Aquatic Catch Predictor.

Motivation.

1. Personal Inspiration:

As an avid fishing enthusiast, I encountered a frustrating experience where a fishing app predicted excellent fish activity, leading me to invite friends for a fishing trip. Unfortunately, not a single fish was caught that day. This sparked the idea for a more reliable and data-driven solution.

2. Significance:

Who cares?

Recreational and competitive anglers aiming to improve their skills and catch rates.

Why does it matter?

Saves time and resources, creating a more enjoyable and effective fishing experience.

Objectives.

Portable Device: Create a compact system capable of predicting fish activity and recommending optimal fishing spots.

Environmental Analysis: Integrate data from temperature, pressure, and weather conditions to assess fish behavior.

Real-time Insights: Use GPS and live weather updates to identify fishing spots with the highest success potential.

Enhanced Experience: Reduce uncertainty and improve catch rates through data-driven decision-making using decision trees for prediction.

Related Work.

Existing Solutions: Current fishing apps, offer predictions based on general weather data and historical trends.

Limitations: These apps often lack real-time data integration, location-specific accuracy, and personalized recommendations for anglers.

Inconsistent Performance: The variability in prediction accuracy underscores the need for a more reliable, data-driven solution tailored to individual fishing scenarios.

FREE TRIAL

Link in Bio
Fig.1 fishing app example

Novelty.

What's New:

Scientifically Collected Data: Predictions are supported by scientifically collected data, ensuring high reliability and accuracy in results.

Offline Functionality: Operates seamlessly without internet access, using onboard sensors and pre-trained models to provide predictions in any environment.

Decision Tree Predictions: Utilizes decision tree algorithms for precise fish activity forecasts, providing a significant improvement over generalized or heuristic methods.

Technical Approach.

The system consists of a **peripheral device** and a **central device**, optimized for specific roles:

Peripheral Device:

- Uses the **Arduino Nano 33 BLE** & **500mah Lipo battery** with onboard sensors to collect:
 - Water temperature (temperature sensor).
 - Atmospheric pressure (barometric sensor).
 - Water surface activity (IMU).
 - Orientation (magnetometer).
- Sends data to the central device via Bluetooth.

Nano 33 BLE

Clock Speed: 64 MHz Flash Memory: 1 MB

RAM: 256 KB

Technical Approach.

Central Device:

- Built with an **ESP32** for its computational power to deploy machine learning models.
- Equipped with:
 - Neo-6M GPS module for location tracking.
 - OLED screen for displaying predictions.
 - Push buttons for user interaction.
 - 500mah Lipo battery
- Processes data and provides fishing predictions using decision trees.

Communication:

Bluetooth link enables data transfer between the Nano 33 BLE and ESP32.

ESP32

Clock Speed: Up to 240 MHz

Flash Memory: 4 MB

RAM: 520 KB

Methods. data collection

Participants:

Three individuals with varying fishing skill levels: beginner, intermediate, and expert.

Locations:

Data collected simultaneously at three different spots using peripheral devices connected to the nRF App on smartphones for logging.

Fig.2 nRF App

Fig.3 Peripheral Devices (prototype_left)

Methods. data collection

Process:

- Each session lasts 30 minutes, participants rotate between locations every 10 minutes.
- This ensures that each location has data contributed by all three participants, enhancing the objectivity and reliability of the dataset.
- During data collection, efforts were made to cover the entire lake; however, a section in the North-West area was obstructed by reeds, making it inaccessible for data collection.

Duration:

- Data collected over 6 days, with 3 hours of collection each day.
- Each day yields 18 data entries, totaling 108 data points across the experiment.

Fig.4 Collected Fishing Spots

Methods. data processing

Data Aggregation:

 Collected data from the nRF App is exported and consolidated into an Excel spreadsheet for analysis.

Bite Rate Calculation:

- Bite rate is determined by summing the catch data from all three participants at each location during a 30-minute session.
- This provides a comprehensive measure of fish activity across skill levels at each spot.

Data Quality:

- No missing values were identified during the data review process.
- GPS data occasionally showed slight shifts, requiring manual adjustments to ensure accuracy.

Date	Latitude	Longtitude	Temperature	Pressure	Water Activity	Bite Rate	Fishing Spot Location
10/23/2024	34.009027	-118.370792	26.43	1014.80	0	4.67	South-West
10/23/2024	34.008993	-118.370189	26.71	1014.70	1	2.67	South-East
10/23/2024	34.009478	-118.370216	26.29	1014.80	0	4.67	South-East
10/23/2024	34.009806	-118.370452	26.68	1014.70	1	4	North-East
10/23/2024	34.010042	-118.370828	26.21	1014.70	1	4.67	North-West
10/23/2024	34.009125	-118.370899	27.59	1013.50	1	3.33	South-West
10/23/2024	34.008938	-118.370243	26.84	1014.40	1	2.67	South-East
10/23/2024	34.009977	-118.370967	27.32	1014.00	1	4.67	North-West
10/23/2024	34.009583	-118.370226	26.89	1014.30	1	4	North-East
10/23/2024	34.009559	-118.370211	27.27	1014.00	1	4.33	North-East
10/23/2024	34.009947	-118.370989	26.92	1014.40	1	4.67	North-West
10/23/2024	34.008963	-118.370218	27.56	1013.90	1	3	South-East
10/23/2024	34.009748	-118.370371	27.67	1013.60	1	4.33	North-East
10/23/2024	34.010026	-118.370891	26.98	1013.20	1	4.67	North-West
10/23/2024	34.009991	-118.370943	26.87	1014.70	0	4.67	North-West
10/23/2024	34.009141	-118.370904	27.04	1013.30	1	3	South-West
10/23/2024	34.009983	-118.370952	27.52	1013.60	0	4.67	North-West
10/23/2024	34.009797	-118.370448	26.93	1013.20	1	4	North-East
10/27/2024	34.010040	-118.370634	25.66	1011.60	1	1	North-West
10/27/2024	34.010036	-118.370840	27.77	1011.70	1	4.67	North-West
10/27/2024	34.009487	-118.370215	27.72	1012.00	1	3	South-East
10/27/2024	34.009418	-118.370228	26.88	1011.80	1	2.67	South-East
10/27/2024	34.008938	-118.370669	26.16	1012.10	1	3	South-West
10/27/2024	34.009031	-118.370792	25.84	1011.80	1	0	South-West
10/27/2024	34.009013	-118.370147	24.58	1011.40	1	0	South-East
10/27/2024	34.010024	-118.370883	27.97	1012.10	1	4.67	North-West
10/27/2024	34 000345	110 270011	25.44	1011 50	0	1	South Wort

Fig.5 dataset

Methods. model training

 Trained a decision tree model in Python to predict fish bite rates.

 Input features: temperature, pressure, water surface activity, and geographical location.

 Validated the model using an 80/20 train-test split.

Decision Tree Regressor for Fish Bite Rate Prediction

Fig.5 Decision Tree Model

Methods. model tuning

 Directly training the decision tree without constraints results in training MSE being significantly smaller than testing MSE, indicating overfitting.

```
# Initialize and train the decision tree regressor
decision_tree_regressor_latest_upload = DecisionTreeRegressor(random_state=42)
decision_tree_regressor_latest_upload.fit(X_train_latest_upload, y_train_latest_upload)
```

- To address this, max depth and min samples leaf parameters are introduced to limit the tree's complexity and reduce overfitting.
 - Achieved best performance with max_depth=4 and min_samples_leaf=4, balancing accuracy and generalization.

```
# Initialize and train the decision tree regressor
decision_tree_regressor_latest_upload = DecisionTreeRegressor(max_depth=4, min_samples_leaf=4, random_state=42)
decision_tree_regressor_latest_upload.fit(X_train_latest_upload, y_train_latest_upload)
```

Demo.

Vid.1 Prediction Mode

Vid.2: Location Suggestion & Navigation Mode

Experimental Evaluation. Metrics

MSE: Evaluates the average squared error between predicted and actual values to measure accuracy.

RMSE: Square root of MSE, providing an interpretable error in the same units as the target variable.

Relative Error: Measures the difference between testing and training MSE as a percentage of the training MSE.

Prediction Speed: Measure the time taken for the system to compute a prediction.

Power Efficiency: Evaluate the system's energy consumption during operation.

- Average power consumption (mW).
- Battery life (hours) on a given power source.

Testing MSE: 0.2498 **Training MSE**: 0.2751

Testing RMSE: 0.4998 **Training RMSE**: 0.5245

Relative Error: 10.12% (Training MSE: 0.2751 vs. Testing MSE: 0.2498)

Average Prediction Speed: 15 ms

Central Device Power Efficiency:

- Average power consumption 408.6 mW.
- Battery life 4.77 hours.

Memory use: 90%

Peripheral Device Power Efficiency:

- Average power consumption 70.2mW.
- Battery life 27.76 hours.

Memory use: 23%

Training MSE: 0.27509203488372086 Training RMSE: 0.5244921685628117

Testing MSE: 0.24980314772727272 Testing RMSE: 0.49980310896119157

Feature Importances:

```
Feature Importance
Temperature 0.557417
Latitude 0.193384
Pressure 0.133084
Water Activity 0.116116
Longtitude 0.000000
```

Fig.6 Model Metrics

```
17:57:52.464 -> Perdiction Starts
17:57:56.552 -> Perdiction Ends
17:57:56.588 -> Perdiction Starts
17:57:59.697 -> Perdiction Ends
17:57:59.697 -> Perdiction Starts
17:58:03.746 -> Perdiction Ends
17:58:03.746 -> Perdiction Ends
17:58:07.872 -> Perdiction Ends
17:58:07.872 -> Perdiction Ends
17:58:10.982 -> Perdiction Ends
```

Fig.7 Serial Monitor output of prediction time

Beginners without any experiences:

- Show a higher level of dependence on the system and use it more frequently.
- Their actual catch rates are generally lower than the system's predictions due to lack of experience.
- Rely heavily on fishing location recommendations for guidance.

Intermediate and Advanced Users:

- Use the system less frequently but demonstrate higher alignment between their catch rates and the system's predictions.
- Depend more on fish activity predictions to refine their strategies.

System Usage How frequently did you use the fishing prediction system during the entire experience?

5 responses

Feedback and Improvements Which feature of the system was the most helpful to you?

5 responses

Fig.8 Example of User Study Results

Conclusions.

- The system helps both beginners and experienced users by providing useful fishing predictions.
 - Beginners benefit the most from location recommendations and use the system more frequently.
 - Experienced users use the system less often but rely more on fish activity predictions to improve their results.

- The decision tree model works well, with a low testing error and accurate predictions in different conditions.
- The system's real-time predictions and low power use make it reliable for long fishing trips.
- User feedback shows the system is easy to use and helpful, with 80% of users willing to recommend it to others.

Discussions.

Hardware Improvements:

- Replace the current GPS module with an Adafruit GPS module for lower power consumption and support for low-power modes.
- Optimize the device enclosure to make it more compact and portable, improving user convenience.

Data Collection:

 Expand data collection to include more sessions and diverse water bodies, improving model accuracy and supporting more fishing conditions.

Future Features:

- Include measurements like water depth or dissolved oxygen to improve prediction accuracy.
- 加上能让用户设定自己的水平,系统可以根据用户的设定scale最终的预测结果

Question & Answer -