Chapter 11 Cryptology

Jason Pearson and Sam Demorest

March 30, 2015

Overview

Number Theory

Composite and Prime Numbers Greatest Common Divisor Prime Factorization Least Common Multiple

Euclid's Algorithm

Euclid's Algorithm Extension to Euclid's Algorithm

Modular Arithmetic

Group Theory
Congruency Modulo n

Subgroups Solving Modular Linear Equations

> Solving Modular Linear Equations

Computing Modular Powers

Computing Modular Powers

Finding Large Prime Numbers

Searching for a Large Prime Checking if a Number is Prime

RSA Public-Key Cryptosystem Public-Key Cryptosystems RSA Cryptosystem

Composite and Prime Numbers

Composite Numbers have a divisor other than itself and one. For example 4|20 means that 20=5*4 The divisors of 12 are 1,2,3,4,6 and 12 Prime numbers have no divisors but 1 and itself First 10 Primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Greatest Common Divisor

A common divisor is a number that is a factor of both numbers For example $\gcd(12,15)=3$

The greatest common divisor is the largest factor for both numbers

Prime Factorization

factorization of an integer

Every integer X > 1 can be written as a unique product of primes That is X = $p_1^{k_1} * p_2^{k_2} * ... * p_n^{k_n}$ Where $p_1 < p_2 < ... p_n$ and this representation of n is unique Example being 22,275 = $3^4 * 5^2 * 11$ There is no polynomial time algorithm for finding determining the

Least Common Multiple

Euclid's Algorithm

Extension to Euclid's Algorithm

Group Theory

Congruency Modulo n

Subgroups

Solving Modular Linear Equations

Computing Modular Powers

Searching for a Large Prime

Checking if a Number is Prime

Public-Key Cryptosystems

RSA Cryptosystem