# NTU-ADL-HW3-Report (R11922A16 資工碩 一 柳宇澤)

tags: NTU ADL

- NTU-ADL-HW3-Report (R11922A16 資工碩一 柳宇 <u>澤)</u>
  - Q1. Model
    - Model (1%)
    - <u>Preprocessing (1%)</u>
  - **Q2: Training** 
    - <u>Hyperparameter (1%)</u>
    - Learning Curves (1%)
  - Q3: Generation Strategies
    - **Stratgies** (2%)
    - <u>Hyperparameters (4%)</u>

#### Q1. Model

## **Model (1%)**

mT5 is a multilingual variant of T5 (Text-to-Text Transfer Transformer) that was pre-trained on a new Common Crawl-based dataset covering 101 languages. A classical Transformer sturcture is consist of a Encoder & Decoder. Encoder transfers a input (An existing information) into a vector in a latent space. Then, decoder iteratively transfer the vector into a text based on preview vector.

# Preprocessing (1%)

I transfer json1 to json for loading datasets. Secondly, I added a prefix, "summarize: ", to every maintext. Then tokenizing maintext and padding sentences to max\_len=1024.

# **Q2: Training**

# Hyperparameter (1%)

I used Accelerator so I set per\_device\_XXX\_batch\_size as large as possible, which is 6 in my server.

For learning rate, I set it to relatively small value, 5e-5, as NLP generation transformer model could be hard to train. What's more, I also set num\_warmup\_steps to 20, but this value could be too small for my training epochs. Initially, I tried to train 5 epochs and observed the model didn't be converged. Hence, I trained it for 50 epochs. Finally, the model was successfully converged. However, I could try higher learning rate next time to save training time.

Last but not least, I set max\_len to 512 which means sequences will be padded to 512 length.

## **Learning Curves (1%)**



# **Q3: Generation Strategies**

# Stratgies (2%)

- Greedy Search
  - Greedy search simply selects the word with the highest probability as its next word.
- Beam Search
  - Beam search reduces the risk of missing hidden high probability word sequences by keeping the most likely num\_beams of hypotheses at each time

step and eventually choosing the hypothesis that has the overall highest probability.

### • Top-k Sampling

 Sampling means randomly picking the next word according to its conditional probability distribution.
In Top-K sampling, the K most likely next words are filtered and the probability mass is redistributed among only those K next words.

## • Top-p Sampling

 Instead of sampling only from the most likely K words, in Top-p sampling chooses from the smallest possible set of words whose cumulative probability exceeds the probability p. The probability mass is then redistributed among this set of words.

#### • Temperature

 A trick is to make the distribution sharper (increasing the likelihood of high probability words and decreasing the likelihood of low probability words) by lowering the so-called temperature of the softmax. While applying temperature can make a distribution less random, in its limit, when setting temperature to 0, temperature scaled sampling becomes equal to greedy decoding

# Hyperparameters (4%)

My strategy is Beam = 4.

Belows are F1-scores under different settings.

| Hyperparm.        | Rouge-1 | Rouge-2 | Rouge-I |
|-------------------|---------|---------|---------|
| Greedy            | 0.2574  | 0.0950  | 0.2285  |
| * Beam = 4        | 0.2704  | 0.1075  | 0.2400  |
| Beam = 10         | 0.2698  | 0.1091  | 0.2400  |
| Top-K = 10        | 0.2307  | 0.0781  | 0.2020  |
| Top-K = 50        | 0.2124  | 0.0670  | 0.1861  |
| Top-P = 0.94      | 0.1782  | 0.0558  | 0.1575  |
| Top-P = 0.98      | 0.1810  | 0.0574  | 0.1594  |
| Temperature = 0.2 | 0.2555  | 0.0942  | 0.2255  |
| Temperature = 0.7 | 0.2317  | 0.0818  | 0.2050  |