21-301A Combinatorics Week 1

The notation # means the word "number". Let X be a set of size n. Write $[n] = \{1, 2, 3, ..., n\}$. Let 1 (M). Binomial coefficients

- Define $2^X := \{A : A \subset X\}$ and show $|2^X| = 2^{|X|} = 2^n$.
- Define $\binom{X}{k} := \{A \subset X : |A| = k\}.$
- Fact: $\binom{X}{k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$. That is: the binomial coefficient $\binom{n}{k}$ presents the number of selections of size k out of n distinct elements.

In its proof, we also show that # of ordered k-tuple $(x_1,...,x_k)$ with $x_i \in X$ is equal to $(n)_k := n(n-1)...(n-k+1)$.

- If n < k, then $\binom{n}{k} = 0$.
- Fact: the binomial coefficient $\binom{n}{k}$ also equals # of integer solutions $(x_1, x_2, ..., x_n)$ to $x_1 + x_2 + ... + x_n = k$ with each $x_i \in \{0, 1\}$.
- Fact: # of integer solutions $(x_1, ..., x_n)$ to equation $x_1 + ... + x_n = k$ with each $x_i \ge 0$ = # of labellings of k identical objects using n distinct labels = $\binom{n+k-1}{n-1}$

In its proof, we define a bijection from the set of solutions to $\binom{[n+k-1]}{n-1}$. It is suggested to read another proof in the book on page 69.

Lec 2 (W). Some properties of binomial coefficients and counting functions

- Fact: $\binom{n}{k} = \binom{n}{n-k}$.
- Fact: $2^n = \sum_{k=0}^n \binom{n}{k}$.

We use a combinatorial proof; here we count the same combinatorial object using two ways, which give us two expressions of the same value.

- Fact: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.
- We mention the **Pascal Triangle**, whose number in the *n*th row and *k*th column is the binomial coefficient $\binom{n}{k}$. This can be explained by using the previous fact.
- Define X^Y to be the set of all functions $f: Y \to X$. Let |X| = n and Y = [r].
- We also can view X^Y as the set of all strings $x_1x_2...x_r$ with elements $x_i \in X$, indexed by elements of Y.
- Fact: $|X^Y| = n^r = |X|^{|Y|}$.
- Fact: The number of injective functions $f \in X^Y$ is equal to $(n)_r$.
- Definition (The Stirling number of the second kind). Let S(r, n) be the number of partitions of a set of size r into n non-empty parts.

1

- Exercise. $S(r,2) = \frac{1}{2} \sum_{i=1}^{r-1} {r \choose i}$.
- **Theorem.** The number of surjective functions $f \in X^Y$ is equal to S(r,n)n!.
- Any injection f: X → X is called a **Permutation** of X (also a bijection).
 We mention that we may view a permutation in two ways: it is a function from X to X; it also can be think of an arrangement of the elements of X.
- The # of permutations of [n] is n!.

Lec 3 (F). Multiplying polynomials and the Binomial Theorem

- Define $[x^k]f$ to be the coefficient of term x^k in a polynomial f(x).
- Fact 1: For j = 1, 2, ..., n, let

$$f_j(x) := \sum_{i \in I_j} x^i$$

be a polynomial (note the coefficient of each term is either 1 or 0), where I_j is a set containing nonnegative integers (finite many or infinity). Let $f(x) = f_1 f_2 ... f_n$ be the product of polynomials.

Then $[x^k]f$ is the number of solutions $(i_1,...,i_n)$ to $i_1+...+i_n=k$ with $i_j\in I_j$ for j=1,2,...,n.

• Fact 2: Let $f = f_1 f_2 ... f_n$ be a product of polynomials. Then

$$[x^k]f = \sum_{i_1 + \dots + i_n = k} \left(\prod_{j=1}^n [x^{i_j}] f_j \right).$$

This is a more general formula than the Fact 1.

• The Binomial Theorem. It holds for any real x and any positive integer n that

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

In the proof we show, we use the Fact 1.

- A nice Exercise. Prove $(1+x)_n = \sum_{k=0}^n \binom{n}{k} (x)_k$ for any real x and integer $n \ge 1$, where $(x)_k = x(x-1)...(x-k+1)$ denotes a polynomial.
- Fact. $\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i}^2$. In its proof, we use the Fact 2 as well as the binomial theorem.
- Fact. $\sum_{\text{all odd } k} \binom{n}{k} = \sum_{\text{all even } k} \binom{n}{k} = 2^{n-1}$
- Fact. $n2^{n-1} = \sum_{k=1}^{n} k \binom{n}{k}$.

Some notices.

- In week 1, Sections 3.1-3.3 and 12.1 from textbook are covered.
- Besides homework problems, the following problems from book are also fun to work on: 2,4,6 in Section 3.1; 1,3,5(b),7(b) in Section 3.2; 3,4,16,17,18 in Section 3.3; 5 in Section 12.1.