nSIGHTS Version 2.41a Design Document

WIPP PA

Document Version 2.41a

ERMS #555650

TABLE OF CONTENTS

1.0	INTR	RODUCTION	5
	1.1	Purpose	5
	1.2	Scope	5
	1.3	WIPP QA Software Identification	5
	1.4	Points of Contact	5
	1.5	Acronyms	
	1.6	References	6
2.0	GENI	ERAL DESCRIPTION	6
3.0	BASI	IC ARCHITECTURE	7
	3.1	nPre Design	8
		3.1.1 User Interface	
		3.1.2 Simulator	9
	3.2	nPost Design	9
	3.3	nPreX Design	9
4.0	DAT	A AND CODE STRUCTURES	
	4.1	Data and Code Structures	9
	4.2	GenLib Structure	. 10
		4.2.1 genAlloc	. 10
		4.2.2 genApp	. 10
		4.2.3 genClass	. 12
		4.2.4 genClassPS	. 14
		4.2.5 genCtrl	. 15
		4.2.6 genDataClass	. 16
		4.2.7 genGrid	. 16
		4.2.8 genHelp	. 16
		4.2.9 genInterface	. 16
		4.2.10 genListClass	. 17
		4.2.11 genListClassPS	. 17
		4.2.12 genPlotClass	. 17
		4.2.13 genPlotClassPS	. 18
		4.2.14 genUIExt	. 19
		4.2.15 genUnits	. 19
		4.2.16 genDFO	. 20
		4.2.17 genDPO	. 21
		4.2.18 genPFO	. 21
		4.2.19 genPFOGL	
		4.2.20 genPPO	. 22
		4.2.21 genPPD	. 22

	4.2.22 genUFO	,
	4.2.23 genUPO	
4.3	ObjLib	
	4.3.1 objClass	
	4.3.2 objDFO	
	4.3.3 objDPO	
	4.3.4 objPFO	
	4.3.5 objPFOGL	
	4.3.6 objPPO	
	4.3.7 objUFO	
	4.3.8 objUPO	
4.4	OsLib	
7.7	4.4.1 osClass	
	4.4.2 osDataClass	
	4.4.3 osMain.	
	4.4.6 osLFO	
	4.4.7 osLPO	
	4.4.8 osPFO	
	4.4.9 osPFOGL	
	4.4.10 osPPO	
4.5	NsLib	
	4.5.1 nsClass	
	4.5.2 nsDataClass	
	4.5.3 nsDFO	
	4.5.4 nsDPO	
	4.5.5 nsPFO	•••••••••••••••••••••••••••••••••••••••
	4.5.6 nsPFOGL	
	4.5.7 nsPPO	
4.6	nPre Application	
	4.6.1 Main	
	4.6.2 App	
	4.6.3 AppAlloc	
	4.6.4 AppHelp	
	4.6.5 Auto	
	4.6.6 Dlg	
	4.6.7 Run	
	4.6.8 SimCore	
	4.6.9 UI	
	4.6.10 Var	
4.7	nPost Application	
	4.7.1 Main	
	4.7.2 App	
	4.7.3 AppAlloc	
	1.1	
	4.7.4 AppHelp	

5.1	I nPre Menu Structure	3/
5.2	2 Menu Item Description	38
	ARAMETER LIMITS	
7.0 RE	EFERENCES	54
	List of Tables	
Table 1.1	Document/Criteria Mapping	7
Table 6.1	Parameter Groupings & Limits	
Table 6.1	Parameter Groupings & Limits	1

1.0 INTRODUCTION

The n-dimensional Statistical Graphical Hydraulic Test Simulator (nSIGHTS) is an analysis code used to interpret hydrogeologic well tests. The code was designed and implemented for the windows platform (Windows NT, 2000, XP, 7) and contains the functionality of the DOS based well-test simulator graph theoretic field model (GTFM) Version 6.20. References to earlier GTFM QA documents are included in Section 7.0.

1.1 Purpose

This Design Document (DD) describes the design constraints, attributes, and theoretical development of nSights. In essence, it summarizes the functionality of nSights 2.41a and all enhancements from nSIGHTS version 1.0. The code's design is in conformance with the recommendations of the Waste Isolation Pilot Plant (WIPP) Nuclear Waste Management (NWMP) Quality Assurance (QA) procedure (NP) 19-1 Revision 12, *Software Requirements*.

1.2 Scope

This DD is for the development of nSIGHTS, Version 2.41a. An nSIGHTS analysis will provide parameter estimates to support WIPP Performance Assessment (PA). As such, the code must be documented to fulfill requirements of the Nuclear Waste Management Program Quality Assurance Procedure NP 19-1 Revision 12.

nSIGHTS has statistical routines that allow the uncertainty in the estimates of fitting parameters to be quantified. The goal for using nSIGHTS is to quantify the uncertainty in well test data before passing the values to PA for calculating transmissivity fields.

1.3 WIPP QA Software Identification

nSIGHTS version 2.41a / WIPP Code Prefix: nSIGHTS.

1.4 Points of Contact

Lead: Kevin Barnhart

Sandia National Laboratories

575/234-0006

ksbarnh@sandia.gov

Development Team: John Avis

Intera

613/232-2525 javis@intera.com

Technical Reviewer: Dale Bowman

Sandia National Laboratories

575/234-0055

dachace@sandia.gov

1.5 Acronyms

Acronyms of terms that relate to nSIGHTS are defined the first time they are used in the text, as is customary.

1.6 References

Section 7 contains a list of references.

2.0 GENERAL DESCRIPTION

This document describes the design and architecture of nSIGHTS V2.41a (n dimensional Statistical Inverse Graphical Hydraulic Test Simulator). nSIGHTS will be implemented under the governance of NP19-1 Software Quality Assurance procedure. In essence, nSIGHTS contains the functionality of the DOS based well-test simulator GTFM Version 6.20, re-designed and re-implemented for the Windows platform (Windows 95, 98, NT, 2000, XP, and 7).

Functional requirements for nSIGHTS V2.41a are described herein. The theoretical and the embodied mathematical basis for the code is described in Appendix A of this document "NSIGHTS Version 2.41a – Functional Description and Theoretical Development". Appendix A is provided as a separate file because of concerns with managing a single electronic document containing a large number of specially formatted equations.

Sections of this document are:

Section 1 – Introduction to nSIGHTS and layout of the design document.

Section 2 – General Description of nSIGHTS.

Section 3 Basic Architecture subdivision of functionality into major components, basic design of each component.

Section 4 Data and Code Structures definition of major data structures and classes to be used.

Section 5 Menu Specification design of menus for nSIGHTS pre-processor component.

Section 6 Parameter Limits numeric ranges for parameter values

Section 7 References

Appendix A nSIGHTS Theory

The following table maps sections in this document to Design Document Criteria checklist items (NP 19-1, Rev 12, page 22):

Table 1.1 Document/Criteria Mapping

NP 19-1-4 Checklist	Section in this Document	
Major Software Components	Section 3 Architecture	
Functional Design	Companion document, Appendix A; NSIGHTS version 2.41a Functional Description and Theoretical Development	
Theoretical Development	Companion document, Appendix A; NSIGHTS version 2.41a Functional Description and Theoretical Development	
Major Control Flow	Section 3 Architecture	
Control Logic	Section 3 Architecture	
Data Structures	Section 4 Data Structures	
Allowed or Prescribed Ranges	Section 6 Parameter Limits	
Verifiability	See NSIGHTS version 2.41a – Validation Document.	

3.0 BASIC ARCHITECTURE

nSIGHTS consists of two logically distinct entities:

- 1) The pre-processor (nPre) is used to enter parameters, to prepare for, and to perform simulations.
- 2) The post-processor (nPost) performs graphical and arithmetic post-processing of nPre output files, and performs special pre-processing of external data files for use by nPre.

In general, an object-oriented event driven data-flow architecture controls execution and movement of data between computational entities used in nSIGHTS. Each entity performs a specific data processing or visualization task. For the remainder of this document, the term "functional object" refers to these individual entities. In implementation terms, the objects are C++ classes derived from the base class FuncObjC (see section 4.2.3).

Functional objects are used as wrappers for most data classes. OpenGL 2D and 3D graphics code forms the basis of all data visualization capabilities. nSIGHTS is written in C++. Microsoft Visual C++, Version 7 is the development environment. Also, nSIGHTS relies extensively on the data structures and algorithms developed for GTFM 6.20. These were ported from their implementation language (Pascal) to C++.

Throughout the remainder of this document, reference will be made to "platform independent" and "platform dependent" code. In this document, these terms refer to individual source code components, rather than a complete application.

In this context, "platform independent" refers to code that conforms to the C++ standard and does not use any operating system dependent features or libraries. Platform independent code is thus code that would compile on multiple hardware platforms using any C++ standard compliant compiler. For example, some nSights source code was originally developed on Unix workstations (Alpha, HP, SGI, and Sun) using a variety of compilers. This same code compiles unchanged on Windows platforms using the Microsoft Visual C++ compiler. None of this code would require changes if a Unix version of nSights were to be developed.

In contrast, "platform dependent" refers to source code that uses operating system dependent features. For example, the nSights user-interface components use the Microsoft Foundation Classes (MFC) for Windows. A Unix based implementation of nSights would require converting this code to an equivalent X Windows library, or a platform neutral UI library such as Qt.

To as great an extent as possible, the nSights design has been partitioned to maximize the use of platform independent code.

3.1 nPre Design

nPre is a single-document Windows application. This is significant from a design point of view as it allowed for more straightforward porting of existing GTFM data structures and global variables.

3.1.1 User Interface

nSIGHTS works with a wide variety of input data. Examples include single-valued parameters, functional (i.e f(P), f(t), f(r)) parameters, control flags (e.g. single or dual-porosity, gas or liquid flow), well bore boundary condition specification, numeric parameters, sampling distributions, optimization ranges, etc. As a result, the user-interface for nPre exhibits a significant level of complexity.

The main user interface in the document area has nested tabbed controls. Each tab corresponds to a single category of input. Tabs may contain a nested tab control for subcategories of input. Tabs or nested tabs may contain grid, tree, or dialog type menus for the entry of data.

nPre does not follow standard Window UI conventions in that nPre supports multiple top-level windows for graphics and text/HTML output.

The user-interface code is separated from the data structures containing the simulator data.

3.1.2 Simulator

Classes containing simulator input data were translated from the GTFM Pascal source.

The optimizer/sampler code was substantially redesigned and separated logically from the actual simulator. A C++ base class "C_Optimizable" (see section 4.4.1) was designed as the target for the optimizer. The actual nSights simulator is packaged in a class derived from C_Optimizable.

The simulator was developed in a "thread-safe" manner to support implementation on multi-processor architectures. Multiple instances of the simulator may run simultaneously.

3.2 nPost Design

nPost provides a basic UI which the user may populate with a variety of functional objects to support data processing and visualization. The nPost user-interface uses a "Windows Explorer" type approach. A tree control is used with first-level nodes (leaves) representing data pages (for data-processing objects) and 2D and 3D plots. Second-level nodes represent specific data or plot objects. The area to the right of the tree structure contains the UI for the currently selected second level node.

3.3 nPreX Design

The basic architecture of nPreX is the same as nPre, without user interface components. The intent of nPreX is to run a simulation based on a configuration file generated with nPre. There is a small amount of new code to call the existing routines that read the configuration file and execute its contents. This code uses standard MPI (Message Passing Interface) to allow the simulations to be spawned to multiple processors. The user's machine, or a cluster of machines, must have mpi libraries installed to execute nPreX. nPreX was developed and tested using mpich.

nPreX uses the same source code base as nPre, minus those components which are strictly UI or plotting related (e.g. genPPD, genPFO, genPPO). A compile time flag, ADCONSOLEAPP, is defined for nPreX compilation. C++ preprocessor directives (#ifdef, #endif, #elseif) are used to exclude UI code, or (rarely) to include code specific to nPreX.

4.0 DATA AND CODE STRUCTURES

4.1 Data and Code Structures

nSights has been developed as two main application programs (nPre and nPost) that are both dependent upon a series of structured libraries. Library names and descriptions are:

- 1) **GenLib** This library contains a mixture of platform independent and platform dependent code that provides generic support for graphics intensive applications.
- 2) **ObjLib** This library adds defining classes and functional objects for processing and plotting curve, grid, cube, time series (XY), and tabular data.
- 3) **OsLib** This library adds classes and functional objects to support optimisation and sampling in scientific applications.
- 4) **NsLib** This library adds nSights specific classes and functional objects primarily related to well-test analysis.

The following subsections address each library in more detail, followed by descriptions of the nPre and nPost application structure.

4.2 GenLib Structure

GenLib provides framework support and components that are independent of any specific application. To as great an extent as possible, GenLib source is also platform independent, in the sense that the code will compile unchanged on a variety of operating systems and hardware. GenLib source code is structured in subdirectories that reflect the differentiation of functionality. Each GenLib subdirectory is addressed below.

4.2.1 genAlloc

Allocator objects to implement functional object factory code. If linked into an application the application can create the associated objects. Code in this directory is not physically included in the library itself but is conceptually part of the library. Each object allocator is derived from a template defined in C_AllocObj in genApp.

4.2.2 genApp

Code which defines and implements the basic framework user-interface (UI) and provides OS platform specific implementation of common facilities such as copy/paste and configuration file I/O. Major classes and functionality are as follows:

AppConfigFile basic support for object serialization to/from text files or clipboard.

Provides object header support and general data type I/O.

AppCopyPaste uses object serialization to/from the Windows clipboard to provide

copy, paste, and duplicate support for individual or groups of

objects and pages.

C_AllocObj object factory for creating DPO_XXX, LPO_XXX, PPO_XXX,

and UPO XXX functional objects given an object identifier.

C AllocPage object factory for creating new menu pages C AppMenu support for Object and Page pulldown and popup menus in applications. C_CfgFileObj abstract base class for all serializable objects. Used by multiple inheritance. C_ExposedObj base class for exposing selected properties in a modeless dialogs. C MenuBase base class for all functional object user-interfaces (DPO XXXPS, LPO_XXXPS, PPO_XXXPS, UPO_XXXPS). Handles menu creation, UI tasks common to all FuncObjC derived objects (object ID, object buttons), and object calculation initiation. Defines virtual functions for button handling. C_MenuObj base class for all functional objects with associated UI menus (DPO_XXX, LPO_XXX, PPO_XXX, UPO_XXX). Derived from TreeNode and CfgFileObj. C MenuPage collects MenuObjC objects on a page in the object tree UI. Handles child pages for drag/drop and object re-arrangement. Derived from TreeNode and CfgFileObj. C DataPage page type for data objects and child data pages C_PlotPage page type for plot objects and child plot folder pages C_CompositePage page type for composite plots C ListPage for list objects C PlotFolderPages page type which is child of plot page and contains plot objects only.

C_MenuRoot collects MenuPageC objects on a single tree. Derived from

CfgFileObj.

C_ObjHelp maps help ID numbers to object names for use by Help system.

C TreeBase provides UI support for object tree operations. Includes drag/drop

for nested pages and for object re-arrangement.

C_TreeNode provides UI support for a single node (MenuObj or MenuPage)

on a tree. Displays icon and object description.

ExposedList implements exposed object support for list selection type data.

Derived from ExposedObjC.

ExposedReal implements exposed object support for real valued data. Derived

from ExposedObjC.

G_Version defines version globals for application (ID, date, major/minor

version number). Actual implementation is in application.

ProjectFrame basic MFC application class

SingleFrame ProjectFrame derived class for applications with a single menu

tree (like nPost)

ProjectUtil sets/gets registry data describing application settings and

properties.

U_Menu basic UI support classes used by MenuBaseC derived functional

objects.

U_MenuDPO basic UI support classes used primarily by DPO_XXXPS

functional objects.

U_MenuPPO basic UI support classes used primarily by PPO_XXXPS

functional objects.

WindowSelector implements WindowSelector UI control.

4.2.3 genClass

Platform independent and application independent base classes and support classes. Major classes and categories include:

C FuncObjC the fundamental framework class. It is the base class for all

processing/plotting/listing functional objects. FuncObjC manages all inter-object communication and creates the object execution tree. Virtual functions defined in FuncObjC are implemented in

derived classes to provide actual object functionality.

C_GlobalFunc FuncObjC derived class for functional objects implemented at the

application level with no user interface or file I/O.

C_InteractiveObj FuncObjC derivation adds virtual method for callback

processing.

DC_XXX data classes that define the basic types of data used within the

framework.

DC_ColorMap array of colors

DC_ContourSpec contour values, colors, and line type

DC_DataLimit specification for mapping real values to integer intervals

DC_PenSet defines pen set consisting of 24 separate colors

DC_TableData tablular data.

DC_XYData time series (XY) data

C DataObj base class for wrapper objects used to communicate data classes

between FuncObjC derived objects.

DO_XXX lightweight classes derived from DataObjC to wrap data classes

DC_XXX.

IO_XXX reads/writes data class from/to files.

IO_XYData reads/writes DC_XYData in a variety of formats.

SC_Array base class for all array classes.

T_SC_Array<type> derived from SC_Array. Provides a template for

implementing a lightweight vector class. Examples:

SC_IntArray derived from T_SC_Array<int>

SC_DoubleArray derived from T_SC_Array<double>

SC_DoubleMatrix derived from T_SC_Array<SC_DoubleArray>

- T_SC_BasicPtrArray<type> derived from T_SC_Array to provide basic facilities for operating on arrays of pointers to type. Does not handle type construction/destruction.
- T_SC_AllocPtrArray<type> derived from T_SC_Array to provide basic facilities for operating on arrays of allocated pointers to type. Does handle type construction/destruction.

SC_XXX other generic support classes. Examples include:

SC_ColorSpec defines color by RGB or HSV components

SC_RealConversion provides support for converting real numbers to string representations.

SC_SetupErr common error detection and processing support

SC_Statistics performs univariate statistics calculations.

SC_Triangulation triangulates scattered or gridded XY data for contouring.

U_XXX utility procedures. No class specifications.

U_Msg generic messages to the UI. Definition only. Implementation is in

genApp/U_MsgPS

U_Real real number utilities (matrix solvers, statistical calculations, etc).

U_String string processing utilities.

GenLib also provides error trapped file I/O routines:

C_BufFile reads/writes binary formatted files.

C_Text base class for reading/writing text formatted data (file or

clipboard).

C_TxtFile derived from C_Text for file I/O.

C_ConvFile special support for reading and converting ASCII files produced by

numeric models.

Collections of small classes:

C_Common contains basic 2D (Point2D) and 3D (Coord3D) classes used for

plotting.

C_Graphics defines line types and symbol specifications.

4.2.4 genClassPS

Platform specific but application independent code.

PS_ArgList encapsulates arguments to UI creation routines primarily used for

defining UI component layout. Based on original mView Unix

implementation.

PS_UIBase individual UI elements. MFC implementation of original Unix X

wrappers. Defines BaseWidget and derived classes for all common UI controls. All layout automatically managed by X

Form like attachments.

PS_UIClass adds labels or frames to individual PS_UIBase controls.

PS OGLBase base class for OpenGL visual. Enumerates available visual and

selects. Provides information about current visual properties.

PS_Color maps SC_ColorSpec to Windows API COLORREF

PS_DialogShell base class for all modeless dialog windows.

PS_FormContainer basic abstraction of Unix X Form widget used for MFC

implementation.

PS_Import base class for reading data from the Windows clipboard.

PS_MainWindow keeps track of all top-level windows for use by window selector.

PS_TxtClipboard derived from TextC. Encapsulates/implements clipboard I/O.

PS_UIGrid implements grid as a BaseWidget derived object.

PS_WriteXXX writes plot bitmaps in JPG, TGA, or BMP format.

4.2.5 genCtrl

Windows specific code for implementing basic controls with callbacks on resource defined dialog forms.

UpdateableCtrl defines callback processing for dialog

CtrlUpdate abstract class to define callback mechanism for controls

ButtonCtrl UI button

CheckBoxCtrl UI check box

ComboBoolCtrl dropdown for two (true/false) entries

ComboIntCtrl dropdown with multiple entries mapped to integers

ComboFOCtrl dropdown with list of defined FuncObjC for object connection

FileCtrl text field and button for browse selection

IntCtrl enter integer value

RealCtrl enter real numeric value

TextCtrl enter text string

TextDialogCtrl displays text string, calls up dialog when selected

4.2.6 genDataClass

Defines common components used in FuncObjC derived functional objects.

DSC_IndexMSSpecBase master/slave connected to list selection

DSC_RealMSSpecBase master/slave connected to real value entry

DSC_ScaleTransform common arithmetic and transform operations on real values

DSC_Threshold thresholding values

DSC_TimeBase common time unit conversion

4.2.7 genGrid

Windows specific code for implementing basic spreadsheet type data entry/display.

GridCtrlBase overall definition/control of sheet

GridCell base class for individual cells

CheckEditWnd edit control for check box

CheckEditCell grid cell containing CheckEditWnd

ComboEditWnd edit control for combo box

ComboEditCell grid cell containing ComboEditWnd

TextEditWnd edit control for text entry

TextEditCell grid cell containing TextEditWnd

4.2.8 genHelp

Help system mappings for genLib functional objects.

4.2.9 genInterface

Windows specific code for implementing Outlook style application with dialogs and object trees.

OutlookFrame ProjectFrame derived class for applications with a multiple

menu trees (like nPre)

4.2.10 genListClass

Platform independent base classes to allow creation of listings in HTML browser windows.

C_ListDef basic definition of a listing window. Maintains lists of

connected listing functional objects.

C_ListObj base class for objects that list data to ListDefC functional objects.

C_ErrorListObj performs listing of error conditions.

C_ListFactory abstract class for creating modal listings.

LFO_ObjectListing creates listing of defined FuncObjC connections.

4.2.11 genListClassPS

Platform specific implementation of genListClass codes adds Windows specific code for window creation and use of IE HTML renderer.

C_ListDefPS creates top-level window with IE browser in client area.

4.2.12 genPlotClass

Platform independent base classes for plot definitions and plot functional objects.

C_PlotDef basic definition of a plot window. Maintains lists of connected

plot and annotation objects. Controls overall plot display.

Handles default mouse right click menus.

C PlotObjBase InteractiveObjC derived class which links an object to be plotted

to the plot it is defined on. Explicitly connects object to base

plot and pen set.

C_PlotObj derived from PlotObjBaseC. Adds plot layering and reporting

support for 2D objects and polygon offset support for 3D objects.

C_ActiveObj PlotObjC derived object that responds to mouse input.

C_AnnoObj PlotObjC derived object that is plotted in 2D annotation

coordinate system.

PC_2DPlotAnno defines axes/increment layout and annotation for 2D plots

PC_3DAxesFormat defines axes/increment layout for 3D plots

PC_3DAxesLayout defines axes/increment annotation for 3D plots

PC_Axes basic axes definition and derived class for Lin/Log axes.

PC_CallbackMenu for defining/processing right click menus in ActiveObjC derived

objects.

PC_Lighting defines OpenGL lights for 3D plots.

PC_Platform defines platform specific cababilities.

PC_Report adds class to support cursor reporting on 2D plot objects.

PC View defines axes limits

PD_XX derived from PlotDefC – defines plot types

PD_2D defines basic 2D plot

PD_2DXY derived from PD_2D – defines 2D plot with lin/log axes

PD_3D defines basic 3D plot

PD_3DXYZ derived from PD_3D – defines 3D plot with lin/log axes

PD_Composite defines basic composite plot – includes list of sub-plots

PSC_XXX support classes for defining common plot elements.

PSC_AnnoSpec elements common to most annotation objects (legend

frame, pen, font)

PSC_ArrowSpec arrow and arrow head PSC_ColorBase maps data to color ranges PSC_ContourSpec define contouring of data

PSC_ColorLegendSpec how data is mapped to colors PSC_ExtrusionSpec how extrusion is plotted on 3D plot

PSC_Font defines font characteristics
PSC_GridLine single grid line and label
PSC_LabelSpec basic definition for label

4.2.13 genPlotClassPS

Platform specific implementation of genPlotClass codes adds Windows and OpenGL specific code. Includes operating system independent implementation of 2D and 3D OpenGL functionality (platform specific in this case refers to the OpenGL renderer).

OGL_Base basic OpenGL plotting space OGL_2DBase plotting space for 2D plots

OGL_2DXY – adds coordinate transforms for log axes.

OGL_3DBase plotting space for 3D plots

OGL_3DXYZ – adds coordinate transforms for log axes.

OGL_Font support for bitmapped and polygon fonts using wgl API routines

OGL_StringProcessing does text processing (e.g. for subscripts/superscripts) and plots

results

PC_PlatformPS – Windows specific implementation of PC_Platform. Creates top

level window, manages mouse, menu bar, status bar and tool bar.

PC_Platform2DPS adds capabilities for 2D plotting cursor reporting area.

PC_Platform3DPS adds capabilities for 3D plotting only view control sliders and

view animation dialog.

PC_ReportPS implements reporting window management

PD_2DXYPS merges OGL_2DXY with PD_2DXY. Implements axes drawing

routines.

PD_3DXYZPS merges OGL_3DXYZ with PD_3DXYZ. Implements axes

drawing routines.

PD_CompositePS merges OGL_Base with PD_Composite

PS_ObjectDialog implements Object Control dialog.

PS_PSObjectSetup implements PostScript Output dialog.

PS_TGAObjectSetup implements Bitmap Output dialog.

PS_ViewAnimationDialog implements 3D View Animation dialog.

PSC_FontPS maps PSC_Font structure to MFC CFont

4.2.14 genUIExt

Windows specific code for MFC user-interface extension or enhancement classes.

4.2.15 genUnits

Platform independent and Windows specific (derived from genCtrl and genGrid) classes for performing unit conversions and for entering/displaying dimensioned numeric data in dialogs and grids.

C_GenUnits unit conversion and basic units. Additional units can be added by

application.

C_UnitListObj adds unit conversion to ListObjC

ExposedUnitReal adds unit conversion to ExposedRealC

U Units unit controls (unit selection combined real/units) for use in form

managed UI

UnitConfigFile unit value I/O

UnitGridCell unit control for grid

UnitIndexCtrl unit selection for resource based dialogs

UnitRealCtrl combined value entry/unit selection for resource based dialogs

4.2.16 genDFO

Basic functional objects (all derived from FuncObjC) used by all applications, primarily concerned with defining/operating on pen sets and colour maps:

DFO_PenSet defines colors for up to 24 pens used by a plot.

DFO_LinColorMap defines a basic color map.

DFO_BlendColorMap combines two color maps as a linear combination.

DFO_MergeColorMap combines two color maps sequentially.

DFO ReadColorMap reads a color map from a file.

DFO EnterColorMap define individual colors in a color map.

Also includes base classes for common operations with different application specific implementations:

DFO_Histogram calculates a histogram for an input vector.

DFO_InterpVal interpolates a Y value from XY input given an X value.

Various options are available (linear, log, nearest, etc).

DFO_MathBase for common mathematical operations (+-/*) on two input

vectors.

DFO_RangeBase for extracting ranges of values from an input vector.

DFO_ScaleTransform performs basic scaling/transform operations on an input

vector.

DFO_Statistics performs univariate statistics on an input vector.

4.2.17 genDPO

File I/O and user interface for all genDFO functional objects. All code is platform independent but it relies upon platform dependent code in genApp and genClassPS.

DPO_XXXX is file/IO for DFO_XXXX objects

DPO_XXXXPS is the user interface for DFO_XXXX

4.2.18 genPFO

Basic plotting objects used by all applications, primarily concerned with plot annotation:

PFO_ColorLegend legend bar for objects plotted according to a color map.

PFO_DataLabels labels that are linked to values produced by other objects.

PFO_GridLine adds a labeled grid line at a specific location on an XY plot.

PFO SeriesLegend creates legend box showing line types and symbols with legend.

PFO UserLabels basic user entered text for labels.

Also defines a base class used by all objects that map data values to colors in a color map.

4.2.19 genPFOGL

Implements renderer dependent code to actually draw genPFO functional objects on a plot. Is platform independent but relies on platform dependent code in genPlotClassPS.

PFO_XXXXGL the drawing code for PFO_XXXX.

Also includes support classes for OpenGL drawing of common objects such as lines, symbols, polygons, arrows and 3D extrusions. These are renderer dependent.

OGLBaseObj included multiple inheritance on all PFO_XXXGL objects to

link object to renderer and perform common tasks.

OGLObj classes for issuing OpenGL renderer commands for different

drawing operations.

GL_Arrow draws arrow defined by PSC_ArrowSpec.

GL_ColorLegendSpec draws color legend box defined by PSC_ColorLegendSpec.

PC_GridLine support class to draw grid lines.

PC_Label support class to draw a 2D label.

PC_Rectangle defines rectangle for legend box frames etc.

4.2.20 genPPO

File I/O and user interface for all genPFOGL functional objects.

PPO_XXX file/IO for PFO_XXXGL objects

PPO XXXPS the UI for PFO XXXGL

4.2.21 genPPD

File I/O and user-interface for basic plot definitions (i.e. plot size, axes types/limits, axes labels, increment labels, lighting for 3D plots)

PPD Base components common to all plots (window size)

PPD_2D derived from PPD_Base. Adds components for all 2D plots

PPD 2DXY derived from PPD 2D. Adds components for 2DXY plots

PPD_3D derived from PPD_Base. Adds components for all 3D plots

PPD 3DXYZ derived from PPD 3D, Adds components for 3DXYZ plots

PPD_Composite adds components for composite plots.

PPD CompositeLayout describes layout of sub-plots on composite plot.

PPD LinLogAxis a single axis for an 2DXY or 3DXYZ plot

PPD_2DPlotAnno axes and increment annotation and formatting for a 2D plot

PPD_3DAxesLabel axes and increment labeling for 3D plot

PPD_3DAxesFormat increment/grid line formatting for 3D plots

PPD 3DLighting lighting specification for 3D plots

4.2.22 genUFO

Basic utility functional objects used by all applications:

UFO_WriteColorMap writes a color map to a file

4.2.23 genUPO

File I/O and user-interface for genUFO

4.3 ObjLib

ObjLib provides functional objects and classes to support operations and plotting of common data types. ObjLib source code is structured in sub-directories similarly to GenLib.

4.3.1 objClass

Data classes, data object wrappers, and IO:

DC_Curve cubic spline or polynomial fit to time series.

DC_GridData data defined over regular 2D grid.

DC_CubeData data defined over regular 3D grid.

DC_XYDataArray array of time series.

DO_XXX wrappers for above.

IO_GridData I/O for DC_GridData.

IO_CubeData I/O for DC_CubeData.

4.3.2 objDFO

Functional objects for operating on curves, cubes, grids, tables and XY (time-series) data.

Creation

DFO_CreateDataLabel creates DO_Label classes for plotting with

PFO_DataLabels.

DFO_CreateReal creates real value for use by other functional objects.

DFO_CreateXYArray combines XY data into DC_XYDataArray.

Cube Operations

DFO_CubeExtractGrid extracts plane of data from cube.

DFO_CubeHistogram histogram of data in cube.

DFO_CubeMath add/subtract/multiply/divide contents of two cubes.

DFO_CubeNormalize apply normalization operation to all data in cube.

DFO_CubeScaleTransform scale/transform all data in a cube.

DFO_CubeStatistics univariate statistics of data in cube.

Curve Operations

DFO_CreateCurve creates a curve specification based on XY input data.

DFO_CurveInterp interpolates data from curve.

Data Entry

DFO_EnterTable user entry of table data in spreadsheet format. Also

allows editing/viewing of existing table.

DFO_EnterXY user entry of XY data in spreadsheet format. Also allows

editing/viewing of existing data.

Grid Operations

DFO_GridExtractXY extracts line of data from grid.

DFO_GridHistogram histogram of data in grid.

DFO_GridMath add/subtract/multiply/divide contents of two grids.

DFO_GridNormalize apply normalization operation to all data in grid.

DFO_GridScaleTransform scale/transform all data in a grid.

DFO_GridStatistics univariate statistics of data in grid.

Read Input

DFO_ReadCubeData reads cube data from ASCII file.

DFO_ReadCurveArray reads curve data from ASCII file.

DFO_ReadGridData reads grid data from ASCII file in several formats.

DFO_ReadLabelArray reads label data for plotting.

DFO ReadTable reads table data from ASCII file in several formats.

DFO_ReadXY reads XY data from ASCII file in several formats.

<u>Table Operations</u>

DFO_CombineTable creates a new table containing selected columns of input

tables. All columns must be the same length.

DFO_TableAdd adds individual entries of one or more identically sized

input tables to create an output table of the same size.

DFO_TableColScaleTransform creates an output table that is the same as the input table

except a scale/transform operation has been applied to

the data in a single column.

DFO_TableConcat Concatenates tables together.

DFO_TableHistogram creates a histogram based on a single input table column.

DFO_TableInterpVal interpolates Y value given X value and two selected table

columns representing X and Y vectors.

DFO_TableRangeExtract extract rows from a table based upon values in a single

column.

DFO_TableRowIndexLogic supports combining extraction operations from several

tables.

DFO TableRowStatistics calculates statistics for each row in a table. Produces a

new table containing columns with each statistical

measure selected.

DFO TableStatistics calculates basic univariate statistics for a single column in

a table.

DFO_TableToReal extracts a single value from a selected table column based

upon a criteria (min, max, first, last, specific row).

DFO_TableToXY converts two columns in a table to an XY (time series) data

type.

DFO_TableTranspose Switches a table's columns and rows.

XY (Time Series) Operations

DFO XYAddNoise	adds normally or uniform	ly distributed noise to the Y

values in an XY data set.

DFO_XYArrayScaleTransform provides basic scale/transform operations for all data in

an XY array.

DFO_XYDualScaleTransform

provides basic scale/transform operations for both X

and

Y components.

DFO_XYFourier does inverse and forward FFTs on Y component of XY

data set.

DFO_XYHistogram creates a histogram based on X or Y values.

DFO_XYIntegrate output XY is basic point by point integration of input XY.

DFO_XYMath basic math (+-/*) on X or Y components of two input XY.

DFO_XYRangeExtract reduces XY data based on range of values of either X or

Y components.

DFO_XYReduction options to reduce the X density of an input data set using

a variety of methods.

DFO_XYRemoveDuplicate removes duplicate X and Y values from a data set.

DFO_XYScaleTransform provides extended scale/transform operations for either X

or Y components.

DFO_XYSmoothFilter applies smoothing and FFT based filtering operations to a

data set.

DFO_XYStatistics calculates univariate statistics for X or Y data.

DFO_XYToXYArray adds successive XY data to an XY Array.

DFO_XYTranspose swaps X and Y columns.

4.3.3 objDPO

I/O and user interface for all objDFO functional objects

4.3.4 objPFO

Plotting functional objects for cube, grid, tables and XY data.

PFO_2DAnalytic plots a line that can be controlled by the mouse to

measure slopes and distances.

PFO_2DMultTables plots selected column pairs from one or more tables using

symbols and/or lines on a 2D XY plot.

PFO_2DTableSeries plots one or more selected columns against a single X

column from a single table using symbols and/or lines on

a 2D XY plot.

PFO_2DXYData plots data from one or more XY data sets using symbols

and/or lines on a 2D XY plot.

PFO 3DTableSeries plots three selected columns from a single table using

symbols and/or lines on a 3D XYZ plot.

PFO_3DXYZData plots data from one or more XY data sets using symbols

and/or lines on selected plane/value on a 3D XYZ plot.

PFO_CubeColorBlock plots selected points in cubes as solid blocks on a 3D plot.

PFO_CubeColorPoints plots selected points in cubes as symbols on a 3D plot.

PFO_EnterXYOnPlot allows entry/editing of XY data with the mouse.

PFO_GridColorBlockFill plots grids as solid colors on a 2D or 3D plot.

PFO_GridColorPointFill plots grids as symbols on a 2D or 3D plot.

PFO_GridColorRangeFill plots grids as varying colors on a 2D or 3D plot.

PFO_GridContour plots contours of grid data on 2D or 3D plot.

PFO_GridFishnet plots grid data as a fishnet on 3D plots.

PFO_NSXYLabels plots data labels on a 2D plot.

PFO_NSXYZLabels plots data labels on a 3D plot.

PFO_XYHorsetail plots a horsetail plot based on data in an XY array.

PFO_TableHorsetail plots a horsetail plot based on all columns in a table (a

single column is selected for all X values).

4.3.5 objPFOGL

Implements code to draw objPFO functional objects on a plot.

4.3.6 objPPO

File I/O and user interface for all objPFOGL objects.

4.3.7 objUFO

Basic utility classes for writing data.

UFO_WriteCube writes cube data to a file.

UFO_WriteGrid writes grid data to a file.

UFO_WriteTable writes a table to a file.

UFO_WriteXY writes XY data to a file

4.3.8 objUPO

File I/O and user-interface for objUFO

4.4 OsLib

OsLib provides functional objects and classes to support sampling and optimization and processing/plotting of optimization output. OsLib source code is structured in subdirectories similarly to GenLib.

4.4.1 osClass

Basic classes, data classes, data class wrappers, and IO:

C_Optimizable all simulators with optimizable parameters must derive from this.

C_VarBase base class for different variables types.

C_OptVar variable to be optimized.

C_OptVarUnits adds unit specification and conversion.

C_SampVar variable to be sampled.

C_SampVarUnits adds unit specification and conversion.

C_VaryVar variable that can be multiply valued (suite or range).

C_VaryVarUnits adds unit specification and conversion.

C_SimErr error exception class for simulators.

DC_Covar covariance matrix optimizer results and confidence limit

processing.

DC_FitResults optimizer results (fit value, residuals) for a single fit.

DC_Jacobian optimizer results (Jacobian matrices) for a single fit.

DC_OptSimResults class to package up all optimizer results for file I/O.

DC_RangeSimResults class to package up optimizer/simulator results of multiple

parameter value runs for file I/O.

DC CovarArray array of DC Covar.

DC_CubeArray array of DC_CubeData.

DC_GridArray array of DC_GridData.

DO_XXX wrappers for DC_XXX above.

IO_OptSimResults binary file I/O for DC_OptSimResults.

IO_RangeSimResults binary file I/O for DC_RangeSimResults.

U Resid basic residual utilities (standardization, normal distribution

calculations).

4.4.2 osDataClass

Minor master/slave support classes for extracting individual results.

4.4.3 osMain

Main optimizer/sampler code and global variables and other support classes used by optimizer and application.

Main Code

C_Optimize class implementing the optimizer.

C_Sampler sampler implementation.

Variables & Support

G_Optimize support for optimizer usage.

G_OptRange support for combined multiple value/optimization runs.

G_Range support for multiple value runs.

G_RealRange support for extracting single values from multiple value runs.

G_Sample support for sampler usage.

G_Vary more support for multiple value runs.

C_OSListObj base class for application modal listings.

4.4.4 osDFO

Functional objects for calculating fits, and for reading, selecting, and operating on optimizer results.

Fit Calculation

DFO_SingleFit calculates fit metric for simulated and field data.

DFO_CompositeFit combines the results from multiple single fits (and/or other

composite fits).

DSC_FandChiConfidence Performs common confidence interval calculation for

inherited use by DFO objects.

DFO_CalcConfidence Calculates confidence of optimization results, using one

result as the best case.

DFO_CalcConfidenceGrid Calculates confidence of grid point results, where the grid

value is the fit result, using one grid point as the best case.

DFO_CalcConfidenceTable Calculates confidence of a table containing fit results, using

one row as the best case.

Read Results

DFO_ReadOptSimResults reads optimizer results from file.

DFO_ReadRangeSimResults reads multiple parameter value results from file.

Selection

DFO_SelectOptCovar selects one or more covariance results from optimizer

results.

DFO_SelectOptJacob selects one or more Jacobian results from optimizer results.

DFO_SelectOptResid selects one or more residual results from optimizer results.

DFO_SelectRangeCube extracts a single cube from three multiple parameter value

results.

DFO_SelectRangeGrid extracts a single grid from two multiple parameter value

results.

Processing

DFO_BasicResidual basic residual operations (standardize, sort).

DFO_JacobToTable extracts data from Jacobian in DC_TableData form.

DFO_ResidualDiagnostic quantile-normal and standard residual diagnostic

calculations.

4.4.5 osDPO

I/O and user interface for all osDFO functional objects.

4.4.6 osLFO

Listing functional objects for optimizer results.

LFO Covariance list confidence limits.

LFO_Jacobian list Jacobian results.

LFO_OptRun lists summary data for an optimization run.

4.4.7 osLPO

File I/O and user interface for all osLFO functional objects.

4.4.8 osPFO

Plotting objects for covariance data.

PFO_CovarLimits plots confidence limits of 2D or 3D plots.

4.4.9 osPFOGL

Implements code to draw osPFO functional objects on a plot.

4.4.10 osPPO

File I/O and user interface for all osPFOGL functional objects.

4.5 NsLib

NsLib provides functional objects and classes specific to nSights and well-test analysis.

4.5.1 nsClass

Basic classes, data classes, data class wrappers, and IO:

C_Derivative definition of data required derivative calculation.

C_TimeProcess definition of data required for Horner/Argawal/Bourdet time

processing.

DC_Derivative derived from C_Derivative and adds derivative calculation.

DC_ProfileSimResults class for packaging P(r) data for file I/O.

DC_SequenceTimes sequence names and start/end times.

DC_TimeProcess derived from C_TimeProcess and adds calculation.

DC_XYResponseFunction Class for packaging XY data and additional data required

such as memory and time spacing.

DC_XYSimResults class for packaging F(t) data for file I/O.

DO_XXX wrappers for DC_XXX above.

IO_ProfileSimResults file I/O for DC_ProfileSimResults.

IO_XYSimResults file I/O for DC_XYSimResults.

nSightConst gravitational constant.

4.5.2 nsDataClass

Minor master/slave support classes for extracting individual results.

4.5.3 nsDFO

Functional objects for calculating fits, and for reading, selecting, and operating on simulator results.

Fit Calculation

DFO_BasicSequenceFit calculates fit metric for one or more sequences.

DFO_BEETCompensation Corrects pressure data based on a response function,

barometric pressure data and earth tide data.

DFO_CreateBEETResponseFunction Calculates a response function based on

baseline pressure data, barometric pressure

data and earth tide data

Read Results

DFO ReadMiniTroll reads results from MiniTroll formatted file in raw text or

post-processed CSV format. Calculates time as elapsed

calendar time.

DFO_ReadProfileSimResults reads profile data from file.

DFO_ReadSequenceTimes reads sequence times from ASCII file.

DFO_ReadXYSimResults reads simulator XY results from file.

Selection

DFO_SelectProfile selects a single profile from profile results.

DFO SelectXY selects one or more XY results from simulator results.

Processing

DFO_BasicTimeExtract extracts specified X interval from XY data and optionally

interpolates to regular X interval.

DFO_Derivative calculates derivative of input data.

DFO_ExtractSequenceInterval extracts interval corresponding to single sequence

from XY data.

DFO_TimeProcessing performs time processing (Horner/Argawal/Bourdet) on

input data.

4.5.4 nsDPO

I/O and user interface for all nsDFO functional objects

4.5.5 nsPFO

PFO_SequenceGridLines plots grid lines and labels at sequence intervals

4.5.6 nsPFOGL

Implements code to draw nsPFO functional objects on a plot.

4.5.7 nsPPO

File I/O and user interface for all nsPFOGL functional objects.

4.6 nPre Application

nPre is organized in a main directory and nine subdirectories. Contents of each directory are described below.

4.6.1 Main

The nPre main directory contains the MFC files to create the application, and define its document and view classes.

MainFrm OutlookFrame derived class.

nPre CWinapp derived class to initialize application.

nPreView fills MFC requirement for CView derived class.

nPreDoc fills MFC requirement for CDocument derived class. Processes file

new/save/open messages.

ProgressThreadDialog threading support for running simulation in background.

4.6.2 App

Subdirectory contains implementation of GenLib genApp derived code.

AppFuncObj performs application specific DO_XXX type conversions.

G_Version defines genLib G_Version variables.

nPreAppMenu defines structure and contents of Object/Page drop down menus.

nPreFile writes/reads all nPre variables and functional objects from/to ASCII

configuration file.

nPreRoot defines MenuRootC defined nPre object trees.

nPreUtilities loads/saves app settings in registry

4.6.3 AppAlloc

Contains allocators for all functional objects referred to in nPreAppMenu.

4.6.4 AppHelp

Maps functional object names to help system IDs.

4.6.5 Auto

Implements auto setup procedures.

4.6.6 Dlg

Implements all nPre dialogs.

4.6.7 Run

Contains a single file RunControl, which performs simulator execution according to settings. Also manages simulation progress dialog.

4.6.8 SimCore

Contains the actual well test simulator implementation and support classes to extract data from global variable data structures defined in subdirectory Var.

4.6.9 UI

Defines the dialog layout on tabbed menus.

4.6.10 Var

Defines classes for and variables containing all nPre input data.

C_CurveFile class for error checking andd reading curve files into

DC_CurveArray structures.

C_DataCapture defines classes for specifying F(t) data to be extracted from the

simulation.

C_FileOutput base class for defining output files.

C_Parameter class defines single simulator parameter.

C_Sequence class defines single sequence for simulator.

C_TestZoneCurve defines types of test zone boundary conditions for curve specified

f(t).

C_Units adds nSights specific units to UnitsBase.

E_Parameter enumerated type with symbolic definition for each nPre parameter.

G_CalcParameter calculates and lists parameter values.

G Control basic simulation configuration vars, file I/O, error checking and

listing.

G_CurveFiles variables for test zone BC, f(r) and f(P) curves.

G_DataCapture data capture specification vars and associated file I/O, error

checking and listing support.

G Parameter parameter specification and associated file I/O, error checking and

listing support.

G_Sequence specification and associated file I/O, error checking and

listing support.

4.7 nPost Application

nPost is organized in a main directory and two subdirectories. Contents of each directory are described below.

4.7.1 Main

The nPre main directory contains the MFC files to create the application, and define its document and view classes.

MainFrm SingleFrame derived class.

nPost CWinapp derived class to initialize application.

ProjectDoc fills MFC requirement for CDocument derived class. Processes file

new/save/open messages.

4.7.2 App

Subdirectory contains implementation of GenLib genApp derived code.

AppFuncObj performs application specific DO_XXX type conversions.

G_Version defines genLib G_Version variables.

nPostAppMenu defines structure and contents of Object/Page drop down menus.

nPostFile writes/reads nPost menu tree functional objects to/from ASCII

configuration file.

nPostRoot defines single MenuRootC derived object tree.

4.7.3 AppAlloc

Contains allocators for all functional objects referred to in nPostAppMenu.

4.7.4 AppHelp

Maps functional object names to help system IDs.

5.0 MENU STRUCTURE

5.1 nPre Menu Structure

This subsection describes the general UI layout for nPre. There are different menu structures/levels within nPre. For reference, these menus are defined as follows:

Task Bar Navigation Pane Primary Tabs Nested sub-Tabs

The primary tabs and nested sub-tabs often have dialog areas where the user must enter the requested information or choose between various options. Data and graphics are dealt with under three different options of the Navigational Pane: Field Data, Sequence, and Processing Setup. The capabilities used to define constraints for a simulation can be found using primary tabs and nested sub-tabs. For example, the primary tabs for the Configuration option on the Navigation Pane are from left to right: Main, Curve Files, Liquid, Gas, Matrix, Default Units, and Test Description. Dialog areas are found on each of these tabs, which are used to modify or define the constraints of the simulation. Nested sub-tabs are found under the Parameter Navigation Pane option. The Primary tab Parameters has nested sub-tabs for each group of parameters: formation, fluid, test-zone, and numeric.

The following sections will describe each Navigation Pane option and the associated tabs.

5.2 Menu Item Description

A description of task bar items is followed by a detailed description of menu pages for individual categories of input.

Task Bar

File all operations on text configuration files

New Open Save Save As Print Setup Exit

nPre Lists the Navigation Pane options

Configuration
Well ID and Output

Sequence Parameter

f(p)/f(r) Points Parameter

Simulation Output
Fit Specification
Optimization
Sampling
Suite/Range
Output File Setup
Plot & Fit Setup

List creates text (or HTML) listings in other top-level

windows.

Current listing of data/settings associated with currently

selected top-level tab.

Current Errors listing of errors associated with currently selected

top-level tab. Only sensitive if errors exist.

Calculated Parameters listing of calculated parameters

All invokes dialog for selection of categories, then

listing of data/settings associated with selected

categories.

All Errors listing of errors that require correction before

running the simulation.

Messages

Auto Setup for auto processing data and plots and populating

type trees

Field data plots Sequence plots Basic fit plots

Object

for populating type trees used in several categories list of available objects in context

New

Duplicate Copy Copy page

Paste Delete

Apply

Connections

Create Plot Object Folder

Page

for populating type trees used in several categories

New 2D xy plot

New 3D xyz plot

New data

New Composite Plot

Duplicate
Copy current

Copy all Paste

Delete

Delete all pages

Bring page window to top All connectionsCollapse Tree

Run

error checks then runs simulation

Minimal

Verbose

Covariance only Minimize main

View

toolbar control and nested controls for viewing

Tool bar Status bar Control bar Settings

Window

Window list F11control for popup screen

Minimize all windows

Help

Help Topics

About nPre Mail complaints about program Watch manufacturer web site

Configuration Navigation Pane option. The configuration menu contains seven

primary tab controls.

Main Basic configuration

Simulation type Forward/Optimization Simulation sub-type Single/Sampled/Range

Phase to Simulate Liquid/Gas

System porosity Single/Double liquid only
Leakage None/Single/Dual liquid only

Skin effects yes/no

External boundary Fixed Pressure/Zero Flow

Curve Files *.nCRV files containing functional approximation (f(P),

f(r), f(t)) data

Wellbore boundary conditions file name

[Browse]

f(P) parameters file name

[Browse]

f(r) parameters file name

[Browse]

Reload curves Button

Liquid liquid phase

Permeability/hydraulic conductivity Permeability/Hydraulic Conductivity

Storage parameter SpecificStorage/Porosity*Total

Compressibility

Compensate flow dimension geometry yes/no

Constant TZ surface area no/yes

Test zone volume Constant/Varying
Test zone compressibility Constant / Varying
Test zone temperature Constant/Varying
Default temperature 20 [deg C]

Solution variable Head/Pressure

Default liquid density 1000 [kg/m^3] head only

Allow-ve pressure/head yes/no

Gas gas only

Klinkenburg effects yes/no Viscosity as f(P) yes/no

Gas flow solution variable Mass Flow / Volume @ STP

STP temperature 20.0 [deg]

STP pressure 100.00 [kPa]

Matrix liquid & dual porosity only

Matrix geometry Prismatic/Spherical Alpha Calculated/Entered

Default units default units set at this point and used throughout

Time

Distance

Volume

Mass

Volumetric flow rate

Mass flow rate

Pressure

Hydraulic conductivity

Permeability

Transmissivity

Storage

Compressibility

Wellbore storage

Density

Temperature

Thermal expansion

Matrix geometry

Inverse time

Ratio

Test Description Single text entry area for multiple lines of text. Default

entries for version #, creation date.

Wells and Output Navigation Pane object with three Primary tabs.

Defines what data is extracted from simulations.

Main tab

Grid control with 4 columns and 23 rows.

<u>Column</u>	<u>Contents</u>	<u>Description</u>
1	ID	Data from pressure or flow
2	Type	Pressure/Flow/Production/Other
3	Sub-type	if Pressure type
		Test Zone/Observation
		Well/Superposition

if Flow type
Well/Formation/TZ/Storage
if Production type
Well/Formation/TZ/Seq.Change
if Other
TZ Temperature/TZ
Compressibility/TZ Volume
Radius
if Pressure/Ob Well radius value
if Pressure/Superposition
superposition dialog
Radius Units
if Pressure/Ob Well radius units
if Pressure/Superposition radius units

Production Restart Tab

Output Units

Grid control with one column and 8 rows. Enter up-to 8 ascending time values.

[units]

Superposition Tab

4

5

6

Grid control with 2 (forward, non sampling) or 3 (otherwise) columns.

Column	Contents	Description
1	Type	Constant/Sampling/Optimize
2	Radius	if Constant,
		value
		if Sampling
		sampling dialog (see Sampled
		Parameter Dialog)
		if Optimization
		optimization dialog (see Optimized
		Parameter Dialog)
3	Operation	add P/ subtract P/ add delta P/ sub delta P
Sar	nple Parameter Dialog	
· · · · · · · · · · · · · · · · · · ·	tribution type	Normal/Log-Normal/
D13	dioddon type	Uniform/Log-Uniform/
		Triangular/Log-Triangular
Me	a n	[units] normal/log-normal
	. deviation.	[mital manual
	g std. deviation.	[units] <i>normal</i> [units] <i>log-normal</i>
Pea		[units] non-normal
	wer limit	[units] non-normal
	per limit	[units] non-normal
- 11		
<u>Opt</u>	timization Parameter Di	alog
Miı	nimum value	[units]
Ma	ximum value	[units]
Bes	st estimate value	[units]

	Stepping Estimated std dev	Linear/logar [units]	rithmic
<u>Sequences</u>	Navigation pane option.		
The sequence	e contains primary tabs descri	bed as follows:	
Time	e-Base tab		
Start	ence time entry method time of first sequence ime of last sequence	Start-End/Duration [unit	ss] ss] start-end only
Sequ	ences tab		
Column 1 2 3 4 5	Type Designation StartTime [sec] Sequence data Duration [sec]	(64) rows. Description Flow/History/Pulse/Slug suser entered alpha numeric start time or duration duration separate units end time if duration method duration if start time method	design tion has d display only
6	Auto? Flow Sequence Dialog Time step type Static time step size Total # of time steps First log time step size Minimum time step size	Static/Log/Dynamic P/Dyn [units] 100 [units] [units]	static only log only log only dynamic only
	Maximum time step size Flow type Fixed flow Sampling/vary data Wellbore storage	[units] Fixed/Curve/Sampled/Curve/Sampled/Curve/Sampled/Curve/Sampled/Curve/Sampled/Curve/Sample dialog [units] sample only None/Isolated/Open open	l only oled/sample curve
	History Sequence Dialog Time stepping Pressure type Fixed pressure Sampling /vary data Wellbore storage	see flow sequence except not Fixed/Curve/Sampled/Curve/Sampled/Curve/Sampled/Sampled/sampled/sampled/sampled/Sampled/Solated/Open open	ve+Sampled l only nple curve only

See Parameters below for description of sampled data dialog.

	Pulse Sequence Dialog Time stepping Pulse type Pulse pressure TZ Thermal conditions	see flow seque Absolute/TS I Isothermal/No	Relative/Sequence Relative [units]
	Slug Sequence Dialog Time stepping Slug type Slug pressure	see flow seque Absolute/TS I	ence Relative/Sequence Relative _ [units]
TZ Cu	rves tab		
Grid co	ontrol with 5 columns and n(6	54) rows.	
Colum 1	n <u>Contents</u> Type	Description Pressure Flow Temperature Compressibili Volume chang	•
2	Curve ID		Os of curves in test-zone BC
3 4 5	Start Sequence End Sequence Curve Data	select from de	efined sequences efined sequences
	Curve Data Dialog Time base Y data units in curve Y data is log 10 Time data units Time data is log 10	Test/Sequence [units] no/yes [units] no/yes	e
Dynan	nic Time Step tab		
Minim Maxim Minim	num pressure change um pressure change num flow rate change um flow rate change of TS in dynamic sequence	10000	[ratio] decimal/% [ratio] decimal/% [ratio] decimal/% [ratio] decimal/%

Partial Run tab

Simulation time extents Full test/Partial test all sequences/selected

range

Start sequence select from defined sequences selected

only

End sequence select from defined sequences selected

only

Parameters

Navigation Pane object

The Parameter object contains primary tabs with nested sub-tabs for each group of parameters (see Table 6.1 for parameter groupings). The nested sub-tabs deal with calculated parameter values, units, and execution order of suite/range parameters. The Task Bar/ List option has an entry for list <u>Calculated Parameters</u>, which creates a text/html listing of specific derived parameter values.

Each parameter tab contains a grid control with 4 columns:

<u>Column</u>	<u>Contents</u>	<u>Description</u>	
1	Name	parameter nar	ne, fixed
2	Type	Constant	not all types valid for all parameters
	Sample		
	Range		max 3 range parameters
	Suite		max 3 suite parameters
		Optimise	•
		f(P) File	
		f(P) Points	
		f(r) File	
		f(r) Points	
3	Value	single value o	or type specific dialog
4	Units	•	ppropriate types

Type specific dialogs are as follows:

Sample Parameter Dialog		
Distribution type	Normal/Log-N	Normal/
	Uniform/Log-	·Uniform/
	Triangular/Lo	g-Triangular
Mean		[units] normal/log-normal
Std. deviation.		[units] normal
Log std. deviation.		[units] log-normal
Peak		[units] non-normal
Lower limit		[units] non-normal
Upper limit		[units] non-normal

Range Parameter Dialog

Minimum-value Maximum-value Stepping # of steps	[units] [units] Linear/Logarithmic single value or type specific dialog
Suite Parameter Dialog Units Single column grid with 10	select from appropriate types rows
Optimization Parameter Dia	aloo
Minimum value	[units]
Maximum value	[units]
Best estimate value	[units]
Stepping	Linear/logarithmic
Estimated std dev	[units]
f(r) File Dialog	
Curve ID	selected from desig in f(r) curve file
Distance units in curve	[units]
Data units in curve	[units]
Distance is log10	yes/no
Data is log10	yes/no
f(P) File Dialog	
Curve ID	selected from desig in f(P) curve file
Pressure units in curve	[units]
Data units in curve	[units]
Distance is log10	yes/no
Data is log10	yes/no

f(P) points and f(r) points are special cases with more complex dialogs implemented on separate main level tabs.

f(P)/f(r) Points Parameter

Navigation Pane object

Primary tabs with nested secondary tabs. A Primary tab is defined for a valid f(P) point or f(r) point parameter. Each Primary tab contains 4 nested secondary tabs as described below.

Point Entry tab

Grid control with 32 rows and 6 columns in optimize mode, 4 columns in forward mode:

<u>Column</u>	<u>Contents</u>	<u>Description</u>
1	X Type	Constant Fixed/Suite/Optimize
2	X Opt?	determined by parameter option

3	OptMin	if X Opt lowe	r r for range
4	OptMax	if X Opt uppe	
5	Y Type	Constant	Fixed/Suite/Optimize
6	Y Opt ?	single value d	etermined by parameter option
	_	_	
Interpolation	n tab Descri	ibes interpolation methor	od for converting points to f(r).
Interpolation	method	cubic spline/least squ	ares/ linear / rings 1 / rings 2
Cubic spline	end slope	Natural/User-Set	for cubic spline (CS)
Start slope		0.0	for user-set CS
End slope		0.0	for user-set CS
Spline tensio	n	10	for CS
Polynomial o	order	1	for least-squares
•			-
II-aida/Tragraga	farm tab		
Units/Trans	เอกเม เสบ		
	ssure units in c	curve [units]	
	ssure units in c	curve [units] [units]	
Distance/Pres	ssure units in c		
Distance/Pred Data units in	ssure units in c		
Distance/Pred Data units in	ssure units in c curve ssure is log10	[units]	
Distance/Prediction Data units in Distance/Prediction	ssure units in c curve ssure is log10	[units] yes/no	
Distance/Prediction Data units in Distance/Prediction	ssure units in c curve ssure is log10	[units] yes/no yes/no	more Y values is to be
Distance/Prediction Data units in Distance/Prediction Data is log10	ssure units in c curve ssure is log10	[units] yes/no yes/no	more Y values is to be
Distance/Prediction Data units in Distance/Prediction Data is log10	ssure units in c curve ssure is log10	[units] yes/no yes/no only sensitive if 1 or i	
Distance/Prediction Data units in Distance/Prediction Data is log10 Optimization	ssure units in c curve ssure is log10 n tab	[units] yes/no yes/no only sensitive if 1 or a optimized	
Distance/Prediction Data units in Distance/Prediction Data is log10 Optimization Minimum va	ssure units in c curve ssure is log10 n tab	[units] yes/no yes/no only sensitive if 1 or a optimized [units]	

Fit Selection

Fit Selection Defined fits to use

Grid with 2 columns and 8 rows.

Optimization Navigation Pane option with 5 Primary tabs. The code uses non-linear regression algorithms to adjust the values of user-specified fitting parameters to obtain an optimal fit.

ain	

Simplex/Lev-Mar	
yes/no	simplex only
1st order/2nd order	Lev-mar, or simplex with conf.
yes/no	Lev-mar, or simplex with conf.
1E-06	if fixed derivative span is yes.
last result/best estima	ite
no/yes	
	yes/no 1st order/2nd order yes/no 1E-06 last result/best estimates

Tolerances tab

Parameter tolerance	1E-5
Derivative adjustment tolerance	1E-5
Maximum # of simulations	10000

L-M Algorithm tab

Lambda factor multiplier	2
Initial Lambda factor	1E-3
Minimum lambda factor	1E-8
Relative change tolerance	1E-5
Maximum derivative span	1E-8

Simplex Algorithm tab

Initial vertex span	0.1	
Initial derivative calc span	1E-02	if confidence limits and not
		fixed

Perturbation tab

# of perturbations	0
Perturbation span	0.2
Perturb from	start/last fit

Random seed # 13597

Sampling Navigation Pane option with four Primary tabs is used to configure sampling. This option is only sensitive in the sampling mode.

Main tab

Sampling procedure	LHS/Monte-Carlo
Number of trials	<u>100</u>

Random number seed 34969827

User variable correlations yes/no LHS only Force non-specified correlations to no/yes

Correlations tab Sensitive only if LHS and two or more variables selected from Sequence-Sequences. One secondary nested tab for each: Parameter, Sequence Q, Sequence P, Superposition R. The secondary nested tab is sensitive only if two or more from the Navigation Pane sequence/sequences are defined for sampling.

The Correlations tab is grid controlled with n rows and n columns, where n is the number of sampling variables in the category. Diagonal entries are 1.0 and are not sensitive. Off-diagonal entries are symmetric.

Samples tab Sensitive when sub-type mode selected for sampling in Optimization.

Graphics tab A tree control used with first-level nodes representing data pages (for data-processing objects) and 2D and 3D plots. Second-level nodes represent specific data or plot objects.

<u>Suite/ Range</u> Navigation Pane option. Sensitive when simulation type set to Optimization or simulation sub-type set to range.

Priority tab Sensitive only when at least one parameter set to suite/range. Sets the loop priority for defined range/suite parameters

Grid/Cube X (slowest grid/cube) __parameter ID __select from defined suite/range
Grid/Cube Y (fastest grid/middle) __parameter ID __select from defined suite/range sensitive only if 2 or 3 defined
Grid/Cube Z (fastest cube) __parameter ID __select from defined suite/range sensitive only if 3 defined

<u>Output Files</u> Navigation Pane object with four Primary tabs. Specifies output files to create.

XY Data tab mode.	Only mode not sensitive in is the re	ange simulation sub-
Write XY output	Check box for yes or no	Listing output
File name	[browse]	
If file exists?	Overwrite/Append	
Run identifier	dialog	
Data to write	dialog	

Data To Write Dialog

Grid control with two columns, n rows, listing defined output, with check-box to select.

Profile tab sensitive only in forward/single mode Check box for yes/no Write profile output File name _____[browse] If file exists? Append/Overwrite Run identifier dialog select from sequences First sequence to write Last sequence to write select from sequences Time step modulus <u>2</u> <u>2</u> Node modulus

Range tab Sensitive only in range sub-mode, always written in that mode

Write range output Check box for yes/no
File name _____ [browse]

If file exists? append/overwrite

Run identifier dialog Only sensitive in optimization mode and sub-type normal **Optimization tab** or sampling. Write optimization output yes/no File name [browse] If file exists? add/overwrite Run identifier Store residuals yes/no Store sampled parameters yes/no only in sampling mode Store residual Jacobian

only in sampling yes/no

mode

Plots & Data Processing

Navigation Pane option with 4 Primary tab options. A tree control is used with first-level nodes (leaves) representing data pages (for data-processing objects) and 2D and 3D plots. Second-level nodes represent specific data or plot objects.

Field Data Tab Navigation Pane option.

Field data contains a tree to be populated with second-level objects for reading XY data from text files, and providing quick plots of the data. A default tree can be constructed using Auto Setup/Field data plots.

The default tree is defined as follows:

top level collection object Field Data Input::Data

Pressure Data for reading P vs T data for reading Q vs T data Flow Data

Pressure Plot basic XY plot connected to P (pressure) vs T(time) data

Flow Plot basic XY plot connected to Q (flow) vs T data

Additional objects and plots can be defined. Available objects are oriented to reading and initial processing of standard data:

Read XY from text

Enter XY

Time Offset/Extract

Sequence Tab Navigation Pane option

Contains a tree to be populated with second level objects. Uses a data/graphics object tree structure to create data sets that use the simulated data generated from processing the corresponding field data constraints.

Fit Tab Navigation Pane option Contains a tree control for paired regression analysis of simulated and field data.

Runtime Tab Navigation Pane option.

Contains a tree to be populated with second level objects used to create a wide variety of graphs to monitor the real-time progress of the optimization.

6.0 PARAMETER LIMITS

The following table lists all parameter names and IDs. Note that sensitivity of a specific parameter or group depends upon configuration settings.

Table 6.1 Parameter Groupings and Limits

Table 6.1 Parameter Groupings & Limits Note: all parameter limits in base SI values except pressures which are kPa				
Group	Name	ID	Min	Max
Formation	Formation thickness	t	1e-10	5000
	Flow dimension	n	-1e+04	1e+04
	Static formation pressure	P_f	0	1e+06
	External boundary radius	r_o	1.e-4	1e+06
	Formation Permeability	k_f	1e-30	1
	Formation Conductivity	K_f	1e-30	100
	Formation Specific Storage	s_f	1e-30	1000
	Formation Compressibility	C_f	1e-30	1e-01
	Formation Porosity	theta_f	0	1
	Klinkenburg factor	b_kf	0	1e+06
	Specific yield in formation	Sy_fm	1e-15	1e+3
	Formation vertical permeability	kv_fm	1e-30	1.e+0
	Formation vertical conductivity	Kv_fm	1e-30	1.e+2
Fracture	Permeability	k_fr	1e-30	1
	Conductivity	K_fr	1e-30	100
	Specific storage	s_fr	1e-30	1000
	Compressibility	C_fr	1e-30	1e-01
	Porosity within fracture	theta_fr	0	1
Matrix	Permeability	k_m	1e-30	1

Table 6.1 Parameter Groupings & Limits Note: all parameter limits in base SI values except pressures which are kPa				
Group	Name	ID	Min	Max
	Conductivity	K_m	1e-30	100
	Specific storage	Ss_m	1e-30	1000
	Compressibility	C_m	1e-30	1e-01
	Porosity	theta_m	0	1
	Volume factor	V_m	1e-05	0.99999
	Geometry factor Alpha	alpha	1e-10	1e+05
	Slab thickness	m_t	1e-10	1e+05
	Sphere diameter	m_d	1e-10	1e+05
Skin zone	Permeability	k_s	1e-30	1
	Conductivity	K_s	1e-30	100
	Specific storage	s_s	1e-30	1000
	Compressibility	C_s	1e-30	1e-01
	Porosity	theta_s	0	1
	Klinkenburg factor	b_ks	0	1e+06
	Radial thickness of Skin	t_s	1e-10	5e+04
	Skin zone specific yield	Sy_s	1e-15	1e+03
Fluid	Density	roe	100	2000
	Viscosity	mu	0.05	5
	Compressibility	C_w	1e-11	1e-09
	Thermal expansion coefficient	C_T	-1e-03	5e-03
Gas	Molecular weight	MW	1	1000
	Reference temperature	Т	5	100
	Gas Viscosity	Mu_g	1e-06	1
	Gas Viscosity slope factor	mu_m	-1	1
	Atmospheric pressure [abs]	P_a	10	200
Test-zone	Well radius mgw	r_w	1e-04	1000

Table 6.1	Parameter Groupings & Limi Note: all parameter limits in ba		ept pressures whic	h are kPa
Group	Name	ID	Min	Max
	Tubing string radius	r_s	1e-04	100
	Volume change from normal	dV	-1e4	1e4
	Compressibility	C_TZ	1e-17	100
	Partial-penetration bottom offset	PO_tz	0.01	1000.0
	Partial-penetration screen length	PL_tz	0.01	1000.0
Leaky layer	Thickness	b_l	1e-10	5000
	Permeability	k_l	1e-30	1
	Conductivity	K_I	1e-30	100
	Specific storage	Ss_I	1e-30	1000
	Compressibility	C_I	1e-30	1e-01
	Porosity	theta_I	0	1
Upper leaky	Thickness	b_UI	1e-10	5000
layer	Permeability	k_UI	1e-30	1
	Conductivity	K_UI	1e-30	100
	Specific storage	s_UI	1e-30	1000
	Compressibility	C_UI	1e-30	1e-01
	Porosity	theta_UI	0	1
Lower leaky	Thickness	b_LI	1e-10	5000
layer	Permeability	k_LI	1e-30	1
	Conductivity	K_LI	1e-30	100
	Specific storage	s_LI	1e-30	1000
	Compressibility	C_LI	1e-30	1e-01
	Porosity	theta_LI	0	1
Numeric	# of radial nodes	n_r	10	1e+05
	# of matrix nodes	n_m	1	100
	# of skin nodes	n_s	5	9000
	# of leaky nodes	n_l	2	100

Table 6.1 Parameter Groupings & Limits Note: all parameter limits in base SI values except pressures which are kPa				
Group	Name	ID	Min	Max
	# of vertical well nodes	n_vw	2	100
	# of vertical nodes above well	n_vu	2	100
	# of vertical nodes below well	n_vb	2	100
	Pressure solution tolerance	tol_P	1e-20	1
	STP flow solution tolerance	tol_Qv	1e-30	1
	Mass flow solution tolerance	tol_Qm	1e-30	1
	Well conductance multiplier	kVMult	1.e+0	1.e+12

7.0 REFERENCES

- 1) Nuclear Waste Management Program. April 13, 2000. *GTFM 6.20 Requirements Document Version 1.1*. ERMS #504020. Albuquerque, NM: Sandia National Laboratories.
- 2) Nuclear Waste Management Program. August 15, 1996. *GTFM Functional Description, Theoretical Development, and Software Architecture*. ERMS #240244. Albuquerque, NM: Sandia National Laboratories.
- Nuclear Waste Management Program. April 13, 2000. *GTFM 6.20 Validation Document, Version 1.10.* ERMS #504022 Albuquerque, NM: Sandia National Laboratories.
- 4) Nuclear Waste Management Program. November 2002. *nSIGHTS Version 1.0 Design Document*,. ERMS #522059 Albuquerque, NM: Sandia National Laboratories.
- Nuclear Waste Management Program. June 2011. *nSIGHTS Version 2.41a Validation Document*,. ERMS # 555650, Albuquerque, NM: Sandia National Laboratories.
- 6) Nuclear Waste Management Program. 2006. *NWMP Software Requirements*, *Procedure NP 19-1 Revision 12*. ERMS #543743. Albuquerque, NM: Sandia National Laboratories.