Análise Matemática III

LEI, LMA, MIEET

Ana Conceição

2011/2012

aconcei@ualg.pt

Conteúdos Programáticos:

1. Cálculo Diferencial em \mathbb{R}^n

Funções reais de várias variáveis reais:

- 1.1. Definição. Representação geométrica.
- 1.2. Domínio e seu esboço gráfico.
- 1.3. Limite e continuidade.
- 1.4. Derivadas parciais e sua interpretação geométrica. Funções homogéneas. Igualdade de Euler.

- 1.5. Diferencial total. Cálculos aproximados.
- 1.6. Derivada parciais de uma função composta.
 Derivada total.
- 1.7. Derivadas parciais de ordem superior. Fórmula de Taylor.
- 1.8. Funções implícitas. Derivadas de funções implícitas.
- 1.9. Estudo da variação das funções: condições necessárias para a existência de extremo, condições suficientes para a existência de extremo.

2. Cálculo Integral em \mathbb{R}^n

- 2.1. Integrais duplos: interpretação geométrica, propriedades elementares, cálculo, aplicações ao cálculo de áreas e de volumes, mudança de variáveis.
- 2.2. Integrais triplos: interpretação geométrica e física, propriedades elementares, cálculo, aplicação ao cálculo de volumes, mudança de variáveis.

- 2.3. Curvas e superfícies: equação de uma curva no plano e no espaço, comprimento de uma curva, plano tangente a uma superfície num ponto, reta normal a uma superfície num ponto.
- 2.4. Elementos da teoria do campo: campo escalar, derivada segundo uma dada direcção, gradiente, campo vectorial, rotacional, divergência.
- 2.5. Integral curvilíneo: interpretação física, propriedades elementares, fórmula de Green, condições para que um integral de linha não dependa do caminho de integração.

Mathematica *△*

- http://www.wolfram.com/

Wolfram|Alpha →

- http://www.wolframalpha.com

Wolfram Demonstrations Project \wedge

- http://demonstrations.wolfram.com

Realização de 2 testes, dando ao aluno a possibilidade de obter aproveitamento à disciplina sem se submeter a qualquer exame:

1º teste no dia 14 de março:

8:30 às 10:00 (LEI + LMA + MIEET)

2º teste no dia 18 de abril:

8:30 às 10:00 (LEI + LMA + MIEET)

Bibliografia básica:

- 1. Fichas de exercícios de Análise Matemática III (LEI, LMA, MIEET), 2011/2012 Ana Conceição (tutoria eletrónica)
- 2. Slides das aulas teóricas de Análise Matemática III (LEI, LMA, MIEET), 2011/2012 Ana Conceição (tutoria eletrónica)

Bibliografia complementar:

- 1. Cálculo Diferencial e Integral, Vols I e II N. Piskounov Lopes da Silva, 1978
 - 2. Problemas e Exercícios de Análise Matemática
- B. Demidóvich Mir, 1977

1. Cálculo Diferencial em \mathbb{R}^n

Funções reais de várias variáveis reais

É evidente que o estudo das funções de uma só variável real não é suficiente para a análise dos fenómenos da ciência e da natureza, já que muitos deles dependem de vários fatores.

$$f: D \subset \mathbb{R}^n \to \mathbb{R}$$

 $f(x_1, \dots, x_n) = w$

Definição: Se a cada n-úplo (x_1, \dots, x_n) de valores reais de n variáveis independentes x_i , $\forall i = \overline{1, n}$, pertencente a um conjunto $D \subset \mathbb{R}^n$, corresponde um valor bem determinado de variável real w, dizse que w é uma função real de n variáveis reais e denotamos por $w = f(x_1, \dots, x_n)$.

a)
$$w = xy + \ln(x-3) + e^y + 2 = f(x,y)$$

b)
$$w = x^2yz + \sin x \ e^z \ (= f(x, y, z))$$

c)
$$w = \frac{1}{xuz - u} (= f(x, y, z, u))$$

Definição: Chama-se domínio de definição da função $w=f(x_1,\cdots,x_n)$ ao conjunto dos n-úplos (x_1,\cdots,x_n) de valores reais $x_i,\ \forall i=\overline{1,n}$ para os quais $f(x_1,\cdots,x_n)$ faz sentido. Denotamos por D_f .

a)
$$f(x,y) = xy + \ln(x-3) + e^y + 2$$

 $D_f = \{(x,y) \in \mathbb{R}^2 : x-3 > 0\}$

b)
$$f(x, y, z) = x^2yz + \operatorname{sen} x e^z \hookrightarrow D_f = \mathbb{R}^3$$

c)
$$f(x, y, z, u) = \frac{1}{xyz - u}$$

$$D_f = \{(x, y, z, u) \in \mathbb{R}^4 : xyz - u \neq 0\}$$

Definição: Se a cada par (x,y) de valores reais de duas variáveis independentes x e y, pertencente a um conjunto $D \subset \mathbb{R}^2$, corresponde um valor bem determinado de variável real z, diz-se que z é uma função real de duas variáveis reais e denotamos por z = f(x,y).

a)
$$f(x,y) = \sqrt{4 - x^2 - y^2} + \ln(x - y)$$

b)
$$f(x,y) = \frac{\cos x}{x^2 + y^2 + 25} + \sqrt{xy}$$

c)
$$f(x,y) = \arccos(x^2 + y^2 - 3)$$

Definição: Chama-se domínio de definição da função z=f(x,y) ao conjunto dos pares (x,y) de valores de x e de y para os quais f(x,y) faz sentido. Denotamos por D_f .

Nota: Geometricamente, o domínio de definição de uma função z=f(x,y) é representado no plano OXY.

a)
$$f(x,y) = \sqrt{4 - x^2 - y^2} + \ln(x - y)$$

 $D_f = \{(x,y) \in \mathbb{R}^2 : 4 - x^2 - y^2 \ge 0 \land x - y > 0\}$

b)
$$f(x,y) = \frac{\cos x}{x^2 + y^2 + 25} + \sqrt{xy}$$

$$D_f = \{(x,y) \in \mathbb{R}^2 : xy \ge 0\}$$

c)
$$f(x,y) = \arccos(x^2 + y^2 - 3)$$

 $D_f = \{(x,y) \in \mathbb{R}^2 : -1 \le x^2 + y^2 - 3 \le 1\}$

Definição: Chama-se gráfico da função f ao subconjunto do espaço \mathbb{R}^{n+1} constituído por todos os pontos $(x_1, \dots, x_n, f(x_1, \dots, x_n))$.

Definição: O lugar geométrico de todos os pontos (x,y,f(x,y)) chama-se gráfico da função f e é um subconjunto do espaço \mathbb{R}^3 .

A equação z=f(x,y) define uma superfície no espaço, cuja projeção no plano OXY é o domínio desta função. Cada perpendicular ao plano OXY não corta a superfície em mais do que um ponto.

Seja z=f(x,y) uma função definida num domínio D_f e $P_0(x_0,y_0)$ um ponto do interior ou da fronteira de D_f .

Definição: Diz-se que o número \boldsymbol{l} é o limite da função f(x,y) quando o ponto P(x,y) tende para o ponto $P_0(x_0,y_0)$, e denotamos por

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l,$$

$$\begin{array}{ll} \text{se} & \forall_{\varepsilon>0} \exists_{\delta>0} \forall_{(x,y) \in D_f \backslash \{(x_0,y_0)\}} : \sqrt{(\Delta x)^2 + (\Delta y)^2} < \delta \\ \\ \Rightarrow |f(x,y) - l| < \varepsilon \end{array}$$

$$\Delta x = x - x_0 \qquad \Delta y = y - y_0$$

$$\sqrt{(\Delta x)^2 + (\Delta y)^2} < \delta$$
$$|\Delta x| \le \sqrt{(\Delta x)^2 + (\Delta y)^2} < \delta$$
$$|\Delta y| \le \sqrt{(\Delta x)^2 + (\Delta y)^2} < \delta$$

Observações:

- \diamond (x,y) tende para (x_0,y_0) arbitrariamente com a única condição de pertencer ao domínio.
- \diamond Se existe o limite da função f(x,y) quando o ponto P(x,y) tende para o ponto $P_0(x_0,y_0)$, então o valor limite da função não depende do caminho percorido.

a)
$$\lim_{(x,y)\to(0,0)} (x+y) = 0$$

$$\lim_{(x,y)\to(0,0)} (x-y) = 0$$

c)
$$\lim_{(x,y)\to(4,-2)} (3x-2y) = 16$$

$$\frac{d}{d} \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$$

e)
$$\exists \lim_{(x,y)\to(0,0)} \frac{x+3y}{x+y}$$

$$f) \not\equiv \lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

$$\lim_{(x,y) o(x_0,y_0)} f(x,y) \ \lim_{x o x_0} f(x,y) \ y o y_0$$

Estudar o limite em certas restrições do domínio de f(x,y), ou seja, estudar o limite quando (x,y) tende para (x_0,y_0) ao longo de um certo caminho:

- limites sucessivos
- limites direcionais
- **>** ...

limites sucessivos

$$\lim_{y \to y_0} \left(\lim_{x \to x_0} f(x, y) \right)$$

mantendo y constante obtem-se $\lim_{x\to x_0} f(x,y)$ como função de y. De seguida, calcula-se o limite desta função quando $y\to y_0$.

$$\lim_{x \to x_0} \left(\lim_{y \to y_0} f(x, y) \right)$$

mantendo x constante obtem-se $\lim_{y\to y_0} f(x,y)$ como função de x. De seguida, calcula-se o limite desta função quando $x\to x_0$.

limites direcionais (retas não verticais de declive m que passam por (x_0,y_0))

$$\lim_{x \to x_0} f(x, y) = \lim_{x \to x_0} f(x, m(x - x_0) + y_0)$$
$$y - y_0 = m(x - x_0)$$

limites considerando parábolas de eixo vertical que passam por (x_0, y_0)

$$\lim_{x \to x_0} f(x, y) = \lim_{x \to x_0} f(x, k(x - x_0)^2 + y_0)$$
$$y - y_0 = k(x - x_0)^2$$

Seja $P_0(x_0,y_0)$ um ponto do domínio de definição de f(x,y).

Definição: Diz-se que a função f(x,y) é contínua no ponto $P_0(x_0,y_0)$ se

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

Definição: Uma função contínua em cada ponto de um conjunto, diz-se contínua nesse conjunto.

Definição: Se num ponto $P_0(x_0, y_0)$ não é satisfeita a condição de continuidade, diz-se que $P_0(x_0, y_0)$ é um ponto de descontinuidade da função.

Propriedades:

- \diamond A soma de duas funções contínuas no ponto (x_0,y_0) é uma função contínua no ponto (x_0,y_0) .
- \diamond O produto de duas funções contínuas no ponto (x_0,y_0) é uma função contínua no ponto (x_0,y_0) .
- \diamond O quociente de duas funções contínuas no ponto (x_0,y_0) é uma função contínua no ponto (x_0,y_0) , se o denominador é diferente de zero nesse ponto.
- \diamond Se g(x,y) é contínua no ponto (x_0,y_0) e a função f(t) é contínua em $t_0=g(x_0,y_0)$, então a função $(f\circ g)(x,y)$ é contínua em (x_0,y_0) .

Nota:

Funções racionais são contínuas no seu domínio.

- a) $h(x,y)=x^2+y^2$ é contínua em $D_f=\mathbb{R}^2$ pois é uma função racional.
- b) $h(x,y)=\frac{2xy}{x^2+y^2}$ é contínua em $D_f=\mathbb{R}^2\backslash\{(0,0)\}$ pois é uma função racional.
- c) $h(x,y)=e^{x+y^2}$ é contínua em $D_f=\mathbb{R}^2$ pois $h(x,y)=(f\circ g)(x,y)$, onde $g(x,y)=x+y^2$ é contínua em \mathbb{R}^2 (função racional de domínio \mathbb{R}^2) e $f(t)=e^t$ é contínua em \mathbb{R} .

d)
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

é contínua em (0,0) pois

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^2} = 0$$

е

$$f(0,0) = 0.$$

Para as funções reais de mais variáveis reais, o limite e a continuidade definem-se analogamente. Por exemplo,

Definição: Diz-se que a função f(x,y,z) é contínua no ponto $P_0(x_0,y_0,z_0)$ se

$$\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z) = f(x_0,y_0,z_0).$$

Definição: Chama-se derivada parcial em relação a x (y), da função z=f(x,y) no ponto (x_0,y_0) , ao limite

$$rac{\partial z}{\partial x}(x_0, y_0) = \lim_{h o 0} rac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \ (rac{\partial z}{\partial y}(x_0, y_0) = \lim_{h o 0} rac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}).$$

Nota: A derivada de z=f(x,y) em relação a x (y) é calculada derivando a função considerando \underline{x} \underline{y} variável e supondo \underline{y} \underline{y} constante.

$$f(x,y) = x^2 + y$$

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} = 2x$$

$$\frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h} = 1$$

Interpretação geométrica das derivadas parciais

O valor da derivada parcial em relação a x, no ponto (x_0,y_0) , é igual à tangente do ângulo formado pela reta tangente à curva, definida pela interseção da superfície z=f(x,y) e do plano $y=y_0$, e o plano OXY. Analogamente, define-se a derivada parcial em relação a y, no ponto (x_0,y_0) .

Definição: Chama-se derivada parcial em relação a x_i , da função $z=f(x_1,\cdots,x_n)$, no ponto (x_0^1,\cdots,x_0^n) , ao limite

$$egin{aligned} rac{\partial z}{\partial x_i}(x_0^1,\cdots,x_0^n) = \ &= \lim_{h o 0} rac{f(x_0^1,\cdots,x_0^i+h,\cdots,x_0^n)-f(x_0^1,\cdots,x_0^n)}{h}. \end{aligned}$$

Nota: A derivada de $z=f(x_1,\cdots,x_n)$ em relação a x_i é calculada derivando a função $f(x_1,\cdots,x_n)$ considerando $\underline{x_i}$ variável e supondo x_j , $j\neq i$ constantes.

Seja z=f(x,y). Assim, $\frac{\partial z}{\partial x}(x,y)$ e $\frac{\partial z}{\partial y}(x,y)$ também são funções de x e y.

Definição: As derivadas parciais de $\frac{\partial z}{\partial x}(x,y)$ e $\frac{\partial z}{\partial y}(x,y)$ chamam-se derivadas parciais de 2ª ordem da função z=f(x,y).

Em geral, as derivadas parciais das derivadas de ordem n-1 da função z=f(x,y) chamam-se derivadas parciais de ordem n, de z=f(x,y).

Derivadas parciais de 2ª ordem da função z=f(x,y):

$$\frac{\partial^2 z}{\partial x \partial u}$$
 e $\frac{\partial^2 z}{\partial u \partial x}$ derivadas mistas

Teorema: Se a função z=f(x,y) e as suas derivadas parciais

$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$ e $\frac{\partial^2 z}{\partial y \partial x}$

são contínuas no ponto (x_0,y_0) e numa vizinhança de (x_0,y_0) , então

$$\frac{\partial^2 z}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 z}{\partial y \partial x}(x_0, y_0).$$

Derivadas parciais de 3ª ordem da função z=f(x,y):

$$\frac{\partial^3 z}{\partial x^3}, \quad \frac{\partial^3 z}{\partial x^2 \partial y}, \quad \frac{\partial^3 z}{\partial x \partial y \partial x}, \quad \frac{\partial^3 z}{\partial y \partial x^2}, \\ \frac{\partial^3 z}{\partial y \partial x \partial y}, \quad \frac{\partial^3 z}{\partial x \partial y^2}, \quad \frac{\partial^3 z}{\partial y^2 \partial x}, \quad \frac{\partial^3 z}{\partial y^3}$$

z = f(x, y) tem 2^p derivadas parciais de ordem p.

w = f(x, y, z) tem 3^p derivadas de ordem p.

 $y = f(x_1, \dots, x_n)$ tem n^p derivadas parciais de ordem p.

Nota: Caso as derivadas parciais sejam contínuas então o resultado da derivação múltipla não depende da ordem dessa derivação.

Exemplos:

$$f(x,y) = x^3 + yx + 2x + 5y - 15$$

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + y + 2 \qquad \frac{\partial f}{\partial y}(x,y) = x + 5$$

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 6x \qquad \frac{\partial^2 f}{\partial x \partial y}(x,y) = 1$$

$$\frac{\partial^2 f}{\partial y \partial x}(x,y) = 1 \qquad \frac{\partial^2 f}{\partial y^2}(x,y) = 0$$

$$\frac{\partial^3 f}{\partial x^3}(x,y) = 6 \qquad \frac{\partial^3 f}{\partial y^3}(x,y) = 0$$

$$\frac{\partial^3 f}{\partial x^2 \partial y}(x, y) = \frac{\partial^3 f}{\partial x \partial y \partial x}(x, y) = \frac{\partial^3 f}{\partial y \partial x^2}(x, y) = 0$$

$$\frac{\partial^3 f}{\partial x \partial y^2}(x, y) = \frac{\partial^3 f}{\partial y^2 \partial x}(x, y) = \frac{\partial^3 f}{\partial y \partial x \partial y}(x, y) = 0$$

Exemplos:

$$f(x,y,z) = xe^{x} + \ln(yz) + 2y + 1$$

$$\frac{\partial f}{\partial x} = e^{x} + xe^{x} \qquad \frac{\partial f}{\partial y} = \frac{1}{y} + 2 \qquad \frac{\partial f}{\partial z} = \frac{1}{z}$$

$$\frac{\partial^{2} f}{\partial x^{2}} = 2e^{x} + xe^{x} \qquad \frac{\partial^{2} f}{\partial y^{2}} = -\frac{1}{y^{2}} \qquad \frac{\partial^{2} f}{\partial z^{2}} = -\frac{1}{z^{2}}$$

$$\frac{\partial^{2} f}{\partial x \partial y} = \frac{\partial^{2} f}{\partial y \partial x} = 0 \qquad \frac{\partial^{2} f}{\partial x \partial z} = \frac{\partial^{2} f}{\partial z \partial x} = 0$$

$$\frac{\partial^{2} f}{\partial y \partial z} = \frac{\partial^{2} f}{\partial z \partial y} = 0$$

Seja
$$z = f(x, y)$$
 e $(x_0, y_0) \in D_f$.

Definição: Se existe uma vizinhança \mathcal{V} de (x_0, y_0) tal que $\forall (x, y) \in \mathcal{V} \cap D_f, \ (x, y) \neq (x_0, y_0)$,

$$f(x_0, y_0) > f(x, y)$$
 $(f(x_0, y_0) < f(x, y)),$

diz-se que a função z = f(x, y) admite um máximo (mínimo) no ponto (x_0, y_0) .

Ao(s) máximo(s)/mínimo(s) de z = f(x, y) chamamse extremos da função. Teorema (condição necessária para a existência de extremo):

Se a função z=f(x,y) admite um extremo no ponto (x_0,y_0) , então as derivadas parciais de 1ª ordem anulam-se no ponto (x_0,y_0) ou não existem.

Definição: Seja z = f(x, y) e $(x_0, y_0) \in D_f$. Se

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 e $\frac{\partial f}{\partial y}(x_0, y_0) = 0$,

então (x_0, y_0) chama-se ponto estacionário da função.

Algoritmo (n=2)

Passo 1: Resolver
$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases} \implies (x_0, y_0) \text{ ponto estacionário}$$

Passo 2: Determinar

$$H(x_0, y_0) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{pmatrix}$$

Passo 3:

$$D_1 = \frac{\partial^2 f}{\partial x^2}(x_0, y_0)$$
 e $D_2 = |H(x_0, y_0)|$

Passo 4:

- \diamond Se $D_1>0$ e $D_2>0$ \Longrightarrow $f(x_0,y_0)$ mínimo
- \diamond Se $D_1 < 0$ e $D_2 > 0 \implies f(x_0, y_0)$ máximo
- \diamond Se $D_2 < 0 \implies f(x_0, y_0)$ não é extremo
- \diamond Se $D_2=0 \implies$ nada se pode concluir (por este método)

Exemplos:

a) $f(x,y) = x^2 + y^2$ tem um mínimo em $(0,0) \hookrightarrow f(0,0) = 0$.

b) $f(x,y) = x^3 + 3xy^2 - 15x - 12y$ tem um mínimo em $(2,1) \hookrightarrow f(2,1) = -28$ tem um máximo em $(-2,-1) \hookrightarrow f(-2,-1) = 28$.

Seja $w = f(x_1, \dots, x_n)$ uma função real de variável real.

Definição: Diz-se que $f(x_1,\cdots,x_n)$ é uma função homogénea de grau k se

$$f(tx_1, \dots, tx_n) = t^k f(x_1, \dots, x_n), \ \forall t \in \mathbb{R}.$$

Teorema de Euler: Se $f(x_1, \dots, x_n)$ é uma função homogénea de grau k, então

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} x_i = kf \quad \text{(igualdade de Euler)}.$$

Em particular

Definição: Diz-se que f(x,y) é uma função homogénea de grau k se

$$f(tx, ty) = t^k f(x, y), \ \forall t \in \mathbb{R}.$$

Teorema de Euler: Se f(x,y) é uma função homogénea de grau k, então

$$\frac{\partial f}{\partial x}x + \frac{\partial f}{\partial y}y = kf.$$

Exemplos:

a) f(x,y) = xy é uma função homogénea de grau 2

b) $f(x,y)=\frac{xy}{x^2+y^2}$ é uma função homogénea de grau 0

c) $f(x,y) = \cos(xy)$ não é uma função homogénea Seja $f(x_1, \dots, x_n)$ uma função com derivadas parciais contínuas num ponto (x_1^0, \dots, x_n^0) .

Definição: Chama-se diferencial total da função $f(x_1, \dots, x_n)$, no ponto (x_1^0, \dots, x_n^0) , a

$$\frac{df(x_1^0,\cdots,x_n^0)}{\partial x_i} = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_1^0,\cdots,x_n^0) dx_i.$$

Definição: Chama-se acréscimo total da função $f(x_1, \dots, x_n)$, no ponto (x_1^0, \dots, x_n^0) , a

$$\Delta f(x_1^0, \cdots, x_n^0) = f(x_1^0 + \Delta x_1, \cdots, x_n^0 + \Delta x_n) - f(x_1^0, \cdots, x_n^0)$$

Seja f(x,y) uma função com derivadas parciais contínuas num ponto (x_0,y_0) .

Definição: Chama-se diferencial total da função f(x,y), no ponto (x_0,y_0) , a

$$\frac{df(x_0, y_0)}{\partial x} = \frac{\partial f}{\partial x}(x_0, y_0)dx + \frac{\partial f}{\partial y}(x_0, y_0)dy.$$

Definição: Chama-se acréscimo total da função f(x,y), no ponto (x_0,y_0) , a

$$\triangle f(x_0, y_0) = f(x_0 + \triangle x, y_0 + \triangle y) - f(x_0, y_0).$$

$$\sqrt{(\triangle x)^2 + (\triangle y)^2}$$
 pequeno \hookrightarrow $\triangle f(x_0, y_0) \approx df(x_0, y_0)$

$$f(x_0 + \triangle x, y_0 + \triangle y)$$

$$\approx f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \triangle x + \frac{\partial f}{\partial y}(x_0, y_0) \triangle y$$

Exemplo:

$$\frac{(2,03)^2 \ln(0,9)}{(2,1)^2 \ln(0,1)} \approx f(2,1) + \frac{\partial f}{\partial x}(2,1) \triangle x + \frac{\partial f}{\partial y}(2,1) \triangle y$$

$$= 0 + 0 + 4(-0,1) = -0,4$$

$$f(x,y) = x^2 \ln y \mid \Delta x = 0,03 \mid \Delta y = -0,1$$

$$f(2,1) = 0$$
 $\frac{\partial f}{\partial x}(2,1) = 0$ $\frac{\partial f}{\partial y}(2,1) = 4$

Fórmula de Taylor

Seja f(x,y) uma função com derivadas parciais continuas, até à 3ª ordem inclusive, numa vizinhança $\mathcal V$ do ponto (x_0,y_0) . Então, para todo (x,y) de $\mathcal V$ temos a seguinte fórmula de Taylor,

$$f(x,y) \approx f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0)$$

$$+ \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) + \frac{1}{2!} \left[\frac{\partial^2 f}{\partial x^2}(x_0, y_0)(x - x_0)^2 + 2\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)(x - x_0)(y - y_0) + \frac{\partial^2 f}{\partial y^2}(x_0, y_0)(y - y_0)^2 \right]$$

Caso $(x_0, y_0) = (0, 0)$ também se denomina Fórmula de MacLaurin.

Exemplo:

 $e^{xy} pprox 1 + xy + rac{y^2}{2}$ para pontos (x,y) numa vizinhança de (1,0)

$$f(x,y) = e^{xy} \qquad \frac{\partial f}{\partial x} = ye^{xy} \qquad \frac{\partial f}{\partial y} = xe^{xy}$$

$$f(1,0) = 1 \qquad \frac{\partial f}{\partial x}(1,0) = 0 \qquad \frac{\partial f}{\partial y}(1,0) = 1$$

$$\frac{\partial^2 f}{\partial x^2} = y^2 e^{xy} \qquad \frac{\partial^2 f}{\partial x \partial y} = e^{xy} + yxe^{xy} \qquad \frac{\partial^2 f}{\partial y^2} = x^2 e^{xy}$$

$$\frac{\partial^2 f}{\partial x^2}(1,0) = 0 \qquad \frac{\partial^2 f}{\partial x \partial y}(1,0) = 1 \qquad \frac{\partial^2 f}{\partial y^2}(1,0) = 1$$

Sejam $w=f(u_1,\cdots,u_n)$ e $u_i=u_i(x_1,\cdots,x_m)$, $i=\overline{1,n}$, funções reais de variáveis reais.

Definição: $f(u_1(x_1, \cdots, x_m), \cdots, u_n(x_1, \cdots, x_m))$ é uma função composta das funções u_i , $i = \overline{1, n}$, nas variáveis x_j , $j = \overline{1, m}$.

Se as derivadas parciais das funções f e u_i , $i = \overline{1,n}$ existem e são contínuas temos que

$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^n \frac{\partial f}{\partial u_i} \frac{\partial u_i}{\partial x_j}$$

Sejam z=f(u,v), u=u(x,y) e v=v(x,y) funções reais de variáveis reais.

Definição: f(u(x,y),v(x,y)) chama-se função composta das funções u e v, nas variáveis x e y.

Se as derivadas parciais das funções $f,\ u$ e v existem e são contínuas, como podemos calcular as derivadas parciais da função composta?

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x}$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y}$$

Exemplo:

$$z = \ln(u^2 + v) \ (= f(u, v)), \quad u = e^{x+y^2}, \quad v = x^2 + y$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} = \frac{2u}{u^2 + v} e^{x + y^2} + \frac{1}{u^2 + v} 2x$$
$$= \frac{2}{(e^{x + y^2})^2 + x^2 + y} ((e^{x + y^2})^2 + x)$$

$$\frac{\frac{\partial f}{\partial y}}{\frac{\partial g}{\partial y}} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial y} = \frac{2u}{u^2 + v}2ye^{x+y^2} + \frac{1}{u^2 + v}1$$

$$= \frac{1}{(e^{x+y^2})^2 + x^2 + y}(4(e^{x+y^2})^2y + 1)$$

Sejam $w=f(x,u_1,\cdots,u_n)$ e $u_i=u_i(x)$, $i=\overline{1,n}$, funções reais de variáveis reais.

Definição: $f(u_1(x), \dots, u_n(x))$ é uma função composta das funções u_i , $i=\overline{1,n}$, de uma só variável x.

Se as derivadas parciais das funções f e u_i , $i=\overline{1,n}$ existem e são contínuas temos a derivada total da função composta

$$\frac{df}{dx} = \frac{\partial f}{\partial x} + \sum_{i=1}^{n} \frac{\partial f}{\partial u_i} \frac{du_i}{dx}$$

Sejam z=f(x,y) e y=y(x) funções reais de variáveis reais.

Definição: f(x,y(x)) é uma função composta de uma só variável x.

Se as derivadas parciais da função f e a derivada da função g existem e são contínuas temos a derivada total da função composta

$$\frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$$

Exemplo:

$$z = x^{2} + \sqrt{y} \ (= f(x, y)), \quad y = \text{sen}x$$

$$\frac{\frac{df}{dx}}{\frac{dy}{dx}} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$$

$$= 2x + \frac{1}{2\sqrt{y}} \cos x$$

$$= 2x + \frac{\cos x}{2\sqrt{\sin x}}$$

Definição: A função $y=f(x_1,\cdots,x_n)$ diz-se na forma implícita, se é dada através da equação

$$F(x_1,\cdots,x_n,y)=0$$

não resolvida em relação à variável y.

Exemplos:

- a) $x^2y x + 2y = 0$ define implicitamente y como função de x numa vizinhança do ponto (0,0)
- b) $x-y+z-\sin(xy-1)=0$ define implicitamente z como função de x e de y numa vizinhança do ponto (1,1,0)

Regra de cálculo da derivada de uma função dada na forma implícita (n = 1)

Para calcular a derivada da função y=f(x), dada na forma implícita através da equação F(x,y)=0, no ponto $x=x_0$, deriva-se ambas partes da equação F(x,y)=0 considerando que y=y(x) é uma função composta.

Exemplos:

a) A equação $xy - \sin x + y^3 + 2y = 0$ define implicitamente uma função y = f(x) numa vizinhança do ponto (x,y) = (0,0).

$$y + xy' - \cos x + 3y^2y' + 2y' = 0'$$

 $\hookrightarrow -1 + 2y'(0) = 0 \quad \hookrightarrow \quad y'(0) = \frac{1}{2}$

$$y''(0)$$
:

$$y + xy' - \cos x + 3y^2y' + 2y' = 0'$$

$$\hookrightarrow$$

$$y' + y' + xy'' + \operatorname{sen} x + 6y(y')^2 + 3y^2y'' + 2y'' = 0$$

$$\hookrightarrow$$
 $x_0 = 0$ e $y_0 = 0$

$$\hookrightarrow$$

$$2y'(0) + 2y''(0) = 0,$$
$$y''(0) = -\frac{1}{2}$$

b) A equação $e^{xy}-x\cos y=0$ define implicitamente uma função y=f(x) numa vizinhança do ponto (x,y)=(1,0).

$$(y + xy')e^{xy} - \cos y + xy'\sin y = 0$$

$$\hookrightarrow$$
 $x_0=1$ e $y_0=0$ \hookrightarrow $y'(1)-1=0,$ $y'(1)=1$

Nota:

$$y' = \frac{ye^{xy} + \cos y}{xe^{xy} + x \sin y}, \qquad xe^{xy} + x \sin y \neq 0$$

Seja F(x,y) uma função definida em $D_F \subseteq \mathbb{R}^2$ com derivadas parciais contínuas numa vizinhança de (x_0,y_0) . Seja $(x_0,y_0)\in int D_F$ tal que $F(x_0,y_0)=0$. Então F(x,y)=0 define implicitamente y (x)como função de x (y), numa vizinhança de (x_0,y_0) .

$$\diamond$$
 Se $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$, então $\frac{dy}{dx}(x_0) = -\frac{\frac{\partial F}{\partial x}(x_0, y_0)}{\frac{\partial F}{\partial y}(x_0, y_0)}$.

$$\diamond$$
 Se $\frac{\partial F}{\partial x}(x_0,y_0) \neq 0$, então $\frac{dx}{dy}(y_0) = -\frac{\frac{\partial F}{\partial y}(x_0,y_0)}{\frac{\partial F}{\partial x}(x_0,y_0)}$.

Exemplo:

A equação $xy-\sin x+y^3+2y=0$ define implicitamente uma função y=f(x) numa vizinhança do ponto (x,y)=(0,0)

$$\frac{\frac{dy}{dx}(0) = -\frac{\frac{\partial F}{\partial x}(0,0)}{\frac{\partial F}{\partial z}(0,0)} = \frac{1}{2}$$

Regra de cálculo da derivada de uma função dada na forma implícita (n=2)

Para calcular as derivadas parciais $(\frac{\partial z}{\partial x} \ e \ \frac{\partial z}{\partial y})$ da função z=f(x,y), dada na forma implícita através da equação F(x,y,z)=0, no ponto $(x,y)=(x_0,y_0)$, deriva-se ambas partes da equação F(x,y,z)=0 considerando que z=z(x,y) é uma função composta (em relação a x e em relação a y).

Exemplo:

A equação $xye^z-z=0$ define implicitamente uma função z=f(x,y) numa vizinhança do ponto (0,1,0).

$$ye^{z} + xye^{z}z'_{x} - z'_{x} = 0$$

$$\hookrightarrow 1 - \frac{\partial z}{\partial x}(0, 1) = 0 \qquad \hookrightarrow \qquad \frac{\partial z}{\partial x}(0, 1) = 1$$

$$xe^{z} + xye^{z}z'_{y} - z'_{y} = 0$$

$$\hookrightarrow \frac{\partial z}{\partial y}(0, 1) = 0$$

Seja F(x,y,z) uma função definida em $D_F\subseteq\mathbb{R}^3$ com derivadas parciais contínuas numa vizinhança de (x_0,y_0,z_0) . Seja $(x_0,y_0,z_0)\in int D_F$ tal que $F(x_0,y_0,z_0)$ 0. Então F(x,y,z)=0 define implicitamente z como função de x e de y, numa vizinhança de (x_0,y_0,z_0) . Se $\frac{\partial F}{\partial z}(x_0,y_0,z_0)\neq 0$, então

$$\frac{\partial z}{\partial x}(x_0, y_0) = -\frac{\frac{\partial F}{\partial x}(x_0, y_0, z_0)}{\frac{\partial F}{\partial z}(x_0, y_0, z_0)}$$
$$\frac{\partial z}{\partial y}(x_0, y_0) = -\frac{\frac{\partial F}{\partial z}(x_0, y_0, z_0)}{\frac{\partial F}{\partial z}(x_0, y_0, z_0)}$$

Exemplo:

A equação $xye^z-z=0$ define implicitamente uma função z=f(x,y) numa vizinhança do ponto (0,1,0).

$$\frac{\frac{\partial z}{\partial x}(0,1) = -\frac{\frac{\partial F}{\partial x}(0,1,0)}{\frac{\partial F}{\partial z}(0,1,0)} = 1$$
$$\frac{\frac{\partial z}{\partial y}(0,1) = -\frac{\frac{\partial F}{\partial y}(0,1,0)}{\frac{\partial F}{\partial z}(0,1,0)} = 0$$

(Final do Capítulo 1)

1. Cálculo Integral em \mathbb{R}^n

Integral duplo

Assim como o integral definido de uma função positiva, de uma variável, representa a área entre o gráfico e o eixo x, o integral duplo de uma função positiva, de duas variáveis, representa o volume entre o gráfico e o plano que contém o seu domínio.

Seja f(x,y) definida num conjunto fechado Ω , limitado pela curva plana fechada simples (sem pontos múltiplos) $\partial\Omega$. Dividimos Ω em m conjuntos limitados por curvas planas fechadas simples ω_i , $i=\overline{1,m}$.

Denotamos por $\Delta\omega_i$, $i=\overline{1,m}$, as áreas desses conjuntos.

Em cada ω_i escolhemos um ponto arbitrário (x_i, y_i) .

Definição: À soma

$$S_m(f) = f(x_1, y_1)\Delta\omega_1 + \cdots + f(x_m, y_m)\Delta\omega_m$$

chama-se soma de Riemann da função f em Ω .

Consideremos uma sucessão arbitrária de somas integrais $S_{m_1}(f), \cdots, S_{m_n}(f), \cdots$ formadas por diversos cortes de Ω em conjuntos parciais ω_k e tais que o maior diâmetro dos ω_k tende para zero quando $m_n \to \infty$.

Definição: Se existir limite da sucessão $\{S_{m_i}(f)\}_{i=1}^{\infty}$ e este não depender nem do modo do corte de Ω em conjuntos parciais ω_k nem da escolha do ponto (x_i,y_i) , então a esse limite vamos chamar integral duplo da função f(x,y) sobre Ω e denotar por

$$\int \int_{\Omega} f(x,y) \, d\omega.$$

O integral duplo de uma função f(x,y) sobre um domínio de integração Ω pode ser representado de diversas formas. Ω é representado em todos os sinais de integração ou surge abreviado no sinal de integração mais à direita.

Exemplos: $\Omega = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 4, 0 \le y \le 2\}$

$$\int_{0}^{2} dy \int_{0}^{4} f(x, y) dx \qquad \int_{0}^{2} \int_{0}^{4} f(x, y) dx dy$$
$$\int_{0}^{4} dx \int_{0}^{2} f(x, y) dy \qquad \int_{0}^{4} \int_{0}^{2} f(x, y) dy dx$$
$$\int \int \int f(x, y) dx dy$$

Teorema: Se a função z=f(x,y) for contínua em Ω , então é integrável, isto é, existe o integral duplo

$$\int \int_{\Omega} f(x,y) d\omega.$$

Teorema do valor médio: Seja f(x,y) uma função contínua em Ω . Então existe pelo menos um ponto $(a,b)\in \Omega$ tal que

$$\iint_{\Omega} f(x,y) d\omega = f(a,b) \mathcal{A}_{\Omega}.$$

Interpretação geométrica

Área: Qualquer soma de Riemann da função $f(x,y)\equiv 1$, em Ω ,

$$S_m(1) = \triangle \omega_1 + \cdots \triangle \omega_m$$

corresponde à área de Ω , isto é,

$$\mathcal{A}_{\Omega} = S_m(1), \ \forall m.$$

$${\cal A}_{\Omega}=\int\int\limits_{\Omega} d\omega$$

Interpretação geométrica

Volume: Se $f(x,y) \geq 0$, $\forall (x,y) \in \Omega$, então o volume $\mathcal V$ do corpo limitado pela superfície z=f(x,y), o plano z=0 e a superfície cilindrica cujas geratrizes são paralelas ao eixo Oz e se apoiam sobre a fronteira de Ω é nos dado pelo integral duplo

$$\int \int_{\Omega} f(x,y) d\omega.$$

$$\mathcal{V} = \int \int_{\Omega} f(x, y) d\omega$$

Propriedades do integral duplo

 \diamond $\forall f$ integrável em Ω , $\forall K \in \mathbb{R}$

$$\int \int_{\Omega} K f(x, y) d\omega = K \int \int_{\Omega} f(x, y) d\omega$$

 \diamond $\forall f, g$ integráveis em Ω

$$\int \int_{\Omega} [f(x,y) \pm g(x,y)] d\omega = \int \int_{\Omega} f(x,y) d\omega \pm \int \int_{\Omega} g(x,y) d\omega$$

 \diamond $\forall f$ integravel em Ω , $\Omega = \Omega_1 \cup \Omega_2$, Ω_1 e Ω_2 sem pontos interiores comuns

$$\int \int_{\Omega} f(x,y)d\omega = \int \int_{\Omega_1} f(x,y)d\omega + \int \int_{\Omega_2} f(x,y)d\omega$$

 \diamond Se $f(x,y) \leq g(x,y)$, $\forall (x,y) \in \Omega$, então $\int \int \int f(x,y) d\omega \leq \int \int \int g(x,y) d\omega$

$$\diamond$$
 Se $m \leq f(x,y) \leq M$, $\forall (x,y) \in \Omega$, então
$$m\mathcal{A}_{\Omega} \leq \int \int\limits_{\Omega} f(x,y) d\omega \leq M\mathcal{A}_{\Omega}$$

$$\left| \int \int \int f(x,y) d\omega \right| \le \int \int \int |f(x,y)| d\omega$$

Cálculo de integrais duplos

Ω - domínio retangular

Teorema: Se f(x,y) é uma função contínua no retângulo $\Omega = [a,b] \times [c,d]$, então

$$\int \int \int f(x,y)dxdy = \int_a^b dx \int_c^d f(x,y) dy = \int_c^d dy \int_a^b f(x,y) dx$$

Exemplos:
$$\Omega = [-1, 1] \times [2, 3]$$

a)
$$A_{\Omega} = \int_{1}^{1} dx \int_{2}^{3} dy = \int_{2}^{3} dy \int_{1}^{1} dx = 2$$

b)
$$\int \int (x+y^2) dx dy = \int_{-1}^1 dx \int_2^3 (x+y^2) dy = \dots = \frac{38}{3}$$

Ω - domínio regular

Sejam y=c(x) e y=d(x) duas funções contínuas sobre o segmento [a,b], a< b, e tais que $c(x)\leq d(x)$, $\forall x\in [a,b]$.

Definição: Ao conjunto Ω que é limitado pelas curvas y=c(x) e y=d(x) e pelas retas x=a e x=b chama-se domínio regular segundo o eixo Oy.

Teorema: Se f(x,y) é uma função contínua no domínio regular Ω segundo o eixo Oy, então

$$\iint_{\Omega} f(x,y)dxdy = \int_{a}^{b} dx \int_{c(x)}^{d(x)} f(x,y) dy.$$

Exemplos:

1.
$$\Omega = \{(x,y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < x\}$$

a)
$$\int_0^1 dx \int_0^x dy \ (= \mathcal{A}_{\Omega})$$

b)
$$\int_0^1 dx \int_0^x \sqrt{x^2 + 1} \, dy$$

2.
$$\Omega = \{(x,y) \in \mathbb{R}^2 : 1 < x < 2, \ x^2 < y < x + 2\}$$

$$\int_1^2 dx \int_{x^2}^{x+2} \frac{1}{y^2} dy$$

Sejam x=a(y) e x=b(y) duas funções contínuas sobre o segmento [c,d], c< d, e tais que $a(y) \leq b(y)$, $\forall y \in [c,d]$.

Definição: Ao conjunto Ω que é limitado pelas curvas x=a(y) e x=b(y) e pelas retas y=c e y=d chama-se domínio regular segundo o eixo Ox.

Teorema: Se f(x,y) é uma função contínua no domínio regular Ω segundo o eixo Ox, então

$$\iint_{\Omega} f(x,y)dxdy = \int_{c}^{d} dy \int_{a(y)}^{b(y)} f(x,y) dx.$$

Exemplos:

1.
$$\Omega = \{(x,y) \in \mathbb{R}^2 : y < x < 1, \ 0 < y < 1\}$$

a)
$$\int_0^1 dy \int_y^1 dx \ (= \mathcal{A}_{\Omega})$$

b)
$$\int_0^1 dy \int_0^1 \sqrt{x^2 + 1} \, dx$$

2.
$$\Omega = \{(x,y) \in \mathbb{R}^2 : 0 < x < \sqrt{y}, 0 < y < 1\}$$

$$\int_0^1 dy \int_0^{\sqrt{y}} (xy + x + y) dx$$

Definição: Um domínio regular segundo os dois eixos de coordenadas chama-se domínio regular.

Teorema: Se f(x,y) é uma função contínua no domínio regular Ω , então

$$\int \int_{\Omega} f(x,y) dx dy$$

$$= \int_{a}^{b} dx \int_{c(x)}^{d(x)} f(x, y) dy = \int_{c}^{d} dy \int_{a(y)}^{b(y)} f(x, y) dx.$$

Caso geral:

Se o domínio Ω for constituído por n domínios regulares segundo Ox ou Oy tal que $\Omega_1, \dots, \Omega_n$ não têm pontos interiores comuns, então

$$\int \int_{\Omega} f(x,y) dx dy$$

$$= \int \int_{\Omega_1} f(x,y) dx dy + \cdots + \int \int_{\Omega_n} f(x,y) dx dy$$

e cada integral da parte direita da última igualdade pode ser calculado através de uma das fórmulas anteriores.

Integrais duplos em coordenadas polares

A mudança de variáveis para coordenadas polares são particularmente vantajosas quando a função integranda envolve a expressão x^2+y^2 e para regiões delimitadas por

- retas que passam na origem
- ⋄ por circunferências

Se (ρ, θ) está escrito em coordenadas polares, então em coordenadas cartesianas temos (x,y) em que

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}, \quad \rho \ge 0, \quad \theta \in [0, 2\pi[$$

$$\int \int_{\Omega_{x,y}} f(x,y) dx dy = \int \int_{\Omega_{\theta}\theta} f[\rho \cos\theta, \rho \sin\theta] \rho d\rho d\theta$$

Exemplo:

$$\Omega_{x,y} = \{ (x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 3, \ y \le 0, \ x \ge 0 \}
\int \int_{\Omega_{x,y}} e^{-(x^2 + y^2)} dx dy = \int \int_{\Omega_{\rho,\theta}} e^{-\rho^2} \rho \, d\rho d\theta
\Omega_{\rho,\theta} = \{ (\rho,\theta) \in \mathbb{R}^2 : 1 \le \rho \le \sqrt{3}, \ \frac{3\pi}{2} \le \theta < 2\pi \}$$

Integral triplo

Seja f(x,y,z) definida num conjunto fechado V, limitado pela superfície S. Dividimos V em m conjuntos limitados por superfíces v_i , $i=\overline{1,m}$.

Denotamos por Δv_i , $i = \overline{1,m}$, os volumes desses conjuntos.

Em cada v_i escolhemos um ponto arbitrário (x_i, y_i, z_i) .

Definição: À soma

$$S_m(f) = f(x_1, y_1, z_1)\Delta v_1 + \dots + f(x_m, y_m, z_m)\Delta v_m$$

chama-se soma de Riemann da função f em V.

Consideremos uma sucessão arbitrária de somas integrais $S_{m_1}(f), \cdots, S_{m_n}(f), \cdots$ formadas por diversos cortes de V em conjuntos parciais v_k e tais que o maior diâmetro dos v_k tende para zero quando $m_n \to \infty$.

Definição: Se existir limite da sucessão $\{S_{m_i}(f)\}_{i=1}^{\infty}$ e este não depender nem do modo do corte de V em conjuntos parciais v_k nem da escolha do ponto (x_i, y_i, z_i) , então a esse limite vamos chamar integral triplo da função f(x, y, z) sobre V e denotar por

$$\int \int \int_{V} f(x, y, z) \, dv.$$

O integral triplo de uma função f(x,y,z) sobre um domínio de integração V pode ser representado de diversas formas. V é representado em todos os sinais de integração ou surge abreviado no sinal de integração mais à direita.

Exemplos:

$$V = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 4, 0 \le y \le 2, 3 \le z \le 7\}$$
$$\int_0^2 dy \int_0^4 dx \int_3^7 f(x, y, z) dz \qquad \int \int \int_V f(x, y, z) dx dy dz$$

Teorema: Se a função z=f(x,y,z) for contínua em V, então é integrável, isto é, existe o integral triplo

$$\int \int \int_{V} f(x, y, z) \, dv.$$

Teorema do valor médio: Seja f(x,y,z) uma função contínua em V. Então existe pelo menos um ponto $(a,b,c)\in V$ tal que

$$\iint \iint_{V} f(x, y, z) dv = f(a, b, c) \mathcal{V}.$$

Interpretação geométrica

Área: Qualquer soma de Riemann da função $f(x,y,z)\equiv 1$, em V,

$$S_m(1) = \triangle v_1 + \cdots \triangle v_m$$

corresponde ao volume de V, isto é,

$$\mathcal{V} = S_m(1), \ \forall m.$$

$$\mathcal{V} = \int \int \int_{V} dv$$

Propriedades do integral triplo

 \diamond $\forall f$ integrável em V, $\forall K \in \mathbb{R}$

$$\iint \int \int_{V} K f(x, y, z) dv = K \iint \int \int_{V} f(x, y, z) dv$$

 \diamond $\forall f, g$ integráveis em V

$$\int \int \int_{V} [f(x, y, z) \pm g(x, y, z)] dv$$
$$= \int \int \int \int f(x, y, z) dv \pm \int \int \int \int g(x, y, z) dv$$

 \diamond $\forall f$ integrável em V, $V=V_1\cup V_2$, V_1 e V_2 sem pontos interiores comuns

$$\int \int \int \int \int f(x,y,z)dv$$

$$= \int \int \int \int \int \int f(x,y,z)dv + \int \int \int \int \int \int \int f(x,y,z)dv$$

 \diamond Se $f(x,y,z) \leq g(x,y,z)$, $\forall (x,y,z) \in V$, então $\int \int \int \int \int f(x,y,z) dv \leq \int \int \int \int \int g(x,y,z) dv$

 \diamond Se $m \leq f(x,y,z) \leq M$, $\forall (x,y,z) \in V$, então $m\mathcal{V} \leq \int \int \int\limits_V f(x,y,z) dv \leq M\mathcal{V}$

$$\left| \int \int \int_{V} f(x, y, z) dv \right| \leq \int \int \int_{V} |f(x, y, z)| dv$$

 \Diamond

Cálculo de integrais triplos

Ω - domínio paralelepípedal

Teorema: Se f(x,y,z) é uma função contínua no paralelepípedo $V=[a,b]\times [c,d]\times [e,f]$, então

$$\int \int \int \int_{V} f(x, y, z) dx dy dz = \int_{a}^{b} dx \int_{c}^{d} dy \int_{e}^{f} f(x, y, z) dz.$$

Exemplos:
$$V = [0, 1] \times [2, 4] \times [0, 3]$$

a)
$$V = \int_0^1 dx \int_2^4 dy \int_0^3 dz = 6$$

b)
$$\int_0^1 dx \int_2^4 dy \int_0^3 (x+y+z) dz = 30$$

V - domínio regular

Domínio regular são conjuntos que podem ser representados na forma:

$$V = [a, b] \times [c(x), d(x)] \times [e(x, y), f(x, y)]$$

ou

$$V = [a(y), b(y)] \times [c, d] \times [e(x, y), f(x, y)],$$

ou qualquer outra forma análoga onde um dos segmentos tem limites constantes, outro tem limites que são funções de uma variável definida no segmento com limites constantes e o terceiro segmento tem limites que são funções de duas variáveis sendo cada uma delas definida num dos segmentos anteriores. Por exemplo, Teorema: Se f(x,y,z) é uma função contínua no domínio regular

$$V = [a(y, z), b(y, z)] \times [c(z), d(z)] \times [e, f],$$

então

$$\int\int\int\limits_{U} f(x,y,z) dx dy dz = \int\limits_{e}^{f} dz \int\limits_{c(z)}^{d(z)} dy \int\limits_{a(y,z)}^{b(y,z)} f(x,y,z) dx.$$

Exemplo:

$$V = [0, 1] \times [0, 1] \times [0, xy]$$

$$\int_0^1 dx \int_0^1 dy \int_0^{xy} xy \, dz = \frac{1}{9}$$

Curvas

No plano \mathbb{R}^2 com o sistema de coordenadas OXY vamos considerar uma função vetorial

$$\overrightarrow{r}(t) = (x(t), y(t)) = x(t)\overrightarrow{i} + y(t)\overrightarrow{j}, \qquad (*)$$

onde $\overrightarrow{i}=(1,0)$ e $\overrightarrow{j}=(0,1)$ é uma base do espaço $\mathbb{R}^2.$

Quando t varia, as coordenadas x(t) e y(t) variam e a extremidade do raio vetor $\overrightarrow{r}(t)$ descreve no plano uma determinada curva L.

Definição: Às equações (*) chamam-se equações vetoriais da curva.

Exemplos:

1)
$$\overrightarrow{r}(t) = (t, 2t+3), t \in [0, 1]$$

$$\overrightarrow{r}(t) = (t, 2t+3), t \in \mathbb{R}$$

3)
$$\vec{r}(t) = (2\cos t, 2\sin t), \quad t \in [0, 2\pi]$$

Comprimento de uma curva

Seja L uma curva definida através da equação vetorial

$$\overrightarrow{r}(t) = (x(t), y(t)), \ \alpha \le t \le \beta,$$

com x(t) e y(t) diferenciáveis.

O comprimento da curva L é dado pela fórmula

$$S = \int_{\alpha}^{\beta} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$

No espaço \mathbb{R}^3 com o sistema de coordenadas OXYZ vamos considerar uma função vetorial

$$\overrightarrow{r}(t) = (x(t), y(t), z(t)) = x(t)\overrightarrow{i} + y(t)\overrightarrow{j} + z(t)\overrightarrow{k}, \quad (*)$$

onde $\overrightarrow{i}=(1,0,0)$, $\overrightarrow{j}=(0,1,0)$ e $\overrightarrow{k}=(0,0,1)$ é uma base do espaço \mathbb{R}^3 .

Quando t varia, as coordenadas x(t), y(t) e z(t) variam e a extremidade do raio vetor $\overrightarrow{r}(t)$ descreve no espaço uma determinada curva L.

Definição: Às equações (*) chamam-se equações vetoriais da curva.

Exemplo:

1)
$$\overrightarrow{r}(t) = (\cos t, \sin t, t), \quad t \in [0, 2\pi]$$

2)
$$\overrightarrow{r}(t) = (t, t^2, t^3), t \in [-1, 2]$$

3)
$$\overrightarrow{r}(t) = (e^t, t, t - 1), t \in [0, 1]$$

Comprimento de uma curva

Seja L uma curva definida através da equação vetorial

$$\overrightarrow{r}(t) = (x(t), y(t), z(t)), \ \alpha \le t \le \beta,$$

com x(t), y(t) e z(t) diferenciáveis.

O comprimento da curva L é dado pela fórmula

$$S = \int_{\beta}^{\beta} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$$

Superfícies

Diz-se que uma reta é tangente a uma superfície, num ponto (x_0,y_0,z_0) se é tangente a qualquer curva traçada sobre esta superfície e que passe pelo ponto.

Seja (x_0,y_0,z_0) um ponto da superfície

$$F(x, y, z) = 0$$

onde $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$ e $\frac{\partial F}{\partial z}$ são contínuas e

$$\frac{\partial F}{\partial x}(x_0, y_0, z_0) \neq 0 \vee \frac{\partial F}{\partial y}(x_0, y_0, z_0) \neq 0 \vee \frac{\partial F}{\partial z}(x_0, y_0, z_0) \neq 0.$$

Teorema: Todas as retas tangentes à superfície F(x,y,z)=0 no ponto (x_0,y_0,z_0) pertencem a um mesmo plano.

Definição: Ao plano formado pelas retas tangentes à superfície F(x,y,z)=0 no ponto (x_0,y_0,z_0) chama-se plano tangente à superfície no ponto e é definido pela equação

$$\frac{\partial F}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial F}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial F}{\partial z}(x_0, y_0, z_0)(z - z_0) = 0.$$

Exemplo:

Plano tangente à superfície x+y+z=1, no ponto (1,0,0):

$$1(x-1) + 1(y-0) + 1(z-0) = 0,$$

ou seja,

$$x + y + z = 1.$$

$$F(x,y,z)=x+y+z-1, \qquad \frac{\partial F}{\partial x}(1,0,0)=1,$$

$$\frac{\partial F}{\partial y}(1,0,0)=1, \qquad \frac{\partial F}{\partial z}(1,0,0)=1$$

Nota: A superfície é um plano!

Definição: Chama-se reta normal à superfície

$$F(x, y, z) = 0$$

no ponto (x_0,y_0,z_0) à reta perpendicular ao plano tangente nesse ponto e é definida pelas equações

$$\frac{x-x_0}{\frac{\partial F}{\partial x}(x_0, y_0, z_0)} = \frac{y-y_0}{\frac{\partial F}{\partial y}(x_0, y_0, z_0)} = \frac{z-z_0}{\frac{\partial F}{\partial z}(x_0, y_0, z_0)}.$$

Se
$$\frac{\partial F}{\partial x}(x_0, y_0, z_0) = 0$$
, então
$$x = x_0 \wedge \frac{y - y_0}{\frac{\partial F}{\partial y}(x_0, y_0, z_0)} = \frac{z - z_0}{\frac{\partial F}{\partial z}(x_0, y_0, z_0)}$$

Se
$$\frac{\partial F}{\partial u}(x_0,y_0,z_0)=0$$
, então

$$y = y_0 \wedge \frac{x - x_0}{\frac{\partial F}{\partial x}(x_0, y_0, z_0)} = \frac{z - z_0}{\frac{\partial F}{\partial z}(x_0, y_0, z_0)}$$

Se
$$\frac{\partial F}{\partial z}(x_0,y_0,z_0)=0$$
, então

$$z = z_0 \wedge \frac{x - x_0}{\frac{\partial F}{\partial x}(x_0, y_0, z_0)} = \frac{y - y_0}{\frac{\partial F}{\partial y}(x_0, y_0, z_0)}$$

Exemplo:

Reta normal à superfície x + y + z = 1, no ponto (1,0,0):

$$\frac{x-1}{1} = \frac{y-0}{1} = \frac{z-0}{1},$$

ou seja,

$$x - 1 = y = z.$$

Cálculo da área da superfície $z=\varphi(x,y)$, $(x,y)\in\Omega$

$$A_S = \int \int_{\Omega} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dx dy$$

Exemplo:

Superfície de uma esfera de centro (0,0,0) e raio 5 $(x^2+y^2+z^2=25)$.

 $z=\sqrt{25-x^2-y^2}(=\varphi(x,y))$, para z=0 temos Ω círculo de centro (0,0) e raio 5

$$A_S = 2 \int_{-5}^{5} dx \int_{-\sqrt{25-x^2}}^{\sqrt{25-x^2}} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dy = 100\pi$$

Elementos da teoria do campo

Definição: Chama-se gradiente da função f(x,y) ao vetor

$$\operatorname{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \frac{\partial f}{\partial x}\overrightarrow{i} + \frac{\partial f}{\partial y}\overrightarrow{j}.$$

Definição: Chama-se gradiente da função f(x,y,z) ao vetor

$$\operatorname{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \frac{\partial f}{\partial x}\overrightarrow{i} + \frac{\partial f}{\partial y}\overrightarrow{j} + \frac{\partial f}{\partial z}\overrightarrow{k}.$$

Exemplo:
$$f(x, y, z) = x^2 + y^2 + z$$

$$\operatorname{grad} f(1,1,0) = (2,2,1)$$

$$\frac{\partial f}{\partial x} = 2x, \quad \frac{\partial f}{\partial y} = 2y, \quad \frac{\partial f}{\partial z} = 1$$

$$\frac{\partial f}{\partial x}(1,1,0) = 2, \quad \frac{\partial f}{\partial y}(1,1,0) = 2, \quad \frac{\partial f}{\partial z}(1,1,0) = 1$$

Definição: Chama-se derivada da função f(x,y), no ponto (x_0,y_0) , segundo a direção $\overrightarrow{u}=(u_1,u_2)$ (ou derivada dirigida) a

$$\frac{\partial f}{\partial \overrightarrow{u}}(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) \frac{u_1}{\|\overrightarrow{u}\|} + \frac{\partial f}{\partial y}(x_0, y_0) \frac{u_2}{\|\overrightarrow{u}\|}.$$

$$\|\overrightarrow{u}\| = \sqrt{u_1^2 + u_2^2}$$

Definição: Chama-se derivada da função f(x,y,z), no ponto (x_0,y_0,z_0) , segundo a direção $\overrightarrow{u}=(u_1,u_2,u_3)$ (ou derivada dirigida) a

$$\frac{\partial f}{\partial \overrightarrow{u}}(x_0, y_0, z_0) = \frac{\partial f}{\partial x}(x_0, y_0, z_0) \frac{u_1}{\|\overrightarrow{u}\|} + \frac{\partial f}{\partial y}(x_0, y_0, z_0) \frac{u_2}{\|\overrightarrow{u}\|} + \frac{\partial f}{\partial z}(x_0, y_0, z_0) \frac{u_3}{\|\overrightarrow{u}\|}.$$

$$\|\overrightarrow{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Teorema: A derivada da função f(x,y) num ponto (x_0,y_0) segundo a direção $\overrightarrow{u}=(u_1,u_2)$ admite um valor máximo quando a direcção de $\overrightarrow{u}=(u_1,u_2)$ coincide com a do gradiente e este valor máximo é igual a $\|\mathrm{grad} f(x_0,y_0)\|$.

Teorema: A derivada da função f(x,y,z) num ponto (x_0,y_0,z_0) segundo a direção $\overrightarrow{u}=(u_1,u_2,u_3)$ admite um valor máximo quando a direcção de $\overrightarrow{u}=(u_1,u_2,u_3)$ coincide com a do gradiente e este valor máximo é igual a $\|\operatorname{grad} f(x_0,y_0,z_0)\|$.

Exemplo:

A derivada dirigida máxima da função

$$f(x,y) = \ln x + \ln y,$$

no ponto (e,1) é

$$\sqrt{\left(\frac{1}{e}\right)^2 + 1}.$$

Integral curvilíneo

Seja P(x,y) uma função contínua num domínio Ω do plano XOY e $L\subset \Omega$ uma curva definida de um ponto (a,b) a um ponto (c,d). Dividimos a curva L em m partes arbitrárias pelos pontos A_i , $i=\overline{0,m}$, $(a,b)=(x_0,y_0)$, $(c,d)=(x_m,y_m)$.

Denotamos por

$$A_i = (x_k, y_k)$$
 e $\triangle x_k = x_{k+1} - x_k, \ k = \overline{0, m-1},$

Em cada arco da curva L que liga os pontos A_k e A_{k+1} escolhemos um ponto arbitrário $\widetilde{A_k} = (\widetilde{x_k}, \widetilde{y_k})$ arbitrário.

Definição: À soma

$$S_m = P(\widetilde{x_1}, \widetilde{y_1})\Delta x_1 + \dots + P(\widetilde{x_m}, \widetilde{y_m})\Delta x_m$$

chama-se soma integral da função P(x,y) na curva L em relação ao eixo OX.

Consideremos uma sucessão arbitrária de somas integrais $S_{m_1}, \dots, S_{m_n}, \dots$ formadas por diversos cortes de L em arcos parciais e tais que o maior dos números $|\Delta x_k|$ tende para zero quando $m_n \to \infty$.

Definição: Se existir limite da sucessão $\{S_{m_i}\}_{i=1}^{\infty}$ e este não depender nem do modo do corte de L em arcos parciais nem da escolha dos pontos \widetilde{A}_k , então a esse limite vamos chamar integral curvilíneo da função P(x,y) sobre a curva L em relação ao eixo 0X e denotar por

$$\int_{L} P(x,y) \, dx.$$

Analogamente, podemos definir integral curvilíneo da função Q(x,y) sobre a curva L em relação ao eixo 0Y e denotar por

$$\int_{L} Q(x,y) \, dy.$$

Definição: Chama-se integral curvilíneo do par de funções P(x,y) e Q(x,y) sobre a curva L a

$$\int_{L} P(x,y) \, dx + \int_{L} Q(x,y) \, dy = \int_{L} P(x,y) \, dx + Q(x,y) \, dy.$$

Analogamente, define-se integral curvilíneo sobre a curva espacial L:

$$\int_{L} P(x, y, z) dx + \int_{L} Q(x, y, z) dy + \int_{L} R(x, y, z) dz$$

$$= \int_{L} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, x) dz.$$

Propriedades do integral curvilíneo

$$\int_{L_{A,B}} P(x,y) \, dx + Q(x,y) \, dy = -\int_{L_{B,A}} P(x,y) \, dx + Q(x,y) \, dy$$

$$\oint_{L_{A,B}} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,x) dz$$

$$= - \int_{L_{B,A}} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,x) dz$$

$$ightharpoonup L = L_1 \cup L_2$$

$$\int_{I} P(x,y) \, dx + Q(x,y) \, dy$$

$$= \int_{L_1} P(x,y) \, dx + Q(x,y) \, dy + \int_{L_2} P(x,y) \, dx + Q(x,y) \, dy$$

 \downarrow $L = L_1 \cup L_2$

$$\int_{L} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, x) dz$$

$$= \int_{L_{1}} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, x) dz$$

$$+ \int_{L_{2}} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, x) dz$$

Existência e cálculo de integrais curvilíneos

Suponhamos a curva plana ${\cal L}$ dada sob a forma paramétrica

$$\overrightarrow{r}(t) = (x(t), y(t))$$

é tal que, quando o parâmetro t se desloca de α até β , o ponto (x(t),y(t)) percorre toda a curva L no sentido indicado.

Notemos que α pode ser maior que β .

Vamos supor também que as funções x(t) e y(t) têm derivadas contínuas.

Teorema: Se as funções P(x,y) e Q(x,y) forem contínuas ao longo da curva L, então o integral curvilíneo

$$\int_{L} P(x,y) dx + Q(x,y) dy$$

existe e é igual a

$$\int_{-\pi}^{\beta} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)] dt.$$

Analogamente, no caso da curva espacial ${\cal L}$ dada sob a forma paramétrica

$$\overrightarrow{r}(t) = (x(t), y(t), z(t))$$

é tal que, quando o parâmetro t se desloca de α até β , o ponto (x(t),y(t),z(t)) percorre toda a curva L no sentido indicado. Vamos supor também que as funções x(t), y(t) e z(t) têm derivadas contínuas.

$$\int_{L} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

$$= \int_{\alpha}^{\beta} [P(x(t), y(t), z(t))x'(t) + Q(x(t), y(t), z(t))y'(t) + R(x(t), y(t), z(t))z'(t)] dt$$

Exemplo:

Para
$$L: \vec{r}(t) = (t, t^2, t^3), t \in [0, 1]$$

$$\int_{L} (y^{2} - z^{2}) dx + 2yz dy - x^{2} dz$$

$$= \int_{0}^{1} [(t^{4} - t^{6}).1 + 2.t^{2}.t^{3}.2t - t^{2}.3.t^{2}] dt$$

$$= \int_{0}^{1} (3t^{6} - 2t^{4}) dt = \left(\frac{3}{7}t^{7} - \frac{2}{5}t^{5}\right) \Big|_{0}^{1} = \frac{1}{35}$$

 $\Omega \hookrightarrow \text{conjunto fechado}$

$$P(x,y)$$
, $Q(x,y) \hookrightarrow \text{continuas}$

$$\frac{\partial P}{\partial y}$$
, $\frac{\partial Q}{\partial x}$ \hookrightarrow continuas

Fórmula de Green:

$$\int_{\partial\Omega} P(x,y) \, dx + Q(x,y) \, dy = \int_{\Omega} \int_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Exemplo:

L curva que delimita o retângulo com vértices $A=(0,0),\ B=(2,0),\ C=(2,3)$ e D=(0,3)

$$\int_{L} x^{2}e^{y} dx + y^{2}e^{x} dy = \int_{0}^{2} dx \int_{0}^{3} (y^{2}e^{x} - x^{2}e^{y}) dy$$

$$= \int_{0}^{2} (9e^{x} - x^{2}e^{3} + x^{2}) dt = \left(9e^{x} - \frac{1}{3}x^{3}e^{3} + \frac{1}{3}x^{3}\right) \Big|_{0}^{2}$$

$$= 9e^{2} - \frac{8}{3}e^{3} + \frac{8}{3} - 9$$

Área de uma região plana

$$A_{\Omega} = \frac{1}{2} \int_{\partial \Omega} -y \, dx + x \, dy$$

Exemplo:

Área delimitada pela elipse $x^2 + 4y^2 = 4$:

$$\overrightarrow{r}(t) = (2\cos t, \sin t), \ t \in [0, 2\pi]$$

$$A_{\Omega} = \frac{1}{2} \int_{\partial \Omega} -y \, dx + x \, dy = \int_{0}^{2\pi} dt = 2\pi$$

Condições para que um integral curvilíneo não dependa do caminho de integração

Seja Ω um conjunto simplesmente conexo (i.e., toda a curva simples fechada contida em Ω envolve somente pontos de Ω).

Lema: O integral sobre uma curva que une dois pontos de Ω , $A=(x_0,y_0)$ e $B=(x_1,y_1)$, não depende do caminho seguido, mas somente destes dois pontos se e só se este integral é nulo sobre qualquer curva fechada.

Se o integral curvilíneo sobre uma curva que une dois pontos $A=(x_0,y_0)$ e $B=(x_1,y_1)$ não depender do caminho seguido, então podemos escrever este integral na forma

$$\int_{(x_0,y_0)}^{(x_1,y_1)} P(x,y) \, dx + Q(x,y) \, dy.$$

Seja Ω um conjunto simplesmente conexo.

Sejam P(x,y) e Q(x,y) funções contínuas com derivadas parciais $\frac{\partial P}{\partial y}$ e $\frac{\partial Q}{\partial x}$ contínuas em Ω .

Teorema: Para que o integral curvilíneo sobre qualquer curva fechada $L\subset\Omega$ seja nulo é necessário e suficiente que

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \ \forall (x, y) \in \Omega.$$

As funções P(x,y) e Q(x,y) determinam o campo vectorial

$$\overrightarrow{F}(x,y) = (P(x,y), Q(x,y))$$

no conjunto Ω .

Lema: O campo vectorial $\overrightarrow{F}(x,y)=(P(x,y),Q(x,y))$ é potencial se e só se as funções P(x,y) e Q(x,y) satisfazerem a condição

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \ \forall (x, y) \in \Omega.$$

Se o campo $\overrightarrow{F}(x,y)=(P(x,y),Q(x,y))$ for potencial e U(x,y) for o potencial deste campo, i.e., se

$$P(x,y) = \frac{\partial U}{\partial x}$$
 e $Q(x,y) = \frac{\partial U}{\partial y}$,

então

$$\int_{(x_0,y_0)}^{(x_1,y_1)} P(x,y) \, dx + Q(x,y) \, dy = \int_{(x_0,y_0)}^{(x_1,y_1)} dU$$

$$= U(x_1, y_1) - U(x_0, y_0).$$