Undecidable Problems

Recall that:

A language L is decidable, if there is a Turing machine M (decider) that accepts L and halts on every input string

Undecidable Language $\,L\,$

There is no decider for L:

there is no Turing Machine which accepts \boldsymbol{L} and halts on every input string

(the machine may halt and decide for some input strings)

For an undecidable language, the corresponding problem is undecidable (unsolvable):

there is no Turing Machine (Algorithm) that gives an answer (yes or no) for every input instance

(answer may be given for some input instances)

We have shown before that there are undecidable languages:

L is Turing-Acceptable and undecidable

We will prove that two particular problems are unsolvable:

Membership problem

Halting problem

Membership Problem

Input: • Turing Machine M

·String w

Question: Does M accept w?

 $w \in L(M)$?

Corresponding language:

 $A_{TM} = \{\langle M, w \rangle : M \text{ is a Turing machine that accepts string } w \}$

Theorem: Am is undecidable

(The membership problem is unsolvable)

Proof:

Basic idea:

We will assume that A_{TM} is decidable; We will then prove that every Turing-acceptable language is also decidable

A contradiction!

Suppose that A_{TM} is decidable

Let L be a Turing recognizable language

Let $\mathit{M}_{\!\scriptscriptstyle L}$ be the Turing Machine that accepts L

We will prove that $\,L\,$ is also decidable:

we will build a decider for L

String description of M_L

This is hardwired and copied on the tape next to input string s, and then the pair $\langle M_L,s\rangle$ is input to H

Decider for L

Therefore, L is decidable

Since L is chosen arbitrarily, every Turing-Acceptable language is decidable

But there is a Turing-Acceptable language which is undecidable

Contradiction!!!!

END OF PROOF

We have shown:

We can actually show:

Am is Turing-Acceptable

Turing machine that accepts A_{TM} :

Halting Problem

Input: • Turing Machine M

•String w

Question: Does M halt while

processing input string w?

Corresponding language:

 $HALT_{TM} = \{\langle M, w \rangle : M \text{ is a Turing machine that halts on input string } w \}$

Theorem: $HALT_{TM}$ is undecidable

(The halting problem is unsolvable)

Proof:

Basic idea:

Suppose that $HALT_{TM}$ is decidable; we will prove that every Turing-acceptable language is also decidable

A contradiction!

Suppose that $HALT_{TM}$ is decidable

Input string $\langle \mathsf{M}, \mathsf{w} \,
angle$ Let M_{l} be a Turing-Acceptable language Let M_{l} be the Turing Machine that accepts L

We will prove that $\,L\,$ is also decidable:

we will build a decider for L

Decider for L

Therefore, L is decidable

Since L is chosen arbitrarily, every Turing-Acceptable language is decidable

But there is a Turing-Acceptable language which is undecidable

Contradiction!!!!

END OF PROOF

An alternative proof

Theorem: $HALT_{TM}$ is undecidable (The halting problem is unsolvable)

Proof:

Basic idea:

Assume for contradiction that the halting problem is decidable;

we will obtain a contradiction using a diagonilization technique

Suppose that $HALT_{TM}$ is decidable

Looking inside H

Input string: $\langle M, w \rangle$ Q_{0} M halts on w?

Construct machine H':

If M halts on input W Then Loop Forever Else Halt

Construct machine F:

If M halts on input $\langle M \rangle$ Then loop forever

Else halt

Run F with input itself

If F halts on input $\langle F \rangle$

Then F loops forever on input $\langle F \rangle$ Else F halts on input $\langle F \rangle$

CONTRADICTION!!!

END OF PROOF

We have shown:

Undecidable HALT_{TM}

We can actually show:

HALT_{TM} is Turing-Acceptable

Turing machine that accepts $HALT_{TM}$:

We showed:

