Проектная работа по модулю "SQL и получение данных"

Петрухин Андрей DEG-18

- 1. В работе использовался локальный (восстановление базы из *.backup файла по ссылке <u>avia</u>) тип подключения.
 - если база была развернута из *.sql или *.backup файла, необходимо приложить скриншот успешного импорта или восстановления

Скриншот ER-диаграммы из DBeaver`а согласно Вашего подключения.

3. Краткое описание БД - из каких таблиц и представлений состоит.

Таблицы: aircrafts (Самолеты), airports (Аэропорты), boarding passes (Посадочные талоны), bookings (Бронирования), flights (Рейсы), seats (Места), ticket_flights (Перелеты), tickets (Билеты)

Представление: flights v

Материализованное представление: routes

4. Развернутый анализ БД - описание таблиц, логики, связей и бизнес области (частично можно взять из описания базы данных, оформленной в виде анализа базы данных).

Таблица bookings.aircrafts

Каждая модель воздушного судна идентифицируется своим трехзначным кодом (aircraft_code). Указывается также название модели (model) и максимальная дальность полета в километрах (range).

Описание столбцов таблицы bookings.aircrafts:

- Aircraft_code (Код самолета). Строка из 3-х символов с фиксированным количеством (всгеда равно трем). Не может принимать значение null. Является первичным ключом.
- model (Модель самолета). Символьный тип, который может быть текстом любой длины. Не может принимать значение null.
- Range (Максимальная дальность полета, км). Числовой тип данных, который хранит числа от -2147483648 до +2147483647. Занимает 4 байта. Не может принимать значение null. Может содержать только положительные значения больше нуля (CHECK range > 0)

Ссылки извне: таблица "flights" имеет внешний ключ (aircraft_code) ссылающийся на таблицу aircrafts (колонка aircraft_code); таблица "seats" имеет внешний ключ (aircraft_code) ссылающийся на таблицу aircrafts (колонка aircraft_code).

При удалении информации из таблицы "seats" происходит автоматическое удаление удаление информации из таблицы aircrafts.

Таблица bookings.airports

Аэропорт идентифицируется трехбуквенным кодом (airport_code) и имеет свое имя (airport_name). Для города не предусмотрено отдельной сущности, но название (city) указывается и может служить для того, чтобы определить аэропорты одного города. Также указывается широта (longitude), долгота (latitude) и часовой пояс (timezone).

Описание столбцов таблицы bookings.airports:

- Airport_code (Код аэропорта). Строка из 3-х символов с фиксированным количеством (всгеда равно трем). Не может принимать значение null. Является первичным ключом.
- Airport_name (Название аэропорта). Символьный тип, который может быть текстом любой длины. Не может принимать значение null.
- City (Город). Символьный тип, который может быть текстом любой длины. Не может принимать значение null.
- Longitude (Координаты аэропорта: долгота). Числовой тип, который хранит числа с плавающей точкой из диапазона от 1E-307 до 1E+308. Занимает 8 байт. Имеет псевдоним float8. Не может принимать значение null.
- Latitude (Координаты аэропорта: широта). Числовой тип, который хранит числа с плавающей точкой из диапазона от 1E-307 до 1E+308. Занимает 8 байт. Имеет псевдоним float8. Не может принимать значение null.
- Timezone (Временная зона аэропорта). Символьный тип, который может быть текстом любой длины. Не может принимать значение null.

Ссылки извне: таблица "flights" имеет внешний ключ (arrival_airport) ссылающийся на таблицу airports (колонка airport_code); таблица "flights" имеет внешний ключ (departure airport) ссылающийся на таблицу airports (колонка airport code)

Таблица bookings.boarding_passes

При регистрации на рейс, которая возможна за сутки до плановой даты отправления, пассажиру выдается посадочный талон. Он идентифицируется также, как и перелет — номером билета и номером рейса. Посадочным талонам присваиваются последовательные номера (boarding_no) в порядке регистрации пассажиров на рейс (этот номер будет уникальным только в пределах данного рейса). В посадочном талоне указывается номер места (seat_no).

Описание столбцов таблицы bookings.boarding_passes:

- Ticket_no (Номер билета). Строка из 3-х символов с фиксированным количеством (всгеда равно трем). Не может принимать значение null.
- Flight_id (Идентификатор рейса). Числовой тип, который хранит числа от -2147483648 до +2147483647. Занимает 4 байта. Имеет псевдоним int4. Не может принимать значение null.
- Boarding_no (Номер посадочного талона). Числовой тип, который хранит числа от -2147483648 до +2147483647. Занимает 4 байта. Имеет псевдоним int4. Не может принимать значение null.
- Seat_no (Номер места). Символьный тип, который представляет строку с переменной длиной и максимальным значением 4 символа. Не может принимать значение null.

Индексы: первичный ключ состоит из совокупности значений колонок ticket_no и flight_id. Совокупные значения колонок flight_id и boarding_no имеют ограничение уникальности. Совокупные значения колонок flight_id и seat_no имеют ограничение уникальности.

Ограничения внешнего ключа: таблица bookings.boarding_passes имеет внешний ключ состоящий из (ticket_no и flight_id) ссылающийся на таблицу ticket_flights (колонки ticket no и flight id).

Таблица bookings.bookings

Пассажир заранее (book_date, максимум за месяц до рейса) бронирует билет себе и, возможно, нескольким другим пассажирам. Бронирование идентифицируется номером (book_ref, шестизначная комбинация букв и цифр). Поле total_amount хранит общую стоимость включенных в бронирование перелетов всех пассажиров.

Описание столбцов таблицы bookings.bookings:

- Book_ref (Номер бронирования). Символьный тип, который представляет строку с фиксированной длиной 6 символов. Не может принимать значение null. Является первичным ключом.
- Book_date (Дата бронирования). Тип данных для работы с датами и временем, который хранит дату, время и данные о часовом поясе. Занимает 8 байт. Не может принимать значение null.
- Total_amount (Полная сумма бронирования). Числовой тип, который хранит числа с фиксированной точностью, которые могут иметь 8 знаков в целой части и 2 знака после запятой. Не может принимать значение null.

Ссылки извне: таблица "tickets" имеет внешний ключ (book_ref) ссылающийся на таблицу bookings (колонка book_ref)

Таблица bookings.flights

Естественный ключ таблицы рейсов состоит из двух полей — номера рейса (flight_no) и даты отправления (scheduled_departure). Чтобы сделать внешние ключи на эту таблицу компактнее, в качестве первичного используется суррогатный ключ (flight id). Рейс всегда соединяет две точки — аэропорты вылета (departure airport) и прибытия (arrival airport). Такое понятие, как «рейс с пересадками» отсутствует: если из одного аэропорта до другого нет прямого рейса, в билет просто включаются несколько необходимых рейсов. У каждого рейса есть запланированные дата и время вылета (scheduled departure) и прибытия (scheduled arrival). Реальные (actual departure) и прибытия (actual arrival) могут отличаться: обычно не сильно, но иногда и на несколько часов, если рейс задержан. Статус рейса (status) может принимать одно из следующих значений: • Scheduled Рейс доступен для бронирования. Это происходит за месяц до плановой даты вылета; до этого запись о рейсе не существует в базе данных. • On Time Рейс доступен для регистрации (за сутки до плановой даты вылета) и не задержан. • Delayed Рейс доступен для регистрации (за сутки до плановой даты вылета), но задержан. • Departed Camoner уже вылетел и находится в воздухе. 6 • Arrived Самолет прибыл в пункт назначения. • Cancelled Рейс отменен.

Описание столбцов таблицы bookings.flights:

- Flight_id (Идентификатор рейса). Числовой тип, который представляет автоинкрементирующееся числовое значение, которое занимает 4 байта и может хранить числа от 1 до 2147483647. Значение данного типа образуется путем автоинкремента значения предыдущей строки. Не может принимать значение null. Является первичным ключом.
- Flight_no (Номер рейса). Символьный тип, который представляет строку с фиксированной длиной 6 символов. Не может принимать значение null.
- Scheduled_departure (Время вылета по расписанию). Тип данных для работы с датами и временем, который хранит дату, время и данные о часовом поясе. Занимает 8 байт. Не может принимать значение null.
- Scheduled_arrival (Время прилёта по расписанию). Тип данных для работы с датами и временем, который хранит дату, время и данные о часовом поясе. Занимает 8 байт. Не может принимать значение null.
- Departure_airport (Аэропорт отправления). Символьный тип, который представляет строку с фиксированной длиной 3 символа. Не может принимать значение null.
- Arrival_airport (Аэропорт прибытия). Символьный тип, который представляет строку с фиксированной длиной 3 символа. Не может принимать значение null.
- Status (Статус рейса). Символьный тип, который представляет строку с переменной длиной и максимальным значением 20 символа. Не может принимать значение null. Ограничение колонка может содержать только одно из значений 'On Time', 'Delayed', 'Departed', 'Arrived', 'Scheduled', 'Cancelled'.
- Aircraft_code (Код самолета). Символьный тип, который представляет строку с фиксированной длиной 3 символа. Не может принимать значение null.
- Actual_departure (Фактическое время вылета). Тип данных для работы с датами и временем, который хранит дату, время и данные о часовом поясе. Занимает 8 байт. Не может принимать значение null.

Индексы: Совокупные значения колонок flight no и scheduled departure имеют

ограничение уникальности.

Ограничения-проверки: CHECK (scheduled_arrival > scheduled_departure) CHECK ((actual_arrival IS NULL) OR ((actual_departure IS NOT NULL AND actual_arrival IS NOT NULL) AND (actual_arrival > actual_departure)))

Ограничения внешнего ключа: таблица bookings.flights имеет внешний ключ состоящий из (aircraft_code) ссылающийся на таблицу aircrafts (колонки aircraft_code); таблица bookings.flights имеет внешний ключ состоящий из (arrival_airport) ссылающийся на таблицу airports (колонки airport_code); таблица bookings.flights имеет внешний ключ состоящий из (departure_airport) ссылающийся на таблицу airports (колонки airport_code).

Ссылки извне: таблица bookings.ticket_flights имеет внешний ключ состоящий из (flight id) ссылающийся на таблицу flights (колонки flight id).

Таблица bookings.seats

Места определяют схему салона каждой модели. Каждое место определяется своим номером (seat_no) и имеет закрепленный за ним класс обслуживания (fare_conditions) — Economy, Comfort или Business.

Описание столбцов таблицы bookings.seats:

- Aircraft_code (Код самолета). Символьный тип, который представляет строку с фиксированной длиной 3 символов. Не может принимать значение null.
- seat_no (Номер места). Символьный тип, который представляет строку с переменной длиной и максимальным значением 4 символа. Не может принимать значение null.
- fare_conditions (Класс обслуживания). Символьный тип, который представляет строку с переменной длиной и максимальным значением 10 символа. Не может принимать значение null. Ограничение проверки строка может принимать одно из значений 'Economy', 'Comfort', 'Business'.

Индексы: первичный ключ состоит из совокупности значений колонок aircraft_code и seat no.

Ограничения внешнего ключа: таблица bookings.seats имеет внешний ключ состоящий из (aircraft_code) ссылающийся на таблицу aircrafts (колонки aircraft_code).

При удалении информации из таблицы "seats" происходит автоматическое удаление удаление информации из таблицы "aircrafts".

Таблица bookings.ticket_flights

Перелет соединяет билет с рейсом и идентифицируется их номерами. Для каждого перелета указываются его стоимость (amount) и класс обслуживания (fare_conditions).

Описание столбцов таблицы bookings.ticket_flights:

- ticket_no (Номер билета). Символьный тип, который представляет строку с фиксированной длиной 13 символов. Не может принимать значение null.
- flight_id (Идентификатор рейса). Числовой тип, который хранит числа от -2147483648 до +2147483647. Занимает 4 байта. Имеет псевдоним int4. Не может принимать значение null.
- fare_conditions (Класс обслуживания). Символьный тип, который представляет строку с переменной длиной и максимальным значением 10 символа. Не может принимать значение null. Ограничение проверки строка может принимать одно из

значений 'Economy', 'Comfort', 'Business'.

- amount (Стоимость перелета). Числовой тип, который хранит числа с фиксированной точностью, которые могут иметь 8 знаков в целой части и 2 знака после запятой. Не может принимать значение null. Ограничение проверки - колонка может принимать значения большие или равные нулю.

Индексы: первичный ключ состоит из совокупности значений колонок ticket_no и flight_id.

Ограничения внешнего ключа: таблица bookings.ticket_flights имеет внешний ключ состоящий из (flight_id) ссылающийся на таблицу flights (колонки flight_id); таблица bookings.ticket_flights имеет внешний ключ состоящий из (ticket_no) ссылающийся на таблицу tickets (колонки ticket_no).

Ссылки извне: таблица bookings.boarding_passes имеет внешний ключ состоящий из (ticket_no, flight_id) ссылающийся на таблицу ticket_flights (колонки ticket_no, flight_id).

Таблица bookings.tickets

Билет имеет уникальный номер (ticket_no), состоящий из 13 цифр. Билет содержит идентификатор пассажира (passenger_id) — номер документа, удостоверяющего личность, — его фамилию и имя (passenger_name) и контактную информацию (contact_date). Ни идентификатор пассажира, ни имя не являются постоянными (можно поменять паспорт, можно сменить фамилию), поэтому однозначно найти все билеты одного и того же пассажира невозможно.

Описание столбцов таблицы bookings.tickets:

- ticket_no (Номер билета). Символьный тип, который представляет строку с фиксированной длиной 13 символов. Не может принимать значение null. Является первичным ключом.
- book_ref (Номер бронирования). Символьный тип, который представляет строку с фиксированной длиной 7 символов. Не может принимать значение null.
- passenger_id (Идентификатор пассажира). Символьный тип, который представляет строку с переменной длиной и максимальным значением 20 символа. Не может принимать значение null.
- passenger_name (Имя пассажира). Символьный тип, который может быть текстом любой длины. Не может принимать значение null.
- contact_data (Контактные данные пассажира). Тип, который хранит данные json в бинарном формате.

Ограничения внешнего ключа: таблица bookings.tickets имеет внешний ключ состоящий из (book_ref) ссылающийся на таблицу bookings (колонки book_ref).

Ссылки извне: таблица ticket_flights имеет внешний ключ состоящий из (ticket_no) ссылающийся на таблицу tickets (колонки ticket_no).

Представление "bookings.flights_v"

Над таблицей flights создано представление flights_v, содержащее дополнительную информацию: • расшифровку данных об аэропорте вылета (departure_airport, departure_airport_name, departure_city), • расшифровку данных об аэропорте прибытия (arrival_airport, arrival_airport_name, arrival_city), • местное время вылета (scheduled departure local, actual departure local), • местное время прибытия

(scheduled_arrival_local, actual_arrival_local), • продолжительность полета (scheduled_duration, actual_duration).

Описание столбцов таблицы bookings.flights_v:

- flight_id (Идентификатор рейса). Числовой тип, который хранит числа от -2147483648 до +2147483647. Занимает 4 байта. Имеет псевдоним int4.
- flight_no (Номер рейса). Символьный тип, который представляет строку с фиксированной длиной 6 символов.
- scheduled_departure (Время вылета по расписанию). Тип данных для работы с датами и временем, который хранит дату, время и данные о часовом поясе. Занимает 8 байт.
- scheduled_departure_local (Время вылета по расписанию, | | местное время в пункте отправления). Тип данных для работы с датами и временем, который хранит дату и время. Занимает 8 байт. Для дат самое нижнее значение 4713 г до н.э., самое верхнее значение 294276 г н.э.
- scheduled_arrival (Время прилёта по расписанию). Тип данных для работы с датами и временем, который хранит дату, время и данные о часовом поясе. Занимает 8 байт.
- scheduled_arrival_local (Время прилёта по расписанию, | | местное время в пункте прибытия). Тип данных для работы с датами и временем, который хранит дату и время. Занимает 8 байт. Для дат самое нижнее значение 4713 г до н.э., самое верхнее значение 294276 г н.э.
- scheduled_duration (Планируемая продолжительность полета). Тип представляет временной интервал. Занимает 16 байт.
- departure_airport (Код аэропорта отправления). Символьный тип, который представляет строку с фиксированной длиной 3 символов.
- departure_airport_name (Название аэропорта отправления). Символьный тип, который может быть текстом любой длины.
- departure_city (Город отправления). Символьный тип, который может быть текстом любой длины.
- arrival_airport (Код аэропорта прибытия). Символьный тип, который представляет строку с фиксированной длиной 3 символов.
- arrival_airport_name (Название аэропорта прибытия). Символьный тип, который может быть текстом любой длины.
- arrival_city (Город прибытия). Символьный тип, который может быть текстом любой длины.
- status (Статус рейса). Символьный тип, который представляет строку с переменной длиной и максимальным значением 20 символа.
- aircraft_code (Код самолета). Символьный тип, который представляет строку с фиксированной длиной 3 символов.
- actual_departure (Фактическое время вылета). Тип данных для работы с датами и временем, который хранит дату, время и данные о часовом поясе. Занимает 8 байт.
- actual_departure_local (Фактическое время вылета, | | местное время в пункте отправления) Тип данных для работы с датами и временем, который хранит дату и время. Занимает 8 байт. Для дат самое нижнее значение 4713 г до н.э., самое верхнее

значение - 294276 г н.э.

- actual_arrival (Фактическое время прилёта). Тип данных для работы с датами и временем, который хранит дату, время и данные о часовом поясе. Занимает 8 байт.
- actual_arrival_local (Фактическое время прилёта, | | местное время в пункте прибытия). Тип данных для работы с датами и временем, который хранит дату и время. Занимает 8 байт. Для дат самое нижнее значение 4713 г до н.э., самое верхнее значение 294276 г н.э.
- actual_duration (Фактическая продолжительность полета). Тип представляет временной интервал. Занимает 16 байт.

Материализованное представление bookings.routes

Таблица рейсов содержит избыточность: из нее можно было бы выделить информацию о маршруте (номер рейса, аэропорты отправления и назначения), которая не зависит от конкретных дат рейсов. Именно такая информация и составляет материализованное представление routes.

Описание столбцов таблицы bookings.flights_v:

- flight_no (Номер рейса). Символьный тип, который представляет строку с фиксированной длиной 6 символов.
- departure_airport (Код аэропорта отправления). Символьный тип, который представляет строку с фиксированной длиной 3 символов.
- departure_airport_name (Название аэропорта отправления). Символьный тип, который может быть текстом любой длины.
- departure_city (Город отправления). Символьный тип, который может быть текстом любой длины.
- arrival_airport (Код аэропорта прибытия). Символьный тип, который представляет строку с фиксированной длиной 3 символов.
- arrival_airport_name (Название аэропорта прибытия). Символьный тип, который может быть текстом любой длины.
- arrival_city (Город прибытия). Символьный тип, который может быть текстом любой длины.
- aircraft_code (Код самолета). Символьный тип, который представляет строку с фиксированной длиной 3 символов.
- duration (Продолжительность полета). Тип представляет временной интервал. Занимает 16 байт.
- days_of_week (Дни недели, когда выполняются рейсы). Массив числового тип, который хранит числа от -2147483648 до +2147483647.
 - 5. Бизнес задачи, которые можно решить, используя БД.
 - Оптимизация перелетов. Оценка менее популярных направлений и сокращение количества перелетов по этим направлениям, выбор подходящего самолета по количеству мест и дальности полета
 - Подсчет прибыли по каждому направлению и в целом
 - Аналитика с целью контекстной рекламы для пользователей
 - Аналитика с целью формирования динамических цен
 - Отслеживание задержек вылетов и прилетов

- Отслеживание перемещения пассажиров (не совсем бизнес, конечно)
- 6. Список SQL запросов из приложения №2 с описанием логики их выполнения. См. SQL файл