AS 8360-Project 3

Name: Chris Cirelli

Instructions

- Print this problem set and use the space provided under the statement of each question to write your own solution. Then scan and submit your hand-written solutions to Assignments on iCollege.
- Clearly indicate the final answer in each of your solutions. You should work alone. You are permitted to use your textbook, notes, and a calculator.
- 3. Each of problems 1-5 counts for 1 point. Problems 6-10 count for 2 points each.

1. An insurance company sells a policy with a linearly disappearing deductible such that no payment is made on a claim of 250 or less and full payment is made on a claim of 1000 or more. Calculate the payment made by the insurance company for a loss of 700.

Components

- Linearly disappearing deductible
- No payment for claim 250k or less
- Full payment is made on a claim of 1000 or more.
- What is the insurer's payment on a loss of 700?

Disappearing Deductible — a formula deductible that decreases as the amount of loss increases and disappears entirely to provide full coverage when the loss reaches a specified amount. Disappearing deductibles were once commonly used in property insurance policies. https://www.irmi.com/term/insurance-definitions/disappearing-deductible

Notes: So between 250 and 1000 there is a linearly disappearing deductible, where by 250 represents 0 and 1000 100%. So there is a linear relationship here. How do we calculate values across this line?

Interpolation:

If the two known points are given by the coordinates (x0, y0, and (x1, y1), the linear interpolant is the straight line between these points. For a value x in the interval (x0, x1), the value y along the straight line is given from the equation of slopes

$$Y - y0/x - x0 = (y1 - y0)/(x1 - x0)$$

https://en.wikipedia.org/wiki/Linear interpolation

Solution: Linearly interpolate to get the solution.

$$(700-250) / (1000 - 250) = 600.$$

- **2.** The random variable *X* represents the random loss, before any deductible is applied, covered by an insurance policy.
 - a. The probability density function of X is f(x) = 2x, 0 < x < 1.

Payments are made subject to a deductible, d, where 0 < d < 1. The probability that a claim payment is less than 0.5 is equal to 0.64. Calculate the value of d.

I found this problem difficult to understanding.

Solution: The probability of a loss paid above the deductible is some function of 0.5 + d.

3. Calculate the percentage reduction in loss costs by moving from a 100 deductible to a 250 deductible.

Size of Loss	Number of	(Ground-up	Re	eduction 100k	N	et Total	R	eduction 250k	Net Losses	Pct Diff
Size OI LOSS	Claims	ns Total I			Deductible	Losses		Deductible		Met rosses	PCCDIII
0-99	110	\$	58,500	\$	(58,500)	\$	-	\$	(58,500)	\$ -	
100-249	400	\$	70,000	\$	(40,000)	\$	30,000	\$	(70,000)	\$ -	
250-499	300	\$	120,000	\$	(30,000)	\$	90,000		-75000	\$ 45,000	
500-999	200	\$	150,000	\$	(20,000)	\$	130,000		-50000	\$ 100,000	
>999	100	\$	200,000	\$	(10,000)	\$	190,000		-25000	\$ 175,000	
Total	1,110	\$	598,500	\$	(158,500)	\$4	140,000	\$	(278,500)	\$320,000	-0.27273

Solution: -27%

4. Mr. Orfanos purchases a homeowners policy with an 80% coinsurance clause. The home is insured for 150,000. The home was worth 180,000 on the day the policy was purchased. Lightning causes 20,000 worth of damage. On the day of the storm the home is worth 250,000. Calculate the benefit payment Mr. Orfanos receives from his policy.

Coinsurance	80%
Limit (amount insured)	\$ 150,000
Home Value Start	\$ 180,000
Damage	\$ 20,000
Home Value End	\$ 250,000
Implied Limit	\$ 200,000
Ratio 80% Value to Limit	75%
Times Loss	\$ 15,000

Solution: Implied limit is the coinsurance times the value of the home. Since 200,000 is greater than 150,000, the homeowner is underinsured. Therefore, the solution is the ratio of the limit to the value of the home times the loss (150,000 / 200,000) * 20,000 = 15,000.

5. A company purchases a commercial insurance policy with a property policy limit of 70,000. The actual value of the property at the time of a loss is 100,000. The insurance policy has a coinsurance provision of 80% and a 200 deductible, which is applied to the loss before the limit or coinsurance are applied. A storm causes damage in the amount of 20,000. Calculate the insurance company's payment.

Property Limit	\$ 70,000
Actual Value @ Time of Loss	\$ 100,000
Coinsurance	80%
Deductible	\$ 200
Damage	\$ 20,000
Damage less deductible	\$ 19,800
Value implied by coinsurance	\$ 80,000
Limit divided by implied value	88%
Loss Payout (88% * (loss - deductible))	\$ 17,325

Solution: 17,325. I applied the same approach as in question #4, just discounted the loss amount by the \$200 deductible before making the final loss calculation.

- **6.** Find the end-of-1999 estimated loss reserve using:

 - a. The expected loss ratio techniqueb. The chain ladder technique with arithmetic average loss development factors

AY	1996	1997	1998	1999	Premium		Expected Loss Ratio	-	nulative	Est Expected Losses	Loss Reser	ve
1996	\$ 10,000	\$ 5,000	\$ 2,000	\$ -	\$	25,000	0.68	\$	17,000	\$17,000	\$ -	
1997		\$ 12,050	\$ 6,025	\$ 2,400	\$	29,750	0.688	\$	20,475	\$20,468	\$	(7)
1998			\$ 14,500	\$ 7,250	\$	33,000	0.7	\$	21,750	\$23,100	\$ 1,3	350
1999				\$ 17,465	\$	38,000	0.7	\$	17,465	\$26,600	\$ 9,1	35
							Totals	\$	76,690	\$87,168	\$10,4	78

Chain Ladder Technique

		Development Periods											
ΑY		1 2 3 4											
	1996	\$ 10,000	\$	15,000	\$	17,000	\$	17,000					
	1997	\$ 12,050	\$	18,075	\$	20,475							
	1998	\$ 14,500	\$	21,750									
	1999	\$ 17,465											

Age to Age Factors

De	velopment Peri	ods		
AY	0/1	1/2	2/3	
1996	1.50	1.13	1.00	
1997	1.50	1.13		
1998	1.50			
1999	-			

Arithmetic Average

,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Factor	1.5	1.13	1.00

Age to Ultimate

	0 to inf	1 to inf	2 to inf
Factor	1.695	1.130	1.000

Reserve Calculation

	Dev	elop/	ment Peri	ods									
ΑY			1		2	3		4	J	Iltimate	Loss Paid	R	eserve
	1996	\$	10,000	\$	15,000	\$ 17,000	\$	17,000	\$	17,000	\$ 17,000	\$	-
	1997	\$	12,050	\$	18,075	\$ 20,475			\$	20,475	\$ 20,475	\$	-
	1998	\$	14,500	\$	21,750				\$	24,578	\$ 21,750	\$	2,828
	1999	\$	17,465						\$	29,603	\$ 17,465	\$	12,138
							Sun	1	\$	91,656	\$ 76,690	\$	14,966

Solutions:

- a. \$10,478
- b. \$14,966

7. Find the end-of-1999 estimated loss reserve using the Bornhuetter-Ferguson technique with geometric average loss development factors.

Bornhuetter-Ferguson Method (Steps)

Technique Utilizes both the expected loss ratio and chain ladder techniques.

Utilizes CDF

Formula Ultimate Claims = Reported Claims + Unreported Claims

Equals Reported Claims + (Expected Claims) * (1- % Reported)
Pct Reported is the reciprical of the CDF of the development factors.

Step1 Expected Claims: Calculate from the expected loss ratio * premiums earned.

Step2CDF:Age to ultimate.Step3Pct Unreported:1-(1/CDF)

Step4 Expected Claims "Unreported": Pct Unreported * Expected Claims

Step5 Ultimate Claims Reported Claims (From triangle) + Unreported

Step6 Case Outstanding Reported - Paid

Step7 IBNR Projected Ultimate Cliams - Reported

Step8 Total Reserve Case Outstanding + IBNR

Geometric Average: Multiply all age factors together for a given development period (column) and take the nth root

AY		1996	1997	1998	1999	Earned Premium		Expected Loss Ratio	Cur	nulative d Losses
1996	\$	10,000	\$ 5,000	\$ 2,000	\$ -	\$	25,000	0.68	\$	17,000
1997			\$ 12,050	\$ 6,025	\$ 2,400	\$	29,750	0.688	\$	20,475
1998				\$ 14,500	\$ 7,250	\$	33,000	0.7	\$	21,750
1999		·			\$ 17,465	\$	38,000	0.7	\$	17,465
	-	•	•	-	•	-		Totals	\$	76,690

		Development Periods									
AY		1 2 3									
	1996	\$ 10,000	\$	15,000	\$	17,000	\$	17,000			
	1997	\$ 12,050	\$	18,075	\$	20,475					
	1998	\$ 14,500	\$	21,750							
	1999	\$ 17,465									

Age To Age Factors

1 .gg			
AY	0/1	1/2	2/3
1996	1.5	1.133	1.00
1997	1.5	1.133	
1998	1.5	0.000	
1999	0		

Geometric Average											
	1.5	1.133	1.00								
(CDF) Age to Ultimate											
(CDF) Age to Oitili	iale										
	1.70	1.13	1.00								
Pct Reported (1/CDF)											
	0.59	0.88	1.00								
Pct Unreported (1 - Pct Reported)											
	0.41	0.12	-								

Expected Loss Ratio Technique

,	ΛΥ	199	6	1997	1998	1999	Ear Pre		Expected Loss Ratio	ported)	 ected sses	Unp Clai Est	im	Pc Reported	_		Ultimate Claims	IE	BNR
	1996	\$ 10,000	\$	5,000	\$ 2,000	\$ -	\$	25,000	0.68	\$ 17,000	\$ 17,000	\$	-	1.00	\$	-	\$ 17,000	\$	-
	1997		\$	12,050	\$ 6,025	\$ 2,400	\$	29,750	0.688	\$ 20,475	\$ 20,468	\$	(7)	0.88	\$	2,404	\$ 22,879	\$	2,404
	1998				\$ 14,500	\$ 7,250	\$	33,000	0.7	\$ 21,750	\$ 23,100	\$	1,350	0.59	\$	8,953	\$ 30,703	\$	8,953
	1999					\$ 17,465	\$	38,000	0.7	\$ 17,465	\$ 26,600	\$	9,135	0%	\$	17,465	\$ 34,930	\$ 1	17,465
									Totals	\$ 76,690	\$ 87,168	\$	10,478		\$	28,822	\$ 105,512	\$ 2	28,822

Chain Ladder Tecl	nnic	ue					_	
			Ulti	mate				
AY		1	2	3		4	Los	ses
1996	\$	10,000	\$ 15,000	\$ 17,000	\$	17,000	\$	17,000
1997	\$	12,050	\$ 18,075	\$ 20,475			\$	20,475
1998	\$	14,500	\$ 21,750				\$	24,644
1999	\$	17,465					\$	29,683
		,			Tot	als	\$	91,802

8. Calculate the indicated actuarial reserve using the Bornhuetter-Ferguson method and volume-weighted average loss development factor.

Data

AY	12	months	24	months	36	months	48 ı	months	Earr	ed Premium
2005	\$	4,850	\$	9,700	\$	14,100	\$	16,200	\$	19,000.00
2006	\$	5,150	\$	10,300	\$	14,900			\$	20,000.00
2007	\$	5,400	\$	10,800					\$	21,000.00
2008	\$	7,200							\$	22,000.00

^{*} No development after 48 months

AY	Expected Loss Ratio	cpected Claims	CDF	Pct Unreported	pected Claims Unreported	Claims eported	jected mate ims	IRNR	 serve lution)
2005	0.9	\$ 17,100	1.00	0%	\$	\$ 16,200	\$ 16,200	\$ -	\$ -
2006	0.85	\$ 17,000	1.15	13%	\$ 2,204	\$ 14,900	\$ 17,104	\$ 2,204	\$ 4,407
2007	0.91	\$ 19,110	1.67	40%	\$ 7,639	\$ 10,800	\$ 18,439	\$ 7,639	\$ 15,278
2008	0.88	\$ 19,360	3.33	70%	\$ 13,550	\$ 7,200	\$ 20,750	\$ 13,550	\$ 27,099
Totals		\$ 72,570			\$ 23,392	\$ 49,100	\$ 72,492	\$ 23,392	\$ 46,785

Chain Ladder Technique Volume Weighted Average

	0to1	1to2	2to3
Age 2 Age Factors	2.00	1.45	1.15

Age to Ultimate	0 to inf	1 to inf	2 to inf		
CDF	3.33	1.67	1.15		

Pct Reported			
	30%	60%	87%

Pct Unreported			
	70%	40%	13%

Expected Losses Expected Loss Ratio * Earned Premium

9. Calculate the ratio discounted reserves to undiscounted reserves as of December 31, 2008.

AY	12 months		24	months	26 ,	months	40	months	Age to Ultimate	Est	st Ultimage Undiscount		iscounted
Ai	12	12 1110111115		24 months		36 months		HOHUIS	Age to Ultimate	Claims		Res	erves
2005	\$	27,000	\$	49,000	\$	65,000	\$	72,000	1.00	\$	72,000	\$	
2006	\$	28,000	\$	57,000	\$	71,000	\$	81,650	1.15	\$	81,650	\$	10,650
2007	\$	33,000	\$	65,000	\$	78,000	\$	89,700	1.38	\$	89,700	\$	24,700
2008	\$	35,000	\$	70,000	\$	84,000	\$	96,600	2.76	\$	96,600	\$	61,600
									Totals	\$	339,950	\$	96,950

Selected Age-to-Age Paid Loss Development Factors are: 2.00 for 12/24 months, 1.20 for 24/36 months, 1.15 for 36/48 months, and 1.00 for 48/1months.

The interest rate is 5.0% per annum effective.

Age to Age Factors

Ago to Ago i dotoro				
	12/24	24/36	36/48	48 >
Factor	2.00	1.20	1.15	1.00

Age to Ultimate	12 to inf	24 to inf	36 to inf	48 to inf		
	2.76	1.38	1.15	1.00		

Differences By Period (Est Amount Incremental Increase - Known)

AY	12 months	24 r	nonths	36 r	months	48 r	48 months		scounted erves
2005								\$	-
2006						\$	10,650	\$	10,650
2007				\$	13,000	\$	11,700	\$	24,700
2008		\$	35,000	\$	14,000	\$	12,600	\$	61,600
						Tot	al	\$	96 950

Apply Interest Rate

AY	12 months	24 ı	months	1 68	months	148 months I		48 months		Discounted Reserves		Ratio Discounted to Undiscounted (Solution)	
2005								\$	-				
2006						\$	10,143	\$	10,143	95.24%			
2007				\$	12,381	\$	10,612	\$	22,993	93.09%			
2008		\$	33,333	\$	12,698	\$	10,884	\$	56,916	92.40%			
					•	Tot	al	\$	90,052	92.89%			

^{*} I assume we discount the premiums based on a factor from right (most recent) to left

^{*} Also assuming that payments are made at the beginning of each period such that each period = 1

10. Calculate the total loss reserve using the Bornhuetter-Ferguson method and three year arithmetic average paid loss development factors

	Cumulative Loss Payments												
		Development Periods											
AY	١	Year 0		Year 1		Year2		Year3		Year4		Year5	
2004	\$	1,400	\$	5,200	\$	7,300	\$	8,800	\$	9,800	\$	9,800	
2005	\$	2,200	\$	6,400	\$	8,800	\$	10,200	\$	11,500			
2006	\$	2,500	\$	7,500	\$	10,700	\$	12,600					
2007	\$	2,800	\$	8,700	\$	12,900							
2008	\$	2,500	\$	7,900		•		•				•	
2009	\$	2,600											
						·		·					

AY	Earned remium	Expected Loss Ratio	xpected Claims	R	Total eported	Pct Unreported	xpected Claims nreporte d	ı	lltimate Claims		Case utstand ing	IE	BNR	Res	tal Loss server lution)
2004	\$ 18,000	0.55	\$ 9,900	\$	9,800	0.00	\$ -	\$	9,800	\$	-	\$	-	\$	-
2005	\$ 20,000	0.55	\$ 11,000	\$	11,500	0.00	\$ -	\$	11,500	\$	-	\$	-	44	-
2006	\$ 25,000	0.55	\$ 13,750	\$	12,600	0.11	\$ 1,479	\$	14,079	\$	1,479	\$	2,958	\$	4,438
2007	\$ 26,000	0.55	\$ 14,300	\$	12,900	0.24	\$ 3,492	\$	16,392	\$	3,492	\$	6,983	\$	10,475
2008	\$ 27,000	0.55	\$ 14,850	\$	7,900	0.47	\$ 6,991	\$	14,891	\$	6,991	\$1	3,981	\$	20,972
2009	\$ 28,000	0.55	\$ 15,400	\$	2,600	0.83	\$ 12,762	\$	15,362	\$	12,762	\$2	5,523	\$	38,285
Totals	\$ 144,000		\$ 79,200	\$	57,300		\$ 24,723	\$	82,023	\$:	24,723	\$4	9,446	\$	74,169

Age to Age Factors

AY	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5
2004	3.71	1.40	1.21	1.11	1.00
2005	2.91	1.38	1.16	1.13	
2006	3.00	1.43	1.18		
2007	3.11	1.48			
2008	3.16				
2009	-				

Arithmetic Average	(3 years)				
Factor	3.09	1.43	1.18	1.12	1.00

Age to Ultimate	0 to 5	1 to 5	2 to 5	3 to 5	4 to 5
Factor	5.84	1.89	1.32	1.12	1.00

Pct Reported					
	0.17	0.53	0.76	0.89	1.00

Pct Unreported					
	0.83	0.47	0.24	0.11	-