Proposal

311512040 林胤宏 311512022 趙國良

Motivation and Background:

PCB 缺陷是電子設備高故障率的關鍵因素之一,需要在 PCB 生產過程中實現非接觸、準確、高效的自動缺陷檢測。近十幾年來,一種自動 X 射線檢測 (Automated X-Ray Inspection)技術已被用於檢測 PCB 製造過程中的缺陷。

由於球柵陣列封裝(Ball Grid Array, BGA)的焊點是人眼無法直接觀察到的,因為 BGA 的錫球隱藏在元件本體下方。 借助顯微鏡只能檢查元件本體邊緣上的錫球,這是不夠的。因此需使用自動 X 射線檢測設備檢查 BGA 元件的所有錫球。

在自動 X 射線檢測設備(AXI)檢查 BGA 元件的焊點時,基本上檢測出 2 種瑕疵:空焊、短路,若是在生產時未檢測出來,便會使 PCB 無法正常使用。

在 AXI 檢測出焊點異常後,以往是直接將異常焊點切片交由專家進行人工 檢測,我們希望能透過深度學習的方式來進行 BGA 焊點缺陷檢測,並將此檢測 流程置於專家人工檢測之前,可以大幅降低專家人工檢視的次數,並提供快速且 穩定的實時檢測。

Main Method:

採用物件偵測演算法作為分類模型,如 You Only Look Once (YOLO)、Faster R-CNN等,其網路架構如圖 所示,以瑕疵焊點影像及包含瑕疵類別與座標之.xml 檔作為輸入,對模型進行訓練,並在訓練完成後,當模型輸入瑕疵焊點影像時,模型便可檢測出該影像之瑕疵類別與瑕疵座標,如圖 所示,經由卷積神經網路判別是屬於瑕疵或良好的焊點,以取代人工檢視之過程。

	Туре	Filters	Size	Output
	Convolutional	32	3 × 3	256 × 256
	Convolutional	64	$3 \times 3 / 2$	128×128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3/2$	64 × 64
	Convolutional	64	1 × 1	
2×	Convolutional	128	3×3	
	Residual			64×64
	Convolutional	256	$3 \times 3/2$	32 × 32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3×3	
	Residual			32×32
	Convolutional	512	$3 \times 3/2$	16 × 16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
	Convolutional	1024	$3 \times 3 / 2$	8 × 8
	Convolutional	512	1 × 1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			

圖 1、YOLO 演算法之網路架構

圖 2、檢測模型建立流程

Application and Datasets:

為了訓練物件偵測模型,需要瑕疵焊點影像的資料集以及對應瑕疵類別及座標,資料由智邦科技股份有限公司提供 2.5D X-ray 得到 X-ray 下 PCB 為焊點之切片影像。

將所建立之自動檢測系統置於 AXI 檢測後,如圖 所示。且隨著檢測樣本逐漸增加,預測模型會根據專家人工檢視的驗證結果進行更新,並持續蒐集資料增加模型穩健性。

圖 3、實際產線中之檢測分類系統

Reference:

- Bhattacharya, A., Cloutier, S.G. End-to-end deep learning framework for printed circuit board manufacturing defect classification. Sci Rep 12, 12559 (2022). https://doi.org/10.1038/s41598-022-16302-3
- B. Hu and J. Wang, "Detection of PCB Surface Defects With Improved Faster-RCNN and Feature Pyramid Network," in IEEE Access, vol. 8, pp. 108335-108345, 2020.
 - https://ieeexplore.ieee.org/document/9113299
- 3. Zhang, Q., Zhang, M., Gamanayake, C. et al. Deep learning based solder joint defect detection on industrial printed circuit board X-ray images. Complex Intell. Syst. 8, 1525–1537 (2022).
 - https://doi.org/10.1007/s40747-021-00600-w