Molekylær Dynamikk

Oblig 3

Øyvind Sigmundson Schøyen

Kandidatnummer: 30

Avsluttande prosjekt i FYS3150

FYS3150 Computational Physics Universitetet i Oslo

1. desember 2014

Samandrag

I dette prosjektet har me tatt for oss modellering av argon på atomært nivå. Me har vore interesserte i å lage eit program som skal lage ein atomstruktur etter eige ynskje. I tillegg har me ville sjå på korleis eit slikt system utvikler seg over tid og måle statistiske eigenskapar ved det. For å modellere eit så realistisk resulatat innenfor det som er mogleg å køyre på ein pc har me utnytta cellelister for å auke hastigheita på programmet. For krafta har me nytta Lennard Jones potensialet og som integrator har me brukt Velocity Verlet-algoritma. Programma våre er objektorienter C++-kode med eit Python rammeverk som skal enklast mogleg køyre programmet vårt for forskjellige parametrar og plotte verdiar. Me nyttar VMD for å visualisere atoma i rommet. All kjeldekode ligg på github.

Rett litt på denne...

https://github.com/Schoyen/molecular-dynamics-fys3150

Innhald

Introduksjon	3
Fysikken bak molekylær dynamikken Oppsett	4 4 5
Programstruktur	6
Køyrbarheit	7
Resultat	8
Feilestimat	9

Introduksjon

Oppgåva me er gjevne har gått ut på å modellere eit fysisk system samt bruke objektorientert programmering til å holde ein ryddig, oversiktlig, samt effektiv kode. I byrjinga er me gjeve ein kode som lagar 100 argon atom og gjer dei ein tilfeldig retning og hastighet. Gjeve lang nok tid vil atoma drive vekk. Me vil difor nytte "periodiske randbetingelsar" for å halde atoma i nærleiken. Grunna hastigheitar gjevne frå Maxwell-Bolzmann distribusjon vil systemet ha ein ikkje-null rørslemengde som me vil fjerne. Me vil deretter lage ein krystallstruktur kor me startar simuleringa av atoma. I eit slik lukka system vil total energien vere bevart, men grunna numerisk avrunding er det ikkje alltid dette held mål. Ein stabil alogritme som me vil nytte er "Velocity Verlet" som er ein symplektisk integrator. Me vil no byrje å måle statistiske eigenskapar som energi og temperatur. For å kunne køyre koden for store system vil me derimot utvikle ein kjappar algoritme når me rekner ut krafta mellom atompara. Dette løyser me med cellelister. Til slutt, i fyrste del av prosjektet, legg me til ein termostat som let oss kontrollere temperaturen i systemet.

God lesning!

Fysikken bak molekylær dynamikken

I denne delen av rapporten vil me sjå på dei forskjellige eigenskapane me måler i MD-koda vår. Eventuelle måleresultat vil bli vist i resultat-seksjonen.

Oppsett

Systemet med atom me set opp krev nokre tilpassningar for å gje eit realistisk resultat. Det fyrste me vil gjere å plassera atom i ein krystallstruktur. For Argon vil me då nytte "face-centered cubic lattice" (FCC). Me plasserer fire og fire atom i ei einingscelle. Posisjonane til kvart atom vil vere gjeve ved

$$\mathbf{r}_1 = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k},$$

$$\mathbf{r}_2 = \frac{b}{2}\mathbf{i} + \frac{b}{2}\mathbf{j} + 0\mathbf{k},$$

$$\mathbf{r}_3 = 0\mathbf{i} + \frac{b}{2}\mathbf{j} + \frac{b}{2}\mathbf{k},$$

$$\mathbf{r}_4 = \frac{b}{2}\mathbf{i} + 0\mathbf{j} + \frac{b}{2}\mathbf{k}.$$

Her vil b vere ein konstant, me skal seinare sjå på korleis trykket er avhengig av denne.

Etter at atoma vert plasserte i einingscellene vil me gje dei ein liten starthastighet kor me nyttar Maxwell-Boltzmann distribusjon. Då vil

$$\mathbf{v} \propto \sqrt{T}$$
.

Hastigheita til atoma vil bli fordelte tilfeldig i rommet. Resultatet er at systemet har eit ikkje-null fartsmoment. Før me byrjar å rekne ut nye posisjonar vil me fjerne dette fartsmomentet. Me vil då finne den totale hastigheita til systemet og trekke denne frå kvart atom.

$$\mathbf{V} = \frac{1}{M} \sum_{i}^{N} m_{i} \mathbf{v}_{i}^{\text{før}},$$

$$\mathbf{v}_{i}^{\text{etter}} = \mathbf{v}_{i}^{\text{før}} - \mathbf{V}, \qquad i \in [1, N],$$

kor \mathbf{V} er den total hastigheita til systemet, N er antal atom, M er den totale massa til alle atoma summert opp. Dette bidrar til at systemet vårt ikkje har ein total hastigheit, men heller står i ro.

Av mangel på moglegheit til å simulere eit uendeleg stort system for å få energibevaring, implementerer me periodiske randbetingelsar. Viss eit atom

har ein posisjon som ligg utanfor storleiken på systemet vårt vil me flytte atomet slik at det kjem inn frå den andre sida av systemet. For eit stort system kan dette vere ei god tilnærming då det heile tida forsvinn atom ut frå eit lite område, men samstundes kjem det inn nye atom slik at tettheten er jamn. Dette vil og vere med på å gje oss bevaring av total energi då det ikkje går noko tap til vegger og liknande. Me er no klare til å sjå på nokre eigenskapar ved systemet etter som tida går.

Lennard Jones

For å få ein fysisk effekt på systemet må me byrje å rekne ut krafta mellom atoma. Me nyttar Lennard Jones potensialet for å finne krafta mellom atompara. Lennard Jones har den eigenskapen at potensialet tek med den fråstøytande og den tiltrekkjande krafta mellom para. Potensialet er gjeve ved

$$U(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right],$$

kor r_{ij} er avstanden frå atom i og j, σ og ϵ er konstantar som bestemmer kva distanse potensialet er null og kor djup potensialbrønnen skal vere. Me finn krafta ved å ta den negative gradienten til potensialet. Då får me

$$\mathbf{F}(\mathbf{r}_{ij}) = -\nabla U(r_{ij}) = -\frac{\partial U(r_{ij})}{\partial r_{ij}}$$
$$= -4\epsilon \left[12 \left(\frac{\sigma^{12}}{r_{ij}^{14}} \right) - 6 \left(\frac{\sigma^{6}}{r_{ij}^{8}} \right) \right] \mathbf{r}_{ij}.$$

Programstruktur

Køyrbarheit

Resultat

Feilestimat