電機一乙 數位邏輯實習 第二週實習作業報告

I.實驗目的與原理

A.作業 1

設計一個輸入為 A、B、C, 且輸出 $F = \Sigma m(0,3,7) + d(1,6)$ 之電路。

B.作業 2

設計一個計算偶同位(Odd Parity)的電路,電路輸入為 $A \times B \times C \times D$,電路輸出為 E, E 為偶同位位元,使得 5 個位元(ABCDE)中僅有偶數個 1。

II.實驗過程

A.作業 1

列出電路的真値表(圖一),並利用卡諾圖(圖二)化簡布林代數式爲 $F = A'B' + BC \circ$ 電路接線如下(圖三)。

Α	В	C	F	
0	0	0	1	> 0
0			X	$_{ m AB}^{ m C}$ 0 1
0	1	0	0	00 (1 X)
0	1	1	1	
1	0	0	0	$01 \boxed{0 \boxed{1}}$
1	0	1	0	$11 \mid X \setminus 1$
1	1	0	X	10 0 0
1	1	1	1	10 0 0
		ı		

圖一: 眞值表 1

圖二:卡諾圖1

圖三:電路圖1

B.作業 2

列出偶同位電路之眞值表(圖四),因 XOR 邏輯閘本身即有偶同位的運算功能,故在此不進行化簡。電路接線如下(圖五)。

A	В	C	D	E
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

圖五:電路圖2

圖四: 眞值表 2

III.模擬驗證

A.作業 1

利用 Digital 的波形模擬(圖六),驗證電路執行結果是否與眞值表相同。

圖六:波形模擬1

B.作業 2

同樣利用 Digital 的波形模擬(圖七),驗證電路執行結果是否符合要求。

圖七:波形模擬2

IV.實驗結果與成果討論

A. 作業 1

實際將電路燒進測試板後,利用開關及 LED 完成設計的電路,如圖八~十。

當A、B皆爲0時,F=1, LED亮。

當 B、C 皆爲 1 時,F=1, LED 亮。

其餘狀態 F 皆為 0, LED 滅。

圖八~十:實際電路板操作1

B.作業 2

燒錄後電路板實際操作如圖十一~十四。

當A、B、C、D出現奇數個1時,為滿足僅有偶數個 1的條件,E=1,LED亮。

當 A、B、C、D 出現偶數個 1 時,已滿足條件,E=O, LED 滅。

圖十一~十四:實際電路板操作2

V.實驗心得

在這次實習過程中,因爲還不太熟悉 Quartus 操作環境的關係,發生了幾次不得不從頭開始的問題,也導致跟不上老師的進度,所幸在經過兩人的討論後順利完成了題目。