# TP n°2 - Classification: régression logistique et SVM

Salim Nadir et Guillaume Ostrom

## Application I : Régression logistique

Nous constatons que le fichier SaHeart.info décrit les différentes variables présentes dans le fichier SaHeart.txt, où la dernière colonne (chd) est la variable cible.

#### 1. Les données

Procédons au chargement du fichier SaHeart.txt:

```
setwd(getwd())
heartData = read.table('SaHeart.txt',header=TRUE,sep=",")
summary(heartData)
```

```
##
                                        tobacco
                                                             ldl
      row.names
                         sbp
          : 1.0
##
                           :101.0
                                          : 0.0000
                                                               : 0.980
   Min.
                    Min.
                                     Min.
                                                       Min.
   1st Qu.:116.2
                    1st Qu.:124.0
                                     1st Qu.: 0.0525
                                                       1st Qu.: 3.283
##
  Median :231.5
                    Median :134.0
                                     Median : 2.0000
                                                       Median : 4.340
##
   Mean
           :231.9
                    Mean
                           :138.3
                                     Mean
                                            : 3.6356
                                                               : 4.740
                                                       Mean
##
    3rd Qu.:347.8
                    3rd Qu.:148.0
                                     3rd Qu.: 5.5000
                                                       3rd Qu.: 5.790
           :463.0
                    Max.
                           :218.0
                                            :31.2000
##
   Max.
                                     Max.
                                                       Max.
                                                               :15.330
##
      adiposity
                       famhist
                                       typea
                                                     obesity
##
   Min.
           : 6.74
                    Absent :270
                                  Min.
                                          :13.0
                                                  Min.
                                                          :14.70
##
   1st Qu.:19.77
                    Present:192
                                   1st Qu.:47.0
                                                  1st Qu.:22.98
   Median :26.11
                                   Median:53.0
                                                  Median :25.80
           :25.41
                                          :53.1
                                                          :26.04
##
   Mean
                                   Mean
                                                  Mean
##
    3rd Qu.:31.23
                                   3rd Qu.:60.0
                                                  3rd Qu.:28.50
##
   Max.
           :42.49
                                   Max.
                                          :78.0
                                                  Max.
                                                         :46.58
##
       alcohol
                                           chd
                           age
##
    Min.
          : 0.00
                     Min.
                            :15.00
                                      Min.
                                             :0.0000
##
   1st Qu.: 0.51
                     1st Qu.:31.00
                                      1st Qu.:0.0000
##
  Median: 7.51
                     Median :45.00
                                      Median :0.0000
##
  Mean
           : 17.04
                     Mean
                            :42.82
                                      Mean
                                             :0.3463
    3rd Qu.: 23.89
                     3rd Qu.:55.00
                                      3rd Qu.:1.0000
    Max.
           :147.19
                     Max.
                            :64.00
                                      Max.
                                             :1.0000
```

attributes(heartData)\$names

```
## [1] "row.names" "sbp" "tobacco" "ldl" "adiposity"
## [6] "famhist" "typea" "obesity" "alcohol" "age"
## [11] "chd"
```

Voici les correspondances de chaque variable:

<sup>-</sup> sbp : la pression systolique,

- tobacco : la quantité en kilogrammes de tabac ingérée,
- ldl : lipoprotéine de basse densité,
- famhist : antécédent d'attaque cardiaque,
- typea: type-A,
- obesity : indice de masse corporelle,
- alcohol : consommation d'alcool par semaine en litre,
- age : âge de l'individu,
- chd : attaque cardiaque observée chez l'individu.

## 2. Scatterplot

Affichons le scatterplot du jeu de données:

pairs(heartData, pch=25, bg=c("firebrick","deepskyblue3"))[unclass(factor(heartData[, "chd"]))]



## NULL

#### 3. Régression logistique

```
regLogistic = glm("chd~.", family=gaussian, heartData)
summary(regLogistic)
```

```
##
## Call:
## glm(formula = "chd~.", family = gaussian, data = heartData)
##
## Deviance Residuals:
                    Median
##
      Min
               1Q
                                 3Q
                                        Max
## -0.7635 -0.3319 -0.1058
                             0.3742
                                      1.0376
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                -0.0001633 0.0001524 -1.071 0.284568
## row.names
                 0.0015503 0.0010762
                                       1.441 0.150411
## sbp
                 0.0162667  0.0048692  3.341  0.000905 ***
## tobacco
                 0.0324112 0.0106970
                                       3.030 0.002587 **
## ldl
## adiposity
                 0.0027633 0.0047882
                                       0.577 0.564147
## famhistPresent 0.1750802 0.0412966
                                       4.240 2.72e-05 ***
## typea
                0.0057758 0.0020565
                                       2.809 0.005193 **
## obesity
                -0.0117786 0.0070532 -1.670 0.095618 .
## alcohol
                -0.0001667 0.0008308 -0.201 0.841034
## age
                 0.0066377 0.0019958 3.326 0.000954 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1767215)
##
##
      Null deviance: 104.589 on 461 degrees of freedom
## Residual deviance: 79.701 on 451 degrees of freedom
## AIC: 523.24
##
## Number of Fisher Scoring iterations: 2
```

On constate que les p-values des variables tabacco, famhist et age sont faibles donc fortement significatives. Nous observons que les variables tabacco, famhist et age sont les variables les plus explicatives.

#### 4. Comparaisons

On calcule la matrice de confusion.

```
confMatrix[2,2] = confMatrix[2,2] + 1
      }else{
         confMatrix[2,1] = confMatrix[2,1] + 1
      }
    }else{
      predictHeartAttackBoolean[i] = 0
      if(heartData$chd[i]==1){
        confMatrix[1,2] = confMatrix[1,2] + 1
      }else{
         confMatrix[1,1] = confMatrix[1,1] + 1
      }
    }
  }
probaFaslePositive = confMatrix[2,1]/(confMatrix[1,1] + confMatrix[2,1])
probaFasleNegative = confMatrix[1,2]/(confMatrix[1,2] + confMatrix[2,2])
  return (list ("Matrice de confusion"=confMatrix, "Probabilité de risque de faux positif "=probaFasleP
}
confusionMatrix = getConfusionMatrix(predictHeartAttack, heartData)
print(confusionMatrix)
## $`Matrice de confusion`
          chd=0 chd=1
## pred=0
            262
                   82
             40
## pred=1
## $`Probabilité de risque de faux positif `
## [1] 0.1324503
##
## $`Probabilité de risque de faux négatif `
## [1] 0.4875
#NB: Methode de calcul plus directe de la matrice de confusion:
matrixConf2 = table(regLogistic$fitted.values>0.5,heartData[,"chd"])
print(matrixConf2)
##
##
             0
##
     FALSE 262 78
```

On constate 13 % de risque de faux positif et 49 % de risque de faux négatif.

#### 5. Validation croisée

40 82

TRUE

##

Nous définisons 75% de nos données comme étant des données d'apprentissage, les 25% restant seront destinées à tester notre modèle.

```
#On prend aléatoirement sans remise les données d'apprentissage (75%) et les données de test (25%).
dt = sort(sample(nrow(heartData), 0.75*nrow(heartData)))
trainData75<-heartData[dt,]</pre>
testData25<-heartData[-dt,]
#Regression logistic sur les données d'apprentissage
regLogistic75 = glm("chd~.", family=gaussian, trainData75)
summary(regLogistic75)
##
## Call:
## glm(formula = "chd~.", family = gaussian, data = trainData75)
## Deviance Residuals:
       Min 10
                       Median
                                    3Q
                                             Max
## -0.89800 -0.33098 -0.07637 0.36471
                                         1.04986
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5421556 0.2319968 -2.337 0.020033 *
## row.names
               -0.0001279 0.0001748 -0.732 0.464704
## sbp
                 0.0013768 0.0012285
                                      1.121 0.263215
## tobacco
                ## ldl
                0.0389489 0.0124599 3.126 0.001927 **
## adiposity
                0.0004083 0.0054316 0.075 0.940126
## famhistPresent 0.1450772 0.0477514 3.038 0.002567 **
## typea
                0.0066049 0.0023370 2.826 0.004992 **
## obesity
               -0.0113160 0.0076823 -1.473 0.141692
## alcohol
                0.0003982 0.0009662 0.412 0.680532
## age
                 0.0088431 0.0024076 3.673 0.000279 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.1759232)
##
##
      Null deviance: 80.116 on 345 degrees of freedom
## Residual deviance: 58.934 on 335 degrees of freedom
## AIC: 393.48
## Number of Fisher Scoring iterations: 2
#Prediction avec les données de test
predictHeartAttack75_25 = predict(regLogistic75, testData25)
#Matrice de confusion du modèle
confusionMatrix75_25 = getConfusionMatrix(predictHeartAttack75_25, testData25)
print(confusionMatrix75_25)
## $`Matrice de confusion`
         chd=0 chd=1
## pred=0
            64
                 13
## pred=1
            18
                  21
```

##

```
## $`Probabilité de risque de faux positif `
## [1] 0.2195122
##
## $`Probabilité de risque de faux négatif `
## [1] 0.3823529
```

Pour ce modèle de *cross validation* nous obtenons un risque de faux positif de 13.2% et un risque de faux négatif de 50.0%. Notons que ces résultats sont proches d'une regression logistique sur l'ensemble des données, on peut en déduire la bonne significativité du modèle.

Répétons plusieurs fois cette procédure.

```
checkCrossValidation = function(heartData, iterations) {
 confMatrix75_25 = c()
 error = c()
   for (i in 1:iterations) {
      dt = sort(sample(nrow(heartData), 0.75*nrow(heartData)))
      data75<-heartData[dt,]
      data25<-heartData[-dt,]
      #Regression logistic sur les donn?es d'apprentissage
     regLog75 = glm("chd~.", family=gaussian, data75)
      #Prediction avec les donn?es de test
     predict75_25 = predict(regLog75, data25)
      #Matrice de confusion du mod?le
      confMat = getConfusionMatrix(predict75_25, data25)
      confMatrix75_25[i] = confMat[1]
      error[i] = (as.numeric(confMat[[1]][1,2])+as.numeric(confMat[[1]][2,1]) )/ (as.numeric(confMat[[
   }
return (list("Erreur minimum"=error[which.min(error)], "Erreur maximum"=error[which.max(error)], "Erreu
print(checkCrossValidation(heartData, 250))
## $`Erreur minimum`
## [1] 0.1724138
##
## $`Erreur maximum`
## [1] 0.362069
```

On remarque que l'erreur minimum est à 17% et que l'erreur maximum est élevée à 38% avec une moyenne d'erreur à 27%, ce qui est acceptable.

Tester son modéle sur les données d'entrainement conduirait à sous-estimer l'erreur, et donc a un biais. L'intérêt de cette approche est de tester la significativité d'un modèle entrainé sur 75% des données et de le tester sur les 25% données restantes.

On peut en déduire que notre modèle est plutôt pertinant.

## \$`Erreur moyenne` ## [1] 0.2706552

#### 6. Sélection des variables

```
# Backward
regBackward = step(regLogistic75, direction='backward', k=log(nrow(heartData)))
## Start: AIC=438.97
## chd ~ row.names + sbp + tobacco + ldl + adiposity + famhist +
      typea + obesity + alcohol + age
##
##
              Df Deviance
## - adiposity 1
                  58.935 432.84
## - alcohol
                  58.964 433.01
              1
## - row.names 1
                  59.029 433.39
## - sbp
                  59.155 434.13
         1
## - obesity
              1 59.316 435.07
## <none>
                  58.934 438.97
## - tobacco
            1 60.163 439.97
## - typea
             1 60.340 440.99
             1 60.558 442.24
## - famhist
## - ldl
              1
                  60.653 442.78
## - age
              1 61.308 446.50
##
## Step: AIC=432.84
## chd ~ row.names + sbp + tobacco + ldl + famhist + typea + obesity +
##
      alcohol + age
##
##
             Df Deviance
                            AIC
## - alcohol
            1 58.965 426.88
## - row.names 1 59.029 427.25
## - sbp
             1 59.160 428.02
## - obesity 1 59.585 430.50
                  58.935 432.84
## <none>
## - tobacco
            1 60.163 433.84
## - typea
             1 60.340 434.85
              1
## - famhist
                  60.558 436.11
## - ldl
              1
                  60.756 437.23
## - age
              1 62.288 445.85
##
## Step: AIC=426.88
## chd ~ row.names + sbp + tobacco + ldl + famhist + typea + obesity +
##
      age
##
             Df Deviance
##
                            AIC
                  59.051 421.25
## - row.names 1
## - sbp
                  59.207 422.16
              1
## - obesity
                  59.604 424.48
                  58.965 426.88
## <none>
## - tobacco
             1 60.262 428.27
## - typea
             1 60.402 429.08
## - famhist
              1
                  60.616 430.30
## - ldl
                  60.756 431.10
             1
## - age
             1 62.339 440.00
##
```

```
## Step: AIC=421.25
## chd ~ sbp + tobacco + ldl + famhist + typea + obesity + age
##
          Df Deviance
                          AIC
## - sbp
           1 59.246 416.25
## - obesity 1 59.678 418.77
                59.051 421.25
## <none>
## - tobacco 1 60.371 422.76
## - typea 1 60.642 424.31
## - famhist 1 60.672 424.48
## - ldl 1 60.929 425.95
           1 62.539 434.97
## - age
##
## Step: AIC=416.25
## chd ~ tobacco + ldl + famhist + typea + obesity + age
##
##
            Df Deviance
                          AIC
## - obesity 1 59.807 413.38
               59.246 416.25
## <none>
## - tobacco 1 60.570 417.77
## - typea 1 60.871 419.48
## - famhist 1 60.877 419.51
## - ldl 1 61.171 421.18
           1 63.534 434.29
## - age
##
## Step: AIC=413.38
## chd ~ tobacco + ldl + famhist + typea + age
           Df Deviance
##
                          AIC
         59.807 413.38
## <none>
## - tobacco 1 61.106 414.68
## - typea 1 61.243 415.46
## - ldl
           1 61.337 415.99
## - famhist 1 61.393 416.30
            1 63.676 428.93
## - age
formula(regBackward)
## chd ~ tobacco + ldl + famhist + typea + age
## <environment: 0x00000001787b1c8>
#NB Forward
regForward = step(regLogistic75, direction='forward', k=log(nrow(heartData)))
## Start: AIC=438.97
## chd ~ row.names + sbp + tobacco + ldl + adiposity + famhist +
      typea + obesity + alcohol + age
formula(regForward)
## chd ~ row.names + sbp + tobacco + ldl + adiposity + famhist +
      typea + obesity + alcohol + age
## <environment: 0x00000001787b1c8>
```

```
regBoth = step(regLogistic75, direction='both', k=log(nrow(heartData)))
## Start: AIC=438.97
## chd ~ row.names + sbp + tobacco + ldl + adiposity + famhist +
      typea + obesity + alcohol + age
##
##
              Df Deviance
                             AIC
## - adiposity 1
                   58.935 432.84
## - alcohol
                   58.964 433.01
               1
## - row.names 1
                   59.029 433.39
## - sbp
              1 59.155 434.13
               1 59.316 435.07
## - obesity
## <none>
                   58.934 438.97
## - tobacco
               1
                   60.163 439.97
## - typea
                   60.340 440.99
               1
## - famhist
                   60.558 442.24
               1
## - ldl
               1
                   60.653 442.78
## - age
                   61.308 446.50
##
## Step: AIC=432.84
## chd ~ row.names + sbp + tobacco + ldl + famhist + typea + obesity +
      alcohol + age
##
              Df Deviance
## - alcohol
              1 58.965 426.88
                   59.029 427.25
## - row.names 1
## - sbp
                 59.160 428.02
         1
## - obesity
               1 59.585 430.50
## <none>
                   58.935 432.84
## - tobacco
               1
                   60.163 433.84
                   60.340 434.85
## - typea
               1
## - famhist
                   60.558 436.11
               1
                   60.756 437.23
## - ldl
               1
                   58.934 438.97
## + adiposity 1
## - age
                   62.288 445.85
##
## Step: AIC=426.88
## chd ~ row.names + sbp + tobacco + ldl + famhist + typea + obesity +
##
              Df Deviance
                             AIC
## - row.names 1 59.051 421.25
                   59.207 422.16
## - sbp
              1
## - obesity
                   59.604 424.48
               1
## <none>
                   58.965 426.88
## - tobacco
                   60.262 428.27
## - typea
               1
                   60.402 429.08
                   60.616 430.30
## - famhist
               1
## - ldl
                   60.756 431.10
               1
               1 58.935 432.84
## + alcohol
## + adiposity 1 58.964 433.01
## - age
                   62.339 440.00
```

```
##
## Step: AIC=421.25
## chd ~ sbp + tobacco + ldl + famhist + typea + obesity + age
             Df Deviance
                        AIC
## - sbp
             1 59.246 416.25
## - obesity
            1 59.678 418.77
                 59.051 421.25
## <none>
## - tobacco
            1 60.371 422.76
## - typea
            1 60.642 424.31
## - famhist 1 60.672 424.48
            1 60.929 425.95
## - ldl
## + row.names 1 58.965 426.88
## + alcohol 1 59.029 427.25
## + adiposity 1 59.051 427.38
## - age
              1
                 62.539 434.97
##
## Step: AIC=416.25
## chd ~ tobacco + ldl + famhist + typea + obesity + age
##
            Df Deviance
                          AIC
## - obesity
            1 59.807 413.38
                 59.246 416.25
## <none>
            1 60.570 417.77
## - tobacco
            1 60.871 419.48
## - typea
## - famhist 1 60.877 419.51
## - ldl
             1 61.171 421.18
## + sbp
            1 59.051 421.25
## + alcohol 1 59.207 422.16
## + row.names 1 59.207 422.16
## + adiposity 1 59.243 422.37
## - age
              1
                 63.534 434.29
##
## Step: AIC=413.38
## chd ~ tobacco + ldl + famhist + typea + age
##
             Df Deviance
                          AIC
## <none>
                 59.807 413.38
            1 61.106 414.68
## - tobacco
## - typea 1 61.243 415.46
## - ldl
            1 61.337 415.99
## + obesity 1 59.246 416.25
## - famhist 1 61.393 416.30
## + adiposity 1 59.589 418.25
## + sbp
              1 59.678 418.77
## + row.names 1 59.770 419.30
                 59.782 419.37
## + alcohol
            1
## - age
              1
                 63.676 428.93
formula(regBoth)
## chd ~ tobacco + ldl + famhist + typea + age
```

## <environment: 0x00000001787b1c8>

```
Une régression en direction backward nous sélectionne les 4 variables suivantes:
- famhist
- age
- tabacco
- ldl
heartDataBackward = heartData[c(3, 4, 6, 10, 11)]
print(attributes(heartDataBackward)$names)
## [1] "tobacco" "ldl"
                            "famhist" "age"
                                                 "chd"
dtBackward = sort(sample(nrow(heartDataBackward)), 0.75*nrow(heartDataBackward)))
dataBackward75<-heartDataBackward[dtBackward,]</pre>
dataBackward25<-heartDataBackward[-dtBackward,]
#Regression logistic sur les donn?es d'apprentissage
regLog75_Backward = glm("chd~.", family=gaussian, dataBackward75)
#Prediction avec les donn?es de test
predict75_25_Backward = predict(regLog75_Backward, dataBackward25)
#Matrice de confusion du mod?le
confMatBackward = getConfusionMatrix(predict75_25_Backward, dataBackward25)
print(confMatBackward)
## $`Matrice de confusion`
##
          chd=0 chd=1
                    20
## pred=0
             66
## pred=1
             10
                    20
## $`Probabilité de risque de faux positif `
## [1] 0.1315789
##
## $`Probabilité de risque de faux négatif `
## [1] 0.5
print(checkCrossValidation(heartDataBackward, 150))
## $`Erreur minimum`
## [1] 0.1724138
##
## $`Erreur maximum`
## [1] 0.3706897
## $`Erreur moyenne`
```

Nous observons qu'avec un step **backward** l'erreur minimum est à 18% et l'erreur maximum à 38% et la même erreur moyenne est à 27%.

## [1] 0.2777586

Nous remarquons qu'il n'y a pas d'amélioration de l'erreur par rapport au modèle complet, ce qui donne un avantage à ce modèle car il nécessite moins de données pour le même résultat.

#### 7. Courbe ROC

```
Comparons à l'aide des courbes ROC ces 3 modèles de régression logistique: 1)Modèle complet 2)Modèle avec les variables sélectionnées 3)Modèle avec la variable la plus significative
```

plotRoc(predictHeartAttack75\_25,testData25,"cyan4", TRUE)

Import de la bibliothéque ROC

```
#install.packages("ROCR")
library(ROCR)
## Loading required package: gplots
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
##
       lowess
library(gplots)
plotRoc = function(predictTrain, dataTrainTest, color, added){
rocPred = prediction(predictTrain, dataTrainTest["chd"])
rocPerf = performance(rocPred, measure = "tpr", x.measure = "fpr")
plot(rocPerf, add= added, col=color)
}
#Mod?le Complet Train
predictHeartAttack75_75 = predict(regLogistic75, trainData75)
plotRoc(predictHeartAttack75_75,trainData75,"cyan2", FALSE)
#Mod?le Complet Test
```



```
#Mod?le Backward Train
predict75_75_Backward = predict(regLog75_Backward, dataBackward75)
plotRoc(predict75_75_Backward,dataBackward75, "darkgoldenrod1",FALSE)

#Mod?le Backward Test
plotRoc(predict75_25_Backward,dataBackward25,"darkgoldenrod4",TRUE)
```



```
#Mod?le mono variable
dtmono = sort(sample(nrow(heartData), 0.75*nrow(heartData)))
dataMono75<-heartData[dtmono,]
dataMono25<-heartData[-dtmono,]

#Mod?le mono Train
regLogisticMono = glm("chd~ldl", family=gaussian, heartData)
predict75_75_mono = predict(regLogisticMono, dataMono75)
plotRoc(predict75_75_mono,dataMono75, "red",FALSE)

#Mod?le mono variable
predict75_25_mono = predict(regLogisticMono, dataMono25)
plotRoc(predict75_25_mono,dataMono25, "blue",TRUE)</pre>
```



En conclusion, le modèle complet n°1 donne certes des résultats comparable à celui du n°2, mais comporte plus de variables et donc de données pour y arriver. Aussi, le modèle n°3 qui se résume à une variable explicative n'est pas suffisament pertinant.

Donc les courbes ROC montrent que le  $\mathbf{mod\`ele}\ \mathbf{n}^{\circ}\mathbf{2}$  issu d'une sélection des 4 meilleurs variables et le modèle le plus adapté.

## Application II : Classification par SVM

## Analyse préliminaire

## 1. Etude rapide

Toutes les informations liées aux données spam sont dans le fichier  $\mathbf{spaminfo.txt}$ 

## 2. Chargement des données

Nous procédons au chargement des données spam.

```
spamData = read.table("spam.txt", header=TRUE, sep=';')
```

#### 3. Observations

#### summary(spamData)

```
##
                            A.2
                                              A.3
                                                                 A.4
         A . 1
##
    Min.
            :0.0000
                      Min.
                              : 0.000
                                         Min.
                                                 :0.0000
                                                           Min.
                                                                   : 0.00000
                                         1st Qu.:0.0000
    1st Qu.:0.0000
                      1st Qu.: 0.000
                                                           1st Qu.: 0.00000
##
    Median :0.0000
                      Median : 0.000
                                         Median : 0.0000
                                                           Median: 0.00000
##
    Mean
            :0.1046
                      Mean
                              : 0.213
                                         Mean
                                                :0.2807
                                                           Mean
                                                                   : 0.06542
##
    3rd Qu.:0.0000
                      3rd Qu.: 0.000
                                         3rd Qu.:0.4200
                                                           3rd Qu.: 0.00000
                                                                   :42.81000
##
    Max.
            :4.5400
                              :14.280
                                                 :5.1000
                      Max.
                                         Max.
                                                           Max.
##
         A.5
                             A.6
                                               A.7
                                                                  A.8
                               :0.0000
##
    Min.
            : 0.0000
                       Min.
                                          Min.
                                                  :0.0000
                                                            Min.
                                                                    : 0.0000
    1st Qu.: 0.0000
                        1st Qu.:0.0000
                                          1st Qu.:0.0000
                                                             1st Qu.: 0.0000
    Median : 0.0000
                        Median :0.0000
                                          Median :0.0000
##
                                                            Median: 0.0000
          : 0.3122
##
    Mean
                       Mean
                               :0.0959
                                          Mean
                                                  :0.1142
                                                            Mean
                                                                   : 0.1053
                        3rd Qu.:0.0000
##
    3rd Qu.: 0.3800
                                          3rd Qu.:0.0000
                                                             3rd Qu.: 0.0000
##
    Max.
            :10.0000
                       Max.
                               :5.8800
                                          Max.
                                                  :7.2700
                                                            Max.
                                                                    :11.1100
         A.9
                                                A.11
                                                                    A.12
##
                             A.10
                       Min.
##
    Min.
            :0.00000
                               : 0.0000
                                           Min.
                                                   :0.00000
                                                              Min.
                                                                      :0.0000
##
    1st Qu.:0.00000
                        1st Qu.: 0.0000
                                           1st Qu.:0.00000
                                                               1st Qu.:0.0000
    Median :0.00000
                        Median : 0.0000
                                           Median :0.00000
                                                               Median :0.1000
##
##
    Mean
            :0.09007
                        Mean
                               : 0.2394
                                           Mean
                                                   :0.05982
                                                               Mean
                                                                      :0.5417
##
    3rd Qu.:0.00000
                        3rd Qu.: 0.1600
                                           3rd Qu.:0.00000
                                                               3rd Qu.:0.8000
##
    Max.
            :5.26000
                        Max.
                               :18.1800
                                           Max.
                                                   :2.61000
                                                               Max.
                                                                      :9.6700
##
         A.13
                             A.14
                                                  A.15
                                                                    A.16
##
    Min.
            :0.00000
                               : 0.00000
                                                    :0.0000
                                                                      : 0.0000
                       Min.
                                            Min.
                                                               Min.
                        1st Qu.: 0.00000
##
    1st Qu.:0.00000
                                            1st Qu.:0.0000
                                                               1st Qu.: 0.0000
    Median :0.00000
                        Median: 0.00000
                                            Median :0.0000
                                                               Median: 0.0000
                               : 0.05863
##
    Mean
            :0.09393
                        Mean
                                            Mean
                                                    :0.0492
                                                               Mean
                                                                      : 0.2488
                        3rd Qu.: 0.00000
                                                               3rd Qu.: 0.1000
##
    3rd Qu.:0.00000
                                            3rd Qu.:0.0000
##
    Max.
            :5.55000
                               :10.00000
                                                    :4.4100
                                                               Max.
                                                                      :20.0000
                        Max.
                                            Max.
         A.17
                            A.18
                                              A.19
                                                                 A.20
##
##
    Min.
            :0.0000
                      Min.
                              :0.0000
                                         Min.
                                                : 0.000
                                                           Min.
                                                                   : 0.00000
##
    1st Qu.:0.0000
                      1st Qu.:0.0000
                                         1st Qu.: 0.000
                                                           1st Qu.: 0.00000
                      Median :0.0000
##
    Median :0.0000
                                         Median : 1.310
                                                           Median: 0.00000
##
    Mean
           :0.1426
                      Mean
                              :0.1847
                                         Mean
                                                : 1.662
                                                           Mean
                                                                   : 0.08558
##
    3rd Qu.:0.0000
                      3rd Qu.:0.0000
                                         3rd Qu.: 2.640
                                                           3rd Qu.: 0.00000
##
    Max.
            :7.1400
                              :9.0900
                                                :18.750
                                                                   :18.18000
                      Max.
                                         Max.
                                                           Max.
##
         A.21
                             A.22
                                                A.23
                                                                   A.24
##
           : 0.0000
                               : 0.0000
                                                                     : 0.00000
    Min.
                       Min.
                                           Min.
                                                   :0.0000
                                                             Min.
                        1st Qu.: 0.0000
##
    1st Qu.: 0.0000
                                           1st Qu.:0.0000
                                                              1st Qu.: 0.00000
##
    Median: 0.2200
                        Median: 0.0000
                                           Median :0.0000
                                                             Median: 0.00000
                              : 0.1212
##
    Mean
           : 0.8098
                                           Mean
                                                   :0.1016
                                                                     : 0.09427
                        Mean
                                                              Mean
##
    3rd Qu.: 1.2700
                        3rd Qu.: 0.0000
                                           3rd Qu.:0.0000
                                                              3rd Qu.: 0.00000
##
    Max.
            :11.1100
                               :17.1000
                                                   :5.4500
                                                                     :12.50000
                        Max.
                                           Max.
                                                              Max.
                             A.26
                                                                    A.28
##
         A.25
                                                A.27
                               : 0.0000
    Min.
            : 0.0000
                       Min.
                                           Min.
                                                   : 0.0000
                                                               Min.
                                                                      :0.0000
                                           1st Qu.: 0.0000
##
    1st Qu.: 0.0000
                        1st Qu.: 0.0000
                                                               1st Qu.:0.0000
    Median : 0.0000
                       Median : 0.0000
                                           Median : 0.0000
##
                                                               Median : 0.0000
##
    Mean
           : 0.5495
                       Mean
                              : 0.2654
                                           Mean
                                                 : 0.7673
                                                               Mean
                                                                      :0.1248
    3rd Qu.: 0.0000
                        3rd Qu.: 0.0000
                                           3rd Qu.: 0.0000
                                                               3rd Qu.:0.0000
    Max.
            :20.8300
                               :16.6600
                                           Max.
                                                  :33.3300
                                                                      :9.0900
##
                        Max.
                                                               Max.
```

```
##
         A.29
                            A.30
                                             A.31
                                                                 A.32
          : 0.00000
                              :0.0000
                                              : 0.00000
                                                                   :0.00000
##
   Min.
                                                            Min.
                       Min.
                                        Min.
    1st Qu.: 0.00000
                       1st Qu.:0.0000
                                        1st Qu.: 0.00000
                                                            1st Qu.:0.00000
   Median : 0.00000
                       Median :0.0000
                                        Median : 0.00000
                                                            Median :0.00000
##
   Mean : 0.09892
                       Mean :0.1029
                                        Mean : 0.06475
                                                            Mean :0.04705
##
    3rd Qu.: 0.00000
                       3rd Qu.:0.0000
                                        3rd Qu.: 0.00000
                                                            3rd Qu.:0.00000
          :14.28000
                              :5.8800
                                              :12.50000
                                                            Max.
                                                                  :4.76000
   Max.
                       Max.
                                        Max.
         A.33
                                              A.35
                                                                 A.36
##
                            A.34
##
   Min.
          : 0.00000
                       Min.
                              :0.00000
                                         Min.
                                                : 0.0000
                                                            Min.
                                                                   :0.00000
    1st Qu.: 0.00000
                       1st Qu.:0.00000
                                         1st Qu.: 0.0000
##
                                                            1st Qu.:0.00000
   Median: 0.00000
                       Median :0.00000
                                         Median: 0.0000
                                                            Median :0.00000
                       Mean
   Mean : 0.09723
                              :0.04784
                                         Mean : 0.1054
                                                            Mean
                                                                 :0.09748
##
##
    3rd Qu.: 0.00000
                       3rd Qu.:0.00000
                                         3rd Qu.: 0.0000
                                                            3rd Qu.:0.00000
          :18.18000
                       Max.
                              :4.76000
                                                :20.0000
                                                                   :7.69000
##
   Max.
                                         Max.
                                                            Max.
##
         A.37
                         A.38
                                          A.39
                                                              A.40
##
   Min.
          :0.000
                    Min.
                           :0.0000
                                     Min.
                                            : 0.00000
                                                         Min.
                                                                :0.00000
    1st Qu.:0.000
                    1st Qu.:0.0000
                                     1st Qu.: 0.00000
                                                         1st Qu.:0.00000
##
   Median : 0.000
                    Median : 0.0000
                                     Median: 0.00000
                                                         Median :0.00000
   Mean :0.137
                          :0.0132
                                           : 0.07863
##
                    Mean
                                     Mean
                                                         Mean
                                                              :0.06483
##
    3rd Qu.:0.000
                    3rd Qu.:0.0000
                                     3rd Qu.: 0.00000
                                                         3rd Qu.:0.00000
          :6.890
                                            :11.11000
##
   Max
                    Max.
                           :8.3300
                                     Max.
                                                         Max.
                                                                :4.76000
##
         A.41
                           A.42
                                             A.43
                                                               A.44
           :0.00000
                      Min. : 0.0000
                                                                 : 0.0000
##
                                        Min.
                                               :0.0000
   Min.
                                                         Min.
    1st Qu.:0.00000
                      1st Qu.: 0.0000
                                        1st Qu.:0.0000
                                                          1st Qu.: 0.0000
##
   Median :0.00000
                      Median : 0.0000
                                        Median :0.0000
                                                          Median : 0.0000
##
   Mean :0.04367
                      Mean : 0.1323
                                        Mean :0.0461
                                                          Mean : 0.0792
##
    3rd Qu.:0.00000
                      3rd Qu.: 0.0000
                                        3rd Qu.:0.0000
                                                          3rd Qu.: 0.0000
                                                                :20.0000
##
    Max. :7.14000
                      Max. :14.2800
                                        Max.
                                              :3.5700
                                                          Max.
                                                                 A.48
        A.45
##
                           A.46
                                             A.47
   Min. : 0.0000
                      Min. : 0.0000
                                               :0.000000
                                                            Min. : 0.00000
                                        Min.
                      1st Qu.: 0.0000
##
    1st Qu.: 0.0000
                                        1st Qu.:0.000000
                                                            1st Qu.: 0.00000
##
   Median : 0.0000
                      Median : 0.0000
                                        Median :0.000000
                                                            Median : 0.00000
   Mean : 0.3012
                      Mean : 0.1798
                                        Mean :0.005444
                                                            Mean : 0.03187
    3rd Qu.: 0.1100
                      3rd Qu.: 0.0000
                                                            3rd Qu.: 0.00000
##
                                        3rd Qu.:0.000000
##
    Max.
         :21.4200
                      Max. :22.0500
                                        Max. :2.170000
                                                            Max. :10.00000
        A.49
                           A.50
##
                                           A.51
                                                             A.52
##
           :0.00000
                      Min.
                             :0.000
                                      Min.
                                             :0.00000
                                                         Min.
                                                              : 0.0000
##
    1st Qu.:0.00000
                      1st Qu.:0.000
                                      1st Qu.:0.00000
                                                         1st Qu.: 0.0000
   Median :0.00000
                      Median : 0.065
                                      Median :0.00000
                                                         Median : 0.0000
##
   Mean
##
         :0.03857
                                      Mean :0.01698
                                                         Mean : 0.2691
                      Mean :0.139
    3rd Qu.:0.00000
                      3rd Qu.:0.188
                                      3rd Qu.:0.00000
                                                         3rd Qu.: 0.3150
                                                                :32.4780
   Max.
          :4.38500
                      Max. :9.752
                                             :4.08100
##
                                      Max.
                                                         Max.
##
         A.53
                           A.54
                                              A.55
                                                                  A.56
##
           :0.00000
                      Min. : 0.00000
                                                                        1.00
                                         Min.
                                                    1.000
   Min.
                                                :
                                                             Min.
                                                                  :
    1st Qu.:0.00000
                      1st Qu.: 0.00000
                                         1st Qu.:
                                                    1.588
                                                             1st Qu.:
                                                                        6.00
                      Median: 0.00000
   Median :0.00000
                                         Median:
                                                    2.276
                                                             Median :
                                                                      15.00
##
                      Mean : 0.04424
##
   Mean :0.07581
                                         Mean
                                                :
                                                    5.191
                                                             Mean
                                                                   :
                                                                       52.17
                      3rd Qu.: 0.00000
                                         3rd Qu.:
##
    3rd Qu.:0.05200
                                                     3.706
                                                             3rd Qu.: 43.00
                                                            Max.
##
   Max.
          :6.00300
                      Max. :19.82900
                                         Max. :1102.500
                                                                   :9989.00
##
         A.57
                         spam
##
   Min.
                1.0
                      email:2788
          :
##
    1st Qu.:
               35.0
                      spam :1813
##
   Median:
               95.0
##
   Mean : 283.3
```

## 3rd Qu.: 266.0 ## Max. :15841.0

Dans le fichier **spam.txt** nous observons 4601 observations, 58 variables dont 55 float, 2 int, 1 label et 1 boolean.

#### 4. Head

## head(spamData)

```
##
                         A.5 A.6 A.7 A.8 A.9 A.10 A.11 A.12 A.13 A.14
          A.2 A.3 A.4
## 1 0.00 0.64 0.64
                      ## 2 0.21 0.28 0.50
                      0 0.14 0.28 0.21 0.07 0.00 0.94 0.21 0.79 0.65 0.21
                      0 1.23 0.19 0.19 0.12 0.64 0.25 0.38 0.45 0.12 0.00
## 3 0.06 0.00 0.71
## 4 0.00 0.00 0.00
                      0 0.63 0.00 0.31 0.63 0.31 0.63 0.31 0.31 0.31 0.00
## 5 0.00 0.00 0.00
                      0 0.63 0.00 0.31 0.63 0.31 0.63 0.31 0.31 0.31 0.00
## 6 0.00 0.00 0.00
                      0 1.85 0.00 0.00 1.85 0.00 0.00 0.00 0.00 0.00 0.00
     A.15 A.16 A.17 A.18 A.19 A.20 A.21 A.22 A.23 A.24 A.25 A.26 A.27 A.28
## 1 0.00 0.32 0.00 1.29 1.93 0.00 0.96
                                                                           0
                                            0 0.00 0.00
## 2 0.14 0.14 0.07 0.28 3.47 0.00 1.59
                                            0 0.43 0.43
                                                            0
                                                                      0
                                                                           0
                                                                 0
## 3 1.75 0.06 0.06 1.03 1.36 0.32 0.51
                                            0 1.16 0.06
                                                                      0
                                                                           0
## 4 0.00 0.31 0.00 0.00 3.18 0.00 0.31
                                            0 0.00 0.00
                                                                      0
                                                                           0
                                                            0
                                                                 0
## 5 0.00 0.31 0.00 0.00 3.18 0.00 0.31
                                            0 0.00 0.00
                                                            0
                                                                      0
                                                                           0
## 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
                                                            0
                                                                      0
                                                                           0
                                            0 0.00 0.00
                                                                 0
     A.29 A.30 A.31 A.32 A.33 A.34 A.35 A.36 A.37 A.38 A.39 A.40 A.41
                                                                        A.42
                                                                           0
## 1
        0
             0
                  0
                       0
                             0
                                  0
                                       0
                                            0 0.00
                                                      0
                                                            0 0.00
                                                                      0
## 2
        0
             0
                  0
                       0
                             0
                                  0
                                       0
                                            0 0.07
                                                      0
                                                            0 0.00
                                                                      0
                                                                           0
                                                                           0
## 3
        0
             0
                  0
                       0
                             0
                                  0
                                       0
                                            0 0.00
                                                      0
                                                            0 0.06
                                                                      0
## 4
        0
                  0
                       0
                             0
                                  0
                                            0 0.00
                                                      0
                                                            0 0.00
                                                                      0
                                                                           0
                                       0
                  0
                       0
                                            0 0.00
                                                            0 0.00
                                                                           0
## 5
        0
             0
                             0
                                  0
                                       0
                                                      0
                                                                      0
        0
                  0
                       0
                             0
                                  0
                                                      0
                                                            0 0.00
                                                                           0
## 6
             0
                                       0
                                            0 0.00
                                                                      0
     A.43
                                                                       A.55
##
         A.44 A.45 A.46
                         A.47 A.48 A.49
                                          A.50 A.51
                                                     A.52
                                                           A.53
                                                                 A.54
                                                  0 0.778 0.000 0.000 3.756
## 1 0.00
             0 0.00 0.00
                            0
                                  0 0.00 0.000
## 2 0.00
             0 0.00 0.00
                             0
                                  0 0.00 0.132
                                                  0 0.372 0.180 0.048 5.114
## 3 0.12
             0 0.06 0.06
                             0
                                  0 0.01 0.143
                                                  0 0.276 0.184 0.010 9.821
## 4 0.00
             0 0.00 0.00
                                  0 0.00 0.137
                                                  0 0.137 0.000 0.000 3.537
                             0
## 5 0.00
             0 0.00 0.00
                             0
                                  0 0.00 0.135
                                                  0 0.135 0.000 0.000 3.537
## 6 0.00
             0 0.00 0.00
                             0
                                  0 0.00 0.223
                                                  0 0.000 0.000 0.000 3.000
##
     A.56 A.57 spam
## 1
       61
           278 spam
      101 1028 spam
## 2
## 3
      485 2259 spam
       40
## 4
           191 spam
## 5
       40
           191 spam
## 6
       15
            54 spam
```

Nous observons que la variable cible est située à la derniére colonne, la numéro 58.

#### 5. Proportions

```
Y = spamData[,ncol(spamData)]
levels(Y)

## [1] "email" "spam"

mlevels(Y)

## [1] 2

table(Y)

## Y

## email spam
## 2788 1813

plot(Y)
```



```
spamProp = table(Y)[2]/(table(Y)[1]+table(Y)[2])
print(spamProp)
```

## spam ## 0.3940448

```
mailProp = 1 - spamProp
print(mailProp)
```

```
## spam
## 0.6059552
```

La proportions de spam est de 39.4% et la proportion de mail est de 60.6%.

N.B. : La commande summary nous donne un résultat plus immédiat:

```
summary(spamData$spam)

## email spam
## 2788 1813
```

## Classification par SVM

### 6. Données d'apprentissage et de test

Nous choisissons aléatoirement 75% de nos données comme étant des données d'apprentissage, les 25% restant seront destinées à tester notre modèle.

```
#On prend al?atoirement sans remise les donn?es d'apprentissage (75%) et les donn?es de test (25%).
dtSpam = sort(sample(nrow(spamData), 0.75*nrow(spamData)))
trainSpamData75<-spamData[dtSpam,]
testSpamData25<-spamData[-dtSpam,]</pre>
```

Chargement des données.

```
Xtrain = as.matrix(trainSpamData75[,-58])
Ytrain = as.matrix(trainSpamData75[,58])
```

Calculons les matrices de covariables

```
library(corrplot)
corrplot(cor(trainSpamData75[,-58]),method="number")
```



#### 7. Calibration C-SVM

Calibrons les données avec un noyau gaussien sur les données d'apprentissage :

```
#install.packages("kernlab")
library(kernlab)
# rbfdot Radial Basis kernel "Gaussian", polydot Polynomial kernel, vanilladot Linear kernel,tanhdot Hy
ksvmTrainSpam = ksvm(Xtrain, Ytrain, kernel="rbfdot", type="C-svc")
predictTrainSpam = predict(ksvmTrainSpam, Xtrain)
```

#### 8. Caractéristiques de la base d'apprentissage

```
matrixConfSpam = table(predictTrainSpam, Ytrain)
print(matrixConfSpam)

## Ytrain
## predictTrainSpam email spam
## email 2057 108
## spam 50 1235
```

```
FalsePositive = matrixConfSpam[1,2] / (matrixConfSpam[1,1]+matrixConfSpam[1,2])
print(FalsePositive)
## [1] 0.04988453
FalseNegative = matrixConfSpam[2,1] / (matrixConfSpam[2,1]+matrixConfSpam[2,2])
print(FalseNegative)
```

## [1] 0.03891051

On note que les résultats son trés significatif avec moins de 5% d'erreur de faux positif et prés de 4% d'erreur de faux négatif.

#### 9. Caractéristiques de la base de test

```
Xtest = as.matrix(testSpamData25[,-58])
Ytest = as.matrix(testSpamData25[,58])
predictTestSpam = predict(ksvmTrainSpam, Xtest)
matrixConfSpamTest = table(predictTestSpam, Ytest)
print(matrixConfSpamTest)
##
                  Ytest
## predictTestSpam email spam
             email
                     648
##
                      33 421
             spam
FalsePositive = matrixConfSpamTest[1,2] / (matrixConfSpamTest[1,1]+matrixConfSpamTest[1,2])
print(FalsePositive)
## [1] 0.07030129
FalseNegative = matrixConfSpamTest[2,1] / (matrixConfSpamTest[2,1]+matrixConfSpamTest[2,2])
print(FalseNegative)
```

## [1] 0.07268722

On note que les résultats son trés significatif avec 56 d'erreur de faux positif et près de 5% d'erreur de faux négatif.

## 10. Mesure de l'impact du choix aléatoire de la base d'apprentissage

Mesurons pour 20 itérations l'erreur du modèle.

```
getError = function(Noyau){
      # 1) Choix de la base
      dtSpam = sort(sample(nrow(spamData), 0.75*nrow(spamData)))
      trainSpamData75<-spamData[dtSpam,]</pre>
      testSpamData25<-spamData[-dtSpam,]</pre>
      # Initialisation des matrices
      Xtrain = as.matrix(trainSpamData75[,-58])
      Ytrain = as.matrix(trainSpamData75[,58])
      Xtest = as.matrix(testSpamData25[,-58])
      Ytest = as.matrix(testSpamData25[,58])
      # 2) Calibration du mod?le sur la base d'apprentissage
      ksvmTrainSpam = ksvm(Xtrain, Ytrain, kernel=Noyau, type="C-svc")
      # 3) Evaluation de l'erreur sur la base de test
      predictTestSpam = predict(ksvmTrainSpam, Xtest)
      matrixConfSpamTest = table(predictTestSpam, Ytest)
      # Retourne l'erreur
      return (as.numeric((matrixConfSpamTest[1,2]+matrixConfSpamTest[2,1]) / (matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrixConfSpamTest[1,1]+matrix
      }
error = c()
Noyau = "rbfdot"
for(k in 1:20){
      error[k] = getError(Noyau)
}
#Erreur minimum :
print(error[which.min(error)])
## [1] 0.05821025
# Erreur maximum :
print(error[which.max(error)])
## [1] 0.08427454
# Erreur moyenne :
print(mean(error))
## [1] 0.07098175
```

Sur 20 itérations, l'erreur minimum est de 5%, l'erreur maximum est de 8% et l'erreur moyenne de 7%. Affichons l'histogramme et la boite à moustache des erreurs pour le noyau gaussien.

```
hist(error, col="firebrick1")
```

# Histogram of error



boxplot(error)



En conclusion, un noyau gaussien est mieux adapté.

## 11. Comparaison des performances des 3 noyaux

Comparons les performances des 3 noyaux gaussien, polynomial et linéaire sur 40 itérations

```
errorLinear= c()
errorPoly = c()
errorGauss = c()

for(k in 1:40){
   errorLinear[k] = getError("vanilladot")
   errorPoly[k] = getError("polydot")
   errorGauss[k] = getError("rbfdot")
}
```

```
## Setting default kernel parameters
```

```
## Setting default kernel parameters
   Setting default kernel parameters
## Setting default kernel parameters
   Setting default kernel parameters
   Setting default kernel parameters
##
   Setting default kernel parameters
##
   Setting default kernel parameters
   Setting default kernel parameters
## Setting default kernel parameters
   Setting default kernel parameters
## Setting default kernel parameters
   Setting default kernel parameters
##
   Setting default kernel parameters
##
   Setting default kernel parameters
##
   Setting default kernel parameters
## Setting default kernel parameters
## Setting default kernel parameters
##
   Setting default kernel parameters
   Setting default kernel parameters
##
   Setting default kernel parameters
   Setting default kernel parameters
##
   Setting default kernel parameters
## Setting default kernel parameters
## Setting default kernel parameters
   Setting default kernel parameters
## Setting default kernel parameters
   Setting default kernel parameters
##
   Setting default kernel parameters
   Setting default kernel parameters
##
   Setting default kernel parameters
## Setting default kernel parameters
   Setting default kernel parameters
   Setting default kernel parameters
## Setting default kernel parameters
## Setting default kernel parameters
   Setting default kernel parameters
##
   Setting default kernel parameters
   Setting default kernel parameters
## Setting default kernel parameters
   Setting default kernel parameters
## Setting default kernel parameters
   Setting default kernel parameters
##
   Setting default kernel parameters
   Setting default kernel parameters
##
   Setting default kernel parameters
## Setting default kernel parameters
## Setting default kernel parameters
## Setting default kernel parameters
## Setting default kernel parameters
## Setting default kernel parameters
## Setting default kernel parameters
```

```
## Setting default kernel parameters
## Noyau Lin?aire :
# Erreur minimum :
print(errorLinear[which.min(errorLinear)])
## [1] 0.05734144
# Erreur maximum :
print(errorLinear[which.max(errorLinear)])
## [1] 0.08774978
# Erreur moyenne :
print(mean(errorLinear))
## [1] 0.0717854
#Histogramme de l'erreur
hist(errorLinear, col="firebrick1")
```

## Histogram of errorLinear



```
## Noyau Polynomiale :
#Erreur minimum :
print(errorPoly[which.min(errorPoly)])

## [1] 0.05299739

# Erreur maximum :
print(errorPoly[which.max(errorPoly)])

## [1] 0.09035621

# Erreur moyenne :
print(mean(errorPoly))

## [1] 0.06939618

#Histogramme de l'erreur
hist(errorPoly, col="firebrick1")
```

## **Histogram of errorPoly**



```
## Noyau Gaussien :
#Erreur minimum :
print(errorGauss[which.min(errorGauss)])

## [1] 0.05734144

# Erreur maximum :
print(errorGauss[which.max(errorGauss)])

## [1] 0.07906169

# Erreur moyenne :
print(mean(errorGauss))

## [1] 0.07011295

#Histogramme de l'erreur
hist(errorGauss, col="firebrick1")
```

## **Histogram of errorGauss**



Comparons empiriquement les erreurs des 3 noyaux:

boxplot(errorLinear, errorPoly, errorGauss)



En conclusion le noyau présentant l'erreur la plus basse est le noyau gaussien.

## Application III : Modèle de régression par SVM

## 1. Noyau et performance de UsCrime

Procédons au chargement du fichier UsCrime.txt :

```
usCrimeData = read.table('UsCrime.txt',header=TRUE, sep=' ')
#names(usCrimeData) <- NULL # suppression des headers</pre>
```

Comparons différents modèles de régression permettant de prédire le taux de crimminalité à l'aide d'un modèle SVM.

```
# library(kernlab)
# help(ksvm)
# getErrorUsCrime = function(NoyauUs = "rbfdot"){
# # 1) Choix de la base
# dtusCrime = sort(sample(nrow(usCrimeData), 0.75*nrow(usCrimeData)))
# trainusCrimeData75<-usCrimeData[dtusCrime,]
# testusCrimeData25<-usCrimeData[-dtusCrime,]
# # Initialisation des matrices
# XtrainUsCrime = as.matrix(trainusCrimeData75[,-1])</pre>
```

```
YtrainUsCrime = as.matrix(trainusCrimeData75[,1])
#
   XtestUsCrime = as.matrix(testusCrimeData25[,-1])
   YtestUsCrime = as.matrix(testusCrimeData25[,1])
#
#
   # 2) Calibration du mod?le sur la base d'apprentissage
#
   ksumTrainUsCrime = ksum(XtrainUsCrime, YtrainUsCrime, kernel=NoyauUs, type="C-suc")
   #BUG "dependent variable has to be of factor or integer type for classification mode."
#
#
   # 3) Evaluation de l'erreur sur la base de test
#
#
   predictTestUsCrime = predict(ksvmTrainUsCrime, XtrainUsCrime)
#
   matrixConfUsCrimeTest = table(predictTestUsCrime, YtestUsCrime)
#
#
  # Retourne l'erreur
   return (as.numeric((matrixConfUsCrimeTest[1,2]+matrixConfUsCrimeTest[2,1]) / (matrixConfUsCrimeTest
#
# }
#
#
# errorusCrimeLinear= c()
# errorusCrimePoly = c()
# errorusCrimeGauss = c()
# for(k in 1:1){
  errorusCrimeLinear[k] = getErrorUsCrime("vanilladot")
  errorusCrimePoly[k] = getErrorUsCrime("polydot")
   errorusCrimeGauss[k] = getErrorUsCrime("rbfdot")
# }
# ## Noyau Lin?aire :
# # Erreur minimum :
# print(errorusCrimeLinear[which.min(errorusCrimeLinear)])
# # Erreur maximum :
# print(errorusCrimeLinear[which.max(errorusCrimeLinear)])
# # Erreur moyenne :
# print(mean(errorusCrimeLinear))
# #Histogramme de l'erreur
# hist(errorusCrimeLinear, col="firebrick1")
# ## Noyau Polynomiale :
# #Erreur minimum :
# print(errorusCrimePoly[which.min(errorusCrimePoly)])
# # Erreur maximum :
# print(errorusCrimePoly[which.max(errorusCrimePoly)])
# # Erreur moyenne :
# print(mean(errorusCrimePoly))
# #Histogramme de l'erreur
# hist(errorusCrimePoly, col="firebrick1")
# ## Noyau Gaussien :
# #Erreur minimum :
# print(errorusCrimeGauss[which.min(errorusCrimeGauss)])
# # Erreur maximum :
# print(errorusCrimeGauss[which.max(errorusCrimeGauss)])
# # Erreur moyenne :
```

```
# print(mean(errorusCrimeGauss))
# #Histogramme de l'erreur
# hist(errorusCrimeGauss, col="firebrick1")
```

Comparons empiriquement les erreurs des 3 noyaux:

```
# boxplot(errorusCrimeLinear, errorusCrimePoly, errorusCrimeGauss)
```

En conclusion le noyau gaussien présente l'erreur la plus faible. C'est donc le modèle le plus significatif.