1326 AUTOMATON

5.175 highest_peak

DESCRIPTION LINKS AUTOMATON

Origin Derived from peak.

Purpose

Constraint highest_peak(HEIGHT, VARIABLES)

Arguments HEIGHT : dvar

VARIABLES : collection(var-dvar)

Restriction required(VARIABLES, var)

A variable V_k (1 < k < m) of the sequence of variables VARIABLES $= V_1, \ldots, V_m$ is a peak if and only if there exists an i $(1 < i \le k)$ such that $V_{i-1} < V_i$ and $V_i = V_{i+1} = \cdots = V_k$ and $V_k > V_{k+1}$. HEIGHT is the maximum value of the peak variables. If no such variable exists HEIGHT is equal to MININT.

Example $(8, \langle 1, 1, 4, 8, 6, 2, 7, 1 \rangle)$ $(1, \langle 0, 1, 1, 0, 0, 1, 0, 1 \rangle)$

The first highest_peak constraint holds since 8 is the maximum peak of the sequence $1\;1\;4\;8\;6\;2\;7\;1.$

Figure 5.410: Illustration of the first constraint of the **Example** slot: a sequence of eight variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 respectively fixed to values 1, 1, 4, 8, 6, 2, 7, 1 and its corresponding highest peak 8

```
\begin{tabular}{ll} {\bf Typical} & |{\tt VARIABLES}| > 2 \\ & {\tt range}({\tt VARIABLES.var}) > 2 \\ & {\tt peak}({\tt VARIABLES.var}) > 0 \\ \end{tabular}
```

20040530 1327

Symmetry

Items of VARIABLES can be reversed.

Arg. properties

Functional dependency: HEIGHT determined by VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for highest_peak: domains 0..n

Solution density for highest_peak

1328 AUTOMATON

Length (n)			3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter value	-1000000	9	50	295	1792	11088	69498	439791
	1	-	1	11	92	697	5036	35443
	2	-	4	44	380	3000	22632	166208
	3	-	9	99	900	7587	61389	484020
	4	-	-	176	1712	15680	138544	1195056
	5	-	-	-	2900	29125	283250	2693425
	6	-	-	-	-	50472	540576	5665896
	7	-	-	-	-	-	976227	11233250
	8	-	-	-	-	-	-	21133632

Solution count for highest_peak: domains 0..n

20040530 1329

Solution density for highest_peak

Parameter value as fraction of length

Solution density for highest_peak

Parameter value as fraction of length

See also

common keyword: deepest_valley, peak (sequence).
implies: between_min_max.

1330 AUTOMATON

Keywords

characteristic of a constraint: automaton, automaton with counters, automaton with same input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.

20040530 1331

Automaton

Figure 5.411 depicts the automaton associated with the highest_peak constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR_i , VAR_{i+1} and S_i :

$$\mathtt{VAR}_i \ < \mathtt{VAR}_{i+1} \Leftrightarrow S_i = 0 \ \land \ \mathtt{VAR}_i \ = \mathtt{VAR}_{i+1} \Leftrightarrow S_i = 1 \ \land \ \mathtt{VAR}_i \ > \mathtt{VAR}_{i+1} \Leftrightarrow S_i = 2.$$

Figure 5.411: Automaton of the highest_peak constraint and its glue matrix (state s means that we are in *decreasing* or *stationary* mode, state u means that we are in *increasing* mode, a new peak is detected each time we switch from increasing to decreasing mode and the counter C is updated accordingly); minint is the smallest integer that can be represented on a machine

Figure 5.412: Hypergraph of the reformulation corresponding to the automaton of the highest_peak constraint (C_0 is set to minint the largest integer that can be represented on a machine)