${\bf Vorlesung smitschrift}$

AGLA II

Prof. Dr. Damaris Schindler

Henry Ruben Fischer

Auf dem Stand vom 5. Mai 2020

Disclaimer

Nicht von Professor Schindler durchgesehene Mitschrift, keine Garantie auf Richtigkeit ihrerseits.

Inhaltsverzeichnis

1	Affine Geometrie		
	1.1	Was ist ein affiner Raum?	4
	1.2	Affine Abbildungen	9
	1.3	Durchschnitt und Verbindung affiner Räume	3
	1.4	Parallelprojektionen	8
	1.5	Affine Koordinaten	2
	1.6	Das Teilverhältnis	7
	1.7	Affine Abbildungen und Matrizen, Fixpunkte	1
	1.8	Kollineationen	5

Kapitel 1

Affine Geometrie

Vorlesung 1

Di 21.04. 10:15

§1.1 Was ist ein affiner Raum?

Beispiel 1.1.1 (aus der AGLA I). \mathbb{R}^2 , \mathbb{R}^3 . In diesen Räumen gibt es einen ausgezeichneten "Usprung".

Frage. Wie könne wir eine affine Ebene / affine Räume modellieren, wobei alle Punkte gleichberechtigt sind?

Idee. Verwende affine Unterräume.

Beispiel 1.1.2. Sei K ein Körper, V ein K-Vektorraum, $W \subseteq V$ ein Untervektorraum und $v \in V$. Wir nennen X = v + W einen affinen Unterraum von V. X ist im Allgemeinen selbst kein Vektorraum unter der Addition in V, aber W "operiert" auf X.

Für $w \in W$ definieren wir die Abbildung

$$\tau_w \colon X \to X$$

$$p \mapsto p + w.$$

Sei

$$Bij(X) = \{ f : X \to X, f \text{ ist bijektiv } \}.$$

Dann ist $\tau_w \in \text{Bij}(X)$ für alle $w \in W$.

Bemerkung. $\mathrm{Bij}(X)$ ist eine Gruppe unter Verkettung von Abbildung. Wir erhalten eine Abbildung

$$\tau \colon W \to \operatorname{Bij}(X)$$

 $w \mapsto \tau_w.$

Lemma 1.1.1. Die Abbildung τ ist ein Gruppenhomomorphismus.

Beweis. Seien $w, w' \in W$ Dann

$$\tau_w \circ \tau_{w'} \colon X \to X$$
$$p \mapsto p + \underline{w' + w},$$

also

$$\tau(w) \circ \tau(w') = \tau_w \circ \tau_{w'} = \tau_{w+w'} = \tau(w+w').$$

Es gilt noch mehr:

für $p, q \in X$ besteht genau ein $w \in W$ mit $\tau_w(p) = q$.

Gruppenoperationen

Beispiel 1.1.3. Betrachte ein gleichseitiges Dreieck D und Spiegelungen / Drehungen die D auf sich selbst abbilden.

Diese formen eine Gruppe (welche?) und "operieren" auf D.

Definition 1.1.1. Sei X eine Menge und G eine Gruppe. Eine Operation von G auf X ist ein Homomorphismus von Gruppen

$$\tau \colon G \to \operatorname{Bij}(X)$$

 $g \mapsto \tau_q.$

Bemerkung. τ ist ein Homomorphismus $\delta \forall g, g' \in G$

$$\tau_g \circ \tau_{g'} = \tau_{gg'}.$$

Für $x \in X$ nennen wir

$$G(x) = \{ \tau_q(x) \mid g \in G \}$$

die Bahn von x unter G.

Beispiel 1.1.4. i) Sei G eine Gruppe und X=G die Linkstranslation $l\colon G\to \mathrm{Bij}(G)$ $g\mapsto l_g$ mit $l_g(x)=gx\quad \forall\, x\in G$ ist eine Gruppenoperation von G auf sich selbst. ii)

$$k \colon G \to \operatorname{Bij}(G)$$

 $g \mapsto k_g$

mit $k_g(x) = gxg^{-1}$ $\forall x \in G$ ist eine Gruppenoperation.

Frage. Sei $\tau \colon G \to \operatorname{Bij}(x)$ eine Gruppenoperation, $x,y \in X$. Wann gibt es ein $g \in G$ mit $\tau_g(x) = y$?

Definition. Sei $\tau \colon G \to \operatorname{Bij}(X)$ eine Gruppenoperation von G auf X. Wir nennen τ einfach transitiv, wenn $\forall x, y \in X$ genau ein $g \in G$ besteht mit

$$\tau_q(x) = y.$$

Beispiel. • Die Gruppenoperation aus Beispiel 1.1.3 ist nicht einfach transitiv

• Die Linkstranslation aus Beispiel 1.1.4 i) ist immer einfach transitiv.

Zurück zum Beispiel 1.1.2 (V K-Vektorraum, $W\subseteq V$ Untervektorraum, $v\in V,\,X=v+W$)

Wir haben Translationen definiert

$$\tau \colon W \to \operatorname{Bij}(X)$$

 $x \mapsto \tau_w$

mit $\tau_w \colon X \to X$, $p \mapsto p + w$. τ ist eine einfach transitive Gruppenoperation von W auf x.

Definition. Sei K ein Körper. Ein affiner Raum über K ist ein Tripel $(X, T(X), \tau)$ mit

- $X \neq \emptyset$ eine Menge
- T(X) ein K-Vektorraum
- $\tau: T(x) \to \text{Bij}(X)$ eine einfach transitive Gruppenoperation

Konvention. $X = \emptyset$ ohne Spezifikation von T(X), τ nennen wir auch einen affinen Raum.

Definition. Sei $(X, T(X), \tau)$ in affiner Raum über einem Körper K. Dann nennen wir $\dim_K T(X)$ die Dimension von X, schreiben auch dim X.

Ist $\dim X = 1$ bzw. $\dim X = 2$, dann nennen wir X eine affine Gerade bzw.affine Ebene.

Sei $(X, T(X), \tau)$ in affiner Raum, $p, q \in X$. Dann $\exists! t \in T(X)$ mit $\tau_t(p) = q$. Schreibe $\overrightarrow{pq} = t \in T(X)$ als $\tau_{\overrightarrow{pq}}(p) = q$.

Wir erhalten eine Abbildung

$$(p,q) \mapsto \overrightarrow{pq}.$$

Frage. Welche Eigenschaften hat die Abbildung $(p,q)\mapsto \overrightarrow{pq}$ in einem allgemeinen affinen Raum?

Lemma 1.1.2. Sei X ein affiner Raum, $p,q,r\in X$. Dann gilt $\overrightarrow{pq}+\overrightarrow{qr}=\overrightarrow{pr}$.

Beweis. $\tau : T(X) \to \operatorname{Bij}(X)$ ist ein Homomorphismus. Also gilt $\tau_{\overrightarrow{qr}} \circ \tau_{\overrightarrow{pq}} = \tau_{\overrightarrow{pq}+\overrightarrow{qr}}$. Es gilt damit $\tau_{\overrightarrow{pq}+\overrightarrow{qr}}(p) = r$. Also $\overrightarrow{pq}+\overrightarrow{qr}=\overrightarrow{pr}$.

§1.2 Affine Abbildungen

Seien V, W K-Vektorräume. In der AGLA I: lineare Abbildungen

$$F \colon V \to W$$

 $\eth F$ respektiert die Vektorraum-Struktur

$$F(v_1 + v_2) = F(v_1) + F(v_2) \quad \forall v_1, v_2 \in V$$
$$F(\lambda v) = \lambda F(v) \quad \forall \lambda \in K \, \forall v \in V.$$

Frage. Was sind natürliche Abbildungen zwischen affinen Räumen?

Seien X,Y affine Räume über einem Körper K.

$$\overrightarrow{pq} \leadsto \overrightarrow{f(p)f(q)}.$$

$$T(X) \qquad T(Y)$$

Definition. Wir nennen eine Abbildung $f: X \to Y$ affin, wenn es eine K-lineare Abbildung $F: T(X) \to T(Y)$ gibt, sodass $\forall p, q \in X$ gilt

$$\overrightarrow{f(p)f(q)} = F(\overrightarrow{pq}).$$

Bemerkung. i) Es gibt im Allgemeinen verschiedene affine Abbildungen $f \colon X \to Y$, die zur gleichen linearen Abbildung $F \colon T(X) \to T(Y)$ gehören.

ii) Sei $p_0 \in X$ fest und $f: X \to Y$ affin.

Für $q \in X$ gilt

$$f(q) = \tau_{\overrightarrow{f(p_0)f(q)}}(f(p_0))$$
$$= \tau_{F(\overrightarrow{p_0q})}(f(p_0)).$$

Also bestimmen $f(p_0)$ und F zusammen die Abbildung $f: X \to Y$.

Beispiel. Seien V, W K-Vektorräume

$$X = (V, V, \tau), \quad Y = (W, W, \tau).$$

Eine affine Abbildung $f: V \to W$ ist eindeutig bestimmt durch f(0) und eine lineare Abbildung $F: V \to W$. Es gilt

$$f(v) = f(0) + F(v) \quad \forall v \in V.$$

Bemerkung / Übung. Eine affine Abbildung $f: X \to Y$ ist genau dann injektiv bzw.surjektiv bzw.bijektiv, wenn die zugehörige Abbildung $F: T(X) \to T(Y)$ es ist.

Definition. Wir nennen eine bijektive affine Abbildung $f: X \to Y$ eine Affinität.

Affine Unterräume

Beispiel (\mathbb{R}^2 als Vektorraum.). Untervektorräume von \mathbb{R}^2 sind \emptyset , { 0 }, \mathbb{R}^2 und Geraden durch 0.

Betrachte nun \mathbb{R}^2 als affinen Raum.

Idee. Wir wollen l und l' als affine Unterräume von \mathbb{R}^2 definieren, da die Verschiebung von l, l' jeweils Untervektorräume von \mathbb{R}^2 sind.

Definition. Sei $(X, T(X), \tau)$ in affiner Raum und $Y \subseteq X$. Wenn es einen Punkt $p_0 \in Y$ gibt, sodass

$$T(Y) := \{ \overrightarrow{p_0q} \in T(X), q \in Y \}$$

ein Untervektorraum von T(X) ist, dann nennen wir Y einen affinen Unterraum von X.

Lemma 1.2.1. Sei $Y \subseteq X$ ein affiner Unterraum eines affinen Raumes $(X, T(X), \tau)$. Dann gilt

$$T(Y) = \{ \overrightarrow{pq} \in T(X), q \in Y \}$$

für jeden beliebigen Punkt $p \in Y$.

Beweis. Sei $p_0 \in Y$ ein fester Punkt mit

$$T(Y) = \{ \overrightarrow{p_0q} \in T(X), q \in Y \}$$

Untervektorraum von T(X). Dann gilt für $p \in Y$

$$\{ \overrightarrow{pq} \mid q \in Y \} = \overrightarrow{pp_0} + \{ \overrightarrow{p_0q} \mid q \in Y \} = \overrightarrow{pp_0} + T(Y) = T(Y), \qquad \Box$$

da $\overrightarrow{pp_0} = -\overrightarrow{p_0p} \in T(Y)$.

Definition. Sei $Y\subseteq X$ ein affiner Unterraum. Wir nennen $\dim_K T(Y)$ die Dimension von Y und schreiben

$$\dim Y = \dim_K T(Y).$$

Vorlesung 2
Fr 24.10, 10:15

§1.3 Durchschnitt und Verbindung affiner Räume

Frage. Sei X ein affiner Raum, Y_1, Y_2 affine Unterräume von X. Sind $Y_1 \cap Y_2, Y_1 \cup Y_2$ auch affine Unterräume von X?

Lemma 1.3.1. Sei X ein affiner Raum, Y_i , $i \in I$, eine Familie von affinen Unterräumen von X.

Dann ist $Y := \bigcap_{i \in I} Y_i$ ein affiner Unterraum von X.

Wenn $Y \neq \emptyset$, dann gilt

$$T(Y) = \bigcap_{i \in I} T(Y_i).$$

Beweis. Falls $Y = \emptyset$:

Wir nehmen also an $Y \neq \emptyset$. Sei $p_0 \in Y$. Dann gilt:

$$T(Y) = \left\{ \overrightarrow{p_0q}, q \in \bigcap_{i \in I} Y_i \right\}$$

$$= \bigcap_{i \in I} \left\{ \overrightarrow{p_0q}, q \in Y_i \right\}$$

$$= \bigcap_{i \in I} T(Y_i).$$

$$= \bigcap_{i \in I} T(X_i).$$
Untervektorräume von $T(X)$

Also ist T(Y) ein Untervektorraum von T(X) und $T(Y) = \bigcap_{i \in I} T(Y_i)$.

Bemerkung. In obiger Notation ist $\bigcup_{i \in I} Y_i$ im Allgemeinen kein affiner Unterraum von X.

Frage. Finde den "kleinsten" affinen Unterraum von X, der $\bigcup_{i \in I} Y_i$ enthält! (z. B. $X \supseteq \bigcup_{i \in I} Y_i$, aber X ist im Allgemeinen nicht "minimal").

Definition. Sei X ein affiner Raum, $Y_i, i \in I$ affine Unterräume von X. Wir nennen

$$\bigcap_{Y\subseteq X \text{ aff. Unterraum}} Y$$

$$\bigcup_{i\in I} Y_i \subseteq Y$$

den Verbindungsraum der affinen Unterräume $Y_i, i \in I$. Schreibe $\bigvee_{i \in I} Y_i$.

 $X = \mathbb{R}^2$, $Y_1 \vee Y_2 = X$, $Y = Y_1 \vee Y_2$, $T(Y) = T(Y_1) + T(Y_2)$.

Beispiel.

Frage. Wie kann man im Allgemeinen $T(Y_1 \vee Y_2)$ aus $T(Y_1), T(Y_2)$ bestimmen?

Lemma 1.3.2. Sei X ein affiner Raum, $Y_1, Y_2 \neq \emptyset$ affine Unterräume von X.

a) Sei $Y_1 \cap Y_2 \neq \emptyset$. Dann gilt

$$T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2).$$

b) Sei $Y_1 \cap Y_2 = \emptyset$, $p_1 \in Y_1, p_2 \in Y_2$ und $Y = p_1 \vee p_2$. Dann gilt:

$$T(Y_1 \vee Y_2) = (T(Y_1) + T(Y_2)) \oplus T(Y).$$

Beweis. a) Sei $p \in Y_1 \cap Y_2$. Dann gilt

$$T(Y_1) \cup T(Y_2) = \{ \overrightarrow{pq} \mid q \in Y_1 \cup Y_2 \}$$

$$\subseteq T(Y_1 \vee Y_2),$$

also $T(Y_1) + T(Y_2) \subseteq T(Y_1 \vee Y_2)$.

Sei $Y=\{\, \tau_t(p)\mid t\in T(Y_1)+T(Y_2)\,\}$. Dann ist Y affiner Unterraum von X mit $Y_1\cup Y_2\subseteq Y$, also $Y_1\vee Y_2\subset Y$, also $Y_1\vee Y_2\subseteq Y$. Also gilt

$$T(Y_1 \vee Y_2) \subseteq T(Y) = T(Y_1) + T(Y_2).$$

Also $T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2)$.

b) $Y_1 \cap Y_2 = \emptyset$, $p_1 \in Y_1$, $p_2 \in Y_2$, $Y = p_1 \vee p_2$.

Schreibe $Y_1 \vee Y_2 = Y_1 \vee Y \vee Y_2$ (verwende dazu $Y \subseteq Y_1 \vee Y_2$). Verwende a) und leite ab, dass gilt:

$$T(Y_1 \lor Y \lor Y_2) = T(Y_1) + T(Y \lor Y_2)$$

= $T(Y_1) + T(Y) + T(Y_2)$
= $(T(Y_1) + T(Y_2)) \stackrel{!}{\oplus} T(Y).$

Es gilt

$$T(Y) = \{ \lambda \overrightarrow{p_1 p_2} \mid \lambda \in K \}.$$

Wir wollen zeigen

$$(T(Y_1) + T(Y_2)) \cap T(Y) = \{ 0 \}.$$

Es genügt zu zeigen

$$\overrightarrow{p_1p_2} \notin T(Y_1) + T(Y_2).$$

Gegenannahme:

$$\overrightarrow{p_1p_2} = \overrightarrow{p_1y_1} + \overrightarrow{q_2p_2}$$

$$\overset{\cap}{T(Y_1)} \overset{\cap}{T(Y_2)}$$

mit $q_1 \in Y_1, q_2 \in Y_2$.

Dann gilt

$$\overrightarrow{q_1q_2} = \overrightarrow{q_1p_1} + \overrightarrow{p_1p_2} + \overrightarrow{p_2q_2} = 0,$$

Als nächstes: $\dim(Y_1 \vee Y_2)$ ist durch $\dim_K T(Y_1 \vee Y_2)$ gegeben, also sollten wir aus Lemma 1.3.2 für $Y_1 \vee Y_2$ ableiten können.

Lemma 1.3.3. Sei X ein affiner Raum, $Y_1, Y_2 \neq \emptyset$ affine Unterräume von X.

- a) Sei $Y_1 \cap Y_2 \neq \emptyset$. Dann gilt $\dim(Y_1 \vee Y_2) = \dim(Y_1) + \dim(Y_2) \dim(Y_1 \cap Y_2)$.
- b) Sei $Y_1 \cap Y_2 = \emptyset$. Dann gilt

$$\dim(Y_1 \vee Y_2) = \dim(Y_1) + \dim(Y_2) - \dim(T(Y_1) \cap T(Y_2)) + 1.$$

Beweis. a) Aus Lemma 1.3.2 folgt

$$T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2),$$

aus der Dimensionsformel für Untervektorräume folgt

$$\dim(Y_1 \vee Y_2) = \dim T(Y_1 \vee Y_2)$$

$$= \dim(Y_1) + \dim T(Y_2) - \dim(T(Y_1) \cap T(Y_2))$$

$$= \dim T(Y_1) + \dim T(Y_2) - \dim T(Y_1 \cap Y_2)$$

$$\stackrel{\uparrow}{Lemma} 1.3.1$$

$$= \dim Y_1 + \dim Y_2 - \dim Y_1 \cap Y_2.$$

b)
$$Y_1 \cap Y_2, p_1 \in Y_1, p_2 \in Y_2, Y = p_1 \vee p_2.$$

Dann ist

$$\dim Y = \dim T(Y) = 1.$$

Wir erhalten

$$\dim(Y_1 \vee Y_2) = \dim T(Y_1 \vee Y_2)$$

$$= \dim((T(Y_1) + T(Y_2)) \oplus T(Y))$$

$$= \dim(T(Y_1) + T(Y_2)) + \dim T(Y)$$

$$= \dim T(Y_1) + \dim T(Y_2) - \dim(T(Y_1) \cap T(Y_2)) + 1$$

$$= \dim Y_1 + \dim Y_2 - \dim(T(Y_1) \cap T(Y_2)) + 1$$

Beispiel $(X = \mathbb{R}^3)$.

$$\dim(Y_1 \vee Y_2) = 1 + 1 - \underbrace{\dim(T(Y_1) \cap T(Y_2))}_{=1} + 1 = 2$$

$$\dim(Y_1 \vee Y_2)1 + 1 - 0 + 1 = 3$$

und $Y_1 \vee Y_2 = X$.

§1.4 Parallelprojektionen

Wiederholung (Projektionen aus der AGLA I). Beispiel.

Sei V ein K-Vektorraum, $W, W_1 \subset V$ K-Untervektorräume mit $V = W \oplus W_1$. Schreibe $v \in V$ in der Form $v = w + w_1$ und mit $w \in W$, $w_1 \in W_1$. Definiere

$$P_W \colon V \to W_1$$

$$v \mapsto w_1.$$

$$w \mapsto w_1.$$

Ein paar Eigenschaften von P_W :

- $P_W: V \to W_1$ ist eine lineare Abbildung,
- $\operatorname{Ker} P_W = W$,
- $\bullet P_W|_{W_1} = \mathrm{Id}_{W_1}.$

Als Nächstes: Wir schränken P_W ein auf einen Untervektorraum W_0 von V.

Lemma 1.4.1. Sei V ein K-Vektorraum, $W, W_0, W_1 \subseteq V$ Untervektorräume mit $V = W \oplus W_0 = W \oplus W_1$.

Dann ist $P_W|_{W_0}: W_0 \to W_1$ ein Isomorphismus (Notation wie oben).

Beweis. Es gilt $\dim W_0 = \dim W_1$ und es genügt zu zeigen, dass $\left. P_W \right|_{W_0}$ injektiv ist.

Sei $P_W|_{w_0}=w_1$ für $w_0\in W_0,\ w_1\in W_1$. Dann ist $w_0=w+w_1$ mit $w\in W,\ w_1\in W_1,$ also

$$w_1 = w_0 - w \in W_0 \oplus W,$$

$$W_0 \longrightarrow W$$

und diese Zerlegung ist eindeutig.

Parallelprojektionen für affine Räume

Sei X ein affiner Raum (über einem Körper K), $Y_1 \subseteq X$ ein affiner Unterraum

Beispiel.

Sei $W \subseteq T(X)$ ein Untervektorraum mit $T(X) = T(Y_1) \oplus W$.

Ziel. Definiere eine Projektionsabbildung

$$\pi_W \colon X \to Y_1$$

"längs W".

Für $p \in X$ definiere

$$W(p) := \{ x \in X \mid \overrightarrow{px} \in W \}$$

Lemma 1.4.2. Notation wie oben. Für $p \in X$ gilt

$$\#(Y_1 \cap W(p)) = 1.$$

Beweis. Wir berechnen

$$\dim(Y_1 \cap W(p)).$$

Sei $x = \dim X$, verwende Lemma 1.3.3 b). Falls $Y_1 \cap W(p) = \emptyset$, dann

$$\dim(Y_1 \vee W(p)) = \dim Y_1 + \dim W(p) - \dim(\underbrace{T(Y_1) \cap W}_{=\{0\}}) + 1$$
$$= \dim T(Y_1) + \dim W + 1$$

 \nleq zu $Y_1 \vee W(p) \subseteq X$, also ist $Y_1 \cap W(p) \neq \{\ 0\ \}$, und nach Lemma 1.3.3 a) gilt Folgendes:

$$\underbrace{\dim(Y_1 \vee W(p))}_{\text{ii}} = \dim Y_1 + \dim W(p) - \dim(Y_1 \cap W(p))$$
$$= n - \dim(Y_1 \cap W(p))$$

und nach Lemma 1.3.1

$$\dim Y_1 \vee W(p) = \dim(T(Y_1) + W)$$

$$= n,$$

also $\dim(Y_1 \cap W(p)) = 0$.

Wir definieren die Projektion längs W

$$\pi_W \colon \underset{Y_0}{X} \to Y_1, \ p \mapsto W(p) \cap Y_1.$$

Satz 1.4.3. Sei X ein affiner Raum, $Y_1,Y_0\subseteq X$ affine Unterräume, $W\subseteq T(X)$ ein Untervektorraum mit

$$T(X) = W \oplus T(Y_0) = W \oplus T(Y_1).$$

Dann ist $\pi_W \colon X \to Y_1$ eine surjektive affine Abbildung und $\pi_w|_{Y_0} \colon Y_0 \to Y_1$ eine Affinität.

Beweis. Seien $p, q \in X$.

Dann gilt

$$\overrightarrow{pq} = \overrightarrow{p\pi_W(p)} + \overrightarrow{\pi_W(p)\pi_W(q)} + \overrightarrow{\pi_W(q)q} + \overrightarrow{\pi_W(q)q} + \overrightarrow{\pi_W(q)q} + \overrightarrow{\pi_W(q)q} + \underbrace{\overrightarrow{\pi_W(p)\pi_W(q)}}_{\in W},$$

also $\overrightarrow{\pi_W(p)\pi_W(q)} = P_W(\overrightarrow{pq}).$

 P_W ist surjektiv, also ist π_W eine surjektive affine Abbildung.

Der zweite Teil folgt aus Lemma 1.4.1.

1.5 Affine Koordinaten

Vorlesung 3

Vorlesung 3

Di 28.04, 10:15

§1.5 Affine Koordinaten

Koordinaten in einem K-Vektorraum V. Sei dim V = n und v_1, \ldots, v_n eine Basis von V. Dann ist die Abbildung

$$\phi: K^n \to V$$

$$(x_1, \dots, x_n) \mapsto \sum_{i=1}^n x_i v_i$$

ein Isomorphismus von K-Vektorräumen. Jeder Punkt $v=\sum_{i=1}^n x_iv_i$ ist eindeutig bestimmt durch seine "Koordinaten"

$$\inf \phi(v) = (x_1, \dots, x_n) \in K^n.$$

Frage. Sei X ein affiner Raum über einem Körper K. Können wir auch hier die Lage eines Punkte $p \in X$ durch Angabe von "Koordinaten" bezüglich einer "Basis" beschreibe?

Beispiel / **Idee.** $X = \mathbb{R}^2$ als affiner Raum und Punkte $p_1, p_2 \in X$, sodass $\overrightarrow{p_0p_1}$, $\overrightarrow{p_0p_2}$ eine Basis ist für T(X). Dann können wir einen Punkt $p \in X$ beschreiben durch

$$p = \tau_{\overline{p_0p}}(p_0)$$

= $\tau_{\lambda \overline{p_0p_1} + \mu \overline{p_0p_2}}(p_0),$

falls $\overrightarrow{p_0p} = \lambda \overrightarrow{p_0p_1} + \mu \overrightarrow{p_0p_2}$ mit $\lambda, \mu \in \mathbb{R}$.

Wir erhalten eine Abbildung

$$\phi \colon \mathbb{R}^2 \to X$$
$$(\lambda, \mu) \mapsto \tau_{\lambda \overline{p_0} p_1^* + \mu \overline{p_0} p_2^*}(p_0),$$

die eine Affinität ist.

Wir formalisieren diese Konzepte für allgemeine affine Räume.

Definition. Sei X ein affiner Raum und $p_0, \ldots, p_n \in X$. Wir nennen (p_0, \ldots, p_n) affin unabhängig bzw.eine affine Basis, wenn die Vektoren $(\overrightarrow{p_0p_1}, \ldots, \overrightarrow{p_0p_n})$ in T(x) linear unabhängig sind bzw.eine Basis bilden.

Beispiele. i) In $X = \mathbb{R}^n$ ist $(0, e_1, \dots, e_n)$ eine affine Basis.

ii) $X = \mathbb{R}^n$ als affiner Raum, $v_1, \ldots, v_k \in \mathbb{R}^n$ linear unabhängig, $v_0 = 0$. Dann ist das Tupel (v_0, v_1, \ldots, v_k) affin unabhängig.

Frage. Kann man hier $v_0 \in \mathbb{R}^n$ beliebig nehmen?

- iii) $X=\mathbb{R}^2$ als affiner Raum. Dann gilt, dass für $v,w\in\mathbb{R}^2$ das Tupel (v,w) affin unabhängig ist gdw $v\neq w$.
- iv) X affiner Raum, $p_0 \in X$, (t_1, \ldots, t_n) Basis von T(X). Dann ist

$$(p_0, \tau_{t_1}(p_0), \ldots, \tau_{t_n}(p_0))$$

eine affine Basis von X.

Lemma 1.5.1. Sei X ein affiner Raum, $p_0, \ldots, p_n \in X$ und (p_0, \ldots, p_n) affin unabhängig. Sei $\sigma \in S_{n+1}$ eine Permutation von $\{0, \ldots, n\}$. Dann ist

$$(p_{\sigma(0)}, p_{\sigma(1)}, \ldots, p_{\sigma(n)})$$

affin unabhängig.

Beweis. Wir wollen zeigen, dass unter den Annahmen des Lemmas, die Vektoren

$$\overrightarrow{p_{\sigma(0)}p_{\sigma(1)}}, \dots, \overrightarrow{p_{\sigma(0)p_{\sigma(n)}}} \in T(X)$$

linear unabhängig sind.

Sei
$$\sigma(0) = i \in \{0, ..., n\}.$$

Dann müssen wir also zeigen, dass die Vektoren

$$\overrightarrow{p_ip_0}, \overrightarrow{p_ip_1}, \dots, \overrightarrow{p_ip_{i-1}}, \overrightarrow{p_ip_{i+1}}, \dots, \overrightarrow{p_ip_n}$$

linear unabhängig sind.

Seien $\lambda_0, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_n \in K$ mit

$$\lambda_0 \overrightarrow{p_i p_0} + \lambda_1 \overrightarrow{p_i p_1} + \dots + \lambda_{i-1} \overrightarrow{p_i p_{i-1}} + \lambda_{i+1} \overrightarrow{p_i p_{i+1}} + \dots + \lambda_n \overrightarrow{p_i p_n} = 0.$$

Schreibe

$$\overrightarrow{p_ip_j} = \overrightarrow{p_ip_0} + \overrightarrow{p_0p_j} = \overrightarrow{p_0p_j} - \overrightarrow{p_0p_j}.$$

Wir erhalten

$$\lambda_1 \overline{p_0 p_1} + \dots + \lambda_{i-1} \overline{p_0 p_{i-1}} + \lambda_{i+1} \overline{p_0 p_{i+1}} + \dots + \lambda_n \overline{p_0 p_n}$$
$$-(\lambda_0 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n) \overline{p_0 p_i} = 0$$

Aus der linearen Unabhängigkeit von $\overrightarrow{p_0p_1},\ldots,\overrightarrow{p_0p_n}$ folgt

$$\lambda_1 = \dots = \lambda_{i-1} = \lambda_{i+1} = \lambda_n = 0$$

und

$$+\lambda_1 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n = 0$$

Affine Basen und affine Abbildungen

Aus der AGLA I:

Seien V, W K-Vektorräume, $v_1, \ldots, v_n \in V$ eine Basis von V und $w_1, \ldots, w_n \in W$. Dann gibt es genau eine K-lineare Abbildung $\phi \colon V \to W$ mit

$$\phi(v_i) = w_i, \quad 1 \leqslant i \leqslant n.$$

1.5 Affine Koordinaten

Vorlesung 3

Frage. Inwiefern sind affine Abbildungen zwischen affinen Räumen durch die Bilder einer affinen Basis bestimmt?

Satz 1.5.2. Seien X, Y affine Räume, (p_0, \ldots, p_n) eine affine Basis von X und $q_0, \ldots, q_n \in Y$. Dann gibt es genau eine affine Abbildung $f: X \to Y$ mit

$$f(p_i) = q_i, \quad 0 \leqslant i \leqslant n.$$

Die Abbildung f ist injektiv bzw.eine Affinität gdw das Tupel (q_0, \ldots, q_n) affin unabhängig bzw.eine affine Basis von Y ist.

Beweis. Eine affine Abbildung $f: X \to Y$ ist gegeben durch $f(p_0)$ für ein $p_0 \in X$ und eine lineare Abbildung

$$F: T(X) \to T(Y)$$

$$\overrightarrow{pq} \mapsto \overrightarrow{f(p)f(q)}.$$

Wir definieren F durch

$$F(\overrightarrow{p_0p_i}) = \overrightarrow{q_0q_i} \quad 1 \leqslant i \leqslant n. \tag{*}$$

 $\overrightarrow{p_0p_1},\ldots,\overrightarrow{p_0p_n}$ ist eine Basis von T(X), also gibt es genau ein lineare Abbildung

$$F \colon T(X) \to T(Y)$$

mit (*). Es gilt dann

$$f(p_i) = \tau_{\overline{f(p_0)}f(p_i)} f(p_0)$$

$$= \tau_{F(\overline{p_0}p_i)} f(p_0)$$

$$= \tau_{\overline{q_0}q_i} q_0 = q_i \quad 1 \leqslant i \leqslant n.$$

f ist injektiv gdw F injektiv ist. F ist injektiv gdw $\overline{q_0q_1}, \ldots, \overline{q_0q_n}$ linear unabhängig sind. $\to f$ ist eine Affinität gdw F bijektiv ist. F ist bijektiv gdw $\overline{q_0q_1}, \ldots, \overline{q_0q_n}$ eine Basis von T(Y) ist.

Affine Koordinatensysteme

Sei X ein affiner Raum über einem Körper K, (p_0, p_1, \dots, p_n) eine affine Basis von X. Nach Satz 1.5.2 gibt es genau eine Affinität

$$\phi \colon K^n \to X$$

mit $\phi(0) = p_0, \phi(e_1) = p_1, \dots, \phi(e_n) = p_n$ und zugehörige lineare Abbildung $\Phi \colon K^n \to T(X)$.

Einen Punkt $p \in X$ können wir dann beschreiben durch

$$p = \tau_{\overrightarrow{p_0 p}}(p_0).$$

Sei $\overrightarrow{p_0p} = \lambda_1 \overrightarrow{p_0p_1} + \dots + \lambda_n \overrightarrow{p_0p_n}$ mit $\lambda_i \in K$, $1 \leq i \leq n$.

Dann ist

$$p = \tau_{\lambda_1 \overrightarrow{p_0 p_1} + \dots + \lambda_n \overrightarrow{p_0 p_n}}(p_0)$$

$$= \tau_{\lambda_1 \Phi(e_1) + \dots + \lambda_n \Phi(e_n)}(p_0)$$

$$= \tau_{\Phi(\lambda_1 e_1 + \dots + \lambda_n e_n)}(p_0),$$

oder $p = \phi((\lambda_1, \dots, \lambda_n)).$

Definition. Sei X ein affiner Raum über einem Körper K. Wir nennen eine Affinität $\phi \colon K^n \to X$ ein affines Koordinatensystem in X. Seu $p_0 = \phi(0), p_1 = \phi(e_1), \ldots, p_n = \phi(e_n)$. Dann ist (p_0, \ldots, p_n) eine affine Basis von X.

Für $p \in X$ nennen wir

$$\phi^{-1}(p) = (x_1, \dots, x_n) \in K^n$$

den Koordinatenvektor von p bezüglich der affinen Basis (p_0, \ldots, p_n) und (x_1, \ldots, x_n) die Koordinaten von p bezüglich (p_0, \ldots, p_n) .

§1.6 Das Teilverhältnis

Idee. Seien 3 Punkte p_0, p_1, p auf einer Gerade l (z. B.im \mathbb{R}^3) gegeben, $p_0 \neq p_1$.

Sei $\lambda = \frac{d(p,p_0)}{d(p_1,p_0)}$, mit d dem euklidischen Abstand, dann können wir die Lage von p auf l durch λ (und der Information, ob p "rechts oder links" von p liegt) bestimmen.

Definition. Sei X ein affiner Raum über K, $Y \subseteq X$ eine affine Gerade, $p_0, p_1, p \in Y$ und $p_0 \neq p_1$. Dann nennen wir das eindeutig bestimmte Element $\lambda \in K$ mit $p_0 \neq p_1 \neq k$ das Teilverhältnis von p_0, p_1, p . Schreibe $k = TV(p_0, p_1, p)$. In $char(K) \neq k$ nennen wir $k \neq k$ Mittelpunkt von $k \neq k$ wenn $k \neq k$ Mittelpunkt von $k \neq k$ wenn $k \neq k$ Mittelpunkt von $k \neq k$ Nennen wir $k \neq k$ Mittelpunkt von $k \neq k$ Wennen $k \neq k$ Nennen wir $k \neq k$ Mittelpunkt von $k \neq k$ Nennen Wir $k \neq k$ Nennen Wir Ne

Bemerkungen. i) Es gilt $T(Y) = K\overline{p_0p_1}$. Damit ist λ wohldefiniert und existiert.

1.6 Das Teilverhältnis Vorlesung 3

ii) p_0, p_1 ist eine affine Basis von Y. Damit existiert ein Koordinatensystem

$$\phi \colon K \to Y, \ \phi(0) = p_0$$
$$\phi(1) = p_1$$

und es gilt $TV(p_0, p_1, p) = \phi(p)^{-1}$.

Frage. Wie verhält sich das Teilverhältnis unter affinen Abbildungen?

Lemma 1.6.1. Seien X, Y affine Räume und $f: X \to Y$ eine affine Abbildung, seien p_0, p_1, p Punkte in X, die auf einer Geraden liegen und $f(p_0) \neq f(p_1)$. Dann gilt

$$TV(f(p_0), f(p_1), f(p)) = TV(p_0, p_1, p).$$

Beweis. Sei $\lambda = \text{TV}(p_0, p_1, p)$, also $\overrightarrow{p_0p} = \lambda \overrightarrow{p_0p_1}$. Si $F: T(X) \to T(Y)$ die zu f gehörige lineare Abbildung. Wir berechnen

$$\overrightarrow{f(p_0)f(p)} = F(\overrightarrow{p_0p}) \qquad \qquad \square$$

$$= F(\lambda p_0 p_1)$$

$$= \lambda F(p_0 p_1)$$

$$= \lambda \overrightarrow{f(p_0)f(p_1)}$$

Anwendung (Strahlensatz). Sei X ein affiner Raum über K, $p_0, p_1, p_2 \in X$ affin unabhängig. Sei

$$q_1 \in p_0 \lor p_1, \ q_1 \neq p_0$$

 $q_2 \in p_0 \lor p_2, \ q_2 \neq p_0.$

Wir nehmen an, dass $p_1 \vee p_2$ und $q_1 \vee q_2$ parallel sind in dem Sinn, dass

$$T(p_1 \vee p_2) = T(q_1 \vee q_2) \text{ in } T(X).$$

Dann gilt

$$TV(p_0, p_1, q_1) = TV(p_0, p_2, q_2).$$

Beweis. Sei Y diedurch p_0, p_1, p_2 aufgespannte Ebene. Dann gibt es ein affines Koordinatensystem $\phi \colon K^2 \to Y$ mit $\phi(0) = p_0, \phi(e_1) = p_1, \phi(e_2) = p_2$.

Sei

$$(\lambda, 0) = \phi^{-1}(q_1)$$

$$(0,\mu) = \phi^{-1}(q_2).$$

Behauptung. $l_1 = \phi^{-1}(q_1) \vee \phi^{-1}(q_2)$ und $l_2 = \phi^{-1}(p_1) \vee \phi^{-1}(p_2)$ sind parallel.

Denn:

$$T(l_1) = K \overrightarrow{\phi^{-1}(q_1)\phi^{-1}(q_2)}$$
$$T(l_2) = K \overrightarrow{\phi^{-1}(p_1)\phi^{-1}(p_2)}.$$

Es ist $K\overline{p_1p_2} = K\overline{q_1q_2}$ und daher

$$K\Phi^{-1}(\overline{p_1p_2}) = K\Phi^{-1}(\overline{q_1q_2}).$$

$$K\overline{\phi^{-1}(q_1)\phi^{-1}(q_2)} K\overline{\phi^{-1}(p_1)\phi^{-1}(p_2)}$$

Aus der Parallelität von l_1, l_2 folgt $\lambda = \mu$.

Also

$$TV(\phi^{-1}(p_0), \phi^{-1}(p_1), \phi^{-1}(q_1)) = \lambda$$
$$= \mu = TV(\phi^{-1}(p_0), \phi^{-1}(p_2), \phi^{-1}(q_2))$$

und der Strahlensatz folgt aus Lemma 1.6.1.

Vorlesung 4

Di 05.05. 10:15

Beispiel. Seien $p_0, p_1 \in \mathbb{R}^2$, $p_0 \neq p_1$. Ziel: Beschreibe den affinen Unterraum $p_0 \vee p_1$ als Teilmenge des \mathbb{R}^2 . Sei $p \in p_0 \vee p_1$. Dann $\exists \lambda \in \mathbb{R}$ mit $\overrightarrow{p_0p} = \lambda \overrightarrow{p_0p_1}$ und als Vektoren im \mathbb{R}^2 gilt $p = p_0 + \lambda(p_1 - p_0)$. Es gilt

$$p_0 \vee p_1 = \{ (1 - \lambda)p_0 + \lambda p_1, \lambda \in \mathbb{R} \}.$$

Frage. Verallgemeinerung zu höherdimensionalen Räumen?

Definition. Seien $p_0, \ldots, p_k \in K^n$. Wir nennen eine Linearkombination

$$\lambda_0 p_0 + \lambda_1 p_1 + \cdots + \lambda_m p_m$$

mit $\lambda_i \in K$, $0 \le i \le m$ eine Affinkombination oder affin falls gilt $\lambda_0 + \lambda_1 + \cdots + \lambda_m = 1$.

Satz 1.6.2. Seien $p_0, \dots, p_m \in K^n$. Dann gilt

$$p_0 \vee \cdots \vee p_m = \left\{ \sum_{i=0}^m \lambda_i p_i \in K^n \ \lambda_0, \dots, \lambda_m \in K, \sum_{i=0}^m \lambda_i = 1 \right\}.$$

Beweis. Sei $Y = p_0 \vee \cdots \vee p_m \in K^n$. Es gilt

$$T(Y) = \underbrace{T(p_m)}_{=0} + T(p_0 \lor \cdots \lor p_{m-1}) + \underbrace{K\overline{p_0p_m}}_{=T(p_0 \lor p_m)}$$

$$= K\overline{p_0p_m} + T(p_0 \lor \cdots \lor p_{m-1})$$

$$= K\overline{p_0p_m} + \cdots + K\overline{p_0p_1}$$

$$\vdots$$

$$= K\overline{p_0p_m} + \cdots + K\overline{p_0p_1}$$

$$= (\overline{p_0p_1}, \dots, \overline{p_0p_m}).$$

Sei $p \in K^n$. Dann ist $p \in Y$ genau dann, wenn $\exists \lambda_1, \dots, \lambda_m \in K$ mit

$$\overrightarrow{p_0p} = \lambda_1 \overrightarrow{p_0p_1} + \dots + \lambda_m \overrightarrow{p_0p_m}.$$

 $\operatorname{Im} K^n$ gilt dann also

$$p - p_0 = \lambda_1(p_1 - p_0) + \dots + \lambda_m(p_m - p_0)$$

oder

$$p = \lambda_0 p_0 + \lambda_1 p_1 + \dots + \lambda_m p_m$$

mit
$$\lambda_0 = 1 - \lambda_1 - \dots - \lambda_m$$
, $\delta_{i=0}^m \lambda_i = 1$.

§1.7 Affine Abbildungen und Matrizen, Fixpunkte

Motivation. Seien V, W K-Vektorräume, $F: V \to W$ eine lineare Abbildung. Wenn wir für V und W Basen wählen, dann können wir die Abbildung F eindeutig durch eine Matrix beschreiben.

Frage. Inwiefern können wir affin Abbildung zwischen affinen Räumen durch Matrizen beschreiben?

Wahl von Basen in Vektorräumen \leftrightarrow Wahl von Koordinaten in affinen Räumen.

Seien X,Y affine Räume über $K, f: X \to Y$ eine affine Abbildung. Wähle affine Koordinatensysteme $\phi\colon K^n \to X$ und $\psi\colon K^m \to Y$.

Wir haben das folgende kommutative Diagramm

$$\begin{array}{ccc} K^n & \stackrel{\phi}{\longrightarrow} & X \\ \downarrow^g & \circlearrowleft & \downarrow^f \\ K^m & \stackrel{\psi}{\longrightarrow} & Y \end{array}$$

mit $g=\psi^{-1}\circ f\circ \phi$ affin. g ist affin, also besteht eine affine Abbildung $G\colon K^n\to K^m$ mit

$$g(x) - g(0) = G(x) \quad \forall x \in K^n.$$

G ist linear, also können wir G durch eine Matrix A ausdrücken.

$$g(x) = Ax + b \quad \forall x \in K^n.$$

mit b = g(0).

Frage. Wie können wir A berechnen gegeben eine affine Basis (p_0, \ldots, p_n) von K^n und $g(p_i), 0 \le i \le n$?

Wir betrachten die Matrizen $B \in \operatorname{Mat}_{m \times n}(K)$ bestehend aus den Spaltenvektoren $\overline{q_0q_1}, \ldots, \overline{q_0q_n}$ und $S \in \operatorname{Mat}_{n \times n}(K)$ bestehend aus den Spaltenvektoren $\overline{p_0p_1}, \ldots, \overline{p_0p_n}$. Dann gilt $A = B \cdot S^{-1}$ und $g(x) - g(p_0) = A(x - p_0)$, also g(x) = Ax + b mit $b = g(p_0) - Ap_0$.

Bemerkung. Wählen wir für p_0, \ldots, p_m die affine Basis $0, e_1, \ldots, e_n$, dann $S = \mathrm{Id}_{n \times n}$ und A = B.

Fixpunkte

Beispiel 1.7.1. Betrachte die affine Abbildung $f: K \to K$, K ein Körper, in der Matrizendarstellung gegeben durch $f(x) = 2x + 1 \stackrel{?}{=} x$.

Dann gibt es genau ein $x \in K$ mit f(x) = x, nämlich x = -1.

Definition. Sei X ein affiner Raum $f: X \to X$ eine affine Abbildung. Wir nennen

$$Fix(f) := \{ x \in X \mid f(x) = x \}$$

die Menge der Fixpunkte von f.

Frage. Welche Struktur hat Fix(f).

Beispiel 1.7.2. X affiner Raum.

$$\mathrm{Id}\colon X\to X$$

$$x\mapsto x$$

dann Fix(Id) = X.

Beispiel 1.7.3. $f: K^n \to K^n, x \mapsto \underbrace{x + p_0}_{\stackrel{?}{\underline{x}}} \text{ mit } p_0 \in K^n \setminus \{0\}, \text{ dann } \text{Fix}(f) = \varnothing.$

Beispiel 1.7.4. Frage. Was sind die Fixpunkte einer Projektion?

Lemma 1.7.1. Fix $(f) \subseteq X$ ist ein affiner Unterraum.

Beweis. Falls $\text{Fix}(f) = \emptyset$ dann \checkmark . Sei also $\text{Fix}(f) \neq \emptyset$ und $p \in \text{Fix}(f)$, F die zu f gehörig lineare Abbildung.

Für $x \in Fix(f)$ gilt

$$\overrightarrow{px} = \overrightarrow{f(p)f(x)} = F(\overrightarrow{px}).$$

Umgekehrt folgt aus

$$\overrightarrow{px} = F(\overrightarrow{px}) = \overrightarrow{pf(x)},$$

dass x = f(x), also $x \in Fix(f)$.

Damit gilt

$$\{ \overrightarrow{px} \in T(X) \mid x \in Fix(f) \} = \{ \overrightarrow{px} \in T(X) \mid \overrightarrow{px} = F(\overrightarrow{px}) \}$$

und wir erkennen diese Menge als K-Untervektorraum von X.

Frage. Bestimmung von Fix(f) für eine beliebige affine Abbildung $f: X \to X$?

Nach Wahl eines Koordinatensystems können wir auf den Fall $X = K^n$ reduzieren und annehmen, dass f in Matrizendarstellung gegeben ist.

Sei also

$$f \colon K^n \to K^n$$

$$x \mapsto \underbrace{Ax + b}_{=x = \operatorname{Id}_n x}.$$

Dann gilt

$$\operatorname{Fix}(f) = \left\{ \begin{array}{l} x \in K^n \mid (A - \operatorname{Id}_n) x = -b \end{array} \right\}$$
 Einheitsmatrix der Dimension n :
$$\begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

Wir haben das Problem also reduziert auf das Lösen eines linearen Gleichungssystems.

Bemerkung. Daraus kann man auch Lemma 1.7.1 ableiten.

Beispiel 1.7.5.

$$f \colon K^n \to K^n$$

 $x \mapsto \lambda \operatorname{Id}_n x + b$

mit $\lambda \in K$.

Dann

$$Fix(f) = \{ x \in K^n \mid (\lambda - 1)x = -b \}.$$

Falls $\lambda - 1$ invertierbar ist $(\lambda \neq 1)$, gibt es genau einen Fixpunkt.

Definition. Sei $f: X \to X$ eine affine Abbildung mit zugehöriger linearer Abbildung $F: T(X) \to T(X)$. Wir nennen f eine Dilatation mit Faktor λ , falls gilt

$$F = \lambda \cdot \mathrm{Id}_{T(X)} \quad \lambda \in K.$$

Im Fall $\lambda = 1$ nennen wir f eine Translation.

Lemma 1.7.2. Sei $f: X \to X$ eine Dilatation mit Faktor $\lambda \neq 1$. Dann gilt

$$\# Fix(f) = 1.$$

Beweis. Nach Wahl eines Koordinatensystems reduzieren wir das Problem auf Beispiel 1.7.5.

§1.8 Kollineationen

Sei $f: X \to X$ eine affine Abbildung eines affinen Raumes X, z.B.eine Affinität. Seien $p_1, p_2, p_3 \subset X$ in einer Geraden $\ell \subseteq X$ enthalten.

Dann liegen auch $f(p_1), f(p_2), f(p_3)$ auf einer Geraden.

Frage. Welche bijektiven Abbildungen $f: X \to X$ haben diese Eigenschaft?

Definition. Sei X ein affiner Raum und $p_1, p_2, p_3 \in X$. Wir nennen p_1, p_2, p_3 kollinear, wenn p_1, p_2, p_3 auf einer Geraden $\ell \subset X$ liegen. Wir nennen eine bijektive Abbildung $f \colon X \to X$ eine Kollineation, falls jede Gerade $\ell \subset X$ auf eine Gerade $f(\ell) \subset X$ abgebildet wird.

Beispiel 1.8.1. Affinitäten

Beispiel 1.8.2. Ist dim X = 1 und $f: X \to X$ bijektiv, dann ist f eine Kollineation.

Beispiel 1.8.3. Sei $X = \mathbb{C}^2$ als affiner Raum über \mathbb{C} .

$$f \colon \mathbb{C}^2 \to \mathbb{C}^2$$
$$(x,y) \mapsto (\overline{x}, \overline{y}).$$
komplexe Konjugation

Dann ist f eine Kollineation. Das Bild einer Geraden

$$(x_0, y_0) + \mathbb{C}(x_1, y_1)$$

ist gegeben durch die Gerade

$$(\overline{x_0}, \overline{y_0}) + \mathbb{C}(\overline{x_1}, \overline{y_1}),$$

aber f ist keine Affinität!

Bemerkung. Die komplexe Konjugation

$$\mathbb{C} \to \mathbb{C}$$
$$x \mapsto \overline{x}$$

ist ein Automorphismus von dem Körper \mathbb{C} .

Definition. Sei K ein Körper. Wir nennen eine Bijektion $\alpha \colon K \to K$ einen Automorphismus von K falls gilt

$$\alpha(\lambda + \mu) = \alpha(\lambda) + \alpha(\mu) \quad \forall \lambda, \mu \in K$$

und

$$\alpha(\lambda \cdot \mu) = \alpha(\lambda) \cdot \alpha(\mu) \quad \forall \lambda, \mu \in K$$

Beispiel 1.8.4.

$$K = \mathbb{Q}(\sqrt{2}) = \left\{ x + y\sqrt{2} \mid x, y \in \mathbb{Q} \right\}$$

ist ein Körper und

$$\alpha : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$$

 $x + y\sqrt{2} \mapsto x - y\sqrt{2}.$

Satz 1.8.1. Sei $\alpha \colon \mathbb{R} \to \mathbb{R}$ ein Automorphismus von \mathbb{R} . Dann gilt $\alpha = \mathrm{Id}_{\mathbb{R}}$.

Beweis. Sei $\alpha \colon \mathbb{R} \to \mathbb{R}$ ein Automorphismus.

1. Dann gilt

$$\alpha(0) = \alpha(0+0) = \alpha(0) + \alpha(0),$$

also $\alpha(0) = 0$.

2. Dann gilt

$$0 = \alpha(0) = \alpha(\lambda - \lambda) = \alpha(\lambda) + \alpha(-\lambda),$$

also
$$\alpha(-\lambda) = -\alpha(\lambda) \ \forall \lambda \in \mathbb{R}.$$

3. Dann gilt

$$\alpha(1) = \alpha(1 \cdot 1) = \alpha(1)\alpha(1),$$

also $\alpha(1) = 1$ und daher

$$\alpha(n) = n \ \forall n \in \mathbb{Z},$$

z.B.

$$\alpha(2) = \alpha(1+1) = \alpha(1) + \alpha(1) = 1 + 1 = 2.$$

4. Sei $p \in \mathbb{Z}$, $q \in \mathbb{N}$, dann gilt

$$q\alpha\left(\frac{p}{q}\right) = \alpha(q)\alpha\left(\frac{p}{q}\right) = \alpha\left(q\frac{p}{q}\right) = \alpha(p) = p,$$

also $\alpha\left(\frac{p}{q} = \frac{p}{q}\right)$ oder $\alpha(t) = t \quad \forall t \in \mathbb{Q}$.

5. Sei $\lambda \in \mathbb{R}_{>0}$. Dann $\exists \ \mu \in \mathbb{R} \text{ mit } \lambda = \mu^2 \text{ und}$

$$\alpha(\lambda) = \alpha(\mu^2) = \alpha(\mu) \cdot \alpha(\mu) > 0,$$

also

$$\alpha(\lambda) > 0 \quad \forall \lambda \subset \mathbb{R} > 0.$$

Wir zeigen nun $\alpha(\lambda) = \lambda \quad \forall \lambda \in \mathbb{R}.$

Gegenannahme

Sei $\lambda \in \mathbb{R}$ mit $\alpha(\lambda) \neq \lambda$. Wir diskutieren den Fall $\alpha(\lambda) < \lambda$ ($\alpha(\lambda) > \lambda$ geht genauso). Wähle $\frac{p}{q} \in \mathbb{Q}$ mit

$$\alpha(\lambda) < \frac{p}{q} < \lambda.$$

Dann gilt

$$\alpha(\lambda - \frac{p}{q}) = \alpha(\lambda) - \frac{p}{q} < 0$$

$$\oint zu \lambda - \frac{p}{q} > 0.$$

Eine Familie von Kollineationen

Idee. Wir verallgemeinern Beispiel 1.8.3, um ine größere Klasse an Kollineationen zu erhalten als Affinitäten.

Beispiel 1.8.5.

$$f \colon \mathbb{C}^2 \to \mathbb{C}^2$$

 $(x,y) \mapsto (\overline{x}, \overline{y})$

respektiert Addition, ð

$$f(z+z') = f(z) + f(z') \quad \forall z, z' \in \mathbb{C}^2,$$

und hat die Eigenschaft

$$f(\lambda z) = \overline{\lambda} f(z) \quad \forall \lambda \in \mathbb{C} \quad \forall z \in \mathbb{C}^2.$$

 \rightarrow Wir nennen f semilinear.

Definition. Seien V, W Vektorräume über einem Körper K. Wir nennen eine Abbildung $F: V \to W$ semilinear, wenn es einen Automorphismus α von K gibt, sodass gilt

- $F(v+v') = F(v) + F(v') \quad \forall v, v' \in V$
- $F(\lambda v) = \alpha(\lambda)F(v) \quad \forall \lambda \in K \ \forall v \in V.$

Definition. Seien X, Y affine Räume über einem Körper K. Wir nennen eine Abbildung

$$f: X \to Y$$

semiaffin, wenn es eine semilineare Abbildung $F: T(X) \to T(Y)$ gibt mit

$$\overrightarrow{f(p)f(q)} = F(\overrightarrow{pq}) \ \forall p, q \in X.$$

Falls f außerdem bijektiv ist, dann nennen wir f eine Semiaffinität.