Χ

harshith.savanur01@gmail.com >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Information Security - 5 - Secure Systems Engineering (course)

Click to register for Certification exam

(https://examform.nptel.

If already registered, click to check your payment status

Course outline

About NPTEL ()

How does an NPTEL online course work? ()

Week 1 ()

Week 2 ()

Week 3 ()

Week 3: Assignment 3

The due date for submitting this assignment has passed.

Due on 2025-02-12, 23:59 IST.

Assignment submitted on 2025-02-11, 09:30 IST

1) Which of the following statements about ASLR is false ?	
--	--

- ASLR randomizes the base addresses of memory regions such as the stack, heap, and shared libraries at runtime
- O ASLR can be bypassed if an attacker is able to leak memory addresses during program execution
- ASLR guarantees complete protection against buffer overflow and ROP attacks
- ASLR is more effective when combined with other security mechanisms like DEP and stack canaries

Yes, the answer is correct.

Score: 1

Accepted Answers:

ASLR guarantees complete protection against buffer overflow and ROP attacks

2) What is a potential consequence of a **buffer overread** vulnerability?

1 point

1 point

- Arbitrary code execution by overwriting the return address on the stack
- Exposure of sensitive data, such as passwords or cryptographic keys, from adjacent memory regions
- Writing malicious data into protected memory regions, causing privilege escalation.
- Preventing the execution of code due to stack-based protections like ASLR

- ASLR (part 1) (unit? unit=35&lesso n=36)
- ASLR (part 2) (unit? unit=35&lesso n=37)
- Buffer overreads (unit? unit=35&lesso n=38)
- Demonstration of Load Time Relocation (unit? unit=35&lesso n=39)
- Demonstration of Position Independent Code (unit? unit=35&lesso n=40)
- PLT Demonstration (unit? unit=35&lesso n=41)
- Week 3
 Feedback
 Form:
 Information
 Security 5 Secure
 Systems
 Engineering!!
 (unit?
 unit=35&lesso
 n=42)
- Quiz: Week 3 : Assignment 3 (assessment? name=147)

Week 4 ()

Yes, the answer is correct.

Score: 1

Accepted Answers:

Exposure of sensitive data, such as passwords or cryptographic keys, from adjacent memory regions

- 3) What was the primary cause of the **Heartbleed vulnerability** in OpenSSL? 1 point
 - A buffer overflow that allowed attackers to execute arbitrary code on the server
 - An improperly validated length field in a heartbeat request, allowing attackers to read more memory than intended
 - A misconfigured SSL certificate that allowed attackers to impersonate the server
 - A race condition in the SSL handshake process, leading to memory corruption

Yes, the answer is correct.

Score: 1

Accepted Answers:

An improperly validated length field in a heartbeat request, allowing attackers to read more memory than intended

- 4) In a dynamically linked executable, the **Procedure Linkage Table (PLT)** is **1 point** primarily responsible for resolving addresses of statically linked functions at runtime. (True or False)
 - O True
 - False

Yes, the answer is correct.

Score: 1

Accepted Answers:

False

- 5) Which of the following statements about the Global Offset Table (GOT) is true? 1 point
 - The GOT is used to store the actual implementation of dynamically linked functions
 - The GOT holds the addresses of global variables in statically linked executables
 - The GOT is used to store addresses of dynamically linked functions and is updated during runtime by the dynamic linker
 - The GOT is responsible for resolving function addresses during compile time

Yes, the answer is correct.

Score: 1

Accepted Answers:

The GOT is used to store addresses of dynamically linked functions and is updated during runtime by the dynamic linker

- 6) Which of the following statements best describes the relationship between 1 point Position-Independent Code (PIC) and Address Space Layout Randomization (ASLR)?
 - PIC is required for ASLR to work because it allows code to execute correctly regardless of its memory location

Week 5 ()	ASLR disables the use of PIC because it randomizes memory addresses at runtime	
	PIC ensures that the stack is non-executable, which is a requirement for ASLR	
Week 6 ()	ASLR and PIC are unrelated, as ASLR only affects the heap and stack memory, not the code segment	
Week 7 ()	Yes, the answer is correct. Score: 1	
Week 8 ()	Accepted Answers: PIC is required for ASLR to work because it allows code to execute correctly regardless of its	
Download	memory location	
Videos ()	7) Which of these techniques is essential for achieving PIC? 1 points	
Text	Using absolute addressing for all memory references	
Transcripts ()	Employing relative addressing and indirect jumps	
	Avoiding any data access within the code	
Books ()	Storing all instructions in a separate memory segment	
14		
Lecture Material ()	Yes, the answer is correct. Score: 1	
material ()	Accepted Answers:	
	Employing relative addressing and indirect jumps	
	8) Match the following 1 poi	
	1. W^X A) Buffer overflow protection	
	Canaries B) Memory access control	
	3. PLT C) Dynamic linking	
	4. GOT D) Address randomization	
	5. ASLR E) Function resolution	
	□ 1:B 2:A 3:E 4:C 5:D	
	1:D 2:C 3:B 4:A 5:E	
	1:C 2:B 3:E 4:D 5:A	
	1:C 2:B 3:D 4:E 5:A	
Yes, the answer is correct. Score: 1		
	Accepted Answers:	
	1:B 2:A 3:E 4:C 5:D	
	9) In a program using dynamic linking, the PLT has 4 entries for 4 different functions. Each	
	entry in the PLT consists of 4 bytes for the jump instruction and 4 bytes for the address of the	
function in the GOT (Global Offset Table).		
	How many bytes of memory are required for the PLT table to store the entries for these 4 functions?	
	32	

Yes, the answer is correct. Score: 1	
Accepted Answers:	
(Type: Numeric) 32	
	1 point
10) [True or False] Position-Independent Code (PIC) can only be used in statically	1 point
linked executables, as it requires fixed memory addresses to function correctly.	
○ True	
False	
Yes, the answer is correct.	
Score: 1	
Accepted Answers:	
False	