Δ < 0.85 is false, so we continue.

Iteration 2:

$$\Delta = 0$$
, $V_1(s^1) = 0$, $V_1(s^2) = 1$

For s^1 :

 $V_2(s^1) = p(s^1|s^1, a^1) [1 + 0.9x] + p(s^1|s^2, a^1) [0 + 0.9x] + p(s^1|s^1, a^1)$

Date:
Policy Improvement:
stable = Tue
FOR S':
old-action = a'
$\pi_1(s') = \operatorname{argman} \{ p(s' s', a')[0+0.9\times0] + a \{ p(s' s', a')[\Theta +0.9\times2.71] \}$
$p(s s', a^2)[0+0.9\times0]+$
$p(s^{2} s , a^{2})[1+0.9x2.71]$
$= \operatorname{algmax} \{ 0+0, 0+1(3.43) \} $
a 2 a' a'
$=) \left[\prod_{1} (s^{1}) = \alpha^{2} \right]$
$for s^2$:
$T_1(s^2) = aigman \left\{ p(s' s',a')[0+0.9 \times 0] + p(s^2 s^2,a')[1+0.9 \times 2.71] \right\}$
$p(s s,\alpha)[0+0.9\times0]+$
$p(s^2 s^2,\alpha^2)[1+0.9\times2.71]$
= aigmax (0+1[1+0.9x2.71] <, \$ a1
a 10+0 3 € az
= aigman {3.43, 0 } = a,
a
$=) \left[\pi_1(s^2) = \alpha' \right]$
Thus,
$\pi_1(s') = \alpha^2, \pi_1(s^2) = \alpha'.$

Date:
$= \frac{1}{\sqrt{2}} \frac{V_2(s)}{s} = \max \left\{ \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$
$= \frac{V_2(s^2)}{\alpha} = \max_{\alpha} \left\{ 1. \left(\frac{1+0.9 \times 1}{1.9}, \frac{10+0.9 \times 10^{-3}}{1.9} \right) \right\}$ $= \max_{\alpha} \left\{ 1.9, 0.9 \right\} = 1.9$
$=) V_2 = \begin{bmatrix} V_2(s') \\ V_2(s^2) \end{bmatrix} = \begin{bmatrix} 1.9 \\ 1.9 \end{bmatrix}$
For V_3 : =) $V_3(s') = max \int (0 + 0.9 \times 1.9), I(1 + 0.9 \times 1.9)$ = $max \int [1.71, 2.71]$ [$V_3(s') = 2.71$]
$= V_3(s^2) = man_a \{ 1(1+0.9 \times 1.9), \\ 1(0+0.9 \times 1.9) \}$ $= man_a \{ 2.71, 1.71 \}$ $= V_3(s^2) = 2.71 $
Thus, $V_3 = \begin{bmatrix} V_3(s^1) \\ V_3(s^2) \end{bmatrix} = \begin{bmatrix} 2.71 \\ 2.71 \end{bmatrix}$

Date:

$$(s=0, s=1)$$

$$V_3 = \begin{bmatrix} 2.71 \\ 2.71 \end{bmatrix}$$

$$TI(s=0) = aigman \left\{ p(s'|s',a')(0+0.9x2.71), a p(s^2|s',a^2)(1+0.9x2.71) \right\}$$

$$= aigman \left\{ 1(2.43), 3.43 \right\}$$

$$=) \left(\int (S=0) = a^2 \right)$$

$$II(s=1) = agmax \left\{ p(s^2 | s^2, a') (1+0.9x2.71), \\ p(s' | s^2, a^2) (0+0.9x2.71) \right\}$$

$$= agman \left\{ 3.43, 2.43 \right\}$$

$$T(S=1) = a$$

Thus,
$$TI = TI(s=0) = a^2$$

 $LTI(s=1)$

Date:
Problem 3: Non-obteministic Policy Iteration.
$Y=0.9$, $\pi(s)=\left[\pi(A)\right]=\left[a^2\right]$ $\left[\pi(B)\right]\left[a^2\right]$
A B
$M(a!) = A \begin{bmatrix} 1 & 0 \\ 8 & 0.8 & 0.2 \end{bmatrix}$
$M(\alpha^2) = A \begin{bmatrix} 0.2 & 0.8 \\ 0.8 & 0.2 \end{bmatrix}$
Assume $V''(s) = 0 = V''(A)$ $V''(B)$
Policy Evaluation:
$V(A) = P(A A,a^{2})x(R(A,a^{2},A)+VV(A))+$ $P(B A,a^{2})x(R(A,a^{2},B)+VV(B))$ $=) V(A) = 0.2(-10+0.9xV(A)+0.8(-5+0.9x)$
$P(B A,a^2)_X(R(A,a^7B)+VV(B))$
$= V(A) = 0.2(-10 + 0.9 \times V(A)) + 0.8(-5 + 0.9 \times V(A))$
V(A)2+018V(A)-4+072V(B)
=) $V(A) = -2 + 0.18V(A) - 9 + 0.72V(B)$ => $0.82V(A) - 0.72V(B) + 6 = 0 - Eq(1)$
$V(B) = P(A B, a^2) \times (R(B,a^2,A) + VV(A)) +$
$P(B B, a^{2}) \times (R(B, a, B) + VV(B))$ $V(B) = 0.8 \times (20 + 0.9 V(A)) + 0.2 \times (10 + 0.9 V(B))$ $V(B) = 16 + 0.72 V(A) + 2 + 0.18 V(B)$
$\frac{V(B) = 16 + 0.72 V(A) + 2 + 0.18 V(B)}{0.82 V(B) - 0.72 V(A) - 18 = 0 - Eq.(2)}$

Date:
Solving Eq(1) & (2) simultaneously, (1) =1 $0.82V(A) = 0.72V(B) - 6$ =) $V(A) = 0.72V(B) - 6$ _ (3) 0.82
Substitute in (2),
(2) = 10.82 V(B) - 0.72 / 0.72 V(B) - 6 - 18 = 0
70.00.(3)
$= 0.82 \times (B) - (0.5184 - 4.32) - 18 = 0$
0.82
=) 0.6724 V(B) - 0.5184 V(B) + 4.32 - 14.76=0
=) 0.8184
=) 0.154V(B)-10.44=0
=) V(B) = 10.44/0.154
=) (V(B) = 67.792)
Substitute back in (3),
$(3) = V(A) = 0.72 \times 67.792 - 6$
0.82
V(A) = S2.2
Thus, $V''(s) = V(A) = 52.2$ $V(B) = 67.792$

Date:
Policy Improvement:
stable = Time.
For A: / old-action
old-action
The second of th
Since we have the optimal state values
VI(s) already, we can directly allemine
optimal policy as follows:
V
T(A) = aigmax \ P(A A,a') \ R(A,a',A) + 8. V^(A) \ +
LP(B A,a') (R(A,a',B)+Y.V"(B))
P(A, A, a2) (R(A, a2, A) + Y. V1/A) +
P(B A, a2) [R(A, a2, B)+ Y. V1/B) 3/1
$\pi(A) = algman \int 1. (10+0.9x52.2) + 0$, $+ a_1 \int a_1 (0.2(-10+0.9x52.2) + 0$
0.8(-5+0.9×67.792)} [a2
= algmax { 56.98, 52.23
a (
$=)$ $\Pi(A) = a'$
T(0) SO(0/0 1) (0/0 1/0) 2+
T(B) = aigmax { P(A B,a') { R(B,a',A) +8V (A) } +
P(B B,a') {R(B,a',B)+ rv"(B)},
P(A B, a2) {R(B, a2, A)+ VV"(A)}+ P(B B, a2) {R(B, a2, B) + VV"(B)}
P(B B, a2) {R(B, a2, B) + 8 V1 (B)}

$$\Pi(B) = \underset{a}{\text{angman}} \left\{ 0.8(40+0.9\times52.2) + \\
0.2(10+0.9\times67.792), \\
0.8(20+0.9\times52.2) + \\
0.2(10+0.9\times67.792) \right\}$$

$$= \underset{a}{\text{angman}} \left\{ 83.78, 67.786 \right\}$$

$$= 1 \Pi(B) = a!$$

Thus,

Optimal Policy:

$$\pi(s) = [\alpha'] = [\pi(s=A)]$$

 $[\alpha'] = [\pi(s=B)]$

State Values:

$$V^{11}(s) = [52.2] = [V^{11}(s=A)]$$

$$[67.792] [V^{11}(s=B)]$$

× _ _ ×