B matrix modeling

- L_b : correlation length-scale, $var(\sigma^b)$.
- Grid point variance : $\sigma_i^b = 1 + var(\sigma^b) \times \sin(2\pi(i-1)/n), \quad i = 1..n$
- Spectral variance : $\sigma_0^{b,spec} = 1$ $\sigma_{2(i-1)}^{b,spec} = 2 \exp(-2(\pi(i-1)L_b)^2), \quad i = 1..n/2$ $\sigma_{2(i-1)+1}^{b,spec} = \sigma_{2(i-1)}^{b,spec}$ $\sigma_{n_{max}}^{b,spec} = \exp(-2(\pi n_{max}/2)L_b)^2)$

Full resolution example

Full resolution example with a more complex example

resolution x2 - rho

resolution x2 - beta

resolution x2 - no spectral interpolation for grid points

$\overline{J_o}$ dominant

 σ^o :0.01, n :2048

... par rapport à J_b

 σ^{o} :0.01, n :2048

