

Uncertainty quantification of vaccination policies:

a model for stock management with random fluctuations.

YHG, SDIV, AMS

June 9, 2022

UNACH, CONACYT-Universidad de Sonora, Universidad de Sonora

Introduction

Motivation

Problem

CALENDARIO DE ENTREGAS (miles de personas inmunizadas):

Laboratorio	2021												
	DIC-20	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC
1. Pfizer	125	969	969	969	969	1,875	1,875	1,875	1,875	1,425	1,425	1,425	1,425
2. CanSino	2,500	2,500	2,500	2,500	2,667	2,667	2,667	5,667	5,667	5,667			
3. COVAX(*)				2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579
4. AstraZeneca				5,000	7,870	7,870	6,270	6,450	5,240				
TOTAL	2,625	3,469	3,469	11,048	14,085	14,991	13,391	16,571	15,361	9,671	4,004	4,004	4,004

Los contratos establecidos hasta hoy permitirían la inmunización de hasta 116.69 millones de personas al término de 2021.

We argue that sufficiently large random fluctuations in deliveries—due to lags or the number of vaccines doses—convey significantly effects on the mitigation of symptomatic cases.

Aims

We pursue quantifying the uncertainty due to time lags or amount delivery, and evaluates its implications.

Introduction

Methodology

Methodology

Given a shipment of vaccines calendar, describe the stock management with backup protocol and quantify random fluctuations due to schedule or quantity. Then plug this dynamic with an ODE system that describes the disease and evaluates its response accordingly.

0000

As part of the COVID-19 vaccination campaign, on December 02, 2020, the Mexican government annunciated a delivery plan of vaccines by Pfizer-BioNTech and other firms.

Vaccine Shipment Program

CALENDARIO DE ENTREGAS (miles de personas inmunizadas):

Laboratorio	2021												
	DIC-20	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC
1. Pfizer	125	969	969	969	969	1,875	1,875	1,875	1,875	1,425	1,425	1,425	1,425
2. CanSino	2,500	2,500	2,500	2,500	2,667	2,667	2,667	5,667	5,667	5,667			
3. COVAX(*)				2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579	2,579
4. AstraZeneca				5,000	7,870	7,870	6,270	6,450	5,240				
TOTAL	2,625	3,469	3,469	11,048	14,085	14,991	13,391	16,571	15,361	9,671	4,004	4,004	4,004

Los contratos establecidos hasta hoy permitirían la inmunización de hasta 116.69 millones de personas al término de 2021.

0000

Motivation

Methodology

- 1. Model Formulation on continuous time
- 2. Non standar discrete approximation
- 3. Numeric Results
- 4. TODO list

Motivation

Methodology

Model Formulation on continuous time

Non standar discrete approximation

Numeric Results

TODO list

To fix ideas:

Vaccination

$$S'(t) = -\beta IS$$
 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$
 $S(t) + I(t) + R(t) = 1$
"Classic"

To fix ideas:

$$S'(t) = -\beta IS$$
 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$
 $S(t) + I(t) + R(t) = 1$
"Classic"
Vaccination

With vaccination

$$S'(t) = -\beta IS - \lambda_{V}(t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(t)$$

$$S(0) = S_{0}, I(0) = I_{0},$$

$$R(0) = 0, V(0) = 0$$

$$S(t) + I(t) + R(t) + V(t) = 1$$

To fix ideas:

$$S'(t) = -\beta IS$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$S(0) = S_0, I(0) = I_0, R(0) = 0$$

$$S(t) + I(t) + R(t) = 1$$

"Classic"

Vaccination

$$S'(t) = -\beta IS - \lambda_V(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_V(x,t)$$

To fix ideas:

Gumel.

$$S'(t) = -\beta IS$$
 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$
 $S(t) + I(t) + R(t) = 1$
"Classic"
Vaccination

$$S'(t) = -\beta IS - \lambda_{V}(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(x, t)$$

To fix ideas:

Gumel.

$$S'(t) = -\beta IS$$
 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$
 $S(t) + I(t) + R(t) = 1$
"Classic"
Vaccination

$$S'(t) = -\beta IS - \lambda_{V}(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(x, t)$$

To fix ideas:

$$S'(t) = -\beta IS$$

 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$

$$S(0) = S_0, I(0) = I_0, R(0) = 0$$

S(t) + I(t) + R(t) = 1"Classic"

Gumel.

Vaccination

$$\lambda_V := \underbrace{\xi}_{\mathit{cte.}} \cdot S(t)$$

 $S'(t) = -\beta IS - \lambda_V(x,t)$

 $I'(t) = \beta IS - \gamma I$

 $R'(t) = \gamma I$

 $V'(t) = \lambda_V(x,t)$

Alexander, M. E., Bowman, C., Moghadas, S. M., Summers, R., Gumel, A. B., and Sahai,

B. M. (2004).

A vaccination model for transmission dynamics of influenza.

SIAM Journal on Applied Dynamical Systems, 3(4):503-524.

Iboi, E. A., Ngonghala, C. N., and Gumel, A. B. (2020).

To fix ideas:

$$S'(t) = -\beta IS$$
$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$S(0) = S_0, I(0) = I_0, R(0) = 0$$

S(t) + I(t) + R(t) = 1"Classic"

000000

Vaccination

Gumel.

$$\lambda_V := \underbrace{oldsymbol{\xi}}_{cte.} \cdot S(t)$$

Optimal Controlled:

$$S'(t) = -\beta IS - \lambda_{V}(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(x, t)$$

Hethcote, H. W. and Waltman, P. (1973). Optimal vaccination schedules in a deterministic epidemic model. Mathematical Biosciences, 18(3-4):365-381.

Wickwire, K. (1977).

Mathematical models for the control of pests and infectious diseases: A survey.

Theoretical Population Biology, 11(2):182–238.

Cost: The effort expended in "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Cost: The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

Cost: The effort expended in "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Cost: The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{cov} .

Cost: The effort expended "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon T and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Given X_{COV} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{cov} .

X_{COV} : 70%, T: one year

 $\lambda_V \approx 0.00329$

Cost: The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

$$egin{aligned} X_{cov} &= X(T) \ &pprox 1 - \exp(-\lambda_V T). \end{aligned}$$

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

$\overline{X_{COV}}$: 70%, T: one year

$$\lambda_V \approx 0.00329$$

If S(0)N corresponds to HMS (812229 inhabitants) ≈ 2668 jabs/day.

Cost: The effort expended in "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon \mathcal{T} and vaccination coverage

Given $\overline{X_{cov}}$, \overline{T}

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

X_{COV} : 70%, T: one year

 $\lambda_V\approx 0.003\,29$

How to optimize vaccination?

Cost: The effort expended in "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon \mathcal{T} and vaccination coverage **Common Objectives**

•

•

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

X_{COV} : 70%, T: one year

 $\lambda_V\approx 0.00329$

How to optimize vaccination?

Cost: The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon \mathcal{T} and vaccination coverage **Common Objectives**

• Who to vaccine first? (Allocation)

•

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

X_{COV} : 70%, T: one year

 $\lambda_V\approx 0.00329$

How to optimize vaccination?

Cost: The effort expended "preventing-mitigating an epidemic" by vaccination is proportional to the vaccination rate λ_V .

Jabs Counter: If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon T and vaccination coverage **Common Objectives**

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Given X_{COV} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{cov} .

X_{COV} : 70%, T: one year

 $\lambda_V \approx 0.00329$

How to optimize vaccination?

Vaccine optimiztion for COVID-19

Common Objectives

Who to vaccine first? (Allocation)

Vaccine optimiztion for COVID-19

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Cost

Vaccine optimiztion for COVID-19

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Cost

$$J(u) := \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

Vaccine optimization for COVID-19

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

$$\dot{x}(t) = b(t, u(t), x(t)), \text{ a.e. } t \in [0, T].$$

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathscr{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$
$$\dot{x}(t) = b(t, u(t), x(t)), \quad \text{a.e. } t \in [0, T].$$

Bubar, K. M., Reinholt, K., Kissler, S. M., Lipsitch, M., Cobey, S., Grad, Y. H., and Larremore, D. B. (2021).

Model-informed covid-19 vaccine prioritization strategies by age and serostatus.

Science, 371(6532):916-921.

Matrajt, L., Eaton, J., Leung, T., and Brown, E. R. (2020). **Vaccine optimization for covid-19: Who to vaccinate first?** *Science Advances*, 7(6).

Vaccine optimization for COVID-19

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

$$\dot{x}(t) = b(t, u(t), x(t)), \quad \text{a.e. } t \in [0, T].$$

Acuña-Zegarra, M. A., Díaz-Infante, S., Baca-Carrasco, D., and Olmos-Liceaga, D. (2021).

Covid-19 optimal vaccination policies: A modeling study on efficacy, natural and vaccine-induced immunity responses. *Mathematical Biosciences*, 337:108614.

Salcedo-Varela, G. A., Peñuñuri, F., González-Sánchez, D., and Díaz-Infante, S. (2021).

Optimal piecewise constant vaccination and lockdown policies for covid-19.

medRxiv.

Vaccine optimization for COVID-19

Common Objectives

- Who to vaccine first? (Allocation)
- How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$
$$\dot{x}(t) = b(t, u(t), x(t)), \quad \text{a.e. } t \in [0, T].$$

Acuña-Zegarra, M. A., Díaz-Infante, S., Baca-Carrasco, D., and Olmos-Liceaga, D. (2021).

Covid-19 optimal vaccination policies: A modeling study on efficacy, natural and vaccine-induced immunity responses. *Mathematical Biosciences*, 337:108614.

Salcedo-Varela, G. A., Peñuñuri, F., González-Sánchez, D., and Díaz-Infante, S. (2021).

Optimal piecewise constant vaccination and lockdown policies for covid-19.

medRxiv.

Model Formulation on continuous time ○○○○○○○

Model Formulation on continuous time ○○○○○○○

0000000

Model Formulation on continuous time

Model Formulation on continuous time

natural death

$$\lambda_f := \frac{\beta_A I_A + \beta_S I_S}{N^*}$$

$$N^* := N - D$$

$$\longrightarrow \text{natality}$$

0000000

Vaccine Hypotheses

- · Imperfect preventive
- · One dose
- Symptomatic exception
- Action over susceptible

 λ_V : vaccination rate

immunity periods :vaccine-induced $\frac{1}{\delta_R}$: natural

Vaccine Hypotheses

- · Imperfect preventive
- · One dose
- Symptomatic exception
- Action over susceptible

Notation

- vaccine efficacy ε
- Generation of symptoms probability р

λ_{V} : vaccination rate

immunity periods vaccine-induced $\frac{1}{\delta_R}$: natural

Vaccine Hypotheses

- Imperfect preventive
- · One dose
- Symptomatic exception
- Action over susceptible

0000000

Notation

- ε vaccine efficacy
- p Generation of symptoms probability

 λ_V : vaccination rate

 $\frac{1}{\delta_V} : \text{vaccine-induced} \\ \frac{1}{\delta_R} : \text{natural}$

SAGE objectives

- Vaccine profile (Efficacy, immunity)
- Coverage
- · Time Horizon

Notation

- vaccine efficacy ε
- Generation of symptoms probability р

λ_{V} : vaccination rate

immunity periods :vaccine-induced $\frac{1}{\delta_R}$: natural

SAGE objectives

- Vaccine profile (Efficacy, immunity)
- Coverage
- Time Horizon

Immunity:

- natural (reinfection)
- vaccine-induced

$$\frac{dS}{dt} = \mu \widehat{N} - (\lambda_f + \mu + \psi_V)S + \omega_V V + \delta_R R$$

$$\frac{dE}{dt} = \lambda_f S + (1 - \varepsilon)V - (\mu + \delta_E)E$$

$$\frac{dI_S}{dt} = p\delta_E E - (\mu + \alpha_S)I_S$$

$$\frac{dI_A}{dt} = (1 - p)\delta_E E - (\mu + \alpha_A)I_A$$

$$\frac{dR}{dt} = (1 - \theta)\alpha_S I_S + \alpha_A I_A - (\mu + \delta_R)R$$

$$\frac{dD}{dt} = \theta \alpha_S I_S$$

$$\frac{dV}{dt} = \psi_V S - [(1 - \varepsilon)\lambda_f + \mu + \omega_V]V$$

$$X'_{vac} = \psi_V (S + E + I_A + R)$$

$$\widehat{N} = S + E + I_A + I_S + R, \quad \widehat{N} + D = 1$$

$$\lambda_f := \frac{\beta_S I_S + \beta_A I_A}{\widehat{N}}$$

Methodology

Model Formulation on continuous time

Non standar discrete approximation

Numeric Results

TODO list

Nonstandard Finite Differences: Dynamic consistency

We study the evolution of SEIR - mitigation model between deliveries. Consider for each time sub-interval k a grid time N_k partition of sub-interval $[t_*^{(k)}, t^{*(k)}]$,

$$h_k := \frac{t^{*(k)} - t_*^{(k)}}{N_k}.$$

If $t_n^{(k)}$ denotes the time of the *n* step SEIR model for the *k* sub-interval, then

$$t_n^{(k)} = nh_k \in [t_*^{(k)}, t_*^{(k)}], \qquad k = 1, \dots, K.$$

Nonstandard Finite Differences: Dynamic consistency

We study the evolution of SEIR - mitigation model between deliveries. Consider for each time sub-interval k a grid time N_k partition of sub-interval $[t_*^{(k)}, t^{*(k)}]$,

$$h_k := \frac{t^{*(k)} - t_*^{(k)}}{N_k}.$$

If $t_n^{(k)}$ denotes the time of the *n* step SEIR model for the *k* sub-interval, then

$$t_n^{(k)} = nh_k \in [t_*^{(k)}, t_*^{*(k)}], \qquad k = 1, \dots, K.$$

Jódar, L., Villanueva, R. J., Arenas, A. J., and González, G. C. (2008). Nonstandard numerical methods for a mathematical model for influenza disease.

Mathematics and Computers in Simulation, 79(3):622–633.

We study the evolution of SEIR - mitigation model between deliveries. Consider for each time sub-interval k a grid time N_k partition of sub-interval $[t_*^{(k)}, t_*^{*(k)}]$,

$$h_k := \frac{t^{*(k)} - t_*^{(k)}}{N_k}.$$

If $t_n^{(k)}$ denotes the time of the *n* step SEIR model for the *k* sub-interval, then

$$t_n^{(k)} = nh_k \in [t_*^{(k)}, t_*^{*(k)}], \qquad k = 1, \dots, K.$$

Also, we use an adaptive functional discretization

$$\varphi(h) := h + \mathcal{O}(h^2)$$
$$\varphi(h) = \frac{1 - \exp(-h)}{h}$$

$$\begin{split} \frac{S^{n+1} - S^n}{\varphi(h)} &= \mu \widehat{N}^n - (\lambda_f + \varphi_V^{(k)}) S^{n+1} - \mu S^n + \omega_V V^n + \delta_R R^n \\ S^{n+1} &= \varphi(h) [\mu \widehat{N}^n - (\lambda_f + \varphi_V^{(k)}) S^{n+1} - \mu S^n + \omega_V V^n + \delta_R R^n] + S^n \\ S^{n+1} &= \frac{(1 - \varphi(h)\mu) S^n + \varphi(h)\mu \widehat{N}^n + \varphi(h) [\omega_V V^n + \delta_R R^n]}{(1 + \varphi(h))(\lambda_f + \Psi_V^{(k)})} \end{split}$$

Discrete Model

$$S^{n+1} = \frac{(1 - \varphi(h)\mu)S^n + \varphi(h)\mu\widehat{N}^n + \varphi(h)[\omega_V V^n + \delta_R R^n]}{(1 + \varphi(h))(\lambda_f + \Psi_V^{(k)})}$$

$$E^{n+1} = \frac{(1 - \mu\varphi(h))E^n + \varphi(h)\lambda_f[S^{n+1} + (1 - \varepsilon)V^n]}{(1 + \varphi(h)\delta_E)}$$

$$I_S^{n+1} = \frac{(1 - \varphi(h)\mu)I_S^n + \varphi(h)p\delta_E E^{n+1}}{1 + \varphi(h)\alpha_S}$$

$$\vdots$$

$$V^{n+1} = V^n(1 - \varphi(h)[(1 - \varepsilon)\lambda_f + \mu + \omega_V]) + \varphi(h)(\psi_V^{(k)})S^{n+1}$$

$$X_{vac}^{n+1} = \varphi(h)\psi_V^{(k)}(S^n + E^n + I_A^n + R^n) + X_{vac}^n$$

$$K^{n+1} = \max\{0, K^n - (X_{vac}^{n+1} - X_k^0 - L)\}$$

For given cause c, age a, sex s and year t

YLL: Years of life lost due to premature death.

$$YLL(c, s, a, t) = N(c, s, a, t) \times L(s, a)$$

- N(c, s, a, t): is the number of deaths due to the cause c
- L(s,a): is a standard loss function specifying years of life lost

YLD: Years of life list due to disability

$$YLD(c, s, a, t) = I(c, s, a, t) \times DW(c, s, a) \times L(c, s, a, t)$$

- I(c, s, a, t): number of incident cases for cause c
- DW(c, s, a): disability weight for cause c
- L(c, s, a, t): average duration of the case

For given cause c, age a, sex s and year t

YLL: Years of life lost due to premature death.

$$YLL(c, s, a, t) = N(c, s, a, t) \times L(s, a)$$

- N(c, s, a, t): is the number of deaths due to the cause c
- L(s,a): is a standard loss function specifying years of life lost

YLD: Years of life list due to disability

$$YLD(c, s, a, t) = I(c, s, a, t) \times DW(c, s, a) \times L(c, s, a, t)$$

- I(c, s, a, t): number of incident cases for cause c
- DW(c, s, a): disability weight for cause c
- L(c, s, a, t): average duration of the case

For given cause c, age a, sex s and year t

YLL: Years of life lost due to premature death.

$$YLL(c, s, a, t) = N(c, s, a, t) \times L(s, a)$$

- N(c, s, a, t): is the number of deaths due to the cause c
- L(s,a): is a standard loss function specifying years of life lost

YLD: Years of life list due to disability

$$YLD(c, s, a, t) = I(c, s, a, t) \times DW(c, s, a) \times L(c, s, a, t)$$

- I(c, s, a, t): number of incident cases for cause c
- DW(c, s, a): disability weight for cause c
- L(c, s, a, t): average duration of the case

$$\min_{a_V \in \mathscr{U}[0,T]} J(a_V) :=$$

$$\min_{a_{V} \in \mathscr{U}[0,T]} J(a_{V}) := \underbrace{a_{D}(D(T) - D(0))}_{:= YLL} + \underbrace{a_{S}(Y_{I_{S}}(T) - Y_{I_{S}}(0))}_{:= YLD}$$

s.t. {Stock constrains}

000000

$$\begin{aligned} \min_{a_{V} \in \mathscr{U}[0,T]} J(a_{V}) &:= \underbrace{a_{D}(D(T) - D(0))}_{:=YLL} + \underbrace{a_{S}(Y_{I_{S}}(T) - Y_{I_{S}}(0))}_{:=YLD} \\ a_{V} &:= \{a_{t_{0}}, a_{t_{1}}, \cdots, a_{t_{K}}\} \\ a_{t_{k}} &:= p_{k} \Psi_{V}^{k}, \end{aligned}$$

Methodology

Model Formulation on continuous time

Non standar discrete approximation

Numeric Results

TODO list

000000

Results: deterministic controlled dynamics

Results

Results: stochatic dynamics

Results: Stcok CI

Results: Actions (vaccination rate) CI

Motivation

Methodology

Model Formulation on continuous time

Non standar discrete approximation

Numeric Results

TODO list

TODO List

• To describe fluctuations due to the uncertainty of vaccine immunity by a mean reversible process.

$$d\Psi_V(t) = r_k(\Psi_V^K - \Psi_V(t))dt + \sigma\sqrt{\Psi_V(t)}dW$$

- Propose a cost functional (DALYs, Risk, R_t)
- · Optimize in a convenient space of actions.
- · Partially observable models
- Stochastic GAMES

GRACIAS!!

