# Everybody dance now

CAROLINE CHAN, SHIRY GINOSAR, INGHUI ZHOU, ALEXEI A. EFROS

UC Berkeley

#### Что это?

# Идея

#### Pose estimation



#### **Conditional GAN**



#### Что это?



#### Как это работает?

- 1. Построение скелета
- 2. Нормализация скелета
- 3. Генерация изображения нужного человека по скелету



#### Детали

Построение скелета (pose estimation)

OpenPose: Realtime Multi-Person 2D PoseEstimation using Part Affinity Fields

Berkeley/CMU/Facebook Research, 2017



#### Детали

Нормализация скелета

$$b = t_{min} + \frac{a_{source} - s_{min}}{s_{max} - s_{min}} (t_{max} - t_{min}) - f_{source}$$

$$scale = \frac{t_{far}}{s_{far}} + \frac{a_{source} - s_{min}}{s_{max} - s_{min}} (\frac{t_{close}}{s_{close}} - \frac{t_{far}}{s_{far}})$$











#### Детали

Генерация изображения по скелету

#### Особенности:

- 1. Учёт предыдущего кадра для связности последовательных кадров
- 2. Отдельная проработка лица



High-Resolution Image Synthesis and Semantic Manipulation with Conditional GAN [pix2pixHD]

NVIDIA/Berkeley, 2017

$$\min_{G} \left( \left( \max_{D_1, D_2, D_3} \sum_{k=1, 2, 3} \mathcal{L}_{GAN}(G, D_k) \right) + \lambda_{FM} \sum_{k=1, 2, 3} \mathcal{L}_{FM}(G, D_k) + \lambda_{VGG} \mathcal{L}_{VGG}(G(\mathbf{s}), \mathbf{x}) \right)$$

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GAN [pix2pixHD]

NVIDIA/Berkeley, 2017

$$\min_{G} \left( \left( \max_{D_1, D_2, D_3} \sum_{k=1, 2, 3} \mathcal{L}_{GAN}(G, D_k) \right) + \lambda_{FM} \sum_{k=1, 2, 3} \mathcal{L}_{FM}(G, D_k) + \lambda_{VGG} \mathcal{L}_{VGG}(G(\mathbf{s}), \mathbf{x}) \right)$$

$$\mathcal{L}_{GAN}(G, D) = \mathbb{E}_{(\mathbf{s}, \mathbf{x})}[\log D(\mathbf{s}, \mathbf{x})] + \mathbb{E}_{\mathbf{s}}[\log(1 - D(\mathbf{s}, G(\mathbf{s})))]$$

Conditional GAN loss

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GAN [pix2pixHD]

NVIDIA/Berkeley, 2017

$$\min_{G} \left( \left( \max_{D_1, D_2, D_3} \sum_{k=1,2,3} \mathcal{L}_{GAN}(G, D_k) \right) + \lambda_{FM} \sum_{k=1,2,3} \mathcal{L}_{FM}(G, D_k) + \lambda_{VGG} \mathcal{L}_{VGG}(G(\mathbf{s}), \mathbf{x}) \right)$$

$$\mathcal{L}_{\text{FM}}(G, D_k) = \mathbb{E}_{(\mathbf{s}, \mathbf{x})} \sum_{i=1}^{T} \frac{1}{N_i} [||D_k^{(i)}(\mathbf{s}, \mathbf{x}) - D_k^{(i)}(\mathbf{s}, G(\mathbf{s}))||_1]$$

Discriminator feature-matching loss

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GAN [pix2pixHD]

NVIDIA/Berkeley, 2017

$$\min_{G} \left( \left( \max_{D_1, D_2, D_3} \sum_{k=1, 2, 3} \mathcal{L}_{GAN}(G, D_k) \right) + \lambda_{FM} \sum_{k=1, 2, 3} \mathcal{L}_{FM}(G, D_k) + \lambda_{VGG} \mathcal{L}_{VGG}(G(\mathbf{s}), \mathbf{x}) \right)$$

$$\mathcal{L}_{VGG}(G(\mathbf{s}), \mathbf{x}) = \sum_{i=1}^{N} \frac{1}{M_i} [||F^{(i)}(\mathbf{x}) - F^{(i)}(G(\mathbf{s}))||_1]$$

VGG perceptual loss

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GAN [pix2pixHD]

NVIDIA/Berkeley, 2017



Учёт предыдущих кадров для связности



Учёт предыдущих кадров для связности



Учёт предыдущих кадров для связности

$$\mathcal{L}_{GAN}(G, D) = \mathbb{E}_{(x,y)}[\log D(x,y)] + \mathbb{E}_{x}[\log(1 - D(x,G(x)))]$$

$$\mathcal{L}_{smooth}(G, D) = \mathbb{E}_{(x,y)}[\log D(x_{t-1}, x_{t}, y_{t-1}, y_{t})]$$

$$+ \mathbb{E}_{x}[\log(1 - D(x_{t-1}, x_{t}, G(x_{t-1}), G(x_{t}))]$$

#### Доработка лица

Основная идея - добавление к региону лица исходного изображения некоторой маски (residual), которая улучшит его вид.



Нужная маска генерируется отдельной моделью (FaceGAN).

Доработка лица

$$\min_{G_f} \left( \left( \max_{D_f} \mathcal{L}_{\text{face}}(G_f, D_f) \right) + \lambda_{VGG} \mathcal{L}_{VGG}(r + G(x)_F, y_F) \right)$$

$$\mathcal{L}_{\text{face}}(G_f, D_f) = \mathbb{E}_{(x_F, y_F)}[\log D_f(x_F, y_F)] + \mathbb{E}_{x_F}[\log (1 - D_f(x_F, G(x)_F + r))].$$

Доработка лица

Это работает (местами)



Итоговый процесс обучения

1. Обучаем основной генератор

$$\min_{G} \left( \left( \max_{D_1, D_2, D_3} \sum_{k=1,2,3} \mathcal{L}_{smooth}(G, D_k) \right) + \lambda_{FM} \sum_{k=1,2,3} \mathcal{L}_{FM}(G, D_k) \right)$$

$$+ \lambda_{VGG} \left( \mathcal{L}_{VGG}(G(x_{t-1}), y_{t-1}) + \mathcal{L}_{VGG}(G(x_t), y_t) \right)$$

Итоговый процесс обучения

- 1. Обучаем основной генератор
- 2. Обучаем генератор лиц

$$\min_{G_f} \left( \left( \max_{D_f} \mathcal{L}_{\text{face}}(G_f, D_f) \right) + \lambda_{VGG} \mathcal{L}_{VGG}(r + G(x)_F, y_F) \right)$$

#### Результаты



| Loss               | SSIM mean | LPIPS mean |
|--------------------|-----------|------------|
| pix2pixHD          | 0.89564   | 0.03189    |
| T.S.               | 0.89597   | 0.03137    |
| T.S. + Face [Ours] | 0.89807   | 0.03066    |

Table 1. Body output image comparisons - result cropped to bounding box around input pose. For all tables, T.S. denotes a model with our temporal smoothing setup, and T.S. + Face is our full model with both the temporal smoothing setup and Face GAN.

| Loss               | SSIM mean | LPIPS mean |  |
|--------------------|-----------|------------|--|
| pix2pixHD          | 0.81374   | 0.03731    |  |
| T.S.               | 0.8177    | 0.03662    |  |
| T.S. + Face [Ours] | 0.83046   | 0.03304    |  |

Table 2. Face output image comparisons - result cropped to bounding box around input face

| Loss               | Body (23) | Face (70) | Hands (21) | Overall (135) |
|--------------------|-----------|-----------|------------|---------------|
| pix2pixHD          | 2.39352   | 1.1872    | 3.86359    | 2.0781        |
| T.S.               | 2.63446   | 1.14348   | 3.76056    | 2.06884       |
| T.S. + Face [Ours] | 2.56743   | 0.91636   | 3.29771    | 1.92704       |

Table 3. Mean pose distances, using the pose distance metric described in Section 7. Lower pose distance is more favorable.

# Результаты



#### Выводы и перспективы



 Успешное совмещение разных подходов

#### Выводы и перспективы



#### Выводы и перспективы

- Успешное совмещение разных подходов
- Есть куда стремиться
- Real-time?