PCA

	Variable (Pimension) Reduction
	6 out - maximising variance of new components
	comp.2.
	explained by comp. 1
	Z = Xu
	max Vm (2)
	S.t. 11411 = 1
	PCA Algorithms
(I)	Sequential algorithm $4x_1,, x_m y - centered data$
	1) 1st PCA component:
	$W_i = \underset{\text{argmax}}{\text{argmax}} \frac{1}{m} \sum_{i=1}^{m} (W^{T} x_i)^{L}$

Eigenvectors of
$$\Xi$$
 - PCA basis vectors
Eigenvalues of Ξ - more in portant
eigenvectors

$$u^{T}XX^{T}u \rightarrow max$$

s.t. $u^{T}u = 1$
 $d = u^{T}XX^{T}u - \lambda u^{T}u$
 $\frac{\partial d}{\partial u} = XX^{T}u - \lambda u = 0$
 $(XX^{T} - \lambda \cdot 11)u = 0$
 $u + 0 = u - eigenveetor of XX^{T}u$
 $u + 0 = u - u - u = u$

PCA Max Vaniance
$$\frac{1}{h}\sum_{i=r}^{r}(v^{T}X)^{2}=v^{T}XX^{T}V$$

min reconstruction won

$$\frac{1}{n} \sum_{i=1}^{n} || x_i - (v^T x_i)^V ||^2$$

$$(v^T x)^V$$

PCA Algorithm #3

SVP

X = [X,,...,Xm] & RNXM

 $X = 14 \cdot S - V^{T}$

Sig hoje inoise house

Sample Columns:

principal

vertors

hull, ..., Uk) y

piagonal:

shows the

importans

y each

vector

Columns;
Locals to
reconstruct
sample X

VIF:

$$\lambda_j \mid \lambda_{-j} = \lambda_j \mid \lambda_{-j} = \lambda_j \mid \lambda_{-j} \mid \lambda$$

2)
$$V \setminus F(\beta_j) = \frac{1}{1-k_j^2}$$

VIF > 5 => milticolline on ly