$12n_{0617} (K12n_{0617})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -4.03528 \times 10^{29} u^{18} + 2.20603 \times 10^{29} u^{17} + \dots + 1.42881 \times 10^{32} b - 1.94886 \times 10^{32}, \\ &- 1.72871 \times 10^{32} u^{18} + 8.76867 \times 10^{31} u^{17} + \dots + 4.27215 \times 10^{34} a - 1.13938 \times 10^{35}, \\ &u^{19} + 7u^{17} + \dots + 1241u + 299 \rangle \\ I_2^u &= \langle 341324 u^{18} + 743649 u^{17} + \dots + 1775197 b - 6939035, \\ &- 4528372 u^{18} - 453288 u^{17} + \dots + 5325591 a - 8838485, \ u^{19} + 9u^{17} + \dots + 5u - 3 \rangle \\ I_3^u &= \langle b + 1, \ a + u + 1, \ u^2 + u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 40 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4.04 \times 10^{29} u^{18} + 2.21 \times 10^{29} u^{17} + \dots + 1.43 \times 10^{32} b - 1.95 \times 10^{32}, \ -1.73 \times 10^{32} u^{18} + 8.77 \times 10^{31} u^{17} + \dots + 4.27 \times 10^{34} a - 1.14 \times 10^{35}, \ u^{19} + 7 u^{17} + \dots + 1241 u + 299 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} \\ u^{2} \\ u^{2} \\ u^{2} \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.00404647u^{18} - 0.00205252u^{17} + \dots + 5.01173u + 2.66701 \\ 0.00282422u^{18} - 0.00154396u^{17} + \dots + 3.08557u + 1.36397 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.00155291u^{18} - 0.00147152u^{17} + \dots + 1.33246u + 0.620489 \\ 0.0000864825u^{18} - 0.0000717914u^{17} + \dots + 0.294414u - 0.189493 \\ a_{5} = \begin{pmatrix} 0.00146643u^{18} - 0.00139973u^{17} + \dots + 1.03805u + 0.809982 \\ 0.0000864825u^{18} - 0.0000717914u^{17} + \dots + 0.294414u - 0.189493 \\ a_{7} = \begin{pmatrix} 0.00146643u^{18} - 0.000263588u^{17} + \dots + 0.294414u - 0.189493 \\ -0.001489360u^{18} + 0.00123884u^{17} + \dots + 1.20770u - 0.672255 \\ -0.00114874u^{18} + 0.000504223u^{17} + \dots + 2.28928u + 0.510179 \\ -0.00200460u^{18} + 0.00203579u^{17} + \dots - 2.10077u + 0.100181 \\ -0.00200460u^{18} + 0.00203579u^{17} + \dots - 2.29498u - 0.839146 \\ -0.00579600u^{18} + 0.00505904u^{17} + \dots - 8.55381u - 3.61658 \\ -0.00579600u^{18} + 0.00405386u^{17} + \dots + 4.15098u + 2.32935 \\ -0.00349992u^{18} - 0.00250692u^{17} + \dots + 4.15098u + 2.32935 \\ 0.00305515u^{18} - 0.00208189u^{17} + \dots + 3.55304u + 1.16410 \\ \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.0112722u^{18} 0.00351862u^{17} + \cdots + 14.6963u + 17.4566$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{19} + 14u^{18} + \dots + 674775u - 89401$
c_2, c_7	$u^{19} + 7u^{17} + \dots + 1241u - 299$
<i>c</i> ₃	$u^{19} - 5u^{18} + \dots + 393u - 39$
<i>C</i> ₄	$u^{19} - 39u^{17} + \dots - 7472u + 3053$
<i>C</i> ₅	$u^{19} - u^{18} + \dots + 1014u - 111$
c_6, c_{10}	$u^{19} + 3u^{18} + \dots - 360u + 108$
<i>C</i> ₈	$u^{19} - 4u^{18} + \dots + 783u - 789$
<i>c</i> ₉	$u^{19} + u^{18} + \dots + 3474u + 4197$
c_{11}	$u^{19} + 4u^{18} + \dots - 12u - 3$
c_{12}	$u^{19} + 23u^{17} + \dots - 12u - 3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} - 66y^{18} + \dots + 286804528071y - 7992538801$
c_2, c_7	$y^{19} + 14y^{18} + \dots + 674775y - 89401$
<i>c</i> ₃	$y^{19} + 7y^{18} + \dots + 57963y - 1521$
c_4	$y^{19} - 78y^{18} + \dots + 41701500y - 9320809$
c_5	$y^{19} - 47y^{18} + \dots + 419250y - 12321$
c_6,c_{10}	$y^{19} - 37y^{18} + \dots - 80568y - 11664$
c_8	$y^{19} - 66y^{18} + \dots + 164937y - 622521$
<i>C</i> 9	$y^{19} - 47y^{18} + \dots + 31022328y - 17614809$
c_{11}	$y^{19} - 2y^{18} + \dots + 156y - 9$
c_{12}	$y^{19} + 46y^{18} + \dots + 102y - 9$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.791837 + 0.677469I		
a = -0.619990 + 0.658481I	3.59219 - 0.75835I	12.53082 - 1.44797I
b = -1.173080 - 0.756067I		
u = 0.791837 - 0.677469I		
a = -0.619990 - 0.658481I	3.59219 + 0.75835I	12.53082 + 1.44797I
b = -1.173080 + 0.756067I		
u = 0.668469 + 1.020450I		
a = 0.517672 - 0.080176I	3.00456 + 6.40703I	1.37835 - 6.31753I
b = 1.98730 + 0.83213I		
u = 0.668469 - 1.020450I		
a = 0.517672 + 0.080176I	3.00456 - 6.40703I	1.37835 + 6.31753I
b = 1.98730 - 0.83213I		
u = -0.709865 + 0.235609I		
a = -1.24244 + 1.33477I	-1.78162 + 2.24100I	7.64182 - 5.49504I
b = -1.233030 + 0.441203I		
u = -0.709865 - 0.235609I		
a = -1.24244 - 1.33477I	-1.78162 - 2.24100I	7.64182 + 5.49504I
b = -1.233030 - 0.441203I		
u = -0.443396 + 0.513943I		
a = 0.464073 - 0.228663I	0.81666 - 1.62841I	5.50356 + 4.37919I
b = 0.114778 - 0.413169I		
u = -0.443396 - 0.513943I		
a = 0.464073 + 0.228663I	0.81666 + 1.62841I	5.50356 - 4.37919I
b = 0.114778 + 0.413169I		
u = 0.220968 + 1.307740I		
a = 0.559258 + 0.670454I	-5.42189 - 4.80173I	4.68015 + 6.13601I
b = -0.221871 + 0.268759I		
u = 0.220968 - 1.307740I		
a = 0.559258 - 0.670454I	-5.42189 + 4.80173I	4.68015 - 6.13601I
b = -0.221871 - 0.268759I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.34390		
a = -1.75903	7.99042	38.4260
b = -1.60303		
u = -0.387274		
a = 1.08970	0.789923	12.9890
b = 0.460660		
u = 0.04812 + 2.23479I		
a = 0.270283 - 0.668799I	-8.32137 + 0.26499I	5.83131 - 0.13665I
b = 0.626673 + 0.094069I		
u = 0.04812 - 2.23479I		
a = 0.270283 + 0.668799I	-8.32137 - 0.26499I	5.83131 + 0.13665I
b = 0.626673 - 0.094069I		
u = -1.37830 + 2.10976I		
a = -1.085980 - 0.344467I	16.1957 - 11.9447I	6.54103 + 4.41921I
b = -1.96178 + 0.21547I		
u = -1.37830 - 2.10976I		
a = -1.085980 + 0.344467I	16.1957 + 11.9447I	6.54103 - 4.41921I
b = -1.96178 - 0.21547I		
u = -1.31382 + 2.41201I		
a = 1.051960 + 0.419604I	16.2683 - 3.2857I	6.98967 + 0.65186I
b = 1.94078 - 0.12636I		
u = -1.31382 - 2.41201I		
a = 1.051960 - 0.419604I	16.2683 + 3.2857I	6.98967 - 0.65186I
b = 1.94078 + 0.12636I		
u = 3.27534		
a = 1.42832	11.6017	8.39160
b = 1.98283		

$$II. \\ I_2^u = \langle 3.41 \times 10^5 u^{18} + 7.44 \times 10^5 u^{17} + \dots + 1.78 \times 10^6 b - 6.94 \times 10^6, \ -4.53 \times 10^6 u^{18} - 4.53 \times 10^5 u^{17} + \dots + 5.33 \times 10^6 a - 8.84 \times 10^6, \ u^{19} + 9u^{17} + \dots + 5u - 3 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.850304u^{18} + 0.0851151u^{17} + \dots - 12.4234u + 1.65963 \\ -0.192274u^{18} - 0.418911u^{17} + \dots - 5.06973u + 3.90888 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.28785u^{18} - 0.428274u^{17} + \dots + 8.62193u + 0.381312 \\ -0.543496u^{18} + 0.141234u^{17} + \dots + 4.84292u - 1.96536 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.744352u^{18} - 0.569507u^{17} + \dots + 3.77902u + 2.34667 \\ -0.543496u^{18} + 0.141234u^{17} + \dots + 4.84292u - 1.96536 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.33678u^{18} + 0.0558727u^{17} + \dots + 10.8180u + 4.84550 \\ -0.392077u^{18} + 0.00853821u^{17} + \dots + 3.50128u + 1.73453 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.774842u^{18} - 0.604057u^{17} + \dots + 6.25830u - 0.275189 \\ 0.00405983u^{18} + 0.179806u^{17} + \dots + 5.94869u - 2.53039 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.598889u^{18} - 0.135703u^{17} + \dots + 12.8058u + 3.66527 \\ -0.567102u^{18} - 0.369487u^{17} + \dots - 1.56347u + 2.36723 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.658741u^{18} + 0.00570697u^{17} + \dots - 4.71566u + 1.45371 \\ 0.422567u^{18} + 0.0260112u^{17} + \dots - 5.98056u + 0.887322 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{7917565}{1775197}u^{18} - \frac{841506}{1775197}u^{17} + \dots + \frac{16153658}{1775197}u + \frac{29863827}{1775197}u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1	$u^{19} - 18u^{18} + \dots - 125u + 9$	
c_2	$u^{19} + 9u^{17} + \dots + 5u - 3$	
c_3	$u^{19} + 4u^{18} + \dots - 2u - 1$	
c_4	$u^{19} + 2u^{18} + \dots + 2u - 3$	
c_5	$u^{19} - 7u^{18} + \dots + 2u - 1$	
c_6	$u^{19} + u^{18} + \dots - 2u + 1$	
c_7	$u^{19} + 9u^{17} + \dots + 5u + 3$	
c_8	$u^{19} - 5u^{18} + \dots + 290u - 139$	
c_9	$u^{19} - 5u^{18} + \dots - 10u^2 - 1$	
c_{10}	$u^{19} - u^{18} + \dots - 2u - 1$	
c_{11}	$u^{19} - 6u^{18} + \dots - 2u + 1$	
c_{12}	$u^{19} + 2u^{18} + \dots + 102u - 29$	
	9	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} - 34y^{18} + \dots + 343y - 81$
c_{2}, c_{7}	$y^{19} + 18y^{18} + \dots - 125y - 9$
<i>c</i> ₃	$y^{19} + 8y^{18} + \dots - 10y - 1$
c_4	$y^{19} - 2y^{18} + \dots + 28y - 9$
c_5	$y^{19} - 3y^{18} + \dots + 2y - 1$
c_6,c_{10}	$y^{19} + y^{18} + \dots + 2y - 1$
<i>C</i> ₈	$y^{19} - 25y^{18} + \dots - 100492y - 19321$
<i>c</i> ₉	$y^{19} - 19y^{18} + \dots - 20y - 1$
c_{11}	$y^{19} + 2y^{18} + \dots + 8y - 1$
c_{12}	$y^{19} + 30y^{18} + \dots + 3270y - 841$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.120264 + 0.951026I		
a = -1.298530 - 0.086419I	-2.83073 + 0.47879I	6.36948 + 1.61646I
b = -0.796550 + 0.567431I		
u = 0.120264 - 0.951026I		
a = -1.298530 + 0.086419I	-2.83073 - 0.47879I	6.36948 - 1.61646I
b = -0.796550 - 0.567431I		
u = -0.309080 + 0.822665I		
a = -1.231090 + 0.430785I	-2.40859 + 1.79507I	-0.97377 - 1.20868I
b = -1.51871 + 0.39241I		
u = -0.309080 - 0.822665I		
a = -1.231090 - 0.430785I	-2.40859 - 1.79507I	-0.97377 + 1.20868I
b = -1.51871 - 0.39241I		
u = -0.565790 + 0.993465I		
a = 0.464701 + 0.325729I	3.48186 - 6.48285I	17.9524 + 9.5212I
b = 2.41965 - 0.62277I		
u = -0.565790 - 0.993465I		
a = 0.464701 - 0.325729I	3.48186 + 6.48285I	17.9524 - 9.5212I
b = 2.41965 + 0.62277I		
u = -0.724005 + 1.005750I		
a = -0.318967 - 0.481555I	3.49084 + 1.72012I	11.46074 - 5.25453I
b = -1.82441 + 0.68066I		
u = -0.724005 - 1.005750I		
a = -0.318967 + 0.481555I	3.49084 - 1.72012I	11.46074 + 5.25453I
b = -1.82441 - 0.68066I		
u = 0.463872 + 0.485503I		
a = 1.86693 + 1.26312I	-3.85974 + 5.13272I	7.67492 - 5.46593I
b = 0.693431 - 0.123308I		
u = 0.463872 - 0.485503I		
a = 1.86693 - 1.26312I	-3.85974 - 5.13272I	7.67492 + 5.46593I
b = 0.693431 + 0.123308I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.089855 + 1.336230I		
a = -0.632293 + 0.749086I	-0.69955 + 3.25819I	5.31453 - 5.59109I
b = -1.53550 - 0.37470I		
u = 0.089855 - 1.336230I		
a = -0.632293 - 0.749086I	-0.69955 - 3.25819I	5.31453 + 5.59109I
b = -1.53550 + 0.37470I		
u = 1.39341		
a = 1.71022	7.82904	-11.7070
b = 1.63158		
u = -0.11696 + 1.47623I		
a = -0.271822 + 0.210703I	-5.77761 - 3.98981I	1.124365 - 0.741804I
b = 0.092197 + 0.445873I		
u = -0.11696 - 1.47623I		
a = -0.271822 - 0.210703I	-5.77761 + 3.98981I	1.124365 + 0.741804I
b = 0.092197 - 0.445873I		
u = 0.147710 + 0.491095I		
a = -0.00567 - 1.87177I	2.46837 - 2.43749I	10.16983 + 4.01127I
b = 1.138500 + 0.167993I		
u = 0.147710 - 0.491095I		
a = -0.00567 + 1.87177I	2.46837 + 2.43749I	10.16983 - 4.01127I
b = 1.138500 - 0.167993I		
u = 0.19742 + 1.78925I		
a = 0.404951 + 0.383658I	-9.29391 - 1.41791I	-0.23891 + 4.94600I
b = 0.515604 - 0.393143I		
u = 0.19742 - 1.78925I		
a = 0.404951 - 0.383658I	-9.29391 + 1.41791I	-0.23891 - 4.94600I
b = 0.515604 + 0.393143I		

III.
$$I_3^u = \langle b+1, \ a+u+1, \ u^2+u+1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u - 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u + 1 \\ u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4u + 5

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1, c_4, c_5 c_9, c_{12}	$u^2 + u + 1$	
c_2, c_7, c_{11}	$u^2 - u + 1$	
c_3, c_6, c_8 c_{10}	$(u+1)^2$	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_4 \\ c_5, c_7, c_9 \\ c_{11}, c_{12}$	$y^2 + y + 1$	
c_3, c_6, c_8 c_{10}	$(y-1)^2$	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -0.500000 - 0.866025I	-1.64493 - 2.02988I	3.00000 + 3.46410I
b = -1.00000		
u = -0.500000 - 0.866025I		
a = -0.500000 + 0.866025I	-1.64493 + 2.02988I	3.00000 - 3.46410I
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} + u + 1)(u^{19} - 18u^{18} + \dots - 125u + 9)$ $\cdot (u^{19} + 14u^{18} + \dots + 674775u - 89401)$
c_2	$(u^{2} - u + 1)(u^{19} + 7u^{17} + \dots + 1241u - 299)(u^{19} + 9u^{17} + \dots + 5u - 3)$
c_3	$((u+1)^2)(u^{19} - 5u^{18} + \dots + 393u - 39)(u^{19} + 4u^{18} + \dots - 2u - 1)$
c_4	$(u^{2} + u + 1)(u^{19} - 39u^{17} + \dots - 7472u + 3053)$ $\cdot (u^{19} + 2u^{18} + \dots + 2u - 3)$
c_5	$(u^{2} + u + 1)(u^{19} - 7u^{18} + \dots + 2u - 1)(u^{19} - u^{18} + \dots + 1014u - 111)$
c_6	$((u+1)^2)(u^{19}+u^{18}+\cdots-2u+1)(u^{19}+3u^{18}+\cdots-360u+108)$
C ₇	$(u^{2} - u + 1)(u^{19} + 7u^{17} + \dots + 1241u - 299)(u^{19} + 9u^{17} + \dots + 5u + 3)$
c ₈	$((u+1)^2)(u^{19} - 5u^{18} + \dots + 290u - 139)$ $\cdot (u^{19} - 4u^{18} + \dots + 783u - 789)$
<i>C</i> 9	$(u^{2} + u + 1)(u^{19} - 5u^{18} + \dots - 10u^{2} - 1)$ $\cdot (u^{19} + u^{18} + \dots + 3474u + 4197)$
c_{10}	$((u+1)^2)(u^{19}-u^{18}+\cdots-2u-1)(u^{19}+3u^{18}+\cdots-360u+108)$
c_{11}	$(u^{2} - u + 1)(u^{19} - 6u^{18} + \dots - 2u + 1)(u^{19} + 4u^{18} + \dots - 12u - 3)$
c_{12}	$(u^{2} + u + 1)(u^{19} + 23u^{17} + \dots - 12u - 3)(u^{19} + 2u^{18} + \dots + 102u - 29)$ 18

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{2} + y + 1)(y^{19} - 66y^{18} + \dots + 2.86805 \times 10^{11}y - 7.99254 \times 10^{9})$ $\cdot (y^{19} - 34y^{18} + \dots + 343y - 81)$
c_2, c_7	$(y^{2} + y + 1)(y^{19} + 14y^{18} + \dots + 674775y - 89401)$ $\cdot (y^{19} + 18y^{18} + \dots - 125y - 9)$
c ₃	$((y-1)^2)(y^{19} + 7y^{18} + \dots + 57963y - 1521)$ $\cdot (y^{19} + 8y^{18} + \dots - 10y - 1)$
c_4	$(y^{2} + y + 1)(y^{19} - 78y^{18} + \dots + 4.17015 \times 10^{7}y - 9320809)$ $\cdot (y^{19} - 2y^{18} + \dots + 28y - 9)$
c_5	$(y^{2} + y + 1)(y^{19} - 47y^{18} + \dots + 419250y - 12321)$ $\cdot (y^{19} - 3y^{18} + \dots + 2y - 1)$
c_6, c_{10}	$((y-1)^2)(y^{19} - 37y^{18} + \dots - 80568y - 11664)$ $\cdot (y^{19} + y^{18} + \dots + 2y - 1)$
c_8	$((y-1)^2)(y^{19} - 66y^{18} + \dots + 164937y - 622521)$ $\cdot (y^{19} - 25y^{18} + \dots - 100492y - 19321)$
c_9	$(y^{2} + y + 1)(y^{19} - 47y^{18} + \dots + 3.10223 \times 10^{7}y - 1.76148 \times 10^{7})$ $\cdot (y^{19} - 19y^{18} + \dots - 20y - 1)$
c_{11}	$(y^2 + y + 1)(y^{19} - 2y^{18} + \dots + 156y - 9)(y^{19} + 2y^{18} + \dots + 8y - 1)$
c_{12}	$(y^{2} + y + 1)(y^{19} + 30y^{18} + \dots + 3270y - 841)$ $\cdot (y^{19} + 46y^{18} + \dots + 102y - 9)$