

Easy Study Project

Data-Based Bus Arrival Time

Prediction

팀명: 3조

팀원: 김예리, 이상준, 정제나

CONTENTS

- 01. 프로젝트 소개
 - 프로젝트 주제
 - 주제 선정 이유
- 02. 프로젝트 과정
 - 원리
 - 프로젝트 코드

- 03. 프로젝트 결과
 - 실행결과(ex_이미지 인식 결과 캡쳐본)
- 04. 느낀 점
 - 프로젝트,스터디를 진행하면서

느낀점 (팀장, 팀원)

B.D.A

•01. 프로젝트 소개

- 프로젝트 주제
- 주제 선정 이유

●01. 프로젝트 소개

<프로젝트 주제 >

버스 노선별 데이터 기반 버스 운행 시간 예측

< 주제 선정 이유 >

버스 운행 시간을 실시간으로 예측하여 버스 운행 시스템 상용화

B.D.A

•02. 프로젝트 과정

- 프로젝트 원리
- 프로젝트 코드

• 02. 프로젝트 과정

- 1. Feature engineering
- 2. Data Analyze
- 3. Preprocessing 1 (Perspective of 's/m')
- 4. Preprocessing 2 (Perspective of 'm/s')
- 5. Final preprocessing
- 6. Data modeling


```
< 불필요한 컬럼 삭제 >
- 위도, 경도 필요하지 않다고 판단하여 삭제
```

```
1 # 불필요한 컬럼 삭제
2 columns_to_drop = [ 'now_latitude', 'now_longitude','next_latitude','next_longitude']
3 df = df.drop(columns=columns_to_drop)
```

< 버스 운행 특성 >

- 평일과 주말의 배차 간격은 다를 것
- 주로, 출퇴근 시간에 막힐 것

< 새로운 컬럼 생성 >

- 1m당 걸린 시간(s/m), 1초당 걸린 거리(m/s) 컬럼 생성 : 버스의 지연 정도를 파악하고자 함
- 요일(week), 시간(아침,점심,저녁) 컬럼 생성 : 위의 특성을 이용한 분석을 하고자 함

```
1 # 필요한 컬럼들 생성 (요일, 1미터당 걸린 시간(초), 1초당 걸린 거리(m) 계산하여 컬럼화)
2
3 df['date'] = pd.to_datetime(df['date'])
4 df['week'] = df['date'].dt.day_name()
5
6 df['distance'] = df['distance'].astype(int)
7 df['s/m'] = df['next_arrive_time'] / df['distance']
8 df['m/s'] = df['distance'] / df['next_arrive_time']
9 df['time']='time'

1 df.loc[(df['now_arrive_time'] >='05\lambda') & (df['now_arrive_time'] <'12\lambda'),['time']]= 'morning' # 05~11\lambda
2 df.loc[(df['now_arrive_time'] >='12\lambda') & (df['now_arrive_time'] <'18\lambda'),['time']]= 'afternoon' # 12~17\lambda
3 df.loc[(df['now_arrive_time'] >='18\lambda')] (df['now_arrive_time'] =='00\lambda'),['time']]= 'evening' # 18~0\lambda
4 df
```


< 이상치 기준 정하기 >

- 1m당 걸린 시간(s/m), 1초당 걸린 거리(m/s) 의 박스플롯 분석 : 이상치가 위로만 분포

< 이상치 분석 결과 : s/m 중심 이상치 처리방식 채택 >

- 이상치 분포:전 노선에 존재

- m/s의 이상치 처리 방식: 이상치의 양이 매우 작아, 모두 삭제

- s/m의 이상치 처리 방식: 노선별 이상치 count가 전체 count의 75% 이상인 것으로 정의하여, 이상치 처리

count	21.000000
mean	505.190476
std	686.135382
min	51.000000
25%	95.000000
50%	264.000000
75%	645.000000
max	2554.000000
Name: (count, dtype: float64

1 0	utlier_coum	t [out li	er_count['count']>=645]
	route_nm	count	
14	281-2	645	
15	360-1	2554	
16	360-12	808	
17	360-2	683	
19	365-21	851	
20	365-22	2284	


```
< 이상치 분석>
```

이상치 대체 : 주요 노선 (281-2, 360-1, 360-12, 360-2, 365-21, 365-22)에 대해선 이상치 대체 및 삭제

이상치 삭제 : 이외의 노선의 모든 이상치는 삭제

< 이상치 분석 >

- outlier_df: 주요 6개 노선의 이상치들을 데이터프레임화
- outlier_df_count : 주요 6개 노선의 정류장별 이상치들의 카운트값

```
4 outlier_df = df[(df['route_nm'].isin([ '281-2', '360-1', '360-12', '360-2', '365-21', '365-22'])) & (df['s/m']>q)]
1 outlier_count = outlier_df.groupby(['now_station','next_station'])['now_station'].count().reset_index(name = 'count')
2 outlier_count
```

- outlier_df_count의 75% 이상의 값 : 이상치 대체
- outlier_df_count의 75% 미만의 값 : 이상치 삭제

< 이상치 분석 > - 이상치의 요일별, 시간대별 분석을 위한 임의의 데이터프레임 생성

```
1 # outlier_df 중 노선 6개를 각각 뽑아 데이터프레임화 (변수명 : df노선번호)
3 df281_2 = outlier_df[outlier_df['route_nm'] == '281-2']
4 df360_1 = outlier_df[outlier_df['route_nm'] == '360-1']
5 df360_2 = outlier_df[outlier_df['route_nm'] == '360-2']
6 df360_12 = outlier_df[outlier_df['route_nm'] == '360-12']
7 df365_21 = outlier_df[outlier_df['route_nm'] == '365-21']
8 df365_22 = outlier_df[outlier_df['route_nm'] == '365-22']
1 # 6개 노선의 데이터프레임의 정거장별 카운트값 데이터프레임화 (변수명 : count_노선번호)
3 count_281_2 = df281_2.groupby(['now_station', 'next_station'])['route_nm'].count().reset_index(name ='count')
4 count_360_1 = df360_1.groupby(['now_station', 'next_station'])['route_nm'].count().reset_index(name ='count')
5 count_360_2 = df360_2.groupby(['now_station', 'next_station'])['route_nm'].count().reset_index(name ='count')
6 count 360 12 = df360_12.groupby(['now_station', 'next_station'])['route_nm'].count().reset_index(name = 'count')
7 count_365_21 = df365_21.groupby(['now_station', 'next_station'])['route_nm'].count().reset_index(name = 'count')
8 count_365_22 = df365_22.groupby(['now_station', 'next_station'])['route_nm'].count().reset_index(name ='count')
```


< 이상치 분석 >

- 이상치의 요일별, 시간대별 카운트의 시각화 분석코드 (ex. 281-2번)

```
1 # 281-2번의 count 64.75 이상 정류장의 요일별&시간대별 카운트의 시각화
 3 over75_281_2 = count_281_2[count_281_2['count']>=56]
 4 over75_281_2 = pd.merge(df281_2, over75_281_2, on = ['now_station', 'next_station'], how='inner')
 6 # station_pair 열 추가
 7 over75_281_2['station_pair'] = over75_281_2['now_station'] + ' -> ' + over75_281_2['next_station']
 9#각 station_pair에 대한 요일별 데이터 수 계산
10 count_by_day_281_2 = over75_281_2.groupby(['station_pair', 'week','time'])['route_nm'].count().reset_index(name='count')
12 # 요일을 올바른 순서로 정렬
13 days_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
14 times_order = ['morning','afternoon','evening']
15 count_by_day_281_2['week'] = pd.Categorical(count_by_day_281_2['week'], categories=days_order, ordered=True)
16 count_by_day_281_2['time'] = pd.Categorical(count_by_day_281_2['time'], categories=times_order, ordered=True)
17 count_by_day_281_2 = count_by_day_281_2.sort_values(['station_pair', 'week','time'])
20 plt.figure(figsize=(15, 10))
21 sns.catplot(x='week', y='count', hue='time', col='station_pair', data=count_by_day_281_2, kind='bar', palette='viridis', height=6, aspect=1)
22 plt.suptitle('Count of Trips by Station Pair, Day of the Week, and Time of the Day', y=1.02)
23 plt.show()
```


< 이상치 분석>

- 이상치의 요일별, 시간대별 카운트의 시각화 자료 (ex. 281-2번)
- 결과: 요일별로 비슷한 움직임을 보이나, 시간대별(아침,점심,저녁)로는 차이를 보임
- 처리 방향 : 요일별 가중치는 고려하지 않고, 시간대별 가중치를 고려하여 이상치 처리

이상치 처리 단계

- 1. outlier가 아닌 데이터들에서 해당 6개 노선들의 시간대별 최댓값 구하기
- 2. 데이터 추출(6개 노선 outlier의 count>=56인 데이터 각각 노선별로 추출)
- 3. 추출한 데이터 시간대별 최댓값 대체
- 4. 대체한 6개 노선의 이상치 데이터들을 이상치가 존재하지 않는 데이터프레임과 병합


```
<281 -2 번 예시> - 1단계
                                                                                                             count_by_time_281_2
  morning/ afternoon / evening 별 s/m의 최댓값 계산한 데이터프레임
  count_by_time_281_2 정의
                                                                                                            12 :
# 281-251
                                                                                                             count by time 281 2
df_without_outliers281_2= df_without_outliers6[df_without_outliers6['route_nm'] == '281-2']
                                                                                                            [12]:
count_by_time_281_2 = df_without_outliers281_2.groupby(['time','s/m'])['route_nm'].count().reset_index(name='count')
                                                                                                                      time
                                                                                                                                   s/m
                                                                                                                  morning 0.439024
times_order = ['morning', 'afternoon', 'evening']
count_by_time_281_2['time'] = pd.Categorical(count_by_time_281_2['time'], categories=times_order, ordered=True)
                                                                                                             1 afternoon 0.439024
count_by_time_281_2 = count_by_time_281_2.sort_values(['time','s/m'])
                                                                                                                   evening 0.440191
count_by_time_281_2= count_by_time_281_2.groupby('time')['s/m'].max()
count_by_time_281_2= count_by_time_281_2.reset_index()
count_by_time_281_2.columns = ['time', 's/m']
```


<281 -2 번 예시> - 2단계

count가 56이상인 정류장만 모아둔 over75_281_2를 추출.

이로써 count가 56을 넘지 않는 데이터들은 삭제됨

	id	date	route_id	vh_id	route_nm	now_station	now_arrive_time	distance	next_station	next_arrive_time	week	s/m	m/s	time	(
0	14336	2019- 10-15	405328102	7983400	281-2	아랑조을거 리 입구	11시	114.0	서귀포시 구 버스터미널	54	Tuesday	0.473684	2.111111	morning	
1	14384	2019- 10-15	405328102	7983400	281-2	아랑조을거 리 입구	15시	114.0	서귀포시 구 버스터미널	68	Tuesday	0.596491	1.676471	afternoon	
2	14471	2019- 10-15	405328102	7983406	281-2	아랑조을거 리 입구	06시	114.0	서귀포시 구 버스터미널	110	Tuesday	0.964912	1.036364	morning	
3	14511	2019- 10-15	405328102	7983406	281-2	아랑조율거 리 입구	10시	114.0	서귀포시 구 버스터미널	110	Tuesday	0.964912	1.036364	morning	
4	14642	2019- 10-15	405328102	7983409	281-2	아랑조을거 리 입구	08시	114.0	서귀포시 구 버스터미널	58	Tuesday	0.508772	1.965517	morning	
						122		-1	1	***		22			
432	209247	2019- 10-28	405328102	7983415	281-2	아라주공아 파트	07시	328.0	아라동주민 센터	148	Monday	0.451220	2.216216	morning	
433	209328	2019- 10-28	405328102	7983415	281-2	아 <mark>라주공아</mark> 파트	16시	328.0	아라동주민 센터	148	Monday	0.451220	2.216216	afternoon	
434	209374	2019- 10-28	405328102	7983415	281-2	아 <mark>라주공</mark> 아 파트	21시	328.0	아라동주민 센터	148	Monday	0.451220	2.216216	evening	
435	209464	2019- 10-28	405328102	7983430	281-2	아라주공아 파트	13시	328.0	아라동 <mark>주민</mark> 센터	150	Monday	0.457317	2.186667	afternoon	
436	210339	2019- 10-28	405328102	7983486	281-2	아라 <mark>주</mark> 공아 파트	09시	328.0	아라동주민 센터	150	Monday	0.457317	2.186667	morning	


```
<281 -2 번 예시> - 2단계
count가 56이상인 정류장만 모아둔 over75_281_2 데이터프레임의 's/m'값을
count_by_time_281_2에서 'time'열이 일치하는 's/m'의 값을 가져와 업데이트

for i in range(0, 3):
    mask = (over75_281_2['time'] == count_by_time_281_2.iloc[i, 0])
    over75_281_2.loc[mask, 's/m'] = count_by_time_281_2.iloc[i, 1]
```

count_by_time_281_2

<281 -2 번 예시> - 3단계

업데이트된 over75_281_2 데이터프레임.

s/m의 이상치들이 최댓값으로 대체되었음.

이렇게 모든 6개 노선에 대해 개수가 56개를 넘는 이상치 대체

	id	date	route_id	vh_id	route_nm	now_station	now_arrive_time	distance	next_station	next_arrive_time	week	s/m	m/s	time
0	14336	2019- 10-15	405328102	7983400	281-2	아랑조을거 리 입구	11시	114.0	서귀포시 구 버스터미널	54	Tuesday	0.439024	2.111111	morning
1	14384	2019- 10-15	405328102	7983400	281-2	아랑조을거 리 입구	15시	114.0	서귀포시 구 버스터미널	68	Tuesday	0.439024	1.676471	afternoor
2	14471	2019- 10-15	405328102	7983406	281-2	아랑조을거 리 입구	06시	114.0	서귀포시 구 버스터미널	110	Tuesday	0.439024	1.036364	mornin
3	14511	2019- 10-15	405328102	7983406	281-2	아랑조을거 리 입구	10시	114.0	서귀포시 구 버스터미널	110	Tuesday	0.439024	1.036364	mornin
4	14642	2019- 10-15	405328102	7983409	281-2	아랑조을거 리 입구	08시	114.0	서귀포시 구 버스터미널	58	Tuesday	0.439024	1.965517	mornin
									***					7.5
132	209247	2019- 10-28	405328102	7983415	281-2	아라주공아 파트	07시	328.0	아라동주민 센터	148	Monday	0.439024	2.216216	mornin
133	209328	2019- 10-28	405328102	7983415	281-2	아라주공아 파트	16시	328.0	아라동주민 센터	148	Monday	0.439024	2.216216	afternoo
134	209374	2019- 10-28	405328102	7983415	281-2	아라주공아 파트	21시	328.0	아라동주민 센터	148	Monday	0.440191	2.216216	evenin
135	209464	2019- 10-28	405328102	7983430	281-2	아라주 <mark>공</mark> 아 파트	13시	328.0	아라동주민 <mark>센</mark> 터	150	Monday	0.439024	2.186667	afternoo
136	210339	2019- 10-28	405328102	7983486	281-2	아라주공아 파트	09시	328.0	아라동주민 센터	150	Monday	0.439024	2.186667	mornin

- 4단계
- (1) s/m의 이상치가 존재하지 않는 (2) 이상치 처리 된 6개 노선 데이터프레임인 df without outliers 생성
 - 데이터프레임 모두 병합해 new 데이터프레임 생성

df_without_outliers = df[df['s/m']<q]

] #new: 이상치 처리 된 6개 노선 데이터프레임을 모두 병합 new = pd.concat([over75_281_2, over75_360_1, over75_360_2, over75_360_12, over75_365_21, over75_365_22])

(3) new 프레임과 df_without_outliers 병합하여 ['s/m']열에 대해 전처리를 마친 df_ver1 데이터프레임 생성후, id로 내림차순 정리하여 원본 데이터와 순서를 같게 만듦.

```
[] df_ver1 = pd.concat([df_without_outliers, new], axis = 0)
    df_ver1 = df_ver1.sort_values('id')
```

전체 행 210457	나머지 노선	주요 6개 노선				
이상치	2784(<mark>drop</mark>)	Under 75 1712 (drop)	Over 75 6113 (최댓값 대체)			
이상치X	100608	9924	10			

df_ver1

최종 df_ver1 100608+99240 +6113 = 205961

4496개 drop, 6113개 처리 -> 205961행

이상치 처리 단계

- 1. outlier가 아닌 데이터들에서 해당 6개 노선들의 시간대별 최댓값 구하기
- 2. 데이터 추출(6개 노선 outlier의 count>=56인 데이터 각각 노선별로 추출)
- 3. 추출한 데이터 시간대별 최댓값 대체
- 4. 대체한 6개 노선의 이상치 데이터들을 이상치가 존재하지 않는 데이터프레임과 병합

<이상치 분석>

- m/s 로 잡힌 전체 이상치 개수: 1827개 (존재유무에 따라 크게 영향 받지 않을 크기)
- 전체 df의 m/s 분포 확인 : 두드러지는 이상치가 없다고 판단

< 이상치 제거>

- 전체 df에서 m/s가 q값을 넘어가는 값(이상치)를 삭제

```
1 q3 = df['m/s'].quantile(0.75)
2 q1 = df['m/s'].quantile(0.25)
3 q = (q3-q1)*1.5 +q3

1 q

16.52393465909091

1 df = df[df['m/s'] <q]</pre>
```


5. Final Preprocessing

```
[준비 된 데이터]
-s/m 전처리한 df ver1 (지연된 버스 처리)
-m/s 전처리한 df_ver2 (너무 빨랐던 버스 처리)
1. df ver1과 df ver2에 공통으로 존재하는 데이터 추출 (이상치가 겹치지 않음)
  df_final = df1.merge(df2, on = ['id','date', 'route_id', 'vh_id', 'route_nm', 'now_station',
                  'now_arrive_time', 'next_station', 'next_arrive_time', 'week', 'time'], how = 'inner')
  df final.drop(columns = ['s/m v', 'distance v', 'm/s x'], inplace = True)
 [] df_final.rename(columns = {'s/m_x' : 's/m', 'm/s_y' : 'm/s', 'distance_x' :'distance'}, inplace = True)
```


5. Final Preprocessing

2. df final의 's/m'를 이용해 next arrive time 업데이트 ('m/s'의 이상치는 모두 지워졌기 때문에 고려대상이 아님) ['s/m'] *[distance] = next_arrive_time임을 이용해 지연된 버스의 next_arrive_time 이상치 처리 과정) -원본 데이터를 불러와 이상치들의 id인 outlier index list 를 저장 -df_final의 id가 이상치 id와 겹치는 경우에만 next_arrive_time 값 업데이트 [] outlier_index = df_out['id'] outlier_index = outlier_index.to_list() [] for idx in outlier_index: # 각 행에 대한 조건을 검사하여 불리언 시리즈 생성 condition = df_final['id'] == idx # 조건을 만족하는 행에 대해서 'next_arrive_time' 값을 계산 df_final.loc[condition, 'next_arrive_time'] = df_final.loc[condition, 's/m'] * df_final.loc[condition, 'distance']

5. Final Preprocessing

처리된 결과물]

예시) 원본 데이터의 id 34225 ['s/m']가 약 4.185로 distance에 비해 비정상적으로 긴 arrive_time이 걸렸음을 알 수 있음

id	date	route_id	vh_i d	route_nm	now_station	now_arrive_time	distance	next_station	next_arrive_time	week	s/m	m/s	time
1972 34225	2019-10- 17	405136012	7997033	360-12	탐라도서관	20시	518.0	제주고등학교/중흥S클 래스	2168	Thursday	4.185328	0.23893	evening

최종 df_final의 id 34225

['s/m']는 360-12 버스 저녁 시간대의 정상 값들의 최댓값인 0.439024로 대체됨 따라서 next_arrive_time 역시 distance * s/m = 227.414로 대체됨

	id	date	route_id	vh_i d	route_nm	now_station	now_arrive_time	distance	next_station	next_arrive_time	week	s/m	time	m/s
33197	34225	2019- 10-17	405136012	7997033	360-12	탐라도서관	20시	518.0	제주고등학교/중흥S 클래스	227.414634	Thursday	0.439024	evening	0.23893

6. Data modeling

GridsearchCV

최적의 모델, 즉 좋은 성능의 모델을 찾기 위해 쓰이는 기법.

사용자가 직접 모델의 하이퍼 파라미터의 값을 리스트로 입력하면 값에 대한 경우의 수마다 예측 성능을 측정 평가하여 비교하면서 최적의 하이퍼 파라미터 값을 찾는 과정을 진행

2. XGboost: Extreme gradient Boosting

Gradient Descent 기법을 Boosting(여러 개의 Decision Tree 모형으로 조합하여 사용하는 Ensemble 기법) 기법을 이용하여 병렬 학습으로 구현된 Level-wise tree 모델

3. LightGBM

XGboost 의 단점을 보완한 모델로 메모리 사용량과 학습에 걸리는 시간을 줄인 Leaf-wise tree 모델

6. Data modeling

- 1. df_final(train data) 의 범주형 데이터들의 수치화
- now_station, next_station: Label encoding 수행

6. Data Modeling

- 1. df_final(train data) 의 범주형 데이터들의 수치화
- time: one-hot encoding 수행

```
1 df_final = pd.get_dummies(df_final,columns=['time']) # 원 핫 인코딩을 수행
2 df_final.head()
```

- week : 수치화 및 간략화 작업 수행 (평일은 0, 주말은 1)

```
1 ## train data
2
3 df_final['date'] = pd.to_datetime(df_final['date']) # date 값을 datetime으로
4 df_final['week'] = df_final['date'].dt.weekday # Monday 0, Sunday 6
5 df_final[['week']] = df_final['week'].apply(lambda x: 0 if x <= 5 else 1)
6 # 0 ~ 5 는 월요일 ~ 급요일이므로 평일이면 0, 주말이면 1을 설정하였다
7
8 train_data = pd.get_dummies(df_final, columns=['week']) # 평일/주말에 대해 One-hot Encoding
9
10 train_data = train_data.drop('date', axis=1) # 필요없는 date 칼럼을 drop
11
12 ## train data
13
14 train_data = train_data.drop(['id', 'now_arrive_time', 'route_nm'], axis=1)
15
16 train_data.head()
```

B.D.A

→03. 프로젝트 결과

• 코드 실행 결과

• 03. 프로젝트 결과

• 03. 프로젝트 결과

```
[] from sklearn.model_selection import GridSearchCV

def get_best_params(model, params):
    grid_model = GridSearchCV(model, param_grid=params, scoring='neg_mean_squared_error', cv=5)
    grid_model.fit(X_train, Y_train)
    rmse = np.sqrt(-1+ grid_model.best_score_)'
    print('최적 평균 RMSE 값:', np.round(rmse, 4))
    print('최적 파라미터:', grid_model.best_params_)

return grid_model.best_estimator_
```

GridSearchCV를 사용하여 최적의 파라미터를 찾는 함수 get_best_params 함수 정의

●03. 프로젝트 결과

```
[] import xaboost as xab
    # xgb_params 값을 바꾸어주며 learning_rate, max_depth 등 파라미터 성능 비교 시도했었음.
    xgb_params = {'max_depth':[3,5,7,9], 'min_child_weight':[1,3], 'colsample_bytree':[0.5,0.75], 'n_estimators':[100, 200, 980, 1000, 2500, 3300]}
    xgb_reg = xgb.XGBRegressor(learning_rate= 0.1, nthread = -1, n_jobs=-1)
    best xgb = get best params(xgb reg, xgb params)
   최적 평균 RMSE 값: 25,6401
    최적 파라미터: {'colsample_bytree': 0.5, 'max_depth': 5, 'min_child_weight': 1, 'n_estimators': 3300}
    from lightgbm import LGBMRegressor
     # labm params 값을 바꾸어주며 learning rate, max depth 등 파라미터 성능 비교 시도했었음.
     lgbm params = {'n estimators':[100, 200, 450, 980, 1000, 2500, 3300]}
     lgbm_reg = LGBMRegressor(learning_rate=0.01)
                                                       XGBoost 모델과 LightGBM 모델을 이용하여 하이퍼파라미터
     best_lgbm = get_best_params(lgbm_reg, lgbm_params)
                                                       튜닝해 본 결과
최적 평균 RMSE 값: 25.6838
 최적 파라미터: {'n estimators': 3300}
                                                       XGBoost RMSE: 25.7 (n_estimators: 3300)
                                                       LightGBM RMSE: 25.4875 (n_estimators: 1000)
 최적 평균 RMSE 값: 25.4875
 최적 파라미터: {'n estimators': 1000}
```

B.D.A

●04. 느낀점

• 프로젝트, 스터디 하면서 느낀 점

04. 느낀 점

[이상준]

열정적인 팀원분들과 함께 많은 것을 배울 수 있어 재밌는 경험이 되었다.

혼자서 할 수 없었던 데이터를 분석하는 과정부터 모델링하여 성능을 검증하는 과정까지 모든 과정에서 배울 점이 많아서 많은 것을 얻어가는 기회가 된 것 같다.

[정제나]

이번 프로젝트를 통해 배웠던 모델들을 실제로 적용 및 활용할 수 있었어서, 매우 효과적인 학습 활동으로 이어질 수 있었다

또한 실제로 하나의 프로젝트가 어떻게 진행되는지 그 단계와 함수들 활용법에 대해 익힐 수 있었던 좋았다.

[김예리]

이번 프로젝트를 통해 데이터 분석과 전처리, 모델링까지 모든 과정을 해보면서 데이터를 어떻게 바라보아야 하는지에 대한 시각이 길러진 것 같았다. 또한 이 프로젝트는 데이콘을 참고하여 진행하였는데 실제 데이콘 수상 팀보다 오차가 더 낮게 나와서 매우 뿌듯했다. B.D.A

THANK YOU