Lecture 30 - 2 Worksheet

July 30, 2021

- 1. Let f be a scalar valued function and let \mathbf{F} be a vector field. Describe each expression as a scalar valued/vector field/meaningless.
 - (a) $\operatorname{div}(\operatorname{grad} f)$
 - (b) $\operatorname{curl}(\operatorname{curl} \mathbf{F})$
 - (c) $\operatorname{div}(\operatorname{div} f)$
- 2. Calculate the flux of \mathbf{F} across the surface S, where

$$\mathbf{F} = \langle e^{yz}, e^{xz}, 2z \rangle$$

and S is the surface of rectangle box $0 \le x \le 1$, $0 \le y \le 2$, $0 \le z \le 3$.

- 3. Consider the vector field $\mathbf{F} = \langle 4x, 4y, -6z \rangle$ and the solid E bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = 0 and z = 2.
 - STEP 1: Let S be the boundary surface of the solid E. Then S consists of three surfaces, S_1 , S_2 , S_3 , where S_1 is the side of the cylinder, S_2 is the top disc and S_3 is the bottom disk. Find the following surface integrals.
 - (a) $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$
 - (b) $\iint_{S_2} \mathbf{F} \cdot d\mathbf{S}$
 - (c) $\iint_{S_3} \mathbf{F} \cdot d\mathbf{S}$

Add these together to get $\iint_S \mathbf{F} \cdot d\mathbf{S}$.

STEP 2: Compute $\iiint_E \text{div}(\mathbf{F}) \, dV$. That is, you verify that the Divergence Theorem is true for the vector field **F** on the region E.