Lead Scoring Case Study Using Logistic Regression

Contents:-

- ☐Statement of the Problem
- □Objective of the Business
- ☐Solution Methodology
- **DEDA**
- ☐Building of the Model
- □Evaluation of Model
- □ Conclusion

Statement Of Problem:-

- X Education is selling the online courses to the industry professionals.
- XEducation is having ample amount of leads.those leads conversion rates are lower.If we consider an example, they had 100 leads, only 30 of them joins the organisation.
- This process can be made optimistic is surfing for the most potential leads, called "Hot Leads"
- If everything works great then those set of leads are more into the conversion rate, through which the sales leads will follow up the "Hot Leads".

Objective of the Business :-

- The Lead X wants us to build a model that analyzes each lead and assigns them a score between 0 and 100. The higher the score, the "hotter" the lead, meaning they're more interested and ready to buy.
- CEO wish us to achieve a lead conversion rate of 80%.
- They wanted a Model to adapt to peak times, optimize manpower, and outline post-target strategies for effective implementation and sustained success.

Solution Methodology:-

- o Data cleaning and data Inspection.
- o EDA
- o Dummy Variable Creation
- o Test-Train split
- o Feature scaling
- o Dropping highly correlated dummy variables
- o Model Building (RFE Rsquared VIF and pvalues)
- o Model Evaluation
- o Checking Accuracy
- o Finding Optimal Cutoff Point
- o Making predictions on test set

Outlier Analysis

Checking Outliers using Boxplot

Checking Outliers with Boxplot:-

Checking Outliers using Boxplot

Exploratory Data Analysis

Univariate Analysis

- Most people find us through Google or directly visiting our site, making these the primary lead sources.
- The majority of site visitors are unemployed individuals, highlighting a potential demographic focus for outreach and support.
- Email opening marks the final step for most leads, emphasizing the importance of email communication in our engagement strategy.
- Most leads originate from submitting landing pages, indicating the effectiveness of our landing page design in capturing interest.

Leads Converted ,Univariate Analysis for Categorical---Variables:-

Bivariate Analysis

- "Lead forms & landing pages yield most conversions, prioritize Google/Direct Traffic sources."
- "Email/SMS activity drives highest conversions, prioritize outreach to these leads."
- "India leads in conversions, focus on finance, marketing, HR.
 Professionals prioritize over housewives."
- "Career prospects drive course opt-ins, prioritize clients with this motivation."
- "Tag 'revert after email' has highest conversion rate among others."
- "Target Mumbai for lead conversion first, then Tier II cities."
- "SMS leads in conversions, followed by email opens,"

EDA BIVARIATE ANALYSIS:-

HEATMAP:-

Boxplot with Converted as hue

MODEL BUILDING:-

- "Split data into training and testing sets."
- "Scale variables in the training set for consistency."
- "Construct initial model."
- "Use Recursive Feature Elimination (RFE) to remove less important variables."
- "Refine model by eliminating variables with high p-values."
- "Assess multicollinearity with Variance Inflation Factor (VIF)."
- "Make predictions using the training set."
- "Evaluate model accuracy and other metrics."
- "Apply model to predict outcomes using the test set."
- "Analyze precision and recall of test predicting future insights."

Checking Outliers using Boxplot

MODEL EVALUATION

[] # features and their coefficieent from final model parameters=logm4.params.sort_values(ascending=False) parameters

Lead Source_Welingak Website	5.388662
Lead Source_Reference	2.925326
Current_occupation_Working Professional	2.669665
Last Activity_SMS Sent	2.051879
Last Activity_Others	1.253061
Total Time Spent on Website	1.049789
Last Activity_Email Opened	0.942099
Lead Source_Olark Chat	0.907184
Last Activity_Olark Chat Conversation	-0.555605
const	-1.023594
Specialization_Hospitality Management	-1.094445
Specialization_Others	-1.203333
Lead Origin_Landing Page Submission	-1.258954
dtype: float64	

```
[ ] # Lets add Lead Score

y_pred_final['Lead_Score'] = y_pred_final['Converted_Prob'].map( lambda x: round(x*100))
y_pred_final.head()
```

	Prospect ID	Converted	Converted_Prob	final_predicted	Lead_Score
0	4269	1	0.697934	1	70
1	2376	1	0.860665	1	86
2	7766	1	0.889241	1	89
3	9199	0	0.057065	0	6
4	4359	1	0.871510	1	87

Lead Score: Lead Score is assigned to the customers

- The customers with a higher lead score have a higher conversion chance
- The customers with a lower lead score have a lower conversion chance.

FINAL CONCLUSION

Evaluation Metrics:

- Train set :
- o Accuracy -> 81.7%
- o Sensitivity-> 79.9%
- o Specificity-> 82.7%
- For Test set :
- o Accuracy: 79.8%
- o Sensitivity: 75.99%
- o Specificity: 82.15%
- Evaluation metrics in both test and train dataset are consistent.
 Therefore

Evaluation Metrics(Contd.):-

- final model is performing good.
- Top 3 features contributing to predicting hot leads are:
- o Lead Origin_Lead Add Form
- o Current_occupation_Working Professional
- o Last Activity_SMS Sent

Recommendations:-

- Lead Origin, Current Occupation, and Last Activity are top contributors to lead conversion probability.
- Focus on Lead Add Form origin, Working Professional occupation, and Customer SMS activity for conversion.
- Improve Specialization-Others, Olark Chat Last Activity, and address issues with bounced emails.