N-grams

Gustave Cortal

Gustave Cortal 1/19

Tokenization is splitting text into individual words or **tokens** Multiple challenges:

▶ Different delimiters: spaces, punctuation

Contractions: "can't" → "can not"

► Special cases: dates, numbers, URLs, hashtags, email addresses

Gustave Cortal 2 / 19

Input

"Natural language processing enables computers to understand human language."

Tokenized output

Natural, language, processing, enables, computers, to, understand, human, language, .

Gustave Cortal 3/19

Input

"Dr. Smith's email, dr.smith@example.com, isn't working since 01/02/2023; try reaching out at (555) 123-4567 in San Francisco."

Tokenized output

Dr., Smith's, email, "dr.smith@example.com, "isn't, working, since, 01/02/2023, ;, try, reaching, out, at, (, 555,), 123-4567, in, San Francisco.

Gustave Cortal 4/19

Rule-based approach

Use predefined rules, like splitting by spaces or punctuation using regular expressions

Machine learning approach

Learn from data to handle complex cases, e.g., using Byte-Pair Encoding subword tokenization

Gustave Cortal 5 / 19

What is a language model?

A language model is a probabilistic model that:

- computes the **probability of a sequence of words** S $P(S) = P(w_1, w_2, ..., w_n)$
- computes the **probability of an upcoming word** $P(w_5|w_1, w_2, w_3, w_4)$

Gustave Cortal 6 / 19

What is a language model?

A language model is a probabilistic model that:

- computes the **probability of a sequence of words** S $P(S) = P(w_1, w_2, ..., w_n)$
- computes the **probability of an upcoming word** $P(w_5|w_1, w_2, w_3, w_4)$

Useful for building conversational agents, performing translation, speech recognition, summarization, question-answering, classification, etc.

Gustave Cortal 6/19

What is a language model?

A language model is a probabilistic model that:

- computes the **probability of a sequence of words** S $P(S) = P(w_1, w_2, ..., w_n)$
- computes the **probability of an upcoming word** $P(w_5|w_1, w_2, w_3, w_4)$

Useful for building conversational agents, performing translation, speech recognition, summarization, question-answering, classification, etc.

For example, for speech recognition: P(I saw a van) >> P(eyes awe of an)

Gustave Cortal 6/19

How to compute P(S)?

Definition of conditional probabilities:

$$P(B|A) = P(A,B)/P(A)$$

$$P(A,B) = P(A)P(B|A)$$

Gustave Cortal 7/19

How to compute P(S)?

Definition of conditional probabilities:

$$P(B|A) = P(A, B)/P(A)$$

$$P(A, B) = P(A)P(B|A)$$

Applying the **chain rule** to multiple variables:

$$P(A, B, C, D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C)$$

Gustave Cortal 7/19

How to compute P(S)?

Definition of **conditional probabilities**:

$$P(B|A) = P(A, B)/P(A)$$

$$P(A, B) = P(A)P(B|A)$$

Applying the **chain rule** to multiple variables:

$$P(A, B, C, D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C)$$

Applying the chain rule to compute the joint probability of words in a sentence:

$$P(I \text{ am Gustave}) = P(I)P(am|I)P(Gustave|I \text{ am})$$

Gustave Cortal 7/19

How to estimate these probabilities?

Can we just count and divide?

```
P(\text{processing}|I \text{ am Gustave, I love natural language}) = \frac{\text{Count}(I \text{ am Gustave, I love natural language processing})}{\text{Count}(I \text{ am Gustave, I love natural language})}
```

Gustave Cortal 8 / 19

How to estimate these probabilities?

Can we just count and divide?

```
P(processing|I am Gustave, I love natural language) = 

Count(I am Gustave, I love natural language processing)
Count(I am Gustave, I love natural language)
```

→ We'll never see enough data for estimating long sentences

Gustave Cortal 8 / 19

N-grams are Markov models

Markov assumption uses a limited context window to approximate P(processing|I am Gustave, I love natural language)

Gustave Cortal 9 / 19

N-grams are Markov models

Markov assumption uses a limited context window to approximate P(processing|I am Gustave, I love natural language)

P(processing) Unigram

P(processing|language) Bigram

P(processing|natural language) Trigram

Gustave Cortal 9 / 19

N-grams are Markov models

Markov assumption uses a limited context window to approximate P(processing|I am Gustave, I love natural language)

P(processing) Unigram

P(processing|language) Bigram

P(processing|natural language) Trigram

 \rightarrow Language has long-distance dependencies, therefore n-grams are insufficient models of language

Gustave Cortal 9 / 19

Example: estimating bigram probabilities

Estimation using
$$P(w_i|w_{i-1}) = \frac{\operatorname{count}(w_i,w_{i-1})}{\operatorname{count}(w_{i-1})}$$

Gustave Cortal 10 / 19

Example: estimating bigram probabilities

Estimation using
$$P(w_i|w_{i-1}) = \frac{\operatorname{count}(w_i, w_{i-1})}{\operatorname{count}(w_{i-1})}$$

- <s> I am Gustave </s>
- <s> Gustave I am </s>
- <s> I love natural language processing </s>

$$P(I|am) = \frac{\text{count}(I, am)}{\text{count}(am)} = \frac{2}{3}$$

Gustave Cortal 10 / 19

How to evaluate performance?

We calculate probabilities on a training set and evaluate on the unseen test set

Gustave Cortal 11/19

How to evaluate performance?

We calculate probabilities on a training set and evaluate on the unseen test set

We want a language model (LM) that best predicts the test set

Gustave Cortal 11/19

How to evaluate performance?

We calculate probabilities on a training set and evaluate on the unseen test set

We want a language model (LM) that best predicts the test set

Therefore, a good LM assigns a higher probability to the test set than another LM $\,$

If the test set has n tokens, then $P(\text{test set}) = (w_1, w_2, ..., w_n)$

 $P_{\text{good LM}}(\text{test set}) > P_{\text{bad LM}}(\text{test set})$

Gustave Cortal 11/19

Perplexity

Probability depends on the number of tokens, the longer the text, the smaller the probability

Gustave Cortal

Perplexity

Probability depends on the number of tokens, the longer the text, the smaller the probability

 \rightarrow We normalize by the number of tokens to have a metric per token:

Perplexity(test set) =
$$(w_1, w_2, ..., w_n)^{-\frac{1}{N}}$$

Perplexity is the inverse probability of the test set, normalized by the length

Gustave Cortal 12 / 19

Perplexity

Probability depends on the number of tokens, the longer the text, the smaller the probability

 \rightarrow We normalize by the number of tokens to have a metric per token:

Perplexity(test set) =
$$(w_1, w_2, ..., w_n)^{-\frac{1}{N}}$$

Perplexity is the inverse probability of the test set, normalized by the length

Minimizing perplexity is the same as maximizing probability

Gustave Cortal 12 / 19

Practical issues

Due to **unknown words**, bigrams with zero probability drop sentence probabilities to zero and prevent us from calculating perplexity

Gustave Cortal 13 / 19

Practical issues

Due to **unknown words**, bigrams with zero probability drop sentence probabilities to zero and prevent us from calculating perplexity

ightarrow Add-1 smoothing pretends we saw each word one more time than we did

$$P(w_i|w_{i-1}) = \frac{\text{count}(w_i, w_{i-1}) + 1}{\text{count}(w_{i-1}) + V}$$

where V is the vocabulary size

Gustave Cortal 13 / 19

Practical issues

Due to **unknown words**, bigrams with zero probability drop sentence probabilities to zero and prevent us from calculating perplexity

ightarrow Add-1 smoothing pretends we saw each word one more time than we did

$$P(w_i|w_{i-1}) = \frac{\text{count}(w_i, w_{i-1}) + 1}{\text{count}(w_{i-1}) + V}$$

where V is the vocabulary size

To avoid underflow, every computation is performed in log space

$$\log(p_1 \times p_2 \times p_3) = \log(p_1) + \log(p_2) + \log(p_3)$$

Gustave Cortal 13 / 19

Better n-grams using backoff or interpolation methods

Backing off through progressively shorter context models under certain conditions. For example, use trigram if $count(w_i, w_{i-1}, w_{i-2}) > 0$, otherwise use bigram.

Gustave Cortal 14/19

Better n-grams using backoff or interpolation methods

Backing off through progressively shorter context models under certain conditions. For example, use trigram if $count(w_i, w_{i-1}, w_{i-2}) > 0$, otherwise use bigram.

Interpolation methods train individual models for different n-gram orders and then interpolate them together.

$$\hat{P}(w_n|w_{n-2},w_{n-1}) = \lambda_1 P(w_n|w_{n-2},w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$$

where
$$\sum_{i=1}^{3} \lambda_i = 1$$

Gustave Cortal 14/19

From n-gram to neural network language models

Neural network language models solve major problems with n-grams

- ➤ The number of parameters increases exponentially as the n-gram order increases
- ▶ N-grams have no way to generalize from training to test set

Neural language models instead **project words into a continuous space** in which words with similar contexts have similar representations

Gustave Cortal 15 / 19

How to represent word meaning?

Word meaning as a point in a multidimensional space

Figure: A three-dimensional affective space of connotative meaning by Osgood et al. (1957)

Gustave Cortal 16 / 19

How to represent word meaning?

Defining meaning by linguistic distribution

The meaning of a word is its use in a language, Ludwig Wittgenstein (1953)

If A and B have almost identical environments (words around them), then they are synonyms, Zellig Harris (1954)

Gustave Cortal 17/19

How to represent word meaning?

Word meaning as a point in a multidimensional space + Defining meaning by linguistic distribution = **Defining meaning as a point in a multidimensional space based on linguistic distribution**

The meaning of a word is a vector called an embedding

Gustave Cortal 18/19

Components of a machine learning classifier

- A feature representation of the input x
- ► A classification function that computes the estimated class
- ► An objective function for learning (e.g., cross-entropy loss)
- ► An algorithm for optimizing the objective function (e.g., stochastic gradient descent)

Gustave Cortal 19 / 19