How do you talk to your Raspberry Pi?

Talking to the Pi

HDMI cable, monitor,
 USB keyboard, mouse

Talking to the Pi

HDMI cable, monitor,
 USB keyboard, mouse

Talking to the Pi

- HDMI cable, monitor,
 USB keyboard, mouse
- Serial cable
- Ethernet

Serial vs. ethernet

Serial advantages:

- Simple to set up
- Works even when networking doesn't

Ethernet advantages:

- Some Macs have trouble with serial
- Can copy files, route to internet

Serial setup

Leave red wire free!

Linux: screen /dev/ttyUSB0 115200

Mac: screen /dev/cu.PLXXX 115200 codechix

Ethernet ...

Hardware on the Raspberry Pi

The good:

- Cheap, low power
- That big GPIO connector!
- RPi.GPIO Python module

The bad:(

- Chaotic pin numbering
- No analog
- Poor PWM support
- 3 volts, not 5

The GPIO connector

Solderless breadboard

Connect power, ground

Connect an LED

This LED will stay on (if the RPi is).

Connect the LED to pin 18

Blink an LED on pin 18

```
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
pin = 18
GPIO.setup(pin, GPIO.OUT)
while True:
    GPIO.output(pin, 0)
    time.sleep(.5)
    GPIO.output(pin, 1)
    time.sleep(.5)
```

(This is *led.py* in the source.)

BCM vs BOARD numbering

BCM: functional notation

BOARD: actual pin numbers on the RPi.

BOARD sounds appealing, but doesn't save you from needing GPIO numbers.

HC-SR04 Sonar Rangefinder

Emits a pulse of sound; times how long the sound takes to return.

About \$5 on Amazon.

codechix

Using the HC-SR04

Write to the **Trigger**;

read **Echo** to learn when the sound pulse returns.

One problem:

The HC-SR04 operates on 5 volts.

The Raspberry Pi's GPIO pins can only handle 3 volts or less.

We'll use a *voltage divider* (2 resistors) to turn 5V into 3V.

Connecting the HC-SR04

Be careful of which resistor goes where!

When ready, test it by running

sudo python HC SR04.py

Running the PiDoorbell app

Local mode

```
$ sudo python pidoorbell-recognizer-gpio.py -i -local
Distance: 102.0 inches
102.022406334
Distance: 150.8 inches
150.823360135
Distance: 151.5 inches
151.532743398
Distance: 150.9 inches
150.938192221
Distance: 11.9 inches
11.884047763
    DETECTED AN OBJECT AT -- 11.884047763 -- INCHES **
Distance: 11.8 inches
11.7531177204
```

Adding networking ...

Cameras

USB Webcam

Shows up as /dev/video0

To take a still image: fswebcam

To take a video: ffmpeg or avconv

Packages you'll need:

Raspberry Pi Camera

Shows up as /dev/fb0

To take a still image: raspistill

To take a video: raspivid

Or use the *picamera* package:

\$ sudo apt-get install python-picamera

. . .

