CLASSIFICATION & DECISION TREES

Agenda

- Evaluating classification results
- Decision Trees
 - How to build trees
 - Entropy
 - Gain Ratio
 - Ginni
- Random Forests & Ensemble Methods

Accuracy Measures (discussed in class)

- Accuracy
- Precision
- Recall
- F1 Score
- ROC- AUC Curves
- Recall Precision Trade-off

Try your hands?

Name	Qualification	Exp.	Loan?
Amar ·	B.Tech	3	no
Bindu	B.Tech	7	yes
Chetan	MBBS	2	yes
Jim	B.Com	7	yes
Dave	B.Tech	6	no
Anne	B.Com	3	no

Model Construction

Name	Qualification	Exp.	Loan?
Amar	B.Tech	3	no
Bindu	B.Tech	7	yes
Chetan	MBBS	2	yes
Jim	B.Com	7	yes
Dave	B.Tech	6	no
Anne	B.Com	3	no

IF qualification = 'MBBS' OR exp. > 6 THEN loan = 'yes'

Model Usage

Decision Tree Induction

 Q: Predict whether an individual will buy a computer?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Algorithms

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-andconquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning
 - There are no samples left

Information Gain (ID3)

- Select the attribute with the highest information gain
- Let pi be the probability that an arbitrary tuple in D belongs to class
 Ci, estimated by |Ci, D|/|D|
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"
- Calculate information needed to classify:

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

Split on Age?

Split on Age?

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

$$\frac{5}{14}I(2,3)$$
 means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence,
$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$

Continue Process

Decision Tree Construction

	1			
age	income	student	credit_rating	buys
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Over-fitting and Pruning

- Over-fitting: A tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid over-fitting
 - Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree

Ensemble Methods & Random Forests

Voting Classifiers

Random Forest

- Advantages of Bagging
 - Easy to implement
 - Reduces variance
 - More unbiased estimate of the test error
- Random Forest Algorithm
 - Same m datasets D1, D2,....Dm from D with replacement
 - For each Di train a full classifier
 - before each split randomly subsample k≤d features
 - The final classifier is the average of m classifiers
 - There are 2 hyper-parameters m,k... a good approximation for k is SQRT(d)—where d is the number of features
 - OOB Evaluation

Ada Boost

```
Input: \ell, \alpha, \{(\mathbf{x}_i, y_i)\}, \mathbb{A}
H_0 = 0
\forall i: w_i = \frac{1}{n}
for t=0:T-1 do
         h = \operatorname{argmin}_{h} \sum_{i:h(\mathbf{x}_{i}) \neq y_{i}} w_{i}  [h = \mathbb{A}((w_{1}, \mathbf{x}_{1}, y_{1}), ..., (w_{n}, \mathbf{x}_{n}, y_{n}))]
       \epsilon = \sum_{i:h(\mathbf{x}_i) \neq y_i} w_i
       if \epsilon < \frac{1}{2} then
          \begin{vmatrix} \alpha = \frac{1}{2} \ln(\frac{1-\epsilon}{\epsilon}) \\ H_{t+1} = H_t + \alpha h \\ \forall i : w_i \leftarrow \frac{w_i e^{-\alpha h(\mathbf{x}_i) y_i}}{2\sqrt{\epsilon(1-\epsilon)}} \end{vmatrix} 
         else
              return (H_t)
         end
end
return (H_T)
```

Gradient Boosting

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \dots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions R_{jm} , $j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

THANK YOU!