Feuille d'exercice n° 02 : Quelques fondamentaux

Exercice 1 La proposition $(P \land Q \Longrightarrow (\neg P) \lor Q)$ est-elle vraie?

Exercice 2 Soit la propriété suivante : P(z) : " $|z-1| \le 3 \Longrightarrow |z-5| \ge 1$ ".

- 1. Quel est l'ensemble des $z\in\mathbb{C}$ tel que P(z) soit vraie? A-t-on : $\forall z\in\mathbb{C},\ P(z)$ vraie ?
- 2. Mêmes questions en remplaçant $|z-5| \ge 1$ par |z-5| > 1 et $|z-5| \ge 2$.

Exercice 3 Dans chacun des cas suivants, comprendre le sens des deux phrases proposées et déterminer leur valeur de vérité :

- 1. $\forall n \in \mathbb{N} \ \exists N \in \mathbb{N} \ n \leqslant N$ et $\exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ n \leqslant N$.
- 2. $\forall y \in \mathbb{R}_+^* \ \exists x \in \mathbb{R} \ y = e^x$ et $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R}_+^*, \ y = e^x$.
- 3. Soit f une fonction réelle définie sur \mathbb{R} . $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ y = f(x)$ et $\exists y \in \mathbb{R} \ \forall x \in \mathbb{R} \ y = f(x)$.

Exercice 4 ($^{\circ}$) Écrire la négation des assertions suivantes où P,Q,R,S sont des propositions.

1. $P \Rightarrow Q$,

4. P ou (Q et R),

- 2. P et non Q,
- 3. P et (Q et R),

5. $(P \text{ et } Q) \Rightarrow (R \Rightarrow S)$.

Exercice 5 ($^{\circ}$) Soit f une fonction réelle définie sur \mathbb{R} . Quelle est la négation des propositions suivantes ?

1. $\exists M \in \mathbb{R} \ \forall x \in \mathbb{R}, \ f(x) \leq M$.

- 4. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y \leqslant f(x) \leqslant 2x + y$.
- 2. $\forall x \in \mathbb{R}, \ f(x) \ge 1 \text{ ou } f(x) \le -1.$
- 3. $\forall x \in \mathbb{R}, \ f(x) \geqslant 0 \Rightarrow x \geqslant 0.$

5. $\forall x \in \mathbb{R}, \ (\exists y \in \mathbb{R}, \ f(x) \geqslant y) \Rightarrow x \leqslant 0.$

Exercice 6 Soient les quatre assertions suivantes :

- (a) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x+y>0$; (b) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x+y>0$;
- (c) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x+y>0$; (d) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ y^2>x$.
 - 1. Les assertions a, b, c, d sont-elles vraies ou fausses?
 - 2. Donner leur négation.

Exercice 7 Compléter les pointillés par le connecteur logique qui s'impose : \Leftrightarrow , \Leftarrow , \Rightarrow .

- 1. $\forall x \in \mathbb{R} \ x^2 = 4 \ \dots \ x = 2$;
- 2. $\forall z \in \mathbb{C} \ z = \overline{z} \dots z \in \mathbb{R}$;
- 3. $\forall x \in \mathbb{R} \ x = \pi \dots e^{2ix} = 1$.

Exercice 8 (\circlearrowleft) Soit f une fonction réelle définie sur \mathbb{R} . Écrire au moyen de quantificateurs les propositions suivantes :

1. f est croissante.

2. f est périodique.

3. f s'annule au plus une fois.

4. f prend au moins une fois la valeur 1.

Exercice 9 Écrire avec des quantificateurs les assertions suivantes, où u désigne une suite réelle et f désigne une fonction de \mathbb{R} dans \mathbb{R} .

1. La suite u est majorée.

2. La suite u n'est pas majorée.

3. La fonction f n'est pas paire.

4. La fonction f n'est pas bornée.

Exercice 10 En quoi le raisonnement suivant est-il faux ?

Soit $\mathcal{P}(n)$: n crayons de couleurs sont tous de la même couleur.

 $\mathcal{P}(1)$ est vraie car un crayon de couleur est de la même couleur que lui-même.

— Supposons $\mathcal{P}(n)$. Soit n+1 crayons. On en retire 1. Les n crayons restants sont de la même couleur par hypothèse de récurrence.

Reposons ce crayon et retirons-en un autre ; les n nouveaux crayons sont à nouveau de la même couleur. Le premier crayon retiré était donc bien de la même couleur que les n autres. La proposition est donc vraie au rang n+1.

— On a donc démontré que tous les crayons en nombre infini dénombrable sont de la même couleur.

Exercice 11 Dans un match de rugby, une équipe peut marquer 3 points (pénalité ou drop), 5 points (essai non transformé) ou 7 points (essai transformé). Quel est l'ensemble des scores possibles ?

Exercice 12 Soit $(u_n)_{n\in\mathbb{N}}$ une suite (on admet qu'elle existe et que la relation suivante permet bien de la définir) vérifiant : $u_0 \le 1$, $\forall n \in \mathbb{N}$ $u_{n+1} = u_0 + u_1 + \dots + u_n = \sum_{k=0}^n u_k$. Montrer que $\forall n \in \mathbb{N}$ $u_n \le 2^n$.

