Gatsby Tea: Infinite cardinals

llyes

6 June 2019

Question

Q: Consider a mapping S that, to each $x \in [0,1]$, associates a countable subset $S(x) \subset [0,1]$. Can we choose S s.t. for any $(x,y) \in [0,1]^2$, either $x \in S(y)$ or $y \in S(x)$?

Set theory

- foundation of modern mathematics initiated by Georg Cantor (1870s).
- ▶ formulated in terms of Zermelo-Fraenkel (ZF) axiom system + axiom of choice (C).
- it is not possible to prove or disprove the axiom of choice from ZF.

Cardinality

▶ finite sets: number of elements; same number of elements ⇒ same cardinality.

Cardinality

- ▶ finite sets: number of elements; same number of elements ⇒ same cardinality.
- ▶ infitie sets? bijection between sets ⇒ same cardinality (Cantor).
- ▶ a set A is bigger than a set B ($|B| \le |A|$) if there is a bijection from a subset of A to B.
- how many different infinite cardinals?

The smallest infinity

- ▶ the set of positive integers \mathbb{N} is infinite; let $\aleph_0 := |\mathbb{N}|$.
- are there bigger sets?

The smallest infinity

- ▶ the set of positive integers \mathbb{N} is infinite; let $\aleph_0 := |\mathbb{N}|$.
- are there bigger sets?
- we know that \mathbb{R} is bigger than \mathbb{N} (uncountable); let $\mathfrak{c} := |\mathbb{R}|$.

The smallest infinity

- ▶ the set of positive integers \mathbb{N} is infinite; let $\aleph_0 := |\mathbb{N}|$.
- are there bigger sets?
- we know that $\mathbb R$ is bigger than $\mathbb N$ (uncountable); let $\mathfrak c:=|\mathbb R|$.
- ▶ how about $\mathcal{P}(\mathbb{N})$? Is it bigger than \mathbb{N} ? how does $2^{\aleph_0} := |\mathcal{P}(\mathbb{N})|$ compare to \mathfrak{c} ?

▶ let S be a non-empty set; suppose there exists a surjective map $f: S \to \mathcal{P}(S)$ (bijective from a subset of S)

- ▶ let S be a non-empty set; suppose there exists a surjective map $f: S \to \mathcal{P}(S)$ (bijective from a subset of S)
- ▶ let $B = \{a \in S | a \notin f(a)\} \in \mathcal{P}(S)$, and let $b \in S$ s.t. f(b) = B.

- ▶ let S be a non-empty set; suppose there exists a surjective map $f: S \to \mathcal{P}(S)$ (bijective from a subset of S)
- ▶ let $B = \{a \in S | a \notin f(a)\} \in \mathcal{P}(S)$, and let $b \in S$ s.t. f(b) = B.
- ▶ if $b \in B \Rightarrow b \notin f(b) = B$??
- ▶ if $b \notin B = f(b) \Rightarrow b \in B$?????

- ▶ let S be a non-empty set; suppose there exists a surjective map $f: S \to \mathcal{P}(S)$ (bijective from a subset of S)
- ▶ let $B = \{a \in S | a \notin f(a)\} \in \mathcal{P}(S)$, and let $b \in S$ s.t. f(b) = B.
- ▶ if $b \in B \Rightarrow b \notin f(b) = B$??
- ▶ if $b \notin B = f(b) \Rightarrow b \in B$?????
- ▶ \Rightarrow such f does not exist $\Rightarrow |\mathcal{P}(S)| > |S|$.
- in particular: $2^{\aleph_0} > \aleph_0$.

 $2^{\aleph_0} = \mathfrak{c}$?

$$2^{\aleph_0} = \mathfrak{c}$$
?

$$f: \qquad \mathcal{P}(\mathbb{N}) - \varnothing \to]0,1]$$

$$A \mapsto \sum_{i \in A} 10^{-i}$$

$$g: \qquad]0,1] \to \mathcal{P}(\mathbb{N}) - \varnothing$$

$$0.d_1 d_2 d_3 ... \mapsto \{10^i d_i, i \in \mathbb{N}\}$$

• f and g are injective $\Rightarrow 2^{\aleph_0} \leq \mathfrak{c}$ and $\mathfrak{c} \leq 2^{\aleph_0}$.

$$2^{\aleph_0} = \mathfrak{c}$$
?

$$f: \qquad \mathcal{P}(\mathbb{N}) - \varnothing \to]0,1]$$

$$A \mapsto \sum_{i \in A} 10^{-i}$$

$$g: \qquad]0,1] \to \mathcal{P}(\mathbb{N}) - \varnothing$$

$$0.d_1 d_2 d_3 ... \mapsto \{10^i d_i, i \in \mathbb{N}\}$$

- f and g are injective $\Rightarrow 2^{\aleph_0} \leq \mathfrak{c}$ and $\mathfrak{c} \leq 2^{\aleph_0}$.
- $ightharpoonup \Rightarrow 2^{\aleph_0} = \mathfrak{c}$ (Cantor-Bernstein Th).

$$2^{\aleph_0} = \mathfrak{c}$$
?

$$f: \qquad \qquad \mathcal{P}(\mathbb{N}) - \varnothing \to]0,1]$$

$$A \mapsto \sum_{i \in A} 10^{-i}$$

$$g: \qquad \qquad]0,1] \to \mathcal{P}(\mathbb{N}) - \varnothing$$

$$0.d_1 d_2 d_3 ... \mapsto \{10^i d_i, i \in \mathbb{N}\}$$

- f and g are injective $\Rightarrow 2^{\aleph_0} \leq \mathfrak{c}$ and $\mathfrak{c} \leq 2^{\aleph_0}$.
- $ightharpoonup \Rightarrow 2^{\aleph_0} = \mathfrak{c}$ (Cantor-Bernstein Th).
- ▶ is 2^{\aleph_0} the smallest infinity after \aleph_0 ?

▶ let's "redefine" N:

$$0 = \{\}$$
$$n+1 = n \cup \{n\}$$

▶ let's "redefine" N:

$$0 = \{\}$$
$$n+1 = n \cup \{n\}$$

- e.g.: $1 = \{0\} = \{\{\}\}, 2 = \{0, 1\} = \{\{\}\}, \{\{\}\}\}\},$ $3 = \{0, 1, 2\} = \{\{\}, \{\{\}\}\}, \{\{\}\}\}\}, 4 = \{0, 1, 2, 3\} \dots$
- $ightharpoonup n < m \Leftrightarrow n \in m.$

▶ let's "redefine" N:

$$0 = \{\}$$
$$n+1 = n \cup \{n\}$$

- e.g.: $1 = \{0\} = \{\{\}\}, 2 = \{0, 1\} = \{\{\}\}, \{\{\}\}\}\},$ $3 = \{0, 1, 2\} = \{\{\}, \{\{\}\}\}, \{\{\}\}\}\}\}, 4 = \{0, 1, 2, 3\} \dots$
- $ightharpoonup n < m \Leftrightarrow n \in m.$
- ▶ in reality, those are *successor* ordinals: can be written as n + 1 for some n.

▶ let's "redefine" N:

$$0 = \{\}$$
$$n+1 = n \cup \{n\}$$

- e.g.: $1 = \{0\} = \{\{\}\}, 2 = \{0, 1\} = \{\{\}\}, \{\{\}\}\}\},$ $3 = \{0, 1, 2\} = \{\{\}, \{\{\}\}\}, \{\{\}\}\}\}, 4 = \{0, 1, 2, 3\} \dots$
- $ightharpoonup n < m \Leftrightarrow n \in m.$
- ▶ in reality, those are *successor* ordinals: can be written as n + 1 for some n.
- there are other ordinals: limit ordinals; for instance supremums of sets of ordinals that have no upper bounds.
- e.g.: $\omega := \sup \mathbb{N}$ (guaranteed to exist by ZF).

▶ let's "enumerate" the ordinals: $1, 2, 3, ..., \omega, \omega + 1, \omega + 2, ...$

- ▶ let's "enumerate" the ordinals: $1, 2, 3, ..., \omega, \omega + 1, \omega + 2, ...$
- we can define the next limit ordinal: $2 \cdot \omega := \sup\{\omega + \mathbb{N}\}$, and then the one after that, etc...
- ▶ $1, 2, 3, 4, \dots, \omega, \omega + 1, \dots, 2 \cdot \omega, \dots, 3 \cdot \omega, \dots, \omega^2, \dots, \omega^3, \dots, \omega^\omega, \dots, \omega^\omega, \dots$

- ▶ let's "enumerate" the ordinals: $1, 2, 3, \dots, \omega, \omega + 1, \omega + 2, \dots$
- we can define the next limit ordinal: $2 \cdot \omega := \sup\{\omega + \mathbb{N}\}$, and then the one after that, etc...
- ► 1,2,3,4,..., ω , ω +1,...,2· ω ,...,3· ω ,..., ω ²,..., ω ³,..., ω ^{ω},...
- ▶ limit ordinals are strictly greater than all the preceding ordinals.
- all these sets are countable.

lacktriangle can we construct a set bigger than $\mathbb N$ from ordinals?

- \triangleright can we construct a set bigger than $\mathbb N$ from ordinals?
- ▶ let $\omega_1 = \sup\{\text{ordinals } \mu \text{ s.t. } |\mu| = \aleph_0\}$; what's $|\omega_1|$?
- ▶ suppose $|\omega_1| = \aleph_0 \Rightarrow \omega_1 \in \omega_1$ a.k.a $\omega_1 < \omega_1$??

- ightharpoonup can we construct a set bigger than $\mathbb N$ from ordinals?
- ▶ let $\omega_1 = \sup\{\text{ordinals } \mu \text{ s.t. } |\mu| = \aleph_0\}$; what's $|\omega_1|$?
- ▶ suppose $|\omega_1| = \aleph_0 \Rightarrow \omega_1 \in \omega_1$ a.k.a $\omega_1 < \omega_1$??
- ▶ $\Rightarrow |\omega_1| > \aleph_0$; let's call it \aleph_1 . ω_1 is the smallest uncountable ordinal.

Continuum hypothesis

We've seen two different infinities greater that \aleph_0 :

- ▶ 2^{\aleph_0} the cardinal of \mathbb{R} (equal to the cardinal of the power set of \mathbb{N}).
- \triangleright \aleph_1 the cardinal of the set of all countable ordinals

Q: Is $2^{\aleph_0} = \aleph_1$? This is the Continuum Hypothesis (CH) (Cantor).

Continuum hypothesis

We've seen two different infinities greater that \aleph_0 :

- ▶ 2^{\aleph_0} the cardinal of \mathbb{R} (equal to the cardinal of the power set of \mathbb{N}).
- \triangleright \aleph_1 the cardinal of the set of all countable ordinals

Q: Is $2^{\aleph_0} = \aleph_1$? This is the Continuum Hypothesis (CH) (Cantor).

A: CH is independent of ZFC: it can be neither proven nor disproven within the context of the ZFC axioms. (Gödel and Cohen).

Back to our question

Q: Consider a mapping S that, to each $x \in [0,1]$, associates a countable subset $S(x) \subset [0,1]$. Can we choose S s.t. for any $(x,y) \in [0,1]^2$, either $x \in S(y)$ or $y \in S(x)$?

Back to our question

Q: Consider a mapping S that, to each $x \in [0,1]$, associates a countable subset $S(x) \subset [0,1]$. Can we choose S s.t. for any $(x,y) \in [0,1]^2$, either $x \in S(y)$ or $y \in S(x)$?

A: The answer depends on CH!

- ▶ $ZFC + CH \Rightarrow yes$
- ▶ $ZFC + not(CH) \Rightarrow no$