FÍSICA DEL MODELO COSMOLÓGICO ESTÁNDAR

Estudio de la dependencia del espectro angular de temperatura del CMB con los parámetros cosmológicos

Objetivo

El objetivo de la práctica es estudiar la dependencia del espectro angular de fluctuaciones de temperatura C_{ℓ} con los parámetros (h, ω_b, n_s) .

Teoría

Una descripción aproximada de las anisotropías del CMB puede obtenerse considerando únicamente el efecto Sachs-Wolfe ordinario, es decir, ignorando las contribuciones Doppler y del efecto Sachs-Wolfe integrado. En este caso, la expresión del espectro (válida para multipolos $\ell \gg 100$), viene dada por:

$$C_{\ell} \simeq 4\pi \frac{9}{25} \int P_{R}(k) \left[-R(z_{dec})T(k/k_{eq}) + \frac{5}{3}\cos(k\,r_{s})e^{-k^{2}/k_{D}^{2}} \right]^{2} j_{\ell}^{2}(k(\eta_{0} - \eta_{dec})) \frac{dk}{k}$$
(1)

donde

$$r_s = H_0^{-1} \int_{z_{dec}}^{\infty} \frac{c_s(z)}{E(z)} dz \tag{2}$$

es el horizonte de sonido en el momento de desacoplo ($z_{dec} = 1090$), con

$$E(z) = h^{-1}(\omega_m(1+z)^3 + \omega_r(1+z)^4 + \omega_\Lambda)^{1/2}$$
(3)

donde

$$\omega_r = \left(1 + \frac{7}{8} N_{eff} \left(\frac{4}{11}\right)^{4/3}\right) \omega_\gamma = 4.17 \times 10^{-5} \tag{4}$$

es la densidad de radiación total, con $N_{eff}=3.046$ el número efectivo de neutrinos en el Modelo Estándar y $\omega_{\gamma}=2.47\times 10^{-5}$ la densidad de energía en forma de fotones.

El parámetro ω_{Λ} puede obtenerse de la regla de suma en un universo son secciones espaciales planas

$$\omega_m + \omega_r + \omega_\Lambda = h^2 \tag{5}$$

donde estamos definiendo para una componente α arbitraria, $\omega_{\alpha} = \Omega_{\alpha}h^2$. El radio de Hubble hoy es (en unidades c=1)

$$H_0^{-1} = 2998h^{-1} \text{ Mpc.}$$
 (6)

La velocidad del sonido en el plasma viene dada por

$$c_s^2(z) = \frac{1}{3} \frac{1}{1 + R(z)} \tag{7}$$

donde

$$R(z) = \frac{3}{4} \frac{\rho_b}{\rho_\gamma} = \frac{3.04 \times 10^4}{1+z} \omega_b \tag{8}$$

La función de transferencia viene dada por

$$T(x) = \frac{\ln(1+0.171x)}{0.171x} (1+0.284x + (1.18x)^2 + (0.399x)^3 + (0.490x)^4)^{-0.25}$$
(9)

y la escala de igualdad:

$$k_{eq} = 0.073\omega_m \,\mathrm{Mpc}^{-1}$$
 (10)

La escala de difusión de Silk es

$$k_D \simeq 0.14 \,\mathrm{Mpc}^{-1}$$
 (11)

El tiempo conforme desde el desacoplo hasta el momento actual viene dado por:

$$\eta_0 - \eta_{dec} = d_A^c(z_{dec}) = H_0^{-1} \int_0^{z_{dec}} \frac{dz}{E(z)}$$
(12)

que coincide con la distancia angular comóvil a la superficie de último scattering. La relación entre escalas y multipolos viene dada aproximadamente por:

$$\ell \simeq k \, d_A^c(z_{dec}) \tag{13}$$

Finalmente, el espectro primordial de fluctuaciones de curvatura viene dado por

$$P_R(k) = A_s \left(\frac{k}{k_0}\right)^{n_s - 1} \tag{14}$$

con $A_s = 2.20 \times 10^{-9}$, $n_s = 0.97$ y $k_0 = 0.05$ Mpc⁻¹.

Para ℓ grande, la función de Bessel esférica $j_{\ell}(x)$ es prácticamente cero para $x < \ell$ mientras que para $x > \ell$ oscila rápidamente y podemos promediarla. De esta forma es posible acelerar el cálculo de la integral (1) sustituyendo:

$$j_{\ell}^{2}(x) = \begin{cases} \frac{1}{2} \frac{1}{x\sqrt{x^{2} - \ell^{2}}}, & x > \ell \\ 0, & x < \ell \end{cases}$$
 (15)

Cuestiones

1.- Fijando los valores de los parámetros a los de la cosmología estándar

$$h = 0.67$$

$$\omega_b = 0.022$$

$$\omega_m = 0.14$$

$$n_s = 0.97$$

calcular $R(z_{dec})$, r_s y $d_A^c(z_{dec})$. Representar gráficamente $\ell(\ell+1)C_\ell/(2\pi)$ para $\ell=[100,1500]$.

- 2.- Estudiar la dependencia del espectro en los parámetros $R(z_{dec})$, r_s y $d_A^c(z_{dec})$, variando cada uno de ellos independientemente.
- 3.- Estudiar la dependencia del espectro con h. Considerar, aparte del valor estándar, h=0.5 y h=0.8 con el resto de parámetros fijos. Comprobar que el valor de h no afecta a la altura de los picos pero sí a su posición. Explicar este efecto en términos de lo visto en la cuestión 2.
- 4.- Estudiar la dependencia del espectro con ω_b . Considerar, aparte del valor estándar, $\omega_b = 0.01$ y $\omega_b = 0.04$ con el resto de parámetros fijos. Comprobar que aumentar ω_b incrementa los picos impares y disminuye los pares. Explicar este efecto en términos de lo visto en la cuestión 2.
- 5.- Estudiar la dependencia del espectro con n_s . Considerar, aparte del valor estándar, $n_s=0.7$ y $n_s=1.2$ con el resto de parámetros fijos. Determinar el multipolo ℓ correspondiente a la escala del pivote k_0 y explicar el efecto.

Los resultados aproximados obtenidos en esta práctica pueden compararse con los que proporciona el código de Boltzmann CAMB en

https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm