Backpropagation: paso a paso

Ing. Juan M. Rodríguez

- i: entradas (inputs)
- h : neuronas primera capa
- o : neuronas de salida
- b1 y b2 : Umbrales (bias)

- i: entradas (inputs)
- h : neuronas primera capa
- o : neuronas de salida
- b1 y b2 : Umbrales (bias)

Se inicializa con pesos aleatorios

Entrada	1	Salida - esperada				
i1	i2	o1	o2			
0.05	0.10	0.01	0.99			

Función de activación

$$f(x) = \frac{1}{1 + e^{-x}}$$

Calculamos la entrada para h1

$$\frac{net_{h1} = w \, 1 * i \, 1 + w \, 2 * i \, 2 + b \, 1 * 1}{net_{h1} = 0,15 * 0,05 + 0,2 * 0,1 + 0,35 * 1 = 0,3775}$$

Calculamos la salida para h1, usando la activación sigmoide

$$out_{h1} = \frac{1}{1 + e^{-0.3775}} = 0.59327$$

De igual forma se calcula la salida de la neurona $out_{h2} = 0,59688$

Entrada		Salida - e	sperada	Salida - real			
i1	i2	o1 o2		h1	h2		
0.05	0.10	0.01	0.99	0.59327	0.59688		

Repetimos los mismos pasos para calcular la salida de las neuronas de salida, usando como entrada las salidas de las neuronas **h**.

Calculo la entrada para o1:

$$\frac{net_{o1} = w \cdot 5 * out_{h1} + w \cdot 6 * out_{h2} + b \cdot 2 * 1}{net_{o1} = 0,4 * 0,59327 + 0,45 * 0,59688 + 0,6 * 1 = 1,1059}$$

Calculo la salida para o1:

$$\frac{out_{o1}}{1 + e^{-1,1059}} = 0,75137$$

$$\frac{1 + e^{-1,1059}}{out_{o2}} = 0,7729$$

Calculamos la salida para **o2** de igual forma que para o1:

$$out_{o2} = 0,7729$$

Entrada		Salida - es	sperada	Salida - real					
i1	i2	o 1	o2	h1	h2 o1		o2		
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729		

Calculamos el error cuadrático medio de cada neurona de salida, con la siguiente fórmula:

$$E = \sum_{i=1}^{n} \frac{1}{2} (target - output)^{2}$$

$$\frac{E_{01} = \sum \frac{1}{2} (target_{o1} - output_{o1})^2 = \frac{1}{2} (0,01 - 0,75137)^2 = 0,274811}{E_{02} = 0,02356}$$

Entrada	rada Salida - esperada			Salida - real					
i1	i2	o 1	o2	h1	h2 01		o2		
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729		

Calculamos el error total, como la suma de todos los errores:

$$E_{total} = E_{o1} + E_{o2} = 0,274811 + 0,02356 = 0,29837$$

Entrada		Salida - e	sperada		Salid	Errores			
i1	i2	o1	o2	h1	h2	o1 o2		o1	o2
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356

Aplicamos Backpropagation

$$\vec{\nabla}E_{total} = (\frac{\partial E_{total}}{\partial w 1}, \frac{\partial E_{total}}{\partial w 2}, \frac{\partial E_{total}}{\partial w 3}, \frac{\partial E_{total}}{\partial w 4}, \frac{\partial E_{total}}{\partial w 5}, \frac{\partial E_{total}}{\partial w 6}, \frac{\partial E_{total}}{\partial w 7}, \frac{\partial E_{total}}{\partial w 8})$$

¿Hacia dónde decrece el error?

Hacia allá vamos

Aplicamos Backpropagation

$$\vec{\nabla} E_{total} = (\frac{\partial E_{total}}{\partial w 1}, \frac{\partial E_{total}}{\partial w 2}, \frac{\partial E_{total}}{\partial w 3}, \frac{\partial E_{total}}{\partial w 4}, \frac{\partial E_{total}}{\partial w 5}, \frac{\partial E_{total}}{\partial w 6}, \frac{\partial E_{total}}{\partial w 7}, \frac{\partial E_{total}}{\partial w 8})$$

Empecemos por calcular uno de estos valores.

Es el primero de los pesos, en la última capa de la red.

 $\frac{\partial E_{total}}{\partial w_5}$: Se lee como la derivada parcial de E_{total} respecto de w_5 , o tambien como el gradiente respecto de w_5 .

$$\frac{\partial E_{total}}{\partial w 5} = \frac{\partial E_{total}}{\partial out_{01}} * \frac{\partial out_{01}}{\partial net_{01}} * \frac{\partial net_{01}}{\partial w 5}$$

Entrada	ada Salida - esperada		sperada	Salida - real				Errores		
i1	i2	01	o2	h1 h2 o1 o2			o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

Entrada	l	Salida - e	sperada		Salida - real			Errores		
i1	i2	01	o2	h1	h2	o1	o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

$$\frac{\partial E_{total}}{\partial w 5} = \frac{\partial E_{total}}{\partial out_{01}} * \frac{\partial out_{01}}{\partial net_{01}} * \frac{\partial net_{01}}{\partial w 5}$$
Es constante
$$E_{total} = \frac{1}{2} (target_{o1} - out_{o1})^2 + \frac{1}{2} (target_{o2} - out_{o2})^2$$

$$\frac{\partial E_{total}}{\partial out_{o1}} = 2 * \frac{1}{2} (target_{o1} - out_{o1})^{2-1} * -1 + 0$$

$$\frac{\partial E_{total}}{\partial out_{o1}} = -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.74136507$$

Entrada		Salida - e	sperada	Salida - real				Errores		
i1	i2	o1	o2	h1 h2 o1 o2			o1	o2	total	
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

$$\frac{\partial E_{total}}{\partial w 5} = \frac{\partial E_{total}}{\partial out_{01}} * \frac{\partial out_{01}}{\partial net_{01}} * \frac{\partial net_{01}}{\partial w 5}$$

$$out_{o1} = \frac{1}{1 + e^{-net_{o1}}}$$

$$\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.75136507(1 - 0.75136507) = 0.186815602$$

Entrada	Entrada Salida - esperada		sperada	Salida - real				Errores		
i1	i2	o1	o2	h1	h1 h2 o1		o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

$$\frac{\partial E_{total}}{\partial w 5} = \frac{\partial E_{total}}{\partial out_{01}} * \frac{\partial out_{01}}{\partial net_{01}} * \frac{\partial net_{01}}{\partial w 5}$$

$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$

$$\frac{\partial net_{o1}}{\partial w_5} = 1 * out_{h1} * w_5^{(1-1)} + 0 + 0 = out_{h1} = 0.593269992$$

Entrada	Entrada Salida - esperada		Salida - real				Errores			
i1	i2	o1	o2	h1	h1 h2 o1		o2	o 1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

Utilizando la regla de la cadena:

$$\frac{\partial E_{total}}{\partial w 5} = \frac{\partial E_{total}}{\partial out_{01}} * \frac{\partial out_{01}}{\partial net_{01}} * \frac{\partial net_{01}}{\partial w 5}$$

Todo junto:

$$\frac{\partial E_{total}}{\partial w_5} = 0.74136507 * 0.186815602 * 0.593269992 = 0.082167041$$

Entrada	Entrada Salida - esperada		sperada	Salida - real				Errores			
i1	i2	o1	o2	h1	h1 h2 o1 o2			o1	o2	total	
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837	

Entrada	l	Salida - e	sperada		Salid	da - real	Errores			
i1	i2	01	o2	h1	h2	o1	o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

Repetimos para los otros pesos:

$$w_6^+ = 0.408666186$$

 $w_7^+ = 0.511301270$
 $w_8^+ = 0.561370121$

Entrada		Salida - e	sperada		Salid	da - real			Errores	
i1	i2	01	o2	h1	h2	o1	o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

Entrada		Salida - e	sperada	Salida - real Errores h1 h2 o1 o2 o1 o2						
i1	i2	01	o2	h1	h2	o 1	o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

$$\frac{\partial E_{total}}{\partial out_{h1}} = \underbrace{\frac{\partial E_{o1}}{\partial out_{h1}}} + \frac{\partial E_{o2}}{\partial out_{h1}}$$

Empezaremos por el primer término:

$$\frac{\partial E_{o1}}{\partial out_{h1}} = \underbrace{\left(\frac{\partial E_{o1}}{\partial net_{o1}}\right)} * \frac{\partial net_{o1}}{\partial out_{h1}}$$

$$\frac{\partial E_{o1}}{\partial net_{o1}}$$
 Ya fue calculado anteriormente:

$$\frac{\partial E_{o1}}{\partial net_{o1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} = 0.74136507 * 0.186815602 = 0.138498562$$

Entrada		Salida - e	sperada		Salid	da - real			Errores	
i1	i2	01	o2	h1	h2	o1	o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

$$\frac{\partial E_{total}}{\partial out_{h1}} = \underbrace{\frac{\partial E_{o1}}{\partial out_{h1}}} + \underbrace{\frac{\partial E_{o2}}{\partial out_{h1}}}$$

$$\frac{\partial E_{o1}}{\partial out_{h1}} = \underbrace{\frac{\partial E_{o1}}{\partial net_{o1}}} * \underbrace{\frac{\partial net_{o1}}{\partial out_{h1}}}$$

$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$

$$\frac{\partial net_{o1}}{\partial out_{h1}} = w_5 = 0.40$$

Entrada		Salida - e	sperada		Salid	da - real			Errores	
i1	i2	o1	o2	h1	h2	o 1	o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

$$\frac{\partial E_{total}}{\partial out_{h1}} = \underbrace{\frac{\partial E_{o1}}{\partial out_{h1}}}_{\frac{\partial E_{o1}}{\partial out_{h1}}} + \underbrace{\frac{\partial E_{o2}}{\partial out_{h1}}}_{\frac{\partial E_{o1}}{\partial out_{h1}}} + \underbrace{\frac{\partial E_{o2}}{\partial out_{h1}}}_{\frac{\partial E_{o1}}{\partial out_{h1}}} + \underbrace{\frac{\partial E_{o2}}{\partial out_{h1}}}_{\frac{\partial E_{o1}}{\partial out_{h1}}}$$

$$\frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_{h1}} = 0.138498562 * 0.40$$

$$= 0.055399425$$

Entrada	l	Salida - e	sperada		Salid	da - real			Errores	
i1	i2	o1	o2	h1 h2 o1 o2 o1 o2 to				total		
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

$$\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}}$$

$$\frac{\partial E_{o2}}{\partial out_{h1}} = -0.019049119$$

$$\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}} = 0.055399425 + -0.019049119$$

$$= 0.036350306$$

Entrada	ı	Salida - e	sperada		Salid	da - real		Errores		
i1	i2	o1	o2	h1	h2	01	o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

Entrada	ı	Salida - e	sperada		Salid	da - real		Errores			
i1	i2	o1	o2	h1	h2	01	o2	o1	o2	total	
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837	

$$out_{h1} = \frac{1}{1 + e^{-net}_{h1}}$$

$$\frac{\partial out_{h1}}{\partial net_{h1}} = out_{h1}(1 - out_{h1}) = 0.59326999(1 - 0.59326999)$$

$$= 0.241300709$$

Entrada		Salida - e	sperada		Salid	da - real			Errores	
i1	i2	01	o2	h1	h2	o 1	o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

$$net_{h1} = w_1 * i_1 + w_3 * i_2 + b_1 * 1$$
$$\frac{\partial net_{h1}}{\partial w_1} = i_1 = 0.05$$

Entrada		Salida - e	sperada		Salid	da - real			Errores	
i1	i2	o1	o2	h1	h2	o 1	o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

$$\frac{\partial E_{total}}{\partial w 1} = \frac{\partial E_{total}}{\partial out_{h1}} * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w 1}$$

0.036350306 * 0.241300709 * 0.05 = 0.000438568

Entrada	1	Salida - e	sperada		Salid	da - real			Errores	
i1	i2	o1	o2	h1	n1 h2 o1 o2			o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

Entrada	l	Salida - e	sperada		Salid	da - real			Errores	
i1	i2	01	o2	h1	h2	o1	o2	o1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837

Repetimos para w2, w3 y w4

$$w_2^+ = 0.19956143$$

$$w_3^+ = 0.24975114$$

$$w_4^+ = 0.29950229$$

Entrada	l	Salida - e	sperada		Salid	da - real			Errores	
i1	i2	o1	o2	h1	1 h2 o1			o 1	o2	total
0.05	0.10	0.01	0.99	0.59327	0.59688	0.75137	0.7729	0.274811	0.02356	0.29837