Министерство образования РБ Белорусский национальный технический университет Факультет транспортных коммуникаций Кафедра «Геодезия и аэрокосмические геотехнологии»

Отчет по лабораторной работе № 3 «Уравнивание геодезического четырехугольника параметрическим способом» Вариант №6

Выполнил: ст.гр.11405118

Давидович Н.Ю.

Проверил:

ст. преподаватель Будо А. Ю.

Цель работы: выполнить уравнивание линейно-угловой сети в виде геодезического четырехугольника.

Исходные данные для выполнения поставленной задачи представлены в таблицах 1,2 и 3.

Таблица 1 – Измеренные стороны и направления.

Элемент					
Длины сторон d, м					
DB	817.690				
DA	1060.889				
1	Горизонтальное направление M_i , $^{\circ}$				
AB	0.00000000				
AC	23.174138889				
AD	50.109916667				
BC	0,00000000				
BD	48.397138889				
BA	132.947083333				
CD	0.00000000				
CA	48.521083333				
СВ	72.400027778				
DA	0.00000000				
DB	45.339944444				
DC	104.542138889				

Таблица 2 – Координаты исходных пунктов.

Пункт	N, м	Е, м
A	1094,000	112,000
В	1632,000	646,000

Таблица 3 – Приближенные координаты пунктов.

Пункт	N, м	Е, м
С	1608,000	1382,000
D	1003,000	1169,000

СКП измеренных расстояний вычисляют по формуле:

$$m = a + b \cdot D$$

где
$$a = 2$$
 мм, $b = 3$ ppm

Выполнив расчет получили, что СКП измеренных расстояний равно: m = 0.06169 дм.

Так как СКП угла тахеометра равно 2", то воспользовавшись нижеприведенной формулой можно найти СКО горизонтальных направлений.

$$m_M = \frac{m_\beta}{\sqrt{2}}$$

Результаты вычислений СКО представлены в таблице 4.

Таблица 4 – СКО горизонтальных направлений.

Направления	СКО направления "
AB	1,4142
AC	1,4142
AD	1,4142
ВС	1,4142
BD	1,4142
BA	1,4142
CD	1,4142

CA	1,4142
СВ	1,4142
DA	1,4142
DB	1,4142
DC	1,4142

Далее составляется матрица P, т.е. матрицы весов измерений размерности $N \times N$

$$P_i = \frac{1}{m_i^2},\tag{1}$$

где P_i — вес i-го расстояния или горизонтального направления; m_i — СКО измеренных расстояний или горизонтальных направлений.

Затем составляют матрицу коэффициентов параметрических уравнений поправок. Для этого заполняют матрицу частными производными по всем измерениям, по следующим формулам:

$$a_{ik} = -\rho \cdot \frac{E_k - E_i}{S^2}$$

$$b_{ik} = \rho \cdot \frac{N_k - N_i}{S^2}$$
(2)

$$S^{2} = (N_{k} - N_{i})^{2} + (E_{k} - E_{i})^{2}$$
(4)

По вышеприведенным формулам находят поправки для измеренных направлений.

Поправки для измеренных расстояний находятся по следующим формулам:

$$c_{ik} = \frac{E_k - E_i}{S}$$

$$d_{ik} = \frac{N_k - N_i}{S}$$

$$(5)$$

$$S = \sqrt{(N_k - N_i)^2 + (E_k - E_i)^2}$$

$$(7)$$

 $A = \begin{bmatrix} 0.000000 & 0.000000 & 0.000000 & 0.000000 & -1.000000 & 0.000000 & 0.000000 & 0.000000 \\ -13.955403 & 5.648092 & 0.000000 & 0.000000 & -1.000000 & 0.000000 & 0.000000 & 0.000000 \\ -0.000000 & 0.000000 & -19.370599 & -1.667667 & -1.000000 & 0.000000 & 0.000000 & 0.000000 \\ -27.995341 & -0.912892 & 0.000000 & 0.000000 & -1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -16.120940 & -19.388281 & 0.000000 & -1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 & -1.000000 & 0.000000 & 0.000000 \\ -10.679398 & 30.333502 & 10.679398 & -30.333502 & 0.000000 & 0.000000 & -1.000000 & 0.000000 \\ -27.995341 & -0.912892 & 0.000000 & 0.000000 & 0.000000 & -1.000000 & 0.000000 \\ 0.000000 & 0.000000 & -19.370599 & -1.667667 & 0.000000 & 0.000000 & -1.000000 & -1.000000 \\ 0.000000 & 0.000000 & -16.120940 & -19.388281 & 0.000000 & 0.000000 & -1.000000 \\ -10.679398 & 30.333502 & 10.679398 & -30.333502 & 0.000000 & 0.000000 & 0.000000 & -1.000000 \\ 0.000000 & 0.000000 & -0.768922 & 0.639342 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.085775 & 0.996314 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.085775 & 0.996314 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.085775 & 0.996314 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.085775 & 0.996314 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.085775 & 0.996314 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.085775 & 0.996314 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.085775 & 0.996314 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.085775 & 0.996314 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.085775 & 0.996314 & 0.000000 & 0.000000 & 0.0000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.085775 & 0.996314 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 &$

Далее необходимо составить вектор свободных членов для измеренных расстояний и направлений.

Для расстояний:

$$l = d_0 - d, (8)$$

где d_0 -вычисленное расстояние между пунктами

с помощью обратной геодезической задачи; d — измеренное расстояние между пунктами.

Для вычисления вектора свободных членов для измеренных направлений необходимо рассчитать на каждой станции ориентирующий угол нулевого направления.

Для вычисления ориентирующего угла (α_{ik}) нужно предварительно рассчитать значения румба (r)

$$r_{ik} = \arctan\left(\frac{E_k - E_i}{N_k - N_i}\right)$$
(9)

Далее анализируют в какой четверти лежит румб и в зависимости от четверти прибавляют константу Δ .

$$\alpha_{ik} = r_{ik} + \Delta, \qquad (10)$$

где $\Delta = 0$ для I четверти; $\Delta = 180$ для II и III четверти; $\Delta = 360$ для IV четверти. Теперь, рассчитав все необходимое, можно найти ориентирующий угол нулевого направления. Для этого стоит воспользоваться следующей формулой:

$$Z_0 = \frac{(\alpha_1 - M_1) + (\alpha_2 - M_2) + \dots + (\alpha_i - M_i)}{N}$$

где α_1 — вычисленный дирекционный угол M_1 — измеренное направление Затем вычисляют значения направлений M_0 :

$$M01 = \alpha 1 - Z0$$

$$M02 = \alpha 2 - Z0$$

$$\dots$$

$$M0n = \alpha n - Z0$$
(12)

После этого вычисляют векторы свободных членов:

$$L = \begin{bmatrix} M_{01} - M_1 \\ M_{02} - M_2 \\ & \dots \\ M_{0n} - M_n \end{bmatrix}$$

(13)

По результатам всех вышеперечисленных вычислений получаем матрицу L :

$$L = \begin{bmatrix} -35.709514 \\ -16.739929 \\ 52.449443 \\ 43.398113 \\ 15.988822 \\ -59.386935 \\ -145.570533 \\ 31.177536 \\ 114.392997 \\ 84.806880 \\ 72.723681 \\ -157.530561 \\ 3.381169 \\ 0.209868 \\ \end{bmatrix}$$

Теперь вычисляем вектор поправок в приближенные значения параметров. Для этого используем формулу:

$$\delta = -(A^{T}PA)^{-1}A^{T}PL$$
В результате:
$$0.352307$$

$$0.494062$$

$$0.452264$$

$$0.016488$$

$$-36.380652$$

$$-59.748605$$

$$10.379647$$

$$-2.815811$$

Прибавляя значения из вектора поправок к приближенным значениям соответствующих параметров, записываем уравненные координаты по результатам первой итерации (таблица 5).

Таблица 5 — уравненные значения после I итерации.

До уравнивания			После ура	авнивания
Пункт	N, м	Е, м	N, м	Е, м

A	1094,000	112,000	1094,000	112,000
В	1632,000	646,000	1632,000	646,000
С	1608,000	1382,000	1608,35231	1382,49406
D	1003,000	1169,000	1003,45226	1169,01648

Процесс повторяется, но в качестве координат приближенных пунктов принимают координаты полученные после первой итерации.

Итерации повторяем до того момента, пока поправки в координаты приближенных пунктов не станут меньше 0,0001 м. В результате, было выполнено два итерационных процесса. Окончательные координаты приближенных пунктов представлены в таблице 6.

Таблица 6 – Окончательные координаты пунктов.

Пункт	N, м	Е, м
С	1608,35231	1382,49406
D	1003,45226	1169,01648

Оценка точности

Вычислим СКП единицы веса по формуле:

$$\mu = \sqrt{\frac{V^T P V}{N - u}}$$

где N — число измерений; u — число определяемых параметров. Результат вычислений:

$$V^{T}PV = 3,397574$$

 $N = 14$
 $u = 8$
 $\mu = 0,752504$

Ковариационная матрица определяемых параметров:

$$Q = (A^T P A)^{-1}$$

Ковариационная матрица измерений:

$$Q_{v} = A \cdot Q \cdot A^{T}$$

Далее вычисляем СКП уравненных превышений:

$$m_i = \mu \cdot \sqrt{Q_{i,i}}$$

Таблица 7 – Вычисленные значения

$m(N_C)$	$m(E_C)$	$m(E_C)$	$m(E_D)$
0,004039 м	0,004188м	0,003650м	0,002848 м

Теперь вычисляем СКП уравненных измерений:

$$m_{Yi} = \mu \cdot \sqrt{Q_{Yi,i}}$$

Вычисленные значения:

$$m(M_{AB}) = 0.730386$$
"
 $m(M_{AC}) = 0.707149$ "
 $m(M_{AC}) = 0.738071$ "
 $m(M_{BC}) = 0.906266$ "
 $m(M_{BD}) = 0.827314$ "
 $m(M_{BA}) = 0.850648$ "
 $m(M_{CD}) = 0.892581$ "
 $m(M_{CA}) = 0.687615$ "
 $m(M_{CB}) = 0.824768$ "
 $m(M_{DB}) = 0.77692$ "
 $m(M_{DC}) = 0.917398$ "

$$m(S_{BD}) = 0.002807$$
M

Расчет эллипсов ошибок

Для расчёта параметров эллипсов ошибок вычислим вспомогательную величину W:

$$W = \sqrt{(Q_{i,i} - Q_{i+1,i+1})^2 + 4 \cdot (Q_i, i+1)^2}$$

Угол поворота большой полуоси эллипса относительно направления на север:

$$\phi = \frac{\pi}{2} - \frac{1}{2} \cdot \arcsin\left(\frac{2 \cdot Q_{i,i+1}}{W}\right)$$

Большая полуось эллипса ошибок:

$$a = \mu \cdot \sqrt{\frac{Q_{i,i} + Q_{i+1,i+1} + W}{2}}$$

Малая полуось эллипса ошибок:

$$b=\mu\cdot\sqrt{\frac{Q_{i,i}+Q_{i+1,i+1}-W}{2}}$$

Значение параметров ошибок:

 \mathcal{L} ля точки D:

W = 0.000150

 $\phi = 63.886653^{\circ}$

a = 0.003870

b = 0.002541

Для точки C:

W = 0.000043

 $\phi = 119.821938^{\circ}$

a = 0.004259

b = 0.003964

Статистический тест Хи-квадрат

Для того чтобы в Excel выполнить статистический тест необходимо воспользоваться следующими командами:

$$\chi^2_1 = XИ.ОБР(q/2;r)$$

$$\chi^2_2$$
 = XИ.ОБР(1 - $q/2$; r)
 χ^2_1 = 1,237344
 χ^2_2 = 14,449375

Далее необходимо выполнить следующие вычисления:

$$\sqrt{\frac{\chi_1^2}{r}} \le \mu \le \sqrt{\frac{\chi_2^2}{r}}$$

Результаты вычислений:

$$\sqrt{\frac{X_1^2}{r}} = 0,454199$$

$$\sqrt{\frac{X_2^2}{r}} = 1,551847$$

$$0,454199 \le 0,752504 \le 1,551847$$

Bывод:В результате было выполнено уравнивание линейноугловой сети в виде геодезического четырехугольника, проведена оценка точности и статический тест Xи-квадрат, который выполняется.