PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-280315

(43)Date of publication of application: 10.10.2000

(51)Int.CI.

B29C 47/00 C08J 5/18 // B29K 23:00 B29L 7:00 C08L 23:02 C08L 45:00 C08L 47:00 C08L 65:00

(21)Application number: 11-094461

(/I)A

(71)Applicant: NIPPON ZEON CO LTD

(22) Date of filing:

01.04.1999

(72)Inventor: KAWADA KEIICHI

NARUSE FUMIHIRO

SHINOHARA NAOKI

(54) EXTRUDED MOLDING OF CYCLIC OLEFIN RESIN AND MANUFACTURE THEREOF (57)Abstract:

PROBLEM TO BE SOLVED: To obtain a surface smoothness which is satisfactory enough to make an extruded molding of a cyclic olefin resin applicable to an optical use by setting the surface coarseness of the molding at a specific level or less in terms of maximum coarseness Rt.

SOLUTION: A cyclic olefin resin 2 as a molding material is supplied from a hopper 3 and this supplied resin 2 is moved to an adapter part 5 by a screw while being thermally melted in a cylinder 4 and then is pressurized to be extruded from the adapter part 5 through a T-die 6. Further, the molten resin of a short paper strip shape extruded from the T-die 6 is cooled using a plurality of cooling rolls 7, and thus a resin sheet or a resin film 8 with the surface coarseness set at 0.3 μm or less in terms of maximum coarseness Rt is obtained to be taken up by a take-up machine 9. Consequently, it is possible to obtain a surface smoothness which is satisfactory enough to make the resin sheet or the resin film 8 applicable to an optical use and the like.

LEGAL STATUS

[Date of request for examination]

09.08.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-280315 (P2000-280315A)

(43)公開日 平成12年10月10日(2000.10.10)

(51) Int.Cl. ⁷		識別記号		FΙ				7	·-マコード(参考)
B 2 9 C	47/00			B 2 9	С	47/00			4 F O 7 1
C 0 8 J	5/18	CES		C 0 8	J	5/18		CES	4 F 2 O 7
		CEZ						CEZ	
// B29K	23: 00	•							
B 2 9 L	7: 00								
			審査請求	未請求	請求	項の数4	OL	(全 12 頁)	最終頁に続く
(21)出願番	}	特願平 11-94461		(71) 8	人類別	•	117 オン株	→	
(22)出顧日		平成11年4月1日(1999.4.1)		(72) §	多田幸	東京都	千代田	ス ム 社 区丸の内 2 丁	目6番1号
				(.2,)	u /1 F		•	市川崎区夜光	1-2-1 日

最終頁に続く

本ゼオン株式会社総合開発センター内

弁理士 浅村 皓 (外3名)

神奈川県川崎市川崎区夜光1-2-1 日本ゼオン株式会社総合開発センター内

(72)発明者 成瀬 史博

(74)代理人 100066692

(54) 【発明の名称】 環状オレフィン樹脂製押出成形物及びその製造方法

(57)【要約】

【課題】 光学用途においても適用可能な程度の平滑性を有する環状オレフィン系樹脂の押出成形シートの提供。

【解決手段】 表面粗さが、最大粗さR t 表記で0.3 μ m以下である環状オレフィン樹脂製押出成形物。該成形物は、環状オレフィン樹脂を溶融し、溶融状態の環状オレフィン樹脂を剥離強度75 N以下のリップ部を有するダイを通して押し出すことにより成形される。

【特許請求の範囲】

【請求項1】 表面粗さが、最大粗さRt表記で0.3 μm以下である環状オレフィン樹脂製押出成形物。

【請求項2】 両面の表面粗さが、平均粗さRa表記で 0. 2μm以下である、シート又はフィルム形状の環状 オレフィン樹脂製押出成形物。

【請求項3】 環状オレフィン樹脂を溶融し、溶融状態 の環状オレフィン樹脂を剥離強度75 N以下のリップ部 を有するダイを通して押出し、環状オレフィン樹脂を成 形することを特徴とする、請求項1又は2記載の環状オ 10 レフィン樹脂製押出成形物の製造方法。

【請求項4】 環状オレフィン樹脂を溶融し、溶融状態 の環状オレフィン樹脂をダイを通して押出し、押出され た環状オレフィン樹脂を、対向する少なくとも2本のロ ールとロール間のニップ間隔を一定にするために設けら れた押圧手段とからなる平滑化ロールによって引き取 り、環状オレフィン樹脂をシート又はフィルム形状に成 形することを特徴とする、請求項1又は2記載の環状オ レフィン樹脂製押出成形物の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、環状オレフィン樹 脂製押出成形物及びその製造方法に係り、特に平滑性に 優れた環状オレフィン樹脂製押出成形物及びその製造方 法に関する。

[0002]

【従来の技術】環状オレフィン樹脂の押出成形により、 シート、フィルム等が得られるということは公知である (特開平3-223328号参照)。

【0003】その押出成形方法としては、Tダイ成形、 インフレーション成形、異形成形等のような、環状オレ フィン樹脂を単軸(又は2軸)等の押出機により溶融状 態でダイから押出し、これを連続的に引取る等して所望 の断面形状を有する成形物にする方法が一般的である。 【0004】ととで、押出機による押出成形に用いられ るダイの材質としては、SUS316のようなステンレ ス鋼及びS45Cのような炭素鋼が一般的に用いられて いるが、このような材質のダイにより環状オレフィン樹 脂製のシート又はフィルム等の押出成形物を作製した場 た押出成形物が得られないという問題があった。ここで 「ダイライン」とは、ダイの特定の位置に対応する成形 物の位置に樹脂の押出方向に沿って連続的に発生する肉 眼で観察可能な縞を意味する。具体的には、成形物にお ける表面凹凸の高さが約 0.3μ m \sim 100μ m (これ 以下の凹凸では肉眼での観察不可能) である成形物に形 成される縞をいう。

【0005】ダイラインは、樹脂の種類によって出やす い(目立つ)ものと、出にくい(目立たない)ものがあ るが、環状オレフィン樹脂の場合はダイラインが出やす 50 ン樹脂の溶融押出方法において、ダイラインの発生を防

いという問題があった。このダイラインは、押出成形の 条件を変化させることによっても防止することが出来 ず、従来の環状オレフィン樹脂製押出成形物では、成形 物の外観状の均一性及び厚みの均一性等が問題とされる 用途、特に光学用途等のような厳しい表面均一性が求め られている用途に適用することは困難であった。

【0006】なお、フィルムなどの薄い成形物であれ ば、環状オレフィン樹脂溶液のキャストによる流延法に よってダイラインの無い成形体を形成することが可能で あるが、かかる方法は溶剤の乾燥に時間と加熱を要する ため生産性が低く、また乾燥工程を経ても溶剤が成形体 中に残留してしまう等の問題があり、充分なものとはい えない。

[0007]

(2)

【発明が解決しようとする課題】そこで、本発明者ら は、ダイライン発生原因の解明及びダイラインのない環 状オレフィン樹脂製成形物を溶融押出法により得るとい う試みとして、溶融押出時における樹脂温度を変化させ るという検討を行った。しかし、樹脂温度を上げると、 20 ダイラインの一本一本は小さくなり比較的見えにくくな るが、樹脂の分解物に由来すると思われるダイライン原 因物質が増加してダイの出□付近に付着するため、運転 時間が長くなるに従いダイラインの数が多くなった。逆 に、樹脂温度を下げた場合には、ダイラインの数は減少 するものの一本一本のダイラインが大きくなり目立つよ うになった。また、未だ環状オレフィン樹脂の押出成形 時におけるダイラインの発生原因までは解明されておら ず、ダイラインのない溶融押出成形物も得られていな 45

【0008】一方、押出形成物がシート又はフィルム形 30 状である場合には、一般に樹脂を単軸(又は2軸)等の 押出機等により溶融状態でTダイから押出し、これを引 取(キャスト)ロールで引き取ることにより製造する方 法が採られている。との溶融樹脂を引き取る際、溶融状 態の樹脂を引取ロールにエアで押し付けることも行われ

【0009】しかしながら、従来のシート等の片面のみ にロールが接するような成形方法では、両面ともに平滑 (光沢) 性に優れたシートを得ることができない。特 合、その表面にダイラインが発生し、表面平滑性に優れ 40 に、近年の光学用途等のように、極めて高い表面平滑性 が要求されている分野においては、両面ともに平滑(光 沢) 性に優れた環状オレフィン樹脂製シートが必要とさ れており問題となってきている。

> 【0010】本発明は、このような点に鑑みなされたも のであって、その目的とするところは、光学用途等にお いても適用可能となる程度の優れた表面平滑性を有する 環状オレフィン樹脂製成形物を、環状オレフィン樹脂の 溶融押出により提供することにある。

> 【0011】また、本発明の他の目的は、環状オレフィ

(3)

止することであり、これにより長時間にわたる連続成形 を可能とし、表面平滑性の高い環状オレフィン樹脂成形 物の生産性を飛躍的に向上させることにある。

【0012】本発明の他の目的とするところは、表面平 滑性に優れているシート又はフィルム形状の環状オレフ ィン樹脂製押出成形物及びその製造方法を提供すること にある。

[0013]

【発明を解決するための手段】すなわち、本発明の環状 オレフィン樹脂製押出成形物は、表面粗さが最大粗さR 10 t表記で0.3 µ m以下である。

【0014】本発明の環状オレフィン樹脂製押出成形物 は、シート又はフィルム形状とすることができ、かかる 場合には、その環状オレフィン樹脂製押出成形物は、そ の両面の表面粗さが平均粗さRa表記で0.2 μ m以下 であることが好ましい。

【0015】更に、本発明の環状オレフィン樹脂製押出 成形物においては、表面粗さが、平均粗さRa表記で 0. 15 μ m 以下であり且つ最大粗さ R t 表記で 0. 2 5μm以下であることが好ましい。

【0016】また、本発明の環状オレフィン樹脂製押出 成形物の製造方法は、環状オレフィン樹脂を溶融し、溶 融状態の環状オレフィン樹脂を剥離強度75N以下のリ ップ部を有するダイを通して押出し、環状オレフィン樹 脂を成形することを特徴とするものである。

【0017】更にまた、本発明のシート又はフィルム形 状の環状オレフィン樹脂製押出成形物の製造方法は、環 状オレフィン樹脂を溶融し、溶融状態の環状オレフィン 樹脂をダイを通して押出し、押出された環状オレフィン 樹脂を、対向する少なくとも2本のロールとロール間の 30 有するものが好ましい。重合体の脂環式構造としては、 ニップ間隔を一定にするために設けられた押圧手段とか ちなる平滑化ロールによって引き取り、環状オレフィン 樹脂をシート又はフィルム形状に成形することを特徴と するものである。

[0018]

【発明の実施の形態】 <押出成形物の表面粗さ>本発明 における環状オレフィン樹脂製押出成形物は、表面粗さ が、最大粗さR t 表記で0. 3μm以下、好ましくは 0. 25 μm以下、さらに好ましくは0. 2 μm以下の ものである。最大粗さRtがこの範囲にある場合には、 成形物表面上にダイラインが実質的に存在しない。

【0019】 ことで、「最大粗さRt」は、以下のよう にして求めることができる。まず、押出成形物の表面状 態を、触針式表面粗さ計(JIS B 0651など) を用いて押出成形物の引き取り方向と垂直な方向に一定 長さ(例えば、測定長5mm)測定し、測定曲線(「断 面曲線」ともいう)を作成する。次いで、得られた測定 曲線を一定の基準長さ(例えば、0.8 mm)に区切 り、各基準長さ内における最大谷深さRvi及び最大山 高さRpiをそれぞれ求め、それらの中で最大の値であ 50 (2)単環の環状オレフィン系重合体、(3)環状共役

る最大谷深さ及び最大山高さをRv及びRpとし、以下 の一般式、Rt = Rv + Rpによって算出する。

【0020】上述のように、本発明における表面平滑性 に優れた環状オレフィン樹脂製押出成形物はダイライン がないことを特徴とするのであるが、更に、押出成形物 がシート又はフィルム形状のものである場合には、ダイ ラインに加え、成形物表面の微視的凹凸もない成形物で あるととが好ましい。ととで、成形物表面の微視的凹凸 に関する表面粗さは、「平均粗さRa」によって表すと とができる。

【0021】すなわち、本発明におけるシート又はフィ ルムは、少なくともその一方の面、好ましくは両面の表 面粗さが、平均粗さ R a 表記で 0.2 μ m 以下である C とが好ましく、より好ましくは0. 15μm以下、さら に好ましくは0.05μm以下である。平均粗さRaが この範囲にある場合には、成形物表面に微視的凹凸が観 察されない。なお、本発明でいう平均粗さRaとは、J IS B 0601-1994によって定義される「算 術平均粗さRa」と同様のものであり、具体的には、上 20 述した最大粗さRt算出時に用いた測定曲線をカットオ フ値0.8mmで位相補償型高域フィルターを通して粗 さ曲線を求め、この粗さ曲線からその平均線の方向に一 定の基準長さを抜き取り、との抜き取り部分の平均線か ら粗さ曲線までの偏差の絶対値を合計し、平均すること により求められる。

【0022】<環状オレフィン樹脂>次に、本発明の押 出成形物に用いられる環状オレフィン樹脂とは、主鎖及 び/または側鎖に脂環式構造を有するものであり、機械 的強度、耐熱性などの観点から、主鎖に脂環式構造を含 飽和環状炭化水素(シクロアルカン)構造、不飽和環状 炭化水素 (シクロアルケン) 構造などが挙げられるが、 中でもシクロアルカン構造が耐久性や耐薬品性に優れ最 も好ましい。脂環式構造を構成する炭素原子数は、格別 な制限はないが、通常4~30個、好ましくは5~20 個、より好ましくは5~15個の範囲であるときに、機 械的強度、耐熱性、及び成形性の特性が高度にバランス され好適である。

【0023】本発明に使用される環状オレフィン樹脂中 40 の脂環式構造を有する繰り返し単位の割合は、使用目的 に応じて適宜選択されればよいが、通常30重量%以 上、好ましくは50重量%以上、より好ましくは70重 量%、最も好ましくは100重量%である。環状オレフ ィン樹脂中の脂環式構造を有する繰り返し単位の割合が 少ないと耐熱性に劣り好ましくない。環状オレフィン樹 脂中の脂環式構造を有する繰り返し単位以外の残部は、 格別な限定はなく、使用目的に応じて適宜選択される。 【0024】かかる脂環式構造を有する重合体樹脂の具 体例としては、例えば、(1)ノルボルネン系重合体、

系ジエン系重合体、(4)側鎖脂環式構造を有する炭化 水素重合体、及びこれらの水素添加物などが挙げられ る。これらの中でも、ノルボルネン系重合体及びその水 素添加物、環状共役ジェン系重合体及びその水素添加物 などが好ましく、ノルボルネン系重合体及びその水素添 加物がより好ましい。

【0025】(1) ノルボルネン系重合体 ノルボルネン系重合体としては、格別な制限はなく、例 えば、特開平3-14882号公報や特開平3-122 137号公報などで開示される方法によってノルボルネ 10 ン系単量体を重合したものが用いられる。具体的には、 ノルボルネン系単量体の開環重合体及びその水素添加 物、ノルボルネン系単量体の付加重合体、ノルボルネン 系単量体とビニル化合物の付加型重合体などが挙げられ る。これらの中でも、耐熱性や誘電特性を高度にバラン スさせる上で、ノルボルネン系単量体の開環重合体水素 添加物、ノルボルネン系単量体の付加型重合体、ノルボ ルネン系単量体と共重合可能なビニル単量体との付加型 重合体などが好ましく、ノルボルネン系単量体の開環重 合体水素添加物が特に好ましい。

【0026】ノルボルネン系単量体としては、ビシクロ [2.2.1] ヘプター2-エン(慣用名ノルボルネ ン)、5-メチルービシクロ「2、2、1] ヘプター2 -エン、5、5 - ジメチル - ビシクロ [2.2.1] へ プター2ーエン、5ーエチルービシクロ[2.2.1] ヘプター2-エン、5-ブチルービシクロ[2.2. 1] ヘプター2ーエン、5ーヘキシルービシクロ[2. [2.2.1] ヘプター2ーエン、5ーオクタデシルー ビシクロ[2.2.1] ヘプター2-エン、5-エチリ 30 '・'*] -ドデカ-3-エン、8-メトキシカルボニル デンービシクロ[2.2.1] ヘプター2ーエン、5ー メチリデンービシクロ[2.2.1] ヘプター2ーエー ン、5-ビニルービシクロ[2.2.1] ヘプター2-エン、5-プロペニルービシクロ[2.2.1] ヘプタ -2-エン、5-メトキシーカルボニルービシクロ [2.2.1] ヘプター2ーエン、5ーシアノービシク ロ [2.2.1] ヘプター2ーエン、5ーメチルー5ー メトキシカルボニルービシクロ[2.2.1] ヘプター 2-エン; 5-メトキシカルボニルビシクロ[2. 2. 1] ヘプト-2-エン、5-エトキシカルボニルビ 40 シクロ[2.2.1] ヘプトー2ーエン、5ーメチルー 5-メトキシカルボニルビシクロ[2.2.1] ヘプト -2-エン、5-メチル-5-エトキシカルボニルビシ クロ[2.2.1] ヘプト-2-エン、ビシクロ[2. 2. 1] ヘプトー5ーエニルー2ーメチルプロピオネイ ト、ビシクロ[2.2.1] ヘプト-5-エニル-2-メチルオクタネイト、ビシクロ [2.2.1] ヘプトー 2-エン-5.6-ジカルボン酸無水物、5-ヒドロキ シメチルビシクロ[2,2,1] ヘプト-2-エン、 5, 6-ジ (ヒドロキシメチル) ビシクロ [2.2.

11 ヘプト-2-エン、5-ヒドロキシーi-プロビル ビシクロ [2.2.1] ヘプトー2ーエン、5,6ージ カルボキシビシクロ[2.2.1] ヘプト-2-エン; 5-シアノビシクロ[2.2.1] ヘプト-2-エ ン、ビシクロ「2、2、1]ヘプト-2-エン-5、6 -ジカルボン酸イミド: トリシクロ[4.3.0.1 ²・⁵] デカー3、7 ージエン(慣用名ジシクロペンタジ エン)、トリシクロ[4.3.0.12.1]デカー3-エン: トリシクロ[4.4.0.12.5]ウンデカー 3, 7-ジェン若しくはトリシクロ[4.4.0.1] '・']ウンデカー3、8-ジェンまたはこれらの部分水 素添加物(またはシクロペンタジエンとシクロヘキセン の付加物) であるトリシクロ [4.4.0.12.5] ウ ンデカー3-エン: 5-シクロペンチルービシクロ [2.2.1] ヘプト-2-エン、5-シクロヘキシル -ビシクロ[2.2.1] ヘプト-2-エン、5-シク ロヘキセニルビシクロ[2.2.1] ヘプト-2-エ ン、5-フェニルービシクロ[2.2.1] ヘプト-2 -エン: テトラシクロ[4.4.0.1^{2.5}.1 20 7・10] - ドデカ-3-エン (単にテトラシクロドデセ ンともいう)、8-メチルテトラシクロ[4.4.0. 1 *・ * . 1 *・ * *] ードデカー3 ーエン、8 ーエチルテ トラシクロ[4.4.0.12.5.17.18] - ドデカ 3-エン、8-メチリデンテトラシクロ[4.4. 0. 12・5. 17・10] ードデカー3ーエン、8ーエチ リデンテトラシクロ [4.4.0.12.5.17.10] ードデカー3ーエン、8ービニルテトラシクロ[[4. 4. 0. 1 *・ *・ 1 *・ * 1 * 1 * 1 *] ードデカー3ーエン、8 ー プロペニルーテトラシクロ[4.4.0.12.5.1 テトラシクロ[4, 4, 0, 12, 3, 17, 10] ードデ カー3-エン、8-メチル-8-メトキシカルボニルテ トラシクロ[4.4.0.11・1・1・10]ードデカ -3-エン、8-ヒドロキシメチルテトラシクロ[4. 4. 0. 12. 5. 17. 10] -ドデカ-3-エン、8-カルボキシテトラシクロ[4.4.0.13.5.1 '· '°] - ドデカ-3-エン: 8-シクロベンチルー テトラシクロ[4.4.0.1'.'.1'.1']ードデ カー3-エン、8-シクロヘキシル~テトラシクロ [4.4.0.111110] - ドデカー3 - エ ン、8-シクロヘキセニルーテトラシクロ[4.4.4. 0.1'・ '.1'・ '*] - ドデカ-3-エン、8-フェ ニルーシクロペンチルーテトラシクロ[4.4.0.1 ²・ ³. 1⁷・ ¹⁰] -ドデカ-3-エン; テトラシクロ $[7. 4. 0. 1^{10}, 1^{3}. 0^{1}, 1]$ $[7. 4. 0. 1^{10}, 1^{3}]$ 6, 11-テトラエン(1, 4-メタノ-1, 4, 4 a, 9a-テトラヒドロフルオレンともいう)、テトラ シクロ[8, 4, 0, 111.14, 03.6] テトラデカー 3, 5, 7, 12-テトラエン(1, 4-メタノー1, 50 4, 4a, 5, 10, 10a-ヘキサヒドロアントラセ ンともいう)、ペンタシクロ[6.5.1.1***.0 ¹ 7. 0¹ 11] ペンタデカー3, 10 -ジェン、ペンタ シクロ[7.4.0.13.6.130.13.03.7]ペン タデカー4、11-ジエン: シクロペンタジエンの4 量体: などのノルボルネン系単量体などが挙げられ る。とれらのノルボルネン系単量体は、それぞれ単独で あるいは2種以上組合わせて用いられる。

【0027】ノルボルネン系単量体またはノルボルネン 系単量体と共重合可能なビニル系単量体との重合方法及 び水素添加方法は、格別な制限はなく公知の方法に従っ 10 て行うことができる。

【0028】ノルボルネン系単量体の開環(共)重合体 は、ノルボルネン系単量体を、ルテニウム、ロジウム、 パラジウム、オスミウム、イリジウム、及び白金などの 金属のハロゲン化物、硝酸塩またはアセチルアセトン化 合物と、還元剤とからなる触媒系:あるいは、チタン、 タングステン、モリブデンなどの金属のハロゲン化物ま たはアセチルアセトン化合物と、有機アルミニウム化合 物とからなる触媒系等を用いて、溶媒中または無溶媒 で、通常、-50℃~100℃の重合温度、0~50k 20 g/cm²の重合圧力で開環(共)重合させることによ り得ることができる。

【0029】ノルボルネン系単量体とビニル系化合物と の付加共重合体は、例えば、単量体成分を、溶媒中また は無溶媒で、バナジウム化合物と有機アルミニウム化合 物(好ましくはハロゲン含有有機アルミニウム化合物) とからなる触媒系の存在下で、通常、-50℃~100 "Cの重合温度、0~50kg/cm'の重合圧力で共重 合させる方法により得ることができる。

【0030】水素添加ノルボルネン系重合体は、常法に 30 従って、開環(共)重合体を水素添加触媒の存在下に水 素により水素化する方法により得ることができる。

【0031】(2)単環の環状オレフィン系重合体 単環の環状オレフィン系重合体としては、例えば、特開 昭64-66216号公報に開示されているシクロロへ キセン、シクロヘプテン、シクロオクテンなどの単環の 環状オレフィン系単量体の付加重合体を用いることがで きる。

【0032】(3)環状共役ジェン系重合体 環状共役ジエン系重合体としては、例えば、特開平6-136057号公報や特開平7-258318号公報に 開示されているシクロペンタジエン、シクロヘキサジェ ンなどの環状共役ジェン系単量体を1,2-または1, 4-付加重合した重合体及びその水素添加物などを用い ることができる。

【0033】(4)側鎖に脂環式構造を有する炭化水素 系重合体

側鎖に脂環式構造を有する炭化水素系重合体としては、 例えば、ビニルシクロヘキセン、ビニルシクロヘキサン などのビニル脂環式炭化水素単量体の重合体及びその水 50 燥法により除去し、これに前述した各種添加剤を必要量

素添加物並びにポリスチレンなどの側鎖に芳香環を有す る炭化水素系重合体の水素添加物などを用いることがで

【0034】本発明で使用される環状オレフィン樹脂の 分子量は、使用目的に応じて適宜選択されるが、シクロ ヘキサン溶液(重合体樹脂が溶解しない場合はトルエン 溶液) のゲル・パーミエーション・クロマトグラフ法で 測定したボリイソプレン換算の数平均分子量で通常5. 000~500,000、好ましくは8,000~20 0,000、特に好ましくは10,000~100.0 00;重量平均分子量で通常10,000~1,00 0,000、好ましくは15,000~500,00 0、特に好ましくは20,000~200,000であ る。また分子量分布は、通常1.0~10、好ましくは 1.0~6、特に好ましくは1.1~4である。このよ うな範囲にあるときに、得られるシートの機械強度とシ ートの成形加工時の加工性がバランス良く好適である。 【0035】本発明で使用される環状オレフィン樹脂の ガラス転移温度(Tg)は、使用目的に応じて適宜選択 されればよいが、成形品の使用環境から高い方が好まし く、通常40~400℃、好ましくは60~300℃、 より好ましくは80~250℃である。Tgがとの範囲 にあるときに、成形性が良好で、所望の形状のシートを 効率的に得ることができる。

【0036】本発明に使用される環状オレフィン樹脂の 5%加熱減量温度(窒素雰囲気中で、5℃/分の昇温速 度で測定)は、好ましくは280℃以上、特に好ましく は350℃以上である。5%加熱減量温度が低すぎる と、溶融成形時において流動性を向上させる目的で、樹 脂温度を髙温にすると樹脂の分解が起き、成形品内に分 解による気泡の包含等の成形不良が発生しやすいという 問題がある。5%加熱減量温度が上記範囲にある場合に は、溶融成形時において流動性を向上させる目的で、樹 脂温度を高温にしても気泡の含有などの成形不良が発生 しにくく好適である。

【0037】本発明に使用される環状オレフィン樹脂の 温度260℃における溶融粘度は、通常1×10°~1 ×10' ボイズ、好ましくは1×10'~1×10' ボ イズである。溶融粘度がこの範囲にあるときに、シート 40 の成形性と、シートの機械強度がバランスして好適であ

【0038】 <添加剤>本発明に用いられる環状オレフ ィン樹脂には、必要に応じて、その他のポリマー、各種 配合剤、充填剤を、単独で又は2種以上混合して用いる **ととができる。**

【0039】上記成分(その他のポリマー、配合剤およ び充填剤)を用いる場合には、脂環構造含有重合体樹脂 の製造工程で添加してもよいし(例えば、合成後の樹脂 中に含まれる合成の際に使用した溶剤を凝固法や直接乾 (6)

添加する方法)、樹脂の製造後に二軸押出機等で混練す る際に添加してもよい。

【0040】<環状オレフィン樹脂の予備乾燥>本発明 の環状オレフィン樹脂は、通常ペレットとして溶融押出 工程に用いられる。すなわち、樹脂材料は、通常、直径 1~7mm程度、長さ3~8mm程度のペレットとして 供給され、とれを押出成形法により所望の形状に成形加 工される。環状オレフィン樹脂の場合では、概ね200 C以上の温度の溶融状態で所定の直径のストランド状に 押出し、次いで適当なストランドカッターにより所望の 10 長さに刻んでペレット化する。

【0041】 ことで、ペレットとして用いられる場合に は、目視では見えないような微細なボイドやクラック状態 の欠陥のない成形物を得るためにペレットを予備乾燥し て用いることが好ましい。予備乾燥したペレットを用い て得られたシートは、成形後においてもミクロボイドの 発生がなく、さらに、例えば、70℃以上、相対湿度8 0%以上、20時間以上の高温高湿度下での耐久試験後 にもミクロボイドが発生しない。また、この予備乾燥処 ている。

【0042】予備乾燥の条件としては、温度が高く、乾 燥時間の長い方が効果的であるが、温度が樹脂のガラス 転移温度(Tg)を越えて高すぎるとペレット同士が熱 融着して使用しにくくなるととと、数時間で効果が飽和 することから、好ましくは(Tg-30)~(Tg-5) ℃、特に好ましくは(Tg-20)~(Tg-5) *Cで、好ましくは1時間以上、特に好ましくは2時間以 上処理することが望ましい。乾燥は、真空乾燥でも、空 気または窒素雰囲気下での常圧乾燥でも効果がある。ま た、乾燥処理終了から成形に使用するまでの時間は短い 方が好ましい。

【0043】 <成形物>本発明の押出成形物としては、 フィルム、シートの他に、スプリットファイバー、ネッ ト、繊維、板材、チューブ、管、袋、被覆電線、発泡材 等を挙げることができる。

【0044】 <押出成形物の製造方法>次に、本発明の 環状オレフィン樹脂製押出成形物の好適な製造方法を図 1の溶融押出フィルム又はシート成形装置に基づいて説 明する。なお、図1は、成形物がフィルム又はシートで ある場合について示しているが、本発明はこの方法に限 られるものではない。

【0045】図1に、溶融押出フィルム又はシート成形 装置1の一例を示す。成形材料である環状オレフィン樹 脂2は、上述のように通常ペレット状の形状で用いら れ、ホッパー3から供給される。ホッパー3から供給さ れた成形材料は、シリンダー4内で加熱溶融されなが ら、スクリュー(図示せず)によりアダプタ部5へと移 動し加圧されていき、アダプタ部5からダイ6(Tダ

状の溶融樹脂は通常は複数の冷却ロール7により冷却さ れ、シート又はフィルム8となり、巻取り機9により巻 き取られる。

【0046】各種添加剤や他のポリマーとの溶融混錬に 引き続いてシート溶融押出成形をすることも可能であ り、この場合には、図1の単軸押出機の替わりに、2軸 押出機もしくは溶融混練機(図示せず)等と必要に応じ てギヤポンプ (図示せず) などの加圧機が併用される。 また、樹脂の合成後、ペレット化することなしに、直接 乾燥機等からの溶融樹脂をシートに成型することも可能 であり、この場合にも、図1の単軸押出機の替わりに、 ギヤポンプなどの加圧機が使用される。このような方法 を用いた場合でも、本発明の押出成形物の製造は可能で

【0047】 <押出機等>単軸押出機、2軸押出機また は溶融混練機を用いる場合には、ホッパー内部とシリン ダーの溶融ゾーンを真空または窒素パージにより、酸素 **濃度を下げることも好ましい。より無色透明性に優れ、** 劣化の少ないシートが得られるからである。この場合の 理は、射出成形する場合にも有効であることも確認され 20 酸素分圧は好ましくは5000Pa以下、特に好ましく は2000Pa以下、一層好ましくは1000Pa以下 である。

> 【0048】単軸押出機や2軸押出機で用いるスクリュ - の形状は適宜選択され、特に限定されない。単軸押出 機の場合には、ボリエチレンやボリプロピレン等のシー ト押出成形で用いられるものと同様のメータリングタイ プのスクリュー又はフルフライトスクリューを使用でき る。単軸押出機の場合、スクリューは通常直径40~2 00mm程度のものが使用され、L/Dは通常20~3 5、好ましくは25~30であり、圧縮比は好ましくは 2. 5~4である。スクリューの回転数は使用する樹脂 の溶融粘度と温度の関係、溶融温度、必要な吐出量、動 力の容量により適宜選択される。

【0049】樹脂の溶融温度は、吐出量、所望のシート の厚みなどによって適宜選択され、特に限定されない が、好ましくは成形材料のガラス転移温度(Tg)を基 準として、通常は (Tg+30)~(Tg+180) °C、好ましくは (Tg+50) ~ (Tg+150) °C、 特に好ましくは (Tg+60) ~ (Tg+140) ℃で ある。この範囲にあるときに、シートの成形加工性と、 得られるシートの面精度(表面粗さ)、無色透明性のバ ランスに優れるからである。

【0050】<ダイ>加圧された溶融樹脂は、適当なダ イから短冊状の溶融樹脂として押出される。ダイは、シ ートやフィルムを成形するために通常に用いられる形状 のものでよい。例えば、フィルムやシートを成形する際 には、コートハンガー型、ストレートマニホールド型の 他、50~500mm程度の小幅のシートではフィッシ ュテール型ダイが好適に使用でき、特に300mm以下 イ)を通って押出される。Tダイ6から押出された短冊 50 の幅のシートを成形する場合にはチョークバー付きマニ

ュホールド型ダイ (Tダイ) が一般的であり好適であ る。

【0051】具体的なダイの構造を例示すると、成形物 がシート又はフィルムの場合には、図2に示すようなT ダイを用いることができる。ここで、符号100はダイ 本体を、101はリップ部を、102は調節ボルトを、 103は樹脂入口を示す。また、成形物がインフレーシ ョンフィルムである場合にはインフレーションダイを、 成形物がパイプである場合にはストレートヘッドダイを 用いることができる。

【0052】ダイの温度はアダプタ部の樹脂温度とほぼ 同程度に設定される。ダイの開孔部の幅は目的とするシ ート又はフィルムの厚みに応じて適宜選択され、通常は O. 1~3 mm程度である。

【0053】本願のシート又はフィルム成形方法は、シ ート又はフィルムの幅に関係なく、例えば、50mm程 度の狭い幅のものから2000mm以上の広い幅のもの まで適用可能である。また、厚みは、10μm~3mm 位まで適応可能である。

【0054】ダイは、通常ステンレス鋼やダイス鋼やS 20 45C等の炭素鋼等によって形成されている。そして、 本発明において好適に用いられるダイは、剥離強度が7 5N以下、好ましくは50N以下になるリップ部を持つ ものである。かかる剥離強度を有するダイを用いた場 合、これにより、溶融された環状オレフィン樹脂の熱分 解物及び高温溶融物のリップ部への付着を防止すること ができ、成形物の表面にダイラインが発生しないように なる。

【0055】ととで、剥離強度は、まず、樹脂ペレット をリップ部と同じ表面を持つテストピースにのせ、30 一層優れた押出成形物が得られる。 0℃のギヤオーブン中に60分間放置した後、室温まで 冷却し、次に、測定装置(万能引張圧縮試験機;TCM 500 (新興通信工業(株)製))を用い、圧縮用ロー ドセル500kgf、圧縮速度1mm/minの条件 で、テストピースの表面に対して25°の角度から厚み 0.5mmのステンレス鋼板からなる圧子を押し当てて ベレットをリップ部から剥がす試験を行うことで測定し た。

【0056】かかる剥離強度を有するダイは、ダイ(特 にリップ部)をWC、W₁C等の炭化タングステンなど の炭化物で平均粗さRa(前記した成形物の平均粗さR aと同様の方法で算出)が 0.5μ mのもの、窒化チタ ン (TiN)等のチタン化合物、窒化クロムでRaが 0. 05μm以下のもの等のセラミック材でコートする Cとにより、又はH-CrメッキでRaがO. O1μm 以下のものでコートすることにより作製される。コート する方法としては、リップ部への蒸着、溶射等の方法を 採ることができる。

【0057】また、かかる剥離強度を有するダイは、リ ップ部を前記のごときセラミック材、Fe-B-Mo合 50 【0064】キャスティングロールの材質は、特に限定

金(東洋鋼板製:V52、C50等)、Co-Cr-B 合金(日立金属製:H50等)の鋼材で形成することに より得られる。セラミック材としてはジルコニア系の化 合物を用いることも可能である。また、電解研摩などの 研摩方法によって表面粗さを調整することによっても得 ることが出来る。なお、ここでリップ部とは、押出成形 用ダイにおいて溶融プラスチック材料の通過するときに

12

【0058】本発明においては、溶融状態の樹脂は、リ ップ部がセラミックでコートされているか、またはセラ ミック材で作製されたダイを通過するため、樹脂の熱分 解物及び樹脂高温溶解物の粒状物がダイの出口付近で発 生しない。したがって、クリーニングを行う必要が無 く、又、クリーニングによってリップ部にキズをつける ことも無いため、ダイラインのない成形物の押出成形が 長時間且つ連続的に可能となる。

材料と接触するダイの開口部分をいう。

【0059】さらに、リップ部の表面精度については1 S以下であることが好ましく、より好ましくはO.8 S、最も好ましくは0.45以下である。ととで、表面 精度の単位「S」とは、前記した成形物の表面粗さにお ける平均粗さRaを求める方法と同様の方法で算出され たダイランド表面の平均粗さRa[μm]を4倍した値を 表し、例えば、Ra=0.05 μ mの場合には、表面精 度0.2S(0.05×4)となる。

【0060】押出成形用ダイのうち、リップ部以外の、 溶融プラスチック材料と接する部分(ダイ内で溶融樹脂 の流れる部分に接するダイの表面)を前記剥離強度の範 囲になるようにセラミックコート、又はセラミック材等 にすることも好ましく、かかる場合には、表面平滑性に

【0061】上述のように、押出機10のホッパー3に 供給されたペレット状の環状オレフィン樹脂2は、シリ ンダー4内で加熱溶融された後にダイ6から押出され、 その後、ロールで引き取る等の方法により所望の形状に 成形される。

【0062】 〈平滑化ロール〉押出成形物がシート又は フィルム形状の場合には、押出された環状オレフィン樹 脂を、対向する少なくとも2本のロールとロール間のニ ップ間隔を一定にするために設けられた押圧手段とから 40 なる平滑化ロールによって引き取ることが好ましく、ま た、これらの対向する2本のロールは、キャスティング ロールとタッチロールとからなることが好ましい。

【0063】 <キャスティングロール>ことで、キャス ティングロールとは、通常位置が固定され、ロール直径 は通常100~600mm程度であり、ロールは円筒状 になっていて内部に冷却又は加熱するために熱(冷)媒 が流れるような空隙を有するようなロールである。幅 (長さ) は目的とするシートの幅よりも広いものが適宜 選択される。

40

されない。例えばゴム、炭素鋼、ステンレス鋼などが挙げられる。本願発明の場合には表面精度に優れたシートの成形をするために、キャスティングロールの表面精度を高くすることが好ましく、前記した成形物の表面租さにおける平均租さRaを求める方法と同様の方法で算出されたキャスティングロールの平均租さRaで 0.2μ m以下、好ましくは 0.1μ m以下さらに好ましくは 0.05μ mm以下にするのが好ましい。

13

 $\{0065\}$ キャスティングロールの温度は、通常は樹脂のガラス転移温度(Tg)を基準として、(Tg-30)~(Tg+30)℃、好ましくは(Tg-20)~(Tg+20)℃である。この範囲にある時に、シートの成形加工時の熱効率に優れ、得られるシートの平坦性と表面平滑性に優れるからである。回転数(引き取り速度)は押出速度に応じて適宜選択される。

【0066】図3にダイの出口からキャスティングロー ルにかけての模式図を示す。ダイ出口11からでた溶融 状態の樹脂は、キャスティングロール12に引っ張られ ながら空気中で少し冷却され、キャスティングロール 1 2に巻き付いていく。この際に、溶融状態の樹脂は表面 20 張力で縮まろうとする力が働き、ダイの出口よりも溶融 樹脂の幅が狭くなるネックインという現象が起こり、そ れに対応して、シートの両端(ミミ)が厚くなるという 現象が起とる。との厚みの不均一は、シートの品質の劣 化、シートのうち使用できる部分の減少を招き好ましく ない。ことで、ダイの出口からキャスティングロールま での距離をエアーギャップ(図3のLで示される長さ) というが、ネックインを軽減し、シートの品質と歩留ま りを改良するためには、エアーギャップを短くすること が好ましく、ダイとキャスティングロールの相対的な位 30 置を調整するととにより達成される。

【0067】 <タッチロール>本願の発明においては、キャスティングロール12に巻き付いた樹脂に対して、キャスティングロール12の反対側から、タッチロール13によって押えることが好ましい(図3参照)。

【0068】タッチロール13は通常円筒状であり、また、タッチロール13とキャスティングロール12とのニップ間隔を一定に保つために、タッチロール13はキャスティングロール12に向かって押圧手段14によって押圧されている。図3ではキャスティングロールよりも直径の小さいタッチロールが例示されているが、これに限定されない。

【0069】なお、押圧手段14としては、ロール間のニップ間隔を一定にすることができるようなものであれば、特に制限はなく、例えば、スプリングや油圧ピストン等が挙げられる。

【0070】タッチロールの幅(長さ)は、目的とするシートの幅よりも広いものが適宜選択される。タッチロールの材質は特に限定されない。例えばゴム、炭素鋼、ステンレス鋼セラミックなどが挙げられる。

 $\{0071\}$ 本願発明の場合には表面精度に優れたシートの成形をするために、タッチロールの表面精度を高くすることが好ましく、前記した成形物の表面粗さにおける平均粗さ $Raを求める方法と同様の方法で算出されるタッチロールの平均粗さ<math>Raを、0.2\mu m$ 以下、好ましくは $0.1\mu m$ 以下、さらに好ましくは $0.05\mu m$ 以下にすることが好ましい。

【0072】タッチロールの温度は、ロールの内部の空隙に冷(熱)媒を通すととによって調節される。タッチロールの温度は通常樹脂のガラス転移温度(Tg)を基準として、(Tg-100)~(Tg+30)℃、好ましくは(Tg-90)~(Tg+20)℃である。またキャスティングロールの温度に比べて、通常は、同温~50℃低く、好ましくは5~40℃低く設定する。この範囲にある時に、シートの成形加工時の熱効率に優れ、フィルム又はシートのタッチロールへの無用な巻付きを防ぎ、且つ平坦性と表面平滑性に優れるシートが得られる。

【0073】ロールの回転数は適宜選択される。また、タッチロールの表面の線速度と、キャスティングロールの線速度との比は適宜選択され通常 $0.5\sim3$ 倍である。タッチロールがシートを押える(シートへタッチする)線圧は、スプリング、油圧ピストン等の押圧手段により調整でき、好ましくは $5\sim150$ kgf/cm、特に好ましくは $10\sim100$ kgf/cmである。

【0074】<特殊なタッチロール>特殊な形状のタッチロールも使用可能である。本願の発明においては、ネックインに対応する厚みむらに起因する、押圧むらを防ぎ、幅方向に対して一様な品質を得るために、図4

(a) 又は図4(b) に示すような、タッチロールの太さに段差またはテーパーを設けて両端の直径を細くしたタッチロール(図4(a))、両側(図中の灰色部)にゴムなどの弾性体の帯を設けたタッチロール(図4

(b))を用いることが好ましい。押出された環状オレフィン樹脂における両端(ミミ)の肉厚部の影響を排除し、中心部を均一に押圧することができる。

【0075】両端の直径を細くしたタッチロールは、両端の直径を段差状または段々と細くする。細くしない部分の幅は、所望のシートの幅に対して、60~98%、好ましくは70~95%である。細くする直径の差は、通常、0.01~3mm、好ましくは0.02~2mmである。その他の仕様は上記の円筒状のタッチロールと同様である。

【0076】両端に弾性体を巻き付けたタッチロールは、両端にゴム、樹脂等の弾性体を巻き付け、全体として、上記の円筒状のタッチロールと同様の形状にしたものである。弾性体を巻きつけていない部分の幅は、所望のシートの幅に対して、60~98%、好ましくは70~95%である。

50 【0077】弾性体の厚みは、0.2~100mm、好

ましくは0.5~20mmである。

【0078】 このような弾性体部分のロールの表面精度 は、前記した成形物の表面粗さにおける平均粗さRaを 求める方法と同様の方法で算出されるロール部分の平均 粗さRa表示で、1μm以下、好ましくは(0.5μm 以下)とすることが好ましい。その他の仕様は上記の円 筒状のタッチロールと同様である。

15

【0079】また、別のタッチロールとして図5に示す ような、フレキシブルなロール面を持つタッチロールを 使用することもできる。このタッチロールは、フレキシ 10 ブルスリーブ15とラバーロール16とからなり、ラバ ーロール16がフレキシブルスリーブ15によって被わ れており、熱媒体がラバーロール16とフレキシブルス リーブ15との間に流れている。フレキシブルスリーブ 15の表面は平滑である。ラバーロール16がキャステ ィングロール12に押し付けられることによって、フレ キシブルスリーブ15がキャスティングロール12に円 弧状に両圧着され、フィルム又はシートを引き取る。

【0080】前記の平滑化ロールによって引き取られた 取り機で巻き取るか、または巻き取らずにそのままで、 後工程へと移っていく。巻取り機は特に限定は無い。

【0081】<後工程>得られた成形物は単独で使用し ても良く、または同様の若しくは他のポリマー等からな るフィルムや金属箔(または金属層)布、紙、網等を積 層して使用しても良い。積層方法としては、格別の制限 は無いが、ドライラミネート法、ホットメルトラミネー ト法、蒸着法、メッキ法、気相反応蒸着法等を挙げると とができる。なお、積層に際しては必要に応じて接着剤 層を介在させてもよく、また、得られたシート又はフィ 30 ルムを必要に応じて、さらに単軸または二軸方向に延伸 しても良い。

【0082】<用途>上記の押出成形物は、表面平滑性 に優れる他、機械的強度、耐薬品性、水蒸気バリアー性 等に優れるため、食品、薬品(錠剤、粉末剤、薬液な ど)、タバコ、電子部品、日用品、雑貨などの包装材 料:偏光フィルム、位相差フィルム、液晶基板、光拡散 フィルム、プリズムフィルムなどの光学用材料:自動車 の窓材やルーフ材、航空機用窓材、自動販売機用窓材、 ショウウィンドウ材等の窓材;レジスト容器用バッグ、 医療用薬液バッグ、輸液バッグなどの薬液バッグ用材 料:電気絶縁フィルム、フィルムコンデンサー、導電性 フィルムなどの電気用フィルム;外装材、屋根材などの 建築材料;などとして用いられる。

[0083]

【実施例】以下に実施例及び比較例を挙げて、本発明を 具体的に説明するが、本発明は、これらの実施例のみに 限定されるものではない。

[0084]

【実施例1】(環状オレフィン樹脂)ジシクロペンタジ 50 と、面の平均粗さRaが0.14μm、温度130℃で

エン85重量%とエチルテトラシクロドデセン15重量 %との開環重合体の水素添加物で、重量平均分子量(M w) が52,600、分子量1,000以下の成分の割 合が0.5重量%で、重合体の水添率('H-NMRに より測定)が99.9%であり、ガラス転移温度(DS C法により測定)が103℃、5%加熱限界温度が37 5℃で、260℃における溶融粘度が2×10°ポイズ の環状オレフィン樹脂100重量部に対して、酸化防止 剤としてフェノール系老化防止剤[ペンタエリスリチル -テトラキス(3-(3,5-ジーターシャリーブチル -4-ヒドロキシフェニル)プロピオネート)10.2 重量部を二軸混練機押出機により添加し、ベレット状成 形材料(490K)とした。

【0085】(シートの成形)上記のペレットを用い て、図1に示す様な構成の溶融押出シート成形装置(単 軸押出機) によりシートを形成した。なお、製造条件は 以下の通りであり、引取手段としては、キャスティング ロールのみを用いた。Tダイのリップ部の剥離強度は、 リップ部と同じ表面を持つテストピースを用いて、測定 押出成形物は、第三のロール等で冷却され次いで一旦巻 20 機としてTCM500を用い上記した条件と同様の条件 で測定した。

・スクリュー:メータリングタイプ

・樹脂の溶融温度:260℃

・ダイ:Tダイ(リップ部材質;WC、平均粗さRa; 0. 14μm、剥離強度; 46N)

シートの厚み:100μm

·キャスティングロール面の平均粗さRa…0.05 μ

・キャスティングロールの温度…135℃

【0086】〈フィルム評価〉得られたシートの表面粗 さ、すなわち最大粗さRt及び平均粗さRaを、上述し た方法(各シートの測定長さは5mm;基準長さは0. 8m) に従って算出した。なお、表面粗さの測定には、 針先の曲率半径が5μm(角度60度)の触針式表面粗 さ計 (TENCOR社製、P-10型) を用いた。ま た、シート表面のダイラインについては目視による観察 を行い、その有無を判定した。

[0087]

【実施例2】引取手段として、面の平均粗さRaが0. 40 05 μm、温度が143℃であるキャスティングロール と、面の平均粗さRaが0.14μm、温度110℃で あるタッチロール (タッチ線圧: 47kgf/cm)と を用い、ダイをTダイ(リップ部材質:WC、平均租さ Ra; 0.14 µm、剥離強度; 44N) とした他は、 実施例1と同様の条件でシートを得た。次いで、実施例 1と同様の方法でフィルムの評価を行った。

[0088]

【実施例3】引取手段として、面の平均粗さRaが0. 05μm、温度が145℃であるキャスティングロール (10)

あるタッチロール (タッチ線圧;93kgf/cm) と を用い、ダイをTダイ(リップ部材質:WC、平均粗さ Ra; 0. 14 µm、剥離強度; 35N) とした他は、 実施例1と同様の条件でシートを得た。次いで、実施例 1と同様の方法でフィルムの評価を行った。

17

[0089]

【実施例4】引取手段として、面の平均粗さRaが0. 05 µm、温度が145℃であるキャスティングロール と、面の平均粗さRaが0.14μm、温度110℃で あるタッチロール(タッチ線圧:20kgf/cm)と 10 【0092】 を用い、ダイをTダイ(リップ部材質;WC、平均粗さ Ra; 0.14 µm、剥離強度; 46N) とした他は、*

*実施例1と同様の条件でシート得た。次いで、実施例1 と同様の方法でフィルムの評価を行った。

[0090]

【比較例1】ダイをTダイ(リップ部材質;H-Cr、 平均粗さRa: 0.14 μm、剥離強度: 80N) とし た他は、実施例1と同様の条件でシートを得た。次い で、実施例1と同様の方法でフィルムの評価を行った。 【0091】上記の方法で形成された各フィルムの評価 結果を表1に示す。

【表1】

表1 作製されたフィルムの評価

サンプル No.	実施例 1	実施例2	実施例3	実施例4	比較例1
ペレット材料	490K	490K	490K	490K	490K
Tダイ					
リップ部材質	₩C	₩C	₩C	WC	H-Cr
Ra[µm]	0.14	0.14	0.14	0.14	0.14
剥離強度 [N]	4 6	4 4	3 5	4 6	80
タッチロールの有	無し	有り	有り	有り	無し
無					
キャスティングロ	1 3 5	1 4 3	145	145	135
ール温度 [℃]					
タッチロール温度	. =	. 110	130	110	-
[°C]					
タッチ線圧	_	4 7	93	2 0	
[kgf/cm]					
フィルム評価					
Ra [µm]	0.019	0.011	0.011	0.017	0.24
Rt [μm]	0.223	0.164	0.088	0.181	0.8
ダイライン	無し	無し	無し	無し	有り

レフィン樹脂製押出成形物にはダイラインが生じておら ず、また、引き取り手段としてキャスティングロールと タッチロールとを用いると表面平滑性が非常に優れたフ ィルムを得ることが可能となる。

[0094]

【発明の効果】上記のように、本発明の環状オレフィン 樹脂製押出成形物は、極めて優れた表面平滑性を有する ため、光学用途等において好適に用いることができる。 また、本発明の製造方法を用いると、かかる環状オレフ ィン樹脂製溶融押出シートの製造を容易に且つ連続して 40 4 シリンダー 行うことが可能となる。

【図面の簡単な説明】

【図1】本発明の環状オレフィン樹脂製押出成形物の製 造に用いられる溶融押出シート成形装置の縦断面図であ

【図2】図2は、本発明の環状オレフィン樹脂製押出成 形物の製造に用いられるTダイを示す概略図である。

【図3】ダイの出口とキャスティングロール及びタッチ ロールとの位置関係を示す模式図である。

【図4】図4(a)はタッチロールの太さに段差または 50 14 押圧手段

【0093】表1から明らかなように、本発明の環状オ 30 テーパーを設けて両端の直径を細くしたタッチロールの 斜視図であり、図4(b)は両側にゴムなどの弾性体の 帯を設けたタッチロールの斜視図である。

> 【図5】 フレキシブルなロール面を持つタッチロールを 用いた場合におけるキャスティングロールとタッチロー ルとの関係を示す模式図である。

【符号の説明】

- 1 溶融押出フィルム又はシート成形装置
- 2 ペレット状環状オレフィン樹脂
- 3 ホッパー
- 5 アダプタ部
- 6 ダイ
- 7 冷却ロール
- 8 シート又はフィルム
- 9 巻取り機
- 10 押出機
- 11 ダイ出口
- 12 キャスティングロール
- 13 タッチロール

20

19

15 フレキシブルスリーブ16 ラバーロール

100 ダイ本体

*101 リップ部

102 調節ボルト

* 103 樹脂入口

[図1]

【図2】

【図3】

【図5】

【図4】

(b)

フロントページの続き

(51)Int.Cl.'

識別記号

FΙ

ティコート (参考)

C 0 8 L 23:02

45:00

47:00

65:00

(72)発明者 篠原 尚樹

神奈川県川崎市川崎区夜光1-2-1 日 本ゼオン株式会社総合開発センター内

Fターム(参考) 4F071 AA14 AA69 BB06 BC01 BC16

4F207 AA03 AA12 AG01 AG08 AG15

AG20 AH35 AH54 KA01 KA11

KA17 KK13 KK64 KL84 KL94