The Hubble Olympics

Regression of Eight Friedmann models

IVCAS GROUP 5

Outline

The Competition (Background and Objectives)

The Competitors (Friedmann Models)

Methodology

Results

Assumption of Cosmology

approximate isotropy and homogeneity

assumption

$$ds^2 = -dt^2 + a(t)d\mathbf{x}$$

(exact isotropy and homogeneity)

The Friedmann Equation

$$ds^{2} = -dt^{2} + a(t)d\mathbf{x}$$

$$\downarrow$$

$$H(z) = H_{0}\sqrt{\Omega_{m}(1+z)^{3} + \Omega_{r}(1+z)^{4}}$$

- H(z) expansion rate of the Universe
- Ω_r fractional energy density of relativistic particles
- fractional energy density of non-relativistic particles

The Friedmann Equation

 Ω_{r} - negligible for the last several billion years

So
$$\Omega_m \approx 1$$

$$H(z) = H_0 \sqrt{(1+z)^3}$$

Modern Cosmology: The Problem

Fig. 1 Plot of matter-only Friedmann equation

Modern Cosmology: The Problem

$$H(z) = H_0 \sqrt{(1+z)^3}$$

needs to be corrected.

"The Competition"/Objective

Find the best-fit parameters of corrected models of the Friedmann equation that fits the data better.

Determine the "best" model.

"The Competitors": Three Types of Models

1. Dark Energy

- extraordinary energy permeates the universe

2. Modified Gravity

- general relativity needs to be modified

3. Cosmic Backreaction

- general relativity is correct, but assumption of exact isotropy and homogeneity is not

"The Competitors": Dark Energy

1. The Standard LCDM Model

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_{\Lambda}}$$

"Back-to-back champion"

"The Competitors": Dark Energy

2. Domain Walls

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_d (1+z)^{1/3}}$$

3. Cosmic Strings

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_s (1+z)^{2/3}}$$

4. Phantom Energy

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_p (1+z)^{3(1+\omega_p)}}$$

"The Competitors": Modified Gravity

Varying-G theory: $G = G_0 f(z, b)$

$$H(z) = H_0 \sqrt{f(z,b)(1+z)^3}$$

"The Competitors": Modified Gravity

1. Inverse Monomial

$$f(z,b) = \frac{1}{1 + bz}$$

2. Exponential
$$f(z,b) = \exp b \left(\frac{1}{1+z} - 1 \right)$$

3. Logarithmic
$$f(z,b) = b \ln \frac{1}{1+z} + 1$$

"The Competitors": Cosmic Backreaction

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + (1-\Omega_m)(1+z)^n}$$

Methodology

Objective 1: Get best-fit parameters

Method 1: Maximum Likelihood Estimation/
Bayesian Inference with Uninformative
Priors

Method 1: Maximum Likelihood Estimation

- Sample the posterior distribution of parameters as defined by Bayes theorem
- Best estimate: median of the posterior
- Assume Gaussian likelihood and flat priors for simplicity
- Package: UltraNest [1]

Objective 2: Get "best" model

Method 2: Calculate Bayes factors

Method 2: Calculate Bayes factors

- Calculate the evidence In Z of each model via UltraNest
- Compute the Bayes factor of model 1 and model 2:

$$\ln B_{12} = \ln Z_1 - \ln Z_2$$

Dataset

[2] D. Jyoti Gogoi & U. Dev. Goswami. Cosmology with a new f(R) gravity model in Palatini formalism. https://arxiv.org/abs/2108.01409
[3] D. M. Scolnic et al. The Complete Light-curve Sample of Spectroscopically Confirmed Type Ia Supernovae from Pan-STARRS1 and Cosmological Constraints from The Combined Pantheon Sample. https://arxiv.org/abs/1710.00845

Results

Corner Plots

Dark Energy: LCDM

Priors: $H_0 \in [0,100]$

 $\Omega_m \in [0,1]$

 $\Omega_{\Lambda} \in [0,1]$

Dark Energy: Domain Walls

Priors: $H_0 \in [0,100]$

 $\Omega_m \in [0,1]$

 $\Omega_d \in [0,1]$

$H_0 = 74.96^{+14.15}_{-7.50}$ $\Omega_m = 0.21^{+0.05}_{-0.06}$ Ω_m $\Omega_s = 0.75^{+0.17}_{-0.22}$ $\Omega_{\rm S}$ 0, 1, 80 88 00 0.1, 050 0.1, 060 0.1, 0

Dark Energy: Cosmic Strings

Priors: $H_0 \in [0,100]$

 $\Omega_m \in [0,1]$

 $\Omega_s \in [0,1]$

$H_0 = 74.50^{+14.18}_{-7.89}$ Lip. $\Omega_m = 0.25^{+0.07}_{-0.07}$ Ω_m $\Omega_p = 0.73^{+0.18}_{-0.21}$ ${\tt Q}_{\rho}$ $\omega_{D} = -1.03^{+0.01}_{-0.03}$

Dark Energy: Phantom Energy

$$\Omega_m \in [0,1]$$

$$\Omega_p \in [0,1]$$

$$\omega_p \in [-3, -1.01]$$

$H_0 = 72.92^{+0.30}_{-0.28}$ $b = 1.97^{+0.08}_{-0.07}$ 2.5 ٠, ک *√*% $\mathcal{A}^{0} \mathcal{A}^{0} \mathcal{A}^{0} \mathcal{A}^{0}$ $\mathcal{A}^{0} \mathcal{A}^{0} \mathcal{A}^{0}$ $\mathcal{A}^{0} \mathcal{A}$

Modified Gravity: Inverse Monomial

$$b \in [0,4]$$

$H_0 = 73.31^{+0.26}_{-0.25}$ $b = 2.12^{+0.05}_{-0.05}$ 2.08 2.00

Modified Gravity: Exponential

$$b \in [0,4]$$

$H_0 = 68.47^{+0.16}_{-0.15}$ $b = 0.68^{+0.01}_{-0.01}$ 0.705 0.690 0.675 0.60

Modified Gravity: Logarithmic

Priors: $H_0 \in [0,100]$

 $b \in [0,0.8]$

$H_0 = 73.52^{+0.36}_{-0.31}$ $\square \Omega_m = 0.23^{+0.02}_{-0.02}$ Ω_m 0.25 0.78 $n = 0.23^{+0.16}_{-0.18}$ 0.50 7

Backreaction

$$\Omega_m \in [0,1]$$

$$n \in [-4,4]$$

Effects of Prior

Best-Fit Plots: Hubble function

Best-Fit Plots: Apparent magnitude

Rankings

Rankings

MODEL

BAYES FACTOR

"Disqualified"

Mod. Grav. Inv. Mon. f(z,b)

Mod. Grav. Log. f(z, b)

 15.452 ± 0.385 Strong preference for LCDM

 220.721 ± 0.436

Super strong preference for LCDM

Rankings

MODEL

BAYES FACTOR

LCDM

Domain Walls

Cosmic Strings

Mod. Grav. Exp. f(z, b)

$$-0.677 \pm 0.381$$
 Inconclusive

$$-0.65 \pm 0.591$$
 Inconclusive

$$-0.196 \pm 0.374$$
 Inconclusive

Backreaction

 1.34 ± 0.428

Weak preference for LCDM

Phantom Energy

 4.12 ± 0.45

Moderate preference for LCDM

THANK YOU