knitr. Beamer. and FragileFrame

Briefing of PRC Project

PRC Team¹

November 6, 2018

Background

knitr, Beamer, and FragileFrame

PRC Team

- Aim 1: Develop procedures for rapid optimization and validation of "Personalized-Reference Chart" (PRC) algorithms for:
 - Knee function
 - Physical Function, and
 - Patient-reported function
- Aim 2: Develop a software application that generates PRCs and integrates with clinical practice
- Aim 3: Examine the implementation of PRCs in clinical practice via a feasibility study framework

Method

knitr, Beamer, and FragileFrame

PRC Team

Steps	Description	Modeling
1	Splitting of training and testing data	Train-Test Split
2	Fitting of model to predict clinically relevant outcome (e.g. 90 day post-operative TUG)	Linear Mixed Model w/ b-spline
3	Fitting of model based on variables that contribute significantly to the previously predicted outcome	General Linear Model
4	Matching of patients based on the fit- ted/predicted value generated from the genera linear model	Nearest N Matching
5	Leave one out cross validation to obtain measures of bias, coverage, and precision	LOOCV
6	Based on optimal number of matches, predict on test set	Generalized Additive Model for Location Scale, and Shape

Table 1

knitr, Beamer, and FragileFrame

PRC Team

Table: Table 1. Baseline Characteristics of Training and Testing Set

	Test (N = 202, # TUG Obs = 604)	Train (N = 397, $\#$ TUG Obs = 1339)	р
Age (years) (mean (sd))	65.90 (8.84)	64.04 (8.43)	0.012
Gender = Male (%)	84 (41.6)	185 (46.6)	0.280
BMI (kg/m^2) (mean (sd))	31.98 (6.20)	31.33 (5.82)	0.208
Baseline TUG (sec) (mean (sd))	11.00 (5.04)	9.98 (4.95)	0.018

Figure 2

knitr, Beamer, and FragileFrame PRC Team

Figure 3

knitr, Beamer, and FragileFrame PRC Team

Figure: Calibration plot of N=35 matches using Box-Cox-Cole-Green distribution for location, shape, and scale for gamlss

Figure 4: Zoom In

knitr, Beamer, and FragileFrame PRC Team First Test

Result

Figure: Bias, Precision, and Coverage plot using Box-Cox-Cole-Green distribution for location, shape, and scale for gamlss; Zoomed In