Índice general

1.	Modelos estadísticos					
	1.1.	Análisis de series temporales	3			
	1.2.	Modelo 2 (decidir)	4			
Bi	bliog	grafía	4			

Capítulo 1

Modelos estadísticos

A continuación se exponen los modelos estadísticos que estudiaremos de cara a predecir las ventas de los productos.

1.1. Análisis de series temporales

Aplicaremos este modelo de predicción para tratar de identificar los patrones de la demanda anterior a lo largo del tiempo y luego proyectar (predecir) los patrones en el futuro.

Se define una serie temporal como una sucesión de datos ordenados en el tiempo que corresponden a una misma variable. Los datos son suelen ser tomados en intervalos regulares de tiempo.

Nuestro objetivo dentro del análisis de series temporales será identificar el proceso estocástico que ha sido capaz de generar la serie de estudio.

(No se si añadirlo) Se dice proceso estocástico a una colección o familia de variables aleatorias $\{X_t, \text{ con } t \in T\}$ que siguen la misma ley de distribución y están relacionadas entre sí, pudiendo por este motivo, describir la información de estas variables en términos de medias, variaciones y covarianzas.

A continuación encontramos las cuatro etapas en un análisis descriptivo de series temporales para elegir un modelo que se adecue a nuestros datos:

- Representación gráfica de la serie. Para tener así una primera aproximación del comportamiento de la serie y la existencia de posibles tendencias.
- Modelización: Se trata de encontrar el modelo que mejor se ajuste a los datos.
- Validación de los modelos: Es necesario saber si el modelo ajustado es adecuado o no, por lo que es muy importante el estudio de los residuos.
- Predicciones: Una vez construido y validado un modelo, realizaremos estimaciones del futuro con nuevas observaciones.

En un enfoque clásico de series temporales, asumiremos que el comportamiento de la variable con respecto al tiempo se compone de cuatro componentes:

1. **Tendencia**: Se trata del movimiento suave y regular de la serie a largo plazo. La tendencia existe cuando hay un aumento o disminución a largo plazo de los datos.

Puede ser lineal (ajuste mediante una recta) o no lineal (aproximación mediante una curva, como por ejemplo logarítmica o exponencial)

- 2. Ciclo: Componente de tipo oscilante caracterizada por movimientos recurrentes en torno a la tendencia de la serie y que se repiten cada año pero sin una frecuencia fija.
- 3. Componente estacional: Se trata de movimientos regulares dentro de la serie con una periodicidad menor a un año, es decir, aquello que ocurre generalmente y con la misma intensidad año tras año en los mismos períodos, por ejemplo, en la misma época del año o día de la semana. Vamos a denotar por L al número de estaciones.
- 4. Componente irregular: Se trata de las variaciones de la serie sin un comportamiento sistemático y que no son explicadas por las otras tres componentes

Existen diferentes modelos de combinación de las componentes. Para describir los modelos necesitamos primero una nomenclatura básica. Denotando por X_t al valor de la variable en el instante t, se tiene:

$$X_t = f(T_t, E_t, I_t)$$

donde:

- T_t : Valor de la tendencia en el instante t
- E_t : Valor de la componente estacional en el instante t
- I_t : Valor de la componente irregular en el instante t.

Por tanto, los modelos que puede adoptar la función f son los siguientes:

■ Modelo multiplicativo: La composición de la serie se realiza mediante el producto de sus componentes.

$$X_t = T_x \times E_t \times I_t$$

• Modelo aditivo: Las componentes se agregan para formar la serie temporal.

$$X_t = T_x + E_t + I_t$$

■ Modelo mixto: La composición de la serie de la parte irregular viene de forma aditiva y la parte regular de forma multiplicativa.

$$Xt = Tx \times Et + It$$

http://www5.uva.es/estadmed/datos/series/series2.htm

1.2. Modelo 2 (decidir)