Exercise 13.1

1. If CD \perp AB, and CD bisects AB, prove that \triangle ABC is an isosceles triangle.

2. In $\triangle ABC$ and $\triangle ABD$, if DA = CB and $\angle DAB = \angle CBA$, prove that $\triangle AOB$ is isosceles.

3. In $\triangle ABC$, if AC = BC and CD bisects $\angle BCA$, prove that $\triangle ACD \cong \triangle BCD$.

4. Suppose line segments AB and CD intersect at O in such a way that AO = OD and OB = OC. Prove that AC = BD but AC may not be parallel to BD

5. In the given figure, if AB = AC and DB = DC, then find

6. In the given figure, if AB = AC and $\angle A = 40^\circ$, then find $\angle C$. [Ans. 70°]

7. In the given figure, PS = QR and $\angle SPQ = \angle RQP$. Prove that PR = QS and $\angle QPR = \angle PQS$.

- 8. In the given figure, BO and CO are the bisectors of the angles \(\alpha \) and \(\alph \angle C of a \triangle ABC. If OP \bot BC and OM \bot AB, prove that
 - (i) $\triangle BOM \cong \triangle BOP$ (ii) OP = OM

9. PQR is a triangle in which PQ = PR. S and T are points on PQ and PR such that QT and RS are respect. such that QT and RS are respectively the bisectors of $\angle PQR$ and $\angle QRP$. Prove that $\triangle TQR \cong \triangle SRQ$ Prove that $\Delta TQR \cong \Delta SRQ$.

The sides AB and BC of a square ABCD are produced to P and Q respectively so that BP = CQ. Prove that PD and AQ are respectively are specifically to each other. The sides respectively so that BP = CQ. Prove that PD and AQ are equal and respectively respectively and respectively so that BP = CQ. Prove that PD and AQ are equal and respendicular to each other.

12. In the given figure, PT = PS and TQ = SR. Prove that QS = RT.

PQ = PR.

13. AABC is an equilateral triangle. P, Q, R are points on sides AB, BC and CA respectively such that AP = BQ = CR. Prove that PQ = QR = RP.

- 14. Prove that the medians of an equilateral triangle are equal. 15. Given two congruent triangles, prove that the bisector of one triangle is
- congruent in the corresponding angle bisector of the other triangle. Triangles: Congruence of Triangles

16. ABC is an equilateral triangle. Points P, Q, R are taken on the sides AB, BC and CA respectively such that AP = BQ = CR. Prove that ΔPQR is also an equilateral triangle.

