

# **Computer Vision**

Multi-Label Image Classification Query2Label & MLSPL

Group 25 Riajul Islam, Andreas C. Kreth, Christine Midtgaard June 19, 2025

Aarhus University

#### Overview

- Problem & Motivation
- Related works
- Background concepts
- Method 1: Query2Label (Q2L)
- Method 2: Multi-label Learning from Single Positive Labels (MLSPL)
- Experiments
- Results & Discussion
- Conclusion

#### What is Multi-label Classification?

- Assigns multiple labels to a single instance (e.g., an image with both "dog" and "cat").
- Unlike single-label (one label per image) or multi-class (choose one among many), multi-label allows overlapping labels.



Illustration of single-label vs multi-class vs multi-label classification. From https://medium.com/@wongsirikuln/fire-alert-system-with-multi-label-classification-model-explained-by-gradcam-bc18affe178c.

## **Applications**

- Image tagging
- Medical imaging
- Autonomous driving
- Etc.

### **Challenges**

- Small objects and background clutter (feature recognition).
- Severe class imbalance.
- Growing annotation cost.
- Sparse annotations.

### **Project goals**

- Implemented two approaches:Q2L and MLSPL.
- Reproduce results on MS-COCO 2014.
- Analyze resource trade-offs and reproducibility.

### Related work

- Loss functions
- Locating areas of interest
- PU Learning
- Partially observed labels
- Attention and Transformer architectures

### **Concepts**

- Multi-label Classification (MLC)
- Convolutional Neural Networks (CNNs)
- Transformers
- Loss functions

### Multi-label classification:

The goal is to create a model that outputs the probability  $p = [p_1, ..., p_K]$  of the presence of a category K in an input image  $x \in \mathcal{X}$ .

Labels  $y = [y_1, ..., y_K]$  from the label space  $\mathcal{Y} = \{0, 1\}^K$ .

- $y_k = 1$ : k is present.
- $y_k = 0$ : otherwise.



Illustration of single-label vs multi-class vs multi-label classification. From https://medium.com/@wongsirikuln/fire-alert-system-with-multi-label-classification-model-explained-by-gradcam-bc18affe178c.

**CNNs:** Three main types of layers:

- Convolutional layers: extract spatial features.
- Pooling layers: reduce dimensionality and summarise information.
- Fully Connected (FC) layer: interpret features for classification.

**Transformers:** 

Vision Transformers (ViTs):

### Why Loss Functions Matter

- Loss: distance between model output and ground truth.
- Guides parameter optimization.
- Multi-label learning adds complexity: an image may trigger multiple simultaneous decisions.



Illustration of a loss landscape.

#### Loss functions covered:

- Binary Cross-Entropy (BCE)
- Expected Positive Regularisation (EPR)
- Regularised Online Label Estimation (ROLE)
- Focal and Asymmetric Focal Losses



Illustration of a loss landscape.

# Binary Cross-Entropy (BCE)

**Use–case:** Independent yes/no decision per class.

$$\mathcal{L}_{\mathsf{BCE}} = -rac{1}{K} \sum_{i=1}^K ig[ y_i \log p_i + (1-y_i) \log (1-p_i) ig]$$

- K: number of classes;  $y_i \in \{0, 1\}, p_i \in [0, 1]$ .
- Widely used baseline metric.

### **BCE** in Practice: Limitations

- Class imbalance: gradients dominated by frequent classes → rare classes under–represented.
- Missing labels: datasets rarely fully annotated. BCE treats unobserved labels as negatives, introducing false-negative bias.



Example of sparse annotation (only one label per image).

# **Expected Positive Regularisation (EPR)**

$$\mathcal{L}_{\mathsf{EPR}}(\mathbf{F}_B, \mathbf{Z}_B) = \frac{1}{|B|} \sum_{n \in B} \mathcal{L}_{\mathsf{BCE}}^+(\mathbf{f}_n, \mathbf{z}_n) + \lambda (\hat{\kappa}(\mathbf{F}_B) - \kappa)^2$$

- $\kappa$ : expected positives per image (domain prior).
- $\hat{\kappa}$ : average predicted positives in the batch.
- Penalises deviation from prior; mitigates false-positives when only few labels are observed.

# Regularised Online Label Estimation (ROLE)

- Jointly trains classifier  $f(\cdot; \theta)$  and label–estimator  $g(\cdot; \varphi)$ .
- Alternating updates:

$$\mathcal{L}'(F_B, Y_B) = \frac{1}{|B|} \sum_n \mathcal{L}_{BCE}(f_n, sg(y_n))$$

• Softly imputes missing labels  $(0 < y_{ni} < 1)$  and reduces false negatives.



 ${\sf Classifier} \leftrightarrow {\sf Label-estimator\ loop}.$ 

# Focal & Asymmetric Focal Losses

 Focal Loss (FL): down—weights easy negatives, focuses on hard examples.

$$\mathcal{L}_{\mathsf{FL}} = -\frac{1}{K} \sum_{i=1}^{K} \alpha_i (1 - p_i)^{\gamma} y_i \log p_i$$

 Asymmetric Focal Loss (AFL): separate focusing for positive/negative parts.

$$\mathcal{L}_{\mathsf{AFL}} = -rac{1}{\mathcal{K}} \sum_i \left[ y_i (1-p_i)^{\gamma^+} \log p_i + (1-y_i) p_i^{\gamma^-} \log (1-p_i) 
ight]$$

Useful when negatives hugely outnumber positives.

# Key Take-aways

- BCE → solid baseline but fragile under imbalance and missing labels.
- EPR and ROLE repair missing-label bias with priors and online estimation.
- Focal variants tackle severe class imbalance.
- Choice of loss crucial for high multi-label performance (see results section).

### Method

- Feature localization: Query2Label: A Simple Transformer Way to Multi-Label Classification (Q2L)
- Sparse label annotation: Multi-Label Learning from Single Positive Labels (MLSPL)

### Query2Label: Core Idea

- Treat each label as a learnable query in a Transformer decoder.
- Decoder cross-attends to backbone feature map.
- Produces class-specific feature vectors.

### **Q2L** Architecture

- Stage 1: CNN/ViT backbone extracts spatial features.
- Stage 2: Multi-layer Transformer decoder with *K* queries.
- Linear head  $\rightarrow K$  sigmoid outputs (one per label).
- Loss: Asymmetric Focal (AF) to mitigate imbalance.

## **Q2L Training Setup**

- 80 epochs, AdamW, RandAugment, EMA.
- Backbones: ResNet-101, TResNet-L, Swin-L, CvT-w24.
- Memory constraints encountered on 12 GB GPUs.

# MLSPL: Learning from One Positive Label

- Extreme weak supervision: exactly **one** positive per image.
- Objective: recover missing positives during training.

## **ROLE: Regularised Online Label Estimation**

- Maintain soft estimates  $\hat{y}$  for unobserved labels.
- Jointly optimise classifier & label estimator.
- Batch-level regulariser keeps expected positives  $\approx \kappa$ .

### Dataset: MS-COCO 2014

- 82 k train / 40 k val images, 80 object categories.
- Avg. 2.9 labels / image.
- Single-positive variant generated for MLSPL.

## **Experimental Setup**

- Reproduced authors' pipelines under 12 GB GPU budget.
- Hyper-parameter grid: LR  $\in [10^{-2}, 10^{-5}]$ , batch  $\in \{8, 16\}$ .
- MLSPL: linear classifier then fine-tuning.

# Results: Q2L (mAP)

- ResNet-101  $448^2 \rightarrow 84.9\%$ .
- TResNet-L-22k  $448^2 \rightarrow 89.2\%$ .
- $\bullet$  CvT-w24-22k 384  $^2 \rightarrow$   $\bf 91.3\%$  (SOTA).

# Results: MLSPL (ROLE)

- Linear classifier → 66.3% mAP.
- Fine-tuned ResNet-50  $\rightarrow$  **66.9% mAP** (  $\not$  paper).
- Achieved with 20× fewer true labels.

#### **Discussion**

- Q2L excels at localisation but is memory-hungry.
- MLSPL robust under weak labels, lightweight.
- ullet Complementary strengths o potential hybrid model.

#### Limitations

- Q2L on ViTs exceeds 12 GB VRAM.
- MLSPL relies on accurate  $\kappa$  estimation.
- Experiments limited to COCO needs broader validation.

### **Conclusions & Future Work**

- Both methods reproduced successfully.
- Transformer label queries push SOTA accuracy.
- ROLE shows promise for cost-efficient annotation.
- Next steps: larger datasets, unify approaches.