

Lecture 6: Logistical classification and regression

Wengang Mao (Marine Technology)
Department of Mechanics and Maritime Sciences,
Chalmers University of Technology,
Goteborg, Sweden

1

Contents of this lecture

Simple Logistic classification

Multiclass classification

Logistic regression

- Decision boundary
- Regression: parameter estimation

This lecture is largely referred from Prof. Ng's course!

Logistic Classification

Email: Spam / Not Spam?

Online advertisement: interest (Yes / No)?

Tumor: Malignant / Benign?

 $y \in \{0,1\}$ 0: "Negative Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor)

2023-04-11

3

Logistic Classification

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
 , predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
 , predict "y = 0"

Logistic Classification

Classification: y = 0 or 1

 $h_{\theta}(x)$ can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Multiclass classification: One-vs-a

- Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.
- On a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

2023-04-11

9

Logistic regression

- ❖ Decision boundary
- ❖Regression: parameter estimation

Logistic Regression Model

Want $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Transfer function: Sigmoid function; Logistic function

2023-04-11

11

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y=1" if $h_{\theta}(x) \geq 0.5$

predict "
$$y=0$$
" if $h_{\theta}(x)<0.5$

Decision Boundary

$$h_{\theta}(x) = g(\theta^T x)$$

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y=1" if $h_{\theta}(x) \geq 0.5$

predict "y = 0" if $h_{\theta}(x) < 0.5$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

13

Non-linear decision boundaries

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

Predict "y = 1" if $-1 + x_1^2 + x_2^2 \ge 0$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \dots)$$

Regression: parameter estimation

15

Training set:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$$

m examples
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
 $x_0 = 1, y \in \{0, 1\}$ $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

$$x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

Logistical regression: cost function (1)

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

2023-04-11

17

Logistic regression: cost function (2)

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Logistic regression: cost function (3)

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

2023-04-1

19

Logistic regression: parameter estim.

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters $\boldsymbol{\theta}$:

$$\min_{\theta} J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Estimation method: Gradient Descent (1)

 $J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$

Want $\min_{\theta} J(\theta)$:

Repeat $\{$ $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$ $\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ $\{$ simultaneously update all $\theta_j \}$

2023-04-11

21

Regularization

To avoid problem of overfitting

Example: Logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \quad g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
($g = \text{sigmoid function}$)
$$\theta_0(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \quad \theta_0(x) = \theta_0(x)$$

$$\theta_0(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \quad \theta_0(x) = \theta_0(x)$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 \\ + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 \\ + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

23

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well ($J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0$), but fail to generalize to new examples (predict prices on new examples).

Overfitting issues by an example

An example: we would like to predict the house price y in terms of different features x_1, x_2, \dots, x_{100} .

 $x_1 =$ size of house

 $x_2 = \text{ no. of bedrooms}$

 $x_3 = \text{ no. of floors}$

 $x_4 = age of house$

 $x_5 =$ average income in neighborhood

 $x_6 =$ kitchen size

:

 x_{100}

2023-04-11

25

Reducing overfitting:

Options:

- 1. Reduce number of features.
 - Manually select which features to keep.
 - Model selection algorithm.
- 2. Regularization.
 - Keep all the features, but reduce magnitude/values of parameters θ_i .
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

Regularization: Cost function

2023-04-11

27

Ideas explanation for the regularization

Suppose we penalize and make θ_3 , θ_4 really small.

$$\longrightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \log_{3} \frac{2}{3} + \log_{4} \frac{2}{3}$$

Regularization in mathematical form

Small values for parameters: $\theta_{1}, \theta_{2}, \dots, \theta_{100}$

- "Simpler" hypothesis
- Less prone to overfitting

Housing:

Features: x₁, x₂, ..., x₁₀₀

- Parameters: $\theta_{I_1} \theta_{2,...} \theta_{100}$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{m} \phi_i \right]$$

2023-04-1

29

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

- Algorithm works fine; setting λ to be very large can't hurt it
- Algorithm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data well).
- Gradient descent will fail to converge.

2023-04-11

31

In regularized linear regression, we choose *9* to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

2023-04-11

Method 1: mathematical normal equation

$$X = \begin{bmatrix} (x^{(1)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix} \in \mathcal{Y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

$$\Rightarrow \min_{\theta} J(\theta)$$

$$\Rightarrow 0 = (X^T \times + \lambda) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\exists G : N=2$$

$$\begin{cases} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{cases}$$

$$\begin{cases} (N+1) \times (N+1) \\ (N+1) \times (N+1) \\ (N+1) \times (N+1) \end{cases}$$

2023-04-1

33

Method 2: Gradient descent

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

Repeat the following steps:

$$\theta_{j} := \theta_{j} - \alpha \underbrace{\left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} - \frac{\lambda}{m} \Theta_{j}\right]}_{(j = \mathbf{X}, 1, 2, 3, \dots, n)}$$

$$\theta_{j} := \theta_{j} (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\theta_{j} := \alpha \frac{\lambda}{m} \left(1 - \alpha \frac{\lambda}{m}\right) - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\theta_{j} := \alpha \frac{\lambda}{m} \left(1 - \alpha \frac{\lambda}{m}\right) - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

Regularized logistic regression

2023-04-11

35

Regularized logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \dots)$$

New cost function with "penalty/ regularization" term:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m} \int_{\mathbb{T}^{m}}^{\mathbb{T}^{m}} \mathbb{S}_{j}^{\mathbb{T}^{m}} \left[\mathbb{S}_{j}^{\mathbb{T}^{m}} \right] \left[\mathbb{S}_{j}^{\mathbb{T}^{m}} \right]$$

2023-04-11

Gradient descent for logistical regression

Set up the initial value for the gradient analysis

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

Repeat the following iterations:

$$\theta_{j} := \theta_{j} - \alpha \underbrace{\left[\frac{1}{m} \sum_{i=1}^{m} (\underline{h}_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} - \frac{\lambda}{m} \underline{o}_{j}\right]}_{\left(j = \mathbf{M}, 1, 2, 3, \dots, n\right)}_{\underline{o}_{1} \cdot \dots \cdot \underline{o}_{n}}$$

$$\frac{\lambda}{\lambda \underline{o}_{j}} \underline{J}(\underline{o})$$

$$\underline{h}_{\underline{o}}(\underline{\cdot})^{*} \underline{l}_{\underline{t} e^{-\underline{o}_{1}} \times}$$

37

Advanced optimization

function [jVal, gradient] = costFunction(theta)

$$\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})x_{0}^{(i)}$$

gradient (2) = [code to compute
$$\frac{\partial}{\partial \theta_1} J(\theta)$$
];
$$\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)} - \frac{\lambda}{m} \theta_1$$

gradient(3) = [code to compute
$$\frac{\partial}{\partial \theta_2} J(\theta)$$
];

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)} - \frac{\lambda}{m} \theta_2$$

$${\tt gradient(n+1)} \; = \; \texttt{[code to compute} \tfrac{\partial}{\partial \theta_n} J(\theta) \, \texttt{];}$$

