Introduction to HST Photometry

Roberto J. Avila July 19, 2016

Kalirai et al. (2012, AJ, 143, 11K)

HST photometry

- Converting from counts to flux
- HST photometric systems
- Aperture photometry
- PSF variations & aperture corrections
- Charge transfer efficiency

Converting counts to Flux or Mag

- **Calibrated** HST data in various units:
 - WFPC2 and STIS imaging = DN
 - NICMOS = DN/second
 - ACS = electrons
 - WFC3/UVIS = electrons
 - WFC3/IR = electrons/second
- **Drizzled** data = 'counts' per second
 - ** Counts may refer to DNs or electrons per second depending on instrument

Converting counts to Flux or Mag

- CALxxx pipelines calculate and write the sensitivity conversion factor (PHOTFLAM) and the ST magnitude scale zero point (PHOTZPT) into header keywords in the calibrated data.
- ► PHOTFLAM is defined as the *mean* flux density *Flam* in units of erg cm⁻² s⁻¹ A⁻¹ that produces 1 count per second in the HST observing mode.
- Calibrated images (in 'counts') may be converted to flux (erg cm⁻² s⁻¹ A⁻¹) by multiplying the image by the PHOTFLAM header keyword and dividing by the EXPTIME keyword

Photometry: FLT or DRZ

- ACS zeropoints refer to the drizzled pipeline products (_drz.fits files) which are corrected for geometric distortion
- To perform photometry using distorted (non-drizzled calibrated images), the pixel area maps must be applied

DRZ_flux = FLT_flux * PAM / exposure time

■ DRZ images in cps must be multiplied by EXPTIME and include the background sky or phot errors will be wrong

WFC PIXEL AREA MAP

Normalized to 0.05 arcsecond square pixel

Photometric Systems

- ▼ VEGAmag : Standard magnitude system for which Vega has magnitude 0 at all wavelengths
- **► STmag**: Magnitude system based on constant flux per unit wavelength (reference spectrum is flat in F_lam)
- ABmag : Magnitude system based on constant flux per unit frequency (reference spectrum is flat in F_nu)

The zero points for the last two are set so that Vega has magnitude 0 in both systems for the Johnson V band

Photometric Systems

- Photometric keywords in the image header:
 - PHOTMODE : Observation configuration for photometric calibration
 - PHOTFLAM: Inverse sensitivity (erg cm s A)
 - PHOTZPT : ST magnitude zeropoint (=-21.1)
 - PHOTPLAM : Pivot wavelength
 - ► PHOTBW : RMS bandwidth of filter plus detector
- The header keywords PHOTFLAM and PHOTPLAM relate the STMAG and ABMAG zero points through the formulae:
 - STMAG_ZEROPOINT = -2.5 log (PHOTFLAM) + PHOTZPT
 - = -2.5 log (PHOTFLAM) 21.1
 - ABMAG_ZEROPOINT = -2.5 log (PHOTFLAM) 21.1 5 log (PHOTPLAM) + 18.6921

From aperture photometry to absolute magnitudes

STMAG = - 2.5 log (counts/exptime) + [photzpt - 2.5 log (photflam)] - ac05 - AC05 - CTE

where:

```
zpt = photzpt - 2.5 log (photflam) = -21.1 - 2.5 log (photflam) counts = sky subtracted total counts in aperture (r=3 for example) exptime = exposure time photflam = inverse sensitivity (erg s<sup>-1</sup> cm<sup>-2</sup> A<sup>-1</sup> DN<sup>-1</sup>) ac05 = apcorr from measured to 0.5" AC05 = apcorr from 0.5" to infinity
```

Aperture Corrections

- The two most popular photometric techniques, aperture photometry and PSF-fitting, are usually performed by measuring the flux within a small radius
 - reduces errors due to flat-fielding and background variations
 - increases the S/N
- This measurement must be tied to the total count rates by applying an aperture correction
- This correction can be a major source of systematic errors in the calibration
- Accurate aperture correction are a function of time and location on the chip
- Aperture corrections should be derived for each frame
- Encircled energy curves should be used to estimate aperture corrections when it is otherwise impossible to determine such corrections directly from the image

PSF spatial variations

- Spatial variations across the detector FOV arise from combination of defocus, coma, astigmatism, and charge diffusion
- Time variations occur from focus changes and spacecraft jitter during the exposures

PSF variations & HST focus (short term)

- HST breathing variations (thermally induced)
- 1 HST orbit ~90 minutes
- PSF FWHM varies accordingly

Lallo et al. (ISR TEL 2005-03)

PSF variations & HST focus (long term)

- HST long term focus
 variations due to
 separation of primary
 and secondary mirror
- Telescope is refocused periodically

Lallo et al. (2005)

Aperture corrections

- Encircled energy profile (the fraction of total counts as a function of aperture radius)
- Computed using high S/N observations of standard stars

Charge transfer efficiency (CTE)

- All CCDs flown in the harsh radiation environment of space suffer degradation of the charge transfer efficiency
- During transfer of charge from one pixel to the next, defects in the silicon can result in traps that grab electrons for a short time and spontaneously release them
- The effect of CTE degradation is to reduce the apparent brightness of sources
- CTE degradation can lead to:
 - photometric inaccuracies (brightness depends on chip position)
 - astrometric shifts (PSF shape is elongated)
 - decrease in S/N (brightness is reduced and deferred charges increase noise in background)

Pixel based correction (ACS)

Pixel based CTE correction

- Pixel based CTE corrections work directly on images
 - flux put back where it came from
 - astrometry fixed
 - background noise amplified far from amps
 - Available for ACS/WFC and WFC3/UVIS full frames

Pixel based correction (ACS)

Photometric CTE correction formulae

- Can only be used on point sources
- ACS/WFC formula (Chiaberge et al. ACS ISR 2012-05):
 - Δmag (Y, t, SKY, FLUX) = [p1 Log(SKY) Log(FLUX) t + p2 Log(SKY) Log(FLUX) + p'1 Log(SKY) t + q1Log(Flux) t + p'2 Log(SKY) + q2Log(FLUX) + q'1 t + q'2] * Ytran / 2000