# UNIVERSIDADE FEDERAL DE OURO PRETO – UFOP Ciência da Computação



#### **ESTRUTURA DE DADOS II**

#### **RELATÓRIO DO TP1**

Daniel Monteiro Valério - 19.1.4035

Fabio Henrique Alves Fernandes - 19.1.4128

**Ouro Preto** 

2021

# SUMÁRIO

| Introdução                 | 2  |
|----------------------------|----|
| Acesso Sequencial Indexado | 2  |
| Árvores de Busca           |    |
| Árvore Binária             | 2  |
| Árvore B                   | 3  |
| Árvore B*                  |    |
| Análise de Dados           |    |
| ASI                        | 3  |
| Árvore Binária             | 6  |
| Árvore B                   | 14 |
| Árvore B*                  | 14 |
| Conclusão                  | 22 |
| ASI                        | 22 |
| Árvore Binária             | 22 |
| Árvore B*                  | 22 |

#### Introdução

#### **Acesso Sequencial Indexado**

O Acesso Sequencial Indexado usa o princípio da pesquisa sequencial, onde cada item é lido sequencialmente até encontrar uma chave maior ou igual a chave de pesquisa, sendo necessário o arquivo estar devidamente ordenado.

O acesso às informações em memória secundária é feito por uma chave que te orienta por uma sequência de valores, onde P é o endereço onde essa chave se encontra e X é o item que contém a chave.

Cada página tem capacidade para armazenar 4 itens do disco, e cada entrada do índice de páginas armazena a chave do 1º item de cada página e o endereço de tal página no disco

Para se pesquisar por um item, deve-se: localizar, no índice de páginas, a página que pode conter o item desejado de acordo com sua chave de pesquisa; realizar uma pesquisa sequencial na página localizada.

#### Árvores de Pesquisa

Árvore de busca é uma árvore utilizada para a localização de chaves específicas dentro de um conjunto. Para que uma árvore funcione como uma árvore de busca, a chave para cada nó deve ser maior do que quaisquer chaves presentes em subárvores da esquerda e menor a quaisquer chaves em sub árvores à direita.

A vantagem dessas árvores está no seu eficiente tempo de busca quando a árvore está razoavelmente balanceada, o que equivale a dizer que as folhas em cada extremidade, estão em igual profundidade. Vários tipos de árvores de pesquisa existem, muitos dos quais também permitem uma eficiente inserção e exclusão de elementos.

#### Árvores Binárias

Uma Árvore binária de busca é uma estrutura de dados vinculada, baseada em nós, onde cada nó contém uma chave e duas sub árvores à esquerda e à direita. Para todos nós, a chave da subárvore esquerda deve ser menor que a chave desse nó, e a chave da subárvore direita deve ser maior. Todas estas sub árvores devem qualificar-se como árvores binárias de busca.

O pior caso de tempo de complexidade para a pesquisa em uma árvore binária de busca é a altura da árvore, isso pode ser tão pequeno como O(log n) para uma árvore com n elementos.

#### Árvores B

Árvore B é uma estrutura de dados em árvore, auto-balanceada, que armazena dados classificados e permite pesquisas, acesso sequencial, inserções e remoções em tempo logarítmico. A árvore B é uma generalização de uma árvore de pesquisa binária em que um nó pode ter mais que dois filhos.

Diferente das árvores de pesquisa binária auto-balanceadas, a árvore B é bem adaptada para sistemas de armazenamento que leem e escrevem blocos de dados relativamente grandes, como discos.

#### Árvores B\*

Árvore B\* é uma variação da árvore B. Ela apresenta mecanismos de inserção, remoção e busca muito semelhantes aos realizados em árvores B, mas com a diferença em que a técnica de redistribuição de chaves também é empregada durante as operações de inserção. Dessa maneira a operação de split pode ser adiada até que duas páginas irmãs estejam completamente cheias e, a partir daí, o conteúdo dessas páginas irmãs é redistribuído entre três páginas (uma nova criada e as duas páginas irmãs anteriormente cheias).

Tal técnica é conhecida como divisão two-to-three split, que proporciona propriedades diferentes das árvores B na qual utiliza a divisão usual conhecida como one-to-two split. A grande melhoria direta proporcionada por essa abordagem é o melhor aproveitamento de espaço do arquivo, pois, no pior caso, cada página apresenta no mínimo 2/3 do número máximo de chaves que esta pode armazenar, enquanto na divisão usual cada página apresenta, no pior caso, metade do número máximo de chaves.

#### Análise de Dados

Legenda: CC = Comparações na Criação

TEC = Tempo de Execução na Criação

CB = Comparações na Busca

TEB = Tempo de Execução na Busca

NT = Número de Transferências (entre memória externa e interna)

#### ASI

Como o Acesso Sequencial Indexado só aceita chaves ordenadas, só conseguimos analisar os dados referentes aos arquivos gerados sendo ordenados de forma crescente

#### 100 Itens

|          | СС | TEC  | СВ | TEB  | NT |
|----------|----|------|----|------|----|
| Chave 3  | 0  | 0sec | 5  | 0sec | 22 |
| Chave 16 | 0  | 0sec | 6  | 0sec | 22 |
| Chave 27 | 0  | 0sec | 11 | 0sec | 22 |
| Chave 35 | 0  | 0sec | 13 | 0sec | 22 |
| Chave 43 | 0  | 0sec | 9  | 0sec | 22 |
| Chave 55 | 0  | 0sec | 15 | 0sec | 22 |
| Chave 66 | 0  | 0sec | 14 | 0sec | 22 |
| Chave 72 | 0  | 0sec | 14 | 0sec | 22 |
| Chave 89 | 0  | 0sec | 19 | 0sec | 22 |
| Chave 91 | 0  | 0sec | 21 | 0sec | 22 |

### 1.000 Itens

|           | СС | TEC  | СВ  | TEB  | NT  |
|-----------|----|------|-----|------|-----|
| Chave 83  | 0  | 0sec | 19  | 0sec | 150 |
| Chave 186 | 0  | 0sec | 32  | 0sec | 150 |
| Chave 277 | 0  | 0sec | 45  | 0sec | 150 |
| Chave 315 | 0  | 0sec | 53  | 0sec | 150 |
| Chave 493 | 0  | 0sec | 75  | 0sec | 150 |
| Chave 535 | 0  | 0sec | 81  | 0sec | 150 |
| Chave 686 | 0  | 0sec | 106 | 0sec | 150 |
| Chave 794 | 0  | 0sec | 116 | 0sec | 150 |
| Chave 849 | 0  | 0sec | 125 | 0sec | 150 |
| Chave 921 | 0  | 0sec | 137 | 0sec | 150 |

#### 10.000 Itens

|            | СС | TEC     | СВ   | TEB  | NT   |
|------------|----|---------|------|------|------|
| Chave 383  | 0  | 15,62ms | 61   | 0sec | 1436 |
| Chave 1886 | 0  | 15,62ms | 274  | 0sec | 1436 |
| Chave 2777 | 0  | 15,62ms | 403  | 0sec | 1436 |
| Chave 3915 | 0  | 15,62ms | 563  | 0sec | 1436 |
| Chave 4793 | 0  | 15,62ms | 691  | 0sec | 1436 |
| Chave 5335 | 0  | 15,62ms | 765  | 0sec | 1436 |
| Chave 6386 | 0  | 15,62ms | 916  | 0sec | 1436 |
| Chave 7492 | 0  | 15,62ms | 1074 | 0sec | 1436 |
| Chave 8649 | 0  | 15,62ms | 1241 | 0sec | 1436 |
| Chave 9421 | 0  | 15,62ms | 1353 | 0sec | 1436 |

# 100.000 Itens

|             | СС | TEC    | СВ    | TEB  | NT    |
|-------------|----|--------|-------|------|-------|
| Chave 2642  | 0  | 0,140s | 382   | 0sec | 14293 |
| Chave 10718 | 0  | 0,140s | 1534  | 0sec | 14293 |
| Chave 26016 | 0  | 0,140s | 3722  | 0sec | 14293 |
| Chave 30716 | 0  | 0,140s | 4396  | 0sec | 14293 |
| Chave 48263 | 0  | 0,140s | 6901  | 0sec | 14293 |
| Chave 52106 | 0  | 0,140s | 7450  | 0sec | 14293 |
| Chave 69428 | 0  | 0,140s | 9922  | 0sec | 14293 |
| Chave 79766 | 0  | 0,140s | 11339 | 0sec | 14293 |
| Chave 86839 | 0  | 0,140s | 12411 | 0sec | 14293 |
| Chave 98041 | 0  | 0,140s | 14013 | 0sec | 14293 |

### 1.000.000 Itens

|              | СС | TEC    | СВ     | TEB  | NT     |
|--------------|----|--------|--------|------|--------|
| Chave 89383  | 0  | 1,328s | 12777  | 0sec | 142865 |
| Chave 130886 | 0  | 1,328s | 18706  | 0sec | 142865 |
| Chave 292777 | 0  | 1,328s | 41829  | 0sec | 142865 |
| Chave 336915 | 0  | 1,328s | 48137  | 0sec | 142865 |
| Chave 447793 | 0  | 1,328s | 63975  | 0sec | 142865 |
| Chave 538335 | 0  | 1,328s | 76913  | 0sec | 142865 |
| Chave 685386 | 0  | 1,328s | 97916  | 0sec | 142865 |
| Chave 760492 | 0  | 1,328s | 108648 | 0sec | 142865 |
| Chave 816649 | 0  | 1,328s | 116667 | 0sec | 142865 |
| Chave 941421 | 0  | 1,328s | 134495 | 0sec | 142865 |

### Árvore Binária 100 Itens - Ordenação Crescente

|           | СС  | TEC  | СВ | TEB  | NT  |
|-----------|-----|------|----|------|-----|
| Chave 1   | 383 | 0sec | 5  | 0sec | 101 |
| Chave 5   | 383 | 0sec | 6  | 0sec | 101 |
| Chave 10  | 383 | 0sec | 5  | 0sec | 101 |
| Chave 15  | 383 | 0sec | 6  | 0sec | 101 |
| Chave 25  | 383 | 0sec | 5  | 0sec | 101 |
| Chave 50  | 383 | 0sec | 5  | 0sec | 101 |
| Chave 60  | 383 | 0sec | 6  | 0sec | 101 |
| Chave 77  | 383 | 0sec | 5  | 0sec | 101 |
| Chave 90  | 383 | 0sec | 6  | 0sec | 101 |
| Chave 100 | 383 | 0sec | 6  | 0sec | 101 |

# 1.000 Itens - Ordenação Crescente

|               | СС   | TEC  | СВ | TEB  | NT    |
|---------------|------|------|----|------|-------|
| Chave 5       | 3974 | 0sec | 9  | 0sec | 1.001 |
| Chave 50      | 3974 | 0sec | 9  | 0sec | 1.001 |
| Chave 100     | 3974 | 0sec | 7  | 0sec | 1.001 |
| Chave 250     | 3974 | 0sec | 7  | 0sec | 1.001 |
| Chave 500     | 3974 | 0sec | 7  | 0sec | 1.001 |
| Chave 600     | 3974 | 0sec | 7  | 0sec | 1.001 |
| Chave 777     | 3974 | 0sec | 9  | 0sec | 1.001 |
| Chave 800     | 3974 | 0sec | 9  | 0sec | 1.001 |
| Chave 900     | 3974 | 0sec | 9  | 0sec | 1.001 |
| Chave<br>1000 | 3974 | 0sec | 9  | 0sec | 1.001 |

# 10.000 Itens - Ordenação Crescente

|              | СС    | TEC       | СВ | TEB   | NT     |
|--------------|-------|-----------|----|-------|--------|
| Chave 5      | 39967 | 0,468 sec | 12 | 0 sec | 10.001 |
| Chave 100    | 39967 | 0,468 sec | 10 | 0 sec | 10.001 |
| Chave 500    | 39967 | 0,468 sec | 10 | 0 sec | 10.001 |
| Chave 1000   | 39967 | 0,468 sec | 11 | 0 sec | 10.001 |
| Chave 5000   | 39967 | 0,468 sec | 10 | 0 sec | 10.001 |
| Chave 6000   | 39967 | 0,468 sec | 12 | 0 sec | 10.001 |
| Chave 7777   | 39967 | 0,468 sec | 13 | 0 sec | 10.001 |
| Chave 850    | 39967 | 0,468 sec | 11 | 0 sec | 10.001 |
| Chave 9000   | 39967 | 0,468 sec | 13 | 0 sec | 10.001 |
| Chave 10.000 | 39967 | 0,468 sec | 13 | 0 sec | 10.001 |

### 100.000 Itens - Ordenação Crescente

|                  | СС    | TEC      | СВ | TEB   | NT      |
|------------------|-------|----------|----|-------|---------|
| Chave 5          | 39960 | 3,59 sec | 16 | 0 sec | 100.001 |
| Chave 100        | 39960 | 3,59 sec | 14 | 0 sec | 100.001 |
| Chave 1.000      | 39960 | 3,59 sec | 14 | 0 sec | 100.001 |
| Chave 5.000      | 39960 | 3,59 sec | 13 | 0 sec | 100.001 |
| Chave 10.000     | 39960 | 3,59 sec | 13 | 0 sec | 100.001 |
| Chave 50.000     | 39960 | 3,59 sec | 14 | 0 sec | 100.001 |
| Chave 60.000     | 39960 | 3,59 sec | 13 | 0 sec | 100.001 |
| Chave 77.777     | 39960 | 3,59 sec | 15 | 0 sec | 100.001 |
| Chave 80.000     | 39960 | 3,59 sec | 15 | 0 sec | 100.001 |
| Chave<br>100.000 | 39960 | 3,59 sec | 16 | 0 sec | 100.001 |

# 1.000.000 Itens - Ordenação Crescente

|                  | СС      | TEC      | СВ | TEB   | NT        |
|------------------|---------|----------|----|-------|-----------|
| Chave 5          | 3999953 | 3,29 sec | 19 | 0 sec | 1.000.001 |
| Chave 100        | 3999953 | 3,29 sec | 17 | 0 sec | 1.000.001 |
| Chave 50.000     | 3999953 | 3,29 sec | 15 | 0 sec | 1.000.001 |
| Chave<br>100.000 | 3999953 | 3,29 sec | 16 | 0 sec | 1.000.001 |
| Chave 500.000    | 3999953 | 3,29 sec | 16 | 0 sec | 1.000.001 |
| Chave<br>600.000 | 3999953 | 3,29 sec | 15 | 0 sec | 1.000.001 |
| Chave<br>650.000 | 3999953 | 3,29 sec | 16 | 0 sec | 1.000.001 |
| Chave 777.777    | 3999953 | 3,29 sec | 19 | 0 sec | 1.000.001 |

| Chave<br>900.000 | 3999953 | 3,29 sec | 17 | 0 sec | 1.000.001 |
|------------------|---------|----------|----|-------|-----------|
| Chave 1.000.000  | 3999953 | 3,29 sec | 19 | 0 sec | 1.000.001 |

# 100 Itens - Ordenação Decrescente

|           | СС  | TEC   | СВ | TEB   | NT  |
|-----------|-----|-------|----|-------|-----|
| Chave 1   | 383 | 0 sec | 3  | 0 sec | 101 |
| Chave 5   | 383 | 0 sec | 3  | 0 sec | 101 |
| Chave 10  | 383 | 0 sec | 4  | 0 sec | 101 |
| Chave 20  | 383 | 0 sec | 6  | 0 sec | 101 |
| Chave 50  | 383 | 0 sec | 6  | 0 sec | 101 |
| Chave 65  | 383 | 0 sec | 5  | 0 sec | 101 |
| Chave 77  | 383 | 0 sec | 5  | 0 sec | 101 |
| Chave 80  | 383 | 0 sec | 6  | 0 sec | 101 |
| Chave 90  | 383 | 0 sec | 5  | 0 sec | 101 |
| Chave 100 | 383 | 0 sec | 6  | 0 sec | 101 |

### 1.000 Itens - Ordenação Decrescente

|           | CC   | TEC   | СВ | TEB   | NT    |
|-----------|------|-------|----|-------|-------|
| Chave 5   | 3974 | 0 sec | 6  | 0 sec | 1.001 |
| Chave 10  | 3974 | 0 sec | 5  | 0 sec | 1.001 |
| Chave 50  | 3974 | 0 sec | 5  | 0 sec | 1.001 |
| Chave 100 | 3974 | 0 sec | 6  | 0 sec | 1.001 |
| Chave 250 | 3974 | 0 sec | 7  | 0 sec | 1.001 |
| Chave 500 | 3974 | 0 sec | 9  | 0 sec | 1.001 |
| Chave 600 | 3974 | 0 sec | 6  | 0 sec | 1.001 |

| Chave 777   | 3974 | 0 sec | 4 | 0 sec | 1.001 |
|-------------|------|-------|---|-------|-------|
| Chave 900   | 3974 | 0 sec | 7 | 0 sec | 1.001 |
| Chave 1.000 | 3974 | 0 sec | 9 | 0 sec | 1.001 |

### 10.000 Itens - Ordenação Decrescente

|              | СС    | TEC       | СВ | TEB   | NT     |
|--------------|-------|-----------|----|-------|--------|
| Chave 5      | 39967 | 0,468 sec | 10 | 0 sec | 10.001 |
| Chave 100    | 39967 | 0,468 sec | 12 | 0 sec | 10.001 |
| Chave 500    | 39967 | 0,468 sec | 13 | 0 sec | 10.001 |
| Chave 1.000  | 39967 | 0,468 sec | 11 | 0 sec | 10.001 |
| Chave 5.000  | 39967 | 0,468 sec | 13 | 0 sec | 10.001 |
| Chave 6.000  | 39967 | 0,468 sec | 15 | 0 sec | 10.001 |
| Chave 7.777  | 39967 | 0,468 sec | 8  | 0 sec | 10.001 |
| Chave 8.000  | 39967 | 0,468 sec | 14 | 0 sec | 10.001 |
| Chave 9.000  | 39967 | 0,468 sec | 12 | 0 sec | 10.001 |
| Chave 10.000 | 39967 | 0,468 sec | 12 | 0 sec | 10.001 |

### 100.000 Itens - Ordenação Decrescente

|              | СС     | TEC       | СВ | TEB   | NT      |
|--------------|--------|-----------|----|-------|---------|
| Chave 5      | 399960 | 5,625 sec | 13 | 0 sec | 100.001 |
| Chave 100    | 399960 | 5,625 sec | 15 | 0 sec | 100.001 |
| Chave 500    | 399960 | 5,625 sec | 15 | 0 sec | 100.001 |
| Chave 5.000  | 399960 | 5,625 sec | 16 | 0 sec | 100.001 |
| Chave 10.000 | 399960 | 5,625 sec | 12 | 0 sec | 100.001 |
| Chave 50.000 | 399960 | 5,625 sec | 15 | 0 sec | 100.001 |

| Chave 60.000  | 399960 | 5,625 sec | 13 | 0 sec | 100.001 |
|---------------|--------|-----------|----|-------|---------|
| Chave 77.777  | 399960 | 5,625 sec | 12 | 0 sec | 100.001 |
| Chave 90.000  | 399960 | 5,625 sec | 14 | 0 sec | 100.001 |
| Chave 100.000 | 399960 | 5,625 sec | 16 | 0 sec | 100.001 |

# 1.000.000 Itens - Ordenação Decrescente

|                 | СС      | TEC       | СВ | TEB   | NT        |
|-----------------|---------|-----------|----|-------|-----------|
| Chave 5         | 3999953 | 5,453 sec | 16 | 0 sec | 1.000.001 |
| Chave 100       | 3999953 | 5,453 sec | 19 | 0 sec | 1.000.001 |
| Chave 10.000    | 3999953 | 5,453 sec | 18 | 0 sec | 1.000.001 |
| Chave 50.000    | 3999953 | 5,453 sec | 18 | 0 sec | 1.000.001 |
| Chave 100.000   | 3999953 | 5,453 sec | 20 | 0 sec | 1.000.001 |
| Chave 500.000   | 3999953 | 5,453 sec | 15 | 0 sec | 1.000.001 |
| Chave 600.000   | 3999953 | 5,453 sec | 16 | 0 sec | 1.000.001 |
| Chave 777.777   | 3999953 | 5,453 sec | 15 | 0 sec | 1.000.001 |
| Chave 900.000   | 3999953 | 5,453 sec | 18 | 0 sec | 1.000.001 |
| Chave 1.000.000 | 3999953 | 5,453 sec | 19 | 0 sec | 1.000.001 |

### 100 Itens - Aleatório

|          | CC  | TEC   | СВ | TEB   | NT  |
|----------|-----|-------|----|-------|-----|
| Chave 1  | 503 | 0 sec | 4  | 0 sec | 101 |
| Chave 5  | 503 | 0 sec | 4  | 0 sec | 101 |
| Chave 10 | 503 | 0 sec | 5  | 0 sec | 101 |
| Chave 25 | 503 | 0 sec | 4  | 0 sec | 101 |
| Chave 40 | 503 | 0 sec | 6  | 0 sec | 101 |
| Chave 50 | 503 | 0 sec | 5  | 0 sec | 101 |

| Chave 60  | 503 | 0 sec | 8 | 0 sec | 101 |
|-----------|-----|-------|---|-------|-----|
| Chave 77  | 503 | 0 sec | 7 | 0 sec | 101 |
| Chave 90  | 503 | 0 sec | 6 | 0 sec | 101 |
| Chave 100 | 503 | 0 sec | 7 | 0 sec | 101 |

### 1.000 Itens - Aleatório

|             | CC   | TEC       | СВ | TEB   | NT    |
|-------------|------|-----------|----|-------|-------|
| Chave 5     | 6595 | 0,156 sec | 9  | 0 sec | 1.001 |
| Chave 50    | 6595 | 0,156 sec | 8  | 0 sec | 1.001 |
| Chave 100   | 6595 | 0,156 sec | 9  | 0 sec | 1.001 |
| Chave 250   | 6595 | 0,156 sec | 6  | 0 sec | 1.001 |
| Chave 500   | 6595 | 0,156 sec | 7  | 0 sec | 1.001 |
| Chave 600   | 6595 | 0,156 sec | 10 | 0 sec | 1.001 |
| Chave 777   | 6595 | 0,156 sec | 8  | 0 sec | 1.001 |
| Chave 800   | 6595 | 0,156 sec | 7  | 0 sec | 1.001 |
| Chave 900   | 6595 | 0,156 sec | 10 | 0 sec | 1.001 |
| Chave 1.000 | 6595 | 0,156 sec | 8  | 0 sec | 1.001 |

### 10.000 Itens - Aleatório

|             | СС    | TEC       | СВ | TEB   | NT     |
|-------------|-------|-----------|----|-------|--------|
| Chave 5     | 85879 | 1,5 sec   | 13 | 0 sec | 10.001 |
| Chave 100   | 85879 | 1,269 sec | 12 | 0 sec | 10.001 |
| Chave 200   | 85879 | 1,269 sec | 11 | 0 sec | 10.001 |
| Chave 500   | 85879 | 1,269 sec | 12 | 0 sec | 10.001 |
| Chave 5.000 | 85879 | 1,269 sec | 12 | 0 sec | 10.001 |

| Chave 6.000  | 85879 | 1,269 sec | 13 | 0 sec | 10.001 |
|--------------|-------|-----------|----|-------|--------|
| Chave 7.777  | 85879 | 1,269 sec | 12 | 0 sec | 10.001 |
| Chave 8.000  | 85879 | 1,269 sec | 10 | 0 sec | 10.001 |
| Chave 9.000  | 85879 | 1,269 sec | 12 | 0 sec | 10.001 |
| Chave 10.000 | 85879 | 1,269 sec | 11 | 0 sec | 10.001 |

#### 100.000 Itens - Aleatório

|                  | СС      | TEC         | СВ | TEB   | NT      |
|------------------|---------|-------------|----|-------|---------|
| Chave 5          | 1034163 | 297,421 sec | 15 | 0 sec | 100.001 |
| Chave 100        | 1034163 | 297,421 sec | 15 | 0 sec | 100.001 |
| Chave 500        | 1034163 | 297,421 sec | 13 | 0 sec | 100.001 |
| Chave 1.000      | 1034163 | 297,421 sec | 15 | 0 sec | 100.001 |
| Chave 5.000      | 1034163 | 297,421 sec | 17 | 0 sec | 100.001 |
| Chave 50.000     | 1034163 | 297,421 sec | 16 | 0 sec | 100.001 |
| Chave 60.000     | 1034163 | 297,421 sec | 18 | 0 sec | 100.001 |
| Chave 77.777     | 1034163 | 297,421 sec | 15 | 0 sec | 100.001 |
| Chave 90.000     | 1034163 | 297,421 sec | 16 | 0 sec | 100.001 |
| Chave<br>100.000 | 1034163 | 297,421 sec | 17 | 0 sec | 100.001 |

#### 1.000.000 Itens - Aleatório

|              | CC       | TEC        | СВ | TEB   | NT        |
|--------------|----------|------------|----|-------|-----------|
| Chave 5      | 12184039 | 46.176 sec | 20 | 0 sec | 1.000.001 |
| Chave 100    | 12184039 | 46.176 sec | 21 | 0 sec | 1.000.001 |
| Chave 10.000 | 12184039 | 46.176 sec | 20 | 0 sec | 1.000.001 |
| Chave 50.000 | 12184039 | 46.176 sec | 23 | 0 sec | 1.000.001 |

| Chave 100.000   | 12184039 | 46.176 sec | 25 | 0 sec | 1.000.001 |
|-----------------|----------|------------|----|-------|-----------|
| Chave 500.000   | 12184039 | 46.176 sec | 21 | 0 sec | 1.000.001 |
| Chave 600.000   | 12184039 | 46.176 sec | 23 | 0 sec | 1.000.001 |
| Chave 777.777   | 12184039 | 46.176 sec | 24 | 0 sec | 1.000.001 |
| Chave 900.000   | 12184039 | 46.176 sec | 27 | 0 sec | 1.000.001 |
| Chave 1.000.000 | 12184039 | 46.176 sec | 29 | 0 sec | 1.000.001 |

#### Árvore B

Tivemos problemas na implementação da Árvore B, pois sempre que tentávamos adicionar o algoritmo de teste, o programa apresentava falha de segmentação.

Árvore B\*
100 Itens - Ordenação Crescente

|          | СС   | TEC  | СВ | TEB  | NT  |
|----------|------|------|----|------|-----|
| Chave 3  | 1955 | 0sec | 9  | 0sec | 101 |
| Chave 16 | 1955 | 0sec | 11 | 0sec | 101 |
| Chave 27 | 1955 | 0sec | 10 | 0sec | 101 |
| Chave 35 | 1955 | 0sec | 12 | 0sec | 101 |

| Chave 43 | 1955 | 0sec | 10 | 0sec | 101 |
|----------|------|------|----|------|-----|
| Chave 55 | 1955 | 0sec | 10 | 0sec | 101 |
| Chave 66 | 1955 | 0sec | 14 | 0sec | 101 |
| Chave 72 | 1955 | 0sec | 14 | 0sec | 101 |
| Chave 89 | 1955 | 0sec | 15 | 0sec | 101 |
| Chave 91 | 1955 | 0sec | 13 | 0sec | 101 |

# 1.000 Itens - Ordenação Crescente

|           | СС    | TEC  | СВ | TEB     | NT   |
|-----------|-------|------|----|---------|------|
| Chave 83  | 30291 | 0sec | 19 | 0sec    | 1001 |
| Chave 186 | 30291 | 0sec | 18 | 0sec    | 1001 |
| Chave 277 | 30291 | 0sec | 16 | 0sec    | 1001 |
| Chave 315 | 30291 | 0sec | 18 | 0sec    | 1001 |
| Chave 493 | 30291 | 0sec | 14 | 15,62ms | 1001 |
| Chave 535 | 30291 | 0sec | 16 | 0sec    | 1001 |
| Chave 686 | 30291 | 0sec | 17 | 0sec    | 1001 |
| Chave 792 | 30291 | 0sec | 20 | 0sec    | 1001 |
| Chave 849 | 30291 | 0sec | 16 | 0sec    | 1001 |
| Chave 921 | 30291 | 0sec | 16 | 0sec    | 1001 |

# 10.000 Itens - Ordenação Crescente

|            | СС     | TEC    | СВ | TEB  | NT    |
|------------|--------|--------|----|------|-------|
| Chave 174  | 408267 | 62,5ms | 22 | 0sec | 10001 |
| Chave 1804 | 408267 | 62,5ms | 23 | 0sec | 10001 |
| Chave 2831 | 408267 | 62,5ms | 25 | 0sec | 10001 |
| Chave 3898 | 408267 | 62,5ms | 23 | 0sec | 10001 |

| Chave 4419 | 408267 | 62,5ms | 20 | 0sec | 10001 |
|------------|--------|--------|----|------|-------|
| Chave 5367 | 408267 | 62,5ms | 20 | 0sec | 10001 |
| Chave 6762 | 408267 | 62,5ms | 25 | 0sec | 10001 |
| Chave 7132 | 408267 | 62,5ms | 23 | 0sec | 10001 |
| Chave 8430 | 408267 | 62,5ms | 24 | 0sec | 10001 |
| Chave 9331 | 408267 | 62,5ms | 24 | 0sec | 10001 |

### 100.000 Itens - Ordenação Crescente

|             | СС      | TEC   | СВ | TEB  | NT     |
|-------------|---------|-------|----|------|--------|
| Chave 3414  | 5133765 | 0,64s | 27 | 0sec | 100001 |
| Chave 10961 | 5133765 | 0,64s | 31 | 0sec | 100001 |
| Chave 27745 | 5133765 | 0,64s | 25 | 0sec | 100001 |
| Chave 31524 | 5133765 | 0,64s | 30 | 0sec | 100001 |
| Chave 44350 | 5133765 | 0,64s | 28 | 0sec | 100001 |
| Chave 54971 | 5133765 | 0,64s | 29 | 0sec | 100001 |
| Chave 62811 | 5133765 | 0,64s | 27 | 0sec | 100001 |
| Chave 74530 | 5133765 | 0,64s | 29 | 0sec | 100001 |
| Chave 87840 | 5133765 | 0,64s | 31 | 0sec | 100001 |
| Chave 95436 | 5133765 | 0,64s | 33 | 0sec | 100001 |

# 1.000.000 Itens - Ordenação Crescente

|              | СС       | TEC    | СВ | TEB  | NT      |
|--------------|----------|--------|----|------|---------|
| Chave 89383  | 61878418 | 6,843s | 32 | 0sec | 1000001 |
| Chave 130886 | 61878418 | 6,843s | 34 | 0sec | 1000001 |
| Chave 292777 | 61878418 | 6,843s | 33 | 0sec | 1000001 |

| Chave 336915 | 61878418 | 6,843s | 32 | 0sec | 1000001 |
|--------------|----------|--------|----|------|---------|
| Chave 447793 | 61878418 | 6,843s | 31 | 0sec | 1000001 |
| Chave 538335 | 61878418 | 6,843s | 31 | 0sec | 1000001 |
| Chave 685386 | 61878418 | 6,843s | 35 | 0sec | 1000001 |
| Chave 760492 | 61878418 | 6,843s | 38 | 0sec | 1000001 |
| Chave 816649 | 61878418 | 6,843s | 33 | 0sec | 1000001 |
| Chave 941421 | 61878418 | 6,843s | 35 | 0sec | 1000001 |

# 100 Itens - Ordenação Decrescente

|          | СС   | TEC  | СВ | TEB  | NT  |
|----------|------|------|----|------|-----|
| Chave 3  | 1446 | 0sec | 10 | 0sec | 101 |
| Chave 16 | 1446 | 0sec | 10 | 0sec | 101 |
| Chave 27 | 1446 | 0sec | 12 | 0sec | 101 |
| Chave 35 | 1446 | 0sec | 12 | 0sec | 101 |
| Chave 43 | 1446 | 0sec | 12 | 0sec | 101 |
| Chave 55 | 1446 | 0sec | 12 | 0sec | 101 |
| Chave 66 | 1446 | 0sec | 11 | 0sec | 101 |
| Chave 72 | 1446 | 0sec | 12 | 0sec | 101 |
| Chave 89 | 1446 | 0sec | 11 | 0sec | 101 |
| Chave 91 | 1446 | 0sec | 13 | 0sec | 101 |

# 1.000 Itens - Ordenação Decrescente

|           | СС    | TEC  | СВ | TEB  | NT   |
|-----------|-------|------|----|------|------|
| Chave 83  | 20941 | 0sec | 14 | 0sec | 1001 |
| Chave 186 | 20941 | 0sec | 16 | 0sec | 1001 |

| Chave 277 | 20941 | 0sec | 14 | 0sec | 1001 |
|-----------|-------|------|----|------|------|
| Chave 315 | 20941 | 0sec | 17 | 0sec | 1001 |
| Chave 493 | 20941 | 0sec | 16 | 0sec | 1001 |
| Chave 535 | 20941 | 0sec | 17 | 0sec | 1001 |
| Chave 686 | 20941 | 0sec | 15 | 0sec | 1001 |
| Chave 792 | 20941 | 0sec | 17 | 0sec | 1001 |
| Chave 849 | 20941 | 0sec | 17 | 0sec | 1001 |
| Chave 921 | 20941 | 0sec | 16 | 0sec | 1001 |

# 10.000 Itens - Ordenação Decrescente

|            | СС     | TEC     | СВ | TEB  | NT    |
|------------|--------|---------|----|------|-------|
| Chave 174  | 271926 | 93,75ms | 19 | 0sec | 10001 |
| Chave 7804 | 271926 | 93,75ms | 22 | 0sec | 10001 |
| Chave 2831 | 271926 | 93,75ms | 21 | 0sec | 10001 |
| Chave 3898 | 271926 | 93,75ms | 24 | 0sec | 10001 |
| Chave 4419 | 271926 | 93,75ms | 21 | 0sec | 10001 |
| Chave 5367 | 271926 | 93,75ms | 23 | 0sec | 10001 |
| Chave 6762 | 271926 | 93,75ms | 22 | 0sec | 10001 |
| Chave 7132 | 271926 | 93,75ms | 23 | 0sec | 10001 |
| Chave 8430 | 271926 | 93,75ms | 23 | 0sec | 10001 |
| Chave 9331 | 271926 | 93,75ms | 21 | 0sec | 10001 |

### 100.000 Itens - Ordenação Decrescente

|            | СС      | TEC    | СВ | TEB  | NT     |
|------------|---------|--------|----|------|--------|
| Chave 3414 | 3339449 | 0,578s | 28 | 0sec | 100001 |

| Chave 10961 | 3339449 | 0,578s | 26 | 0sec | 100001 |
|-------------|---------|--------|----|------|--------|
| Chave 27745 | 3339449 | 0,578s | 27 | 0sec | 100001 |
| Chave 31524 | 3339449 | 0,578s | 27 | 0sec | 100001 |
| Chave 44350 | 3339449 | 0,578s | 29 | 0sec | 100001 |
| Chave 54971 | 3339449 | 0,578s | 26 | 0sec | 100001 |
| Chave 62811 | 3339449 | 0,578s | 30 | 0sec | 100001 |
| Chave 74530 | 3339449 | 0,578s | 30 | 0sec | 100001 |
| Chave 87840 | 3339449 | 0,578s | 30 | 0sec | 100001 |
| Chave 95436 | 3339449 | 0,578s | 30 | 0sec | 100001 |

# 1.000.000 Itens - Ordenação Decrescente

|              | CC       | TEC    | СВ | TEB  | NT      |
|--------------|----------|--------|----|------|---------|
| Chave 89383  | 39572255 | 6,156s | 35 | 0sec | 1000001 |
| Chave 130886 | 39572255 | 6,156s | 32 | 0sec | 1000001 |
| Chave 292777 | 39572255 | 6,156s | 31 | 0sec | 1000001 |
| Chave 336915 | 39572255 | 6,156s | 32 | 0sec | 1000001 |
| Chave 447793 | 39572255 | 6,156s | 35 | 0sec | 1000001 |
| Chave 538335 | 39572255 | 6,156s | 34 | 0sec | 1000001 |
| Chave 685386 | 39572255 | 6,156s | 33 | 0sec | 1000001 |
| Chave 760492 | 39572255 | 6,156s | 37 | 0sec | 1000001 |
| Chave 816649 | 39572255 | 6,156s | 34 | 0sec | 1000001 |
| Chave 941421 | 39572255 | 6,156s | 33 | 0sec | 1000001 |

#### 100 Itens - Aleatório

|         | CC   | TEC  | СВ | TEB  | NT  |
|---------|------|------|----|------|-----|
| Chave 3 | 1641 | 0sec | 8  | 0sec | 101 |

| Chave 16 | 1641 | 0sec | 11 | 0sec | 101 |
|----------|------|------|----|------|-----|
| Chave 27 | 1641 | 0sec | 12 | 0sec | 101 |
| Chave 35 | 1641 | 0sec | 12 | 0sec | 101 |
| Chave 43 | 1641 | 0sec | 11 | 0sec | 101 |
| Chave 55 | 1641 | 0sec | 13 | 0sec | 101 |
| Chave 66 | 1641 | 0sec | 10 | 0sec | 101 |
| Chave 72 | 1641 | 0sec | 12 | 0sec | 101 |
| Chave 89 | 1641 | 0sec | 11 | 0sec | 101 |
| Chave 91 | 1641 | 0sec | 13 | 0sec | 101 |

#### 1.000 Itens - Aleatório

|           | СС    | TEC  | СВ | TEB  | NT   |
|-----------|-------|------|----|------|------|
| Chave 83  | 24035 | 0sec | 17 | 0sec | 1001 |
| Chave 186 | 24035 | 0sec | 18 | 0sec | 1001 |
| Chave 277 | 24035 | 0sec | 21 | 0sec | 1001 |
| Chave 315 | 24035 | 0sec | 18 | 0sec | 1001 |
| Chave 493 | 24035 | 0sec | 15 | 0sec | 1001 |
| Chave 535 | 24035 | 0sec | 15 | 0sec | 1001 |
| Chave 686 | 24035 | 0sec | 17 | 0sec | 1001 |
| Chave 792 | 24035 | 0sec | 17 | 0sec | 1001 |
| Chave 849 | 24035 | 0sec | 16 | 0sec | 1001 |
| Chave 921 | 24035 | 0sec | 16 | 0sec | 1001 |

### 10.000 Itens - Aleatório

| I | CC | TEC | СВ | TEB | NT |
|---|----|-----|----|-----|----|
|   |    |     |    |     |    |

| Chave 174  | 311044 | 62,5ms | 18 | 0sec | 10001 |
|------------|--------|--------|----|------|-------|
| Chave 1804 | 311044 | 62,5ms | 28 | 0sec | 10001 |
| Chave 2831 | 311044 | 62,5ms | 21 | 0sec | 10001 |
| Chave 3898 | 311044 | 62,5ms | 25 | 0sec | 10001 |
| Chave 4419 | 311044 | 62,5ms | 21 | 0sec | 10001 |
| Chave 5367 | 311044 | 62,5ms | 25 | 0sec | 10001 |
| Chave 6762 | 311044 | 62,5ms | 24 | 0sec | 10001 |
| Chave 7132 | 311044 | 62,5ms | 23 | 0sec | 10001 |
| Chave 8430 | 311044 | 62,5ms | 23 | 0sec | 10001 |
| Chave 9331 | 311044 | 62,5ms | 26 | 0sec | 10001 |

### 100.000 Itens - Aleatório

|             | CC      | TEC    | СВ | TEB  | NT     |
|-------------|---------|--------|----|------|--------|
| Chave 3414  | 3851984 | 0,593s | 25 | 0sec | 100001 |
| Chave 10961 | 3851984 | 0,593s | 26 | 0sec | 100001 |
| Chave 27745 | 3851984 | 0,593s | 33 | 0sec | 100001 |
| Chave 31524 | 3851984 | 0,593s | 30 | 0sec | 100001 |
| Chave 44350 | 3851984 | 0,593s | 29 | 0sec | 100001 |
| Chave 54971 | 3851984 | 0,593s | 25 | 0sec | 100001 |
| Chave 62811 | 3851984 | 0,593s | 29 | 0sec | 100001 |
| Chave 74530 | 3851984 | 0,593s | 28 | 0sec | 100001 |
| Chave 87840 | 3851984 | 0,593s | 35 | 0sec | 100001 |
| Chave 95436 | 3851984 | 0,593s | 29 | 0sec | 100001 |

#### 1.000.000 Itens - Aleatório

|              | СС       | TEC    | СВ | TEB  | NT      |
|--------------|----------|--------|----|------|---------|
| Chave 89383  | 45952224 | 7,078s | 31 | 0sec | 1000001 |
| Chave 130886 | 45952224 | 7,078s | 31 | 0sec | 1000001 |
| Chave 292777 | 45952224 | 7,078s | 33 | 0sec | 1000001 |
| Chave 336915 | 45952224 | 7,078s | 36 | 0sec | 1000001 |
| Chave 447793 | 45952224 | 7,078s | 32 | 0sec | 1000001 |
| Chave 538335 | 45952224 | 7,078s | 31 | 0sec | 1000001 |
| Chave 685386 | 45952224 | 7,078s | 33 | 0sec | 1000001 |
| Chave 760492 | 45952224 | 7,078s | 34 | 0sec | 1000001 |
| Chave 816649 | 45952224 | 7,078s | 39 | 0sec | 1000001 |
| Chave 941421 | 45952224 | 7,078s | 34 | 0sec | 1000001 |

#### Conclusão

#### ASI

Diferente do que os outros métodos apresentam, o acesso sequencial indexado não realiza comparações durante o processo de criação das páginas, ele apenas realiza a leitura dos itens e os coloca nas páginas. Mas ainda sim durante o processo de busca ele precisa percorrer página por página até encontrar o índice desejado. Apesar de esse fator parecer ser ruim, o acesso sequencial indexado apresentou uma das melhores taxas, tanto no tempo, número de comparações gerais e numero de transferência.

#### Árvore Binária

Usamos uma Árvore Binária balanceada para a execução dos testes. Durante a execução, percebemos que quando é lido arquivos ordenados corretamente, temos execuções rápidas para a criação da árvore em si, independente do seu tamanho, lendo diretamente do arquivo fonte. Porém, lendo arquivos onde as chaves estão completamente aleatórias, quanto maior for o arquivo, maior o tempo de execução do algoritmo de criação da árvore.

Durante a execução do algoritmo de busca, sua execução foi sempre bem rápida.

#### Árvore B\*

Apesar de apresentar uma grande quantidade de comparações durante seu processo de criação, a árvore B\* ainda sim apresentou as vantagens de seu uso que é a consistência em seu número de comparações das chaves durante a busca do elemento, isto quer dizer que, apesar de qual seja a predisposição do arquivo inicialmente ou seu tamanho, o número de comparações durante a busca se mantém sempre constante e sem muito variação entre os resultados. O processo de criação da árvore B\* pode se tornar cada vez mais custoso à medida que o tamanho do arquivo cresce, mas seu tempo de execução e número de comparações durante a busca do elemento compensação a perda de tempo inicial.

#### Referências

https://www.moodlepresencial.ufop.br/pluginfile.php/640805/mod\_resource/content/2/bcc203\_pesquisa-externa.pdf

https://pt.wikipedia.org/wiki/%C3%81rvore\_de\_busca

https://pt.wikipedia.org/wiki/%C3%81rvore B\*