Cryptografie

http://www.michielstaessen.be/cryptografie

7 mei 2007

- Inleiding
 - Wat is cryptografie
 - Enkele begrippen
- Symmetrische Cryptografie
 - Substitutie
 - Enigma
 - S-DES
 - DES
- Wiskunde
 - Priem/Relatief priem
 - Modulaire rekenkunde
 - Fermat
 - Fuler
- 4 Asymmetrische Cryptografie
 - Sleuteluitwisseling
 - Hashes
 - RSA

Wat is ...

Codeertheorie coderen om maximale leesbaarheid te garanderen Cryptografie coderen om boodschap geheim te houden

Enkele begrippen

```
Plaintext niet-gecodeerd bericht
```

Ciphertext gecodeerd bericht

symmetrische cryptografie (of conventionele cryptografie)

- encyptie = decryptie
- 1 sleutel

asymmetrische cryptografie (of public-key cryptografie)

- encyptie ≠ decryptie
- 2 sleutels

Caesarvercijfering

Simpele verschuiving van letters

ROT13 Caesarvercijfering met 13 plaatsen

Enkelvoudige substitutie

Elke letter wordt vervangen door een andere letter 26! $(4 \cdot 10^{26})$ mogelijkheden bij gebruik van enkel letters

Enigma

S-DES, simpele variant van DES

- educatieve variant van DES
- codeert in blokken (8 bits)
- Binaire codering
- 10-bits sleutel (niet veilig!)

Het algoritme

- P10 (Permutatie)
- 2 Enkele verschuiving naar links per 5 bits
 - Tweevoudige verschuiving naar links per 5 bits
 - P8 (Permutatie)
 - Resultaat: Sleutel 2
- P8 (Permutatie)
- Resultaat: Sleutel 1

- P10 (Permutatie)
- 2 Enkele verschuiving naar links per 5 bits
 - Tweevoudige verschuiving naar links per 5 bits
 - P8 (Permutatie)
 - Resultaat: Sleutel 2
- P8 (Permutatie)
- Resultaat: Sleutel 1

- P10 (Permutatie)
- 2 Enkele verschuiving naar links per 5 bits
 - Tweevoudige verschuiving naar links per 5 bits
 - P8 (Permutatie)
 - Resultaat: Sleutel 2
- P8 (Permutatie)
- Resultaat: Sleutel 1

- P10 (Permutatie)
- 2 Enkele verschuiving naar links per 5 bits
 - Tweevoudige verschuiving naar links per 5 bits
 - P8 (Permutatie)
 - Resultaat: Sleutel 2
- P8 (Permutatie)
- Resultaat: Sleutel 1

- P10 (Permutatie)
- 2 Enkele verschuiving naar links per 5 bits
 - Tweevoudige verschuiving naar links per 5 bits
 - P8 (Permutatie)
 - Resultaat: Sleutel 2
- P8 (Permutatie)
- Resultaat: Sleutel 1

- P10 (Permutatie)
- 2 Enkele verschuiving naar links per 5 bits
 - Tweevoudige verschuiving naar links per 5 bits
 - P8 (Permutatie)
 - Resultaat: Sleutel 2
- P8 (Permutatie)
- Resultaat: Sleutel 1

- P10 (Permutatie)
- 2 Enkele verschuiving naar links per 5 bits
 - Tweevoudige verschuiving naar links per 5 bits
 - P8 (Permutatie)
 - Resultaat: Sleutel 2
- P8 (Permutatie)
- Resultaat: Sleutel 1

- Beginpermutatie
- ② functie f_K met substituties en permutaties
- splits de invoer in eerste 4 bits (L) en laatste 4 bits (R)
- 4 Afbeelding F
 - Expansie/Permutatie
 - XOR met Sleutel 1
 - P4 (Permutatie)
- 3 XOR met L (eerste 4 bits)
- O Verwissel L met R (Switch)
- herhaal stap 1 tot 5

- Beginpermutatie
- 2 functie f_K met substituties en permutaties
- splits de invoer in eerste 4 bits (L) en laatste 4 bits (R)
- 4 Afbeelding F
 - Expansie/Permutatie
 - XOR met Sleutel 1
 - P4 (Permutatie)
- 5 XOR met L (eerste 4 bits)
- Verwissel L met R (Switch)
- herhaal stap 1 tot 5

- Beginpermutatie
- 2 functie f_K met substituties en permutaties
- 3 splits de invoer in eerste 4 bits (L) en laatste 4 bits (R)
- 4 Afbeelding F
 - Expansie/Permutatie
 - XOR met Sleutel 1
 - Operation P4 (Permutatie)
- 3 XOR met L (eerste 4 bits)
- O Verwissel L met R (Switch)
- herhaal stap 1 tot 5

- Beginpermutatie
- 2 functie f_K met substituties en permutaties
- 3 splits de invoer in eerste 4 bits (L) en laatste 4 bits (R)
- 4 Afbeelding F
 - Expansie/Permutatie
 - 2 XOR met Sleutel 1
 - Operation P4 (Permutatie)
- 5 XOR met L (eerste 4 bits)
- O Verwissel L met R (Switch)
- herhaal stap 1 tot 5

- Beginpermutatie
- 2 functie f_K met substituties en permutaties
- 3 splits de invoer in eerste 4 bits (L) en laatste 4 bits (R)
- 4 Afbeelding F
 - Expansie/Permutatie
 - 2 XOR met Sieute
 - P4 (Permutatie)
- Solution (Solution) Solution (Solution)
 Solution (Solution)
- Verwissel L met R (Switch)
- herhaal stap 1 tot 5

- Beginpermutatie
- 2 functie f_K met substituties en permutaties
- 3 splits de invoer in eerste 4 bits (L) en laatste 4 bits (R)
- 4 Afbeelding F
 - Expansie/Permutatie
 - XOR met Sleutel 1
 - P4 (Permutatie)
- Solution XOR met L (eerste 4 bits)
- O Verwissel L met R (Switch)
- herhaal stap 1 tot 5

- Beginpermutatie
- 2 functie f_K met substituties en permutaties
- 3 splits de invoer in eerste 4 bits (L) en laatste 4 bits (R)
- 4 Afbeelding F
 - Expansie/Permutatie
 - 2 XOR met Sleutel 1
 - 9 P4 (Permutatie)
- Solution XOR met L (eerste 4 bits)
- Verwissel L met R (Switch)
- herhaal stap 1 tot 5

- Beginpermutatie
- 2 functie f_K met substituties en permutaties
- 3 splits de invoer in eerste 4 bits (L) en laatste 4 bits (R)
- 4 Afbeelding F
 - Expansie/Permutatie
 - 2 XOR met Sleutel 1
 - 9 P4 (Permutatie)
- Solution XOR met L (eerste 4 bits)
- O Verwissel L met R (Switch)
- herhaal stap 1 tot 5

- Beginpermutatie
- 2 functie f_K met substituties en permutaties
- 3 splits de invoer in eerste 4 bits (L) en laatste 4 bits (R)
- 4 Afbeelding F
 - Expansie/Permutatie
 - XOR met Sleutel 1
 - 9 P4 (Permutatie)
- Solution XOR met L (eerste 4 bits)
- Verwissel L met R (Switch)
- herhaal stap 1 tot 5

- Beginpermutatie
- 2 functie f_K met substituties en permutaties
- 3 splits de invoer in eerste 4 bits (L) en laatste 4 bits (R)
- 4 Afbeelding F
 - Expansie/Permutatie
 - 2 XOR met Sleutel 1
 - 9 P4 (Permutatie)
- Solution XOR met L (eerste 4 bits)
- Verwissel L met R (Switch)
- herhaal stap 1 tot 5

Verschillen met DES

S-DES	DES
blokken van 8 bits	blokken van 64 bits
10-bits sleutel	56-bits sleutel
2 ronden ($2 \times f_K$)	16 ronden

Priem/Relatief Priem

Een getal is een priemgetal als het slechts twee delers heeft: 1 en zichzelf.

Twee getallen zijn relatief priem ten opzichte van elkaar als en slechts als ze grootste gemene deler 1 hebben.

Definitie

We bekijken de deling: $\frac{A(X)}{D(X)}$

We verkrijgen bij deze deling:

- quotiënt Q(X)
- rest R(X)

Een modulobewerking geeft de rest na deling door de modulo.

Voorbeeld: $10 \equiv 3 \mod 7$

Stelling van Fermat

 $\forall a \in \mathbb{N} \text{ en } p \text{ een priemgetal:}$

$$a^{p-1} \equiv 1 \bmod p \tag{1}$$

De Phi-functie

 $\phi(n)$ geeft het **aantal** getallen, kleiner dan n, die relatief priem zijn met n.

Voor priemgetallen:

$$\phi(p) = p - 1 \tag{2}$$

Eigenschap

Voor twee priemgetallen p en q:

$$\phi(pq) = \phi(p) \times \phi(q) \tag{3}$$

$$= (p-1)\times(q-1) \tag{4}$$

Stelling van Euler

$$\forall$$
 a, $n > 0$:

$$a^{\phi(n)} \equiv 1 \bmod n \tag{5}$$

Sleuteluitwisseling

Hash-functies

RSA-codering: werking

Enkele waarheden:

•
$$e \cdot \frac{1}{e} = e \cdot e^{-1} = 1$$

•
$$M^{e \cdot e^{-1}} = M^1 = M$$

•
$$M^{e \cdot e^{-1}} \mod n = M^1 \mod n = M \mod n$$

Stel
$$d = e^{-1}$$

$$M = M^{ed} \mod n$$

RSA-codering: werking

Enkele waarheden:

•
$$e \cdot \frac{1}{e} = e \cdot e^{-1} = 1$$

•
$$M^{e \cdot e^{-1}} = M^1 = M$$

•
$$M^{e \cdot e^{-1}} \mod n = M^1 \mod n = M \mod n$$

Stel
$$d = e^{-1}$$

$$M = M^{ed} \mod n$$

RSA-codering: werking

Enkele waarheden:

•
$$e \cdot \frac{1}{e} = e \cdot e^{-1} = 1$$

•
$$M^{e \cdot e^{-1}} = M^1 = M$$

•
$$M^{e \cdot e^{-1}} \mod n = M^1 \mod n = M \mod n$$

Stel
$$d = e^{-1}$$

$$M = M^{ed} \mod n$$

RSA-codering: Waarom werkt het?

RSA-codering: samenvatting

Ingrediënten

•	Twee priemgetallen p en q	(Privaat)
		(5)

•
$$n = pq$$
 (Publick)

•
$$e \text{ zodat } \operatorname{ggd}(e, \phi(n)) = 1 \text{ en } 1 < e < \phi(n)$$
 (Publiek)

•
$$d \equiv e^{-1} \mod n$$
 (Privaat)