Math40002 Analysis 1

Unseen 6

- 1. Let (a_n) be a sequence of real numbers. Prove/Disprove:
 - (a) If $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} a_n^2$ converges. No, e.g., $a_n = (-1)^n / \sqrt{n}$.
 - (b) If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} |a_n^2|$ converges. Yes. By comparison test. If $\sum_{n=1}^{\infty} |a_n|$ converges, then $|a_n| \to 0$. In particular, there is some $N \in \mathbb{N}$ such that $|a_n| < 1$ for all n > N. So $|a_n^2| < |a_n|$ for all n > N.
 - (c) If $\sum_{n=1}^{\infty} a_n^2$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. **No, e.g.,** $a_n = 1/n$.
- 2. Assume $\sum_{n=1}^{\infty} \frac{1}{n^2} = S$. Find $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^2}$.

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \frac{1}{(2n)^2} + \frac{1}{(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{(2n)^2} + \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} + \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} + \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} + \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2}$$

So
$$A = A/4 + \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2}$$
 and so $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = 3A/4$.

3. (a) Assume a_n is a monotonically decreasing sequence. Prove that if $\sum_{n=1}^{\infty} a_n$ converges, then $na_n \to 0$.

First, since $\sum_{n=1}^{\infty} a_n$ converges, $a_n \to 0$. Since a_n is monotonically decreasing, $a_n \geq 0$ for all $n \in \mathbb{N}$. Let $\epsilon > 0$, and let $N \in \mathbb{N}$ such that for all m > k > N: $\sum_{n=1}^{m} a_n - \sum_{n=1}^{k} a_n < \epsilon/2$. Then $a_{k+1} + \cdots + a_m = \sum_{n=1}^{m} a_n - \sum_{n=1}^{k} a_n < \epsilon/2$. Then for every n > 2N:

$$\frac{n}{2}a_n < a_{\lceil n/2 \rceil} + \dots + a_n < \epsilon/2.$$

So $na_n < \epsilon$.

(b) Is it true that in general, if $a_n \geq 0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n$ converges, then $na_n \to 0$?

No, e.g.,

$$a_n = \begin{cases} \frac{1}{n} & \text{if } \sqrt{n} \in \mathbb{N} \\ 0 & \text{if otherwise.} \end{cases}$$

So $\sum_{n=1}^{\infty} a_n = \sum_{k=1}^{\infty} \frac{1}{k^2}$. But for $\epsilon = 1/2$, given $N \in \mathbb{N}$, let n > N such that $\sqrt{n} \in \mathbb{N}$. Then $na_n = n/n = 1 > \epsilon$.