and Music PHYS1406: Physics of Sound

Spring 2021

Joe Romano (joseph.d.romano@ttu.edu)

Topics we'll cover this semester

- Preliminaries: Basic math, music, and physics terminology
- Physics of oscillations and waves
- Production of sound (instruments and voice)
- Perception of sound (hearing, loudness, pitch & timbre)
- Auditorium and room acoustics; electrical reproduction of sound
- Musical scales and tuning systems (standardization of musical notes)

Why are you in this class?

ω

What questions about sound & music would you like answered?

4

What is sound? What differentiates speech, music, & noise?

Demos: sound measuring devices & musical instruments

Range of human hearing

https://www.szynalski.com/tone-generator/

- Normal range: 20 Hz 20,000 Hz
- Hertz (Hz): 1 Hz = 1 cycle/sec

7

1. Preliminaries

Basic math review

- Entering numbers on a calculator: What's the value of $1/2\pi$?
- Fractions: What's the value of 2 divided by 3/2?
- Powers (exponential notation): What's the value of 2^4 ? 10^3 ? 10^{-2} ?
- Prefixes:

10^{-9}	nano
10^{-6}	micro
10^{-3}	milli
10^{-2}	centi
10^{3}	kilo
10^{6}	mega
10^{9}	giga
10^{12}	tera

- another who is 72 inches all. Comparing two numbers: Compare the heights of two people, one who is 5.5 ft tall versus
- Converting units: The speed of sound in air at room temperature (25 celsius) is 346 m/s. What is its value in ft/s? miles/s?

Linear vs logarithmic scales

