$\mathbf{A}\mathsf{T}\mathsf{T}\mathsf{E}\mathsf{M}\mathsf{P}\mathsf{T}\mathsf{E}\mathsf{D}$

1 Question 1

 $a \in \mathbb{R}, b \in \mathbb{R}$ then by the mapping g, $g(a) \in \mathbb{R}$ and $g(b) \in \mathbb{R}$. Suppose $a, b \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{R}$, then by the principle of recursive definition there exists a function ϕ such that $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$. If a = b, then $g(a)^2 \equiv g(a)g(a) \equiv g(a^2)$ and $g(a^2 + a + g(a)) \equiv g(a^2) + g(a) + g(g(a))$. Then proceeding with contradiction taking from the problem we have

$$g(a^{2} + b + g(b)) = 2b + g(a)^{2}$$
taking $b = a, \forall a, b \in \mathbb{N} \subset \mathbb{R}$
by the principle of recursive definition
$$g(a)g(a) + g(a) + g(g(a)) = 2a + g(a)g(a)$$

$$g(a) + g(g(a)) = 2a$$

but since $a \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{R}$ implies $a \in \mathbb{R}$, but $g(a) \in \mathbb{R}$ and the function compositon of $g(g(a)) \in \mathbb{R}$ implies $g(a) + g(g(a)) \neq 2a$ since the scaling a by 2 where 2, $a \in \mathbb{N}$ does not imply equality despite $\mathbb{N} \subset \mathbb{R}$ this contradiction it makes the function $g: \mathbb{R} \longrightarrow \mathbb{R}$ undefined in the ordered field \mathbb{R} and this completes the proof.

2 Question 2

(A)

let $A,B,C\in\mathbb{E}^n$ such that the $\triangle ABC$ is defined considering point A as the origin. Lines AB, AC and BC are collinear thats is $AB,AC,BC\in\mathbb{R}^n$. Point Q is an interior point of $\triangle ABC$ iff there exists an open ball completely contained in set $A,B,C\in\mathbb{E}^n$ (inscribed circle in $\triangle ABC$) For equality of $\angle QCB$ and $\angle QAC$ and $\angle QAB$ there should exist a line of symmetry that run from any vertix point on the $\triangle ABC$ for a metirc $d\in\mathbb{R}^n$, d being the euclidian distance function on \mathbb{R}^n in \mathbb{E}^n such that under the symmetry d(AC)=d(AB)=d(BC) and the symmetry line is collinear with point Q and the verticies A,B,C of $\triangle ABC$ are othogonal to interior point $Q\in\triangle ABC$ subset of ball centered at Q with A,B,C as its boundary points With that you release that

$$\begin{array}{c} \cos(\angle QCB) = \cos(\angle QAC) \\ \frac{(Q-C)\cdot(B-C)}{|Q-C||B-C|} = \frac{(Q-A)\cdot(C-A)}{|Q-A||C-A|} \text{ Because of symmetry } d(QC) = |Q-C| = |Q-A| \text{ and } \\ d(CA) = |C-A| = |B-C| \text{ then expressing} \\ \cos\angle QAC \text{ in form of } \cos\angle QCB \\ \cos\angle QCB = \frac{(Q-A)\cdot(C-A)}{|Q-A||C-A|} \end{array}$$

given that d(QA) = d(QC) and d(BC) = d(CA) by symmetry. The same applies to the $\angle QBC$ and $\angle QAB$ since symmetry is an isometric transformation that preserve distances, and this completes the proof

3 Question 3