Deep Learning, Lato 2024/25

Organizacja zajęć

Prowadzący:

Bartosz Pankratz bpankra@sgh.waw.pl

Materiały do zajęć będą udostępniane przez platformę MS Teams. Rekomendowane jest skonfigurowanie swojego komputera do pracy (będzie możliwość wykorzystania własnych komputerów na zajęciach).

Plan zajęć

Spotkanie	Temat		
Spotkanie 1	Organizacja zajęć, matematyczne podstawy deep learningu (Rozdziały od 6 do 8)		
Spotkanie 2	Matematyczne podstawy deep learningu cd.		
Spotkanie 3	Zasady budowy modeli deep learningowych (Rozdziały od 6 do 8)		
Spotkanie 4	Konwolucyjne sieci neuronowe (Rozdziały 9)		
	Wprowadzenie do modelowania generatywnego: Autoencodery i Wariacyjne		
Spotkanie 5	Autoencodery (Rozdziały 14 i 20.10.3)		
Spotkanie 6	Modelowanie generatywne: Autoencodery i Wariacyjne Autoencodery cd.		
Spotkanie 7	Rekurencyjne sieci neuronowe (Rozdział 10)		

Literatura

- Goodfellow I., Bengio Y., Courville A. (2016), Deep Learning (http://www.deeplearningbook.org/)
- Roberts D. A., Yaida S., Hanin B. (2022), The Principles of Deep Learning Theory: An Effective Theory
 Approach to Understanding Neural Networks, Cambridge University Press
 (https://deeplearningtheory.com/)
- Calin O. (2020), Deep Learning Architectures: A Mathematical Approach, Springer.
- Howard J., Gugger S. (2020), Deep Learning for Coders with Fastai and PyTorch: Al Applications
 Without a Ph,D first Edition (https://course.fast.ai/Resources/book.html)
- Boyd S., Vandenberghe L. (2018), Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares (http://vmls-book.stanford.edu/)
- Hastie T., Tibshirani R., Friedman J. (2013), The Elements of Statistical Learning (http://www-stat.stanford.edu/~tibs/ElemStatLearn/)

Zasady zaliczenia zajęć

Punktacja zajęć:

- Kolokwium zaliczeniowe (maksymalnie 40 punktów):
 - o Na kolokwium można mieć dowolne materiały drukowane i kalkulator
- Raport z budowy modelu deep learningowego (maksymalnie 60 punktów)

Na podstawie sumy punktów (maksymalnie 100) uzyskanych z kolokwium wyznaczana jest ocena końcowa:

Liczba punktów		Ocena końcowa
Od	Do	Ocena koncowa
0	49	Niedostateczny
50	59	Dostateczny
60	69	Dostateczny plus
70	79	Dobry
80	89	Dobry plus
90	100	Bardzo dobry