

Shri Vile Parle Kelayani Mandal's

INSTITUTE OF TECHNOLOGY

DHULE (M.S.) DEPARMENT OF COMPUTER ENGINEERING

Name: Pagariya Sakshi Roll no: 17

Subject : Artificial Intelligence Lab **Subject Code :** BTCOL707

Class: Final Year Comp. Engg. Expt. No.: 06

Title: Solve Robot (traversal) problem using means End Analysis.

Problem

Solve Robot (traversal) problem using means End Analysis

Staement:

Software

Prolog

Theory:

Required:

The traversal problem for a robot is one of the many challenges that can be solved using the Means-End Analysis (MEA), a popular approach in artificial intelligence. In this case, the robot must use all available tools or actions to go from its current position to a target place. We'll use a streamlined Prolog example to demonstrate the idea of MEA for a robot traversal problem.

Assume you have a straightforward grid environment with movable robot that can move left, right, up, and down, and that its objective is to go to a predetermined spot. This is a sample of Prolog code that illustrates a fundamental MEA solution for this issue:

% Define the initial state (robot's current position) initial_state(2, 2). % Assuming the robot starts at position (2, 2).

```
% Define the goal state (target location)
                  % Assuming the goal is to reach position (5, 5).
goal_state(5, 5).
% Define the means or actions (robot's movement commands)
move(up, 0, -1).
move(down, 0, 1).
move(left, -1, 0).
move(right, 1, 0).
% Define the MEA algorithm
mea(State, State, []).
mea(CurrentState, GoalState, [Action | Actions]) :-
  move(Action, DX, DY),
  NewX is CurrentStateX + DX,
  NewY is CurrentStateY + DY,
  mea((NewX, NewY), GoalState, Actions).
% Entry point to solve the traversal problem using MEA
solve_traversal :-
  initial_state(CurrentStateX, CurrentStateY),
  goal_state(GoalStateX, GoalStateY),
  mea((CurrentStateX, CurrentStateY), (GoalStateX, GoalStateY), Actions),
  write('Solution Actions: '), nl,
  print_actions(Actions).
% Predicate to print the sequence of actions
print_actions([]).
print_actions([Action | Rest]) :-
  write(Action), nl,
  print_actions(Rest).
% Start the solver
:- solve_traversal.
```

	In this example, we specify the robot's starting point, destination, and possible moves. The MEA algorithm is implemented by the mea predicate. It computes a series of actions (movements) to accomplish the objective given the current state (the robot's position) and the goal state (the target location).
	The starting position, the desired state, and the possible moves can all be changed to fit your unique robot traversal scenario. This is a condensed example of how MEA can be used in Prolog to solve such an issue. The grid world may be more complicated and require consideration of extra constraints in real-life circumstances.
Conclusion:	