

SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation

Xingtong Yu 1, Zechuan Gong 2, Chang Zhou 2, Yuan Fang 1t, Hui Zhang 2t

Singapore Management University, Singapore
 University of Science and Technology of China, China
 Presenter – Xingtong Yu

In Proceeding of THE WEB CONFERENCE, 28 April - 2 May 2025

[†] Corresponding author

- 1. Motivation
- 2.Challenges
- 3 .Proposed Model: SAMGPT
- 4 .Experiment

Motivation

- Building foundation models paves a plausible path toward artificial general intelligence.
- World Wide Web is a vast knowledge repository
- Can we build a universal graph model based on multi-domain graphs, to address various downstream graph-centric application?

- 1. Motivation
- 2.Challenges
- 3 .Proposed Model: SAMGPT
- 4 .Experiment

Challenges

- (a) Multi-domain pre-training
- (b) Cross-domain adaptation

Challenges:

Figure 1: Motivation of SAMGPT.

- How do we harmonize structural variance across multiple domains during pre-training?
- How do we adapt multi-domain structural prior knowledge to cross-domain downstream tasks?

- 1. Motivation
- 2. Challenges
- 3 .Proposed Model: SAMGPT
- 4 .Experiment

Figure 2: Overall framework of SAMGPT.

Multi-domain pre-training

Downstream adaptation

Structural alignment

Holistic prompt

 $\mathbf{h}_v^l = \operatorname{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{t}_{S_i}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta^l), \ \forall v \in V_i, \qquad \mathbf{h}_v^l = \operatorname{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{p}_{\text{hol}}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta_{\text{pre}}^l), \ \mathbf{p}_{\text{spe}}^l = \sum_{i=1}^K \lambda_i^l \mathbf{t}_{S_i}^l$

Specific prompt

Dimension alignment

$$\tilde{\mathbf{X}}_i = \mathsf{DAL}_{S_i}(\mathbf{X}_i),$$

Feature alignment

$$\mathbf{H}^{\mathsf{FAL}} = \mathsf{GE}(\mathsf{FAL}(\mathcal{G}_S, \tilde{\mathcal{X}}_S; \Psi); \Theta),$$

$$\tilde{\mathcal{X}}_S = {\{\tilde{\mathbf{X}}_i : G_i \in \mathcal{G}_S\}}$$

Structure alignment

Pretext tokens

$$\mathcal{T}_{S_i} = \{ \mathbf{t}_{S_i}^l : l \in \{1, \dots, L\} \}$$

Add token to each layer of graph encoder, guiding structure-based aggregation

$$\mathbf{h}_v^l = \operatorname{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{t}_{S_i}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta^l), \ \forall v \in V_i,$$

Structure-aligned embedding matrix

$$\mathbf{H}^{\mathrm{SAL}} = \mathrm{Stack}(\mathbf{H}_1^{\mathrm{SAL}}, \dots, \mathbf{H}_K^{\mathrm{SAL}})$$

Overall embedding

$$\mathbf{H}^{\mathsf{AL}} = \mathbf{H}^{\mathsf{FAL}} + \alpha \mathbf{H}^{\mathsf{SAL}}$$

Pre-training loss

$$\mathcal{L}_{\text{pre}}(O; \Theta, \mathcal{T}, \Psi) = \\ -\sum_{o \in O} \ln \frac{\sum_{a \in \text{Pos}_o} \exp(\text{sim}(\mathbf{h}_a, \mathbf{h}_o) / \tau)}{\sum_{b \in \text{Neg}_o} \exp(\text{sim}(\mathbf{h}_b, \mathbf{h}_o) / \tau)}$$

Figure 2: Overall framework of SAMGPT.

Multi-domain pre-training

Downstream adaptation

Structural alignment

Holistic prompt

 $\mathbf{h}_v^l = \operatorname{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{t}_{S_i}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta^l), \ \forall v \in V_i, \qquad \mathbf{h}_v^l = \operatorname{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{p}_{\text{hol}}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta_{\text{pre}}^l), \ \mathbf{p}_{\text{spe}}^l = \sum_{i=1}^K \lambda_i^l \mathbf{t}_{S_i}^l$

Specific prompt

Feature alignment [1]

$$\tilde{\mathbf{X}}_i = \mathsf{DAL}_{S_i}(\mathbf{X}_i),$$

$$\mathbf{H}^{\mathsf{FAL}} = \mathsf{GE}(\mathsf{FAL}(\mathcal{G}_S, \tilde{\mathcal{X}}_S; \Psi); \Theta), \quad \tilde{\mathcal{X}}_S = {\tilde{\mathbf{X}}_i : G_i \in \mathcal{G}_S}$$

Structure alignment

Pretext tokens

$$\mathcal{T}_{S_i} = \{ \mathbf{t}_{S_i}^l : l \in \{1, \dots, L\} \}$$

guiding structure-based aggregation $\mathbf{h}_v^l = \operatorname{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{t}_{S_i}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta^l), \ \forall v \in V_i,$

Structure-aligned embedding matrix

$$\mathbf{H}^{\mathrm{SAL}} = \mathrm{Stack}(\mathbf{H}_1^{\mathrm{SAL}}, \dots, \mathbf{H}_K^{\mathrm{SAL}})$$

Overall embedding

Add token to each layer of graph encoder,

$$\mathbf{H}^{\mathsf{AL}} = \mathbf{H}^{\mathsf{FAL}} + \alpha \mathbf{H}^{\mathsf{SAL}}$$

Pre-training loss

$$\mathcal{L}_{\text{pre}}(O; \Theta, \mathcal{T}, \Psi) = -\sum_{o \in O} \ln \frac{\sum_{a \in \text{Pos}_o} \exp(\text{sim}(\mathbf{h}_a, \mathbf{h}_o)/\tau)}{\sum_{b \in \text{Neg}_o} \exp(\text{sim}(\mathbf{h}_b, \mathbf{h}_o)/\tau)}$$

[1] Yu, et al. Text-free multi-domain graph pre-training: Toward graph foundation models. arXiv preprint.

Figure 2: Overall framework of SAMGPT.

Multi-domain pre-training

Downstream adaptation

Structural alignment

Holistic prompt

 $\mathbf{h}_v^l = \operatorname{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{t}_{S_i}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta^l), \ \forall v \in V_i, \qquad \mathbf{h}_v^l = \operatorname{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{p}_{\text{hol}}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta_{\text{pre}}^l), \ \mathbf{p}_{\text{spe}}^l = \sum_{i=1}^K \lambda_i^l \mathbf{t}_{S_i}^l$

Specific prompt

Feature adaptation [1]

$$\mathbf{H}^{\mathsf{FAD}} = \mathsf{GE}(\mathsf{FAD}(G, \tilde{\mathbf{X}}; \Gamma); \Theta_{\mathsf{pre}})$$

Structure adaptation

Holistic prompts

$$\mathcal{P}_{\text{hol}} = \{\mathbf{p}_{\text{hol}}^1, \dots, \mathbf{p}_{\text{hol}}^L\}$$

Specific prompts

$$\mathcal{P}_{\text{spe}} = \{\mathbf{p}_{\text{spe}}^1, \dots, \mathbf{p}_{\text{spe}}^L\}$$

$$\mathbf{p}_{\text{spe}}^l = \sum_{i=1}^K \lambda_i^l \mathbf{t}_{S_i}^l$$

Prompt modification

$$\mathbf{h}_v^l = \operatorname{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{p}_{\text{hol}}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta_{\text{pre}}^l), \quad \forall v \in V$$

Fuse embeddings

Overall embedding

$$\mathbf{H}^{\mathsf{SAD}} = \mathbf{H}^{\mathsf{hol}} + \beta \mathbf{H}^{\mathsf{spe}} \qquad \mathbf{H}^{\mathsf{AD}} = \mathbf{H}^{\mathsf{FAD}} + \alpha \mathbf{H}^{\mathsf{SAD}}$$

[1] Yu, et al. Text-free multi-domain graph pre-training: Toward graph foundation models. arXiv preprint.

- 1. Motivation
- 2. Challenges
- 3 .Proposed Model: SAMGPT
- 4 .Experiment

Table 1: Accuracy (%) of one-shot node classification with standard deviations. Each column represents a target domain, using other columns as source domains. The best method in each column is bolded, and the runner-up is underlined.

Method\Target domain	Cora	Citeseer	Pubmed	Photo	Computers	Facebook	LastFM
GCN GAT	29.53 ± 7.56 24.27 ± 9.26	26.29 ± 6.50 21.56 ± 8.09	23.32 ± 11.56 22.28 ± 9.76	$26.96 \pm 12.94 17.85 \pm 10.22$	$ \begin{vmatrix} 24.40 \pm & 5.62 \\ 23.03 \pm 12.12 \end{vmatrix} $	20.45 ± 5.62 29.27 ± 6.47	9.21 ± 3.11 9.01 ± 2.61
DGI GraphCL GPPT GraphPrompt	33.40 ± 10.48 27.72 ± 9.37 27.18 ± 4.88 28.26 ± 12.68	$\begin{array}{cccc} 25.80 \pm & 8.27 \\ 35.02 \pm & 8.46 \\ 25.90 \pm & 4.68 \\ 32.51 \pm & 8.73 \end{array}$	47.22 ± 9.50 48.89 ± 9.03 39.82 ± 8.79 47.47 ± 9.15	30.89 ± 10.54 34.78 ± 11.56 31.58 ± 10.27 48.11 ± 9.89	25.75 ± 12.45 23.79 ± 12.28 19.94 ± 9.61 42.82 ± 11.67	$ \begin{vmatrix} 34.36 \pm & 9.57 \\ 34.85 \pm & 7.07 \\ 34.73 \pm & 3.99 \\ 40.44 \pm & 9.68 \end{vmatrix} $	$ \begin{array}{r} 14.14 \pm & 6.31 \\ 18.93 \pm & 7.32 \\ 20.98 \pm & 3.98 \\ 19.84 \pm & 7.23 \end{array} $
GPF HASSANI	32.17 ± 6.56 33.35 ± 6.93	36.79 ± 7.70 33.66 ± 7.24	41.28 ± 8.14 39.87 ± 8.16	47.47 ± 8.19 48.48 ± 7.07	35.75 ± 7.12 39.99 ± 7.91	$\begin{vmatrix} 40.45 \pm 6.34 \\ 37.70 \pm 5.79 \end{vmatrix}$	27.26 ± 5.50 27.16 ± 4.94
GCOPE SAMGPT	$\begin{array}{c c} 35.62 \pm 11.93 \\ \hline 47.80 \pm 11.88 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45.38 ± 9.87 50.25 ± 10.43	$\begin{array}{ c c c c c }\hline 52.87 \pm & 9.19\\\hline 58.71 \pm & 8.69\\\hline \end{array}$	$\begin{array}{ c c c c c c }\hline 45.65 \pm 10.69 \\ \hline 48.22 \pm 8.17 \\ \hline \end{array}$	$\begin{array}{ c c c c c c }\hline 40.63 \pm & 8.50 \\ \hline 42.70 \pm & 8.73 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2: Accuracy (%) of one-shot graph classification with standard deviations. Each column represents a target domain, using other columns as source domains. The best method in each column is bolded, and the runner-up is underlined.

Method\Target domain	Cora	Citeseer	Pubmed	Photo	Computers	Facebook	LastFM
GCN GAT	$\begin{array}{c c} 30.64 \pm 10.31 \\ 27.80 \pm 7.85 \end{array}$	26.90 ± 7.15 27.50 ± 7.13	38.84 ± 11.82 21.66 ± 8.70	15.60 ± 8.77 15.74 ± 7.62	21.94 ± 14.51 16.02 ± 13.46	31.33 ± 9.47 21.20 ± 7.31	28.83 ± 9.60 27.80 ± 7.85
InfoGraph GraphCL GraphPrompt GPF	34.98 ± 10.15 42.70 ± 10.64 37.38 ± 14.03 39.62 ± 8.52	35.87 ± 9.84 36.66 ± 8.67 36.66 ± 9.19 36.73 ± 7.66	48.67 ± 12.29 47.53 ± 11.52 49.55 ± 10.25 45.08 ± 10.36	25.70 ± 11.73 33.07 ± 12.31 50.79 ± 12.31 47.57 ± 10.16	19.02 ± 14.09 16.02 ± 13.47 43.09 ± 11.45 35.70 ± 8.71	31.26 ± 9.65 21.99 ± 13.00 41.71 ± 10.61 34.84 ± 5.14	23.29 ± 7.99 21.30 ± 10.45 32.62 ± 8.54 34.31 ± 7.05
Hassani	36.86 ± 10.74	35.78 ± 8.80	43.97 ± 13.27	41.55 ± 13.08	29.49 ± 13.86	35.57 ± 9.00	25.39 ± 8.14
GCOPE SAMGPT	38.85 ± 10.99 55.35 ± 13.62	39.93 ± 9.82 38.75 ± 9.40	47.05 ± 11.74 48.69 ± 10.16	$\frac{53.93 \pm 9.74}{58.75 \pm 11.67}$	$\begin{array}{ c c } \hline 45.60 \pm 10.96 \\ \hline 48.72 \pm 11.18 \\ \hline \end{array}$	40.26 ± 9.53 43.71 ± 9.54	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 3: Impact of number of shots on node and graph classification on four target domains.

Table 3: Data ablation study with an increasing number of source domains.

Method	Number of source domains						
Method	1	2	3	4			
GRAPHPROMPT GCOPE	35.53±12.06 39.47±12.14	37.13±11.79 36.63± 9.46	36.90±11.23 35.28±11.99	38.54±11.84 38.61±12.74			
SAMGPT	40.43 ±11.00	41.97 ±11.01	42.30 ±11.56	45.95 ±12.96			

Table 4: Model ablation study on key components of SAMGPT.

Methods	Structure tokens	Holistic prompts	Specific prompts	Target don Cora	nain for node cla Photo	assification Facebook	Target don Cora	nain for graph cla Photo	assification Facebook
Variant 1	×	×	×	36.36 ± 12.71	49.10 ± 9.94	35.36 ± 9.06	45.44 ± 13.47	52.45 ± 12.37	38.74 ± 10.26
Variant 2	×	×	✓	40.62 ± 11.79	56.23 ± 9.04	39.80 ± 10.39	45.63 ± 13.52	57.78 ± 11.64	42.22 ± 10.95
Variant 3	✓	×	×	44.26 ± 10.92	56.61 ± 10.14	41.11 ± 8.34	52.88 ± 12.25	58.14 ± 12.01	43.12 ± 9.76
Variant 4	✓	\checkmark	×	46.10 ± 12.02	57.76 ± 10.00	40.46 ± 8.89	54.52 ± 14.32	58.12 ± 12.30	43.15 ± 10.12
SAMGPT	✓	✓	✓	47.80 ± 11.88	58.71 ± 8.69	42.70 ± 8.73	55.35 ± 13.62	58.75 ± 11.67	43.71 ± 9.54

Thanks!

SAMGPT

https://arxiv.org/abs/2502.05424

