Information Complexity: A Paradigm for Proving Lower Bounds

Amit Chakrabarti

DARTMOUTH COLLEGE HANOVER, NH, USA

STOC 2013, Palo Alto

• Ablayev (Theor. Comp. Sci., 1996)

Proved lower bound for communication problem INDEX

Used technique that we now recognize as "information complexity"

- Ablayev (Theor. Comp. Sci., 1996)
 Proved lower bound for communication problem INDEX
 Used technique that we now recognize as "information complexity"
- Chakrabarti, Shi, Wirth, Yao (FOCS, 2001)
 Proved direct sum results for simultaneous message complexity
 Formally defined "information cost" and "information complexity"
 Introduced notations icost, IC
 Anticipated wider applicability of paradigm

History

The applications came first; theory built in service of applications

- Ablayev (*Theor. Comp. Sci., 1996*)
 - Proved lower bound for communication problem INDEX Used technique that we now recognize as "information complexity"
- Chakrabarti, Shi, Wirth, Yao (FOCS, 2001)
 - Proved direct sum results for simultaneous message complexity
 - Formally defined "information cost" and "information complexity"
 - Introduced notations icost, IC
 - Anticipated wider applicability of paradigm

"We introduce a new notion of <u>informational complexity</u> which is related to SM complexity and has nice direct sum properties. This notion is used as a tool to prove the above results; it appears to be quite powerful and may be of independent interest."

- Ablayev (Theor. Comp. Sci., 1996)
 Proved lower bound for communication problem INDEX
 Used technique that we now recognize as "information complexity"
- Chakrabarti, Shi, Wirth, Yao (FOCS, 2001)
 Proved direct sum results for simultaneous message complexity
 Formally defined "information cost" and "information complexity"
 Introduced notations icost, IC
 Anticipated wider applicability of paradigm

History

The applications came first; theory built in service of applications

- Ablayev (*Theor. Comp. Sci., 1996*)
 Proved lower bound for communication problem INDEX
 Used technique that we now recognize as "information complexity"
- Chakrabarti, Shi, Wirth, Yao (FOCS, 2001)
 Proved direct sum results for simultaneous message complexity
 Formally defined "information cost" and "information complexity"
 Introduced notations icost, IC
 Anticipated wider applicability of paradigm
- Bar-Yossef, Jayram, Kumar, Sivakumar (FOCS, 2002)
 Gave extension to interactive communication
 Cleverly handled non-product distributions: "conditional icost"
 Improved some communication (hence data stream) lower bounds

This Talk

Goals:

- Tutorial style
- Diversity of results
- Extract common patterns in applying IC

Not goals:

- Be comprehensive
- Present latest results

(but see Woodruff's talk next)

(Generalized) Direct Sum Theorems

Situation:

- Task \mathscr{B} : combines N independent copies of task \mathscr{A}

Direct sum theorem:

$$\mathsf{Complexity}(\mathscr{B}) = \Omega(N) \cdot \mathsf{Complexity}(\mathscr{A})$$

Situation:

- Task \mathscr{B} : combines N independent copies of task \mathscr{A}

- 1. Define information cost
- 2. Simulation Argument
- 3. Basic IC lower bound

Situation:

- Task \mathscr{B} : combines N independent copies of task \mathscr{A}

- Define information cost, hence information complexity (IC)
 Get Complexity(𝒯) ≥ IC(𝒯)
- 2. Simulation Argument
- 3. Basic IC lower bound

Situation:

- Task \mathscr{B} : combines N independent copies of task \mathscr{A}

- Define information cost, hence information complexity (IC)
 Get Complexity(𝒯) ≥ IC(𝒯)
- 2. Simulation Argument: solving $\mathscr{B} \Rightarrow$ solving each copy of \mathscr{A} Get $\mathsf{IC}(\mathscr{B}) \geq N \cdot \mathsf{IC}(\mathscr{A})$
- 3. Basic IC lower bound

Situation:

- Task \mathscr{B} : combines N independent copies of task \mathscr{A}

- Define information cost, hence information complexity (IC)
 Get Complexity(𝒯) ≥ IC(𝒯)
- 2. Simulation Argument: solving $\mathscr{B} \Rightarrow$ solving each copy of \mathscr{A} Get $\mathsf{IC}(\mathscr{B}) \geq N \cdot \mathsf{IC}(\mathscr{A})$
- 3. Basic IC lower bound: apply to simple task \mathscr{A} Get $IC(\mathscr{A}) \gtrsim Complexity(\mathscr{A})$

Part One: No Interaction

The INDEX Problem

Definition:

Alice holds $x \in \{0,1\}^n$, Bob holds $i \in [n]$; find x_i (error $\leq \varepsilon$)

Correctness requirement:

$$\forall x, i \ \Pr[\mathsf{output} \neq x_i] \leq \varepsilon$$

The INDEX Problem

Definition:

Alice holds $x \in \{0,1\}^n$, Bob holds $i \in [n]$; find x_i (error $\leq \varepsilon$)

Correctness requirement:

$$\forall x, i \ \Pr[\mathsf{output} \neq x_i] \leq \varepsilon$$

Theorem: Alice needs to send $\Omega(n)$ bits.

[Ablayev'96]

The ECHO problem:

Alice holds $b \in \{0,1\}$, Bob to output b with error $\leq \varepsilon$

The ECHO problem:

Alice holds $b \in \{0,1\}$, Bob to output b with error $\leq \varepsilon$

Simple task (ℳ): ECHO

Complex task (\mathscr{B}): INDEX

The ECHO problem:

Alice holds $b \in \{0,1\}$, Bob to output b with error $\leq \varepsilon$

Simple task (ℳ): ECHO

Complex task (\mathscr{B}): INDEX \approx combines n independent copies of ECHO

The ECHO problem:

Alice holds $b \in \{0,1\}$, Bob to output b with error $\leq \varepsilon$

Simple task (ℳ): ECHO

Complex task (\mathscr{B}): INDEX \approx combines n independent copies of ECHO

- 1. Define information cost
- 2. Simulation Argument
- 3. Basic IC lower bound (for ECHO)

Step 1: Define Information Cost

Generic notion, for a communication protocol Π :

```
{\rm icost}(\Pi)= amount of info about (part of) the input to \Pi revealed by (some of) the messages in \Pi (possibly conditioned on some prior knowledge)
```

Step 1: Define Information Cost

Generic notion, for a communication protocol Π :

```
{\rm icost}(\Pi)={\rm amount\ of\ info\ about\ (part\ of)\ the\ input\ to\ }\Pi revealed by (some of) the messages in \Pi (possibly conditioned on some prior knowledge)
```

In this case...

- Let Π_B be a protocol for task \mathscr{B} (i.e., INDEX)
- Let X= random input (distrib μ) for Alice R= random coins of Alice $M= {\sf msg}(X,R);$ then ${\sf icost}^{\mu}(\Pi_B) := {\sf I}(X:M)$

Notice:

$$\operatorname{icost}^{\mu}(\Pi_B) \leq \operatorname{H}(M) \leq \operatorname{length}(M) = \operatorname{cost}(\Pi_B)$$

```
Take X=X_1\dots X_n\sim \mu_1\otimes\dots\otimes\mu_n=:\mu; then X_1,\dots,X_n independent \operatorname{cost}(\Pi_B)\geq\operatorname{icost}^\mu(\Pi_B) =\operatorname{I}(X_1X_2\dots X_n:M) \geq\operatorname{I}(X_1:M)+\operatorname{I}(X_2:M)+\dots+\operatorname{I}(X_n:M) [superadditivity]
```

Take
$$X=X_1\dots X_n\sim \mu_1\otimes \dots \otimes \mu_n=:\mu;$$
 then X_1,\dots,X_n independent $\operatorname{cost}(\Pi_B)\geq \operatorname{icost}^\mu(\Pi_B)$
$$=\operatorname{I}(X_1X_2\dots X_n:M)$$

$$\geq \operatorname{I}(X_1:M)+\operatorname{I}(X_2:M)+\dots+\operatorname{I}(X_n:M) \quad \text{[superadditivity]}$$

$$=\operatorname{icost}^{\mu_1}(\Pi_{A,1})+\operatorname{icost}^{\mu_2}(\Pi_{A,2})+\dots+\operatorname{icost}^{\mu_n}(\Pi_{A,n})$$

To make this work, want protocols $\Pi_{A,j}$ s.t.

 $M \equiv$ Alice's message in $\Pi_{A,j}$ on input $X_j \sim \mu_j$

Take
$$X=X_1\dots X_n\sim \mu_1\otimes\dots\otimes\mu_n=:\mu$$
; then X_1,\dots,X_n independent $\operatorname{cost}(\Pi_B)\geq\operatorname{icost}^\mu(\Pi_B)$
$$=\operatorname{I}(X_1X_2\dots X_n:M)$$

$$\geq\operatorname{I}(X_1:M)+\operatorname{I}(X_2:M)+\dots+\operatorname{I}(X_n:M) \quad \text{[superadditivity]}$$

$$=\operatorname{icost}^{\mu_1}(\Pi_{A,1})+\operatorname{icost}^{\mu_2}(\Pi_{A,2})+\dots+\operatorname{icost}^{\mu_n}(\Pi_{A,n})$$

To make this work, want protocols $\Pi_{A,j}$ s.t.

 $M \equiv$ Alice's message in $\Pi_{A,j}$ on input $X_j \sim \mu_j$

Take
$$X=X_1\dots X_n\sim \mu_1\otimes\dots\otimes\mu_n=:\mu$$
; then X_1,\dots,X_n independent $\operatorname{cost}(\Pi_B)\geq\operatorname{icost}^\mu(\Pi_B)$
$$=\operatorname{I}(X_1X_2\dots X_n:M)$$

$$\geq\operatorname{I}(X_1:M)+\operatorname{I}(X_2:M)+\dots+\operatorname{I}(X_n:M) \quad \text{[superadditivity]}$$

$$=\operatorname{icost}^{\mu_1}(\Pi_{A,1})+\operatorname{icost}^{\mu_2}(\Pi_{A,2})+\dots+\operatorname{icost}^{\mu_n}(\Pi_{A,n})$$

To make this work, want protocols $\Pi_{A,j}$ s.t.

 $M \equiv$ Alice's message in $\Pi_{A,j}$ on input $X_j \sim \mu_j$

Take
$$X=X_1\dots X_n\sim \mu_1\otimes \dots \otimes \mu_n=:\mu;$$
 then X_1,\dots,X_n independent $\operatorname{cost}(\Pi_B)\geq \operatorname{icost}^\mu(\Pi_B)$
$$=\operatorname{I}(X_1X_2\dots X_n:M)$$

$$\geq \operatorname{I}(X_1:M)+\operatorname{I}(X_2:M)+\dots+\operatorname{I}(X_n:M) \quad \text{[superadditivity]}$$

$$=\operatorname{icost}^{\mu_1}(\Pi_{A,1})+\operatorname{icost}^{\mu_2}(\Pi_{A,2})+\dots+\operatorname{icost}^{\mu_n}(\Pi_{A,n})$$

To make this work, want protocols $\Pi_{A,j}$ s.t.

 $M \equiv$ Alice's message in $\Pi_{A,j}$ on input $X_j \sim \mu_j$

Notice: each $\Pi_{A,j}$ solves ECHO

Step 3: Basic IC Lower Bound

Comm complexity: $R_{\varepsilon}^{\to}(\mathscr{B}) = \min \left\{ \operatorname{cost}(\Pi) : \Pi \text{ solves } \mathscr{B} \text{ with error } \varepsilon \right\}$ Info complexity: $IC_{\varepsilon}^{\mu,\to}(\mathscr{B}) = \inf \left\{ \operatorname{icost}^{\mu}(\Pi) : \Pi \text{ solves } \mathscr{B} \text{ with error } \varepsilon \right\}$

Pick μ = uniform distrib, ξ ; so far

$$R_{\varepsilon}^{\to}(\mathscr{B}) \geq IC_{\varepsilon}^{\xi, \to}(\mathscr{B})$$
 $IC_{\varepsilon}^{\xi, \to}(\mathscr{B}) \geq n \cdot IC^{\xi, \to}(\mathscr{A})$

Step 3: Basic IC Lower Bound

Comm complexity: $R_{\varepsilon}^{\to}(\mathscr{B}) = \min \left\{ \operatorname{cost}(\Pi) : \Pi \text{ solves } \mathscr{B} \text{ with error } \varepsilon \right\}$ Info complexity: $\mathsf{IC}_{\varepsilon}^{\mu,\to}(\mathscr{B}) = \inf \left\{ \operatorname{icost}^{\mu}(\Pi) : \Pi \text{ solves } \mathscr{B} \text{ with error } \varepsilon \right\}$

Pick μ = uniform distrib, ξ ; so far

$$R_{\varepsilon}^{\to}(\mathscr{B}) \geq IC_{\varepsilon}^{\xi, \to}(\mathscr{B})$$
 $IC_{\varepsilon}^{\xi, \to}(\mathscr{B}) \geq n \cdot IC^{\xi, \to}(\mathscr{A})$

Intuitively clear that $IC_{\varepsilon}^{\mu, \to}(\mathscr{A}) \neq 0$

Implication: $R_{\varepsilon}^{\rightarrow}(\mathscr{B}) = \Omega(n)$.

QED

Step 3: Basic IC Lower Bound

Comm complexity: $R_{\varepsilon}^{\to}(\mathscr{B}) = \min \left\{ \operatorname{cost}(\Pi) : \Pi \text{ solves } \mathscr{B} \text{ with error } \varepsilon \right\}$ Info complexity: $\mathsf{IC}_{\varepsilon}^{\mu,\to}(\mathscr{B}) = \inf \left\{ \operatorname{icost}^{\mu}(\Pi) : \Pi \text{ solves } \mathscr{B} \text{ with error } \varepsilon \right\}$

Pick μ = uniform distrib, ξ ; so far

$$R_{\varepsilon}^{\to}(\mathscr{B}) \geq IC_{\varepsilon}^{\xi, \to}(\mathscr{B})$$
 $IC_{\varepsilon}^{\xi, \to}(\mathscr{B}) \geq n \cdot IC^{\xi, \to}(\mathscr{A})$

Intuitively clear that $IC_{\varepsilon}^{\mu, \to}(\mathscr{A}) \neq 0$

Implication: $R_{\varepsilon}^{\rightarrow}(\mathscr{B}) = \Omega(n)$.

QED

In fact we can work out the constant precisely...

- Let Π_A be a protocol for task \mathscr{A} (i.e., ECHO)
- Let Z= random input (uniform distrib ξ) for Alice $M= {\rm msg}(Z,R)$ $M^{(z)}= {\rm msg}(z,R) \mbox{ for } z\in\{0,1\}$

$$\mathsf{icost}^{\xi}(\Pi_A) = \mathsf{I}(Z:M)$$

- Let Π_A be a protocol for task \mathscr{A} (i.e., ECHO)
- Let $Z = \text{random input (uniform distrib } \xi)$ for Alice $M = \mathsf{msg}(Z, R)$ $M^{(z)} = \text{msg}(z, R) \text{ for } z \in \{0, 1\}$

$$\mathsf{icost}^{\xi}(\Pi_A) = \mathsf{I}(Z:M)$$

 $\operatorname{D_{TV}}(P,Q)$: total variation distance $\operatorname{D_{KL}}(P\|Q)$: Kullback-Leibler divergence

 $D_{JS}(P,Q)$: Jensen-Shannon divergence

 $H_b(x)$: binary entropy function

 $= -x \log x - (1-x) \log(1-x)$

- Let Π_A be a protocol for task \mathscr{A} (i.e., ECHO)
- Let Z= random input (uniform distrib ξ) for Alice $M= {\rm msg}(Z,R)$ $M^{(z)}= {\rm msg}(z,R) \mbox{ for } z\in\{0,1\}$

$$\mathsf{icost}^{\xi}(\Pi_A) = \mathsf{I}(Z:M)$$

- Let Π_A be a protocol for task \mathscr{A} (i.e., ECHO)
- Let Z= random input (uniform distrib ξ) for Alice $M= {\rm msg}(Z,R)$ $M^{(z)}= {\rm msg}(z,R) \mbox{ for } z\in\{0,1\}$
- Basic information theory:

$$\operatorname{icost}^{\xi}(\Pi_A) = I(Z:M) = \frac{1}{2}(D_{\mathrm{KL}}(M^{(0)}||M) + D_{\mathrm{KL}}(M^{(1)}||M))$$

- Let Π_A be a protocol for task \mathscr{A} (i.e., ECHO)
- Let Z= random input (uniform distrib ξ) for Alice $M= {\rm msg}(Z,R)$ $M^{(z)}= {\rm msg}(z,R) \mbox{ for } z\in\{0,1\}$
- Basic information theory:

$$\operatorname{icost}^{\xi}(\Pi_{A}) = I(Z : M) = \frac{1}{2}(D_{KL}(M^{(0)}||M) + D_{KL}(M^{(1)}||M))$$
$$= D_{JS}(M^{(0)}, M^{(1)})$$
$$\geq 1 - H_{b}\left(\frac{1 - D_{TV}(M^{(0)}, M^{(1)})}{2}\right)$$

- Let Π_A be a protocol for task \mathscr{A} (i.e., ECHO)
- Let Z= random input (uniform distrib ξ) for Alice $M= {\rm msg}(Z,R)$ $M^{(z)}= {\rm msg}(z,R) \mbox{ for } z\in\{0,1\}$
- Basic information theory:

$$\operatorname{icost}^{\xi}(\Pi_{A}) = I(Z : M) = \frac{1}{2}(D_{KL}(M^{(0)}||M) + D_{KL}(M^{(1)}||M))$$
$$= D_{JS}(M^{(0)}, M^{(1)})$$
$$\geq 1 - H_{b}\left(\frac{1 - D_{TV}(M^{(0)}, M^{(1)})}{2}\right)$$

• Error $\leq \varepsilon$ implies $\mathrm{D_{TV}}(M^{(0)}, M^{(1)}) \geq 1 - 2\varepsilon$

Step 3: Basic IC Lower Bound: Details

- Let Π_A be a protocol for task \mathscr{A} (i.e., ECHO)
- Let Z= random input (uniform distrib ξ) for Alice $M= {\rm msg}(Z,R)$ $M^{(z)}= {\rm msg}(z,R) \mbox{ for } z\in\{0,1\}$
- Basic information theory:

$$icost^{\xi}(\Pi_{A}) = I(Z : M) = \frac{1}{2}(D_{KL}(M^{(0)}||M) + D_{KL}(M^{(1)}||M))$$

$$= D_{JS}(M^{(0)}, M^{(1)})$$

$$\geq 1 - H_{b}\left(\frac{1 - D_{TV}(M^{(0)}, M^{(1)})}{2}\right)$$

- Error $\leq \varepsilon$ implies $D_{\mathrm{TV}}(M^{(0)}, M^{(1)}) \geq 1 2\varepsilon$
- Thus $\mathsf{icost}^\xi(\Pi_A) \geq 1 \mathsf{H}_b(\varepsilon)$ and so $\mathsf{R}_\varepsilon^{\to}(\mathsf{INDEX}) \geq (1 \mathsf{H}_b(\varepsilon))n$... a tight bound!

The INDEX Problem: Applications

A humble lower bound, but with many applications!

- Complexity of sampling procedures
- Lower bounds for succinct data structures
- Space lower bounds for (one-pass) data stream algorithms
 - Median of n numbers: $\Omega(n)$
 - Mode of *n* numbers: $\Omega(n)$
 - Connectivity of *n*-vertex graph, given edges: $\Omega(n)$
 - Triangle-freeness of *n*-vertex graph: $\Omega(n^2)$

:

The INDEX Problem: Applications

A humble lower bound, but with many applications!

- Complexity of sampling procedures
- Lower bounds for succinct data structures
- Space lower bounds for (one-pass) data stream algorithms
 - Median of n numbers: $\Omega(n)$
 - Mode of *n* numbers: $\Omega(n)$
 - Connectivity of *n*-vertex graph, given edges: $\Omega(n)$
 - Triangle-freeness of n-vertex graph: $\Omega(n^2)$

:

- Diameter of n-vertex graph, k-approx: $\Omega(n^{1+1/k})$ A very sophisticated reduction [Feigenbaum-K-M-S-Z'05]

The INDEX Problem: Extensions

• Generalize to AUGMENTED-INDEX

• Still $\Omega(n)$; replace superadditivity step with chain rule:

$$I(X_1 X_2 ... X_n : M) = \sum_{i=1}^n I(X_i : M \mid X_1 ... X_{i-1})$$

The INDEX Problem: Extensions

• Generalize to AUGMENTED-INDEX

• Still $\Omega(n)$; replace superadditivity step with chain rule:

$$I(X_1 X_2 ... X_n : M) = \sum_{i=1}^n I(X_i : M \mid X_1 ... X_{i-1})$$

- Generalize to **interactive** communication
 - Communication complexity drops to $O(\log n)$
 - Seek tradeoffs [Magniez-Mathieu-Nayak'10], [C.-Kondapally'11]

Lower bound method: $\mathbf{R}^{\parallel}(f) := \mathbf{R}_{1/3}^{\parallel}(f) = \Omega(\sqrt{\mathbf{D}^{\parallel}(f)})$ [Babai-Kimmel'97]

Lower bound method:
$$R^{\parallel}(f):=R_{1/3}^{\parallel}(f)=\Omega(\sqrt{D^{\parallel}(f)})$$
 [Babai-Kimmel'97] Equality function $\text{EQ}_n(x,y)=1\iff x=y$... $x,y\in\{0,1\}^n$ A neat result: $R^{\parallel}(\text{EQ}_n)=\Theta(\sqrt{n})$ [Ambainis'96]

Lower bound method: $R^{\parallel}(f) := R_{1/3}^{\parallel}(f) = \Omega(\sqrt{D^{\parallel}(f)})$ [Babai-Kimmel'97] Equality function $EQ_n(x,y) = 1 \iff x = y$... $x,y \in \{0,1\}^n$ A neat result: $R^{\parallel}(EQ_n) = \Theta(\sqrt{n})$ [Ambainis'96]

Direct sum: $OREQ_{n,m}(x_1 \dots x_m, y_1 \dots y_m) = \bigvee_{i=1}^m EQ_n(x_i, y_i)$

What is $\mathbb{R}^{\parallel}(OREQ_{n,m})$? Above method only shows $\Omega(\sqrt{mn})$

Lower bound method:
$$R^{\parallel}(f) := R_{1/3}^{\parallel}(f) = \Omega(\sqrt{D^{\parallel}(f)})$$
 [Babai-Kimmel'97]
 Equality function $EQ_n(x,y) = 1 \iff x = y$... $x,y \in \{0,1\}^n$
 A neat result: $R^{\parallel}(EQ_n) = \Theta(\sqrt{n})$ [Ambainis'96]

Direct sum: OREQ_{n,m} $(x_1 \dots x_m, y_1 \dots y_m) = \bigvee_{i=1}^m EQ_n(x_i, y_i)$

What is $\mathbb{R}^{\parallel}(\text{OREQ}_{n,m})$? Above method only shows $\Omega(\sqrt{mn})$

Theorem: (via IC) $R^{\parallel}(OREQ_{n,m}) = \Omega(m\sqrt{n})$ [C.-Shi-Wirth-Yao'01]

Alice: input $X \sim \xi$, message U; Bob: input $Y \sim \xi$, message V

1. Define information cost

2. Simulation Argument

3. Basic IC lower bound

Alice: input $X \sim \xi$, message U; Bob: input $Y \sim \xi$, message V

1. Define information cost

$$\mathsf{icost}^{\xi}(\Pi) = \mathsf{I}(X:U) + \mathsf{I}(Y:V)$$

2. Simulation Argument

To solve EQ_n by simulating protocol for $OREQ_{n,m}$ Alice, Bob plug input into ith position, fill rest at random $\sim \xi$ May change answer from 0 to 1 w.p. $\leq m/2^n = o(1)$

3. Basic IC lower bound

Alice: input $X \sim \xi$, message U; Bob: input $Y \sim \xi$, message V

1. Define information cost

$$\mathsf{icost}^{\xi}(\Pi) = \mathsf{I}(X:U) + \mathsf{I}(Y:V)$$

2. Simulation Argument

To solve EQ_n by simulating protocol for $OREQ_{n,m}$ Alice, Bob plug input into ith position, fill rest at random $\sim \xi$ May change answer from 0 to 1 w.p. $\leq m/2^n = o(1)$

3. Basic IC lower bound (for EQ)

So far:
$$R^{\parallel}(OREQ_{n,m}) \geq IC^{\xi,\parallel}(OREQ_{n,m}) \geq m \cdot IC^{\xi,\parallel}(EQ_n)$$

Must show $IC^{\xi,\parallel}(EQ_n) \gtrsim R^{\parallel}(EQ_n)$

Alice: input $X \sim \xi$, message U; Bob: input $Y \sim \xi$, message V

1. Define information cost

$$\mathsf{icost}^{\xi}(\Pi) = \mathsf{I}(X:U) + \mathsf{I}(Y:V)$$

2. Simulation Argument

To solve EQ_n by simulating protocol for $OREQ_{n,m}$ Alice, Bob plug input into ith position, fill rest at random $\sim \xi$ May change answer from 0 to 1 w.p. $\leq m/2^n = o(1)$

3. Basic IC lower bound (for EQ)

So far:
$$R^{\parallel}(OREQ_{n,m}) \geq IC^{\xi,\parallel}(OREQ_{n,m}) \geq m \cdot IC^{\xi,\parallel}(EQ_n)$$

Must show $IC^{\xi,\parallel}(EQ_n) \gtrsim R^{\parallel}(EQ_n)$

For last step: <u>compress</u> Alice's/Bob's messages down to their info content Main idea: Whittle down message space via rejection sampling [CSWY'01]

Alice: input $X \sim \xi$, message U; Bob: input $Y \sim \xi$, message V

1. Define information cost

$$\mathsf{icost}^{\xi}(\Pi) = \mathsf{I}(X:U) + \mathsf{I}(Y:V)$$

2. Simulation Argument

To solve EQ_n by simulating protocol for $OREQ_{n,m}$ Alice, Bob plug input into ith position, fill rest at random $\sim \xi$ May change answer from 0 to 1 w.p. $\leq m/2^n = o(1)$

3. Basic IC lower bound (for EQ)

So far:
$$R^{\parallel}(OREQ_{n,m}) \geq IC^{\xi,\parallel}(OREQ_{n,m}) \geq m \cdot IC^{\xi,\parallel}(EQ_n)$$

Must show $IC^{\xi,\parallel}(EQ_n) \gtrsim R^{\parallel}(EQ_n)$

For last step: <u>compress</u> Alice's/Bob's messages down to their info content Main idea: Whittle down message space via <u>rejection sampling</u> [CSWY'01] Deeper version of idea: comm complexity of correlation [Harsha-J-M-R'07]

Part Two: Interaction, But Not Really

Lower Bounds for Data Structures

Preprocess data $Y \to \text{data structure } T = T(Y)$... low storage space

Query $x \to \text{algorithm } \mathcal{A}(x,T) \to \text{output } z$

... low query time

Satisfying some relation R(x, Y, z).

Examples: take $x \in \{0,1\}^d$, $Y \subseteq \{0,1\}^d$ with |Y| = n

Predecessor Search

Treat data as *d*-bit integers

R(x,Y,z) iff $z \in Y$ is the predecessor of x in Y.

Lower Bounds for Data Structures

Preprocess data $Y \to \text{data}$ structure T = T(Y) ... low storage space Query $x \to \text{algorithm } \mathcal{A}(x,T) \to \text{output } z$... low query time Satisfying some relation R(x,Y,z).

Examples: take $x \in \{0,1\}^d$, $Y \subseteq \{0,1\}^d$ with |Y| = n

- Approx Nearest Neighbor (ANN) Search Treat data as points in Hamming cube $R(x,Y,z) \text{ iff } z \in Y \text{ is a } \beta\text{-ANN of } x \text{ w.r.t. } Y.$

Alice: $O(\log n)$ -bit messages; Bob: poly(d)-bit messages

Repeatedly remove first round, shrink instance size

[Miltersen-Nisan-Safra-Wigderson'95], [Sen'03]

Repeatedly remove first round, shrink instance size

[Miltersen-Nisan-Safra-Wigderson'95], [Sen'03]

Repeatedly remove first round, shrink instance size

[Miltersen-Nisan-Safra-Wigderson'95], [Sen'03]

Repeatedly remove first round, shrink instance size

[Miltersen-Nisan-Safra-Wigderson'95], [Sen'03]

Eventually: zero communication protocol for instance size $(d/k^t, n/\ell^t)$

Implying... **Theorem:** Query time
$$t = \Omega\left(\frac{\log d}{\log\log d}\right)$$

Predecessor Search: Embeddability Property

Input (x, Y) solvable using input $(\sigma \circ x \circ RAND, \ \sigma \circ Y \circ RAND)$.

Predecessor Search: Embeddability Property

Input (x, Y) solvable using input $(\sigma \circ x \circ RAND, \ \sigma \circ Y \circ RAND)$.

Predecessor Search: Embeddability Property

Input (x, Y) solvable using input $(\sigma \circ x \circ RAND, \sigma \circ Y \circ RAND)$.

Simple task (\mathscr{A}): instance size (n/k, d), using 2t rounds

Complex task (\mathscr{B}): instance size (n,d), using 2t rounds $\approx k$ times \mathscr{A}

1. Define information cost

$$\operatorname{icost}_1^{\mu}(\Pi) = \operatorname{I}(X:M_1)$$
 Alice's input $X \sim \mu$, $M_1 = \operatorname{msg}_1(X,R)$

2. Simulation Argument

3. Compression Argument

1. Define information cost

$$\operatorname{icost}_1^{\mu}(\Pi) = \operatorname{I}(X:M_1)$$
 Alice's input $X \sim \mu$, $M_1 = \operatorname{msg}_1(X,R)$

2. Simulation Argument

Put $X = X_1 X_2 \dots X_k$, each X_i : a (d/k)-bit chunk Protocol $\Pi_{A,\sigma}$: pad instance using prefix σ of length (i-1)d/k

$$O(\log n) \ge \mathsf{icost}_{1}^{\mu^{\otimes k}}(\Pi_{B}) = I(X_{1}X_{2} \dots X_{k} : M_{1})$$

$$= \sum_{i=1}^{k} I(X_{i} : M_{1} \mid X_{1} \dots X_{i-1})$$

$$= \sum_{i=1}^{k} \mathbb{E}_{\sigma}[I(X_{i} : M_{1} \mid X_{1} \dots X_{i-1} = \sigma)] = \sum_{i=1}^{k} \mathbb{E}_{\sigma}[\mathsf{icost}_{1}^{\mu}(\Pi_{A,\sigma})]$$

3. Compression Argument

1. Define information cost

$$\mathsf{icost}_1^{\mu}(\Pi) = \mathsf{I}(X:M_1)$$
 Alice's input $X \sim \mu$, $M_1 = \mathsf{msg}_1(X,R)$

2. Simulation Argument

Put $X = X_1 X_2 \dots X_k$, each X_i : a (d/k)-bit chunk

Protocol $\Pi_{A,\sigma}$: pad instance using prefix σ of length (i-1)d/k

$$O(\log n) \ge \operatorname{icost}_{1}^{\mu^{\otimes k}}(\Pi_{B}) = I(X_{1}X_{2} \dots X_{k} : M_{1})$$

$$= \sum_{i=1}^{k} I(X_{i} : M_{1} \mid X_{1} \dots X_{i-1})$$

$$= \sum_{i=1}^{k} \mathbb{E}_{\sigma}[I(X_{i} : M_{1} \mid X_{1} \dots X_{i-1} = \sigma)] = \sum_{i=1}^{k} \mathbb{E}_{\sigma}[\operatorname{icost}_{1}^{\mu}(\Pi_{A,\sigma})]$$

3. Compression Argument

So far: exists $\Pi_{A,\sigma}$ with $\operatorname{icost}_1^{\mu}(\Pi_{A,\sigma}) \leq O((\log n)/k) = o(1)$

Pretend $msg_1(X',R)$ sent as first message, $X' \equiv X$ but indep.

1. Define information cost

$$\operatorname{icost}_1^{\mu}(\Pi) = \operatorname{I}(X:M_1)$$
 Alice's input $X \sim \mu$, $M_1 = \operatorname{msg}_1(X,R)$

2. Simulation Argument

Put
$$X = X_1 X_2 \dots X_k$$
, each X_i : a (d/k) -bit chunk

Protocol $\Pi_{A,\sigma}$: pad instance using prefix σ of length (i-1)d/k

$$O(\log n) \ge \operatorname{icost}_{1}^{\mu^{\otimes k}}(\Pi_{B}) = I(X_{1}X_{2} \dots X_{k} : M_{1})$$

$$= \sum_{i=1}^{k} I(X_{i} : M_{1} \mid X_{1} \dots X_{i-1})$$

$$= \sum_{i=1}^{k} \mathbb{E}_{\sigma}[I(X_{i} : M_{1} \mid X_{1} \dots X_{i-1} = \sigma)] = \sum_{i=1}^{k} \mathbb{E}_{\sigma}[\operatorname{icost}_{1}^{\mu}(\Pi_{A,\sigma})]$$

3. Compression Argument

So far: exists $\Pi_{A,\sigma}$ with $\operatorname{icost}_1^{\mu}(\Pi_{A,\sigma}) \leq O((\log n)/k) = o(1)$

Pretend $msg_1(X',R)$ sent as first message, $X' \equiv X$ but indep.

Error
$$+= O(\sqrt{\mathsf{icost}_1^{\mu}(\Pi_{A,\sigma})}) = o(1)$$
 [Pinsker's inequality]

Round Elimination: ANN Search

1. Define information cost

As before,
$$icost_1(\Pi) = I(X : M_1)$$

2. Simulation Argument

ANN does not have embeddability property

3. Compression Argument

Round Elimination: ANN Search

1. Define information cost

As before,
$$icost_1(\Pi) = I(X : M_1)$$

2. Simulation Argument

ANN does not have embeddability property Reduce from Longest Prefix Match (LPM), which does Get $\operatorname{icost}_1^{\mu}(\Pi_{A,\sigma}) \leq O((\log n)/k)$ but this bound $= \omega(1)$

3. Compression Argument

Round Elimination: ANN Search

1. Define information cost

As before, $icost_1(\Pi) = I(X : M_1)$

2. Simulation Argument

ANN does not have embeddability property

Reduce from Longest Prefix Match (LPM), which does

Get $\operatorname{icost}_1^{\mu}(\Pi_{A,\sigma}) \leq O((\log n)/k)$ but this bound $= \omega(1)$

3. Compression Argument

Use comm complexity of correlation

[Harsha-J-M-R'07]

Compress first message down to its info content

Now it's short enough: easy (combinatorial) round eliminiation

Eventually... **Theorem:** Query time
$$t = \Omega\left(\frac{\log\log d}{\log\log\log d}\right)$$
 [C.-Regev'10]

Pointer Jumping Problems

Input: One pointer per level in layered graph; plus one bit per leaf Task: output bit at leaf reached by following pointers from root

Multilayer Ptr Jumping, $MPJ_{n,p}$

Full layered DAG, n nodes/layer Number-on-Forehead (NOF) Speaking order P_1, \ldots, P_p

PI P2 P3 P4 P5

1

0

1

1

1

Theorems: $R^{\rightarrow}(MPJ_{n,p}) = \Omega(n/p)^{\star}$

Tree Pointer Jumping, $TPJ_{n,p+1}$

Complete (p+1)-level n-ary tree

Number-In-Hand (NIH)

Use p rounds, going up tree: $\uparrow \uparrow \uparrow$

$$R^p(TPJ_{n,p+1}) = \Omega(n/p^2)$$

The Importance of a Careful Definition

For the NOF problem $MPJ_{n,p}$

[Chakrabarti'07]

Protocol P, input $(X_1, \ldots, X_p) \sim \mu$, $M_1 = \text{message of player } P_1$:

$$\mathsf{icost}^{\mu}(\Pi) := \mathsf{I}(M_1 : X_2 \mid X_3, \dots, X_k)$$

Simulation argument works only under one of these protocol restrictions:

- Myopic: each player sees only one layer ahead ... $\Omega(n/p)$
- Conservative: don't see behind except know current node ... $\Omega(n/p^2)$

Pointer Jumping: Applications

- Layered DAG version, NOF
 - Strong NOF lower bounds imply circuit lower bounds [Yao'90]
 - If myopic/conservative restriction removed, $ACC^0 \neq LOGSPACE$

Pointer Jumping: Applications

- Layered DAG version, NOF
 - Strong NOF lower bounds imply circuit lower bounds [Yao'90]
 - If myopic/conservative restriction removed, $ACC^0 \neq LOGSPACE$
- Tree version, NIH
 - Multi-pass data stream lower bounds
 - Classic example: median of n numbers, p passes: $\Omega(n^{1/p})$ space
 - Modern: median, randomly-ordered, p passes: $\Omega(n^{2^{-p}})$ space
 A sophisticated reduction [C.-Cormode-McGregor'08]

Part Three: Full Interaction

The DISJOINTNESS problem

• Input: $2 \times n$ Boolean matrix

- Task: distinguish between the following two cases
 - Case 0: Every column has weight ≤ 1

0	1	0	0	0	1	1	0
1	0	1	1	0	0	0	0

- Case 1: One column has weight 2, rest have weight ≤ 1 (i.e., the subsets of [n] represented by the rows intersect)

0	1	1	0	0	1	1	0
1	0	1	1	0	0	0	0

The DISJOINTNESS problem

- Input: $2 \times n$ Boolean matrix
- Task: distinguish between the following two cases
 - Case 0: Every column has weight ≤ 1

0	1	0	0	0	1	1	0	← Alice
1	0	1	1	0	0	0	0	← Bob

- Case 1: One column has weight 2, rest have weight ≤ 1 (i.e., the subsets of [n] represented by the rows intersect)

0	1	1	0	0	1	1	0	← Alice
1	0	1	1	0	0	0	0	\leftarrow Bob

- This problem is called $DISJ_{n,2}$
- Later: t-player generalization $\mathrm{DISJ}_{n,t}$

New Twist in Applying IC Paradigm

Problem AND₂:

- Alice holds $a \in \{0, 1\}$, Bob holds $b \in \{0, 1\}$
- Bob to output $a \wedge b$

Simple task (\mathscr{A}): AND₂

Complex task (\mathscr{B}): DISJ $_{n,2} \approx$ combines n copies of AND $_2$

New Twist in Applying IC Paradigm

Problem AND₂:

- Alice holds $a \in \{0, 1\}$, Bob holds $b \in \{0, 1\}$
- Bob to output $a \wedge b$

Simple task (\mathscr{A}): AND₂

Complex task (\mathscr{B}): DISJ_{n,2} \approx combines n copies of AND₂

The key twist:

- Step 2 (Simulation): pad AND₂ instance to get $DISJ_{n,2}$ instance
- Careless random padding will drown out the answer!
- Must ensure "padding" columns j have $AND_2(X_j, Y_j) = 0$
- Need shared coins to do this ... so must <u>condition</u> on these coins

IC Paradigm Applied to DISJOINTNESS (1/3)

Inputs: $\vec{X} = X_1 \dots X_n, \ \vec{Y} = Y_1 \dots Y_n;$ Auxiliary coins: $D_1 \dots D_n$ Each $(X_i, Y_i, D_i) \sim \mu;$ $M = \text{transcript}^\Pi(X, Y, R_{\text{pub}}, R_{\text{priv}})$ $\mu = \begin{array}{c|cccc} XY \to & 00 & 01 & 10 & 11 \\ \hline D = 0 & 1/2 & 0 & 1/2 & 0 \\ D = 1 & 1/2 & 1/2 & 0 & 0 \end{array}$

1. Define information cost

$$\mathsf{icost}^{\mu}(\Pi) = \mathsf{I}(\vec{X}\vec{Y} : M \mid \vec{D}, R_{\mathsf{pub}})$$
 (Note: external icost)

2. Simulation Argument

3. Basic IC lower bound (for AND₂)

IC Paradigm Applied to DISJOINTNESS (1/3)

Inputs: $\vec{X} = X_1 \dots X_n, \ \vec{Y} = Y_1 \dots Y_n;$ Auxiliary coins: $D_1 \dots D_n$ Each $(X_i, Y_i, D_i) \sim \mu;$ $M = \text{transcript}^\Pi(X, Y, R_{\text{pub}}, R_{\text{priv}})$ $\mu = \begin{array}{c|cccc} XY \to & 00 & 01 & 10 & 11 \\ \hline D = 0 & 1/2 & 0 & 1/2 & 0 \\ D = 1 & 1/2 & 1/2 & 0 & 0 \end{array}$

1. Define information cost

$$\mathsf{icost}^{\mu}(\Pi) = \mathsf{I}(\vec{X}\vec{Y} : M \mid \vec{D}, R_{\mathsf{pub}})$$
 (Note: external icost)

2. Simulation Argument

Protocols $\Pi_{A,i}$ for $\mathrm{AND}_2(X,Y)$ simulating Π_B for $\mathrm{DISJ}_{n,2}$ Public coins for \vec{D} , private for \vec{X}, \vec{Y} s.t. each $(X_j, Y_j, D_j) \sim \mu$

3. Basic IC lower bound (for AND₂)

IC Paradigm Applied to DISJOINTNESS (1/3)

Inputs: $\vec{X} = X_1 \dots X_n, \ \vec{Y} = Y_1 \dots Y_n;$ Auxiliary coins: $D_1 \dots D_n$ Each $(X_i, Y_i, D_i) \sim \mu;$ $M = \text{transcript}^\Pi(X, Y, R_{\text{pub}}, R_{\text{priv}})$ $\mu = \begin{array}{c|cccc} XY \to & 00 & 01 & 10 & 11 \\ \hline D = 0 & 1/2 & 0 & 1/2 & 0 \\ \hline D = 1 & 1/2 & 1/2 & 0 & 0 \end{array}$

Define information cost

$$\mathsf{icost}^{\mu}(\Pi) = \mathsf{I}(\vec{X}\vec{Y} : M \mid \vec{D}, R_{\mathsf{pub}})$$
 (Note: external icost)

2. Simulation Argument

Protocols $\Pi_{A,i}$ for $\mathrm{AND}_2(X,Y)$ simulating Π_B for $\mathrm{DISJ}_{n,2}$ Public coins for \vec{D} , private for \vec{X}, \vec{Y} s.t. each $(X_j, Y_j, D_j) \sim \mu$ Crucial property: D_j factorizes (X_j, Y_j) Plug in $X_i \leftarrow X$ and $Y_i \leftarrow Y$

3. Basic IC lower bound (for AND₂)

IC Paradigm Applied to DISJOINTNESS (2/3)

Each
$$(X_i, Y_i, D_i) \sim \mu$$
; $M = \text{transcript}^{\Pi}(X, Y, R_{\text{pub}}, R_{\text{priv}})$
$$\mu = \begin{array}{c|cccc} XY \rightarrow & 00 & 01 & 10 & 11 \\ \hline D = 0 & 1/2 & 0 & 1/2 & 0 \\ D = 1 & 1/2 & 1/2 & 0 & 0 \end{array}$$

2. Simulation Argument

Protocols $\Pi_{A,i}$ for $AND_2(X,Y)$ simulating Π_B for $DISJ_{n,2}$

$$icost^{\mu^{\otimes n}}(\Pi_B) = I(\vec{X}\vec{Y} : M \mid \vec{D}) \ge \sum_{i=1}^n I(X_iY_i : M \mid \vec{D})$$
$$= \sum_{i=1}^n I(X_iY_i : M \mid D_i, \vec{D}_{-i}) = \sum_{i=1}^n icost^{\mu}(\Pi_{A,i})$$

3. Basic IC lower bound (for AND_2)

IC Paradigm Applied to DISJOINTNESS (2/3)

Each
$$(X_i, Y_i, D_i) \sim \mu$$
; $M = \text{transcript}^{\Pi}(X, Y, R_{\text{pub}}, R_{\text{priv}})$
$$\mu = \begin{array}{c|cccc} XY \rightarrow & 00 & 01 & 10 & 11 \\ \hline D = 0 & 1/2 & 0 & 1/2 & 0 \\ D = 1 & 1/2 & 1/2 & 0 & 0 \end{array}$$

2. Simulation Argument

Protocols $\Pi_{A,i}$ for $AND_2(X,Y)$ simulating Π_B for $DISJ_{n,2}$

$$icost^{\mu^{\otimes n}}(\Pi_B) = I(\vec{X}\vec{Y} : M \mid \vec{D}) \ge \sum_{i=1}^n I(X_iY_i : M \mid \vec{D})$$
$$= \sum_{i=1}^n I(X_iY_i : M \mid D_i, \vec{D}_{-i}) = \sum_{i=1}^n icost^{\mu}(\Pi_{A,i})$$

3. Basic IC lower bound (for AND_2)

To prove: $\forall \Pi_A$ solving AND₂, have icost^{μ}(Π_A) = $\Omega(1)$

Twist: distrib μ not hard for AND_2 : $\mathbb{E}_{(X,Y)\sim\mu}[AND_2(X,Y)]=0$

IC Paradigm Applied to DISJOINTNESS (3/3)

- Protocol Π_A for AND_2 ; $(X,Y,D) \sim \mu$; $M = trans^{\Pi}(X,Y,R_{priv})$
- Let $M^{(wz)} = \operatorname{transcript}^{\Pi}(w, z, R_{\operatorname{priv}})$ for $w, z \in \{0, 1\}$; then

$$icost^{\mu}(\Pi_{A}) = I(XY : M \mid D) = \frac{1}{2}(I(X : M \mid D = 0) + I(Y : M \mid D = 1))$$

$$= \frac{1}{2}(D_{JS}(M^{(00)}, M^{(10)}) + D_{JS}(M^{(00)}, M^{(01)}))$$

$$\geq \frac{1}{2}(h^{2}(M^{(00)}, M^{(10)}) + h^{2}(M^{(00)}, M^{(01)}))$$

$$\geq \frac{1}{4}h^{2}(M^{(10)}, M^{(01)})$$

IC Paradigm Applied to DISJOINTNESS (3/3)

- Protocol Π_A for AND_2 ; $(X,Y,D) \sim \mu$; $M = trans^{\Pi}(X,Y,R_{priv})$
- Let $M^{(wz)} = \operatorname{transcript}^{\Pi}(w, z, R_{\operatorname{priv}})$ for $w, z \in \{0, 1\}$; then

$$icost^{\mu}(\Pi_{A}) = I(XY : M \mid D) = \frac{1}{2}(I(X : M \mid D = 0) + I(Y : M \mid D = 1))$$

$$= \frac{1}{2}(D_{JS}(M^{(00)}, M^{(10)}) + D_{JS}(M^{(00)}, M^{(01)}))$$

$$\geq \frac{1}{2}(h^{2}(M^{(00)}, M^{(10)}) + h^{2}(M^{(00)}, M^{(01)}))$$

$$\geq \frac{1}{4}h^{2}(M^{(10)}, M^{(01)}) = \frac{1}{4}h^{2}(M^{(00)}, M^{(11)})$$

by cut-and-paste property, conseq of rectangle property for protocols

Digression: Cut-And-Paste

- Protocol Π ; inputs w, z
- Let $M^{(wz)} = \operatorname{transcript}^{\Pi}(w, z, R_{\mathsf{priv}})$ for $w, z \in \{0, 1\}$
- Rectangle property:

Can "factorize" distrib of $M^{(wz)}$ as $f^{(w)}\odot g^{(z)}$ This means $\forall~a:~\Pr[M^{(wz)}=a]=f^{(w)}(a)g^{(z)}(a)$

- Hellinger distance: $h^2((P), Q) = 1 \sum_a \sqrt{P(a)Q(a)}$
- Put these together:

$$h^2(M^{(bc)}, M^{(wz)}) = h^2(M^{(bz)}, M^{(cw)})$$

IC Paradigm Applied to DISJOINTNESS (3/3)

- Protocol Π_A for AND_2 ; $(X,Y,D) \sim \mu$; $M = trans^{\Pi}(X,Y,R_{priv})$
- Let $M^{(wz)} = \operatorname{transcript}^{\Pi}(w, z, R_{\operatorname{priv}})$ for $w, z \in \{0, 1\}$; then

$$icost^{\mu}(\Pi_{A}) = I(XY : M \mid D) = \frac{1}{2}(I(X : M \mid D = 0) + I(Y : M \mid D = 1))$$

$$= \frac{1}{2}(D_{JS}(M^{(00)}, M^{(10)}) + D_{JS}(M^{(00)}, M^{(01)}))$$

$$\geq \frac{1}{2}(h^{2}(M^{(00)}, M^{(10)}) + h^{2}(M^{(00)}, M^{(01)}))$$

$$\geq \frac{1}{4}h^{2}(M^{(10)}, M^{(01)}) = \frac{1}{4}h^{2}(M^{(00)}, M^{(11)})$$

by cut-and-paste property, conseq of rectangle property for protocols

IC Paradigm Applied to DISJOINTNESS (3/3)

- Protocol Π_A for AND_2 ; $(X,Y,D) \sim \mu$; $M = trans^{\Pi}(X,Y,R_{priv})$
- Let $M^{(wz)} = \operatorname{transcript}^{\Pi}(w, z, R_{\operatorname{priv}})$ for $w, z \in \{0, 1\}$; then

$$icost^{\mu}(\Pi_{A}) = I(XY : M \mid D) = \frac{1}{2}(I(X : M \mid D = 0) + I(Y : M \mid D = 1))$$

$$= \frac{1}{2}(D_{JS}(M^{(00)}, M^{(10)}) + D_{JS}(M^{(00)}, M^{(01)}))$$

$$\geq \frac{1}{2}(h^{2}(M^{(00)}, M^{(10)}) + h^{2}(M^{(00)}, M^{(01)}))$$

$$\geq \frac{1}{4}h^{2}(M^{(10)}, M^{(01)}) = \frac{1}{4}h^{2}(M^{(00)}, M^{(11)})$$

by cut-and-paste property, conseq of rectangle property for protocols

• Error $\leq \varepsilon$ implies

$$D_{TV}(M^{(00)}, M^{(11)}) \ge 1 - 2\varepsilon \implies h^2(M^{(00)}, M^{(11)}) \ge 1 - 2\sqrt{\varepsilon}$$

• Overall: $R_{\varepsilon}(\mathrm{DISJ}_{n,2}) \geq \frac{1}{4}(1-2\sqrt{\varepsilon})n$ [BarYossef-J-K-S'04]

Applications of DISJOINTNESS

Multi-pass lower bounds for many data stream problems

• Connectivity of *n*-vertex graphs: $\Omega(n)$ space

Generalization (t players, NIH)

Theorem: $R(DISJ_{n,t}) = \Omega(n/t)$

[C.-Khot-Sun'03], [Gronemeier'09]

Applications of DISJOINTNESS

Multi-pass lower bounds for many data stream problems

• Connectivity of *n*-vertex graphs: $\Omega(n)$ space

Generalization (t players, NIH)

Theorem: $R(DISJ_{n,t}) = \Omega(n/t)$

[C.-Khot-Sun'03], [Gronemeier'09]

- Classic data stream problem: frequency moments $F_k = \sum_j f_j^k$ where $f_j :=$ number of occurrences of 'j' in stream
- Approximating F_k : space $\widetilde{\Theta}(n^{1-2/k})$ lower bound via $\mathrm{DISJ}_{n,t}$

[Alon-Matias-Szegedy'96]

Yet More Applications of IC

Sadly, left on cutting room floor ...

- Separation of nondet and randomized CC [Jayram-Kumar-Sivakumar'03]
- CC of read-once-formula problems

[Saks-Leonardos'09]

[Jayram-Kopparty-Raghavendra'09]

Det vs rand decision trees

[Jayram-Kumar-Sivakumar'03]

Increasingly complex data stream lower bounds

[Jayram-Woodruff'09], [Magniez-Mathieu-Nayak'10]

[C.-Cormode-Kondapally-McGregor'10], [Magniez'13]

• Data structure query/update time lower bounds

[Patrascu'10]

• Quantum communication...

[Jain-Radhakrishnan-Sen]

THANKS!

