

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

KLOKNERŮV ÚSTAV

Šolínova 7, 166 08 Praha 6 – Dejvice

Expertní zpráva č. 830 1800 J252

Datum vydání zprávy

Oddělení KÚ

17. září 2018

Stavebních materiálů tel. +420 224 353 509

Objednatel: IGLUBRICK SERVIS a.s.

Opletalova 983/45 110 00 Praha 1

Expertní zpráva: POSOUZENÍ FUNKCE SYSTÉMU DESEK ISOAIR VNEMOCNICI

V NYMBURCE

Vypracoval:	Ing. Lukáš Balík, Ph.D.
Spolupráce:	Ing. Daniel Dobiáš, Ph.D. Jiří Havel Petr Vrbata
Odpovědný řešitel:	Ing. Lukáš Balík, Ph.D.
Vedoucí oddělení:	Ing. Lukáš Balík, Ph.D.
Ředitel KÚ:	Doc. Ing. Jiří Kolísko, Ph.D.
Výtisk číslo: 1 2 3 4	Rozdělovník: Objednatel: 3x Archiv KÚ: 1x ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ v Praze Kloknerův ústav 166 08 Praha 6, Šolinova 7 (1)

ANOTACE

Zpráva uvádí výsledky vlhkostní analýzy vzorků odebraných ze spodní stavby pavilonu B nemocnice v Nymburce, Boleslavská 425. Zprávu vypracovali pracovníci ČVUT v Praze, Kloknerova ústavu, který je zapsán v seznamu ústavů kvalifikovaných pro znaleckou činnost dle ustanovení §21 odst. 3, zákona č. 36/1967 Sb. a vyhlášky č. 37/1967 Sb., ve znění pozdějších předpisů, uveřejněném v Ústředním věstníku ČR, ročník 2004, částka 2, ze dne 14. 10. 2004, přílohy ke sdělení Ministerstva spravedlnosti ze dne 13. 7. 2004, č.j. 228/203–Zn.

OBSAH:

1. ÚVOD	4
2. PODKLADY	5
3. STRUČNÝ POPIS SYSTÉMU ISOAIR	5
3.1 SYSTÉM ISOAIR	5
3.2 POUŽITÍ SYSTÉMU ISOAIR NA VYBRANÝCH PLOCHÁCH	5
4. POUŽITÉ METODY A POSTUPY	6
4.1 STANOVENÍ VLHKOSTI ZDIVA	6
4.2 STANOVENÍ ZASOLENÍ ZDIVA	6
5. STAVEBNĚ-TECHNICKÝ PRŮZKUM	7
5.1 VLHKOST	7
5.1.1 VIZUÁLNÍ PROHLÍDKA DIAGNOSTIKOVANÝCH PROSTOR	7
5.1.2 VÝSLEDKY MĚŘENÍ ODEBRANÝCH VZORKŮ	8
5.1.3 VÝSLEDKY MĚŘENÍ VLHKOSTI REFERENČNÍCH VZORKŮ	. 12
5.2 ZASOLENÍ ZDIVA – OBSAH VE VODĚ ROZPUSTNÝCH SOLÍ VE ZDIVU	
6. ZÁVĚRY	

<u>1. ÚVOD</u>

Vlhkostní analýza odebraných vzorků byla provedena na základě objednávky společnosti Iglubrick servis a.s., Opletalova 983/45, Praha 1, zastoupené Ing. Markem Novotným, jednatelem společnosti.

Obr. 1: Letecký pohled na předmětný pavilon nemocnice v Nymburce

Obr. 2: Umístění objektu na pozemku p. č. st. 320 v katastrálním území Nymburk [708232]

V rámci zadání průzkumu a souvisejících prací bylo zjištěno a provedeno:

- a) vizuální prohlídka stávajícího stavu porovnávaných místností,
- b) odběr a vyhodnocení vzorků z hlediska vlhkosti a salinity,
- c) zmapování profilu vlhkosti v deskách a zdivu,
- d) vypracování hodnotící zprávy.

Cílem průzkumu bylo posouzení účinnosti systému IsoAir aplikovaného cca před jedním a půl rokem na vlhké zdivo.

Měření vlhkosti a odběr vzorků ze severozápadní obvodové stěny v úrovni 1. PP byly provedeny dne 18. 6. 2018.

2. PODKLADY

- [1] ČSN P 730600 Ochrana staveb proti vodě, hydroizolace Základní ustanovení
- [2] ČSN P 73 0606 Hydroizolace staveb Povlakové hydroizolace Základní ustanovení
- [3] ČSN 73 0610 Hydroizolace staveb Sanace vlhkého zdiva Základní ustanovení
- [4] ČSN EN ISO 10304-1 Jakost vod Stanovení rozpuštěných aniontů metodou kapalinové chromatografie iontů Část 1: Stanovení bromidů, chloridů, fluoridů, dusičnanů, dusitanů, fosforečnanů a síranů

3. STRUČNÝ POPIS SYSTÉMU ISOAIR

3.1 SYSTÉM ISOAIR

IsoAir je systém desek lepených k podkladu, které se používají na zateplení objektů a též při řešení vlhkosti přítomné ve zdivu. Současným trendem je využití dobrých difuzních vlastností desek k řešení výše uvedených záležitostí i v rámci jejich vnitřní (interiérové) aplikace. Jedná se o lehké desky na bázi polystyrenbetonu a vložených přísad, jejichž objemová hmotnost se pohybuje v rozmezí 300 až 400 kg/m³. Součinitel tepelné vodivosti desek λ je 0,084 W/mK a faktor difuzního odporu μ = 3,1.

3.2 POUŽITÍ SYSTÉMU ISOAIR VYBRANÝCH PLOCHÁCH

Testované desky byly použity v nymburské nemocnici v únoru 2017 a byly aplikovány na vybraných plochách suterénního zdiva (1. PP) z interiéru pavilonu B. Systémem byly opatřeny stěny dvou vybraných místností přiléhající k severozápadní obvodové stěně. Systém byl aplikován, dle informací od zhotovitele, ve skladbě (od spodu):

- původní zdivo zbavené omítky (spáry vyškrábané do cca 15 mm),
- protiplísňový nástřik,
- desky IsoAir lepené na podklad difuzně otevřeným lepidlem,
- vrchní souvrství tvořené perlinkou vtlačenou do difuzně otevřené stěrky,
- > difuzně otevřený štuk,
- difuzně otevřený nátěr.

Tel.: 224 353 509

4. POUŽITÉ METODY A POSTUPY

4.1 STANOVENÍ VLHKOSTI ZDIVA

Vlhkost zdiva byla stanovena gravimetrickou a instrumentální metodou. Pro účely gravimetrie byly odebrány prachové vzorky z různých hloubkových úrovní. Prachové vzorky se odebíraly pomocí návrtů (vrták Ø16 mm) a prach vycházející z návrtů se vhodným způsobem jímal. Následně byl vložen do skleněných nebo plastových nádobek s těsnými uzávěry. Vzorky byly odebírány do max. hloubky 150 mm.

Po převozu do laboratoří Kloknerova ústavu byly vzorky zváženy, vysušeny a byl proveden výpočet hmotnostní vlhkosti.

Stanovení vlhkosti vycházelo ze vztahu:

 $w = (m_{vlhk.} - m_{such.}) / m_{such.} \times 100 (\% hm.)$

kde: $\mathbf{m}_{\text{vlhk}} = \text{hmotnost vlhk\'eho vzorku};$

m_{such.} = hmotnost suchého vzorku.

Hmotnost suchého vzorku byla stanovena na vahách Kern 510, a to po 20 hodinách uložení v sušárně HS 210A při teplotě 105°C (sušením do ustáleného stavu). Míra vlhkosti zdiva byla hodnocena podle ČSN P 73 0600 [1] a ČSN 73 0610 [3].

Pro zjištění vlhkostního stavu fasád bylo provedeno plošné orientační měření příložným kapacitním vlhkoměrem DM4A.

4.2 STANOVENÍ ZASOLENÍ ZDIVA

Pro obdržení komplexního obrazu o stavu zdiva a desek IsoAir byly analýzy doplněny stanovením obsahu ve vodě rozpustných solí ve zdivu. Ze zdiva byly odebrány vzorky způsobem uvedeným v kap. 4.1.

Vysušené vzorky byly namlety na analytickou jemnost. Následně byly ze vzorků připraveny vodní výluhy v destilované vodě v poměru 1:10 (vzorek : voda). Doba vyluhování byla 24 hodin. Na výluhu se stanovovaly obsahy chloridových iontů (Cl⁻), síranových iontů (SO₄²⁻) a iontů dusičnanových (NO₃⁻). Dále se stanovovala i vodivost výluhu. Zkoušky byly provedeny podle ČSN EN ISO 10304-1 [4].

<u>5. STAVEBNĚ-TECHNICKÝ PRŮZKUM</u> <u>5.1 VLHKOST</u>

5.1.1 VIZUÁLNÍ PROHLÍDKA DIAGNOSTIKOVANÝCH PROSTOR

Diagnostika proběhla v 1. PP pavilonu B na stěnách, které byly před instalací desek IsoAir zasaženy vlhkostí. Dominantní příčinou přítomné vlhkosti je vlhkost pronikající do zdiva z terénu z rubové strany zdiva. Charakteristickými projevy této vlhkosti jsou rovnoměrná výšková úroveň vlhkostních map na obvodovém zdivu a vlhkostní klíny klesající směrem do interiéru na stěnách navazujících na stěny obvodové. Desky IsoAir byly před cca rokem a půl aplikovány na vlhké zdivo ze strany interiéru ve vybraných místnostech (obr. 3). Po roce a půl od montáže desek IsoAir je povrch stěn opatřených touto technologií bez vizuálně patrných vlhkostních map a barevných nehomogenit. Vzhledem k tomu, že obvodové zdivo neošetřené výše uvedenou technologií, např. stěny v místnosti strojovny, je zasaženo masivní kontinuální vlhkostí, lze se obávat, že v tomto stavu je obvodové zdivo v celé délce dispozice, tj. též pod aplikovanými deskami IsoAir.

Obr. 3: Místnost opatřená v únoru 2017 systémem IsoAir (18. 6. 2018)

Obr. 4: Prostor sousední strojovny vzduchotechniky bez vnitřních úprav (18. 6. 2018)

Obr. 5: Vnitřní stěna strojovny vzduchotechniky bez úprav a zásahů (18. 6. 2018)

5.1.2 VÝSLEDKY MĚŘENÍ ODEBRANÝCH VZORKŮ

Pro zjištění vlhkostního stavu systému IsoAir bylo na vybraných místech 1. PP (suterénu pavilonu B) provedeno stanovení vlhkosti. Vlhkost byla stanovena prioritně gravimetrickou metodou s doplněním měřením příložným vlhkoměrem. V 1. PP byla vybrána 4 místa s označením 1 až 4. Místa 1 a 2 náležela oblasti s uplatněným systémem IsoAir. Místa 3 a 4 byla v úsecích strojovny, kde systém IsoAir realizován nebyl. Základní charakteristiky vzorků jsou patrné z následující tabulky 1. Gravimetrie byla provedena ze vzorků odebraných z různých hloubkových úrovní konstrukce.

4

vnitřní stěna

Počet Ozn. **Popis** Počet odebraných Poznámka místa konstrukce úrovní vzorků/označení vzorky 2 až 7 - gravimetrie severozápadní vzorky 1,8,9 a 10 - příložný obvodová 1 10/1až10 vlhkoměr stěna vzorky 2 až 4 - IsoAir vzorky 12 až 17 - gravimetrie severozápadní vzorky 11, a 18 až 21 -2 obvodová 5 11/11až21 příložný vlhkoměr stěna vzorky 12 až 14 - IsoAir severozápadní všechny vzorky - příložný obvodová 5 3 5/22až26 vlhkoměr stěna všechny vzorky - příložný 3/27až29

Tab. 1: Přehled měření dle konstrukčních prvků

Místa měření a odběru vzorků pro gravimetrickou analýzu jsou patrná z obrázků 6 až 8. Výsledky stanovených vlhkostí jsou uvedeny v tabulce 2. Kritéria a klasifikace vlhkosti zdiva dle ČSN P 73 0610 [3] jsou uvedeny v Příloze 1.

3

vlhkoměr

Na základě provedeného vlhkostního průzkumu stěn spodní stavby předmětného objektu lze konstatovat:

- původní zdivo pod systémem IsoAir vykazuje vysokou až velmi vysokou vlhkost,
- > systém IsoAir (desky) vykazují vlhkost v rozmezí 1,2 až 9,6 % hm.,
- ➤ v obou případech testovaných desek IsoAir (místa 1 a 2) byl zaznamenán rovnoměrný pokles vlhkosti ve směru od původní stěny k interiéru,
- vlhkost povrchových partií desek IsoAir odpovídá hodnotě vlhkosti velmi nízké.

Obr. 6,7,8: Místa odběru vzorků 1 a 2 k následné chemické analýze

Obr. 9: Místa měření vlhkosti příložným kapacitním vlhkoměrem DM4A

Tab. 2: Shrnutí výsledků vlhkostní analýzy spodní stavby dle ČSN P 73 0610

	Profil		Vlhkost stanovená					
Ozn.	m.		Popis materiálu	výška nad	gravimetrickou	příložným		
místa	úroveň	ozn.	vzorku	podlahou	analýzou	vlhkoměrem		
				mm	% hm.	% hm.		
Místnost opatřená systémem IsoAir								
	A	1	finální úprava IsoAir	300	-	1,70		
			IsoAir 0 až 21 vč. vrchního souvrství		1,18	•		
		3	IsoAir 21 až 42		6,10	•		
	D	4	IsoAir 42 až 60	450	9,59			
1	В	5	omítka původního zdiva	450	12,20	•		
		6	zdivo - malta		9,39	•		
		7	zdivo - cihla		9,81			
		8	omítka původního zdiva		-	13,40		
	C	9	finální úprava IsoAir	600	-	0,80		
	D	10	finální úprava IsoAir	900	-	1,00		
	A	11	finální úprava IsoAir	300	-	1,60		
		12	IsoAir 0 až 25 vč. vrchního souvrství		1,27	•		
		13	IsoAir 25 až 46		5,70	•		
	_	14	IsoAir 46 až 63		9,30	•		
	В	15	omítka původního zdiva	400	11,94	•		
2		16	zdivo - cihla		11,73	•		
		17	zdivo - cihla		9,98	•		
		18	omítka původního zdiva		-	14,50		
	C	19	finální úprava IsoAir	600	-	1,70		
	D	20	finální úprava IsoAir	900	-	0,90		
	E	21	finální úprava IsoAir	2000	-	4,40		
			Strojovna vzduchotechnik	ky severozápadní ob	vodová stěna			
	A	22		300	_	20,00		
	В	23		600	_	20,00		
3	C	24	omítka původního zdiva	900	-	20,00		
	D	25		1500	-	18,50		
	E	26		2000	-	10,00		
	Strojovna vzduchotechniky vnitřní stěny							
	A	27		300	-	20,00		
4	В	28 omítka původního zdiva		600	-	20,00		
	C	29		1000	-	17,70		

Legenda:				
velmi nízká	nízká	zvýšená	vysoká	velmi vysoká

Graf. 1: Shrnutí výsledků vlhkostní analýzy spodní stavby dle ČSN P 73 0610

5.1.3 VÝSLEDKY MĚŘENÍ VLHKOSTI REFERENČNÍCH VZORKŮ

Testy desek IsoAir byly doplněny informativními testy v laboratořích Kloknerova ústavu na dvou vzorcích (kotoučích) vyříznutých z poskytnutých desek IsoAir. Kotouče o průměru cca 115 mm byly vyříznuty z desek tl. 80 mm, vloženy do zvolených kapalin (cca 8 mm) a ponechány k saturaci 24 hod. Následoval cyklus přirozeného vysušení (cca 14 dní) a následné opětovné ponoření do kapalin. Vzorek 1 byl ponořen do vody a vzorek 2 do velmi silného roztoku solí. Po 24 hodinách od posledního smočení byly vzorky rozděleny na tři kruhové segmenty po výšce a pro každý segment byla provedena gravimetrická analýza vlhkosti. Výsledky vlhkostní analýzy jsou patrné z tab. 3? a grafu 2. Na základě výsledků těchto testů lze konstatovat:

- > solný roztok nepronikl v období testů na horní povrch desek IsoAir,
- tekutiny v obou případech pronikly do struktury desek IsoAir,
- ➤ desky IsoAir vykázaly po vyjmutí z kapalin vlhkost v rozmezí 3,1 až 33,8 (% hm.).
- ➤ vlhkost horních vrstev kotouče ponořeného do solného roztoku byla výrazně nižší (3,1 % hm.) než vlhkost horních vrstev kotouče ponořeného do vody (11,3 % hm.),
- ➤ v obou případech testovaných kotoučů IsoAir (místa 1 a 2) byl zaznamenán rovnoměrný pokles vlhkosti ve směru od ponoření k volnému povrchu,

➤ vlhkost ponořených partií desek IsoAir odpovídá hodnotě vlhkosti velmi vysoké (30,1 až 33,8 % hm.).

Graf. 2: Shrnutí výsledků vlhkostní analýzy spodní stavby dle ČSN P 73 0610

Tab. 3: Shrnutí výsledků vlhkostní analýzy testovaných kotoučů dle ČSN P 73 0610

			Vlhkost stanovená			
Ozn.	Pop	is materi	álu	gravimetrickou		
vzorku	vzorku			analýzou		
				% hm.		
Vzorek IsoAir ponořen v H ₂ O						
1	IsoAir 0 až 27		11,29			
2	IsoAir 27 až 53,5		24,63			
3	IsoAir 53,5 až 78,5		33,78			
	Vzore	k IsoAir p	onořen	v roz	toku s	olí
4	IsoAir 0	až 27			í.	3,14
5	IsoAir 26,5 až 53,5		20,35			
6	IsoAir 53,5 až 78,5		30,11			
Legenda :						
velmi nízká	nízká	zvýšená	vysoká		velmi ysoká	1

5.2 ZASOLENÍ ZDIVA – OBSAH VE VODĚ ROZPUSTNÝCH SOLÍ VE ZDIVU

0,00

Pro informativní zjištění stupně zasolení zdiva a systému byly odebrány čtyři vzorky z míst styků původního zdiva a desek IsoAir. Vzorky byly následně podrobeny chemické analýze. Místa odběru vzorků (S1 až S4) jsou uvedena v Tab. 4. Kritéria a klasifikace zdiva z hlediska obsahu ve vodě rozpustných solí dle ČSN P 73 0610 [3] jsou uvedeny v Příloze 1.

Výsledky chemické analýzy odebraných vzorků neprokázaly z jednotlivých ani průměrných hodnot zvýšený obsah solí.

Výška nad Ozn. SO₄²-Cl NO_3 terénem vzorku % hm. % hm. % hm. mm **S**1 450 0,002 0,120 0,002 původní omítka pod IsoAir 0,012 0,001 S2 spodní vrstva Iso Air 450 0,021 **S**3 400 0,039 0,083 0,001 původní omítka pod IsoAir **S**4 spodní vrstva Iso Air 400 0,002 0,085 0,003

zvýšený

0,02

vysoký

0,08

velmi vysoký

Tab. 4: Shrnutí výsledků analýzy solí vzorků dle ČSN P 73 0610

6. ZÁVĚRY

PRŮMĚR Legenda nízký

Vlhkostní analýza odebraných vzorků byla provedena na základě objednávky společnosti Iglubrick servis a.s., Opletalova 983/45, Praha 1, zastoupené Ing. Markem Novotným, jednatelem společnosti.

Cílem průzkumu bylo posouzení účinnosti systému IsoAir aplikovaného cca před rokem a půl na vlhké zdivo.

Měření vlhkosti a odběr vzorků ze severozápadní obvodové stěny v úrovni 1. PP byly provedeny dne 18. 6. 2018.

Vizuální prohlídka (podrobněji v kapitole 5.1.1)

Po roce a půl od montáže desek IsoAir je povrch stěn opatřených touto technologií bez vizuálně patrných vlhkostních map a barevných nehomogenit. Vzhledem k tomu, že obvodové zdivo neošetřené výše uvedenou technologií, např. stěny v místnosti strojovny, je

zasaženo masivní kontinuální vlhkostí, lze se obávat, že v tomto stavu je obvodové zdivo v celé délce dispozice, tj. též pod aplikovanými deskami IsoAir.

Stanovení rozložení vlhkosti v systému v jednotlivých hloubkových úrovních in situ (podrobněji v kapitole 5.1.2)

Na základě provedeného vlhkostního průzkumu stěn spodní stavby předmětného objektu lze konstatovat:

- » původní zdivo pod systémem IsoAir vykazuje vysokou až velmi vysokou vlhkost,
- > systém IsoAir (desky) vykazují vlhkost v rozmezí 1,2 až 9,6 % hm.,
- ➤ v obou případech testovaných desek IsoAir (místa 1 a 2) byl zaznamenán rovnoměrný pokles vlhkosti ve směru od původní stěny k interiéru,
- Vlhkost povrchových partií desek IsoAir odpovídá hodnotě vlhkosti velmi nízké.

Stanovení rozložení vlhkosti v systému v jednotlivých hloubkových úrovních desek IsoAir v laboratorních podmínkách (podrobněji v kapitole 5.1.2)

Na základě výsledků těchto testů lze konstatovat:

- > solný roztok nepronikl v období testů na horní povrch desek IsoAir,
- tekutiny v obou případech pronikly do struktury desek IsoAir,
- desky IsoAir vykázaly po vyjmutí z kapalin vlhkost v rozmezí 3,1 až 33,8 (% hm.),
- kotouče ponořeného do solného roztoku byla výrazně nižší (3,1 % hm.) než vlhkost horních vrstev kotouče ponořeného do vody (11,3 % hm.).
- ➤ v obou případech testovaných kotoučů IsoAir (místa 1 a 2) byl zaznamenán rovnoměrný pokles vlhkosti ve směru od ponoření k volnému povrchu,
- ➤ vlhkost ponořených partií desek IsoAir odpovídá hodnotě vlhkosti velmi vysoké (30,1 až 33,8 % hm.).

Tel.: 224 353 509

Zasolení zdiva (podrobněji v kapitole 5.2)

Výsledky chemické analýzy odebraných vzorků neprokázaly z jednotlivých ani průměrných hodnot zvýšený obsah solí.

Na základě vlhkostní analýzy desek IsoAir po cca roce a půl od jejich montáže bylo prokázáno, že tyto desky kryjí vlhké zdivo způsobem, který v daném období nezhoršuje stávající vlhkostní stav zdiva, nedochází k vytlačování vlhkosti nad úroveň aplikovaných desek a zároveň nedochází k projevům vlhkosti na vnitřním líci aplikovaného systému IsoAir. Tato zjištění úzce souvisejí se základními vlastnostmi desek, které vlhké zdivo kryjí s minimálním navýšením difuzního odporu, jsou schopny přijímat vlhkost a následně ji redistribuovat do své pórové struktury a dále umožňují vypařování "vydýchávání" vlhkosti do vnitřního vzduchu.

Seznam příloh

PŘÍLOHA 1: Klasifikace vlhkosti a salinity

Posudek byl formulován na základě výsledků místního šetření, laboratorních zkoušek, numerických analýz a na základě projektové dokumentace, podkladů a informací poskytnutých objednatelem. Zpracovatel si vyhrazuje právo na korekce a doplnění posudku, pokud budou zjištěny další podstatné skutečnosti, které mu v době zpracování posudku nebyly známy nebo mu nebyly poskytnuty nebo mu byly nepravdivě sděleny či mu byly zamlčeny.

PŘÍLOHA 1

Klasifikace vlhkosti dle ČSN P 73 0610

Stupeň vlhkosti	Vlhkost zdiva					
velmi nízká			W	<	3	
nízká	3	<u> </u>	W	<	5	
zvýšená	5	<u> </u>	W	<	7,5	
vysoká	7,5	<u>≤</u>	W	<u> </u>	10	
velmi vysoká			W	>	10	

Klasifikace salinity zdiva dle ČSN P 73 6010

	CI.	NO ₃	SO_4^{2-}
	[% hmot.]	[% hmot.]	[% hmot.]
nízká hodnota	x < 0,075	x < 0,1	x < 0,50
zvýšená hodnota	0,075 - 0,20	0,1-0,25	0,5-2,0
vysoká hodnota	0,20-0,50	0,25-0,5	2,0 – 5,0
velmi vysoká hodnota	> 0,50	> 0,5	> 5,0