UNIVERSIDAD RAFAEL LANDÍVAR

FACULTAD DE INGENIERÍA

COMPILADORES

SECCIÓN 1 VESPERTINA

ING.MAX CERNA

HOJA DE TRABAJO

Julio Anthony Engels Ruiz Coto 1284719 César Adrian Silva Pérez 1184519 Eddie Alejandro Girón Carranza 1307419

1)	¿Cuántas cadenas	pertenecen al	lenguaie descrito	por la siguiente	gramática?
٠,	Coddinas cadenas	perterioceri ai	ichiguaje descrito	por la signicitio	gramati

$$\mathsf{A}\to\mathsf{BB}$$

$$\mathsf{B} \to \!\! \mathsf{CC}$$

$$C \rightarrow 1 \mid 2 \mid \epsilon$$

Explique su solución

Α

BB

CCB

CCCC

3*3*3*3

3⁴ = 81 combinaciones diferentes para la gramática dada

2) Considere la siguiente gramática:

$$S \to A\alpha \mid \delta$$

$$A \to S\beta$$

¿Cuál de las siguientes gramáticas remueve correctamente la recursividad por la izquierda y es equivalente?

Demuestrelo con cadenas de prueba

- a) $S \rightarrow A\alpha \mid \delta$
 - $A \to \delta \beta A'$
 - $A' \to \alpha \beta A' \mid \pmb{\epsilon}$
- b) $S \rightarrow \delta S'$
 - $S' \to AS' \mid \pmb{\epsilon}$
 - $A \to \beta \alpha$
- c) $S \rightarrow A\alpha \mid \delta$
 - $A \to \delta\beta \mid A\alpha\beta$
- d) $S \rightarrow \delta A \alpha \mid \delta \ A \rightarrow A' A \mid \epsilon$
 - $A' \to \alpha \beta$

Opción B

posibles cadenas:

- δ
- $\delta \; \beta \alpha$
- $\delta \; \beta \alpha \beta \alpha$
- δ βαβαβα

3) Considere la siguiente gramática:

$$S \rightarrow A1 \mid 1B$$

$$A \rightarrow 10 \mid C \mid \epsilon$$

$$B \rightarrow C1 \mid \epsilon$$

$$C \rightarrow 0 \mid 1$$

¿Cuántos strings y árboles de análisis son posibles? Demuestrelos en su solución.

 $S \rightarrow A1$

S -> 1B

A1 -> 101 (Tomando 10 como A)

A1 -> 01 (Tomando A como C y C como 0)

A1 -> 11 (Tomando A como C y C como 1)

A1 -> 1 (Tomando A como ε)

1B -> 101 (Tomando C como 0)

1B -> 111 (Tomando C como 1)

 $1B \rightarrow 1$ (Tomando B como ε)

Total 5 strings = 101, 01, 11, 1, 111

Árboles de análisis

$S \rightarrow A1$	$S \rightarrow A1$	$S \rightarrow A1$	$S \rightarrow A1$	
A -> 10	$A \rightarrow C$	A -> C		$A - > \varepsilon$
T = 101	C -> 0	C -> 1	T = 1	
	T = 01	T = 11		
$S \rightarrow 1B$	$S \rightarrow 1B$	$S \rightarrow 1B$		
$B \rightarrow C1$	$B \rightarrow C1$	$B -> \varepsilon$		

T = 1

$$T = 101$$
 $T = 111$

C -> 1

Total 7 árboles

C -> 0

4) Considere la siguiente gramática:

$$E \rightarrow E *E|E +E| (E) | int$$

Si no utilizamos una disciplina de derivación específica

Qué acciones son necesarias para que no exista más de un árbol de análisis sintáctico?

Las acciones que tuvimos en cuenta fueron darles jerarquías a los signos y en base a eso los ordenamos en las distintas producciones.

Se deben separar las operaciones matemáticas en distintas producciones:

$$E \rightarrow E+T \mid T$$

 $T \rightarrow T*F \mid F$
 $F \rightarrow (E) \mid int$

[&]quot;E" impone que las operaciones de suma se apliquen a nivel de expresiones.

[&]quot;T" se asegura que las multiplicaciones se hagan antes de las sumas

[&]quot;F" es una expresión entre un paréntesis y un entero