# Proiectarea Algoritmilor

Curs 10 – Rețele de flux. Flux maxim.



### Bibliografie

```
[1] C. Giumale – Introducere în Analiza Algoritmilor - cap. 5.6
```

[2] Cormen – Introducere în algoritmi - cap. Flux Maxim (27)

[3] Wikipedia - <a href="http://en.wikipedia.org/wiki/Ford-Fulkerson">http://en.wikipedia.org/wiki/Ford-Fulkerson</a> algorithm

[4] R. Sedgewick, K Wayne – curs de algoritmi Princeton 2007 www.cs.princeton.edu/~rs/AlgsDS07/ 01UnionFind si 14MST



#### Objective

 Definirea conceptului de reţea de flux (sau de transport).

 Identificarea principalilor algoritmi ce calculează fluxul maxim printr-o rețea.



## Definirea problemei

- Rețea ce transportă diferite materiale între un producător și o destinație.
- Fiecare arc are o capacitate maximă de transport.
- Trebuie identificat fluxul maxim ce poate fi transportat prin reţea.
- Rețele:
  - Electrice;
  - Apă;
  - Informaţii;
  - Drumuri.







## Rețea de flux – Definiție

- G(V,E) graf orientat;
- $c(u,v) \ge 0 \quad \forall (u,v) c = capacitatea arcelor;$
- Dacă  $(u,v) \notin E \rightarrow c(u,v) = 0$ ;
- S sursa traficului;
- T destinaţia traficului (drena);
- Presupunem că ∀u ∈ V \ {s, t} ∃ s..u..t.



## Exemplu de rețea de flux



s – sursa, t – destinaţia.

 Pe arce este reprezentată capacitatea arcului.



## Flux. Definiție. Proprietăți.

- G = (V,E) reţea de flux;
- c: V x V→ ℜ capacitatea reţelei;
  - f: V x V→ℜ fluxul prin reţeaua G;
  - Proprietăți:
    - ∀u, v ∈ V, f(u,v) ≤ c(u,v) (fluxul printr-un arc este mai mic sau egal cu capacitatea arcului) respectarea capacității arcelor;
    - $\forall u, v \in V$ , f(u,v) = -f(v,u) simetria fluxului;
    - $\Sigma f(u,v) = 0$  pentru  $\forall u \in V \setminus \{s,t\}$  conservarea fluxului.



## Exemplu de fluxuri





i2+i3-i4-i1=0 (P3)

- ∑f(u,v) = 0 pentru ∀u ∈ V \ {s,t} fluxul se conservă;
- Proprietatea 3 = legea curentului (Kirchoff) © I suma I. curenților ce intră într-un nod = suma I. I curenților ce ies din nodul respectiv.



## Flux. Notații.

- f(u,v) fluxul din u spre v;
- f<sub>i</sub>(u) = Σf(v,u) fluxul total care intra în nodul u;
- $f_o(u) = \Sigma f(u,v)$  fluxul total care iese din nodul u;
- Valoarea totală a fluxului:
  - $|f| = \sum f(s,v) = f_o(s);$
  - |f| = fluxul ce părăsește sursa;
  - Cf. proprietăților P1-P3:  $|f| = \sum f(s,v) = \sum f(v,t) = f_i(t)$ .



## Surse multiple, destinații multiple

Surse multiple {s<sub>1</sub>, s<sub>2</sub>,..., s<sub>n</sub>};



 $f_0(s_1)/\infty$ 

 $f_i(t_1)/\infty$ 

 $f_i(t_m)/\infty$ 

Se adaugă o sursă unică cu arce de capacitate infinită spre sursele s₁..s<sub>n</sub>
 și flux egal cu fluxul generat de sursele respective;

 Se adaugă o destinație unică t și arce de capacitate infinită între t<sub>1</sub>..t<sub>m</sub> și t și flux egal cu fluxul ce intră în destinațiile respective.



## Operații cu fluxuri

- X,Y mulţimi de noduri;
- $f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y) = \text{fluxul între } X \neq Y$ ;
- Operaţii:
  - $\forall X inclus in V: f(X,X) = 0;$
  - $\forall X,Y inclus in V: f(X,Y) = -f(Y,X);$
  - ∀X,Y,Z inclus in V şi Y inclus in X:
    - $f(X \setminus Y, Z) = f(X,Z) f(Y,Z)$ ;
    - $f(Z, X \setminus Y) = f(Z,X) f(Z,Y);$
  - $\forall X,Y,Z inclus in V si X \cap Y = \emptyset$ :
    - $f(X \cup Y, Z) = f(X,Z) + f(Y,Z)$ ;
    - $f(Z, X \cup Y) = f(Z,X) + f(Z,Y)$
  - f(s,V) = f(V,t)



## Exemplu operații fluxuri (1)



$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

$$f(X,X) = f(s,a) + f(a,s) + f(s,b) + f(b,s) + f(a,b) + f(b,a) = 0$$

$$f(X,Y) = f(b,c) + f(b,t) = -f(c,b) - f(t,b) = -f(Y,X)$$



# Exemplu operații fluxuri (2)



∀X, Y, Z inclus in V si Y inclus in X

$$f(X \setminus Y, Z) = f(X, Z) - f(Y, Z)$$
  
$$f(Z, X \setminus Y) = f(Z, X) - f(Z, Y)$$

$$f(X \setminus Y, Z) = 0 = f(b,t) + f(c,d) - f(b,t) - f(c,d) = f(X,Z) - f(Y,Z)$$
  
 $f(Z, X \setminus Y) = 0 = f(t,b) + f(d,c) - f(t,b) - f(d,c) = f(Z,X) - f(Z,Y)$ 



## Exemplu operații fluxuri (3)



$$\forall X, Y, Z inclus in V si X \cap Y = \emptyset$$
  
  $f(X \cup Y, Z) = f(X,Z) + f(Y,Z)$ 

$$f(Z, X \cup Y) = f(Z,X) + f(Z,Y)$$

$$f(X \cup Y, Z) = f(s,b) + f(a,b) + f(t,b) + f(d,c) = f(X,Z) + f(Y,Z)$$
  
 $f(Z, X \cup Y) = f(b,a) + f(b,s) + f(b,t) + f(c,d) = f(Z,X) + f(Z,Y)$ 



# Exemplu operații fluxuri (4)



$$f(s, V) = f(V, t)$$

$$f(s, V) = f(s,a) + f(s,b) = 5 = f(d,t) + f(b,t) = f(V, t)$$



#### Arc rezidual. Capacitate reziduală.

- Definiție: Un arc (u,v) pentru care f(u,v) <</li>
   c(u,v) se numește arc rezidual.
- Fluxul pe acest arc se poate mări.
- Definiție: Cantitatea cu care se poate mări fluxul pe arcul (u,v) se numește capacitatea reziduală a arcului (u,v) (c<sub>f</sub>(u,v)):

$$c_f(u,v) = c(u,v) - f(u,v)$$



## Rețea reziduală. Cale reziduală.

- G = (V,E) rețea de flux cu funcția de capacitate c.
- Definiție: Rețeaua reziduală (G<sub>f</sub> = (V,E<sub>f</sub>)) este o rețea de flux formată din arcele ce admit creșterea fluxului:

$$E_f = \{(u,v) \in V \times V \mid c_f(u,v) > 0\}.$$

- Observație: E<sub>f</sub> ⊈ E!!!
- Definiție: O cale reziduală este un drum s..t din G<sub>f</sub>.
- Definiție: Capacitatea reziduală a căii = capacitatea reziduală minimă de pe calea s..t descoperită.



## Exemplu rețea reziduală



## Rețea reziduală

Lemă 5.16: Fie G = (V,E) rețea de flux, f fluxul în G, G<sub>f</sub> rețeaua reziduală a lui G. Fie f' un flux prin G<sub>f</sub> și f+f' o funcție definită astfel:

$$f+f'(u,v) = f(u,v) + f'(u,v).$$

Atunci f+f' reprezintă un flux în G şi

$$|f+f'| = |f| + |f'|$$

 Această Lemă ne spune cum putem mări fluxul printr-o rețea de flux.



## Flux în rețeaua reziduală

Lemă 5.17: G – rețea de flux, f flux în G, p = s..t – cale reziduală în G<sub>f</sub>, f<sub>p</sub>:V x V->R se definește ca fiind:

$$f_{p}\left(u,v\right) = \begin{cases} c_{f}(p), \ dacă\left(u,v\right) \in p \\ -c_{f}(p), \ dacă\left(v,u\right) \in p \\ 0, \ dacă\left(u,v\right) \ \text{și}\left(v,u\right) \not \in p \end{cases}$$

Atunci 
$$f_p = flux în G_f$$
;  $|f_p| = c_f(p)$ 

- Corolar 5.4: f' = f + f<sub>p</sub> = flux în G, astfel încât |f'| = |f| + |f<sub>p</sub>| > |f|.
- Această Lemă ne spune cum se definește fluxul printr-o rețea reziduală.



### Exemplu maximizare flux





$$|f_p(s..t)| = c_f(s..t) = 5$$

$$|f'(s..t)| = |f| + |f_p| = 6 + 5 = 11$$



#### Calculul fluxului maxim

- Metoda Ford-Fulkerson
  - f(u,v) = 0 ∀ (u,v) // iniţializarea fluxului
  - Repetă // creștere iterativă a fluxului
    - găsește un drum s..p..t pe care se poate mări fluxul (cale reziduală)
    - f = f + flux(s..p..t)
  - Până când nu se mai poate găsi nici un drum s..p..t
  - Întoarce f
- În funcție de metodele de identificare a căii reziduale există mai mulți algoritmi ce urmează această metodă.



## Tăieturi în rețele de flux

- Definiție: O tăietură (S,T) a unei rețele de flux G = partiționare a nodurilor în 2 mulțimi disjuncte S și T = V \ S astfel încât s ∈ S și t ∈ T.
  - $f(S,T) = \sum_{x \in S} \sum_{y \in T} f(x,y) fluxul prin tăietura$
  - $c(S,T) = \sum_{x \in S} \sum_{y \in T} c(x,y)$  capacitatea tăieturii
- Lema 5.18: Fluxul prin tăietură = fluxul prin reţea f(S,T) = |f|
- Corolar 5.5: (S, T) tăietură oarecare fluxul maxim este limitat superior de capacitatea tăieturii |f| ≤ c(S,T)



#### Exemplu de tăietură într-o rețea de flux



• 
$$f(S,T) = f(s,b) + f(a,b) + f(c,d) + f(c,b)$$
  
=  $4 + 1 + 4 - 3 = 6 = f(s,V)$ 

• 
$$c(S,T) = c(a,b) + c(s,b) + c(c,d) = 18$$



#### Flux maxim – tăietură minimă

- Teorema 5.25 (Flux maxim tăietură minimă): G = (V,E) rețea de flux – următoarele afirmații sunt echivalente:
  - f este o funcție de flux în G astfel încât |f| este flux maxim total în G;
  - rețeaua reziduală G<sub>f</sub> nu are căi reziduale;
  - există o tăietură (S,T) astfel încât |f| = c(S,T).



#### Algoritmul Ford – Fulkerson

- Ford Fulkerson(G,s,t)
  - Pentru fiecare (u,v) din E
    - f(u,v) = f(v,u) = 0 // iniţializare
  - Cât timp
    - Există o cale reziduală p între s...t în G<sub>f</sub>
      - c<sub>f</sub>(p) = min{c<sub>f</sub>(u,v) | (u,v) din p} // capacitatea reziduală
      - Pentru fiecare (u,v) din p

• 
$$f(u,v) = f(u,v) + c_f(p)$$

• 
$$f(v,u) = -f(u,v)$$

Complexitate?

• Întoarce |f|



## Algoritmul Ford – Fulkerson (2)

- Ford Fulkerson(G,s,t)
  - Pentru fiecare (u,v) din E
    - f(u,v) = f(v,u) = 0 // O(E)
  - Cât timp // O(?)
    - Există o cale reziduală p între s..t în G<sub>f</sub> // O(E)
      - $c_f(p) = min\{c_f(u,v) \mid (u,v) \text{ din } p\} // O(E)$
      - Pentru fiecare (u,v) din p // O(E)
        - $f(u,v) = f(u,v) + c_f(p)$
        - f(v,u) = -f(u,v)

Complexitate?

• Întoarce |f|



## Exemplu Ford – Fulkerson (1)



## Exemplu Ford – Fulkerson (2)



Cale reziduală: A-C-B-D;  $C_f = 1$ 



Cale reziduală:Ø

După câți pași se ajunge la forma finală?



## Complexitate Ford – Fulkerson

Complexitate O(E \* f<sub>max</sub>)

• f<sub>max</sub> = fluxul maxim



# Algoritmul Ford – Fulkerson – discutie

- Probleme ce pot să apară:
  - Se folosesc căi cu capacitate mică;
  - Se pun fluxuri pe mai multe arce decât este nevoie.
- Îmbunătățiri:
  - Se aleg căile reziduale cu capacitate maximă complexitatea va depinde în continuare de f<sub>max</sub> și de valoarea capacităților;
  - Se aleg căile reziduale cele mai scurte → în acest caz complexitatea nu mai depinde de f<sub>max</sub> ci numai de numărul de arce (ex. Edmonds-Karp: identificarea căilor reziduale minime prin aplicarea unui BFS)



## Algoritmul Edmonds – Karp (1)

- Edmonds Karp(G, s, t)
  - Pentru fiecare (u,v) din E
    - f(u,v) = f(v,u) = 0 // inițializare
  - Cât timp
    - Există căi reziduale între s..t în G<sub>f</sub>
      - Determină calea reziduală minimă p aplicând BFS
      - c<sub>f</sub>(p) = min{c<sub>f</sub>(u,v) | (u,v) din p} // capacitatea reziduală
      - Pentru fiecare (u,v) din p

• 
$$f(u,v) = f(u,v) + c_f(p)$$

• 
$$f(v,u) = -f(u,v)$$

Complexitate?

Întoarce |f|



## Algoritmul Edmonds – Karp (2)

- Edmonds Karp(G, s, t)
  - Pentru fiecare (u,v) din E
    - f(u,v) = f(v,u) = 0 // O(E)

De câte ori un arc poate fi critic în rețeaua reziduală? O(V) Câte arce? O(E)

- Cât timp // O(E\*V) [vezi Cormen]
  - Există căi reziduale între s..t în G<sub>f</sub> // O(E)
    - Determină calea reziduală minimă p aplicând BFS // O(E)
    - $c_f(p) = min\{c_f(u,v) \mid (u,v) \text{ din } p\} // O(E)$
    - Pentru fiecare (u,v) din p // O(E)
      - $f(u,v) = f(u,v) + c_f(p)$
      - f(v,u) = -f(u,v)

Întoarce |f|

Complexitate? O(E<sup>2</sup> \* V)



## Exemplu Edmonds-Karp



## Pompare preflux (1)

 Idee: Simularea curgerii lichidelor într-un sistem de conducte ce leagă noduri aflate la diverse înălţimi;

Sursa – înălțime maximă;

 Inițial toate nodurile exceptând sursa sunt la înălțime 0;

Destinația rămâne în permanență la înălțimea 0!



## Pompare preflux (2)

- Există un preflux inițial în rețea obținut prin încărcarea la capacitate maximă a tuturor conductelor ce pleacă din s;
- Excesul de flux dintr-un nod poate fi stocat întrun rezervor al nodului (Notat e(u));
- Când un nod u are flux disponibil în rezervor şi o conductă spre un alt nod v nu este încărcată complet → înălțimea lui u este crescută pentru a permite curgerea din u în v.



## Pompare preflux – Definiții (1)

- G = (V,E) rețea de flux;
- Definiție: Preflux = f: V x V → ℜ astfel încât să fie satisfăcute restricțiile:
  - f(u,v) ≤ c(u,v), ∀(u,v)∈E respectarea capacității arcelor;
  - f(u,v) = -f(v,u),  $\forall u,v \in V simetria fluxului$ ;
  - $\Sigma_{v \in V} f(v,u) \ge 0$ ,  $\forall u \in V \setminus \{s\}$  conservational fluxului.
- Definiție: Supraîncărcare a unui nod:
  - $e(u) = f(V,u) \ge 0$ ,  $\forall u \in V \setminus \{s\}$ .



## Pompare preflux – Definiții (2)

- Definiție: O funcție h: V → N este o funcție de înălțime dacă îndeplinește restricțiile:
  - h(s) = |V| fixă;
  - h(t) = 0 fixă;
  - h(u) ≤ h(v) + 1 pentru orice arc rezidual (u,v) ∈ G<sub>f</sub> variabilă.
- Lema 5.19: G reţea de flux, h: V → N este o funcţie de înălţime. Fie u, v ∈ V; dacă h(u)>h(v)+1 atunci arcul (u,v) nu este arc rezidual.



#### Pompare preflux – Metode folosite

```
Pompare(u,v) // pompează fluxul în exces (e(u) > 0)
// are loc doar dacă diferența de înălțime dintre u și v este 1
// (h(u) = h(v) + 1), altfel nu e arc rezidual și nu ne interesează
   d = min(e(u), c_f(u,v)); // cantitatea de flux pompată
 f(u,v) = f(u,v) + d; // actualizare flux pe arcul (u,v)
 f(v,u) = -f(u,v); // respectarea simetriei

 e(u) = e(u) - d; // actualizare supraîncărcare la sursă

 e(v) = e(v) + d; // actualizare supraîncărcare la destinație

Inălțare(u) // mărește h(u) dacă u are flux în exces
     // (e(u) > 0) și u \notin {s, t} \forall(u,v) \in G<sub>f</sub> avem h(u) \leq h(v)
```



Complexitate?.

 $h(u) = 1 + min\{h(v) \mid (u,v) \in G_f\}$ 

## Pompare preflux – Inițializare

- Init\_preflux(G, s, t)
  - Pentru fiecare (u ∈ V)
    - e(u) = 0 // inițializare exces flux în nodul u
    - h(u) = 0 // iniţializare înălţime nod u
    - Pentru fiecare (v ∈ V) // inițializare fluxuri
      - f(u,v) = 0
      - f(v,u) = 0
  - h(s) = |V| // inițializare înălțime sursă
  - Pentru fiecare (u ∈ succs(s) \ {s})

// actualizare flux + exces

- f(s,u) = c(s,u);
- f(u,s) = -c(s,u);
- e(u) = c(s,u)

Complexitate?



#### Pompare preflux – Algoritm

- Pompare\_preflux(G, s, t)
  - Init\_preflux(G, s, t) // iniţializarea prefluxului
  - Cât timp (1) // cât timp pot face pompări sau înălțări
    - Dacă  $(\exists u \in V \setminus \{s, t\} \mid e(u) > 0$  și  $c_f(u,v) > 0$  și h(u) = h(v) + 1) // încerc să pompez
      - Pompare(u,v); continuă;
    - Dacă  $(\exists u \in V \setminus \{s, t\}, v \in V \mid e(u) > 0$  și  $\forall (u,v) \in E_f, h(u) \le h(v))$ 
      - Înălţare(u); continuă; // încerc să înalţ
    - Întrerupe; // nu mai pot face nimic → am ajuns la flux max
  - Întoarce e(t) // e(t) = |f| = fluxul total în rețea

#### • Complexitate?



#### Pompare preflux – Complexitate

- Init\_preflux: O(V \* E)
- Pompare(u,v): O(1)
- Înălţare(u): O(V) implică găsirea minimului dintre nodurile succesoare
- Cât timp: [vezi Cormen]
  - Câte înălțări?
    - Care e înălțimea maximă? 2 |V| 1 drum rezidual de lungime maximă
    - Care este numărul maxim total de înălțări? (2 |V| 1) (|V| 2)
  - Câte pompări?
    - Pompări saturate: 2 |V| |E| de câte ori un arc poate fi saturat? (în funcție de suma h(u) + h(v))
    - Pompări nesaturate: 4 |V|² (|V| + |E|) sumă înălţimi noduri excedentare |
  - Complexitate totală: O(V2 \* E) [vezi Cormen]



## Exemplu Pompare preflux (1)









$$h(s) = 4$$
  
 $h(a) = 1$   
 $h(b) = h(t) = 0$   
 $e(a) = 5$   
 $e(s) = e(b) = e(t) = 0$ 

Pompare (a,b)



S

# Exemplu Pompare preflux (2)

$$h(s) = 4$$
  
 $h(a) = 1$   
 $h(b) = h(t) = 0$   
 $e(b) = 5$   
 $e(s) = e(a) = e(t) = 0$ 



$$h(s) = 4$$
  
 $h(a) = h(b) = 1$   
 $h(t) = 0$   
 $e(b) = 5$   
 $e(s) = e(a) = e(t) = 0$ 





$$h(s) = 4$$
  
 $h(a) = h(b) = 1$   
 $h(t) = 0$   
 $e(t) = 5$   
 $e(s) = e(a) = 1$ 

= e(b) = 0



# ÎNTREBĂRI?

