Теория вероятности 1 модуль.

Андрей Тищенко БПИ231 @AndrewTGk 2024/2025

Лекция 6 сентября.

Формула оценки

random()%11

Накоп = 0.1ИДЗ + 0.15РС + 0.25КР + 0.5Экзамен

ИДЗ = индивидуальное домашнее задание (выдаётся через вики курса).

РС = работа на семинарах.

КР = контрольные работы.

Учебник:

Кибзун А. К., Горяинова Е. Р., Наумов А. В. "Теория вероятности и математическая статистика. Базовый курс с примерами и задачами" 2013 или 2014 года.

История

Наука появилась из-за азартных игр. Кавалер Демире захотел составить математическую базу для расчётов в азартных играх. Перечесление многих известных математиков, работавших в этой области. Колмогоров легенда теорвера, придумал определение вероятности, основал СУНЦ, ездил на лыжах.

Основные понятия

Определения

Теория вероятности — раздел математики, изучающий математические модели массовых случайных явлений.

Maccoвocmb — за n повторений эксперимента, вероятность каждого исхода стабилизируется возле какого-то значения p_i .

Всякое случайное событие обладает массовостью.

Обозначения

 $\omega_1, \ldots, \omega_n$ — элементарные случайные события.

 $\Omega = \{\omega_1, \ldots, \omega_n\}$ — пространство элементарных событий.

 $\forall \Omega \ \forall A \ A \subset \Omega \Leftrightarrow A$ — случайное событие.

 $\forall A \ \forall \Omega \quad \Omega \subseteq A \Leftrightarrow A$ — достоверное событие.

 $\forall A \ \forall \Omega \quad \Omega \cap A = \emptyset \Leftrightarrow A$ — невозможное событие.

Операции с событиями

 $A, B \subset \Omega$

Произведение

Произведением случайных событий $A,\ B$ называется событие $A\cdot B=A\cap B$

Сумма

Сумма A + B есть событие $A \cup B$.

Разность

Разность множеств $A \setminus B$.

Дополнение

 $\overline{A} = \Omega \backslash A$.

Свойства операций

1.
$$A + A = A$$

$$2. A \cdot A = A$$

3.
$$A \cdot \Omega = A$$

4.
$$A + \Omega = \Omega$$

5.
$$A + B = B + A$$

6.
$$A \cdot B = B \cdot A$$

7.
$$A + (B + C) = (A + B) + C$$

8.
$$\overline{\overline{A}} = A$$

9.
$$\overline{\overline{\overline{A}}} = \overline{A}$$

10.
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Определение

Класс подмножнеств $\mathcal A$ на пространстве событий Ω называется $\underline{\sigma\text{-алгеброй}}$ событий, если:

1.
$$\Omega \in \mathcal{A}$$

2.
$$\forall A \subset \Omega \quad A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$$

3.
$$\forall A_i \ A_1, \dots, \ A_n, \dots \in \mathcal{A} \Rightarrow \sum_{i=1}^{\infty} A_i \in \mathcal{A} \wedge \prod_{i=1}^{\infty} A_i \in \mathcal{A}$$

Классическое определение вероятности

Исход = элементарное случайное событие.

- 1. Конечное число исходов эксперимента.
- 2. Исходы взаимно исключающие.
- 3. Исходы равновозможны.

Тогда
$$P(A) = \frac{|A|}{|\Omega|}$$

|A| - мощность множества исходов, принадлежищих A.

1.
$$P(A) \ge 0$$

2.
$$P(\Omega) = 1$$

3.
$$A \cdot B = \emptyset \Rightarrow P(A+B) = P(A) + P(B)$$

Задача

В коробке 10 красных и 20 чёрных шаров. Событие $A = \{$ вытащить красный шар $\} \Rightarrow P(A) = \frac{|A|}{|\Omega|} = \frac{10}{30} = \frac{1}{3}$

Лекция 13 сентября.

Геометрическое определение вероятности

 Ω является подмножеством конечной меры в $\mathbb R$ или $\mathbb R^2$, или ... или $\mathbb R^n$. $P(A) = \frac{\mu(A)}{\mu(\Omega)}, \, \mu$ - мера (длина, площадь, n-мерный объём). Свойства:

1.
$$P(A) \ge 0 \quad \forall A \subseteq \Omega$$

2.
$$P(\Omega) = 1$$

3.
$$A \cdot B = \emptyset \Rightarrow P(A + B) = P(A) + P(B)$$

Задача

Ромео и Джульетта хотят встретиться между полуночью и часом ночи, но не могут договориться о времени, поэтому они приходят в произвольный момент времени на этом отрезке и ждут 15 минут, после чего уходят. С какой вероятностью они не встретятся? x - время прихода Дж. у - время прихода Ромео.

Тут должен быть балдёжный график, но писать это долго.

$$|x - y| \leqslant \frac{1}{4}$$

$$|x-y| \leqslant \frac{1}{4}$$
 $P(\overline{A}) = \frac{\frac{3}{4} \cdot \frac{3}{4}}{1} = \frac{9}{16} \Rightarrow P(A) = 1 - \frac{9}{16} = \frac{7}{16}.$ В этом определении мы избавились от конечности множества исходов.

Частотное (статистическое) определение вероятности

Определение

Пусть опыт проведён N раз, а событие A произошло n_A раз. Тогда $\frac{n_A}{N}$ называется частотой события A.

Тогда вероятность $P(A) = \lim_{N \to \infty} \frac{n_A}{N}$

Аксиоматическое определение А. Н. Колмогорова (легенды, миллионера, плейбоя и филантропа)

Определение

Пусть $\mathcal{A} - \sigma$ алгебра событий на пространстве Ω . Назовём вероятностью числовую функцию $P: \mathcal{A} \to \mathbb{R}^1$, удовлетворяющую следующим аксиомам:

1.
$$\forall A \in \mathcal{A} \quad P(A) \geqslant 0$$

2.
$$P(\Omega) = 1$$

3.
$$\forall A_1, \ldots, A_n \in \mathcal{A} \quad (\forall i, j \in \mathbb{N} \ A_i \cap A_j \neq \emptyset \Rightarrow i = j) \Rightarrow P\left(\sum_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Определение

Число $P(A), A \in \mathcal{A}$ называется вероятностью события A.

Определение

 (Ω, \mathcal{A}, P) называется вероятностным пространством.

Свойства Р(А)

1.
$$P(A) = 1 - P(\overline{A})$$
.
 $\Omega = A + \overline{A} \wedge A \cap \overline{A} = \emptyset$
 $P(\Omega) = P(A + \overline{A}) = P(A) + P(\overline{A}) \Rightarrow P(A) = 1 - P(\overline{A})$

2.
$$P(\emptyset) = 0$$

 $\overline{\Omega} = \emptyset \Rightarrow P(\Omega) + P(\emptyset) = 1 \Rightarrow P(\emptyset) = 1 - 1 = 0$

3.
$$A \subseteq \Omega \land B \subseteq \Omega \land A \subseteq B \Rightarrow P(A) \leqslant P(B)$$

 $B = A + (B \backslash A) \Rightarrow P(B) = P(A + (B \backslash A)) = P(A) + \underbrace{P(B \backslash A)}_{\geqslant 0} \Rightarrow$
 $\Rightarrow P(A) \leqslant P(B)$

- 4. $0\leqslant P(A)\leqslant 1$ По первой аксиоме $P(A)\geqslant 0$ Из третьего $A\subseteq\Omega\wedge\Omega\subseteq\Omega\wedge A\subseteq\Omega\Rightarrow P(A)\leqslant P(\Omega)=1$
- 5. Формула (теорема) сложения вероятностей:

$$P(A+B) = P(A) + P(B) - P(A \cdot B)$$

$$\begin{cases} A = A \cdot \Omega = A \cdot (B+\overline{B}) = AB + A\overline{B} \Rightarrow P(A\overline{B}) = P(A) - P(AB) \\ B = B \cdot \Omega = B \cdot (A+\overline{A}) = BA + B\overline{A} \Rightarrow P(B\overline{A}) = P(B) - P(AB) \end{cases} \Rightarrow$$

$$\Rightarrow A + B = AB + A\overline{B} + B\overline{A} \Rightarrow P(A+B) =$$

$$= P(AB) + P(A) - P(AB) + P(B) - P(AB) = P(A) + P(B) - P(AB)$$
 Замечание: тут не было $2(AB)$, потому что сложение по определению есть объединение, поэтому одного экземпляра достаточно. Для трёх слагаемых:
$$P((A+B)+C) = P(A+B) + P(C) - P((A+B) \cdot C) =$$

$$= P(A) + P(B) - P(AB) + P(C) - P(AC) - P(BC) + P(ABC)$$

$$P(A_1 + \dots + A_n) = \sum_{i=1}^n P(A_i) - \sum_{i \leqslant j} P(A_i A_j) + \sum_{i \leqslant j \leqslant k} P(A_i A_j A_k) + \dots$$

$$\dots + (-1)^{n-1} P(A_1, \dots, A_n)$$

Задача

$$A_1 = \{\text{Решка при 1-ом броске}\}, \ A_2 = \{\text{Решка при 2-ом броске}\}$$
 $P(A_1 + A_2) = P(A_1) + P(A_2) - P(A_1A_2) = \frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{3}{4}$

Определение

Пусть $P(B) \neq 0$, тогда условная вероятность события A при условии B

$$P(A/B) = \frac{P(AB)}{P(B)}$$

Определение

События $A,\ B$ называются независимыми, если P(A/B)=P(A)Отсюда следует: $\frac{P(AB)}{P(B)}=P(A)\Rightarrow P(AB)=P(A)P(B)$

События A_1, A_2, \ldots, A_n называются независимым в совокупности, если:

$$\forall k=2,\ldots,\; n\; \forall i_1,\ldots,\; i_k \quad (1\leqslant i_1\leqslant\cdots\leqslant i_k\leqslant n)\Rightarrow P(A_{i_1},\ldots,\; A_{i_k})=P(A_{i_1})\cdot\ldots\cdot P(A_{i_k})$$
 Лекция 20 сентября.

Воспоминания

$$P(A/B) = \frac{P(AB)}{P(B)}, \quad P(AB) = P(B)P(A/B) = P(A)P(B/A)$$

Теорема об умножении вероятностей

Пусть
$$(P(A_1, ..., A_n)) > 0$$
, тогда:

$$P(A_1, \ldots, A_n) = P(A_1)P(A_2/A_1)P(A_3/A_1A_2)\ldots P(A_n/A_1\ldots A_{n-1})$$

Доказательство

$$\begin{cases}
B_{n-1} = A_1 \dots A_{n-1} \\
B_{n-2} = A_1 \dots A_{n-2} \\
\dots \\
B_1 = A_1
\end{cases} \Rightarrow P(\underbrace{A_1 \dots A_{n-1}}_{B_{n-1}} A_n) = P(\underbrace{B_{n-1}}_{B_{n-2} A_{n-1}}) P(A_n / B_{n-1}) = \\
\dots \\
B_1 = A_1$$

$$= P(B_{n-2} A_{n-1}) P(A_n / A_1 \dots A_{n-1}) = P(B_{n-2}) P(A_{n-1} / B_{n-2}) P(A_n / A_1 \dots A_{n-1}) = \\
= P(A_1) P(A_2 / A_1) P(A_3 / A_1 A_2) \dots P(A_n / A_1 \dots A_{n-1})$$

Схема Бернулли (Биномиальная схема)

Последовательность испытаний, такая что:

- 1. Исход любого испытания двоичен $\forall A \ A \lor \overline{A} \equiv 1$
- 2. Испытания независимы в совокупности.
- 3. P(A) = p не изменяется от опыта к опыту.

Например, подбрасывание монеты.

Положим У - успех, Н - неудача.

В таком случае к успехов можно получить $P_n(k)C_n^kp^k(\underbrace{1-p}_{=q})^{n-k}$ способами

Доказательство

$$P(\underbrace{\mathbf{y} \dots \mathbf{y} \mathbf{H} \dots \mathbf{H}}_{n-k}) = p^{k} q^{n-k}$$

$$P(\{\underbrace{\mathbf{y} \dots \mathbf{y} \mathbf{H} \dots \mathbf{H}}_{n-k}\}) + P(\mathbf{H} \underbrace{\mathbf{y} \dots \mathbf{y} \mathbf{H} \dots \mathbf{H}}_{k}) + \cdots + P(\mathbf{H} \dots \mathbf{H} \underbrace{\mathbf{y} \dots \mathbf{y}}_{k}) =$$

$$= C_{n}^{k} p^{k} q^{n-k}$$

$$\sum_{k=0}^{n} C_{n}^{k} p^{k} q^{n-k} = 1$$

Следствие

При
$$k_1 \leqslant k \leqslant k_2$$
: $P_n(k) = \sum_{k=k_1}^{k_2} C_n^k p^k q^{n-k}$

Обозначение

Если максимальная вероятность достигается при k = m, то есть

$$C_n^m p^m q^{n-m} = \max_{0 \le k \le n} C_n^k p^k q^{n-k}$$

Тогда можно сказать $m = \operatorname{argmax} P_n(k)$

Можно посчитать без вычисления всех значений:
$$m = \begin{cases} [(n+1)p], & \text{если } (n+1)p \text{--} \text{нецелое число} \\ (n+1)p \wedge (n+1)p - 1, & \text{иначе} \end{cases}$$

Полиномиальная схема испытаний

- 1. Проводится n независимых опытов
- 2. В каждом опыте m взаимноисключающих исходов (n_1, \ldots, n_m)

3.
$$P(n_1) = p_1, P(n_2) = p_2, \dots, P(n_m) = p_m, p_1 + p_2 + \dots + p_m = 1$$

$$\sum_{i=1}^{m} n_i = n$$

$$P_n(n_1, n_2, \dots, n_m) = \frac{n!}{n_1! n_2! \dots n_m!} p_1^{n_1} p_2^{n_2} \dots p_m^{n_m}$$

Пусть $H_1, \ldots, H_n \subset \Omega$, события H_1, \ldots, H_n называются полной группой событий (гипотезами), если

- 1. $\forall i, j \mid i \neq j \Rightarrow H_i \cdot H_i = \emptyset$
- 2. $H_1 + \cdots + H_n = \Omega$

Формула полной вероятности

Пусть H_1, \ldots, H_n — полный граф событий, $A \subset \Omega$ $P(A) = P(A \cdot \Omega) = P(A \cdot (H_1 + \dots + H_n)) = P(AH_1 + \dots + AH_n)$, так как события H_1, \ldots, H_n независимы, можно сделать переход: $P(AH_1 + \dots + AH_n) = P(AH_1) + \dots + P(AH_n) = P(H_1)P(A/H_1) +$ $\cdots + P(H_n)P(A/H_n)$ Получаем $P(A) = P(H_1)P(A/H_1) + \cdots + P(H_n)P(A/H_n)$

Задача

Студент выучил m билетов из n. Посчитать вероятность вытянуть выученный билет при заходе первым, вторым.

 $A = \{$ студент вытащит выученный билет $\}$

 $H_1 = \{ \text{Другой студент вытащит выученный нашим студентом билетом} \}$

 $H_2 = \{ {
m Ham} \ {
m cтуден} \ {
m вытащит} \ {
m невыученный} \ {
m билет} \}$

$$P(H_1) = \frac{m}{n}, \quad P(H_2) = \frac{n-m}{n}$$

$$P(A/H_1) = \frac{m-1}{n-1}, \quad P(A/H_2) = \frac{m}{n-1}$$

$$P(A) = P(H_1)P(A/H_1) + P(H_2)P(A/H_2) = \frac{m}{n} \frac{m-1}{n-1} + \frac{n-m}{n} \frac{m}{n-1} = \frac{m}{n}$$

Формула Байеса

 $H_1, \dots H_n$ — гипотезы

 $P(H_1), \ldots, P(H_n)$ — априорные вероятности.

Произошло событие A

$$P(H_1/A), \dots, P(H_n/A)$$
 — апосториорные вероятности. $P(H_i/A) = \frac{P(H_iA)}{P(A)} = \frac{P(H_i)P(A/H_i)}{\sum\limits_{k=1}^{n} P(H_k)P(A/H_k)}$

$$\sum_{i=1}^{n} P(H_i/A) = 1$$

Лекция 27 сентября

$$H_1, \ldots, H_n - \Pi \Gamma C$$
 $P(H_1), \ldots, P(H_n)$ — априорные вероятности. Произошло событие A . $P(H_1/A), \ldots, P(H_n/A)$ — апостериорные вероятности. $P(H_i/A) = \frac{P(H_i)P(A/H_i)}{\sum_{i=1}^n P(H_n)P(A/H_k)}$

Задача

Завод 1 поставляет 65% продукции. При этом 90% его продукции не имеет дефектов.

Завод 2 поставляет 35% продукции. При этом 80% его продукции не имеет дефектов.

Какой завод более вероятно поставит продукт с дефектом?

 $A = \{\Pi$ роизведён дефектный продукт $\}$

 $H_1=\{\Pi$ рибор изготовил завод $1\},\ P(H_1)=0.65,\ P(A/H_1)=0.1$

 $H_2=\{\Pi$ рибор изготовил завод $2\},\ P(H_2)=0.35,\ P(A/H_2)=0.2$ $P(H_1/A)=\frac{P(H_1)P(A/H_1)}{P(H_1)P(A/H_1)+P(H_2)P(A/H_2)}=\frac{0.1\cdot0.65}{0.1\cdot0.65+0.2\cdot0.35}=\frac{65}{135}$ $P(H_2/A)=\frac{70}{135}>P(H_1/A),\$ получается деталь с дефектом с большей вероятностью поступила со второго завода.

Случайные величины

$$\Omega = \{\omega_1, \ \omega_2, \dots, \ \omega_6\}
\xi = \{1, \ 2, \dots, \ 6\}
\Omega = \{\omega_1, \ \omega_2, \ \omega_3, \dots\}
\xi = \{1, \ 2, \ 3, \dots\}$$

Я понятия не имею, что значат эти множества, но на доске мы их написали со словами: "Давайте покидаем монетку".

Случайная величина $\xi: \Omega \longrightarrow R^1$

Определение

Случайной величиной ξ называется числовая функция $\xi:\Omega\longrightarrow R^1$, которая удовлетворяет условию:

$$\forall x \ \{\omega; \ \xi(\omega) \leqslant x\} \in \mathcal{A}$$

Функцией распределения (вероятностей) случайной величины ξ называется

$$F_{\xi}(x) = P(\omega; \ \xi(\omega) \leqslant x) = P(\xi \leqslant x)$$

Свойства $F(x)$

- 1. $F(+\infty) = 1$, $F(-\infty) = 0 \Rightarrow 0 \leqslant F(x) \leqslant 1$. На самом деле аргумент F(x) принадлежит R^1 , но видимо бесконечность теперь число.
- 2. Пусть $x_1 < x_2$, тогда $F(x_1) \leqslant F(x_2)$. Доказательство:

$$F(x_{2}) = P(\xi \leq x_{2}), C = \{\omega : \xi(\omega) \leq x_{2}\}, A = \{\omega : \xi(\omega) \leq x_{1}\}, B = \{\omega : x_{1} < \xi(\omega) \leq x_{2}\}, C = A + B, P(C) = P(A) + P(B) \}$$

$$F(x_{2}) = P(\xi \leq x_{2}) = P(\xi \leq x_{1}) + P(B) = F(x_{1}) + P(B) \Rightarrow$$

$$\Rightarrow F(x_{2}) \geqslant F(x_{1})$$

3.
$$F(x_0) = \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} F(x_0 + \varepsilon)$$

Определение

<u>Дискретная случайная величина</u> (тут реально ничего не было даже на лекции).

Определение

Пусть случайная величина ξ — дискретная. Рядом распределения ξ называется

$$\sum_{k=1}^{n} p_k = 1, \ p_k = P(\omega : \xi(\omega) = x_k)$$

Пример

$$egin{array}{|c|c|c|c|c|}\hline \xi & -1 & 0 & 2 \\\hline P & 0.3 & 0.5 & 0.2 \\\hline Если & x < -1, \ {
m To} \ F(x) = 0 \\\hline Если & -1 \leqslant x < 0, \ {
m To} \ F(x) = 0.3 \\\hline Если & 0 \leqslant x < 2, \ {
m To} \ F(x) = 0.8 \\\hline Если & 2 \leqslant x, \ {
m To} \ F(x) = 1 \\\hline \end{array}$$

Математическим ожиданием (средним значением) дискретной случайной величины с конечным числом значений x_1, \ldots, x_n называется число

$$E\xi = \sum_{i=1}^{n} x_i p_i$$

Если у дискретной случайной величины счётное количество значений, тогда

$$E\xi = \sum_{i=1}^{\infty} x_i p_i$$
, если ряд $\sum_{i=1}^{\infty} |x_i| p_i$ сходится

Сходимость к ∞ считают неопределённой, а с $+\infty$, $-\infty$ проблем нет.

Определение

Дисперсией случайной велиины ξ называют

$$\mathcal{D}\xi = E(\xi - E\xi)^2$$

Квадрат отклонения от среднего.

Определение

Среднеквадратическим отклонением случайной величины ξ называют

$$\sigma_1 = \sqrt{\mathcal{D}\xi}$$

Свойства математического ожидания

- 1. $\forall c \in \mathbb{R}$ Ec = c
- 2. $E(c \cdot \xi) = \sum_{i=1}^{n} cx_i p_i = cE\xi$
- 3. $\forall a,\ b\in\mathbb{R}\quad a\leqslant\xi\leqslant b\Rightarrow a\leqslant E\xi\leqslant b$ Доказательство:

$$a \leqslant \sum_{i=1}^{n} ap_i \leqslant E\xi = \sum_{i=1}^{n} x_i p_i \leqslant \sum_{i=1}^{n} bp_i = b$$

4. $E(\xi_1 + \xi_2) = E\xi_1 + E\xi_2$

Лекция 4 октября.

Воспоминания:

$$\begin{array}{c|ccccc} \xi & x_1 & \dots & x_n \\ \hline p & p_1 & \dots & p_n \end{array}$$

$$E\xi = \sum_{i=1}^{n} x_i p_i$$

Свойства математического ожидания (продолжение)

5. Пусть $\eta=\varphi(\xi),\ \varphi(x)$ - детерминированная функция. $E\xi=\sum_{i=0}^{n}\varphi(x_{i})p_{i}$

Свойства дисперсии.

- 1. $\mathcal{D}c = 0$
- 2. $\mathcal{D}(c\xi) = E(c\xi cE\xi)^2 = Ec^2(\xi E\xi)^2 = c^2\mathcal{D}\xi$
- 3. $\forall \xi$ случайная величина $(\xi) \Rightarrow \mathcal{D}\xi \geqslant 0$
- 4. $\mathcal{D}\xi = E(\xi^2 2\xi E\xi + (E\xi)^2) = E\xi^2 2(E\xi)^2 + (E\xi)^2 = E\xi^2 (E\xi)^2$

5.
$$\mathcal{D}(\xi_{1} + \xi_{2}) = E(\xi_{1} + \xi_{2})^{2} - (E(\xi_{1} + \xi - 2))^{2} =$$

$$= E\xi_{1}^{2} + 2E(\xi_{1}\xi_{2}) + E\xi_{2}^{2} - ((E\xi_{1})^{2} + 2E\xi_{1}E\xi_{2} + (E\xi_{2})^{2}) =$$

$$= (E\xi_{1}^{2} - (E\xi_{1})^{2}) + (E\xi_{2}^{2} - (E\xi_{2})^{2}) + 2(E(\xi_{1}\xi_{2}) - E\xi_{1}E\xi_{2}) =$$

$$= \mathcal{D}\xi_{1} + \mathcal{D}\xi_{2} + 2\underbrace{(E(\xi_{1}\xi_{2}) - E\xi_{1}E\xi_{2})}_{\text{Koradialitys }\xi_{1}, \text{ if } \xi_{2}}$$

Если ξ_1 , ξ_2 независимы, то $\text{cov}(\xi_1,\ \xi_2)=0$ (ковариация нулевая).

Определение

Начальным моментом k-го порядка случайной величины ξ называется

$$\mu_k = E\xi^k, \ k = 1, \ 2, \dots$$

Определение

Центральным моментом k-го порядка случайной величины ξ называется

$$\nu_k = E(\xi - E\xi)^k, \ k = 2, \ 3, \dots$$
$$\nu_2 = \mathcal{D}\xi$$

Случайная величина $\overset{\circ}{\xi} = \xi - E\xi$ называется центрированной случайной величиной

$$E\overset{\circ}{\xi} = 0$$

Определение

Случайная величина $\xi^* = \frac{\stackrel{\circ}{\xi}}{\sigma}$ называют <u>нормированной</u> случайной величиной.

$$D\xi^* = 1$$

Распределения:

1. Распределение Бернулли

$$\xi \sim \text{Ber}(p), \quad 0
$$\frac{\xi \mid 0 \mid 1}{p \mid 1 - p \mid p} \quad \frac{\xi^2 \mid 0 \mid 1}{p \mid 1 - p \mid p}$$

$$E\xi = p, \quad \mathcal{D}\xi = E\xi^2 - (E\xi)^2 = p - p^2 = p(1 - p) = pq$$$$

2. Биномиальное распределение

$$\xi \sim \text{Bi}(n, p), \quad 0
$$\frac{\xi \mid 0 \mid 1 \mid k \mid n}{p \mid \dots \mid \dots \mid C_n^k p^k q^{n-k} \mid \dots}$$

$$E\xi = \sum_{k=0}^n k C_n^k p^k q^{n-k} = \sum_{k=0}^n k \frac{n!}{k!(n-k)!} p^k q^{n-k} =$$

$$= np \sum_{k=1}^n \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} q^{n-k} = \left\langle j = k-1 \right\rangle =$$

$$= np \sum_{j=0}^{n-1} \frac{(n-1)!}{j!(n-1-j)!} p^j q^{n-1-j} = np(p+q)^{n-1} = np$$$$

Можно посчитать математическое ожидание иначе:

$$\xi = \xi_1 + \dots + \xi_n, \quad \frac{\xi_i \mid 0 \mid 1}{p \mid q \mid p} \Rightarrow E\xi = E\left(\sum_{i=1}^n \xi_i\right) = \sum_{i=1}^n E\xi_i = np$$

$$\mathcal{D}\xi = \sum_{k=0}^{n} k^{2} C_{n}^{k} p^{k} q^{n-k} - (np)^{2} = \dots = npq$$

Так как ξ_1, \ldots, x_n независимы:

$$\mathcal{D}\left(\sum_{i=1}^{n} \xi_i\right) = \sum_{i=1}^{n} \mathcal{D}\xi_i = npq$$

3. Распределение Пуассона

$$\xi \sim \Pi(\lambda), \quad \lambda > 0$$

$$\xi = \{0, 1, 2, \dots\}$$

$$P(\xi = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

$$\sum_{k=0}^{\infty} = \sum_{k=0}^{\infty} \frac{e^{-\lambda}\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda}e^{\lambda} = 1$$

$$E\xi = \sum_{k=0}^{\infty} k \frac{e^{-\lambda}\lambda^k}{k!} = e^{-\lambda}\lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda}e^{\lambda} = \lambda$$

$$\mathcal{D}\xi = E\xi^2 - (E\xi)^2 = \sum_{k=0}^{\infty} k^2 \frac{e^{-\lambda}\lambda^k}{k!} - \lambda^2 = \lambda \sum_{k=1}^{\infty} k \frac{e^{-\lambda}\lambda^{k-1}}{(k-1)!} - \lambda^2 = \lambda$$

$$= \lambda \sum_{k=1}^{\infty} (k-1+1) \frac{e^{-\lambda}\lambda^{k-1}}{(k-1)!} - \lambda^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Теорема Пуассона

Пусть в схеме испытаний Бернулли: $n \to \infty, \ p \to 0, \ np \to \lambda.$ Тогда

$$\lim_{n \to \infty} C_n^k p^k q^{n-k} = \frac{e^{-\lambda} \lambda^k}{k!}$$

Доказательство

$$\lim_{n \to \infty} C_n^k p^k q^{n-k} = \lim_{n \to \infty} \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} =$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n(n-1)\dots(n-k+1)}{n^k} \frac{(1 - \frac{\lambda}{n})^n}{(1 - \frac{\lambda}{n})^k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

Погрешность такой апроксимации:

$$\left| C_n^k p^k q^{n-k} - \frac{e^{-np} (np)^k}{k!} \right| \leqslant np^2$$

Задача

Завод поставляет 1000 бутылок воды. Каждая бутлка может быть повреждена в пути с вероятностью 0.002. Какое среднее количество бутылок будет повреждено? Какова вероятность повреждения не более 2 бутылок? Случайная величина ξ — количество повреждённых бутылок.

$$\xi \sim \text{Bi}(1000, 0.002) \Rightarrow E\xi = 1000 \cdot 0.002 = 2$$

Погрешность при апроксимации Пуассоновским распределением будет $\leq np^2 = 0.004$, что нас устраивает по точности.

$$P(\xi \le 2) = p(\xi = 0) + p(\xi = 1) + p(\xi = 2) = e^{-2}(1 + 2 + 2) = \frac{5}{e^2}$$

Ещё распределения

4. Геометрическое распределение

$$\xi \sim G(p), \quad 0$$

 $\xi = \{1, 2, \dots\}, \quad P(\xi = k) = q^{k-1}p.$ После первого успеха эксперименты прекращаюся.

$$E\xi = \sum_{k=1}^{\infty} kq^{k-1}p = p\sum_{k=1}^{\infty} kq^{k-1} = p\sum_{k=1}^{\infty} (q^k)' = p\left(\sum_{k=1}^{\infty} q^k\right)' = p\left(\frac{q}{1-q}\right)' = \frac{p}{p^2} = \frac{1}{p}$$

Задача

Студент выучил 80% билетов. Преподаватель спрашивает его, пока не обнаружит незнание. Сколько в среднем билетов спросит преподаватель? $\xi \sim G(0.2)$ $E\xi = \frac{1}{0.2} = 5$

Лекция 11 октября.

Воспоминания: $F_{\xi}(x) = P(\xi \leqslant x)$

Непрерывные случайные величины

Определение

Неотрицательная кусочно-непрерывная функция $f_{\xi}(x)$ называется <u>плотностью</u> распределения случайной величины ξ , если

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(t) dt$$

Прикол про Канторову лестницу:

$$F(x) = \begin{cases} 0, & x \leqslant 0 \\ \frac{1}{2}F(3x), & 0 \leqslant x < \frac{1}{3} \\ \frac{1}{2}, & \frac{1}{2} \leqslant x < \frac{2}{3} \end{cases} & \text{ непрерывна, но не имеет плотности.} \\ \frac{1}{2} + \frac{1}{2}F(3x - 2), & \frac{2}{3} \leqslant x < 1 \\ 1, & x \geqslant 1 \end{cases}$$

$$P(\xi = x) = F(x) - \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} F(x - \varepsilon) = 0$$

$$f(x) = F'(x) = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{P(x < \xi \leqslant x + \Delta x)}{\Delta x}$$

$$f(x)\Delta x = P(x < \xi \leqslant x + \Delta x)$$

Свойства $f_{\xi}(x)$

1.
$$\forall x \in \mathbb{R}^1 \quad f_{\xi}(x) \geqslant 0$$

$$2. \int_{-\infty}^{+\infty} f_{\xi}(x) dx = F(+\infty) = 1$$

3.
$$\int_{x_1}^{x_2} f(x) dx = F(x_2) - F(x_1) = P(x_1 < \xi \le x_2)$$

4. В точках дифференцируемости функции F(x)

$$f(x) = F'(x)$$

5. Пусть случайная величина ξ имеет плотность распределения $f_{\xi}(x)$. Детерминированная функция $\varphi(x)$ является монотонной и дифференцируемой.

CB
$$\eta = \varphi(\xi)$$
 $f_n(y) - ?$

а. Пусть $\varphi(x)$ — монотонно возрастающая функция:

$$F_{\eta}(y) = P(\eta \leqslant y) = P(\varphi(\xi) \leqslant y) = P(\xi \leqslant \varphi^{-1}(y)) = F_{\xi}(\varphi^{-1}(y))$$
$$f_{\eta}(y) = \frac{d}{dy}F_{\eta}(y) = f_{\xi}(\varphi^{-1}(y)) \cdot (\varphi^{-1}(y))'$$

b. Пусть $\varphi(x)$ — монотонно убывающая функция.

$$F_{\eta}(y) = P(\eta \leqslant y) = P(\varphi(\xi) \leqslant y) = P(\xi \geqslant \varphi^{-1}(y)) = 1 - F_{\xi}(\varphi^{-1}(y))$$
$$f_{\eta}(y) = \frac{d}{dy} F_{\eta}(y) = -f_{\xi}(\varphi^{-1}(y)) (\varphi^{-1}(y))'$$

Минус возникает для компенсации отрицательности производной обратной функции.

с. Пусть $\varphi(x)$ — монотонная функция:

$$f_{\eta}(y) = f_{\xi}(\varphi^{-1}(y)) | (\varphi^{-1}(x))' |$$

d. Если $\varphi(x)$ — немонотонная функция. Разбиваем на интервалы монотонности:

$$\varphi_1(x), \ \varphi_2(x), \ldots, \ \varphi_n(x)$$

Найдём: $\varphi_1^{-1}(y), \ \varphi_2^{-1}(y), \ldots, \ \varphi_n^{-1}(y).$ Тогда:

$$f_{\eta}(y) = \sum_{i=1}^{k} f(\varphi_i^{-1}(y)) \left| \left(\varphi_i^{-1}(y) \right)' \right|$$

Определение

Математическое ожидание непрерывной случайной величины ξ с плотностью $f_{\xi}(x)$ называется число:

$$E\xi = \int_{-\infty}^{+\infty} x f_{\xi}(x) \, dx$$

если сходится
$$\int\limits_{-\infty}^{+\infty} |x| f_{\xi}(x) \, dx$$

Замечание

- 1. Если $f_{\xi}(x)>0$ только при x>0 и $\int_{-\infty}^{+\infty}xf_{\xi}(x)\,dx$ расходится, то $E\xi=+\infty$
- 2. Если $f_\xi(x)>0$ только при x<0 и $\int_{-\infty}^{+\infty}xf_\xi(x)\,dx$ расходится, то $E\xi=-\infty$
- 3. Распределение Коши: $f(x) = \frac{1}{\pi(1+x^2)}$

$$\int_{-\infty}^{+\infty} x \frac{1}{\pi(1+x^2)} dx$$

Совйства математического ожидания

- 1. Ec = c
- 2. $E(c\xi) = cE(\xi)$
- 3. $a \le \xi \le b \Rightarrow a \le E\xi \le b$
- 4. $E(\xi_1 + \xi_2) = E\xi_1 + E\xi_2$
- 5. Пусть случайная величина $\eta = \varphi(\xi), \; \varphi$ детерминированная функция.

$$E\eta = \int_{-\infty}^{\infty} \varphi(x) f_{\xi}(x) dx$$

Определение

Дисперсией называется:

$$\mathcal{D}\xi = E(\xi - E\xi)^2 = E\xi^2 - (E\xi)^2$$

Кванти́ль.

Определение

Число $\underline{Z_{\gamma}}$ 0 < γ < 1, называется $\underline{\gamma}$ -квантилью непрерывного строго монотонного распределения $F_{\xi}(x)$, если:

$$F_{\xi}(Z_{\gamma}) = \gamma = P(\xi \leqslant Z_{\gamma}) = \int_{-\infty}^{Z_{\gamma}} f(x) dx$$

Были примеры с графиками, я их очень люблю.

Определение

Квантиль $Z_{0,5}$ называется медианой. Не всегда совпадает с математическим ожиданием.

Лекция 25 октября

Равномерное распределение

$$f(x) = \begin{cases} 0, & x \notin (a, b) \\ \frac{1}{b-a}, & x \in (a, b) \end{cases}$$

$$E\xi = \frac{a+b}{2}$$

$$\mathcal{D}\xi = \frac{(b-a)^2}{12}$$

$$E\xi = \frac{a+b}{2}$$

$$\mathcal{D}\xi = \frac{(b-a)^2}{12}$$

$$F(x) = \int_{-\infty}^{x} f(t) dt \Rightarrow F(x) = \begin{cases} 0, & x \leq a \\ \frac{x-a}{b-a}, & x \in (a, b) \\ 1, & x \geqslant b \end{cases}$$

Экспоненциальное (показательное) распределение

$$\xi \sim E(\lambda), \ \lambda > 0$$

$$f(x) = \begin{cases} 0, & x < 0 \\ \lambda e^{-\lambda x}, & x \geqslant 0 \end{cases}$$

$$E\xi = \frac{1}{\lambda}$$

$$\mathcal{D}\xi = \frac{1}{\lambda^2}$$

$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \geqslant 0 \end{cases}$$

Свойства

Пусть $\xi \sim E(\lambda)$, тогда:

$$\forall t, \ au \ P(\xi > t + au/\xi > t) = P(\xi > au)$$
, условная вероятность

Доказательство

$$P(\xi > t + \tau/\xi > t) = \frac{P(\xi > t + \tau)}{P(\xi > t)} = \frac{1 - F(t + \tau)}{1 - F(t)} = \frac{e^{-\lambda(t + \tau)}}{e^{-\lambda t}} = e^{-\lambda \tau} = 1 - F(\tau) = P(\xi > \tau)$$

Нормальное (гауссовское) распределение

$$\xi \sim N(m, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

$$E\xi = m$$

$$\mathcal{D}\xi = \sigma^2$$

Функция $\Phi_0(x)=\int\limits_0^x {1\over \sqrt{2\pi}}e^{-{t^2\over 2}}\,dt$ называется функцией Лапласа

Свойства

$$\Phi_0(+\infty) = 0.5$$

$$\Phi_0(-x) = -\Phi_0(x)$$

Правило трёх сигм

$$P(|\xi - m| < 3\sigma) = 2\Phi_0\left(\frac{3\sigma}{\sigma}\right) = 2\Phi_0(3) = 0.997$$

Лекция 1 ноября

Неравенства Чебникова

Пусть $E|\xi|^r < \infty$. Тогда:

$$\forall \varepsilon > 0 \quad P(|\xi| \geqslant \varepsilon) \leqslant \frac{E|\xi|^r}{\varepsilon^r}$$

Доказательство

$$E|\xi|^r = \int_{-\infty}^{+\infty} |x|^r f(x) \, dx$$

$$x \in (-\infty, -\varepsilon] \cup [\varepsilon, +\infty)$$
, то есть
$$\frac{-\varepsilon}{x} \quad \varepsilon$$

Гогда:
$$\int_{-\infty}^{+\infty} |x|^r f(x) \, dx \geqslant \int_{|x| \ge \varepsilon}^{+\infty} |x|^r f(x) \, dx \geqslant \varepsilon^r \int_{|x| > \varepsilon}^{+\infty} f(x) \, dx = \varepsilon^r P(|\xi| \geqslant \varepsilon) \Rightarrow$$

$$\Rightarrow \frac{E|\xi|^r}{\varepsilon^r} \geqslant P(|\xi| \geqslant \varepsilon), \text{ ч.т.д.}$$

Частные случаи

1.
$$r = 1 \land P(\xi \ge 0) = 1$$

$$P(\xi \ge \varepsilon) \le \frac{E\xi}{\varepsilon}$$

2. Пусть r = 2

$$P(|\xi| \geqslant \varepsilon) \leqslant \frac{E\xi^2}{\varepsilon^2}$$

3. Пусть r = 2, $\eta = \xi - E\xi$

$$P(|\xi = E\xi| \geqslant \varepsilon) \leqslant \frac{\mathcal{D}\xi}{\varepsilon^2}$$

Задача

Случайная величина ξ — расход электрической энергии в месяц. Известно $E\xi=4\,000.$ Оценить $P(\xi\geqslant 10\,000).$

Применяя неравенство Чебышёва может прикинуть эту вероятность:

$$P(\xi \ge 10\,000) \le \frac{4\,000}{10\,000} = 0.4$$

Неравенство не находит вероятность точно, используется только для получения грубой оценки!

Определение

Вектор $\xi = (\xi_1, \dots, \xi_n)$, компоненты которого ξ_1, \dots, ξ_n , являющиеся случайными величинами, называется случайным вектором.

Определение

Функцией распределения случайного вектора $\xi=(\xi_1,\ldots,\ \xi_n)$ называется

$$F_{\xi}(x_1,\ldots,x_n) = P(\xi_1 \leqslant x_1,\ldots,\xi_n \leqslant x_n)$$

Замечание

$$\{\xi_1 \leqslant x_1, \dots, \xi_n \leqslant x_n\} = \{(\xi_1 \leqslant x_1) \cap (\xi_2 \leqslant x_2) \cap \dots \cap (\xi_n \leqslant x_n)\}\$$

Пример

Пусть
$$n = 2$$
. $F_{\xi}(x, y) = P(\xi_1 \le x, \xi_2 \le y)$

Свойства F(x, y)

1. $\forall x, y \quad 0 \leq F(x, y) \leq 1$

2.
$$F(-\infty, -\infty) = 0 = F(x, -\infty) = F(-\infty, y)$$

3. $F(+\infty, +\infty) = 1$

4. $F(+\infty, y) = P(\xi_2 \leqslant y) = F_{\xi_2}(y)$ Рассмотрим вероятность попадания в квадрат:

5.
$$P(a_1 \le \xi \le a_2, b_1 \le \xi_2 \le b_2) =$$

= $F(a_2, b_2) - F(a_2, b_1) - F(a_1, b_2) + F(a_1, b_1)$

6. F(x, y) монотонно неубывающая функция по каждому аргументу. Доказательство: $\forall \Delta x > 0$ $F(x + \Delta x, y) \geqslant F(x, y)$ $F_{\xi}(x + \Delta x, y) = P(\xi \leqslant x + \Delta x, \xi_2 \leqslant y) = P(\xi_1 \leqslant x, \xi_2 \leqslant y) + \underbrace{P(x < \xi_1 \leqslant x + \Delta x, \xi_2 \leqslant y)}_{\alpha \geqslant 0} = F(x, y) + \alpha \geqslant F(x, y)$

Определение

Компоненты ξ_1 и ξ_2 случайного вектора $\xi=(\xi_1,\ \xi_2)$ называются <u>независимыми</u>, если верно:

$$\forall x, \ y \ F_{\xi}(x, \ y) = F_{\xi_1}(x)F_{\xi_2}(y)$$

Дискретный случайный вектор:

$\xi_1, \ \xi_2$	$y_1 \dots y_k$
x_1	$p_{11}\dots p_{1k}$
x_2	$p_{21}\dots p_{2k}$
:	:
x_n	$p_{n1}\dots p_{nk}$

$$p_{ij} = P(\xi_1 = x_i, \ \xi_2 = y_j)$$

$$\sum_{i=1}^{m} \sum_{j=1}^{k} p_{ij} = 1$$

$$\frac{\xi_1 \ x_1 \ x_2 \ \dots \ x_m}{p \ p_{1\bullet} \ p_{2\bullet} \ \dots \ p_{m\bullet}}$$

$$p_{i\bullet} = \sum_{j=1}^{k} p_{ij}$$

Утверждение

Компоненты $\xi_1,\ \xi_2$ дискретного случайного вектора $\xi=(x_1,\ x_2)$ независимы тогда и только тогда, когда

$$\forall i = \overline{1, m}, \ j = \overline{1, k} \quad p_{ij} = p_{i\bullet} \cdot p_{\bullet j}$$

Определение

Неотрицательная кусочно-непрерывная функция $f_{\xi}(x, y)$ называется плотностью распределения случайного вектора $\xi = (\xi_1, \xi_2)$, если

$$F_{\xi}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(t_1, t_2) dt_2 dt_1$$

Замечание

В точках дифференцируемости F(x, y)

$$f(x,\ y)=rac{\delta^2 F(x,\ y)}{\delta x\,\delta y},\ \delta$$
 частная производная

Свойства
$$f(x, y)$$

1.
$$\forall x, y \quad f(x, y) \ge 0$$

2.
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = F(+\infty, +\infty) = 1$$

3.
$$\int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x, y) \, dy \, dx = F(a_2 \, b_2) - F(a_2, b_1) - (F(a_1, b_2) - F(a_1, b_1)) =$$
$$= P(a_1 < \xi_1 \le a_2, b_1 < \xi_2 \le b_2)$$

4. На доске нарисована клякса D, разбитая на много маленьких прямоугольников $f(\tilde{x}, \tilde{y}), \Delta x, \Delta y, \quad \tilde{x} \in (x, x + \Delta x), \ \tilde{y} \in (y, y + \Delta y).$ Тогда

$$P(\xi \in D) = \iint_D f(x, y) dx dy$$
, вспоминаем матан.

5.
$$F_{\xi_1}(x) = F_{\xi}(x, +\infty) = \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(t, y) \, dy \, dt$$

$$f_{\xi_1}(x) = \frac{d}{dx} F_{\xi_1}(x) = \frac{d}{dx} \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(t, y) \, dy \, dt = \int_{-\infty}^{+\infty} f(x, y) \, dy$$

$$f_{\xi_2}(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx$$

Лекция 8 ноября

Определение

Случайный вектор $\xi = (\xi_1, \dots, \xi_n)$ имеет равномерное распределение в области $\mathcal{D} \in \mathbb{R}^n$, если

$$f_{\xi}(x_1,\ldots,\ x_n)=egin{cases} c,\ \mathrm{ec}$$
ли $(x_1,\ldots,\ x_n)\in\mathcal{D}\ 0,\ \mathrm{uha}$ че , где $c-$ константа

Частный случай

При n=2 случайный вектор $\xi=(\xi_1,\ldots,\ \xi_n)$ распределён равномерно в области $\mathcal{D},$ если

$$f_{\xi}(x,\ y)=egin{cases} rac{1}{S},\ ext{если}\ (x,\ y)\in\mathcal{D}\ 0,\ ext{иначе} \end{cases}$$
 , где $S-$ площадь \mathcal{D}

Пример 1

Пусть $\xi = (\xi_1, \ \xi_2)$ распределён равномерно в области

$$f_{\xi}(x, y) = \begin{cases} 1, \text{ если } x \in (0, 1) \land y \in (0, 1) \\ 0, \text{ иначе} \end{cases}$$

$$f_{\xi_1}(x) = \int_{-\infty}^{+\infty} f_{\xi}(x, y) \, dy = \begin{cases} \int_0^1 1 \, dy, \text{ если } x \in (0, 1) \\ 0, \text{ если } x \notin (0, 1) \end{cases} = \begin{cases} 1, \text{ если } x \in (0, 1) \\ 0, \text{ если } x \notin (0, 1) \end{cases}$$

$$f_{\xi_2}(y) = \int\limits_{-\infty}^{+\infty} f_{\xi}(x, y) \, dx = \begin{cases} \int\limits_0^1 1 \, dx, \text{ если } y \in (0, 1) \\ 0, \text{ если } y \notin (0, 1) \end{cases} = \begin{cases} 1, \text{ если } y \in (0, 1) \\ 0, \text{ если } y \notin (0, 1) \end{cases}$$

Получаем $\forall x, y \in \mathbb{R}^2$ $f_{\xi}(x, y) = f_{\xi_1}(x) \cdot f_{\xi_2}(y) \Rightarrow$ случайные величины зависимы.

Пример 2

Пусть $\xi=(\xi_1,\ \xi_2)$ распределён равномерно в круге радиуса R

$$f_{\xi}(x, y) = \begin{cases} \frac{1}{\pi R^2}, & \text{если } x^2 + y^2 \leqslant R \\ 0, & \text{иначе} \end{cases}$$

$$f_{\xi_1}(x) = \int\limits_{-\infty}^{+\infty} f(x, y) \, dy = \int\limits_{-\sqrt{R^2 - x^2}}^{+\sqrt{R^2 - x^2}} \frac{1}{\pi R^2} \, dy = \begin{cases} \frac{2\sqrt{R^2 - x^2}}{\pi R^2}, \text{ если } |x| \leqslant R \\ 0, \text{ иначе} \end{cases}$$

$$f_{\xi_1}(y) = \int\limits_{-\infty}^{+\infty} f(x,\ y)\,dx = \int\limits_{-\sqrt{R^2-y^2}}^{+\sqrt{R^2-y^2}} \frac{1}{\pi R^2}\,dx = \begin{cases} \frac{2\sqrt{R^2-y^2}}{\pi R^2}, \text{ если } |y| \leqslant R\\ 0, \text{ иначе} \end{cases}$$

Получаем $\exists x,\ y\quad f_\xi(x,\ y) \neq f_{\xi_1}(x)\cdot f_{\xi_2}(y) \Rightarrow$ случайные величины зависимы.

Утверждение

Пусть $\xi=(\xi_1,\ \xi_2)$ — непрерывный случайный вектор, тогда ξ_1 и ξ_2 — независимы тогда и только тогда, когда

$$\forall x, y \in \mathbb{R}$$
 $f_{\xi}(x, y) = f_{\xi_1}(x) f_{\xi_2}(y)$

Доказательство

"⇒"

Пусть ξ_1 и ξ_2 независимы, тогда:

$$f_{\xi}(x, y) = \frac{\delta^{2} F(x, y)}{\delta x \cdot \delta y} = \frac{\delta^{2} F_{\xi_{1}}(x) F_{\xi_{2}}(y)}{\delta x \delta y} = \frac{d F_{\xi_{1}}(x)}{dx} \cdot \frac{d F_{\xi_{2}}(y)}{dy} = f_{\xi_{1}}(x) \cdot f_{\xi_{2}}(y)$$

"**←**"

Пусть $f_{\xi}(x, y) = f_{\xi_1}(x) \cdot f_{\xi_2}(y)$, тогда:

$$F_{\xi}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi}(t, s) \, ds \, dt = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi_{1}}(t) f_{\xi_{2}}(s) \, ds \, dt = \int_{-\infty}^{x} f_{\xi_{1}}(t) \left(\int_{-\infty}^{y} f_{\xi_{2}}(s) \, ds \right) dt =$$

$$= F_{\xi_{1}}(x) F_{\xi_{2}}(y) \Rightarrow \xi_{1}, \ \xi_{2} \text{ независимы}.$$

Определение

Математическим ожиданием вектора $\xi = (\xi_1, \dots, \xi_n)$ называют вектор $E\xi = (m_1, \dots, m_n)$, где $\forall i \in \{1, 2, \dots n\}$ $m_i = E\xi_i$

Свойства математического ожидания

1.
$$E(\xi_1 + \xi_2) = E\xi_1 + E\xi_2$$

Доказательство: $E(\xi_1 + \xi_2) = \sum_i \sum_j (x_i + y_j) p_{ij} =$
 $= \sum_i \sum_j x_i p_{ij} + \sum_i \sum_j y_j p_{ij} = \sum_i x_i p_{i\bullet} + \sum_j y_j p_{\bullet j} = E\xi_1 + E\xi_2$

2.
$$\xi_{1}$$
, ξ_{2} независимы $\Rightarrow E(\xi_{1}\xi_{2}) = E\xi_{1} \cdot E\xi_{2}$

Доказательство: $E(\xi_{1}\xi_{2}) = \int \int xyf(x, y) \, dx \, dy = \left\langle \begin{array}{c} \text{компоненты } \xi_{1}, \ \xi_{2} \\ \text{независимы} \end{array} \right\rangle =$

$$= \int \int xyf_{\xi_{1}}(x)f_{\xi_{2}}(y) \, dx \, dy = \int \int \int xyf(x, y) \, dx \, dy = \left\langle \begin{array}{c} \text{компоненты } \xi_{1}, \ \xi_{2} \\ \text{независимы} \end{array} \right\rangle =$$

$$= \int \int xyf_{\xi_{1}}(x)f_{\xi_{2}}(y) \, dx \, dy = \int \int \int xyf_{\xi_{2}}(y) \, dx \, dy = \left\langle \begin{array}{c} \int xf_{\xi_{1}}(x) \, dx \\ -\infty \end{array} \right\rangle dy =$$

$$= \int \int xf_{\xi_{1}}(x) \, dx \int \int xf_{\xi_{2}}(y) \, dy = E\xi_{1} \cdot E\xi_{2}$$

Ковариацией случайных величин $\xi_1,\ \xi_2$ называют величину

$$\operatorname{cov}(\xi_1, \ \xi_2) = k_{\xi_1 \xi_2} = E(\xi_1 - E\xi_1)(\xi_2 - E\xi_2) = E_{\xi_1 \xi_2}^{\circ}$$

 $Hanomunanue: \stackrel{\circ}{\xi}$ обозначает центрированную случайную величину.

Определение

Коэффициентом корреляции случайных величин $\xi_1,\ \xi_2$ называется

$$\rho_{\xi_1 \, \xi_2} = \frac{\text{cov}(\xi_1, \ \xi_2)}{\sqrt{\mathcal{D}\xi_1 \mathcal{D}\xi_2}} = \text{cov}(\xi_1^*, \ \xi_2^*)$$

 $Hanoминание: \xi^* = \frac{\xi - E\xi}{\sqrt{D\xi}}$

Определение

Случайные величины ξ_1 , ξ_2 называются некоррелированными, если

$$\rho_{\xi_1,\ \xi_2}=0$$

Положительно коррелированными, если

$$\rho_{\xi_1, \xi_2} > 0$$

Отрицительно коррелированными, если

$$\rho_{\xi_1, \, \xi_2} < 0$$

Свойства $cov(\xi_1, \xi_2)$

1.
$$cov(\xi, \xi) = \mathcal{D}\xi$$

2.
$$\mathcal{D}(\xi + \eta) = \mathcal{D}\xi + \mathcal{D}\eta + 2\operatorname{cov}(\xi, \eta)$$

3.
$$cov(\xi, \eta) = cov(\eta, \xi)$$

4.
$$\operatorname{cov}(\xi, \eta) = E(\xi - E\xi)(\eta - E\eta) = E(\xi\eta) - E\xi \cdot E\eta$$

5.
$$cov(a\xi+b, c\eta+d) = E(a\xi+b-aE\xi-b)(c\eta+d-cE\eta-d) = a \cdot c cov(\xi, \eta)$$

6.
$$|\rho_{\xi\eta}| = \frac{|\cos(\xi,\,\eta)|}{\sigma_{\xi}\sigma_{\eta}} \leqslant 1 \Rightarrow |\cos(\xi,\,\eta)| \leqslant \sigma_{\xi}\sigma_{\eta}$$

Доказательство:

$$0 \leq \mathcal{D}(\xi^* + \eta^*) = \mathcal{D}\xi^* + \mathcal{D}\eta^* + 2\overline{\text{cov}(\xi^*, \eta^*)} = 1 + 1 + 2\rho_{\xi^*\eta^*} = 2(1 + \rho_{\xi^*\eta^*}) \geq 0 \Rightarrow \rho_{\xi^*\eta^*} \geq -1$$

$$0 \leq \mathcal{D}(\xi^* - \eta^*) = \mathcal{D}\xi^* + \mathcal{D}\eta^* - 2\overline{\text{cov}(\xi^*, \eta^*)} = 1 + 1 - 2\rho_{\xi^*\eta^*} = 2(1 - \rho_{\xi^*\eta^*}) \geq 0 \Rightarrow \rho_{\xi^*\eta^*} \leq 1$$

$$= 2(1 - \rho_{\xi^*\eta^*}) \geq 0 \Rightarrow \rho_{\xi^*\eta^*} \leq 1$$

7. $\xi, \ \eta$ — независимые случайные величины и $\mathcal{D}\xi, \ \mathcal{D}\eta \in \mathbb{R} \Rightarrow \cos(\xi, \ \eta) = 0$ Доказательство:

$$\operatorname{cov}(\xi,\,\eta) = E \overset{\circ}{\xi} \overset{\circ}{\eta} = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} (x - m_{\xi})(y - m_{\eta}) f(x,\,y) \, dx \, dy = \left\langle \begin{matrix} \text{компоненты } \xi,\,\,\eta \\ \text{независимы} \end{matrix} \right\rangle = 0$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - m_{\xi}) f(x) (y - m_{\eta}) f(y) dx dy = \int_{-\infty}^{+\infty} (x - m_{\xi}) f(x) dx \int_{-\infty}^{+\infty} (y - m_{\eta}) f(y) dy = 0$$

Распишем
$$\int_{-\infty}^{+\infty} (x - m_{\xi}) f(x) dx = \int_{-\infty}^{+\infty} x f(x) dx - m_{\xi} \int_{-\infty}^{+\infty} f(x) dx = 0$$