SEQUENTIAL EXAMPLE

DIVERGING EXAMPLE

CYCLIC EXAMPLE

Diverging

Diverging for data with a Cyclic for data that

critical point: above and wraps around a

below 0 velocity or sub-/ circle like phase.

Sequential

PERCEPTUAL UNIFORMITY

Use perceptually-uniform colormaps. When breaking from perceptual uniformity, have a good reason, e.g., indicating values of particular importance with another shade of color.

USE INTUITION

When possible, match colors in plot with intuition (e.g., cool to warm colors for temperature).

COLOR BLINDNESS

Avoid red and green in the same plot.

MATCH COLORMAP TO DATA

Have one colormap per variable so that it can be tailored to the variable and to build up familiarity.

MAGNITUDE VS. RANGE

Represent data that is amount of something (rain, turbulence) with shades of a color. For a range of measurements (temperature), range through multiple colors so none are represented as neutral white which might imply instead of just lower.

Global chlorophyll data¹ is more clearly shown with a sequential colormap (left) than diverging (right), which introduces a meaningless significant color change. Shades of green intuitively represent increasing chlorophyll.

super-critical Froude

number.

¹ https://coastwatch.pfeg.noaa.gov/erddap/grid dap/erdMBchlamday.html

balance

10⁻¹

10⁰

10¹

Chlorophyli-a [mg m⁻³]

lan 16, 2006

Aug 04, 2015

balance

-78 -66 -54 -42 -30 -18 -6 6 18 30 42 54 66 78

Sea surface height [cm]

The diverging colormap (right) appropriately compares below and above mean sea level², with the important Loop Current in the Gulf of Mexico clearly differentiated with respect to mean sea level. Overlay labeled contours for differentiating postive/negative after printing to grayscale.

² https://geo.gcoos.org/ssh/

Tidal phase in the North Atlantic Ocean³ cycles around a circle. The sequential colormap (left) has a meaningless disruptive break whereas the cyclic colormap (right) maps values with smooth variation around a circle. Changes in lightness help the eye, though give artificial

magnitude to numbers.

3 http://volkov.oce.orst.edu/tides/global.html;
Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient Inverse

lul 15, 1987

Egbert, G. D., and S. 1. Eroreeva, 2002: Efficient inverse

Modeling of Barotropic Ocean Tides. J. Atmos. Oceanic Technol., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.