ФГАОУ ВО «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ЦИФРОВОГО РАЗВИТИЯ

Отчет по лабораторной работе №1 «Условные операторы и циклы в языке Python» по дисциплине «Введение в системы искусственного интеллекта» Вариант 11

Выполнил: студент группы ИВТ-б-о-	-18-1
Солдатенко Евгений Михайлович	
	_(подпись)
Проверил:	
доцент кафедры инфокоммуникаций,	
Воронкин Роман Александрович	
	(полпись)

Цель работы: приобретение навыков программирования разветвляющихся алгоритмов и алгоритмов циклической структуры. Освоить операторы языка Python версии 3.х if, while, for, break и continue, позволяющих реализовывать разветвляющиеся алгоритмы и алгоритмы циклической структуры.

Ход работы:

Была решена задача 1 согласно варианта, составлена UML-диаграмма деятельности и программа с использованием конструкций ветвления. Номер варианта -11.

Компания по снабжению электроэнергией взимает плату с клиентов по тарифу:

7 р. за 1 кВт/ч за первые 250 кВт/ч;

17 р. за кВт/ч, если потребление свыше 250, но не превышает 300 кВт/ч; 20 р. за кВт/ч, если потребление свыше 300 кВт/ч.

Потребитель израсходовал и кВт/ч. Подсчитать плату.

Рисунок 1 – UML-диаграмма задачи 1

```
n = int(input("Использовано кВт/ч: "))
a = 0

if n >= 0 and n <= 250:
    a = n*7

elif n > 250 and n <= 300:
    a = (250*7 + (n-250)*17)

elif n > 300:
    a = 250*7 + 50 * 17 + (n-300)*20

else:
    print("Неверно введенные данные")

print(f"Плата за использованную электроэнергию: {a}")

Использовано кВт/ч: 400
Зе условие
Плата за использованную электроэнергию: 4600
```

Рисунок 2 – Решение задачи 1

Была решена задача 2 согласно варианта, составлена UML-диаграмма деятельности и программа с использованием конструкций ветвления. Номер варианта -11.

Определить, есть ли среди трёх заданных чисел чётные.

Рисунок 3 – UML-диаграмма задачи 2

```
a = int(input("Введите первое число: "))
b = int(input("Введите второе число: "))
c = int(input("Введите третье число: "))

al = a % 2
bl = b % 2
cl = c % 2

if al == 0 or bl == 0 or cl == 0:
    print("Четные числа есть")

else: print("Четные числа не найдены")

Введите первое число: 1
Введите второе число: 2
Введите третье число: 9
Четные числа есть
```

Рисунок 4 – Решение задачи 2

Была составлена UML-диаграмма деятельности и программа с использованием конструкций цикла для решения задачи 3. Номер варианта – 11.

Составьте программу, которая печатает таблицу умножения натуральных чисел в десятичной системе счисления.

Рисунок 5 – UML-диаграмма задачи 3

<pre>for a in range(1, 11): for b in range(1,11): print(a*b, end = "\t") print("\n")</pre>										
1	2	3	4	5	6	7	8	9	10	
2	4	6	8	10	12	14	16	18	20	
3	6	9	12	15	18	21	24	27	30	
4	8	12	16	20	24	28	32	36	40	
5	10	15	20	25	30	35	40	45	50	
6	12	18	24	30	36	42	48	54	60	
7	14	21	28	35	42	49	56	63	70	
8	16	24	32	40	48	56	64	72	80	
9	18	27	36	45	54	63	72	81	90	
10	20	30	40	50	60	70	80	90	100	

Рисунок 6 – Решение задачи 3

Было выполнено задание повышенной сложности.

$$\text{Ci}(x) = \gamma + \ln x + \int_0^x \frac{\cos t - 1}{t} \, dt = \gamma + \ln x + \sum_{n=1}^\infty \frac{(-1)^n x^{2n}}{(2n)(2n)!}.$$
 (1)
$$a_n = (((-1)^{**}n)(x^{**}2n))/((2n) \text{ math.factorial}(2n)) \text{ (2)}$$

$$a_{n+1} = (a^{**}(n+1))/((n+1) \text{ math.factorial}(n+1)) \text{ (3)}$$

$$a_{n+1} = (a^{**}(n+1))/((n+1) \text{ (n+1) math.factorial}(n)) =$$

$$= (x^{**}(n+1)/((n+1)^{**}2) \text{ math.factorial}(n)) \text{ (4)}$$

$$(a_{n+1}/a_n) = ((a^{**}(n+1))/(((n+1)^{**}2) \text{ math.factorial}(n))) / / ((x^{**}n)/n^* \text{ math.factorial}(n)) = (x^*n)/((n+1)^{**}2) \text{ (5)}$$

$$a_{n+1} = ((x^*n)/((n+1)^{**}2)^*a_n) \text{ (6)}$$

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import sys
# Постоянная Эйлера.
EULER = 0.5772156649015328606
# Точность вычислений.
EPS = 1e-10
if __name__ == '__main__':
    x = float(input("Value of x? "))
   if x == 0:
       print("Illegal value of x", file=sys.stderr)
       exit(1)
   a = x
   s, n = a, 1
   # Найти сумму членов ряда.
   while math.fabs(a) > EPS:
      a = (((-1)**n)*x**(2*n)) / (2*n)*(2*n + 1)
       n += 1
   # Вывести значение функции.
   print(f"Ei({x}) = {EULER + math.log(math.fabs(x)) + S}")
Value of x? 0.3
Ei(0.3) = -0.3676668531405047
```

Рисунок 7 – Решение задачи повышенной сложности

Вывод: были приобретены навыки программирования разветвляющихся алгоритмов и алгоритмов циклической структуры; освоены операторы языка Python версии 3.х if, while, for, break и continue, позволяющие реализовывать разветвляющиеся алгоритмы и алгоритмы циклической структуры.