Dpto. de Matemáticas.

PROBLEMAS. HOJA 6. Depredador-Presa, Competencia.

1. Considera los modelo de Lotka-Volterra:

$$\begin{cases} \dot{x} = ax - bxy = x(a - by) = f(x, y), \\ \dot{y} = -cy + dxy = y(-c + dx) = g(x, y). \end{cases}$$

- Demuestra que no es un sistema Hamiltoniano.
- Encuentra integral primeras para Lotka-Volterra.

Solución: Lotka-Volterra: $\vec{F}=(x(a-by),y(-c+dx))$. Notemos que $\vec{F}=(xh_1(y),yh_2(x))$ por lo que

$$\operatorname{div} \vec{F} = h_1(y) + h_2(x) \neq 0,$$

y no es un sistema hamiltoniano.

Recordando ejercicio de la hoja anterior, podemos adivinar que el factor integrante $\frac{1}{xy}$ funciona directamente,

$$\frac{1}{xy}\vec{F} = (\frac{h_1(y)}{y}, \frac{h_2(x)}{x})$$

que tiene obviamente divergencia 0, pero hagamos el cálculo. Recordemos que,

$$\operatorname{div}\mu\vec{F} = \langle \nabla \mu, \vec{F} \rangle + \mu \operatorname{div}F \tag{1}$$

que en nuestro caso nos da

$$0 = \operatorname{div}(\mu \vec{F}) = (h_1 + h_2)\mu + x\mu_x h_1 + y\mu_y h_2 = h_1(\mu + x\mu_x) + h_2(\mu + y\mu_y)$$

Resolviendo $(\mu + x\mu_x) = 0 = (\mu + y\mu_y)$, llegamos a $\mu(x,y)xy = 1$.

Una vez hallado el factor integrante, hallamos la correspondientes integral primera. Sea

$$H_y = \frac{a - by}{y}, \qquad -H_x = \frac{c - dy}{x}.$$

Integrando

$$H(x,y) = a\log(y) - by + c\log(x) - dy,$$

que coinciden con las ecuaciones de las trayectorias calculadas en la teoría.

2. Demuestra que un sistema que admite una integral primera no puede tener puntos críticos asintóticamente estables o inestables o ciclos.

Observación: Se puede demostrar que un centro para el sistema linealizado, corresponde a un centro, foco o punto de rotación en el sistema no lineal, por lo tanto un centro para el sistema linealizado lo es para el sistema original.

Solución:

El argumento para puntos críticos se dió en Problemas 4, ejercicio 2 d.

Supongamos que tiene un punto crítico \vec{x}_{∞} asintóticamente estable. Sea x_0 en la región de atracción y $\vec{x}(t,\vec{x_0})$ una trayectoria tal que $H(\vec{x}(t)) = H(\vec{x_0})$. Por continuidad $H(\vec{x}_{\infty}) = H(\vec{x_0})$, por tanto, H es constante en la región de atracción. entonces, H no es una integral primera.

Para extenderlo para ciclos observamos que si ω atractor es un ciclo corresponde a una trayectoria periódica por lo que para todo $(x,y)\in\omega, H(x,y)=H(\omega)$ es constante. Si ocurriera que ω fuera ciclo atractor por el Teorema de Poincaré-Bendixon las trayectorias convergerían de manera espiral a él. Por tanto, para cualquier valor en la región de atracción de ω la función H sería constante. Es decir las funciones f y g serián 0.

El mismo argumento te dice que si x_{∞} es inestable.

3. Supongamos que V es una función de Liapunov en un abierto $\mathcal U$ para un sistema

$$\dot{x} = f(x, y), \qquad \dot{y} = g(x, y).$$

Sea $c < \inf_{\partial U} V$.

- i) Probar que sus conjuntos de nivel $\{(x,y):V(x,y)\leq c\}$ son positivamente invariantes.
- ii) Sea $x(t,x_0)$ una trayectoria acotada y ω su límite que puede ser un ciclo o un punto de equilibrio. Demostrar que $\dot{V}=\frac{\partial V}{\partial x}f+\frac{\partial V}{\partial y}g(x,y)=0$ para todo $(x,y)\in\omega$

Solución i):

Sea $p_0 = (x_0, y_0) \in \mathcal{U}$ tal que $V(p_0) < c$. Supongamos que no es positivamente invariante. Entonces existe una trayectoria que empieza en p_0 y un t_* tal que $V(x(t_*, p_0)) = c$ como $c < m \ x(t_*, p_0) \in \mathcal{U}$. Pero entonces

$$V(x(t_*, p_0)) = c > V(p_0) = V(x(0, p_0)),$$

lo que contradice que V sea no creciente a lo largo de las trayectorias.

Solución ii):

- Sea $(x(t, p_0))$ una trayectoria acotada, $V(x(t, p_0))$ está acotada y es decreciente asi que tiene lmite l cuando t tiende a infinito.
- ullet Sea $(x_\omega,y_\omega)\in\omega.$ Por definición existe una subsucesión de tiempos $\{t_k\}_{k=1}^\infty$ tal que y

$$\lim_{t_k \to \infty} x(t_k, x_0) = (x_\omega, y_\omega).$$

Por continuidad $V(x_{\omega}, y_{\omega}) = l$. Es decir, V es constante en ω .

■ Ahora bien si ω es límite es porque existe una trayectoria de una órbita periódica $y(t,\omega_0)\subset\Omega$ para todo tiempo t. Por tanto V(y(t))=l para todo t. Y usando la regla de la cadena

$$0 = \frac{dV}{dt} = \frac{\partial V}{\partial x}f + \frac{\partial V}{\partial y}g(x, y)$$

4. El modelo predador-presa no tiene en cuenta la competencia dentro de la especie que aparecía en la logística. Una versión mas sofisticada es,

$$\dot{x} = x(a - \lambda x - by),$$

$$\dot{y} = y(-c + dx - \mu y).$$

- i) Estudia el caso $\frac{a}{\lambda} < \frac{c}{d}$. Analiza primero los puntos críticos y despues las distintas regiones definidas por las nullclinas.
- ii) Estudia el caso $\frac{a}{\lambda} < \frac{c}{d}$ y todos los parámetros positivos. Utiliza la integral primera H del caso Lotka-Volterra como función de Liapunov.

Figura 1: LVgananpresas

Solución i):

Análisis Local: En este caso las nullclinas no se cortan y existen solo dos puntos cr \acute{t} icos el $(0,\frac{a}{\lambda})$ que es estable y el (0,0) que es punto de silla.

Segundas derivadas sobre las nullclinas

- \blacksquare Si $x(t),y(t)\in L_x^{-1}[0]$, $\ddot{x}=-bx\dot{y}$
- Si $x(t), y(t) \in L_y^{-1}[0], \ddot{y} = +dy\dot{x}$

Análisis por regiones

- P_1 es positivamente invariante. Los ejes son trayectorias y si cruzará la nullclina la x tendria un máximo pero por lo anterior como $\dot{y} < 0$ tendría un mímo.
- P_2 Las trayectorias permanecen acotadas, y no pueden cruzar $L_y^{-1}[0]$ porque en esta región como $\dot{x} < 0$ $\ddot{y} < 0$ sobre $L_y^{-1}[0]$. En P_2 y' < 0 y en P_3 y' > 0. Asi que al cruzar tendrá un mínimo lo que es una contradicción. Asi pues o cruza a P_1 o converge al punto crítico. lo que tendrían un máximo.
- P_3 . Describimos la región analiticamente como (x, y):

$$\frac{d}{c} < x < \infty; 0 < y < \frac{dx - c}{\mu}.$$

Supongamos que existe una trayectoria se queda atrapada en P_3 . Como la x es decreciente y por su definición $\frac{d}{c} < x(t) < x(0)$ y por tanto $0 < y(t) < \frac{dx-c}{\mu} < \frac{dx(0)-c}{\mu}$. Es decir, la (x(t),y(t)) son funciones acotadas y monótonas y por lo tanto tienen límite. Por los lemas que hemos visto en el curso este límite tiene que ser punto crítico. Por tanto: $\underline{\mathsf{T}}$ oda trayectoria que emerge de P_3 entra en P_2 .

Solución ii):

El punto de corte es $a=\lambda \bar{x}+b\bar{y}, c=-d\bar{x}+\mu\bar{y}$. Es facil ver que es atractor que el (0,0) es punto de silla.

Análisis Global. Observamos que para el punto crítico $(\bar{x}^{LV}, \bar{y}^{LV}) = (\frac{c}{d}, \frac{a}{b})$ es $H^{LV}(x,y) = -a\log(y) + by - c\log(x) + dx = d(x - \bar{x}^{LV}\ln(x)) + b(y - \bar{y}^{LV}\ln(y))$. Probamos con la misma versión con nuestros nuevos puntos críticos

$$V^{LV}(x,y) = d(x - \bar{x}\ln(x)) + b(y - \bar{y}\ln(y))$$

$$\begin{split} \frac{\partial V}{\partial x}f + \frac{\partial V}{\partial y}g(x,y) &= \\ d(1-\frac{\bar{x}}{x})x(a-\lambda x - by) + b(1-\frac{\bar{y}}{y})y(-c + dx - \mu y) \\ &= d(x-\bar{x})\lambda(\bar{x}-x) + b(y-\bar{y})(\bar{y}-y) \leq 0 \end{split}$$

Así que es función de Liapunov en todo \mathbb{R}^2_+ (el cuadrante positivo). Además V=K son órbitas cerradas y V< K es su interior. Por tanto, las trayectorias quedan atrapadas en esta región. En el único lugar en que $\dot{V}=0$ es el centro por lo que todo todo el cuadrante es atraído de manera espiral.

5. Analizar e Interpretar el comportamiento de dos poblaciones competitivas

$$\frac{dx}{dt} = x(1 - bx - cy) \qquad \frac{dy}{dt} = y(1 - ex - fy)$$

para los casos

- f > c, e < b
- f > c, e > b
- $c > f, e > f^{1}$

Solución: Preliminares comunes.

Las nullclinas: A parte de los ejes coordenados son las rectas $m\equiv 1-ex-fy=0, l\equiv 1-bx-cy$ La linearización:

$$D\vec{F} = \begin{pmatrix} 1 - 2bx - cy & -cx \\ -ey & 1 - 2fy - ex \end{pmatrix}$$

Análisis local: Puntos críticos en cada población

$$D\vec{F}(0,0) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), D\vec{F}(\frac{1}{b},0) = \left(\begin{array}{cc} -1 & -\frac{c}{b} \\ 0 & 1 - \frac{e}{b} \end{array}\right), D\vec{F}(0,\frac{1}{f}) = \left(\begin{array}{cc} 1 - \frac{c}{f} & 0 \\ -\frac{e}{f} & -1 \end{array}\right)$$

Por tanto el (0,0) es siempre repulsor. El $(\frac{1}{b},0)$ es punto de silla si b>e y atractor si b< e. El $(0,\frac{1}{f})$ es punto de silla si f>c y atractor si f< c.

Análisis local: Puntos de corte En el caso primero y tercero, las nullclinas se cortan en (\bar{x}, \bar{y}) que satisface

$$b\bar{x} + c\bar{y} = 1 = e\bar{x} + f\bar{y}$$

Por tanto

$$D\vec{F}(\bar{x},\bar{y}) = \begin{pmatrix} -b\bar{x} & -c\bar{y} \\ -e\bar{y} & -f\bar{y} \end{pmatrix}, Tr[D\vec{F}(\bar{x},\bar{y})] = -b\bar{x} - f\bar{y}, \det[D\vec{F}(\bar{x},\bar{y})] = \bar{x}\bar{y}(bf - ce)$$

¹Pista: En este caso existe un punto de silla (no lineal) y por tanto dos trayectorias que convergen a el y dos trayectorias que divergen. Estas trayectorias dividen el plano de fase generando nuevas regiones

Por tanto si bf > ce (caso 1), tenemos un punto atractor y en el caso 3 un punto de silla.

Segunda derivada sobre las nullclinas

$$\ddot{x} = -cx\dot{y}, \ddot{y} = -ey\dot{x}$$

Analisis Global

Caso 1Este caso es completamente similar al primer caso de Lotka Volterra. Los puntos críticos $(\frac{1}{b},0)$, $(0,\frac{1}{f})$ son puntos de silla, y el punto (\bar{x},\bar{y}) es asintoticamente estable. Llamemos R_b,R_f a las regiones que contienen a $(\frac{1}{b},0)$, $(0,\frac{1}{f})$, R_0 a la del origen y R_∞ a la no acotada. Se puede ver que R_b,R_f son positivamente invariantes y en R_0,R_∞ o converges al punto crítico o pasas a R_b , R_f . Por tanto todo el cuadrante positivo es atraido al punto crítico.

Las especies conviven

Caso 2 Se hizo en clase. Las nullclinas no se cortan. El punto atractor es el $(\frac{1}{b},0)$ y el análisis por regiones demuestra que si la población inicial de la especie x es mayor que cero, a largo plazo **la población** y **se extingue.**

Caso 3: c>f,e>f. En este caso $(\frac{1}{b},0),\ (0,\frac{1}{f})$ son ambos atractores y (\bar{x},\bar{y}) es punto de silla.

Regiones La region R_b, R_f que contienen a $(\frac{1}{b}, 0), (0, \frac{1}{f})$ son positivamente invariantes. Por ejemplo en $m \cap I_f$, $\ddot{y} > 0$. La trayectoria tendria un mínimo asi que solo se puede cruzar pasando de decreciente a creciente (Desde la región donde y' > 0 a donde y' < 0). Cualquier trayectoria que esta en R_b, R_f converge a su correspondiente punto crítico.

La región que contiene el origen R_0 , está acotada y no tiene puntos críticos, asi que cualquier trayectoria la abandona. La región no acotada, R_{∞} , ambas derivadas son negativas por lo que las trayectorias están acotadas. Como no tiene puntos críticos, las trayectorias tienen que dejar la región.

Novedad: La variedad estable e inestable El análisis anterior, nos dice que vamos a converger a alguno de los dos equilibrios pero a cual? Para dilucidarlo necesitamos un análisis más sutil dado por la versión refinada dada por el teorema de linearización de Poincaré. Dado el punto de silla existe dos trayectorias que convergen a el formando la variedad estable y dos que divergen (que convergen cuando t tiende a $-\infty$. Además las trayectorias son tangentes a los autovectores del sistema linearizado (de la matriz $D\vec{F}$.

- La variedad estable no puede intersecar las regiones R_b, R_f pues entonces las trayectorias no convergerian a R_b, R_b . Una rama pertenece a R_0 y por tanto converge a 0 cuando t tiende a $-\infty$ y la otra rama pertence a R_∞ y no esta acotada.
- La variedad inestable va de la región R_b y a la R_f y por tanto cada una de sus trayectorias converge a $(\frac{1}{h},0)$, $(0,\frac{1}{f})$ respectivamente.
- La variedad estable esta formada por trayectorias asi que no puede ser cruzada. Por tanto, ejerce de "separatriz".

Si la población inicial (x,y) esta por debajo de la separatriz S se converge a $(\frac{1}{b},0)$ y se extingue la especie y. Si la población inicial está por encima de S se extingue la especie x.

6. Encontrar un sistema que modelice la evolución de las tres poblaciones siguientes: dos especies que compiten por una cantidad limitada de recursos y un predador para el que ambas sirven de alimento.

$$\dot{x} = x(1 - a_1x - a_2y - a_3z), \dot{y} = y(1 - b_1x - b_2y - b_3z), \dot{z} = z(-c_1z + c_2x + c_3y)$$

Figura 2: Separatriz

7. Los sistemas

describen las siguientes situaciones (no necesariamente en este orden):

- i) Dos especies compiten por una cantidad limitada de alimentos; además hay inmigración de una de ellas, a ritmo constante.
- ii) Dos tipos de levadura crecen en un mismo medio, y producen alcohol, cuya concentración, proporcional en cada momento al peso total de ambas levaduras, limita el crecimiento de cada una de ellas.
- iii) Dos especies en simbiosis: la concentración de cada una limita su propio crecimiento, pero favorece el de la otra.

Se trata de

- identificar cuál es cuál y explicar cómo traducen las fórmulas cada aspecto del modelo descrito
- estudiar los rasgos generales de la dinámica,

Nota: todos los parámetros se suponen positivos.