ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CƠ-TIN

 $(D\hat{e} \ g\hat{o}m \ 4 \ c\hat{a}u/4 \ trang)$

\vec{DE} KIỂM TRA GIỮA KỲ Môn: Toán rời rạc (MAT3500 2, 2022-2023)

Thời gian: 50 phút

- Điền các thông tin về Họ Tên, Mã Sinh Viên, Lớp trước khi bắt đầu làm bài.
- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.
- Điểm bài kiểm tra này chiếm 20% tổng số điểm của môn học. Tổng điểm nhỏ hơn hoặc bằng 10 thì giữ nguyên, còn ngược lại thì tính là 10 điểm.

Họ và Tên:		
·		
Mã Sinh Viên:	Lớp:	

Câu:	1	2	3	4	Tổng
Điểm tối đa:	3	3	3	3	12
Điểm:					

- 1. Cho mệnh đề $(p \to q) \land (p \oplus \neg q)$ với p,q là các mệnh đề lôgic.
 - (a) (1 điểm) Lập bảng chân trị cho mệnh đề trên.
 - (b) (2 điểm) Hãy xây dựng một mệnh đề lôgic phức hợp tương đương với mệnh đề đã cho trong đó chỉ sử dụng các toán tử ¬, ∧, ∨.

Lời giải:

(a) Bảng chân trị của mệnh đề $(p \to q) \land (p \oplus \neg q)$

p	q	$\neg q$	$p \rightarrow q$	$p \oplus \neg q$	$(p \to q) \land (p \oplus \neg q)$
Т	Т	F	Т	T	Т
T	F	Т	F	F	F
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т

- (b) Từ các hàng có giá trị T trong bảng chân trị của $(p \to q) \land (p \oplus \neg q)$, ta xây dựng một dạng tuyển chuẩn tắc tương đương lôgic với nó.
 - Ta xây dựng mệnh đề A_1 thỏa mãn $A_1=\mathsf{T}$ khi và chỉ khi $p=\mathsf{T}$ và $q=\mathsf{T}$. Một mệnh đề như vậy có thể là $A_1=p\wedge q$.
 - Ta xây dựng mệnh đề A_2 thỏa mãn $A_2 = \mathsf{T}$ khi và chỉ khi $p = \mathsf{F}$ và $q = \mathsf{F}$. Một mệnh đề như vậy có thể là $A_2 = \neg p \land \neg q$.

• Theo bảng chân trị trên, $(p \to q) \land (p \oplus \neg q)$ có giá trị đúng khi và chỉ khi A_1 đúng hoặc A_2 đúng. Do đó, mệnh đề $A = A_1 \lor A_2 = (p \land q) \lor (\neg p \land \neg q)$ là một mệnh đề tương đương lôgic với $(p \to q) \land (p \oplus \neg q)$. A chỉ sử dụng các toán tử \neg, \land, \lor và do đó là một mệnh đề cần tìm.

2. (3 điểm) Cho P(n) là phát biểu sau

n=2a+5b với các số nguyên không âm a, b nào đó

Chứng minh rằng P(n) đúng với mọi $n \ge 4$.

Lời giải:

- Cách 1: Ta chứng minh P(n) đúng với mọi $n \ge 4$ bằng quy nạp mạnh.
 - **Bước cơ sở:** P(4) và P(5) đúng, do

$$4 = 2 \cdot 2 + 5 \cdot 0$$

$$5 = 2 \cdot 0 + 5 \cdot 1$$

– **Bước quy nạp:** Giả sử với số nguyên $k \ge 5$ nào đó, P(j) đúng với mọi j thỏa mãn $4 \le j \le k$. Ta chứng minh P(k+1) đúng. Thật vậy, do $4 \le k-1 \le k$, theo giả thiết quy nạp, P(k-1) đúng, nghĩa là k-1=2a+5b với các số nguyên không âm a,b nào đó. Do đó

$$k+1 = (k-1) + 2 = 2(a+1) + 5b$$

Nói cách khác, P(k+1) đúng.

Theo nguyên lý quy nạp mạnh, với mọi $n \geq 4$, P(n) đúng.

- Cách 2: Ta chứng minh P(n) đúng với mọi $n \ge 4$ bằng quy nạp yếu.
 - **Bước cơ sở:** P(4) đúng, do $4 = 2 \cdot 2 + 5 \cdot 0$.
 - **Bước quy nạp:** Giả sử P(k) đúng với số nguyên $k \ge 4$ nào đó, nghĩa là k = 2a + 5b với các số nguyên không âm a, b nào đó. Ta chứng minh P(k+1) đúng. Thật vậy, ta có k+1=2a+5b+1=2(a+3)+5(b-1). Ta xét hai trường hợp
 - * Nếu $b \ge 1$ thì rõ ràng P(k+1) đúng.
 - * Nếu b=0, ta có $k+1=2a+1=2(a-2)+5\cdot 1$. Để chứng minh P(k+1) đúng, ta cần chỉ ra $a\geq 2$. Thật vậy, do $k\geq 4$, ta có $k+1=2a+1\geq 5$ và do đó $a\geq 2$.

Theo nguyên lý quy nạp yếu, với mọi $n \ge 4$, P(n) đúng.

- 3. Giải các hệ thức truy hồi sau
 - (a) $(1\frac{1}{2}$ điểm) $a_n = 7a_{n-1}$ $(n \ge 1)$ với điều kiện ban đầu $a_0 = 3$.
 - (b) $(1\frac{1}{2}$ điểm) $a_n = a_{n-1} + 6a_{n-2}$ $(n \ge 2)$ với điều kiện ban đầu $a_0 = 0$ và $a_1 = 5$.

Lời giải:

(a) Ta có

$$a_n = 7a_{n-1} = 7^2a_{n-2} = \dots = 7^ra_{n-r} = \dots = 7^na_0 = 3 \cdot 7^n.$$

Ta chứng minh phát biểu P(n) sau

$$a_n = 3 \cdot 7^n$$

đúng với mọi $n \ge 0$ bằng quy nạp.

- Bước cơ sở: Với n = 0, $a_0 = 3 \cdot 7^0 = 3$, do đó P(0) đúng.
- Bước quy nạp: Giả sử P(k) đúng với số nguyên $k \ge 0$ nào đó, nghĩa là, $a_k = 3 \cdot 7^k$. Ta chứng minh P(k+1) đúng, nghĩa là $a_{k+1} = 3 \cdot 7^{k+1}$. Thật vậy,

$$a_{k+1} = 7a_k$$

$$= 7(3 \cdot 7^k)$$
 giả thiết quy nap
$$= 3 \cdot 7^{k+1}.$$

(b) Đa thức đặc trưng của hệ thức truy hồi đã cho là $r^2-r-6=0$. Đa thức này có hai nghiệm phân biệt $r_1=-2$ và $r_2=3$. Do đó, nghiệm của hệ thức truy hồi đã cho có dạng $a_n=\alpha_1r_1^n+\alpha_2r_2^n=\alpha_1(-2)^n+\alpha_2(3)^n$. Từ điều kiện ban đầu, ta có $a_0=\alpha_1+\alpha_2=0$ và $a_1=-2\alpha_1+3\alpha_2=5$. Do đó $\alpha_1=-1$ và $\alpha_2=1$. Cuối cùng, nghiệm của hệ thức truy hồi là dãy $\{a_n\}$ thỏa mãn $a_n=3^n-(-2)^n$.

- 4. Chứng minh rằng
 - (a) (1 điểm) $\sum_{i=0}^{n} i^{k} \text{ là } O(n^{k+1}).$
 - (b) (1 điểm) (3n)! là $\Omega(6^n)$.
 - (c) (1 điểm) $\sum_{i=0}^{n} i(i+1)$ là $\Theta(n^3)$.

Lời giải:

(a) Với mọi số nguyên n > 1, ta có

$$|\sum_{i=0}^{n} i^{k}| = |\sum_{i=1}^{n} i^{k}| \le |\sum_{i=1}^{n} n^{k}| = |n^{k+1}|.$$

Do đó, theo định nghĩa, $\sum_{i=0}^{n} i^{k}$ là $O(n^{k+1})$.

(b) Với mọi số nguyên n>1, ta có

$$|(3n)!| = |(1 \cdot 2 \cdot 3)(4 \cdot 5 \cdot 6) \dots ((3n-2) \cdot (3n-1) \cdot (3n))| \ge |(1 \cdot 2 \cdot 3)^n| = |6^n|.$$

Do đó, theo định nghĩa, (3n)! là $\Omega(6^n)$.

(c) Ta có

$$\sum_{i=0}^{n} i(i+1) = \sum_{i=0}^{n} i^2 + \sum_{i=0}^{n} i = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{3}.$$

Với mọi số nguyên n > 1, ta cũng có

$$\left| \frac{1}{3} |n^3| \le \left| \frac{n(n+1)(n+2)}{3} \right| = \left| \frac{n^3 + 3n^2 + 2n}{3} \right| \le \left| \frac{n^3 + 3n^3 + 2n^3}{3} \right| = 2|n^3|$$

Do đó, theo định nghĩa, $\sum_{i=0}^n i(i+1)$ là $\Theta(n^3).$