Princípio da Indução Forte QXD0008 – Matemática Discreta

Prof. Lucas Ismaily ismailybf@ufc.br

Universidade Federal do Ceará

 2° semestre/2022

Tópicos desta aula

Nesta apresentação:

- Princípio da Indução Forte (Strong Induction) ou Indução Completa
- Exemplos de Aplicação: prova do Algoritmo da Divição, Prova do Teorema Fundamental da Aritmética, etc.
- Exemplos de erros comuns em provas por indução matemática.

Referências para esta aula

Seções 5.2(Strong Induction and Well-Ordering) do livro:
 <u>Discrete Mathematics and Its Applications</u>.

 Author: Kenneth H. Rosen. Seventh Edition. (English version)

• **Seção 4.2** do livro: <u>Matemática Discreta e suas Aplicações</u>. Autor: Kenneth H. Rosen. Sexta Edição.

Introdução

Motivação

Anteriormente, estudamos o Princípio da Indução Matemática:

Princípio da Indução Matemática

Seja P(n) uma proposição sobre um número natural n. Se

- (1) P(0) é verdadeiro e
- (2) $\forall k \in \mathbb{N}, \ P(k) \Rightarrow P(k+1)$ é verdadeiro, então $\forall n \in \mathbb{N}, \ P(n)$ é verdadeiro.
- Em diferentes momentos, pode ser conveniente trabalhar com outras formulações do Princípio da Indução Matemática.
- Uma formulação especialmente importante para Computação é o Princípio da Indução Forte.

Princípio da Indução Forte

Princípio da Indução Forte. Para todo número natural n, seja P(n) uma proposição. Se

- (1) P(0) é verdadeiro e
- (2) $\forall k \in \mathbb{N}$, $[P(0) \land P(1) \land ... \land P(k)] \Rightarrow P(k+1)$ é verdadeiro, então $\forall n \in \mathbb{N}$, P(n) é verdadeiro.

Princípio da Indução Forte

Princípio da Indução Forte. Para todo número natural n, seja P(n) uma proposição. Se

- (1) P(0) é verdadeiro e
- (2) $\forall k \in \mathbb{N}$, $[P(0) \land P(1) \land ... \land P(k)] \Rightarrow P(k+1)$ é verdadeiro, então $\forall n \in \mathbb{N}$, P(n) é verdadeiro.

Escrito como regra de inferência:

$$[P(0) \land \forall k([P(0) \land P(1) \land \dots \land P(k)] \rightarrow P(k+1))] \implies \forall nP(n)$$

Indução Forte — Observações

- Pelo Princípio da Indução Forte, a fim de provar que uma função proposicional P(n) é verdadeira para todo natural n, devemos provar dois casos:
 - 1. Caso Base: mostrar que a proposição P(0) é verdadeira.
 - Passo Indutivo: mostrar que a seguinte afirmação condicional é verdadeira, para todo natural k:

$$[P(0) \land P(1) \land \cdots \land P(k)] \implies P(k+1)$$

- Note que, na Indução Forte, a Hipótese de Indução (HI) é a suposição de que P(j) é verdadeira para todo j = 0, 1, 2, . . . , k.
- Ou seja, a HI consiste em todas as k afirmações $P(0), P(1), \ldots, P(k)$.
- \circ Logo, podemos usar qualquer uma dessas k afirmações (ou qualquer quantidade delas) para provar que P(k+1) é verdadeira.

Indução Forte — Observações

- **Problema:** Muitas vezes queremos mostrar que uma propriedade P(n) vale para inteiros n = b, b + 1, b + 2, ..., tal que b é um inteiro diferente de zero.
 - o **Solução:** A Indução Forte também permite provar propriedades sobre elementos do conjunto $\{b,b+1,b+2,\ldots\}$ pois este conjunto respeita o princípio da boa ordenação.

Indução Forte — Observações

- **Problema:** Muitas vezes queremos mostrar que uma propriedade P(n) vale para inteiros n = b, b + 1, b + 2, ..., tal que b é um inteiro diferente de zero.
 - o **Solução:** A Indução Forte também permite provar propriedades sobre elementos do conjunto $\{b, b+1, b+2, \ldots\}$ pois este conjunto respeita o princípio da boa ordenação.

Princípio da Indução Forte. Para provar que uma propriedade P(n) é verdadeira para todo inteiro $n \ge b$, onde $b \in \mathbb{Z}$:

- o Mostramos que P(b) é verdadeira (Caso Base), e
- No **passo indutivo**, mostramos que o condicional $[P(b) \land P(b+1) \land \ldots \land P(k)] \Rightarrow P(k+1)$ é verdadeiro para todo k > b.
- Note que *b* pode ser negativo, zero ou positivo.

Exemplo de Aplicação do Princípio da Indução Forte: Jogo das cartas

- Considere um jogo em que dois jogadores alternam-se para remover qualquer número positivo de cartas que eles pegam a partir de dois montes de cartas de baralho.
- O jogador que tirar a última carta, ganha o jogo.
- Se as duas pilhas tiverem o mesmo número de cartas inicialmente, podemos garantir que algum dos jogadores sempre ganha o jogo?

Teorema. Se duas pilhas de cartas contêm o mesmo número de cartas inicialmente, então o segundo jogador do Jogo das Cartas sempre ganha o jogo.

Demonstração:

Seja n o número de cartas em cada pilha. Vamos usar a indução forte para demonstrar P(n), a proposição que afirma que o segundo jogador vence quando houver inicialmente n cartas em cada pilha de cartas.

Caso Base: n=1. Neste caso, o primeiro jogador tem apenas uma escolha, remover uma carta de uma pilha, deixando uma pilha com apenas uma carta, que o segundo jogador pode retirar para vencer o jogo. Isso completa o caso base.

Continuação da Demonstração:

Hipótese de Indução: Para todo j tal que $1 \le j \le k$, suponha que o segundo jogador sempre ganha quando houver j cartas em cada uma das pilhas no ínicio do jogo.

Passo Indutivo: Precisamos mostrar que P(k+1) é verdadeira, ou seja, que o segundo jogador vence quando há inicialmente k+1 cartas em cada pilha, considerando a HI de que P(j) é verdadeira para $j=1,2,\ldots,k$.

Então, suponha que haja k+1 cartas em cada uma das pilhas no início do jogo. Dividimos o restante da prova em dois casos: Na primeira rodada, ou o primeiro jogador remove todas as k+1 cartas de uma das pilhas ou ele remove somente r cartas, onde $1 \le r \le k$.

Caso 1: O primeiro jogador remove todas as k + 1 cartas de umas das pilhas na primeira jogada.

Neste caso, o segundo jogador vence removendo todas as cartas restantes.

Continuação da Demonstração:

Continuação do Passo Indutivo:

Caso 2: O primeiro jogador remove r cartas $(1 \le r \le k)$ de umas das pilhas na primeira jogada.

Neste caso, o primeiro jogador deixa k+1-r cartas em uma das pilhas. Então, o segundo jogador remove também r cartas da outra pilha que estava intacta.

Ao fazer isso, o segundo jogador cria a situação em que há duas pilhas, cada uma com k+1-r cartas.

Como $1 \le k + 1 - r \ge k$, o segundo jogador sempre vence pela hipótese de indução. Isso completa a prova do passo indutivo.

Exemplo de Aplicação do Princípio da Indução Forte: Prova do Teorema Fundamental da Aritmética

Prova do Teorema Fundamental da Aritmética

Teorema Fundamental da Aritmética (TFA): Todo inteiro n > 1 pode ser escrito de maneira única como um primo ou como o produto de dois ou mais números primos escritos em ordem crescente.

Este é um enunciado de **unicidade**. Logo, a prova deste teorema é dividida em duas partes:

- Existência: todo inteiro n > 1 pode ser escrito como um primo ou como o produto de dois ou mais números primos.
- **Unicidade:** suponha que p_1, p_2, \ldots, p_k e q_1, q_2, \ldots, q_m são números primos, $p_1 \leq p_2 \leq \ldots \leq p_k$, $q_1 \leq q_2 \leq \ldots \leq q_m$, e $p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_m$.

Vamos provar somente a existência. A unicidade fica como exercício.

Teorema 1. Todo inteiro n > 1 pode ser escrito como um primo ou como o produto de dois ou mais números primos.

Teorema 1. Todo inteiro n > 1 pode ser escrito como um primo ou como o produto de dois ou mais números primos.

Demonstração:

Seja P(n) a proposição de que n pode ser escrito como um primo ou como o produto de dois ou mais primos.

Vamos provar por indução forte em n que P(n) vale para todo inteiro n > 1.

Teorema 1. Todo inteiro n > 1 pode ser escrito como um primo ou como o produto de dois ou mais números primos.

Demonstração:

Seja P(n) a proposição de que n pode ser escrito como um primo ou como o produto de dois ou mais primos.

Vamos provar por indução forte em n que P(n) vale para todo inteiro n > 1.

Caso Base: n = 2. Note que P(2) é verdadeiro porque 2 é um número primo e pode ser escrito como ele mesmo. Isso conclui o caso base.

Continuação da Demonstração:

Passo indutivo: Seja $k \ge 2$ um inteiro arbitrário. Vamos provar que:

$$[P(2) \wedge P(3) \wedge \cdots \wedge P(k)] \implies P(k+1)$$

Continuação da Demonstração:

Passo indutivo: Seja $k \ge 2$ um inteiro arbitrário. Vamos provar que:

$$[P(2) \wedge P(3) \wedge \cdots \wedge P(k)] \implies P(k+1)$$

 Hipótese de Indução: Suponha que P(j) é verdadeira para todos os inteiros j com 2 ≤ j ≤ k. Ou seja, para todo j ∈ {2,3,...,k}, j pode ser escrito como um primo ou como o produto de dois ou mais números primos.

Continuação da Demonstração:

Passo indutivo: Seja $k \ge 2$ um inteiro arbitrário. Vamos provar que:

$$[P(2) \wedge P(3) \wedge \cdots \wedge P(k)] \implies P(k+1)$$

 Hipótese de Indução: Suponha que P(j) é verdadeira para todos os inteiros j com 2 ≤ j ≤ k. Ou seja, para todo j ∈ {2,3,...,k}, j pode ser escrito como um primo ou como o produto de dois ou mais números primos.

A fim de completar o passo indutivo, vamos mostrar que k+1 pode ser escrito como um primo ou como o produto de dois ou mais números primos.

Continuação da Demonstração:

Passo indutivo: Seja $k \ge 2$ um inteiro arbitrário. Vamos provar que:

$$[P(2) \wedge P(3) \wedge \cdots \wedge P(k)] \implies P(k+1)$$

 Hipótese de Indução: Suponha que P(j) é verdadeira para todos os inteiros j com 2 ≤ j ≤ k. Ou seja, para todo j ∈ {2,3,...,k}, j pode ser escrito como um primo ou como o produto de dois ou mais números primos.

A fim de completar o passo indutivo, vamos mostrar que k+1 pode ser escrito como um primo ou como o produto de dois ou mais números primos.

Existem dois casos a considerar:

- **Caso 1:** k + 1 é primo.
- Caso 2: k+1 é composto.

Continuação da Demonstração:

• Caso 1: k + 1 é primo.

Neste caso k + 1 pode ser escrito como ele mesmo, já que é primo.

Continuação da Demonstração:

- Caso 1: k + 1 é primo.
 Neste caso k + 1 pode ser escrito como ele mesmo, já que é primo.
- Caso 2: k + 1 é composto.
 Neste caso, k + 1 pode ser escrito como o produto de dois inteiros positivos a e b tais que 2 ≤ a ≤ b < k + 1.

Continuação da Demonstração:

- Caso 1: k + 1 é primo.
 Neste caso k + 1 pode ser escrito como ele mesmo, já que é primo.
- Caso 2: k+1 é composto.

Neste caso, k+1 pode ser escrito como o produto de dois inteiros positivos a e b tais que $2 \le a \le b < k+1$.

Como $2 \le a \le k$ e $2 \le b \le k$, podemos aplicar a hipótese de indução a fim de escrever a e b como um primo ou como o produto de dois ou mais primos.

Continuação da Demonstração:

- **Caso 1:** k + 1 é primo.
 - Neste caso k + 1 pode ser escrito como ele mesmo, já que é primo.
- Caso 2: k+1 é composto.

Neste caso, k+1 pode ser escrito como o produto de dois inteiros positivos a e b tais que $2 \le a \le b < k+1$.

Como $2 \le a \le k$ e $2 \le b \le k$, podemos aplicar a hipótese de indução a fim de escrever a e b como um primo ou como o produto de dois ou mais primos.

Assim, se k+1 é composto, podemos escrevê-lo como o produto de dois ou mais primos, que são os primos contidos na fatoração de a e na fatoração de b. Isso conclui a prova do passo indutivo.

Continuação da Demonstração:

- Caso 1: k + 1 é primo.
 - Neste caso k + 1 pode ser escrito como ele mesmo, já que é primo.
- Caso 2: k+1 é composto.

Neste caso, k+1 pode ser escrito como o produto de dois inteiros positivos a e b tais que $2 \le a \le b < k+1$.

Como $2 \le a \le k$ e $2 \le b \le k$, podemos aplicar a hipótese de indução a fim de escrever a e b como um primo ou como o produto de dois ou mais primos.

Assim, se k+1 é composto, podemos escrevê-lo como o produto de dois ou mais primos, que são os primos contidos na fatoração de a e na fatoração de b. Isso conclui a prova do passo indutivo.

Como tanto o caso base quanto o passo indutivo foram provados, o resultado segue.

Exemplo de Aplicação do Princípio da Indução Forte: Prova do Teorema do Algoritmo da Divisão

(Para inteiros não negativos)

Teorema (Algoritmo da Divisão). Sejam $n, m \in \mathbb{N}$. Se m > 0, então existem números naturais q e r tais que n = qm + r e $0 \le r < m$.

(Para inteiros não negativos)

Teorema (Algoritmo da Divisão). Sejam $n, m \in \mathbb{N}$. Se m > 0, então existem números naturais q e r tais que n = qm + r e $0 \le r < m$.

- Seja m > 0 um natural qualquer.
- Seja P(n) a proposição de que "existem naturais q e r tais que n = qm + r e $0 \le r < m$ ".

(Para inteiros não negativos)

Teorema (Algoritmo da Divisão). Sejam $n, m \in \mathbb{N}$. Se m > 0, então existem números naturais q e r tais que n = qm + r e $0 \le r < m$.

- Seja m > 0 um natural qualquer.
- Seja P(n) a proposição de que "existem naturais q e r tais que n = qm + r e $0 \le r < m$ ".
- Vamos provar por indução forte em n que P(n) é verdadeira para todo n∈ N.

(Para inteiros não negativos)

Teorema (Algoritmo da Divisão). Sejam $n, m \in \mathbb{N}$. Se m > 0, então existem números naturais q e r tais que n = qm + r e $0 \le r < m$.

Demonstração:

- Seja m > 0 um natural qualquer.
- Seja P(n) a proposição de que "existem naturais q e r tais que n = qm + r e $0 \le r < m$ ".
- Vamos provar por indução forte em n que P(n) é verdadeira para todo n∈ N.

Caso Base: n = 0. Note que, fazendo q = r = 0, obtemos que $n = 0 = 0 \cdot m + 0 = qm + r$ e que $0 \le r < m$. Portanto, P(0) é verdadeira.

$$P(n) =$$
 "existem naturais q e r tais que $n = qm + r$ e $0 \le r < m$ "

Continuação da Demonstração:

$$P(n) =$$
 "existem naturais q e r tais que $n = qm + r$ e $0 \le r < m$ "

Continuação da Demonstração:

Passo Indutivo: Seja k-1 um natural qualquer. Vamos mostrar que:

$$[P(0) \wedge P(1) \wedge \cdots \wedge P(k-1)] \implies P(k).$$

$$P(n) =$$
 "existem naturais q e r tais que $n = qm + r$ e $0 \le r < m$ "

Continuação da Demonstração:

Passo Indutivo: Seja k-1 um natural qualquer. Vamos mostrar que:

$$[P(0) \wedge P(1) \wedge \cdots \wedge P(k-1)] \implies P(k).$$

• **Hipótese de indução:** Suponha que, para todo número natural j, com $0 \le j \le k-1$, existem números naturais q e r tais que j=qm+r e $0 \le r < m$.

$$P(n) =$$
 "existem naturais q e r tais que $n = qm + r$ e $0 \le r < m$ "

Continuação da Demonstração:

Passo Indutivo: Seja k-1 um natural qualquer. Vamos mostrar que:

$$[P(0) \wedge P(1) \wedge \cdots \wedge P(k-1)] \implies P(k).$$

• **Hipótese de indução:** Suponha que, para todo número natural j, com $0 \le j \le k-1$, existem números naturais q e r tais que j=qm+r e $0 \le r < m$.

A fim de completar o passo indutivo, vamos mostrar que existem números naturais q e r tais que k = qm + r e $0 \le r < m$.

Existem dois casos a considerar: k < m e $k \ge m$.

Lembrete: Agora, queremos provar que P(k) é verdadeira. P(k) = "existem naturais $q \in r$ tais que $k = qm + r \in 0 \le r < m$ "

Continuação da Demonstração:

Lembrete: Agora, queremos provar que P(k) é verdadeira. P(k) = "existem naturais q e r tais que k = qm + r e $0 \le r < m$ "

Continuação da Demonstração:

Caso 1: k < m.

Neste caso, seja q=0 e r=k. Então, claramente temos que k=qm+r e $0 \le r < m$. Portanto P(k) é verdadeira.

Lembrete: Agora, queremos provar que P(k) é verdadeira. P(k) = "existem naturais q e r tais que k = qm + r e $0 \le r < m$ "

Continuação da Demonstração:

Caso 1: k < m.

Neste caso, seja q=0 e r=k. Então, claramente temos que k=qm+r e $0 \le r < m$. Portanto P(k) é verdadeira.

Caso 2: $k \ge m$.

Seja t = k - m. Note que t < k e note que, como $k \ge m$, t é um número natural. Então podemos aplicar a Hipótese de Indução em t.

Lembrete: Agora, queremos provar que P(k) é verdadeira. P(k) = "existem naturais $q \in r$ tais que $k = qm + r \in 0 \le r < m$ "

Continuação da Demonstração:

Caso 1: k < m.

Neste caso, seja q=0 e r=k. Então, claramente temos que k=qm+r e $0 \le r < m$. Portanto P(k) é verdadeira.

Caso 2: k > m.

Seja t = k - m. Note que t < k e note que, como $k \ge m$, t é um número natural. **Então podemos aplicar a Hipótese de Indução em** t.

Pela HI, existem q' e r' tais que t=q'm+r' e $0 \le r' < m$. Então, k-m=q'm+r'. Isso implica k=q'm+r'+m=(q'+1)m+r'.

Lembrete: Agora, queremos provar que P(k) é verdadeira. P(k) = "existem naturais q e r tais que k = qm + r e $0 \le r < m$ "

Continuação da Demonstração:

Caso 1: k < m.

Neste caso, seja q=0 e r=k. Então, claramente temos que k=qm+r e $0 \le r < m$. Portanto P(k) é verdadeira.

Caso 2: $k \ge m$.

Seja t = k - m. Note que t < k e note que, como $k \ge m$, t é um número natural. **Então podemos aplicar a Hipótese de Indução em** t.

Pela HI, existem q' e r' tais que t=q'm+r' e $0 \le r' < m$. Então, k-m=q'm+r'. Isso implica k=q'm+r'+m=(q'+1)m+r'.

Fazendo q = q' + 1 e r = r', concluímos que k = qm + r e $0 \le r < m$. Portanto P(k) é verdadeira. Isso conclui o passo indutivo.

Uma segunda versão da Indução Forte

Princípio da Indução Forte (Versão 2)

Princípio da Indução Forte (Versão 2)

Seja P(n) uma proposição sobre um número natural n. Sejam também i e b inteiros positivos. Se

- (1) $P(b), P(b+1), \ldots, P(b+j)$ são verdadeiras, e
- (2) $[P(b) \land P(b+1) \land ... \land P(k)] \Rightarrow P(k+1)$ é verdadeira para todo inteiro $k \ge b+j$,

então $\forall n \in \mathbb{N}$, P(n) é verdadeiro.

Teorema. Qualquer valor de postagem igual ou maior que 12 reais pode ser formado usando exclusivamente selos de 4 e de 5 reais.

Demonstração:

Teorema. Qualquer valor de postagem igual ou maior que 12 reais pode ser formado usando exclusivamente selos de 4 e de 5 reais.

Demonstração:

Seja P(n) = "uma postagem de n reais pode ser formada usando exclusivamente selos de 4 e de 5 reais.

Teorema. Qualquer valor de postagem igual ou maior que 12 reais pode ser formado usando exclusivamente selos de 4 e de 5 reais.

Demonstração:

Seja P(n) = "uma postagem de n reais pode ser formada usando exclusivamente selos de 4 e de 5 reais.

Vamos provar por indução forte no número de selos que P(n) é verdadeira para todo $n \ge 12$.

Teorema. Qualquer valor de postagem igual ou maior que 12 reais pode ser formado usando exclusivamente selos de 4 e de 5 reais.

Demonstração:

Seja P(n) = "uma postagem de n reais pode ser formada usando exclusivamente selos de 4 e de 5 reais.

Vamos provar por indução forte no número de selos que P(n) é verdadeira para todo $n \ge 12$.

Caso Base: Seja $n \in \{12, 13, 14, 15\}$. Então, para cada n, vale:

- 12 reais pode ser formado com 3 selos de 4 reais;
- 13 reais pode ser formado com 2 selos de 4 reais e 1 selo de 5 reais;
- 14 reais pode ser formado com 1 selo de 4 reais e 2 selos de 5 reais;
- 15 reais pode ser formado com 3 selos de 5 reais;

Teorema. Qualquer valor de postagem igual ou maior que 12 reais pode ser formado usando exclusivamente selos de 4 e de 5 reais.

Demonstração:

Seja P(n) = "uma postagem de n reais pode ser formada usando exclusivamente selos de 4 e de 5 reais.

Vamos provar por indução forte no número de selos que P(n) é verdadeira para todo $n \ge 12$.

Caso Base: Seja $n \in \{12, 13, 14, 15\}$. Então, para cada n, vale:

12 reais pode ser formado com 3 selos de 4 reais;

13 reais pode ser formado com 2 selos de 4 reais e 1 selo de 5 reais;

14 reais pode ser formado com 1 selo de 4 reais e 2 selos de 5 reais;

15 reais pode ser formado com 3 selos de 5 reais;

Isso prova que P(12), P(13), P(14), P(15) são verdadeiras.

Isso completa o caso base.

Continuação da Demonstração:

Passo Indutivo: Seja k um inteiro tal que $k \ge 15$.

Continuação da Demonstração:

Passo Indutivo: Seja k um inteiro tal que $k \ge 15$.

• **Hipótese de Indução:** Suponha que qualquer valor de postagem j com $12 \le j \le k$ pode ser formado usando selos de 4 e de 5 reais.

Continuação da Demonstração:

Passo Indutivo: Seja k um inteiro tal que $k \ge 15$.

• **Hipótese de Indução:** Suponha que qualquer valor de postagem j com $12 \le j \le k$ pode ser formado usando selos de 4 e de 5 reais.

A fim de provar o passo indutivo, vamos mostrar que uma postagem cujo valor é k+1 reais pode ser formada usando apenas selos de 4 e de 5 reais.

Continuação da Demonstração:

Passo Indutivo: Seja k um inteiro tal que $k \ge 15$.

• **Hipótese de Indução:** Suponha que qualquer valor de postagem j com $12 \le j \le k$ pode ser formado usando selos de 4 e de 5 reais.

A fim de provar o passo indutivo, vamos mostrar que uma postagem cujo valor é k+1 reais pode ser formada usando apenas selos de 4 e de 5 reais.

Pela HI, uma postagem de k-3 reais pode ser formada usando apenas selos de 4 e de 5 reais, pois $12 \le k-3 < k$.

Continuação da Demonstração:

Passo Indutivo: Seja k um inteiro tal que $k \ge 15$.

• **Hipótese de Indução:** Suponha que qualquer valor de postagem j com $12 \le j \le k$ pode ser formado usando selos de 4 e de 5 reais.

A fim de provar o passo indutivo, vamos mostrar que uma postagem cujo valor é k+1 reais pode ser formada usando apenas selos de 4 e de 5 reais.

Pela HI, uma postagem de k-3 reais pode ser formada usando apenas selos de 4 e de 5 reais, pois $12 \le k-3 < k$.

Podemos formar uma postagem de k+1 reais, usando os selos de postagem de k-3 reais mais um selo de 4 reais, pois k+1=(k-3)+4.

Continuação da Demonstração:

Passo Indutivo: Seja k um inteiro tal que $k \ge 15$.

• **Hipótese de Indução:** Suponha que qualquer valor de postagem j com $12 \le j \le k$ pode ser formado usando selos de 4 e de 5 reais.

A fim de provar o passo indutivo, vamos mostrar que uma postagem cujo valor é k+1 reais pode ser formada usando apenas selos de 4 e de 5 reais.

Pela HI, uma postagem de k-3 reais pode ser formada usando apenas selos de 4 e de 5 reais, pois $12 \le k-3 < k$.

Podemos formar uma postagem de k+1 reais, usando os selos de postagem de k-3 reais mais um selo de 4 reais, pois k+1=(k-3)+4.

Assim, provamos que, se a HI é verdadeira, então P(k+1) também é verdadeira. Ou seja, é possível formar uma postagem de k+1 reais, usando apenas selos de 4 e de 5 reais. Isso completa a prova do passo indutivo. \square

Exercício para casa (1)

Exercício: Nos slides anteriores, provamos o teorema abaixo usando Indução Forte. Porém, esse resultado pode ser provado usando apenas a Indução Fraca.

Prove o teorema abaixo usando Indução Fraca, ou seja, o Princípio da Indução Matemática (PIM), visto nas aulas anteriores.

Teorema. Qualquer valor de postagem igual ou maior que 12 reais pode ser formado usando exclusivamente selos de 4 e de 5 reais.

Exercício para casa (2)

Exercício: Prove que, para todo natural *n*, a fórmula fechada

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

é uma solução para a relação de recorrência:

$$f_n = \begin{cases} 0 & \text{se } n = 0; \\ 1 & \text{se } n = 1; \\ f_{n-1} + f_{n-2} & \text{se } n \ge 2. \end{cases}$$

Dica: Use indução forte.

Indução Forte \times Indução Fraca

Indução Forte × Indução Fraca

- Algumas vezes, a indução forte é mais fácil de usar.
- Pode ser provado que a indução forte e a indução fraca são equivalentes.
 - Qualquer prova por indução fraca pode ser facilmente escrita como uma prova por indução forte (por quê?)
 - Qualquer prova por indução forte pode ser convertida em uma prova por indução fraca — mas não é tão óbvio

Indução Forte × Indução Fraca

- Algumas vezes, a indução forte é mais fácil de usar.
- Pode ser provado que a indução forte e a indução fraca são equivalentes.
 - Qualquer prova por indução fraca pode ser facilmente escrita como uma prova por indução forte (por quê?)
 - Qualquer prova por indução forte pode ser convertida em uma prova por indução fraca — mas não é tão óbvio
- A validade de ambos os princípios de indução segue do princípio do bom ordenamento.
 - De fato, os 3 princípios são equivalentes.
 - Ou seja, qualquer prova que utilize um destes princípios pode ser reescrita utilizando qualquer um dos outros dois.
 - Dependendo do caso a ser provado, pode ser mais conveniente usar um ou outro princípio.

Erros em provas por indução matemática

Enunciado verdadeiro, prova incorreta

Teorema. Para todo inteiro n > 1, n! é par.

"Suposta demonstração": Prova por indução forte em n. Seja $n \in \{2,3,\ldots\}$ um inteiro qualquer e P(n) a proposição que afirma que n! é par.

- Caso base: Quando n=2, $2!=2\cdot 1=2$. Como 2 é par, P(2) é verdadeira.
- Hipótese de indução: Para n > 2, suponha que P(i) é verdadeira para todo $i \in \{2, 3, ..., n-1\}$, ou seja, i! é par.
- Passo Indutivo: Queremos provar que P(n+1) é verdadeiro, ou seja, que (n+1)! é par. Pela definição recursiva do fatorial, (n+1)! = (n+1) · n!
 Pela HI, sabemos que n! é par. Por um teorema conhecido, sabemos que o produto de dois inteiros resulta em um número par se pelo menos um dos dois inteiros for par. Portanto, (n+1)! é par e, portanto, P(n+1) é verdadeiro.

Como o caso base e o passo indutivo foram provados, concluímos que n! é par para todo inteiro n > 1.

Enunciado falso, prova incorreta

Teorema. Para todo inteiro n não negativo, 5n = 0.

"Suposta demonstração": Prova por indução forte em n. Seja P(n) o predicado que afirma que 5n=0, é verdadeiro para todo $n\in\mathbb{N}$.

- Caso base: Quando n = 0, $5n = 5 \cdot 0 = 0$. Assim, P(0) é verdadeiro.
- **Hipótese de indução:** Seja $k \in \mathbb{N}$. Suponha que 5n = 0 para todo inteiro n no intervalo $0 \le n \le k$.
- Passo Indutivo: Vamos mostrar que P(n) é verdadeiro quando n = k + 1, ou seja vamos mostrar que 5(k + 1) = 0.

Escreva k+1 como a soma k+1=i+j, onde i,j são inteiros satisfazendo $0 \le i,j \le k$.

Como $0 \le i, j \le k$, podemos aplicar a hipótese de indução a i e j a fim de obter 5i = 0 e 5j = 0. Então, 5(k+1) = 5(i+j) = 5i + 5j = 0 + 0 = 0.

Portanto, 5(k+1) = 0. Assim P(k+1) é verdadeiro.

Como o caso base e o passo indutivo foram provados, concluímos que P(n) é verdadeiro para todo natural n.

Enunciado falso, prova incorreta

Moral da história. Certifique-se de que não exista lacuna entre o caso base e o primeiro caso do passo indutivo.

FIM