高等代数 (II) 第二次作业情况

李卓远 数学科学学院

zy.li@stu.pku.edu.cn

1 3月3日作业

P33: 1(2), 6, 7; P39: 1, 2, 3, 4, 5, 6, 9

P39: 9. 说明 J_a 生成元 m 的唯一性时, 设 m' 为满足要求的多项式, 不能事先假定其次数最小.

2 3月7日作业

P41: 2; P49: 1(2), 2(2)(4)(5)(6), 4, 5, 6

P49 2. 判断可约性与判断是否有有理根不等价, 须强调次数小于 4.

题目 2.1. 分别给出 $f(x) = x^n - a \in \mathbb{R}[x]$ 在 \mathbb{C} 和 \mathbb{R} 上的标准不可约分解.

证明. For a=0, the standard decomposition of f is x^n itself. For $a\neq 0$, let $\zeta=\mathrm{e}^{\frac{2\pi\mathrm{i}}{n}}$ and $a=r\mathrm{e}^{\mathrm{i}\theta}$ with r=|a|>0, then

$$x^{n} - a = x^{n} - re^{i\theta} = \prod_{k=0}^{n-1} \left(x - r^{1/n} e^{\frac{(2\pi k + \theta)i}{n}} \right) = \prod_{k=0}^{n-1} \left(x - r^{1/n} e^{\frac{i\theta}{n}} \zeta^{k} \right),$$

which corresponds to the standard irreducible decomposition on \mathbb{C} .

• $\theta = 0 \ (a > 0)$. For n = 2m,

$$x^{2m} - a = \prod_{k=0}^{2m-1} \left(x - r^{\frac{1}{2m}} \zeta^k \right)$$

$$= \left(x - r^{\frac{1}{2m}} \zeta^0 \right) \left(x - r^{\frac{1}{2m}} \zeta^m \right) \prod_{k=1}^{m-1} \left(x - r^{\frac{1}{2m}} \zeta^k \right) \left(x - r^{\frac{1}{2m}} \zeta^{2m-k} \right)$$

$$= \left(x - r^{\frac{1}{2m}} \right) \left(x + r^{\frac{1}{2m}} \right) \prod_{k=1}^{m-1} \left(x^2 - r^{\frac{1}{2m}} (\zeta^k + \zeta^{2m-k}) + r^{\frac{1}{m}} \zeta^{2m} \right)$$

$$= \left(x - r^{\frac{1}{2m}} \right) \left(x + r^{\frac{1}{2m}} \right) \prod_{k=1}^{m-1} \left(x^2 - 2r^{\frac{1}{2m}} \cos \frac{2k\pi}{2m} + r^{\frac{1}{m}} \right)$$

For n = 2m + 1,

$$\begin{split} x^{2m+1} - a &= \prod_{k=0}^{2m} \left(x - r^{\frac{1}{2m}} \zeta^k \right) \\ &= \left(x - r^{\frac{1}{2m+1}} \zeta^0 \right) \prod_{k=1}^m \left(x - r^{\frac{1}{2m+1}} \zeta^k \right) \left(x - r^{\frac{1}{2m}} \zeta^{2m+1-k} \right) \\ &= \left(x - r^{\frac{1}{2m+1}} \right) \prod_{k=1}^{m-1} \left(x^2 - r^{\frac{1}{2m+1}} (\zeta^k + \zeta^{2m+1-k}) + r^{\frac{2}{2m+1}} \zeta^{2m+1} \right) \\ &= \left(x - r^{\frac{1}{2m+1}} \right) \prod_{k=1}^{m-1} \left(x^2 - 2r^{\frac{1}{2m+1}} \cos \frac{2k\pi}{2m+1} + r^{\frac{2}{2m+1}} \right) \end{split}$$

• $\theta = \pi \ (a < 0)$. For n = 2m,

$$\begin{split} x^{2m} - a &= \prod_{k=0}^{2m-1} \left(x - r^{\frac{1}{2m}} e^{\frac{i\pi}{2m}} \zeta^k \right) \\ &= \prod_{k=0}^{m-1} \left(x - r^{\frac{1}{2m}} e^{\frac{i\pi}{2m}} \zeta^k \right) \left(x - r^{\frac{1}{2m}} e^{\frac{i\pi}{2m}} \zeta^{2m-1-k} \right) \\ &= \prod_{k=0}^{m-1} \left(x^2 - r^{\frac{1}{2m}} \left(e^{\frac{(2k+1)\pi i}{2m}} + e^{\frac{(2(2m-1-k)+1)\pi i}{2m}} \right) + r^{\frac{1}{m}} e^{\frac{(2k+1)\pi i}{2m}} + \frac{(2(2m-1-k)+1)\pi i}{2m} \right) \\ &= \prod_{k=0}^{m-1} \left(x^2 - 2r^{\frac{1}{2m}} \cos \frac{(2k+1)\pi}{2m} + r^{\frac{1}{m}} \right) \end{split}$$

For n = 2m + 1,

$$x^{2m+1} - a = \prod_{k=0}^{2m} \left(x - r^{\frac{1}{2m+1}} e^{\frac{i\pi}{2m+1}} \zeta^k \right)$$

$$= \left(x - r^{\frac{1}{2m+1}} e^{\frac{i\pi}{2m+1}} \zeta^m \right) \prod_{k=0}^{m-1} \left(x - r^{\frac{1}{2m+1}} e^{\frac{i\pi}{2m+1}} \zeta^k \right) \left(x - r^{\frac{1}{2m+1}} e^{\frac{i\pi}{2m+1}} \zeta^{2m-k} \right)$$

$$= \left(x + r^{\frac{1}{2m+1}} \right) \prod_{k=0}^{m-1} \left(x^2 - r^{\frac{1}{2m+1}} \left(e^{\frac{(2k+1)\pi i}{2m+1}} + e^{\frac{(2(2m-k)+1)\pi i}{2m+1}} \right) + r^{\frac{2}{2m+1}} e^{\frac{(2k+1)\pi i}{2m+1}} + \frac{(2(2m-k)+1)\pi i}{2m+1} \right)$$

$$= \left(x + r^{\frac{1}{2m+1}} \right) \prod_{k=0}^{m-1} \left(x^2 - 2r^{\frac{1}{2m+1}} \cos \frac{(2k+1)\pi}{2m+1} + r^{\frac{1}{m}} \right)$$

Corollary 2.1. By letting x = 1 and a = -1 we have

$$1+1 = \prod_{k=0}^{m-1} \left(2 - 2\cos\frac{(2k+1)\pi}{2m}\right)$$
$$1+1 = (1+1)\prod_{k=0}^{m-1} \left(2 - 2\cos\frac{(2k+1)\pi}{2m+1}\right),$$

which indicates

$$2 = 2^{m} \prod_{k=0}^{m-1} \left(1 - \cos \frac{(2k+1)\pi}{2m} \right) = 2^{2m} \prod_{k=0}^{m-1} \sin^{2} \frac{(2k+1)\pi}{4m},$$
$$1 = 2^{m} \prod_{k=0}^{m-1} \left(1 - \cos \frac{(2k+1)\pi}{2m+1} \right) = 2^{2m} \prod_{k=0}^{m-1} \sin^{2} \frac{(2k+1)\pi}{4m+2}.$$

3 3月10日作业

P71: 3, 7, 8

P71: 8. 令 $\pi: \mathbb{Z}[x] \to \mathbb{Z}/p\mathbb{Z}[x]$, $\pi(f)$ 有/无 n 次因式是否蕴含 f 自身一定有/无 n 次因式? 注意本题 无法使用 mod p 判别法 (p=2 or 3):

$$x^4 + 3x^3 + 3x^2 - 5 = x^4 + x^3 + x^2 + 1 = (x+1)(x^3 + x + 1) \mod 2,$$

 $x^4 + 3x^3 + 3x^2 - 5 = x^4 + 1 = (x^2 + x + 2)(x^2 + 2x + 2) \mod 3$

4 3月14日作业

P57: 2, 3, 4

题目 4.1. 证明 $det(x_{ij})_{i,j}$ 不可约.

证明.设

$$\det(x_{ij})_{i,j} = x_{11}A_{11} + x_{12}A_{12} + \dots + x_{1n}A_{1n} = gh, \quad g, h \in \mathbb{F}[x_{11}, x_{12}, \dots, x_{nn}].$$

注意到 $\det(x_{ij})_{i,j}$ 关于任一 x_{ij} 都是 1 阶的, 不妨令 g 关于 x_{11} 的次数为 1 次, h 关于 x_{11} 的次数为 0 次. 断言对任意 j,g 关于 x_{1j} 的次数也为 1 次, h 关于 x_{1j} 的次数也为 0 次. 当 j=1 时结论是平凡的, 当 $j\neq 1$ 时, 若 g 关于 x_{1j} 的次数为 0 次, h 关于 x_{1j} 的次数为 1 次, 那么

$$\det(x_{ij})_{i,j} = x_{11}A_{11} + x_{1j}A_{1j} + \sum_{k \neq 1, j} x_{1k}A_{1k} = gh = (g_1x_{11} + g_2)(h_1x_{1j} + h_2),$$

其中

$$A_{11}, A_{1j}, \sum_{k \neq 1, j} x_{1k} A_{1k}, g_1, g_2, h_1, h_2 \in \mathbb{F}[\{x_{kl} | (k, l) \neq (1, 1), (1, j)\}].$$

将上述等式视为关于 x_{11} 和 x_{1j} 的二元多项式可知 $g_1h_1=0$, 再结合 $\mathbb{F}[\{x_{kl}|(k,l)\neq (1,1),(1,j)\}]$ 无零因子可知 g_1 和 h_1 中至少有一个为零多项式, 这与 g 关于 x_{11} 的次数为 1 次, h 关于 x_{1j} 的次数为 1 次矛盾. 至此我们已证得当 h 关于 x_{11} 的次数为 0 次时, 对任意 j, h 关于 x_{1j} 的次数均为 0 次. 类似地, 对任意 i 和 j, h 关于 x_{ij} 的次数也为 0 次,于是 h 为单位. 结合 g 和 h 的任意性立即有 $\det(x_{ij})_{i,j}$ 不可约.

另法: (数学归纳法) 显然命题对 1 阶行列式成立. 假设命题对 (n-1) 阶行列式成立, 那么对于 n 阶行列式

$$\det(x_{ij})_{i,j} = x_{11}A_{11} + \dots + x_{1n}A_{1n} = gh,$$

同理可知不妨设

$$g = g_1 \cdot x_{11} + g_2, \quad g_1, g_2, h \in \mathbb{F}[\{x_{kl} | (k, l) \neq (1, 1).\}]$$

代入 $det(x_{ij})_{i,j}$ 的分解可知

$$g_1h = A_{11}, g_2h = \sum_{k \neq 1} x_{1k}A_{1k}.$$

利用归纳假设知 A_{11} 不可约, 那么 g_1 或 h 为单位. 假设 g_1 为单位, 不妨进一步令 $g_1=1$, 于是 $h=A_{11}$,

$$g_2 A_{11} = \sum_{k \neq 1} x_{1k} A_{1k}.$$

再考虑等式两边关于 x_{12} 的系数可知 g_2 关于 x_{12} 的次数为 1, 可设

$$g_2 = g_3 \cdot x_{12} + g_4, \ g_3 A_{11} = A_{12},$$

 A_{11} 不为单位, 且与 A_{12} 不相伴, 这与归纳假设 A_{12} 不可约矛盾. 故最终得到 h 为单位.