SA specifikacija - Federativno učenje

Ivan Mikić RA44/2020 Luka Rakin RA205/2020

Specifikacija algoritma koji će biti implementiran

Feed forward neuronska mreža sa N slojeva.

Prvih N - 1 slojeva ima Relu aktivacionu funkciju, a poslednji sloj Softmax aktivacionu funkciju da bi pretvorio izlaz u vektor verovatnoća. Kao optimizator bi koristili cross entropy loss.

Skup podataka

Fashion MNIST dataset

https://github.com/zalandoresearch/fashion-mnist

Skup podataka koji ima 60000 slika odeće veličine 28 x 28 sa 10 klasa:

Label	Description
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

Način distribucije treniranja algoritma

Podela slika dataseta na slučajan način na N aktora. Ideja je da skup podelimo na jednake veličine podskupova, ali bez stratifikacije podataka.

Metod evaluacije rezultata

Performanse modela bi bile evaluirane putem accuracy metrike i matrice konfuzije. Takođe bi rezulatati i proces treniranja mogli biti upoređeni naspram mreže trenirane na jednoj mašini.

Aktori

Opcija A:

- Centralni aktor
 Aktor koji vrši komunikaciju aktora za trening i koordiniše težine
- Aktori za trening
 Drže osetljive informacije i vrše treniranje na modelu
 Razmenjuju težine sa centralnim aktorom na N iteracija

Opcija B:

Aktori za trening
 Drže osetljive informacije i vrše treniranje na modelu
 Razmenjuju težine međusobno na N iteracija

Detalji implementacije

Implementacija uz pomoć proto.actor biblioteke u jeziku Golang. Neuronska mreža će takođe biti implementirana u Golangu.