

Introduction

Existing Solutions Outline

Motivation

Out-of-co Computin

Overview Usage

Usage Implementation

Result

Single No

Conclusion

BDMPI: Conquering Big Data with Small Clusters using MPI

Dominique LaSalle and George Karypis University of Minnesota, Minneapolis, MN, USA

November 18, 2013

Big Data

Introduction

Big Data Existing Solutions

Motivatio

Distributed a Out-of-core Computing Insights

Overview Usage

Implementation

Experiment Single Nod Cluster Scaling

Conclusion

What is Big Data?

- Depends on your compute system:
 - Laptop/PC
 - Server
 - Cluster
 - Data Center
- Data > DRAM

Existing Solutions

Introduction

Existing Solutions

Motivatio

iviotivatio

Distributed at Out-of-core Computing Insights

Overview Usage

Implementation

Experir

Single No Cluster Scaling

Conclusio

Big Data Solutions

- MapReduce/Hadoop
- GraphChi
- Giraph
- Hama
- Custom Solution

Outline

Introductio

Big Data

Solution

Motivatio

Distributed a Out-of-core Computing Insights

Insights BDMPI

Overview Usage

Implementation

Results

Single No

Conclusion

Introduction

- Motivation
- BDMPI
 - Overview
 - Usage
 - Implementation
- Results
- Conclusion

Distributed and Out-of-core Computing

Big Data Existing Solutions

Motivation

Distributed and Out-of-core Computing Insights

Overview Usage Implementation

Experiment Single Nod Cluster Scaling

Conclusio

Distributed Algorithms

- Minimize communication between processes.
- Extract independent tasks to perform in parallel.
- Organized into a series of compute and collective/point-to-point communication steps.

Out-of-Core Algorithms

- Minimize reads and writes to disk.
- Extract independent tasks to perform serially.
- Organized into a series of compute and disk read/write steps.

Insights

Introductio

Existing Solutions Outline

Motivation

Distributed a Out-of-core Computing Insights

Overview Usage Implementatio

Results
Experiment
Single Nod
Cluster
Scaling

Conclusio

The Graph Ordering Problem

- How can a graph be efficiently re-order in an out-of-core fashion?
- How can a graph be efficiently re-order in a distributed fashion?

General Applications

- How can we treat a remote process as a disk?
 - Already supported by MPI's one sided communication (exchange fread/fwrite for MPI_get/MPI_put).
- Can we treat the disk as a remote process?
 - Need to handle remote computations/data movement.

How it Works

Big Data Existing

Motivation

Computing Insights

Overview

Implementation

Experiment Single Nod Cluster

Conclusio

BDMPI

- Transparent layer between an MPI program and an MPI runtime.
- For a problem of size n and a compute cluster with p processing nodes each with m memory:
 - **①** Divide the data into t = n/m blocks.
 - 2 Spawn a master process on each compute node.
 - **S** Spawn t/p slave processes on each compute node.
- Allow only one slave process to run at a time on each compute node.
 - That process will run until it blocks on a communication operation.

Why it Works

Introductio

Big Data Existing Solutions Outline

Motivation

Distributed Out-of-core Computing

BDMP

Overview Usage

Results
Experiment
Single Nod
Cluster
Scaling

Conclusio

Node-Level Cooperative Multi-Tasking

- Processes run until blocking for a collective communication or receive operation.
- Cost of loading data from disk is amortized over large blocks of computation.
- Since only one process runs at a time, the thrashing associated with multiple processes attempting to gain residency is avoided.

BDMPI Usage

Introductio

Existing Solutions Outline

Motivatio

Distributed an Out-of-core Computing Insights

BDMPI Overview Usage

Usage Implementation

Experiment Single Nod Cluster Scaling

Conclusion

Usage

bdmpiexec

```
mpiexec —np 80 progname [arg1] [arg2] ...
```

```
bdmpiexec -np 4 [-nr 2] -ns 20 progname [arg1] [arg2] ...
```

- Executes mpi program on a cluster with four nodes as if it were on a cluster of 80 computes nodes.
- libbdmpi
 - Provides MPI X functions.
- Replace #include <mpi.h> with #include <bdmpi.h>.

BDMPI API

Introduction

Big Data Existing Solutions Outline

Motivatio

Distributed and Out-of-core Computing Insights

Overview
Usage
Implementation

Results
Experiments
Single Node
Cluster

Conclus

MPI Subset Implemented by BDMPI

 $BDMPI_Init$, $BDMPI_Finalize$

BDMPI_Comm_size, BDMPI_Comm_rank, BDMPI_Comm_dup, BDMPI_Comm_free, BDMPI_Comm_split

$$\begin{split} & BDMPI_Send \,, \;\; BDMPI_Isend \,, \;\; BDMPI_Recv \,, \;\; BDMPI_Irecv \,, \\ & BDMPI_Sendrecv \end{split}$$

 $\begin{array}{lll} & & & & BDMPI_Probe \,, & BDMPI_Test \,, & BDMPI_Wait \,, \\ & & & BDMPI_Get_count \end{array}$

 $\mathsf{BDMPI}_{\mathsf{Barrier}}$

$$\begin{split} & BDMPI_Bcast\ , \ BDMPI_Reduce\ , \ BDMPI_Allreduce\ , \\ & BDMPI_Scan\ , \ BDMPI_Gather[v]\ , \ BDMPI_Allgather[v]\ , \\ & BDMPI_Allgather[v]\ , \ BDMPI_Alltoall[v] \end{split}$$

Implementation

Introduction

Existing Solutions

Motivation

Distributed a Out-of-core Computing Insights

Overview

Implementation

Reculte

Experiments
Single Node
Cluster
Scaling

Conclusion

Communication Model

Implementation Cont.

Introduction

Big Data Existing Solutions Outline

Motivatio

Distributed Out-of-core Computing Insights

Overview

Implementation

Results

Single N Cluster

Conclusion

Master-Slave Communication

Point-to-point Communication

Introduction

Existing Solutions Outline

Motivation

Distributed an Out-of-core Computing Insights

Overview Usage

Implementation

Results
Experiment
Single Nod
Cluster
Scaling

Conclusio

Message Buffering

- Small messages buffered in memory.
- Large messages buffered on disk.

Send and ISend

 Message buffering allows sending process to continue executing without blocking.

Recv and IRecv

- If the master has already buffered the message, no blocking occurs.
- Otherwise the process becomes blocked, and another process is allowed to run.

Benchmarks

Introductio

Existing Solutions Outline

Motivation

Distributed an Out-of-core Computing Insights

Overview
Usage
Implementatio

IIIpiementatio

Experiments Single Node Cluster

Conclusion

PageRank

- Memory heavy operation.
- Multiplying a sparse matrix by a vector.

KMeans Clustering

Multiplying a sparse matrix by a dense matrix (100 clusters).

SGD

- Matrix factorization A = UV (20 factors).
- Element-wise random traversal.
- SGD-row
 - Row-wise traversal.
 - Better locality than regular SGD.

Test Codes

Introductio

Existing Solutions Outline

Motivatio

Distributed a Out-of-core Computing Insights

Overview

Usage Implementation

Resul

Experiments
Single Node
Cluster
Scaling

Conclusio

- **Serial-OOC** Custom out-of-core solutions.
- MPI MPI codes ran using MPICH.
- GraphChi Kyrola et. al. 2012.
- Hadoop
 - Mahout for KMeans.
 - Pegasus for PageRank Kang et. al. 2009.
- BDMPI
 - BDMPI MPI codes ran using the BDMPI runtime.
 - **BDMPI-mlock** MPI codes + munlock()/mlock().
 - **BDMPI-OOC** MPI codes + fread()/fwrite().

Experiment Setup

Introduction

Big Data Existing Solutions Outline

Motivatio

Distributed a Out-of-core Computing Insights

Overview

Usage Implementation

Result

Experiments Single Node Cluster Scaling

Conclusion

Our Cluster

- Four machine cluster:
 - Intel i7 @ 3.4 GHz
 - 4 GB of DRAM
 - Seagate Barracuda 7200 RPM 1.0 TB (300GB swap and /scratch partitions)

Our Datasets

- PageRank 6.6B edges, ordered randomly (50GB CSR).
- \bullet KMeans 30M \times 83K with 7.3B non-zeros (56GB CSR).
- \bullet SGD 3.8M \times 284K with 12.8B non-zeros (50GB CSR).

Single Node Results

Introduction

Big Data Existing Solutions

Motivation

Distributed a Out-of-core Computing Insights

Overview Usage

Usage Implementation

Results

Single Node Cluster Scaling

Conclusion

Cluster Results

Introduction

Big Data Existing Solutions Outline

Motivation

Distributed a Out-of-core Computing

Insights BDMPI

Usage Implementation

Experime

Single Node Cluster Scaling

Conclusion

Scaling Results

Introduction

Big Data Existing Solutions

Motivation

Distributed a Out-of-core Computing Insights

Overview Usage

Implementation

Fyperim

Cluster Scaling

Conclusion

Conclusion

Introductio

Existing Solutions Outline

Motivation

Distributed a Out-of-core Computing Insights

BDMP

Usage Implementation

Result

Experiment Single Node Cluster Scaling

Conclusion

BDMPI

- Utilizes existing MPI interface.
 - Turns existing MPI applications into distributed out-of-core applications.
 - Leverages 20 years worth of experience.
- Achieves speeds comparable to custom out-of-core solutions.
- Scales well across multiple machines.