

Please download Anaconda: **Anaconda.com**

COMPUTER SCIENCE FOR MEDICINE: Computer Vision

Code MD June 9, 2023 *Module 2*

1

INTRODUCTION

Code MD Project
CV Packages
Matrices
Pixels vs Channels
Types of CV
Medical Use Cases
Introduction to Al

2

BASICS NOTEBOOK

Review of Python basics Importing images Accessing Pixels Changing color Cropping Increasing contrast Rotating image Thresholding Count pixels Saving image 3

PROJECT WALKTHROUGH

Diagnose Pneumonia V/Q Scan Analysis Classify Medical Images

Computer Vision

Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions.

Packages

· What is a package?

Open Computer Vision

- OpenCV
- Powertool kit for computer vision
- Whether you are doing Al or basic tasks, if you are using images you will use OpenCV

Numpy

- Debatably most important package for every computational task on the planet
- Handles storage and manipulation of n dimensional arrays
- Similar to a list, but just better...

Matrices and why do we care?

- · What is a matrix
 - Table used to numerically represent an object
 - Linear algebra deals with these, but we don't need to know linear algebra to use them!
- We need a way to represent images numerically → use matrices
- OpenCV reads image as numpy arrays (matrix representation of an image)

Pixels, channels, oh my!

- A picture is a matrix of pixels
 - Think about your screen size- 1920x1080
- Channels determine number of colors in a picture
 - Black and white image → 1 channel
 - Colored image → 3 channels (Red, green, blue)
- This means a black and white picture is a 2d matrix
- It also means a **colored** picture is a **3d matrix**

Lets really understand that

What can you do to a picture computationally?

- Briefly, basically anything you want
 - Rotate
 - Change color scheme
 - Change size
 - Crop
 - Detect edges
 - Threshold based on colors
 - Measure distances
- All of this is possible because pictures are represented as numbers to a computer

Finding a pixel...

Cropping...

finxter (640, 0)(0, 0)(100, 20) (540, 210) Height (426 pixels) img[y:y+h, x:x+w] (0, 426)Width (640 pixels) (640, 426)

Threshold...

Buzzwords of Computer Vision

Classification

Is this a dog?

Image Classification

Medical Applications of Computer Vision

- Anywhere a human looks at and analyzes image data is a place where computer vision can be (theoretically) implemented
- Radiology, pathology, surgery, ophthalmology, hematology, basic science research, pulmonology, oncology, etc...
- The technology is becoming sufficiently advanced to have real world clinical utility

Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images

LUIS R. SOENKSEN (D), TIMOTHY KASSIS, SUSAN T. CONOVER (D), BERTA MARTI-FUSTER, JI

ROBERT R. STAVERT (D), CAROLINE C. KIM, MARYANNE M. SENNA (D), JOSÉ AVILÉS-IZQUIEF

(D) Fewer Authors Info & Affiliations

Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography

JAMA Ophthalmology

Search All

Peter G. Mikhael , BSc^{1,2}; Jeremy Wohlwend, ME^{1,2}; Adam Yala , PhD^{1,2}; Ludvig Karstens , MSc^{1,2}; Justin Xiang, ME^{1,2}; Angelo K. Takigami , MD^{3,4}; ...

Show More

Original Investigation

January 13, 2022

Evaluation of Artificial Intelligence-Based Intraoperative Guidance Tools for Phacoemulsification Cataract Surgery

Rogerio Garcia Nespolo, MSc^{1,2}; Darvin Yi, PhD^{1,2}; Emily Cole, MD, MPH¹; Nita Valikodath, MD¹; Cristian Luciano, PhD²; Yannek I. Leiderman, MD, PhD^{1,2}

nature > npj digital medicine > brief communications > article

Brief Communication | Open Access | Published: 01 March 2019

A computer vision system for deep learning-based detection of patient mobilization activities in the ICU

Serena Yeung ☑, Francesca Rinaldo ☑, Jeffrey Jopling, Bingbin Liu, Rishab Mehra, N. Lance Downing, Michelle Guo, Gabriel M. Bianconi, Alexandre Alahi, Julia Lee, Brandi Campbell, Kayla Deru, William Beninati, Li Fei-Fei & Arnold Milstein

- Most of the on the ground use cases of computer vision involve AI
 Artificial intelligence is the ability of a program to approximate an outcome given exposure to numerous prior examples

At a high level:

- 1. Training → showing the algorithm many examples of inputs and known outputs
 - The algorithm starts from knowing nothing and makes a guess about the output
 - It compares its performance to the known outputs
- 'Teaches' itself by using math on its internal decision making functions to try and do better
 2. Testing →Showing the algorithm many examples of inputs with no
- known outputs
 - The algorithm then evaluates its performance by comparing with the correct answer
- This process is repeated many many times until the algorithm **converges** to a point at which it can see new data and make a good approximation on the outcome

Convolutional Neural Networks (just an fyi so you recognize the word)

Deep Learning!

Do I have to do this whole process if I want to analyze some of my data using AI?

- NO! Not necessarily at least...
- Pretrained models are a very quick and easy way to get started with some of your data! Some of this is no code even...
- Can also finetune an existing model for your problem

SOME USEFUL LIBRARIES

- Data Science and Statistics
 - Pandas
 - SciPy
 - Numpy
 - Statsmodels
 - Matplotlib/Plotly/Seaborn
- Software Development
 - Tkinter/PyQT (user interfaces)
 - Django/Flask (application backends)
- Biological Computation
 - BioPython

- Machine Learning
 - OpenCV (also computer vision)
 - Scikit-learn
 - Tensorflow
 - Keras
 - PyTorch
- Miscellaneous
 - OS
 - Sys
 - re
 - datetime

Whatever you want to do, there's probably a library to help you do it!