AD-A019 111

THE GENERALIZED TRAJECTORY SIMULATION SYSTEM. VOLUME V. WEIGHT ESTIMATION MODELS FOR SIZING APPLICATIONS

Charles C. DeBilzan

Aerospace Corporation

Prepared for:

Space and Missile Systems Organization Air Force Rocket Propulsion Laboratory

21 November 1975

DISTRIBUTED BY:

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPRODUCED FROM BEST AVAILABLE COPY

TAO 19111

REPORT SAMSO-TR-75-255, VOL V

Volume V: Weight Estimation Models for Sizing Applications

TRAJECTORY ANALYSIS PROGRAMMING DEPARTMENT
Information Processing Division
Engineering Science Operations
The Aerospace Corporation
El Segundo, Calif. 90245

21 November 1975

Final Report

APPROYED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

> NATIONAL TECHNICAL INFORMATION SERVICE

Prepared for

AIR FORCE ROCKET PROPULSION LABORATORY
AIR FORCE SYSTEMS COMMAND
Edwards Air Force Bass, Calif. 98528

and THE AEROSPACE CORPORATION

SPACE AND MISSILE SYSTEMS ORGANIZATION AIR FORCE SYSTEMS COMMAND Los Angeles Air Force Station P.O. Box 92960, Worldway Postal Center Los Angeles, Calif. 90009 This report was prepared by The Aerospace Corporation, El Segundo, California, under Contract F04701-75-C-0076 with the Space and Missile Systems Organization (AFSC), P.O. Box 92960, Worldway Postal Center, Los Angeles, California 90009. The work was sponsored by the Air Force Rocket Propulsion Laboratory (AFSC), Edwards AFB, California 93523, with Capt. Francis Lymburner as project officer. This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

Approved by

A.R. Sims, Director

Mathematics and Programming

Subdivision

Information Processing Division Engineering Science Operations

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Gerhard E. Aichinger

Technical Advisor

Contracts Management Office

Frank J. Bane

Chief, Contracts Management Office

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
Report SAMSO-TR-75-255, Vol V	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
The Generalized Trajectory Simulation System.	Final Report
Volume V: Weight Estimation Models for Sizing	7-1-74 to 6-30-75
Applications	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)	TR-0076(6666)-1, Vol. V
Trajectory Analysis Programming Department	F04701-74-C-0075
Information Processing Division	F04701-74-C-0075 F04701-75-C-0076
Engineering Science Operations	1
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
The Aerospace Corporation	AREA & WORK UNIT NUMBERS
El Segundo, California 90245	I
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Space and Missile Systems Organization	21 November 1975
Air Force Systems Command	13. NUMBER OF PAGES
LOB Angeles, California 90045 14. MONITORING ASENCY NAME & ADDRESS(II dillerent from Controlling Office)	498
Air Force Rocket Propulsion Laboratory	18. SECURITY CLASS. (of this report)
Air Force Systems Command	Unclassified
Edwards Air Force Base, California 93523	IS- DECLASSIFICATION/DOWNGRADING
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimited	. DDC _
Approved for public release, distribution unfilling	. — ——————————————————————————————————
	الاأالت ويتوريون المراية المرا
	U JAN 12 1976
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different free	Report)
	U
18. SUPPLEMENTARY NOTES	
18. SUPPLEMENTARY HOTES	
_	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Sizing Vehicle/trajectory	
Solid rocket motor sizing Trajectory/vehicle	sizing Parametric weight
Sizing solid rocket motors Nahicle / mission sizing Weight notice the	g scaling
Vehicle/mission sizing Weight estimation Mission/vehicle sizing Weight prediction	
8	
20. ASSTRACT (Continue on reverse side if necessary and identify by block number) The Generalized Trajectory Simulation (GTS) syste	11 makina danian
The Generalized Trajectory Simulation (GTS) systemand trajectory simulation capability. GTS is written	m provides a vehicle design
with CDC 7000/6000 series computer systems. Us	en in FORTRAN companible
specifications, computational efficiency, diverse p	der-oriented input data
convenient program modifications have been prima	rogram applicability, and
design of the GTS system. The trajectory simulation	ion canability can accom-
modate diverse types of vehicle configurations, fli	wht profiles and mission

UNCLASSIFIED

BECURITY	CLASSIFICATION OF	THIS PAGE(When Date Entered

19. KEY WORDS (Centinued)

20. ABSTRACT (Continued)

objectives. Additionally, the GTS system contains an extensive vehicle sizing capability and a state-of-the-art optimization capability.

This volume documents the GTS library of weight estimation models which provide a vehicle sizing capability for space and missile vehicles that utilize solid propellant rocket motors. Liquid propelled vehicles can also be accommodated within the sizing procedure; however, they require the development of specialized weight estimation models to represent particular characteristics of the desired liquid propellant system.

Primary applications include preliminary design studies, booster subsystem trade-off studies, and growth studies of existing systems, including the analysis of advanced propellant technology or new launch concepts.

ii

PREFACE

This volume, the fifth of five volumes that describe the Generalized Trajectory Simulation System (GTS), documents the GTS library of weight estimation models utilized for sizing applications. The remaining volumes are:

Volume 1: GTS Overview. This document provides the user with an overview of GTS, including a summary of the major operational capabilities and structural design of the GTS system.

Volume II: GTS Usage Guide. This volume serves as a general usage guide to GTS and includes a set of example problems, a comprehensive description of the Generalized Trajectory Language, and a discussion of the trajectory simulation control. In addition, this volume contains a master reference list for all volumes and supplementary information to aid the user in defining his problem.

Volume III: GTS Flight Dynamic Models. This report concerns the GTS library of flight mechanics and flight dynamics models utilized for trajectory simulations.

Volume IV: GTS Numerical Operators. This publication deals with the GTS library of numerical operators, including integration, optimization, and interpolation operators.

This report was prepared by Charles C. DeBilzan. The author acknowledges the beneficial contributions and suggestions made by A.D. Hemenover, F.R. Henry, J.R. McLaughlin, D.S. Meder, J. Milligan, W.T. Milloway, F.E. Pickett, and J.L. Searcy.

Preceding page blank

CONTENTS

Sect.	Description	Page
1.	Introduction	1-1
1.0.1	Program Description	1-1
1.0.2	Program Applications	1-1
1.1	Summary of Weight Estimation Methodology	1-2
1.1.1	Theoretical Weight Scaling	1-2
1.1.2	Statistical Weight Scaling	1-3
1.1.3	Parametric Weight Scaling	1-4
1.1.4	Accuracy of Weight Scaling Results	1-5
1.2	Use of GTS Function Generators to Solve the Sizing Problem	1-6
1.2.1	Statement of the Sizing Problem	1-6
1.2.2	Pertinent Function Generators	1-7
1.2.3	Interaction of Function Generators	1-8
1.3	Classification and Purpose of Weight Estimation Models	1-13
1.3.1	Vehicle Definition Models	1-13
1.3.2	Weight Models	1-13
1.3.3	Geometry, Internal Ballistic and Propulsion Models	1-14
2.	Nomenclature Conventions	2-1

CONTENTS (Cont.)

Sect.	Model Type	Model Name	Description	Page
10.1	VEHDEF	VHDMI	Vehicle Definition (sequential stages	s) 10.1-1
20, 1	CASEG	CSGMI	Case Geometry (metal)	20.1-1
20.2	CASEG	CSGM2	Case Geometry (glass)	20. 2-1
30.1	CASEW	CSWM1	Case Weight (metal)	30.1-1
30.2	CASEW	CSWM2	Case Weight (glass)	30. 2-1
40.1	GRAING	GNGM1	Grain Geometry	40.1-1
50.1	IBFLOW	IBFMI	Internal Ballistics, Flow	50.1-1
ύ0. l	IBGAS	IBGM1	Internal Ballistics, Gas	60.1-1
70.1	IBPERF	IBPM1	Internal Ballistics, Performance	70.1-1
80.1	INSULG	INGMI	Internal Insulation Geometry	80, 1-1
90.1	INSULW	INWM1	Internal Insulation Weight	90, 1-1
100.1	INTSTGG	ITGMI	Interstage Geometry	100.1-1
110.1	INTINSW	ITIWMI	Interstage External Insulation Weight	110.1-1
120.1	INTSTRW	ITSWM1	Interstage Structure Weight (Parametric Scaling)	120, 1-1
120, 2	INTSTRW	ITSWM2	Interstage Structure Weight (Geometry Dependent)	120, 2-1
130.1	INTSTGW	ITWM1	Interstage Weight	130, 1-1
140, 1	MISCMTW	MMWM1	Miscellaneous Motor Weight	140.1-1
150.1	MOTORG	MTGM1	Motor Geometry	150, 1-1
160, 1	MOTORW	MTWM1	Motor Weight	160.1-1
170.1	NONNLEG	NZGMI	Nozzle Geometry	170. 1-1
180.1	NOZZLEW	NZWM1	Nezzle Weight	180.1-1
190.1	PAYLODG	PAGMI	Payload Geometry	190.1-1
200.1	PAYLODW	PAWMI	Davidso 1 Mr. C. C.	200. 1-1
210.1	PROPUL	PCMI	December 6	210.1-1
220.1	PAYSECG	PLGM1	15 . 1 . 1 // //	220.1-1
230.1	PAYSECW	PLWMI	Paulone Caution W. L. C.	230. 1-1

CONTENTS (Cont.)

Sect.	Model Type	Model Name	Description	Page
230.2	PAYSECW	PLWM2	Payload Section Weight (shroud)	230. 2-1
240.1	PROPELW	PPWMl	Propellent Weight	240.1-1
250.1	PROSYSG	PSGM1	Propulsion System Geometry	250.1-1
260.1	PROSYSW	PSWM1	Propulsion System Weight	230.1-1
270.1	STAGEG	SGGM1	Stage Geometry	270.1-1
280.1	STAGEW	SGWM1	Stage Weight	280.1-1
290.1	SHROUDW	SHWM1	Shroud Weight	290.1-1
300.1	SUBSTGG	SSGM1	Substage Geometry	300.1-1
310.1	SUBSTGW	SSWM1	Substage Weight	310, 1-1
320.1	TTERMG	TTGM1	Thrust Termination Geometry	320.1-1
330.1	TTERMW	TTWM1	Thrust Termination Weight	130.1-1
340.1	TVCG	TVGM1	Thrust Vector Control Geometry	40.1-1
350.1	TVCW	TVWMl	Thrust Vector Control Weight	350.1-1
360.1	VEHG	7HGM1	Vehicle Geometry	360.1-1
370.1	VEHW	VHWM1	Vehicle Weight	370.1-1

FIGURES

Figure	Model Type	Description	Page
1. 2. 3-1		Typical Function Generator Interaction. Determine Vehicle Configuration and Simulate Trajectory.	1-10
1.2.3-2		Typical Function Generator Interaction. Optimize Vehicle Configuration, Then Optimize Trajectory.	1-11
1.2.3-3		Typical Function Generator Interaction. Optimize System by Combining Vehicle and Trajectory.	1-12
10.1-1	VEHDEF	Major Components and Data Block Designation for a Typical Three Stage Rocket	10.1-4
20.1.1	CASEG	Metal Case Geometry	20.1-7
20.2-1	CASEG	Fiberglass Case Geometry	20.2-7
40.1-1	GRAING	Basic Grain Geometry Components	40.1-19
40.1-2	GRAING	Total Grain Geometry	40.1-20
40.1-3	GRAING	Forward Grain Closure Geometry	40.1-21
40.1-4	GRAING	Aft Grain Closure and Nozzle Submergence Geometry	40,1-22
40.1-5	GRAING	Aft Grain Closure and Nozzle Submergence Volumes	40.1-23
40.1-6	GRAING	Surface and Cross-sectional Areas	40.1-24
50.1-1	IBFLOW	Slot Geometry	50.1-6
80.1-1	INSULG	Basic Insulation Components	80.1-55
80.1-2	INSULG	Typical Insulation Liner and	90 1 54

FIGURES (cont.)

Ź

Figure	Model Type	Description	Page
80, 1-3	INSULG	Liner Within Forward Closure, Detailed Geometry	80.1-57
80.1-4	INSULG	Liner Within Forward Closure, Volumes	80.1-58
80.1-5	INSULG	Liner Within Aft Closure, Detailed Geometry	80.1-59
80.1-6	INSULG	Liner Within Aft Closure, Volumes	80.1-60
80.1-7	INSULG	Wedge Within Forward Closure, Detailed Geometry	80.1-61
80.1-8	INSULG	Wedge Within Forward Closure, Volumes	80.1-62
80.1-9	INSULG	Wedge Beyond Forward Closure, Detailed Geometry	80.1-63
80.1-10	INSULG	Wedge Beyond Forward Closure, Volumes	80.1-64
80.1-11	INSULG	Wedge Within Aft Closure, Detailed Geometry	80.1-65
80.1-12	INSULG	Wedge Within Aft Closure, Volumes	80.1-66
80, 1-13	INSULG	Wedge Beyond Aft Closure, Detailed Geometry	80.1-67
80, 1-14	I:-BULG	Wedge Beyond Aft Closure, Volumes	80.1-68
80.1-15	INSULC	Slot and Joint Insulation Configurations	80.1-69
80.1-16	INSULG	Slot Insulation Subcomponents and Geometry	80.1-70
80, 1-17	INSULG	Joint Insulation Subcomponents and Geometry	30, 1-71
80, 1-18	INSULG	Acceptable Polygons for Slot Port/ Grain Component	80.1-72
80.1-19	INSULG	Acceptable Polygons for Joint Port/Grain Component	80. 1-73

のでは、100mのでは、

FIGURES (cont.)

Figure	Model Type	Description	Page
80.1-20	INSULG	Slot and Joint Insulation Volumes	80.1-74
80.1-21	INSULG	Displaced Propellent	80.1-75
80.1-22	INSULG	Inter-Modeling Coupling	80.1-76
100.1-1	INTSTGG	Geometry, Interstage Between Substages	100.1-3
100.1-2	INTSTGG	Geometry, Interstage Between Substage and Payload	100.1-4
150.1-1	MOTORG	Basic Motor Geometry	150.1-4
170.1-1	NOZZLEG	Conical Nozzle Sections and Planes	170.1-7
170.1-2	NOZZLEG	Conical Nozzle, Total Geometry	170.1-
170.1-3	NOZZLEG	Conical Nozzle, Convergent Section	170.1-9
170.1-4	NOZZLEG	Conical Nozzle, Transition Section	170.1-1
170.1-5	NOZZLEG	Conical Nozzle, Conical Section	170.1-1
190.1-1	PAYLODG	Payload Geometry	190.1-3
220.1-1	PAYSECG	Payload Section Geometry	220.1-2
250.1-1	PROSYSG	Typical Three Stage Boost Vehicle	250.1-2
270.1-1	STAGEG	Stage Geometry	270.1-3
300.1-1	SUBSTGG	Substage Geometry	300.1-3
340.1-1	TVCG	Gimbal Point Forward of Nozzle Throat	340, 1-3
340.1-2	TVCG	Gimbal Point Aft of Nozzle Throat	340.1-4
360.1-1	VEHG	Vehicle Geometry	360.1-2

1. INTRODUCTION

1.0.1 Program Description

The solid rocket motor weight estimation models presented within this volume, combined with a general purpose optimization scheme (Vol. 1V) and trajectory simulation capability (Vol. III), form a generalized vehicle sizing program for solid rockets. The program, normally utilized in preliminary design level studies, estimates performance sensitive component weights which will determine a propulsion system configuration consistent with realistic vehicle geometry, performance and mission constraints. Specifically, it sizes each major rocket component, bases weight predictions on past and present experience, recognizes actual hardware and system constraints, and permits the inclusion of technology changes. It is valid for propulsion system weights between 3000 and 2,000,000 lbs. and does not require the generation of reference designs prior to generating results. It should be noted that the program does not replace the design, weight, and performance processes associated with hard point design studies. However, it has proven a valuable tool when sufficient data, funding, or time is not available for such a design effort.

1.0.2 Program Applications

The propulsion system configuration generated by this program has served as a reference vehicle design for:

- booster subsystem trade-off studies;
- preliminary design of major new missile weapon and space system concepts;
- growth studies of existing boost and post-boost vehicles;
- determining the effects of advanced propellent technology on missile systems;
- determining effects of new launch concepts on missile systems.

1.1 SUMMARY OF WEIGHT ESTIMATION METHODOLOGY

This section summarizes the principal methods used for derivation of the weight prediction equations and gives some general comments on the accuracy to be expected. For a detailed exposition of the methodology for specific applications, and the derivation of many of the weight prediction equations used, see reference 8.

There are three principal methods of weight analysis associated with the development of the weight estimation models within this volume. The first two listed below, actual and hard point design, served as the data base for the development of the weight scaling equations used by this program.

- 1. Actual weight analysis -- determination of the measurements and weights of existing rockets.
- 2. Hard point design analysis—development of detailed mathematical models of the geometry and physics of a specific proposed rocket system.
- 3. Preliminary design analysis using weight scaling—development of simple mathematical models using weight scaling equations derived by analysis of the physical and statistical properties of existing rockets. The resulting design, using estimated weights, serves as a reference vehicle which may require further perturbation for analysis of a specific rocket system. The primary scaling methods used are:
 - theoretical weight scaling
 - statistical weight scaling
 - parametric weight scaling

1.1.1 Theoretical Weight Scaling

のでは、「一般のでは、10mmのでは、10mmのでは、10mmできた。これでは、10mmのでは、10mm

Theoretical weight scaling equations are developed by generating a simple mathematical model of the physics and geometry, which includes only elements common to a wide range of rockets.

The scaling equation is an analytical equation expressed in terms of design parameters which are either performance sensitive or basic quantities of the subsystem being modeled.

在是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,这个时间的时间,我们是一个时间,我们也不是一个人,我们也可以是一个时间,我们也是一个时间,我们就是一个时间,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人

^{1.} Kimble, J. E. "Parametric Weight Scaling Equations for Solid Propellent Launch Vehicles," TR-669(6560)-2, The Aerospace Corp., El Segundo, Calif., April 1966 (U).

The principal advantage of theoretical scaling is that the analytical approach assists in determining the significant design parameters and, since the fundamental physics and geometry are being modeled, weight trends due to design parameter perturbations can be predicted with confidence. However, due to the simple universal models employed, the absolute weights predicted may be considerably different than the actual subsystem weight.

The principal steps in developing a theoretical weight scaling model are:

- 1. Collect data. The data may include weights and design parameters of both existing rockets and hard point designs.
- 2. Derive a theoretical equation for the weight of the subsystem using physical properties. Select significant design parameters and re-express the weight equation as a function of these design parameters.
- 3. Compare the theoretical equation results with the data.
- 4. Repeat steps 2 and 3 until the comparison is satisfactory.

1.1.2 Statistical Weight Scaling

Statistical weight scaling equations are developed by generating a mathematical model using statistical analysis of existing rockets.

The scaling equation and scaling parameters are both statistical in nature, chosen to give a "best fit" to the data.

When compared with the data from which they are derived, statistical equations yield better estimates of absolute component weights than the theoretical scaling equations described above. Further, for complex subsystems where a simple theoretical model may not be feasible, statistical scaling may be required. However, since both the equation and parameters do not reflect the physics of the subsystems being modeled, weight trends due to perturbation of design parameters cannot be predicted with confidence.

The principal steps in developing a statistical weight scaling model are:

- 1. Collect data. The data may include weights and design parameters of both existing rockets and hard point designs.
- 2. Determine both the form of the weight estimation function and the statistical parameters by analysis of the mathematical properties of the data.

- 3. Determine coefficient and exponent values which result in a "best fit" curve.
- 4. Perform correlation analysis.
- 5. Repeat steps 2 through 4 until errors are acceptable.

1.1.3 Parametric Weight Scaling

Parametric weight scaling equations are developed by generating a mathematical model which combines both statistical weight scaling and theoretical weight scaling techniques.

The scaling equation is statistical in form, using elements of the theoretical equation as statistical parameters. As with theoretical weight scaling, design parameters are either performance sensitive or basic quantities of the subsystem being modeled.

Parametric weight scaling attempts to combine the advantages of both theoretical and statistical scaling methods. The analytical approach yields insight into selection of significant design parameters and is a basis for good weight trend predictions, whereas the statistical fitting yields realistic absolute weights by accounting for weight contributions not predicted by the theoretical equation. Whenever possible, the weight models documented within this volume use parametric weight scaling for predicting rocket component weights.

The principal steps in developing a parametric weight scaling model are:

- 1. Collect data. The data may include weights and design parameters of both existing rockets and hard point designs.
- 2. Derive a theoretical equation for the weight of the subsystem using physical properties. Select significant design parameters and re-express the weight equation as a function of these design parameters.
- 3. Compare the theoretical equation results with the data.

 Particular emphasis is placed on weight trend results since the statistical fitting in the following steps will account for bias in the absolute weights predicted.
- 4. Repeat steps 2 and 3 until the comparison is satisfactory.
- 5. Determine the form of the weight estimation function to be used for the statistical analysis. Rearrange the theoretical equation such that the elements serve as statistical parameters.

- Determine coefficient and exponent values which result in a "best fit" curve.
- 7. Perform correlation analysis.
- 8. Repeat steps 2 through 7 until errors are acceptable.

1.1.4 Accuracy of Weight Scaling Results

For studies coordinated with competent weight prediction personnel, the following general statements may be made for the accuracy of the results using the weight estimation models presented within this volume.

- 1. Weight predictions do not include the effects of design philosophy, program funding, or technological advances difficult to evaluate or forecast.
- 2. The subsystems can be manufactured with the predicted weight.
- 3. Weight trends resulting from design parameter perturbations can be predicted with higher confidence than absolute weights. Weights of complex subsystems will have reduced accuracy.
- 4. The stage structure factor (ratio of stage burnout weight to stage gross weight) will be within 15%.
- 5. Statistical weight scaling models cannot be u ed for subsystem tradeoff studies.
- 6. The geometrical configuration produced is of secondary importance and requires considerable interpretation for correlation with geometrical configurations produced by a "hard point design" analysis.

1.2 USE OF GTS FUNCTION GENERATORS TO SOLVE THE SIZING PROBLEM

Two principal components of the GTS system are a "model library" and a set of "program control executive models" (referred to as "function generators"), which select and control the execution of the subset of library models required for solution of a particular problem. Specifically, three subsets of the model library are pertinent for sizing applications: optimization numerical operator models (which are documented in Volume IV), weight estimation models (which are documented within this volume), and trajectory simulation models (which are documented in Volume III). In addition, to control these models, three function generators are required: OPTSYS, for control of the optimization numerical operator models; SIZE, for control of the weight estimation models; and TRAJCEM, for control of the trajectory simulation models.

This section will illustrate the general techniques utilized for solving sizing problems using the appropriate function generators and models. For specific model requirements, refer to the pertinent GTS volume, and for a detailed discussion of the input language, including the precise method and syntax required to implement the function generators and models, see Volume II.

1, 2, 1 Statement of the Sizing Problem

In general, the sizing problem is to estimate the "best" rocket weight breakdown which will result in a propulsion system configuration which is consistent with realistic vehicle geometry, performance, and mission constraints.

The problem may be stated as three distinct, but not normally independent, subproblems:

- 1. The optimization subproblem. Determine the variable values which extremize the objective function subject to a set of equality and inequality constraints or determine the values of N variables which satisfy N equality constraints.
- 2. The weight estimation subproblem. Given a set of variable values, determine the vehicle geometry, propulsion, and weights.
- 3. The trajectory simulation subproblem. Given a set of variable values and vehicle parameters, determine the trajectory profile.

It must be noted that this problem statement completely separates the determination of variable values, constraint solving, and objective function maximization or minimization from the evaluation of the vehicle and trajectory quantities. This is not only required for a valid solution to the theoretical problem, it will be shown within the following sections that this method of breaking down the problem renders itself to natural, flexible, and efficient methods of solution using GTS function generators and GTS models.

1.2.2 Pertinent Function Generators

A GTS function generator is the principal executive subprogram which controls the execution of the set of models required to solve a class of problems. The function generator will, in turn, call a lower level executive model (usually via a "definition" model type) to solve a specific problem within the class.

That is, a function generator is used to solve a particular type of problem.

A problem, which has been partitioned into distinct, functional, subproblems, may be solved by linking function generators, each type of subproblem solved by a specific function generator.

The pertinent function generators for sizing applications are OPTSYS, SIZE, and TRAJCEM.

OPTSYS - Optimization System Program Control Executive Model.

For sizing applications, OPTSYS normally executes UOPTIM or UBEST (or USCHN for special problem applications involving only trajectory quantities) via the optimization problem definition model type PROBDEF. Both UOPTIM and UBEST are general purpose optimization schemes designed for solving problems incorporating an objective function and a very large number of variables, equality constraints and inequality constraints. USCHN is a special purpose optimization scheme designed for efficiently solving search problems by satisfying equality constraints.

SIZE - Weight Estimation Program Control Executive Model.

For the current set of available weight estimation models, SIZE executes VHDM1, a vehicle definition model which controls the evaluation of the geometry, propulsion, and weight equations for a sequentially staged vehicle.

TRAJCEM - Trajectory Program Control Executive Model.

TRAJCEM executes TRJDMl, the trajectory definition model which controls the trajectory simulation. (TRJDMl is a default model and is normally not of concern to the program user.)

1.2.3 Interaction of Function Generators

-

As mentioned above, the sizing problem may be set up as three distinct (but dependent) subproblems, each subproblem solved by a particular function generator (i.e., OPTSYS is responsible for determining variable values, solving constraints, etc., SIZE is responsible for evaluating the weight estimation equations, and TRAJCEM is responsible for evaluating the trajectory equations). To solve the real problem, the function generators must be linked together by the program user in a manner which insures that the major dependencies are satisfied correctly. For example, generally, a valid optimization problem may have only a single objective function. If a multi-case setup is being utilized where the vehicle parameters are optimized within the first case by extremizing a partimizar objective function, then the resulting vehicle is flown in the second case extremizing a second objective function, it is the responsibility of the program user to insure that the "two" optimization problems are not dependent.

Due to the nature of the sizing problem, the engineering design cycle for an application will frequently involve repeated computer runs using alternate function generator linkages. The repeated runs may be required to investigate a specific subsystem prior to sizing the total vehicle and mission, the alternate linkages may be required for the initial subsystem analysis or to minimize computer charges. The latter becomes especially important for applications where many vehicles are being sized. This section will illustrate the various function general or linkages useful for sizing applications.

1. Evaluate Vehicle Configuration and Simulate Trajectory (no optimization).

Figure 1 illustrates two examples where SIZE and TRAJCEM are used in a "stand alone" mode without optimization. The first example illustrated is a two case job. The first case executes SIZE directly, which in turn calls a vehicle definition model (e.g., VHDMl) to evaluate the vehicle geometry, weight and propulsion quantities. The second case, which is optional, executes TRAJCEM, which simulates the trajectory using the vehicle parameters determined in case I. The second example illustrated is a single case job. TRAJCEM is executed directly and SIZE is executed from a trajectory initialization model type when vehicle parameters are required as input to the trajectory models.

Since there is no optimization and associated constraint solving, the above function generator linkages are not frequently used. The program user must furnish input data values which will satisfy the vehicle geometry constraints. Generally, these values, especially for the grain geometry, are not known apriori.

2. Optimize Vehicle Configuration, Then Optimize Trajectory.

Figure 2 illustrates a two case setup which optimizes the vehicle configuration and trajectory separately. The first case executes OPTSYS which estimates vehicle variable values and, when a function evaluation is required for constraint solving or extremizing the objective function, calls SIZE. After the vehicle optimization problem is solved, the second case is executed if desired. OPTSYS estimates variable values and, when a function evaluation is required, TRAJCEM uses the optimization determined trajectory variable values, together with the vehicle parameters determined within the first case to simulate the trajectory.

In practice, this function generator setup is used frequently. However, since the "two" optimization problems solved may not be independent, it must be used with extreme caution. The solution should be verified by rerunning the final job with the function generator setup illustrated in Figure 3 and described below.

3. Optimize Vehicle Configuration and Trajectory.

Figure 3 illustrates a single case function generator setup which optimizes the combined vehicle configuration and trajectory. OPTSYS estimates vehicle and trajectory variables and, when a function evaluation is required, TRAJCEM is executed from OPTSYS. TRAJCEM in turn calls SIZE out of a trajectory initialization model type when vehicle data is required.

Since the optimization dependencies are always valid, this is the preferred setup for sizing applications. No distinction is made between vehicle and trajectory quantities since both sets of equations are evaluated simultaneously with respect to the optimization. The only disadvantage is that for some problems, many trajectories will be needlessly generated for solving the set of vehicle constraints which are independent of the trajectory. Normally, it is not recommended that the user attempt to determine dependencies of this nature and economize by splitting the optimization problem into two parts. The dependencies are very subtle and results are usually not valid. However, some important, frequently used, basic sizing applications may be formulated such that the vehicle optimization problem is independent of the trajectory optimization problem.

Fig. 1.2.3-1 Typical Function Generator Interaction. Determine Vehicle Configuration and Simulate Trajectory. (No Optimization)

Fig. 1.2.3-2 Typical Function Generator Interaction. Optimize Vehicle Configuration, Then Optimize Trajectory. (Optimization Problems Must Be Uncoupled.)

Case I

EXECUTE OPTSYS

Determine variable values which optimize the system. Call TRAJCEM when a function evaluation is required.

TRAJCEM

Simulate trajectory by calling SIZE directly (via a trajectory initialization model type) when stage weights, thrust, etc., are required as input data to the trajectory models.

SIZE

Evaluate vehicle, weights, geometry, and propulsion equations when requested by TRAJCEM.

Fig. 1.2.3-3 Typical Function Generator Interaction. Optimize System by Combining Vehicle and Trajectory. (Optimization Problem May Have Interdependent Vehicle and Trajectory Quantities.)

1.3 CLASSIFICATION AND PURPOSE OF WEIGHT ESTIMATION MODELS.

The weight estimation models within this volume are organized functionally into three major classifications:

vehicle definition models
weight models
geometry, internal ballistics, and propulsion models

Except for the vehicle definition models, which are presented first, the individual model writeups are ordered alphabetically within this document starting with Section 10.

1.3.1 Vehicle Definition Models

The vehicle definition model is an executive model (called by the SIZE function generator) which controls the execution of the individual models required to evaluate a specific application. The documentation for each vehicle definition model (Section 10) lists the applicable model types and serves as a guide for selecting models when setting up a new data deck.

1.3.2 Weight Models

There are two types of weight models -- scaling models and synthesis models.

Scaling models predict subsystem weights using weight scaling equations which are a function of design parameters selected when the weight scaling equations were developed. Whenever possible, parametric weight scaling is utilized. However, because of subsystem complexity, insufficient data, etc., statistical weight scaling and theoretical weight scaling are used for some component weights. Typical design parameters include:

length to diameter ratios
volumetric loading efficiency
propellent weight
turn time
nowzle expansion ratio
chamber pressure
specific impulse

Preceding page blank

Synthesis models are used to combine subsystem weights, evaluated by scaling models or other synthesis models, to form composite subsystems.

In addition to component weights peculiar to the subsystem being modeled, each weight model outputs a general expended component weight breakdown (for performance evaluation) of the following form:

$$W = W_{PP} + W_{X} + W_{NX}$$

 $W_{X} = W_{XI} + W_{XT}$

where

w	is the total subsystem weight.
W_{PP}	is the primary propellent weight component associated with the subsystem.
w _x	is the total expended weight component associated with the subsystem.
W _{NX}	is the total non-expended weight component associated with the subsystem.
w _{XI}	is the expended (non-thrust producing) weight component associated with $\boldsymbol{W}_{\boldsymbol{X}}$.
w_{XT}	is the expended (thrust producing) weight component associated with W

1.3.3 Geometry, Internal Ballistic and Propulsion Models

The <u>SOLE</u> purpose of the geometry, internal ballistic, and weight models is to determine the design parameter values required by the weight scaling models. Note that what constitutes a "design parameter" is specified by the weight model, <u>NOT</u> the geometry, internal ballistics or propulsion model.

The geometrical configuration produced is of secondary importance and requires considerable interpretation for correlation with geometrical configurations produced by a "hard point design" analysis.

2. NOMENCLATURE CONVENTIONS

The following conventions have been established to facilitate symbol identification within the weight estimation models. It must be emphasized that these are conventions, not rigid rules, and that exceptions will occur.

Except for ratios and factors:

the symbol

 P_{SS}_{XXX}

corresponds to the mnemonic

PSSXXX

where

P designates the primary attribute of the quantity

SS designates the secondary attribute of the quantity

XXX designates an identifier which makes the quantity unique (up to three characters)

For ratios:

the symbol

RPPSSSS

corresponds to the mnemonic

RPPSSSS

where

R designates a vatio quantity

the first P designates the numerator primary attribute

the second P designates the denominator primary attribute

(if different iron; first P)

the first SS designates the numerator secondary attribute

the second SS designates the denominator secondary attribute

(if different from first SS)

For factors:

the symbol

KPSSXXX

corresponds to the mnemonic

KPSSXXX

where

K designates a factor quantity

PSSXXX designates the left hand member of the equation containing the factor

Examples of primary attributes are:

```
Plane area (in<sup>2</sup>)
В
         Burn rate (in/sec)
C
         Constant (N. D.)
D
         Diameter (in)
I
         Impulse
K
         Factor, coefficient or bias
L
         Length (measured parallel to centerline) (in)
N
         Number of (N. D.)
P
         Pressure (psia)
Q
         Associative quantity
R
         Ratio (N. D.)
         Surface area (in<sup>2</sup>)
S
Т
         Thickness (in), time (sec), temperature
ν
         Volume (in<sup>3</sup>)
W
         Weight (lb)
Y
         Centroid (in)
```

Examples of secondary attributes are:

```
SS = CH
              Chamber
     CS
              Case
     GN
              Grain
     IN
              Insulation
              Interstage
     IT
     JT
              Joint
     MT
              Motor
     NZ
              Nozzle
     PΑ
              Payload
     PL
              Payload section
     PP
              Primary propellent
     PS
              Propulsion system
     PT
              Port
     SG
              Stage
     SH
              Shroud
     SK
              Skirt
     SL
              Slot
     SS
              Substage
     ST
              Structure
     TH
              Throat
     TT
              Thrust termination
     TV
              Thrust vector
```

Examples of identifiers which make a quantity unique:

XXX = A Aft
F Forward
CL or C Closure
CH Closure hole
CY or Y Cylinder
H Hole
I Inside
O Outside

केन्द्रिक स्थापन विकास स्थापन विकास स्थापन व

Some examples using the conventions:

DCSO	D _{CS_O}	Outside case diameter
DCSI	D _{CS} I	Inside case diameter
WNZ	W _{NZ}	Total nozzle weight
LNZ	L _{NZ}	Total nozzle length
LNZCV	L _{NZCV}	Length of convergent portion of nozzle
LNZDV	L _{NZDV}	Length of divergent portion of nozzle
ANZTH	A _{NZ_{TH}}	Nozzle throat area
ANZEXT	A _{NZ} EXT	Nozzle exit area
ANZENT	A _{NZ_{ENT}}	Nozzle entrance area
DNZTH	D _{NZTH}	Nozzle throat diameter
DNZEXT	D _{NZ_{EXT}}	Nozzle exit diameter
DNZENT	D _{NZ_{ENT}}	Nozzle entrance diameter

LNZB

 $^{L}_{NZ_{B}}$

Buried nozzle length

KLNZB

K_{LNZB}

Buried nozzle factor

RLDGNCY

RLDGNCY

Cylindrical grain length to diameter ratio

10.1

My Shaplake Mari

THE PROPERTY OF THE PARTY OF TH

MODEL TYPE:

VEHDEF (VEHicle DEFinition)

MODEL NAME:

VHDMl (Sequential stages with payload)

DESCRIPTION:

VHDM1 (VeHicle Definition Model number 1) is an executive model which defines a rocket configuration consisting of a single propulsion system (i.e., boost vehicle), with sequential stages, and a single payload section (i.e., post-boost vehicle). The rocket is comprised of the following major components, each of which has a separate data block for input of its models and associated data (see figure 1).

The "vehicle" is comprised of a single "propulsion system" and a single "payload section". The "vehicle" data is input within the same data block as the vehicle definition model. In addition to the vehicle definition model type, VEHDEF, the following model types are applicable.

VEHG

Vehicle geometry

VEHW

Vehicle weight

The "propulsion system" (i.e., boost vehicle) is comprised of up to ten sequential "stages". Data is input using the data block specified by DBPS(1) (see Intra-Model Input). The following model types are applicable.

PROSYSG

Propulsion system geometry

PROSYSW

Propulsion system weight

A "stage" is comprised of a single "substage" and a single "interstage". "Stage" data is input using the data block specified by DBSG(i), i = 1, 10, where i is the stage number. Stages are numbered consecutively, from the bottom to the top, starting with any integer less than, or equal to, 10. The following model types are applicable.

STAGEG

Stage geometry

STAGEW

Stage weight

DESCRIPTION (Cont.):

A "substage" is comprised of the motor and nozzle associated with a "stage". "Substage" data is input using the data block specified by DBSS (i), i = 1, 10, where i is the stage number. The following model types are applicable.

CASEG '	Case geometry
CASEW	Case weight
GRAING	Grain geometry
IBGAS	Internal ballistics, gas
IBFLOW	Internal ballistics, flow
IBPERF	Internal ballistics, performance
INSULG	Internal insulation geometry
INSULW	Internal insulation weight
MISCMTW	Miscellaneous motor weight
MOTORG	Motor geometry
MOTORW	Motor weight
NOZZLEG	Nozzle geometry
NOZZLEW	Nozzle weight
PROPELW	Propellent weight
PROPUL	Propulsion characteristics
SUBSTGG	Substage geometry
SUBSTGW	Substage weight
TVCG	Thrust vector control geometry
TVCW	Thrust vector control weight
TTERMG	Thrust termination geometry
TTERMW	Thrust termination weight

An "interstage" is comprised of the structure to join either "substages" or a "substage" and the "payload" (i.e., payload adapter). The "interstage" associated with a "stage" is on top of (forward of) the "substage" associated with that "stage". "Interstage" data is input using the data block specified by DBIT(i), i = 1, 10. The following model types are applicable.

DESCRIPTION (Cont.):

INTINSW

Interstage external insulation weight

INTSTGG

Interstage geometry

INTSTGW

Interstage weight

INTSTRW

Interstage structure weight

The "payload section" (i.e., post-boost vehicle) is comprised of a single payload. "Payload section" data is input using the data block specified by DBPL(1). The following model types are applicable.

PAYSECG

Payload section geometry

PAYSECW

Payload section weight

SHROUDW

Shroud weight

"Payload" data is input using the data block specified by DBPA(1). The following model types are applicable.

PAYLODG

Payload geometry

PAYLODW

Payload weight

Fig. 10.1-1 Major Components and Data Block Designation for a Typical Three Stage Rocket

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user.

Mnemonic	Symbol	Description; Ext. (Int.) Units
DBIT(i)	DBIT(i)	Name of data block containing interstage data for the interstage associated with the i-th stage. i = 1, 10 where i is the stage number. The data block name is arbitrary (i. e., user defined), except that it cannot be a previously mentioned user-defined symbol or an existing GTS symbol.
		e.g., $DBIT(1) = [INTSTG1];$
		N. D.
DBPA(1)	DBPA(l)	Name of data block containing payload data. The data block name is arbitrary (i.e., user defined), except that it cannot be a previously mentioned user-defined symbol or an existing GTS symbol.
		e.g., DBPA(1) = [PAYLOD];
		N. D.
DBPL(1)	DBPL(1)	Name of data block containing payload section (i.e., post-boost vehicle) data. The data block name is arbitrary (i.e., user defined), except that it cannot be a previously mentioned user-defined symbol or an existing GTS symbol.
		e.g., DBPL(1) = [PAYSEC]; N.D.
DBPS(1)	DBPS(1)	Name of data block containing propulsion system (i.e., boost vehicle) data. The data block name is arbitrary (i.e., user defined), except that it cannot be a previously mentioned user-defined symbol or an existing GTS symbol.
		e.g., DBPS(1) = [PROSYS];
		N. D.

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units
DBSG(i)	DBSG(i)	Name of data block containing stage data for the i-th stage. i = 1, 10 where i is the stage number. Note that stages are numbered consecutively, from the bottom to the top, starting with any integer less than, or equal to, 10. The data block name is arbitrary (i.e., user defined), except that it cannot be a previously mentioned user-defined symbol or an existing GTS symbol.
		e.g., $DBSG(1) = [STAGE1];$
		N. D.
DBSS(i)	DBSS(i)	Name of data block containing substage data for the substage associated with the i-th stage, i = 1, 10 where i is the stage number. The data block name is arbitrary (i.e., user defined), except that it cannot be a previously mentioned user-defined symbol or an existing GTS symbol.
		e.g., DBSS(1) = [SUBSTG1];
		N. D.

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext.	(Int.) Units	Model Type
				

None

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic

Symbol

Description; Ext. (Int.) Units

None

の教育の教育を行っています。 のは他ののはないをは、このは、このは、このは、我の情報のは、このはない、なったのでは、我の情報のは我のないのできないであってある。このないというない。

20.1

MODEL TYPE:

CASEG (CASE Geometry)

MODEL NAME:

CSGMl (Metal case)

DESCRIPTION:

CSGM1 (CaSe Geometry Model number 1) determines the pertinent geometry for a solid rocket motor metal case subject to internal pressure. This model does not account for buckling or aerodynamic loads.

As illustrated by Figure 1, the basic case geometry is comprised of a cylindrical section with forward and aft closure sections. The inside and outside surfaces of a closure section form concentric hemi-ellipsoids having coincident equatorial planes and, normally, unequal head ratios. The closures may have cylindrical holes, centered on the hemi-ellipsoid axis of revolution, for modeling geometry associated with the igniter, submerged nozzles and TVC systems. Generally, the geometry may be degenerated for simulating spherical motors, etc.

It should be noted that since the model does not include raceways or external protrusions associated with segmented cases, the outside case diameter is not necessarily the maximum diameter of the motor. If such protrusions exist, they would be evaluated by the models specified for the MOTORG (motor geometry) or SUBSTGG (substage geometry) model types.

PROCEDURE:

Prior to entering CSGM1, the models specified by the IBGAS and NOZZLEG model types have determined the average chamber pressure and buried nozzle diameter.

Upon the first entrance to CSGM1, the thickness, closure lengths, diameters, head ratios, and closure hole geometry associated with a metal motor case are evaluated.

The models specified for the INSULG and GRAING model types then evaluate the remaining principal motor component geometry, the insulation and the grain.

After determining the grain geometry, CSGMl is re-entered (second entrance) and quantities associated with the total case length are evaluated.

EQUATIONS, FIRST ENTRANCE:

Case thickness, cylindrical section.

$$T_{CS_{CY}} = \left[\frac{C_1 K_{FS} P_{MEO} D_{CS_O}}{2 K_{UTS}} \right] K_{CS_1} + K_{CS_2}$$
 (1)

Case thickness, center of aft closure.

$$T_{CS_{CLA}} = (C_2 T_{CS_{CY}}) K_{CS_3} + K_{CS_4}$$
 (2)

Case thickness, center of forward closure.

$$^{T}_{CS_{CLF}} = (^{C_3} ^{T}_{CS_{CY}}) ^{K}_{CS_5} + ^{K}_{CS_6}$$
(3)

Case inside diameter.

$$D_{CS_{I}} = D_{CS_{O}} - 2 T_{CS_{CY}}$$
 (4)

Outside equatorial diameter for case closures.

$$D_{CS_{CLO}} = D_{CS_{O}}$$
 (5)

Inside equatorial diameter for case closures.

$$^{D}_{CS_{CLI}} = ^{D}_{CS_{I}}$$
 (6)

Outside longth of aft case closure.

$$L_{CS}_{CLAO} = \frac{R_{DCSCAO}}{2} D_{CS}_{CLO}$$
 (7)

Inside length of aft case closure.

$$L_{CS_{CLAI}} = L_{CS_{CLAO}} - T_{CS_{CLA}}$$
(8)

Inside head ratio of aft closure.

$$R_{DCSCAI} = 2 \frac{L_{CS_{CLAI}}}{D_{CS_{CLI}}}$$
 (9)

Outside length of forward closure.

$$L_{CS_{CLFO}} = \frac{R_{DCSCFO} D_{CS_{CLO}}}{2}$$
 (10)

Inside length of forward closure.

$$L_{CS_{CLFI}} = L_{CS_{CLFO}} - T_{CS_{CLF}}$$
(11)

Inside head ratio of forward closure.

$$R_{DCSCFI} = \frac{{}^{2} L_{CS}_{CLFI}}{{}^{D}_{CS}_{CLI}}$$
 (12)

Diameter of hole in aft outside case closure surface.

$$^{D}_{CS_{HAO}} = ^{K}_{CS_{7}} ^{D}_{NZ_{B}} + ^{K}_{CS_{8}}$$
 (13)

Diameter of hole in aft inside case closure surface.

$$^{D}_{CS}_{HAI} = ^{D}_{CS}_{HAO}$$
 (14)

Diameter of hole in forward outside case closure surface.

$${}^{D}CS_{HFO} = {}^{E}CS_{9} {}^{D}CS_{CLO} + {}^{E}CS_{10}$$
(15)

Diameter of hole in forward inside case closure surface.

$$^{D}_{CS}_{HFI} = ^{D}_{CS}_{HFO}$$
 (16)

Diameter ratio. Aft outside case hole diameter to outside case closure diameter.

$$R_{DCSHAO} = \frac{D_{CS}_{HAO}}{D_{CS}_{CLO}}$$
 (17)

Outside length of aft case closure, adjusted for hole.

$$L_{CS_{CHAO}} = L_{CS_{CLAO}} \sqrt{1 - R_{DCSHAO}^2}$$
 (18)

Diameter ratio. Aft inside case hole diameter to inside case closure diameter.

$$R_{DCSHAI} = \frac{D_{CS}_{HAI}}{D_{CS}_{CLI}}$$
 (19)

Inside length of aft case closure, adjusted for hole.

$$L_{CS}_{CHAI} = L_{CS}_{CLAI} \sqrt{1 - R_{DCSHAI}^2}$$
 (20)

Diameter ratio. Forward outside case hole diameter to outside case closure diameter.

$$R_{DCSHFO} = \frac{D_{CS}_{HFO}}{D_{CS}_{CLO}}$$
 (21)

Outside length of forward case closure, adjusted for hole.

$$L_{CS_{CHFO}} = L_{CS_{CLFO}} \sqrt{1 - R_{DCSHFO}^2}$$
 (22)

Diameter ratio, forward inside case hole diameter to inside case closure diameter.

$$R_{DCSHFI} = \frac{D_{CS}_{HFI}}{D_{CS}_{CLI}}$$
 (23)

ので、1996年には、1996年の1996年

EQUATIONS, FIRST ENTRANCE (Cont.):

Inside length of forward case closure, adjusted for hole.

$$L_{CS_{CHFI}} = L_{CS_{CLFI}} \sqrt{1 - R_{DCSHFI}^2}$$
 (24)

Length of hole in aft case closure.

$$L_{CS}_{HA} = L_{CS}_{CHAO} - L_{CS}_{CHAI}$$
 (25)

Length of hole in forward case closure.

$$L_{CS_{HF}} = L_{CS_{CHFO}} - L_{CS_{CHFI}}$$
 (26)

Case cross sectional area.

$$A_{CS} = \left(\frac{\pi}{4}\right) D_{CS_O}^2$$
 (27)

Head ratio for use of models which define a single head ratio for forward and aft closures.

$$R_{DCSCHO} = R_{DCSCAO}$$
 (27-a)

Associative quantities. The following quantities are intended solely for optional utilization by the program user. Their primary usage within this model is for forming constraint quantities.

$$Q_{DII} = K_{QDII} D_{CS_{\uparrow}}$$
 (28)

$$Q_{DI2} = K_{QDI2} D_{CS_1}$$
 (29)

$$Q_{DI3} = K_{QDI3} D_{CS_{\uparrow}}$$
 (30)

$$Q_{DOI} = K_{QDOI} D_{CS_{Q}}$$
 (31)

$$Q_{DO2} = K_{QDO2} D_{CS_O}$$

(3.)

$$Q_{DO3} = K_{QDO3} D_{CS_O}$$

(33)

EQUATIONS, SECOND ENTRANCE:

Length of cylindrical case section.

(34)

Total case length.

(35)

Cylindrical case length to diameter ratio.

$$R_{LDCSCY} = \frac{L_{CS_{CY}}}{D_{CS_{CY}}}$$

(36)

Total case length to diameter ratio.

(37)

The second secon

É,

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CCSG1	cı	Constant for TCSCY computation; N. D.	1.05
CCSG2	c ₂	Proportionality constant relating the continuous at the center of the aft close the case thickness of the cylindrical solution. D.	ire to
CCSG3	c ₃	Proportionality constant relating the of thickness at the center of the forward closure to the case thickness of the cysection;	case
		N. D.	0.5
DCSO	D _{CS} O	Motor case outside diameter. Outsid diameter of pressure vessel cylindric section. Does not include raceways, protrusions, etc.;	_
		in Fig. 1	0
KCS1	Kcs _l	Coefficient for TCSCY computation;	
	•	N. D.	1
KCS2	K _{CS} 2	Bias for TCSCY computation; in	0
KCS3	Kcs ₃	Coefficient for TCSCLA computation; N. D.	1
KCS4	K _{CS4}	Bias for TCSCLA computation; in	0

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KCS5	K _{CS5}	Coefficient for TCSCLF computation; N. D.	1
KCS6	K _{CS6}	Bias for TCSCLF computation; in	0
KCS7	Kcs ₇	Coefficient for DCSHAO computation; N. D.	1
KCS8	K _{CS8}	Bias for DCSHAO computation; in	0
KCS9	Kcs ₉	Coefficient for DCSHFO computation; N. D.	1
KCS10	Kcs ₁₀	Bias for DCSHFO computation;	0
KCSFS	K _{FS}	Case factor of safety. Ratio of minim pressure to maximum expected operar pressure;	um burst
		N. D.	1
KCSUTS	K _{UTS}	Ultimate tensile strength for metal ca material;	s e
		lb/in ²	0
KQDCSII	K _{QDII}	Associative quantity coefficient for QI computation;	ocsii
		N. D.	0
KQDCSIZ	K _{QDI2}	Associative quantity coefficient for QI computation;	ocs12
		N. D.	0

3

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KQDCSI3	K _{QDI3}	Associative quantity coefficient for QI computation;	OCSI3
		N. D.	0
KQDCSOI	K _{QDO1}	Associative quantity coefficient for QI computation;	DCSO1
		N. D.	0
KQDCSO2	K _{QDO2}	Associative quantity coefficient for QI computation;	DCSO2
		N. D.	0
KQDCSO3	K _{QDO3}	Associative quantity coefficient for QI computation;	DCSO3
		N. D.	0
RDCSCAO	R _{DCSCAO}	Head ratio of the ellipsoid associated aft outside case closure surface. Rat of twice the closure length to the clos diameter, i.e., the aft outside case c surface is an oblate spheroid. The he is the ratio of the axis of revolution (raxis) to the equatorial diameter (major)	io ure losure ead ratio ninor
		N. D.	1
RDCSCFO	^R DCSCFO	Head ratio of the ellipsoid associated forward outside case closure surface. of twice the closure length to the clos diameter, i.e., the forward outside closure surface is an oblate spheroid. head ratio is the ratio of the axis of r (minor axis) to the equatorial diamete (major axis);	Ratio ure ase The evolution
		N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type		
DNZB	DNZR	Buried nozzle diameter;	Buried nozzle diameter;		
	В	in	NOZZLEG		
PCHMEO	P _{MEO}	Maximum expected operating chamber pressure;			
		psia	IBGAS		
LGNCY	L _{GN} CY	Length of cylindrical grain section. Include all adjustments for submerged nozzle, displaced propellent, cutouts, etc.;			
		in	GRAING		

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext.	(Int.) Units	
ACS	A _{CS}	pressure vessel	s sectional area. Arcylindrical case sect raceways, protrusio	ion.
DCSCLI	D _{CS} CLI	Equatorial diameter of the ellipsoids forme by the inside surfaces of the forward and af case closure sections;		
		in	Fig. 1	Eq. 6
DCSCLO	D _{CS_{CLO}}		eter of the ellipsoids refaces of the forward tion;	
		in	Fig. 1	Eq. 5

Mnemonic	Symbol	Description; Ext	. (Int.) Units	
DCSHAI	D _{CS} HAI	Diameter of circular hole, for the nozzle, centered on the axis of revolution of the hemiellipsoid formed by the inside surface of the aft case closure;		
		in	Fig. 1	Eq. 14
DCSHAO	D _{CS} HAO	Diameter of circular hole, for the nozzle, centered on the axis of revolution of the hem ellipsoid formed by the outside surface of thaft case closure:		the hemi-
		in	Fig. 1	Eq. 13
DCSHFI	D _{CS} HFI	Diameter of circular hole, for the igniter, centered on the axis of revolution of the hem ellipsoid formed by the inside surface of the forward case closure;		
		in	Fig. 1	Eq. 16
DCSHFO	D _{CS} _{HFO}	Diameter of circular hole, for the igniter, centered on the axis of revolution of the hemi ellipsoid formed by the outside surface of the forward case closure;		the hemi-
		in	Fig. l	Eq. 15
DCSI	D _{CS}	Case inside dian	neter, cylindrical sec	ction;
	D _{CS} _I	in	Fig. 1	Eq. 4
LCS	^L CS	forward base of associated with the surface to the affrustum associated	the hemi-ellipsoid from the hemi-ellipsoid from the forward outside control to the hemi-elected with the aft outsides all adjustments to	ustum losure lipsoid le closure
		in	Fig. 1	Eq. 35
LCSCHAI	L _{CS} CHAI	forms the inside	ellipsoidal frustum w surface of the aft ca s adjustment for nozz	вe
		in	Fig. 1	Eq. 20

₹.

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext.	(Int.) Units	
LCSCHAO	L _{CS} CHAO	Length of hemi-ellipsoidal frustum which forms the outside surface of the aft case closure. Includes adjustment for nozzle hole;		
		in	Fig. 1	Eq. 18
LCSCHFI	L _{CS} _{CHFI}	Length of hemi-ellipsoidal frustum which forms the inside surface of the forward case closure. Includes adjustment for igniter hole;		
		in	Fig. 1	Eq. 24
LCSCHFO	L _{CS} _{CHFO}	Length of hemi-ellipsoidal frustum which forms the outside surface of the forward case closure. Includes adjustment for igniter hole;		
		in	Fig. 1	Eq. 22
LCSCLAI	L _{CS} CLAI	Length of the axis of revolution of the hemi- ellipsoid formed by the inside surface of the aft case closure section;		
		in	Fig. 1	Eq. 8
LCSCLAO	L _{CS} CLAO	Length of the axis of revolution of the hemi- ellipsoid formed by the outside surface of the aft case closure section:		
		in	Fig. 1	Eq. 7
LCSCLFI	L _{CS} _{CLFI}		s of revolution of the by the inside surface sure section;	
		in	Fig. 1	Eq. 11
LCSCLFO	L _{CS} _{CLFO}	Length of the axis of revolution of the hemi- ellipsoid formed by the outside surface of the forward case closure section;		
		in	Fig. 1	Eq. 10
LCSCY	L _{CS} CY	Length of cylindr adjustments to gr	ical case section. Incrain;	cludes all
		in	Fig. 1	Eq. 34

20, 1-13

Mnemonic	Symbol	Description; Ext.	. (Int.) Units	
LCSHA	L _{CSHA}	Length of the cylindrical hole, for the nozzle, in the aft case closure;		
		in	Fig. 1	Eq. 25
LCSHF	$^{\mathrm{L}}_{\mathrm{CS}_{\mathrm{HF}}}$	Length of the cylindrical hole, for the igniter, in the forward case closure;		
		in	Fig. 1	Eq. 26
QDCSI1	$Q_{\mathbf{DIl}}$	Associative quan (see DCSI);	atity, inside case dia	mete r
		in		Eq. 28
QDCSI2	Q_{DI2}	Associative quan	ntity, inside case dia	meter
		in		Eq. 29
QDCS13	Q_{DI3}	Associative quar (see DCSI);	ntity, inside case dia	meter
		in		Eq. 30
QDCSO1	Q _{DO1}	Associative quar	ntity, outside case di	ameter
		in		Eq. 31
QDCSO2	Q _{DO2}	Associative quar (see DCSO);	ntity, outside case di	ameter
		ın		Eq. 32
QDCSO3	Q _{DO3}	Associative quar (see DCSO);	ntity, outside case di	ameter
		in		Eq. 33
RDCSCAI	^R DCSCAI	aft inside case of the closure leng i.e., the aft insoblate spheroid, the axis of revol equatorial diame	e ellipsoid associated closure surface. Rat th to the closure diar ide case closure surf The head ratio is the lution (minor axis) to eter (major axis);	io of twice neter, face is an he ratio of the
		N. D.		Eq. 9

The same

Ż.

のできません。 1975年の19

Mnemonic	Symbol	Description; Ext. (Int.) Units		
RDCSCFI	RDCSCFI	Head ratio of the ellipsoid associated with the forward inside case closure surface. Ratio of twice the closure length to the closure diameter, i.e., the forward inside case closure surface is an oblate spheroid. The head ratio is the ratio of the axis of revolution (minor axis) to the equatorial diameter (major axis); N. D. Eq. 12		
R DCSHAI	R	Diameter ratio, hole diameter to equa	Eq. 12	
3. 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	^R DCSHAI	diameter, inside surface of aft case of		
		N. D.	Eq. 19	
R DCSHAO	^R DCSHAO	Diameter ratio, hole diameter to equatorial diameter, outside surface of aft case closure;		
		N. D.	Eq. 17	
RDCSHFI	R _{DCSHFI}	Diameter ratio, hole diameter to equatorial diameter, inside surface of forward case closure;		
		N. D.	Eq. 23	
RDCSHFO	RDCSHFO	Diameter ratio, hole diameter to equatorial diameter, outside surface of forward case closure;		
		N. D.	Eq. 21	
RDCSCHO	R _{DCSCHO}	Head ratio for usage by models which define a single head ratio for forward and aft closures;		
		N. D.	Eq. 27-a	
RLDCS	R _{LDCS}	Length to diameter ratio, total case; N. D.	Eq. 37	
RLDCSCY	RLDCSCY	Length to diameter ratio, cylindrical section;	case	
		N. D.	Eq. 36	

Mnemonic	Symbol	Description; Ext. (Int.) Units			
TCSCLA	T _{CS_{CLA}}	Case thickness at center of aft case closure. Distance between the aft inside and outside hemi-ellipsoid surfaces, measured on the axis of revolution;			
		in	Fig. 1	Eq. 2	
TCSCLF	T _{CS} _{CLF}	Case thickness at center of forward case closure. Distance between the forward inside and outside hemi-ellipsoid surfaces, measured on the axis of revolution;		orward d surfaces,	
		in	Fig. 1	Eq. 3	
TCSCY	Tcs _{CY}	Case thick	ness, cylindrical sect	ion;	
	CA	in	Fig. 1	Eq. 1	

The state of the s

हिन्द्रा । अस्तर प्रशासनी स्थापन क्षेत्र क्षेत्र कर का स्थापन का स्थापन का स्थापन का स्थापन का का अस्तर का अस् जन्म

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

ľRY	DCSHFI	KCS6	KQDCS01	LCSCLFI	QDCS01	RDCSCFO	RLDCS	
CASE GEOMETRA	DCSHAO	KCS5	KQDCSI3	LCSCLAO	qpcs13	RDCSCFI	FDCSHPO	
CSGMD	DCSHAI	KCS4 KCS10	KQDCSI2	LCSCLAI	odcsi 2	RDCSCAO	RDCSHFI	TCSCY
CASEG *1	£,43 * *	* *	, * . <u>*</u>	* 17	*12	*13	*14	*15
CCSC3	DCSCLO	KCS3 KCS9	KQDCSI1	LCSCHPO	qpcsil	RDCSCAI	RDCSHAO	TCSCLF
CCSG2	DCSCLI	KCS2 KCS8	KCSUTS	LCSCHFI	LCSCY	90000	RDCSHAI	TCSCLA
00361	ACS DCSHPO	KCS1 KCS7	KCSFS	LCSCHAO	LCSCLFO	90CS02	HDCSCHO	RLDCSCY

20.2

MODEL TYPE:

CASEG (CASE Geometry)

MODEL NAME:

CSGM2 (Glass case)

DESCRIPTION:

CSGM2 (CaSe Geometry Model number 2) determines the pertinent geometry for a solid rocket motor fiberglass case subject to internal pressure. This model does not account for buckling or aerodynamic loads.

As illustrated by Figure 1, the basic case geometry is comprised of a cylindrical section with forward and aft closure sections. The inside and outside surfaces of a closure section form concentric hemi-ellipsoids having coincident equatorial planes and, normally, unequal head ratios. The closures may have cylindrical holes, centered on the hemi-ellipsoid axis of revolution, for modeling geometry associated with the igniter, submerged nozzles and TVC systems. Generally, the geometry may be degenerated for simulating spherical motors, etc.

It should be noted that, since the model does not include raceways or external protrusions associated with segmented cases, the outside case diameter is not necessarily the maximum diameter of the motor. If such protrusions exist, they would be evaluated by the models specified for the MOTORG (motor geometry) or SUBSTGG (substage geometry) model types.

PROCEDURE:

Prior to entering CSGM2, the models specified by the IBGAS and NOZZLEG model types have determined the average chamber pressure and buried nozzle diameter.

Upon the first entrance to CSGM2, the thickness, closure lengths, diameters, head ratios, and closure hole geometry associated with a fiberglass motor case are evaluated.

The models specified for the INSULG and GRAING model types then evaluate remaining principal motor component geometry, the insulation and the grain.

After determining the grain geometry, CSGM2 is re-entered (second entrance) and quantities associated with the total case length are evaluated.

EQUATIONS, FIRST ENTRANCE:

Case thickness, cylindrical section.

$$T_{CS_{CY}} = \left[\frac{C_4 K_{FS} P_{MEO} (D_{CS_O})^{C_5}}{2 K_{UTS}} \right] K_{CS_{11}} + K_{CS_{12}}$$
 (1)

Case thickness, center of aft closure.

$$^{T}_{CS_{CLA}} = (^{C_{6}} ^{T}_{CS_{CY}}) ^{K}_{CS_{13}} + ^{K}_{CS_{14}}$$
 (2)

Case thickness, center of forward closure.

$$^{T}_{CS_{CLF}} = (^{C_{7}} ^{T}_{CS_{CY}}) ^{K}_{CS_{15}} + ^{K}_{CS_{16}}$$
 (3)

Case inside diameter.

$$D_{CS_{I}} = D_{CS_{O}} - 2 T_{CS_{CY}}$$
 (4)

Outside equatorial diameter for case closures.

$$D_{CS_{CLO}} = D_{CS_{O}}$$
 (5)

Inside equatorial diameter for case closures

$$D_{CS_{CLI}} = D_{CS_{I}}$$
 (6)

Outside length of aft case closure.

$$L_{CS_{CLAO}} = \frac{R_{DCSCAO}}{2} D_{CS_{CLO}}$$
 (7)

Inside length of aft case closure.

$$L_{CS_{CLAI}} = L_{CS_{CLAO}} - T_{CS_{CLA}}$$
(8)

Inside head ratio of aft closure.

$$R_{\text{CCSCAI}} = 2 \frac{L_{\text{CS}_{\text{CLAI}}}}{D_{\text{CS}_{\text{CLI}}}}$$
 (9)

Outside length of forward closure.

$$L_{CS_{CLFO}} = \frac{R_{DCSCFO}^{D}_{CS_{CLO}}}{2}$$
 (10)

Inside length of forward closure.

$$L_{CS_{CLFI}} = L_{CS_{CLFO}} - T_{CS_{CLF}}$$
(11)

Inside head ratio of forward closure.

$$R_{DCSCFI} = \frac{{}^{2} L_{CS}_{CLFI}}{{}^{D}_{CS}_{CLI}}$$
 (12)

Diameter of hole in aft outside case closure surface.

$$^{D}_{CS_{HAO}} = ^{K}_{CS_{17}} ^{D}_{NZ_{B}} + ^{K}_{CS_{18}}$$
 (13)

Diameter of hole in aft inside case closure surface.

$$^{D}_{CS}_{HAI} = ^{D}_{CS}_{HAO}$$
 (14)

Diameter of hole in forward outside case closure surface.

$$^{D}_{CS_{HFO}} = ^{K}_{CS_{19}} ^{D}_{CS_{CLO}} + ^{K}_{CS_{20}}$$
(15)

Diameter of hole in forward inside case closure surface.

$$^{D}_{CS_{HFI}} = ^{D}_{CS_{HFO}}$$
 (16)

Diameter ratio. Aft outside case hole diameter to outside case closure diameter.

$$R_{DCSHAO} = \frac{D_{CS}_{HAO}}{D_{CS}_{CLO}}$$
 (17)

Outside length of aft case closure, adjusted for hole.

$$L_{CS}_{CHAO} = L_{CS}_{CLAO} \sqrt{1 - R_{DCSHAO}^2}$$
 (18)

Diameter ratio. Aft inside case hole diameter to inside case closure diameter.

$$R_{DCSHAI} = \frac{D_{CS_{HAI}}}{D_{CS_{CLI}}}$$
 (19)

Inside length of aft case closure, adjusted for hole.

$$L_{CS}_{CHAI} = L_{CS}_{CLAI} \sqrt{1 - R_{DCSHAI}^2}$$
 (20)

Diameter ratio. Forward outside case hole diameter to outside case closure diameter.

$$R_{DCSHFO} = \frac{D_{CS}_{HFO}}{D_{CS}_{CLO}}$$
 (21)

Outside length of forward case closure, adjusted for hole.

$$L_{CS_{CHFO}} = L_{CS_{CLFO}} \sqrt{1 - R_{DCSHFO}^2}$$
 (22)

Diameter ratio, forward inside case hole diameter to inside case closure diameter.

$$R_{DCSHFI} = \frac{D_{CS}_{HFI}}{D_{CS}_{CLI}}$$
 (23)

Inside length of forward case closure, adjusted for hole.

$$L_{CS_{CHFI}} = L_{CS_{CLFI}} \sqrt{1 - R_{DCSHFI}^2}$$
 (24)

Length of hole in aft case closure.

$$L_{CS_{HA}} = L_{CS_{CHAO}} - L_{CS_{CHAI}}$$
 (25)

Length of hole in forward case closure.

$$L_{CS_{HF}} = L_{CS_{CHFO}} - L_{CS_{CHFI}}$$
 (26)

Case cross sectional area.

$$A_{CS} = \left(\frac{\pi}{4}\right) D_{CS_C}^2 \tag{27}$$

Head ratio for usage by models which define a single head ratio for the forward and aft closures.

$$R_{DCSCHO} = R_{DCSCAO}$$
 (27-a)

Associative quantities. The following quantities are intended solely for optional utilization by the program user. Their primary usage within this model is for forming constraint quantities.

$$Q_{DII} = K_{QDII} D_{CS_T}$$
 (28)

$$Q_{DI2} = K_{QDI2} D_{CS_I}$$
 (29)

$$Q_{DI3} = K_{QDI3} D_{CS_{T}}$$
 (30)

$$Q_{DO1} = K_{QDO1} \quad D_{CS_{QO}}$$
 (31)

$$Q_{DO2} = K_{QDO2} D_{CS_{Q}}$$
 (32)

$$Q_{DO3} = K_{QDO3} D_{CS_O}$$
 (33)

EQUATIONS, SECOND ENTRANCE:

Length of cylindrical case section.

$$^{L}_{CS}_{CY} = ^{L}_{GN}_{CY}$$
 (34)

Total case length.

$$L_{CS} = L_{CS_{CY}} + L_{CS_{CHAO}} + L_{CS_{CHFO}}$$
 (35)

Cylindrical case length to diameter ratio.

$$R_{LDCSCY} = \frac{L_{CS_{CY}}}{D_{CS_{O}}}$$
 (36)

Total case length to diameter ratio.

$$R_{LDCS} = \frac{L_{CS}}{D_{CS_O}}$$
 (37)

N. Valida

20.2-7

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CCSG4	C ₄	Constant for TCSCY computation; N. D.	1.18
CCSG5	C ₅	Constant for TCSCY computation; N. D.	1.16
CCSG6	c ₆	Proportionality constant relating the thickness at the center of the aft clos the case thickness of the cylindrical states.	ure to
		N. D.	0.5
CCSG7	C ₇	Proportionality constant relating the thickness at the center of the forward closure to the case thickness of the c section;	1
		N. D.	0.5
DCSO	D _{CS} O	Motor case outside diameter. Outside of pressure vessel cylindrical case so Does not include raceways, protrusion	ection. ons, etc.;
		in Fig. 1	0
KCS11	K _{CS} 11	Coefficient for TCSCY computation; N. D.	1
KCS12	K _{CS} ₁₂	Bias for TCSCY computation; in	0
KCS13	Kcs ₁₃	Coefficient for TCSCLA computation; N. D.	1
KCS14	Kcs ₁₄	Bias for TCSCLA computation; in	0

3

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KCS15	K _{CS} ₁₅	Coefficient for TCSCLF computation; N. D.	1
KCS16	K _{CS16}	Bias for TCSCLF computation; in	0
KCS17	Kcs ₁₇	Coefficient for DCSEAO computation; N. D.	1
KCS18	Kcs ₁₈	Bias for DCSHAO computation; in	0
KCS19	Kcs ₁₉	Coefficient for DCSHFO computation; N. D.	1
KCS20	Kcs ₂₀	Bias for DCSHFO computation; in	0
KCSFS	K _{FS}	Case factor of safety. Ratio of minim burst pressure to maximum expected operating pressure;	num
		N. D.	1
KCSUTS	K _{UTS}	Ultimate tensile strength for fiberglas filament case material;	3 8
		lb/in ²	0
KQDCSII	K _{QDII}	Associative quantity coefficient for Que computation;	ocsii
		N. D.	0
KQDCS12	K _{QLI2}	Associative quantity coefficient for Q computation;	DCS12
		N. D.	0

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KQDCSI3	K _{QDI3}	Associative quantity coefficient for (computation;	QDCS13
		N. D.	0
KQDCSOl	K _{QDO1}	Associative quantity coefficient for (computation;	QDCSO1
		N. D.	0
KQDCSO2	K _{QDO2}	Associative quantity coefficient for (computation;	QDCSO2
		N. D.	0
KQDCS03	K _{QDO3}	Associative quantity coefficient for (computation;	QDCSO3
		N. D.	0
RDCSCAO	RDCSCAO	Head ratio of the ellipsoid associate the aft outside case closure surface. of twice the closure length to the clo diameter, i.e., the aft outside case surface is an oblate spheroid. The is the ratio of the axis of revolution axis) to the equatorial diameter (ma	Ratio sure closure head ratio (minor
		N. D.	1
RDCSCFO	RDCSCFO	Head ratio of the ellipsoid associate the forward outside case closure sur Ratio of twice the closure length to a closure diameter, i.e., the forward case closure surface is an oblate sp. The head ratio is the ratio of the axis revolution (minor axis) to the equate diameter (major axis);	rface. The loutside heroid. is of orial
		N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type				
DNZB	D _{NZB}	Buried nozzle diameter;					
	_	in	NOZZLEG				
PCHMEO	P _{MEO}	Maximum expected operating chamber pressure;					
		psia	IBGAS				
LGNCY	LGNCY	Length of cylindrical grain section. Includes all adjustments for submerged nozzle, displaced propellent, cutouts, etc.;					
		in	GRAING				

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext.	(Int.) Units		
ACS	^A CS	pressure vessel	s sectional area. Ar cylindrical case sect raceways, protrusio	ion.	
DCSCLI	D _{CS} CLI	Equatorial diameter of the ellipsoid by the inside surfaces of the forward case closure sections;			
		in	Fig. 1	Eq. 6	
DCSCLO	D _{CS} _{CLO}		ter of the ellipsoids rfaces of the forward tions;		
		in	Fig. 1	Eq. 5	

Mnemonic	Symbol	Description; Ext.	. (Int.) Units				
CSHAI	D _{CS} HAI	Diameter of circular hole, for the nozzle, centered on the axis of revolution of the hemiellipsoid formed by the inside surface of the aft case closure;					
		in	Fig. 1	Eq. 14			
DCSHAO	D _{CS} HAO	Diameter of circular hole, for the nozzle, centered on the axis of revolution of the hem ellipsoid formed by the outside surface of the aft case closure;					
		in	Fig. 1	Eq. 13			
DCSHFI	D _{CS} HFI	centered on the	cular hole, for the igraxis of revolution of to by the inside surface ocure;	he hemi-			
		in	Fig. 1	Eq. 16			
DCSHFO	D _{CS} _{HFO}	Diameter of circular hole, for the igniter, centered on the axis of revolution of the hemi-ellipsoid formed by the outside surface of the forward case closure;					
		in	Fig. 1	Eq. 15			
DCSI	D_{CS}^{I}	Case inside dian	neter, cylindrical sec	ction;			
	oo _I	in	Fig. 1	Eq. 4			
LCS	L _{CS}	Total case length. Distance between the forward base of the hemi-ellipsoid frustum associated with the forward outside closure surface to the aft base of the hemi-ellipsoid frustum associated with the aft outside closure surface. Includes all adjustments to grain;					
		in	Fig. 1	Eq. 35			
LCSCHAI	LCSCHAI Longth of hemi-ellipsoidal frustum whith the inside surface of the aft case closu Includes adjustment for nozzle hole;						
		in	Fig. 1	Eq. 20			

₹;

Mnemonic	Symbol	Description; Ext	. (Int.) Units			
LCSCHAO	L _{CS} _{CHAO}	forms the outsid	ellipsoidal frustum w e surface of the aft c es adjustment for noz	ase		
		in	Fig. 1	Eq. 18		
LCSCHFI	L _{CS} _{CHFI}	forms the inside	ellipsoidal frustum w surface of the forwa es adjustment for ign	rd case		
		in	Fig. 1	Eq. 24		
LCSCHFO	^L CS _{CHFO}	forms the outsid	ellipsoidal frustum w le surface of the forw es adjustment for ign	ard case		
		in	Fig. 1	Eq. 22		
LCSCLAI	L _{CS} _{CLAI}	Length of the axis of revolution of the hemi- ellipsoid formed by the inside surface of the aft case closure section;				
		in	Fig. 1	Eq. 8		
LCSCLAO	L _{CS} _{CLAO}		is of revolution of the by the outside surface section;			
		in	Fig. 1	Eq. 7		
LCSCLFI	L _{CSCLFI}		is of revolution of the l by the inside surfactors osure section;			
		in	Fig. 1	Eq. 11		
LCSCLFO	L _{CS} CLFO	Length of the axis of revolution of the hemi- ellipsoid formed by the outside surface of the forward case closure section;				
		in	Fig. 1	Eq. 10		
LCSCY	L _{CS} CY	Length of cylind all adjustments	rical case section. I	includes		
		in	Fig. 1	Eq. 34		

Mnemonic	Symbol	Description; Ext. (Int.) Units				
LCSHA	L _{CS} HA	Length of the cylindrical hole, for the nozzle in the aft case closure;				
		in Fig. 1	Eq. 25			
LCSHF	i-cs _{HF}	Length of the cylindrical hole, for t in the forward case closure;	he igniter,			
		in Fig. 1	Eq. 26			
QDCSII	Q _{DI1}	Associative quantity, inside case di (see DCSI);	ameter			
		in	Eq. 28			
QDCSI2	Q _{DI2}	Associative quantity, inside case di (see DCSI);	ameter			
		in	Eq. 29			
QDCSI3	Q_{DI3}	Associative quantity, inside case di (see DCSI);	ameter			
		in	Eq. 30			
QDCSO1	Q _{DO1}	Associative quantity, outside case (see DCSO);	diameter			
		in	Eq. 31			
QDCSO2	Q _{DO2}	Associative quantity, outside case (see DCSO);	diameter			
		in	Eq. 32			
QDCSO3	Q_{DO3}	Associative quantity, outside case (see DCSO);	diameter			
		in	Eq. 33			
RDCSCAI	RDCSCAI	Head ratio of the ellipsoid associate aft inside case closure surface. Rathe closure length to the closure directly inside case closure sure oblate spheroid. The head ratio is the axis of revolution (minor axis) equatorial diameter (major axis); N. D.	atio of twice ameter, rface is an the ratio of			
		oblate spheroid. The head ratio is the axis of revolution (minor axis)	the ra to the			

Ź.

Mnemonic	Symbol	Description; Ext. (Int.) Units				
RDCSCFI	R _{DCSCFI}	Head ratio of the ellipsoid associated with the forward inside case closure surface. Ratio of twice the closure length to the closure diameter, i.e., the forward inside case closure surface is an oblate spheroid. The head ratio is the ratio of the axis of revolution (minor axis) to the equatorial diameter (major axis);				
		N. D.	Eq. 12			
RDCSHAI	R _{DCSHAI}	Diameter ratio, hole diameter to equa diameter, inside surface of aft case c				
		N. D.	Eq. 19			
RDCSHAO	RDCSHAO	Diameter ratio, hole diameter to equa diameter, outside surface of aft case				
		N. D.	Eq. 17			
RDCSHFI	R _{DCSHFI}	Diameter ratio, hole diameter to equa diameter, inside surface of forward o closure;				
		N. D.	Eq. 23			
RDCSHFO	RDCSHFO	Diameter ratio, hole diameter to equadiameter, outside surface of forward closure;				
		N. D.	Eq. 21			
RDCSCHO	^R DCSCHO	Head ratio for usage by models which a single head ratio for forward and aft				
		N. D.	Eq. 27-a			
RLDCS	RLDCS	Length to diameter ratio, total case; N. D.	Eq. 37			
RLDCSCY	RLDCSCY	Length to diameter ratio, cylindrical section;	case			
		N. D.	Eq. 36			

Mnemonic	Symbol	Description	on; Ext. (Int.) Units			
TCSCLA	T _{CS} _{CLA}	Case thickness at center of aft case closure. Distance between the aft inside and outside hemi-ellipsoid surfaces, measured on the axis of revolution;				
		in	Fig. 1	Eq. 2		
TCSCLF	T _{CS} _{CLF}	Case thickness at center of forward closure. Distance between the forward inside and outside hemi-ellipsoid substitution;				
		in	Fig. 1	Eq. 3		
TCSCY	T _{CS} CY	Case thickness, cylindrical section;				
	CA	in	Fig. 1	Eq. 1		

このでは、これは、これには、これには、これには、これにいることできないできないとなっていることを

4

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

×		DCSHFI		KC\$16		KCDCS01	LCSCHAI	LCSCLFT	opcs01	FDCSCIPO	RELOCS	
CASE GEOMETED		DCSHAO		KCS15		KQDCSI3	LCSHP	LCSCLAO	QDCSI3	RDCSCFI	RDCSHPO	
CSSNZ	CCSC7	DCSHAI		KCS14	KCS20	KODCSI2	LCSHA	LCSCLAI	ODCSI 2	RDCSCA 0	RDCSHFI	Teser
CASEC	ş	ţ.	ካ*	L*	φ	\$	*10	*11	*12	*13	*1 *	* 15
	99833	DCSCIO	DCSO	KCS13	KCS19	KQDCSI1	8 31	LCSCHPO	questi	RDCSCAI	RDCSHA0	TCSCLF
	CCSG5	DCSCLI	DCSI	KCS12	KCS13	KCSUTS	KQDCS03	LCSCHFI	LCSCY	COSO3	RDCSHAI	TCSCLA
	₹5833	ACS	DCSHFO	KCS11	KCS17	KCSPS	KODCSO2	LCSCHAO	LCSCLPO	ODCS 02	RDCSCHO	RLDCSCY

30.1

The second secon

MODEL TYPE:

CASEW (CASE Weight)

MODEL NAME:

CSWMl (Metal Case, Parametric Scaling)

DESCRIPTION:

CSWM1 (CaSe Weight Model number 1) utilizes parametric weight scaling equations to determine the weight of a solid rocket motor, unjointed or jointed, metal case. See references 8 and 34 for a description of the equations and scaling coefficient rationale.

The model is applicable for performance parameters within the following limits (see Input Data, Inter-Model).

500 < PCHMEO < 1950 psia

0.6 < RDCSCHO < 1.0

0.25 < RLDGNCY < 8.0

3000 < WPPMT < 2,000,000 lb.

PROCEDURE:

Prior to entering CSWM1, the models specified by the PROPELW and IBGAS model types have evaluated the propellent and gas properties. The models specified by the CASEG, GRAING and MOTORG have evaluated the motor geometry.

The CSWM1 model is then executed and the motor case weight is evaluated using parametric weight scaling equations. In addition, the case weight is broken down into expended and non-expended components.

These expended and non-expended case weight components will later be used by the model specified for the MCTORW model type to determine the motor weights and mass fractions.

EQUATIONS:

Total case weight, no joints.

$$K_{1} = \frac{R_{LDGNCY} + C_{1} \left[(|R_{DCSCHO} - C_{2}|)^{C_{3}} + C_{4} \right]}{\left(\frac{R_{DCSCHO}}{3} \right) + C_{5} R_{LDGNCY}}$$
(1)

$$W_{\text{CS}_{\text{NOJ'T}}} = K_{\text{WCSNOJ}} \left\{ \frac{C_{\text{CSG1}} W_{\text{PP}_{\text{MT}}} P_{\text{MEO}} K_{\text{FS}} P_{\text{CS}} K_{1}}{K_{\text{UTS}} P_{\text{PP}_{\text{MT}}} \eta_{\text{MT}}} + \frac{C_{6} P_{\text{CS}} R_{\text{DCSCHO}} D_{\text{CS}_{\text{O}}}^{2}}{W_{\text{PP}_{\text{MT}}} C_{7}} \sqrt{\frac{K_{\text{FS}} W_{\text{PP}_{\text{MT}}}}{K_{\text{UTS}}}} \right\}$$

Case weight penalty per joint.

$$W_{JT_{CSU}} = K_{WJTCSU} \left\{ \frac{K_{FS} P_{MEO} D_{CS_O}^2}{K_{UTS}} \right\} C_{14}$$
 (2)

Total joint weight penalty.

$$W_{JT_{CS}} = N_{JT_{CS}} W_{JTU}$$
 (3)

Total case weight.

$$w_{CS} = K_{WCS} \left(w_{CS_{NOIT}} + w_{JT_{CS}} \right)$$
 (4)

Total non-expended case weight component,

$${}^{\mathbf{W}}_{\mathbf{CS}_{\mathbf{NX}}} = {}^{\mathbf{K}}_{\mathbf{WCSNX}} {}^{\mathbf{W}}_{\mathbf{CS}}$$
 (5)

Total expended case weight component.

$$W_{CS_X} = 0 (6)$$

EQUATIONS (Cont.):

は、一般のでは、これのでは、これのできます。 これのこれのできませいと

Expended (non-thrust producing) case weight component.

$$W_{CS_{XI}} = 0 \tag{7}$$

Expended (thrust producing) case weight component.

$${}^{\mathsf{W}}\mathsf{CS}_{\mathsf{XT}} = 0 \tag{8}$$

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CCSW1	c ₁	Scaling constant for WCS computation N. D.	; 0.5
CCSW2	c ₂	Scaling constant for WCS computation N. D.	; 0.77
CCSW3	c ₃	Scaling constant for WCS computation N. D.	1.3
CCSW4	C ₄	Scaling constant for WCS ∞ mputation N. D.	; 0.856
CCSW5	C ₅	Scaling constant for WCS computation N. D.	; 0.5
CCSW6	² 6	Scaling constant for WCS computation N. D.	; 9. 0712
CCSW7	C ₇	Scaling constant for WCS computation N. D.	; 0. 20288

INPUT DATA, INTRA-MODEL (Cent.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset	
CCSW14	C ₁₄	Chaling constant for WJTCSU computation;		
		N. D.	7.7	
NJTCS	N _{JTCS}	Number of joints in motor case;	,	
	° • CS	N. D.	0	
KWCS	Kwcs	Proportionality factor for total case vincludes joint penalty;	weight,	
		N. D.	1	
KWCSNOJ	Kwcsnoj	Proportionality factor for total case vidoes not include joint penalty;	weight,	
		N. D.	1	
KWCSNX	Kwcsnx	Proportionality factor for case non-e weight, includes joint penalty;	xpended	
		N. D.	1	
KWJTCSU	K _{WJTCSU}	Proportionality factor for the weight joint;	of a	
		N. D.	1	
RHOCS	$ ho_{CS}$	Density of metal case material;		
		lb/in ³	0	

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Unit	ts Model Type
CCSGI	c _{csg1}	Constant for case thickness	computation;
	.	N. D.	CASEG

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
DCSO	D _{CS} O	Motor case outside diameter; in	CASEG
KCSFS	K _{FS}	Case factor of safety; N. D.	CASEG
KCSUTS	K _{UTS}	Ultimate tensile strength for metamaterial; lb/in ²	al case
PCHMEO	P _{MEO}	Maximum expected operating charpressure; psia	mber IBGAS
RDCSCHO	RDCSCHO	Case closure outside surface head N. D.	d ratio; CASEG
RLDGNCY	RLDGNCY	Ratio, cylindrical grain length to diameter. Includes all adjustment N. D.	
RНОРРМТ	$ ho_{\mathrm{PP}_{\mathrm{MT}}}$	Propellent density; lb/in ³	PROPEL
RVPPMT	η_{MT}	Motor volumetric loading efficien N. D.	cy; MOTORG
WPPMT	w _{PP_{MT}}	Propellent weight; lb	PROPELW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	_
wcs	w _{CS}	Total case weight, includes joint penalty;	
		lb Eq. 4	

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units		
WCSNOJT	wcs _{NOJT}	Total case weight, no joints;	Eq.	1
WCSNX	w _{CSNX}	Total non-expended case weight, inclujoint penalty;	ıdes	
		1b	Eq.	5
wcsx	w _{cs} x	Total expended case weight;		
	CSX	lb	Eq.	6
WCSXI	wcs _{x1}	Expended (non-thrust producing) case component;	weig	ght
		1b	Eq.	7
WCSXT	$^{w}_{CS_{\mathbf{XT}}}$	Expended (thrust producing) case weig component;	ght	
		1b	Eq.	8
WJTCS	$w_{\mathtt{JT}_{\mathbf{CS}}}$	Total joint weight penalty;		
	3 CS	1b	Eq.	3
WJTCSU	w _{JTCSU}	Case weight penalty per joint;		
	,,csn	1b	Eq.	2

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

		CCSW6		RHOCS	
CASE WEIGHT	WCSXT	CCSW5	•	KWJTCSU	
CSWMD	NCSXI	CCSW		KWCSWX	
CASEW	‡	¥	₽	£	ţ
	MCSX	CCSIN3		KWCSNOJ	WJJCSU
	MCSNX	CCSW2	CCSW12	KINCS	WJTCS
	K S	CCSMI	CCSW7	NUTCS	WCSNOJT

end and an information of the last of the

一年のことのからいのかっとなることできています。

30, 2

MODEL TYPE:

CASEW (CASE Weight)

MODEL NAME:

CSWM2 (Glass Case, Parametric scaling)

DESCRIPTION:

CSWM2 (<u>CaSe</u> Weight <u>Model</u> number <u>2</u>) utilizes parametric weight scaling equations to evaluate the weight of a solid rocket motor (unjointed or jointed) fiberglass motor case.

The basic assumptions used to develop the equations were as follows:

- 1. Bosses are made from aluminum with a minimum ultimate tensile strength of 70 ksi.
- 2. Bolts used for the attachment of the igniter and nozzle to the bosses are heat treated 170 ksi (minimum).
- 3. Forward and aft boss diameters are 20% and 50% of the case diameter, respectively.
- 4. Equal margins of safety are maintained at all points on the composite shell.

The most important point for the engineer preparing input data is that KCSUTS is a representative strength for the fiber under consideration. For example, KCSUTS would be 350,000 psi for type S-901 (S-944) fibers.

See references 41-42 for a description of the unjointed case weight equation. The joint penalty is described in reference 44.

This model is applicable for performance parameters within the following limits (see Input Data, Inter-Model).

600 < PCHMEO < 1950 psia

3000 < WPPMT < 2,000,000 lb.

PROCEDURE:

Prior to entering CSWM2, the models specified by the PROPEL and IBGAS model types have evaluated the propellent and gas properties. The models specified by the CASEG, GRAING and MOTORG have evaluated the motor geometry.

The CSWM2 model is then executed and the motor case weight is evaluated using parametric weight scaling equations. In addition, the case weight is broken down into expended and non-expended components.

These expended and non-expended case weight components will later be used by the model specified for the MOTORW model type to determine the motor weights and mass fractions.

EQUATIONS:

Total case weight, no joints.

$$K_{1} = \frac{\rho_{CS} K_{FS} P_{MEO}(D_{CS_{O}})^{C_{\delta}}}{K_{UTS}} \left[\frac{C_{9} W_{PP_{MT}}}{\rho_{PP_{MT}} \eta_{PP_{MT}}} + C_{10} L_{M'T_{SKA}} D_{CS_{O}}^{2} \right]$$

$$K_2 = C_{11} D_{CS_O}^3 (1. + C_{12} P_{MEO} K_{FS})$$

$$w_{CS_{NOJT}} = \kappa_{wCSNOJ} (\kappa_1 + \kappa_2)$$

Case weight penalty per joint.

$$W_{JT_{CSU}} = K_{WJTCSU} \left\{ \frac{K_{FS} P_{MEO} D_{CS_O}^2}{K_{UTS}} \right\} C_{13}$$
 (2)

Total joint weight penalty.

$$W_{JT_{CS}} = N_{JT} W_{JT_{CSU}}$$
(3)

Total case weight.

$$W_{CS} = K_{WCS} (W_{CS_{NOJT}} + W_{JT_{CS}})$$
 (4)

The second secon

EQUATIONS (Cont.):

Total non-expended case weight component.

$$^{W}_{CS_{NX}} = ^{K}_{WCSNX} ^{W}_{CS}$$
 (5)

Total expended case weight component.

$$W_{CS_X} = 0 \tag{6}$$

Expended (non-thrusting producing) case weight component.

$$W_{CS_{XI}} = 0 \tag{7}$$

Expended (thrust producing) case weight component.

$$W_{CS_{XT}} = 0 (8)$$

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	<u>Symbol</u>	Description; Ext. (Int.) Units	Preset
CCSW8	c ₈	Scaling constant for WCSNOJT con	nputation;
		N. D.	0.16
CCSW9	Cq	Scaling constant for WCSNOJT con	putation;
	,	N. D.	2.62
CCSW10	c ₁₀	Scaling constant for WCSNOJT con	nputation;
	•	N. D.	6.09
CCSW11	C ₁₁	Scaling constant for WCSNOJT con	putation;
		N. D.	0,000016
CCSW12	c ₁₂	Scaling constant for WCSNOJT con	nputation;
		N. D.	0.01

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset	
CCSW13	C ₁₃	Scaling constant for WJTCSU computation;		
		N. D.	7.7	
NJTCS	N _{JTCS}	Number of joints in motor case;		
	CS	N. D.	0	
KWCS	Kwcs	Proportionality factor for total case vincludes joint penalty;	weight,	
		N. D.	1	
KWCSNOJ	Kwcsnoj	Proportionality factor for case weigh not include joint penalty;	t, does	
		N. D.	1	
KWCSNX	Kwcsnx	Proportionality factor for case non-expended weight component, includes joint penalty;		
		N. D.	1	
KWJTCSU	K _{WJTCSU}	Proportionality factor for the weight	of a joint;	
		N. D.	1	
RHOCS	$^{ ho}_{ extsf{CS}}$	Density of composite glass case mate	rial;	
	- -	lb/in ³	0	

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
DCSO	D _{CS} O	Outside case diameter;	
	000	in	CASEG

THE PARTY OF THE P

を 一般ない

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
KCSFS	K _{FS}	Case factor of safety;	
		N. D.	CASEG
KCSUTS	KUTS	Ultimate tensile strength for fibe filament case material;	rglass
		lb/in ²	CASEG
LMTSKA	L _{MT} SKA	Aft motor skirt length. The mothat the fore and aft skirts have e	
		in	MOTORG
PCHMEO	P _{MEO}	Maximum expected operating chamber pressure;	
	20	psia	IBGAS
RHOPPMT	$^{ ho}_{ exttt{PP}_{ exttt{MT}}}$	Propellent density;	
	MT	lb/in ³	PROPELW
RVPPMT	$^{\eta}_{ ext{PP}_{ ext{M}'\Gamma}}$	Motor volumetric loading efficien	ncy;
	- MT	N. D.	MOTORG
WPPMT	$w_{PP_{MT}}$	Propellent weight;	
	MT	lb	PROPELW

OUTPUT DATA:

The following data is output by this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units		
wcs	w _{CS}	Total case weight, includes joint penal	lty; Eq.	4
WCSNOJT	w _{CS} NOJT	Total case weight, no joints; 1b	Eq.	1

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units			
WCSNX	w _{CS_{NX}}	Total non-expended case weight component. Includes joint penalty;			
		1b	Eq.	5	
wcsx	wcs _x	Total expended case weight component;			
		1ь	Eq.	6	
WCSXI	wcs _{xI}	Expended (non-thrust producing) case weight component;			
		lb	Eq.	7	
WCSXT	w _{CS_{XT}}	Expended (thrust producing) case weight component;			
		1ь	Eq.	8	
WJTCS	w _{JT} _{CS}	Total joint weight penalty;			
		1ь	Eq.	3	
WJTCSU	w _{JT} csu	Case weight penalty per joint;			
		1b	Eq.	2	

施設・整備を発育で置からにす。せた。

Ç

PRINT BLOCK KEY:

\$.

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

		CCSW13	RHOCS	
CASE WEIGHT	WCSXI	CCSW12	KWJTCSU	
CSMNS	MCSXI	CCSWII	KWCSWX	
CASEW	¥	1 *	*	¥
	MCSX	CCSW10	KACSNOJ	WITCSU
	WCSNX	CKSN3	KNCS	WJTCS
	¥GS	CCSIMB	NUTCS	HCSNOJT

40.1

MODEL TYPE: GRAING (GRAIN Geometry)

MODEL NAME: GNGM1 (cylindrical central perforate)

DESCRIPTION:

GNGM1 (Grain Geometry Model number1) evaluates the pertinent geometry for a solid rocket propellent grain to be enclosed within a motor case having a cylindrical section with hemi-ellipsoidal closures and a single nozzle. The port is a cylindrical central perforate with provision for lateral slot cutouts, lateral motor joint cutouts, and a cone frustum section to accommodate a submerged nozzle. Provision is also made for a cylindrical grain length penalty for the propellent displacement due to internal insulation in the forward and aft hemi-ellipsoid closures.

Reference 52, "Some Useful Theorems Associated With Hemi-Ellipsoids" is the basis for the derivation of the equations.

PROCEDURE:

Prior to entering GNGM1, the models specified by the NOZZLEG and CASEG model types have determined the nozzle and case geometry. The model specified by the INSULG model type has determined (first entrance) the pertinent internal insulation quantities required for interfacing between the case and grain.

Upon the first entrance to GNGMI, the basic grain geometry is determined and then adjusted for nozzle submergence. The propellent surface area is computed and the model specified by the IBFLOW model type is executed to determine the slot length penalty.

GNGMI is then entered for the second time and the grain is adjusted to account for the slot and joint volumes. Using this corrected grain geometry, the model specified for the INSULG model type (second entrance) evaluates the internal insulation geometry within the grain envelope.

Upon the third entrance to GNGM1, the cylindrical grain length is adjusted to include the propellent displaced by the internal insulation, and the remaining grain geometry quantities are evaluated.

PROCEDURE (Cont.):

After completing the grain geometry, the model specified for the INSULG model type is entered for the third time and the internal insulation geometry is completed.

A block diagram illustrating the inter-model coupling with the grain geometry is included in the documentation of the model specified for the INSULG model type.

NOTATION CONVENTIONS:

The following notation conventions are used within this model whenever possible.

First character

- A Plane area. (in²)
- D Diameter, measured normal to centerline. (in)
- K Coefficient or bias.
- L Length, measured parallel to centerline. (in)
- Q Associative quantity.
- R Ratio. Next character(s) will be L or D to indicate diameter or length ratio. (N.D.)
- S Surface area. (in²)
- T Thickness. (in)
- V Volume. (in³)

Next two characters.

GN Grain

PT Port

Next character(s)

A Aft

C or CL Closure

CH Insulation liner closure hole

CY or Y Cylinder

E Ellipsoid

F Forward

H Insulation liner hole

PD Propeilent displaced

PP Propellent

NS Nozzle submergence

NZ Nozzle

EQUATIONS, FIRST ENTRANCE:

GENERAL GRAIN AND BASIC PORT COMPUTATIONS:

Diameter of cylindrical grain section. (Figures 2, 6)

$$D_{GN} = D_{IL_{\gamma}}$$
 (1)

Diameter of basic cylindrical port section. (Figures 2, 3, 4, 6)

$$D_{PT} = K_{DPT_1} D_{GN} + K_{DPT_2}$$
 (2)

Cross-sectional area of basic cylindrical port section. (Figure 6)

$$A_{PT} = \left(\frac{\pi}{4}\right) D_{PT}^2 \tag{3}$$

Area ratio, basic cylindrical port section area to nozzle throat area.

$$R_{APTTH} = \frac{\frac{1}{PT}}{A_{NZ_{TH}}}$$
 (4)

Propellent web thickness for cylindrical grain and basic cylindrical port sections. (Figures 2, 3, 6)

$$T_{PP_{WEB}} = \left(\frac{D_{GN} - D_{PT}}{2}\right)$$
 (5)

Propellent web cross-sectional area for cylindrical grain and basic cylindrical port sections. (Figure 6)

$$A_{PP_{WEB}} = \left(\frac{\pi}{4}\right) \left(D_{GN}^2 - D_{PT}^2\right)$$
 (6)

BASIC CLOSURE SECTIONS (FORWARD / TD AFT):

Equatorial diameter of grain closures. (Figures 2, 3, 4)

$$D_{GN_{CL}} = D_{GN}$$
 (7)

BASIC CLOSURE SECTIONS (FOR WARD AND AFT)(Cont.):

Diameter ratio, basic cylindrical port section diameter to grain closure equatorial diameter.

$$R_{DPTCL} = \frac{D_{PT}}{D_{GN_{CL}}}$$
 (8)

BASIC FOR WARD CLOSURE SECTION:

Head ratio of ellipsoid associated with the forward grain closure section.

$$R_{DGNCLF} = R_{DILCFI}$$
 (9)

Length of hemi-cllipsoid associated with the forward grain closure section. (Figures 2, 3)

$$L_{GN_{CLF}} = L_{IL_{CLFI}}$$
 (10)

Volume of hemi-ellipsoid associated with the forward grain closure section. (Figure 3)

$$V_{GN_{CLF}} = \left(\frac{\pi}{6}\right) L_{GN_{CLF}} D_{GN_{CL}}^{2}$$
 (11)

Length of cylindrical portion of basic port within the hemi-ellipsoid associated with the forward grain closure section. (Figure 3)

$$L_{\text{PT}_{\text{YCLF}}} = L_{\text{GN}_{\text{CLF}}} \sqrt{1 - R_{\text{DPTCL}}^2}$$
 (12)

Volume of cylindrical portion of basic port within the hemi-ellipsoid associated with the forward grain closure section. (Figure 3)

$$V_{PT_{YCLF}} = \left(\frac{\pi}{4}\right) L_{PT_{YCLF}} D_{PT}^{2}$$
 (13)

The same of

EQUATIONS, FIRST ENTRANCE (Cont.):

BASIC FORWARD CLOSURE SECTION (Cont.):

Length ratio. Length of cylindrical portion of basic port within the hemiellipsoid to the length of the hemi-ellipsoid, forward grain closure section.

$$R_{LPTCYF} = \frac{L_{PT}_{YCLF}}{L_{GN}_{CLF}}$$
 (14)

Volume of ellipsoidal cap at base of cylindrical portion of basic port section, within the hemi-ellipsoid associated with the forward grain closure section. (Figure 3)

$$V_{\text{PT}_{\text{ECLF}}} = \left(\frac{V_{\text{GN}_{\text{CLF}}}}{2}\right) \left(2 - 3 R_{\text{LPTCYF}} + R_{\text{LPTCYF}}^{3}\right)$$
 (15)

Volume of basic port within the hemi-ellipsoid associated with the forward grain closure section. (Figure 3)

$$v_{PT_{CLF}} = v_{PT_{ECLF}} + v_{PT_{YCLF}}$$
 (16)

Volume of propellent associated with the hemi-ellipsoid of the forward grain closure section. Note that this volume is an intermediate quantity and does not include corrections for insulation wedges, igniter, etc. (Figure 3)

$$v_{PP_{CLF}} = v_{GN_{CLF}} - v_{PT_{CLF}}$$
 (17)

Length of hemi-ellipsoid frustum associated with the forward grain closure section. (Figures 2, 3)

$$L_{GN_{CHF}} = L_{IL_{CHFI}}$$
 (18)

Diameter of forward base of hemi-ellipsoid frustum associated with the forward grain closure section. (Figures 2, 3)

$$D_{GN_{HF}} = D_{IL_{HFI}}$$
 (19)

BASIC FORWARD CLOSURE SECTION (Cont.):

Length ratio. Length of hemi-ellipsoidal frustum to length of hemi-ellipsoid, forward grain closure section.

$$R_{LGNCHF} = \frac{L_{GN}_{CHF}}{L_{GN}_{CLF}}$$
 (20)

Volume of hemi-ellipsoid frustum associated with the forward grain closure section. (Figure 3)

$$v_{GN_{CHF}} = \left(\frac{v_{GN_{CLF}}}{2}\right) \left(3 R_{LGNCHF} - R_{LGNCHF}^{3}\right)$$
 (21)

BASIC AFT CLOSURE SECTION:

Head ratio of ellipsoid associated with the aft grain closure section.

$$R_{DGNCLA} = R_{DILCAI}$$
 (22)

Length of hemi-ellipsoid associated with the aft grain closure section. (Figures 2, 4)

$$L_{GN_{CLA}} = L_{IL_{CLAI}}$$
 (23)

Volume of hemi-ellipsoid associated with the aft grain closure section. (Figure 5)

$$V_{GN_{CLA}} = \left(\frac{\pi}{6}\right) L_{GN_{CLA}} D_{GN_{CL}}^{2}$$
(24)

Length of cylindrical portion of basic port within the hemi-ellipsoid associated with the aft grain closure section. (Figure 4)

$$L_{\text{PT}_{\text{YCLA}}} = L_{\text{GN}_{\text{CLA}}} \sqrt{1 - R_{\text{DPTCL}}^2}$$
 (25)

BASIC AFT CLOSURE SECTION (Cont.):

Volume of cylindrical portion of basic port within the hemi-ellipsoid associated with the aft grain closure section. (Figure 5)

$$V_{\text{PT}_{\text{YCLA}}} = \frac{\pi}{4} L_{\text{PT}_{\text{YCLA}}} D_{\text{PT}}^{2}$$
 (26)

Length ratio. Length of cylindrical portion of basic port within the hemiellipsoid to the length of the hemi-ellipsoid, aft grain closure section.

$$R_{LPTCYA} = \frac{L_{PT_{YCLA}}}{L_{GN_{CLA}}}$$
 (27)

Volume of ellipsoidal cap at base of cylindrical portion of basic port section within the hemi-ellipsoid associated with the aft grain closure section. (Figure 5)

$$V_{\text{PT}_{\text{ECLA}}} = \left(\frac{V_{\text{GN}_{\text{CLA}}}}{2}\right) \left(2 - 3 R_{\text{LPTCYA}} + R_{\text{LPTCYA}}^{3}\right)$$
 (28)

Volume of basic port within the hemi-ellipsoid associated with the aft grain closure section. (Figure 5)

$$V_{\text{PT}_{\text{CLA}}} = V_{\text{PT}_{\text{ECLA}}} + V_{\text{PT}_{\text{YCLA}}}$$
 (29)

Volume of propellent associated with the hemi-ellipsoid of the aft grain closure section. Note that this volume is an intermediate quantity and does not include corrections for nozzle submergence, insulation wedges, etc. (Figure 5)

$$v_{PP_{CLA}} = v_{GN_{CLA}} - v_{PT_{CLA}}$$
(30)

Length of hemi-ellipsoid frustum associated with the aft grain closure section. (Figures 2, 4)

$$L_{GN_{CHA}} = L_{IL_{CHAI}}$$
 (31)

BASIC AFT CLOSURE SECTION (Cont.):

Diameter of aft base of hemi-ellipsoid frustum associated with the aft grain closure section. (Figures 2, 4)

$$D_{GN_{HA}} = D_{IL_{HAI}}$$
 (32)

Length ratio. Length of hemi-ellipsoid frustum to length of hemi-ellipsoid, aft grain closure section.

$$R_{LGNCHA} = \frac{L_{GN_{CHA}}}{L_{GN_{CLA}}}$$
 (33)

Volume of hemi-ellipsoid frustum associated with the aft grain closure section. (Figure 5)

$$V_{GN_{CHA}} = \left(\frac{V_{GN_{CLA}}}{2}\right) \left(3 R_{LGNCHA} - R_{LGNCHA}^{3}\right)$$
 (34)

BASIC CYLINDRICAL GRAIN SECTION:

Volume of propellent within basic cylindrical grain section. Does not include displaced propellent corrections for nozzle submergence or internal insulation.

$$V_{PP_{CYI}} = V_{PP_{MT}} - V_{PP_{CLF}} - V_{PP_{CLA}}$$
(35)

Length of basic cylindrical grain section. Does not include length penalties for nozzle submergence, slots, joints, or internal insulation. (Figure 2)

$$L_{CN_{CY1}} = \frac{v_{PP_{CY1}}}{A_{PP_{WEB}}}$$
 (36)

Length of diameter ratio, basic cylindrical grain section. Does not include penalties for nozzle submergence, slots, joints, or internal insulation.

$$R_{LDGNY1} = \frac{L_{GN_{CY1}}}{D_{GN}}$$
 (37)

EQUATIONS, FIRST ENTRANCE (Cont.):

BASIC CYLINDRICAL PORT SECTION:

Total length of cylindrical portion of basic port. Does not include adjustments for nozzle submergence, slots, joints or internal insulation.

$$L_{PT_{CY1}} = L_{GN_{CY1}} + L_{PT_{YCLA}} + L_{PT_{YCLF}}$$
(38)

CORRECTIONS TO BASIC GRAIN FOR NOZZLE SUBMERGENCE:

Distance nozzle is submerged in port. (Figure 4)

$$L_{PT_{NS}} = L_{NZ_B} - L_{1L_{HA}} - L_{CS_{HA}}$$
(39)

Distance nozzle is submerged in cylindrical grain section. (Figure 4)

$$L_{GN_{NSCY}} = L_{PT_{NS}} - L_{GN_{CHA}}$$
 (40)

Diameter ratio, port cone frustum section aft base diameter to grain closure equatorial diameter.

$$R_{DCFACL} = \frac{D_{PT_{CFA}}}{D_{GN_{CL}}}$$
 (41)

Length of portion of port cone frustum section within aft grain closure section. (Figures 2, 4)

$$L_{\text{PT}_{\text{CFCA}}} = L_{\text{GN}_{\text{CLA}}} \sqrt{1 - R_{\text{DCFACL}}^2}$$
 (42)

Submerged nozzle inlet allowance. (Figure 4)

$$L_{PT} = L_{PT} - L_{PT} NS$$
 (43)

Length of portion of port cone frustum section within cylindrical grain section. (Figures 2, 4)

$$L_{\text{PT}_{\text{CFCY}}} = L_{\text{GN}_{\text{NSCY}}} + L_{\text{PT}_{\text{NZI}}}$$
(44)

CORRECTIONS TO BASIC GRAIN FOR NOZZLE SUBMERGENCE (Cont.):

Total length of port cone frustum section. (Figures 2, 4, 6)

$$L_{\text{PT}_{\text{CF}}} = L_{\text{PT}_{\text{CFCY}}} + L_{\text{PT}_{\text{CFCA}}} \tag{45}$$

Half-angle of port cone frustum section. (Figure 2)

$$\theta_{\rm CF} = \arctan \left(\frac{{}^{\rm D}_{\rm PT}_{\rm CFA} - {}^{\rm D}_{\rm PT}_{\rm CFF}}{{}^{\rm 2}_{\rm L}_{\rm PT}_{\rm CF}} \right) \tag{46}$$

Slant height of port cone frustum section. (Figure 4)

$$L_{PT_{CFS}} = \left(\frac{1}{2}\right) \sqrt{4 L_{PT_{CF}}^2 + \left(D_{PT_{CFA}} - D_{PT_{CFF}}\right)^2}$$
(47)

Total volume of port cone frustum section. (Figure 5)
(48)

$$V_{PT_{CF}} = \left(\frac{\pi}{12}\right) L_{PT_{CF}} \left(\frac{D_{PT_{CFA}}^2 + D_{PT_{CFF}}^2 + D_{PT_{CFA}}}{D_{PT_{CFA}}}\right)$$

Length ratio, length of portion of port cone frustum section within aft grain closure section to length of aft grain closure section. (Figure 4)

$$R_{LCFCA} = \frac{L_{PT_{CFCA}}}{L_{GN_{CLA}}}$$
 (49)

Volume of ellipsoidal cap at aft base of port cone frustum section within aft grain closure section. (Figure 5)

$$V_{\text{PT}_{\text{ECFA}}} = \left(\frac{V_{\text{GN}_{\text{CLA}}}}{2}\right) \left(2 - 3 R_{\text{LCFCA}} + R_{\text{LCFCA}}^{3}\right)$$
 (50)

Volume of basic port portion of port cone frustum section within cylindrical grain section. (Figure 5)

$$V_{\text{PT}_{\text{CFCY}}} = \left(\frac{\pi}{4}\right) L_{\text{PT}_{\text{CFCY}}} D_{\text{PT}}^{2}$$
 (51)

1

EQUATIONS, FIRST ENTRANCE (Cont.):

CORRECTIONS TO BASIC GRAIN FOR NOZZLE SUBMERGENCE (Cont.):

Volume of basic port section associated with nozzle submergence. (Figure 5)

$$V_{\text{PT}_{\text{CYCF}}} = V_{\text{PT}_{\text{CFCY}}} + V_{\text{PT}_{\text{CLA}}}$$
 (52)

Volume of propellent displaced due to nozzle submergence. (Figure 5)

$$V_{PP} = V_{PT} + V_{PT} - V_{PT}$$
(53)

Cylindrical grain length penalty required for propellent displaced by nozzle submergence. (Figure 2)

$$L_{GN_{PDNS}} = K_{GN_1} \left(\frac{V_{PP_{PDNS}}}{A_{PP_{WEB}}} \right) + K_{GN_2}$$
 (54)

Adjusted length of cylindrical grain section, includes nozzle submergence penalty. (Figure 2)

$$L_{GN_{CY2}} = L_{GN_{CY1}} + L_{GN_{PDNS}}$$
 (55)

Length to diameter ratio, cylindrical grain section. Includes nozzle submergence penalty.

$$R_{LDGNY2} = \frac{L_{GN}_{CY2}}{D_{GN}}$$
 (56)

Adjusted length of cylindrical port section. Includes nozzle submergence penalty. (Figure 6)

$$L_{PT}_{CY2} = L_{PT}_{CY1} - L_{PT}_{YCLA} - L_{PT}_{CFCY} + L_{GN}_{PDNS}$$
 (57)

PROPELLENT BURNING SURFACE:

Port surface area component, lateral cylindrical port propellent surface area. (Figure 6)

$$S_{\text{PT}_{\text{CY2}}} = \pi D_{\text{PT}} L_{\text{PT}_{\text{CY2}}}$$
 (58)

PROPELLENT BURNING SURFACE (Cont.):

Port surface area component, lateral cone frustum port propellent surface area. (Figure 6)

$$S_{\text{PT}_{\text{CFS}}} = \left(\frac{\pi}{2}\right) L_{\text{PT}_{\text{CFS}}} \left(D_{\text{PT}_{\text{CFF}}} + D_{\text{PT}_{\text{CFA}}}\right)$$
 (59)

Port surface area component, forward base of port cone frustum propellent surface area. (Figure 6)

$$S_{\text{PT}_{\text{CFB}}} = \left(\frac{\pi}{4}\right) \left(D_{\text{PT}_{\text{CFF}}}^2 - D_{\text{PT}}^2\right) \tag{60}$$

Propellent surface area associated with the port. Includes submerged nozzle corrections.

$$S_{PT_{2}} = S_{PT_{CY2}} + S_{PT_{CFS}} + S_{PT_{CFB}}$$
(61)

Initial propellent burning surface area, excluding slots. (Figure 6)

$$S_{BS_{PT}} = S_{PT_2} \tag{62}$$

EQUATIONS, SECOND ENTRANCE:

CORRECTIONS TO GRAIN FOR SLOTS AND JOINTS:

Cylindrical grain section length penalty for slots. (Figure 2)

$$L_{GN_{SL}} = K_{GN_3} L_{SL_{GN}} + K_{GN_4}$$
 (63)

Adjusted length of cylindrical grain section, includes nozzle submergence and slot penalties. (Figure 2)

$$L_{GN_{CY3}} = L_{GN_{CY2}} + L_{GN_{SL}}$$
 (64)

ŧ

EQUATIONS, SECOND ENTRANCE (Cont.):

CORRECTIONS TO GRAIN FOR SLOTS AND JOINTS (Cont.):

Length to diameter ratio, cylindrical grain section. Includes nozzle submergence and slot penalties.

$$R_{LDGNY3} = \frac{L_{GN_{CY3}}}{D_{GN}}$$
 (65)

Adjusted length of cylindrical grain section, includes nozzle submergence, slot and joint penalties. (Figure 2)

$$L_{GN_{CY4}} = L_{GN_{CY3}} + L_{JT_{CUT}}$$
(66)

Length to diameter ratio, cylindrical grain section. Includes nozzle submergence, slot and joint penalties.

$$R_{LDGNY4} = \frac{L_{GN_{CY4}}}{D_{GN}}$$
 (67)

EQUATIONS, THIRD ENTRANCE:

CORRECTIONS TO GRAIN FOR INTERNAL INSULATION:

Cylindrical grain length penalty for propellent displaced by internal insulation. (Figure 2)

$$L_{GN_{PDIN}} = K_{GN_5} \left(\frac{V_{IN_{PD}}}{A_{PP_{WEB}}} \right) + K_{GN_6}$$
 (68)

Adjusted length of cylindrical grain section, includes nozzle submergence, slot, joint, and internal insulation penalties. (Figure 2)

$$L_{GN_{CY5}} = L_{GN_{CY4}} + L_{GN_{PDIN}}$$
(69)

Length to diameter ratio, cylindrical grain section. Includes nozzle submergence, slot, joints, and internal insulation penalties.

$$R_{LDGNY5} = \frac{L_{GN}_{CY5}}{D_{GN}}$$
 (70)

TOTAL GRAIN GEOMETRY:

Length of cylindrical grain section. Includes nozzle submergence, slot, joint and internal insulation penalties. (Figure 2)

$$L_{GN_{CY}} = K_{GN_7} L_{GN_{CY5}} + K_{GN_8}$$
(71)

Length to diameter ratio, cylindrical grain section. Includes nozzle submergence, slot, joint and internal insulation penaltics.

$$R_{LDGNCY} = \frac{GN_{CY}}{D_{GN}}$$
 (72)

Volume of cylindrical grain section. Includes port, submerged nozzle penalty, slots, joints and internal insulation except liner.

$$V_{GN_{CY}} = \left(\frac{\pi}{4}\right) L_{GN_{CY}} D_{GN}^{2}$$
 (73)

Volume of grain envelope. Includes port, submerged nozzle penalty, slots, joints and all internal insulation except liner. Note that the grain closures are hemi-ellipsoid frustums, not hemi-ellipsoids.

$$V_{GN} = V_{GN_{CY}} + V_{GN_{CHF}} + V_{GN_{CHA}}$$
 (74)

Length of grain envelope. Includes nozzle submergence, slot, joint and internal insulation penalties. (Figure 2)

$$L_{GN} = L_{GN_{CY}} + L_{GN_{CHF}} + L_{GN_{CHA}}$$
 (75)

ASSOCIATIVE QUANTITIES:

The following associative quantities are intended solely for optional utilization by the program user. Their primary usage is for optional intermodel coupling and for forming constraint quantities.

$$Q_{DCFA1} = K_{QDCFA1} D_{PT_{CFA}}$$
 (76)

 $\widetilde{H}^{0}=\mathcal{M}^{0}(m_{\mathbf{k}_{1}},\ldots,m_{\mathbf{k}_{d}})$, where $m_{\mathbf{k}_{1}},\ldots,m_{\mathbf{k}_{d}}$

ASSOCIATIVE QUANTITIES (Cont.):

$$Q_{DCFA2} = K_{QDCFA2} D_{PT_{CFA}}$$
 (77)

$$Q_{DCFA3} = K_{QDCFA3} D_{PT_{CFA}}$$
 (78)

$$Q_{DCFF1} = K_{QDCFF1} D_{PT_{CFF}}$$
(79)

$$Q_{\text{DCFF2}} = K_{\text{QDCFF2}} D_{\text{PT}_{\text{CFF}}}$$
(80)

$$Q_{\text{DCFF3}} = K_{\text{QDCFF3}} D_{\text{PT}_{\text{CFF}}}$$
(81)

$$Q_{DGN1} = K_{QDGN1} D_{GN}$$
 (82)

$$Q_{DGN2} = K_{QDGN2} D_{GN}$$
 (83)

$$Q_{DGN3} = K_{QDGN3} D_{GN}$$
 (84)

$$Q_{DPT1} = K_{QDPT1} D_{PT}$$
 (85)

$$Q_{DPT2} = K_{QDPT2} D_{PT}$$
 (86)

$$Q_{DPT3} = K_{QDPT3} D_{PT}$$
 (87)

$$Q_{RAPTH1} = K_{QRAPH1} R_{APTTH}$$
 (88)

$$Q_{RAPTH2} = K_{QRAPH2} R_{APTTH}$$
 (89)

$$Q_{RAPTH3} = K_{QRAPH3} R_{APTTH}$$
 (90)

€ }

OPTIMIZATION CONSIDERATIONS:

Generally, the nature of the problem which would require usage of this model would also require that the following variables and constraints be set up by the program user.

Variables.

Suggested nominal values for initial estimates of the variable values and bounds are included for each optimization variable listed below. These values are only guidelines, applicable to a very wide class of problems, and values corresponding to the specific application (quantities within parenthesis) should be used if they are easily available.

KDPT1 Port fraction. The following values will insure that

a propellent web is always defined.

Upper bound: 0.9 Lower bound: 0.1 Initial estimate: 0.2

DPTCFF Diameter of forward base of port cone frustum section.

(Figures 2, 4)

Upper bound: 500. (approximate case diameter)

Lower bound: 5.

Initial estimate: approximate port diameter

DPTCFA Diameter of aft base of port cone frustum section.

(Figures 2, 4)

Upper bound: 500. (approximate case diameter)

Lower bound: 5.

Initial estimate: approximate port diameter

LPTCFHA Distance from forward base of port cone frustum

section to aft base of grain envelope. (Figure 2)

Upper bound: approximate length of case

Lower bound: zero

Initial estimate: approximate length nozzle is buried

within case

Constraints.

The following set of inequality constraints are formulated such that the motor volumetric loading efficiency (see MOTORG model type) will be maximum if a minimum vehicle length (fixed diameter) objective function is being utilized. For other objective functions, some of these constraints may require implementation as equality constraints.

OPTIMIZATION CONSIDERATIONS (Cont.):

Constraints 91 through 96 are required for "shaping" the port cone frustum grain cutout utilized for submerged nozzle geometry. It should be noted that these constraints should always be set up, even if the nozzle is not submerged.

The forward base diameter of the port cone frustum section is greater than, or equal to, the port diameter. (Figures 2, 4)

$$D_{\text{PT}_{\text{CFF}}} \geqslant D_{\text{PT}} \tag{91}$$

The aft base diameter of the port cone frustum section is less than, or equal to, the grain diameter. (Figures 2, 4)

$$D_{PT_{CFA}} \in D_{GN}$$
 (92)

The aft base diameter of the port cone frustum section is greater than, or equal to, the forward base diameter of the port cone frustum section. (Figures 2, 4)

$$D_{\text{PT}_{\text{CFA}}} \stackrel{>}{>} D_{\text{PT}_{\text{CFF}}}$$
(93)

The aft base diameter of the port cone frustum section is greater than, or equal to, the diameter of the hole in the aft closure required for the nozzle. (Figures 2, 4)

$$D_{\text{PT}_{\text{CFA}}} > D_{\text{GN}_{\text{HA}}}$$
 (94)

Nozzle inlet allowance. Sufficient space must be provided forward of the nozzle inlet to allow flow from the port cone frustum section to the nozzle entrance. QDNZENT and QDNZTH are associative quantities which must be set up, by the program user, in the nozzle geometry model. (Figure 4)

$$L_{PT_{NZI}} \geqslant QDNZENT$$
 (95)

$$D_{PT_{CFF}} \geqslant QDNZTH$$
 (96)

The cylindrical grain section length must be greater than, or equal to, zero for valid closure geometry. (Figure 2)

$$L_{GN_{CY}} > 0 \tag{97}$$

OPTIMIZATION CONSIDERATIONS (Cont.):

The nozzle entrance must be within the port. (Figure 4)

$$L_{PT_{CFHA}} \le L_{GN}$$
 (98)

$$L_{PT_{NS}} \geqslant 0 \tag{99}$$

Considerations of structural integrity of the grain and acceptable internal ballistics limit feasible values of the port fraction.

$$K_{DPT1} \ge 0.2$$
 (100)

To avoid unacceptable nozzle erosion, a lower bound in placed upon the ratio of the cylindrical port section cross section area to the nozzle throat area. (Note that this constrain' corresponds to a lower limit of port fraction.)

$$RAPTTH \geqslant 1.15 \tag{101}$$

The second secon

i

Fig. 40.1-2 Total Grain Geometry

ξ,

4 ≈ • 2

Fig. 40.1-3 Forward Grain Closure Geometry

Fig. 40.1-4 Aft Grain Closure and Nozzle Submergence Geometry

The second of th

Fig. 40.1-5 Aft Grain Closure and Nozzle Submergence Volumes

Fig. 40.1-6 Surface and Cross-sectional Areas

からない かんしゅうしゅうしょうせん

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Due to the nature of this model, many of the following required user inputs will be optimization variables. See the "Optimization Considerations" section.

Mnemonic	Symbol	Description;	Ext. (Int.) Units	Preset	
DPTCFA	$^{\mathrm{D}}_{\mathrm{PT}_{\mathrm{CFA}}}$	Diameter of aft base of port cone frustum section;			
		in	Figs. 2, 4, 6	0	
DPTCFF	$^{\mathrm{D}}_{\mathrm{PT}_{\mathrm{CFF}}}$	Diameter of frustum sect	forward base of por	t cone	
		in	Figs. 2, 4, 6	0 .	
KDPT1	K _{DPT} 1	cylindrical s	elating the diameter ection of the port to rical grain section. equation 2.	the diameter	
		N. D.		0	
KDPT2	$\kappa_{ exttt{DPT}_2}$	Bias for DP	I computation;		
	2- 2	in		0	
LJT'CUT	^L JT _{CUT}	grain section	of cutout, with a then, for joints. Does if a slot is being util	not include	
		in	Fig. 2	0	
LPTCFHA	L _{PT} CFHA	cone frustum hemi-ellipso	m forward base of the section to the aft be id frustum associated sure section;	ase of the	
		in	Figs. 2, 4	0	

The following coefficient and bias quantities are made available for input. However, in normal applications, the preset values are used for most, if not all, of these quantities. Note that these coefficient quantities are preset (1) and the bias quantities are preset (0).

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KGN1	κ_{GN_1}	Coefficient for LGNPDNS computat N. D.	ion; I
KGN2	κ_{GN_2}	Bias for LGNPDNS computation; in	0
KGN3	K _{GN3}	Coefficient for LGNSL computation N. D.	;
KGN4	κ_{GN_4}	Bias for LGNSL computation; in	0
KGN5	κ_{GN_5}	Coefficient for LGNPDIN computation. D.	ion; l
KGN6	K _{GN6}	Bias for LGNPDIN computation; in	0
KGN7	K _{GN7}	Coefficient for LGNCY computation N. D.	n; 1
KGN8	K _{GN8}	Bias for LGNCY computation; in	0

The following associative quantity coefficients are intended solely for optional utilization by the program user. Their primary usage is for optional inter-model coupling and for forming constraint quantities. Note that all associative quantity coefficients are preset (0).

KQ DCFA1	K _{QDCFA1}	Associative quantity coefficient for QDCFA1 computation;		
		N. D.	0	

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KQDCFA2	K _{QDCFA2}	Associative quantity coefficient for QDCFA2 computation;	
		N. D.	0
KQDCFA3	KQDCFA3	Associative quantity coefficient for QDCFA3 computation;	
		N. D.	0
KQDCFF1	K _{QDCFF1}	Associative quantity coefficient for QDCFF1 computation;	
		N. D.	0
KQDCFF2	K _{QDCFF2}	Associative quantity coefficient for QDCFF2 computation;	
		N.D.	0
KQDCFF3	KQDCFF3	Associative quantity coefficient for QDCFF3 computation;	
		N. D.	0
KQDGNI	K _{QDGN1}	Associative quantity coefficient for QDGN1 computation;	
		N. D.	0
KQDGN2	K _{QDGN2}	Associative quantity coefficient for QDGN2 computation;	
		N. D.	0
KQDGN3	K _{QDGN3}	Associative quantity coefficient for QDGN3 computation;	
		N. D.	0
KQDPTI	K _{QDPT1}	Associative quantity coefficient for QDPT1 computation;	
		N. D.	0
KQDPT2	K _{QDPT2}	Associative quantity coefficient for QDPT2 computation;	
		N. D.	С

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KQDPT3	K _{QDPT3}	Associative quantity coefficient for QDPT3 computation:	t
		N. D.	0
KQR APH1	K _{QRAPH1}	Associative quantity coefficient for QRAPTH3 computation;	
		N. D.	0
KQR APH2	K _{QRAPH2}	Associative quantity coefficient for QRAPTH2 computation;	
		N. D.	0
KQR APH3	K _{QRAPH3}	Associative quantity coefficient for QRAPTH3 computation;	
		N. D.	0

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
ANZTH	A _{NZ_{TH}}	Nozzle throat area; in ²	NOZZLEG
DILHAI	^D IL _{HAI}	Diameter of circular hole, for the within the inside surface of the iliner associated with the aft close in	nsulation
DILHFI	D _{IL} _{HFI}	Diameter of circular hole, for the within the inside surface of the iliner associated with the forward section;	he igniter, nsulation
		in	INSULG

Y

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; E	ext. (Int.) Units	Model Type	
DILI	DIL	Inside diameter of the insulation liner within the case cylindrical section;			
		in		INSULG	
LCSHA	L _{CS} _{HA}	Length of hole, for the nozzle, within the case associated with the aft case closure section;			
		in	Figs. 2, 4	CASEG	
LILCHAI	L _{IL} CHAI	Length of hemi-ellipsoid frustum associated with the inside surface of the insulation liner within the aft case closure;			
		in		INSULG	
LILCHFI	L _{IL} CHFI	Length of hemi-ellipsoid frustum associated with the inside surface of the insulation line within the forward case closure section;			
		in		INSULG	
LILCLAI	L _{IL} CLAI	Length of the hemi-ellipsoid associated with the inside surface of the insulation liner within the aft case closure section;			
		in		INSULG	
LILCLFI	L _{IL} CLFI	Length of the hemi-ellipsoid associated with the inside surface of the insulation line within the forward case closure section;			
		in		INSULG	
LILHA	L _{IL} _{HA}	Length of the hole, for the nozzle, within the insulation liner associated with the aft case closure section;			
		in	Figs. 2, 4	INSULG	
LNZB	L _{NZB}	Distance nozz	le is buried within	the case;	
	В	in	Fig. 4	NOZZLEG	

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type	
LSLGN	L _{SL} GN	Total slot length;		
	G.	in	IBFLOW	
RDILCAI	RDILCAI	Head ratio, inside surface of insulation liner associated with the aft case closure section;		
		N. D.	INSULG	
RDILCFI	RDILCFI	Head ratio, inside surface of insulation liner associated with the forward case closure section;		
		N. D.	INSULG	
VINPD	$v_{\rm IN_{PD}}$	Volume of propellent displaced b insulation. excluding liner;	y internal	
		in ³	INSULG	
VPPMT	v _{PP_{MT}}	Propellent volume;		
	MT	in ³	PROPW	

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description	n; Ext. (Int.) Unit	3
API'WEB	^A PPWEB	cylindrical grain section and basic cylindrical port section;		
		in ²	Fig. 6	Eq. 6
APT	APT	section;	cional area of basic	cylindrical
		in ²	Fig. 6	Eq. 3

The contract of

Mnemonic	Symbol	Description; Ext. (Int.) Units				
DGN	^D GN	Diameter of cylindrical grain section;				
		in	Figs. 2,	6	Eq.	1
DGNC L	D _{GN} _{CL}	Equatorial diameter associated with closure section	h the forv			n
		in	Figs. 2,	3, 4	Eq.	7
DGNHA	D_{GN}_{HA}	Diameter of aft base of the hemi-ellipsoid frustum associated with the aft grain closure section;				oid
		in	Figs. 2,	4	Eq.	32
DGNHF	D _{GN_{HF}}	Diameter of forward base of the hemi- ellipsoid frustum associated with the forwa grain closure section;			rward	
		in	Figs. 2,	3	Eq.	19
DPT	$D_{\mathbf{PT}}$	Diameter of ba	asic cylin	drical port	secti	on;
	• •	in	Figs, 2,	3, 4, 6	Eq.	2
LGN	^L GN	Length of grain envelope. Distance between the forward base of the hemi-ellipsoid frustum associated with the forward grain closure section and the aft base of the hemi-ellipsoid frustum associated with the aft grain closure section. Includes length penalties for nozzle submergence, slots, joints and internal insulation;			ain the gth	
		in	Fig. 2		Eq.	75
LGNCHA Length of the axis of revolution of a cellipsoid frustum associated with the grain closure section;						
		in	Figs. 2,	4	Eq.	31

Mnemonic	Symbol	Description; Ext. (Int.) Units			
LGNCHF	L _{GN} _{CHF}	Length of the axis of revolution of the hemi- ellipsoid frustum associated with the forward grain closure section;			
		in	Figs. 2, 3	Eq. 18	
LGNCLA	L _{GN} _{CLA}	Length of the axis of revolution of the hemi- ellipsoid associated with the aft grain closure section;			
		in	Figs. 2, 4	Eq. 23	
LGNCLF	L _{GN_{CLF}}	Length of the axis of revolution of the hemi- ellipsoid associated with the forward grain closure section;			
		in	Figs. 2, 3	Eq. 10	
LGNCY	^L GN _{CY}	Length of cylindrical grain section. Includes length penalties for nozzle submergence, slots, joints, and internal insulation;			
		in	Fig. 2	Eq. 71	
LGNCYl	L _{GNCY1}	Length of basic cylindrical grain section. Does not include length penalties for nozzle submergence, slots, joints and internal insulation;			
		in	Fig. 2	Eq. 36	
LGNCY2	L _{GNCY2}		ndrical grain section. for nozzle submerge		
		in	Fig. 2	Eq. 55	
LGNCY3	L _{GN_{CY3}}	Length of cylindrical grain section. Includes length penalties for nozzle submergence and slots:			
		in	Fig. 2	Eq. 64	
LGNCY4	L _{GN_{CY4}}	Length of cylindrical grain section. Includes length penalties for nozzle submergence, slots and joints;			
		in	Fig. 2	Eq. 66	

Mnemonic	Symbol	Description; Ext. (Int.) Units			
LGNCY5	L _{GN} CY5	Length of cylindrical grain section. Includes length penalties for nozzle submergence, slots, joints and internal insulation;			
		in	Fig. 2	Eq. 69	
LGNNSCY	L _{GN_{NSCY}}	Distance nozzle is submerged in cylindrical grain section;			
		in	Fig. 4	Eq. 40	
LGNPDIN	L _{GN PDIN}	Cylindrical grain section length penalty for propellent displaced by internal insulation;			
		in	Fig. 2	Eq. 68	
LGNPDNS	L _{GN PDNS}	Cylindrical grain section length penalty for propellent displaced by submerged nozzle;			
		in	Fig. 2	Eq. 54	
LGNSL	$^{ m L}$ GN $_{ m SL}$	Cylindrical grain section length penalty for slot cutouts;			
		in	Fig. 2	Eq. 63	
LPTCF	L _{PTCF}	Total length of	port cone frustum s	ection;	
	- CF	in	Figs. 2, 4, 6	Eq. 45	
LPTCFCA	L _{PT} CFCA		portion of the port co the aft grain closure		
		in	Figs. 2, 4	Eq. 42	
LPTCFCY	$^{\mathrm{L}}_{\mathrm{PT}}_{\mathrm{CFCY}}$		portion of the port co		
		in	Figs. 2, 4	Eq. 44	
LPTCFS	L _{PTCFS}	Slant height of	port cone frustum e	ection;	
	CFS	in	Fig. 4	Eq. 47	

Mnemonic	Symbol	Description; 1	Ext. (Int.) Units				
LPTCYl	LPTCAI	Total length of cylindrical portion of basic port. Does not include adjustments for nozzle submergence, slots, joints nor internal insulation;					
		in	Fig. 2	Eq. 38			
LPTCY2	L _{PTCY2}		indrical port section. rgence penalty;	Includes			
		in	Figs. 2, 6	Eq. 47			
LPTNS	$^{ extsf{L}}_{ extsf{PT}_{ extsf{NS}}}$	Distance nozz	le is submerged into	port;			
	NS	in	Fig. 4	Eq. 39			
LPTNZI	L _{PT_{NZI}}	Submerged nozzle inlet allowance;					
		in	Fig. 4	Eq. 43			
LPTYCLA	L _{PT} YCLA	Length of cylindrical portion of the basic port within the hem:-ellipsoid associated with the aft grain closure section;					
		in	Fig. 4	Eq. 25			
LPTYCLF	L _{PT} YCLF	Length of cylindrical portion of the ba- port within the hemi-ellipsoid associa- with the forward grain closure section					
		in		Eq. 12			
QDCFAl	Q _{DCFA1}		uantity, port cone frose diameter. See DI				
		in		Eq. 76			
QDCFA2	Q _{DCFA2}		uantity, port cone fro se diameter. See Di				
		in		Eq. 77			
QDCFA3	Q _{DCFA3}		uantity, port cone frose diameter. See DI				
		in		Eq. 78			

Mnemonic	Symbol	Description; Ext. (Int.) Units
QDCFF1	Q _{DCFF1}	Associative quantity, port core frustum section forward base diameter. See DPTCFF;
		in Eq. 79
QDCFF2	Q _{DCFF2}	Associative quantity, port cone frustum section forward base diameter. See DPTCFF;
		in Eq. 80
QDCFF3	Q _{DCFF3}	Associative quantity, port cone frustum section forward base diameter. See DPTCFF;
		in Eq. 81
QDGN1	Q _{DGN1}	Associative quantity, cylindrical grain section diameter. See DGN;
		in Eq. 82
QDGN2	Q _{DGN2}	Associative quantity, cylindrical grain section diameter. See DGN;
		in Eq. 83
QDGN3	Q _{DGN3}	Associative quantity, cylindrical grain section diameter. See DGN;
		in Eq. 84
QDPT1	Q _{DPT1}	Associative quantity, basic cylindrical port section diameter. See DPT;
		in Eq. 85
QDPT2	Q _{DPT2}	Associative quantity, basic cylindrical port section diameter. See DFT;
		in Eq. 86
QDPT3	Q _{DPT3}	Associative quantity, basic cylindrical port section diameter. See DPT;
		in Eq. 87

40.1-35

Mnemonic	Symbol	Description; Ext. (Int.) Units	
QRAPTHI	Q _{RAPTH1}	Associative quantity, port to nozzle area ratio. See RAPTTH;	throat
		N. D.	Eq. 88
QRAPTH2	Q _{RAPTH2}	Associative quantity, port to nozzle area ratio. See RAPTTH;	throat
		N. D.	Eq. 89
QRAPTH3	Q _{RAPTH3}	Associative quantity, port to nozzle area ratio. See RAPTTH;	throat
		N. D.	Eq. 90
RAPTTH	^R APTTH	Area ratio. Ratio of basic cylindrisection cross sectional area to noz cross sectional area;	-
		N. D.	Eq. 4
RDCFACL	R _{DCFACL}	Diameter ratio. Ratio of port consection aft base diameter to grain equatorial diameter;	
		N. D.	Eq. 41
RDGNCLA	^R DGNCLA	Head ratio of ellipsoid associated vaft grain closure section. Ratio of the closure length to the closure ediameter;	f twice
		N. D.	Eq. 22
RDGNCLF	RDGNCLF	Head ratio of ellipsoid associated of forward grain closure section. Ratwice the closure length to the closequatorial diameter;	tio of
		N. D.	Eq. 9
RDPTCL	RDPTCL	Diameter ratio. Ratio of basic cyl port section diameter to grain clos rial diameter;	
		N. D.	Eq. 8

一個などのでは、 これのないないないないないないないないないないできないのできない

Mnemonic	Symbol	Description; Ext. (Int.) Units		
RLCFCA	RLCFCA	Length ratio. Ratio of length of porport cone frustum section within afficulture section to length of aft grain section; N. D.	gra	in sure
RLDGNCY	RLDGNCY	Length to diameter ratio, cylindric section. Includes nozzle submerge joint and internal insulation penaltic	al gr nce,	ain
		N. D.	Eq.	72
RLDGNYl	R _{LDGNY1}	Length to diameter ratio, basic cyl grain section. Does not include not submergence, slot, joint and interr insulation penalties;	zzle	ical
		N. D.	Eq.	37
RLDGNY2	R _{LDGN Y2}	Length to diameter ratio, cylindric section. Includes nozzle submerge penalty;		ain
		N. D.	Eq.	56
RLDGNY3	R _{LDGNY3}	Length to diameter ratio, cylindric section. Includes nozzle submerge slot penalties;		
		N. D.	Eq.	65
RL GNY4	R _{LDGNY4}	Length to diameter ratio, cylindric section. Includes nozzle submerge and joint penalties;		
		N. D.	Eq.	67
R LDGNY5	R _{LDGN Y5}	Length to diameter ratio, cylindric section. Includes nozzle submerge joint and internal insulation penalti	nce,	
		N. D.	Eq.	70

Mnemonic	Symbol	Description; Ext. (Int.) Units				
RLGNCHA	RLGNCHA	Length ratio, aft grain closure section. Ratio of hemi-ellipsoid frustum length themi-ellipsoid length;				
		N. D.	Eq. 33			
RLGNCHF	RLGNCHF	Length ratio, forward grain closus Ratio of hemi-ellipsoid frustum les hemi-ellipsoid length;				
		N. D.	Eq. 20			
RLPTCYA	RLPTCYA	Length ratio. Ratio of the length of cylindrical portion of the basic portion the hemi-ellipsoid to the length of ellipsoid for the aft grain closure	ort within the hemi-			
		N. D.	Eq. 27			
RLPTCYF	RLPTCYF	Length ratio. Ratio of the length of the cylindrical portion of the basic port within the hemi-ellipsoid to the length of the hemi-ellipsoid for the forward grain closure section:				
		N. D.	3q, 14			
SBSPT	S _{BS_{PT}}	Initial propellent burning surface a excluding slots;	ırea,			
		in ² Fig. 6	Eq. 62			
SPT2	s _{PT2}	Propellent surface area associated port. Includes submerged nozzle				
		in ²	Eq. 61			
SPTCFB .	S _{PT} CFB	Port surface area component. Pro surface at forward bane of port consection;				
		in ² Fig. 6	Eq. 60			
SPTCFS	$s_{ t PT}_{ t CFS}$	Port surface area component. Pro surface associated with lateral are cone frustum section;				
		in ² Fig. 6	Eq. 59			

Mnemonic	Symbol	Description; Ext. (Int.) Units					
SPTCY2	S _{PT} CY2	Port surface area component. Prope surface associated with the lateral a the cylindrical port section;					
•		in ²	Fig. 6	Eq. 58			
THETACF	$ heta_{ extsf{CF}}$	Half-angle of	port cone frustum se	ction;			
		deg (rad)	Figs. 2, 4	Eq. 46			
TPPWEB	T _{PP} WEB	grain in secti port are cylin between surfa	th thickness. Thickness thickness the grand of the grand distant the grand distant ce of cylindrical port of cylindrical grain se	in and nce section			
		in	Figs. 2, 3, 6	Eq. 5			
VGN	[™] GN	submerged no and all intern Note that the	ain envelope. Include ozzle penalty, slots, jal insulation except ligrain closures of the hemi-ellipsoid frustuds;	joints iner. grain			
VGNCHA	v _{GN} CHA	with the aft g	mi-ellipsoid frustum rain closure section;	associated			
		in ³	Fig. 5	Eq. 34			
VGNCHF	$v_{_{\mathrm{GN}_{\mathrm{CHF}}}}$	with the forward	mi-ellipsoid frustum ard grain closure sec	tion;			
		in ³	Fig. 3	Eq. 21			
VGNCLA	$v_{GN_{CLA}}$	the aft grain	mi-ellipsoid associate closure section;	ed with			
		in ³	Fig. 5	Eq. 24			
VGNCLF	$v_{GN_{CLF}}$	the forward g	mi- ellipsoid associa rain closure section;	ted with			
		in ³	Fig. 3	Eq. 11			

Mnemonic	Symbol	Description; E	ext. (Int.) Units	
VGNCY	v _{GNCY}	Includes port,	ndrical grain section submerged nozzle pond internal insulation	enalty,
VPPCLA	V _{PP} CLA	hemi-ellipsoid section. Note mediate quanti	pellent associated will of the aft grain clos that this volume is a try and does not inclur nozzle submergencies, etc.; Fig. 5	ure in inter- de
			J	-
VPPCLF	v _{PP} CLF	hemi-ellipsoid section. Note mediate quanti	pellent associated will of the forward grain that this volume is a lity and does not inclur insulation wedges, Fig. 3	n closure in inter- de
VPPCYI	v _{PP} CY1	grain section. propellent cor	pellent within basic of Does not include di rections for mozzle soints nor internal ins	splaced ubmer-
VPPPDNS	v _{PP} _{PDNS}	nozzle submer	pellent displaced due	to
		in ³	Fig. 5	Eq. 53
VPTCF	v _{PTCF}	Total volume of in 3	of port cone frustum Fig. 5	section; Eq. 48
VPTCFCY	V _{PT} CFCY		ic port portion of the on within the cylindri Fig. 5	
			•	•

6

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; E	ext. (Int.) Units	
VPTCLA	$v_{\mathtt{PT}_{\mathtt{CLA}}}$	associated wit	ic port within the her h the aft grain closur	e section;
		in ³	Fig. 5	Eq. 29
VPTCLF	v _{PTCLF}	associated wit section;	ic port within the her h the forward grain o	losure
		in ³	Fig. 3	Eq. 16
VPTCYCF	$v_{PT_{CYCF}}$	Volume of bas nozzle submer	ic port section assoc	iated with
		in ³	Fig. 5	Eq. 52
VPTECFA	V _{PT_{ECFA}}	cone frustum section;	psoidal cap at aft bas section within aft gra	
		in ³	Fig. 5	Eq. 50
VPTECLA	V _{PT} ECLA	cal portion of hemi-ellipsoid closure section	psoidal cap at base of basic port section will associated with the on;	thin the
		in ³	Fig. 5	Eq. 28
VPTECLF	V _{PT} ECLF	cal portion of the hemi-ellip	ipsoidal cap at base of the basic port sections psoid associated with closure section;	n within
		in ³	Fig. 3	Eq. 15
VPTYCLA	V _{PT} YCLA	port within the with the aft gr	indrical portion of the hemi-ellipsoid asso	e basic ociated
		in ³	Fig. 5	Eq. 26
VPTYCLF	v _{PT} YCLF	port within the with the forward	indrical portion of the hemi-ellipsoid assourd grain closure sec	ciated
		in ³	Fig. 3	Eq. 13

3

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

:RY	DGNHP	KGNI	KGN7	KODCFF2	KODPT2	LCNCHA	LGNCY2	LGNPDNS	LPTCFHA	LPTYCLA	QDCFF2	OPTZ	RDCFACL	RLDGNY1	RLGNCHF	SPICES	VGNCHE	VPPCY1	VPTCYCF	
GRAIN GEOMETH	DGNHA	KOPT2	KGN6	KODCFF1	KODPTI	IGN	LGNCY1	LGNPDIN	LPICFCY	LPTNZI	QDCFF1	CILAGO	RAPTTH	RLDGNCY	FLGNCHA	SPICEB	VGNCHA	VPPCLF	VPICLF	VPTYCLF
GNGM	DGNCL	KDPTI	KGN5	KQDCFA3	KQDCN3	KQRAPH3	LGNCY	LGNNSCY	LPTCFCA	LPTNS	QDCFA3	ODGN3	QRAPTH3	RLCFCA	RLDGNY5	SPT2	VGN	VPPCLA	VPTCLA	VPTYCLA
GRAING	*	ţ	<u>۴</u>	7*	\$ *	9 *	L*	∞ *	\$	*10	*11	*12	*13	†1 *	*15	* 16	*17	*18	*19	\ ₹
	DGN	DPICFF	KGN4	KQDCFA2	KODGN2	KORAPH2	LGNCLF	LGNCYS	LPICE	LPTCY2	QDCFA2	ODGN2	QRAPTH2	RDPTCL	PLDGNY4	SBSPT	TPPWEB	VGNCY	VPTCFCY	VPTECLF
	APT	DPTCFA	KGN3	KODCFAL	KODGNI	KORAPHL	LGNCLA	LGNCYL	LJTCUT	LPICY1	QDCFA1	ODCINI	QRAPTHD	RDGNCLF	RLDGNY3	RLPTCYF	THETACF	VGNCLF	VPTCF	VPTECLA
	APPWEB	DPT	KGN2	KGN8	KQDCFF3	KODPT3	LGNCHF	LGNCY3	LGNSL	LPICES	LPTYCLF	ODCFF3	SUPER	FDGNCLA	RLDGNY2	RLPTCYA	SPICY2	VGNCLA	VPPPDNS	VPTECFA

50, 1

MODEL TYPE: IBFLOW (Internal Ballistics, FLOW)

MODEL NAME: IBFMl (Cylindrical port, slot penalty)

DESCRIPTION:

IBFMI (Internal Ballistics, Flow Model number 1) evaluates the burn rate and flow characteristics within a cylindrical ported grain to determine the effective slot volume required for a neutral pressure-time history. This required volume (grain length penalty) is sometimes sizable, thereby resulting in a significant degradation of the motor volumetric loading efficiency.

The slot volume requirement is independent of the number of slots and is basically determined by the gas flow requirements from the slots into the center perforate. The calculation of the length of the slots is based upon the following assumptions:

- 1. The grain is cylindrical;
- The port burning surface is cylindrical;
- 3. The gas leaves the slots and enters the center perforate at a Mach number specified by the program user;
- 4. The pressure and temperature within the slot are equal to the pressure and temperature respectively within the center personate;
- 5. The gas flow upstream of the nozzle throat is isentropic flow of a perfect gas.

In addition to the slot penalty, this model also evaluates the maximum and minimum burn rates. These are available as constraint quantities to insure that the web is not thicker than that allowed by the maximum burn rate and burn time or thinner than that allowed by the minimum burn rate and burn time. The model evaluates a set of associative quantities to facilitate setting up these constraints, if required.

An appreciation for the slot geometry may be gained by referring to Figure 1.

PROCEDURE:

Prior to entering IBFM1, the models specified by the PROPELW, IBGAS and IBPERF model types have evaluated the propellent density, gas, and performance properties. The model specified by the GRAING model type then determined the geometry required to design a cylindrical ported grain, including accommodation for nozzle submergence.

The IBFM1 model is then executed and the burn rates and grain length penalty for slots is determined.

After executing IBFM1, the model specified by the GRAING model type will be reentered and the preliminary grain design will be corrected to account for the slot volume. The model specified by the INSULG model type may then utilize data from IBFM1 and the grain geometry to assess internal insulation requirements.

EQUATIONS:

Burn rate at ignition.

$$B_{PP_{IGN}} = \frac{T_{PP_{WEB}}}{T_B} \tag{1}$$

Average burn rate.

$$B_{PP_{AVG}} = K_{BPPAVG} B_{PP_{IGN}}$$
 (2)

Maximum burn rate.

$$B_{PP_{MAX}} = K_{BPPMAX} P_{AVG}^{a}$$
 (3)

Minimum burn rate.

$$B_{PP_{M'N}} = K_{BPPMIN} P_{AVG}^{b}$$
 (4)

Weight flow rate from port surface, excluding slots.

$$\stackrel{\bullet}{W}_{PT} = \rho_{PP_{MT}} S_{BS_{PT}} B_{PP_{AVG}}$$
 (5)

3

EQUATIONS (Cont.):

Weight flow rate required from all slots.

$$\dot{\mathbf{w}}_{\mathbf{SL}_{\mathbf{R}}\mathbf{EQ}} = \dot{\mathbf{w}}_{\mathbf{PP}_{\mathbf{MT}}} - \dot{\mathbf{w}}_{\mathbf{PT}} \tag{6}$$

Area of one burning surface of a slot.

$$A_{BS_{SL}} = A_{PP_{WEB}}$$
 (7)

Weight flow rate from a slot (two surfaces).

$$\mathring{W}_{SL} = 2 \rho_{PP_{MT}} A_{BS_{SL}} B_{PP_{AVG}}$$
(8)

Length of a slot.

$$L_{SL} = \frac{{\stackrel{\circ}{W}}_{SL} {\stackrel{C}{C}}_{GAS}}{\pi {\stackrel{D}{D}}_{PT} {\stackrel{H}{P}}_{AVG} {\stackrel{M}{SL}}_{So}}$$
(9)

Number of slots required.

$$N_{SL_{REQ}} = \frac{\bar{W}_{SL_{REQ}}}{\bar{W}_{SL}}$$
 (10)

Grain length penalty for slots cutouts.

$$L_{SL_{GIV}} = N_{SL_{REQ}} L_{SL}$$
 (11)

Associative quantities. The following quantities are intended solely for optional utilization by the program user. Their primary usage within this model is for forming constraint quantities.

$$Q_{BI} = K_{QBI} B_{PP_{IGN}}$$
 (12)

$$Q_{BA} = K_{QBA} B_{PP_{AVG}}$$
 (13)

ř

()

EQUATIONS (Cont.):

$$Q_{BMX} = K_{QBMX} B_{PP_{MAX}}$$
 (14)

$$Q_{BMN} = K_{QBMN} B_{PP_{MIN}}$$
 (15)

OPTIMIZATION CONSIDERATIONS:

Generally, the nature of the problem which would require usage of this model would also require that the following constraints be set up by the program user.

A maximum propellent burn rate constraint will insure that the propellent web is not too thick. (Note that this constraint corresponds to a lower limit on the port fraction.)

$$B_{PPAVG} \in B_{PPMAX}$$
 (16)

A minimum propellent burn rate constraint will insure that the propellent web is not too thin. (Note that this constraint corresponds to an upper limit on the port fraction.)

$$B_{PPAVG} > B_{PPMIN}$$
 (17)

Note that $L_1 + L_2 = L$ Where L is the length such that $S_{PT} = \pi L D_{PT}$

Fig. 50.1-1 Slot Geometry

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
EBPPMAX	a	Exponent for maximum radial prop burn rate computation;	ellent
		N. D.	0.39
EBPPMIN	Ъ	Exponent for minimum radial prop- burn rate computation;	ellent
		N. D.	0.27
KBPPAVG	K _{BPPAVG}	Coecient for average radial prop burn rate computation;	ellent
		N. D.	1.0
КВРРМАХ	K _{BPPMAX}	Coefficient for maximum radial proburn rate computation;	opellent
		N. D.	0.054
KBPPMIN	KBPPMIN	Coefficient for minimum radial proburn rate computation;	pellent
		N. D.	0.039
KQBAVG	K _{QBA}	Associative quantity coefficient for QBPPAVG computation;	
		N. D.	0
KQBIGN	K _{QBI}	Associative quantity coefficient for QBPPIGN computation;	
		N. D.	O
KQBMAX	K _{QBMX}	Associative quantity coefficient for QBPPMAX computation;	
		N. D.	0
KQBMIN	K _{QBMN}	Associative quantity coefficient for QBPPMIN computation;	
		N. D.	0

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
MSLEXT	M _{SL}	Macı. number of combustion pro exit;	ducts at slot
		N. D.	0.2

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
APPWEB	A _{PP} _{WEB}	Cross sectional web area; in ²	GRAING
CGAS	C _{GAS}	Speed of sound in gas; ft/sec	IBGAS
DPT	D _{PT}	Port diameter; in	GR AING
DWPPMT	w _{PPMT}	Propellent weight flow; lb/sec	IBPERF
PCHAVG	PAVG	Average chamber pressure; PSIA	IBGAS
RHOPPMT	$ ho_{ t PP_{ t MT}}$	Propellent density; lb/in ³	PROPELW
RSPHT	н	Specific heat ratio; N. D.	IBGAS
SBSPT	SBSPT	Port burning surface area; in 2	GR AING

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
TBPPMT	TB	Propellent burn time;	
	D	sec	IBPERF
TPPWEB	$\mathtt{T_{PP}_{WEB}}$	Web thickness;	
	TWEB	in	GRAING

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units		
ABSSL	A _{BS} _{SL}	Area of one burning surface of a sl	ot; Eq.	7
BPPAVG	B _{PP} AVG	Average radial propellent burn rat	e; Eq.	2
BPPIGN	B _{PP} IGN	Radial burn rate of propellent at ig in/sec	nitio Eq.	_
BPPMAX	B _{PPMAX}	Maximum radial propellent burn rain/sec	ite; Eq.	3
BPFMIN	B _{PP} MIN	Minimum radial propellent burn rain/sec	te; Eq.	4
DWBSNSL	w _{PT}	Propellent weight flow rate from p area, excluding slots;	ort s	urface
		lb/sec	Eq.	5
DWSLREQ	w _{SL_{REQ}}	Propellent weight flow rate require slots for balanced motor flow;	ed fr	om
		lb/sec	Eq.	6

Mnemonic	Symbol	Description; Ext. (Int.) Units	
DWSL	$\overset{ullet}{w}_{\mathtt{SL}}$	Propellent weight flow rate from a slot (two surfaces);	
		lb/sec	Eq. 8
LSL	L _{SL}	Length of a slot required for balance flow;	ced slot
		in	Eq. 9
LSLGN	$^{\mathrm{L}}{}_{\mathrm{SL}}{}_{\mathrm{GN}}$	Grain length penalty for slot cutout in	s; Eq. 11
NSLREQ	N _{SL_{REQ}}	Number of slots required for balanced motor flow. NSLREQ will normally be a fractional number. Note the distinction between NSLREQ and NISIHO, NISIHI, which is input to the internal insulation model;	
		N. D.	Eq. 10
QBPPAVG	Q_{BA}	Associative quantity, average burn (see BPPAVG);	rate
		in/sec	Eq. 13
QBPPIGN	QBI	Associative quantity, burn rate at (see BPPIGN);	ignition
		in/sec	Eq. 12
QBPPMAX	Q_{BMX}	Associative quantity, max. burn ra (see BPPMAX);	ıte
		in/sec	Eq. 14
QBPPMIN	Q _{BMN}	Associative quantity, min. burn ra (see BPPMIN);	te
		in/sec	Eq. 15

•

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

EKNAL BAL
BALLISTICS, FLOW DWBSNSL KBPPMAX LSL QBPPMAX
INTERNAL BPPMIN KREPANG KQBMIN QEPPTGN
IBPAL BPPAX EBPACH KQBAX QBPAVC
18F1.0W
BPFICH KBPPMAX KQBAVC NSLRBQ
BPPAVC DWSLREQ KQBTGR KSLEKT
ABSSL DWSL KAPPMON LSIGN CAPPMIN

69.1

THE REAL PROPERTY AND ADDRESS OF THE PARTY AND

6

MODEL TYPE: IBGAS (Internal Ballistics, GAS)

MODEL NAME: IBGM1 (Constant vacuum thrust)

DESCRIPTION:

IBGM1 (Internal Ballistics Gas Model number 1) evaluates the gas characteristics and chamber pressures associated with a constant vacuum thrust solid rocket motor.

EQUATIONS:

Average chamber pressure.

$$P_{AVG} = K_{AVG} P \tag{1}$$

Maximum expected operating pressure.

$$P_{MEO} = K_{MEO} P \tag{2}$$

Maximum chamber pressure.

$$P_{MAX} = P_{MEO}$$
 (3)

Delivered characteristic velocity.

$$C^* = \xi C^*_{TH} \tag{4}$$

Specific heat ratio constants.

$$H_1 = H + 1 \tag{5}$$

EQUATIONS (Cont.):

$$H_2 = H - 1 \tag{6}$$

$$H_3 = \frac{H_1}{H_2} \tag{7}$$

$$H_4 = \frac{H_1}{H} \tag{8}$$

$$H_5 = \frac{H_2}{H} \tag{9}$$

$$H_6 = \left(\frac{2}{H_1}\right)^{H_3}$$
 (10)

$$H_7 = \sqrt{\frac{H_2 H_6}{2}}$$
 (11)

$$H_8 = \sqrt{\frac{2 H H_6}{H_5}}$$
 (12)

Gas constant.

$$R_{GAS} = \frac{H H_6 C^{2}}{T_C}$$
 (13)

Speed of sound in gas.

$$C_{GAS} = \sqrt{H T_C R_{GAS}}$$
 (14)

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CVTH	C* _{TH}	Theoretical characteristic velocity ft/sec	; 0
KPCHAVG	KAVG	Coefficient, average chamber pres	•
		N. D.	1
KPCHMEO	K _{MEO}	Coefficient, maximum expected oper chamber pressure;	rating
		N. D.	1
KCEF	Ę	Combustion efficiency factor;	
		N. D.	1
PCH	P	Chamber pressure;	
		PSIA	0
RSPHT	Н	Specific heat ratio;	
		N. D.	0
TCPP	T _C	Propellent combustion temperature;	
	U	°R	0

INPUT DATA, INTER-MODEL:

None

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units		
CGAS	C _{GAS}	Speed of sound in gas; ft/sec	Eq.	14
CVDELV	C*	Delivered characteristic velocity; ft/sec	Eq.	4
KRGAS	RGAS	Gas constant; $ft^2/(sec^2 - {}^0R)$	Eq.	13
PCHAVG	P _A VG	Average chamber pressure; PSIA	Eq.	1
PCHMAX	P _{MAX}	Maximum chamber pressure; PSIA	Eq.	3
PCHMEO	Рмео	Maximum expected operating cham pressure; PSIA	ber Eq.	2
RSPHTI	H ₁	Specific heat ratio quantity; N. D.	Eq.	
RSPHT2	H ₂	Specific heat ratio quantity; N. D.	Eq.	
RSPHT3	н ₃	Specific heat ratio quantity; N. D.	Eq.	7
RSPHT4	H ₄	Specific heat ratio quantity; N. D.	Eq.	8
RSPHT5	H ₅	Specific heat ratio quantity; N. D.	Eq.	9
RSPHT6	н ₆	Specific heat ratio quantity; N. D.	Eq.	10

Mnemonic	Symbol	Description; Ext. (Int.) Units	- -	
RSPHT7	H ₇	Specific heat ratio quantity; N. D.	Eq.	11
RSPHT8	Н ₈	Sp cific heat ratio quantity; N. D.	Eq.	12

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

INTERNAL BALLISTICS, GAS KPCHAVG KPCHNED PCHNED RSPHT RSPHT5 RSPHT6
IBGMI KCEF PCHMAX RSPHTA
196AS 1 *2 *2 *3
CVTH PCHAVG RSPHT3 TXPP
CVDELV PCH RSPHT2 RSPHT8
CGAS K.rgas RSPHT1 RSPHT7

70.1

MODEL TYPE: IBPERF (Internal Ballistics, PERFormance)

MODEL NAME: IBPM1 (Conical nozzle divergence losses)

DESCRIPTION:

IBPMI (Internal Ballistics Performance Model number 1) evaluates the propellent and nozzle dependent vacuum delivered performance quantities. The specific impulse is degraded to account for the nozzle half angle divergence loss (axial direction), due to the directional change of flow as the gas expands in a conical nozzle.

PROCEDURE:

Prior to entering IBPM1, the models specified for the PROPELW and IBGAS model types have evaluated the propellent weight and gas properties.

Upon the first entrance to IBPM1, the propellent weight flow is computed and the model specified by the NOZZLEG model type is executed to determine the nozzle geometry.

IBPM1 is then entered for the second time, the pressure ratio is solved iteratively using Newton's method, and the remainder of the internal ballistics performance dependent quantities are evaluated.

After the IBPM1 computations are completed, the motor geometry and weights are determined, the model specified for the PROPUL model type is executed, and the primary motor propulsion quantities are evaluated.

EQUATIONS (FIRST ENTRANCE):

Propellent weight flow.

$$\dot{\mathbf{w}}_{\mathbf{PP}_{\mathbf{MT}}} = \frac{\mathbf{w}_{\mathbf{PP}_{\mathbf{MT}}}}{\mathbf{T}_{\mathbf{B}}} \tag{1}$$

EQUATIONS (SECOND ENTRANCE):

Pressure ratio, nozzle exit pressure to chamber pressure. (transcendental equation solved iteratively for R_D)

$$\epsilon_{NZ} = \frac{H_{\gamma}}{R_{p}(1/H)\sqrt{1-R_{p}^{H_{5}}}}$$
 (2)

Critical pressure ratio.

$$R_{PC} = \left(\frac{2}{H_1}\right) \tag{3}$$

Nozzle half angle divergence momentum loss.

$$\lambda = \frac{1 + \cos \left(\theta_{NZ}\right)}{2} \tag{4}$$

Reference nozzle half angle loss.

$$\lambda_{R} = \frac{1 + \cos\left(\theta_{R}\right)}{2} \tag{5}$$

Vacuum thrust coefficient.

$$C_{V} = \lambda H_{8} \sqrt{1 - R_{P}^{H_{5}}} + \epsilon_{NZ} R_{P}$$
 (6)

Reference thrust coefficient (exit pressure = atmospheric pressure).

$$C_{R} = \lambda_{R} H_{8} \sqrt{1 - C_{1}^{H_{5}}}$$
 (7)

Vacuum specific impulse.

$$I_{SP_{V}} = \left(\frac{C_{V}}{C_{R}}\right) I_{SP_{R}} \tag{8}$$

Delivered vacuum specific impulse.

$$I_{SP_{VD}} = K_{VD} I_{SP_{V}}$$
 (9)

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CIBPI	cı	Ratio of a reference nozzle exit pr a reference chamber pressure. T reference nozzle exit pressure mu to sea level pressure;	he
		N. D.	0.014696
ISPR	I _{SP_R}	Specific impulse for the reference pressure ratio CIBPl and the reference nozzle half angle NZHAR;	
		sec	0
KISPVD	$\kappa_{_{ m VD}}$	Nozzle efficiency factor;	
	, 2	N. D.	1
NZHAR	$\theta_{ m R}$	Reference nozzle half angle;	
	K	d e g	0
ТВРРМТ	TB	Propellent burn time;	
	2	sec	0

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
COSNZHA	cos θ _{NZ}	Cosine of nozzle half angle; N. D.	NOZZLEG
RAEXTTH	€NZ	Nozzle expansion ratio at exit p	
RSPHT	н	N. D. Specific heat ratio; N. D.	NOZZLEG IBGAS
RSPHT1	н1	Specific heat ratio quantity; N. D.	IBGAS
RSPHT2	н ₂	Specific heat ratio quantity; N. D.	IBGAS
RSPHT5	н ₅	Specific heat ratio quantity; N. D.	IBGAS
RSPHT7	H ₇	Specific heat ratio quantity; N. D.	IBGAS
RSPHT8	н ₈	Specific heat ratio quantity; N. D.	IBGAS
WPPMT	$w_{PP_{MT}}$	Propellent weight; 1b	PROPELW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units		
CFVAC	$c_{\mathbf{v}}$	Vacuum thrust coefficient;		
	•	N. D.	Eq.	6

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Unit	Description; Ext. (Int.) Units	
CFR	c _R	Reference thrust coefficient corresponding to the reference nozzle half angle NZHAR and the reference pressure ratio CIBPI. The reference nozzle exit pressure is sea level pressure;		
		N. D.	Eq. 7	
DWPPMT	$\overset{ullet}{\mathtt{w}}_{\mathtt{PP}_{\mathbf{MT}}}$	Propellent weight flow;		
	MT	lb/sec	Eq. 1	
ISPVC	$^{\mathrm{I}}\mathtt{sp}_{\mathrm{v}}$	Vacuum specific impulse;		
	or v	sec	Eq. 8	
ISPVD I _{SI}	$^{\mathrm{I}}{}_{\mathrm{SP}_{\mathrm{VD}}}$	Delivered vacuum specific impulse;		
	o- VD	sec	Eq. 9	
NZHAL λ	Nozzle half angle loss;			
		N. D.	Eq. 4	
NZHALR $\lambda_{\rm F}$	$\lambda^{}_{ m R}$	Reference nozzle half angle loss;		
		N. D.	Eq. 5	
RPEPC R _P		Pressure ratio. Ratio of nozzle exit pressure to chamber pressure;		
		N. D.	Eq. 2	
RPEPCC	R _{PC}	Critical pressure ratio. Prat nozzle throat;	essure ratio	
		N. D.	Eq. 3	

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

PERFORMANCE
BALLISTICS, F ISPVC RPEPC
Internal i ISPR Nzhar
IBPAI DWFFMT NZHALR
IBPERF *1 *2 *3
CIBPI NZHAL
CFVAC KISPVD TBPPMT
CFR ISPVD RPEPCC

80.1

The second of the second of the

MODEL TYPE: INSULG (internal INSULation Geometry)

MODEL NAME: INGMl (geometric parameter)

DESCRIPTION:

INGM1 (internal INsulation Geometry Model number 1) evaluates the internal insulation geometry for a solid rocket motor case and propellent grain having a cylindrical section and oblate closures. The basic components may include:

insulation liner ellipsoidal insulation wedges for the forward and aft closures insulation required for unjointed grain designs insulation required for jointed grain designs

The model includes provision for circular cutouts, "holes" in the forward and aft closures, required for the igniter and nozzle. See figures 1 and 2 for an illustration of the basic insulation components and the interface with the case, grain, nozzle, and igniter geometry. Whenever possible, the equations have been formulated such that the geometry for the basic components degenerate to basic geometric forms. In addition, user specified coefficient and bias terms (preset to nominal values) are provided for the principal independent quantities associated with each basic geometric form. Consequently, the actual insulation geometry capable of being simulated is to a large degree a function of the ingenuity of the program user.

The insulation liner, as illustrated in figures 3 - 6, interfaces between the inside case surface and the outside wedge surfaces or grain envelope. Within the cylindrical case section, the liner has constant thickness. Within the closures, the outside and inside liner surfaces are hemi-ellipsoids whose equatorial planes are coincident with the plane separating the closure and cylindrical sections. The liner holes in the forward and aft closures are cylindrical, centered on the axis of revolution of the liner surface hemi-ellipsoids. The principle purposes of the liner geometry are to determine a total volume for insulation weight computations and to specify the head ratios and cylindrical diameter of the basic grain envelope.

DESCRIPTION (Cont.):

The insulation wedges (see figures 7 - 14) are associated with the forward and aft closures and interface between the insulation liner and the grain. The wedges may be completely within a closure, or may extend beyond a closure into the cylindrical section. Since the principle purpose of the wedge geometry is to determine an effective volume for weight evaluations, no corrective action, except for a warning diagnostic, is taken by the program if a wedge extends from within a closure beyond the cylindrical section.

If a wedge is completely within the closure (see figures 7, 13), the inside and outside wedge surfaces are hemi-ellipsoid frustums which are tangent at their bases (the "inside/outside wedge surface osculation plane"). The axis of revolution of these frustums are coincident and the equatorial plane of the hemi-ellipsoid associated with the outside frustum surface is coincident with the plane separating the case closure and case cylindrical sections. However, the "equatorial plane of the hemi-ellipsoid associated with the inside frustum surface" and the "inside/outside wedge surface osculating plane" are normally not coincident with each other or the "plane separating the case closure and case cylindrical sections".

If a wedge extends beyond a closure into the cylindrical section (see figures 9, 14), the outside wedge surface is comprised of a hemi-ellipsoid and a cylinder. The inside wedge surface is a hemi-ellipsoid tangent to the cylindrical portion of the outside wedge surface (the "inside/outside wedge surface osculation plane"). The axis of revolution of the inside and outside wedge surfaces are coincident and the "equatorial plane of the inside surface ellipsoid" is coincident with the "inside/outside wedge surface osculation plane". Further, the "equatorial plane of the hemi-ellipsoid associated with the outside wedge surface" is coincident with the "plane separating the case closure and case cylindrical section". However, normally the equatorial planes of the hemi-ellipsoids associated with the outside wedge surface and the inside wedge surface are not coincident.

The length of the forward closure wedge (figures 7, 9) is normally a function of the propellent web thickness. The igniter cutout is sylindrical, centered on the axis of revolution of the wedge surface hemi-ellipsoids.

The length of the aft closure wedge (figures 11, 13) is normally a function the cone frustum grain cutout half angle. The nozzle cutout is a cone frust having a half angle equal to the cone frustum grain cutout half angle.

For the purpose of this model, a slot has none or one burning surface inhibited, whereas a joint has both burning surfaces inhibited. The slot and joint insulation, as illustrated in figures 15 - 20, is comprised of the following components:

(

DESCRIPTION (Cont.):

Port/Liner (PL) component. This component interfaces between the port and the liner. It has a rectangular cross section and its dimensions are normally a function of the maximum insulation thickness and the slot or joint length.

Port/Grain (PG) component. This component, which inhibits a burning surface, interfaces between the port and the grain. It normally has a trapezoid cross section (although it may be a pentagon, rectangle or triangle--see figures 16, 17) and its dimensions are primarily a function of the maximum insulation thickness, propellent web thickness, and a user specified base length. It should be noted that for joints, provision is made for "overlapping" PG components. However, for slots, except for a warning diagnostic, no corrective action is taken by the program if the PG component exceeds the slot cutout length.

Grain/Liner (GL) component. This component interfaces between the grain and the liner. It has a triangular cross section and its dimensions are normally a function of the maximum insulation thickness and the propellent web thickness. The GL component is associated with each non-inhibited slot burning surface.

The number of slots and joints, for insulation purposes, is specified by the program user and should not be a fractional number. The purpose of the slot and joint geometry is to determine an effective volume for insulation weight computations.

PROCEDURE:

INGM1 is a three-entrance model. Inter-model coupling is illustrated by figure 22.

Prior to the first entrance to INGM1, the models specified for the IBGAS, IBPERF, INSULW, and CASEG model types have evaulated the gas characteristics, insulation density and case geometry.

Upon the first entrance to INGM1, the basic insulation material properties are evaluated and, except for the length of the cylindrical section, the insulation liner geometry is determined.

The grain geometry model, GNGM1, then uses the inside liner surface to define the basic grain envelope. After adjusting the basic grain to account for submerged nozzle, slot, and joint penalties, program control is returned to INGM1.

أرأ

PROCEDURE (Cont.):

Upon the second entrance to INGM1, the insulation wedge geometry, associated with the forward and aft closures, is evaluated, the slot and joint geometry is determined, and the propellent displaced by the closure wedges and the slot/joint insulation components is computed.

The grain geometry model, GNGMl, is then reentered, the cylindrical grain length is adjusted to include the propellent displaced by the insulation, and the total grain geometry is evaluated.

Upon the third entrance to INGM1, the grain geometry has been completely determined and the cylindrical section of the liner is sized. After evaluating the residual insulation volume, the total internal insulation volume is computed.

After executing INGM1, the program evaluates the remaining substage geometry. The model specified by the INSULW model type then uses the volumes obtained in INGM1 as effective volumes to determine the internal insulation weight breakdown.

REFERENCES:

Reference 52, "Some Useful Theorems Associated With Hemi-Ellipsoids" is the basis for the derivations of the following equations:

11, 17, 19, 20, 23, 25, 26, 28, 36, 42, 44, 45, 47, 50, 51, 53, 68, 81, 85, 87, 88, 89, 92, 94, 96, 98, 100, 101, 104, 115, 131, 135, 137, 138, 140, 142, 144, 146, 147, 150.

Reference 54, "Some Useful Theorems Associated With Osculating Ellipses" contains the derivations for the following equations:

74, 75, 76, 126, 127, 128.

Reference 55, "Derivation of LIWCFI and DIWCAI for the GTS INGM1 Internal Insulation Model" contains the derivations and assumptions for the following equations:

107a, 107b, 107c, 107d, 107e, 117, 120, 121, 122, 123, 124.

Reference 56, "PG Internal Insulation Subcomponent for GTS INGM1 Internal Insulation Model" contains the derivations and rationale for equations 156 through 210.

Reference 57, "Derivation of VIWCAPD and VIWCFPD for the GTS INGM1 Internal Insulation Model" contains the derivations and assumptions for equations 211 through 222.

NOTATION:

The following notation convention is used within this model whenever possible.

First Character

- Plane area. (in²)
- C Constant or intermediate quantity.
- D Diameter (measured normal to centerline). (in)
- K Coefficient or bias.
- L Length (measured parallel to centerline). (in)
- R Ratio. Next characters will be D or L to indicate diameter or length ratios. (N.D.)
- Thickness. (in)
- Volume. (in³) Centroid. (in) v
- Y

Next two characters denote principal insulation component.

- Liner. IL
- IJ Joint.
- IN General.
- IS Slot.
- IW Wedge.

Next characters.

- Aft.
- C or CL Closure.
- Closure Hole. CH
- E Ellipsoid.
- F Forward.
- H Hole.
- Propellent Displaced. PD

Final character.

- Inside surface.
- 0 Outside surface.

EQUATIONS, FIRST ENTRANCE:

Equations 1 through 56 are evaluated at the first entrance to the INGM1 model.

INSULATION PROPERTIES:

Approximate radiative heating rate.

$$Q_{IN_{H}} = C_{JN_{1}} \left(\frac{T_{C_{PP}}}{C_{IN_{2}}}\right)^{4} K_{IN_{1}} + K_{IN_{2}}$$
 (1)

Maximum insulation thickness for closure wedges. (See equations 61, 108)

$$T_{IW_{MAX}} = \left(\frac{C_{IN_3} T_B Q_{IN_H}}{Q_{IN}^* \rho_{IW}}\right) K_{IW_{23}} + K_{IW_{24}}$$
 (2-a)

Maximum insulation thickness for a slot cutout. (Figure 16)

$$T_{IS_{MAX}} = \left(\frac{C_{IN_3}^{T_B} Q_{IN_H}}{Q_{IN}^{*} \rho_{IS}}\right) K_{IS_1} + K_{IS_2}$$
 (2-b)

Maximum insulation thickness for a joint cutout. (Figure 17)

$$T_{IJ_{MAX}} = \left(\frac{C_{IN_3} T_B Q_{IN_H}}{Q_{IN}^* P_{IJ}}\right) K_{IJ_1} + K_{IJ_2}$$
 (2-c)

INSULATION LINER, CYLINDRICAL SECTION:

Outside diameter of the cylinder which is the outside surface of the insulation liner in the cylindrical case section. (Figure 2)

$$D_{IL_{O}} = D_{CS_{I}}$$
 (3)

Inside diameter of the cylinder which is the inside surface of the insulation liner in the cylindrical case section. (Figure 2)

$$D_{IL_{\overline{I}}} = D_{IL_{\overline{O}}} - 2 T_{IL_{\overline{CY}}}$$
(4)

Ý ,

EQUATIONS, FIRST ENTRANCE (Cont.):

INSULATION LINER, CLOSURE SECTIONS (FORWARD AND AFT):

Equatorial diameter of the ellipsoids formed by the outside surface of the insulation liner associated with the forward and aft case closure sections. (Figures 2, 3, 5)

$$D_{IL}_{CLO} = D_{IL}_{O}$$
 (5)

Equatorial diameter of the ellipsoids formed by the inside surface of the insulation liner associated with the forward and aft case closure sections. (Figures 2, 3, 5)

$$D_{IL_{CLI}} = D_{IL_{I}}$$
 (6)

INSULATION LINER, FORWARD CLOSURE SECTION:

Head ratio of the ellipsoid formed by the outside surface of the insulation liner within the forward case closure section.

$$R_{DLLCFO} = R_{DCSCFI}$$
 (7)

Length of the axis of revolution of the hemi-ellipsoid formed by the outside surface of the insulation liner within the forward case closure section. (Figures 3, 4)

$$L_{IL_{CLFO}} = \frac{R_{DILCFO} D_{IL_{CLO}}}{2}$$
 (8)

Diameter of circular hole, for the igniter, centered on the axis of revolution of the hemi-ellipsoid formed by the outside surface of the insulation liner within the forward case closure section. (Figures 2, 3)

$$D_{IL_{HFO}} = D_{CS_{HFI}} K_{IL_{17}} + K_{IL_{18}}$$
(9)

Diameter ratio, hole diameter to equatorial diameter, outside surface of the insulation liner within the forward case closure section. (Figure 3)

$$R_{DILHFO} = \frac{D_{IL}_{HFO}}{D_{IL}_{CLO}}$$
 (10)

E:

EQUATIONS, FIRST ENTRANCE (Cont.):

INSULATION LINER, FORWARD CLOSURE SECTION (Cont.):

Length of hemi-ellipsoid frustum associated with the outside surface of the insulation liner within the forward closure section. (Figure 3)

$$L_{\rm IL_{CHFO}} = L_{\rm IL_{CLFO}} \sqrt{1 - R_{\rm DILHFO}^2}$$
 (11)

Thickness of insulation liner at center of forward case closure section. Distance between inside and outside hemi-ellipsoid surfaces of the insulation liner, measured on the axis of revolution. (Figure 3)

$$T_{IL_{CLF}} = T_{IL_{CY}} K_{IL_1} \cdot K_{IL_2}$$
 (12)

Length of the axis of revolution of the hemi-ellipsoid formed by the inside surface of the insulation liner within the forward case closure section. (Figure 3)

$$L_{IL_{CLFI}} = L_{IL_{CLFO}} - T_{IL_{CLF}}$$
 (13)

Head ratio of the ellipsoid formed by the inside surface of the insulation liner within the forward case closure section.

$$R_{DILCFI} = \frac{{}^{2} L_{IL}_{CLFI}}{{}^{D_{IL}}_{CLI}}$$
 (14)

Diameter of circular hole, for the igniter, centered on the axis of revolution of the hemi-ellipsoid formed by the inside surface of the insulation liner within the forward case closure section. (Figure 3)

$$D_{IL_{HFI}} = D_{IL_{HFO}}$$
 (15)

Diameter ratio, hole diameter to equatorial diameter, inside surface of the insulation liner within the forward case closure section. (Figure 3)

$$R_{DILHFI} = \frac{D_{IL}_{HFI}}{D_{IL}_{CLI}}$$
 (16)

EQUATIONS, FIRST ENTRANCE (Cont.):

INSULATION LINER, FORWARD CLOSURE SECTION (Cont.):

Length of hemi-ellipsoidal frustum associated with the inside surface of the insulation liner within the forward case closure. (Figure 3)

$$L_{\rm IL_{CHFI}} = L_{\rm IL_{CLFI}} \sqrt{1 - R_{\rm DILHFI}^2}$$
 (17)

Length of the cylindrical hole, for the igniter, in the insulation liner within the forward case closure section. (Figure 3)

$$L_{\text{IL}_{\text{HF}}} = L_{\text{IL}_{\text{CHFO}}} - L_{\text{IL}_{\text{CHFI}}} \tag{18}$$

Volume of the hemi-ellipsoid formed by the outside surface of the insulation liner within the forward case closure section. (Figure 4)

$$V_{IL_{CLFO}} = \left(\frac{\pi}{6}\right) L_{IL_{CLFO}} D_{IL_{CLO}}^{2}$$
 (19)

Volume of the cylindrical section, associated with the igniter hole, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the forward case closure section. (Figure 4)

$$V_{IL_{HFOC}} = \left(\frac{\pi}{4}\right) L_{IL_{CHFO}} D_{IL_{HFO}}^{2}$$
 (20)

Length ratio, hemi-ellipsoid frustum to hemi-ellipsoid, outside surface, insulation liner, forward case closure. (Figure 3)

$$R_{LILCFO} = \frac{L_{IL}_{CHFO}}{L_{IL}_{CLFO}}$$
 (21)

Volume of ellipsoidal cap at forward base of the cylindrical section, associated with the ignitor cutout, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the forward case closure section. (Figure 4)

$$V_{IL_{HFOE}} = \left(\frac{V_{IL_{CLFO}}}{2}\right) \left(2 - 3 R_{LILCFO} + R_{LILCFO}^{3}\right)$$
 (22)

EQUATIONS, FIRST ENTRANCE (Cont.):

INSULATION LINER, FORWARD CLOSURE SECTION (Cont.):

Volume of cylinder with ellipsoidal cap, associated with the igniter cutout, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the forward case closure section. (Figure 4)

$$v_{IL}_{HFO} = v_{1L}_{HFOE} + v_{IL}_{HFOC}$$
 (23)

Volume of hemi-ellipsoid frustum with hole cutout associated with the outside surface of the insulation liner within the forward case closure section. (Figure 4)

$$v_{IL_{CHFO}} = v_{IL_{CLFO}} - v_{IL_{HFO}}$$
 (24)

Volume of the hemi-ellipsoid formed by the inside surface of the insulation liner within the forward case closure section. (Figure 4)

$$V_{IL_{CLFI}} = \left(\frac{\pi}{6}\right) L_{IL_{CLFI}} D_{IL_{CLI}}^{2}$$
 (25)

Volume of the cylindrical section, associated with the igniter hole, within the hemi-ellipsoid formed by the inside surface of the insulation liner within the forward case closure section. (Figure 4)

$$V_{IL_{HFIC}} = \left(-\frac{\pi}{4}\right) L_{IL_{CHFI}} D_{II_{HFI}}^{2}$$
 (26)

Length ratio, hemi-ellipsoid frustum to hemi-ellipsoid, inside surface, insulation liner, forward case closure. (Figure 3)

$$R_{LILCFI} = \frac{L_{IL}_{CHFI}}{L_{IL}_{CLFI}}$$
 (27)

Volume of ellipsoidal cap at forward base of the cylindrical section, associated with the igniter cutout, within the hemi-ellipsoid formed by the inside surface of the insulation liner within the forward case closure section. (Figure 4)

$$V_{IL_{HFIE}} = \left(\frac{V_{IL_{CLFI}}}{2}\right) \left(2 - 3 R_{LILCFI} + R_{LILCFI}^{3}\right)$$
 (28)

₹.

EQUATIONS, FIRST ENTRANCE (Cont.):

INSULATION LINER, FORWARD CLOSURE SECTION (Cont.):

Volume of cylinder with ellipsoidal cap, associated with the igniter cutout, within the hemi-ellipsoid formed by the inside surface of the insulation liner within the forward case closure section. (Figure 4)

$$V_{IL}_{HFI} = V_{IL}_{HFIE} + V_{IL}_{HFIC}$$
 (29)

Volume of hemi-ellipsoid frustum with hole cutout associated with the inside surface of the insulation liner within the forward case closure section. (Figure 4)

$$V_{IL_{CHFI}} = V_{IL_{CLFI}} - V_{IL_{HFI}}$$
 (30)

Volume of insulation liner within the forward case closure section. (Figure 4)

$$v_{IL_{CLF}} = (v_{IL_{CHFO}} - v_{IL_{CHFI}}) K_{IL_3} + K_{IL_4}$$
(31)

INSULATION LINER, AFT CLOSURE SECTION:

Head ratio of the ellipsoid formed by the outside surface of the insulation liner within the aft case closure section.

$$R_{\text{DILCAO}} = R_{\text{DCSCAI}} \tag{32}$$

Length of the axis of revolution of the hemi-ellipsoid formed by the outside surface of the insulation liner within the aft case closure section. (Figures 5, 6)

$$L_{IL_{CLAO}} = \frac{R_{DILCAO} D_{IL_{CLO}}}{2}$$
 (33)

Diameter of circular hole, for the nozzle, centered on the axis of revolution of the hemi-ellipsoid formed by the outside surface of the insulation liner within the aft case closure section. (Figure 5)

$$D_{IL}_{HAO} = D_{CS}_{HAI} K_{IL}_5 + K_{IL}_6$$
 (34)

EQUATIONS, FIRST ENTRANCE (Cont.):

INSULATION LINER, AFT CLOSURE SECTION (Cont.):

Diameter ratio, hole diameter to equatorial diameter, outside surface of the insulation liner within the aft case closure section. (Figure 5)

$$R_{DILHAO} = \frac{D_{IL}_{HAO}}{D_{IL}_{CLO}}$$
 (35)

Length of hemi-ellipsoidal frustum associated with the outside surface of the insulation liner within the aft case closure section. (Figure 5)

$$L_{IL_{CHAO}} = L_{IL_{CLAO}} \sqrt{1 - R_{DILHAO}^2}$$
 (36)

Thickness of insulation liner at center of aft case closure section. Distance between the inside and outside hemi-ellipsoid surfaces of the insulation liner, measured on the axis of revolution. (Figure 5)

$$T_{IL_{CLA}} = T_{IL_{CY}} K_{IL_7} + K_{IL_8}$$
(37)

Length of the axis of revolution of the hemi-ellipsoid formed by the inside surface of the insulation liner within the aft case closure section. (Figure 5)

$$L_{IL_{CLAI}} = L_{IL_{CLAO}} - T_{IL_{CLA}}$$
(38)

Head ratio of the ellipsoid formed by the inside surface of the insulation liner within the aft case closure section. (Figure 5)

$$R_{DILCAI} = \frac{\frac{2 L_{IL}}{L_{CLAI}}}{D_{IL}}$$
 (39)

Diameter of circular hole, for the nozzle, centered on the axis of revolution of the hemi-ellipsoid formed by the inside surface of the insulation liner within the aft case closure section. (Figures 2, 5)

$$D_{IL_{HAI}} = D_{IL_{HAO}}$$
 (40)

のできる これが、まれることになっては、こので

€..

EQUATIONS, FIRST ENTRANCE (Cont.):

INSULATION LINER, AFT CLOSURE SECTION (Cont.):

Diameter ratio, hole diameter to equatorial diameter inside surface of the insulation liner within the aft case closure section. (Figure 5)

$$R_{DILHAI} = \frac{D_{IL}}{D_{IL}}$$
 (41)

Length of hemi-ellipsoidal frustum associated with the inside surface of the insulation liner within the aft case closure. (Figure 5)

$$L_{IL_{CHAI}} = L_{IL_{CLAI}} \sqrt{1 - R_{DILHAI}^2}$$
 (42)

Length of cylindrical hole, for the nozzle, in the insulation liner within the aft case closure section. (Figure 5)

$$L_{\text{IL}_{\text{HA}}} = L_{\text{IL}_{\text{CHAO}}} - L_{\text{IL}_{\text{CHAI}}}$$
 (43)

Volume of the hemi-ellipsoid formed by the outside surface of the insulation liner within the aft case closure section. (Figure 6)

$$V_{IL_{CLAO}} = \left(\frac{\pi}{6}\right) \quad L_{IL_{CLAO}} \quad D_{IL_{CLO}}^{2} \tag{44}$$

Volume of the cylindrical section associated with the nozzle cutout, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the aft case closure section. (Figure 6)

$$V_{IL_{HAOC}} = \left(\frac{\pi}{4}\right) L_{IL_{CHAO}} D_{IL_{HAO}}^{2}$$
 (45)

Length ratio, hemi-ellipsoid frustum to hemi-ellipsoid, outside surface, insulation liner, aft case closure. (Figure 5)

$$R_{LILCAO} = \frac{L_{IL}_{CHAO}}{L_{IL}_{CLAO}}$$
 (46)

EQUATIONS, FIRST ENTRANCE (Cont.):

INSULATION LINER, AFT CLOSURE SECTION (Cont.):

Volume of ellipsoidal cap at aft base of the cylindrical section, associated with the nozzle cutout, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the aft case closure section. (Figure 6)

$$V_{IL_{HAOE}} = \left(\frac{V_{IL_{CLAO}}}{2}\right) \left(2 - 3 R_{LILCAO} + R_{LILCAO}^{3}\right)$$
 (47)

Volume of cylinder with ellipsoidal cap, associated with the nozzle cutout, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the aft closure section. (Figure 6)

$$V_{IL}_{HAO} = V_{IL}_{HAOE} + V_{IL}_{HAOC}$$
 (48)

Volume of the hemi-ellipsoid frustum with hole cutout associated with the outside surface of the insulation liner within the aft case closure section. (Figure 6)

$$V_{IL}_{CHAO} = V_{IL}_{CLAO} - V_{IL}_{HAO}$$
 (49)

Volume of the hemi-ellipsoid formed by the inside surface of the insulation liner within the aft case closure section. (Figure 6)

$$V_{IL_{CLAI}} = \left(\frac{\pi}{6}\right) L_{IL_{CLAI}} D_{IL_{CLI}}^{2}$$
(50)

Volume of the cylindrical section, associated with the nozzle cutout, within the hemi-ellipsoid formed by the inside surface of the insulation liner within the aft case closure section. (Figure 6)

$$V_{IL}_{HAIC} = \left(\frac{\pi}{4}\right) L_{IL}_{CHAI} D_{IL}^{2}_{HAI}$$
 (51)

Length ratio, hemi-ellipsoid frustum to hemi-ellipsoid, inside surface, insulation liner, aft case closure. (Figure 5)

$$R_{LILCAI} = \frac{L_{IL}_{CHAI}}{L_{IL}_{CLAI}}$$
 (52)

EQUATIONS, FIRST ENTRANCE (Cont.):

INSULATION LINER, AFT CLOSURE SECTION (Cont.):

Volume of ellipsoidal cap at aft base of the cylindrical section, associated with the nozzle cutout, within the hemi-ellipsoid formed by the inside surface of the insulation liner within the aft case closure section. (Figure 6)

$$V_{IL_{HAIE}} = \left(\frac{V_{IL_{CLAI}}}{2}\right) \left(2 - 3 R_{LILCAI} + R_{LILCAI}^{3}\right)$$
 (53)

Volume of cylinder with ellipsoidal cap, associated with the nozzle cutout, within the hemi-ellipsoid formed by the inside surface of the insulation liner within the aft case section. (Figure 6)

$$V_{IL}_{HAI} = V_{IL}_{HAIE} + V_{IL}_{HAIC}$$
 (54)

Volume of hemi-ellipsoid frustum with hole cutout associated with the inside surface of the insulation liner within the forward closure section. (Figure 6)

$$V_{IL}_{CHAI} = V_{IL}_{CLAI} - V_{IL}_{HAI}$$
 (55)

Volume of insulation liner within the aft case closure section. (Figure 6)

$$v_{IL_{CLA}} = (v_{IL_{CHAO}} - v_{IL_{CHAI}}) K_{IL_9} + K_{IL_{10}}$$
(56)

EQUATIONS, SECOND ENTRANCE:

Equations 60 through 225 are evaluated at the second entrance to the INGM1 model.

INSULATION WEDGE, FORWARD AND AFT CLOSURE:

Equatorial diameter of the hemi-ellipsoids formed by the outside surface of the insulation wedges associated with the forward and aft closure sections. (Figures 7, 9, 11, 13)

$$D_{IW_{CLO}} = D_{IL_{CLI}}$$
 (60)

INSULATION WEDGE, FORWARD CLOSURE:

Maximum thickness of the insulation wedge associated with the forward closure. Measured parallel to the motor centerline.

$$T_{IW_{FMAX}} = T_{IW_{MAX}}K_{IW_{21}} + K_{IW_{22}}$$
(61)

Diameter of the circular hole, for the igniter, centered on the axis of revolution of the hemi-ellipsoid formed by the outside surface of the insulation wedge associated with the forward case closure section. (Figures 7, 9)

$$D_{IW_{HFO}} = D_{IL_{HFI}} K_{IW_1} + K_{IW_2}$$
 (62)

Diameter of the circular hole, for the igniter, centered on the axis of revolution of the hemi-ellipsoid formed by the inside surface of the insulation wedge associated with the forward case closure section. (Figures 7, 9)

$$D_{IW}_{HFI} = D_{IW}_{HFO}$$
 (63)

Length of the cylindrical hole, for the igniter, within the insulation wedge of the forward case closure section. (Figures 7, 9)

$$L_{IW_{HF}} = T_{IW_{FMAX}} K_{IW_3} + K_{IW_4}$$
 (64)

INSULATION WEDGE, FORWARD CLOSURE (Cont.):

Head ratio of the ellipsoid associated with the outside surface of the insulation wedge within the forward closure section.

$$R_{DIWCFO} = R_{DILCFI}$$
 (65)

Length of the axis of revolution of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward closure section. (Figures 7, 9)

$$L_{IW_{CLFO}} = \frac{{}^{R}_{DIWCFO} {}^{D}_{IW_{CLO}}}{2}$$
 (66)

Diameter ratic, hole diameter to equatorial diameter, outside surface of the insulation wedge in the forward case closure section. (Figures 7, 9)

$$R_{DIWHFO} = \frac{D_{IW}_{HFO}}{D_{IW}_{CLO}}$$
 (67)

Length of the hemi-ellipsoid frustum associated with the outside surface of the insulation wedge in the forward case closure section. (Figures 7, 9)

$$L_{IW_{CHFO}} = L_{IW_{CLFO}} \sqrt{1 - R_{DIWHFO}^2}$$
 (68)

Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward closure to the inside base of the cylindrical hole cutout for the igniter within the insulation wedge in the forward closure. (Figures 7, 9)

$$L_{\text{IW}_{\text{CHFI}}} = L_{\text{IW}_{\text{CHFO}}} - L_{\text{IW}_{\text{HF}}}$$
 (69)

Distance from the inside/outside wedge surface osculation plane to the inside base of the cylindrical hole cutout for the igniter. Note that the "inside/outside wedge surface osculation plane" may be within the forward case closure section or within the cylindrical case closure section. For the former case (see Figure 7), it is defined by the circle of osculation formed by the tangency points of the inside wedge surface hemi-ellipsoid and the outside wedge surface hemi-ellipsoid section. For the latter case (see Figure 9), it is defined by the circle of osculation formed by the tangency points of the inside wedge surface hemi-ellipsoid and the outside wedge surface cylindrical section. Note that the proportionality constant, K_{LIWFII} must be determined by the user.

INSULATION WEDGE, FORWARD CLOSURE (Cont.):

$$L_{IW_{HFI}} = T_{PP_{WEB}} K_{LIWFI1} + K_{LIWFI2}$$
 (70)

Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure to the "inside/outside wedge surface osculation plane." Note that the insulation wedge is not completely within the forward closure section if L_{IW}CFI is negative. (Figures 7, 9)

$$L_{IW_{CFI}} = L_{IW_{CHFI}} - L_{IW_{HFI}}$$
(71)

IWINFCL (Insulation Wedge IN Forward CLosure) is a logical variable which specifies if the insulation wedge associated with the forward closure is completely within the forward closure.

IWINFCL = .TRUE., wedge is completely within the forward closure.
See Figure 7.

IWINFCL = .FALSE., wedge extends beyond the forward closure into the cylindrical section or extends to the intersection of the aft closure and cylindrical section.

See Figure 9.

IWINFCL = LIWCFI.GT.O

INSULATION WEDGE, COMPLETELY WITHIN FORWARD CLOSURE (IWINFCL = .TRUE.):

Equations 73 - 76 are evaluated if IWINFCL = .TRUE. (i.e., L_{IW} > 0) as illustrated in Figure 7.

Diameter of the circle of osculation formed by the tangency points of the inside wedge surface hemi-ellipsoid and the outside wedge surface hemi-ellipsoid (Figure 7). See equation 77 for an alternate expression.

$$D_{IW_{CFI}} = \frac{2 \sqrt{L_{IW_{CLFO}}^2 - L_{IW_{CFI}}^2}}{R_{DIWCFO}}$$
(73)

Ø,

EQUATIONS, SECOND ENTRANCE (Cont.):

INSULATION WEDGE, COMPLETELY WITHIN FORWARD CLOSURE (IWINFCL = .TRUE.)(Cont.):

Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward closure to the equatorial plane of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward case closure. (Figure 7) See equation 78 for an alternate expression. (74)

$$L_{\text{IW}_{\text{CEFI}}} = \frac{-L_{\text{IW}_{\text{CFI}}} \left[\frac{4(L_{\text{IW}_{\text{CFI}}}^2 - L_{\text{IW}_{\text{CHFI}}}^2) + R_{\text{DIWCFO}}^2(D_{\text{IW}_{\text{CFI}}}^2 - D_{\text{IW}_{\text{HFI}}}^2) \right]}{8 L_{\text{IW}_{\text{CFI}}} L_{\text{IW}_{\text{HFI}}} - R_{\text{DIWCFO}}^2(D_{\text{IW}_{\text{CFI}}}^2 - D_{\text{IW}_{\text{HFI}}}^2)}$$

Length of the axis of revolution of the hemi ellipsoid associated with the inside surface of the insulation wedge in the forward case closure. (Figure 7) See equation 81 for an alternate expression. (75)

L_{IW}_{EFI} =
$$\frac{\frac{D_{IW}^{2}_{CFI}(^{L}_{IW}_{CHFI} - ^{L}_{IW}_{CEFI})^{2} - D_{IW}^{2}_{HFI}(^{L}_{IW}_{CFI} - ^{L}_{IW}_{CEFI})^{2}}{D_{IW}^{2}_{CFI} - D_{IW}^{2}_{HFI}}$$

Equatorial diameter of hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward case closure. (Figure 7) See equation 79 for an alternate expression.

$$D_{IW_{EFI}} = \frac{{}^{2} L_{IW_{EFI}}}{R_{DIWCFO}} \sqrt{\frac{L_{IW_{CFI}}}{\left(L_{IW_{CFI}} - L_{IW_{CEFI}}\right)}}$$
(76)

Equations 77 - 81 are evaluated if IWINFCL = .FALSE. (i.e., L_{IW} < 0) as illustrated in Figure 9.

Diameter of the circle of osculation formed by the tangency points of the inside wedge surface hemi-ellipsoid and the outside wedge surface cylinder. (Figure 9) See equation 73 for an alternate expression.

$$D_{IW_{CFI}} = D_{IW_{CLO}}$$
 (77)

Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure to the equatorial plane of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward case closure. (Figure 9) See equation 74 for an alternate expression.

INSULATION WEDGE, EXTENDS BEYOND FORWARD CLOSURE

(IWINFCL = . FALSE.) (Cont.):

$$L_{IW_{CEFI}} = L_{IW_{CFI}} \tag{78}$$

Equatorial diameter of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward case closure. (Figure 9) See equation 76 for an alternate expression.

$$D_{IW} = D_{IW}_{CLO}$$
 (79)

Diameter ratio, hole diameter to equatorial diameter, inside surface of insulation wedge in the forward case closure. (Figure 9)

$$R_{DIWHFI} = \frac{D_{IW_{HFI}}}{D_{IW_{EFI}}}$$
 (80)

Length of the axis of revolution of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward case closure. (Figure 9) See equation 75 for an alternate expression.

$$L_{IW_{EFI}} = \frac{L_{IW_{HFI}}}{\sqrt{1 - R_{DIWHFI}^2}}$$
(81)

INSULATION WEDGE, FORWARD CLOSURE:

Head ratio of the ellipsoid associated with the inside surface of the insulation wedge in the forward case closure section.

$$R_{DIWCFI} = \left(\frac{{}^{2} L_{IW}_{EFI}}{D_{IW}_{EFI}}\right)$$
 (81-a)

Distance from the pole of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward closure to the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward closure. Note that if the wedge extends beyond the closure into the cylindrical section, L_{IW} has a negative value (Figures 7, 9) CEFI

INSULATION WEDGE, FORWARD CLOSURE (Cont.):

$$L_{IW_{CLFI}} = L_{IW_{EFI}} + (L_{IW_{CEFI}})$$
(82)

Distance from the pole of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward closure to the forward closure inside/outside surface osculation plane. Note that if the wedge extends beyond the closure into the cylindrical section, Law has a negative value. (Figures 7, 9)

$$L_{IW_{FI}} = L_{IW_{CLFI}} - (L_{IW_{CFI}})$$
(83)

Distance from the equatorial plane of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward case closure to the inside base of the cylindrical hole cutout for the igniter within the insulation wedge in the forward closure. (Figures 7, 9)

$$L_{IW} = L_{IW} - L_{IW} + L$$

Volume of the hemi-ellipsoid associated with the outside surface of the insulation wedge within the forward case closure. (Figures 7, 8, 9, 10)

$$V_{IW_{CLFO}} = \left(\frac{\pi}{6}\right) L_{IW_{CLFO}} D_{IW_{CLO}}^{2}$$
 (85)

Length ratio, hemi-ellipsoid frustum to hemi-ellipsoid, outside surface, insulation wedge, forward case closure section. (Figures 7, 9)

$$R_{LIWCF1} = \frac{L_{IW}_{CHFO}}{L_{IW}_{CLFO}}$$
 (86)

Volume of ellipsoidal cap, at forward base of the cylindrical section associated with the igniter cutout, within the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure section. (Figures 8, 10)

$$v_{IW_{HFOE}} = \left(\frac{v_{IW_{CLFO}}}{2}\right) \left(2 - 3 R_{LIWCF1} + R_{LIWCF1}^{3}\right)$$
 (87)

INSULATION WEDGE, FORWARD CLOSURE (Cont.):

Volume of the cylindrical section, associated with the ignitor hole, within the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure section. (Figures 8, 10)

$$V_{IW_{HFOC}} = \left(\frac{\pi}{4}\right) L_{IW_{CHFO}} D_{IW_{HFI}}^{2}$$
 (88)

INSULATION WEDGE, COMPLETELY WITHIN FORWARD CLOSURE (IWINFCL = . TRUE.):

Equations 89 - 93 are evaluated if the insulation wedge is completely within the forward closure, i.e., L_{IW} > 0. (See Figures 7, 8)

Volume of the cylindrical section, associated with the igniter hole, within the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure section. The bases of the cylindrical section are the equatorial plane of the hemi-ellipsoid and the "inside/outside wedge surface osculation plane". (Figures 7, 8)

$$V_{IW_{HFOL}} = \left(\frac{\pi}{4}\right) L_{IW_{CFI}} D_{IW_{HFI}}^{2}$$
(89)

Volume of the cylinder with ellipsoidal cap, associated with the igniter hole, within the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure section. The cylindrical base is the "inside/outside wedge surface osculation plane". (Figures 7, 8) See equation 95 for an alternate expression.

$$V_{IW} = V_{IW} + V_{IW} - V_{IW} + V$$

Length ratio, hemi-ellipsoid frustum (with equatorial and "inside/outside wedge surface osculation plane" bases) to hemi-ellipsoid, outside surface, insulation wedge, forward base closure section. (Figures 7, 8)

$$R_{LIWCF2} = \frac{L_{IW}_{CFI}}{L_{IW}_{CLFO}}$$
(91)

١,

EQUATIONS, SECOND ENTRANCE (Cont.):

INSULATION WEDGE, COMPLETELY WITHIN FORWARD CLOSURE (IWINFCL = .TRUE.) (Cont.):

Volume of the ellipsoidal cap formed by the intersection of the "inside/ outside wedge surface osculation plane" and the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure section. (Figures 8, 9)

$$v_{IW_{CFOE}} = \left(\frac{v_{IW_{CLFO}}}{2}\right) \left(2 - 3 R_{LIWCF2} + R_{LIWCF2}^{3}\right)$$
 (92)

Volume of the ellipsoidal cap with hole cutout for the igniter, formed by the intersection of the "inside/outside wedge surface osculation plane" and the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure section. (Figure 8) See equation 97 for an alternate expression.

$$v_{IW_{CHFO}} = v_{IW_{CFOE}} - v_{IW_{HFO}}$$
(93)

INSULATION WEDGE, EXTENDS BEYOND FORWARD CLOSURE (IWINFCL = .FALSE.):

Equations 94 - 97 are evaluated if the insulation wedge is not completely within the forward closure, i.e., L_{IW} ≤ 0. (See Figures 9, 10)

Volume of the cylindrical section, associated with the igniter hole, within the cylindrical case section associated with the outside surface of the insulation wedge in the forward case closure section. The bases of the cylindrical section are the equatorial plane of the hemi-ellipsoid and the "inside/outside wedge surface osculation plane". (Figures 9, 10) Note that this is a positive volume. See equation 90 for an alternate expression.

$$V_{IW_{HFOY}} = \left(\frac{\pi}{4}\right) \left(-\frac{1}{IW_{CFI}}\right) D_{IW_{HFO}}^{2}$$
 (94)

- - 1-da-

INSULATION WEDGE, EXTENDS BEYOND FORWARD CLOSURE (IWINFCL = .FALSE) (Cont.):

Volume of the cylinder, with ellipsoidal cap, associated with the igniter hole, in the hemi-ellipsoid and cylinder associated with the outside surface of the insulation wedge in the forward case closure section. (Figure 10) See equation 90 for an alternate expression.

$$v_{IW} = v_{IW} + v_{IW} + v_{IW} + v_{IW}$$
(95)

Volume of the cylindrical section associated with the outside surface of the insulation wedge in the forward case closure section. (Figures 9, 10) Note that this is a positive volume.

$$V_{IW_{FOY}} = \left(\frac{\pi}{4}\right) \left(-L_{IW_{CFI}}\right) D_{IW_{CLO}}^{2}$$
(96)

Volume of hemi-ellipsoid and cylinder, with hole cutout for the igniter, which forms the outside surface of the insulation wedge in the forward case closure section. (Figures 8, 10) See equation 93 for an alternate expression.

$$V_{IW_{CHFO}} = V_{IW_{CLFO}} + V_{IW_{FOY}} - V_{IW_{HFO}}$$
(97)

INSULATION WEDGE, FORWARD CLOSURE:

Volume of the hemi-ellipsoid associated with the inside surface of the insulation wedge within the forward case closure section. (Figures 7, 9)

$$V_{IW_{EFI}} = \left(\frac{\pi}{6}\right) L_{IW_{EFI}} D_{IW_{EFI}}^{2}$$
 (98)

Length ratio, hemi-ellipsoid frustum (with equatorial and inside cylindrical hole cutout for the igniter bases) to hemi-ellipsoid, inside surface, insulation wedge, forward case closure section. (Figures 7, 9)

$$R_{LIWCF3} = \frac{L_{IW_{EHFI}}}{L_{IW_{EFI}}}$$
(99)

INSULATION WEDGE, FORWARD CLOSURE (Cont.):

Volume of ellipsoidal cap, at forward base of the cylindrical section associated with the igniter cutout, within the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward case closure section. (Figures 8, 10)

$$V_{IW_{HFIE}} = \left(\frac{V_{IW_{EFI}}}{2}\right) \left(2 - 3 R_{LIWCF3} + R_{LIWCF3}^{3}\right)$$
 (100)

Volume of the cylindrical section, associated with the igniter hole, within the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward case closure section. (Figures 8, 10)

$$v_{IW_{HFIC}} = \left(\frac{\pi}{4}\right) \quad L_{IW_{EHFI}} \quad D_{IW_{HFI}}^{2} \tag{101}$$

Volume of the cylinder with ellipsoidal cap, associated with the igniter hole, in the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward case closure section. (Figures 8, 10)

$$V_{IW}_{HFI} = V_{IW}_{HFIE} + V_{IW}_{HFIC}$$
 (102)

Length ratio, hemi-ellipsoid frustum (with equatorial and "inside/outside wedge surface osculation plane" bases) to hemi-ellipsoid, inside surface, insulation wedge, forward case closure section. (Figures 7, 9)

$$R_{LIWCF4} = \frac{\binom{L_{IW}_{EFI} - L_{IW}_{FI}}{L_{IW}_{EFI}}$$
(103)

Volume of the ellipsoidal cap associated with the inside surface of the insulation wedge in the forward case closure section. If the insulation wedge extends beyond the closure, V_{IW} is the hemi-ellipsoid volume. (Figures 8, 10)

$$V_{IW_{EFIE}} = \left(\frac{V_{IW_{EFI}}}{2}\right) \left(2 - 3 R_{LIWCF4} + R_{LIWCF4}^{3}\right)$$
 (104)

INSULATION WEDGE, FORWARD CLOSURE (Cont.):

Volume of the ellipsoidal cap, with hole cutout for the igniter, which forms the inside surface of the insulation wedge in the forward case closure section. (Figures 8, 10)

$$v_{IW_{CHFI}} = (v_{IW_{EFIE}} - v_{IW_{HFI}})$$
 (105)

Volume of insulation material required for the insulation wedge associated with the forward case closure section. (Figures 8, 10)

$$V_{IW_{CLF}} = (V_{IW_{CHFO}} - V_{IW_{CHFI}}) K_{IW_7} + K_{IW_8}$$
(106)

INSULATION WEDGE, AFT CLOSURE, BOUNDS FOR AN ACCEPTABLE SOLUTION:

The following conditions must be satisfied for acceptable solutions in determining the insulation wedge volume requirements associated with the aft closure. If the conditions are not satisfied, a diagnostic is usually printed and computations of sizing quantities may be terminated. See Figures 11, 13 and the figures associated with the GRAING model type.

The forward base of the submerged nozzle cone frustum grain cutout must not be aft of the aft closure.

$$(-L_{CF_{CY}}) \leq L_{IW_{CLAO}}$$
 (107-a)

If the forward base of the submerged nozzle cone frustum grain cutout is in the cylindrical section, its diameter may not exceed the diameter of the inside surface of the insulation liner within the cylindrical section.

For
$$\left(-L_{CF_{CY}}\right) \leq 0$$
; $0 < D_{CFF} \leq D_{IL_{I}}$ (107-b)

If the forward base of the submerged nozzle cone frustum grain cutout is in the closure section, its diameter may not exceed the diameter of the inside surface of the insulation liner within the closure section.

For
$$\left(-L_{CF_{CY}}\right) \ge 0$$
; $0 < \left(\frac{D_{CFF}}{2}\right) \le \left[\sqrt{\frac{L_{IL_{CLAI}}^2 - L_{CF_{CY}}^2}{R_{DILCAI}}}\right]$ (107-c)

X

1

EQUATIONS, SECOND ENTRANCE (Cont.):

INSULATION WEDGE, AFT CLOSURE. BOUNDS FOR AN ACCEPTABLE SOLUTION (Cont.):

The "inside/outside wedge surface osculation plane" must be forward of the forward base of the submerged nozzle cone frustum insulation wedge cutout. See Figures 11, 13.

$$L_{IW}_{HAI} > L_{IW}_{CHAI} + L_{CF}_{CY}$$
 (107-d)

The forward base of the submerged nozzle cone frustum grain cutout must be forward of the aft base of the submerged nozzle cone frustum grain cutout.

$$-\left(\frac{\pi}{2}\right) < \theta_{\rm CF} < \left(\frac{\pi}{2}\right) \tag{107-e}$$

INSULATION WEDGE, AFT CLOSURE:

Maximum thickness of the insulation wedge associated with the aft closure. Measured parallel to the slant height of the cone frustum grain cutout. See Figures 11, 13.

$$T_{IW_{AMAX}} = T_{IW_{MAX}}K_{IW_9} + K_{IW_{10}}$$
(108)

Diameter of the aft base of the cone frustum hole, for the nozzle cutout, centered on the axis of revolution of the hemi-ellipsoid formed by the outside surface of the insulation wedge associated with the aft case closure section. (Figures 11, 13)

$$D_{IW_{HAO}} = D_{IL_{HAI}} K_{IW_{11}} + K_{IW_{12}}$$
 (109)

Diameter of the forward base of the cone frustum hole, for the nozzle cutout, centered on the axis of revolution of the hemi-ellipsoid formed by the inside surface of the insulation wedge associated with the aft case closure section. (Figures 11, 13)

$$D_{IW_{HAI}} = \left\{ D_{IW_{HAO}} K_{IW_{13}} - \left[2 T_{IW_{AMAX}} \sin \left(\theta_{CF} \right) \right] K_{IW_{14}} \right\} K_{IW_{15}} + K_{IW_{16}}$$

INSULATION WEDGE, AFT CLOSURE (Cont.):

Altitude of the cone frustum, for the nozzle cutout, within the insulation wedge of the aft case closure section. (Figures 11, 13)

$$L_{IW_{HA}} = \left[T_{IW_{AMAX}}\cos\left(\theta_{CF}\right)\right] K_{IW_{17}} + K_{IW_{18}} \tag{111}$$

Head ratio of the ellipsoid associated with the outside surface of the insulation wedge in the aft case closure section. See equation 39.

$$R_{DIWCAO} = R_{DILCAI}$$
 (112)

Length of the axis of revolution of the hemi-ellipsoid associated with the outside surface of the insulation wedge in ther aft closure section. (Figures 11, 13)

$$L_{IW_{CLAO}} = \frac{{}^{R}DIWCAO^{D}IW_{CLO}}{2}$$
 (113)

Diameter ratio, aft base of cone frustum hole to equatorial diameter, outside surface of the insulation wedge in the aft case closure section. (Figures 11, 13)

$$R_{DIWHAO} = \frac{D_{IW}_{HAO}}{D_{IW}_{CLO}}$$
 (114)

Length of the hemi-ellipsoid frustum associated with the outside surface of the insulation wedge in the aft case closure section. (Figures 11, 13)

$$L_{IW}_{CHAO} = L_{IW}_{CLAO} \sqrt{1 - R_{DIWHAO}^2}$$
 (115)

Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft case closure section to forward base of the cone frustum hole, for the nozzle cutout, within the insulation wedge in the aft case closure section. (Figures 11, 13)

$$L_{IW}_{CHAI} = L_{IW}_{CHAO} - L_{IW}_{HA}$$
 (116)

DETERMINATION IF AFT CLOSURE WEDGE EXTENDS BEYOND THE CLOSURE:

To determine if the insulation wedge lies completely within the aft case closure section (see Figure 11), or extends beyond the aft closure section into the cylindrical section (see Figure 13), the following procedure is utilized.

 $L_{\overline{\text{IW}}}_{\text{CAI}}$ is first evaluated using the cylindrical geometry of equation 117.

If L_{IW} < 0, (i.e., IWINACL = .FALSE.), the "inside/outside wedge surface osculation plane" lies within the cylindrical section and equation 119 is used to evaluate D_{IW}. See Figure 13.

If L_{IW} > 0, (i.e., IWINACL = .TRUE.), the "inside/outside wedge surface osculation plane" lies within the aft closure section and the ellipsoidal geometry of equations 120 - 124 must be used to reevaluate L_{IW} and D_{IW}CAI

For a derivation of equations 117 - 124, and root selection rationale, see reference 55.

Distance from the "equatorial plane of the aft closure outside wedge surface hemi-ellipsoid" to the "inside/outside wedge surface osculation plane". Measured along the axis of revolution, positive sense aft. A positive value indicates that the wedge is completely within the aft closure. A negative value indicates that the wedge extends beyond the aft closure into the cylindrical section. See IWINACL, equation 118. See equation 124 for an alternate expression.

$$L_{IW_{CAI}} = \left(-L_{CF_{CY}}\right) - \left(\frac{1}{2}\right) \left(D_{IW_{CLO}} - D_{CFF}\right) \tan \left(\theta_{CF}\right)$$
(117)

DETERMINATION IF AFT CLOSURE WEDGE EXTENDS BEYOND THE CLOSURE (Cont.):

IWINACL (Insulation Wedge IN Aft CLosure) is a logical variable which specifies if the insulation wedge associated with the aft closure is completely within the aft closure.

If IWINACL = . TRUE.; the insulation wedge is completely within the

aft closure. Equations 124, 123 are used to

evaluate L_{IWCAI} and D_{IWCAI}. See Figures 11, 12.

-"CAI -"CAI

If IWINACL = . FALSE.; the insulation wedge extends beyond the aft closure

into the cylindrical section, or extends to the intersection of the aft closure and cylindrical section. Equations 117, 119 are used to evaluate

L_{IW} and D_{IW} . See Figures 13, 14.

For the following logical expression, L_{IW} is evaluated using equation 117.

 $IWINACL = L_{IW}CAI$ (118)

INSULATION WEDGE, EXTENDS BEYOND AFT CLOSURE (IWINACL = .FALSE.):

Equation 119 is evaluated if the insulation wedge extends beyond the aft closure into the cylindrical section, i.e., $L_{IW} \le 0$.

Note that L_{IW} is evaluated using equation 117 above.

Diameter of the "inside/outside osculation circle" associated with the aft closure insulation wedge. (Figure 15) See equation 123 for an alternate expression.

 $D_{IW_{CAI}} = D_{IW_{CLO}}$ (119)

INSULATION WEDGE, COMPLETELY WITHIN AFT CLOSURE (IWINACL = .TRUE.):

Equations 120 - 124 are evaluated if the insulation wedge lies completely within the aft closure, i.e., L_{TW} > 0 as evaluated by equation 117.

Note that L_{IW} is reevaluated using equation 124.

Equations 120 - 122 are intermediate computations for D_{IW} as shown in reference 55.

$$C_{IW_{A}} = \tan^{2}(\theta_{CF}) + R_{DIWCAO}^{2}$$
 (120)

$$C_{IW_{B}} = -\tan(\theta_{CF}) \left[2 \left(-L_{CF_{CY}} \right) + D_{CFF} \tan(\theta_{CF}) \right]$$
 (121)

$$C_{\text{IW}_{C}} = L_{\text{CF}_{CY}}^{2} - L_{\text{IW}_{CLAO}}^{2} + \left(\frac{D_{\text{CFF}}}{2}\right) \tan\left(\theta_{\text{CF}}\right) \left[\left(\frac{D_{\text{CFF}}}{2}\right) \tan\left(\theta_{\text{CF}}\right) + 2\left(-L_{\text{CF}_{CY}}\right)\right]$$

Diameter of the "inside/outside osculation circle" associated with the aft closure insulation wedge. Se IWINACL, equation 118 and Figure 11. See equation 119 for an alternate expression.

$$D_{IW}_{CAI} = \frac{-C_{IW}_{B} + \sqrt{C_{IW}^{2}_{B} - 4C_{IW}_{A}C_{IW}_{C}}}{C_{IW}_{A}}$$
(123)

Distance from the "equatorial plane of the aft closure outside wedge surface hemi-ellipsoid" to the "inside/outside wedge surface osculation plane". Measured along the axis of revolution, positive sense aft. Since the wedge is completely within the aft closure, the value will be positive. Se IWINACL, equation 118, and Figure 11. See equation 117 for an alternate expression.

$$L_{IW_{CAI}} = \left(-L_{CF_{CY}}\right) - \left(\frac{1}{2}\right) \left(D_{IW_{CAI}} - D_{CFF}\right) \tan(\theta_{CF})$$
 (124)

INSULATION WEDGE, AFT CLOSURE:

Distance from the "inside/outside wedge surface osculation plane" to the inside base of the cone frustum hole cutout of the insulation wedge for the nozzle. Note that the "inside/outside wedge surface osculation plane" may be within the aft case closure section or within the cylindrical case closure section. For the former case (see Figure 11), it is defined by the circle of osculation formed by the tangency points of the inside wedge surface hemiellipsoid and the outside wedge surface hemiellipsoid section. For the latter case (see Figure 13), it is defined by the circle of osculation formed by the tangency points of the inside wedge surface hemiellipsoid and the outside wedge surface cylindrical section.

$$L_{IW}_{HAI} = L_{IW}_{CHAI} - L_{IW}_{CAI}$$
 (125)

INSULATION WEDGE, COMPLETELY WITHIN THE AFT CLOSURE (IWINACL = TRUE.):

Equations 126 - 128 are evaluated if the insulation wedge lies completely within the aft closure. See equations 129 - 131 if the wedge extends beyond the aft closure into the cylindrical section.

Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft case closure section to the equatorial plane of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section. (Figure 11) See equation 129 for an alternate expression.

$$L_{IW_{CEAI}} = \frac{-L_{IW_{CAI}} \left[4 \left(L_{IW_{CAI}}^2 - L_{IW_{CHAI}}^2 \right) + R_{DIWCAO}^2 \left(D_{IW_{CAI}}^2 - D_{IW_{HAI}}^2 \right) \right]}{8 L_{IW_{CAI}} L_{IW_{HAI}} - R_{DIWCAO}^2 \left(D_{IW_{CAI}}^2 - D_{IW_{HAI}}^2 \right)}$$

Length of the axis of revolution of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure. (Figure 11) See equation 131 for an alternate expression.

$$L_{IW_{EAI}} = \sqrt{\frac{-\frac{D_{IW_{HAI}}^{2}(L_{IW_{CAI}} - L_{IW_{CEAI}})^{2} + D_{IW_{CAI}}^{2}(L_{IW_{CHAI}} - L_{IW_{CEAI}})^{2}}{\frac{D_{IW_{CAI}}^{2} - D_{IW_{HAI}}^{2}}{\frac{D_{IW_{CAI}}^{2}(L_{IW_{CHAI}} - L_{IW_{CEAI}})^{2}}{\frac{D_{IW_{CAI}}^{2}(L_{IW_{CAI}} - D_{IW_{HAI}})^{2}}{\frac{D_{IW_{CAI}}^{2}(L_{IW_{CAI}} - D_{IW_{CAI}})^{2}}{\frac{D_{IW_{CAI}}^{2}(L_{IW_{CAI}} - D_{IW_{CAI}})^{2}}{\frac{D_{IW_{CAI}}^{2}(L$$

ť

EQUATIONS, SECOND ENTRANCE (Cont.):

INSULATION WEDGE, COMPLETELY WITHIN THE AFT CLOSURE (IWINACL = .TRUE.)(Cont.):

Equatorial diameter of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section. (Figure 11) See equation 130 for an alternate expression.

$$D_{IW_{EAI}} = \left(\frac{2 L_{IW_{EAI}}}{R_{DIWCAO}}\right) \sqrt{\frac{L_{IW_{CAI}}}{\left(L_{IW_{CAI}} - L_{IW_{CEAI}}\right)}}$$
(128)

INSULATION WEDGE, EXTENDS BEYOND AFT CLOSURE (IWINACL = .FALSE.):

Equations 129 - 131 below are evaluated if the insulation wedge extends beyond the aft closure into the cylindrical section, as illustrated by Figure 13.

Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft case closure section to the equatorial plane of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section. (Figure 13) See equation 126 for an alternate expression.

$$L_{\overline{IW}_{CEAI}} = L_{\overline{IW}_{CAI}}$$
 (129)

Equatorial diameter of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section. (Figure 13) See equation 128 for an alternate expression.

$$D_{IW} = D_{IW} CLO$$
 (130)

Length of the axis of revolution of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section. (Figure 13) See equation 127 for an alternate expression.

$$L_{IW}_{EAI} = \frac{L_{IW}_{HAI}}{\sqrt{1 - \left(\frac{D_{IW}_{HAI}}{D_{IW}_{EAI}}\right)^2}}$$
(131)

ر ع

EQUATIONS, SECOND ENTRANCE (Cont.):

INSULATION WEDGE, AFT CLOSURE:

Head ratio of the ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section.

$$R_{DIWCAI} = \left(\frac{\frac{2 L_{IW}}{D_{IW}}}{D_{IW}}\right)$$
 (131-a)

Distance from the pole of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft closure to the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft closure. Note that if the wedge extends beyond the closure into the cylindrical section, Law has a negative value. (Figures 11, 13)

$$L_{IW_{CLAI}} = L_{IW_{EAI}} + (L_{IW_{CEAI}})$$
 (132)

Distance from the pole of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft closure to the aft closure "inside/outside wedge surface osculation plane". Note that if the wedge extends beyond the closure into the cylindrical section, I_{TW} has a negative value. (Figures 11, 13)

$$L_{IW}_{AI} = L_{IW}_{CLAI} - (L_{IW}_{CAI})$$
 (133)

Distance from the equatorial plane of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure to the inside base of the cone frustum cutout within the insulation wedge in the aft case closure section. (Figures 11, 13)

$$L_{IW}_{EHAI} = L_{IW}_{EAI} - L_{IW}_{AI} + L_{IW}_{HAI}$$
 (134)

Volume of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft case closure section. (Figures 11, 13, 14)

$$v_{IW}_{CLAO} = \left(\frac{\pi}{6}\right) L_{IW}_{CLAO} D_{IW}^{2}_{CLO}$$
(135)

INSULATION WEDGE, AFT CLOSURE (Cont.):

Length ratio, hemi-ellipsoid frustum to hemi-ellipsoid, outside surface, insulation wedge, aft case closure section. (Figures 11, 13)

$$R_{LIWCA1} = \frac{L_{IW}_{CHAO}}{L_{IW}_{CLAO}}$$
 (136)

Volume of the ellipsoidal cap, at aft base of the cone frustum section associated with the nozzle cutout, within the he:ni-ellipsoid associated with the outside surface of the insulation wedge in the aft case closure section. (Figures 12,14)

$$v_{IW_{HAOE}} = \left(\frac{v_{IW_{CLAO}}}{2}\right) \left(2 - 3 R_{LIWCA1} + R_{LIWCA1}^{3}\right)$$
 (137)

Volume of the cylindrical section, associated with the nozzle cutout, within the hemi-ellipsoid frustum associated with the outside surface of the insulation wedge in the aft case closure section. (Figures 12, 14)

$$V_{IW}_{HAOC} = \left(\frac{\pi}{4}\right) \left(L_{IW}_{CHAO} - L_{IW}_{CAI}\right) D_{IW}^{2}_{HAI}$$
 (138)

INSULATION WEDGE, COMPLETELY WITHIN CLOSURE (IWINACL = . TRUE.):

Equations 139 - 141 are evaluated if the insulation wedge lies completely within the aft closure. See Figures 11, 12.

Length ratio, hemi-ellipsoid frustum (with equatorial and "inside/outside wedge surface osculation plane" bases) to hemi-ellipsoid, outside surface, insulation wedge, aft case closure section. (Figures 11, 12)

$$R_{LIWCA2} = \frac{L_{IW}}{L_{IW}}$$
(139)

INSULATION WEDGE, COMPLETELY WITHIN CLOSURE

(IWINACL = .TRUE.)(Cont.):

Volume of the ellipsoidal cap formed by the intersection of the "inside/outside wedge surface osculation plane" and the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft case closure section. (Figure 12)

$$v_{IW_{CAOE}} = \left(\frac{v_{IW_{CLAO}}}{2}\right) \left(2 - 3 R_{LIWCA2} + R_{LIWCA2}^{3}\right)$$
 (140)

Volume of the hemi-ellipsoid frustum, with cylindrical hole cutout, associated with the outside surface of the insulation wedge in the aft case closure section. (Figure 12) See equation 143 for an alternate expression.

$$V_{IW}_{CHAO} = V_{IW}_{CAOE} - V_{IW}_{HAOE} - V_{IW}_{HAOC}$$
 (141)

INSULATION WEDGE, EXTENDS BEYOND AFT CLOSURE

(IWINACL = . FALSE.):

Equations 142, 143, are evaluated if the insulation wedge extends beyond the aft closure into the cylindrical section. See Figures 13, 14.

Volume of the cylindrical section associated with the outside surface of the insulation wedge in the aft case closure section. (Figures 13, 14) Note that this is a positive volume.

$$V_{IW_{AOY}} = \left(\frac{\pi}{4}\right) \left(-L_{IW_{CAI}}\right) D_{IW_{CLO}}^{2}$$
 (142)

Volume of the hemi-ellipsoid frustum, with cylindrical hole cutout, associated with the outside surface of the insulation wedge in the aft closure section. (Figure 14) See equation 141 for an alternate expression.

$$v_{IW}_{CHAO} = v_{IW}_{AOY} + v_{IW}_{CLAO} - v_{IW}_{HAOE} - v_{IW}_{HAOC}$$
 (143)

INSULATION WEDGE, AFT CLOSURE:

Volume of the hemi-ellipsoid associated with the inside surface of the insulation wedge within the aft case closure. (Figures 11, 13)

$$V_{IW_{EAI}} = \left(\frac{\pi}{6}\right) L_{IW_{EAI}} D_{IW_{EAI}}^{2}$$
 (144)

Length ratio, hemi-ellipsoid frustum (with equatorial base and inside nozzle cutout base) to hemi-ellipsoid, inside surface, insulation wedge, aft case closure section. (Figures 11, 13)

$$R_{LIWCA3} = \frac{L_{IW}_{EHAI}}{L_{IW}_{EAI}}$$
 (145)

Volume of the ellipsoidal cap, at the aft base of the cone frustum section associated with the nozzle cutout, within the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section. (Figures 12, 14)

$$v_{IW_{HAIE}} = \left(\frac{v_{IW_{EAI}}}{2}\right) \left(2 - 3R_{LIWCA3} + R_{LIWCA3}^{3}\right)$$
 (146)

Volume of the cylindrical section, associated with the nozzle cutout, within the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section. (Figures 12, 14)

$$V_{IW}_{HAIC} = \left(\frac{\pi}{4}\right) L_{IW}_{HAI} D_{IW}^{2}_{HAI}$$
 (147)

Volume of the cylinder, with ellipsoidal cap, associated with the nozzle cutout cone frustum, in the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section. (Figures 12, 14)

$$V_{IW} = V_{IW} + V_{IW}$$
HAIE + V_{IW}

INSULATION WEDGE, AFT CLOSURE (Cont.):

Length ratio, hemi-ellipsoid frustum (with equatorial and "inside/outside wedge surface osculation plane" bases) to hemi-ellipsoid, inside surface, insulation wedge, aft case closure section. (Figures 11, 13)

$$R_{LIWCA4} = \frac{\binom{L_{IW}_{CAI} - L_{IW}_{CEAI}}{L_{IW}_{EAI}}$$
 (149)

Volume of the ellipsoidal cap associated with the inside surface of the insulation wedge in the aft case closure. If the insulation wedge extends beyond the closure, $V_{\mbox{IW}}$ is the hemi-ellipsoid volume. (Figures 12, 14)

$$V_{IW_{EAIE}} = \left(\frac{V_{IW_{EAI}}}{2}\right) \left(2 - 3 R_{LIWCA4} + R_{LIWCA4}^{3}\right)$$
 (150)

Volume of the ellipsoidal cap, with cylindrical hole cutout associated with the core frustum hole cutout for the nozzle, which forms the inside surface of the insulation wedge in the aft case closure section. (Figures 12, 14)

$$V_{IW}_{CHAI} = V_{IW}_{EAIE} - V_{IW}_{HAI}$$
 (151)

Area of triangular section, associated with the cone frustum cutout for the nozzle, within the aft case closure section. (Figures 12, 14)

$$A_{IW_{HAT}} = \left(\frac{1}{4}\right) \left(D_{IW_{HAO}} - D_{IW_{HAI}}\right) L_{IW_{HA}}$$
 (152)

Distance from axis of revolution to centroid of triangular section in insulation wedge, associated with the cone frustum cutout for the nozzle, within the aft case closure section. (Figures 11, 13)

$$Y_{IW_{HAT}} = \frac{D_{IW_{HAI}}}{3} + \left(\frac{1}{6}\right) D_{IW_{HAO}}$$
 (153)

Volume of triangular section in the insulation wedge, associated with the cone frustum cutout for the nozzle, within the aft case closure section. (Figures 12, 14)

ť,

{ ,

EQUATIONS, SECOND ENTRANCE (Cont.):

INSULATION WEDGE, AFT CLOSURE (Cont.):

$$V_{IW_{HAT}} = 2 \pi Y_{IW_{HAT}} A_{IW_{HAT}}$$
 (154)

Volume of insulation material required for the insulation wedge associated with the aft case closure section. (Figures 12, 14)

$$v_{IW_{CLA}} = (v_{IW_{CHAO}} - v_{IW_{CHAI}} - v_{IW_{HAT}}) K_{IW_{19}} + K_{IW_{20}}$$
 (155)

SLOT AND JOINT INSULATION, BOUNDS FOR ACCEPTABLE SOLUTIONS:

The following conditions must be satisfied for acceptable solutions in determining the insulation slot and joint volume requirements. If the conditions are not satisfied, a diagnostic is usually printed and computations of sizing quantities may be terminated. (Figures 16, 17)

$$D_{IL_{1}} \ge T_{PP_{WEB}}$$
 (156-a)

$$T_{PP_{WEB}} > 0 \tag{156-b}$$

$$T_{PP_{WEB}} \ge T_{IS_{MAX}}$$
 (156-c)

$$^{T}_{PP_{WEB}} > ^{T}_{IJ_{MAX}}$$
 (156-d)

$$T_{IS_{MAX}} \geqslant 0 \tag{156-e}$$

$$T_{IJ_{MAX}} \geqslant 0 \tag{156-f}$$

$$L_{IS_{CUT}} \ge 0$$
 (156-g)

$$L_{JJ_{CUT}} \ge 0 \tag{156-h}$$

$$L_{\text{IS}_{\text{PG1}}} \ge 0 \tag{156-i}$$

$$L_{\text{IJ}_{\text{PG1}}} \geqslant 0 \tag{156-j}$$

80.1-39

SLOT AND JOINT INSULATION, CUTOUT REQUIREMENTS:

Number of slot cutouts in grain to be insulated. Integer valued real number (floating point integer).

$$N_{IS_{CUT}} = N_{IS_{IH0}} + N_{IS_{IH1}}$$
 (157)

CUTOUTS (CUT OUT in grain for Slot) is a logical variable which specifies if there are slot cutouts within the grain which require insulation.

If CUTOUTS = . TRUE.; there is at least one slot cutout requiring

insulation. Either one or no slot burning surface

may be inhibited.

If CUTOUTS = . FALSE.; there are no slot cutouts requiring insulation.

$$CUTOUTS = N_{IS_{CUT}} \cdot GT.O$$
 (157-a)

CUTOUTJ (CUT OUT in grain for Joint) is a logical variable which specifies if there are joint cutouts within the grain which require insulation.

If CUTOUTJ = . TRUE.; there is at least one joint cutout requiring

insulation. Both burning surfaces of a joint

are inhibited.

If CUTOUTJ = . FALSE.; there are no joint cutouts requiring insulation.

$$CUTOUTJ = N_{1J}CUT$$
 (157-b)

SLOT INSULATION, COMPONENT VOLUMES (CUTOUTS = . FALSE.):

If CUTOUTS = .FALSE.; there is no slot insulation and equations 158-160 are evaluated. See Figures 15, 16, 20. See equations 162, 164, 165, 170 for alternate expression

SLOT INSULATION, COMPONENT VOLUMES (CUTOUTS = . FALSE.)(Cont.):

$$V_{\rm IS_{\rm PL}} = 0 \tag{158}$$

$$V_{IS_{GL}} = 0 ag{159}$$

$$V_{IS_{pG}} = 0 \tag{160}$$

SLOT INSULATION, COMPONENT VOLUMES (CUTOUTS = . TRUE.):

If CUTOUTS = . TRUE.; equations 162 - 170 are evaluated to determine the slot insulation component volumes, as illustrated by Figures 15, 16, 20.

Length of a single slot cutout for insulation computations. (Figure 16)

$$L_{IS_{CUT}} = \left(\frac{L_{SL_{GN}}}{N_{IS_{CUT}}}\right) \quad K_{IS_3} + K_{IS_4}$$
 (162)

Volume of port/liner insulation component for a slot cutout. (Figures 15, 16, 20) See equation 158 for an alternate expression.

$$V_{IS_{PL}} = \left[\pi \left(D_{IL_I} - T_{IS_{MAX}}\right) L_{IS_{CUT}} T_{IS_{MAX}}\right] K_{IS_5} + K_{IS_6}$$
 (163)

Volume of grain/liner insulation component for a slot cutout. (Figures 15, 16, 20) See equation 159 for an alternate expression.

$$v_{IS_{GL}} = \left| \pi \left[\left(\frac{D_{IL_I}}{2} \right) - \left(\frac{T_{IS_{MAX}}}{3} \right) \right] T_{PP_{WEB}} T_{IS_{MAX}} K_{IS_7} + K_{IS_8}$$

Volume of the port/grain insulation component for slot cutouts. See Figures 15, 16, 20. See equations 160, 170 for alternate expressions.

If N_{IS}_{IH1} = 0, there are no slots having one grain burning surface inhibited, and equation 165 is used to evaluate V_{IS}_{PG}.

$$V_{IS_{\mathbf{PG}}} = 0 \tag{165}$$

SLOT INSULATION, COMPONENT VOLUMES (CUTOUTS = . TRUE.)(Cont.):

If $N_{IS_{IH1}} > 0$, equations 166 - 170 are evaluated to determine $V_{IS_{PG}}$.

Altitude of the polygon cross section associated with the port/grain insulation component for slot cutouts. (Figure 16)

$$T_{IS_{PGI}} = T_{PP_{WEB}} - T_{IS_{MAX}}$$
 (166)

Length of outside base of the polygon cross section associated with the port/grain insulation component for slot cutouts. (Figure 16)

$$L_{IS_{PGO}} = \left(\frac{T_{IS_{MAX}}}{T_{PP_{WEB}}}\right) \left(T_{PP_{WEB}} - T_{IS_{MAX}} + L_{IS_{PGI}}\right)$$
(167)

Area of the polygon cross section associated with the port/grain insulation component for slot cutouts. (Figure 16)

$$A_{IS_{PG}} = \left(\frac{T_{IS_{PGI}}}{2}\right) \left(L_{IS_{PGI}} + L_{IS_{PGO}}\right)$$
 (168)

Centroid, measured with respect to the motor centerline, of the polygon cross section associated with the port/grain insulation component for slot cutouts. (Figure 16)

$$Y_{IS_{PG}} = {\binom{D_{IL_{1}}}{2}} - T_{IS_{MAX}} - {\binom{T_{IS_{PGI}}}{3}} {\binom{2L_{IS_{PGI}} + L_{IS_{PGO}}}{L_{IS_{PGI}} + L_{IS_{PGO}}}}$$

Volume of the port/grain insulation component for slot cutouts. (Figures 15, 16, 20) See equations 160, 165 for alternate expressions.

$$V_{IS_{PG}} = \left[2 \pi Y_{IS_{PG}} A_{IS_{PG}} \right] K_{IS_{9}} + K_{IS_{10}}$$
 (170)

Marie and the second second second second second

EQUATIONS, SECOND ENTRANCE(Cont.):

SLOT INSULATION, PORT/GRAIN COMPONENT POLYGON CLASSIFICATION:

The following logical expressions are used to classify the polygon cross section associated with the port/grain insulation component for slot cutouts.

See Figure 18 for a geometrical interpretation and "Optimization Considerations" of the REMARKS section for discontinuity considerations.

Vertical line solution.

$$PGIS(1) = \left(T_{IS_{MAX}} \cdot EQ.O\right) \cdot AND. \left(L_{IS_{PGI}} \cdot EQ.O\right)$$
 (171)

Horizontal line solution.

$$PGIS(2) = (T_{PP_{WEB}}, EQ, T_{IS_{MAX}})$$
(172)

Intermediate quantity, solution is not a line.

$$ISNOTLN = .NOT. |PGIS(1).OR. PGIS(2)|$$
 (173)

Triangle solution.

PGIS(3) = ISNOTLN . AND.
$$(L_{IS_{PGI}}, EQ. O)$$

. AND. $(T_{IS_{MAX}}, GT. O)$

SLOT INSULATION, PORT/GRAIN COMPONENT POLYGON CLASSIFICATION (Cont.):

Trapezoid solutions.

PGIS(4) = ISNOTLN . AND.
$$(L_{IS_{PGI}}, LT, L_{IS_{PGO}})$$
 . AND. $(L_{IS_{PGI}}, GT, O)$ (175)

PGIS(5) = ISNOTLN . AND.
$$(T_{IS_{MAX}}, GT.O)$$
 (176)
. AND. $(T_{IS_{MAX}}, EQ.L_{IS_{PGI}})$

PGIS(6) = ISNOTLN . AND.
$$(L_{IS}_{PGI}, GT, L_{IS}_{PGO})$$
 (177)

JOINT INSULATION, COMPONENT VOLUMES (CUTOUTJ = .FALSE.):

If CUTOUTJ = .FALSE., there is no joint insulation and equations 178, 179 are evaluated. See Figures 15, 17, 20, and equations 182, 195 for alternate definition if CUTOUTJ = .TRUE.

$$V_{IJ_{PL}} = 0 ag{178}$$

$$V_{IJ_{PG}} = 0 ag{179}$$

JOINT INSULATION, COMPONENT VOLUMES (CUTOUTJ = .TRUE.):

If CUTOUTJ = .TRUE., equations 181-195 are evaluated to determine the joint insulation component volumes as illustrated by Figures 15, 17, 20.

Length of a unit joint cutout for insulation computations. (Figure 17)

$$L_{IJ_{CUT}} = \left(\frac{L_{JT_{CUT}}}{N_{IJ_{CUT}}}\right) \quad K_{IJ_3} + K_{IJ_4} \tag{181}$$

T

EQUATIONS, SECOND ENTRANCE (Cont.):

JOINT INSULATION, COMPONENT VOLUMES (CUTOUTJ = . TRUE.)(Cont.):

Volume of port/liner insulation component for joint cutouts. (Figures 17, 20)

$$V_{IJ_{PL}} = \left| \pi \left(D_{IL_I} - T_{IJ_{MAX}} \right) \right| L_{IJ_{CUT}} T_{IJ_{MAX}} \left| K_{IJ_5} + K_{IJ_6} \right|$$
 (182)

Intermediate quantity required for the determination of the outside base of the polygon cross section associated with the port/grain insulation component for joint cutouts. (Figure 17)

$$L_{IJ_{PG3}} = \left(\frac{T_{IJ_{MAX}}}{T_{PP_{WEB}}}\right) \left(T_{PP_{WEB}} - T_{IJ_{MAX}} + L_{IJ_{PGI}}\right)$$
(183)

PGIJLAP is a logical valued variable which indicates overlapping of the polygon cross sections associated with the port/grain insulation component for joint cutouts. (Figure 19)

PGIJLAP = .TRUE., PG components overlap.

PGIJLAP = . FALSE., PG components do not overlap.

$$PGIJLAP = L_{IJ}_{PG3}.GT. \left(\frac{L_{IJ}_{CUT}}{2}\right)$$
 (183-a)

Outside base of the polygon cross section associated with the port/grain insulation components for grain cutouts. (Figure 17)

$$\text{If PGIJLAP = .FALSE., } I_{\overline{\text{IJ}}\text{PGO}} = L_{\overline{\text{IJ}}\text{PG3}}$$
 (184)

If PGIJLAP = .TRUE.,
$$L_{IJPGO} = \frac{L_{IJCUT}}{2}$$
 (185)

Component altitude of the polygon cross section associated with the port/grain insulation component for joint cutouts. (Figure 17)

$$T_{IJ_{PG3}} = T_{PP_{WEB}} - T_{IJ_{MAX}} + L_{IJ_{PGI}} - \left(\frac{T_{PP_{WEB}}}{T_{IJ_{MAX}}}\right) L_{IJ_{PGO}}$$
(186)

JOINT INSULATION, COMPONENT VOLUMES (CUTOUT) = . TRUE.)(Cont.):

Component altitude of the polygon cross section associated with the port/grain insulation component for joint cutouts. (Figure 17)

$$T_{IJ}_{PGI} = \left(\frac{T_{PP}_{WEB}}{T_{IJ}_{MAX}}\right) L_{IJ}_{PGO} - L_{IJ}_{PGI}$$
(187)

Area of the polygon cross section associated with the port/grain insulation component for joint cutouts. (Figure 17)

$$A_{IJ_{PG}} = \left(\frac{T_{IJ_{PGI}}}{2}\right) \left(L_{IJ_{PGI}} + L_{IJ_{PGO}}\right) + T_{IJ_{PG3}} L_{IJ_{PGO}}$$
(188)

Centroid, measured with respect to the motor centerline, of the polygon cross section for joint cutouts. (Figure 17)

$$Y_2 = \left(\frac{T_{IJ}^2_{PGI}}{3}\right) \left(2 L_{IJ}_{PGI} + L_{IJ}_{PGO}\right)$$
 (189)

$$Y_3 = T_{IJ}_{PG1} T_{IJ}_{PG3} \left(L_{IJ}_{PGI} + L_{IJ}_{PGO} \right)$$
 (190)

$$Y_4 = T_{IJ}^2 L_{PG3} L_{IJ}_{PGO}$$
 (191)

$$Y_5 = T_{IJ_{PGI}} (L_{IJ_{PGI}} + L_{IJ_{PGO}}) + 2 T_{IJ_{PG3}} L_{IJ_{PGO}}$$
 (192)

$$Y_1 = \frac{Y_2 + Y_3 + Y_4}{Y_5} \tag{193}$$

$$Y_{IJ}_{PG} = \left(\frac{D_{IL_{I}}}{2}\right) - T_{IJ}_{MAX} - Y_{I}$$
 (194)

EQUATIONS, SECOND ENTRANCE (Cont.):

JOINT INSULATION, COMPONENT VOLUMES (CUTOUTJ = . TRUE.) Cont.):

Volume of a port/grain insulation component for slot cutouts. (Figure 20) See equation 179 for an alternate expression.

$$V_{IJ_{PG}} = \left[2 \pi Y_{IJ_{PG}} A_{IJ_{PG}} \right]_{K_{IJ_7}} + K_{IJ_8}$$
 (195)

JOINT INSULATION, PORT/GRAIN COMPONENT POLYGON CLASSIFICATION:

The following logical expressions are used to classify the polygon cross section associated with the port/grain insulation component for joint cutouts.

If CUTOUTJ = . FALSE., there is no joint insulation and all elements of the PGIJ logical valued array are . FALSE. .

If CUTOUTJ = .TRUE., one, and only one, of the elements of the PGIJ logical valued array must have a .TRUE. value for an acceptable port/grain insulation component solution.

If CUTOUTJ = .TRUE., and either all of the elements of the PGIJ array are false, or more than one element is true, the logical variable PGIJBAD is set .TRUE. .

See Figure 19 for a geometrical interpretation and "Optimization Considerations" of the REMARKS section for discontinuity considerations.

Vertical line solution.

$$PGIJ(1) = (T_{IJ_{MAX}}, EQ.O) .AND. (L_{IJ_{PGI}}, EQ.O)$$
(196)

Horizontal line solution.

$$PGIJ(2) = \left(T_{PP_{WEB}}, EQ, T_{IJ_{MAX}}\right)$$
(197)

Intermediate quantity, solution is not a line.

$$IJNOTLN = .NOT. [PGIJ(1) .OR. PGIJ(2)]$$
 (198)

JOINT INSULATION, PORT/GRAIN COMPONENT POLYGON CLASSIFICATION (Cont.):

Triangle solution.

$$PGIJ(3) = \begin{pmatrix} T_{IJ}_{PG3} & EQ.O \end{pmatrix} \cdot AND. IJNOTIN$$

$$\cdot AND. \begin{pmatrix} L_{IJ}_{PGI} & EQ.O \end{pmatrix}$$

$$\cdot AND. \begin{pmatrix} T_{IJ}_{MAX} & GT.O \end{pmatrix}$$

Trapezoid solutions.

PGIJ(4) =
$$(T_{IJ}_{PG3}, EQ.O)$$
 . AND. IJNOTLN (200)
. AND. $(L_{IJ}_{PGI}, LT, L_{IJ}_{PGO})$
. AND. (L_{IJ}_{PGI}, GT, O)

PGIJ(5) =
$$(T_{1J}_{PG3}, EQ.O)$$
 : AND. IJNOTLN (201)
: AND. $(T_{IJ}_{MAX}, GT.O)$
: AND. $(L_{IJ}_{PGI}, EQ.T_{IJ}_{MAX})$

$$PGIJ(6) = (T_{IJ}_{PG3}, EQ. O) \cdot AND. \quad IJNOTLN$$

$$(202)$$

$$(L_{IJ}_{PG1}, GT, L_{IJ}_{PGO})$$

$$PGIJ(7) = (T_{IJ}_{PG3}, GT, O) \cdot AND \cdot (L_{IJ}_{PGI}, EQ, T_{IJ}_{MAX})$$
(203)

PGIJ(8) =
$$(T_{IJ}_{PG3}, GT.O)$$
 . AND. $(L_{IJ}_{PGI}, EQ.O)$. AND. $(T_{IJ}_{MAX}, GT.O)$

Pentagon solution.

PGIJ(9) =
$$(T_{IJ}_{PG3}, GT, O)$$
 . AND. (L_{IJ}_{PGI}, GT, O) (205)
. AND. $(L_{IJ}_{PGI}, LT, L_{IJ}_{PGO})$

SLOT AND JOINT VOLUMES:

Volume of insulation for a slot with no sides inhibited. (Figure 20)

$$V_{IS_{IHO}} = \left[V_{IS_{PL}} + 2 V_{IS_{GL}}\right] K_{IS_{11}} + K_{IS_{12}}$$
 (206)

Volume of insulation for a slot with one side inhibited. (Figure 20)

$$v_{IS_{IH1}} = \left[v_{IS_{PL}} + v_{IS_{GL}} + v_{IS_{PG}}\right] K_{IS_{13}} + K_{IS_{14}}$$
(207)

Total volume of insulation required for slots.

$$v_{IS} = \left[N_{IS_{1H0}} v_{IS_{1H0}} + N_{IS_{1H1}} v_{IS_{1H1}} \right] K_{IS_{15}} + K_{IS_{16}}$$
 (208)

Volume of insulation required for a joint. (Figure 20)

$$V_{IJ_{IH2}} = [V_{IJ_{PL}} + 2 V_{IJ_{PG}}] K_{IJ_9} + K_{IJ_{10}}$$
 (209)

Total volume of insulation required for joints.

$$V_{IJ} = N_{IJ_{CUT}} V_{IJ_{IH2}} K_{IJ_{11}} + K_{IJ_{12}}$$
 (210)

PROPELLENT DISPLACEMENT:

Volume of propellent displaced by the insulation wedge associated with the forward closure. (Figure 21)

$$V_{IW_{CFPD}} = \left\{ V_{IW_{CLF}} - \left(\frac{\pi}{12} \right) \left\{ R_{DIWCFO} \left[/ \Gamma_{CLO}^{2} - D_{IW_{HFO}}^{2} \right]^{\frac{3}{2}} - \left(D_{IW_{CLO}}^{2} - D_{PT}^{2} \right)^{\frac{3}{2}} \right\} \right\} + 3 L_{IW_{CEFI}} \left(D_{IW_{HFO}}^{2} - D_{PT}^{2} \right)$$

$$+ R_{DIWCFI} \left[\left(D_{IW_{EFI}}^{2} - D_{PT}^{2} \right)^{\frac{3}{2}} - \left(D_{IW_{EFI}}^{2} - D_{IW_{HFO}}^{2} \right)^{\frac{3}{2}} \right] \left\{ K_{PD_{I}}^{+} K_{PD_{2}}^{+} \right\}$$

PROPELLENT DISPLACEMENT (Cont.):

Determination of propellent displaced by the insulation wedge associated with the aft closure.

- If $\theta_{CF} = 0$, the grain cone frustum is a cylinder and equation 212 is used to evaluate V_{IW} CAPD
- If L_{CFCA} > 0. and $\theta_{CF} \neq 0$, the grain cone frustum intersects the ellipsoid portion of the aft outside insulation wedge and equations 213 221 are used to evaluate V_{IWCAPD} .
- If $L_{CFCA} \le 0$, and $\theta_{CF} \ne 0$, the grain cone frustum intersects the cylindrical portion of the aft outside insulation wedge and equations 213 220, 222 are used to evaluate V_{IWCAPD} .

Volume of propellent displaced by the insulation wedge associated with the aft closure (cylindrical grain cone frustum). See equations 221, 222 for alternate expressions. (Figure 21)

$$V_{IW_{CAPD}} = \left\{ V_{IW_{CLA}} - \left(\frac{\pi}{12} \right) \right\} R_{DIWCAO} \left[\left(D_{IW_{CLO}}^2 - D_{IW_{HAO}}^2 \right)^2 - \left(D_{IW_{CLO}}^2 - D_{CFA}^2 \right)^2 \right]$$

$$+ 3 L_{IW_{CEAI}} \left(D_{IW_{HAO}}^2 - D_{CFA}^2 \right)$$

$$+ R_{DIWCAI} \left[\left(D_{IW_{EAI}}^2 - D_{CFA}^2 \right)^2 - \left(D_{IW_{EAI}}^2 - D_{IW_{HAO}}^2 \right)^2 \right] \left\{ K_{PD_3}^{+ + K} + K_{PD_4} \right\}$$

Equations 213 - 220 are intermediate computations required for the evaluation of equations 221 and 222. They are evaluated if $\theta_{CF} \neq 0$.

$$L_{IW_{A1}} = L_{IW_{CHAO}} - \left(\frac{D_{IW_{HAO}}}{2}\right) \cot(\theta_{CF})$$
 (213)

£.

EQUATIONS, SECOND ENTRANCE (Cont.):

PROPELLENT DISPLACEMENT (Cont.):

$$L_{IW_{A2}} = L_{CF_{CA}} - \left(\frac{D_{CFA}}{2}\right) \cot(\theta_{CF})$$
 (214)

$$D_{IW_{A1}} = \left(\frac{D_{CFA}}{2}\right) - L_{CF_{CA}} \tan \left(\theta_{CF}\right) \tag{215}$$

$$C_{IW_{AB}} = R_{DIWCAI}^2 \tan^2(\theta_{CF}) + 1$$
 (216)

$$C_{IW_{BP}} = 2 R_{DIWCAI}^2 D_{IW_{A1}} \tan (\theta_{CF}) - 2 L_{IW_{CEAI}}$$
 (217)

$$C_{IW_{CP}} = D_{IW_{A1}}^2 R_{DIWCAI}^2 - L_{IW_{EAI}}^2 + L_{IW_{CEAI}}^2$$
 (218)

Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft closure to the intersection of the grain cone frustum cutout with the inside surface of the insulation wedge in the aft closure. Measured parallel to centerline. (Figure 21)

$$L_{IW_{CFAI}} = \frac{-C_{IW_{BP}} + \sqrt{C_{IW_{BP}}^2 - 4 C_{IW_{AP}} C_{IW_{CP}}}}{2 C_{IW_{AP}}}$$
(219)

Diameter of the circle formed by the intersection of the grain cone frustum cutout with the inside surface of the insulation wedge associated with the aft closure section. (Figure 21)

$$D_{IW_{CFAI}} = 2 \left[D_{IW_{A1}} + L_{IW_{CFAI}} \tan \left(\theta_{CF} \right) \right]$$
 (220)

Volume of propellent displaced by the insulation wedge associated with the aft closure (L_{CFCA} > 0). See Figure 21. See equations 212, 222 for alternate expressions.

PROPELLENT DISPLACEMENT (Cont.):

$$V_{IW_{CAPD}} = \begin{cases} V_{IW_{CLA}} - \frac{\pi}{12} & & \\ & \\ R_{DIWCAO} \left[\left(D_{IW_{CLO}}^2 - D_{IW_{HAO}}^2 \right)^{\frac{3}{2}} - \left(D_{IW_{CLO}}^2 - D_{IW_{CFA}}^2 \right)^{\frac{3}{2}} \right] \\ & + R_{DIWCAI} \left[\left(D_{IW_{EAI}}^2 - D_{IW_{CFAI}}^2 \right)^{-\frac{3}{2}} - \left(D_{IW_{EAI}}^2 - D_{IW_{HAI}}^2 \right)^{\frac{3}{2}} \right] \\ & + 3 \left[L_{IW_{AI}} D_{IW_{HAO}}^2 + \left(L_{IW_{A2}} - L_{IW_{CEAI}} \right) D_{IW_{CFAI}}^2 \right] \\ & + \left(L_{IW_{CEAI}} - L_{IW_{AI}} \right) D_{IW_{HAI}}^2 - L_{IW_{A2}} D_{CFA}^2 \right] \\ & + \left[D_{IW_{HAO}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{HAI}}^3 - D_{CFA}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{HAO}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{HAI}}^3 - D_{CFA}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{HAO}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{HAI}}^3 - D_{CFA}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{HAO}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{HAI}}^3 - D_{CFA}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{HAO}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{HAI}}^3 - D_{CFA}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{HAI}}^3 - D_{CFA}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{HAI}}^3 - D_{CFA}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CF} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CFAI} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left(\theta_{CFAI} \right) \\ & + \left[D_{IW_{CFAI}}^3 + D_{IW_{CFAI}}^3 - D_{CFAI}^3 \right] \cot \left($$

Volume of propellent displaced by the insulation wedge associated with the aft closure $L_{CF} < 0$. See Figure 21. See equations 212, 221 for alternate expressions.

$$V_{IW_{CAPD}} = \left(\frac{\pi}{12}\right) \left\{ {}^{3}\left({}^{L_{IW}}_{A2} - {}^{L_{IW}}_{CEAI}\right) \left({}^{D_{CFA}^{2}} - {}^{D_{IW}^{2}}_{CFAI}\right) + \left({}^{D_{CFA}^{3}} - {}^{D_{IW}^{3}}_{CFAI}\right) \cot \left(\theta_{CF}\right) + {}^{R_{DIWCAI}} \left[\left({}^{D_{IW}^{2}}_{EAI} - {}^{D_{CFA}^{2}}\right)^{2} - \left({}^{D_{IW}^{2}}_{EAI} - {}^{D_{IW}^{2}}_{CFAI}\right)^{2} \right] \left\{ {}^{K_{PD_{3}}^{+}} {}^{K_{PD_{4}}^{+}} \right\}$$

Volume of propellent displaced by the insulation wedges associated with the forward and aft closures. (Figure 21)

$$v_{IW_{PD}} = (v_{IW_{CAPD}} + v_{IW_{CFPD}}) + \kappa_{PD_5} + \kappa_{PD_6}$$
 (223)

PROPELLENT DISPLACEMENT (Cont.):

Volume of propellent displaced by the grain/liner components of the slot insulation. (Figure 21)

$$V_{IS_{PD}} = (2 N_{IS_{IH0}} + N_{IS_{IH1}}) V_{IS_{GL}} K_{PD_7} + K_{PD_8}$$
 (224)

Total volume of propellent displaced by the insulation wedges and slots. (Figure 21)

$$V_{IN_{PD}} = (V_{IW_{PD}} + V_{IS_{PD}}) K_{PD_9} + K_{PD_{10}}$$
 (225)

EQUATIONS, THIRD ENTRANCE:

Equations 226 - 230 are evaluated at the third entrance to the INGM1 model.

INSULATION LINER, CYLINDRICAL SECTION:

Length of insulation liner within the cylindrical case section. Includes length adjustment for submerged nozzle, slots and joints. (Figure 2)

$$L_{IL_{CY}} = L_{GN_{CY4}} K_{IL_{11}} + K_{IL_{12}}$$
 (226)

Volume of cylindrical insulation liner section within the cylindrical case section.

$$V_{IL_{CY}} = \frac{\pi}{4} \left(D_{IL_{O}}^{2} - D_{IL_{I}}^{2}\right) L_{IL_{CY}} K_{IL_{13}} + K_{IL_{14}}$$
(227)

INSULATION LINER, TOTAL VOLUME:

Total volume of insulation material required for the insulation liner. Includes adjustment for igniter hole in forward closure, nozzle hole in aft closure, length penalty for submerged nozzle, slots, and joints in the grain.

$$V_{IL} = (V_{IL_{CY}} + V_{IL_{CLF}} + V_{IL_{CLA}}) K_{IL_{15}} + K_{IL_{16}}$$
(228)

RESIDUAL INSULATION:

Volume of residual insulation.

$$V_{IN_R} = T_{IN_R} \left(\frac{V_{IL}}{T_{IL_{CY}}} \right) K_{IN_5} + K_{IN_6}$$
 (229)

TOTAL INSULATION VOLUME:

Total internal insulation volume. Includes liner, wedges in forward and aft closure, inhibited slots and joints. (Figures 1, 2)

$$V_{IN} = (V_{IL} + V_{IW_{CLA}} + V_{IW_{CLF}} + V_{IS} + V_{IJ}) \times_{IN_7} + K_{IN_8}$$
 (230)

Fig. 80.1-1 Basic Insulation Components

Fig. 80. 1-2 Typical Insulation Liner and Wedge Geometry

SEE FIGURE 4 FOR LINER VOLUMES

Fig. 80.1-3 Liner Within Forward Closure, Detailed Geometry

Fig. 80.1-4 Liner Within Forward Closure, Volumes

A.

SEE FIGURE 6 FOR LINER VOLUMES

Fig. 80.1-5 Liner Within Aft Closure, Detailed Geometry

Ü

Fig. 80.1-6 Liner Within Aft Closure, Volumes

Fig. 80, 1-7 Wedge Within Forward Closure, Detailed Geometry

Fig. 80.1-8 Wedge Within Forward Closure, Volumes

1

80.1-63

Fig. 80.1-11 Wedge Within Aft Closure, Detailed Geometry

SEE FIGURE 11 FOR DETAILED GEOMETRY

Fig. 80.1-12 Wedge Within Aft Closure, Volumes

Fig. 80.1-13 Wedge Beyond Aft Closure, Detailed Geometry

Fig. 80.1-14 Wedge Reyond Aft Closure, Volumes

Fig. 80, 1-15 Slot and Joint Insulation Configurations

Fig. 80.1-16 Slot Insulation Subcomponents and Geometry

Fig. 80, 1-17 Joint Insulation Subcomponents and Geometry

SEE FIGURE 16 FOR DETAILED GEOMETRY

Fig. 80. 1-18 Acceptable Polygons for Slot Port/Grain Component

V

SEE FIGURE 17 FOR DETAILED GEOMETRY. NOTE: CUTOUT J = .TRUE.

Fig. 80.1-19 Acceptable Polygons for Joint Port/Grain Component

ij

Fig. 80.1-20 Slot and Joint Insulation Volumes

Fig. 80.1-21 Displaced Propellent

Fig. 80.1-22 Inter-Model Coupling

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; E	xt. (Int.) Units	Preset
CING1	C_{IN}_{1}	Constant for Q	INH computation.	0.43
CING2	c _{IN2}	Constant for Q	INH computation.	1000.
CING3	c_{IN_3}	Constant for T. TIJMAX compu	IWMAX, TISMAX an	d
				0.00868
KLIWFII	K _{LIWFII}	Proportionality computation;	y coefficient for LIW	HFI
		N. D.		1
KLIWF12	K _{LIWF12}	Bias for LIWH	FI computation;	
		in		0
LIJPGI	L _{IJ} _{PGI}		the polygon cross senthe port/grain insujoint cutouts;	
		in	Fig. 17	. 1
LISPGI	L _{IS} _{PGI}		the polygon cross se h the port/grain insu slot cutouts;	
		in	Fig. 16	. 1
NIJCUT	N _{IJ} CUT	burning surfac	at cutouts having both es inhibited. Integer loating point integer	r valued
NISIHO	NISIHO	burning surfac	t cutouts having no g es inhibited. Integer loating point integer	r valued
		· - ·		

Mnemonic	Symbol	Description; I	nt. (Int.) Units	Preset
NISHI	N _{ISIH1}	Number of slot cutouts having one grain burning surface inhibited. Integer valued real number (floating point integer);		valued
		N. D.		0
QINSTAR	Q*	Effective heat of ablation of internal insulation;		ıl
		btu/lb		0
TILCY	T _{IL} _{CY}	Thickness of i	insulation liner in the ction;	
		in	Fig. 2	0
TINR	TTN	Thickness of	residual insulation;	
	¹ IN _R	in		. 1

Due to the nature of this model, a very large number of coefficient and bias quantities (mnemonic with first character K) are made available for input. However, in normal applications the preset values are used for most, if not all, of these quantities. Note that these coefficient quantities are preset (1) and the bias quantities are preset (0).

LINER INSULATION COEFFICIENTS AND BIAS

KILI	K _{IL₁}	Coefficient for TILCLF computation; N.D. 1
KIL2	$\kappa^{1}\Gamma^{5}$	Bias for TILCLF computation; in 0
KIL3	κ_{IL_3}	Coefficient for VILCLF computation; N. D. 1

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KIL4	K _{IL₄}	Bias for VILCLF computation; in 3	0
KIL5	κ_{IL_5}	Coefficient for DILHAO computation N.D.	n; l
KIL6	KIL6	Bias for DILHAO computation;	0
KIL7	KIL7	Coefficient for TILCLA computation N. D.	n; 1
KIL8	KIL8	Bias for TILCLA computation; in	0
KIL9	KIL9	Coefficient for VILCLA computation. D.	n; 1
KIL10	$\kappa_{\mathrm{IL}_{10}}$	Bias for VILCLA computation; in 3	0
KIL11	$\kappa_{_{\mathbf{IL}_{11}}}$	Coefficient for LILCY computation;	; 1
KIL12	$\kappa_{1L_{12}}$	Bias for LILCY computation; in	0
KIL13	$\kappa_{IL_{13}}$	Coefficient for VILCY computations N. D.	;
KIL14	$\kappa_{\mathrm{IL}_{14}}$	Bias for VILCY computation; in	0

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KIL15	$\kappa_{_{\mathrm{IL}}_{15}}$	Coefficient for VIL computation; N. D.	1
KIL16	κ^{1r}^{19}	Bias for VIL computation; in 3	o
KIL17	$\kappa_{_{ m 1L}_{ m 17}}$	Coefficient for DILHFO computat N. D.	ion; l
KIL18	KIL ¹⁸	Bias for DILHFO computation; in	0

JOINT INSULATION COEFFICIENTS AND BIAS

KIJ1	$^{\mathrm{K}}_{\mathrm{IJ}_{1}}$	Coefficient for TIJMAX computation; N. D. 1
KIJ2	κ_{IJ_2}	Bias for TIJMAX computation; in 0
KIJ3	κ_{IJ_3}	Coefficient for LIJCUT computation; N.D. 1
KIJ4	$\kappa_{{{\mathtt{IJ}}_4}}$	Bias for LIJCUT computation; in 0
KIJ5	K _{IJ5}	Coefficient for VIJPL computation; N. D. 1
KIJ6	$\kappa_{\mathbf{IJ}_{6}}$	Bias for VIJPL computation; in 3 0

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KIJ7	κ_{1J_7}	Coefficient for VIJPG computation; N. D.	1
KIJ8	$\kappa_{\mathrm{IJ}_{8}}$	Bias for VIJPG computation; in ³	0
KIJ9	$\kappa_{{\rm IJ}_9}$	Coefficient for VIJIH2 computation; N. D.	1
KIJ10	$\kappa_{IJ_{10}}$	Bias for VIJIH2 computation; in 3	0
KIJ11	$\kappa_{IJ}^{}_{11}$	Coefficient for VIJ computation; N. D.	1
KIJ12	K _{IJ₁₂}	Bias for VIJ computation; in 3	0

GENERAL INSULATION COEFFICIENTS AND BIAS

KINI	κ_{IN_1}	Coefficient for QINH computation; N. D. 1
KIN2	κ_{IN_2}	Bias for QINH computation;
KIN3	$\kappa_{\rm IN_3}$	Coefficient for TINMAX computation; N. D. 1
KIN4	$\kappa_{_{\mathrm{IN}_{_{4}}}}$	Bias for TINMAX computation; in 0

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KIN5	κ_{IN_5}	Coefficient for VINR computation; N. D.	1
KIN6	KIN6	Bias for VINR computation; in 3	0
KIN7	K _{IN7}	Coefficient for VIN computation; N. D.	1
KIN8	KIN8	Bias for VIN computation; in 3	0

SLOT INSULATION COEFFICIENTS AND BIAS

KISI	K _{IS} ,	Coefficient for TISMAX computation;	
	1	N. D. 1	
KIS2	K_{IS_2}	Bias for TISMAX computation;	
	2	in 0	
KIS3	$\kappa_{_{\mathrm{IS}_3}}$	Coefficient for LISCUT computation;	
	3	N. D. 1	
KIS4	$^{ m K}$ IS $_{f 4}$	Bias for LISCUT computation;	
	4	in 0	
KIS5	K _{IS}	Coefficient for VISPL computation;	
	5	N. D. 1	
KIS6	$\kappa_{_{\mathrm{IS}_6}}$	Bias for VISPL computation;	
	0	in^3	

Mn emonic	Symbol	Description; Ext. (Int.) Units	Preset
KIS7	K _{IS7}	Coefficient for VISGL computation; N. D.	1
KIS8	KIS8	Bias for VISGL computation; in 3	0
KIS9	κ_{IS_9}	Coefficient for VISPG computation; N. D.	1
KIS10	K _{IS} ₁₀	Bias for VISPG computation; in 3	0
KIS11	K _{IS} ₁₁	Coefficient for VISIHO computation; N. D.	1
KIS12	K _{IS12}	Bias for VISIHO computation; in 3	0
KIS13	K _{IS₁₃}	Coefficient for VISIH1 computation; N. D.	1
KIS14	K _{IS} ₁₄	Bias for VISIHI computation; in 3	0
KIS15	K _{IS₁₅}	Coefficient for VIS computation; N. D.	1
KIS16	K _{IS₁₆}	Bias for VIS computation; in 3	0

80.1-83

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
WEDGE INSULAT	ION COEFFICI	ENTS AND BIAS	
KIWI	κ_{IW_1}	Coefficient for DIWHFO computation. D.	on; 1
KIW2	K _{IW z}	Bias for DIWHFO computation;	0
KIW3	$\kappa_{_{_{1}W}_{_{3}}}$	Coefficient for LIWHF computation N. D.	-
KIW4	$\kappa_{_{\mathrm{IW}}}_{_{4}}$	Bias for LIWHF computation;	0
KIW7	K _{IW7}	Coefficient for VIWCLF computati	-
KIW	$\kappa_{iw_{i'}}$	Bias for VIWCLF computation; in 3	0
KIW'7	κ _{IW9}	Coefficient for TIWAMAX computa N. D.	tion;
KIM10	K _{IW10}	Bias for TIWAMAX computation; in	0
KIW11	K _{JW} 11	Coefficient for DIWHAO computati	on; 1
KIW12	K _{IW} ₁₂	Bias for DIWHAO computation; in	0
KIW13	K _{IW₁₃}	Coefficient for DIWHAI computation. D.	n; 1

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KIW14	K _{IW14}	Coefficient for DIWHAI computation N. D.	n; 1
KIW15	K _{IW} ₁₅	Coefficient for DIWHAI computation N. D.	n; 1
KIW16	K _{IW16}	Bias for DIWHAI computation; in	0
KIW17	$\kappa_{1W_{17}}$	Coefficient for LIWHA computation N. D.	ı; 1
KIW18	K _{IW18}	Bias for LIWHA computation; in	0
KIW19	K _{IW19}	Coefficient for VIWCLA computation. D.	on; l·
KIW20	K _{IW₂₀}	Bias for VIWCLA computation; in 3	0
KIW21	K _{IW₂₁}	Coefficient for TIWFMAX computa N. D.	tion;
KIW22	$\kappa_{1W}^{}_{22}$	Bias for TIWFMAX computation; in	0
KIW23	K _{IW₂₃}	Coefficient for TIWMAX computati	on; 1
KIW24	K _{IW24}	Bias for TIWMAX computation; in	0

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
Ki:Dl	$\kappa_{\mathtt{PD}_{1}}$	Coefficient for VIWCFPD computation. D.	ion; 1
KPD2	K _{PD2}	bias for VIWCFPD computation; in 3	0
KPD3	κ_{PD_3}	Coefficient for VIWCAPD computation. D.	ion; l
KPD4	$\kappa_{\mathtt{PD}_4}$	Bias for VIWCAPD computation; in 3	0
KPD5	K _{PD5}	Coefficient for VIWPD computation N. D.	1
KPD6	K _{PD6}	Bias for VIWPD computation; in 3	0
KPD7	K _{PD7}	Coefficient for VISPD computation; N.D.	1
KPD8	K _{PD8}	Bias for VISPD computation; in 3	0
KPD9	κ _{PD9}	Coefficient for VINPD computation N.D.	;
KPD10	$\kappa_{ exttt{PD}_{10}}$	Bias for VINPD computation; in 3	0

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; E	xt. (Int.) Units	Model Type	
DCSHAI	D _{CS} _{HAI}	Diameter of hole in aft inside case closure surface;			
		in	Figs. 2, 22	CASEG	
DCSHFI	D _{CS} HFI	Diameter of ho	ole in forward inside;	le case	
		in	Figs. 2, 22	CASEG	
DCSI	$^{\mathrm{D}}\mathrm{cs}_{\mathrm{I}}$	Inside case dia	ameter, cylindric	al section;	
	oo _I	in	Figs. 2, 22	CASEG	
DPT	D _{PT}	Diameter of cylindrical section of port;			
F-1		in	Figs. 2, 21, 22	GRAING	
DPTCFA	^D CFA	Aft base diameter of the port cone frustum section required for nozzle submergence;			
		in	Figs. 21, 22	GRAING	
DPTCFF	D _{CFF}		diameter of the po on required for noz		
		in	Figs. 11, 13, 21, 22	GRAING	
LGNCY4	L _{GNCY4}	Length of cylindrical grain section Includes length penalty for nozzlo submergence, joint cutouts and s		2	
		in	Figs. 2, 21, 22	GRAING	
LJTCUT	$^{ extsf{L}}_{ extsf{JT}_{ extsf{CUT}}}$	Total length of	f cut in grain for jo	oints;	
	CUT	in	Fig. 22	GRAING	

80.1-87

Mnemonic	Symbol	Description; I	Ext. (Int.) Units	Model Type
LPTCFCA	L _{CF} _{CA}	Length of the portion of the port cone frustusection, required for nozzle submergence, within the aft closure. Positive sense from closure equatorial plane towards aft;		
		in	Figs. 21, 22	GRAING
LPTCFCY	L _{CF_{CY}}		portion of the port con the cylindrical sec	
		in	Figs. 11, 13, 21, 22	GRAING
LSLGN	L _{SL_{GN}}	Total slot leng	gth;	
	G-GN	in	Fig. 22	IBFLOW
RDCSCAI R _{DCSCAI}		Head ratio, aft inside case closure surface;		
	2000.2	N. D.	Fig. 22	CASEG
RDCSCFI	RDCSCFI	Head ratio, forward inside case closurface;		losure
		N. D.	Figs. 21, 22	CASEG
RHOIJ	$^{ ho}{}_{ m IJ}$	Density of ins	ulation for joint cuto	uts;
	10	lb/in ³	Fig. 22	INSULW
RHOIS	$ ho_{\mathtt{IS}}$	Density of inst	ulation for slot cutou	ts;
	10	lb/in ³	Fig. 22	INSULW
RHOIW	$\rho_{_{\mathrm{IW}}}$	Density of ins	ulation for closure w	/edges;
	•	lb/in ³	Fig. 22	INSULW
ТВРРМТ	ТВ	Propellent bu	rn time;	
	D	sec	Fig. 22	IBPERF

Mnemonic	Symbol	Description; Ext. (Int.) Units Model Type
TCPP	$^{\mathrm{T}}$ C $_{\mathrm{PP}}$	Propellent combustion temperature; OR Fig. 22 IBGAS
THETACF	$\theta_{ extsf{CF}}$	Half-angle of port cone frustum section; deg (rad) Figs. 2, 11, 13, 21, 22 GRAING
TPPWEB	T _{PPWEB}	Thickness of propellent web; in Figs. 2, 16, 17, 22 GRAING

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units			
AIJPG	$^{\mathrm{A}}_{\mathrm{IJ}}_{\mathrm{PG}}$	Area of the polygon cross section associated with the port/grain insulation component for joint cutouts; in Fig. 17 Eq. 188			
		ın	Fig. 17	Eq. 188	
AISPG	A _{IS} _{PG}	Area of the polygon cross section associa with the port/grain insulation component slot cutouts;			
		in ²	Fig. 16	Eq. 168	
AIWHAT	^A IW _{HAT}	Area of triangular wedge section, associated with the cone frustum cutout for the nozzle, within the aft case closure section;			
		in ²	Figs. 12, 14	Eq. 152	
COSTCF	$\cos \left(^{ heta}_{ ext{CF}} ight)$	Cosine of THETACF;			
	(01)	N. D.			
CUTOUTJ	CUTOUTJ	CUTOUTJ (CUT OUT in grain for Joint) is a logical variable which specifics if there are joint cutouts within the grain which require insulation.			
		. TR UE.;	there is at least one cutout requiring ins Both surfaces of a jinkibited.	ulation.	
		. FALSE.;	there are no joint corequiring insulation		
		N. D.		Eq. 157-b	
CUTOUTS	CUTOUTS	logical variab	JT OUT in grain for S le which specifies if ithin the grain which	there are	

Mnemonic	Symbol	Description;	Ext. (Int.) Units	
		.TRUE.;	there is at least one a requiring insulation. or no slot burning sur be inhibited.	Either one
		FALSE.;	there are no slot cuto requiring insulation.	uts
		N. D.		Eq. 157-a
CIWA	$^{\text{C}}_{\text{IW}}{}_{\text{A}}$	Intermediate evaluation;	computation for DIWC	CAI
		N. D.		Eq. 120
CIWAP	$^{C}_{IW}{}_{AP}$	Intermediate evaluation;	computation for LIWC	CFAI
		N. D.		Eq. 216
CIWB	c^{IM}^B	Intermediate evaluation;	computation for DIW	CAI
		in		Eq. 121
CIWBP	$c_{IW_{BP}}$	Intermediate evaluation;	computation for LIW	CFAI
		in		Eq. 217
CIWC	c^{IM} C	evaluation;	computation for DIW	CAI
		in ²		Eq. 122
CIWCP	$c_{iw_{CP}}$	evaluation;	e computation for LIW	CFAI
		in ²		Eq. 218
DILCLI	D _{IL} CLI	by the inside	iameter of the ellipsoi e surface of the insulat with the forward and af nons;	ion liner
		in	Figs. 3, 5	Eq. 6

Mnemonic	Symbol	Description; Ext. (Int.) Units			
DILCLO	DIT CTO	Equatorial diameter of the ellipsoids formed by the outside surface of the insulation liner associated with the forward and aft case closure sections;			
		in	Figs. 3, 5	Eq. 5	
DILHAI	D _{IL} HAI	Diameter of circular hole, for the centered on the axis of revolution of hemi-ellipsoid formed by the insid of the insulation liner within the af closure section;		of the e surface	
		in	Figs. 2, 5	Eq. 40	
DILHAO	D _{IL} HAO	Diameter of circular hole, for the nozzle, centered on the axis of revolution of the hemi-ellipsoid formed by the outside surfa of the insulation liner within the aft case closure section;			
		in	Fig. 5	Eq. 34	
DILHFI	D _{IL} HFI	Diameter of circular hole, for the ignitor, centered on the axis of revolution of the he ellipsoid formed by the inside surface of the insulation liner within the forward case closure section;		of the hemi- ace of the	
		in	Fig. 3	Eq. 15	
DILHFO	D _{IL} HF O	centered on the	ircular hole, for the le axis of revolution of formed by the outsion on liner within the foresection;	of the de surface	
		in	Fig. 3	Eq. 9	
DILI	$D_{\mathbf{IL}_{\mathbf{I}}}$	Inside diameter of the cylinder which is the inside surface of the insulation liner in the cylindrical case section;		ch is liner in	
		in	Fig. 2	Eq. 4	
DILO	D _{IL} O	Outside diameter of the cylinder which is the outside surface of the insulation liner in the cylindrical case section;		hich is n liner	
		in	Fig. 2	Eq. 3	

Mnemonic	Symbol	Description; Ext. (Int.) Units		
DIWAL	D _{IW} A1	Intermediate co	omputation for LI	WCFAI,
		in		Eq. 215
DIWCAI	D _{IW} CAI	Diameter of the circle of osculation formed by the tangency points of the inside aft wedge surface hemi-ellipsoid and the outside aft wedge surface hemi-ellipsoid. See IWINACL;		
		in	Figs. 11, 15	Eqs. 119, 123
DIWCFAI	D _{IW} CFAI	Diameter of the circle formed by the inter- section of the grain cone frustum cutout with the inside surface of the insulation wedge associated with the aft closure section;		
		in		Eq. 220
DIWCFI	D _{IW} CFI	Diameter of the circle of osculation formed by the tangency points of the inside forward wedge surface hemi-ellipsoid and the outside forward wedge surface hemi-ellipsoid. See IWINFCL:		
		in	Figs. 7, 9	Eqs. 73, 77
DIWCLO	DIWCLO	formed by the	neter of the hemi outside surface o sociated with the tions;	f the insula-
		in	Figs. 7, 9, 11, 13	Eq. 60
DIWEAI	D _{IW} EAI	associated with	meter of the hemin the inside surfage in the aft case WINACL;	ce of the
		in	Figs. 11, 13	Eqs. 128,130
DIWEFI	D _{IW} EFI	associated with	neter of the hemin the inside surfage in the forward	ce of the
		in	Figs. 7, 9	Eqs. 76, 79

Mnemonic	Symbol	Description;	Ext. (Int.) Units		
DIWHAI	D _{IW} HAI	Diameter of the forward base of the cone frustum hole, for the nozzle cutout, centered on the axis of revolution of the hemi-ellipsoid formed by the inside surface of the insulation vedge associated with the aft case closure section;			
		in	Figs. 11, 13	Eq. 110	
DIWHAO	DIWHAO	Diameter of the aft base of the cone frustum hole, for the nozzle cutout, centered on the axis of revolution of the hemi-ellipsoid formed by the outside surface of the insulati wedge associated with the aft case closure section;			
		in	Figs. 11, 13	Eq. 109	
DIWHFI	D _{IW} HFI	Diameter of the circular hole, for the ignitor centered on the axis of revolution of the hem ellipsoid formed by the inside surface of the insulation wedge associated with the forward case closure section;			
		in	Figs. 7, 9	Eq. 63	
DIWHFO	D _{IW} HFO	centered on t ellipsoid form	the circular hole, for he axis of revolution of ned by the outside sur dge associated with th section;	of the hemi- face of the	
		in	Figs. 7, 9	Eq. 62	
GOODPGJ	GOODPGJ	GOODPGJ is a logical valued variable which indicates an acceptable polygon cross section for the port/grain insulation component associated with the joint cutouts.			
		=.TRUE.;	PG component for jointion is an acceptable of The particular polygo determined by referring	oolygon. n may be	

Mnemonic	Symbol	Description;	Ext. (Int.) Units
		=.FALSE.;	PG component for joint insulation is not an acceptable polygon. Joint insulation geometry may be bad.
		N. D.	
GOODPGS	GOODPGS	S GOODPGS is a logical valued varia indicates an acceptable polygon crofor the port/grain insulation compossociated with the slot cutouts;	
		=.TRUE.,	PG component for slot insulation is an acceptable polygon, the particular polygon may be determined by referring to PGIS.
		=. FALSE.,	PG component for slot insulation is not an acceptable polygon. Slot insulation geometry may be bad;
		N. D.	
IJNOTLN	IJNOTLN	Intermediate computation	e logical quantity for PGIJ
		N. D.	Eq. 198
ISNOTLN	ISNOTLN	Intermediate computation	e logical quantity for PGIS
		N. D.	Eq. 173
IWINACL	I _{WIN} _{ACL}	is a logical insulation we	nsulation Wedge IN Aft Closure) variable which specifies if the edge associated with the aft ompletely within the aft closure;
		=. TRUE.;	the insulation wedge is completely within the aft closure. See Figs. 11, 12.

Mnemonic	Symbol	Description; Ext. (Int.) Units			
		=. FALSE.;	the insulation wed beyond the aft clo- cylindrical section to the intersection closure and cylind See Figs. 13, 14;	sure into the n, or extends n of the aft	
		N. D.		Eq. 118	
IWINFCL	WINFCL IWINFCL, IWINFCL (Insulation CLosure) is a logical files if the insulation the forward closure forward closure:		a logical variable is ulation wedge association wedge association complete	lwhich speci- ociated with	
		=.TRUE.;	wedge is completel forward closure.		
		=. FALSE.;	wedge extends beyond closure into the cylindrical section of the forward cylindrical section. 9;	lindrical to the inter- ard closure	
		N. D.		Eq. 72	
LIJCUT	L _{IJCUT}	Length of a computation	single joint cutout i	or insulation	
		in	Fig. 17	Eq. 181	
LIJPG3	L _{IJ} _{PG3}	determinati polygon cro	e quantity required on of the outside bass section associate nsulation componen	se of the ed with the	
		in	Fig. 17	Eq. 183	
LIJPGO	L _{IJ} _{PGO}	Outside base of the polygon cross section associated with the port/grain insulation components for grain cutouts;			
		in	Fig. 17	Eqs. 184,185	

(,

Mnemonic	Symbol	Description; Ext. (Int.):Units			
LILCHAI	LILCHAI	Length of hemi-ellipsoidal frustum associated with the inside surface of the insulation liner within the aft case closure;			
		in	Fig. 5	Eq. 42	
LILCHAO	LILCHAO	Length of hemi-ellipsoidal frustum associated with the outside surface of the insulation liner within the aft case closure section;			
		in	Fig. 5	Eq. 36	
LILCHFI	^L lL _{CHFI}	Length of the hemi-ellipsoidal frustum associated with the inside surface of the insulation liner within the forward case closure;			
		in	Figs. 2, 3	Eq. 17	
LILCHFO	L _{IL} CHFO	Length of hemi-ellipsoidal frustum associated with the outside surface of the insulation liner within the forward closure section;			
		in	Figs. 2, 3	Eq. 11	
LILCLAI	L _{IL} CLAI	Length of the axis of revolution of the hemi- ellipsoid formed by the inside surface of the insulation liner within the aft case closure section;			
		in	Fig. 5	Eq. 38	
LILCLAO	L _{IL} CLAO	Length of the axis of revolution of the hemi- ellipsoid formed by the outside surface of the insulation liner within the aft case closure section;			
		in	Figs. 5, 6	Eq. 33	
LILCLFI	L _{ILC LFI}	Length of the axis of revolution of the hemi- ellipsoid formed by the inside surface of the insulation liner within the forward case closure section;			
		in	Fig. 3	Eq. 13	

Mnemonic	Symbol	Description, Ext. (Int.) Units		
LILCLFO	LILCLFO	Length of the axis of revolution of the hemi- ellipsoid formed by the outside surface of the insulation liner within the forward case closure section;		
		in	Figs. 3, 4	Eq. 8
LILCY	LILCY	Length of insulation liner within the cylindrical case section. Includes length adjustment for submerged nozzle, slots and joints;		
		in	Fig. 2	Eq. 226
LILHA	LILHA	Length of cylindrical hole, for the nozzle, in the insulation liner within the aft case closure section;		
		in	Fig. 5	Eq. 43
LILHF	LTLHF	Length of cylindrical hole, for the ignitor, in the insulation liner within the forward case closure section;		
		in	Fig. 3	Zq. 18
LISCUT	L _{IS} CUT	Length of a single slot cutout for insulation computations;		
		in	Fig. 16	Eq. 162
LISPGO	L _{IS} PGO	Length of outside base of the polygon cross section associated with the port/grain insulation component for slot cutouts;		
		in	Fig. 16	Eq.
LIWAI	L _{IW} AI	Distance from the pole of the hemi-elli- associated with the inside surface of the insulation wedge in the aft closure to the an- closure "inside/outside surface wedge osculation plane";		
		in	Figs. 11, 13	Eq. 133

Ü

Mnemonic	Symbol	Description; Ext. (Int.) Units			
LIWAl	L _{IW} Al	Intermediate computation for VIWCAPD evaluation;			
		in		Eq. 213	
LIWA2	L _{IW} A2	Intermediate computation for VIWCAPD evaluation;			
		in		Eq. 214	
LíWCAI	^L IW _{CAI}	Distance from the "equatorial plane of the aft closure outside wedge surface hemicollipsoid" to the "inside/outside wedge surface osculation plane". Measured along the axis of revolution, positive serse aft. A positive value indicates that the wedge is completely within the aft closure. A negative value indicates that the wedge extends beyond the aft closure into the cylindrical section. See IWINACL;			
		in	Figs. 11, 13	Eqs. 117, 124	
LIWCEAI	L _{IW} CEAI	Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft case closure section to the equatorial plane of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section. See IWINACL;			
		in	Figs. 11, 13	Eqs. 126,129	
LIWCEFI	LIWCEFI	Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure to the equatorial plane of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward case closure; in Figs. 7. 9 Eqs. 74. 78			
		111	Figs. 7, 9	Eqs. 74, 78	

Mnemonic	Symbol	Description; Ext. (Int.) Units			
LIWCFAI	L _{IW} CFAI	Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft closure to the intersection of the grain cone frustum cutout with the inside surface of the insulation wedge in the aft closure. Measured parallel to centerline;			
LIWCFI	L _{IWCFI}	Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure to the "inside/outside wedge surface osculation plane." Note that the insulation wedge is not completely within the forward closure section if LIWCFI is negative. See IWINFCL;			
		in	Figs. 7, 9	Eq. 71	
LIWCHAI	L _{IW} CHAI	Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft case closure section to forward base of the cone frustum hole, for the nozzle cutout, within the insulation wedge in the aft case closure section;			
		in	Figs. 11, 13	Eq. 116	
LIWCHAO	L _{IW} CH A O	Length of the hemi-ellipsoid frustum associated with the outside surface of the insulation wedge in the aft case closure section;			
		in	Figs. 11, 13	Eq. 115	
LIWCHFI	L _{IW} CHFI	Distance from the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward closure to the inside base of the cylindrical hole cutout for the ignitor within the insulation wedge in the forward closure;			
		in	Figs. 7, 9	Eq. 69	

Mnemonic	Symbol	Description; Ext. (Int.) Units			
LIWCHFO	L _{IW} CHFO	Length of the hemi-ellipsoid frustum associated with the outside surface of the insulation wedge in the forward case closure section;			
		in	Figs. 7, 9	Eq. 68	
LIWCLAI	L _{IW} CLAI	Distance from the pole of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft closure to the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the aft closure;			
		in	Figs. 11, 13	Eq. 132	
LIWCLAO	L _{IW} CLAO	Length of the axis of revolution of the hemi- ellipsoid associated with the outside surface of the insulation wedge in the aft closure section;			
		in	Figs. 11, 13	Eq. 113	
LIWCLFI	L _{IW} CLFI	Distance from the pole of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward closure to the equatorial plane of the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward closure;			
		in	Figs. 7, 9	Eq. 82	
LIWCLFO	L _{IW} CLFO	Length of the axis of revolution of the hemi ellipsoid associated with the outside surfac- of the insulation wedge in the forward closure section;			
		in	Figs. 7, 9	Eq. 66	
LIWEAI	LIWEAI	Length of the axis of revolution of the hemi- ellipsoid associated with the inside surface of the insulation wedge in the aft case closure section:			
		in	Figs. 11, 13	Eqs. 127, 131	

Mnemonic	Symbol	Description; Ext. (Int.) Units			
LIWEFI	LIWEFI	Length of the axis of revolution of the hemi- ellipsoid associated with the inside surface of the insulation wedge in the forward case closure. See IWINFCL;			
		in	Figs. 7, 9	Eqs. 75, 81	
LIWEHAI	L _{IW} EHAI	Distance from the equatorial plane of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the aft case closure to the inside base of the cone frustum cutout within the insulation wedge in the aft case closure section;			
		in	Figs. 11, 13	Eq. 134	
LIWEHFI	L _{IW} EHFI	Distance from the equatorial plane of the hemi-ellipsoid associated within the inside surface of the insulation wedge in the forward case closure to the inside base of the cylindrical hole cutout for the ignitor within the insulation wedge in the forward closure;			
		in	Figs. 7, 9	Eq. 84	
LIWFI	L _{IW} FI	Distance from the pole of the hemi-ellipsoid associated with the inside surface of the insulation wedge in the forward closure to the forward closure inside/outside wedge surface osculation plane;			
		in	Figs. 7, 9	Eq. 83	
LIWHA	LIWHA	Altitude of the cone frustum, for the nozzle cutout, within the insulation wedge of the aft case closure section;			
		in	Figε. 11, 13	Eq. 111	
LIWHAI	L _{IW} HAI	Distance from the "inside/outside wedge surface osculation plane" to the inside base of the cone frustum hole cutout of the insulation wedge for the nozzle;			
		in	Figs. 11, 13	Eq. 125	

Mnemonic	Symbol	Description; Ext. (Int.) Units			
LIWHF	LIWHE	Length of the cylindrical hole, for the ignitor, within the insulation wedge of the forward case closure section;			
		in	Figs. 7, 9	Eq. 64	
LIWHFI	LiwHFI	Distance from the inside/outside wedge surface osculation plane to the inside bas of the cylindrical hole cutout for the ignit			
		in	Figs. 7, 9	Eq. 70	
NISCUT	N _{ISCUT}	Number of slot cutouts in grain to be insulated. Integer valued real number (floating point integer);			
		N. D.		Eq. 157	
PGIJ(i)	PGIJ(i)	Logical value array which identifies the particular polygon cross section of the port/grain insulation component associated with joint cutouts. The i-th element of PGIJ will have the value .TRUE. (all other elements will be .FALSE.), thereby indicating the particular polygon shape (e.g., line, triangle, trapezoid, pentagon) for the PG component. See Fig. 19 for the key identifying the i-th element;			
		N. D.	Fig. 19	Eqs. 196-205	
PGIJLAP	PGIJLAP	Logical valued variable which indicates overlapping of the polygon cross section associated with the port/grain insulation component for joint cutouts;		sections	
		=.TRUE.; P	G components over	lap.	
		=.FALSE.; P	G components do n	ot overlap;	
		N. D.	Fig. 19	Eq. 183-a	

, j

Mnemonic	Symbol	Description; Ext. (Int.) Units			
PGIS(i)	PGIS(i)	Logical valued array which identifies the particular polygon cross section of the port/grain insulation component associated with slot cutouts. If a slot burning surface inhibited, the i-th element of PGIS will have the value .TRUE. (all other elements will be .FALSE.), thereby indicating the particular polygon shape (e.g., line, triangle, trapezoid) for the PG component. See Fig. 18 for the key identifying the i-th element;			
		N. D. Fig. 18 Eq	ıs. 171-177		
QINH	Q_{IN}^{H}	Approximate radiative heating rate;			
	n	N. D.	Eq. l		
RDILCAI	RDILCAI	Head ratio of the ellipsoid formed by the inside surface of the insulation liner within the aft case closure section;			
		N. D.	Eq. 39		
RDILCAO	R _{DILCAO}	Head ratio of the ellipsoid formed by the outside surface of the insulation liner within the aft case closure section:			
		N. D.	Eq. 32		
RDILCFI	RDILCFI	Head ratio of the ellipsoid formed by the inside surface of the insulation liner within the forward case closure section:			
		N. D.	Eq. 14		
RDILCFO	RDILCFO	RDILCFO Head ratio of the ellipsoid formed by the outside surface of the insulation liner within the forward case closure section			
		N. D.	Eq. 7		

विकेश व्यवस्थात । इ.स.च्या विकास सम्बद्धाः

Mnemonic	Symbol	Description; Ext. (Int.) Units		
R DILHAI	RDILHAI	Diameter ratio, hole diameter to equatorial diameter, inside surface of the insulation liner within the aft case closure section;		
		N. D.	Eq. 41	
RDILHAO	R DILHAO	Diameter ratio, hole diameter to equatorial diameter, outside surface of the insulation liner within the aft case closure section;		
		N. D.	Eq. 35	
RDILHFI	RDJLHFI	Diameter ratio, hole diameter to equatorial diameter, inside surface of the insulation liner within the forward case closure section;		
		N. D.	Eq. 16	
RDILHFO	RDILHFO	Diameter ratio, hole diameter to equatorial diameter, outside surface of the insulation liner within the forward case closure section;		
		N. D.	Eq. 10	
RDIWCAI	RDIWCAI	Head ratio of the ellipsoid associate the inside surface of the insulation in the aft closure section;		
		N. D.	Eq, 131-a	
RDIWCAO	RDIWCAO	Head ratio of the ellipsoid associate the outside surface of the insulation within the aft case closure section;		
		N. D.	Eq. 112	
RDIWCFI	R _{DIWCFI}	Head ratio of the ellipsoid associated with the inside surface of the insulation wedge in the forward closure section;		
		N. D.	Eq. 81-a	

Mnemonic	Symbol	Description; Ext. (Int.) Units			
RDIWCFO	RDIWCFO	Head ratio of the ellipsoid associate the outside surface of the insulation within the forward case closure second	wed	ige	
		N. D.	Eq.	65	
RDIWHAO	R _{DIWHAO}	Diameter ratio, aft base of cone from hole to equatorial diameter, outside of the insulation wedge in the aft calcium section;	e su		
		N. D.	Eq.	114	
RDIWHFI	R _{DIWHFI}	Liameter ratio, hole diameter to ediameter, inside surface of insulation the forward case closure;			
		N. D.	Eq.	80	
RDIWHFO	R _{DIWHFO}	Diameter ratio, hole diameter to equatorial diameter, outside surface of the insulation wedge in the forward case closure section;		ion	
		N. D.	Eq.	67	
RIJLCAI	RLILCAI	Length ratio, hemi-ellipsoid frustu hemi-ellipsoid, inside surface, ins liner, forward case closure;			
		N. D.	Eq.	52	
RLILCAO	RLILCAO	Length ratio, hemi-ellipsoid frustu hemi-ellipsoid, outside surface, in liner, aft case closure;			
		N. D.	Eq.	46	
RLILCFI	RLILCFI	Length ratio, hemi-ellipsoid frustu hemi-ellipsoid, inside surface, ins liner, forward case closure;			
		N. D.	Eq.	27	

Mnemonic	Symbol	Description; Ext. (Int.) Units			
RLILCFO	RLILCFO	Length ratio, hemi-ellipsoid frustumenti-ellipsoid, outside surface, in liner, forward case closure; N.D.			
RLIWCAl	RLIWCAL	Length ratio, hemi-ellipsoid frustu- hemi-ellipsoid, outside surface, in wedge, aft case closure section;	m to sulat	ion	
		N.D.	Eq.	136	
RLIWCA2	RLIWCAZ	Length ratio, hemi-ellipsoid frusture equatorial and "inside/outside wedgo sculation plane" bases) to hemi-elloutside surface, insulation wedge, closure section;	e su: lipso	rface id,	
		N. D.	Eq.	139	
RLIWCA3	RLIWCA3	Length ratio, hemi-ellipsoid frustu equatorial base and inside nozzie co base) to hemi-ellipsoid, inside suri insulation wedge, aft case closure	itout face,		
		N. D.	Eq.	145	
RLIWCA4	R LIWCA4	Length ratio, hemi-ellipsoid frustu equatorial and "inside/outside wedg osculation plane" bases) to hemi-el inside surface, insulation wedge, a closure section;	ge su lipso	rface id	
		N. D.	Eq.	149	
RLIWCFl	RLIWCFI	Length ratio, hemi-ellipsoid frustu hemi-ellipsoid, outside surface, in wedge, forward case closure section	sulat		
		N. D.	Eq.	86	

Mnemonic	Symbol	Description; E	Ext. (Int.) Units	
RLIWCF2	RLIWCF2	Length ratio, hemi-ellipsoid frustum (with equatorial and "inside/outside wedge surface osculation plane" bases) to hemi-ellipsoid outside surface, insulation wedge, forward base closure section;		
		N. D.		Eq. 91
RLIWCF3	R _{LIWCF3}	Length ratio, hemi-ellipsoid frustum (with equatorial and inside cylindrical hole cutout for the ignitor bases) to hemi-ellipsoid, inside surface, insulation wedge, forward case closure section;		
		N. D.		Eq. 99
RLIWCF4	RLIWCF4	Length ratio, hemi-ellipsoid frustum (with equatorial and "inside/outside wedge surface osculation plane" bases) to hemi-ellipsoid, inside surface, insulation wedge, forward case closure section;		
		N. D.		Eq. 103
SINTCF	$sin\left(heta_{ extsf{CF}} ight)$	Sin of THETA N. D.	CF;	
TANTCF	$ an \left(heta_{ ext{CF}} ight)$	Tangent of TH	ETACF;	
ТІЈМАХ	$^{\mathrm{T}}_{\mathrm{IJ}_{\mathrm{MAX}}}$	Maximum insucutout;	ulation thickness for	a joint
		in	Fig. 17	Eq. 2-c
TIJPG1	T _{IJPG1}	Component altitude of the polygon cross section associated with the port/grain insulation component for joint cutouts;		
		in	Fig. 17	Eq. 187

Mnemonic	Symbol	Description; Ext. (Int.) Units			
TIJPG3	$^{\mathrm{T}}$ IJ $_{\mathrm{PG3}}$	Component altitude of the polygon cross section associated with the port/grain insulation component for joint cutouts;			
		in	Fig. 17	Eq. 186	
TILCLA	T _{IL} _{CLA}	Thickness of insulation liner at center of aft case closure section. Diatance between the inside and outside hemi-ellipsoid surfaces of the insulation liner, measured on the axis of revolution;			
		in	Fig. 5	Eq. 37	
TILCLF	T _{IL} _{CLF}	Thickness of insulation liner at center of forward case closure section. Distance between inside and outside hemi-ellipsoid surfaces of the insulation liner, measured on the axis of revolution;			
		in	Fig. 3	Eq. 12	
TISMAX	T _{ISMAX}	Maximum insucutout;	lation thickness for	a slot	
		in	Fig. 16	Eq. 2-b	
TISPG1	T _{IS} _{PG1}	Altitude of the polygon cross section associated with the port/grain insulation component for slot cutouts;		on lation	
		in	Fig. 16	Eq. 166	
TIWMAX	T_{IW} MAX	Maximum insu wedges (exclud	nlation thickness for a	closure	
		in		Eq. 2-a	
TIWAMAX	T _{IW} AMAX	Maximum thickness of the insulation wedge associated with the aft closure. Measured parallel to the slant height of the cone frustum grain cutout;			
		in		Eq. 108	

Mnemonic	Symbol	Description; Ext. (Int.) Units			
TIWFMAX	T _{IW} FMAX	Maximum thickness of the insulation wedge associated with the forward closure. Measured parallel to the motor centerline See LIWHF;			
		in		Eq. 61	
VIJ	v_{IJ}	Total volume of joints; in 3	of insulation requ	Eq. 210	
VIJIH2	V	Volume of inst	ulation required fo	or a ioint:	
	$v_{IJ_{IH2}}$	in ³	Fig. 20	Eq. 209	
VIJPG	v_{IJ}_{PG}	Volume of a perfor slot cutout in 3	•	on component Eqs. 179, 195	
VIJPL	v_{IJ}_{PL}	Volume of por for joint cutou in 3	t/liner insulation ts;	_	
VIL	v_{IL}	for the insulat for ignitor hol hole in aft clo	of insulation materion liner. Include in forward clossure, length penalizate, slots and joint	es adjustment ure, nozzle lty for	
VILCHAI	v _{IL} CHAI	cutout associa the insulation closure section	•	e surface of ft case	
		in ³	Fig. 6	Eq. 55	
VILCHAO	V _{IL} CHAO	hole cutout as	hemi-ellipsoid fr sociated with the insulation liner w re section; Fig. 6	outside	

Ť

Mnemonic	Symbol	Description; E	Ext. (Int.) Units	
VILCHFI	v _{IL} _{CHFI}	cutout associa	ni-ellipsoid frustum of ted with the inside so liner within the forwa n; Fig. 4	rface of
VILCHFO	v _{IL} CHFO	cutout associa	ni-ellipsoid frustum ted with the outside soliner within the forward; Fig. 4	surface of
VILCLA	v _{IL} _{CLA}	case closure s		
		in ³	Fig. 6	Eq. 56
VILCLAI	v _{ILCLAI}	Volume of the hemi-ellipsoid formed by the inside surface of the insulation liner within the aft case closure section;		
		in ³	Fig. 6	Eq. 50
VILCLAO	V _{IL} CLAO	the outside su within the aft	hemi-ellipsoid form rface of the insulatio case closure section;	n liner
		in ³	Fig. 6	Eq. 44
VILCLF	$v_{_{\mathrm{IL}_{\mathrm{CLF}}}}$	case closure	ulation liner within the section;	ne forward
		in ³	Fig. 4	Eq. 31
VILCLFI	V _{IL} _{CLFI}	the inside sur within the for	hemi-ellipsoid form face of the insulation ward case closure se	liner ction;
		in ³	Fig. 4	Eq. 25
VILCLFO	V _{IL} _{CLFO}	Volume of the hemi-ellipsoid formed by the outside surface of the insulation liner within the forward case closure section;		
		in ³	Fig. 4	Eq. 19

Mnemonic	Symbol	Description; Ext. (Int.) Units			
VILCY	v _{ILCY}	within the cyli	indrical insulation lir ndrical case section;		
		in ³		Eq. 227	
VILHAI	v _{ILHAI}	Volume of cylinder with ellipsoidal cap, associated with the nozzle cutout, within the hemi-ellipsoid formed by the inside surface of the insulation liner within the aft case section;			
		in ³	Fig. 6	Eq. 54	
VILHAIC	V _{IL} HAIC	Volume of the cylindrical section, associated with the nozzle cutout, within the hemiellipsoid formed by the inside surface of the insulation liner within the aft case closure section;			
		in ³	Fig. 6	Eq. 51	
VILHAIE	v _{IL} HAIE	Volume of ellipsoidal cap at aft base of the cylindrical section, associated with the nozzle cutout, within the hemi-ellipsoid formed by the inside surface of the insulation liner within the aft case closure section;			
		in ³	Fig. 6	Eq. 53	
VILHAO	v _{ILHAO}	Volume of cylinder with ellipsoidal cap, associated with the nozzle cutout, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the aft closure section;			
		in ³	Fig. 6	Eq. 48	
VILHAOC	V _{IL} HAOC	Volume of the cylindrical section associated with the nozzle cutout, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the aft case closure section;			
		in ³	Fig. 6	Eq. 45	

Mnemonic	Symbol	Description; E	Ext. (Int.) Units	
VILHAOE	V _{IL} HAOE	Volume of ellipsoidal cap at aft base of the cylindrical section, associated with the nozzle cutout, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the aft case closure section;		
		in ³	Fig. 6	Eq. 47
VILHFI	v _{ILHEI}	Volume of cylinder with ellipsoidal cap, associated with the ignitor cutout, within the hemi-ellipsoid formed by the inside surface of the insulation liner. thin the forward case closure section,		
		in ³	Fig. 4	Eq. 29
VILHFIC	v _{ILHFIC}	Volume of the cylindrical section, associated with the ignitor hole, within the hemiellipsoid formed by the inside surface of the insulation liner within the forward case closure section;		
		in ³	Fig. 4	Eq. 26
VILHFIE	v _{ILHFIE}	of the cylindri the ignitor cut formed by the insulation line closure section	•	ted with -ellipsoid
		in ³	Fig. 4	Eq. 28
VILHFO	v _{IL} _{HFO}	Volume of cylinder with ellipsoidal cap, associated with the ignitor cutout, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the forward case closure section;		within utside
		in ³	Fig. 4	Eq. 23

Mnemonic	Symbol	Description; E	Ext. (Int.) Units	
VILHFOC	V _{IL} HF⊙C	Volume of the cylindrical section, associated with the ignitor hole, within the hemiellipsoid formed by the outside surface of the insulation liner within the forward case closure section;		
		in ³	Fig. 4	Eq. 20
VILHFOE	V _{IL} _{HFOE}	of the cylindrical section, associated with the ignitor cutout, within the hemi-ellipsoid formed by the outside surface of the insulation liner within the forward case closure section;		
		in ³	Fig. 4	Eq. 22
VIN	v _{IN}	liner, wedges inhibited slots	insulation volume. in forward and aft and joints;	closures,
		in ³		Eq. 230
VINPD	v _{IN_{PD}}	Total volume of propellent displaced by the closure insulation wedges and the slot grain/liner insulation components;		
		in ³		Eq. 225
VINR	$v_{{\sf IN}_{\sf R}}$	Volume of res in^3	idual insulation;	Eq. 229
VIS	$v_{_{ m IS}}$	Total volume in 3	of insulation requir	ed for slots; Eq. 208
VISGL	$v_{IS_{GL}}$	for slot cutout		-
		in ³	Figs. 15, 16, 20 E	Ggs. 159,164
VISIH0	$v_{IS_{IH0}}$	Volume of insulation for a slot with no sides inhibited;		
		in ³	Fig. 20	Eq. 20ó

C

Mnemonic	Symbol	Description; E	Ext. (Int.) Units	
VISIH1	$v_{IS_{\overline{IH}1}}$	side inhibited;	ulation for a slot	with one
		in ³	Fig. 20	Eq. 207
VISPD	$v_{IS_{ extbf{PD}}}$	grain/liner in	pellent displaced bulation componer	
		in ³		Eq. 224
VISPG	$v_{_{\mathrm{IS}}_{\mathbf{PG}}}$	Volume of the component for	port/grain insula slot cutouts;	ition
		in ³	Figs. 15, 16, 20	Eqs. 160, 165, 170
VISPL	$v_{_{\rm IS}}_{_{\rm PL}}$	for a slot cuto	t/liner insulation out;	component
		in ³	Figs. 15, 16, 20	Eqs. 158, 163
VIWAOY	$v_{_{\mathrm{IW}}}$	with the outside wedge in the a	cylindrical secti de surface of the oft case closure s	insulation
		in ³	Fig. 13	Eq. 142
VIWCAOE	V _{IW} CAOE	intersection o surface oscul- ellipsoid asso of the insulati section;	ellipsoidal cap for the "inside/outs ation plane" and to ciated with the own on wedge in the a	ide wedge he hemi- itside surface
		in ³	Fig. 12	Eq. 140
VIWCAPD	v _{IW} CAPD	insulation wed closure;	opellent displaced ige associated wit	
		in ³		Eqs. 212, 221, 222

Mnemonic	Symbol	Description; E	ext. (Int.) Units	
VIWCFOE	V _{IW} CFOE	intersection of surface oscula ellipsoid asso of the insulatio closure sectio	ellipsoidal cap for the "inside/outs tion plane" and to ciated with the output wedge in the form;	ide wedge he hemi- itside surface
		in ³	Figs. 8, 9	Eq. 92
VIWCFPD	v _{IW} CFPD	insulation wed closure;	pellent displaced ge associated wi	th the forward
		in ³		Eq. 211
VIWCHAI	V _{IW} CHAI	cylindrical hol cone frustum i forms the insi wedge in the a	ellipsoidal cap, le cutout associat hole cutout for th de surface of the ft case closure s	ted with the e nozzle, which insulation
		in ³	Figs. 12, 14	Eq. 151
VIWCHAO	v _{IW} _{CHAO}	cylindrical holoutside surfacthe aft closure	-	ated with the n wedge in
		in ³	Figs. 12, 14	Eqs. 141,143
VIWCHFI	v _{IW} CHFI	cutout for the inside surface forward case	ellipsoidal cap, ignitor, which fo of the insulation closure section;	rms the wedge in the
		in ³	Figs. 8, 10	Eq. 105
VIWCHFO	V _{IW} CHFO	of the insulation	iated with the out on wedge in the fo n, adjusted for i Figs. 8, 10	orward case
VIWCLA	v _{IW} CLA		ulation material : wedge associated section; Figs. 12, 14	

Mnemonic	Symbol	Description; E	xt. (Int.) Units	
VIWCLAO	v _{IWCLAO}	the outside sur	hemi-ellipsoid assoc face of the insulation closure section; Fig. 14	
VIWCLF	v _{IW_{CLF}}	Volume of insu the insulation of forward case of	rig. 17 Ilation material requivedge associated witelessure section;	ired for
		in ³	Figs. 8, 10	Eq. 106
VIWCLFO	$v_{IW_{CLFO}}$	the outside sur within the forw	hemi-ellipsoid assoc face of the insulation vard case closure;	
		in ³	Figs. 8, 10	Eq. 85
VIWEAI	v_{iw}_{EAI}		hemi-ellipsoid assoc ace of the insulation case closure;	
VIWEAIE	v _{IW} EAIE	with the inside wedge in the a insulation wed	ellipsoidal cap assoce surface of the insul- ft case closure. If t ge extends beyond the ne hemi-ellipsoid vol Figs. 12, 14	ation he e closure,
VIWEFI	v _{IWEFI}	with the inside	hemi-ellipsoid assoc surface of the insul he forward case clos Figs. 7, 9	ation
VIWEFIE	v _{IW} EFIE	the inside surf the forward ca insulation wed	ellipsoidal cap associace of the insulation ase closure section. age extends beyond the hemi-ellipsoid vol	wedge in If the e closure,

Mnemonic	Symbol	Description; E	Ext. (Int.) Units	
VIWFOY	v_{IW}_{FOY}	with the outsid	cylindrical section a le surface of the insu orward case closure Fig. 10	lation
VIWHAI	v _{IWHAI}	Volume of the cap, associate frustum, in th with the inside	cylinder, with ellipsed with the nozzle cut hemi-ellipsoid assessurface of the insulfit case closure sections.	soidal tout cone ociated ation
		in ³	Figs. 12, 14	Eq. 148
VIWHAIC	v _{IW} HAIC	with the nozzle ellipsoid assoc of the insulation closure section	cylindrical section, e cutout, within the hociated with the inside on wedge in the aft con;	emi- surface
		in ³	Figs. 12, 14	Eq. 147
VIWHAIE	V _{IWHAIE}	base of the cor the nozzle cuto associated wit	ellipsoidal cap, at tone frustum associate out, within the hemith the inside surface ge in the aft case close Figs. 12, 14	d with -ellipsoid of the
VIWHAOC	v _{IwHAOC}	with the nozzle ellipsoid frust	cylindrical section, e cutout, within the hum associated with tinsulation wedge in section; Figs. 12, 14	nemi- the outside
				•
VIWHAOE	V _{IW} HAOE	of the cone fro the nozzle cuto associated wit	ellipsoidal cap, at a istum section associout, within the heminate surface ge in the aft case clo	ated with -ellipsoid e of the osure
		ın	Figs. 12, 14	Eq. 137

Mnemonic	Symbol	Description; E	xt. (Int.) Units	
VIWHAT	v _{Iw_{HAT}}	wedge, associa	ngular section, in incated with the cone fru nozzle within the aft on; Figs. 12, 14	stum
VIWHFI	v _{IW_{HFI}}	associated with	cylinder with ellipsoint the ignitor hole, in ciated with the inside on wedge in the forwant; Figs. 8, 10	the hemi- surface
VIWHFIC	v _{IW} HFIC	with the ignitor	•	ni- surface of case
VIWHFIE	v _{IW} HFIE	Volume of ellip of the cylindric the ignitor cut- associated with	Figs. 8, 10 psoidal cap, at forwa cal section associated out, within the hemi- h the inside surface of ge in the forward cas n; Figs. 8, 10	d with ellipsoid of the
VIWHFO	v _{IW} HFO	associated with ellipsoid and coutside surface	cylinder, with ellipse the ignitor hole, in ylinder associated with the insulation we see closure section; Figs. 8, 10 Eqs	the hemi- ith the
VIWHFOC	v _{IW} HFOC	with the ignito	cylindrical section, or hole, within the her hither outside surface ge in the forward cas Figs. 8, 10	ni-ellipsoid of the

Mnemonic	Symbol	Description; Ext. (Int.) Units
VIWHFOE	V _{IW} HFOE	Volume of ellipsoidal cap, at forward base of the cylindrical section associated with the ignitor cutout, within the hemi-ellipsoid associated with the outside surface of the insulation wedge in the forward case closure section; in 3 Figs. 8, 10 Eq. 87
VIWHFOL	V _{IW} HFOL	Volume of the cylindrical section, associated with the ignitor hole, within the hemiellipsoid associated with the outside surface of the insulation wedge in the forward case closure section. The bases of the cylindrical section are the equatorial plane of the hemiellipsoid and the "inside/outside wedge surface osculation plane"; in Figs. 7, 8 Eq. 89
VIWHFOY	v _{IW} HFOY	Volume of the cylindrical section, associated with the ignitor hole, within the cylindrical case section associated with the outside surface of the insulation wedge in the forward case closure section. The bases of the cylindrical section are the equatorial plane of the hemi-ellipsoid and the "inside/outside wedge surface osculation plane"; in Fig. 10 Eq. 94
VIWPD	v_{IW}_{PD}	Volume of propellent displaced by the insulation wedges associated with the forward and aft closures; in Eq. 223
YIJI	Y ₁	Intermediate quantity for YIJPG computation; in Eq. 193
YIJ2	Y ₂	Intermediate quantity for YIJPG computation; in Eq. 189

The state of the s

Mnemonic	Symbol	Description; E	Ext. (Int.) Units						
YIJ3	Y ₃	Intermediate of	quantity for YIJPG co	mputation;					
		in		Eq. 190					
YIJ4	Y ₄		quantity for YIJPG co	mputation;					
		in ³		Eq. 191					
YIJ5	Y ₅	Intermediate quantity for YIJPG computation;							
	_	in ²	Eq. 192						
YIJPG	Y_{IJ}_{PG}		asured with respect t the polygon cross se						
		in	Fig. 17	Eq. 194					
YISPG	Y _{IS_{PG}}	centerline, of	asured with respect to the polygon cross seen the port/grain insu- slot cutouts;	ction					
		in	Fig. 16	Eq. 169					
YIWHAT	Y _{IW} HAT	of triangular s	axis of revolution to section in insulation th the cone frustum c thin the aft case clos	wedge, utout for					
		in	Figs. 11, 13	Eq. 153					

()

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

INSULATION GEOMETRY CING3 CINCP	DILHAI	DIWAI	DIWEFT	GOODFGS	KIJZ	KL18	KILL	KIL7	KIL13	KIM	KIN7	KIS5	KIS11	KISTRUE	KIW8	KIM14	KIWZO	KLIWFI2	KPD6	LIJE	LICHEO	LILHA	LIWA2	LIMCFI	LINCLAD	LIWERFI	NIJCOF	PGIJ(3)	FGIJ(9)
INTERNAL CINGS																													
INGMI CINGI CINGI	DILCLI	DILI	DIMCTO	DIME	INTINFCL	KIJ6	KIJ12	KILS	KILLI	KIL17	KIN5	KIS3	KIS9	KIS15	KIM	KIW12	KIM18	KIW24	₹ 20 20 20 20 20 20 20 20 20 20 20 20 20	KPD10	LICHAO	LILCLE	LISPGO	LIMCEFI	LIWCHIPO	LIWEPI	LIMHE	RCLJ(1)	FGIJ(7)
INSULG *1	i t	ካ*	* ~	\$	*	ထ္	\$	*10	#	*12	*13	*1	*15	* 16	*17	*1 8	*19	& ¥	ঝ	\$	* 23	₹	\$	9 2 ¥	¥27	* 58	₹	* 30	*31
AIWHAT	CUTOUTS	DILHFO	DIWCFI	DIWHFI	ININACL	KIJS	KIJII	ΚII'	KILIO	кпл6	KIN	KISS	KIS8	KIS14	KIN3	KINII	KIW17	KIW23	KP03	KPD9	LILCHAI	LILCLFI	LISPGI	LIWCEAL	LINCHFI	LIWEAL	LIWHAI	NISIH	FGIJ(6)
AISPG	CUTOUTS	DITHEI	DIWCFAI	DIWHAO	NTLONSI	KIZħ	KLJ10	KIL3	KIL9	KII15	K IN3	KISI	KIST	KIS13	KINS	KIMIO	KIM16	KTW22	KFDS	KGD8	LLJPG3	LILCLAO	LISCUE	LIWCAI	LIWCHAO	LIWCLFO	LIWHA	NISIHO	PGIJ(5)
AIJFG	COSTCF	DILHAO	DIWCAL	DIWHAI	NITONCI	KLJ3	KLJ9	KIL	KIL8	KIL14	KINZ	KIN8	KIS6	KIS12	KIM	KIM	KIW15	KIWZI	E E	KPD7	LLJPGO	LICIAI	LILM	LIWAI	LIWCHAI	LINCLPI	LIWPI	NISCUE	PCIJ(4)

	ı
=	I
(Cont.	
KEY	
LOCK	
7 B	
RIN	-
ቢ	į

LUINI	פרסכוני נובד (כמוני:):					
PCT.II.AP	EGTS(1)	PGIS(2)	*32	FCIS(3)	PCIS(4)	PGIS(5
(9)SI3	OTNH	OINSTAR	*33	ROLLCAI	RDILCAO	MOILCE
EDIT. (PD)	ROTT.HAT	RDILHAO	*3 <u>1</u>	RDILMFI	ROILHRO	ROIMCA
RDTUCAD	ROTWCFT	RDIWCFO	*35	RDIWHAO	ROIMHFI	RUTWHE
PI.TI.CAT	RLTLCA0	RUICEI	*36	RLILCFO	PL IWCA1	RETWCA
RI.TWCA3	RL TWCA4	RL IWCF1	*37	RLIWCF2	RLIWCF3	RL IWCF
STATICE	TANTCE	TIJMAX	*38	TIJE	TIJEG3	TILCLA
TILCLE	THE	TINE	* 39	TISMAX	TISPGI	TTWAMA
TIMEMAX	TIWMAX	ΛΙΊ	O†*	VIJIH2	VIJPG	VIUP
VT.	VIICHAI	VILCHAO	*41	VILCHFI	VILCHPO	VILCLA
VIICIAI	VIICIAO	VILCLE	2 ↑*	VILCLFI	VILCLEO	VILCY
TA, ITV	VILHAIC	VILHAIE	£†₁*	VILHAO	VILHAOC	VILHAO
VILHEI	VILHFIC	VILHFIE	774	VILHEO	VILHFOC	VILHEO
N L	VINED	VINR	*45	VIS	VISCL	VISINO
VISTH	VISPD	VISE	94*	VISPL	VIWAOY	VIWCAO
VTWCAPD	VIWCFOE	VIWCFPD	L1+	VIWCHAI	VIWCHAO	VINCHE
VTWCHPO	VINCLA	VIWCLAO	*48	VIWCLE	VINCLPO	VIWEAL
VTWEATE	VIWEFI	VIWEFIE	64*	VIWFOY	VIWHAI	VIMHAI
VTANATE	VIWHAOC	VIWHAOE	*20	VIWHAT	VIWHEI	VINHEI
VTWHETE	VTWHEC	VIWHPOC	*51	VIWHFOE	VIWHFOL	VIWHEO
VIVED	XIN	YIJS	*55	YIJ3	XIJ [‡]	YIJS
YLJPG	YISPG	YIWHAT	*53			

SETERATE A BROWLINGS

INSULW

INTERNAL INSULATION WEIGHT

INWM1

30.1

MODEL TYPE:

INSULW (internal INSULation Weight)

MODEL NAME:

INWM1 (Geometry dependent)

DESCRIPTION:

INWM1 (internal Insulation Weight Model number 1) uses volumes, determined by an insulation geometry model, to evaluate the internal insulation component weights for a solid rocket motor. The computed insulation weight breakdown may include the following components.

Insulation liner.

Insulation wedges associated with the forward and aft closures.

Joint insulation.

Slot insulation.

Residual insulation.

PROCEDURE:

This is a two entrance model. At the first entrance, the insulation densities are picked up and made available to define the insulation properties required for the insulation geometry computations. No equations are evaluated.

The internal insulation geometry is then evaluated by the model specified for the INSULG model type and the component volumes are evaluated.

The second entrance of INWM1 uses these volumes to evaluate the component weights, then uses these component weights to compute the internal insulation weight breakdown.

EQUATIONS:

Weight of insulation liner within forward case closure section.

$$W_{IL_{CLF}} = K_{WILCLF} \rho_{IL} V_{IL_{CLF}}$$
 (1)

EQUATIONS (Cont.):

Weight of insulation liner within aft case closure section.

$$W_{IL_{CLA}} = K_{WILCLA}^{\rho}_{IL} V_{IL_{CLA}}$$
 (2)

Weight of insulation liner within cylindrical case section.

$$w_{IL_{CY}} = \kappa_{WILCY} \rho_{IL} v_{IL_{CY}}$$
(3)

Total weight of insulation liner. Includes forward closure, aft closure and cylindrical section components.

$$W_{IL} = K_{WIL} \rho_{IL} V_{IL}$$
 (4)

Weight of insulation wedge associated with forward case closure section.

$$w_{IW_{CLF}} = \kappa_{WIWCLF} \rho_{IW} v_{IW_{CLF}}$$
 (5)

Weight of insulation wedge associated with aft case closure section.

$$W_{IW_{CLA}} = K_{WIWCLA} \rho_{IW} V_{IW_{CLA}}$$
(6)

Total weight of closure insulation wedges. Includes forward case closure and aft case closure components.

$$w_{IW} = K_{WIW} (w_{IW_{CLF}} + w_{IW_{CLA}})$$
 (7)

Weight of insulation for a single slot having no sides inhibited.

$$W_{IS_{IHO}} = K_{WISIHO} \rho_{IS} V_{IS_{IHO}}$$
 (8)

Weight of insulation for a single slot having one side inhibited.

$$w_{IS_{IH1}} = K_{WISIH1} \rho_{IS} v_{IS_{IH1}}$$
 (9)

EQUATIONS (Cont.):

Total weight for slot insulation.

$$W_{IS} = K_{WIS} P_{IS} V_{IS}$$
 (10)

Weight of insulation for a single joint having both sides inhibited.

$$W_{IJ_{IH2}} = K_{WIJIH2} \rho_{IJ} V_{IJ_{IH2}}$$
(11)

Total weight for joint insulation.

$$W_{IJ} = K_{WIJ} \rho_{IJ} V_{IJ}$$
 (12)

Density of residual internal insulation material.

$$\rho_{R} = K_{\rho_{RL}} \rho_{IL} + K_{\rho_{RJ}} \rho_{IJ} + K_{\rho_{RW}} \rho_{IW} + K_{\rho_{RS}} \rho_{IS} + K_{\rho_{R}}$$
(12-a)

Total residual insulation weight.

$$W_{IN_{R}} = K_{WINR} \rho_{R} V_{IN_{R}}$$
 (13)

Total internal insulation weight. Includes liner, closure wedge, slot, and joint component:.

$$W_{IN} = K_{WIN} \left(W_{II} + W_{IW} + W_{IS} + W_{IJ} \right) \tag{14}$$

Total non-expended internal insulation weight component.

$$w_{IN_{NX}} = K_{W!NNX} w_{IN_{R}}$$
(15)

Total expended internal insulation weight component.

$$w_{IN_{X}} = \kappa_{WINX} (w_{IN} - w_{IN_{R}})$$
 (16)

Expended (thrust producing) internal insulation weight component.

$$W_{IN_{X'I}} = K_{WINXI} W_{IN_{X}}$$
 (17)

Expended (non-thrust producing) internal insulation weight component.

$$w_{IN_{XI}} = w_{IN_{X}} - w_{IN_{XT}}$$
 (18)

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units Preset
KRHOINR	$\kappa_{ ho_{ m R}}$	Bias for RHOINR computation; lb/in ³ 0
KRHOIRJ	K _{PRJ}	Coefficient for RHOINR computation; N. D. 0
KRHOIRL	$K_{ ho R L}$	Coefficient for RHOINR computation; N. D. 1
KRHOIRS	$\kappa_{ ho RS}$	Coefficient for RHOINR computation; N. D. 0
KRHOIRW	K _{PRW}	Coefficient for RHOINR computation; N. D. 0
KWIJ	Kwij	Coefficient for WIJ computation; N. D. 1
KWIJIH2	K _{WIJIH2}	Coefficient for WIJTH2 computation; N. D. 1
KWIL	KWIL	Coefficient for WIL computation; N. D. 1
KWILCLA	K _{WILCLA} .	Coefficient for WILCLA computation; N. D. 1
KWILCLF	KWILCLF	Coefficient for WILCLF computation; N. D. 1
KWILCY	KWILCY	Coefficient for WILCY computation; N. D. 1
KWIN	KWIN	Coefficient for WIN computation; N. D. 1

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWINR	KWINR	Coefficient for WINR computation; N. D.	1
KWINNX	KWINNX	Coefficient for WINNX computation N. D.	; 1
KWINX	KWINX	Coefficient for WINX computation; N. D.	1
KWINXT	KWINXT	Coefficient for WINXT computation N. D.	; 1
KWIS	Kwis	Coefficient for WIS computation; N. D.	1
KWISIH0	K _{WISIHO}	Coefficient for WISIHO computation N. D.	;
KWISIH1	Kwisihi	Coefficient for WISIH1 computation N.D.	; 1
KWIW	KWIW	Coefficient for WIW computation; N. D.	1
KWIWCLA	KWIWCLA	Coefficient for WIWCLA computati	6n; 1
KWIWCLF	KWIWCLF	Coefficient for WIWCLF computation. D.	on; 1
RHOIJ	$ ho_{ m IJ}$	Density of internal insulation mate for joints; lb/in ³	rial O
RHOIL	ρ _{IL}	Density of internal insulation mate for liner; 1b/in ³	•

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
RHOIS	$ ho_{ ext{is}}$	Density of internal insulation mater for slots; lb/in ³	rial O
RHOIW	$ ho_{_{ m IW}}$	Density of internal insulation mater for closure wedges; 1b/in ³	rial O

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
VIJ	$\mathbf{v}_{\mathtt{IJ}}$	Total volume of internal insulat for joints;	ion required
		in ³	INSULG
VIJIH2	${ m v_{IJ}}_{ m IH2}$	Volume of internal insulation rea single joint having both sides	
		in ³	INSULG
VIL	v _{IL}	Total volume of internal insulation required for insulation liner. Includes cylindrical section and closure components;	
		in ³	INSULG
VILCLA	v_{IL}_{CLA}	Volume of internal insulation little aft closure;	ner within
		in ³	INSULG
VILCLF	CLF V _{IL} CLF Volume of internal insulation lin		ner within
		in ³	INSULG

Typical.

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type		
VILCY	$v_{IL_{CY}}$	Volume of internal insulation liner within the cylindrical case section;			
		in ³	INSULG		
VINR	v_{IN}_{R}	Volume of residual internal insul	ation;		
	"R	in ³	INSULG		
vis	$\mathbf{v}_{\mathtt{IS}}$	Total volume of internal insulation requir for slots;			
		in ³	INSULG		
		Volume of internal insulation req single slot having no sides inhibi			
		in ³	INSULG		
VISIHI	$v_{IS_{IH1}}$	Volume of internal insulation required fo a single slot having one side inhibited;			
		in ³	INSULG		
VIWCLA	$v_{IW}^{}_{CLA}$	Volume of internal insulation wedge associated with the aft closure;			
		in ³	INSULG		
VIWCLF	v_{IW}_{CLF}	Volume of internal insulation were associated with the forward close			
	021	in ³	INSULG		
					

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
RHOINR	$ ho_{_{ m R}}$	Density of residual insulation mate	rial;
		1 b	Eq. 12-a

Mnemonic	Symbol	Description; Ext. (Int.) Units		
WIJ	w_{IJ}	Total weight for joint insulation;	Eq.	12
WIJIH2	w_{IJ}_{IH2}	Weight of insulation for a single joboth sides inhibited;	in t h	aving
		1 b	Eq.	11
WIL	W _{IL}	Total weight of insulation liner. In forward closure, aft closure, and section components;		
		1b	Eq.	4
WILCLA	w_{IL}^{CLA}	Weight of insulation liner within af closure section;	t cas	е
		1b	Eq.	2
WILCLF	$w_{\text{IL}_{\text{CLF}}}$	Weight of insulation liner within fo case closure section;	rwar	·d
		lb	Eq.	1
WILCY	W _{IL} CY	Weight of insulation liner within cy case section;	rlind	rical
		1b	Eq.	3
WIN	w _{IN}	Total internal insulation weight. I liner, closure wedge, slot and joir components;	nclue	des
		lb	Eq.	14
WINNX	w_{IN}_{NX}	Total non expended internal insula weight exponent;	tion	
		1 b	Eq.	15
WINR	w_{IN}_{R}	Weight of residual internal insulat	ion;	
	²¹ R	1 b	Eq.	13
WINX	w_{IN}_{X}	Total expended internal insulation component;	weig	ht
		1ь	Eq.	16

1

Mnemonic	Symbol	Description; Ext. (Int.) Units	
WINXI	$\mathbf{w_{IN}}_{\mathbf{XI}}$	Expended (non-thrust producing) internal insulation weight component;	
		1ь	Eq. 18
WINXT	w_{IN}_{XT}	Expended (thrust producing) internations weight component;	al
		1b	Eq. 17
wis	W _{IS}	Total weight for slot insulation;	
		16	Eq. 10
WISIH0	$w_{IS_{1H0}}$	Weight of insulation for a single sle having no sides inhibited;	ot
		1 b	Eq. 8
WISTHI	$w_{IS_{IH1}}$	Weight of insulation for a single slone side inhibited;	ot having
		1b	Eq. 9
WIW	w _{IW}	Total weight of insulation of insula wedges. Includes forward case cloaft case closure components;	
		1 b	Eq. 7
WIWCLA	w _{IW} _{CLA}	Weight of insulation wedge associa aft closure section;	ted with
		1b	Eq. 6
WIWCLF	w _{IW} CLF	Weight of insulation wedge associa forward closure section;	ted with
		1 b	Eq. 5

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

INSULATION WEIGHT	KWIJ	KWIN	KWISIHO	RHOIL	VII	WISTRO	
INTERNAL	KRHOIRW	KWIICX	KWIS	RHOLJ	NI.J	WIS	
INWMI	KRROIRS	KWIICLF	KWINKT	KWIWCLF	WIJIHZ	WINR	WINCLF
INSUEW *1	₩	*	†*	* 2	9 *	L*	æ *
WINX	KRHOIRL	KWIICLA	KATINX	KWIWCLA	RHOIM	WILCY.	WIMCLA
WINNIX	KRHOIRJ	KWIL	KWINR	KWIW	RHOIS	WILCLF	ĄĮ
NIA	KRHOINR	KMIJIHZ	KWIKIWX	KWISIKI	RHOINE	WILCLA	VISIHI

100.1

3

MODEL TYPE:

INTSTGG (INTerSTaGe Geometry)

MODEL NAME:

ITGMl (Cone frustum)

DESCRIPTION:

ITGM1 (InTerstage Geometry Model number 1) evaluates the geometry for a simple cone frustum or cylindrical interstage connecting either two substages (see figure 1) or the top substage and the payload (see figure 2).

PROCEDURE:

Prior to entering ITGM1, all substage and payload models have been executed.

ITGMl is then executed. If this is not the uppermost interstage in the propulsion system, the geometry requirements of the substage below and the substage above this interstage are used to determine the pertinent interstage geometry. If this is the uppermost interstage in the propulsion system, the substage below and the payload above are utilized to determine interstage geometry.

After leaving ITGM1, the weight models for this particular interstage are executed. After all interstages are sized, the stage models will be executed and, utilizing the interstage and substage data, the stage will be sized.

EQUATIONS:

Required interstage length component associated with the substage above this interstage. Figs. 1, 2

$$L_{IT_{SSF}} = \left(L_{SS_{ITA}}\right)_{above} \tag{1}$$

Required interstage length component associated with the substage below this interstage. Figs. 1, 2

$$L_{IT_{SSA}} = \left(L_{SS_{ITF}}\right)_{below} \tag{2}$$

EQUATIONS (Cont.):

Interstage length. Figs. 1, 2

$$L_{IT} = L_{IT_{SSA}} + L_{IT_{SSF}} + L_{IT_{S}}$$
(3)

Forward interstage base diameter. Figs. 1, 2

$$D_{IT_{F}} = \left(D_{SS_{ITA}}\right)_{above} \tag{4}$$

Aft interstage base diameter. Figs. 1, 2

$$D_{IT_{A}} = \left(D_{SS_{ITF}}\right)_{below} \tag{5}$$

Interstage half angle. Figs. 1, 2

$$\theta_{\rm IT} = \arctan \left[\frac{D_{\rm IT} - D_{\rm IT}}{2 L_{\rm IT}} \right] \tag{6}$$

Interstage slant height. Figs. 1, 2

$$L_{IT_{I}} = \frac{L_{IT}}{\cos \theta_{IT}} \tag{7}$$

Interstage surface area.

$$S_{IT} = \left(\frac{\pi}{2}\right) L_{IT_{L}} \left(D_{IT_{F}} + D_{IT_{A}}\right)$$
 (8)

Interstage aft base cross-sectional area.

$$A_{IT_{A}} = \left(\frac{\pi}{4}\right) D_{IT_{A}}^{2} \tag{9}$$

Interstage forward base cross-sectional area.

$$A_{IT_{F}} = \left(\frac{\pi}{4}\right) D_{IT_{F}}^{2} \tag{10}$$

Fig. 100.1-1 Geometry, Interstage Between Substages

Fig. 100.1-2 Geometry, Interstage Between Substage and Payload

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset	
LITS	L _{ITS}	Spacing distance associated with the interstage. (Figs. 1, 2);		
		in	O	

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
DSSITA	D _{SS_{ITA}}	Substage aft diameter for interstage attachment Associated with the substage above, or forward of, the interstage;	
		in	SUBSTGG
DSSITF	D _{SS_{ITF}}	Substage forward diameter for interstage attachment. Associated with the substage below, or aft of, the interstage;	
		in	SUBSTGG
LSSITA	L _{SS_{ITA}}	Length of interstage required for above, or forward of, the internozile protruding beyond aft su	stage. Includes
		in	SUBSTGG
LSSITF	L _{SS_{ITF}}	Length of interstage required for below, or aft of, the interstage closure protruding beyond forw	. Includes
		in	SUBSTGG

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext.	(Int.) Units	
AITA	A _{IT} _A	Cross-sectional a	area, interstage aft l	ease;
AITF	$^{A}_{\mathtt{IT}_{\mathbf{F}}}$	Cross-sectional a	area, interstage fore	•
DITA	D _{IT} _A	Interstage aft (be	low) base diameter; Figs. 1, 2	Eq. 5
DITF	D _{IT} _F	Interstage forwar	rd (above) base diame Figs. 1, 2	eter; Eg. 4
ITHA	$ heta_{ ext{IT}}$	Interstage half ar	ngle. (internal units, Figs. 1, 2	radians); Eq. 6
LIT	L _{IT}		. Measured along ce rustum or cylinder;	
LITL	L _{IT} _L	in Interstage slant l	Figs. 1, 2 neight; Figs. 1, 2	Eq. 3
LITSSA	L _{IT_{SSA}}	Required interstances associated with t	age length component he substage above (fo	orward);
LITSSF	L _{IT} _{SSF}		Figs. 1, 2 age length component he substage below (a	
		in	Figs. 1, 2	Eq. l
SIT	S _{IT}	Interstage surfac	ce area; Figs. l, 2	Eq. 8

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

	LIT	
INTERSTAG	AHAI	SIT
ITCMI	DITE	LITSSF
INTSTOS	:	₹.
	DITA	LITSSA
	AITE	LITS
	ALTA	LITT

INTINSW INTERSTAGE EXTERNAL INSULATION WEIGHT ITIWM1

110.1

MODEL TYPE: INTINSW (INTerstage External INSulation Weight)

MODEL NAME: ITIWM1 (Geometry Dependent)

DESCRIPTION:

ITIWM1 (InTerstage external Insulation Weight Model number 1) uses a geometry dependent equation to evaluate the interstage external insulation weight as a function of the interstage surface area and the external insulation weight per unit area.

PROCEDURE:

Prior to entering ITIWM1, the model specified for the INTSTGG model type has determined the interstage surface area.

The ITIWMI model uses the interstage surface area, together with the external insulation weight per unit area, to determine the external insulation weight breakdown.

After leaving ITIWM1, the model specified for the INTSTGW model type will use the external insulation weights to evaluate the interstage weights.

EQUATIONS:

Total interstage external insulation weight.

$$w_{IT_{IE}} = \kappa_{WITIE} \left(\kappa_{WITIE1} s_{IT} w_{IT_{IUA}} + \kappa_{WITIE2} \right)$$
 (1)

Total non-expended interstage external insulation weight component.

$$W_{IT_{IENX}} = K_{WITINX} W_{IT_{IE}}$$
 (2)

Total expended interstage external insulation weight component.

$$w_{IT_{IEX}} = \kappa_{WITIX} w_{IT_{IE}}$$
 (3)

EQUATIONS (Cont.):

Expended (non-thrust producing) interstage external insulation weight component.

$$W_{IT_{IEXI}} = W_{IT_{IEX}}$$
 (4)

Expended (thrust producing) interstage external insulation weight component.

$$\mathbf{W}_{\mathbf{IT}} = 0 \tag{5}$$

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWITIE	KWITJE	Coefficient for WITIE computation; N. D.	1
KWITIEI	K _{WITIE1}	Coefficient for WITIE computation; N. D.	1
KWITIE2	K _{WITIE2}	Bias for WITIE computation; lb	0
KWITINX	KWITINX	Coefficient for WITIENX computation; N. D.	1
KWITIX	Kwitix	Coefficient for WITIEX computation; N. D.	0
WITIUA	w _{IT_{IUA}}	Weight of interstage external insulation per unit interstage surface area; lb/in ²	on O

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
SIT	SIT	Interstage surface area; in 2	INTSTGG

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units			
WITIE	$\mathbf{w_{IT}_{IE}}$	Total interstage external insulation we	Total interstage external insulation weight;		
	IE.	1ь	Eq. 1		
WITIENX	w _{IT} IENX	Total non-expended interstage externations weight component;	al		
		1ь	Eq. 2		
WITIEX	$\mathbf{w}_{\mathtt{IT}_{\mathtt{IEX}}}$	Total expended interstage external insulation weight component;			
		1ь	Eq. 3		
WITIEXI	$w_{IT_{IEXI}}$	Expended (non-thrust producing) interstage external insulation weight component;			
		1ь	Eq. 4		
WITIEXT	w _{IT,EXT}	Expended (thrust producing) interstag external insulation weight component;			
		1 b	Eq. 5		

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

INSULATION WEIGHT		
E EXTERNAL		WITIUA
INTERSTACE	WITIECT	KWITIDK
ITIWU	WITTEN	KVITTINX
DYTINSW	∓	4
	WITTEX	KWITIES
	WITIENX	KNITIE
	WITTE	KWITTE

INTSTRW

120.1

The state of the s

MODEL TYPE:

INTSTRW (INTerstage STRucture Weight)

MODEL NAME:

ITSWMl

(Parametric weight scaling)

DESCRIPTION:

ITSWM1 (InTerstage Structure Weight Model number 1) utilizes a parametric weight scaling equation to determine the interstage structure weight. The actual flight loads are not used explicitly as parameters by this model. However, axial thrust loads are implicitly accounted for since the theoretical equation, upon which the correlation analysis is based, uses motor thrust as a loading parameter. See reference 8 for a description of the equation and scaling rationale.

The interstage structure includes all of the interstage except the external insulation.

The model is applicable for performance parameters within the following limits (see Input Data - Inter Model).

5 < RAEXTIH < 75

300 < PCHAVG < 1000 psia

40 < TBPPMT < 140 sec.

3000 < WPPMT < 2,000,000 lbs.

PROCEDURE:

Prior to entering ITSWMI, the geometry, weights, internal ballistics, and propulsion characteristics for all of the substages have been evaluated. For the substage immediately above this interstage, the models specified for the IBGAS, IBPERF, and NOZZLEG model types have evaluated the internal ballistics and nozzle geometry. For the substage immediately below this interstage, the models specified for the IBPERF and PROPELW model types have evaluated the internal ballistics and propellent characteristics.

The ITSWM1 model is then executed and the interstage structure weight is evaluated using parametric weight scaling equations. In addition, the interstage structure weight is broken down into expended and non-expended components.

The State of the S

PROCEDURE (Cont.):

After leaving ITSWM1, these expended and non-expended components will be used by the model specified for the INSTGW model type to determine the interstage weights.

EQUATIONS:

Total interstage structure weight.

$$w_{IT_{ST}} = \kappa_{WITST} c_1 \left\{ \left[\frac{w_{PP_{MT}} I_{SP_{VD}}}{T_B} \right]_{below}^{C_2} \right\}$$

$$\left[R_{LNZP}\left(\sqrt{\epsilon_{NZ}}-1\right) \sqrt{\frac{w_{PP_{MT}}}{P_{\Lambda VG}T_{B}}}\right]_{above}^{C*}$$

Total non-expended interstage structure weight component.

$$W_{IT_{STNX}} = K_{WITSNX} W_{IT_{ST}}$$
 (2)

Total expended interstage structure weight component.

$$W_{IT_{STX}} = 0 (3)$$

Expended (non-thrust producing) interstage structure weight component.

$$W_{IT_{STXI}} = 0 (4)$$

Expended (thrust producing) interstage structure weight component.

$$W_{I'T_{STXT}} = 0 (5)$$

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

37

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CITST1	c_1	Scaling constant for WITST computati	on;
		N. D.	0.00114
CITST2	c ₂	Scaling constant for WITST computati	on;
	_	N. D.	0.665
CITST3	C ₃	Scaling constant for WITST computati	on;
	•	N. D.	0.828
KWITST	Kwitst	Proportionality factor for total inters structure weight;	tage
		N. D.	1
KWITSNX	Kwitsnx	Proportionality factor for non-expend stage structure weight component;	ed inter-
		N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
CVDELV	C*	Delivered characteristic velocity above this interstage;	of substage
		ft/sec	IBGAS
ISPVD	I _{SP_{VD}}	Delivered vacuum specific impulse of substage below this interstage;	
		8 e C	IBPERF
PCHAVG	PAVG	Average chamber pressure of su this interstage;	bstage above
		psia	IBGAS

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
RAEXTTH	€ _{NZ}	Expansion ratio of substage above this interstage;	
		N. D.	NOZZLEG
RLNZP	R _{LNZP}	Protruding nozzle ratio of substathis interstage;	ge above
		N. D.	NOZZIEG
твррм1	T _B	Propellent larn time of substage interstage;	above this
		sec	IBPERF
ТВРРМТ	T _B	Propellent burn time of substage interstage;	below this
		8eC	IBPERF
WPPMT	$\mathbf{w}_{\mathbf{p}\mathbf{p}_{\mathbf{M}\mathbf{T}}}$	Propellent weight of substage about interstage;	ove this
		sec	PROPELW
WPPMT	$w_{PP_{MT}}$	Propellent weight of substage belinterstage;	ow this
		1b	PROPEL

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units
WITST	$\mathbf{w_{IT}_{ST}}$	Total interstage structure weight. Includes all interstage weight except external insulation;
		1b Eq. 1

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	
WITSTNX	w _{IT} stnx	Total non-expended interstage str component;	ucture weight
		!b	Eq. 2
WITSTX	$w_{IT_{STX}}$	Total expended interstage structure weigh: component;	
		lb	Eq. 3
WITSTXI	w_{IT}_{STXI}	Expended (non-thrust producing) inters	
		lb	Eq. 4
WITSTXT	$\mathbf{w_{IT}}_{STXT}$	Expended (thrust producing) interstructure weight component;	stage
		1ь	Eq. 5

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given bylow may be printed or suppressed (see the section on output models for the details).

INTERSTAGE STRUCTURE WEIGHT WITSTAT	
ITSMAI	
INTSTRW *1	
WITSTX	CITST3
WITSINX KWIISNX	CITSIE
WITST KWITST	CITISTI

120.2

MODEL TYPE:

INTSTRW (INTerstage STRucture Weight)

MODEL NAME:

ITSWM2 (Geometry Dependent Weight)

DESCRIPTION:

ITSWM2 (InTerstage Structure Weight Model number 2) uses a geometry dependent equation to evaluate the interstage structure weight as a function of the interstage surface area and the weight per unit surface area. Although this model may be utilized for any interstage, its primary usage is for simulating the top interstage within the propulsion system (i.e., payload adapter).

The interstage structure includes all of the interstage except the external insulation.

PROCEDURE:

Prior to entering ITSWM2, the model specified for the INTSTGG model type has determined the interstage surface area.

The ITSWM2 model then uses the interstage surface area, together with the structure weight per unit surface area, to determine the interstage structure weight breakdown.

After leaving ITSWM2, the model specified for the INTSTGW model type will use the interstage structure weight to determine the interstage weight.

EQUATIONS:

Total interstage structure weight.

$$W_{IT_{ST}} = K_{WITST}(K_{WJTST1} S_{IT} W_{IT_{SUA}} + K_{WITST2})$$
 (1)

Total non-expended interstage structure weight component.

$$W_{IT_{STNX}} = W_{IT_{ST}}$$
 (2)

Total expended interstage structure weight component.

$$W_{IT_{STX}} = 0 \tag{3}$$

EQUATIONS (Cont.):

Expended (thrust producing) interstage structure weight component.

$$W_{IT_{STXT}} = 0 (4)$$

Expended (non-thrust producing) interstage structure weight component.

$$W_{IT_{STXI}} = 0 ag{5}$$

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWITST	KWITST	Coefficient for WITST computation; N. D.	1
KWITSTI	K _{WITST1}	Coefficient for WITST computation; N. D.	1
KWITST2	K _{WITST2}	Bias for WITST computation; lb	0
WITSUA	W _{IT} _{SUA}	Interstage structure weight per unit s area; lb/in ²	urface 0

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
SIT	SIT	Interstage structure surface area in 2	a; INTSTGG

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units		
WITST	$\mathbf{w_{IT}_{ST}}$	Total interstage structure weight, includes all interstage weight except external insulation;		
		1ь	Eq. 1	
WITSTNX W _{ITSTNX}		Total non-expended interstage structure weight component;		
		1ь	Eq. 2	
$\mathbf{w_{IT}_{STX}} \qquad \mathbf{w_{IT}_{STX}}$		Total expended interstage structure weight component;		
		1ь	Eq. 3	
WITSTXI W _{ITSTXI}		Expended (non-thrust producing) interstage structure weight component;		
		1ь	Eq. 5	
WITSTXT	$w_{IT}^{}_{STXT}$	Expended (thrust producing) inters structure weight component;	tage	
		1ь	Eq. 4	

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lires given below may be printed or suppressed (see the section on output models for the details).

INTERSTAGE STRUCTURE WEIGHT WITSTRI
ITSWN2 WITSTXI
INTSTR# *1 *2 *2
WITSTX
WITSINX KWITSNX KWITST2
WITST KWITST KWITST

130.1

(

MODEL TYPE:

INTSTGW (INTerSTaGe Weight)

MODEL NAME:

ITWMl (Weight Synthesis)

DESCRIPTION:

ITWM1 (In Terstage Weight Model number 1) is a weight synthesis model which evaluates the interstage weight breakdown. The interstage weight is comprised of the following subsystems:

Interstage structure

Interstage external insulation

PROCEDURE:

Prior to entering ITWM1, the models specified by the INTSTRW and INTINSW model types have evaluated the interstage structure and external insulation weights. In addition to evaluating subcomponent weights peculiar to their particular requirements, they have defined a set of component weights in terms of expended or non-expended attributes.

These expended and non-expended weight components are input to ITWM1. The ITWM1 model will combine these quantities to determine the interstage weight components.

After all of the interstages are sized, the model specified by the STAGEW model type will use the substage and interstage quantities to determine the stage weights and mass fractions.

EQUATIONS:

Total interstage weight.

$$W_{IT} = K_{WIT} (W_{IT_{ST}} + W_{IT_{IE}})$$
 (1)

EQUATIONS (Cont.):

Total non-expended interstage weight component.

$$W_{IT_{NX}} = K_{WITNX} (W_{IT_{STNX}} + W_{IT_{IENX}})$$
 (2)

Total expended interstage weight component.

$$w_{IT_X} = K_{WITX} (w_{IT_{STX}} + w_{IT_{IEX}})$$
(3)

Expended (thrust producing) interstage weight component.

$$W_{IT_{XT}} = K_{WITXT} (W_{IT_{STXT}} + W_{IT_{IEXT}})$$
(4)

Expended (non-thrust producing) interstage weight component.

$$w_{IT_{XI}} = \kappa_{WITXI} \left(w_{IT_{STXI}} + w_{IT_{IEXI}} \right)$$
 (5)

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWIT	K _{WIT}	Proportionality factor for total int weight;	erstage
		N. D.	1
KWITNX	KWITNX	Proportionality factor for total non-ex interstage weight component;	
		N. D.	1
KWITX	KWITX KWITX Proportionality interstage weight		pended
		M. D.	1
KWITXI	Kwitxi	Proportionality factor for expende thrust producing) interstage weigh	
		N. D.	1

T.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWITXT	Kwitxt	Proportionality factor for expende producing) interstage weight comp	
		N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.; Units	Model Type
WITIE	$w_{IT_{\overline{1}\overline{E}}}$	Total interstage external insulation	-
		1b	INTINSW
WITIENX	W _{IT} IENX	Total non-expended interstage exinsulation weight component;	cternal
		1b	INTINSW
WITIEX	w _{ITIEX}	Total expended interstage extern weight component;	al insulation
		lb	INTINSW
WITIEXI	w_{IT}_{IEXI}	Expended (non-thrust producing) external insulation weight component;	
		lb	INTINSW
WITIEXT	w_{IT}_{IEXT}	Expended (thrust producing) external insulation weight component;	
		1ь	INTINSW
WITST	WITST	Total interstage structure weigh	t;
	**Sh	1ь	INTSTRW
WITSTNX	w _{ITSTNX}	Total non-expended interstage st component;	tructure weight
		1ь	INTSTRW

INPUT DATA, INTER-MCDEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WITSTX	w _{ITSTX}	Total expended interstage strucomponent;	cture weight
		1ь	INTSTRW
WITSTXI	$w_{IT_{STXI}}$	Expended (non-thrust producin structure weight component;	g) interstage
		1ь	INTSTRW
WITSTXT	$w_{IT_{STXT}}$	Expended (thrust producing) in structure weight component;	terstage
		1b	INTSTRW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
WIT	$\mathbf{w}_{\mathbf{IT}}$	Total interstage weight. Includes strand external insulation;	ucture
		1b	Eq. 1
WITNX	w _{IT_{NX}}	Total non-expended interstage weight component. Includes structure and exteriousulation;	
		1b	Eq. 2
WITX	w _{IT} x	Total expended interstage weight componer includes structure and external insulation;	
		1b	Eq. 3
WITXI	w_{IT}_{XI}	Expended (non-thrust producing) interweight component. Includes structure external insulation;	
		1ь	Eq. 5

OUTPUT DATA (Cont.):

Mnemonic

Symbol

Description; Ext. (Int.) Units

WITXT

 $\mathbf{w_{it}}_{\mathbf{XT}}$

Expended (thrust producing) interstage weight component. Includes structure and external insulation;

16

Eq. 4

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

INTERSTAGE WEIGHT WITXI KWITXI
ITTIVAD WITXI KWITXI
INTSTOW *1
WITX KWITX
WITHOU
VIT KVIT

140.1

MODEL TYPE:

MISCMTW (MISCellaneous MoTor Weight)

MODEL NAME:

MMWM1 (Collective Miscellaneous Subsystems,

Parametric Scaling)

DESCRIPTION:

MMWM1 (Miscellaneous Motor Weight Model number 1) utilizes a parametric scaling equation to determine collectively the weight of a set of miscellaneous solid rocket motor subsystems. The subsystems considered are:

Raceways

Base heat protection

Igniter

Ordnance

See reference 8 for a description of the equation and parametric scaling rationale.

The model is applicable for performance parameters within the following limits (see Input Data, Inter-Model and reference 8, figure 15).

1000 lb < WPPMT < 5,000,000 lb

PROCEDURE:

In addition to evaluating the miscellaneous motor weight, the MMWM1 model determines the weight breakdown in terms of expended and non-expended components.

These expended and non-expended component weights will later be used by the model specified for the MOTORW model type to determine the motor weights and mass fractions.

EQUATIONS:

Total miscellaneous motor weight.

$$\mathbf{w}_{\mathbf{MM}} = \mathbf{K}_{\mathbf{WMM}} \mathbf{C}_{1} \left(\mathbf{w}_{\mathbf{PP}_{\mathbf{MT}}} \right)^{\mathbf{C}_{2}} \tag{1}$$

Total non-expended miscellaneous motor weight component.

$$W_{MM_{NX}} = K_{WMMNX} W_{MM}$$
 (2)

Total expended miscellaneous motor weight component.

$$W_{MM} = 0 \tag{3}$$

Expended (thrust producing) miscellaneous motor weight component.

$$W_{MM_{XI}} = 0 (4)$$

Expended (non-thrust producing) miscellaneous motor weight component.

$$W_{MM} = 0$$
 (5)

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CMMWI	c,	Scaling constant for WMM computations;	
	•	N. D.	0، 05
CMMW2	C ₂	Scaling constant for WMM comput	ation;
	.	N. D.	0.8

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWMM	K _{WMM}	Proportionality factor for total mis	cellaneous
		N. D.	1
KWMMNX	Kwmmnx	Proportionality factor for non-expensionality factor for non-expensional motor weight composite to the composite factor for non-expensional factor factor for non-expensional factor factor for non-expensional factor f	
		N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WPPMT	$\mathbf{w}_{\mathbf{PP}_{\mathbf{MT}}}$	Propellent weight;	
	TMT	1b	PROPELW

OUTPUT DATA:

The following data is output by this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units				
WMM	w _{MM}	Total miscellaneous motor weight, includes weights of raceways, base heat protection, igniters, and ordnance;				
		1b	Eq. 1			
WMMNX	w _{MM_{NX}}	Total non-expended misce weight component, includ raceways, base heat prot and ordnance;	es weights of			
		lb	Eq. 2			

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; E	ext. (Int.) Units		
WMMX	$\mathbf{w}_{\mathbf{MM}_{\mathbf{X}}}$	component, in	cludes weights of	miscellaneous motor weight ludes weights of raceways, ction, igniters, and ordnance;	
		1ъ		Eq. 3	
WMMXI	w _{MM} XI	Expended (non-thrust producing) miscellaneous motor weight component, includes weights of raceways, base heat protection, igniters, and ordnance;		les weights of	
		lb		Eq. 4	
WMMXT W Expended (thrust producing) w includes weights of raceways, protection, igniters, and order		its of raceways, b	pase heat		
		Ib	4	Eq. 5	

The state of the s

É.,

a care describer - co

The second secon

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

MISCELLANBOUS MOTOR WEIGHT	WARKT	
MMMMI	WAPACI	KWMMX
MISCMIM	∓	۲ ۶
	WMMCX	KWW
	WWWINX	CMMMS
	WIN	CMMM

MOTORG

150.1

MODEL TYPE:

MOTORG (MOTOR Geometry)

MODEL NAME:

MTGMl (Solid Rocket Motor)

DESCRIPTION:

MTGM1 (MoTor Geometry Model number 1) evaluates the geometry of a basic solid rocket motor. The motor includes only the cylindrical case section, forward case closure section and aft case closure section. It may include diameter corrections for raceways, etc., but does not include the protruding portion of the nozzle, thrust termination ports, etc. The latter quantities are evaluated by the substage geometry model. The motor geometry is illustrated by figure 1.

PROCEDURE:

Prior to entering MTGM1, the models specified by the PROPELW, CASEG, and GRAING model types have evaluated the geometry of the major motor components.

MTGM1 then determines the basic motor geometry.

After executing MTGM1, the model specified by the SUBSTGG model type will utilize the motor geometry and nozzle geometry to determine the substage geometry.

EQUATIONS:

Length of forward motor closure. (Figure 1)

$$L_{MT_{CHF}} = K_{MT_1} L_{CS_{CHFO}} + K_{MT_2}$$
 (1)

Length of aft motor closure. (Figure 1)

$$L_{MT_{CHA}} = K_{MT_3} L_{CS_{CHAO}} + K_{MT}.$$
 (2)

EQUATIONS (Cont.):

Length of motor cylindrical section. (Figure 1)

$$L_{MT_{CY}} = K_{MT_5} L_{CS_{CY}} + K_{MT_6}$$
(3)

Total motor length. (Figure 1)

$$L_{MT} = L_{MT_{CY}} + L_{MT_{CHF}} + L_{MT_{CHA}}$$
 (4)

Total motor diameter. (Figure 1)

$$D_{MT} = K_{MT_7} D_{CS_O} + K_{MT_8}$$
 (5)

Motor cross sectional area.

$$A_{MT} = \left(\frac{\pi}{4}\right) D_{MT}^2 \tag{6}$$

Ratio; motor length to case diameter.

$$R_{LDMTCS} = \frac{L_{MT}}{D_{CS_{C}}}$$
 (7)

Ratio; motor length to motor diameter.

$$R_{LDMT} = \frac{L_{MT}}{D_{MT}}$$
 (8)

Motor volume.

$$V_{MT} = V_{GN}$$
 (9)

Motor volumetric loading efficiency.

$$\eta_{\text{PP}_{\text{MT}}} = \frac{V_{\text{PP}_{\text{MT}}}}{V_{\text{MT}}} \tag{10}$$

MOTORG

0

MOTOR GEOMETRY

MTGM1

EQUATIONS (Cont.):

Motor forward skirt length. (Figure 1)

$$L_{MT_{SKF}} = K_{MTSKF1} D_{CS_{O}} + K_{MTSKF2}$$
 (11)

Motor aft skirt length. (Figure 1)

$$L_{MT_{SKA}} = K_{MTSKA1} D_{CS_O} + K_{MTSKA2}$$
 (12)

Fig. 150.1-1 Basic Motor Geometry

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KMTSKAI	K _{MTSKA1}	Proportionality factor relating the moskirt length to the outside case diame	
		N. D.	0.1
KMTSKA2 K _{MTSKA2}		Bias for motor aft skirt length compu	tation;
		in	0
KMTSKF1	^K mtskf1	Proportionality factor relating the moforward skirt length to the outside cadiameter;	
		N. D.	0.1
KMTSKF2	K _{MTSKF2}	Bias for motor forward skirt length computation;	
		in	0

The following coefficient and bias quantities are made available for input. However, in normal applications, the preset values are used for most, if not all, of these quantities. Note that these coefficient quantities are preset (1) and the bias quantities are preset (0).

KMT1	K _{MT1}	Coefficient for LMTCHF computation; N. D.	1
КМТ2	K _{MT2}	Bias for LMTCHF computation; in	o
КМТ3	K _{MT3}	Coefficient for LMTCHA computation: N. D.	1
KMT4	K _{MT4}	Bias for LMTCHA compu ton; in	0

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
КМТ5	K _{MT5}	Coefficient for LMTCY computation; N. D.	1
КМТ6	K _{MT6}	Bias for LMTCY computation; in	0
КМТ7	K _{MT7}	Coefficient for DMT computation; N. D.	1
КМТ8	K _{MT8}	Bias for DMT computation; in	0

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
DCSO	D _{CS} O	Outside case diameter; in Fig. 1	CASEG
LCS	L _{CS}	Case length; in	CASEG
LCSCY	L _{CS} CY	Cylindrical case section length; in	CASEG
LCSCHAO	L _{CS} CHAO	Aft case closure length; in	CASEG
I.CSCHF0	^L CS _{CHFO}	Forward case closure length; in	CASEG

をおかい いんじゅつ

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
VGN	v_{GN}	Volume of grain envelope; in ³	GRAING
VPPMT	$v_{PP_{MT}}$	Propellent volume; in	PROPELW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext.	(Int.) Units	
AMT	A _{MT}	Motor cross sectional area. May include raceways and other protrusions;		
		in		Eq. 6
DMT	D _{MT}	Motor diameter. May include allowance for raceways and other protrusions;		
		in	Fig. 1	Eq. 5
LMT	L _{MT}	Motor length. Does not include protruding nozzle, outside igniter attachment, thrust termination parts, etc.;		
		in	Fig. 1	Eq. 4
LMTCHA	L _{MT_{CHA}}	Aft motor closure length;		
		in	Fig. 1	Eq. 2
LMTCHF	L _{MT} CHF	Forward motor closure length. Does not include outside igniter attachments, thrust termination ports, etc.;		
		in	Fig. 1	Eq. 1
LMTCY	LMTCY	Motor cylinder length;		
	, CA	in	Fig. 1	Eq. 3

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units			
LMTSKA	^L M ^T SKA	Motor aft skirt length. Measured along outside of skirt from intersection of cylindrical motor section and aft closure section;			
		in	Fig. 1	Eq.	12
LMTSKF	L _{MT} SKF	Motor forward skint length. Measured along outside of skirt from intersection of cylindric motor section and forward motor section;			
		in	Fig. 1	Fq.	11
RLDMT	R _{LDMT}	Ratio, motor ler	igth to motor diamete	r;	
		N. D.		Eq.	8
RLDMTCS	RLDMTCS	Ratio, motor length to case outside diameter;			ter;
		N. D.		Eq.	7
RVPPMT	$\eta_{ ext{PP}_{ ext{MT}}}$	Motor volumetric loading efficiency. Ratio of propellent volume to motor volume;			0
		N. D.		Eq.	10
YMT	v_{MT}	Motor volume. Volume of grain envelope Excludes case liner;			
		in ³		Eq.	9

Ć

ŧ

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

HOTOR GROMETRY	NOTES NOTE	INCISION INFISION	LATCHE	RVPPMT VMT
			LMICHA	
MOTORG	∓ '	~	.	1 *
	E C	KOALT	¥	RLDACT
1		900	DOI:0	LESK
!	AT.	ROATS	KMTS/C1	LICESKA

160.1

MODEL TYPE:

MOTORW (MOTOR Weight)

MODEL NAME:

MTWMl (Weight Synthesis)

DESCRIPTION:

MTWM1 (MoTor Weight Model number 1) is a weight synthesis model which evaluates the motor weight breakdown. The motor weight is comprised of the following subsystems.

Propellent

Case (includes joint weight penalty if applicable)

Thrust termination mechanism

Internal insulation

Thrust vector control system

Miscellaneous motor weight (includes raceways, base heat protection, igniters, and ordnance)

Note that the above subsystems do NOT include the nozzle. See the SUBSTGW model type for substage (motor plus nozzle) weight quantities.

PROCEDURE:

Prior to entering MTWM1, all of the models which evaluate motor subsystem weights have been executed. In addition to evaluating sub-component weights peculiar to its particular requirement, each model has defined a set of component weights in terms of expended or non-expended attributes.

These expended or non-expended subsystem weights are input to the MTWMI model which, in turn, combines these quantities to determine the inotor weight breakdown. The motor mass fractions are also evaluated.

After MTWMl is executed, the model specified by the SUBSTGW model type will utilize these motor quantities, with the nozzle quantities, to determine the total substage weights and mass fractions.

EQUATIONS:

Total motor weight.

$$W_{MT} = K_{WMT} (W_{PP_{MT}} + W_{CS} + W_{TT} + W_{MM} + W_{IN} + W_{TV})$$
 (1)

Total non-expended motor weight component.

(2)

$$w_{MT_{NX}} = \kappa_{wMTNX} (w_{CS_{NX}} + w_{TT_{NX}} + w_{MM_{NX}} + w_{IN_{NX}} + w_{TV_{NX}})$$

Total expended motor weight component (excluding propellent).

$$w_{MT_X} = \kappa_{WMTX} (w_{CS_X} + w_{TT_X} + w_{MM_X} + w_{IN_X} + w_{TV_X})$$
(3)

Expended (thrust producing) motor weight component.

$$w_{MT_{XT}} = \kappa_{WMTXT} \left(w_{CS_{XT}} + w_{TT_{XT}} + w_{MM_{XT}} + w_{IN_{XT}} + w_{TV_{XT}} \right)$$

Expended (non-thrust producing) motor weight component.

$$w_{MT_{XI}} = K_{WMTXI} (w_{CS_{XI}} + w_{TT_{XI}} + w_{MM_{XI}} + w_{IN_{XI}} + w_{TV_{XI}})$$
 (5)

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWMT	K _{WMT}	Proportionality factor for total mo	tor weight;
		N. D.	1
KWMTNX	K _{WMTNX}	Proportionality factor for non-expendent weight component;	ended
		N. D	1

Ť

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Lit.) Units	Preset
KWMTX	K _{WMTX}	Proportionality factor for total expended motor weight component;	
		N. D.	1
KWMTXI	KWMTXI	Proportionality factor for expended (non-throproducing) motor weight component;	
		N. D.	1
KWMTXT	K _{WMTXT}	Proportionality factor for expende producing) motor weight componer	
		N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WCS	w _{Cs}	Case weight, total;	CASEW
WCSNX	w _{Cs_{NX}}	Case weight component, total nor	
WCSX	w _{cs} x	Case weight component, total exp	pended; CASEW
WCSXI	$^{\mathrm{W}}_{\mathrm{CS}_{\mathbf{XI}}}$	Case weight component, expende thrust producing);	d, (non-
		1b	CASEW

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WCSXT	w _{CSXT}	Case weight component, expender producing);	l, (thrust
		1ь	CASEW
WIN	w_{IN}	Internal insulation weight, total;	
		1ь	INSULW
XINNX	w_{IN}_{NX}	Internal insulation weight compon non-expended;	ent, total
		1b	INSULW
WINX	w_{IN}_{X}	Internal insulation weight componexpended;	ent, total
		1b	INSULW
WINXI	w_{IN}_{XI}	Internal insulation weight componexpended, (non-thrust producing)	
		1b	INSUL W
WINXT	w_{IN}_{XT}	Internal insulation weight componexpended, (thrust producing);	ent,
		1b	INSULW
WMM	w _{MM}	Miscellaneous motor weight, tota	il;
	••••	1b	MISCMTW
WMMNX	$w_{MM_{NX}}$	Miscellaneous motor weight compon-expended;	ponent, total
		1b	MISCMTW
WMMX	$^{W}_{MM}_{X}$	Miscellaneous motor weight comp total expended;	conent,
		1b	MISCMTW
WMMXI	$w_{MM_{XI}}$	Miscellaneous motor weight compexpended, (non-thrust producing)	
		1ь	MISCMTW

()

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WMMXT	$\mathbf{w}_{\mathbf{MM}_{\mathbf{XT}}}$	Miscellaneous motor weight compexpended, (thrust producing);	onent,
		lb	MISCMTW
WPPMT	$\mathbf{w}_{\mathtt{PP}_{\mathtt{MT}}}$	Propellent weight;	
	MT	1ь	PROPELW
WTT	$\mathbf{w_{_{TT}}}$	Thrust termination weight, total;	
		1b	TTERMW
WTTNX	$\mathbf{w_{TT}_{NX}}$	Thrust termination weight component non-expended;	nent, total
		1ь	TTERMW
WTTX	$\mathbf{w}_{\mathbf{TT}_{\mathbf{X}}}$	Thrust termination weight compose expended;	nent, total
		1b	TTERMW
WTTXI	$\mathbf{w}_{\mathbf{T}\mathbf{T}_{\mathbf{X}\mathbf{I}}}$	Thrust termination weight compo- expended, (non-thrust producing);	
		lb	TTERMW
WTTXT	$\mathbf{w}_{\mathbf{TT}_{\mathbf{XT}}}$	Thrust termination weight compoexpended, (thrust producing);	nent,
		1ь	TTERMW
WTV	w _{TV}	Thrust vector control weight, tot	al;
	1 V	1ь	TVCW
WTVNX	$\mathbf{w}_{\mathtt{TV}_{\mathtt{NX}}}$	Thrust vector control weight comnon-expended;	ponent, total
		1b	TVCW
WTVX	$\mathbf{w}_{\mathbf{T}^{\mathbf{V}}\mathbf{x}}$	Thrust vector control weight comexpended;	ponent, total
		1b	TVCW

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type	
WTVXI	$\mathbf{w}_{\mathbf{T}\mathbf{v}_{\mathbf{X}\mathbf{I}}}$		Thrust vector control weight component, expended, (non-thrust producing);	
		1b	TVCW	
WTVXT	$\mathbf{w_{TV}_{XT}}$	Thrust vector control weight co expended, (thrust producing);	mponent,	
		1b	TVCW	

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
wmr	w _{MT}	Total motor weight. Includes propelled case, thrust termination, miscellaneou internal insulation, and thrust vector consubsystems. Does not include nozzle;	
		1b	Eq. 1
KNTMK	w _{MT} nx	Total non-expended motor weight includes case, thrust termination miscellaneous, internal insulation vector control subsystems. Doe nozzle;	n, n, and thrust
		1b	Eq. 2
WMTX	w _{MT} X	Total expended motor weight con Includes case, thrust termination miscellaneous, internal insulation vector control subsystems. Doe propellent or nozzle;	n, en and thrust
		1b	Eq. 3

Mnemonic	Symbol	Description; Ext. (Int.) Units	
WMTXI	w _{MT} XI	Expended (non-thrust producing) m component. Includes case, thrust miscellaneous motor, internal institutory vector control subsystems. include nozzle;	termination, ulation, and
		16	Eq. 5
WMTXT	w _{MT} XT	Expended (thrust producing) motor component. Includes case, thrust miscellaneous, internal insulation thrust vector control subsystems. include propellent or nozzle;	termination, and
		1b	Eq. 4

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

MOTOR WEIGHT VMEXT KWATYT
MEWAD. WAREXE KWAEKE
MOTORW *1
WMEX KWMEX
WATHX
WAT KWAT

170.1

MODEL TYPE: NOZZLEG (NOZZLE Geometry)

MODEL NAME: NZGMl (Conical nozzle)

DESCRIPTION:

NZGMl (NoZzle Geometry Model number 1) evaluates the geometrical expressions required for a simple conical nozzle design having circular convergent and transition section contours. Due to the requirement that the nozzle contour be smooth (continuous function and continuous first derivative) where the major sections join at the throat and transition planes, the conical section half angle is equal to the transition section arc angle.

The model assumes:

- 1. The length of the convergent section is directly proportional to the throat diameter.
- 2. The radius of curvature of the convergent section contour is directly proportional to the throat diameter.
- 3. The radius of curvature of the transition section contour is directly proportional to the throat diameter.
- 4. The conical section half angle is equal to the transition section arc angle.
- 5. The nozzle has zero thickness.

It should be noted that the placement of the buried nozzle plane with respect to the motor is not determined by this model. Although always associated with the outside surface of the aft case closure, the actual placement of the buried nozzle plane is normally specified by the model associated with the GRAING model type.

For an appreciation of the basic nozzle terminology used within this model, see figure 1. Figures 2 through 5 illustrate the nozzle geometry and are useful when referring to the symbol definitions and equations.

PROCEDURE:

Prior to entering NZGM1, the models specified by the IBGAS and IBPERF model types have evaluated the gas characteristics, chamber pressures and propellent weight flow for the solid rocket motor.

The NZGMl is then executed and the conical nozzle geometry is evaluated.

After executing NZGM1, the model specified by the IBPERF model type is reentered (if required) to evaluate the performance quantities which are dependent upon the nozzle geometry.

EQUATIONS:

Nozzle throat area.

$$A_{NZ_{TH}} = \frac{\tilde{W}_{PP_{MT}}^{C*}}{g_{o}^{P}_{AVG}}$$
 (1)

Nozzle throat diameter. (Figures 2, 3, 4, 5)

$$D_{NZ_{TH}} = \sqrt{\frac{4 A_{NZ_{TH}}}{\pi}}$$
 (2)

Proportionality factor relating nozzle entrance diameter to nozzle throat diameter.

$$K_{DENT} = 1 + 2 \left(C_2 - \sqrt{C_2^2 - C_1^2} \right)$$
 (3)

Porportionality factor relating nozzle transition diameter to nozzle throat diameter.

$$K_{DTR} = 1 + 2 C_3 \left[1 - \cos \left(\theta_{NZ} \right) \right]$$
 (4)

Ratio, nozzle transition diameter to nozzle throat diameter.

$$R_{DTRTH} = K_{DTR}$$
 (5)

Expansion ratio at nozzle transition plane.

$$\epsilon_{\rm TR} = \left(R_{\rm DTRTH}\right)^2 \tag{6}$$

170.1-2

4

EQUATIONS (Cont.):

Ratio, nozzle exit diameter to nozzle throat diameter.

$$R_{DEXTTH} = \sqrt{\epsilon_{NZ}}$$
 (7)

Radius of curvature, convergent nozzle section. (Figure 3)

$$R_{C_{CV}} = C_2 D_{NZ_{TH}}$$
 (8)

Radius of curvature, transition nozzle section. (Figure 4)

$${}^{R}C_{TR} = {}^{C}_{3} {}^{D}_{NZ}_{TH}$$
 (9)

Nozzle entrance diameter. (Figure 3)

$$D_{NZ_{ENT}} = K_{DENT} D_{NZ_{TH}}$$
 (10)

Nozzle transition diameter. (Figure 4)

$$D_{NZ_{TR}} = R_{DTRTH} D_{NZ_{TH}}$$
 (11)

Nozzle exit diameter. (Figure 5)

$$D_{NZ_{EXT}} = R_{DEXTTH} D_{NZ_{TH}}$$
 (12)

Nozzle entrance area. (Figure 3)

$$A_{NZ_{ENT}} = \left(\frac{\pi}{4}\right) \quad D_{NZ_{ENT}}^{2} \tag{13}$$

Nozzle transition area. (Figure 4)

$$A_{NZ_{TR}} = \left(\frac{\pi}{4}\right) D_{NZ_{TR}}^{2}$$
 (14)

Nozzle exit area. (Figure 5)

$$A_{NZ_{EXT}} = \left(\frac{\pi}{4}\right) D_{NZ_{EXT}}^{2}$$
 (15)

Convergent nozzle section length. (Figure 3)

$$L_{NZ_{CV}} = C_1 D_{NZ_{TH}}$$
 (16)

Transition nozzle section length. (Figure 4)

$$L_{NZ}_{TR} = R_{C_{TR}} \sin \left(\theta_{NZ}\right) \tag{17}$$

Conic nozzle section length. (Figure 5)

$$L_{NZ_{CN}} = \frac{\binom{D_{NZ_{EXT}} - D_{NZ_{TR}}}{2 \tan(\theta_{NZ})}}{(18)}$$

Body nozzle section length. (Figure 2)

$$L_{NZ_{BDY}} = L_{NZ_{CY}} + L_{NZ_{TR}}$$
 (19)

Divergent nozzle section length. (Figure 2)

$$L_{NZ_{DV}} = L_{NZ_{TR}} + L_{NZ_{CN}}$$
 (20)

Total nozzle length. (Figure 2)

$$L_{NZ} = L_{NZ_{CV}} + L_{NZ_{DV}}$$
 (21)

Buried nozzle section length. (Figure 2)

$$L_{NZ_{B}} = K_{LNZB} L_{NZ}$$
 (22)

Protruding nozzle section length. (Figure 2)

$$L_{NZ_{P}} = L_{NZ} - L_{NZ_{B}}$$
 (23)

Buried nozzle length ratio.

$$R_{LNZB} = \frac{L_{NZ}}{L_{NZ}}$$
 (23-a)

Protruding nozzle length ratio.

$$R_{LNZP} = \frac{L_{NZP}}{L_{NZ}}$$
 (23-b)

Length buried in convergent nozzle section. (Positive sense towards entrance.) (Figure 4)

$$L_{NZ_{BCV}} = L_{NZ_{CV}} - L_{NZ_{B}}$$
 (24)

Length buried in transition nozzle section. (Positive sense towards exit.) (Figure 4)

$$L_{NZ_{BTR}} = L_{NZ_{B}} - L_{NZ_{CV}}$$
 (25)

Length buried in conic nozzle section. (Positive sense towards exit.) (Figure 5)

$$L_{NZ_{BCN}} = L_{NZ_{B}} - I_{NZ_{BDY}}$$
 (26)

Buried nozzle diameter evaluation:

If the buried nozzle plane is within the convergent nozzle section, (Figure 3)

$$D_{NZ_{B}} = D_{NZ_{TH}} + 2\left(R_{C_{CV}} - \sqrt{R_{C_{CV}}^{2} - L_{NZ_{BCV}}^{2}}\right)$$
 (27)

If the buried nozzle plane is within the transition nozzle section, (Figure 4)

$$D_{NZ_{B}} = D_{NZ_{TH}} + 2 \left(R_{C_{TR}} - \sqrt{R_{C_{TR}}^{2} - L_{NZ_{BTR}}^{2}} \right)$$
 (28)

If the buried nozzle plane is within the conic nozzle section, (Figure 5)

$$D_{NZ_{B}} = D_{NZ_{TR}} + 2 L_{NZ_{BCN}} \tan (\theta_{NZ})$$
 (29)

Associative Quantities. The following quantities are intended solely for optional utilization by the program user. (Their primary usage within this model is for forming constraint quantities.)

$$Q_{DB} = K_{QDB} D_{NZ_B}$$
 (30)

$$Q_{DENT} = K_{QDEN} D_{NZ_{ENT}}$$
 (31)

$$Q_{DEXT} = K_{QDEX} D_{NZ_{EXT}}$$
 (32)

$$Q_{LNZ} = K_{QL} L_{NZ}$$
 (33)

$$Q_{LB} = K_{QLB} L_{NZ_B}$$
 (34)

$$Q_{DTH} = K_{QDTH} D_{NZ_{TH}}$$
 (35)

のでは、100mmの

Fig. 170.1-1 Conical Nozzle Sections and Planes

r en sarside

Fig. 170, 1-2 Conical Nozzle, Total Geometry

C

Fig. 170, 1-3 Conical Nozzle, Convergent Section

Fig. 170.1-4 Conical Nozzle, Transition Section

8

Fig. 170.1-5 Conical Nozzle, Conical Section

1. = **1.**

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CNZ1	c	Proportionality factor relating con- nozzle section length to nozzle thro diameter;	
		N. D.	. 4
CNZ2	c ₂	Proportionality factor relating the of curvature of the convergent nozz section contour to the nozzle throat	le:
		N. D.	1
CNZ3	c ₃	Proportionality factor relating the curvature of the transition nozzle a contour to the nozzle throat diame	ection
		N. D.	. 2
KQDNZB	KQDB	Associative quantity coefficient for QDNZB computation;	
		N.D.	0
KQDNZEN	KQDEN	Associative quantity coefficient for QDNZENT computation;	
		N. D.	0
KQDNZEX	K _{QDEX}	Associative quantity coefficient for QDNZEXT computation;	
		N. D.	o
KQDNZTH	K _{QDTH}	Associative quantity coefficient for QDNZTH computation;	
		N. D.	0
KQLNZB	KQLB	Associative quantity coefficient for QLNZB computation;	
		N. D.	0
KQLNZ	κ_{QL}	Associative quantity coefficient for QLNZ computation;	
		N. D.	0

INPUT DATA, INTRA-MODEL (Cont.):

KLNZB	KLNZB	Proportionality factor relating buried nozzle length to total nozzle length;		
		N. D.		0
NZHA	$\theta_{ ext{NZ}}$	Nozzle half angle;		
	.,,_	deg	Figs. 2, 4, 5	0
RAEXTTH	€ NZ	Nozzle exp Ratio of no	oansior ratio at nozzlo ozzle exit area to noz	e exit plane. zle throat area;
		N. D.		n

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
CVDELV	C*	Delivered characteristic velocity;	
		ft/sec	IBGAS
DWPPMT	w _{PPMT}	Propellent weight flow; lt/sec	IBPER F
PCHAVG	PAVG	Average chamber pressure; PSIA	IBGAS

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
ANZENT	A _{NZ_{ENT}}	Nozzle entrance area; in ²	Eq. 13
AN Z EXT	A _{NZ} EXT	Nozzle exit area; in ²	Eq. 15

Mnemonic	Symbol	Description;	Ext. (Int.) Units	·
ANZTH	A _{NZ_{TH}}	Nozzle throa in ²	t area;	Eq. 1
ANZTR	$A_{NZ_{TR}}$	Nozzle trans	ition area;	Eq. 14
DNZB	D _{NZB}	Buried nozzle diameter. Nozzle diameter measured at buried nozzle plane;		•
	_	in	Figs. 3, 4, 5	Eqs.27, 28, 29
DNZENT	^D NZ _{ENT}		ince diameter. Diame ured at nozzle entranc	
		in	Fig. 3	Eq. 10
DNZEXT	D _{NZEXT}	Nozzle exit diameter. Diameter of nozzle measured at nozzle exit plane;		
		in	Fig. 5	Eq. 12
DNZTH	D _{NZ} TH	Nozzle threat diameter. Diameter of nozzle nieasured at nozzle throat plane;		
		in	Fig. 2	Eq. 2
DNZTR	D _{NZ} TR	nozzle meas	sition diameter. Diam ured at transition plan id conic sections;	
		in	Fig. 4	Eq. 11
KDNZENT	K _{DENT}		lity factor relating noz meter to nozzle throat	
		N. D.		Eq. 3
KDNZTR	κ_{DTR}		lity factor relating noz	
		N. D.		Eq. 4
LNZ	L _{NZ}		e length. Distance from	
		in	Fig. 2	Eq. 21

3°

Mnemonic	Symbol	Description; I	Ext. (Int.) Units	
LNZB	L _{NZB}	Buried nozzle section length. Distance from nozzle entrance plane to nozzle buried plane;		
		in	Fig. 2	Eq. 22
LN2 BCN	L _{NZ} BCN	Length buried in conic nozzle section. Distance from nozzle transition plane to nozzle buried plane. (Positive sense towards exit);		ine to
		in	Fig. 5	Eq. 26
LNZBCV	L _{NZ} BCV	Length buried in convergent nozzle section Distance from nozzle throat plane to nozzle buried plane. (Positive sense towards entrance);		to nozzle
		in	Fig. 3	Eq. 24
LNZBDY	LNZBDY	Body nozzle section length. Distance from nozzle entrance plane to nozzle transition plane;		
		in	Fig. ?	Eq. 19
LNZBTR	$L_{NZ_{BTR}}$	Distance from	in transition nozzle nozzle throat plane (P ositive sense towa	to nozzle
		in		Eq. 25
LNZCN	L _{NZ_{CN}}	Conic nozzle section length. Distance from nozzle transition plane to nozzle exit plane;		
		in	Fig. 5	Eq. 18
LNZCV	L _{NZCV}	Convergent nozzle section length. Distance from nozzle entrance plane to nozzle throat plane;		
		in	Fig. 3	Eq. 16
LNZDV	L _{NZ_{DV}}	Divergent nozzle section length. Distan from nozzle throat plane to nozzle exit p		
		in	Fig. 2	Eq. 20

Mnemonic	Symbol	Description; Ext	t. (Int.) Units	
LNZP	L _{NZP}		ele section length. Fied plane to nozzle	
		in F	Fig. 2	Eq. 23
LNZTR	L _{NZ} TR		le section length. oat plane to nozzle	
		in F	Fig. 4	Eq. 17
QDNZB	Q_{DB}	Associative quant (See DNZB);	ntity, buried nozzle	e diameter.
		in		Eq. 30
QDNZENT	Q _{DENT}	Associative quandiameter. (See	ntity, nozzle entra: DNZENT);	nce
		in		Eq. 31
QDNZEXT	Q _{DEXT}	Associative quantification (Sce DNZEXT);	ntity, nozzle exit d	iameter.
		in		Eq. 32
QDNZTH	Q _{DTH}	Associative quant (See DNZTH);	ntity, nozzle throat	t diameter.
		in		Eq. 35
QLNZ	Q_L	Associative quantification (See LNZ);	ntity, total nozzle	length.
		in		Eq. 33
QLNZB	Q_{LB}	Associative quantification (See LNZB);	ntity, buried nozzlo	e length.
		in		Eq. 34
RATRTH	€ TR		at transition plane tion area to nozzle	
		N. D.		Eq. 6

Mnemonic	Symbol	Description; Fxt. (Int.) Units	
RCNZCV	$^{R}c_{CV}$	Radius of curvature, convergent nozzle v section contour;	
		in	Eq. 8
RCNZTR	R _C TR	Radius of curvature, transition nozzle section contour;	
		in	Eq. 9
RDEXTTH	R _{DEXTTH}	Ratio, nozzle exit diameter to nozzle throat diameter;	
		N. D.	Eq. 7
RDTRTH	R _{DTRTH}	Ratio, nozzle transition diameter to nozzle throat diameter;	
		N. D.	Eq. 5
RLNZB	RLNZB	Buried nozzle length ratio. Ratio of buried nozzle section length to total nozzle length;	
		N. D.	Eq. 23-a
RLNZP	R _{LNZP}	Protruding nozzle length ratio. Ratio of protruding nozzle section length to total nozzle length;	
		N. D.	Eq. 23-b

()

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

BOMETHY CNZ2 DNZTR KQINZEX LNZBCN LNZDV QDNZETT RCNZCV	TANNZHA
NOZZLE GEON CNZL DNZTH KQDNZEN LNZB LNZCY QDNZENT RATHETH ROTHETH	COSNZHA
NZGM1 ANZTR DNZEKT KQDNZB LNZ LNZ LNZCN QDNZB RAEKTTH	SINNZHA
NO2218	<u>.</u>
ANZTH INZENT KLNZB KQLNZB LNZBTR NZHA QLNZB RLNZB	5
ANZEXT DNZB KDNZTR KQLNZ LNZBDY LNZBDY CNZTR QLNZ RDEXTTH BRCV	; !
ANZENT CNZ3 KUNZENT KQDNZTH INZBCV ILNZP QDNZTH RCNZTR BPCN	

180.1

THE LATE

MODEL TYPE:

NOZZLEW (NOZZLE Weight)

MODEL NAME:

NZWMl (Single, Ablative, Parametric Scaling)

DESCRIPTION:

NZWM1 (NoZzle Weight Model number 1) utilizes parametric weight scaling equations to determine the weight of a solid rocket motor fixed or gimballed nozzle. A detailed description of both the equations and parametric scaling rationale may be found in reference 8.

The model is applicable for performance parameters within the following limits

15 < NZHA < 30 deg

300 < PCHAVG < 1000 psia

5 < RAEXTTH < 75

30 < TBPPMT < 140 sec

500 < WPPMT < 2,000,000 lb

where NZHA is associated with the NOZZLEG model type and the remaining quantities are defined in the Input Data, Inter-Model section below.

PROCEDURE:

Prior to entering NZWMI, the models specified by the IBGAS and IBPERF model types have evaluated the gas and performance properties of the propellent, and the model specified by the NOZZLEG model type evaluated the nozzle geometry. The nozzle weight penalty due to gimballed or other thrust vector control systems has been determined by the model specified for the TVCW model type.

The NZWMI model is then executed and the nozzle weight is evaluated using a parametric weight scaling equation. The expended weights, due to ablation during thrusting, are also computed.

After leaving NZWM1, the remaining component weights of the motor are evaluated. The NZWM1 output data will then be used by the models specified by the SUBSTGW and PROPUL model types to evaluate the substage weights and propulsion characteristics.

EQUATIONS:

Total nozzle weight.

$$W_{NZ} = K_{WNZ} K_{TVNZ} C_1 \left[\frac{\left(W_{PP} C^* \right)^{C_2} \epsilon^{C_3}}{C_4 C_5 C_5} \right]$$

$$(1)$$

Total expended nozzle weight component.

$$W_{NZ_X} = K_{WNZX} C_8 \left(P_{AVG} T_B\right)^{C_9} W_{NZ}$$
 (2)

Expended (non-thrusting producing) nozzle weight component.

$$w_{NZ_{XI}} = K_{WNZXI} w_{NZ_{X}}$$
 (3)

Expended (thrust producing) nozzle weight component.

$$W_{NZ} = 0 \tag{4}$$

Total non-expended nozzle weight component,

$$w_{NZ_{NX}} = \kappa_{wNZNX} (w_{NZ} - w_{NZ_{X}})$$
 (5)

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CNZW1	C ₁	Scaling constant for WNZ comput	ation;
	-	N. D.	0.0000772

ŧ,

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CNZW2	c ₂	Scaling constant for WNZ computati	on; 1.2
CNZW3	C ₃	Scaling constant for WNZ computation. D.	on; 0.7
CNZW4	c ₄	Scaling constant for WNZ computation. D.	on; 0.8
CNZW5	c _s	Scaling constant for WNZ computati	on; 0,6
CNZW6	c ₆	Scaling constant for WNZ computati	on; 0.4
CNZW7	C ₇	Scaling constant for WNZ computati	on; 0.916
CNZW8	C ₈	Scaling constant for WNZX computa N. D.	tion; 0.00032
CNZW9	c ₉	Scaling constant for WNZX computa N. D.	tion; 0.5
KWNZ	Kwnz	Proportionality factor for total nozz	le weight;
KWNZNX	K _{WNZNX}	Proportionality factor for nozzle no weight component;	n-expended
		N. D.	1
KWNZX	Kwnzx	Proportionality factor for total expeweight component;	ended nozzle
		N. D.	1
KWNZXI	Kwnzxi	Proportionality factor for non-thrus component of expended nozzle weigh	
		N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input,

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
CVDELV	C*	Delivered characteristic velocity; ft/sec	IBGAS
KTVNZ	K _{TVNZ}	Thrust vector control factor; N. D.	TVCW
PCHAVG	PAVG	Average chamber pressure; psia	IBGAS
RAEXTTH	€ _{NZ}	Nozzle expansion ratio; N. D.	NOZZLEG
TANNZHA	tan (θ)	Tangent of nozzle half angle;	NOZZLEG
ТВРРМТ	T _B	Propellent burn time;	IBFERF
WPPMT	W _{PP}	Propellent weight; 1b	PROPELW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Unit	8
WNZ	w _{NZ}	Total nozzle weight;	
		1 b	Eq. 1

Mnemonic	Symbol	Description; Ext. (Int.) Units		
WNZNX	w _{NZ_{NX}}	Total non-expended nozzle weight component;		
	··-NX	1ь	Eq.	5
WNZX	w _{NZ}	Total expended nozzle weight componer	nt;	
	x	1ь	Eq.	2
WNZXI WNZXI		Expended (non-thrust producing) nozzloweight component;	e	
		1ь	Eq.	3
WNZXT	$w_{NZ_{XT}}$	Expended (thrust-producing) nozzle weicomponent;	ight	
		1b	Eq.	4

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

NOZZLE WEIGHT WNZXT CNZW5 CNZW6 KWNZNX KWNZX
NZNA ANZXI CNZNE CNZNE
NOZZIJSW *1 *2 *3
WNZX CNZH3 CNZH3
WNZNX CNZU2 CNZU8
WNZ CNZHI CNZHI

190.1

Ū

(,

Ļ

MODEL TYPE:

PAYLODG (PAYLOaD Geometry)

MODEL NAME:

PAGM1 (Single, Simple Payload)

DESCRIPTION:

PAGMI (PAyload Geometry Model number 1) evaluates the geometry for a simple single payload which may be defined in terms of its length and base diameter. See figure 1 and the figure associated with the model used as the top interstage (INTSTGG model type) for an appreciation of the pertinent geometry.

PROCEDURE:

Prior to entering PAGM1, all of the solid rocket motor substages have been sized.

PAGM1 then determines both the basic payload geometry and the payload requirements for interstage design.

After PAGMI is executed, the interstages will be sized. The top interstage for the propulsion system will use PAGMI output, together with the geometry of the top substage in the propulsion system, to determine its design requirements. After all of the interstages, stages, and the propulsion system have been sized, the payload geometry is used for sizing the payload section and shroud.

EQUATIONS:

Total payload length.

$$L_{PA} = L_{PA_{SF}} + L_{PA_{B}} + L_{PA_{SA}}$$
 (1)

Payload cross-sectional area.

$$A_{PA} = \left(-\frac{\pi}{4}\right) D_{PA_A}^2 \tag{2}$$

Payload aft diameter for interstage attachment.

$$D_{SS_{1TA}} = D_{PA_A}$$
 (3)

Length of interstage required for the payload.

$$L_{SS_{ITA}} = L_{PA_{SA}}$$
 (4)

NOTE: The conical payload is for illustration only. The payload geometry is defined by the center line lengths and D_{PA}

Fig. 190.1-1 Payload Geometry

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset	
DPAA	$\mathtt{D}_{\mathtt{PA}_{A}}$	Payload base (i.e., aft) diameter, required for defining the aft interstage attachment;		
		in	0	
LPAB	$^{\mathtt{L}_{\mathtt{PA}}}_{\mathtt{B}}$	Basic prvload length component;		
	В	in	0	
LPASA	$^{\mathtt{L}}_{\mathtt{PA}_{\mathtt{SA}}}$	Payload aft spacing distance;		
	SA	in	0	
LPASF	$^{ extsf{L}}_{ extsf{PA}_{ extsf{SF}}}$	Payload forward spacing diatance;		
	'SF	in	0	

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext.	(Int.) Units	Model Type
		•		

None

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units		_
АРА	A _{PA}	Payload cross-sectional area; in 2	Eq.	2

はないない イン・クリント

ĺ,

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	
DSSITA	D _{SS_{ITA}}	Payload aft diameter for interstage attachmen in Eq. 3	it;
LPA	L _{PA}	Total payload length; in Eq. 1	
LSSITA	L _{SS_{ITA}}	Length of interstage required for the payload; in Eq. 4	

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

ND GEOMETRY	LPASF	
PAYLOAD GE	LPASA	
PAGM	LPAB	
PAYLODG	∓'	۲ ۰
	DESITA	
	DPAA	LSSITA

APA LPA 200.1

4

MODEL TYPE:

PAYLODW

(PAYLOaD Weight)

MODEL NAME:

PAWMl (Direct Input)

DESCRIPTION:

PAWMI (PAyload Weight Model number 1) is a simple payload weight model for which the payload weight is input directly by the program user.

Note that the payload weight does NOT normally include the weight of the shroud, payload adapter, etc.

PROCEDURE:

Prior to entering PAWM1, the substages have been sized and the model specified for the PAYLODG model type has evaluated the payload geometry.

PAWMI then defines the payload weight.

After leaving PAWMI, the interstages, stages, and propulsion system are sized. The model specified for the PAYSECW model types then uses the payload weight, together with the shroud weight, etc., to determine the payload section weight.

EQUATIONS:

Total payload weight.

$$W_{PA} = K_{WPA} W_{PAYLOD}$$
 (1)

Total non-expended payload weight component.

$$W_{PA_{NX}} = W_{PA}$$
 (2)

Total expended payload weight component.

$$W_{PA} = 0 \tag{3}$$

EQUATIONS (Cont.):

Expended (thrust producing) payload weight component.

$$W_{PA} = 0 (4)$$

Expended (non-thrust producing) payload weight component.

$$W_{\mathbf{PA}_{\mathbf{XI}}} = 0 \tag{5}$$

INPUT DATA INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWPA	K _{WPA}	Coefficient for WPA computation; N. D.	1
WPAYLOD	WPAYLOD	Payload weight input by user;	0

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units Model Type

None

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Eige variation of the second

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units		
WPA	$\mathbf{w}_{\mathbf{PA}}$	Total payload weight;	Eq.	1
WPANX	$\mathbf{w}_{\mathtt{PA}_{\mathtt{NX}}}$	Total non-expended payload weight co	mpor Eq.	
WPAX	$\mathbf{w}_{PA_{\mathbf{X}}}$	Total expended payload weight compo	nent; Eq.	3
WPAXI	W _{PA} XI	Expended (non-thrust producing) payl weight component;	oad Eq.	5
WPAXT	w _{PA} XT	Expended (thrust producing) payload weight component;	Eq.	4
		**	7.	

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

PAYLOAD WEIGHT WPAXT PAWA WPAXI ₽\$ PAYLODW WPANX WPAYLOD WPA KWPA

210.1

MODEL TYPE:

PROPUL (PROPULsion Characteristics)

MODEL NAME:

PCM1 (Constant Thrust, Single Engine)

DESCRIPTION:

PCM1 (Propulsion Characteristics Modei number 1) evaluates the thrust and weight flow breakdown for a single constant thrust solid rocket engine. The engine is comprised of the following subsystems:

Motor

Nozzle

In addition to the thrust derived from the propellent, thrust components associated with the following subsystem expended weight components are evaluated.

Internal insulation

Thrust vector control

Nozzle

PROCEDURE:

Prior to executing PCM1, the model specified for the IBPE RF model type has determined the propellent weight flow, burn time and specific impulse. The model specified for the NOZZLEG model type has determined the nozzle exit area and the models specified for the NOZZLEW and MOTORW model types have broken down the principle subsystem weight into expended components.

PCM1 is then executed and the expended subsystem weights are used to determine the inert and thrust producing weight flow components. These weight flow components are then used, together with the required specific impulses, to determine the vacuum nrust components. Finally, the vacuum thrust components are summed and the total engine vacuum thrust and sea-level thrust degradation are evaluated.

PROCEDURE (Cont.):

After PCMl is executed, the remaining substages are sized and the propulsion characteristics for each engine within the vehicle are evaluated. After the entire vehicle is sized, the PCMl output data is input to the applicable weight and propulsion model for the mission simulation. See REMARKS.

EQUATIONS:

Expended motor weight flow, excludes propellent.

$$\mathring{\mathbf{w}}_{\mathbf{MT}_{\mathbf{X}}} = \frac{\mathbf{w}_{\mathbf{MT}_{\mathbf{X}}}}{\mathbf{T}_{\mathbf{B}}} \tag{1}$$

Expended (thrust producing) motor weight flow component, excludes propellent.

$$\dot{\mathbf{W}}_{\mathbf{MT}_{\mathbf{XT}}} = \frac{\mathbf{W}_{\mathbf{MT}_{\mathbf{XT}}}}{\mathbf{T}_{\mathbf{B}}} \tag{2}$$

Expended (non-thrust producing) motor weight flow component.

$$\dot{\hat{W}}_{MT_{XI}} = \frac{\hat{W}_{MT_{XI}}}{T_{B}} \tag{3}$$

Expended nozzle weight flow.

$$\dot{\mathbf{w}}_{NZ_X} = \frac{\mathbf{w}_{NZ_X}}{\mathbf{T}_{B}} \tag{4}$$

Expended (thrust producing) nozzle weight flow component.

$$\mathring{W}_{NZ_{XT}} = \frac{W_{NZ_{XT}}}{T_{B}}$$
 (5)

Expended (non-thrust producing) nonzle weight flow component.

$$\dot{\mathbf{W}}_{\mathbf{N}\mathbf{Z}_{\mathbf{X}\mathbf{I}}} = \frac{\mathbf{W}_{\mathbf{N}\mathbf{Z}_{\mathbf{X}\mathbf{I}}}}{\mathbf{T}_{\mathbf{B}}} \tag{6}$$

EQUATIONS (Cont.):

Weight flow associated with expended (thrust producing) internal insulation.

$$\dot{\tilde{W}}_{IN_{XT}} = \frac{W_{IN_{XT}}}{T_B} \tag{7}$$

Weight flow associated with expended (thrust producing) thrust vector control system material.

$$\overset{\bullet}{W}_{TV_{XT}} = \frac{\overset{W}{TV_{XT}}}{T_{B}} \tag{8}$$

Thrust producing engine weight flow component. (Includes propellent);

$$\mathring{\mathbf{w}}_{\mathrm{EN}_{\mathrm{T}}} = \mathbf{K}_{\mathrm{DWENT}} (\mathbf{w}_{\mathrm{PP}} + \mathring{\mathbf{w}}_{\mathrm{MT}_{\mathrm{XT}}} + \mathring{\mathbf{w}}_{\mathrm{NZ}_{\mathrm{XT}}})$$
(9)

Inert (non-thrust producing) engine weight flow component,

$$W_{EN_{\underline{I}}} = K_{DWENI} (\mathring{W}_{MT_{X\underline{I}}} + \mathring{W}_{NZ_{X\underline{I}}})$$
 (10)

Total engine weight flow.

$$\dot{\mathbf{w}}_{\mathrm{EN}} = \mathbf{K}_{\mathrm{DWEN}} \left(\dot{\mathbf{w}}_{\mathrm{EN}_{\mathrm{T}}} + \dot{\mathbf{w}}_{\mathrm{EN}_{\mathrm{T}}} \right) \tag{11}$$

Vacuum thrust component associated with the propellent.

$$F_{V_{PP}} = K_{FVPP} I_{SP_{VD}} \mathring{W}_{PP}$$
 (12)

Vacuum thrust component associated with expended (thrust producing) internal insulation.

$$F_{V_{IN}} = K_{FVIN} I_{SP_{IN}} \dot{W}_{IN_{XT}}$$
(13)

EQUATIONS (Cont.):

Vacuum thrust component associated with expended (thrust producing) thrust vector control material.

$$F_{V_{TV}} = K_{FVTV} I_{SP_{TV}} \mathring{W}_{TV_{XT}}$$
 (14)

Vacuum thrust component associated with expended (thrust producing) nozzle material.

$$F_{V_{NZ}} = K_{FVNZ} I_{SP_{NZ}} \dot{W}_{NZ_{XT}}$$
 (15)

Engine vacuum thrust.

$$F_{V_{EN}} = K_{FVEN} (F_{V_{PP}} + F_{V_{IN}} + F_{V_{TV}} + F_{V_{NZ}})$$
 (16)

Engine thrust degradation due to atmospheric pressure.

$$\Delta F_{EN} = K_{DELFEN} C_1 A_{NZ_{EXT}}$$
 (17)

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CPC1	c_1	Constant for DELFEN computation. Corresponds to atmospheric sea-level pressure; lb/(in ²) 14.	1 695972
KDELFEN	K _{DELFEN}	Coefficient for DELFEN computation; N. D.	1
KDWEN	KDWEN	Coefficient for DWEN computation; N. D.	1

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KDWENI	K _{DWENI}	Coefficient for DWENI computation; N. D.	1
KDWENT	K _{DWENT}	Coefficient for DWENT computation; N. D.	1
KFVEN	K _{FVEN}	Coefficient for FVEN computation; N. D.	1
KFVIN	K _{FVIN}	Coefficient for FVIN computation; N. D.	1
KFVNZ	K _{FVNZ}	Coefficient for FVNZ computation; N. D.	1
KFVPP	K _{FVPP}	Coefficient for FVPP computation; N. D.	1
KFVTV	K _{FVTV}	Coefficient for FVTV computation; N. D.	1
ISPIN	1 _{SP_{IN}}	Specific impulse of expended (thrust p internal insulation material;	roducing)
		# ●C	0
ISPNZ	1 _{SP_{NZ}}	Specific impulse of expended (thrust pnonule material;	producing)
		80 C	0
ISPTV	I _{SP_{TV}}	Specific impulse of expended (thrust p thrust vector control material;	roducing)
		#0C	0

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
ANZEXT	A _{NZ} EXT	Nozzle exit area; in ²	NOZZLEG
DWPPMT	w _{PPMT}	Propellent weight flow;	
	IVI I	lb/sec	IBPERF
ISPVD	I _{SP_{VD}}	Vacuum delivered specific impul	se;
	or VD	sec	IBPERF
ТВРРМТ	$T_{\mathbf{B}}$	Propellent burn time;	
	Б	sec	IBPERF
WINXT	w_{IN}_{XT}	Expended (thrust producing) interinsulation weight component;	rnal
		16	INTINSW
WMTX	W MT $_{X}$	Total expended motor weight con	nponent;
	W X	1 b	MOTORW
WMTXI	$w_{MT_{XI}}$	Expended (non-thrust producing) weight component;	motor
		1ь	MOTORW
WMTXT	w MT $_{XT}$	Expended (thrust producing) moto component;	or weight
		1b	MOTORW
WNZX	w _{NZ} x	Total expended nozzle weight cor	nponent;
	x	lb	NOZZLEW
WNZXI	w _{NZXI}	Expended (non-thrust producing) weight component;	nozzle
		1b	NOZZLEW

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WNZXT	w _{NZ} xT	Expended (thrust producing) noz component;	zle weight
		lb	NOZZLEW
$\mathbf{w}_{\mathtt{TV}_{\mathbf{XT}}}$	$\mathbf{w}_{\mathbf{TV}_{\mathbf{XT}}}$	Expended (thrust producing) thr control weight component;	ust vector
		1b	TVCW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
DELFEN	ΔF _{EN}	Engine sea-level thrust degradation. DELFEN corresponds to DELF in the trajectory simulation models;	
		1b	Eq. 17
DWEN	W _{EN}	Total engine weight flow. Includes propellent, motor, and nozzle weight flow	
		lb/sec	Eq. 11
DWENI	$\overset{ullet}{w}_{\mathbf{EN_{I}}}$	Inert (non-thrust producing) engine weight flow component (includes motor and nozzle);	
		lb/sec	Eq. 10
DWENT	[®] EN _T	Thrust producing engine weight flow component. (Includes propellent, motor, and nozzle.) DWENT corresponds to DWVAC in the trajectory simulation models;	
		1b/ se c	Eq. 9
DWINXT	$\overset{ullet}{w}_{\mathtt{IN}_{\mathbf{X}\mathtt{T}}}$	Motor weight flow associated with e (thrust producing) internal insulatio	xpended n material;
		lb/sec	Eq. 7

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	
DWMTX	$\mathbf{\hat{w}_{MT}}_{\mathbf{X}}$	Expended motor weight flow. Exclude propellent and nozzle;	e s
		lb/sec	Eq. 1
DWMTXI	w _{MT} XI	Expended (non-thrust producing) mot flow component, excludes nozzle;	or weight
		lb/sec	Eq. 3
DWMTXT	w _{MTXT}	Expended (thrust producing) motor w flow component. Excludes propellen nozzle;	
		lb/sec	Eq. 2
DWNZX	w _{NZ}	Expended nozzle weight flow;	
	X	lb/sec	Eq. 4
DWNZXI	w _{NZXI}	Expended (non-thrust producing) noz: flow component;	zle weight
		lb/sec	Eq. 6
DWNZXT	w _{NZXT}	Expended (thrust producing) nozzle w flow component;	eight
		lb/sec	Eq. 5
DWTVXT	* _{TV} XT	Motor weight flow associated with ex (thrust producing) thrust vector continuatorial;	
		lb/sec	Eq. 8
FVEN	FVEN	Total engine vacuum thrust, FVEN corresponds to FVAC in the trajector simulation models;	ry
		1b	Eq. 16
FVIN	F _V IN	Vacuum thrust component associated expended (thrust producing) internal insulation material;	with the
		1b	Eq. 13

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	
FVNZ	F _{VNZ}	Vacuum thrust component associate expended (thrust producing) nozzle Note that this is not associated with half angle divergence loss;	material.
		1b	Eq. 15
FVPP	$^{\mathtt{F}}V_{\mathtt{PP}}$	Vacuum thrust component associat propellent;	ed with the
		1b	
FVTV	$\mathbf{F_{V}}_{\mathrm{TV}}$	Vacuum thrust component associat expended (thrust producing) thrust control system material;	
		1b	Eq. 14

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

PAYSECG

220.1

MODEL TYPE:

PAYSECG (PAYload SECtion Geometry)

MODEL NAME:

PLGM1 (Single Payload, No Shroud Geometry)

DESCRIPTION:

PLGMI (PayLoad section Geometry Model number 1) evaluates the geometry for a simple payload section comprised of a single payload without shroud geometry. Although provision is made for defining a payload section length bias, Intra-Model Input is not normally required for this model. See figure 1 and the figures associated with the payload model utilized (PAYLODG model type) for an appreciation of the payload section geometry.

Note that this model is not applicable if a shroud geometry model (see SHROUDG model type) is utilized. However, this model may be used if a non-geometry dependent shroud weight model (see SHROUDW model type) is used.

PROCEDURE:

Prior to entering PLGM1, all vehicle subsystems within the propulsion system have been sized and the model specified for the PAYLODG model type has determined the payload geometry.

PLGM1 then uses the payload geometry to determine the payload section geometry.

After PLGMI is executed, the payload section weight will be determined. The total vehicle geometry is then evaluated using the payload section geometry and propulsion system geometry.

EQUATIONS:

Payload section length. Figure 1

$$L_{PL} = L_{PA} + L_{PL_{SF}}$$
 (1)

PAYSECG

PAYLOAD SECTION GEOMETRY

PLGM1

EQUATIONS (Cont.):

Payload section diameter. Figure 1

(2)

Payload section cross-sectional area.

$$A_{PL} = \left(\frac{\pi}{4}\right) D_{PL}^2$$

(3)

Fig. 220,1-1 Payload Section Geometry

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnernonic	Symbol	Description; Ext. (Int.) Units Prese	t
LPLSF	L _{PL} SF	Payload section forward spacing distance;	
	Sr	in Fig. 1 0	

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description	Ext. (Int.) Units	Model Type
DPAA	$^{\mathrm{D}}_{\mathrm{PA}_{\mathbf{A}}}$	Payload aft	diameter;	PAYLODG
LPA	L _{PA}	Total payload length;		
		in	Fig. 1	PAYLODG

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description: Ext. (Int.) Units
APL	A _{PL}	Payload section cross-sectional area; in Eq. 3
DPL	D _{PL}	Payload section disineter at interstage attachment;
		in Eq. 2
LPL	^L PL	Payload section length;
		in Eq. 1

THE PROPERTY OF THE PROPERTY O

おれんか こうこ

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

PAYLOAD SECTION GEOMETRY PLCPO LPLSP PAYSECC H 전

Ķ

PAYSECW

PAYLOAD SECTION WEIGHT

PLWM1

230.1

Ĺ

MODEL TYPE:

PAYSECW (PAYload SECtion Weight)

MODEL NAME:

PLWM1 (Single Payload, no Shroud)

DESCRIPTION:

PLWM1 (PayLoad section Weight Model number 1) is a weight synthesis model which evaluates the weight breakdown for a simple payload section comprised of a single payload without a shroud.

PROCEDURE:

Prior to entering PLWM1, all vehicle subsystems within the propulsion system have been sized and the model specified for the PAYLODW model type has evaluated the payload weight breakdown.

PLWMI uses the payload weight breakdown to evaluate the psyload section weight breakdown.

After PLWM1 is executed, the payload section weight breakdown, together with the propulsion system weight breakdown, will be utilized by the model specified for the VEHW model type to determine vehicle weight quantities.

EQUATIONS:

Total payload section weight.

$$W_{PL} = K_{WPL} W_{PA}$$
 (1)

Total non-expended payload section weight component.

$$W_{PL_{NX}} = K_{WPLNX} W_{PA_{NX}}$$
 (2)

Total expended payload section weight component.

$$W_{PL_{X}} = K_{WPLX} W_{PA_{X}}$$
(3)

EQUATIONS (Cont.):

Expended (non-thrust producing) payload section weight component.

$$^{\mathsf{W}}_{\mathsf{PL}_{\mathsf{X}\mathsf{I}}} = ^{\mathsf{K}}_{\mathsf{WPL}\mathsf{X}\mathsf{I}} \quad ^{\mathsf{W}}_{\mathsf{PA}_{\mathsf{X}\mathsf{I}}} \tag{4}$$

Expended (thrust producing) payload section weight component.

$$W_{PL_{XT}} = K_{WPLXT} W_{PA_{XT}}$$
 (5)

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWPL	K _{WPL}	Coefficient for WPL computation; N. D.	1
KWPLNX	KWPLNX	Coefficient for WPLNX computation; N. D.	1
KWPLX	KWPLX	Coefficient for WPLX computation; N. D.	1
KWPLXI	KWPLXI	Coefficient for WPLXI computation; N. D.	1
KWPLXT	K _{WPLXT}	Coefficient for WPLXT computation; N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

一大のないという ちゅうかん かいかいいいいかんかん かいしょうしゃ

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WPA	W _{PA}	Total payload weight;	
		1b	PAYLODW
WPANX	$^{W}_{PA}_{NX}$	Total non-expended payload wei	ght component;
	NX	1ь	PAYLODW
WPAX	w_{PA_X}	Total expended payload weight c	omponent;
	2 · · X	1ь	PAYLODW
WPAXI	$\mathbf{w}_{\mathbf{PA}_{\mathbf{XI}}}$	Expended (non-thrust producing weight component) payload
		1ь	PAYLODW
WPAXT	$\mathbf{w}_{\mathbf{PA}_{\mathbf{XT}}}$	Expended (thrust producing) pay component;	load weight
		1ь	PAYLODW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Desamiption; Ext. (Int.) Units		_
WPL	W _{PL}	Total payload section weight;	Eq.	1
WPLNX	w _{PL_{NX}}	Total non-expended payload section we component;	eight	
		1ь	Eq.	2
WPLX	$^{W}_{PL_{X}}$	Total expended payload section weight component;	:	
		1ь	Eq.	3

OUTPUT DATA (Cont.):

Mnamonic	Symbol	Description; Ext. (Int.) Units	···
WPLXI	w _{PL} XI	Expended (non-thrust producing) section weight component;	payload
		1b	Eq. 4
WPLXT	W _{PLXT}	Expended (thrust producing) payl- weight component;	oad section
		16	Eq. 5

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on withut models for the details).

PAYLOAD SECTION WEIGHT	WPLXI	KWPLXT
PLWMI	WPLXI	KWPLXI
PAYSECW	~ ↓	⇔
	WPLX	KWPLX
	WPLNX	KWPLNX
	HFL	KWPL

230.2

T,

1

MODEL TYPE:

PAYSECW (PAYload SECtion Weight)

MODEL NAME:

PLWM2 (Single payload, shroud)

DESCRIPTION:

PLWM2 (PayLoad section Weight Model number 2) is a weight synthesis model which evaluate the payload section weight breakdown. The model is applicable for a payload section comprised of the following subsystem:

Payload

Shroud

PROCEDURE:

Prior to entering PLWM2, all vehicle subsystems within the propulsion system have been sized and the models specified for the PAYLODW and SHROUDW model types have evaluated the payload and shroud weight breakdown.

PLWM2 uses these payload and shroud weights to evaluate the payload section weight breakdown.

After PLWM2 is executed, the payload section weight breakdown, together with the propulsion system weight breakdown, will be utilized by the model specified for the VEHW model type to determine vehicle weight quantities.

EQUATIONS:

Total payload section weight.

$$W_{PL} = K_{WPL} \left(W_{PA} + W_{SH} \right) \tag{1}$$

Total non-expended payload section weight component.

$$W_{PL_{NX}} = K_{WPLNX}(W_{PA_{NX}} + W_{SH_{NX}})$$
 (2)

EQUATIONS (Cont.):

Total expended payload section weight component.

$$W_{PL_{X}} = K_{WPLX} \left(W_{PA_{X}} + W_{JH_{X}} \right)$$
 (3)

Expended (non-thrust producing) payload section weight component.

$$W_{PL_{XI}} = K_{WPLXI}(W_{PA_{XI}} + W_{SH_{XI}})$$
(4)

Expended (thrust producing) payload section weight component.

$$W_{PL_{XT}} = K_{WPLXT}(W_{PA_{XT}} + W_{SH_{XT}})$$
 (5)

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWPL	K _{WPL}	Coefficient for WPL computation; N. D.	1
KWPLNX	KWPLNX	Coefficient for WPLNX computation; N. D.	1
KWPLX	Kwplx	Coefficient for WPLX computation; N. D.	1
KWPLXI	KWPLXI	Coefficient for WPLXI computation; N. D.	1
KWPLXT	KWPLXT	Coefficient for WPLXT computation; N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WPA	W _{PA} .	Total payload weight;	PAYLODW
WPANX	w _{P/NX}	Total non-expended payload weig	ht component; PAYLODW
WPAX	w _{PA} X	Total expended payload weight co	omponent; PAYLODW
WPAXI	w _{PAXI}	Expended (non-thrust producing) weight component;	payload
		lb	PAYLODW
WPAXT	$\mathbf{w}_{\mathtt{PA}_{\mathtt{XT}}}$	Expended (thrust producing) payl component;	oad weight
		lb	PAYLODW
WSH	w _{SH}	Total shroud weight;	
	01 2	1b	SHROUDW
WSHNX	w _{SH} NX	Total non-expended shroud weigh	it component;
	NX	1b	SHROUDW
WSHX	$^{ m w}_{ m SH}_{ m X}$	Total expended shroud weight co	mponent;
	X	1b	SHROUDW
WSHXI	w SH $_{ ext{XI}}$	Expended (non-thrust producing) weight component;	shroud
		16	SHROUDW
WSHXT	$w_{SH_{XT}}$	Expended (thrust producing) shro	oud weight
		lb	SHROUDW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
WPL	w_{PL}	Total payload section weight. Includes payload and shroud;	
		1b E	g. 1
WPLNX	w _{PL} NX	Total non-expended payload section weig component. Includes payload and shrough	
		lb Ed	q. 2
WPLX	w_{PL_X}	Total expended payload section weight component. Includes payload and shroud;	
		lb E	q. 3
WPLXI	w _{PL} XI	Expended (non-thrust producing) payload section weight component. Includes payland shroud;	
		15 E	q. 4
WPLXT	w _{PL} XT	Expended (thrust producing) payload sective weight component. Includes payload and shroud;	
		1b Ed	q. 5

一大のことである こうしゅうしゅうしゅう

ξ,

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

PAYLOAD SECTION WEIGHT	WPLXT	KWPLXT
PLWP	WPLXI	KWPLXI
PAYSECW	‡	şı
	WPLX	KWPLX
	WPLNX	KWPLNX
	WFL	KWIT

240, 1

MODEL TYPE: PROPELW (PROPELlent Weight)

MODEL NAME: PPWM1 (Direct input of propellent weights)

DESCRIPTION:

PPWMI (ProPellent Weight Model number 1) determines the basic propellent properties (weight, volume, density) of a solid rocket motor for which the propellent weight is specified directly.

EQUATIONS:

(

Propellent volume.

$$v_{PP_{MT}} = \frac{w_{PP_{MT}}}{\rho_{PP_{MT}}} \tag{1}$$

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
RНОРРМТ	$^{ ho}_{ ext{PP}_{ ext{MT}}}$	Propellent density; 1b/in ³	0
WPPMT	$w_{PP_{MT}}$	Propellent weight; 1b	0

INPU'I DATA, INTER-MODEL:

None

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units
VPPMT	$v_{PP_{MT}}$	Propellent volume;

PRINT BLOCK KEY:

3"

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

PROFELLENT WEIGHT PROPERU VPPMT RHOPPME

WPFM

PROSYSG

PROPULSION SYSTEM GEOMETRY

PSGM1

250.1

The contract of the contract o

£ ,

MODEL TYPE:

PROSYSG (PROpulsion SYStem Geometry)

MODEL NAME:

PSGM1 (Sequential Stages)

DESCRIPTION:

PSGM1 (Propulsion System Geometry Model number 1) evaluates the geometry for a propulsion system comprised of sequential stages. See figure 1 for an illustration of the geometry associated with a typical propulsion system.

PROCEDURE:

Prior to entering PSGM1, all of the stages have been sized and the models specified for the STAGEG model types have determined the stage lengths for all stages comprising this propulsion system.

PSGM1 then sums these stage lengths and determines the total propulsion system length.

After PSGM1 has determined the propulsion system geometry, the propulsion system weight is evaluated. After all of the propulsion systems have been sized, the model specified for the VEHG model type will use the propulsion system geometry, together with the payload section geometry, to determine the total vehicle geometry. After the total vehicle geometry is evaluated, a final pass is made through all of the models and any remaining quantities dependent upon the total propulsion system length are evaluated.

EQUATIONS:

Total propulsion system length.

$$L_{PS} = \sum L_{SG}$$
 (1)

Where the summation includes all stages within the propulsion system.

Fig. 250.1-1 Typical Three Stage Boost Vehicle

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic Symbol Description; Ext. (Int.) Units Preset

None

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
LSG	L _{SG}	Stage length for each stage comprising th propulsion system;	
		in	STAGEG

OUTPUT DATA

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
LPS	L _{PS}	Total propulsion system length;	
		ft	Eq. 1

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

PSGM

PROSYSG *1

PROPULSION SYSTEM GEOMETRY

LPS

PROSYSW

PROPULSION SYSTEM WEIGHT

PSWM1

260.1

MODEL TYPE:

PROSYSW (PROpulsion SYStem Weight)

MODEL NAME:

PSWMl (Weight Synthesis)

DESCRIPTION:

PSWM1 (Propulsion System Weight Model number 1) is a weight synthesis model which evaluates the propulsion system weights. The propulsion system is comprised of the following subsystems.

Stages

PROCEDURE:

Prior to entering PSWM1, the models specified for the STAGEW model type have evaluated the stage weights and mass fractions which are not dependent upon the propulsion system or vehicle weights.

PSWM1 then uses the pertinent stage weight to determine the propulsion system weight quantities.

After leaving PSWM1, the total vehicle geometry and weights are evaluated. After the vehicle has been sized, the model specified for the STAGEW model type (and other major subsystem model types if required) is reentered and mass fractions dependent upon propulsion system quantities are evaluated.

EQUATIONS:

In the equations below, the summation includes all stages within the propulsion system.

Total propellent weight associated with the propulsion system.

$$W_{PP_{PS}} = \sum W_{PP_{SG}} \tag{1}$$

Total propulsion system weight.

$$W_{PS} = \sum W_{SG}$$
 (2)

EQUATIONS (Cont.):

Total non-expended propulsion system weight component.

$$W_{PS_{NX}} = \sum W_{SG_{NX}}$$
 (3)

Total expended propulsion system weight component.

$$w_{PS_X} = \sum w_{SG_X}$$
 (4)

Expended (non-thrust producing) propulsion system weight component.

$$w_{PS_{XI}} = \sum w_{SG_{XI}}$$
 (5)

Expended (thrust producing) propulsion system weight component.

$$W_{PS_{XT}} = \sum W_{SG_{XT}}$$
 (6)

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. It a value is not input, the preset value is used.

Mnemonic Symbol Description; Ext. (Int.) Units Preset

None

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WPPSG	$w_{\mathtt{PP}_{\mathtt{SG}}}$	Propellent weight for each stage this propulsion system;	comprising
		1b .	STAGEW

()

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
wsG	w _{sg}	Total stage weight for each stage comprising this propulsion system;	
		1b	STAGEW
WSGNX	WSGNX WSGNX Total non-expended stage v		t component;
	NX	1ь	STAGEW
WSGX	$^{w}_{sG_{X}}$	C Total expended stage weight cor	
	X	1ь	STAGEW
WSGXI	$^{w}sG_{XI}$	Expended (non-thrust producing component;) stage weight
		1ь	STAGEW
WSGXT	$w_{SG_{\mathbf{XT}}}$	Expended (thrust producing) sta component;	ge weight
		1ь	STAGEW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units		
WPPPS	w _{PPPS}	Total propellent weight associated with the propulsion system. Includes propellent weights of all stages comprising the propulsion system;		
		1b	Eq. 1	
wps w _{ps}		Total propulsion system weigh propellent, non-expended and tweight components for all stag the propulsion system;	total expended	
		1ъ	Eq. 2	

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Ur	nits	
WPSNX	w _{PS} NX	component. Includes non-	non-expended propulsion system weight conent. Includes non-expended weight conents for all stages comprising the ulsion system;	
		lb	Eq. 3	
WPSX	w _{PS} x	Total expended propulsion system weight component. Includes expended weight components for all stages comprising the propulsion system. Excludes propellent weight;		
		1ь	Eq. 4	
WPSXI	w _{PS} XI	Expended (non-thrust producing) propulsion system weight component. Includes non-thrust producing weight components for all stages comprising the propulsion system;		
		1ь	Eq. 5	
wpsxt w _{ps} xt		Expended (thrust producin weight component. Includ weight components for all the propulsion system. E weights;	es thrust producing stages comprising	
		1ь	Eq. 6	

()

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of .he line number will be printed. By input, any of the lines given below may be purited or suppressed (see the section on output models for the details). PROPULSION SYSTEM WEIGHT WPSXT PSWMD PROSYSW *1 WESK WPSINX

35

270.1

MODEL TYPE:

STAGE (STAGE Geometry)

MODEL NAME:

SGGMl (Single Sequential Stage and Interstage)

DESCRIPTION:

SGGMl (Stage Geometry Model number 1) evaluates the geometry for a stage comprised of a single substage and interstage as illustrated in figure 1. By inputting coefficients and bias terms, considerable flexibility is provided for specifying the stage length, diameter, and cross-sectional area. However, since the Intra-Model Input Data is preset to the nominal stage configuration, user input data is not normally required for this model.

PROCEDURE:

Prior to entering SGGM1, the models specified for the SUBSTGG and INTSTGG model types have determined the final geometry for the substage and interstage.

SGGM1 (first entrance) then uses these primary component diameters and lengths to determine the overall stage geometry.

After leaving SGGM1, the weight for this particular stage is evaulated. After all the stages are sized, the models specified for the PROSYSG and VEHG model types will be executed and, utilizing the stage geometry together with their individual requirements, the overall propulsion system and vehicle is sized.

SGGM1 is then entered for the second time and stage fractions dependent upon propulsion system and vehicle quantities are evaluated.

EQUATIONS (FIRST ENTRANCE):

Stage length. Fig. 1

$$L_{SG} = K_{LSG1} L_{SS} + K_{LSG2} L_{IT_S} + K_{LSG3}$$
 (1)

EQUATIONS (FIRST ENTRANCE) (Cont.):

Stage diameter.

$$D_{SG} = K_{DSG1} D_{SS} + K_{DSG2} D_{ITA} + K_{DSG3} D_{ITF} + K_{DSG4}$$
 (2)

Stage cross-sectional area.

$$A_{SG} = K_{ASG1} A_{SS} + K_{ASG2} A_{ITA} + K_{ASG3} A_{ITF} + K_{ASG4}$$
(3)

Stage length to stage diameter ratio.

$$R_{LDSG} = \frac{L_{SG}}{D_{SG}}$$
 (4)

EQUATIONS (SECOND ENTRANCE):

Propulsion system length to stage diameter ratio.

$$R_{LDPSSG} = \frac{L_{PS}}{D_{SG}}$$
 (5)

Vehicle length to stage diameter ratio.

$$R_{LDVHSG} = \frac{L_{VH}}{D_{SG}}$$
 (6)

0

Fig. 270.1-1 Stage Geometry

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KASG1	K _{ASG1}	Coefficient for stage area computation N. D.	n; 1
KASG2	K _{ASG2}	Coefficient for stage area computation N. D.	n; 0
KASG3	K _{ASG3}	Coefficient for stage area computation N. D.	n; 0
KASG4	KASG4	Bias for stage area computation; in 2	0
KDSG1	KDSG1	Coefficient for stage diameter comput N. D.	ation;
KDSG2	K _{DSG2}	Coefficient for stage diameter comput N. D.	ation; 0
KDSG3	K _{DSG3}	Coefficient for stage diameter comput N. D.	ation;
KDSG4	K _{DSG4}	Bias for stage diameter computation; in	0
KLSG1	K _{LSG1}	Coefficient for stage length computati	on; 1
KLSG2	K _{LSG2}	Coefficient for stage length computati	on; 1
KLSG3	K _{LSG3}	Bias for stage length computation; in	0

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
AITA	A _{IT} A	Cross-sectional area, interstage in ²	aft base; INTSTGG
AITF	$A_{I\Gamma_{\mathbf{F}}}$	Cross-sectional area, interstage in ²	fore base; INTSTGG
ASS	A _{SS}	Cross-sectional area, substage; in ²	SUBSTGG
DITA	D _{IT} A	Diameter, interstage aft base; in	INTSTGG
DITF	$^{\mathrm{D}}_{\mathrm{IT}}{}_{\mathrm{F}}$	Diameter, interstage fore base; in	INTSTGG
DSS	D _{SS}	Outside diameter, substage; in	SUBSTGG
LITS	LITS	Spacing distance associated with interstage;	the
		in Fig. 1	INTSTGG
LPS	L _{PS}	Total propulsion system length; in	PPOSYSG
LSS	L _{SS}	Total substage length; in Fig. 1	SUBSTGG
LVH	L _{VH}	Total vehicle length;	VEHG

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units		
ASG	A _{SG}	Stage cross-sectional area; in 2	Eq. 3	
DSG	D _{SG}	Stage diameter; in	Eq. 2	
LSG	L _{SG}	Stage length; in Fig. 1	Eq. l	
RLDPSSG	^R LDPSSG	Propulsion system length to stage diaratio; N. D.	meter Eq. 5	
RLDSG	RLDSG	Stage length to stage diameter ratio; N. D.	Eq. 4	
RLDVHSG	RLDVHSG	Vehicle length to stage diameter ratio N. D.	e; Eq. 6	

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

ETRY	KASG4	KLS72	
STACE GEOMETRY		KLSC1	RLDVHSG
SGGM	KASG2	75SOX	RLDSG
STAGEC	%	Şı	<u>۴</u>
	KASG1	KDSG3	RLDPSSG
	550	KDSC2	1.56
	ASG	KDSC1	KLS63

280.1

MODEL TYPE:

STAGEW (STAGE Weight)

MODEL NAME:

SGWMl (Single substage and interstage)

DESCRIPTION:

SGWM1 (StaGe Weight Model number 1) is a weight synthesis model which evaluates the stage weight breakdown and stage mass fractions for a stage having a single substage and interstage. The stage weight is comprised of the following subsystems:

Substage

Interstage

PROCEDURE:

Prior to entering SGWM1, the models specified by the SUBSTGW and INTSTGW model types have evaluated the substage and interstage weights. In addition to evaluating subcomponent weights peculiar to their particular requirements, they have defined a set of component weights in terms of expended or non-expended attributes.

Upon the first entrance to SGWM1, these expended and non expended, substage and interstage, weight components are used in determining the stage weight breakdown. In addition, mass fractions which are not dependent upon propulsion system or vehicle quantities are evaluated.

The remainder of the stages are then sized and the models specified for the PROSYSW and VEHW model types will determine the propulsion system and vehicle weights.

After the entire vehicle has been sized, a second entrance is made to SGWM1 and the stage mass fractions which are dependent upon propulsion system and vehicle quantities are evaluated.

EQUATIONS (FIRST ENTRANCE):

Weight of propellent associated with this stage.

$$W_{PP_{SG}} = W_{PP_{SS}} \tag{1}$$

Total stage weight.

$$W_{SG} = K_{WSG} (W_{SS} + W_{IT})$$
 (2)

Total non-expended stage weight component.

$$W_{SG_{NX}} = K_{WSGNX} \left(W_{SS_{NX}} + W_{IT_{NX}} \right)$$
(3)

Total expended stage weight component.

$$W_{SG_X} = K_{WSGX} (W_{SS_X} + W_{IT_X})$$
 (4)

Expended (thrust producing) stage weight component.

$$W_{SG_{XT}} = K_{WSGXT} (W_{SS_{XT}} + W_{IT_{XT}})$$
(5)

Expended (non-thrust producing) stage weight component.

$$w_{SG_{XI}} = \kappa_{WSGXI} (w_{SS_{XI}} + w_{IT_{XI}})$$
(6)

Total weight of stage expendables.

$$W_{SG_{XX}} = K_{WSGXX} (W_{PP_{SG}} + W_{SG_{X}})$$
 (7)

Total stage expended inert weight flow.

$$\mathring{\mathbf{w}}_{\mathbf{SG}_{\mathbf{I}}} = \mathbf{K}_{\mathbf{DWSGI}} \mathring{\mathbf{w}}_{\mathbf{EN}_{\mathbf{I}}}$$
(8)

Stage propellent neass fraction.

$$K_{SG_{PMF}} = \frac{W_{PP_{SG}}}{W_{SG}}$$
 (9)

į,

ţ

EQUATIONS (FIRST ENTRANCE)(Cont.):

Stage expended mass fraction.

$$K_{SG_{XMF}} = \frac{W_{SG_X}}{W_{SG}}$$
 (10)

Stage structure mass fraction.

$$K_{SG_{SMF}} = \frac{W_{SG_{NX}}}{W_{SG}}$$
 (11)

EQUATIONS (SECOND ENTRANCE):

Stage weight proportion

$$R_{WSGPS} = \frac{W_{SG}}{W_{PS}}$$
 (12)

Stage propellent weight proportion.

$$P_{WPSGPS} = \frac{W_{PP}_{SG}}{W_{PP}_{PS}}$$
 (13)

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KDWSGI	K _{DWSGI}	Coefficient for DWSGI computation; N. D.	-1
кwsg	KwsG	Proportionality factor for total stage N. D.	weight; 1
KWSGNX	K _{WSGNX}	Proportionality factor for non-expended a weight component;	
		N. D.	1

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description: Ext. (Int.) Units	Preset
KWSGX	Kwsgx	Proportionality factor for total ex weight component;	pended stage
		N. D.	1
KWSGXI	Kwsgxi	Proportionality factor for expended (non-thrust producing) stage weight component;	
		N. D.	1
KWSGXT	^K wsgxt	Proportionality factor for expende producing) stage weight componen	
		N. D.	1
KWSGXX	Kwsgxx	Coefficient for WSGXX computation	on;
	WOOAA	N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
DWENI	$^{\bullet}_{\mathrm{EN_{I}}}$	Inert engine weight flow; 1b	PROPUL
WIT	W _{IT}	Total interstage weight; 1b	INTSTGW
WITNX	w_{IT}_{NX}	Total non-expended interstage w component;	veight
		1ь	INTSTGW
WITX	w _{IT}	Total expended interstage weigh	t component; INTSTGW

Ü

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WITXI	$\mathbf{w_{IT}_{XI}}$	Expended (non-thrust producing) is weight component;	interstage
		1ь	INTSTGW
WITXT	$\mathbf{w_{IT}_{XT}}$	Expended (thrust producing) inter weight component;	stage
		1ъ	INTSTGW
WPPPS	W _{PP} PS	Weight of propellent associated w propulsion system;	ith the
		1ь	PROSYSW
WPPSS	w _{PPss}	Weight of propellent associated w substage;	ith the
		1ь	SUBSTGW
WPS	w _{PS}	Total propulsion system weight;	
		1ь	PROSYSW
wss	w _{ss}	Total substage weight. Includes	propellent;
		1b	SUBSTGW
WSSMX	^w ss _{nx}	Total non-expended substage weig	ght component;
	NX	1b	SUBSTGW
WSSX	w _{ss} x	Total expended substage weight c does not include propellent;	omponent,
		1b	SUBSTGW
WSSXI	w _{ss} xi	Expended (non-thrust producing) weight component;	substage
		1ь	SUBSTGW
WSSXT	w_{SS}_{XT}	Expended (thrust producing) subscomponent, does not include pro	
		1b	SUBSTGW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
DWSGI	[•] sg _I	Total stage expended inert weight flo negative value indicates weight loss is stage (see KDWSGI). DWSGI correst DWINERT in the trajectory simulation	rom the ponds to n models;
		1b/sec	Eq. 8
KSGPMF	$\kappa_{SG_{PMF}}$	Stage propellent mass fraction. Rati propellent weight to stage weight;	o of
		N. D.	Eq. 9
KSGSMF	$^{\mathrm{K}}$ SG $_{\mathrm{SMF}}$	Stage structure mass fraction. Ratio expended stage weight to total stage w	
		N. D.	Eq. 11
KSGXMF	K _{SG} XMF	Stage expended mass fraction. Ratio of expended stage weight (excluding propellent) to total stage weight;	
		N. D.	Eq. 10
RWSGPS	Rwsgps	Stage weight proportion. Ratio of state to propulsion system weight;	age weight
		N. D.	12
R W PSG PS	RWPSGPS	Stage propellent weight proportion. propellent weight associated with the the propellent weight associated with propulsion system;	stage to
		N. D.	Eq. 13
W.PPSG	$^{w}{}_{PP}{}_{SG}$	Weight of propellent associated with stage;	this
		1ь	Eq. 1
wsg	^W SG	Total stage weight. Includes substaginterstage;	e and
		1ь	Eq. 2

0

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	
WSGNX	w _{SG_{NX}}	Total non-expended stage weight component. Includes substage and interstage. WSGNX corresponds to WTSTS in the trajectory simulation models;	
		1ь	Eq. 3
WSGX	^w sG _X	Total expended stage weight comportant includes substage and interstage. include propellent;	nent. Does not
		1b	Eq. 4
WSGXI	W sg $_{XI}$	Expended (non-thrust producing) stage weight component. Includes substage and interstage	
		1b	Eq. 6
WSGXT	w _{SG_{XT}}	Expended (thrust producing) stage of component. Includes substage and Does not include propellent;	
		1b	Eq. 5
WSGXX	w _{sg} xx	Total weight of stage expendables. propellent, expended thrust produc expended non-thrust producing stag components. WSGXX corresponds in the trajectory simulation models	ing, and e weight to WTANK
		1b	Eq. 7

PRINT BLCCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

WPPSG KWSGXX KWPSGPS
STAGE WEIGHT WSGXT KWSGXT KDWSGI
SGWMI WSGXI KWSGXI DWSGI
STAGEW *1 *2 *3
WSGX KWSGX KSGXMF
WSGNX KWSGNX KSGSMF
WSG KWSG KSGPMP

290.1

MODEL TYPE:

SHROUDW (SHROUD Weight)

MODEL NAME:

SHWMl (Direct Input)

DESCRIPTION:

SHWM1 (SHroud Weight Model number 1) is a simple non-geometry dependent shroud weight model for which the shroud weight is input directly by the program user. It should be noted that shroud simulations will normally require a shroud weight model but not a shroud geometry model.

See the PAYSECW model type for payload section weight models which are applicable if this shroud weight model is used.

PROCEDURE:

Prior to executing SHWM1, all vehicle subsystems within the propulsion system have been sized and the model specified for the PAYLODW model type has evaluated the payload weight breakdown.

SHWM1 is then executed and the shroud weight is evaluated.

After SHWMl is executed, the model specified for the PAYSECW model type will use the payload and shroud weights to evaluate the payload section weight breakdown.

EQUATIONS:

Total shroud weight.

(1)

Total non-expended shroud weight component.

$$W_{SH_{NX}} = W_{SH}$$

(2)

EQUATIONS (Cont.):

Total expended shroud weight component.

$$W_{SH_X} = 0 (3)$$

Expended (non-thrust producing) shroud weight component.

$$W_{SH_{XI}} = 0 \tag{4}$$

Expended (thrust producing) shroud weight component.

$$W_{SH_{XT}} = 0 (5)$$

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWSH	K _{WSH}	Coefficient for WSH computation; N. D.	1
WSHROUD	W _{SHROUD}	Shroud weight input by user; 1b	0

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units Model Type

None

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	5-mbol	Description; Ext. (Int.) Units		_
WSH	^W SH	Total shroud weight; Ib	Eq.	1
WSHNX	w _{SH_{NX}}	Total non-expended shroud weight could	mpon Eq.	
WSHX	w _{sH} x	Total expended shroud weight componed to the componed by the componed to the c	ent; Eq.	3
WSHXI	w _{SH_{XI}}	Expended (non-thrust producing) shroweight component; 1b	oud Eq.	4
wshxt	w_{SH}_{XT}	Expended (thrust producing) shroud w component;	eight	:
		1b	Eq.	5

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

SHROUD WEIGHT WSHXT	
SHWML	
SHROUDW *1	ş
MSHX	
WSHINK	WSHROUD
WSH	KWSH

300.1

£ ;

MODEL TYPE:

SUBSTGG (SUBSTaGe Geometry)

MODEL NAME:

SSGM1 (Single Solid Rocket Motor)

DESCRIPTION:

SSGM1 (SubStage Geometry Model number 1) evaluates the geometry of a complete solid rocket motor substage, including the motor case, protruding nozzle and spacing required ahead of the forward closure for the igniter attachment, thrust termination, etc. Since this is the final geometry model executed in the substage geometry design, substage requirements for interstage design are also evaluated. See figure 1.

PROCEDURE:

Prior to entering SSGM1, the models specified for the CASEG, NOZZLEG and MOTORG model types have determined the final geometry for the case, nozzle and basic motor.

SSGM1 then uses these primary component diameters and lengths to determine the overall substage geometry, including interstage requirements.

After leaving SSGM1, the weight and propulsion models for this particular substage are sized. After all substages are sized, the interstage models will be executed and, utilizing the substage geometry data together with satisfying their individual requirements, the interstages are sized.

EQUATIONS:

Intersubstage spacing distance.

$$L_{SS_S} = K_{LS1} + K_{LS2} D_{CS_O} + L_{TT_{MT}}$$
 (1)

Total substage length.

$$L_{SS} = L_{SS_S} + L_{MT} + L_{NZ_P}$$
 (2)

EQUATIONS (Cont.):

Substage outside diameter.

$$D_{SS} = K_{D1} + K_{D2} D_{MT}$$
 (3)

Substage cross sectional area.

$$A_{SS} = \left(\frac{\pi}{4}\right) D_{SS}^2 \tag{4}$$

Ratio, total substage length to case diameter.

$$R_{LDSSCS} = \frac{L_{SS}}{D_{CS_O}}$$
 (5)

Substage diameter for forward interstage attachment.

$$D_{SS_{ITF}} = D_{SS}$$
 (6)

Substage diameter for aft interstage attachment.

$$D_{SS_{ITA}} = D_{SS}$$
 (7)

Length of interstage required (forward) for this substage.

$$L_{SS_{ITF}} = L_{MT_{CHF}} + L_{SS_{S}} - L_{MT_{SKF}}$$
 (8)

Length of interstage required (aft) for this substage.

$$L_{SS_{ITA}} = L_{MT_{CHA}} + L_{NZ_{P}} - L_{MT_{SKA}}$$
(9)

Fig. 300.1-1 Substage Geometry

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset	
KLSSS1	K _{LS1}	Bias for inter-substage spacing distance computation. Does not include thrust termination;		
		in	0	
KLSSS2	K _{LS2}	Proportionality factor relating a composite of the inter-substage spacing distance outside case diameter. Does not incluthrust termination;		
		N. D.	0	
KDSS1	κ_{D1}	Bias for substage diameter compu	itation;	
	2.	in	0	
KDSS2	K _{D2}	Coefficient for substage diameter computation		
	1,0	in	1	

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
DCSO	Dcso	Outside motor case diameter;	
	000	in	CASEG
DMT	D _{MT}	Motor diameter;	
	•	in	MOTORG
LM'I'	L _{MT}	Motor length;	
	•	in	MOTORG

INPUT DATA, INTER-MODEL:

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
LMTCLA	L _{MT} _{CLA}	Length of motor aft closure; in	MOTORG
LMTCLF	L _{MT_{CLF}}	Length of motor forward closure; in	MOTORG
LMTSKA	L _{MT} _{SKA}	Length of motor aft skirt; in	MOTORG
LMTSKF	L _{MT_{SKF}}	Length of motor forward skirt; in	MOTORG
LNZP	L _{NZP}	Protruding nozzle length; in	NOZZLEG
LTTMT	L _{TTMT}	Length, thrust termination; in	TTERMG

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
ASS	A _{SS}	Substage cross sectional area;	
		in	Eq. 4
DSS	D_{SS}	Substage outside diameter. May include raceways and other protrusions;	
		in	Eq. 3
DSSITA	D _{SS} ITA	Substage aft diameter for interstage attachment;	
		in	Eq. 7

()

OUTPUT DATA: (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	
DSSITF	D _{SSITF}	Substage forward diameter for interstage attachment;	
		in	Eq. 6
LSS	L _{S3}	Total substage length. Includes motor, protruding nozzle, and required spacing distance forward of the forward closure;	
		in	Eq. 2
LSSITA	L _{SS_{ITA}}	Length of interstage required (aft) for this substage;	
		in	Eq. 9
LSSITF	Lss _{ITF}	Length of interstage required (forward) for this substage);	
		in	Eq. 8
LSSS	L _{SS}	Inter-substage spacing distance. Substage distance, measured along vehicle centerline, forward of fore motor closure. Used primarily for thrust termination equipment and any other spacing distance required between this substage and the nozzle of the substage forward of this substage;	
		in	Eq. 1
RLDSSCS R _{LDSSCS} Length to diameter ratio. Ratio of to substage length to outside case diameter.			
		N. D.	Eq. 5

Harbina da.

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

CEOMETRY	KDSS2	LSSS	
-	KDSS1		
SSGML	DESITE	LSSITA	
SUBSTGG	∓	ş	ሮን *
	DESITA	SSI	
	SS3	KLSSS2	
		TSSST	SCS

310.1

E ;

MODEL TYPE:

SUBSTGW (SUBSTaGe Weight)

MODEL NAME:

SSWM1 (We

(Weight Synthesis, Single Motor

and Nozzle)

DESCRIPTION:

SSWM1 (Substage Weight Model number 1) is a weight synthesis model which evaluates the substage weight breakdown and substage mass fractions for a substage having a single solid rocket motor and nozzle. The substage weight is comprised of the following subsystems.

Motor

Nozzle

Note that the above subsystems do NOT include the interstage. See the STAGEW model for stage (substage plus interstage) weight quantities.

PROCEDURE:

Prior to entering SSWMI, the models specified by the NOZZLEW and MOTORW model types have evaluated the nozzle and motor weights. In addition to evaluating subcomponent weights peculiar to their particular requirements, they have defined a set of component weights in terms of expended or non-expended attributes.

These expended and non-expended motor and nozzle weights are input to SSWM1. The SSWM1 model will combine these quantities to determine the substage weight components and mass fractions.

After the SSWM1 model is executed, the interstage geometry and weights are determined. The model specified by the STAGEW model type will then use the substage and interstage quantities to determine the stage weights and mass fractions.

EQUATIONS:

Weight of propellent associated with the substage.

$$W_{PP_{SS}} = W_{PP_{MT}}$$
 (1)

Total substage weight.

$$W_{SS} = K_{WSS} (W_{MT} + W_{NZ})$$
 (2)

Total non-expended substage weight component.

$$W_{SS_{NX}} = K_{WSSNX} (W_{MT_{NX}} + W_{NZ_{NX}})$$
(3)

Total expended substage weight component (excluding propellent).

$$w_{SS_{X}} = \kappa_{wSSX} (w_{MT_{X}} + w_{NZ_{X}})$$
(4)

Expended (thrust producing) substage weight component (excluding propellent),

$$W_{SS_{XT}} = K_{WSSXT} (W_{MT_{XT}} + W_{NZ_{XT}})$$
 (5)

Expended (non-thrust producing) substage weight component.

$$W_{SS_{XI}} = K_{WSSXI} (W_{MT_{XI}} + W_{NZ_{XI}})$$
(6)

Substage propellent mass fraction.

$$K_{SS_{PMF}} = \frac{W_{PP_{SS}}}{W_{SS}}$$
 (7)

Substage expended mass fraction.

$$K_{SS_{XMF}} = \frac{W_{SS_X}}{W_{SS}}$$
 (8)

Substage structure mass fraction.

$$K_{SS_{SMF}} = \frac{W_{SS_{NX}}}{W_{SS}}$$
 (9)

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
Kwss	Kwss	Proportionality factor for total su N. D.	bstage weight;
KWSSNX	Kwssnx	Proportionality factor for total non-expended substage weight component;	
		N. D.	1
KWSSX	Kwssx	Proportionality factor for total expended substage weight component;	
		N. D.	1
KWSSXI	Kwssxi	Proportionality factor for expended (non-thrust producing) substage weight component;	
		N. D.	i
KWSSXT	Kwssxt	Proportionality factor for expended (thrust producing) substage weight component;	
		N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WMT	W _{MT}	Motor weight, total;	
		1b	MOTORW
WMTNX	W MT $_{NX}$	Motor weight component, total non-expended;	
	···-NX	1ь	WACTOM

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WMTX	w _{MT} x	Motor weight component, total e	xpended;
	X	1ь	MOTORW
WMTXI	$\mathbf{w_{MT}_{XI}}$	Motor weight component, expend thrust producing);	led, (non-
		1ь	MOTORW
WMTXT	$w_{MT_{XT}}$	Motor weight component, expend producing);	ied, (thrust
		1 b	MOTORW
WNZ	W _{NZ}	Nozzle weight, total;	
	.,,,	1ь	NOZZLEW
WNZNX	w _{NZ_{NX}}	Nozzle weight component, total	non-expended;
	NX	1ь	NOZZLEW
WNZX	w _{NZ} x	Nozzle weight component, total	expended;
	x	1b	NOZZLEW
WNZXI	$w_{NZ_{XI}}$	Nozzle weight component, expenthrust producing);	ded, (non-
		1b	NOZZLEW
WNZXT	w_{NZ}_{XT}	Nozzle weight component, expen producing);	ded, (thrust
		1b	NOZZLEW
WPPMT	$\mathbf{w}_{\mathtt{PP}_{\mathtt{MT}}}$	Propellent weight;	
	MT	1b	PROPELW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
KSSPMF	K _{SS_{PMF}}	Substage propellent mass fraction. Includes motor and nozzle;	
		N. D. Eq. 7	
KSSSMF	K _{SSSMF}	Substage structure mass fraction. Includes motor and nozzle;	
		N. D. Eq. 9	
KSSXMF	K _{SS} XMF	Substage expended mass fraction. Includes motor and nozzle;	
		N. D. Eq. 8	
WPPSS	w _{PPss}	Weight of propellent associated with the substage;	
		1b Eq. 1	
wss	w _{ss}	Total substage weight. Includes motor and nozzle;	
		1b Eq. 2	
WSSNX	w _{ss_{nx}}	Total non-expended substage weight componen Includes motor and nozzle;	t.
		1b Eq. 3	
wssx	w_{SS}_{X}	Total expended substage weight component. Includes motor and nozzle;	
		1b Eq. 4	
WSSXI	w ss $_{xi}$	Expended (non-thrust producing) substage weig component. Includes motor and nozzle;	ght
		1b Eq. 6	
WSSXT	$w_{SS_{XT}}$	Expended (thrust producing) substage weight component. Includes motor and nozzle;	
		1b Eq. 5	

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

WEXTCHT	WPPSS	KSSPMP	
SUBSTACE	WSSXT	KWSSXT	
SSWM	MSSXI	KWSSXI	
SUBSTIGM	¥	çi *	₩
	MSSX	KWSSX	
	WSSWX	KWSSWX	KSSXMF
	MSS	KWSS	KSSSMF

320.1

MODEL TYPE: TTERMG (Thrust TERMination Geometry)

MODEL NAME: TTGMl (Motor Centerline spacing Distance)

DESCRIPTION:

TTGMl (Thrust Termination Geometry Model number 1) evaluates the spacing distance required, forward of the fore motor closure, for the thrust termination mechanism.

PROCEDURE:

Prior to executing TTGM1, the model specified for the CASEG model type has determined the case outside diameter.

TTGMI then uses the case diameter to evaluate the spacing distance required for the thrust termination mechanism.

The thrust termination spacing distance will later be used by the model specified for the SUBSTGG model type to determine the required intersubstage spacing distance.

EQUATIONS:

Thrust termination spacing length.

$$L_{TT_{MT}} = K_{LTTMT} C_1 D_{CS_O}$$

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CTTG1	c ₁	Constant for LTTMT computation; N. D.	0.01
KLTTMT	KLTTMT	Coefficient for LTTMT computation N. D.	.; 1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
DCSO	D _{CS}	Outside case diameter;	
	000	in	CASEG

OUTPUT DATA:

The following data is output by this model. It is available for usage as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units
LTTMT	L _{TTMT}	Thrust termination spacing length. Distance measured along motor centerline forward of the fore motor closure, required for the thrust termination nuechanism;
		in

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

DMETRY THRUST TERMINATION TTTERMG *1 LILLY KLTIME 330.1

MODEL TYPE: TTERMW (Thrust TERMination Weight)

MODEL NAME: TTWMl (Parametric Scaling)

DESCRIPTION:

TTWM1 (Thrust Termination Weight Model number 1) utilizes a parametric scaling equation to determine the weight of the thrust termination mechanism for a solid rocket motor. See reference 8 for a description of the equation and parametric scaling rationale.

This model is applicable for performance parameters within the following limits (see Input Data, Inter-Model).

300 < PCHAVG < 1000 psia.

40 < TBPPMT < 140 sec.

3000 < WPPMT < 2,000,000 lb.

PROCEDURE:

In addition to evaluating the thrust termination weight, the TTWM1 model determines the total weight breakdown in terms of expended and non-expended components.

These expended and non-expended component weights will later be used by the model specified for the MOTORW model type to determine the motor weights and mass fractions.

EQUATIONS:

Total thrust termination weight.

$$W_{TT} = K_{WTT} C_1 \left(\frac{W_{PP_{MT}}}{P_{AVG} T_B} \right)^{C_2}$$
 (1)

EQUATIONS (Cont.):

Total non-expended thrust termination weight component.

$$W_{TT_{NX}} = K_{WTTNX} W_{TT}$$
 (2)

Total expended thrust termination weight component.

$$W_{TT_X} = 0 (3)$$

Expended (non-thrust producing) thrust termination weight.

$$\mathbf{W}_{\mathbf{T}\mathbf{T}_{\mathbf{X}\mathbf{I}}} = \mathbf{0} \tag{4}$$

Expended (thrust producing) thrust termination weight.

$$W_{TT_{XT}} = 0 (5)$$

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CTTW1	c,	Scaling constant for WTT comput	ation;
	•	N. D.	170
CTTW2	c ₂	Scaling constant for WTT computati	
	-	N. D.	1.45
XWTT	κ_{WTT}	Proportionality factor for thrust weight;	termination
		N. D.	1
KWTTNX	K _{WTTNX}	Proportionality factor for non-extermination weight;	pended thrust
		N. D.	ì

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
PCHAVG	PAVG	Average chamber pressure; psia	IBGAS
ТВРРМТ	T _B	Propellent burn time;	IBPERF
WPPMT	$w_{PP}^{}_{MT}$	Propellent weight; lb	PROPE_W

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units	
WTT	W _{TT}	Total thrust termination subsystem	weight;
		1b	Eq. 1
WTTNX	$\mathbf{w}_{\mathtt{TT}_{\mathbf{NX}}}$	Total non-expended thrust termination subsystem weight component;	on
		16	Eq. 2
WTTX	$\mathbf{w}_{\mathtt{TT}_{\mathbf{X}}}$	Total expended thrust termination subsysweight component;	
		1ъ	Eq. 3
WTTXI	$\mathbf{w}_{\mathtt{TT}_{\mathbf{XI}}}$	Expended (non-thrust producing) three termination subsystem weight compo	
		1b	Eq. 4
		Expended (thrust producing) thrust termination subsystem weight compo	onent;
		1b	Eq. 5

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

THRUST TERMINATION WEIGHT WILKE
TITUMI WIEXI KWIEXX
WENTER TO
W <u>it</u> x Kw <u>it</u>
WITHOU
WIT

340.1

MODEL TYPE: TVCG (Thrust Vector Control Geometry)

MODEL NAME: TVGMl (Gimballed nozzle)

DESCRIPTION:

TVGM1 (Thrust Vector Geometry Model number 1) evaluates the geometry required for the simulation of a gimballed nozzle. The gimbal point is located on the nozzle centerline and may be forward (see figure 1) or aft (see figure 2) of the nozzle throat plane.

PROCEDURE:

Prior to entering TVGM1, the model specified for the NOZZLEG model type has evaluated the nozzle geometry.

TVGM1 then uses this nozzle geometry to determine the gimballed nozzle envelope geometry.

EQUATIONS:

Gimballed nozzle length ratio. (Positive value if gimbal point is aft of nozzle throat plane.)

$$R_{LGB} = K_{RLGB1} + \frac{K_{RLGB2}}{\sqrt{\epsilon_{NZ}}}$$
 (1)

Distance from nozzle throat plane to nozzle gimbal point. (Positive sense from nozzle throat plane towards nozzle exit plane.) (Figs. 1, 2)

$$L_{GB_{TH}} = R_{LGB} L_{NZ_{DV}}$$
 (2)

1

EQUATIONS (Cont.):

Distance from nozzle gimbal point to nozzle exit plane. (Figs. 1, 2)

$$L_{GB_{EXT}} = L_{NZ_{DV}} - L_{GB_{TH}}$$
 (3)

Nozzle gimbal envelope half angle for zero gimbal angle. (Figs. 1, 2)

$$\theta_{\rm GB_2} = \arctan\left(\frac{{}^{\rm D_{NZ}_{\rm EXT}}}{{}^{\rm 2L_{\rm GB_{\rm EXT}}}}\right)$$
 (4)

Nozzle gimbal envelope half angle. (Figs. 1, 2)

$$\theta_{GB_1} = \theta_{GB_2} + \theta_{GB} \tag{5}$$

Distance from nozzle gimbal point to edge of nozzle exit cone. (Figs. 1, 2)

$$L_{GB_{EDGE}} = \sqrt{\frac{D_{NZ_{EXT}}}{2}}^2 + L_{GB_{EXT}}^2$$
 (6)

Diameter of gimballed nozzle envelope. (Figs. 1, 2)

$$D_{GB_{ENV}} = 2 \qquad L_{GB_{EDGE}} \quad \sin \left(\theta_{GB_1}\right) \tag{7}$$

1

NOTE THAT LGBTH HAS A NEGATIVE VALUE

Fig. 340. 1-1 Gimbal Point Forward of Nozzle Throat

Fig. 340.1-2 Gimbal Point Aft of Nozzle Throat

DIPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description	; Ext. (Int.) Units	Preset
KR LGB1	K _{RLGB1}	Bias for RI	GB computation;	0
KRLGB2	K _{RLGB2}	Coefficient N. D.	for RLGB computation;	0
GBANGLE	$^{ heta}$ GB	Nozzle gim deg	bal angle; Figs. 1, 2	0

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
DNZEXT	D _{NZEXT}	Nozzle edit diameter; in Figs. 1, 2	NOZZLEG
LNZDV	L _{NZ_DV}	Divergent nozzle section length in Figs. 1. 2	; NOZZLEG
RAEXTTH	€ NZ	in Figs. 1, 2 Nozzle expansion ratio at nozzl N. D.	

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units		
DGBENV	D _{GB} ENV	Diameter of g	imballed nozzle enve Figs. 1, 2	lope; Eq. 7
GBENHA	$^{ heta_{ ext{GB}_1}}$	Nozzle gimbal deg	l envelope half angle; Figs. 1, 2	Eq. 5
GBENHAZ	$\theta_{\mathtt{GB}_{2}}$	Nozzle gimbal envelope half angle for zero gimbal angle;		
		deg	Figs. 1, 2	Eq. 4
LGBEDGE	$^{L}_{GB}_{EDGE}$	Distance from nozzle gimbal point to edge of nozzle exit cone;		
		in	Figs. 1, 2	Eq. 6
LGBEXT	L _{GB_{EXT}}	Distance from nozzle gimbal point to nozzle exit plane;		
		in	Figs. 1, 2	Eq. 3
LGBTH	L _{GB} _{TH}	gimbal point.	n nozzle throat plane Measured on nozzle from nozzle throat e exit plane;	centerline,
		in	Figs. 1, 2	Eq. 2
RLGB	RLGB	Gimballed nozzle length ratio. Ratio o LGBTH to LNZDV. Positve sign indicagimbal point is aft of nozzle throat plan		indicates
		N. D.	Figs. 1, 2	Eq. 1

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

OR CONTROL GEOMETRY	KRLGB2 LGBIH	
THRUST VECT	KRLGB2	
TWGWI	KRLGBL	RLGB
TVCC	Ŧ	¥
	GBENHAZ	LGBEXT
	GBENHA	DCBENY
	GBANGLE	LGBEDGE

350.1

MODEL TYPE: TVCW (Thrust Vector Control Weight

MODEL NAME: TVWMl (Gimballed nozzle or integral omnivector, statistical scaling)

DESCRIPTION:

TVWMI (Thrust Vector control Weight Model number 1) utilizes a statistically derived equation to determine the weight of a gimballed nozzle thrust vector control system. In addition, a nozzle weight factor is determined for assessing the required nozzle weight penalty.

(See REMARKS for the simulation of an integral omnivector TVC system.) The subsystems considered within the TVC system weight are:

Actuators

Hydraulic pressurization system

Plumbing

Valves

Roll control system

It should be noted that since the TVC weight equation is based upon a purely statistical analysis, the model is intended for usage only in total sizing and optimization studies. This model cannot be used for subsystem trade off studies. See reference 8 for a description of the equations and statistical scaling rationale.

This model is applicable for performance parameters within the following limits.

15 < NZHA < 30 deg

300 < PCHAVG < 1000 PSIA

5 < RAEXTTH < 75

30 < TBPPMT < 140 sec

500 < WPPMT < 2,000,000 lbs

where NZHA and RAEXTTH are associated with the NOZZLEG model type, PCHAVG is associated with the IBGAS model type, TBPPMT is associated with the IBPERF model type, and WPPMT is associated with the PROPELW model type.

1

PROCEDURE:

This is a two entrance model. Up on the first entrance to TVWM1, the nozzle weight penalty factor is evaluated. The model specified for the NOZZLEW model type is then executed to determine the nozzle weight.

TVWM1 is then entered for the second time, the TVC system weight is evaluated as a function of the nozzle weight, and the TVC system weight breakdown is determined.

EQUATIONS (FIRST ENTRANCE):

TVC nozzle weight penalty factor.

$$K_{TV_{NZ}} = \frac{C_1 K_{TVNZ1}}{\left(\epsilon_{NZ}\right)^2} + K_{TVNZ2}$$
 (1)

EQUATIONS (SECOND ENTRANCE):

Total thrust vector control weight.

$$W_{TV} = K_{WTV} C_3 (W_{NZ})^{C_4}$$
 (2)

Total non-expended thrust vector control weight component.

$$W_{TV_{NX}} = W_{TV}$$
 (3)

Total expended thrust vector control weight component.

$$W_{TV_X} = 0. (4)$$

Ü

EQUATIONS (SECOND ENTRANCE) (Cent.):

Expended (non-thrust producing) thrust vector control weight component.

$$\mathbf{w}_{\mathbf{T}\mathbf{V}_{\mathbf{X}\mathbf{I}}} = 0. \tag{5}$$

Expended (thrust producing) thrus: vector control weight component.

$$W_{TV_{XT}} = 0. (6)$$

INPUT DATA, INTRA-MODEL:

The following data is input directly to this model by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
CTVWl	c ₁	Constant for KTVNZ computation; N. D.	2, 1
CTVW2	c ₂	Constant for KTVNZ computation; N. D.	0.116
CTVW3	c ₃	Constant for WNZ computation; N. D.	2.7
CTVW4	C ₄	Constant for WNZ computation; N. D.	0.604
KTVNZI	K _{TVNZ1}	Coefficient for KTVNZ computation N. D.	1
KTVNZ2	K _{TVNZ2}	Coefficient for KTVNZ computation N. D.	n; 0
KWTV	KWTV	Coefficient for WTV computation; N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

INPUT DATA, INTER-MODEL:

Mnemonic	Symbol	Description; Ext. (Int.) Units M	iodel Type
RAEXTTH	€ _{NZ}	Nozzle expansion ratio at nozzle ex	kit plane; IOZZLEG
WNZ	W _{NZ}	Total nozzle weight. Includes weighted to TVC requirements;	ght penalty
		lb N	OZZLEW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description; Ext. (Int.) Units		
KTVNZ	K _{TV_{NZ}}	Coefficient used by the nozzle weight me to assess a nozzle weight penalty to sati		odel tisfy
		N. D.	Eq.	1
WTV	$\mathbf{w_{TV}}$	Total thrust vector control weight;		
		Ib	Eq.	2
WTVNX	$^{W}T^{V}_{NX}$	Total non-expended thrust vector control weight component;		ol
		1b	Eq.	3
WTVX	w T v X	Total expended thrust vector control we component;		eight
		1b	Eq.	4
WTVXI	W T V XI	Expended (non-thrust producing) thrust vector control weight component;		
		1b	Eq.	5
WTVXT	$^{W}T^{V}_{XT}$	Expended (thrust producing) thrust vec control weight component;		tor
		1 b	Eq.	6

TVWM1

REMARKS:

This model is applicable for simulating an integral omnivector TVC system by inputting the following coefficients for the nozzle weight penalty factor.

KTVNZ1 = 0

KTVN7.2 = 1.05

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

THRUST VECTOR CONTROL WEIGHT WIVXT
TVWML WTVXI CTVW ⁴
17VCW * * 13 * * 3
WTVX CTVW3 KTVN22
WTVNX CTWV2 KTWNZ1
MTV CTVW1 KTVNZ

VEHG

VHGMI

360.1

MODEL TYPE:

VEHG (VEHicle Geometry)

MODEL NAME:

VHCMl (Single Propulsion System and

Payload Section)

DESCRIPTION:

VHGM1 (YeHicle Geometry Model number 1) evaluates the geometry for a vehicle comprised of a single propulsion system and a single payload section. See figure 1 for an illustration of the geometry for a typical vehicle comprised of three stages, a payload and a shroud.

PROCEDURE:

Prior to entering VHGM1 all of the major vehicle subsystems have been sized and the models specified for the PROSYSG and PAYSECG model types have determined the pertinent propulsion system and payload section geometry.

VHGM1 is then executed and the vehicle geometry evaluated.

After VHGMl is executed, the vehicle weight breakdown is evaluated by the model specified for the VEHW model type. The vehicle has then been completely sized. However, another pass will be made through all of the models to evaluate length and weight fractions dependent upon total vehicle geometry and weight quantities.

EQUATIONS:

Total vehicle length. Figure 1.

$$L_{VH} = L_{PS} + L_{PL}$$

(1)

Fig. 360.1-1 Vehicle Geometry

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic Symbol Description; Ext. (Int.) Units Preset

None

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ex	t. (Int.) Units	Model Type
LPL	$\mathtt{L}_{\mathtt{P}L}$	Total payload section length;		
		in	Fig. 1	PAYSECG
LPS	L _{PS}	Total propulsion system length;		
	• •	in	Fig. 1	PROSYSG

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

Mnemonic	Symbol	Description	; Ext. (Int.) Units	
LVH	L _{VH}	Total vehic	le length;	
	***	in	Fig. 1	Eq. l

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

VEHG VHGML

VEHICLE GEOMETRY

LVH

370.1

MODEL TYPE:

VEHW (VEHicle Weight)

MODEL NAME:

VHWM1 (Single Propulsion system and

payload section.)

DESCRIPTION:

VHWM1 (VeHicle Weight Model number 1) is a weight synthesis model which evaluates the vehicle weight breakdown and mass fractions for a vehicle having a single propulsion system and a single payload section. The vehicle weight is comprised of the following subsystems:

Propulsion System

Payload Section

PROCEDURE:

Prior to entering VHWM1, the models specified for the PROSYSW and PAYSECW model type have evaluated the propulsion system and payload section weights. In addition to evaluating subcomponent weights peculiar to their particular requirements, they have defined a set of component weights in terms of expended or non-expended attributes.

VHWM1 then uses these expended and non-expended, propulsion system and payload section, weight components to determine the vehicle weight breakdown. In addition, the vehicle growth factor is evaluated.

After VHWM1 is executed, the vehicle has been completely sized. However, another pass will be made through all of the models to evaluate subsystem weight fractions dependent upon the vehicle weight breakdown.

EQUATIONS:

Total vehicle weight.

$$W_{VH} = K_{WVH} (W_{PS} + W_{PL}) \tag{1}$$

EQUATIONS (Cont.):

Total non-expended vehicle weight component.

$$W_{VH_{NX}} = K_{WVHNX}(W_{PS_{NX}} + W_{PL_{NX}})$$
 (2)

Total expended vehicle weight component.

$$w_{VH_X} = \kappa_{WVHX} (w_{PS_X} + w_{PL_X})$$
 (3)

Expended (non-thrust producing) vehicle weight component.

$$W_{VH_{XI}} = K_{WVHXI} (W_{PS_{XI}} + W_{PL_{XI}})$$
(4)

Expended (thrust producing) vehicle weight component.

$$w_{VH_{XT}} = \kappa_{WVHXT} (w_{PS_{XT}} + w_{PL_{XT}})$$
 (5)

Total propellent weight associated with the vehicle.

$$W_{PP} = W_{PP}$$
(6)

Vehicle growth factor.

$$K_{VH_{GF}} = \frac{W_{VH}}{W_{PA}}$$
 (7)

INPUT DATA, INTRA-MODEL:

The following data is input to this model directly by the program user. If a value is not input, the preset value is used.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset	
KWVH	ĸwvh	Coefficient for WVH computation;		
		N. D.	1	

INPUT DATA, INTRA-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Preset
KWVHNX	KWVHNX	Coefficient for WVHNX computation; N. D.	1
KWVHX	Kwyhx	Coefficient for WVHX computation; N. D.	1
KWVHXI	Kwyhxi	Coefficient for WVHXI computation; N. D.	l
KWVHXT	KWVHXT	Coefficient for WVHXT computation; N. D.	1

INPUT DATA, INTER-MODEL:

This model requires as input certain data which is usually output from a model of the specified model type. If the user has not specified such a source for this data, then it must be input directly with the intra-model input.

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WPA	w _{PA}	Total payload weight;	
		1b	PAYLODW
WPL	W _{PL}	Total payload section weight;	
		ំ	PAYSECW
WPLNX	W _{PLNX}	Total non-expended payload section component;	on weight
		1ь	PAYSECW
WPLX	$^{W}_{PL_{X}}$	Total expended payload section w component;	reight
		1ь	PAYSECW

INPUT DATA, INTER-MODEL (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units	Model Type
WPLXI	$w_{PL_{XI}}$	Expended (non-thrust producing) payload section weight component;	
		1ь	PAYSECW
WPLXT	WPLXT	Expended (thrust producing) payload section weight component;	
		1b	PAYSECW
WPPPS	W _{PPP}	Weight of propellent associated w propulsion system;	vith the
		ib	PROSYSW
WPS	w _{ps}	Total propulsion system weight;	
		1ь	PROSYSW
WPSNX	w _{PSNX}	Total non-expended propulsion system weight component;	
		1b	PROSYSW
WPSX	$w_{PS}^{}_{X}$	Total expended propulsion system weight component;	n
		1 b	PROSYSW
WPSXI	w _{PS_{XI}}	Expended (non-thrust producing) system weight component;	propulsion
		1b	PROSYSW
WPSXT	w _{PSXY}	Expended (thrust producing) prop system weight component;	oulsion
		1b	PROSYSW

OUTPUT DATA:

The following data is output from this model. It is available for use as intermodel input to other models and to print, plot, and optimization routines.

OUTPUT DATA (Cont.):

Mnemonic	Symbol	Description; Ext. (Int.) Units		
KVHGF	$\kappa_{ m VH_{GF}}$	Vehicle growth factor. Ratio of total vehicle weight to payload weight;		ele
		N. D.	Eq.	7
WPPVH	$w_{\mathtt{PP}_{VH}}$	Total propellent weight associated with the vehicle;		:
		1b	Eq.	6
WVH	w_{VH}	Total vehicle weight;		
		1ь	Eq.	1
XVHVX	$w_{VH_{NX}}$	Total non-expended vehicle weight component;		
		1b	Eq.	2
wvнx	$^{W}V^{H}X$	Total expended vehicle weight component;		
		lb	Eq.	3
WVHXI	w_{VH}_{XI}	Expended (non-thrust producing) vehicle weight component;		
		1b	Eq.	4
WVHXT	$w_{VH_{\mathbf{X}\mathbf{T}}}$	Expended (thrust producing) vehicle weight component;		
		lb	Eq.	5

:)

PRINT BLOCK KEY:

Nominally, only those lines with an asterisk to the left of the line number will be printed. By input, any of the lines given below may be printed or suppressed (see the section on output models for the details).

IGHT	HADDAH	KVHGP
VEHICLE WE	WHXT	KWHXT
VHWM	WVHXI	KWWHXI
VEHW	:	₹
	WHX	KWVHX
	WYHINX	KWYHINX
	HAM	KWWH