Assignment for Section 1.2: Lengths and dot products

(1) Find unit vectors \mathbf{u}_1 and \mathbf{u}_2 in the directions of $\mathbf{v}_1 = (1,3)$ and $\mathbf{v}_2 = (2,1,2)$.

Find unit vectors U_1 and U_2 that are perpendicular to u_1 and u_2 .

(2) Find the angle θ (from its cosine) between these pairs of vectors:

(a)
$$\mathbf{v} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$.

(b)
$$\boldsymbol{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 and $\boldsymbol{w} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$.

(3) Prove the parallelogram with sides v = (4, 2) and w = (-1, 2) is a rectangle.

Check the Pythagoras formula $a^2 + b^2 = c^2$:

$$(\text{length of } \boldsymbol{v})^2 + (\text{length of } \boldsymbol{w})^2 = (\text{length of } \boldsymbol{v} + \boldsymbol{w})^2.$$

(4) For a parallelogram with two sides \boldsymbol{v} and \boldsymbol{w} , show that: the squared diagonal lengths

$$\|\boldsymbol{v} + \boldsymbol{w}\|^2 + \|\boldsymbol{v} - \boldsymbol{w}\|^2$$

add to the sum of four squared side lengths

$$2\|\boldsymbol{v}\|^2 + 2\|\boldsymbol{w}\|^2.$$