DSP word2vec ds3

Melanie Weissenboeck

2022-11-28

Laden von Bibliotheken und Daten

```
library("xlsx")
library(word2vec)
library(udpipe)
library(SnowballC)
library(ggplot2)
library(tm)
library(wordcloud)
library(tidytext)
library(tidyr)
library(mlbench)
library(e1071)
library(caret)
library(class)
```

Vorverarbeiten der Texte

Bereinigen der Texte

Im ersten Schritt werden die Beschreibungstexte mit der Funktion txt_clean_word2vec für die weitere Verarbeitung vorbereitet. Der Rest des Dataframes bleibt unverändert.

Erstellen einer Worteinbettung

Als Vorbereitung für das spätere Modell wird zunächst eine Einbettung erstellt. Dazu wird in 15 Iterationen für alle Texte gemeinsam eine Darstellung gesucht.

```
# Modell trainieren fuer Einbettung
model_ds3 <- word2vec(ds3$ANF_BESCHREIBUNG, dim = 10, iter = 15)
embedding_ds3 <- as.matrix(model_ds3)

# Dimension der Einbettung
dim(embedding_ds3)</pre>
```

```
## [1] 1391 10
```

Generieren von numerischen Prädiktoren

In diesem Schritt werden die einzelnen Texte zu einem Vektor der Länge 10 transformiert. Dazu wird die Einbettung aus dem vorherigen Abschnitt verwendet.

```
# # aufteilen der Texte in einzelne Token
ds3$token <- tokenizers::tokenize_words(ds3$ANF_BESCHREIBUNG)

# Vektor der Laenge 10 fuer jedes Dokument
features3 <- matrix(nrow = 0, ncol = 10)
for (i in (1:length(ds3$ANF_BESCHREIBUNG))){
   vec_doc1 <- doc2vec(model_ds3, ds3$token[1][[1]][i], split = " ")
   features3 <- rbind(features3, vec_doc1)
}</pre>
```

Zusammenführen mit anderen Prädiktoren

Im Folgenden werden alle Prädiktoren in einem Dataframe zusammengefasst. Dieser stellt die Ausgangslage für die Klassifikation dar.

```
features3 <- as.data.frame(features3)</pre>
ds3_all <- cbind(ds3, features3)
ds3_all <- as.data.frame(ds3_all)</pre>
df <- ds3_all[ , c(6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20)]
df[is.na(df)] \leftarrow 0
head(df)
##
     ANF_RISIKO TF_ABDECKUNG AKT_RES_STATUS AKT_RES_RELEASE
                                                                      ۷1
                                                                                  V2
## 1
         mittel
                       50.00
                                          OK
                                                              0.1082783 -0.22955474
## 2
                       50.00
                                          OK
                                                              0.6893682 -0.01903756
           hoch
                                                       22.10
## 3
           hoch
                       11.11
                                          OK
                                                       22.10
                                                              0.6955095 0.04437103
## 4
                                          OK
           hoch
                       50.00
                                                       22.10 -1.4780217 -0.04170451
## 5
           hoch
                       33.33
                                          OK
                                                        22.10
                                                              0.2241467 -1.59535608
## 6
                       25.00
                                          ΠK
                                                        22.10 -0.2627254 -0.48272706
         mittel
                         ۷4
                                      ۷6
                                                  ۷7
                                                             V8
                                                                        V9
##
             V3
## 1 -0.2270607 -0.03225575 0.22715447 -1.05858192 1.9339696 1.2006974
## 2 -0.8091563 -0.47359440 -0.91980196 -0.45551009 1.7035148
## 3 0.8261509 0.36486636 0.12074435 0.06650966 1.9586064 -1.5816054
## 4 -0.6926929 0.13639020 1.90286419 -0.41398117 1.4759568 -0.9611224
     0.4883708 1.15640924 -0.04091396 -1.07871065 0.6136647
                                                                0.9541643
## 6 -0.7465809 -0.48740471 -1.05438872 -1.00145753 0.9438817 0.6093275
##
            V10
## 1 1.7431670
## 2
     1.9259528
## 3 1.2263606
## 4 -0.6217698
## 5 -1.5353033
## 6 -0.7009105
```

Normalisieren numerischer Spalten

Mittels min-max-Normalisierung werden die numerischen Spalten auf eine gemeinsame Skalierung gebracht. Zur besseren Übersicht wird am Ende nochmal eine Zusammenfassung ausgegeben.

```
set.seed(1234)
```

```
# definiere normalisierungsfunktion
min_max_norm <- function(x) {
  (x - min(x)) / (max(x) - min(x))
}
# alle spalten normalisieren
df[, 5:13] <- as.data.frame(lapply(df[, 5:13], min_max_norm))
df[2] <- as.data.frame(lapply(df[2], min_max_norm))

df$ANF_RISIKO <- as.factor(df$ANF_RISIKO)
df$AKT_RES_STATUS <- as.factor(df$AKT_RES_STATUS)
df$AKT_RES_RELEASE <- as.factor(df$AKT_RES_RELEASE)
summary(df)</pre>
```

```
ANF_RISIKO
##
                  TF_ABDECKUNG
                                   AKT_RES_STATUS AKT_RES_RELEASE
                                                                          V1
##
    gering:241
                 Min.
                         :0.0000
                                   FAILED: 48
                                                   21x
                                                           : 48
                                                                           :0.0000
                                                                   Min.
    hoch :540
                                   OK
                                          :1395
##
                 1st Qu.:0.0667
                                                   22.10
                                                           :1081
                                                                    1st Qu.:0.4970
##
    mittel:665
                 Median :0.1429
                                   OPEN :
                                              3
                                                   22.20
                                                             12
                                                                   Median :0.4970
##
                 Mean
                         :0.2320
                                                   22.30
                                                             302
                                                                   Mean
                                                                           :0.4979
##
                 3rd Qu.:0.3333
                                                   OLDERT21:
                                                                    3rd Qu.:0.4970
##
                 Max.
                         :1.0000
                                                                    Max.
                                                                           :1.0000
##
                            VЗ
                                              ۷4
                                                               V6
          ٧2
##
    Min.
           :0.0000
                     Min.
                             :0.0000
                                       Min.
                                              :0.0000
                                                         Min.
                                                                :0.0000
                                                         1st Qu.:0.4413
##
    1st Qu.:0.5396
                     1st Qu.:0.5257
                                       1st Qu.:0.4922
   Median :0.5396
                     Median :0.5257
                                       Median :0.4922
                                                         Median :0.4413
  Mean
                                                                :0.4431
##
           :0.5351
                     Mean
                             :0.5269
                                       Mean
                                               :0.4915
                                                         Mean
##
    3rd Qu.:0.5396
                     3rd Qu.:0.5257
                                       3rd Qu.:0.4922
                                                         3rd Qu.:0.4413
           :1.0000
                             :1.0000
                                              :1.0000
                                                                :1.0000
##
   Max.
                     {\tt Max.}
                                       Max.
                                                         Max.
##
          ۷7
                            8V
                                              ۷9
                                                              V10
                             :0.0000
## Min.
           :0.0000
                     Min.
                                       Min.
                                               :0.0000
                                                         Min.
                                                                :0.0000
                     1st Qu.:0.3337
##
   1st Qu.:0.5849
                                       1st Qu.:0.5658
                                                         1st Qu.:0.5632
## Median :0.5849
                     Median :0.3337
                                       Median :0.5658
                                                         Median :0.5632
## Mean
           :0.5804
                     Mean
                             :0.3437
                                       Mean
                                              :0.5662
                                                         Mean
                                                                :0.5652
##
    3rd Qu.:0.5849
                      3rd Qu.:0.3337
                                       3rd Qu.:0.5658
                                                         3rd Qu.:0.5632
## Max.
           :1.0000
                     Max.
                             :1.0000
                                       Max.
                                              :1.0000
                                                                :1.0000
                                                         Max.
```

Klassifikation

Erstellen von Train- / Test-Split

Die vorliegenden Daten werden in Trainings- und Testdaten aufgeteilt im Verhältnis 80:20.

```
# partition erstellen
part <- createDataPartition(df$ANF_RISIKO, times = 1, p = 0.80)
# extract training set
X_train <- df[part$Resample1, ]
# extract testing set
X_test <- df[-part$Resample1, ]
# extract target
y_train <- df[part$Resample1, 1]
y_test <- df[-part$Resample1, 1]</pre>
```

NaiveBayes Klassifikation

Ein Naive-Bayes Klassifikator wird erstellt und mit den Trainingsdaten trainiert. Anhand der Testdaten wird das Modell evaluiert. Die Ergebnisse werden in einer Confusionmatrix angegeben.

```
model_nb = naiveBayes(ANF_RISIKO ~ ., data = X_train)
pred_nb <- predict(model_nb, X_test)</pre>
mat.nb <- confusionMatrix(pred_nb, X_test$ANF_RISIKO, mode = "prec_recall")</pre>
mat.nb
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction gering hoch mittel
##
       gering
                    6
                         1
       hoch
                   40
                       104
                              118
##
                    2
##
       mittel
                         3
                               13
##
## Overall Statistics
##
##
                   Accuracy: 0.4256
                     95% CI: (0.3679, 0.4849)
##
##
       No Information Rate: 0.4602
       P-Value [Acc > NIR] : 0.8926
##
##
##
                      Kappa: 0.0844
##
##
    Mcnemar's Test P-Value : <2e-16
##
## Statistics by Class:
##
##
                         Class: gering Class: hoch Class: mittel
## Precision
                               0.66667
                                             0.3969
                                                           0.72222
                                             0.9630
## Recall
                               0.12500
                                                           0.09774
## F1
                                             0.5622
                                                           0.17219
                               0.21053
## Prevalence
                               0.16609
                                             0.3737
                                                           0.46021
## Detection Rate
                               0.02076
                                             0.3599
                                                           0.04498
## Detection Prevalence
                               0.03114
                                             0.9066
                                                           0.06228
## Balanced Accuracy
                               0.55628
                                             0.5450
                                                           0.53285
```

KNN Klassifikation

Analog zum Naive-Bayes Klassifikator wird auch ein KNN Modell trainiert. Auch hier wird das Ergebnis anhand einer Confusionmatrix gezeigt.

```
model_knn <- train(ANF_RISIKO ~ ., data = X_train, "knn",
trControl = trainControl(method = "cv", number = 5))

pred_knn <- predict(model_knn, X_test, type = "raw")
mat.knn <- confusionMatrix(pred_knn, X_test$ANF_RISIKO, mode = "prec_recall")
mat.knn

## Confusion Matrix and Statistics
##

Reference
## Prediction gering hoch mittel</pre>
```

```
##
       gering
                  23
                       11
##
       hoch
                   7
                       54
                               7
##
       mittel
                  18
                       43
                             117
##
## Overall Statistics
##
                  Accuracy : 0.6713
##
                    95% CI : (0.6138, 0.7252)
##
##
       No Information Rate: 0.4602
##
       P-Value [Acc > NIR] : 3.844e-13
##
##
                     Kappa: 0.4557
##
## Mcnemar's Test P-Value : 1.514e-06
##
## Statistics by Class:
##
                        Class: gering Class: hoch Class: mittel
##
## Precision
                              0.53488
                                            0.7941
                                                          0.6573
                              0.47917
                                            0.5000
                                                          0.8797
## Recall
## F1
                              0.50549
                                            0.6136
                                                          0.7524
## Prevalence
                              0.16609
                                            0.3737
                                                          0.4602
## Detection Rate
                              0.07958
                                            0.1869
                                                          0.4048
## Detection Prevalence
                                                          0.6159
                              0.14879
                                            0.2353
## Balanced Accuracy
                              0.69809
                                                          0.7443
                                            0.7113
```