Data Structures and Algorithms INFO 6205 Homework 11

Due: April 14, 2019

Put all your java, compiled class files and documentation files into a zip file named Homework11.zip and submit it via the dropbox on the blackboard before the END of due date. Put your name on all .java files. There will be a short Quiz on this homework.

Lecture11Notes

Sequence Alignment with Dynamic Programming

https://web.stanford.edu/class/cs262/presentations/lecture2.pdf

http://pages.cs.wisc.edu/~bsettles/ibs08/lectures/02-alignment.pdf

Genetic Algorithm

http://www.cs.cmu.edu/~02317/slides/lec 8.pdf https://annals-csis.org/Volume_5/pliks/249.pdf

Bellman-Ford Shortest-Path Algorithm

http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/lecture21.html

Bellamn-Ford Shortest-path Negative Cycle

https://www.dyclassroom.com/graph/detecting-negative-cycle-using-bellman-ford-algorithm

1. Consider the sequences x = TACGGGTAT and y = GGACGTACG. Assume that the match score is +1, and the mismatch is -1, and gap penalties is -2.

A) Fill out the dynamic programming table for a global alignment between x and y.

		T	A	C	G	G	G	Т	A	T
	0	-2	-4	-6	-8	-10	-12	-14	-16	-18
G	-2	-1	-3	-5	-5	-7	-9	-11	-13	-15
G	-4	-3	-2	-4	-4	-4	-6	-8	-10	-12
A	-6	-5	-2	-3	-5	-5	-5	-7	-7	-9
C	-8	-7	-4	-1	-3	-5	-6	-6	-8	-8
G	-10	-9	-6	-3	0	-2	-4	-6	-7	-9
Т	-12	-9	-8	-5	-2	-1	-3	-3	-5	-6
A	-14	-11	-8	-7	-4	-3	-2	-4	-2	-4
С	-16	-13	-10	-7	-6	-5	-4	-3	-4	-3
G	-18	-15	-12	-9	-6	-5	-4	-5	-4	-5

B) Draw arrows in the cells to store traceback information.

		T	A	C	G	G	G	T	A	T
	0	-2	-4	-6	-8	-10	-12	-14	-16	-18
G	-2	-1		_5,	-5.	7	<u></u>	11	13	15
G	-4	-3.	-2	4	-4	-4.	— -6	-8.	10	12
A	-6	-5	-2,	-3.	5	-5	-5.		-7	— -9
C	-8	<u>-</u> 7	-4	-1	— -3,		-6	-6	8	-8
G	-10	<u>-9</u>	-6	-3	0	-2	<u>4</u>	 -6	-7-	— -9
Т	-12	-9	-8	-5	-2	-1	3	-3.	— -5	-6
A	-14	-11	-8,	-7	-4	-3	-2		-2;	 -4
C	-16	-13	-10	-7.	-6	-5	-4	-3	-4	-3
G	-18	-15	-12	-9	-6	-5	-4	-5	-4	-5

C) What is the score of the optimal global alignment and what alignment(s) achieves this score?

TACG

TACG

The score is -26.

Note: Use references I sent you and covered them in class.

2. Consider the following Graph,

a) Solve the Shortest path of this graph using Bellman-Ford algorithm, step-by-step s-a, s-c, a-b, b-t, b-d, c-a, c-b, c-d, d-t

	S	A	В	C	D	t
1 st	0	INF	INF	INF	INF	INF
2 st	0	0	2	-2	2	3
3 st	0	0	1	-2	0	1

4 st	0	0	1	-2	0	1
5 st	0	0	1	-2	0	1

- b) Write the Java code for the graph
- c) Random Ordering is used to select the ordering of the algorithm steps.

In the worse case, how many iterations are required by the algorithm to consider all Vertices?

It needs V - 1 times that get the result.

d) How to test if there is negative "cycle" in bellman-ford graph

If dist[v] > dist[u] + weight of edge uv, then "Graph contains negative weight cycle".

c) Consider the following bellman-ford graph, A negative "cycle" makes the path shorter and shorter: i) What does that mean? ii) How to test for negative cycle?

NEGATIVE CYCLES

The cycle A->B->C->A makes the path from S to D shorter and shorter.

i) What does that mean?

It means there is a negative cycle, when we find the Shortest path, we cannot find the minimum path in the graph. Because it makes a negative cycle loop. That means make path shorter and shorter.

- ii) How to test for negative cycle?
 - a. Initialize distances from source to all vertices as infinite and distance to source itself as 0. Create an array dist[] of size |V| with all values as infinite except dist[src] where src is source vertex.
 - b. This step calculates shortest distances. Do following |V|-1 times where |V| is the number of vertices in given graph.

Do following for each edge u-v

If dist[v] > dist[u] + weight of edge uv, then update dist[v]

dist[v] = dist[u] + weight of edge uv

- c. This step reports if there is a negative weight cycle in graph. Do following for each edge
 - If dist[v] > dist[u] + weight of edge uv, then "Graph contains negative weight cycle"
- d. The idea of step 3 is, step 2 guarantees shortest distances if graph doesn't contain negative weight cycle. If we iterate through all edges one more time and get a shorter path for any vertex, then there is a negative weight cycle.
- 3. Read paper "Genetic Algorithms for Balanced Minimum Spanning Tree Problem".
 - a) Read and understand only the first 5 pages.

https://annals-csis.org/Volume 5/pliks/249.pdf

- b) Write Java code for the Algorithm described in paper on page-3.
- c) Compile and Run the code
- d) Describe the output results

```
/Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents
18 E-D-A-C-B
18 E-D-A-C-B
18 E-D-A-C-B
18 E-D-A-C-B
18 E-D-A-C-B
18 E-D-A-C-B
19 E-D-A-D-E
19 C-B-A-D-E
19 C-B-A-D-E
19 C-B-A-D-E
19 C-B-A-D-E
```

This result shows all the pathway to connect with each Point. The number means the weight of routes.