Mechanics of carbon nanotubes and their polymer composites

Chenyu Wei

Department of Mechanical Engineering, Stanford University
NASA Ames Research Center

Collaboration With KJ Cho (Stanford University, CA) and Deepak Srivastava (NASA Ames Research center, CA)

Carbon Nanotube: Structures

Atomic structure:

Quasi one dimensional; C-C bond length 1.43 A;

Radius ~ Nanometer; Length ~ μm (current upper range); Index (n,m)

Application of Carbon Nanotubes

Nano fibers: Strong mechanical properties

Nano devices: Wide variety of electronic properties and mechanical-electronic couplings

Nano sensors: Physical and Chemical adsorption of gas molecules, ions

Simulation Methods

(1) Molecular Dynamics: Newton's Equation

Force Field for Carbon nanotubes:

Tersoff Brenner potential, fitted to carbon and hydrocarbon systems, 3-body type, bond broken and formation

- (2) Tight Binding method
- (3) Ab initio method (Density Functional theory)

Elastic Properties of Carbon Nanotubes

Small strain: uniform deformations, elastic behavior continuum theory applicable

Large strain: local deformations, defects, dislocations

Tension, Compression, bending, and (Torsion):

Yield Strain of CNT

Tension

Simulation: 30% yield strain from fast strain rate (1/ps) molecular dynamics simulations (B.I. Yakobson et.al. Comput. Mater. Sci. 1997)

Experiments: 6% maximum strain in SWCNT ropes; 12% maximum strain in MWCNTs (D.A. Walter et al, Appl. Phys. Lett. 1999; M.F. Yu et al, Phys. Rev. Lett. and Science 2000)

Compression

Simulation:

T=0K, Tersoff-Brenner potential: Super-elastic up to 20%

T=0K, Tight Binding: diamond like defects, collapsed at 12%

Experiment:

Collapsing of CNT within polymer matrix under compression stress 150GPA (TEM study)

Yielding under Tensile Stress

9% tensile strained CNT (5,5), T=2400K

^{*} D. Srivastava, C. Wei, and K. Cho, Appl. Mech. Review (2002)

Yielding: Strain-rate and Temperature Dependence

Tensile strain applied to a 60Å long (10,0) CNT

- Yielding: strongly dependent on strain rate and Temperature
- Linear dependent on temperature of the slope of yield strain vs. strain rate: Activated Process

Yield Strain under Tension

$$\varepsilon_{Y} = \frac{\overline{E}_{\nu}}{VK} + \frac{k_{B}T}{VK} \ln(\frac{N\dot{\varepsilon}}{n_{site}\dot{\varepsilon}_{0}})$$

 $\dot{\mathcal{E}}$: Strain rate; $\dot{\mathcal{E}}_0$: Constant related with vibrational frequency

K: Force constant; V: Activation volume; E_{ν} : Activation energy

N: Number of process involving in yielding; n_{site} : Site available

Length effect:

$$\Delta \varepsilon_{\rm Y} = -\frac{k_{\rm B}T}{\rm VK} \ln(n_{\rm site}/n_{\rm site}^{0})$$

Temperature effect:
$$\left(\frac{\dot{\varepsilon}_1 N}{n_{\text{site}} \dot{\varepsilon}_0}\right)^{T_1} = \left(\frac{\dot{\varepsilon}_2 N}{n_{\text{site}} \dot{\varepsilon}_0}\right)^{T_2}$$

Yielding at Realistic Conditions

- Parameters obtained from fitting of MD simulations' data

$$\overline{E}_{v} = 3.6 \text{eV}; \quad V = 2.88 \text{ Å}^{3}$$

$$\frac{\dot{\varepsilon}_{0}}{N} = 8 \times 10^{-3} \ p \ s^{-1}$$

- Experimental feasible conditions length $\sim 1 \mu m$; strain rate $\sim 1 \%/hour$; T $\sim 300 K$

$$\implies$$
 Yield strain: $9 \pm 1 \%$

Maximum tensile strains from experiments: 5-6 % for SWCNT ropes; 12% for MWCNTs

* D.A. Walter, et. al., Appl. Phys. Lett. V74, 3803 (1999) M.-F. Yu et.al. Phys. Rev. Lett., V84, 5552 (2000); M.-F. Yu et. al., Science, V287, 637 (2000)

Yielding of MWCNT

- (1) For $\dot{\mathcal{E}} = 1\%$ /hour, and T=300K \mathcal{E}_{γ} (MWCNT)>(SWCNT): 3-4%;
- (2) Activation volume on MWCNT is smaller (60%-70% of that on SWCNT);
- (3) Crossover point of strain rate exponentially dependent on T, important for high temperature situations.

Load transfer on MWCNT

CNT: Nano Fibers

CNT to reinforce composites

- High Strength & High flexibility & Toughness & light-weight (Young's Modulus>1TPa)
- High aspect ratio L/D, can reach 1000 Critical length: $L_c/D\sim\sigma_{max}/2\tau$
 - L_c: length of CNT; D: diameter of the CNT;
 - $-\sigma_{max}$: tensile strength of CNT;
 - $-\tau$: interfacial shear stress
- Large surface area, good for bonding, adhesion

Polymer-CNT Composite

- Structural and thermal properties
- Load transfer and mechanical properties

SEM images of epoxy-CNT composite

(L.S.Schadler et.al., Appl. Phys. Lett. V73 P3842, 1998)

SEM images of CNT fibers ribbon (processing in polyvinylacohol solution) & knotted CNT fibers

(B. Vigolo et.al., Science, V290 P1331, 2000)

MD Simulations of Polymer-CNT

Polymer-CNT composite

Simulation method

Classical MD: Tersoff-Brenner potentials for CNT, DLPOLY for polymer, and VDW interactions

System in simulation

Polyethylene & (10,0) CNT: (80 chains of PE relaxed by Monte Carlo methods, Np=10; 20A long CNT 8% volume ratio)

Preparations

Composites prepared at 300k; cooled down to 10K with rate 1K/1ps

composites change from liquid state through rubber state to glassy state

Force Field

Intramolecular potentials

Valence angle potential: $\Phi(\theta) = 0.5k_{\theta}(\cos\theta - \cos\theta_{\theta})^{2}$,

Torsion potential: $\Phi(\alpha)/J \cdot \text{mol}^{-1} = C_0 + C_1 \cos \alpha + C_2 \cos^2 \alpha + C_3 \cos^3 \alpha$,

Harmonic potential: $0.5 k_b (l-l_0)^2$

Density Dependence on Temperature

Small system: L/D~2, Np=10

Results

-Glass transition temperature Tg increased from 150K to 175K

-Thermal expansion coefficients: (K^{-1})

PE PE-CNT

$$T < Tg$$
 3.8×10^{-4} 4.5×10^{-4} 18%
 $T > Tg$ 8.6×10^{-4} 12.0×10^{-4} 40%

(Experimental value: $1.0 \times 10^{-4} K^{-1}$; T < Tg)

Diffusion Coefficients

Small system: L/D~2, Np=10

Diffusion coefficients of polymer with CNTs embedded

Diffusion coefficient increased, especially along CNT axis direction, indicating enhancement of thermal conductivity

•Experiments on ABS/CNT & RTV/CNT show larger increase (Rick Berrera's group at RICE)

(Ajayan's group at R.P.I. is investigating these subjects in detail)

* C. Wei, D. Srivastava, and K. Cho (Nano Letters, in press)

Modulus of Polymer-CNT Composites

(Halpin-Tsai's formula)

$$\frac{E_c}{E_m} = \frac{1 + \xi \eta V_f}{1 - \eta V_f}$$

 E_c, E_m, E_f : Modulus of composite, matrix and fiber V_f : Volume ratio of fiber

$$\eta = \frac{(M_f/M_m - 1)}{(M_f/M_m + \xi)}$$

 $\eta = \frac{(M_f/M_m - 1)}{(M_f/M_m + \xi)}$ ξ : Dependent on geometry, packing of fiber; aspect ratio of fiber fiber; aspect ratio of fiber

Stress-Strain Curve & Load Transfer

Mechanical behavior of Composite: Elastic region and Yielding

Enhancement of Young's modulus: 30%

Load transfer: within 0.7%

Poisson Ratio effect:

 $CNT \sim 0.1$ -0.2, Polyethylene ~ 0.44

Compression pressure perpendicular to tube axis contribute to improvement

Loading Sequence

Work hardening of composite with stretching

•Residue strain

TEM images of alignment of CNTs in a polymer matrix by stretching

(L. Jin et.al., Appl.Phys. Lett., V73 P1197, 1998)

Young's Modulus

- -Young's modulus of CNT composites 30% higher than polymer matrix
- -Stretching treatments enhance Y by 50%

$$(L/D\sim2, Np=10)$$

Conclusions

- Yielding of carbon nanotubes strongly dependent on strain rate and temperature: transition state theory
- Polymer-CNT composite has larger thermo-expansion above Tg
 - Phonon modes and Brownian motion leading to larger exclude volume of embedded CNT
 - Diffusion of polymer matrix increased above Tg
- Young's modulus of composite enhanced by 30% through VDW interaction.
 - Load transfer happening within 0.7%; stiffness of CNT bond increases modulus of composite
 - Loading sequence can improve the enhancement of modulus of composite