

Department of Biomedical Informatics

BMI 500: https://tinyurl.com/bmi500 Introduction to Biomedical Informatics

5. Natural Language Processing

21st Sept, 2022

Abeed Sarker

Department of Biomedical Informatics, Emory University, Atlanta, GA USA

Expectations: Deliverables

Participation in class

Exploring and comparing texts using NLP

Understanding the creation of end-to-end (full stack) NLP pipelines

Overview questions

- What is Natural Language Processing (NLP)?
- Why is NLP important?
- What are some of the basic challenges for NLP?
- What has NLP accomplished so far, particularly in biomedical informatics?
- What is the future of NLP?

Overview questions

- What is Natural Language Processing (NLP)?
- Why is NLP important?
- What are some of the basic challenges and approaches for NLP?
- What has NLP accomplished so far, particularly in biomedical informatics?
- How can we get started with NLP?

What is natural language processing?

- Natural language = Human language
- Natural language != formal/programming language
- Overarching objectives:
 - Understand meanings
 - How do we understand language anyways?
 - Curate information/knowledge
 - How do we pass language through the years?
 - Automate language-related tasks
 - Natural language processing + information retrieval + machine learning – changed the world as we used to know it

Open domain *vs.* restricted domain NLP

- Open domains vs. restricted domains
 - e.g., news vs. medical publication
- NLP in restricted domains is more complicated
 - Implementing systems often requires domain knowledge (e.g., medical knowledge about diseases, symptoms etc.)
 - Domain specific terminologies

Natural language processing tasks

- Parsing
- Part of Speech Tagging
- Named Entity Recognition
- Natural Language Generation
- Speech Recognition
- Summarization
- Question Answering
- Machine Translation
- Some intersection between NLP and IR

Overview questions

- What is Natural Language Processing (NLP)?
- Why is NLP important?
- What are some of the basic challenges and approaches for NLP?
- What has NLP accomplished so far, particularly in biomedical informatics?
- How can we get started with NLP?

The importance of NLP

- Large volumes of knowledge encapsulated in text
- Internet:
 - Large volumes of information are being generated every day/minute/second
- There is too much information available to process manually
- Information increasing at an exponential rate
- Sources
 - Published science, social media, electronic health records, news papers, emails ...

Why should we process language

- Language is how we communicate knowledge
 - The origin of species
 - A brief history of time
- Language is culture; language is experience
 - Poetry
 - Music
- Language is fascinating
 - Sarcasm typically does not translate

NLP Growth

Language technology: current state

- Early progress
 - Email spam detection
 - POS tagging
 - Some NER
- Recent developments
 - Sentiment analysis
 - WSD
 - Misc. information extraction
- Difficult problems
 - Summarization
 - Question-answering
 - Language generation
 - Language understanding

Overview questions

- What is Natural Language Processing (NLP)?
- Why is NLP important?
- What are some of the basic challenges and approaches for NLP?
- What has NLP accomplished so far, particularly in biomedical informatics?
- How can we get started with NLP?

Hierarchy of language processing

- The analysis of natural language is not done at a single step
- Instead, language is typically dealt with at several layers of abstraction:
 - Lexical level (words or terms)
 - Syntactic level (organization of groups of words in sentences or clauses)
 - Semantic level (meanings of words/phrases)
 - Discourse level (across sentences and documents)

Morphology and morphological analyses

- Morphology concerns the structure of words
 - Words are made up of morphemes
 - The minimal information carrying units
 - Words are made up of a stem and zero or more affixes
- English only has suffixes and prefixes. Examples:
 - Box -> boxes, boxed; Car -> cars; party-> parties; walk-> walked, walking
 - legal->illegal
 - Vast majority of English terms have regular morphology

Stemming

- Most information retrieval and natural language processing applications benefit from reducing all morphological variants into a canonical form
- Stemming is the common approach to removing suffixes
- Porter stemmer
 - Uses a series of simple rules to strip endings
 - Stemming, stemmer, stemmed -> stem
 - Argued, arguing, argues, argue -> argu (the stem itself is not a word or the root)
- Many problems treat words with the same stem as synonyms

Porter stemmer

- Full algorithm (5-6 pages) available at:
 - http://people.scs.carlet on.ca/~armyunis/projec ts/KAPI/porter.pdf
- Many implementations available, including in nltk

In the rules below, examples of their application, successful or otherwise, are given on the right in k case. The algorithm now follows:

Initial steps to processing language

- Text 1: 'I like to paint'
- Text 2: 'I Like painting'
- Text 3: 'I like to play'
- Which of these two texts are similar?
- Word to word comparison:
 - Text 1 and 2: 1 word in common
 - Text 2 and 3: 1 word in common
 - Text 1 and 3: 3 words in common

	->	1, 2, 3
Like	->	2
like	->	1, 3
to	->	1, 3
paint	->	1
painting ->		2
play	->	3

After tokenization and stemming

- Text 1: [*I, like, to, paint*]
- Text 2: [I, Like, painting]
- Text 3: [I, like, to, play]
- Which of these two texts are similar?
- Word to word comparison:
 - Text 1 and 2: 2 words in common
 - Text 2 and 3: 1 word in common
 - Text 1 and 3: 3 words in common

Token		Texts
<u></u>	->	1, 2, 3
Like	->	2
like	->	1, 3
to	->	1, 3
paint	->	1, 2
paintin	g ->	2
play	->	3

Lowercasing

- For many NLP tasks, cases of terms are very important
- For example, named entity recognition
- Cases often give us clues about what a word represents
 - Names of people, cities, countries are typically in uppercase (Yahoo! vs. yahoo!)
 - Abbreviations are typically in uppercase
 - Sometimes also helpful for sentence tokenization
- However, in many cases, such as comparing content, case is not important
- Text normalizing/preprocessing commonly involves lowercasing of all texts

Texts after lowercasing

- Text 1: [*I, like, to, paint*]
- Text 2: [I, like, painting]
- Text 3: [*I, like, to, play*]
- Which of these two texts are similar?
- Word to word comparison:
 - Text 1 and 2: 3 words in common
 - Text 2 and 3: 2 words in common
 - Text 1 and 3: 3 words in common

Token		Texts
	->	1, 2, 3
Like	_ - >	2
like	->	1, 2, 3
to	->	1, 3
paint	->	1, 2
paintin	g ->	2
play	->	3

Stopword removal

- Stopwords
 - Commonly used words that are typically not important for NLP and information retrieval tasks
- Common stopwords
 - 'and', 'but', 'how', 'or'...
- These words may be useful in semantic language representation, in sequential models, and in deep language analysis
- Not useful in content-oriented NLP
 - Does it matter how many times the word 'to' occurs in a text?

nltk and stopwords

nltk provides its own list of English stopwords

```
from nltk.corpus import stopwords
print set(stopwords.words('english'))
```

to, from, over, being, both, and, are

Texts after stopword removal

- Text 1: [*I, like, to, paint*]
- Text 2: [I, like, painting]
- Text 3: [I, like, to, play]
- Which of these two texts are similar?
- Word to word comparison:
 - Text 1 and 2: 3 words in common
 - Text 2 and 3: 2 words in common
 - Text 1 and 3: 2 words in common

<u>Token</u>		<u>Texts</u>
1	->	1, 2, 3
Like	_>_	2
like	->	1, 2, 3
†0	_>_	1, 3
paint	->	1, 2
paintin	g ->	2
play	->	3

Ambiguity

- Sentences are complex; large documents contain many complex sentences
- Ambiguity is one of the many challenges to NLP
- Example 1:
 - I saw the man on the hill with a telescope
- So, who had the telescope?

Interpretation of natural language

- I saw the man on the hill with a telescope
 - I saw the man. The man was on the hill. I was using a telescope.
 - I saw the man. I was on the hill. I was using a telescope.
 - I saw the man. The man was on the hill. The hill had a telescope.
 - I saw the man. I was on the hill. The hill had a telescope.
 - I saw the man. The man was on the hill. I saw him using a telescope.

Word sense disambiguation

- Resolve the meaning of a term in a text segment
- The word bank has multiple meanings:
- Did you put your money in the bank?
 - (noun) An institution for receiving and lending money
- We sat and chatted by the river bank
 - (noun) the land alongside or sloping down to a river or lake
- Context is everything!

Denotation vs. connotation

- Denotation
 - Original (dictionary) meaning of a text

- Connotation
 - Implied meanings of texts that are not literal

Other common preprocessing methods

- Non-alphanumeric character removal
- Encoding conversion
- Parsing
 - Can be computationally expensive
 - Need training on domainspecific texts
- Vectorization
- Pre-training

Overview questions

- What is Natural Language Processing (NLP)?
- Why is NLP important?
- What are some of the basic challenges and approaches for NLP?
- What has NLP accomplished so far, particularly in biomedical informatics?
- How can we get started with NLP?

Biomedical NLP

- Rapid growth in biomedical literature
 - MEDLINE (25+ million articles)
- An overwhelming amount of (very valuable for discovery) information is "hiding" in biomedical text
- Information overload
- Types of biomedical data
 - Published literature
 - Electronic health records/clinical notes
 - Social media health data (very recent; very exciting)

Challenges to biomedical NLP

- NLP is more challenging compared to nonmedical text
 - Lexical level challenges
 - Identifying words (tokenization)
 - Identifying lexical variants (due to inflection and derivation)
 - Disambiguation and normalization (especially for unstructured texts)
 - Identification of multi-token terms
 - Complex domain-specific terminologies
 - Complex associations (e.g., between medications and treatments)

Resources for Biomedical NLP

- Vocabularies/ontologies/knowledge bases
- For example, the Unified Medical Language System (UMLS)
 - A collection of many health and biomedical vocabularies
 - Three tools:
 - Metathesaurus
 - Terms and codes from many vocabularies
 - Semantic network
 - Broad categories and semantic types
 - Relationships between semantic types
- More next week...

Overview questions

- What is Natural Language Processing (NLP)?
- Why is NLP important?
- What are some of the basic challenges and approaches for NLP?
- What has NLP accomplished so far, particularly in biomedical informatics?
- How can we get started with NLP?

Python and nltk

- For this week's lab work, we will do some basic
 NLP using python and nltk
- Python
 - Very popular for NLP and data science in general
 - Version 3.* is currently supported, although many people still use 2.*
 - Distributions available (e.g., Anaconda):
 https://www.anaconda.com/products/individual
- nltk <u>N</u>atural <u>L</u>anguage <u>T</u>ool<u>k</u>it
 - Has been popular for a while
 - Available: https://www.nltk.org/

Pre-requisites

- Python 3.* distribution
 - Anaconda is great
- nltk
 - It's a good idea to run nltk.download()
- A good IDE can help
 - My personal preference is PyCharm: https://www.jetbrains.com/pycharm/
 - Many other IDEs available
- Now to the lab work!

NLP lab work (week 5)

- Tasks:
 - NLP basics
- Homework:
 - https://drive.google.com/file/d/1AQq9r1JR022ubdS-BF2MGp6y8hgvcVK7/view?usp=sharing
- Practice homework (optional): https://drive.google.com/file/d/1S7N Fwn9tCDmcGPNkh hqAcyM6TqNltqR/view?usp=sharing
- Solutions will be posted next week