# **ELEMANIA**

## **BJT - Funzionamento ON-OFF 1**

Transistor | Home | Contatti

## Lampadina e cella solare: il problema della tensione insufficiente

Esaminiamo adesso l'uso del BJT come interruttore controllato elettronicamente. Quando è utilizzato a questo scopo il BJT viene fatto lavorare in zona di interdizione (interruttore OFF) oppure in zona di saturazione (interruttotore ON) allo scopo di aprire o chiudere un circuito.

In questo primo esercizio ci concentreremo sul problema di comandare un utilizzatore (la nostra solita lampadina) mediante un generatore che non è di per sé in grado di fornire una tensione sufficiente.

Consideriamo dunque il progetto di un circuito per accendere una lampadina per mezzo di una **cella solare**. Una cella solare (*solar cell*) è un dispositivo a semiconduttore in grado di convertire direttamente la radiazione luminosa in energia elettrica. In figura è mostrata una cella solare da 1,5 V e 500 mA:



La cella fornisce una tensione di 1,5 V quando è esposta alla luce solare e garantisce una corrente massima di 500 mA.

Supponiamo di usare la nostra solita lampadina da 12V, 6W, 24 Ohm. L'intenzione è quella di far accendere la lampadina quando la cella solare è illuminata. E' ovvio che non è possibile collegare direttamente la lampadina con la cella, poiché la tensione fornita non è sufficiente per far accendere la lampadina.

### **BJT** usato come interruttore (switch)

Il circuito per risolvere il problema è quello mostrato in figura:



L'unico componente da dimensionare nel circuito è la resistenza Rb. Il criterio di progetto è il seguente:

- 1. quando la cella solare è al buio, il BJT deve lavorare in interdizione e la lampadina deve restare spenta;
- 2. quando la cella solare è illuminata, la lampadina si deve accendere.

Osserviamo che la prima condizione è certamente verificata: quando la cella solare è al buio, la giunzione BE non è polarizzata (tensione zero) e dunque il BJT è certamente in interdizione.

Per quanto riguarda la seconda condizione, possiamo far accendere la lampadina sia con il BJT in zona attiva che con il BJT in zona di saturazione.

#### Dissipazione in potenza sul BJT

Tuttavia, dal punto di vista energetico, è più conveniente far lavorare il BJT in saturazione in quanto, in condizioni di saturazione:

- la tensione e la corrente sulla lampadina sono massime;
- la potenza dissipata sul BJT è minima.

La prima osservazione dovrebbe essere evidente. Per quanto riguarda la seconda, notiamo che la potenza dissipata in generale sul transistor dipende dalle tensioni e dalle correnti ed è data dalla seguente somma:

 $Pdiss = Vbe \times Ib + Vce \times Ic$ 

Osserviamo però che, essendo in generale Ib molto più piccola di Ic, si può spesso trascurare la potenza dissipata in base è scrivere:

Pdiss  $\approx$  Vce x Ic

Osserviamo che in zona di interdizione la potenza dissipata è praticamente zero, in quanto si annullano tutte le correnti (e dunque anche Ic = 0). Anche in zona di saturazione però la potenza dissipata è quasi nulla, perché la tensione Vce è molto bassa (pochi decimi di volt). In conclusione, il BJT dissipa pochissima potenza quando lavora in zona di interdizione e/o in zona di saturazione. La potenza dissipata sul BJT non è invece trascurabile in zona attiva.

#### **Dimensionamento della resistenza Rb**

Torniamo adesso al nostro circuito è cerchiamo di determinare un valore per Rb tale che il BJT vada in saturazione quando la cella solare è illuminata (1,5 V).

Per risolvere il problema, osserviamo che in saturazione la tensione Vce è quasi zero (0,3-0,4 V) e dunque la corrente nella lampadina può essere calcolata in questo modo:

$$i_C = \frac{V_{cc} - V_{ce}}{R_{lamp}} \cong \frac{12}{24} = 0, 5A$$

Dal valore precedente possiamo ricavarci il valore della corrente Ib minima necessaria per mandare il BJT in saturazione (supponendo come al solito  $\beta$ =100):

$$Ib = Ic/\beta = 5 mA$$

A questo punto, nota la tensione fornita dalla batteria (cella solare), nota la tensione della giunzione BE (circa 0,7V), possiamo calcolarci il valore di Rb:

$$R_B = \frac{V_{cell} - V_{BE}}{i_B} = \frac{1, 5 - 0, 7}{5m} = 160\Omega$$

Con questa Rb la corrente di base raggiunge il valore appena necessario per mandare il BJT in saturazione. In generale non conviene lavorare al limite della zona di saturazione e dunque, per essere maggiormente sicuri, converrà scegliere per Rb un valore minore del precedente (in modo da aumentare la corrente di base e la corrente di collettore, es. Rb = 120 Ohm).

In questo modo il transistor viene usato come uno switch ovvero un interruttore elettronico. Si dice anche che il BJT funziona in modo on-off.



Buio: BJT in interdizione



Luce: BJT in saturazione



Sito realizzato in base al template offerto da

http://www.graphixmania.it

