# 目 录

| 一、髙等数学          | 1    |
|-----------------|------|
| (一) 函数、极限、连续    | 1    |
| (二) 一元函数微分学     | 5    |
| (三)一元函数积分学      | 13   |
| (四) 向量代数和空间解析几何 | . 20 |
| (五)多元函数微分学      | .30  |
| (六)多元函数积分学      | 36   |
| (七)无穷级数         | .41  |
| (八)常微分方程        |      |
| 二、线性代数          | .53  |
| (一) 行列式         | .53  |
| (二)矩阵           | .55  |
| (三) 向量          | .58  |
| (四)线性方程组        | .61  |
| (五)矩阵的特征值和特征向量  | 63   |
| (六)二次型          | .64  |
| 三、概率论与数理统计      | 67   |
| (一)随机事件和概率      | .67  |
| (二)随机变量及其概率分布   | .71  |
| (三)多维随机变量及其分布   | .73  |
| (四)随机变量的数字特征    | .76  |
| (五)大数定律和中心极限定理  | 79   |
| (六)数理统计的基本概念    | .80  |
| (七)参数估计         | .82  |
| (八)假设检验         | .85  |
| 经常用到的初等数学公式     | 87   |
| 平面几何            | 92   |

# 一、高等数学

## (一) 函数、极限、连续

| 考试内容         | 公式、定理、概念                                                                                                                                                                                                                                                                                                     |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 函数和隐<br>函数   | 函数:设有两个变量 $x$ 和 $y$ ,变量 $x$ 的定义域为 $D$ ,如果对于 $D$ 中的每一个 $x$ 值,按照一定的法则,变量 $y$ 有一个确定的值与之对应,则称变量 $y$ 为变量 $x$ 的函数,记作: $y = f(x)$                                                                                                                                                                                   |  |
| 基本 函质 形函数 建  | 基本初等函数包括五类函数: 1 幂函数: $y = x^{\mu} (\mu \in R)$ ; 2 指数函数 $y = a^{x} (a > 0 \perp a \neq 1)$ ; 3 对数函数: $y = \log_{a} x (a > 0 \perp a \neq 1)$ ; 4 三角函数: $y = \sin x, y = \cos x, y = \tan x$ 等; 5 反三角函数: 如 $y = \arcsin x, y = \arctan x$ 等. 初等函数: 由常数 $C$ 和基本初等函数经过有限次四则运算与有限此复合步骤所构成,并可用一个数学式子表示的函数,称为初等函数. |  |
| 数列极限<br>与函数极 | $\lim_{x \to x_0} f(x) = A \Leftrightarrow f(x_0) = f_+(x_0) = A$                                                                                                                                                                                                                                            |  |
| 限的定义 及 其 性   | $2 \lim_{x \to x_0} f(x) = A \Leftrightarrow f(x_0) = A + a(x), 其中 \lim_{x \to x_0} a(x) = 0$                                                                                                                                                                                                                |  |
| 质,函数<br>的左极限 | 3(保号定理)                                                                                                                                                                                                                                                                                                      |  |

| 与右极限                         | 设 $\lim_{x\to x_0} f(x) = A$ , $\nabla A > 0$ (或 $A < 0$ ), 则 $1$ 一个 $\delta > 0$ ,                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                              | 当 $x \in (x_0 - \delta, x_0 + \delta)$ ,且 $x \neq x_0$ 时, $f(x) > 0$ (或 $f(x) < 0$ )                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                              | 设 $\lim \alpha(x) = 0$ , $\lim \beta(x) = 0$                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                              | (1)若 $\lim \frac{\alpha(x)}{\beta(x)} = 0$ , 则 $\alpha(x)$ 是比 $\beta(x)$ 高阶的无穷小,<br>记为 $\alpha(x) = 0$ ( $\beta(x)$ ).<br>(2)若 $\lim \frac{\alpha(x)}{\beta(x)} = \infty$ , 则 $\alpha(x)$ 是比 $\beta(x)$ 低阶的无穷小,<br>(3)若 $\lim \frac{\alpha(x)}{\beta(x)} = c(c \neq 0)$ , 则 $\alpha(x)$ 与 $\beta(x)$ 是同阶无穷小,<br>(4)若 $\lim \frac{\alpha(x)}{\beta(x)} = 1$ , 则 $\alpha(x)$ 与 $\beta(x)$ 是等价的无穷小, |  |  |  |  |
| 无无概关穷质小为为人,为人为人,的无比的人,的无比的人。 | 记为 $\alpha(x) \sim \beta(x)$<br>(5)若 $\lim \frac{\alpha(x)}{\beta^k(x)} = c(c \neq 0), k > 0, \text{则} \alpha(x) 是 \beta(x)$ 的k阶无穷小<br>常用的等阶无穷小: 当 $x \to 0$ 时<br>$\sin x$ $\arcsin x$ $\arctan x$ $\tan x$ $\ln(1+x)$ $e^x - 1$ $1 - \cos x \sim \frac{1}{2}x^2$ $(1+x)^n - 1 \sim \frac{1}{n}x$                                                                                                |  |  |  |  |
|                              | 无穷小的性质<br>  (1) 有限个无穷小的代数和为无穷小                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                              | (2) 有限个无穷小的乘积为无穷小                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                              | (3) 无穷小乘以有界变量为无穷小                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1                            | Th 在同一变化趋势下,无穷大的倒数为无穷小;非零的                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

|               | 无穷小的倒数为无穷大                                                                                                                                                                                         |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|               | $\lim f(x) = A, \lim g(x) = B.则$                                                                                                                                                                   |  |  |  |
| 极限的四          | $(1)\lim(f(x)\pm g(x))=A\pm B;$                                                                                                                                                                    |  |  |  |
| 则运算           | $(2)\lim f(x)g(x)=A\bullet B;$                                                                                                                                                                     |  |  |  |
|               | $(3)\lim \frac{f(x)}{g(x)} = \frac{A}{B}(B \neq 0)$                                                                                                                                                |  |  |  |
|               | $1$ (夹逼定理)设在 $x_0$ 的邻域内,恒有 $\varphi(x) \le f(x) \le \phi(x)$ ,                                                                                                                                     |  |  |  |
|               | $\underline{\mathbf{H}} \lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} \varphi(x) = A, \ \ \underline{\mathbf{M}} \lim_{x \to x_0} f(x) = A$                                                       |  |  |  |
|               | 2 单调有界定理: 单调有界的数列必有极限                                                                                                                                                                              |  |  |  |
| 极限存在          | 3 两个重要极限:                                                                                                                                                                                          |  |  |  |
| 的两个准则: 单调     | $(1)\lim_{x\to 0}\frac{\sin x}{x} = 1 \qquad (2)\lim_{x\to 0}(1+x)^{\frac{1}{x}} = e$                                                                                                              |  |  |  |
| 有界准则 和则重 要 限: | 重要公式: $\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m} = \begin{cases} \frac{a_0}{b_0}, n = m \\ 0, n < m \end{cases}$ |  |  |  |
| PK:           | $ \infty,n>m$                                                                                                                                                                                      |  |  |  |
|               | 4 几个常用极限特例                                                                                                                                                                                         |  |  |  |
|               | $\lim_{n\to\infty} \sqrt[n]{n} = 1, \qquad \lim_{x\to+\infty} \arctan x = \frac{\pi}{2}$                                                                                                           |  |  |  |
|               | $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2} \qquad \lim_{x \to +\infty} \operatorname{arc} \cot x = 0,$                                                                                       |  |  |  |

| <del></del>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | $\lim_{x \to -\infty} \operatorname{arc} \cot x = \pi \qquad \qquad \lim_{x \to -\infty} e^x = 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                    | $\lim_{x\to +\infty} e^x = \infty, \qquad \qquad \lim_{x\to +0^+} x^x = 1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 函的函点型函续区续性数概数的:数性间函质连念间类初的:上数 综上 新 | lim $e^x = \infty$ , lim $x^x = 1$ , 连续函数在闭区间上的性质: (1) (连续函数的有界性)设函数 $f(x)$ 在 $[a,b]$ 上连续,则 $f(x)$ 在 $[a,b]$ 上有界,即 $3$ 常数 $M > 0$ ,对任意的 $x \in [a,b]$ ,但有 $ f(x)  \le M$ .  (2) (最值定理)设函数 $f(x)$ 在 $[a,b]$ 上连续,则在 $[a,b]$ 上 $f(x)$ 至少取得最大值与最小值各一次,即 $3\xi,\eta$ 使得: $f(\xi) = \max_{a \le x \le b} \{f(x)\},  \xi \in [a,b]$ ; $f(\eta) = \min_{a \le x \le b} \{f(x)\},  \eta \in [a,b]$ .  (3) (介值定理)若函数 $f(x)$ 在 $[a,b]$ 上连续, $\mu$ 是介于 $f(a)$ 与 $f(b)$ (或最大值 $M$ 与最小值 $m$ )之间的任一实数,则在 $[a,b]$ 上至少 $3$ 一个 $\xi$ ,使得 $f(\xi) = \mu$ . $(a \le \xi \le b)$ (4) (零点定理或根的存在性定理)设函数 $f(x)$ 在 $[a,b]$ 上连 |
|                                    | 续,且 $f(a)\cdot f(b)<0$ ,则在 $(a,b)$ 内至少 $=$ 一个 $\xi$ ,使得                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

$$f(\xi) = 0. \quad (a < \xi < b)$$

## (二) 一元函数微分学

| 考试内容         | 对应公式、定理、概念                                                                                                                                                                                                                   |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|              | 1导数定义: $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ (1)                                                                                                                                     |  |
| 导数和微 分的概念    | $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} $ (2)                                                                                                                                                              |  |
| 左右导数<br>导数的几 | 2 函数 $f(x)$ 在 $x_0$ 处的左、右导数分别定义为:<br>左导数:                                                                                                                                                                                    |  |
| 何意义和         | <u>元 寸双:</u>                                                                                                                                                                                                                 |  |
| 物理意义         | $f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}, (x = x_0 + \Delta x)$                                                             |  |
|              | 右导数: $f'_+(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$                                                                                    |  |
|              | Th1: 函数 $f(x)$ 在 $x_0$ 处可微 $\Leftrightarrow$ $f(x)$ 在 $x_0$ 处可导                                                                                                                                                              |  |
| 函导 续的 平的 切线和 | Th2: 若函数 $y = f(x)$ 在点 $x_0$ 处可导,则 $y = f(x)$ 在点 $x_0$ 连续,反之则不成立.即函数连续不一定可导. Th3: $f'(x_0)$ 存在 $\Leftrightarrow f'(x_0) = f'(x_0)$ 设函数 $f(x)$ 在 $x = x_0$ 处可导,则 $f(x)$ 在 $M(x_0, y_0)$ 处的 切线方程: $y - y_0 = f'(x_0)(x - x_0)$ |  |
| 1            | 法线方程: $y - y_0 = -\frac{1}{f'(x_0)}(x - x_0), f'(x_0) \neq 0.$                                                                                                                                                               |  |
| 导数和微         | 四则运算法则:设函数 $u=u(x)$ , $v=v(x)$ 在点 $x$ 可导则                                                                                                                                                                                    |  |
| 分的四则         | $(1)  (u \pm v)' = u' \pm v' \qquad d(u \pm v) = du \pm dv$                                                                                                                                                                  |  |
| 运算,初         | (2) $(uv)' = uv' + vu'$ $d(uv) = udv + vdu$                                                                                                                                                                                  |  |

(3) 
$$\left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2} (v \neq 0)$$
  $d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$ 

基本导数与微分表

(1) 
$$y = c$$
 (常数)  $y' = 0$   $dy = 0$ 

(2) 
$$y = x^{\alpha} (\alpha 为实数)$$
  $y' = \alpha x^{\alpha-1}$   $dy = \alpha x^{\alpha-1} dx$ 

(3) 
$$y = a^x$$
  $y' = a^x \ln a$   $dy = a^x \ln a dx$ 

特例 
$$(e^x)' = e^x$$
  $d(e^x) = e^x dx$ 

$$(4) \quad y' = \frac{1}{x \ln a} \qquad dy = \frac{1}{x \ln a} dx$$

特例 
$$y = \ln x$$
  $(\ln x)' = \frac{1}{x}$   $d(\ln x) = \frac{1}{x}dx$ 

(5) 
$$y = \sin x$$
  $y' = \cos x$   $d(\sin x) = \cos x dx$ 

(5) 
$$y = \sin x$$
  $y' = \cos x$   $d(\sin x) = \cos x dx$   
(6)  $y = \cos x$   $y' = -\sin x$   $d(\cos x) = -\sin x dx$ 

(7) 
$$y = \tan x$$
  $y' = \frac{1}{\cos^2 x} = \sec^2 x$   $d(\tan x) = \sec^2 x dx$ 

(8) 
$$y = \cot x$$
  $y' = -\frac{1}{\sin^2 x} = -\csc^2 x$   $d(\cot x) = -\csc^2 x dx$ 

(9) 
$$y = \sec x$$
  $y' = \sec x \tan x$   $d(\sec x) = \sec x \tan x dx$ 

(9) 
$$y = \sec x$$
  $y' = \sec x \tan x$   $d(\sec x) = \sec x \tan x dx$   
(10)  $y = \csc x$   $y' = -\csc x \cot x$   $d(\csc x) = -\csc x \cot x dx$ 

(11) 
$$y = \arcsin x$$
  $y' = \frac{1}{\sqrt{1 - x^2}}$   $d(\arcsin x) = \frac{1}{\sqrt{1 - x^2}} dx$ 

(12) 
$$y = \arccos x$$
  $y' = -\frac{1}{\sqrt{1-x^2}}$   $d(\arccos x) = -\frac{1}{\sqrt{1-x^2}}dx$ 

(13) 
$$y = \arctan x$$
  $y' = \frac{1}{1+x^2}$   $d(\arctan x) = \frac{1}{1+x^2}dx$ 

(14) 
$$y = \operatorname{arc} \cot x$$
  $y' = -\frac{1}{1+x^2}$   $d(\operatorname{arc} \cot x) = -\frac{1}{1+x^2}dx$ 

|                     | (15) $y = shx$ $y' = chx$ $d(shx) = chxdx$                                                                                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                                  |
|                     | (16) $y = chx$ $y' = shx$ $d(chx) = shxdx$                                                                                                                       |
|                     | 1 反函数的运算法则: 设 $y = f(x)$ 在点 $x$ 的某邻域内单调连续,在点 $x$ 处可导且 $f'(x) \neq 0$ ,则其反函数在点 $x$ 所对应的                                                                           |
|                     | $y$ 处可导,并且有 $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$                                                                                                            |
| 复合函<br>数,反函<br>数,隐函 | 2 复合函数的运算法则:若 $\mu = \varphi(x)$ 在点 $x$ 可导,而 $y = f(\mu)$ 在对应点 $\mu(\mu = \varphi(x))$ 可导,则复合函数 $y = f(\varphi(x))$ 在点 $x$ 可导,且 $y' = f'(\mu) \cdot \varphi'(x)$ |
| 数以及参<br>数方程所        | 3 隐函数导数 <u>dy</u> 的求法一般有三种方法:                                                                                                                                    |
| 确定的函                | (1)方程两边对 $x$ 求导,要记住 $y$ 是 $x$ 的函数,则 $y$ 的函数是                                                                                                                     |
| 数的微分 法,             | $x$ 的复合函数.例如 $\frac{1}{y}$ , $y^2$ , $\ln y$ , $e^y$ 等均是 $x$ 的复合函数.                                                                                              |
|                     | 对 x 求导应按复合函数连锁法则做.                                                                                                                                               |
|                     | (2)公式法.由 $F(x,y) = 0$ 知 $\frac{dy}{dx} = -\frac{F_x'(x,y)}{F_y'(x,y)}$ ,其中, $F_x'(x,y)$ ,                                                                        |
|                     | $F_y'(x,y)$ 分别表示 $F(x,y)$ 对 $x$ 和 $y$ 的偏导数                                                                                                                       |
|                     | (3)利用微分形式不变性                                                                                                                                                     |
| 高阶导                 | 常用高阶导数公式                                                                                                                                                         |
| 数,一阶 微分形式           | (1) $(a^x)^{(n)} = a^x \ln^n a$ $(a > 0)$ $(e^x)^{(n)} = e^x$                                                                                                    |
| 的不变                 | (2) $(\sin k\alpha)^{(n)} = k^n \sin(k\alpha + n \cdot \frac{\pi}{2})$                                                                                           |
| 性,                  | (3) $(\cos kx)^{(n)} = k^n \cos(kx + n \cdot \frac{\pi}{2})$                                                                                                     |

|              | (4) $(x^m)^{(n)} = m(m-1)\cdots(m-n+1)x^{m-n}$                                                              |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
|              | (5) $(\ln x)^{(n)} = (-1)^{(n-1)} \frac{(n-1)!}{x^n}$                                                       |  |  |  |
|              | (6) 莱布尼兹公式: 若 u(x),v(x) 均 n 阶可导,则                                                                           |  |  |  |
|              | $(uv)^{(n)} = \sum_{i=0}^{n} c_n^i u^{(i)} v^{(n-i)}$ , $\sharp v^{(0)} = u$ , $v^{(0)} = v$                |  |  |  |
|              | Th1(费马定理)若函数 f(x) 满足条件:                                                                                     |  |  |  |
|              | (1)函数 $f(x)$ 在 $x_0$ 的某邻域内有定义,并且在此邻域内恒有                                                                     |  |  |  |
|              | $f(x) \le f(x_0) \stackrel{\cdot}{} g(x) \ge f(x_0),$                                                       |  |  |  |
|              | (2) $f(x)$ 在 $x_0$ 处可导,则有 $f'(x_0) = 0$                                                                     |  |  |  |
|              | Th2 (罗尔定理) 设函数 f(x) 满足条件:                                                                                   |  |  |  |
|              | (1)在闭区间[a,b]上连续;                                                                                            |  |  |  |
|              | (2)在 $(a,b)$ 内可导,则在 $(a,b)$ 内3一个 $\xi$ ,使 $f'(\xi)=0$                                                       |  |  |  |
| 微分中值         | Th3 (拉格朗日中值定理) 设函数 f(x) 满足条件:                                                                               |  |  |  |
| 定理,必         |                                                                                                             |  |  |  |
| 达法则,<br>泰勒公式 | $\xi,  \notin  \frac{f(b)-f(a)}{b-a} = f'(\xi)$                                                             |  |  |  |
|              | Th4 (柯西中值定理) 设函数 $f(x)$ , $g(x)$ 满足条件:                                                                      |  |  |  |
|              | (1)在 $[a,b]$ 上连续; (2)在 $(a,b)$ 内可导且 $f'(x)$ , $g'(x)$ 均存在,                                                  |  |  |  |
|              | 且 $g'(x) \neq 0$ 则在 $(a,b)$ 内 $\exists$ 一个 $\xi$ ,使 $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$ |  |  |  |
|              | 洛必达法则:                                                                                                      |  |  |  |
|              | 法则 I $(\frac{0}{0}$ 型)设函数 $f(x),g(x)$ 满足条件:                                                                 |  |  |  |
|              | $\lim_{x \to x_0} f(x) = 0, \lim_{x \to x_0} g(x) = 0;  f(x), g(x) 在 x_0 的邻域内可导$                            |  |  |  |

(在  $x_0$  处可除外)且  $g'(x) \neq 0$ ;  $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$  存在(或  $\infty$ ).则

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}.$$

法则 I'  $(\frac{0}{0}$ 型)设函数 f(x),g(x)满足条件:

$$\lim_{x\to\infty} f(x) = 0, \lim_{x\to\infty} g(x) = 0; \exists - \uparrow X > 0, \preceq |x| > X$$

时, f(x), g(x) 可导,且  $g'(x) \neq 0$ ;  $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在(或 $\infty$ ).则

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}.$$

法则  $II(\frac{\infty}{\infty}$  型) 设函数 f(x),g(x) 满足条件:

 $\lim_{x \to x_0} f(x) = \infty, \lim_{x \to x_0} g(x) = \infty; \qquad f(x), g(x) 在 x_0$ 的邻域内可

导(在  $x_0$  处可除外)且  $g'(x) \neq 0$ ;  $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在(或  $\infty$ ).则

 $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}.$  同理法则 II' ( $\frac{\infty}{\infty}$ 型)仿法则 I' 可写出

泰勒公式: 设函数 f(x) 在点  $x_0$  处的某邻域内具有 n+1 阶导数,则对该邻域内异于  $x_0$  的任意点 x ,在  $x_0$  与 x 之间至少 3 一个  $\xi$  ,使得

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \cdots$$

$$+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中  $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$  称为 f(x) 在点  $x_0$  处的 n

阶泰勒余项.令 $x_0 = 0$ ,则n阶泰勒公式

$$f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^{2} + \dots + \frac{f^{(n)}(0)}{n!}x^{n} + R_{n}(x)$$
.....(1)

其中  $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$ ,  $\xi$ 在 0 与 x 之间.(1)式称为麦克

劳林公式

常用五种函数在 x<sub>0</sub> = 0 处的泰勒公式

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \dots + \frac{1}{n!}x^{n} + \frac{x^{n+1}}{(n+1)!}e^{\xi}$$

或 = 1 + x + 
$$\frac{1}{2!}$$
x<sup>2</sup> + ··· +  $\frac{1}{n!}$ x<sup>n</sup> + o(x<sup>n</sup>)

$$\sin x = x - \frac{1}{3!}x^3 + \dots + \frac{x^n}{n!}\sin\frac{n\pi}{2} + \frac{x^{n+1}}{(n+1)!}\sin(\xi + \frac{n+1}{2}\pi)$$

或 = 
$$x - \frac{1}{3!}x^3 + \dots + \frac{x^n}{n!}\sin\frac{n\pi}{2} + o(x^n)$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + \frac{x^n}{n!}\cos\frac{n\pi}{2} + \frac{x^{n+1}}{(n+1)!}\cos(\xi + \frac{n+1}{2}\pi)$$

或 
$$= 1 - \frac{1}{2!}x^2 + \dots + \frac{x^n}{n!}\cos\frac{n\pi}{2} + o(x^n)$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + (-1)^{n-1}\frac{x^n}{n} + \frac{(-1)^n x^{n+1}}{(n+1)(1+\xi)^{n+1}}$$

$$= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + (-1)^{n-1}\frac{x^n}{n} + o(x^n)$$

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \dots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^n$$

$$+ \frac{m(m-1)\cdots(m-n)}{(n+1)!}x^{n+1}(1+\xi)^{m-n-1}$$

$$= 1 + mx + \frac{m(m-1)}{2!}x^2 + \dots$$

$$+ \frac{m(m-1)\cdots(m-n+1)}{n!}x^n + o(x^n)$$

1 函数单调性的判断:

函性别的函形性 多数绘大小数性,极数的,及,图函值化单的函值的凹拐渐用形数和,调到数,图凸点 函描最最

Th1 设函数 f(x) 在 (a,b) 区间内可导,如果对  $\forall x \in (a,b)$  ,都有 f'(x) > 0(或 f'(x) < 0),则函数 f(x) 在 (a,b) 内是单调增加的(或单调减少)

Th2 (取极值的必要条件)设函数 f(x) 在  $x_0$  处可导,且在  $x_0$  处取极值,则  $f'(x_0) = 0$ .

Th3 (取极值的第一充分条件)设函数 f(x) 在  $x_0$  的某一邻域内可微,且  $f'(x_0) = 0$  (或 f(x) 在  $x_0$  处连续,但  $f'(x_0)$  不存在。)

- (1)若当x经过 $x_0$ 时,f'(x)由 "+" 变 "-",则  $f(x_0)$  为极大 值;
- (2)若当x经过 $x_0$ 时,f'(x)由"-"变"+",则 $f(x_0)$ 为极小值;

(3)若 f'(x) 经过  $x = x_0$  的两侧不变号,则  $f(x_0)$  不是极值.

Th4 (取极值的第二充分条件)设 f(x) 在点  $x_0$  处有  $f''(x) \neq 0$ ,且  $f'(x_0) = 0$ ,则 当  $f''(x_0) < 0$  时,  $f(x_0)$  为极大值;

当  $f''(x_0) > 0$  时,  $f(x_0)$  为极小值.

注: 如果  $f''(x_0)=0$ , 此方法失效.

- 2 渐近线的求法:
- (1)水平渐近线 若  $\lim_{x\to a} f(x) = b$ , 或  $\lim_{x\to a} f(x) = b$ , 则 y = b

称为函数 y = f(x) 的水平渐近线.

(2)铅直渐近线 若  $\lim_{x \to x_0^-} f(x) = \infty$ ,或  $\lim_{x \to x_0^+} f(x) = \infty$ ,则  $x = x_0$ 

称为 v = f(x) 的铅直渐近线.

(3)斜渐近线 若  $a = \lim_{x \to \infty} \frac{f(x)}{x}$ ,  $b = \lim_{x \to \infty} [f(x) - ax]$ , 则

y = ax + b 称为 y = f(x) 的斜渐近线

3 函数凹凸性的判断:

Th1 (凹凸性的判别定理) 若在  $I \perp f''(x) < 0$  (或 f''(x) > 0), 则 f(x) 在 I 上是凸的(或凹的).

Th2 (拐点的判别定理 1)若在  $x_0$  处 f''(x) = 0 , (或 f''(x) 不存在), 当 x 变动经过  $x_0$  时, f''(x) 变号,则  $(x_0, f(x_0))$  为拐点.

Th3 (拐点的判别定理2)设 f(x) 在  $x_0$  点的某邻域内有三阶导数,且 f''(x)=0,  $f'''(x)\neq 0$ ,则  $(x_0,f(x_0))$  为拐点

1. 弧微分:  $dS = \sqrt{1 + y'^2} dx$ .

2. 曲率: 曲线 y = f(x) 在点 (x, y) 处的曲率  $k = \frac{|y''|}{(1 + y'^2)^{\frac{1}{2}}}$ .

对于参数方程  $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ ,  $k = \frac{|\varphi'(t)\psi''(t) - \varphi''(t)\psi'(t)|}{[\varphi'^2(t) + \psi'^2(t)]^{\frac{1}{2}}}$ .

3. 曲率半径: 曲线在点 M 处的曲率  $k(k \neq 0)$  与曲线在点 M 处的曲率半径  $\rho$  有如下关系:  $\rho = \frac{1}{k}$ .

#### (三)一元函数积分学

| 考试内容     | 对应公式、定理、概念                                                                                                           |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
|          | 基本性质                                                                                                                 |  |  |  |
| 原函数和不定积分 | $1\int kf(x)dx = k\int f(x)dx \qquad (k \neq 0 为常数)$                                                                 |  |  |  |
| 的概念,不定积分 | $2\int [f_1(x) \pm f_2(x) \pm \dots \pm f_k(x)] dx = \int f_1(x) dx \pm \int f_2(x) dx \pm \dots \pm \int f_k(x) dx$ |  |  |  |
| 的基本性质    | 3 求导: $[\int f(x)dx]' = f(x)$ 或微分: $d\int f(x)dx = f(x)dx$                                                           |  |  |  |
|          | $4\int F'(x)dx = F(x) + C $ 或 $\int dF(x) = F(x) + C $ ( $C$ 是任意常数)                                                  |  |  |  |
| 基本积分     | $\int x^{k} dx = \frac{1}{k+1} x^{k+1} + C \qquad (k \neq -1)$                                                       |  |  |  |
| 公式       | $\int \frac{1}{x^2} dx = -\frac{1}{x} + C \qquad \qquad \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$                  |  |  |  |

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C \quad (a > 0, a \neq 1) \qquad \int e^x dx = e^x + C$$

$$\int \cos x dx = \sin x + C \qquad \int \sin x dx = -\cos x + C$$

$$\int \frac{1}{\cos^2 x} dx = \int \sec^2 x dx = \tan x + C$$

$$\int \frac{1}{\sin^2 x} dx = \int \csc^2 x dx = -\cot x + C$$

$$\int \frac{1}{\sin x} dx = \int \csc x dx = \ln|\csc x - \cot x| + C$$

$$\int \frac{1}{\cos x} dx = \int \sec x dx = \ln|\sec x + \tan x| + C$$

$$\int \sec x \tan x dx = \sec x + C \quad \int \csc x \cot x dx = -\csc x + C$$

$$\int \tan x dx = -\ln|\cos x| + C \quad \int \cot x dx = \ln|\sin x| + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C \quad \int \frac{dx}{1 + x^2} = \arctan x + C$$

$$\int \frac{dx}{a^2 - x^2} = \arcsin \frac{x}{a} + C \quad \int \frac{dx}{1 - x^2} = \arcsin x + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C \quad \int \frac{dx}{1 - x^2} = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\boxed{\mathbb{E}} \mathcal{E} \Delta \vec{\Delta}$$

$$(1) \partial_x f(x) \Delta \vec{a} = \int_0^1 [f(x) + f(-x)] dx$$

$$= \begin{cases} 0, \pm f(x) & \text{为奇函数} \\ 2 \int_0^t f(x) dx, \pm f(x) & \text{为偶函数} \end{cases}$$

(2) 设f(x) 是以T为周期的连续函数,a为任意实数,

$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x)dx.$$

$$(3)\int_0^a \sqrt{a^2-x^2}\,dx = \frac{1}{4}\pi\,a^2$$

$$(4)\int_{0}^{\frac{\pi}{2}}\sin^{n}xdx = \int_{0}^{\frac{\pi}{2}}\cos^{n}xdx \begin{cases} \frac{n-1}{n}, \frac{n-3}{n-2}, \dots, \frac{1}{2}, \frac{\pi}{2}, \text{ in 为 偶数} \\ \frac{n-1}{n}, \frac{n-3}{n-2}, \dots, \frac{2}{3}, \text{ in h h h h h h h} \end{cases}$$

$$(5) \int_{-\pi}^{\pi} \sin nx \cos mx dx = \int_{0}^{2\pi} \sin nx \cos mx dx = \begin{cases} \pi, n = m \\ 0, n \neq m \end{cases}$$

$$\int_{-\pi}^{\pi} \sin nx \cos mx dx = \int_{0}^{2\pi} \sin nx \cos mx dx = 0$$

$$\int_{-\pi}^{\pi} \cos nx \cos mx dx = \int_{0}^{2\pi} \cos nx \cos mx dx = 0 = \begin{cases} \pi, n = m \\ 0, n \neq m \end{cases}$$

## 1. 定积分的基本性质

- (1)定积分只与被积函数和积分限有关,而与积分变量无关,即  $\int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(u)du = \cdots$
- $(2)\int_a^b f(x)dx = -\int_b^a f(x)dx$
- $\int_{a}^{b} dx = b a$ 
  - $(4) \int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$

$$(5) \int_a^b k f(x) dx = k \int_a^b f(x) dx (k 为常数)$$

$$(6) \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

(7)比较定理: 设 $f(x) \le g(x), x \in [a,b], 则 \int_a^b f(x) dx \le \int_a^b g(x) dx.$ 

推论: 1. 当 $f(x) \ge 0, x \in [a,b]$ 时, $\int_a^b f(x)dx \ge 0$ ;

$$2. \left| \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx$$

(8)估值定理: 设 $m \le f(x) \le M, x \in [a, b]$ , 其中m, M为常数,则 $m(b-a) \le \int_a^b f(x)dx \le M(b-a)$ 

(9)积分中值定理:设f(x)在[a,b]上连续,则在[a,b]上至少3一个 $\xi$ ,使  $\int_a^b f(x)dx = (b-a)f(\xi)$ 

$$f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx - - - - \text{平均值公式}$$

#### Th1

设函数f(x) 在[a, b]上连续,  $x \in [a, b]$ , 则变上限积分  $F(x) = \int_{-x}^{x} f(t)dt \, dt \, dt \, dt \, dt \, dt$ 

积分上限 的函数及 其导数, 牛顿—— 莱布尼兹

公式

且有
$$F'(x) = \frac{d}{dx}F(x) = \frac{d}{dx}(\int_a^x f(t)dt) = f(x)$$

推论1 设
$$F(x) = \int_a^{\varphi(x)} f(t)dt$$
,则 $F'(x) = f[\varphi(x)] \cdot \varphi'(x)$ .

推论2 
$$\left(\int_{\phi(x)}^{\varphi(x)} f(t)dt\right)_{x}' = f[\varphi(x)]\varphi'(x) - f[\phi(x)]\cdot\phi'(x)$$

推论3 
$$\left(\int_a^{\varphi(x)} f(t)g(x)dt\right)_x = \left(g(x)\int_a^{\varphi(x)} f(t)dt\right)_x$$

$$= g'(x) \int_a^{\varphi(x)} f(t) dt + g(x) f[\varphi(x)] \cdot \varphi'(x)$$

Th2设f(x)在[a,b]上连续, $x \in [a,b]$ ,则  $\int_{a}^{x} f(x)dt \mathcal{L}f(x)$ 在[a,b]上的一个原函数

Th3牛顿-莱布尼茨公式: 设f(x)在[a,b]上连续, F(x)

是
$$f(x)$$
的原函数,则 $\int_a^b f(x)dx = F(x)|_a^b = F(b) - F(a)$ 

#### 1 不定积分:

分部积分法:  $\int u dv = uv - \int v du$  选择 u, dv 的原则: 积分

容易者选作 dv, 求导简单者选为 u

换元积分法:  $\partial \int f(u)du = F(u) + C$ ,

則 
$$\int f[\varphi(x)]\varphi'(x)dx = \int f[\varphi(x)]d\varphi(x)$$

不定积分 和定积分 的换元积 分法与分 部积分法

设
$$u = \varphi(x) \int f(u) du = F(u) + C = F[\varphi(x)] + C$$

#### 2. 定积分

换元法: 设函数f(x) 在 [a, b] 上连续,若x=q(t) 满足:

- $(1) \varphi(t)$ 在  $[\alpha, \beta]$  上连续, 且 $\varphi'(t) \neq 0$ .
- $(2)\varphi(a) = a \cdot \varphi(\beta) = b$ .并且当t在 [ $\alpha$ ,  $\beta$ ] 上变化时, $\varphi(t)$  的值在 [a, b] 上变化,则

$$\int_a^b f(x)dx = \int_a^\beta f[\varphi(t)]\varphi'(t)dt.$$

分部积分公式

|                                                                                                                                                                     | 设u(x) , v(x) 在 [a, b] 上具有连续导函数u'(x),v'(x),则                                         |                |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|----------------------------|
|                                                                                                                                                                     | $\int_b^a u(x)v'(x)dx = u(x)v(x)\big _b^a - \int_b^a v(x)u'(x)dx$                   |                |                            |
|                                                                                                                                                                     | 3. 定积分不等式证                                                                          | 明中常用的不等        | 式                          |
|                                                                                                                                                                     | $(1)a^2 + b^2 \ge 2ab \qquad (2)a > 0, a + \frac{1}{a} \ge 2$                       |                |                            |
|                                                                                                                                                                     | (3)柯西不等式:                                                                           |                |                            |
| $\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \leq \left(\int_{a}^{b} f^{2}(x)dx\right) \cdot \left(\int_{a}^{b} g^{2}(x)dx\right),$<br>其中 $f(x)$ , $g(x)$ 在 [a, b] 上连续 |                                                                                     |                |                            |
|                                                                                                                                                                     |                                                                                     |                |                            |
|                                                                                                                                                                     | 函数 $f(x)$ 含根式                                                                       | 所作代换           | 三角形示意图                     |
| 有理函<br>数,三角<br>函数的有                                                                                                                                                 | $\sqrt{a^2-x^2}$                                                                    | $x = a \sin t$ | $\frac{a}{\sqrt{a^2-x^2}}$ |
| 理式和简<br>单无理函<br>数的积                                                                                                                                                 | $\sqrt{a^2+x^2}$                                                                    | $x = a \tan t$ | X X X                      |
| 分,广义<br>积分和定<br>积分的应                                                                                                                                                | $\sqrt{x^2-a^2}$                                                                    | $x = a \sec t$ | $x$ $\sqrt{x^2-a^2}$       |
| 用                                                                                                                                                                   | 有理函数积分                                                                              |                |                            |
|                                                                                                                                                                     | $(1)\int \frac{A}{x-a} dx = A \ln x-a  + C$                                         |                |                            |
|                                                                                                                                                                     | $(2)\int \frac{A}{(x-a)^n} dx = -\frac{A}{n-1} \frac{1}{(x-a)^{n-1}} + C(n \neq 1)$ |                |                            |

$$(3)\int \frac{dx}{(x^2 + px + q)^n} = \int \frac{dx}{[(x + \frac{p}{2})^2 + \frac{4q - p^2}{4}]^n} \xrightarrow{\stackrel{x \to \frac{p}{2} = u}{4}} \int \frac{du}{(u^2 + a^2)^n}$$

$$(4)\int \frac{x+a}{(x^2+px+q)^n} dx = \frac{1}{2(n-1)} \frac{1}{(x^2+px+q)^{n-1}} + (a-\frac{p}{2}) \int \frac{dx}{(x^2+px+q)^n}$$

$$(p^2-4q<0)$$

### 4. 广义积分

(1) 无穷限的广义积分(无穷积分)

设
$$f(x)$$
 连续,则

设
$$f(x)$$
 连续,则 
$$1 \cdot \int_a^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_a^b f(x) dx$$

$$2.\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

$$3.\int_{-\infty}^{+\infty}f(x)dx = \int_{-\infty}^{c}f(x)dx + \int_{c}^{+\infty}f(x)dx$$

(2) 无界函数的广义积分(瑕积分)

$$2 \cdot \int_a^b f(x) dx = \lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) dx, (\stackrel{\omega}{=} x \to a^+ \text{iff}, f(x) \to \infty)$$

$$3.\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0^{+}} \int_{a}^{c-\epsilon} f(x)dx + \lim_{\eta \to 0^{+}} \int_{c+\eta}^{b} f(x)dx$$

$$(\stackrel{\text{def}}{=} x \to c \text{ ph}, \ f(x) \to \infty)$$

## (四) 向量代数和空间解析几何

| 考试内容                               | 对应公式、定理、概念                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 向量的概<br>念,向量<br>的线性运               | 1.向量: 既有大小又有方向的量,又称矢量. 2.向量的模: 向量 $\bar{a}$ 的大小.记为 $ \bar{a} $ . 3.向量的坐标表示: 若向量用坐标表示 $\bar{a} = x\bar{i} + y\bar{j} + z\bar{k} = \{x,y,z\}$ ,则 $ \bar{a}  = \sqrt{x^2 + y^2 + z^2}$ 4 向量的运算法则: I 加减运算 设有矢量 $\bar{a} = \{x_1, y_1, z_1\}$ , $\bar{b} = \{x_2, y_2, z_2\}$ ,则 $\bar{a} \pm \bar{b} = \{x_1 \pm x_2, y_1 \pm y_2, z_1 \pm z_2\}$ .  II.数乘运算 数乘运算 $\Delta$ 矢量 $\bar{a}$ 与一数量 $\lambda$ 之积 $\lambda\bar{a}$ , $\lambda\bar{a} = \{\lambda\bar{a} \bar{a}^{\bar{a}} \ \lambda < 0, \text{即与ā同向}$ $\bar{a} = \{\lambda x_1, \lambda y_1, \lambda z_1\}$ ,则 $\bar{a} = \{\lambda x_1, \lambda y_1, \lambda z_1\}$ . |  |  |  |
| 向量的数<br>量积和向<br>量积,向<br>量的混合<br>积, | 1 矢量的数积 (点积,内积):<br>矢量 $\bar{a}$ 与 $\bar{b}$ 的数量积 $\bar{a} \cdot \bar{b} =  \bar{a}  \bar{b} \cos(\widehat{a}, \bar{b})$ .<br>设 $\bar{a} = \{x_1, y_1, z_1\}$ , $\bar{b} = \{x_2, y_2, z_2\}$ ,则 $\bar{a} \cdot \bar{b} = x_1x_2 + y_1y_2 + z_1z_2$ .<br>2 矢量的向量积 (叉积,外积): 设有两个向量 $\bar{a}$ 与 $\bar{b}$ ,若 3                                                                                                                                                                                                                                                                                                                |  |  |  |

一个矢量 $\bar{c}$ ,满足如下条件

- (1)  $|\vec{c}| = |\vec{a}| |\vec{b}| \sin(\vec{a}, \vec{b})$ ;
- (2)  $\bar{c} \perp \bar{a}, \bar{c} \perp \bar{b}$ , 即 $\bar{c}$  垂直于 $\bar{a}$ ,  $\bar{b}$  所确定的平面;
- (3)  $\bar{a}$ ,  $\bar{b}$ ,  $\bar{c}$  成右手系.则称矢量 $\bar{c}$  为矢量 $\bar{a}$ 与 $\bar{b}$ 的矢量积,记 $\bar{c}=\bar{a}\times\bar{b}$ .

设 $\bar{a} = \{x_1, y_1, z_1\}$  $\bar{b} = \{x_2, y_2, z_2\}$ , 则

$$\bar{a} \times \bar{b} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \bar{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \bar{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \bar{k}.$$

3 混合积:设有三个矢量 $\bar{a},\bar{b},\bar{c}$ ,若先作 $\bar{a}$ , $\bar{b}$ 的叉积 $\bar{a}\times\bar{b}$ ,

再与 $\bar{c}$ 作点积 $(\bar{a}\times\bar{b})\cdot\bar{c}$ ,则这样的数积称为矢量 $\bar{a}$ , $\bar{b}$ , $\bar{c}$  的

混合积,记为(a,b,c),即 $(a,b,c)=(\bar{a}\times\bar{b})\cdot\bar{c}$ .

设 
$$\bar{a} = \{x_1, y_1, z_1\}$$
,  $\bar{b} = \{x_2, y_2, z_2\}$ ,  $\bar{c} = \{x_3, y_3, z_3\}$ ,

则 
$$(a,b,c) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

两向量垂 直、采件, 两向量,的 夹角,向

1 向量之间的位置关系及结论

设 
$$\bar{a} = \{x_1, y_1, z_1\}$$
 ,  $\bar{b} = \{x_2, y_2, z_2\}$  ,  $\bar{c} = \{x_3, y_3, z_3\}$ 

量表其单量数余处式算 位方方,向向向

(1) 
$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0 \Leftrightarrow x_1 x_2 + y_1 y_2 + z_1 z_2 = 0$$
;

(2) 
$$\vec{a}//\vec{b} \Leftrightarrow \vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$$
;

其中 $x_2, y_2, z_2$ 之中有一个为"0",如 $x_2 = 0$ ,应理解为 $x_1 = 0$ ;

- (3)  $\bar{a}$ ,  $\bar{b}$  不共线  $\Leftrightarrow$  3 不全为零的数  $\lambda, \mu$  使  $\lambda \bar{a} + \mu \bar{b} = \bar{0}$ ;
- (4) 矢量 $\bar{a}$  与 $\bar{b}$  的夹角,可由下式求出

$$\cos(\bar{a}^{\wedge}\bar{b}) = \frac{x_1x_2 + y_1y_2 + z_1z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}};$$

(5)  $\bar{a}$ ,  $\bar{b}$ ,  $\bar{c}$  共面  $\Leftrightarrow$  3 不全为零的数  $\lambda, \mu, \nu$ , 使

$$\lambda \bar{a} + \mu \bar{b} + v \bar{c} = \bar{0}$$
 或者  $(a,b,c) = 0$ 

2 单位向量: 模为 1 的向量. 向量  $\bar{a}$  的单位向量记作  $\bar{a}^0$  ,

$$\overline{a^0} = \frac{\overline{a}}{|\overline{a}|} = \left\{ \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right\}.$$

3 向量的方向余弦:

$$\cos \alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \cos \gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2}},$$

其中 $\alpha,\beta,\gamma$ 为向量 $\bar{a}$ 与各坐标轴正向的夹角.

4 单位向量的方向余弦: 显然  $\overline{a^0} = \{\cos\alpha, \cos\beta, \cos\gamma\}$ ,且有  $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1.$ 

曲面方程 和空间曲 线方程的 概念,平 面方程, 直线方 程,平面 与平面、 平面与直 线、直线 与直线的 以及平 行、垂直 的条件, 点到平面 和点到盲 线的距离

#### 1平面方程

- (1)一般式方程 Ax + By + Cz + D = 0,法矢量 $\bar{n} = \{A, B, C\}$ ,若方程中某个坐标不出现,则平面就平行于该坐标轴,例如 平面 Ax + Cz + D = 0 / / y 轴
- (2) 平面的点法式方程  $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$   $M(x_0,y_0,z_0)$  为平面上已知点, $\vec{n}=\{A,B,C\}$  为法矢量

(3)三点式方程 
$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix}$$

 $M_1(x_1, y_1, z_1)$ ,  $M_2(x_2, y_2, z_2)$ ,  $M_3(x_3, y_3, z_3)$  为平面上的三个点 (4)截距式方程  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ , a, b, c 分别为平面上坐标轴上

的截距,即平面通过三点 (a,0,0),(0,b,0),(0,0,c)

- 2直线方程
- 一般式方程(两平面交线):  $\begin{cases} A_1x + B_1y + C_1x + D_1 = 0 & \text{平面}\pi_1 \\ A_2x + B_2y + C_2x + D_2 = 0 & \text{平面}\pi_2 \end{cases}$

平面  $\pi_1$  与平面  $\pi_2$  的法矢量分别为  $\overline{n}_1 = \{A_1, B_1, C_1\}$ ,

$$\overline{n_2} = \{A_2, B_2, C_2\}$$
 , 直线的方向矢量为 $\overline{s} = \overline{n_1} \times \overline{n_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$ 

#### (2)标准式方程

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$
  $M(x_0, y_0, z_0)$  为直线上已知点,

 $\bar{s} = \{l, m, n\}$  为直线的方向矢量

(3)两点式方程 
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

其中 $M_1(x_1,y_1,z_1)$ ,  $M_2(x_2,y_2,z_2)$ 为直线上的两点

(4)参数式方程 
$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \end{cases} M(x_0, y_0, z_0) 为直线上已知$$
$$z = z_0 + nt$$

点,  $\bar{s} = \{l, m, n\}$  为直线的方向矢量

#### 3 平面间的关系

设有两个平面: 平面  $\pi_1$ :  $A_1x + B_1y + C_1z + D_1 = 0$  平面  $\pi_2$ :

$$A_2 x + B_2 y + C_2 z + D_2 = 0$$

(1)平面 
$$\pi_1$$
 // 平面  $\pi_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$ 

- (2)平面  $\pi_1 \perp$  平面  $\pi_2 \Leftrightarrow A_1A_2 + B_1B_2 + C_1C_2 = 0$
- (3)平面  $\pi_1$  与平面  $\pi_2$  的夹角  $\theta$ ,由下式确定

$$\cos\theta = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

#### 4 平面与直线间关系

直线 
$$L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$

平面  $\pi_1$ :  $A_1x + B_1y + C_1z + D_1 = 0$ 

$$(1) L // \pi \Leftrightarrow Al + Bm + Cn = 0$$

(2) 
$$L \perp \pi \Leftrightarrow \frac{A}{l} = \frac{B}{m} = \frac{C}{n}$$

(3) 
$$L$$
 与  $\pi$  的夹角  $\theta$  ,由下式确定  

$$\sin \theta = \frac{Al + Bm + Cn}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}}$$

5 直线间关系

设有两直线: 直线 
$$L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
  
直线  $L_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ 

(1) 
$$L_1 // L_2 \Leftrightarrow \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$$

- (2)  $L_1 \perp L_2 \Leftrightarrow l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$
- (3)直线L,与L,的夹角 $\theta$ ,由下式确定

$$\cos\theta = \frac{\left|l_1 l_2 + m_1 m_2 + n_1 n_2\right|}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}}$$

6 点到平面的距离:  $M(x_0, y_0, z_0)$  到平面  $\pi: Ax + By + Cz + D = 0$  的距离为

$$d = \frac{\left| Ax_0 + By_0 + Cz_0 + D \right|}{\sqrt{A^2 + B^2 + C^2}}$$

7点到直线的距离:  $M(x_0, y_0, z_0)$ 到直线

$$L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
 距离为

$$d = \frac{\left| \overline{M_1 M_0} \times \overline{M_1 P} \right|}{\overline{M_1 P}} = \frac{\left| \begin{array}{cccc} \vec{i} & \vec{j} & \vec{k} \\ x_0 - x_1 & y_0 - y_1 & z_0 - z_1 \\ l & m & n \end{array} \right|}{\sqrt{l^2 + m^2 + n^2}}$$

球线坐柱转标转方明平标面,行轴,为的面型,为的面型,

准线为各种形式的柱面方程的求法

(1) 准线为<sub>$$\Gamma$$
:</sub>  $\begin{cases} f(x,y) = 0, \text{ 因线 } //z \text{ 轴的柱面方程为} \\ z = 0 \end{cases}$ 

$$f(x,y)=0,$$

准线为 $\Gamma$ :  $\begin{cases} \varphi(x,z) = 0 \\ y = 0 \end{cases}$ , 母线 ||y| 轴的柱面方程为

$$\varphi(x,z)=0,$$

准线为 $\Gamma:\begin{cases} \psi(y,z)=0\\ x=0 \end{cases}$ ,母线 // x 轴的柱面方程为

$$\psi(y,z)=0.$$

(2) 准线为 $\Gamma$ :  $\begin{cases} f(x,y,z) = 0 \\ g(x,y,z) = 0 \end{cases}$ , 母线的方向矢量为 $\{l,m,n\}$ 

的柱面方程的求法

首先,在准线上任取一点(x,y,z),则过点(x,y,z)的母线方程

为
$$\frac{X-x}{l} = \frac{Y-y}{m} = \frac{Z-z}{n}$$

其中 X,Y,Z 为母线上任一点的流动坐标,消去方程组

$$\begin{cases} f(x, y, z) = 0 \\ g(x, y, z) = 0 \\ \frac{X - x}{l} = \frac{Y - y}{m} = \frac{Z - z}{n} \end{cases}$$

|                              | 常见的柱面方程    |                                                                        |     |  |
|------------------------------|------------|------------------------------------------------------------------------|-----|--|
|                              | 名称         | 方程                                                                     | 图形  |  |
| 常用的二                         | 圆柱面        | $x^2 + y^2 = R^2$                                                      |     |  |
| 次曲面方<br>程及其图<br>形,空间<br>曲线的参 | 椭圆柱面       | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$                                | ,   |  |
| 数一程曲标投方般空在上曲影方间坐的线           | 双曲柱面       | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$                                |     |  |
|                              | 抛物柱面       | $x^2 = 2py, (p > 0)$                                                   | *** |  |
|                              | 标准二次方程及其图形 |                                                                        |     |  |
|                              | 名称         | 方程                                                                     | 图形  |  |
|                              | 椭球面        | $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} =$ $(a,b,c 均为正義)$ |     |  |

| 单叶双曲面            | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ (a,b,c 均为正数)  | z v   |
|------------------|-------------------------------------------------------------------------|-------|
| 双叶双曲面            | $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (a,b,c 均为正数) | z ,   |
| 椭圆的抛物面           | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz$ $(a,b,p) 为正数)$                | x 0 y |
| 双曲抛物面<br>(又名马鞍面) | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$ $(a,b,p \ 均为正数)$              |       |



## (五)多元函数微分学

| 考试内容     | 对应公式、定理、概念                                                                                                                                                     |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 多元函数的概念, | 二元函数 $z = f(x, y)$ 连续,可导(两偏导存在)与可微三                                                                                                                            |  |  |
| 二元函数     | 者的关系如下:                                                                                                                                                        |  |  |
| 的几何意     | 可导←可微→函数连续"←→"表示可推出                                                                                                                                            |  |  |
| 义,二元     | 用全微分定义验证一个可导函数的可微性,只需验证:                                                                                                                                       |  |  |
| 函数的极     | $\Delta z = f'(r, v)\Delta r = f'(r, v)\Delta v$                                                                                                               |  |  |
| 限和连续     | $\lim_{\rho \to \infty} \frac{\Delta z - f_x(x, y) \Delta x - f_y(x, y) \Delta y}{\rho}$ 是否为0                                                                  |  |  |
| 的概念,     | P                                                                                                                                                              |  |  |
| 有界闭区     | 基本原理                                                                                                                                                           |  |  |
| 域上多元     | Th1(求偏导与次序无关定理)                                                                                                                                                |  |  |
| 连续函数     | $0$ 设 $z = f(x,y)$ 的两个混合偏导数 $f_{xy}(x,y), f_{yx}(x,y)$                                                                                                         |  |  |
| 的性质,     | 在区域 $D$ 内连续,则有 $f_{xy}(x,y)=f_{yx}(x,y)$                                                                                                                       |  |  |
| 多元函数     | 在区域 $D$ 内定埃,则有 $f_{xy}(\lambda, y) = f_{yx}(\lambda, y)$                                                                                                       |  |  |
| 偏导数和     | Th2(可微与偏导存在的关系定理)若 $z = f(x, y)$ 在 $P(x, y)$                                                                                                                   |  |  |
| 全徽分,     | ,                                                                                                                                                              |  |  |
| 全徽分存     | 点处可微,则在该点处 $\frac{\partial z}{\partial x}$ , $\frac{\partial z}{\partial y}$ 必存在,且有 $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$ |  |  |
| 在的必要     |                                                                                                                                                                |  |  |
| 条件和充     |                                                                                                                                                                |  |  |

#### 分条件,

Th3(偏导存在与可微的关系定理)

若 z = f(x, y)的 两 个 偏 导 数  $\frac{\partial z}{\partial x}$ ,  $\frac{\partial z}{\partial y}$  在 P(x, y)

上的某领域内存在,且在P(x,y)连续;

则 z = f(x, y)在 P(x, y)点 处 可 微

# 多函函导阶数导度、数数法偏方和人物,偏方和人物,偏方和人物,加速,

#### 1 复合函数微分法

$$(2) 设 z = f(u,v), u = \varphi(x), v = \phi(x),$$

则 $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\partial z}{\partial u} \cdot \frac{du}{dx} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dx}$ ,称之为z的全导数

(3)设
$$z = f(x, u, v), u = \varphi(x, y), v = \phi(x, y),$$

$$\iint \frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \\
\frac{\partial z}{\partial y} = 0 + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y}$$

注: 复合函数一定要设中间变量,抽象函数的高阶偏导数, 其中间变量用数字 1, 2, 3……表示更简洁.

#### 2 隐函数微分法

(1)设
$$F(x, y) = 0$$
,则 $\frac{dy}{dx} = -\frac{F'_x(x, y)}{F'_y(x, y)}$ 

$$(2)F(x,y,z) = 0, \quad \mathbb{M}\frac{\partial z}{\partial x} = -\frac{F'_{x}(x,y,z)}{F'_{z}(x,y,z)}, \quad \frac{\partial z}{\partial y} = -\frac{F'_{y}(x,y,z)}{F'_{z}(x,y,z)}$$

(3)设由方程组 
$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$
 确定的隐函数 $y = y(x), z = z(x),$ 

则 $\frac{dy}{dx}$ , $\frac{dz}{dx}$ 可通过解关于 $\frac{dy}{dx}$ , $\frac{dz}{dx}$ 的线性方程组

$$:\begin{cases} F'_{x} + F'_{y} \frac{dy}{dx} + F'_{z} \cdot \frac{dz}{dy} = 0 \\ G'_{x} + G'_{y} \frac{dy}{dx} + G'_{z} \frac{dz}{dx} = 0 \end{cases} \Rightarrow \begin{cases} F'_{y} \frac{dy}{dx} + F'_{z} \frac{dz}{dx} = -F'_{x}, \\ G'_{y} \frac{dy}{dx} + G'_{z} \frac{dz}{dx} = -G'_{x} \end{cases}$$
  $\Re R$ 

方向导数和梯度

Th1 设 z = f(x,y) 在  $M_0(x_0,y_0)$  处 可 微 ,则 f(x,y) 在 点  $M_0(x_0,y_0)$  沿任意方向  $l = (\cos\alpha,\cos\beta)$  存在方向导数且  $\frac{\partial f(x_0,y_0)}{\partial t} = \frac{\partial f(x_0,y_0)}{\partial x}\cos\alpha + \frac{\partial f(x_0,y_0)}{\partial x}\cos\beta$ 

在平面上1除了用方向角表示外也可用极角表示:

 $l = (\cos \theta, \sin \theta)$ ,  $\theta \in [0, 2\pi]$  此时相应的方向导

数的计算公式为 
$$\frac{\partial f(x_0, y_0)}{\partial l} = \frac{\partial f(x_0, y_0)}{\partial x} \cos \theta + \frac{\partial f(x_0, y_0)}{\partial y} \sin \theta$$

Th2 设三元函数 u = f(x, y, z) 在  $M_0(x_0, y_0, z_0)$  处可微,则

u = f(x, y, z) 在点  $M_0(x_0, y_0, z_0)$  沿任意方向

 $l = (\cos \alpha, \cos \beta, \cos \gamma)$  存在方向导数且有

$$\frac{\partial f(x_0, y_0, z_0)}{\partial l} = \frac{\partial f(x_0, y_0, z_0)}{\partial x} \cos \alpha + \frac{\partial f(x_0, y_0, z_0)}{\partial y} \cos \beta$$
$$+ \frac{\partial f(x_0, y_0, z_0)}{\partial z} \cos \gamma$$

梯度: z = f(x,y) 在点  $M_0$  的方向导数计算公式可改写成

$$\frac{\partial f(x_0, y_0)}{\partial l} = \left(\frac{\partial f(x_0, y_0)}{\partial x}, \frac{\partial f(x_0, y_0)}{\partial y}\right) \cdot (\cos \alpha, \cos \beta)$$

 $= grad(f(x_0, y_0)) \cdot l = |gradf(x_0, y_0)| \cos\langle grad(f(x_0, y_0), l\rangle$ 

这里向量 
$$gradf(x_0, y_0) = (\frac{\partial f(x_0, y_0)}{\partial x}, \frac{\partial f(x_0, y_0)}{\partial y})$$
成为

$$z = f(x, y)$$
 在点  $M_0$  的梯度(向量)

$$\frac{\partial f(x_0, y_0)}{\partial l}$$
随 $l$ 而变化  $l = \frac{grad(f(x_0, y_0))}{|grad(f(x_0, y_0))|}$ 即沿梯度方向时,方

向导数取最大值 $|grad f(x_0, y_0)|$ 

#### 1. 曲线的切线及法平面方程

(1)曲线 
$$\begin{cases} x = x(t) \\ y = y(t) \dot{x}(x_0, y_0, z_0) \leftrightarrow t = t_0 \\ z = z(t) \end{cases}$$

处的切线方程:
$$\frac{x-x_0}{x'(t_0)} = \frac{y-y_0}{y'(t_0)} = \frac{z-z_0}{z'(t_0)}$$

法平面方程:  $x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0$ 

(2)空间曲线Γ的一般式方程为 
$$\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$

则在曲线 $\Gamma$ 的 $P(x_0, y_0, z_0)$ 处的

切线方程:
$$\frac{x-x_0}{\frac{\partial(F,G)}{\partial(y,z)}\Big|_p} = \frac{y-y_0}{\frac{\partial(F,G)}{\partial(z,x)}\Big|_p} = \frac{z-z_0}{\frac{\partial(F,G)}{\partial(x,y)}\Big|_p}$$

法线方程:

空间曲线的切线和

法平面, 曲面的切

平面和法线,

$$\frac{\partial(F,G)}{\partial(y,z)}\bigg|_{R} (x-x_0) + \frac{\partial(F,G)}{\partial(z,x)}\bigg|_{R} (y-y_0) + \frac{\partial(F,G)}{\partial(x,y)}\bigg|_{R} (z-z_0) = 0$$

#### 2. 空间曲面在其上某点处的切平面和法线方程

2. I

-33 -

(1)设曲面 $\sum$ 为显示方程z = f(x, y),则在 $\sum$ 上一点 $P(x_0, y_0, z_0)$ 处的

切平面方程:  $\frac{\partial z}{\partial x}\Big|_{p}(x-x_0) + \frac{\partial z}{\partial y}\Big|_{p}(y-y_0) - (z-z_0) = 0.$ 

法线方程: 
$$\frac{x-x_0}{\frac{\partial z}{\partial x}\Big|_p} = \frac{y-y_0}{\frac{\partial z}{\partial y}\Big|_p} = \frac{z-z_0}{-1}$$

(2)设曲面 $\sum$ 为隐式方程F(x,y,z)=0,则在 $\sum$ 上一点 $P(x_0,y_0,z_0)$ 的

切平面方程:  $F'_z | (x-x_0) + F'_y |_p (y-y_0) + F'_z |_p (z-z_0) = 0$ 

法线方程: $\frac{x-x_0}{F'_x|_p} = \frac{y-y_0}{F'_y|_p} = \frac{z-z_0}{F'_z|_p}$ 

#### 1 多元函数的极值

二的勒多的 条值外式 医值极外 多数泰,数和

函数的最 大值、最

小值及其 简单应用 定义:

设函数z = f(x, y)在 $P(x_0, y_0)$ 的某邻域内有定义,若对于该邻域

内异于  $P(x_0, y_0)$  点的任一 点Q(x, y) 恒有

$$f(x,y) > f(x_0,y_0)(\emptyset < f(x_0,y_0))$$

则称 $f(x_0, y_0)$ 为f(x, y) 的极小值 (极大值)

Th1(取极值的必要条件)

设z = f(x, y)在 $P(x_0, y_0)$ 点的一阶偏导数存在,且

$$P(x_0, y_0)$$
是  $z = f(x, y)$ 的 极 值 点 , 则 
$$\begin{cases} f_x(x_0, y_0) = 0 \\ f_y(x_0, y_0) = 0 \end{cases}$$

Th 2(函数取极值的充分条件)

设z = f(x, y)在 $P(x_0, y_0)$ 点的某邻域内有

连续的二阶偏导数,且 $f'_x(x_0,y_0)=0$ , $f'_y(x_0,y_0)=0$ 

$$[f''_{xy}(x_0, y_0)]^2 - f''_x^2(x_0, y_0) \cdot f''_y^2(x_0, y_0) < 0$$

则 $P(x_0, y_0)$ 是z = f(x, y)的一个极值点

- (1)若 $f''_x^2(x_0, y_0) > 0$ (或 $f''_y^2(x_0, y_0) > 0$ ),则 $P(x_0, y_0)$ 为极小值点。
- (2) 若 $f''_x^2(x_0, y_0) < 0$ (或 $f''_y^2(x_0, y_0) < 0$ ),则 $P(x_0, y_0)$ 为极大值点。

#### 2 无条件极值

解题程序:

- (1)求出z = f(x, y)的驻点  $(x_0, y_0)$ ;
- (2)用Th2判别 $(x_0, y_0)$ 是否为极值点; 是,则 $f(x_0, y_0)$ 为

z = f(x, y) 的极值。

- 3条件极值(拉格朗日乘数法)
- 1) 由条件 $\varphi(x, y) = 0$ , 求z = f(x, y)的极值

解题程序:

 $\diamondsuit F(x,y)=f(x,y)+\lambda \varphi(x,y)$ ;

 $f(x_0, y_0)$ 即为f(x, y)的极值(存在的话)

2) 由条件 $\varphi(x, y, z) = 0$ , 求u = f(x, y, z)的极值。解题程序: 令 $F(x, y, z) + \lambda \varphi(x, y, z)$ ;

解方程组 
$$\begin{cases} f'_{x}(x,y,z) + \lambda \varphi'_{x}(x,y,z) = 0 \\ f'_{y}(x,y,z) + \lambda \varphi'_{y}(x,y,z) = 0 \\ f'_{z}(x,y,z) + \lambda \varphi'_{z}(x,y,z) = 0 \\ \varphi(x,y,z) = 0 \end{cases}$$

若  $(x_0, y_0, z_0)$ 为其解 $f(x_0, y_0, z_0)$ 即为f(x, y, z)的极值(若存在的话)

3) 由条件 $\varphi_1(x,y,z) = 0.\varphi_2(x,y,z) = 0$ 求函数u = f(x,y,z)的极值解题程序:

令
$$F(x,y,z) = f(x,y,z) + \lambda_1 \varphi_1(x,y,z) + \lambda_2 \varphi_2(x,y,z)$$
  
以下仿 1),2)

## (六)多元函数积分学

| 考试内容  | 对应公式、定理、概念                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 二重积分  | 1二重积分:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 与三重积  | $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$ |
| 分的概   | $I=\iint_{\mathbb{D}} f(x,y)d\sigma = \lim_{d\to 0} \sum_{i=1}^{n} f(\xi_{i},\eta_{i})\Delta\sigma_{i}, 其中d = \max_{1\leq i\leq n} \left\{d_{i}\right\},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 念、性质、 | $d_i$ 为 $\Delta \sigma_i$ 的直径( $i=1,2,\cdots n$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 计算和应  | <br>  几何意义:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 用     | $\exists z = f(x,y) \ge 0, (x,y) \in D$ 时,而二重积分I表示以 $z = f(x,y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 为曲项,以D为底的柱体体积。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### 2 三重积分:

$$I = \iiint_{D} F(x, y, z) dv = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_{i,} \eta_{i,} \tau_{i}) \Delta v_{i}, 其中d = \max_{1 \le i \le n} \left\{ d_{i} \right\},$$

$$d_{i} 为 \Delta v_{i}$$
的直径( $i = 1, 2, \cdots n$ )

#### 物理意义:

三重积分I表示体密度为 $\mu = f(x, y, z)$ 的空间形体 $\Omega$ 的质量。

### 3 性质(只叙述二重积分的性质,三重积分类似)

$$(1)$$
  $\iint_{\Omega} kf(x, y) d\sigma = k \iint_{\Omega} f(x,y) d\sigma, k$  为常数

(2) 
$$\iint_{D} [f(x,y) \pm g(x,y)] d\sigma = \iint_{D} f(x,y) d\sigma \pm g(x,y) d\sigma$$

(3) 
$$\iint_D f(x,y)d\sigma = \sum_{i=1}^n \iint_{D_i} f(x,y)d\sigma$$
, 其中 $D_i$ 为  $D$  的构成子域且任

两个子域没有重迭部分 $(i=1,2,\cdots,m)$ 

$$(4)\iint_{D}d\sigma=A,$$
其中 $A$ 为 $D$ 的面积。

#### (5) (比较定理)

若在
$$D$$
上恒有 $f(x,y) \le g(x,y)$ ,则 $\iint_D f(x,y)d\sigma \le \iint_D g(x,y)d\sigma$ 

(6)(估值定理)设M,m分别为f(x,y)在闭域D上的最大与最小值,

A为D的面积,则 
$$mA \le \iint_{\Omega} f(x,y)d\sigma \le MA$$

(7)(中值定理)若f(x,y)在闭域D上连续,A为D的面积,则在D上至少3一点( $\xi$ , $\eta$ ),使 $\iint_{\mathbb{R}} f(x,y)d\sigma f(\xi,\eta)A$ 

#### (8)二重积分的对称性原理

1) 如果积分域D关于x轴对称,f(x,y)为y的奇偶函数,则二重积分 $\iint f(x,y)$ d $\sigma$ 

$$=\begin{cases} 0, f 关于y 为奇函数,即 $f(x, -y) = -f(x, y) \\ 2 \iint_{D_1} f(x, y) d\sigma, f 关于y 为偶函数,即 $f(x, -y) = f(x, y), \end{cases}$$$$

D<sub>1</sub>为D在上半平面部分

这个性质的几何意义见图(a)、(b)



2) 如果积分域D关于y轴对称, f(x,y)为x的奇偶函数,

则二重积分
$$\iint_{\Gamma} f(x,y) d\sigma$$

$$= \begin{cases} 0, f 关于x的奇函数,即 $f(-x, y) = -f(x, y) \\ 2 \iint_{D_2} f(x, y) d\sigma, f 关于x 为偶函数,即 $f(-x, y) = f(x, y), \end{cases}$$$$

D,为D在右半平面部分

3) 如果D关于原点对称,f(x,y)同时为x,y的奇偶函数,

则二重积分 $\iint_{\mathbb{D}} f(x,y) d\sigma$ 

 $=\begin{cases} 0, f 关于x, y 的奇函数, 即 f(-x, -y) = -f(x, y) \\ 2 \iint_{D_2} f(x, y) d\sigma, f 关于x, y 为偶函数, 即 f(-x, -y) = f(x, y), \end{cases}$ 

D,为D在上半平面部分

4) 如果D关于直线y = x对称,则 $\iint_{\mathbb{D}} f(x,y) d\sigma = \iint_{\mathbb{D}} f(x,y) d\sigma$ 

注:注意到二重积分积分域 D 的对称性及被积函数 f(x,y) 的 奇偶性,一方面可减少计算量,另一方面可避免出差错,要特别注意的是仅当积分域 D 的对称性与被积函数 f(x,y) 的 奇偶性两者兼得时才能用性质 8.

1 平面曲线积分与路径无关的四个等价条件 设函数 P(x x) Q(x x) 在单连通区域 D 上 图 3

设函数 P(x,y),Q(x,y) 在单连通区域 D 上具有一阶连续偏导

数,则  $\int_{L} P dx + Q dy$  与路径无关

$$\Leftrightarrow \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, \forall (x, y) \in D$$

 $\Leftrightarrow \oint_{L} Pdx + Qdy = 0, L$  为一简单分段光滑封闭曲线

⇔ 存在函数  $u(x,y),(x,y) \in D$  使 du(x,y) = Pdx + Qdy, 且

$$u(x,y) = \int_{(x_0,y_0)}^{(x,y)} Pdx + Qdy$$

2 格林公式:设平面上的有界闭区域 D 由分段光滑的曲线 L 围成,函数 P(x,y),Q(x,y) 在有 D 连续的一阶偏导数,则有

$$\iint\limits_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \oint_{L} P dx + Q dy$$

两积念及两积系公面分无类分、计类分,式曲与关件曲的性算曲的格,线路的,线路的,

|                                                    | 或者 $\iint_{D} \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y}\right) dx dy = \oint_{L} P dx - Q dy$ |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 二全原两积念及两积系公托元微函类分、计类分,式充公函分数曲的性算曲的高,东式数的,面概质,面关斯斯, | 1 高斯(Gauss)公式 设 $\Omega$ 是空间中的有界闭区域,由分块光滑的曲面所 $S$ 围成,函数 $P(x,y,z)$ , $Q(x,y,z)$ , $R(x,y,z)$ 在 $\Omega$ 由连续的一阶偏导数,则     |
| 散度和旋                                               | 1 散度的计算公式                                                                                                               |

度的概念 及计算, 曲线积分 和曲面积 分的应用

设
$$\overline{A} = P(x,y,z)\overline{i} + Q(x,y,z)\overline{j} + R(x,y,z)\overline{k}; P,Q,R$$
均可导,则 $\overline{A}$ 

在 
$$P(x, y, z)$$
 点处的散度为  $div\overline{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ 

2 旋度的计算公式

设有矢量场 $\overline{A} = P(x,y,z)\overline{i} + Q(x,y,z)\overline{j} + R(x,y,z)\overline{k}$ , 其中

P,Q,R 均有连续的一阶偏导数,则旋度  $rot\overline{A}$  为:

$$rot \overline{A} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

## (七)无穷级数

| 考试内容 |
|------|
| 常数项级 |
| 数的收敛 |
| 与发散的 |
| 概念,收 |
| 敛级数的 |
| 和的概念 |
| 级数的基 |
| 本性质与 |
| 收敛的必 |
| 要条件  |
|      |

#### 对应公式、定理、概念

1 级数  $\sum_{n=0}^{\infty} u_n$  的性质:

- (1)设 $c \neq 0$ 的常数,则 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} cu_n$ 有相同敛散性
- (2) 设有两个数级 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$

若
$$\sum_{n=1}^{\infty} u_n = s$$
,  $\sum_{n=1}^{\infty} v_n = \sigma$ , 则 $\sum_{n=1}^{\infty} (u_n \pm v_n) = s \pm \sigma$ .

若 
$$\sum_{n=1}^{\infty} u_n$$
 收 敛 ,  $\sum_{n=1}^{\infty} v_n$  发 散 , 则  $\sum_{n=1}^{\infty} (u_n \pm v_n)$  发 散 .

若  $\sum_{n=1}^{\infty} u_n \sum_{n=1}^{\infty} \nu_n$ 均 发 散 ,则  $\sum_{n=1}^{\infty} (u_n \pm \nu_n)$ 敛 散 性 不 定 .

注:添加或去消有限项不影响一个级数的敛散性.

设级数  $\sum_{n=1}^{\infty} u_n$  收敛,则对其各项任意加括号后所得新级数仍

收敛于原级数的和

几与以的性级性法例级级他 处正收判的 数切的 如项敛别的

与 
$$\mathbf{p}$$
 级数  $\sum_{n=1}^{\infty} u_n (u_n \ge 0)$  的判敛法

(1)比较判敛法: 设0 ≤ u, ≤ v,, 若

$$\sum_{n=1}^{\infty} u_n$$
收敛,则 $\sum_{n=1}^{\infty} v_n$ 收敛

$$\sum_{n=1}^{\infty} u_n$$
发散,则 $\sum_{n=1}^{\infty} v_n$ 发散

(2)比较法的极限形式:设 $\sum_{n=0}^{\infty} u_n \mathcal{D} \sum_{n=0}^{\infty} v_n$ 均为正项级数

$$\underline{H}\lim_{n\to\infty}\frac{u_n}{v_n}=A(v_n\neq 0)$$

1.若 $0 \le A < +\infty$ , 且 $\sum_{n=1}^{\infty} \nu_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛

$$2.$$
若 $0 < A \le +\infty$ ,且 $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} u_n$ 发散

两个常用的比较级数

$$i$$
)等比级数 $\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \frac{a}{1-r}, |r| < 1\\ \text{发散}, |r| \ge 1 \end{cases}$ 

$$(ii)$$
  $p-$  级数  $\sum_{n=1}^{\infty} \frac{1}{n^p} = \begin{cases}$  收敛, $p > 1$  时 发散, $p \le 1$  时

(3)比值判别法(达朗贝尔准则)(适用于通项 u, 中含有 n!

或关于 n 的若干连乘积形式)

设
$$u_n \ge 0, n = 1, 2 \cdots$$
对于 $\sum_{n=1}^{\infty} u_n$ 来讲

若 
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho$$
 
$$\begin{cases} \rho > 1 \text{时}, \sum_{n=1}^{\infty} u_n \text{发散} \\ \rho = 1 \text{时}, \text{方法失效} \\ \rho < 1 \text{时}, \sum_{n=1}^{\infty} u_n \text{收敛} \end{cases}$$

交错级数 与莱布尼 兹定理, 任意项级 数的绝对 收敛与条 件收敛,

1. 交错级数  $\sum_{n=1}^{\infty} (-1)^{n-1} u_n, (u_n > 0)$  的判敛法

**莱布尼兹准则:** 若交错级数 $\sum_{i=1}^{\infty} (-1)^{n-1} u_n, (u_n > 0)$ 满足条件:

$$(1)u_n \ge u_{n+1}, (n=1,2,\cdots); (2) \lim_{n\to\infty} u_n = 0,$$

则交错级数收敛,其和 $S \le u_1$ ,其n项余和的绝对值 $|R_n| \le u_{n+1}$ 

函数项级 数的收敛 域与和函 数的概 念,幂级 数及其收

敛半径, 收敛区间

(指开区 间)和收 敛域,幂

级数的和

1 幂级数:  $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = \sum_{i=1}^n a_i x^n$ 

收敛半径,若 
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$
,则 $R = \frac{1}{\rho}$ .

2. 函数项级数  $\sum_{n=0}^{\infty} u_n(x)$  收敛域的求法步骤:

(1)用比值(或根值)法求 $\rho(x)$ ,即

$$\lim_{n\to\infty}\frac{|u_{n+1}(x)|}{|u_n(x)|}=\rho(x)(\operatorname{Blim}_{n\to\infty}\sqrt[n]{|u_n(x)|}=\rho(x));$$

- (2)解不等式方程 $\rho(x) < 1$ , 求出 $\sum_{n=0}^{\infty} u_n(x)$ 的收敛区间(a,b);
- (3)考察x = a(或x = b) 时, $\sum_{n=0}^{\infty} u_n(a)($ 或 $\sum_{n=0}^{\infty} u_n(b))$  的敛散性
- (4) 写出 $\sum_{n=0}^{\infty} u_n(x)$ 的收敛域

#### 1 幂级数的四则运算性质:

设
$$\sum_{n=0}^{\infty} a_n x^n = f(x), \sum_{n=0}^{\infty} b_n x^n = g(x),$$
其收敛半径分别为

= f(x)g(x)

(1)  $\sum_{n=0}^{\infty} a_n x^n \pm \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n \pm b_n) x^n = f(x) \pm g(x)$ , 且在(-R, R)

 $R_1, R_2, R = \min(R_1, R_2)$ , 则对 $\forall x \in (-R, R)$ ,有

## 幂级数在 其收敛区 间内的基 简单幂级

 $(2)\left(\sum_{n=0}^{\infty}a_{n}x^{n}\right)\left(\sum_{n=0}^{\infty}b_{n}x^{n}\right)=\sum_{n=0}^{\infty}\left(a_{0}b_{n}+a_{1}b_{n-1}+\cdots+a_{n-1}b_{1}+a_{n}b_{0}\right)x^{n}$ 

内绝对收敛

(3) 设 $b_0 \neq 0$ ,则在x = 0的足够小邻域内

 $\frac{f(x)}{g(x)} = \frac{a_0 + a_1 x + \dots + a_n x^n + \dots}{b_0 + b_1 x + \dots + b_n x^n + \dots} = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n + \dots$ 利用多项式的长除法可得:  $C_0 = \frac{a_0}{h_1}, C_1 = \frac{a_1b_0 - a_0b_1}{h_2^2}, \cdots$ 

2 幂级数的分析性质:

设幂级数 $\sum a_n x^n$ 的收敛半径为R,则在(-R, R)内有

(1) $\sum_{n=0}^{\infty} a_n x^n$ 的和函数f(x) 是连续的。

本性质, 数的和函 数的求 法,初等 幂级数展 开式

$$(2)\sum_{n=0}^{\infty}a_{n}x^{n}$$
可逐项微分,且 $f_{x}^{'}=(\sum_{n=0}^{\infty}a_{n}x^{n})^{*}$ 

$$= \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=0}^{\infty} n a_n x^{n-1}$$

(3) 
$$\sum_{n=0}^{\infty} a_n x^n$$
可逐项积分,且 $\int_0^x f(t) dt = \int_0^x (\sum_{n=0}^{\infty} a_n t^n) dt$ 

$$= \sum_{n=0}^{\infty} \left( \int_{0}^{x} a_{n} t^{n} dt \right) = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}$$

#### 3 函数的幂级数展开

泰勒级数 设f(x) 在 $x = x_0$ 的某一邻域内具有任意阶导数,

级数: 
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!} (x-x_0)^2 + \cdots$$

$$+ \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n + \cdots$$

称为f(x) 在 $x = x_0$ 处的泰勒级数。

当
$$x_0 = 0$$
时,级数化为 $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \cdots$ 

$$+ \frac{f^{(n)}(0)}{n!} x^n + \cdots$$

称为麦克劳林级数

 $Th \mathcal{Q}_f(x)$ 在 $x = x_0$ 某领域内具有任意阶导数,

则泰勒级数 $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ 

收敛于f(x)的充分条件 $\lim_{n\to\infty} R_n(x) = 0$ ,

其中
$$\mathbf{R}_n(x) = \frac{1}{(n+1)!} f^{(n+1)}[x_0 + \theta(x-x_0)](x-x_0)^{n+1}, 0 < \theta < 1.$$

4 常见的幂级数展开式:

$$(1)\frac{1}{1-u}=1+u+u^2+\cdots+u^n+\cdots=\sum_{n=0}^{\infty}u^n,(-1,1)$$

$$(2)\frac{1}{1+u}=1-u+u^2-\cdots+(-1)^nu^n+\cdots=\sum_{n=0}^{\infty}(-1)^nu^n,(-1,1)$$

$$(3) e^{u} = 1 + u + \frac{u^{2}}{2!} + \dots + \frac{u^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{u^{n}}{n!}, (-\infty, +\infty)$$

$$(4)\sin u = u - \frac{u^3}{3!} + \dots + (-1)^n \frac{u^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n+1}}{(2n+1)!}, (-\infty, +\infty)$$

$$(5)\cos u = 1 - \frac{u^2}{2!} + \frac{u^4}{4!} - \dots + (-1)^n \frac{u^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n}}{(2n)!}, (-\infty, +\infty)$$

(6) 
$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \dots + (-1)^n \frac{u^{n+1}}{n+1} + \dots \sum_{n=0}^{\infty} (-1)^n \frac{u^{n+1}}{n+1}, (-1,1)$$

(7) 
$$(1+u)^a = 1 + au + \frac{a(a-1)}{2!}u^2 + \dots + \frac{a(a-1)\cdots(a-n+1)}{n!}u^n \dots$$

(随 a 的不同而不同,但在(-1,1)总有意义)

函数的傅 立叶系数 与傅立叶

1设f(x)是以 $2\pi$ 为周期的函数,且在 $[-\pi, \pi]$ 或 $[0,2\pi]$ 上可积,则

在 [-l,l]

上的傅立 叶级数

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx dx, (n = 0, 1, 2, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx dx, (n = 1, 2, \dots)$$

称为f(x)的傅立叶系数

2 f(x)的傅立叶系数为系数的三角级数 $\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 

称为f(x)的傅立叶级数,记为 $f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 

3设f(x)是以2l为周期的函数,且在-l,l]上可积,则以

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx, (n = 0, 1, 2 \cdots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx, (n = 0, 1, 2 \cdots)$$

为系数的三角级数
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x)$$

称为f(x)的傅立叶级数,记为 $f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{l}x + b_n \sin \frac{n\pi}{l}x)$ .

- 3 狄里赫莱收敛定理: 设函数f(x)  $\Delta f(x)$   $\Delta f(x)$   $\Delta f(x)$   $\Delta f(x)$
- (1)除有限个第一类间断点外都连续。
- (2) 只有有限个极值点,则f(x)的傅立叶级数在 $[-\pi, \pi]$ 上收敛,且有

## (八)常微分方程

考试内容 对应公式、定理、概念

## 常微分方 程的基本 概念、变 量可分离 的微分方 程

- 1 常微分方程 含有白变量、未知函数及未知函数的某些导 数的方程式称微分方程, 而当未知函数是一元函数时称 为常微分方程
- 2 可分离变量方程  $f_{x}(x)g_{x}(y)dx + f_{y}(x)g_{y}(y)dy = 0$

解法: 两边同除 
$$g_1(y)f_2(x) \neq 0$$
, 得  $\frac{f_1(x)}{f_2(x)}dx + \frac{g_2(y)}{g_1(y)}dy = 0$ 

$$\int \frac{f_1(x)}{f_2(x)} dx + \int \frac{g_2(y)}{g_1(y)} dy = C$$

1 齐次方程  $y' = f(\frac{y}{x})$ 

解法: 令 $u = \frac{y}{x}$ , 则y = ux,  $y' = u + x \frac{du}{dx}$ 于是,

原方程

奇次微分 分方程,

伯努利方

程. 全微 分方程,

$$\Rightarrow u + x \frac{du}{dx} = f(u) \Rightarrow \frac{du}{f(u) - u} = \frac{dx}{x} \Rightarrow \int \frac{du}{f(u) - u} = \ln x + C$$

阶线性徽 2 可化为齐次型的方程  $\frac{dy}{dx} = f\left(\frac{a_1x + b_1y + c_1}{a_1x + b_1y + c_1}\right)$ 

解法: (1)当 $c_1 = c_2 = 0$ 时

$$\frac{dy}{dx} = f\left(\frac{a_1x + b_1y}{a_2x + b_2y}\right) = f\left(\frac{a_1 + b_1\frac{y}{x}}{a_2 + b_2\frac{y}{x}}\right) = g\left(\frac{y}{x}\right) \text{ if } \exists T \in \mathbb{R}$$

(2). 
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0$$
,  $\mathbb{E}[\frac{a_1}{a_2}] = \frac{b_1}{b_2} = \lambda \mathbb{E}[\frac{a_1}{a_2}]$ 

$$\frac{dy}{dx} = f\left(\frac{\lambda(a_2x + b_2y) + c_1}{a_2x + b_2y + c_2}\right) = g(a_2x + b_2y)$$

$$rac{du}{dx} = a_2 x + b_2 y = u$$
 , 则  $rac{du}{dx} = a_2 + b_2 f(u)$  属于 (1)

(3). 
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0, c_1, c_2$$
 不全为 0 解方程组  $\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases}$ 

求交点  $(\alpha, \beta)$ 

令 
$$x = X + \alpha, y = Y + \beta$$
, 则原方程  $\Rightarrow \frac{dy}{dX} = \varphi(\frac{X}{Y})$  属于 (2)

3 一阶线性方程 y'+p(x)y=q(x)

解法: 用常数变易法求

- (1)求对应齐次方程 y'+p(x)y=0 的通解  $y=Ce^{-\int p(x)dx}$
- (2)令原方程的解为  $y = C(x)e^{-\int p(x)dx}$
- (3)代入原方程整理得

$$C'(x)e^{-\int p(x)dx} = q(x) \Rightarrow C(x) = \int q(x)e^{\int p(x)dx}dx + \tilde{C}$$

(4)原方程通解 
$$y = [\int q(x)e^{\int p(x)dx}dx + \tilde{C}]e^{-\int p(x)dx}$$

4 贝努里方程 y'+p(x)y=q(x)y'', 其中  $n \neq 0,1$ 

解法: 令 
$$Z = y^{1-n}$$
, 则方程  $\Rightarrow \frac{1}{1-n} \frac{dz}{dx} + p(x)z = q(x)$ ,

$$\frac{dz}{dx} + (1-n)p(x)z = (1-n)q(x) \text{ AF } 3$$

5 全微分方程 M(x,y)dx + N(x,y)dy = 0 为全微分方程

|                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | $\Leftrightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} . \text{ill}  \text{ill} $ |
| 可的换某方降阶程微解及构用变求些程阶徼,分的解定简量解微,的分线方性的理解。 | 注:这里只限于讨论二阶线性方程,其结论可推广到更高阶的方程,二阶线性方程的一般形式为 $y''+p(x)y'+q(x)y=f(x)$ (8.1)其中 $p(x),q(x),f(x)$ 均为连续函数,当右端项 $f(x)\equiv 0$ 时,称为二阶线性齐次方程,否则称为非齐次方程. 解的性质与结构(以下性质可推广到任意高阶的线性方程)分以下几种: 1 若 $y_1(x),y_2(x)$ 为齐次方程 $y''+p(x)y'+q(x)y=0$ (8.2)的两个特解,则其线性组合 $C_1y_1(x)+C_2y_2(x)$ 仍为(8.2)的解,特别地,若 $y_1(x),y_2(x)$ 线性无关(即 $\frac{y_1(x)}{y_2(x)}\neq\lambda$ (常数)),则(8.2)的通解为 $y(x)=C_1y_1(x)+C_2y_2(x)$ 2 设 $y_1(x),y_2(x)$ 为非线性方程(8.1)的两个特解,则其差 $y_1(x)-y_2(x)$ 为相应齐次方程(8.2)的特解 3 设 $y^*(x)$ 为非齐次方程(8.1)的一个特解, $y(x)$ 为齐次方程 (8.2)的任意特解,则其和 $y^*(x)+y(x)$ 为(8.1)的解,特别地,若 $y_1(x),y_2(x)$ 为(8.2)两个线性无关的特解,则(8.1)的通解为 $y(x)=y^*(x)+C_1y_1(x)+C_2y_2(x)$ ,其中 $C_1,C_2$ 为任意常数.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 数奇次线性微分方                               | 1 二阶常系数线性齐次方程 y"+ py'+ qy = 0 (1) 其中 p,q<br>均为常数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## 

解法:特征方程:  $\lambda^2 + p\lambda + q = 0$ 

- (I) 当 $\lambda_1$ , $\lambda_2$  为相异的特征根时,方程(1)通解为  $y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$ 
  - (II) 当  $\lambda = \lambda$  时,通解为  $y(x) = (C_1 + C_2 x)e^{\lambda x}$
  - (III) 当 $\lambda = \alpha \pm i\beta$  (复根) 时,通解为

$$y(x) = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

2 n阶常系数齐次线性方程

此种方程的一般形式为

$$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \dots + p_n y = 0 (*), \ \sharp \Phi$$

 $p_i(i=1,2,\cdots,n)$  为常数,相应的特征方程为

$$\lambda^{n} + p_{1}\lambda^{(n-1)} + p_{2}\lambda^{(n-2)} + \dots + p_{n} = 0$$

特征根与通解的关系同二阶方程的情形相类似,具体结果为:

- (1)若 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是个n相异实根,则方程(\*)的通解为  $y(x) = C_1 e^{\lambda_x} + C_2 e^{\lambda_1 x} + \dots + C_n e^{\lambda_n x}$
- (2)若  $\lambda = \lambda_0$  为特征方程的  $k(k \le n)$  重实根,则(\*)的通解中含有:  $(C_1 + C_2 x + \cdots + C_k x^{k-1})e^{\lambda_0 x}$
- (3)若  $\alpha + i\beta$  为特征方程的  $k(2k \le n)$  重共轭复根,则(\*)的通解中含有:

e<sup>ax</sup>[(C<sub>1</sub>+C<sub>2</sub>x+···+C<sub>k</sub>x<sup>k-1</sup>)cos βx+(D<sub>1</sub>+D<sub>2</sub>x+···+D<sub>k</sub>x<sup>k-1</sup>)sin βx]
由于我们不能求出一般的三次以上代数方程的根,也就是说对于三次以上的特征方程一般不能得到齐特征根,自然也就不能求出三阶以上常系数齐次线性微分方程的通解,能够求出的只是某些特殊情形

简单的二
阶常系数
非奇次线
性微分方
程,欧拉

性微分方程, 欧拉方程, 微方程, 微分方面 分方程 分方程 分方程 分方程 单应用

(1). 求对应齐次方程的通解 Y(x)

(2). 求出(2)的特解 v\*(x)

(3). 方程(2)的通解 y = Y(x) + y\*(x)

方程(2)特解 y\*(x) 的求法有三种: 微分算子法、常数变易法、

待定系数法.

2 形如  $x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + \dots + a_{n-1} x y' + a_n y = 0$  的方程成为欧拉方程.

## 二、线性代数

### (一) 行列式

| 考试内容 | 对应公式、定理、概念 |
|------|------------|

## 

行列式按行(列)展开定理

(1) 设A = 
$$(a_{ij})_{n \times n}$$
, 则 $a_{i1}A_{j1} + a_{i2}A_{j2} + \dots + a_{in}A_{jn} = \begin{cases} |A|, i = j \\ 0, i \neq j \end{cases}$ 

| 或 
$$a_{1i}A_{1j} + a_{2i}A_{2j} + \dots + a_{ni}A_{nj} = \begin{cases} |A|, i = j \\ 0, i \neq j \end{cases}$$

即 
$$AA^{\bullet} = A^{\bullet}A = |A|E$$
, 其中

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \cdots & \cdots & \cdots & \cdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = (A_{ji}) = (A_{ij})^T$$

(2)设 
$$A, B$$
 为  $n$  阶方阵,则 $|AB| = |A||B| = |B||A| = |BA|$ 

$$\left| \mathcal{L} \right| A \pm B = \left| A \right| \pm \left| B \right|$$
 不一定成立

$$(5) \begin{vmatrix} A & O \\ O & B \end{vmatrix} = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = |A||B|, A, B为方阵,$$

$$\left| \Box \right|_{B_{n\times n}}^{O} \quad A_{m\times m} = (-1)^{mn} \cdot |A| |B|.$$

(6)范德蒙行列式 
$$D_n = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \cdots & \cdots & \cdots & \cdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j)$$

设 A 是 n 阶方阵,  $\lambda_i(i=1,2\cdots,n)$  是 A 的 n 个特征值,则  $|A|=\prod_{i=1}^n \lambda_i$ 

#### (二)矩阵

| 考试内容                                 | 对应公式、定理、概念                                                                                                                                                                                              |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 矩阵的概<br>念,矩阵<br>的线性运<br>算,矩阵<br>的乘法, | 矩阵: $m \times n$ 个数 $a_{ij}$ 排成 $m$ 行 $n$ 列的表格 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$ 称 |
|                                      | 为矩阵,简记为 $A$ ,或 $(a_{ij})_{m \times n}$ .若 $m = n$ ,则称 $A$ 是 $n$ 阶矩阵或 $n$ 阶方阵.                                                                                                                           |
|                                      | 矩阵的线性运算                                                                                                                                                                                                 |
|                                      | 1 矩阵的加法 设 $A = (a_y), B = (b_y)$ 是两个 $m \times n$ 矩阵, 则 $m \times n$                                                                                                                                    |
|                                      | 矩阵 $C = (c_{ij}) = a_{ij} + b_{ij}$ 称为矩阵 $A$ 与 $B$ 的和,记为 $A + B = C$                                                                                                                                    |
|                                      | 2 矩阵的数乘 设 $A = (a_{ij})$ 是 $m \times n$ 矩阵, $k$ 是一个常数,则                                                                                                                                                 |
|                                      | m×n矩阵(ka <sub>ij</sub> ) 称为数 k 与矩阵 A 的数乘,记为 kA.                                                                                                                                                         |

3矩阵的乘法 设 $A = (a_{ij})$ 是 $m \times n$ 矩阵,  $B = (b_{ij})$ 是 $n \times s$ 矩阵,

那么 $m \times s$ 矩阵 $C = (c_{ii})$ ,其中

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}=\sum_{k=1}^n a_{ik}b_{kj}$$
 称为  $A$ 与 $B$ 的乘积 的乘积,记为  $C=AB$ 

 $1A^{T}$ 、 $A^{-1}$ 、A\*三者之间的关系

$$1)(A^{T})^{T} = A,(AB)^{T} = B^{T}A^{T},(kA)^{T} = kA^{T},(A \pm B)^{T} = A^{T} \pm B^{T}$$

$$(2)(A^{-1})^{-1} = A, (AB)^{-1} = B^{-1}A^{-1}, (kA)^{-1} = \frac{1}{k}A^{-1},$$
但

 $(A \pm B)^{-1} = A^{-1} \pm B^{-1}$ 不一定成立,

$$3)(A^*)^* = |A|^{n-2} A(n \ge 3), \quad (AB)^* = B^*A^*,$$

$$(kA)^* = k^{n-1}A^*(n \ge 2)$$
. 但  $(A \pm B)^* = A^* \pm B^*$  不一定成立

$$4)(A^{-1})^{T} = (A^{T})^{-1}, (A^{-1})^{*} = (A^{*})^{-1}, (A^{*})^{T} = (A^{T})^{*}$$

2 有关 A\*的结论

1) 
$$AA^* = A * A = |A|E$$

2) 
$$|A^*| = |A|^{n-1} (n \ge 2), (kA)^* = k^{n-1}A^*, (A^*)^* = |A|^{n-2} A(n \ge 3)$$

3)若 
$$A$$
 可逆,则  $A^* = |A|A^{-1}, (A^*)^* = \frac{1}{|A|}A$ 

4)若 
$$A$$
 为  $n$  阶方阵,则  $r(A^*) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n-1 \\ 0, & r(A) < n-1 \end{cases}$ 

方幂乘列阵置阵和矩的件矩阵方的,转矩然,的逆概质可要伴诉的阵行矩

#### 3有关 $A^{-1}$ 的结论

$$A$$
可逆  $\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;$ 

- ⇔ A可以表示为初等矩阵的乘积;

#### 1 有关矩阵秩的结论

- 1) 秩 r(A) = 行秩=列秩:
- 2)  $r(A_{m\times n}) \leq \min(m,n);$
- 3)  $A \neq 0 \Rightarrow r(A) \geq 1$ ;
- 4)  $r(A \pm B) \le r(A) + r(B)$ ;
- 5) 初等变换不改变矩阵的秩

矩阵的视 等变等矩 的秩矩 的秩,矩阵的秩等,所以

分块矩阵

及其运算

- 6)  $r(A)+r(B)-n \le r(AB) \le \min(r(A),r(B))$ , 特别若 AB=O则  $r(A)+r(B) \le n$
- 7) 若  $A^{-1}$  存在  $\Rightarrow r(AB) = r(B)$ ; 若  $B^{-1}$  存在
- 的秩,矩  $\Rightarrow r(AB) = r(A);$

若 
$$r(A_{m\times n}) = n \Rightarrow r(AB) = r(B)$$
;

若 
$$r(A_{m\times s}) = n \Rightarrow r(AB) = r(A);$$

- 8) r(A<sub>max</sub>)=n ⇔ Ax = 0 只有零解
- 2 分块求逆公式

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} A & O \\ C & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ -B^{-1}CA^{-1} & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix} \quad \text{这里 A, B 均为可逆方阵}$$

### (三) 向量

| 考试内容                      | 对应公式、定理、概念                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 考 向念的合表量相性的性线,线与关 概量组性向性线 | 対应公式、定理、概念  1 有关向量组的线性表示 (1) $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关 $\Leftrightarrow$ 至少有一个向量可以用其余向量线性表示。 (2) 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关, $\alpha_1, \alpha_2, \cdots, \alpha_s$ , $\beta$ 线性相关 $\Leftrightarrow$ $\beta$ 可以由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 惟一线性表示。 (3) $\beta$ 可以由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表示 $\Leftrightarrow r(\alpha_1, \alpha_2, \cdots, \alpha_s) = r(\alpha_1, \alpha_2, \cdots, \alpha_s, \beta)$ 2 有关向量组的线性相关性 (1) 部分相关,整体相关;整体无关,部分无关。 (2) ① n 个 n 维向量 $\alpha_1, \alpha_2 \cdots \alpha_n$ 线性无关 $\Leftrightarrow   [\alpha_1, \alpha_2, \cdots, \alpha_n]   \neq 0$ , $n \wedge n$ 维向量 $\alpha_1, \alpha_2 \cdots \alpha_n$ 线性相关 $\Leftrightarrow   [\alpha_1, \alpha_2, \cdots, \alpha_n]   = 0$ , |
|                           | ② n+1 个 n 维向量线性相关.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|                   | ③若 $\alpha_1,\alpha_2\cdots\alpha_s$ 线性无关,则添加分量后仍线性无关;                                                                       |
|-------------------|------------------------------------------------------------------------------------------------------------------------------|
|                   | 或一组向量线性相关,去掉某些分量后仍线性相关                                                                                                       |
|                   | 1 有关向量组的线性表示                                                                                                                 |
| 向量组的              | $(1) \alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关 $\Leftrightarrow$ 至少有一个向量可以用其余向                                              |
| 极大线性              | 量线性表示.                                                                                                                       |
| 无关组,              | $(2)$ 若 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关, $\alpha_1,\alpha_2,\cdots,\alpha_s$ , $\beta$ 线性相关 $\Leftrightarrow \beta$ |
| 等价向量组,向量          | 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 惟一线性表示.                                                                              |
| 组的秩               | $(3)$ $\beta$ 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表示                                                                   |
|                   | $\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_s) = r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta)$                     |
|                   | $\left \begin{array}{c} 1 \\ 1 \\ \partial r(A_{m\times n}) = r \\ \end{array}\right $ 则 $A$ 的秩 $r(A)$ 与 $A$ 的行列向量组的线性       |
|                   | CWXII/ - / // H4 DV/ (M) 4 M H4 H7 JV/ EDITING                                                                               |
| 向量组的              | 相关性关系为:                                                                                                                      |
| 秩与矩阵<br>的秩之间      | $(1)$ 若 $r(A_{m \times n}) = r = m$ ,则 $A$ 的行向量组线性无关.                                                                        |
| 的关系,              |                                                                                                                              |
| 向量空间<br>及相关概      | $(2)$ 若 $r(A_{m\times n})=r< m$ ,则 $A$ 的行向量组线性相关.                                                                            |
| 及相天 <b>依</b><br>念 | (2) 보 ··( 4                                                                                                                  |
|                   | $(3)$ 若 $r(A_{m\times n})=r=n$ ,则 $A$ 的列向量组线性无关.                                                                             |
|                   | $(4)$ 若 $r(A_{m\times n}) = r < n$ ,则 $A$ 的列向量组线性相关                                                                          |
| n维向量              | 1 基变换公式及过渡矩阵                                                                                                                 |
| 空间的基              | 若 $\alpha_1, \alpha_2, \dots, \alpha_n$ 与 $\beta_1, \beta_2, \dots, \beta_n$ 是向量空间 $V$ 的两组基,则基                               |
| 变换和坐              | 变换公式为                                                                                                                        |
| 标变换,              |                                                                                                                              |
| 过渡矩阵              |                                                                                                                              |

$$(\beta_{1}, \beta_{2}, \dots, \beta_{n}) = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ & \dots & & & \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix} = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n})C$$

其中 C 是可逆矩阵,称为由基  $\alpha_1,\alpha_2,\cdots,\alpha_n$  到基  $\beta_1,\beta_2,\cdots,\beta_n$  的过渡矩阵

2 坐标变换公式

若向量 $\gamma$ 在基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 与基 $\beta_1,\beta_2,\cdots,\beta_n$ 的坐标分别是

$$X = (x_1, x_2, \dots, x_n)^T$$
,  $Y = (y_1, y_2, \dots, y_n)^T$   $\mathbb{P}$ 

 $\gamma = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n = y_1\beta_1 + y_2\beta_2 + \dots + y_n\beta_n$ ,则向量坐标

变换公式为X = CY或 $Y = C^{-1}X$ 

其中 C 是从基  $\alpha_1,\alpha_2,\cdots,\alpha_n$  到基  $\beta_1,\beta_2,\cdots,\beta_n$  的过渡矩阵

向量的 积 无关的 我 我 的 我 的 说 性 虽 死 死 死 死 死 死 死 死 死 死 死 死 死 死 死 死 无

内积:  $(\alpha, \beta) = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \alpha^T\beta = \beta^T\alpha$ 

Schmidt 正交化

若  $\alpha_1,\alpha_2,\cdots,\alpha_s$  线性无关,则可构造  $\beta_1,\beta_2,\cdots,\beta_s$  使其两两正 交,且  $\beta_i$  仅是  $\alpha_1,\alpha_2,\cdots,\alpha_i$  的线性组合  $(i=1,2,\cdots,n)$  ,再把  $\beta_i$  单位化,记  $\gamma_i=\frac{\beta_i}{|\beta_i|}$ ,则  $\gamma_1,\gamma_2,\cdots,\gamma_i$  是规范正交向量组.其中

### (四)线性方程组

| 考试内容                                 | 对应公式、定理、概念                                                                                           |
|--------------------------------------|------------------------------------------------------------------------------------------------------|
| 线性方程<br>组的克莱<br>姆法则,<br>奇次线性<br>方程组有 | 1 克莱姆法则                                                                                              |
| 非零解的<br>充分必要                         | <i>D</i> =   <i>A</i>   ≠ 0 ,则方程组有唯一解                                                                |
| 条件                                   | $x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D}, $ 其中 $D_j$ 是把 $D$ 中第 $j$ 列元素换 |

| _1_                                     |                                                                                                                                                                                                                                           |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | 成方程组右端的常数列所得的行列式.                                                                                                                                                                                                                         |
|                                         | 2 n阶矩阵 A 可逆 ⇔ Ax = 0 只有零解. ⇔ ∀b, Ax = b 总有唯                                                                                                                                                                                               |
|                                         | 一解,一般地,                                                                                                                                                                                                                                   |
|                                         | $r(A_{m\times n}) = n \Leftrightarrow Ax = 0$ 只有零解.                                                                                                                                                                                       |
| :                                       | 1 设 A 为 $m \times n$ 矩阵,若 $r(A_{m \times n}) = m$ ,则对 $Ax = b$ 而言必有                                                                                                                                                                       |
| 非奇次线                                    | r(A) = r(A:b) = m, 从而 $Ax = b$ 有解.                                                                                                                                                                                                        |
| 性方程组                                    | 2 设 $x_1, x_2, \dots x_s$ 为 $Ax = b$ 的解,则 $k_1x_1 + k_2x_2 + \dots + k_sx_s$ 当                                                                                                                                                            |
| 有解的充                                    | $k_1 + k_2 + \dots + k_s = 1$ 时仍为 $Ax = b$ 的解; 但当 $k_1 + k_2 + \dots + k_s = 0$                                                                                                                                                           |
| 分必要条<br>件,线性                            | 时,则为 $Ax=0$ 的解.特别 $\frac{x_1+x_2}{2}$ 为 $Ax=b$ 的解; $2x_3-(x_1+x_2)$                                                                                                                                                                       |
| 方程组解的性质和                                | 为 Ax = 0 的解.                                                                                                                                                                                                                              |
| 解的结构                                    | 3 非齐次线性方程组 $Ax = b$ 无解 ⇔ $r(A)+1=r(A)$ ⇔ $b$ 不能                                                                                                                                                                                           |
| -                                       | 由 $A$ 的列向量 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示.                                                                                                                                                                                      |
|                                         | 1 齐次方程组 Ax = 0 恒有解(必有零解).当有非零解时,由于                                                                                                                                                                                                        |
|                                         | 解向量的任意线性组合仍是该齐次方程组的解向量,因此                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                           |
|                                         | Ax = 0 的全体解向量构成一个向量空间, 称为该方程组的解                                                                                                                                                                                                           |
| 奇次线性<br>方程组的                            | Ax = 0 的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是 $n - r(A)$ ,解空间的一组基称为齐次                                                                                                                                                                          |
| 方程组的基础解系                                |                                                                                                                                                                                                                                           |
| 方程组的                                    | 空间,解空间的维数是 $n-r(A)$ ,解空间的一组基称为齐次                                                                                                                                                                                                          |
| 方程组的<br>基础解系<br>和通解,<br>解空间,            | 空间,解空间的维数是 $n-r(A)$ ,解空间的一组基称为齐次方程组的基础解系.                                                                                                                                                                                                 |
| 方程组的<br>基础解系<br>和通解,<br>解空间,<br>非奇次线    | 空间,解空间的维数是 $n-r(A)$ ,解空间的一组基称为齐次方程组的基础解系. 2 $\eta_1,\eta_2,\cdots,\eta_t$ 是 $Ax=0$ 的基础解系,即                                                                                                                                                |
| 方程组的<br>基础解系<br>和通解,<br>解令的<br>非奇<br>程组 | 空间,解空间的维数是 $n-r(A)$ ,解空间的一组基称为齐次方程组的基础解系. 2 $\eta_1, \eta_2, \cdots, \eta_r$ 是 $Ax=0$ 的基础解系,即 (1) $\eta_1, \eta_2, \cdots, \eta_r$ 是 $Ax=0$ 的解;                                                                                           |
| 方程组的<br>基础解系<br>和通解,<br>解空间,<br>非奇次线    | 空间,解空间的维数是 $n-r(A)$ ,解空间的一组基称为齐次方程组的基础解系. 2 $\eta_1,\eta_2,\cdots,\eta_r$ 是 $Ax=0$ 的基础解系,即 (1) $\eta_1,\eta_2,\cdots,\eta_r$ 是 $Ax=0$ 的解; (2) $\eta_1,\eta_2,\cdots,\eta_r$ 线性无关;                                                         |
| 方程组的<br>基础解系<br>和通解,<br>解空间,<br>非奇程组    | 空间,解空间的维数是 $n-r(A)$ ,解空间的一组基称为齐次方程组的基础解系. 2 $\eta_1,\eta_2,\cdots,\eta_t$ 是 $Ax=0$ 的基础解系,即 (1) $\eta_1,\eta_2,\cdots,\eta_t$ 是 $Ax=0$ 的解; (2) $\eta_1,\eta_2,\cdots,\eta_t$ 线性无关; (3) $Ax=0$ 的任一解都可以由 $\eta_1,\eta_2,\cdots,\eta_t$ 线性表出. |

## (五)矩阵的特征值和特征向量

| 考试内容                                        | 对应公式、定理、概念                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 矩阵的特征 位 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 | 1 设 $\lambda$ 是 $A$ 的一个特征值,则 $kA, aA + bE, A^2, A^m, f(A), A^T, A^{-1}, A*$ 有一个特征值分别为 $k\lambda, a\lambda + b, \lambda^2, \lambda^m, f(\lambda), \lambda, \lambda^{-1}, \frac{ A }{\lambda}$ , 且对应特征向量相同( $A^T$ 例外). 2 若 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 为 $A$ 的 $n$ 个特征值,则 $\sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii}, \prod_{i=1}^n \lambda_i =  A $ 从而 $ A  \neq 0 \Leftrightarrow A$ 没有特征值. 3 设 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 为 $A$ 的 $s$ 个特征值,对应特征向量为 $\alpha_1, \alpha_2, \cdots, \alpha_s$ , 若 $\alpha = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s$ ,则 $A^n\alpha = k_1A^n\alpha_1 + k_2A^n\alpha_2 + \cdots + k_sA^n\alpha_s = k_1\lambda_1^n\alpha_1 + k_2\lambda_2^n\alpha_2 + \cdots + k_s\lambda_s^n\alpha_s$ |
| 相似变换、相似矩阵的概念及性质,                            | 1 若 $A \sim B$ , 则 (1) $A^{T} \sim B^{T}$ , $A^{-1} \sim B^{-1}$ , $A^{*} \sim B^{*}$ . (2) $ A  =  B $ , $\sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} b_{ii}$ , $r(A) = r(B)$ (3) $ \lambda E - A  =  \lambda E - B $ , 对 $\forall \lambda$ 成立                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 矩阵可相<br>似对角化<br>的充分必<br>要条件及                | 1 设 $A$ 为 $n$ 阶方阵,则 $A$ 可对角化 ⇔ 对每个 $k_i$ 重根特征值 $\lambda_i$ ,有 $n-r(\lambda_i E-A)=k_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 相似对角<br>矩阵,                                 | 2 设 A 可对角化,则由 P <sup>-1</sup> AP = Λ, 有 A = PΛP <sup>-1</sup> ,从而 A" = PΛ"P <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|      | 3 重要结论<br>                                                                                                                         |
|------|------------------------------------------------------------------------------------------------------------------------------------|
|      | $(1)$ 若 $A \sim B, C \sim D$ ,则 $\begin{bmatrix} A & O \\ O & C \end{bmatrix} \sim \begin{bmatrix} B & O \\ O & D \end{bmatrix}$ . |
|      | $(2)$ 若 $A \sim B$ ,则 $f(A) \sim f(B)$ , $ f(A)  \sim  f(B) $ ,其中 $f(A)$ 为关                                                        |
|      | 于 n 阶方阵 A 的多项式.                                                                                                                    |
|      | (3)若 A 为可对角化矩阵,则其非零特征值的个数(重根重复                                                                                                     |
|      | 计算)=秩(A)                                                                                                                           |
|      | 1 相似矩阵:设 A,B 为两个 n 阶方阵,如果存在一个可逆矩                                                                                                   |
|      | 阵 $P$ , 使得 $B = P^{-1}AP$ 成立, 则称矩阵 $A = B$ 相似, 记为 $A \sim B$ .                                                                     |
|      | 2 相似矩阵的性质                                                                                                                          |
|      | 如果 A~B则有                                                                                                                           |
| 实对称矩 | $(1) A^T \sim B^T$                                                                                                                 |
| 阵的特征 | (2) A <sup>-1</sup> ~ B <sup>-1</sup> (若A,B均可逆)                                                                                    |
| 值、特征 |                                                                                                                                    |
| 向量及相 | $(3) A^k \sim B^k (k$ 为正整数)                                                                                                        |
| 似对角阵 | $(4) \lambda E - A  =  \lambda E - B $ ,从而 $A,B$ 有相同的特征值                                                                           |
|      | (5) A = B ,从而 $A$ , $B$ 同时可逆或同时不可逆                                                                                                 |
|      | $(6)$ 秩 $(A)$ = 秩 $(B)$ , $ \lambda E - A  =  \lambda E - B $ , $A \setminus B$ 不一定相似                                              |

## (六)二次型

| 考试内容 | 对应公式、定理、概念                              |
|------|-----------------------------------------|
| 二次型及 | $1n$ 个变量 $x_1, x_2, \dots, x_n$ 的二次齐次函数 |

其矩阵表 示, 令 同 变换与合 同 次 型 大型 秩

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j$$
,  $\sharp + a_{ij} = a_{ji} (i, j = 1, 2, \dots, n)$ ,

称为n元二次型,简称二次型. 若令

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
,这二次型  $f$  可改写成矩阵

向量形式  $f = x^T A x$ .其中 A 称为二次型矩阵,因为  $a_{ij} = a_{ji}(i, j = 1, 2, \cdots, n)$ ,所以二次型矩阵均为对称矩阵,且 二次型与对称矩阵——对应,并把矩阵 A 的秩称为二次型的秩.

#### 1 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为 仅含平方项的标准型,其正负惯性指数与所选变换无关, 这就是所谓的惯性定理.

惯性定理,二次型的标准 形和规范形 2标准形

二次型  $f = (x_1, x_2, \dots, x_n) = x^T A x$  经过合同变换 x = C y 化为

形和规范 
$$f = x^T A x = y^T C^T A C y = \sum_{i=1}^r d_i y_i^2$$
 称为

 $f(r \le n)$  的标准形.在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由r(A的秩)唯一确定.

3 规范形

|      | 任一实二次型 f 都可经过合同变换化为规范形                                                                                            |
|------|-------------------------------------------------------------------------------------------------------------------|
|      | $f = z_1^2 + z_2^2 + \dots + z_p^2 - z_{p+1}^2 - \dots - z_r^2$ , 其中 r为A 的秩, p为正惯                                 |
|      | 性指数, r-p 为负惯性指数,且规范型唯一.                                                                                           |
|      | 1 设 $A$ 正定 $\Rightarrow kA(k > 0), A^T, A^{-1}, A^*$ 正定; $ A  > 0, A$ 可逆;                                         |
|      | $a_{ii}>0$ ,且 $ A_{ii} >0$                                                                                        |
|      | 2 A, B 正定 ⇒ A+B 正定, 但 AB, BA 不一定正定                                                                                |
|      | $3 \text{ A 正定} \Leftrightarrow f(x) = x^T Ax > 0, \forall x \neq 0$                                              |
| 用正交变 | ⇔ A 的各阶顺序主子式全大于零                                                                                                  |
| 换和配方 | ⇔ A 的所有特征值大于零                                                                                                     |
| 法化二次 | ⇔ A 的正惯性指数为 n                                                                                                     |
| 型为标准 | ⇔ ∃可逆阵 $P$ 使 $A = P^T P$                                                                                          |
| 形,二次 |                                                                                                                   |
| 型及其矩 | $(\lambda, )$                                                                                                     |
| 阵的正定 | $\Leftrightarrow$ 存在正交矩阵 $Q^{\tau}AQ = Q^{-1}AQ = \begin{pmatrix} \lambda & & \\ & \ddots & \\ & & \end{pmatrix}$ |
| 性    | $\lambda_n$                                                                                                       |
|      | 其中 $\lambda_i > 0, i = 1, 2, \dots, n$ . 正定 $\Rightarrow kA(k > 0), A^T, A^{-1}, A^*$ 正定;                         |
|      | $ A >0$ , $A$ 可逆; $a_{ii}>0$ ,且 $ A_{ii} >0$                                                                      |
|      |                                                                                                                   |
|      |                                                                                                                   |

## 三、概率论与数理统计

## (一)随机事件和概率

| 考试内容                 | 对应概念、定理、公式                                                                                                            |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|
|                      | 1 事件的关系与运算                                                                                                            |
|                      | (1)子事件: A⊂B, 若A发生,则B发生.                                                                                               |
|                      | (2)相等事件: $A=B$ ,即 $A \subset B$ ,且 $B \subset A$ .                                                                    |
|                      | (3)和事件: <i>A</i> ∪ <i>B</i> (或 A+B), A 与 B 中至少有一个发生.                                                                  |
|                      | (4)差事件: A-B, A 发生但 B 不发生.                                                                                             |
|                      | (5)积事件: A∩B (或 AB), A 与 B 同时发生.                                                                                       |
| 随机事件                 | (6)互斥事件 (互不相容): A∩B=Ø.                                                                                                |
| 与样本空<br>间,事件<br>的关系与 | (7)互逆事件(对立事件):                                                                                                        |
|                      | $A \cap B = \emptyset$ ,且 $A \cup B = \Omega$ ,记 $A = \overline{B}$ 或 $B = \overline{A}$                              |
|                      | 2 运算律:                                                                                                                |
|                      | (1)交换律: A∪B=B∪A, A∩B=B∩A                                                                                              |
|                      | (2)结合律: (A∪B)∪C = A∪(B∪C);                                                                                            |
|                      | $(A \cap B) \cap C = A \cap (B \cap C)$                                                                               |
|                      | (3)分配律: (AUB)∩C=(A∩C)U(B∩C)                                                                                           |
|                      | 3 德•摩根律: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cup B} = \overline{A} \cup \overline{B}$ |
|                      | 4 完全事件组: A, A2…, A2,两两互斥,且和事件为必然事                                                                                     |
|                      | 件,即 $A_i \cap A_j = \emptyset$ , $i \neq j$ , $\bigcup_{i=1}^n = \Omega$ 。                                            |
| 概率的概                 | 1 概率:事件发生的可能性大小的度量,其严格定义如下:                                                                                           |
| 念,概率                 | 概率 P(•) 为定义在事件集合上的满足下面3个条件的函数:                                                                                        |
| 的基本性                 |                                                                                                                       |

## 质,古典 概率,几 何型概率

- (1)对任何事件 A, P(A)≥0;
- (2)对必然事件 $\Omega$ ,  $P(\Omega)=1$ ;

(3)对 
$$A_1$$
,  $A_2$ ,…,  $A_n$ ,…,若 $A_iA_j = \emptyset(i \neq j)$ ,则 $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A)$ .

2 概率的基本性质

(1) 
$$P(\overline{A}) = 1 - P(A)$$
;

(2) 
$$P(A-B) = P(A) - P(AB)$$
;

$$(3) P(A \cup B) = P(A) + P(B) - P(AB)$$
;特别,

当
$$B \subset A$$
时, $P(A-B) = P(A) - P(B)$ 且 $P(B) \leq P(A)$ ;

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC)$$

$$-P(AC)+P(ABC);$$

(4)若 
$$A_1, A_2, \dots, A_n$$
 两两互斥,则  $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n (P(A_i).$ 

3 古典型概率:实验的所有结果只有有限个,

且每个结果发生的可能性相同,其概率计算公式:

4几何型概率: 样本空间 $\Omega$ 为欧氏空间中的一个区域,

且每个样本点的出现具有等可能性,其概率计算公式:

# 

概率的基 太公式. 事件的独 立性,独 **立重复试** 粂

1 概率的基本公式:

(1)条件概率:

$$P(B|A) = \frac{P(AB)}{P(A)}$$
,表示A发生的条件下,B发生的概率

(2)全概率公式:

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i), B_i B_j = \emptyset, i \neq j, \bigcup_{i=1}^{n} B_i = \Omega.$$

(3) Bayes 公式: 
$$P(B_j | A) = \frac{P(A | B_j)P(B_j)}{\sum_{i=1}^{n} P(A | B_i)P(B_i)}, j = 1, 2, \dots, n$$

注: 上述公式中事件 B. 的个数可为可列个.

(4)乘法公式:

$$P(A_1A_2) = P(A_1)P(A_2 \mid A_1) = P(A_2)P(A_1 \mid A_2)$$

$$P(A_1A_2\cdots A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$$

2 事件的独立性

(1)A 与 B 相互独立 
$$\Leftrightarrow P(AB) = P(A)P(B)$$

(2)A, B, C两两独立

$$\Leftrightarrow P(AB) = P(A)P(B)$$
;

$$P(BC) = P(B)P(C);$$

P(AC) = P(A)P(C);

(3)A, B, C 相互独立

$$\Leftrightarrow P(AB) = P(A)P(B);$$
  $P(BC) = P(B)P(C);$ 

$$P(RC) = P(R)P(C)$$
:

$$P(AC) = P(A)P(C)$$
:

$$P(AC) = P(A)P(C);$$
  $P(ABC) = P(A)P(B)P(C).$ 

3 独立重复试验: 将某试验独立重复 n 次, 若每次实验中事 件 A 发生的概率为 p,则 n 次试验中 A 发生 k 次的概率为:

$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$
.

#### 4 重要公式与结论

$$(1)P(\overline{A}) = 1 - P(A)$$

$$(2)P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC)$$

$$-P(AC) + P(ABC)$$

$$(3)P(A-B) = P(A) - P(AB)$$

$$(4)P(A\overline{B}) = P(A) - P(AB), P(A) = P(AB) + P(A\overline{B}),$$

$$P(A \cup B) = P(A) + P(\overline{AB}) = P(AB) + P(A\overline{B}) + P(\overline{AB})$$

(5)条件概率 P(+B) 满足概率的所有性质,

例如: 
$$P(\overline{A}_i \mid B) = 1 - P(A_i \mid B)$$

$$P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B) - P(A_1 A_2 \mid B)$$
  
$$P(A_1 A_2 \mid B) = P(A_1 \mid B)P(A_2 \mid A_2 \mid B)$$

(6)若 
$$A_1, A_2, \dots, A_n$$
 相互独立,则  $P(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n P(A_i)$ ,

$$P(\bigcup_{i=1}^{n} A_i) = \prod_{i=1}^{n} (1 - P(A_i))$$

(7)互斥、互逆与独立性之间的关系:

A 与 B 互逆 ⇒ A 与 B 互斥,但反之不成立, A 与 B 互 斥(或互逆)且均非零概率事件 ⇒ A 与 B 不独立.

(8)若  $A_1, A_2, \dots, A_m, B_1, B_2, \dots, B_n$  相互独立,则  $f(A_1, A_2, \dots, A_m)$  与  $g(B_1, B_2, \dots, B_n)$  也相互独立,其中  $f(\bullet), g(\bullet)$  分别表示对相应

事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.

## (二)随机变量及其概率分布

| 考试内容                                                      | 对应公式、概念、定理                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 随机变 量 变 部 概 改 数 及 概 性质                                    | 1 随机变量及概率分布: 取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律 2 分布函数的概念与性质 定义: $F(x) = P(X \le x), -\infty < x < +\infty$ 性质: $(1) 0 \le F(x) \le 1$ $(2) F(x) = 0$ 使调不减 $(3)$ 右连续 $F(x+0) = F(x)$ $(4) F(-\infty) = 0, F(+\infty) = 1$                                              |
| 离 机 概 和 型 量 密 的 概 本 连 机 概 本 连 机 概 的 度 的 成 概 年 重 的 既 度 性 质 | 1 离散型随机变量的概率分布 $P(X = x_i) = p_i, i = 1, 2, \cdots, n, \cdots \qquad p_i \ge 0, \sum_{i=1}^{\infty} p_i = 1$ 2 连续型随机变量的概率密度 概率密度 $f(x)$ ; 非负可积,且 $(1) f(x) \ge 0,$ $(2) \int_{-\infty}^{+\infty} f(x) dx = 1$ $(3) x 为 f(x)$ 的连续点,则 $f(x) = F'(x)$ 分布函数 $F(x) = \int_{-\infty}^{x} f(t) dt$ |
| 常见随机<br>变量的概<br>率分布,<br>随机变量<br>函数的概                      | 1 常见分布 (1) 0-1 分布: $P(X = k) = p^k (1-p)^{1-k}, k = 0,1$ (2) 二项分布 $B(n, p)$ :                                                                                                                                                                                                               |

#### 率分布

$$P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots,n$$

(3) Poisson 分布  $p(\lambda)$ :

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0, 1, 2 \cdots$$

- (4) 均匀分布 U (a, b):  $f(x) = \begin{cases} \frac{1}{b-a}, a < x < b \\ 0, 其他 \end{cases}$
- (5) 正态分布  $N(\mu, \sigma^2)$ :

$$\varphi(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0, -\infty < x < +\infty$$

(6)指数分布 
$$E(\lambda)$$
:  $f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0, \lambda > 0 \\ 0, 其他 \end{cases}$ 

- (7)几何分布 G(p):  $P(X = k) = (1-p)^{k-1}p$ , 0
- (8)超几何分布

$$H(N,M,n): P(X=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, \ k=0,1,\cdots,\min(n,M)$$

- 2 随机变量函数的概率分布
- (1)离散型:  $P(X = x_1) = p_i, Y = g(X)$ 则

$$P(Y = y_j) = \sum_{g(x_i) = y_i} P(X = x_i)$$

(2)连续型:  $X \sim f_X(x), Y = g(x)$ 则

$$F_{y}(y) = P(Y \le y) = P(g(X) \le y) = \int_{g(x) \le y} f_{x}(x) dx ,$$

$$f_{\gamma}(y) = F'_{\gamma}(y)$$

#### 3 重要公式与结论

$$(1)X \sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}}, \Phi(0) = \frac{1}{2},$$

$$\Phi(-a) = P(X \le -a) = 1 - \Phi(a)$$

$$(2)X \sim N(\mu, \sigma^2) \Rightarrow \frac{X - \mu}{\sigma} \sim N(0, 1) \perp P(X \le a) = \Phi(\frac{a - \mu}{\sigma})$$

$$(3)X \sim E(\lambda) \Rightarrow P(X > s + t \mid X > s) = P(X > t)$$

$$(4)X \sim G(p) \Rightarrow P(X = m + k \mid X > m) = P(X = k)$$

- (5)离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数.
- (6)存在既非离散也非连续型随机变量.

## (三)多维随机变量及其分布

#### 考试内容 对应公式、概念、定理 1二维随机变量及其联合分布 多维随机 由两个随机变量构成的随机向量(X,Y), 变量及其 联合分布为 $F(x, y) = P(X \le x, Y \le y)$ 分布,二 2二维离散型随机变量的联合概率分布、边缘分布、条件分 维离散型 $\pi(1)$ 联合概率分布律 $P\{X = x_i, Y = y_i\} = p_{ij}; i, j = 1, 2, \dots$ 随机变量 的概率分 (2) 边缘分布律 $p_{i.} = \sum_{i=1}^{\infty} p_{ij}, i = 1, 2, \cdots$ 布、边缘 分布和条 $p_{\cdot j} = \sum_{i}^{\infty} p_{ij}, j = 1, 2, \cdots$ 件分布 (3) 条件分布律

| <del> </del>         |                                                                                                                                                                          |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | $P\{X=x_i\mid Y=y_j\}=\frac{p_{ij}}{p_{i,j}}$                                                                                                                            |
|                      | $P\{Y = y_j \mid X = x_i\} = \frac{p_{ij}}{p_{i.}}$                                                                                                                      |
|                      | 1 联合概率密度 $f(x,y)$ :                                                                                                                                                      |
|                      | $(1) f(x,y) \ge 0$                                                                                                                                                       |
| 二维连续<br>性随机变         | $(2) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$                                                                                                |
| 量的概率 密度、边            | 2 分布函数: $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$                                                                                                    |
| <b>缘概率密</b>          | 3 边缘概率密度:                                                                                                                                                                |
| 度和条件<br>密度           | $f_{\chi}(x) = \int_{-\infty}^{+\infty} f(x, y) dy \qquad f_{\chi}(y) = \int_{-\infty}^{+\infty} f(x, y) dx$                                                             |
|                      | 4 条件概率密度: $f_{X Y}(x y) = \frac{f(x,y)}{f_Y(y)}$ $f_{Y X}(y x) = \frac{f(x,y)}{f_X(x)}$                                                                                  |
|                      | 1 常见二维随机变量的联合分布                                                                                                                                                          |
| 随机变量                 | (1)二维均匀分布: $(x,y) \sim U(D)$ , $f(x,y) = \begin{cases} \frac{1}{S(D)}, (x,y) \in D \\ 0, $ 其他                                                                            |
| 的独立性<br>和不相关<br>性,常用 | (2)二维正态分布: $(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$                                                                                                   |
| 二维随机<br>变量的分<br>布    | $f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$                                                                                                                 |
| η <b>μ</b>           | • $\exp\left\{\frac{-1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}$ |
|                      | 2 随机变量的独立性和相关性                                                                                                                                                           |

| X 和 Y 的相互独立 $\Leftrightarrow F(x,y) = F_{\chi}(x)F_{\gamma}(y)$ , |
|-------------------------------------------------------------------|
|                                                                   |

$$\Leftrightarrow p_{ij} = p_{i} \cdot p_{.j}$$
(离散型)  $\Leftrightarrow f(x,y) = f_{X}(x)f_{Y}(y)$ (连续型)

X 和 Y 的相关性: 相关系数  $\rho_{XY} = 0$  时,称 X 和 Y 不相关,否则称 X 和 Y 相关

#### 1 两个随机变量简单函数的概率分布

(1)离散型:

$$P(X = x_i, Y = y_i) = p_{ii}, Z = g(X, Y)$$
 则

$$P(Z = z_k) = P\{g(X,Y) = z_k\} = \sum_{g(x_i,y_i)=z_k} P(X = x_i, Y = y_j)$$

(2)连续型:

$$(X,Y) \sim f(x,y), Z = g(X,Y)$$
则

两个及两 个以上随 机变量简 单函数的 分布

$$F_z(z) = P\{g(X,Y) \le z\} = \iint_{g(x,y) \le z} f(x,y) dxdy, \quad f_z(z) = F_z(z)$$

## 2 重要公式与结论

(1) 边缘密度公式:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$$

$$(2) P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy$$

(3)若(X, Y) 服从二维正态分布  $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$  则有

① 
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$$

②X 与 Y 相互独立  $\Leftrightarrow \rho = 0$ ,即 X 与 Y 不相关.

④X 关于 Y=y 的条件分布为:

$$N(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(y - \mu_2), \sigma_1^2(1 - \rho^2)).$$

⑤Y 关于 X=x 的条件分布为:

$$N(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1), \sigma_2^2(1 - \rho^2)).$$

(4)若 X 与 Y 独立,且分别服从  $N(\mu_1, \sigma_1^2)$ ,  $N(\mu_1, \sigma_2^2)$ ,

则 
$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, 0)$$
,

$$C_1X + C_2Y \sim N(C_1\mu_1 + C_2\mu_2, C_1^2\sigma_1^2 + C_2^2\sigma_2^2).$$

(5)若 X 与 Y 相互独立, f(x)和g(x) 为连续函数,

则 f(X)与g(Y) 也相互独立.

## (四)随机变量的数字特征

| 考试内容 | 对应概念、定义、定理、公式                                            |
|------|----------------------------------------------------------|
| 随机变量 | 1 数学期望                                                   |
| 的数学期 | 离散型: $P\{X=x_i\}=p_i, E(X)=\sum x_i p_i$ ; 连续型:          |
| 望(均  | 1                                                        |
| 値入方差 | V ((-) E(V) [**()]                                       |
| 和标准差 | $X \sim f(x), E(X) = \int_{-\infty}^{+\infty} x f(x) dx$ |
| 及其性质 | 性质:                                                      |
|      | (1) E(C) = C, E[E(X)] = E(X)                             |
|      | $(2) E(C_1 X + C_2 Y) = C_1 E(X) + C_2 E(Y)$             |

(3)若 X 和 Y 独立,则 
$$E(XY) = E(X)E(Y)$$

$$(4)[E(XY)]^2 \le E(X^2)E(Y^2)$$

2 方差: 
$$D(X) = E[X - E(X)]^2 = E(X^2) - [E(X)]^2$$

3 标准差: 
$$\sqrt{D(X)}$$
,

4 离散型: 
$$D(X) = \sum_{i} [x_i - E(X)]^2 p_i$$

5 连续型: 
$$D(X) = \int_{-\pi}^{+\infty} [x - E(X)]^2 f(x) dx$$

性质:

$$(1) D(C) = 0, D[E(X)] = 0, D[D(X)] = 0$$

(2)X 与 Y 相互独立,则 
$$D(X\pm Y) = D(X) + D(Y)$$

(3) 
$$D(C_1X + C_2) = C_1^2 D(X)$$

(4)一般有

$$D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho \sqrt{D(X)} \sqrt{D(Y)}$$

(5) 
$$D(X) < E(X - C)^2, C \neq E(X)$$

$$(6) D(X) = 0 \Leftrightarrow P\{X = C\} = 1$$

随机变量 函数的数 学期望,

矩、协方 差,相关

系数的数

1 随机变量函数的数学期望

(1)对于函数Y = g(x)

X 为离散型:  $P{X = x_i} = p_i, E(Y) = \sum_i g(x_i)p_i$ ; X 为连续

型: 
$$X \sim f(x), E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$$

字特征

(2) 
$$Z = g(X,Y); (X,Y) \sim P\{X = x_i, Y = y_i\} = p_{ij};$$

$$E(Z) = \sum_{i} \sum_{j} g(x_i, y_j) p_{ij}$$

$$(X,Y) \sim f(x,y)$$
;  $E(Z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$ 

2 协方差 
$$Cov(X,Y) = E[(X - E(X)(Y - E(Y))]$$

3 相关系数 
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$
,k 阶原点矩  $E(X^k)$ ;

k 阶中心矩 
$$E\{[X-E(X)]^{t}\}$$

性质:

(1) 
$$Cov(X,Y) = Cov(Y,X)$$

(2) 
$$Cov(aX,bY) = abCov(Y,X)$$

(3) 
$$Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$$

$$(4) \left| \rho(X,Y) \right| \le 1$$

(5) 
$$\rho(X,Y) = 1 \Leftrightarrow P(Y = aX + b) = 1$$
,  $\not\equiv pa > 0$ 

$$\rho(X,Y) = -1 \Leftrightarrow P(Y = aX + b) = 1,$$
  $\not$   $\Rightarrow$   $P(Y = aX + b) = 1,$ 

#### 4 重要公式与结论

(1) 
$$D(X) = E(X^2) - E^2(X)$$

(2) 
$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

(3) 
$$|\rho(X,Y)| \le 1$$
, 且

$$\rho(X,Y) = 1 \Leftrightarrow P(Y = aX + b) = 1, 其中a > 0$$
 $\rho(X,Y) = -1 \Leftrightarrow P(Y = aX + b) = 1, 其中a < 0$ 
(4) 下面 5 个条件互为充要条件:
 $\rho(X,Y) = 0$ 
 $\Leftrightarrow Cov(X,Y) = 0$ 
 $\Leftrightarrow E(X,Y) = E(X)E(Y)$ 
 $\Leftrightarrow D(X+Y) = D(X) + D(Y)$ 
 $\Leftrightarrow D(X-Y) = D(X) + D(Y)$ 
注: X 与 Y 独立为上述 5 个条件中任何一个成立的充分条件,但非必要条件.

## (五)大数定律和中心极限定理

| 考试内容           | 对应概念、定理、重要公式                                                                                                |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
|                | 1 切比雪夫不等式: $P\{ X-E(X)  \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$ 或                                 |  |  |  |
| 切比雪夫<br>(Cheby | $P\{ X-E(X) <\varepsilon\}\geq 1-\frac{D(X)}{\varepsilon^2}$                                                |  |  |  |
| shev)不         | $2$ 切比雪夫大数定律:设 $X_1, X_2 \cdots, X_n, \cdots$ 相互独立,且                                                        |  |  |  |
| 等式,切比雪夫大       | $E(X_i) = \mu, D(X_i) = \sigma^2 (i = 1, 2, \cdots)$ , 则对于任意正数 $\varepsilon$ ,有                             |  |  |  |
| 数定律            | $\lim_{n\to\infty} P\left\{ \left  \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right  < \varepsilon \right\} = 1$ |  |  |  |
| 伯努利大           | 1 伯努利大数定律                                                                                                   |  |  |  |
| 数定律, 辛钦        | 设 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立,同 $0$ -1 分布 $B(1, p)$ ,则对任意                                          |  |  |  |

| (Khinc<br>hine)大<br>数定律    | 正数 $\varepsilon$ ,有 $\lim_{n\to\infty} P\left\{\left \frac{1}{n}\sum_{i=1}^n X_i - p\right  < \varepsilon\right\} = 1$                                        |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| :                          | 2 辛钦大数定律 设 $X_1, X_2,, X_n,$ 相互独立同分布, $EX_i = \mu, i = 1, 2$ , 则对于任                                                                                           |  |  |  |
|                            | 意正数 $\varepsilon$ ,有 $\lim_{n\to\infty} P\left\{\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right  < \varepsilon\right\} = 1$                                     |  |  |  |
|                            | 1棣莫弗拉普斯定理                                                                                                                                                     |  |  |  |
|                            | 设 $\eta_n \sim B(n,p)$ , (即 $X_1, X_2, \dots, X_n$ ,相互独立且同服从 0-1 分布                                                                                           |  |  |  |
| 隶莫弗一                       | $\eta_n = \sum_{i=1}^n X_i$ )则有                                                                                                                               |  |  |  |
| 拉普拉斯                       | i=t                                                                                                                                                           |  |  |  |
| (De<br>Movire-L<br>aplace) | $\lim_{n\to\infty} P\left\{\frac{\eta_n - np}{\sqrt{np(1-p)}} \le x\right\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$                   |  |  |  |
| 定理,列                       | <br>  2 列维林德伯格定理                                                                                                                                              |  |  |  |
| 维一林德                       | 设 X <sub>1</sub> , X <sub>2</sub> ···, X <sub>n</sub> , ··· 相互独立分布,                                                                                           |  |  |  |
| 伯格<br>(Levy-               | $E(X_i) = \mu, D(X_i) = \sigma^2(\sigma \neq 0)i = 1, 2, \dots,$                                                                                              |  |  |  |
| Undbe)<br>定理               | $\iiint_{n\to\infty} P\left\{\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma}} \le x\right\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$ |  |  |  |

## (六)数理统计的基本概念

| 考试内容 | 对应公式、概念、定理                 |  |  |  |
|------|----------------------------|--|--|--|
| 总体,个 | 总体:研究对象的全体,它是一个随机变量,用 X 表示 |  |  |  |
|      | 个体:组成总体的每个基本元素             |  |  |  |

| 随机样 本量 均本 样本年                    | 简单随机样本:来自总体 X 的 n 个相互独立且与总体同分布的随机变量 $X_1, X_2 \cdots, X_n$ ,称为容量为 n 的简单随机样本,简称样本统计量:设 $X_1, X_2 \cdots, X_n$ ,是来自总体 X 的一个样本, $g(X_1, X_2 \cdots, X_n)$ )是样本的连续函数,且 $g(\bullet)$ 中不含任何未知参数,则称 $g(X_1, X_2 \cdots, X_n)$ 为统计量样本均值: $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 样本矩:样本 k 阶原点矩: $A_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k, k = 1, 2, \cdots$ 样本 k 阶中心矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k, k = 1, 2, \cdots$ |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| χ² 分布,<br>t 分布, F<br>分布, 分<br>位数 | $n_{\overline{l=1}}$ $\chi^2$ 分布: $\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n)$ , 其中 $X_1, X_2 \dots, X_n$ , 相互独立,且同服从 $N(0,1)$ t 分布: $T = \frac{X}{\sqrt{Y/n}} \sim t(n)$ 其中 $X \sim N(0,1), Y \sim \chi^2(n)$ , 且 $X$ , Y 相互独立 F 分布: $F = \frac{X/n_1}{Y/n_2} \sim F(n_1, n_2)$ , 其中 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$ , 且 $X$ , Y 相互独立 分位数: 若 $P(X \leq x_\alpha) = \alpha$ , 则称 $x_\alpha$ 为 $X$ 的 $\alpha$ 分位数                                                                     |
| 正态总体<br>的常用样<br>本分布              | 1 设 $X_1, X_2 \cdots, X_n$ 为来自正态总体 $N(\mu, \sigma^2)$ 的样本,                                                                                                                                                                                                                                                                                                                                                                                                                                               |

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}, S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}, \text{则}$$

$$(1) \bar{X} \sim N(\mu, \frac{\sigma^{2}}{n}) \text{或} \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

$$(2) \frac{(n-1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \sim \chi^{2}(n-1)$$

$$(3) \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \sim \chi^{2}(n)$$

$$(4) \frac{\bar{X} - \mu}{S / n} \sim t(n-1)$$

$$\mathbf{\underline{I}} \mathbf{\underline{Y}} \mathcal{Y} \sim \chi^{2}(n), \quad \bar{\mathbf{A}} E(\chi^{2}(n)) = n, D(\chi^{2}(n)) = 2n;$$

$$(1) \quad \bar{\mathbf{M}} \mathcal{T} \chi^{2} \sim \chi^{2}(n), \quad \bar{\mathbf{A}} E(T) = 0, D(T) = \frac{n}{n-2}(n > 2);$$

$$(3) \quad \bar{\mathbf{M}} \mathcal{T} F \sim F(m, n), \quad \bar{\mathbf{A}}$$

$$\frac{1}{F} \sim F(n, m), F_{a/2}(m, n) = \frac{1}{F_{1-a/2}(n, m)};$$

$$(4) \quad \bar{\mathbf{M}} \mathcal{T} \mathcal{L} \hat{\mathbf{E}} \hat{\mathbf{E}} \hat{\mathbf{A}} \mathcal{X}, \quad \bar{\mathbf{A}}$$

$$E(\bar{X}) = E(X), E(S^{2}) = D(X), D(\bar{X}) = \frac{D(X)}{n}$$

## (七)参数估计

| 考试<br>内容 | 对应公式、概念、定理                                                                                                                                          |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 点估       | $1\hat{	heta}$ 为 $	heta$ 的矩估计, $\mathbf{g}$ ( $\mathbf{x}$ )为连续函数,则 $\mathbf{g}$ ( $\hat{oldsymbol{	heta}}$ )为 $\mathbf{g}$ ( $oldsymbol{	heta}$ )的 |
| 计的       | $1\hat{	heta}$ 为 $	heta$ 的矩估计, $\mathbf{g}$ $(\mathbf{x})$ 为连续函数,则 $\mathbf{g}$ $(\hat{	heta})$ 为 $\mathbf{g}$ $(oldsymbol{	heta})$ 的               |
| 概        |                                                                                                                                                     |

| 念,       | 矩估计.             |                                                                                                                                             |                                                            |                                                                        |  |  |
|----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| 估计<br>量与 | $2\hat{\theta}$  | $2\hat{	heta}$ 为 $	heta$ 的极大似数估计, $g(x)$ 为单调函数,则 $g(\hat{	heta})$ 为 $g(	heta)$ 的                                                            |                                                            |                                                                        |  |  |
| 估计值,     | <br>  极ナ         | 极大似然估计                                                                                                                                      |                                                            |                                                                        |  |  |
| 矩估       | 3 E(             | $(\widetilde{X}) = E(X)$                                                                                                                    | $, E(S^2) = D(X), \ \mathbb{P}[\overline{X}], \ S^2$       | 分别为总体                                                                  |  |  |
| )<br>法,  | E(.              | E(X), $D(X)$ 的无偏估计量.                                                                                                                        |                                                            |                                                                        |  |  |
| 最大       | 4                | $4$ 由大数定律易知 $ar{X}$ , $S^2$ 也分别是 $E(X)$ , $D(X)$ 的一致估量.                                                                                     |                                                            |                                                                        |  |  |
| 似然       |                  |                                                                                                                                             |                                                            |                                                                        |  |  |
| 估计       | 5 若              | $5 \stackrel{\cdot}{\pi} E(\hat{\theta}) = \theta, D(\hat{\theta}) \rightarrow 0 (n \rightarrow \infty)$ 则 $\hat{\theta}$ 为 $\theta$ 的一致估计. |                                                            |                                                                        |  |  |
| 法        |                  |                                                                                                                                             |                                                            |                                                                        |  |  |
| 估计       | 1 估              | 1 估计景的选取标准 王伯州 方为州 相入州                                                                                                                      |                                                            |                                                                        |  |  |
| 量的       | 1                | 1 估计量的选取标准: 无偏性、有效性、相合性                                                                                                                     |                                                            |                                                                        |  |  |
| 评选       | 2 (Â.            | $2(\hat{	heta}_1,\hat{	heta}_2)$ 为 $	heta$ 的置信度是 $1-lpha$ 的置信区间, $g(x)$ 为单调增加(或                                                             |                                                            |                                                                        |  |  |
| 标准       | - (-)            | ,02)/30 ,                                                                                                                                   |                                                            | 147,夏(水)/3平阴相加(实                                                       |  |  |
| 区间       | 单i               | 周减少)                                                                                                                                        | 系数,则 (g(Â), g(Â,)或g(Â,                                     | ), σ(Â)) 为σ(A)的署信度                                                     |  |  |
| 估计       |                  | 单调减少)函数,则 $(g(\hat{\theta}_1),g(\hat{\theta}_2)$ 或 $g(\hat{\theta}_2)$ , $g(\hat{\theta}_1)$ )为 $g(\theta)$ 的置信度                            |                                                            |                                                                        |  |  |
| 的概       | E 1              |                                                                                                                                             |                                                            |                                                                        |  |  |
| 念        | 是 $1-lpha$ 的置信区间 |                                                                                                                                             |                                                            |                                                                        |  |  |
| 单个       | 正态总体均值与方差的置信区间   |                                                                                                                                             |                                                            |                                                                        |  |  |
| 正态       | 待                | 估参数                                                                                                                                         | 抽样分布                                                       | 双侧置信区间                                                                 |  |  |
| 总体       |                  |                                                                                                                                             | _                                                          | / <del></del>                                                          |  |  |
| 的均       | ,,               | $\sigma^2$                                                                                                                                  | $U = \frac{X - \mu}{\sim} N(0,1)$                          | $(\overline{X} - \mu_{\frac{a}{2}}, \overline{X} + \mu_{\frac{a}{2}})$ |  |  |
| 值和       | μ                | 己知                                                                                                                                          | $U = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$ | $P\{ \mu  \geq \mu_{\frac{\alpha}{2}}\} = \alpha$                      |  |  |
| 方差       |                  |                                                                                                                                             | $\sqrt{n}$                                                 |                                                                        |  |  |
|          |                  |                                                                                                                                             |                                                            |                                                                        |  |  |

| 的区间估计,两个 |               | σ²<br>未知                                                                                        | $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$                                                                                                                                                      | $(\overline{X} - t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}})$ $P\{ T  \ge t_{\frac{\alpha}{2}}\} = \alpha$                                                                                                                                                 |
|----------|---------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 正总的值和差的  | $\sigma^2$    | <i>μ</i><br>己知                                                                                  | $W' = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$ $\sim \chi^2(n)$                                                                                                                                        | $\sum_{\substack{(i=1)\\ \chi^2_{\frac{\alpha}{2}}(n)}}^n (X_i - \mu)^2 \sum_{\substack{i=1\\ \chi^2_{\frac{\alpha}{2}}(n)}}^n (X_i - \mu)^2$ $P\{W' \ge \chi^2_{\frac{\alpha}{2}}(n)\} =$ $P\{W' \le \chi^2_{\frac{\alpha}{2}}(n)\} = \frac{\alpha}{2}$                                                                    |
| 间估<br>计  |               | μ<br>未知                                                                                         | $W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$                                                                                                                                                            | $\left(\frac{(n-1)S^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}\right)$                                                                                                                                                                                                   |
|          | $\mu_{\rm l}$ | σ <sub>1</sub> ²,σ <sub>2</sub> ²<br>已知                                                         | $U = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\sim N(0,1)$                                                                       | $\left( (\overline{X_1} - \overline{X_2}) - \mu_{\underline{\alpha}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \right.$ $\left( (\overline{X_1} - \overline{X_2}) + \mu_{\underline{\alpha}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right)$ $P\{ U  \ge \mu_{\underline{\alpha}}\} = \alpha$ |
|          | $\mu_2$       | ご知<br>c <sup>2</sup> =c <sup>2</sup> <sub>2</sub><br>=c <sup>2</sup> ,<br>但c <sup>2</sup><br>未知 | $T = \frac{(\overline{X_1} - \overline{X_2}) - (\mu - \mu)}{S\sqrt{\frac{1}{\eta_1} + \frac{1}{\eta_2}}} - t(\eta_1 + \eta_2 - 2)$ $S^2 = \frac{(\eta_1 - 1)S_1^2 + (\eta_2 - 1)S_2^2}{\eta_1 + \eta_2 - 2}$ | $ \left( (\overline{X_1} - \overline{X_2}) - t_{\underline{\alpha}}(n_1 + n_2 - 2) \cdot S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \right) \\ (\overline{X_1} - \overline{X_2}) + t_{\underline{\alpha}}(n_1 + n_2 - 2) \cdot S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right) \\ P T  \ge t_{\underline{\alpha}} \} = \alpha $ |

$$\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \qquad F = \frac{\frac{S_{1}^{2}}{\sigma_{2}^{2}}}{\frac{S_{2}^{2}}{\sigma_{2}^{2}}} \sim F(n_{1} - 1, n_{2} - 1) \qquad \frac{F_{\frac{\alpha}{2}}(n_{2} - 1, n_{1} - 1) \cdot \frac{S_{1}^{2}}{S_{2}^{2}}}{F_{\frac{\alpha}{2}}(n_{1} - 1, n_{2} - 1)} = \frac{\alpha}{2}$$

$$P\{F \ge F_{\frac{\alpha}{2}}(n_{1} - 1, n_{2} - 1)\} = \frac{\alpha}{2}$$

$$P\{\frac{1}{F} \ge F_{\frac{\alpha}{2}}(n_{2} - 1, n_{1} - 1)\} = \frac{\alpha}{2}$$

## (八)假设检验

| 1 假设检验的一般步骤<br>(1)确定所要检验的基本假设 H <sub>0</sub> ;<br>(2)选择检验的统计量,并要求知道其在一定条件下的分布;                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 显著 性检 确定否定域; (4)由样本计算统计量,并判断其是否落入否定域,从而对假设 A 作出拒绝还是接受的判断 2 假设检验的两类错误 统计推断是由样本推断总体,所作的结论不能保证绝对 犯错误,而只能以较大概率来保证其可靠性. 第一类错误是否定了真实的假设,即假设本来成立,但被 错误地否认了,成为"弃真",检验水平α就是犯第一类错误的概率的最大允许值. |

| 第二类错误是把本来不成立的假设错误地接受了, 称为"存伪".                  |                                                        |                                                                                                                             |                                                                                                                                            |  |
|-------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| 犯这类错误的大小一般用 β 表示,它的大小要视具体                       |                                                        |                                                                                                                             |                                                                                                                                            |  |
| 情况而定.                                           |                                                        |                                                                                                                             |                                                                                                                                            |  |
|                                                 | 原假设                                                    | H <sub>0</sub> 下的检验统计量及                                                                                                     | $H_{ m 0}$ 的拒绝域                                                                                                                            |  |
|                                                 | $H_0$                                                  | 分布                                                                                                                          |                                                                                                                                            |  |
| 一个                                              | $\mu = \mu_0$ ( $\sigma^2$ 已知)                         | $U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$ $\sim N(0, 1)$                                                         | $ u  = \left  \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right  \ge u_{\frac{a}{2}}$                                                  |  |
| 正态                                              | $\mu = \mu_0$ ( $\sigma^2$ 未知)                         | $T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$ $\sim t(n-1)$                                                               | $ t  = \left  \frac{\overline{x} - \mu_0}{S / \sqrt{n}} \right  \ge t_{\frac{\alpha}{2}}(n-1)$                                             |  |
| <sup>                                    </sup> | $\sigma^2 = \sigma_0^2$                                | $W = \sum_{i=1}^{n} \left( \frac{X_i - \mu}{\sigma_0} \right)^2$                                                            | $w = \sum_{i=1}^{n} \left( \frac{x_i - \mu}{\sigma_0} \right)^2 \ge \chi_{\frac{a}{2}}^2(n)$                                               |  |
|                                                 | ( <i>µ</i> 已知)<br> <br>                                | $\sim \chi^2(n)$                                                                                                            | 或 $w \leq \chi_{1-\frac{a}{2}}^2(n)$                                                                                                       |  |
|                                                 | $\sigma^2 = \sigma_0^2$                                | $W = \frac{(n-1)S^2}{\sigma_0^2}$                                                                                           | $w = \frac{(n-1)S^2}{\sigma_0^2} \ge \chi_{\frac{a}{2}}^2(n-1)$                                                                            |  |
|                                                 | (μ 未知)                                                 | $\sim \chi^2(n-1)$                                                                                                          | 或 $w \leq \chi_{1-\frac{a}{2}}^2(n-1)$                                                                                                     |  |
| 两个正                                             | $\mu_1 - \mu_2 = \delta$ $(\sigma_1^2, \sigma_2^2$ 己知) | $U = \frac{\overline{X}_1 - \overline{X}_2 - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\sim N(0,1)$ | $ u  = \frac{ \overline{X}_1 - \overline{X}_2 - \delta }{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \ge u_{\frac{\alpha}{2}}$ |  |
|                                                 | 情 一个正态 总体 两个                                           | 犯这类错误<br>情况 原 $H_0$                                                                                                         | 犯这类错误的大小一般用 $\beta$ 表示,情况而定.                                                                                                               |  |

|       | 态总体 | $\mu_1 - \mu_2 = \delta$ $(\sigma_1^2, \sigma_2^2 + \Sigma)$ $(\sigma_1^2 = \sigma_2^2)$ | $S_W \sqrt{\frac{1}{n} + \frac{1}{n}}$               | $ t  = \frac{ \overline{X}_1 - \overline{X}_2 - \delta }{ S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} }$ $\geq t_{\frac{a}{2}}(n_1 + n_2 - 2)$ |
|-------|-----|------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| )<br> |     | $\sigma_1^2 = \sigma_2^2$ $(\mu_1, \mu_2)$                                               | $F = \frac{S_1^2}{S_2^2}$ $\sim F(n_1 - 1, n_2 - 1)$ | $f = \frac{S_1^2}{S_2^2} \ge F_{\frac{a}{2}}(n_1 - 1, n_2 - 1)$ 或 $f \le F_{\frac{a}{2}}^{-1}(n_2 - 1, n_1 - 1)$                            |
|       |     | 未知)                                                                                      |                                                      |                                                                                                                                             |

# 经常用到的初等数学公式

#### 初等代数

#### 1. 乘法公式与因式分解

$$(1)(a\pm b)^2 = a^2 \pm 2ab + b^2$$

$$(2)(a+b+c)^2 = a^2+b^2+c^2+2ab+2ac+2bc$$

$$(3)a^2-b^2=(a-b)(a+b)$$

$$(4)(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

$$(5)a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$

$$(6)a^{n}-b^{n}=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+\cdots\cdots+ab^{n-2}+b^{n-1})$$

2. 比例 
$$(\frac{a}{b} = \frac{c}{d})$$

(1)合比定理 
$$\frac{a+b}{b} = \frac{c+d}{d}$$

(2)分比定理 
$$\frac{a-b}{b} = \frac{c-d}{d}$$

(3)合分比定理 
$$\frac{a+b}{a-b} = \frac{c+d}{c-d}$$

(4)若
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
,则令 $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = t$ .于是 $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{a+c+e}{b+d+f}$ 

(5)若v与x成正比,则y = kx(k)比例系数)

(6)若
$$y$$
与 $x$ 成反比,则 $y = \frac{k}{x}(k$ 为比例系数)

#### 3. 不等式

(1) 
$$\forall a > b > 0, n > 0, \quad \text{M}(a^n) > b^n$$

(2) 设
$$a > b > 0$$
, $n$ 为正整数,则 $\sqrt[5]{a} > \sqrt[5]{b}$ 

(3)设
$$\frac{a}{b} < \frac{c}{d}$$
,则 $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$ 

(4)非负数的算术平均值不小于其几何平均值,即

$$\frac{a+b}{2} \ge \sqrt{ab}$$
,

$$\frac{a+b+c}{3} \ge \sqrt[3]{abc},$$

$$\frac{a_1 + a_2 + a_3 \cdots \cdots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \cdots a_n}$$

(5)绝对值不等式

1) 
$$|a+b| \le |a| + |b|$$

$$|a-b| \le |a| + |b|$$

$$3)|a-b| \ge |a|-|b|$$

$$4)-|a| \le a \le |a|$$

#### 4. 二次方程 $ax^2 + bx + c = 0$

(1)根:
$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

(2) 韦达定理: 
$$x_1 + x_2 = -\frac{b}{a}, x_1 x_2 = \frac{c}{a}$$

$$(3)$$
判别式 $\Delta = b^2 - 4ac$   $\begin{cases} > 0, 方程有两不等实根 \\ = 0, 方程有两相等实根 \\ < 0, 方程有两共轭虚根 \end{cases}$ 

#### 5. 一元三次方程的韦达定理:

$$x_1 + x_2 + x_3 = -p$$

$$x_1 \cdot x_2 + x_2 \cdot x_3 + x_3 \cdot x_1 = q$$

$$x_1 \cdot x_2 \cdot x_3 = -r$$

### 6. 指数

$$(1)a^m \bullet a^n = a^{m+n}$$

$$(2)a^m \div a^n = a^{m-n}$$

$$(3)(a^m)^n = a^{mn}$$

$$(4)(ab)^n = a^n b^n$$

$$(5)(\frac{a}{b})^m = \frac{a^m}{b^m}$$

$$(6)a^{-m} = \frac{1}{a^m}$$

- 7. 对数  $\log_a N, (a > 0, a \neq 1, N > 0)$
- (1)对数恒等式 $N = a^{\log_a N}$ , 更常用 $N = e^{\ln N}$

$$(2)\log_a(MN) = \log_a M + \log_a N$$

$$(3)\log_a(\frac{M}{N}) = \log_a M - \log_a N$$

$$(4)\log_a(M^n) = n\log_a M$$

$$(5)\log_a \sqrt[n]{M} = \frac{1}{n}\log_a M$$

(6)换底公式
$$\log_a M = \frac{\log_b M}{\log_b a}$$

$$(7)\log_a 1 = 0$$

$$(8)\log_a a = 1$$

#### 8. 数列

(1) 等差数列

设 
$$a_1$$
----首项,

*a*<sub>n</sub> ----通项

$$1)a_n = a_1 + (n-1)d$$

$$2)S_n = \frac{a_1 + a_n}{2}n = na_1 + \frac{n(n-1)}{2}d$$

3)设a,b,c成等差数列,则等差中项 $b = \frac{1}{2}(a+c)$ 

#### (2) 等比数列

设 $a_1$ ----首项, q----公比,  $a_n$ ----通项,则

1)通项
$$a_n = a_n q^{n-1}$$

2)前
$$n$$
项和 $S_n = \frac{a_1(1-q^n)}{1-q} = \frac{a_1-a_nq}{1-q}$ 

#### (3) 常用的几种数列的和

1)1+2+3+...+ 
$$n = \frac{1}{2}n(n+1)$$

$$2)1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$

$$(3)1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{1}{2}n(n+1)\right]^2$$

4)1•2+2•3+···+ 
$$n(n+1) = \frac{1}{3}n(n+1)(n+2)$$

4)1•2•3+2•3•4+···+
$$n(n+1)(n+2) = \frac{1}{4}n(n+1)(n+2)(n+3)$$

#### 9. 排列、组合与二项式定理

#### (1) 排列

$$P_n^m = n(n-1)(n-2)\cdots[n-(m-1)]$$

#### (2) 全排列

$$P_n^n = n(n-1)\cdots 3 \cdot 2 \cdot 1 = n!$$

(3) 组合

$$C_n^m = \frac{n(n-1)\cdots(n-m+1)}{m!} = \frac{n!}{m!(n-m)!}$$

#### 组合的性质:

$$1)C_n^m = C_n^{n-m}$$

$$2)C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$$

(4) 二项式定理

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \dots + \frac{n(n-1)\cdots[n-(k-1)]}{k!}a^{n-k}b^{k} + \dots + b^{n}$$

#### 平面几何

#### 1、图形面积

(1) 任意三角形

$$S = \frac{1}{2}bh = \frac{1}{2}ab\sin C = \sqrt{s(s-a)(s-b)(s-c)},$$
 其中 $s = \frac{1}{2}(a+b+c)$ 

平行四边形

$$S = bh = ab \sin \varphi$$

- (2) 梯形 S=中位线×高
- (3) 扇形  $S = \frac{1}{2}rl = \frac{1}{2}r^2\theta$

#### 2、旋转体

(1) 圆拄

设 R---- 底圆半径, H---- 拄高, 则

1) 侧面积  $S_{\text{\tiny CM}} = 2\pi RH$ ,

2) 全面积 
$$S_{\pm} = 2\pi R(H+R)$$

3) 体积 
$$V = \pi R^2 H$$

(2) 圆锥 (
$$l = \sqrt{R^2 + H^2}$$
 母线)

1) 侧面积 
$$S_{m} = \pi Rl$$

2) 全面积 
$$S_{\pm} = \pi R(l+R)$$

3) 体积 
$$V = \frac{1}{3}\pi R^2 H$$

(3) 球

设 R---- 半径, d---- 直径,则

1) 全面积 
$$S_{\pm} = 4\pi R^2$$

2) 体积 
$$V = \frac{4}{3}\pi R^3$$

#### (4) 球缺(球被一个平面所截而得到的部分)

1) 面积 
$$S = 2\pi Rh$$
(不包括底面)

2) 体积 
$$V = \pi h^2 (R - \frac{h}{3})$$

3. 梭拄及棱锥

设 S----底面积, H----高:

(1) 棱拄体积 
$$V = SH$$

(2) 棱锥体积 
$$V = \frac{1}{3}SH$$

(3) 正棱锥侧面积 
$$A = \frac{1}{2} \times 母线 \times 底周长$$

#### 三、平面三角

#### 1. 三角函数间的关系

(1) 
$$\sin \alpha \csc \alpha = 1$$

(2) 
$$\cos \alpha \sec \alpha = 1$$

(3) 
$$\tan \alpha \cot \alpha = 1$$

$$(4) \sin^2 \alpha + \cos^2 \alpha = 1$$

(5) 
$$1 + \tan^2 \alpha = \sec^2 \alpha$$

(6) 
$$1 + \cot^2 \alpha = \csc^2 \alpha$$

(7) 
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

(8) 
$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

#### 2 倍角三角函数

$$(1)\sin 2\alpha = 2\sin \alpha \cos \alpha$$

(2) 
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

$$(3)\tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}$$

$$(4)\cot 2\alpha = \frac{1-\cot^2\alpha}{2\cot\alpha}$$

$$(5)\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$$

$$(6)\cos^2\alpha = \frac{1+\cos 2\alpha}{2}$$

#### 3. 三角函数的和差化积与积化和差公式

$$(1)\sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$$

$$(2)\sin\alpha - \sin\beta = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

$$(3)\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$$

$$(4)\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

$$(5)\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)]$$

$$(6)\cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)]$$

$$(7)\cos\alpha\sin\beta = \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)]$$

(8) 
$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

#### 4. 边角关系

#### (1) 正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
, R 为外接圆半径



#### (2) 余弦定理

$$a^2 = h^2 + c^2 - 2hc \cos A$$

$$b^2 = c^2 + a^2 - 2ca\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

#### 5. 反三角函数

#### 恒等式

(1) 
$$\arcsin x \pm \arcsin y = \arcsin(x\sqrt{1+y^2} \pm y\sqrt{1-x^2})$$

(2) 
$$\operatorname{arccos} x \pm \operatorname{arccos} y = \operatorname{arccos}(xy \mp \sqrt{(1-x^2)(1-y^2)})$$

(3) 
$$\arctan x \pm \arctan y = \arctan(\frac{x \pm y}{1 \mp xy})$$

(4) 
$$\arcsin x + \arccos x = \frac{\pi}{2}$$

(5) 
$$\arctan x + \operatorname{arc} \cot x = \frac{\pi}{2}$$