

ENSAIO DE TRAÇÃO

Tecnologia de Construção Naval

Íris-Salomé Pires Gonçalves 106563 Março 2024

Índice

Objetivos	3
	3
Provete	3
Tensão Nominal e Extensão Nominal	4
Tensão e Extensão de Cedência	5
Tensão Real e Extensão Real	5
Módulo de Elasticidade	6
Resiliência e Tenacidade	6
Patamar de Cedência	6
Velocidade do Ensaio	7
Caracterização Mecânica do Material	7
Conclusão	8

Objetivos

Os ensaios de tração são fundamentais na engenharia de materiais, oferecendo informações cruciais sobre as propriedades mecânicas de diversos materiais.

Num ensaio de tração, utiliza-se um provete de um dado material, onde é submetido a uma força de tração gradual e controlada, que tende a alongá-lo, com o objetivo de investigar as particularidades do material sob carga, dando especial atenção a estas características: Módulo de elasticidade, tensão e extensão de cedência, patamar de cedência, tensão de Rotura, extensão de rotura e energia absorvida em regime elástico (resiliência) e plástico (tenacidade). Estes parâmetros são essenciais para compreender o comportamento estrutural e a resposta dos materiais a diferentes condições de tensão, desempenhando um papel importante nomeadamente no desenvolvimento e na seleção de materiais para uma variedade de aplicações industriais e estruturais.

Figura 1- Esquema Ensaio de Tração Força

Provete

O provete utilizado é de cobre e apresenta uma secção retangular de 12,95 mm de largura e 4,05 mm de espessura tendo assim, uma área transversal de 52,44 mm².

Tensão Nominal e Extensão Nominal

Com o objetivo de calcular a extensão nominal, foi desenhado o gráfico deslocamentoextensão, de onde se retirou o declive da reta obtida, o que nos permite saber o comprimento inicial do provete, 100,44 mm. Deste modo, determinou-se a extensão nominal usando a fórmula que relaciona o deslocamento com o comprimento inicial do provete: Extensão Nominal = deslocamento/comprimento

Figura 2- Gráfico Deslocamento-Extensão

A tensão nominal foi obtida através da expressão: Tensão nominal = força aplicada/área incial;

Assim, foi possível traçar o gráfico tensão nominal em função da extensão nominal, analisando o comportamento do metal.

- 1- Tensão de Cedência;
- 2- Tensão de Rotura;
- 3- Ponto de Rotura.

Tensão e Extensão de Cedência

Analisando o gráfico é possível obter os valores da tensão e extensão de cedência:

$$\sigma_{ced} = 496,0378 \text{ MPa}, & ced = 0,028293 \text{ mm}$$

A tensão e a extensão de cedência correspondem ao primeiro máximo local, ponto onde o material deixa de ter comportamento elástico e passa a ter comportamento plástico.

Também é possível obter os dados relativos à tensão máxima e à extensão de rutura. Após atingir o ponto de tensão máxima, observa-se uma redução nas tensões, enquanto a extensão permanece relativamente estável, caracterizando o momento de rutura

 $\sigma_{\text{rutura}} = 570,8829 \text{ MPa}, & \text{rotura} = 0.1444906 \text{ mm}.$

Tensão Real e Extensão Real

Para determinar a tensão e extensão real foram utilizadas as seguintes fórmulas:

Tensão Real, $\sigma r = \sigma e (1 + \xi e)$

Extensão Real, Ér = In (1+ Ée)

Em que Ée é a extensão nominal e σe a tensão nominal.

Obtendo-se assim o gráfico Tensão Real- Extensão Real.

Figura 4-Gráfico Tensão Real-Extensão Real

Módulo de Flasticidade

Através da aplicação da Lei de Hooke, é possível calcular o Módulo de Elasticidade dividindo a tensão e a extensão nominais. Assim, a fim de determinar o Módulo de Young foi desenhado um gráfico com os valores de tensão e extensão correspondentes à fase de deformação elástica, para, deste modo, se retirar a inclinação da reta, obtendo um valor de 129 GPa. O material que mais se aproxima com este valor de módulo é o cobre.

Figura 5-Gráfico Tensão-Extensão (Parte Elástica)

Resiliência e Tenacidade

Para determinar a resiliência, calculou-se a área correspondente apenas à zona elástica. Deste modo, foi obtido o valor de 6,793J/m3

Para determinar a tenacidade, calculou-se a área do gráfico 2. Assim, a tenacidade obtida foi de 97,044J/m3

Patamar de Cedência

Este material possui um patamar de cedência de 0,001619773mm que corresponde à zona onde a extensão aumenta sem aumento da força aplicada. Podemos observar no gráfico 2 que se trata de quando a tensão está nos 500MPa.

Velocidade do Ensaio

Para calcular a velocidade do ensaio foi elaborado um gráfico do deslocamento em função do tempo.

Figura 6- Gráfico Deslocamento-Tempo

A velocidade do ensaio foi de 0,0833s, valor retirado do declive da reta de equação do gráfico deslocamento-tempo.

Caracterização Mecânica do Material

Propriedades Mecânicas do Material		
Módulo de elasticidade	129GPa	
Tensão de cedência	496,0378 MPa	
Extensão de cedência	0,028293 mm	
Tensão de rotura	570,8829 MPa	
Extensão de rotura	0.1444906 mm	
Patamar de cedência	0.001619776mm	
Resiliência	6,793J/m3	
Tenacidade	97,044J/m3	
Velocidade	0,0833s	

Conclusão

Os resultados do ensaio são valores dentro do esperavel. A velocidade do ensaio é a normal 0.00008 m/s. Na região de proporcionalidade é obtido um módulo de young de 129 GPa, um valor muito parecido ao valor real do cobre, visto que para o cobre é de esperar um módulo de young de 124GPa, apresentando assim um erro de apenas 4%. Para além disso, todos os outros cálculos encontram-se dentro dos resultados esperados, destacando a tenacidade e resiliência, o que indicam a excelente qualidade deste material para aplicações em estruturas navais.

Através da realização deste trabalho, é reforçada a importância de uma abordagem sistemática e detalhada na análise das propriedades mecânicas dos materiais.