Transformer Model (2/2): From Shallow to Deep

Shusen Wang

Multi-Head Attention

Single-Head Self-Attention

- Self-attention layer: C = Attn(X, X).
- This is called "single-head self-attention".

Multi-Head Self-Attention

- Using l single-head self-attentions (which do not share parameters.)
 - A single-head self-attention has 3 parameter matrices: \mathbf{W}_O , \mathbf{W}_K , \mathbf{W}_V .
 - Totally 3l parameters matrices.

Multi-Head Self-Attention

- Using l single-head self-attentions (which do not share parameters.)
- Concatenating outputs of single-head self-attentions.
 - Suppose single-head self-attentions' outputs are $d \times m$ matrices.
 - Multi-head's output shape: $(ld) \times m$.

Multi-Head Attention

- Using *l* single-head attentions (which do not share parameters.)
- Concatenating single-head attentions' outputs.

Stacked Self-Attention Layers

Self-Attention Layer

Stacked Self-Attention Layers

Stacked Self-Attention Layers

Encoder of Transformer

- 1 block = self-attention + dense.
- Encoder is a stack of 6 such blocks.
- Other tricks:
 - Skip connection.
 - Normalization.

Output Probabilities

Softmax

Multi-head self-attention:

- Input shape: $512 \times m$.
- Use 8 single-head attentions.
- Every single-head attention outputs a $64 \times m$ matrix.
- Thus the output shape is $512 \times m$.

Output Probabilities

Encoder

Stacked Attention Layers

- Transformer is a Seq2Seq model (encoder + decoder).
- Encoder's inputs are vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$.
- Decoder's inputs are vectors $\mathbf{x}'_1, \mathbf{x}'_2, \cdots, \mathbf{x}'_t$.

Encoder's inputs:

Decoder's inputs:

 $\mathbf{x}_1 \qquad \mathbf{x}_2 \qquad \mathbf{x}_3 \qquad \cdots \qquad \mathbf{x}_m$

 \mathbf{x}_1' \mathbf{x}_2' \mathbf{x}_3' ··· \mathbf{x}_t'

- Transformer's encoder contains 6 stacked blocks.
- 1 block \approx 1 multi-head attention layer + 1 dense layer.

$\mathbf{h}_{\cdot 1} = \text{ReLU}(\mathbf{W}_H \mathbf{Z}_{:1})$ **Stacked Attentions Dense Z**:2 Multi-Head Attention Layer Multi-Head Self-Attention Encoder (6x stacked blocks)

$\mathbf{h}_{:2} = \text{ReLU}(\mathbf{W}_H \mathbf{z}_{:2})$ **Stacked Attentions** Dense **Dense Z**:2 **Z**:1 Multi-Head Attention Layer

h:2 **h**:3 **Stacked Attentions** Dense Dense **Dense** Dense **Z**:2 Multi-Head Attention Layer Multi-Head Self-Attention Encoder (6x stacked blocks)

- We have stacked 3 layers: self-attention + attention + dense.
- They together map (\widetilde{X}, X') to H.
- One block of Transformer's decoder is the stack of the 3 layer.

Decoder of Transformer

Decoder Network

- 1 block = self-attention + attention layer + dense.
- Decoder is a stack of 6 such blocks.

Output

Decoder Network: One Block

Multi-head self-attention.

- Input shape: $512 \times t$.
- Use 8 single-head self-attentions:

$$C = Attn(X', X').$$

- Each outputs $64 \times t$ matrix.
- Output shape: $512 \times t$.

Output Probabilities

Softmax

Decoder Network: One Block

Multi-head attention.

Use 8 single-head attentions:

Attn
$$(X_{(6)}, C)$$
.

- Each outputs $64 \times t$ matrix.
- Output shape: $512 \times t$.

Output Probabilities

Decoder Network

- Output a distribution over the vocabulary.
- Compare the distribution with the one-hot encode of the label.
- Loss, e.g., cross-entropy.
- Gradient.
- Dpdate model parameters.

Summary

From Single-Head to Multi-Head

• Single-head (self) attention can be combined to form a multi-head (self) attention.

From Single-Head to Multi-Head

• Single-head (self) attention can be combined to form a multi-head (self) attention.

Encoder Network of Transformer

- 1 encoder block \approx 8-head self-attention + dense.
- Encoder network is a stack of 6 such blocks.
- Input shape: $512 \times m$.
- Output shape: $512 \times m$.

Decoder Network of Transformer

- 1 decoder block \approx 8-head self-attention + 8-head attention + dense.
- Encoder network is a stack of 6 such blocks.
- Input shape: $512 \times t$.
- Output shape: $512 \times t$.

Summary

- Transformer model is not RNN.
- Transformer is based on attention and self-attention.
- Upside: Outperform all the state-of-the-art RNN models.
- Downside: Much more expensive than RNN models.

Thank you!