Package 'agfh'

June 21, 2023

Type Package
Version 0.2.1
Date 2023-06-21
Title Agnostic Fay-Herriot Model for Small Area Statistics
Description Implements the Agnostic Fay-Herriot model, an extension of the traditional small area model. In place of normal sampling errors, the sampling error distribution is estimated with a Gaussian process to accommodate a broader class of distributions. This flexibility is most useful in the presence of bounded, multi-modal, or heavily skewed sampling errors.
License GPL (>= 3)
Encoding UTF-8
Imports ggplot2, goftest, ks, mvtnorm, stats
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Marten Thompson [aut, cre, cph], Snigdhansu Chatterjee [ctb, cph]
Maintainer Marten Thompson < thom 7058@umn.edu>
Repository CRAN
Date/Publication 2023-06-21 20:00:05 UTC
R topics documented:
adj_profile_likelihood_theta_var_maker adj_resid_likelihood_theta_var_maker agfh_theta_new_pred anderson_darling beta_err_gen cramer_vonmises

22

```
RM theta new pred ......
```

adj_profile_likelihood_theta_var_maker

Maker Function: Adjusted Profile Likelihood of Latent Variance

Description

A maker function that returns a function. The returned function is the adjusted profile likelihood of the data for a given (latent) variance, from Yoshimori & Lahiri (2014).

Usage

Index

```
adj_profile_likelihood_theta_var_maker(X, Y, D)
```

Arguments

- X observed independent data to be analyzedY observed dependent data to be analyzed
- D known precisions of response Y

Value

Returns the adjusted profile likelihood as a function of the variance term in the latent model.

Source

Marten Thompson thom7058@umn.edu

Examples

```
X <- matrix(1:10, ncol=1)
Y <- 2*X + rnorm(10, sd=1.1)
D <- rep(1, 10)
adj.lik <- adj_profile_likelihood_theta_var_maker(X, Y, D)
adj.lik(0.5)</pre>
```

```
adj_resid_likelihood_theta_var_maker
```

Maker Function: Adjusted Residual Likelihood of Latent Variance

Description

A maker function that returns a function. The returned function is the adjusted residual likelihood of the data for a given (latent) variance, from Yoshimori & Lahiri (2014).

Usage

```
adj_resid_likelihood_theta_var_maker(X, Y, D)
```

Arguments

X observed independent data to be analyzed
 Y observed dependent data to be analyzed
 D known precisions of response Y

Value

Returns the adjusted residual likelihood as a function of the variance term in the latent model.

Source

Marten Thompson thom7058@umn.edu

```
X <- matrix(1:10, ncol=1)
Y <- 2*X + rnorm(10, sd=1.1)
D <- rep(1, 10)
adj.lik <- adj_resid_likelihood_theta_var_maker(X, Y, D)
adj.lik(0.5)</pre>
```

agfh_theta_new_pred Agnostic Fay-Herriot Hierarchical Bayesian Model Predictions at Latent Level

Description

Find predictions of θ using posterior samples from the AGFH model

Usage

```
agfh_theta_new_pred(X_new, beta_samples, theta_var_samples)
```

Arguments

```
X_new single new independent data to be analyzed
beta_samples posterior samples of latent regression parameter
theta_var_samples
posterior samples of latent variance parameter
```

Details

 X_new should be $1 \times p$ shaped.

beta_samples and theta_var_samples should contain the same number of samples (columns for the former, length of the latter).

Value

Vector containing n samples-many estimates of θ at X_new.

Source

Marten Thompson thom7058@umn.edu

```
p <- 3
n.post.samp <- 10
X.new <- matrix(rep(1,p), nrow=1)
beta.samp <- matrix(rnorm(n.post.samp*p, mean=2, sd=0.1), ncol=n.post.samp)
thvar.samp <- runif(n.post.samp, 0.1, 1)
th.preds <- agfh_theta_new_pred(X.new, beta.samp, thvar.samp)</pre>
```

anderson_darling 5

anderson_darling

Anderson-Darling Normality Test

Description

Test a sample against the null hypothesis that it comes from a standard Normal distribution.

Usage

```
anderson_darling(samples)
```

Arguments

samples

vector of values to be tested

Details

Wrapper function for corresponding functionality in goftest. Originally, from Anderson and Darling (1954).

Value

A list containing

name authors of normality test applied i.e. 'Anderson Darling'

statistic scalar value of test statistics

p.value corresponding p-value of the test

Source

Anderson and Darling (1954) via goftest.

```
sample <- rnorm(100)
anderson_darling(sample)</pre>
```

6 beta_err_gen

beta_err_gen

Generate Data with Beta Sampling Errors

Description

The traditional Fay-Herriot small area model has a Normal latent variable and Normal observed response errors. This method generates data with Normal latent variables and Beta errors on the response. Note that the sampling errors are transformed so their mean and variance match the the first two moments of the traditional model.

Usage

```
beta_err_gen (M, p, D, lambda, a, b)
```

Arguments

М	number of areal units
р	dimension of regressors i.e. $x \in \mathbb{R}^p$
D	vector of precisions for response, length M
lambda	value of latent variance
а	first shape parameter of Beta distribution
b	second shape parameter of Beta distribution

Value

A list containing

D copy of argument 'D'

beta vector of length 'p' latent coefficients

lambda copy of argument 'lambda'
X matrix of independent variables

theta vector of latent effects
Y vector of responses
err vector of sampling errors

name of sampling error distribution, including shape parameters

Source

Marten Thompson thom 7058@umn.edu

```
M <- 50
p <- 3
D <- rep(0.1, M)
lamb <- 1/2
dat <- beta_err_gen(M, p, D, lamb, 1/2, 1/4)</pre>
```

cramer_vonmises 7

cramer_vonmises

Cramer-Von Mises Normality Test

Description

Test a sample against the null hypothesis that it comes from a standard Normal distribution.

Usage

```
cramer_vonmises(samples)
```

Arguments

samples

vector of values to be tested

Details

Wrapper function for corresponding functionality in goftest. Originally developed in Cramer (1928), Mises (1931), and Smirnov (1936).

Value

A list containing

name authors of normality test applied i.e. 'Cramer von Mises'

statistic scalar value of test statistics

p.value corresponding p-value of the test

Source

Cramer (1928), Mises (1931), and Smirnov (1936) via goftest.

```
sample <- rnorm(100)
cramer_vonmises(sample)</pre>
```

gamma_err_gen

gamma_err_gen

Generate Data with Gamma Sampling Errors

Description

The traditional Fay-Herriot small area model has a Normal latent variable and Normal observed response errors. This method generates data with Normal latent variables and Gamma errors on the response. Note that the sampling errors are transformed so their mean and variance match the the first two moments of the traditional model.

Usage

```
gamma_err_gen (M, p, D, lambda, shape, rate)
```

Arguments

М	number of areal units
р	dimension of regressors i.e. $x \in \mathbb{R}^p$
D	vector of precisions for response, length M
lambda	value of latent variance
shape	shape parameter of Gamma distribution

rate parameter of Gamma distribution

Value

rate

A list containing

D	copy of argument 'D'
beta	vector of length 'p' latent coefficients
lambda	copy of argument 'lambda'
Χ	matrix of independent variables

theta vector of latent effects
Y vector of responses
err vector of sampling errors

name of sampling error distribution, including shape and rate parameters

Source

Marten Thompson thom 7058@umn.edu

```
M <- 50
p <- 3
D <- rep(0.1, M)
lamb <- 1/2
dat <- gamma_err_gen(M, p, D, lamb, 1/2, 10)</pre>
```

hb_theta_new_pred 9

hb_theta_new_pred

Traditional Fay-Herriot Hierarchical Bayesian Model Predictions

Description

Find predictions using posterior samples from the traditional Fay-Herriot hierarchical bayesian model

Usage

```
hb_theta_new_pred(X_new, beta_samples, theta_var_samples)
```

Arguments

```
X_new single new independent data to be analyzed
beta_samples posterior samples of latent regression parameter
theta_var_samples
    posterior samples of latent variance parameter
```

Details

 X_new should be $1 \times p$ shaped.

beta_samples and theta_var_samples should contain the same number of samples (columns for the former, length of the latter).

Value

Vector containing n samples-many estimates of θ at X_new.

Source

Marten Thompson thom7058@umn.edu

```
p <- 3
n.post.samp <- 10
X.new <- matrix(rep(1,p), nrow=1)
beta.samp <- matrix(rnorm(n.post.samp*p, mean=2, sd=0.1), ncol=n.post.samp)
thvar.samp <- runif(n.post.samp, 0.1, 1)
th.preds <- hb_theta_new_pred(X.new, beta.samp, thvar.samp)</pre>
```

10 kolmogorov_smirnov

kolmogorov_smirnov

Kolmogorov-Smirnov Normality Test

Description

Test a sample against the null hypothesis that it comes from a standard Normal distribution.

Usage

```
kolmogorov_smirnov(samples)
```

Arguments

samples

vector of values to be tested

Details

Wrapper function for corresponding functionality in stats. Originally, from Kolmogorov (1933).

Value

A list containing

name of normality test applied i.e. 'Komogorov Smirnov'

statistic scalar value of test statistics

p.value corresponding p-value from test

Source

Kolmogorov (1933) via stats.

```
sample <- rnorm(100)
kolmogorov_smirnov(sample)</pre>
```

make_agfh_sampler 11

make_agfh_sampler	Maker Function: Agnostic Fay-Herriot Sampler	
-------------------	--	--

Description

A maker function that returns a function. The returned function is a sampler for the agnostic Fay-Herriot model.

Arguments

Χ	observed independent data to be analyzed
Υ	observed dependent data to be analyzed
D	known precisions of response Y
var_gamma_a	latent variance prior parameter, rgamma shape
var_gamma_b	latent variance prior parameter, rgamma rate
S	vector of starting support values for $g(\cdot)$
kern.a0	scalar variance parameter of GP kernel
kern.a1	scalar lengthscale parameter of GP kernel
kern.fuzz	scalar noise variance of kernel

Details

Creates a Metropolis-within-Gibbs sampler of the agnostic Fay-Herriot model (AGFH).

Value

Returns a sampler, itself a function of initial parameter values (a list with values for β , θ , the latent variance of θ , and starting values for g(.), typically zeros), number of samples, thinning rate, and scale of Metropolis-Hastings jumps for θ sampling.

Source

Marten Thompson thom 7058@umn.edu

```
n <- 10
X <- matrix(1:n, ncol=1)
Y <- 2*X + rnorm(n, sd=1.1)
D <- rep(1, n)
ag <- make_agfh_sampler(X, Y, D)

params.init <- list(
  beta=1,
  theta=rep(0,n),
  theta.var=1,</pre>
```

make_gibbs_sampler

```
gamma=rep(0,n)
)
ag.out <- ag(params.init, 5, 1, 0.1)</pre>
```

make_gibbs_sampler

Maker Function: Traditional Fay-Herriot Gibbs Sampler

Description

A maker function that returns a function. The returned function is a Gibbs sampler for the traditional Fay-Herriot model.

Usage

```
make_gibbs_sampler(X, Y, D, var_gamma_a=1, var_gamma_b=1)
```

Arguments

Х	observed independent data to be analyzed
Υ	observed dependent data to be analyzed
D	known precisions of response Y
var_gamma_a	latent variance prior parameter, rgamma shape
var_gamma_b	latent variance prior parameter, rgamma rate

Value

Returns a Gibbs sampler, itself a function of initial parameter values (a list with values for β , θ , and latent variance of θ), number of samples, and thinning rate.

Source

Marten Thompson thom 7058@umn.edu

```
n <- 10
X <- matrix(1:n, ncol=1)
Y <- 2*X + rnorm(n, sd=1.1)
D <- rep(1, n)
gib <- make_gibbs_sampler(X, Y, D)

params.init <- list(
   beta=1,
   theta=rep(0,n),
   theta.var=1
)
gib.out <- gib(params.init, 5, 1)</pre>
```

map_from_density 13

map_from_density

Calculate the MAP Estimate from Posterior Samples

Description

Find maximum a posteriori estimate using posterior samples

Usage

```
map_from_density(param.ts, plot=FALSE)
```

Arguments

param.ts vector of scalar samples plot boolean, plot or not

Details

Finds location of max of density from samples.

Value

Scalar MAP estimate.

Source

Marten Thompson thom7058@umn.edu

Examples

```
n.post.samp <- 10
beta.samp <- rnorm(n.post.samp, 0, 1/2)
map_from_density(beta.samp)</pre>
```

mse

Calculate the Mean Squared Error Between two Vectors

Description

Merely wanted to use such a function by name; nothing fancy

Usage

```
mse(x,y)
```

null_gen

Arguments

x vector of valuesy vector of values

Value

A scalar: the MSE between x and y.

Source

Marten Thompson thom7058@umn.edu

Examples

```
mse(seq(1:10), seq(10:1))
```

null_gen

Generate Data with Normal Sampling Errors

Description

The Fay-Herriot small area model has a Normal latent variable and Normal observed response. This generates data according to that specification.

Usage

```
null_gen (M, p, D, lambda)
```

Arguments

M number of areal units

p dimension of regressors i.e. $x \in \mathbb{R}^p$

D vector of precisions for response, length M

lambda value of latent variance

Value

A list containing

D copy of argument 'D'

beta vector of length 'p' latent coefficients

1ambda copy of argument 'lambda'X matrix of independent variables

theta vector of latent effects
Y vector of responses
err vector of sampling errors

name name of sampling error distribution

Source

Marten Thompson thom7058@umn.edu

Examples

```
M <- 50
p <- 3
D <- rep(0.1, M)
lamb <- 1/2
dat <- null_gen(M, p, D, lamb)</pre>
```

```
resid_likelihood_theta_var_maker
```

Maker Function: Residual Likelihood of Latent Variance

Description

A maker function that returns a function. The returned function is the (non-adjusted) residual likelihood of the data for a given (latent) variance, from Yoshimori & Lahiri (2014).

Usage

```
resid_likelihood_theta_var_maker(X, Y, D)
```

Arguments

X observed independent data to be analyzed
 Y observed dependent data to be analyzed
 D known precisions of response Y

Value

Returns the (non-adjusted) residual likelihood as a function of the variance term in the latent model.

Source

Marten Thompson thom7058@umn.edu

```
X <- matrix(1:10, ncol=1)
Y <- 2*X + rnorm(10, sd=1.1)
D <- rep(1, 10)
resid.lik <- resid_likelihood_theta_var_maker(X, Y, D)
resid.lik(0.5)</pre>
```

RM_beta_eblue

RM_beta_eblue

Traditional EBLUE Estimator of Beta

Description

Traditional EBLUE Estimator of Beta

Usage

```
RM_beta_eblue(X, Y, D, theta_var_est)
```

Arguments

Χ	observed independent data to be analyzed
Υ	observed dependent data to be analyzed
D	known precisions of response Y
theta_var_est	estimate of variance term for latent model

Details

Traditional EBLUE estimator of beta.

Value

Returns a vector estimate of beta.

Source

Marten Thompson thom 7058@umn.edu

```
X <- matrix(1:10, ncol=1)
Y <- 2*X + rnorm(10, sd=1.1)
D <- rep(1, 10)
th.var.est <- 0.1
RM_beta_eblue(X, Y, D, th.var.est)</pre>
```

RM_theta_eblup 17

RM_theta_eblup	Traditional EBLUP Estimator of Theta
----------------	--------------------------------------

Description

Traditional EBLUP Estimator of Theta

Usage

```
RM_theta_eblup(X, Y, D, theta.var.est)
```

Arguments

Χ	observed independent data to be analyzed
Υ	observed dependent data to be analyzed
D	known precisions of response Y
theta.var.est	estimate of variance term for latent model; if NA, will automatically use method-of-moments

Details

Traditional EBLUP estimator of latent values theta.

Value

Returns a vector of estimates of theta.

Source

 $Marten\ Thompson\ thom 7058@umn.edu$

```
X <- matrix(1:10, ncol=1)
Y <- 2*X + rnorm(10, sd=1.1)
D <- rep(1, 10)
th.var.est <- 0.1
RM_theta_eblup(X, Y, D, th.var.est)
RM_theta_eblup(X, Y, D)</pre>
```

RM_theta_new_pred

Traditional EBLUP Estimator of Theta for new X values

Description

Traditional EBLUP Estimator of Theta for new X values

Usage

```
RM_theta_new_pred(X.new, beta.est)
```

Arguments

X. new new independent data to be analyzed

beta.est estimate of regression term for latent model

Details

```
Simply X'beta.est
```

Value

Returns a vector of estimates of theta.

Source

Marten Thompson thom 7058@umn.edu

Examples

```
X <- matrix(1:10, ncol=1)
b <- 1
RM_theta_new_pred(X, b)</pre>
```

```
RM_theta_var_moment_est
```

Moment-Based Estimator of Latent Model Variance

Description

Simple moment-based estimator of the variance of the latent model.

Usage

```
RM_theta_var_moment_est(X, Y, D)
```

shapiro_wilk 19

Arguments

Χ	observed independent data to be analyzed
Υ	observed dependent data to be analyzed
D	known precisions of response Y

Details

Simple moment-based estimator of the variance of the latent model.

Value

Returns a scalar estimate of variance.

Source

Marten Thompson thom 7058@umn.edu

Examples

```
X <- matrix(1:10, ncol=1)
Y <- 2*X + rnorm(10, sd=1.1)
D <- rep(1, 10)
RM_theta_var_moment_est(X, Y, D)</pre>
```

shapiro_wilk

Shaprio-Wilk Normality Test

Description

Test a sample against the null hypothesis that it comes from a standard Normal distribution.

Usage

```
shapiro_wilk(samples)
```

Arguments

samples

vector of values to be tested

Details

Wrapper function for corresponding functionality in stats. Originally, from Shapiro and Wilk (1975).

20 test_u_normal

Value

A list containing

name authors of normality test applied i.e. 'Shapiro Wilk'

statistic scalar value of test statistics
p.value corresponding p-value of the test

Source

Shapiro and Wilk (1975) via stats.

Examples

```
sample <- rnorm(100)
shapiro_wilk(sample)</pre>
```

test_u_normal

Normality Test

Description

Test a sample against the null hypothesis that it comes from a standard Normal distribution with the specified test.

Usage

```
test_u_normal(samples, test)
```

Arguments

samples vector of values to be tested

test name of test, one of 'SW', 'KS', 'CM', 'AD'

Details

 $Convenience \ function \ for \ consistent \ syntax \ in \ calling \ shapiro_wilk, kolmogorov_smirnov, \ cramer_vonmises, \ and \ anderson_darling \ tests.$

Value

A list containing

name authors of normality test applied statistic scalar value of test statistics p.value corresponding p-value from test

theta_var_est_grid 21

Source

Marten Thompson thom7058@umn.edu

Examples

```
sample <- rnorm(100)
test_u_normal(sample, 'SW')</pre>
```

theta_var_est_grid

Basic Grid Optimizer for Likelihood

Description

A basic grid search optimizer. Here, used to estimate the variance in the latent model by maximum likelihood.

Usage

```
theta_var_est_grid(likelihood_theta_var)
```

Arguments

likelihood_theta_var

some flavor of likelihood function in terms of latent variance

Details

 $likelihood_theta_var\ may\ be\ created\ using\ adj_resid_likelihood_theta_var_maker\ or\ similar$

We recommended implementing a more robust optimizer.

Value

The scalar value that optimizes likelihood_theta_var, or an error if this value is on the search boundary $[10^{-6}, 10^2]$.

Source

Marten Thompson thom7058@umn.edu

```
X <- matrix(1:10, ncol=1)
Y <- 2*X + rnorm(10, sd=1.1)
D <- rep(1, 10)
adj.lik <- adj_resid_likelihood_theta_var_maker(X, Y, D)
theta_var_est_grid(adj.lik)</pre>
```

Index

```
adj_profile_likelihood_theta_var_maker,
adj_resid_likelihood_theta_var_maker,
agfh_theta_new_pred, 4
anderson_darling, 5
beta_err_gen, 6
cramer_vonmises, 7
gamma_err_gen, 8
hb_theta_new_pred, 9
kolmogorov_smirnov, 10
make_agfh_sampler, 11
make_gibbs_sampler, 12
map_from_density, 13
mse, 13
null_gen, 14
resid_likelihood_theta_var_maker, 15
RM_beta_eblue, 16
rm_beta_eblue (RM_beta_eblue), 16
RM_theta_eblup, 17
rm_theta_eblup (RM_theta_eblup), 17
RM_theta_new_pred, 18
rm_theta_new_pred (RM_theta_new_pred),
        18
RM_theta_var_moment_est, 18
rm_theta_var_moment_est
        (RM_theta_var_moment_est), 18
shapiro_wilk, 19
test_u_normal, 20
theta_var_est_grid, 21
```