Clase 2

Análisis de algoritmos Introducción a matemáticas discretas (Comp. 420)

José Joaquín Zubieta Rico

Abstract

Notación asintótica y su uso en complejidad.

Nota asintótica

Notación $\Theta()$

Se usa para acotar la función por arriba y por abajo por una clase de funciones.

Definición.

Dada una función g(n), denotamos $\Theta(g(n))$ al conjunto de funciones tales que

• $\Theta(g(n)) = \{f(n) : \text{existen constantes positivas } c_1, c_2 \text{ y } n_0 \text{ tales que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$

de lo que se dice que $f(n) \in \Theta(g(n))$.

Ejemplo

Dada $f(n) = \frac{1}{2}n^2 - 3n$, tenemos que $f(n) \in \Theta(n^2)$, esto porque

$$\frac{1}{14}n^2 \le \frac{1}{2}n^2 - 3n \le \frac{1}{2}n^2 \quad \forall n > 7.$$

Notación O()

Se usa para acotar una función asintótica por arriba.

Notación $\Omega()$

Se usa para acotar una función asintóticamente por abajo.

Más notaciones

Donald Knuth completa la notación asintótica de funciones con las notaciones

- o(), que corresponde a la cota superior «apretada» de la función-
- $\omega()$, que corresponde a la cota inferior «apretada» de la función.

Lo que diferencia las notaciones mayores y menores es que en las notaciones menores la complejidad debe de ser válida para **todas** las constantes.

Propiedades

Las propiedades de la notación asintótica son

- transitiva
 - Si $f(n) \in O(g(n))$ y $g(n) \in O(h(n))$, entonces $f(n) \in O(h(n))$. - Si $f(n) \in \Omega(g(n))$ y $g(n) \in \Omega(h(n))$, entonces $f(n) \in \Omega(h(n))$.
- suma: permanece el de máxima complejidad.
- **producto**: la complejidad del producto de funciones es el producto de sus complejidades.
- reflexiva:
 - $-f(n) \in \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n))$
 - $-f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$
 - $-f(n) \in o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))$