# **Music for Running**





Nathan Luskey, Reagan Matthews, Dylan Reese, David Wen

CS4641 Summer 2020

#### **Contents**

- Motivation
- Background
- Concept
- Data Source and Improvement
- Approaches
- Data Analysis & Feature Engineering
- Results & Discussion



# **Background**

- Music with ideal tempo enhances workout performance
- Existing approaches use convolutional neural networks
- Millions Song Data Set



# Concept

- Music tailored to taste for workouts
- Playlist based on BPM of songs
- Mix of low and high BPM songs to correlate with walking and running
- Assessment of music taste using machine learning approaches



#### **Data Source**

- The data was obtained from Dolthub
  - Dolthub Git for data
  - Uses MySQL to query datasets/databases
  - Our projects makes use of the million-songs dataset
- To obtain the data, we created MillionSongsAPI
  - Functionality build on Doltpy
    - Python API for Dolt
  - First, this clones the million-songs repository
  - Then, it allows clients to query this dataset by row
  - Converts data types to python types for easy use







## **Data Improvement**

- Additional functionality could have benefitted this project
  - Unbalanced dataset genres
  - Most songs were rock genre
  - Need a function to parse database for a balanced dataset





# **Potential Approaches**

- Many approaches exist
- Different approaches may yield different results
- Two approaches: supervised and unsupervised
  - Supervised: Decision Tree
  - Unsupervised: Kmeans Clustering



# **Unsupervised Approach**

- K-Means clustering with PCA
  - Similar songs not necessarily in the same genre







# **Results and Shortcomings**

- Good
  - No bias from unevenly represented genres
  - Fewer clusters than genres
- Bad
  - Optimal cluster number is ambiguous
  - No heuristically obvious elbows



# **Supervised Approach**

- Decision Tree with α Pruning
  - Penalize larger trees by removing the weakest link







# **Resulting Decision Tree**

### Color indicates purity & class of node





# **Results and Shortcomings**

- Good:
  - Decision Tree has max depth of 9
- Bad:
  - Only ~40% Accuracy of Genre Estimation
  - Large bias due to plurality of genre labels being 'Rock'



# **Supervised Learning Side Note**

PCA didn't affect decision tree size or accuracy





# **Discussion**

| Approach     | The Good                                                                          | The Bad                                                                                                   |
|--------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Unsupervised | <ul><li>Fast evaluation</li><li>Little bias</li><li>No genre constraint</li></ul> | <ul><li>Disjoint song groupings</li><li>Ambiguous cluster count</li><li>Difficult visualization</li></ul> |
| Supervised   | <ul><li>Simple solution</li><li>Good visualization</li></ul>                      | <ul><li>Inefficient implementation</li><li>Heavily biased</li></ul>                                       |



#### **Future Work**

- Obtain a more balanced dataset
  - Could improve decision tree accuracy
- Further unsupervised analysis
  - Parameter tweaking
- Other possible solutions
  - RL Approaches



# **Our Repository**

#### https://github.com/nilnate/CS4641\_Project

### Sources

Dolthub Million Song Database:

https://www.dolthub.com/repositories/Liquidata/million-songs

Scikit K Means:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

#### Scikit Decision Tree:

 $\frac{\text{https://scikit-learn.org/stable/auto\_examples/tree/plot\_cost\_complexity\_pruning.html\#:} \sim : text=As\%20alpha\%20increases\%2C\%20more \%20of, total\%20impurity\%20of\%20its\%20leaves. \& text=ln\%20the\%20following\%20plot\%2C\%20the, tree\%20with\%20only\%20one\%20node. & text=Next\%2C\%20we\%20train\%20a\%20decision\%20tree\%20using\%20the\%20effective\%20alphas.$ 

#### Alpha Pruning:

https://medium.com/@sanchitamangale12/decision-tree-pruning-cost-complexity-method-194666a5dd2f

