Classification Error Metrics

Choosing the Right Error Measurement

- You are asked to build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct

Choosing the Right Error Measurement

- You are asked to build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct
- Build a simple model that always predicts "healthy"
- Accuracy will be 99%...

Confusion Matrix

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Confusion Matrix

Accuracy: Predicting Correctly

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$

Recall: Identifying All Positive Instances

Recall or
$$=$$
 $\frac{TP}{Sensitivity}$ $=$ $\frac{TP}{TP + FN}$

Precision: Identifying Only Positive Instances

Specificity: Avoiding False Alarms

Specificity =
$$\frac{TN}{FP + TN}$$

Error Measurements

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
Precision =
$$\frac{TP}{TP + FP}$$

Error Measurements

	Predicted Predicted Negative	
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Error Measurements

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
 Recall of Sensitivity

Precision =
$$\frac{TP}{TP + FP}$$
 Specificity

Recall or
$$=$$
 TP

Sensitivity TP + FN

Specificity $=$ TN

FP + TN

F1 = 2 Precision * Recall Precision + R

Receiver Operating Characteristic (ROC)

Evaluation of model at all possible thresholds

Area Under Curve (AUC)

Measures total area under ROC curve

Precision Recall Curve (PR Curve)

Measures trade-off between precision and recall

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			ТРЗ

Accuracy =
$$\frac{TP1 + TP2 + TP3}{Total}$$

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3	
Actual Class 1	TP1			A
Actual Class 2		TP2		
Actual Class 3			TP3	

$$Accuracy = \frac{TP1 + TP2 + TP3}{Total}$$

Most multi-class error
metrics are similar to
binary versions—
just expand elements as
a sum