

GALGOTIAS UNIVERSITY

PLOT NO.2, SECTOR - 17 A, YAMUNA EXPRESSWAY, GREATER NOIDA, GAUTAM BUDH NAGAR, U.P. INDIA

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

SUBJECT :SCI LAB PROGRAMME :B.Tech

Subject code: BCS01T1001 Semester: 1st

Submitted to:

Mr. VISHAL KUMAR

Submitted By:

ABHINAV KUMAR CHOUDHARY(21SCSE1011615)

Section: 24 (P1)

S. No.	List of Experiments
1.	Overview, Basic syntax, Mathematical Operators, Predefined constants, Built in functions at SCILAB platform.
2.	Write a SCILAB code to find addition, subtraction, multiplication and division of two matric transpose of a matrix and inverse of a non singular matrix.
3.	Write a SCILAB code for programming -Functions - Loops - Conditional statements - Handl .sci files.
4.	Write a SCILAB code for 2-D: circle, parabola, ellipse and hyperbola and 3-D surfaces: Plane Sphere, Cylinder, Paraboloid, Ellipsoid, Hyperboloid, cone.
5.	Write a SCILAB code to find expansion of functions in Taylor series.
6.	Write a SCILAB code for Fourier series expansion of different wave forms and comparison we the original function.

EXPERIMENT - 1

1.Compute:

2. Evaluate:

(i)
$$27^{1/3}$$
+ $32^{0.2}$ (ii) $\sqrt{64}$ + e^4 (iii) $\sin \pi/6$ + $\cos 60$

(iv) 4!+ln2+log100

(v) (2+3i)(4+5i)

2. By assigning values 2 and 5 to variables a and b respectively, compute

(i) c=(a+b)2 (ii) d=4a-3b+lna+c2

3. Write the script file for the problem:

The radius of a circle is 2cm. Find its area.

EXERCISE 2

To write a Scilab code to find the solution of following problems:

- 1. (i) create a row vector with 3 elements.
- (ii) create a column vector with 4 elements
- 2. By taking first term a=1 and the last term b=10 create a one dimensional array:
- (i) by taking the spacing between two consecutive terms d=2,
- (ii) by taking the number of terms n= 12
- 3. Create two row vectors (1dimensional arrays) a and b such that the following operations are defined and hence find:
- (i) 2a-3b, (ii)2(transpose a)-3(transpose b)

4. Create two matrices(two dimensional arrays)A and B such that the following operations are defined and hence:

(i) 3A-AB2

- 5. Create a matrix A so that the following operations are defined and find:
- (i) determinant of A, (ii) Inverse of A, (iii) product of A and inverse of A
- 6.Find the root :-x2-x-2=0

EXERCISE 3

1.To find volume and curve surface area of cone using input function.

2. To find whether an integer entered by user is odd or even, using if- else-end command

3. To find whether a real number entered by user is negative, zero or a positive using if- elseif-elseend command

4. To find the sum of first n natural numbers using for loop

5. To find the sum of first n natural numbers, using while loop.

6. To find factorial of a number using for loop

7. To find factorial of a number using while loop

8. To find first 20 terms of Fibonacci sequence using for loop

9. To find volume and total surface area of a cylinder using user defined function

EXERCISE 4

Write a Scilab code in a script file:

1. To plot Parabola x2=4ay. Take focal length a=1

2. To plot Circle. X2+y2=a2 ,t ake a=1

3. To plot Ellipse. X2/a2 + y2/b2 = 1. Take a=4,b=3

4. To plot Hyperbola. X2/ a2- y2/ b2 =1 , Take a=3, b=4

5. To plot a Plane ax+by+cz=d take a=b=-1,c=1,d=4 z=4+x+y

6. To plot rectangular parabola xy=1 in interval[0.5,2]

7. To plot right circular Cylinder. x2+y2=a2.

8. To plot Sphere x2+y2+z2=a2, Take a=1

9. To plot Ellipsoid. X2/a2 + y2/b2 + z2/c2 = 1, Take a=4,b=3,c=2

10. To plot Hyperboloid x2/a2 + y2/b2 - z2/c2 = 1. Take a=4,b=3,c=2

EXPERIMENT 5

Objectives:

To write a SCILAB -CODE

- 5.1. To find the error in estimated value (yest) of a function f(x) at a point x using its Taylor series.
- 5.2. To compare a function f(x) and its Taylor series expansion using 2d plots.

Excercises

Write a Scilab code in a script file:

5.1.1] To find the *error* in estimating the value of function $f(x)=e^x$ at x=1 using its Taylor series expansion about origin.

5.1.2] To find the *error* in estimating the value of function $f(x) = \sin(x)$ at $x = \frac{pi}{2}$ using its Taylor series expansion about origin.

5.2.1] To compare the function $f(x)=e^x$ and its Taylor series expansion about origin by using 2d plots

5.2.2] To compare the function $f(x)=\sin(x)$ and its Taylorseries expansion about origin by using 2d plots

Solution

5.1.1] Input:

clc;

clear;

a=0

x=1

 $y=%e^x$

```
yest=0
n=1
for i=0:1:n
yest=yest+x^i/<u>factorial(i)</u>
end
disp(y)
disp(yest)
error=abs(y-yest)
disp(error)
```

Output:

2.7182818

2.

0.7182818

5.1.2] Input:

clc;

clear;

a=0

```
x=%pi/2
y=sin(x)
yest=0
n=10
for i=0:1:n
yest=yest+((-1)^i)^*(x^(2^*n+i)/\underline{factorial}(2^*n+1))
end
disp(y)
disp(yest)
error=abs(y-yest)
```

disp(error)

Output:

1.

9.211D-15

1.0000000

5.2.1] Input:

```
clc;
clear;
x=linspace(-10,10,100)
y=%e^x
yest=0
n=10
for i=0:1:n
yest=yest+x^i/factorial(i)
end
plot(x,y,"r")
plot(x,yest)
error=abs(y-yest)
disp(error)
```

Output:

5.2.2] Input:

```
clc;
clear;
x=linspace(-%pi,%pi,100)
y=sin(x)
yest=0
n=1
for i=0:1:n
yest=yest+((-1)^i)*(x^(2*i+1)/factorial(2*i+1))
end
plot(x,y,"r")
plot(x,yest)
xtitle("Graph of sin(x).and.itstaylor series")
error=abs(y-yest)
disp(error)
```

Output:

Write a SCILAB -CODE for Fourier Half Range series expansion of different wave forms and comparison with the original function.

Objectives:

To write a script file

- 6.1. To find the **Fourier half range cosine series** of f(x) in Half-range (0, L).
- 6.2. To find the **Fourier half range sine series** of f(x) in Half-range (0, L).
- 6.3. To find the **Fourier series** of f(x) in (-L, L).

Exercises: (All exercises to be solved on scinotes)

6.1.1. To find the *Fourier* coefficients of the Half range cosine series of $y=f(x)=x^2$ in (0,2) and

compare the graph of the function and the series.

- 6.1.2. To find the **Fourier coefficients**of the **Half** range sine series of $y=f(x)=x^2$ in (0,2) and **compare the graph** of the function and the series.
- 6.2.1. To find the *Fourier* coefficients of the Half range cosine series of

y=f(x)=x in (0, pi) and **compare the graph** of the function and the series.

- 6.2.2. To find the *Fourier* coefficients of the Half range sine series of y=f(x)=xin(0, pi) and compare the graph of the function and the series.
- 6.3.1. To find the *Fourier* coefficients of the Fourier series of $y=f(x)=x^2$ in (0, 2pi) and compare the graph of the function and the series.

SOLUTIONS

6.1.1

Source Code

```
clc
clear
clf
L=input("Enput the value of L=")
n=input("Enter the valu of n=")
//to find fourircoff a0 n an
a0=(2/L)*integrate('x^2','x',0,L)
disp("a0",a0)
fori=1:n
a(1)=(2/L)*integrate('x^2*cos((i*\%pi*x)/L)','x',0,L)
end
disp("a",a)
//comparing the graph of funtion and its cosine
series
x=linspace(0,L,40)
y=x^2
```

```
series=a0/2

fori=1:n

series=series+a(i)*cos(i*%pi*x/L)

end

plot(x,y)

plot(x,series,"*r")

xtitle("plot function vs its fourier series by Satyam Shrivastav ","x-axis","y-axis")

legend("plot of function","plot of funtion by fourier series")
```

Output

Enput the value of L=2

Enter the valu of n=1

"a0"

2.6666667

"a"

-1.6211389

6.1.2 Source Code

clc

clear

<u>clf</u>

```
L=input("Enput the value of L=")
n=input("Enter the valu of n=")
//to find fourircoff bn
fori=1:n
b(i)=(2/L)*integrate('x^2*sin(i*%pi*x/L)','x',0,L)
end
disp("b",b)
//comparing the graph of funtion and its sine
series
x=linspace(0,L,40)
y=x^2
series=0
fori=1:n
series=series+b(i)*sin(i*%pi*x/L)
end
plot(x,y)
plot(x,series,"*r")
xtitle("plot function vs its fourier series by
Satyam Shrivastav]","x-axis","y-axis")
```

legend("plot of function","plot of funtion by fourier series")

Output

Enput the value of L=2

Enter the valu of n=1

"b"

6.2.1

Source Code

```
clc
clear
clf
L=<u>input</u>("Enput the value of L=")
n=input("Enter the valu of n=")
//to find fourircoff a0 n an
a0=(2/L)*integrate('x','x',0,L)
disp("a0",a0)
fori=1:n
a(1)=(2/L)*integrate('x*cos((i*%pi*x)/L)','x',0,L)
end
disp("a",a)
//comparing the graph of funtion and its cosine
series
x=linspace(0,L,40)
y=x
series=a0/2
```

```
fori=1:n

series=series+a(i)*cos(i*%pi*x/L)

end

plot(x,y)

plot(x,series,"*r")

xtitle("plot function vs its fourier series by
Satyam Shrivastav","x-axis","y-axis")

legend("plot of function","plot of funtion by
fourier series")
```

Output

Enput the value of L=%pi

Enter the valu of n=1

"a0"

3.1415927

"a"

-1.2732395

6.2.2 Source Code

clc

clear

<u>clf</u>

```
L=input("Enput the value of L=")
n=input("Enter the valu of n=")
//to find fourircoff bn
fori=1:n
b(i)=(2/L)*integrate('x*sin(i*%pi*x/L)','x',0,L)
end
disp("b",b)
//comparing the graph of funtion and its sine
series
x=linspace(0,L,40)
V=X
series=0
fori=1:n
series=series+b(i)*sin(i*%pi*x/L)
end
plot(x,y)
plot(x,series,"*r")
xtitle("plot function vs its fourier series by
Satyam Shrivastav", "x-axis", "y-axis")
```

legend("plot of function","plot of funtion by fourier series")

Output

Enput the value of L=%pi

Enter the valu of n=1

"b"

x- axis

6.3.1 Source Code

clc

clear

<u>clf</u>

```
L=input("Enput the value of L=")
n=input("Enter the valu of n=")
//To find the Fourier coefficients of the Fourier
series of y=f(x)=x2
a0=(2/L)*integrate('x^2','x',0,1)
fori=1:n
a(i)=(2/L)*integrate('(x^2)*cos(i*%pi*x/L)','x',0,1)
b(i)=(2/L)*integrate('(x^2)*sin(i*\%pi*x/L)','x',0,1)
end
disp("a0",a0)
disp("a",a)
disp("b",b)
//comparing the graph of the function and the
series.
x=linspace(0,2,40)
y=x^2
series=a0/2
fori=1:n
series=series+(a(i)*cos(i*%pi*x/L))
```

```
series=series+(b(i)*sin(i*%pi*x/L))
end
plot(x,y,)
plot(x,series,"*r")
xtitle("plot function vs its fourier series by
Satyam Shrivastav","x-axis","y-axis")
legend("plot of function","plot of funtion by
fourier series")
```

Output

Enput the value of L=2*%pi

Enter the valu of n=1

"a0"

"a"

0.0982632

"b"

