Instituto Tecnológico de Costa Rica Área Académica de Ingeniería en Computadores

Análisis Numérico para Ingeniería - CE3102 Tarea 2

Pseudocódigo Implementación en paralelo método de Jacobi

Profesor: Juan Pablo Soto Quirós
Estudiantes:
Adrián Trejos Salazar
Fabián Crawford Barquero
Irene Muñoz Castro
Luis Pedro Morales Rodríguez
Steven Badilla Soto

I Semestre – 2022

Pseudocódigo de la implementación del método de Jacobi paralelizado

Entradas al sistema:

- 1. A = matriz de coeficientes
- 2. b = vector de constantes
- 3. x_0 = vector solución para la primera iteración
- 4. tol = tolerancia
- 5. iterMax = Máximo número de iteraciones posibles

Pasos

- 1. Determinar el número de núcleos lógicos disponibles: n
- 2. Validar si la matriz es cuadrada. En caso de que no lo sea, terminar con error.
- 3. Validar si la matriz es diagonalmente dominante. En caso de que no lo sea, terminar con error.
- 4. Inicializar x_k con el valor de x_0
- 5. Iniciar proceso iterativo: for k = 0; k < iterMax; k + +
- 6. Calcular x_{k+1} : se inician ${\bf n}$ procesos en paralelo $p_0, p_1 \dots p_{n-1}$, en donde cada proceso p_j va a calcular $x_{k+1}[i]$ para todos los i en f or i=j; i < m; i+=n, donde ${\bf n}$ es el número de procesadores y ${\bf m}$ es el tamaño del vector solución.

Es decir si $\mathbf{n} = \mathbf{4}$, el primer proceso p_0 , se encargará de calcular los valores $x_{k+1}[0]$, $x_{k+1}[4]$, $x_{k+1}[8]$ y así sucesivamente, hasta alcanzar el máximo valor posible de \mathbf{i} , menor que \mathbf{m} . Al mismo tiempo p_1 , se encargará de calcular $x_{k+1}[1]$, $x_{k+1}[5]$, $x_{k+1}[9]$... esto con cada proceso hasta que se calculen todas las posiciones del vector solución.

Gráficamente, la distribución de tareas del proceso se podría ilustrar de la siguiente manera:

Para calcular cada posición del vector solución se usa la fórmula:

$$x_i^{(k+1)} = \frac{1}{A_{i,i}} \left(b_i - \sum_{\substack{j=1\\j\neq i}}^m A_{i,j} x_j^{(k)} \right)$$

- 7. A x_k se le asigna el valor de x_{k+1}
- 8. Calcular el error $\parallel Ax_k b \parallel_2$
- 9. Si el error es menor que **tol** o si k == iterMax-1, el algoritmo termina y se retorna x_k , k y error. En caso contrario, se prosigue con la siguiente iteración