Shortest paths with negative weights: failed attempts

Dijkstra. May not produce shortest paths when edge lengths are negative.

Dijkstra selects the vertices in the order s, t, w, v But shortest path from s to t is $s \rightarrow v \rightarrow w \rightarrow t$.

Reweighting. Adding a constant to every edge length does not necessarily make Dijkstra's algorithm produce shortest paths.

Adding 8 to each edge weight changes the shortest path from $s \rightarrow v \rightarrow w \rightarrow t$ to $s \rightarrow t$.

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path lengths from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

```
d[s] \leftarrow 0
d[s] \leftarrow 0
for each v \in V - \{s\}
do \ d[v] \leftarrow \infty
initialization
for i \leftarrow 1 to |V| - 1
    do for each edge (u, v) \in E
        do if d[v] > d[u] + w(u, v)
then d[v] \leftarrow d[u] + w(u, v) relaxation
step
for each edge (u, v) \in E
    do if d[v] > d[u] + w(u, v)
             then report that a negative-weight cycle exists
At the end, d[v] = \delta(s, v), if no negative-weight cycles.
Time = O(VE).
```


Initialization.

Order of edge relaxation.

End of pass 1.

End of pass 2 (and 3 and 4).

A dynamic programming view of Bellman-Ford

Another view

Definition. Let $dist_s(v, i)$ be minimum cost of a path from s to v that uses at most i edges.

Can recursively define $dist_s(v, i)$:

- 1. If best s v path uses at most i 1 edges, then $dist_s(v, i) = dist_s(v, i 1)$.
- 2. If best s v uses i edges, and the last edge is (w, v), then $dist_s(v, i) = d(w, v) + dist_s(w, i 1)$.

Subproblems, picture

Recurrence

Let N(w) be the neighbors of w.

 $dist_s(v, i) = cost of best path from s to v using at most i edges.$

Recurrence:

$$dist_s(v, i) = \min \begin{cases} dist_s(v, i - 1) \\ \min_{w \in N(v)} dist_s(w, i - 1) + d(w, v) \end{cases}$$

Base case: $dist_s(v, 1) = d(s, v)$ or ∞ if (s, v) does not exist

Goal: Compute $dist_s(t, n-1)$.

Important Facts About This Recurrence

Recurrence:

$$dist_s(v, i) = \min \begin{cases} dist_s(v, i - 1) \\ \min_{w \in N(v)} dist_s(w, i - 1) + d(w, v) \end{cases}$$

- $ightharpoonup dist_s(v,x)$ depends only on $dist_s(w,y)$ for which y is smaller than x.
- ▶ There are only $|V| \times (|V| 1)$ possible arguments for $dist_s(\cdot, \cdot)$.

Code

```
BellmanFord(G=(V,E), s, t):
 Initialize dist_s[x, 1] to d(s,x) for all x
For i = 1, ..., |V|-1:
  For v in V:
     // find the best w on which to apply the Ford rule
     best_w = None
     for w in N(v): // N(v) are neighbors of v
        best_w = min(best_w, dist_s[w, i-1] + d[w,v])
     dist s[v,i] = min(best w. dist s[v. i-1])
  EndFor
 EndFor
Return dist s[t, n-1]
```

Running Time

Simple Analysis:

- ➤ O(n²) subproblems
- O(n) time to compute each entry in the table (have to search over all possible neighbors w).
- ▶ Therefore, runs in $O(n^3)$ time.

A better analysis:

- ▶ Let n_v be the number of edges entering v.
- ▶ Filling in each entry actually only takes $O(n_v)$ time.
- ► Total time = $O(n \sum_{v \in V} n_v) = O(nm)$.

Single-source shortest paths with negative weights

year	worst case	discovered by
1955	$O(n^4)$	Shimbel
1956	$O(m n^2 W)$	Ford
1958	O(m n)	Bellman, Moore
1983	$O(n^{3/4} m \log W)$	Gabow
1989	$O(m \ n^{1/2} \log(nW))$	Gabow–Tarjan
1993	$O(m n^{1/2} \log W)$	Goldberg
2005	$O(n^{2.38} W)$	Sankowsi, Yuster–Zwick
2016	$\tilde{O}(n^{10/7}\log W)$	Cohen–Mądry–Sankowski–Vladu
20xx	222	

single-source shortest paths with weights between -W and W