

ABOUT YOLO V4

- The actual author of the YOLO Object detector is Joseph Chet Redmon. (The first author of Darknet)
- In Feb 2020, Joseph Redmon announced he was leaving the field of computer vision.
- Later YOLO v4, a more fast and efficient version of YOLO v3 was released in April 2020 by three authors: Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
- YOLO v4 is officially maintained in in Alexey's git repository

CHECKING OPENCY VERSION

- OpenCV needs to be updated to latest version (4.4 or above) for YOLOv4
- Verify the version. Uninstall current OpenCV if it's a lower version

```
: \ABHIS\tech\OCR and Object Recognition\code\test_env.py
                                                                 Console 1/A
                                                                 Python 3.7.6 (defa
                                                                 Type "copyright",
         # -*- coding: utf-8 -*-
                                                                 IPython 7.12.0 --
                                                                 In [1]: runfile('C
        @author: abhilash
                                                                 Recognition/code')
        #import the libraries
                                                                 4.3.0
        import pytesseract
        import pkg_resources
        import cv2
        #declaring the exe path for tesseract
        pytesseract.pytesseract.tesseract cmd = C: \P
        #printing the tesseract version
        print(pkg resources.working set.by key['pytess
        #print the opency version
        print(cv2. version )
  18
```

 Skip the 'OpenCV updating' part if the OpenCV version is 4.4 or above and proceed to 'Downloading YOLOv4 weights & config' section

UPDATING OPENCY VERSION

If the version is below 4.4:

Anaconda Prompt (anaconda3)

Close all Spyder or Anaconda Navigator windows and run uninstall command

UPDATING OPENCY VERSION

And check if the OpenCV version in the conda package list is an updated (4.4 or above) version

```
Administrator: Anaconda Prompt (anaconda3)

(base) C:\WINDOWS\system32>conda list
```

If YES, proceed with installation using 'pip install opency-python'

OBJECT

If NOT, proceed with a manual installation using a wheel file

numpy-base	1.18.1	py37hc3f5095_1	
numpydoc	0.9.2	py_0	
olefile	0.46	ру37_0	
opencv-python	4.3.0.36	pypi_0	pypi
openpyxl	3.0.3	ру_0	
openssl	1.1.1d	he774522_4	
packaging	20.1	py_0	

MANUAL OPENCV SETUP USING .WHL FILE

- Already downloaded and verified the OpenCV 4.4 version wheel file for Python 3.7 (or) 3.8 (or) 3.9 from https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv
- Downloaded into 'code/library' folder
- Find the appropriate version

MANUAL OPENCY SETUP USING .WHL FILE

- Then go inside that folder using 'cd' command
- And using pip install, install opency-python

VERIFY OPENCY VERSION

Now, open Spyder and Verify the OpenCV version

DOWNLOADING YOLOV4 WEIGHTS & CONFIG

- Already downloaded both version-4 weights and config into /dataset folder from the github https://github.com/AlexeyAB/darknet
- Tested and verified.

SAVE A COPY AND MAKE CHANGES IN THE CODE FOR THE FILE PATHS

Do the same change for image, real-time and pre-saved video exercises

```
pretrained volov4 image nms.pv
                                                                                                                       In |I|: runTile( C:/ABHIS/TECN/UC
                                                                                                                       Recognition/code/test env.py', wd
       #Green, Blue, Red, cyan, yellow, purple
                                                                                                                       tech/OCR and Object Recognition/c
       #Split based on ',' and for every split, change type to int
                                                                                                                       0.3.4
                                                                                                                       4.4.0
       #convert that to a numpy array to apply color mask to the image numpy array
       class_colors = ["0,255,0","0,0,255","255,0,0","255,255,0","0,255,255"]
                                                                                                                       In [2]: runfile('C:/ABHIS/tech/OC
       class_colors = [np.array(every_color.split(",")).astype("int") for every_color in class_colors
                                                                                                                       Recognition/code/pretrained yolo
                                                                                                                       wdir='C:/ABHIS/tech/OCR and Objec
       class colors = np.array(class colors)
       class_colors = np.tile(class_colors,(16,1))
                                                                                                                       predicted object person: 99.59%
41
                                                                                                                       predicted object car: 99.56%
42
       # Loading pretrained model
                                                                                                                       predicted object person: 98.82%
                                                                                                                       predicted object car: 98.62%
       # input preprocessed blob into model and pass through the model
43
                                                                                                                       predicted object bicycle: 98.30%
                                                                                                                       predicted object bicycle: 97.12%
       yolo_model = cv2.dnn.readNetFromDarknet('dataset/yolov4.cfg',|'dataset/yolov4.weights')
45
                                                                                                                       predicted object bus: 96.59%
                                                                                                                       predicted object car: 95.68%
```