Optimizing Bank Lending Decisions Using Metaheuristics

Name: Sagar Singh

Roll no.: 18IM10024

OBJECTIVE

• To optimize the result using genetic algorithm.

• To optimize the result using Simulated Annealing algorithm.

• Compare the results of both the algorithms.

Approach

Fitness Function

$$F_{x} = \nu + \omega - \beta - \sum_{i=0}^{n} \lambda$$

Constraints

$$\sum_{i=0}^{n} L_i * X_i \le (1-K)D$$

Solution Representation

Genetic Algorithm

Genetic Algorithm

Parameters .

Parameters	Value
Population Size	60
Number of iterations	60
Selection Method	Roulette Wheel
Crossover Probability	0.8
Mutation Probability	0.006
customer transaction rate	0.01

Results

 Value

 Optimal Solution
 (1, 0, 1, 1, 0, 1, 0, 0, 1, 1)

 Optimal Value
 3.981999

Simulated annealing

Simulated annealing

Parameters .

Results

1, 0, 0, 1, 0, 0)

Parameters	Value		
Tmax	1000		Value
Tmin	0		
Nk	50	Optimal Solution	(0, 0, 0, 1, 1, 0, 0,
Crossover Probability	8.0	Optimal Value	2.7872
Mutation Probability	0.006		
customer transaction rate	0.01		

Comparison of Results

Algorithm	Genetic Algorithm	Simulated annealing
Optimal Solution	[1, 0, 1, 1, 0, 1, 0, 0, 1, 1]	(0, 0, 0, 1, 1, 0, 0, 1, 0, 0)
Optimal Value	3.981999	2.7872

Genetic Algorithm performed much better than Simulated Annealing Algorithm

Comparison of Results

Thank You