Московский Физико-Технический Институт

Кафедра Общей физики

Лабораторная работа №4.1.2

Моделирование оптических приборов и определение их увеличения

Автор:

Глеб Уваркин 615 группа Преподаватель:

Клёнов Сергей Львович

<u>Цель работы:</u>

Изучение модели зрительных труб (астрономической трубы Кеплера и земной трубы Галилея) и микроскопа, определение их увеличения.

В работе используются:

Оптическая скамья, набор линз, экран, осветитель со шкалой, зрительная труба, диафрагма, линейка.

1 Теоретическая справка.

1.1 Определение фокусных расстояний тонких линз с помощью зрительной трубы.

Рис. 1: Определение фокусного расстояния линзы.

Для определения фокусных расстояний линз с помощью зрительной трубы (рис. 1) необходимо настроить трубу на бесконечность. Передвигая линзу вдоль скамьи, получим в окуляре изображение предмета. При этом расстояние между предметом и серединой тонкой линзы равно её фокусному расстоянию.

Рис. 2: Определение фокусного расстояния рассеивающей линзы.

Для определения фокусного расстояния тонкой рассеивающей линзы получим на экране увеличенное изображение сетки при помощи одной короткофокусной собирающей линзы. Измерим расстояние a_0 между линзой и экраном. Измерив расстояние между линзами l, рассчитаем фокусное расстояние рассеивающей линзы $f = l - a_0$.

1.2 Телескоп Кеплера.

Рис. 3: Определение увеличения телескопа Кеплера.

Схема изучения зрительной трубы Кеплера представлена на рис. 3. Определим размер изображения h_1 одного миллиметра шкалы осветителя в делениях окулярной шкалы зрительной трубы. Очевидно, что $h_1=k\ \mathrm{tg}\alpha_1\approx k\alpha_1$, где k – некоторый коэффициент, характеризующий увеличение зрительной трубы, α_1 – угловой размер изображения миллиметрового деления шкалы осветителя, наблюдаемого через коллиматор.

Соберём модель телескопа, рассчитаем увеличение исследуемой модели телескопа через отношение передних фокусных расстояний линз f_1, f_2 :

$$N_T = -\frac{f_1}{f_2} \tag{1}$$

Определим увеличение телескопа через отношение углов, под которыми объект виден через телескоп и без него:

$$N_T = \frac{\alpha_2}{\alpha_1} = -\frac{h_2}{h_1},\tag{2}$$

где α_2 – угловой размер изображения миллиметрового деления шкалы при наблюдении через телескоп, h_2 – размер изображения миллиметрового деления шкалы осветителя в делениях окулярной шкалы.

Определим увеличение телескопа, сравнив диаметр оправы его объектива и диаметр изображения этой оправы в окуляре:

$$N_T = \mp \frac{D_1}{D_2},\tag{3}$$

где D_1 – диаметр объектива, а D_2 – диаметр его изображения.

1.3 Модель микроскопа.

Для создания модели микроскопа с увеличением $N_M=5$ отберём самые короткофокусные собирающие линзы из набора. Рассчитаем необходимые оптический интервал Δ и длину тубуса l_{12} по формулам:

Рис. 4: Модель микроскопа.

$$N_M = N_1 N_2, \quad N_1 = -\frac{\Delta}{f_1}, \quad N_2 = \frac{L}{f_2}, \quad \Delta = l_{12} - f_1 - f_2,$$
 (4)

где N_1,N_2 – увеличения объектива и окуляра, f_1,f_2 – положительные передние фокусные расстояния линз, $L=25\ {\rm cm}$ – расстояние наилучшего зрения.

Для экспериментального определения увеличения микроскопа измерим величину изображения h_2 миллиметрового деления предметной шкалы в делениях окулярной шкалы:

$$N_M = -\frac{h_2}{h_1} \frac{L}{f} \tag{5}$$

of schools and resources

2 Проведение и обработка измерений.

2.1 Определение фокусных расстояний тонких линз с помощью зрительной трубы.

Для начала отберём из набора собирающие линзы и определим "на глаз"их фокусные расстояния. Занесём результаты в таблицу 1.

Таблица 1: Определение фокусных расстояний собирающих линз "на глаз".

№ линзы		1	2	3	4
Фокусное расстояние,	см	10	10	22	30

Теперь определим их более точным способом, а именно с помощью зрительной трубы (рис. 1). Результаты занесём в таблицу 2.

Таблица 2: Определение фокусных расстояний собирающих линз с помощью зрительной трубы.

№ линзы	1	2	3	4
Фокусное расстояние, см	8.0	10.7	19.0	27.4

Погрешности измерений возьмём равными $0.5\ {\rm cm}$. Она обусловлена конечной толщиной линз и случайной неточностью измерения.

Для 4 линзы проведём измерения, повернув её другой стороной к источнику. Получаем, что $f=28\,$ см, что приблизительно совпадает с уже имеющимся значением. Отсюда делаем вывод, что линзу можно считать тонкой.

Определим фокусное расстояние рассеивающей линзы с помощью установки, показанной на рис. 2.

Таблица 3: Определение фокусного расстояния рассеивающей линзы.

a_0 , cm	l, cm	f, cm
23.5	14.0	9.5

2.2 Телескоп Кеплера.

Соберём установка, показанную на рис. 3. Измерим расстояние между объективом и окуляром телескопа и сравним его с суммой фокусных расстояний (табл. 4).

Таблица 4: Расстояние между объективом и окуляром.

f_1+f_2 , cm	Факт., см
38.1	39.5

<u>MIPT</u>

Измерим увеличение телескопа различными способами, описанными в разделе 1.2. Значения занесём в таблицу 6

Таблица 5: Необходимые данные для определения увеличения телескопа.

f_1 , cm	f_2 , cm	$\mid h_1$, дел	h_2 , дел	D_1 , cm	D_2 , cm
10.7	27.4	9	24	3.6	1.4

Таблица 6: Увеличение телескопа.

$\mathbf{N_T}$ (отношение f_1 и f_2)	$\mid \mathbf{N_T}$ (отношение углов)	$\mid \mathbf{N_T}$ (отношение диаметров)
2.56 ± 0.13	$ $ 2.67 \pm 0.16	2.57 ± 0.18

2.3 Труба Галилея.

Соберём модель трубы Галилея, поставив в модели трубы Кеплера вместо собирающей окулярной линзы рассеивающую линзу. Измерим увеличение трубы двумя способами: через отношение передних фокусных расстояний линз f_1 , f_2 и через отношение углов, под которыми объект виден через телескоп и без него. Данные занесём в таблицу 8.

Таблица 7: Необходимые данные для определения увеличения телескопа.

f_1 , cm	f_2 , cm	$\mid h_1$, дел	$\mid h_2$, дел
27.4	9.5	9	26

Таблица 8: Увеличение трубы Галилея.

$\mathbf{N_T}$ (отношение f_1 и f_2)	$\mathbf{N_{T}}$ (отношение углов)
2.88 ± 0.16	2.88 ± 0.17

2.4 Модель микроскопа.

Соберём модель микроскопа, как показано на рис. 4. Получим в поле зрения трубы изображение миллиметровой шкалы осветителя. С помощью формулы (5) рассчитаем увеличения микроскопа. Данные занесём в таблицу 9.

Таблица 9: Увеличение микроскопа.

h_1 , дел	$\mid h_2$, дел	L, cm	f, cm	$N_{ m M}$
9	34	25.0	19.0	4.97 ± 0.31

Теперь рассчитаем увеличение микроскопа по формуле (4). Данные занесём в таблицу 10.

Таблица 10: Увеличение микроскопа (теория).

l_{12} , cm	$ f_1, cm $	f_2 , cm	Δ , cm	$N_{ m M}$
34.0	8.0	10.7	15.3	4.47 ± 0.42

3 Вывод.

- В результате проведения данной лабораторной работы была изучена модель зрительных труб (астрономической трубы Кеплера и земной трубы Галилея) и микроскопа, а также определено их увеличение.
- Значения увеличения, полученные разными способами, с учётом погрешности совпадают.
- Наибольшую погрешность в результат вносит неточность метода измерения расстояний между элементами приборов.