Definition 1 ("exactness"). A functor $D^+(C) \to D^+(C)$ is "exact" if it maps distinguished triangles to distinguished triangles.

Proposition 2. Let $F: \mathcal{C} \to \mathcal{D}$ be exact. Then it takes quasi-isomorphisms to quasi-isomorphisms.

Therefore it defines a functor $DF: D^+(\mathcal{C}) \to D^+(\mathcal{D})$ and the functor is "exact".

Definition 3 (adapted class). We say that a class \mathcal{R} of objects in \mathcal{C} is adapted to a functor F if it satisfies:

- R is closed under finite coproducts,
- F takes acyclic complexes from $K^+(\mathcal{R})$ to acyclic ones,
- every object of C embeds into an object of R.

Proposition 4. Let \mathcal{R} be an adapted class of objects of \mathcal{C} for a left exact additive functor $F: \mathcal{C} \to \mathcal{D}$. Let $S_{\mathcal{R}}$ be the class of quasi-isomorphisms in $K^+(\mathcal{R})$. Then $S_{\mathcal{R}}$ is localizing and the canonical functor $K^+(\mathcal{R})[S_{\mathcal{R}}^{-1}] \to D^+(\mathcal{C})$ is an equivalence of categories.

Definition 5. Let $F: \mathcal{C} \to \mathcal{D}$ be an additive, left exact functor between abelian categories. Its derived functor D^+F consists of a functor

$$RF: D^+(\mathcal{C}) \to D^+(\mathcal{D})$$

which is exact and a morphism of functors

$$\varepsilon_F: \mathcal{Q}_{\mathcal{D}} \circ \operatorname{K}^+(F) \to \operatorname{D}^+(F) \circ \mathcal{Q}_{\mathcal{C}}$$

such that for any exact $G: D^+(\mathcal{C}) \to D^+(\mathcal{D})$ and any natural $\varepsilon: \mathcal{Q}_{\mathcal{D}} \circ K^+(F) \to G \circ \mathcal{Q}_{\mathcal{C}}$ there exists a unique morphism $\eta: D^+F \to G$ such that the diagram is commutative:

$$\mathcal{Q}_{\mathcal{D}} \circ \mathrm{K}^{+}(F) \xrightarrow{\varepsilon} G \circ \mathcal{Q}_{\mathcal{C}}$$

$$\uparrow \eta \circ \mathrm{id}_{\mathcal{Q}_{\mathcal{C}}}$$

$$D^{+} F \circ \mathcal{Q}_{\mathcal{C}}$$

Theorem 6. If for F there exists an adapted class \mathcal{R} of objects in \mathcal{C} , then D^+F exists and is unique up to an isomorphism.

Theorem 7. RF may be defined via the composition $D^+(\mathcal{C}) \to K^+(\mathcal{R})[S_{\mathcal{R}}^{-1}] \xrightarrow{F} D^+(\mathcal{D})$.

Theorem 8. If C contains enough injective objects, then the class \mathcal{I} of them is adapted to any left exact functor $F: C \to \mathcal{D}$.

Proposition 9. When $\mathcal{R} = \mathcal{I}$, then ε_F may be defined in the following way.

 $T: \mathrm{K}^+(\mathcal{I}) \to \mathrm{D}^+(\mathcal{C})$ is an equivalence of categories, $U: \mathrm{D}^+(\mathcal{C}) \to \mathrm{K}^+(\mathcal{I})$ inverse equivalence, we know that for Y injective $\mathrm{Hom}_{\mathrm{D}^+(\mathcal{C})}(X,Y) \simeq \mathrm{Hom}_{\mathrm{K}^+(\mathcal{C})}(X,Y)$, so take $f: X \to I$ a quasi-isomorphism in $\mathrm{Hom}_{\mathrm{D}^+(\mathcal{C})}(\mathcal{Q}X, TU\mathcal{Q}X)$ and denote by f_X its image under the bijection in $\mathrm{Hom}_{\mathrm{K}^+(\mathcal{C})}(X, U\mathcal{Q}X)$, and define $(\varepsilon_F)_X = \mathcal{Q}F(f_X)$.