# Heron's formula

In this activity we will give two proofs of Heron's formula.

We'll start by giving a proof using synthetic geometry.

### Part I

**Proposition 1.** The bisectors of the angles of a triangle meet at a point that is the center of the triangle's inscribed circle.

Question 1 How can we prove this?

**Question 2** Now draw a triangle with vertices A, B, and C. Draw the incircle. Explain why the radii of the incircle touch the sides of the triangle at right angles.

**Question 3** Label the intersection of the radii with D between A and B, E between B and C, and F between C and A. Compute the areas of the following triangles:

$$\triangle AOB$$
,  $\triangle BOC$ ,  $\triangle COA$ .

Use this to express the area of  $\triangle ABC$ .

#### Part II

**Question 4** Explain why

$$\triangle AOD \cong \triangle AOF$$
,  $\triangle BOD \cong \triangle BOE$ ,  $\triangle COF \cong \triangle EOF$ .

**Question 5** If  $AG \cong CE$ , explain why |BG| is the semiperimeter.

Question 6 Find segments in your drawing equal to the length of

$$s-a$$
,  $s-b$ ,  $s-c$ .

Learning outcomes: Author(s):

### Part III

**Proposition 2.** If quadrilateral AHBO has diagonals AB and OH with  $\angle$ HAB and  $\angle$ HOB being right angles, then AHOB can be inscribed in a circle.

**Question 7** Can you prove this proposition?

**Proposition 3.** The opposite angles of a cyclic quadrilateral sum to two right angles.

**Question 8** Can you prove this proposition?

Question 9 Now we need to decorate our triangle even more:

- (a) Draw OL perpendicular to OB cutting AB at K.
- (b) Draw AM perpendicular to OB.
- (c) Call the intersection of OL and OM, H.
- (d) Draw BH.

Consider quadrilateral AHBO, explain why opposite angles sum to two right angles.

**Question 10** Explain why  $\triangle COF$  is similar to  $\triangle BHA$ . Use this to explain why

$$\frac{|AB|}{|AG|} = \frac{|AH|}{r}.$$

**Question 11** Explain why  $\triangle KAH$  is similar to  $\triangle KDO$ . Use this to explain why

$$\frac{|AK|}{|KD|} = \frac{|AH|}{r}.$$

Question 12 Now we see

$$\frac{|AB|}{|AG|} = \frac{|AK|}{|KD|}.$$

Add 1 to both sides to obtain

$$\frac{|BG|}{|AG|} = \frac{|AD|}{|KD|}$$

**Question 13** Explain why  $\triangle KDO$  is similar to  $\triangle ODB$ . Use this to explain why

$$|KD| \cdot |BD| = r^2.$$

Question 14 Multiply both sides of

$$\frac{|BG|}{|AG|} = \frac{|AD|}{|KD|}$$

by 
$$\frac{|BD|}{|BD|}$$
 to obtain

$$r^2|BG|^2 = |AG| \cdot |BG| \cdot |AD| \cdot |BD|.$$

Question 15 Explain how to deduce Heron's formula.

# A modern proof

Question 16 Now give a modern proof that a high school student might give.

Question 17 Which proof was harder? Why didn't the ancient Greeks use our modern proof?