DINO

BYOL

Emerging Properties in Self-Supervised Vision Transformers

Bootstrap Your Own Latent A New Approach to Self-Supervised Learning

Akulov Dmitry

Achieved results with DINO

Negative sampling

Previous SOTA self-supervised methods used negative sampling approach for image representation tasks Used to prevent collapsed solutions

This approach is based on two key ideas

- Reducing distance between positive pairs
- Decreasing distance between negative pairs

One of the problem is process of generating negative samples

Some non-obvious problems as critical dependence on augmentation types

BYOL don't use negative samples

There is a Risk of getting collapsed solutions
It is empirically shown that BYOL does not converge to such solutions.

- BYOL achieves state-of-the-art results under the linear evaluation protocol on ImageNet without using negative pairs.
- BYOL learned representation outperforms the state of the art on semi-supervised and transfer benchmarks.
- BYOL is more resilient to changes in the batch size and in the set of image augmentations compared to its contrastive counterparts.

BYOL model

BYOL model

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z_{\xi}' \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z_{\xi}' \right\|_{2}} \cdot \qquad \begin{aligned} \theta \leftarrow \text{optimizer} \left(\theta, \nabla_{\theta} \mathcal{L}_{\theta,\xi}^{\text{BYOL}}, \eta \right), \\ \xi \leftarrow \tau \xi + (1 - \tau)\theta, \end{aligned}$$

DINO model

- Knowledge **di**stillation with **no** labels
- Co-distillation process
- Framework is flexible and works on both convnets and ViTs without the need to modify the architecture, nor adapt internal normalizations
- Inspired by BYOL
- Another loss function + Centering

DINO code

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
# gs, gt: student and teacher networks
# C: center (K)
 tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
   x1, x2 = augment(x), augment(x) # random views
   s1, s2 = gs(x1), gs(x2) # student output n-by-K
   t1, t2 = gt(x1), gt(x2) # teacher output n-by-K
   loss = H(t1, s2)/2 + H(t2, s1)/2
   loss.backward() # back-propagate
   # student, teacher and center updates
   update(gs) # SGD
   gt.params = 1*gt.params + (1-1)*gs.params
   C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)
def H(t, s):
   t = t.detach() # stop gradient
   s = softmax(s / tps, dim=1)
   t = softmax((t - C) / tpt, dim=1) # center + sharpen
   return - (t * log(s)).sum(dim=1).mean()
```


Avoiding collapse

- Centering + Sharpening
- Sharpening:

$$P_s(x)^{(i)} = \frac{\exp(g_{\theta_s}(x)^{(i)}/\tau_s)}{\sum_{k=1}^K \exp(g_{\theta_s}(x)^{(k)}/\tau_s)},$$

• Centering:

$$c \leftarrow mc + (1 - m) \frac{1}{B} \sum_{i=1}^{B} g_{\theta_t}(x_i),$$
$$g_t(x) \leftarrow g_t(x) + c.$$

Avoiding collapse

- Centering + Sharpening
- Sharpening:

$$P_s(x)^{(i)} = \frac{\exp(g_{\theta_s}(x)^{(i)}/\tau_s)}{\sum_{k=1}^K \exp(g_{\theta_s}(x)^{(k)}/\tau_s)},$$

• Centering:

$$c \leftarrow mc + (1 - m) \frac{1}{B} \sum_{i=1}^{B} g_{\theta_t}(x_i),$$
$$g_t(x) \leftarrow g_t(x) + c.$$

There are two forms of collapse: regardless of the input,

- the model output is uniform along all the dimensions or
- dominated by one dimension

The centering avoids the collapse induced by a dominant dimension, but encourages an uniform output.

Sharpening induces the opposite effect.

$$H(P_t, P_s) = h(P_t) + D_{KL}(P_t|P_s).$$

DINO results

- Best performance among self-supervised methods
- DINO with ViT performance with a simple k-NN classifier is almost on par with a linear classifier
- Comparing across architectures shows that ViT with 8 × 8 patches trained with DINO achieves 80.1% top-1 in linear classification and 77.4% with a k-NN classifier with
 - o 10× less parameters and
 - o 1.4× faster run time

than previous SOTA

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [15]	RN50	23	1237	71.1	61.9
InfoMin [67]	RN50	23	1237	73.0	65.3
BarlowT [81]	RN50	23	1237	73.2	66.0
OBoW [27]	RN50	23	1237	73.8	61.9
BYOL [30]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5
Supervised	ViT-S	21	1007	79.8	79.8
BYOL* [30]	ViT-S	21	1007	71.4	66.6
MoCov2* [15]	ViT-S	21	1007	72.7	64.4
SwAV* [10]	ViT-S	21	1007	73.5	66.3
DINO	ViT-S	21	1007	77.0	74.5
Comparison acr	ross architectures	(I)			
SCLR [12]	RN50w4	375	117	76.8	69.3
SwAV [10]	RN50w2	93	384	77.3	67.3
BYOL [30]	RN50w2	93	384	77.4	_
DINO	ViT-B/16	85	312	78.2	76.1
SwAV [10]	RN50w5	586	76	78.5	67.1
BYOL [30]	RN50w4	375	117	78.6	_
BYOL [30]	RN200w2	250	123	79.6	73.9
DINO	ViT-S/8	21	180	79.7	78.3
SCLRv2 [13]	RN152w3+SK	794	46	79.8	73.1
DINO	ViT-B/8	85	63	80.1	77.4

Attention maps from multiple heads

Video Segmentation

- The 2017 DAVIS Challenge on Video Object Segmentation
- They evaluated the quality of frozen features on video instance tracking.
- They compared with existing self-supervised methods and a supervised ViT-S/8 trained on ImageNet.
- They thus did not train any model on top of the features, nor finetune any weights for the task
- They observed that even though their training objective nor our architecture are designed for dense tasks, the performance is competitive on this benchmark.

Method	Data	Arch.	$(\mathcal{J}\&\mathcal{F})_m$	\mathcal{J}_m	\mathcal{F}_m
Supervised					
ImageNet	INet	ViT-S/8	66.0	63.9	68.1
STM [48]	I/D/Y	RN50	81.8	79.2	84.3
Self-supervise	ed				
CT [71]	VLOG	RN50	48.7	46.4	50.0
MAST [40]	YT-VOS	RN18	65.5	63.3	67.6
STC [37]	Kinetics	RN18	67.6	64.8	70.2
DINO	INet	ViT-S/16	61.8	60.2	63.4
DINO	INet	ViT-B/16	62.3	60.7	63.9
DINO	INet	ViT-S/8	69.9	66.6	73.1
DINO	INet	ViT-B/8	71.4	67.9	74.9

Conclusion

- Self-supervised pretraining can achieve comparable to convolutional networks performance
- Generated features have high quality for k-NN classification
- The presence of information about the scene layout in the features can also benefit weakly supervised image segmentation