Теоремы об интуиционистском исчислении высказываний

Модели Крипке

Определение

Модель Крипке $\langle \mathcal{W}, \preceq, (\Vdash) \rangle$:

- ▶ W множество миров, (\leq) нестрогий частичный порядок на W;
- ▶ (\Vdash) $\subseteq \mathcal{W} \times P$ отношение вынуждения между мирами и переменными, причём, если $W_i \preceq W_j$ и $W_i \Vdash X$, то $W_j \Vdash X$.

Доопределим вынужденность:

- ▶ $W \Vdash \alpha \& \beta$, если $W \Vdash \alpha$ и $W \Vdash \beta$;
- ▶ $W \Vdash \alpha \lor \beta$, если $W \Vdash \alpha$ или $W \Vdash \beta$;
- $lackbox{W} \Vdash lpha
 ightarrow eta$, если всегда при $W \preceq W_1$ и $W_1 \Vdash lpha$ выполнено $W_1 \Vdash eta$
- ▶ $W \Vdash \neg \alpha$, если всегда при $W \preceq W_1$ выполнено $W_1 \not\Vdash \alpha$.

Будем говорить, что $\vdash \alpha$, если $W \vdash \alpha$ при всех $W \in \mathcal{W}$. Будем говорить, что $\models \alpha$, если $\vdash \alpha$ во всех моделях Крипке.

Исключённое третье

Пример

Покажем, что $\not\models A \lor \neg A$.

Тогда, $W_3 \Vdash \neg A$, но $W_1 \not\Vdash A$ (по определению) и $W_1 \not\Vdash \neg A$ (так как $W_1 \preceq W_2$ и $W_2 \Vdash A$). Значит, $W_1 \not\Vdash A \lor \neg A$.

Корректность моделей Крипке

Лемма

Если $W_1 \Vdash \alpha$ и $W_1 \preceq W_2$, то $W_2 \Vdash \alpha$

Теорема

Пусть $\langle \mathcal{W}, (\preceq), (\Vdash) \rangle$ — некоторая модель Крипке. Тогда она есть корректная модель интуиционистского исчисления высказываний.

Доказательство.

Доказательство для древовидного (\preceq), обобщение на произвольный порядок легко построить.

Заметим, что $V(\alpha):=\{w\in \mathcal{W}\mid w\Vdash \alpha\}$ открыто в топологии для деревьев. Значит, положив $V=\{\ S\mid S\subseteq \mathcal{W}\ \&\ S$ — открыто $\}$ и $[\![\alpha]\!]=V(\alpha)$, получим алгебру Гейтинга.

Табличные модели

Определение

Пусть задано V, значение $T \in V$ («истина»), функция $f_P : P \to V$, функции $f_{\&}, f_{\lor}, f_{\to} : V \times V \to V$, функция $f_{\neg} : V \to V$.

Тогда оценка $[\![X]\!] = f_P(X)$, $[\![\alpha \star \beta]\!] = f_{\star}([\![\alpha]\!], [\![\beta]\!])$, $[\![\neg \alpha]\!] = f_{\neg}([\![\alpha]\!]) -$ табличная.

Если $\vdash \alpha$ влечёт $[\![\alpha]\!] = T$ при всех оценках пропозициональных переменных f_P , то $\mathcal{M} := \langle V, T, f_{\&}, f_{\lor}, f_{\to}, f_{\neg} \rangle -$ табличная модель.

Определение

Табличная модель конечна, если V конечно.

Теорема

Не существует полной конечной табличной модели для интуиционистского исчисления высказываний

Доказательство нетабличности: α_n

Пусть существует полная конечная табличная модель \mathcal{M} , $V = \{v_1, v_2, \dots, v_n\}$. То есть, если $\models_{\mathcal{M}} \alpha$, то $\vdash \alpha$.

Рассмотрим

$$\alpha_n = \bigvee_{1 \le p < q \le n+1} A_p \to A_q$$

Рассмотрим оценку $f_P:\{A_1\dots A_{n+1}\}\to \{v_1\dots v_n\}$. По принципу Дирихле существуют $p\neq q$, что $[\![A_p]\!]=[\![A_q]\!]$. Значит,

$$\llbracket A_p \to A_q \rrbracket = f_{\to}(\llbracket A_p \rrbracket, \llbracket A_q \rrbracket) = f_{\to}(v, v)$$

С другой стороны, $\vdash X \to X$ — поэтому $f_{\to}(\llbracket X \rrbracket, \llbracket X \rrbracket) = T$, значит,

$$\llbracket A_p \to A_q \rrbracket = f_{\to}(v,v) = f_{\to}(\llbracket X \rrbracket, \llbracket X \rrbracket) = T$$

Аналогично, $\vdash \sigma \lor (X \to X) \lor \tau$, отсюда $\llbracket \alpha_n \rrbracket = \llbracket \sigma \lor (X \to X) \lor \tau \rrbracket = T$.

Доказательство нетабличности: противоречие

Однако, в такой модели $\not \vdash \alpha_{\it n}$:

Если
$$q>1$$
, то $W_1
ot\Vdash A_q$ и $W_1
ot\Vdash A_1 o A_q$

Если
$$q>2$$
, то $W_2\not\Vdash A_q$ и $W_2\not\Vdash A_2 o A_q$

$$W_n \not\Vdash A_{n+1}; W_n \not\Vdash A_n \to A_{n+1}$$

Если
$$p < q$$
, то $W_p \not\Vdash A_q$ и $W_p \not\Vdash A_p o A_q$

Если p < q, то $W_p \not\models A_p \to A_q$, то есть $W_R \not\models A_p \to A_q$. Отсюда: $W_R \not\models \bigvee_{p < q} A_p \to A_q$, $W_R \not\models \alpha_n$, потому $\not\models \alpha_n$ и $\not\models \alpha_n$.

Дизъюнктивность ИИВ

Определение

Исчисление дизъюнктивно, если при любых α и β из $\vdash \alpha \lor \beta$ следует $\vdash \alpha$ или $\vdash \beta$.

Определение

Решётка гёделева, если a+b=1 влечёт a=1 или b=1.

Теорема

Интуиционистское исчисление высказываний дизъюнктивно

«Гёделевизация» (операция $\Gamma(\mathcal{A})$)

Определение

Для алгебры Гейтинга $\mathcal{A} = \langle A, (\preceq) \rangle$ определим операцию «гёделевизации»: $\Gamma(\mathcal{A}) = \langle A \cup \{\omega\}, (\preceq_{\Gamma(\mathcal{A})}) \rangle$, где отношение $(\preceq_{\Gamma(\mathcal{A})})$ — минимальное отношение порядка, удовлетворяющее условиям:

- ▶ $a \leq_{\Gamma(\mathcal{A})} b$, если $a \leq_{\mathcal{A}} b$ и $a, b \notin \{\omega, 1\}$;
- ► $a \leq_{\Gamma(A)} \omega$, если $a \neq 1$;
- $\triangleright \omega \leq_{\Gamma(\mathcal{A})} 1$

Теорема

 $\Gamma(\mathcal{A})$ — гёделева алгебра.

Доказательство.

Проверка определения алгебры Гейтинга и наблюдение: если $a \preceq \omega$ и $b \preceq \omega$, то $a+b \prec \omega$.

Оценка $\Gamma(\mathcal{L})$

Теорема

Рассмотрим оценку $\llbracket \alpha \rrbracket_{\Gamma(\mathcal{L})} = \llbracket \alpha \rrbracket_{\mathcal{L}}$. Тогда она является согласованной с ИИВ.

Индукция по структуре формулы и перебор операций. Рассмотрим (&).

Неформально: почти везде $\llbracket \alpha \rrbracket_{\Gamma(\mathcal{L})} \cdot \llbracket \beta \rrbracket_{\Gamma(\mathcal{L})} = \llbracket \alpha \rrbracket_{\mathcal{L}} \cdot \llbracket \beta \rrbracket_{\mathcal{L}}$, поскольку $\llbracket \sigma \rrbracket_{\Gamma(\mathcal{L})} \neq \omega$,

... но нет ли случаев, когда
$$\omega = \text{наи} \{x \mid x \preceq [\![\alpha]\!]_{\Gamma(\mathcal{L})} \& x \preceq [\![\beta]\!]_{\Gamma(\mathcal{L})} \}?$$

Чтобы убедиться, что всегда $[\![\alpha \& \beta]\!]_{\Gamma(\mathcal{L})} = [\![\alpha]\!]_{\Gamma(\mathcal{L})} \cdot [\![\beta]\!]_{\Gamma(\mathcal{L})}$, надо показать:

- ▶ $[\alpha \& \beta]$ из множества нижних граней: $\alpha \& \beta \vdash \alpha$ и $\alpha \& \beta \vdash \beta$;
- ▶ $[\alpha \& \beta]$ наибольшая нижняя грань: $x \preceq [\alpha]$ и $x \preceq [\beta]$ влечёт $x \preceq [\alpha \& \beta]$ Разбор случаев $(x \in \mathcal{L}, x = \omega)$. $\omega \preceq [\alpha]$ и $\omega \preceq [\beta]$ влечёт $[\alpha] = [\beta] = 1$, отсюда $[\alpha \& \beta] = [\alpha] \cdot [\beta] = 1$

Гомоморфизм алгебр

Определение

Пусть \mathcal{A},\mathcal{B} — алгебры Гейтинга. Тогда $g:\mathcal{A}\to\mathcal{B}$ — гомоморфизм, если $g(a\star b)=g(a)\star g(b),\ g(0_{\mathcal{A}})=0_{\mathcal{B}}$ и $g(1_{\mathcal{A}})=1_{\mathcal{B}}.$

Определение

Будем говорить, что оценка $[\![\cdot]\!]_{\mathcal{A}}$ согласована с $[\![\cdot]\!]_{\mathcal{B}}$ и гомоморфизмом g, если $g(\mathcal{A}) = \mathcal{B}$ и $g([\![\alpha]\!]_{\mathcal{A}}) = [\![\alpha]\!]_{\mathcal{B}}$.

Доказательство дизъюнктивности ИИВ

Определение
$$(\mathcal{G}:\Gamma(\mathcal{L}) o\mathcal{L})$$
 $\mathcal{G}(a)=\left\{egin{array}{cc}a,&a
eq\omega\1,&a=\omega\end{array}
ight.$

Лемма

 $\mathcal G$ — гомоморфизм $\Gamma(\mathcal L)$ и $\mathcal L$, причём оценка $[\![\cdot]\!]_{\Gamma(\mathcal L)}$ согласована с $\mathcal G$ и $[\![\cdot]\!]_{\mathcal L}$.

Теорема

Если $\vdash \alpha \lor \beta$, то либо $\vdash \alpha$, либо $\vdash \beta$.

Доказательство.

Пусть $\vdash \alpha \lor \beta$. Тогда $[\![\alpha \lor \beta]\!]_{\Gamma(\mathcal{L})} = 1$ (так как данная оценка согласована с ИИВ). Тогда $[\![\alpha]\!]_{\Gamma(\mathcal{L})} = 1$ или $[\![\beta]\!]_{\Gamma(\mathcal{L})} = 1$ (так как $\Gamma(\mathcal{L})$ гёделева).

Пусть $[\![\alpha]\!]_{\Gamma(\mathcal{L})}=1$, тогда $\mathcal{G}([\![\alpha]\!]_{\Gamma(\mathcal{L})})=[\![\alpha]\!]_{\mathcal{L}}=1$, тогда $\vdash \alpha$ (по полноте \mathcal{L}).

Интуиционистское И.В. (натуральный, естественный вывод)

Р Формулы языка (секвенции) имеют вид: $\Gamma \vdash \alpha$. Правила вывода:

ightharpoonup Аксиома: $\frac{\text{посылка 1}}{\Gamma. \alpha \vdash \alpha}$ (акс.) $\frac{\text{посылка 1}}{\text{заключение}}$... (аннотация)

Правила введения связок: $\frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \quad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \lor \beta}, \frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta} \quad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \& \beta}$

Пример доказательства:

$$rac{\overline{A \& B \vdash A \& B}}{A \& B \vdash B} ext{(акс.)} \qquad rac{\overline{A \& B \vdash A \& B}}{A \& B \vdash A} ext{(здал&)} \ A \& B \vdash B \& A ext{(введ&)}$$