Weekly Churn Prediction Campaign Guide

Purpose: Help the marketing team understand, interpret, and act on churn prediction results.

Notebook: 20703562_ML_CW_MODEL _Implementation.html

For Demonstration purpose, the latest churn prediction is already done for after 2022-03-22 ie between 2022-03-23 and 2022-04-21, is done in the notebook.

-Data Preprocessing:

The dataset passed all structural quality checks and was ready for feature engineering and modeling without additional cleaning.

Customer database: 584/4312 'null' value of customer first name ('first') and date of birth ('dob'). Due to that, no direct analysis on customer profile was included in main report.

Instruction for Use If any nulls or duplicates are found in future analysis, filter them out or investigate their cause before continuing with analysis.

1. What This Model Does

- Predicts which customers are most likely to churn (stop engaging or purchasing).
- Assigns each customer a churn probability (from 0% to 100%).
- Groups customers into rankings (1 = highest risk, 10 = lowest risk).
- Flags the top-risk groups (ranking 1 and 2) as targets for retention offers.

Automation Note

- The churn prediction process is fully automated.
- No manual input is required from the marketing team during weekly runs.
- The only actions needed are:
 - Load the input in the mentioned places(recent customer data)
 - $\circ \quad \text{Loading the target list } (\textbf{weekly_offer_target_list.csv}) \text{ for campaign use}.$
 - Optional tweaks to:
 - Change the number of customer groups targeted (e.g., expand from ranking 1–2 to 1–3).
 - Align with new campaign goals or capacity.

The model runs weekly, updates all metrics and logs automatically, and flags customers based on the latest data.

2. Key Output: weekly_offer_target_list.csv

- Contains only customers flagged for offers based on high churn risk.
- Columns include:
 - o customer_id: Unique customer identifier.
 - o churn_percent: Likelihood of that customer churning.
 - o ranking: Risk group (1 = highest risk).
- Sorted by highest churn risk first.

3. Summary Insights (Automatic)

- Shows how many customers are being targeted this week.
- Displays average churn risk for the targeted group.
- Provides segment-level summaries to understand group behavior.

4. Action for Marketing Team

- 1. Review the weekly_offer_target_list.csv file.
- 2. Launch retention campaigns (email/SMS/discount/etc.) for those customers.
- 3. Prioritize customers with the highest churn_percent.
- **4.** Use offer_sent_on to ensure campaigns are linked to the correct week.

5. Data Access

To retrieve the current week's target list from the system:

SELECT customer_id, churn_percent, ranking, offer_sent_on

FROM weekly_churn_scoring_log

WHERE offer = 1

ORDER BY churn_percent DESC

Notes

- The "offer" flag is currently based on ranking 1 and 2 this can be adjusted based on campaign size or strategy.
- Weekly predictions are updated automatically, with results logged in weekly_churn_scoring_log.

3. Figure and Table Mapping:

Report Element / Figure	Source
Figure 3. Target Class Proportions vs. Churn Definition Threshold	ConsultingCorp_Report_ml76.pdf
Figure 4. Cumulative Distribution of Days Between Customer Visits	ConsultingCorp_Report_ml76.pdf
Figure 1 . Distribution of Active vs Inactive Customers	Databricks-notebook_20703562_ML_CW_MODEL_EVALUATION.html
Figure 2. Churn vs Non-Churn Customer Counts Predicted	Databricks-notebook_20703562_ML_CW_MODEL_EVALUATION.html
Figure 5. Windowing Strategy used for tempor feature construction	Databricks-notebook_20703562_ML_CW_MODEL_EVALUATION.html
Table 1. Features generation approach	Databricks-notebook_20703562_ML_CW_MODEL_EVALUATION.html
Figure 6.Correlation between input and output feature	Databricks-notebook_20703562_ML_CW_MODEL_EVALUATION.html

Databricks-notebook_20703562_ML_CW_MODEL_EVALUATION.html
Databricks-notebook_20703562_ML_CW_MODEL_EVALUATION.html