

Instructor Materials Chapter 5: Switch Configuration

CCNA Routing and Switching
Routing and Switching Essentials v6.0

Cisco Networking Academy® Mind Wide Open™

Chapter 5: Switch Configuration

Routing and Switching Essentials v6.0

Cisco | Networking Academy® | Mind Wide Open™

5.1 Basic Switch Configuration

- Configure initial settings on a Cisco switch.
- Configure switch ports to meet network requirements.

5.2 Switch Security: Management and Implementation

- Configure the management virtual interface on a switch.
- Configure the port security feature to restrict network access.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential '

5.1 Basic Switch Configuration

Cisco | Networking Academy® | Mind Wide Open™

- 1. Power-on self test (POST).
- Run boot loader software.
- 3. Boot loader performs low-level CPU initialization.
- 4. Boot loader initializes the flash file system.
- 5. Boot loader locates and loads a default IOS operating system software image into memory and passes control of the switch over to the IOS.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Configure a Switch with Initial Settings

Switch Boot Sequence (cont.)

To find a suitable Cisco IOS image, the switch goes through the following steps:

- **Step 1.** It attempts to automatically boot by using information in the BOOT environment variable.
- **Step 2.** If this variable is not set, the switch performs a top-to-bottom search through the flash file system. It loads and executes the first executable file, if it can.
- **Step 3.** The IOS software then initializes the interfaces using the Cisco IOS commands found in the configuration file and startup configuration, which is stored in NVRAM.

Note: The **boot system** command can be used to set the BOOT environment variable. Use the **show boot** command to see to what the current IOS boot file is set.

Configure a Switch with Initial Settings

Recovering From a System Crash

- The boot loader can also be used to manage the switch if the IOS cannot be loaded.
- The boot loader can be accessed through a console connection by:
 - 1. Connecting a PC by console cable to the switch console port. Unplug the switch power cord.
 - Reconnecting the power cord to the switch and press and hold the Mode button.
 - 3. The System LED turns briefly amber and then solid green. Release the Mode button.
- The boot loader switch: prompt appears in the terminal emulation software on the PC.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 16

Switch LED Indicators

- Each port on Cisco Catalyst switches have status LED indicator lights.
- By default, these LED lights reflect port activity, but they can also provide other information about the switch through the Mode button.
- The following modes are available on Cisco Catalyst 2960 switches:
 - System LED
 - Redundant Power System (RPS) LED
 - Port Status LED
 - Port Duplex LED
 - Port Speed LED
 - Power over Ethernet (PoE) Mode LED

Configure a Switch with Initial Settings

Preparing for Basic Switch Management

To remotely manage a Cisco switch, it must be configured to access the network.

- A console cable is used to connect a PC to the console port of a switch for configuration.
- The IP information (address, subnet mask, gateway) is to be assigned to a switch virtual interface (SVI).
- If managing the switch from a remote network, a default gateway must also be configured.
- Although these IP settings allow remote management and remote access to the switch, they
 do not allow the switch to route Layer 3 packets.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 1

Configuring Switch Management Access

Configure Switch Management Interface

Cisco Switch IOS Commands		
Enter global configuration mode.	S1# configure terminal	
Enter interface configuration mode for the SVI.	S1(config)# interface vlan 99	
Configure the management interface IP address.	S1(config-if)# ip address 172.17.99.11 255.255.255.0	
Enable the management interface.	S1(config-if)# no shutdown	
Return to the privileged EXEC mode.	Sl(config-if)# end	
Save the running config to the startup config.	S1# copy running-config startup-config	

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Configuring Switch Management Access (cont.)

Configure Switch Default Gateway

Cisco Switch IOS Commands		
Enter global configuration mode.	S1# configure terminal	
Configure the default gateway for the switch.	S1(config)# ip default-gateway 172.17.99.1	
Return to the privileged EXEC mode.	S1(config)# end	
Save the running config to the startup config.	S1# copy running-config startup-config	

Configuring Switch Management Access (cont.)

Verify Switch Management Interface Configuration

Configure Switch Ports

Duplex Communication

Full-Duplex Communication

Half-Duplex Communication

Configure Switch Ports at the Physical Layer

Configure Duplex and Speed

- Certain cable types (straight-through or crossover) were historically required when connecting devices.
- The automatic medium-dependent interface crossover (auto-MDIX) feature eliminates this problem.
- When auto-MDIX is enabled, the interface automatically detects and appropriately configures the connection.
- When using auto-MDIX on an interface, the interface speed and duplex must be set to auto.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 24

Configure auto-MDIX

Cisco Switch IOS Commands	
Enter global configuration mode.	S1# configure terminal
Enter interface configuration mode.	S1(config)# interface fastethernet 0/1
Configure the interface to autonegotiate duplex with the connected device.	S1(config-if)# duplex auto
Configure the interface to autonegotiate speed with the connected device.	S1(config-if)# speed auto
Enable auto-MDIX on the interface.	S1(config-if)# mdix auto
Return to the privileged EXEC mode.	S1(config-if)# end
Save the running config to the startup config.	S1# copy running-config startup-config

Verify auto-MDIX


```
S1# show controllers ethernet-controller fa 0/1 phy | include
Auto-MDIX
Auto-MDIX : On [AdminState=1 Flags=0x00056248]
S1#
```

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Verifying Switch Port Configuration

Verification Commands

Cisco Switch IOS Command	ds
Display interface status and configuration.	Sl# show interfaces [interface-id]
Display current startup configuration.	S1# show startup-config
Display current operating config.	S1# show running-config
Display information about flash file system.	S1# show flash
Display system hardware and software status.	S1# show version
Display history of commands entered.	Sl# show history
Display IP information about an interface.	S1# show ip [interface-id]
Display the MAC address table.	S1# show mac-address-table OR
	S1# show mac address-table

Configure Switch Ports

Network Access Layer Issue

```
S1# show interfaces FastEthernet0/1
FastEthernet0/1 is up, line protocol is upHardware is Fast
Ethernet, address is 0022.91c4.0e01 (bia 0022.91c4.0e01) MTU
1500 bytes, BW 100000 Kbit, DLY 100 usec,
<output omitted>
  2295197 packets input, 305539992 bytes, 0 no buffer
  Received 1925500 broadcasts, 0 runts, 0 giants, 0
  throttles
 3 input errors, 3 CRC, 0 frame, 0 overrun, 0 ignored
  0 watchdog, 68 multicast, 0 pause input
  0 input packets with dribble condition detected
  3594664 packets output, 436549843 bytes, 0 underruns
  8 output errors, 1790 collisions, 10 interface resets
  0 unknown protocol drops
  0 babbles, 235 late collision, 0 deferred
<output omitted>
```


Network Access Layer Issue (cont.)

Network Access Layer Issues

Error Type	Description
Input Errors	Total number of errors. It includes runts, giants, no buffer, CRC, frame, overrun, and ignored counts.
Runts	Packets that are discarded because they are smaller than the minimum packet size for the medium. For instance, any Ethernet packet that is less than 64 bytes is considered a runt.
Giants	Packets that are discarded because they exceed the maximum packet size for the medium. For example, any Ethernet packet that is greater than 1,518 bytes is considered a giant.
CRC	CRC errors are generated when the calculated checksum is not the same as the checksum received.
Output Errors	Sum of all errors that prevented the final transmission of datagrams out of the interface that is being examined.
Collisions	Number of messages retransmitted because of an Ethernet collision.
Late Collisions	A collison that occurs after 512 bits of the frame have been transmitted.

Troubleshooting Network Access Layer

Issues

Troubleshooting Switch Media Issues

5.2 Switch Security: Management and Implementation

Cisco | Networking Academy® | Mind Wide Open™

SSH Operation

- Secure Shell (SSH) is a protocol that provides a secure (encrypted), command-line based connection to a remote device.
- Because of strong encryption features, SSH should replace Telnet for management connections.
- SSH uses TCP port 22, by default.
- Telnet uses TCP port 23.
- A version of the IOS software, including cryptographic (encrypted) features and capabilities, is required to enable SSH on Catalyst 2960 switches.

Secure Remote Access

Configuring SSH

1. Verify SHH Support - show ip ssh

- 2. Configure the IP domain.
- 3. Generate RSA key pairs.
- 4. Configure user authentication.
- 5. Configure the vty lines.
- 6. Enable SSH version 2.

Configure SSH for Remote Management

Secure Remote Access Verifying SSH

Remote Management SSH Connection

Verifying SSH (cont.)

Verify SSH Status and Settings


```
S1# show ip ssh
SSH Enabled - version 2.0
Authentication timeout: 90 secs; Authentication retries: 2
Minimum expected Diffie Hellman key size : 1024 bits
IOS Keys in SECSH format(ssh-rsa, base64 encoded):
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAAAgQCdLksVz2Q1REsoZt2f2scJHbW3aMDM8
/8jg/srGFNL
i+f+qJWwxt26BWmy694+6ZIQ/j7wUfIVN1QhI8GUOVIuKNqVMOMtLg8Ud4qAiLbGJfAa
P3fyrKmViPpO
eOZof6tnKgKKvJz18Mz22XAf2u/7Jq2JnEFXycGM088OUJQL3Q==
S1# show ssh
Connection Version Mode Encryption
                                    Hmac
                                               State
                                                            Username
                        aes256-cbc hmac-shal Session started admin
           2.0
                   OUT aes256-cbc hmac-shal Session started admin
No SSHv1 server connections running.
S1#
```

Secure Unused Ports

Disable Unused Ports

Port Security: Operation

- The MAC addresses of legitimate devices are allowed access, while other MAC addresses are denied.
- Any additional attempts to connect by unknown MAC addresses generate a security violation.
- Secure MAC addresses can be configured in a number of ways:
 - Static secure MAC addresses manually configured and added to running configuration - switchport port-security macaddress mac-address
 - Dynamic secure MAC addresses removed when switch restarts
 - Sticky secure MAC addresses added to running configuration and learned dynamically – switchport port-security mac-address sticky interface configuration mode command

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Port Security: Violation Modes

- IOS considers a security violation when:
 - The maximum number of secure MAC addresses for that interface have been added to the CAM, and a station whose MAC address is not in the address table attempts to access the interface.
- There are three possible actions to take when a violation is detected:
 - Protect no notification received
 - Restrict notification received of security violation
 - Shutdown
 - switchport port-security
 violation {protect | restrict | shutdown} interface
 configuration mode command

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Port Security: Violation Modes (cont.)

Security violation modes include: Protect, Restrict, and Shutdown.

Security Violation Modes					
Violation Mode	Forwards Traffic	Sends Syslog Message	Displays Error Message	Increases Violation Counter	Shuts Down Port
Protect	No	No	No	No	No
Restrict	No	Yes	No	Yes	No
Shutdown	No	No	No	Yes	Yes

Port Security: Configuring

Port Security Defaults

Feature	Default Setting
Port security	Disabled on a port
Maximum number of secure MAC addresses	1
Violation mode	Shutdown. The port shuts down when the maximum number of secure MAC addresses is exceeded.
Sticky address learning	Disabled

Configure Dynamic Port Security

Cisco IOS CLI Commands	
Specify the interface to be configured for port security.	S1(config)# interface fastethernet 0/18
Set the interface mode to access.	Sl(config-if)# switchport mode access
Enable port security on the interface.	Sl(config-if)# switchport port- security

Configure Sticky Port Security

Cisco IOS CLI Commands	
Specify the interface to be configured for port security.	S1(config)# interface fastethernet 0/19
Set the interface mode to access.	Sl(config-if)# switchport mode access
Enable port security on the interface.	Sl(config-if)# switchport port- security
Set the maximum number of secure addresses allowed on the port.	Sl(config-if)# switchport port- security maximum 10
Enable sticky learning.	S1(config-if)# switchport port- security mac-address sticky

Port Security: Verifying

Verify MAC Address - Dynamic

```
S1# show port-security interface fastethernet 0/18
Port Security
                         : Enabled
Port Status
                        : Secure-up
Violation Mode
                       : Shutdown
                        : 0 mins
Aging Time
Aging Type
                : Absolute
SecureStatic Address Aging : Disabled
Maximum MAC Addresses : 1
Total MAC Addresses
                    : 1
Configured MAC Addresses : 0
Sticky MAC Addresses
                        : 0025.83e6.4b01:1
Last Source Address:Vlan
Security Violation Count
                         : 0
```

Verify MAC Address - Sticky

```
S1# show port-security interface fastethernet 0/19
Port Security
                         : Enabled
Port Status
                       : Secure-up
Violation Mode
                       : Shutdown
Aging Time
                       : 0 mins
Aging Type
                         : Absolute
SecureStatic Address Aging : Disabled
Maximum MAC Addresses
                         : 10
Total MAC Addresses
                         : 1
Configured MAC Addresses
                         : 0
Sticky MAC Addresses
                         : 1
Last Source Address:Vlan
                         : 0025.83e6.4b02:1
Security Violation Count
                         : 0
```


Port Security: Verifying (cont.)

Verify Sticky MAC - Running Config

```
S1# show run | begin FastEthernet 0/19
interface FastEthernet0/19
switchport mode access
switchport port-security maximum 10
switchport port-security
switchport port-security mac-address sticky
switchport port-security mac-address sticky
switchport port-security mac-address sticky 0025.83e6.4b02
```

Verify Secure MAC Addresses

Secure	e Mac Address Tabi	le		
Vlan	Mac Address	Туре	Ports	Remaining Age (mins)
1	0025.83e6.4b01	SecureDynamic	Fa0/18	-
1	0025.83e6.4b02	SecureSticky	Fa0/19	-

Ports in Error Disabled State

- A port security violation can put a switch in error disabled state.
- A port in error disabled is effectively shutdown.
- The switch communicates these events through console messages.

```
Sep 20 06:44:54.966: %PM-4-ERR_DISABLE: psecure-violation error detected on Fa0/18, putting Fa0/18 in err-disable state Sep 20 06:44:54.966: %PORT_SECURITY-2-PSECURE_VIOLATION: Security violation occurred, caused by MAC address 000c.292b.4c75 on port FastEthernet0/18. Sep 20 06:44:55.973: %LINEPROTO-5-PPDOWN: Line protocol on Interface FastEthernet0/18, changed state to down Sep 20 06:44:56.971: %LINK-3-UPDOWN: Interface FastEthernet0/18, changed state to down
```

Ports in Error Disabled State (cont.)

Port Status S1# show interface fa0/18 status Port Name Status Vlan Duplex Speed Type Fa0/18 err-disabled 1 10/100BaseTX auto auto S1# show port-security interface fastethernet 0/18 : Enabled Port Security Port Status : Secure-shutdown : Shutdown Violation Mode Aging Time : 0 mins : Absolute Aging Type SecureStatic Address Aging : Disabled Maximum MAC Addresses . 1 Total MAC Addresses : 0 : 0 Configured MAC Addresses Sticky MAC Addresses : 0 Last Source Address: Vlan : 000c.292b.4c75:1 Security Violation Count : 1

The **show interface** command also reveals a switch port on error disabled state.

A shutdown or no shutdown interface configuration mode command must be issued to reenable the port.

Re-Enabling an Error Disabled Port

```
S1(config)# interface FastEthernet 0/18
S1(config-if)# shutdown
Sep 20 06:57:28.532: %LINK-5-CHANGED: Interface
FastEthernet0/18, changed state to administratively down
S1(config-if)# no shutdown
Sep 20 06:57:48.186: %LINK-3-UPDOWN: Interface
FastEthernet0/18, changed state to up
Sep 20 06:57:49.193: %LINEPROTO-5-UPDOWN: Line protocol on
Interface
FastEthernet0/18, changed state to up
```


5.3 Chapter Summary

Cisco Networking Academy® Mind Wide Open™

- Cisco LAN switch boot sequence.
- Cisco LAN switch LED modes.
- How to remotely access and manage a Cisco LAN switch through a secure connection.
- Cisco LAN switch port duplex modes.
- Cisco LAN switch port security, violation modes, and actions.
- Best practices for switched networks.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 46

Summary Summary

- When a Cisco LAN switch is first powered on it goes through the following boot sequence:
 - 1. First, the switch loads a power-on self-test (POST) program stored in ROM. POST checks the CPU subsystem. It tests the CPU, DRAM, and the portion of the flash device that makes up the flash file system.
 - 2. Next, the switch loads the boot loader software. The boot loader is a small program stored in ROM and is run immediately after POST successfully completes.
 - 3. The boot loader performs low-level CPU initialization. It initializes the CPU registers, which control where physical memory is mapped, the quantity of memory, and its speed.
 - 4. The boot loader initializes the flash file system on the system board.
 - 5. Finally, the boot loader locates and loads a default IOS operating system software image into memory and gives control of the switch over to the IOS.
- If the Cisco IOS files are missing or damaged, the boot loader program can be used to reload or recover from the problem.
- The operational status of the switch is displayed by a series of LEDs on the front panel.
 These LEDs display such things as port status, duplex, and speed.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 47

- An IP address is configured on the SVI of the management VLAN to allow for remote configuration of the device. A default gateway belonging to the management VLAN must be configured on the switch using the **ip default-gateway** command. If the default gateway is not properly configured, remote management is not possible.
- It is recommended that Secure Shell (SSH) be used to provide a secure (encrypted) management connection to a remote device to prevent the sniffing of unencrypted user names and passwords, which is possible when using protocols such as Telnet.
- One of the advantages of a switch is that it allows full-duplex communication between devices, effectively doubling the communication rate. Although it is possible to specify the speed and duplex settings of a switch interface, it is recommended that the switch be allowed to set these parameters automatically to avoid errors.
- Port security is only one defense against network compromise.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 48

Cisco | Networking Academy® | Mind Wide Open™

#