Álgebra 3 - 2° cuatrimestre 2017 PRÁCTICA 2

Nota: El polinomio minimal del elemento x sobre el cuerpo K se nota aquí f(x,K), y ξ_n nota una raíz n-ésima primitiva de la unidad.

1. Sea E/K una extensión, y sea $x \in E$ algebraico sobre K. Dada una subextensión F/K de E/K, probar que f(x, F) divide a f(x, K). Dar ejemplos con f(x, F) = f(x, K) y con $f(x, F) \neq f(x, K)$.

Demostración Por definición como x es algebraico sobre K entonces existe $f \in K[X]$ tal que f(x) = 0, luego como $K \subset F$ entonces $f \in F[X]$ y x es algebraico sobre F. Sea g = f(x, K), luego por lo dicho $g \in F[X]$ y g(x) = 0, por definición de polinomio minimal, f(x, F)|f(x, K) = g.

Sean $K=\mathbb{Q}, F=\mathbb{Q}[\sqrt{3}]$ y $E=\mathbb{Q}[\sqrt{2},\sqrt{3}]$, luego $f(\sqrt{2},\mathbb{Q})=x^2-2$ como vimos en la teórica y veamos que también es el minimal sobre $\mathbb{Q}[\sqrt{3}]$. Para esto notemos que $[\mathbb{Q}[\sqrt{2},\sqrt{3}],\mathbb{Q}[\sqrt{3}]]>1$ pues $\sqrt{2} \notin \mathbb{Q}[\sqrt{3}]$ y como $g=x^2-2\in \mathbb{Q}[\sqrt{3}][X]$ y $g(\sqrt{2})=0$ entonces $[\mathbb{Q}[\sqrt{2},\sqrt{3}],\mathbb{Q}[\sqrt{3}]]=2$. Como g es mónico y de grado de la extrension que anula a $\sqrt{2}$ por definición $g=f(\sqrt{2},\mathbb{Q}[\sqrt{3}])$.

Por otro lado, $f(\sqrt{3}, \mathbb{Q}) = x^2 - 3$ pero $f(\sqrt{3}, \mathbb{Q}[\sqrt{3}]) = x - \sqrt{3}$.

- 2. Calcular los siguientes polinomios minimales:
 - a) $f(\sqrt[4]{2}, \mathbb{Q})$

- c) $f(\sqrt[4]{2}, \mathbb{Q}[\sqrt[4]{2}])$
- $e) f(i, \mathbb{Q}[i])$

b) $f(\sqrt[4]{2}, \mathbb{Q}[\sqrt{2}])$

d) $f(i, \mathbb{Q})$

 $f(w, \mathbb{R}) \text{ con } w \in \mathbb{C}$

Demostración a) Notemos que $f = x^4 - 2 \in \mathbb{Q}[X]$ es irreducible por Einsenstein, mónico y $f(\sqrt[4]{2}) = 0$, por ende $f = f(\sqrt[4]{2}, \mathbb{Q}[\sqrt[4]{2}])$

b) Propongamos $f = x^2 - \sqrt{2} \in \mathbb{Q}[\sqrt{2}][X]$ que es mónico y anula a $\sqrt[4]{2}$, por lo que nos queda ver que es irreducible.

Vía 1: Como sabemos del punto anterior que $[Q[\sqrt[4]{2}], \mathbb{Q}] = 4$ y que $[\mathbb{Q}[\sqrt{2}], \mathbb{Q}] = 2$, luego $[\mathbb{Q}[\sqrt[4]{2}], \mathbb{Q}[\sqrt{2}]] = 2$ por multiplicatividad en torres. Pero entonces $gf(f) = [\mathbb{Q}[\sqrt[4]{2}], \mathbb{Q}[\sqrt{2}]]$ con lo que f al ser mónico y anular a $\sqrt[4]{2}$ es $f(\sqrt[4]{2}, \mathbb{Q}[\sqrt{2}])$ y por ende es irreducible.

Vía 2: Las raíces de f son $\pm \sqrt[4]{2} \notin \mathbb{Q}[\sqrt{2}]$, por lo tanto f es irreducible.

- c) Proponemos $f = x \sqrt[4]{2} \in \mathbb{Q}[\sqrt[4]{2}][X]$ pues trivialmente es mónico, irreducible y $f(\sqrt[4]{2}) = 0$.
- d) Proponemos $f = x^2 + 1 \in \mathbb{Q}[X]$ pues es mónico, f(i) = 0 y por Einsenstein es irreducible.
- e) Proponemos $f = x i \in \mathbb{Q}[i][X]$ pues trivialmente es mónico, irreducible y f(i) = 0.
- f) Supongamos que $w \in \mathbb{C} \setminus \mathbb{R}$, luego como w = a + bi; $a, b \in \mathbb{R}$ entonces proponemos $f = (x a)^2 + b^2$ que es mónico, f(w) = 0 y es irreducible pues $[\mathbb{C}, \mathbb{R}] = 2 = gf(f)$.
- 3. Calcular:

$$a) \ [\mathbb{Q}[\sqrt{2},i]:\mathbb{Q}]$$

b)
$$\left[\mathbb{Q}\left[\sqrt[3]{3}, \sqrt[5]{7}\right] : \mathbb{Q}\right]$$

c)
$$\left[\mathbb{Q}\left[\sqrt{2-\sqrt{3}}\right]:\mathbb{Q}\right]$$

Demostración a) Propongamos la torre $\mathbb{Q} \subsetneq \mathbb{Q}[\sqrt{2}] \subsetneq \mathbb{Q}[i,\sqrt{2}]$, luego sabemos que $[\mathbb{Q}[\sqrt{2}],\mathbb{Q}] = 2$ pues $f(\sqrt{2},\mathbb{Q}) = x^2 - 2$ por lo visto antes. Finalmente como $f = x^2 + 1$ anula a $i, y i \notin Q[\sqrt{2}]$ entonces $f(i,\mathbb{Q}[\sqrt{2}]) = x^2 + 1$; luego $[\mathbb{Q}[\sqrt{2},i]:\mathbb{Q}] = [\mathbb{Q}[\sqrt{2}]:\mathbb{Q}][\mathbb{Q}[\sqrt{2},i]:\mathbb{Q}[\sqrt{2}]] = 2*2 = 4$.

b) Propongamos el rombo $\mathbb{Q} \subsetneq \mathbb{Q}[\sqrt[3]{3}], \mathbb{Q}[\sqrt[5]{7}] \subsetneq \mathbb{Q}[\sqrt[3]{3}, \sqrt[5]{7}],$ luego notemos que $f_3 = x^3 - 3, f_7 = x^5 - 7$ son Einsenstein por lo que $[\mathbb{Q}[\sqrt[3]{3}] : \mathbb{Q}] = 3, [\mathbb{Q}[\sqrt[5]{7}] : \mathbb{Q}] = 5.$ Por la multiplicatividad en torres, $3|[\mathbb{Q}[\sqrt[3]{3}, \sqrt[5]{7}] : \mathbb{Q}], 5|[\mathbb{Q}[\sqrt[3]{3}, \sqrt[5]{7}] : \mathbb{Q}]$ y como (3,5) = 1 entonces $15|[\mathbb{Q}[\sqrt[3]{3}, \sqrt[5]{7}] : \mathbb{Q}].$ Para finalizar recordemos que como $\sqrt[3]{3}, \sqrt[5]{7}$ son algebraicos entonces $15 \leq [\mathbb{Q}[\sqrt[3]{3}, \sqrt[5]{7}] : \mathbb{Q}] \leq gr(f(\sqrt[3]{3}, \mathbb{Q})) * gr(f(\sqrt[5]{7}, \mathbb{Q})) = 15;$ concluímos que $[\mathbb{Q}[\sqrt[3]{3}, \sqrt[5]{7}] : \mathbb{Q}] = 15.$

- c) Llamemos $\sqrt{2-\sqrt{3}}=\alpha$ y proponemos la torre $\mathbb{Q}\subseteq\mathbb{Q}[\sqrt{3}]\subseteq\mathbb{Q}[\alpha]$, luego notemos que $f(\alpha,Q[\sqrt{3}])=0$ $x^2 - (2 - \sqrt{3})$ pues es mónico, anula a α y tiene grado mínimo entre los que anulan ($\alpha \notin Q[\sqrt{3}]$). Por lo tanto $[\mathbb{Q}[\sqrt{2-\sqrt{3}}]:\mathbb{Q}]=4$.
- a) Calcular $[\mathbb{Q}[\sqrt{2}, \sqrt{3}] : \mathbb{Q}]$ y $[\mathbb{Q}[\sqrt{2} + \sqrt{3}] : \mathbb{Q}]$. Deducir que $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\sqrt{2} + \sqrt{3}]$.
 - b) Hallar $\alpha \in \mathbb{C}$ tal que $\mathbb{Q}[\alpha] = \mathbb{Q}[\sqrt[3]{2}, \sqrt{3}]$.

Demostración a) Por lo mismo que hicimos el punto 1 sabemos que $[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}]=4$. Llamemos $\alpha = \sqrt{2} + \sqrt{3}$, luego:

$$\alpha - \sqrt{2} = \sqrt{3}$$
$$3 = \alpha^2 - 2\sqrt{2}\alpha + 2$$

Por lo que $f = x^2 - 2\sqrt{2} - 1 \in \mathbb{Q}[\sqrt{2}]$, es mónico y $f(\alpha) = 0$. Como $\alpha \notin \mathbb{Q}[\sqrt{2}]$ entonces tenemos $\operatorname{que}\left[\mathbb{Q}[\alpha],\mathbb{Q}[\sqrt{2}]\right] = 2 \; \text{con lo que}\left[\mathbb{Q}[\alpha],\mathbb{Q}\right] = 4 = \left[\mathbb{Q}[\sqrt{2},\sqrt{3}:\mathbb{Q}] \; \text{y como} \; \mathbb{Q}[\sqrt{2}+\sqrt{3}] \subset \mathbb{Q}[\sqrt{2},\sqrt{3}]\right]$ entonces $\mathbb{Q}[\sqrt{2} + \sqrt{3}] = \mathbb{Q}[\sqrt{2}, \sqrt{3}].$

- 5. Sea K un cuerpo y sea E=K[a] una extensión finita de K. Para cada $\alpha\in E$ definimos $L_\alpha:E\to E$ la K-transformación lineal dada por $L_{\alpha}(x) = \alpha x$.
 - a) Probar que $f(a, K) = \chi_{L_a} = \det(xI L_a)$.
 - b) ¿Para cuáles $\alpha \in E$ vale que $f(\alpha, K) = \chi_{L_{\alpha}}$?
- 6. Sea E/K una extensión. Probar que E/K es algebraica si y sólo si todo anillo A, con $K \subseteq A \subseteq E$, es un cuerpo.

Demostración Supongamos que E/K es algebraica, entonces por un lado A es conmutativo pues es subanillo de E veamos que es anillo de división.

Para esto sea $\alpha \in A \setminus K$, luego como $\alpha \in E$ que es algebraico sobre K existe $p \in K[X]$ tal que $0 = p(\alpha) = \sum_{i=0}^n a_i \alpha^i$ por lo que $\alpha * \underbrace{\left(\frac{\sum_{i=1}^n a_i \alpha^{i-1}}{-a_0}\right)}_{=0} = 1$ por lo que A es cuerpo.

Recíprocamente, sea $\alpha \in E$, luego podemos tener la torre $K \subsetneq \underbrace{K[\alpha]}_{cuerpoporHip} \subsetneq E$ con lo que existe $\beta \in K[\alpha]$ tal que $\alpha * \beta = 1$ y existe $q \in K[X]$ tal que $\beta = q(\alpha)$, por lo tanto tomemos f = q(x)x - 1

que prueba que α es algebraico.

7. Sea $a \in \mathbb{Z}[i]$ irreducible y sea K el cuerpo primo de $\mathbb{Z}[i]/\langle a \rangle$. Calcular $[\mathbb{Z}[i]/\langle a \rangle : K]$.

Demostración Notemos que de Álgebra 2 sabemos que tenemos tres chances: N(a) = p con p = 2 o $p \cong 1(4)$, o $N(p) = p^2$ con $p \cong 3(4)$. En el primer caso demostremos el siguiente lema:

Lema 0.1 Sean $a, b \in \mathbb{Z}$ tal que (a, b) = 1, entonces $\mathbb{Z}[i] / (a - ib) \simeq \mathbb{Z} / (a^2 + b^2)$

Del lema Notemos que (a:b)=1 entonces $(b:a^2+b^2)=1$ por lo tanto $b^{-1}\in \mathbb{Z}/(a^2+b^2)$, por lo tanto:

$$Z[i] / (a - ib) \simeq Z[X] / (X^2 + 1, a - bX) \simeq Z[x] / (a^2 + b^2, x - r_{(b)}(a)) \simeq Z / (a^2 + b^2)$$
 (1)

Con este lema es claro que para el caso de norma prima, $\mathbb{Z}[i] / (a+ib) \simeq \mathbb{Z}[i] / (a-ib) \simeq \mathbb{Z} / (p) \simeq K$ por lo tanto trivialmente $[\mathbb{Z}[i] / (a) : K] = 1$.

Para el último caso notemos que $a = p \in \mathbb{Z}$ y entonces $\mathbb{Z}[i] / (a) \simeq \mathcal{F}_p[i]$ por lo que $[\mathbb{Z}[i] / (a) : K] = 2$.

8. Probar que si E/K es una extensión finita tal que [E:K] es primo, entonces no hay cuerpos intermedios entre E y K.

Demostración Trivialmente, si existiese $K \subset F \subset E$ entonces p = [E : K] = [E : F][F : K] por lo tanto o $F \simeq K$ o $E \simeq F$.

9. Sea E/K una extensión algebraica y sea $a \in E$ tal que [K[a] : K] es impar. Probar que $K[a] = K[a^2]$. Mostrar que eso no vale en general si [K[a] : K] es par.

Demostración Supongamos que $K \subset K[a^2] \subsetneq K[a] \subset E$, luego $[K[a]:K] = [K[a]:K[a^2]][K[a^2]:K] = 2k+1$ para algún $k \in \mathbb{N}$. Notemos no obstante que $f(a,K[a^2]) = x^2 - a^2$ por lo que $[K[a^2]:K[a]] = 2$ por lo que [K[a]:K] es par; por lo que concluímos que $K[a] = K[a^2]$.

Trivialmente si $a = \sqrt[4]{2}$ entonces ya sabemos dle ejercicio 2 que $K[a] \neq K[a^2]$.

10. Sea $n \in \mathbb{N}$ coprimo con 6 y sea F/\mathbb{Q} una extensión finita de grado n. Probar que $[F[\sqrt[3]{2}, i] : F] = 6$.

Demostración Veamos primero que $i, \sqrt[3]{2} \notin F$.

Supongamos que $i \in F$, luego tenemos la torre de extensiones $\mathbb{Q} \subset \mathbb{Q}[i] \subset F$ y luego $n = 2[f : \mathbb{Q}[i]]$ con lo que 2|n, por lo tanto $i \notin F$; de similar manera $\sqrt[3]{2} \notin F$.

Ahora notemos que tenemos:

Por lo tanto por un lado del ejercicio 1 tenemos que $f(\sqrt[3]{2}, \mathbb{Q})|f(\sqrt[3]{2}, F)$ con lo que $3 \leq gr(f(\sqrt[3]{2}, F))$; y por el otro del rombo sabemos que $gr(f(\sqrt[3]{2}, F)) \leq 3$, por lo tanto $gr(f(\sqrt[3]{2}, F)) = 3$ y de eso concluímos que $[F[\sqrt[3]{2}] : F] = 3$.

Recíprocamente tenemos que [F[i], F] = 2.

Finalmente tenemos el rombo:

Y como (2:3) = 1 concluímos que $[F[i, \sqrt[3]{2}]: F] = 6$.

- 11. Sea E/K una extensión finita y sean L_1 y L_2 subextensiones. Probar que:
 - a) Si $[L_1 : K]$ y $[L_2 : K]$ son coprimos, entonces $[L_1L_2 : K] = [L_1 : K][L_2 : K]$.
 - b) Si $[L_1L_2:K]=[L_1:K][L_2:K]$ entonces $L_1\cap L_2=K$. ¿Vale la recíproca?
 - **Demostración** a) Trivialmente de la teórica sabíamos que $[L_1L_2:K] \leq [L_1:K][L_2:K]$, pero de las torres $K \subset L_1 \subset L_1L_2$ y $K \subset L_2 \subset L_1L_2$ se deduce que $n, m | [L_1L_2:K]$ y como (n:m) = 1 entonces concluímos lo pedido. \blacksquare
- 12. Mostrar que el polinomio $X^5 + 6X^3 + 15X^2 + 3$ es irreducible en $\mathbb{Q}[\sqrt{2}, \sqrt{3}][X]$.

Demostración Notemos primero que f es irreducible en \mathbb{Q} por Einsenstein, luego la extension $\mathbb{Q} \subset \mathbb{Q}[\alpha]$ tiene grado 5 para $\alpha \in \mathbb{C}$ alguna raíz. Luego tenemos el siguiente rombo:

Y del ejercicio anterior sabemos que $[\mathbb{Q}[\sqrt{2},\sqrt{3}][\alpha]:\mathbb{Q}[\sqrt{2},\sqrt{3}]]=5$, luego como f es mónico, anula a α y tiene grado de la extensión, es el minimal y por lo tanto irreducible en $\mathbb{Q}[\sqrt{2},\sqrt{3}][X]$.

- 13. a) Sea K un cuerpo con $\operatorname{car}(K) \neq 2$. Sea E/K un extensión de grado 2. Probar que existe $a \in E$ tal que E = K[a] y $a^2 \in K$.
 - b) Sea $f = X^2 + X + 1 \in \mathbb{Z}_2[X]$ y sea a una raíz de f en una clausura algebraica de \mathbb{Z}_2 . Probar que no existe $b \in \mathbb{Z}_2[a]$ tal que $f(b, \mathbb{Z}_2) = X^2 + c$ para algún $c \in \mathbb{Z}_2$.
 - $\begin{array}{c} \textbf{Demostración} \quad a) \ \text{Sea} \ x \in E \backslash K, \ \text{luego como} \ [E:K] = 2 \ \text{entonces} \ f(x,K) = x^2 + bx + c \ \text{con lo que} \\ x = \frac{-b \pm \sqrt{b^2 4ac}}{2} \ \text{que} \ \text{está bien definido pues} \ \text{car}(K) \neq 2, \ \text{luego} \ K[x] = K[\sqrt{b^2 4ac}]. \ \text{Sea} \\ a = \sqrt{b^2 4ac}, \ \text{luego con lo que} \ a \not\in K, a^2 \in K \ y \ [K[a]:K] = [E:K] = 2 \ \text{por lo que} \ E = K[a] \\ \text{(ya que} \ K[a] \subset E). \end{array}$
 - b) Supongamos que existe tal b, luego $b=c_1+c_2a$ con $c_2\neq 0$ de donde sacamos que $0=(c_1+c_2a)^2+c=c_1^2+c_2^2a^2+c=(c_1^2+c-c_2^2)-c_2^2a$ y luego si llamamos $g=(c_1^2+c-c_2^2)-c_2^2x$ entonces g(a)=0. Concluímos por definición de minimal que f|g pero gr(g)=1; por lo tanto no existía tal b.
- 14. Dado $c \in \mathbb{Q}$, sea α_c una raíz del polinomio $X^2 + cX + c^2$. Describir las posibles extensiones $\mathbb{Q}[\alpha_c]$ de \mathbb{Q} y determinar $[\mathbb{Q}[\alpha_c] : \mathbb{Q}]$.

Demostración Cuentitas...

15. a) Sea $p \in \mathbb{N}$ primo. Calcular $f(\xi_p, \mathbb{Q})$ y deducir $[\mathbb{Q}[\xi_p] : \mathbb{Q}]$.

b) Calcular $f(\xi_6, \mathbb{Q})$.

Demostración Teórica...

- 16. a) Probar que $f(\xi_5 + \xi_5^4, \mathbb{Q}) = X^2 + X 1$.
 - b) Deducir que $\mathbb{Q}\left[\xi_{5}\right]$ admite una subextensión cuadrática y caracterizarla.
 - c) Calcular $\cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$.
 - a) Veamos primero que f anula, simplemente verificamos que $(\xi_5 + \xi_5^4)^2 + \xi_5 + \xi_5^4 1 = \xi_5^2 + 2 * \xi_5 \xi_5^4 + \xi_5^8 + \xi_5 + \xi_5^4 1 = \xi_5^2 + 2 + \xi_5^3 + \xi_5 + \xi_5^4 1 = 0$. Luego f anula, es mónico y es del grado de la extensión pues $\xi_5 + \xi_5^4 \not\in \mathbb{Q}$, de lo que deducimos que $f(\xi_5 + \xi_5^4, \mathbb{Q}) = X^2 + X 1$
 - b) Justamente $\mathbb{Q} \subset \mathbb{Q}[\xi_5 + \xi_5^4] \subset \mathbb{Q}[\xi_5]$.
 - c) ???
- 17. Sea $p \in \mathbb{N}$ primo y sea $a \in \mathbb{Q} \mathbb{Q}^p$.
 - a) Probar que $f(\sqrt[p]{a}, \mathbb{Q}) = X^p a$.
 - b) Sea $K \subseteq \mathbb{C}$ el menor cuerpo que contiene a todas las raices de $f(\sqrt[p]{a}, \mathbb{Q})$. Caracterizar K y calcular $[K:\mathbb{Q}]$ y $[K:\mathbb{Q}[\sqrt[p]{a}]]$.
 - a) Supongamos que existe $g \in \mathbb{Q}[X]$ tal que gr(g) < p y g|f, como p es primo entonces $g = \prod_{j \in I} (x \sqrt[p]{a} \xi_p^j)$ para algunos $j \in I \subsetneq \{0,...,p-1\}$, luego $-a = \prod_{j \in I} (-\sqrt[p]{a} \xi_p^j) = \sqrt[p]{a^{\#I}} * (-1)^{\#I} * \prod_{j \in I} \xi_p^j$ por lo que $a^{\#I} \in \mathbb{Q}^p$ que no puede pasar pues p es primo. Concluímos que no existía dicho g y entonces f es el minimal.
 - b) Del ejercicio notamos que $K=\mathbb{Q}[\left\{\sqrt[p]{a}\xi_p^l,\ j\in\{1,...,p-1\}\right\}]=\mathbb{Q}[\sqrt[p]{a},\xi_p]$ y para ver el orden notemos que tenemos el siguiente rombo:

Y por el ejercicio previo se tiene que $[K:\mathbb{Q}]=p(p-1).$

- 18. Sean $K=\mathbb{C}((X))$ y $L=\mathbb{C}((X^{1/2})).$ Probar que:
 - a) Si $u \in \mathcal{U}(\mathbb{C}[[X]])$ entonces existe $v \in \mathcal{U}(\mathbb{C}[[X]])$ tal que $u = v^2$.
 - b) Si $f \in K[Y]$ es de grado 2, entonces f tiene sus raíces en L.

Demostración Que es esa notaci" on ???

19. Sea $\overline{\mathbb{Q}} = \{x \in \mathbb{C} : x \text{ es algebraico sobre } \mathbb{Q}\}$. Probar que $\overline{\mathbb{Q}}$ es un cuerpo que es una extensión algebraica de \mathbb{Q} que no es finita, y que es algebraicamente cerrado.

Demostración Teórica.

20. Sea E/K una extensión algebraica tal que todo polinomio $f \in K[X]$ se factoriza linealmente en E[X]. Probar que E es algebraicamente cerrado.

Demostración Teórica.

21. Sea K un cuerpo. Sea $A = K[X_f : f \in K[X] \text{ irreducible}]$. Sea $I \subseteq A$ el ideal generado por $\{f(X_f) : f \in K[X] \text{ irreducible}\}$. Sea \mathcal{M} un ideal maximal de A que contiene a I y sea $L = A/\mathcal{M}$. Sea $E = \{x \in L : x \text{ es algebraico sobre } K\}$. Probar que E es un cuerpo algebraicamente cerrado que contiene a E y que E es algebraica.

Demostración Ni lo entiendo lo que dice jaja

- 22. Sean $p_1, p_2, \ldots, p_n \in \mathbb{N}$ primos distintos. Sea $E = \mathbb{Q}[\sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_n}]$.
 - a) Probar que $[E:\mathbb{Q}]=2^n$.
 - b) Sean $\lambda_1, \ldots, \lambda_n \in \mathbb{Q}$. Probar que $\pm \lambda_1 \sqrt{p_1} \pm \lambda_2 \sqrt{p_2} \pm \cdots \pm \lambda_n \sqrt{p_n}$ don distintos dos a dos.
 - c) Sea $\alpha = \lambda_1 \sqrt{p_1} + \lambda_2 \sqrt{p_2} + \dots + \lambda_n \sqrt{p_n}$, ver que $E = \mathbb{Q}[\alpha]$

Demostración a) Sea la torre de extensiones $\mathbb{Q} \subset \mathbb{Q}[\sqrt{p_1}] \subset \mathbb{Q}[\sqrt{p_1}, \sqrt{p_2}] \subset \cdots \subset \mathbb{Q}[\sqrt{p_1}, \cdots, \sqrt{p_n}]$ y hagamos inducción en n el tamaño de la torre.

Para n = 1 es claro pues es el ejercicio previo con a = p y p = 2.

Si n > 1 sea $K = \mathbb{Q}[\sqrt{p_1}, \dots, \sqrt{p_{n-2}}]$ la torre de altura n-2, notemos que podemos separar la torre final en $\mathbb{Q} \subset K$ de tamaño 2 y $K \subset K[\sqrt{p_{n-1}}] \subset E$, por hipótesis inductiva $[\mathbb{Q}, K] = 2^{n-2}$ por lo que si demostramos que [E, K] = 4 estamos hechos.

Para esto notemos que $K[\sqrt{p_{n-1}}, K] = 2$ pues $\sqrt{p_{n-1}} \notin K$ porque los primos son distintos, por lo que debemos ver que $\sqrt{p_n} \notin K[\sqrt{p_{n-1}}]$. Supongamos que si, entonces existen $r, s \in K$ tal que $p_n = r^2 + 2rs\sqrt{p_{n-1} + s^2p_{n-1}}$. Veamos que esto no es posible:

- Si $rs \neq 0$ entonces como $car(\mathbb{Q}) \neq 2$ entonces podríamos despejar $\sqrt{p_{n-1}} = \frac{p_n r^2}{2rs} \in K$ que dijímos que no se podía.
- Si s=0 entonces $\sqrt{p_n} \in K$, que no es posible pues los primos son distintos
- Si r = 0 entonces $\sqrt{p_{n-1}p_n} = sp_{n-1} \in K$
- 23. Sea E/K una extensión algebraica de grado infinito. Probar que existen subextensiones de E/K de grado finito arbitrariamente grande. ¿Qué pasa si E/K es puramente trascendente?
- 24. a) Probar que un cuerpo algebraicamente cerrado es infinito.
 - b) Sea E/K una extensión algebraica. Calcular el cardinal de E en función del cardinal de K.
 - c) Deducir que para todo cardinal infinito a existe un cuerpo algebraicamente cerrado de cardinal a
- 25. Sea K un cuerpo.
 - a) Sea t trascendente sobre K. Para cada $n \in \mathbb{N}$, calcular $f(t, K(t^n))$. Deducir $[K(t): K(t^n)]$.
 - b) Sea $\{t_1, t_2, \ldots, t_n\}$ una familia algebraicamente independiente sobre K y sean e_1, e_2, \ldots, e_n números naturales. Calcular $[K(t_1, \ldots, t_n) : K(t_1^{e_1}, \ldots, t_n^{e_n})]$.
- 26. Sea K un cuerpo y sea $f \in K[X] K$. Probar que [K(X) : K(f)] = gr(f).
- 27. Sea E/K una extensión de cuerpos y sean $x, y \in E$. Determinar si las siguientes afirmaciones son verdaderas o falsas. Justificar.

- a) Si $x \in y$ son trascendentes sobre K entonces x + y o $x \cdot y$ es trascendente sobre K.
- b) Si x es trascendente e y es algebraico sobre K entonces x + y es trascendente sobre K.
- c) Si x es trascendente e y es algebraico sobre K entonces x, y es trascendente sobre K.
- d) Si x es trascendente sobre K e y es trascendente sobre K(x) entonces $\{x,y\}$ es algebraicamente independiente sobre K.
- e) Si x e y son trascendentes sobre K entonces $\{x,y\}$ es algebraicamente independiente sobre K.
- 28. a) Sea $d \in \mathbb{Z}$ libre de cuadrados. Probar que hay sólo dos morfismos de cuerpos $f : \mathbb{Q}[\sqrt{d}] \to \mathbb{C}$ y que en cada caso $f(\mathbb{Q}[\sqrt{d}]) \subseteq \mathbb{Q}[\sqrt{d}]$ (de hecho, vale la igualdad).
 - b) Sea $d \in \mathbb{Z}$ libre de cubos.
 - 1) Probar que hay sólo tres morfismos de cuerpos $f: \mathbb{Q}\left[\sqrt[3]{d}\right] \to \mathbb{C}$ pero, en general, $f\left(\mathbb{Q}\left[\sqrt[3]{d}\right]\right) \not\subseteq \mathbb{Q}\left[\sqrt[3]{d}\right]$.
 - 2) Considerar $\mathbb{Q}[\sqrt[3]{d}, \xi_3]$. ¿Qué sucede en este caso?