Auto Comments: Generating Java code comments

R. Navin^{*}, J. Katzy^{*}, R. Skoulos^{*}, T. Pfann^{*}

*Delft Institute of Computer Science, TU Delft

Motivation & Goal

- In software development and maintenance, developers spend around 59% of their time on program comprehension activities.
- Automatically generate human readable comments for code snippets.
- With DeepCom as baseline, we propose,
 - Method-1: Replication of code2seq, with added capability to generate natural languages as comments.
 - Method-2: Learn on modified ASTs, solving Out-of-Vocabulary problems.

Experiment Setup

Java methods are parsed into ASTs, which are encoded and passed to a Encoder-Decoder sequence to sequence neural network based upon bidirectional LSTMS (a code2seq based architecture).

public static void add(int VARO, int VAR1) {
 return VARO + VAR1;
}

Listing 1: Java example

Figure 1: Example AST of Function, the example path has been superimposed with thick arrows.

$\begin{array}{c} \textbf{Dataset} \\ \# \ \mathsf{Methods} \ \# \ \mathsf{All} \ \mathsf{tokens} \ \# \ \mathsf{All} \ \mathsf{identifiers} \ \# \mathsf{Unique} \ \mathsf{tokens} \ \# \mathsf{Unique} \ \mathsf{identifiers} \\ \hline 588,108 \quad 44,378,497 \quad 13,779,297 \qquad 794,711 \qquad 794,621 \\ \end{array}$

Table 1: Statistics for code-snipets in DeepComm dataset

Figure 2: Dataset distribution of target comment lengths.

Training

- Setup
 - Learning rate 0.01 with 0.05 decay every epoch.

- Embeddings size: 128, Encoder size: 256, Decoder size: 640, Batch size: 128.
- Trained for 100 epochs. Early stopping if no improvement for 10 epochs.
- Method 1: Code2Seq model with comments as target sequence.
- Method 2: Same as method 1 but with variable names in ASTs.
- Evaluation: BLEU-4 score

Results

Approaches BLEU-4 score	
DeepCom	38.17
Method-1	6.08
Method-2	10.02

Table 2: Evaluation results on Java Methods

Figure 3: Comments Generated by models.

Discussion

- Probable reasons for poor BLEU score [Table-2],
 - Imbalanced distribution 2 of target comment lengths in the dataset.
 - Code2Seq architecture Built to predict function names.
- Performance of Method 2, proves to be good solution to Out-of-Vocabulary problems.
- Model learnt the syntactic and semantic concepts from codes. [Fig 3]
- But, Incapable of generating longer comments (>6 words).

Conclusion

- Contributions: code2seq based AutoComments, and, AST extraction to solve Out-of-Vocabulary.
- Future Research,
 - Balanced dataset w.r.t. target comment lengths.
 - More experiments with decoder, for generating better comments from the learnt code semantics and syntaxes.

