

概念?

- 怎么定义一个概念?
- □内涵: 里面有什么, 描述它的属性 □外延: 什么不是? 有什么区别?
- 例如:
- □大学
- □计算机科学

数据库系统

©2016-2018 陈世敏(chensm@ict.ac.cn)

Outline

- 数据库的概念
- 计算机硬件的发展
- 数据库系统的发展

数据库系统

©2016-2018 陈世敏(chensm@ict.ac.cn)

主要概念

- 所以这里我们的目标是说清楚概念的内涵和外延
 - □数据库(Database)
 - □数据库系统(Database Management System)
 - □关系数据库(Relational Database)
 - □关系数据库系统(Relational Database Management System)
 - □关系模型 (Relational Model)

数据库系统

数据库(Database)

- 内涵
 - □包含一组数据
 - □ 描述了实体(Entity)和它们之间的联系(Relationship)
 - 例如,实体:学生、教师、课程、教室、班级等
 - 联系: 学生选课、老师教课、上课占用教室、老师指导学生等
- 外延
 - □ 不同干文件 (File)
 - 从文件系统的角度,不关心内容,而数据库关心数据的内容
 - 当然数据库可能存储在文件中
 - □ 不同于数据集 (Data Set)
 - 没有强调数据的组织,可能是混乱的,未经整理和清洗的
 - 而数据库中的数据都是通过某种方式组织起来的
 - 数据库可以被认为是一种数据集
 - □不同于数据结构(Data Structure)
 - 不关心数据的内容

数据库系统

©2016-2018 陈世敏(chensm@ict.ac.cn)

关系数据库和关系数据库系统

- 关系模型(Relational Model)
- 关系数据库(Relational Database)
 以采用关系模型的数据库
- 关系数据库系统(RDBMS, Relational Database Management System)
 - □支持关系模型为核心模型的数据库系统
- •什么是关系模型?

数据库系统

©2016-2018 陈世敏(chensm@ict.ac.cn)

数据库系统 (DBMS, Database Management System)

- 内涵
 - □管理数据库的系统
- □管理:存储、修改、查询、运算
- 外延
 - □不同于文件系统
 - 管理文件, 存储/读取/修改文件
 - □不同于运算系统
 - 例如: Matlab (矩阵运算), Mathematica (公式推导) MapReduce (云计算), MPI (高性能计算)
 - 为了一种特定的运算模型设计的系统,方便编程和运行
 - □不同于网站
 - 提供网页服务, 当然网页可以访问后台的数据库系统

数据库系统

©2016-2018 陈世敏(chensm@ict.ac.cn)

关系模型

- •关系模型中的实体和联系都可以用"表"来表示
- Table/Relation (表)

数据库系统

Table/Relation (表)

- •列(Column): 一个属性, 有明确的数据类型
 - □例如: 數值类型 (e.g., int, double) ,字符串类型(varchar) . 类别类型(有些像程序语言中的enum)
 - □必须是原子类型,不能够再进一步分割,没有内部结构
- 行(Row): 一个记录(tuple, record)
 - □表是一个记录的集合
 - □记录之间是无序的
- 通常是一个很瘦长的表
 - □几列到几十列
 - □成千上万行,很大的表可以有亿/兆行

数据库系统

©2016-2018 陈世敏(chensm@ict.ac.cn)

什么是原子类型? 无内部嵌套结构

- √ Int
- √ Double
- √ Char string
- √Int 基础上表达的类型: Date, Enum, ...
- X程序语言中的struct
- X class
- X array
- X list, set, map ...

数据库系统

Schema vs. Instance

- Schema: 模式/类型
 - □一个表的类型是由每个列的类型决定的
 - □ 例 如: Student (ID integer, Name varchar(20), Birthday date,

 Gender enum(M, F), Major varchar(20), Year year,

 GPA float)
- Instance: 实例/具体取值
 - □ 具体存储哪些记录, 每个列的具体值
 - □由具体应用决定的
- 这样区分的意义
 - □ Schema只需要定义一次
 - □ 可以对应多个instance
 - □ 随着时间推移,新的修改增删操作,表的内容不断变化,而类型不变

数据库系统

关系模型的优点:数据独立性 ●数据独立性(Data Independence) □DBMS内部的数据组织和存储的改变,不影响上层的应用 □应用不加修改就可以继续正确地工作 □换言之,数据组织和存储的改变对于应用是隔离的 ●如何实现呢? ☞抽象层次

其它模型

- ER模型
 - □一种外部概念模型, 易于表达应用中的数据实体与关系
 - □可以转化为关系模型
- 早于关系模型出现的模型
 - □ 层次模型(Hierarchical Model)、网状模型(Network Model)
 - □已经基本被淘汰
- 关系模型后出现的模型
 - □ Object-Oriented data model(面向对象的模型), Object-Relational data model(关系对象模型), XML
 - □获得了有限的成功
- 近期出现的模型: 图模型等

数据库系统

Outline

- 数据库的概念
- 计算机硬件的发展
- 数据库系统的发展

数据库系统

©2016-2018 陈世敏(chensm@ict.ac.cn)

CPU体系结构的发展(2004年前)

- •提高串行程序效率
 - □提高主频
 - □流水线 (Pipeline)
 - □超标量(Super-Scalar)
 - □乱序执行(Out-of-order Execution)
 - □向量指令(SIMD/Vector Instructions)
 - □多级高速缓存(Multi-level Cache)

数据库系统

内存

- •容量→符合摩尔定律, 指数级增加
- •带宽:有一定的办法增加
- •访问速度: 比指令执行慢100倍 口访存墙问题

数据库系统

©2016-2018 陈世敏(chensm@ict.ac.cn)

新型存储/内存设备

- 闪存(Flash)与固态硬盘(SSD: Solid State Drive)
 - □ 闪存:发明于1980年,与DRAM技术有一定的相似性
 - □ 最早用于取代ROM作BIOS存储,后来用于数字电子设备: 相机、手机、U盘、microSD卡等, 大量生产, 价格降低
 - □ 固态硬盘: 2009年开始出现以闪存为存储介质的固态硬盘
 - 优点: 没有机械装置, 随机读性能比硬盘高100倍, 顺序读或顺序写性 能好干硬盘
 - 缺点: 随机写性能差, 重写次数有限制(例如, 5000次), 超过即报废
- •新型的非易失存储技术: NVM
 - ☐ Phase Change Memory, STT-RAM, Memristor, 3D-Xpoint
 - □与DRAM的读写速度相似,支持的读写次数相似
 - □非易失: 不需要定时刷新, 节能, 可靠
 - □对计算机系统的各方面都会产生深远的影响

数据库系统

多种发展 数据流处理 地理信息系统 多媒体数据库 用于Web的后端 。。。。。 大数据系统 数据库 42 ©2016-2018 陈世敏(chensm@ict.ac.cn)

小结

- 数据库系统的基本概念
- 计算机体系结构和硬件技术的发展
- 数据管理系统的发展

数据库系统

45