수학 문제 연구회

Taeyoung Kim

28, November 2024

Let $\mathcal{A} := \{f(z) : f : \mathbb{C} \to \mathbb{C}, f \text{ is differentiable on entire domain} \}$ be a set of analytic functions, and $\mathbb{A} := \{(a_n)_{n=0,\dots} | a_n \in \mathbb{C}, n \in \mathbb{N}\}$ be a set of complex-valued sequences. Prove following statements:

- 1. Each \mathcal{A} , \mathbb{A} is \mathbb{C} -vector space.
- 2. Set of sequences satisfying $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = 0$ is subspace of \mathbb{A} .
- 3. Let denote the set in statement 2 as \mathbb{A}' , then $\mathcal{A} \simeq \mathbb{A}'$ as vector space.

Here's an additional question: By fundamental theorem of algebra, if $M := \max\{n|a_n \neq 0\} < \infty$ then, function $\sum a_n z^n$ has exactly M zeros (counting multiplicities). But, if $M = \infty$, there exists function without zeros (e.g. e^z). Is there a corresponding condition in \mathbb{A}' for non-constant function to have no zeros?