Directional Solidification Model for Additive Manufacturing Testbed Problem

Yigong Qin and Yuanxun Bao

May 20, 2020

1 Microscopic model

We consider the Echebarria model [?, ?, ?, ?] with frozen temperature approximation, i.e., fixed G, R,

$$T(z,t) = T_0 + G(z - Rt), \tag{1}$$

where $T_0 = T_m - |m|c_l^0$ and $c_l^0 = c_{\infty}/k$.

The compute set of phase-field equations are

$$\tau_{\phi}(\hat{n}, z) \frac{\partial \phi}{\partial t} = W_0^2 \left\{ \nabla \cdot \left[a_s(\hat{n})^2 \nabla \phi \right] + \partial_x \left(|\nabla \phi|^2 a_s(\hat{n}) \frac{\partial a_s(\hat{n})}{\partial (\partial_x \phi)} \right) + \partial_z \left(|\nabla \phi|^2 a_s(\hat{n}) \frac{\partial a_s(\hat{n})}{\partial (\partial_z \phi)} \right) \right\}$$

$$+ \phi - \phi^3 - \lambda (1 - \phi^2)^2 \left(U + \frac{z - Rt}{l_T} \right), \tag{2}$$

$$\tau_U \frac{\partial U}{\partial t} = \nabla \cdot [D_l d(\phi) \nabla U + \vec{j}_{at}] + [1 + (1 - k)U] \frac{1}{2} \frac{\partial \phi}{\partial t}, \tag{3}$$

where

$$U = \frac{1}{1-k} \left(\frac{c/c_l^0}{(1-\phi)/2 + k(1+\phi)/2} - 1 \right), \quad d(\phi) = (1-\phi)/2.$$
 (4)

Other parameters and terms are defined as

$$\tau_{\phi}(\hat{n}, z) = \tau_0(a_s(\hat{n}))^2 \left[1 - (1 - k) \frac{(z - Rt)}{l_T} \right]$$
 (5)

$$\tau_U = \frac{1+k}{2} - \frac{1-k}{2}\phi \tag{6}$$

$$\vec{j}_{at} = \frac{1}{2\sqrt{2}}W_0[1 + (1-k)U]\frac{\nabla\phi}{|\nabla\phi|}\frac{\partial\phi}{\partial t}$$
(7)

$$a_s(\hat{n}) = (1 - 3\delta) \left\{ 1 + \frac{4\delta}{1 - 3\delta} (\hat{n}_x^4 + \hat{n}_z^4) \right\}$$
 (8)

$$\hat{n} = \frac{\nabla \phi}{|\nabla \phi|} \tag{9}$$

$$l_T = \frac{|m|c_{\infty}(1/k - 1)}{G} \tag{10}$$

$$\lambda = \frac{5\sqrt{2}}{8} \frac{W_0}{d_0} \tag{11}$$

$$d_0 = \frac{\Gamma}{|m|c_{\infty}(1/k - 1)} = \frac{\gamma T_m/L}{|m|c_{\infty}(1/k - 1)}$$
(12)

$$\tau_0 = \frac{0.6267\lambda W_0^2}{D_l} \tag{13}$$

The boundary conditions are periodic in the x-direction and no-flux in the z-direction.

1.1 Non-dimensionalized equations

We use the interfacial width W_0 as the length scale and τ_0 as the time scale to non-dimensionalize the equations:

$$\left[1 - (1 - k)\frac{(z - \tilde{R}t)}{\tilde{l}_{T}}\right] a_{s}(\hat{n}^{2})\frac{\partial\phi}{\partial t} = \nabla \cdot \left[a_{s}(\hat{n})^{2}\nabla\phi\right] + \\
\partial_{x}\left(|\nabla\phi|^{2}a_{s}(\hat{n})\frac{\partial a_{s}(\hat{n})}{\partial(\partial_{x}\phi)}\right) + \partial_{z}\left(|\nabla\phi|^{2}a_{s}(\hat{n})\frac{\partial a_{s}(\hat{n})}{\partial(\partial_{z}\phi)}\right) \\
+ \phi - \phi^{3} - \lambda(1 - \phi^{2})^{2}\left(U + \frac{z - \tilde{R}t}{\tilde{l}_{T}}\right) \qquad (14)$$

$$\left(\frac{1 + k}{2} - \frac{1 - k}{2}\phi\right)\frac{\partial U}{\partial t} = \nabla \cdot \left[\tilde{D}_{l}d(\phi)\nabla U + \vec{j}_{at}\right] + \left[1 + (1 - k)U\right]\frac{1}{2}\frac{\partial\phi}{\partial t}, \quad (15)$$

where the non-dimensional parameters are $\tilde{R} = R\tau_0/W_0$, $\tilde{D}_l = D_l\tau_0/W_0^2$ and $\tilde{l}_T = l_T/W_0$.

1.2 Noise

2 Micro model discretization

2.1 ϕ -equation

We first discretize the ϕ -equation in ??. The challenge is to discretize the anisotropic surface tension term. We will make a few simplications. First, note the anisotropic

surface tension can be parametrized by $\theta \equiv \arctan(\phi_y/\phi_x)$, i.e.,

$$a_s(\theta) = 1 + \delta \cos(4\theta) \tag{16}$$

$$a_s'(\theta) = -4\delta \sin(4\theta) \tag{17}$$

By using some trigonometric identities (check), and $\cos(\theta) = \phi_x/|\nabla \phi|$ and $\sin(\theta) = \phi_y/|\nabla \phi|$, we have

$$\cos(4\theta) = 1 - 8\cos^2(\theta)\sin^2(\theta) = 1 - 8\frac{\phi_x^2 \phi_z^2}{|\nabla \phi|^4}$$
(18)

$$\sin(4\theta) = 4\sin(\theta)\cos(\theta)(\cos^2(\theta) - \sin^2(\theta)) = 4\frac{(\phi_x^3\phi_z - \phi_x\phi_z^3)}{|\nabla\phi|^4}.$$
 (19)

We can also write (see Appendix B of [?])

$$\partial_x \left(|\nabla \phi|^2 a_s(\hat{n}) \frac{\partial a_s(\hat{n})}{\partial (\partial_x \phi)} \right) = \partial_x (-a_s'(\theta) a_s(\theta) \partial_z \phi) \tag{20}$$

$$\partial_z \left(|\nabla \phi|^2 a_s(\hat{n}) \frac{\partial a_s(\hat{n})}{\partial (\partial_z \phi)} \right) = \partial_z (a_s'(\theta) a_s(\theta) \partial_x \phi). \tag{21}$$

Therefore,

$$\nabla \cdot \left[a_s(\hat{n})^2 \nabla \phi \right] + \partial_x \left(|\nabla \phi|^2 a_s(\hat{n}) \frac{\partial a_s(\hat{n})}{\partial (\partial_x \phi)} \right) + \partial_z \left(|\nabla \phi|^2 a_s(\hat{n}) \frac{\partial a_s(\hat{n})}{\partial (\partial_z \phi)} \right)$$

$$= \partial_x \underbrace{\left[a_s^2(\theta) \partial_x \phi - a_s'(\theta) a_s(\theta) \partial_z \phi \right]}_{-:F} + \partial_z \underbrace{\left[a_s^2(\theta) \partial_z \phi + a_s'(\theta) a_s(\theta) \partial_x \phi \right]}_{-:F}$$
(22)

We define $\phi(i,j)$ on the cell nodes. Therefore, ?? is discretized as

$$\frac{F(i+1/2,j) - F(i-1/2,j)}{\Delta x} + \frac{J(i,j+1/2) - J(i,j-1/2)}{\Delta z}$$
(23)

Note F, J are defined on cell edges. For example, to evaluate $F(i + \frac{1}{2}, j)$, we need to evaluate

$$a_s(\theta) \bigg|_{i+1/2,j} = \left(1 - 3\delta + 4\delta \frac{\phi_x^4 + \phi_z^4}{|\nabla \phi|^4}\right) \bigg|_{i+1/2,j}$$
 (24)

$$a_s'(\theta)\Big|_{i+1/2,j} = -16\delta \frac{(\phi_x^3 \phi_z - \phi_x \phi_z^3)}{|\nabla \phi|^4}\Big|_{i+1/2,j}$$
 (25)

$$\left. \partial_x \phi \right|_{i+1/2, i} = \frac{\phi_{i+1, j} - \phi_{i, j}}{\Delta x} \tag{26}$$

$$\partial_z \phi \bigg|_{i+1/2,j} = \frac{\phi_{i,j+1} + \phi_{i+1,j+1} - \phi_{i,j-1} - \phi_{i+1,j-1}}{4\Delta z}$$
 (27)

Note evaluating $\partial_z \phi|_{i+1/2,j}$ requires averaging nearby cells. Please work out the details for F(i-1/2,j), J(i,j+1/2) and J(i,j-1/2). Many of them are redundant. I think you only need $\partial_x \phi|_{i,j+1/2}$ and $\partial_z \phi|_{i,j+1/2}$.

2.2 Divide-by-zero in anisotropy

On page 66 of [?], whenever $|\nabla \phi(i,j)|^2 \le \epsilon$, say $\epsilon = 10^{-8}$, we just set

$$a_s(\hat{n}) = 1 - 3\delta,$$

$$a_s'(\hat{n}) = 0.$$

In [?], Karma explained the need for $a_s(\hat{n})$ in the definition τ_{ϕ} on the LHS of ?? because it is related to the correct kinetics in the Stefan problem. Fortunately this term is never zero so it is safe to divide.

2.3 Misorientation

We denote α_0 the misorientation angle, and introduce a rotated coordinate (\tilde{x}, \tilde{z}) ,

$$\begin{pmatrix} \phi_{\tilde{x}} \\ \phi_{\tilde{z}} \end{pmatrix} = \begin{bmatrix} \cos \alpha_0 & -\sin \alpha_0 \\ \sin \alpha_0 & \cos \alpha_0 \end{bmatrix} \begin{pmatrix} \phi_x \\ \phi_z \end{pmatrix}$$
 (28)

$$\cos(4\tilde{\theta}) = \cos(4(\theta - \alpha_0)) = 1 - 8 \frac{\phi_{\tilde{x}}^2 \phi_{\tilde{z}}^2}{|\tilde{\nabla}\phi|^4}$$
 (29)

$$\sin(4\tilde{\theta}) = \sin(4(\theta - \alpha_0)) = 4 \frac{(\phi_{\tilde{x}}^3 \phi_{\tilde{z}} - \phi_{\tilde{x}} \phi_{\tilde{z}}^3)}{|\tilde{\nabla}\phi|^4}$$
 (30)

$$a_s(\widetilde{\nabla}\phi) = a_s(\widetilde{\theta}) = 1 + \delta\cos(4(\theta - \alpha_0)) \tag{31}$$

(32)

We replace $a_s(\nabla \phi)$ in ?? by $a_s(\widetilde{\nabla} \phi)$

$$\left[1 - (1 - k)\frac{(z - \tilde{R}t)}{\tilde{l}_{T}}\right] a_{s}(\widetilde{\nabla}\phi)^{2} \frac{\partial\phi}{\partial t} = \nabla \cdot \left[\tilde{a}_{s}(\widetilde{\nabla}\phi)^{2}\nabla\phi\right] + \phi - \phi^{3} - \lambda(1 - \phi^{2})^{2} \left(U + \frac{z - \tilde{R}t}{\tilde{l}_{T}}\right) \right] \\
\partial_{x} \left(|\nabla\phi|^{2} a_{s}(\widetilde{\nabla}\phi)\frac{\partial a_{s}(\widetilde{\nabla}\phi)}{\partial(\partial_{x}\phi)}\right) + \partial_{z} \left(|\nabla\phi|^{2} a_{s}(\widetilde{\nabla}\phi)\frac{\partial a_{s}(\widetilde{\nabla}\phi)}{\partial(\partial_{z}\phi)}\right) \\
(33)$$

2.4 U-equation

• A routine that takes in edge-centered vector data and outputs the divergence at cell nodes, i.e.,

$$\nabla \cdot \mathbf{u} = \frac{u_{i+1/2,j} - u_{i-1/2,j}}{\Delta x} + \frac{v_{i,j+1/2} - v_{i,j-1/2}}{\Delta z}$$
(34)

• we need the following terms at (i + 1/2, j) and (i, j + 1/2)

$$[(1-\phi)U_x]_{i+1/2,j} = \left(1 - \frac{\phi_{i+1,j} + \phi_{i,j}}{2}\right) \frac{U_{i+1,j} - U_{i,j}}{\Delta x}$$
(35)

$$[(1-\phi)U_z]_{i,j+1/2} = \left(1 - \frac{\phi_{i,j+1} + \phi_{i,j}}{2}\right) \frac{U_{i,j+1} - U_{i,j}}{\Delta z}$$
(36)

(37)

Fig. 1: Misorientation angle $\alpha_0 = \pi/3$

• Similarly, for the anti-trapping flux \vec{j}_{at} , we need

$$\left[[1 + (1-k)U] \frac{\phi_x}{|\nabla \phi|} \frac{\partial \phi}{\partial t} \right]_{i+1/2,j} = \frac{1}{2} \left[[1 + (1-k)U_{i+1,j}] \partial_t \phi_{i+1,j} + [1 + (1-k)U_{i,j}] \partial_t \phi_{i,j} \right] \frac{\phi_x}{|\nabla \phi|} \Big|_{i+1/2,j}$$

$$\left[[1 + (1-k)U] \frac{\phi_y}{|\nabla \phi|} \frac{\partial \phi}{\partial t} \right]_{i,j+1/2} = \frac{1}{2} \left[[1 + (1-k)U_{i,j+1}] \partial_t \phi_{i,j+1} + [1 + (1-k)U_{i,j}] \partial_t \phi_{i,j} \right] \frac{\phi_x}{|\nabla \phi|} \Big|_{i+1/2,j}$$
(39)

2.5 Initial condition

The initial condition is a planar interface perturbed with sinusoidal bumps:

$$\phi(x, z, t = 0) = -\tanh\left(\frac{z - z_0 - A_0 \sin(2n\pi x/L_x)}{W_0}\right),\tag{40}$$

where z_0 is the initial height, A_0 is the amplitude to initial perturbation, and n is the number of sinusoidal bumps.

For the initial condition of U, we set $c_l = c_{\infty}, c_s = kc_l$ [?], which with the definition of $c_l^0 = c_{\infty}/k$, corresponds to $U \equiv -1$ in the whole system!

3 Simulation results

3.1 α_0 =0, no noise

Use parameters in [?], ie. table ??

Fig. 2: sample initial condition for ϕ and U

Table 1: Parameters for SCN.

symbol	meaning	values	units
$c_{\infty}m$	nominal solute concentration	2	К
k	interface solute partition coefficient	0.3	
δ	strength of the surface tension anisotropy	0.007	
Γ	Gibbs-Thompson coefficient	6.48×10^{-8}	Km
d_0	capillary length	1.3×10^{-2}	$\mu\mathrm{m}$
G	thermal gradient	140	K/cm
R	pulling speed	32	$\mu \mathrm{m/s}$
D_l	solute diffusion coefficient	10^{3}	$\mu\mathrm{m}^2/\mathrm{s}$
W_0	interface thickness	40-90	d_0
Δx	mesh size	0.4-0.8	W_0

Table 2: Parameters for Al-Cu.

symbol	meaning	values	units
$c_{\infty}m$	nominal solute concentration	7.8	K
k	interface solute partition coefficient	0.14	
δ	strength of the surface tension anisotropy	0.01	
Γ	Gibbs-Thompson coefficient	2.4×10^{-7}	Km
d_0	capillary length	5×10^{-3}	$\mu\mathrm{m}$
G	thermal gradient	700	K/cm
R	pulling speed	1000	$\mu \mathrm{m/s}$
D_l	solute diffusion coefficient	3000	$\mu\mathrm{m}^2/\mathrm{s}$
W_0	interface thickness	22.6	d_0
Δx	mesh size	0.5	W_0

 ${\bf Table~3:~Simulation~parameters}$

symbol	meaning	values	units
ϵ	divide-by-zero	1e-4	
Δx	mesh size	0.8	W_0
Δt	time step size	0.0005	$ au_0$
Λ	primary spacing	22.5	μm
A_p	amplitude of initial perturbation	0.2	W_0
L_x	length of computation domain	1	Λ
M_t	time steps	120000	

Fig. 3: phase field and concentration for SCN. $W_0 = 108.7 d_0$

- 3.2 Convergence study on Δ x and Δ t
- 3.3 α_0 =30, no noise
- 3.4 α_0 =30, increase primary spacing
- 3.5 Increase number of initial pertubations

Fig. 4: phase field shape convergence for different W0

Fig. 6: tilted growth of Al-Cu alloy at $\alpha_0{=}30^\circ$

(a) ϕ

Fig. 7: tilted growth of Al-Cu alloy at $\alpha_0=30^{\circ}$, larger spacing

Fig. 8: phase field for different Lx with same Λ