Greedy Algorithms: Fractional Knapsack

Michael Levin

Higher School of Economics

Algorithmic Design and Techniques Algorithms and Data Structures

Outline

1 Long Hike

2 Fractional Knapsack

3 Pseudocode and Running Time

Long Hike

Long Hike

Long Hike

Outline

1 Long Hike

2 Fractional Knapsack

3 Pseudocode and Running Time

Fractional knapsack

Input: Weights w_1, \ldots, w_n and values v_1, \ldots, v_n of *n* items; capacity W.

Output: The maximum total value of fractions of items that fit into a

bag of capacity W.

7 knapsack

total: \$38

Safe move

Lemma

There exists an optimal solution that uses as much as possible of an item with the maximal value per unit of weight.

■ While knapsack is not full

- While knapsack is not full
- Choose item *i* with maximum $\frac{v_i}{w_i}$

- While knapsack is not full
- Choose item *i* with maximum $\frac{v_i}{w_i}$
- If item fits into knapsack, take all of it

- While knapsack is not full
- Choose item *i* with maximum $\frac{v_i}{w_i}$
- If item fits into knapsack, take all of it
- Otherwise take so much as to fill the knapsack

- While knapsack is not full
- Choose item *i* with maximum $\frac{v_i}{w_i}$
- If item fits into knapsack, take all of it
- Otherwise take so much as to fill the knapsack
- Return total value and amounts taken

Outline

1 Long Hike

2 Fractional Knapsack

3 Pseudocode and Running Time

- While knapsack is not full
- Choose item *i* with maximum $\frac{v_i}{w_i}$
- If item fits into knapsack, take all of it
- Otherwise take so much as to fill the knapsack
- Return total value and amounts taken

$Knapsack(W, w_1, v_1, \ldots, w_n, v_n)$

 $A \leftarrow [0, 0, \dots, 0], V \leftarrow 0$ repeat *n* times:

if W=0:

return (V, A)

$$ext{return } (V,A)$$
 $ext{select } i ext{ with } w_i > 0 ext{ and } \max rac{v_i}{w_i}$
 $ext{} a \leftarrow \min(w_i,W)$
 $ext{} V \leftarrow V + a rac{v_i}{w_i}$
 $ext{} w_i \leftarrow w_i - a, A[i] \leftarrow A[i] + a, W \leftarrow W - a$

select i with $w_i > 0$ and max $\frac{v_i}{w_i}$

The running time of Knapsack is $O(n^2)$.

The running time of Knapsack is $O(n^2)$.

Proof

■ Select best item on each step is O(n)

The running time of Knapsack is $O(n^2)$.

Proof

- Select best item on each step is O(n)
 - Main loop is executed n times

The running time of Knapsack is $O(n^2)$.

Proof

- Select best item on each step is O(n)
 - Main loop is executed n times
 - Overall, $O(n^2)$

Optimization

It is possible to improve asymptotics!

Optimization

- It is possible to improve asymptotics!
- First, sort items by decreasing $\frac{v}{w}$

Assume $\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \cdots \ge \frac{v_n}{w_n}$ $Knapsack(W, w_1, v_1, \dots, w_n, v_n)$ $A \leftarrow [0, 0, \dots, 0], V \leftarrow 0$

for i from 1 to n: if W=0: return (V, A) $a \leftarrow \min(w_i, W)$ $V \leftarrow V + a \frac{v_i}{w}$ $w_i \leftarrow w_i - a, A[i] \leftarrow A[i] + a, W \leftarrow W - a$ return (V, A)

Asymptotics

- Now each iteration is O(1)
- Knapsack after sorting is O(n)
- Sort + Knapsack is $O(n \log n)$