1 Notation

AND	^	
OR	V	+
NOT	_	\overline{x}
NAND	↑	$\overline{A \cdot B}$
NOR	+	$\overline{A+B}$
XOR	\oplus	≠
XNOR	0	l <u>=</u>

 $x \rightarrow y := \neg x + y$

Rechengesetze

Kommutativgesetze

$$A \cdot B = B \cdot A$$
$$A + B = B + A$$

Assoziativgesetze

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
$$(A + B) + C = A + (B + C)$$

Distributivgesetze

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$
$$A + (B \cdot C) = (A+B) \cdot (A+C)$$

Identitätsgesetze

$$A \cdot 1 = A$$
$$A + 0 = A$$

Negationsgesetze

$$A \cdot \neg A = 0$$
$$A + \neg A = 1$$

Idempotenzgesetze

$$A \cdot A = A$$
$$A + A = A$$

${\bf Null-\ und\ Einselementgesetze}$

$$A \cdot 0 = 0$$
$$A + 1 = 1$$

Absorptionsgesetze

$$A \cdot (A + B) = A$$
$$A + (A \cdot B) = A$$

De Morgan'sche Gesetze

$$\neg (A \cdot B) = \neg A + \neg B$$
$$\neg (A + B) = \neg A \cdot \neg B$$

2 Beweise

$$\neg 1 = 0$$

$$\neg 1 = \neg 1 + 0$$
 (Neutrales Element 0)
$$= \neg 1 + \neg \neg 0$$
 (Idempotenz)
$$= \neg (1 \cdot \neg 0)$$
 (De Morgan)
$$= \neg \neg 0$$
 (Neutrales Element 1)
$$= 0$$
 (Idempotenz)

Keine 3-elementige Boolesche Algebra

Angenommen, es existiert eine 3-elementrige Boolesche Algebra $M=\{1,0,a\}$. Für $\neg a$ gibt es 3 jeweils widersprüchliche Möglichkeiten:

Funktionale Vollständigkeit von $\{\rightarrow, \oplus\}$

Es ist zu zeigen, dass die Menge $\{\to, \oplus\}$ funktional vollständig ist, gegeben dass $\{+, \neg\}$ funktional vollständig ist.

Da jede Funktion mit + und ¬ darstellbar ist, genügt es zu zeigen, dass sowohl + als auch ¬ mit → und \oplus ausgedrückt werden können:

$$\begin{aligned} \neg x &= 1 \oplus x \\ &= (x \to x) \oplus x \\ x + y &= \neg x \to y \\ &= ((x \to x) \oplus x) \to y \end{aligned}$$

3 Digitale Logikbausteine

Multiplexer (Mux)

Ein Multiplexer (Mux) wählt eines von vielen Eingangssignalen aus und leitet dieses auf einen einzelnen Ausgang. Er fungiert als mehrere-zu-eins-Schalter.

 $n \ \mathrm{Daten} + \log_2(n) \ \mathrm{Steuerung}$

- Auswahl eines Datenkanals aus mehreren Quellen.
- Routing eines Signals basierend auf einer Steueradresse.

Demultiplexer (Demux)

Ein Demultiplexer (Demux) nimmt ein einzelnes Eingangssignal und leitet es auf eines von vielen Ausgangssignalen. Er funktioniert als eins-zu-mehrere-Schalter.

 $\log_2(n)$ Steuerung + n Ausgänge

- Verteilung eines Datenkanals auf mehrere Ausgänge.
- Erzeugung mehrerer Steuersignale aus einem einzigen Eingang.

Decoder

Ein Decoder hat n binäre Eingangsleitungen und 2^n Ausgangsleitungen. Für jede Eingangskombination wird genau einer der Ausgänge aktiviert. n Eingänge $\rightarrow 2^n$ Ausgänge

- \bullet Jede Eingangskombination aktiviert genau einen Ausgang.
- Einsatz z.B. in digitalen Anzeigesystemen, um eine binäre Zahl in eine spezifische Anzeige zu übersetzen.

Encoder

Ein Encoder hat 2^n Eingangsleitungen, von denen jeweils nur eine aktiv sein darf, und wandelt diese in eine n-Bit binäre Zahl um.

 2^n Eingänge $\to n$ Ausgänge

- Wandelt den aktiven Eingang in eine binäre Darstellung um.
- Oft in Tastaturen genutzt, um die gedrückte Taste in einen Binärcode umzuwandeln.

Schaltfunktionen

2-De-Mux (1-to-4-Demultiplexer)

$$\begin{aligned} z_0(x, y_0, y_1) &= x(\neg y_0 \neg y_1) \\ z_1(x, y_0, y_1) &= x(\neg y_0 y_1) \\ z_2(x, y_0, y_1) &= x(y_0 \neg y_1) \\ z_3(x, y_0, y_1) &= x(y_0 y_1) \end{aligned}$$

Darstellung von Funktionen mittels Multiplexer

Eine Funktion $f:B^n\to B$ kann durch einen (n-1)-Multiplexer dargestellt werden, indem die ersten (n-1) Variablen als Steuersignale und die n-te Variable als Eingangssignal verwendet werden. Abhängig von den Steuersignalen wird der Mux-Ausgang entweder $x_n, \neg x_n, 0$ oder 1 sein.

Beispiel für $B^3 \to B$ mit einem 2-Multiplexer:

x_0	x_1	x_2			
0	0	0	0	_	
0	0	1	0		U
0	1	0	0	,	
0	1	1	1	\rightarrow	x_2
1	0	0	1	,	1
1	0	1	1	_	1
1	1	0	1	_	-m-
1	1	1	0		$\neg x_2$

4 Basisumwandlung

$$(132)_{10} \rightarrow (204)_8$$

$$132 \div 8 = 16 \text{ Rest } 4$$

 $16 \div 8 = 2 \text{ Rest } 0$
 $2 \div 8 = 0 \text{ Rest } 2$

5 Quine McCluskey Verfahren

$$f(a, b, c, d) = \sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)$$

	Start	Schriff 1	Schriff 2
group 0	0 0000 🗸	0 1 000- 🗸	0. 1 8, 9 -00-
	1 0001 /	0 2 00-0 🗸	0, 2, 8, 10 -0-0
group 1	2 0010 /	08 -000 /	
	8 1000 /	1 5 0-01	
	5 0101 /	19 -001 ✓	2, 6 10, 14 10
	6 0110 🗸	26 0-10 /	
group 5	9 1001 🗸	2,10 -010 /	
	10 1010 /	8 9 100- 🗸	
	7 0111 /	8 10 10-0 /	
group 3	/ 1110 ها	5 7 01-1	
	<u> </u>	6,7 011-	
		6, 14 -110 /	
		10, 14 1-10 /	

Nicht weiter verwendete Minterme:

$$f = \overline{ac}d + \overline{a}b\overline{d} + \overline{a}bc + \overline{b}\overline{c} + \overline{b}\overline{d} + c\overline{d}$$

\mathbf{Term}	0	1	2	5	6	7	8	9	10	14
$\overline{ac}d$		1		1						
$\overline{a}bd$				1		1				
$\overline{a}bc$					1	1				
$\overline{b}\overline{c}$	1	1					1	1		
\overline{bd}	1		1				1		1	
$c\overline{d}$			1		1			1	1	1

Minimale Darstellung:

$$f=\overline{a}bd+\overline{b}\overline{c}+c\overline{d}$$

6 OBDD

x	У	\mathbf{z}	f(x, y, z)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

 $\overline{\text{OBDD mit } x > z > y}$

Optimiertes OBDD mit z > y > x

Unabhängige Fehlerdiagnose

 $f(x_0, x_1, x_2) = x_0(x_1 + \overline{x_2})$

Wertetabelle:

_{x0}	<i>x</i> ₁	x_2	$f(x_0, x_1, x_2)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Testpaare:

- x_0 : {(000), (100)}, {(010), (110)}, {(011),
- x_1 : {(101), (111)}
- x_2 : {(100), (101)}

Minimale Testmengen:

- {(000), (100), (101), (111)}
- {(011), (100), (101), (111)}

Eliminieren von Schaltungshazards

Anwenden von Satz von Eichelberger. Alle Primimplikanten in DNF führt zu Hazard-freiem Verhalten.

Schaltungsabhängige Fehlerdiagnose

$$f(x_0, x_1) = \neg x_0 + \neg x_1$$

Annahme: $f_1 = 1$ stuck @ zero $f_2 = 2$ stuck @ zero, etc.

x_0	<i>x</i> ₁	f	f_1	f_2	f_3	f_4
0	0	1	1	1	1	1
0	1	1	1	1	0	1
1	0	1	1	1	1	0
1	1	0	1	1	0	0

$$f_1 = f_2$$

-x ₀	<i>x</i> ₁	f	$f \oplus f_1$	$f \oplus f_3$	$f \oplus f_4$
0	0	1	0	0	0
0	1	1	0	1	0
1	0	1	0	0	1
1	1	0	1	0	0

Minimale Testmenge:

• $\{(0,1),(1,0),(1,1)\}$

Alle Fehler sind feststellbar.

7 Delays

- Synchronisiertes Delay durch zentrale Uhr
- Taktimpulse steuern Rückkopplungs-Delay
- $\bullet\,$ Sperrschaltung zwischen Vor- und Hauptspeicher
- Arbeitsphase: Ausgabe des Hauptspeichers (S)
- Setzphase: Übertrag von Vor- (V) zu Hauptspeicher (S)
- Kurzzeitiges Öffnen der Sperre während Setzphase

${\bf Flipflops} \\ {\bf SR-Flipflop} \\$

- Zwei Eingänge: Set (S), Reset (R)
- Flanken- oder pegelgesteuert konfigurierbar
- Flankensteuerung: Zusätzliche Logik (z.B. Taktflankendetektor)
- Vermeiden von gleichzeitigem S=R=1
- Race Condition, falls S und R fast gleichzeitig von 0 auf 1 wechseln
- Master-Slave für definierte Ausgabe bei Flanke
- → Anlegen eines Taktsignals erlaubt bessere Kontrolle.

S	R	$Q(t_0)$	$Q(t_1)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	verb	oten

D-Flipflop

- Flankengetriggert: Übernahme von D bei Taktflanke
- Keine verbotenen Zustände
- Speichert einzelnes Bit
- Auch in Master Slave Schaltung möglich (Edge-Triggered)

D	G	$Q(t_0)$	$Q(t_1)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1 1

JK-Fliflop

- Zwei Eingänge: J (Set), K (Reset)
- $\bullet\,$ Flankengetriggert: Toggeln bei J=K=1
- Interne Rückkopplung verhindert undefinierte Zustände
- Master-Slave-Variante für sequenzielle Logik
- Geeignet für Zähler und Register
- Setzen nur möglich wenn Q=0, Reset nur möglich wenn Q=1

J	K	S	R	$Q(t_0)$	$Q(t_1)$
0	0	0	0	0	0
0	0	0	0	1	1
0	1	0	0	0	0
0	1	0	1	1	0
1	0	1	0	0	1
1	0	0	0	1	1
1	1	1	0	0	1
1	1	Ω	1	1	0

MUX-Delay

- MUX Delay: Zeitverzögerung beim Durchschalten der Daten.
- MUX Konfiguration für einfache Flanke: Takt direkt an Steuereingang.
- MUX Konfiguration f
 ür doppelte Flanke: Takt und invertierter Takt auf Steuereingänge zweier MUXe, die abwechselnd aktiviert werden.

Ringzähler

8 Schaltwerke

Einer- und Zweierkomplement Einerkomplement:

- Invertierung jedes Bits (0 wird zu 1, 1 wird zu 0).
- Beispiel: Einerkomplement von 0101 ist 1010.
- Zwei Darstellungen für Null (0000 und 1111).
- "Overflow" wird an der niedrigsten Stelle addiert.

$$\begin{array}{l} Beispiel: & -63_{(10)} - 27_{(10)} \\ -63_{(10)} \rightarrow -(0011\ 1111)_{(2)} \rightarrow 1100\ 0000_{(2)} \\ -27_{(10)} \rightarrow -(0001\ 1011)_{(2)} \rightarrow 1110\ 0100_{(2)} \\ \hline 1100\ 0000_{(2)} \\ +1110\ 0100_{(2)} \\ \hline \hline 11010\ 0101_{(2)} \rightarrow -(0101\ 1010)_{(2)} \rightarrow -90_{(10)} \end{array}$$

Zweierkomplement:

- Addition von 1 zum Einerkomplement.
- Beispiel: Zweierkomplement von 0101 ist 1011
- Eine Darstellung für Null, vereinfacht binäre Subtraktion.
- ! Aufpassen beim zurückwandeln, auch hier wieder +1

3-Bit Addier-/Subtrahierwerk

4-Bit Paralleladdierwerk

4-Bit Serienaddierwerk

Ein n-Bit Serienaddierer benötigt n+1 Schritte. 1 Schritt für das Laden der Register und dann n Addierschritte.

Linear rückgekoppeltes Schieberegister

Das LRSR $(4, 1 + X + X^4)$ hal folgende Schaltung

Keystream kann durch "rückwärts Einfädeln" überprüft werden.

Gleitkommadarstellung

 $z=\pm m\cdot b^{\pm e}$

m: Mantisse; b: Basis; e: Exponent

Nachkommastellen umrechnen

$$\begin{split} 0.703125_{(10)} \times 2 &= \mathbf{1.40625}_{(10)} \\ 0.40625_{(10)} \times 2 &= \mathbf{0.8125}_{(10)} \\ 0.8125_{(10)} \times 2 &= \mathbf{1.625}_{(10)} \\ 0.625_{(10)} \times 2 &= \mathbf{1.25}_{(10)} \\ 0.25_{(10)} \times 2 &= \mathbf{0.5}_{(10)} \\ 0.5_{(10)} \times 2 &= \mathbf{1.0}_{(10)} \\ 0.703125_{(10)} \to \mathbf{0.1011010}_{(2)} \end{split}$$

Normalisierung

Definition 1

$$\frac{1}{b} \leq |m| < 1$$

Definition IEEE 754: Eine Gleitkommazahl $\pm m$. $2^{\pm e}$ heisst normalisiert, falls $1 \leq m < 2$

Form: $(-1)^V \cdot 1.M \cdot 2^{E-\text{Basis}}$ wo (Basis = 127; E=e+Basis)

1 Bit V + 8 Bit E + 23 Bit M

E	M	Bedeutung
= 255	$\neq 0$	NAN / ungültig
= 255	=0	±∞
0 < E < 255		$(-1)^V \cdot (1.M) \cdot 2^{E-127}$
= 0	$\neq 0$	$(-1)^V \cdot (0.M) \cdot 2^{-126}$
= 0	=0	±0

Dezimal	>	闰	M
-7.875	П	$1000\ 0001$	1111 0000 0000 0000 0000 000
0	0	0000 0000	000 0000 0000 0000 0000 0000
0-	Η	0000 0000	000 0000 0000 0000 0000 0000
0.15625	0	0111 1011	0100 0000 0000 0000 0000 0000
-128.0	П	1000 0010	000 0000 0000 0000 0000 0000
1024.0	0	1000 1001	000 0000 0000 0000 0000 0000
-0.0078125	Н	0111 0010	000 0000 0000 0000 0000 0000
1.5	0	0111 1111	1000 0000 0000 0000 0000 0000
-32.0	Η	1000 0010	000 0000 0000 0000 0000 0000
256.0	0	1000 0111	000 0000 0000 0000 0000 0000
-1024.0	Н	1000 1001	000 0000 0000 0000 0000 0000

10 ASCII

P000 0000

- P = 0: Anzahl von "1"-Bits ist gerade
- P = 1: Anzahl von "1"-Bits ist ungerade

Base 10	Range
0 - 31	Control characters
32	Space
33 - 47	! " # \$ % & '() * + , /
48 - 57	0 1 2 3 4 5 6 7 8 9
58 - 64	: ; < = > ? @
65 - 90	A - Z
91 - 96	[\] '
97 - 122	a - z
123 - 126	{ }~
127	DEL

Multiplikation

Carry-Save-Multilikation, gleich wie schriftliches Multiplizieren.

				1	0	1	1	$11_{(10)}$
			×	1	1	0	1	$13_{(10)}^{(10)}$
				1	0	1	1	` ′
+			0	0	0	0		
+		1	0	1	1			
+	1	0	1	1				
1	1	1	1					
1	0	0	0	1	1	1	1	$143_{(10)}$
								(- /

Division **12**

Wichtig: Zuerst checken dass $2^4 d > z_{[5-8]}$ anson-

Wichtig: Zweierkomplement bilden für -2^4d

Restoring Division

		0111	0 1 0 1 117
z		0 1 1 1	$0\ 1\ 0\ 1 = 117_{(10)}$
2^4d	0	$1 \ 0 \ 1 \ 0$	$= 10_{(10)}$
$-2^{4}d$	1	0 1 1 0	
$\frac{-2^4 d}{s^{(0)}}$	0	0 1 1 1	0 1 0 1
$2s^{(0)}$	1	1 1 1 0	1 0 1
$\frac{+(-2^4d)}{s^{(1)}}$	1	0 1 1 0	
	0	0 1 0 0	1 0 1 $q_3 = 1$
$2s^{(1)}$	0	1 0 0 1	0 1
$\frac{+(-2^4d)}{s^{(2)}}$	1	0 1 1 0	
	1	1 1 1 1	0 1 $q_2 = 0$
$s^{(2)} = 2s^{(1)}$	0	1 0 0 1	0 1
$2s^{(2)}$	1	$0 \ 0 \ 1 \ 0$	1
$\frac{+(-2^4d)}{s^{(3)}}$	1	0 1 1 0	
	0	1 0 0 0	1 $q_1 = 1$
$2s^{(3)}$	1	$0 \ 0 \ 0 \ 1$	
$\frac{+(-2^4d)}{s^{(4)}}$	1	$0 \ 1 \ 1 \ 0$	
$s^{(4)}$	0	0 1 1 1	$q_0 = 1$
s			$0 \ 1 \ 1 \ 1 = 7_{(10)}$
q			$1 \ 0 \ 1 \ 1 = 11_{(10)}^{(10)}$

Non-restoring Division

z		0 1 1 0	$1 \ 0 \ 0 \ 1 = 100_{(10)}$
2^4d	0	1 0 0 1	$= 9_{(10)}$
-2^4d	1	$0\ 1\ 1\ 1$	` ′
$s^{(0)}$	0	0 1 1 0	0 1 0 0
$2s^{(0)}$	0	$1 \ 1 \ 0 \ 0$	1 0 0
$\frac{+(-2^4d)}{s^{(1)}}$	1	$0\ 1\ 1\ 1$	
$s^{(1)}$	0	0 0 1 1	$0 \ 0 \qquad q_3 = 1$
$2s^{(1)}$	0	$0\ 1\ 1\ 1$	0 0
$\frac{+(-2^4d)}{s^{(2)}}$	1	0 1 1 1	
$s^{(2)}$	1	1 1 1 0	$0 \ 0 \qquad q_2 = 0$
$2s^{(2)}$	1	$1 \ 1 \ 0 \ 0$	0
$\frac{+2^4d}{s^{(3)}}$	0	1 0 0 1	
$s^{(3)}$	0	0 1 0 1	$0 q_1 = 1$
$2s^{(3)}$	0	1 0 1 0	
$\frac{2s^{(3)}}{+(-2^4d)}$	1	0 1 1 1	
$s^{(4)}$	0	0 0 0 1	$q_0 = 1$
s			$0 \ 0 \ 0 \ 1 = 1_{(10)}$
q			$1 \ 0 \ 1 \ 1 = 11_{(10)}$

Model checking

Erreichbarkeitsanalyse

Gegeben seien die Inputmenge $I = \{0, 1\}$, die Zustandsmenge $Q=\{0,1\}^4$ und die Übergangsfunktion $d:I\times Q\to Q$ mit

$$d(0;q_1,q_2,q_3,q_4) = \begin{cases} (q_1q_2q_3q_4)_2 + (100)_2 & \text{if } < 16 \\ (0,0,0,0) & \text{else} \end{cases}$$

$$d(1;q_1,q_2,q_3,q_4) = \begin{cases} (q_1q_2q_3q_4)_2 + (101)_2 & \text{if } < 16 \\ (0,0,0,0) & \text{else} \end{cases}$$

Start: =
$$(0, 1, 0, 0)$$

 $S_0 = \{(0, 1, 0, 0)\}$

$$d(0; 0, 1, 0, 0) = (1, 0, 0, 0)$$

$$d(1; 0, 1, 0, 0) = (1, 0, 0, 1)$$

$$S_1 = S_0 \cup \{(1, 0, 0, 0), (1, 0, 0, 1)\}$$

$$d(0;1,0,0,0) = (1,1,0,0)$$

$$d(0;1,0,0,1) = (1,1,0,1)$$

$$d(1; 1, 0, 0, 0) = (1, 1, 0, 1)$$

$$d(1; 1, 0, 0, 1) = (1, 1, 1, 0)$$

$$S_2 = S_1 \cup \{(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)\}$$

 $S_{n+1} = S_n \rightarrow \mathbf{terminieren}$

$$S = \{(0,0,0,0), (0,1,0,0), (1,0,1,0), (1,0,0,0), \\ (1,0,0,1), (1,0,1,0), (1,1,0,0), (1,1,0,1), \\ (1,1,1,0), (1,1,1,1)\} \\ (1,0,1,1) \notin S$$

CTL

- EXφ: es gibt einen Pfad, auf dem als nächstes ϕ wahr ist
- $AX\phi$: auf jedem Pfad ist als nächstes ϕ wahr
- $EF\phi\colon$ es gibt einen Pfad auf dem irgendwann ϕ wahr ist
- $AF\phi\colon$ auf allen Pfaden ist ϕ irgendwann wahr $EG\phi$: es gibt einen Pfad, auf dem ϕ immer
- wahr ist $AG\phi\colon$ auf allen Pfaden ist ϕ immer wahr
- $\phi E U \psi$: es gibt einen Pfad, auf dem ϕ wahr bleibt, bis ψ wahr wird
- $\phi AU\psi$: auf allen Pfaden bleibt ϕ wahr, bis ψ wahr wird

Symbol	Bedeutung
T	Wahr (True)
Τ.	Falsch (False)
¬	Negation (Not)
\wedge	Konjunktion (And)
V	Disjunktion (Or)
\rightarrow	Implikation
\leftrightarrow	Äquivalenz (If and only if)
p	Eine atomare Proposition
$L(v) \ I$	Labeling-Funktion
I	Anfangszustände (Initial states)
π	Ein Pfad
π_i	Die i-te Stelle in einem Pfad
$\mathcal{P}(\overset{\circ}{Prop})$	Potenzmenge d. atom. Propositionen
V	Knoten (States)
E	Kanten (Transitions)

- $\bullet\,$ Auf jedem Pfad ist es immer möglich, dass pirgendwann wahr wird:
 - \rightarrow AG EF p
- p ist möglich:
 - \rightarrow EF p
- p und q sind nie gleichzeitig wahr:
 - $\rightarrow \operatorname{AG} \neg (p \wedge q) \operatorname{oder} \neg \operatorname{EF}(p \wedge q)$
- Auf jedem Pfad ist p unendlich oft wahr:
 - \rightarrow AG AF p
- \boldsymbol{p} und immer falls \boldsymbol{p} dann direkt danach $\boldsymbol{p},$ impliziert p gilt immer (Induktion):

$$\rightarrow p \land AG(p \rightarrow AXp) \rightarrow AGp$$

- Auf jedem Pfad sind p und q abwechselnd wahr, wobei jeweils nur eine der beiden Propositionen wahr ist:
 - $\begin{array}{c} \rightarrow & (p \land \neg q) \lor (\neg p \land q) \land \mathrm{AG}((p \to \mathrm{AX}(\neg p \land q))) \land (q \to \mathrm{AX}(p \land \neg q))) \end{array}$
- Sei p= 'Es regnet'. Es regnet und es wird weiterregnen, bis es aufgehört hat, zu regnen:
 - $\rightarrow p \land (p \text{ AU } \neg p)$

Algorithmus

Reduktionen

- $AX\varphi \Leftrightarrow \neg EX\neg \varphi$
 - Wenn $AX\varphi$ wahr ist, dann gibt es keinen Pfad, auf dem als nächstes $\neg \varphi$ wahr ist.
- $\bullet \quad AG\varphi \Leftrightarrow \neg EF \neg \varphi$
 - Wenn $AG\varphi$ wahr ist, dann gibt es keinen Pfad, auf dem irgendwann $\neg \varphi$ wahr ist.
- $EF\varphi \Leftrightarrow \top EU\varphi$
 - Wenn $EF\varphi$ wahr ist, dann ist von einem wahren Zustand aus φ irgendwann erreichbar.
- $EG\varphi \Leftrightarrow \neg AF \neg \varphi$
 - Wenn $EG\varphi$ wahr ist, dann ist φ immer wahr auf einem Pfad, auf dem $\neg \varphi$ nicht irgendwann wahr wird.
- $\varphi AU\psi \Leftrightarrow \neg((\neg\psi)EU(\neg(\varphi\vee\psi))) \wedge AF\psi$
 - Wenn $\varphi AU\psi$ wahr ist, dann gibt es keinen Pfad, auf dem $\neg \psi$ bleibt, bis $\neg (\varphi \lor \psi)$ wahr wird, und irgendwann wird ψ wahr.

Hierbei ist \top definiert als $\top := p_0 \vee \neg p_0$, was immer wahr ist.

Der Algorithmus behandelt:

$$\neg, \land, \mathrm{EX}, \mathrm{EU}, \mathrm{AF}$$

Es gilt:

$$\begin{aligned} \mathbf{A}\mathbf{X}\Phi &\equiv \neg \mathbf{E}\mathbf{X} \neg \Phi \\ \mathbf{A}\mathbf{G}\Phi &\equiv \neg \mathbf{E}\mathbf{F} \neg \Phi \end{aligned}$$

$$\mathrm{EF}\Phi \equiv \top \mathrm{EU}\Phi$$

$$\mathrm{EG}\Phi \equiv \neg \mathrm{AF} \neg \Phi$$

$$\Phi AU\Psi \equiv \neg (\neg \Psi EU \neg (\Phi \vee \Psi)) \wedge AF\Psi$$

$$\Phi \to \Psi \equiv \neg \Phi \vee \Psi$$

$$\Phi \vee \Psi \equiv \neg (\neg \Phi \wedge \neg \Psi)$$

15 ALU

Most-significant-Bit

Every other Bit

$$slt(a,b) := \begin{cases} 0 & \text{sonst} \\ 1 & \text{wenn } a < b \end{cases}$$

16 Beispielaufgaben

Volladdierer mit 3:8 Decoder

A	B	C_{in}	S	C_{out}
-0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

CTL Model Checking Beispiel

Gegeben sein die atomaren Propositionen p und q und die Struktur $K = \{\{v1,v2,v3\},\{(v1,v2),(v1,v3),(v2,v2)\},L,\{v1\}\},$ wobei $L(v1) = \emptyset$, $L(v2) = \{p\}$ und $L(v3) = \{q\}$. Benutzen Sie den Algorithmus aus der Vorlesung, um $K \models AF(p \land AX \lnot q)$ zu entscheiden.

Wir wenden die CTL-Äquivalenzen an:

- Die Formel $AX\varphi$ ist äquivalent zu $\neg EX \neg \varphi.$
- Daraus folgt, dass $AX \neg q$ äquivalent zu $\neg EXq$ ist.

Subformel	Zustände
p	v_2
q	v_3
$\neg q$	v_1, v_2
$AX \neg q \equiv \neg EXq$	v_1, v_2
$p \land \neg EXq$	v_2
$AF(p \land \neg EXq)$	v_1, v_2, v_3

Das Kripke-Modell Kerfüllt somit die Formel $AF(p \land AX \neg q),$ da die Bedingung für jeden Zustand im Modell erfüllt ist.