Logika cyfrowa

Wykład 6: układy ze stanem, przerzutniki

Marek Materzok

8 kwietnia 2024

Stan w układach cyfrowych

Stan w urządzeniach elektronicznych

Przykład – pralka:

- Pamięta, że została włączona
- Zmienia tryb na podstawie czasu i wskazań sensorów;

np. napełnianie bębna, grzanie wody, płukanie, pranie, wirowanie

Przykład – alarm

- Aktywacja sensora s włącza alarm
- Ręczne wyłączenie alarmu (reset) r np. klawiaturką kodową

Układ bramkowy ze stanem

Minimalny przykład:

Dwa stany stabilne:

- x = 0, y = 1
- x = 1, y = 0

Układ bramkowy ze stanem

Minimalny przykład:

Dwa stany stabilne:

- x = 0, y = 1
- x = 1, y = 0

Uwaga: w praktyce możliwe stany nieustalone, a nawet oscylacja! (w pewnych sytuacjach)

Przełączalny układ bramkowy ze stanem

Zastępujemy bramki NOT bramkami NOR:

Za pomocą wejść s, r można wpłynąć na stan układu.

Przerzutnik SR

Tabela charakterystyczna:

S	r	q_a	q_b
0	0	q_a	q_b
0	1	0	1
1	0	1	0
1	1	0	0

Przerzutnik SR

 $Tabela\ charaktery styczna:$

5	r	q	ą
0	0	q	\bar{q}
0	1	0	1
1	0	1	0
1	1	0	0

Przerzutnik SR

 $Tabela\ charaktery styczna:$

S	r	q	ą
0	0	q	ą
0	1	0	1
1	0	1	0
1	1	0	0

```
module sr_latch(output q, nq, input r, s);
    nor gq(q, r, nq);
    nor gnq(nq, s, q);
endmodule
```

Synchroniczny przerzutnik SR

en	S	r	q	ą
0	Х	Х	q	ą
1	0	0	q	\bar{q}
1	0	1	0	1
1	1	0	1	0
1	1	1	Х	Х

Synchroniczny przerzutnik SR

en	S	r	q	ą
0	Х	х	q	ą
1	0	0	q	ą
1	0	1	0	1
1	1	0	1	0
1	1	1	Х	Х

```
module gated_sr_latch(output q, nq, input en, r, s);
    logic r1, s1;
    nor gq(q, r1, nq), gnq(nq, s1, q);
    and ar(r1, r, en), as(s1, s, en);
endmodule
```

Synchroniczny przerzutnik SR (wersja NAND)

en	S	r	q	ą
0	Х	х	q	ą
1	0	0	q	ą
1	0	1	0	1
1	1	0	1	0
1	1	1	Х	Х

```
module gated_sr_latch(output q, nq, input en, r, s);
    logic nr, ns;
    nand gq(q, nr, nq), gnq(nq, ns, q),
        gr(nr, s, en), gs(ns, r, en);
endmodule
```

Przerzutnik D (wyzwalany poziomem, zatrzask)

en	d	q
0	Х	q
1	0	0
1	1	1

Przerzutnik D (wyzwalany poziomem, zatrzask)

Przerzutnik D (wyzwalany poziomem, zatrzask)

en	d	q
0	Х	q
1	0	0
1	1	1

```
module d_latch(output q, nq, input en, d);
    logic nr, ns;
    nand gq(q, nr, nq), gnq(nq, ns, q),
        gr(nr, d, en), gs(ns, nr, en);
endmodule
```

Przerzutnik D typu master-slave (wyzwalany zboczem)

Przerzutnik D typu master-slave (wyzwalany zboczem)

clk	d	q
_	Х	q
1	0	0
1	1	1

```
module dff_ms(output q, nq, input clk, d);
    logic q1;
    d_latch dl1(q1, , clk, d), dl2(q, nq, !clk, q1);
endmodule
```

Przerzutnik D typu master-slave (wyzwalany zboczem)

clk	d	q
-	Х	q
1	0	0
1	1	1

```
module dff_ms(output q, nq, input clk, d);
    logic q1;
    d_latch dl1(q1, , !clk, d), dl2(q, nq, clk, q1);
endmodule
```

Przerzutnik typu D (wyzwalany zboczem narastającym)

clk	d	q
_	Х	q
1	0	0
1	1	1

Przerzutnik typu D – implementacja bramkowa

```
module dff(output q, nq, input clk, d);
    logic r, s, nr, ns;
    nand gq(q, nr, nq), gnq(nq, ns, q),
        gr(nr, clk, r), gs(ns, nr, clk, s),
        gr1(r, nr, s), gs1(s, ns, d);
endmodule
```

Przerzutniki typu D – porównanie

Przerzutnik D z resetem asynchronicznym

r	5	С	d	q
0	1	Х	Х	0
1	0	Х	Х	1
0	0	Х	Х	Х
1	1	-	Х	q
1	1	1	0	0
1	1	1	1	1

Terminologia – podsumowanie

- Latch przerzutnik asynchroniczny lub wyzwalany poziomem
- Gated latch przerzutnik wyzwalany poziomem
 Gated D latch zatrzask
- Flip-flop przerzutnik wyzwalany zboczem
- DFF skrót od D flip-flop
- Rising edge zbocze narastające
- Falling edge zbocze opadające

Właściwości czasowe

Czas ustalania, podtrzymania, propagacji

- t_{su} czas ustalania (setup time)
- t_h czas podtrzymania (hold time)
- t_p czas propagacji (propagation time)
- ullet t_{plh} czas propagacji ze stanu niskiego do wysokiego

W trakcie czasu ustalania i podtrzymania sygnał musi być stabilny!

Czas powrotu i odwołania

- t_{rec} czas powrotu (recovery time)
- \bullet t_{rem} czas odwołania (removal time)

Przykład – 74HC175 (Quad DFF w/reset)

Table 7.Dynamic characteristics ...continuedGND (ground = 0 V); $C_L = 50 pF$ unless otherwise specified; for test circuit, see Figure 10

Symbol	Parameter	Conditions	25 °C			-40 °C to +85 °C		-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
t _{rec}	recovery time	MR to CP; see Figure 9								
		V _{CC} = 2.0 V	5	-33	-	5	-	5	-	ns
		V _{CC} = 4.5 V	5	-12	-	5	-	5	-	ns
		V _{CC} = 6.0 V	5	-10	-	5	-	5	-	ns
t _{su}	set-up time	Dn to CP; see Figure 7								
		V _{CC} = 2.0 V	80	3	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	1	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	1	-	17	-	20	-	ns
t _h	hold time	Dn to CP; see Figure 7								
		V _{CC} = 2.0 V	25	2	-	30	-	40	-	ns
		V _{CC} = 4.5 V	5	0	-	6	-	8	-	ns
		V _{CC} = 6.0 V	4	0	-	5	-	7	-	ns

Metastabilność

Przyczyny:

- niestabilny sygnał podczas czasu ustalania lub podtrzymania (przerzutniki D)
- nieprawidłowe wejście (przerzutniki SR)

Środki zaradcze:

- spowolnienie zegara, skrócenie ścieżki krytycznej
- dodanie synchronizatora (ciągu DFF)

Inne przerzutniki

Przerzutnik T

Przerzutnik JK

clk	j	k	q
-	Х	х	q
1	0	0	q
1	0	1	0
1	1	0	1
1	1	1	ą

Rejestry

Rejestr

Rejestr przesuwny

Rejestr przesuwny z równoległym odczytem

Rejestr przesuwny z równoległym odczytem i zapisem

