Text summarization using Abstract Meaning Representation

Amit Nagarkoti Supervisor: Dr. Harish Karnick

Department of Computer Science and Engineering Indian Institute of Technology Kanpur

Table of contents

- 1. Introduction
- 2. Extractive Summarization Methods
- 3. Seq2Seq Learning
- 4. Results

Outline

- 1 Introduction
- 2 Extractive Summarization Methods
- 3 Seq2Seq Learning
- 4 Results

Introduction

Definition

Text summarization is the process of reducing the size of original document to a much more concise form such that the most relevant facts in the original document are retained.

- Summaries are always lossy.
- Summarization methodologies
 - Extractive summarization : extract import words and sentences
 - Abstractive summarization harder : rephrase, generate similar words

Why Important?

- user point of view: Evaluate importance of article.
- linguistic/scientific/philosophical view: Solving summarization is equivalent to solving the problem of language understanding.

AMR: welcome to amr

```
(w / welcome-01
:ARG2 (a / amr))
```

- represent sentence as a DAG
- captures "who is doing what to whom"
- nodes : verb sense (see-01), objects (boy, marble)
- edges : relations (ARG1, ARG0)

Abstraction in AMR

Figure: AMR example

- The boy sees the white marble.
- The boy saw the marble that was white.

Propbank Lexicon

- white-03 : refers to the color white
 - **ARG1**: thing that is white in color (marble)
 - ARG2: specific part of ARG1, if also mentioned
- see-01 : to see or view
 - ARG0: viewer (boy)
 - **ARG1**: thing viewed (marble)
 - ARG2: attribute of ARG1, further description (white but we have different amr here)

How to get an AMR?

Use JAMR: 84% accuracy for concept node identification.

gives AMR for a sentence

```
(d / discover-01 | 0
    :ARGO (r / rope | 0.0)
    :ARG1 (n / noose | 0.1)
    :location (c / campus | 0.2))
```

the noose made of rope was discovered on campus

word-node Alignment

node	alignment	word
discover-01	6-7-0	discovered
rope	4-5-0.0	rope
noose	1-2-0.1	noose
campus	8-9-0.2	campus

Table: word-node alignment

These alignments will be used to generate summaries from AMRs

Outline

- 1 Introduction
- 2 Extractive Summarization Methods
- 3 Seq2Seq Learning
- 4 Results

Using AMRs

Sentence A: I saw Joe's dog, which was running in the garden.

Sentence B: The dog was chasing a cat.

Figure: Steps to generate Document graph from sentence AMR (modified from [Liu et al., 2015])

Document Graph

Figure: Dense Document Graph

Finding the summary sub-graph

$$maximize \sum_{i=1}^{n} \psi_{i} \theta^{T} f(v_{i})$$
 (1)

- lacktriangle here ψ_i is a binary variable indicating node i is selected or not
- $m{\theta} = [\theta_1, \dots, \theta_m]$ are model parameters
- $f(v_i) = [f_1(v_i), \dots, f_m(v_i)]$ are node features

Constraints for a valid sub-graph

Figure: $v_i - e_{ij} \ge 0$ $v_j - e_{ij} \ge 0$

Figure: $\sum_i f_{0i} - v_i = 0$

Figure:
$$\sum_{i} f_{ij} - \sum_{k} f_{jk} - v_{j} = 0$$

$$Ne_{ij} - f_{ij} \ge 0, \ \forall i,j$$
 sanity constraint $\sum_{i,j} e_{ij} \le L$ size constraint

Complete Algorithm

for cur_doc in corpus:
 create doc graph
 add ILP constraints
 solve objective to minimize loss
 calculate gradients
 update model parameters

LSA for extractive summarization

$$\mathbf{t}_i^T
ightarrow egin{bmatrix} S_j & & \downarrow & & \ ar{\mathbf{t}}_{i,1} & \dots & x_{1,n} \ dots & \ddots & dots \ x_{m,1} & \dots & x_{m,n} \ \end{bmatrix}$$

Figure: term-sentence matrix

- term vector $t_i^T = [x_{i1} \dots x_{in}]$
- sentence vector $s_j^T = [x_{1j} \dots x_{mj}]$
- term-sentence matrix can be huge
- no relation between terms
- sparsity

LSA for extractive summarization

$$(\mathbf{t}_{i}^{T}) \rightarrow \begin{bmatrix} x_{1,1} & \dots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{m,1} & \dots & x_{m,n} \end{bmatrix} = (\hat{\mathbf{t}}_{i}^{T}) \rightarrow \begin{bmatrix} \begin{bmatrix} \mathbf{u}_{1} \\ \end{bmatrix} \dots \begin{bmatrix} \mathbf{u}_{l} \end{bmatrix} \end{bmatrix} \cdot \begin{bmatrix} \sigma_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{l} \end{bmatrix} \cdot \begin{bmatrix} \begin{bmatrix} \mathbf{v}_{1} & \vdots \\ \vdots & \mathbf{v}_{l} & \end{bmatrix} \end{bmatrix}$$

Figure: SVD over term-sentence matrix source: Wikipedia

Figure: low rank approximation

LSA for extractive summarization

Finally a score is calculated for each sentence vector given by

$$S_{l} = \sqrt{\sum_{i=1}^{n} v_{l,i}^{2} \cdot \sigma_{i}^{2}} \tag{2}$$

where S_I is score for sentence I

choose L sentences with highest scores

Outline

- 1 Introduction
- 2 Extractive Summarization Methods
- 3 Seq2Seq Learning

Figure: Sequence to Sequence Model

Figure: RNN cell $s_t = f(Ux_t + Ws_{t-1})$ $o_t = softmax(Vs_t)$ source: nature [LeCun et al., 2015]

Figure: Chat client using s2s model based on LSTM source: [Christopher,]

S2S continued

During training model tries to minimize the negative log likelihood of the target word

$$loss_D = \sum_{t=1}^{T} -\log(P(w_t))$$
 (3)

here w_t is the target word at step t.

Problems in s2s

- slow training with long sequences limit sequence lengths
- limited context for decoder **critical** for s2s
- large vocabularies

Attention to rescue

Attend or Re-visit critical information when making decisions

Figure: Attention in RNNs source:distill.pub

Attention complete view

Figure: Attention at step t

Attention Heatmap

X - axis is the input sequence, Y - axis is the generated output

Figure: Attention Heatmap during Decoding

Byte Pair Encoding

Definition

BPE is a compression technique where the most frequent pair of consecutive bytes is replaced by a byte not in the document.

- BPE has been adapted for NMT [Sennrich et al., 2015] using the idea of subword unit.
- "lower" will be represented as "l o w e r @".
- vocabsize = numOfIterations + numOfChars.
- BPE merge operations learned from dictionary low, lowest, newer, wider. using 4 merge operations.

Pointer Generator Model for OOVs

Figure: Pointer Gen model [See et al., 2017]

Coverage

"Coverage" is used in MT to control over and under production of target words.

- Some words may never get enough attention resulting in poor translation/summaries.
- The solution is to use coverage to guided attention [Tu et al., 2016] and [See et al., 2017].
- Accumulate all attention weights and penalize for extra attention.

$$c_{t} = \sum_{t'=1}^{t-1} \alpha^{t'} \quad coverage \ vector \tag{4}$$

$$covloss_t = \sum_{i=1}^{encsteps} min(\alpha_i, c_i^t)$$
 (5)

AMR Linearization

Figure: AMR DFS Traversal gives the linearization -TOP-(eat-01 ARG1(bone)ARG1 ARG0(dog)ARG0)-TOP-

Data Augmentation/Extension with POS

■ POS sequence $p_1 \cdots p_n$ is obtained using the *Stanford Parser*

Figure: s2s model generating multiple output distributions

Hierarchical Sequence Encoder for AMRs

- lacksquare sentence vector S_i is obtained by using attention on word encoder states
- document vector D_i is obtained by using attention on sentence encoder states

Figure: hierarchical models learn the document vector using level-wise learning

Using Dependency Parsing

"A Dependency Parse of a sentence is tree with labelled edges such that the main verb or the focused noun is the root and edges are the relations between words in the sentence."

- To reduce document size we used a context of size L around the root word, reducing the sentence size to at max 2L + 1.
- Fig below has "capital" as *root* with L=3 we are able to extract crux of the sentence *i.e* "Delhi is the capital of India".

Figure: Dependency Parse :: Delhi is the capital of India , with lots of people.

Outline

- 1 Introduction
- 2 Extractive Summarization Methods
- 3 Seq2Seq Learning
- 4 Results

Rouge

RougeN-Precision	MatchingN – grams Count candidateN – grams
RougeN-Recall	$\frac{\textit{MatchingN-grams}}{\textit{Count referenceN-grams}}$
RougeN-F1	2RougeNre*RougeNpre RougeNre+RougeNpre
RougeL-Precision	lenLCS(ref,can) lencandidate
RougeL-Recall	lenLCS(ref,can) lenreference
RougeL-F1	2RougeLre*RougeLpre RougeLre+RougeLpre

Table: Rouge Formulas

Examples

Rouge-N

```
candidate :: the cat was found under the bed reference :: the cat was under the bed has recall \frac{6}{6}=1 and precision \frac{6}{7}=0.86
```

Rouge-L

```
reference :: police killed the gunman candidate1 :: police kill the gunman candidate2 :: the gunman kill police candidate1 has RougeL - F1 of 0.75 and candidate2 has RougeL - F1 of 0.5
```

Dataset Description

We used CNN/Dailymail dataset. The distribution of dataset is as follows

Train	287,226
Test	11,490
Validation	13,368

Table: CNN/Dailymail split

average number of sentences per article	31
average number of sentences per summary	3
average number of words per article	790
average number of words per summary	55
average number of words per article (BPE <i>vsize</i> 50k)	818

Table: CNN/Dailymail average stats for Training sets

Results onn CNN/Dailymail

Model	R1-f1	R2-f1	RL-f1
bpe-no-cov	35.39	15.53	32.31
bpe-cov	36.31	15.69	33.63
text-no-cov	31.4	11.6	27.2
text-cov	33.19	12.38	28.12
text-200	34.66	16.23	30.96
text-200-cov	37.18	17.41	32.68
pos-full*	35.76	16.9	31.86
pos-full-cov*	37.96	17.71	33.23

Table: pos-full minimizes loss for word generation and POS tag generation, all models use pointer copying mechanism as default except the bpe model, text-200 uses glove vectors for word vector initialization

AMR S2S

■ AMR as augmented data using 25k training examples

Model	R1-f1	R2-f1	RL-f1
aug-no-cov	30.18	11	26.52
aug-cov	34.53	13.22	29.21

Table: AMRs as Augmented Data

■ AMR to AMR using s2s

Model	R1-f1	R2-f1	RL-f1
s2s-cnn-1	17.97	6.31	17.35
s2s-cnn-2	25.60	8.31	25.01
s2s-cnn-3	31.96	10.71	29.12

Table: 1: cnn no pointer gen 2: cnn with pointer gen 3: cnn with cov and pointer gen

AMR using Doc Graph

Model	
number of edges L <= nodes/2 - 1 (ref gold)	18.59
number of edges L <= nodes/3 -1 (ref gold)	19.72
number of edges L <= nodes/4 -1 (ref gold)	19.57
number of edges L <= nodes/2 -1 (ref *generated)	38.05
number of edges L <= nodes/3 -1 (ref *generated)	44.72
number of edges L <= nodes/4 -1 (ref *generated)	43.60

Table: Graph based AMR summaries *reference summaries were generated using word alignment in summary graph

Extractive + Abstractive

We used LSA and the dependency parse for the extractive phase

Model	R1-f1	R2-f1	RL-f1
dep-no-cov	25.89	8.72	23.81
dep-cov	30.53	10.26	28.06
lsa-10-no-cov	29.75	11.27	27.3
lsa-10-cov	32.9	12.17	30.41
lsa-15-no-cov	31.64	12.34	28.74
lsa-15-cov	33.22	12.86	30.11

Table: Comparing the mixed approach for summarization, Dependency based method used L=7 as context window value

Sample Outputs

repetition

- Reference: roseanne barr told the daily beast that she is slowly going blind barr said she has macular degeneration and glaucoma
- **Generated:** roseanne barr said she is slowly going blind in interview with the daily beast barr said she suffers from macular degeneration and glaucoma [she suffers from macular degeneration and glaucoma] [she suffers from macular degeneration and glaucoma]

less abstraction

- Reference: batman superman dawn justice trailer leaked thursday yanked offline film will released march 25 2016 stars ben affleck henry cavill
- Generated: batman superman dawn justice [leaked handheld camera phone user uploaded handheld camera phone capture trailer spanish] superman dawn justice will released march 25 2016 [stars affleck batman henry cavill superman film also stars amy adams] much costs

Sample Outputs

- facts redundancy
 - Reference: coast guard says about 50 people were rescued from mobile bay more than 100 sailboats took part in the dauphin island race an annual event
 - **Generated:** [sailboats took part in the dauphin island race] and as many as 50 [sailboats took part in the dauphin island race] and as many as 50 people in all were rescued from water [the coast guard says this is the 57th year] for the event [the club says this is the 57th year] for the event

Conclusion and Future Work

- In this work we walked through some of the techniques for text summarization and suggested some changes to them.
- Extractive methods always degrades the summaries due to lack of complete information but improves on the training times.
- We looked into AMRs and their applicability to the task of summarization and their effectiveness on a smaller data set.
- Finding Global graph embeddings for AMR type structures.
- Using co-referencing in AMRs.
- Data Augmentation without increasing the model complexity.
- Expanding Memory Networks for Summarization.
- Reinforcement Learning for Summarization.
- Better Extraction using Dependency Trees.

Thank You!

```
(t / thank-01
:ARG1 (y / you))
```

References I

- Christopher, O. Understanding Istm networks.
- LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.

 Nature, 521(7553):436–444.
 Insight.
 - Liu, F., Flanigan, J., Thomson, S., Sadeh, N., and Smith, N. A. (2015).

 Toward abstractive summarization using semantic representations.
- See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368.

References II

Sennrich, R., Haddow, B., and Birch, A. (2015).

Neural machine translation of rare words with subword units.

arXiv preprint arXiv:1508.07909.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016). Modeling coverage for neural machine translation. arXiv preprint arXiv:1601.04811.