Statistics

Definition: Sample

- A sample is a subset of randomly selected members from a population.
- A *physical sample* is an actual random selection of members from a population where each member's measurement is denoted by x_i .
- A random sample is a theoretical collection of random variables X_i such that the X_i are:
 - 1. independent
 - 2. identically distributed according to some pmf f(x)

denoted by:

$$X_i \stackrel{\text{iid}}{\sim} f(x)$$

Samples are used when it is not feasible to address an entire population, either because the population is too large or only exists theoretically.

Example

Consider a farm that produces brown eggs. All of the eggs produced by the farm is a population. A carton of a dozen randomly selected eggs is a sample. Since the weight of each egg is iid to a normal distribution:

$$X_i \stackrel{\mathsf{iid}}{\sim} \mathrm{N}(\mu, \sigma^2)$$

Example

Consider tossing a coin with the probability of heads p independently for N times, where X_i denotes the numerical value of the i^{th} toss:

$$X_i \stackrel{\mathsf{iid}}{\sim} \mathrm{Bernoulli}(p)$$

Definition: Statistic

A *statistic* is any value that can be calculated from a sample of a population.

Note that since the measurement of each value in a sample has uncertainly and is thus a random variable described by a distribution, a statistic also exhibits uncertainty and is therefore also a random variable with a distribution.

Definition: Mean

The sample mean of a sample X of size N, denoted \bar{X} , is given by:

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Definition: Median

The sample median of a sample X of size N ordered by increasing value, denoted \tilde{X} , is given by:

$$\tilde{X} = x_{\left(\frac{N+1}{2}\right)}$$

for N odd, and:

$$\tilde{X} = \frac{x_{\left(\frac{N}{2}\right)} + x_{\left(\frac{N}{2} + 1\right)}}{2}$$

for N even.

Note that both the mean and median are measures of center; however, the mean is more sensitive to outliers. They are equal for symmetric distributions, but the median will move towards the side of the mean with the most values.

Definition: Variance

The sample variance of a sample X of size N, denoted s^2 , is given by:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}$$

Also, the *sample standard deviation* is given by:

$$S = \sqrt{S^2}$$

Definition: Sampling Distribution

The distribution of a statistic random variable is called the *sampling distribution* of the statistic.