Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения

задана матрицей тарифов

	B1	B2	В3	B4	B5	Запасы
A1	7	5	9	8	6	150
A2	8	10	4	11	12	170
А3	4	13	15	13	14	200
Потребности	120	80	140	70	110	

Проверим необходимое и достаточное условие разрешимости задачи.

 Σ a = 150 + 170 + 200 = 520

 $\overline{\Sigma}$ b = 120 + 80 + 140 + 70 + 110 = 520

Условие баланса соблюдается. Запасы равны потребностям. Следовательно, модель транспортной задачи является закрытой.

Занесем исходные данные в распределительную таблицу.

	B1	B2	В3	B4	B5	Запасы
A1	7	5	9	8	6	150
A2	8	10	4	11	12	170
А3	4	13	15	13	14	200
Потребности	120	80	140	70	110	

Этап I. Поиск первого опорного плана.

1. Используя *метод наименьшей стоимости*, построим первый опорный план транспортной задачи. Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую, и в клетку, которая ей соответствует, помещают меньшее из чисел а_i, или b_i.

Затем, из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя.

Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений

транспортной задачи.

	B1	B2	В3	B4	B5	Запасы
A1	7	5[80]	9	8	6[70]	150
A2	8	10	4[140]	11[30]	12	170
А3	4[120]	13	15	13[40]	14[40]	200
Потребности	120	80	140	70	110	

Значение целевой функции для этого опорного плана равно:

F(x) = 5*80 + 6*70 + 4*140 + 11*30 + 4*120 + 13*40 + 14*40 = 3270

2. Подсчитаем число занятых клеток таблицы, их 7, а должно быть m + n - 1 = 7. Следовательно, опорный

план является невырожденным.

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_j . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

$$u_1 + v_2 = 5$$
; $0 + v_2 = 5$; $v_2 = 5$

$$u_1 + v_5 = 6$$
; $0 + v_5 = 6$; $v_5 = 6$

$$u_3 + v_5 = 14$$
; $6 + u_3 = 14$; $u_3 = 8$

$$u_3 + v_1 = 4$$
; $8 + v_1 = 4$; $v_1 = -4$

$$u_3 + v_4 = 13$$
; $8 + v_4 = 13$; $v_4 = 5$

$$u_2 + v_4 = 11$$
; $5 + u_2 = 11$; $u_2 = 6$

$$u_2 + v_3 = 4$$
; $6 + v_3 = 4$; $v_3 = -2$

42 13	v ₁ =-4	v ₂ =5	v ₃ =-2	v ₄ =5	v ₅ =6
u ₁ =0	7	5[80]	9	8	6[70]
u ₂ =6	8	10	4[140]	11[30]	12
u ₃ =8	4[120]	13	15	13[40]	14[40]

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

$$(2;2)$$
: $^{6} + 5 > 10$; $\Delta_{22} = 6 + 5 - 10 = 1 > 0$

Выбираем максимальную оценку свободной клетки (2;2): 10

Для этого в перспективную клетку (2;2) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

	1	2	3	4	5	Запасы
1	7	5[80][-]	9	8	6[70][+]	150
2	8	10[+]	4[140]	11[30][-]	12	170
3	4[120]	13	15	13[40][+]	14[40][-]	200
Потребности	120	80	140	70	110	

Цикл приведен в таблице $(2,2 \to 2,4 \to 3,4 \to 3,5 \to 1,5 \to 1,2)$.

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(2, 4) = 30. Прибавляем 30 к объемам грузов, стоящих в плюсовых клетках и вычитаем 30 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

	B1	B2	В3	B4	B5	Запасы
A1	7	5[50]	9	8	6[100]	150
A2	8	10[30]	4[140]	11	12	170
А3	4[120]	13	15	13[70]	14[10]	200
Потребности	120	80	140	70	110	

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_j . по занятым клеткам таблицы, в которых $u_i + v_j = c_{ij}$, полагая, что $u_1 = 0$.

$$u_1 + v_2 = 5$$
; $0 + v_2 = 5$; $v_2 = 5$

$$u_2 + v_2 = 10$$
; $5 + u_2 = 10$; $u_2 = 5$

$$u_2 + v_3 = 4$$
; $5 + v_3 = 4$; $v_3 = -1$

$$u_1 + v_5 = 6$$
; $0 + v_5 = 6$; $v_5 = 6$

$$u_3 + v_5 = 14$$
; $6 + u_3 = 14$; $u_3 = 8$

$$u_3 + v_1 = 4$$
; $8 + v_1 = 4$; $v_1 = -4$
 $u_3 + v_4 = 13$; $8 + v_4 = 13$; $v_4 = 5$

	v ₁ =-4	v ₂ =5	v ₃ =-1	v ₄ =5	v ₅ =6
u ₁ =0	7	5[50]	9	8	6[100]
u ₂ =5	8	10[30]	4[140]	11	12
u ₃ =8	4[120]	13	15	13[70]	14[10]

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $u_i + v_j \le c_{ii}$.

 c_{ij} . Минимальные затраты составят: F(x) = 5*50 + 6*100 + 10*30 + 4*140 + 4*120 + 13*70 + 14*10 = 3240**Анализ оптимального плана**.

Из 1-го склада необходимо груз направить в 2-й магазин (50 ед.), в 5-й магазин (100 ед.)

Из 2-го склада необходимо груз направить в 2-й магазин (30 ед.), в 3-й магазин (140 ед.)

Из 3-го склада необходимо груз направить в 1-й магазин (120 ед.), в 4-й магазин (70 ед.), в 5-й магазин (10 ед.)