More DAGs; interactions

ISTA 410 / INFO 510 - Bayesian Modeling and Inference

University of Arizona School of Information September 20, 2021

Outline

Last time:

- Multiple regression
- Causal DAGs

Today: more DAGs; modeling interactions

Chapter 6/8 of Rethinking (we'll do 7 after)

HW2 available now; due Friday 10/1

DAG recap

Graphical example

Figure from Causality by Judea Pearl

Graphical example

Figure from Causality by Judea Pearl

$$P(x_1,...,x_5) = P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_4|x_2,x_3)P(x_5|x_4)$$

Functional model of a DAG

Functional model: each variable X_i satisfies an equation in the graph:

$$x_i = f_i((pa_i), u_i)$$

where

- f_i is a function of the parent variables
- pa_i refers to the parent nodes of X_i in the graph
- u_i represents the unobserved and/or random components of the model

Elementary paths

In a DAG, information flows along paths (both with and against the arrows)

- Fork path: X ← Z → Y: blocked by conditioning on Z, because DAG property says X, Y conditionally independent conditional on Z
- Chain path: X → Z → Y: blocked by conditioning on Z, because DAG property says X, Y conditionally independent conditional on Z
- Collider path: X → Z ← Y: unblocked by conditioning on Z;
 X and Y have no parents in common, so are independent until conditional on Z

5

Two DAGs

The data from the previous slide could be generated by processes represented by either of the following causal DAGs:

But the inference we should make about the effectiveness of the drug is very different in each case!

6

The backdoor criterion

d-separation

A (possibly undirected) path p through a DAG G is said to be d-separated or blocked by a set of nodes Z if:

- 1. p contains a chain $X_i \to M \to X_j$ or fork $X_i \leftarrow M \to X_j$ such that $M \in Z$; or,
- 2. p contains a collider $X_i \to M \leftarrow X_j$ such that $M \notin Z$ and no descendent of M is in Z.

The d-separation (blocking) definition for paths leads to another definition, for sets of variables.

The backdoor criterion

A related definition:

Definition

A set of variables Z satisfies the backdoor criterion with respect to an ordered pair of variables (X_i, X_j) in G if:

- 1. no node in Z is a descendent of X_i ; and,
- 2. Z blocks every path from X_i to X_j that contains an arrow into X.

To estimate the causal effect of X on Y, condition on a set of variables satisfying the backdoor criterion with respect to (X, Y).

Group exercise

For each DAG, which variable should be conditioned on to estimate total causal influence of X on Y?

Demonstrative example

Another DAG:

We want to estimate $X \to Y$. What should we condition on? (U is unobserved; we can't use it.)

Fake data simulation

To demonstrate the effect, let's use a fake data simulation:

$$A \sim \text{Normal}(0,1)$$
 $U = A + \text{noise}$
 $C = -2A + \text{noise}$
 $B = -2C + 3U + \text{noise}$
 $X = U + \text{noise}$
 $X = U + \text{noise}$

In all cases, noise $\sim \text{Normal}(0, 0.1)$

What do we seek?

Before we run any regressions, what should we see?

- All paths X o Y except the direct one are non-causal (backdoor)
- We want to estimate the direct (causal) effect
- We know Y = 1.5X + other effects
- An unconfounded estimate of $\hat{Y}=eta_x X+$ others should have $eta_xpprox 1.5$

Let's go run some...

• Regression including only *X*:

	mean	sd	hdi_3%	hdi_97%
alpha	0.070	0.031	0.011	0.125
beta_x	-0.465	0.033	-0.525	-0.403
sigma	0.302	0.023	0.261	0.342

• Regression including only *X*:

	mean	sd	hdi_3%	hdi_97%
alpha	0.070	0.031	0.011	0.125
beta_x	-0.465	0.033	-0.525	-0.403
sigma	0.302	0.023	0.261	0.342

• Condition on A:

13 0.006	0.054
93 1.290	1.636
93 -2.124	-1.782
0.109	0.145
	93 -2.124

• Regression including only *X*:

	mean	sd	hdi_3%	hdi_97%
alpha	0.070	0.031	0.011	0.125
beta_x	-0.465	0.033	-0.525	-0.403
sigma	0.302	0.023	0.261	0.342

• Condition on A:

	mean	sd	hdi_3%	hdi_97%
alpha	0.027	0.013	0.006	0.054
beta_x	1.461	0.093	1.290	1.636
beta_a	-1.948	0.093	-2.124	-1.782
sigma	0.126	0.009	0.109	0.145

• Condition on A and B:

	mean	sd	hdi_3%	hdi_97%
alpha	0.020	0.011	-0.002	0.040
beta_x	1.893	0.110	1.687	2.107
beta_a	-1.044	0.190	-1.428	-0.710
beta_b	-0.192	0.036	-0.263	-0.129
sigma	0.112	0.008	0.097	0.127

- Using X alone: badly confounded
- Using X, A: good estimate of $X \to Y$
- Using X, A, B: confounded again

What other options do we have?

More variables

• Condition on *C*:

	mean	sd	hdi_3%	hdi_97%
alpha	0.018	0.009	0.002	0.034
beta_x	1.539	0.065	1.410	1.650
beta_c	1.017	0.033	0.957	1.076
sigma	0.087	0.006	0.075	0.098

More variables

• Condition on C:

	mean	sd	hdi_3%	hdi_97%
alpha	0.018	0.009	0.002	0.034
beta_x	1.539	0.065	1.410	1.650
beta_c	1.017	0.033	0.957	1.076
sigma	0.087	0.006	0.075	0.098

• Use everything:

	mean	sd	hdi_3%	hdi_97%
alpha	0.019	0.009	0.003	0.036
beta_x	1.559	0.100	1.372	1.756
beta_a	-0.233	0.186	-0.593	0.102
beta_b	-0.002	0.038	-0.076	0.067
beta_c	0.905	0.121	0.686	1.138
sigma	0.087	0.007	0.075	0.099

Using everything works because the collider path is blocked at C; but note precision

Unobserved variables in a DAG

The previous example had an unobserved variable, U:

- If a variable is unobserved, then we can't stratify/adjust for it in the regression
- ...but that doesn't mean we are off the hook for thinking about it!
- Unobserved variables can confound estimates
- Unobserved variables can form colliders

Sometimes this means there is no way to make the estimates that you want!

Unobserved variables

Unobserved variables in DAGs

Last time we saw a DAG with an unobserved variable:

We can't control for unobserved variables

An unobserved fork

Example: stress and severity of COVID-19 disease

Imagine the following possible scenario:

- Want to estimate whether stress markers predict the severity of symptoms
- Suspected relationship: high stress increases probability of severe disease
- Grab a data set of early confirmed positive tests, regress severity on stress

An unobserved fork

Example: stress and severity of COVID-19 disease

Imagine the following possible scenario:

- Want to estimate whether stress markers predict the severity of symptoms
- Suspected relationship: high stress increases probability of severe disease
- Grab a data set of early confirmed positive tests, regress severity on stress
- Surprising result: negative association

Why this result?

- Possibly, high stress decreases severity but this would go against all we know about stress and immune response
- Possibly, we have confounding:

Why this result?

- Possibly, high stress decreases severity but this would go against all we know about stress and immune response
- Possibly, we have confounding:

Why this result?

- Possibly, high stress decreases severity but this would go against all we know about stress and immune response
- Possibly, we have confounding:

Collider bias from unobserved variables

Example from Statistical Rethinking: does the education level of grandparents influence the educational achievement of their grandchildren?

- Goal: infer direct effects of parents (P) and grandparents (G) on children (C)
- Reasonable to assume that parents influence children, grandparents influence parents; do grandparents also directly influence children?

Collider bias from unobserved variables

Example from Statistical Rethinking: does the education level of grandparents influence the educational achievement of their grandchildren?

- Goal: infer direct effects of parents (P) and grandparents (G) on children (C)
- What if there is an unobserved variable (U) e.g., neighborhood – that influences parents and children?

Fake data simulation

```
N = 200 # number of of grandparent-parent-child triads
b_GP = 1 # direct effect of G on P
b_GC = 0 # direct effect of G on C
b_PC = 1 # direct effect of P on C
b_U = 2 # direct effect of U on P and C
U = 2 * np.random.binomial(1, 0.5, N) - 1
G = np.random.normal(size=N)
P = np.random.normal(b_GP * G + b_U * U)
C = np.random.normal(b_PC * P + b_GC * G + b_U * U)
d = pd.DataFrame.from_dict({"C": C, "P": P, "G": G, "U": U})
```

Fitting a model

```
with pm.Model() as gp_model:
    # Priors
    a = pm.Normal("a", 0, 1)
    p_PC = pm.Normal("b_PC", 0, 1)
    p_GC = pm.Normal("b_GC", 0, 1)
                                                         sd hdi 3% hdi 97%
                                                  mean
    sigma = pm.Exponential("sigma", 1)
                                                a -0.122 0.091
                                                            -0.292
                                                                   0.049
                                              b PC 1.735 0.041 1.658
                                                                 1.811
    # Model equation
                                             b GC -0.750 0.100 -0.939
                                                                  -0.562
    mu = a + p_PC * d.P + p_GC * d.G
                                             sigma 1.278 0.064 1.158
                                                                  1.398
    # Likelihood
    pC = pm.Normal("C", mu, sigma, observed=d.C)
    # Inference
    qp = quap()
```

Collider bias from unobserved variables

- To isolate the direct effect $G \rightarrow C$, we must control for P
- ullet Controlling for P opens the collider path through U
- We're stuck!

Collider bias from unobserved variables

- for intuition, focus on 45-60th %ile of parents
- parents in good neighborhoods must have had less educated grandparents
- parents in bad neighborhoods must have had better educated grandparents
- else, they would be in different quantiles

DAG summary

In summary:

- DAGs give a heuristic model for causal links between variables
 - Not a mechanistic model doesn't tell you the functional effect
- Can provide a strategy for deconfounding models or tell you such a strategy doesn't exist / requires different data

Modeling interactions

Interactions

Interaction effects:

- effect of one predictor is conditional on another
 - Effect of water on plant growth is conditional on sunlight
 - Effect of gene on survival is conditional on environment
 - Effect of total traffic on bike traffic is conditional on bike lane
- Interactions appear frequently in real systems

Interactions in DAGs

Here is what an interaction looks like in a DAG:

Any time two variables influence a third leaves the possibility for interaction!

(Example from Statistical Rethinking Ch7.) What is the relationship between the geographic terrain in a nation and its economy?

Data: observations on many countries

- Outcome: log GDP (as of 2000, when data was collected)
- Predictor: terrain "ruggedness" index

(Example from Statistical Rethinking Ch7.) What is the relationship between the geographic terrain in a nation and its economy?

Data: observations on many countries

- Outcome: log GDP (as of 2000, when data was collected)
- Predictor: terrain "ruggedness" index

Closer examination of the data reveals an interesting phenomenon: the relationship is different for countries in Africa.

Conditionality:

- The effect of ruggedness on modern economy is conditional on continent
- African nations respond differently to ruggedness than non-African nations

Want to incorporate this effect into a model; ideally, a *single* model

Pooling data gives better estimates of continent-independent parameters

A simple approach that won't work

A simple approach that's not quite good enough: add an indicator variable for African countries, and do a bivariate regression:

$$\log GDP \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta_R R_i + \beta_A A_i$$

$$\beta_R \sim \text{Normal}(0, 1)$$

$$\beta_A \sim \text{Normal}(0, 1)$$

$$\alpha_j \sim \text{Normal}(9, 3)$$

$$\sigma \sim \text{HalfCauchy}(5)$$

A simple approach that won't work

Problem:

Allows for a shift, but not a change in slopes.

Can see this also with the fox problem from earlier.

Allowing interactions

To add interactions:

$$\log GDP \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta_R R_i + \beta_A A_i + \beta_{AR} A_i R_i$$

$$\beta_R \sim \text{Normal}(0, 1)$$

$$\beta_A \sim \text{Normal}(0, 1)$$

$$\beta_{AR} \sim \text{Normal}(0, 1)$$

$$\alpha_j \sim \text{Normal}(9, 3)$$

$$\sigma \sim \text{HalfCauchy}(5)$$

So we have a third slope, for the *product* of R and A.

Why is this the approach?

Where this comes from: just model the slope β_R as being itself a linear function of A.

$$\log GDP \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \gamma_i R_i + \beta_A A_i$$

$$\gamma_i = \beta_R + \beta_{AR} A_i$$

$$\beta_R \sim \text{Normal}(0, 1)$$

$$\beta_A \sim \text{Normal}(0, 1)$$

$$\beta_{AR} \sim \text{Normal}(0, 1)$$

$$\alpha_j \sim \text{Normal}(9, 3)$$

$$\sigma \sim \text{HalfCauchy}(5)$$

Why is this the approach?

Plug a linear equation into another linear equation:

$$\mu_i = \alpha + \gamma_i R_i + \beta_A A_i$$
$$\gamma_i = \beta_R + \beta_{AR} A_i$$

Why is this the approach?

Plug a linear equation into another linear equation:

$$\mu_i = \alpha + \gamma_i R_i + \beta_A A_i$$
$$\gamma_i = \beta_R + \beta_{AR} A_i$$

$$\mu_i = \alpha + (\beta_R + \beta_{AR}A_i)R_i + \beta_A A_i$$

Code for the interaction model

qp_product = quap()

```
with pm.Model() as model_product:
    # Priors
    a = pm.Normal('a', mu=9, sd=3)
    bR = pm.Normal('bR', mu=0, sd=1)
    bA = pm.Normal('bA', mu=0, sd=1)
    bAR = pm.Normal('bAR', mu=0, sd=1)
    sigma = pm.HalfCauchy('sigma', 5)
    # Model equations
    gamma = bR + bAR * dd.cont_africa
    mu = a + gamma * dd.rugged + bA * dd.cont_africa
    # Likelihood
    log_gdp = pm.Normal('log_gdp', mu, sigma, observed=np.log(dd
    # Inference
```

The result

Result from the interaction model:

Here, we can see the different slope. Ruggedness has a positive association with GDP for African nations, negative for others.

Plate diagram for the product version

The Africa interaction as two independent slopes

Alternative formulation of the model:

$$\begin{aligned} \log \textit{GDP} &\sim \operatorname{Normal}(\mu_i, \sigma) \\ \mu_i &= \alpha_{\operatorname{CONT}[i]} + \beta_{\textit{CONT}[i]} R_i \\ \beta_j &\sim \operatorname{Normal}(0, 1) \quad j \in \{0, 1\} \\ \alpha_j &\sim \operatorname{Normal}(9, 3) \\ \sigma &\sim \operatorname{HalfCauchy}(5) \end{aligned}$$

- index variable
- allows the model to simply select separate slopes independently

Aside: categorical variables

Categorical variables in regression

Ways to handle a categorical variable c:

- indicator variable
- \bullet if c is binary, assign value 0 to one category, 1 to another

$$\mu_{j} = \alpha + \beta_{c}c$$

Potential problem: more uncertainty in one category than another

Example: giraffe height

Simple example: modeling giraffe height stratified by sex. Assign s=0 for female, s=1 for male.

$$h \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha + \beta s$
 $\alpha \sim \text{Normal}(5, 1.5)$
 $\beta \sim \text{Normal}(0, 0.4)$

• $Var\mu$ for females = $Var\alpha$

Alternatives: one-hot encoding or index variables

One alternative: one-hot encoding

create an indicator variable for every category

$$\mu = \beta_f f + \beta_m m$$

Why drop α ? Not enough constraints:

• Suppose female giraffes average 4.8 m, males 5.1; then which is correct?

$$\mu = 5 + 0.1m - 0.2f$$

$$\mu = 4 + 1.1m + 0.8f$$

Alternatives: one-hot encoding or index variables

Another: index variables

 create a vector of intercepts and use the value of the categorical variable to index out the right one

$$\mu = \beta_s$$
 $s \in \{0, 1\}$

Requires encoding values of the variable as ordinal values $\{0, 1, 2, \dots, n\}$

This is what we did with the Africa ruggedness example:

- Africa indicator variable has values 0, 1
- Use these as an index to select the correct parameter from the vector

Code for the index variable model

```
with pm.Model() as model_index:
    # Priors
    a = pm.Normal('a', mu=9, sd=3, shape = 2)
    b = pm.Normal('b', mu=0, sd=1, shape = 2)
    sigma = pm.HalfCauchy('sigma', 5)
    # Model equation
    mu = a[data['cont_africa']] + b[data['cont_africa']] * dd.ru
    # Likelihood
    log_gdp = pm.Normal('log_gdp', mu, sigma, observed=np.log(dd
    # Inference
    qp_index = quap()
```

Plate diagram for the index version

Comparing parameters

• Parameters from the product-interaction model:

	mean	sd	hdi_3%	hdi_97%
a[0]	9.221	0.138	8.962	9.480
a[1]	7.283	0.176	6.952	7.615
b[0]	-0.201	0.076	-0.345	-0.058
b[1]	0.186	0.105	-0.010	0.383
sigma	0.933	0.051	0.837	1.028

• Parameters from the index-variable model:

	mean	sd	hdi_3%	hdi_97%
a[0]	9.191	0.140	8.931	9.458
a[1]	7.308	0.179	6.979	7.639
b[0]	-0.178	0.079	-0.333	-0.037
b[1]	0.160	0.107	-0.050	0.354

Higher order interactions

Higher order interactions

No interactions:

$$\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$$

Higher order interactions

No interactions:

$$\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$$

Pairwise interactions:

$$\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$$

+ $\beta_{12} x_{1,i} x_{2,i} + \beta_{13} x_{1,i} x_{3,i} + \beta_{23} x_{2,i} x_{3,i}$

Higher order interactions

No interactions:

$$\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$$

Pairwise interactions:

$$\mu_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i}$$

+ $\beta_{12} x_{1,i} x_{2,i} + \beta_{13} x_{1,i} x_{3,i} + \beta_{23} x_{2,i} x_{3,i}$

Higher-order interactions:

$$\mu_{i} = \alpha + \beta_{1}x_{1,i} + \beta_{2}x_{2,i} + \beta_{3}x_{3,i}$$

$$+ \beta_{12}x_{1,i}x_{2,i} + \beta_{13}x_{1,i}x_{3,i} + \beta_{23}x_{2,i}x_{3,i}$$

$$+ \beta_{123}x_{1,i}x_{2,i}x_{3,i}$$

The "Judgement of Princeton"

The Judgement of Princeton

- 9 judges, 20 wines
- Wines split between red and white, NJ or France
- Judges split between American or French/Belgium

Predictors:

• Wine color: red or white

• Wine origin: NJ or France

• Judge nationality: US or EU

Interactions

Potential for interactions between all predictors:

- Interaction between origin and judge: judge bias.
 Judge bias might depend upon color.
- Interaction between color and judge: taste preference.
 Taste preference might depend upon origin.
- Interaction between origin and color: relative advantage.
 Advantage might depend upon judge.

Summary

Today:

- Finishing up DAGs
- Criteria for variable inclusion
- Interactions

Next time:

• A bit more on interactions

HW2 up, due next Friday – first steps with PyMC3 and quap; linear regression model; a DAG