Structures algébriques

L'enfant, après avoir appris

— à dénombrer en ajoutant des unités à partir de 0 c'est à dire en construisant l'ensemble \mathbb{N} avec l'opération "suivant" (ou "successeur")

Désignation à l'aide d'un nombre de la quantité de cercles

- à ordonner en comparant des quantités c'est à munir d'une structure d'ordre à l'ensemble $\mathbb N$

Comparaison de deux quantités de cercles

I Loi de composition interne

A Définition

Définition Loi de composition interne

Soit A un ensemble.

Une loi de composition interne, \triangle , est une application qui, à deux éléments de A, associe un élément de A:

$$\triangle \left| \begin{matrix} A \times A & \longrightarrow & A \\ (x,y) & \longmapsto & x \triangle y \end{matrix} \right|.$$

Exemple

— Sur \mathbb{R} , l'addition définie par $+\begin{vmatrix} \mathbb{R} \times \mathbb{R} & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto x+y \end{vmatrix}$, la soustraction $-\begin{vmatrix} \mathbb{R} \times \mathbb{R} & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto x-y \end{vmatrix}$ et la multiplication $-\begin{vmatrix} \mathbb{R} \times \mathbb{R} & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto x \times y \end{vmatrix}$ sont des lois de composition internes.

— Sur \mathbb{N} , la soustraction n'est pas une loi interne, mais elle l'est dans \mathbb{Z} .

— Sur \mathbb{N}^* , l'exponentiation définie par $\begin{vmatrix} \mathbb{N}^* \times \mathbb{N}^* & \longrightarrow \mathbb{N}^* \\ (a,b) & \longmapsto a^b \end{vmatrix}$, le PGCD ou le PPCM sont des lois internes.

— Soit X un ensemble. Sur l'ensemble des parties de X, $\mathcal{P}(X)$, l'union définie par \cup $\begin{vmatrix} \mathcal{P}(X) \times \mathcal{P}(X) & \longrightarrow \mathcal{P}(X) \\ (A,B) & \longmapsto A \cup B \end{vmatrix}$ et l'intersection \cap $\begin{vmatrix} \mathcal{P}(X) \times \mathcal{P}(X) & \longrightarrow \mathcal{P}(X) \\ (A,B) & \longmapsto A \cap B \end{vmatrix}$ sont des lois de composition internes.

Définition Loi de composition externe

Soit X et A deux ensembles.

Une loi de composition externe, ., est une application qui, à un élément de X et un élément de A, associe un élément de A:

Exemple: $(\mathbb{R}^2,.)$

La multiplication par un scalaire sur l'ensemble des vecteurs du plan \mathbb{R}^2 définie par

est une loi de composition externe.

B Propriétés éventuelles des lois de composition interne

Définition Commutativité et associativité

 \triangle est

- 1. associative: si $\in (x, y, z) \in A^3$, $x \triangle (y \triangle z) = (x \triangle y) \triangle z$. On ne considèrera que des loi associatives.
- 2. **commutative**: si $\forall (x,y) \in A^2$, $x \triangle y = y \triangle x$.

Exemple

— Sur \mathbb{R} , l'addition et la multiplication sont commutatives et associatives. Ce n'est pas le cas de la soustraction car $1-0 \neq 0-1$ et $1-(2-3)=2 \neq -4=(1-2)-3$.

Démonstration géométrique élémentaire de la commutativité de la multiplication dans $\mathbb N$ comme addition itérée.

- Sur \mathbb{N}^* , l'exponentiation n'est pas commutative $1^2 = 1 \neq 2 = 2^1$ et non plus associative $\left(2^2\right)^3 = 64 \neq 256 = 2^{(2^3)}$.
- Sur $\mathcal{P}(X)$, l'union et l'intersection sont commutatives et associatives.

Remarque

Quand la loi est associative, la notation itérée est

- en cas d'une loi de multiplication : $\forall a \in A, \forall n \in \mathbb{N}^* : x^n = \underbrace{x \times \cdots \times x}_{n \in \mathbb{N}^*}$
- en cas d'une loi d'addition : $\forall a \in A, \forall n \in \mathbb{N}^* : nx = \underbrace{x + \dots + x}^{\text{n fois}}$

Définition Distributivité d'une loi sur une autre

Soit A un ensemble et \triangle et \square deux lois de composition internes sur A. On dit que \triangle est distributive sur \square si :

$$\forall x, y, z \in A: \quad x \bigtriangleup (y \Box z) = (x \bigtriangleup y) \Box (x \bigtriangleup z) \text{ et } (y \Box z) \bigtriangleup x = (y \bigtriangleup x) \Box (z \bigtriangleup x).$$

Exemple

- Sur \mathbb{R} , la multiplication est distributive sur l'addition mais l'addition n'est pas distributive sur la multiplication car $1 + (2 \times 3) = 7 \neq 5 = 1 \times 2 + 1 \times 3$.
- Sur $\mathcal{P}(X)$, l'union et l'intersection sont distributives l'une par rapport à l'autre.

\mathbf{C} Symétrique et élément neutre

Définition Elément neutre -

 \triangle admet un élément neutre si il existe $e \in A$ tel que $\forall x \in A, x \triangle e = e \triangle x = x$.

Proposition Unicité de l'élément neutre -

Si \triangle admet un élément neutre, alors celui-ci est unique.

Démonstration

Supposons qu'il existe deux éléments neutres e et e'.

$$e$$
 elt neutre e' elt neutre

On a
$$e \triangle e' \stackrel{e \text{ elt neutre}}{=} e'$$
 et $e \triangle e' \stackrel{e' \text{ elt neutre}}{=} e$. Ainsi $e = e'$.

Exemple

- Sur R, 1 est l'élément neutre de la multiplication et 0 de l'addition.
- Sur $\mathcal{P}(X)$, l'ensemble vide \emptyset est l'élément neutre de l'union et X de l'intersection.

Définition Élément symétrique et loi symétrique -

Soit $x \in A$ et la loi \triangle admettant un élément neutre e .

x admet un symétrique pour \triangle si il existe $x' \in A$ tel que $x \triangle x' = x' \triangle x = e$. Dans ce cas, x' est appelé le symétrique de x.

Proposition Unicité de l'élément symétrique —

Soit \triangle une loi associative et admettant un élément neutre e.

Si x admet un symétrique x', alors celui-ci est unique.

Démonstration

Supposons qu'il existe deux éléments symétriques x' et x''.

$$\triangle$$
 associative

On a
$$(x' \triangle x) \triangle x'' = e \triangle x'' = x''$$
 et $(x' \triangle x) \triangle x''$ $=$ $x' \triangle (x \triangle x'') = x' \triangle e = x'$. Ainsi $x' = x''$.

$$x' \triangle (x \triangle x'') = x' \triangle e = x'$$
. Ainsi $x' = x''$.

Vocabulaire

Le symétrique est appelé:

- opposé en cas d'une loi additive +
- inverse en cas d'une loi multiplicative \times

Exemple

Sur \mathbb{R} , l'inverse de la multiplication d'un réel non nul x est $\frac{1}{x}$ et l'opposé de l'addition d'un réel x est -x.

Définition Loi symétrique ____

La loi \triangle est symétrique si la loi est associative et si tout élément de A admet un symétrique.

Exemple

Sur \mathbb{R} , la multiplication n'est pas inversible car 0 n'a pas d'inverse. En revanche sur \mathbb{R}^* , la multiplication est inversible.

D Parties stables

Définition Partie stable -

Soit B une partie non vide de A. B est stable pour \triangle si

$$\forall x, y \in B : x \triangle y \in B.$$

Exemple

- Sur \mathbb{R} , les ensembles \mathbb{Q} , \mathbb{Z} , \mathbb{N} et les nombres pairs sont stables pour l'addition.
- Sur \mathbb{C} , l'ensemble \mathcal{U} des nombres complexes de module 1 est stable pour la multiplication car le produit de deux nombres complexes de module 1 est un nombre complexe de module 1.

Définition Loi induite

Soit \triangle une loi sur A et B une partie de A stable pour \triangle .

La loi induite $\tilde{\triangle}$ est définie par :

$$\tilde{\triangle} \left| \begin{matrix} B \times B & \longrightarrow & B \\ (x,y) & \longmapsto & x \triangle y \end{matrix} \right|.$$

Pour alléger les notations, on identifie $\tilde{\Delta}$ à Δ .

Exemple

On munit l'ensemble $\mathcal U$ des nombres complexes de module 1 avec la loi induite * sur $\mathbb C$.

II Groupes

A Définition

Définition Groupe _

Un groupe est un couple (G, *) où G est un ensemble et * une loi de composition interne sur G associative, admettant un neutre et pour laquelle tout élément de G admet un symétrique pour la loi *. Un groupe est dit abélien ou commutatif si la loi * est de plus commutative.

Proposition Groupes de référence

 $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+)$ et $(\mathbb{C},+)$ sont des groupes commutatifs. $(\mathbb{Q}^*,\times),(\mathbb{R}^*,\times)$ et (\mathbb{C}^*,\times) sont des groupes commutatifs.

Démonstration

Les hypothèses à vérifier ont été énoncées dans la section précédente.

Remarque

Lors de l'introduction d'un groupe (G, *), on omet de mentionner la loi * afin d'alléger les notations. L'ensemble G ne peut pas être vide car il contient au moins l'élément neutre.

B Sous-groupes

Définition Sous-Groupe _

Soit (G,*) un groupe et H une partie de G.

(H,*) est un sous-groupe de (G,*) si H est stable pour * et, muni de la loi induite, est un groupe.

II Groupes 5

Définition Corps $\mathbb{K} : \mathbb{R}$ ou C

Dans ce cours, un corps $\mathbb K$ désigne soit l'ensemble des nombres réels $\mathbb R$ ou soit l'ensemble des nombres complexes $\mathbb C$.

Définition Espace vectoriel : $\lambda \vec{x} + \mu \vec{y}$ —

Soit K un corps

Un \mathbb{K} -espace vectoriel est un triplet (E, +, .) où + est une loi de composition interne sur E et . est une loi de composition externe sur E, vérifiant les propriétés suivantes :

- 1. (E, +) est un groupe commutatif;
- 2. la loi . est compatible avec la structure de groupe (E, +), i.e.
 - (a) $\forall (\lambda, \mu) \in \mathbb{K}^2, \, \forall \vec{x} \in E, \, (\lambda + \mu).\vec{x} = (\lambda.\vec{x}) + (\mu.\vec{x});$
 - (b) $\forall \lambda \in \mathbb{K}, \forall (\vec{x}, \vec{y}) \in E^2, \lambda . (\vec{x} + \vec{y}) = (\lambda . \vec{x}) + (\lambda . \vec{y});$
 - (c) $\forall \vec{x} \in E, 1_{\mathbb{K}}.\vec{x} = \vec{x};$
 - (d) $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall \vec{x} \in E, \lambda.(\mu.\vec{x}) = (\lambda \mu).\vec{x}.$

Un élément d'un \mathbb{K} -espace vectoriel est appelé un vecteur et est noté dans ce cours avec une flèche \vec{x} . Un élément du corps \mathbb{K} est un scalaire et est noté dans ce cours à l'aide d'une lettre grecque, λ .

Exemple

- les n-uplets \mathbb{K}^n muni des lois usuelles,
- les matrices $\mathcal{M}_{n,p}(\mathbb{K})$ muni des lois usuelles,
- si X est un ensemble et E un \mathbb{K} -espace vectoriel, l'ensemble des fonctions $\mathcal{F}(X,E)$ muni des lois usuelles.