CSE-170 Computer Graphics

Lecture 15 Parametric Curves

Dr. Renato Farias rfarias 2@ucmerced.edu

Curves

Curves:

- can be defined in any dimensions
 - 2D curves define points in the 2D plane
 - 3D curves define points in the 3D space
- are "infinitesimally thin"
- will be used to outline the border of objects
- can be open or closed
- examples
 - Segments
 - Circles
 - Free-form shapes

Curves

- Main approaches to define curves:
 - Procedural curves: fractals, subdivision rules

- Parametric curves: are mappings
 - Ex.: Continuous map from 1D space to n-D space f(t)=(x,y), ex: $f(t)=(\cos t, \sin t)$
- Implicit curves: defined by an equation
 - Described by all points satisfying an equation
 f(x,y)=0 ex: x²+y²-1=0

- Parameterized curves are very useful
 - Points along the curve can be easily generated
- How do we specify generic parametric curves?
 - Control Points or Control Polygons
 - By interpolation or approximation
 - Tangents
 - etc.
- What type of functions should we use?
 - In most cases polynomials
 - Simple and fast to evaluate and can be flexible enough
 - Piecewise polynomial functions very common

Parameterization

- A curve f is often defined in an interval
- For example, if it is defined in [0,1], then:
 f(t = 0) is the beginning of the curve, and
 f(t = 1) is its end.
 t can be seen as "time", as in a trajectory

- Ex: $f(t) = (40t, -16t^2 + 40t)$, t in [0,2.5]
- Equivalent to: x(t) = 40t $y(t) = -16t^2 + 40t$

• $t \text{ in } [0,2\pi]$

Reparameterization

Consider g(u), where u is defined in [a,b]A new parameterization can be defined in [0,1]: f(t) = g(a+(b-a)t), t in [0,1]

(we can also write: f(t) = g(r(t)), r(t) = a+(b-a)t)

Different parameterizations possible

For ex: $r(t) = (t^2)$

- Arc-length parameterization
 - parameter tells you the length traveled so far
 - an increment in parameter space generates the same increment along the curve
- Transforming to arc-length parameterization is sometimes very difficult

$$s(t) = \int_{t_0}^t |a'(t)| dt$$

Piecewise Curves

Piecewise Parametric Curves

- Piecewise Curves:
 - are composed of pieces which have different equations
- How to break a curve into simple pieces?
 - Define pieces in parametric space, for ex.:

$$f(u) = f_1(u)$$
, if $u < 0.5$
 $f_2(u)$, if $u \ge 0.5$

Piecewise Parametric Curves

- Why break a curve into simple pieces?
 - Simpler pieces are easier to define/model
 - Easier to control
 - Easier to guarantee "local control behavior"
 - Knot control (control at connection points)
 - etc.

Splines:

- also known as a flexible physical device
- are modeled as piecewise polynomial functions
- will be our main tool

- Let f be a piecewise curve composed of continuous pieces
- For f to be continuous, continuity at every connection point is needed:

Ex.:
$$f(u) = f_1(u)$$
 if $u < 0.5$
 $f_2(u)$ if $u \ge 0.5$

Continuity test: Is $f_1(0.5) = f_2(0.5)$?

Note: f₁ and f₂ are known to be continuous here, but if this is not the case, we need to verify continuity for all points along the curve.

Continuity test at 0.5: Is $f_1(0.5) = f_2(0.5)$?

Let *u* denote a connection point:

 C^0 continuity: is $f_1(u) = f_2(u)$, for all u?

 C^1 continuity: is it C^0 and $f_1'(u) = f_2'(u)$, for all u?

 C^2 continuity: is it C^1 and $f_1''(u) = f_2''(u)$, for all u?

Cⁿ continuity: ...

etc.

- Geometric Continuity
 - A "visual" definition of continuity
 - The parametrization may have a "sudden change in velocity", but the resulting curve is a continuous curve
 - Example:
 - C¹ continuity requires $f_1'(u) = f_2'(u)$. Instead, G¹ continuity requires $\exists k : f_1'(u) = k f_2'(u)$.
 - Geometric continuity G¹, G², G³, ... are defined equivalently to the definition of Cⁿ continuity

