4		DIVISION OF DIVERSITY, EQUITY & INCLUSION
Station:\	Scratch Paper: /	DIVISION OF DIVERSITY, EQUITY & INCLUSION ACCESSIBLE EDUCATIONAL SERVICES
	2.3	Indianapolis

AES Testing Record

Student: Ethan Aldrich Winner	t -(Ethan)		Must Stop At
Test Date: February 19, 2025	Test Time: 12:00 pm	Location: AES	Testing Lab (UL 3135H -Lib 3rd fl)
Student Status:			
Course Title: ANALYTIC GEO	METRY & CALCULUS I	Code: MATH-I 165	30129
Instructor: Keshav Dahiya			
Test Type: Exam Test Fo	ormat: Paper Name/Nur	mber: Test 1	
Accommodations: Distraction	n-Reduced Environment; Exter	nded Time on Quizz	es and Exams (150%)
Instructor's Directions: Close	d book/notes. No calc. No scra	atch paper.	
	tart Time: Ending Time	e: 1:55	
Breaks Taken:	12',02pm		
Proctors: Lily, Karla, J	1		
Proctor Notes:	e e		
Delivery Preference: Scan/em	ail test, then keep in AES Offic	e UC100	
Delivery Log (Please conta	ct AES for delivery records)		
Emailed By:	Date:	Time:	
Delivered By:	Date:	Time:	Location:
Received By:	Date:	Time:	la la
Attempted By:	Date:	Time:	Location:
Explanation:			
Attempted By:	Date:	Time:	Location:
Explanation:			

Indiana University, Indianapolis

Spring 2025 Math-I 165 Test 1

Instructor: Keshav Dahiya

Name: Ethan Wimett

Instructions:

- No cell phones, calculators, watches, technology, hats stow all in your bags.
- Write your name on this cover page.
- This test is closed book and closed notes.
- All work must be clearly shown for partial credit.
- If you wish for something not to be graded, please strike it out neatly.
- Box, circle, or otherwise clearly indicate your final answer.
- When you finish, return your test to the proctor, and leave the classroom.
- There are a total of 12 problems including 2 bonus problems.
 - Problems 1-10 are each worth 10 points.
 - The bonus problems are each worth 5 points.
- You can score a maximum of 110 points out of 100.
- There are a total of **7 pages** including the cover page.

Problem 1. Evaluate the limit: $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$.

[10 pts]

(in \$155240+3) (im = 1 1/0 | 1

Problem 2. Let $f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & x \neq 2, \\ 1 & x = 2. \end{cases}$ Is f continuous? Explain why/why not.

FIXI- X-X-2 + (X-2)(X+1) 7 (X+1) X IZ
2+1-3

both humbers do not Equal. They oven't even the graph to each other

Problem 3. Use the limit definition $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ of derivative to find f'(3) if $f(x) = \frac{3}{x}$.

Problem 4. If h(x) = x g(x) and g(3) = 5, g'(3) = 2, then find h'(3).

[10 pts]

Hint: Use product rule to differentiate h(x).

Problem 5. Find the second derivative of $\csc x$.

[10 pts]

$$F(x) = -cs cotx$$
 $F''(x) = F(s) (cotx) + F(s) (cotx)$
 $F''(x) = (cs) (cotx) + F(s) (cotx)$

Problem 6. Use chain rule to find the derivative of $f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$.

[10 pts]

3/9

F'(X) = 3/(x²+x+1) (2x+1) F'(X) = 2x³+2x²+2x+2x+1 (x²+x+1) (2x+1) 3/(x²+x+1) (2x+1) 3/(x²+x+1) (2x+1)

(x)

Problem 7. Use implicit differentiation to find the equation of normal to the curve $x^3 + y^3 = 6xy$ at the point (3,3). $f(x) = x^3 + y^3 - 6xy$ $f(x) = 3x^2 + 3y^2 + 6xy + 6x + 6xy + 6x$

Problem 8. The position of a particle is given by the equation $s(t) = t^3 - 6t^2 + 9t$ where t is measured in seconds and s is measured in meters. Find the total distance traveled by the particle in the first five seconds.

[10 pts]

Distance after the first 24 m/s seconds is

Problem 9. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1 ft/s, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall? [10 pts]

Problem 10. The area of a circle was measured and it was found that the measured value has a relative error of 1%. If we compute radius of the circle using this value of area, what would be the [10 pts] relative error in the radius of the circle?

Bonus Problem 1. At what points on the hyperbola xy = 12 is the tangent line parallel to the line 3x + y = 0?

Bonus Problem 2. Find $\frac{d^2y}{dx^2}$ if $x^4 + y^4 = 16$. $f'(x) = 4x^3 + 4y^3 = 0$ $f''(x) = 12x^2 + 12y^2 = 0$

[5 pts]