

1° SEMESTRE DE ESTATÍSTICA

Análise descritiva do consumo de oxigênio, conforme populações não patológicas.

Alunos:

Tayan da Silva Nobre Francisco Davi Passos de Sousa

Relatório da disciplina Análise Exploratória de Dados, do curso de Estatística. Professora: Silvia Maria de Freitas

> 14 de Julho de 2022 Fortaleza/CE

Conteúdo

1	Objetivos	2
2	Apresentação	2
3	Desenvolvimento	5
4	Conclusão	7
5	Apêndice	8
	5.1 Comandos do software estatístico R para análise de Estatística Descritiva	8

1 Objetivos

Fazer uma análise do respectivo conjunto de dados, utilizando o conteúdo visto na disciplina, através de gráficos, tabelas e das medidas resumo. Fazer a análise no R, com o relatório em Latex e entregar o PDF IMPRESSO, com as análises e resultados, contendo os respectivos comentários.

2 Apresentação

Este relatório apresenta a descrição do consumo de oxigênio em populações não patológicas. As amostras de ar foram coletadas em intervalos e os teores de gás oxigênio foram analisados.

A população alvo é formada por 50 pessoas, sendo elas, 25 homens e 25 mulheres, a unidade elementar é cada pessoa da população alvo, os dados não representa uma amostra aleatória, pois foram coletados de estudantes voluntários.

A Tabela, abaixo, representa o conjunto de dados e os Graficos 1 e 2 representam o diafragma de dispersão, conforme o conjunto de dados.

Tabela 1: Consumo de gás oxigênio: as duas primeiras colunas representam o volume de repouso e as outras duas o volume máximo e a última coluna é representada pela variável "grupo".

Nº	m O2(L/min)	m O2(L/kg/min)	m O2(L/min)	O2(ml/kg/min)	Grupo
1	0,34	3,71	2,87	30,87	Homem
2	0,39	5,08	3,38	43,85	Homem
3	0,48	5,13	4,13	44,51	Homem
4	0,31	3,95	3,60	46,00	Homem
5	0,36	5,51	3,11	47,02	Homem
6	0,33	4,07	3,95	48,50	Homem
7	0,43	4,77	4,39	48,75	Homem
8	0,48	6,69	3,50	48,86	Homem
9	0,21	3,71	2,82	48,92	Homen
10	0,32	4,35	3,59	48,38	Homem
11	0,54	7,89	3,47	50,56	Homem
12	0,32	5,37	3,07	51,15	Homem
13	0,40	4,95	4,43	55,34	Homem
14	0,31	4,97	3,56	56,67	Homem
15	0,44	6,68	3,86	58,49	Homem

Continua na próxima página

Tabela 1 – Continuação da tabela 1.

Nº	Tabela 1 –	O2(m1/lrm/msirs)	Cours		
	O2(L/min)	O2(L/kg/min)	O2(L/min)	O2(ml/kg/min)	Grupo
16	0,32	4,80	3,31	49,99	Homem
17	0,50	6,43	3,29	42,25	Homem
18	0,36	5,99	3,10	51,70	Homem
19	0,48	6,40	4,80	63,30	Homem
20	0,40	6,00	3,06	46,23	Homem
21	0,42	6,04	3,85	55,08	Homem
22	$0,\!55$	$6,\!45$	5,00	58,80	Homem
23	$0,\!50$	$5,\!55$	5,24	57,46	Homem
24	0,34	$4,\!27$	4,00	50,35	Homem
25	0,40	4,58	2,82	32,48	Homem
26	0,29	5,04	1,94	33,85	Mulher
27	0,28	3,95	2,51	35,82	Mulher
28	0,31	4,88	2,31	36,40	Mulher
29	0,30	5,97	1,90	37,87	Mulher
30	0,28	4,57	2,32	38,30	Mulher
31	0,11	1,74	2,49	39,19	Mulher
32	0,25	4,66	2,12	39,21	Mulher
33	0,26	5,28	1,98	39,94	Mulher
34	0,39	$7,\!32$	2,25	42,41	Mulher
35	$0,\!37$	6,22	1,71	28,97	Mulher
36	0,31	4,20	2,76	37,80	Mulher
37	$0,\!35$	5,10	2,10	31,10	Mulher
38	0,29	4,46	2,50	38,30	Mulher
39	0,33	5,60	3,06	51,80	Mulher
40	0,18	2,80	2,40	37,60	Mulher
41	0,28	4,01	2,58	36,78	Mulher
42	0,44	6,69	3,05	46,16	Mulher
43	0,22	4,55	1,85	38,95	Mulher
44	0,34	5,74	2,43	40,60	Mulher
45	0,30	5,12	2,58	43,69	Mulher
46	0,31	4,77	1,97	30,40	Mulher
47	0,27	5,16	2,03	39,46	Mulher
48	0,66	11,05	2,32	39,34	Mulher
49	0,37	$5,\!23$	2,48	34,86	Mulher
50	0,35	5,47	2,25	35,07	Mulher

Fim da tabela

(a) Gráfico 1: identificação de outlier no ponto vermelho(mulher).

(b) Gráfico 2: mostra uma correlação forte entre as variáveis.

Figura 1: Gráficos de dispersão onde a nuvem de pontos representa a variável "grupo".

3 Desenvolvimento

O conjunto de dados analisado consiste de informações a respeito da função pulmonar de 50 indivíduos, durante o teste de ergoespirometria, sendo o mesmo realizado em uma esteira. Além disso permite avaliar diretamente o VO_2 máx.(ml/kg/min), que é o consumo máximo de O_2 durante o pico do exercício.

Com isso fez-se necessário a analise desses dados através das suas medidas resumo(mínimo, máximo, coeficiente de variação, média e desvio padrão).

As tabelas abaixo apresentam as medidas descritivas referentes as variáveis, O_2 rep e VO_2 . Uma inspeção nessas tabelas permite concluir que a média de VO_2 máx.(ml/kg/min) do homem(49.42) é maior que o da mulher(38.15) mostrando que durante o teste, o gênero masculino teve um rendimento melhor em comparação ao gênero feminino. A medida de variação CV, na variável O_2 rep apresenta dados heterogêneos, mostrando que diferem, os dados homogêneos estão nas variáveis VO_2 tanto em ml/kg/min, quanto em L/min, representandos pelo grupo feminino, mostrando uma baixa dispersão.

Como o teste de ergoespirometria tem em seu principal objetivo medir o consumo de oxigênio do indivíduo(VO_2) em ml/kg/min, foi construído um gráfico de caixa para a variável apresentada, que está disponível na Figura 3.

	Grupo	Mín	Máx	CV	Média	Mediana	Desvio Padrão
ĺ	Masculino	0.21	0.55	21.24	0.3972	0.4000	0.0843
-	Feminino	0.11	0.66	31.45	0.3136	0.3000	0.0986

Tabela 2: Medidas descritivas da variável O_2 rep(L/min)

Grupo	Mín	Máx	CV	Média	Mediana	Desvio Padrão
Masculino	3.17	7.89	20.16	5.334	5.130	1.0736
Feminino	1.74	11.04	32.46	5.183	5.100	1.6681

Tabela 3: Medidas descritivas da variável O_2 rep(L/kg/min)

(a) Tabelas 2 e 3.

Grupo	Mín	Máx	CV	Média	Mediana	Desvio Padrão
Masculino	2.82	5.23	18.30	3.688	3.560	0.6751
Feminino	1.71	3.06	14.99	2.315	2.320	0.3471

Tabela 4: Medidas descritivas da variável ${
m VO}_2({
m L/min})$

Grupo	Mín	Máx	CV	Média	Mediana	Desvio Padrão
Masculino	30.87	63.30	15.04	49.42	48.92	7.4331
Feminino	28.97	51.80	12.64	38.15	38.30	4.8229

Tabela 5: Medidas descritivas da variável $\mathrm{VO}_2(\mathrm{ml/kg/min})$

(b) Tabelas 4 e 5.

Figura 2: Medidas descritivas.

Figura 3: Boxplot(gráfico de caixa) da variável VO₂(ml/kg/min)

Uma análise na Figura 3 mostra que o volume de oxigênio do homem é melhor em comparação ao da mulher. Também é possível identificar alguns outiliers(valores discrepantes), nos homens, valores abaixo ou proximo de 30(ml/kg/min), enquanto na mulher tiveram valores abaixo de 20(ml/kg/min) e acima de 45(ml/kg/min).

Figura 4: Gráfico de dispersão: mostra que não há correlação aparente entre as variáveis, isso ocorre quando os pontos não seguem uma tendência positiva nem negativa.

4 Conclusão

O conjunto de dados analisado representa o consumo de oxigênio 50 pessoas(25 homens e 25 mulheres), na realização do teste de ergoespirometria, exercício esse que tem como objetivo analisar a função pulmonar do indivíduo.

Por meio de técnicas de estatística descritiva, constatou-se que o maior número de $VO_2(ml/kg/min)$ na mulher foi de 51,80 mostrando um volume máximo de O_2 ótimo, que normalmente varia de 20 à 25 (ml/kg/min) e o menor foi de 28,97, mostrando uma certa normalidade. No homem o maior número de VO_2 foi de 63,30, um volume máximo de oxigênio considerado excelente, que varia de 30 à 35 (ml/kg/min) e o menor foi de 30,87, mostrando que está bem normalizado.

Em relação ao O_2 rep(L/kg/min), nota que na mulher o maior valor foi de 11,05 e o menor de 1,74, no homem o maior valor foi de 7,89 e o menor de 3,71.

Com os resultados analisados podemos concluir que apenas um homem apresenta sedentarismo pois possui um $VO_2(30,87)$ inferior a 35(ml/kg/min) e na mulher não encontramos nenhuma sedentária, já que os volumes de oxigênio apresentados são maiores que 25(ml/kg/min), revelando que a grande maioria é praticante de exercícios físicos.

Com esses dados, é possível fazer uma avaliação contínua do sistema cardiovascular e respiratório, mostrando assim a importância do teste de ergoespirometria.

5 Apêndice

grupo

5.1 Comandos do software estatístico R para análise de Estatística Descritiva

```
#Entrando com os dados:
x1=c(0.34, 0.39, 0.48, 0.31, 0.36, 0.33, 0.43, 0.48, 0.21, 0.32, 0.54, 0.32, 0.40, 0.31,
0.44, 0.32, 0.50, 0.36, 0.48, 0.40, 0.42, 0.55, 0.50, 0.34, 0.40, 0.29, 0.28, 0.31, 0.30,
0.28, 0.11, 0.25, 0.26, 0.39, 0.37, 0.31, 0.35, 0.29, 0.33, 0.18, 0.28, 0.44, 0.22, 0.34,
0.30, 0.31, 0.27, 0.66, 0.37, 0.35
x1
x2=c(3.71, 5.08, 5.13, 3.95, 5.51, 4.07, 4.77, 6.69, 3.71, 4.35, 7.89, 5.37, 4.95, 4.97,
6.68, 4.80, 6.43, 5.99, 6.40, 6.00, 6.04, 6.45, 5.55, 4.27, 4.58, 5.04, 3.95, 4.88, 5.97,
4.57, 1.74, 4.66, 5.28, 7.32, 6.22, 4.20, 5.10, 4.46, 5.60, 2.80, 4.01, 6.69, 4.55, 5.73,
5.12, 4.77, 5.16, 11.05, 5.23, 5.47)
x2
x3=c(2.87, 3.38, 4.13, 3.60, 3.11, 3.95, 4.39, 3.50, 2.82, 3.59, 3.47, 3.07, 4.43, 3.56,
3.86, 3.31, 3.29, 3.10, 4.80, 3.06, 3.85, 5.00, 5.23, 4.00, 2.82, 1.93, 2.51, 2.31, 1.90,
2.32, 2.49, 2.12, 1.98, 2.25, 1.71, 2.76, 2.10, 2.50, 3.06, 2.40, 2.58, 3.05, 1.85, 2.43,
2.58, 1.97, 2.03, 2.32, 2.48, 2.25)
x3
x4=c(30.87, 43.85, 44.51, 46.00, 47.02, 48.50, 48.75, 48.86, 48.92, 48.38, 50.56, 51.15,
55.34, 56.67, 58.49, 49.99, 42.25, 51.70, 63.30, 46.23, 55.08, 58.80, 57.46, 50.35, 32.48,
33.85, 35.82, 36.40, 37.87, 38.30, 39.19, 39.21, 39.94, 42.41, 28.97, 37.80, 31.10, 38.30,
51.80, 37.60, 36.78, 46.16, 38.95, 40.60, 43.69, 30.40, 39.46, 39.34, 34.86, 35.07)
x4
h= "Homem"
h
m= "Mulher"
\mathbf{m}
```

```
#Criando um data.frame(tabela para organizar o conjunto de dados):
consumo = data.frame(x1,x2,x3,x4,grupo)
consumo
#Renomeando as colunas do data.frame:
colnames(consumo)[1]= "O2rep1"
colnames(consumo)[2]= "O2rep2"
colnames(consumo)[3]= "VO2.1"
colnames(consumo)[4]= "VO2.2"
colnames(consumo)[5]= "Grupo"
consumo
#Adquirindo os sumários estatísticos do data.frame(tabela do conjunto de dados).
by(consumo$O2rep1, consumo$Grupo, summary)
by(consumo$O2rep2, consumo$Grupo, summary)
by(consumo$VO2.1, consumo$Grupo, summary)
by(consumo$VO2.2, consumo$Grupo, summary)
#Comando usado para o cálculo do coeficiente de correlação de Pearson:
cor(consumo$O2rep2, consumo$VO2.2)
#Comando usados pra calcular desvio padrão e coeficiente de variação:
sd(consumo$O2rep1[1:25]) - desvio padrão do homem
sd(consumo$O2rep1[26:50]) - desvio padrão da mulher
sd(consumo$O2rep2[1:25]) - desvio padrão do homem
sd(consumo$O2rep2[26:50]) - desvio padrão da mulher
sd(consumo$VO2.1[1:25]) - desvio padrão do homem
sd(consumo$VO2.1[26:50]) - desvio padrão da mulher
sd(consumo$VO2.2[1:25]) - desvio padrão do homem
sd(consumo$VO2.2[26:50]) - desvio padrão da mulher
```

```
OBS: #Como no R não tem um comando pra calcular o coeficiente de variação,
realizei o seguinte código:
cv= sd("desvio padrão da variável")/mean("média da variável")*100
cv
#Construção dos graficos de dispersão:
Gráfico 1:
plot(consumo$O2rep1, consumo$O2rep2,
col="black",
pch = 19,
yli = c(2.80, 11.05),
main="Grafico 1",
xlab = "O2rep(L/min)",
ylab= "O2rep(L/kg/min)")
points(consumo$O2rep1, consumo$O2rep2, col= c("black", "red"),
pch = 19
legend('topleft',
legend= c("Mulher", "Homem"),
col= c("red", "black"),
pch = 19,
fill= c("red", "black"))
Gráfico 2:
plot(consumo$VO2.1, consumo$VO2.2,
col="black",
pch = 19,
main="Grafico 2",
xlab= "VO2max(L/min)",
ylab= "VO2max(ml/kg/min)")
```

```
points(consumo$VO2.1, consumo$VO2.2, col= c("black", "red"),
pch = 19)
legend('topleft',
legend= c("Mulher", "Homem"),
col= c("red", "black"),
pch = 19,
fill= c("red", "black"))
Gráfico 4:
plot(consumo$O2rep2,consumo$VO.2, col="black",
main= "Gráfico para análise de correlação - Gráfico 4",
xlab= "O2rep(L/kg/min)",
ylab= "VO2(ml/kg/min)")
points(consumo$O2rep2,consumo$VO.2, col= c("black", "red"), pch= 19)
legend('topleft',
legend = c("Mulher", "Homem"),
col= c("red", "black"),
pch = 19,
fill= c("red", "black"))
#Construção do gráfico bloxpot:
Gráfico 3:
boxplot(consumo$VO2.2 consumo$Grupo,
dados= consumo,
main= "Consumo de VO2(ml/kg/min)",
xlab= "Grupo",
ylab= "VO2(ml/kg/min)")
```