0	0	0	100	100	150	100

bin₂

bin₃

Discretization Issues

```
*SIZE OF THE DISCRETIZED INTERVALS AFFECT SUPPORT & CONFIDENCE
```

```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No}
{Refund = No, (60K \le Income \le 80K)} \rightarrow {Cheat = No}
{Refund = No, (0K \le Income \le 1B)} \rightarrow {Cheat = No}
```

xIf intervals too small

* may not have enough support

xIf intervals too large

* may not have enough confidence

*POTENTIAL SOLUTION: USE ALL POSSIBLE INTERVALS

Discretization Issues

XEXECUTION TIME

xIf intervals contain n values, there are on average $O(n^2)$ possible ranges

XTOO MANY RULES


```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No} {Refund = No, (51K \leq Income \leq 52K)} \rightarrow {Cheat = No}
```

 $\{\text{Refund} = \text{No}, (50\text{K} \leq \text{Income} \leq 60\text{K})\} \rightarrow \{\text{Cheat} = \text{No}\}$

Approach by Srikant & Agrawal

- *Preprocess the data
 - *Discretize attribute using equi-depth partitioning
 - * Use partial completeness measure to determine number of partitions
 - * Merge adjacent intervals as long as support is less than maxsupport
- *APPLY EXISTING ASSOCIATION RULE MINING ALGORITHMS
- *DETERMINE INTERESTING RULES IN THE OUTPUT

Approach by Srikant & Agrawal

*DISCRETIZATION WILL LOSE INFORMATION

*Use partial completeness measure to determine how much information is lost

C: FREQUENT ITEMSETS OBTAINED BY CONSIDERING ALL RANGES OF ATTRIBUTE VALUES P: FREQUENT ITEMSETS OBTAINED BY CONSIDERING ALL RANGES OVER THE PARTITIONS

P is K-complete w.r.t C if $P \subseteq C$, and $\forall X \in C$, $\exists X' \in P$ such that:

- 1. X' IS A GENERALIZATION OF X AND SUPPORT $(X') \leq K \times SUPPORT(X)$ $(K \geq 1)$
- 2. $\forall Y \subseteq X, \exists Y' \subseteq X'$ SUCH THAT SUPPORT $(Y') \leq K \times SUPPORT(Y)$

GIVEN K (PARTIAL COMPLETENESS LEVEL), CAN DETERMINE NUMBER OF INTERVALS (N)

Interestingness Measure

```
\{ \text{Refund = No, (Income = $51,250)} \} \rightarrow \{ \text{Cheat = No} \} \{ \text{Refund = No, (51K \le Income \le 52K)} \} \rightarrow \{ \text{Cheat = No} \} \{ \text{Refund = No, (50K \le Income \le 60K)} \} \rightarrow \{ \text{Cheat = No} \}  \textbf{\textit{X}} \text{GIVEN AN ITEMSET: } Z = \{ Z_1, Z_2, ..., Z_k \} \text{ AND ITS GENERALIZATION } Z' = \{ Z_1', Z_2', ..., Z_k' \}
```

P(Z): SUPPORT OF Z

 $E_{7}(Z)$: EXPECTED SUPPORT OF Z BASED ON Z'

$$E_{z'}(Z) = \frac{P(z_1)}{P(z_1)} \times \frac{P(z_2)}{P(z_2)} \times \cdots \times \frac{P(z_k)}{P(z_k)} \times P(Z')$$
*Z is R-interesting W.r.t. Z' If $(z_2) \ge R \times E_{z'}(z_k)$

Interestingness Measure

x For S: $X \rightarrow Y$, and its generalization S': $X' \rightarrow Y'$

P(Y|X): CONFIDENCE OF $X \rightarrow Y$ P(Y'|X'): CONFIDENCE OF $X' \rightarrow Y'$

 $E_{s}(Y|X)$: EXPECTED SUPPORT OF Z BASED ON Z'

$$E(Y|X) = \frac{P(y_1)}{P(y_1)} \times \frac{P(y_2)}{P(y_1)} \times \cdots \times \frac{P(y_k)}{P(y_k)} \times P(Y'|X')$$
*RULE S IS R-INTERESTINGLY. R.T. ITS ANCESTOR RULE S. IF

 \times Support, P(S) \geq R \times E_s(S) or

xConfidence, $P(Y|X) \ge R \times E_{s'}(Y|X)$

Statistics-based Methods

XEXAMPLE:

Browser=Mozilla ^ Buy=Yes \rightarrow Age: μ =23

*Rule consequent consists of a continuous variable, characterized by their statistics

xmean, median, standard deviation, etc.

XAPPROACH:

- *Withhold the target variable from the rest of the data
- *Apply existing frequent itemset generation on the rest of the data
- *For each frequent itemset, compute the descriptive statistics for the corresponding target variable
 - * Frequent itemset becomes a rule by introducing the target variable as rule consequent
- *Apply statistical test to determine interestingness of the rule

Statistics-based Methods

*How to determine whether an association rule interesting?

*Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:

$$A \Rightarrow B: \mu$$
 versus $A \Rightarrow B: \mu'$

*Statistical hypothesis testing:

- × Null hypothesis: H0: $\mu' = \mu + \Delta$
- **x** Alternative hypothesis: H1: $\mu' > \mu + \Delta$
- * Z has zero mean and variance 1 under null hypothesis

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Statistics-based Methods

XEXAMPLE:

r: Browser=Mozilla ^ Buy=Yes \rightarrow Age: μ =23

*Rule is interesting if difference between μ and μ' is greater than 5 years (i.e., Δ = 5)

*****For r, suppose
$$n1 = 50$$
, $s1 = 3.5$

 \times For r' (complement): n2 = 250, s2 = 6.5

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11$$

*For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.

*Since Z is greater than 1.64, r is an interesting rule

Min-Apriori (Han et al)

Document-term matrix:

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

Example:

W1 and W2 tends to appear together in the same document

Min-Apriori

*Data contains only continuous attributes of the same "type" *e.g., frequency of words in a document

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

*POTENTIAL SOLUTION:

*Convert into 0/1 matrix and then apply existing algorithms

x lose word frequency information

*Discretization does not apply as users want association among words not ranges of words

Min-Apriori

XHOW TO DETERMINE THE SUPPORT OF A WORD?

*If we simply sum up its frequency, support count will be greater than total number of documents!

- x Normalize the word vectors e.g., using L₁ norm
- x Each word has a support equals to 1.0

TID	W1	W2	W(3	W4	W5		TID	W1	W2	W3	W4	W5
D1	2	2	2	0	0	1	Normalize	D1	0.40	0.33	0.00	0.00	0.17
D2) ()	1	2	2	Normanze	D2	0.00	0.00	0.33	1.00	0.33
D3	2	2	3	0	0	0		D3	0.40	0.50	0.00	0.00	0.00
D4) ()	1	0	1		D4	0.00	0.00	0.33	0.00	0.17
D5	1	1	1	1	\cap	2		D 5	0 20	N 17	0.33	\cap \cap \cap	0.33

Min-Apriori

XNEW DEFINITION OF SUPPORT:

$$\sup(C) = \sum_{i \in T} \min_{j \in C} D(i, j)$$

TID	W1	W2	W3	W4	W5
D1	0.40	0.33	0.00	0.00	0.17
D2	0.00	0.00	0.33	1.00	0.33
			0.00		
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:

Sup(W1,W2,W3)

$$= 0 + 0 + 0 + 0 + 0.17$$

$$= 0.17$$

Anti-monotone property of Support

TID	W1	W2	W3	W4	W5
D1	0.40	0.33	0.00	0.00	0.17
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:

Sup(W1) =
$$0.4 + 0 + 0.4 + 0 + 0.2 = 1$$

Sup(W1, W2) = $0.33 + 0 + 0.4 + 0 + 0.17 = 0.9$
Sup(W1, W2, W3) = $0 + 0 + 0 + 0 + 0.17 = 0.17$

*WHY SHOULD WE INCORPORATE CONCEPT HIERARCHY?

*Rules at lower levels may not have enough support to appear in any frequent itemsets

*Rules at lower levels of the hierarchy are overly specific

x e.g., skim milk \rightarrow white bread, 2% milk \rightarrow wheat bread,

skim milk \rightarrow wheat bread, etc.

are indicative of association between milk and bread

XHOW DO SUPPORT AND CONFIDENCE VARY AS WE TRAVERSE THE CONCEPT HIERARCHY?

xIf X is the parent item for both X1 and X2, then $\sigma(X) \le \sigma(X1) + \sigma(X2)$

```
\begin{array}{ll} \textit{x} \text{If} & \sigma(\text{X1} \cup \text{Y1}) \geq \text{minsup,} \\ \text{and} & \textit{X} \text{ is parent of X1, Y is parent of Y1} \\ \text{then} & \sigma(\text{X} \cup \text{Y1}) \geq \text{minsup,} \ \sigma(\text{X1} \cup \text{Y}) \geq \text{minsup} \\ & \sigma(\text{X} \cup \text{Y}) \geq \text{minsup} \end{array}
```

xIf $conf(X1 \Rightarrow Y1) \ge minconf$, then $conf(X1 \Rightarrow Y) \ge minconf$

XAPPROACH 1:

*Extend current association rule formulation by augmenting each transaction with higher level items

Original Transaction: {skim milk, wheat bread}

Augmented Transaction:

{skim milk, wheat bread, milk, bread, food}

XISSUES:

*Items that reside at higher levels have much higher support counts

* if support threshold is low, too many frequent patterns involving items from the higher levels

*Increased dimensionality of the data

XAPPROACH 2:

*Generate frequent patterns at highest level first

*Then, generate frequent patterns at the next highest level, and so on

XISSUES:

xI/O requirements will increase dramatically because we need to perform more passes over the data

*May miss some potentially interesting cross-level association patterns

Sequence Data

Sequence Database:

Object	Timestamp	Events
А	10	2, 3, 5
А	20	6, 1
А	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Formal Definition of a Sequence

*A SEQUENCE IS AN ORDERED LIST OF ELEMENTS (TRANSACTIONS)

$$xs =$$
 < e1 e2 e3 ... >

*Each element contains a collection of events (items)

- *Each element is attributed to a specific time or location
- *Length of a sequence, |s|, is given by the number of elements of the sequence
- *A K-SEQUENCE IS A SEQUENCE THAT CONTAINS K EVENTS (ITEMS)

Examples of Sequence

XWEB SEQUENCE:

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >

*SEQUENCE OF INITIATING EVENTS CAUSING THE NUCLEAR ACCIDENT AT 3-MILE ISLAND:

(HTTP://STELLAR-ONE.COM/NUCLEAR/STAFF_REPORTS/SUMMARY_SOE_THE_INITIATING_EVENT.HTM)

< {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>

*****SEQUENCE OF BOOKS CHECKED OUT AT A LIBRARY:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Formal Definition of a Subsequence

 X A SEQUENCE <A₁A₂...A_N> IS CONTAINED IN ANOTHER SEQUENCE <B₁B₂...B_M> (M \geq N) IF THERE EXIST INTEGERS

$$I_1 < I_2 < ... < I_N SUCH THAT A_1 \subseteq B_{I1}, A_2 \subseteq B_{I1}, ..., A_N \subseteq B_{IN}$$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

^{*}The support of a subsequence w is defined as the fraction of data sequences that contain w

 \star A SEQUENTIAL PATTERN IS A FREQUENT SUBSEQUENCE (I.E., A SUBSEQUENCE WHOSE SUPPORT IS \geq MINSUP)

Sequential Pattern Mining: Definition

XGIVEN:

xa database of sequences

xa user-specified minimum support threshold, minsup

XTASK:

xFind all subsequences with support ≥ minsup

Sequential Pattern Mining: Challenge

✗GIVEN A SEQUENCE: <{A B} {C D E} {F} {G H I}>

*Examples of subsequences:

$$\{a\} \{c d\} \{f\} \{g\} >, \{c d e\} >, \{b\} \{g\} >, etc.$$

*How many K-subsequences can be extracted from a given N-sequence?

$$\{A B\}\{C D E\}\{F\}\{G H I\} > N = 9$$

$$K=4: \qquad Y - - Y - - Y - - Y - - Y - - Y - - Y - - Y - - Y - Y - - Y -$$

Answer:

$$\binom{n}{k} = \binom{9}{4} = 126$$

Sequential Pattern Mining: Example

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4 2,4,5
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} >	s=60%
< {2,3} >	s=60%
< {2,4}>	s=80%
< {3} {5}>	s=80%
< {1} {2} >	s=80%
< {2} {2} >	s=60%
< {1} {2,3} >	s=60%
< {2} {2,3} >	s=60%
< {1,2} {2,3} >	s=60%

Extracting Sequential Patterns

- **X**GIVEN N EVENTS: 11, 12, 13, ..., IN
- **X**CANDIDATE 1-SUBSEQUENCES:

XCANDIDATE 2-SUBSEQUENCES:

XCANDIDATE 3-SUBSEQUENCES:

Generalized Sequential Pattern (GSP)

STEP 1:

 Make the first pass over the sequence database D to yield all the 1-element frequent sequences

STEP 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - \bullet Eliminate candidate k-sequences whose actual support is less than minsup

Candidate Generation

✗BASE CASE (K=2):

xMerging two frequent 1-sequences $<\{i_1\}>$ and $<\{i_2\}>$ will produce two candidate 2-sequences: $<\{i_1\}$ $\{i_2\}>$ and $<\{i_1,i_2\}>$

✗GENERAL CASE (K>2):

xA frequent (k-1)-sequence w_1 is merged with another frequent (k-1)-sequence w_2 to produce a candidate k-sequence if the subsequence obtained by removing the first event in w_1 is the same as the subsequence obtained by removing the last event in w_2

x The resulting candidate after merging is given by the sequence w_1 extended with the last event of w_2 .

xIf the last two events in w_2 belong to the same element, then the last event in w_2 becomes part of the last element in w_1

 $ilde{ imes}$ Otherwise, the last event in w_2 becomes a separate element appended to the end of w_1

Candidate Generation Examples

*Merging the sequences $W_1 = <\{1\} \ \{2\ 3\} \ \{4\} > \ \text{And} \ W_2 = <\{2\ 3\} \ \{4\ 5\} > \\ \text{Will produce the candidate sequence} < \{1\} \ \{2\ 3\} \ \{4\ 5\} > \ \text{Because the last two events in } W_2 \ (4\ \text{And 5}) \ \text{Belong to the same element}$

*Merging the sequences $W_1 = <\{1\} \{2\ 3\} \{4\} > \text{ and } W_2 = <\{2\ 3\} \{4\} \{5\} > \\ \text{Will produce the candidate sequence} < \{1\} \{2\ 3\} \{4\} \{5\} > \text{ because the last two events in } W_2 (4 \text{ and } 5) \text{ do not belong to the same element}$

*We do not have to merge the sequences $W_1 = <\{1\} \{2 \ 6\} \{4\} > \text{ and } W_2 = <\{1\} \{2 \ 6\} \{4 \ 5\} >$ To produce the candidate $<\{1\} \{2 \ 6\} \{4 \ 5\} >$ because if the latter is a viable candidate, then it can be obtained by merging W_1 with $<\{1\} \{2 \ 6\} \{5\} >$

GSP Example

Frequent 3-sequences

- < {1} {2} {3} >
- < {1} {2 5} >
- < {1} {5} {3} >
- < {2} {3} {4} >
- < {2 5} {3} >
- < {3} {4} {5} >
- < {5} {3 4} >

Candidate Generation

- < {1} {2} {3} {4} >
- < {1} {2 5} {3} >
- < {1} {5} {3 4} >
- < {2} {3} {4} {5} >
- < {2 5} {3 4} >

Candidate Pruning

< {1} {2 5} {3} >

Timing Constraints (I)

x_g: max-gap

n_g: min-gap

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, $m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Mining Sequential Patterns with Timing Constraints

XAPPROACH 1:

*Mine sequential patterns without timing constraints

*Postprocess the discovered patterns

XAPPROACH 2:

*Modify GSP to directly prune candidates that violate timing constraints

xQuestion:

* Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
А	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
Е	2	2, 4, 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$
 $n_g = 0 \text{ (min-gap)}$
 $m_s = 5 \text{ (maximum span)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Contiguous Subsequences

S IS A CONTIGUOUS SUBSEQUENCE OF

$$W = \langle E_1 \rangle \langle E_2 \rangle ... \langle E_K \rangle$$

IF ANY OF THE FOLLOWING CONDITIONS HOLD:

- 1. s is obtained from w by deleting an item from either e_1 or e_k
- 2. s is obtained from w by deleting an item from any element e_i that contains more than 2 items
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- EXAMPLES: $S = < \{1\} \{2\} >$
 - is a contiguous subsequence of
 < {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >
 - is not a contiguous subsequence of < {1} {3} {2}> and < {2} {1} {3} {2}>

Modified Candidate Pruning Step

*WITHOUT MAXGAP CONSTRAINT:

*A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent

*WITH MAXGAP CONSTRAINT:

 \times A candidate k-sequence is pruned if at least one of its **contiguous** (k-1)-subsequences is infrequent

Timing Constraints (II)

x_g: max-gap

n_g: min-gap

ws: window size

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, ws = 1, $m_s = 5$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,6} {8} >	< {3} {5} >	No
< {1} {2} {3} {4} {5}>	< {1,2} {3} >	Yes
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes

Modified Support Counting Step

XGIVEN A CANDIDATE PATTERN: <{A, C}>

*Any data sequences that contain

```
<... {a c} ... >,
<... {a} ... {c}...> ( where time({c}) – time({a}) ≤ ws)
<...{c} ... {a} ...> (where time({a}) – time({c}) ≤ ws)
```

will contribute to the support count of candidate pattern

Other Formulation

*In some domains, we may have only one very long time series *Example:

- * monitoring network traffic events for attacks
- * monitoring telecommunication alarm signals

XGOAL IS TO FIND FREQUENT SEQUENCES OF EVENTS IN THE TIME SERIES

*This problem is also known as frequent episode mining

Pattern: <E1> <E3>

General Support Counting Schemes

Assume:

$$x_a = 2 \text{ (max-gap)}$$

$$n_q = 0$$
 (min-gap)

$$m_s = 2$$
 (maximum span)

Frequent Subgraph Mining

- *EXTEND ASSOCIATION RULE MINING TO FINDING FREQUENT SUBGRAPHS
- *Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

Graph Definitions

a S C

(a) Labeled Graph

(b) Subgraph

(c) Induced Subgraph

Representing Transactions as Graphs

XEACH TRANSACTION IS A CLIQUE OF ITEMS

Transaction Id	ltems
1	$\{A,B,C,D\}$
2	$\{A,B,E\}$
3	{B,C}
4	$\{A,B,D,E\}$
5	{B,C,D}

Representing Graphs as Transactions

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G3							

Challenges

- *Node may contain duplicate labels
- *****Support and confidence
 - xHow to define them?
- *ADDITIONAL CONSTRAINTS IMPOSED BY PATTERN STRUCTURE
 - *Support and confidence are not the only constraints
 - *Assumption: frequent subgraphs must be connected
- **X**APRIORI-LIKE APPROACH:
 - *Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 *What is k?

Challenges...

- **X**SUPPORT:
 - *number of graphs that contain a particular subgraph
- *APRIORI PRINCIPLE STILL HOLDS
- *LEVEL-WISE (APRIORI-LIKE) APPROACH:
 - *x*Vertex growing:
 - x k is the number of vertices
 - xEdge growing:
 - x k is the number of edges

Vertex Growing

$$M_{G1} = \begin{pmatrix} 0 & p & p & q \\ p & 0 & r & 0 \\ p & r & 0 & 0 \\ q & 0 & 0 & 0 \end{pmatrix} \qquad M_{G2} = \begin{pmatrix} 0 & p & p & q \\ p & 0 & r & 0 \\ q & 0 & 0 & 0 \end{pmatrix}$$

$$M_{G2} = \begin{pmatrix} 0 & p & p & 0 \\ p & 0 & r & 0 \\ p & r & 0 & r \\ 0 & 0 & r & 0 \end{pmatrix}$$

$$M_{G1} = \begin{pmatrix} 0 & p & p & q \\ p & 0 & r & 0 \\ p & r & 0 & 0 \\ q & 0 & 0 & 0 \end{pmatrix} \qquad M_{G2} = \begin{pmatrix} 0 & p & p & 0 \\ p & 0 & r & 0 \\ p & r & 0 & r \\ 0 & 0 & r & 0 \end{pmatrix} \qquad M_{G3} = \begin{pmatrix} 0 & p & p & 0 & q \\ p & 0 & r & 0 & 0 \\ p & r & 0 & r & 0 \\ 0 & 0 & r & 0 & 0 \\ q & 0 & 0 & 0 & 0 \end{pmatrix}$$

Edge Growing

Apriori-like Algorithm

- *FIND FREQUENT 1-SUBGRAPHS
- **X**REPEAT
 - *Candidate generation
 - * Use frequent (k-1)-subgraphs to generate candidate k-subgraph
 - *Candidate pruning
 - \times Prune candidate subgraphs that contain infrequent (k-1)-subgraphs
 - *****Support counting
 - * Count the support of each remaining candidate
 - *Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Example: Dataset

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G4	0	0	0	0	0	0	 0

Example

Minimum support count = 2

k=1 Frequent Subgraphs

(a)

(b)

(c)

 \bigcirc d

e

k=2 Frequent Subgraphs (a) - (b)

(a) — (e)

(b) --- (d)

(c) — (d)

(c) — (e)

k=3 Candidate Subgraphs

(Pruned candidate)

Candidate Generation

XIN APRIORI:

*Merging two frequent k-itemsets will produce a candidate (k+1)-itemset

*IN FREQUENT SUBGRAPH MINING (VERTEX/EDGE GROWING)

*Merging two frequent k-subgraphs may produce more than one candidate (k+1)-subgraph

Multiplicity of Candidates (Vertex Growing)

Multiplicity of Candidates (Edge growing)

XCASE 1: IDENTICAL VERTEX LABELS

Multiplicity of Candidates (Edge growing)

XCASE 2: CORE CONTAINS IDENTICAL LABELS Core: The (k-1) subgraph that is common

between the joint graphs

Multiplicity of Candidates (Edge growing)

Adjacency Matrix Representation

	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A (1)	1	1	1	0	1	0	0	0
A(2)	1	1	0	1	0	1	0	0
A(3)	1	0	1	1	0	0	1	0
A(4)	0	1	1	1	0	0	0	1
B(5)	1	0	0	0	1	1	1	0
B(6)	0	1	0	0	1	1	0	1
B(7)	0	0	1	0	1	0	1	1
B(8)	0	0	0	1	0	1	1	1

	A	(2)	A(1)			
	В	(7)	В	(6)		
	В	(5)	В	(8)		
\						
	A	(3)	Α	(4)		

	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A (1)	1	1	0	1	0	1	0	0
A(2)	1	1	1	0	0	0	1	0
A(3)	0	1	1	1	1	0	0	0
A(4)	1	0	1	1	0	0	0	1
B(5)	0	0	1	0	1	0	1	1
B(6)	1	0	0	0	0	1	1	1
B(7)	0	1	0	0	1	1	1	0
B(8)	0	0	0	1	1	1	0	1

[•] The same graph can be represented in many ways

Graph Isomorphism

*A GRAPH IS ISOMORPHIC IF IT IS TOPOLOGICALLY EQUIVALENT TO ANOTHER GRAPH

Graph Isomorphism

- *TEST FOR GRAPH ISOMORPHISM IS NEEDED:
 - *During candidate generation step, to determine whether a candidate has been generated
 - *During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
 - *During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

XUSE CANONICAL LABELING TO HANDLE ISOMORPHISM

*Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding

xExample:

* Lexicographically largest adjacency matrix

String: 0010001111010110

Canonical: 0111101011001000