

데이터시각화 - Plotly Express

CONTENTS

- A. Basic Plots
- B. Part-of-Whole Plots
- C. Distribution Plots
- D. Advanced Plots

1

Plotly Express

❖ Today's plots

Dataset

- **❖** Plotly Express provides several types of datasets
 - carshare()
 - election()
 - election_geojson()
 - experiment()
 - gapminder()
 - iris()
 - medals_long()
 - stocks()
 - tips()
 - wind()
- Details of the datasets
 - https://plotly.com/python-api-reference/generated/plotly.express.data.html

Dataset

- **❖** Plotly Express provides several types of datasets
 - Gapminder dataset

import plotly.express as px

df = px.data.gapminder()

df.head()

	country	continent	year	lifeExp	рор	gdpPercap	iso_alpha	iso_num
0	Afghanistan	Asia	1952	28.801	8425333	779.445314	AFG	4
1	Afghanistan	Asia	1957	30.332	9240934	820.853030	AFG	4
2	Afghanistan	Asia	1962	31.997	10267083	853.100710	AFG	4
3	Afghanistan	Asia	1967	34.020	11537966	836.197138	AFG	4
4	Afghanistan	Asia	1972	36.088	13079460	739.981106	AFG	4

Basic Plots

px.scatter() function

• Each data point is represented as a marker point, whose location is given by the x and y columns

px.scatter() function

px.scatter() function

- You can get an interactive information by moving their mouse cursor over the marker
 - Hover_name property

- px.scatter() function
 - Hover_name property

- px.scatter() function
 - You can add a trend line to see the trend of the data
 - trendline property with "ols" or "lowess" options

- px.scatter() function
 - trendline property

- px.scatter() function
 - You can give color to markers
 - color property

- px.scatter() function
 - color property

- px.scatter() function
 - You can enlarge the marker size
 - size property and size_max property

```
df = px.data.gapminder().query('year == 2007')
fig = px.scatter(df,
          x='gdpPercap',
          y='lifeExp',
          hover_name='country',
          color='continent',
          size='pop',
          size_max=60)
fig.show()
```

- px.scatter() function
 - size property

- px.scatter() function
 - You can make subplots
 - facet_col property

```
df = px.data.gapminder().query('year == 2007')
fig = px.scatter(df,
          x='gdpPercap',
          y='lifeExp',
          hover_name='country',
          color='continent',
          size='pop',
          size_max=60,
          facet_col='continent')
fig.show()
```

- px.scatter() function
 - facet_col property

- px.scatter() function
 - You can make animated plots
 - animation_frame and animation_group properties

```
df = px.data.gapminder()
fig = px.scatter(df,
          x='gdpPercap',
          y='lifeExp',
          hover_name='country',
          color='continent',
          size='pop',
          size_max=60,
          animation_frame="year",
          animation_group="country",
          range_x=[100,100000],
          range_y=[25,90])
fig.show()
```

- px.scatter() function
 - animation_frame and animation_group properties

- px.scatter()_3d function
 - You can create 3D plots
 - Don't forget to add x, y and z coordinates

px.scatter()_3d function

- px.bar() function
 - Group bar plot

- px.scatter()_3d function
 - Group bar plot

- px.bar() function
 - Animated group bar plot

```
df = px.data.gapminder()
fig = px.bar(df,
       x = "continent",
       y = "pop",
        color ='lifeExp',
        hover_name ='country',
        animation_frame ='year',
        animation_group="country",
        range_y =[0, 400000000])
fig.show()
```

- px.scatter()_3d function
 - Animated group bar plot

- px.line() function
 - Line plot

- px.line() function
 - Line plot

- px.line() function
 - Line plot

- px.line() function
 - Line plot

Area Plot

- px.area() function
 - You can plot lines in the form of combined area

- px.area() function
 - Area plot

Part-of-Whole

Pie Plot

- px.pie() function
 - Pie plot are used to show the composition of the dataset

Pie Plot

- px.pie() function
 - Pie plot

Sunburst Plot

- px.sunburst() function
 - Visualize hierarchical data using pie

Sunburst Plot

px.sunburst() function

TreeMap Plot

- px.treemap() function
 - Visualize hierarchical data using nested rectangles

Sunburst Plot

px.treemap() function

Distributions

Strip Plot

- * px.strip()
 - Strip charts are like 1-dimensional jittered scatter plots

Strip Plot

px.strip()

Histogram Plot

- px.histogram() function
 - Used to check data distribution
 - With marginal property, a marginal is drawn alongside the histogram

Histogram Plot

px.histogram() function

Density HeatMap Plot

- px.density_heatmap()
 - Used to see the density between two variables

Histogram Plot

px.density_heatmap()

Density Contour Plot

- px.density_contour()
 - Used to see the density between two variables

Density Contour Plot

px.density_contour()

Advanced Plots

Scatter Matrix

- px.scatter_matrix() function
 - Used to check the relationship between several variables

Scatter Matrix

px.scatter_matrix() function

Choropleth Maps

- px.choropleth() function
 - A map composed of colored polygons

Choropleth Maps

px.choropleth() function

Parallel Categories

- px.parallel_categories() function
 - A visualization of multi-dimensional categorical data sets

Parallel Categories

px.parallel_categories() function

Scatter Mapbox

- px.scatter_mapbox() function
 - Used to scatter data points over the map

```
df = px.data.carshare()
fig = px.scatter_mapbox(df,
               lat="centroid lat",
               lon="centroid_lon",
               color="peak_hour",
               size="car hours",
color_continuous_scale=px.colors.cyclical.lceFire,
               size_max=15,
               zoom=10,
               mapbox_style="carto-positron")
fig.show()
```

Scatter Mapbox

px.scatter_mapbox() function

Polar Plots

- px.scatter_polar() functions
 - Represents data along radial and angular axes

```
df = px.data.wind()
fig = px.scatter_polar(df,
              r="frequency",
              theta="direction",
              color="strength",
              symbol="strength",
color_discrete_sequence=px.colors.sequential.Plasma_r)
fig.show()
```

Polar Plots

px.scatter_polar() functions

Homework for Lecture 6

- **❖** Submit your source code for the following task:
 - 1. Use any of the dataset provided by Plotly Express (Slide 3)
 - 2. Draw two graphs provided by Plotly Express
 - 3. Explain meaning of each plot result
- Submission: source code, result screenshots and result expla nation

ZF사람니다!