tags: FromStatCheatsheet

NOTE:

field: CDF of Geometric (p)

field: $1 - (1 - p)^x$

NOTE:

field: CDF of Exponential(β)

field: $1 - e^{-\frac{x}{\beta}}$

NOTE:

field:

- $P(\varnothing) =$
- $B = \Omega \cap B = (A \cup A^c) \cap B = (A \cap B) \cup (A^c \cap B)$
- $P(A^c) =$
- \bullet P(B) =
- $P(\Omega) = P(\varnothing) =$
- $(\bigcup_n A_n) = (\bigcap_n A_n) = DEMORGAN$

- $P(\varnothing) = 0$
- $\bullet \ B = \Omega \cap B = (A \cup A^c) \cap B = (A \cap B) \cup (A^c \cap B)$
- $P(A^c) = 1 P(A)$
- $P(B) = P(A \cap B) + P(A^c \cap B)$
- $P(\Omega) = 1$ $P(\emptyset) = 0$
- $(\bigcup_n A_n) = \bigcap_n A_n$ $(\bigcap_n A_n) = \bigcup_n A_n$ DEMORGAN

field: Probability Set intersection

•
$$P(\bigcup_n A_n) = 1 - P(\bigcap_n A_n^c)$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \implies P(A \cup B) \le P(A) + P(B)$$

•
$$P(A \cup B) =$$

•
$$P(A \cap B^c) =$$

field: Probability Set intersection

•
$$P(\bigcup_n A_n) = 1 - P(\bigcap_n A_n)$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $\implies P(A \cup B) \le P(A) + P(B)$

•
$$P(A \cup B) = P(A \cap B^c) + P(A^c \cap B) + P(A \cap B)$$

•
$$P(A \cap B^c) = P(A) - P(A \cap B)$$

NOTE:

field: $P(A \cap B) =$ when A and Bindependent

field: $P(A \cap B) = P(A)P(B)$ when A and Bindependent

NOTE:

field:

$$P(A|B) =$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

field: Law of total probability

field: Law of total probability

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i) \quad \Omega = \bigcup_{i=1}^{n} A_i$$

NOTE:

field: Bayes Theorem

field: Bayes Theorem

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{n} P(B|A_j)P(A_j)} \quad \Omega = \bigcup_{i=1}^{n} A_i$$

NOTE:

field: CDF Laws

field: CDF Laws

1. Nondecreasing: $x_1 < x_2 \implies F(x_1) \le F(x_2)$

2. Limits: $\lim_{x\to-\infty} = 0$ and $\lim_{x\to\infty} = 1$

3. Right-Continuous $\lim_{y\to x^+} F(y) = F(x)$

NOTE:

$$f_{y|x}(y|x) =$$

$$f_{y|x}(y|x) = \frac{f(x,y)}{f_x(x)}$$

NOTE:

field: X, Y independent

- $\bullet \ P(X \le x, Y \le y) =$
- $\bullet \ f_{x,y}(x,y) =$

field: X, Y independent

- $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$
- $\bullet \ f_{x,y}(x,y) = f_x(x)f_y(y)$

NOTE:

field: Transformations $Z = \phi(X)$

- Discrete: $f_Z(z) =$
- Continuous: $F_Z(z) =$
- Cont, ϕ strictly monotone: $f_z(z)$

field: Transformations $Z = \phi(X)$

• Discrete:

$$f_Z(z) = P(\phi(X) = z) = P(X \in \phi^{-1}(z)) = \sum_{x \in \phi^{-1}(z)} f_x(x)$$

• Continuous (Method of CDF):

$$F_Z(z) = P(\phi(X) \le z) = \int_{x:\phi(x) \le z} f(x) dx$$

• Cont, ϕ strictly monotone: (Method of PDF) $f_z(z) = f_x(\phi^{-1}(z)) |\frac{d}{dz}\phi^{-1}(z)|$

field: Rule of the Lazy Statistician: E[g(x)] =

field: Rule of the Lazy Statistician: $E[g(x)] = \int g(x)f_x(x)dx$

NOTE:

field: Expectation rules

- \bullet E(c) =
- E(cX) =
- E(X+Y) =
- $E(\phi(X)) =$

field: Expectation rules

- E(c) = c
- E(cX) = cE(X)
- $\bullet \ E(X+Y) = E(X) + E(Y)$
- $E(\phi(X)) \neq \phi(E(X))$

NOTE:

field: Conditional expectation

- $\bullet \ E(Y|X=x) =$
- E(X) =
- $\bullet \ E(Y+Z|X) =$
- $E(Y|X) = c \implies$

field: Conditional expectation

•
$$E(Y|X=x) = \int yf(y|x)dy$$

•
$$E(X) = E(E(X|Y))$$

•
$$E(Y+Z|X) = E(Y|X) + E(Z|X)$$

•
$$E(Y|X) = c \implies Cov(X,Y) = 0$$

NOTE:

field: Variance

•
$$V(X) = \sigma_x^2 =$$

•
$$V(X + Y) =$$

•
$$V\left[\sum_{i=1}^{n} X_i\right] =$$

field: Variance

•
$$V(X) = \sigma_x^2 = E[(X - E(X))^2] = E(X^2) - E(X)^2$$

•
$$V(X+Y) = V(X) + V(Y) + Cov(X,Y)$$

•
$$V\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} V(X_i) + \sum_{i \neq j} Cov(X_i, X_j)$$

NOTE:

field: Covariance

•
$$Cov(X,Y) =$$

•
$$Cov(X, c) =$$

•
$$Cov(Y, X) =$$

•
$$Cov(aX + bY) =$$

•
$$Cov(X + a, Y + b) =$$

•
$$Cov\left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right) =$$

field: Covariance

•
$$Cov(X,Y) = E[(X - E(X)(Y - E(Y)))] = E(XY) - E(X)E(Y)$$

- Cov(X,c) = 0
- Cov(Y, X) = Cov(X, Y)
- Cov(aX + bY) = abCov(X, Y)
- Cov(X + a, Y + b) = Cov(X, Y)
- $Cov\left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$

NOTE:

field: Correlation: $\rho(X,Y)$

field: Correlation: $\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}$

NOTE:

field: Conditional Variance

- V(Y|X) =
- \bullet V(Y) =

field: Conditional Variance

- $V(Y|X) = E[(Y E(Y|X))^2|X] = E(Y^2|X) E(Y|X)^2$
- $\bullet \ V(Y) = E(V(Y|X)) + V(E(Y|X))$

tags: distributionrelationships

$$X_1, \dots, X_n \sim iidN(0, 1)$$

$$\sum X_i \stackrel{?}{\sim}$$

field:

$$X_1, \dots, X_n \sim iidN(0, 1)$$

$$\sum X_i \sim N(0, n)$$

NOTE:

field:

$$X_1, \dots, X_n \sim iidN(\mu_i, \sigma_i^2)$$

$$\sum X_i \stackrel{?}{\sim}$$

field:

$$X_1, \dots, X_n \sim iidN(\mu_i, \sigma_i^2)$$

$$\sum X_i \sim N(\sum \mu_i, \sum \sigma_i^2)$$

NOTE:

field:

$$X \sim N(\mu, \sigma^2)$$
$$aX + b \stackrel{?}{\sim}$$

$$aX + Y \sim N(a\mu + b, a^2\sigma^2)$$

- **field:** $X \sim Binom(1, p) \stackrel{?}{\sim}$
- field: $X \sim Bern(p)$

NOTE:

- **field:** $X \sim NegBinom(1, p) \stackrel{?}{\sim}$
- field: $X \sim Geom(p)$

NOTE:

- **field:** $X \sim Gamma(1, \theta) \stackrel{?}{\sim}$
- field: $X \sim Exp(\theta)$

NOTE:

- **field:** $X \sim Exp(\theta) \stackrel{?}{\sim}$
- **field:** $X \sim Gamma(1, \theta)$

NOTE:

- **field:** $X \sim Gamma(v/2, 1/2) \stackrel{?}{\sim}$
- field: $X \sim \chi^2(v)$

NOTE:

$$X \sim \chi^2(v) \stackrel{?}{\sim}$$

 $X \sim Gamma(v/2, 1/2)$

NOTE:

field:

$$X \sim \chi^2(2) \stackrel{?}{\sim}$$

field:

$$X \sim exp(2)$$

NOTE:

field:

$$X \sim Weibull(1, \beta) \stackrel{?}{\sim}$$

field:

$$X \sim Exp(\beta)$$

NOTE:

field: $X_1, X_2 \sim \chi^2(v_i)$ independent $\frac{X_1/v_1}{X_2/v_2}$

field:

$$\frac{(X_1/v_1)}{(X_2/v_2)} \sim F(v_1, v_2)$$

$$X \sim beta(1,1) \stackrel{?}{\sim}$$

field:

$$X \sim Unif(0,1)$$

NOTE:

field:

$$X \sim Unif(0,1) \stackrel{?}{\sim}$$

field:

$$X \sim beta(1,1)$$

NOTE:

field: Special case of t

$$X \sim t(1) \stackrel{?}{\sim}$$

field:

$$X \sim Caucy(0,1)$$

NOTE:

field: Scaled Gamma

$$X \sim Gamma(\alpha, \beta), Y = aX \stackrel{?}{\sim}$$

$$Y \sim Gamma(\alpha, a\beta)$$

NOTE:

field: Scaled Exponential

$$X \sim Exp(\lambda), Y = aX \stackrel{?}{\sim}$$

field:

$$Y \sim Exp(a\lambda)$$

NOTE:

field: Sum of Exponential, equal rate $X_i \sim Exp(\lambda), Y = \sum X_i$

field:

$$Y \sim Gamma(n, \lambda)$$

NOTE:

field:

$$X \sim Exp(\lambda), Y = e^{-x}$$

field:

$$Y \sim Beta(\lambda, 1)$$

field: Min of Exponential

$$X_1, \ldots, X_n Exp(\lambda_i), Y = \min(X_i) \stackrel{?}{\sim}$$

field: $Y \sim exp(\sum \lambda_i)$

NOTE:

field: Min of Uniform

$$X_i \sim Unif(0,1), Y = \lim n \min(X_i) \stackrel{?}{\sim}$$

field:

$$Y \sim Exp(1)$$

NOTE:

field:

$$X \sim Beta(\alpha,\beta), Y = (1-X)$$

field:

$$Y \sim Beta(\beta, \alpha)$$

NOTE:

field:
$$X \sim F_X(X), Y = F_X^{-1}(X)$$

field: $Y \sim Unif(0,1)$

field:
$$X \sim N(\mu, \sigma^2), Y = e^X$$

field:
$$Y \sim lognormal(\mu, \sigma^2)$$

NOTE:

field:
$$X \sim exp(\beta), Y = X^{1/z}$$

field:
$$Y \sim Weibull(z, \beta)$$

NOTE:

field: Square of Normal
$$X \sim N(0,1), Y = X^2$$

field:
$$Y \sim \chi^2(1)$$

NOTE:

field: Square of t
$$X \sim t(v), Y = X^2$$

field:
$$Y \sim F(1, v)$$

NOTE:

field: Sum of Poisson
$$X_i \sim Poisson(\mu_i)Y = \sum X_i$$

field:
$$Y \sim Poisson(\sum \mu_i)$$

field: Sum of Gamma
$$X_i \sim Gamma(\alpha_i, \beta), Y = \sum X_i$$

field:
$$Y \sim Gamma(\sum \alpha_i, \beta)$$

field: Sum of independent Chi-squared $X_i \sim \chi^2(v_i)Y = \sum X_i$

field: $Y \sim \chi^2(\sum v_i)$

NOTE:

field: X, Y independent $X, Y \sim N(0, 1), X/Y$

field: $X/Y \sim Cauchy(0,1)$

NOTE:

field: $X_1, X_2 \sim gamma(\alpha_i, 1)$ independent, $\frac{X_1}{X_1 + X_2}$

field:

$$\frac{X_1}{X_1 + X_2} \sim beta(\alpha_1, \alpha_2)$$

NOTE:

field: $X_1, X_2 \sim gamma(\alpha_i, \beta_i)$ independent, $\frac{\beta_2 X_1}{\beta_2 X_1 + \beta_1 X_2}$

field:

$$\frac{\beta_2 X_1}{\beta_2 X_1 + \beta_1 X_2} \sim beta(\alpha_1, \alpha_2)$$

NOTE:

field: X, Y independent $exp(\mu) X - Y$

field: $X - Y \sim \text{double exponential}(0, \mu)$

field: Inverted Gamma $X \sim Gamma(\alpha, \beta) \ Y = 1/X$

tags:

NOTE:

field: Bernoulii(p), E(X) = V(X) =

Bernoulii(p), E(X) = p, V(X) = p(1 - p) tags:

NOTE:

field: Discrete Uniform N, E(X) = V(X) = V(X)

field: Discrete Uniform $N, E(X) = \frac{N+1}{2}, V(X) = \frac{(N+1)(N-1)}{12}$

NOTE:

field: Cauchy (θ, σ) , E(X) = V(X) =

field: Cauchy (θ, σ) , E(X) = na, V(X) = na

NOTE:

field: Double Exponential (μ, σ) , E(X) = V(X) =

field: Double Exponential (μ, σ) , $E(X) = \mu$, $V(X) = 2\sigma^2$

NOTE:

field: $F(v_1, v_2), E(X) =, V(X) =$

field:
$$F(v_1, v_2), E(X) = \frac{v_1}{v_2 - 2}, V(X) = 2(\frac{v_2}{v_2 - 2})^2 \frac{(v_1 + v_2 - 2)}{v_1(v_2) - 4}$$

field: Mean and Variance for Distributions not on bible (but in CB)

- Double Exponential $(\mu, \sigma), E(X) = V(X) =$
- $F(v_1, v_2), E(X) =, V(X) =$
- Logistic $(\mu, \beta), E(X) = V(X) =$
- Lognormal $(\mu, \sigma^2), E(X) =, V(X) =$
- Pareto $(\alpha, \beta), E(X) = V(X) =$
- t(v), E(X) =, V(X) =
- Weibull $(\gamma, \beta), E(X) =, V(X) =$

field: Mean and Variance. for Distributions not on bible (but in CB)

- Logistic (μ, β) , $E(X) = \mu$, $V(X) = \frac{\phi^2 \beta^2}{3}$
- Lognormal (μ, σ^2) , $E(X) = e^{\mu + (\sigma^2/2)} V(X) = e^{2(\mu + \sigma^2)} e^{2\mu + \sigma^2}$
- Pareto (α, β) , $E(X) = \frac{\beta \alpha}{\beta 1}$, $V(X) = \frac{\beta \alpha^2}{(\beta 1)^2(\beta 2)}$
- $t(v), E(X) = 0, V(X) = \frac{v}{v-2}$
- Weibull (γ, β) , $E(X) = \beta^{1/\gamma} \Gamma(1+1/\gamma)$, $V(X) = \beta^{2/\gamma} (\Gamma(1+2/\gamma) \Gamma^2(1+1/\gamma))$

tags: CasellaCh1

NOTE:

field: Sample Space

field: The set, S, of all possible outcomes of a particular experiment is called the *sample space* for the experiment.

NOTE:

field: Event

field: An *event* is any collection of possible outcomes of an experiment, that is, any subset of S (including S itself).

NOTE:

field: Union

 $\mathbf{field:} \ \ A \cup B = \{x : x \in A \text{ or } x \in B\}$

NOTE:

field: Intersection

field: $A \cap B = \{x : x \in A \text{ and } x \in B\}$

NOTE:

field: Complementation

field: $A^c = \{x : x \notin A\}$

NOTE:

field: Commutativity

 $A \cup B =$

 $A \cap B =$

field: Commutativity

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

NOTE:

field: Associativity

$$A \cup (B \cup C) =$$

$$A \cap (B \cap C) =$$

field: Associativity

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

NOTE:

field: Distributive Laws

$$A \cap (B \cup C) =$$

$$A \cup (B \cap C) =$$

field: Distributive Laws

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

field: DeMorgan's Laws

$$(A \cup B)^c =$$

$$(A \cap B)^c =$$

field: DeMorgan's Laws

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

NOTE:

field: Disjoint

field: Disjoint: Two events A and B are disjoint (or mutually exclusive) if $A \cap B = \emptyset$

NOTE:

field: Pairwise disjoint

field: Two Events A_1, A_2 are pairwise disjoint (or mutually exclusive) if $A_i \cap A_j = \emptyset$ for all $i \neq j$

NOTE:

field: Partition

field: If A_1, A_2, \ldots are pairwise disjoint and $\bigcup_{i=1}^{\infty} A_i = S$, then the collection A_1, A_2, \ldots forms a partition of S.

field: Sigma Algebra

field: A collection of subsets of S is called a sigma algebra (or Borel field), denoted by \mathcal{B} , if it satisfies the following three properties:

- 1. $\emptyset \in \mathcal{B}$ (the empty set is an element of \mathcal{B})
- 2. If $A \in \mathcal{B}$, then $A^c \in \mathcal{B}$ (\mathcal{B} is closed under complementation)
- 3. If $A_1, A_2, \ldots \in \mathcal{B}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{BB}$ is closed under countable unions)

NOTE:

field: Probability Function / Kolmogorov Axioms

field: Given a sample space S and an associated sigma algebra \mathcal{B} , a probability function is a function P with domain \mathcal{B} that satisfies:

- 1. $P(A) \ge 0$ for all $A \in \mathcal{B}$
- 2. P(S) = 1
- 3. If $A_1, A_2, \dots \mathcal{B}$ are pairwise disjoint, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ (Axiom of Countable Additivity)

NOTE:

field: If $A \in \mathcal{B}$ and $B \in \mathcal{B}$ are disjoint, then

$$P(A \cup B) = P(A) + P(B)$$

Axiom of Finite Additivity

field: If $A \in \mathcal{B}$ and $B \in \mathcal{B}$ are disjoint, then

$$P(A \cup B) = P(A) + P(B)$$

field: Properties of probability functions

- 1. $P(\emptyset) =$
- 2. P(A)
- 3. $P(A^c) =$

field: Properties of probability functions

- 1. $P(\emptyset) = 0$
- 2. $P(A) \le 1$
- 3. $P(A^c) = 1 P(A)$

NOTE:

field: If P is a probability function and A and B are any sets in \mathcal{B} , then

$$P(B \cap A^c) =$$

field: If P is a probability function and A and B are any sets in \mathcal{B} , then

$$P(B \cap A^c) = P(B) - P(A \cap B)$$

NOTE:

field: If P is a probability function and A and B are any sets in \mathcal{B} , then

$$P(A \cup B) =$$

field: If P is a probability function and A and B are any sets in \mathcal{B} , then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

field: If P is a probability function and A and B are any sets in \mathcal{B} , then if $A \subset B$ then

field: If P is a probability function and A and B are any sets in \mathcal{B} , then if $A \subset B$ then $P(A) \leq P(B)$

NOTE:

field: Bonferroni's Inequality

$$P(A \cap B)$$

field: Bonferroni's Inequality:

$$P(A \cap B) > P(A) + P(B) - 1$$

NOTE:

field: If P is a probability function, then for any partition $C_1, C_2, \dots P(A) =$

field: If P is a probability function, then for any partition $C_1, C_2, \dots P(A) = \sum_{i=1}^{\infty} P(A \cap C_i)$

NOTE:

field: Boole's Inequality

$$P(\bigcup_{i=1}^{\infty} A_i)$$

field: If P is a probability function,

$$P(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} P(A_i)$$
 for any sets A_1, A_2, \dots

NOTE:

field: Fundamental Theorem of Counting

field: If a job consists of k separate tasks, the ith of which can be done in n_i ways, $i=1,\ldots,k$, then the entire job can be done in $n_1 \times n_2 \times \cdots \times n_k$ ways.

NOTE:

field: Ordered without replacement: outcomes of choosing r from n objects

field:

$$\frac{n!}{(n-r)!}$$

NOTE:

field: Unordered without replacement chose r from n objects

field: Unordered without replacement chose r from n objects

$$\binom{n}{r}$$

field: Ordered with replacement: choose r from n objects:

field: Ordered with replacement: choose r from n objects:

 n^{r}

NOTE:

field: Unordered without replacement choose r from n objects

field: Unordered without replacement choose r from n objects:

 $\binom{n}{r}$

NOTE:

field: Unordered with replacement choose r from n objects

field: Unordered with replacement choose r from n objects:

$$\binom{n+1-1}{r}$$

NOTE:

field: Binomial Coefficient $\binom{n}{r}$

field: Binomial Coefficient

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

field:

$$P(A|B) =$$

field:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

NOTE:

field: Statistically independent $P(A \cap B) =$

field: Statistically independent $P(A \cap B) = P(A)P(B)$

NOTE:

field: If A and B are independent events, what else is independent?

field:

- A and B^c
- ullet A^c and B
- A^c and B^c

NOTE:

field: Mutually independent

field: A collection of events A_1, \ldots, A_n are mutually independent for any subcollection A_{i1}, \ldots, A_{ik} , we have

$$P((\cap_{j=1}^{k} A_{ij})) = \prod_{j=1}^{k} P(A_{ij})$$

NOTE:

field: Random variable

field: A random variable is a function from a sample space S into the real numbers

NOTE:

field: Definition of a pdf

field: A function $f_X(x)$ is a pdf (or pmf) of a random variable X if and only if

1. $f_x(x) \ge 0$ for all x

2.
$$\sum_{x} f_x(x) = 1$$
 or $\int_{-\infty}^{\infty} f_x(x) dx = 1$

tags: CasellaCh2

NOTE:

field: (Theorem) Let X have cdf $F_X(x)$, let Y = g(X)

- 1. If g is an increasing function on X, $F_Y(y) = \text{for } y \in Y$
- 2. If g is a decreasing function on X and X is a continuous random variable, $F_y(y)=$ for $y\in Y$

field: (Theorem) Let X have cdf $F_X(x)$, let Y = g(X)

1. If g is an increasing function on X, $F_Y(y) = F_X(g^{-1}(y))$ for $y \in Y$

2. If g is a decreasing function on X and X is a continuous random variable, $F_y(y)=1-F_X(g^{-1}(y))$ for $y\in Y$

NOTE:

field: Method of pdf

field: Conditions:

1. g is a monotone function

2. $f_X(x)$ is continuous on X

3. $g^{-1}(y)$ has a continuous derivative

Let X have pdf $f_x(x)$ and let Y = g(Y)

$$f_Y(y) = f_x(g^{-1}(y)) \Big| \frac{d}{dy} g^{-1}(y)$$