1

JEE Questions 5

EE24BTECH11012 - Bhavanisankar G S

				2
1) Which of the following is the negation of the statement "for all $M \ge 0$, there exists $x \in S$ such that $x \ge M$ "?				
,	≥ 0 such that $x \leq M$			
,	≥ 0 there exists $x \in S$			
,	$1 \ge 0$ there exists $x \in \Omega$ $1 \ge 0$ such that $x \ge M$			
,			off an intercept $6\sqrt{5}$ on the x-ax	xis.
	of the circle C is equa		-	
a) $\sqrt{53}$	b) 9	c) 8	d) $\sqrt{82}$	

3) Let **a**, **b** and **c** be three vectors such that $\mathbf{a} = \mathbf{b} \times (\mathbf{b} \times \mathbf{c})$. If magnitudes of the vectors **a**, **b** and **c** are $\sqrt{2}$, 1 and 2 respectively and the angle between **b** and **c** is $\theta (0 \le \theta \le \frac{\pi}{2})$, then the value of 1 + tan θ is equal to:

d) $\frac{\sqrt{3}+1}{\sqrt{2}}$ a) $\sqrt{3} + 1$ b) 2 c) 1

4) Let A and B be two 3×3 real matrices such that $A^2 - B^2$ is invertible matrix. If $A^5 = B^5$ and $A^3B^2 = A^2B^3$, then the value of the determinant of the matrix $A^3 + B^3$ is equal to:

c) 1 a) 2 b) 4

5) Let $f:(a,b)\to \mathbf{R}$ be twice differentiable function such that $f(x)=\int_a^x g(t)dt$ for a differentiable function g(x). If f(x) = 0 has exactly five distinct roots in (a, b), then g(x)g'(x) = 0 has at least :

- a) twelve roots in (a, b)
- b) five roots in (a, b)
- c) seven roots in (a, b)
- d) three roots in (a, b)

I. Integer-Type Questions

- 1) Let $\mathbf{a} = \mathbf{i} \alpha \mathbf{j} + \beta \mathbf{k}$, $\mathbf{b} = 3\mathbf{i} + \beta \mathbf{j} \alpha \mathbf{k}$ and $\mathbf{c} = -\alpha \mathbf{i} 2\mathbf{j} + \mathbf{k}$, where α, β are integers. If $\mathbf{a} \cdot \mathbf{b} = -1$ and $\mathbf{b} \cdot \mathbf{c} = 10$, then $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is equal to :
- 2) The distance of the point P(3,4,4) from the point of intersection of the line joining the points Q(3, -4, 5) and R(2, -3, 1) and the plane 2x + y + z = 7, is equal to :
- 3) If the real part of the complex number $z = \frac{3+2i\cos\theta}{1-3i\cos\theta}$, $\theta \in (0, \frac{\pi}{2})$ is zero, then the value of $\sin^2 3\theta + \cos^2 \theta$ is equal to:
- 4) Let **E** be an ellipse whose axes are parallel to the co-ordinate axes, having its centre at (3, -4), one focus at (4, -4) and one vertex at (5, -4). If mx - y = 4, $m_0^2 = 0$ is a tangent to the ellipse **E**, then the value of $5m^2$ is equal to :
- 5) If $\int_0^{\pi} \left(\sin^3 x\right) e^{-\sin^2 x} dx = \alpha \frac{\beta}{e} \int_0^1 \sqrt{t} e^t dt$, then $\alpha + \beta$ is equal to:
 6) The number of real roots of the equation $e^{4x} e^{3x} 4e^{2x} e^x + 1 = 0$ is equal to:
- 7) Let y = y(x) be the solution of the differential equation $dy = e^{\alpha x + y} dx$; $\alpha \in \mathbb{R}$. If $y(\log(2)) = \log(2)$ and $y(0) = log(\frac{1}{2})$, then the value of α is equal to :
- 8) Let n be a non-negative integer. Then the number of divisors of the form "4n+1" of the number $(10)^{10}(11)^{11}(13)^{13}$ is equal to:
- 9) Let $A = \{n \in \mathbb{N} | n^2 \le n + 10,000\}$, $B = \{3k + 1 | k \in \mathbb{N}\}$ and $C = \{2k | k \in \mathbb{N}\}$, then the sum of all the elements of the set $A \cap (B - C)$ is equal to ;

10) If $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ and $M = A + A^2 + A^3 + \dots + A^{20}$, then the sum of all the elements of the matrix M is equal to: