MEM, N. W. BOX.

IONOSPHERIC DATA

Maria Maria

ISSUED FEBRUARY 1953

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

IONOSPHERIC DATA

CONTENTS

					Page		
Symbols, Terminology, Conventions	•	• (•	2			
World-Wide Sources of Ionospheric Data .	•	•	•	5			
Hourly Ionospheric Data at Washington, D.	C.	•	•	7.	13,	25.	52
Ionospheric Storminess at Washington, D. (3.	• (• •	7.	37		
Radio Propagation Quality Figures	•	6 (•	8,	38		
Observations of the Solar Corona		•	•	9.	40		
Relative Sunspot Numbers	•	• (• •	10,	44		
Observations of Solar Flares	•	•	• •	10,	46		
Indices of Geomagnetic Activity	•		•	11,	47		
Sudden Ionosphere Disturbances	•	•		12,	50		
Tables of Ionospheric Data	•	• •		13			
Graphs of Ionospheric Data	•	•		52			
Index of Tables and Graphs of Lonospheric in CRPL-F102				88			

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRFL-F89, "Icnospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations, and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above.

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, E, Q, S. or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are emitted from the median count.

c. For MUF factor (M-factors):

Values missing because of 6 or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For speradic E (Es):

Values of the missing because of B or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foll, or equal to or less than the lower frequency limit of the recorder.

Values of file missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for Movember 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- l. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful,

The same conventions are used by the CEPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IEPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CEPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an errousous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when for 2 is less than or equal to for leading to erroneously high values of monthly averages or median values.
- c. Caission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the file column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of fol. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and fol are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a some. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

of a long transfer on the long of the long of	1953	1952	1951	1950	1949	1948	1947	1946	1945
December		33	53	86	108	114	126	85	38
Lovember		38	52	87	112	115	124	83	36
October		43	52	90	114	116	119	81	23
September		46	543	91	115	117	121	79	22
August		49	57	96	111	123	122	77	20
July		51	60	101	108	125	116	73	
June		52	63	203	108	129	112	67	
May		52	68	102	108	130	109	67	
April		52	74	101	109	133	107	62	
March		52	78	103	111	133	105	51	
February		51	82	103	113	133	90	46	
January	30	53	85	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia Camberra, Australia Hobart, Tasmania Townsville, Australia

University of Gras: Gras. Austria British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.

Ibadan, Eigeria (University College of Eigeria)

Inverness. Scotland

Port Lockroy

Singapore, British Nalaya

Slough, England

Defence Research Board, Canada:

Baker Lake, Camada

Churchill, Canada

Fort Chimo, Canada

Ottawa, Canada

Prince Rupert, Canada

Resolute Bay, Canada

St. John's. Newfoundland

Winnipeg. Canada

Radio Wave Research Laboratories, Mational Taiwan University, Taipeh, Formesa, China:

Formosa, China

French Ministry of Maval Armasants (Section for Scientific Research):

Dakar, French West Africa

Djibouti. French Someliland

Tananarive, Madagascar

Institute for Ionospheric Research, Lindau Uber Hortheim, Hannever, Germany: Lindau/Harz, Germany

The Royal Metherlands Meteorological Institute: De Bilt, Holland

Icelandic Post and Telegraph Administration:

All India Radio (Government of India), New Delhi, India: Bombay, India

Reykjavik, Iceland

Delhi, India

Madras, India

Tiruchy (Tiruchirapalli), India

Indian Council of Scientific and Industrial Research, Radio Research Counittee:

Calcutta, India

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan:

Akita, Japan

Tokyo (Kekubunji), Japan

Wakkanai, Japan

Yamagawa, Japan

- Horwegian Defence Research Establishment, Kjeller per Lillestrom, Horway: Oslo, Morway Tromso, Horway
- South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa
- Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden: Eiruna, Sweden
- Research Institute of Mational Defence, Stockholm, Sweden: Upsala, Sweden
- Post, Telephone and Telegraph Administration, Berne, Switserland: Schwarzenburg, Switserland
- United States Army Signal Corps:
 Adak, Alaska
 Okinawa I.
 White Sands, New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):
Anchorage, Alaska
Baton Rouge, Louisiana (Louisiana State University)
Fairbanks, Alaska
Guam I.
Haui, Hawaii
Harsarssuak, Greenland
Panama Canal Zone
Point Barrow, Alaska
Puerto Rico, W. I.
San Francisco, California (Stanford University)
Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 73 to 84 follow the scaling practices given in the report IEFL-C61. "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 85 presents ionosphere character figures for Washington, D. C., during January 1953, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

Tables 86a and 86b give for December 1952 the radio propagation quality figures for the North Atlantic area, CRPL advance and short-term forecasts, a summary geomagnetic activity index and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures, separately for 00-12 and 12-24 hours UT (Universal Time or GCT). The basis of calculation is summarized below.
- (b) whole-day radio quality indices (beginning October 1952). Each index is a weighted average of the two half-daily Q-figures, before rounding off, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which designate whenever possible the days when significant disturbance or unusually quiet conditions will occur.
- (c) short-term forecasts, issued by CRPL every six hours (nominally one hour before 00^h, 06^h, 12^h, 18^h UT) and applicable to the period 1 to 13 (especially 1 to 7) hours ahead. The forecasts issued just prior to 00^h and 12^h UT are scored against the half-daily quality figures; the results for the intervening forecasts should be similar. Note that new scoring rules have been adopted beginning with October 1952 data.
- (d) advance forecasts, issued semiweekly (CRPL-J reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole-day quality indices.
- (e) half-day averages of the geomagnetic K indices measured by the Cheltenham Magnetic Observatory of the U. S. Coast and Geodetic Survey.
- (f) illustration of the comparison of short term forecasts and Q-figures.
- (g) illustration of the outcome of advance forecasts (1 to 3 or 4 days ahead) and for comparison the outcome of a type of "blind" forecast. For the latter the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

The radio propagation quality figures are prepared from radio traffic data reported to CRPL by American Telephone and Telegraph Company, Mackay Radio and Telegraph Company, RCA Communications, Inc., Marconi Company, British Admiralty Signal and Radar Establishment, and the following agencies of the U. S. government: -- FCC, Coast Guard, Navy, Army Signal Corps, Air Force (AACS), State Department. The method of calculation, summarized below, is similar to that described in a 1946 report, IRPL-R31, now out of print. Beginning with recalculated figures for January 1952, only reports of radio transmission on North Atlantic paths closely approximating New York-London are included in the estimation of quality. Observations of selected ionospheric characteristics, even though strongly correlated with radio transmission quality, and traffic reports for paths such as New York-Stockholm or New York-Tangier, previously included in the quality-figure determination with low weight, have been left out of the present calculations inasmuch as a sufficient number of homogeneous reports are now available.

The original reports are submitted on various scales and for various time intervals. The observations for each Greenwich half day are averaged on the quality scale of the original reports. These half-day indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by

comparing the distribution of these indices for at least four months, usually a year, with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. Each half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These quality figures are, in effect, a consensus of reported radio propagation conditions in the North Atlantic area. The reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. These considerations should be taken into account in interpreting research correlations between the Q-figures and solar, auroral, geomagnetic or similar indices.

Note. The North Pacific quality figures, which were published through October 1951, have been temporarily discontinued. Since the establishment of the North Pacific Radio Warning Service at Anchorage, Alaska, a larger number of reports are being received than were previously available in Washington. The preparation of the quality figures will be resumed when sufficient data have been accumulated for determination of conversion tables for these new reports.

OBSERVATIONS OF THE SOLAR CORONA

Tables 87 through 89 give the observations of the solar corona during January 1953, obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 90 through 92 list the coronal observations obtained at Sacramento Peak, New Mexico, during January 1953, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Material Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb, The time of observation is given to the nearest tenth of a day, GCT.

Table 87 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 88 gives similarly the intensities of the first red (6374A) coronal line; and table 89, the intensities of the second red (6702A) coronal line; all observed at Climax in January 1953.

Table 90 gives the intensities of the green (5303A) coronal line; table 91, the intensities of the first red (6374A) coronal line; and table 92, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in January 1953.

The following symbols are used in tables 87 through 92: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

RELATIVE SUNSPOT NUMBERS

R₂₀ as communicated by the Swiss Federal Observatory. Table 90 continues the new series of American relative sunspot numbers, R_A1. Beginning with 1951, the observations collected by the Solar Division, AAVSO, have been reduced according to a new procedure, such that only high quality observations of experienced observers are combined into R_A1. Observatory coefficients for each of the 28 selected observers were recomputed on data for 1948-1950, years when there was a wide range of solar activity. Otherwise, the procedure is that outlined in Publication of the Astronomical Society of the Pacific, 61, 13, 1949. The scale of the American numbers in 1951 differs from that of the reports for earlier years because of these changes, and the new series is designated R_A2 rather than R_A. The American relative sunspot numbers appear monthly in these pages as communicated by the Solar Division.

OBSERVATIONS OF SOLAR FLARES

Table 95 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRFL are the fellowing observatories: Mt. Wilson, McMath-Eulbert, U. S. Haval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris), and the data are taken from the Paris-VESIgram broadcast, monitored fairly regularly by the CRFL. The data on selar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Essearch and Development Contract administered by the Air Force Cambridge Research Laboratories,

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maxisum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Fine (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 96 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures. C; (2) geomagnetic planetary three-hour-range indices, Ep; (3) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a menth, its geomagnetic activity is assigned by weighting equally the following four criteria: (1) G; (2) the sum of the eight Ep's; (3) the greatest Ep; and (4) the sums of the squares of the eight Ep's.

Ep is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g. 5- is 4 2/3. 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. G., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44

and 1949, in these CEPL-F reports. F65-67: for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with date on sudden commencements (sc) and solar flare effects (sfo).

The diagram showing Kp indices for the year 1952 appears on pages 48 and 49. Monthly tables of Kp have been given in these CRFL-F reports beginning with January 1951 in 879. The Kp indices are plotted according to 27-day solar rotations.

The Committee on Characterization of Magnetic Disturbance. ATME, NCCO, has kindly supplied this table. The Meteorelogical Office, De Bilt, Molland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index. At the meeting of ATME held in Brussels in August 1951, it was decided that the computation of Ew would be discontinued after the month of December 1951 since Ep is available from January 1, 1940. Ew, therefore, no longer appears in these reports.

SUDDEN IONOSPHERE DISTURBANCES

Table 97 shows that no sudden ichesphere disturbances were observed during the month of January 1953 at Washington, D. G. Table 93 lists the sudden ichosphere disturbances observed at Mederborat den Berg, Betherlands, on various days from January 9 through October 4, 1952.

Time	h'F2	foF2	h'Fl	foFl	hiz	foll	?Es	(M3000)F2
				1022		100		
00	(270)	2.5						3.0
01	(270)	2.5						3.0
02	270	2.6						3.0
03	250	2.7						3.1
Oth	250	2.8						3.1
05	240	2.6					2.2	3.1
06	(250)	2.3						3.2
07	250	2.5						(3.2)
08	220	4.6	220	ecmed	(120)	1.8	1.7	3.5
09	230	5.7	220	3.0	120	2.3	5.0	3.5
10	250	6.0	220	3.8	110	2.7		3.4
11	250	6.8	210	3.9	110	2.9		. 3.h
12	250	6.4	23.0	3.9	110	3.0		3.4
13	260	6.4	210	3.9	110	2.9		3.4
14	260	6.4	220	3.8	110	2.8		3.3
15	250	6.3	220	country	110	2.5		3.4
16	240	6.0	220	0-0	120	2,1		3.4
17	220	5.2			110	and it		3.4
18	220	4.7						3.3
19	220	3.8						3.4
20	240	2,9						3.2
21	(260)	2,5						3.1
24	(000)	2.6						3.3

22 (250) 2.6 23 (250) 2.3 Time: 75.0°%. Sweep; 1.0 No to 25.0 No in 15 seconds.

Tromso,	Norway	(69.7°N,	19.0°E)	-	•		Dec	ember 1952
Time	P123	foF2	h'Fl	foFl	h'E	foE	⊈Be	(M3000)F2
00		(2.7)					3.7	
01	(335)	(2.7)					4.0	(2.8)
02	(320)	(2.6)					4.0	(2.9)
03	(295)	(2.4)					3.2	(2.9)
ا بان	(305)	2.4					3.0	2.8
03 04 05 06	300	2.0					3.0	2.9
	295	1.9					3.0	3.0
07	(280)	1.8					3.0	(3.0)
08	270	1.7					2.8	3.1
09	250	2.3					2.5	3.1
10	235 225	3.2			145	1.2	1.3	3.4
11	225	3.8				1.2	2.0	3.4
12	230	4.0		-			2.4	3-4
13 14	230	3.8				(1.1)	2.7	3.4
14	245	3.2				(1.0)	2.0	3.2
15 16	250	2.6			~		2.7	3.1
	(265)	2.2					3.0	(3.1)
17	(265)	(2.1)					3.0	
18	***	(1.8)					3.5	man.
19	40.00						3.8	-
20	4019 -	-					3.8	
21		****					3.8	
22							3.6	
23							3.8	

Table 3

Time: 15.0°E.
Sweep: 0.6 Mc to 25.0 Mc in 5 minutee, automatic operation.

War ser		reenland					De	cember 1952
lime	P. LS	foF2	P13.3	foF1	h'E	foE	fBs	(M3000)12
00		(3.3)					5.0	
Ol		(3.3)					5.0	
02							5.2	
03	340	(3.2)					5.4	(2.9)
04	300	(3.1)					4.9	3.0
05	300	2.8					4.1	(3.0)
06	(290)	(2.3)					4.0	(3.2)
07	(280)	(2.0)					3.4	
08	(280)	(2.2)					2.3	3.1
09	230	(3.6)					2.1	3.4
10	240	(4.6)						(3.4)
11	250	(5.0)						3-4
12	250	5.3						3.3
13	240	(5.0)	260					(3.3)
14	250	(4.7)						(3.3)
15	250	(4.6)					2.8	(3.2)
16	260	(4.0)					3.5	(3.0)
17	(320)	(3.5)					4.9	(2.8)
18	(340)	(3.4)					4.5	(2.9)
19	(310)	(3.0)					4.5	(2.9)
20	(330)	(3.0)					5.6	(3.0)
21	(310)	(3.3)					5.6	(2.9)
22	(310)	(3.7)					6.9	(3.1)

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 eeconds.

				Table 2						
Point	Barrow, A	laska (7	1.3°N,	156.8°W)			December 1952			
Time	F.13S	fo#3	h'Fl	foFl	h'E	fol	120	(M3000)F2		
00							5.1	-		
0.2							6.3			
02		(3.0)					7.0	-		
03		(2.0)					5.0	40 KINES		
04		102 607 408					4.9	minanus		
05 06		-					4.6	MPMP 400		
06							4.7	-		
07 08	j	***					5.0			
08							5.0	SHOULE		
09 10	< 320	(2.4)					4.6	(3.1)		
10		(2.5)					4.5			
11 12 13 14 15 16	260	3.2					3.7	3.1		
12	240	3.6					2.6	3.1		
13	260	3.7					2.1	3.1		
114	270	3.8					2.3	3.1		
15	250	3.2					2.1	3.0		
16	280	3.0						3.0		
17	< 290	2.7					2.6	(2.8)		
18		(2.1)					3.7	en-emission		
19	(320)	(3.0)					3.7	42 CF-60		
20	(290)	(2.5)					3.6	(3.0)		
21		(3.0)					4.7	med		
22		old release					5.8	6F (3F4B)		
23							6.5	40-40-40		

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

				Teble 4				
Fairb	anks, Ala	ske (64.9	9°N, 147	.897)			De	cember 1952
Time	p.133	foWa	h'F1	foFl	h I E	foli	1Te	(ME000)F2
00							6.4	
01	300	(2.9)					6.6	
02	(320)	(3.0)					7.0	
03	(320)	(2.7)					6.6	
04	(320)	(2.6)					7.4	(2.8)
05							7.0	
06	(310)	(2.5)					7.0	
07	(300)	(2.5)					7.3	(3.0)
08	(280)	(2.0)					6.4	(3.0)
09	260	(3.1)					2.6	(3.0)
10	240	4.0						3.2
11	240	4.5						3.2
12	240	4.7						3.3
13	240	5.2						3.3
14	240	4.8						3.2
15	230	(4.0)						3.2
16	240	3.3						3.0
17	240	(2.6)					5.6	(3.2)
18	(260)	(2.0)					4.2	(3.2)
19							6.8	
20		(1.9)					6.6	
21							5.8	
22							6.2	
23	(300)	(3.7)					5.6	

Time: 150.0 %. Sweep: 1.0 Mc to 25.0 Mc in 15 esconds.

				Table 5					
Oelo,	Norway (60	0.0°N, 1	1.1°E)				December 1952		
Time	. F.LS	foF2	h'31	foFl	h · E	fol	fEo	(M2000)L3	
00	(315)	1.8					2.7	(2.8)	
01	310	1.6					2.9	3.0	
02	310	1.6					2.7	2.9	
03	310	1.5					2.9	2.9	
04	305	1.4					2.9	2.9	
05	295	1.6					2.7	3.0	
06	275	1.6					2.9	3.0	
07	270	1.6					2.6	3.1	
08	260	1.8				-	2.7	3.1	
09	225	3.5					3.0	3-4	
10	215	4.4	(235)		145	1.8	3.1	3.6	
11	215	5.0	225		1110	1.9	3.1	3.6	
12	215	5.7	225	ration and	110	2.0	3.1	3.6	
13 14	220	5.6	225	cons	110	2.0	3.1	3.6	
14	220	5.4	230		11,5	1.8	3.1	3.5	
15	215	4.8		-		1.6	2.9	3.5	
16	220	4.2					2.6	3.3	
17	230	3.4						3.3	
18	245	2.4						3.2	
19	270	1.9						3.0	
20		1.8						3.0	
21		1.6					2.2	700	
22		1.6						-	
23		1.6							

Time: 15.0°E. Sweep: 1.3 Mc to 14.0 Mc in 8 minutee, automatic operation.

		_		Table 7	2			
Upsala	, Sweden	(59.8°N,	17.6°E)				Decemb	er 1952
Time	h1#2	foF2	h'Fl	foFl	hiE	foE	fEt	(M3000)F2
00	(350)	1.6						(2.9)
01	320	1.7					3.1	2.9
02	330	1-7					2.9	2.9
03 04	310	1.6					2.7	2.9
OL	350	1.6					2.8	2.8
05	(340)	1.6						(3.0)
06	(340)	1.5					2.8	(3.0)
07	(330)	1.5						
08	250	2.5				E		3.1
09	215	4.1			1010	(1.5)	2.4	3.5
10	215	4.8	-		130	(1.8)		3.6
11	220	5.4	230	(2.5)	130	1.9		3.6
12	220	5.8	225	2.6	125	2.0	2.0	3.5
13	220	5.8	230	2.5	130	1.8	2.3	3.5
1/4	220	5.1			145	1.7	2.3	3.5
12 13 14 15 16	210	4.4				E		3.5
16	225	3.6						3.3
17	240	2.8					1.7	3.2
18	250	2.2					2.9	3.2
19	(290)	1.8					2.8	3.0
20	(340)	1.6					2.7	(3.0)
21	(420)	1.6						
22	(360)	1.6						(2.8)
.23	(355)	1.6						(2.8)

Time: 15.0°E.
Sweep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

				Table	2			
Graz,	Austria	(47.1°N,	15,5 11)				Dec	ember 1952
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	3.2						
01	280	3.1						
02	290	3.2						
03	290	3.2						
Off	280	2.9						
05	260	2.8						
06	250	2.4						
07	250	2.8						
08	200	4.4						
. 09	200	5.9						
10	210	6.8						
11	210	6.8						
12	200							
13	210							
14	220	6.3						
15	200							
16	200							
17	240							
18	250							
19	250							
20	250							
21	250							
22	280							
23	290	3.0						

Time: 15.0°E.
Sweep: 2.5 No to 12.0 Mc in 2 mimutee.

Table 11

White 8	ands, Ne	w Mexico	(32.3°N,	106.50	W)		December 1952			
Time	h'F2	foF2	h'F1	foFl	h'E	fol	fBs	(M3000)12		
00	270	3.2						3.2		
01	260	3.2						3.2		
02	250	3.3						3.2		
03	240	3.2						3.2		
04	230	3.1						3•3		
05	250	2.8						3.2		
06	260	2.8					2.3	3.1		
07	230	3.9						3.4		
08	220	5.8	220		110	2.0	2.7	3.6		
09	240	6.3	220	3.8	110	2.5	3.0	3.6		
10	240	6.4	210	4.0	110	2.8	3.3	3•5		
11	250	7.0	200	4.1	100	2.8	3.1	3.4		
12	250	8.0	210	4.2	100	3.0	3.2	3.3		
13 14	240	7.8	210	4.1	100	2.9	3.1	3.5		
11/4	240	6.9	210	3.9	100	2.8	3.0	3.5		
15	230	6.3	210	3.3	100	2.6	3.3	3.6		
16	220	6.0			110	2.1	3.0	3.6		
17	210	5.1					2.7	3.6		
18	220	3.4					2.9	3.4		
19	230	3.0					2.6	3.4		
20	240	2.7					2.6	3.5		
21	250	2.7					3.1	3.2		
22	270	2.8					2.4	3.1		
23	260	3.0						3.1		

Time: 105.0°W. Sweep: 1.0 Me to 25.0 Mc in 15 seconds.

,	Alaska (5		.76.6°₩)	Table	8		_	
								cember 1952
Time	h'F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2
00	260	2.8						3.0
01	250	2.8						3.0
02	260	2.8						3.0
03	260	2.8						3.0
04	260	2.8					1.5	3.0
05	270	2.9						3.0
06	240	2.9						3.2
07	220	2.6						3.2
08	210	4.3		-	-	1.8	1.8	3.5
09	220	5.5	200	49.00	110	(2.1)		3.6
10	220	6.2	210		(110)	2.3		3.6
11	220	6.2	(210)			2.5		3.6
12	220	6.3	210			-		3.6
13	230	6.4	220	CD-M-MI	110			3.5
14	210	6.3			(120)	2.2		3.7
15	200	5.6			-			3.7
16	200	4.3						3.6
17	210	3.0						3.6
18	220	2.5						3.4
19	240	2.2						3.3
20	220	2.2						3.3
21	260	2.2					1.1	3.1
22	260	2.5					2.0	3.0
23	260	2.8					1.8	3.1

23 | 260 2.8 Time: 180.0 W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

San Fr	ancisco,	Californ	ia (3 7. 4	Table 1 ON, 122.			December 1952		
Time	h'F2	foF2	h'Fl	foFl	h E	foE	fEa	(M3000)F2	
00	(270)	(2.9)					2.2	(3.1)	
01	(240)	(3.0)						(3.3)	
02	(240)	(2.8)					2.2	3.2	
03	(240)	(2.8)					2.4	(3.2)	
04	(250)	(2.9)						(3.2)	
05	(260)	(2.9)						(3.1)	
06	(250)	(2.8)					2.3	(3.2)	
07	230	(3.5)					2.4	(3.3)	
80	210	5.6			120	2.0	2.0	3.6	
09	220	6.4	210	(3.4)	120	2.4	3.2	3.7	
10	230	6.2	200	(3.8)	110	2.7	2.6	3.6	
11	570	7.6	200	(4.0)	110	2.9		3.5	
12	230	(7.5)	200	(4.0)	110	3.0	2.2	3.5	
13	230	7.0	210	(3.9)	110	2.9	2.3	3.5	
14	230	6.7	220	(3.6)	110	2.8		3.5	
15 16	220	6.4	220		120	2.5	2.7	3-6	
16	550	5.8					2.9	(3.5)	
17	210	4.9					3.1	3.6	
18	(230)	(3.4)					3.6	(3.4)	
19	220	(2.9)					3.2	(3.6)	
50	(220)	(2.7)					2.7	(3.5)	
21	(230)	(2.6)					2.4	3.4	
22	(240)	(2.6)					2.2	(3.2)	
23	(270)	(2.9)					2.2	(3.1)	

23 (270) (2.9)
Time: 120.0°W.
Swaop: 1.0 Mc to 25.0 Mc in 15 seconds.

					12			
Baton	Rouge.	Louisiana	(30.5° M.	91.2°W)		Dec	ember 1952
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	3.3					2.4	3.1
01	260	3.3					2.5	3.2
02	250	3.3						3.2
03	240	3.3						3.3
04	240	3.1					2.2	3.3
05	250	3.0					3.1	3.1
06	260	3.0					2.3	3.2
07	230	4.2					2.6	3.4
08	230	0 6,0	210		130	2.1	4.5	3.6
09	250	6.5	230		120	2.5	6.2	3.5
10	250	6.9	220	4.0	110	2.9	6.2	3.5
11	264	7.0	210	. 4.1	110	3.0	6.2	3.4
12	260	7.6	220	4.2	110	3.0	6.2	3.3
13	260	8.0	220	4.2	110	3.0	6.0	3.4
1,4	25	0 7.4	220	-	110	2.8	5.8	3.5
15	244	0 6.9	220		120	2.5	4.1	3.5
16	23	0 6.6			120	2.1	3.8	3.5
17	22	0 5.5					3.6	3.5
18	22	0 3.9					3.4	3.5
19	25	0 3.0					3.1	3.3
20	26	0 2.8					3.1	3.2
21	27						3.1	3.2
22	27						2.8	3.2
23	28						2.8	3.0

23 | 280 3.1 Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

				Table 1	13			
Okinaw	a I. (26.	3°N, 127	.8°E)				Dec	ember 1952
Time	h'F2	foF2	h'F1	foF1	h!E	foE	fBe	(M3000)F2
00	290	2.7						3.0
Ol	290	2.7						3.0
02	280	2.8						3.0
03	280	. 2.8						3.0
04 05	250	2.8						3.1
05	280	2.4						3.1
06	270	2.4			200	3 -		3-2
07	240	4.9			130	1.7	1.9	3.5
08	250	6.6	240		120	2.2	3.2	3.6
09	250	7.1	230	(1 0)	120	2.5	3.8	3.4
10	260	8.3	220	(4.2)	120	2.7	4.0	3.4
11	270 280	8.2	210	(4.3)	120	2.8	4.2	3.3
12		8.6 10.1	220 220	(4-4)	120 120	2.8	4.1	3.2
13 14	270 260	9.4	230	4.3	120	2.8	4.6	3.3
15	250	8.5	240		120	2.6	3.7	3.3
16	240	7.9	240		120	2.3	3.5	3.4 3.4
17	220	7.0	240		120	60)	3.1	3.6
18	210	4.4					3.1	3.4
19	230	4.5					2.8	3.1
20	240	4.8					2.2	3.2
21	230	4.3					2.2	3.3
22	250	3.4						3.2
23	260	3.0						3.0

Time: 127.5°E.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				19016	15			
Puerto	Rico, W.	I. (18.5	ON, 67.2	OW)			Dece	mber 1952
Time	h'F2	foF2	h'F1	foF1	h1E	folk	fEs	(M3000)15
00	260	4.1						3.1
01	250	4.4						3.1
02	240	4.6					1.9	3.3
03	230	4.4						3.5
04	240	3.6					1.9	3.3
05	250	3.1					2.4	3.2
06	240	3.0			100		2.5	3.2
07	230	4.3			(100)		2.8	3.4
08	230	5.8	230		110	2.2	3.0	3.5
09	250	7.1	230		100	2.7		3.4
10	250	7.9	220	4.2	100	3.0		3.5
11	260	7.6	220	4.3	100	3.2		3.5
12	260	7.3	220	4.5	100	3.3		3.5
13	270	6.9	210	4.5	100	3.2		3.3
14	280	7.3	220	4.4	100	3.1	3.8	3.2
15	260	7.7	220	(4.3)	100	3.0	4.4	3.4
16	240	7.2	220		100	2.6	4.5	3.5
17	220	6.6	230		100	2.1	3.7	3.5
18	220	5.8			(100)		3.3	3.5
19	220	4.2					3.2	3.5
20	240	3-3					3.1	3.1
21	280	3.4					2.7	3.0
22	270	3.7						3.0
23	270	4.0						3.0

Time: 60.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table 1	2			
Panama	Canal Zo	ne (9.4°	N, 79.9°	N)			Dec	ember 1952
Time	h'F2	foF2	h'F1	foFl	hIE	foE	fEs	(M3000)F2
00	230	3.9					2.0	(3.3)
01	220	3.3					2.7	3.5
02	230	(2.6)					2.1	(3.1)
03	250	2.3					2.1	3.0
04	240	2.0					1.9	2.9
05	270	2.2					3.5	2.8
06	260	2.6					2.5	2.9
07	240	5.1			(130)	(1.8)	3.7	3.3
08	260	6.8	<240		110	2.5	4.2	3.2
09	270	8.1	230	(4.4)	110	(2.9)	4.2	3.1
10	<280	9.0	220	4.5	110	3.1	4.5	3.2
11	270	9.2	220	4.6	110	3.3	4.5	3.2
12	290	8.8	220	4.7	110	3.4	4.9	3.0
13	290	8,6	220	4.6	110	3.4	5.0	2.9
14	290	8.6	(220)	4.6	110	3.2	5.0	3.0
15	280	9.3	220	4.4	110	3.1	4.9	3.1
16	250	8.6	220		110	2.7	5.2	3.3
17	230	7.3			120	2.2	4.3	3.5
18	220	5.3					3.7	3.4
19	230	3.9					4.1	3.3
20	230	3.2					4.1	3 • 2
21	260	3.0					3.1	2.8
22	280	(3.4)					2.4	(2.9)
23	260	(3.8)					2.5	(3.0)

23 | 260 (3.8) Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Pa	hì	6	72

				THOLO	14			
Maui,	lawarii (2)	0.8°N, 1	56.5°W)				Dec	ember 1952
Timo	P. L.	foF2	h'Fl	foFl	h1E	fol	fEe	(M3000)IS
	270	3.0					2.5	3.0
01	27	2.8					2.4	3.0
02	250	3.0					1.9	3.3
03	230	3.4					1.3	3.5
04	220	2.2					1.8	3.5
05	280	1.9					1.7	3.0
06	300	2.1					1.8	2.9
07	250	4.0			160	1.5	2.2	3.2
08	250	6.L	240		120	2.4	3.4	3.3
09	280	7.8	230		110	2.8	3.8	3.3
10	270	9.0	220	4.3	110	3.0	4.2	3-3
11	280	9.5	220	4.5	110	3.2	4.4	3.2
12	280	9.5	220	4.6	110	3.2	4.5	3.1
13	290	10.1	210	4.5	110	3.2	4.4	3.1
14	270	10.4	230	4-4	110	3.1	4.8	3.2
15	250	9.9	230		110	2.9	4.8	3.3
16	240	8.2	230		110	2.5	4.5	3.5
17	230	6.8			110		4.5	3.6
18	220	5.4					4.5	3.6
19	220	3.6					4.4	3.4
20	(260)	3-4					4.4	2.9
21	240	4.1					4.6	3.1
22	240	3.8					3.5	3.2
23	250	3.4					3.4	3.1

Time: 150.00%. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 16

Ouam I	. (13.6°N	144.90		20020 20			Decem	ber 1952
Time	h'F2	foF2	h'F1	foFl	h1E	for	fBq	(M3000)IS
00	240	3.8						3.3
Ol	250	3.5						3.3
02	260	3.4						3.2
03	250	3.2						3.4
04	250	2.9						3.3
05	250	2.5						3.4
06	250	2.2			_			3.1
07	240	5.1			130	2.0		3.5
08	(260)	7.0	220		110	2.4		3-3
09	290	8.8	210	4.3	110	2.8	3.8	3.1
10	300	9.4	200	4.4	110	3.0	- 0	2.9
11	300	9.2	200	4.5	110	3.2	3.8	2.7
12	300	8.7	200	4.5	110	3.2	3.5	2.7
13	320	8.8	200	4.5	110	3.2	4.3	2.7
14	310	9.1	20-0	11-11	110	3.1	4.1	2.8
15	290	9.2	210		110	3.0	4.5	2.9
16	270	9.7	220		110	2.7	4.8	3.1
17	240	9.6	230		110	2.2	3.8	3.3
18	220	9.3					3.0	3.4
19	210	8.4					3.1	3.4
20	550	7.2					3-8	3.3
21	230	6.4					3.6	3.2
22	230	5.5					2.6	3-4
23	230	4.6						3.4

Time: 150.0°E.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 18

Sweden	(67.8°N,	20.5°E)				Nov	ember 1952
h'F2	foF2	h'F1	foF1	h1E	foE	fBa	SI(000EM)
370	(2.9)					2.7	(2.8)
350	2.9					2.8	2.8
315	3.0					2.5	2.9
300	2.8					2.0	2.8
300	2.9					1.7	2.8
305	2.6						3.0
300	2.1						3.0
300	2.5					1.5	3.0
250	3.2						3.2
250	4.1						3.4
240	5.0						3.4
230	5.3			*****			3.3
	5.4						3.4
	5.0				100-00-00		3.3
							3.2
							3.2
						2.0	(3.2)
							(3.1)
							(2.9)
							(2.9)
							(2.9)
							(2.9)
							(2.9)
							(2.9)
	h'F2 370 350 315 300 300 305 300 250 250	h'F2 foF2 370 (2.9) 350 2.9 315 3.0 300 2.8 300 2.9 305 2.6 300 2.1 300 2.5 250 3.2 250 h.1 2h0 5.0 230 5.3 2h0 5.h 2h0 5.0 230 h.2 255 (3.7) (260) (2.8) (300) (2.7) (335) (2.1) (320) (2.7) (335) (3.0)	370 (2.9) 350 2.9 355 2.6 300 2.8 300 2.9 305 2.6 300 2.1 300 2.5 250 3.2 250 1.1 210 5.0 230 5.1 210 5.0 230 5.1 210 5.0 230 5.1 210 5.0 230 (2.7) (330) (2.7) (310) (2.1) (320) (2.7) (335) (3.0) (311)	h'F2 foF2 h'F1 foF1 370 (2:9) 350 2.9 315 3.0 300 2.8 300 2.9 305 2.6 300 2.1 300 2.1 300 2.5 250 3.2 250 3.3 210 5.4 210 5.0 230 1.2 210 5.0 230 1.2 210 5.0 230 1.2 210 2.3 210 2.3 210 3.3	h'F2 foF2 h'F1 foF1 h'E 370 (2*9) 350 2*9 315 3*0 300 2*8 300 2*8 300 2*1 300 2*5 250 3*2 250 1*1 210 5*0 230 5*3 210 5*1 210 5*0 230 1*2 240 5*0 230 1*2 240 5*0 230 1*2 240 5*0 230 1*2 240 5*0 230 1*2 240 5*0 230 1*3 240 5*0 230 1*3 240 5*0 230 1*3 240 5*0 230 1*3 240 5*0 230 1*3 240 5*0 230 1*3 240 5*0 230 1*3 240 5*0 230 1*3 240 5*0 230 1*3 240 5*0 230 1*3 240 5*0 255 (3*7) (360) (2*7) (310) (2*1) (320) (2*7) (335) (3*0) (3*1)	h'F2 foF2 h'F1 foF1 h'E foE	h'F2 foF2 h'F1 foF1 h'E foE fBa

Time: 15.00E. Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

				Table 19	2			
Churc	hill, Ca	nada (58.	.8°N, 94.	2°W)			No	vember 1952
Time	hIF2	foF2	h'F1	foFl	h I E	fol	fEs	(M3000)F2
00	300	2.4				2.8	5.2	(3.1)
01	290	2,6			-,	(2.8)	6.0	(3.0)
02	(300)	2.8			(120)	2.2	4.8	(3.0)
03	(300)	2.4			(110)	2.4	4.0	(2.9)
04	(320)	<2.8			110	2.8	2.9	(2.8)
05					110	2.8		
06	(290)	<3.0			110	3.1	3.7	
07	(280)	<3.0			110	(3.0)	3.6	
08	250	3.5			110	2.7		3.2
09	250	4.6			120	2.4		3.3
10	270	5.1	260					3.2
11	280	5.4	240					3.2
12	280	5.6	250					3.2
13	280	5.8	260			2.3		3.2
14	270	6.0						3.2
15	260	5.8			120	(2.1)		3.2
16	250	5.2			110	2.2		3.1
17	270	4.2			120	2.0		3.0
18	290	4.0			110	2.2		2.9
19	300	3.2			110	2.9		3.0
20	300	3.5			120	2.6	2.8	2.9
21	290	3.4			120	2.6	5.1	3.0
22	310	3.0			120	2.4	5.6	(2.9)
.23	300	2.8			120	2.4	5.3	3.0

Time: 90.00%. Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

				Table	21			
De Bil	t, Hollan	d (52.1°	N, 5.2°E)				Nove	mber 1952
Time	h'#2	foF2	h'F1	foF1	h'E	foE	2Be	(M3000)F2
00		3.0			-			3.0
01	<270	3.0						3.0
02	<270	2.8						3.0
03		2.5						3.0
04		2.2						3.2
05		2.0						(3.2)
96		2.0						3.1
07	210	3.8			-	E		3.5
08	205	5.1				1.8	2.2	3.7
09	210	5.9	(210)	(2.9)	120	2.2	2.9	3.7
10	220	6.3	200	3.4	105	2.4		3.7
11	220	6.6	200	3.5	105	2.5	2.5	3.6
12	220	6.6	200	3.4	120	2.5	3.2	3.7
13	220	6.4	(210)	(3.2)	120	2.4	2.8	3.6
11	220	6.4			120	2.2	2.8	3.7
15	205	5.8			140	1.8		3.6
16	200	4.8						3.5
17	220	4.0						3.4
18	215	3.6						3.3
19	220	3.2						3.4
20	220	2.7						3.3
21		2.6						2.9
22		2.7						3.0
23		2.8						3.0

23 \ -- 2.8

Time: 0.00.

Sweep: 1.4 Mc to 11.2 Mc in 6 minutes, automatic operation.

Vinnip	Winnipeg. Oanada (49.9° H. 97.4° W) Hovember 1952											
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2				
00	320	2.3						3.0				
01	320	2.4						2.9				
02	330	2.5					3.1	2.8				
03	310	2.4					4.2	2.8				
04	320	2.6					4.2	2.8				
05	300	2.6					3.8	2.9				
06	330	2.5					3.4	(2.9)				
07	300	2.6					3.0	3.0				
08	240	3.9	240		110	1.8		3.3				
09	240	4.6	220	-	110	2.0		3.3				
10	250	5.1	220	3.3	110	2.3		3.3				
11	260	5.6	230	3.7	110	2.5		3.3				
12	270	6.0	230	3.8	110	2.5		3.3				
13	260	6.2	230	3.7	120	2.5		3.3 3.3				
14	250	6.3	230		120	2.4		3.3				
15	540	6.3	230	-	120	2.3		3.4				
16	230	6.2	230			2.0		3.4				
17	220	5.2						3.3				
18	230	4.3						3.2				
19	250	3.4						3.2				
20	260	2.6						3.1				
21	280	2.3						3.1				
22	300	2.2						3.0				
23	300	2.2						3.0				

Time: 90.0°W. Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

Prince	Rupert.	Canada	Ho	Hovember 1952				
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00		1.5					2.5	
01		1.6					2.5	
02		1.6					3.4	
03		1.8					3.1	
04		1.9					3.8	
05		1.8					2.6	
06		1.9					3.6	
07		1.9					2.0	
80		3.2					2.1	
09		4.2				1.9	2.0	
10		5.0				2.2	2.8	
11		5.7		3.5		2.3		
12		6.2		3.4		2.4		
13		6.2				2.4		
14		6.3				2.3		
15		6.0				2.1		
16		5.8				1.8		
17		5.0				~~		
18		3.8					2.2	
19		2.8						
20		2.1						
21		1.8						
22		1.8						
23		1.8						

23 1.8

Time: 120.0°%.
Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

Linden	/Hars.	Cormany	(51.6° N.	10.1°E	Non	November 1952		
Time	h'F2	foF2	h¹Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	280	2.9					2.6	3.0
01	265	3.0					2.6	3.0
02	270	2.9					2.5	3.0
03	260	2.8					2.6	3.0
04	250	2.6					2.6	3.0
.05	250	2.1					2.5	3.1
06	245	2.1					2.6	3.3
07	230	2.8			w e0-m	16	2.2	3.3
08	210	4.6				E	2.5	3.6
09	215	5.5	200		115	2.1	3.2	3.6
10	220	6.2	210		105	2.3	3.4	3.6
11	225	6.6	210		105	2.4	3.4	3.5
12	220	6.8	205		105	2.6	3.5	3.6
13	220	6.5	205		105	2.5	4.0	3.5
14	220	6.4	210		110	2.3	3.3	3.5
15	220	6.2			120	2.0	3.2	3.6
16	210	5.4				E	3.1	3.5
17	210	4.6					3.0	3.4
18	225	3.8					2.4	3.3
19	230	3.4					2.4	3.3
20	230	3.0					2.2	3.3
21	250	2.6					2.2	3.1
22	275	2.6					2.2	3.0
23	280	2.7					2-4	3.0

23 | 280 2.7 Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

St. J.	hate. No	of ound las	nd (47.6	°E. 52.7				Hovember 1952		
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F		
00	300	2.2						2.8		
01	300	2.0						2.8		
02	310	2.2						2.9		
03	300	2.2						3.0		
Ott	280	2.0						3.0		
05	300	1.8					2.8	3.0		
06	270	2.2			***	E		3.0		
07	230	4.0	230		120	E		3.4		
80	230	5.2	220	3.0	120	2.0		3.5		
09	240	5.5	210	3.4	110	2.4		3.5		
10	250	6.1	210	3.6	110	2.6		3.4		
11	250	6.4	220	3.7	120	2.7		3.4		
12	250	6.6	220	3.7	110	2.7		3.4		
13	250	6.8	230	3.5	120	2.6		3.4		
14	240	6.7	240	3.4	120	2.3		3.4		
15	230	6.3	-	40-44	120	3		3.4		
16	230	6.0				3		3.4		
17	230	5.2				E		3.2		
18	240	4.3						3.1		
19	250	3.4						3.0		
20	270	2.8						3.0		
21	300	2.5						2.8		
22	300	2.3						2.8		
23	300	2.1						2.8		

Time; 60.0°W. Sweep: 0.6 Mc to 20.0 No in 15 seconds.

Schwarzenburg, Switzerland (46.8°N, 7.3°E) November 1952										
Schwarz	zenburg,	Switzerl	and (46.	8°N, 7.3	Œ)		Nov	ember 1952		
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEe	(M3000)F2		
00	300	3.0						3.1		
01	300	3.2						3.1		
02	300	3.2						3.1		
03	300 -	3.2						3.1		
04	285	3.0						3.3		
05	255	2.8						3.4		
06	240	2.5						3.6		
07	230	3.0						3.5		
80	220	5.0						3.8		
09	220	5.5			110	2.2		3.8		
10	230	6.4			110	2.5		3.7		
11	230	6.7			105	2.6		3.7		
12	230	7.0			1,00	2.7		3.7		
13	230	6.6			100	2.6		3.7		
14	230	6.2			110 120	2.6		3.7 3.7		
15	230	6.6			120	2.3		3.7		
16	220	6.0						3.7		
17	210	5.0						3.5		
18	230	3.3						3.5		
19	240	3.2						3.5		
20 21	240 260	3.1 3.0						3.4		
	300	2.9						3.2		
22	300	3 1						3.1		

Time: 15.0°E. Sweep: 1.0 Mc to 25.0 Mc in 30 eeconds.

Teble 27

Wakkans	i, Japan	(45.4°N,	141.70	3)			No	vember 1952
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M30CO)F2
00	310	3.3						2.8
01	300	3.3					1.6	2.8
02	310	3.3						2.8
03	300	3.3						2.8
04	300	3.4					1.6	2.9
05	280	3.2						3.0
06	270	3.2						3.0
07	270	5.4			140	1.6		3.1
08	270	6.7			130	2.1		3.2
09	270	7.1	250	3.4	120	2.4	3.0	3.1
10	280	7.9	260	3.9	120	2.6		3.1
11	280	8.2	260	3.8	120	2.6		3.2
12	260	7.8	260	3.8	120	2.6		3.2
13	280	6.9	260	3.4	120	2.4		3.2
14	270	6.6			120	2.2		3.2
15	260	6.4			120	2.0	2.3	3.2
16	250	5.4					2.6	3.2
17	260	3.8					2.4	3.1
18	280	3.2					2.2	3.0
19	280	3.2					2.1	2.9
20	290	3.2						2.9
21	300	3.2						2.9
22	300	3.2						2.8
23	310	3.2						(2.8)

Time: 135.0°E. Sweep: 1.0 Mc to 15.5 Mc in 2 minutes.

				Table	29			
Formoea	, China	(25.0°N,	121.5°E)				Nove	ember 1952
Time	P.LS	STot	h'Fl	foFl	h'Z	fol	fBs	(N3000)F3
. 00	280	3.4					2.1	2.9
01	260	3.7					2.2	3.1
02	270	3.2					1.8	3.0
03	220	3.4					2.2	3.3
04	210	3.0					2.6	3.5
05	<240	2.1					2.3	2.9
06	255	3.4					2.2	3.1
07	225	5.9			120	2.0	2.9	3.5
08	240	7.0			120	2.6	3.6	3.4
09	270	8.3	230	4-3	120	2.9	4.0	3.4
10	270	9.8	220	4.5	(120)	3.1	4.2	3.4
11	280	10.5	2 2 0	4.5	(120)	3.2	h.4	3.4
12	270	11.7	210	4.5	(120)	3.2	4.4	3.2
13	280	13.0	230	4.5	(120)		4.6	3.3
13 14	260	14.2	230	4.4	(120)		4.8	3.4
15	240	12.2	220	(4.2)	(120)		4.4	3.5
15 16	230	9.9			(120)		4.0	3.5
17	200	9.0			(100)	1.8	4.0	3.7
18	200	6.6					3.7	3.4
19	225	5.6					4.0	3.0
20	240	5.7					3.7	3.0
21	240	5.0					3.0	3.3
22	240	4.0					2.6	3.0
23	<280	3.5					2.2	3.0

Time: 120,008. Sweep: 1.5 Mc to 19.5 Mc in 15 minutes, manual operation.

Table 26

			į.	INDIA SC	2			
Ottawa,	Canada	(45.4°N,	75.7°W)				Nov	ember 1952
Time	h [†] F2	foF2	h'Fl	foFl	h¹ E	foE	fEs	(M3000)F2
00	(285)	2.0						(3.0)
01	(295)	2.0						(3.0)
02	(285)	2.0					1.8	(3.1)
03	(285)	1.9					2.2	(3.0)
0./,	(285)	2.0						(3.1)
05	(285)	1.9					2.4	(3.1)
05	(285)	2.0						(3.1)
07	(255)	3.2			(105)	1.7		(3.3)
C8	(225)	4.7	()		(105)	2.0		(3.5)
09	(235)	5.6	(225)		(105)	2.4		(3.4)
10	(245)	6.1	(205)		(115)	2.7		(3.4)
11	(255) (265)	6.4	(215)		(105) (115)	2.8		(3.3)
12	(255)	7.0 6.9	(225) (225)		(115)	2.8		(3.4) (3.4)
13 14	(255)	6.9	(225)		(115)	2.7		(3.4)
15	(245)	6.9	(245)		(115)	2.3		(3.4)
16	(225)	6.6	(44))		(11)			(3.4)
17	(215)	5.9						(3.4)
18	(225)	4.8						(3.3)
19	(235)	3.8						(3.3)
20	(255)	3.0						(3.3)
21	(285)	2.6						(3.2)
22	(285)	2.4						(3.1)
23	(295)	2.0						(3.1)

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 28

Akita,	Japan (39.7°N,	140.1°E)		_		No	vember 1952
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	3.3					2.5	3.0
01	280	3.3					2.4	2.9
02	280	3.3					2.4	3.0
03	270	3.3					2.4	3.0
04	260	3.2					2.4	3.1
05	240	3.1					2.2	3.2
06	240	3.2					2.0	3.2
07	220	5.7			120	1.8	2.5	3.5
80	220	7.0	210		110	2.3	3.2	3.6
09	230	7.4	220	3.7	110	2.6	3.5	3.5
10	240	7.5	220	4.0	110	2.8	3.5	3.5
11	240	8.2	220	3.9	110	2.8	3.5	3.5
12	240	7.9	220	4.0	110	2.9	3.4	3.5
13	240	7.3	220	3.8	110	2.8	3.4	3.4
14	240	6.9	230		110	2.6	3.5	3.4
15	230	6.8	230		110	2.3	3.4	3.5
16	220	5.8			110	1.8	3.3	3.6
17	220	4.3					3.2	3.4
18	240	3.7					3.0	3.2
19	250	3.4					2.9	3.1
20	250	3.2					2.6	3.2
21	260	3.1					2.6	3.1
22	270	3.2					2.4	3.1
23	280	3.2					2.5	3.0

Time: 135.0°E.

Sweep: 1.0 Mc to 17.0 Mc in 10 minutes, manual operation, from 1st to 12th; 0.85 Mc to 22.0 Mc in 6 minutes, automatic operation, from 15th to 30th.

Table 30

Resolut	te Bay,	Canade (7	4.7°N,	94.9°W)			00	tober 1952
Time	h¹F2	foF2	b'Fl	foFl	h [†] E	foE	fEs	(M3000)F2
00	260	3.0						2.9
01	260	3.0						3.0
02	250	3.0						3.0
03	260	3.0						3.0
04	270	3.0						2.8
05	280	3.0						2.9
06	260	2.8						3.0
07	260	3.6	~					3.0
08	260	3.8						3.0
09	250	4.0						3.0
10	250	3.9	240	3.0				3.0
11	250	4.0	250	3.0				3.0
12	260	4.0	240	3.0				3.0
13	260	4.0	250	3.0				3.0
14	260	4.0	250	3.0				3.0
15	250	3.8						3.0
16	250	4.2						3.0
17	240	4.1						3.0
18	260	4.0						3.0
19	250	3.7						2.9
20	260	3.6						3.0
21	270	3.1						2.9
22	250	3.0						3.0
23	250	3.1						3.0

Time: $90.0^{\circ}W$. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table 31				
Baker :	Lake, Car	nada (64.	з ^о н, 96.	(W ⁰ 0.			00	tober 1952
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	260	2.8				E	6.0	2.9
01	270	2.6				E	5.9	2.9
02	260	2.6				E	5.0	2.9
03	300	2.5				E	5.2	2.8
04	300	2.4				1.4	5.7	2.8
05	290	2.5				1.5	6.0	2.8
06	280	2.7			100	1.8	4.0	3.0
07	290	2.9		-	100	2.0	5.0	3.0
08	260	3.7	230	2.8	100	2.1	3.8	3.0
09	260	3.9	230	3.0	100	2.4	3.6	3.0
10	290	4.2	220	3.2	100	2.5	2.8	3.0
11	320	4.3	270	3.4	100	2.8		3.0
12	320	4.5	250	3.5	100	2.8		3.0
13	320	5.0	230	3.4	100	2.5		2.9
14	300	5.1	240	3.3	100	2.6		2.9
15	270	50	250	3.2	110	2.4		2.9
16	250	4.9	260	2.9	110	2.3	3.3	3.0
17	260	4.0			110	2.3	4.7	3.0
18	260	4.0			100	2.0	5.0	2.9
19	260	3.7			110	1.8	6.0	2.9
20	240	3.3				1.6	7.0	2.9
21	250	3.1				1.6	7.0	2.9
22	250	3.2				E	6.2	2.9
23	260	3.0				E	7.0	2.9

Time: 90.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

Anchora	ge, Alas	ka (61.2°	N. 149.	9°W)			00	tober 1952	Sept. 1952*
Time	F.LS	foF2	h'F1	foFl	h'E	foE	fBs	(M2000)F2	(K3000)#2
00	360	2.8					2.1	2.8	2.8
01	350	2.5					3.2	2.9	2.9
02	330	2.8					2.7	2.8	2.8
03	(360)	2.4					3.2	2.8	2.8
Off	340	2.4					2.8	(2.8)	2.7
05	(320)	(2.3)					2.0	(2.8)	2.9
06	300	2.4						3.0	3.1
04 05 06 07 08	260	3.1						3.2	2.9
08	260	3.8	230					3.2	2.6
09	280	4.4	230		120	2.1		3.2	2.7
10	300	4.7	220	3.6	120	(2.3)		3.2	2.8
11	300	4.9	220	3.6	120	24		3.2	2.9
12	300	5.1	220	3.6	110	2.6		3.2	2.8
13	280	5.0	230	-	120	2.4		3.2	2.8
11,	270	5.0	230		120	2.2		3.2	2.9
13 14 15 16 17	250	5.0	230	-				3.3	3.0
16	240	4.8						3.3	3.1
17	230	4.5						3.3	3.2
18	240	3.8						3.2	3.2
19	250	3.0						3.2	3.1
20	280	2.8						3.1	3.0
21	290	2.4						3.1	3.0
22	(300)	(2.0)						(3.0)	3.0
23	(320)	(2.6)					3.0		3,0

Time: 150.00%. Sweep: 1.0 Mc to 25.0 Mc in 15 ecconds. "This column supersedes the corresponding column in CEFL-F99, page 13. table 3.

				Table 3	5			
Fort C	Chimo, Ca	neda (58	.1ºN, 68.	.3°W)			00	tober 1952
Time	h¹F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	340	2.4			110	2.4	5.0	(2.7)
01	310	<2.6			110	2.7	4.5	(2.9)
02	(320)	<2.3			110	2.6	3.1	
03	(350)	<2.8			110	3.0		
04		<2.8			110	3.0		
05	(340)	3.6			100	3.5	4.0	
06	340	3.0			100	3.6	3.2	(2.9)
07	320	4.0			110	3.4		3.0
08	300	4.3	250		110	2.7		3.0
09	320	4.7	250	3.6	110	2.6		3.0
10	310	5.0	250	3.7	110	2.6		3.0
11	320	5.2	260	3.8	110	2.8		2.9
12	320	5.3	260	3.7	110	2.7		2.9
13	310	5.3	260	3.7	110	2.7		2.9
14	320	5.2	280	3.5	110	2.8		2.8
15	300	5.0	290		120	2.5		2.8
16	300	4.2			115	2.8		2.9
17	320	<3.6			110	2.5		2.8
18	340	3.4			110	2.6	2.3	2.8
19	320	3.2			110	2.5	5.0	2.8
20	310	2.9			115	2.2	5.0	2.8
21	300	3.0			100	2.3	5.2	2.8
22	310	2.9			120	2.3	5.4	2.9
23	310	2 8			770	2.2	76	2.8

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

Table 32										
Reykja	vik, Igel	and (64.	1°N, 21.	9°W)			Oct	ober 1952		
Time	h'F2	foF2	h'Fl	foFl	h1E	foB	fBe	(M2000)15		
00				_			4.9			
01	.===.						4.5	4777.		
02	(300)	(3.6)					5.3	(2.9)		
03 04	(320)	(2.5)					4.9	(2.9)		
0/1	(310)	(2.4)					3.6	(2.9)		
05	(300)	(2.4)					3.4	(3.0)		
05 06 07		(2.2)				-	3.2	*****		
07	(260)	2.5						3.2		
08	2 40	3.7	(444)		100			3.3		
09	240	4.5	(220)		110			3.3		
10	240	4.6	220		110			3.3		
11	250	5.1	220	3.5	110	(2.2)		3.3		
12	250	5.4	220	(3.5)	110	(2.3)		3.3		
13	260	5.4	220	(3.6)	110	(2.3)		3.3		
14	250	5.1	230	-	120			3.2		
15 16	240	4.9	230		130	(2.2)		3.2		
16	250	4.6	2 3 0		140			3.2		
17 18 19	250	(4.3)			120		3.6	(3.2)		
18	270	(4.0)			120		4.0	(3.2)		
19	280	(3.6)			-		4.5	(3.0)		
20	(270)	(3.4)	,				4-4	(3.1)		
21							5.7			
22		(3.2)					5.2	*****		
23	35 004						5.0			

Time: 15.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Teble 34

				TODIO	44			
Chur ch	ill, Cana	de (58.8	9N, 94.	2°W)			00	tober 1952
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	3.0					6.0	
01	300	2.8					5.4	
02	300	2.7			100	1.9	4.0	
03	300	2.5			120	2.8	5.0	(2.7)
04	330	3.2			110	2.4	3.6	(2.8)
05	300	3.0			110	2.4	2.3	
06	(300)	3.0			100	3.0	4.1	****
07	300	3.6			100	3.0	3.7	(3.1)
08	300	4.1	280	(3.9)	100	3.0		3.2
09	300	4.4	250	3.5	100	2.6		3.0
10	300	4.8	240	3.6	100	2.8		3.0
11	330	5.0	230	3.8	100	2.6		3.0
12	320	5.0	220	3.8	110	2.8		3.0
13	300	5.3	240	3.8	110	2.7		3.0
14	300	5.3	240	3.6	110	2.6		3.0
15	290	5.5	280	3.3	120	2.7		3.0
16	290	5.3			120	2.5		3.0
17	280	5.0			120	2.2		3.0
18	300	4.6			120	2.4	3.0	3.0
19	280	4.0			120	2.8	3.9	3.0
20	300	3.5			130	2.4	5.3	2.8
21	300	3.3			120	2.5	6.6	(2.8)
22	300	3.2			140	2.4	8.1	(2.7)
23	300	2.9					8.0	(2.7)

Time: 90.0°W.
Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

Table 36

				Table	30			
Prince	Rupert,	Caneda	(54.3°N,	130.3°W)			Oct	ober 1952
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fBe	(M3000)}2
00	300	1.6					2.2	2.8
01	320	1.7					4.0	2.7
02	330	1.8					4.0	2.6
03	360	1.9					4.0	2.6
OL	320	2.0					4.0	2.6
05 06	320	1.8					3.8	2.5
06	320	1.7					3.8	2.6
07	270	2.6				-	2.0	2.8
08	240	3.8			110	1.9	2.1	2.9
09	220	4.3	220		110	2.2		2.9
10	300	4.6	210	3.6	110	2.5		2.8
11	310	5.0	210	3.7	110	2.6		2.9
12	310	5.2	210	3.8,	110	2.8		2.8
13	300	5.2	2 20	3.9	110	2.8		2.8
14	280	5.3	220	3.7	110	2.6		2.9
15	260	5.1	220	3.7	110	2.4		2.9
16	240	5.0	240		110	2.1		3.0
17	240	4.9			120	1.8		3.0
18	240	4.5						3.0
19	240	3.6						2.9.
20	250	2.8						2.9
21	290	2.1						2.8
22	290	2.0					1.6	2.9
23	300	1.7						2.8

Time: 120.0°W. Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

	Table 37									
Idndau,	/Harz, Ge	rmany (5	1.6°N, 1	0.1°E)			0c	2.9 2.9 2.9 2.9 2.9 3.0 3.1 3.1 3.1 3.5 3.5 3.5 3.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1		
Time	F112	foF2	h'F1	foFl	FIE	foE	23a	(M3000)F2		
00	300	3.0					2.4			
01	290	3.0					2.3			
02	280	2.9					2.4			
03	280	2.8					2.4			
011	280	2.4					2.4			
05	260	2.2					2.4			
06	260	2.3				E	2.5			
07	230	4.0				E	2.5			
08	225	5.2	225		120	2.0	2.8			
09	240	5.6	220	3.8	110	2.4	3.4			
10	260	6.0	210	3.8	105	2.6	3.9			
11	260	6.6	210	3.8	105	2.7	4.0			
12	260	6.6	210	4.0	105	2.7	4.5			
13	250	6.5	220	3.9	100	2.6	4.2			
14	250	6.6	220		110	2.6	3.5			
15	240	6.4	230		110	2.4	3.4			
16	230	6.0			120	2.1	3.4			
17	225	5.8		-		E	3.1			
18	225	5.6				E	3.1			
19	230	5.4					2.8			
20	230	4.3					2.6			
21	250	3.5					2.6			
22	280	3.0					2.4			
23	290	2.9					2.5	2.9		

21 250 3.5 22 280 3.0 23 290 2.9 Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Nc in 8 minutes.

	Table 39										
t. Joh	m'e.	Newf	oundlend	(47.6° H.	52.7° W))			October 1952		
14-0	l h	192	Par2	hITT	folia	HIE	foz	120	(M2000)#2		

Time	h'F2	foF2	h'F1	fo#1	FIE	foE	file	(M2000)#2
00	310	2.5					2.6	2.8
01	320	2.5						2.8
02	300	2.4					2.8	2.9
03	300	2.3					3.0	2.9
Op	260	2.0	-				2.9	3.0
05	270	1.9	***			28	2.8	3.0
06	240	3.3			120	3		3.2
07	240	4.8	230	3.1	120	2.2		3.3
08	260	5.4	220	3.5	120	2.3		3.3
09	270	5.9	210	3.8	110	2.6		3.3
10	280	6.1	200	4.0	110	2.8		3.3
11	270	6.3	210	4.0	110	2.9		3.3
12	280	6.5	220	4.0	110	2.9		3.3
13	280	6.3	220	4.0	110	2.8		3.2
14	280	6.1	240	3.8	120	2.6		3.2
15	270	6.3	240	3.5	120	2.3		3.3
16	250	6.1	240	3.1	130	1.8		3.3
17	240	5.9			****	Z		3.2
18	240	5.4				E		3.2
19	240	4.4						3.1
20	260	3.8						3.0
21	280	3.0						2.8
22	300 320	2.8						2.8

23 | 520 2.7

Time: 60.0°W.
Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

Wakkanai, Japan (45.4°N, 141.7°E)

wakkan	aı, Japan	(45°4_N°	THITOLO	E)			06	2.6 2.8 2.0 2.7 2.4 2.8 2.2 2.8 1.6 2.7 2.9 3.0 3.1 2.7 3.1	
Time	h¹F2	foF2	h'Fl	foFl	h1E	folk	file	(M3000)#2	
00	320	3.4					2.6	2.8	
01	320	3.6					2.0	2.7	
02	320	3.5					2.4	2.8	
03	310	3.6					2.2	2.8	
04	300	3.6					1.6	2.7	
05	300	3.7						2.9	
06	270	4.7						3.0	
07	280	5.9	-		130	2.2		3.1	
08	280	7.0	270	3.6	120	2.4	2.7	3.1	
09	290	7.6	260	3.8	120	2.6	3.6	3.1	
10	290	8.0	260	4.0	120	2.6	3.4	3.1	
11	290	8.1	260	4.0	120	2.8		3.1	
12	290	8.0	270	4.0	120	2.8		3.1	
13	280	7.2	270	4.0	120	2.7		3.1	
11,	290	7.0	260	4.0	120	2.6		3.1	
15 16	290	7-1	280	3.5	120	2.3	3.0	3.1	
16	270	6.6			120	2.0	2.7	3.1	
17	260	6.0					2.9	3.1	
18	270	4.8					2.6	3.0	
19	290	4.2					2.5	2.9	
20	280	3.9					2.2	2.9	
21	310	3.6					1.6	2.8	
22	310	3.4						2.8	
23	320	3-4					2.6	2.8_	

Time: 135.0°E.
Sweep: 1.0 Mc to 15.5 Mc in 2 minutes.

				Table	18			
Wirmip	eg, Canad	a (49.99	N, 97.4°	d)			0c	tober 1952
Time	P125	203'2	P13,3	foFl	FIE	foE	fBs	(M2000)IS
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	350 330 320 330 350 340 320 260 250 270 290 330 300 300 300 280	2.4 2.4 2.7 2.5 2.5 2.3 4.0 5.0 4.5 5.5 5.6 6.8	220 220 210 200 210 210 210 220 230	3.6 3.8 4.0 4.0 3.9 3.6	120 110 110 110 110 110 110	2.1 2.4 2.6 2.8 2.9 2.8 2.7 2.5	3.0 3.6 3.6 1.0 1.0 1.0 1.0 1.0	2.8 2.9 2.8 2.9 2.7 2.8 2.9 3.2 3.2 3.2 3.2 3.1 3.1 3.2 3.2
16 17 18 19 20 21 22 23	260 250 240 250 260 270 300 320	5.6 5.4 5.0 4.2 3.5 2.9 2.6 2.4	240		120	2.3		3.2 3.1 3.0 3.1 3.0 3.0 3.0

Time: 90.00%. Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

Table 40

					_			
Ottawa,	Canada	(45.4°).	75.7°W)					October 1952
Time	h!F2	foT2	h'F1	foFl	h * E	foE	£3e	(M3000)F2
00	320	2.2						3.0
01	310	2.2						3.0
02	310	2.0						3.0
03	(320)	2.0						3.0
04		(1.8)					2.2	(3.1)
05	age-Circum	2.0					3.7	(3.0)
06	300	2.3						3.1
07	260	4.2			130	1.8		3.3
08	260	5.2	240	404	130	2.3		3.3
09	280	5.8	240	3.8	130	2.7		3.3
10	290	6.2	230	4.0	130	2.8		3.3
11	300	6.7	230	4.0	1.20	2.9		3.2
12	300	6.7	230	4.2	130	3.0		3.2
13	300	6.6	240	4.0	120	3.0		3.2
14	290	6.8	250	3.9	130	2.8		3.2
15	280	6.4	250	-	130	2.6		3.2
16	260	6.2				2.0		3.2
17	250	6.0				-		3.2
18	250	5.3						3.1
19	260	4.6						3.2
20	270	3.5						3.1
21	290	3.0						3.0
22	300	2.8						2.9
23	310	2.4						2.9

23 | 310 2.4 Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 42

Alcita,	Japan (3	9.7°N,	140.1°E)				Oc	tober 1952
Time	h'F2	foF2	h'F1	foFl	P₁E	foE	2Be	(M2000)13
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	280 290 280 280 250 220 230 220 230 250 260 260 260 230 220 230 220 230 220 230 220 230 270 270	3.6 3.45 3.43 3.63 3.66 7.64 7.77 8.33 7.88 7.88 7.88 7.83 7.83 7.83	220 220 220 220 220 220 220 220 220 230	4.2 4.2 4.45 4.5 4.5 4.5 4.0 3.6	1100 1100 1100 1100 1100 1100 1100 110	1.6 2.2 2.7 2.9 3.0 3.1 3.0 3.0 2.9 2.6 2.3	2.3 2.4 2.4 2.6 2.0 3.7 2.0 3.7 4.0 4.3 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3	3.0 3.0 3.0 3.0 3.1 3.1 3.5 3.1 3.3 3.1 3.3 3.3 3.3 3.4 3.3 3.3 3.4 3.3 3.4 3.3 3.4 3.5 3.1 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7

Time: $135.0^{\circ}E_{\star}$ Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

				Table	43			
Tokyo,	Japan (39	.7°N,	139.5°E)				Oct	ober 1952
Time	P112	foF2	h1371	foFl	h'E	foE	1Ba	(M3000)F2
00	280	3.4.					2.6	2.9
01	270	3.4					2.5	2.9
02	270	3.4					2.5	2.9
03	260	3.4					2.5	2.9
04	260	3.3					2.5	3.0
03 04 05	250	3.3			-		2.5	3.0
06	230	4.8			1110		2.5	3.3
07	230	6.7	240		120	2.2	3.0	3.4
08	21to	7.7	230	4.0	110	2.6	3.8	3.4
09	250	7.2	220	4.2	110	2.8	4.0	3.4
10	260	8.0	220	4.3	110	3.0	4.0	3.2
11	260	8.4	220	4.5	110	3.1	4.0	3.3
12	260	8.7	200	4.5	110	3.2	4.2	3.2
13	270	8.4	230	4.5	110	3.0	4.1	3.2
17'	270	8.4	240	4.2	110	2.9	3.8	3.2
15	250	7.6	240	3.8	110	2.6	4.0	3.3
16	240	7.3	250		120	2.3	3.9	3.3
17	230	7.0					3.1	3.3
18	230	5.6					3.2	3.3
19	240	4.6					3.6	3.1
20	260	4.0					3.0	3.0
21	260	3.7					3.0	2.9
22	290	3.6					3.0	2.9
_23	300	3,5					2.6	2,9

22 | 290 | 3.6 23 | 300 | 3.5 Time: 135.0°E. Sweep: 1.0 Hc to 17.2 Mc in 2 minutes.

				Sable 4	5		
Formosa	, China	(25.0°N,	121.5°E)				
Time	בווב	2°L°1	P1117	foF1	h ¹ Z	foB	
00	280	4.4					- 2
01	260	4.2					- 1
02	245	4.1					- 4

Formos	ı, China	(25.0°N)	121.5°E)				Oc.	tober 1952
Time	b'F2	ro∏2	ከተምኒ	foF1	h1Z	foB	1B2	(MS000)#2
00	280	4.4					2.8	3.0
01	260	4.2					2.8	3.1
02	245	4.1					2.4	3.2
03	235	4.0					2.3	3.2
OL	240	3.1					2.2	3.1
05	<260	2.6					2.0	3.0
06	240	4.3					2.2	3.2
07	240	7.0			(120)	2.2	3.3	3.5
80	240	8.0	235		(120)	2.6	4.0	3.3
09	260	8.6	230	4.5	(120)	3.0	4.2	3.2
10	280	10.4	230	4.6	(120)	3.2	4.6	3.2
11	280	11.2	220	4.6	(120)		4.7	3.2
12	280	12.7	210	4.6	(120)		4.4	3.0
13 11,	280	14.2	220	4.6	(120)	Miles III	4.7	3.2
11/1	280	15.1	220	4.5	(120)		4.4	3.3
15 16	250	15.0	220	4.3	(120)	40-years	4.6	3.4
16	240	14.1			(120)		4.2	3.3
17	220	11.6			(120)		3.7	3.6
18	200	9.2					3.8	3.4
19	200	7.7					3.0	3.3
20	220	6.2					3,0	3.1
21	240	5.7					3.0	3.1
22	245	4.6					2.7	3.0
23	280	4.0					2.6	2.9

Time: 120.0°E.
Smmep: 1.5 Me to 19.5 Me in 15 minutes, manual operation.

Table 47

	Table 47								
Johann	ooburg.	Union of	S. Africa	(26.2	s. 28.1	L°Z)	Oct	ober 1952	
Time	h¹F2	foF2	h'Fl :	foFl	h¹E	foE	fEs	(M3000)F2	
00	250	3.7						3.0	
01	250	3.8						3.1	
02	240	3.5						3.1	
03	250	3.0						3.0	
04	270	2.9					1.5	3.0	
05	260	3.0						3.0	
06	240	4.8				1.8		3.4	
07	260	6.0	230	3.8	110	2.4		3.4	
80	270	6.7	220	4.2	110	2.9		3.3	
09	290	7.0	210	4.5	110	3.1	3.6	3.2	
10	300	7.1	200	4.6	110	3.3	3.6	3.1	
11	320	7.8	200	4.6	110	3.5		3.0	
12	310	8.6	200	4.7	110	3.5		2.9	
13	300	8.6	210	4.6	110	3-5		3.0	
14	300	8.5	220	4.5	110	3.4	3.5	3.0	
15	290	8.6	220	4.4	110	3.2	3.6	3.0	
16	270	8.2	230	4.0	110	2.8	3.7	3.1	
17	260	8.2	230	3.6	120	2.4	3.4	3.2	
18	230	8.2				-	2.4	3.3	
19	220	7.0					1.8	3.3	
20	230	5.8						3.2	
21	240	4.6						3.1	
22	260	4.1						3.0	
23	260	4.0						3.1	

Time: 30.0°5. Sweep: 1.0 No to 15.0 No in 7 seconds.

Table Wa

Yamagan	wa, Japan	(31.2°N,	130.6°E)	and the same of th			0c	tober 1952
Timo	h'I'2	foF2	Pill	foFl	P1E	fol	fBs	(M3000)F2
00	280	3.4					2.9	3.0
01	270	3.4					2.5	3.0
02	260	3.3					2.5	3.0
03	250	3.3					2.4	3.1
OL;	250	3.2					2.4	3.3
95	250	3.0					2.3	3.2
06	240	3.3					2.2	3.2
07	230	6.1			130	1.9	2.9	3.5
-08	240	6.9	220		110	2.5	3.5	3.5
09	240	7.8	220	4.1	100	2.8	3.8	3.5
10	250	8.1	210	4.5	100	3.0	3.8	3.3
11	260	8.9	210	4.5	100	3.1	3.8	3.2
12	270	10.0	200	4.5	.100	3.2	3.8	3.2
13	270	1.0.0	200	b.7	100	3.2	3.8	3.2
14	270	10.4	230	4.5	100	3.0	3.8	3.3
15	250	10.0	570	4.3	100	2.8	3.8	3.3
16	240	8.4	230	3.6	100	2.5	3.8	3.4
17	230	7.6	230		110	2.0	3.8	3.4
18	210	6.8					3.5	3.5
19	210	4.5					3.0	3.5
20	260	3.7					3.0	3.0
21	260	3.9					3.0	3.0
22	260	3.5					3.0	3.0
23	290	3.4					2.8	3.0

October 1952

Time: 135.0°E.
Sweep: 1.0 Mc to 22,0 Mc in 2 minutes.

Table 46

					or construction of the last			
Capato	wn, Union	of B.	Africa	(34.2°8.	18.3°E)		0e	oher 1952
Time	h'F2	foF2	h'Fl	foFl	h!E	foE	fEs	(M3000)F2
00	260	3.3						3.0
01	270	3.5						3.0
02	270	3.5						3.0
03	260	3.2						3.0
04	260	3.8						3.0
05	260	3.0						3.0
06	250	4.0						3.1
07	240	5.4	230		120	2,1		3.3
90	260	6.1	230		220	2,6		3.3
09	280	6.6	220		110	2.9		3.2
10	300	7.0	220		110	3.1	3.2	3.1
11	310	7.3	210		110	3.3		2.9
12	320	8.0	200		110	3.4		2.9
13	310	8.3	210		110	3.4		2.9
14	300	8.7	210		110	3.3		2.9
15	290	8.6	220		110	3.2		3.0
16	260	8.0	230		110	3.0	3.2	3.0
17	270	7.8	230		120	2.7		3.1
18	250	7.6	240	3.1	120	2.1	2.7	3.2
19	230	7.1					2.1	3.3
50	220	6.0						3.2
21	230	4.9						3.3
22	250	3.9						3.1
23	260	3.6						3.0

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Ma in 7 seconds.

Table 48

Time	b'F2	foF2	hill	foFl	PIE	foE	fBs	(M3000)F2
00	260	3.0		1012		E	6.0	
01	260							2.9
		2.9			Chelego	3	5.0	2.9
02	270	2.6			15.450	15	4.5	2.8
03	270	2.8			40-127/0	3	4.4	2.8
04	280	2.8		Character	direction of	38	4.5	2.9
05	290	2.8	4000		100	1.7	4.0	2.9
06	260	3.2	-	-	100	1.9	4.6	2.9
07	260	3.5	210	3.0	100	2.3	3.8	3.0
80	320	3.7	200	3.4	100	2.5	3.8	2.9
09	380	4.0	200	3.5	100	2.7	3.0	2.8
10	390	4.2	220	3.8	100	3.0	, ,	2.8
11	390	4.3	210	3.6	100	2.9		2.6
12	390	4.6	230	3.8	200	3.0		2.8
13	350	5.0	220	3.8	100	2.9		2.8
14	350	5.0	210	3.8	100	2.9		2.8
15	3 50	4.8	230	3.7	100	2,9		2.8
16	310	5.0	210	3.7	100	2.8	5.0	2.9
17	290	4.9	210	3.5	100	2.5	6.0	2.9
18	270	4.5	230	3.0	110	2.1	5.5	3.0
19	250	4.2	230	3.0	100		6.0	3.0
				23-100	100	1.9		
20	240	4.4				1.4	6.0	3.0
21	250	3.5			an-mode	R	6.0	2.9
22	260	3.5			071-100E	n	6.5	2.9
23	240	3.2			-	3	5.6	2,9

23 1 240 3,2 Time: 90,0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 ecords.

Delhi,	lhi, India (28.6°N, 77.1°E)							September 1952		
Time		foF2	h'Fl	foFl	hIE	foE	TE ₃	(R2000) 123		
00	330	4.4						2.9		
01		er: en								
02										
03 04 05 06										
04	300	4.2						3.1		
05	280	4.6								
06	260	5.0								
07	250	6.5								
08	260	7.3						3.4		
09	270	7.5								
10	290	8.0								
11	310	8.5								
12	303	10.2						3.1		
13	300	10.4								
11,	300	10.lı								
15 16	290	10.2								
16	260	9.8						3.3		
17	280	9.2								
18	280	9.0								
19	270	7.7								
20	280	6,1						(3.2)		
21	300	5.0								
22	320	4.8								
23	320	4.4								

Mahla 40

Time: Local.
Sweep: 1.6 Mc to 16.0 Mc in 5 minutes, manual operation.
* Height at 0.83 for2.

**Average values; other columne. median values.

Peblo 51

Madras,	India	(13.0°N,	80.2°E)				Sept	ember 1952
Time		Skol	h' i'l	foF1	h⁵E	for	fRs	(MZ000)F2
00								
01.								
03								
04								
05								
05 06 07	360	6.8						
08	390	7.8						(2.7)
09	390	8.6						(1)
10	420	9.0						
11	140	9.0						(0.1)
12	1,50 1,80	9.0 9.3						(5.11)
14	450	9.9						
114	1,50	10.4						
16	1,50	11.0	,					(2.5)
17 18	1,20 1,20	11.0						
19	420	10.8 10.2						
20	390	9.5						(2.6)
21	360	9.3						
22	360	7.6						
23								

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 for2.

**Average values, other columns, median values.

*able 53

WAGT	age sarno	al omier	COLUMN	Table		•		
Townsy	ille. Ans	tralia (19.3°8. 1	46.8°E)			Seg	tember 1952
Time	h'#2	foJ2	h'Fl	foFl	h E	fol	fBs	(M2000)153
00	24-0	4.6						3.2
01	230	3.9						3.3
02	220	3.6						3.2
03	260	3.0						3.0
OH.	270	3.0						3.0
05	280	3.0						2.9
06	250	3.2			-	E		3.1
07	240	5.9	(230)	Market Print	120	2.1	3.2	3.3
80	250	7.5	220	4.0	110	2.7	4.0	3.4
09	270	8.4	220	4.4	110	3.0	4.3	3.3
10	260	8.9	210	4.4	110	3.3	4.1	3.3
11	260	8.5	300	4.5	110	3.3	4.1	3.3
12	270	7.5	200	4.5	110	3.3	4.4	3.3
13	280	7.4	200	4.4	110	3.3	4.6	3.2
14	280	7.0	200	4.4	110	3.3	4.5	3.2
15	280	7.3	200	4.3	110	3.2	4.4	3.2
16	260	6.6	210	3.9	110	2.8	3.8	3.2
17	240	6.6	210	(3.3)	110	2.3	3.6	3.2
18	240	6.1			140	1.6	3.0	3.2
19	240	6.0					3.0	3.2
20	240	5.6					2.8	3.1
21	250	5.2						3.1
22	250	4.8						3.1
23	250	4.7						3.1

Time: 150.0°E.
Sweep: 1.0 Me to 16.0 Me in 1 minute 55 seconds.

Bombay,	India (19.0°N, 73.0°E)							September 1952		
Time	6	foF2	FILE	foFl	h'E	foE	fBs	(M3000)F2		
00 01 02 03 04 05 05 05 07 08 09 10 11 12 13 14 15 16	300 360 360 390 420 440 (450) (480) (480) (450)	6.8 7.8 8.2 9.0 9.7 9.9 (10.3) (10.6) (10.5) (10.5)						(2.9) (2.6) (2.4)		
19 20	390 350	9.7 8.6						(2.7)		
55 51	(330)	7.4						(3.1)		

23 | 320 | 6.8 |
Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.
"Height at 0.83 for?.

**Average values; other columns, median values.

Tiruchy	, India	September 1952						
Time	0	foF2	h'Fl	foFl	h'E	foB	fBs	(M2000)13
Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19	390 1600 1800 5100 5100 5100 5100 5100 5100 51	70F2 5-97-27 8-14 8-32 8-14 9-8 9-8 9-8 9-8 9-8	h*F1	for1	h'E	foll	file	(2.3) (2.2)
20 21 22 23	1,80 1,20 1,20	8.7 8.3 7.8						(2.4)

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.

*Height at 0.83 foF2.

*Average values, other columns, median values.

Table 54

eburg,	Union of	S. Africa	(26.2	s, 28.1	°E)	Sept	ember 1952
h'F2	foF2	h'Fl	foFl	h'E	fol	fBe	(MS000)1S
250	3.2						3.0
	3.4						3.0
	3.3						3.1
						1.6	3.0
							3.0
							3.0
							3.2
			-				3-5
							3.4
							3.3
							3.2
							3.2
						2.0	3.1
							3.0
							3.1
							3.2
			309				3.2
		230				2.0	3.3
					on sheet		3-3
							3.3 3.3
							3•3
							3.1
							3.1
	h'F2 250 250 250	h.F2 foF2	h:\$2 fo\$2 h'\$1 250 3.2 250 3.1 250 3.3 250 3.1 250 3.3 250 2.8 260 2.9 210 1.0 230 6.0 230 250 6.6 220 270 7.0 220 280 7.7 200 280 7.7 200 280 8.2 200 280 8.2 200 280 8.2 200 280 8.3 200 270 7.8 210 260 7.7 220 280 7.7 220 280 7.7 220 280 8.3 200 270 7.8 210 260 7.7 220 210 7.8 210 220 7.0 220 7.0 220 7.0 220 7.0 220 1.1 210 3.8 250 3.6	beburg, Union of S. Africa (26.2) h FZ	beburg, Union of S. Africa (26.2°S, 28.1 h F2	Beburg, Union of S. Africa (26.2°S, 28.1°E) h F2	Sept Sept

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Table 55

Brisbar	ne, Aust:	ralia (2	7.5°S, 1	3.0°E)			Sapt	smbsr 1952
Time	h'F2	foF2	h¹Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	250	° 4.6					2.0	3.1
01	240	4.1					2.0	3.2
02	240	3.8					2.0	3.1
03	250	3.4					2.0	3.0
04	280	3.3					1.9	2.9
05	280	3.2						2.9
06	250	4.4				2.0		3.3
07	260	5.9	240	3.8	130	2.5		3.3
80	275	6.8	225	4.2	110	2.8		3.3
09	280	7.3	210	4.5	110	3.1		3.2
10	280	7.0	210	4.5	110	3.2		3.3
11	285	7.2	200	4.5	110	3.3		3.2
12	280	6.9	200	4.6	110	3.3		3.2
13	290	6.8	200	4.5	110	3.3		3.2
14	280	6.4	200	4.5	110	3.2		3.2
15	270	6.1	205	4.2	110	3.0		3.2
16	260	6.2	220	3.8	120	2.5		3.2
17	240	6.0	(230)	(2.8)		2.1		3.2
18	240	5.8						3.0
19	260	5.6						3.0
20	260	5.4						2.9
21	280	5.0						2.9
22	260	5.0						3.0
23	260	4.9						3.0

Tims: 150.0°E.
Swsep: 1.0 Mc to 16.0 Mc in 1 minuts 55 seconds.

Table 57 Canberra, Au Australia (35.3°S September 1952 Time foF2 fEs (M3000)F2 3.0 3.1 3.1 3.1 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 250 3.8 2.8 250 240 240 3.5 2.6 3.4 3.0 2.9 2.6 2.8 240 (260) 2.8 2.5 2.6 3.3 3.0 250 240 3.2 4.7 5.5 5.6 1.8 2.6 2.9 3.1 110 100 100 100 100 100 270 225 4.0 4.3 4.4 4.4 4.5 4.4 4.3 4.1 (4.0) 300 215 200 200 6.0 6.6 6.7 6.8 290 3.2 3.3 3.3 3.2 3.0 2.6 290 275 275 200 200 6.5 210 210 210 100 100 110 3.3 3.4 2.8 2.7 2.6 280 250 240 (225) 5.7 110 5.4 5.0 4.7 3.0 2.6 240 250 3.0 22 250 250 3.0 4.0

Time:

150.0°E. : 1.0 Mc to 16.0 Mc in 1 minute 55 seconds. Swssp:

				Table	2*			
Inverse	ee, Scot	land (57	.Ц°N, 4.	2 ⁰ W)				July 1952
Time	Fils	folia	h'Fl	foFl	h'E	fol	fBa	(M3000) NS
00	270	3.9						2.8
01	280	3.6						2.8
02	280	3.2					1.4	2.8
03	285	3.2			170	1.2	2.1	2.8
04	300	3.4	265	(2.5)\$	120.	1.4	2.9	2.9
05 06	350	3.9	235	3.2	115	1.8	3.0	2.9
06	405	4.3	225	3.6	110	2.1	3.4	3.0
07	390	4.6	220	3.8	105	2.5	3.2	2.9
08	385	4.7	215	4.0	105	2.7	3.9	3.0
09	400	4.9	210	4.1	105	2.9	3.2	2.9
10	405	5.1	210	4.2	105	3.0	3.5	3.0
11	110	5.0	215	4.3	105	3.0	3.7	2.9
12	410	5.1	215	4.3	105	3.0	3.8	2.9
13 14	405	4.9	215	4.4	105	3.1		2.9
14	415	4.9	215	4.3	105	3.1		2.9
15	395	5.0	220	4.3	105	3.0		2.9
16	370	5.2	220	4.2	105	2.9	3.0	2.9
17	355	5.2	220	4.0	110	2.7	3.3	2.9
18	335	5.1	220	3.8	110	2.4	3.5	2.9
19	295	5.2	240	3.6	120	2.0	3.7	3.0
20	280	5.3	250	(3.1)₽	135	1.8	3.1	3.0
21	260	5.1						3.0
22	260	5.0					2.1	2.9
23	270	4.4						2.8

Time: 0.00

Time: 0.0°.
Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.
*Average valuee except foF2 and fEs, which are median values.
**One or two observations only.

Table 56

Capetown, Union of S. Africa (34.2°S, 18.3°E) September 1952										
Time	P.ES	foF2	h'71	foFl	h'I	foE	fBe	(M3000) F2		
00	260	3.0						3.0		
01	270	3.1						3.0		
02	260	3.2						3.0		
03	260	3.2						3.0		
04	250	3.2						3.1		
05	260	3.1						3.0		
06	260	3.1						3.0		
07	230	4.7		10 M-90		1.8		3.4		
08	240	5.9	230	40 ee ee	120	2.3		3.4		
09	260	6.5	230	4.0	110	2.8		3.3		
10	280	6.9	220	4.3	110	3.0		3.3		
11	290	7.2	570	.4.5	. 110	3.1		3.2		
12	290	8.0	210	4.5	110	3.3		3.0		
13	290	8.7	210	4.5	110	3.3		3.1		
14	290	8.7	510	4.5	110	3.2	3.7	3.1		
15	280	8.6	210	4.3	110	3.1	3.8	3.2		
16	270	. 8.0	220	4.0	110	2.9	3.5	3.2		
17	250	7.7	230	3.5	120	2.5	3.1	3.2		
18	230	7.2	570	2.4	120	1.9	2.4	3.3		
19	220	5.8						3.3		
20	220	4.6						3.3		
23.	270	3.6						3.2		
22	250	3.2						3.2		
23	250	3.1						3.1		
23	250	3.1						3		

Tims: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

				Table 58				
Hobert	, Tasman	ia (42.9	°s, 147.	30 E)			Sep	tamber 1952
Tims	h'F2	foF2	hiFl	foFl	h E	foE	fEs	(M3000)F2
74ms 00 01 02 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17	h'12 290 295 295 290 300 300 260 250 220 210 350 300 310 290 220 210	2.5 2.4 2.0 2.0 2.0 2.5 4.0 4.5 5.4 6.0 6.1 6.2 6.0 6.5			h'E	foE 2.0 2.5 2.8 3.1 3.2 3.3 3.3 3.1 2.6 2.5 2.5		(£3000)F2 2.9 2.9 3.0 2.9 2.9 2.9 3.1 3.1 3.0 3.0 3.0 3.1 3.1 3.1 3.1
18 19 20 21	230 250 250 250	5.5 5.0 4.4 3.6						3.1 3.0 3.0 2.9
22 23	250 270	3.4 2.8						3.0 3.0

Time: 150.0°E.

Swssp: 1.0 Mc to 13.0 Mc in 1 minute 55 seconde.

				Table 6	0.0			
Slough,	England	(51.5°N,	0,6°W)		_			July 1952
Time	FILS	foF2	h'Fl	foFl	h*E	foB	fEe	(M3000)F2
00	270	4.4					2.4	2.8
01	270	4.0					2.6	2.8
02	275	3.7					2.6	2.8
03	280	3.4					3.3	2.8
011	280	3.5	260₩	2.1	140	1.4	3.6	3.0
05	330	4.1	240	3.1	120	1.8	4.2	3.0
06	355	4.6	235	3.6	120	2.3	4.4	3.0
07	390	4.8	230	3.9	115	2.6	4.7	3.0
08	385	5.0	230	4.1	115	2.9	4.5	3.0
09	380	5.3	230	4.3	110	3.1	4.9	2.9
10	370	5.4	230	4.4	110	3.1	4.9	3.0
11	385	5.3	220	4.4	110	3.2	5.3	2.9
12	395	5-4	220	4.5	110	3.3	4.9	2.9
13	375	5.4	220	4.5	110	3.3	4.8	3.0
14	385	5.4	225	4.4	115	3.2	4.7	3.0
15	375	5.3	220	4.4	115	3.2	4.7	2.9
16	360	5.4	225	4.2	115	3.0	4.4	2.9
17	330	5.6	235	4.0	115	2.7	4.3	3.0
18	300	5.6	245	3.8	115	2.4	3.9	3.0
19	295	5.8	250	3-3	130	2.0	3.7	3.0
20	260	6.2			150%	1.70	3.3	3.0
21	255	5.9					2.9	3.0
22	260	5.5					2.6	3.0
23	265	4.9					2.5	2.8

Time: 0.00. Sweep: 0.55 Mc to 16.5 Mc in 5 minutes. *Average values sxcept fof2 and fbs, which are median values. *One or two observations only.

Oak?	2	610	

Singapore, British Malaya (1.3°N, 103.8°E) July 1952										
Time	Pills	folks	h'F1	foFl	h'E	foB	fBe	(M2000) F2		
71me 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	N'#72 260 250 215 250 250 250 250 250 250 250 250 315 320 315 350 350 355 355 350		(245) 230 225 215 205 205 205 205 225 225 230			2.2 2.8 3.1 3.5 3.5 3.5 3.5 3.5 3.5 3.5 2.8	3.7 3.2 3.50 4.1 3.3 7.5.4 5.4 6.6 6.9 6.9 6.9	(NEGOO) 72 3.0 3.2 (3.2) 3.1 (3.2) 3.0 3.0 2.9 2.8 2.5 2.5 2.5 2.5 2.5 2.5		
17 18	270 21:5	9.2 8.9	235			2.3	6.2	2.8 2.9		
19 20 21	245 240	9.2 8.2					3.3	3.1 3.2		
22	230	6.5 5.2					3.6 3.4	3.3 3.3		
23	245	4.7					3.3	2 0 9		

Times 105.0°E.
Sweeps 0.67 Me to 25.0 Me in 5 minutes.
* Averege values except for 2 and fin, which are median values.

				Table 63	•			
Zbadan,	Nigeria	(7.4°N,	h.CoE)					June 1952
Time	FIES	2023	h'Fl	foF3	h I E	fe.B	£®e	(M2000)F2
00	275	>5.6					2.6	
01	305	24.5					3.0	
02	320	(3.9)					2.3	
03	290	(3.0)					2.1	
0];	285	(2.4)					2.5	
05	265	2.4				1.2 1	3.7	
06	245	5.5	230 \$		130	2.0	4.9	
07		7.5 8.3	225		110	2.6	4.6	
08	320 ₽	8.3	21.5	4.5	110	3.0	5.2	
09	320	8.9	210	<u>l</u> t5	110#	3.3	5.5	
1.0	34,0	9.1	200	4.6	115#	3.5	5.6	
11	345	9.5	500	4.6	110 ₺	3.5	5.5	
12	355	8.5	200	4.7	115 🕏	3.6	9.0	
13	345	8.5	200	4.6		3.4	8.6	
14	335	8.7	205	4.6	110#	3.3	7.0	
15	300 ₽	8.9	205	4.5 🕏	110-	3.2	5.8	
16	-	9.0	225		110	2.7	5.6	
17	255	9.2	2h0		110	2.2	5.0	
1.8	250	9.3			105 🕏	1.4	4.9	
19	250	8.6					3.5	
20	250	9*0					3.4	
21	270	7.3					3.8	
22	270	(6.8)					>4.0	
23	275	(6.5)					2.6	

Superpr 0.67 Mc to 25.0 Mc in 5 minutes.

"Average values except foF2 and fEs, which are median values.

"One on two observations only.

				Agore 6	25"			
Port Lo	ockroy (61	1.8°s, 6	3.5°W)					June 1952
Time	Fills	foF2	h'Fl	foll	h1E	folk	2Ba	(NECCO)F8
00	345	2.2						2.6
01	31,0	2.3						2.6
02	335	2.3						2.6
03 04	320	2.3						2.6
OL	315	2.3						2.7
05	290	2.2						2.8
06	280	1.9						(2.8)
07	(270)	1.8						(2.9)
08	(245)	1.7					1.6	
09	260	2.5					2.1	3.0
10	240	3.9					3.8	3.3
11	270	4.3					3.4	3.2
12	235	4.6						3.4
13 14 15 16	230	4.4						(3.4)
14	225 245	4.2						3.3
15	240	3.9						3.1
17	265	3.1 2.4						(3.2)
18	270	2.2						3.0 3.0
19	290	1.9						2.8
20	(325)	1.8						2.8
21	(335)	1.8						2.6
22	345	2.0						2.6
23	350	2.1						2.6

23 | 350 2.1
Time: 60.00W.
Sweeps 1.1 Mc to 16.0 Mc, manual operation.
*Average values except foF2 and fEs, which are median values.

				44.5	Title,			
Calcut	ta, India	. (22.6°N,	88.4°E)					June 1952
Time	F123	folia	h'Fl	foFl	h1E	foll	fBs	(M3000)F2
00	(570)	5.5						2.8
03.	(5/10)	(5.3)						
05	(260)	(6.0)					(3.8)	
03	(240)	(L, 3)						(2.7)
01,	220	L-9					3.2	
05	250	14.8					3.2	
06	240	5.7				-	3.4	3.3
07	210	6.4				2.6	4.2	242
80	270	8.8				2.8	4.5	
09	530	9.2				3.0	4.3	3.2
10	240	10.0				3.6	4.4	246
11.	240	9.8				200	4.6	
3.2	(240)	9.8				3.7	4.1	(3.6)
13	240	10.4				1.0	4.2	(500)
14	(2k0)	10.5					23 9 00	
25	(570)	(10.7)						(3.2)
15 16	(210)	(10.2)				W10-W	(5.1)	(342)
17	210	10.8				3.0	4.6	
3.8	21,0	9.8				200	5.8	(2.9)
1.9	210	9.5					4.8	(= + >)
20	240	7.3					(4.7)	
21	270	6.7					(4.7)	(2.8)
22	(240)	(6.0)					(5.0)	(200)
23	(570)	(5.8)					(200)	
C. 2	1 (240)	(240)						

Time: Local.

Table 640 Falkland Is. (51.7°S, 57.8°W)

Falklan	d Is. (5	1.7°S, 5	7.8°W)	14614 04				June 1952
Time	P125	foF3	h'Fl	foFl	hIE	foB	#Ba	(M2000)F2
00	315	2.6					2.0	2.8
01	310	2.6						2.8
02	305	2.6						2.9
03	290	2.6						2.9
ΟĹ	280	2.6						2.9
05	260	2.5						3.0
06	21:0	5.7						3.3
07	250	2.2					1.6	3-2
08	220	3.8					2.9	3.5
09	215	4.6					2.5	3.7
10	220	5.0					2.7	3.6
11	225	6.0	220	3.2			2.8 2.8	3.6
12 13 14	225	5.9	(220)	(3.4)			2.7	3.6
40	225	5.6 5.4	(210)	(2.8)			2 0/1	3•7 3•6
111	225	5.2	(570)	(200)			2.2	3.7
15 16	210	4.1					2.2	3.6
17	210	2.8					2.8	3.2
18	250	2.7					2.9	3.2
19	250	2.5					1.7	3.2
20	255	2.5					2.4	3.0
21	275	2.5					1.8	2.9
22	285	2.5					2.0	2.9
23	330	2.6					1.8	2.8

Time: 60.00%. Sweep: 0.67 Me to 25.0 Me in 5 minutes. * Average values except for 2 and fks, which are median values.

				YEARA	99			
Calcut	ta, India	(22.6°N,	88.4°E)	May 1952				
Time	P.123	folk	h'Fl	foF1	h1E	foB	138	(MEOGO)F2
CO	260	4.8						3.0
01	220	5.0						
02	570	4.7						
03	(210)	(3.8)						(2.8)
02 01	(210)	(3.8)						
05	210	12.2						
06	210	6.0				2.2	3.6	3.2
07	210	7.5				2.6	3.7	
80	210	8.5				2.8	4.0	
09	570	8.6				3.3		(3.5)
10	2½0	9.0				3.4	4.4	
11		WOOD				-		
12	(5/10)	10.4				-		(8.8)
13	(240)	(10.4)				4.1		
13 14 15	(570)	11.0						
15	570	11.3				3.9		3.0
16	240	11.0				3.5		
17	570	11.3				3.1		
18	5/10	11.3				-		2.8
19	210	10.6						
20	210	8.0						
21	(210)	7.5						(3.4)
22	(260)	(5.6)						
23	(270)	(4.8)						

23 (270) Time: Local.

Table 67											
Tananarive, Madagascar (18.8°S, 47.8°E)											
Time	h'F2	foF2	h'F1	foFl	h†E	foE	fEs	(M3000)F2			
00	240	2.8						3.4			
01	250	2.6						3.2			
02	260	2.5						3.2			
03	235	2.4					2.0	3.2			
04	260	2.3						3.0			
05	280	2.2						3.0			
06	265	3.0					1.9	3.0			
07	240	6.0			131	1.9	2.2	3.4			
08	240	7.3	232		2.1.1	2.4	2.7	3.6			
09	250	7.6	220	4.2	111	2.8	3.8	3.5			
10	260	7.4	220	4.4	111	3.1	3.7	3.4			
11	275	7.6	215	4.5	111	3.2	4.0	3.4			
12	268	7.4	220	4.6	111	3.2	3.8	3.3			
13	262	7.2	222	4.4	111	3.2	3.8	3.4			
17,	265	7.0	215	4.3	111	3.1	3.9	3.4			
15	258	6.8	220		111	2.9	3.8	3.4			
16	240	6.7	225		117	2.5	3.4	3.4			
17	225	6.1			129	2.0	3.1	3.6			
18	220	4.9					2.5	3.5			
19	225	3.5					2.8	3.4			
20	240	2.8					2.2	3.1			
21	250	3.3					2.2	3.2			
22	240	3.3						3.4			
23	230	3.2						3.4			

Time: Local. Swaap: 1.25 Me to 20.0 Me in 10 minutes, automatic operation.

				Table 69				
Tanana	rive, Mad	lagascar	(18.8°S,	47.8°E)				April 1952
Time	h1F2	foF2	h'Fl	foFl	h ¹ E	foE	fEe	(M3000)F2
00	270	3.1					2.2	3.1
01	262	3.1					2.3	3.1
02	260	3.2					2.3	3.1
03	232	3.0					2.4	3.2
04	235	2.2					2.4	3.0
05	312	2.2					2.1	2.9
06	250	3.2					1.9	3.0
07	240	6.1			121	2.0	2.4	3.4
08	262	7.5	235		115	2.6	3.0	3.4
09	268	8.5	225	4.4	113	3.0	3.4	3.3
10	275	9.0	220	4.6	113	3.2	3.5	3.4
11	265	9.3	220	4.6	117	3.4	3.7	3.4
12	280	8.2	220	4.7	111	3.4	3.7	3.2
13	290	8.0	230	4.6	111	3.4	3.6	3.1
14	285	9.0	228	4.5	111	3.2	3.5	3.2
15	272	8.6	235		112	3.0	2.9	3.2
16	255	8.3	230		119	2.7	3.2	3.3
17	240	7.6			127	2.2	2.9	3.4
18	230	6.5					2.5	3.4
19	230	5.4					2.1	3.4
20	228	3.9					2.0	3.4
21	260	3.5					1.9	3.1
22	270	3.5					2.1	3.1
23	260	3.4					2.2	3.1

Time: Local. Sweap: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Table 7				
Djibou		ch Somal:			3.1°E)			March 1952
Tima	h'F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00	250	8.7				, ,	2.5	(3.2)
01	235	8.7						3.5
02	220	7.1						(3.5)
03	220	5.5						3.4
04	212	4.2						3.4
05	225	3.2						3.4
06	255	2.8						3.2
07	230	6.7	40 ap 40		120	2.2	3.0	3.6
08	260	9.0	220		111	2.8	3.6	3.3
09	280	9.8	210		109	3.1	4.6	3.0
10	300	9.7	202	4.8		3.4	7.4	2.7
11	310	9.6	200	4.9		3.6	7.9	2.7
12	310	9.8	200	4.9		3.6	8.0	2.7
13	308	10.2	200	4.9		3.6	4.9	2.7
14	310	11.1	200	4.8		3.4	4.6	2.8
15	290	12.2	210		109	3.2	4.5	3.0
16	280	12.5	215			3.1	4.5	3.0
17	232	12.2	220		111	2.7	4.5	3.0
18	240	12.0				1.9	4.1	2.9
19	260	11.4					3.0	2.8
20	275	9.9						(2.8)
21	252	9.5						(3.0)
22	240	9.3					2.6	(3.1)
23	245	9.0					2.8	3.1

Time: Local. Swaep: 1.25 Mc to 20.0 Mc in 10 minutae, automatic operation.

Table 68

				Table	68			
Calcut	ta, India	(22.6°N	88.4°E)					April 1952
Time	h'F2	foF2	h'31	foFi	h1E	fol	fBa	(M3COO) F3
00	570	5.5						2.6
01	210	5.4						
02	220	4.4						
03	220	4.1						2.8
OL	(180)	(3.4)						
05	(200)	(3.6)						
06	210	5.4						1.7
07	210	7.8				2.4	3.7	
08	210	8.2				2.8	3.7	
09	210	9.5				3.2	3.7	2.4
10	5/10	10.0				3.6		
11	240	11.0				60 mm/sp		
12	(240)	10.7						2.9
1.3	220	11.2						
Di	(220)	11.2						
15	240	11.2				3.8		(2.3)
16	(240)	(11.8)				3.2		
17	240	13.0				2.8		
18	(220)	(10.8)					(2.9)	(2.3)
19	210	11.4						
20	(220)	(8.5)						
21	(21:0)	(7.0)						(3.4)
22	(240)	(5.8)						
.23	(210)	(5,9)						

Time: Local.

				TROTE V	ļ			
Calcut	ta, India	(22.5°N	, 88 .4°I	3)				March 1952
Time	h'F2	foF2	h:Fl	foFl	h'E	foE	fEs	(M3000)F2
00	240	4.8					-	3.6
01	240	4.6						
02	240	4.3						
03	210	4.0						(3.6)
04	240	3.0						
05	240	2.5						
06	240	4.1						2.3
07	210	6.8				2.2		
08	240	8.5				2.7		
09	240	9.6				3.0	3.3	3.0
10	240	10.2				3.4		
11	240	11.0				3.6		
12	240	12.1				3.8		2.4
13	240	11.6				3.9		
14	240	12.0				3.8		
15	240	11.9				3.6		2.5
16	240	12.9				3.2		
17	240	12.8				3.2		
18	210	12.6				2.1	2.5	2.3
19	240	10.2					2.4	
20	220	8.6						
21	240	7.4						3.0
22	(240)	(7.1)						
23	(240)	5.0						

Time: Local.

Dakar,	French	Weet Afric	а (Ц.6	°N, 17.4			Febr	uary 1952
Time	h1#2	foF2	h131	foF1	h1E	foE	fEs	(M3000)F2
00	250	(9.7)						(3.0)
01	235	(9.0)						3.1
02	232	> 8.0						3.2
03	220	6.0						3.1
04	235	4.8						2.9
05	260	3.5					2.0	2.8
06	280	3.2				E	3.0	2.7
07	240	6.8	240		130	1.9	2.6	3.1
08	260	9.0	232		109	2.6	3.2	3.0
09	272	>10.0	225		109	3.1	3.5	3.0
10	275	11.8	215		109	3.2	3.8	(3.1)
11	270	11.6	200	-	105	3.4	3.5	(2.9)
12	285	11.9	200	-	105	3.5	3.2	(2.6)
13	295	12.0	200		109	3.5		2.7
14	300	12.0	225		109	3.4	4.0	(2.7)
15	280	11.7	228		109	3.3	3.4	2.8
16	280	>12.0	245		109	3.0	3.4	(2.9)
17	260	>12.0	250		115	2.5	3.4	
18	250	>12.0	255				3.2	
19	250	>12.0					3.0	
20	210	>11.4					1.9	
21	250	11.1					2.8	(2.8)
22	260	>10.0					2.7	(2.9)
23	255	>10.0					2.8	(=+,,

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

U 3 GOVERNMENT PRINTING OFFICE 1948 O - 101819

TABLE 73
Central Radia Propagation Laboratory, National Burisau of Standards, Washington 25, D.C.

Form adopted June 1946

E.J.W.

Mailoral Bureau of Standards

ONOSPHERIC DATA

January

Characheristic) (Unit)

Sweep 1.0 Mc to25.0 Mc in 0.25 min

Manual D Autamatic 图

Form adopted June 1948

F. J. W.

National Bureau of Standards TABLE 74 Central Radia Prapagatian Lobaratary, National Bureau of Standards, Washington 25, D.C.

953

Jonnory (Month)

(Unit)

ō (2.3) 25%

2.5 2.5

(3.0)

(30)

9

3.7

3.5 2.5 1.3 1.9 2.3 3.5 5.5

00 o 0

2.3

2.0 2.5

=

2.5

< 10 35

4

2.7

3

2.4

6.1

(5.2)

ONOSPHERIC DATA

M I A 2.5 K 2.2 F (2.1) & (6.1) (2.4) (8.2) (4.6) 2.5 3 2.7 200 2.0 1.7 (2.1) (2.2) (4.4) 5 (2.1) 3 2.9 2.3 25 3.0 3.6 500 2.4 3.0 6. 23 1.6 1.7 [26] 2.76 3.0 F 1.70 2.50 26 2 2.0 22 2.7 2.5 3. 3.7 3.6 2.1 F 1.9 5.2 1.8 2.6 3. 3.5 3.0 6. J. 3,0 3 3.0 5 Calculated by: MC C. (1.7) (2.5) 2.7 4 2.8 2.5 2.2 ~ 2.5 2.7 3.0 2.5 5.9 3.0 5,5 17 3.0 3.2 23 18 6.9 7: 2.1 1.9 2.7 2. 2.3 (3.2) 3.0 2.3 8.3 3.0 2.4 E. 10.00 24 2.9. (8.8) 3 W. 30 W, A 6. 2.5 3, 3.5 3.7) 3.9 2.4 3. 3.1 2.9 14 2.9 3.0 3. 36 (3.3 K 2.5 K 395 (3.6) 3 4.5. 5 4.5 4, 3, (2.4) 5.4 <u>6</u> ς, 3, 4.5 300 4.5 2.7 3 4.8 5.2 3 3.2 5.0 1.8 3.0 3.7 4.3 4.4 6. 3. ويري 3.5 J 3.4 4 4.7 (6.0) (8.9) 5.2 4.2 500 29 5.4 0.77 5.2 4.7 5,3 3.7 4.3 3.7 4.4 4.8 4.7 5.0 7.6 5.0 6.0 5.0 20 3.7 4.4 3.7 5.0 4.1 U 5.2 4.8 16.4 5.3 5.2 5,0 5.1 6.0 (89) 21.5 67 5.0 5.0 2.4 3 3.6 5.6 2.2 5.2 6.0 3.5 5.5 37 6.6 4.8 5.0 5,0 5.2 5.6 5.6 J U 5.5 2 1.9 P. 00 62 5.7 5.6 6.0 5.9 5.9 77 6.3 6.0 5.6 6.9 Section 5,01 3.6 3,0 6.2 6.0 7.0 9.9 7.9 5.6 5.7 6.2 5.3 5.5 5.6 6.0 0 63 6.0 3 2.9 6.0 5.0 7.2 3 5.1 5.9 7:1 00. 6.5 6.0 6,7 5.0 5.7 7.5 7.0 3.80 5.9 6.3 62 4.0 6.0 5.6 6.4 5.0 6.4 5.9 7.0 6.6 41.4 6.2 4 7:5 ė, 6.5 6.4 2.8 3 0.0 6.4 3 6.7 5.0 5.7 6.2 1.0 ě. 6.2 65 6.6 6.0 5.6 6,8 9.9 0.0 6.9 5.6 9.9 1.9 3.0 5.8 5.8 <37 G 6.2 12 20% [99] 15.9 2.8 10 5.9 8.5 5.9 6.4 9.9 10.07 6.4 5.6 63 5.8 7.3 6.0 5,0 5,5 9.9 2.0 6.5 6.9 6.0 9.9 6.1 9.9 9.9 5.9 9.9 ₹3.7 ° (59) 75°W 5.9 7.2 6.4 69 5.6 2 6.5 6.6 6.3 6.4 2.0 6.5 7.5 7.0 6.9 5.4 63 5.00 5.9 7.0 9.9 6.8 ف خ ė. 6.9 1-9 5.8 7.6 8.8 7.6 99 [6.0] M 2% 7.5 0.7 6.3 = 6,0 201 6.9 6.7 13 6.3 7.0 5°,00 6.9 6.8 6.0 8.0 75 6.8 0.9 8 7.4 7.6 6.0 8.2 7.8 8.8 6.2 6.1 1.9 5.6 (5.5) 5.5 9.9 0 7.0 4.3 00 5.6 3.4 (4.2) 3 (4.8) 5.6 6.3 99 7.5 6.8 446 5.4 3 5,3 5.00 7.0 2.9 7.2 7.0 3.5 23 6.3 6.9 4.9 6.0 6.0 5.0 4.5 K (3.5) 6.9 48 5.7 03 6.0 0 6.7 777 5.4 5.7 3.5 4.8 9.6 8.9 4.3 6.00 8 9.9 5.4 5.9 5.0 5.0 94 3.00 6.4 0.9 6.3 300 (2.6) x (4.3) 3,7 % 4.0 % 5.4 3 37 6 4.2 4.9 4.7 2 / 4.6 4.7 5.2 7.6 00 11.80 9 1/2 4.5 5.2 5.2 28 263 4.3 4,4 5.0 7: 4.0 7:4 144 1.6 3.6 5.6 (2.6) K 7.5 F 2.6 F 2.1 F (2.3) F (4.7) 8 (3.6) 5 (2.8) R 1347 5 (3.1) 5 [22] ((3.3) R (24) (2.2) 8 (2.4) P (3.6) 6 (2.4) 5 (2.7) (2.4) 2.4 2.5 2.5 2 2.4 5.5 6, 07 7.5 3.00 3.5 2.3 2.4 2.6 2.7 22 20 12 17 KI (2.6) 5 (2.1) (1.9) 12.07 (2.2) 7 3.4 5 2.6 F (2.3) 5 2.8 4 90 2.5 2.0 39 4.3 (1.1) 1.9 33 8.3 0.7 (34) 3.6 3.6 2.2 2.3 1.8 3.0 2.0 B (2.8) (1.1) x (1.8) 5 (1.9) 3 (4.7) 2 3.0 F (32) A 2.5 F (3.0) 2.7 (4.4) 0 (2.9) 6 (21) 0.4 2.5 3,3 2,5 J. 2.0 3.7 2.5 2.5 3.9 1.9 3.6 29 4.3 3.5 2.1 (24) p 2.5 3.5 3.0 1.9 7.1 1.7 K (2.7) 5 3.0 5 04 Lat 38.7°N., Long, 77.1°W (2.0) (81) (3.5) 2.5 3.3 2:0 [7.7] 3.6 3.3 3.1 2.7 4.3 3.6 3,5 6.1 2.4 13 2.4 30 300 3,3 2.7 3.0 3.0 (2.8) \$ 3,4 5 (2.5) 6 (2.5) (1.7) 2.7 F (3.5) (25) (1.7) F [1.8] F 1.5 % (2.2) 2.5 (6:1) 0 (8:1) 2.4 2.5 27 2.3 6. 00 7.7 3 3.7 3.9 (27) 6 3.0 3 1.1 5 2.8 2.6 6.3 2.9 37 27 23 Observed of Mashinaton, D.C. 7 (4.g.) (2.5) 5 K(28) P 1.9 E (32) " 2.6 7 (3.8) 6 3.0 5 02 (5.2) (3.6) 2,3 5.5 2.5 3.6 (77) K (77) K (57) 2.8 3.6 2.3 61/ 3.0 200 3.5 23 6.1 3.3 18 F 3.0 3.1 5.7 2.8

6 (2.4) 5

2.5

200

5 9 2.5

(2.1)

-8

3.3

3.0

20,00 2.2 (2.1)

6

20 2

(2.0)

2.4

2.1

1.9

(4.1) 5

1.9

2

22

(67)

1.7

24

(3.5)

(3.7)

3.1

00 2.1

27 28 53 30

2.0

(12)

200 2.2

2.0 2.3

3.0

F-7

(2.5)

23)

25 56 U. S. GOVIENMENT PRINTING OFFICE: 1946 O - 103319

3

30

30

30

30

39

30

30

31

3

10

31

31

3,

9

3

30

30

22

2.5

Median Count

31

3,

Sweep10 Mc to25.0 Mc In 0.25 min

Manuel [3] Automatic [3]

Manual 🗎 Autamatic 🖫

Form accepted June 1946

National Bureau of Standards (Institution) Scaled by: M.C., E.J.W.

gotion Laboratory, National Bursou of Standards, w

(Characteristic) (Unit) (Month) (Month)

				1						1											İ								1							-	1
W.	W.																															+			+	_	U B. GOVERNMENT PRINTING OFFICE 1946 O - 703319
McC, E.J.W.	C. E.J.W.	2330	20 5	Q 4 F	9.7	25 5	(10) T	a. 7 F	3.5	4.6	0,50	2.4	A.4 F	4.50	30 %			9(620)	3.05	2,5	2.45	1,50	2.15	(1.8) 5	7.8 5	3(0:0)	(22) \$	03.5 F	67	(a.3)E	0,2 6	20.5	6175		450	167	REMEDIT PRINTING O
Mc	McC.	2230	(A.4) A	23 6	2.9	20	K (2.5)	2.9 6	3.2	5.	1.95	256	2.6 F	3.5	3.0	2.00 /	3.05	2.6 S	2.9		25.5		2.03	67	1.7.5	27.62	2,65	6.375	5,0	(27)	7. S. C.	77	1.8 5		7.0	3/	U B. GOVE
		2130	9,0	60.00	2, 8	2.6	B	305	(3.1)	0.45	6.00	0.0	3.02	200	500	03.60	3.0		2.9	0.5 A	(0.6)5	1.8 5	P. P.	0,0	4.7	2,10	2.5	07.23	- 1	(0,3	265	2.1	Soco		9.6	30	
by:	lated by:	2030	(3.0) 5	4.0	4.00	2.4	00 2 2	9.0	3.05	2.8	2,5	3,35	3.0	90	3,3	D. 7	3.3	2.6 F	3.1		(2.4)5	1.75	3		(1.9)3	2.7	3.75	3,1		23.3	296	1.0	0.00		27.2	30	
Scaled by:	Colculated	1930	13.8"	2.2	3.15	2.7	[-31K	67.9	3.5	9.0	3.0	4.3	40%	3.4	60	5,3	3.5	3.5	[3.8] A		4	5.0	3.0	(3.5)	2000	U	1.8	5.03	(42)	4.3	3.2	2.8	2.5		3.4	30	
		1830	5.0	14	40	3.4	5.0	375	5.0	3.7	42	5, 53	5.0	4.6	5.8	5.0	4.7	4.5	49	- 1	7 3.6.S	13.4	4.3	3.7	67	U	5.6	5.7	4.5	5.1	0%	3.4	3.7		4.4	30	
		1730	50	40	162 5	4.7	4.1 K	5.4	5.02	4.9	5.3	3.8	6.0	5.3	80	52	4.7	5.0	50 S	5.6	4.5 %	4.0	4.8	4.4	4.6	U	5.8	5.4	56	U	49	4.7	5.7		20	67	
		1630	56	5.6	5.0	1.9	5.02 A	4.9	5.7	5.0	6.0	5.0	0.9	2.4	20	5.8	5.7	5.5	5.4	63		5.3	5.6	5.2	5.43	6.3	60	6.5	5.8	υ	6.1	5.4	5.6		5.6	30	
[1530	6	6.7	5.6	0.9	* 50 K	2.0	63	6.0	6.02	5,8	4.9	6.0	6.6	9.9	5:9	6.6	6.3		F 5.4K	5.5	5.0	5.6	5.7	63	5.6	80'9	6.6	U	7.03	56	63		3	30	c
1	Time	1430	67	245	9.9	9	4.8	24	2.4	5.6	8	49	9.9	6.5	6.4	6.9	9.9	7.2	6.7	6.1	5.3	5.8	4.4	5.5	5.9	6.9	5.8	6.3	80	6.2	6.7	6.0	5.6		65	3,	Mc to 250 Mc In 0.25 min
2	- Mean	1330	1,0	8.9	6.5	6./	G (3.97)	26	8.2	6.0	6	6.5	6.0	79	6.7	6.9	6.4	6.4	9	00		5.0	6.0	80	5.9	9.9	5 54	9.0	2.0	265	9.9	6.0	6.2		6.4	3/	50 Mc Ir
= = =	75°W	1230	0.0	200	65	62	φ m	6.9	8.2	10	9.9	6.8	6.6	\$6.8	6.9	6.2	6.4	8.9	6.7	69	5.2	6.0	5.6	5.7	5.6		(6.0)\$	5.8	7.42	22	2,3	14	6.2		605	3(Mc to k
		1130	9.9	27,	100	6.5	۷ V	6.7	8.4	8.9	6.7	20	9.9	6.5	28	2.4	7.02	2.3	-	0	5.4	6.3	6.0	6.7	5.9	6.0	5.8	5.6	2.0	22	26	5.8	4 6.2	1	9.9	31	Sweep 10
2		1030	20	88	9.9	23	14.27	6.7	2.8	8.0	7.3	6.8	4.9	2.0	2.6	2.6	6.8	2.3	6.3	89	5.0	5 59	5.8	5.6	5:9	5.4	5.6	5.9	6.4	6.2	6.3	5.8	6.2		6.4	3,	0,
		0830	9.5	6.2	6.1		10 Y		24	7.2	6.6	6.2	6,0	9.0	6.6	7.57	6.2	S . 3	4	5.9	4.4		5 (61)8		3,0	5.0		5 [5.67"		5.6	6.3	53	5.4	-	7	3/	
		0830	5 47	5.3	6.0	5.6	6.39	545	-	0.9	5.9		5.2		6.0	20	5.8			5 5.4	S 4.2		5 4.65		49	49	- 1	5 4.6 5	- 1	F 4.7	15 5.0	4.5	5.4		\dotplus	3,	
	ı	0 0730	7 (3.2)	5.5	5 35 S	3.7	3 € 1	5 3.8	415	r,	5 39		i l		F 4.1	5 44	1.0	16 43	17 42	5 (3.8)5	3/8	17 3.0	3,5	345	13.4	- 1	15 3.45		13 3.4 6	3.7	(3.8)	3.5	5.8		37	3/	
		0630	15 (00)	67	.85 .85	(3,1	1000	3(8.1) 5(1	25	3.6	T(C.C)	40				50	7.5.3	1/2 (3.5)	- 1	3.00 5	K(1.1) F [2.2] E	15 (19	13 (2.3		-	20.00	3(87)		15 4.73	8	7 03.2	2,50	5 42	+	- 22	30	
	M	30 0530	(26) F (29) 8 (20) F (3.2) 5	500		F 02.3	(3.5) 4 (2.1) 4 (3.6)	\$ (000)3	3.56	7 62.33	1000	F 2.9 R	1,5	F (4.0)5		40%	3.4.5	F (4.0) F	3.7	Ŀ	1 K (1.7	17 (18)F	5 (02.7)3	U.	4.60	50	1/2 2.5	5 03.5 5	JE (1.7) 5	B		200	3 0.20 S	-	25	30	
(Month)	77.1°W		15 (3.6	17/19	0.0	, F 3.8	P (3.5		u	7:00	- 1	F 20		U	0.50		3.5			15 35	-		-	8.18		20.00	7 (2.4)	2.5	7 (16)			3.0	5.09	\dashv	3 - 3	30	
ر د	N. Long	0330	15 (2.7)	F (18) F	350	7 5 37	1) F K (1.7) F K	15 415	2 67.8	3.4	5 (2.7)5	5		3.5	Q.	1.3	, 3.5 ((2.5) P (3.0) P	5(0	3 F (3.6)7 3.5 k	1 F [1.8	2.9 5 3.0 S	1.7	115 024	ľ	5) [24]	3.3 6	, F (2,1) F	2 F	7 3.1	1 0 B	500 5	-	7 2.8	30	
		0 0230	(2.2) F (3.1) P (3.7) 5 (7 7	6 (0.6)	1 0.7	A (1.8) A A(8.1)	5) 7 16.6	(3.0) 3.2	3.9		ų	Ų	Ų.	7 6 03.8	- 1	ч_	1) 5 (0.	3(02) 3/2	5 3.3	(2.5) P (3.0) F	81) 6(5	5 60.0	(1.9) 6 1.7'	2 (4.4) 5		(2,5)			, 5 0.0	7 2.7	F (0.8) F	3 0,5	+	5 227	3,	
ristic) Washir	7	0030 0130	2) 7 (3.1	70	9,00 (2	8.3)	2 4 5 (J.	6) 3 K (4.		- 1	p a	· F	Ų	Ų	ų.	Ų.	6	3(17.6) 5 (2.4)	5.5 (02.0	(2.9) 7 (3.3) 5	(2.8) 9 (2.5)	35 (1.8	233	27 (1.9		2 1.9	(2.3) \$ 2.0	(3.7) \$ (3.7)	(30) \$ (2,7) 5		75 2.7	3000 300	- 1	+	4 25	31	
(Characteristic) (Unit)	D DSGLAGO	Day 00	1 (42.5	2 /9	3 (227)	4 (2.3	5 2.4	6 K(16)7 8	7 (3.0)	8 37	9 0.6	10 01	11 1.9	12 0.1	13 0.5	14	15 02.5	16 (2.	17	18 (2)	19	20	21 2	22 [2:4]	23 7.9	24 7.7	25 (2)	26 (3.7	27 (30	28 20	29 2.7	30	11	+	Median 2.4	unt 3.	
•	5															-		-	-	-	-	64	2	2	21	21	21	2	61	21	2	10	<u></u>		Mec	Count	

Scoled by: McC. (Institution) E.J.W.	Calculated by: McC., E.J.W.	3 19 20 21 22 23																									And the second s									
		100						_			_										-		_	-			are de la motseta	-							-	-
IONOSPHERIC DATA		71 5					04					0	0	0	10				0		& tox	0	0	0	0	0	0	0	0		0	0	0	\dashv	0	
		91	0	0	0		260 x 240 K	0	_	0	0	0 210	0 230	(220)	0 240	0			0 220	0	230 x 24	0 230		0 220	0 220	0 220	10 210	0# 230	0 230		0 220	Dieta to		+	7	18
DATA		5 15	0 240	220	0)H 220		žΧ		0	0 230	0 210		0 2.30	0 210	0 230						220 x 23		0 220	0000	0 H 220	0 0220	-	1			3 120	£	Ł		0 220	38
70	Mean Time	3.	0 230	3			×			(200)8 230	-	0 200	0 220	0 210		[200]M 200	0 220		0 230		220 K 20	0 21	0 2/0	200H 210	0 200	(220)7 220	0 210	0 220	0 220	-		0 210			0 220	18
IONOSPHERIC	- 1	10	0 200	081 H C	0 230	0 H 210	×		10 210		0 210	0 210	00 000	220 210			0 210	Ł	0 210	I	0 K 22	210# 200				0 (22		0# 220							0 210	31 31 31
SPH	75° W	12	0 200	200	0 220	Ŧ	1		0 210	0 200	(190) 4 220	0 210	300	H	220	0 210	220	200	0 210	0 200				_	0H 2/10		H 3/10	0 200	220 H 200	0 210	-		I		0 210	N
ONO		101	20 210	20 210		-		-	0 220	(240) 210	20 (19	I	220	06/ 0	-	0 230			0 210		¥				7	±	1	-	I		ŧ		-		-+	31
		60	0 220	0 220	220		Ŧ.¥	a 1					0 200	I	0 220	0 220		20 210	310	10 220	220 x 240	220		0 230	210	0 200	0 200	[220]M 230	0 220	220 220	$\overline{}$		00 200		220 220	36 31
		0 80	220	3.00	9	G	24	210	230	340	230	220	220 200	210	2.30	240	G	220	0		2,	220		06/ 00	9	0 200	0 300	Tì	200 210			220 210	220 200	\dashv	\dashv	-
		H						Ŀ	_			-	28			CORNER PAR				220			210	300	0	220	230	210	3	G	G	2.	7	+	220	0/
•	1	06 07										-							-			-		_	-	+	+		-					\dashv		-
		05 0							_							_			_							+						_		\dashv	+	\dashv
. 19 <u>53</u>	Mo	04 0																			•			-		+	-							+	+	\dashv
UGr V (Month)	M . 1.22	03 0												-		_								-			+					_	-	+		-
Jan	No. Lang.							-																	+	-								-	+	
ic) Km January (Unit) (Month)	Lat 38.7°N	ō																										1						+	1	-
tic)	1	00																	-					+		+							-	+	+	-
(Characteristic)	Ubserved at	Day	-	2	m	4	2	9	7	8	6	10	=	12	13	4	15	91	17	18	6	20	21	22	23	24	25	26	27	28	59	30	31	+	Median	Count

U S. GOVERNMENT PRINTING OFFICE 1946 O - 702519

Manual D Automatic D

 $\text{TABLE} \quad 77$ Central Radio Propagatian Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

953

January (Month)

Observed at Washington, D. C.

E.J.W.

National Bureau of Standards

McC.

Scaled by:

E.J.W. 23 22 Calculated by: McC. 2 20 <u>6</u> <u>®</u> 1 3.0) 2 9 [38]4 (3.6)4 7 3.5 H 13.87 Sweep 1.0 Mc to 25.0 Mc in 0.25 min 8 4.0 4 00 75° W Medn Time 3.9 H (3.9) P 3.9 H 13914 13976 4.0 10 3.9 4.0 40 2 13.77 9 (P.E) 13 8H 3.9 K 3.9 2 4.0 40 3.8 K H (8.8) 3.74 3.9 H 3.9 H (8.9)P (3.7)P 3.6 X (3.976 3.8 3.9 = 3.7 4.0 4.0 4.0 3 IX to (3.7) 7 (8.8) 3.3 K (3.4) K (3.6) 3.00 39 <u>0</u> 30 3.0 800 60 7 08 0 90 0.5 Lat 38.7° N , Long 77.1° W 0 03 02 5 8 Medlan 9 4 15 Count 4 ιΩ 8 8 20 22 23 24 25 59 Day Ø ю 7 6 2 = 12 100 91 17 6 2 27 88 8 3

30

Form adopted June 1946

E.J.W.

National Bureau of Standards (Institution)

McC.

Scaled by:

 $TABLE \quad 78$ Central Radia Propagatian Labaratary, Natlanal Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

Km January 1953

Observed at Washington, D.C.

(Characteristic)

U. 9 COVERNMENT PRINTING OFFICE: 1846 Q - 702519 E.J.W. 23 22 McC. 21 Calculated by: 20 6 00 (120)5 (110)5 (001) 130 120 10 011 110 Ŋ 17 Ś S U 7 110 # (110)\$ 120# (120)5 120% 110 % 110 # 120 120# (120)5 120 120 1120) 120 1120)5 120 120 120 120 120 011 110 120 011 110 011 25 9 T T 22 110× (120)A 10 // A(021) 11011 (110) (120) R 0/ 120 120 110 10 110 120, 110 110 110 0// [120] 011 110 110 110 110 011 110 2 110 110 011 27 Q U 100 10 × (120)A 110 # 110 # Sweep 1.0 Mc ta 25.0 Mc in 0.25 min [110]A 110 # A(0//) 110 # 1001 110 11 011 011 0// 011 011 011 011 110 28 4 011 011 011 011 0// 011 011 011 110 T 8 Þ _ Mean Time 110# 110 K (120)A 8(011) 120# 110# MOM 110% (110) A 0// 011 011 110 011 110 011 110 01 011 (30) 110 011 110 110 011 110 2 0/ 29 110 10 Т (120)8 110 x (110)8 110 K (120)8 8(011) 1201A (120)A 1001 10)4 A(0/1) 110 # 011 0// 011 120 (120)A 0/ 011 110# 100 75° W 110 011 110 110 110 011 110 110 110 2 30 T A(0/1) 8(011) (120)9 1001 110 # 1011 110 K 8(021) P(0/1) (120)8 1001 110)4 110# (130)8 120 011 110 (120)B 011 (10)3 0/ 011 0/1 110 011 1001 01 110 011 110 011 30 = 0 [120]A 110 # [NO] A 110 # 120" (120)8 (120)8 110 % H001 110 120 # A(011) 120 110# 110# 110 # 1011 120 011 110 110 100 100 76 110 011 011 110 110 Ø T 9 T T T (120)A 120# (120)A 110. X 110 H (120)5 120 K (120)4 (120)A (120) A [110]A 110# 120 (120)5 011 1001A 130 011 011 120 110 011 (120)3 120 120 44 £ 60 T T ₹ T T (150)3 (110)\$ (120)5 (120)5 110 # 1110)A 120 1110)5 5(011) 120 (120) 140 011 90 011 S S * S S ₹ S 4 T S 4 T S 07 90 90 Lat 38.7° N , Lang 77.1° W 04 03 02 5 00 Median 80 18 Caunt 9 15 91 61 50 21 23 25 Doy Ø m 4 S ~ 6 0 = 2 <u>-</u> 4 7 22 24 56 27 59 30 28 10

Manual [Autamatic []

MENT PRINTING OFFICE . 1946 0 -

Form adopted June 1946

of Standards (Institution)

National Bureau

IONOSPHERIC DATA

, 19<u>53</u>

fo E Mc January (Characteristic) (Unit) (Manth)

E.J.W. E.J.W. 23 22 McC. McC. 2 Calculated by: 20 Scaled by: <u></u> 8 S Ü A S Ŋ a) S S S S S S S S Į _ (20)# #(6:1) JO. 2) 2.0 K (20)P (22)P 777 2.1 11 (21) 22 H 2.0 % 0.5 22 7 2.2 2 ~ 3 ~ 1 8 7: 3 7. Ø ₹ 1.5 25 9 T U K T 23 × 2.5 H 1324 [2.4]A (2.7)P (25)P 2.5 (2.5) 3.5 3.5 5 3 20 74 50 2.6 3. 2.5 2.5 25 5 2.6 4 74 4.4 25 ß 5 3.4 B T U T (2.7)R 2.9 # (2.8)P 12. B. A 2.8 # 27 # 2.7 # (2.8)P 27 # 27 5.5 3.8 00 2.00 00 2.7 20 4 2.9 3.8 200 00 2.7 2.8 200 2.7 T ¢ 27 8 ₹ (3.0)A 2.9 # [30] M 28 K (30)8 78 H 2.9 X 3.0 // 2.9 H (3.0) 3.0 0 30 5 8 2.9 00 0.0 3.0 3.1 30 200 10 5.9 5.9 2.9 3.0 28 2.9 20 200 00 T B 4 (30) [3 I] A 8(2.2) 1291 2.9 # 30 # 2.9 K 29 # (2.8) (2.9)P 3.0 (31)P (30)P (2.9) P 75° W 3.0 2.9 3 0.0 30 29 30 30 300 3.0 3.0 30 5.0 2 5 5. 3 5.6 8/201 [3 0] B 7 9 H 4(8 2) 3.0 (30)P 27 K 2.9 H 2.7 # 2.8 H 25 K (28)B 29# (2.7) P 2.9 3.0 3.0 30 30 30 2.0 4.9 0.0 2.2 200 V. 27 3.00 2.9 00 M 200 Ø 3.1 30 = (28)A 47 4 4.5 H [26] A 2.7# (25) H 187 28 % 26 # 7 8 K (27)A (26) 7.87 2 200 27 2.5 5.5 00 8 8 5 7 4.7 2.00 20 9 B 29 ∢ 27 K 7 th K 74 # 2.3 # (2 5)P 23 X A 44 A 12.5)# 2.2 H (2.3)# (23)" (2.3)P 3 3 4.4 7 4 4.4 23 5.5 2 3 2.2 60 25 £ 2 T T T T ₹ T T 1.8 # (8.1) x (1.8)A (1.7)3 (1.8)P 194 1.7 1.8 00 1.8 90 N T S T 1.8 S S 7 T T S T T S T Ŋ S ₹ 4 S S 07 90 0.5 Lot 38.7° N , Lang 77.1° W 04 03 Observed at Washington, D.C. 02 5 00 Caunt Median 4 00 Day Ø m ß 9 _ 6 0 = 2 10 4 5 9 _ 8 6 20 24 56 27 28 59 30 2 22 23 25 5

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min Manual Autamatic 🛭

8 0

Form adopted June 1946

Standards McC. E.J.W

90

Bureau

National Scaled by: 3

TABLE 80
Central Radia Prapagatian Labaratary, National Bureau of Standards, Washingtan 25, D.C.

DATA IONOSPHERIC

January 1953

Observed at Washington. D.C.

Characteristic)

ا النا 3.47/10 36 110 2.4 100 3.1100 u 3 Ш Ш Ш ω ш W Ш W لذا McC. 251/20 50/00 36 110 30 110 63 ш Ш W Ш W ij 30 Ш Ш Ш W ш ш Ш ш 0 W ш Ш 3.5 110 13.0 110 4.47110 36/110 33 110 110 110 3.2 100 30 2 ш * ш Ш ш IJ. Y. ω W ш 4.3/110 24110 381100 2.4130 18/20 110 110 247 90 00% 27/10 20 ш W Цj ш W ريا W U W لنا W W W W 水水 31 Ш Ш W 1 1100 6.6/10 2.31/00 2.2/100 13,00 22,20 5.5 110 5.41/100 110 5.0 110 49 110 45 100 011 5.4 30 ш 6 ندا W ш Ш ш Ш Ш U Ш 311,00 2.4/00 29/120 38/10 2.0/110 23 Ш Ш ш ш W Ш ш ш <u>00</u> Ш ш ш Ш Ш ш U Ш لذا 2.01/10 14/100 10/20 351,00 0111 1.3/40 2.01/00 58 110 29 J b b P Ü P Ġ b 6 J Ġ U W 41 Ш W W W L B 0 12.2/20 3.31/20 2.3 100 22/30 1.91/100 3.57 11 24/120 3.2,100 B 30 J J Ġ b * 9 Ġ Ġ Ġ Ġ S Ŷ P J 6 b Û 6 Ġ y P B 2.9/20 3.81/20 2.1100 12-7/200 33/20 5.8/110 5.0/110 13.6100 1.4/00 2.1/10 1.7 100 2.6/20 21/00 2.9/20 2.6/20 30 B b Ç b b y ** Ü 6 6 2 b Ġ 6 U 6 6 B P IJ 3.1/20 100/ 4.90 11.5 110 2.9 14 13.7 110 Sweep 1.0 Mc to 25.0 Mc In 0.25 min 10 4 P * 31 b Ġ b B J B b B B J b b G B 6 P P P 6 b 3.7,20/8 12/20 3.2 110 30 * Y 6 B U Ġ Ġ 10 P Y Ó b £ P b 4 6 Ç 6 b P P 6 P P 11.0/20 3.1110 13.7 110 29 110 31 100 1.61/00 2.4 110 3.71/10 100 75° W G B 31 6 G 3 B B b (b <u>~</u> Ġ b 0 Ġ y B B J 30/30 3.6/120 2.5 14 2.9 14 2.01/00 12.0/00 1.9 100 5.47,00 34/10 30/10 ** 31 Y B Ġ Ġ b Y P Ġ P b b Ś Ü B P P P 6 = В B B P Ą 4.3 100 3.37,00 3/120 1711/10 2.2 100 2.5 100 100 b Ġ b Ġ B B B 6 6 31 2 5 B Y ∞ B b 6 y Y B Y U P ** 3.9 100 30/00 2.6/20 13.6,20 3.67110 2.2 110 24/10 2.1/110 12.1 110 661110 2.5 110 5 120 2.5 110 2.9 110 2.4/11 110 3.37/10 5.0 ß 30 P B b B P P b હ Y E B B 6 B 127 140 3.37,110 1.10.7 31 110 2.47/10 2.2 140 1.9 100 23110 1.97110 31/110 G 1.2 J Ġ 0.8 P Ġ b b Y S Ŷ Y J 31 Ġ S J 110 351110 24/100 22/10 3.8/10 38/100 48 # 24 110 24 110 31 0 W W ш Ш Ш ш ш W W Ш Ш W Ш Ш Ш Ш * * W W u. ш 4.01,30 3.17100 11/2 31 110 22/1022/10 110 110 31 90 Ш W ш W Ш لعا ш Ш Ш * H لنا j 2.3/12.45 2.01/10 49120 341,10 4.31/20 22/120 301,00 74/20 72 110 23/120 20110 2.31/20 3/ 110 110 24 110 110 0/ 27 05 W 3 W W W W W ш ш Ш 100/ 110 35/110 2.17110 2.5/110 Lat 38.7° N. Lang 77 P.W 0.4 W W ш ** Ш ш لنا H W Ш W W ш Ш Ш ш 8 12/10 33110 1.9 120 33120 03 ш W W ш 3 ш ш ш ш W Ш ш Ш ш Ш ш ш Ш ш W * 2.01/00 25/110 32/110 011/8 4 17/100 02 W ш ш Ш ж B W W Ш ш ш 3 ч ш W W W Ш Ш W w 1.3 1,00 3.0% 21/120 Ш ш Ш Ш W ш W ម៖ B ш ш W W Ш W Ш 31 0 Ш Ш Ш ш Ш Ш W ¥ 33/00 10 0/1 ¥ W W 00 ш Ü Ш Ш Ш Ш W ш u. u W Ш α Ш W W * 3 ** Median Count m 4 9 (0) 0 0 Day O S = 12 <u>~</u> 4 5 9 7 8 0 02 2 22 23 24 25 58 27 28 29 30 <u>~</u>

MEDIAN FES LESS THAN MEDIAN FOE, OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER

Manual [] Autamatic [3]

 $\frac{TABLE}{\text{Central Rodia Prapagation Laborator}, No Non I Bureau of Standards, Washington 25, D.C.}$

Form adopted June 1946

E. J. W.

National Bureau of Standards (Institution)

Scoled by: MCC.

o Propogation Laboratory, Notional Bureau of Standards, Washingt
IONOSPHERIC DATA

1953

January

(Unit)

(MISOO) F2 (Characteristic) Observed of Washington, D.G.

F. J. W. 2.1.50 (2.0)F (0.0) (000) A (0.0) 00,15 (2.1)5 (20)3 (02.1) 5 (1.7)5 0.0 0.79 (6.7) 000 30 0.00 1.60 30 3.0 9.0 23 ŋ 03.02 00 (2.0)5 2.1 F 2,1 F (2.1)5 325 (1.8) \$ (3.0) 0.0 20 23 2.6 67 67 60 22 U (0.0) (02.1) 5 (21) J 2.0 5 5000 23 Calculoted by: McC. 2.5 2.2 20 0 2.03 0 2 2.0 1.00 5 Q 1:00 3 2,35 (2,3)5 (2.5) (2.0)5 3.3 2.2 2.0 2.2. 2.4 5,3 2.4 0.0 5.0 100 200 6. 23.3 27.02 99 20 20 2.0 (341) S(EE0) (a.1)F (03.0) 2.45 33.37 (4.6) 4.60 (2.4)5 23.3 34 3.4 23 23.3 3.4 5.3 234 23 4 2.0 3.4 2.1 233 53.3 53 9 <u>6</u> (2.3) 23 5 2.2 3.3 (2.3) 2,3 34 2.2 25 4.60 33 33 23 24 01.3 2.3 8.3 23.33 53 60 8 20,00 233 U (3.4)3 23 K 2.3X (2.3) 0,3 2.3 3 4.00 2,3 4.60 2.2 23 57.53 020 1.00 24 3 233 2.3 33 23 50 _ 2,3 3.4 3.3 (0.5) 000 500 4.00 4.00 03.0 5.3 03.03 2.4 02.5 60.00 6.3 2.4 2,3 234 23.33 6 4.00 1.0 2.3 2.3 9 20,00 8.3 30 1.9 x 2.3 2.4 2.3 633 25 3.3 2.4 23.3 23 2.3 34 2.5 33 100 1.00 90 2 (2.3)3 2.5 8,3 4.00 8 23 2.3 3 6.3 3.3 3.4 6 2.4 4 Mean Time 8 02.3 3.5 2.3 4.60 8.3 24 0,3 3 4.8 4.00 3 9.3 23 35 3 4:00 2.4 2.1 5.3 5.3 8 10 33 C F(0.0) 3 2.4 3.4 3.5 234 3 2.4 8,3 15°W 7 2 (1) H(50) 23.4 2,3 7.20 03.5 50 2.4 0.0 02.3 90 2.6 3.6 6: 2,3 3.6 5 9,53 = (0.1)H 2.4 2,5 5.50 23.3 2.02 2.4 4.00 2,5 02.3 (5.5) 36 0.0 2,5 8 3.5 3 34 5,3 1.8 24 9 3 (2.4)5 (1.4) S (2.7) 25 4.60 4.6 5.3 2,5 2.5 2.4 2.5 5,3 6,5 4.60 6.00 3 2,3 2.7 2.7 60 3.6 2.6 3 2.6 5 (0.1)K 2,1 K 2.5 0.5 4.60 5.5 (2.2) 2.4 5.50 4.6 2.5 4.00 25 2.4 15.50 2.4 3.6 4.0 3.6 2.03 4.50 0.5 14.00 08 n (0.1)5 (D.4) F (0.1)5 F K (1.9) F JS(E.G) (O.O) 03.03 5 50,00 F(0.0) (0.0) 5(0:0) (0.3)5 (0.0) 9(0.0) 8 (0.0) (0,2) 60.3 0,00 (0.1) 5,3 2.4 5.3 2.4 63 300 23 23 07 30 (a.1)F 232 2.4 F 5 (0.4) 23 F (3.1)3 (62.0) 1 (0.0) S (0.0) S 5(0.0) (21) F (2.1) F (2.1) (2.0) 타(2.9)카 (2.0) 2.4 0.00 (0,3) 2.3 F 03.33 1.0 23 03.00 4.00 6.5 3.0 90 2,2 d 1.00 4 200 27 2.3 9(0.0) 9(1.0) 3 37 (3.2) (3.1) 6.3 0.00 0.0 03.3 (2.3) 2.1 05 1.0 0.00 1.00 2.4 1.00 1.00 d 600 F R K 20.0 K 2.15 (2.3) (3.1) 5 0,15 (2.1) 20.03 0,3 0.20 02,93 0 WJ.77 Long 77.1°W 0.0 20 1.00 2.1 2.1 2.4 60 (02.1) 2 / 3 (c.c) (021) (49) 5 $\frac{(3.1)^{\frac{5}{5}}}{(3.1)^{\frac{5}{5}}}\frac{(3.1)^{\frac{5}{5}}}{(3.1)^{\frac{5}{5}}}\frac{(3.1)^{\frac{5}{5}}}{(3.1)^{\frac{5}{5}}}\frac{(3.1)^{\frac{5}{5}}}{(3.1)^{\frac{5}{5}}}$ (1.9) K(20) P (23) (0,0) (0.0) x (0.0) x 2000 (19)5 (0.0) 03 5.3 000 0.0 2.00 1.5 2.6 9 20 30 (0.0) F K(19)F 0.0° (0.1) (1.9)5 (2.0) P (0.0) P (0.0) J(62) S 6.00 (0.0) (0.0) 0.50 0,0 22.0 2.0 2.07 02 00 Ø 0.0 0,20 0.50 30 (0:0) 5(0.0) S.1 F * A 80 S (0.0) (3/15) 2.0 K (0.0) F (19)P (0.0) (0.0) F (0:0) (0.0) (2.0)F (a.a) F 0.0 0.0 0.0 67 5 1.00 0.00 2.0 0.50 2.0 2.1 30 (1.9)5 62115 (2.3)5 (0.0) (02.1)3 (3.0) F (0.0) 0.0 0.0 50.00 0.0 0.0 00 90 0,70 01 0.50 67 3,0 30 Q 0,0 20 0.00 000 Medion Count Q 4 2 9 7 00 Day o 0 = Ö <u>~</u> 4 5 9 _ 9 6 20 23 24 25 56 59 2 22 27 28 30 10

Sweep_LQ_Mc to25.0_Mc in0.25_min Monuol □ Automotic ⊠

U S GOVERNMENT PRINTING OFFICE 1948 O - 102519

Form adopted June 1946

 $\begin{tabular}{ll} $TABLE & 82 \\ $Central Radio Propagatian Laboratory, National Bureau of Standards, Washington 25, D.C. \\ \end{tabular}$

1953

January (Month)

(M3000)F2, (Unit)

Washington, D.C.

National Bureau of Standards Mc C. (Institution) E. J. W. Scaled by: IONOSPHERIC DATA

	Observed at	1	Washi	Washington, D.	ن								1								Scaled by:	,	-		7	
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Lat 3	8.7°N	M	7.1°W							7.5	- 1	Mean Tim	ЭС					Calculate		O ₩		E. J. W.	
10.00 10.0	Day	00	Б	02	03	0.4	90	90	20	80	60	0	=	12	131	4	15	16	17	80		20	21	22		
10 10 10 10 10 10 10 10		(3.1) 5		(3.1)	(31) \$	9(1.8)	(3.3) 6	4	(3.0) \$			3)		4	5	77	80	3.3 \$	4	25	4	5 5	31	3.1		
1. 1.	-	(31) 5	(31) 3	-	0	(31)6		(31)	(3.1) 5			49	5		10	7		36)3			4	9 F (15		-	
3	-		_	~	3	*	3.1	45	3				7		m	7				3.1	5	2		31		
	_	0	(3.1) 5	5	N	3	3	3	3				7	5	9						77	1 6	1	31	0	
10 10 10 10 10 10 10 10	-		0 2	0) 5	(3.2) R	×	-	×	K(28)E	(3.1)%	2	0	Do		×	5 K	00	S X	3	/ K	-				1	
1.00 1.00	-			×	(30)3	O NX	K(3.0) 5	0	7	35					3.1			*		5		0 0	3.0 F		3.1 6	
3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	-	(30)F	0	30	_		-		K	3.5		3.4		3.4				5		7	4 5	r.v	0		(3.0)3	
36 36 37 38 32 39 34 34 37 31 31 31 31 31 31 31 31 31 31 31 32<	-		3.1		33	(3.3)\$	_	0	0	32					#			4		4	4	7	0			
(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)			0.0	3.1	l	(3.1)5	3.3	10	(3.1) 8	10					2			7		7	2	2)5	1 F	0	8	
Carrollong Art Carrollong Art Ar	-	8.8	0	0		3	0	m	7	3.6				100					0	3)5	4)5	0	R	1	3.0 F	
30f 30f <td>-</td> <td>(2.9) =</td> <td>щ</td> <td>(2.8)5</td> <td></td> <td>2.95</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td>~</td> <td>3.4</td> <td>2</td> <td></td> <td>ы</td> <td>120</td> <td>*</td> <td>L.</td> <td></td> <td></td> <td></td>	-	(2.9) =	щ	(2.8)5		2.95								4		~	3.4	2		ы	120	*	L.			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		30 F	305	0	0	0	0		(3.2)5		35			2			34			4	3)5	-		31		
24 36 36 36 34 35 35 35 35 35 35 35 35 34 35 35 34 34 35<	_	2	2	0			-		(31)5					5	40		3.1	7	3)5	5 (4	7	2			305	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.9		-	30	3	3.2	3.0	34			*		¥	3.1	34	4			5	2 F	0	0	0	
3 3 3 3 3 3 3 3 3 3		2	0	8	2	(30) F	31	(3.3)F		34			5	5	#	23	9			2	5	7		7	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		32 F	(3 C) F	0	0	-	-	3	(35)6					5	3 (3) 5		2			5 5	1 1/2	1 1	N	m	
10.00 1.		33)5	N	2	14	2	N	m					3.4	5	#					7 -	5/3	2 5	7	-	-	
(30)/2 (Val)/2	-	0	3.1	31	_	_	m	33	(3.4)8	35		31	4	Ë	#			7	-75	[17]	9	5 5	_	_	30) 5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	0	8)6		12.17	7 ×	2	F	0	N	_	_	-	7 K	/ X	2 K	4 K	4	4 2	F2	ميد	1	24	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	0.0	0) 5	7		0	(2.9)5		33	4				#	4	7	5			6	7	5	3.0)5		_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30 F	0	0	-	_	(3.1) F		(3	36	1 1		3.5	#	3		#	7	34	3 (Fin	2	0	0	2.9) F	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(30) F	(30) 5	6	00	0	0		N		35	*	4	5	5	5		3.4.		3	2)\$ (0.80	1 F		3.0/2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(3.0) 3	0	3/	2		tη.	(3.4)	(34)3					5 (5)3	+	9			*	5	9	20	3.0)5	(3.0)3	Makes es.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(31)3	0	~	_		(33)3	34			-		#	ab	*		m		U	U		4:	m	25		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	(3.0) 8	0	3	3	0	7	3.1	(3.3) \$	3	8	-		5 F	9		+	2	*		3 5	4 5	100	14		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	2	0	0	7	2	5	(3.1)8	(32)			7	£	6	5	7					3	3	- 1	7	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	2	2	(31) }		8						w	4	2				4	3	310	12			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	2.8	0	0-	0	F	F	Ą	2	7			3	7	4 6		C	U	U	U		6)5	0		3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P.T.	(30) 8	0	0	3.1						9	8	#	3	7	7	5	5		_	0	IT.	2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 5	2,	0	8	0	3	N	7		3.4	6)	3	2	2	4					2	0	6			
30 30 30 31 31 32 (32) 35 35 34 34 34 33 34 34 34 35 35 37 31 31 30 30 30 43 23 34 37 30 30 30 30 30 30 30 30 30 30 30 30 30	-					31	3.1	0,		35		9	2)7	4	3			4	5/3	5	4	2		-	1	
30 30 30 31 31 31 32 (32) 35 35 34 34 34 33 34 34 34 34 33 33 34 35 37 33 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-																									
30 30 30 29 29 27 30 31 31 30 30 30 30 30 29 29 29 29 30 30 29	-				3.1	3.1	3.1	3.2	(32)				*	4	#	3			+	3	4	7	3.1	3.1	3.0	
	_	30	30	30	30	29	29	27	30	31	31	31	30	_	30	31	30	30	29	29	CHEST.	30	30	29	29	

Sweep 1.0 Mc to 25.0 Mc In 0.25 min Manual

Autamatic

Manual

U. S. GOVERNIENT PRINTING OFFICE, 1946 O - 708519

U. S. GOVERNMENT PRINTING OFFICE 1848 O - 702519

 $TABLE \quad \textbf{83}$ Central Radio Propagation Labaratory, National Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

National Bureau of Standards

(Institution)

McC., E.J.W.

10NOSPHERIC DATA

. 19<u>53</u>

January (Month)

(M 3000) FI (Characteristic)

Observed at Washington, D.C.

E. J. W. 23 Mc C. 22 2 Calculated by: 20 6 9 _ (3.4) 9 N (3.8) 4 5 23 3.7 W 3.4 % 3.7 H 4 3.9 7 ~? Mean Time 3,7 77 19 3,00 30 3.6 75°W (68) (3.7) (3.8) 3,0 2 4.1 3.6 3,0 20 3.9 3.7 7 1.7 (3.7) 600 = (3.8) 15 3.6 4. (3.8) 3.5 35 3.8 3.9 3.7 3.7 30 3.7 7 3 7 2 (3.9) (3.8) 0 (3.8) (3.8) 30 5.7 3.4 39 8. 3.7 0.4 4.1 0.4 60 4.2 1:4 ξ 0 0 Ø 7 G T 90 3.9 _ G Q 7 07 90 0.5 Lat 38.7°N, Long 77.1°W 04 03 02 ō 00 Median Count Day N 4 2 9 ~ ø 0 0 10 9 18 20 = 2 4 9 1 6 2 22 23 24 25 26 27 28 59 30 10

Sweep 1.0 Mc to 250 Mc In 0.25 min Manual

Automatic B

Form adopted June 1946

National Bureau of Standards
Scaled by: (Institution)

(M1500)E January 1953 (Characteristic) (Unit)

IONOSPHERIC DATA

Table 85

Ionospheric Storminess at Washington, D. C.

January 1953

Day	Ionospheric 00-12 GCT	character* 12-24 GCT	Principal Beginning GCT		Geomagnetic 00-12 GCT	character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10	1 3 1 4 4 1 1 2 2 2	2 2 2 3 6 1 1 2 2 2 2	0600 	1100	3 3 2 1 4 2 2 3 2 2 2 2 2	3 4 2 2 4 3 2 1 2 1
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	222211113323231123222	11121215322233322233	0700	2400	222311125432232543433	1 3 2 1 1 3 3 2 2 1 0 2 4 4 4 4 4 3 2 2

^{*}Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.
----Dashes indicate continuing storm.

Table 86a

Radio Propagation Quality Figures (Including Comparisons with Short Town and Advance Forecasts)

December 1952

Day	North Atlant Qualit figur	ic y	19su hour	ed ab	out o		Whole day quality index	(J-re	ports)	issued	Geo net Ko	
Dec	Half D UT (l) (00 to 12	06 to 18	12 to 24	18 to 06	UT	1 to 3/4 days	u/5 to 7 days	8 to 25 days	Half	day UT (2)
1 2 3 4 5	(4) (4)	6 6 4)	5 (4) (4) (4) (4)	5 (4) (4) (3) (2)	6 5 (4) (4)	64644	(4) (4) (4)	66566	6 6 6		2 3 (4) (4) (4)	3 (5) 3 (4) 3
6 7 8 9 10	(4) 5	6 6 6 6	(4) 5565	(3) 5 (4) 5 (4)	6 6 6	56666	55565	(4) (4) (5) 75	6 7 7 7		2 2 2 1 2	2 1 1 2
11 12 13 14 15	(4) 5	6 6 6 6	555(4) (4)	5 (4) (4)	5 (4) 5 5	55(4)56	56565	55666	7 6 6 6		3 2 (5) 1 2	2 2 3 1 2
16 17 18 19 20	6 6	6 6 7 7 7	5 (上) 5 5 6	5 (しちちち	6 5 5 6	5 6 6 6	5 6 6 7	6 6 7 (4) (4)	6 6 5 5 (4)		2 3 2 1 2	2 1 2 2 1
21 22 23 24 25	7 6 6	7 7 6 6	6 6 6 (h)	5 6 6 (!;)	66555	66655	7 7 7 6 5	(4) (4) (4)	(4) (4) (4)	X X	2 2 1 3 (4)	1 2 1 (4) 2
26 27 28 29 30 31	5	6 5 5 5 5 5	5 (4) (4) (3) (4)	ち (4) (4) (3) (4)	6 6 5 (4)	6 6 5 5 (3)	6 6 5 (4) (4) (4)	[(4)] [(4)] [(4)] (3)	5 6 (4) (4) [(3)]	X X X X	3 3 (4) (4)	2 (4) (4) (4) (4)
Score: Quiet perio	P S ds U F		12 10 0		11 17 1		la managama al managama de Carta de Car	5 11, 2 4	14 12 6 3			
Disturb perio			5 3 0		0 0 0			2 2 0 2	2 1 0 3			

Scales:

ales:
Q-scale of Radio Propagation Quality
(1) - useless
(2) - very poor
(3) - poor
(4) - poor to fair
5 - fair
6 - fair to good

- 7 good 8 very good 9 excellent

K-scale of Geomagnetic Activity 0 to 9, 9 representing the greatest disturbance; $K_{\rm Ch} \gg \frac{\mu}{2}$ indicates significant disturbance, enclosed in () for emphasis

Scoring: (beginning October 1952)

- P Perfect: forecast quality equal to observed S Satisfactory: (beginning October 1952) forecast quality one grade different from observed
- from observed
 U Unsatisfactory: forecast quality two or more
 grades different from observed when both
 forecast and observed were ≥5, or both≤5
 F Failure: other times when forecast quality
- two or more grades different from observed

Symbols:
 X - probable disturbed date

Short-Term Forecasts--December 1952

Table 87a

Coronal observations at Climax, Colorado (5303A), east limb

Date				Deg	zree	S 1	nort	h c	of t	he	so]	ar	equ	ato	r				00				Deg	ree	s s	out	h o	f t					ato				
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	13	10	15	20	25	30	35	10	45	50	55	60	65	70	75 8	3O 8	35 9	70
1953																																					
Jan. 4.7a	_	_	_	_	_	1	3	3	4	7	6	14	16	18	15	13	12	12	15	13	10	6	4	3	2	2	1	-	_	_	_	_	_	_	_	_	-
7.7	-	_	_	_	_	-	_	_	_	-	_	1	1	1	1	3	6	22	22	22	20	18	8	3	1	1	1	1	-	_	_	_	_	_	_	_	-
9.7	438	_	_	-	_	-	_	cm	_	_	_	639	1	2	4	6	7	11	11	15	18	13	5	4	3	2	2	3	3	2	1	_	-	-	_	-	-
10.7	_	-	-	_	_	-	_	_		_	-	_	-	1	1	3	5	7	9	15	14	11	5	3	3	4	4	5	4	3,	2	. 1				_	1
11.7	_	_	_	_	_	-	_	_	_	_	-	-	1	1	2.	3	4	4	6	6	8	6	5	4	2	3	5	5.	3	2	1 1°	l'	1 _a	_a	_a	_a	_a
12.7	_	_	_	_	_	-	_	_	-	_	-	_	-	1	2	3	3	3	5	4	5	5	4	4	3	1	2	2	1	_	_	_	-	_	-	_	1
13.7	-	_	_	_	-	-	-	_	1	3	2	1	3	5	- 5	4	3	3	3	4	4	5	4	3	3	3	4	5	3	2	2	2	-	_	-	_	-
16.7a	_	_	_	_	_	-	_	2	3	5	3	3	4	3	4	3	3	2	2	2	4	1	_	_	_	_	_	1	3	1	1	1	1	_	-	_	-
20.72	_	963	_	_	_	_	, –	_	_	_	_	_	2	2	4	4	2	2	4	5	5	_	_	_	460	_	_	400	-	_	_	_	-	_	-	-	-
24.8	_	_	_	_	_	_	-	1	2	2	1	1	2	2	6	15	20	17	6	4	3	.3	3	3	3	3	3	3	3	3	2	1	1	1	1	-	-
25.8	Х	X	Х	Х	Х	Х	Х	-	_	663	-	***	1	1	3	2	5	3	3	3	3	4	4	4	2	2	2	2	3	3	3	_	_	_	_	_	-
27.9	-	_	1	1	1	3	3	3	3	4	3	4	7	7	8	9	8	4	4	2	2	2	2	1	1	1	1	1	1	1	1	-	-	_	-	_	_
31.9	_	-	_	1	2	5	5	6	5	4	3	6	12	18	21	20	12	17	16	10	10	10	11	7	4	3	2	2	3	2	2	-	-	-	-	-	-

Table 88a .

Coronal observations at Climax, Colorado (6374A), east limb

Date	l			Dea	ree	S 1	nort	th c	of t	he	sol	lar	equ	ato	or				-0				Deg	ree	S S	out	h o	ft	he	sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	13	10	15	20	25	30	35 1	40	45	50	55	60	65	70	75	80	85	90
GCT 1953 Jan. h.7a 7.7 9.7 10.7 12.7 13.7 13.7 20.7a 20.7a 21.8 25.8 27.9 31.9	22235445 4 X 3 3	52254345 - 5X44	42142336 - 5x33	75 2 2 2 3 3 3 3 3 - 3 X 2 2	70 2 1 1 5 2 2 2 2 4 1 X 1 1	2 1 1 3 2 1 3 3 - 1 X 1 1	2 1 2 2 3 1 3 3 1 X 1	1 1 3 3 4 1 3 2 - 2 3 1 1	1 1 3 4 2 1 4 2 - 3 3 1 1	12454142 5311	40 24463152 - 6511	35 34564343 6211	30 34385553 7312	75273333 - 73210	43104344 - 7557	8 2 5	664543381	3428444614558	16 12 16 5 4 5 7 2 3 3 5 14	1422544925469	6 16 9 12 4 3 4 8 2 4 4 5	13 18 6 6 2 3 3 7 2 4 3 10	12 4 3 7 3 3 8 2 4 2 1 9	25 7538445624238	5536667723238	35 26 5 4 4 7 2 3 2 3 7	3427323623233	3414213722125	50 4213313423123	22 1 23 1 3 3 2 2 1 2 4	2 1 1 3	1 1 2	1 1 1 3	2 2 1 2	2 2 1 4	3 2 2 4	3224224424234

 $\frac{{\tt Tabls~89a}}{{\tt Coronal~observations~at~Climax,~Colorado~(6702A),~east~limb}}$

Date				Deg	ree	S I	ort	h c	of t	he	so]	Lar	equ	ato	or .								Deg	ree	S S	out	h c	of_t	he	So.	Lar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953																																					
Jan. 4.7	Х	Х	X	X	X	X	X	X	X	X	Х	Х	X	X	Х	Х	Х	X	X	Ιx	X	χ	χ	Х	χ	Χ	X	X	X	Y	Y	Y	Y	У	v	v	٧
7.7	-	-	-	-	_	_	_	-	_	-	_	-	disc:	1	1	1	1	3	4	5	3	ï	ī	1	ï	î	ï	ï	***		_	_	-	_		_	_
9•7	-	_	_	_	9907	_	_	-	_	-	_	_	-	-	_	1	1	1	2	3	3	2	1	1	1	1	1	1	1	1	1	1	_	_	_	_	_
10.7	-	-	_	_	_	-	-	-	_	-	_	_	-	_	_	1	1	1	_ 1	2	1	1	1	1	1	1	1	1	1	_	_	_	_	_	_	_	_
11.7	-	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	_	990	-	_	_	_	_	_	_	_	_	_	_2	عــــــ	ھے ا	8	-5	L_8	_8	ı_a
12.7	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_	_	-	_	-	_	_	_	_	-	_	_	_
13.7	-	_	-	-	-	_	_	-	-	-	_	-	_	_	-	-	_	-	-	-	_	-	_	_	_	_	_	_	-,	_	-	_	_	-	_	_	-
16.7a	-	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-
20.7a	_	-	***	-	_	_	_	_	_	_	_	_	_	_	-	***	_	-	-	-	_	mo	_	-	_	_	_	_	_	_	_	_	-	_	_	-	-
24.8	-	-	-	_	-	_	-	_	_	_	_	_	_	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	_	_	_	_	-	_	_	-
25.8	X	Х	X	X	X	Х	X	-	_	_	\rightarrow	_	_	_	_	_	_	_	-	-	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	-
27.9		_	_	_	_	_	-	1	1	1	1	1	1	2	2	2	2	2	2	2	1	1	l	1	***	_	_	_	_	_	_	_	_	-	_	_	-
31.9	-	_	_	_	_	_	_	_	_	-	1	1	2	4	3	3	3	3	2	2	1	3.	1	1	1	1	1	_	_	_	_	-	_	_	_	_	-

Date										he									_	, i			Des	ree	s n	ort	h o	f t	he	sol	ar	0011	210	99			
GCT	90	85	80	75	70	65	50	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35		45					70		80	85	90
1953																																	-	1/		0)	
Jan. 4.7a	-	-	-	-	***	-	-	-	-	_	_	***	-	_	_		1	2	1	1	3	1	3	1	2	1.	1.	2	7	1	_	_	-				
7.7	-	-	-	_	-	-	_	_	_	-	_	_		ena	-		_	_	1	2	5	1	9	8	5	2	ī	ī	2	2	1	7	1	7	1	_	-
9.7	-	\rightarrow	-	-	_	_	_	_	\rightarrow	440	_	-	_	000	-	-	-	_	1	2	10	20	10	3	í	1	ī	ī	ī	ī	ī	_	_	_	_	1	_
10.7	1	1	1	1_	-	-	_	-	1	1	1	1	2	4	4	2	2	2	2	3	1	1/1	14	6	L	3	2	3	3	3	2	3	1	2	_	_	-
11.7	⊸a	_a	_a	_a	_a	_a	_a	1	1	2	3	3	4	3	4	4	3	4	3	5	6	8	7	Ĺ	5	3),	J,	Ĭ,	Ĭ.	- 2	2	- 5	7	_	-	-
12.7	1	1	1	1	_	-	_	-	-	1	1	1	2	3	2	2	3	h	3	1. 1	7	7	Ś	3	3	2	2	2	2	7	7	7	7	1	_		-
13.7	_	1	1	2	2	2	3	3	4	4	4	5	5	5	5	6	5	3	5	10	1.3	12	าา์	11	11	0	0	2	١.	1.	7	7	1	_	~	_	_
16.7a	_	_	_	_	_	1	1	1	1	1	1	3	3	Ĺ	L	5	8	6	6	9	1.2	22	33	25	20	12	7	5	1.	1.	2	ر	7	.L	Т	_	-
20.7a	comp	_	-	_	_	-	676	-	_	-	-	_	-	_	1	3	5	8	8	8	-6	-5	3	-/			-	_	4	4	O)	4	Т	_	_	-
24.8	-	_	-	_		1	4	3	4	4	5	4	Ž1	À.	8	15	17	9	1 5	3	2	í	_	_	_	_	_		_	_	_	_	_	_	_	_	
25.8	-	_	-	_	-	_	_	_	X	X	X	X	X	X	X	×	X	x	l v	Y	Y	Y	v	v	v	v	v	v		- v	- v	7/	75	_	_	_	-
27.9	-	_	-	-	-	****	_		-	-	3	2	2	2	3	3	2	1	l î	1),	3	. J	. J	2	2	Δ.	2	Λ.	Λ.	Λ	Λ	X	Х	X	Х	X
31.9	***	_	-	emb.	_	_	490	-	1	3	2	-	_	_	_	_	_	_	_	lī	3	3	5	7)ī	1	3	5	5	5	3	_	_	_	_	,—	-
21.07	***	_	-	-	_	_	440	-	Τ	3	4	_	_	_	-	_		-	_	1	3	3	5	4	4	14	3	4	4	4	3	***	_	-	-	-	

Table 88b

Coronal observations at Climax, Colorado (6374A), west limb

Date				Deg	ree	5 5	out	h c	of t	he	sol	ar	equ	ato	r					Т			Deg	ree	s r	ort	h o	ft	he	50]	Lar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953 Jan. 4.7a 7.7 9.7 10.7 11.7 12.7 13.7 16.7a 20.7a 24.8 25.9 31.9	3224224424234	42351 124324134	3 2 3 5 2 2 4 3 2 4 1 3 4	4235134424234	4 2 3 4 a a 2 4 3 2 4 2 3 4	4233313425234	1 2 2 2 2 1 3 3 2 5 2 3 4	1 1 2 2 1 2 1 2 3 2 4 2 2 5	1 1 3 2 2 1 3 2 2 4 X 2 3	1 2 3 3 2 1 3 3 2 4 X 3 3	1 3 3 4 2 1 4 5 2 5 X 3 3	1434233625X33	3 3 5 3 3 2 3 4 2 6 X 3 3	2 3 5 4 2 2 2 2 6 X 3 3	2 4 5 3 3 2 3 3 2 6 X 2 3	3453323425x23	2 3 4 2 3 2 2 6 3 12 X 3 6	25645421039X26	2 4 12 14 4 3 7 3 4 X 3 5	8 3 6 8 5 3 3 3 2 9 X 2 7	10 7 15 18 8 2 2 5 2 9 X 2 9	8 521 20 6 2 4 20 2 9 X 2	2 4 18 17 5 2 4 28 1 9 X 2 3	1 2 9 12 3 2 5 3 1 9 X 2 3	1239424519X14	1 2 5 9 5 2 3 2 1 9 X 1 6	1359423219X14	1 1 3 7 4 2 3 2 1 6 X 1 4	1 1 2 4 2 1 2 2 1 4 X 1 2	1 1 3 1 1 2 2 1 4 X 1 2	1 1 1 3 1 1 2 3 1 4 X 1 2	1 1 1 5 1 1 2 2 1 3 X 3 2	1 1 1 2 1 3 4 1 3 X 3 2	1 2 3 3 3 1 3 5 1 3 X 3 2	1 3 2 4 3 3 3 5 1 4 X 3 2	1 3 3 4 4 3 5 5 1 5 X 3 4	2 2 2 3 5 4 4 5 - 4 x 3 3

Table 89b

Coronal observations at Climax, Colorado (6702A), west limb

Date				D	legi	ree	s s	out	h o	f t	he	so]	ar	equ	ato	or				-0				Deg	ree	s •n	ort	h o	ft	he	sol	ar	equ	ato	r			
GCT	90	85	80													20	15	10	5	00	5	10	15									60				80	85	90
1953																																						
Jan. 4.7	Х	Х			X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X
7.7	-	-	-		-	-	-	_	_	-	_	***	_	-	-		-	_	-	_	-	-	-	_	***	_	-	_		-	-	_	***	-	-	_	-	cont
9.7	-	_	-	•	-	-	_	-	_	-	-	-	_	-	-		-	_	-	_	-	_	_	_	-	_		_	-	_		-	_	_	-	_	_	-
10.7	-	-	-		-	_	_	_	_	-	-	_	_	-		_	-	_	-	_	-	\rightarrow	_	\rightarrow	_	-	-	_	_	_	_	-	_	-	-	-	_	-
11.7	ئسا	4 -	а_	a.	_a	_a	_a	a	L	_	\rightarrow	\rightarrow	-	_	_	_	_	\rightarrow	-	-		***	_	_		_	_	_	_	_		_	_	_	_	_	-	-
12.7	<u>-</u>		_		_	-	_	_	_	-	CHHP	\rightarrow	_	-	-	_		\rightarrow	-	-	-	_	_		-	_	-	_	_	_	600	$\overline{}$	_	_	_	_	-	***
13.7	-	***	-		_	_	_	_	***		-	_	_	-	_	\rightarrow	\rightarrow	_	-	-	-	1	1	1	1	1	1	1	1	\rightarrow	-	-	***	-		_	_	_
16.7a	-	-	-		-	-	_	_	_	\rightarrow	_	_	900	-	_	_		***		anc.	1	3	5	8	6	4	3	2	1	1	1	_	-	_	-	6639	_	
20.7a	-	-	-		=	-	_	_	-	\rightarrow	\rightarrow	\rightarrow	_	_	_	_	_	_	-	_		_	_	-	_	-	_	_	_	_	_	-	_	_	-	_		-
24.8	980	-	-		-	_	600	-	_	_	\rightarrow	-	-	1	1	1	1	1	1	1	1	$\overline{}$	_	-	_	\rightarrow	400)	_	-	_	\rightarrow	-	_	_	_	_	_	
25.8	-	-			-	_	_	_	-	Х	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Х	X
27.9	-	-	-			_	_	-	_	-	_	_	_	-		-	-	-	-	-		600	-	000	_	-	-	-	_		-	_	_	_	-		-	
31.9	-	-	-			-	-	_	-	-	-	-	CHIP	-	_	-	_	-	-	-	-	-	-	-	-	***	-		-	-	-	-	-	-	-	_	-	-

Note: Yellow line (569hA): Jan. 13.7, possible faint yellow line at N35 west limb; Jan. 27.9 very faint yellow line at S50 east limb.

Table 90a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

Date		_			Dec	ree	25 1	nort	.h c	of t	he	sol	ar	e01	ato	יור	material and a sin				_			Des	ree	s s	out	h o	ft	he	sol	lar	equ	ato	r			
GCT		90	85		75					50							15	10	5	00	13	10							45							80	85	90
1953	}			^	_		2	,	1			~	-								2		0			1.			1	_		٠,						
Jan.	2.8a	-	~	2	2	3	ر	4	4	خ	6	- (- [23	13	8	6	7.0	0	>	2	11	2	ک	4	3	2	3	2		_	_	_	_
	3.7	-	-	2	2	2	3	3	2	3	8	2	Ö	12	22	34		36	72	12	173	TO	7	-0	3	4	5	2	3	2	2	3	3	2	2	2	_	_
	401	80	_	-	-	2	2	4	5	5	5	- 5	8	14	23	32	34	23	18	20	26	16	11	TO	- 5	4	3	5	3	2	2	3	3	2	-	-	_	_
	5.9	-	-	_	2	2	2	2	5	6	4	5	8	10	П	TT	T3	16	23	39	141	26	20	T8	15	_ 5	4	4	4	3	3	3	2	2	2	-	_	_
	8.7	-	-	40	***	2	2	2	2	3	3	3	3	3	2	3	3	11	20	26	28	32	23	18	14	10	7	5	5	5	4	3	2	2	2	-	-	_
	9.7	-	4803	_	2	2	2	3	3	3	4	4	4	L	5	5	7	11	16	22	20	38	36	22	13	10	5	4	6	6	5	4	3	2	2	_	_	-
	10.7	2	-	_	2	2	2	2	2	3	3	3	3	3	2	3	3	4	5	11	12	20	18	16	13	5	4	4	4	5	4	4	3	2	_	-	-	-
	11.7	-	_	_	-	-	_	-	2	2	2	3	4	4	4	Žį.	- 5	5	6	8	11	12	8	5	5	3	3	3	5	5	4	4	3	2	-	\rightarrow	_	_
	15.8	-	-	_	_	2	3	3	3	4	5	6	6	5	5	5	4	5	5	5	3	3	4	4	3	3	3	3	3	3	3	3	3	3	2	2	-	-
	17.8	-	-	-	-	-	_	-	2	3	5	5	4	4	5	3	4	5	4	4	2	13	4	5	2	2	3	4	3	3	4	3	3	3	2	2	_	-
	20.7	-	_	_	2	2	2	5	8	IJ	10	10	11	7	4	5	IJ	14	11	8	3	2	2	2	3	3	2	3	3	2	3	3	2	2	-	-	-	_
	21.7	_	-	-	_	-	2	4	5	6	8	5	1	4	3	7	ll.	10	6	4	4	3	3	2	2	3	3	3	2	2	3	2	2	2	3	2	-	_
	23.9	-	-	410	_	_	2	2	3	3	3	3	3	3	3	4	5	12	20	11	n	1	3	3	3	3	3	2	3	4	L	3	3	3	3	3	3	-
	24.7	-	_	_	2	3	3	3	3	3	1.	Į.	3	3	3	8	16	22	32	16	10	6	5	5	5	L	L	<u>L</u>	3	5	1.	Į.	3	2	_	_	_	-
	25.7	_	_	_	-	2	3	3	Ĺ	Į,	5	5	3	3	5	5	7	11	1.3	14	8	6	5	5	5	11	5	5	Ĺ	5	5	5	L	3	-	_	_	_
	26.7	caso	_	_	_	3	3	3	3	3	Ĺ	3	3	1	5	7	ŝ	8	9	7	1	3	Ĺ	3	3	3	2	2	3	2	2	2	2	2	_	-	_	_
	27.8	-		-	_	_	2	3	5	7	8	7	8	9	11	13	13	12	11	5	1.	3	3	3	3	3	3),	3	3),	5	3	2	2	2	_	_
	28.7	_	_	-		_	_	3	5	. 7	8	8	17	1.3	7.7	20	20	19	18	ایرا	6	5	5	5	L	3	3),	3	Ĭı.),	ĺ,	3	_	-	-	_	_
	29.7	_	_	_	_	2	3	8	9	าา่	8	8	77	7/1		22			16	n	8	73	8	5	5	Ĩ.	Ĩ,	7	Ĭ,	1,	3	2	2	_	_	_	_	_
	30.7	_	_	_	_	3	2	11.	77	9	8	-	14	18		28		23			14	13	12	0	8	<u></u>	-	3	4	1,	7	3	3	3	2	2	2	on.
	31.7	_	_	_	_	2	2	7	8	8	7		u		32	36			16			ĭ	12	ъĹ	13	77	6	5	ī.	4	Ĺ	ĺ.	J.	Ĺ	3	2	2	_
	7101			_		۵	ر		0		- (-0		-0	ےر	٥ر	ےر	/		1 -0	70	-11-		-4-4	رب		0		4		4	4	4	4.1)	-	۵.	_

Table 91a
Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

																		_		_			-			-		-		-	_						_
Date	-						nori												00	1			Det	ree	SS	out	h o	1 0	he	so.	Lar	equ	ato	r		0-1	_
GCT	90	85	80	75	70	65	60	55	50	45	1,0	35	30	25	20	15	10	_5	10	15	10	15	20	25	30	<u>35</u>	ЦО	45	50	55	60	65	70	75	80	85 9	0
1953																				١.																	
Jan. 2.8a	4	4	3	3	3	4	3	3	2	2	3	2	3	3	14	24	24	3	3	4	14	16	5	5	3	5	4	3	2	3	3	2	2	2	3	3	2
3.7	5	4	3	4	4	4	2	3	3	2	2	3	2	2	22	20	18	3	4	5	8	7	7	5	5	2	3	3	4	3	2	2	-	-	2	3 .	3
4.7	4	3	4	4	4	4	3	2	2	2	2	-	3	5	16	14	8	4	111	14	- 8	-8	- 9	- 8	7	3	3	4	4	3	2	2	2	3	2	2 .	3
5.9	5	3	4	4	4	5	2	3	2	3	3	4	4	5	5	5	4	2	111	23	11	20	16	14	4	2	3	2	3	_	2	2	2	2	3	3 3	3
8.7	2	3	2	3	2	3	3	2	2	2	2	4	4	5	5	4	3	ᆚ	7	4	ij	13	14	3	3	3	2	2	_	2	2	2	_	2	2	2 2	2
9.7	2	4	3	4	4	4	1	3	2	4	4	6	TO	Ö	3	5	0	5	4	2	0	T	0	5	خ	4	٢	3	2	2	2	2	2	3-	3	3.	3
10.7)].	4	1.	ر ا.	5	1.	1.	4	2	Ş	0	1.	f	R R	0	Ω	10	0	8	2	6	6	2	4	-{-	5	2	۲	4	3	۷.	2	3	2	3	2 2	5
15.8	3	2	4	4	2	4	4	2	2	7	2	4	2	2	フ	3	l.	7	6	1.	5	5	7.	2	7	5	5	2	2	2	4	2	2	2	2	2 4	2
17.8	Ĭ,	3	5	ź	ĺ,	ĺ.	3	3	2	3),	J,),),	5	ź	8	าา์	7	71.	16	8	=======================================	Ĭ,	1,	ĺ,	Ę	ž	3	2	3	3	3	3	2	2	3
20.7	1	3	3	3	5	5	2	2	2	3	2	3),),	3	ĺ,	3	1,	6	7	-8	7	5	3	5),	6	5	3),	2	2	2	2	3	3 :	3
21.7	li.	3	Ĺ	3	Ĺ	3	3	3	3	2	3	3	L	5	Ĺ	5	ú	ū	8	8	5	6	6	7	7	6	5	5	3	2	2	2	3	3	3	2	3
23.9	3	2	3	3	2	3	3	3	2	3	3	3	4	4	5	Ĺ	12	16	22	u	ú	6	5	3	2	2	3	2	2	2	3	comp	_	_	2	2	2
24.7	4	3	4	4	4	3	3	2	3	3	2	3	4	5	8	7	14	26	25	10	8	5	8	5	4	4	14	3	2	2	2	2	3	2	3	3	3
25.7	4	3	4	4	3	2	3	3	2	4	5	8	7	7	5	8	11	13	12	8	5	6	5	4	3	3	2	2	3	2	3	2	-	\rightarrow	3	2	3
26.7	3	2	2	3	3	2	3	3	2	2	3	3	3	2	3	3	4	5	5	4	3	3	3	3	3	4	3	3	2	2	2	3	2	3	3	2 2	2
27.8	5	5	8	4	3	3	3	3	2	3	2	3	4	2	5	7	8	5	8	8	. 6	5	4	3	4	3	4	3	2	2	2	2	3	2	2	3 :	3
28.7	3	3	3	4	3	3	3	2	2	3	3	3	2	3	5	15	11	8	8	8	9	8	5	4	3	3	4	5	4	3	2	2	3	2	2	3 3	3
29.7	3	3	4	4	3	2	2	-	-	2	***	_	000	2	8	20	8	2	3	5	8	5	4	3	3	4	5	4	3	2	2	2	2	3	2	2	3
30.7	3	3	3	4	3	2	2	2		_	3	2	2	6	23	16	3	2.	3	8	9	2	7	5	3	3	4	5	2	3	2	~	~	3	2	2	3
31.7	2	2	3	3	3	3	2	2	2	2	-	2	_	6	1/1	Ш.	5	4	12	1	4	5	4	4	4	4	2	3	3	3	3	2	2	2	3	2 3	3

Table 92a
Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

Date				Deg	ree	es i	nort	th o	of t	he	so.	lar	eq	uato	or				00				Deg	ree	SS	out	h c	f t	he	sol	ar	eqt	ato	r			
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953																																					
Jan. 2.8a	-	-	-	_	-	-	-	-	-	-	_	_	2	2	5	7	4	2	2		_	_	_	-	-	_	_	-	_	-	_	**	-	_	_	_	_
3.7	-	-	_	-		-	***	-	-	-	41.0	2	2	3	4	5	2	2	-	-	_	_	_	-	-	-	\rightarrow	_	-	-	_	_	_	190	_	_	_
4.7		-	600	-	-	-	-	_	-	-	emè	2	3	4	4	5	3	2	3	2	-	-	\leftarrow	_	_	_	con	_	_	-	.00	-	-	-	-		_
5.9	-	cm	_	480	_	-	-	-	\rightarrow	-	_	_	2	2	2	2	3	3	3	4	4	4	3	2	-	_	-	-	_	_	_	_	_	-	_	_	-
8.7	-	_	_	-	-	-	-	\rightarrow	-	-	200	\leftarrow	-	2	2	2	3	3	14	4	5	4	3	2	2		_	_	-	_	_	_	-	_	_	-	-
9.7	-	-	-	-	-	-	_	_	-	_	-	_	_	-	-	2	2	3	3	14	5	4	3	2	2	-	-	_	-		_		_	_	_	_	-
10.7.	-	-	-	_	one	_	-	\rightarrow	-	_	_	-	_	_	-	_	_	-	2	3	3	2	3	2	2	-	_	-	-	_	-	_	-	_	_	-	-
11.7	·	-	-	\rightarrow	-	-	-	_	_	_	-	\leftarrow	_	_	_	_	_	-	_		-	-	_	-	\rightarrow	-	-	-	_	-	_	-	_	_	_	_	-
15.8			-	_	_	_	-	_	_	_	-	-	-	\rightarrow	_	-		-	2000	-	_	\rightarrow	_	-	$\overline{}$	-	$\overline{}$	_	_	_	-	_	-	-	_	_	
17.8	-	_	_	-	-	_	-	-	_	-	_	_	_	-	_	\leftarrow	_	-	-	-	-	$\overline{}$		_	$\overline{}$	_	_	\rightarrow	_	_		-	-	_	-	_	_
20.7	-	_	_		-	-	-	-	-	-	_	-	-	_	_	_	-	-	-	-	_	\rightarrow	\rightarrow	-	***	_	-	-	-	Name of	$\overline{}$	-	_	-	_	_	-
21.7	-	_	_	-	-	-	-	_	-	_	_	_	-	-	_	-	_	-	-	-	_	\rightarrow	_	_	-	_	_	_	-	_	_	-	-	-	-	-	_
23.9	-	_	_	_	_	_	-	_	-	_	_	_	_	\rightarrow	-	2	3	3	2	3	2	-	_	-	_	$\overline{}$	-	-	-	$\overline{}$	-	_	-	\rightarrow	\rightarrow	\rightarrow	-
24.7	-	-	_	_	_	_	_	_	-	_	_	-	-	_	_	2	3	3	2	2	4730	_	410	_	$\overline{}$	_	$\overline{}$	-	-	-	-	\rightarrow	_	_	_		-
25.7	-	_	_	-	_	-	\rightarrow	-	_	_	_	\leftarrow	\rightarrow	_	-	_	\leftarrow		-	-	-	$\overline{}$	_	_	\rightarrow	_	-	-	-	\rightarrow	_	-	_	-	-	_	-
26.7	-			_		_	_	_	_	_	_	_	-	_	-	_	_	-	-	-	-	_	_	_	-	\rightarrow	-	\rightarrow	-	_	_	_	-	_	_	-	***
27.8 28.7	-	_	-	_	-	-	-	-	-	-	_	-	_	_			_	-		-	-	-	-	**	-	_	-	-	-	-	-	-	-	-	-	-	-
	-	_	_	_	_	_	_	_	-	-		2	3	3	3	3	3	2	_	-	_	-	_	-	-	_	-	-	-	_	_	-		_	-	410	-
29.7	-	_	_	-	-	-		-	_	_	2	2	3	4	4	3	3	2	2	-	-	_	-	_	-	_	-	-	-	_	_	-	-	-	-	-	-
30.7	-	-	-	_		_		_	-	_	_	2	3	4	5	5	4	3	2	-	-	_	_	-	-	_	-	_	-	-		-	-	-	_	-	-
31.7	-	_	-	_	-	-	_	-	_	2	2	3	3	5	5	4	3	3	3	12	-	-	_	-	-	****	geo.	-	-	-	_	-	-	_	_	_	-

Table 90b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

Date	i												.ar							00				Deg	ree	s n	ort	h o	ft	he	so]	ar	equ	ato	r			
GCT	90	85	5 6	10	75	70	65	50	55	50	45	40	35_	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953 Jano 2.8 3.7 1.7 5.9 8.7 9.7 10.7 11.7 15.8 17.8 20.7 21.7 23.9 24.7 25.7 26.7 27.8 28.7 29.7 30.7 31.7					2 2 2	2 2 2 - 2 - 2 - 2 2	223221311222121122112	3222212212212212212	3332222 2323 23232 - 2	443323323335334332232	442223323377344442243	432324333377345553353	532224343385355544453	322234353374354434332	32222335247536443432	33323445251848553432	4333334352581158854522	3232353548833431545222	32334385394331544222	332235475444427523-22	43233555555432175422 - 23	53355466667447705432-32	5566123638 14204395745433333	59811424922336454455333	6 8 7 8 12 20 11 8 30 8 16 11 3 3 3 4 5 4 4 4 4 4	6 8 5 7 10 11 4 7 36 32 0 5 3 2 3 4 5 3 5 5 4	554545350083322343444	544445334652322332434	544454445542323223424	5534333544332 3223434	753534455433223323334	8833333355333 - 2234433	432233344323 - 2333323	322223332233333223	2 - 2 - 2 2 2 2 2 2 2 3 2 3 2 2 2	2 2 2 2 2 2 - 2 3 2 - 3 2 2 2 2 2	2 3 2	90

 $\frac{{\tt Table~9lb}}{{\tt Coronal~observations~at~Sacramento~Peak,~New~Mexico}~(\underline{6374A}),~\underline{{\tt west}~1imb}}$

Date	T			De	gre	es	sout	th o	of t	he	so.	lar	ėqı	ato	or					T			De	gree	es r	nort	h c	of t	he	so.	lar	equ	ato	r			
CCT	90	8	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15		25									70		80	85	90
	90 2 3 3 3 2 2 3 3 2 2 3 3 3 2 3 3 2 3	33 33 2 32 2 32 2 32 2 32 32 32 33 2 33 33	2 2 3 2 2 3 3 2													45435655242	348546653 18	5 557646754900715456444	0° 56678511 12 8 44 16 12 8 3 7 6 5 5 7 5 6 5	478754874483357445685	10 58837315723375387435595	15 51428881483055498334515													80 3454233434433334334332	85 44533432234443434343243	99 454522343444344353332

 $\frac{\text{Table 92b}}{\text{Coronal observations at Sacramento Peak, New Mexico }(\underline{6702\text{\AA}}), \,\,\underline{\text{west limb}}}$

Date				Day	mag		20114	h c	· F 4	·ho	607	0.32	0.01	10+0	. 17					_			Dog	700	e n	ont	h 0	f +	ho	60]	ar	0.011	at o	70			_
Date	<u>~~</u>	97	90	25	20	20	20 u t	11 C	71 (ne Te	10	75	20	Iarc	20	7.0	10	5	00	-	10	3 6	Deg	25	30	01.0	10	1.0	ro ro	207	60	equ 27	30	2 C	90	07	00
	90	05	φυ	(5	70	05	<u>0</u> U	22	50	45	40	35	30	25	20	15	10	احــ		12	10	12	20	25	30	35	40	45_	50	22	00	05	10	15	00	05	20
1953																																					
Jan. 2.8	-	-	-	-	-	_	-	_	-	_	-	-	_	_	-	_	-	-	-	-	_	_	-	_	_	-	_	_	-	-	_	-	_	-	_	~	-
3.7	-	-	-	-	-	-	_	-	-	_	_		-	$\overline{}$	_	-	-	-	-	-	-	-	2	3	3	2	-	_	_	\rightarrow	-	_	_	_	_	_	_
4.7	_	_	_	-	-0	_	_	_	_	_	_	_	_	_	_	_	_	-1	_	-	_	-	_	_	_	-	_	-	_	-	_	_	-	_	_	_	-
5•9	_	_	-	-	_	-	_	-	_	_	-	_	-	_	-	-	_	-	-	-	_	-	_	-	_	_	-	_		-	_	-	_	_	_	_	-
8.7	_	_	_	-	-	-	_	_	_	-	_	-	_	_	-	-	-	-	_	-	_	2	3	2	_	_	, -	_	_	-	_	_	_	_	-	_	-
9•7	-	-	-	-	_	-	_	-	-	-	-	-	_	-	_	_	2	3	2	13	3	3	4	4	3	_	_	_	_	_	_	-	_	_	_	_	_
10.7	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_	-	-	-	-	2	2	3	2	2	-	_	_	_	_	_	_	_	_	_	-
11.7	-	_	_	-	_	-	-	_	_	_	-	-	_	_	_		_	-	_	-	_	_		-	_	_	_	_	_	_	_	_	_	_	_	_	_
15.8	-	_	_	_	_	_	-	_	_	_	_	_	_	-	_	-	_	-	_	_	2	2	3	5	6	5	L	3	3	2	2	_	_	_	_	_	413
17.8	_	_	-	_	-	***	-	G/O	-	_	_	-	-	-	_	-	_	_	2	2	3	3	3	5	1,	3	2	_	-	_	_	_	_	_	_	-	_
20.7	-	_	_	-	-	_		_	-	-	-	_	_	-	2	3	1	Ъ.	5	15	5	5	Ĺ	3	2	2	_	_	_	_	_	_	_	_	_	_	_
21.7	_	_	_	_	_	_	_	_	_	_	_	_	_	2	3	3)i	3	6	15	3	2	2	_	_	_	_	_	_	-	-	_	_	_	_	_	alto
23.9	_	-	_	_	_	_	-	***	_	_	-	-	-	_	2	3	3	3	2	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_
24.7	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_	2	3	3	2	l_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
25.7	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	-
26.7	l _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
27.8	l _	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_		_	L	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
28.7	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
29.7	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
30.7		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
31.7	1	_	_	_	_	_	_	_	_	_	_	_			_	_	_		_	[_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_
7101	ı –	_	_	_	ens)	_	_	_	_	_	_	-	-		_	_	_	-	-	Ι-	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	-

Table 93

Zurich Provisional Relative Sunspot Numbers

January 1953

Date	Rz*	Date	RZ*
1	16	17	37
2	15	18	30
3	13	19	25
L,	24	20	17
5	24	21	74
6	35	22	18
7	34	23	8
8	33 .	214	8
9	44	25	0
10	50	26	0
11	57	27	0
12	59	28	0
13	60	29	0
14	64	30	0
15	60	31	0
16	46	Mean:	25.5

^{*}Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Table 94

American Relative Sunspot Numbers

December 1952

Date	RA+	Date	R _A * *
1	11	17	68
2	17	18	68
3	11,	19	59
4	15	20	45
5	29	21	40
6	36	22	28
7	39	23	25
8	51	24	26
9	29	25	13
10	25	26	19
11	33	27	7
12	53	28	0
13	53	29	3
14	65	30	12
15	66	31	22
16	69	Mean:	33.5

^{*}Combination of reports from 28 observers; see page 10.

Table 95

Splar Flares, January 1953

SID	700		
Import.		1 8 8	d over
Rela	Area of Maximum (Tenths)	₹~∞~¥	0 0.70
Into	Maxim	ANENA	950
Time	Mazd. musa (GCT)	1654	2102 1955 2038
tion Long-	1 tude Diff (Deg)	M16 E76 E76 E76	ESS C
Pos:) tude itude 1e) Diff ph) (Deg) (Deg)	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	N18 S03 S03
Area (M111)	(of) (Visible) (Hemisph)	121 16 22 36	230 180 160
Duration	(Min)	20022	13
Time	End- ing (GCT)	1645 1705 1740 1920	2200 2006 2012
TH Obse	Begin ning (GCT)	1520 1720 1720	2054 1953 2035
Date	1953	Jan. 6	, ett.
Observa- tory	•	Sac. Peak	Sac. Peak

Sac. Peak = Sacramento Peak

B Flare began before given time A Flare ended after given time Q Time reported as questionable

Indices of Geomagnetic Activity for December 1932

Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr.		Values Kp	Final
Day 1952	С	three-hour interval 1 2 3 4 5 6 7 8 Sum	Selected Days
1 2 3 4 5	1.0 1.4 1.0 1.4 1.0	10 20 30 4- 4- 40 4+ 40 26- 4+ 4- 2+ 3+ 5+ 5- 4- 50 32+ 30 50 4- 3+ 30 3- 30 4- 27+ 7- 40 40 4+ 40 3+ 40 4+ 35- 4+ 4- 4- 4- 4- 1+ 4+ 2+ 270	Five Quiet 9 19 20
6 7 8 9	0.2 0.2 0.1 0.0 0.6	2- 3+ 2+ 10	21 23
11 12 13 14 15	0.5 0.6 1.2 0.1 0.7	10 3+ 3+ 2+ 2+ 20 2+ 10 18- 2- 1+ 3+ 2+ 40 3+ 1+ 10 18+ 3+ 5+ 60 5+ 50 20 30 2- 10 2- 00 10 1+ 10 0+ 2+ 9- 3+ 30 20 4- 3- 3- 0+ 1+ 190	Five Disturbed 2 4 13
16 17 18 19 20	0.6 0.4 0.7 0.1 0.0	2- 2+ 1+ 2+ 3- 3- 20 3- 18- 2+ 3- 3+ 2- 1- 1- 0+ 30 15- 3- 30 1- 10 20 2+ 40 20 18- 2+ 1- 1- 1- 1- 0+ 1- 1- 7- 10 1+ 1- 10 1+ 1- 1- 0+ 70	29 30
21 22 23 24 25	0.0 0.5 0.0 1.3 0.9	0+ 0+ 10 10	Ten Quiet 6 7 8
26 27 28 29 30 31	0.7 1.1 1.0 1.3 1.3	30 30 30 3- 20 30 1+ 20 200 3- 30 3- 20 20 20 30 7- 240 40 3- 2- 30 4- 40 40 4+ 27+ 50 40 3+ 4+ 30 50 5- 4+ 34- 5- 5- 4- 4- 4- 50 4- 4+ 33+ 4+ 2+ 40 4- 3+ 4+ 3+ 4+ 30-	9 14 19 20 21 22 23
Mean	0.68		too a de la company de la comp

Table 97

Sudden Ionosphere Disturbances Observed at Washington, D. C.

January 1953

No sudden ionosphere disturbances were observed during the month of January.

Table 98 Sudden Ionosphere Disturbances Reported by the Netherlands Postal and Telecommunication Services, as Observed at Mederhorst den Berg, Metherlands

1952	609	P		Other
Day	Beginni	ag Mnd	Location of transmitters	phenomena
Jamuary				
9	1043	1055	Surinan	
14	1350	1400	Surinan	
Inne				
25	1010	1120	Peru, Surinem	·
July				
12	1450	1515	Surinam	ferr.mag.pulse*
				1448-1455
			-	Solar flare**1450
				Solar flare \$150
13	1105	1120	Hew Tork	
16	1809	1835	Surinan	Terr.mag.pulse*
				1809-1815
				Solar flare**1805
August				
7	0744	0800	Surinam	
7	0826	0855	Surinam	
Septembe	2			
1	1240	1335	Argentina, Brazil, Surinam	
21	1217	1315	New York	
24	1224	1240	Surinam	
October				
4	1130		Surinam	

^{*}As observed on Cheltenham magnetegram of the United States Coast and Geodetic Survey.

Hote: Observers are invited to send to the CEPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, Hational Bureau of Standards, Washington 25, D. C.

^{**}Time of observation at Sacramento Peak, Hew Mexico.

^{***}Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan.

Index of Tables and Graphs of Ionospheric Data

in CRPL-F102

															Table page	Figure page
Adak, Alaska December 1952														•	14	55
Akita, Japan	0	•	•	•	٠			Ů	Ť	•	•	•	Ĭ	Ť		
November 1952															9.00	65
October 1952 .	0	•	0	•	•	•	•	•	٠	•	0	•	6	•	19	72
Anchorage, Alaska															18	68
October 1952.																
September 1952	(0	n	ly	()	M3	00	0)	F2	}	•	•	•	•	•	, . 18	erre da
Baker Lake, Canada																<i>a</i> .
October 1952.																67
September 1952				•	•	•	•	•	•	•	•	•	•	0	20	75
Baton Rouge, Louisis															14	70
December 1952	•	•	•	•	•	•	•	•	•	•	•	0	•	•	7.44	57
Bonbay, India															21	76
September 1952 Brisbane, Australia	0	•	•		•	•	•	•	•	, •	۰	•	•	•	22	70
September 1952															22	79
Calcutta, India	•		•	•	•		•	•	•	•	•	•	•	•		17
June 1952															23	82
May 1952															•	84
April 1952															-	85
March 1952																86
Canberra, Australia																
September 1952	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	22	80
Capetown, Union of a																må.
October 1952.																74
September 1952	9	•	•	•	•	•	•	•	•	•	6	•	٠	•	22	79
Churchill, Canada Eovember 1952															16	61
October 1952.																68
Dakar, French West				•	•	0		•	•	•	•	•	•	•	20	•
February 1952															24	87
De Bilt, Holland	•	•	•	•	•	•	•		•	•	•	•	9		•	01
November 1952		•	٠												16	62
Delhi, India												Ť	Ť	·		
September 1952	•	•	٠	•	٥	•	•	•	٠	•	•	•	•	•	21	76
Djibouti, French Son																
March 1952	•	•			•	٠	•	٠	•	•	٠	•	•	•	24	87
Fairbanks, Alaska																
December 1952	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	13	53
Falkland Is.																0.0
June 1952	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	23	83
Formosa, China															10	"
November 1952																66
October 1952 . Fort Chimo, Canada	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20	74
October 1952 .															18	69
OCCUDEL 1972 .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10	07

Index (CRPL-F102, continued)

	Table page F:	gure page
Gras. Austria		
December 1952	14	56
Guam I.	*	
December 1952	15	59
Hobart, Tasmania		
September 1952	22	80
Ibadan, Nigeria	22	03
June 1952	23	83
July 1952	22	81
Johannesburg, Union of South Africa	W 65	92
October 1952	20	75
September 1952	21	78
Kiruna, Sweden		
Movember 1952	15	60
Lindau/Hars, Germany	- 4	4.
Movember 1952	16	62
October 1952	19	70
Madras, India	03	00
September 1952	21	77
December 1952	15	58
Marsarssuak, Greenland	• 5	90
December 1952	13	5h
Okinawa I.		<i>3</i> ·
December 1952	15	58
Oslo, Horway	, and the second	
December 1952	13	54
Ottawa, Canada		
November 1952		64
October 1952	19	71
Fanama Canal Zone	30	60
December 1952	15	90
December 1952	13	52
Port Lockroy	•)	96
June 1952	23	84
Prince Rupert, Canada		-
Movember 1952	16	61.
October 1952	18	69
Puerto Rico, W. I.		
December 1952	15	59
Resolute Bay, Canada		
October 1952	17	66
Reykjavik, Iceland	10	600
October 1952	18	67

Index (CEPL-F102, concluded)

" Visol

	Table page Figure pag	0
St. John's, Newfoundland		
Movember 1952	16 63	
October 1952	19 71	
San Francisco, California		
December 1952	14 56	
Schwarzenburg, Switzerland		
Movember 1952	17 64	
Singapore, British Malaya	· ·	
July 1952	23 82	
Slough, England	-	
July 1952	22 81	
Tananarive, Madagascar		
May 1952	24 85	
April 1952	24 86	
Tiruchy (Tiruchirapalli), India		
September 1952	21 77	
Tokyo, Japan		
October 1952	20 73	
Townsville, Australia		
September 1952	21 78	
Tronso, Norway	70	
December 1952	13 . 53	
Upsala, Sweden	-)	
December 1952	14 55	
Wakkanai, Japan	30	
November 1952	17 65	
October 1952	19 72	
Washington, D. C.	17 (2	
	13 52	
January 1953	13 52	
White Sands, New Mexico	14 57	
December 1952	14 57	
Winnipeg, Canada	3/	
November 1952	16 63	
October 1952	19 70	
Yamagawa, Japan	20	
October 1952	20 73	

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request] Dailu:

Radio disturbance forecasts, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweeklu:

CRPL-J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following month).

CRPL-Jp. North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

CRPL-D. Basic Radio Propagation Predictions-Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.)

Ionospheric Data.

Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. Frequency Guide for Operating Personnel. IRPL-

*IRPL-H.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.
NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL—C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL—G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions. (G1, G3, available. Others out of print; see second footnote.)

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies. Criteria for Ionospheric Storminess.

**R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

**R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Characteristics.

**R12. Short Time Variations in Ionosphere Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.

**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

**R17. Japanese Ionospheric Data—1943.

R18. Comparison of Geomagnetic Records and North Atlantic Bedie Description.

**R17. Japanese Ionospheric Data—1943.
R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.

**R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

**R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

**R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

**R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

**R26. The Ionosphere as a Measure of Solar Activity.

R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.

- R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.

 **R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

 **R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

 **R33. Ionospheric Data on File at IRPL.

 **R34. The Interpretation of Recorded Values of fEs.

 **R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 5 Mc

cess of 5 Mc.

Reports on tropospheric propagation:

T1.

Reports on tropospheric propagation.

Radar operation and weather. (Superseded by JANP 101.)

Radar coverage and weather. (Superseded by JANP 102.)

Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group -T3. WPG-5.)

^{*}Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14 () Series. **Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

