NAME: SHUBHAM SHARMA ROLL NO: 18i190002 MSC PHD (OR)

Exercise 1): Q1)(R)

In the given question:

- . Food is being produced by two regions- **A and E**. So every region will have two choices for **food**.
- .Machines are manufactured at two regions-**B** and **C**. So every region will have two choices for <u>machinery</u>.
- .Consumer durables are manufactured at two places <u>C and F</u>. So every region will have two choices for <u>Consumer durables</u>.
- .Consumer non durables are manufactured at <u>F</u> only. So every region will have only one choice for <u>consumer non</u> durables.

Let us define three sets that will help us formulating the lpp:

- 1) $REGION = \{A,B,C,D,E,F\}$
- 2) FUNCTION= {fooda,foode,machinery,machinery,c.d_c,c.d_f,c.nd_f}
- 3) FUNCTION2={food,machinery,c.d,c.nd}

The table of variables:

	Fooda	Foode	Machineryb	machineryc	c.d_c	c.d_f	c.nd_f
*							
Α	X _{A,Fooda}	X _{A,Foode}	X _{A,Machineryb}	X _{A,Machineryc}	X _{A,c.d_c}	X _{A,c.d_f}	X _{A,c.nd_f}
В	X _{B,Fooda}	X _{B,Foode}	X _{B,Machineryb}	X _{B,Machineryc}	X _{B,c.d_c}	X _{B,c.d_f}	X _{B,c.nd_f}
С	X _{C,Fooda}	X _{C,Foode}	X _{C,Machineryb}	X _{C,Machineryc}	X _{C,c.d_c}	X _{C,c.d_f}	X _{C,c.nd_f}
D	X _{D,Fooda}	X _{D,Foode}	X _{D,Machineryb}	X _{D,Machineryc}	X _{D,c.d_c}	X _{D,c.d_f}	X _{D,c.nd_f}
Ε	X _{A,Fooda}	X _{A,Foode}	X _{E,Machineryb}	X _{E,Machineryc}	X _{E,c.d_c}	X _{E,c.d_f}	X _{E,c.nd_f}
F	$X_{A,Fooda}$	$X_{A,Foode}$	X _{F,Machineryb}	X _{F,Machineryc}	X _{F,c.d_c}	X _{F,c.d_f}	X _{F,c.nd_f}

Where,

- . <u>x_{i,Fooda}</u> is the amount(in tons) of food region 'i' has got from A for all i € {A,B,C,D,E}
- •<u>x_{i,Foode}</u> is the amount(in tons) of food region 'i' has got from E for all i € {A,B,C,D,E},
- .<u>x_{i,Machineryb}</u> is the amount(in tons) of Machinery region 'i' has got from B for all i € {A,B,C,D,E}
- .<u>x_{i,Machineryc}</u> is the amount(in tons) of Machinery region 'i' has got from C for all i € {A,B,C,D,E}

.<u>x_{i,c.d.c.}</u> is the amount(in tons) of Consumer durables region 'i' has got from C for all i € {A,B,C,D,E}

.<u>x_{i,c.d f}</u> is the amount(in tons) of Consumer durables region 'i' has got from F for all i € {A,B,C,D,E}

 $\underline{x_{i,c.nd\ f}}$ is the amount(in tons) of Consumer non durables region 'i' has got from F for all i € {A,B,C,D,E}

Given below is the matrix that represent the distance taken by REGIONS to obtain the resources from OTHER REGIONS:

DISTANCEM = $[d_{ij}]_{REGION*FUNCTION}$

Where d_{ii} = distance travelled when when region i is taking

	Fooda	Foode	Machineryb	machineryc	c.d_c	c.d_f	c.nd_f
*							
Α	0	600	500	200	200	300	300
В	500	125	0	400	400	200	200
С	200	350	400	0	0	100	100
D	75	550	500	150	150	400	400
Ε	600	0	120	350	350	300	300
F	300	300	200	100	100	0	0

something from other region , where i € REGION and j € FUNCTION

Eg , $d_{E,machineryb}$ is the distance(km) when E is taking machiner from B.

<u>SIMILARLY</u>, we can define another matrix that will tell us the <u>cost per KM per TON</u> when region i is taking something from different regions.

 $COSTM = [c_{ij}]_{REGION*FUNCTION}$

Where $c_{ij} = cost/ton/km$ when when region i is taking

	Fooda	Foode	Machineryb	machineryc	c.d_c	c.d_f	c.nd_f
*							
Α	0	0.4	0.4	0.4	0.4	0.4	0.4
В	0.4	0.4	0	0.4	0.4	0.4	0.4
С	0.4	0.4	0.4	0	0	0.6	0.6
D	0.6	0.4	0.4	0.4	0.4	0.4	0.4
Ε	0.4	0	0.4	0.4	0.4	0.4	0.4
F	0.4	0.4	0.4	0.6	0.6	0	0

something from other region , where i € REGION and j € FUNCTION

Eg , $c_{A,c.d_c}$ is the cost/ton/km when A is taking costumer durables from C.

Now, with the help of these matrices , we can define our objective function , as my multiplying each term c_{ij} of matrix COSTM to the each term d_{ij} of matrix DISTANCEM, we will get the cost/ton for each movement between the regions.

We are defining one more matrix AVAILM that will tell us requirement of each location for each resource:

 $AVAILM = [p_{ij}]_{REGION*FUNCTION2}$

*	food	machinery	c.d	c.nd
Α	5	30	20	10
В	15	100	40	30
С	20	80	50	40
D	30	10	70	60
E	10	60	30	20
F	25	60	60	50

where p_{ij} is telling the requirement of every REGION for every RESOURCE.

NOW, THE OBJECTIVE FUNCTION IS:

MINIMIZE: $\sum_{(i \text{ in REGION, } j \text{ in FUNCTION})} d_{ij} * c_{ij} * x_{ij}$

Where, $d_{ij} \in DISTANCEM$, $c_{ij} \in COSTM$, and x_{ij} are the decision variables as defined above, where $i \in REGION$, $j \in FUNCTION$.

Subject to constraints:

a) (we are defining six constrains on food to fulfill the requirement of every region of food using the matrix and notations defined above)

x_{i,fooda}+ x_{i,foode=}p_{i,food} for all i€ REGION, where p€AVAILM

- b) (Now we are defining six constrains on machinery to fulfil the requirement of every region of machinery using the matrix and notations defined above):

 x_{i,machineryb}+x_{i,machineryc}= p_{i,machinery} for all i€ REGION, where p€AVAILM
- c) (Now we are defining six constrains on consumer durables to fulfill the requirement of every region of consumer durables using the matrix and notations defined above):

 $x_{i,c.d_c}+x_{i,c.d_f}=p_{i,c.d}$ for all i REGION, where p AVAILM

d) (Now we are defining six constrains on consumer non durables to fulfill the requirement of every region of consumer non durables using the matrix and notations defined above):

 $x_{i,c.nd_f} = p_{i,c.nd}$ for all i REGION, where p AVAILM

e) (As the food production in sector A is restricted to half that of sector E):

$$x_{A,fooda}+x_{B,fooda}+x_{C,fooda}+x_{D,fooda}+x_{E,fooda}+x_{E,fooda}+x_{E,fooda}+x_{E,foode}+x_{E$$

f) (As the variables are in tons so they cannot be negative): $x_{ii} \ge 0$ for all i \in REGION , J \in FUNCTION.

Q3)(R):

```
AMPL
ampl: include ex1.run;
Gurobi 8.0.0: optimal solution; objective 48100
1 simplex iterations
amount [*,*] (tr)
                           d
                                    f
                                          :=
                      C
            a
c.d_c
            20
                 0
                      50
                           70
                                0
                                     0
c.d_f
            0
                 40
                      0
                          0
                                30
                                    60
c.nd_f
            10
                 30
                     40
                                20
                           60
                                    50
            5
                 0
                     0
                           30
                                0
fooda
foode
                15
                                    25
                      20
                                10
           0
                100 0
                          0
machineryb
                               60
                                    0
machineryc
          30 0 80 10
                               0
                                    60
# $3 = con1.body
# $6 = con2.body
# $7 = con3.1b
# $8 = con3.ub
# $9 = con3.body
# $10 = con4.lb
# $11 = con4.ub
# $12 = con4.body
: con1.lb con1.ub
                 $3 con2.lb con2.ub
                                      $6
                                            $7
                                                $8
                                                     $9 $10 $11 $12
            5
                        30
                                30
                                      30
                                            20
                                                20
                                                     20
                                                                   10
                                                          10
                                                               10
b
    15
            15
                  15
                        100
                               100
                                      100
                                                40
                                            40
                                                     40
                                                          30
                                                               30
                                                                   30
            20
                  20
                                80
                                                50
                                                     50
                                                          40
                                                               40
                                                                   40
C
    20
                        80
                                      80
                                            50
                  30
                                10
                                            70
                                                70
                                                                   60
    30
            30
                        10
                                       10
                                                     70
                                                          60
                                                               60
            10
                  10
                                60
                                            30
                                                30
                                                               20
                                                                   20
e
    10
                        60
                                      60
                                                     30
                                                         20
    25
            25
                  25
                        60
                               60
                                      60
                                            60
                                                60 60
                                                        50
                                                               50
                                                                   50
con5.lb = -Infinity
con5.ub = 0
con5.body = 0
```

- 1) The optimal solution came out to be:48100
- 2) The values are variables at optimal solution is:

x_{ij} is is the amount in tons and i€REGION and j€FUNCTION

	Fooda	Foode	Machineryb	machineryc	c.d_c	c.d_f	c.nd_f
*							
Α	5	0	0	30	20	2	10
В	0	15	100	0	0	40	30
С	0	20	0	80	50	0	40
D	30	0	0	10	70	0	60
Ε	0	30	20	0	10	60	0
F	0	60	50	0	25	0	60

3) The Solution is satisfying all the constraints as we can see this the picture attached.

Q3)(R):

If the demand for food alone is doubled, then the only change in the above model will be the change in the requirement matrix in the column of food.

So the new AVAILM is : AVAILM= $[p_{ij}]_{REGION*FUNCTION2}$

*	food	machinery	c.d	c.nd
Α	10	30	20	10
В	30	100	40	30
С	40	80	50	40
D	60	10	70	60
E	20	60	30	20
F	50	60	60	50

```
ampl: include ex1b.run;
Gurobi 8.0.0: optimal solution; objective 56000
1 simplex iterations
amount [*,*] (tr)
                   C
                               f
          a
                      d
                           e
                  50
c.d_c
          20
              0
                      70
                          0
                               0
c.d_f
          0
                  0 0 30
               40
                               60
                  40 60 20
c.nd_f
          10
               30
                               50
fooda
          10
              0
                  0 60
                               0
             30
                      0 20
foode
                               50
machineryb 0
              100
                  0 0 60
                               0
                  80 10 0
machineryc 30
                               60
ampl:
```

So, we have solved the above question with changes in AMPL and the cost came out to be: 56000

Now, to find the most sensitive item, we have checked the optimal cost by changing the demand every item (multiplying it by 2 as we have done just now) and they came out to be:

DEMAND DOUBLED FOR:	OPTIMAL COST:
FOOD	56000
MACHINERY	57700
CONSUMER DURABLES	60700
CONSUMER NON	66100
DURABLES	

As we can see from the above table, non-consumer durables is the most sensitive item

Exercise 2): Q1)(R)

Defining the decision variables:

Y_i =No of units produced during month i, i=0-12(Here month 0 is considered to be the month June),i.e:

Month 0	June
Month 1	July
Month 2	August
Month 3	September
Month 4	October
Month 5	November
Month 6	December
Month 7	January
Month 8	February
Month 9	March

Month 10	April
Month 11	May
Month 12	june

Invent_i = amount of inventory at the end of month i, i=0-12

Inc_i= amount of increase in total production during month i as compared to i-1.

Dec_i= amount of decrease in total production during month i as compared to i-1.

Defining the parameters:

SALES $_i$ = The sales forcast for month i (in units), i = 0-12 COSTINC = 28 is the cost of increasing production per unit.

COSTDEC = 12 is the cost of decreasing production per unit.

MAXIMUM_INVENTORY = 10000 is the maximum inventory.

Now we define the objective function with the help of the parameters and variables defined above:

Minimize Cost: (COSTINC*Inc₁)+ (COSTINC*Inc₂)+
(COSTINC*Inc₃)+ (COSTINC*Inc₄)+ (COSTINC*Inc₅)+
(COSTINC*Inc₆)+ (COSTINC*Inc₇)+ (COSTINC*Inc₈)+
(COSTINC*Inc₉)+ (COSTINC*Inc₁₀)+ (COSTINC*Inc₁₁)+
(COSTINC*Inc₁₂)+(COSTDEC*Dec₁) +(COSTDEC*Dec₂)
+(COSTDEC*Dec₃) +(COSTDEC*Dec₄) +(COSTDEC*Dec₅)

+(COSTDEC*Dec₆) +(COSTDEC*Dec₇) +(COSTDEC*Dec₈)

```
+(COSTDEC*Dec<sub>9</sub>) +(COSTDEC*Dec<sub>10</sub>)+
+(COSTDEC*Dec<sub>11</sub>) +(COSTDEC*Dec<sub>12</sub>)
```

SUBJECT to the CONSTRAINTS:

- 1) (As the demand must be met each month) Invent_i+ y_{i-1} -Invent_{i-1}= $SALES_i$ for all $1 \le i \le 12$.
- 2) (As at least one of increase or decrease must be zero) $y_{i}-y_{i-1}=Inc_{i}-Dec_{i}$ for all $1 \le i \le 12$.
- 3) (constraint for setting the initial inventory of Month 0 is taken to be zero):

 Invent₀=0
- 4) (Setting the production rate for the preceeding June):

$$Y_0 = 4000$$

5) Constraint for setting the maximum inventory: Invent_i≤ MAXIMUM_INVENTORY

Q3)(R):

```
MIVIL E
ampl: include ex2.run;
Gurobi 8.0.0: optimal solution; objective 405360
14 simplex iterations
1 branch-and-cut nodes
cost = 405360
y [*] :=
0 4000
1 8222
2 8222
3 8223
4 15333
5 15333
6 15334
7 15333
8 12000
9 8000
10 8000
11 8000
12 8000
;
invent [*] := 0 0
 1 4222
2 6444
 3 6667
 4 10000
 5 9333
 6 4667
 7
     0
     0
8
9
       0
10 2000
11 6000
12 10000
;
```

```
inc [*] := 0 0
   1 4222
 1 4222
2 0
3 1
4 7110
5 0
6 1
7 0
8 0
9 0
10 0
          0
0
0
 11
12
;
 dec [*] :=
0 0
1 0
  0
1
2
3
4
5
6
7
                0
             0
             0
0
               1
  8 3333
9 4000
          0
0
0
 10
11
12
  ;
# $4 = con2.lb
# $5 = con2.ub
# $6 = con2.body
# $7 = con3.lb
```

```
# $7 = con3.1b
# $8 = con3.ub
# $9 = con3.body
# $12 = con4.body
: con1.lb con1.ub con1.body $4 $5 $6 $7 $8 $9 con4.lb con4.ub
                                                            4000
                                                                     4000
                                                                              4000
0
      4000
               4000
                         4000
1
               6000
                         6000
      6000
               8000
                         8000
3
      8000
     12000
              12000
                        12000
5
     16000
              16000
                        16000
6
     20000
              20000
                        20000
7
                        20000
     20000
              20000
                        12000
8
     12000
              12000
9
                         8000
      8000
               8000
10
      6000
               6000
                         6000
      4000
               4000
                         4000
11
12
      4000
               4000
                         4000
;
     con5.1b con5.ub con5.body
    -Infinity 10000
0
    -Infinity
                 10000
                             4222
1
    -Infinity 10000
-Infinity 10000
-Infinity 10000
-Infinity 10000
-Infinity 10000
2
                             6444
3
                             6667
                            10000
4
5
                            9333
                             4667
6
                10000
7
     -Infinity
                              0
                 10000
8
     -Infinity
                                0
                 10000
9
     -Infinity
10
    -Infinity
                  10000
                             2000
11
     -Infinity
                  10000
                             6000
12
     -Infinity
                  10000
                            10000
```

- 1) The optimal solution came out to be:405360
- 2) The values are variables at optimal solution is:

i	y i
0	4000
1	8222
2	8222
3	8223
4	15333
5	15333
6	15334
7	15333
8	12000

9	8000
10	8000
11	8000
12	8000

i	Invent _i
0	0
1	4222
2	6444
3	6667
4	10000
5	9333
6	4667
7	0
8	0
9	0
10	2000
11	6000
12	10000

i	Inc _i
0	0
1	4222
2	0
3	1
4	7110
5	0
6	1

7	0
8	0
9	0
10	0
11	0
12	0

i	Dec _i
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	1
8	3333
9	4000
10	0
11	0
12	0

3) The Solution is satisfying all the constraints as we can see this the picture attached.

Exercise 2): Q1)(R):

Defining two sets that will help us in formation of the lpp

Let MACHINE={m1,m2,m3}

Let ITEMS={hammer,spanner,cutter}

Defining the decision variables:-

We are defining a matrix to define the decision variables:-

 $X=[x_{ij}]_{MACHINE*ITEMS}$

	hammer	Spanner	cutter
M-1	X _{M-1,hammer}	X _{M-1,spanner}	X _{M-1,cutter}
M-2	X _{M-2,hammer}	X _{M-2,spanner}	X _{M-2,cutter}
M-3	X _{M-3,hammer}	X _{M-3,spanner}	X _{M-3,cutter}

Then x_{ij} represents the amount in units item j made by machine corresponding to i.

Eg $x_{M-2,spanner}$ is the amount(units) of spanner made by the machine M-2

Defining the parameters:

Defining the cost/unit matrix COSTM:

COSTM=[c_{ij}] MACHINE*ITEMS

	hammer	Spanner	cutter
M-1	30	25	42
M-2	35	22	40
M-3	28	27	42

Where c_{ij} is the cost/unit machine i is taking while making j

For eg: $c_{M-1,spanner}$ is the cost /unit machine M-1 is taking while making spanner.

<u>Defining a matrix MATM that will tell us the material</u> <u>consumed / unit:</u>

MATM=[m_{ij}] MACHINE*ITEMS

	hammer	Spanner	cutter
M-1	3	2	2
M-2	4	1.5	2.5
M-3	2	3	3

Where m_{ij} is the material consumed /unit by machine i while making item j

For eg: $m_{M-1,spanner}$ is the material consumed /unit by machine M-1 while making spanner.

<u>Defining a matrix CAPACITYM that will tell us the capacity consumed /unit:</u>

CAPACITYM=[a_{ij}] MACHINE*ITEMS

	hammer	Spanner	cutter
M-1	48	45	53
M-2	45	55	50
M-3	48	50	48

Where a_{ij} is the capacity consumed /unit by machine i on item j.

Now, defining a matrix POLLUTIONM that will tell us the pollution /unit on every machine:

POLLUTIONM=[p_{ij}] MACHINE*ITEMS

	hammer	Spanner	cutter
M-1	7	12	10
M-2	9	9	9
M-3	13	12	8

C

Now, we have defined every parameter, Defining the **Objective Function**:

MINIMIZE **COST:** $\sum_{(i \text{ in MACHINE, J in ITEMS)}} x_{ij} * c_{ij}$ Where, x_{ij} is the decision variable and $c_{ij} \in COSTM$

Subject to constraints:

1)(As the total amount of raw-material available for production is 900 units):

 $\sum_{(i \text{ in MACHINE,J in ITEMS})} x_{ij} * m_{ij} \le 900$ Where, $m_{ij} \in MATHM$

2) (As the total capacity of each machine is also limited to 5000 units):

 $\sum_{(J \text{ in ITEMS})} x_{ij}^* a_{ij}$ ≤5000 for all i€ MACHINE

Where, a_{ij} € CAPACITYM

3) (As the division must control the total pollution level to 3000 units):

 $\sum_{(i \text{ in MACHINE, J in ITEMS})} x_{ij} * p_{ij} \le 3000$

Where p_{ii}€POLLUTIONM

4) (As the requirements is 100 units of each tool):

```
    ∑<sub>(i in MACHINE)</sub>x<sub>ij</sub>=100 for all j€ ITEMS
    5) (Non negativity constraint):
    x<sub>ii</sub>≥0 for all i€MACHINE,j€ITEMS
```

Q3)(R):

```
Gurobi 8.0.0: optimal solution; objective 9312.935001
5 simplex iterations
cost = 9312.94
x :=
m1 cutter
            36.0224
          33.1284
m1 hammer
m1 spanner 33.3477
            26.6825
m2 cutter
m2 hammer
             0
m2 spanner 66.6523
            37.2951
m3 cutter
            66.8716
m3 hammer
m3 spanner
con1.lb = -Infinity
con1.ub = 900
con1.body = 650.439
     con2.1b con2.ub con2.body
m1
     -Infinity 5000
                         5000
     -Infinity
m2
                5000
                         5000
    -Infinity 5000
m3
                         5000
j
con3.lb = -Infinity
con3.ub = 3000
con3.body = 3000
       con4.1b con4.ub con4.body
                100
cutter
          100
hammer
          100
                  100
                           100
spanner
          100
                  100
                           100
```

- 1) The optimal solution came out to be:9312.94
- 2) The values are variables at optimal solution is: (As the values are in decimals, we can take use the smallest integer functions, as the no of items cannot be in decimals)

X_{ii} is s.t. i€MACHINE, j€ITEMS

X _{ij}	hammer	Spanner	cutter
M-1	33.1284	33.3477	36.0244
M-2	0	66.6523	26.6825
M-3	66.8761	0	37.2951

3) The Solution is satisfying all the constraints as we can see this the picture attached.

Q5)(R):

```
Gurobi 8.0.0: optimal solution; objective 8914.453874
5 simplex iterations
time = 8914.45
x :=
m1 cutter 85.464
           9.80016
m1 hammer
m1 spanner 0
m2 cutter
           0
m2 hammer 90.1998
m2 spanner 17.1092
m3 cutter 14.536
m3 hammer
           0
m3 spanner 82.8908
con1.lb = -Infinity
con1.ub = 900
con1.body = 879.072
    con2.1b con2.ub con2.body
m1 -Infinity 5000 5000
m2 -Infinity 5000 5000
m3 -Infinity 5000 4842.27
con3.lb = -Infinity
con3.ub = 3000
con3.body = 3000
     con4.lb con4.ub con4.body
cutter 100 100 100
hammer 100 100 100
spanner 100 100 100
```

- 1) The optimal solution came out to be:8914.15
- 2) The values are variables at optimal solution is: (As the values are in decimals, we can take use the smallest integer functions, as the no of items cannot be in decimals)

X_{ii} is s.t. i€MACHINE, j€ITEMS

X _{ij}	hammer	Spanner	cutter
M-1	9.80016	0	85.464
M-2	90.1998	17.1092	0
M-3	0	82.8908	14.536

3) The Solution is satisfying all the constraints as we can see this the picture attached(ques3b.dat,ques3b.mod,ques3b.run).

Q6)(R):

COST	TIME
10265.5	8914.45
9993.14	8973.68
9425	9126.22
9506.95	9058.52
9312.94	9148.35
10175.3	8917.98
9312.64	9148.35
9284.95	9312.94
9690.39	8996.91
9312.94	9148.35
9312.94	9415.97
9425	9126.22
9425	9126.22
10265.5	8914.45
9312.94	9148.35
10175.3	8917.98
10265.5	8914.45
9312.94	9148.35
9582.33	9028.51
9312.94	9148.35
10265.5	8914.45
	10265.5 9993.14 9425 9506.95 9312.94 10175.3 9312.64 9284.95 9690.39 9312.94 9425 9425 10265.5 9312.94 10175.3 10265.5 9312.94 9582.33