يسم الله الرحمن الرحيم

ساختمانهای داده

جلسه ۱۹

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

Removal

- Removal begins as in a binary search tree, which means the node removed (after copying the in-order successor) will become an empty external node. Its parent, w, may cause an imbalance.
- Example:

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height
- We perform restructure(x) to restore balance at z

- What happens if z is an internal node, not the root?
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

AVL Tree Performance

IUT-ECE

- a single restructure takes O(1) time
 - using a linked-structure binary tree
- find takes O(log n) time
 - height of tree is O(log n), no restructures needed
- put takes O(log n) time
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)
- erase takes O(log n) time
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)

Recall: Rebalancing Needed

How should we do this?

- (1) Take some examples
- (2) Find difference cases
- (3) Make each sub-algorithm for each case
- (4) Make an entire algorithm
- (5) Run it with some inputs
- (6) Find out it is not working perfectly, and say "What the hell is this?" "How should I do?"

Lessons

- Sometimes, we need to do case-by-case handling to complete the algorithm
- People often rely on "Half-assed algorithm design first " and "Complete it using example inputs". Not recommended.
 - Same as "Roughly make the code, and debug it later". Bad coding behavior

Red-Black Trees

Red-Black Trees

- A red-black tree can also be defined as a binary search tree that satisfies the following properties:
 - Root Property: the root is black
 - External Property: every leaf is black
 - Internal Property: the children of a red node are black (red rule)
 - Depth Property: all the leaves have the same black depth (path rule)
 - (Question) How is balancing enforced here?

Red Black Tree

Red Black Tree

Red Black Tree?

Red Back Tree?

What if we attach a child to node 0?

Implications

- Root Property: the root is black
- External Property: every leaf is black
- Internal Property: the children of a red node are black (red rule)
- Depth Property: all the leaves have the same black depth (path rule)
- 1. If a red node has any children, it must have two children and they must be black
 - Why? Depth property
- 2. If a black node has only one "real" child then it must be a "last" red node
 - If the child is black?
 - If the child is not the last red?
- (Question) How is balancing enforced in R-B tree?

- The longest path <= 2 * the shortest path</p>
 - Rough balancing \rightarrow guarantees log(n) height

Why?

From "red rule" and "path rule" shortest path = only black nodes longest path = inserting a red node between two black nodes

Root Property: the root is black

External Property: every leaf is black

Internal Property: the children of a red node are black (red rule)

Depth Property: all the leaves have the same black depth (path rule)

Height of a Red-Black Tree

- Theorem: A red-black tree storing n entries has height $O(\log n)$ Proof:
 - Omitted
- The search algorithm for a binary search tree is the same as that for a binary search tree
- lacktriangle By the above theorem, searching in a red-black tree takes $O(\log n)$ time

Insertion

Insertion

- lacktriangle To perform operation $\operatorname{put}(k,o)$, we execute the insertion algorithm for binary search trees and <u>color red</u> the newly inserted node z unless it is the root
 - We preserve the root, external, and <u>depth properties</u>
 - If the parent v of z is black, we also preserve the internal property and we are done
 - Else (*v* is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree
 - Goal: Removing double read without breaking the depth property
- Example where the insertion of 4 causes a double red:

Remedying a Double Red

IUT-ECE

 \bullet Consider a double red with child z and parent v, and let w be the sibling of v

Case 1: w is red

Recoloring: need recoloring

Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling
- lacktriangle The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root
- \bullet The double red violation may propagate to the grandparent u

Remedying a Double Red

IUT-ECE

 \bullet Consider a double red with child z and parent v, and let w be the sibling of v

Case 2: w is black

Restructuring: need rotation and recoloring

Restructuring

- A restructuring remedies a child-parent double red when the parent red node has a black sibling
- The internal property is restored and the other properties are preserved.

Restructuring (cont.)

There are four restructuring configurations depending on whether the double red nodes are left or right children

Analysis of Insertion

Algorithm put(k, o)

- 1. We search for key *k* to locate the insertion node *z*
- 2. We add the new entry (k, o) at node z and color z red
- 3. while doubleRed(z)
 if isBlack(sibling(parent(z)))
 z ← restructure(z)
 return
 else { sibling(parent(z) is red }

 $z \leftarrow recolor(z)$

- Recall that a red-black tree has $O(\log n)$ height
- Step 1 takes $O(\log n)$ time because we visit $O(\log n)$ nodes
- Step 2 takes O(1) time
- Step 3 takes $O(\log n)$ time because we perform
 - $O(\log n)$ recolorings, each taking O(1) time, and
 - at most one restructuring taking O(1) time
- Thus, an insertion in a red-black tree takes $O(\log n)$ time