Lec 5 Practical case studies: Descriptive statistics

Content

- Practical case studies: Descriptive statistics
 - handling missing data
 - Anomalies
 - feature selection
- Introduction to scikit-learn
 - Estimators
 - Decision Trees

What is Data Science Pipeline

- Data driven decisions.
- Analyse raw data to produce actionable results.
- Skills required for DS:
 - Hacking (Coding)
 - Maths & Stats
 - Domain Knowledge
- Data mining: Extract knowledge from data.
 - Correlations
 - ML Models
 - From Linear Regression to complex NN.

NHANES case study

- importing the libraries in python.
 - %matplotlib inline
 - import matplotlib.pyplot as plt
 - import seaborn as sns
 - import pandas as pd
 - o import numpy as np

- 1. Load the dataset
 - o df = pd.read_csv("nhanes_2015_2016.csv")

1.1 Frequency tables

- determine the number of times that each distinct value of a variable occurs in a data set.
 - df.DMDEDUC2.value_counts()

```
4.0 1621

5.0 1366

3.0 1186

1.0 655

2.0 643

9.0 3
```

Name: DMDEDUC2, dtype: int64

1.2 Missing values

- 'value_counts' method excludes missing values.
 - print(df.DMDEDUC2.value_counts().sum())
 - print(da.shape)
- Another way is to locate the null values
 - pd.isnull(d.DMDEDUC2).sum()

```
5474
5474
(5735, 28)
```

1.3 Re-label

- replace integer codes with a text label
 - odf["DMDEDUC2x"] = df.DMDEDUC2.replace({1: "<9", 2: "9-11", 3: "HS/GED", 4: "Some college/AA", 5: "College", 7: "Refused", 9: "Don't know"})</p>
 - df.DMDEDUC2x.value_counts()

```
Some college/AA 1621
College 1366
HS/GED 1186
<9 655
9-11 643
Don't know 3
Name: DMDEDUC2x, dtype: int64
```

1.4 Creating a category

- Missing category
 - o df["DMDEDUC2x"] = df.DMDEDUC2x.fillna("Missing")
 - x = df.DMDEDUC2x.value_counts()
 - o x / x.sum()

```
Some college/AA 0.282650
College 0.238187
HS/GED 0.206800
<9 0.114211
9-11 0.112119
Missing 0.045510
Don't know 0.000523
Name: DMDEDUC2x, dtype: float64
```

1.5 Numerical Summaries

- describe() method
 - df.BMXWT.dropna().describe()

```
5666.000000
count
          81.342676
mean
          21.764409
std
          32.400000
min
25%
     65.900000
50%
          78.200000
          92.700000
75%
         198.900000
max
Name: BMXWT, dtype: float64
```