

Lógica Computacional

Profa. Kátia Bossi **kbossi@cruzeirodosul.edu.br**

Disjunção exdusiva

A disjunção exclusiva de duas proposições lógicas simples p V q será verdadeira (V) se uma das proposições lógicas for verdadeira e falsa (F) nos demais casos.

Também conhecido como operador binário XOR (V=1;F=0)

Р	Q	P <u>v</u> Q
V	V	F
V	F	V
F	V	V
F	F	F

Exercício

Construa a tabela verdade:

a)
$$p \underline{v} q \rightarrow p v q$$

Exercício

Construa a tabela verdade:

a)
$$p \underline{v} q \rightarrow p v q$$

Р	Q	p <u>v </u> q	pvq	p <u>v</u> q → p v q
V	V	F	V	V
V	F	V	V	V
F	V	V	V	V
F	F	F	F	V

Número de linhas de uma tabela verdade

 O número de linhas (I) de uma tabela verdade de uma proposição composta por n proposições simples será igual a I=2ⁿ linhas

Exemplos:

- Duas proposições, ou seja, 2²=4
 p^qvr
- Três proposições, ou seja, 2³=8

Implicação lógica

Estabelece um relação entre duas proposições que é representada como p ⇒q (P implica Q).

P só implicará Q se a condicional P →Q for tautológica. Exemplo p ^ q ⇒ p v q

P	Q	P^Q	PvQ	p^q →pvq
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

A condicional é tautológica, logo p^q implica pvq Caso uma proposição não implique outra, denotamos por ⇒

Exercício

Substitua por ⇒ ou ⇒

a.
$$(p^q) (p \leftrightarrow q)$$

b.
$$(q \rightarrow p) \square (p \leftrightarrow q)$$

Equivalência lógica

Ele estabelece uma relação entre duas proposições simples ou compostas e é representado por $P \Leftrightarrow Q$ P só será equivalente a Q se a bicondicional $P \leftrightarrow Q$ for tautológica.

Exemplo:

Vamos verificar se a proposição "se faz sol vou a praia" **é equivalente a** "não faz sol ou vou a praia"

Considerando: p → q ~pvq

Podemos fazer a tabela verdade das duas e comparar a última coluna (se são iguais) ou verificar se a bicondicional entre elas é tautológica.

P	Q	$p \rightarrow q$	
V	V	V	
V	F	F	
F	V	V	
F	F	V	
Р	Q	~p	~pvq
V	V	F	V
V	F	F	F
F	V	V	V
F	F	V	V
Р	Q	$\mathbf{p} \to \mathbf{q}$	~p ~pvq
		P , 4	SPIG
\ /	\ /	\ /	- \/

V	V	「	V		
V	F	F	F		
П	V	V	V		
F	F	V	V		
P	Q	$\mathbf{b} \to \mathbf{d}$	~p	~pvq	$p \rightarrow q \leftrightarrow \sim pvq$
V	V	V	F	V	V
V	F	F	F	F	V
F	V	V	V	V	V
F	F	V	V	V	V

Exercicios - Blackboard

 1) Verifique se as proposições a seguir são implicações tautológicas.

a.
$$(p^q) \rightarrow (p \rightarrow \sim q)$$

b.
$$(p^q) \rightarrow (p^q)$$

c.
$$(\sim qvp) \rightarrow (q \rightarrow p)$$

d.
$$((\sim qvp) \rightarrow q) \rightarrow p$$

Exercícios

- 1) Verifique se as proposições a seguir são implicações tautológicas.
- a. $(p^q) \rightarrow (p \rightarrow \sim q)$ não
- b. $(p^q) \rightarrow (pvq) sim$
- c. $(\sim qvp) \rightarrow (q \rightarrow p)sim$
- d. $((\sim qvp) \rightarrow q) \rightarrow p n\tilde{a}o$

Exercícios - Blackboard

 2) Verifique se as proposições a seguir são equivalência tautológicas.

a.
$$(p \rightarrow q) \leftrightarrow ((p \lor q) \leftrightarrow q)$$

b.
$$(p \rightarrow q) \leftrightarrow ((p \lor r) \rightarrow q)$$

c.
$$p \leftrightarrow (p \vee (p^{\prime}q))$$

Exercícios

- 2) Verifique se as proposições a seguir são equivalência tautológicas.
- a. $(p \rightarrow q) \leftrightarrow ((pvq) \leftrightarrow q) sim$
- b. $(p \rightarrow q) \leftrightarrow ((pvr) \rightarrow q))$ não
- c. $p \leftrightarrow (pv(p^q))$ sim

Referência complementar

- QUILELI, P. Raciocínio Lógico Matemático. 3ª.ed.
 São Paulo: Saraiva, 2015.
- BISPO, C. A. F; CASTANHEIRA, L. B.; SOUZA FILHO, O. M. Introdução a Lógica Matemática.
 São Paulo: Cengage Learning, 2017.