

Fraternité

TRAITEMENT D'IMAGES

Partie Introductive

Frédéric Cointault
Institut Agro Dijon
Responsable Equipe ATIP
UMR Agroécologie
26 Bd Dr Petitjean
21000 Dijon
+33 3 80 77 27 54
frederic.cointault@agrosupdijon.fr

L'INSTITUT NATIONAL D'ENSEIGNEMENT SUPÉRIEUR POUR L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT

Déroulé du module et évaluations

Déroulé chronologique des interventions

Phase 1 ⇔	tous les CM (sauf CM 6)
Phase 2 ⇔	TD n°1&2&3 (+ CM6)
Phase 3 ⇔	TD n°4 et TP 1&2
Phase 4 ⇔	TP3

Evaluation finale

1&2&3 (+ CM6) • TD2 : Filtrage et texture

TD3: 1h15 sur les notions de traitement bas et haut-niveau et 30' d'évaluation sur les notions vues en TD

TD3 : Classification + évaluation écrite

TD1: Binarisation et histogramme

TD4 : début projet scientifique portant sur une analyse bibliographique sur une thématique de recherche <u>TPs</u> :

TD1&2: TD portant sur les CM et sur des notions de traitement bas-niveau et haut-niveau

- Organisation à la discrétion des étudiants sur les notions vues en CM/TD et sur la préparation de la présentation orale (dans l'idéal TP1&2 sur les notions fondamentales et TP3 sur la présentation scientifique)
- Environ 16 étudiants / groupe de TP : 4 groupes de 4
- Chaque groupe aura à étudier 4 papiers (soit 1 papier par personne)
- Mise en commun des analyses des papiers pour présentation commune

Modalités déroulé des TPs/TDs et modifications des contenus et attendus

Restitution des CR de TP à la fin des 12h de TP

Modalités des évaluations

3 modes d'évaluation

- CR de TPs (note de pratique x0.5)
- Présentation orale sur une thématique scientifique (note de théorique x0.5) :
 - o 6 à 8 minutes de présentation
 - 5 à 7 minutes de retours/questions
 - Evaluation formative: 75% sur le contenu et 25% sur la prestation
- Examen rapide sur table en TD (note de théorique x0.5) : 30' à la fin du TD3

Phase 5 ⇔

Phénotypage (aérien et racinaire)

- Pois, Blé, Vigne, Maïs, Betteraves Détection de pathologies

Vigne, Blé, Betteraves

Autres projets

- Estimation de rendement (Blé, Colza)
- Pulvérisation de précision

Comment traiter ces images?

Sont-elles bien acquises?

Cours L3 ESIREM

10

Image d'origine

Image résultat

Image d'origine

Image résultat

0 - Préambule

I - Introduction

- II Définitions
- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
- VI Analyse et Reconnaissance de formes
 - VII Détection de mouvement
 - VIII Introduction au Deep Learning

IMAGE SYNTHESIS

P.R.: PATTERN RECOGNITION

Image Originale

PATTERN RECOGNITION

ANSWER: WOMAN RECOGNIZED

Equation originale:

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$$

IMAGE SYNTHESIS

donne

21

APPLICATIONS

- Détection de Défauts
- Reconnaissance de Formes
- Comptage d'objets
- **◆** Analyse de Mouvements
- Réalité virtuelle, Synthèse d'Image
- **◆** Compression et Transmission d'Images
- **◆** Imagerie aérienne et spatiale

Détection de défauts sur des bouteilles

Détection de défauts

Automatisation de production

Tri sélectif

Sécurité - Surveillance

Tracking

Détection d'évènements

IHM

SYNOPTIQUE DES TRAITEMENTS

Cours L3 ESIREM

29

- 0 Préambule
- I Introduction

II - Définitions

- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
- VI Analyse et Reconnaissance de formes
 - VII Détection de mouvement
 - VIII Introduction au Deep Learning

<u>Œil Humain ou Œil Artificiel?</u>

- •Résolution spatiale : Œil Humain > Œil Artificiel
 - Œil Humain:
 - * Cônes rétiniens sensibles couleur ~ 1 million pixels couleur
 - * Bâtonnets rétiniens sensibles contraste >50 millions pixels N/B
 - Œil Artificiel (Capteur Image):
 - * ImageN/B courante: 1024x1024 pixels
 - ~ 1 million pixels N/B
 - * Image N/B Haute-définition: 4096x4096 pixels
 - ~ 16 millions pixels N/B

Cours L3 ESIREM

31

Avantages and limits of computer visions vs human vision

A triangle?

Where is the limit of the circle?

32

Avantages and limits of **computer vision** vs human vision

Which is the darkest one? How many circles?

Be-aware of what you think you see!

•Réponse spectrale: Œil Humain < Œil Artificiel

Représentation d'une image numérique

f(xi,yj): Niveau gris pixel aux coordonnées (xi,yj) f(xi,yj) entre 0 and 255

Si f(xi,yj)=0 alors Pixel Noir Si f(xi,yj)=255 alors Pixel Blanc

- 0 Préambule
- I Introduction
- II Définitions
- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
- VI Analyse et Reconnaissance de formes
 - VII Détection de mouvement
 - VIII Introduction au Deep Learning

III-1 Histogrammes

III-2 Egalisation d'Histogrammes

III-3 Filtres numériques dans le domaine spatial

III-4 Filtres numériques dans le domaine fréquentiel

Bas Niveau Acquisition Traitement Transmission, Compression d'images Rehaussement, Restauration Super-résolution Detection contours, Segmentation Suivi de forme Stéréovision Reconnaissance des formes Vision Compréhension de l'image Haut Niveau

III – 1 Histogramme

Image entière

Image of 512x512 Pixels coded on 8 bits (256 K Bytes)

```
Algorithme de l'histogramme
```

```
For Grey= 0 TO 255
N_Pixels(Grey)=0 --> Table N_Pixels = 0
End Grey

For Y= 0 to 511 --> Image Scanning
For X= 0 to 511
Grey=f(X,Y)
N_Pixels(Grey)=N_Pixels(Grey) + 1
End X
End Y
```

Total Computations:

- 256 K Reading
- 256 K Additions
- 256 K Writing