<u>LAB ASSIGNMENT – 8</u>

Course: Basic Electrical and Electronics Engineering

Course Code: EEE1001

Faculty Name: Prof. Medaramelta Praveenkumar

Slot: L-19+L-20

Name: Priyal Bhardwaj

Registration Number: 18BIT0272

Submission Date: 20.10.2018

Ex. No.:3

Date: 20/10/2018

Verification of Thevenin's Theorem

Aim: Derive the Therenin's equivalent arount for the given circuit and verify it practically.

Circuit Diagram

Apparatus/Tool required:

Sl. No.	Components Name	Range	Quantity	
1	Resister	120Ω , 330Ω , 470Ω ,	Each 1 No.	
		220Ω , 100Ω	Each I No.	
2	Ammeter	0-50mA (DC)	1 No.	
3	Voltmeter	0-10V (DC)	1 No.	
4	RPS	0-32 V (DC)	1 No.	
5	Connecting Wires	-:	Few	
6	Bread Board	-	1 No.	

Theory

Statement: Thevenin's Theorem

Therenin's Theorem states that "Anylinear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a Single resistance connected across the load." It is possible to simplify any electrical circuit, no matter how complex.

Hardware Circuit:

To Find V_{TH}:

PHOTO OF CIRCUIT ATTACHED IN LAST PAGE

Reading:

Applied Voltage (Volts)	V _{TH} (Volts)	
20∨	11.69V	

To Find R_{TH}:

PHOTO OF CIRCUIT ATTACHED IN LAST PAGE

Reading:

Applied Voltage	Voltmeter Reading	Ammeter Reading	R _{TH} = V/I ohms
10 v		9 mA	1110
121		11 mA	1090
14 V		13mA	1077

Average of $R_{TH} = 1093$ Ohms.

To Find IL:

PHOTO OF CIRCUIT ATTACHED IN LAST PAGE

Reading:

Applied Voltage (Volts)	Ammeter Reading (Amps)	
11.6 V	11 m A	

Manual Calculations:

To Find V_{TH}:

$$i = 20 = \frac{1}{69}$$

(current through 680=0)

(Voltage through 820 is VH) (because 820 is in parallel)

$$V_{th} = IR \rightarrow I = \frac{V_{th}}{R}$$

$$I = \frac{11.88}{10.67} = 10.67 \text{ mA}$$

Procedure:

- i) Manually calculate, Vrh, Rth and I using Thevenin's Theorem.
- a) For practical purpose connect the circuit as shown in the distract diagrams.
- 3) First find current through the whole circuit.
- 4) To find Vin, remove ammeter, 680-52 resistor a 100 so resistor and replace them with voltmeter
- 5) To find Rth, remove avoltmeter and reconnect 680 si resistor, ammeter and connect a variable voltage source as shown in diagram.
- 6) Take 3 ammeter readings and calculate Rth 7) Check if practical output is same as manual Result: calculations.

Thevenin's Theorem

Manual Calculations

Vth = 11.88V

Rth = 1012.75.2

It = VH = 11.7 MA

IL = 10.67 mA

Practical Output

Vm = 11.67V

Rth = 1093 sz

I = 11mA

IL = Vrh = 10.67mA

Since manual calculations are same as practical output, Thevenin's Theorem is verified.

Reg. No: 18 BIT 0272 Name: PRIYAL BHARDWATDate: 20 10 12018

MAIN CIRCUIT

TO FIND Vth:

TO FIND Rth:

TO FIND I:

1) I1

2) 12

3) 13

