SVC on Wine Dataset with

The Dataset source: Kaggle (: https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Quality/master/winequality-red.csv (https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Quality/master/winequality-red.csv (https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Quality/master/winequality-red.csv (https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Quality/master/winequality-red.csv (https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Quality/master/winequality-red.csv ().

- SHWETA KANHERE BANAIT
 - GitHub: https://github.com/shwetawin/PythonProject (<a hr
 - Linkdin: https://www.linkedin.com/in/shweta-kanhere-07810213/ (https://www.linkedin.com/
 - Email:shweta.kanhere@gmail.com)

Content:

- 1. EDA and FE for both dataset
- 2. SVC Model
- 3. Performance metrics for above model
- 4. Performance improvement using GridSearchCV

Import required libraries

In [1]:

```
1 ### Pandas and Numpy
2 import pandas as pd
   import numpy as np
4 ### Visualisation libraries
 5 import seaborn as sns
6 import matplotlib.pyplot as plt
   %matplotlib inline
8 ### For Q-Q Plot
9 import scipy.stats as stats
10 ### To ignore warnings
11 import warnings
12 warnings.filterwarnings('ignore')
13 ### Machine Learning libraries
14 import sklearn
15 | from sklearn.model_selection import train_test_split, GridSearchCV
16 from sklearn.preprocessing import StandardScaler
17 from sklearn.svm import SVC
18 from sklearn.svm import SVR
19 from sklearn.linear_model import LogisticRegression
20 | from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, r2
21 ### To be able to see maximum columns on screen
22 pd.set option('display.max columns', 500)
23 ### To save the model
24 import pickle
```

Support Vector Classifier for Wine Dataset

In [15]:

1 # upload dataset

2 pd.read_csv("https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Quality/mast

Out[15]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	al
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

1599 rows × 12 columns

In [16]:

```
from IPython import display
display.Image("wine.jpg")
```

Out[16]:

In [17]:

1 data=pd.read_csv("https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Quality

In [18]:

```
1 data.columns
```

Out[18]:

In [19]:

```
1 data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

Observation

No null values in the data set from info

In [20]:

```
1 data.head()
```

Out[20]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
4											•

In [21]:

```
1 data.describe().T
2
```

Out[21]:

	count	mean	std	min	25%	50%	75%	max
fixed acidity	1599.0	8.319637	1.741096	4.60000	7.1000	7.90000	9.200000	15.90000
volatile acidity	1599.0	0.527821	0.179060	0.12000	0.3900	0.52000	0.640000	1.58000
citric acid	1599.0	0.270976	0.194801	0.00000	0.0900	0.26000	0.420000	1.00000
residual sugar	1599.0	2.538806	1.409928	0.90000	1.9000	2.20000	2.600000	15.50000
chlorides	1599.0	0.087467	0.047065	0.01200	0.0700	0.07900	0.090000	0.61100
free sulfur dioxide	1599.0	15.874922	10.460157	1.00000	7.0000	14.00000	21.000000	72.00000
total sulfur dioxide	1599.0	46.467792	32.895324	6.00000	22.0000	38.00000	62.000000	289.00000
density	1599.0	0.996747	0.001887	0.99007	0.9956	0.99675	0.997835	1.00369
рН	1599.0	3.311113	0.154386	2.74000	3.2100	3.31000	3.400000	4.01000
sulphates	1599.0	0.658149	0.169507	0.33000	0.5500	0.62000	0.730000	2.00000
alcohol	1599.0	10.422983	1.065668	8.40000	9.5000	10.20000	11.100000	14.90000
quality	1599.0	5.636023	0.807569	3.00000	5.0000	6.00000	6.000000	8.00000

In [22]:

```
1 data.quality
```

Out[22]:

```
0 5
1 5
2 5
3 6
4 5
...
1594 5
1595 6
1596 6
1597 5
1598 6
```

Name: quality, Length: 1599, dtype: int64

· getting unique values for quality feature

```
In [23]:
```

```
1 data.quality.unique()
```

Out[23]:

```
array([5, 6, 7, 4, 8, 3], dtype=int64)
```

· getting count of record for each unique value in quality

```
In [24]:
```

```
1 data["quality"].value_counts()
Out[24]:
```

```
5
     681
6
     638
7
     199
4
       53
```

8 18 3 10

Name: quality, dtype: int64

In [25]:

```
1 ### getting null values in each feature
 data.isnull().sum()
```

Out[25]:

```
fixed acidity
                         0
volatile acidity
                         0
citric acid
residual sugar
                         0
chlorides
free sulfur dioxide
                         0
total sulfur dioxide
density
                         0
рΗ
sulphates
                         0
alcohol
                         0
quality
dtype: int64
```

Visualising Numerical data

```
In [26]:
    numerical features = [fea for fea in data.columns if data[fea].dtypes !="0"]
 2 numerical_features
Out[26]:
['fixed acidity',
 'volatile acidity',
 'citric acid',
 'residual sugar',
 'chlorides',
 'free sulfur dioxide',
 'total sulfur dioxide',
 'density',
 'pH',
 'sulphates',
 'alcohol',
 'quality']
In [30]:
 1 ### getting numerical features
    numerical_features=[feature for feature in data.columns if data[feature].dtypes!='0']
```

```
numerical_features=[feature for feature in data.columns if data[feature].dtypes!='0']
print(numerical_features)
```

```
['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlo rides', 'free sulfur dioxide', 'total sulfur dioxide', 'density', 'pH', 'sul phates', 'alcohol', 'quality']
```

In [31]:

```
### getting count of unique value in each feature
for feature in numerical_features:
   print("'{}', = '{}' No. of unique values".format(feature, data[feature].nunique()))
4
```

```
'fixed acidity', = '96' No. of unique values
'volatile acidity', = '143' No. of unique values
'citric acid', = '80' No. of unique values
'residual sugar', = '91' No. of unique values
'chlorides', = '153' No. of unique values
'free sulfur dioxide', = '60' No. of unique values
'total sulfur dioxide', = '144' No. of unique values
'density', = '436' No. of unique values
'pH', = '89' No. of unique values
'sulphates', = '96' No. of unique values
'alcohol', = '65' No. of unique values
'quality', = '6' No. of unique values
```

In [32]:

```
continuous_features=[fea for fea in numerical_features if data[fea].nunique()>6]
print(continuous_features)
```

['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlo rides', 'free sulfur dioxide', 'total sulfur dioxide', 'density', 'pH', 'sul phates', 'alcohol']

In [33]:

```
#visualising count of quality feature
sns.countplot(data=data,x='quality')
```

Out[33]:

<AxesSubplot:xlabel='quality', ylabel='count'>

In [35]:

In [36]:

```
# Checking outliers in numerical features
plt.figure(figsize=(20,40))
for i in enumerate(continuous_features):
plt.subplot(6, 2, i[0]+1)
sns.set(rc={'figure.figsize':(10,10)})
sns.boxplot(data=data, x=i[1], color='r')
plt.title("{}".format(i[1]), fontweight="bold")
```


In [37]:

```
### Comparing Continuous numerical features with quality feature
palette1=sns.color_palette("tab10", 6)
plt.figure(figsize=(15,45))
for i in enumerate(continuous_features):
    plt.subplot(6, 2, i[0]+1)
    sns.set(rc={'figure.figsize':(7,7)})
    sns.kdeplot(data=data, x=i[1], hue='quality', palette=palette1, fill=True)
    plt.title("{} Vs quality".format(i[1]),fontweight="bold")
```


In []:

```
# getting outliers in features for each unique value in quality feature
plt.figure(figsize=(20,40))
for i in enumerate(continuous_features):
plt.subplot(6, 2, i[0]+1)
sns.set(rc={'figure.figsize':(10,6)})
sns.boxplot(data=data, y=i[1], x='quality')
plt.title("{} vs quality".format(i[1]),fontsize=15, fontweight="bold")
```

In [40]:

```
#getting correlation for all the features
corr=data.corr()
corr
```

Out[40]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.174919
4								•

In [45]:

- # Plotting heatmap for visualising the correlation between features
 sns.set(rc={'figure.figsize':(10,10)})
- 3 sns.heatmap(data=corr, annot=True)

Out[45]:

<AxesSubplot:>

In [51]:

```
### plotting regplot for all the features wrt. quality
plt.figure(figsize=(20,60))
for i in enumerate(continuous_features):
  plt.subplot(7, 3, i[0]+1)
  sns.set(rc={'figure.figsize':(8,10)})
  sns.regplot(data=data, x=i[1], y='quality')
  plt.xlabel(i[1])
  plt.ylabel("quality")
  plt.title("{} Vs quality".format(i[1]))
```


Splitting data into independent and dependent features

```
In [52]:
```

```
1  X=data.iloc[:,:-1]
2  y=data.iloc[:,-1]
3  X.head()
```

Out[52]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
4											•

In [53]:

```
1 y.head()
```

Out[53]:

```
0 5
```

- 1 5
- 2 5
- 3 6
- 4 5

Name: quality, dtype: int64

In [55]:

```
# if we select random_state=10 then all have same data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=3
```

In [63]:

```
# check the shapes as both test and train set need to have same shape
print("X_train shape is : ",X_train.shape )
print("y_train shape is : ",y_train.shape )
print("X_test shape is : ",X_test.shape )
print("y_test shape is : ",y_test.shape )
```

```
X_train shape is : (1199, 11)
y_train shape is : (1199,)
X_test shape is : (400, 11)
y_test shape is : (400,)
```

Feature Scaling or Standardization

In [66]:

```
scaler=StandardScaler()
print ("scaler",scaler)
print("----*******

#### apply scaler on X train data
scaler.fit_transform(X_train)
```

```
scaler StandardScaler()
----******
```

Out[66]:

```
array([[ 0.36628211,  0.9252263 , -1.41559084, ...,  0.2800327 , -0.34099149, -1.03579592],
  [ 0.99530488, -1.38052243,  0.95277345, ..., -1.75526948,  0.71993818, -0.17938734],
  [ 0.65220155,  1.88126845, -0.07695015, ..., -0.37651639, -0.22931468, -0.36970036],
  ...,
  [-0.77739563, -0.8181447 ,  1.10723199, ...,  0.54265233,  0.60826138,  0.96249075],
  [ 0.93812099, -0.98685802,  1.00425963, ..., -0.50782621, -0.78769872,  1.5334298 ],
  [-0.77739563,  0.41908633,  0.12899457, ..., -0.04824185,  2.84179753, -0.17938734]])
```

In [67]:

```
## after transfor store the data into variable called X_train or any new variable
X_train=scaler.fit_transform(X_train)
X_train
```

Out[67]:

```
array([[ 0.36628211,  0.9252263 , -1.41559084, ...,  0.2800327 , -0.34099149, -1.03579592],
  [ 0.99530488, -1.38052243,  0.95277345, ..., -1.75526948,  0.71993818, -0.17938734],
  [ 0.65220155,  1.88126845, -0.07695015, ..., -0.37651639, -0.22931468, -0.36970036],
  ...,
  [-0.77739563, -0.8181447 ,  1.10723199, ...,  0.54265233,  0.60826138,  0.96249075],
  [ 0.93812099, -0.98685802,  1.00425963, ..., -0.50782621, -0.78769872,  1.5334298 ],
  [-0.77739563,  0.41908633,  0.12899457, ..., -0.04824185,  2.84179753, -0.17938734]])
```

```
In [69]:
```

```
1 ## to avoide leakage use transform only
2 X_test=scaler.transform(X_test)
3 X_test
```

Out[69]:

```
array([[ -5.09401291, -4.70982525,
                                         3.48987574, ..., -21.16897975,
          -4.65995954, -9.78440705],
                        3.82943022,
                                        -6.84834865, ..., -29.79011384,
       [ -5.09401291,
          -9.33685053, -10.2371451 ],
                                        10.91219068, ..., -40.99758817,
       [ -2.837715 , -9.77012479,
           0.32872419, -11.68590685],
       [ -5.06131294, -5.97490014,
                                        -0.75144709, ..., -15.99629929,
          -1.85382494, -8.87893095],
                                         0.04380094, ..., -26.3416602 ,
       [ -4.93051306, -3.76101909,
          -7.1543014 , -10.68988315],
       [ \  \, -4.995913 \  \  \, , \  \, -11.3514684 \  \, , \  \  \, -1.8117778 \  \, , \  \, \ldots, \  \, -28.49694373,
           0.32872419, -9.42221661]])
```

Building SVC Model

In [100]:

```
1 from sklearn.svm import SVC
2
3 svc=SVC()
4 svc
```

Out[100]:

SVC()

In [71]:

```
1 svc.fit(X_train,y_train) # y_train - dependent feature and X_train- independent feature
```

Out[71]:

SVC()

In [72]:

```
1 svc_pred=svc.predict(X_test)
2 svc_pred
3
```

Out[72]:

```
5, 5, 5, 5], dtype=int64)
```

In [77]:

```
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, classifi
confusion_mat=confusion_matrix(y_test, svc_pred)
confusion_mat
```

Out[77]:

```
array([[
           0,
                 0,
                       2,
                            0,
                                  0,
                                        01,
                                        0],
                     15,
           0,
                 0,
                            0,
                                  0,
        L
        0,
                 0, 172,
                                  0,
                                        0],
                 0, 152,
                                  0,
        0],
           0,
                            0,
                            0,
        0,
                 0,
                     50,
                                  0,
                                        0],
        Γ
                 0,
                       9,
                            0,
                                  0,
                                        0]], dtype=int64)
           0,
```

In [92]:

```
# check the accuracy of model
contact acc=accuracy_score(y_test, svc_pred)
print ("accuracy of model=",acc*100)
```

accuracy of model= 43.0

In [86]:

```
report=classification_report(y_test, svc_pred, zero_division=False)
print("Model Output : ")
print(report)
```

Model Output :

,	precision	recall	f1-score	support
3	0.00	0.00	0.00	2
4	0.00	0.00	0.00	15
5	0.43	1.00	0.60	172
6	0.00	0.00	0.00	152
7	0.00	0.00	0.00	50
8	0.00	0.00	0.00	9
accuracy			0.43	400
macro avg	0.07	0.17	0.10	400
weighted avg	0.18	0.43	0.26	400

In [88]:

```
from sklearn.linear_model import LogisticRegression
log_reg=LogisticRegression()
log_reg
4
```

Out[88]:

LogisticRegression()

In [90]:

```
1 log_reg.fit(X_train,y_train)
2
```

Out[90]:

LogisticRegression()

In [91]:

```
1 log_pred=log_reg.predict(X_test)
2 log_pred
3
```

Out[91]:

```
array([4, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 3, 4, 4,
    4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4,
    4, 8, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4,
    4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 3, 4,
    4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 5,
    3, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 3,
    4, 4, 4, 4, 4, 5, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4,
    4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
    4, 4, 3, 8, 4, 5, 4, 8, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4,
    4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4,
    5, 8, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 8, 4, 8, 4, 8, 4, 4,
    4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
    4, 4, 4, 4], dtype=int64)
```

In [93]:

```
1 report_log=classification_report(y_test, log_pred, zero_division=False)
2 print(report_log)
3
```

	precision	recall	f1-score	support
3	0.06	0.50	0.11	2
4	0.04	0.93	0.08	15
5	0.44	0.07	0.12	172
6	0.00	0.00	0.00	152
7	0.00	0.00	0.00	50
8	0.08	0.11	0.10	9
accuracy			0.07	400
macro avg	0.10	0.27	0.07	400
weighted avg	0.19	0.07	0.06	400

Increasing performance of model (Hyper-parameter Tuning)

```
In [97]:
```

```
### using different kernels to guage performanc of model for constant hyper-parameter (
kernels=['linear', 'rbf', 'poly', 'sigmoid']
for kernel in kernels:
model=SVC(kernel=kernel, C=1.0)
model.fit(X_train, y_train)
print("For kernel {} modal accuracy is : {}".format(kernel, model.score(X_test, y_test))

For kernel linear modal accuracy is : 0.36
For kernel rbf modal accuracy is : 0.43
For kernel poly modal accuracy is : 0.0275
For kernel sigmoid modal accuracy is : 0.3475
```

In [99]:

```
### for polynomial kernel with different degree of polynomial with constant hyper-paran
for degree in range(1,11):
    model=SVC(kernel='poly', degree=degree, C=100)
    model.fit(X_train, y_train)
    print("For degree {} modal accuracy is : {}".format(degree, model.score(X_test, y_test))
```

```
For degree 1 modal accuracy is: 0.35
For degree 2 modal accuracy is: 0.0825
For degree 3 modal accuracy is: 0.0675
For degree 4 modal accuracy is: 0.0225
For degree 5 modal accuracy is: 0.3325
For degree 6 modal accuracy is: 0.015
For degree 7 modal accuracy is: 0.17
For degree 8 modal accuracy is: 0.0125
For degree 9 modal accuracy is: 0.0225
For degree 10 modal accuracy is: 0.0125
```

gridsearchcv

gridsearchcv is used to increase the model efficiency

```
In [103]:
```

```
1 from sklearn.model_selection import GridSearchCV
```

In [116]:

```
param_grid={'C':[i for i in range(1,100,10)], 'kernel':['linear', 'rbf', 'poly', 'sigmo'
grid=GridSearchCV(SVC(), param_grid=param_grid)
grid.fit(X_train, y_train)
```

Out[116]:

```
In [118]:
```

```
### getting best parameters after gridsearchCV
    print("Best parameters are {} for optimal accuracy.".format(grid.best_params_))
 3
 4
 5
    print("-----")
 6
 7
 8
   ### getting best accuracy after gridsearchCV
    print("Best accuracy is {}".format(grid.score(X_test, y_test)))
Best parameters are {'C': 11, 'degree': 1, 'kernel': 'rbf'} for optimal accu
racy.
Best accuracy is 0.43
In [119]:
 1 print("Accuracy of SVC without Hyperparameter Tuning is : ",acc)
 2 print("Accuracy of SVC with Hyperparameter Tuning is {}".format(grid.score(X_test, y_text))
Accuracy of SVC without Hyperparameter Tuning is: 0.43
Accuracy of SVC with Hyperparameter Tuning is 0.43
In [120]:
 1 # Why I am not getteing improve accuracy if I apply gridsearchev
In [ ]:
 1 *Github link:
 2 *Linkdin link :
In [ ]:
   # END
 1
In [ ]:
 1
In [ ]:
 1
In [ ]:
 1
In [ ]:
 1
```

<pre>In []:</pre>	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
<pre>In []:</pre>	
<u> </u>	