Medical Image Analysis and Processing

Medical Image Segmentation
Pixel Classification

Emad Fatemizadeh

Distance/online Course: Session 18

Date: 27 April 2021, 7th Ordibehesht 1400

Contents

- > Definition
- > Mathematical tools
- > Maximum Likelihood Estimation
- > Kernel Density Estimation
- > Gaussian Mixture Model
- > Otsu and Kittler Thresholding
- > Clustering

Pixel Classification - Definition

- > In pixel classification techniques, segmentation depends upon feature space using pixel attributes:
 - -Positions,
 - -Gray level (s),
 - Filter responses,
 - -Statistical features,
 - -Local features (SIFT, ORB, LBP, ...)
- \rightarrow Each pixels represents by a vector of features: $x \in \mathbb{R}^D$

Pixel Classification - Definition

> Multimodal images raw features:

Pixel Classification - Definition

> Single (Multi) modal computation features:

Pixel Classification - Strategies

- > There are two main catergories:
 - -Supervised
 - > Labeled images (atlas) is available (pixel-by-pixel)
 - Unsupervised
 - > A single slice or volume is available

Necessary Tools

- > Mathematical tools:
 - Probability density function estimation
 - Bayesian decision theorem
 - Machine Learning (Supervised and Unsupervised)

Probability density function estimation

- > There is two approaches:
 - -Parametric,
 - -Non-Parametric,
- > Parametric pdf estimation:
 - -Assume a parametric statistic models for data, and estimate the parameters of model, most known method is Maximum Likelihood Estimation (MLE)
- > Non-Parametric:
 - -There is no assumption about data, most known is **K**ernel **D**ensity Estimation (KDE) or Parzen-Rosenblat window methods.

π

Maximum Likelihood Estimation (MLE)

- $\rightarrow input\ data:\ \{x_i\}_{i=1}^N\in\mathbb{R}^D\ (i.i.d\ observation)$
- \Rightarrow assumption: $x_i \sim p(x; \theta)$
- $\widehat{\boldsymbol{\theta}}_{ML} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i=1}^{N} p(\boldsymbol{x}_i; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{n} log(p(\boldsymbol{x}_i; \boldsymbol{\theta}))$
- Most popular pdf model in segmentation is Gaussian Mixture Models (GMM):

$$p(\mathbf{x}; \boldsymbol{\theta}) = \sum_{k=1}^{m} \pi_k G(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k), \qquad \sum_{k=1}^{m} \pi_k = 1$$

> Where m is number of mixture, μ_k is center, Σ_k is covariance matrix, and π_k is mixing probability of mixture k.

GMM illustration (synthetic data)

>GMM with three mixture (m=3)

GMM illustration (real data)

>GMM example:

Kernel Density Estimation (KDE) or Parzen Windows

- \rightarrow Input data: $\{\boldsymbol{x}_i\}_{i=1}^N \in \mathbb{R}^D$
- A non-negative, non-increasing and piece-wise continuous kernel, k(x), and $K(x) = c_D k(||x||^2)$, where c_D is normalization constant so that K(x) integrates to 1
- A smoothing bandwidth: h

$$\hat{p}(x) = \frac{1}{Nh^D} \sum_{i=1}^{N} K\left(\frac{x_i - x}{h}\right)$$

> Most used kernel function, k(x), is gaussian, N(0,1)

KDE illustration (Synthetic data)

> KDE with 6 observation

KDE illustration – bandwidth effect

> KDE estimation for 4 different values for *h*

KDE illustration (real data)

> KDE example:

Thresholding

> Thresholding: Segment *scalar* images by creating a binary partitioning of the image intensities.

Thresholding

- > How to determine Threshold(s):
 - -Supervised
 - -Unsupervised

Optimal Supervised threshold estimation

- > Optimal Supervised threshold estimation:
- Assume we have two segments with known *monomodal* distribution: $\{p(x; \boldsymbol{\theta}_i)\}_{i=1}^2$ and prior probabilities $\{\pi_i\}_{i=1}^2$
- > It can be shown (*Bayes* decision theorem) the optimal threshold is solution of the following equation:

$$\pi_1 p(T; \boldsymbol{\theta}_1) = \pi_2 p(T; \boldsymbol{\theta}_2)$$

$$S_2(x_i) = \begin{cases} 1, \ x(i,j) \ge T \\ 0, \ x(i,j) < T \end{cases} \text{ and } S_1(x_i) = \begin{cases} 1, \ x(i,j) < T \\ 0, \ x(i,j) \ge T \end{cases}$$

Optimal Supervised threshold estimation

> Bayes decision minimize: "FN+FP" area

Optimal Unsupervised threshold estimation:

> Distribution of two segment estimated via *GMM* or *xMM*!

$$p(x;\theta) = \pi_1 G(x; \mu_1, \sigma_1^2) + \pi_2 G(x; \mu_2, \sigma_2^2)$$

> The optimal threshold is solution of this equation:

$$\pi_1 G(T; \mu_1, \sigma_1^2) = \pi_2 G(T; \mu_2, \sigma_2^2)$$

$$S_2(x_i) = \begin{cases} 1, & x(i,j) \ge T \\ 0, & x(i,j) < T \end{cases} \text{ and } S_1(x_i) = \begin{cases} 1, & x(i,j) < T \\ 0, & x(i,j) \ge T \end{cases}$$

> Otsu main idea: Minimize within-segments while maximize between-segment distance

- > Otsu methods Optimal unsupervised threshold estimation:
- > Find (exhaustive search) threshold(s) that maximize any of the three discriminant criteria:

$$\frac{\sigma_B^2}{\sigma_W^2}$$
, $\frac{\sigma_T^2}{\sigma_W^2}$, $\frac{\sigma_B^2}{\sigma_T^2}$

 $\rightarrow \sigma_B^2$: Between-Segment variances

 $\rightarrow \sigma_W^2$: Within-Segment variances

 σ_T^2 : Total variances $(\sigma_T^2 = \sigma_W^2 + \sigma_B^2)$

Let $\{p_i\}_{i=0}^{L-1}$ denote normalized histogram of input image, g, and, suppose that we select a threshold T(k) = k, 0 < k < L - 1, we have two segments:

$$S_1$$
: $[0, k]$, S_2 : $[k + 1, L - 1]$

> with prior probabilities:

$$P_1(k) = \sum_{i=0}^k p_i, P_2(k) = \sum_{i=k+1}^{L-1} p_i$$

> and means and variances:

$$\{m_i(k)\}_{k=1}^2, \{\sigma_i^2(k)\}_{k=1}^2$$

> Global means is: $m_G(k) = P_1(k)m_1(k) + P_2(k)m_2(k)$

> Between-segment variance:

$$\sigma_B^2(k) = P_1(k) (m_1(k) - m_G(k))^2 + P_2(k) (m_2(k) - m_G(k))^2$$

> Within-segment variance

$$\sigma_W^2(k) = P_1(k)\sigma_1^2(k) + P_2(k)\sigma_2^2(k)$$

> Total variance:

$$\sigma_T^2(k) = \sigma_W^2(k) + \sigma_B^2(k)$$

> Then, the optimum threshold (Otsu) is the value, k^* , that maximizes one of following:

$$\left\{\frac{\sigma_B^2(k)}{\sigma_W^2(k)}\right\}_{k=0}^{L=1}, \left\{\frac{\sigma_T^2}{\sigma_W^2(k)}\right\}_{k=0}^{L=1}, \left\{\frac{\sigma_B^2(k)}{\sigma_T^2(k)}\right\}_{k=0}^{L=1}$$

Kittler-Illingworth Thresholding

The *Kittler-Illingworth* optimum threshold is the value, k^* , that minimize:

$$1 + 2(P_1(k)log\sigma_1(k) + P_2(k)log\sigma_2(k)) - 2(P_1(k)logP_1(k) + P_2(k)logP_2(k))$$

> Extension to multiple thresholds is possible!

Pixel Classification – Clustering

- > A well known methods for image segmentation.
- > What is data clustering (unsupervised learning):

Pixel Classification – Clustering

- > Any clustering method is useful:
 - -K-means,
 - -Mean-Shift,
 - Fuzzy K-means,
 - Hierarchical Clustering,
 - -Self Organization Map (SOM),

– ...

Clustering Illustration

> Easy task (left) and hard task (Right)

Clustering Definition

- > Clustering is data point partitioning:
- $\Rightarrow input: X = \{x_i\}_{i=1}^N, K: \# of clusters$
- $\rightarrow output: \left\{C_j\right\}_{j=1}^K, X = \bigcup_{j=1}^K C_j$
- > Goal: within-cluster similarity and between-cluster dissimilarity
- > Too many options for *similarity* and *dissimilarity* are introduced

Hard vs Soft Clustering

> Clustering may be hard (left) or soft (right):

Hard Clustering

> Definition by membership function:

$$\rightarrow u_{ij} \in \{0,1\}$$

$$\Rightarrow u_{ij} = \begin{cases} 1, & x_i \in C_j \\ 0, & x_i \notin C_j \end{cases}$$

$$\sum_{j=1}^{K} u_{ij} = 1$$
, $\forall i = 1, 2, ..., N$

$$> 0 < \sum_{i=1}^{N} u_{ij} < N, \quad \forall j = 1, 2, ..., K$$

> Good for distinct (non-overlapping) data distribution

Soft Clustering

> Definition by membership function:

$$\rightarrow u_{ij} \in [0,1]$$

$$> 0 \le u_{ij} \le 1$$

$$\sum_{j=1}^{K} u_{ij} = 1$$
, $\forall i = 1, 2, ..., N$

$$> 0 < \sum_{i=1}^{N} u_{ij} < N, \quad \forall j = 1, 2, ..., K$$

Good for overlapping data distribution

The End

>AnY QuEsTiOn?

