Logistic Regression

This is my ATM Project (Amati (observe), Tiru (imitate), Modifikasi (modification)) Learn into ML DL AI as the beginner to be a hero!

Import Libraries

```
In [1]: import pandas as pd # data manipulation
    import numpy as np # array manipulation
    %matplotlib inline
    import matplotlib.pyplot as plt # visualization
    import sklearn
    from sklearn.compose import ColumnTransformer # transform the column
    from sklearn.preprocessing import OneHotEncoder # encode datatype
    from sklearn.linear_model import LinearRegression # modelLing
    from sklearn.model_selection import train_test_split # splitting train and test
    from sklearn.metrics import mean_squared_error # evaluation
```

Import Dataset

```
In [2]: dt = pd.read_csv("data_input/insurance.csv")
In [3]: dt.head()
```

Out[3]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

```
In [4]: dt.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column
              Non-Null Count Dtype
0
              1338 non-null int64
    age
1
    sex
             1338 non-null object
           1338 non-null float64
    bmi
3
    children 1338 non-null
                             int64
4
    smoker
              1338 non-null
                             object
5
    region
              1338 non-null
                             object
    charges 1338 non-null
                            float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

In this step, we importing the dataset from data_input folder. This data has 1071 rows with 7 columns. The data type is still not relevan, so we turn it into the right types.

Data Wrangling

In this step, we would check if there is any missing values, unappropriate data types, duplicates, etc.

```
Int64Index: 1337 entries, 0 to 1337
Data columns (total 7 columns):
              Non-Null Count Dtype
    Column
              -----
0
              1337 non-null
                             int64
    age
                             object
1
              1337 non-null
    sex
2
    bmi
              1337 non-null
                             float64
    children 1337 non-null
                             int64
3
4
    smoker
              1337 non-null
                             object
              1337 non-null
                             object
5
    region
    charges 1337 non-null
                            float64
dtypes: float64(2), int64(2), object(3)
memory usage: 83.6+ KB
```

```
In [ ]: dt[['sex','smoker','region']] = dt[['sex','smoker','region']].astype('category')
```

Missing value

```
In [5]: dt.isnull().any()
 Out[5]: age
                      False
                      False
          sex
                      False
         bmi
         children
                      False
                      False
         smoker
         region
                      False
                      False
         charges
         dtype: bool
In [10]: dt.duplicated().any()
Out[10]: True
In [12]: |dt.drop_duplicates(inplace = True)
In [13]: |dt.duplicated().any()
Out[13]: False
```

Splitting Data

Split data into target and its predictors.

Training

Fitting data using train that has been splitted in previous step. We can use LinearRegression function from sklearn.

```
In [17]: mdl = LinearRegression()
mdl.fit(X_train, y_train)

Out[17]: LinearRegression()
```

Testing

Predict model that has builded with test data

11698.16755848])

```
In [22]: y_pred = mdl.predict(X_test)
y_pred[:5]
Out[22]: array([14630.08887853, 12588.95412289, 17160.86493902, 12382.48008346,
```

Model Evaluation

Mean Squared Error : 166847445.41074288

Our model has 16% error which can tell that our model is quite good for predicting new data. Next, we predict new (dummy) data

```
In [29]: y_hat = mdl.predict(new_dt)
y_hat
```

```
Out[29]: array([19659.19579616, 10090.62326575, 10438.68093789])
```

Our model success to predict new data. If you have any advice for this work or suggestion what i should learn next, you can <u>send an email</u> (<u>mailto:rahfairuzran@gmail.com</u>) to me