Fakultät für Technik

Bachelor-Studiengänge: "Elektrotechnik/Informationstechnik" "Technische Informatik"

Modul "Kommunikationstechnik" Teilklausur "Signale und Systeme" (2 ECTS)

Prüfer: Prof. Dr.-Ing. Norbert Höptner Prüfungstermin: 05.02.2010

Hilfsmittel: Vorlesungsskripten, Mitschriften (incl. gelöster Übungsaufgaben), Fachbücher, Taschenrechner (nicht programmierbar, nicht grafikfähig)

Aufgabe 1 (20 Punkte)

Gegeben ist das im Folgenden dargestellte Signal x(t).

Ein System, das mit x(t) erregt wird, antwortet mit y(t) = x(1/2 - t/2).

- a) Skizzieren Sie y(t).
- b) Zerlegen Sie das Signal y(t) in einen geraden Signalanteil $y_g(t)$ und ungeraden Signalanteil $y_u(t)$.
- c) Stellen Sie die Gleichung zur Berechnung des Spektrums $Y_g(f)$ für den geraden Signalanteil $y_g(t)$ auf (keine Lösung erforderlich!).

Aufgabe 2 (20 Punkte)

Ein LTI-System besitzt die nachfolgend gezeigte Impulsantwort h(t):

- a) Skizzieren Sie die Systemautokorrelierte $\varphi_{hh}(\tau)$ und geben Sie dabei die wichtigen Eckpunkte $\varphi_{hh}(2T)$, $\varphi_{hh}(T)$, $\varphi_{hh}(0)$ und $\varphi_{hh}(\tau >=3T)$ genau an.
- b) Auf das System werde weißes Rauschen mit der (zweiseitigen) Rauschleistungsdichte $N_0/2$ gegeben. Geben Sie die AKF $\varphi_{yy}(\tau)$ des System-Ausgangsprozesses in Abhängigkeit von $\varphi_{hh}(\tau)$ an.
- c) Bestimmen Sie die Energie E_{ν} des Ausgangsprozesses.

Aufgabe 3 (5 Punkte)

Ein Signal a(t) der Dauer T_1 = 10 s wird mit einem Signal b(t) der Dauer T_2 = 25 s korreliert. Welche Dauer T hat die Kreuzkorrelationsfunktion $\phi_{ab}(\tau)$?