Перед тем как дать определения СУБД, необходимо определиться с понятием базы данных.

База данных

Базой данных называется совокупность данных и метаданных. Метаданные представлять из себя правила о том, как должны соотноситься между собой разные элементы БД.

Если для текущего состояния БД все правила, описанные в метаданных, оказываются выполненными, то БД находится в состояние **целостности**.

Пример Базы данных

Пусть наша база данных состоит из двух таблиц. Первая таблица хранит данные по каждому сотруднику. Заголовок данной таблице представлен ниже:

СЛУ_НОМЕР	СЛУ_ОТД_НОМЕР
-----------	---------------

Вторая таблица хранит информацию по отделу, заголовок которой представлены ниже:

ОТД_НОМЕР	ОТД_КОЛ_СЛУ
-----------	-------------

В каждой записи служащего столбец СЛУ_ОТД_НОМЕР - номер отдела из таблицы отделов, а в каждой записи отдела столбец ОТД_КОЛ_СЛУ - количество сотрудников в данном отделе.

В данном примере мы имеем базу данных, в которой данными являются конкретные записи в таблицах служащие и отделы, а метаданные - правила, описанные ниже:

- 1. Для каждой записи из таблицы отделов ОТД_КОЛ_СЛУ должен равняться сумме всех служащих, у которых СЛУ_ОТД_НОМЕР равен ОТД_НОМЕР текущей записи.
- 2. Для каждой записи из таблицы служащих должна существовать единственная запись таблицы отделов, у которой ОТД_НОМЕР равен СЛУ_ОТД_НОМЕР текущей записи.

СУБД

СУБД - это комплекс программных средств, посредством которых можно создавать БД и меня её состояние (добавлять, изменять и удалять записи)[1]. Также важной особенности СУБД являются механизмы поддержки целостности (проверка первичного и вторичного ключа, транзакции, восстановление после сбоев и т.д.). Примеры СУБД: SQLite, DB2, MS SQL.

Функции СУБД

Управление данными во внешней памяти

СУБД должна поддерживать определённую структуры во внешней памяти, которая будет хранить БД и набор служебной информации (индексы, журналы и т.д.).

Существует два подхода к реализации данной функции:

- 1. С активным использовать возможности файловой системы.
- 2. Использовать собственную систему именования объектов (применяется намного чаще).

Стоит также отметить, что не все СУБД хранят данные во внешней памяти, однако данных подход является самым популярным в наше время.

Управления буферами оперативной памяти

Почти всегда СУБД поддерживает собственную систему буферизации данных и редко полагается на операционную систему. Так как СУБД известно намного больше о характере используемых данных, чем ОС, то СУБД может обеспечить более эффективную буферизация этих данных.

Управление транзакциями

Транзакция позволяет объединить несколько операций над БД в один "атомарный" блок, который либо полностью выполняется, либо полностью отменяется. Управление транзакциями необходимо для обеспечения целостности БД, так как выполнения отдельных операций в транзакции может временно нарушать целостность данных [2].

Журнализация

СУБД должна иметь возможность восстанавливать целостность данных после сбоя. Основным способом достижения такой возможности является журнализация - ведение записей всех изменений над БД. Основным способом ведения журнала является протокол WAL (Write Ahead Log) - операция сначала записывается в журнал, а только потом выполняется.

Объекты СУБД

Объекты СУБД могут отличаться друг от друга в зависимости от того, какая модель данных используется.

Модель данных

Модель данных (МД) - это набор основным признаков и свойств, которыми должны обладать все БД, реализующие данную модель.

За историю развития баз данных было разработано множество различных МД. Ниже приведены некоторые из них:

Модель инвертированных таблиц

БД данной модели состоит из набора **упорядоченных** таблиц. Перед тем как изменить базу данных, необходимо выполнить операцию позиционирования - переместиться на необходимую строку в таблице.

Индекс «Клиент»					
$N_{\bar{o}}$	Клиент	Ссылки			
1	Иванов	1, 4			
2	Белов	2			
3	Петров	3			

Иерархическая модель данных

БД данной модели представляет собой набор переменных типа дерева. Каждый тип дерева состоит из корневого типа записи и набора типа поддеревьев, каждое из которых

является некоторым типом дерева. Перед изменением БД также необходимо выполнить операцию позиционирования (переместиться от родителя к конкретному потомку, переместиться от потомка к родителю и т.д.).

Реляционная модель данных

Реляционная модель данных является самой распространённой на данный момент. БД реляционной модели данных состоит из набора **неупорядоченных** таблиц (без порядка строк и столбцов), которую принято называть отношением [3].

Пример таблицы реляционной БД

Табельный номер	ФИО сотрудника	Должность	Оклад	Год рождения	<u>Отдел</u>
023	Волкова Елена Павловна	секретарь	26000	1985	2
113	Белов Сергей Юрьевич	инженер	39800	1980	1
101	Рогов Сергей Михайлович	директор	62000	1972	2
056	Панина Анна Алексеевна	инженер- программист	41800	1978	1
098	Фролов Юрий Вадимович	начальник отдела	49200	1971	9

Мощность отношения. Арность отношения.

Такой подход имеет массу приемуществ в сравнение с другими моделями данных:

- 1. Отсутствие порядка в таблицах приводит к отсутствию операции позиционирования. Это позволяет выполнять запросы в декларативном виде, что значительно упрощает использование СУБД.
- 2. Реляционный подход основан на использование фундаментальных математических конструкций кортежей и отношений. Такое математическое определение упрощает процесс формальных рассуждений и помогает в решение задач оптимизации запросов.

Источники

- 1. DBMS Introduction: https://www.w3schools.in/dbms/intro
- 2. DBMS Transaction: https://www.w3schools.in/dbms/transaction
- 3. Relational Data Model: https://www.w3schools.in/dbms/relation-data-model