CENTRO DE ESTATÍSTICA APLICADA – CEA – USP RELATÓRIO DE CONSULTA

TÍTULO: "Avaliação da atividade antioxidante de compostos do café"

PESQUISADOR: Fabiana Amaral Araújo

ORIENTADOR: Jorge Mancini Filho

INSTITUIÇÃO: Faculdade de Ciências Farmacêuticas USP

FINALIDADE: Doutorado

DATA: 10/08/2004

FINALIDADE DA CONSULTA: Sugestões para o planejamento do experimento e sugestões para a análise estatística.

PARTICIPANTES DA ENTREVISTA: Carlos Alberto de Bragança Pereira

Julio da Motta Singer

Cristiane Karcher

Renata Omori

Augusto César G. de Andrade

RELATÓRIO ELABORADO POR: Cristiane Karcher

Renata Omori

1. INTRODUÇÃO

As células do corpo estão constantemente sujeitas a danos tóxicos causados pela formação de radicais livres provenientes da oxidação da membrana celular. Esses danos são responsáveis pela ocorrência de diversas enfermidades e processos degenerativos do organismo humano. A oxidação lipídica de produtos como alimentos, cosméticos e medicamentos traz implicações sobre sua qualidade e valor comercial.

Antioxidantes são compostos naturais ou sintéticos capazes de retardar significativamente a oxidação de qualquer substância oxidável. Sendo assim, o consumo freqüente de alimentos que possuem fontes de antioxidantes e seu emprego em produtos industrializados podem ser medidas efetivas para melhorar a qualidade de vida da população e aumentar a vida útil desses produtos.

Além de ser uma importante fonte de melanoidinas, cafeína e ácidos clorogênicos. Além disso, é um dos maiores fornecedores de antioxidantes naturais e conseqüentemente, uma fonte promissora de pesquisas nessa área. Como diversos estudos com animais demonstraram que antioxidantes artificiais (BHT e BHA, por exemplo) causam efeitos adversos à saúde, o café poderia ser usado em substituição a esses produtos.

Com o objetivo de avaliar o potencial do café como fonte alternativa de antioxidantes naturais, serão analisados dois tipos de ensaios. O primeiro consiste de ensaios *in vitro* para comparar a atividade antioxidante do café submetido a diferentes temperaturas, tempos de torrefação e concentrações, com a atividade antioxidante do BHT e com a atividade antioxidante de misturas de café com BHT, em diferentes concentrações. O segundo consistirá de ensaios *in vivo*, em que o café com as características que geraram o maior percentual de inibição da atividade oxidante nos ensaios *in vitro*, será administrado em diferentes concentrações a ratos recémdesmamados. O objetivos desses ensaios *in vivo* é analisar o percentual de concentração dos ácidos graxos incorporados nos tecidos (plasma, fígado, cérebro, tecido adiposo) e o índice de peroxidação lipídica (em μ mol de MDA/mg de proteína) nos fígados dos animais.

O objetivo deste relatório é discutir o planejamento do estudo e sugerir um modelo para análise estatística.

2. DESCRIÇÃO DO ESTUDO

2.1 Estudo in vitro:

Para a avaliação da atividade antioxidante do café nos ensaios *in vitro*, foram obtidas amostras de extratos etéreo, alcoólico e aquoso de sete porções de café do tipo arábico. Uma dessas porções foi constituída por grãos de café cru e as demais por grãos de café submetidos a um processo de torrefação, empregando-se, a cada porção, tempos e temperaturas fixas de 10 ou 20 minutos e de 140°C, 160°C ou 180°C. As amostras foram obtidas em laboratório através da extração seqüencial com diferentes solventes. A Figura 2.1 ilustra esse procedimento de obtenção de extratos.

Figura 2.1 Extração seqüencial para obtenção dos extratos.

As amostras de BHT serão avaliadas nas concentrações de 50 ppm, 100 ppm e 200 ppm, enquanto as amostras de extratos puros de café serão avaliadas nas concentrações de 0,47 ppm, 0,93 ppm e 1,86 ppm. As amostras de extratos combinados de café com BHT serão obtidas através da mistura da metade da concentração utilizada de BHT com metade da concentração utilizada de extrato puro de café.

No ensaio *in vitro* a atividade antioxidante do café será determinada empregandose o sistema aquoso β-caroteno/ácido linoléico (Marco et al., 1968) e os resultados serão quantificados em porcentagem de inibição da oxidação. Mais especificamente, para cada amostra de extrato puro de café, ou de extrato combinado de café com BHT, de BHT ou ainda de um "branco" (amostra de 5ml sem antioxidante) em cada uma das concentrações descritas acima, serão feitas três medições da absorbância a cada 15 minutos até que se completem 120 minutos. As Tabelas de A.1 a A.4, do Apêndice A, mostram dados correspondentes a esse procedimento realizado em uma amostra de extrato aquoso de café torrado a 140°C durante 10 minutos. Nessas tabelas estão calculadas a variação da absorbância entre 0 e 120 minutos (Total) nas três medições e o valor médio dessa variação (Média). A porcentagem de inibição da oxidação,

O procedimento descrito anteriormente deve ser realizado para todos os extratos puros de café e para todos os extratos combinados de café com BHT, a fim de se determinar a concentração e tipo de torrefação (ou grão cru) que apresenta a maior porcentagem de inibição da oxidação.

2.2 Estudo in vivo:

No ensaio *in vivo*, volumes semelhantes de soluções do café serão ingeridos diariamente por 48 ratos machos recém-desmamados divididos aleatoriamente em 6 grupos. Os ratos de cada grupo ingerirão por dia:

- Grupo 1: 200 μL de água;
- Grupo 2: 200 µL de extrato de café com uma concentração X a ser definida no ensaio in vitro;
- Grupo 3: 200 µL de extrato de café com uma concentração 2X;
- Grupo 4: 200 µL de extrato de café com uma concentração 4X;
- Grupo 5: 200 µL de extrato de café com uma concentração 8X;
- Grupo 6: 200 µL de extrato de café com uma concentração 16X.

Ao final de 50 dias de tratamento, os ratos serão sacrificados para a coleta dos seguintes materiais: sangue, fígado, cérebro e tecido adiposo. A partir de todos esses materiais será medido o percentual de ácidos graxos incorporados e apenas no fígado, o índice de peroxidação lipídica.

3. DESCRIÇÃO DAS VARIÁVEIS

3.1 Variáveis do estudo in vitro:

- Variável resposta:
 - Porcentagem de Inibição da oxidação.
- Variáveis explicativas ou fatores:
 - Absorbância (em A).
 - Torrefação: cru, 140°C, 160°C e 180°C;
 - o Tempo: 10 e 20 minutos;
 - Antioxidante: BHT, Café (extrato puro de café), Café+BHT (extrato combinado de café com BHT);

- o Concentração do antioxidante:
 - Para o BHT: Baixa (50 ppm), Média (100 ppm) e Alta (200 ppm);
- Para os extratos de café: Baixa (0,47 ppm), Média (0,93 ppm) e Alta (1,86 ppm);
- Para os extratos combinados de café com BHT: Baixa (metade das concentrações inferiores das amostras de BHT e do extrato de café, resultando em 25,23 ppm), Média (metade das concentrações medianas das amostras de BHT e do extrato de café, resultando em 50,93 ppm), Alta (metade das concentrações superiores das amostras de BHT e do extrato de café, resultando em 101,86 ppm);
- Meio: Aquoso, Alcoólico e Etéreo;
- Tempo de medição da absorbância (em minutos).

3.2 Variáveis do estudo in vivo:

- Variáveis respostas:
 - Percentual de ácidos graxos incorporados no plasma, fígado, cérebro e tecido adiposo;
 - Índice de peroxidação lipídica no fígado (em μ mol de MDA/mg de proteína).
- Variável explicativa ou fator:
 - Quantidade de café (em g) dada aos ratos: 200 μL de água (grupo controle), 200 μL de extrato de café com uma concentração de água X (a ser definida no decorrer do ensaio *in vitro*), 2X, 4X, 8X e 16X.

5. SUGESTÕES DO CEA

5.1 Ensaio in vitro

O ensaio *in vitro j*á foi realizado sob um planejamento com apenas uma repetição para cada combinação de temperatura e tempo de torrefação.

5.1.1 Repetições

Sugere-se que o ensaio *in vitro* tenha pelo menos uma repetição adicional com novas amostras de café, para que se possa estimar a variabilidade da porcentagem de inibição da atividade oxidante entre porções de café cru e porções tratadas com diferentes temperaturas e tempos de torrefação. O delineamento experimental do ensaio *in vitro* para uma combinação de tempo e temperatura de torrefação é ilustrado na Tabela 5.1, em que "repetição 1" corresponde à amostra de café torrada inicialmente e "repetição 2" corresponde à amostra de café replicada; "sessão experimental" é a sessão em que foram avaliados os extratos de café e os extratos combinados de café com BHT.

A nova amostra de café deve ser dividida em sete porções, uma de café cru e as outras seis que serão submetidas à torrefação. Sugere-se que seja selecionada, aleatoriamente, cada combinação de temperatura e tempo e para cada uma dessas combinações seja alocada uma amostra de uma porção de café.

Tabela 5.1 Porcentagem de inibição da oxidação na sessão experimental para extratos de café torrado à 140°C por 10 minutos.

Antioxidante	Concentração	Meio					
Aitioxidalite	Concentração	Aquoso	Etéreo	Alcoólico			
внт	Baixa	% de inibição na repetição 1 % de inibição na repetição 2	% de inibição repetição 1 % de inibição repetição 2	% de inibição na repetição 1 % de inibição na repetição 2			
	Média	% de inibição na repetição 1 % de inibição na repetição 2	% de inibição repetição 1 % de inibição repetição 2	% de inibição na repetição 1 % de inibição na repetição 2			
	Alta	% de inibição na repetição 1 % de inibição na repetição 2	% de inibição repetição 1 % de inibição repetição 2	% de inibição na repetição 1 % de inibição na repetição 2			
	Baixa	% de inibição na repetição 1 % de inibição na repetição 2	% de inibição repetição 1 % de inibição repetição 2	% de inibição na repetição 1 % de inibição na repetição 2			
café torrado a 140°C a 10 minutos	Média	% de inibição na repetição 1 % de inibição na repetição 2	% de inibição repetição 1 % de inibição repetição 2	% de inibição na repetição 1 % de inibição na repetição 2			
	Alta	% de inibição na repetição 1 % de inibição na repetição 2	% de inibição repetição 1 % de inibição repetição 2	% de inibição na repetição 1 % de inibição na repetição 2			
	Baixa	% de inibição na repetição 1 % de inibição na repetição 2	% de inibição repetição 1 % de inibição repetição 2	% de inibição na repetição 1 % de inibição na repetição 2			
café torrado a 140°C a 10 minutos com BHT	Média	% de inibição na repetição 1 % de inibição na repetição 2	% de inibição repetição 1 % de inibição repetição 2	% de inibição na repetição 1 % de inibição na repetição 2			
	Alta	% de inibição na repetição 1 % de inibição na repetição 2	% de inibição repetição 1 % de inibição repetição 2	% de inibição na repetição 1 % de inibição na repetição 2			

5.1.2 Modelo para análise estatística

Para a análise estatística dos dados, sugere-se uma ANOVA para medidas repetidas (Neter et al., 1996) com

- i) Fatores Fixos (entre unidades experimentais): Antioxidante (BHT, café cru, café torrado nos diferentes tempos e temperaturas, café cru com BHT, café torrado nos diferentes tempos e temperaturas com BHT), Concentração do BHT, do café e da combinação de café com BHT (Baixa, Média e Alta) e Sessão Experimental (café cru ou combinações de tempos e temperaturas de torrefação do café);
- ii) Bloco: repetição;
- iii) Medida Repetida: Porcentagem de inibição da oxidação nos Meios Aquoso, Etéreo e Alcoólico.

O modelo sugerido é:

$$y_{hijkl} = \mu_{jkl} + \alpha_h + \beta_i + e_{hijkl},$$

com

$$\sum_{h=1}^{2} \alpha_{h} = 0; \sum_{i=1}^{7} \beta_{i} = 0; e_{hi.kl} = (e_{hi1kl}, e_{hi2kl}, e_{hi3kl}) \sim N(0, \Sigma)$$

em que

 y_{hijkl} : porcentagem de inibição da oxidação para o Antioxidante tipo k no Meio j, na Concentração l, observada na i-ésima Sessão Experimental da h -ésima repetição;

 μ_{jkl} : porcentagem média de inibição da oxidação no meio j para o antioxidante tipo k, na concentração I;

 α_h : variação da porcentagem média de inibição da oxidação devida à h-ésima repetição;

 β_i : variação da porcentagem média de Inibição da oxidação devida a *i-*ésima sessão experimental;

 $e_{hi.kl}$: erro aleatório,

com

h = 1 (ensaio *in vitro* já realizado) ou h = 2 (ensaio *in vitro* que será repetido)

i = 1 (sessão experimental com café cru), i = 2 (sessão experimental com café torrado a 140°C por 10 minutos), i = 3 (sessão experimental com café torrado a 140°C por 20 minutos), i = 4 (sessão experimental com café torrado a 160°C por 10 minutos), i = 5 (sessão experimental com café torrado a 160°C por 20 minutos), i = 6 (sessão experimental com café torrado a 180°C por 10 minutos) e i = 7 (sessão experimental com café torrado a 180°C por 20 minutos);

j = 1 (meio aquoso), j = 2 (meio alcoólico) e j = 3 (meio etéreo);

k=1 (BHT), k=2 (café cru), k=3 (café cru com BHT), k=4 (café torrado a 140°C por 10 minutos), k=5 (café torrado a 140°C por 10 minutos com BHT), k=6 (café torrado a 140°C por 20 minutos), k=7 (café torrado a 140°C por 20 minutos com BHT), k=8 (café torrado a 160°C por 10 minutos), k=9 (café torrado a 160°C por 10 minutos com BHT), k=10 (café torrado a 160°C por 20 minutos), k=11 (café torrado a 160°C por 20 minutos com BHT), k=12 (café torrado a 180°C por 10 minutos), k=13 (café torrado a 180°C por 10 minutos) e k=15 (café torrado a 180°C por 20 minutos com BHT);

I = 1 (concentração baixa), I = 2 (concentração média) e I = 3 (concentração alta).

5.2 Estudo in vivo

5.2.1 Modelo para análise estatística

Para a análise estatística dos dados, sugere-se uma ANOVA com um fator fixo (Neter et al., 1996), para cada variável resposta.

O modelo sugerido é:

$$y_{ij} = \mu + \alpha_i + e_{ij} ,$$

com

$$\sum\limits_{j=1}^{4}lpha_{_{i}}=0$$
 , $\ e_{_{ij}}\sim N(0,\sigma^{2})$ independentes

em que

 y_{ij} : percentagem de ácidos graxos incorporados no tecido sob investigação para o *j*-ésimo rato submetido a *i*-ésima quantidade de café;

 μ : percentagem média de ácidos graxos incorporados nos tecidos sob investigação;

 α_i : variação da percentagem média de ácidos graxos incorporados nos tecidos sob investigação devida a *i*-ésima quantidade de café;

 e_{ij} : erro aleatório.

com

i = 1 (200 µL de água), i = 2 (200 µL de água com extrato de café à uma concentração X), i = 3 (200 µL de água com extrato de café à uma concentração 2X), i = 4 (200 µL de água com extrato de café à uma concentração 4X), i = 5 (200 µL de água com extrato de café à uma concentração 8X) e i = 6 (200 µL de água com extrato de café à uma concentração 16X).

O índice i corresponde ao animal analisado.

Um modelo semelhante deve utilizado para a variável Índice de peroxidação lipídica no fígado.

5.3 Triplicatas (ensaios in vitro e in vivo)

Muitas vezes, a realização de medidas em triplicata é desnecessária e causa perda de tempo e dinheiro.

Para verificar se no ensaio *in vitro*, as triplicatas das medições da absorbância durante 120 minutos descritas na Seção 2 são realmente necessárias, foi realizada a análise descrita no Apêndice B a partir dos dados das Tabelas de A.1 a A.4 do Apêndice A. O resultado indica que a precisão obtida com triplicatas é semelhante à precisão obtida com apenas uma medida.

5.4 Comentários Finais

Sugere-se que o trabalho seja submetido ao CEA para a análise estatística.

6. BIBLIOGRAFIA

BUSSAB, W.O. e MORETTIN, P.A. (2002). **Estatística Básica.** 5ª ed. São Paulo: Saraiva. 526p.

MONTGOMERY, D.C., PECK, E.A. e VINING, G.G. (2002). **Introduction to Linear Regression Analysis**. 3^a ed. New York: John Wiley Professional. 641 p.

NETER, J., WASSERMAN, W. KUTNER, M. H. e NACHTSHEIM, C. J. (1996). **Applied linear statistical models.** 4ª.ed. New York: McGraw-Hill. 1408p.

MARCO, G. J. (1968). A rapid method for evaluation of antioxidants. **Journal of the American Oil Chemists' Society, 45**, 594-598.

Apêndice A

Tabelas

Tabela A.1 Absorbância (em A) de 5 ml do "branco".

		Е	o 5 ml	
Tempo	m	ediçâ	io	média das
rempo	1	2	3	três medições
0	647	625	634	635
15	591	553	558	567
30	365	314	326	335
45	245	201	209	218
60	188	159	159	169
75	159	137	139	145
90	143	127	129	133
105	141	124	125	130
120	138	123	124	128
TOTAL	509	502	510	273
% INIBIÇÃO		0		

Tabela A.2 Absorbância (em A) de BHT.

	BHT 50 ppm					BHT 100 ppm				BHT 200 ppm			
Tempo	medição		io	média das	m	medição		média das	medição		O	média das	
Tempo	1	2	3	três medições	1	2	3	três medições	1	2	3	três medições	
0	642	689	694	675	668	665	666	666	661	673	667	667	
15	620	661	667	649	649	646	642	646	642	649	640	644	
30	692	623	633	649	626	623	621	623	632	634	633	633	
45	571	596	611	593	608	613	609	610	622	623	627	624	
60	550	575	591	572	597	600	600	599	599	612	621	611	
75	536	562	580	559	584	588	589	587	613	612	615	613	
90	520	542	562	541	574	577	573	575	601	604	607	604	
105	512	529	542	528	569	572	571	571	596	597	601	598	
120	496	515	534	515	563	565	565	564	597	599	601	599	
TOTAL	146	174	160	160	105	100	101	102	64	74	66	68	
% INIBIÇÃO		68	Ţ			80				87			

Tabela A.3 Absorbância (em A) do Extrato puro de café torrado a 140°C durante 10 minutos.

	Amostra 0,47 ppm					Amostra 0,93 ppm				Amostra 1,86 ppm			
Tompo	m	ediçâ	iο	média das	medição			média das	medição		média das		
Tempo	1	2	3	três medições	1	2	3	três medições	1	2	3	três medições	
0	674	685	675	678	686	685	694	688	680	678	654	671	
15	620	649	623	631	649	651	653	651	638	635	614	629	
30	545	576	547	556	611	606	614	610	609	603	587	600	
45	492	529	491	504	582	575	588	582	583	578	569	577	
60	419	438	439	432	559	553	564	559	559	560	553	557	
75	393	444	395	411	538	531	538	536	544	537	532	538	
90	361	413	364	379	519	512	516	516	529	525	520	525	
105	332	384	337	351	503	492	507	501	518	510	512	513	
120	307	358	311	325	491	480	493	488	509	498	502	503	
TOTAL	367	327	364	474	195	205	201	570	171	180	152	568	
% INIBIÇÃO		28				61				67			

Tabela A.4 Absorbância (em A) do Extrato combinado de café torrado, a 140°C durante 10 minutos, com BHT.

	Aı	+BHT 2	25,23 ppm	Amostra+BHT 50,93 ppm			Amostra+BHT 101,86 ppm			
medição)	média das medição		média das medição		média das			
Tempo	1	2	3	três medições	1 2	3	três medições	1	2 3	três medições
0	631	678	666	658	626 66	666	653	670	664 66	2 665
15	596	635	624	618	593 62	9 634	619	654	639 63	644
30	567	593	589	583	574 60	9 622	602	645	631 62	635
45	548	576	567	564	556 58	3 611	585	636	624 62	627
60	548	526	539	538	541 57	2 602	572	626	613 61	616
75	510	531	522	521	532 56	1 595	563	626	610 60	615
90	496	521	505	507	517 54	5 583	548	619	604 60	608
105	488	504	492	495	508 53	3 576	541	616	603 59	606
120	476	482	477	478	501 52	4 571	532	613	599 59	602
TOTAL	155	196	189	180	125 14	2 95	121	57	65 67	63
% INIBIÇÃO		62			74				88	

Apêndice B

Análise das triplicatas

1. Análise

A relação funcional entre a absorbância e o tempo, está representada no Gráfico B.1.

Gráfico B.1 Dispersão da absorbância pelo tempo para as medições 1, 2, 3 e para a média das três.

O modelo adotado para a relação entre a absorbância e o tempo é,

$$y = a.e^{-bx} + \varepsilon$$

em que y é a absorbância (em A), x é o tempo (em minutos) e *a* e *b* são os parâmetros de uma curva exponencial. Utilizamos a metodologia de mínimos quadrados, para o ajuste do modelo (Montgomery et al., 2002) à amostra de BHT com concentração de 100 ppm (Tabela A.2). Os resultados estão apresentados na Tabela B.1.

Os resíduos associados a cada valor estimado do valor observado estão indicados na Tabela B.2.

Tabela B.1 Valores da absorbância (em A) ajustados pelo modelo exponencial.

	curva 1	curva 2	curva 3	curva da média
Tempo	y = 657,52*exp(-0,0014x)	y = 655,46*exp(-0,0013x)	y = 653,55*exp(-0,0013x)	y = 655,51*exp(-0,0014x)
0	657,5	655,5	653,6	655,5
15	643,9	642,8	640,9	641,9
30	630,5	630,4	628,6	628,5
45	617,4	618,2	616,4	615,5
60	604,5	606,3	604,5	602,7
75	592,0	594,6	592,8	590,2
90	579,7	583,1	581,4	577,9
105	567,6	571,8	570,2	565,9
120	555,8	560,8	559,2	554,1

Tabela B.2 Resíduos correspondentes ao ajuste do modelo $y = a.e^{-bx} + \varepsilon$ aos dados da amostra de BHT com concentração de 100 ppm.

	Resíduos	Resíduos	Resíduos	Resíduos
Tempo	correspodentes	correspodentes	correspodentes	correspodentes
	à curva 1	à curva 2	à curva 3	à curva média
0	10,5	9,5	12,5	10,8
15	5,1	3,2	1,1	3,8
30	-4,5	-7,4	-7,6	-5,2
45	-9,4	-5,2	-7,4	-5,5
60	-7,5	-6,3	-4,5	-3,7
75	-8,0	-6,6	-3,8	-3,2
90	-5,7	-6,1	-8,4	-3,2
105	1,4	0,2	0,8	4,8
120	7,2	4,2	5,8	10,2

Os ajustes de curvas exponenciais para a absorbância e os cálculos dos desvios da absorbância foram repetidos para todas as concentrações das amostras de BHT, Café e BHT mais café (Tabelas A.1 a A.4) e foram calculadas as variâncias desses desvios de cada medição e da média. Com isso obtivemos os resultados apresentados na Tabela B.3.

Tabela B.3 Estimativas dos parâmetros e da variância do erro sob o modelo $y=a.e^{-bx}+\varepsilon$.

Extratos	medição	estimativa de a	estimativa de b	variância	variância (média) / variância (medição)
	1	567,50	0,014	3968,24	1,16
	2	514,00	0,015	5100,23	0,90
Branco 5ml	3	525,77	0,015	4835,91	0,95
	média	536,02	0,015	4608,29	1,00
	1	659,16	0,003	980,31	0,11
	2	676,47	0,002	75,11	1,50
BHT 50ppm (com o ponto 692)	3	683,07	0,002	50,22	2,24
	média	673,29	0,002	112,33	1,00
	1	639,66	0,002	36,24	1,33
	2	676,47	0,002	75,11	0,64
BHT 50ppm (sem o ponto 692)	3	683,07	0,002	50,22	0,96
	média	673,29	0,002	48,34	1,00
	1	657,52	0,001	54,63	0,78
	2	655,46	0,001	37,17	1,15
BHT 100ppm	3	653,55	0,001	49,23	0,87
	média	655,51	0,001	42,64	1,00
	1	651,72	0,001	29,91	1,42
	2	657,55	0,001	69,05	0,61
BHT 200ppm (sem o ponto 599)	3	653,39	0,001	38,56	1,10
	média	654,09	0,001	42,37	1,00
	1	649,22	0,001	76,09	0,71
	2	657,55	0,001	69,05	0,78
BHT 200ppm (com o ponto 599)	3	653,39	0,001	38,56	1,40
	média	654,09	0,001	53,82	1,00
	1	666,28	0,007	159,20	1,11
	2	677,89	0,006	384,13	0,46
Café 0,47ppm	3	669,27	0,007	94,03	1,88
	média	670,96	0,006	177,04	1,00
	1	670,72	0,003	79,01	1,05
	2	670,89	0,003	85,77	0,97
Café 0,93ppm	3	676,85	0,003	101,45	0,82
	média	672,82	0,003	83,36	1,00
	1	659,23	0,002	119,88	0,88
	2	657,94	0,003	99,39	1,07
Café 1,86ppm	3	634,28	0.002	96,97	1,09
	média	650,47	0,002	105,85	1,00
	1	617,23	0,002	80,36	1,14
	2	654,10	0,003	239,56	0,38
Café + BHT 25,23 ppm	3	647,44	0,003	92,32	0,99
	média	639,63	0,003	91,51	1,00
	1	610,48	0,002	56,75	1,00
	2	636,61	0,002	125,77	0,45
Café + BHT 50,93ppm	3	650,35	0,001	49,54	1,14
	média	636,61	0,002	56,60	1,00
	1	660,96	0,001	25,30	1,48
	2	649,94	0,001	46,20	0,81
Café + BHT 101,86ppm	3	648,46	0,001	44,23	0,85
	média	653,12	0,001	37,42	1,00

Para 3 observações de variáveis independentes com variância σ^2 , a variância da média é $\sigma^2/3$ (Bussab et al., 2002). Como quase todas as razões entre a variância da média amostral e a variância de cada medição (Tabela B.3), são superiores a um terço, há evidências de que as medições não são independentes e a média, nesse caso, não gera resultados mais precisos, sugerindo que triplicatas não são necessárias.