# 

#### Recap leerdoelen les 2

- Leren toepassen van visualisatie principes
- Omgaan met venv, uv, path, scripts en git
- Oefenen met nieuwe features extraheren met behulp van regular expressions
- Vergelijken van categorieen met behulp van data visualisaties:
  - Barplots
  - Barbell plot
  - heatmaps
- Werken met palettes (en list comprehensions)
- Pandas
  - Pandas groupby & aggregate
  - Pandas cut

#### Leerdoelen les 3

- Leren toepassen van visualisatie principes
- Vier basisprincipes leren herkennen
- Werken met timestamps
- Autocorrelation (statsmodels)
- Seasonal decompose (Trend, Seasonal, Residu)
- Fourier transforms: the main idea
- Using Fourier transforms to model timeseries

- Python
  - Code principes van codestyle leren volgen (niet hardcoden, classes/inheritance, isoleren settings, SRP, open-closed)
  - Pandas .dt (isoweek, date, day\_name, see docs for more)
  - Pandas reindex
  - Seaborn FacetGrid
  - Seaborn .map
  - Plotly px.area
  - Statsmodels acf, seasonal\_decompose
  - scipy.fft, scipy.signal

#### The four horsemen of modelling

- Linear
- Sine
- Logistic
- Exponential

#### The four horsemen of modelling

- Linear: f(X) = WX + b
- Sine:  $f(t) = A \cdot \sin(\omega t + \phi)$  with A for amplitude,  $\omega$  for angular frequency (radians/sec), and  $\phi$  for phase shift with  $0 \le \phi \le 2\pi$
- Exponential:  $f(x) = e^x$
- . Logistic:  $f(x) = \frac{L}{1 + e^{-k(x x_0)}}$  with L max value, k growth rate and  $x_0$  midpoint







## Timeseries decomposition



#### Fourier Transforms



### Fourier Transforms



#### Polio

