Sistemas Basados en Microprocesador

B2 CMSIS DRIVER

CMSIS Driver

- ¿Qué es un Driver?
 - Elemento software que se encarga de gestionar las funciones realizadas por un hardware
- ¿Qué es una API?
 - API: Application Program Interface
 - Especificación de las funciones que se incluyen en una librería (o en un código) para realizar un conjunto de operaciones
- CMSIS-Driver: Estandarización en el uso y manejo de los periféricos del microcontrolador con una API
- Todos los driver de dispositivos tienen las mismas funciones con objeto de homogeneizar su uso

http://www.keil.com/pack/doc/CMSIS/Driver/html/index.html

CMSIS

CMSIS-Driver: Periféricos soportados

Secuencia de uso de un driver

Ejemplo de secuencia de operaciones

- SPIdrv->Initialize
- 2. SPIdrv->PowerControl (ON)
- 3. SPIdrv->Control (Parámetros)
- SPIdrv->Send
- SPIdrv->Receive (opcional)
- SPIdrv->PowerControl (OFF)
- 7. SPIdrv->Uninitialize

API estandarizada por CMSIS-Driver

Función	Significado
GetVersion:	Devuelve la información de la versión del driver
GetCapabilities	Devuelve información acerca de las opciones soportadas por el driver
Initialize	Función que configura los pines a utilizar por el periférico y su CLK, si es necesario. Los pines se configuran usando PULL-UP. Esta función debe ser la primera en ejecutarse (a excepción de las dos anteriores) A esta función se le puede pasar como parámetro el nombre de una función que se ejecutará cuando se produzca un evento asociado con el periférico (callback)
GetStatus	Devuelve información acerca del estado del periférico. Se suele consultar tras una operación de transferencia de información.

API estandarizada por CMSIS-Driver

Función	Significado
PowerControl	Función que configura el funcionamiento en términos de consumo del periférico. Hay tres posibles valores para el parámetro de entrada: •ARM_POWER_FULL: Peripheral is turned on and fully operational. The driver initializes the peripheral registers, interrupts, and (optionally) DMA. •ARM_POWER_LOW: (optional) Peripheral is in low power mode and partially operational; usually, it can detect external events and wake-up. •ARM_POWER_OFF: Peripheral is turned off and not operational (pending operations are terminated). This is the state after device reset
Uninitialize	Última función a utilizar que libera los recursos utilizados
Control	Función que permite configurar el funcionamiento del periférico con valores (define's) que conforman la palabra de configuración

Transferencia en CMSIS-Driver

Función	Significado
Send	Envía datos al periférico
Receive	Recibe datos del periférico
Transfer	Operación combinada de escritura/lectura

Transferencia de información no bloqueante Utilización del callback/eventos asociados a la instancia del driver

Transferencia en CMSIS-Driver

Función	Significado
Send	Envía datos al periférico
Receive	Recibe datos del periférico
Transfer	Operación combinada de escritura/lectura

Transferencia de información bloqueante:

```
stat = SPIDrv->Send(&buf, sizeof(buf));
do
       stat = SPIDrv->GetStatus();
while (stat.busy);
```


Añadiendo Drivers CMSIS (RTE)

Configuración del sistema con RTE_Device.h

DE SISTEMAS Y TELECOMUNICACIÓN

¿Cómo se maneja el driver desde una aplicación en C?

- CMSIS define esta estructura de datos. Para acceder a ella se deben añadir estas sentencias en el programa:
 - extern ARM DRIVER SPI Driver_SPI<n>;
 - ARM DRIVER SPI
 * SPIdrv = &Driver_SPI<n>;

```
typedef struct _ARM_DRIVER_SPI {
ARM DRIVER VERSION (*GetVersion) (void);
ARM SPI CAPABILITIES (*GetCapabilities) (void);
int32_t (*Initialize) (ARM SPI SignalEvent t cb_event);
int32_t (*Uninitialize) (void);
int32_t (*PowerControl) (ARM POWER STATE state);
int32_t (*Send) (const void *data, uint32_t num);
int32_t (*Receive) ( void *data, uint32_t num);
int32_t (*Transfer) (const void *data_out, void *data_in, uint32_t num);
uint32_t (*GetDataCount) (void);
int32_t (*Control) (uint32_t control, uint32_t arg);
ARM SPI STATUS (*GetStatus) (void);
} const ARM DRIVER_SPI;
```

UNIVERSIDAD POLITÉCNICA DE MAI

n debe ser el número del interface seleccionado en el fichero de configuración RTE_device.h

Sistemas Basados en Microprocesador

B2 SPI (Serial Peripheral Interface Bus)

SPI Características

- Bus síncrono, serie, con comunicación bidireccional simultanea (Full Duplex)
- SPI maestro/esclavo
- Se envía un dato en cada pulso de reloj
- De 8 a 16 bits por transferencia

SPI – Ejemplo Arquitectura

Bus SPI: un maestro y un esclavo.

SPI bus: un maestro y tres esclavos.

Señales en el interfaz SPI

- MISO: Master In / Slave Out data. This pin can be used to transmit data in slave mode and receive data in master mode.
- MOSI: Master Out / Slave In data. This pin can be used to transmit data in master mode and receive data in slave mode
- SCK: Serial Clock output for SPI masters and input for SPI slaves.
- NSS: Slave select. This is an optional pin to select a slave device. This pin acts as a 'chip select' to let the SPI master communicate with slaves individually and to avoid contention on the data lines. Slave NSS inputs can be driven by standard IO ports on the master device. The NSS pin may also be used as an output if enabled (SSOE bit) and driven low if the SPI is in master configuration. In this manner, all NSS pins from devices connected to the Master NSS pin see a low level and become slaves when they are configured in NSS hardware mode. When configured in master mode with NSS configured as an input (MSTR=1 and SSOE=0) and if NSS is pulled low, the SPI enters the master mode fault state: the MSTR bit is automatically cleared and the device is configured in slave mode (refer to Section 28.3.10).

UNIVERSIDAD POLITÉCN

Señalización

- La polaridad del reloj (flanco de subida o bajada) es configurable con el bit CPOL en el registro de control.
- Se puede programar cuándo comienza la transmisión del primer bit

Table 360. SPI Data To Clock Phase Relationship

CPOL and CPHA settings	When the first data bit is driven	When all other data bits are driven	When data is sampled
CPOL = 0, CPHA = 0	Prior to first SCK rising edge	SCK falling edge	SCK rising edge
CPOL = 0, CPHA = 1	First SCK rising edge	SCK rising edge	SCK falling edge
CPOL = 1, CPHA = 0	Prior to first SCK falling edge	SCK rising edge	SCK falling edge
CPOL = 1, CPHA = 1	First SCK falling edge	SCK falling edge	SCK rising edge

Sistemas Basados en Microprocesador

Cronogramas

UNIVERSIDAD POLITÉCNICA DE MADRID

DE SISTEMAS Y TELECOMUNICACIÓN

6

Cronogramas

UNIVERSIDAD POLITÉCNICA DE MADRID

DE SISTEMAS Y TELECOMUNICACIÓN

Cronogramas

UNIVERSIDAD POLITÉCNICA DE MADRID

DE SISTEMAS Y TELECOMUNICACIÓN

Periféricos SPI

NHD-C12832A1Z-FSW-FBW-3V3

28 □ - GPA7 27 □ - GPA6 → GPA5 → GPA4 → GPA3 MCP23S17 → GPA2 INTB ▶ RESET

Expansor GPIOs

LCD Gráfico

BMP280 SPI or I2C VCC 3.3V GND SCK SDO SDI

Barometer

NRF905 RF MODUL 433

Sensor T^a/Presión

Emisor RF-433

POLITÉCNICA

Lector SD

SPI en el F429ZI

UNIVERSIDAD POLITÉCNICA DE MADRID

DE SISTEMAS Y TELECOMUNICACIÓN

10

SPI en el F429ZI

Hasta 6 interfaces series síncronos (SP1-SPI6) que se pueden utilizar para dispositivos SPI y otros dispositivos serie síncronos.

Registros

Offset	Register	31	30	29	28	27	26	25	24	23		22	1.7	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
0x00	SPI_CR1		BIDIOE BIDIOE CRCEN									DFF	RXONLY	SSM	SSI	LSBFIRST	SPE	В	R [2	:0]	MSTR	CPOL	СРНА											
	Reset value																		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x04	SPI_CR2		Reserved										•	•	TXEIE	RXNEIE	ERRIE	FRF	Reserved	SSOE	TXDMAEN	RXDMAEN												
	Reset value																										0	0	0	0	_	0	0	0
0x08	SPI_SR		Reserved								FRE	BSY	OVR	MODF	CRCERR	UDR	CHSIDE	TXE	RXNE															
	Reset value											0	0	0	0	0	0	0	1	0														
0x0C	SPI_DR		Reserved							. 1	DR[)]																					
- CAUCO	Reset value									0110	_								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x10	SPI_CRCPR							F	Res	erve	ed															PO								
	Reset value																		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
0x14	SPI_RXCRCR							F	Res	erve	ed									10	10		10	_		CR			10	10	_	_	10	
	Reset value																		0	0	0	0	0	0	0	0 CR	0	0	0	0	0	0	0	0
0x18	SPI_TXCRCR Reset value							F	Res	erve	ed								0	0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0
	1 tosot valuo																		L	L	L				-			-			-	-		
0x1C	SPI_I2SCFGR		Reserved Reserved						12SE	120.050	0	PCMSYNC	Reserved	Deeth	2007	CKPOL	ITAC		CHLEN															
	Reset value		0 0							0	0	0	0	_	0	0	0	0	0	0														
0x20	SPI_I2SPR		Reserved									MCKOE	QQO	I2SDIV																				
	Reset value																								0	0	0	0	0	0	0	0	1	0

UNIVERSIDAD POLITÉCNICA DE MADRID

DE SISTEMAS Y TELECOMUNICACIÓN

Registros

Denominación	Función
SPI_CR1/SPI_CR2	SPI Control Registers
SPI_DR	SPI Data Register
SPI_SR	SPI Status Register

Página 916 (STM32F429-REFERENCE-MANUAL.pdf)

DE SISTEMAS Y TELECOMUNICACIÓN

UNIVERSIDAD POLITÉCNICA DE MADRID

Sistemas Basados en Microprocesador

UNIVERSIDAD POLITÉCNICA

B2 LCD mbed APPBoard

LCD

- Dispositivo con interfaz SPI. Enviando información en serie al LCD se puede configurar y representar información en él
- El display que se va a utilizar está montado en la placa de aplicaciones mbed App Board
- Es un display gráfico de 128x32 pixels. Eso quiere decir que debemos gestionar si un punto de la pantalla se enciende o no
- El display tiene una memoria interna de 65x132 donde se almacenan los datos que se representan

mbed Application Board

- 1. 128x32 Graphics LCD
- 2. 5 way joystick
- 3. 2 x Potentiometers
- 4. 3.5mm Audio jack (Analog Out)
- 5. Speaker, PWM Connected
- 6. 3 Axis +/1 1.5g Accelerometer
- 7. 3.5mm Audio jack (Analog In)
- 8. 2 x Servo motor headers
- 9. RGB LED, PWM connected
- 10. USB-mini-B Connector
- 11.Temperature sensor
- 12. Socket for for Xbee (Zigbee) or RN-XV (Wifi)
- 13.RJ45 Ethernet connector
- 14 USB-A Connector
- 15.1.3mm DC Jack input

http://mbed.org/cookbook/mbed-application-board

https://os.mbed.com/media/uploads/chris/mbed-014.1_b.pdf

https://os.mbed.com/components/mbed-Application-Board/

Conexiones STM-F429ZI - mbedAPPBoard

mbedAF	PBoard	STM-F	429ZI
GND	DIP01	GND(11-CN8))	
+3.3v	DIP40	+3V3(7-CN8)	
LCD_MOSI	DIP05	D11	PA7
LCD_RESET	DIP06	D12	PA6
LCD_SCK	DIP07	D13	PA5
LCD_A0	DIP08	D7	PF13
LCD_CS_N	DIP11	D10	PD14

Las señales RESET,CS y A0 del display se tienen que manejar directamente con el GPIO.

Sistemas Basados en Microprocesador

6

https://www.newhavendisplay.com/specs/NHD-C12832A1Z-FSW-FBW-3V3.pdf

http://www.lcd-module.de/eng/pdf/zubehoer/st7565r.pdf

UNIVERSIDAD POLITÉCNICA DE MADRID

Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	V ₀	Power Supply	0.1μF – 1μF Capacitor to Vss
2	V_1	Power Supply	0.1μF – 1μF Capacitor to V _{SS}
3	V_2	Power Supply	0.1μF – 1μF Capacitor to V _{SS}
4	V_3	Power Supply	0.1μF – 1μF Capacitor to V _{SS}
5	V_4	Power Supply	0.1μF – 1μF Capacitor to V _{SS}
6	C2-	Power Supply	Connect 1μF – 2.2μF Capacitor to C2+ (pin 7)
7	C2+	Power Supply	Connect 1μF – 2.2μF Capacitor to C2- (pin 6)
8	C1+	Power Supply	Connect 1μF – 2.2μF Capacitor to C1- (pin 9)
9	C1-	Power Supply	Connect 1μF – 2.2μF Capacitor to C1+ (pin 8)
10	V _{out}	Power Supply	Connect 1μF – 2.2μF Capacitor to VSS (pin 11)
11	V_{SS}	Power Supply	Ground
12	V_{DD}	Power Supply	Supply Voltage for LCD and Logic (+3V)
13	SI	MPU	Serial Data
14	SCL	MPU	Serial Clock
15	A0	MPU	Register Select. A0=0: Instruction, A0=1: Data
16	/RST	MPU	Active LOW Reset signal
17	/CS1	MPU	Active LOW Chip Select signal
Α	LED+	Power Supply	Backlight Anode(+3V)
K	LED-	Power Supply	Backlight Cathode (Ground)

SPI – Conexión entre micro y el display

F429ZI

- ¿Qué pines del micro se deben configurar para conectar el controlador SPI?
- ¿Cuántos controladores SPI hay en el F429ZI?
- ¿Para que sirven las señales RESET y A0 del Display?

UNIVERSIDAD POLITÉC

Gestión del display

- La información se envía al display usando la línea serie síncrona del SPI (MOSI) y la señal de reloj (SCLK)
- La información es interpretada de dos maneras:
 - Si <u>A0=0 la información recibida se interpreta como</u>
 <u>comandos</u> en el display. Es decir realizan operaciones de <u>configuración</u>.
 - Si <u>A0=1 la información recibida se guardan en la</u>
 <u>memoria del display</u> porque esta es la <u>información gráfica</u>
 que se quiere representar.
- El display sólo puede recibir operaciones de escritura (MOSI) y no de lectura (MISO).

UNIVERSIDAD POLITÉC

Comandos/datos en el display

												<u> </u>
Command					Com	mand	Cod	le				Function
Command	A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0 1	LCD display ON/OFF 0: OFF, 1: ON
(2) Display start line set	0	1	0	0	1		Displ	ay st	art a	ddres	ss	Sets the display RAM display start line address
(3) Page address set	0	1	0	1	0	1	1	P	age	addre	ess	Sets the display RAM page address
(4) Column address set upper bit Column address set	0	1	0	0	0	0	1	CO	lumn	gnific addr ignific	ess	Sets the most significant 4 bits of the display RAM column address. Sets the least significant 4 bits of the display
lower bit				0	0		. 0			addr		RAM column address.
(5) Status read	0	0	1		Sta	tus		0	0	0	0	Reads the status data
(6) Display data write	1	1	0					W	rite d	ata		Writes to the display RAM
(7) Display data read	1	0	1					Re	ead d	ata		Reads from the display RAM
(8) ADC select	0	1	0	1	0	1	0	0	0	0	0 1	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9) Display normal/ reverse	0	1	0	1	0	1	0	0	1	1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10) Display all points ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	Display all points 0: normal display 1: all points ON
(11) LCD bias set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio 0: 1/9 bias, 1: 1/7 bias (ST7565R)
(12) Read-modify-write	0	1	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
1	1											1

Comandos/datos en el display

												1
(13) End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write
(14) Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
(15) Common output mode select	0	1	0	1	1	0	0	0	*	*	*	Select COM output scan direction 0: normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0	1	0	1	0	perat mod	_	Select internal power supply operating mode
(17) V ₀ voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	0	Res	sistor	ratio	Select internal resistor ratio(Rb/Ra) mode
(18) Electronic volume mode set Electronic volume	0	1	0	1	0	0	0	0	0	0	1	Set the V ₀ output voltage electronic volume register
register set				0	0	Е	lectro	onic \	/olum	ne va	lue	Ciccionic volume register
			•	1	0	1	0	1	1	0	0	0: Sleep mode, 1: Normal mode
(19) Sleep mode set	0	1	0								1	
				*	*	*	*	*	*	0	0	
(20) Pagetor ratio act		1	0	1	1	1	1	1	0	0	0	select booster ratio 00: 2x,3x,4x
(20) Booster ratio set	0			0	0	0	0	0	0		p-up lue	01: 5x 11: 6x
(21) NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation
(22) Test	0	1	0	1	1	1	1	*	*	*	*	Command for IC test. Do not use this command

UNIVERSIDAD POLITÉCNI

Temporización SPI del LCD

Sistemas Basados en Microprocesador

Temporización del reset

Reset Timing

Figure 41

Table 30

				, (v	- الا الح. الح	a50 k	, 00 0)				
ltem	Signal	Cymphol	Condition		Rating						
	Signal	Symbol	Condition	Min.	Тур.	Max.	Units				
Reset time		tr		_	_	1.0	us				
Reset "L" pulse width	/RES	trw		1.0	_	_	us				
•											

Table 31

 $(VDD = 2.7V, Ta = -30 \text{ to } 85^{\circ}C)$

Item	Signal	Symbol	Condition	Rating			Units
				Min.	Тур.	Max.	UIIILS
Reset time		tr		_	_	2.0	us
Reset "L" pulse width	/RES	trw		2.0			us

UNIVERSIDAD POLITÉCNICA

Organización de la información en la pantalla: ejemplo

Organización de la información en la pantalla: ejemplo

UNIVERSIDAD POLITÉCNICA DE MADRID

Organización de la información en la pantalla: ejemplo 2

UNIVERSIDAD POLITÉCNICA DE MADRID

Demo

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE SISTEMAS Y TELECOMUNICACIÓN

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE SISTEMAS Y TELECOMUNICACIÓN

