Predicting Mental Health Treatment at US Companies

Supervised Machine Learning Report

Esther Weon (esther.s.weon@gmail.com)

OVERVIEW

- 1. Introduction
- 2. Dataset
- 3. Data Cleaning
- 4. Feature Engineering
- 5. Handle Skewed Data
- 6. Explore & Analyze
- 7. Model Selection
- 8. Model Evaluation
- 9. Findings
- 10. Next Steps

1. INTRODUCTION

OBJECTIVE:

Analyze mental health survey responses to find predictors for whether American employees will seek mental health treatment

DATA (source):

- Global 2014 2016 mental health survey majority in US
 - **1259** total responses (global)
 - 751 USA responses (~60% of total)
 - o **27** features
- Explores employee & employer attitudes towards mental health in workplace
 - Employee demographic info; mental health history & treatment
 - Employer-offered mental health benefits & care options

2. DATASET

FEATURES:

- Employee Info
 - Demographics Age, gender, location, type of employment
 - Write-in comments
 - Mental illness
 - Family history
 - Currently seeking treatment (TARGET)
- Employer Attitudes & Work Environment Offerings
 - Size & type of company
 - Availability of mental health benefits & care options
 - Value & prioritization of mental health in workplace

3. DATA CLEANING

FEATURES TO CLEAN:

- Age
 - o Invalid ages below 0 & over 120
 - 5 rows dropped
 - Normalize using min-max scale
- Gender
 - Employees' write-in responses
 - Clean & Categorize
 - 'Male', 'Female', & 'Other' (i.e. Queer / Non-Binary) → 'Male' & 'Female'
 - 13 rows of 'Other' dropped

FEATURES WITH MISSING VALUES:

- state
 - \circ 515 \rightarrow 11 rows, after focusing on just US employees
 - All 11 rows dropped
- self_employed
 - 18 NaN rows dropped
- work_interfere
 - o 264 rows
 - Impute all NaNs to most common category ('Sometimes')
- comments
 - 1095 rows (significant percentage)
 - Save for later feature engineering

4. FEATURE ENGINEERING

LOCATION & TIME FEATURES

- Country → Continent
 - Later removed to focus on US
- US Regions
 - North, South, East, West, Midwest
- Years
 - o 2014, 2015, 2016
- Seasons
 - Spring, Summer, Fall, Winter

COMPARISON FEATURES

- mental_vs. physical_consequence
 - More worried about workplace consequences due to ____ health
- mental_vs. physical_interview
 - More likely to mention _____ health in interview

OTHER FEATURES

- has_comment
 - 0 (False) or 1 (True); majority 0
- comment_len
 - \circ Char lengths of comments; majority = 0

5. HANDLE SKEWED DATA

SKEWED DATA

- Need 1:1 ratio for people seeking vs. not seeking mental health treatment
- NOTE data not so skewed that skipping over-sampling would have given significantly worse scores

OVER-SAMPLING VIA SMOTE

- Split into train & test datasets
- Over-sample the train dataset to achieve 1:1 ratio
 - \circ Over-sampled train \rightarrow Over-sampled X (train & test); Over-sampled Y (train & test)

6. EXPLORE & ANALYZE

NARROW FOCUS:

- Just US employees
- Takes care of some missing rows (e.g. state)
- 2 groups to compare
 - Seeking vs. Not Seeking Treatment

EDA FINDINGS:

- Gender
 - More women seeking treatment
- Region
 - More employees on West coast seeking treatment

EDA FINDINGS, cont'd:

- Employees seeking treatment more often have:
 - Family history of mental illness
 - Mental health issues frequently affecting their work
 - Anonymous access to mental health help
 - Work-provided mental health benefits & care options

7. MODEL SELECTION

TARGET:

Predict whether or not an employee is seeking mental health treatment

STRATEGY:

- Create & evaluate several classifier models
 - Fit on over-sampled train
 - TRAIN SCORE: Score on over-sampled test
 - TEST SCORE: Score on test dataset
 - WHOLE SCORE: Score on whole dataset

PREPARATION:

- **Normalization** of Continuous Variables
 - Age, comment_lens
- **Dummies** for Categorical Variables
 - o Gender, self_employed, family_history, region, etc.

MODELS TO BUILD:

- LASSO Logistic Regression
- Random Forest Classifier
- Naive Bayes Classifier
- Gradient Boosting Classifier
- Support Vector Classifier

8. MODEL EVALUATION

	LASSO Logistic Regression	Random Forest Classifier	Naive Bayes Classifier	Gradient Boosting Classifier	Support Vector Classifier
R ² (train, test, whole)	74.8% 80.8% 78.2%	72.3% 79.0% 78.0%	71.4% 75.3% 72.7%	70.6% 90.3% 82.3%	74.8% 91.9% 80.0%
Precision & Recall (train, test, whole)	85.0%, 80.6% 86.0%, 77.7% 82.1%, 76.5%	85.0%, 80.6% 82.4%, 78.2% 80.9%, 78.0%	76.9%, 76.9% 77.3%, 77.7% 75.7%, 73.4%	100.0%, 100.0% 92.2%, 89.9% 84.7%, 82.4%	100.0%, 100.0% 95.2%, 89.9% 84.8%, 76.7%
Type I & II Errors (train, test, whole)	6.9%, 9.5% 6.9%, 12.2% 9.0%, 12.8%	6.9%, 9.5% 9.2%, 11.9% 10.0%, 12.0%	11.3%. 11.3% 12.5%, 12.2% 12.8%, 14.5%	0.0%, 0.0% 4.2%, 5.6% 8.1%, 9.6%	0.0%, 0.0% 2.5%, 5.6% 7.5%, 12.7%

STRATEGY #1: USE PREVIOUS IMPORTANT FEATURES:

- Get most important features from previously fitted Random Forest Classifier
- Feed these features to most successful models (RFC, GBM, & SVC)
- Results
 - **RFC** slightly lower R² & precision / recall rates; slightly higher errors (higher feature importances)
 - GBM & SVC lower & more erratic R² & precision / recall rates

COMPARISON CONCLUSION:

- Will choose original model over new model with previously selected important features
 - Slightly lower R² (insignificant difference)
 - Slightly lower precision & recall rates (insignificant difference)
 - Errors all get slightly higher

REGULAR MODEL

```
***TRAIN***
R2 for train: 0.8103448275862069
predicted
actual
                      133
           109
                  24
                 113
                      137
A11
                137 270
Type I errors 8.89%
Type II errors: 8.89%
Precision: 82.489
Recall: 82.48%
***TEST***
R2 for test: 0.8164383561643835
predicted
                  1 All
actual
                     172
                 163
                      193
All
                200
                     365
Type I errors: 10.14%
Type II errors: 8.22%
Precision: 81.5%
Recall: 84.46%
***WHOLE***
R<sup>2</sup> for whole: (0.7780821917808219
predicted
actual
                      334
                 316
                      396
All
                398
                    730
Type I errors: 11.23%
Type II errors: 10.96%
Precision: 79.4%
Recall: 79.8%
```

MODEL WITH PREVIOUS IMPORTANT FEATURES

```
***TRAIN***
R2 for train: 0.8017241379310345
predicted
actual
           107
                     133
                     137
All
                134 270
Type I errors 9.63%
Type II errors: 10.74%
Precision: 80.6%
Recall: 78.83%
***TEST***
R2 for test: 0.7917808219178082
predicted
                  1 All
actual
                     172
                157
                     193
A11
               197 365
Type I errors: 10.96%
Type II errors: 9.86%
Precision: 79.7%
Recall: 81.35%
***WHOT.E***
R2 for whole: 0.7589041095890411
predicted
actual
                     334
                     396
All
                394
                    730
Type I errors: 11.92%
Type II errors: 12.19%
Precision: 77.92%
Recall: 77.53%
```

STRATEGY #2: USE PCA TO REDUCE FEATURES:

- Reduced to 3 components
 - Only 1 important component
- Feed PCA features to most successful models (RFC, GBM, & SVC)
- All models much lower & more erratic R²,
 precision & recall rates (sign of overfitting)
- PCA won't work because most variables are categorical

9. FINDINGS

Employees most likely to seek mental health treatment:

- Women in late 20s to mid-30s
- Family history of mental health
- Mental health interfering with work
- Have & are aware of mental health benefits & care options at workplace
- Want to avoid mental health discussions with employer
 - a. Most interesting discovery
 - b. Avoid cause-effect conclusions

10. NEXT STEPS

Takeaways for Employers & Employees:

- More conversations ("openness") with coworkers & bosses may not be as helpful or appealing to employees seeking treatment as simple availability & awareness of mental health resources
- Understanding how untreated mental health can interfere with work and impact the company may incentivize employers to invest in their teams' mental health

Further Study:

- Incomplete data picture
 - Specific mental illness employees suffer from
 - Frequency, severity, & kinds of treatment being administered (talk therapy, group therapy, medical procedures, medication, etc.)

THANK YOU

ESTHER WEON esther.s.weon@gmail.com