# Mobilné technológie GSM, 3G, LTE - prehľad, návrh a implementácia

Richard Wittlinger

Žilinská univerzita

8. December 2015



# Analog to digital conversion Pulse Code Modulation



# Circuit switching vs Packet switching



# Digital signals

- discrete, discontinuous voltage pulses
- each pulse is a signal element
- binary data encoded into signal elements



#### **Digital Data, Analog Signal**

- Main use is public telephone system
  - has freq range of 300Hz to 3400Hz
  - use modem (modulator-demodulator)
- The digital data modulates the amplitude A, frequency  $f_c$ , or phase  $\theta$  of a carrier signal



### **Modulation**

- In DPSK, the phase shift is with reference to the previous bit transmitted rather than to some constant reference signal
- Binary 0:signal burst with the same phase as the previous one
- Binary 1:signal burst of opposite phase to the preceding one



• In QPSK, instead of a phase shift of  $180^{\circ}$  as allowed in BPSK, it uses phase shifts separated by multiples of  $\pi/2$  ( $90^{\circ}$ ).

### **Modulation**

#### **QPSK**









### Wireless Network Basics

 Wireless network data/telephony is a radio-based technology; radio waves are electromagnetic waves that antennas propagate



### Wireless Network Basics

 Cellular frequencies in Europe are in 800 MHz, 900 MHz, 1800 MHz, 2100MHz and 2600 MHz frequency band



# Cellular Technology Evolution

1G: Analog

2G/3G: Digital

4G: Packet data



# Cellular networks (2G,3G,4G)



#### Cellular networks - technology

- Uplink & Downlink separated in
  - ➤ Time: Time Division Duplex (TDD), or
  - Frequency: Frequency Division Duplex (FDD)
- Information (voice, data) is digitized and bit streams modulated onto carrier
- Modulation, data redundancy (coding), transmission power adapted to varying wireless channel quality
- Spatial attenuation of signal
  - > Frequency can be reused (frequency reuse)

### 2G: Global System for Mobile communications (GSM)

- 900/1800 MHz band (US: 850/1900 MHz)
- For 900 MHz band
  - ➤ Uplink: 890-915
  - > Downlink: 935-960
- 25 MHz bandwidth 124 carrier frequency channels, spaced 200KHz apart
- Time Division Multiplexing for 8 full rate speech channels per frequency channel 0,2 MHz.
- Handset transmission power limited to 2 W in GSM850/900 and 1 W in GSM1800/1900.

# **GSM Frequencies**

- Originally designed on <u>900</u>MHz range, now also available on 800MHz, <u>1800</u>MHz and 1900 MHz ranges.
- Separate Uplink and Downlink frequencies
  - One channel 0,2 MHz on the 1800 MHz frequency band



### **GSM** Architecture





# 3G, 3.5G and 4G (LTE)

focused on the DATA transmission

# GSM Evolution to 3G

**GSM 9.6**kbps (one **timeslot**)
GSM Data
Also called CSD

#### **Enhanced Data Rates for Global Evolution**

Uses 8PSK modulation
3x improvement in data rate on short distances
Can fall back to GMSK for greater distances
Combine with GPRS (EGPRS) ~ 384 kbps



#### **General Packet Radio Services**

Data rates up to ~ 115 kbps

Max: 8 timeslots used as any one time

Packet switched; resources not tied up all the time

Contention based. Efficient, but variable delays

GSM / GPRS core network re-used by WCDMA

(3G)

### 3G - UMTS

- Universal Mobile Telecommunications System (UMTS)
- UMTS is an upgrade from GSM via GPRS or EDGE
- The standardization work for UMTS is carried out by Third Generation Partnership Project (3GPP)
- Data rates of UMTS are:
  - > 144 kbps for rural
  - ≥ 384 kbps for urban outdoor
  - > 2048 kbps for indoor and low range outdoor

# 3.5G (HSPA/HSPA+)

High Speed Packet Access (HSPA) is an amalgamation of two mobile telephony protocols, High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA), that extends and improves the performance of existing WCDMA protocols

3.5G introduces many new features that will enhance the UMTS technology in future. These include:

- Adaptive Modulation and Coding
- Fast Scheduling
- Backward compatibility with 3G
- Enhanced Air Interface

# 4G (LTE)

- stands for Long Term Evolution
- Optimized for All-IP traffic
  - High network throughput
  - Low latency
  - Plug & Play architecture
  - Low Operating Costs
  - All-IP network
  - Simplified upgrade path from 3G networks

- Faster data downloads/uploads
- Improved response for applications
- Improved end-user experience

for Network Operators

for End Users





# LTE UE Categories

|                 | Class 1   | Class 2    | Class 3     | Class 4     | Class 5     |
|-----------------|-----------|------------|-------------|-------------|-------------|
| Peak rate DL/UL | 10/5 Mbps | 50/25 Mbps | 100/50 Mbps | 150/50 Mbps | 300/75 Mbps |
| RF bandwidth    | 20 MHz    | 20 MHz     | 20 MHz      | 20 MHz      | 20 MHz      |
| Modulation DL   | 64QAM     | 64QAM      | 64QAM       | 64QAM       | 64QAM       |
| Modulation UL   | 16QAM     | 16QAM      | 16QAM       | 16QAM       | 64QAM       |
| Rx diversity    | Yes       | Yes        | Yes         | Yes         | Yes         |
| MIMO DL         | Optional  | 2x2        | 2x2         | 2x2         | 4x4         |

# LTE Throughput in Test Network

Base station located at X.

#### **L1 Throughput**

Max: 154 Mbps Mean: 78 Mbps Min: 16 Mbps

#### **User Speed**

Max: 45 km/h Mean: 16 km/h Min: 0 km/h

Sub-urban area with lineof-sight: less than 40%

of the samples

Heights of surrounding buildings: 15-25 m

20 MHz Channel

2X2 MIMO



1541239774

37

54

23

12

# LTE Throughput in various Modes



#### **Latency of Different Technologies**



### Year 2020: Mobile Broadband Beyond 4G

1000 times more mobile traffic



10x Spectrum







## Core and access joint QoS



### Core and access joint QoS



#### Mobile broadband can be seen like this ...



### ... or like this



# LTE site solution 3-sector Outdoor site with Nokia Flexi BTS



## ... and also





# Broadband approaches

#### **Strength**

Constant connectivity
Broadband capability
across extremely wide

#### Weakness

**Lower capacity** than wireline approaches

Inability to serve highbandwidth applications such as IP TV

**Mobile** broadband (EDGE, HSPA, LTE)

Good access solution for areas lacking wireline

infrastructure

areas

Capacity enhancement options via FMC

**Excellent voice** communications

Wireline broadband (DSL, DOCSIS, FTTH ...)

**High capacity** broadband at very high data rates Evolution to extremely high throughput rates

**Expensive** to deploy new networks, especially in developing economies lacking infrastructure



# Frekvenčné spektrum

## LTE spectrum & ecosystem

#### LTE FDD

Early FDD LTE ecosystem (commercial networks)

→ 2600 (Europe, APAC)

→ 2100 (Japan)

→ 1900 PCS (US)

→ 1800 (GSM refarming)

→ 1700/2100 AWS (NAM incl. Canada)

→ 850 (South Korea)

→ 800 Digital Dividend (Europe, MEA)

Upper 700 MHz, C (Verizon)

→ Lower 700 MHz, B/C (AT&T)

### TD-LTE

Early TD-LTE ecosystem mainly building on

2300 (MEA, India, China, APAC, Russia)

2600 (China, LatAM, Europe)

| LTE FDD |      |               |               |                                  |  |  |
|---------|------|---------------|---------------|----------------------------------|--|--|
| Band    | MHz  | Uplink MHz    | Downlink MHz  |                                  |  |  |
| 1       | 2x60 | 1920-1980     | 2110-2170     | UMTS core                        |  |  |
| 2       | 2x60 | 1850-1910     | 1930-1990     | US PCS                           |  |  |
| 3       | 2x75 | 1710-1785     | 1805-1880     | GSM 1800                         |  |  |
| 4       | 2x45 | 1710-1755     | 2110-2155     | NAM AWS                          |  |  |
| 5       | 2x25 | 824-849       | 869-894       | 850                              |  |  |
| 7       | 2x70 | 2500-2570     | 2620-2690     | 2600 FDD                         |  |  |
| 8       | 2x35 | 880-915       | 925-960       | GSM 900                          |  |  |
| 9       | 2x35 | 1749-1784     | 1844-1879     | Japan, Korea 1700                |  |  |
| 10      | 2x60 | 1710-1770     | 2110-2170     | US AWS extension.                |  |  |
| 11      | 2x20 | 1427.9-1447.9 | 1475.9-1495.9 | Japan 1500                       |  |  |
| 12      | 2x18 | 698-716       | 728-746       | US                               |  |  |
| 13      | 2x10 | 777-787       | 746-756       | Verizon                          |  |  |
| 14      | 2x10 | 788-798       | 758-768       | US - Public Safety               |  |  |
| 17      | 2x12 | 704-716       | 734-746       | AT&T                             |  |  |
| 18      | 2x15 | 815-830       | 860-875       | Japan - 800 (KDDI)               |  |  |
| 19      | 2x15 | 830-845       | 875-890       | Japan - 800 (DoCoMo)             |  |  |
| 20      | 2x30 | 832-862       | 791-821       | EU 800 DD, MEA                   |  |  |
| 21      | 2x15 | 1448-1463     | 1496-1511     | Japan 1500                       |  |  |
| 22      | 2x80 | 3410-3490     | 3510-3590     | 3.5 GHz FDD                      |  |  |
| 23      | 2x20 | 2000-2020     | 2180-2200     | US S-band                        |  |  |
| 24      | 2x34 | 1626.5-1660.5 | 1525-1559     | US (LightSquared)                |  |  |
| 25      | 2x65 | 1850-1915     | 1930-1995     | US PCS extension (Sprint)        |  |  |
| 26      | 2x35 | 814-849       | 859-894       | 850 extension (Korea-KT, Sprint) |  |  |

#### TD-LTE

| Band | MHz   | Uplink MHz | Downlink MHz |                                    |
|------|-------|------------|--------------|------------------------------------|
| 33   | 1x20  | 1900-1920  | 1900-1920    | UMTS core - TDD                    |
| 34   | 1x15  | 2010-2025  | 2010-2025    | UMTS core - TDD,<br>China TD/SCDMA |
| 35   | 1x60  | 1850-1910  | 1850-1910    | US (band 2 - TDD variant)          |
| 36   | 1x60  | 1930-1990  | 1930-1990    | US (band 2 - TDD variant)          |
| 37   | 1x20  | 1910-1930  | 1910-1930    | US PCS centre-gap                  |
| 38   | 1x50  | 2570-2620  | 2570-2620    | China, LatAM, Europe               |
| 39   | 1x40  | 1880-1920  | 1880-1920    | China PHS                          |
| 40   | 1x100 | 2300-2400  | 2300-2400    | MEA, India, China, Russia          |
| 41   | 1x194 | 2496-2690  | 2496-2690    | US (Clearwire)                     |
| 42   | 1x200 | 3400-3600  | 3400-3600    | 3.4/5 GHz - TDD                    |
| 43   | 1x200 | 3600-3800  | 3600-3800    | 3.7/8 GHz - TDD                    |

# LTE pásma v SR

| Pásmo                             | Označenie<br>pásma | O2                 | Orange            | Telekom           | Swan                |
|-----------------------------------|--------------------|--------------------|-------------------|-------------------|---------------------|
| 800 MHz<br>1 800 MHz<br>2 600 MHz | 20<br>3<br>7       | Áno<br>Áno<br>Nemá | Áno<br>Áno<br>Áno | Áno<br>Áno<br>Áno | Nemá<br>Áno<br>Nemá |
| 2 600 MHz (TDD)                   | 38                 | Nemá               | Nemá              | Áno               | Nem                 |

### Frekvencie v SR

#### Tradičné

| Operator                | GSM 900      | GSM 1800     | UMTS – FDD | UMTS – TDD | Total     |
|-------------------------|--------------|--------------|------------|------------|-----------|
| Orange Slovensko plc    | 10.2 MHz X 2 | 15.2 MHz X 2 | 20 MHz X 2 | 5 MHz      | 95.8 MHz  |
| Slovak Telekom plc      | 10.2 MHz X 2 | 15.2 MHz X 2 | 20 MHz X 2 | 5 MHz      | 95.8 MHz  |
| Telefonica Slovakia Ltd | 10.2 MHz X 2 | 15.2 MHz X 2 | 20 MHz X 2 | 5 MHz      | 95.8 MHz  |
| Total                   | 61.2 MHz     | 91.2 MHz     | 120 MHz    | 15 MHz     | 287.5 MHz |

| 790 – 791  | 791 - 796                                  | 796 - 801 | 801 - 806 | 806-811    | 811-816 | 816-821  | 821 – 832 | 832 - 837      | 837 - 842 | 842 - 847 | 847 - 852 | 852 - 857 | 857 - 862 |
|------------|--------------------------------------------|-----------|-----------|------------|---------|----------|-----------|----------------|-----------|-----------|-----------|-----------|-----------|
| Guard band | Downlink                                   |           |           | delixalduo |         |          | U         | plink          | ***       |           |           |           |           |
| 1 MHz      | 30 MHz<br>(6 blocks with a width of 5 MHz) |           |           | 11 MHz     |         | (6 block |           | MHz<br>a width | of 5 M    | Hz)       |           |           |           |

Nové '2014



### Frekvencie v SR

#### 1800 MHz pred aukciou 2014:



#### Aukcia '2014:

Orange dva 10 MHz bloky v pásme 800 MHz, dva 4,8 MHz bloky v pásme 1 800 MHz a dva 30 MHz bloky v pásme 2 600 MHz

Slovak Telekom dva 10 MHz bloky v pásme 800 MHz, dva 40 MHz bloky v pásme 2600 MHz FDD a 50 MHz v pásme 2 600 MHz TDD

O2 dva 10 MHz bloky v pásme 800 MHz, dva 0,6 MHz bloky v pásme 1 800 MHz

Štvorka (Swan) dva 15 MHz bloky v pásme 1 800 MHz

# 1800 MHz LTE Allocation – for diverse LTE bandwidth options

20 MHz LTE (100 RBs)

15 MHz LTE (75 RBs)

10 MHz LTE (50 RBs)

5 MHz LTE (25 RBs)

3 MHz LTE (15 RBs)

1.4 MHz LTE (6 RBs)



| Šírka pásma<br>(MHz) | Maximálne<br>teoretické rýchlosti<br>sťahovania (MIMO<br>2x2) v Mbit/s | Maximálne<br>teoretické rýchlosti<br>sťahovania (MIMO<br>4x4) v Mbit/s |
|----------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| 20                   | 150                                                                    | 300                                                                    |
| 15                   | 110                                                                    | 220                                                                    |
| 10                   | 73                                                                     | 147                                                                    |
| 5                    | 36                                                                     | 73                                                                     |

Spectrum required for LTE deployment

 Coordinated case

 Uplink
 Downlink

 18.2 MHz
 18.4 MHz

 13.6 MHz
 13.8 MHz

 9.2 MHz
 9.4 MHz

 4.6 MHz
 4.8 MHz

 2.8 MHz
 3.0 MHz

 1.2 MHz
 1.2 MHz

Achievable peak data rates

on LTE bandwidth

150 / 47 Mbps 110 / 35 Mbps

74 / 23 Mbps

37 / 11 Mbps

22 / 7 Mbps

9 / 3 Mbps

## LTE refarming to 900/1800 MHz frequency bands

- Introduction of LTE services into frequency band that is already used for GSM
- In order to fit the LTE carriers into same bandwidth, typically spectrum efficiency needs to be improved





## 1800 MHz LTE - Refarming Evolution example

#### **GSM** only with 60 carriers



#### LTE5.0 MHz + 36 GSM carriers



37 Mbps

#### LTE 10MHz + 13 GSM carriers



74 Mbps

# Dimenzovanie a návrh mobilnej siete

#### Základné údaje pri návrhu:

- Pokrytie územia
- Počet užívateľov v jednej bunke (kapacita a rýchlosť)
- Business case

## **Cellular Geometries**



# **Frequency Reuse**



# LTE introduction – reusing existing network grid LTE 2600, UMTS 2100 on GSM 1800MHz grid (urban sites)



General Assumptions:
Urban Environment,
indoor coverage (15 dB)
WCDMA 5, LTE 10MHz bandwidth
Dedicated antennas for 2100, 2600

| Cell range<br>Link budget (MAPL) | UL    | DL    |
|----------------------------------|-------|-------|
| <b>GSM1800</b> - km              | 0.97  | 1.34  |
| dB                               | 135.8 | 140.7 |
| WCDMA - km                       | 1.17  | 1.22  |
| dB                               | 140.2 | 140.8 |
| LTE2600 - km                     | 1.08  | 1.09  |
| dB                               | 142.8 | 142.9 |

GSM - voice\*

More advanced radio technology:

- higher allowable path loss
- minimal difference in cell range

LTE-2600, UMTS-2100 and GSM-1800 can be deployed on same grid

# LTE introduction – reusing existing network grid LTE 2600, UMTS 2100 on GSM 1800MHz grid (urban sites)



General Assumptions:
Urban Environment,
indoor coverage (15 dB)
WCDMA 5, LTE 10MHz bandwidth
Dedicated antennas for 2100, 2600

| Cell range<br>Link budget (MAPL) | UL    | DL    |
|----------------------------------|-------|-------|
| GSM1800 - km                     | 0.97  | 1.34  |
| dB                               | 135.8 | 140.7 |
| WCDMA - km                       | 1.17  | 1.22  |
| dB                               | 140.2 | 140.8 |
| LTE2600 - km                     | 1.08  | 1.09  |
| dB                               | 142.8 | 142.9 |

WCDMA – CS64, HSPA- 64/384 kbps\* More advanced radio technology:

- higher allowable path loss
- minimal difference in cell range

LTE-2600, UMTS-2100 and GSM-1800 can be deployed on same grid

<sup>\*</sup> HSPA 64/512kbps for HSPA-only operation

# LTE introduction – reusing existing network grid LTE 2600, UMTS 2100 on GSM 1800MHz grid (urban sites)



General Assumptions:
Urban Environment,
indoor coverage (15 dB)
WCDMA 5, LTE 10MHz bandwidth
Dedicated antennas for 2100, 2600

| Cell range<br>Link budget (MAPL) | UL    | DL    |
|----------------------------------|-------|-------|
| GSM1800 - km                     | 0.97  | 1.34  |
| dB                               | 135.8 | 140.7 |
| WCDMA - km                       | 1.17  | 1.22  |
| dB                               | 140.2 | 140.8 |
| <b>LTE2600</b> - km              | 1.08  | 1.09  |
| dB                               | 142.8 | 142.9 |

LTE - 64/1024 kbps

More advanced radio technology:

- higher allowable path loss
- minimal difference in cell range

LTE-2600, UMTS-2100 and GSM-1800 can be deployed on same grid

### **GSM/LTE** – site solution



### **Coverage maps**

http://www.which.co.uk/technology/phones/reviews-ns/best-mobile-phone-networks/mobile-phone-coverage-map/

http://opencellid.org/#action=filters.GPSPositions&mcc=231&mnc=01

Each Base station is identified by

**MCC** — a Mobile Country Code. This code identifies the country (Slovensko 231)

**MNC** - a Mobile Network Code. This code identifies the mobile operator (01 Orange, 02+04 Telekom, 06 O2, 03 SWAN)

**LAC** - Location Area Code is a unique number of current location area. A location area is a set of base stations that are grouped together to optimize signalling.

**CellID** (CID) — is a generally unique number used to identify each Base transceiver station (BTS) or sector of a BTS within a Location area code.



## **Base stations approximate coordinates**



