Tema 10. Minería Estadística de datos. Análisis de datos bioinformáticos

Beatriz Coronado Sanz

12 de febrero de 2019

1. Introducción

Vamos a estudiar un conjunto de datos RNA-seq reales utilizando el modelo de regresión binomial negativa. Para ello usaremos el proyecto de software libre Bioconductor y los paquetes. DESeq y DESeq2

Tras procesar los datos, realizaremos contrastes de hipótesis para detectar determinados genes y mostraremos unas gráficas con los resultados obtenidos.

2. Datos del trabajo

Usaremos datos procedentes de un experimento sobre el cultivo de células de la mosca *Drosophila* melanogaster.

Tras cargar todas las librerías necesarias, mostramos la cabecera de la tabla de conteos de nuestros datos. En esta tabla las filas corresponden a los genes y las columnas a las muestras o individuos.

treated1fb 1	treated2fb	treated3fb	untreated1fb	untreated2fb
0	0	1	0	0
78	46	43	47	89
2	0	0	0	0
1	0	1	0	1
3187	1672	1859	2445	4615
369	150	176	288	383
untreated3fl	untreated	l4fb		
()	0		
53	3	27		
:	1	0		
:	1	2		
2063	3 1	1711		
135	5	174		
	0 78 2 1 3187 369 untreated3fN 53	0 0 78 46 2 0 1 0 3187 1672 369 150 untreated3fb untreated 0 53 1	0 0 1 78 46 43 2 0 0 1 0 1 3187 1672 1859 369 150 176 untreated3fb untreated4fb 0 0 53 27 1 0 1 2 2063 1711	78 46 43 47 2 0 0 0 1 0 1 3187 1672 1859 2445 369 150 176 288 untreated3fb untreated4fb 0 0 53 27 1 0 1 2 2063 1711

Sus dimensiones son:

[1] 14470 7

Es necesario tener los datos en un formato adecuado para DESeqDataSet. Para realizar esto obtenemos la información de las columnas de la matriz de conteos.

	${\tt condition}$	type
treated1fb	treated	single-read
treated2fb	treated	paired-end
treated3fb	treated	paired-end
${\tt untreated1fb}$	${\tt untreated}$	single-read
untreated2fb	${\tt untreated}$	single-read
${\tt untreated3fb}$	${\tt untreated}$	paired-end
untreated4fb	${\tt untreated}$	paired-end

Tenemos dos factores para cada individuo: la condición, que diferencia entre individuos no tratados e individuos tratados, y el tipo de secuenciación empleada, que puede ser "single-read" o "paired-end".

Tras esto construimos un DESeqDataSet. Para realizar el estudio queremos tener en cuenta el factor *condition*, para diferenciar entre individuos tratados e individuos no tratados. En nuestro ejemplo, tenemos 3 individuos tratados y 4 no tratados.

Aplicando la función factor a la columna que nos interesa en colData, asignamos un orden a los distintos niveles. De esta forma los individuos no tratados se consideran el nivel de control.

3. Estudios estadístico y análisis diferencial

El análisis de expresión diferencial en DESeq2 usa un modelo lineal generalizado de la forma $K_{ij} \sim NB(\mu_{ij}, \alpha_i)$ con $\mu_{ij} = s_j q_{ij} > 0$, $\alpha_i > 0$ donde K_{ij} es el número de conteos del gen i en la muestra j. Se sigue una distribución binomial negativa con una media ajustada μ_{ij} (producto de un factor de tamaño específicico para cada muestra s_j y un parámetro proporcional a la concentración de los fragmentos real esperada en la muestra j), y una dispersión específica para cada gen, α_i .

Como estamos interesados en encontrar aquellos genes que presenten diferentes niveles de expresión según se trate de un individuo control o un individuo tratado, el contraste que realizamos es:

$$\begin{cases} H_0 : \log_2 \frac{\mu_{iA}}{\mu_{iB}} = 0 \\ H_1 : \log_2 \frac{\mu_{iA}}{\mu_{iB}} \neq 0 \end{cases}$$

donde μ_{iA} es la media de conteos del gen i en el grupo A (individuos no tratados) y μ_{iB} la media de conteos del mismo gen pero en el grupo B (individuos tratados). A $\frac{\mu_{iA}}{\mu_{iB}}$ se le denomina fold-change.

Debemos realizar este contraste para cada uno de los genes de forma independiente.

Realizamos el análisis de expresión diferencial para nuestros datos. Se ordenan los resultados por orden creciente del p-valor ajustado. De esta forma, los primeros genes que aparecen en la tabla son los que muestran una mayor diferencia en los niveles de expresión entre los dos grupos.

```
log2 fold change (MLE): condition treated vs untreated Wald test p-value: condition treated vs untreated DataFrame with 6 rows and 6 columns
```

```
baseMean
                                log2FoldChange
                                                            lfcSE
                   <numeric>
                                     <numeric>
                                                        <numeric>
FBgn0039155 453.275338598749 -4.41843095434387 0.202810428941139
FBgn0029167 2165.04449786732 -2.20328535517881 0.109970049254461
FBgn0035085 366.827879044973 -2.48223410077333 0.155683668262555
FBgn0029896 257.902702279936 -2.58137612216074 0.189388334413868
FBgn0034736 118.407382327029 -3.32697374867937 0.257868959634414
FBgn0040091 610.603484946151 -1.54669447836141 0.130704799638395
                         stat
                                             pvalue
                                                                      padj
                    <numeric>
                                          <numeric>
                                                                 <numeric>
FBgn0039155 -21.7860145428035 3.14893542201204e-105 2.58307172667648e-101
FBgn0029167 -20.0353220728363
                               2.71080044420307e-89
                                                     1.11183480218989e-85
FBgn0035085 -15.9440879603834
                               3.13178980573261e-57
                                                     8.56335725880821e-54
FBgn0029896 -13.6300692972973
                               2.65328245257746e-42
                                                     5.44121898962322e-39
FBgn0034736 -12.9018000204293
                               4.39704860471644e-38 7.21379794089778e-35
FBgn0040091 -11.8334941229432
                              2.62003589995331e-32
                                                     3.58202574788617e-29
```

Las interpretación de las columnas de la tabla de resultados obtenida es la siguiente:

- baseMean: media de los conteos normalizados.
- lo2FoldChange: un valor nulo indica que el gen en cuestión presenta los mismos niveles de expresión para ambos grupos. Un valor no nulo indica que el gen se expresa de forma diferente en cada grupo y, según el signo de dicho valor, se ve si presenta un mayor nivel de expresión en el grupo de individuos no tratados o en el grupo de los tratados.
- p-value: p-valor para el contraste descrito
- padj: p-valor ajustado. Al realizar el constraste para cada uno de los genes podemos encontrarnos con el problema de comparaciones múltiples, es decir, al realizar un gran número de contrastes, se produce un aumento de la probabilidad de obtener falsos positivos y cometer un error de tipo I (rechazar la hipótesis nula, siendo verdadera). El programa ajusta los p-valores por el procedimiento de Benjamin-Hochberg.

Nos interesa conocer todos los genes diferencialmente expresados, es decir, aquellos genes para los que se ha rechazado la hipótesis nula para un nivel de significación $\alpha = 0,01$.

En la siguiente gráfica vemos los valores de log2FoldChange sobre la media de conteos. Los puntos rojos pertenecen a aquellos genes cuyo constraste ha rechazado la hipótesis nula (genes diferencialmente expresados). En este caso hay 6675 genes de este tipo.

Gr'afico MA

Hasta ahora solo hemos usado el factor condición, pero también podemos crear el modelo teniendo en cuenta el tipo de secuenciaciación. El modelo que obtenemos es:

 $\log 2$ fold change (MLE): condition treated vs untreated Wald test p-value: condition treated vs untreated DataFrame with 6 rows and 6 columns

lfcSE	log2FoldChange	baseMean	
<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	
3.87108289314	0.687317621016542	0.159468650583408	FBgn0000003
0.312794873267806	0.0124835813497824	52.2256775955264	FBgn0000008
3.43795226129079	0.725641096785045	0.389708020282597	FBgn0000014
2.12479201701311	-0.659586898950503	0.905358372171504	FBgn0000015
0.117714619266187	-0.274660627261139	2358.24340775372	FBgn0000017
0.161511724341256	-0.0688574674151578	221.241556161604	FBgn0000018
padj	pvalue	stat	
<numeric></numeric>	<pre><numeric></numeric></pre>	<numeric></numeric>	
NA	0.859075004234684	0.177551770393382	FBgn0000003
0.992489343047921	0.968165036742223	0.0399098016516859	FBgn0000008

FBgn0000014 0.211067822248527 0.832834348712066 NA FBgn0000015 -0.310424217367734 0.756238380329955 NA FBgn0000017 -2.33327541620002 0.0196336948558276 0.138952871310778 FBgn0000018 -0.42633107717722 0.669866615819642 0.908520986767696

4. Evaluación de la calidad de los datos

Queremos encontrar genes diferencialmente expresados y tenemos que ver muestras cuyo tratamiento experimental ha sufrido alguna anomalía que puede transformar los datos obtenidos en perjudiciales. Para ver esto realizamos un control de calidad.

4.1. Mapa de calor de la tabla de conteos

Se puede crear un mapa de calor a partir de la tabla de conteos, los que nos proporciona información sobre los genes que muestran un mayor nivel de expresión en el experimento. El mapa de calor de los conteos brutos es:

Vemos los conteos de los 30 genes con mayor nivel de expresión. Las filas representan a los genes y las columnas a los individuos. A mayor valor de conteo, más intensidad de color.

En el análisis diferencial trabajamos con los conteos brutos y usamos distribuciones discretas, pero para análisis posteriores puede ser útil trabajar con una transformación de los datos. El mapa de calor para los datos transformados mediante la función rlogTransformation es:

4.2. Mapa de calor de las distancias entre muestras

Podemos realizar un análisis de conglomerados (cluster) sobre los datos transformados. Para ello tenemos que aplicar la función *dist* a la traspuesta de la matriz de conteos transformados para obtener las distancias euclídeas entre las muestras. La matriz de distancias resultante es:

	treated1fb	${\tt treated2fb}$	${\tt treated3fb}$	${\tt untreated1fb}$	untreated2fb
treated1fb	0.0000	16.065480	17.784211	18.24555	17.30651
treated2fb	16.06548	0.000000	8.731307	19.33040	20.18860
treated3fb	17.78421	8.731307	0.000000	20.81854	21.33274
untreated1fb	18.24555	19.330396	20.818541	0.00000	15.88771

untreated2fb	17.30651	20.188596	21.332739	15.88771	0.00000	
untreated3fb	21.43401	16.774194	17.160940	17.50276	15.04006	
untreated4fb	20.94888	15.602292	15.406478	15.58571	15.79327	
untreated3fb untreated4fb						
treated1fb	21.43401	L 20.94	.888			
treated2fb	16.77419	15.60	229			
treated3fb	17.16094	15.40	648			
untreated1fb	17.50276	15.58	3571			
untreated2fb	15.04006	5 15.79	327			
untreated3fb	0.00000	11.02	415			
untreated4fb	11.02415	0.00	0000			

A partir de la matriz de distancias podemos crear el mapa de calor. Los resultados obtenidos en dicho mapa deben coincidir con los que observamos en la matriz de distancias: los individuos más alejados en la matriz de distancias deben ser los más alejados en el mapa de calor. Los mismo ocurre con los individuos más cercanos. El mapa de calor resultante es:

Los colores más fuertes indican mayor similitud entre los datos. Podemos observar también los valores de las ditancias y cuántos pares de muestras presentan ese valor.

4.3. Componentes principales de las muestras

Estudiar las componentes principales de las muestras sirve para ver el efecto toal de las covariables, así como la posible existencia de efectos lotes. En la siguiente gráfica se representan la primera y segunda componente principal de nuestros datos:

