Number of Laser Beams in a Bank

Anti-theft security devices are activated inside a bank. You are given a **0-indexed** binary string array bank representing the floor plan of the bank, which is an $m \times n$ 2D matrix. bank[i] represents the i^{th} row, consisting of i^{th} s and i^{th} s are the cell is empty, while i^{th} means the cell has a security device.

There is **one** laser beam between any **two** security devices **if both** conditions are met:

- The two devices are located on two different rows: r₁ and r₂, where r₁ < r₂.
- For each row i where r₁ < i < r₂, there are no security devices in the ith row.

Laser beams are independent, i.e., one beam does not interfere nor join with another.

Return the total number of laser beams in the bank.

["0 1 1 0 0 1",

"0 0 0 0 0 0 0",

"0 1 0 1 0 0 0",

"0 0 1 0 0 0"]

1 denotes security device 0 means no device

APPROACH:

- > Count num of devices in each row
- Multiply num of devices of first row with next and add to result

Edge-Case:

What if there is no device in any row??

Just skip that row and go to next row

DRY RUN:

Every Time we move to next row which has some devices then we will update prevRowDevices count!!!

```
int numberOfBeams(vector<string>& bank) {
            int n = bank.size();
            int prevRowDevices = 0;
            int ans = 0;
            for(int i = 0; i < n; i++){}
                int currRowDevices = 0;
10
11
                for(char ch: bank[i]){
12
                    if(ch == '1') currRowDevices++;
                }
13
14
15
                ans += prevRowDevices * currRowDevices;
16
                if(currRowDevices != 0){
                    prevRowDevices = currRowDevices;
17
18
                }
19
20
            return ans;
21
```

