Black and White Tree

Nikita is making a graph as a birthday gift for her boyfriend, a fellow programmer! She drew an undirected connected graph with \$N\$ nodes numbered from \$1\$ to \$N\$ in her notebook.

Each node is shaded in either *white* or *black*. We define \$n_W\$ to be the number of white nodes, and \$n_B\$ to be the number of black nodes. The graph is drawn in such a way that:

- No \$2\$ adjacent nodes have same coloring.
- The value of \$|n_W n_B|\$, which we'll call \$D\$, is minimal.

Nikita's mischievous little brother erased some of the edges and all of the coloring from her graph! As a result, the graph is now decomposed into one or more components. Because you're her best friend, you've decided to help her reconstruct the graph by adding \$K\$ edges such that the aforementioned graph properties hold true.

Given the decomposed graph, construct and shade a valid connected graph such that the difference $n_W - n_W + n_W$

Input Format

The first line contains \$2\$ space-separated integers, \$N\$ (the number of nodes in the original graph) and \$M\$ (the number of edges in the decomposed graph), respectively.

The \$M\$ subsequent lines each contain \$2\$ space-separated integers, \$u\$ and \$v\$, describing a bidirectional edge between nodes \$u\$ and \$v\$ in the decomposed graph.

Constraints

- \$1 \le N \le 2 \times 10^5\$
- \$0 \le M \le min(5 \times 10^5, \frac{N \times (N-1)}{2})\$
- It is guaranteed that every edge will be between \$2\$ distinct nodes, and there will never be more than \$1\$ edge between any \$2\$ nodes.
- Your answer must meet the following criteria:
 - The graph is connected and no \$2\$ adjacent nodes have the same coloring.
 - The value of \$|n B-n W|\$ is minimal.
 - \$K \le 2 \times 10^5\$

Output Format

You must have K+1 lines of output. The first line contains \$2\$ space-separated integers: D (the minimum possible value of n_B-n_W) and K (the number of edges you've added to the graph), respectively.

Each of the K subsequent lines contains \$2\$ space-separated integers, u and v, describing a newly-added bidirectional edge in your final graph (i.e.: new edge u \leftrightarrow v).

You may print *any* \$1\$ of the possible reconstructions of Nikita's graph such that the value of \$D\$ in the reconstructed shaded graph is minimal.

Sample Input 0

8 8			
12			
2 3			
3 4			
4 1			
15			
2 6			
3 7			
4 8			

Sample output 0

0 0

Sample Input 1

8 6 1 2 3 4 3 5 3 6 3 7 3 8

Sample Output 1

4 1 1 5

Sample Input 2

5 4 1 2 2 3 3 4 4 1

Sample Output 2

1 2 2 5 4 5

Explanation

In the figure below, the solid lines show the decomposed graph after Nikita's brother erased the edges, and the dotted lines show one possible correct answer:

In Sample \$0\$, no additional edges are added and K=0. Because $n_W=4$ and $n_B=4$, we get $n_B=0$. Thus, we print $\operatorname{scriptsize} \left(0 \right)$ on a new line (there is only \$1\$ line of output, as K=0).

In Sample \$1\$, the only edge added is (5,1), so K=1. Here, $n_W=6$ and $n_B=2$, so $n_W=6$. Thus, we print $c_W=6$ and $c_W=6$ and c