Incomplete Information and Investment Inaction

ASSA 2025: International Society for Inventory Research Session

Jonathan Adams 1 Cheng Chen 2 Min Fang 1 Takahiro Hattori 3 Eugenio Rojas 1

¹University of Florida

²Clemson University

³University of Tokyo

• Two standard frictions distort firms' investment decisions:

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - Leads to inaction. We observe many investment zeros in the data
 - ullet Is substantial: resale value of capital is $\sim 1/3$ (Kermani and Ma 2023)

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - Leads to inaction. We observe many investment zeros in the data
 - ullet Is substantial: resale value of capital is $\sim 1/3$ (Kermani and Ma 2023)
- Information frictions
 - Firms do not forecast as if they have Full Information Rational Expectations (FIRE); leads to predictable errors
 - Firms' forecast errors are serially correlated, predictable; firm-level data imply this lowers aggregate productivity (Chen et al 2023)

- Two standard frictions distort firms' investment decisions:
- Investment irreversibility
 - Leads to inaction. We observe many investment zeros in the data
 - ullet Is substantial: resale value of capital is $\sim 1/3$ (Kermani and Ma 2023)
- Information frictions
 - Firms do not forecast as if they have Full Information Rational Expectations (FIRE); leads to predictable errors
 - Firms' forecast errors are serially correlated, predictable; firm-level data imply this lowers aggregate productivity (Chen et al 2023)
- Both frictions are important, but studied individually. Do they interact?

1. Model of Heterogeneous Firms & Information Frictions:

- 1. Model of Heterogeneous Firms & Information Frictions:
 - Heterogeneous firms make irreversible investment decisions

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

- 1. Model of Heterogeneous Firms & Information Frictions:
 - Heterogeneous firms make irreversible investment decisions
 - Firms observe noisy signals of their productivity, only revealed with a delay
- 2. Theoretical & Quantitative Analysis:

- 1. Model of Heterogeneous Firms & Information Frictions:
 - Heterogeneous firms make irreversible investment decisions
 - Firms observe noisy signals of their productivity, only revealed with a delay
- 2. Theoretical & Quantitative Analysis:
 - Noisier information shrinks inaction region

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

- Noisier information shrinks inaction region
- Also reduces investment elasticity to shocks, increases aggregate capital & misallocation

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

- Noisier information shrinks inaction region
- Also reduces investment elasticity to shocks, increases aggregate capital & misallocation
- Parsimonious model reproduces salient features of investment dynamics. No need for fixed or convex adjustment costs

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

- Noisier information shrinks inaction region
- Also reduces investment elasticity to shocks, increases aggregate capital & misallocation
- Parsimonious model reproduces salient features of investment dynamics. No need for fixed or convex adjustment costs

3. Empirical Analysis:

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

- Noisier information shrinks inaction region
- Also reduces investment elasticity to shocks, increases aggregate capital & misallocation
- Parsimonious model reproduces salient features of investment dynamics. No need for fixed or convex adjustment costs

3. Empirical Analysis:

Test predictions using Japanese administrative data

1. Model of Heterogeneous Firms & Information Frictions:

- Heterogeneous firms make irreversible investment decisions
- Firms observe noisy signals of their productivity, only revealed with a delay

2. Theoretical & Quantitative Analysis:

- Noisier information shrinks inaction region
- Also reduces investment elasticity to shocks, increases aggregate capital & misallocation
- Parsimonious model reproduces salient features of investment dynamics. No need for fixed or convex adjustment costs

3. Empirical Analysis:

- Test predictions using Japanese administrative data
- Firms with worse information behave as predicted by model

Theory

Firms' Problem

- Atomistic firms face simple investment problem
- Produce using capital K and stochastic productivity A by

$$F(A,K)=A^{1-\alpha}K^{\alpha}$$

• Log productivity a follows a random walk:

$$da = \sigma_a dW^a$$

Firms' Problem

- Atomistic firms face simple investment problem
- Produce using capital K and stochastic productivity A by

$$F(A,K)=A^{1-\alpha}K^{\alpha}$$

• Log productivity *a* follows a random walk:

$$da = \sigma_a dW^a$$

• Investment *I* is irreversible. Conditional on investing, profits are

$$\pi = A^{1-\alpha}K^{\alpha} - \psi I$$

• The law of motion for capital is

$$dK = I - \delta K dt$$

 Optimal behavior: inaction above some level of capital, o/w invest to the boundary

- Optimal behavior: inaction above some level of capital, o/w invest to the boundary
- Within the inaction region, HJB is

$$rV(K,A) = A^{1-\alpha}K^{\alpha} - \delta KV_K(K,A) + \frac{\sigma_a^2A^2}{2}V_{AA}(K,A)$$

- Optimal behavior: inaction above some level of capital, o/w invest to the boundary
- Within the inaction region, HJB is

$$rV(K,A) = A^{1-\alpha}K^{\alpha} - \delta KV_K(K,A) + \frac{\sigma_a^2 A^2}{2}V_{AA}(K,A)$$

• This is the *full information* HJB. Even with incomplete info., the (unobserved) firm value still follows this PDE

- Optimal behavior: inaction above some level of capital, o/w invest to the boundary
- Within the inaction region, HJB is

$$rV(K,A) = A^{1-\alpha}K^{\alpha} - \delta KV_K(K,A) + \frac{\sigma_a^2A^2}{2}V_{AA}(K,A)$$

- This is the *full information* HJB. Even with incomplete info., the (unobserved) firm value still follows this PDE
- Effect of incomplete information? It determines the inaction region

 \bullet Firms only observe log productivity a with delay τ

- ullet Firms only observe log productivity a with delay au
- Immediately, they receive noisy signal s:

$$s = a + n$$
 $dn = \sigma_n dW^n$

- ullet Firms only observe log productivity a with delay au
- Immediately, they receive noisy signal s:

$$s = a + n$$
 $dn = \sigma_n dW^n$

• Noise process dW^n is independent of productivity process dW^a ; info set $\Omega(t)$ is:

$$\Omega(t) = \{a(j-\tau), s(j) : j \le t\}$$

- ullet Firms only observe log productivity a with delay au
- Immediately, they receive noisy signal s:

$$s = a + n$$
 $dn = \sigma_n dW^n$

• Noise process dW^n is independent of productivity process dW^a ; info set $\Omega(t)$ is:

$$\Omega(t) = \{a(j-\tau), s(j) : j \le t\}$$

• Relevant state variables: log capital k and nowcast $\hat{a} \equiv \mathbb{E}[a|\Omega]$

- ullet Firms only observe log productivity a with delay au
- Immediately, they receive noisy signal s:

$$s = a + n$$
 $dn = \sigma_n dW^n$

• Noise process dW^n is independent of productivity process dW^a ; info set $\Omega(t)$ is:

$$\Omega(t) = \{a(j-\tau), s(j) : j \le t\}$$

- ullet Relevant state variables: log capital k and nowcast $\hat{a} \equiv \mathbb{E}[a|\Omega]$
- â follows a random walk with the same properties as a

▶ Nowcast Behavior

• We work with normalized capital $x \equiv k - a$ as in Stokey (2008) \Longrightarrow renormalize value function as $V(\exp(x))$

- We work with normalized capital $x \equiv k a$ as in Stokey (2008) \Longrightarrow renormalize value function as $V(\exp(x))$
- Optimal behavior is characterized by a threshold for *expected* normalized capital \hat{x} : if $\hat{x} \equiv \mathbb{E}[x|\Omega] < \hat{b}$, then invest until $\hat{x} = \hat{b}$

- We work with normalized capital $x \equiv k a$ as in Stokey (2008) \Longrightarrow renormalize value function as $V(\exp(x))$
- Optimal behavior is characterized by a threshold for *expected* normalized capital \hat{x} : if $\hat{x} \equiv \mathbb{E}[x|\Omega] < \hat{b}$, then invest until $\hat{x} = \hat{b}$
- Firm maximizes expected value function $\hat{V}(\exp(\hat{x})) = \mathbb{E}[V(\exp(x))|\exp(\hat{x})]$

- We work with normalized capital $x \equiv k a$ as in Stokey (2008) \Longrightarrow renormalize value function as $V(\exp(x))$
- Optimal behavior is characterized by a threshold for *expected* normalized capital \hat{x} : if $\hat{x} \equiv \mathbb{E}[x|\Omega] < \hat{b}$, then invest until $\hat{x} = \hat{b}$
- Firm maximizes expected value function $\hat{V}(\exp(\hat{x})) = \mathbb{E}[V(\exp(x))|\exp(\hat{x})]$
- We show that the optimum is characterized by usual value-matching and super contact conditions, except applied to \hat{V} :

$$\hat{V}'(\exp(\hat{b})) = \psi$$
 $\lim_{\exp(\hat{x}) \to \infty} \hat{V}'(\exp(\hat{x})) = 0$ $\hat{V}''(\exp(\hat{b})) = 0$ $\lim_{\exp(\hat{x}) \to \infty} \hat{V}''(\exp(\hat{x})) = 0$

• Productivity follows a random walk $da = \sigma_a dW_a$

- Productivity follows a random walk $da = \sigma_a dW_a$
- Expected productivity follows a similar random walk $d\hat{a} = \sigma_2 dW_{\hat{a}}$

- Productivity follows a random walk $da = \sigma_a dW_a$
- Expected productivity follows a similar random walk $d\hat{a} = \sigma_a dW_{\hat{a}}$
- Expected norm. capital $\hat{x} = k \hat{a}$ follows $d\hat{x} = -\delta dt \sigma_a dW_{\hat{a}}$ above the barrier \hat{b}

- Productivity follows a random walk $da = \sigma_a dW_a$
- Expected productivity follows a similar random walk $d\hat{a} = \sigma_a dW_{\hat{a}}$
- Expected norm. capital $\hat{x} = k \hat{a}$ follows $d\hat{x} = -\delta dt \sigma_a dW_{\hat{a}}$ above the barrier \hat{b}
- Actual norm. capital x follows $x = k a = \hat{x} \hat{a} + a$

(Firm-Level) Investment Behavior Under Incomplete Information

1. Information friction increases the incentive to invest (i.e. lowers inaction)

- 1. Information friction **increases** the incentive to invest (i.e. lowers inaction)
 - ullet Noisier signals or longer revelation delays raise the boundary \hat{b}

- 1. Information friction increases the incentive to invest (i.e. lowers inaction)
 - ullet Noisier signals or longer revelation delays raise the boundary \hat{b}
 - ullet MPK is convex in log productivity. Firms: risk-loving on normalized capital x

- 1. Information friction **increases** the incentive to invest (i.e. lowers inaction)
 - ullet Noisier signals or longer revelation delays raise the boundary \hat{b}
 - ullet MPK is convex in log productivity. Firms: risk-loving on normalized capital x
 - \bullet Friction acts as a mean preserving spread on x

- 1. Information friction **increases** the incentive to invest (i.e. lowers inaction)
 - ullet Noisier signals or longer revelation delays raise the boundary \hat{b}
 - MPK is convex in log productivity. Firms: risk-loving on normalized capital x
 - Friction acts as a mean preserving spread on x
- 2. Information friction reduces elasticity of forecasts to productivity shocks

$$rac{d}{dW_{t-h}^a}\mathbb{E}[a_t|\Omega_t] = egin{cases} \gamma = rac{\sigma_a^2}{\sigma_a^2 + \sigma_n^2} < 1 & 0 \leq h < au \ 1 & h \geq au \end{cases}$$

- 1. Information friction **increases** the incentive to invest (i.e. lowers inaction)
 - ullet Noisier signals or longer revelation delays raise the boundary \hat{b}
 - MPK is convex in log productivity. Firms: risk-loving on normalized capital x
 - Friction acts as a mean preserving spread on x
- 2. Information friction reduces elasticity of forecasts to productivity shocks

$$rac{d}{dW_{t-h}^a}\mathbb{E}[a_t|\Omega_t] = egin{cases} \gamma = rac{\sigma_a^2}{\sigma_a^2 + \sigma_n^2} < 1 & 0 \leq h < au \ 1 & h \geq au \end{cases}$$

- 1. Information friction **increases** the incentive to invest (i.e. lowers inaction)
 - ullet Noisier signals or longer revelation delays raise the boundary \hat{b}
 - ullet MPK is convex in log productivity. Firms: risk-loving on normalized capital x
 - Friction acts as a mean preserving spread on x
- 2. Information friction reduces elasticity of forecasts to productivity shocks

$$rac{d}{dW_{t-h}^a}\mathbb{E}[a_t|\Omega_t] = egin{cases} \gamma = rac{\sigma_a^2}{\sigma_a^2 + \sigma_n^2} < 1 & 0 \leq h < au \ 1 & h \geq au \end{cases}$$

Predictions for later: worse information associated with

- Lower inaction rate, conditional on firm size
- Lower sensitivity of investment to productivity shocks

$$\hat{b} = b^{FI} + \frac{\alpha^2}{2(1-\alpha)} \underbrace{\frac{\tau \sigma_a^2 \sigma_n^2}{\sigma_a^2 + \sigma_n^2}}_{Var[u]}$$

1. Information friction increases normalized capital stock

$$\hat{b} = b^{FI} + \frac{\alpha^2}{2(1-\alpha)} \underbrace{\frac{\tau \sigma_a^2 \sigma_n^2}{\sigma_a^2 + \sigma_n^2}}_{Var[u]}$$

• Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}

$$\hat{b} = b^{FI} + \frac{\alpha^2}{2(1-\alpha)} \underbrace{\frac{\tau \sigma_a^2 \sigma_n^2}{\sigma_a^2 + \sigma_n^2}}_{Var[u]}$$

- Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}
- Contrasts with traditional uncertainty channel: $\sigma_a \uparrow \implies b^{FI} \downarrow$

$$\hat{b} = b^{FI} + \frac{\alpha^2}{2(1-\alpha)} \underbrace{\frac{\tau \sigma_a^2 \sigma_n^2}{\sigma_a^2 + \sigma_n^2}}_{Var[u]}$$

- Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}
- Contrasts with traditional uncertainty channel: $\sigma_a \uparrow \implies b^{FI} \downarrow$
- 2. Information friction increases capital misallocation

$$\hat{b} = b^{FI} + \frac{\alpha^2}{2(1-\alpha)} \underbrace{\frac{\tau \sigma_a^2 \sigma_n^2}{\sigma_a^2 + \sigma_n^2}}_{Var[u]}$$

- Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}
- Contrasts with traditional uncertainty channel: $\sigma_a \uparrow \implies b^{FI} \downarrow$
- 2. Information friction increases capital misallocation
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ increase nowcast error variance Var[u]

$$\hat{b} = b^{FI} + \frac{\alpha^2}{2(1-\alpha)} \underbrace{\frac{\tau \sigma_a^2 \sigma_n^2}{\sigma_a^2 + \sigma_n^2}}_{Var[u]}$$

- Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}
- Contrasts with traditional uncertainty channel: $\sigma_a \uparrow \implies b^{FI} \downarrow$
- 2. Information friction increases capital misallocation
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ increase nowcast error variance Var[u]
- 3. Information friction increases average firm volatility

$$\hat{b} = b^{FI} + \frac{\alpha^2}{2(1-\alpha)} \underbrace{\frac{\tau \sigma_a^2 \sigma_n^2}{\sigma_a^2 + \sigma_n^2}}_{Var[u]}$$

- Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ raise boundary \hat{b}
- Contrasts with traditional uncertainty channel: $\sigma_a \uparrow \implies b^{FI} \downarrow$
- 2. Information friction increases capital misallocation
 - Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ increase nowcast error variance Var[u]
- 3. Information friction increases average firm volatility
- 4. Information friction attenuates aggregate responses to productivity shocks

Aggregate Response of $\hat{x} = k - \hat{a}$ to a Productivity Shock

Information friction attenuates aggregate response

Testing Theoretical Predictions

• Model generates clear firm-level predictions. Information frictions:

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to firm-level productivity shocks

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to firm-level productivity shocks
- We use 2 firm-level datasets of Japanese firms to test predictions:

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to firm-level productivity shocks
- We use 2 firm-level datasets of Japanese firms to test predictions:
 - Business Outlook Survey (BOS): forecasts of sales, profits (semi-annual), investment plans (quarterly). ≈ 11 k firms per quarter

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to firm-level productivity shocks
- We use 2 firm-level datasets of Japanese firms to test predictions:
 - Business Outlook Survey (BOS): forecasts of sales, profits (semi-annual), investment plans (quarterly). ≈ 11 k firms per quarter
 - ullet Financial Statements Statistics of Corporations (FSS): assets, debt, equity, types of capital, among others (quarterly). pprox 21k firms per quarter.

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to firm-level productivity shocks
- We use 2 firm-level datasets of Japanese firms to test predictions:
 - Business Outlook Survey (BOS): forecasts of sales, profits (semi-annual), investment plans (quarterly). ≈ 11 k firms per quarter
 - ullet Financial Statements Statistics of Corporations (FSS): assets, debt, equity, types of capital, among others (quarterly). \approx 21k firms per quarter.
 - All large firms and representative sample of small and medium-sized firms

- Model generates clear firm-level predictions. Information frictions:
 - reduce investment inaction
 - attenuate investment response to firm-level productivity shocks
- We use 2 firm-level datasets of Japanese firms to test predictions:
 - Business Outlook Survey (BOS): forecasts of sales, profits (semi-annual), investment plans (quarterly). ≈ 11 k firms per quarter
 - Financial Statements Statistics of Corporations (FSS): assets, debt, equity, types of capital, among others (quarterly). \approx 21k firms per quarter.
 - All large firms and representative sample of small and medium-sized firms
 - Merged dataset contains firms with at least 1 billion JPY in registered capital

• Information friction: forecast error response to productivity shocks

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

• $e_{it+1} = y_{it+1} - \widehat{y_{it+1}}$ is the sales forecast error

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

- $e_{it+1} = y_{it+1} \widehat{y_{it+1}}$ is the sales forecast error
- $w_{it} = a_{it} a_{it-1}$ is the measured (labor) productivity shock

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

- $e_{it+1} = y_{it+1} \widehat{y_{it+1}}$ is the sales forecast error
- $w_{it} = a_{it} a_{it-1}$ is the measured (labor) productivity shock
- z_{it}: firm-level controls

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

- $e_{it+1} = y_{it+1} \widehat{y_{it+1}}$ is the sales forecast error
- $w_{it} = a_{it} a_{it-1}$ is the measured (labor) productivity shock
- z_{it}: firm-level controls
- Industry-time, region-time, size-time fixed effects

- Information friction: forecast error response to productivity shocks
- Estimate industry-specific attenuation coefficient ξ_s :

$$e_{it+1} = \xi_s w_{it} + \Gamma z_{it} + \gamma_{st} + \gamma_{rt} + \gamma_{gt} + \epsilon_{it+1}$$

- $e_{it+1} = y_{it+1} \widehat{y_{it+1}}$ is the sales forecast error
- $w_{it} = a_{it} a_{it-1}$ is the measured (labor) productivity shock
- z_{it}: firm-level controls
- Industry-time, region-time, size-time fixed effects
- Positive $\xi_s \implies$ forecast underreaction

Attenuation Coefficients across Industries

Positive & statistically significant coefficients. Larger for manufacturing industries

• Do we observe more investment inaction for firms in industries with more severe information frictions?

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

$$\mathbb{1}(\mathsf{inaction})_{it} = \alpha \xi_s + \Gamma z_{it} + \gamma_t + \epsilon_{it}$$

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

$$\mathbb{1}(\mathsf{inaction})_{it} = \alpha \xi_s + \Gamma z_{it} + \gamma_t + \epsilon_{it}$$

• z_{it} : lagged (log) capital stock k_{it-1} , (log) labor productivity a_{it} , and intermediate goods per worker m_{it}

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

$$\mathbb{1}(\mathsf{inaction})_{it} = \alpha \xi_s + \Gamma z_{it} + \gamma_t + \epsilon_{it}$$

- z_{it} : lagged (log) capital stock k_{it-1} , (log) labor productivity a_{it} , and intermediate goods per worker m_{it}
- ullet γ_t is the time (semi-year) fixed effect

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

$$\mathbb{1}(\mathsf{inaction})_{it} = \alpha \xi_s + \Gamma z_{it} + \gamma_t + \epsilon_{it}$$

- z_{it} : lagged (log) capital stock k_{it-1} , (log) labor productivity a_{it} , and intermediate goods per worker m_{it}
- γ_t is the time (semi-year) fixed effect
- Standardize ξ_s

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

$$\mathbb{1}(\mathsf{inaction})_{it} = \alpha \xi_s + \Gamma z_{it} + \gamma_t + \epsilon_{it}$$

- z_{it} : lagged (log) capital stock k_{it-1} , (log) labor productivity a_{it} , and intermediate goods per worker m_{it}
- γ_t is the time (semi-year) fixed effect
- Standardize ξ_s
- α is the coefficient of interest

- Do we observe more investment inaction for firms in industries with more severe information frictions?
- We estimate

$$\mathbb{1}(\mathsf{inaction})_{it} = \alpha \xi_s + \Gamma z_{it} + \gamma_t + \epsilon_{it}$$

- z_{it} : lagged (log) capital stock k_{it-1} , (log) labor productivity a_{it} , and intermediate goods per worker m_{it}
- γ_t is the time (semi-year) fixed effect
- Standardize ξ_s
- α is the coefficient of interest
- We calibrate & simulate our model and do a similar analysis for comparison.

		Data	Model			
	inves	stment inactio	on = 1	$investment\ inaction=1$		
ξ_s	-0.076**	-0.079***	-0.0544**	-0.085	-0.087	
	(0.028)	(0.026)	(0.025)			
$a_{i,t}$	0.039	0.059*	0.104***	-0.028	-0.035	
	(0.034)	(0.031)	(0.038)			
$k_{i,t-1}$		-0.050***	-0.049***		-0.007	
		(0.009)	(0.008)			
$m_{i,t}$			-0.026			
			(0.021)			
Time FE	Yes	Yes	Yes	Yes	Yes	
Ν	99027	99027	86294			
adj. \mathbb{R}^2	0.038	0.069	0.063	0.052	0.053	

		Data	Model				
	inves	$\it investment inaction = 1$			$investment\ inaction=1$		
ξ_s	-0.076**	-0.079***	-0.0544**	-0.085	-0.087		
	(0.028)	(0.026)	(0.025)				
$a_{i,t}$	0.039	0.059*	0.104***	-0.028	-0.035		
	(0.034)	(0.031)	(0.038)				
$k_{i,t-1}$		-0.050***	-0.049***		-0.007		
		(0.009)	(0.008)				
$m_{i,t}$			-0.026				
			(0.021)				
Time FE	Yes	Yes	Yes	Yes	Yes		
N	99027	99027	86294				
adj. \mathbb{R}^2	0.038	0.069	0.063	0.052	0.053		

• More severe information frictions ⇒ more inaction

		Data	Model			
	$\it investment inaction = 1$			$\it investment inaction = 1$		
ξ_s	-0.076**	-0.079***	-0.0544**	-0.085	-0.087	
	(0.028)	(0.026)	(0.025)			
$a_{i,t}$	0.039	0.059*	0.104***	-0.028	-0.035	
	(0.034)	(0.031)	(0.038)			
$k_{i,t-1}$		-0.050***	-0.049***		-0.007	
		(0.009)	(0.008)			
$m_{i,t}$			-0.026			
			(0.021)			
Time FE	Yes	Yes	Yes	Yes	Yes	
N	99027	99027	86294			
adj. R^2	0.038	0.069	0.063	0.052	0.053	

- More severe information frictions ⇒ more inaction
- 1 SD in $\xi_s \Rightarrow 5.44$ p.p. (15%) less inaction

• Do we see lower investment sensitivity to productivity shocks in industries with stronger information frictions?

- Do we see lower investment sensitivity to productivity shocks in industries with stronger information frictions?
- We estimate

$$\mathbb{1}(\text{inaction})_{it} = \beta(w_{it} \times \xi_s) + \gamma w_{it} + \Gamma z_{it} + \gamma_s + \gamma_t + \epsilon_{it}$$

- w_{it} : productivity shock (random walk or AR(1))
- z_{it}: firm-level controls
- γ_s is the firm fixed effect
- γ_t is the time (semi year) fixed effect
- Standardize ξ_s

		Model			
	inaction (random walk)		inaction $(AR(1))$		inaction
$\xi_s \times w_{i,t}$	0.009*	0.010**	0.010**	0.009*	0.136
	(0.005)	(0.005)	(0.005)	(0.005)	
W _{it}	-0.003	0.003	-0.005	0.002	-0.212
	(0.009)	(0.009)	(0.009)	(0.009)	
a_{it-1}	-0.028**	-0.015	-0.029**	-0.016	-0.022
	(0.012)	(0.012)	(0.011)	(0.011)	
Firm FE	Υ	Υ	Υ	Υ	Y
Time FE	Υ	Υ	Υ	Υ	Υ
Industry-year FE	N	Υ	N	Υ	-
N	84656	84656	84313	84313	
adj. R ²	0.446	0.451	0.446	0.451	0.240

		Model				
	inaction (random walk)		inaction	inaction (AR(1))		
$\xi_s \times w_{i,t}$	0.009*	0.010**	0.010**	0.009*	0.136	
	(0.005)	(0.005)	(0.005)	(0.005)		
Wit	-0.003	0.003	-0.005	0.002	-0.212	
	(0.009)	(0.009)	(0.009)	(0.009)		
a_{it-1}	-0.028**	-0.015	-0.029**	-0.016	-0.022	
	(0.012)	(0.012)	(0.011)	(0.011)		
Firm FE	Υ	Υ	Υ	Υ	Υ	
Time FE	Υ	Υ	Υ	Υ	Y	
Industry-year FE	N	Υ	N	Υ	-	
N	84656	84656	84313	84313		
adj. R ²	0.446	0.451	0.446	0.451	0.240	

ullet Dampened inaction responses to prod. shocks in industries with higher ξ

Conclusions

- We show that information and investment frictions interact in rich ways
- Parsimonious model delivers testable predictions, consistent with the data
- Information frictions are easily incorporated into continuous time inaction models (there are many applications beyond investment)
- An alternative structure for investment frictions:
 - Old paradigm: convex fixed costs to get inaction, + convex adjustment costs to get attenuation
 - New paradigm: irreversibility to get inaction, + information frictions to get attenuation
 - Plenty of micro evidence!

Appendix

Selected Literature

Partial Irreversibility: Theory Pindyck (1991), Bertola and Caballero (1994), Abel and Eberly (1996), Veracierto (2002), Stokey (2008), Ottonello (2017), and Baley and Blanco (2022)

2. Incomplete Information and Inaction in Continuous Time

- Price-setting: Alvarez, Lippi, and Paciello (2011) Alvarez, Lippi, and Paciello (2016), Baley and Blanco (2019)
- Attention fixed costs and investment: Verona (2014)

3. Firms in the Data: Systematic Errors in Expectations Massenot and Pettinicchi (2018), Born et al. (2022), Andrade et al (2022) Chen et al (2023), Chen, Hattori, and Luo (2023)

How Do Firms Nowcast?

Proposition (1)

For a firm with information set $\Omega(t)$, productivity is conditionally distributed

$$a(t)|\Omega(t) \sim N\left(a(t-\tau) + \gamma\left(s(t) - s(t-\tau)\right), \nu\right)$$

where

$$\gamma \equiv \frac{\sigma_a^2}{\sigma_a^2 + \sigma_n^2} \qquad \nu \equiv \frac{\tau \sigma_a^2 \sigma_n^2}{\sigma_a^2 + \sigma_n^2}$$

How Do Nowcasts Behave?

Proposition (2)

A firm's expected productivity $\hat{a} \equiv \mathbb{E}[a|\Omega]$ and nowcast error u follow the diffusions

$$d\hat{a} = \sigma_a dW^{\hat{a}}$$
 $du = \sigma_u dW^u$

where

$$\begin{split} dW_t^{\hat{a}} &= (1 - \gamma)dW_{t-\tau}^A + \gamma dW_t^A + \gamma \frac{\sigma_n}{\sigma_a} (dW_t^n - dW_{t-\tau}^n) \\ dW_t^u &= (1 - \gamma)\frac{\sigma_a}{\sigma_u} (dW_t^A - dW_{t-\tau}^A) + \gamma \frac{\sigma_n}{\sigma_u} (dW_t^n - dW_{t-\tau}^n) \\ \sigma_u^2 &= 2\frac{\sigma_n^2 \sigma_a^2}{\sigma_a^2 + \sigma_n^2} \end{split}$$

Boundary Solution

The critical value \hat{b} depends on: the variance of nowcast errors ν , the capital share α , the cost of investment ψ , as well as ϱ and m defined as:

$$\varrho \equiv \frac{\mu - \sqrt{\mu^2 + 2\sigma_a^2 r}}{\sigma_a^2} \qquad m \equiv \frac{1}{r + \mu\alpha - \frac{\sigma_a^2}{2}\alpha^2}$$

Proposition (4)

The critical value of expected normalized capital is

$$\hat{b} = \frac{1}{1-\alpha} \log \left(\frac{m\alpha}{\psi} \left(e^{\nu \frac{(1-\alpha)^2}{2}} - \frac{1-\alpha}{1-\varrho} e^{\nu \left(\frac{(2-\alpha)^2}{2} - \frac{(2-\varrho)^2}{2} + \frac{(1-\varrho)^2}{2} \right)} \right) \right)$$

Solving the Firm's Problem: Normalization

Standard approach: define log normalized capital

$$x \equiv k - a$$

• HJB is simpler in one dimension:

$$rv(x) = e^{\alpha x} - \mu v'(x) + \frac{\sigma_a^2}{2}v''(x)$$

where
$$\mu \equiv \delta + \frac{\sigma_a^2}{2}$$

▶ Back

How the Boundary \hat{b} Depends on the Information Friction

 Full info option-value effect of uncertainty over *future* productivity: higher volatility
 lower capital threshold

- Full info option-value effect of uncertainty over future productivity: higher volatility
 lower capital threshold
- ... but uncertainty over *current* productivity has opposite effect: more noise $(\sigma_n \uparrow) \implies higher$ capital threshold

- Full info option-value effect of uncertainty over *future* productivity: higher volatility
 lower capital threshold
- ... but uncertainty over *current* productivity has opposite effect: more noise $(\sigma_n \uparrow) \implies higher$ capital threshold
- Noise can also reverse the sign of the original effect!

- Full info option-value effect of uncertainty over *future* productivity: higher volatility
 lower capital threshold
- ... but uncertainty over *current* productivity has opposite effect: more noise $(\sigma_n \uparrow) \implies higher$ capital threshold
- Noise can also reverse the sign of the original effect!

- Full info option-value effect of uncertainty over *future* productivity: higher volatility
 lower capital threshold
- ... but uncertainty over *current* productivity has opposite effect: more noise $(\sigma_n \uparrow) \implies higher$ capital threshold
- Noise can also reverse the sign of the original effect!

▶ Back

Information Friction's Micro Effects: Inelastic Forecasts

• Recall from Proposition (1):

$$\hat{a}(t)=a(t- au)+\gamma(s(t)-s(t- au))$$
 where $\gamma=rac{\sigma_a^2}{\sigma_z^2+\sigma_z^2}<1$ and $s=a+n$

Information Friction's Micro Effects: Inelastic Forecasts

• Recall from Proposition (1):

$$\hat{a}(t)=a(t- au)+\gamma(s(t)-s(t- au))$$
 where $\gamma=rac{\sigma_a^2}{\sigma_a^2+\sigma_n^2}<1$ and $s=a+n$

• Increased noise lowers the elasticity of forecasts to productivity γ :

$$rac{d}{dW_{t-h}^a}\mathbb{E}[a_t|\Omega_t] = egin{cases} \gamma & 0 \leq h < au \ 1 & h \geq au \end{cases}$$

▶ Back

Information Friction's Micro Effects: Inelastic Forecasts

• Recall from Proposition (1):

$$\hat{a}(t)=a(t- au)+\gamma(s(t)-s(t- au))$$
 where $\gamma=rac{\sigma_a^2}{\sigma_a^2+\sigma_n^2}<1$ and $s=a+n$

ullet Increased noise lowers the elasticity of forecasts to productivity γ :

$$rac{d}{dW_{t-h}^a}\mathbb{E}[a_t|\Omega_t] = egin{cases} \gamma & 0 \leq h < au \ 1 & h \geq au \end{cases}$$

ullet Prediction for later: worse information reduces γ

• Firm entry/exit keeps the size distribution non-degenerate

- Firm entry/exit keeps the size distribution non-degenerate
- ullet Firms exit randomly at rate η , with value returned to owners. Measure η of firms enter at every moment

- Firm entry/exit keeps the size distribution non-degenerate
- \bullet Firms exit randomly at rate $\eta,$ with value returned to owners. Measure η of firms enter at every moment
- ullet Measure η of firms enter at every moment

- Firm entry/exit keeps the size distribution non-degenerate
- ullet Firms exit randomly at rate η , with value returned to owners. Measure η of firms enter at every moment
- ullet Measure η of firms enter at every moment
 - Enter with distribution $\hat{a} \sim N(0,\varsigma)$

- Firm entry/exit keeps the size distribution non-degenerate
- ullet Firms exit randomly at rate η , with value returned to owners. Measure η of firms enter at every moment
- ullet Measure η of firms enter at every moment
 - Enter with distribution $\hat{a} \sim N(0,\varsigma)$
 - Entering firms are as uncertain about productivity as existing firms: $a \sim N(\hat{a}, \nu)$

- Firm entry/exit keeps the size distribution non-degenerate
- ullet Firms exit randomly at rate η , with value returned to owners. Measure η of firms enter at every moment
- ullet Measure η of firms enter at every moment
 - Enter with distribution $\hat{a} \sim N(0,\varsigma)$
 - Entering firms are as uncertain about productivity as existing firms: $a \sim N(\hat{a}, \nu)$
 - Their expected normalized capital \hat{x} enters at the critical value \hat{b}

• The Kolmogorov Forward equation (KFE) for the distribution of expected normalized capital $h(\hat{x}, t)$:

$$\partial_t h(\hat{x},t) = \delta \partial_{\hat{x}} h(\hat{x},t) + \frac{\sigma_a^2}{2} \partial_{\hat{x}}^2 h(\hat{x},t) - \eta h(\hat{x},t)$$

• The Kolmogorov Forward equation (KFE) for the distribution of expected normalized capital $h(\hat{x}, t)$:

$$\partial_t h(\hat{x},t) = \delta \partial_{\hat{x}} h(\hat{x},t) + \frac{\sigma_a^2}{2} \partial_{\hat{x}}^2 h(\hat{x},t) - \eta h(\hat{x},t)$$

• Nice property: The PDE describing \hat{x} is the same PDE describing x in the full information economy!

• The Kolmogorov Forward equation (KFE) for the distribution of expected normalized capital $h(\hat{x}, t)$:

$$\partial_t h(\hat{x},t) = \delta \partial_{\hat{x}} h(\hat{x},t) + rac{\sigma_{\mathsf{a}}^2}{2} \partial_{\hat{x}}^2 h(\hat{x},t) - \eta h(\hat{x},t)$$

- Nice property: The PDE describing \hat{x} is the same PDE describing x in the full information economy!
- Boundary condition: $h(\hat{x})$ must integrate to one over $[\hat{b}, \infty)$

• The Kolmogorov Forward equation (KFE) for the distribution of expected normalized capital $h(\hat{x}, t)$:

$$\partial_t h(\hat{x},t) = \delta \partial_{\hat{x}} h(\hat{x},t) + \frac{\sigma_a^2}{2} \partial_{\hat{x}}^2 h(\hat{x},t) - \eta h(\hat{x},t)$$

- Nice property: The PDE describing \hat{x} is the same PDE describing x in the full information economy!
- Boundary condition: $h(\hat{x})$ must integrate to one over $[\hat{b}, \infty)$
- ullet The stationary distribution of expected normalized capital $h(\hat{x})$ for $\hat{x} \geq \hat{b}$ is

$$h(\hat{x}) = \rho e^{-\rho(\hat{x} - \hat{b})}$$

where $\rho \equiv \frac{\delta}{\sigma_a^2} + \sqrt{\frac{\delta^2}{\sigma_a^4} + 2\frac{\eta}{\sigma_a^2}}$ (which is *unaffected* by the info. friction)

• \hat{x} is unobserved in the data; how is actual normalized capital x distributed?

The Stationary Distribution of Actual Normalized Capital

- \hat{x} is unobserved in the data; how is actual normalized capital x distributed?
- Joint distribution $f_{\hat{x},u}(\hat{x},u)$ with productivity nowcast errors $u=a-\hat{a}$ is simple, because u must be independent of observables:

$$f_{\hat{\mathbf{x}},u}(\hat{\mathbf{x}},u) = h(\hat{\mathbf{x}})\phi(\frac{u}{\sqrt{\nu}})$$

The Stationary Distribution of Actual Normalized Capital

- \hat{x} is unobserved in the data; how is actual normalized capital x distributed?
- Joint distribution $f_{\hat{x},u}(\hat{x},u)$ with productivity nowcast errors $u=a-\hat{a}$ is simple, because u must be independent of observables:

$$f_{\hat{x},u}(\hat{x},u) = h(\hat{x})\phi(\frac{u}{\sqrt{\nu}})$$

• Integrate to calculate the marginal distribution distribution $f_x(x)$ of actual normalized capital $x = \hat{x} - u$:

$$f_x(x) = h(x)e^{\frac{\nu\rho^2}{2}}\Phi\left(\frac{x - (\hat{b} + \nu\rho)}{\sqrt{\nu}}\right)$$

where $\Phi(\cdot)$ is the standard normal CDF.

The Stationary Distribution of Actual Normalized Capital

- \hat{x} is unobserved in the data; how is actual normalized capital x distributed?
- Joint distribution $f_{\hat{x},u}(\hat{x},u)$ with productivity nowcast errors $u=a-\hat{a}$ is simple, because u must be independent of observables:

$$f_{\hat{\mathbf{x}},u}(\hat{\mathbf{x}},u) = h(\hat{\mathbf{x}})\phi(\frac{u}{\sqrt{\nu}})$$

• Integrate to calculate the marginal distribution distribution $f_x(x)$ of actual normalized capital $x = \hat{x} - u$:

$$f_x(x) = h(x)e^{\frac{\nu\rho^2}{2}}\Phi\left(\frac{x - (\hat{b} + \nu\rho)}{\sqrt{\nu}}\right)$$

where $\Phi(\cdot)$ is the standard normal CDF.

• Error variance ν smooths out the distribution

Stationary Distribution: Expected & Realized Normalized Capital

Joint Distribution for Capital and Productivity

Full Information $\sigma_n = 0$

Noisy Information $\sigma_n = 0.4$

• We measure misallocation as the variance of log MPK:

$$Var\left[\log \frac{\partial F(A,K)}{\partial K}\right] = (1-\alpha)^2 Var[x]$$

• We measure misallocation as the variance of log MPK:

$$Var\left[\log \frac{\partial F(A,K)}{\partial K}\right] = (1-\alpha)^2 Var[x]$$

• Normalized capital has orthogonal nowcast and error components:

$$Var[x] = Var[\hat{x}] + Var[u]$$

• We measure misallocation as the variance of log MPK:

$$Var\left[\log \frac{\partial F(A,K)}{\partial K}\right] = (1-\alpha)^2 Var[x]$$

• Normalized capital has orthogonal nowcast and error components:

$$Var[x] = Var[\hat{x}] + Var[u]$$

• Recall: information frictions only affect $h(\hat{x})$ by shifting the distribution boundary

• We measure misallocation as the variance of log MPK:

$$Var\left[\log \frac{\partial F(A,K)}{\partial K}\right] = (1-\alpha)^2 Var[x]$$

• Normalized capital has orthogonal nowcast and error components:

$$Var[x] = Var[\hat{x}] + Var[u]$$

- Recall: information frictions only affect $h(\hat{x})$ by shifting the distribution boundary
- \implies noise does not affect $Var[\hat{x}]$, but does increase Var[u], and thus misallocation.

Information Friction's Macro Effects: Greater Normalized Capital

• The friction increases the incentive to invest: this raises the aggregate capital stock

Information Friction's Macro Effects: Greater Normalized Capital

- The friction increases the incentive to invest: this raises the aggregate capital stock
- Aggregate normalized capital is calculated from the marginal distribution:

$$\bar{X} \equiv \int_{-\infty}^{\infty} e^{x} f_{x}(x) dx$$
$$= e^{\frac{\nu}{2} + \hat{b}} \frac{\rho}{\rho - 1}$$

if ho > 1 (otherwise infinite)

Information Friction's Macro Effects: Greater Normalized Capital

- The friction increases the incentive to invest: this raises the aggregate capital stock
- Aggregate normalized capital is calculated from the marginal distribution:

$$\bar{X} \equiv \int_{-\infty}^{\infty} e^{x} f_{x}(x) dx$$
$$= e^{\frac{\nu}{2} + \hat{b}} \frac{\rho}{\rho - 1}$$

if ho > 1 (otherwise infinite)

• Greater noise $(\sigma_n \uparrow)$ or delay $(\tau \uparrow)$ increase both the nowcast error variance ν and boundary \hat{b}

Dynamic Effects of Aggregate Productivity

- What happens if all firms receive a productivity increase da?
- Expected productivity \hat{a} increases by γda (less than one-for-one!)
- Expected normalized capital $\hat{x} = k \hat{a}$ decreases by γda
- ullet ... so the entire distribution shifts left, with a mass point at the boundary \hat{b} .
- Then, the distribution evolves per the KFE.

Distribution Across Time

Worse Information Attenuates the Aggregate Response

Empirical Evidence: Summary

- There is substantial heterogeneity in degree of information frictions across industries
- Information frictions reduce firm-level investment inaction
- Information frictions attenuate the firm-level investment response to firm-level productivity shocks

Datasets

- Two firm-level administrative data sets (2004-2018) from Japan:
 - 1. Business Outlook Survey (BOS)
 - Contains forecasts of sales, profit (semi-year frequency: Apr. to Sep. and Oct. to next Mar.) and firms' investment and investment plans (quarterly frequency).

Datasets

- Two firm-level administrative data sets (2004-2018) from Japan:
 - 1. Business Outlook Survey (BOS)
 - Contains forecasts of sales, profit (semi-year frequency: Apr. to Sep. and Oct. to next Mar.) and firms' investment and investment plans (quarterly frequency).
 - 2. Financial Statements Statistics of Corporations (FSS)
 - Contains financial statement information in balance sheet and profit and loss account at quarterly frequency (e.g., various assets, debt, equity, various types of capital etc.)

Datasets

- Two firm-level administrative data sets (2004-2018) from Japan:
 - 1. Business Outlook Survey (BOS)
 - Contains forecasts of sales, profit (semi-year frequency: Apr. to Sep. and Oct. to next Mar.) and firms' investment and investment plans (quarterly frequency).
 - 2. Financial Statements Statistics of Corporations (FSS)
 - Contains financial statement information in balance sheet and profit and loss account at quarterly frequency (e.g., various assets, debt, equity, various types of capital etc.)
- Basic features:
 - FSS: roughly 21,000 per quarter; BOS: roughly 11,000 per quarter
 - Cover all large firms and a representative and rotating sample of small and medium-sized firms
 - Both datasets have time-invariant common firm IDs for large firms \rightarrow a marged dataset with firms that have at least 1 billion IPV in terms of

- Variables Used in Empirical Analysis
 - Forecast error (FE) = log realized value (e.g., sales) log forecasted value

- Variables Used in Empirical Analysis
 - Forecast error (FE) = log realized value (e.g., sales) log forecasted value
 - Investment rate (I/K), investment inaction (I/K < 0.01) and spikes (I/K > 0.2)

- Variables Used in Empirical Analysis
 - Forecast error (FE) = log realized value (e.g., sales) log forecasted value
 - Investment rate (I/K), investment inaction (I/K < 0.01) and spikes (I/K > 0.2)
 - Group firms into 30 industries: construction, metal, transportation equipment, wholesale etc.

- Variables Used in Empirical Analysis
 - Forecast error (FE) = log realized value (e.g., sales) log forecasted value
 - Investment rate (I/K), investment inaction (I/K < 0.01) and spikes (I/K > 0.2)
 - Group firms into 30 industries: construction, metal, transportation equipment, wholesale etc.
 - Labor productivity = sales per worker
- Information friction estimated as forecast error response to productivity shocks.

Summary of the Datasets

Table 1: Sample Comparison (Quarterly)

Moments	Merged dataset	Entire Sample (FSS)
The number of obs. (non-missing sales)	392,158	1,260,836
Average employment	1040.58	491.61
Average sales (million JPY)	19991.75	8541.77
Average fixed capital stock	59919.34	24842.79

Notes: Notes: The time span is 2004-2018 (15 years and 60 quarters)

Summary Statistics of Merged Dataset (Semi-Year): Untrimmed Forecast Errors

Variable	Obs.	mean	median	standard deviation	min.	max.
log FE of sales	119,335	0106	0005	0.199	-8.472	5.759
percentage FE of sales	119,359	.0198	0005	1.556	1	316

Time span: 2004-2018 (29 semi-years). Forecast is made at the beginning of each semi-year.

→ Back

Model Calibration

Parameter	Interpretation	Value	Reference
r	Real interest rate	0.01	Annual rate of 4%
α	Capital share	0.67	Decreasing return to scale of $2/3$
ψ	Investment cost	1.00	Normalization
δ	Depreciation rate	0.0136	Target average I/K in Japanese data
η	Exit risk	0.02	Annual exit rate of 8% in Japanese data
σ_{A}	S.D. of productivity process	0.20	Investment dynamics in Japanese data
σ_n	S.D. of noise process	0.20	Investment dynamics in Japanese data
au	Revelation delay	1	Arbitrary

Standard deviations chosen to target investment moments

Investment Moments (Quarterly)

Moments	Data	Baseline Model	Full Info. $(\sigma_n = 0)$
Aggregate Investment Rate	1.36%	1.36%	1.36%
Investment Rate Mean	2.10%	2.63%	2.84%
Investment Rate S.D.	7.1%	7.1%	8.7%
Investment Rate Autocorrelation	0.70	0.51	0.25
Investment Inaction Rate	57.8%	79.7%	82.9%
Investment Spike Rate	1.4%	4.5%	5.4%

Investment Inaction - TFP Go back

	inve	stment inacti	ion = 1
ξ_s	-0.0445*	-0.0401	-0.0461**
	(0.0245)	(0.0242)	(0.0231)
$a_{i,t}$	-0.0377	-0.00736	-0.0289
	(0.0683)	(0.0698)	(0.0386)
$k_{i,t-1}$		-0.0367***	-0.0421***
		(0.00836)	(0.00903)
$m_{i,t}$			0.0481*
			(0.0245)
Year imes quarter fixed effects	Yes	Yes	Yes
N	84987	84987	84987
adj. R^2	0.016	0.033	0.051

The degree of information friction is estimated at the industry level. Standard errors are clustered at the industry level. * 0.10**0.05****0.01 Top and bottom 1% productivity obs. are trimmed out (i.e., outliers).

Robustness checks

- Alternative productivity measure: TFP using proxy estimator from Olley and Pakes (1996)
- Exercise 1: using TFP results
- Exercise 2:
 - using TFP:

 → results
 - Investment rate (consistent with our prediction, but marginally insignificant p value: 1.1-1.3): results

Sensitivity Analysis - TFP Go back

	(1)	(2)	(3)	(4)
	inv. inac	tion = 1	inv. rate (in	v. inaction $ eq 1$)
$\xi_s \times w_{i,t}$	0.00581*	0.00600*	0.000342	0.000204
	(0.00340)	(0.00339)	(0.00105)	(0.00105)
$a_{i,t-1}$	-0.112***	-0.103***	0.0235***	0.0208***
	(0.0132)	(0.0134)	(0.00516)	(0.00527)
$W_{i,t}$	-0.0404***	-0.0350***	0.0117***	0.00976***
	(0.00848)	(0.00854)	(0.00282)	(0.00284)
$m_{i,t}$	-0.00566	-0.00418	0.00476***	0.00360*
	(0.00634)	(0.00637)	(0.00184)	(0.00193)
$k_{i,t-1}$		0.0727***		-0.0408***
		(0.00873)		(0.00498)
Firm FE	Υ	Υ	Υ	Υ
Time FE	Υ	Υ	Υ	Υ
N	80508	80508	54747	54747
adj. R^2	0.445	0.447	0.303	0.312

Sensitivity Analysis - Labor Productivity Go back

	(1)	(2)	(3)	(4)
	` '	tion = 1	inv. rate (inv. inacti	` '
$\xi_s \times w_{i,t}$	0.00848*	0.00885*	-0.0400	-0.0408
	(0.00466)	(0.00465)	(0.0386)	(0.0388)
$W_{i,t}$	0.00213	-0.00344	0.0170	0.0325
	(0.00931)	(0.00931)	(0.0179)	(0.0279)
$a_{i,t}$	-0.0204*	-0.0281**	-0.0259	-0.00409
	(0.0119)	(0.0120)	(0.0299)	(0.0158)
$m_{i,t}$	-0.00891	-0.00523	0.00593	-0.00534
	(0.00551)	(0.00552)	(0.00411)	(0.00795)
$k_{i,t-1}$		0.0771***		-0.152
		(0.00857)		(0.103)
Firm FE	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes
N	84656	84656	57143	57143
adj. R^2	0.444	0.446	0.045	0.059

Degree of information friction is estimated at the industry level.

Standard errors are clustered at the firm level. * 0.10 ** 0.05 *** 0.01

Top and bottom 1% productivity obs. are trimmed out (i.e., outliers).

Sensitivity Analysis - Labor Productivity, Industry-Year FE Go back

Table 2: Incomplete Information and Investment Sensitivity: industry-year FEs

	(1)	(2)	(3)	(4)
	inv. inac	tion = 1	inv. rate (inv.	$\textit{inaction} \neq 1)$
$\xi_s \times w_{i,t}$	0.00991**	0.01000**	-0.0424	-0.0424
	(0.00473)	(0.00472)	(0.0406)	(0.0401)
$a_{i,t-1}$	-0.00857	-0.0146	-0.0313	-0.0127
	(0.0120)	(0.0119)	(0.0326)	(0.0202)
$W_{i,t}$	0.00735	0.00302	0.0146	0.0276
	(0.00930)	(0.00919)	(0.0170)	(0.0253)
$m_{i,t}$	-0.00879*	-0.00633	0.00705	-0.00133
	(0.00524)	(0.00514)	(0.00443)	(0.00585)
$k_{i,t-1}$		0.0824***		-0.168
		(0.00823)		(0.114)
Industry-year FE	Yes	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes	Yes
Time (semi-year) FE	Yes	Yes	Yes	Yes
N	84656	84656	57137	57137
adj. R ²	0.448	0.451	0.044	0.059

Degree of information friction is estimated at the industry level.

Standard errors are clustered at the firm level. * 0.10 ** 0.05 *** 0.01

Top and bottom 1% productivity obs. are trimmed out (i.e., outliers).

Sensitivity Analysis - Labor Productivity AR(1) Go back

	(1)	(2)	(3)	(4)
	inv. ina	ction = 1	inv. rate (inv. inaction	on $\neq 1$)
$\xi_s \times w_{i,t}$	0.00952*	0.00976**	-0.0408	-0.0414
	(0.00500)	(0.00499)	(0.0396)	(0.0396)
$a_{i,t-1}$	-0.0218*	-0.0288**	-0.0266	-0.00653
	(0.0112)	(0.0113)	(0.0305)	(0.0173)
$W_{i,t}$	0.000772	-0.00456	0.0182	0.0334
	(0.00934)	(0.00935)	(0.0189)	(0.0287)
$m_{i,t}$	-0.00890	-0.00536	0.00548	-0.00552
	(0.00547)	(0.00549)	(0.00403)	(0.00807)
$k_{i,t-1}$		0.0764***		-0.153
		(0.00861)		(0.103)
Firm FE	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes
N	84313	84313	56911	56911
adj. R ²	0.444	0.446	0.045	0.059

Degree of information friction is estimated at the industry level.

Standard errors are clustered at the firm level. * 0.10 ** 0.05 *** 0.01

Top and bottom 1% productivity obs. are trimmed out (i.e., outliers).

Sensitivity Analysis - Labor Productivity AR(1) • Go back

	(1)	(2)	(3)	(4)
	` '	ction = 1	. ,	v. inaction $\neq 1$)
$\xi_s \times w_{i,t}$	0.00905*	0.00922*	-0.0416	-0.0419
	(0.00498)	(0.00496)	(0.0402)	(0.0399)
$a_{i,t-1}$	-0.0104	-0.0158	-0.0324	-0.0157
	(0.0114)	(0.0113)	(0.0334)	(0.0222)
$W_{i,t}$	0.00561	0.00161	0.0148	0.0270
	(0.00931)	(0.00921)	(0.0173)	(0.0250)
$m_{i,t}$	-0.00863	-0.00631	0.00704	-0.000940
	(0.00525)	(0.00515)	(0.00442)	(0.00566)
$k_{i,t-1}$		0.0818***		-0.169
		(0.00827)		(0.114)
Industry-year fixed effects	Yes	Yes	Yes	Yes
Firm fixed effects	Yes	Yes	Yes	Yes
Time (semi-year) fixed effects	Yes	Yes	Yes	Yes
N	84313	84313	56906	56906
adj. R ²	0.449	0.451	0.043	0.059

Degree of information friction is estimated at the industry level.

Standard errors are clustered at the firm level. * 0.10 ** 0.05 *** 0.01

Top and bottom 1% productivity obs. are trimmed out (i.e., outliers).

Empirical Exercise 3: Information Frictions & Volatility

- Do we see dampened effect of higher volatility on investment inaction in regions where information frictions are more severe?
- We estimate

$$\mathbb{1}(\mathsf{inaction})_{it} = \beta(\mathsf{vol}_r \times \xi_s) + \gamma_1 \xi_s + \gamma_2 \mathsf{vol}_r + \Gamma z_{i,t} + \bar{sg}_r + \gamma_t + \epsilon_{it}$$

- w_{it} : $a_{it} a_{it-1}$
- z_{it} : lagged (log) capital stock k_{it-1} , (log) labor productivity a_{it} , and intermediate goods per worker m_{it}
- $s\bar{g}_r$ and vol_r are mean and volatility of firm-level sales growth in region r
- γ_t is the semi year (i.e., time) fixed effects
- Standardize ξ_s , \bar{sg}_r and vol_r

Empirical Exercise 3: Information Frictions & Volatility • full result

	Data	Model
	inact	ion
$vol_r imes \xi_s$	-0.00549**	-0.009
	(0.00253)	(0.001)
ξ_s	-0.0551**	-0.145
	(0.0231)	(0.001)
vol_r	0.00612	0.041
	(0.00524)	(0.000)
Time FE	Υ	Υ
Ν	85920	4178503
adj. R^2	0.067	0.016

 Higher volatility of productivity leads to dampened increase in investment inaction when information friction is more severe

Information Frictions & Volatility: • Go back

Table 3: Investment Inaction and Region-level Volatility

		inv. inac	tion = 1
$vol_r \times \xi_s$	-0.0113**	-0.00927**	-0.00549**
	(0.00434)	(0.00368)	(0.00253)
ξ_s	-0.0769***	-0.0796***	-0.0551**
	(0.0260)	(0.0238)	(0.0231)
vol_r	0.00684	0.00636	0.00612
	(0.00513)	(0.00529)	(0.00524)
sg,	-0.0199**	-0.0318***	-0.0365***
	(0.00873)	(0.0107)	(0.00817)
$a_{i,t}$	0.0375	0.0565**	0.101***
	(0.0291)	(0.0264)	(0.0320)
$k_{i,t-1}$		-0.0512***	-0.0507***
		(0.00748)	(0.00727)
$m_{i,t}$			-0.0249
			(0.0195)
Time FE	Yes	Yes	Yes
N	98515	98515	85920
adj. R ²	0.039	0.072	0.067

Degree of information friction is estimated at the industry level.

Standard errors are clustered at the firm level. * 0.10 ** 0.05 *** 0.01

Top and bottom 1% productivity obs. are trimmed out (i.e., outliers).

Attenuation Coefficients across Industries - TFP

• Positive & statistically significant coefficients

Partial Irreversibility

• If firms invest, they do so at cost $\Psi(I)$:

$$\Psi(I) = egin{cases} \psi_+ I & I \geq 0 \ \psi_- I & I < 0 \end{cases}$$

with
$$\psi_+ > \psi_- > 0$$

- Instantaneous profit is $\pi = A^{1-\alpha}K^{\alpha} \Psi(I)$
- Optimal firm behavior: for a range of capital values, firms choose to neither invest nor divest. Usual HJB in the inaction region.
- Solving the firm's problem comes down to finding the optimal choice of \hat{B}_L and \hat{B}_U

Partial Irreversibility

Proposition

Under incomplete information, the boundary conditions consist of two value-matching conditions:

$$\hat{V}'(\hat{B}_L) = \psi_+ \qquad \qquad \hat{V}'(\hat{B}_U) = \psi_-$$

and two super contact conditions:

$$\hat{V}''(\hat{B}_L) = 0$$
 $\hat{V}''(\hat{B}_U) = 0$

Partial Irreversibility

Proposition

The critical values of expected normalized capital are

$$\hat{b}_L = b_L^{FI} + \frac{\alpha^2 \nu}{2(1-\alpha)}$$
 $\hat{b}_H = b_H^{FI} + \frac{\alpha^2 \nu}{2(1-\alpha)}$

where b_L^{FI} and b_H^{FI} denote the full information solutions such that $\nu = 0$.