

Music Recommendation System

James Gao Jieqiao Luo Xubo Lin Moxiao Liu Xinru Shi

Table of Contents

- 01 Introduction & Dataset
- 02 Workflow
- 03 Audio Processing Concepts
- **04** CNN (Based on Statistical Features from Librosa)
- O5 CNN & CRNN (slice mel--spectrogram)
- **06** Summary

"Sorting out all digital music is very time-consuming and causes information fatigue. Therefore, it's necessary to develop a music recommender system"

Introduction

- Music is one of the popular entertainment media in the digital era. It can be categorized into several categories: pop, rock, jazz, blues, folk etc.
- The availability of digital music is very abundant compared to the previous era. To reduce the difficulty of sorting out all the music genre, building a recommendation system is essential.
- Many existing music applications already have their own systems, like Spotify and Pandora.

pandora

Introduction

1

What is a music recommendation system?

It's a system that can search in the music libraries automatically and suggest suitable music to users.

Generally, MRS could be divided into 3 main parts.

Users

Items

User-item matching algorithms

Three parts of MRS

Users

Develop user modeling based on user profiling

Items

Item profiling comprises of three kinds of metadata:
editorial, cultural and acoustic

User-item matching

Matching algorithm consists of collaborative filtering and content-based filtering.

What are collaborative and content-based filtering?

- Collaborative filtering used the collaborative power of the available assessment by users to make recommendations.
- Content-based approach typically employ a 2-stage approach, extract traditional audio content features and predict user preferences. In this project, we tend to focus on content-based approach.

Dataset

will use.

- General requirements for these datasets are large scale, permissive licensing, available and quality audio and easily accessible.
- The dataset we chose is called **Free Music Archive (FMA)**.
- There are 8 music genres in this FMA dataset, which are the labels we
- 'Electronic', 'Experimental', 'Folk', 'Hip-Hop', 'Instrumental', 'International', 'Pop', 'Rock'.

0.0 0				
dataset ¹	#clips	#artists	year	audio
RWC [12]	465	-	2001	yes
CAL500 [45]	500	500	2007	yes
Ballroom [13]	698	-	2004	yes
GTZAN [46]	1,000	~ 300	2002	yes
MusiClef [36]	1,355	218	2012	yes
Artist20 [7]	1,413	20	2007	yes
ISMIR2004	1,458	-	2004	yes
Homburg [15]	1,886	1,463	2005	yes
103-Artists [30]	2,445	103	2005	yes
Unique [41]	3,115	3,115	2010	yes
1517-Artists [40]	3,180	1,517	2008	yes
LMD [42]	3,227	-	2007	no
EBallroom [23]	4,180	-	2016	no^2
USPOP [1]	8,752	400	2003	no
CAL10k [44]	10,271	4,597	2010	no
MagnaTagATune [20]	$25,863^3$	230	2009	yes4
Codaich [28]	26,420	1,941	2006	no
FMA	106,574	16,341	2017	yes
OMRAS2 [24]	152,410	6,938	2009	no
MSD [3]	1,000,000	44,745	2011	no^2
AudioSet [10]	2,084,320	-	2017	no^2
AcousticBrainz [32]	$2,524,739^5$	-	2017	no

Basic Workflow

Concepts

In our project, files in .mp3 format will be decoded into NumPy array real values.

Transformation between wave and array

An n-degree polynomial p in real space can be represented by n+1 pairs of x, p(x), so if we consider sound wave as a continuous function with x label for time and y label for amplitude. We will be able to get an approximation of the original wave function.

Wave Decomposition

Short-Time Fourier Transform

Idea:

take small signal pieces of length L

look at the DFT of each piece

long window -> more DFT points -> more frequency resolution

long window -> more "things can happen" less precision in time

short window -> many time slices -> precise location of transitions

short window -> fewer DFT points -> poor frequency resolution

Spectrogram

The spectrogram is the color code of the magnitude of the Fourier transform.

Uses dark color dark hues for small values and whitish or brilliant hues for large values.

Puts the spectral slices one after another to obtain an image-like picture of the time-varying spectrum.

With frequency bins.

Genre Classification Workflow

zero-crossing rate(ZCR)

Short-Time Fourier Transform (STFT)

chroma_stft, rms, spectral_centroid, spectral_bandwidth, spectral_contrast, spectral_rolloff, melspectrogram

constant-Q transform(CQT)

chroma_cqt, chroma_cens, tonnetz

Mel-frequency cepstral coefficients (MFCC)

For each Feature

1D CNN

Model: "sequential"

Layer (type)	Output Shape	Param #
conv1d (Conv1D)	(None, 487, 200)	6600
max_pooling1d (MaxPooling1D)	(None, 243, 200)	0
conv1d_1 (Conv1D)	(None, 212, 8)	51208
max_pooling1d_1 (MaxPooling1D)	(None, 106, 8)	0
conv1d_2 (Conv1D)	(None, 75, 8)	2056

Accuracy: 28.49%

max_pooling1d_2 (MaxPooling1I flatten (Flatten) dense (Dense) dense 1 (Dense) Total params: 91,180 Trainable params: 91,180 Non-trainable params: 0

(None, 75, 8) 2056	2.0 -		• Training	ı loss	9%
	dim	LR	SVC	MLP	
mfcc	140.000000	11.23%	12.13%	10.49%	
mfcc/contrast/chroma/centroid/tonnetz	322.000000	12.90%	13.41%	9.25%	
mfcc/contrast/chroma/centroid/zcr	287.000000	13.06%	13.64%	9.37%	

Mel-Spectrogram Recommendation Workflow

Trained CNN or CRNN

Modified by discarding the last layer

Generate Latent vectors

Input slices of a spectrogram

Modified model as an encoder

Cosine similarity

Output songs with n highest similarity score

CNN Algorithm for Mel-Spectrogram Approach

Layer (type)	Output Shape	Param #
input_3 (InputLayer)		
conv2d_10 (Conv2D)	(None, 128, 128, 47)	470
max_pooling2d_10 (MaxPoolin g2D)	(None, 64, 32, 47)	0
conv2d_11 (Conv2D)	(None, 64, 32, 95)	40280
max_pooling2d_11 (MaxPoolin g2D)	(None, 32, 8, 95)	0
conv2d_12 (Conv2D)	(None, 32, 8, 95)	81320
max_pooling2d_12 (MaxPoolin g2D)	(None, 16, 2, 95)	0
conv2d_13 (Conv2D)	(None, 16, 2, 142)	121552
max_pooling2d_13 (MaxPoolin g2D)	(None, 6, 1, 142)	0
conv2d_14 (Conv2D)	(None, 6, 1, 190)	243010
max_pooling2d_14 (MaxPoolin g2D)	(None, 2, 1, 190)	0
flatten_2 (Flatten)	(None, 380)	Ø
dense 2 (Dense)	(None, 8)	3048

Non-trainable params: 0

CRNN Algorithm for Mel-Spectrogram Approach

Accuracy: 0.75

Summary

Process

Step 1

Input one song, use CNN to classification

acc: 30%

Step 3

Output n number most similar songs (n choose by the user)

Step 2 acc: 70% < 75%

Compare the similarity of this song with the all other sons in this class

CRNN > CNN

Summary

Some Problems

Little difference between music files

hyperparameter

Which methods are better

- Different features
- Different network
- Problem of hyperparameter

Summary

Future work

Preprossing

Unify the size of the array

Hyperparameter

Choose better hyperparameter

Model

Improve model

Compared and Confirm method

Compared our two method and find the best way

Future work

TIGUKS

References

1.Adiyansjaha, A. A S Gunawana, D.Suhartonoa, "Music Recommender System Based on Genre using Convolutional Recurrent Neural Networks". The 4th International Conference on Computer Science and Computational Intelligence (ICCSCI 2019)

https://www.sciencedirect.com/science/article/pii/S1877050919310646

2.Dataset: https://github.com/mdeff/fma

3.M. Schedl, "Deep Learning in Music Recommendation Systems", Front. Appl. Math. Stat., 29 August 2019

https://www.frontiersin.org/articles/10.3389/fams.2019.00044/full

...