1.4 Examples

1.
$$\forall x (R(x) \rightarrow H(x))$$

2.
$$\forall x (R(x) \land H(x))$$

3.
$$\exists x (R(x) \rightarrow H(x))$$

4.
$$\exists x (R(x) \land H(x))$$

- a) Every animal is a rabbit and hops.
- b) There exists an animal such that if it is a rabbit, then it hops.
- c) Every rabbit hops.
- d) Some hopping animals are rabbits.
- e) There exists an animal that is a rabbit and hops.
- f) Some rabbits hop.
- g) If an animal is a rabbit, then that animal hops.
- h) All rabbits hop.

- a) Every animal is a rabbit and hops.
- b) There exists an animal such that if it is a rabbit, then it hops.
- c) Every rabbit hops.
- d) Some hopping animals are rabbits.
- e) There exists an animal that is a rabbit and hops.
- f) Some rabbits hop.
- g) If an animal is a rabbit, then that animal hops.
- h) All rabbits hop.

- 2. $\forall x (R(x) \land H(x))$
- 3. $\exists x (R(x) \rightarrow H(x))$
- 4. $\exists x (R(x) \land H(x))$

1.
$$\forall x (R(x) \rightarrow H(x))$$
 c,g,h

2. $\forall x (R(x) \land H(x))$

3. $\exists x (R(x) \rightarrow H(x))$

4. $\exists x (R(x) \land H(x))$

- a) Every animal is a rabbit and hops.
- b) There exists an animal such that if it is a rabbit, then it hops.
- c) Every rabbit hops.
- d) Some hopping animals are rabbits.
- e) There exists an animal that is a rabbit and hops.
- f) Some rabbits hop.
- g) If an animal is a rabbit, then that animal hops.
- h) All rabbits hop.

1.
$$\forall x (R(x) \rightarrow H(x))$$
 c,g,h

2.
$$\forall x (R(x) \land H(x))$$

3.
$$\exists x (R(x) \rightarrow H(x))$$

4.
$$\exists x (R(x) \land H(x))$$

- a) Every animal is a rabbit and hops.
- b) There exists an animal such that if it is a rabbit, then it hops.
- c) Every rabbit hops.
- d) Some hopping animals are rabbits.
- e) There exists an animal that is a rabbit and hops.
- f) Some rabbits hop.
- g) If an animal is a rabbit, then that animal hops.
- h) All rabbits hop.

2. $\forall x (R(x) \land H(x))$

 $3. \exists x (R(x) \rightarrow H(x))$

4. $\exists x (R(x) \land H(x))$

d,e,f

a) Every animal is a rabbit and hops.

b) There exists an animal such that if it is a rabbit, then it hops.

c) Every rabbit hops.

d) Some hopping animals are rabbits.

e) There exists an animal that is a rabbit and hops.

f) Some rabbits hop.

g) If an animal is a rabbit, then that animal hops.

h) All rabbits hop.

- A. Q(0)
- B. Q(-1)
- C. Q(1)
- D. $\forall x Q(x)$
- E. $\exists X Q(X)$
- F. $\exists x \neg Q(x)$
- G. $\forall x \neg Q(x)$

- A. Q(0) True $0 \ge 0$
- B. Q(-1)
- C. Q(1)
- D. $\forall x Q(x)$
- E. $\exists X Q(X)$
- F. $\exists x \neg Q(x)$
- G. $\forall x \neg Q(x)$

A.
$$Q(0)$$
 True $0 \ge 0$

B.
$$Q(-1)$$
 True $-1 \ge -2$

C.
$$Q(1)$$

D.
$$\forall XQ(X)$$

E.
$$\exists X Q(X)$$

F.
$$\exists x \neg Q(x)$$

G.
$$\forall x \neg Q(x)$$

A.
$$Q(0)$$
 True $0 \ge 0$

B.
$$Q(-1)$$
 True $-1 \ge -2$

C.
$$Q(1)$$
 False $1 \ge 2$

D.
$$\forall x Q(x)$$

E.
$$\exists X Q(X)$$

F.
$$\exists x \neg Q(x)$$

G.
$$\forall x \neg Q(x)$$

A.
$$Q(0)$$
 True $0 \ge 0$

B.
$$Q(-1)$$
 True $-1 \ge -2$

C.
$$Q(1)$$
 False $1 \ge 2$

D.
$$\forall x Q(x)$$
 False - C is a counterexample

E.
$$\exists X Q(X)$$

F.
$$\exists x \neg Q(x)$$

G.
$$\forall x \neg Q(x)$$

A.
$$Q(0)$$
 True $0 \ge 0$

B.
$$Q(-1)$$
 True $-1 \ge -2$

C.
$$Q(1)$$
 False $1 \ge 2$

D. $\forall x Q(x)$ False - C is a counterexample

E. $\exists x Q(x)$ True - A&B are examples

F.
$$\exists x \neg Q(x)$$

G. $\forall x \neg Q(x)$

- A. Q(0) True $0 \ge 0$
- B. Q(-1) True $-1 \ge -2$
- C. Q(1) False $1 \ge 2$
- D. $\forall x Q(x)$ False C is a counterexample
- E. $\exists x Q(x)$ True A&B are examples
- F. $\exists x \neg Q(x)$ True C is an example
- G. $\forall x \neg Q(x)$

- A. Q(0) True $0 \ge 0$
- B. Q(-1) True $-1 \ge -2$
- C. Q(1) False $1 \ge 2$
- D. $\forall x Q(x)$ False C is a counterexample
- E. $\exists x Q(x)$ True A&B are examples
- F. $\exists x \neg Q(x)$ True C is an example
- G. $\forall x \neg Q(x)$ False A&B are counterexamples

- A. Q(0)
- B. *Q*(1)
- C. Q(2)
- D. Q(-1)
- E. $\forall x Q(x)$
- F. $\exists X Q(X)$

- A. Q(0) True 0 = 0
- B. Q(1)
- C. Q(2)
- D. Q(-1)
- E. $\forall x Q(x)$
- F. $\exists X Q(X)$

```
A. Q(0) True 0 = 0
```

B.
$$Q(1)$$
 True $1 = 1$

C.
$$Q(2)$$

D.
$$Q(-1)$$

E.
$$\forall x Q(x)$$

F.
$$\exists X Q(X)$$

```
A. Q(0) True 0 = 0
```

B.
$$Q(1)$$
 True $1 = 1$

C.
$$Q(2)$$
 False $2 = 16$

D.
$$Q(-1)$$

E.
$$\forall XQ(X)$$

F.
$$\exists X Q(X)$$

```
A. Q(0) True 0 = 0
```

B.
$$Q(1)$$
 True $1 = 1$

C.
$$Q(2)$$
 False $2 = 16$

D.
$$Q(-1)$$
 False $-1 = 1$

E.
$$\forall x Q(x)$$

F.
$$\exists X Q(X)$$

```
A. Q(0) True 0 = 0
```

B.
$$Q(1)$$
 True $1 = 1$

C.
$$Q(2)$$
 False $2 = 16$

D.
$$Q(-1)$$
 False $-1 = 1$

E.
$$\forall x Q(x)$$
 False. C & D are counter examples

F.
$$\exists X Q(X)$$

```
A. Q(0) True 0 = 0
```

B.
$$Q(1)$$
 True $1 = 1$

C.
$$Q(2)$$
 False $2 = 16$

D.
$$Q(-1)$$
 False $-1 = 1$

E. $\forall x Q(x)$ False. C & D are counter examples

F. $\exists x Q(x)$ True. A and B are examples.