# FDM Demo: 2, 4, 6,and 8thOrder FDM

## Elena Welch

## February 7, 2023

## Contents

| 1 | Problem Statement                                                                                                         | 3                          |
|---|---------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2 | Analytical Solutions         2.1 Case 1          2.2 Case 2                                                               | <b>3</b> 3                 |
| 3 | FDM: 2nd Order Scheme         3.1 Case 1          3.2 Case 2          3.3 Approximation of Heat Loss          3.4 Results | 5<br>6<br>6<br>7           |
| 4 | 4.1 Case 1                                                                                                                | 10<br>10<br>11<br>11<br>11 |
| 5 | 5.1 Approximation of Heat Loss                                                                                            | 14<br>14<br>14             |
| 6 | 6.1 Approximation of Heat Loss                                                                                            | 17<br>17<br>17             |
| 7 | Rate of Convergence                                                                                                       | 20                         |
| 8 | Conclusion                                                                                                                | <b>25</b>                  |
| A | Tables         A.1 2nd Order                                                                                              |                            |

|     | A.1.3          | $\alpha =$             | 0.75 |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 29       |
|-----|----------------|------------------------|------|-------|-------|-------|-------|---|-------|-------|---|-------|---|-------|-------|---|---|---|-------|---|---|---|----------|
|     | A.1.4          | $\alpha = 3$           | 3.   |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 31       |
|     | A.1.5          | $\alpha = 0$           | 5.   |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 33       |
|     | A.1.6          | $\alpha =$             | 7.   |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 35       |
| A.2 | 4th Or         | der .                  |      |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 37       |
|     | A.2.1          | $\alpha =$             | 0.2  |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 37       |
|     | A.2.2          | $\alpha =$             | 0.4  |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 39       |
|     | A.2.3          | $\alpha =$             | 0.75 |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 41       |
|     | A.2.4          | $\alpha = 3$           | 3.   |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 43       |
|     | -              | $\alpha = 0$           | -    |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   | • | 45       |
|     | A.2.6          |                        |      |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   | • | 47       |
| A.3 | 6th Or         | der .                  |      |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 49       |
|     |                | -                      |      |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 49       |
|     | A.3.2          | $\alpha =$             |      |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 51       |
|     | A.3.3          | $\alpha =$             |      |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 53       |
|     | A.3.4          | $\alpha = 3$           |      |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 55       |
|     | A.3.5          | $\alpha = 0$           | •    | <br>- | <br>- | <br>- | <br>- | - | <br>- | <br>- | - | <br>- | - | <br>- | <br>- | - | - | - | <br>- | - | - | - | 57       |
|     | A.3.6          |                        |      |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 59       |
| A.4 | 8th Or         |                        |      |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   | - | 61       |
|     | A.4.1          |                        |      | <br>- | <br>- | <br>- | <br>- | - | <br>- | <br>- | - | <br>- | - | <br>- |       | - | - | - | <br>- | - | - | - | 61       |
|     | A.4.2          | $\alpha =$             | -    |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   | - | 63       |
|     | A.4.3          | $\alpha =$             | o    | <br>• | <br>• | <br>• | <br>• | • | <br>• | <br>• | • | <br>• | • | <br>• | <br>• | • | • | • | <br>• | • | • | • | 65       |
|     | A.4.4          | $\alpha = 3$           |      |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | 67       |
|     | A.4.5<br>A 4.6 | $\alpha = \frac{1}{2}$ | •    | <br>٠ | <br>• | <br>٠ | <br>• | • | <br>• | <br>٠ | • | <br>• | • | <br>• | <br>• | • | • | • | <br>• | • | • | • | 69<br>71 |
|     | 4 4 h          | <i>~~</i>              | 1    |       |       |       |       |   |       |       |   |       |   |       |       |   |   |   |       |   |   |   | /        |

#### 1 Problem Statement

Consider a constant-area cylinder undergoing heat diffusion. The ends of the rod have constant temperatures. Energy balance on a differential element of the cylinder gives

$$u''(x) = -\alpha^2 u(x) + u_a \tag{1}$$

where u(x) represents the temperature of the cylinder as a function of x. Equation 1 is a homogeneous differential equation whose exact solution can be found as a boundary value problem. Assume the solution takes the form

$$u(x) = C \sinh(\alpha x) + D \cosh(\alpha x). \tag{2}$$

The boundary conditions for each case will be used to solve for the constants C and D. Equation 2 represents the general solution for the equation.

### 2 Analytical Solutions

#### 2.1 Case 1

In case 1, we consider the ambient temperature to be  $0^{\circ}$  Celsius. The temperature at the left end of the cylinder is  $0^{\circ}$  as well. The temperature at the right end of the cylinder is  $100^{\circ}$ .

$$u(0) = 0 (3)$$

$$u(L) = 100 \tag{4}$$

To solve for C and D employing boundary conditions from equations 3 and 4:

$$0 = C \sinh (\alpha \cdot 0) + D \cosh (\alpha \cdot 0) + 0$$

$$D = 0$$

$$100 = C \sinh (\alpha \cdot L) + D \cosh (\alpha \cdot L) + 0$$

$$100 = C \sinh (\alpha L)$$

$$C = \frac{100}{\sinh (\alpha L)}$$

Therefore, for Case 1,

$$u(x) = \frac{100}{\sinh(\alpha L)}\sinh(\alpha x) \tag{5}$$

#### 2.2 Case 2

For the second case, the right end is still  $100^{\circ}$  C. The left end is insulated, so that no heat is lost from that end. The atmospheric temperature is still considered as  $0^{\circ}$ C. Therefore, the boundary conditions are

$$u(L) = 100 \tag{6}$$

$$u'(0) = 0. (7)$$



Figure 1: Exact Analytical Solution, Case 1

To solve for C and D we need the derivative of u(x).

$$u'(x) = \alpha C \cosh(\alpha x) + \alpha D \sinh(\alpha x)$$

Then,

$$u'(0) = 0 = \alpha C \cosh(\alpha \cdot 0) + \alpha D \sinh(\alpha \cdot 0)$$

$$0 = \alpha C$$

$$C = 0$$

$$u(L) = 100 = C \sinh(\alpha \cdot L) + D \cosh(\alpha \cdot L)$$

$$100 = D \cosh(\alpha L)$$

$$D = \frac{100}{\cosh(\alpha L)}$$

Therefore, for Case 2,

$$u(x) = \frac{100}{\cosh(\alpha L)}\cosh(\alpha x). \tag{8}$$



Figure 2: Exact Analytical Solution, Case 2

#### 3 FDM: 2nd Order Scheme

#### 3.1 Case 1

To begin, take the grid from [0, L] and divide into n amount of segments. Let  $x_i = i\Delta x$  and i = 1, 2, ..., n. Using the differential equation for the temperature, equation 1, at each nodal position  $(x_i)$ , I use the Taylor series:

$$u(x_i \pm \Delta x) = u(x_i) \pm u'(x_i) \Delta x \pm u''(x_i) \frac{\Delta x^2}{2} + \dots$$
$$u(x_i + \Delta x) - 2u(x_i) + u(x_i - \Delta x) = u''(x_i) \Delta x^2$$

Now I can approximate u and its second derivative used in equation 1:

$$-u(x_{i-1}) + (2 + \alpha^2 \Delta x^2)u(x_i) - u(x_{i+1}) = 0 \text{ for } i = 1, \dots, n-1.$$
(9)

In Equation 9,  $\kappa = 2 + \alpha^2 \Delta x^2$ , and  $U_i$  represents the  $i^{th}$  approximate temperature:

$$-U_{i-1} + \kappa U_i - U_{i+1} = 0 \tag{10}$$

where  $U_i \approx u(x_i)$ . By solving Equation 10, I can approximate the solution for Equation 1 with measurable precision. The general solution is given with

$$\begin{bmatrix} \kappa & -1 & 0 & \dots & 0 & 0 \\ -1 & \kappa & -1 & \dots & 0 & 0 \\ 0 & -1 & \kappa & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \kappa & -1 & 0 \\ 0 & 0 & 0 & -1 & \kappa & -1 \\ 0 & 0 & 0 & 0 & -1 & \kappa \end{bmatrix} \begin{bmatrix} U_0 \\ U_1 \\ \vdots \\ \vdots \\ U_{n-2} \\ U_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ -100 \end{bmatrix}$$

$$(11)$$

#### 3.2 Case 2

Case 2 is formulated in a similar way to Case 1, with the exception that boundary conditions 6 and 7 are used. Therefore, I will skip to solving Equation 10 for these new BCs.

$$i = 0: U_{-1} - (2 + \alpha^2 dx^2)U_0 + U_1 = 0$$

$$i = 1: U_0 - (2 + \alpha^2 dx^2)U_1 + U_2 = 0$$

$$i = 2: U_1 - (2 + \alpha^2 dx^2)U_2 + U_3 = 0$$

$$i = 3: U_2 - (2 + \alpha^2 dx^2)U_3 + U_4 = 0$$

$$i = 4: U_3 - (2 + \alpha^2 dx^2)U_4 + U_5 = 0$$

$$U'_0 = 0$$

$$U_5 = 100.$$

With these, we'll look at the first point, i = 0.

$$U_{-1} - \alpha^2 dx U_0 + U_1 = 0$$

There are two unknowns for this equation,  $U_{-1}$  and  $U_0$ . However, I have one more equation I can use:

$$U_i' = \frac{U_{i+1} - U_{i-1}}{2dx}$$

and this can be solved for  $U_{-1}$  like so:

$$U_{-1} = U_1 - 2dxU_0'.$$

The boundary conditions state that  $U'_0 = 0$ , and the equation for i = 0 was given, so that

$$U_{-1} - (2 + \alpha^2 dx^2) U_0 + U_1 = 0$$

$$U_1 - 2dx U_0' - (2 + \alpha^2 dx^2) U_0$$

$$2U_1 - (2 + \alpha^2 dx^2) U_0 = 0$$

$$U_1 - \frac{\kappa}{2} U_0 = 0.$$

This goes right back into Equation 12 for Case 1 like so:

$$\begin{bmatrix} \frac{\kappa}{2} & -1 & 0 & \dots & 0 & 0 \\ -1 & \kappa & -1 & \dots & 0 & 0 \\ 0 & -1 & \kappa & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \kappa & -1 & 0 \\ 0 & 0 & 0 & -1 & \kappa & -1 \\ 0 & 0 & 0 & 0 & -1 & \kappa \end{bmatrix} \begin{bmatrix} U_0 \\ U_1 \\ \vdots \\ \vdots \\ U_{n-2} \\ U_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 100 \end{bmatrix}$$

$$(12)$$

### 3.3 Approximation of Heat Loss

To approximate the heat loss at the end of the rod,

$$\dot{Q} = -kaU'(L) \tag{13}$$

where  $U^{\prime}(L)$  is found once again through a Taylor series expansion as:

$$U'(L) = \frac{\left(1 + \frac{dx^2\alpha^2}{2}\right)U_n - U_{n-1}}{dx}$$
 (14)

## 3.4 Results



Figure 3: 2nd Order: Case 1

FDM value
Exact

Case 2: FDM Temperature



Figure 4: 2nd Order: Case 2

#### 4 FDM: 4th Order Scheme

#### 4.1 Case 1

I can further extend the results from the 2nd order scheme to a 4th order scheme, to make the calculations more accurate. To construct the fourth order FDM, the process is identical to the second order, taking the Taylor series to the 4th order:

$$u(x_i + \Delta x) = u(x_i) + u'(x_i)\Delta x + u''(x_i)\frac{\Delta x^2}{2} + u'''(x_i)\frac{\Delta x^3}{6} + u''''(x_i)\frac{\Delta x^4}{24}$$
$$u(x_i - \Delta x) = u(x_i) - u'(x_i)\Delta x + u''(x_i)\frac{\Delta x^2}{2} - u'''(x_i)\frac{\Delta x^3}{6} + u''''(x_i)\frac{\Delta x^4}{24}$$

Therefore, to add these two equations together to get  $u(x_i - \Delta x) + u(x_i + \Delta x)$ :

$$u(x_i - \Delta x) + u(x_i + \Delta x) = 2u(x_i) + u''(x_i)\Delta x^2 + u''''(x_i)\frac{\Delta x^4}{12}$$
(15)

Next, I want to substitute these terms into the original differential equation, equation 1.

$$u_{i-1} + u_{i+1} - 2u_i = u_i'' \Delta x^2 + u_i''' \frac{\Delta x^4}{12}$$

$$\frac{u_{i-1} + u_{i+1} - 2u_i}{\Delta x^2} = u_i'' + u_i''' \frac{\Delta x^2}{12}$$

$$\text{since } u_i'''' = \alpha^2 u_i''$$

$$\frac{u_{i-1} + u_{i+1} - 2u_i}{\Delta x^2} = u_i'' + u_i'' \alpha^2 \frac{\Delta x^2}{12} = u_i'' (1 + \alpha^2 \frac{\Delta x^2}{12})$$

For brevity  $\beta = \alpha^2 \frac{\Delta x^2}{12}$  and the second derivative can be solved for as

$$u_i'' = \frac{u_{i-1} + u_{i+1} - 2u_i}{\Delta x^2} \frac{1}{1+\beta}$$
 (16)

Using the mathematical approximation

$$1 - \epsilon \approx \frac{1}{1 + \epsilon} \tag{17}$$

$$u_i'' = (1 - \beta) \frac{u_{i-1} + u_{i+1} - 2u_i}{\Delta x^2}$$
(18)

If I put this term back into equation 1,

$$-(1-\beta)\frac{u_{i-1} + u_{i+1} - 2u_i}{\Delta x^2} + \alpha^2 u_i = 0$$

or,

$$-(1-\beta)u_{i-1} - (2+10\beta)u_i - (1-\beta)u_{i+1} = 0$$
(19)

#### 4.2 Case 2

#### 4.3 Approximation of Heat Loss

To approximate the heat loss at the end of the rod,

$$\dot{Q} = -kaU'(L) \tag{20}$$

where U'(L) is found once again through a Taylor series expansion as:

$$U'(L) = \frac{\left(1 + \frac{dx^2\alpha^2}{2} + \frac{dx^4\alpha^4}{24}\right)U_n - U_{n-1}}{dx + \frac{dx^3\alpha^s}{6}}$$
(21)

#### 4.4 Results



Figure 5: 4th Order: Case 1

FDM value
Exact

Case 2: FDM Temperature



Figure 6: 4th Order: Case 2

### 5 FDM: 6th Order Scheme

The sixth order scheme is constructed in a similar manner to the fourth order. The only difference will be that the Taylor series is taken out to the sixth term.

$$-U_{i-1} + \kappa U_i - U_{i+1} = 0$$

where

$$\kappa = 2 + \alpha^2 dx^2 + \frac{\alpha^4 dx^4}{12} + \frac{\alpha^6 dx^6}{360}.$$
 (22)

### 5.1 Approximation of Heat Loss

To approximate the heat loss at the end of the rod,

$$\dot{Q} = -kaU'(L) \tag{23}$$

where U'(L) is found once again through a Taylor series expansion as:

$$U'(L) = \frac{\left(1 + \frac{dx^2\alpha^2}{2} + \frac{dx^4\alpha^4}{24} + \frac{dx^6\alpha^6}{720}\right)U_n - U_{n-1}}{dx + \frac{dx^3\alpha^2}{6} + \frac{dx^5\alpha^4}{120}}$$
(24)

#### 5.2 Results



Figure 7: 6th Order: Case 1

FDM value
Exact

Case 2: FDM Temperature



Figure 8: 6th Order: Case 2

## 6 FDM: 8th Order Scheme

$$-U_{i-1} + \kappa U_i - U_{i+1} = 0$$

where

$$\kappa = 2 + \alpha^2 dx^2 + \frac{\alpha^4 dx^4}{12} + \frac{\alpha^6 dx^6}{360} + \frac{\alpha^8 dx^8}{20160}.$$
 (25)

#### 6.1 Approximation of Heat Loss

To approximate the heat loss at the end of the rod,

$$\dot{Q} = -kaU'(L) \tag{26}$$

where U'(L) is found once again through a Taylor series expansion as:

$$U'(L) = \frac{\left(1 + \frac{dx^2\alpha^2}{2} + \frac{dx^4\alpha^4}{24} + \frac{dx^6\alpha^6}{720} + \frac{dx^8\alpha^8}{40320}\right)U_n - U_{n-1}}{dx + \frac{dx^3\alpha^2}{6} + \frac{dx^5\alpha^4}{120} + \frac{dx^7\alpha^6}{5040}}$$
(27)

#### 6.2 Results



Figure 9: 8th Order: Case 1

→ FDM value — Exact

Case 2: FDM Temperature



Figure 10: 8th Order: Case 2

## 7 Rate of Convergence

The rate of convergence can be found in a similar way to Assignment 1, but instead of the exact temperature, we compare to an extrapolated value given by:

$$Q_{extr} = \frac{Q_{dx/2}^2 - Q_{dx} * Q_{dx/4}}{2Q_{dx/2} - Q_{dx} - Q_{dx/4}}$$
(28)

where the values of Q are given for different mesh sizes dx,  $\frac{dx}{2}$ , and  $\frac{dx}{4}$ . The rate of convergence is then found in a similar manner to the previous assignment.

$$Q_{extr} - Q_{\Delta x} \approx C (\Delta x)^{\beta}$$
  
 $Q_{extr} - Q_{\Delta x/2} \approx C \left(\frac{\Delta x}{2}\right)^{\beta}$ 

If I divide the first equation by the second,

$$\begin{split} \frac{Q_{extr} - Q_{\Delta x}}{Q_{extr} - Q_{\Delta x/2}} &\approx 2^{\beta} \\ \beta &\approx \frac{\log \frac{Q_{extr} - Q_{\Delta x}}{Q_{extr} - Q_{\Delta x/2}}}{\log 2} \end{split}$$



Figure 11: Rate of Convergence, 2nd Order, Case 1



Figure 12: Rate of Convergence, 2nd Order, Case 2



Figure 13: Rate of Convergence, 4th Order, Case 1  $\,$ 



Figure 14: Rate of Convergence, 4th Order, Case 2



Figure 15: Rate of Convergence, 6th Order, Case 1  $\,$ 



Figure 16: Rate of Convergence, 6th Order, Case 2



Figure 17: Rate of Convergence, 8th Order, Case 1  $\,$ 



Figure 18: Rate of Convergence, 8th Order, Case 2

## 8 Conclusion

The rates of convergence look as expected for all except 6th and 8th order case 2. I have been unable to find the reason for these convergences, although they only occur when alpha is small. Not included in this report is The values for U'(L), but they should be included in HW 3.

## A Tables

#### A.1 2nd Order

#### **A.1.1** $\alpha = 0.2$

|      |              | n = 2      |             |
|------|--------------|------------|-------------|
|      |              | Case 1     |             |
| X    | $T_{-}exact$ | $T_{-}FDM$ | Error       |
| 0    | 0            | 0          | nan         |
| 0.5  | 49.751       | 49.7512    | 0.000414732 |
| 1    | 100          | 100        | 0           |
|      |              | Case 2     |             |
| X    | $T_{exact}$  | $T_{-}FDM$ | Error       |
| 0    | 98.0328      | 98.0344    | 0.00164263  |
| 0.5  | 98.5234      | 98.5246    | 0.00122789  |
| 1    | 100          | 100        | 0           |
|      |              | n = 4      |             |
|      |              | Case 1     |             |
| X    | $T_{-}exact$ | $T_{-}FDM$ | Error       |
| 0    | 0            | 0          | nan         |
| 0.25 | 24.8445      | 24.8445    | 0.000129798 |
| 0.5  | 49.751       | 49.7511    | 0.000103786 |
| 0.75 | 74.782       | 74.7821    | 6.04917e-05 |
| 1    | 100          | 100        | 0           |
|      |              | Case 2     |             |
| X    | $T_{-}exact$ | $T_{-}FDM$ | Error       |
| 0    | 98.0328      | 98.0332    | 0.000411063 |
| 0.25 | 98.1554      | 98.1557    | 0.000385052 |
| 0.5  | 98.5234      | 98.5237    | 0.000307276 |
| 0.75 | 99.1377      | 99.1379    | 0.000178507 |
| 1    | 100          | 100        | 0           |
|      |              | n = 8      |             |
|      |              | Case 1     |             |
|      |              |            |             |

| X        | T_exact      | T_FDM      | Error          |
|----------|--------------|------------|----------------|
| 0        | 0            | 0          | nan            |
| 0.125    | 12.4183      | 12.4184    | 3.40846 e - 05 |
| 0.25     | 24.8445      | 24.8445    | 3.24575 e-05   |
| 0.375    | 37.2861      | 37.2861    | 2.97465e-05    |
| 0.5      | 49.751       | 49.7511    | 2.5953 e-05    |
| 0.625    | 62.2471      | 62.2471    | 2.1079e-05     |
| 0.75     | 74.782       | 74.782     | 1.51267e-05    |
| 0.875    | 87.3637      | 87.3637    | 8.09922e-06    |
| 1        | 100          | 100        | 0              |
|          |              | Case 2     |                |
| X        | $T_{-}exact$ | $T_{-}FDM$ | Error          |
| 0        | 98.0328      | 98.0329    | 0.000102791    |
| 0.125    | 98.0634      | 98.0635    | 0.000101164    |
| 0.25     | 98.1554      | 98.1555    | 9.62867e-05    |
| 0.375    | 98.3086      | 98.3087    | 8.81713e-05    |
| 0.5      | 98.5234      | 98.5234    | 7.68381e-05    |
| 0.625    | 98.7997      | 98.7997    | 6.2315 e-05    |
| 0.75     | 99.1377      | 99.1378    | 4.46377e-05    |
| 0.875    | 99.5378      | 99.5378    | 2.38494e-05    |
| 1        | 100          | 100        | 0              |
|          |              | n = 16     |                |
|          |              | Case 1     |                |
| X        | T_exact      | T_FDM      | Error          |
| 0        | 0            | 0          | nan            |
| 0.0625   | 6.20869      | 6.20869    | 8.62341e-06    |
| 0.125    | 12.4183      | 12.4183    | 8.52169e-06    |
| 0.1875   | 18.6299      | 18.6299    | 8.35218e-06    |
| 0.25     | 24.8445      | 24.8445    | 8.11488e-06    |
| 0.3125   | 31.0628      | 31.0629    | 7.80984e-06    |
| 0.375    | 37.2861      | 37.2861    | 7.4371e-06     |
| 0.4375   | 43.5152      | 43.5152    | 6.99669e-06    |
| 0.5      | 49.751       | 49.751     | 6.48867e-06    |
| 0.5625   | 55.9947      | 55.9947    | 5.91311e-06    |
| 0.625    | 62.2471      | 62.2471    | 5.27007e-06    |
| 0.6875   | 68.5092      | 68.5092    | 4.55964 e-06   |
| 0.75     | 74.782       | 74.782     | 3.78191e-06    |
| 0.8125   | 81.0665      | 81.0665    | 2.93697e-06    |
| 0.875    | 87.3637      | 87.3637    | 2.02493e-06    |
| 0.9375   | 93.6745      | 93.6745    | 1.0459 e-06    |
| 1        | 100          | 100        | 0              |
| <u> </u> |              | Case 2     |                |
|          |              |            |                |

| X      | T_exact | T_FDM   | Error          |
|--------|---------|---------|----------------|
| 0      | 98.0328 | 98.0328 | 2.56994e-05    |
| 0.0625 | 98.0405 | 98.0405 | 2.55977e-05    |
| 0.125  | 98.0634 | 98.0635 | 2.52926 e - 05 |
| 0.1875 | 98.1017 | 98.1018 | 2.47843e-05    |
| 0.25   | 98.1554 | 98.1554 | 2.40732e-05    |
| 0.3125 | 98.2243 | 98.2244 | 2.31596e-05    |
| 0.375  | 98.3086 | 98.3087 | 2.20442e-05    |
| 0.4375 | 98.4083 | 98.4083 | 2.07276e-05    |
| 0.5    | 98.5234 | 98.5234 | 1.92107e-05    |
| 0.5625 | 98.6538 | 98.6538 | 1.74944e-05    |
| 0.625  | 98.7997 | 98.7997 | 1.55797e-05    |
| 0.6875 | 98.961  | 98.961  | 1.34679e-05    |
| 0.75   | 99.1377 | 99.1377 | 1.11601e-05    |
| 0.8125 | 99.33   | 99.33   | 8.6579 e-06    |
| 0.875  | 99.5378 | 99.5378 | 5.96271 e-06   |
| 0.9375 | 99.7611 | 99.7611 | 3.07617e-06    |
| 1      | 100     | 100     | 0              |

**A.1.2**  $\alpha = 0.4$ 

|     |              |              | n=2        |             |
|-----|--------------|--------------|------------|-------------|
|     |              |              | Case 1     |             |
|     | X            | $T_{exact}$  | $T_{FDM}$  | Error       |
|     | 0            | 0            | 0          | nan         |
| 0.  | .5           | 49.0164      | 49.0196    | 0.00654467  |
|     | 1            | 100          | 100        | 0           |
|     |              |              | Case 2     |             |
|     | $\mathbf{X}$ | $T_{-}exact$ | $T_{-}FDM$ | Error       |
|     | 0            | 92.5007      | 92.5241    | 0.0252009   |
| C   | 0.5          | 94.3569      | 94.3745    | 0.0186551   |
|     | 1            | 100          | 100        | 0           |
|     |              |              | n = 4      |             |
|     |              |              | Case 1     |             |
|     | X            | $T_{-}exact$ | $T_{-}FDM$ | Error       |
|     | 0            | 0            | 0          | nan         |
| 0.2 | 25           | 24.3862      | 24.3867    | 0.00205737  |
| 0.  | .5           | 49.0164      | 49.0172    | 0.00164263  |
| 0.7 | <b>'</b> 5   | 74.1372      | 74.1379    | 0.000955048 |
|     | 1            | 100          | 100        | 0           |
|     |              |              | Case 2     |             |
|     | $\mathbf{x}$ | $T_{-}exact$ | $T_{-}FDM$ | Error       |
| -   | 0            | 92.5007      | 92.5066    | 0.00632438  |
| 0.  | 25           | 92.9636      | 92.9691    | 0.00590963  |
| 0   | 0.5          | 94.3569      | 94.3614    | 0.00468168  |
| 0.  | 75           | 96.6946      | 96.6972    | 0.00268762  |
|     | 1            | 100          | 100        | 0           |
|     |              |              |            |             |

|                 |               | n = 8                       |                           |
|-----------------|---------------|-----------------------------|---------------------------|
|                 | T_exact       | Case 1                      | Ennon                     |
| x               | 1_exact<br>0  | T_FDM<br>0                  | Error                     |
| 0.125           | 12.1779       | 12.1779                     | nan<br>0.000540861        |
| 0.125 $0.25$    | 24.3862       | 24.3863                     | 0.00051485                |
| $0.25 \\ 0.375$ | 36.6555       | 24.3803<br>36.6556          | 0.00031485 $0.000471555$  |
| $0.575 \\ 0.5$  | 49.0164       | 49.0166                     | 0.000411063               |
| 0.625           | 61.4999       | 61.5001                     | 0.000411003 $0.000333493$ |
| 0.025 $0.75$    | 74.1372       | 74.1374                     | 0.000333493               |
| $0.75 \\ 0.875$ | 86.9599       | 86.96                       | 0.000238999               |
| 0.873           | 100           | 100                         | 0.000127703               |
|                 |               | $\frac{100}{\text{Case 2}}$ |                           |
| X               | T_exact       | $T_{\text{FDM}}$            | Error                     |
| 0               | 92.5007       | 92.5022                     | 0.00158261                |
| 0.125           | 92.6164       | 92.6178                     | 0.0015566                 |
| 0.25            | 92.9636       | 92.965                      | 0.00147883                |
| 0.375           | 93.5433       | 93.5446                     | 0.00135005                |
| 0.5             | 94.3569       | 94.358                      | 0.00117155                |
| 0.625           | 95.4065       | 95.4074                     | 0.000945008               |
| 0.75            | 96.6946       | 96.6952                     | 0.000672552               |
| 0.875           | 98.2245       | 98.2248                     | 0.000356637               |
| 1               | 100           | 100                         | 0                         |
|                 | 1             | n = 16                      |                           |
|                 |               | Case 1                      |                           |
| X               | T_exact       | T_FDM                       | Error                     |
| 0               | 0             | 0                           | nan                       |
| 0.0625          | 6.08703       | 6.08704                     | 0.000136876               |
| 0.125           | 12.1779       | 12.1779                     | 0.000135249               |
| 0.1875          | 18.2763       | 18.2763                     | 0.000132538               |
| 0.25            | 24.3862       | 24.3862                     | 0.000128744               |
| 0.3125          | 30.5113       | 30.5113                     | 0.00012387                |
| 0.375           | 36.6555       | 36.6555                     | 0.000117918               |
| 0.4375          | 42.8225       | 42.8226                     | 0.00011089                |
| 0.5             | 49.0164       | 49.0165                     | 0.000102791               |
| 0.5625          | 55.2409       | 55.2409                     | 9.36242e-05               |
| 0.625           | 61.4999       | 61.5                        | 8.3394e-05                |
| 0.6875          | 67.7974       | 67.7974                     | 7.21056e-05               |
| 0.75            | 74.1372       | 74.1372                     | 5.97645e-05               |
| 0.8125          | 80.5234       | 80.5234                     | 4.63766e-05               |
| 0.075           | 00.0500       | 00 0500                     |                           |
| 0.875           | 86.9599       | 86.9599                     | 3.19486e-05               |
| 0.9375          | 93.4507       | 93.4508                     | 1.64872 e-05              |
|                 | 93.4507 $100$ |                             |                           |

| X      | $T_{-}exact$ | $T_{-}FDM$ | Error       |
|--------|--------------|------------|-------------|
| 0      | 92.5007      | 92.5011    | 0.000395748 |
| 0.0625 | 92.5297      | 92.53      | 0.000394121 |
| 0.125  | 92.6164      | 92.6168    | 0.000389244 |
| 0.1875 | 92.761       | 92.7614    | 0.000381129 |
| 0.25   | 92.9636      | 92.964     | 0.000369795 |
| 0.3125 | 93.2243      | 93.2247    | 0.000355272 |
| 0.375  | 93.5433      | 93.5436    | 0.000337595 |
| 0.4375 | 93.9208      | 93.9211    | 0.000316806 |
| 0.5    | 94.3569      | 94.3572    | 0.000292957 |
| 0.5625 | 94.8521      | 94.8523    | 0.000266103 |
| 0.625  | 95.4065      | 95.4067    | 0.000236309 |
| 0.6875 | 96.0205      | 96.0207    | 0.000203643 |
| 0.75   | 96.6946      | 96.6948    | 0.000168179 |
| 0.8125 | 97.4291      | 97.4292    | 0.000129997 |
| 0.875  | 98.2245      | 98.2246    | 8.91807e-05 |
| 0.9375 | 99.0813      | 99.0813    | 4.58181e-05 |
| 1      | 100          | 100        | 0           |
|        |              |            |             |

#### **A.1.3** $\alpha = 0.75$

|      |              | n = 2      |           |
|------|--------------|------------|-----------|
|      |              | Case 1     |           |
| X    | $T_{-}exact$ | $T_{FDM}$  | Error     |
| 0    | 0            | 0          | nan       |
| 0.5  | 46.6792      | 46.7153    | 0.0773463 |
| 1    | 100          | 100        | 0         |
|      |              | Case 2     |           |
| X    | $T_{-}exact$ | $T_{-}FDM$ | Error     |
| 0    | 77.239       | 77.4511    | 0.27461   |
| 0.5  | 82.7338      | 82.8969    | 0.197111  |
| 1    | 100          | 100        | 0         |
|      |              | n = 4      |           |
|      |              | Case 1     |           |
| X    | $T_{-}exact$ | $T_{-}FDM$ | Error     |
| 0    | 0            | 0          | nan       |
| 0.25 | 22.9353      | 22.9409    | 0.0246644 |
| 0.5  | 46.6792      | 46.6884    | 0.0195966 |
| 0.75 | 72.0691      | 72.0772    | 0.0113036 |
| 1    | 100          | 100        | 0         |
|      |              | Case 2     |           |
| X    | $T_{-}exact$ | $T_{-}FDM$ | Error     |
| 0    | 77.239       | 77.2926    | 0.0694934 |
| 0.25 | 78.6007      | 78.6513    | 0.0644233 |
| 0.5  | 82.7338      | 82.775     | 0.049887  |
| 0.75 | 89.784       | 89.8089    | 0.0276546 |
| 1    | 100          | 100        | 0         |

|                                                                                                                                                   |                                                                                                                                       | n = 8 Case 1                                                                                                                                                                                                                                                             |                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X                                                                                                                                                 | T_exact                                                                                                                               | $\frac{\text{Dase I}}{\text{T_FDM}}$                                                                                                                                                                                                                                     | Error                                                                                                                                                                               |
| 0                                                                                                                                                 | 0                                                                                                                                     | 0                                                                                                                                                                                                                                                                        | nan                                                                                                                                                                                 |
| 0.125                                                                                                                                             | 11.4174                                                                                                                               | 11.4182                                                                                                                                                                                                                                                                  | 0.00650747                                                                                                                                                                          |
| 0.25                                                                                                                                              | 22.9353                                                                                                                               | 22.9367                                                                                                                                                                                                                                                                  | 0.0061869                                                                                                                                                                           |
| 0.375                                                                                                                                             | 34.6548                                                                                                                               | 34.6568                                                                                                                                                                                                                                                                  | 0.0056551                                                                                                                                                                           |
| 0.5                                                                                                                                               | 46.6792                                                                                                                               | 46.6815                                                                                                                                                                                                                                                                  | 0.00491573                                                                                                                                                                          |
| 0.625                                                                                                                                             | 59.1142                                                                                                                               | 59.1165                                                                                                                                                                                                                                                                  | 0.00397379                                                                                                                                                                          |
| 0.75                                                                                                                                              | 72.0691                                                                                                                               | 72.0711                                                                                                                                                                                                                                                                  | 0.00283551                                                                                                                                                                          |
| 0.875                                                                                                                                             | 85.6578                                                                                                                               | 85.6591                                                                                                                                                                                                                                                                  | 0.00150817                                                                                                                                                                          |
| 1                                                                                                                                                 | 100                                                                                                                                   | 100                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                   |
|                                                                                                                                                   |                                                                                                                                       | Case 2                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |
| X                                                                                                                                                 | $T_{-}exact$                                                                                                                          | T_FDM                                                                                                                                                                                                                                                                    | Error                                                                                                                                                                               |
| 0                                                                                                                                                 | 77.239                                                                                                                                | 77.2524                                                                                                                                                                                                                                                                  | 0.0174269                                                                                                                                                                           |
| 0.125                                                                                                                                             | 77.5786                                                                                                                               | 77.5919                                                                                                                                                                                                                                                                  | 0.0171063                                                                                                                                                                           |
| 0.25                                                                                                                                              | 78.6007                                                                                                                               | 78.6134                                                                                                                                                                                                                                                                  | 0.0161556                                                                                                                                                                           |
| 0.375                                                                                                                                             | 80.314                                                                                                                                | 80.3258                                                                                                                                                                                                                                                                  | 0.014607                                                                                                                                                                            |
| 0.5                                                                                                                                               | 82.7338                                                                                                                               | 82.7441                                                                                                                                                                                                                                                                  | 0.0125106                                                                                                                                                                           |
| 0.625                                                                                                                                             | 85.8812                                                                                                                               | 85.8897                                                                                                                                                                                                                                                                  | 0.00992966                                                                                                                                                                          |
| 0.75                                                                                                                                              | 89.784                                                                                                                                | 89.7903                                                                                                                                                                                                                                                                  | 0.00693542                                                                                                                                                                          |
| 0.875                                                                                                                                             | 94.4765                                                                                                                               | 94.4799                                                                                                                                                                                                                                                                  | 0.00360161                                                                                                                                                                          |
|                                                                                                                                                   |                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 1                                                                                                                                                 | 100                                                                                                                                   | 100                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                   |
| 1                                                                                                                                                 | 1                                                                                                                                     | n = 16                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                   |
|                                                                                                                                                   | r<br>(                                                                                                                                | n = 16<br>Case 1                                                                                                                                                                                                                                                         | -                                                                                                                                                                                   |
| X                                                                                                                                                 | T_exact                                                                                                                               | n = 16<br>Case 1<br>T_FDM                                                                                                                                                                                                                                                | Error                                                                                                                                                                               |
| x<br>0                                                                                                                                            | T_exact 0                                                                                                                             | $\begin{array}{c} n = 16 \\ \underline{\text{Case 1}} \\ \underline{\text{T-FDM}} \\ 0 \end{array}$                                                                                                                                                                      | Error                                                                                                                                                                               |
| x<br>0<br>0.0625                                                                                                                                  | T_exact<br>0<br>5.70245                                                                                                               | T_FDM<br>0<br>5.70254                                                                                                                                                                                                                                                    | Error<br>nan<br>0.00164834                                                                                                                                                          |
| x<br>0<br>0.0625<br>0.125                                                                                                                         | T_exact 0 5.70245 11.4174                                                                                                             | n = 16<br>Case 1<br>T.FDM<br>0<br>5.70254<br>11.4176                                                                                                                                                                                                                     | Error<br>nan<br>0.00164834<br>0.00162824                                                                                                                                            |
| x<br>0<br>0.0625<br>0.125<br>0.1875                                                                                                               | T_exact 0 5.70245 11.4174 17.1575                                                                                                     | n = 16<br>Case 1<br>T_FDM<br>0<br>5.70254<br>11.4176<br>17.1578                                                                                                                                                                                                          | Error<br>nan<br>0.00164834<br>0.00162824<br>0.00159479                                                                                                                              |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25                                                                                                       | T_exact 0 5.70245 11.4174 17.1575 22.9353                                                                                             | n = 16<br>Case 1<br>T_FDM<br>0<br>5.70254<br>11.4176<br>17.1578<br>22.9356                                                                                                                                                                                               | Error<br>nan<br>0.00164834<br>0.00162824<br>0.00159479<br>0.00154803                                                                                                                |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125                                                                                             | T_exact  0 5.70245 11.4174 17.1575 22.9353 28.7635                                                                                    | n = 16<br>Case 1<br>T_FDM<br>0<br>5.70254<br>11.4176<br>17.1578<br>22.9356<br>28.7639                                                                                                                                                                                    | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00148806                                                                                                                    |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375                                                                                    | T_exact  0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548                                                                            | n = 16<br>Case 1<br>T_FDM<br>0<br>5.70254<br>11.4176<br>17.1578<br>22.9356<br>28.7639<br>34.6553                                                                                                                                                                         | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00148806 0.00141497                                                                                                         |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375                                                                          | T_exact 0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548 40.6224                                                                     | n = 16<br>Case 1<br>T.FDM<br>0<br>5.70254<br>11.4176<br>17.1578<br>22.9356<br>28.7639<br>34.6553<br>40.6229                                                                                                                                                              | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00148806 0.00141497 0.00132889                                                                                              |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5                                                                   | T_exact 0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548 40.6224 46.6792                                                             | n = 16<br>Case 1<br>T.FDM<br>0<br>5.70254<br>11.4176<br>17.1578<br>22.9356<br>28.7639<br>34.6553<br>40.6229<br>46.6798                                                                                                                                                   | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00148806 0.00141497 0.00132889 0.00122997                                                                                   |
| x<br>0 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625                                                            | T_exact  0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548 40.6224 46.6792 52.8386                                                    | n = 16<br>Case 1<br>T.FDM<br>0<br>5.70254<br>11.4176<br>17.1578<br>22.9356<br>28.7639<br>34.6553<br>40.6229<br>46.6798<br>52.8392                                                                                                                                        | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00144806 0.00141497 0.00132889 0.00122997 0.00111838                                                                        |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625                                                | T_exact  0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548 40.6224 46.6792 52.8386 59.1142                                            | $\begin{array}{l} n = 16 \\ \hline \text{Case 1} \\ \hline \text{T.FDM} \\ \hline 0 \\ 5.70254 \\ 11.4176 \\ 17.1578 \\ 22.9356 \\ 28.7639 \\ 34.6553 \\ 40.6229 \\ 46.6798 \\ 52.8392 \\ 59.1148 \\ \end{array}$                                                        | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00148806 0.00141497 0.00132889 0.00122997 0.00111838 0.000994293                                                            |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5625<br>0.625<br>0.625                                              | T_exact  0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548 40.6224 46.6792 52.8386 59.1142 65.5196                                    | n = 16<br>Case 1<br>T_FDM<br>0<br>5.70254<br>11.4176<br>17.1578<br>22.9356<br>28.7639<br>34.6553<br>40.6229<br>46.6798<br>52.8392<br>59.1148<br>65.5202                                                                                                                  | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00148806 0.00141497 0.00132889 0.00122997 0.00111838 0.000994293 0.00085792                                                 |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75                              | T_exact  0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548 40.6224 46.6792 52.8386 59.1142 65.5196 72.0691                            | $\begin{array}{l} n = 16 \\ \hline \text{Case 1} \\ \hline \text{T.FDM} \\ \hline 0 \\ 5.70254 \\ 11.4176 \\ 17.1578 \\ 22.9356 \\ 28.7639 \\ 34.6553 \\ 40.6229 \\ 46.6798 \\ 52.8392 \\ 59.1148 \\ 65.5202 \\ 72.0696 \end{array}$                                     | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00148806 0.00141497 0.00132889 0.00122997 0.00111838 0.000994293 0.00085792 0.000709482                                     |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.6625<br>0.6875<br>0.75<br>0.8125                   | T_exact  0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548 40.6224 46.6792 52.8386 59.1142 65.5196 72.0691 78.7769                    | $\begin{array}{l} n = 16 \\ \hline \text{Case 1} \\ \hline \text{T.FDM} \\ \hline 0 \\ 5.70254 \\ 11.4176 \\ 17.1578 \\ 22.9356 \\ 28.7639 \\ 34.6553 \\ 40.6229 \\ 46.6798 \\ 52.8392 \\ 59.1148 \\ 65.5202 \\ 72.0696 \\ 78.7773 \\ \end{array}$                       | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00141497 0.00132889 0.00122997 0.00111838 0.000994293 0.00085792 0.0007709482 0.000549214                                   |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75<br>0.8125<br>0.875           | T_exact  0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548 40.6224 46.6792 52.8386 59.1142 65.5196 72.0691 78.7769 85.6578            | $\begin{array}{l} n = 16 \\ \hline \text{Case 1} \\ \hline \text{T.FDM} \\ \hline 0 \\ 5.70254 \\ 11.4176 \\ 17.1578 \\ 22.9356 \\ 28.7639 \\ 34.6553 \\ 40.6229 \\ 46.6798 \\ 52.8392 \\ 59.1148 \\ 65.5202 \\ 72.0696 \\ 78.7773 \\ 85.6582 \\ \end{array}$            | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00141497 0.00132889 0.00122997 0.00111838 0.000994293 0.00085792 0.000709482 0.000549214 0.000377366                        |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75<br>0.8125<br>0.875<br>0.9375 | T_exact  0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548 40.6224 46.6792 52.8386 59.1142 65.5196 72.0691 78.7769 85.6578 92.727     | $\begin{array}{l} n = 16 \\ \hline \text{Case 1} \\ \hline \text{T.FDM} \\ \hline 0 \\ 5.70254 \\ 11.4176 \\ 17.1578 \\ 22.9356 \\ 28.7639 \\ 34.6553 \\ 40.6229 \\ 46.6798 \\ 52.8392 \\ 59.1148 \\ 65.5202 \\ 72.0696 \\ 78.7773 \\ 85.6582 \\ 92.7272 \\ \end{array}$ | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00144896 0.00141497 0.00132889 0.00122997 0.00111838 0.000994293 0.00085792 0.000709482 0.000549214 0.000377366 0.000194203 |
| x<br>0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75<br>0.8125<br>0.875           | T_exact  0 5.70245 11.4174 17.1575 22.9353 28.7635 34.6548 40.6224 46.6792 52.8386 59.1142 65.5196 72.0691 78.7769 85.6578 92.727 100 | $\begin{array}{l} n = 16 \\ \hline \text{Case 1} \\ \hline \text{T.FDM} \\ \hline 0 \\ 5.70254 \\ 11.4176 \\ 17.1578 \\ 22.9356 \\ 28.7639 \\ 34.6553 \\ 40.6229 \\ 46.6798 \\ 52.8392 \\ 59.1148 \\ 65.5202 \\ 72.0696 \\ 78.7773 \\ 85.6582 \\ \end{array}$            | Error nan 0.00164834 0.00162824 0.00159479 0.00154803 0.00141497 0.00132889 0.00122997 0.00111838 0.000994293 0.00085792 0.000709482 0.000549214 0.000377366                        |

| X      | T_exact | T_FDM   | Error       |
|--------|---------|---------|-------------|
| 0      | 77.239  | 77.2423 | 0.0043601   |
| 0.0625 | 77.3238 | 77.3272 | 0.00434     |
| 0.125  | 77.5786 | 77.582  | 0.00427989  |
| 0.1875 | 78.0039 | 78.0072 | 0.00418028  |
| 0.25   | 78.6007 | 78.6038 | 0.00404203  |
| 0.3125 | 79.3701 | 79.3732 | 0.00386632  |
| 0.375  | 80.314  | 80.317  | 0.00365459  |
| 0.4375 | 81.4344 | 81.4372 | 0.00340854  |
| 0.5    | 82.7338 | 82.7364 | 0.00313009  |
| 0.5625 | 84.215  | 84.2173 | 0.00282129  |
| 0.625  | 85.8812 | 85.8833 | 0.00248436  |
| 0.6875 | 87.7362 | 87.7381 | 0.00212157  |
| 0.75   | 89.784  | 89.7856 | 0.00173522  |
| 0.8125 | 92.0292 | 92.0304 | 0.00132764  |
| 0.875  | 94.4765 | 94.4774 | 0.000901116 |
| 0.9375 | 97.1315 | 97.132  | 0.000457858 |
| 1      | 100     | 100     | 0           |

**A.1.4**  $\alpha = 3$ 

|                                                                 |                     |                                                                      | n=2                                                                                      |                                                                                        |
|-----------------------------------------------------------------|---------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                 |                     |                                                                      | Case 1                                                                                   |                                                                                        |
| X                                                               |                     | $T_{\text{-exact}}$                                                  | T_FDM                                                                                    | Error                                                                                  |
| 0                                                               |                     | 0                                                                    | 0                                                                                        | nan                                                                                    |
| 0.5                                                             |                     | 21.2548                                                              | 23.5294                                                                                  | 10.7016                                                                                |
| 1                                                               |                     | 100                                                                  | 100                                                                                      | 1.42109e-14                                                                            |
|                                                                 |                     |                                                                      | Case 2                                                                                   |                                                                                        |
|                                                                 | Х                   | T_exact                                                              | T_FDM                                                                                    | Error                                                                                  |
|                                                                 | 0                   | 9.93279                                                              | 12.4514                                                                                  | 25.3561                                                                                |
| 0.                                                              | .5                  | 23.366                                                               | 26.4591                                                                                  | 13.2378                                                                                |
|                                                                 | 1                   | 100                                                                  | 100                                                                                      | 0                                                                                      |
|                                                                 |                     |                                                                      | n = 4                                                                                    |                                                                                        |
|                                                                 |                     |                                                                      | Case 1                                                                                   |                                                                                        |
| X                                                               |                     | $T_{-exact}$                                                         | $T_{-}FDM$                                                                               | Error                                                                                  |
|                                                                 |                     |                                                                      |                                                                                          |                                                                                        |
| 0                                                               |                     | 0                                                                    | 0                                                                                        | nan                                                                                    |
| 0.25                                                            |                     | 0<br>8.20849                                                         | 0<br>8.54597                                                                             | nan<br>4.11135                                                                         |
| _                                                               |                     | •                                                                    | ~                                                                                        |                                                                                        |
| 0.25                                                            |                     | 8.20849                                                              | 8.54597                                                                                  | 4.11135                                                                                |
| $0.25 \\ 0.5$                                                   |                     | 8.20849<br>21.2548                                                   | 8.54597<br>21.8991                                                                       | 4.11135<br>3.03111                                                                     |
| 0.25 $0.5$ $0.75$                                               |                     | 8.20849<br>21.2548<br>46.828<br>100                                  | 8.54597<br>21.8991<br>47.5704<br>100<br>Case 2                                           | 4.11135<br>3.03111<br>1.58535<br>1.42109e-14                                           |
| 0.25 $0.5$ $0.75$                                               |                     | 8.20849<br>21.2548<br>46.828<br>100                                  | 8.54597<br>21.8991<br>47.5704<br>100                                                     | 4.11135<br>3.03111<br>1.58535<br>1.42109e-14                                           |
| 0.25 $0.5$ $0.75$                                               |                     | 8.20849<br>21.2548<br>46.828<br>100                                  | 8.54597<br>21.8991<br>47.5704<br>100<br>Case 2<br>T_FDM                                  | 4.11135<br>3.03111<br>1.58535<br>1.42109e-14                                           |
| 0.25 $0.5$ $0.75$                                               | x<br>0              | 8.20849<br>21.2548<br>46.828<br>100                                  | 8.54597<br>21.8991<br>47.5704<br>100<br>Case 2<br>T_FDM<br>10.6089                       | 4.11135<br>3.03111<br>1.58535<br>1.42109e-14<br>Error<br>6.80699                       |
| 0.25<br>0.5<br>0.75<br>1<br>——————————————————————————————————— | x<br>0              | 8.20849<br>21.2548<br>46.828<br>100<br>T_exact<br>9.93279            | 8.54597<br>21.8991<br>47.5704<br>100<br>Case 2<br>T_FDM<br>10.6089<br>13.5927            | 4.11135<br>3.03111<br>1.58535<br>1.42109e-14<br>Error<br>6.80699<br>5.69879            |
| 0.25<br>0.5<br>0.75<br>1<br>——————————————————————————————————— | x<br>0<br>25<br>0.5 | 8.20849<br>21.2548<br>46.828<br>100<br>T_exact<br>9.93279<br>12.8598 | 8.54597<br>21.8991<br>47.5704<br>100<br>Case 2<br>T_FDM<br>10.6089<br>13.5927<br>24.2223 | 4.11135<br>3.03111<br>1.58535<br>1.42109e-14<br>Error<br>6.80699<br>5.69879<br>3.66479 |

| n = 8           |          |                                       |                     |  |  |
|-----------------|----------|---------------------------------------|---------------------|--|--|
|                 | T        | Case 1                                | T7                  |  |  |
| X               | T_exact  | T_FDM                                 | Error               |  |  |
| 0               | 0        | 0                                     | nan                 |  |  |
| 0.125           | 3.83166  | 3.87536                               | 1.14054             |  |  |
| 0.25            | 8.20849  | 8.2957                                | 1.06237             |  |  |
| 0.375           | 13.7532  | 13.8826                               | 0.940723            |  |  |
| 0.5             | 21.2548  | 21.4218                               | 0.785602            |  |  |
| 0.625           | 31.7805  | 31.9734                               | 0.606869            |  |  |
| 0.75            | 46.828   | 47.0212                               | 0.412696            |  |  |
| 0.875           | 68.5382  | 68.6815                               | 0.20907             |  |  |
| 1               | 100      | 100<br>Case 2                         | 1.42109e-14         |  |  |
| X               | T_exact  | $\frac{\text{Jase } z}{\text{T_FDM}}$ | Error               |  |  |
| 0               | 9.93279  | 10.1053                               | 1.73677             |  |  |
| 0.125           | 10.6394  | 10.1055                               | 1.65814             |  |  |
| 0.125           | 12.8598  | 13.0473                               | 1.45816             |  |  |
| 0.25 $0.375$    | 16.9099  | 17.1136                               | 1.20458             |  |  |
| 0.575           | 23.366   | 23.5865                               | 0.943758            |  |  |
| 0.625           | 33.1466  | 33.3763                               | 0.69288             |  |  |
| 0.025 $0.75$    | 47.6433  | 47.8595                               | 0.09288 $0.453852$  |  |  |
| $0.75 \\ 0.875$ | 68.9188  | 69.0731                               | 0.433832 $0.223914$ |  |  |
| 0.873           | 100      | 100                                   | 0.223914            |  |  |
|                 | 100<br>n |                                       |                     |  |  |
|                 |          | Case 1                                |                     |  |  |
| X               | T_exact  | T_FDM                                 | Error               |  |  |
| 0               | 0        | 0                                     | nan                 |  |  |
| 0.0625          | 1.88264  | 1.88815                               | 0.292617            |  |  |
| 0.125           | 3.83166  | 3.84268                               | 0.287536            |  |  |
| 0.1875          | 5.91578  | 5.9323                                | 0.279221            |  |  |
| 0.25            | 8.20849  | 8.23048                               | 0.267887            |  |  |
| 0.3125          | 10.7906  | 10.818                                | 0.253808            |  |  |
| 0.375           | 13.7532  | 13.7859                               | 0.237294            |  |  |
| 0.4375          | 17.2008  | 17.2384                               | 0.21867             |  |  |
| 0.5             | 21.2548  | 21.2969                               | 0.198256            |  |  |
| 0.5625          | 26.0583  | 26.1042                               | 0.176353            |  |  |
| 0.625           | 31.7805  | 31.8292                               | 0.153234            |  |  |
| 0.6875          | 38.6233  | 38.6732                               | 0.129139            |  |  |
| 0.75            | 46.828   | 46.8768                               | 0.10427             |  |  |
| 0.8125          | 56.6838  | 56.7284                               | 0.078797            |  |  |
| 0.875           | 68.5382  | 68.5744                               | 0.052858            |  |  |
| 0.9375          | 82.8092  | 82.8312                               | 0.0265633           |  |  |
| 1               | 100      | 100                                   | 1.42109e-14         |  |  |

|        | X      | $T_{-}$ exact | T_FDM   | Error     |
|--------|--------|---------------|---------|-----------|
|        | 0      | 9.93279       | 9.97615 | 0.4365    |
|        | 0.0625 | 10.1079       | 10.1515 | 0.431411  |
|        | 0.125  | 10.6394       | 10.6838 | 0.416822  |
|        | 0.1875 | 11.5461       | 11.5916 | 0.394508  |
|        | 0.25   | 12.8598       | 12.907  | 0.366752  |
|        | 0.3125 | 14.627        | 14.6761 | 0.335743  |
|        | 0.375  | 16.9099       | 16.9612 | 0.303211  |
| Case 2 | 0.4375 | 19.7891       | 19.8426 | 0.270328  |
| Case 2 | 0.5    | 23.366        | 23.4216 | 0.237773  |
|        | 0.5625 | 27.7668       | 27.8239 | 0.205873  |
|        | 0.625  | 33.1466       | 33.2045 | 0.174731  |
|        | 0.6875 | 39.6951       | 39.7524 | 0.144321  |
|        | 0.75   | 47.6433       | 47.6979 | 0.11456   |
|        | 0.8125 | 57.2714       | 57.3202 | 0.0853443 |
|        | 0.875  | 68.9188       | 68.9577 | 0.0565714 |
|        | 0.9375 | 82.9962       | 83.0195 | 0.0281491 |
|        | 1      | 100           | 100     | 0         |

#### **A.1.5** $\alpha = 5$

| n = 2  |              |            |         |  |  |
|--------|--------------|------------|---------|--|--|
| Case 1 |              |            |         |  |  |
| x      | $T_{-}exact$ | $T_{-}FDM$ | Error   |  |  |
| 0      | 0            | 0          | nan     |  |  |
| 0.5    | 8.15356      | 12.1212    | 48.6616 |  |  |
| 1      | 100          | 100        | 0       |  |  |
|        | C            | lase 2     |         |  |  |
| X      | $T$ _exact   | $T_{-}FDM$ | Error   |  |  |
| 0      | 1.34753      | 3.02744    | 124.666 |  |  |
| 0.5    | 8.26343      | 12.4882    | 51.1257 |  |  |
| 1      | 100          | 100        | 0       |  |  |
|        | _            | 1 = 4      |         |  |  |
|        |              | lase 1     |         |  |  |
| X      | $T_{-}exact$ | T_FDM      | Error   |  |  |
| 0      | 0            | 0          | nan     |  |  |
| 0.25   | 2.15883      | 2.62549    | 21.6165 |  |  |
| 0.5    | 8.15356      | 9.35331    | 14.7144 |  |  |
| 0.75   | 28.6359      | 30.6957    | 7.19282 |  |  |
| 1      | 100          | 100        | 0       |  |  |
| Case 2 |              |            |         |  |  |
| X      | $T_{-}exact$ | $T_{-}FDM$ | Error   |  |  |
| 0      | 1.34753      | 1.78085    | 32.1565 |  |  |
| 0.25   | 2.5447       | 3.17213    | 24.6562 |  |  |
| 0.5    | 8.26343      | 9.51987    | 15.2048 |  |  |
| 0.75   | 28.665       | 30.7424    | 7.24715 |  |  |
| 1      | 100          | 100        | 0       |  |  |
|        |              |            |         |  |  |

| n = 8 Case 1                                                                                                                  |                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                                              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| x                                                                                                                             | T_exact                                                                                                                                                           | $\frac{\text{ase 1}}{\text{T}\text{-FDM}}$                                                                                                            | Error                                                                                                                                                        |  |  |
| $\frac{\lambda}{0}$                                                                                                           | 0                                                                                                                                                                 | 0                                                                                                                                                     | nan                                                                                                                                                          |  |  |
| 0.125                                                                                                                         | 0.898199                                                                                                                                                          | 0.954044                                                                                                                                              | 6.21746                                                                                                                                                      |  |  |
| 0.125                                                                                                                         | 2.15883                                                                                                                                                           | 2.28076                                                                                                                                               | 5.64815                                                                                                                                                      |  |  |
| 0.25                                                                                                                          | 4.29056                                                                                                                                                           | 4.4984                                                                                                                                                | 4.84417                                                                                                                                                      |  |  |
| 0.5                                                                                                                           | 8.15356                                                                                                                                                           | 8.47323                                                                                                                                               | 3.92057                                                                                                                                                      |  |  |
| 0.625                                                                                                                         | 15.3066                                                                                                                                                           | 15.7579                                                                                                                                               | 2.94855                                                                                                                                                      |  |  |
| 0.75                                                                                                                          | 28.6359                                                                                                                                                           | 29.198                                                                                                                                                | 1.96289                                                                                                                                                      |  |  |
| 0.875                                                                                                                         | 53.5201                                                                                                                                                           | 54.0436                                                                                                                                               | 0.978188                                                                                                                                                     |  |  |
| 1                                                                                                                             | 100                                                                                                                                                               | 100                                                                                                                                                   | 0.010100                                                                                                                                                     |  |  |
|                                                                                                                               |                                                                                                                                                                   | ase 2                                                                                                                                                 |                                                                                                                                                              |  |  |
| X                                                                                                                             | T_exact                                                                                                                                                           | T_FDM                                                                                                                                                 | Error                                                                                                                                                        |  |  |
| 0                                                                                                                             | 1.34753                                                                                                                                                           | 1.45683                                                                                                                                               | 8.11132                                                                                                                                                      |  |  |
| 0.125                                                                                                                         | 1.6194                                                                                                                                                            | 1.74137                                                                                                                                               | 7.53186                                                                                                                                                      |  |  |
| 0.25                                                                                                                          | 2.5447                                                                                                                                                            | 2.70613                                                                                                                                               | 6.34346                                                                                                                                                      |  |  |
| 0.375                                                                                                                         | 4.49682                                                                                                                                                           | 4.72797                                                                                                                                               | 5.14025                                                                                                                                                      |  |  |
| 0.5                                                                                                                           | 8.26343                                                                                                                                                           | 8.59667                                                                                                                                               | 4.03265                                                                                                                                                      |  |  |
| 0.625                                                                                                                         | 15.3644                                                                                                                                                           | 15.8234                                                                                                                                               | 2.98768                                                                                                                                                      |  |  |
| 0.75                                                                                                                          | 28.665                                                                                                                                                            | 29.2313                                                                                                                                               | 1.97532                                                                                                                                                      |  |  |
| 0.875                                                                                                                         | 53.5322                                                                                                                                                           | 54.0575                                                                                                                                               | 0.981321                                                                                                                                                     |  |  |
| 1                                                                                                                             | 100                                                                                                                                                               | 100                                                                                                                                                   | 0                                                                                                                                                            |  |  |
|                                                                                                                               |                                                                                                                                                                   | = 16<br>ase 1                                                                                                                                         |                                                                                                                                                              |  |  |
| X                                                                                                                             | T_exact                                                                                                                                                           | T_FDM                                                                                                                                                 | Error                                                                                                                                                        |  |  |
|                                                                                                                               |                                                                                                                                                                   | 0                                                                                                                                                     |                                                                                                                                                              |  |  |
| 0                                                                                                                             | 0                                                                                                                                                                 |                                                                                                                                                       | nan                                                                                                                                                          |  |  |
| 0.0625                                                                                                                        | 0.428029                                                                                                                                                          | 0.434917                                                                                                                                              | $\frac{\text{nan}}{1.60917}$                                                                                                                                 |  |  |
| -                                                                                                                             |                                                                                                                                                                   | _                                                                                                                                                     |                                                                                                                                                              |  |  |
| 0.0625                                                                                                                        | 0.428029                                                                                                                                                          | 0.434917                                                                                                                                              | 1.60917                                                                                                                                                      |  |  |
| $0.0625 \\ 0.125$                                                                                                             | 0.428029 $0.898199$                                                                                                                                               | 0.434917 $0.912305$                                                                                                                                   | $\begin{array}{c} 1.60917 \\ 1.57056 \end{array}$                                                                                                            |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25                                                                                             | 0.428029<br>0.898199<br>1.4568<br>2.15883                                                                                                                         | $0.434917 \\ 0.912305 \\ 1.47879$                                                                                                                     | 1.60917<br>1.57056<br>1.50929                                                                                                                                |  |  |
| 0.0625<br>0.125<br>0.1875                                                                                                     | 0.428029<br>0.898199<br>1.4568                                                                                                                                    | 0.434917<br>0.912305<br>1.47879<br>2.18968                                                                                                            | 1.60917<br>1.57056<br>1.50929<br>1.42918                                                                                                                     |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125                                                                                   | 0.428029<br>0.898199<br>1.4568<br>2.15883<br>3.0734                                                                                                               | 0.434917<br>0.912305<br>1.47879<br>2.18968<br>3.11441                                                                                                 | 1.60917<br>1.57056<br>1.50929<br>1.42918<br>1.3344                                                                                                           |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375                                                                          | 0.428029<br>0.898199<br>1.4568<br>2.15883<br>3.0734<br>4.29056                                                                                                    | 0.434917<br>0.912305<br>1.47879<br>2.18968<br>3.11441<br>4.34328                                                                                      | 1.60917<br>1.57056<br>1.50929<br>1.42918<br>1.3344<br>1.22884                                                                                                |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375                                                                | 0.428029<br>0.898199<br>1.4568<br>2.15883<br>3.0734<br>4.29056<br>5.93014                                                                                         | 0.434917<br>0.912305<br>1.47879<br>2.18968<br>3.11441<br>4.34328<br>5.9963                                                                            | 1.60917<br>1.57056<br>1.50929<br>1.42918<br>1.3344<br>1.22884<br>1.11573                                                                                     |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5                                                         | 0.428029<br>0.898199<br>1.4568<br>2.15883<br>3.0734<br>4.29056<br>5.93014<br>8.15356                                                                              | 0.434917<br>0.912305<br>1.47879<br>2.18968<br>3.11441<br>4.34328<br>5.9963<br>8.2349                                                                  | 1.60917<br>1.57056<br>1.50929<br>1.42918<br>1.3344<br>1.22884<br>1.11573<br>0.997575                                                                         |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625                                               | 0.428029<br>0.898199<br>1.4568<br>2.15883<br>3.0734<br>4.29056<br>5.93014<br>8.15356<br>11.1797                                                                   | 0.434917<br>0.912305<br>1.47879<br>2.18968<br>3.11441<br>4.34328<br>5.9963<br>8.2349<br>11.2777                                                       | 1.60917<br>1.57056<br>1.50929<br>1.42918<br>1.3344<br>1.22884<br>1.11573<br>0.997575<br>0.876171                                                             |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625                                      | 0.428029<br>0.898199<br>1.4568<br>2.15883<br>3.0734<br>4.29056<br>5.93014<br>8.15356<br>11.1797<br>15.3066                                                        | 0.434917<br>0.912305<br>1.47879<br>2.18968<br>3.11441<br>4.34328<br>5.9963<br>8.2349<br>11.2777<br>15.4218                                            | 1.60917<br>1.57056<br>1.50929<br>1.42918<br>1.3344<br>1.22884<br>1.11573<br>0.997575<br>0.876171<br>0.752755                                                 |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875                            | 0.428029<br>0.898199<br>1.4568<br>2.15883<br>3.0734<br>4.29056<br>5.93014<br>8.15356<br>11.1797<br>15.3066<br>20.9404                                             | 0.434917<br>0.912305<br>1.47879<br>2.18968<br>3.11441<br>4.34328<br>5.9963<br>8.2349<br>11.2777<br>15.4218<br>21.072                                  | 1.60917<br>1.57056<br>1.50929<br>1.42918<br>1.3344<br>1.22884<br>1.11573<br>0.997575<br>0.876171<br>0.752755<br>0.628147                                     |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75                    | 0.428029<br>0.898199<br>1.4568<br>2.15883<br>3.0734<br>4.29056<br>5.93014<br>8.15356<br>11.1797<br>15.3066<br>20.9404<br>28.6359                                  | 0.434917<br>0.912305<br>1.47879<br>2.18968<br>3.11441<br>4.34328<br>5.9963<br>8.2349<br>11.2777<br>15.4218<br>21.072<br>28.7799                       | 1.60917<br>1.57056<br>1.50929<br>1.42918<br>1.3344<br>1.22884<br>1.11573<br>0.997575<br>0.876171<br>0.752755<br>0.628147<br>0.502869                         |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75<br>0.8125          | 0.428029<br>0.898199<br>1.4568<br>2.15883<br>3.0734<br>4.29056<br>5.93014<br>8.15356<br>11.1797<br>15.3066<br>20.9404<br>28.6359<br>39.1507                       | 0.434917<br>0.912305<br>1.47879<br>2.18968<br>3.11441<br>4.34328<br>5.9963<br>8.2349<br>11.2777<br>15.4218<br>21.072<br>28.7799<br>39.2984            | 1.60917<br>1.57056<br>1.50929<br>1.42918<br>1.3344<br>1.22884<br>1.11573<br>0.997575<br>0.876171<br>0.752755<br>0.628147<br>0.502869<br>0.377251             |  |  |
| 0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75<br>0.8125<br>0.875 | 0.428029<br>0.898199<br>1.4568<br>2.15883<br>3.0734<br>4.29056<br>5.93014<br>8.15356<br>11.1797<br>15.3066<br>20.9404<br>28.6359<br>39.1507<br>53.5201<br>73.1587 | 0.434917<br>0.912305<br>1.47879<br>2.18968<br>3.11441<br>4.34328<br>5.9963<br>8.2349<br>11.2777<br>15.4218<br>21.072<br>28.7799<br>39.2984<br>53.6547 | 1.60917<br>1.57056<br>1.50929<br>1.42918<br>1.3344<br>1.22884<br>1.11573<br>0.997575<br>0.876171<br>0.752755<br>0.628147<br>0.502869<br>0.377251<br>0.251493 |  |  |

| X      | $T_{-}exact$ | $T_{-}FDM$ | Error    |
|--------|--------------|------------|----------|
| 0      | 1.34753      | 1.37492    | 2.03267  |
| 0.0625 | 1.41386      | 1.44205    | 1.9939   |
| 0.125  | 1.6194       | 1.65001    | 1.89064  |
| 0.1875 | 1.98437      | 2.01911    | 1.75077  |
| 0.25   | 2.5447       | 2.58538    | 1.5985   |
| 0.3125 | 3.35558      | 3.40413    | 1.44702  |
| 0.375  | 4.49682      | 4.55532    | 1.30094  |
| 0.4375 | 6.08079      | 6.15136    | 1.1606   |
| 0.5    | 8.26343      | 8.34812    | 1.02487  |
| 0.5625 | 11.2596      | 11.3601    | 0.892458 |
| 0.625  | 15.3644      | 15.4815    | 0.76229  |
| 0.6875 | 20.9818      | 21.1148    | 0.633606 |
| 0.75   | 28.665       | 28.81      | 0.505901 |
| 0.8125 | 39.1704      | 39.3188    | 0.378852 |
| 0.875  | 53.5322      | 53.6672    | 0.252258 |
| 0.9375 | 73.1644      | 73.2566    | 0.125999 |
| 1      | 100          | 100        | 0        |

**A.1.6**  $\alpha = 7$ 

| Case 1 |              |            |         |  |  |
|--------|--------------|------------|---------|--|--|
| X      | $T_{-}exact$ | $T_{-}FDM$ | Error   |  |  |
| 0      | 0            | 0          | nan     |  |  |
| 0.5    | 3.01699      | 7.01754    | 132.601 |  |  |
| 1      | 100          | 100        | 0       |  |  |
|        | С            | lase 2     |         |  |  |
| x      | $T_{-}exact$ | $T_{-}FDM$ | Error   |  |  |
| 0      | 0.182376     | 0.994716   | 445.419 |  |  |
| 0.5    | 3.02249      | 7.08735    | 134.487 |  |  |
| 1      | 100          | 100        | 0       |  |  |
|        | n            | 1 = 4      |         |  |  |
|        |              | lase 1     |         |  |  |
| X      | $T_{-}exact$ | $T_{-}FDM$ | Error   |  |  |
| 0      | 0            | 0          | nan     |  |  |
| 0.25   | 0.508906     | 0.835971   | 64.2683 |  |  |
| 0.5    | 3.01699      | 4.2321     | 40.2759 |  |  |
| 0.75   | 17.3769      | 20.5891    | 18.485  |  |  |
| 1      | 100          | 100        | 0       |  |  |
| Case 2 |              |            |         |  |  |
| X      | $T_{-}exact$ | $T_{-}FDM$ | Error   |  |  |
| 0      | 0.182376     | 0.359502   | 97.121  |  |  |
| 0.25   | 0.540598     | 0.909989   | 68.3303 |  |  |
| 0.5    | 3.02249      | 4.24732    | 40.5239 |  |  |
| 0.75   | 17.3779      | 20.5921    | 18.496  |  |  |
| 1      | 100          | 100        | 0       |  |  |
| n = 8  |              |            |         |  |  |

| Case 1         |                      |                     |                |  |
|----------------|----------------------|---------------------|----------------|--|
| X              | $T_{-}exact$         | T_FDM               | Error          |  |
| 0              | 0                    | 0                   | nan            |  |
| 0.125          | 0.180736             | 0.214032            | 18.422         |  |
| 0.25           | 0.508906             | 0.591931            | 16.3144        |  |
| 0.375          | 1.25221              | 1.42303             | 13.6414        |  |
| 0.5            | 3.01699              | 3.34363             | 10.8268        |  |
| 0.625          | 7.24283              | 7.8242              | 8.0268         |  |
| 0.75           | 17.3769              | 18.2952             | 5.28429        |  |
| 0.875          | 41.686               | 42.7734             | 2.60845        |  |
| 1              | 100                  | 100                 | 0              |  |
|                |                      | ase 2               |                |  |
| X              | $T_{-}exact$         | $T_{-}FDM$          | Error          |  |
| 0              | 0.182376             | 0.224098            | 22.877         |  |
| 0.125          | 0.256762             | 0.309886            | 20.6901        |  |
| 0.25           | 0.540598             | 0.63293             | 17.0798        |  |
| 0.375          | 1.26542              | 1.44056             | 13.8407        |  |
| 0.5            | 3.02249              | 3.35112             | 10.873         |  |
| 0.625          | 7.24512              | 7.82739             | 8.03677        |  |
| 0.75           | 17.3779              | 18.2965             | 5.2863         |  |
| 0.875          | 41.6864              | 42.7739             | 2.60879        |  |
| 1              | 100                  | 100                 | 0              |  |
|                |                      | = 16                |                |  |
|                | Cε<br>T_exact        | ase 1<br>T_FDM      | Ennon          |  |
| 0<br>0         | 1_exact<br>0         | 0                   | Error          |  |
| 0.0625         | 0.0823596            | 0.086265            | nan<br>4.74189 |  |
| 0.0025 $0.125$ | 0.0823330 $0.180736$ | 0.080203 $0.189042$ | 4.59524        |  |
| 0.125 $0.1875$ | 0.130730 $0.314263$  | 0.103042 $0.328002$ | 4.37198        |  |
| 0.1675 $0.25$  | 0.514205 $0.508906$  | 0.529744            | 4.09465        |  |
| 0.3125         | 0.802521             | 0.832882            | 3.78323        |  |
| 0.375          | 1.25221              | 1.29544             | 3.4523         |  |
| 0.4375         | 1.94543              | 2.00595             | 3.11119        |  |
| 0.4915         | 3.01699              | 3.10042             | 2.76532        |  |
| 0.5625         | 4.67529              | 4.78832             | 2.41764        |  |
| 0.625          | 7.24283              | 7.39274             | 2.06969        |  |
| 0.6875         | 11.219               | 11.4122             | 1.72221        |  |
| 0.75           | 17.3769              | 17.616              | 1.3756         |  |
| 0.8125         | 26.9143              | 27.1916             | 1.03001        |  |
| 0.875          | 41.686               | 41.9718             | 0.685524       |  |
| 0.9375         | 64.5648              | 64.7857             | 0.342184       |  |
| 1              | 100                  | 100                 | 0.012101       |  |
|                | 100                  | 100                 | 0              |  |

Case 2

| X      | T_exact  | T_FDM    | Error    |
|--------|----------|----------|----------|
| 0      | 0.182376 | 0.192622 | 5.61791  |
| 0.0625 | 0.20011  | 0.211056 | 5.47003  |
| 0.125  | 0.256762 | 0.269889 | 5.11243  |
| 0.1875 | 0.363348 | 0.380379 | 4.68726  |
| 0.25   | 0.540598 | 0.563676 | 4.26912  |
| 0.3125 | 0.822982 | 0.854865 | 3.87407  |
| 0.375  | 1.26542  | 1.30968  | 3.49773  |
| 0.4375 | 1.95395  | 2.01518  | 3.13327  |
| 0.5    | 3.02249  | 3.10639  | 2.77583  |
| 0.5625 | 4.67884  | 4.79218  | 2.42256  |
| 0.625  | 7.24512  | 7.39523  | 2.07195  |
| 0.6875 | 11.2204  | 11.4138  | 1.72324  |
| 0.75   | 17.3779  | 17.617   | 1.37605  |
| 0.8125 | 26.9149  | 27.1922  | 1.0302   |
| 0.875  | 41.6864  | 41.9722  | 0.685601 |
| 0.9375 | 64.5649  | 64.7859  | 0.342208 |
| 1      | 100      | 100      | 0        |

## A.2 4th Order

## **A.2.1** $\alpha = 0.2$

|      |              | n = 2      |              |
|------|--------------|------------|--------------|
|      |              | Case 1     |              |
| X    | $T_{-}exact$ | $T_{-}FDM$ | Error        |
| 0    | 0            | 0          | nan          |
| 0.5  | 49.751       | 49.751     | 2.07559e-07  |
| 1    | 100          | 100        | 0            |
|      |              | Case 2     |              |
| X    | $T$ _exact   | $T_{-}FDM$ | Error        |
| 0    | 98.0328      | 98.0328    | 8.22072e-07  |
| 0.5  | 98.5234      | 98.5234    | 6.14512 e-07 |
| 1    | 100          | 100        | 0            |
|      |              | n = 4      |              |
|      |              | Case 1     |              |
| X    | $T_{-}exact$ | $T_{-}FDM$ | Error        |
| 0    | 0            | 0          | nan          |
| 0.25 | 24.8445      | 24.8445    | 1.62285 e-08 |
| 0.5  | 49.751       | 49.751     | 1.29763e-08  |
| 0.75 | 74.782       | 74.782     | 7.56323e-09  |
| 1    | 100          | 100        | 0            |
|      |              | Case 2     |              |

| X     | $T_{-}exact$ | $T_{-}FDM$ | Error       |
|-------|--------------|------------|-------------|
| 0     | 98.0328      | 98.0328    | 5.13948e-08 |
| 0.25  | 98.1554      | 98.1554    | 4.81426e-08 |
| 0.5   | 98.5234      | 98.5234    | 3.84184e-08 |
| 0.75  | 99.1377      | 99.1377    | 2.23185e-08 |
| 1     | 100          | 100        | 0           |
|       |              | n = 8      |             |
|       |              | Case 1     |             |
| X     | $T_{-}exact$ | $T_{-}FDM$ | Error       |
| 0     | 0            | 0          | nan         |
| 0.125 | 12.4183      | 12.4183    | 1.06495e-09 |
| 0.25  | 24.8445      | 24.8445    | 1.0141e-09  |
| 0.375 | 37.2861      | 37.2861    | 9.29405e-10 |
| 0.5   | 49.751       | 49.751     | 8.10873e-10 |
| 0.625 | 62.2471      | 62.2471    | 6.5857e-10  |
| 0.75  | 74.782       | 74.782     | 4.72606e-10 |
| 0.875 | 87.3637      | 87.3637    | 2.53039e-10 |
| 1     | 100          | 100        | 0           |
|       |              | Case 2     |             |
| X     | $T_{-}exact$ | $T_{-}FDM$ | Error       |
| 0     | 98.0328      | 98.0328    | 3.21188e-09 |
| 0.125 | 98.0634      | 98.0634    | 3.16106e-09 |
| 0.25  | 98.1554      | 98.1554    | 3.00866e-09 |
| 0.375 | 98.3086      | 98.3086    | 2.75509e-09 |
| 0.5   | 98.5234      | 98.5234    | 2.40095e-09 |
| 0.625 | 98.7997      | 98.7997    | 1.94717e-09 |
| 0.75  | 99.1377      | 99.1377    | 1.3948e-09  |
| 0.875 | 99.5378      | 99.5378    | 7.45209e-10 |
| 1     | 100          | 100        | 0           |
|       |              | n = 16     |             |
|       |              |            |             |

 ${\it Case}\ 1$ 

| X      | T_exact | T_FDM   | Error        |
|--------|---------|---------|--------------|
| 0      | 0       | 0       | nan          |
| 0.0625 | 6.20869 | 6.20869 | 6.66918e-11  |
| 0.125  | 12.4183 | 12.4183 | 6.59142e-11  |
| 0.1875 | 18.6299 | 18.6299 | 6.46088e-11  |
| 0.25   | 24.8445 | 24.8445 | 6.27476e-11  |
| 0.3125 | 31.0628 | 31.0628 | 6.03997e-11  |
| 0.375  | 37.2861 | 37.2861 | 5.75316e-11  |
| 0.4375 | 43.5152 | 43.5152 | 5.41294e-11  |
| 0.5    | 49.751  | 49.751  | 5.02011e-11  |
| 0.5625 | 55.9947 | 55.9947 | 4.57328e-11  |
| 0.625  | 62.2471 | 62.2471 | 4.07625e-11  |
| 0.6875 | 68.5092 | 68.5092 | 3.52838e-11  |
| 0.75   | 74.782  | 74.782  | 2.92647e-11  |
| 0.8125 | 81.0665 | 81.0665 | 2.27012e-11  |
| 0.875  | 87.3637 | 87.3637 | 1.56645 e-11 |
| 0.9375 | 93.6745 | 93.6745 | 8.07068e-12  |
| 1      | 100     | 100     | 0            |
|        |         | Case 2  |              |
| X      | T_exact | T_FDM   | Error        |
| 0      | 98.0328 | 98.0328 | 1.98566e-10  |
| 0.0625 | 98.0405 | 98.0405 | 1.97797e-10  |
| 0.125  | 98.0634 | 98.0634 | 1.95432e-10  |
| 0.1875 | 98.1017 | 98.1017 | 1.91503e-10  |
| 0.25   | 98.1554 | 98.1554 | 1.86041e-10  |
| 0.3125 | 98.2243 | 98.2243 | 1.78995e-10  |
| 0.375  | 98.3086 | 98.3086 | 1.70385e-10  |
| 0.4375 | 98.4083 | 98.4083 | 1.60205e-10  |
| 0.5    | 98.5234 | 98.5234 | 1.48479e-10  |
| 0.5625 | 98.6538 | 98.6538 | 1.35232e-10  |
| 0.625  | 98.7997 | 98.7997 | 1.20433e-10  |
| 0.6875 | 98.961  | 98.961  | 1.0411e-10   |
| 0.75   | 99.1377 | 99.1377 | 8.62504 e-11 |
| 0.8125 | 99.33   | 99.33   | 6.68982 e-11 |
| 0.875  | 99.5378 | 99.5378 | 4.60714e-11  |
| 0.9375 | 99.7611 | 99.7611 | 2.3789e-11   |
| 1      | 100     | 100     | 0            |

#### **A.2.2** $\alpha = 0.4$

|     |              | n=2        |             |
|-----|--------------|------------|-------------|
|     |              | Case 1     |             |
| X   | $T_{-}exact$ | $T_{-}FDM$ | Error       |
| 0   | 0            | 0          | nan         |
| 0.5 | 49.0164      | 49.0164    | 1.31377e-05 |
| 1   | 100          | 100        | 0           |
|     |              | Case 2     |             |

| X     | T_exact      | T_FDM     | Error          |
|-------|--------------|-----------|----------------|
| 0     | 92.5007      | 92.5007   | 5.05802e-05    |
| 0.5   | 94.3569      | 94.3569   | 3.74425 e-05   |
| 1     | 100          | 100       | 0              |
|       |              | n = 4     | -              |
|       |              | Case 1    |                |
| X     | T_exact      | $T_{FDM}$ | Error          |
| 0     | 0            | 0         | nan            |
| 0.25  | 24.3862      | 24.3862   | 1.02963e-06    |
| 0.5   | 49.0164      | 49.0164   | 8.22072 e-07   |
| 0.75  | 74.1372      | 74.1372   | 4.77966e-07    |
| 1     | 100          | 100       | 0              |
|       |              | Case 2    |                |
| X     | $T_{-}exact$ | T_FDM     | Error          |
| 0     | 92.5007      | 92.5007   | 3.16499e-06    |
| 0.25  | 92.9636      | 92.9636   | 2.95743e-06    |
| 0.5   | 94.3569      | 94.3569   | 2.34292e-06    |
| 0.75  | 96.6946      | 96.6946   | 1.345 e-06     |
| 1     | 100          | 100       | 0              |
|       |              | n = 8     |                |
|       |              | Case 1    |                |
| X     | $T_{-}exact$ | T_FDM     | Error          |
| 0     | 0            | 0         | nan            |
| 0.125 | 12.1779      | 12.1779   | 6.76233e-08    |
| 0.25  | 24.3862      | 24.3862   | 6.43711e-08    |
| 0.375 | 36.6555      | 36.6555   | 5.8958e-08     |
| 0.5   | 49.0164      | 49.0164   | 5.13948e-08    |
| 0.625 | 61.4999      | 61.4999   | 4.16963e-08    |
| 0.75  | 74.1372      | 74.1372   | 2.98818e-08    |
| 0.875 | 86.9599      | 86.9599   | 1.5974e-08     |
| 1     | 100          | 100       | 0              |
|       |              | Case 2    |                |
| X     | T_exact      | T_FDM     | Error          |
| 0     | 92.5007      | 92.5007   | 1.9787e-07     |
| 0.125 | 92.6164      | 92.6164   | 1.94618e-07    |
| 0.25  | 92.9636      | 92.9636   | 1.84894e-07    |
| 0.375 | 93.5433      | 93.5433   | 1.68794 e - 07 |
| 0.5   | 94.3569      | 94.3569   | 1.46476e-07    |
| 0.625 | 95.4065      | 95.4065   | 1.18152e-07    |
| 0.75  | 96.6946      | 96.6946   | 8.40877e-08    |
| 0.875 | 98.2245      | 98.2245   | 4.45895e-08    |
| 1     | 100          | 100       | 0              |
|       |              | n = 16    |                |
|       |              | Cago 1    |                |

Case 1

| X      | T_exact | T_FDM   | Error       |
|--------|---------|---------|-------------|
| 0      | 0       | 0       | nan         |
| 0.0625 | 6.08703 | 6.08703 | 4.27668e-09 |
| 0.125  | 12.1779 | 12.1779 | 4.22583e-09 |
| 0.1875 | 18.2763 | 18.2763 | 4.14113e-09 |
| 0.25   | 24.3862 | 24.3862 | 4.0226e-09  |
| 0.3125 | 30.5113 | 30.5113 | 3.87029e-09 |
| 0.375  | 36.6555 | 36.6555 | 3.68433e-09 |
| 0.4375 | 42.8225 | 42.8225 | 3.46476e-09 |
| 0.5    | 49.0164 | 49.0164 | 3.21172e-09 |
| 0.5625 | 55.2409 | 55.2409 | 2.92531e-09 |
| 0.625  | 61.4999 | 61.4999 | 2.60566e-09 |
| 0.6875 | 67.7974 | 67.7974 | 2.25297e-09 |
| 0.75   | 74.1372 | 74.1372 | 1.8674e-09  |
| 0.8125 | 80.5234 | 80.5234 | 1.44907e-09 |
| 0.875  | 86.9599 | 86.9599 | 9.98258e-10 |
| 0.9375 | 93.4507 | 93.4507 | 5.1516e-10  |
| 1      | 100     | 100     | 0           |
|        |         | Case 2  |             |
| X      | T_exact | T_FDM   | Error       |
| 0      | 92.5007 | 92.5007 | 1.23656e-08 |
| 0.0625 | 92.5297 | 92.5297 | 1.23148e-08 |
| 0.125  | 92.6164 | 92.6164 | 1.21624e-08 |
| 0.1875 | 92.761  | 92.761  | 1.19088e-08 |
| 0.25   | 92.9636 | 92.9636 | 1.15547e-08 |
| 0.3125 | 93.2243 | 93.2243 | 1.11009e-08 |
| 0.375  | 93.5433 | 93.5433 | 1.05485e-08 |
| 0.4375 | 93.9208 | 93.9208 | 9.89893e-09 |
| 0.5    | 94.3569 | 94.3569 | 9.15372e-09 |
| 0.5625 | 94.8521 | 94.8521 | 8.31464e-09 |
| 0.625  | 95.4065 | 95.4065 | 7.38366e-09 |
| 0.6875 | 96.0205 | 96.0205 | 6.36296e-09 |
| 0.75   | 96.6946 | 96.6946 | 5.25487e-09 |
| 0.8125 | 97.4291 | 97.4291 | 4.06184e-09 |
| 0.875  | 98.2245 | 98.2245 | 2.78653e-09 |
| 0.9375 | 99.0813 | 99.0813 | 1.43162e-09 |
| 1      | 100     | 100     | 0           |

**A.2.3**  $\alpha = 0.75$ 

n = 2Case 1

|     |              | Case 1     |             |
|-----|--------------|------------|-------------|
| X   | $T_{-}exact$ | $T_{-}FDM$ | Error       |
| 0   | 0            | 0          | nan         |
| 0.5 | 46.6792      | 46.679     | 0.000550658 |
| 1   | 100          | 100        | 0           |
|     |              | Case 2     |             |

| X     | T_exact | $T_{-}FDM$ | Error          |
|-------|---------|------------|----------------|
| 0     | 77.239  | 77.2375    | 0.00195194     |
| 0.5   | 82.7338 | 82.7326    | 0.00140129     |
| 1     | 100     | 100        | 0              |
|       |         | n = 4      |                |
|       |         | Case 1     |                |
| X     | T_exact | T_FDM      | Error          |
| 0     | 0       | 0          | nan            |
| 0.25  | 22.9353 | 22.9353    | 4.34904 e - 05 |
| 0.5   | 46.6792 | 46.6792    | 3.4555e-05     |
| 0.75  | 72.0691 | 72.069     | 1.99322e-05    |
| 1     | 100     | 100        | 0              |
|       |         | Case 2     |                |
| X     | T_exact | $T_{-}FDM$ | Error          |
| 0     | 77.239  | 77.2389    | 0.00012249     |
| 0.25  | 78.6007 | 78.6006    | 0.000113554    |
| 0.5   | 82.7338 | 82.7337    | 8.79347e-05    |
| 0.75  | 89.784  | 89.784     | 4.87484e-05    |
| 1     | 100     | 100        | 0              |
|       |         | n = 8      |                |
|       |         | Case 1     |                |
| X     | T_exact | T_FDM      | Error          |
| 0     | 0       | 0          | nan            |
| 0.125 | 11.4174 | 11.4174    | 2.86195e-06    |
| 0.25  | 22.9353 | 22.9353    | 2.72097e-06    |
| 0.375 | 34.6548 | 34.6548    | 2.48709e-06    |
| 0.5   | 46.6792 | 46.6792    | 2.16192e-06    |
| 0.625 | 59.1142 | 59.1142    | 1.74767e-06    |
| 0.75  | 72.0691 | 72.0691    | 1.24706e-06    |
| 0.875 | 85.6578 | 85.6578    | 6.63297e-07    |
| 1     | 100     | 100        | 0              |
|       |         | Case 2     |                |
| X     | T_exact | T_FDM      | Error          |
| 0     | 77.239  | 77.239     | 7.66354e-06    |
| 0.125 | 77.5786 | 77.5786    | 7.52256e-06    |
| 0.25  | 78.6007 | 78.6007    | 7.1045e-06     |
| 0.375 | 80.314  | 80.314     | 6.42351e-06    |
| 0.5   | 82.7338 | 82.7338    | 5.50162e-06    |
| 0.625 | 85.8812 | 85.8812    | 4.36666e-06    |
| 0.75  | 89.784  | 89.784     | 3.04994e-06    |
| 0.875 | 94.4765 | 94.4765    | 1.58386e-06    |
| 1     | 100     | 100        | 0              |
|       |         | n = 16     |                |
|       |         | Case 1     |                |
|       |         |            |                |

| X                                                                                                                                  | T_exact                                                                                                                     | T_FDM                                                                                                                     | Error                                                                                                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0                                                                                                                                  | 0                                                                                                                           | 0                                                                                                                         | nan                                                                                                                                                                                                           |  |
| 0.0625                                                                                                                             | 5.70245                                                                                                                     | 5.70245                                                                                                                   | 1.81126e-07                                                                                                                                                                                                   |  |
| 0.125                                                                                                                              | 11.4174                                                                                                                     | 11.4174                                                                                                                   | 1.78918e-07                                                                                                                                                                                                   |  |
| 0.1875                                                                                                                             | 17.1575                                                                                                                     | 17.1575                                                                                                                   | 1.75242 e-07                                                                                                                                                                                                  |  |
| 0.25                                                                                                                               | 22.9353                                                                                                                     | 22.9353                                                                                                                   | 1.70104e-07                                                                                                                                                                                                   |  |
| 0.3125                                                                                                                             | 28.7635                                                                                                                     | 28.7635                                                                                                                   | 1.63514 e-07                                                                                                                                                                                                  |  |
| 0.375                                                                                                                              | 34.6548                                                                                                                     | 34.6548                                                                                                                   | 1.55483e-07                                                                                                                                                                                                   |  |
| 0.4375                                                                                                                             | 40.6224                                                                                                                     | 40.6224                                                                                                                   | 1.46025 e-07                                                                                                                                                                                                  |  |
| 0.5                                                                                                                                | 46.6792                                                                                                                     | 46.6792                                                                                                                   | 1.35155e-07                                                                                                                                                                                                   |  |
| 0.5625                                                                                                                             | 52.8386                                                                                                                     | 52.8386                                                                                                                   | 1.22893e-07                                                                                                                                                                                                   |  |
| 0.625                                                                                                                              | 59.1142                                                                                                                     | 59.1142                                                                                                                   | 1.09257e-07                                                                                                                                                                                                   |  |
| 0.6875                                                                                                                             | 65.5196                                                                                                                     | 65.5196                                                                                                                   | 9.42722e-08                                                                                                                                                                                                   |  |
| 0.75                                                                                                                               | 72.0691                                                                                                                     | 72.0691                                                                                                                   | 7.79612e-08                                                                                                                                                                                                   |  |
| 0.8125                                                                                                                             | 78.7769                                                                                                                     | 78.7769                                                                                                                   | 6.03502 e-08                                                                                                                                                                                                  |  |
| 0.875                                                                                                                              | 85.6578                                                                                                                     | 85.6578                                                                                                                   | 4.14668e-08                                                                                                                                                                                                   |  |
| 0.9375                                                                                                                             | 92.727                                                                                                                      | 92.727                                                                                                                    | 2.134e-08                                                                                                                                                                                                     |  |
| 1                                                                                                                                  | 100                                                                                                                         | 100                                                                                                                       | 0                                                                                                                                                                                                             |  |
| Case 2                                                                                                                             |                                                                                                                             |                                                                                                                           |                                                                                                                                                                                                               |  |
|                                                                                                                                    |                                                                                                                             |                                                                                                                           |                                                                                                                                                                                                               |  |
| X                                                                                                                                  | $T_{-}exact$                                                                                                                | $T_{FDM}$                                                                                                                 | Error                                                                                                                                                                                                         |  |
| 0                                                                                                                                  | T_exact 77.239                                                                                                              | T_FDM<br>77.239                                                                                                           | 4.79095e-07                                                                                                                                                                                                   |  |
| 0<br>0.0625                                                                                                                        | T_exact<br>77.239<br>77.3238                                                                                                | T_FDM<br>77.239<br>77.3238                                                                                                | 4.79095e-07<br>4.76886e-07                                                                                                                                                                                    |  |
| $0 \\ 0.0625 \\ 0.125$                                                                                                             | T_exact<br>77.239<br>77.3238<br>77.5786                                                                                     | T_FDM<br>77.239<br>77.3238<br>77.5786                                                                                     | 4.79095e-07<br>4.76886e-07<br>4.70281e-07                                                                                                                                                                     |  |
| 0<br>0.0625<br>0.125<br>0.1875                                                                                                     | T_exact 77.239 77.3238 77.5786 78.0039                                                                                      | T_FDM<br>77.239<br>77.3238<br>77.5786<br>78.0039                                                                          | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07                                                                                                                                                      |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25                                                                                             | T_exact 77.239 77.3238 77.5786 78.0039 78.6007                                                                              | T_FDM<br>77.239<br>77.3238<br>77.5786<br>78.0039<br>78.6007                                                               | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07                                                                                                                                       |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125                                                                                   | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701                                                                      | T_FDM<br>77.239<br>77.3238<br>77.5786<br>78.0039<br>78.6007<br>79.3701                                                    | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07                                                                                                                        |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375                                                                          | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314                                                               | T_FDM 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314                                                               | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07<br>4.01573e-07                                                                                                         |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375                                                                | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344                                                       | T_FDM<br>77.239<br>77.3238<br>77.5786<br>78.0039<br>78.6007<br>79.3701<br>80.314<br>81.4344                               | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07<br>4.01573e-07<br>3.74537e-07                                                                                          |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5                                                         | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338                                               | T_FDM<br>77.239<br>77.3238<br>77.5786<br>78.0039<br>78.6007<br>79.3701<br>80.314<br>81.4344<br>82.7338                    | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07<br>4.01573e-07<br>3.74537e-07<br>3.4394e-07                                                                            |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625                                               | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215                                        | T_FDM 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215                                        | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07<br>4.01573e-07<br>3.74537e-07<br>3.4394e-07<br>3.10009e-07                                                             |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625                                      | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812                                | T_FDM 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812                                | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07<br>4.01573e-07<br>3.74537e-07<br>3.4394e-07<br>3.10009e-07<br>2.72987e-07                                              |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875                            | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812 87.7362                        | T_FDM 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812 87.7362                        | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07<br>4.01573e-07<br>3.74537e-07<br>3.4394e-07<br>3.10009e-07<br>2.72987e-07<br>2.33122e-07                               |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75                    | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812 87.7362 89.784                 | T_FDM 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812 87.7362 89.784                 | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07<br>4.01573e-07<br>3.74537e-07<br>3.4394e-07<br>3.10009e-07<br>2.72987e-07<br>2.33122e-07<br>1.9067e-07                 |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.6625<br>0.6875<br>0.75<br>0.8125         | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812 87.7362 89.784 92.0292         | T_FDM 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812 87.7362 89.784 92.0292         | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07<br>4.01573e-07<br>3.74537e-07<br>3.10009e-07<br>2.72987e-07<br>2.33122e-07<br>1.9067e-07<br>1.45885e-07                |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75<br>0.8125<br>0.875 | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812 87.7362 89.784 92.0292 94.4765 | T_FDM 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812 87.7362 89.784 92.0292 94.4765 | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07<br>4.01573e-07<br>3.74537e-07<br>3.10009e-07<br>2.72987e-07<br>2.33122e-07<br>1.9067e-07<br>1.45885e-07<br>9.90168e-08 |  |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.6625<br>0.6875<br>0.75<br>0.8125         | T_exact 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812 87.7362 89.784 92.0292         | T_FDM 77.239 77.3238 77.5786 78.0039 78.6007 79.3701 80.314 81.4344 82.7338 84.215 85.8812 87.7362 89.784 92.0292         | 4.79095e-07<br>4.76886e-07<br>4.70281e-07<br>4.59336e-07<br>4.44145e-07<br>4.24838e-07<br>4.01573e-07<br>3.74537e-07<br>3.10009e-07<br>2.72987e-07<br>2.33122e-07<br>1.9067e-07<br>1.45885e-07                |  |

#### **A.2.4** $\alpha = 3$

|     |              | n=2        |             |  |  |
|-----|--------------|------------|-------------|--|--|
|     |              | Case 1     |             |  |  |
| X   | $T_{-}exact$ | $T_{-}FDM$ | Error       |  |  |
| 0   | 0            | 0          | nan         |  |  |
| 0.5 | 21.2548      | 20.9677    | 1.35056     |  |  |
| 1   | 100          | 100        | 1.42109e-14 |  |  |
|     | Case 2       |            |             |  |  |

| X            | $T_{-}exact$ | T_FDM                                 | Error                   |
|--------------|--------------|---------------------------------------|-------------------------|
| 0            | 9.93279      | 9.64062                               | 2.94154                 |
| 0.5          | 23.366       | 22.9892                               | 1.61275                 |
| 1            | 100          | 100                                   | 0                       |
|              |              | n = 4                                 |                         |
|              | <b>(T)</b>   | Case 1                                |                         |
| X            | T_exact      | T_FDM                                 | Error                   |
| 0            | 0            | 0                                     | nan                     |
| 0.25         | 8.20849      | 8.19877                               | 0.118462                |
| 0.5          | 21.2548      | 21.2362                               | 0.0877048               |
| 0.75         | 46.828       | 46.8064                               | 0.0461534               |
| 1            | 100          | 100                                   | 1.42109e-14             |
|              | T_exact      | Case 2<br>T_FDM                       | Error                   |
| X            |              |                                       |                         |
| 0            | 9.93279      | 9.91365                               | 0.192715                |
| 0.25         | 12.8598      | 12.839                                | 0.16198                 |
| 0.5          | 23.366       | 23.3414                               | 0.105102                |
| 0.75         | 47.6433      | 47.6192                               | 0.0506849               |
| 1            | 100          | 100                                   | 0                       |
|              |              | n = 8                                 |                         |
| X            | T_exact      | $\frac{\text{Case 1}}{\text{T-FDM}}$  | Error                   |
| 0            | 0            | 0                                     |                         |
| 0.125        | 3.83166      | 3.83135                               | nan<br>0.0080657        |
| 0.125 $0.25$ | 8.20849      | 8.20788                               | 0.0080037 $0.00751509$  |
| 0.25 $0.375$ | 13.7532      | 13.7523                               | 0.00751509              |
| 0.575        | 21.2548      | 21.2536                               | 0.00005700 $0.00556326$ |
|              |              |                                       |                         |
| 0.625        | 31.7805      | 31.7791                               | 0.00430073              |
| 0.75         | 46.828       | 46.8266                               | 0.00292711              |
| 0.875        | 68.5382      | 68.5371                               | 0.0014842               |
| 1            | 100          | 100                                   | 1.42109e-14             |
| X            | T_exact      | $\frac{\text{Case 2}}{\text{T\_FDM}}$ | Error                   |
| 0            | 9.93279      | 9.93158                               | 0.0122312               |
| 0.125        | 9.95279      | 9.95158 $10.6382$                     | 0.0122312 $0.0116806$   |
| 0.125 $0.25$ |              | 10.0382 $12.8585$                     | 0.0116806 $0.0102795$   |
|              | 12.8598      |                                       |                         |
| 0.375        | 16.9099      | 16.9085                               | 0.00850086              |
| 0.5          | 23.366       | 23.3644                               | 0.00666833              |
| 0.625        | 33.1466      | 33.145                                | 0.00490192              |
| 0.75         | 47.6433      | 47.6418                               | 0.00321492              |
| 0.875        | 68.9188      | 68.9177                               | 0.00158808              |
| 1            | 100          | 100                                   | 0                       |
|              | ]            | n = 16                                |                         |

Case 1

| X      | T_exact | T_FDM   | Error       |
|--------|---------|---------|-------------|
| 0      | 0       | 0       | nan         |
| 0.0625 | 1.88264 | 1.88263 | 0.000515098 |
| 0.125  | 3.83166 | 3.83164 | 0.000506162 |
| 0.1875 | 5.91578 | 5.91576 | 0.00049154  |
| 0.25   | 8.20849 | 8.20846 | 0.000471607 |
| 0.3125 | 10.7906 | 10.7906 | 0.000446846 |
| 0.375  | 13.7532 | 13.7532 | 0.000417799 |
| 0.4375 | 17.2008 | 17.2007 | 0.000385035 |
| 0.5    | 21.2548 | 21.2547 | 0.000349118 |
| 0.5625 | 26.0583 | 26.0582 | 0.000310576 |
| 0.625  | 31.7805 | 31.7804 | 0.000269888 |
| 0.6875 | 38.6233 | 38.6232 | 0.000227472 |
| 0.75   | 46.828  | 46.8279 | 0.000183687 |
| 0.8125 | 56.6838 | 56.6837 | 0.000138828 |
| 0.875  | 68.5382 | 68.5381 | 9.31383e-05 |
| 0.9375 | 82.8092 | 82.8091 | 4.68113e-05 |
| 1      | 100     | 100     | 1.42109e-14 |
|        |         | Case 2  |             |
| X      | T_exact | T_FDM   | Error       |
| 0      | 9.93279 | 9.93272 | 0.000767589 |
| 0.0625 | 10.1079 | 10.1078 | 0.000758654 |
| 0.125  | 10.6394 | 10.6393 | 0.000733034 |
| 0.1875 | 11.5461 | 11.546  | 0.000693848 |
| 0.25   | 12.8598 | 12.8597 | 0.0006451   |
| 0.3125 | 14.627  | 14.6269 | 0.000590631 |
| 0.375  | 16.9099 | 16.9098 | 0.000533478 |
| 0.4375 | 19.7891 | 19.789  | 0.000475693 |
| 0.5    | 23.366  | 23.3659 | 0.000418472 |
| 0.5625 | 27.7668 | 27.7667 | 0.000362388 |
| 0.625  | 33.1466 | 33.1465 | 0.000307618 |
| 0.6875 | 39.6951 | 39.695  | 0.000254121 |
| 0.75   | 47.6433 | 47.6432 | 0.00020175  |
| 0.8125 | 57.2714 | 57.2713 | 0.000150322 |
| 0.875  | 68.9188 | 68.9187 | 9.9658e-05  |
| 0.9375 | 82.9962 | 82.9961 | 4.95958e-05 |
| 1      | 100     | 100     | 0           |

#### **A.2.5** $\alpha = 5$

|     | n=2          |           |         |  |  |  |  |
|-----|--------------|-----------|---------|--|--|--|--|
|     | (            | Case 1    |         |  |  |  |  |
| X   | $T_{-}exact$ | $T_{FDM}$ | Error   |  |  |  |  |
| 0   | 0            | 0         | nan     |  |  |  |  |
| 0.5 | 8.15356      | 6.6474    | 18.4725 |  |  |  |  |
| 1   | 100          | 100       | 0       |  |  |  |  |
|     | Case 2       |           |         |  |  |  |  |

Case 1

| x T_exact T_ |          | T_FDM    | Error       |
|--------------|----------|----------|-------------|
|              | 0 0 0    |          | nan         |
| 0.0625       | 0.428029 | 0.427995 | 0.00785374  |
| 0.125        | 0.898199 | 0.89813  | 0.00766651  |
| 0.1875       | 1.4568   | 1.45669  | 0.00736928  |
| 0.25         | 2.15883  | 2.15868  | 0.00698049  |
| 0.3125       | 3.0734   | 3.0732   | 0.00652024  |
| 0.375        | 4.29056  | 4.2903   | 0.00600723  |
| 0.4375       | 5.93014  | 5.92981  | 0.0054571   |
| 0.5          | 8.15356  | 8.15316  | 0.00488186  |
| 0.5625       | 11.1797  | 11.1793  | 0.0042902   |
| 0.625        | 15.3066  | 15.306   | 0.00368806  |
| 0.6875       | 20.9404  | 20.9398  | 0.00307941  |
| 0.75         | 28.6359  | 28.6352  | 0.00246676  |
| 0.8125       | 39.1507  | 39.15    | 0.0018517   |
| 0.875        | 53.5201  | 53.5194  | 0.0012352   |
| 0.9375       | 73.1587  | 73.1582  | 0.000617849 |
| 1            | 100      | 100      | 0           |
|              |          | Case 2   |             |
| X            | T_exact  | T_FDM    | Error       |
| 0            | 1.34753  | 1.34739  | 0.00989504  |
| 0.0625       | 1.41386  | 1.41373  | 0.00970782  |
| 0.125        | 1.6194   | 1.61925  | 0.00920903  |
| 0.1875       | 1.98437  | 1.9842   | 0.00853303  |
| 0.25         | 2.5447   | 2.54451  | 0.00779647  |
| 0.3125       | 3.35558  | 3.35534  | 0.00706296  |
| 0.375        | 4.49682  | 4.49653  | 0.0063547   |
| 0.4375       | 6.08079  | 6.08044  | 0.00567333  |
| 0.5          | 8.26343  | 8.26302  | 0.00501342  |
| 0.5625       | 11.2596  | 11.2592  | 0.0043687   |
| 0.625        | 15.3644  | 15.3638  | 0.00373402  |
| 0.6875       | 20.9818  | 20.9812  | 0.00310573  |
| 0.75         | 28.665   | 28.6643  | 0.00248138  |
| 0.8125       | 39.1704  | 39.1696  | 0.00185942  |
| 0.875        | 53.5322  | 53.5315  | 0.00123889  |
| 0.9375       | 73.1644  | 73.164   | 0.0006192   |
| 1            | 100      | 100      | 0           |

**A.2.6**  $\alpha = 7$ 

n = 2Case 1

|        | Case 1              |           |         |  |  |  |  |
|--------|---------------------|-----------|---------|--|--|--|--|
| X      | $T_{\text{-}exact}$ | $T\_FDM$  | Error   |  |  |  |  |
| 0      | 0                   | 0         | nan     |  |  |  |  |
| 0.5    | 3.01699             | -0.170648 | 105.656 |  |  |  |  |
| 1      | 100                 | 100       | 0       |  |  |  |  |
| Case 2 |                     |           |         |  |  |  |  |

| X     | T_exact  | T_FDM        | Error    |
|-------|----------|--------------|----------|
| 0     | 0.182376 | 0.000582421  | 99.6806  |
| 0.5   | 3.02249  | -0.170649    | 105.646  |
| 1     | 100      | 100          | 0        |
|       |          | n = 4        |          |
|       |          | Case 1       |          |
| X     | T_exact  | $T_{-}FDM$   | Error    |
| 0     |          | 0            | nan      |
| 0.25  |          | 0.462777     | 9.0644   |
| 0.5   |          |              | 6.24951  |
| 0.75  | 17.3769  | 16.8243      | 3.18006  |
| 1     |          |              | 0        |
|       |          | Case 2       |          |
| X     |          |              | Error    |
| 0     |          |              | 12.1279  |
| 0.25  |          |              | 9.40781  |
| 0.5   |          |              | 6.27021  |
| 0.75  |          |              | 3.18097  |
| 1     | . 100    |              | 0        |
|       |          | n = 8 Case 1 |          |
| X     |          |              | Error    |
|       |          |              | nan      |
| 0.125 | 0.180736 | 0.179502     | 0.682755 |
| 0.25  | 0.508906 | 0.505802     | 0.609911 |
| 0.375 | 1.25221  | 1.24575      | 0.515978 |
| 0.5   | 3.01699  | 3.00447      | 0.41486  |
| 0.625 | 7.24283  | 7.22026      | 0.311709 |
| 0.75  | 17.3769  | 17.3408      | 0.20799  |
| 0.875 | 41.686   | 41.6427      | 0.10406  |
| 1     | 100      | 100          | 0        |
|       |          | Case 2       |          |
| X     |          |              | Error    |
| (     |          |              | 0.829496 |
| 0.125 |          |              | 0.756759 |
| 0.25  |          |              | 0.634875 |
| 0.375 |          |              | 0.522478 |
| 0.5   |          |              | 0.416363 |
| 0.625 |          |              | 0.312034 |
| 0.75  |          |              | 0.208055 |
| 0.875 |          |              | 0.104071 |
| 1     |          |              | 0        |
|       | :        | n = 16       |          |

Case 1

| x      | T_exact   | T_FDM     | Error      |
|--------|-----------|-----------|------------|
| 0      | 0         | 0         | nan        |
| 0.0625 | 0.0823596 | 0.0823225 | 0.0449748  |
| 0.125  | 0.180736  | 0.180658  | 0.043611   |
| 0.1875 | 0.314263  | 0.314132  | 0.0415324  |
| 0.25   | 0.508906  | 0.508708  | 0.038946   |
| 0.3125 | 0.802521  | 0.802232  | 0.0360353  |
| 0.375  | 1.25221   | 1.2518    | 0.0329342  |
| 0.4375 | 1.94543   | 1.94485   | 0.0297283  |
| 0.5    | 3.01699   | 3.01619   | 0.0264676  |
| 0.5625 | 4.67529   | 4.6742    | 0.0231792  |
| 0.625  | 7.24283   | 7.24139   | 0.0198772  |
| 0.6875 | 11.219    | 11.2171   | 0.0165686  |
| 0.75   | 17.3769   | 17.3746   | 0.0132567  |
| 0.8125 | 26.9143   | 26.9117   | 0.0099434  |
| 0.875  | 41.686    | 41.6833   | 0.00662929 |
| 0.9375 | 64.5648   | 64.5626   | 0.00331477 |
| 1      | 100       | 100       | 0          |
|        |           | Case 2    |            |
| X      | T_exact   | T_FDM     | Error      |
| 0      | 0.182376  | 0.18228   | 0.0530248  |
| 0.0625 | 0.20011   | 0.200007  | 0.0516611  |
| 0.125  | 0.256762  | 0.256638  | 0.0483602  |
| 0.1875 | 0.363348  | 0.363186  | 0.0444275  |
| 0.25   | 0.540598  | 0.540378  | 0.0405481  |
| 0.3125 | 0.822982  | 0.822678  | 0.0368694  |
| 0.375  | 1.26542   | 1.265     | 0.0333513  |
| 0.4375 | 1.95395   | 1.95337   | 0.0299311  |
| 0.5    | 3.02249   | 3.02169   | 0.0265641  |
| 0.5625 | 4.67884   | 4.67775   | 0.0232244  |
| 0.625  | 7.24512   | 7.24368   | 0.019898   |
| 0.6875 | 11.2204   | 11.2186   | 0.016578   |
| 0.75   | 17.3779   | 17.3756   | 0.0132609  |
| 0.8125 | 26.9149   | 26.9122   | 0.0099452  |
| 0.875  | 41.6864   | 41.6836   | 0.00663    |
| 0.9375 | 64.5649   | 64.5628   | 0.00331499 |
| 1      | 100       | 100       | 0          |

## A.3 6th Order

**A.3.1** 
$$\alpha = 0.2$$

 $\begin{array}{l} n=2 \\ Case \ 1 \end{array}$ 

|   | X            | $T_{-}exact$         | $T_{-}FDM$      | Error                      |
|---|--------------|----------------------|-----------------|----------------------------|
|   | 0            | 0                    | 0               | nan                        |
|   | 0.5          | 49.751               | 49.751          | 2.47221e-11                |
|   | 1            | 100                  | 100             | 0                          |
|   |              |                      | Case 2          |                            |
|   | X            | $T_{\text{-}}$ exact | $T_{-}FDM$      | Error                      |
|   | 0            | 98.0328              | 98.0328         | 9.78771e-11                |
|   | 0.5          | 98.5234              | 98.5234         | 7.31721e-11                |
|   | 1            | 100                  | 100             | 0                          |
|   |              |                      | n = 4           |                            |
|   |              |                      | Case 1          |                            |
|   | X            | $T_{-}exact$         | $T_{-}FDM$      | Error                      |
|   | 0            | 0                    | 0               | nan                        |
|   | 0.25         | 24.8445              | 24.8445         | 5.57693e-13                |
|   | 0.5          | 49.751               | 49.751          | 4.42741e-13                |
|   | 0.75         | 74.782               | 74.782          | 2.47039e-13                |
|   | 1            | 100                  | 100             | 0                          |
| - |              |                      | Case 2          |                            |
|   | X            | T_exact              | T_FDM           | Error                      |
|   | 0            | 98.0328              | 98.0328         | 1.72503e-12                |
|   | 0.25         | 98.1554              | 98.1554         | 1.60705e-12                |
|   | 0.5          | 98.5234              | 98.5234         | 1.29815e-12                |
|   | 0.75         | 99.1377              | 99.1377         | 7.45392e-13                |
|   | 1            | 100                  | 100             | 0                          |
| - |              |                      | n = 8           |                            |
|   |              |                      | Case 1          |                            |
| _ | X            | T_exact              | T_FDM           | Error                      |
| _ | 0            | 0                    | 0               | nan                        |
|   | 0.125        | 12.4183              | 12.4183         | 3.0039e-13                 |
|   | 0.25         | 24.8445              | 24.8445         | 3.00296e-13                |
|   | 0.375        | 37.2861              | 37.2861         | 2.66791e-13                |
|   | 0.5          | 49.751               | 49.751          | 2.28511e-13                |
|   | 0.625        | 62.2471              | 62.2471         | 1.94053e-13                |
|   | 0.75         | 74.782               | 74.782          | 1.33021e-13                |
|   | 0.875        | 87.3637              | 87.3637         | 8.13316e-14                |
|   | 1            | 100                  | 100             | 0.13310e-14                |
| _ | 1            | 100                  |                 | 0                          |
| _ | X            | T_exact              | Case 2<br>T_FDM | Error                      |
| _ | 0            | 98.0328              | 98.0328         | 8.11777e-13                |
|   | 0.125        | 98.0634              | 98.0634         | 7.82541e-13                |
|   | 0.125 $0.25$ | 98.1554              | 98.0034         | 7.82541e-15<br>7.38374e-13 |
|   |              |                      |                 |                            |
|   | 0.375        | 98.3086              | 98.3086         | 6.64946e-13                |
|   | 0.5          | 98.5234              | 98.5234         | 5.91377e-13                |
|   | 0.625        | 98.7997              | 98.7997         | 4.74656e-13                |
|   | 0.75         | 99.1377              | 99.1377         | 3.58361e-13                |
|   | 0.875        | 99.5378              | 99.5378         | 1.99876e-13                |
| _ | 1            | 100                  | 100             | 0                          |
|   |              |                      |                 |                            |

| n = 16 |                    |                                      |                   |  |  |  |
|--------|--------------------|--------------------------------------|-------------------|--|--|--|
|        | T arrant           | $\frac{\text{Case 1}}{\text{T_FDM}}$ | Eman              |  |  |  |
| X      | T_exact            |                                      | Error             |  |  |  |
| 0 0005 | 0                  | 0                                    | nan               |  |  |  |
| 0.0625 | 6.20869            | 6.20869                              | 1.07291e-12       |  |  |  |
| 0.125  | 12.4183            | 12.4183                              | 1.05852e-12       |  |  |  |
| 0.1875 | 18.6299            | 18.6299                              | 1.02978e-12       |  |  |  |
| 0.25   | 24.8445            | 24.8445                              | 1.01529e-12       |  |  |  |
| 0.3125 | 31.0628            | 31.0628                              | 9.7216e-13        |  |  |  |
| 0.375  | 37.2861            | 37.2861                              | 9.14712e-13       |  |  |  |
| 0.4375 | 43.5152            | 43.5152                              | 8.49088e-13       |  |  |  |
| 0.5    | 49.751             | 49.751                               | 7.85508e-13       |  |  |  |
| 0.5625 | 55.9947            | 55.9947                              | 7.233e-13         |  |  |  |
| 0.625  | 62.2471            | 62.2471                              | 6.39233e-13       |  |  |  |
| 0.6875 | 68.5092            | 68.5092                              | 5.60061e-13       |  |  |  |
| 0.75   | 74.782             | 74.782                               | 4.75076e-13       |  |  |  |
| 0.8125 | 81.0665            | 81.0665                              | 4.03187e-13       |  |  |  |
| 0.875  | 87.3637            | 87.3637                              | 2.76527e-13       |  |  |  |
| 0.9375 | 93.6745            | 93.6745                              | 1.66875e-13       |  |  |  |
| 1      | 100                | 100                                  | 0                 |  |  |  |
|        |                    | Case 2<br>T FDM                      | Eman              |  |  |  |
| x<br>0 | T_exact<br>98.0328 | 98.0328                              | Error 3.53703e-12 |  |  |  |
| 0.0625 | 98.0328            | 98.0405                              | 3.50776e-12       |  |  |  |
| 0.00_0 | 98.0403            | 00.0-00                              |                   |  |  |  |
| 0.125  |                    | 98.0634                              | 3.46347e-12       |  |  |  |
| 0.1875 | 98.1017            | 98.1017                              | 3.40417e-12       |  |  |  |
| 0.25   | 98.1554            | 98.1554                              | 3.27201e-12       |  |  |  |
| 0.3125 | 98.2243            | 98.2243                              | 3.12503e-12       |  |  |  |
| 0.375  | 98.3086            | 98.3086                              | 2.9778e-12        |  |  |  |
| 0.4375 | 98.4083            | 98.4083                              | 2.8015e-12        |  |  |  |
| 0.5    | 98.5234            | 98.5234                              | 2.59629e-12       |  |  |  |
| 0.5625 | 98.6538            | 98.6538                              | 2.33357e-12       |  |  |  |
| 0.625  | 98.7997            | 98.7997                              | 2.08561e-12       |  |  |  |
| 0.6875 | 98.961             | 98.961                               | 1.78065e-12       |  |  |  |
| 0.75   | 99.1377            | 99.1377                              | 1.47645e-12       |  |  |  |
| 0.8125 | 99.33              | 99.33                                | 1.14454e-12       |  |  |  |
| 0.875  | 99.5378            | 99.5378                              | 7.99503e-13       |  |  |  |
| 0.9375 | 99.7611            | 99.7611                              | 3.98857e-13       |  |  |  |
| 1      | 100                | 100                                  | 0                 |  |  |  |

**A.3.2** 
$$\alpha = 0.4$$
  
 $n = 2$   
Case 1

|      | _   | X   | T_e     | xact  | T_I     | FDM                         |      | Error      | _        |
|------|-----|-----|---------|-------|---------|-----------------------------|------|------------|----------|
|      | _   | 0   |         | 0     |         | 0                           |      | nan        | _        |
|      | 0.  |     | 49.0    | 0164  | 49.     | 0164                        | 6.3  | 22706e-09  |          |
|      |     | 1   |         | 100   |         | 100                         |      | 0          |          |
|      |     |     |         |       | Cas     |                             |      |            | _        |
|      |     | X   | T_e:    | xact  | $T_{-}$ | FDM                         |      | Error      |          |
|      |     | 0   | 92.5    | 5007  | 92.     | 5007                        | 2.   | 39743e-08  |          |
|      | 0.  | 5   | 94.3    | 3569  | 94.     | 3569                        | 1.   | 77472e-08  |          |
|      |     | 1   |         | 100   |         | 100                         |      | 0          | _        |
|      |     |     |         |       | n =     |                             |      |            |          |
|      |     |     | т.      |       | Cas     |                             |      | F          | _        |
|      |     | X   | 1_6     | exact | _ L _   | $\frac{\text{FDM}}{\Omega}$ |      | Erro       | _        |
|      | 0.6 | 0   | 0.4     | 0     | 0.4     | 0                           |      | nar        |          |
|      | 0.5 |     |         | 3862  |         | .3862                       |      | .22565e-10 |          |
|      |     | 1.5 |         | 0164  |         | .0164                       |      | 78481e-11  |          |
|      | 0.  |     | 14.     | 1372  | 74      | .1372                       |      | .68532e-11 |          |
|      |     | 1   |         | 100   | Cas     | 100                         |      | (          | <u> </u> |
|      |     | x   | Τ ε     | exact |         | FDM                         |      | Erroi      | _        |
|      |     | 0   |         | 5007  |         | $\frac{15007}{15007}$       | 3.   | 76823e-10  |          |
|      | 0.5 |     |         | 9636  |         | .9636                       |      | 52124e-10  |          |
|      |     | .5  |         | 3569  |         | .3569                       |      | 78955e-10  |          |
|      | 0.  |     |         | 6946  |         | .6946                       |      | 60149e-10  |          |
|      |     | 1   |         | 100   |         | 100                         |      | (          |          |
|      |     |     |         |       | n =     | = 8                         |      |            | _        |
|      |     |     |         |       | Cas     | e 1                         |      |            | _        |
|      |     | X   | $T_{-}$ | exact |         | FDM                         | [    | Erro       | r        |
|      |     | 0   |         | 0     |         | (                           | )    | na         | n        |
|      | 0.1 | 25  |         | .1779 |         | 2.1779                      |      | .23178e-1  | 2        |
|      |     | 25  | 24      | .3862 | 24      | 1.3862                      | 2 2  | .12701e-1  | 2        |
|      | 0.3 | 75  | 36      | .6555 | 36      | 6.6555                      | 5 1  | .93844e-1  | 2        |
|      | (   | 0.5 |         | .0164 |         | 9.0164                      |      | .68154e-1  | 2        |
|      | 0.6 | 25  | 61      | .4999 |         | 1.4999                      |      | .37487e-1  | 2        |
|      | 0.  | 75  | 74      | .1372 |         | 1.1372                      |      | .58416e-1  | 3        |
|      | 0.8 | 75  | 86      | .9599 | 86      | 3.9599                      | ) 5  | .22939e-1  | 3        |
|      |     | 1   |         | 100   |         | 100                         | )    |            | 0        |
|      | _   |     | X       | T_ex  | act     | T_F                         | 'DM  | I          | Error    |
|      | _   |     | 0       | 92.5  | 007     | 92.5                        | 5007 | 6.62144    | 4e-12    |
|      |     | 0.1 | 125     | 92.6  | 164     | 92.6                        | 6164 | 6.50576    | 6e-12    |
|      |     | 0   | .25     | 92.9  | 636     | 92.9                        | 9636 | 6.19102    | 2e-12    |
| Case | . 2 | 0.3 | 375     | 93.5  | 433     | 93.5                        | 5433 | 5.63613    | Be-12    |
| Case | 5 4 |     | 0.5     | 94.3  | 569     | 94.3                        | 3569 | 4.87968    | 8e-12    |
|      |     | 0.6 | 325     | 95.4  | 065     | 95.4                        | 4065 | 3.94719    | 9e-12    |
|      |     | 0   | .75     | 96.6  | 946     | 96.6                        | 6946 | 2.79236    | 6e-12    |
|      |     | 0.8 | 375     | 98.2  | 245     | 98.2                        | 2245 | 1.47571    | le-12    |
|      |     |     | 1       |       | 100     |                             | 100  |            | 0        |
|      | -   |     |         |       | n =     | 16                          |      | <u>-</u>   |          |
|      |     |     |         |       |         |                             |      |            |          |

|        | Case 1       |            |              |  |  |  |  |
|--------|--------------|------------|--------------|--|--|--|--|
| X      | $T_{-}exact$ | $T_{-}FDM$ | Error        |  |  |  |  |
| 0      | 0            | 0          | nan          |  |  |  |  |
| 0.0625 | 6.08703      | 6.08703    | 1.24026e-12  |  |  |  |  |
| 0.125  | 12.1779      | 12.1779    | 1.22529e-12  |  |  |  |  |
| 0.1875 | 18.2763      | 18.2763    | 1.20521e-12  |  |  |  |  |
| 0.25   | 24.3862      | 24.3862    | 1.16548e-12  |  |  |  |  |
| 0.3125 | 30.5113      | 30.5113    | 1.12946e-12  |  |  |  |  |
| 0.375  | 36.6555      | 36.6555    | 1.06614e-12  |  |  |  |  |
| 0.4375 | 42.8225      | 42.8225    | 1.02875e-12  |  |  |  |  |
| 0.5    | 49.0164      | 49.0164    | 9.42241e-13  |  |  |  |  |
| 0.5625 | 55.2409      | 55.2409    | 8.74658e-13  |  |  |  |  |
| 0.625  | 61.4999      | 61.4999    | 7.85642e-13  |  |  |  |  |
| 0.6875 | 67.7974      | 67.7974    | 6.70745 e-13 |  |  |  |  |
| 0.75   | 74.1372      | 74.1372    | 5.36713e-13  |  |  |  |  |
| 0.8125 | 80.5234      | 80.5234    | 4.41203e-13  |  |  |  |  |
| 0.875  | 86.9599      | 86.9599    | 2.94153e-13  |  |  |  |  |
| 0.9375 | 93.4507      | 93.4507    | 1.52068e-13  |  |  |  |  |
| 1      | 100          | 100        | 0            |  |  |  |  |
|        |              | Case 2     |              |  |  |  |  |
| X      | $T_{-}exact$ | $T_{-}FDM$ | Error        |  |  |  |  |
| 0      | 92.5007      | 92.5007    | 3.10332e-12  |  |  |  |  |
| 0.0625 | 92.5297      | 92.5297    | 3.07163e-12  |  |  |  |  |
| 0.125  | 92.6164      | 92.6164    | 3.03807e-12  |  |  |  |  |
| 0.1875 | 92.761       | 92.761     | 2.97205e-12  |  |  |  |  |
| 0.25   | 92.9636      | 92.9636    | 2.88914e-12  |  |  |  |  |
| 0.3125 | 93.2243      | 93.2243    | 2.77436e-12  |  |  |  |  |
| 0.375  | 93.5433      | 93.5433    | 2.65855e-12  |  |  |  |  |
| 0.4375 | 93.9208      | 93.9208    | 2.49656e-12  |  |  |  |  |
| 0.5    | 94.3569      | 94.3569    | 2.30429e-12  |  |  |  |  |
| 0.5625 | 94.8521      | 94.8521    | 2.11248e-12  |  |  |  |  |
| 0.625  | 95.4065      | 95.4065    | 1.89167e-12  |  |  |  |  |
| 0.6875 | 96.0205      | 96.0205    | 1.62798e-12  |  |  |  |  |
| 0.75   | 96.6946      | 96.6946    | 1.3227e-12   |  |  |  |  |
| 0.8125 | 97.4291      | 97.4291    | 1.03559e-12  |  |  |  |  |
| 0.875  | 98.2245      | 98.2245    | 6.94451e-13  |  |  |  |  |
| 0.9375 | 99.0813      | 99.0813    | 3.58566e-13  |  |  |  |  |
| 1      | 100          | 100        | 0            |  |  |  |  |

**A.3.3**  $\alpha = 0.75$ 

 $\begin{array}{c|cccc} & n=2 \\ & Case \ 1 \\ \hline x & T\_exact & T\_FDM & Error \\ \hline 0 & 0 & 0 & nan \\ 0.5 & 46.6792 & 46.6792 & 9.06905e-07 \\ 1 & 100 & 100 & 0 \\ \end{array}$ 

|       |                      | Case 2     |              |
|-------|----------------------|------------|--------------|
| X     | $T_{\text{-}}$ exact | $T_{-}FDM$ | Error        |
| 0     | 77.239               | 77.239     | 3.21478e-06  |
| 0.5   | 82.7338              | 82.7338    | 2.30787e-06  |
| 1     | 100                  | 100        | 0            |
|       |                      | n = 4      |              |
|       |                      | Case 1     |              |
| X     | $T_{-}exact$         | T_FDM      | Error        |
| 0     | 0                    | 0          | nan          |
| 0.25  | 22.9353              | 22.9353    | 1.81279e-08  |
| 0.5   | 46.6792              | 46.6792    | 1.44033e-08  |
| 0.75  | 72.0691              | 72.0691    | 8.30824e-09  |
| 1     | 100                  | 100        | 0            |
|       |                      | Case 2     |              |
| X     | T_exact              | T_FDM      | Error        |
| 0     | 77.239               | 77.239     | 5.10567e-08  |
| 0.25  | 78.6007              | 78.6007    | 4.73321e-08  |
| 0.5   | 82.7338              | 82.7338    | 3.66533e-08  |
| 0.75  | 89.784               | 89.784     | 2.03195e-08  |
| 1     | 100                  | 100        | 0            |
|       |                      | n = 8      |              |
|       |                      | Case 1     |              |
| X     | $T_{-}exact$         | T_FDM      | Error        |
| 0     | 0                    | 0          | nan          |
| 0.125 | 11.4174              | 11.4174    | 2.99046e-10  |
| 0.25  | 22.9353              | 22.9353    | 2.84338e-10  |
| 0.375 | 34.6548              | 34.6548    | 2.59881e-10  |
| 0.5   | 46.6792              | 46.6792    | 2.25892e-10  |
| 0.625 | 59.1142              | 59.1142    | 1.82593e-10  |
| 0.75  | 72.0691              | 72.0691    | 1.30299e-10  |
| 0.875 | 85.6578              | 85.6578    | 6.92975 e-11 |
| 1     | 100                  | 100        | 0            |
|       |                      | Case 2     |              |
| X     | T_exact              | T_FDM      | Error        |
| 0     | 77.239               | 77.239     | 8.00852e-10  |
| 0.125 | 77.5786              | 77.5786    | 7.86135e-10  |
| 0.25  | 78.6007              | 78.6007    | 7.42411e-10  |
| 0.375 | 80.314               | 80.314     | 6.71279e-10  |
| 0.5   | 82.7338              | 82.7338    | 5.74935e-10  |
| 0.625 | 85.8812              | 85.8812    | 4.5632 e-10  |
| 0.75  | 89.784               | 89.784     | 3.18741e-10  |
| 0.875 | 94.4765              | 94.4765    | 1.65549 e-10 |
| 1     | 100                  | 100        | 0            |
|       |                      | n = 16     |              |
|       |                      | Case 1     |              |
|       |                      |            |              |

| X      | T_exact             | T_FDM   | Error        |
|--------|---------------------|---------|--------------|
| 0      | 0                   | 0       | nan          |
| 0.0625 | 5.70245             | 5.70245 | 5.03085e-12  |
| 0.125  | 11.4174             | 11.4174 | 4.94754e-12  |
| 0.1875 | 17.1575             | 17.1575 | 4.86602 e-12 |
| 0.25   | 22.9353             | 22.9353 | 4.7245e-12   |
| 0.3125 | 28.7635             | 28.7635 | 4.533e-12    |
| 0.375  | 34.6548             | 34.6548 | 4.30572e-12  |
| 0.4375 | 40.6224             | 40.6224 | 4.04051e-12  |
| 0.5    | 46.6792             | 46.6792 | 3.74457e-12  |
| 0.5625 | 52.8386             | 52.8386 | 3.41564e-12  |
| 0.625  | 59.1142             | 59.1142 | 3.04102e-12  |
| 0.6875 | 65.5196             | 65.5196 | 2.62443e-12  |
| 0.75   | 72.0691             | 72.0691 | 2.16902e-12  |
| 0.8125 | 78.7769             | 78.7769 | 1.65962 e-12 |
| 0.875  | 85.6578             | 85.6578 | 1.14473e-12  |
| 0.9375 | 92.727              | 92.727  | 5.67043e-13  |
| 1      | 100                 | 100     | 0            |
|        |                     | Case 2  |              |
| X      | $T_{\text{-exact}}$ | T_FDM   | Error        |
| 0      | 77.239              | 77.239  | 1.33941e-11  |
| 0.0625 | 77.3238             | 77.3238 | 1.33243e-11  |
| 0.125  | 77.5786             | 77.5786 | 1.31706e-11  |
| 0.1875 | 78.0039             | 78.0039 | 1.2862e-11   |
| 0.25   | 78.6007             | 78.6007 | 1.24208e-11  |
| 0.3125 | 79.3701             | 79.3701 | 1.18886e-11  |
| 0.375  | 80.314              | 80.314  | 1.12358e-11  |
| 0.4375 | 81.4344             | 81.4344 | 1.0453e-11   |
| 0.5    | 82.7338             | 82.7338 | 9.58455e-12  |
| 0.5625 | 84.215              | 84.215  | 8.63975e-12  |
| 0.625  | 85.8812             | 85.8812 | 7.57857e-12  |
| 0.6875 | 87.7362             | 87.7362 | 6.4789e-12   |
| 0.75   | 89.784              | 89.784  | 5.28649e-12  |
| 0.8125 | 92.0292             | 92.0292 | 4.04572e-12  |
| 0.875  | 94.4765             | 94.4765 | 2.75263e-12  |
| 0.9375 | 97.1315             | 97.1315 | 1.40453e-12  |
| 1      | 100                 | 100     | 0            |

## **A.3.4** $\alpha = 3$

n = 2Case 1 T\_exact Error T\_FDM 0 0 0 nan 0.5 21.254821.26070.0277156100 100 1.42109e-141 Case 2

| x     | T_exact      | T_FDM             | Error                |
|-------|--------------|-------------------|----------------------|
| 0     | 9.93279      | 9.93885           | 0.0609488            |
| 0.5   | 23.366       | 23.3738           | 0.0009488 $0.033224$ |
| 0.5   |              |                   |                      |
| 1     | 100          | $\frac{100}{n=4}$ | 0                    |
|       |              | Case 1            |                      |
| X     | T_exact      | T_FDM             | Error                |
| 0     | 0            | 0                 | nan                  |
| 0.25  | 8.20849      | 8.20856           | 0.000743033          |
| 0.5   | 21.2548      | 21.2549           | 0.000550047          |
| 0.75  | 46.828       | 46.8281           | 0.000289403          |
| 1     | 100          | 100               | 1.42109e-14          |
|       |              | Case 2            |                      |
| X     | $T_{-}exact$ | T_FDM             | Error                |
| 0     | 9.93279      | 9.93291           | 0.00120937           |
| 0.25  | 12.8598      | 12.86             | 0.00101638           |
| 0.5   | 23.366       | 23.3662           | 0.000659318          |
| 0.75  | 47.6433      | 47.6435           | 0.000317863          |
| 1     | 100          | 100               | 0                    |
|       |              | n = 8             |                      |
|       |              | Case 1            |                      |
| X     | T-exact      | $T_{-}FDM$        | Error                |
| 0     | 0            | 0                 | nan                  |
| 0.125 | 3.83166      | 3.83166           | 1.32844e-05          |
| 0.25  | 8.20849      | 8.2085            | 1.23775e-05          |
| 0.375 | 13.7532      | 13.7532           | 1.09653e-05          |
| 0.5   | 21.2548      | 21.2548           | 9.16274e-06          |
| 0.625 | 31.7805      | 31.7805           | 7.0833e-06           |
| 0.75  | 46.828       | 46.828            | 4.82092e-06          |
| 0.875 | 68.5382      | 68.5382           | 2.44445e-06          |
| 1     | 100          | 100               | 1.42109e-14          |
|       | TD /         | Case 2            |                      |
| X     | T_exact      | T_FDM             | Error                |
| 0     | 9.93279      | 9.93279           | 2.01457e-05          |
| 0.125 | 10.6394      | 10.6394           | 1.92388e-05          |
| 0.25  | 12.8598      | 12.8598           | 1.69309e-05          |
| 0.375 | 16.9099      | 16.9099           | 1.40013e-05          |
| 0.5   | 23.366       | 23.366            | 1.0983e-05           |
| 0.625 | 33.1466      | 33.1466           | 8.07356e-06          |
| 0.75  | 47.6433      | 47.6433           | 5.295e-06            |
| 0.875 | 68.9188      | 68.9188           | 2.61556e-06          |
| 1     | 100          | 100               | 0                    |
|       |              | n = 16            |                      |
|       |              | Case 1            |                      |

56

| X                                                                                                                                  | T_exact                                                                                                                       | T_FDM                                                                                                                                              | Error                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                                  | 0                                                                                                                             | 0                                                                                                                                                  | nan                                                                                                                                                                                                                        |
| 0.0625                                                                                                                             | 1.88264                                                                                                                       | 1.88264                                                                                                                                            | 2.14706e-07                                                                                                                                                                                                                |
| 0.125                                                                                                                              | 3.83166                                                                                                                       | 3.83166                                                                                                                                            | 2.10981e-07                                                                                                                                                                                                                |
| 0.1875                                                                                                                             | 5.91578                                                                                                                       | 5.91578                                                                                                                                            | 2.04886e-07                                                                                                                                                                                                                |
| 0.25                                                                                                                               | 8.20849                                                                                                                       | 8.20849                                                                                                                                            | 1.96578e-07                                                                                                                                                                                                                |
| 0.3125                                                                                                                             | 10.7906                                                                                                                       | 10.7906                                                                                                                                            | 1.86257e-07                                                                                                                                                                                                                |
| 0.375                                                                                                                              | 13.7532                                                                                                                       | 13.7532                                                                                                                                            | 1.74149e-07                                                                                                                                                                                                                |
| 0.4375                                                                                                                             | 17.2008                                                                                                                       | 17.2008                                                                                                                                            | 1.60493e-07                                                                                                                                                                                                                |
| 0.5                                                                                                                                | 21.2548                                                                                                                       | 21.2548                                                                                                                                            | 1.45521 e-07                                                                                                                                                                                                               |
| 0.5625                                                                                                                             | 26.0583                                                                                                                       | 26.0583                                                                                                                                            | 1.29456e-07                                                                                                                                                                                                                |
| 0.625                                                                                                                              | 31.7805                                                                                                                       | 31.7805                                                                                                                                            | 1.12496e-07                                                                                                                                                                                                                |
| 0.6875                                                                                                                             | 38.6233                                                                                                                       | 38.6233                                                                                                                                            | 9.48161e-08                                                                                                                                                                                                                |
| 0.75                                                                                                                               | 46.828                                                                                                                        | 46.828                                                                                                                                             | 7.65652 e-08                                                                                                                                                                                                               |
| 0.8125                                                                                                                             | 56.6838                                                                                                                       | 56.6838                                                                                                                                            | 5.7867e-08                                                                                                                                                                                                                 |
| 0.875                                                                                                                              | 68.5382                                                                                                                       | 68.5382                                                                                                                                            | 3.88223 e-08                                                                                                                                                                                                               |
| 0.9375                                                                                                                             | 82.8092                                                                                                                       | 82.8092                                                                                                                                            | 1.95121e-08                                                                                                                                                                                                                |
| 1                                                                                                                                  | 100                                                                                                                           | 100                                                                                                                                                | 1.42109e-14                                                                                                                                                                                                                |
|                                                                                                                                    |                                                                                                                               | 7.22                                                                                                                                               |                                                                                                                                                                                                                            |
|                                                                                                                                    |                                                                                                                               | Case 2                                                                                                                                             |                                                                                                                                                                                                                            |
| X                                                                                                                                  | $T_{-}exact$                                                                                                                  | T_FDM                                                                                                                                              | Error                                                                                                                                                                                                                      |
| 0                                                                                                                                  | T_exact<br>9.93279                                                                                                            | T_FDM<br>9.93279                                                                                                                                   | 3.19951e-07                                                                                                                                                                                                                |
| 0<br>0.0625                                                                                                                        | T_exact<br>9.93279<br>10.1079                                                                                                 | T_FDM<br>9.93279<br>10.1079                                                                                                                        | 3.19951e-07<br>3.16227e-07                                                                                                                                                                                                 |
| $0 \\ 0.0625 \\ 0.125$                                                                                                             | T_exact<br>9.93279<br>10.1079<br>10.6394                                                                                      | T_FDM<br>9.93279<br>10.1079<br>10.6394                                                                                                             | 3.19951e-07<br>3.16227e-07<br>3.05548e-07                                                                                                                                                                                  |
| 0<br>0.0625<br>0.125<br>0.1875                                                                                                     | T_exact 9.93279 10.1079 10.6394 11.5461                                                                                       | T_FDM<br>9.93279<br>10.1079<br>10.6394<br>11.5461                                                                                                  | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07                                                                                                                                                                   |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25                                                                                             | 7_exact<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598                                                                | 7.FDM<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598                                                                                       | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07                                                                                                                                                    |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125                                                                                   | T_exact<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598<br>14.627                                                      | T.FDM<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598<br>14.627                                                                             | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07                                                                                                                                      |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375                                                                          | T_exact<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598<br>14.627<br>16.9099                                           | T.FDM<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598<br>14.627<br>16.9099                                                                  | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07<br>2.22367e-07                                                                                                                       |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375                                                                | T.exact 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891                                                        | 7.FDM<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598<br>14.627<br>16.9099<br>19.7891                                                       | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07<br>2.22367e-07<br>1.98281e-07                                                                                                        |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5                                                         | T.exact 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366                                                 | T.FDM<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598<br>14.627<br>16.9099<br>19.7891<br>23.366                                             | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07<br>2.22367e-07<br>1.98281e-07<br>1.7443e-07                                                                                          |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625                                               | T_exact 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366 27.7668                                         | T.FDM<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598<br>14.627<br>16.9099<br>19.7891<br>23.366<br>27.7668                                  | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07<br>1.98281e-07<br>1.7443e-07<br>1.51053e-07                                                                                          |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625                                               | T_exact 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366 27.7668 33.1466                                 | T.FDM<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598<br>14.627<br>16.9099<br>19.7891<br>23.366<br>27.7668<br>33.1466                       | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07<br>2.22367e-07<br>1.98281e-07<br>1.7443e-07<br>1.51053e-07<br>1.28223e-07                                                            |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875                            | T-exact 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366 27.7668 33.1466 39.6951                         | 7.FDM<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598<br>14.627<br>16.9099<br>19.7891<br>23.366<br>27.7668<br>33.1466<br>39.6951            | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07<br>2.22367e-07<br>1.98281e-07<br>1.7443e-07<br>1.51053e-07<br>1.28223e-07<br>1.05924e-07                                             |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75                    | T-exact 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366 27.7668 33.1466 39.6951 47.6433                 | 7.FDM<br>9.93279<br>10.1079<br>10.6394<br>11.5461<br>12.8598<br>14.627<br>16.9099<br>19.7891<br>23.366<br>27.7668<br>33.1466<br>39.6951<br>47.6433 | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07<br>2.22367e-07<br>1.98281e-07<br>1.7443e-07<br>1.51053e-07<br>1.28223e-07<br>1.05924e-07<br>8.40943e-08                              |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75                    | T_exact 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366 27.7668 33.1466 39.6951 47.6433 57.2714         | T.FDM 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366 27.7668 33.1466 39.6951 47.6433 57.2714                                | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07<br>2.22367e-07<br>1.98281e-07<br>1.7443e-07<br>1.51053e-07<br>1.28223e-07<br>1.05924e-07<br>8.40943e-08<br>6.2658e-08                |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75<br>0.8125<br>0.875 | T_exact 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366 27.7668 33.1466 39.6951 47.6433 57.2714 68.9188 | T.FDM 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366 27.7668 33.1466 39.6951 47.6433 57.2714 68.9188                        | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07<br>2.22367e-07<br>1.98281e-07<br>1.7443e-07<br>1.51053e-07<br>1.28223e-07<br>1.05924e-07<br>8.40943e-08<br>6.2658e-08<br>4.15399e-08 |
| 0<br>0.0625<br>0.125<br>0.1875<br>0.25<br>0.3125<br>0.375<br>0.4375<br>0.5<br>0.5625<br>0.625<br>0.6875<br>0.75                    | T_exact 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366 27.7668 33.1466 39.6951 47.6433 57.2714         | T.FDM 9.93279 10.1079 10.6394 11.5461 12.8598 14.627 16.9099 19.7891 23.366 27.7668 33.1466 39.6951 47.6433 57.2714                                | 3.19951e-07<br>3.16227e-07<br>3.05548e-07<br>2.89214e-07<br>2.68895e-07<br>2.4619e-07<br>2.22367e-07<br>1.98281e-07<br>1.7443e-07<br>1.51053e-07<br>1.28223e-07<br>1.05924e-07<br>8.40943e-08<br>6.2658e-08                |

**A.3.5**  $\alpha = 5$ 

|     |                     | T_exact  | T_FDM         | Error       |
|-----|---------------------|----------|---------------|-------------|
|     | $\frac{\lambda}{0}$ | 1.34753  | 1.3658        | 1.35571     |
|     | 0.5                 | 8.26343  | 8.32001       | 0.684646    |
|     | 1                   | 100      | 100           | 0.004040    |
|     |                     | 100      | n=4           |             |
|     |                     |          | Case 1        |             |
|     | X                   | T_exact  | T_FDM         | Error       |
|     | 0                   | 0        | 0             | nan         |
| (   | 0.25                | 2.15883  | 2.1594        | 0.0264998   |
|     | 0.5                 | 8.15356  | 8.15507       | 0.018532    |
| (   | 0.75                | 28.6359  | 28.6386       | 0.00936355  |
|     | 1                   | 100      | 100           | 0           |
|     |                     |          | Case 2        |             |
| _   | X                   | T_exact  | $T_{-}FDM$    | Error       |
|     | 0                   | 1.34753  | 1.34803       | 0.0375672   |
| (   | 0.25                | 2.5447   | 2.54546       | 0.0295985   |
|     | 0.5                 | 8.26343  | 8.26501       | 0.0190316   |
| (   | 0.75                | 28.665   | 28.6677       | 0.00941907  |
|     | 1                   | 100      | 100           | 0           |
|     |                     |          | n = 8         | _           |
|     |                     |          | Case 1        |             |
|     | X                   | T_exact  | T_FDM         | Error       |
|     | 0                   | 0        | 0             | nan         |
|     | 125                 | 0.898199 | 0.898204      | 0.000539309 |
|     | .25                 | 2.15883  | 2.15884       | 0.000491048 |
|     | 375                 | 4.29056  | 4.29058       | 0.000422582 |
|     | 0.5                 | 8.15356  | 8.15359       | 0.000343415 |
|     | 625                 | 15.3066  | 15.3066       | 0.000259436 |
|     | .75                 | 28.6359  | 28.636        | 0.000173522 |
| 0.8 | 875                 | 53.5201  | 53.5201       | 8.68886e-05 |
|     | 1                   | 100      | 100           | 0           |
| _   |                     | T        | Case 2        |             |
|     | X                   | T_exact  | T_FDM         | Error       |
| 0   | 105                 | 1.34753  | 1.34754       | 0.000696087 |
|     | .125                | 1.6194   | 1.61941       | 0.000647826 |
|     | 0.25                | 2.5447   | 2.54472       | 0.000548453 |
| U.  | .375                | 4.49682  | 4.49684       | 0.000447027 |
| 0   | 0.5                 | 8.26343  | 8.26346       | 0.00035267  |
|     | .625                | 15.3644  | 15.3644       | 0.000262669 |
|     | 0.75                | 28.665   | 28.6651       | 0.000174551 |
| U.  | .875                | 53.5322  | 53.5322       | 8.71483e-05 |
|     | 1                   | 100      | 100           | 0           |
|     |                     |          |               |             |
|     |                     |          | n = 16 Case 1 |             |

| X      | T_exact  | T_FDM    | Error        |
|--------|----------|----------|--------------|
| 0      | 0        | 0        | nan          |
| 0.0625 | 0.428029 | 0.428029 | 9.02795 e-06 |
| 0.125  | 0.898199 | 0.898199 | 8.81273 e-06 |
| 0.1875 | 1.4568   | 1.4568   | 8.47104 e-06 |
| 0.25   | 2.15883  | 2.15883  | 8.02412 e-06 |
| 0.3125 | 3.0734   | 3.0734   | 7.49504e-06  |
| 0.375  | 4.29056  | 4.29056  | 6.90532 e-06 |
| 0.4375 | 5.93014  | 5.93014  | 6.27293 e-06 |
| 0.5    | 8.15356  | 8.15356  | 5.61168e-06  |
| 0.5625 | 11.1797  | 11.1797  | 4.93155e-06  |
| 0.625  | 15.3066  | 15.3066  | 4.23939e-06  |
| 0.6875 | 20.9404  | 20.9404  | 3.53974e-06  |
| 0.75   | 28.6359  | 28.6359  | 2.8355e-06   |
| 0.8125 | 39.1507  | 39.1507  | 2.12849e-06  |
| 0.875  | 53.5201  | 53.5201  | 1.41983e-06  |
| 0.9375 | 73.1587  | 73.1587  | 7.102e-07    |
| 1      | 100      | 100      | 0            |
|        |          | Case 2   |              |
| X      | T_exact  | T_FDM    | Error        |
| 0      | 1.34753  | 1.34753  | 1.13746e-05  |
| 0.0625 | 1.41386  | 1.41386  | 1.11594e-05  |
| 0.125  | 1.6194   | 1.6194   | 1.0586e-05   |
| 0.1875 | 1.98437  | 1.98437  | 9.80887e-06  |
| 0.25   | 2.5447   | 2.5447   | 8.96215e-06  |
| 0.3125 | 3.35558  | 3.35558  | 8.11894e-06  |
| 0.375  | 4.49682  | 4.49682  | 7.30477e-06  |
| 0.4375 | 6.08079  | 6.08079  | 6.5215e-06   |
| 0.5    | 8.26343  | 8.26343  | 5.76291e-06  |
| 0.5625 | 11.2596  | 11.2596  | 5.02179e-06  |
| 0.625  | 15.3644  | 15.3644  | 4.29222e-06  |
| 0.6875 | 20.9818  | 20.9818  | 3.57e-06     |
| 0.75   | 28.665   | 28.665   | 2.85231e-06  |
| 0.8125 | 39.1704  | 39.1704  | 2.13737e-06  |
| 0.875  | 53.5322  | 53.5322  | 1.42407e-06  |
| 0.9375 | 73.1644  | 73.1644  | 7.11753e-07  |
| 1      | 100      | 100      | 0            |

**A.3.6**  $\alpha = 7$ 

| X                      | T_exact               | T_FDM                                | Error                                                                      |
|------------------------|-----------------------|--------------------------------------|----------------------------------------------------------------------------|
| 0                      | 0.182376              | 0.197403                             | 8.23948                                                                    |
| 0.5                    | 3.02249               | 3.14478                              | 4.04601                                                                    |
| 1                      | 100                   | 100                                  | 0                                                                          |
|                        |                       | n = 4                                |                                                                            |
|                        | T_exact               | $\frac{\text{Case 1}}{\text{T-FDM}}$ | Error                                                                      |
| $\frac{\mathbf{x}}{0}$ | 1_exact<br>0          | 0                                    |                                                                            |
| 0.25                   | _                     | 0.510118                             | $     \begin{array}{r}       \text{nan} \\       0.238063    \end{array} $ |
| $0.25 \\ 0.5$          | $0.508906 \\ 3.01699$ | 3.02187                              | 0.258005                                                                   |
| $0.5 \\ 0.75$          | 3.01099 $17.3769$     | $\frac{3.02187}{17.391}$             | 0.101718 $0.0809614$                                                       |
| 0.75                   | 100                   | 100                                  | 0.0009014                                                                  |
|                        |                       | Case 2                               |                                                                            |
| x                      | T_exact               | T_FDM                                | Error                                                                      |
| ${0}$                  | 0.182376              | 0.182968                             | $\frac{0.32429}{0.32429}$                                                  |
| 0.25                   | 0.540598              | 0.162908 $0.541938$                  | 0.24788                                                                    |
| 0.25                   | 3.02249               | 3.0274                               | 0.162309                                                                   |
| 0.75                   | 17.3779               | 17.3919                              | 0.0809871                                                                  |
| 0.75                   | 100                   | 100                                  | 0.0003071                                                                  |
|                        |                       | $\frac{100}{n=8}$                    |                                                                            |
|                        |                       | Case 1                               |                                                                            |
| X                      | T_exact               | T <sub>-</sub> FDM                   | Error                                                                      |
| 0                      | 0                     | 0                                    | nan                                                                        |
| 0.125                  | 0.180736              | 0.180747                             | 0.00570646                                                                 |
| 0.25                   | 0.508906              | 0.508932                             | 0.00509593                                                                 |
| 0.375                  | 1.25221               | 1.25226                              | 0.00430916                                                                 |
| 0.5                    | 3.01699               | 3.01709                              | 0.00346295                                                                 |
| 0.625                  | 7.24283               | 7.24302                              | 0.00260058                                                                 |
| 0.75                   | 17.3769               | 17.3772                              | 0.00173434                                                                 |
| 0.875                  | 41.686                | 41.6864                              | 0.000867259                                                                |
| 1                      | 100                   | 100                                  | 0                                                                          |
|                        |                       | Case 2                               |                                                                            |
| X                      | $T_{-}exact$          | $T_{-}FDM$                           | Error                                                                      |
| 0                      | 0.182376              | 0.182389                             | 0.00693864                                                                 |
| 0.125                  | 0.256762              | 0.256778                             | 0.00632811                                                                 |
| 0.25                   | 0.540598              | 0.540626                             | 0.00530563                                                                 |
| 0.375                  | 1.26542               | 1.26547                              | 0.00436376                                                                 |
| 0.5                    | 3.02249               | 3.02259                              | 0.00347558                                                                 |
| 0.625                  | 7.24512               | 7.24531                              | 0.0026033                                                                  |
| 0.75                   | 17.3779               | 17.3782                              | 0.00173489                                                                 |
| 0.875                  | 41.6864               | 41.6867                              | 0.000867352                                                                |
| 1                      | 100                   | 100                                  | 0                                                                          |
|                        | 1                     | n = 16                               |                                                                            |
|                        |                       | O 1                                  |                                                                            |

Case 1

| X      | T_exact       | T_FDM     | Error          |
|--------|---------------|-----------|----------------|
| 0      | 0             | 0         | nan            |
| 0.0625 | 0.0823596     | 0.0823597 | 0.000100247    |
| 0.125  | 0.180736      | 0.180737  | 9.72069e-05    |
| 0.1875 | 0.314263      | 0.314263  | 9.2573 e-05    |
| 0.25   | 0.508906      | 0.508907  | 8.68071e-05    |
| 0.3125 | 0.802521      | 0.802522  | 8.03182e-05    |
| 0.375  | 1.25221       | 1.25221   | 7.34051e-05    |
| 0.4375 | 1.94543       | 1.94543   | 6.62587 e-05   |
| 0.5    | 3.01699       | 3.01699   | 5.89903e-05    |
| 0.5625 | 4.67529       | 4.67529   | 5.16604 e - 05 |
| 0.625  | 7.24283       | 7.24284   | 4.43003e-05    |
| 0.6875 | 11.219        | 11.219    | 3.69257e-05    |
| 0.75   | 17.3769       | 17.3769   | 2.95443e-05    |
| 0.8125 | 26.9143       | 26.9144   | 2.21597e-05    |
| 0.875  | 41.686        | 41.686    | 1.47737e-05    |
| 0.9375 | 64.5648       | 64.5648   | 7.387e-06      |
| 1      | 100           | 100       | 0              |
|        |               | Case 2    |                |
| X      | $T_{-}$ exact | $T_{FDM}$ | Error          |
| 0      | 0.182376      | 0.182376  | 0.000118196    |
| 0.0625 | 0.20011       | 0.200111  | 0.000115155    |
| 0.125  | 0.256762      | 0.256762  | 0.000107796    |
| 0.1875 | 0.363348      | 0.363348  | 9.9028e-05     |
| 0.25   | 0.540598      | 0.540598  | 9.03791e-05    |
| 0.3125 | 0.822982      | 0.822983  | 8.21779e-05    |
| 0.375  | 1.26542       | 1.26542   | 7.43351e-05    |
| 0.4375 | 1.95395       | 1.95395   | 6.67108e-05    |
| 0.5    | 3.02249       | 3.02249   | 5.92055e-05    |
| 0.5625 | 4.67884       | 4.67884   | 5.17611e-05    |
| 0.625  | 7.24512       | 7.24512   | 4.43467e-05    |
| 0.6875 | 11.2204       | 11.2204   | 3.69468e-05    |
| 0.75   | 17.3779       | 17.3779   | 2.95537e-05    |
| 0.8125 | 26.9149       | 26.9149   | 2.21638e-05    |
| 0.875  | 41.6864       | 41.6864   | 1.47753e-05    |
| 0.9375 | 64.5649       | 64.5649   | 7.3875e-06     |
| 1      | 100           | 100       | 0              |

### A.4 8th Order

**A.4.1** 
$$\alpha = 0.2$$

 $\begin{array}{l} n=2 \\ Case \ 1 \end{array}$ 

| X            | $T_{\text{-exact}}$ | T_FDM      | Error       |
|--------------|---------------------|------------|-------------|
| 0            | 0                   | 0          | nan         |
| 0.5          | 49.751              | 49.751     | 4.28459e-14 |
| 1            | 100                 | 100        | 0           |
|              |                     | Case 2     |             |
| X            | $T_{\text{-}exact}$ | $T_{-}FDM$ | Error       |
| 0            | 98.0328             | 98.0328    | 1.30464e-13 |
| 0.5          | 98.5234             | 98.5234    | 1.00967e-13 |
| 1            | 100                 | 100        | 0           |
|              |                     | n = 4      |             |
|              |                     | Case 1     |             |
| X            | T_exact             | T_FDM      | Error       |
| 0            | 0                   | 0          | nan         |
| 0.25         | 24.8445             | 24.8445    | 1.28698e-13 |
| 0.5          | 49.751              | 49.751     | 9.99738e-14 |
| 0.75         | 74.782              | 74.782     | 5.70091e-14 |
| 1            | 100                 | 100        | 0           |
|              |                     | Case 2     |             |
| X            | T_exact             | T_FDM      | Error       |
| 0            | 98.0328             | 98.0328    | 3.18912e-13 |
| 0.25         | 98.1554             | 98.1554    | 2.89558e-13 |
| 0.5          | 98.5234             | 98.5234    | 2.45205e-13 |
| 0.75         | 99.1377             | 99.1377    | 1.2901e-13  |
| 1            | 100                 | 100        | 0           |
| -            |                     | n = 8      |             |
|              |                     | Case 1     |             |
| X            | T_exact             | T_FDM      | Error       |
| 0            | 0                   | 0          | nan         |
| 0.125        | 12.4183             | 12.4183    | 3.0039e-13  |
| 0.25         | 24.8445             | 24.8445    | 3.00296e-13 |
| 0.375        | 37.2861             | 37.2861    | 2.66791e-13 |
| 0.5          | 49.751              | 49.751     | 2.28511e-13 |
| 0.625        | 62.2471             | 62.2471    | 1.94053e-13 |
| 0.75         | 74.782              | 74.782     | 1.33021e-13 |
| 0.875        | 87.3637             | 87.3637    | 8.13316e-14 |
| 1            | 100                 | 100        | 0.100100 11 |
|              | 100                 | Case 2     | 0           |
| X            | T_exact             | T_FDM      | Error       |
| 0            | 98.0328             | 98.0328    | 8.11777e-13 |
| 0.125        | 98.0634             | 98.0634    | 7.82541e-13 |
| 0.125        | 98.1554             | 98.1554    | 7.38374e-13 |
| 0.25 $0.375$ | 98.3086             | 98.3086    | 6.64946e-13 |
| 0.575        | 98.5234             | 98.5234    | 5.91377e-13 |
|              |                     |            |             |
| 0.625        | 98.7997             | 98.7997    | 4.74656e-13 |
| 0.75         | 99.1377             | 99.1377    | 3.58361e-13 |
| 0.875        | 99.5378             | 99.5378    | 1.99876e-13 |
| 1            | 100                 | 100        | 0           |

| n = 16 Case 1 |              |           |             |  |
|---------------|--------------|-----------|-------------|--|
| X             | T_exact      | T_FDM     | Error       |  |
| 0             | 0            | 0         | nan         |  |
| 0.0625        | 6.20869      | 6.20869   | 1.07291e-12 |  |
| 0.125         | 12.4183      | 12.4183   | 1.05852e-12 |  |
| 0.1875        | 18.6299      | 18.6299   | 1.02978e-12 |  |
| 0.25          | 24.8445      | 24.8445   | 1.01529e-12 |  |
| 0.3125        | 31.0628      | 31.0628   | 9.7216e-13  |  |
| 0.375         | 37.2861      | 37.2861   | 9.14712e-13 |  |
| 0.4375        | 43.5152      | 43.5152   | 8.49088e-13 |  |
| 0.5           | 49.751       | 49.751    | 7.85508e-13 |  |
| 0.5625        | 55.9947      | 55.9947   | 7.233e-13   |  |
| 0.625         | 62.2471      | 62.2471   | 6.39233e-13 |  |
| 0.6875        | 68.5092      | 68.5092   | 5.60061e-13 |  |
| 0.75          | 74.782       | 74.782    | 4.75076e-13 |  |
| 0.8125        | 81.0665      | 81.0665   | 4.03187e-13 |  |
| 0.875         | 87.3637      | 87.3637   | 2.76527e-13 |  |
| 0.9375        | 93.6745      | 93.6745   | 1.66875e-13 |  |
| 1             | 100          | 100       | 0           |  |
|               |              | Case 2    |             |  |
| X             | $T_{-}exact$ | $T_{FDM}$ | Error       |  |
| 0             | 98.0328      | 98.0328   | 3.53703e-12 |  |
| 0.0625        | 98.0405      | 98.0405   | 3.50776e-12 |  |
| 0.125         | 98.0634      | 98.0634   | 3.46347e-12 |  |
| 0.1875        | 98.1017      | 98.1017   | 3.40417e-12 |  |
| 0.25          | 98.1554      | 98.1554   | 3.27201e-12 |  |
| 0.3125        | 98.2243      | 98.2243   | 3.12503e-12 |  |
| 0.375         | 98.3086      | 98.3086   | 2.9778e-12  |  |
| 0.4375        | 98.4083      | 98.4083   | 2.8015e-12  |  |
| 0.5           | 98.5234      | 98.5234   | 2.59629e-12 |  |
| 0.5625        | 98.6538      | 98.6538   | 2.33357e-12 |  |
| 0.625         | 98.7997      | 98.7997   | 2.08561e-12 |  |
| 0.6875        | 98.961       | 98.961    | 1.78065e-12 |  |
| 0.75          | 99.1377      | 99.1377   | 1.47645e-12 |  |
| 0.8125        | 99.33        | 99.33     | 1.14454e-12 |  |
| 0.875         | 99.5378      | 99.5378   | 7.99503e-13 |  |
| 0.9375        | 99.7611      | 99.7611   | 3.98857e-13 |  |
| 1             | 100          | 100       | 0           |  |

**A.4.2**  $\alpha = 0.4$ 

 $\begin{array}{l} n=2 \\ Case \ 1 \end{array}$ 

| X     | $T_{-}exact$ | $T_{-}FDM$ | Error             |
|-------|--------------|------------|-------------------|
| 0     | 0            | 0          | nan               |
| 0.5   | 49.0164      | 49.0164    | 2.75424e-12       |
| 1     | 100          | 100        | 0                 |
|       |              | Case 2     |                   |
| X     | T_exact      | T_FDM      | Error             |
| 0     | 92.5007      | 92.5007    | 1.06619e-11       |
| 0.5   | 94.3569      | 94.3569    | 7.89183e-12       |
| 1     | 100          | 100        | 0                 |
|       |              | n = 4      |                   |
|       |              | Case 1     |                   |
| X     | $T_{-}exact$ | $T_{-}FDM$ | Error             |
| 0     | 0            | 0          | nan               |
| 0.25  | 24.3862      | 24.3862    | 1.60254e-13       |
| 0.5   | 49.0164      | 49.0164    | 1.15968e-13       |
| 0.75  | 74.1372      | 74.1372    | 3.83366e-14       |
| 1     | 100          | 100        | 0                 |
|       |              | Case 2     |                   |
| X     | T_exact      | T_FDM      | Error             |
| 0     | 92.5007      | 92.5007    | 5.06978e-13       |
| 0.25  | 92.9636      | 92.9636    | 4.89167e-13       |
| 0.5   | 94.3569      | 94.3569    | 3.76519e-13       |
| 0.75  | 96.6946      | 96.6946    | 2.2045e-13        |
| 1     | 100          | 100        | 0                 |
|       | 100          | n = 8      |                   |
|       |              | Case 1     |                   |
| X     | T_exact      | T_FDM      | Error             |
|       | 0            | 0          | nan               |
| 0.125 | 12.1779      | 12.1779    | 4.23016e-13       |
| 0.25  | 24.3862      | 24.3862    | 4.0792e-13        |
| 0.375 | 36.6555      | 36.6555    | 3.68303e-13       |
| 0.5   | 49.0164      | 49.0164    | 3.18912e-13       |
| 0.625 | 61.4999      | 61.4999    | 2.65732e-13       |
|       | 74.1372      | 74.1372    |                   |
| 0.75  | 86.9599      |            | 1.53347e-13       |
| 0.875 | 00.000       | 86.9599    | 9.80511e-14       |
| 1     | 100          | 100        | 0                 |
|       | Torroct      | Case 2     | Eman              |
| X     | T_exact      | T_FDM      | Error 1.13686e-12 |
| 0.105 | 92.5007      | 92.5007    |                   |
| 0.125 | 92.6164      | 92.6164    | 1.1201e-12        |
| 0.25  | 92.9636      | 92.9636    | 1.07005e-12       |
| 0.375 | 93.5433      | 93.5433    | 9.57079e-13       |
| 0.5   | 94.3569      | 94.3569    | 8.1328e-13        |
| 0.625 | 95.4065      | 95.4065    | 6.70278e-13       |
| 0.75  | 96.6946      | 96.6946    | 4.84989e-13       |
| 0.875 | 98.2245      | 98.2245    | 2.60419e-13       |
| 1     | 100          | 100        | 0                 |
|       |              |            |                   |

| n = 16 |              |                                       |             |  |
|--------|--------------|---------------------------------------|-------------|--|
| x      | T_exact      | $\frac{\text{Case 1}}{\text{T\_FDM}}$ | Error       |  |
| 0      | 0            | 0                                     | nan         |  |
| 0.0625 | 6.08703      | 6.08703                               | 1.24026e-12 |  |
| 0.125  | 12.1779      | 12.1779                               | 1.22529e-12 |  |
| 0.1875 | 18.2763      | 18.2763                               | 1.20521e-12 |  |
| 0.25   | 24.3862      | 24.3862                               | 1.16548e-12 |  |
| 0.3125 | 30.5113      | 30.5113                               | 1.12946e-12 |  |
| 0.375  | 36.6555      | 36.6555                               | 1.06614e-12 |  |
| 0.4375 | 42.8225      | 42.8225                               | 1.02875e-12 |  |
| 0.5    | 49.0164      | 49.0164                               | 9.42241e-13 |  |
| 0.5625 | 55.2409      | 55.2409                               | 8.74658e-13 |  |
| 0.625  | 61.4999      | 61.4999                               | 7.85642e-13 |  |
| 0.6875 | 67.7974      | 67.7974                               | 6.70745e-13 |  |
| 0.75   | 74.1372      | 74.1372                               | 5.36713e-13 |  |
| 0.8125 | 80.5234      | 80.5234                               | 4.41203e-13 |  |
| 0.875  | 86.9599      | 86.9599                               | 2.94153e-13 |  |
| 0.9375 | 93.4507      | 93.4507                               | 1.52068e-13 |  |
| 1      | 100          | 100                                   | 0           |  |
|        | (            | Case 2                                |             |  |
| X      | $T_{-}exact$ | T_FDM                                 | Error       |  |
| 0      | 92.5007      | 92.5007                               | 3.10332e-12 |  |
| 0.0625 | 92.5297      | 92.5297                               | 3.07163e-12 |  |
| 0.125  | 92.6164      | 92.6164                               | 3.03807e-12 |  |
| 0.1875 | 92.761       | 92.761                                | 2.97205e-12 |  |
| 0.25   | 92.9636      | 92.9636                               | 2.88914e-12 |  |
| 0.3125 | 93.2243      | 93.2243                               | 2.77436e-12 |  |
| 0.375  | 93.5433      | 93.5433                               | 2.65855e-12 |  |
| 0.4375 | 93.9208      | 93.9208                               | 2.49656e-12 |  |
| 0.5    | 94.3569      | 94.3569                               | 2.30429e-12 |  |
| 0.5625 | 94.8521      | 94.8521                               | 2.11248e-12 |  |
| 0.625  | 95.4065      | 95.4065                               | 1.89167e-12 |  |
| 0.6875 | 96.0205      | 96.0205                               | 1.62798e-12 |  |
| 0.75   | 96.6946      | 96.6946                               | 1.3227e-12  |  |
| 0.8125 | 97.4291      | 97.4291                               | 1.03559e-12 |  |
| 0.875  | 98.2245      | 98.2245                               | 6.94451e-13 |  |
| 0.9375 | 99.0813      | 99.0813                               | 3.58566e-13 |  |
| 1      | 100          | 100                                   | 0           |  |

$$\mathbf{A.4.3} \quad \alpha = 0.75$$
 
$$\mathbf{n} = 2$$
 
$$\mathbf{Case} \ 1$$

| x     | T_exact | T_FDM           | Error       |
|-------|---------|-----------------|-------------|
| 0     | 0       | 0               | nan         |
| 0.5   | 46.6792 | 46.6792         | 1.41633e-09 |
| 1     | 100     | 100             | 0           |
|       | 100     | Case 2          |             |
| X     | T_exact | T_FDM           | Error       |
| 0     | 77.239  | 77.239          | 5.02062e-09 |
| 0.5   | 82.7338 | 82.7338         | 3.60427e-09 |
| 0.5   | 100     | 100             | 0           |
|       | 100     | n=4             |             |
|       |         |                 |             |
| x     | T_exact | Case 1<br>T_FDM | Error       |
| 0     | 0       |                 |             |
| -     | ~       | 00.0050         | nan         |
| 0.25  | 22.9353 | 22.9353         | 7.07901e-12 |
| 0.5   | 46.6792 | 46.6792         | 5.61685e-12 |
| 0.75  | 72.0691 | 72.0691         | 3.25353e-12 |
| 1     | 100     | 100             | 0           |
|       |         | Case 2          |             |
| X     | T_exact | T_FDM           | Error       |
| 0     | 77.239  | 77.239          | 1.99256e-11 |
| 0.25  | 78.6007 | 78.6007         | 1.84595e-11 |
| 0.5   | 82.7338 | 82.7338         | 1.43081e-11 |
| 0.75  | 89.784  | 89.784          | 7.92974e-12 |
| 1     | 100     | 100             | 0           |
|       |         | n = 8           |             |
|       |         | Case 1          |             |
| X     | T_exact | $T_{-}FDM$      | Error       |
| 0     | 0       | 0               | nan         |
| 0.125 | 11.4174 | 11.4174         | 2.80049e-13 |
| 0.25  | 22.9353 | 22.9353         | 2.47843e-13 |
| 0.375 | 34.6548 | 34.6548         | 2.46041e-13 |
| 0.5   | 46.6792 | 46.6792         | 1.97884e-13 |
| 0.625 | 59.1142 | 59.1142         | 1.44238e-13 |
| 0.025 | 72.0691 | 72.0691         | 9.85919e-14 |
| 0.75  |         |                 | 6.6361e-14  |
| 0.0.0 | 85.6578 | 85.6578         | 0.000=0==   |
| 1     | 100     | 100             | 0           |
|       | T       | Case 2          | E           |
| X     | T_exact | T_FDM           | Error       |
| 0     | 77.239  | 77.239          | 7.35942e-13 |
| 0.125 | 77.5786 | 77.5786         | 7.14402e-13 |
| 0.25  | 78.6007 | 78.6007         | 6.87033e-13 |
| 0.375 | 80.314  | 80.314          | 6.016e-13   |
| 0.5   | 82.7338 | 82.7338         | 5.15298e-13 |
| 0.625 | 85.8812 | 85.8812         | 4.13678e-13 |
| 0.75  | 89.784  | 89.784          | 2.84901e-13 |
| 0.875 | 94.4765 | 94.4765         | 1.35375e-13 |
|       | _       |                 |             |
| 1     | 100     | 100             | 0           |

| n = 16 |              |                                                |              |  |  |
|--------|--------------|------------------------------------------------|--------------|--|--|
| X      | T_exact      | $\frac{\text{Case 1}}{\text{T}_{-}\text{FDM}}$ | Error        |  |  |
|        | 0            | 0                                              | nan          |  |  |
| 0.0625 | 5.70245      | 5.70245                                        | 4.20536e-13  |  |  |
| 0.125  | 11.4174      | 11.4174                                        | 4.35632e-13  |  |  |
| 0.1875 | 17.1575      | 17.1575                                        | 4.1413e-13   |  |  |
| 0.25   | 22.9353      | 22.9353                                        | 4.02745 e-13 |  |  |
| 0.3125 | 28.7635      | 28.7635                                        | 4.07599e-13  |  |  |
| 0.375  | 34.6548      | 34.6548                                        | 3.89565e-13  |  |  |
| 0.4375 | 40.6224      | 40.6224                                        | 3.49828e-13  |  |  |
| 0.5    | 46.6792      | 46.6792                                        | 3.19658e-13  |  |  |
| 0.5625 | 52.8386      | 52.8386                                        | 2.82396e-13  |  |  |
| 0.625  | 59.1142      | 59.1142                                        | 2.64436e-13  |  |  |
| 0.6875 | 65.5196      | 65.5196                                        | 2.38584e-13  |  |  |
| 0.75   | 72.0691      | 72.0691                                        | 1.97184e-13  |  |  |
| 0.8125 | 78.7769      | 78.7769                                        | 1.62354e-13  |  |  |
| 0.875  | 85.6578      | 85.6578                                        | 9.95415e-14  |  |  |
| 0.9375 | 92.727       | 92.727                                         | 6.13019e-14  |  |  |
| 1      | 100          | 100                                            | 0            |  |  |
|        |              | Case 2                                         |              |  |  |
| X      | $T_{-}exact$ | $T_{FDM}$                                      | Error        |  |  |
| 0      | 77.239       | 77.239                                         | 7.17544e-13  |  |  |
| 0.0625 | 77.3238      | 77.3238                                        | 7.16756e-13  |  |  |
| 0.125  | 77.5786      | 77.5786                                        | 6.96084 e-13 |  |  |
| 0.1875 | 78.0039      | 78.0039                                        | 6.92289e-13  |  |  |
| 0.25   | 78.6007      | 78.6007                                        | 6.87033e-13  |  |  |
| 0.3125 | 79.3701      | 79.3701                                        | 6.44563e-13  |  |  |
| 0.375  | 80.314       | 80.314                                         | 6.19294e-13  |  |  |
| 0.4375 | 81.4344      | 81.4344                                        | 5.93323e-13  |  |  |
| 0.5    | 82.7338      | 82.7338                                        | 5.49651e-13  |  |  |
| 0.5625 | 84.215       | 84.215                                         | 5.06235e-13  |  |  |
| 0.625  | 85.8812      | 85.8812                                        | 4.46772e-13  |  |  |
| 0.6875 | 87.7362      | 87.7362                                        | 3.72537e-13  |  |  |
| 0.75   | 89.784       | 89.784                                         | 3.00729e-13  |  |  |
| 0.8125 | 92.0292      | 92.0292                                        | 2.16184e-13  |  |  |
| 0.875  | 94.4765      | 94.4765                                        | 1.35375e-13  |  |  |
| 0.9375 | 97.1315      | 97.1315                                        | 5.85221e-14  |  |  |
| 1      | 100          | 100                                            | 0            |  |  |

**A.4.4**  $\alpha = 3$ 

 $\begin{array}{l} n=2 \\ Case \ 1 \end{array}$ 

| X     | $T_{-}exact$        | $T_{-}FDM$      | Error                      |
|-------|---------------------|-----------------|----------------------------|
| 0     | 0                   | 0               | nan                        |
| 0.5   | 21.2548             | 21.2549         | 0.00068718                 |
| 1     | 100                 | 100             | 1.42109e-14                |
|       | _                   | Case 2          |                            |
| X     | $T_{\text{-}exact}$ | T_FDM           | Error                      |
| 0     | 9.93279             | 9.93294         | 0.00151088                 |
| 0.5   | 23.366              | 23.3662         | 0.000823694                |
| 1     | 100                 | 100             | 0                          |
|       |                     | n = 4           |                            |
|       | TT 1                | Case 1          |                            |
| X     | T_exact             | T_FDM           | Error                      |
| 0     | 0                   | 0               | nan                        |
| 0.25  | 8.20849             | 8.2085          | 4.63469e-06                |
| 0.5   | 21.2548             | 21.2548         | 3.43094e-06                |
| 0.75  | 46.828              | 46.828          | 1.80517e-06                |
| 1     | 100                 | 100             | 1.42109e-14                |
|       | T_exact             | Case 2<br>T_FDM | Error                      |
| X     |                     | 9.93279         |                            |
| 0     | 9.93279             |                 | 7.54345e-06<br>6.33969e-06 |
| 0.25  | 12.8598             | 12.8598         | 0.000000000                |
| 0.5   | 23.366              | 23.366          | 4.11251e-06                |
| 0.75  | 47.6433             | 47.6433         | 1.98268e-06                |
| 1     | 100                 | 100             | 0                          |
|       |                     | n = 8           |                            |
| X     | T_exact             | Case 1<br>T_FDM | Error                      |
| 0     | 0                   | 0               | nan                        |
| 0.125 | 3.83166             | 3.83166         | 2.07466e-08                |
| 0.125 | 8.20849             | 8.20849         | 1.93303e-08                |
| 0.375 | 13.7532             | 13.7532         | 1.71247e-08                |
| 0.5   | 21.2548             | 21.2548         | 1.43097e-08                |
| 0.625 | 31.7805             | 31.7805         | 1.10622e-08                |
| 0.75  | 46.828              | 46.828          | 7.52894e-09                |
| 0.875 | 68.5382             | 68.5382         | 3.81754e-09                |
| 1     | 100                 | 100             | 1.42109e-14                |
| 1     | 100                 | Case 2          | 1.421030-14                |
| X     | T_exact             | T_FDM           | Error                      |
| 0     | 9.93279             | 9.93279         | 3.1462e-08                 |
| 0.125 | 10.6394             | 10.6394         | 3.00457e-08                |
| 0.25  | 12.8598             | 12.8598         | 2.64415e-08                |
| 0.375 | 16.9099             | 16.9099         | 2.18663e-08                |
| 0.5   | 23.366              | 23.366          | 1.71524e-08                |
| 0.625 | 33.1466             | 33.1466         | 1.26087e-08                |
| 0.025 | 47.6433             | 47.6433         | 8.26933e-09                |
| 0.875 | 68.9188             | 68.9188         | 4.08479e-09                |
| 0.075 | 100                 | 100             | 4.004796-09                |
|       | 100                 | 100             | U                          |

| n = 16 Case 1 |         |         |              |  |  |
|---------------|---------|---------|--------------|--|--|
| X             | T_exact | T_FDM   | Error        |  |  |
| 0             | 0       | 0       | nan          |  |  |
| 0.0625        | 1.88264 | 1.88264 | 8.37397e-11  |  |  |
| 0.125         | 3.83166 | 3.83166 | 8.22773e-11  |  |  |
| 0.1875        | 5.91578 | 5.91578 | 7.99179e-11  |  |  |
| 0.25          | 8.20849 | 8.20849 | 7.66722e-11  |  |  |
| 0.3125        | 10.7906 | 10.7906 | 7.26469e-11  |  |  |
| 0.375         | 13.7532 | 13.7532 | 6.79377e-11  |  |  |
| 0.4375        | 17.2008 | 17.2008 | 6.26034 e-11 |  |  |
| 0.5           | 21.2548 | 21.2548 | 5.67804 e-11 |  |  |
| 0.5625        | 26.0583 | 26.0583 | 5.04994e-11  |  |  |
| 0.625         | 31.7805 | 31.7805 | 4.38996e-11  |  |  |
| 0.6875        | 38.6233 | 38.6233 | 3.69958e-11  |  |  |
| 0.75          | 46.828  | 46.828  | 2.98614e-11  |  |  |
| 0.8125        | 56.6838 | 56.6838 | 2.25634e-11  |  |  |
| 0.875         | 68.5382 | 68.5382 | 1.5136e-11   |  |  |
| 0.9375        | 82.8092 | 82.8092 | 7.60231e-12  |  |  |
| 1             | 100     | 100     | 1.42109e-14  |  |  |
|               |         | Case 2  |              |  |  |
| X             | T_exact | T_FDM   | Error        |  |  |
| 0             | 9.93279 | 9.93279 | 1.24668e-10  |  |  |
| 0.0625        | 10.1079 | 10.1079 | 1.23211e-10  |  |  |
| 0.125         | 10.6394 | 10.6394 | 1.19042e-10  |  |  |
| 0.1875        | 11.5461 | 11.5461 | 1.12664e-10  |  |  |
| 0.25          | 12.8598 | 12.8598 | 1.04732e-10  |  |  |
| 0.3125        | 14.627  | 14.627  | 9.58919e-11  |  |  |
| 0.375         | 16.9099 | 16.9099 | 8.66227e-11  |  |  |
| 0.4375        | 19.7891 | 19.7891 | 7.72333e-11  |  |  |
| 0.5           | 23.366  | 23.366  | 6.79495e-11  |  |  |
| 0.5625        | 27.7668 | 27.7668 | 5.88307e-11  |  |  |
| 0.625         | 33.1466 | 33.1466 | 4.99039e-11  |  |  |
| 0.6875        | 39.6951 | 39.6951 | 4.12237e-11  |  |  |
| 0.75          | 47.6433 | 47.6433 | 3.27358e-11  |  |  |
| 0.8125        | 57.2714 | 57.2714 | 2.4379e-11   |  |  |
| 0.875         | 68.9188 | 68.9188 | 1.61659e-11  |  |  |
| 0.9375        | 82.9962 | 82.9962 | 8.03036e-12  |  |  |
| 1             | 100     | 100     | 0            |  |  |

**A.4.5**  $\alpha = 5$ 

n = 2Case 1

|    |              | - T                 | T DDM            |                            |
|----|--------------|---------------------|------------------|----------------------------|
|    | X            | T_exact             | T_FDM            | Error                      |
|    | 0            | 0                   | 0                | nan                        |
|    | 0.5          | 8.15356             | 8.15723          | 0.0449772                  |
|    | 1            | 100                 | 100              | 0                          |
|    |              |                     | Case 2           |                            |
|    | X            | $T_{-}exact$        | T_FDM            | Error                      |
|    | 0            | 1.34753             | 1.34876          | 0.0911882                  |
|    | 0.5          | 8.26343             | 8.26725          | 0.0461902                  |
|    | 1            | 100                 | 100              | 0                          |
|    |              |                     | n = 4            |                            |
|    |              |                     | Case 1           |                            |
|    | X            | $T_{-}exact$        | $T_{\text{FDM}}$ | Error                      |
|    | 0            | 0                   | 0                | nan                        |
| (  | 0.25         | 2.15883             | 2.15884          | 0.00045744                 |
|    | 0.5          | 8.15356             | 8.15359          | 0.000319911                |
| (  | 0.75         | 28.6359             | 28.636           | 0.000161646                |
|    | 1            | 100                 | 100              | 0                          |
| _  |              |                     | Case 2           |                            |
|    | X            | T_exact             | T_FDM            | Error                      |
|    | 0            | 1.34753             | 1.34754          | 0.000648445                |
| (  | 0.25         | 2.5447              | 2.54472          | 0.000510916                |
|    | 0.5          | 8.26343             | 8.26346          | 0.000328533                |
| (  | 0.75         | 28.665              | 28.6651          | 0.000162605                |
| `  | 1            | 100                 | 100              | 0                          |
| _  |              |                     | n = 8            |                            |
|    |              |                     | Case 1           |                            |
|    | X            | T_exact             | T_FDM            | Error                      |
|    | 0            | 0                   | 0                | nan                        |
| 0. | 125          | 0.898199            | 0.898199         | 2.33751e-06                |
| (  | 0.25         | 2.15883             | 2.15883          | 2.12834e-06                |
| 0. | 375          | 4.29056             | 4.29056          | 1.83158e-06                |
|    | 0.5          | 8.15356             | 8.15356          | 1.48845e-06                |
| 0  | 625          | 15.3066             | 15.3066          | 1.12447e-06                |
|    | 0.75         | 28.6359             | 28.6359          | 7.52094e-07                |
|    | .875         | 53.5201             | 53.5201          | 3.76599e-07                |
| 0. | 1            | 100                 | 100              | 0.100330-01                |
|    | 1            | 100                 | Case 2           | 0                          |
| _  | X            | T_exact             | T_FDM            | Error                      |
| _  | 0            | 1.34753             | 1.34753          | 3.01702e-06                |
| C  | 0.125        | 1.6194              | 1.6194           | 2.80785e-06                |
| C  | 0.25         | 2.5447              | 2.5447           | 2.37714e-06                |
| C  | 0.25 $0.375$ | 4.49682             | 4.49682          | 1.93753e-06                |
| U  | 0.5          | 4.49682<br>8.26343  |                  | 1.93753e-06<br>1.52857e-06 |
| 0  |              |                     | 8.26343          |                            |
| U  | 0.625        | $15.3644 \\ 28.665$ | 15.3644          | 1.13848e-06                |
|    |              | 7× 665              | 28.665           | 7.56552e-07                |
| _  | 0.75         |                     |                  |                            |
| C  | 0.75         | 53.5322             | 53.5322          | 3.77725e-07                |

| n = 16 Case 1 |          |                                      |              |  |  |
|---------------|----------|--------------------------------------|--------------|--|--|
| x             | T_exact  | $\frac{\text{Jase I}}{\text{T_FDM}}$ | Error        |  |  |
|               | 0        | 0                                    | nan          |  |  |
| 0.0625        | 0.428029 | 0.428029                             | 9.79261e-09  |  |  |
| 0.125         | 0.898199 | 0.898199                             | 9.55917e-09  |  |  |
| 0.1875        | 1.4568   | 1.4568                               | 9.18853e-09  |  |  |
| 0.25          | 2.15883  | 2.15883                              | 8.70376e-09  |  |  |
| 0.3125        | 3.0734   | 3.0734                               | 8.12987e-09  |  |  |
| 0.375         | 4.29056  | 4.29056                              | 7.49022e-09  |  |  |
| 0.4375        | 5.93014  | 5.93014                              | 6.80426 e-09 |  |  |
| 0.5           | 8.15356  | 8.15356                              | 6.087e-09    |  |  |
| 0.5625        | 11.1797  | 11.1797                              | 5.34925 e-09 |  |  |
| 0.625         | 15.3066  | 15.3066                              | 4.59846e-09  |  |  |
| 0.6875        | 20.9404  | 20.9404                              | 3.83957e-09  |  |  |
| 0.75          | 28.6359  | 28.6359                              | 3.07567e-09  |  |  |
| 0.8125        | 39.1507  | 39.1507                              | 2.30878e-09  |  |  |
| 0.875         | 53.5201  | 53.5201                              | 1.54008e-09  |  |  |
| 0.9375        | 73.1587  | 73.1587                              | 7.70345e-10  |  |  |
| 1             | 100      | 100                                  | 0            |  |  |
| -             |          | Case 2                               |              |  |  |
| X             | T_exact  | T_FDM                                | Error        |  |  |
| 0             | 1.34753  | 1.34753                              | 1.2338e-08   |  |  |
| 0.0625        | 1.41386  | 1.41386                              | 1.21046e-08  |  |  |
| 0.125         | 1.6194   | 1.6194                               | 1.14826e-08  |  |  |
| 0.1875        | 1.98437  | 1.98437                              | 1.06397e-08  |  |  |
| 0.25          | 2.5447   | 2.5447                               | 9.72122e-09  |  |  |
| 0.3125        | 3.35558  | 3.35558                              | 8.80659e-09  |  |  |
| 0.375         | 4.49682  | 4.49682                              | 7.92346e-09  |  |  |
| 0.4375        | 6.08079  | 6.08079                              | 7.07383e-09  |  |  |
| 0.5           | 8.26343  | 8.26343                              | 6.25102e-09  |  |  |
| 0.5625        | 11.2596  | 11.2596                              | 5.4471e-09   |  |  |
| 0.625         | 15.3644  | 15.3644                              | 4.65574e-09  |  |  |
| 0.6875        | 20.9818  | 20.9818                              | 3.87235e-09  |  |  |
| 0.75          | 28.665   | 28.665                               | 3.09389e-09  |  |  |
| 0.8125        | 39.1704  | 39.1704                              | 2.31839e-09  |  |  |
| 0.875         | 53.5322  | 53.5322                              | 1.54469e-09  |  |  |
| 0.9375        | 73.1644  | 73.1644                              | 7.72052e-10  |  |  |
| 1             | 100      | 100                                  | 0            |  |  |

$$\mathbf{A.4.6} \quad \alpha = 7$$
$$\mathbf{n} = 2$$
$$\mathbf{Case} \ 1$$

|    | x    | T_exact  | T_FDM              | Error          |
|----|------|----------|--------------------|----------------|
|    | 0    | 0        | 0                  | nan            |
|    | 0.5  | 3.01699  | 3.03228            | 0.506833       |
|    | 1    | 100      | 100                | 0              |
|    |      |          | Case 2             |                |
| _  | X    | T_exact  | T_FDM              | Error          |
| -  | 0    | 0.182376 | 0.184233           | 1.01811        |
|    | 0.5  | 3.02249  | 3.03786            | 0.508696       |
|    | 1    | 100      | 100                | 0              |
| -  |      |          | n = 4              |                |
| _  |      |          | Case 1             |                |
|    | X    | T_exact  | T_FDM              | Error          |
|    | 0    | 0        | 0                  | nan            |
| (  | 0.25 | 0.508906 | 0.508947           | 0.00800042     |
|    | 0.5  | 3.01699  | 3.01715            | 0.00543668     |
| (  | 0.75 | 17.3769  | 17.3774            | 0.00272283     |
|    | 1    | 100      | 100                | 0              |
|    |      |          | Case 2             |                |
| _  | X    | T_exact  | T_FDM              | Error          |
|    | 0    | 0.182376 | 0.182396           | 0.0108935      |
| (  | 0.25 | 0.540598 | 0.540643           | 0.00832966     |
|    | 0.5  | 3.02249  | 3.02265            | 0.00545651     |
| (  | 0.75 | 17.3779  | 17.3783            | 0.00272369     |
|    | 1    | 100      | 100                | 0              |
|    |      |          | n = 8<br>Case 1    |                |
|    | X    | T_exact  | T <sub>-</sub> FDM | Error          |
|    | 0    | 0        | 0                  | nan            |
| 0. | .125 | 0.180736 | 0.180736           | 4.84114e-05    |
| (  | 0.25 | 0.508906 | 0.508906           | 4.3232e-05     |
|    | .375 | 1.25221  | 1.25221            | 3.65575 e - 05 |
| _  | 0.5  | 3.01699  | 3.01699            | 2.93786e-05    |
| 0. | .625 | 7.24283  | 7.24284            | 2.20626e-05    |
|    | 0.75 | 17.3769  | 17.3769            | 1.47138e-05    |
|    | .875 | 41.686   | 41.686             | 7.35766e-06    |
| 0. | 1    | 100      | 100                | 0              |
|    |      | 100      | Case 2             | <u> </u>       |
|    | X    | T_exact  | T_FDM              | Error          |
|    | 0    | 0.182376 | 0.182376           | 5.88644e-05    |
| 0. | .125 | 0.256762 | 0.256762           | 5.3685 e - 05  |
|    | 0.25 | 0.540598 | 0.540598           | 4.5011e-05     |
|    | .375 | 1.26542  | 1.26542            | 3.70207e-05    |
| -  | 0.5  | 3.02249  | 3.02249            | 2.94858e-05    |
| 0. | .625 | 7.24512  | 7.24512            | 2.20857e-05    |
|    | 0.75 | 17.3779  | 17.3779            | 1.47185e-05    |
|    | .875 | 41.6864  | 41.6864            | 7.35845e-06    |
| 0. | 1    | 100      | 100                | 0.000400       |
|    | т.   | 100      | 100                | U              |

| n = 16 |           |           |              |  |  |
|--------|-----------|-----------|--------------|--|--|
| Case 1 |           |           |              |  |  |
| X      | T_exact   | T_FDM     | Error        |  |  |
| 0      | 0         | 0         | nan          |  |  |
| 0.0625 | 0.0823596 | 0.0823596 | 2.13055e-07  |  |  |
| 0.125  | 0.180736  | 0.180736  | 2.06593e-07  |  |  |
| 0.1875 | 0.314263  | 0.314263  | 1.96745e-07  |  |  |
| 0.25   | 0.508906  | 0.508906  | 1.84491e-07  |  |  |
| 0.3125 | 0.802521  | 0.802521  | 1.707e-07    |  |  |
| 0.375  | 1.25221   | 1.25221   | 1.56007e-07  |  |  |
| 0.4375 | 1.94543   | 1.94543   | 1.40819e-07  |  |  |
| 0.5    | 3.01699   | 3.01699   | 1.25372e-07  |  |  |
| 0.5625 | 4.67529   | 4.67529   | 1.09794e-07  |  |  |
| 0.625  | 7.24283   | 7.24283   | 9.41512e-08  |  |  |
| 0.6875 | 11.219    | 11.219    | 7.8478e-08   |  |  |
| 0.75   | 17.3769   | 17.3769   | 6.27904 e-08 |  |  |
| 0.8125 | 26.9143   | 26.9143   | 4.7096e-08   |  |  |
| 0.875  | 41.686    | 41.686    | 3.13985e-08  |  |  |
| 0.9375 | 64.5648   | 64.5648   | 1.56996e-08  |  |  |
| 1      | 100       | 100       | 0            |  |  |
|        |           | Case 2    |              |  |  |
| X      | T_exact   | T_FDM     | Error        |  |  |
| 0      | 0.182376  | 0.182376  | 2.51201e-07  |  |  |
| 0.0625 | 0.20011   | 0.20011   | 2.4474e-07   |  |  |
| 0.125  | 0.256762  | 0.256762  | 2.29098e-07  |  |  |
| 0.1875 | 0.363348  | 0.363348  | 2.10464e-07  |  |  |
| 0.25   | 0.540598  | 0.540598  | 1.92082e-07  |  |  |
| 0.3125 | 0.822982  | 0.822982  | 1.74652e-07  |  |  |
| 0.375  | 1.26542   | 1.26542   | 1.57984e-07  |  |  |
| 0.4375 | 1.95395   | 1.95395   | 1.4178e-07   |  |  |
| 0.5    | 3.02249   | 3.02249   | 1.25829e-07  |  |  |
| 0.5625 | 4.67884   | 4.67884   | 1.10008e-07  |  |  |
| 0.625  | 7.24512   | 7.24512   | 9.42499e-08  |  |  |
| 0.6875 | 11.2204   | 11.2204   | 7.85229e-08  |  |  |
| 0.75   | 17.3779   | 17.3779   | 6.28104 e-08 |  |  |
| 0.8125 | 26.9149   | 26.9149   | 4.71046e-08  |  |  |
| 0.875  | 41.6864   | 41.6864   | 3.14019e-08  |  |  |
| 0.9375 | 64.5649   | 64.5649   | 1.57006e-08  |  |  |
| 1      | 100       | 100       | 0            |  |  |

# Bibliography

 $[{\rm Hof}01]$  Joe D. Hoffman. "Numerical Methods for Engineers and Scientists". In: Marcel Decker, 2001. Chap. 8.