E 266B - Spectral Methods Ahmad Zareei

1 Navier Stokes with viscosity

1.1 Parabolic profile

I simulated a parabolic flow between two plates with the following initial condition

$$V_x = (1+z)(1-z)$$

$$V_y = 0$$

$$V_z = 0$$
(1)

with $\nu = 0.2$ and $\rho = 1$ for incompressible flow with $\nabla \cdot \mathbf{V} = 0$ and boundary condition of $V_z|_{z=\pm 1} = 0$. Number of Fourier modes in x and y direction is $N_x = N_y = 16$ and number of Chebyshev modes in z direction is $N_z = 17$. We have periodic boundary condition in x and y direction. Energy of this system is decreasing as

Figure 1: Energy over time

The velocity profile in the z direction and as time pass is

Figure 2: Velocity profile as at different times

Infinity norm of divergence in the field is

Figure 3: Infinity norm of divergence of velocity at different times and Vz at end points, should be always zero as shown in the following figure

Figure 4: V_z at end points over time

1.2 Parabolic profile with perturbation

I used parabolic profile over the whole region except at the first and the last planes. Results are as follows

Figure 5: Energy evolution over time

The velocity profile in the z direction and as time pass is

Figure 6: Velocity profile as at different times

Infinity norm of divergence in the field is

Figure 7: Infinity norm of divergence of velocity at different times

Figure 8: Infinity norm of divergence of velocity at different times - Zoomed in and Vz at end points, should be always zero as shown in the following figure

Figure 9: V_z at end points over time

2 Euler Equation

Again we did the same simulation (physical conditions), but with $\nu = 0$. Parabolic profile remains same, and Energy is cosntant along the time and whole flow is remains divergence free.

Figure 10: Energy evolution over time

Figure 11: Velocity profile as at different times

Figure 12: Infinity norm of divergence of velocity at different times