ET 2060 - Tín hiệu và hệ thống Biến đổi Laplace

TS. Đặng Quang Hiếu

Trường Đại học Bách Khoa Hà Nội Viện Điện tử - Viễn thông

2017-2018

Dinh nghĩa

Biến đổi Laplace

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$$

trong đó s là biến số phức: $s = \sigma + j\Omega$.

$$X(s) \triangleq \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

Ví dụ: Tìm biến đổi Laplace của $x(t) = e^{at}u(t)$

$$e^{at}ult) \stackrel{\mathcal{L}}{\longrightarrow} \int e^{at}ult) \cdot e^{-st} dt$$

$$= \int e^{(a-s)t} dt$$

$$= \frac{1}{a-s} e^{(a-s)t} \int_{0}^{\infty} e^{(a-s)t} dt$$

Liên hệ với biến đổi Fourier $\chi_{(j,\Omega)} = \int \chi dt e^{-j\Omega t} dt$

$$X(j\Omega) = \int x dt e^{-j\Omega t} dt$$

$$= -\infty \times (s) |_{s=1}$$

▶ Biến đổi Fourier là biến đổi Laplace xét trên trục ảo $s = j\Omega$.

$$X(j\Omega) = X(s)|_{s=j\Omega}$$

▶ Biến đổi Laplace là biến đổi Fourier của $x(t)e^{-\sigma t}$ $\left(S = 6 + i\Omega\right)$

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-(\sigma+j\Omega)t} dt = FT\{x(t)e^{-\sigma t}\}$$

Miền hội tụ (ROC) là những giá trị của s trên mặt phẳng phức sao cho $X(s)<\infty$ (tức là tồn tại biến đổi Fourier của $x(t)e^{-\sigma t}$). Điều kiến hội tụ:

có thể
$$\angle biến mar$$

$$\int_{-\infty}^{\infty} |x(t)e^{-\sigma t}| dt < \infty$$

Ví dụ

$$\mathcal{L} = \frac{1}{2} \int_{-\infty}^{\infty} \delta(t) \cdot e^{-st} dt = e^{-s \cdot 0} = 1 \quad \forall s$$

Tìm biến đổi Laplace và vẽ miền hội tụ cho các trường hợp sau:

(a)
$$x(t) = \delta(t)$$

$$\frac{2}{2}$$

(a)
$$x(t) = \delta(t)$$

(b) $x(t) = -e^{at}u(-t)$

$$\frac{1}{s-a}$$
Refs $\leq \text{Re}\{a\}$

(b)
$$x(t) = -e^{at}u(-t)$$

(c)
$$x(t) = e^{2t}u(t) + e^{3t}u(-t)$$

$$(\mathsf{d})/x(t) = \cos(\Omega_0 t) u(t)$$

$$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}$$

$$-\frac{1}{s-3} \quad 2 < Re\{s\} < 3$$

Điểm cực và điểm không

- ightharpoonup Điểm cực: $s=s_{pk}$ nếu $X(s_{pk})=\infty$.
- Diem cục. $s = s_{0k}$ nếu $X(s_{0r}) = 0$.
- Nếu X(s) biểu diễn bởi một hàm hữu tỉ:

$$X(s) = \frac{N(s)}{D(s)}$$

thì s_{pk} là nghiệm của đa thức D(s) và s_{0r} là nghiệm của đa thức N(s).

Ví dụ: Tìm biến đối Laplace và vẽ các điểm cực, điểm không

$$x(t) = \delta(t) - 3e^{-2t}u(t) + 2e^{t}u(t)$$

$$X(s) = 1 - 3 \cdot \frac{1}{s+2} + 2 \cdot \frac{1}{s-1} = \frac{s^{2} + 5}{(s+2)(s-1)}$$

Các tính chất của ROC

- (i) ROC chứa các dải song song với trục ảo trên mặt phẳng s.
- (ii) ROC không chứa các điểm cực
- (iii) Nếu x(t) có chiều dài hữu hạn và $\int_{-\infty}^{\infty} |x(t)| dt < \infty$ thì ROC sẽ là cả mặt phẳng phức.
- (iv) Nếu x(t) là dãy một phía (trái hoặc phải) thì ROC?
- (v) Nếu x(t) là dãy hai phía thì ROC?

Biến đổi Laplace ngược

Áp dụng biến đổi Fourier ngược:

$$x(t)e^{-\sigma t} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\sigma + j\Omega)e^{j\Omega t} d\Omega$$

Ta có:

$$x(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} X(s)e^{st} ds$$

- Nếu X(s) là hàm hữu tỷ thì biến đổi ngược bằng cách khai triển thành các phân thức tối giản.
- Lưu ý về ROC.

Ví dụ: Tìm biến đổi ngược của

$$X(s) = \frac{-5s - 7}{(s+1)(s-1)(s+2)}, \quad ROC: -1 < Re\{s\} < 1$$

$$X(s) = \frac{3s+1}{(s+3)(s+2)} = \frac{A}{s+3} + \frac{B}{s+2}$$

$$A = \frac{3s+1}{s+2} \Big|_{s=-3} = 8 \quad \text{ear u(t)} \qquad \frac{1}{s-a} \text{ Re[s]} \times \text{Re[a]}$$

$$B = \frac{3s+1}{s+3} \Big|_{s=-2} = -5$$

$$8 \cdot e^{-3t} u(t) - 5e^{-2t} u(t), \quad \text{Re[s]} \times -2$$

$$2(t) = \begin{cases} 8 \cdot e^{-3t} u(t) + 5e^{-2t} u(-t), & -3 < \text{Re[s]} < -2 \\ -8e^{-3t} u(-t) + 5e^{-2t} u(-t), & \text{Re[s]} < -3 \end{cases}$$

Các tính chất

- ► Tuyến tính
- ▶ Dịch thời gian: $x(t t_0) \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-st_0}X(s)$
- ▶ Dịch trên miền $s: e^{s_0t}x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s-s_0)$
- ► Co dãn: $x(at) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{|a|} X(s/a)$
- Liên hợp phức: $x^*(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X^*(s^*)$
- ► Chập: $x_1(t) * x_2(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X_1(s)X_2(s)$
- ▶ Đạo hàm trên miền $t: \frac{dx(t)}{dt} \xleftarrow{\mathcal{L}} sX(s)$
- ▶ Đạo hàm trên miền $s: -tx(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{dX(s)}{ds}$
- ► Tích phân trên miền t: $\int_{-\infty}^{t} x(\tau) d\tau = \frac{1}{s}X(s)$
- ▶ Định lý giá trị đầu và cuối: Nếu tín hiệu nhân quả $(x(t) = 0, \forall t < 0)$ thì

$$x(0^+) = \lim_{s \to \infty} sX(s), \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$

Hàm truyền đạt H(s) của hệ thống LTI

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$

Hàm truyền đạt

$$H(s) \triangleq \mathcal{L}\{h(t)\} = \frac{Y(s)}{X(s)}$$

- Hệ thống nghịch đảo: $H_{inv}(s) = \frac{1}{H(s)}$
- ▶ Hệ thống pha tối thiểu: H(s) và $H_{inv}(s)$ đều nhân quả, ổn định.

on tinh H(5) So ti H(j-12-) $= H(s) |_{S=JSL}$ h (+)

$$H(s) = \frac{A}{(s+1)(s-2)} = \frac{A}{s+1} + \frac{B}{s-2}$$

$$A = \frac{1}{(s+1)(s-2)} = \frac{A}{s+1} + \frac{B}{s-2}$$

$$A = \frac{1}{(s+1)(s-2)} = \frac{1}{(s+1)(s-2)} = \frac{1}{(s+1)(s-2)} = \frac{1}{(s+1)(s-2)} = \frac{1}{(s+1)(s-2)} = \frac{1}{(s+1)(s-2)} = \frac{1}{(s+1)(s-1)(s-2)} = \frac{A}{s+1} + \frac{B}{s-2}$$

$$A = \frac{1}{(s+1)(s-2)} = \frac{A}{s+1} + \frac{B}{s-2} = \frac{A}{s+1} + \frac{A}{s+1} + \frac{A}{s+1} = \frac{A}{s+1} + \frac{A}{s+1} + \frac{A}{s+1} = \frac{A}{s$$

Hệ thống LTI nhân quả và ổn định

- Nhân quả: ROC của H(s) là nửa bên phải của mặt phẳng phức
- Nhân quả, với H(s) là hàm hữu tỷ: ROC là phần mặt phẳng bên phải của điểm cực ngoài cùng.
- ightharpoonup Ôn định: ROC chứa trục ảo $(s=j\Omega)$.
- Nhân quả, ổn định, H(s) hữu tỷ: Tất cả các điểm cực của H(s) nằm bên trái trục ảo của mặt phẳng phức.
- Phệ thống pha tối thiểu: Tất cả các điểm cực và điểm không của H(s) đều nằm bên trái trục ảo.

Tìm đáp ứng xung của hệ thống LTI

Cho hệ thống LTI được biểu diễn bởi phương trình sai phân tuyến tính hệ số hằng:

$$\frac{d^3}{dt^3}y(t) + 3\frac{d^2}{dt^2}y(t) - 4y(t) = 4\frac{d^2}{dt^2}x(t) + 15\frac{d}{dt}x(t) + 8x(t)$$

Hãy tìm đáp ứng xung h(t) trong trường hợp hệ thống nhân quả, ổn định.

$$H(s) = \frac{4s^2 + 15s + 8}{5^3 + 3s^2 - 4} = \frac{(s-1)(s+2)^2}{5^3 + 3s^2 - 4}$$

$$\frac{1}{(5-c)^2} = -\left(\frac{1}{5-a}\right)'$$

$$e^{at}$$
 $u(t)$ $\frac{1}{s-a}$
 $-e^{at}$ $u(-t)$

Biến đổi Laplace một phía

$$X(s) \triangleq \int_0^\infty x(t)e^{-st}dt$$

Ký hiệu:

$$x(t) \stackrel{\mathcal{L}_u}{\longleftrightarrow} X(s)$$

Các tính chất tương tự như biến đổi Laplace hai phía, ngoại trừ:

$$\frac{dx(t)}{dt} \stackrel{\mathcal{L}_u}{\longleftrightarrow} sX(s) - x(0^-)$$

Giải phương trình vi phân tuyến tính hệ số hằng

$$\chi'(t) \stackrel{\mathcal{L}}{=} SX(S) - \chi(o^{-})$$

$$\chi''(t) \stackrel{\mathcal{L}}{=} S\left(SX(S) - \chi(o^{-})\right) - \chi'(o^{-})$$

Cho hệ thống LTI được biểu diễn bởi phương trình vi phân tuyến tính hệ số hằng

$$\frac{d^2}{dt^2}y(t) + 5\frac{d}{dt}y(t) + 6y(t) = \frac{d}{dt}x(t) + 6x(t)$$

Hãy tìm đầu ra y(t) của hệ thống khi có đầu vào x(t) = u(t), với các điều kiện đầu: $y(0^-) = 1$ và $y'(0^-) = 2$. y(t) = u(t), với

Bài tập

- 1. Sử dụng hàm roots để tìm điểm cực và điểm không của hàm truyền đạt H(s).
- 2. Sử dụng hàm residue để phân tích H(s) hữu tỷ thành các phân thức tối giản.
- 3. Tìm hiểu về cách sử dụng các hàm tf, zpk, ss, pzmap, tzero, pole, bode và freqresp để biểu diễn và phân tích hệ thống.