Human Action Recognition System using Good Features and Multilayer Perceptron Network

Paper Id: 128

Int'l Conference on Communication and Signal Processing

Presented by : Bhavana Mehta, Jonti Talukdar .

Dept. of Electronics and Communication Engg.

Human Action Recognition:

Characterize Human actions through automated analysis of video data.

What are Human Actions?

Actions in recent datasets:

Is it just about kinematics?

Should actions be associated with the function and purpose?

Kinematics + Objects + Scenes

Human Action Recognition:

Using standard video input to study, localize and analyse human actions using image features and machine learning..

Action understanding: Key components

Image measurements

Prior knowledge

Existing HAR Methods:

Key Challenge: Reduce Computational Complexity while maintaining same level of Accuracy.

- Existing HAR broadly vary in the following domains:
- 1. Feature Selection and Motion Representation:
 Popular use of Local spatio-temporal feature
 representations of Human Actions [2-5],[6-8] versus
 Global representations.
- **Training Methods:** Wide variety in classification techniques in use [10-13]. Neural Networks and deep learning are promising.

Fig. 1. Space time interest points [3].

Fig. 2. Shape based features [6].

Proposed HAR Method:

A combination of **Good Features** along with the **iterative optical flow** to achieve efficient feature extraction.

Use of **Multilayer Perceptron** neural
network ensures efficient
classification.

Advantage: Computationally simple yet robust, produces good result.

System Model for Human Action Recognition System

Preprocessing Stage:

- 1. Frame Rate and Size Selection: Input Video down sampled to 160*120 pixels.
- 2. RGB to Grayscale Conversion: Grayscalling reduces size of dataset from 24 bits to 8 bits.

System Architecture of the Preprocessing Stage

3. Background Subtraction: Gaussian mixture model used to model Probability of each pixel value 'x' at time N.

$$Pr(x) = \sum_{k=1}^{K} w_k N(x; \mu_k, \varepsilon_k)$$
 (1)

Fitness value w_k/ε_k gives measure of formation of static clusters.

Feature Extraction Stage:

Good Features & L-K iterative tracking algorithm used.

N strongest good features tracked in video. LK algorithm applied to selected feature set to create an overall feature vector

Using motion based features with interest point features increases accuracy.

• An image sequence I(x, y, t) under motion is represented as :

$$I(x, y, t + \tau) = I(x - \xi(x, y, t, \tau), y - \eta(x, y, t, \tau))$$
(2)

where $\delta = (\xi, \eta)$ is displacement vector at point X = (x, y).

- Image motion between two frames can be represented as: $\delta = DX + d$ where D is the **deformation matrix** and d is the linear translation.
- The value of δ can be minimized by minimizing D and d, which are in turn dependent on an error vector : e = Zd.
- If λ_1 and λ_2 are the two eigenvalues of Z, then a good feature is selected only if: $min(\lambda_1, \lambda_2) > \lambda$, where λ is the tracking parameter.
- The feature vector F(x, y, t) obtained as follows:

$$F(x, y, t) = [x, y, t, I_t, u, v, u_t, v_t, Div, Vor, Gten, Sten]^T$$

where I(x,y,t) is the acquired image sequence, u(x,y,t) is the corresponding optical-flow vector, D_{iv} is the spatial divergence of the vector field, V_{or} is the measure of local spin or vorticity of the flow fields, and G_{ten} and S_{ten} are invariant tensors.

Classification Stage:

MLP: Multilayer Perceptron is a feed forward artificial neural network.

Efficiency improved by optimizing the number of layers as well as nodes per layer.

- Each neuron consists of a sigmoid activation function.
- Input feature vector undergoes nonlinear transformation downstream each node, given below.

$$y_i = \sum_j (w_{i,j}^{n+1} * x_j) + w_{i,j}^{n+1} + f(u_i)$$
 (3)

• Individual neuron weights adapted locally based on an error function, giving an update value Δ_{ij} for each w_{ij} .

Overall HAR Algorithm

```
Algorithm: Algorithm for HAR
Input: Video stream from static camera
Output: Recognized action class
       Frame rate & size initialization = 160*120p.
       RGB to Grayscale conversion.
       for each Pr(x) at a given time N do
           Evaluate fitness value w_k/\varepsilon_k.
  4:
           Subtract current frame and previous frame.
  5:
       end for
       for each Image sequence I(x, y, t) do
  8:
            Evaluate deformation D and linear translation d.
  9:
           Initialize tracking parameter \lambda.
 10:
           if min(\lambda_1, \lambda_2) > \lambda then
 11:
                Select feature for tracking.
 12:
                Evaluate feature vector F(x, y, t).
 13:
            end if
 14:
       end for
       Initialize number of feature vectors per frame, training
        samples, and number of hidden nodes in MLP.
 16: Evaluate individual neuron weights w_{ij} during training
        stages by passing training video data.
 17: Pass feature vector F(x, y, t) to trained model for
       classification.
       return recognized action class.
```

Simulation Results:

KTH actions dataset

Fig. 4: Simulation Results implemented real time.

Simulation Results:

Recognition Rate of Four Action Classes

Action Class	Recognition Rate				
	Feature size 14	Feature size 10	Feature size 8		
Boxing	95.2	93.2	89.8		
Clapping	93.4	92	90.6		
Running	95.2	94.3	89.4		
Walking	94.6	93	88.4		

- As the feature vector size increases, the recognition rate also increases.
- However, this relationship is nonlinear and there exists a point where increasing the feature size no longer improves the overall system performance.
- At this point, the lag or delay involved in processing the feature vectors outweighs the benefit in improved accuracy and the overall system performance reduces

Confusion Matrix for all Action Classes

	Boxing	Clapping	Running	Walking
Boxing	112	7	2	0
Clapping	9	110	0	1
Running	1	0	113	6
Walking	2	0	7	111

- It can be observed that an overall system accuracy of more than 92% is obtained with running and boxing action classes having higher recognition rates.
- The final set of system parameters which can easily be implemented on a SBC consists of 200 hidden nodes for the MLP, a feature size of 10 and a training sample of 300 videos.

Conclusion

References

- C. Schuldt, I. Laptev and B. Caputo, "Recognizing human actions: a local SVM approach," Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., 2004, pp. 32-36 Vol.3.
- [2] I. Laptev and T. Lindeberg, "Space-time interest points," Proceedings Ninth IEEE International Conference on Computer Vision, Nice, France, 2003, pp. 432-439 vol.1.
- [3] G. Chéron, I. Laptev and C. Schmid, "P-CNN: Pose-Based CNN Features for Action Recognition," 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp. 3218-3226.
- [4] Weilong Yang, Yang Wang and G. Mori, "Human action recognition from a single clip per action," 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, 2009, pp. 482-489.
- [5] Jianbo Shi and C. Tomasi, "Good features to track," 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, 1994, pp. 593-600.
- [6] K.Maithili, K. Rajeswari, R. Mohanapriya, D. Krithika, "An Efficient Human Action Recognition System Using Single Camera and Feature Points", International Journal of Advanced Research in Computer and Communication Engineering, Vol. 2, Issue 2, February 2013.
- [7] R. Poppe, "A survey on vision-based human action recognition," Image Vis. Comput., vol. 28, no. 6, pp. 976–990, 2010.
- [8] A. F. Bobick and J. W. Davis, "The recognition of human movement using temporal templates," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 3, pp. 257-267, Mar 2001.
- [9] I. Laptev and T. Lindeberg. Local descriptors for spatiotemporal recognition. In Proceedings of ECCV Workshop on Spatial Coherence for Visual Motion Analysis, pages 91-103, 2004.
- [10] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. In BMVC, 2006.
- [11] T. Hofmann, "Unsupervised Learning by Probabilistic Latent Semantic Analysis," Machine Learning, vol. 41, no. 2, pp. 177 196, 2001.
- [12] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993–1022, 2003.
- [13] Li, Stan Z., et al. "Statistical learning of multi-view face detection." European Conference on Computer Vision. Springer Berlin Heidelberg, 2002.
- [14] J. Fan, W. Xu, Y. Wu and Y. Gong, "Human Tracking Using Convolutional Neural Networks," in IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1610-1623, Oct. 2010.