

上海庆科信息技术有限公司 产品文档

QK-QW-001

DS0007E_EMW3165

版本: 1.0版	
编制 / 日期: 李旸	; <u>2015</u> 年 <u>01</u> 月 <u>20</u> 日
会审/ 日期: /	;/年_/_月_/_日
审核 / 日期: 沈建华、任建宏	;2015 年01_ 月26_ 日
批准 / 日期: 王永虹	; <u>2015</u> 年 <u>01</u> 月 <u>26</u> 日
受控状态: ■受控文件 □非受控文件	
秘密等级. □绝密 □机密 ■普通	

地址: 上海市普陀区同普路 1220 号同普大厦 811 室

电话: 021-52655025

传真: 021-52655026

邮编: 200333

发布: 2015年01月20日

上海庆科信息技术有限公司 发布

上海庆科信息技术有限公司 Shanghai MXCHIP Information Technology Co.,Ltd.

网址: www.mxchip.com 微信公众号: MXCHIP-IOE

EMW3165

Data Sheet

Embedded Wi-Fi module

1.0 Date: 2015-01-26 Data Sheet

Overview

Features

- Consists of a Cortex-M4 microcontroller and an IEEE 802.11™ b/g/n chip
 - Cortex-M4 core at 100MHz
 - 2M bytes on-board SPI flash and 512K bytes on-chip flash
 - 128K bytes RAM
- Operation voltage:3.0V~3.6V
- Peripherals
 - 22 GPIOs
 - JTAG/SWD debug interface
- Wi-Fi connectivity
 - 802.11b, 802.11g, 802.11n (single stream)
 - WEP, WPA/WPA2 PSK/Enterprise
 - 16.5dBm@11b, 14.5dBm@11g, 13.5dBm@11n
 - Receiver Sensitivity: -87 dBm
 - Station, Soft AP and Wi-Fi direct
 - Support EasyLink
 - On-board PCB antenna, IPEX connector for external antenna
 - CE, FCC compliant
- Operating Temperature: -30[°]C to +85[°]C

Applications

- Building Automation / Access Control
- Smart home appliances
- Medical/Health Care
- Industrial Automation Systems
- Point Of Sale system (POS)
- Auto electronics

Device summary

MXCHIP PN	Description	Note
EMW3165-P	EMW3165-P PCB antenna	
EMW3165-E	External antenna	Optional

Hardware block

Contents

1	INTRODUCTION	1
1.1	Block diagram	1
2	INTERFACE	2
2.1	Pinouts	2
	General Pin Arrangement	2
2.2	General Pin Arrangement	2
3	ELECTRICAL PARAMETERS	5
3.1	Operating conditions	5
3.2		
3.3	Current consumption	6
3.3.1		
3.3.2		
3.3.3		
3.4	I/O port characteristics	
3.4.1	-,	
3.4.2	RESET pin characteristics Temperature and Humidity	
3.5 3.6	ESD	
3.0 3.7	Static latch-up	
3. <i>1</i> 3.8	Other MCU electrical parameters	
3.0	Other MCO electrical parameters	10
4	RF CHARACTERISTICS	.11
4.1	Basic RF characteristics	11
4.2	IEEE802.11b mode	11
4.3	IEEE802.11g mode	12
4.4	IEEE802.11n 20MHz bandwidth mode	13
5	ANTENNA INFORMATION	1/
5.1	Type of antenna	
5.2	Minimizing radio interference	14
5.3	U.F.L RF Connector	15
6	MANUFACTORY INFORMATION	16
_	1111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0

6.1	Mechanical Dimensions	16
6.2	Recommended Footprint Design	17
6.3	Recommended Reflow Profile	18
6.4	MSL/Storage Condition	19
7	SALES INFORMATION	20
8	TECHNICAL SUPPORT	20
9	REVISION HISTORY	21
	(0)	
	40,	

1 Introduction

EMW3165 is a low-power embedded Wi-Fi module integrates a wireless LAN MAC/baseband /radio, and a Cortex-M4 microcontroller STM32F411CE that runs a unique "self-hosted" Wi-Fi networking library and software application stack. EMW3165 has 2M bytes of on-board flash besides 512K bytes of in-chip flash, 128K bytes RAM and rich peripherals for user embedded Wi-Fi applications.

EMW3165 is also a MiCO[™] platform, users can build their own embedded Wi-Fi applications based on MiCO[™] library which manage all of the Wi-Fi MAC and TCP/IP stack processing. We also provide independent series of particular firmware to meet typical applications: Wireless UART, Cloud Service etc.

1.1 Block diagram

EMW3165 Hardware Block **USART** 26M MCU Wi-Fi **OSC** Cortex-M4 I2C 802.11b/g/n **CPU FREQ** MAC& 100MHz ADC Baseband PCB SDIO RAM Antenna DAC 128K bytes 2.4GHz Timer/PWM Flash radio 512K bytes External Flash Antenna 2M bytes 1.2&1.8V Power Management regulator 32.768K 26M OSC OSC 3.3V Input

Figure 1.1 EMW3165 block diagram

2 Interface

2.1 Pinouts

EMW3165 has two groups of pins (1X20 +1X21). The lead pitch is 1mm.

EMW3165 has half-hole footprint fit for hand-soldering.

Figure 2.1 EMW3165 pinout

2.2 General Pin Arrangement

Important Note: If developer build an application based on MICO system, they can define or modify the function for every pin on EMW3165. The possible functions on every pin are listed in Table 2.1.

But if developer download a pre-build firmware provided by MXCHIP, the function for every EMW3165 pin are defined by this firmware and described in the User Manual of this firmware. Take UART <=> Wi-Fi firmware for example, developer should achieve the specific pin definition from RM0001E_mxchipWNet_DTU available on:

http://www.joinmx.com/uploadfiles/soft/EMW/RM0001E_mxchipWNet_DTU_V4_1.p

Table 2.1 EMW3165 general pin arrangement

Pins	Name	Туре	IO level	Function		
1	_	-	-	Not connected		
2	PB2	I/O	FT	BOOT1		
3	_	-	-	Not connected		
4	PA7	I/O	FT	Flash_SPI1_MOSI		
5	PA15	I/O	FT	Flash SPI1 NSS		
6	PB3	I/O	FT	Flash_SPI1_SCK		
7	PB4	I/O	FT	Flash_SPI1_MISO		
				TIM2_CH3,TIM5_CH3,TIM9_CH1,		
8	PA2	I/O	FT	I2S2_CKIN,USART2_TX, ADC1_2		
				TIM2_CH2,TIM5_CH2,SPI4_MOSI/I2S4_SD,		
9	PA1	I/O	FT	USART2_RTS, ADC1_1		
10	VBAT	S	-			
11	_		_	Not connected		
)	TIM2_CH4,TIM5_CH4,TIM9_CH2,		
12	PA3	I/O	FT	I2S2_MCK,USART2_RX, ADC1_3		
13	NRST	I/O	FT	RESET		
14	PA0	I	TC	Wi-Fi wake up MCU		
15	-	-	-	Not connected		
16	PC13	I/O	FT	RTC_AMP1, RTC_OUT, RTC_TS		
		_		TIM2_CH3,I2C2_SCL, SPI2_SCK/I2S2_CK,I2S3_MCK		
17	PB10	I/O	FT			
1.0				TIM4_CH4,TIM11_CH1,I2C1_SDA,		
18	PB9	I/O	FT	SPI2_NSS/I2S2_WS,I2C2_SDA		
1.0				TIM1_BKIN,I2C2_SMBA,SPI2_NSS/I2S2_WS,		
19	PB12	I/O	FT	SPI4_NSS/I2S4_WS,SPI3_SCK/I2S3_CK		
20	GND	S	-	-		
21	GND	S	-	-		
22	-	-	-	Not connected		
23	-	-	-	Not connected		
24	-	-	-	Not connected		
25	PA14	I/O	FT	SWD_SWCLK		
26	PA13	I/O	FT	SWD_SWDIO		
27	D440	7.00		TIM1_ETR,SPI5_MISO,USART1_RTS,		
27	PA12	I/O	FT	USART6_RX,USB_FS_DP		
28	-	-	-	Not connected		
20	D410	1/0	ГТ	TIM1_CH3,SPI5_MOSI/I2S5_SD,		
29	PA10	I/O	FT	USART1_RX,USB_FS_ID		
30	PB6	I/O	FT	TIM4_CH1,I2C1_SCL,USART1_TX		
31	PB8	I/O	FT	TIM4_CH3,TIM10_CH1,I2C1_SCL,		

Pins	Name	Туре	IO level	Function		
				SPI5_MOSI/I2S5_SD,I2C3_SDA		
32	-	-	-	Not connected		
33	DD1 2	1/0	гт	TIM1_CH1N,SPI2_SCK/I2S2_CK,		
33	PB13	I/O	FT	SPI4_SCK/I2S4_CK,		
2.4	DAE	1/0	TC	TIM2_CH1/TIM2_ET,		
34	PA5	I/O	TC	SPI1_SCK/I2S1_CK,ADC1_5		
25	DA 1 1	1/0	ГТ	TIM1_CH4,SPI4_MISO,USART1_CTS,		
35	PA11	I/O	FT	USART6_TX,USB_FS_DM		
26	PB1	1/0	гт	TIM1_CH3N,TIM3_CH4,		
36	PDI	I/O	FT	SPI5_NSS/I2S5_WS,ADC1_9		
27	DDO	1/0	FT	TIM1_CH2N,TIM3_CH3,		
37	PB0	I/O	FT	SPI5_SCK/I2S5_CK,ADC1_8		
20	DA 4	1/0	TC	SPI1_NSS/I2S1_WS,SPI3_NSS/I2S3_WS,		
38	PA4	I/O	TC	USART2_CK,ADC1_4		
39	VDD	S	-			
40	VDD	S	-			
41	ANT	-	-	External Antenna Pad		

- 1. S = Supply pin. I = Input only pin. I/O = Input/output pin.
- 2. FT = 5 V tolerant I/O; TC = Standard 3.6 V I/O.
- 3. Pin4~7 should not be used as other functions since they have been used as SPI1 for on-board flash.
- 4. Use SWD (Pin 25&26) instead of JTAG to debug/download firmware.
- 5. Please refer to STM32F411xE datasheet about alternate function mapping.

3 Electrical Parameters

3.1 Operating conditions

EMW3165 enters an unstable condition whenever the input voltage dips below the minimum value of supply voltage. This condition must be considered during design of the power supply routing, especially if operating from a battery.

High-current operations (such as a TX packet) cause a dip in the supply voltage, potentially triggering a brownout. The resistance includes the internal resistance of the battery, contact resistance of the battery holder (4contacts for a 2 x AA battery) and the wiring and PCB routing resistance.

For example, the device draws about 320 mA from the supply @ 3.3 V for a 1 DSSS packet at maximum power. This condition can cause a drop of 160 mV across a 0.5- Ω routing resistance.

 Symbol
 Note
 Conditions
 Specification

 VDD
 Voltage
 3.0
 3.3
 3.6
 V

Table 3.1 Voltage conditions

Table 3.2 Current characteristics

Symbol	Symbol Ratings		Unit
I_{VDD}	Total current into VDD power lines	320	
т	Output current sunk by any I/O and control pin	25	mA
I_{IO}	Output current source by any I/O and control pin	-25	

3.2 Absolute maximum ratings

Stresses above the absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 3.3 Absolute maximum ratings

Symbol	Ratings	Min	Max	Unit
V_{DD}	Voltage	-0.3	4.0	V
V _{IN}	Input voltage on 5 V tolerant pin	-0.3	5.5	V
V _{IN}	Input voltage on any other pin	-0.3	V _{DD} +0.3	V

3.3 **Current consumption**

3.3.1 Wi-Fi Subsystem

Table 3.4 Current consumption of Wi-Fi subsystem

Symbol	Note	Conditions	Typical	Unit
\mathbf{I}_{RF}	OFF^1	-	2	μΑ
I_{RF}	SLEEP ⁴	-	200	μΑ
I_{RF}	Rx(Listen) ²	-	52	mA
I_{RF}	Rx(Active) ³	-	59	mA
I_{RF}	Power Save ^{5 6}	-	1.9	mA
I_{RF}	Tx CCK ⁷ 10	11 Mbps at 18.5 dBm	320	mA
I_{RF}	Tx OFDM ⁸ 10	54 Mbps at 15.5 dBm	270	mA
I_{RF}	Tx OFDM ⁹ 10	65 Mbps at 14.5 dBm	260	mA

Note 1: Power is off.

Note 2: Carrier Sense (CCA) when no carrier present

Note 3: Carrier Sense (CS) detect/Packet Rx

Note 4: Intra-beacon Sleep

Note 5: Beacon Interval = 102.4ms, DTIM = 1, Beacon duration = 1 ms @1 Mbps.

Integrated Sleep + wakeup + Beacon Rx current over 1 DTIM interval.

Note 6: In WLAN power-saving mode, the following blocks are powered down: Crystal oscillator, Baseband PLL, AFE, RF PLL, Radio

Note 7: CCK power at chip port. Duty cycle is 100%. Includes PA contribution.

Note 8: OFDM power at chip port. Duty cycle is 100%. Includes PA contribution.

Note 9: OFDM power at chip port is 16 dBm, duty cycle is 100%, includes PA contribution.

Note 10: Absolute junction temperature limits maintained through active thermal monitoring and dynamic TX duty cycle limiting.

3.3.2 Microcontroller Subsystem

Typical and maximum current consumption in **Run mode**, code with data processing running from Flash memory (ART accelerator enabled) or RAM

Table 3.5 Typical and maximum current consumption of MCU in Run mode

Symbol	Conditions	f _{HCLK} (MHz)	T _A =2	Unit	
			Тур	Max	Onit
		100	21.0	23.3	
	External clock all	84	17.0	19.2	
	External clock, all peripherals enabled	64	12.0	13.2	
		50	9.5	10.4	A
		20	4.5	5.8	
I _{MCU}	External clock, all peripherals disabled	100	12.0	14.6	mA
		84	10.0	11.9	
		64	7.0	8.4	
		50	5.5	6.6	
		20	2.5	3.7	

Typical and maximum current consumptions in **Stop mode**

Table 3.6 Typical and maximum current consumption of MCU in Stop mode

Symbol	Conditions	Dawamatan	T _A =25°C		11:4
	Conditions	Parameter	Тур	Max	Unit
	Flash in Stop mode, all oscillators	Main regulator usage	114	145	
	OFF, no independent watchdog	Low power regulator usage	43	68	
_T	Flash in Deep power down mode, all oscillators OFF, no	Main regulator usage	76	105	
I _{MCU}		Low power regulator usage	14	38	uA
	independent watchdog	Low power low voltage regulator usage	10	30	

Typical and maximum current consumptions in Standby mode

Table 3.7 Typical and maximum current consumption of MCU in Standby mode

Symbol	Conditions	Parameter		Unit
Symbol	Conditions	Farameter	T _A =25°C	Oiiit
	Supply current in	Low-speed oscillator (LSE) and RTC ON	3.0	
I_{MCU}	Standby mode	RTC and LSE OFF	2.1	μΑ

3.3.3 Power consumption in typical operation modes³

Table 3.8 Current consumption of EMW3165 in typical operation modes

Symbol	Davameter	Conditions	Min	Average	Max	Unit
Symbol Parameter		Conditions	T _A =25°C	T _A =25°C	T _A =25°C	Onit
		No Wi-Fi data is transmitting ¹	2.8	7.2	75	mA
τ	Total power	Receive data in UDP mode, 20k bps¹	2.8	12	262	mA
I module	consumption on EMW3165	Send data in UDP mode, 20k bps1	3	24	280	mA
	module	RF off, MCU enter standby mode ²	4	6	8	μΑ
		Connecting to AP	52	74	340	mA

Note1: TA=25°C, MCU frequency=100MHz, with data processing running from Flash memory (ART accelerator enabled). Firmware process TCP/IP stack and IEEE 802.11 MAC every 250 ms, enter stop mode when no task is pending.

Wi-Fi subsystem is connected to an access point and run under power save mode in IEEE 802.11n@14.5 dBm TX power. AP Beacon Interval = 100ms, DTIM = 1.

Note2: Wi-Fi connection is disconnected.

Note3: These data may not be the same depend on different firmware functions.

3.4 I/O port characteristics

3.4.1 I/O static characteristics

Table 3.9 GPIO static characteristics

Symbol	Parar	meter	Conditions	Min	Тур	Max	Unit
V	FT and NRST I/O input low level voltage		170/2/ 2260	-	-	0.3V _{DD}	V
V _{IL}	BOOT0 I/O in voltage	put low level	1.7V ≤V _{DD} ≤ 3.6V	-	ı	0.1V _{DD} +0.1	V
V _{IH}	FT and NRST I/O input low level voltage		1.7V ≤V _{DD} ≤ 3.6V	0.7V _{DD}	ı	-	V
VIH	BOOT0 I/O in voltage	put low level	1.7 V S V DDS 3.0 V	0.17V _{DD} +0.7	ı	-	V
V _{HYS}	FT and NRST I/O input hysteresis		1.7V ≤V _{DD} ≤ 3.6V	0.1V _{DD}	ı	-	V
	BOOT0 I/O input hysteresis			0.1	-	-	
R _{PU}	Weak pull-up equivalent	All pins except for PA10	$V_{IN} = V_{SS}$	30	40	50	kΩ
	resistor	PA10		7	10	14	

R _{PD}	Weak pull-down equivalent	All pins except for PA10	$V_{IN} = V_{DD}$	30	40	50	kΩ
	resistor	PA10		7	10	14	
C _{IO}	I/O pin capac	itance	-	-	5	-	pF

3.4.2 RESET pin characteristics

The RESET pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU}. EMW3165 contains RC (resistance-capacitance) reset circuit which ensures the module reset accurately when it powers up. If user need to reset manually, just connect the external control signals to the reset pins directly, but the control signal should be Open Drain Mode.

Table 3.10 Reset pin characteristics

Symbol	Parameter	Conditions	Min.	Typical	Max.	Unit
V _{F(NRST)}	NRST Input filtered pulse	-	-0.5	-	0.8	V
V _{NF(NRST)}	NRST Input not filtered pulse	-	2	-	VDD+0.5	
R _{PU}	Resistor for Pulling up	$V_{IN} = V_{SS}$	30	40	50	kΩ
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	us

3.5 **Temperature and Humidity**

Table 3.11 Temperature and humidity

Symbol	Ratings	Max	Unit
T _{STG}	Storage temperature	-40 to +85	$^{\circ}$
T _A	Working temperature	-30 to +85	°C
Humidity	Non condensing, relative humidity	95%	-

3.6 **ESD**

The Electromagnetic Environment Electrostatic discharge

Table 3.12 ESD

Symbol	Ratings	Conditions	Class	Max	Unit
V _{ESD} (HBM)	Electrostatic discharge voltage (human body model)	TA= +25 °C conforming to JESD22-A114	2	2000	V
V _{ESD} (CDM)	Electrostatic discharge voltage (charge device model)	TA = +25 °C conforming to JESD22-C101	II	500	V

3.7 **Static latch-up**

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 3.13 Static latch-up

Symbol	Parameter	Class	Class
LU	Static latch-up class	TA= +105 °C conforming to JESD78A	II level A

3.8 Other MCU electrical parameters

Please refer to STM32F411xE datasheet for more information.

4 RF characteristics

4.1 Basic RF characteristics

Table 4.1 RF Specification

Item	Specification
Operating Frequency	2.412~2.484GHz
Wi-Fi Standard	802.11b/g/n(single stream n)
Modulation Type	11b: DBPSK, DQPSK,CCK for DSSS 11g: BPSK, QPSK, 16QAM, 64QAM for OFDM 11n: MCS0~7,OFDM *
Data Rates	11b:1, 2, 5.5 and 11Mbps 11g:6, 9, 12, 18, 24, 36, 48 and 54 Mbps 11n: MCS0~7, up to 72Mbps
Antenna type	PCB printed ANT U.F.L connector for external antenna (Optional)

4.2 **IEEE802.11b** mode

Table 4.2 IEEE802.11b mode specification

Item	Specification
Modulation Type	DSSS / CCK
Frequency range	2400MHz~2484MHz
Channel	CH1 to CH14
Data rate	1, 2, 5.5, 11Mbps

Table 4.3 IEEE802.11b mode TX characteristics

TX Characteristics	Min.	Test Data	Max.	Unit	
Transmitter Output Power					
11bTarget Power	13.5	16.2	16.5	dBm	
Spectrum Mask @ target power					
fc +/-11MHz to +/-22MHz	ı	-41.73	-30	dBr	
fc > +/-22MHz	ı	-51.89	-50	dBr	
Frequency Error	-20	3.9	+ 20	ppm	
Constellation Error(peak EVM)@ target power					
1~11Mbps		-25.52	-9	dB	

Table 4.4 IEEE802.11b mode RX characteristics

RX Characteristics	Min.	Test data	Max.	Unit
Minimum Input Level Sensitivity				
1Mbps (FER≦8%)	-	-87	-83	dBm
2Mbps (FER≦8%)	-	-85	-80	dBm
5.5Mbps (FER≦8%)	-	-83	-79	dBm
11Mbps (FER≦8%)	-	-80	-76	dBm

4.3 **IEEE802.11g mode**

Table 4.5 IEEE802.11g mode specification

Item	Specification
Modulation Type	OFDM
Frequency range	2400MHz~2484MHz
Channel	CH1 to CH14
Data rate	6, 9, 12, 18, 24, 36, 48, 54Mbps

Table 4.6 IEEE802.11g mode TX characteristics

TX Characteristics	Min.	Test data	Max.	Unit
Transmitter Output Power				
11gTarget Power	11.5	14.16	14.5	dBm
Spectrum Mask @ target power				
fc +/-11MHz	-	-31.61	-20	dBr
fc +/-20MHz	-	-40.73	-28	dBr
fc > +/-30MHz	-	-43.54	-40	dBr
Frequency Error	-20	3.9	+ 20	ppm
Constellation Error(peak EVM)@ target power				
54Mbps		-28.52	-25	dB

Table 4.7 IEEE802.11g mode RX characteristics

RX Characteristics	Min.	Test data	Max.	Unit
Minimum Input Level Sensitivity				
6Mbps (FER≤10%)	-	-87	-82	dBm
9Mbps (FER≦10%)	-	-85	-80	dBm
12Mbps (FER≤10%)	-	-84	-79	dBm
18Mbps (FER≤10%)	-	-82	-77	dBm
24Mbps (FER≤10%)	-	-80	-74	dBm

RX Characteristics	Min.	Test data	Max.	Unit
36Mbps (FER≦10%)	-	-79	-70	dBm
48Mbps (FER≦10%)	-	-77	-66	dBm
54Mbps (FER≦10%)	-	-75	-65	dBm

4.4 IEEE802.11n 20MHz bandwidth mode

Table 4.8 IEEE802.11n mode specification

Item	Specif	fication
Modulation Type	MIMO-OFDM	
Channel	CH1 to CH14	
Data rate	MCS0/1/2/3/4/5/6/7	

Table 4.9 IEEE802.11n mode TX characteristics

TX Characteristics	Min.	Test data	Max.	Unit
Transmitter Output Power				
11n HT20 Target Power	10.5	13.43	13.5	dBm
Spectrum Mask @ target power				
fc +/-11MHz		-30.23	-20	dBr
fc +/-20MHz	-	-38.48	-28	dBr
fc > +/-30MHz	-	-44.8	-40	dBr
Frequency Error	-20	3.9	+ 20	ppm
Constellation Error(peak EVM)@ target power				
MCS7	-	-28.59	-28	dB

Table 4.10 IEEE802.11n mode RX characteristics

RX Characteristics	Min.	Test data	Max.	Unit
Minimum Input Level Sensitivity				
MCS0 (FER≦10%)	-	-85	-82	dBm
MCS1 (FER≦10%)	-	-83	-79	dBm
MCS2 (FER≦10%)	-	-82	-77	dBm
MCS3 (FER≦10%)	-	-80	-74	dBm
MCS4 (FER≦10%)	-	-78	-70	dBm
MCS5 (FER≦10%)	-	-74	-66	dBm
MCS6 (FER≦10%)	-	-72	-65	dBm
MCS7 (FER≤10%)	-	-69	-64	dBm

5 Antenna Information

5.1 Type of antenna

There are three types of antenna include PCB antenna, external antenna and antenna pad. The default type is PCB antenna. Users can modify the antenna type with the method below but MXCHIP would not take any responsibility for this behavior.

EMW3165 loads the resistance (0 Ω /0402) in the red box, it means user can use PCB antenna. If user want to use U.F.L RF connector for external antenna, just need switch the resistance from red box to blue box and solder an U.F.L RF connector. If user switch the resistance from red box to yellow box, user can use antenna pad (pin 41).

Figure 5.1 Type of antenna

5.2 Minimizing radio interference

When integrating the Wi-Fi module with on board PCB printed antenna, make sure the area around the antenna end the module protrudes at least 15mm from the mother board PCB and any metal enclosure. If this is not possible use the on board U.FL connector to route to an external antenna. The area under the antenna end of the module should be keep clear of metallic components, connectors, vias, traces and other materials that can interfere with the radio signal.

Figure 5.2 Minimum size of keep-out zone around antenna

5.3 **U.F.L RF Connector**

EMW3165 use U.F.L type RF connector for external antenna connection.

Figure 5.3 Mechanical dimensions of U.F.L RF connector

6 Manufactory Information

6.1 Mechanical Dimensions

Figure 6.1 EMW3165 top view(Unit: mm)

Figure 6.2 EMW3165 side view(Unit: mm)

6.2 Recommended Footprint Design

Figure 6.3 Recommended footprint(Unit: mm)

6.3 Recommended Reflow Profile

Solder paste recommendations: SAC305, Lead -Free solder paste.

Reflow times <= 2times (Max.)

1.Max Rising Slope: 3°C/sec

2.Max Falling Slope: -3 °C/sec

3.Soaking Time(150°C~180°C): 60sec~120sec

4.Over 217°C Time:60sec~120sec;

5.Peak Temp.240°C~250°C

Figure 6.4 Recommended reflow profile

6.4 MSL/Storage Condition

Note: Level and body temperature defined by IPC/JEDEC J-STD-020

7 Sales Information

If you need to buy this product, please call MXCHIP during the working hours. (Monday ~ Friday A.M.9:00~12:00; P.M. 1:00~6:00)

Telephone: +86-21-52655026 / 52655025

Address: Room 811, Tongpu Building, No.1220 Tongpu Road, Shanghai

Post Code: 200333

Email: sales@mxchip.com

8 Technical Support

If you need to get the latest information on this product or our other product information, user can visit: http://www.mxchip.com/

If user need to get technical support, please call us during the working hours:

ST ARM technical support

+86 (021)52655026-822 Email: support@mxchip.com

Wireless network technical support

+86 (021)58655026-812 Email: support@mxchip.com

Development tools technical support

+86 (021) 52655026-822 Email: support@mxchip.com

9 Revision history

Data	Revision	Changes
2015-1-26	1.0	Initial release.

