this was the second sec	larly in Kernel SVM After training the models with the coefficients α_i we get, we will find the value of $sign(\sum_{i=1}^n (y_i \alpha_i K(x_i, x_q)) + intercept)$, here $K(x_i, x_q)$ is the RBF kern value comes out to be -ve we will mark x_q as negative class, else its positive class. Rernel is defined as: $K(x_i, x_q) = exp(-\gamma x_i - x_q ^2)$ Determine the determine this link: https://scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation Sik E 1. Split the data into $X_{train}(60)$, $X_{cv}(20)$, $X_{test}(20)$ 2. Train $SVC(gamma = 0.001, C = 100.)$ on the (X_{train}, y_{train}) 3. Get the decision boundry values f_{cv} on the X_{cv} data i.e. $f_{cv} = decision_function(X_{cv})$ you need to implement this decision_function()
imp fro imp fro imp fro X,	<pre>port numpy as np port pandas as pd port pandas as pd port numpy as np port numpy as numpy</pre>
eturr cv = Note: #tr x_t x_t	decision_function(Xcv,): #use appropriate parameters or a data point x_q in Xcv: #write code to implement $(\sum_{i=1}^{\text{all the support vectors}}(y_i\alpha_iK(x_i,x_q)) + intercept)$, here the values y_i , α_i , and $intercept$ can be obtained from the trained model in # the decision_function output for all the data points in the Xcv decision_function(Xcv,) # based on your requirement you can pass any other parameters Example Make sure the values you get as fcv, should be equal to outputs of clf.decision_function(Xcv) rain test split train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) train_final, X_cv, y_train_final, y_cv = train_test_split(X_train, y_train, test_size = 0.25, random_state = 0)
pri pri pri sup sup Shap Shap Shap	rain the algorithm int("Shape of the X_train:{0} and Y_train:{1}".format(X_train_final.shape,y_train_final.shape)) int("Shape of the X_test : {0} and y_test : {1}".format(X_test.shape,y_test.shape)) int("Shape of the Validation :{0} and Y_cv : {1}".format(X_cv.shape,y_cv.shape)) int("Shape of the Validation :{0} and Y_cv : {1}".format(X_cv.shape,y_cv.shape)) int("Shape of the X_train:final : {0} and Y_cv : {100} int("Shape of the X_train:(3000, 5) and Y_train.(3000, 5) int("Shape of the X_train:(3000, 5) and Y_train.(3000, 5) int("Shape of the X_train:(3000, 5) and Y_train.(300) int("Shape of the X_train:(3000, 5) and Y_train.(300) int("Shape of the X_train:(3000, 5) and Y_train.(3000, 5) int("Shape of the X_train.(3000, 5) and Y_train.(3000, 5) int("Shape of
	<pre>self.gamma = gamma self.C = C def fit(self, X_train, y_train): model = SVC(gamma = self.gamma, C = self.C).fit(X_train, y_train) return model def compute_similarity_matrix(self, xi, xq, gamma): norm = np.sum((xi - xq) ** 2 ,axis = -1) similarity_function = np.exp(- (gamma) * norm) return similarity_function</pre>
	<pre>def kernal_gram_matrix(self,Xi,Xj,gamma): kernal_matrix_similarity = np.zeros((Xi.shape[0],Xj.shape[0])) for idx,row in enumerate(Xi): for idx_col,column in enumerate(Xj): rbf_kernal = self.compute_similarity_matrix(row,column,self.gamma) kernal_matrix_similarity[idx][idx_col] = rbf_kernal return kernal_matrix_similarity def decision_function(self,XCV,support_vectors,dual_coeff,intercept): #compute the kernal similarity Matrix kernal_gram_matixes= self.kernal_gram_matrix(XCV, support_vectors,self.gamma) #yi* alpha i * kernal(xi,xq) decision_fun = dual_coeff * kernal_gram_matixes</pre>
sup #in int #du svm	<pre>decision_custom = np.sum(decision_fun,axis = -1) + intercept return decision_custom.reshape(-1,1) c = SupportVectorClassifier(gamma = 0.001,C = 100) poport_vector_classifier = svc.fit(X_train_final,y_train_final) tercept b tercept = support_vector_classifier.intercept_ ual_coefficient yi*alphai m_dual_coeff_ = support_vector_classifier.dual_coef_ et the support_vector</pre>
f_c sk_ sk_ #ch dif	<pre>cport_vector = support_vector_classifier.support_vectors_ cv = svc.decision_function(X_cv, support_vector, svm_dual_coeff_, intercept) df = support_vector_classifier.decision_function(X_cv)</pre>
Chec	Implementing Platt Scaling to find P(Y==1 X) SK F 1. Apply SGD algorithm with (f_{cv} , y_{cv}) and find the weight W intercept b Note: here our data is of one dimensional so we will have a one dimensional weight vector i.e W.shape (1,) Note1: Don't forget to change the values of y_{cv} as mentioned in the above image. you will calculate y+, y- based on data points in train data Note2: the Sklearn's SGD algorithm doesn't support the real valued outputs, you need to use the code that was done in the 'Logistic Regression with SGD and L2'
#im #in #co	Assignment after modifying loss function, and use same parameters that used in that assignment. If $Y[i]$ is 1, it will be replaced with y + value else it will replaced with y - value 1. For a given data point from X_{test} , $P(Y=1 X)=\frac{1}{1+exp(-(W*f_{test}+b))}$ where $f_{test}=$ decision_function(X_{test}), W and W will be learned as metioned in the above steps 2, 4 might need hyper parameter tuning, To reduce the complexity of the assignment we are excluding the hyerparameter tuning part, but sted students can try that $ \frac{1}{1+exp(-(W*f_{test}+b))} = \frac{1}{1+exp(-(W*f$
pri y_p pri Posi Cali	<pre>for label in range(len(Y)): if Y[label] == 1: positive_label += 1 else: negative_label += 1 assert((positive_label +negative_label) == len(Y)) return positive_label, negative_label of_positive_point, no_of_negative_point = label_count(y_train_final) int("Positive Label : {0} and Negative Label : {1}".format(no_of_positive_point, no_of_negative_point)) positive, y_negative = (no_of_positive_point + 1) / (no_of_positive_point + 2), 1 / (no_of_negative_point + 2) int("Calibrated positive point:{0} and Calibrated Negative Point : {1}".format(y_positive, y_negative)) itive Label : 906 and Negative Label : 2094 ibrated positive point:0.998898678414097 and Calibrated Negative Point : 0.00047709923664122136</pre>
y_c	<pre>platt Scaling We build a new validation dataset- create a bucket and computing the averagefrom our case have no of points in low we directly app f average_y(Y,y_positive,y_negative): y_bucket = [] for label in range(len(Y)): if Y[label] == 1: y_bucket.append(y_positive) else: y_bucket.append(y_negative) return y_bucket cv_modified = average_y(y_cv,y_positive,y_negative) ass SGD: definit(self,learning_rate,epochs):</pre>
	<pre>self.learning_rate = learning_rate self.epochs = epochs def sigmoid(self,z): sigmoid_of_Z= 1 / (1 + np.exp(-z)) return sigmoid_of_Z def gradient(self,x,y,w,b,alpha,N): dw = ((x * ((y - self.sigmoid(np.dot(w,x) + b))) - ((alpha / N) * w))) db = y - self.sigmoid(np.dot(w,x) + b) return dw,db def logloss(self,y_true,y_pred): loss = 0 n = len(y_true)</pre>
	<pre>if(len(y_true) == len(y_pred)): for 1 in range(len(y_true)): loss += (y_true[1] * math.log10(y_pred[1])) + ((1-y_true[1]) * math.log10(1-y_pred[1])) loss = (-1 / n) * loss return loss def fit(self, X, Y, alpha): loss_list = [] wait = 0 #initialize weight w = 0 b = 0</pre>
	<pre>print(self.learning_rate) for epoch in range(1,epochs+1): for data in range(len(X)): #compute gradient dw, db= self.gradient(X[data],Y[data],w,b,alpha,len(X)) #update weight w = w + self.learning_rate * dw #update bias b = b + self.learning_rate * db y_pred = [self.sigmoid(np.dot(w,X[data]) + b) for data in range(len(X))] loss = self.logloss(Y,np.array(y_pred)) loss_list.append(loss) if epoch >= 2: if loss_list[epoch-2] == loss_list[epoch-1]:</pre>
	<pre>print("No improvement in training") break print('Epoch{0}'.format(epoch)) print("Training Loss : {0} ".format(loss[0])) return loss_list,w,b def predict(self,x,w,b): z = np.dot(w,x) + b return self.sigmoid(z)</pre> arning_rate = 1e-4
alp y_c sgd los pri 0.00 Epoc Trai Epoc Trai	<pre>bchs = 100 bha=0.0001 bv_modified = np.array(y_cv_modified).reshape(-1,1) d = SGD(learning_rate, epochs) ss_list,w,b= sgd.fit(f_cv,y_cv_modified,alpha) int("Optimized W:{0} and b:{1}".format(w,b)) 001 ch1 ining Loss : 0.2623439039314991 ch2 ining Loss : 0.23328949504531726 ch3 ining Loss : 0.21112989001987448</pre>
Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai	ch14 ining Loss : 0.12512439016558863 ch15 ining Loss : 0.12228245064105836 ch16 ining Loss : 0.11973691421734095 ch17 ining Loss : 0.11744486869036001 ch18 ining Loss : 0.11537122090892515 ch19 ining Loss : 0.1134870096789125 ch20 ining Loss : 0.11176813331551005 ch21 ining Loss : 0.11019437877586269 ch22
Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai	ining Loss : 0.12512439016558863 ch15 ining Loss : 0.12228245064105836 ch16 ining Loss : 0.11973691421734095
Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai	ining Loss : 0.10874867287090426 ch23 ining Loss : 0.10741649892603101 ch24 ining Loss : 0.1061854380530169 ch25 ining Loss : 0.10504480524062751 ch26 ining Loss : 0.10398535829020995 ch27 ining Loss : 0.10299906322149323 ch28 ining Loss : 0.10207890382703495 ch29 ining Loss : 0.10121872601838272
Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai	ch30 ining Loss : 0.10041310979663653 ch31 ining Loss : 0.09965726331235482 ch32 ining Loss : 0.09894693470715851 ch33 ining Loss : 0.09827833836006895 ch34 ining Loss : 0.0976480928728578 ch35 ining Loss : 0.09705316867628976 ch36 ining Loss : 0.09649084356375484 ch37 ining Loss : 0.09595866479027237 ch38
Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai	ining Loss : 0.09545441663524254 ch39 ining Loss : 0.09497609253320682 ch40 ining Loss : 0.09452187104051173 ch41 ining Loss : 0.09409009503663503 ch42 ining Loss : 0.0936792536640946 ch43 ining Loss : 0.09328796659580965 ch44 ining Loss : 0.09291497028774075 ch45 ining Loss : 0.09255910593087173 ch46
Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc	ining Loss : 0.09221930886265292 ch47 ining Loss : 0.091894599235923 ch48 ining Loss : 0.09158407377461211 ch49 ining Loss : 0.09128689847149252 ch50 ining Loss : 0.09100230210482986 ch51 ining Loss : 0.09072957046884425 ch52 ining Loss : 0.09046804122800774 ch53 ining Loss : 0.09021709931792915 ch54 ining Loss : 0.08997617282631465
Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai	ch55 ining Loss : 0.08974472929657472 ch56 ining Loss : 0.08952227240436805 ch57 ining Loss : 0.08930833896393585 ch58 ining Loss : 0.08910249622669368 ch59 ining Loss : 0.08890433943934649 ch60 ining Loss : 0.08871348963291924 ch61 ining Loss : 0.08852959161763156 ch62 ining Loss : 0.08835231216162523 ch63
Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai	ining Loss : 0.08818133833417724 ch-64 ch-65 ch-65 ch-66 ch-66 ch-66 ch-66 ch-67 ch-67 ch-68 ch-69 ch-69 ch-69 ch-70 ch-69 ch-70 ch-69 ch-70 ch-70 ch-70 ch-70 ch-70 ch-70 ch-72 ch-72 ch-72 ch-72 ch-72
Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai	ining Loss : 0.08688300618004377 ch73 ining Loss : 0.08676141433584818 ch74 ining Loss : 0.08664367385414927 ch75 ining Loss : 0.08652962766825541 ch76 ining Loss : 0.08641912677677396 ch77 ining Loss : 0.086312029739364 ch78 ining Loss : 0.08620820220969132 ch79 ining Loss : 0.08610751650243058 ch80 ining Loss : 0.08600985119145745
Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai	ch81 ining Loss : 0.0859150907366405 ch82 ining Loss : 0.08582312513689555 ch83 ining Loss : 0.08573384960736886 ch84 ining Loss : 0.08564716427882373 ch85 ining Loss : 0.08556297391746323 ch86 ining Loss : 0.08548118766360062 ch87 ining Loss : 0.08540171878770683 ch88 ining Loss : 0.08532448446251112 ch89 ining Loss : 0.08524940554993635
Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai Epoc Trai	ch90 ining Loss : 0.08517640640175544 ch91 ining Loss : 0.08510541467295472 ch92 ining Loss : 0.08503636114686645 ch93 ining Loss : 0.08496917957122135 ch94 ining Loss : 0.0849038065043314 ch95 ining Loss : 0.08484018117068305 ch96 ining Loss : 0.08477824532527921 ch97 ining Loss : 0.08471794312611652 ch98
Epoc Trai Epoc Trai Opti imp plt plt plt plt plt	<pre>ining Loss : 0.0846592210142411 ch99 ining Loss : 0.0846020276008571 ch100 ining Loss : 0.08454631356101536 imized W:[1.44961872] and b:[-0.18626539] port matplotlib.pyplot as plt t.figure(figsize = (10,10)) t.plot(range(1,epochs + 1),loss_list) t.scatter(range(1,epochs+1),loss_list) t.title("Log Loss") t.xlabel("Epochs") t.ylabel("loss") t.show()</pre>
0.2	250 - 200 -
0.1	175 - 150 - 125 - 100 -
fte tes pri	est Data est = svc.decision_function(X_test,support_vector,svm_dual_coeff_,intercept) st_prediction = [sgd.predict(ftest[data],w[0],b[0])[0] for data in range(len(ftest))] int("test Prediction : [0.004969085753400267, 0.47172988567687335, 0.06292162797181014, 0.4095663384280869, 0.01140033712095906, 0.9259763715110881, 0.123 87, 0.046788111997427245, 0.0091663688641821, 0.587843417715812, 0.015006597986503008, 0.00396070783736178, 0.029818039457043463, 0.14609579168440
4945 1786 8161 8478 08.95 8814 07, 303 6, 56, 2088 14, 9628	5209957721714, 0.03131214377426784, 0.9345603976529385, 0.0052418777140559245, 0.4110100860659789, 0.8895417931530457, 0.014402329226791405, 0.002 635, 0.009941930326802193, 0.13125844227504047, 0.9466558956954717, 0.028231504596045367, 0.965887174631899, 0.7253491644589101, 0.948790049442062 17031063703, 0.01344490821904161, 0.08800046071647795, 0.02966517906702783, 0.9688470781895671, 0.038380802429151935, 0.018434573396832455, 0.0227 86, 0.806287544725349, 0.892218807517814, 0.0200307959533398742, 0.8998408320921583, 0.03615966297659763, 0.17937112970496885, 0.45612959165443817, 92544919, 0.008026124639616194, 0.958247539026555, 0.8539575223687195, 0.024180882862586836, 0.8968458788928236, 0.030012366497741493, 0.783553836 553303684625589, 0.014202752891805257, 0.0539202064150608, 0.6597687572978111, 0.0054050745074294745, 0.8608393647651055, 0.0022143795629986553, 0.4771014, 0.8902287186289125, 0.950444150226906011, 0.2488237642383243, 0.39010548232849696, 0.86396291602206, 0.7302045241577895, 0.2544528458086, 0.9296716072186454, 0.3499841377882236, 0.8072556703568875, 0.9498612381451831, 0.2658891507486397, 0.08364924976124825, 0.0033073348738980463, 0.9617118, 0.8584156005944402, 0.011041964521947594, 0.41141101960332166, 0.3150029323290646, 0.9166495157867433, 0.030519894810188714, 0.0047820049 0.057633478052011876, 0.18174992034862006, 0.8855282672161411, 0.8808485636288477, 0.9906134812790495, 0.000637094494450401, 0.010043439410350064, 0.05263772998877466, 0.06538537805672935, 0.00624614578572894, 0.00023554922034736125, 0.5171147407787401, 0.8324093331802556, 0.0189271571056224 88642780235, 0.0015135669898467736, 0.3178972546911113, 0.9401033885550046, 0.9181950637936352, 0.240990727272777512, 0.012588693851300084, 0.80083 0.7155478403936302, 0.0035677973439124724, 0.04166456408577889, 0.00823554922034736125, 0.5171147407787401, 0.83240933313802556, 0.004377918092143320 0.0055301085397466988, 0.00646732460767537, 0.041402210539976586, 0.0022411622351850853, 0.5366319044042956, 0.008691779496129145, 0
3738 66, 33813 552, 9387 7677 7141 3938 00.59 0005, 7117 8869 8988 9563 00.89	8.0.005339740953, 0.0094167324075, 0.9801852226553932, 0.375013013367913, 0.08458413183104609, 0.78231348359073389, 0.019399352067034928, 0.033977 0.01307187064626153, 0.004163884438875327, 0.012139062968719519, 0.7373334282401842, 0.008535996242115715, 0.3665590787115734, 0.0140966055784075 3060664780847, 0.6439357444238846, 0.03693760816724338, 0.09617083556940423, 0.006823839075358012, 0.2082559925455328, 0.025277238901981115, 0.5653, 0.92058688984762204, 0.02094339129613084, 0.05413481494309434, 0.915207723598984286, 0.888068509094678386, 0.51098816032339929, 0.0231592017711443447, 723505, 0.0016307473632282226, 0.017154186811187282, 0.03557663026602945, 0.023946902596287057, 0.0022722657915608766, 0.8963698100590378, 0.028467, 0.7800706031231566, 0.8497327839359607, 0.021116382453205487, 0.16995354366558602, 0.02333454474884013, 0.0152684230521062, 0.01691584661541976, 0.13372066201862285, 0.0148799086246874, 0.165500089015362723, 0.009673834515673479, 0.0001592600233922337, 0.003807482310747547, 0.0009650748, 0.0098567744101601, 0.9932564676312478, 0.013985845812317958, 0.9127276885519151, 0.1319287181529915, 0.14971036293571285, 0.5180186777706162, 0.906698056732210415, 0.6513611359419914, 0.03881487905647955, 0.00186857354874239, 0.10460068723975229, 0.0421929925677736505, 0.012462462469, 0.816405483745, 0.05836777766162, 0.906698656732210415, 0.6513611359419914, 0.03881487905647955, 0.0018657354874239, 0.10460068723975229, 0.042192992526777736505, 0.9122462406, 0.816405452462245, 0.068405246245, 0.0606908567489, 0.0038135585353977, 0.8810818133621212, 0.00415860873388059, 0.3054677544133251, 0.19122719111715467, 0.038136983749512174, 0.0146876374, 0.050893551644832439, 0.8460992065482258, 0.021744654392935082, 0.2767222846511429, 0.9153773859375932, 0.00241660175575280 7088351156837, 0.06463254623173652, 0.00666716891215406, 0.9590998127786221, 0.021245478414767528, 0.05883503366657068, 0.7319861560756777, 0.03183, 0.0038526047144150004, 0.026886755585613074, 0.05019931915975108, 0.011401659878814543,
667, 9596 0.16 5978 0.93 1716 9481 36, 0292 5175 0313 7018 2, 6	0.0132330514499037, 0.8876952448731813, 0.007957737004217298, 0.8260651596144029, 0.4759844352483603, 0.0054938288555075233, 0.20344716266041377, 0.5507534, 0.9871403701683222, 0.9067551266543815, 0.011144008656955265, 0.17670241546978677, 0.007637504356212188, 0.9484613862203669, 0.037635418 0.03973977950674534, 0.009981121455773286, 0.5317631884913141, 0.023135437569218115, 0.0057520287285149135, 0.004448346823424566, 0.0056841235 0.03973977950674534, 0.009494845454243, 0.034851719377517784, 0.11878512517990605, 0.8890974398936752, 0.6613871187527062, 0.002153561718730909, 0.0 0.0386, 0.006433222801387303, 0.07524221522734724, 0.8554451862726993, 0.9065341777922162, 0.14760399751175507, 0.8622749722801535, 0.01131063613274 0.24599213020816207, 0.0030244162334840453, 0.013263046492265094, 0.014042190564353987, 0.9518891183208495, 0.0121020061586774322, 0.0741148730453 0.054274868618081336, 0.049846317025661425, 0.010002191236835893, 0.8416134186215078, 0.864423775656, 0.0026532549650931845, 0.0510219769843 0.054274868618081336, 0.049846317025661425, 0.010002191236835893, 0.8416134186215078, 0.864423775656, 0.0026532549650931845, 0.0510219769843 0.0542764363912433, 0.012980823460820908, 0.4896602167415225, 0.5983973980520698, 0.1600097494268943, 0.16533157173856, 0.00131393975987417, 0.9895901482203027, 0.0355676596384337, 0.9071146373132947, 0.9591846355909776, 0.6629765828354813565, 0.8992980934018229, 0.01031393975987417, 0.9895901482203027, 0.0355676596384337, 0.091146373132947, 0.9591846355909776, 0.66293675, 0.84522670266530209, 0.9018928827902665, 0.032869141048295435, 0.0671952388944764285517, 0.016664415442216768, 0.6334523323878094, 0.08071451935947646, 0.023338944764285517, 0.03159225999300921, 0.05174920708364413, 0.9473378 0.08444489886178737, 0.01664415442216768, 0.6334523323878094, 0.080714519359476445, 0.023338944764285517, 0.0315922599300921, 0.05174920708364413, 0.9473378 0.084445381, 0.01766441544216768, 0.6334523323878094, 0.080714519359476445, 0.023338944764285517, 0.0315922599300921, 0.051
11, 64 4556 53, 4868 0.00 0342 9, 6 55156 8897 7, 6 6168 3152 4972 4972 4974 4974 4974 4974 4974 497	0.815290671832673, 0.006591476942438054, 0.0009657819306343415, 0.13298301296470835, 0.8256118760367751, 0.40811987510150066, 0.027782308058782134 6280730544, 0.0341393163373114, 0.02200096382620749, 0.03999942036736662, 0.22361499674939364, 0.30622220332844435, 0.00355230447696566476, 0.90097 0.9421585221985304, 0.0029663448505672634, 0.883632505228418, 0.49088348274834104, 0.9004728112572871, 0.4563621274998662, 0.6649914590466938, 0.8877545, 0.1051007014958135, 0.006289540746846559, 0.23137679873779693, 0.10635793591525722, 0.9033650068167899, 0.00743010682529272, 0.045022825 0.5919406176566327, 0.21662905359838133, 0.9748427812821264, 0.024980307018034047, 0.012695896845469111, 0.38790398043983765, 0.12517934586510243, 0.030169442687219977, 0.8849448892431654, 0.05999470782307198, 0.16098730352177758, 0.07874055175932534, 0.011504080530474442, 0.9466758030796915, 0.5654619948917997, 0.0254864571835809, 0.005358179151434211, 0.0021 0.030169442687219977, 0.8849448892431654, 0.05099470782307198, 0.16098730352177758, 0.07874055175932534, 0.0115040805530474442, 0.9466758030796915, 0.566851436, 0.013498867002000165, 0.008643669602428142, 0.02338471173817452, 0.013319960516538745, 0.9280546571835809, 0.005358179151434211, 0.0021 0.936, 0.8872282396662406, 0.03042378759553967, 0.9499197571394152, 0.016187809655018952, 0.9175728488476436, 0.8971484393203376, 0.9210042203193037 0.013780930062980268, 0.1867957336381786, 0.006929643611400418, 0.3802110567790626, 0.5079487837901398, 0.04428398609241807, 0.9573522552259038, 0.8366, 0.015250607835016852, 0.33871986811200813, 0.05650616936854968, 0.674411271338204, 0.7796600510242325, 0.009024976942831622, 0.0091392945507 0.00628408373839542, 0.001421276081724003, 0.87962450444557817, 0.021575417597924483, 0.0912404492606723, 0.0093812637609558308, 0.0196471117670508099099094511462195, 0.001421276081724003, 0.87962450444557817, 0.021575417579724483, 0.0912404492606723, 0.003812637609558308, 0.0196471117670508099099094641511466195, 0.001421276081724003, 0.87962450444557817,
32, 3216 9304 9304 0.06 1961 78, 0666 4255 4255 77019 6368 9755	0.8813830413583778, 0.8737880704411254, 0.03868799735631634, 0.011796265392701177, 0.16767266030366795, 0.8431464028203274, 0.023671285440176888, 6082507, 0.025679078772543808, 0.9299345518993907, 0.08196224509581768, 0.025298920597021848, 0.5943828031902237, 0.03522422263113214, 0.0137266174
3, 64264 4264 96.76 8819 7652 9616 6508 96.02 4999 1961 33, 66 6009 36009 3618	0.8585358719075178, 0.06762661784621822, 0.9357945877186702, 0.9155672612844136, 0.29810960395890934, 0.08305086021353059, 0.7297617956593797, 0.0 44626, 0.023792887288902935, 0.8990633662028513, 0.9692372349822839, 0.025010287196864888, 0.9166863038274449, 0.05815154193610908, 0.009018983245 023122882474042, 0.0056859607415298465, 0.043592097798880014, 0.2663285270148487, 0.05810440753248776, 0.130101638020477, 0.03511727117097223, 0.0 9343, 0.18714282542714866, 0.9194360159114736, 0.03359403649757745, 0.8511469688312853, 0.022856672881365222, 0.75083423553276, 0.015382652336346 5546074266068, 0.036930214742453636, 0.0026838805160135817, 0.0038359006302866442, 0.915356666841629, 0.218150172100777, 0.9049433299100443, 0.011 6055, 0.010023893262591023, 0.8934257140182094, 0.8029618278603653, 0.747008421060196, 0.008593764979204284, 0.0299907921746544, 0.615547533737508 2122254634, 0.009912740467532235, 0.018439362842612113, 0.017305169232395442, 0.9416052796939323, 0.1380082655917911, 0.001135950516825506, 0.0014486499688404614, 0.059424139241715586, 0.8448779429936464, 0.8892990916898387, 0.006144856387913832, 0.017550240315264573, 0.009326198918 829899133850421726, 0.02686076338921893, 0.908417515526719, 0.6400207083563656, 0.7876153433511827, 0.8974987644250132, 0.9147832886549522, 0.00152 98, 0.008119529452721543, 0.331211301989774, 0.7488180716581544, 0.9265947367580925, 0.72676777588254423, 0.9419262202713251, 0.05981808461270495, 1178513, 0.008886082162941669, 0.012342076450067095, 0.020892375838459782, 0.935858635614539, 0.6579054254683824, 0.012396186542942172, 0.02081880 0.017801901127801948, 0.1878066744284011, 0.010177641076990616, 0.03890445720080009, 0.01765232728499047, 0.06502926706122208, 0.8765215092402678, 8370037, 0.27486109605606335, 0.9479916955738351, 0.02465342565787844, 0.8326859736589576, 0.7182272855530825, 0.08382999603575807, 0.032399580735 0.059, 0.004586335828173447, 0.002098593485682687, 0.8895962287797359, 0.9417913173302764, 0.1605388898605259, 0.7887246643407232, 0.012308527131
2444 0477 606, 9921 8, 6 8743 5977 0696 3141 4613 2829 9609 3144 46, 2409 46,	429944016827, 0.009631449389443126, 0.0010247674931590648, 0.012180549695337682, 0.004254121318351341, 0.05169412886062728, 0.9025840647018418, 0.793746, 0.007881661448321134, 0.05240888344598458, 0.0055733226261239993, 0.020240145633752954, 0.02190723643038961, 0.00807105161661193, 0.0031513, 0.06278077919469351, 0.0024500158939048267, 0.03401920687864047, 0.14249622772201398, 0.9138636847109306, 0.03638388841973371, 0.0356258904735092, 197687039497, 0.6765867889284505, 0.972435808923492, 0.014870964002812733, 0.05897775348723221, 0.03367497843227707, 0.014532753904144283, 0.69377, 0.012736123255336124, 0.01009224163565739, 0.3035347837302824, 0.05578103359547396, 0.8954802968402146, 0.910114260422436, 0.0694316841148188, 0.0 33674, 0.9426315419850522, 0.6341560374389287, 0.0038182005299674, 0.0133924738876956846, 0.6867944702993711, 0.8164955755077037, 0.015647430124640, 0.910454439134882952, 0.009427555776346734, 0.004210367974297324, 0.22227465585690614, 0.03549594089390186, 0.9837665080048047, 0.91044, 0.12512095233978346, 0.017153943913095555, 0.88769686617244396, 0.0014278756671650837, 0.04338894251039712, 0.8113457986503221, 0.9483263358312 17640910575, 0.9287223732067597, 0.010451443911545273, 0.7849842561487705, 0.9200655467385225, 0.0014121331287695353, 0.03203763123237309, 0.00812 3, 0.917070461739644, 0.7177726670716597, 0.05621505473951251, 0.9710198252120391, 0.020972439953733683, 0.0011301808995184545, 0.0766409345246784 0.00470746747861353, 0.9177768550977199, 0.8716673130464043, 0.818357112447188, 0.020868074579247112, 0.036125679008680196, 0.78684476370 0.00457926476593, 0.01476747861353, 0.9177768550977199, 0.8716673130464043, 0.818357112447188, 0.020868074579247112, 0.036125679008680196, 0.78684476370 0.006870747861353, 0.9177768550977199, 0.8716673130464043, 0.818357112447188, 0.020868074579247112, 0.036125679008680196, 0.78684476780 0.0068530714167022282, 0.0388177059385466, 0.05483950176306995, 0.01685209417995656, 0.5301854499695864, 0.096853071416702282, 0.03881770593854666, 0.00467766
2852 866, 0946 0.01 4978 0.76 3782 6424 0.02 5804 0.22 9388 f any	20110774463, 0.6605455077287288, 0.8418044139951117, 0.006161550128980891, 0.00485785092685666, 0.025163857010942897, 0.39312376612330774, 0.20682, 0.007013593450977939, 0.017321707140522898, 0.9259300162002735, 0.012806002828201657, 0.0538891350620549, 0.02582614308831696, 0.53568068142856
3. h	https://drive.google.com/open?id=1MzmA7QaP58RDzocB0RBmRiWfl7Co_VJ7 https://drive.google.com/open?id=133odBinMOIVb_rh_GQxxsyMRyW-Zts7a https://stat.fandom.com/wiki/Isotonic_regression#Pool_Adjacent_Violators_Algorithm

8E and 8F: Finding the Probability P(Y==1|X)