COMP472: Artificial Intelligence Machine Learning Evaluation

Russell & Norvig: Sections 19.4

Today

- Introduction to ML
- 2. Naive Bayes Classification
 - Application to Spam Filtering
- 3. Decision Trees
- (Evaluation YOU ARE HERE!

我们怎么评价machine-learning model效率

- Unsupervised Learning)
- Neural Networks
 - Perceptrons
 - Multi Layered Neural Networks

Data Sets

还是supervised learning的领域(有f(x))

How do you know if what you learned is correct?

指的就是test set

- You run your classifier on a data set of unseen examples (that you did not use for training) for which you know the correct classification
- Split data set into 3 sub-sets

training

1. Actual training set (~80%)
2. Validation set (~20%)
3. Test set - ~20%

dataset被分为三部分,前两部分叫做training,,用来构建model,在构建完以后test set才会被投入使用 将预测结果与实际结果进行比较

Standard Methodology

- 1. Collect a large set of examples (all with correct classifications)
- 2. Divide collection into training, validation and test set

Loop:

build the model

conditional probability, prior probability...

- 3. Apply learning algorithm to the training set to learn the parameters
- 4. Measure performance with the validation set, and adjust hyperparameters* to improve performance validation set用来评估我们通过training set建立的model,
- 5. Measure performance with the test set #且通过hyper parameters进行tweak,adjust微调

34无限重复,,直到你得到了一个好model, 开始5

■ DO NOT LOOK AT THE TEST SET until step 5.

Parameters:

basic values learned by the ML model. eg. ML学习的数据

- for NB: prior & conditional probabilities naive bayes:各种几率
- · for DTs: features to split
- for ANNs: weights

Hyper-parameters: parameters used to set up the ML model. eg.

- for NB: value of delta for smoothing, smoothing曲线用的, 1, 0.5这种
- for DTs: pruning level
- for ANNs: nb of hidden layers, nb of nodes per layer...

Metrics _{评判标准}

- **QCCUPQCy** TEST SET里 我们模型准确预测的百分比
 - % of instances of the test set the algorithm correctly classifies
 - when all classes are equally important and represented

f(x),所有f(x)重要性相等

balanced,例如f(x)有80%class是狗,10%是猫,10% 是老鼠,就不算represented/ballanced dataset.

- Recall, Precision & F-measure
 - when one class is more important and the others

如果没有满足equally important and balanced,我们要使用第二套标准

Accuracy

- % of instances of the test set the algorithm correctly classifies
- when all classes are equally important and represented
- problem:
 - when one class (eg. sick) is more important and the others
 - eg. when data set is unbalanced

accuracy其实挺好的,但生活中没用,我们更想检查出生病的人(sick is more important),所以unbalanced不能用第一种

	Target	system 1
X1	sick	ok ×
X2	sick	ok ×
X3	sick	ok ×
X4	sick	ok ×
X5	sick	ok ×
X6	ok	ok ✓
X7	ok	ok ✓
X500	ok	ok ✓
Accuracy		495/500 = 99% !

Recall, Precision

比例

- Recall: What proportion of the instances in the class of interest (eg. sick) are labelled correctly? 所有实际sick的instance有几个被标出来了
- Precision: What proportion of instances labeled with the class of interest (eg. sick) are actually correct? 所有标出来的sick有几个是实际sick

			Correc	ct class	
			instance should	instance should	
			be in class C	<u>not</u> be in class C	
	l ction	instance is put in class C	True Positive (TP)	False Positive (FP)	
	Model prediction	instance is <u>not</u> put in class <i>C</i>	False Negative (FN)		of instances that
Prec	ision =_ Tf	class C and identify p+Fp nb of instan	ances that are in d that the model fied as class C ces that the ed as class C	TP the n	n class C and that nodel identified as class C All instances that are in class C

Example

	Target	system 1	system 2	system 3
X1	sick	sick √	sick ✓	ok ×
X2	sick	ok ×	ok ×	sick ✓
X3	sick	ok ×	sick ✓	sick ✓
X4	sick	ok ×	sick ✓	sick ✓
X5	sick	ok ×	ok ×	sick ✓
X6	ok	ok ✓	ok ✓	sick ×
X7	ok	ok ✓	ok ✓	sick ×
	ok	ok ✓	ok ✓	ok ✓
	ok	ok ✓	ok ✓	ok ✓
X500	ok	ok ✓	ok ✓	ok ✓
Accuracy		496/500 = 99%	498/500 = 99.6%	497/500 = 99.4%
Precision		1/1 = 100%	3/3 = 100%	4/6 = 66.7% 标出来的sick有几个
Recall		1/5 = 20%	3/5 = 60%	<u> </u>

Which system is better?

A Single Measure

- cannot take mean of P&R
 - □ if R = 50% P = 50% M = 50%
 - □ if R = 100% P = 10% M = 55% (not fair) 500个。50个sick,你全标sick,但实际上你这模型很差
- 1. take harmonic mean 调和平均数
 - u which penalizes extreme values 他让极端情况的评分下降

$$HM = \frac{2}{\frac{1}{R} + \frac{1}{P}}$$
 HM is high only when both P&R are high if R = 50% and P = 50% HM = 50% if R = 100% and P = 10% HM = 18.2%

2. if P and R should not have the same importance in the problem domain, take <u>weighted</u> harmonic mean 如果recall与precision有时候有一个侧重点,我们就改变系数

$$WHM = \frac{1}{\frac{1}{2}\frac{1}{R} + \frac{1}{2}\frac{1}{P}} // \text{ if weight R = weight P = } \frac{1}{2}$$

$$WHM = \frac{1}{\frac{1}{a}\frac{1}{R} + \frac{1}{b}\frac{1}{P}} // \text{ if weight R} = \frac{1}{a} \text{ weight P} = \frac{1}{b} \text{ and } \frac{1}{a} + \frac{1}{b} = 1$$

Weighted Harmonic Mean of P&R

$$WHM = \frac{1}{\frac{1}{a}\frac{1}{R} + \frac{1}{b}\frac{1}{P}}$$
 // if weight R = $\frac{1}{a}$ weight P = $\frac{1}{b}$ and $\frac{1}{a} + \frac{1}{b} = 1$

1/a+1/b需要等于1

1. let
$$w_R = \frac{\delta}{\delta + 1}$$
 $w_P = \frac{1}{\delta + 1}$ // so that $w_R + w_P = \frac{\delta + 1}{\delta + 1} = 1$

$$WHM = \frac{1}{\left(\frac{\delta}{\delta+1}\right)^{\frac{1}{R}} + \left(\frac{1}{\delta+1}\right)^{\frac{1}{P}}} = \frac{\delta+1}{\delta^{\frac{1}{R}} + 1^{\frac{1}{P}}} = \frac{(\delta+1)PR}{\delta P + 1R}$$
 可以换成以下形式

2. let
$$\delta = \beta^2$$

$$WHM = \frac{(\beta^2 + 1)PR}{\beta^2 P + 1R} \text{ // called the F-measure}$$

可以改成这个形式,叫做F-measure

F-measure

A weighted harmonic mean of precision and recall

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{(\beta^2 P + R)}$$

F measure是一组measure,由β决定,例如F1 measure,F0.5measure...

- ullet eta represents the relative importance of recall to precision
 - \Box when $\beta = 1$

β代表着recal | 相对重要性与precision相比,=1同样重要,大于1recal | 更重要小于1precision更重要,

- F1 measure
- precision & recall have same importance
- \Box when $\beta > 1$
 - recall is given more weigth
 - e.g. F₂ measure, recall is considered 2x more important than precision β等于2, 说明recall 两倍重要
- \Box when β < 1
 - precision is given more weigth
 - \bullet e.g. $F_{0.5}$ measure, precision is considered 2x more important than recall

Example

	Target	system 1	system 2	system 3
X1	sick	sick ✓	sick ✓	ok ×
X2	sick	ok ×	ok ×	sick ✓
X3	sick	ok ×	sick ✓	sick ✓
X4	sick	ok ×	sick ✓	sick ✓
X5	sick	ok ×	ok ×	sick ✓
X6	ok	ok ✓	ok ✓	sick ×
X7	ok	ok ✓	ok ✓	sick ×
••	ok	ok ✓	ok ✓	ok ✓
••	ok	ok ✓	ok ✓	ok ✓
X500	ok	ok ✓	ok ✓	ok ✓
Accuracy		496/500 = 99%	498/500 = 99.6%	497/500 = 99.4%
Precision		1/1 = 100%	3/3 = 100%	4/6 = 66.7%
Recall		1/5 = 20%	3/5 = 60%	4/5 = 80%
F1-measure		2*100*20/ (100+20)	75%	72.9%
2PR/(P+R) β	等于1	= 33%		

P, R and F for Multiclass Classification

上面的是偏重一项例如SICK的,如果我们偏重多个CLASS(鼠,猫,狗这种不同结果的F(X)),那么我们需要

- previous P, R and F are ok when 1 particular class interests us (eg. sick)
- What if several classes interest us?
- then
 - □ compute per-class P, R, F 把每个class的PRF算一遍
 - and to have a single measure for all classes: combine per-class
 F-measures via
 - macro F-measure, or
 - weighted-average F-measure

Per-class Precision & Per-class Recall

			Correct Class					
		Ca	Cat Dog Fish					
ס	Cat	(4	_6	3	. 13		
Predicted Class	Dog	X	1	2	0	3		
redi Clo	Fish	X	1	2	6	9		
Pr	Total		6	10	9	25		

FP.FN都是针对猫的

就是前面TP,FP,FN,TN一套, 红色圈的是猜了猫,实际也是猫,也就是好的TP 下划线就是猜了猫,实际上是狗或者实际上是鱼,那对于猫来说他

X代表着FALSE NEGATIVE,我们猜没有猫(猜成别的了),实际上是猫,就是FN FALSE NEGATIVE

每一格代表的猜成X(行),实际上是Y(列),横着的TOTAL代表一共猜了几次猫竖着的TOTAL代表一共有几个猫

- precision of class Cat: 4/(4+6+3) = 30.8% precision就是猜了几次对了几个
- precision of class Dog: 2/(1+2+0) = 66.7%
- precision of class Fish: 6/(1+2+6) = 66.7%
- recall of class Cat: 4/(4+1+1) = 66.7%
- recall of class Dog: 2/(2+6+2) = 20%
- recall of class Fish: 6/(3+0+6) = 66.7%

reccall就是有那么多你猜对了几个

Per-class F1-measure

	Precision	Recall	F1
Cat	30.8%	66.7%	42.1%
Dog	66.7%	20.0%	30.8%
Fish	66.7%	66.7%	66.7%

- F1 of class Cat: $(2 \times .308 \times .667) / (.308 + .667) = 0.421$
- F1 of class Dog: $(2 \times .667 \times .200) / (.667 + .200) = 0.308$
- F1 of class Fish: $(2 \times .667 \times .667) / (.667 + .667) = 0.667$

有了PR求出F1

Macro and Weighted-Average Measures

macro precision	\supset	Precision	Recall	F1
macro recall,	', Cat	30.8%	66.7%	42.1%
macro F1	Dog	66.7%	20.0%	30.8%
	Fish	66.7%	66.7%	66.7%
	average	(30.8+66.7+66.7) / 3 =	(66.7 + 20.0 + 66.7) / 3	(42.1+30.8+66.7)
		54.7%	= 51.1%	= 46.5%
	weighted-	(6×30.8 // 6 cat	(<mark>6</mark> x66.7	(6x42.1
	average	+ 10×66.7 // 10 dog	+ 10×20.0	+ 10×30.8
	_/ \	+ 9x66.7) // 9 fish	+ 6x66.7)	+ 6x66.7)
weighted-averag	ged precision,	/ (6+10+9) // 25 samples	/ 25	/ 25
weighted-average weighted-average		= 58.1%	= 48.0%	= 46.4%

- to combine measures into a single one, we can:
 - □ take simple average macro:简单的就求平均
 - --> macro precision, macro recall, macro F1
 - □ take weighted average 实际上我们有6只猫,10只狗,9只鱼,每个人都有一个系数6/25,10/25,9/25
 - ie. weight the average based on the nb of samples from each class
 - --> weighted averaged precision, weighted averaged recall, weighted averaged F1

Confusion Matrix 也叫contingency table

- to do an error analysis and find out where the model went wrong?
- aka contingency table 用来分析错误,找到Model哪儿出问题了
- eg. 6 classes, 100 test instances 就是第14页那个

			Correct Class							
		<i>C</i> 1	C2	<i>C</i> 3	C4	<i>C</i> 5	<i>C</i> 6	Total		
	<i>C</i> 1	10✓	3×	0	0	3×	0	16		
Class	C2	0	12✓	3×	4×	0	0	19		
	<i>C</i> 3	0	1×	9√	2×	1×	2×	15		
Predicted	C4	0	1×	3×	5√	2×	0	11		
dic	<i>C</i> 5	0	0	3×	2×	10✓	3×	18		
Pre	C6	0	0	5×	0	5×	11 🗸	21		
	Total	10	17	23	13	21	16	100		

实际猜了16次C1

实际有10个C1

A Learning Curve

数据越多, the more you learn, 但是到了后面加起来很微弱

理论上你可以得到一个完全精确地set,但实际上很难,因为生活中dataset很难完全正确,甚至你用同样的training set构建模型,再用同样的set作为test set,也很难达到1

- Size of training set
 - the more, the better
 - but after a while, not much improvement...

source: Mitchell (1997)

Some Words on Training

- In all types of learning... watch out for:
 - Noisy input
 - Overfitting/underfitting the training data

Noisy Input

- In all types of learning... watch out for:
 - Noisy Input:
 - Two examples have the same feature-value pairs, but different outputs

Size	Color	Shape	Output
Big	Red	Circle	+
Big	Red	Circle	-

- Some values of features are incorrect or missing (ex. errors in the data acquisition)
- Some relevant attributes are not taken into account in the data set

可能第二个shape是circle,,也可能Output是+,或者是4TH feature没有被考虑到这也是为什么即使你用你的training set作为test set,也可能做不到100%精确率

Overfitting

有很多实际上并不相关的feature,在这个training data里面因为巧合显得相关,我们如果面面俱到,会产生overfit,过于符合training data了

- If a large number of irrelevant features are there, we may find meaningless regularities in the data that are particular to the training data but irrelevant to the general problem.
- Complicated boundaries overfit the data

- they are too tuned to the particular training data at hand
- They do not generalize well to the new data
- Extreme case: "rote learning"
- Training error is low training error少
- Testing error is high

Underfitting

- We can also underfit data, i.e. find a decision boundary that is too simple
- Model is not expressive enough (not enough features, or not enough capacity)

Training error is high

Testing error is high

Cross-validation

K-fold cross-validation

K就是折叠成几分

- □ run k experiments, each time you test on 1/k of the data, and train on the rest
- than you average the results
- ex: 10-fold cross validation
 - 1. Collect a large set of examples (all with correct classifications)
 - 2. Divide collection into two disjoint sets: training (90%) and test (10% = 1/k)
 - 3. Apply learning algorithm to training set
 - 4. Measure performance with the test set
 - 5. Repeat steps 2-4, with the 10 different portions
 - 6. Average the results of the 10 experiments

exp1:	train							test		
exp2:	train							test	train	
exp3:	train						test	tro	ain	
	•••									

Today

- Introduction to ML
- 2. Naïve Bayes Classification 🔨
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks

Up Next

- Introduction to ML
- 2. Naive Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks