Causal Discovery for Earth System Sciences Section 2 – Graphical Models

Emiliano Díaz Salas Porras

Image and Signal Processing @ Universitat de València

Example DAG: Structure and Terminology

Notation:

- Children of A, Parents of I, ancestors of H?
- Paths between *D* and *I*, directed path between *B* and *H*??
- V-structues? Skeleton of DAG?

Independence Maps and d-Separation

Goal: Use a DAG to represent conditional independence (CI) structure of a distribution P.

d-Separation: $X \perp Y \mid Z$.

- A path between X and Y is **blocked** (info. flow) by a set Z if:
 - It contains a chain or fork: $X \to M \to Y$ or $X \leftarrow M \to Y$ with $M \in Z$
 - It contains a collider: $X \to M \leftarrow Y$ and $M \notin Z$ and no descendant of M is in Z
- ullet $X\perp Y\mid Z$ if all paths between X and Y are blocked by Z

Key Idea: We want to relate d-separation in the DAG to conditional independence in the joint probability distribution (in the data). What do we need to ask of the DAG to do this?

Independence Map (I-map):

• A DAG G is an **I-map** of distribution P if:

$$X \perp Y \mid Z \Rightarrow X \perp \perp Y \mid Z \text{ in } P$$

Exercise: d-Separation on a DAG

Given the DAG below, answer the following:

- **1** What are the non-descendants of node *D*?
- **②** Which variables are d-separated from A given $\{B, E\}$?
- 3 List all variable sets that d-connect A and G

Markov Property of a DAG

Let \mathcal{G} **be a DAG over random variables** X_1, \ldots, X_n and P a joint probability distribution (with a density!) over them. We say that P is **Markov with respect to** \mathcal{G} if it satisfies any of the following equivalent conditions:

- **1. Global Markov Property** (\mathcal{G} an I-map of P, $I(P) \subseteq I(\mathbf{G})$)
 - For any disjoint sets X, Y, and Z:

$$X \perp_d Y \mid Z \text{ in } \mathcal{G} \quad \Rightarrow \quad X \perp \!\!\!\perp Y \mid Z \text{ in } P$$

2. Local Markov Property

 Each variable is conditionally independent of its non-descendants given its parents:

$$X_i \perp \!\!\!\perp \mathsf{ND}(X_i) \mid \mathsf{Pa}(X_i)$$

3. Markov Factorization Property

The joint distribution factors according to the DAG:

$$P(X_1,\ldots,X_n)=\prod_i P(X_i\mid_i \operatorname{Pa}(X_i)) + \operatorname{Pa}(X_i\mid_i \operatorname{Pa}(X_i\mid_i \operatorname{Pa}(X_i))) + \operatorname{Pa}(X_i\mid_i \operatorname{Pa}(X_i\mid_i \operatorname{Pa}(X_i))) + \operatorname{Pa}(X_i\mid_i \operatorname{Pa}(X_i\mid_i \operatorname{Pa}($$

Example: DAG Satisfying the Markov Properties

DAG:

1. Global Markov Property:

- $B \perp C \mid A \Rightarrow B \perp \!\!\!\perp C \mid A \text{ in } P$
- $B \perp C$ unconditionally is false (connected through A)

2. Local Markov Property:

- $B \perp \!\!\! \perp \{C, D\} \mid A$
- *C* ⊥⊥ {*B*, *D*} | *A*
- $D \perp \!\!\! \perp \{A\} \mid \{B,C\}$
- 3. Factorization:

Why is markov not enough for learning graph? What joint distributions is a fully conneced DAG an I-map for?

Minimality

Definition (Minimality): P satisfies the **causal minimality condition** with respect to $\mathcal G$ if:

- \mathcal{G} is an I-map of P (i.e., $I(P) \subseteq I(\mathcal{G})$), and
- There is no strict subgraph $\mathcal{G}' \subset \mathcal{G}$ such that $I(P) \subseteq I(\mathcal{G}')$

Intuition: Every edge in \mathcal{G} is necessary to maintain right independencies in P. No edge is superfluous.

Constructing a Minimal I-map (Procedure):

- Take a topological ordering of the variables.
- Write the Markov factorization:

$$P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i\mid \mathsf{Parents}(X_i))$$

- Simplify each term using known conditional independencies.
 - Drop variables from the conditioning set if $X_i \perp \!\!\! \perp V \mid \text{Rest.}$

Exercise: Constructing Minimal I-maps

Given: Three random variables X_1, X_2, X_3 **Assumption:** The only conditional independence in the distribution P is:

$$X_1 \perp \!\!\! \perp X_3 \mid X_2$$

Task: Construct all possible minimal I-maps (DAGs) that are:

- Markov with respect to P
- Minimal (i.e., have no removable edges without violating the Markov condition)

Hint: Use the construction procedure:

- Choose a node ordering
- Write the full factorization
- Use the given conditional independence to remove unnecessary edges

Minimal causal maps no unique? Why?

Faithfulness

Faithfulness (Definition): A distribution P is **faithful** to a DAG \mathcal{G} if:

$$X \perp \!\!\!\perp Y \mid Z \text{ in } P \quad \Rightarrow \quad X \perp_d Y \mid Z \text{ in } \mathcal{G}$$

Interpretation:

- No conditional independence in P arises accidentally all are reflected in the DAG structure.
- ullet All d-connected pairs in ${\cal G}$ are dependent in P
- $I(\mathcal{G}) \subseteq I(P)$

Perfect I-map (Definition): An Graph is a perfect I-map of P if P is markov and faithful wrt $\mathcal G$

or Equivalently:

$$I(P) = I(G)$$

Stronger than causal minimality!

Exercise: find aminimal causal map that is not faithful from previous exercise

Bayesian Networks

A Bayesian Network (BN) is a pair (G, P) where:

- \mathcal{G} is a **DAG** over variables X_1, \ldots, X_n
- ullet P is a joint distribution that satisfies the **Markov property** with respect to ${\cal G}$

Key Properties:

- \mathcal{G} is an **I-map** of P
- P factorizes as:

$$P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i\mid \mathsf{Pa}(X_i))$$

ullet The independencies implied by ${\cal G}$ via d-separation are valid in P

BNs are useful for:

- Efficient representation of high-dimensional distributions (sparsity)
- Reading conditional independencies directly from the graph (global independencies)

Why Are Bayesian Networks Useful?

1. Efficient Probabilistic Inference

- Factorization reduces the complexity of computing marginals and conditionals.
- Enables efficient algorithms:
 - Variable elimination
 - Belief propagation
 - Ancestral sampling / MCMC
- Supports reasoning under uncertainty: $P(Y \mid X = x)$

2. Compact Representation of Joint Distributions

- A full joint distribution grows exponentially with number of variables
- BNs capture structure via sparse graphs:

$$P(X_1,\ldots,X_n)=\prod_i P(X_i\mid \mathsf{Pa}(X_i))$$

3. Causality

Exercise: Parameters in Bayesian Networks

Assume:

- X_1, \ldots, X_7 are Bernoulli random variables
- For each DAG, compute the number of parameters required to specify the full joint distribution

Graph structures:

- (A) Empty DAG: No edges
- (B) Chain DAG: $X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_7$
- (C) Layered DAG:

$$\{X_1 \to X_5, X_2 \to X_5, X_3 \to X_6, X_4 \to X_6, X_5 \to X_7, X_6 \to X_7\}$$

• (D) Fully Connected DAG: Each X_i has all earlier X_j as parents

Question: How many parameters are needed in each case?

Layered DAG Example: 7 Nodes

Solution: Parameters in Bayesian Networks

Solution: Parameters in Bayesian Networks

(A) Empty DAG:

- Each X_i is independent $\to 1$ parameter each
- Total: $7 \times 1 = \boxed{7}$

(B) Chain DAG:

- X₁: 1 param
- X_2 – X_7 : 6 nodes with 1 parent \rightarrow 6 \times 2 params
- Total: $1 + 6 \times 2 = \boxed{13}$

(C) Layered DAG:

- X_1 – X_4 : 1 param each (no parents)
- X_5 , X_6 : each has 2 parents $\rightarrow 2^2 = 4$ params
- X_7 : 2 parents $(X_5, X_6) \rightarrow 4$ params
- Total: $4 \times 1 + 2 \times 4 + 4 = 20$

(D) Fully Connected DAG:

• Total: $\sum_{i=1}^{7} 2^{i-1} = 2^7 - 1 = \boxed{127}$ parameters

Markov Equivalence of DAGs

Key Question: Can different DAGs represent the same set of conditional independencies?

Yes. Two DAGs \mathcal{G}_1 and \mathcal{G}_2 are **Markov equivalent** if:

$$I(\mathcal{G}_1) = I(\mathcal{G}_2)$$

Markov Equivalence Class (MEC):

- The set of all DAGs that encode the same CI structure.
- Denoted as the collection of DAGs with:
 - Same skeleton (i.e., same undirected edges)
 - Same set of v-structures $(X \to Z \leftarrow Y)$, with no edge between X and Y)

CPDAG: A **Completed Partially Directed Acyclic Graph** represents a MEC:

- Directed edges: common to all DAGs in the MEC
- Undirected edges: direction varies between DAGs in the class

20 / 37

Example: Markov Equivalent DAGs and their CPDAG

Three DAGs with same skeleton and no v-structures:

DAG 1

DAG 2

DAG 3

All have:

- Same skeleton: edges $\{X Y, Y Z, X Z\}$
- No v-structures (no collider of form $X \to Z \leftarrow Y$)
- Same set of d-separation relations \Rightarrow same independencies

CPDAG Representing the Equivalence Class

CPDAG: Represents all DAGs in the equivalence class — edges that are **undirected** can vary in orientation, edges that are **directed** are common to all DAGs in the class.

CPDAG for previous DAGs:

Interpretation:

- No directed edges ⇒ no v-structures in the equivalence class
- All three DAGs are valid orientations of this CPDAG

Exercise: Find the CPDAG for the Given DAG

Given DAG:

Task: Draw the CPDAG representing the Markov Equivalence Class of this DAG.

Solution: CPDAG for the Given DAG

Step 1 – Skeleton: Undirected edges between:

$$X - Y$$
, $X - Z$, $Y - Z$, $Z - V$, $U - V$

Step 2 – Identify v-structures (immoralities):

$$X \rightarrow Z \leftarrow Y$$
 (not a v-structure: X and Y are connected)

 $Z \rightarrow V \leftarrow U$ is a v-structure (immorality)

CPDAG:

Why Naïve Structure Learning Fails

Naïve idea: Learn the full set of conditional independence relations I(P) from data. Then search for a DAG \mathcal{G} (for example with minimal-map search producedure) such that:

$$I(\mathcal{G}) = I(P)$$

Problem:

- Not every set of independencies is representable by a DAG.
- A DAG must be faithful to P:

$$I(P) \subseteq I(\mathcal{G})$$
 and $I(\mathcal{G}) \subseteq I(P)$

• But some independencies arise from **accidental cancellation** or functional symmetries, not from d-separation.

Why Naïve Structure Learning Fails

Conclusion: Without additional assumptions, there may be no DAG \mathcal{G} such that $I(\mathcal{G}) = I(P)$. Additionally, it is too expensive to obtain exhaustive list of independencies. We need to exploit markov equivalences to reduce number of inependence tests.

We need:

- The faithfulness assumption, and
- A structured approach to search the space of DAGs

Non-Adjacency Result: towards PC algorithm

Assume:

- ullet The true distribution P is **faithful** to some DAG ${\cal G}$
- We have access to an oracle (or algorithm) for testing CI

Non-Adjacency Theorem: In a DAG \mathcal{G} , two variables X and Y are **not adjacent** (i.e., no edge between them) if and only if there exists a set $Z \subseteq Pa(X) \cup Pa(Y)$ such that:

$$X \perp \!\!\!\perp Y \mid Z$$

Implications:

- We can detect absence of edges via conditional independence tests
- If we assume faithfulness, d-separation and CI align:

$$X \perp_d Y \mid Z \Leftrightarrow X \perp \!\!\!\perp Y \mid Z$$

• This allows us to reconstruct the skeleton (undirected graph) of \mathcal{G} . This result forms the backbone of the PC algorithm.

The PC Algorithm: Pseudocode

Step 1: Initialize Fully Connected Undirected Graph

Create complete undirected graph over all variables

Step 2: Remove Edges Based on Conditional Independence

- For each pair (X, Y), test for independence conditioned on subsets of adjacent nodes
- Start with conditioning sets of size 0, increase size iteratively
- If $X \perp \!\!\!\perp Y \mid Z$, remove edge X Y
- Record separating set Sep(X, Y) = Z

Step 3: Orient Edges to Identify V-structures

• For all triples X - Z - Y with X and Y non-adjacent:

If
$$Z \notin \operatorname{Sep}(X, Y)$$
, orient as $X \to Z \leftarrow Y$

Step 4: Apply Orientation Rules

- Use logical rules to propagate orientations while avoiding cycles
- Example: If $X \to Y$ and Y Z, then orient $Y \mapsto Z$ (Meek's rules)

PC Algorithm Example - Step 1: Setup

Ground truth DAG (not known to learner):

Assume: The CI oracle returns:

- A ⊥ B, A ⊥ C, B ⊥ D, C ⊥ D
- $A \perp D \mid \{B, C\}$
- B ⊥ C

Step 1: Initialize a fully connected undirected graph over A, B, C, D

PC Algorithm Example – Step 2: Remove Edges

Apply conditional independence tests:

- $B \perp C \Rightarrow$ remove edge B C
- $A \perp D \mid \{B, C\} \Rightarrow$ remove edge A D

Remaining skeleton:

$$A-B$$
, $A-C$, $B-D$, $C-D$

Separating sets:

- $Sep(B, C) = \emptyset$
- $Sep(A, D) = \{B, C\}$

PC Algorithm Example - Step 3: Orient V-Structures

Skeleton after edge removal:

V-Structure Rule: If X - Z - Y and X and Y are not adjacent, and $Z \notin \text{Sep}(X, Y)$, then orient as: $X \to Z \leftarrow Y$

Apply to:

- B-D-C, and $B \not\sim C$, and $D \notin \operatorname{Sep}(B,C) = \emptyset \Rightarrow \mathbf{Orient}$: $B \to D \leftarrow C$ and
- C A B, and $C \not\sim B$, and $A \notin \operatorname{Sep}(B, C) = \emptyset \Rightarrow$ Orient: $C \to A \leftarrow B$, and

PC Algorithm Example – Step 4: Apply Orientation Rules

Current partial graph:

Apply orientation rules (Meek's rules):

- Rule 1 (No new v-structures): no further edges to orient
- Rule 2 (Avoid cycles): no further edges to orient

In this example: We have a unique DAG because 2 v-structures present.

Python notebook with SeasFire + pybnesian

Structure Learning: Motivation and Overview

Goal: Learn a DAG $\mathcal G$ from data such that:

$$I(P) \approx I(G)$$

General Approach:

- Suppose we have an independence oracle.
- Find all local independencies (PC algoirthm) and trust that the dag(s, cpdag) that this defines is faithful there are no extra ones.
- Oecide between the dags in MEC (need another criterion!)

What could go wrong?

Causal Sufficiency and Hidden Variables

Causal Sufficiency Assumption: All common causes of the observed variables are themselves observed.

What if this assumption fails?

- Unobserved (latent) variables can act as hidden confounders
- Conditional independence tests may no longer reflect d-separation in any DAG over the observed variables
- DAG-based methods (e.g., PC) can fail or produce incorrect conclusions

Two solutions:

- Use the projected graph over observed variables:
 - May include bidirected edges to represent unobserved common causes
- Use a Maximal Ancestral Graph (MAG):
 - Graph that includes directed and bidirected edges
 - Represents conditional independencies among observed variables, even when latent confounders exist

Spurious GPP-Fire Association from Unobserved Policy

- Gross Primary Productivity (GPP) and fire occurrence are both influenced by an unobserved land management policy.
- Only GPP and Fire are observed; ignoring Policy leads to a spurious GPP-Fire association.
- Violates causal sufficiency: not all common causes are observed, so the GPP-Fire correlation can be misinterpreted as a direct causal link.