Securing Data in Low-Resource Systems: Lightweight Block Cryptography Strategies

Presentación examen parcial

Proyecto de Final de Carrera I Fernando Ramirez Arredondo

CCOMP8-1 Universidad Católica San Pablo

15 de mayo de 2024

Introducción

Figura: Desafíos clave con la criptografía convencional en dispositivos con recursos limitados [1].

Lightweight Block Ciphers

Algorithm	Key size	Block size	N. of rounds	Structure
DULBC (Yang et al., 2022) [2]	80/128	64	25/30	SPN
GIFT (Yasmin and Gupta, 2023) [3] [4]	128	64/128	28/40	SPN
IVLBC (Huang et al., 2023) [5]	80/128	64	29	SPN
LBC-IoT (Ramadan et al., 2021) [6]	80	32	32	Feistel
SAND (Chen et al., 2021) [7]	128	64/128	48/54	Feistel
LBCCS (Zhu et al., 2022) [8]	128	128	20	Feistel
SCENERY (Feng and Li et al., 2022) [9]	80	64	28	Feistel

Figura: Generalizacion de una Feistel network [10] y Substitution-permutation network [11].

SAND-64 y SAND-128

- $\bullet \ \ operaciones \ AND\text{-RX} = ligero.$
- Synthetic s-box = seguro.

• 128-bit key, 64/128-bit block, 48/54 rounds.

Figura: Comparación de round functions, Feistel network genérica y SAND [7].

(3) Non-linear Functions G_0 and G_1

Let the *n*-bit variable x be the input value of G_0 and G_1 , which is regarded as the concatenation of four $\frac{n}{4}$ -bit words $x\{3\}||x\{2\}||x\{1\}||x\{0\}$. Let $y = y\{3\}||y\{2\}||y\{1\}||y\{0\}$ denote the output value. For G_0 , we have

$$\begin{split} y\{0\} &= x\{3\} \odot x\{2\} \oplus x\{0\}, \\ y\{3\} &= y\{0\} \odot x\{1\} \oplus x\{3\}, \\ y\{2\} &= x\{2\}, \\ y\{1\} &= x\{1\}. \end{split}$$

As to the function G_1 , the output is calculated as

$$\begin{split} &y\{2\} = x\{3\} \odot x\{1\} \oplus x\{2\}, \\ &y\{1\} = y\{2\} \odot x\{0\} \oplus x\{1\}, \\ &y\{3\} = x\{3\}, \\ &y\{0\} = x\{0\}. \end{split}$$

Figura: Definición formal de las funciones G de SAND [7].

×	0	1	2	3	4	5	6	7	8	9	Α	В	С
$N_0(x)$	0	1	2	В	4	5	6	F	8	9	Α	3	D
$N_1(x)$	0	1	2	3	4	7	6	5	8	9	Ε	D	C
Ssb(x)	00	11	22	B3	44	57	66	F5	88	99	ΑE	3D	DC

Cuadro: Synthetic S-box de SAND-128

Х	0	1	2	3	4	5	6	7
P(x)	7	4	1	6	3	0	5	2

Cuadro: P-box de SAND-64

×	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
P(x)	Е	F	8	9	2	3	С	D	6	7	0	1	Α	В	4	5

Cuadro: P-box de SAND-128

GIFT-64 y GIFT-128

- Feistel = ligero.
- Bitslice substitution = seguro.

- Involutive permutation = más seguro!
- 128-bit key, 64/128-bit block, 28/40 rounds.

Figura: Comparación de round functions, Substitution-permutation network genérica y GIFT [4].

Se coloca cada bit del plaintext en un bloque.

0	4	8	12	1	5	9	13	2	6	10	14	3	7	11	15
16	20	24	28	17	21	25	29	18	22	26	30	19	23	27	31
32	36	40	44	33	37	41	45	34	38	42	46	35	39	43	47
48	52	56	60	49	53	57	61	50	54	58	62	51	55	59	63

Figura: Posición de los bits. Los sectores 0,1,2,3 están en rojo, amarillo, verde y azul respectivamente [3].

Figura: Representación secuencial de GIFT [4].

La function bit-slice substitution es definida:

$$T_1 = X_1; T_2 = X_0 \wedge T_1; T_3 = X_2 \oplus X_3;$$

 $Y_0 = T_2 \oplus T_3; T_5 = X_3 \vee T_1; T_6 = X_0 \oplus T_5;$
 $Y_1 = X_2 \wedge T_6; T_8 = X_1 \oplus X_2; T_9 = T_3 \wedge T_6;$
 $Y_3 = T_8 \wedge T_9; T_{11} = Y_0 \vee T_8; Y_2 = T_6 \wedge T_{11}.$

donde T_i indica una variable de 32-bits temporable. El bloque input es X y el bloque output es Y [4].

Conclusiones

Conclusiones

Feistel Network

- Simpleza.
- Descifrado sencillo.
- Seguridad.
- Mucha simpleza!

Substitution-Permutation Network

- Libertad.
 - Diseño.
 - Implementación: paralelismo, hardware/software.
- Mucha libertad!

References I

- Y. Zhong and J. Gu, "Lightweight block ciphers for resource-constrained environments: A comprehensive survey," *Future Generation Computer Systems*, 2024.
- J. Yang, L. Li, Y. Guo, and X. Huang, "Dulbc: A dynamic ultra-lightweight block cipher with high-throughput," *Integration*, vol. 87, pp. 221–230, 2022.
 - S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo, "Gift: A small present: Towards reaching the limit of lightweight encryption," in *Cryptographic Hardware and Embedded Systems—CHES 2017: 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings.* Springer, 2017, pp. 321–345.

References II

- N. Yasmin and R. Gupta, "Modified lightweight gift cipher for security enhancement in resource-constrained iot devices," *International Journal of Information Technology*, pp. 1–13, 2023.
- X. Huang, L. Li, and J. Yang, "Ivlbc: An involutive lightweight block cipher for internet of things," *IEEE Systems Journal*, 2022.
- R. A. Ramadan, B. W. Aboshosha, K. Yadav, I. M. Alseadoon, M. J. Kashout, and M. Elhoseny, "Lbc-iot: Lightweight block cipher for iot constraint devices." *Computers, Materials & Continua*, vol. 67, no. 3, 2021.
- S. Chen, Y. Fan, L. Sun, Y. Fu, H. Zhou, Y. Li, M. Wang, W. Wang, and C. Guo, "Sand: An and-rx feistel lightweight block cipher supporting s-box-based security evaluations," *Designs, Codes and Cryptography*, pp. 1–44, 2022.

References III

- D. Zhu, X. Tong, Z. Wang, and M. Zhang, "A novel lightweight block encryption algorithm based on combined chaotic system," *Journal of Information Security and Applications*, vol. 69, p. 103289, 2022.
- J. Feng and L. Li, "Scenery: a lightweight block cipher based on feistel structure," *Frontiers of Computer Science*, vol. 16, no. 3, p. 163813, 2022.
- V. Nachef, J. Patarin, and E. Volte, "Feistel ciphers," *Cham: Springer International Publishing*, 2017.
- H. M. Heys and S. E. Tavares, "Substitution-permutation networks resistant to differential and linear cryptanalysis," *Journal of cryptology*, vol. 9, no. 1, pp. 1–19, 1996.