Physics 6047Problem Set 8, due 4/4/13

Lam Hui

- 1. Suppose we have a unitary operator $\hat{U}(\alpha)$ such that $\hat{U}(\alpha)^{-1}\hat{\phi}\hat{U}(\alpha) = \hat{\phi} + \alpha\delta\hat{\phi}$. Here, α is a parameter that describes the 'size' of the transformation, i.e. as $\alpha \to 0$, $\hat{U} \to 1$. Show that the generator for \hat{U} (i.e. some \hat{Q} such that $\hat{U} = e^{-i\alpha\hat{Q}}$) obeys: $i[\hat{Q},\hat{\phi}] = \delta\hat{\phi}$. Note that you can also run this argument backward: given the Noether current and its associated charge due to some symmetry, we know how to form \hat{U} out of it.
- 2. This problem is also more like notes, on showing that the generators of a group must obey a Lie algebra of some sort. Let us label the generators of the group as T^a , where a ranges from 1 to the total number of generators. Let us refer to the rotation angle associated with each generator as θ^a . We will use θ without any index to refer abstractly to the vector whose components are the θ^a 's. The transformation effected by these generators and their associated angles is:

$$U(\theta) = 1 - i\theta^a T^a - \frac{1}{2}\theta_a \theta_b T^{ab} + \dots$$
 (1)

This is an expansion of U for small angles. We have introduced the notation T^{ab} to denote whatever object that shows up in the second order term. The only requirement we will make is that it's symmetric $T^{ab} = T^{ba}$ since the combination $\theta_a \theta_b$ is symmetric under exchange of a and b. The fact that we have a group means

$$U(\bar{\theta})U(\theta) = U(g(\bar{\theta}, \theta)), \qquad (2)$$

where $\bar{\theta}$ and θ represents two in principle different set of angles, and g is yet another set of angles but should be a function of $\bar{\theta}$ and θ somehow. The function g can itself be Taylor expanded (recalling that g, just like θ , represents a set of angles and so it secretly carries an index):

$$g_a(\bar{\theta}, \theta) = \bar{\theta}_a + \theta_a + g_a{}^{bc}\bar{\theta}_b\theta_c + \dots$$
 (3)

This expansion makes sense because we expect g(0,0) = 0 $g_a(\bar{\theta},0) = \bar{\theta}_a$ and $g_a(0,\theta) = \theta_a$. We have introduced $g_a{}^{bc}$ to represent the coefficients of the second order terms in the expansion. By putting Eqs. (12) and (14) into Eq. (13), and comparing second order terms on both sides, show that:

$$T^b T^c = ig_a{}^{bc} T^a + T^{bc} \,. \tag{4}$$

Finally, use this to show that:

$$[T^b, T^c] = if^{bca}T^a \tag{5}$$

where $f^{bca} \equiv g_a{}^{bc} - g_a{}^{cb}$. One useful corollary of this derivation is that, because the angles are real, the structure constants f^{bca} are real.

- 3. Srednicki problem 24.3. For part b, you can simply use the canonical commutation relation between the φ 's and their conjugate momenta.
- **4.** Starting from Srednick's eq. (16.6) an expression for V_3 use dimensional regularization and the modified minimal subtraction scheme to derive eq. (27.18).

- 5. Using the modified minimal subtraction expressions for the one-loop correction to the propagator (Srednick's eq. 27.4), and the cubic vertex function V_3 (eq. 27.18), show that rerunning the arguments in chapter 20 gives eq. (27.19) this is an expression in the high s, |t|, |u| limit, with μ^2 dependence kept explicit, and ignoring other terms that are finite in the $m \to 0$ limit. You might find eq. 11.7, and footnote 1 of chapter 26 useful.
- **6.** This problem functions more as notes. Let's work out the implication of having a propagator that has non-unity residue. To be concrete, let's consider the propagator according to modified minimal subtraction :

$$\tilde{\Delta}(k^2) = \frac{1}{k^2 + m^2 - \Pi(k^2)} \tag{6}$$

where we have suppressed $i\epsilon$ for simplicity. Suppose its pole is at $k^2=-m_{\rm ph}^2$, i.e. $\tilde{\Delta}(k^2=-m_{\rm ph}^2)^{-1}=0$. Let's Taylor expand $\Pi(k^2)=\Pi(-m_{\rm ph}^2)+\Pi'(-m_{\rm ph}^2)(k^2+m_{\rm ph}^2)+\dots$ We know that $-m_{\rm ph}^2+m^2-\Pi(-m_{\rm ph}^2)=0$. Thus, for k^2 close to $-m_{\rm ph}^2$, the propagator takes the form:

$$\tilde{\Delta}(k^2) \sim \frac{1}{(1 - \Pi'(-m_{\rm ph}^2))(k^2 + m_{\rm ph}^2)}$$
 (7)

Thus, the residue is

$$R = \frac{1}{(1 - \Pi'(-m_{\rm ph}^2))} \tag{8}$$

which isn't equal to 1 in the modified minimal subtraction scheme. Recall that the propagator originates from the two-point correlation of ϕ

$$\langle \phi(x_1)\phi(x_2)\rangle = \frac{1}{i} \int \frac{d^dk}{(2\pi)^d} \tilde{\Delta}(k^2) e^{ik\cdot(x_1 - x_2)}$$
(9)

where $\tilde{\Delta}(k^2) \sim R/(k^2 + m_{\rm ph}^2)$ close to the pole at $k^2 = -m_{\rm ph}^2$. Recall that the above two-point function in operator language is really $\langle 0|T\hat{\phi}(x_1)\hat{\phi}(x_2)|0\rangle$. Rerun the Kallen-Lehmann argument, and show that

$$\langle 0|T\hat{\phi}(x_1)\hat{\phi}(x_2)|0\rangle = \frac{1}{i} \int \frac{d^d k}{(2\pi)^d} |\langle k|\hat{\phi}(0)|0\rangle|^2 \frac{e^{ik\cdot(x_1-x_2)}}{k^2 + m_{\rm ph}^2 - i\epsilon} + \dots$$
 (10)

where we have ignored terms that have to do with multi-particle or bound states. Thus, we conclude that $\langle k|\hat{\phi}(0)|0\rangle=R^{1/2}$, or $\langle k|\hat{\phi}(x)|0\rangle=R^{1/2}e^{-ik\cdot x}$ (up to an irrelevant phase). Note that when we write $\langle k|\hat{\phi}|0\rangle$, the k is on-shell, meaning $k^2=-m_{\rm ph}^2$.

Next, look back at the derivation of the LSZ formula in problem set 5, you can see in equations (2), (3) and (4) that implicitly we assumed $\langle k|\hat{\phi}(x)|0\rangle = e^{-ik\cdot x}$. By the above reasoning, we thus need to correct our LSZ formula by multiplying the right hand side by a factor of $R^{-1/2}$ for each particle (ingoing or outgoing) i.e. for $2 \to 2$ scattering:

$$(2\pi)^{d} \delta^{(d)}(k_{1} + k_{2} - k'_{1} - k'_{2}) i\mathcal{M} =$$

$$R^{-n_{\text{tot.}}/2} \int d^{d}x'_{2} i e^{-ik'_{2}x'_{2}} (-\Box_{2'} + m_{\text{ph}}^{2}) \int d^{d}x'_{1} i e^{-ik'_{1}x'_{1}} (-\Box_{1'} + m_{\text{ph}}^{2}) \int d^{d}x_{2} i e^{ik_{2}x_{2}} (-\Box_{2} + m_{\text{ph}}^{2})$$

$$\int d^{d}x_{1} i e^{ik_{1}x_{1}} (-\Box_{1} + m_{\text{ph}}^{2}) \langle 0 | T\phi(x'_{2})\phi(x'_{1})\phi(x_{2})\phi(x_{1}) | 0 \rangle$$
(11)

where $n_{\text{tot.}}$ is the total number of ingoing and outgoing particles which in this case is 4.

Finally, show that, to compute the scattering amplitude $i\mathcal{M}$ in the case of $R \neq 1$ (as in for instance the modified minimal subtraction scheme), you can carry out the momentum-space Feynman rules as usual for scattering amplitude, but at the end need to multiply the resulting scattering amplitude by $R^{n_{\text{tot.}}/2}$ to get the correct $i\mathcal{M}$. Let me emphasize this is not a typo: the exponent that I want you to verify in the end is $+n_{\text{to.}}/2$, not $-n_{\text{to.}}/2$. This is why for example in Srednicki's eq. 27.19, he has a factor of R^2 on the right hand side.