Clain
19/03/2020
Tling
TOP1
Toths.

Nombre d'achelours

2. Il y aurait un ajustement affine de y en se s'il escistait entre les 2 séries avec une choite y = a se + b. Pas de forme allongée. Il est pas possible de tracer une choite D au voisinage de ses points

rest eloigné dé-1, l'ajustement affine n'est pas justifié.

D'ai l'interêt du changement de vaviable. On se rapproche de -1.

6.
$$y = ax + b$$

 $a' = -0,3.0043 \cdot 16^{-4} - 0,0030043478 \rightarrow -0,0030$
 $b' = 6,86$

$$Z = -0,0030 x + b.$$

$$Z = -0,0030 \times + 6.$$

$$-300$$
 $y = k = 0,0030 \times 6,86$

$$y = k = 0,0030 \times 9 = 0$$

$$y = k = 0,0030 \times 9 = 0$$

$$y = k = 0,0030 \times 9 = 0$$

$$y = k = 0,0030 \times 9 = 0$$

were
$$\lambda = -0.0030$$

When $k = 953$

7-

on a alors
$$y = 953e^{-0.0030x}$$
.

Exercice 2.

1-
$$f(x) = e^{2x} + e^{x} - x - 2$$

 $f(x) = e^{x} (e^{x} + 1) - x - 2$
 $e^{x} (e^{x} + 1 - \frac{x}{e^{x}} - \frac{2}{e^{x}})^{2} + \infty$
 $f(x) = e^{x} (e^{x} + 1 - \frac{x}{e^{x}} - \frac{2}{e^{x}})^{2} + \infty$
 $f(x) = e^{x} (e^{x} + 1 - \frac{x}{e^{x}} - \frac{2}{e^{x}})^{2} + \infty$

2.
$$f(x) = e^{x} (e^{x} + 1) - x - 2$$

$$\lim_{x \to -\infty} e^{x} = 0$$

$$\lim_{x \to -\infty} f(x) = +\infty$$

$$\lim_{x \to -\infty} e^{x + 1} = 1$$

$$\lim_{x \to -\infty} -x = +\infty$$

$$y = -\infty$$

$$y = -\infty - 2$$

$$= e^{2x} + e^{x} - x - 2 - (-x - 2)$$

$$= e^{2x} + e^{x} - x - 2 + x + 2$$

$$= e^{2x} + e^{x}$$

. lin e^{2x} , e^{x} = + ∞ en + ∞ on peut pas saueir si elle el asymptote $x \rightarrow +\infty$

lim
$$e^{2x} + e^x = 0$$
 on $-\infty$ on α are limite finie dence $x \to -\infty$ ['asymptote Rongontale $y = 0$.

4 - Comparation. $+(\infty) - (-x - 2) - b = 0$.

C'at pour étudier la position relatire par soutraction.

donc la courbe l'et au dessus de D.

6 -
$$2e^{x} \times e^{x} + e^{x} - 1$$

 $\approx 2e^{x} (e^{x} + 1) - 1$
 $\approx 2(e^{x} + 1) (e^{x} - \frac{1}{2}) \underline{OK}.$

7.
$$e^{3C} + J \text{ toujours} > 0.$$

-0	en (1/2)=	ln (1) -	10(2)	+ 00
	+				
			-	+	
Var Eller			•	+ -	
-8					1 +00
2 1927 <u> </u>		> 1	(10(1/2)		
	-8	t -	+	- · ·	+ + + + + + + + + + + + + + + + + + +

$$\begin{cases}
+ (0) = 0 \\
+ (0) = 2
\end{cases}$$

$$g = T = f'(0)(x-a) + f(a)$$

$$= (2(e^{2}+1)(e^{2}-1/2))(x-a) + e^{2a} + e^{2} - a - 2$$

$$= (2(1+1)(1-1/2)(x) + 1 + 1 - 0 - 2$$

$$= 2x$$

4/4