Similar Matrices

Transformation matrix for nonstandard bases

Let V and W be finite - dimensional vector spaces with bases B and B', respectively, where $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$

If $T: V \to W$ is a linear transformation s.t.

$$\begin{bmatrix} T(\mathbf{v}_1) \end{bmatrix}_{B'} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \quad \begin{bmatrix} T(\mathbf{v}_2) \end{bmatrix}_{B'} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, \quad \begin{bmatrix} T(\mathbf{v}_n) \end{bmatrix}_{B'} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

then the $m \times n$ matrix whose n columns correspond to $[T(v_i)]_{B'}$

$$A = [[T(\mathbf{v}_{1})]_{B'} [T(\mathbf{v}_{2})]_{B'} \cdots [T(\mathbf{v}_{n})]_{B'}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

is such that $[T(\mathbf{v})]_{B'} = A[\mathbf{v}]_{B}$ for every \mathbf{v} in V

A is denoted by $[T]_{B,B}$,

- X The above result state that the coordinate of $T(\mathbf{v})$ relative to the basis B equals the multiplication of A defined above and the coordinate of \mathbf{v} relative to the basis B.
- \times Comparing to the result in Thm. 6.10 ($T(\mathbf{v}) = A\mathbf{v}$), it can infer that the linear transformation and the basis change can be achieved in one step through multiplying the matrix A defined above (see the figure on 6.74 for illustration)

Matrices of Linear Operators

In the special case where V = W, it is usual to take B = B' when constructing a matrix for T. In this case the resulting matrix is called the **matrix for T with respect to the basis B and is denoted by [T]_B**

Simple Matrices for Linear Operators

- Consider the linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ -2x_1 + 4x_2 \end{bmatrix}$ and the standard basis $B = \{\mathbf{e}_1, \mathbf{e}_2\}$ for \mathbb{R}^2 .
- The matrix for T with respect to this basis is the standard matrix for T; that is, $[T]_B = [T] = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2)]$.
- Since $T(\mathbf{e}_1) = [1 2]^T$, $T(\mathbf{e}_2) = [1 \ 4]^T$, we have

$$[T]_B = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$$

• However, if $\mathbf{u}_1 = [1 \ 1]^T$, $\mathbf{u}_2 = [1 \ 2]^T$, then the matrix for T with respect to the basis $B' = \{\mathbf{u}_1, \mathbf{u}_2\}$ is the diagonal matrix

$$[T]_{B'} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

Theorem:

• If B and B' are bases for a finite-dimensional vector space V, and if I: $V \rightarrow V$ is the identity operator, then $[I]_{B',B}$ is the <u>transition matrix</u> from B to B'.

 $[I]_{B',B}$ is the transition matrix from B to B'.

Theorem:

• Let $T: V \to V$ be a linear operator on a finite-dimensional vector space V, and let B and B' be bases for V. Then

$$[T]_{B'} = P^{-1} [T]_{B} P$$

where P is the transition matrix from B' to B.

Example:

• Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ -2x_1 + 4x_2 \end{bmatrix}$$

Find the matrix T with respect to the standard basis $B = \{\mathbf{e}_1, \mathbf{e}_2\}$ for R^2 , then use Theorem 8.5.2 to find the matrix of T with respect to the basis $B' = \{\mathbf{u}_1', \mathbf{u}_2'\}$, where $\mathbf{u}_1' = [1\ 1]^T$ and $\mathbf{u}_2' = [1\ 2]^T$.

• Solution:

$$[T]_B = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \qquad P = [I]_{B.B'} = [[\mathbf{u}_1']_B | [\mathbf{u}_2']_B]$$

$$P = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \quad P^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

$$T_{B'} = P^{-1}[T]_B P = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

Definitions

Definition

• If A and B are square matrices, we say that B is similar to A if there is an invertible matrix P such that $B = P^{-1}AP$

Definition

• A property of square matrices is said to be a similarity invariant or invariant under similarity if that property is shared by any two similar matrices.

Similarity Invariants

Property	Description
Determinant	A and $P^{-1}AP$ have the same determinant.
Invertibility	A is invertible if and only if $P^{-1}AP$ is invertible.
Rank	A and $P^{-1}AP$ have the same rank.
Nullity	A and $P^{-1}AP$ have the same nullity.
Trace	A and $P^{-1}AP$ have the same trace.
Characteristic polynomial	A and $P^{-1}AP$ have the same characteristic polynomial.
Eigenvalues	A and $P^{-1}AP$ have the same eigenvalues
Eigenspace dimension	If λ is an eigenvalue of A and $P^{-1}AP$ then the eigenspace of A corresponding to λ and the eigenspace of $P^{-1}AP$ corresponding to λ have the same dimension.

Determinant of A Linear Operator

- Two matrices representing the same linear operator $T: V \rightarrow V$ with respect to different bases are similar.
- For any two bases B and B' we must have

$$\det([T]_B) = \det([T]_{B'})$$

Thus we define the determinant of the linear operator T to be

$$\det(T) = \det([T]_B)$$

where B is any basis for V.

Example

where
$$B$$
 is any basis for V .

Example

• Let $T
ightharpoonup R^2$ be defined by

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

A converge T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

$$\begin{bmatrix} T \\ T \end{bmatrix}_B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

The second T

The second

$$[T]_{B'} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \qquad \Longrightarrow \det(T) = 6$$

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ -2x_1 + 4x_2 \end{bmatrix}$$

Eigenvalues of a Linear Operator

• A scalar λ is called an eigenvalue of a linear operator $T: V \to V$ if there is a nonzero vector \mathbf{x} in V such that $T\mathbf{x} = \lambda \mathbf{x}$. The vector \mathbf{x} is called an eigenvector of T corresponding to λ .

• Equivalently, the eigenvectors of T corresponding to λ are the nonzero vectors in the kernel of $\lambda I - T$. This kernel is called the eigenspace of T corresponding to λ .

Eigenvalues of a Linear Operator

- If *V* is a finite-dimensional vector space, and *B* is any basis for *V*, then
 - The eigenvalues of T are the same as the eigenvalues of $[T]_B$.
 - A vector \mathbf{x} is an eigenvector of T corresponding to $[T]_B$ if and only if its coordinate matrix $[\mathbf{x}]_B$ is an eigenvector of $[T]_B$ corresponding to λ .

Example

• Find the eigenvalues and bases for the eigenvalues of the linear operator $T: P_2 \rightarrow P_2$ defined by

$$T(a + bx + cx^2) = -2c + (a + 2b + c)x + (a + 3c)x^2$$

 $[T]_B = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$

- Solution:
 - The eigenvalues of T are $\lambda = 1$ and $\lambda = 2$
 - The eigenvectors of $[T]_B$ are:

•
$$\lambda = 2$$
:
$$\mathbf{u}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \lambda = 1$$
:
$$\mathbf{u}_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Example

• Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator given by $T\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 + x_3 \\ x_1 + 3x_3 \end{bmatrix}$

Find a basis for R^3 relative to which the matrix for T is diagonal.

• Solution:

•
$$\det(\lambda I - A) = \lambda^3 - 5\lambda^2 + 8\lambda - 4 = (\lambda - 2)(\lambda - 2)(\lambda - 1)$$

$$[T]_{B'} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$