Project-3 Bonus

Failure model

Abstract: The failure model that we have implemented is based on the principles stated below:

- o In step-1 we are building our p2p pastry and initializing the Boss in the Boss module.
- o Then we are calculating the number of nodes that are to be deleted.
- o We randomly select nodes to kill until the nodes to be killed counter is zero.
- o After this we will again call the Boss to update the state of the pastry after this deletion.
- o The state of the pastry is update in the Node module.
- o Each node gets updated leaf sets, neighbor set and routing table.
- The above is accomplished in the Node module. Functions for updating the leaf sets, neighbor set and routing table are created in the Node module.

Results:

Table-1

Number of nodes	Number of requests	Percent to kill	Average Hop Count
100	25	10	1.3568
100	25	20	1.4275
100	25	40	1.3480
100	25	80	1.4560

100 Nodes/25Req - (Average Hop Count)

Fig. 1 Graph between average hop count and percentage nodes to kill for 100 nodes

Table-2

Number of nodes	Number of requests	Percent to kill	Average hop count
400	25	10	1.2903
400	25	20	1.3208
400	25	40	1.3525
400	25	80	1.3860

400 Nodes/ 25 Req - (Average hop count)

Fig. 2 Graph between average hop count and percentage nodes to kill for 400 nodes

Table-3

Number of nodes	Number of requests	Percent to kill	Average hop count
800	25	10	1.2570
800	25	20	1.2730
800	25	40	1.3073
800	25	80	1.3262

Fig. 3 Graph between average hop count and percentage nodes to kill for 800 nodes

Conclusion: After implementing the failure model we noticed that as we increase the percentages of the nodes to kill the average hop count increases almost linearly. This observation is seen for a network which have more than 100 nodes. For a network of 100 nodes or less even in the worst case the dht routes almost in the same time.