New way using trig:
We start with linear fits Of the XZ&YZ
Projections:
Z=AX+B
y=C=+0
We want to calculate the 2 points at the
End Of the linear fits we approx. linear segment langer
14 cm
$\frac{2}{2}$
$\mathcal{N}\mathcal{N}\mathcal{N}$
$y \qquad (z_{+}, x_{+}) \qquad (z_{-}, y_{-}) \qquad (z_{-}, y_{-})$
y L
In 30, the Segnest The Lothed red line is
length is 14 cm. the linear fix
14= \(\Dx^2 + \Dy^2 + \Dz^2 \), \(\Dz = A \Dx \), \(\Dy = C \cd z = A C \DX \)
196 = 0x2+ 120x2+1200+2=(1+A2+A202)0x3
0 X= 14/VI+B2+B2C2
$\begin{array}{c} X_{\pm} = X_{avg} \pm \frac{OX}{Z} \end{array}$
$Z_{\pm} = A X_{\pm} + B$
$y \pm z + 0$
JE - CE IV

