Programming Practices Assignment 1 Getting familiar with assembly language and ARMSim

ABHISHEK GUPTA (2016CSJ0012)

February 6, 2018

1 Assumed Frequency

Frequnecy= 1 GHz

2 Instruction

There are total 12007 number of instructions.

3 Observed Time Elasped (According to computer)

Time Elasped is equal to 0.0151240 seconds.

4 Theoretical time elasped

Theoretically time elasped = $\frac{Total Latency}{Frequency} = \frac{52106}{10^9} \frac{Cycles}{sec^{-1}} = 5.21 \times 10^{-5}~s$

5 Total Energy

The total energy is equal to (100+100+110+(2000+100+100+100+100)*1000+1000*180+100+1100+1100+100+100+100+100+100)*1000+1000*180+10000)= $5170620~pJ~i.e.~5.170620\times10^{-6}~J.$

6 Total Latency

The Total Latency is equal to (1+1+1+1000*(20+1+1+1+1)+1000*2+1+1+1+1000*(20+1+1+1+1)+1000*2+100) = 52106 cycles.

7 Theoretical Average Power Dissipation

The Average Power Dissipation is equal to $\frac{TotalEnergy}{TheoreticalTimeElasped}=\frac{5.170620}{52}\frac{\mu J}{\mu s}=0.0994~J/s$ i.e. 0.0994 W.

8 Observed Average Power Dissipation

The observed average power dissipation $\frac{TotalEnergy}{ObservedTimeElasped}=\frac{5.170620}{0.0159}\frac{\mu J}{s}=325.19~\mu J/s~i.e~0.325\times 10^{-3}~J/s$

9 Cycles per Instruction

 $\label{eq:Cycles} \text{Cycles per Instruction} = \frac{Total Latency}{Total number of Instructions} = \frac{52106s}{12007} \\ \frac{Cycles}{Instruction} = 4.34 \\ \\ Cycles/Instruction.$

Copyright ©6Feb –2018 ABHISHEK GUPTA

NO Permission is granted to copy, distribute and/or modify this document under the terms \dots