

Ayudantía 9 - Teoría de grupos

12 de noviembre de 2021 Profesor Marcelo Arenas Bernardo Barías

Pregunta 1 - Propiedades básicas de los grupos

Demuestre que si (G, \circ) es un grupo, entonces se cumplen las siguientes propiedades

- a) El elemento neutro es único. Es decir, si e_1 y e_2 cumplen que $a \circ e_i = e_i \circ a = a$ para $i \in \{1, 2\}$ y para todo $a \in G$ entonces $e_1 = e_2$
- b) El inverso de cada elemento es único. Es decir, si $a \circ b = b \circ a = e$ y $a \circ c = b \circ c = e$, entonces b = c

Pregunta 2 - Propiedades básicas de los subgrupos

Sea (H, \circ) un subgrupo del grupo (G, \circ) . Demuestre las siguientes afirmaciones.

- 1. Si e_1 es el neutro en (G, \circ) y e_2 es el neutro de (H, \circ) , entonces $e_1 = e_2$
- 2. Para cada $a \in H$, si b es el inverso de a en (G, \circ) y c es el inverso de a en (H, \circ) , entonces c = b

Pregunta 3 - Demostración del lema visto en clases (Lagrange)

Para demostrar el teorema de Lagrage se introdujo una relación binaria en clases. Sea (G, \circ) un grupo finito y (H, \circ) un subgrupo de (G, \circ) . Suponga que e es el elemento neutro de (G, \circ) y a^{-1} es el inverso de a en (G, \circ) . Sea entonces \sim una relación binaria sobre G definida como

$$a \sim b$$
 si y sólo si $b \circ a^{-1} \in H$

En base a esta relación, se demostr
ó que \sim es una relación de equivalencia. Para esta pregunta demostra
remos que

- 1. $[e]_{\sim} = H$
- 2. Para cada $a, b \in G$: $|[a]_{\sim}| = |[b]_{\sim}|$

Con esto se concluye fácilmente el teorema de Lagrange.