Import Data with

(Applied) Data Science

Importing Data

readr

Simple, consistent functions for working with strings.

```
# install.packages("tidyverse")
library(tidyverse)
```


Compared to read.table and its derivatives, readr functions are:

- 1. ~ 10 times faster
- 2. Return tibbles
- 3. Have more intuitive defaults. No row names, no strings as factors.

readr functions

function	reads
read_csv()	Comma separated values
read_csv2()	Semi-comma separated values
read_delim()	General delimited files
read_fwf()	Fixed width files
read_log()	Apache log files
read_table()	Space separated
read_tsv()	Tab delimited values

readr functions

function	reads
read_csv()	Comma separated values
read_csv2()	Semi-comma separated values
read_delim()	General delimited files
read_fwf()	Fixed width files
read_log()	Apache log files
read_table()	Space separated
read_tsv()	Tab delimited values

ozone.csv

```
date, longitude, latitude, ozone
1985-10-01T00:00:00Z,-179.375,-87.5,.
1985-10-01T00:00:00Z,-178.125,-87.5,.
1985-10-01T00:00:00Z,-176.875,-87.5,.
1985-10-01T00:00:00Z,-175.625,-87.5,.
1985-10-01T00:00:00Z,-174.375,-87.5,.
1985-10-01T00:00:00Z,-173.125,-87.5,.
1985-10-01T00:00:00Z,-171.875,-87.5,.
1985-10-01T00:00:00Z,-170.625,-87.5,.
1985-10-01T00:00:00Z,-169.375,-87.5.
```


ozone.csv

```
date, longitude, latitude, ozone
1985-10-01T00:00:00Z,-179.375,-87.5,.
1985-10-01T00:00:00Z,-178.125,-87.5,.
1985-10-01T00:00:00Z,-176.875,-87.5,.
1985-10-01T00:00:00Z,-175.625,-87.5,.
1985-10-01T00:00:00Z,-174.375,-87.5,.
1985-10-01T00:00:00Z,-173.125,-87.5,.
1985-10-01T00:00:00Z,-171.875,-87.5,.
1985-10-01T00:00:00Z,-170.625,-87.5,.
1985-10-01T00:00:00Z_-169.375_-87.5
```


read_csv()

readr functions share a common syntax

Find ozone.csv on your server or computer. Then read it into an object. Then view the results.

Find ozone.csv on your server or computer. Then read it into an object. Then view the results.

```
ozone <- read_csv("ozone.csv")
View(ozone)</pre>
```

=NA

View(ozone)

	date	longitude	latitude	ozone [‡]
1	1985-10-01	-179.375	-87.5	•
2	1985-10-01	-178.125	-87.5	•
3	1985-10-01	-176.875	-87.5	•
4	1985-10-01	-175.625	-87.5	•
5	1985-10-01	-174.375	-87.5	•
6	1985-10-01	-173.125	-87.5	•
7	1985-10-01	-171.875	-87.5	•

read_csv()

readr functions share a common syntax

Reread in ozone.csv. But this time convert the "."'s to NA's. How many NA's are in the ozone column?

Reread in ozone.csv. But this time convert the "."'s to NA's. How many NA's are in the ozone column?

Quiz

What "type" of column is ozone?

```
ozone
```

```
## # A tibble: 25,224 × 4
##
          date longitude latitude ozone
##
                    <dbl>
                             <dbl> <chr>
          <dttm>
## 1
     1985-10-01
                 -179.375
                             -87.5 <NA>
     1985-10-01
## 2
                  -178.125
                             -87.5 <NA>
## 3
     1985-10-01
                 -176.875
                             -87.5 < NA>
## 4
                  -175.625
                             -87.5 < NA >
     1985-10-01
     1985-10-01
                             -87.5 < NA >
## 5
                 -174.375
## 6
     1985-10-01
                  -173.125
                             -87.5 < NA >
## 7
     1985-10-01
                             -87.5
                  -171.875
                                    <NA>
## 8
                             -87.5 < NA >
     1985-10-01
                 -170.625
     1985-10-01 -169.375
## 9
                             -87.5 < NA >
## 10 1985-10-01 -168.125 -87.5 <NA>
### ... with 25,214 more rows
```

<chr> stands for character string (not a number)

read_csv()

readr functions share a common syntax

```
df<- read_csv("file.csv", na = c("", "NA"),
  col_types = list(longitude = col_double()))

Manually specify column types.</pre>
column types.
Column type function
```


type function

data type

col_character()	character

col_number() numbers mixed with non-number characters

col_numeric() double or integer

col_skip() do not read

col_time() time

type function

data type

col_character() character

col_date() Date

col_datetime() POSIXct (date-time)

col_double() double (numeric)

col_factor() factor

col_guess() let readr guess (default)

col_integer() integer

col_logical() logical

col_number() numbers mixed with non-number characters

col_numeric() double or integer

col_skip() do not read

col_time() time

Read in ozone.csv. accounting for NA's and setting the col_type of ozone to a double. Then make this plot. What do you see?

```
library(viridis)
world <- map_data(map = "world")</pre>
ozone %>%
 ggplot() +
   geom_point(aes(longitude, latitude, color = ozone)) +
   geom_path(aes(long, lat, group = group), data = world) +
    coord_map("ortho", orientation=c(-90, 0, 0)) +
    scale_color_viridis(option = "A")
```

```
ozone <- read_csv("ozone.csv", na = ".",
  col_types = list(ozone = col_double()))
library(viridis)
world <- map_data(map = "world")
ozone %>%
  ggplot() +
    geom_point(aes(longitude, latitude, color = ozone)) +
    geom_path(aes(long, lat, group = group), data = world) +
    coord_map("ortho", orientation=c(-90, 0, 0)) +
    scale_color_viridis(option = "A")
```


Other types of data

package	accesses
haven	SPSS, Stata, and SAS files
readxl	excel files (.xls, .xlsx)
jsonlite	json
xml2	xml
httr	web API's
rvest	web pages (web scraping)
DBI	databases
sparklyr	data loaded into spark

Import Data with

