Alqunas construcciones categóricas

Productos

$$6 \times H$$
 es un grupo con el producto $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$

El inverso
$$(g,h)^{-1} = (g^{-1},h^{-1})$$

El producto cartesiano es
$$TIG_i = \{f: T \rightarrow \bigcup_{i \in I} G_i \mid f(i) \in G_i \}$$

$$f = \{a_i\}_{i \in I}$$
 tal que $a_i = f(i) \in G_i$ $\forall i \in I$

$$\{a_i\}_{i\in I} \cdot \{b_i\}_{i\in I} = \{a_ib_i\}_{i\in I}$$

El inverso
$$\{a_i\}_{i\in I} = \{a_i^{-1}\}_{i\in I}$$

Para cada iEI definimos
$$T_i: TIG_i \longrightarrow G_i$$
 dada por $T_i\left(\left\{a_i\right\}_{i\in I}\right) = a_i$
 T_i es homo de grupos $\forall i\in I$

para todo grupo 6 y homos de grupos:
$$G \xrightarrow{F_i} G_i$$
, iEI, existe un único

homo:
$$G \xrightarrow{f} TTG_i$$
 tal que $T_i \cdot f = f_i$, $\forall i \in I$

Notación,
$$f = \prod_{i \in I} f_i$$

Diagramas:

Diagrama

cle la prop.

universal

para el prod.

cartesiano

						(\		
Además	esta pri	opiedad	determ	ina a	l par	(TT e	$5i$, $\{T_i\}$	iet) 20	elvo ur	ύηἰσο
isomorfismo	, es dec	ir, que si	(P, 1,	$\lambda_i\}_{i\in\mathcal{I}}$	es ot	no par	que cur	iple la	misma	prop.
universal,			1.00			→ TI	Gi tal	$que \lambda_i$:	= m; f	ViEI
TT Gi	se dice	el Prod	ucto de	la far	ni lia		Fi d univer	λi		
$\{G_i\}_{i\in I}$	en la	categoria	c Gp (d	e grupe	22)	6	$\frac{1}{f_i}$	→ 6	i -	TT 6i 4.
Demostracu	ón :							®	31 t 7	
· Veamos	que (TG: .	milier)	tiene	lapi	opieda	d univer	sal	γ <u></u> ×	jo Gi
Sea fi										
Definimo				fore	na l	(a) = .	(f.(a)}.			
es cloro	que 7 6	es homo	(pues ti	ω es	41) 9	Nit -	Ti VIEL			
Ahora ve	ramos qu	e fesi	íní co :							
		TGi es		e Ti	£ = f;					
		f(g) =				(9)	di EI			
		3			"(9)					
1,700	- (0) 2	1 [(0)]	:0)2 =		U		da Vac	c => 1	2 2	
cuego	3 (9) -	f f; (g) };e	1 19	9 0	como es	STO SUCE	ae vge	9 -/) = +	
Resta pro	bar la	unicidad	de (TI	Gi, 1	rif) c	on la	propieda	d univer	Sal	
) otro t								
100		d universa	K*				omo f:	$P \rightarrow T$	G; ta	2 000
	$=\lambda_i$, , ,,,					7
			∞ T	c	_				0	
Por otro									versal	æ
(4,1	Nit), 1!	homo F	: II G	→ <i>Y</i>	tal c	the yi	f = Mi	AIEI		
Luego to	memos	7f.P	→P 1	nomo	que so	atisfoo	e y. []	= T; F	ε λ:	VIET
Luego to							$\widetilde{\gamma}$			

Demostración:

plesto me ayuda que sea abeliano

Veamos que cumple la propiedad. Sea Gi ti> G, iEI

Sea $t: \coprod_{i \in \Sigma} G_i \longrightarrow G$, $t(\{a_i\}_{i \in \Sigma}) = \sum_{i \in \Sigma} t_i(a_i) \in G$ tiene sentido ques los a_i 's

son casi todos o y como 6 es abeliano, no importa el orden en que sume

$$t\left(da_{i}\right)+tb_{i}t=t\left(da_{i}+b_{i}\right)=\sum_{i\in I}t_{i}\left(a_{i}+b_{i}\right)=\left(\sum_{i\in I}t_{i}\left(a_{i}\right)\right)+\left(\sum_{i\in I}t_{i}\left(b_{i}\right)\right)$$

$$suma\ finita=t\left(da_{i}t\right)+t\left(db_{i}t\right)$$

$$t l_i(a) = t \left(\frac{1}{2} a_i \right)$$
, $a_i = \begin{cases} a_i & \text{si } i = i \\ 0 & \text{si } i \neq i \end{cases}$ $t l_i(a) = t_i(a)$

Ahora, la unicidad de (II Gi, {2i}) se prveba de la misma forma que se hizo
para el producto - ejercico

Notación alternativa para el coproducto

 $\bigoplus_{i \in I} G_i$ 6 $\sum_{i \in I} G_i$

Se lo suele llamar suma directa externa

El coproducto de puede definir siempre pero este no siempre existe

A coproducto en la categoria de grupos abelianos finitos

GRUPOS LIBRES Y PRESENTACIONES

Sea X conjunto, tomemos conjuntos X⁻¹ y le? ambos disjuntos con X y entre si, tales que X⁻¹ está en correspondencia biyectiva con X.

Denotamos por $x^{-1} \in X^{-1}$ al elemento que corresponde a $x \in X$ bajo una biyección (fija)

alfabeto

Una palabra en $XU1e_1UX^{-1}$ es una sucesión $(a_1,a_2,...)$ donde $a_i \in XU1e_1UX^{-1}$ y $\exists n \in \mathbb{N}$ tal que $a_i = e$ $\forall i \not = n$ (ie es sucesión finita)

Notación: a, a2 ··· an

Una palabra a=(a1a2...) se dice reducida si cumple: i) $\forall x \in X$, los elementos x y x^{-1} no son adjacentes en a ii) Si a = e => a; = e Yizk (el neutro e no se intercala con otros erem.) Palabra vacía: (e,e,e,...) es reducida Toda palabra reducida (no vacía) es de la forma: x, x, x, K: ... x, tal que x; EX, nEN, K; E (0,1) $\chi_1 \cdots \chi_1 \chi_2 \cdots \chi_2 \cdots \chi_n \cdots \chi_n$ K1-veces K2-veces Kn-veces