Automata Theory and Formal Languages Coursework 2 - James Smith 863266

1)

a) $L = \{ a^2nba^3n \mid n \ge 0 \}$

aba aabaaa aaaabaaaaaa

 $S \rightarrow AbA$

A -> Aaa, aaaA

A -> aa, aaa

Seeing as A has the option of being either aa or aaa dependant on the context we can see this language is context free

b) Pumping Lemma for regular languages states that if a string derived by an FSA is sufficiently big, we pass through at least one state twice. If we take L as our context free language, then there exists a constant K s.t. for all strings z of L s.t. |z|≥k there exist u, v, w, x, y s.t. Z = uvwxy, |v w x|≤k, |vx|≥1, ∀i≥0.u v^i w x^i y ∈ L. If we derive a tree from this language we are given this.

Which shows the values of V and X have a different quantity of subderivations. (2 for V and 3 for X) therefor the language is not regular.

2)

Combine these to form 3(y - x)

```
R0 = X, R1 = Y, R2 = Z, R3 = 0

0: if R0 = 0 goto 5

1: R0 := R0 - 1

2: R1 := R1 - 1

3: if R3 = 0 goto 0

4: if R1 = 0 goto 10

5: R1 := R1 - 1

6: R2 := R2 +1

7: R2 := R2 +1

8: R2 := R2 +1

9: if R3 = 0 goto 5
```

3) To derive the function from the code:

```
0: if R0 = 0 goto 5
1: R0 := R0 - 1
2: R1 := R1 + 1
3: R1 := R1 + 1
4: if R2 = 0 goto 0
5: if R1 = 0 goto 10
6: R1 := R1 - 1
7: R0 := R0 + 1
8: R0 := R0 + 1
9: if R3 = 0 goto 5
```

We first record the results given when we use a set of natural inputs

For
$$R0 = 1$$
, $R1 = 2$, $R2 = 0$

Instructions	R0	R1	R2
0	1	1	0
1	0	1	0
2	0	2	0
3	0	3	0
4	0	3	0
5	0	3	0
0	0	3	0
5	0	3	0
6	0	2	0
7	1	2	0
8	2	2	0
9	2	2	0
5	2	2	0
6	2	1	0
7	3	1	0
8	4	1	0
9	4	1	0
5	4	1	0
6	4	0	0
7	5	0	0
8	6	0	0
9	6	0	0
5	6	0	0

This gives us the output of (1, 1) = 6

Following this through with other values we get;

$$(1, 2) = 8$$

 $(1, 3) = 10$
 $(2, 1) = 10$
 $(2, 2) = 12$

The most useful output being;

$$(0, 2) = 4$$

 $(2, 0) = 8$

Solving these as a graph and using the X and Y intercepts we find the original equation to be

$$f:N^2 \to N, f(x, y):+ (4X + 2Y)$$

4) i)

A Turing machine is a hypothetical machine thought up by Alan Turing used to simulate the outputs of certain algorithms. It consists of an infinitely long tape which acts like memory inside a computer. The tape is split up into boxes containing either 1, 0 or "" (blank). This is a typical three symbol Turing machine.

The machine moves along the tape reading one symbol at a time. It can edit this symbol by writing an new one or erasing it entirely. The machine can also move itself left or right to edit a neighbouring square.

4)ii)

A Turing machine consists of the 5 components Σ , S, I, [], S_0 . These 5 symbols make up the language that defines all the functions possible in the machine. The machine follows the instructions on the form

$$s ----a/b, D -----> t$$

Where the symbols a, b and D translate too; if the head reads a, change it to b, D is the direction the head moves after the state has been changed.

5) i)

The head reads the first symbols, as they are all either 1 or 0 it moves to the right, once it reaches an empty tile it changes it to a 1 and moves left to state q1, moving on from state q1 it writes 1 if it is not empty. In state q2 if it reads either a 1 or 0 it changes it to a 0. Once it reaches a space it moves right to the final finishing state.