A Toy Model in Three Dimensions Indicating Inverse-Square-Law Emergence from Quantum Entanglement

The HoloCosmo Project

April 9, 2025

Abstract

We present a simplified extension of a one-dimensional toy model to three dimensions, demonstrating that an effective force with an inverse-square radial dependence may, in principle, emerge from the decay of mutual information between spatially separated quantum subsystems. This work serves as a sanity check to complement previous 1D investigations, highlighting key challenges and potential avenues toward a more realistic emergent-gravity framework.

1 Introduction

Recent theoretical work has explored the idea that spacetime and gravitational dynamics may emerge from the entanglement properties of an underlying quantum state. In one spatial dimension, a toy model has shown that a power-law decay of mutual information between two subsystems can be associated with an effective force obeying an inverse-square law. This note extends that idea into three dimensions, providing a higher-dimensional generalization and exploring the conditions under which similar inverse-square-law behavior emerges.

2 Three-Dimensional Setup

Consider a three-dimensional cubic lattice composed of qubits. Each lattice site is labeled by a coordinate vector

$$\mathbf{x} = (x_1, x_2, x_3),$$

with $x_i \in \{1, 2, ..., L\}$ for a lattice of side length L. We assume either open or periodic boundary conditions.

Define two disjoint subsystems, A and B, each consisting of a contiguous block (or cluster) of qubits. Let \mathbf{r}_A and \mathbf{r}_B denote the centers of mass of the subsystems, and define the separation

$$r = \|\mathbf{r}_A - \mathbf{r}_B\|.$$

The quantum correlations between A and B are quantified by the mutual information,

$$I(A:B) = S(A) + S(B) - S(A \cup B),$$

where S(X) is the von Neumann entropy of subsystem X.

3 Power-Law Decay of Mutual Information

We postulate that the mutual information decays with the distance r according to a power law:

$$I(A:B) \sim \frac{c}{r^{\alpha}},$$

where c > 0 is a constant and $\alpha > 0$ characterizes the decay. In many three-dimensional systems—especially those at criticality or in gapless phases—power-law decays of correlation functions (and thus entanglement measures) are commonplace.

4 Entanglement Potential and Effective Force

We define an entanglement potential as

$$V_{\text{ent}}(r) = -kI(A:B),$$

with k > 0 setting the overall coupling strength. Following classical mechanics, we define an effective force as the negative radial derivative of the potential:

$$F(r) = -\frac{dV_{\text{ent}}}{dr} = k\frac{d}{dr}I(A:B).$$

Substituting our power-law ansatz,

$$I(A:B) \sim \frac{c}{r^{\alpha}},$$

we compute

$$F(r) = k \frac{d}{dr} \left(\frac{c}{r^{\alpha}} \right) = -k \alpha c \frac{1}{r^{\alpha+1}}.$$

5 Recovering the Inverse-Square Law

To mimic the Newtonian gravitational force, which scales as $1/r^2$, we require that

$$\frac{1}{r^{\alpha+1}} \propto \frac{1}{r^2}.$$

This condition implies:

$$\alpha + 1 = 2 \implies \alpha = 1.$$

Thus, if the mutual information decays as $I(A:B) \sim 1/r$, the effective force becomes

$$F(r) \sim \frac{1}{r^2}$$

which is the familiar inverse-square law observed in Newtonian gravity.

6 Discussion and Outlook

This three-dimensional extension represents a straightforward, yet important, step toward more realistic models of emergent gravity:

- Exponent Tuning: In a true 3D quantum many-body system, engineering a precise 1/r decay may require fine-tuning or may naturally occur only under special critical conditions.
- Static versus Dynamic Models: Our analysis is entirely static. For a complete gravitational theory, one must consider time-dependent entanglement correlations and their impact on emergent spacetime dynamics.
- Towards Continuum Theories: Ultimately, it is desirable to derive a continuum description linking entanglement dynamics with an effective field theory that includes gravitational degrees of freedom.

While this model does not provide a complete theory of gravity, it offers a proof-of-principle that quantum entanglement can encode an effective inverse-square interaction—thereby complementing earlier 1D studies and guiding future research in emergent gravity scenarios.

7 Conclusion

We have extended a toy model based on the power-law decay of mutual information from one to three dimensions. By positing that $I(A:B) \sim 1/r$ for well-chosen subsystems in a 3D lattice, the resulting entanglement potential yields an effective force that scales as $1/r^2$. Although highly idealized, this extension reinforces the possibility that gravity-like interactions may emerge from the underlying quantum entanglement structure, and it serves as a stepping stone for more comprehensive explorations connecting quantum information theory with the geometry of spacetime.

Acknowledgments

The author thanks the broader community exploring emergent gravity and quantum informational approaches for inspiring this work.