MATH410: Homework 1

James Zhang* February 7, 2024

1.

Solution. Like the hint says, rather than look considering eight separate cases, we will apply the Triangle Inequality twice.

Note that

$$|a + b + c| = |(a + b) + c|$$

such that $a + b \in \mathbb{R}$ if $a, b \in \mathbb{R}$ and this is by the Positivity Axiom of the Real Numbers, \mathbb{R} . Thus, since $(a + b), c \in \mathbb{R}$, we can apply the Triangle Inequality and obtain

$$|(a+b)+c| < |a+b|+|c|$$

Observe the term |a+b| term. Since $a, b \in \mathbb{R}$, we can apply the Triangle Inequality once more to get

$$|a+b| + |c| \le |a| + |b| + |c|$$

and thus we've shown that

$$|a+b+c| < |a| + |b| + |c|$$

as desired. Now for the inductive part of the prove, we wish to prove that

$$|a_1 + \cdots + a_n| \leq |a_1| + \cdots + |a_n| \ \forall \ n \in \mathbb{N}, a_i \in \mathbb{R}$$

Base cases: $n = 1 \implies |a_1| \le |a_1|$ and $n = 2 \implies |a_1 + a_2| \le |a_1| + |a_2|$ by definition of Triangle Inequality.

Inductive hypotheses: let us assume that $|a_1 + \cdots + a_n| \leq |a_1| + \cdots + |a_n| \ \forall \ n \in \mathbb{N}, a_i \in \mathbb{R}.$

Inductive step: Now we will show that $|a_1 + \cdots + a_n + a_{n+1}| \le |a_1| + \cdots + |a_n| + |a_{n+1}|$. Starting with the left side of this inequality.

$$|a_1 + \cdots + a_n + a_{n+1}| = |(a_1 + \cdots + a_n) + a_{n+1}|$$

Note that $(a_1 + \cdots + a_n) \in \mathbb{R}$ by the Positivity Axiom of \mathbb{R} and $a_{n+1} \in \mathbb{R}$. Therefore, we can apply the Triangle Inequality to get

$$|(a_1 + \dots + a_n) + a_{n+1}| \le |a_1 + \dots + a_n| + |a_{n+1}|$$

By our Inductive step, we know that $|a_1 + \cdots + a_n| \leq |a_1| + \cdots + |a_n|$ so

$$|a_1 + \dots + a_n| + |a_{n+1}| \le |a_1| + \dots + |a_n| + |a_{n_1}|$$

and thus we have showed that

$$|a_1 + \dots + a_n + a_{n+1}| \le |a_1| + \dots + |a_n| + |a_{n+1}|$$

and this completes the proof.

^{*}Email: jzhang72@terpmail.umd.edu

Solution.

a.
$$\{\frac{1}{n} \mid n \in \mathbb{N}\}$$

An example of an upper bound of this set is 2. An example of a lower bound of this set is -1. The supremum of this set is 1. The infemum of this set is 0.

b.
$$\{1 - \frac{1}{3^n} \mid n \in \mathbb{N}\}$$

Example upper bound is 2. Example lower bound is -2. Supremum is 1. Infemum is $\frac{2}{3}$ if we don't consider 0 to be in \mathbb{N} . If it is, then the infemum is 0.

c.
$$\left\{\cos\left(\frac{n\pi}{3}\right) \mid n \in \mathbb{N}\right\}$$

An upper bound is 2. An lower bound is -2. The supremum is 1, and the infemum is -1.

Proof. Let us consider a bounded, nonempty set of real numbers S such that $\inf S = \sup S$. On the contrary, assume S contains 2 or more numbers. Let us denote two arbitrary elements of the set as $a,b \in \mathbb{R}$ such that $a \neq b$, otherwise they are the same element in the set. Without Loss of Generality, let us say that a < b. By the definition of bounded, $\exists r_1, r_2$ such that $r_1 \leq a < b \leq r_2$. Therefore, $r_1 < r_2$. Note that the infemum and supremum are strict bounds on the set S. Let $r_1 = \inf S$ and $r_2 = \sup S$.

By our assumption, inf $S = \sup S \implies r_1 = r_2$, which is a contradiction since we previously showed that $r_1 < r_2$. Thereofre, S must only contain one number.

4a. $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$

Sketch: above, we want to show that $\left|\frac{1}{\sqrt{n}}-0\right|<\epsilon$

$$|\frac{1}{\sqrt{n}}| = \frac{1}{\sqrt{n}} < \epsilon \implies \frac{1}{\epsilon^2} < n$$

Thus, let $N = \frac{1}{\epsilon^2} < n$.

Proof. Let $\epsilon > 0$ be given. By A.P., $\exists N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon^2$

$$\left| \frac{1}{\sqrt{n}} - 0 \right| = \left| \frac{1}{\sqrt{n}} \right| = \frac{1}{\sqrt{n}}$$

since square root of a real number is positive. From here, we need to relate n to N and then N to ϵ . Note that $n \geq N$ implies $\frac{1}{n} \leq \frac{1}{N} \implies \frac{1}{\sqrt{n}} \leq \frac{1}{\sqrt{N}}$ and $\frac{1}{N} < \epsilon^2 \implies \frac{1}{\sqrt{N}} < \epsilon$ Thus,

$$\frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N}} < \epsilon$$

Therefore, we've shown that

$$\left|\frac{1}{\sqrt{n}} - 0\right| < \epsilon \ \forall \ n \ge N \implies \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

4b. $\lim_{n \to \infty} \frac{1}{n+5} = 0$

Sketch: we want to show that $\left|\frac{1}{n+5} - 0\right| < \epsilon$

$$\left| \frac{1}{n+5} - 0 \right| = \left| \frac{1}{n+5} \right|$$

Note that the denominator will always be postive, so

$$= \frac{1}{n+5} < \epsilon \implies \frac{1}{\epsilon} < n+5 \implies \frac{1}{\epsilon} - 5 < \frac{1}{\epsilon} < n$$

Note that we can get rid of the minus 5 because $\frac{1}{\epsilon} > 0$, and for any number $a \in \mathbb{R}^+$, a-5 < a. Let us choose $N = \frac{1}{\epsilon} < n$.

Proof. Let $\epsilon > 0$ be given. By A.P., $\exists N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon \implies$

$$\left|\frac{1}{n+5} - 0\right| = \left|\frac{1}{n+5}\right| = \frac{1}{n+5} < \frac{1}{n}$$

Recall that $n \ge N$ and so $\frac{1}{n} \le \frac{1}{N}$

$$\frac{1}{n} \le \frac{1}{N} < \epsilon$$

Therefore, we've shown that

$$\left|\frac{1}{n+5} - 0\right| < \epsilon \ \forall \ n \ge N \implies \lim_{n \to \infty} \frac{1}{n+5} = 0$$

as desired. \Box

5a. Sketch: From calculus, we know the limit is 1, but we will prove it rigorously. We want to show that $\left|\frac{n^2}{n^2+n}-1\right|<\epsilon$.

$$\left|\frac{n^2}{n^2+n}-1\right| = \left|\frac{n^2}{n^2+n}-\frac{n^2+n}{n^2+n}\right| = \left|-\frac{n}{n^2+n}\right|$$

Both the numerator and denomintor will always be positive, so

$$\left| -\frac{n}{n^2+n} \right| = \frac{n}{n^2+n} < \frac{n}{n^2} = \frac{1}{n} < \epsilon \implies \frac{1}{\epsilon} < n$$

Thus let us choose $N = \frac{1}{\epsilon}$.

Proof. Let $\epsilon > 0$ be given. By A.P., $\exists N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$ which implies that

$$\left|\frac{n^2}{n^2+n}-1\right| = \left|-\frac{n}{n^2+n}\right| = \frac{n}{n^2+n} < \frac{n}{n^2} = \frac{1}{n}$$

Look at the above sketch for more detail and for additional logic. Now, recall that $n \geq N$ which implies that

$$\frac{1}{n} \le \frac{1}{N} < \epsilon$$

Therefore,

$$\left|\frac{n^2}{n^2+n}-1\right|<\epsilon\;\forall\;n\geq\frac{1}{\epsilon}\implies\lim_{n\to\infty}\frac{n^2}{n^2+n}=1$$

as desired.

5b. Sketch: We want to show that $\left|\frac{\sin n}{n} - 0\right| < \epsilon$.

$$\left|\frac{\sin n}{n} - 0\right| = \left|\frac{\sin n}{n}\right| \le \left|\frac{1}{n}\right| = \frac{1}{n} < \epsilon \implies$$

Choose $N = \frac{1}{\epsilon}$

Proof. Let $\epsilon > 0$ be given. By A.P., $\exists N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$ and so

$$\left|\frac{\sin n}{n} - 0\right| = \left|\frac{\sin n}{n}\right| \le \left|\frac{1}{n}\right|$$

since $|\sin n| \le 1 \ \forall \ n$.

$$\left|\frac{1}{n}\right| = \frac{1}{n}$$

Recall that $n \ge N \implies \frac{1}{n} \le \frac{1}{N}$.

$$\frac{1}{n} \le \frac{1}{N} < \epsilon$$

by our choice of N. Therefore, we have shown that given some $\epsilon > 0$, we can find an $\frac{1}{N} < \epsilon$ such that $\forall n \geq N$

$$\left|\frac{\sin n}{n} - 0\right| < \epsilon \ \forall \ n \ge N \implies \lim_{n \to \infty} \frac{\sin n}{n} = 0$$

Proof.

We are given that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = s$. By the definition of convergence,

$$\forall \epsilon > 0 \exists N_1 \in \mathbb{N} \text{ s.t. } \forall n > N_1, |a_n - s| < \epsilon$$

Therefore,

$$|a_n - s| < \epsilon \implies -\epsilon < a_n - s < \epsilon$$

 $\forall n \geq N_1$. Similarly, for the same $\epsilon > 0$, we can say that

$$-\epsilon < b_n - s < \epsilon$$

 $\forall n \geq N_2$. Furthermore, since $a_n \leq s_n \leq b_n \ \forall n$, we can subtract s from all terms such that we obtain

$$a_n - s \le s_n - s \le b_n - s \ \forall \ n \ge N$$

Choose $N = \max(N_1, N_2)$. Therefore, we can say that

$$-\epsilon < a_n - s \le s_n - s \le b_n - s < \epsilon$$
$$-\epsilon < s_n - s < \epsilon$$
$$|s_n - s| < \epsilon$$

for all $n \geq N$, and the last step is by definition of absolute value. Now, by the definition of convergence, since for any $\epsilon > 0$, there exists some $N = \max(N_1, N_2) \in \mathbb{N}$ such that $\forall n \geq N$,

$$|s_n - s| < \epsilon \implies \lim_{n \to \infty} a_n = s$$

and this completes the proof.

Proof.

Note that this is an "if and only if" statement, so we must prove both directions. \Longrightarrow Suppose we are given that $\{c_n\}$ converges to c. By the definition of convergence, given $\epsilon > 0$

$$|c_n - c| < \epsilon$$

for all $n \geq N, N \in \mathbb{N}$. Note that we can expand the expression in the absolute value to be

$$|c_n - c - 0| = |(c_n - c) - 0| < \epsilon$$

which satisfies the structure $|a_n - L| < \epsilon$, where here $a_n = c_n - c$ and L = 0. Therefore, $\lim_{n \to \infty} c_n - c = 0$. Note that the above is a strict equality, but we can also use the Comparison Lemma since given our $\epsilon > 0$ and our choice of N,

$$|(c_n - c) - 0| \le 1|c_n - c| \ \forall \ n \ge N$$

Since there exists some $a = 1, a \in \mathbb{R}^+$, then we conclude that $\{c_n - c\}$ converges to 0.

 \Leftarrow Supose we are given instead that $c_n - c$ converges to 0. By the definition of convergnce, given some $\epsilon > 0$, we write that

$$|(c_n - c) - 0| < \epsilon$$

for all $n \geq N, N \in \mathbb{N}$. Simplifying the expression in absolute value, we get

$$|(c_n - c) - 0| = |c_n - c| < \epsilon$$

which again satisfies the definition of convergence where $a_n = c_n$ and L = c. Once more, we could have used the Comparison Lemma since

$$|c_n - c| \le 1|(c_n - c) - 0| \ \forall \ n \ge N$$

since $\exists 1 \in \mathbb{R}^+$, then we conclude that $\{c_n\}$ converges to c.

Thus, we have proven that the sequence $\{c_n\}$ converges to c iff the sequence $\{c_n - c\}$ converges to 0, as desired.