Maximizing Linear Functions Subject to Linear Inequalities- The Simplex Method

Mario Banuelos

University of California, Merced

mbanuelos4@ucmerced.edu

November 25, 2013

Motivation and Background

- George Dantzig invented the Simplex Method in 1947, and it is still used in many applications of linear programming.
- How do we maximize or minimize given linear restrictions?
- Applications of the simplex method include: economics, industry, and transportation problems.

Applications

Standard form

 For a given linear program, we can convert it to the following form:

max
$$z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

subject to

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n} = b_1$$

... = :

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn} = b_m$$

for nonnegative x_i $(i = 1, 2 \dots n)$.

Rewriting LP

We want to maximize

$$\mathbf{C} \cdot \mathbf{X}$$

with

$$Ax = b, x \ge 0$$

We can write the LP as

•

$$\begin{bmatrix} 1 & -\mathbf{c}^T & 0 \\ 0 & \mathbf{A} & \mathbf{b} \end{bmatrix} \begin{array}{c} \text{Row } 0 \\ \text{Row } i \end{array}$$

•
$$i = 1, 2, ... m$$

Definitions

Feasible Solution

A solution which meets all constraints but may or may not be optimal.

Basic Feasible Solution

A feasible solution with m number of nonzero x_i .

Theorem

If one feasible solution exists, then there exists a basic feasible solution.

Simplex Algorithm

- Step 1: If $\mathbf{c}^T \ge 0$ in Row 0, the current basic solution is optimal.
 - \Rightarrow Otherwise, pick a variable x_j with a negative coefficient in Row 0.
- **Step 2:** For each Row $i, i \ge 1$, where there is strictly positive "entering variable coefficient", choose the pivot row with

$$\theta = \min (b_i/A_{ij}) \quad A_{ij} > 0.$$

with $x_1, x_2 \ge 0$

Maximize
$$z=4x_1+6x_2$$
, subject to
$$-x_1+x_2\leq 11$$

$$x_1+x_2\leq 27$$

$$2x_1+5x_2\leq 90$$

Rewriting the LP, we introduce slack variables s_1, s_2 , and s_3

$$-x_1 + x_2 + s_1$$
 = 11
 $x_1 + x_2 + s_2 = 27$
 $2x_1 + 5x_2 + s_3 = 90$

with $x_1, x_2, s_1, s_2, s_3 \ge 0$.

Our tableau becomes

$$\begin{bmatrix}
1 & -4 & -6 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 1 & 0 & 0 & 11 \\
0 & 1 & 1 & 0 & 1 & 0 & 27 \\
0 & 2 & 5 & 0 & 0 & 1 & 90
\end{bmatrix}$$

with the basic feasible solution $(x_1, x_2, s_1, s_2, s_3) = (0, 0, 11, 27, 90)$. Then,

$$z = 4(0) + 6(0) + 0(11) + 0(27) + 0(90) = 0$$

We choose x_2 as "entering variable" and s_1 as "exiting variable" since $\theta=11$. After pivoting, our tableau becomes

$$\begin{bmatrix}
1 & -10 & 0 & 6 & 0 & 0 & 66 \\
0 & -1 & 1 & 1 & 0 & 0 & 11 \\
0 & 2 & 0 & -1 & 1 & 0 & 16 \\
0 & 7 & 0 & -5 & 0 & 1 & 35
\end{bmatrix}$$

with the basic feasible solution $(x_1, x_2, s_1, s_2, s_3) = (0, 11, 0, 16, 35)$. Then,

$$z = 4(0) + 6(11) + 0(0) + 0(16) + 0(35) = 66$$

After carrying out the Simplex Method two more times, we have

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \frac{8}{3} & \frac{2}{3} & 132 \\ 0 & 0 & 1 & 0 & -\frac{2}{3} & \frac{1}{3} & 12 \\ 0 & 0 & 0 & 1 & \frac{7}{3} & -\frac{2}{3} & 14 \\ 0 & 1 & 0 & 0 & \frac{5}{3} & -\frac{1}{3} & 15 \end{bmatrix}$$

with the basic feasible solution $(x_1, x_2, s_1, s_2, s_3) = (15, 12, 14, 0, 0)$. Then.

$$z = 4(15) + 6(12) + 0(14) + 0(0) + 0(0) = 132$$

Graphing the Simplex Method

- We can consider the simplex algorithm as moving from one vertex v to another adjacent vertex w of a polytope
- Each step increases the objective function.

Graphical Example: max $z = 4x_1 + 6x_2$

Higher dimensions

Disadvantages of the Method

- The method works well for non-degenerate matrix A.
- A basic feasible solution is needed as a starting point.
- Other methods (i.e. interior point) may be more efficient with large *m*.

Concluding Remarks

- Introduced the Simplex Method with a specific maximization example.
- Provided intuition for the graphical representation of the method.
- Highlighted a few applications and shortcomings.

References

George B. Dantzig (1951)

Maximization of a linear function of variables subject to linear inequalities

Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13, John Wiley Sons Inc., New York, N. Y 339 – 347.

George B. Dantzig, Alex Orden, and Phillip Wolfe (1955)

The generalized simplex method for minimizing a linear form under linear inequality restraints.

Pacific Journal of Mathematics 5, 183 - 195.