Niezawodność i bezpieczeństwo 2019

Skrypt do zajęć ćwiczeniowych.

Politechnika Krakowska, Wydział Inżynierii Lądowej, kierunek Transport, studia drugiego stopnia, semestr I

Dr inż. Rafał Kucharski Zakład Systemów Komunikacyjnych, Politechnika Krakowska rkucharski@pk.edu.pl

Organizacja i warunki zaliczenia

- Ćwiczenia odbywają się co dwa tygodnie w formie audytoryjnej.
- Ćwiczenia wykonywane są w grupach maksymalnie trzyosobowych.
- Ćwiczenie jest zaliczone po wykonaniu go na zajęciach, zaakceptowaniu przez prowadzącego i oddaniu sprawozdania (wykonywane na bieżąco w trakcie zajęć).
- Każda grupa ćwiczeniowa oddaje jedno sprawozdanie (wzory załączone poniżej).
- Dopuszczalna jest jedna nieobecność na ćwiczeniu. Za nieobecność uznaje się brak przekazanego sprawozdania.
- Do przeprowadzenia ćwiczenia wymagany jest własny komputer (jeden na grupę ćwiczeniową) i model podróży (wykonany na semestrze 6 w ramach ćwiczeń projektowych z przedmiotu PST).

tygodnie nieparzyste			tygodnie parzyste		
1	Wprowadzenie	1	Wprowadzenie		
2	Ćwiczenie 1	2	Ćwiczenie 1		
3	Ćwiczenie 2	3	Ćwiczenie 2		
4	Ćwiczenie 3	4	Ćwiczenie 3		
5	Ćwiczenie 4	5	Ćwiczenie 4		
6	Ćwiczenie 5	6	Ćwiczenie 5		
7	Ćwiczenie 6	7	Ćwiczenie 6		
8	termin zapasowy	8	termin zapasowy		

Wstęp teoretyczny i dane wejściowe

- Skrypt zawiera wstęp teoretyczny i ćwiczenia.
- Ćwiczenia wykonywane będą przez studentów w trakcie zajęć.
- Poniższe ćwiczenia dotyczą niezawodności na przykładzie miejskich sieci transportowych.
 Tematyka bezpieczeństwa poruszana jest na zajęciach projektowych, na ćwiczeniach tematyką jest niezawodność.
- Do ćwiczeń wymagany jest Modelu Ruchu wykonany na przedmiocie PST na semestrze 6.

Def. 1. Sieć transportowa

Siecią transportową nazywamy zbiór węzłów $n \in N$, oraz odcinków $a \in A$, tworzących graf skierowany G(N,A). W odniesieniu do sieci drogowej węzły reprezentują skrzyżowania (*Nodes*), a odcinki to odcinki uliczne łączące węzły (*Links*).

Def. 2. Model ruchu

Model ruchu M składa się z:

- sieci transportowej G(N,A),
- więźby ruchu Q_{ij}
- wyników rozkładu ruchu wyrażonych w postaci:
 - a. potoków pojazdów na ścieżkach q_k, i/lub
 - b. potoków pojazdów na każdym z odcinków q_a

Oznaczać go będziemy jako q=M(G,Q) i rozumieć jako obliczenie działające na sieci G i więźbie ruchu Q, dostarczające informacje o obciążeniu sieci ruchem q.

Model ruchu M to plik .ver przygotowany na zajęciach z PST, graf G to układ drogowy, a więźba Q to obliczona na podstawie modelu popytu więźba ruchu używana w programie. Wyniki modelowania, czyli potoki q otrzymujemy na podstawie procedury rozkładu ruchu PrT Assignment, każda zmiana w grafie, lub w więźbie wymaga obliczenia ścieżek na nowo procedurą rozkładu ruchu.

Dane wejściowe do obliczeń otrzymujemy z modelu na podstawie atrybutów elementów sieci dla odcinków *links*, lub ścieżek *PrTPaths*:

- potoki pojazdów q_a otrzymujemy z parametru VolVehPrT(AP) (w ciągu godziny szczytu popołudniowego)
- długość odcinka to parametr *Length*,
- prędkość w ruchu swobodnym to v0, po obciążeniu potokiem q_a to vcur
- prędkość w ruchu swobodnym to t0, po obciążeniu potokiem q_a to tcur

Ćwiczenie 1. Odczytanie wskaźników sieciowych. Minimalne cięcie grafu.

Imię i nazwisko	Imię i nazwisko	Imię i nazv	visko
A. Analiza wyników rozkł			
odcinek:	atrybut	nr	wartość
o największym potoku	VolVehPrT(AP)		
o największym stopniu wykorzystania przepustowości	VolCapRatio		
o najdłuższym czasie przejazdu	tCur(C)		

liczba odcinków o stopniu wykorzystania przepustowości powyżej 75%

węzeł:	atrybut	nr	wartość
o największym potoku	VolVehPrT(AP)		

relacja skrętna:	atrybut	nr (From, Via, To)	wartość
o największym potoku	VolVehPrT(AP)		

element:	Z	Do	Wartość
więźby ruchu o największym potoku			
macierzy kosztów o najdłuższym czasie przejazdu			
macierzy kosztów o najdłuższym wydłużeniu czasu przejazdu			
macierzy kosztów o największej pracy przewozowej			

Wyznaczanie całkowitych kosztów podróży w sieci transportowej: czasu (pojazdo-godzin) i przemieszczenia (pojazdo-kilometrów)

Dla modelu ruchu q=M(G,Q) oblicz całkowite koszty przemieszczeń C wyrażone w:

- pojazdo-godzinach, wyrażają całkowity czas przemieszczeń;
- pojazdo-kilometrach, wyrażają całkowite przemieszczenie (pokonany dystans).

Koszty te mogą być obliczone na dwa równoważne sposoby:

- $C = \sum_{k=1}^{\infty} q_k \cdot c(k)$ jako suma kosztów wszystkich ścieżek $k \in K$:
 - , gdzie c(k) to koszt danej ścieżki, np. jej czas t_a , lub długość l_a , a q_k to potok pojazdów na tej
- jako suma kosztów wszystkich odcinków w sieci $a \in A$: $C = \sum_{a \in A} q_a \cdot c_a$,
 - , gdzie c_a to koszt przejazdu danego odcinka, np. czas t_a , lub długość l_a , a q_a to potok pojazdów na tym odcinku.

Na podstawie prac przewozowych i liczby podróży N określ podstawowe wskaźniki dla sieci:

Parametr	symbol	wartość
liczba podróży	N	
pojazdokilometry	D_{tot}	
pojazdogodziny	T_{tot}	
średnia prędkość	D_{tot}/T_{tot}	
średnia długość podróży	D_{tot}/N	
średni czas podróży	T_{tot}/N	

Minimalne ciecie grafu

Cięciem grafu nazywamy podzbiór odcinków grafu, który dzieli graf na dwie rozłączne części (podgrafy). W odniesieniu do sieci transportowej, cięciem będzie taki zbiór odcinków, który dzieli sieć na dwie części pomiędzy którymi nie ma połączeń (metoda szukania najkrótszej ścieżki nie znajduje połączeń). W ćwiczeniu tym należy zidentyfikować linie cięcia sieci na dwa rozłączne grafy i wybrać cięcia najmniejsze (waskie gardła). Naturalnymi cięciami sieci transportowej sa przeszkody przestrzenne: rzeki, kolej, autostrady, które przecina niewielka ilość połaczeń (mostów/tuneli/przejazdów).

W sieci transportowej cięcia rozpatruje się z punktu widzenia pary źródło-cel ij i jej ścieżek k_{ij} . Cięciem, w tym ćwiczeniu, niech będzie taki podzbiór $c_{ij}=\{a:a\in A\}$ odcinków grafu, który ma niepuste przecięcie z każdą ścieżką $\bigvee\limits_{k\in k_{ji}}c\cap k\neq\varnothing$. Innymi słowy należy znaleźć taki zbiór odcinków,

który przetnie wszystkie ścieżki k_{ij} . Zbiór wszystkich cięć nazwijmy $C_{ij} = \{c_{ij}\}$, w tym zbiorze interesuje nas cięcie minimalne $c_{ii} \in C_{ii}$, czyli (w zależności od przyjętej heurystyki):

a) najmniej liczne (zawierające najmniej odcinków)

 $\min_{C_{ij}} \left| c_{ij} \right| \ \min_{c_{ij} \in C_{ij}} \sum_{a \in c_{ij}} q_a^{\max}$ b) o najmniejszej sumarycznej przepustowości

Dla zadanego modelu ruchu q=M(G,Q), określ parę źródło-cel ij o największej liczbie podróży $Q_{ij}^{\max} = \max_{i,j \in \mathbb{Z}} Q_{ij}$. Przeanalizuj możliwe ścieżki k_{ij} i na ich podstawie określ minimalne cięcie grafu ze względu na parę ij pod kątem kryterium (a) liczności i (b) przepustowości.

	Cięcie grafu
Odcinki	

Ćwiczenie 2. Identyfikacja wrażliwych elementów sieci

Imię i nazwisko	Imię i nazwisko	Imię i nazwisko

Dla zadanego modelu ruchu q=M(G,Q) zidentyfikuj odcinki sieci transportowej potencjalnie wrażliwe $W=\{w\}\subseteq A$, czyli takie których niesprawność spowoduje znaczne zwiększenie kosztów przemieszczeń C. Odcinki w mogą być identyfikowane na podstawie następujących kryteriów (Tampere, 2007):

- 1. intuicyjnych, wskaż odcinek którego zamknięcie według Ciebie spowoduje największe utrudnienia.
- 2. Na podstawie warunków ruchu np.:
 - a. kryterium największego potoku:

$$w_1 = \max_{a \in A} q_a ;$$

b. kryterium największego wydłużenia czasu:

$$w_2 = \max_{a \in A} (q_a / q_a^{\text{max}})$$
, gdzie q_a^{max} to przepustowość odcinka a ;

c. kryterium największego wydłużenia czasu:

$$w_6 = \max_{a \in A} \left(t_a / t_a^0 \right)$$

- 3. Na podstawie kryteriów sieciowych np.:
 - a. kryterium największej liczby ścieżek:

$$w_3 = \max_{a \in A} \left| k(a) \right|$$

- , gdzie |k(a)| to liczba ścieżek o dodatnim potoku q_k przebiegająca przez dany odcinek;
- b. kryterium propagacji zatłoczenia. Odcinek którego poprzedniki są wrażliwe z punktu widzenia któregoś z powyższych kryteriów, najczęściej chodzi o kryterium najszybszego zapełnienia się odcinka (7). Kryterium to pozwala uchwycić te odcinki na których łączą się potoki z kilku odcinków wrażliwych, np. łącznica na autostradzie:

$$w_9^a = \max_{a \in A} \left(\sum_{b \in a^-} q_b \right)$$

- , gdzie a^{-} to zbiór poprzedników odcinka a, wszystkie odcinki połączone bezpośrednio z odcinkiem a (za pomocą węzła).
- c. centralność (betweenness centrality), obciąż sieć macierzą jednostkową ($q_{od}=1$), ustaw dla wszystkich odcinków nieograniczoną przepustowość, wykonaj rozkład ruchu, znajdź odcinek najbardziej obciążony (o największym stopniu betweenness centrality) ten odcinek wskazany jest do zamknięcia. Wróć do wariantu bazowego, obciąż sieć po zamknięciu wskazanego odcinka.

Analiza wrażliwości kosztów podróży C na zamknięcie odcinków wrażliwych w

Dla każdego ze zidentyfikowanych odcinków wrażliwych $W=\{w\}$ znalezionych w 0 określ całkowite koszty podróży C^w po usunięciu tego odcinka z sieci i to jak wzrastają one w stosunku do kosztów bazowych C.

Aby to obliczyć wyrazimy koszt C jako funkcje modelu C(q=M(G,Q)), a więc sieci G i więźby Q. Więźba będzie stała, natomiast sieć będzie się zmieniać – kolejno wyłączać będziemy z niej odcinki wrażliwe. Dla każdego z odcinków wrażliwych $w \in W$ określmy modyfikacje sieci $G(N,A) \rightarrow G^w = G(N,A \setminus \{w\})$, czyli usunięcie odcinka wrażliwego w. Z siecią tą związany jest nowy model $q=M(G^w,Q)$, oraz nowe koszty $C^w(q=M(G^w,Q))$, które należy obliczyć (obliczając na nowo rozkład ruchu).

Dla każdego ze zidentyfikowanych odcinków wrażliwych $w \in W$ określ:

- a) koszty C^w wyrażone w pojazdo-godzinach i pojazdo-kilometrach związane z zamknięciem tego odcinka
- b) wrażliwość sieci na zamknięcie odcinka w: $\Delta C^w = 1 \frac{C^w}{C}$ [%]

Określ odcinek najbardziej wrażliwy $w_{\max} = \max_{w \in W} \Delta C^w$.

grupa	kryterium (nr)	odcinek (nr)	$D_{tot}^{\ \ w}[poj.km]$	$T_{tot}^{w}[poj.H]$	ΔD [%]	ΔT [%]
intuicyjne						
wybrane z grupy 2.						
wybrane z grupy 2.						
wybrane z grupy 3.						
wybrane z grupy 3.						
	Odcinek najbardziej wrażliwy:					

Ćwiczenie 3. Zmniejszenie wrażliwości sieci

Imię i nazwisko	Imię i nazwisko	Imię i nazwisko

Dla najbardziej wrażliwego odcinka sieci w_{\max} znalezionego w poprzednim ćwiczeniu zmodyfikuj sieć transportową $G \to G'$ dodając węzły, lub odcinki tak, żeby zminimalizować wrażliwość sieci ΔC^w . Należy określić wrażliwość sieci G' na zamknięcie odcinka w ($\Delta C^w(G')$) oraz porównać z wrażliwością sieci bazowej G na zamknięcie tego odcinka $\Delta C^w(G)$. Należy zaproponować 3 rozwiązania (3 modyfikacje sieci G) i wybrać to, dla którego wrażliwość jest najmniejsza.

Zmiana wrażliwości sieci (mierzona poprzez zmianę pojazdogodzin T_{tot})				
modyfikacja	sieć pełna	sieć bez odcinka w	ΔT	
G				
G`				
G``				
<i>G</i> ```				

Ćwiczenie 4. Krzywa zmiany pracy przewozowej wraz ze zmianą popytu

Imię i nazwisko	Imię i nazwisko	Imię i nazwisko

Dla zadanej więźby ruchu w modelu Q odczytaj pracę przewozową w pojazdo-kilometrach D_{tot} i pojazdo-godzinach T_{tot} . Narysuj funkcję zmiany tych prac przewozowych od zmian w więźbie $\Delta C(Q)$. Dla każdej pary źródło cel w więźbie q_{od} zwiększ/zmniejsz ją odpowiednio $q_{od} \rightarrow k \cdot q_{od}$. Określ przebieg zmienności dla przedziałów:

a) $k \in (0.8, 1.2)$ – małe wahania systematyczne

k	D_{tot}	T_{tot}
0.8		
0.9		
1		
1.1		
1.2		

b) $k \in (0.1,1)$ – wrażliwość kosztów na znaczny spadek potoków

k	D_{tot}	T _{tot}
0.1		
0.2		
0.3		
0.5		
1		

c) $k \in (1,5)$ – wrażliwość kosztów na znaczny wzrost potoków

k	D_{tot}	T_{tot}
1		
2		
3		
4		
5		

Ćwiczenie 5. Konsekwencje chwilowego zakłócenia (np. wypadku) na odcinku w dynamicznym modelu ruchu.

Imię i nazwisko	Imię i nazwisko	Imię i nazwisko

W ćwiczeniu tym określimy konsekwencje zakłócenia – chwilowej niesprawności odcinka sieci drogowej. Opis taki możliwy jest w modelu dynamicznym, gdzie charakterystyki modelu M są wyrażone jako funkcja czasu τ , np. potok na odcinku q_a staje się funkcją czasu $q_a(\tau)$. Pozwala to na bardziej realistyczny opis przepływu pojazdów, oraz pokazanie dodatkowych charakterystyk w formie wykresu zmienności w czasie:

- czas przejazdu dla pojazdów wjeżdżających w danym momencie $t_a(\tau)$;
- liczba pojazdów na odcinku $N_a(\tau)$;
- długość kolejki, w pojazdach $Q_a(\tau)$;
- liczba pojazdów wjeżdzających $e_a(\tau)$ i wyjeżdzających $f_a(\tau)$ z odcinka.

W tym ćwiczeniu w dynamicznym modelu ruchu $M(\tau)$ zamodelujemy zakłócenie (np. wypadek, awarię, blokadę) jako zmianę w sieci $G(\tau) \to G'(\tau)$. Sieć jest funkcją czasu, bo parametry odcinków zmieniają się w czasie. Zakłócenie zamodelujemy poprzez zmianę parametrów odcinka a na pewien czas, co pozwoli zasymulować zakłócenie (np. wypadek, zwężenie, awarię) i jego konsekwencje na przepływ pojazdów. W szczególności dla zadanego okresu $\tau_{awarii} = [\tau_-; \tau_+]$ spadnie (1) przepustowość $q_a^{\max}(\tau_{awarii}) < q_a^{\max}$, lub (2) prędkość $v0_a(\tau_{awarii}) < v0_a$. Dla takiej zmodyfikowanej sieci symulujemy przepływ pojazdów na z góry przypisanych ścieżkach (procedura: $Dynamic\ Network\ Loading)$ w wyniku czego otrzymujemy opis przepływu pojazdów przez sieć z zakodowanym zdarzeniem (wypadkiem) i warunki tego przepływu (np. czasy przejazdu). Należy opisać efekty zdarzenia podając:

charakterystyka	wartość
okres awarii;	
moment w którym kolejka jest najdłuższa, ile pojazdów obejmuje	
moment w którym kolejka znika i stan wraca do normy	
jeśli kolejka rozlała się na inne elementy w sieci podać maksymalny zasięg zakłócenia;	
liczbę pojazdów które odczują zakłócenia	
maksymalny czas przejazdu odcinka z zakłóceniem	

Zawodność i niezawodność elementów

Zdefiniujmy zawodność odcinka F_a jako prawdopodobieństwo wystąpienia awarii, czyli zdarzenia (np. zatoru drogowego), które powoduje nieprzejezdność (niesprawność). Założymy tu, że p-wo awarii na jeden pojazdokilometr jest stałe i wynosi π^I , niezależnie od odcinka a. Pozwala to wyrazić zawodność odcinka formułą $F_a(q_a) = \pi \cdot q_a \cdot l_a$.

Z kolei niezawodność odcinka R_a to p-wo, że na danym odcinku nie będzie miało miejsce zdarzenie powodujące nieprzejezdność/niesprawność. Zakładamy dwa możliwe stany odcinka: sprawność R_a i niesprawność F_a , co pozwala zastosować jedynkę prawdopodobieństwa: $F_a + R_a = 1$, a więc $R_a(q_a) = 1 - \pi \cdot q_a \cdot l_a$.

Odcinek o największym prawdopodobieństwie wystąpienia zdarzenia

Znajdź odcinek o największym prawdopodobieństwie wystąpienia zdarzenia $F_a(q_a) = \pi \cdot q_a \cdot l_a$ i sprawdź jak jego awaria wpłynie na koszty.

Zawodność i niezawodność układów

Wzory powyższe (F_a , R_a) zachodzą dla pojedynczych elementów, zazwyczaj jednak systemy, których niezawodność badamy są złożone. Wyróżniamy dwa podstawowe układy: szeregowy (A) i równoległy (B) (rys. 1).

Rysunek 1 Układ szeregowy (A) i równoległy (B)

W ogólności:

- układ szeregowy (oznaczony we wzorach U/) jest:
 - a. niesprawny jeśli niesprawny jest co najmniej jeden element
 - b. sprawny tylko jeśli sprawne są wszystkie elementy
- układ równoległy (oznaczony we wzorach U//), jest:
 - a. niesprawny tylko jeśli niesprawne są wszystkie elementy
 - b. sprawny jeśli sprawny jest co najmniej jeden element

Dla obliczenia zawodności i niezawodności układów użyjemy prawdopodobieństwa następujących zdarzeń.

Układ szeregowy U/ jest sprawny (R) tylko wtedy, gdy sprawne są wszystkie jego elementy. Co można przedstawić w formie iloczynu $R_{U|} = \prod_{a \in U|} R_a = \prod_{a \in U|} (1 - F_a) = \prod_{a \in U|} \left(1 - \pi \cdot q_a \cdot l_a\right)$ wyrażającego

niezawodność układu szeregowego. Stosując jedynkę prawdopodobieństwa $F_a+R_a=1$ możemy określić p-wo niesprawności układu jako $F_{U|}=1-\prod_{a\in U|}\left(1-\pi\cdot q_a\cdot l_a\right).$

Układ równoległy $U\parallel$, z kolei, jest niesprawny (F) wtedy gdy niesprawne są wszystkie jego elementy, co można wyrazić w formie iloczynu: $F_{U\parallel} = \prod_{a \in U\parallel} F_a = \prod_{a \in U\parallel} \left(\pi \cdot q_a \cdot l_a\right)$. Stosując jedynkę

prawdopodobieństwa $F_a+R_a=1$ możemy określić p-wo niesprawności układu jako $R_{U|}=1-\prod_{a\in U|}\left(\pi\cdot q_a\cdot l_a\right)$

Dla dowolnego układu zachodzi jedynka prawdopodobieństwa, czyli $F_a + R_a = 1$.

¹ rzeczywisty wskaźnik wypadkowości jest zależny od wielu czynników wpływających na bezpieczeństwo i powinien być obliczony osobno na podstawie odrębnej analizy.

Ćwiczenie 6. Niezawodność układu szeregowego i równoległego przy zadanym stałym prawdopodobieństwie zdarzenia na pojazdokilometr.

Imię i nazwisko	Imię i nazwisko	Imię i nazwisko

Układ szeregowy (ścieżka)

Dla pary źródło-cel ij o największym potoku w więźbie Q_{ij} określ ścieżkę najkrótszą k_{ij} . Przedstaw ją w formie układu szeregowego U/ i określ zawodność F_a i niezawodność każdego z elementów R_a na podstawie pojazdo-kilometrów na każdym odcinku $q_a l_a$ i zadanego p-wa zdarzenia π (np. 0.00005). Określ zawodność $F_{U/}$ i niezawodność układu $R_{U/}$.

Układ szeregowy	
Zawodność F Niezawodność R	

Układ równoległy (ekran)

Przedstaw minimalne cięcie grafu (określone w Ćwiczeniu 1) w formie połączenia równoległego U// i określ prawdopodobieństwo, że dwa podgrafy na które dzielona jest sieć będą niepołączone, czyli zawodność $F_{U//}$ i niezawodność $F_{U//}$ układu równoległego.

Układ szeregowy	
Zawodność F	Niezawodność R