

Senescent cell turnover slows with age providing an explanation for the Gompertz law

Computational biology of aging final project Busygin Sergei, Song Zhenzhen, Voropaev Ivan,

Moscow, 18th December, 2023

Chief premises of research

- 1.Implicitly, aging and generation of senescent cells is a stochastic process
- 2.Death is modeled as a first-passage time process
- 3.SnC abundance was measured using a luciferase reporter for the expression of p16^{INK4a} and SA-β-Gal

Rayess, Hani et al. "Cellular senescence and tumor suppressor gene p16." *International journal of cancer* vol. 130,8 (2012): 1715-25. doi:10.1002/ijc.27316

Workflow

Karin, O., Agrawal, A., Porat, Z. et al. Senescent cell turnover slows with age providing an explanation for the Gompertz law. *Nat Commun* 10, 5495 (2019). 10.1038/s41467-019-13192-4

Weak points - molecular biology

- Systematic vs. organ specific models of senescence
- Why choose lungs?
- Single-dose bleomycin may show spontaneous regression after 28 days, better use multi-dose protocol

 H_2N

Cai, N.; Wu, Y.; Huang, Y. Induction of Accelerated Aging in a Mouse Model. Cells 2022, 11, 1418.

doi:10.3390/cells11091418

4

Stochastic modeling, longitudinal trajectories SnCs in mice

Basic SR (saturating removal) model

$$\dot{X} = \eta t - \frac{\beta X}{\kappa + X} + \sqrt{2\epsilon} \xi_t$$

Grid search parameters:

□ -
$$e^{-10}$$
, e^{-9} , ..., e^{0} , e^{1}
∈ - e^{-10} , e^{-9} , ..., e^{0} , e^{1}
η - e^{-10} , e^{-9} , ..., e^{0} , e^{1}
κ - e^{-10} , e^{-9} , ..., e^{0} , e^{1}
> 20k parameters in total, 200
simulations for every sub-trajectory

Log-likelihood estimation of parameters: \square - 0.135, η - 1.23*10⁻⁴, κ - 1.00 , ε - 0.0183

Karin, O., Agrawal, A., Porat, Z., Krizhanovsky, V., & Alon, U. (2019). Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nature Communications, 10, 5495.

Gompertz law as first time passage consequence

Simulation of Drosophila survival curve.

Drosophlia

Fully Fed (FF)

- $\beta = 1 h 1$
- κ = 1
- $\varepsilon = 1 h 1$
- $\eta = 0.03 \text{ day } -1 \text{ h} 1$
- XC = 15

Lifespan-extending (LE) dietary

- $\beta = 1 h-1$
- $\kappa = 1$
- $\varepsilon = 1 h 1$
- $\eta = 0.02 \text{ day } -1 \text{ h} -1$
- XC = 15

Simulate data of 4000 individuals.

Drosophlia's Data were extracted from the figures of the original manuscripts

Simulation of C. elegans survival curve.

C.elegans

- $\beta = 1 h-1$
- κ = 1
- $\varepsilon = 1 h 1$
- $\eta = 0.07 \text{ day } -1 \text{ h} 1$
- XC = 20

Simulate data of 4000 individuals.

Improvements

- Experimental setup should have been fine-tuned
- Spatial and temporal resolutions should be taken into account
- In the simulated survival curve analysis of Drosophila and C. elegans, β , κ and ϵ were initially set, and there may be certain problems in looking only for eta. So a better approach is to be like mice.

Contributions

- Busygin Sergei experimental setup analysis
- Song Zhenzhen fly and worm survival curves simulations based on SR model
- Voropaev Ivan SR model implementation via Ito process simulation, parameters search for mice, mice survival curves based on SR model