

Ce document regroupe les informations sur les mesures de capteurs de la RearSensorBoard.

Documents et liens

Nom	liens
Production (dernière version)	<u>ici</u>
Simulation	<u>ici</u>
Calculations	<u>ici</u>
Mesures	<u>ici</u>
Node-red	<u>ici</u>

Thermopile

ADC

Datasheet ADC (ADC081C021CIMM_NOPB)

• ic

Adresses ADC thermopile arrière

- ADC thermopile 0x54
- ADC thermistance 0x50

Adresses ADC thermopile bas

- ADC thermopile 0x55
- ADC thermistance 0x51

Adresses registres ADC

•	Registre conversion	0x00
•	Registre alert	0x01
•	Registre configuration	0x02
•	Registre limite low	0x03
•	Registre limite high	0x04
•	Registre hyst	0x05
•	Registre conversion low	0x06
•	Registre conversion high	0x07

Partie thermopile

Lecture conversion

Lire la conversion sur le registre 0x00

D15	D14	D13	D12	D11	D10	D9	D8
Alert Flag	Alert Flag Reserved			Conversion Result [7:4]			
D7 D6 D5 D4 D3 D2						D1	D0
Conversion Result [3:0]					Rese	erved	

Lecture en word 2 octets, les octets lus doivent être réorganisés.

Par exemple, on lit 0xABCD réorganisé en MSB LSB à 0xCDAB et les données "Conversion Result" correspondent à 0xDA.

Conversion en Tension

ADC TRANSFER FUNCTION

The output format of the ADC081C021 is straight binary. Code transitions occur midway between successive integer LSB values. The LSB width for the ADC081C021 is V_A / 256. The ideal transfer characteristic is shown in Figure 23. The transition from an output code of 0000 0000 0000 to a code of 0000 0000 0001 is at 1/2 LSB, or a voltage of V_A / 512. Other code transitions occur at intervals of 1 LSB.

Figure 23. Ideal Transfer Characteristic

- Convertir la valeur de la conversion en décimal (0xDA donne 218)
- Valeur de la tension = (Valeur de la conversion en décimal -1) * Vref /256 + Vref /512
- Vref = 3.3 (tension d'alimentation)

Conversion tension en température

Calibration ampli

Pour celà il faut avoir le gain et l'offset appliqués à la tension d'entrée, en production ces valeurs seront obtenues par calibration, sinon on a les valeurs théoriques ci-dessous:

- Offset théorique = 1.43
- Gain théorique = 727

Pour obtenir la tension thermopile:

Vt = (Vm - offset)/Gain

Vt tension thermopile

Vm tension mesurée ADC

Calibration thermopile

La thermopile donne les valeurs de tensions suivantes de 0-50°C.

On détermine une équation de conversion pour 0-50°C.

$$y = 12.3701 * x + 23.869$$

y température en °C

x tension thermopile en mV

Pour avoir la température on a

$$T = ((Vm - Offset)/Gain) * 12.3701 * 1000 + 23.869$$

Exemple

Mesure ADC	Ueff	Température
102	1,308	21,80
100	1,283	21,36
99	1,270	21,14
98	1,257	20,92
131	1,682	28,16

Les calculs réalisés avec les valeurs théoriques peuvent induire à des dérives de quelques degrés sur la température, dû à la faible valeur de la tension thermopile (quelques mV).

Comment déterminer le gain et l'offset réels:

- Sur 2 points de mesures, Ta et Va, Tb et Vb (Température a et b et tension a et b)
- Il suffit alors résoudre un système d'équation à 2 inconnues
 - o On sait que y = 12.3701 * x + 23.869 y étant Tet x tension thermopile en mV
 - On sait aussi x = ((V Offset)/Gain) * 1000 V étant la tension ADC mesurée
- Ce qui donne ce système d'équations à 2 inconnues:


```
\circ Ta = 12.3701 * ((Va - offset)/Gain) * 1000 + 23.869
```

$$\circ$$
 Tb = 12.3701 * ((Vb - offset)/Gain) * 1000 + 23.869

Thermistance

On peut récupérer la valeur de la thermistance en lisant aussi son ADC.

Lecture conversion

Pareil que pour la partie thermopile

Conversion en tension

Pareil que pour la partie thermopile

Conversion tension en thermistance

On a une résistance R 10k en pullup sur la thermistance, pour calculer la résistance de la thermistance on a l'équation suivantes:

$$Rth = (R * Vref)/(Vref - Vm) - R$$

Vref = 3.3 (Tension alimentation)

R=10k (résistance en pullup)

Vm tension ADC mesurée

Conversion thermistance en température

Pour calculer la température par rapport à la valeur de la thermistance, on peut utiliser la relation de Steinhart-Hart.

$$1/T = A + B * ln(Rth) + C * (ln(Rth))^{3}$$

Les coefficient de Steinhart-Hart sont déterminés avec la datasheet du thermopile:

Thermistor Resistance

Tambient	Rmin	Rcent	Rmax	
(kΩ)	(kΩ)	(kΩ)	(kΩ)	
-20	893.8	942.3	992.6	
-15	15 677.7 712.5		748.4	
-10	518.2	543.3	569.2	
-5	399.4	417.6	436.4	
0	310.1	323.5	337.1	
5	242.6	252.4	262.4	
10	191.1	198.3	205.7	
15	151.5	156.9	162.3	
20	120.9	124.9	128.9	
25	97.00	100.0	103.0	
30	77.97	80.55	83.15	
35	63.03	65.25	67.50	
40	51.22	53.14	55.09	
45	41.85	43.50	45.18	
50	34.36	35.79	37.24	
55	28.35	29.58	30.84	
60	23.49	24.56	25.66	
65	19.56	20.49	21.44	
70	16.35	17.16	17.99	
75	13.73	14.43	15.15	
80	11.57	12.18	12.81	
85	9.79	10.32	10.88	
90	8.313	8.781	9.267	
95	7.085	7.495	7.923	
100	6.058	6.420	6.796	

On peut utiliser des calculator comme : ici

Pour cette thermistance on a:

A = 0,0007599604972

B = 0,0002096719877

C = 0,0000001180320549

Correction température thermocouple avec la température thermistance

La mesure de la thermopile est dépendante de la température ambiante du capteur. Pour une mesure plus optimisée on peut corriger la valeur en tenant compte du coefficient de température donné par la datasheet:

- Il faut alors calculer le TCF (Temperature Coefficient Factor)
 - \circ $TCF = 1 + (T^{\circ}t 25^{\circ}) * T.C$ avec $T^{\circ}t$ température thermistance mesurée

RearSensorBoard

Parameter		Limits			Oliki	
Parameter	Min	Тур	Max	- Unit	Condition	
Chip Size		1.8 X 1.8		mm²		
Active Area		0.7x0.7		mm ²	Absorber area	
Internal Resistance	60	85	111	kΩ	@25°C	
Resistance T.C.			0.12	%/°C		
Responsivity	43	61	79	V/W	500K, 1Hz,	
Responsivity T.C.		-0.07		%/°C		
Noise Voltage		37		nV rms	R.M.S, 25°C	
NEP		0.61		nW/Hz ^{1/2}		
Detectivity		1.14		cmHz ^{1/2} /W		
Time Constant		32		ms		

Sound level meter

Microphone

Ref utilisée AOM-4540P-R

ADC

Datasheet ADC (ADC081C021CIMM_NOPB)

• <u>ici</u>

Adresses ADC sonomètre

ADC thermopile 0x56

Adresses registres ADC

•	Registre conversion	0x00
•	Registre alert	0x01
•	Registre configuration	0x02
•	Registre limite low	0x03
•	Registre limite high	0x04
•	Registre hyst	0x05
•	Registre conversion low	0x06
•	Registre conversion high	0x07

Configuration ADC

L'ADC doit être en configuration en mode automatique, lecture continue de la conversion et stockage de la valeur maximale sur le registre conversion high.

• Ecrire sur le registre configuration la valeur 0x20

Lecture conversion high

Pareil que la lecture de la conversion mais seulement sur le registre conversion high.

Conversion en tension

Pareil pour la conversion de la thermopile

Le registre conversion high doit être reset à chaque lecture pour permettre le stockage d'une nouvelle valeur high, écriture sur le registre conversion high la valeur 0x0000.

Conversion tension en db

Calibrage Ampli

Pour celà il faut avoir le gain et l'offset de la fonction de transfert, en production ces valeurs seront obtenues par calibration, sinon on a les valeurs théoriques ci-dessous:

- Offset théorique = 1.65
- Gain théorique = 1000

Étant donné que la tension maximale est récupérée, il faut alors obtenir une tension efficace en divisant par racine carrée de 2.

Pour obtenir la tension micro:

V = (Vm - offset)/(Gain * racine(2))V tension microVm tension mesurée ADC

Il faut convertir la tension en Pascal Sensibilité du micro = -40db -/+3 ou 10mV/Pa Pa = V/Sensibilité V en mV et Sensibilité en mV/Pa DB = 20 * log(Pa/P0)P0 : pascal de référence = 0.00002Pa

Light sensor

OPT3002DNPT

myEKO - MVP

RearSensorBoard

Adresse : 0x45
Voir driver avec le software

Lecture simple

• Registre de configuration 0x01

Figure 20. Configuration Register

15	14	13	12	11	10	9	8
RN3	RN2	RN1	RN0	СТ	M1	M0	OVF
R/W-1h	R/W-1h	R/W-0h	R/W-0h	R/W-1h	R/W-0h	R/W-0h	R-0h
7	6	5	4	3	2	1	0
CRF	FH	FL	L	POL	ME	FC1	FC0
R-0h	R-0h	R-0h	R/W-1h	R/W-0h	R/W-0h	R/W-0h	R/W-0h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Valeur 0x10ca pour permettre la conversion

• Registre de conversion 0x00 sur 2 octets

Figure 19. Result Register (Read-Only)

15	14	13	12	11	10	9	8
E3	E2	E1	E0	R11	R10	R9	R8
R-0h							
7	6	5	4	3	2	1	0
R7	R6	R5	R4	R3	R2	R1	R0
R-0h							

LEGEND: R = Read only; -n = value after reset

- Exponent {15-12}
- Mentissa {11-0}
- $Lux = 2^{Exponent} * 0.01 * Mentissa$

BME

BME688

Adresse 0x76

Voir driver avec le software