

PAINETTAVA ELEKTRONIIKKA

Substraatit ja musteet

© Jari Hannu, Oulun yliopisto

ALUSTAMATERIAALIN VALINTA PAINETTAVAAN ELEKTORNIIKKAAN

- Eli substraatit
- Substraattien tärkein ominaisuus on, että ne soveltuvat painettavat elektroniikan prosesseihin
- Mekaanisilta ominaisuuksiltaan ne voivat olla kiinteitä, taipuvia tai jopa venyviä
- Toivottavia ominaisuuksia ovat halpa hinta, yhtensopivuus painomateriaalien kanssa ja että mahdollistaisi lopputuotteen toimivuuden

ALUSTAMATERIAALIN VALINTA PAINETTAVAAN ELEKTRONIIKKAAN

- Substraateista täytyy mitata tai jopa hallita ainakin
 - Epätasaisuus
 - Kostuvuus
 - Puhtaus
 - Hukoisuus
 - Permabiliteetti ja muut sähköiset ominaisuudet
 - Kemiallinen aktiivisuus
 - Liuottimien kesto
 - Mekaaniset ominaisuudet
 - Jäykkyys, kutistuminen
 - Mittapysyvyys

- Lämpöominaisuudet
 - Kesto
 - Lämpölaajenemiskerroin
- Optiset ominaisuudet
 - Läpinäkyvyys
- Saatavuus
- Kierrätettävyys
- Hinta

SUBSTRAATTIMATERIAALIT - MUOVIT

- Muovien etuna on taivuteltavuus, joka laskee tuotantokustannuksia
- Muoveista yleisintä on PET [poly(ethylene terephthalate)
 - Halpa hinta
 - Korkea lämpötilastabiilius
- Vaihtoehtoisia ovat
 - PI (polyimidi)
 - Kauppanimi Kapton
 - Yleinen etsatuille kuparijohtimille
 - PEN [Poly(ethylene naphthalate)]
 - Kestävämpää ja kalliimpaa kuin PET

SUBSTRAATTIMATERIAALIT - MUOVIT

- Muovit ovat
 - Tasaisia
 - Kemiallisesti inerttejä
 - Ja hyvin saatavilla, vieläpä edullisesti
- Aina painettavuuden hallinta on rajallista
- Muovin valinnassa ja käytössä on huomioitava
 - Hinta ja saatavuus
 - Lämpötilan kesto (lasittumislämpötila)
 - Kutistuminen
 - Lämpölaajeneminen
 - Venyminen
 - Joustavuus

SUBSTRAATTIMATERIAALIT - PAPERI

- Paperit ovat yleensä pinnoitettuja tai pintakäsiteltyjä
- Paperin edut ovat
 - Pintaenergian hallinta
 - Kostuvuuden hallinta
 - Mahdollistaa metallimusteiden infrapunasintrauksen
 - Kompostoituva
 - Helposti saatavilla
 - Edullista
- Haitat
 - Epätasainen
 - Huokoinen
 - Huono mittapysyvyys
 - Vaati käytännössä aina päällystyksen

SUBSTRAATTIMATERIAALIT - KIINTEÄT

- Painettavan elektroniikan ei tarvitse olla taivuteltavaa tai joustavaa
- Lasi-, keraami-, pii- tai metallialustat
- Edut
 - Parempi lämmönkesto
 - Helpompi pintaominaisuuksien hallinta
 - Paremmat sähköiset ominaisuudet
- Haitat
 - Ei sovellu kaikkiin painomenetelmiin

	Valaistus	Näytöt	OPV	Elektroniikan komponentit	Integroidut älykkäät kokonaisuudet
Lasi	Υ	Υ	S	E	E
Metalli	Υ	S	~S	E	E
Paperi	S	~S		~S	~S
PET	S	S	Υ	Υ	S
PEN	S	S	S	~S	~S
PC	~S			~S	~S
PI	~S	~S		~S	~S
PES		S			
Tekstiilit	~S				~S

Y – yleisesti käytössä, S – soveltuu, ~S – mahdollinen joissain sov., E – ei sovellu

Harri Määttä

2012

Materiaalien valinnan tärkeimmät parametrit sovellusalueittain:

	Backplane	Valaistus	Näytöt	OPV	Elektroniikan komponentit	Integroidut älykkäät kokonaisuudet
Optinen läpäisy	~E	TT	TT	TT	E	~E
Mittapysyvyys	TT	T	TT	Т	TT	T
Tasaisuus	TT	TT	TT	Т	TT	T
Kestävyys (elinikä)	~E	~E	Т	TT	Т	Т
Suojauskyky	TT	TT	TT	TT	~E	~E
Hinta	~E	Т	TT	TT	TT	TT

TT – erittäin tärkeä, T – tärkeä, ~T – tärkeä joissain sov., ~E – hyödyllinen, E – ei tärkeä

Teräksen, muovin ja lasin ominaisuuksia alustamateriaaleina.

	Teräs	Muovi (PET)	Lasi
Paksuus [µm]	100	100	100
Tiheys [g/cm ²]	8	1.4	2.8
Turvallinen taivutussäde [cm]	4	4	40
R2R sopiva	Kyllä	Kyllä	Ei
Läpinäkyvä	Ei	Kyllä, jotkut	Kyllä
Max. Prosessilämpötila [°C]	1000	150	600
lämpölaajenemiskerroin [ppm/°C]	10	16	5
Kimmokerroin [GPa]	200	2-4	70
Läpäisevä O ₂ , H ₂ O	Ei	Kyllä	Ei
Esiuunituksen vaativa	Ei	Kyllä	Ehkä
Sähköinen johtavuus	Korkea	Ei	Ei