Relatório Projeto 3.1 AED 2020/2021 Versão 1.0

Nome: Pedro Afonso Ferreira Lopes Martins Nº Estudante: 2019216826

TP (inscrição): PL8 Login no Mooshak: 2019216826

Nº de horas de trabalho: 06H Aulas Práticas de Laboratório: 02H Fora de Sala de Aula: 04H

(A Preencher pelo Docente) CLASSIFICAÇÃO:
Comentários:

1. Análise Empírica de Complexidade

Correr a implementação do projeto 3.1 para um número crescente de transações e obter os tempos de execução (excluindo tempo de leitura e impressão de resultados). Produzir tabela, gráfico e regressão relevantes.

Nº de transações	Tempo (ms)
32 (2 ⁵)	0,039
1024 (2 ¹⁰)	0,381
32768 (2 ¹⁵)	8,129
1048567 (2 ²⁰)	135,251
33554432 (2 ²⁵)	3629,757

A expressão f(N) está de acordo com o esperado? Justifique.

Sim, está. Uma vez que a complexidade das merkle tree se enquadra em O(n) e uma vez que a reta que representa a expressão f(n) obtida aquando da criação do gráfico é linear.

O projeto 3.1 pode ser implementado seguindo uma abordagem iterativa e uma recursiva.

Explique sucintamente o essencial das duas implementações em termos de estruturas de dados utilizadas e da propagação dos *hashcodes* na árvore.

A abordagem iterativa, que foi utilizada por mim neste projeto, recorre ao uso de ciclos para a inserção dos dados num array de arrays, em que cada array interior representa um nível da árvore de hashcode. Se a implementação tivesse ocorrido recorrendo a árvores, o método mais otimizado seria a abordagem recursiva onde aquando da formação da árvore se chama a função de inserção várias vezes. A propagação é ascendente, dos ramos para a raíz.