

PARQUE CIENTÍFICO Y TECNOLÓGICO UTPL

Predicción de gastos para billeteras de aplicaciones financieras

Versión.

DOCUMENTO DE PROPUESTA DE PROYECTO

PROPUESTA

1. Inicio de proyecto

1.1. Nombre del proyecto

Nombre del	Predicción de gastos para billeteras de aplicaciones	
proyecto:	financieras	

1.2. Definición del problema

¿Por qué estamos	Por que necesitamos mejorar la eficiencia y conveniencia	
aquí?	de los pagos automáticos mediante la predicción de gastos	
	y el envío de notificaciones en momentos y lugares	
	relevantes.	
Razón 1	Reducir la carga manual de los usuarios en pagos	
	recurrentes mediante automatización basada en patrones	
	de consumo.	
Razón 2	Mejorar la experiencia de usuario mediante notificaciones	
	inteligentes y predicciones precisas de gastos futuros.	
Razón 3	Aumentar la conveniencia de las billeteras digitales a	
	través de recomendaciones personalizadas en tiempo real.	

1.3. Objetivos

General

☐ Desarrollar un sistema de predicción de gastos para aplicaciones de
billeteras digitales que envíe notificaciones en tiempo real basadas en patrones
de consumo y geolocalización del usuario.
Específicos
☐ Identificar patrones de gasto y ubicaciones clave para pagos recurrentes.
☐ Generar un modelo de inteligencia artificial para decidir si la notificación
aparecerá o no.
☐ Implementar un sistema de notificaciones en tiempo real para mejorar la
conveniencia de los pagos automáticos.

1.4. Elevator Pitch

Para	Usuarios de billeteras digitales
quien	Desea optimizar sus pagos recurrentes
el	Sistema de predicción de gastos
es	Una solución de notificaciones inteligentes
que	Reduce la carga manual y mejora la eficiencia de los pagos automáticos mediante recomendaciones personalizadas
a diferencia de	Alternativas que no predicen basadas en patrones de historial, ubicación y tiempo
nuestro producto	Ofrece sugerencias de pago en el momento y lugar adecuados, optimizando la experiencia del usuario

1.5. Caja del producto

Predicción de gastos para billeteras digitales

Identificación de patrones de consumo

Modelo de inteligencia artificial

Sistema de notificaciones en tiempo real

1.6. Lista de lo que NO es el producto

In	Out
Sistema de predicción basado en patrones históricos y geolocalización	Registro manual de transacciones y un sistema de contabilidad personal
Modelo de inteligencia artificial para	Herramienta de gestión financiera
sugerencias de pago en momentos	para monitorear ingresos y gastos de
relevantes	forma manual

Sistema de notificaciones en tiempo real que sugiere pagos según el comportamiento del usuario	Software de contabilidad o balance de presupuestos				
Sin resolver					

2. Descripción general

2.1. Descripción del producto

El sistema emplea algoritmos de machine learning supervisados para analizar patrones de consumo basados en datos de transacciones y geolocalización.

Utiliza técnicas de series temporales y modelos de clasificación como regresión logística y algoritmos basados en árboles de decisión (como Random Forest y XGBoost) para realizar predicciones precisas de futuros gastos. Las notificaciones se envían a través de un sistema de mensajería en tiempo real, integrando tecnologías móviles para máxima conveniencia del usuario.

Perspectiva del producto

Plataforma: Aplicación móvil y notificaciones en tiempo real Módulos internos:

 Módulo de identificación de patrones: Analiza datos históricos de transacciones y geolocalización para detectar hábitos de consumo del usuario.

- Módulo de predicción de gastos: Implementa el modelo de IA que realiza las predicciones de futuros gastos del usuario basándose en los patrones identificados. Este módulo utiliza algoritmos como ARIMA, Random Forest o XGBoost para generar predicciones.
- Sistema de notificaciones: Envía notificaciones push en tiempo real basadas en las predicciones del modelo, sugiriendo momentos y lugares óptimos para realizar pagos.

Módulo	Descripción		
Identificación de	Analiza datos históricos para detectar transacciones		
patrones	recurrentes y comportamientos de gasto específicos		
Notificaciones en	Envía notificaciones push cuando se predice un gasto		
tiempo real	recurrente en un lugar y tiempo determinados		

3. Equipo del proyecto

3.1. Descripción de los interesados y el equipo de desarrollo

Nombre	Rol	Departamento	Responsabilidades
Jean Daniel	Desarrollador de	Investigación y	Análisis exploratorio
Villavicencio	algoritmos y	Desarrollo	de datos, generación
Samaniego	procesamiento		y Implementación del
	de datos		sistema de
			predicción y modelos
			de machine learning
Sebastián	Especialista en	Desarrollo de	Análisis exploratorio
Felipe Mendieta	geolocalización	Aplicaciones	de datos e
Lima	y notificaciones		integración de

	geolocalización y
	desarrollo del
	sistema de
	notificaciones en
	tiempo real

4. Solución técnica

4.1. Descripción de las tecnologías a usar en el proyecto

Lenguaje	Python
Librerías	scikit-learn, TensorFlow, Keras
Herramientas	Firebase (notificaciones), Jupyter Notebooks
Tecnologías	APIs de geolocalización, bases de datos SQL, sistema de notificaciones push

5. Diseño de la arquitectura

6. Aprobaciones

Patrocinador	Fecha	Firma