Machine Learning Prediction in Tracking Product Delivery

Capstone Project 4
Michelle Ang

Problem Statement

An ecommerce company want to understand key insights from their Product Shipment Tracking data.

Classification Problem:

What factors determine if the product will be delivered on time? (Yes/No)

Goal: Make better improvements on the customer care service & delivery pattern in advance.

Target Audience: Shipping Department of the Ecommerce Company

Methodology

Models

Baseline Model:
Logistic Regression
Other Models:
Decision Tree,
Random Forest, KNearest Neighbors
(KNN), Support Vector
Classification (SVC),
Naïve Bayes, MultiLevel Perceptron

Dataset

Metrics

Precision, Recall, F1
Score

Data Preparation

- Check for non-null value
 Dropping Unnecessary Column
- -> Customer Rating /ID

- Slightly Imbalanced Dataset on Target Variable
 - -> Reached on Time (Oversampling: SmoteNC)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10999 entries, 0 to 10998
Data columns (total 12 columns):
                         Non-Null Count Dtype
     Column
                         10999 non-null int64
    Warehouse block
                         10999 non-null object
    Mode of Shipment
                         10999 non-null
                                         object
    Customer_care_calls 10999 non-null
                                         int64
  Customer_rating
                         10999 non-null
                                         int64
   Cost_of_the_Product 10999 non-null
  Prior purchases
                         10999 non-null
    Product importance 10999 non-null
                                        object
    Gender
                         10999 non-null
                                         object
    Discount offered
                         10999 non-null
    Weight_in_gms
                         10999 non-null
                                         int64
    Reached on Time
                         10999 non-null int64
dtypes: int64(8), object(4)
memory usage: 1.0+ MB
```


Visualisation

Visualisation

Data Transformation

- Ordinal Categories Feature (OrdinalEncoder)
- Nominal Categories Feature (Dummies)

Warehouse_block	Mode_of_Shipment	Customer_care_calls	Cost_of_the_Product	Prior_purchases	Product_importance	Gender	Discount_offered	Weight_in_gms	Reached_on_Time
D	Flight	4	177	3	low	F	44	1233	No
F	Flight	4	216	2	low	M	59	3088	No
A	Flight	2	183	4	low	M	48	3374	No
В	Flight	3	176	4	medium	M	10	1177	No
С	Flight	2	184	3	medium	F	46	2484	No

- Split the data into train and test datasets (test size = 0.2)
- Data Normalisation using Standard Scaler

Why is a Balancing Dataset Important?

Before Balancing:

Model	Precision	Recall	F1 Score
Decision Tree	0.738881	0.718360	0.680155
Random Forest	0.714576	0.707081	0.678133
Multilevel Perceptron	0.722253	0.703581	0.666045
Naive Bayes- Mixed Naive Bayes	0.694583	0.683713	0.651548
Naive Bayes- GaussianNB()	0.684346	0.678683	0.651380
SVM	0.634397	0.636470	0.635019
Logistic Regression	0.630118	0.631039	0.630506
KNN	0.602046	0.595665	0.596182

After Balancing:

Model	Precision	Recall	F1 Score
Random Forest	0.793453	0.729217	0.717773
Decision Tree	0.815173	0.731281	0.716868
Multilevel Perceptron	0.781763	0.710486	0.695405
Naive Bayes- Mixed Naive Bayes	0.762884	0.697588	0.681897
Logistic Regression	0.716799	0.687823	0.680050
SVM	0.718266	0.686478	0.677791
KNN	0.678958	0.673432	0.672189
Naive Bayes- GaussianNB()	0.792144	0.692314	0.668720

Machine Learning Model Training: Logistics Regression

Best Estimator after hyperparameter using GridSearchCV

```
# Using best estimator found by GridSearchCV
logreg = gs_logreg.best_estimator_
logreg.fit(X_train_scaled, y_train)

LogisticRegression(C=0.01, n_jobs=-1, random_state=0, solver='newton-cg')
```

- Result for F1 score is 68%

Model	Training Acc	Testing Acc	Precision	Recall	F1 Score
Logistic Regression	0.692762	0.692308	0.716799	0.687823	0.680050

Machine Learning Model Training: Random Forest

Best Estimator after hyperparameter using GridSearchCV

Improved result for F1 score to 72%

Model	Training Acc	Testing Acc	Precision	Recall	F1 Score
Random Forest	0.785429	0.734958	0.793453	0.729217	0.717773

1. Feature Importance by Model Coefficient

2. Feature Selection by using SelectKBest

```
[45] new_features
     ['Warehouse_block_F',
      'Mode_of_Shipment_Flight',
      'Mode of Shipment Road',
      'Mode_of_Shipment_Ship',
      'Product importance',
      'Cost_of_the_Product',
      'Discount_offered',
      'Weight in gms'l
[46] #original features
     feature names
     ['Warehouse_block_A',
      'Warehouse_block_B',
      'Warehouse block C',
      'Warehouse block D',
      'Warehouse block F',
      'Mode_of_Shipment_Flight',
      'Mode_of_Shipment_Road',
      'Mode_of_Shipment_Ship',
      'Product_importance',
      'Customer_care_calls',
      'Cost_of_the_Product',
      'Prior_purchases',
      'Gender',
      'Discount_offered',
      'Weight_in_gms']
```

Before selecting the best features:

Model	Precision	Recall	F1 Score
Random Forest	0.793453	0.729217	0.717773
Decision Tree	0.815173	0.731281	0.716868
Multilevel Perceptron	0.781763	0.710486	0.695405
Naive Bayes-Mixed Naive Bayes	0.762884	0.697588	0.681897
Logistic Regression	0.716799	0.687823	0.680050

After selecting the best features:

Model	Precision	Recall	F1 Score
Random Forest	0.796095	0.731913	0.720778
Decision Tree	0.757352	0.721650	0.714891
Multilevel Perceptron	0.779334	0.707380	0.691728
Naive Bayes- Mixed Naive Bayes	0.753355	0.697170	0.683457
SVM	0.726547	0.691679	0.682625

Random Forest Model Prediction

Conclusion

Random Forest Model has the best F1 Score after SelectKBest

```
Model Training Acc Testing Acc Precision Recall F1 Score

Random Forest 0.784286 0.737624 0.796095 0.731913 0.720778
```

- Average Precision: 80%, Average Recall: 73% & F1-Score: 72%
- Top 2 Feature Importance: Discount Offered and Weights of the Product
- Prediction model in Tracking Product Delivery: Improved customer relation, improved delivery toward the area and improved manpower in the warehouse

Future Recommendation

- More fine tuning of the model & advanced algorithms
- Have more features
 - Distance from the delivery area
 - Manpower in the warehouse
 - Volume of shipment per transport
 - Proximity to sales period
 - Delivery hours
 - Weather condition
 - Extreme Traffic condition (Suez Canal)

