INTRODUCTION TO ALGORITHMS

LECTURE 2: ALGORITHM ANALYSIS

Yao-Chung Fan yfan@nchu.edu.tw

Example Problem: 3-SUM

3-Sum. Given *N* distinct integers, how many triples sum to exactly zero?

% more 8ints.txt 8 30 -40 -20 -10 40 0 10 5
% java ThreeSum 8ints.txt

	a[i]	a[j]	a[k]	sum
1	30	-40	10	0
2	30	-20	-10	0
3	-40	40	0	0
4	-10	0	10	0

3-SUM: brute-force algorithm

Brute-force algorithm. Check each triple.

```
public class ThreeSum
  public static int count(int[] a)
   int N = a.length;
   int count = 0;
   for (int i = 0; i < N; i++)
                                                                             check each triple
     for (int j = i+1; j < N; j++)
                                                                             for simplicity, ignore
       for (int k = j+1; k < N; k++)
                                                                             integer overflow
         if (a[i] + a[j] + a[k] == 0)
           count++;
   return count;
  public static void main(String[] args)
   In in = new In(args[0]);
   int[] a = in.readAllInts();
    StdOut.println(count(a));
```

Measuring the running time

- Q. How to time a program?
- A. Automatic.

```
public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)
```

```
public static void main(String[] args)
{
    In in = new ln(args[0]);
    int[] a = in.readAllInts();
    Stopwatch stopwatch = new Stopwatch();
    StdOut.println(ThreeSum.count(a));
    double time = stopwatch.elapsedTime();
    StdOut.println("elapsed time " + time);
}
```

Measuring the running time

- Q. How to time a program?
- A. Automatic.

```
public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)
```

```
public class Stopwatch
{
    private final long start = System.currentTimeMillis();

    public double elapsedTime()
    {
        long now = System.currentTimeMillis();
        return (now - start) / 1000.0;
    }
}
```

Empirical analysis

Run the program for various input sizes and measure running time.

The challenge: Understand the Performance of Your Algorithm

Q. Will my program be able to solve a large practical input?

Why is my program so slow?

What happen when the input is scale to 100x?

Experimental algorithmics

System independent effects.

- Algorithm.
- Input data.

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

About Algorithm Analysis

It's API world now

About Software Performance Understanding

黑箱測試 (Black Box Testing)

白箱測試 (White Box Testing)

- Introduction
- doubling hypothesis
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory

Empirical analysis

Run the program for various input sizes and measure running time.

N	time (seconds) †		
250	0		
500	0		
1,000	0.1		
2,000	0.8		
4,000	6.4		
8,000	51.1		
16,000	?		

Data analysis

Standard plot. Plot running time T(N) vs. input size N.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

N	time (seconds) †	ratio	lg ratio	$T(2N)$ $a(2N)^b$
250	0		_	$T(N) = \frac{1}{aN^b}$
500	0	4.8	2.3	$= 2^b$
1,000	0.1	6.9	2.8	
2,000	0.8	7.7	2.9	
4,000	6.4	8	3	\leftarrow Ig (6.4 / 0.8) = 3.0
8,000	51.1	8	3	
		coome	to convers	$a = t \circ a$ constant $b \approx 3$

seems to converge to a constant $b \approx 3$

Hypothesis. Running time is about $a N^b$ with $b = \lg ratio$.

Caveat. Cannot identify logarithmic factors with doubling hypothesis.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

- Q. How to estimate a (assuming we know b)?
- A. Run the program (for a sufficient large value of N) and solve for a.

N	time (seconds) †	
8,000	51.1	
8,000	51	
8,000	51.1	

$$51.1 = a \times 8000^{3}$$

 $\Rightarrow a = 0.998 \times 10^{-10}$

Hypothesis. Running time is about $0.998 \times 10^{-10} \times N^3$ seconds.

Prediction and validation

Hypothesis. The running time is about $0.998 \times 10^{-10} \times N^3$ seconds.

"order of growth" of running time is about N³ [stay tuned]

Predictions.

- 51.0 seconds for N = 8,000.
- 408.1 seconds for N = 16,000.

Observations.

N	time (seconds) †		
8,000	51.1		
8,000	51		
8,000	51.1		
16,000	410.8		

validates hypothesis!

- introduction
- doubling hypothesis
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory

Mathematical models for running time

Total running time: sum of cost x frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

Donald Knuth
1974 Turing Award

In principle, accurate mathematical models are available.

Cost of basic operations

Observation. Most primitive operations take constant time.

operation	example	nanoseconds †
variable declaration	int a	c_1
assignment statement	a = b	<i>C</i> 2
integer compare	a < b	<i>C</i> 3
array element access	a[i]	<i>C</i> 4
array length	a.length	<i>C</i> 5
1D array allocation	new int[N]	$c_6 N$
2D array allocation	new int[N][N]	$c_7 N^2$

Caveat. Non-primitive operations often take more than constant time.

Mathematical models for running time

In principle, accurate mathematical models are available.

Total running time: sum of cost × frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

Example: 1-SUM

Q. How many instructions as a function of input size N?

operation	frequency
variable declaration	2
assignment statement	2
less than compare	N+1
equal to compare	N
array access	N
increment	<i>N</i> to 2 <i>N</i>

Example: 2-SUM

Q. How many instructions as a function of input size N?

$$0 + 1 + 2 + \ldots + (N - 1) = \frac{1}{2} N (N - 1)$$

operation	frequency
variable declaration	N + 2
assignment statement	N + 2
less than compare	
equal to compare	$\frac{1}{2}N(N-1)$
array access	N(N-1)
increment	$\frac{1}{2} N(N-1)$ to $N(N-1)$

tedious to count exactly

Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

$$0+1+2+\ldots+(N-1) = \frac{1}{2}N(N-1)$$
$$= {N \choose 2}$$

operation	frequency	$=$ $\binom{n}{2}$
variable declaration	N+2	
assignment statement	N+2	
less than compare	$\frac{1}{2}(N+1)(N+2)$	
equal to compare	½ N (N – 1)	
array access	N(N-1)	cost model = array accesses
increment	$\frac{1}{2}N(N-1)$ to $N(N-1)$	

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

Ex 1.
$$\frac{1}{6}N^3 + 20N + 16$$
 ~ $\frac{1}{6}N^3$
Ex 2. $\frac{1}{6}N^3 + 100N^{4/3} + 56$ ~ $\frac{1}{6}N^3$
Ex 3. $\frac{1}{6}N^3 - \frac{1}{2}N^2 + \frac{1}{3}N$ ~ $\frac{1}{6}N^3$

discard lower-order terms

(e.g., N = 1000: 166.67 million vs. 166.17 million)

Leading-term approximation

Technical definition.
$$f(N) \sim g(N)$$
 means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size *N*.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

operation	frequency	tilde notation	
variable declaration	N + 2	~ N	
assignment statement	<i>N</i> + 2	~ N	
less than compare	$\frac{1}{2}(N+1)(N+2)$	$\sim \frac{1}{2} N^2$	
equal to compare	$\frac{1}{2}N(N-1)$	$\sim \frac{1}{2} N^2$	
array access	N(N-1)	~ N ²	
increment	$\frac{1}{2}N(N-1)$ to $N(N-1)$	$\sim \frac{1}{2} N^2$ to $\sim N^2$	

Example: 2-SUM

Q. Approximately how many array accesses as a function of input size N?

```
int count = 0;

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

if (a[i] + a[j] == 0)

count++;

0+1+2+...+(N-1) = \frac{1}{2}N(N-1)
= {N \choose 2}
```

A. $\sim N^2$ array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size N?

Bottom line. Use cost model and tilde notation to simplify counts.

Diversion: estimating a discrete sum

- Q. How to estimate a discrete sum?
- A1. Take a discrete mathematics course.
- A2. Replace the sum with an integral, and use calculus!

Ex 1.
$$1 + 2 + ... + N$$
.

$$\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^2$$

Ex 2.
$$1^k + 2^k + ... + N^k$$
.

$$\sum_{i=1}^{N} i^{k} \sim \int_{x=1}^{N} x^{k} dx \sim \frac{1}{k+1} N^{k+1}$$

Ex 3.
$$1 + 1/2 + 1/3 + ... + 1/N$$
.

$$\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} dx = \ln N$$

Ex 4. 3-sum triple loop.
$$\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=j}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} dz \, dy \, dx \sim \frac{1}{6} N^3$$

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.

costs (depend on machine, compiler)

Bottom line. We use approximate models in this course: $T(N) \sim c N^3$.

ANALYSIS OF ALGORITHMS

- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory

Common order-of-growth classifications

Definition. If $T(N) \sim c \ g(N)$ for some constant c > 0, then the order of growth of T(N) is g(N).

where leading coefficient depends on machine, compiler, JVM, ...

- Ignores leading coefficient.
- Ignores lower-order terms.

Ex. The order of growth of the running time of this code is N^3 .

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
    for (int k = j+1; k < N; k++)
    if (a[i] + a[j] + a[k] == 0)
        count++;</pre>
```

Common order-of-growth classifications

Good news. The set of functions

1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N

suffices to describe the order of growth of most common algorithms.

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
$\log N$	logarithmic	while $(N > 1)$ { $N = N / 2;$ }	divide in half	binary search	~ 1
N	linear	for (int $i = 0$; $i < N$; $i++$) { }	loop	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N 2	quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) $\{ \}$	double loop	check all pairs	4
N 3	cubic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) $\{ \}$	triple loop	check all triples	8
2^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Practical implications of order-of-growth

growth rate	problem size solvable in minutes			
	1970s	1980s	1990s	2000s
1	any			
log N	any			
N	millions			
N log N	hundreds of thousands			
N^2	hundreds			
N ³	hundred			
2 ^N	20			

N size scale? N的規模。

Practical implications of order-of-growth

growth	problem size solvable in minutes			time to process millions of inputs				
rate	1970s	1980s	1990s	2000s	1970s	1980s	1990s	2000s
1	any	any	any	any	instant	instant	instant	instant
log N	any	any	any	any	instant	instant	instant	instant
N	millions	tens of millions	hundreds of millions	billions	minutes	seconds	second	instant
N log N	hundreds of thousands	millions	millions	hundreds of millions	hour	minutes	tens of seconds	seconds
N ²	hundreds	thousand	thousands	tens of thousands	decades	years	months	weeks
N ₃	hundred	hundreds	thousand	thousands	never	never	never	millennia

Practical implications of order-of-growth

growth	namo	doscription	effect on a program that runs for a few seconds		
rate	name	description	time for 100x more data	size for 100x faster computer	
1	constant	independent of input size	_	_	
log N	logarithmic	nearly independent of input size	_	_	
N	linear	optimal for N inputs	a few minutes	100x	
N log N	linearithmic	nearly optimal for N inputs	a few minutes	100x	
N ²	quadratic	not practical for large problems	several hours	10x	
N ³	cubic	not practical for medium problems	several weeks	4–5x	
2 ^N	exponential	useful only for tiny problems	forever	1x	

Consider the following scenario in your future

how to write a problem to assist couple matching?

Consider the following scenario in your future

Here Comes a Challenge

growth	problem size solvable in minutes			time to process millions of inputs				
rate	1970s	1980s	1990s	2000s	1970s	1980s	1990s	2000s
1	any	any	any	any	instant	instant	instant	instant
log N	any	any	any	any	instant	instant	instant	instant
N	millions	tens of millions	hundreds of millions	billions	minutes	seconds	second	instant
N log N	hundreds of	millions	millions	hundreds of millions	hour	minutes	tens of seconds	seconds
N ²	hundreds	thousand	thousands	tens of thousands	decades	years	months	weeks
N ₃	hundred	hundreds	thousand	thousands	never	never	never	millennia

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

successful search for 33

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

successful search for 33

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

successful search for 33

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

unsuccessful search for 34

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

unsuccessful search for 34

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

unsuccessful search for 34

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

Binary search: Java implementation

Trivial to implement

```
public static int rank(int[] a, int key)
  int lo = 0, hi = a.length-1;
 while (lo <= hi)
    int mid = lo + (hi - lo) / 2;
                                                                               one "3-way compare"
         (key < a[mid]) hi = mid - 1;
    else if (key > a[mid]) lo = mid + 1;
    else return mid;
 return -1;
```

Binary search: mathematical analysis

Proposition. Binary search uses at most $\frac{1 + \lg N}{1 + \lg N}$ key compares to search in a sorted array of size N.

Def. T(N) = # key compares to binary search a sorted subarray of size $\leq N$.

Binary search recurrence.
$$T(N) \le T(N/2) + 1$$
 for $N > 1$, with $T(1) = 1$.

| left or right half (floored division)

Pf sketch. [assume *N* is a power of 2]

$$T(N) \le T(N/2) + 1$$
 [given]
 $\le T(N/4) + 1 + 1$ [apply recurrence to first term]
 $\le T(N/8) + 1 + 1 + 1$ [apply recurrence to first term]
 \vdots
 $\le T(N/N) + 1 + 1 + \dots + 1$ [stop applying, $T(1) = 1$]
 $= 1 + \lg N$

TwoSumFast

```
import java.util.Arrays;
public class TwoSumFast
   public static int count(int[] a)
   { // Count pairs that sum to 0.
      Arrays.sort(a);
      int N = a.length;
      int cnt = 0;
      for (int i = 0; i < N; i++)
         if (BinarySearch.rank(-a[i], a) > i)
            cnt++;
      return cnt;
   public static void main(String[] args)
      int[] a = In.readInts(args[0]);
      StdOut.println(count(a));
```

An N² log N algorithm for 3-SUM

Algorithm.

- Step 1: Sort the *N* (distinct) numbers.
- Step 2: For each pair of numbers a[i] and a[j], binary search for -(a[i] + a[j]).

Analysis. Order of growth is $N^2 \log N$.

- Step 1: N^2 with a sort.
- Step 2: $N^2 \log N$ with binary search.

Remark. Can achieve N^2 by modifying binary search step.

input

30 -40 -20 -10 40 0 10 5

sort

-40 -20 -10 0 5 10 30 40

binary search

Comparing programs

Hypothesis. The sorting-based $N^2 \log N$ algorithm for 3-Sum is significantly faster in practice than the brute-force N^3 algorithm.

N	time (seconds)
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1

ThreeSum.java

N	time (seconds)
1,000	0.14
2,000	0.18
4,000	0.34
8,000	0.96
16,000	3.67
32,000	14.88
64,000	59.16

ThreeSumFast.java

Guiding principle. Typically, better order of growth \Rightarrow faster in practice.

Homework Assignment #2

We need more speed for threesum problem

public class Algorithm3SumFastest

int

count(int a[])

return the number of triples whose sum equals to zero

No delay is allowed. Submit your Java code and class file to E-campus system Deadline is 3/27 Monday pm23:59

- introduction
- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory

Types of analyses

Best case. Lower bound on cost.

Provides a goal for all inputs.

Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- · Need a model for "random" input.
- Provides a way to predict performance.

this course

Ex 1. Array accesses for brute-force 3-Sum.

Best: $\sim \frac{1}{2} N^3$

Average: $\sim \frac{1}{2} N^3$

Worst: $\sim \frac{1}{2} N^3$

Ex 2. Compares for binary search.

Best: ~ 1

Average: $\sim \lg N$

Worst: $\sim \lg N$

Theory of algorithms

Goals.

- Establish "difficulty" of a problem.
- Develop "optimal" algorithms.

Upper bound: 演算法最多跑多久

Lower bound: 任何演算法最少都要 跑多久

Approach.

- Suppress details in analysis: analyze "to within a constant factor."
- Eliminate variability in input model: focus on the worst case.

Upper bound. Performance guarantee of algorithm for any input.

Lower bound. Proof that no algorithm can do better.

Optimal algorithm. Lower bound = upper bound (to within a constant factor).

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1/2}{N^2}$ $10 N^2$ $5 N^2 + 22 N \log N + 3N$ \vdots	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$O(N^2)$	$10 N^{2}$ $100 N$ $22 N \log N + 3 N$ \vdots	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1/2}{N^{2}}$ N^{5} $N^{3} + 22 N \log N + 3 N$ \vdots	develop lower bounds

Theory of algorithms: example 1

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 1-Sum = "Is there a 0 in the array?"

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 1-Sum: Look at every array entry.
- Running time of the optimal algorithm for 1-SUM is O(N).

Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries (any unexamined one might be 0).
- Running time of the optimal algorithm for 1-SUM is $\Omega(N)$.

Optimal algorithm.

- Lower bound equals upper bound (to within a constant factor).
- Ex. Brute-force algorithm for 1-SUM is optimal: its running time is $\Theta(N)$.

Theory of algorithms: example 2

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-SUM.

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 3-SUM.
- Running time of the optimal algorithm for 3-SUM is $O(N^3)$.

Theory of algorithms: example 2

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-SUM.

Upper bound. A specific algorithm.

- Ex. Improved algorithm for 3-Sum.
- Running time of the optimal algorithm for 3-SUM is $O(N^2 \log N)$.

Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries to solve 3-Sum.
- Running time of the optimal algorithm for solving 3-SUM is $\Omega(N)$.

Open problems.

- Optimal algorithm for 3-Sum?
- Subquadratic algorithm for 3-SUM?
- Quadratic lower bound for 3-SUM?

Algorithm design approach

Start.

- Develop an algorithm.
- Prove a lower bound.

Gap?

- Lower the upper bound (discover a new algorithm).
- Raise the lower bound (more difficult).

Golden Age of Algorithm Design.

- 1970s-.
- Steadily decreasing upper bounds for many important problems.
- Many known optimal algorithms.

Caveats.

- Overly pessimistic to focus on worst case?
- Need better than "to within a constant factor" to predict

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Tilde	leading term	~ 10 N ²	$10 N^{2}$ $10 N^{2} + 22 N \log N$ $10 N^{2} + 2 N + 37$	provide approximate model
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1/2}{N^2}$ $\frac{10}{N^2}$ $\frac{10}{N^2} + \frac{22}{N} \log N + 3N$	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$O(N^2)$	$10 N^2$ $100 N$ $22 N \log N + 3 N$	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1/2}{N^{5}}$ N ³ + 22 N log N + 3 N	develop lower bounds

Common mistake. Interpreting big-Oh as an approximate model. This course. Focus on approximate models: use Tilde-notation

- introduction
- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory

Basics

Bit. 0 or 1.

NIST

most computer scientists

Byte. 8 bits.

Megabyte (MB). 1 million or 220 bytes.

Gigabyte (GB). 1 billion or 2³⁰ bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.

- Can address more memory.
- Pointers use more space.

some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost

Typical memory usage for primitive types and arrays

Primitive types.

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

primitive types

Array overhead. 24 bytes.

type	bytes
char[]	2N + 24
int[]	4N + 24
double[]	8N + 24

one-dimensional arrays

type	bytes
char[][]	~ 2 <i>M N</i>
int[][]	~ 4 <i>M N</i>
double[][]	~ 8 <i>M N</i>

two-dimensional arrays

Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

```
public class Date
   private int day;
                                    object
                                                        16 bytes (object overhead)
   private int month;
                                   overhead
   private int year;
                                    day
                                                        4 bytes (int)
                                   month
                                                        4 bytes (int)
                                   year
                                                        4 bytes (int)
                                   padding
                                                        4 bytes (padding)
                                                        32 bytes
```

Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 2. A virgin String of length N uses $\sim 2N$ bytes of memory.

Typical memory usage summary

Total memory usage for a data type value:

- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable.
- Padding: round up to multiple of 8 bytes.

+ 8 extra bytes per inner class object (for reference to enclosing class)

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference, count memory (recursively) for referenced object.

Memory profiler

Classmexer library. Measure memory usage by querying JVM. http://www.javamex.com/classmexer

```
import com.javamex.classmexer.MemoryUtil;
public class Memory {
  public static void main(String[] args) {
    Date date = new Date(12, 31, 1999);
   StdOut.println(MemoryUtil.memoryUsageOf(date));
                                                                                 shallow
   String s = "Hello, World";
                                                                                 deep
   StdOut.println(MemoryUtil.memoryUsageOf(s));
   StdOut.println(MemoryUtil.deepMemoryUsageOf(s));
% javac -cp .:classmexer.jar Memory.java
% java -cp .:classmexer.jar -javaagent:classmexer.jar Memory
32
            don't count char[]
                                         use -XX:-UseCompressedOops
               2N + 64
                                        on OS X to match our model
88
```

Example

A.

Q. How much memory does WeightedQuickUnionUF use as a function of N? Use tilde notation to simplify your answer.

```
16 bytes
                                                                           (object overhead)
public class WeightedQuickUnionUF
                                                                           8 + (4N + 24) bytes each
                                                                           (reference + int[] array)
 private int[] id;
                                                                           4 bytes (int)
 private int[] sz;
                                                                           4 bytes (padding)
 private int count;
                                                                            8N + 88 bytes
 public WeightedQuickUnionUF(int N)
   id = new int[N];
   sz = new int[N];
   for (int i = 0; i < N; i++) id[i] = i;
   for (int i = 0; i < N; i++) sz[i] = 1;
```

74

Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use tilde notation to simplify analysis.
- Model enables us to explain behavior.

Scientific method.

- Mathematical model is independent of a particular system;
 applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.