Question	Answer		Mark
Number			
12(a)	Use of $\sigma = F / A$ $\sigma = 3.8 \times 10^8 \text{ Pa [accept N m}^{-2}]$	(1)	
	Or		
	$F_{b} = 170 \text{ N}$		
	Or		
	$A_{\min} = 3.6 \times 10^{-7} \text{ m}^2$	(1)	
	Valid comparison in consistent units and conclusion	(1)	3
	Example of calculation		
	$\sigma = 150 \text{ N} \div 3.97 \times 10^{-7} \text{ m}^2 = 3.78 \times 10^8 \text{ Pa}$		
	3.78 < 4.20 ∴ will not break		
12(b)(i)	Determine gradient of straight line section [straight line ends at 5 mm]	(1)	
(%)(=)	$[\Delta x \ge 3 \text{ mm for gradient}][\text{Allow use of tangent at origin}]$	(1)	2
	$k = 1.30 \times 10^4 (\text{N m}^{-1})$ [acceptable range to be determined at pre-stand]	()	
	[1.27 to 1.33][need to see third s.f.]		
	Example of calculation		
	gradient = $60 / 4.6 = 13.0$		
	gradient = $k / N \text{ mm}^{-1}$		
	$k = 13.0 \text{ N mm}^{-1} = 1.30 \times 10^4 \text{ N m}^{-1}$		
12(b)(ii)	Use of $k = EA/x$	(1)	
	$E = 1.3 \times 10^{11} \text{ Pa [or N m}^{-2}](\text{ecf from (b)(i))[their (b)(i)} \times 1.01 \times 10^{7} + \text{unit]}$	(1)	2
	Example of calculation		
	$\overline{E = k x / A}$		
	$E = 1.3 \times 10^4 \mathrm{N \ m^{-1}} \times 4.00 \div 3.97 \times 10^{-7} \mathrm{m^2}$		
	$E = 1.3 \times 10^{11} \text{Pa}$		

7

Total for question 12