Объединенный отчет по проверке гипотез с использованием случайных графов

Равиль Гареев Хамаганов Ильдар

30 мая 2025 г.

Содержание

Ча	асть	І: Про	оверка гипотез с использованием случайных графов (Рас	-	
		_	ия χ^2 и χ)	2	
	0.1	Описа	иние кода	2	
		0.1.1	Используемые инструменты	2	
		0.1.2	UML-диаграмма класса GraphAnalyzer	3	
		0.1.3	Реализованные компоненты	3	
	0.2	Описа	иние экспериментов	4	
		0.2.1	Эксперимент 1: Зависимость характеристик от параметра ν	4	
		0.2.2	Эксперимент 2: Зависимость характеристик от параметров гра-		
			фа и размера выборки	5	
		0.2.3	Эксперимент 3: Проверка гипотез с критической областью	7	
Ча			пализ графовых признаков для классификации распреде	-	
	лен	ий		8	
	0.3	Описа	ние экспериментов	8	
		0.3.1	Извлечение признаков	8	
		0.3.2	Анализ важности признаков	8	
		0.3.3	Классификация и метрики качества	8	
Ча	асть	III: П _І	роверка гипотез для распределений $\mathbf{Stable}(lpha=1)$ и $\mathbf{Normal}($	0,1)	10
1	Экс	перим	иент 1: зависимость от условного параметра $ u$	10	
2	Экс	перим	иент 2: зависимость от параметров графа и размера n	11	
3	Экс	перим	ент 3: критические области и мощность	11	
4			классификации выборок		
			ю графовых признаков	10	
	Час	ть II		12	
5	Фор	омиро	вание признаков	12	
6	Пер	вичнь	ый анализ признаков ($n = 100$, distance, $d = 0.5$)	13	

•	Важность признаков	13
8	Сравнение классификаторов	13
9	ROC-кривые (RandomForest, $n = 100$)	14
10	Поиск оптимальных параметров	14

Часть І: Проверка гипотез с использованием случайных графов (Распределения χ^2 и χ)(Гареев Р.Р.)

Введение

В работе исследуется применение случайных графов (KNN-графов и дистанционных графов) для проверки гипотез согласия. Цель — определить, насколько характеристики графов позволяют различать выборки из двух распределений: χ^2 (гипотеза H_0) и χ (гипотеза H_1).

0.1 Описание кода

0.1.1 Используемые инструменты

- Python 3.10+: Базовый язык разработки с строгой типизацией
- Библиотеки:
 - numpy: Векторизованные вычисления и работа с массивами
 - scipy.stats: Генерация χ^2 и χ распределений
 - scikit-learn: Оптимизированное построение KNN-графов
 - networkx 3.0+: Топологический анализ и алгоритмы на графах
 - matplotlib/seaborn: Визуализация распределений характеристик
 - tqdm: Интерактивные прогресс-бары для длительных вычислений
- **Архитектура**: Модульная структура с разделением на генерацию данных, построение графов и анализ

0.1.2 UML-диаграмма класса GraphAnalyzer

```
GraphAnalyzer

- G: nx.Graph
- n: int

+ init(G: nx.Graph)
+ max_degree():: int
+ min_degree():: int
+ connected_components():: int
+ articulation_points():: int
+ count_triangles():: int
+ chromatic_number():: int
+ clique_number(d: float):: int
+ max_independent_set(exact: bool=False, warn_threshold: int=30):: int
+ dominating_number():: int
+ min_clique_cover():: int
```

Рис. 1: Диаграмма класса GraphAnalyzer с методами анализа

0.1.3 Реализованные компоненты

- Генераторы данных (distribution generators.py):
 - $-\chi^2$ -распределение: Адаптер для chi2.rvs() с параметрами:
 - * nu степени свободы
 - * п размер выборки
 - γ-распределение: Обертка для chi.rvs() с аналогичными параметрами
- Построители графов (build graph.py):
 - KNN-граф:
 - 1. Поиск k+1 ближайших соседей через NearestNeighbors
 - 2. Фильтрация петель $(i \neq j)$
 - 3. Сохранение координат в атрибуте узлов
 - Дистанционный граф:
 - 1. Полный перебор всех пар вершин
 - 2. Проверка условия $|x_i x_j| \leq d$
- Анализатор графов (graph analyzer.py):
 - Расчёт степеней вершин: max_degree(), min_degree()
 - Компоненты связности: connected_components()
 - Топологический анализ: articulation_points(), count_triangles()
 - Раскраска графов: адаптивный алгоритм DSATUR в chromatic_number()
 - Клики: Алгоритм двух указателей для 1D в clique_number()

Оптимизационные задачи: независимые множества (max_independent_set()),
 доминирующие множества (dominating_number())

• Статистический анализ (hypothesis_testing.py):

- Критическая область: calculate_critical_region() на квантилях
- Мощность теста: estimate_power() через сравнение с критическим значением

• Монте-Карло симулятор (monte carlo.py):

- 1. Итеративная генерация $n_samples$ выборок для H_0 или H_1
- 2. Динамическое построение графов (KNN/дистанционные)
- 3. Гибкий выбор метрик через рефлексию (getattr())
- 4. Поддержка аргументов метрик через metric_args

0.2 Описание экспериментов

0.2.1 Эксперимент 1: Зависимость характеристик от параметра ν

Цель: Исследовать, как характеристики графов (число треугольников для KNN, кликовое число для дистанционного) реагируют на изменение параметра ν в распределениях χ^2 и χ .

Рис. 2: Зависимость характеристик от ν (слева — KNN-граф, справа — дистанционный)

Ключевые наблюдения:

• KNN-граф (число треугольников):

- Минимальная чувствительность: различия между χ^2 и χ не превышают 0.4% для всех ν
- Стабильность: значения остаются в диапазоне 3012-3035 при любом ν

• Дистанционный граф (кликовое число):

- Катастрофическое различие: при $\nu=3$ значения для χ в 2.13 раза выше (113.2 vs 53.5)
- Парадоксальный рост: разрыв увеличивается с ростом ν (см. Табл. 1)
- При $\nu=20$: χ показывает более чем в 5 раз большее кликовое число (110 vs 20)

Статистика:

ν	$H_0^{ m DIST}$	$H_1^{ m DIST}$	Δ_{DIST} (%)	Отношение
3	53.5	113.3	+111.8%	2.12x
5	38.1	111.2	+191.9%	2.92x
7	31.9	110.1	+245.1%	3.45x
10	26.9	110.3	+309.7%	4.10x
12	24.8	109.6	+342.1%	4.42x
15	22.7	109.4	+381.9%	4.82x
20	20.3	110.2	+442.9%	5.43x

Таблица 1: Результаты для дистанционного графа ($\Delta = \frac{|H_1 - H_0|}{H_0} \times 100\%$)

Выводы:

• KNN-граф:

- Полностью неэффективен для различения распределений
- Число треугольников практически идентично для χ^2 и χ

• Дистанционный граф:

- Чрезвычайно чувствителен к типу распределения
- Эффективность растет с увеличением ν

0.2.2 Эксперимент 2: Зависимость характеристик от параметров графа и размера выборки

Цель: Исследовать влияние параметров графа (k для KNN, d для дистанционного) и размера выборки (n) на характеристики при фиксированных распределениях $\chi^2(\nu = 5)$ и $\chi(\nu = 5)$.

Результаты

• KNN-граф (число треугольников):

- Зависимость от k:

- * Для H_0 : Рост от 1,038 (k=5) до 18,526 (k=20)
- * Для H_1 : Рост от 1,040 (k=5) до 18,606 (k=20)
- * Макс. разрыв: 80.7 треугольников (k = 20, 0.43%)
- Зависимость от n:
 - * Для H_0 : Рост от 1,595 (n=100) до 7,242 (n=500)
 - * Для H_1 : Рост от 1,591 (n=100) до 7,259 (n=500)
 - * Разрыв < 0.23% для всех n

• Дистанционный граф (кликовое число):

- Зависимость от d:
 - * Для H_0 : Рост от 31.5 (d=0.5) до 97.7 (d=2.0)
 - * Для H_1 : Рост от 92.7 (d=0.5) до 260.4 (d=2.0)
 - * Отношение H_1/H_0 : от 2.94х (d=0.5) до 2.66х (d=2.0)
- Зависимость от n:
 - * Для H_0 : Рост от 57.2 (n=100) до 272.7 (n=500)
 - * Для H_1 : Рост от 20.7 (n=100) до 87.4 (n=500)
 - * Отношение H_0/H_1 : от 2.76х (n=100) до 3.12х (n=500)

Параметр	KNN $(\Delta_{max}, \%)$	DIST $(\Delta_{max}, \%)$	DIST (Отношение)
$k = 5 \rightarrow 20$	0.43	_	_
$d = 0.5 \to 2.0$	_	726.0%	$2.94x \rightarrow 2.66x$
$n = 100 \rightarrow 500$	0.23	377.1%	$2.76x \rightarrow 3.12x$

Таблица 2: Сводка результатов ($\Delta = \frac{|H_1 - H_0|}{H_0} \times 100\%$)

Ключевые выводы

• KNN-граф:

- Число треугольников растёт с k и n, но не различает H_0/H_1
- Максимальная разница: 0.43% при k=20

• Дистанционный граф:

- Кликовое число демонстрирует:
 - * Максимальную чувствительность при $d = 0.5 \; (\Delta = 194.4\%)$
 - * Стабильный рост различий с увеличением $n~(\Delta = 377.1\%)$
- Отношение H_0/H_1 сохраняется в диапазоне 2.66х—3.12х

d	$H_0^{ m DIST}$	$H_1^{ m DIST}$	Δ_{DIST} (%)	Отношение
0.5	31.5	92.7	+194.4%	2.94x
1.0	55.0	164.6	+199.3%	2.99x
1.5	76.2	222.2	+191.6%	2.92x
2.0	97.7	260.4	+166.5%	2.66x

Таблица 3: Зависимость от d для дистанционного графа (n=300)

0.2.3 Эксперимент 3: Проверка гипотез с критической областью

Цель: Оценить эффективность критериев для различения $\chi^2(\nu=5)$ и $\chi(\nu=5)$ при $\alpha=0.05$.

Метрика	KNN-граф	Дистанционный граф
Критическое значение	7,507.15	97.05
FPR (Ошибка I рода)	5.00%	5.00%
TPR (Мощность)	4.80%	100.00%
AUC-ROC	0.545	1.000

Таблица 4: Сравнение критериев (n = 500, k = 10, d = 1.0)

Анализ результатов

- KNN-граф (число треугольников):
 - Низкая мощность (4.8%): Менее 5% выборок H_1 попадают в критическую область
 - AUC 0.545: Незначительное улучшение над случайным угадыванием (0.5)
 - FPR строго соответствует уровню $\alpha = 0.05$
- Дистанционный граф (кликовое число):
 - Идеальная сепарация: AUC=1.0 и мощность=100%
 - Все выборки H_1 превышают критическое значение
 - Стабильный контроль ошибки І рода (ровно 5%)

Практические выводы

- Дистанционный граф с характеристикой "кликовое число" демонстрирует:
 - Абсолютную надежность при d = 1.0
 - Эффективный контроль ошибок обоих типов
- KNN-граф требует:
 - Пересмотра используемой характеристики (число треугольников неинформативно)
 - Дополнительных исследований для поиска значимых метрик
- Оптимальная конфигурация: $d = 1.0, n \ge 500$ гарантирует AUC=1.0

Заключение (Часть І)

- KNN-граф не подходит для проверки гипотез в текущей конфигурации.
- Дистанционный граф с характеристикой «кликовое число» показал идеальное разделение (AUC=1.0).
- Возможно, для KNN-графа стоит изучить другие характеристики.

Часть II: Анализ графовых признаков для классификации распределений (Гареев Р.Р.)

Введение

Цель исследования — оценить эффективность графовых признаков, построенных на выборках из распределений $\chi^2(5)$ и $\chi(5)$, для задачи бинарной классификации.

0.3 Описание экспериментов

0.3.1 Извлечение признаков

Для каждой выборки размера n строился дистанционный граф с порогом d=1.0 и вычислялись четыре признака.

0.3.2 Анализ важности признаков

При помощи Random Forest оценивалась важность признаков при n=25,100,500. Результаты приведены в таблице:

Признак	n = 25	n = 100	n = 500
count_triangles	0.49	0.45	0.45
${ m clique_number}$	0.34	0.39	0.39
\min_{degree}	0.00	0.01	0.05
$connected_components$	0.16	0.15	0.11

Таблица 5: Важность признаков при разных размерах выборки

Вывод: count_triangles и clique_number являются наиболее информативными.

0.3.3 Классификация и метрики качества

Эксперименты проводились для n=10,20,50,100,200,500 с классификаторами LogisticRegression, RandomForest и SVM. Оценивались Ассигасу, дисперсия Ассигасу, FPR, TPR, Precision и F1.

Рис. 3: Зависимость метрик качества от размера выборки

Выводы (Часть II)

- При $n \geq 20$ все алгоритмы достигают 100% Ассигасу и мощности, при этом FPR = 0.
- Для практических задач достаточно $n \approx 20\text{-}50$ для идеального разделения.
- RandomForest и SVM показали наилучшую стабильность при малых выборках.
- Наиболее информативные признаки: count_triangles и clique_number.

Часть III: Проверка гипотез для распределений $Stable(\alpha = 1)$ и Normal(0,1)(Xамаганов И. А.)

В первой части исследования оценивалась возможность различения выборок из двух распределений:

$$H_0$$
: Stable($\alpha = 1$), H_1 : Normal(0, 1),

с помощью двух типов графов:

- KNN-rpa ϕ : $T^{\text{knn}} = \max \deg(G)$;
- Дистанционный граф: $T^{\text{dist}} = \chi(G)$.

1 Эксперимент 1: зависимость от условного параметра ν

Описание. При фиксированных $n = 200, N_{\rm MC} = 500$ строили:

$$\overline{T}^{\mathrm{knn}}(k) = \mathbb{E} ig[\max \deg(G) ig]$$
 при $k \in \{3, 5, 7, 10, 12, 15, 20\},$ $\overline{T}^{\mathrm{dist}}(d) = \mathbb{E} ig[\chi(G) ig]$ при $d \in \{0.5, 1.0, 1.5, 2.0\}.$

Результаты.

Таблица 6: Зависимость $\overline{T}^{\text{knn}} = \max \deg \operatorname{or} k$ 5 k3 12 15 20 10 Stable (H_0) 18.428 18.448 18.450 18.416 18.484 18.418 18.414 Normal (H_1) 17.166 17.27417.232 17.240 17.208 17.190 17.210

Таблица 7: Зависимость $\overline{T}^{ ext{dist}} = \chi(G)$ от d						
d 0.5	1.0	1.5	2.0			
Stable (H ₀) 36.826 Normal (H ₁) 46.522						

Выводы.

- KNN-граф: различия между Stable и Normal менее 1.3 ед.; кривая почти горизонтальна \rightarrow max deg не информативна.
- Дистанционный граф: чёткий разрыв (до ~ 37 при d=2.0); $\chi(G)$ хорошо разделяет H_0 и H_1 .

2 Эксперимент 2: зависимость от параметров графа и размера n

Влияние параметров графа

Таблица 8: max degree vs k при n=200

k 3	5	7	10	12	15	20
Stable 5.996	9.670	13.160	18.390	21.858	27.162	35.768
Normal 5.990	9.338	12.492	17.134	20.400	25.206	33.116

Таблица 9: $\chi(G)$ vs d при n = 200

10001111	$\chi \alpha \sigma \cdot \chi(\alpha)$	vs a npn v	
d = 0	.5 1.0	1.5	2.0
		85.200 64 114.472	

Влияние размера выборки п

Таблица 10: max degree vs n при k=10

	_ 0			
n	100	200	300	500
200010	20.0.0	10.100	18.438 17.234	10.011

Выводы.

- max deg растёт с k,n, но перекрытие распределений остаётся сильным (разница $\lesssim 1.5).$
- $\chi(G)$ устойчиво выше для Normal; разрыв усиливается с ростом d и n (до ~ 45 при n=500).

3 Эксперимент 3: критические области и мощность

Параметры: n = 500, k = 10, d = 1.0, уровень $\alpha = 0.05$.

Выводы.

- Тест на max deg не различает гипотез: мощность близка к нулю.
- Тест на $\chi(G)$ обеспечивает идеальное разделение (AUC=1, мощность=100%).

Таблица 11: $\chi(G)$ vs n при $d=1.0$						
n 100	200	300	500			
Stable 33.322	64.024	94.288	154.300			
Normal42.904	83.082	121.964	199.784			

Таблица 12: Критические значения и характеристики теста

Граф	CV	FPR	TPR	AUC
KNN (max deg) Distance (χ)			0.0% 100.0%	0.545 1.000

Заключение

- KNN-граф (max deg): малоинформативен, не подходит для критерия.
- Дистанционный граф ($\chi(G)$): надёжно разделяет Stable и Normal; рекомендован $d=1.0, n \geq 500$.
- Для повышения устойчивости можно комбинировать обе статистики или добавить новые графовые признаки.

4 Отчёт по классификации выборок с помощью графовых признаков часть II

Цель

Собрать векторы признаков из графовых характеристик и обучить классификаторы для различения выборок:

$$H_0$$
: Stable($\alpha = 1$), H_1 : Normal(0, 1).

5 Формирование признаков

- KNN-граф (k = 5): извлекаются $num_components$, max_degree , min_degree , avg_degree , $num_triangles$, $chromatic_number$.
- Дистанционный граф (d=0.5): те же признаки плюс max_clique_1d.
- На каждом $n \in \{25, 100, 500\}$ генерируется по M выборок H_0 и H_1 , всего 2M меток.

6 Первичный анализ признаков (n=100, distance, d=0.5)

Описание выборки

	count	mean	std	min	25%	50%	max
	Count	mean	siu	111111	2070	3070	———
$num_components$	600	8.063	6.635	1	2	5	23
\max_{degree}	600	36.557	6.450	23	31	36	54
\min_{degree}	600	0.483	0.963	0	0	0	5
avg_degree	600	21.480	6.408	10.58	15.22	22.46	34.74
$num_triangles$	600	7668.98	3680.57	2161	4253	7517	18267
$chromatic_number$	600	22.652	4.003	14	19.75	23	37
\max_{clique_1d}	600	22.652	4.003	14	19.75	23	37

Корреляционная матрица

Рис. 4: Корреляции между признаками (n = 100, dist, d = 0.5).

7 Важность признаков

8 Сравнение классификаторов

Таблица 13: Feature importances (Random
Forest, M=500)

	n = 25	n = 100	n = 500		
$\mathbf{KNN} \ (k=5)$					
$num_components$	0.021	0.046	0.136		
\max_{degree}	0.066	0.061	0.043		
avg_degree	0.402	0.439	0.385		
$num_triangles$	0.511	0.455	0.436		
others	_	_	_		
Distance $(d = 0.5)$					
num_components	0.433	0.318	0.256		
avg_degree	0.295	0.336	0.282		
$num_triangles$	0.136	0.195	0.220		
chromatic_number	0.031	0.035	0.067		
max_clique_1d	0.023	0.032	0.061		

9 ROC-кривые (RandomForest, n = 100)

Рис. 5: ROC-кривые для RF на KNN (слева) и Distance (справа), n=100.

10 Поиск оптимальных параметров

 $k^* = 10$, AUC_{max} ≈ 0.9957 , $d^* = 0.1$, AUC_{max} = 1.000.

Таблица 14: Accuracy различных моделей (5-fold CV)

model	n = 25	n = 100	n = 500			
	$\mathbf{KNN} \; (k=5)$					
DT	0.774	0.758	0.606			
GB	0.834	0.852	0.666			
LogReg	0.842	0.858	0.716			
NC	0.823	0.841	0.708			
RF	0.801	0.789	0.646			
SVM	0.834	0.850	0.701			
kNN	0.809	0.829	0.684			
Distance $(d = 0.5)$						
DT	0.945	1.000	1.000			
GB	0.963	1.000	1.000			
LogReg	0.965	0.999	1.000			
NC	0.877	0.980	1.000			
RF	0.969	1.000	1.000			
SVM	0.965	1.000	1.000			
kNN	0.959	0.999	1.000			

Итоги и выводы

- **Признаки:** avg_degree и num_triangles важны для KNN; num_components, avg_degree, num_triangles для Distance.
- Модели: Distance-граф с RF/GB даёт почти идеальную точность (AUC=1) уже при $n \ge 100$. KNN-граф достигает AUC 0.85 при n = 100 и k = 10.
- Параметры: k = 10 для KNN, d = 0.1 для Distance оптимальны.
- **Рекомендации:** Использовать Distance-признаки и ансамблевые методы (RandomForest/Graдля статистических критериев и классификации.