Each sector includes **key activities**, **emission sources**, **required fields**, **formulas**, and **emission factors** (based on IPCC, EPA, and industry standards). Use this as a template for precise calculations.

1. Extraction Sector

Activities: Open-cast (OC) and underground (UG) coal mining.

Emission Sources:

- Fuel combustion (diesel, gasoline).
- Methane (CH₄) fugitive emissions (UG mining).
- Electricity for equipment.

Field	Description	Formula	Emission Factor (EF)
Diesel consumed (liters)	Fuel used in excavators, dumpers, loaders	Diesel (L) × EF_diesel	2.68 kg CO ₂ /L (EPA)
Methane released (m³)	CH₄ from UG mining (ventilation/degasification)	CH ₄ (m ³) × GWP_CH ₄	GWP_CH ₄ = 28 (100- year horizon, IPCC AR6)
Electricity (kWh)	Energy for pumps, ventilation, lighting	Electricity (kWh) × EF_grid	EF_grid (e.g., India: 0.82 kg CO ₂ /kWh, CEA 2023)

2. Overburden (OB) Removal Sector

Activities: Stripping soil/rock, blasting, hauling.

Emission Sources:

- Diesel for drilling, blasting, and haul trucks.
- CO₂ from explosives (e.g., ANFO).

Field	Description	Formula	Emission Factor (EF)
Diesel for drilling (L)	Fuel for drill rigs	Diesel (L) × EF_diesel	2.68 kg CO₂/L
Explosives used (kg)	ANFO or other explosives	Explosives (kg) × EF_ANFO	0.39 kg CO₂/kg (ANFO detonation)

Field	Description	Formula	Emission Factor (EF)
OB hauled (tonnes)	Overburden transported by trucks	Distance (km) × Fuel efficiency (L/km) × EF_diesel	Fuel efficiency = 0.5 L/km (40-tonne truck)

3. Coal Processing & Handling Sector

Activities: Crushing, washing, conveying.

Emission Sources:

- Electricity for crushers, washers, conveyors.
- Fugitive coal dust (CO₂ equivalent).

Field	Description	Formula	Emission Factor (EF)
Electricity (kWh)	Energy for processing plants	Electricity (kWh) × EF_grid	0.82 kg CO ₂ /kWh (India grid)
Coal washed (tonnes)	Fugitive CH₄ from coal washing	Coal (tonnes) × EF_fugitive_CH ₄	0.02 kg CH ₄ /tonne (IPCC Tier 1)

4. Waste Management Sector

Activities: Storing OB, tailings, and slurry.

Emission Sources:

- Methane from tailings ponds.
- Diesel for waste transport.

Field	Description	Formula	Emission Factor (EF)
Tailings volume (m³)	CH₄ from anaerobic decomposition	Tailings (m³) × EF_tailings_CH₄	0.05 kg CH ₄ /m³ (site- specific measurement)
Diesel for transport (L)	Fuel for waste trucks	Diesel (L) × EF_diesel	2.68 kg CO ₂ /L

5. Support Infrastructure Sector

Activities: Workshops, power generation, water pumping.

Emission Sources:

- Diesel generators.
- Grid electricity.

Field	Description	Formula	Emission Factor (EF)
Diesel for generators (L)	Backup power generation	Diesel (L) × EF_diesel	2.68 kg CO ₂ /L
Workshop electricity (kWh)	Energy for repairs	Electricity (kWh) × EF_grid	0.82 kg CO ₂ /kWh

6. Coal Dispatch Sector

Activities: Weighing, stockpiling, transporting.

Emission Sources:

- Diesel for trucks/rail.
- Electricity for conveyors.

Field	Description	Formula	Emission Factor (EF)
Diesel for trucks (L)	Fuel for coal transport	Distance (km) × Fuel efficiency (L/km) × EF_diesel	0.5 L/km (typical coal truck)
Rail transport (tonne-km)	Emissions from rail (diesel/electric)	Tonne-km × EF_rail	0.025 kg CO₂/tonne- km (Indian Railways)

7. Rehabilitation Sector

Activities: Reforestation, land restoration.

Emission Sources:

- Diesel for replanting machinery.
- Carbon sequestration (offset).

Field	Description	Formula	Emission Factor (EF)
Diesel for machinery (L)	Fuel for bulldozers, seeders	Diesel (L) × EF_diesel	2.68 kg CO ₂ /L

Field	Description	Formula	Emission Factor (EF)
Trees planted (count)	CO ₂ sequestration (offset)	Trees × Carbon_per_tree	22 kg CO ₂ /tree/year (IPCC)

8. Exploration Sector

Activities: Drilling, surveying.

Emission Sources:

• Diesel for drills/vehicles.

Field	Description	Formula	Emission Factor (EF)
Diesel for drills (L)	Fuel for borehole drilling	Diesel (L) × EF_diesel	2.68 kg CO ₂ /L
Vehicle fuel (L)	Transport of crew/equipment	Distance (km) × Fuel efficiency (L/km) × EF_diesel	0.12 L/km (4x4 vehicle)

Key Notes

- 1. **Emission Factors (EF)**: Use local/regional data where available (e.g., India's CEA for grid electricity).
- 2. **GWP (Global Warming Potential)**: Convert CH_4 to CO_2 e using GWP = 28 (IPCC AR6).
- 3. Activity Data: Collect from fuel invoices, equipment logs, or IoT sensors.

Example Calculation

Scenario: Open-cast mining of Seam X (Choritand Tilaya):

• Diesel consumed: 10,000 L/month.

• Electricity used: 50,000 kWh/month.

• **OB hauled**: 100,000 tonnes (9.28 Cum/te stripping ratio).

Source	Calculation	Emissions (kg CO ₂ e)
Diesel	10,000 L × 2.68 kg/L	26,800

Source Calculation Emissions (kg CO₂e)

Electricity 50,000 kWh × 0.82 kg/kWh 41,000

Total 67,800 kg CO₂e/month

1. Organizational Structure Setup

mermaid

Copy

graph TD

A[Super Administrator] --> B[Extraction Sector Manager]

A --> C[Overburden Sector Manager]

A --> D[Processing Sector Manager]

B --> E[Field Engineers]

C --> F[Blasting Crew]

D --> G[Processing Plant Operators]

2. Practical Implementation Steps

Step 1: Administrator Setup

1. Digital Platform Setup

o Use existing tools: Microsoft Power Apps + SharePoint

o Custom solution: SAP Sustainability Module

o Open source: OpenProject + Metabase

2. Sector Account Creation

o Create unique credentials for each sector

o Example: Extraction_Sector01@minename.com

o Set permissions: Data entry only for their sector

Step 2: Physical Implementation

1. Sector Manager Onboarding

- o Conduct training sessions on:
- Data collection protocols
- Digital platform usage
- Safety procedures

2. Field Equipment Setup

- Install IoT sensors on:
- Diesel generators
- Conveyor belts
- Ventilation systems
- o Connect to central monitoring system

3. Workflow Implementation

Administrator's Responsibilities

- 1. Create sector accounts in the system
- 2. Assign geographical boundaries using GPS coordinates
- 3. Set emission thresholds for each sector
- 4. Monitor real-time dashboards

Sector Manager's Daily Work

1. Data Collection

- o Manual entry: Fuel invoices, equipment logs
- o Automated: Sensor data from connected devices

2. Emission Calculation

plaintext

Copy

Daily Extraction Sector Calculation:

- Diesel Used: 1500L × 2.68 = 4020 kg CO₂

- Electricity: 5000 kWh × 0.82 = 4100 kg CO₂

- Methane Released: 200 m³ × 28 = 5600 kg CO₂e

Total Daily Emissions: 13,720 kg CO₂e

3. Reporting

- o Submit weekly reports through the digital platform
- Flag anomalies (e.g., sudden emission spikes)

4. Practical Tools & Methods

A. Access Management

- Microsoft Entra ID (Azure Active Directory)
 - o Create security groups: Sector_Extraction, Sector_Overburden
 - Assign granular permissions
 - o Enable MFA for all accounts

B. Data Collection

- Field Devices
 - o Fuel flow meters with GSM connectivity
 - o Methane detectors with data logging
 - Smart electricity meters
- Mobile Apps
 - Develop custom Power Apps interface:

plaintext

Copy

Extraction Sector Data Entry Form:

- [] Diesel Consumption (L)
- [] Methane Levels (ppm)
- [] Equipment Runtime (hrs)

[SUBMIT]

C. Physical Verification

- QR Code System
 - o Tag equipment with unique IDs
 - o Scan during audits to verify usage data
- Fuel Reconciliation
 - o Compare sensor data with procurement records

5. Security & Compliance

1. Access Control

- o Biometric authentication for sensitive areas
- Time-bound access permissions
- Activity logging with Splunk/SolarWinds

2. Data Security

- o Encrypt field-to-server communications
- o Maintain air-gapped backups
- o Implement version control for calculations

3. Compliance

- Automate report generation for:
- o CDP (Carbon Disclosure Project)
- o GRI (Global Reporting Initiative)
- National Mining Association standards

6. Real-World Example: Coal India Limited

Implementation Flow

- 1. Administrator creates sector accounts on CIL's portal
- 2. Assigns sector managers to specific mines

3. Sector teams:

- o Collect daily data from Draglines (OB removal)
- Monitor CH₄ levels in underground mines
- Track diesel usage in dumpers
- 4. System auto-generates reports for:
 - Monthly sustainability reports
 - Government compliance filings
 - Investor ESG disclosures

7. Maintenance & Support

1. Field Support

- o Deploy technical teams for sensor maintenance
- Conduct quarterly calibration checks

2. Software Updates

- o Push emission factor updates via MDM solutions
- o Maintain version compatibility across sectors

3. Continuous Training

- o Monthly workshops on:
- New regulations (e.g., updated GWP values)
- Equipment handling best practices
- o Data quality assurance

This implementation ensures:

- Clear accountability chain
- · Accurate emission tracking
- Regulatory compliance
- Operational efficiency
- Transparent reporting

What Are Carbon Credits?

- 1 carbon credit = 1 tonne of CO₂ offset (removed from the atmosphere).
- Mines **earn** credits by reducing emissions below a baseline or **buy** them to offset emissions.

How You Can Use It Practically

Let's say your system gives a mine the following output:

plaintext

CopyEdit

Total CO₂ Emissions = 12,000 tonnes/year

Now, based on **baseline targets** or **government limits**, you can:

- 1. **Set a Target** (E.g., 10,000 tonnes/year for that mine type/size)
- 2. If actual > target → **Deficit** → Needs to buy credits:

java

CopyEdit

Carbon Credits to Buy = (12,000 - 10,000) = 2,000

3. If actual < target → **Surplus** → Earn credits:

java

CopyEdit

Carbon Credits Earned = (10,000 - 8,000) = 2,000

Implementation Steps

- 1. Store Baseline Targets per mine type/region
- 2. Calculate Emission Difference = Actual Target
- 3. Add a Credit Status Indicator:
 - o Red → Need Credits
 - o Green → Surplus

4. **Optional**: Integrate a fake or real credit marketplace API (later stage)

Part 2: Machine Learning for Neutrality Pathways

Idea

Use ML to **suggest how a mine can reduce its emissions**, based on:

- Activity breakdowns (transport, equipment, etc.)
- Similar mines with lower emissions
- Historical trends

ML Techniques You Can Use

1. Clustering (KMeans):

- Group similar mines based on their emissions and activities.
- Help mine admins **compare** themselves to better-performing peers.

2. Decision Trees:

- If you have activity-level inputs (e.g., fuel usage, equipment hours), train a model to **predict high/low emissions**.
- The model can then say:

"Reducing diesel usage in transport by 15% may reduce emissions by 800 tonnes."

3. Regression:

- Predict CO₂ emissions from activity data.
- Then create a simulation:

"What happens if I reduce transport distance by 10%?"

o Data Needed

To train ML models:

- Mine type, coal production
- Activity-specific data (excavation, transport fuel, equipment runtime, etc.)

Emissions (your current output)

Even if you don't have real-world training data, you can:

- Generate synthetic data to simulate a prototype
- Fine-tune later with real mine data when available

mplementation Flow:

- 1. Collect activity-level data → already part of your sector form
- 2. Use that as **features** (X) and carbon emissions as **target** (y)
- 3. Train ML model (start with Decision Tree / Regression)
- 4. On mine dashboard, add a "Suggestions for Neutrality" section:
 - o "Reduce equipment idle hours by 20% → ~300 tonnes CO_2 saved"
 - \circ "Switch to electric transport → ~1,000 tonnes CO₂ saved"

🚺 Dashboard Example Additions

- Carbon Credit Meter Shows buy/sell status
- ML-Based Recommendations Panel
 - o "3 steps to reduce emissions"
 - "Similar mine X achieved 15% reduction by doing Y"

Carbon emission Offset:

Mining companies are implementing a range of carbon offset strategies to reduce their greenhouse gas emissions. Here's a comprehensive overview:

1. Carbon Mineralization via Mine Tailings

Overview: Utilizing magnesium-rich mine tailings to absorb atmospheric CO₂, forming stable carbonates.

Example: BHP's Nickel West mine in Western Australia captures approximately 40,000 tonnes of CO₂ annually through natural mineralization, offsetting about 11% of the mine's emissions. Carbon Credits

2. Methane Capture in Underground Mining

Overview: Capturing methane emissions from underground mines to prevent their release into the atmosphere.

Example: Implementing methane capture systems can significantly reduce greenhouse gas emissions, as methane has a global warming potential 28 times greater than CO₂.

3. Reforestation and Afforestation Projects

Overview: Planting trees to sequester CO₂ from the atmosphere.

Example: Reforestation projects can remove significant amounts of CO₂ annually, depending on the scale and tree species planted.

4. Renewable Energy Adoption

Overview: Transitioning mining operations to renewable energy sources like solar and wind.

Example: Rio Tinto's solar farm at the Weipa bauxite mine in Australia has reduced carbon emissions by 30%. <u>baresyndicate</u>

5. Electrification of Mining Equipment

Overview: Replacing diesel-powered machinery with electric or hydrogen-powered alternatives.

Example: Anglo American introduced a hydrogen-powered haul truck, reducing diesel use on-site by up to 80%. <u>baresyndicate</u>

6. Carbon Capture and Storage (CCS)

Overview: Capturing CO₂ emissions from industrial processes and storing them underground. <u>baresyndicate+1engisphere.com+1</u>

Example: Glencore's CCS projects at Mount Isa Mines in Australia capture CO₂ from copper smelting, significantly reducing emissions. <u>baresyndicate</u>

7. Blockchain for Carbon Credit Transparency

Overview: Using blockchain technology to track and verify carbon credits, ensuring transparency and preventing double-counting. <u>WIRED</u>

Example: Toucan's platform standardizes carbon credits into tokens on a unified blockchain registry, facilitating transparent trading. <u>WIRED</u>

8. Circular Economy Initiatives

Overview: Reusing mining waste and incorporating recycled materials into operations to reduce emissions.engisphere.com

Example: Companies are exploring ways to repurpose tailings and other waste materials, contributing to emission reductions. engisphere.com

9. Automation and Al Integration

Overview: Implementing automation and AI to optimize energy usage and reduce emissions.engisphere.com

Example: All and machine learning technologies help monitor and minimize emissions in real-time, enhancing operational efficiency. <u>engisphere.com</u>

10. Carbon Credit Generation and Trading

Overview: Generating carbon credits through various offset projects and trading them in carbon markets.wsj.com

Example: BHP's carbon mineralization efforts could potentially earn up to \$1.4 million annually through Australian Carbon Credit Units (ACCUs). MINING.COM+2Carbon Credits+2globalcarbonfund.com+2