Linearna regresija

Uvod

• Nadgledano učenje – zadati su ulaz i za njih dobijeni izlazi (m primera)

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\}$$

Linerna regresija

Za jednostavniji slučaj sa jednim promenljivom (ulazom):

Optimizacioni kriterijum

• Definiše se kriterijum
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Kako odrediti parametre θ_0 i θ_1 da se dobije min J ?

Za minimizaciju greške se može koristiti gradijentni postupak

Gradijentni postupak

Iterativni postupak

$$n_{\theta}(x) = \theta_0 + \theta_1 x$$

Prativni postupak
$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{2m} \frac{\partial}{\partial \theta_j} \sum_{i=1}^m \left(h_\theta \big(x^{(i)} \big) - y^{(i)} \right)^2 = \frac{1}{m} \sum_{i=1}^m \left(h_\theta \big(x^{(i)} \big) - y^{(i)} \right) x_j^{(i)}$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{2m} \frac{\partial}{\partial \theta_j} \sum_{i=1}^m \left(h_\theta \big(x^{(i)} \big) - y^{(i)} \right)^2 = \frac{1}{m} \sum_{i=1}^m \left(h_\theta \big(x^{(i)} \big) - y^{(i)} \right) x_j^{(i)}$$

 Primena na Linearnu regresiju sa jednom promenljivom: ponavlja se do konvergencije

$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot 1$$

$$\mathcal{J}(\theta) < \mathcal{E}$$

$$\theta_1 = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

Linearna regresija za više promenljivih

- Hipoteza $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$
- Najčešće se uvodi dodatna promenljiva

$$x_0 = 1$$

Pa se dobije da je

$$h_{\theta}(x) = \theta^{T} x = x^{T} \theta = \theta_{0} x_{0} + \theta_{1} x_{1} + \theta_{2} x_{2} + \dots + \theta_{n} x_{n}$$

gde je

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}, \qquad x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Gradijentni postupak za linearnu regresiju sa više promenljivih

• Za linearnu regresiju sa više promenljivih

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta) \quad j=1,2,...,n$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{1}{2m} \frac{\partial}{\partial \theta_{j}} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \frac{\partial}{\partial \theta_{j}} h_{\theta} \left(x^{(i)} \right)$$

$$h_{\theta}(x^{(i)}) = \theta^{T} x^{(i)} = \theta_{0} x_{0}^{(i)} + \theta_{1} x_{1}^{(i)} + \theta_{2} x_{2}^{(i)} + \dots + \theta_{n} x_{n}^{(i)}, \qquad i = 1, 2, \dots, m$$

pri čemu je $x_0^{(i)} = 1$

$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}, \qquad \theta_1 = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_j = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Vrste gradijentnog algoritma

- Paketni ili "šaržni" (Batch Gradient Descent)
 - Svi podaci se uzimaju odjednom u obzir
 - Nedostatak
 - Za veliku količinu podataka (npr. 10⁶) svi se moraju učitati iz baze i sporije dolazi do rešenja
- Stohastički (Stochastic Gradient Descent)
 - Izvršava se u svakom koraku za npr. jedan slučajan podatak
 - Npr. Za cenu kuće, 1. korak za kuću 1, 2. korak za kuću 2, ...
 - Za veliko m je brži od Paketnog gradijentnog algoritma

Gradijentni postupak

Kako izabrati faktor učenja α ?

Kako izabrati faktor učenja α ?

Linearna regresija za više promenljivih

• Obučavajući skup (X,Y) se sastoji iz više primera $(x^{(i)},y^{(i)}),\ i\in\{1,2,\ldots,m\}$, $x^{(1)}$ tako npr.

4.1	Površina (m²)	Broj spavaćih soba	Spratnost	Starost kuće (god)	Cena (€1000)
X	250	5	1	15	460 — 1
XIAI OX	145	3	1	20	232
N	162	4	2	10	315
	93	2	1 1	32	178

Linearna regresija za više promenljivih

• Obučavajući skup (X,Y) se sastoji iz više primera $(x^{(i)},y^{(i)}),\ i\in\{1,2,\ldots,m\}$, $x^{(1)}$ tako npr.

X	x_0	x_1	$\boldsymbol{x_2}$	x_3	x_4	У	
$\chi^{(1)}$	1	250	5	(1)	15	460	
$\chi^{(2)}$	1	145	3	1	20	232	(A)
$\chi^{(3)}$	1	162	4	2	10	315	X ₃
$x^{(4)}$	1	93	2	1	32	178	

$$X = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ x^{(3)} \\ x^{(4)} \end{bmatrix} = \begin{bmatrix} 1 & 250 & 5 & 1 & 15 \\ 1 & 145 & 3 & 1 & 20 \\ 1 & 162 & 4 & 2 & 10 \\ 1 & 93 & 2 & 1 & 32 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} \quad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix} \quad \tilde{y} = X \theta$$

Normalna jednačina

Omogućuje analitičko određivanje parametara heta

$$X = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(m)} \end{bmatrix} = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & \dots & x_n^{(1)} \\ x_0^{(2)} & x_1^{(2)} & \dots & x_n^{(2)} \\ x_0^{(3)} & x_1^{(3)} & \dots & x_n^{(3)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_0^{(m)} & x_1^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \quad y = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad y = X \theta$$

Normalna jednačina

• Polazi od optimizacionog kriterijuma $J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$

• Predstavlja drugačiji način minimizacije $J(\theta)$

$$\min J(\theta) \Leftrightarrow \nabla_{\theta}J(\theta) = 0$$

Dobije se da je

$$\theta = (X^T X)^{-1} X^T y$$

Kako izabrati algoritam za minimizaciju greške?

Gradijenti postupak

- Prednosti
 - Dobro radi i za veliko *n*
- Nedostaci
 - Izbor α
 - Iterativni postupak (često je potreban veliki broj iteracija)

Normalna jednačina

- Prednosti
 - Ne treba birati α
 - Rešenje se dobija direktnim analitičkim proračunom
- Nedostaci
 - Potrebno odrediti inverznu matricu X^TX , problem za veliko n (složenost $O(n^3)$)
 - Spor kada je n jako veliko
 - Matrica nema inverznu X^TX

• Fituje se θ za minimizaciju

$$\sum_{i=1}^{m} w^{(i)} (y^{(i)} - \theta^T x^{(i)})^2$$
gde je $w^{(i)}$ težinska funkcija
$$w^{(i)} = \exp(-\frac{(x^{(i)} - x)^2}{2})$$

$$w^{(i)} = \exp(-\frac{(x^{(i)} - x)^2}{2})$$

Ako je $|x^{(i)} - x|$ veliko, $w^{(i)} \ge 0$ – mali uticaj na J $|x^{(i)} - x|$ malo, $w^{(i)} \approx 1$

• Za izbor Gausove krive za w uvodu se parametar au

$$w^{(i)} = \exp(-\frac{(x^{(i)} - x)^2}{2\tau^2})$$

Za veće τ , w je manje – spušta se i podiže Gausova kriva

