Cross-over studies with survival outcomes

Workshop on missing information in survival data beyond right censoring

Jozefien Buyze Els Goetghebeur

Ghent University, Dept. of Applied Mathematics and Computer Science, Belgium

Jozefien.Buyze@UGent.be

Introduction

- Research about dynamic treatment regimes with continuous outcome
 - Extend to dynamic treatment regimes with survival outcome
 - Restrict to crossover design
- In clinical trials with binary or continuous outcomes: cross-over design more efficient than parallel design because part of the inter-subject variability is eliminated.

- but rarely used with right-censored survival data e.g. Senn(2006)
 "... survival analysis, for which cross-over trials are unsuitable, but for re-occuring events they may be applied."
- What is the statistical basis for this advice?
- How do things change now that we have more sophisticated analysis tools (from dynamic regimes)?
- goal: understand impact of cross-over trials for survival data

Study precision of estimated treatment effect in parallel and cross-over design in

- Parametric model
 - homogeneous population
 - heterogeneous population
- Semi-parametric model: heterogeneous population
- Non-parametric estimator: heterogeneous population

Parametric model

Assumptions:

- Failure times exponentially distributed
 - $\lambda(t|R=r)=\lambda_r$
 - ullet A constant hazard \Rightarrow memory loss, renewal property
- Hazard ratio $\frac{\lambda_2}{\lambda_1} = \Delta$

MLE - Homogeneous population - Parallel design

- $\hat{\lambda}_r = \frac{\text{number of observed events in arm}}{\text{total observation time in arm r}}$
- $\bullet \ \hat{\Delta} = \frac{\hat{\lambda}_2}{\hat{\lambda}_1}$
- variance-covariance matrix: minus the inverse of the information matrix

MLE - Homogeneous population - Crossover design

- $\hat{\lambda}_r = \frac{\text{number of observed events in arm r}}{\text{total observation time in arm r}}$
- $\bullet \ \hat{\Delta} = \frac{\hat{\lambda}_2}{\hat{\lambda}_1}$
- variance-covariance matrix: minus the inverse of the information matrix

Homogeneous population

- ullet All patients have a common constant baseline hazard \Rightarrow renewal
 - \Rightarrow it doesn't matter if patients are compared with themselves or with another group of patients
 - \Rightarrow unlikely to benefit from cross-over design
- Only difference between cross-over and parallel design: number of patients who receive treatment A or B in the second period
 - slightly more efficient to allocate largest group to the treatment with higher risk.
 - ⇒ lower risk group (largest group) → higher risk
 - \Rightarrow cross-over design slightly more efficient than parallel design
- Difference basically negligible

Simulation results - Homogeneous population

- 1000 datasets of size 2000
- ullet real parameters: $\lambda=0.3$, $\Delta=1.5$, $log(\Delta)=0.405$

	mean of	mean of					
	estimates	est. se	emp se	MSE	coverage		
Parallel design							
λ	0.301	0.0098	0.0100	0.0001	0.944		
Δ	1.499	0.0681	0.0680	0.0046	0.984		
$log(\Delta)$	0.404	0.0454	0.0454	0.0021	0.989		
Cross-over design							
λ	0.301	0.0103	0.0104	0.0001	0.949		
Δ	1.496	0.0682	0.0688	0.0047	0.988		
$log(\Delta)$	0.402	0.0455	0.0461	0.0021	0.990		

MLE - Heterogeneous population - Parallel design

- ullet individual hazards λ_i follow exponential distribution with mean λ
- within patient comparison may be beneficial

$$\bullet \begin{cases} \sum_{i=1}^{n} \delta_{1,i} R_{i} \left(-\frac{1}{\lambda} + \frac{2}{\lambda + t_{i} \lambda^{2}} \right) + \delta_{1,i} (1 - R_{i}) \left(-\frac{1}{\lambda} + \frac{2}{\lambda + \Delta t_{i} \lambda^{2}} \right) \\ + (1 - \delta_{1,i}) R_{i} \left(-\frac{1}{\lambda} + \frac{1}{\lambda + t_{2} \lambda^{2}} \right) + (1 - \delta_{1,i}) (1 - R_{i}) \left(-\frac{1}{\lambda} + \frac{1}{\lambda + \Delta t_{2} \lambda^{2}} \right) = 0 \\ \sum_{i=1}^{n} \delta_{1,i} (1 - R_{i}) \left(\frac{1}{\Delta} - \frac{2t_{i} \lambda}{1 + \Delta t_{i} \lambda} \right) + (1 - \delta_{1,i}) (1 - R_{i}) \left(\frac{-t_{2} \lambda}{1 + \Delta t_{2} \lambda} \right) = 0 \end{cases}$$

• Solve equations by Newton-Raphson with starting values λ_0 and Δ_0 from assumed homogeneous population

MLE - heterogeneous population - Cross-over design

$$\begin{cases} \sum_{i=1}^{n} R_{i} \delta_{1,i} \left(-\frac{1}{\lambda} + \frac{2}{\lambda + t_{i}\lambda^{2}} \right) + (1 - R_{i}) \delta_{1,i} \left(-\frac{1}{\lambda} + \frac{2}{\lambda + \Delta t_{i}\lambda^{2}} \right) \\ + R_{i} (1 - \delta_{1,i}) \delta_{2,i} \left(-\frac{1}{\lambda} + \frac{2}{\lambda + t_{1}\lambda^{2} + \Delta(t_{i} - t_{1})\lambda^{2}} \right) \\ + (1 - R_{i}) (1 - \delta_{1,i}) \delta_{2,i} \left(-\frac{1}{\lambda} + \frac{2}{\lambda + \Delta t_{1}\lambda^{2} + (t_{i} - t_{1})\lambda^{2}} \right) \\ + R_{i} (1 - \delta_{1,i}) (1 - \delta_{2,i}) \left(-\frac{1}{\lambda} + \frac{1}{\lambda + t_{1}\lambda^{2} + \Delta(t_{2} - t_{1})\lambda^{2}} \right) \\ + (1 - R_{i}) (1 - \delta_{1,i}) (1 - \delta_{2,i}) \left(-\frac{1}{\lambda} + \frac{1}{\lambda + \Delta t_{1}\lambda^{2} + (t_{2} - t_{1})\lambda^{2}} \right) = 0 \end{cases}$$

$$\sum_{i=1}^{n} (1 - R_{i}) \delta_{1,i} \left(\frac{1}{\Delta} - \frac{2t_{i}\lambda}{1 + \Delta t_{i}\lambda} \right) \\ + R_{i} (1 - \delta_{1,i}) \delta_{2,i} \left(\frac{1}{\Delta} - \frac{2(t_{i} - t_{1})\lambda}{1 + t_{1}\lambda + \Delta(t_{i} - t_{1})\lambda} \right) \\ + (1 - R_{i}) (1 - \delta_{1,i}) \delta_{2,i} \left(\frac{-2t_{1}\lambda}{1 + \Delta t_{1}\lambda + (t_{2} - t_{1})\lambda} \right) \\ + R_{i} (1 - \delta_{1,i}) (1 - \delta_{2,i}) \left(\frac{-(t_{2} - t_{1})\lambda}{1 + \Delta t_{1}\lambda + \Delta(t_{2} - t_{1})\lambda} \right) \\ + (1 - R_{i}) (1 - \delta_{1,i}) (1 - \delta_{2,i}) \left(\frac{-t_{1}\lambda}{1 + \Delta t_{1}\lambda + (t_{2} - t_{1})\lambda} \right) = 0 \end{cases}$$

Heterogeneous population

- 1000 datasets of size 2000
- real parameters: $\lambda = 0.3$, $\Delta = 1.5$, $log(\Delta) = 0.405$

	mean of	mean of					
	estimates	est. se	emp se	MSE	coverage		
Parallel design							
λ	0.300	0.0165	0.0168	0.0003	0.938		
Δ	1.506	0.1173	0.1189	0.0142	0.981		
$log(\Delta)$	0.406	0.0782	0.0784	0.0061	0.987		
Cross-over design							
λ	0.300	0.0151	0.0151	0.0002	0.946		
Δ	1.502	0.0896	0.0912	0.0083	0.984		
$log(\Delta)$	0.405	0.0598	0.0609	0.0037	0.986		

25% lost efficiency in parallel design

Semi-parametric model - Parallel design

- True model: individual hazards λ_i follow exponential distribution with mean λ and conditional hazard ratio Δ
- = first working model : $\lambda_i(t) = \lambda_0(t) \exp(\beta Z_i + b_i)$ with $Z_i = \begin{cases} 0 & \text{treatment A} \\ 1 & \text{treatment B} \end{cases}$
 - $exp(\beta)$ is the *conditional* hazard ratio
- \neq second working model: $\lambda_i(t) = \lambda_0(t) \exp(\beta Z_i)$
 - $exp(\beta)$ is the average of the *marginal* hazard ratios over the observed event times
 - $HR_{marg}(t) = \frac{t + \frac{1}{\lambda}}{t + \frac{1}{\lambda\Delta}}$

Semi-parametric model - Crossover design

- True model: individual hazards λ_i follow exponential distribution with mean λ and conditional hazard ratio Δ
- = first working model: $\lambda_{ik}(t) = \lambda_0(t) \exp(\beta Z_{ik} + b_i)$ k = 1, 2• $\exp(\beta)$ is the *conditional* hazard ratio
- \neq second working model: $\lambda_{ik}(t) = \lambda_0(t) \exp(\beta Z_{ik})$ k = 1, 2
 - $exp(\beta)$ is the average of the *marginal* hazard ratios over the observed event times

$$\bullet \; \mathit{HR}_{\mathit{marg}}(t) = \begin{cases} \frac{t + \frac{1}{\lambda}}{t + \frac{1}{\lambda \Delta}} & t \leq t_1 \\ \frac{(t - t_1) + \frac{1}{\lambda} + t_1 \Delta}{(t - t_1) + \frac{1}{\lambda \Delta} + \frac{t_1}{\Delta}} & t > t_1 \end{cases}$$

Simulation results - heterogeneous - Semi-parametric

- 1000 datasets of size 2000
- real parameters: $\Delta = 1.5$, $log(\Delta) = 0.405$
- marginal hazard ratio in parallel design: 0.251, marginal hazard ratio in cross-over design: 0.331
- \bullet $exp(b_i)$ are gamma distributed

	Working model	mean of	mean of			
	estimand	estimates	est. se	emp se	MSE	coverage
Parallel design						
$log(\Delta)$	marginal	0.248	0.051	0.051	0.003	0.944
	conditional	0.371	0.070	0.122	0.016	0.655
Cross-over design						
$log(\Delta)$	marginal	0.280	0.051	0.043	0.004	0.865
	conditional	0.405	0.060	0.063	0.004	0.939

Simulation results - heterogeneous - Semi-parametric

- 1000 datasets of size 2000
- real parameters: $\Delta = 1.5$, $log(\Delta) = 0.405$
- marginal hazard ratio in parallel design: 0.251, marginal hazard ratio in cross-over design: 0.331
- \bullet $exp(b_i)$ are gamma distributed

	Working model	mean of	mean of			
	estimand	estimates	est. se	emp se	MSE	coverage
Parallel design						
$log(\Delta)$	marginal	0.248	0.051	0.051	0.003	0.944
	conditional	0.371	0.070	0.122	0.016	0.655
Cross-over design						
$log(\Delta)$	marginal	0.280	0.051	0.043	0.004	0.865
	conditional	0.405	0.060	0.063	0.004	0.939

Comparison of parallel design and cross-over design

- Wish to compare efficiency of estimated survival of treatment AB between parallel and cross-over design
- Parallel design doesn't have AB arm. Can we concatenate first period of A treatment with second period of B treatment?

 Possible if no 'carry-over effect'. We compare the marginal hazard for the B treatment in the second period between patients with A in first period and patients with B in first period. For a group of patients with A in first period, the marginal hazard for B in the second period is

$$\lambda_B(t) = rac{1}{t + rac{1}{\lambda \Delta} + rac{t_1}{\Delta}}$$

 For a group of patients with B in first period, the marginal hazard for B in the second period is

$$\lambda_B(t) = rac{1}{t + rac{1}{\lambda\Delta} + t_1}$$

⇒ carry-over effect on marginal hazard

Non-parametric estimator of survival distribution

- Wahed and Tsiatis (2004) present a estimator (LE) for the survival distribution in two-stage designs.
- For the estimator of the survival function of regime 12, we only need data from group 1.

$$\hat{S}_{12}(t) = \frac{1}{n} \sum_{i=1}^{n} \frac{\Delta_{i}}{\tilde{K}(U_{i})} \left[\left\{ (1 - R_{i}) + \frac{R_{i} X_{2i}}{\pi_{2}} \right\} I(U_{i} \ge t) - R_{i} \left(\frac{X_{2i} - \pi_{2}}{\pi_{2}} \right) g(T_{i}^{R}, V_{i}, \hat{\gamma}) \right]$$

with

- $\Delta_i = I(C_i \geq T_i)$
- $U_i = \min(T_i, C_i)$
- $R_i = 1$ if second treatment given else $R_i = 0$
- ullet X_{2i} is the indicator for treatment B in the second period
- $\pi_2 = P(X_{2i} = 1 | R_i = 1)$
- $\bullet \hat{K}(u) = \frac{1}{n} \sum_{i=1}^{n} I(C_i \geq u)$
- In our case $X_{2i} = 1 \ \forall i$ and $\pi_2 = 1$.

$$\Rightarrow \hat{S}_{12}(t) = \frac{1}{n} \sum_{i=1}^{n} \frac{\Delta_i}{\hat{K}(U_i)} I(U_i \ge t)$$

Adapted Kaplan-Meier estimator

$$\hat{S}_{12}(t) = \prod_{j: au_j \leq t} \left(rac{r_{j,2} - d_{j,2}}{r_{j,2}}
ight)$$

Simulation results - Non-parametric

- 100 datasets of size 100 in each arm
- failure times exponentially distributed
- we estimate P(T > 7) with cross-over time = 5, real value=0.3156 (parallel design, group A),0.2859 (cross-over design, group AB)

	mean of estimator	emp SE	MSE	95% CI for bias		
Parallel design						
KM	0.3156	0.0460	0.0021	[-0.0090,0.0090]		
Cross-over design						
LE	0.2845	0.0434	0.0019	[-0.0099,0.0071]		
Adapted KM	0.2850	0.0433	0.0019	[-0.0094,0.0076]		

Summary

- The cross-over design is more efficient than the parallel design for the parametric model and a heterogeneous population (relative efficiency=58%).
- The cross-over design is more efficient to estimate the conditional hazard ratio in the semi-parametric model.
- One can estimate the survival function more efficiently in the cross-over design with the LE estimator than in the parallel design.
- Further work: use the non-parametric LE estimator of the survival function to estimate the hazard ratio.

References

- Senn S. (2006). Cross-over trials in Statistics in Medicine: the first 25 years. Statistics in Medicine, 25: 3430–3442
- Duchateau L., Janssen P. The frailty model. Springer, 2008.
- Gua Go M., Sun L. and Huang C. (2004). A universal procedure for parametric frailty models. *Journal of statistical computation and* simulation, 74(1): 1-13.
- Wahed A.S. and Tsiatis A.A. (2004). Optimal estimator for the survival distribution and related quantities for treatment policies in two-stage randomization designs in clinical trials. *Biometrics*, 60: 124-133.