

Università degli Studi dell'Aquila

Seconda Prova Parziale di Algoritmi e Strutture Dati con Laboratorio

Martedì 4 Febbraio 2014 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la × erroneamente apposta (ovvero, in questo modo \otimes) e rifare la x sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Dato un albero AVL T contenente n elementi, si consideri l'inserimento di una sequenza di 2^n elementi in T. L'altezza dell'AVL risultante sarà:
 - a) $\Theta(n)$
- b) $\Theta(n^2)$
- c) $\Theta(\log^2 n)$
- d) $\Theta(\log n)$
- 2. Si supponga di inserire la sequenza di chiavi 3,7,4,2 (in quest'ordine) in una tavola hash di lunghezza m=4 (ovvero con indici (0,1,2,3) utilizzando l'indirizzamento aperto con funzione hash $h(k)=k \mod 4$, e risolvendo le collisioni con il metodo della scansione lineare. Quale sarà la tavola hash finale?
 - a) A = [2, 4, 7, 3]
- b) A = [4, 2, 7, 3]
- c) A = [7, 4, 3, 2]
- d) A = [7, 4, 2, 3]
- 3. Quanti archi è necessario rimuovere dal seguente grafo pesato per renderlo aciclico? c) 9
 - a) 5
- b) 4
- d) 3

- 4. Si consideri il grafo di cui alla domanda (3) e si orientino gli archi dal nodo con lettera minore al nodo con lettera maggiore secondo l'ordine alfabetico. Quanti rilassamenti esegue in totale alla fine della prima passata l'algoritmo di Bellman e Ford con sorgente a e con l'ipotesi che gli archi vengano considerati in ordine lessicografico? d) 2
 - a) 0
- b) 5 c) 9
- 5. Si consideri il grafo di cui alla domanda (3) e si supponga di applicare l'algoritmo di Dijkstra per determinare l'albero dei cammini minimi radicato in e. Qual è la sequenza di vertici aggiunti alla soluzione?

 - a) $\langle e, b, a, c, f, d \rangle$
- b) $\langle e, b, d, a, c, f \rangle$
- c) $\langle e, b, d, f, a, c \rangle$
- d) $\langle e, d, f, c, a, b \rangle$
- 6. Dato un grafo pesato G = (V, E) con n vertici ed m archi, e presi 2 vertici u, v tali che l'arco $(u, v) \in E$, trovare il cammino minimo tra $u \in v$ in G applicando l'algoritmo di Dijkstra realizzato con una heap binario costa:
 - a) $\Theta(1)$
- b) $\Theta(m)$
- c) $O(n^2)$
- d) $O(m \log n)$
- 7. Si consideri il grafo di cui alla domanda (3) e si numerino i vertici nel seguente modo: a := 1; b := 2; c := 3, d := 4; e :=5; f:=6. Si orientino ora gli archi dal nodo con numero minore al nodo con numero maggiore. Qual è il costo di un cammino minimo 3-vincolato dal nodo 1 al nodo 6?
 - a) 3
- b) 10 c) 22
- $d) + \infty$
- 8. Si consideri la gestione di n insiemi disgiunti sottoposti ad n-1 operazioni di Union e ad O(1) operazioni di Find mediante l'utilizzo di alberi QuickFind con euristica dell'unione pesata. Quanto costa complessivamente la gestione della sequenza di operazioni?
 - a) O(1)
- b) $\Theta(n)$
- c) $O(n \log n)$
- d) $\Theta(n^2)$
- Si consideri il grafo di cui alla domanda (3) e si supponga di applicare l'algoritmo di Kruskal per determinare il minimo albero ricoprente. Quale tra le seguenti è una sequenza ammissibile di inserimenti di archi nella soluzione?

- a) $\langle (b, e), (b, d), (a, c), (d, f), (a, b) \rangle$ b) $\langle (b, e), (b, d), (e, d), (a, c), (a, b) \rangle$
- c) $\langle (b,e), (b,d), (e,d), (a,c), (d,f) \rangle$
- d) $\langle (a,c), (a,b), (b,e), (b,d), (d,f) \rangle$
- 10. Si consideri il grafo di cui alla domanda (3) e si supponga di applicare l'algoritmo di Prim per determinare il minimo albero ricoprente. Supponendo di partire dal nodo c, qual è la sequenza di vertici aggiunti alla soluzione? a) $\langle c, a, f, d, b, c \rangle$ b) $\langle c, a, b, d, e, f \rangle$ c) $\langle c, f, d, e, b, a \rangle$ d) $\langle c, a, b, e, d, f \rangle$

Griglia Risposte

			_		-					
	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										