ECE 369 Name: Timothy Waldin

Homework 2

Due September 24th, 2025 List anyone you have collaborated with:

In this exam, you may use the following inference rules:

Name	Abbreviation	Rule
modus ponens	mp	$\frac{P \rightarrow Q P}{Q}$
modus tollens	mt	$\frac{P \rightarrow Q \neg Q}{\neg P}$
simplification	simpl	$\frac{P \wedge Q}{P}$
addition	add	$\frac{P}{P \lor Q}$
conjunction	conj	$\frac{P Q}{P \wedge Q}$
hypothetical syllogism	hs	$\frac{P \rightarrow Q Q \rightarrow R}{P \rightarrow R}$
disjunctive syllogism	ds	$\frac{P \lor Q \neg P}{Q}$
disjunction elimination	de	$\frac{(P \lor Q) P \to R Q \to R}{R}$

And you may use the following equivalences ($\alpha \Leftrightarrow \beta$ should be read as " α is equivalent to β "):

Name	Abbreviation	Equivalence
Double negation	dn	$P \Leftrightarrow \neg \neg P$
Contrapositive	cp	$P \to Q \Leftrightarrow \neg Q \to \neg P$
Implication	impl	$P \to Q \Leftrightarrow \neg P \vee Q$
Exportation	exp	$P \to (Q \to R) \Leftrightarrow (P \land Q) \to R$
DeMorgan's Laws	dm	$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$
		$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$
Associativity	assoc	$(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$
		$(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$
Commutativity	comm	$P \wedge Q \Leftrightarrow Q \wedge P$
		$P \lor Q \Leftrightarrow Q \lor P$
Distributivity	dist	$ P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R) $
		$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$
Self-reference	self	$P \Leftrightarrow P \wedge P$
		$P \Leftrightarrow P \lor P$

When you use the deduction theorem, introduce your assumption by labeling it "hyp." and discharge the assumption (turn it into an implication) by labeling it "X–Y, ded" where line X is where you introduced the assumption (the left hand side of the implication), and line Y is where you concluded the right-hand side of the implication. Drawing the vertical line is mandatory.

You may also use the following predicate logic equivalences:

Name	Abbreviation	Equivalence
DeMorgan's Law (1)	$_{ m dm}$	$\neg \forall x. \alpha \Leftrightarrow \exists x. \neg \alpha$
DeMorgan's Law (2)	dm	$\neg \exists x. \alpha \Leftrightarrow \forall x. \neg \alpha$

And the following predicate logic inference rules. Remember that $\alpha[a\mapsto b]$ means "replace all occurrences of a in α with b."

Name	Abbr.	Rule	Rules for application
universal	ui	$\forall x.\alpha$	c can be a constant or a variable, but if it
instantiation		$\alpha[x \mapsto c]$	is a variable, it cannot be one that is re-
			mapped inside α
existential	eg	$\exists x. \alpha[c \mapsto x]$	x cannot already appear inside α . It
generalization			should be a "fresh" variable.
existential	ei	$\exists x. \alpha$	c should be a fresh constant: it shouldn't
instantiation		$\alpha[x \mapsto c]$	be in any of the premises, and should not
			have appeared anywhere else in the proof.
universal	ug	α	c should not be constrained in the proof in
generalization		$\forall x. \alpha[c \mapsto x]$	any way—it should be possible for c to be
			talking about any object in the domain.

Translate these English statements into logical formulas. One formula per sentence.

- (a)
- (1) All integers are neither even or odd.
- (2) For all integers, if it is even, it is a multiple of 2.
- (3) For all integers, if it is a multiple of 4, it cannot be odd.
- (4) For all integers, if it is a multiple of 12, it must also be a multiple of 3.
- (5) There exist some integers that are a multiple of 3 but is not odd.

Use these predicates (Please fill in the blanks):

Odd(x): Number x is odd.

Even(x):

Number x is even

Divisible(a, b):

Number a is divisible by b

Solutions:

- (1) $\forall x (\neg \text{Even}(x) \lor \neg \text{Odd}(x))$
- (2) $\forall x (\text{Even}(x) \to \text{Divisible}(x, 2))$
- (3) $\forall x (\text{Divisible}(x,4) \rightarrow \neg \text{Odd}(x))$
- (4) $\forall x (\text{Divisible}(x, 12) \to \text{Divisible}(x, 3))$
- (5) $\exists x (\text{Divisible}(x,3) \land \neg \text{Odd}(x))$

(b)

- (1) A positive integer is a prime if and only if there does not exist an integer that is its factor (i.e., it is divisible by this factor) beside 1 and itself.
- (2) A composite number is an integer that has at least one positive factor besides 1 and itself.
- (3) A composite number is an integer that has at least one factor that is between 1 and itself.
- (4) An integer greater than 1 is either a prime or a composite.
- (5) There exists a positive integer that is neither a prime nor a composite number.

Use these predicates (Please fill in the blanks):

P(x): x is a prime number.

C(x): x is a composite number.

Div(a,b):

a is divisible by b (b is a factor of a)

Solutions:

- $(1) \ \ \, \forall x((x>0) \to (P(x) \leftrightarrow \neg \exists y((y \neq 1 \land y \neq x) \land \mathrm{Div}(x,y)))) \ \ \,$
- (2) $\forall x (C(x) \leftrightarrow \exists y (y > 0 \land y \neq 1 \land y \neq x \land Div(x, y)))$
- (3) $\forall x (C(x) \leftrightarrow \exists y (1 < y < x \land Div(x, y)))$
- $(4) \ \overline{\left[\forall x ((x > 1) \to (P(x) \lor C(x))) \right]}$
- (5) $\exists x(x > 0 \land \neg P(x) \land \neg C(x))$

(c)

- (1) There is a movie star who is richer than anyone else.
- (2) Anyone who is richer than other person pays more taxes than the other person does.
- (3) Therefore, there is a movie star who pays more taxes than anyone else.

Use these predicates (Please fill in):

Movie(x): x is a movie star.

R(x,y):

x is richer than y

T(x,y):

x pays more taxes than y

(Careful: You need to use $\neg(x=y)$ to indicate the statements are applied to someone other than the person themself.)

Solutions:

- (1) $\exists x (\text{Movie}(x) \land \forall y (\neg (x = y) \rightarrow R(x, y)))$
- (2) $\left[\forall x \forall y ((\neg(x=y) \land R(x,y)) \rightarrow T(x,y)) \right]$
- (3) $\exists x (\text{Movie}(x) \land \forall y (\neg (x = y) \rightarrow T(x, y)))$

(d) Prove the statement in (c).

Proof:

- $\exists x (\text{Movie}(x) \land \forall y (\neg(x=y) \rightarrow R(x,y)))$ Premise
- $2. \hspace{0.5cm} \forall x \forall y ((\neg (x=y) \land R(x,y)) \rightarrow T(x,y))$ Premise
- 3. Movie $(a) \land \forall y (\neg (a = y) \rightarrow R(a, y))$ 1, ei
- 4. Movie(a)3, simpl
- 3, simpl
- 2, ui
- 4. Movie(a) 5. $\forall y(\neg(a=y) \rightarrow R(a,y))$ 6. $\forall y((\neg(a=y) \land R(a,y)) \rightarrow T(a,y))$ 7. $|\neg(a=b)$ 8. $|\neg(a=b) \rightarrow R(a,b)$ 9. |R(a,b)10. $|\neg(a=b) \land R(a,b)$ 11. $|(\neg(a=b) \land R(a,b)) \rightarrow T(a,b)$ 12. |T(a,b)13. $\neg(a=b) \rightarrow T(a,b)$ 14. $\forall y(\neg(a=y) \rightarrow T(a,y))$ 15. Movie(a) $\land \forall y(\neg(a=y) \rightarrow T(a,y))$ 16. $\exists x(\text{Movie}(x) \land \forall y(\neg(x=y) \rightarrow T(a,y)))$ hyp.
- 5, ui
- 7, 8, mp
- 7, 9, conj
- 6, ui
- 10, 11, mp
- 7-12, ded
- 13, ug
- 4, 14, conj
- 16. $\exists x (\text{Movie}(x) \land \forall y (\neg (x = y) \rightarrow T(x, y)))$ 15, eg

Prove the statement using deduction. For full credit, draw the vertical lines correctly for deduction scoping.

(a)
$$A \rightarrow (B \rightarrow (C \rightarrow D)) \vdash C \rightarrow (A \rightarrow (B \rightarrow D))$$

Pro	of:	
1.	$A \to (B \to (C \to D))$	Premise
2.	$\mid C$	hyp.
3.	$\mid \mid A$	hyp.
4.	$\mid \mid B \to (C \to D)$	1, 3, mp
5.	$ \ \ \ B$	hyp.
6.	$ \ \ \ C \to D$	4, 5, mp
7.	$ \; \; \;D$	2, 6, mp
8.	$\mid \mid B \rightarrow D$	5-7, ded
9.	$\mid A \to (B \to D)$	3-8, ded
10.	C o (A o (B o D))	2-9, ded

(b)
$$A \to (B \to (\neg C \land \neg D)) \vdash D \to (A \to \neg B)$$

Proof:	
1. $A \to (B \to (\neg C \land \neg D))$	Premise
2. D	hyp.
3. A	hyp.
$4. B \to (\neg C \land \neg D)$	1, 3, mp
$5. \qquad \mid \neg B \lor (\neg C \land \neg D)$	4, impl
6. $ \neg B \lor \neg D$	5, simpl (on disjunct)
$ 7. \neg D $	2, dn
$\mid 8. \mid \mid \neg B$	6, 7, ds
9. $ A \rightarrow \neg B $	3-8, ded
10. $D \to (A \to \neg B)$	2-9, ded

Prove the following statements using predicate logic. $\,$

$$\textbf{(a)} \ \left\{ \neg \exists x (M(x) \land P(x)), \forall x (S(x) \rightarrow M(x)) \right\} \vdash \forall x (S(x) \rightarrow \neg P(x))$$

(Hint: One of the "perfect" syllogism Aristotle has proposed)

Proof:	
1. $\neg \exists x (M(x) \land P(x))$	Premise
2. $\forall x(S(x) \to M(x))$	Premise
3. $\forall x \neg (M(x) \land P(x))$	1, dm
4. $\forall x (\neg M(x) \lor \neg P(x))$	3, dm
5. $\forall x (M(x) \to \neg P(x))$	4, impl
6. $S(a) \to M(a)$	2, ui
7. $M(a) \rightarrow \neg P(a)$	$5, \mathrm{ui}$
8. $S(a) \rightarrow \neg P(a)$	6, 7, hs
9. $\forall x(S(x) \to \neg P(x))$	8, ug

(b) $\{\forall x(F(x) \to \exists y(C(y) \land O(x,y))), \forall x(D(x) \to \forall y(C(y) \to \neg O(x,y)))\} \vdash \forall x(F(x) \to \neg D(x))$ (Hint: You may use two deductions in the proof sequence. This formal logical argument can be interpreted as "Every farmer owns a cow. No dentist owns a cow. Therefore, no farmer is a dentist.")

Ъ		
Proo	f:	
1.	$\forall x (F(x) \to \exists y (C(y) \land O(x,y)))$	Premise
2.	$\forall x (D(x) \rightarrow \forall y (C(y) \rightarrow \neg O(x,y)))$	Premise
3.	$\mid F(a)$	hyp.
4.	$\mid F(a) \to \exists y (C(y) \land O(a,y))$	1, ui
5.	$\mid \exists y (C(y) \land O(a,y))$	3, 4, mp
6.	$\mid C(b) \wedge O(a,b)$	5, ei
7.	$\mid C(b)$	6, simpl
8.	$\mid O(a,b)$	6, simpl
9.	$\mid \mid D(a)$	hyp.
10.	$\mid \mid D(a) \rightarrow \forall y (C(y) \rightarrow \neg O(a,y))$	2, ui
11.	$ \ \ \forall y(C(y) \to \neg O(a,y))$	9, 10, mp
12.	$ \ \ C(b) \to \neg O(a,b)$	11, ui
13.	$ \ \ \neg O(a,b)$	7, 12, mp
14.	$ \mid O(a,b) \land \neg O(a,b)$	8, 13, conj
15.		14, contradiction
16.	$\mid \neg D(a)$	9-15, ded (by contradiction)
17.	$F(a) \to \neg D(a)$	3-16, ded
18.	$\forall x (F(x) \to \neg D(x))$	17, ug

Prove the following claims by contradiction. You will not get credit if you prove using a proof style other than contradiction!

For full credit, clearly write down your definitions and predicates first.

(a) There is no smallest, positive, rational number.

Definitions:

- Let \mathbb{Q}^+ denote the set of positive rational numbers
- A rational number can be expressed as $\frac{p}{q}$ where $p, q \in \mathbb{Z}$ and $q \neq 0$

Proof by Contradiction:

Assume for contradiction that there exists a smallest positive rational number r.

So we have: $r \in \mathbb{Q}^+$ and $\forall y \in \mathbb{Q}^+ (r \leq y)$

Consider the number $\frac{r}{2}$. Since r is a positive rational number:

- r > 0
- $r = \frac{p}{q}$ for some integers p > 0, q > 0
- Therefore $\frac{r}{2} = \frac{p}{2q}$ which is also a positive rational number

We observe:

- $\frac{r}{2} > 0 \text{ (since } r > 0)$
- $\frac{r}{2} < r$ (since dividing by 2 reduces a positive number)
- $\frac{\tilde{r}}{2} \in \mathbb{Q}^+$ (positive rationals are closed under division by positive integers)

But this contradicts our assumption that r is the smallest positive rational number, since we found $\frac{r}{2} \in \mathbb{Q}^+$ with $\frac{r}{2} < r$.

Therefore, there is no smallest positive rational number. Q.E.D.

(b) Consider the roots of the quadratic polynomial $px^2 + qx + r$, where p, q, and r are all > 0. If $q > 2\sqrt{p \cdot r}$, the roots of this polynomial cannot be complex.

Hint: Let the root be x = (a + bi) which leads to $px^2 + qx + r = 0$

Proof by Contradiction:

Assume for contradiction that when p, q, r > 0 and $q > 2\sqrt{pr}$, the polynomial has complex roots.

Let one root be x = a + bi where $b \neq 0$ (non-real). Since coefficients are real, the other root must be the conjugate: x = a - bi

By Vieta's formulas:

- Sum of roots: $(a+bi)+(a-bi)=2a=-\frac{q}{p}$ Product of roots: $(a+bi)(a-bi)=a^2+b^2=\frac{r}{p}$

From the sum: $a = -\frac{q}{2p}$

Since q > 0 and p > 0: a < 0

From the product: $a^2 + b^2 = \frac{r}{n}$

Substituting $a = -\frac{q}{2p}$: $\frac{q^2}{4p^2} + b^2 = \frac{r}{p}$

Therefore: $b^2 = \frac{r}{p} - \frac{q^2}{4p^2} = \frac{4pr - q^2}{4p^2}$

Since b is real (part of a complex number), we need $b^2 \ge 0$: $\frac{4pr-q^2}{4p^2} \ge 0$

This requires: $4pr - q^2 \ge 0$, which means $q^2 \le 4pr$, or $q \le 2\sqrt{pr}$

But this contradicts our given condition that $q > 2\sqrt{pr}$.

Therefore, when $q > 2\sqrt{pr}$, the roots cannot be complex. **Q.E.D.**