FIRST SEMESTER 2022-2023

Course Handout Part II

Date: 19 Aug 2022

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. :MEL G631

Course Title : PHYSICS AND MODELING OF MICROELECTRONIC DEVICES

Instructor-in-Charge : Surya Shankar Dan

Description: Physics and properties of semiconductor - a review; pn junction diode; bipolar transistor; metal-semiconductor contacts; JFET and MESFET; MOSFET and scaling; CCD and photonic devices

Prerequisites of the course:

- Electronic Devices (ECE/EEE/INSTR F214) or its equivalent
- Microelectronic Circuits (ECE/EEE/INSTR F244) or its equivalent

Textbooks:

- 1. Yuan Taur & Tak H. Ning, "Fundamentals of Modern VLSI Devices," 2ed, Cambridge
- 2. Yannis P. Tsividis & Colin McAndrew, "The MOS Transistor," 3ed, Oxford
- 3. Jean-Pierre Colinge & Cynthia A. Colinge, "Physics of Semiconductor Devices," Springer
- 4. Muller & Kamins, "Device Electronics for Integrated Circuits", 3ed, Wiley

Basic references:

- 1. Robert F. Pierret, "Semiconductor Device Fundamentals", Pearson
- 2. M. S. Tyagi, "Introduction to Semiconductor Materials and Devices", Wiley
- 3. Michael Shur, "Physics of Semiconductor Devices", Pearson
- 4. Chenming Hu, "Modern Semiconductor Devices for Integrated Circuits", Pearson
- 5. Roger T. Howe & Charles G. Sodini, "Microelectronics: An Integrated Approach", Pearson

Advanced references:

- 1. David Jiles, "Introduction to the Electronic Properties of Materials," 2ed, Nelson Thornes
- 2. Angus Rockett, "The Materials Science of Semiconductors," Springer
- 3. Peter Y. Yu & Manuel Cardona, "Fundamentals of Semiconductors," 3ed, Springer
- 4. Marius Grundmann, "the Physics of Semiconductors," Springer
- 5. James D. Patterson & Bernard C. Bailey, "Solid-State Physics," Springer
- 6. Karlheinz Seeger, "Semiconductor Physics," 9ed, Springer
- 7. Manijeh Razeghi, "Fundamentals of Solid State Engineering," Springer
- 8. Herald Ibach and Hans Luth, "Solid-State Physics," Springer

Tentative lecture plan:

- 1. Relevant quantum mechanics (4 lec)
- 2. Relevant solid state physics (6 lec)
- 3. Relevant statistical physics (4 lec)
- 4. Equilibrium carrier statistics in semiconductors (3 lec)
- 5. Classical transport in semiconductors (3 lec)
- 6. Contact potentials (4 lec)
- 7. p-n junctions (6 lec)
- 8. Metal semiconductor contacts (2 lec)
- 9. 2T MOS structure: MOS capacitor (8 lec)
 - 1. Flatband voltage
 - 2. Potential and charge balance
 - 3. Effect of on surface condition
 - 4. Accumulation and depletion
 - 5. Inversion
 - 6. Small-signal capacitance
- 10. 3T MOS structure: Gated diode (3 lec)
 - 1. Contacting the inversion layer
 - 2. Body effect
 - 3. Regions of inversion
 - 4. A control point of view
- 11. 4T MOS structure: MOSFET devices (10 lec)

- 1. Transistor regions of operation
- 2. Complete all-region model
- 3. Simplified all-region models
- 4. Models based on quasi-Fermi potentials
- 5. Regions of inversion in terms of terminal voltages
- 6. Strong inversion
- 7. Weak inversion
- 8. Moderate-inversion and single-piece models
- 9. Source-referenced vs. body-referenced models
- 10. Effective mobility
- 11. Effect of extrinsic source and drain series resistances
- 12. Temperature effects
- 13. Breakdown
- 14. The p-channel MOS transistor
- 15. Enhancement-mode and depletion-mode transistors
- 16. Model parameter values, model accuracy, and model comparison
- 17. Long-channel MOSFETs
- 18. Short-channel MOSFETs

- 12. CMOS device design
 - 1. MOSFET scaling
 - 2. Threshold voltage
 - 3. MOSFET channel length
- 13. CMOS performance factors
 - 1. Basic CMOS circuit elements
 - 2. Parasitic elements
 - 3. Sensitivity of CMOS delay to device parameters
 - 4. Performance factors of advanced CMOS devices
- 14. Small-channel and thin oxide effects ()
 - 1. Carrier velocity saturation
 - 2. Carrier length modulation

- 3. Charge sharing
- 4. Drain-induced barrier lowering
- 5. Punchthrough
- 6. Combining several small-dimension effects into one model
- 7. Hot carrier effects
- 8. Velocity overshoot and ballistic operation
- 9. Polysilicon depletion
- 10. Quantum mechanical effects
- 11. DC gate currents
- 12. Junction leakage; band-to-band tunneling; GIDL
- 13. Leakage currents
- 14. Quest for ever-smaller devices

Lecture plan:

Evaluation scheme:

#	Component	Duration	Marks	Weight	Date & time	Evaluation
1	Literature review	3 wks	20	10 %	To be announced later	Open
2	Mid laboratory evaluation	2 hrs/wk	20	10 %	Regular evaluation	Open
3	Mid semester	90 min	70	35 %	02/11 3.30 - 5.00PM	Open
4	End laboratory evaluation	2 hrs/wk	10	5 %	Regular evaluation	Open
5	End semester (Comprehensive)	180 min	80	40 %	23/12 AN	Open
	Total		200	100 %		

Laboratory: All modeling assignments will be carried out using open source tools: spyder3, python3, numpy, scipy, sympy & matplotlib, scikit-learn, pandas.

Notices: All notices related to the course will be put on the <u>CMS</u> and <u>google classroom</u> and shared through <u>institute email</u>.

Make-up policy: Make-ups will be considered for genuine reasons and applied at least 1 day before the tests.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and any mode of academic dishonesty will not be acceptable.

