Example: To Destination Node 4

Cpr E 489 -- D.Q.

Example: To Destination Node 4 $\begin{cases} C_{13} + D_{34} = 5 + 1 = 6 = D_{14} \\ H_{14} = 3 \end{cases}$

 $D_{14} = \infty$

1

Node 31's DV report:

Example: To Destination Node 4

	Iteration	Node 1	Node 2	Node 3
	Initial	(-, ∞)	(-, ∞)	(-, ∞)
Doct 4	1	(-, ∞)	(-, ∞)	(4, 1)
Dest 4	2	(3, 6)	(3, 2)	(4, 1)

Cpr E 489 -- D.Q.

Example: To Destination Node 4

	Iteration	Node 1	Node 2	Node 3
	Initial	(-, ∞)	(-, ∞)	(-, ∞)
Doct 4	1	(-, ∞)	(-, ∞)	(4, 1)
Dest 4	2	(3, 6)	(3, 2)	(4, 1)
	3	(2, 3)	(3, 2)	(4, 1)

Example: To Destination Node 4

	Iteration	Node 1	Node 2	Node 3
	Initial	(-, ∞)	(-, ∞)	(-, ∞)
Doct 4	1	(-, ∞)	(-, ∞)	(4, 1)
Dest 4	2	(3, 6)	(3, 2)	(4, 1)
	3	(2, 3)	(3, 2)	(4, 1)
	4	(2, 3)	(3, 2)	(4, 1)

Cpr E 489 -- D.Q.

Example: After Protocol Converges, Information at Node 1

Dest J	H _{1j}	D _{1j}	C _{1j}
1	1	0	0
2	2	1	1
3	2	2	5 → ∞
4	2	3	∞

ות היי	uc .			
i	H25	D 2j_	C 2 j	_
1	1	1	1	
2	2	0	D	
3	3	1	1	
4	3	2	90	

4 Not	le 3:		
i	Haj	$ar{ar{b}}$	C_{3j}
~	2	2	ţ
2	2	1	1
3	3	0	0
4	4	1	1

What if link between 1 and 3 breaks?

Dest 4	Iteration	Node 1	Node 2	Node 3
	Initial	(2, 3)	(3, 2)	(4, 1)
	After break	(2, 3)	(3, 2)	(4, 1)

- local changes may be absorbed locally

Cpr E 489 -- D.Q.

Problem Scenario: What if link between 2 and 3 breaks?

At note a:

	<u>.</u>	Haĵ	$\mathcal{D}_{2\bar{j}}$	Czj	
	1	1	1	1	
	2	2	O	•	
→	3	371	0	"} () → ~14 ∞	60
->	4	3-31	(2)	74 ∞	

j	Dij
1	v
2	1
3	2
4	3

j	Dij
1	v
2	1
3	2
4	3

For Dest 4:

DV report from 1 to 2: DV report from 3 to 2:

j	D33
1	2
2	1
3	O
4	1
l l	

For Dest 3:

Cpr E 489 -- D.Q.

Problem Scenario: What if link between 2 and 3 breaks?

Upon link cost change seen by node 2, it recalculates the shortest path to dest 4, which is through node 1 with distance 4!

Cpr E 489 -- D.Q.

Problem Scenario: What if link between 2 and 3 breaks?

	Iteration	Node 1	Node 2	Node 3
	Initial	(2, 3)	(3, 2)	(4, 1)
Doot 4	After break	(2, 3)	(1, 4)	(4, 1)
Dest 4	1	(2, 5)	(1, 4)	(4, 1)

Problem Scenario: What if link between 2 and 3 breaks?

	Iteration	Node 1	Node 2	Node 3
	Initial	(2, 3)	(3, 2)	(4, 1)
Doct 4	After break	(2, 3)	(1, 4)	(4, 1)
Dest 4	1	(2, 5)	(1, 4)	(4, 1)
	2	(2, 5)	(1, 6)	(4, 1)

Cpr E 489 -- D.Q.

Problem Scenario: What if link between 2 and 3 breaks?

Dest 4	Iteration	Node 1	Node 2	Node 3
	Initial	(2, 3)	(3, 2)	(4, 1)
	After break	(2, 3)	(1, 4)	(4, 1)
	1	(2, 5)	(1, 4)	(4, 1)
	2	(2, 5)	(1, 6)	(4, 1)
	3	(2, 7)	(1, 6)	(4, 1)

<u>Problem: Routing Loop</u> → <u>Counting to Infinity!</u>

- Causes of Problem
 - Prouter does not know whether it is in its neighbor's path to a destination
 - Inconsistent routing tables
 - Updates do not reflect reality

Cpr E 489 -- D.Q.

<u>Problem: Routing Loop</u> → <u>Counting to Infinity!</u>

- Use heuristics to alleviate the problem
 - ▶ Split Horizon with Poisoned Reverse (SHPR)
 - For node W, its neighbor X, and destination Y, if $H_{WY} = X$, then set $D_{WY} = \infty$ in node W's DV report to neighbor X
 - This breaks erroneous direct loops immediately

Example: Problem Solved with SHPR

	Dest J	H _{2j}	D _{2j}	C _{2j}	
	1	1	1	1	
	2	2	0	0	
~	3	3	1	①→	20
7	4	3	2	∞	

Cpr E 489 -- D.Q.

₩ 🕸	
report from 1 to a	At node 1
<u> </u>	

 $D_{44} = 0$

Dij	[Dest J	H _{1j}	D _{1j}	C _{1j}
O		1	1	0	0
8	۲ '	2	2	1	1
00		3	2	2	5
		4	2	3	∞

DV report from 3 to a

At node 3:

Dest J	H _{3j}	D _{3j}	C _{3j}		
1	2	2	5		
2	2	1	1		
3	3	0	0		
4	4	1	1		

Example: Problem Solved with SHPR

Dest J	H _{2j}	D _{2j}	C _{2j}
1	1	1	1
2	2	0	0
3	8	1~ 00	(Î) →
4	3	2-700	oo

For dest 4:

$$C_{21} + D_{14} = 1 + \infty = \infty$$

$$C_{23} + D_{34} = \infty + 1 = \infty$$

Example: Problem Solved with SHPR

	Iteration	Node 1	Node 2	Nøde 3
	Initial	(2, 3)	(3, 2)	(4, 1)
Dest 4	After break	(2, 3)	(-, ∞)	(4, 1)

Since node 1 advertised to node 2 that its minimum cost to dest 4 is ∞ , node 2 finds no route to dest 4.

$$D_{24} = \infty$$
 in DV report from 2 to 1: $\frac{j \mid D_{2j}}{2}$

At 1: $C_{12} + D_{24} = 1 + \infty = \infty$

$$=) D_{14} = \infty$$

Cpr E 489 -- D.Q.

Example: Problem Solved with SHPR

	Iteration	Node 1	Node 2	Node 3
	Initial	(2, 3)	(3, 2)	(4, 1)
Dest 4	After break	(2, 3)	(-, ∞)	(4, 1)
	1	(-, ∞) ✓	(-, ∞)	(4, 1)

Node 1 also finds no route to dest 4.

Example: Problem Solved with SHPR

	Iteration	Node 1	Node 2	Node 3
	Initial	(2, 3)	(3, 2)	(4, 1)
Dest 4	After break	(2, 3)	(-, ∞)	(4, 1)
	1	(-, ∞)	(-, ∞)	(4, 1)
	2	(-, ∞)	(-, ∞)	(4, 1)

Cpr E 489 -- D.Q.

SHPR is NOT a Loop-Free Solution!

- SHPR eliminates the routing loops that only involve 2 nodes
- SHPR does not eliminate the routing loops that involve >2 nodes

SHPR is NOT a Loop-Free Solution!

- Example Loop-free Scheme: Path Vector Routing
 - **▶** Each node sends to its neighbors the entire path information to every destination
 - ► Each node uses a neighbor's information for a certain destination only if itself is not on this neighbor's path to the destination
 - ▶ Each node prepends itself to paths before further propagation
 - Example:
 - Node 1's path vector

Dest	1	2	3	4	} DV
Distance	0	1	2	3	} '
Path	<1>	<1, 2>	<1, 2, 3>	<1, 2, 3, 4>	€ 🕏

Cpr E 489 -- D.Q.

RIP (Routing Information Protocol)

- Distance Vector Routing Protocol
 - ► Split Horizon with Poisoned Reverse (SHPR)
- Runs on top of UDP, port # 520, "routed" BSD Unix program
- Routing Metric: number of hops
- Max number of hops is limited to 15
 - Suitable for small networks (local area environments)
 - → 16 is reserved to represent infinity
 - **▶** Small number helps to limit the Counting-to-Infinity Problem

BGP (Border Gateway Protocol)

- Path Vector Routing Protocol
 - → Avoid routing loops (※)
- BGP
 - → Is a reachability protocol
 - ◆ Uses TCP to send updates
 - Reliable transmission
 - Allow incremental updates
 - Allows for policy routing
 - Path selection by policy rather than path optimality

Cpr E 489 -- D.Q.