Resolução de sistemas de equações não lineares

AULA 03 - MNUM 2020

Resolução de sistemas de equações não lineares Picard-peano

1 - Fazer transformação das equações

2 – Testar a convergência, substituindo $x e y pelo guess (x_0, y_0)$

$$\left| \frac{\partial g_1}{\partial x} \right| + \left| \frac{\partial g_2}{\partial x} \right| < 1$$
 $\left| \frac{\partial g_1}{\partial y} \right| + \left| \frac{\partial g_2}{\partial y} \right| < 1$ NO contains

NOTA: Se a transformação não cumprir o critério de convergência, devem tentar nova transformação!

3 – Aplicar o método, utilizando $g_1 e g_2$ para calcular novas aproximação a y e x.

х	У	g1(x,y)	g2(x,y)	
4	4	4.18	2.86	
4.180	2.86			

NOTA: Critério de paragem deve ser respeitado para as duas incógnitas em simultâneo, i.e., só paramos quando a precisão for atingida para as duas incógnitas.

Resolução de sistemas de equações não lineares Método de Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Aplicável a uma única equação! Utilizamos no cálculo do zero de uma equação simples.

$$\begin{cases} x_{n+1} = x_n - \frac{f_1(x_n, y_n) \cdot f'_{2,y}(x_n, y_n) - f_2(x_n, y_n) \cdot f'_{1,y}(x_n, y_n)}{f'_{1,x}(x_n, y_n) \cdot f'_{2,y}(x_n, y_n) - f'_{2,x}(x_n, y_n) \cdot f'_{1,y}(x_n, y_n)} \\ y_{n+1} = y_n - \frac{f_2(x_n, y_n) \cdot f'_{2,y}(x_n, y_n) - f_1(x_n, y_n) \cdot f'_{2,x}(x_n, y_n)}{f'_{1,x}(x_n, y_n) \cdot f'_{2,y}(x_n, y_n) - f'_{2,x}(x_n, y_n) \cdot f'_{1,y}(x_n, y_n)} \end{cases}$$

Fórmula a utilizar na resolução de sistemas de equações

f₁ – primeira função do sistema

f'_{1x} – derivada da função f1 em ordem a x

f'_{1,y} – derivada da função f1 em ordem a y

f₁ – primeira função do sistema

f'_{2x} – derivada da função f1 em ordem a x

f'_{2,y} – derivada da função f1 em ordem a y

Matriz Jacobiana

Resolução de sistemas de equações não lineares Método de Newton

Aplicando ao exemplo da aula:

$$f'_{1,x}$$
 – derivada da função f1 em ordem a x \longrightarrow $4x - y - 5$

$$f'_{2,x}$$
 – derivada da função f1 em ordem a x \longrightarrow $1 + 3/x$

Х	у	f1(x,y)	f2(x,y)	f' _{1,x}	f' _{1,y}	f' _{2,x}	f' _{2,y}
4	4	-3	-7.84	7	-4	1.75	-8
3.85	2.98						