COURSE CODE: SIT1301

COURSE NAME: DATA MINING AND WAREHOUSING

CHAPTER NAME: DATA WAREHOUSING

UNIT I DATA WAREHOUSING

Data warehousing Components –Building a Data warehouse — Multi Dimensional Data Model – OLAP operations in Multi Dimensional Data model-Three Tier Data warehouse architecture-Schemas for multi dimensional data model-Online Analytical processing(OLAP)- OLAP vs OLTP Integrated OLAM and OLAP Architecture

DATA WAREHOUSE COMPONENTS & ARCHITECTURE

The data in a data warehouse comes from operational systems of the organization as well as from other external sources. These are collectively referred to as *source systems*. The data *extracted* from source systems is stored in a area called *data staging area*, where the data is cleaned, *transformed*, combined, de-duplicated to prepare the data for us in the data warehouse. The data staging area is generally a collection of machines where simple activities like sorting and sequential processing takes place. The data staging area does not provide any query or presentation services. As soon as a system provides query or presentation services, it is categorized as a *presentation server*. A presentation server is the target machine on which the data is *loaded* from the data staging area organized and stored for direct querying by end users, report writers and other applications. The three different kinds of systems that are required for a data warehouse are:

- 1. Source Systems
- 2. Data Staging Area
- 3. Presentation servers

The data travels from source systems to presentation servers via the data staging area. The entire process is popularly known as ETL (extract, transform, and load) or ETT (extract, transform, and transfer). Oracle's ETL tool is called Oracle Warehouse Builder (OWB) and MS SQL Server's ETL tool is called Data Transformation Services (DTS).

A typical architecture of a data warehouse is shown below:

Each component and the tasks performed by them are explained below:

1. OPERATIONAL DATA

The sources of data for the data warehouse is supplied from:

- (i) The data from the mainframe systems in the traditional network and hierarchical format.
- (ii) Data can also come from the relational DBMS like Oracle, Informix.
- (iii) In addition to these internal data, operational data also includes external data obtained from commercial databases and databases associated with supplier and customers.

2. LOAD MANAGER

The load manager performs all the operations associated with extraction and loading data into the data warehouse. These operations include simple transformations of the data to prepare the data for entry into the warehouse. The size and complexity of this component will vary between data warehouses and may be constructed using a combination of vendor data loading tools and custom built programs.

3. WAREHOUSE MANAGER

The warehouse manager performs all the operations associated with the management of data in the warehouse. This component is built using vendor data management tools and custom built programs. The operations performed by warehouse manager include:

- (i) Analysis of data to ensure consistency
- (ii) Transformation and merging the source data from temporary storage into data warehouse tables
- (iii) Create indexes and views on the base table.

- (iv) Denormalization
- (v) Generation of aggregation
- (vi) Backing up and archiving of data

In certain situations, the warehouse manager also generates query profiles to determine which indexes ands aggregations are appropriate.

4. QUERY MANAGER

The query manager performs all operations associated with management of user queries. This component is usually constructed using vendor end-user access tools, data warehousing monitoring tools, database facilities and custom built programs. The complexity of a query manager is determined by facilities provided by the end-user access tools and database.

5. DETAILED DATA

This area of the warehouse stores all the detailed data in the database schema. In most cases detailed data is not stored online but aggregated to the next level of details. However the detailed data is added regularly to the warehouse to supplement the aggregated data.

6. LIGHTLY AND HIGHLY SUMMERIZED DATA

The area of the data warehouse stores all the predefined lightly and highly summarized (aggregated) data generated by the warehouse manager. This area of the warehouse is transient as it will be subject to change on an ongoing basis in order to respond to the changing query profiles. The purpose of the summarized information is to speed up the query performance. The summarized data is updated continuously as new data is loaded into the warehouse.

7. ARCHIVE AND BACK UP DATA

This area of the warehouse stores detailed and summarized data for the purpose of archiving and back up. The data is transferred to storage archives such as magnetic tapes or optical disks.

8. META DATA

The data warehouse also stores all the Meta data (data about data) definitions used by all processes in the warehouse. It is used for variety of purposed including:

- (i) The extraction and loading process Meta data is used to map data sources to a common view of information within the warehouse.
- (ii) The warehouse management process Meta data is used to automate the production of summary tables.
- (iii) As part of Query Management process Meta data is used to direct a query to the most appropriate data source.

The structure of Meta data will differ in each process, because the purpose is different. More about Meta data will be discussed in the later Lecture Notes.

9. END-USER ACCESS TOOLS

The principal purpose of data warehouse is to provide information to the business managers for strategic decision-making. These users interact with the warehouse using end user access tools. The examples of some of the end user access tools can be:

- (i) Reporting and Query Tools
- (ii) Application Development Tools
- (iii) Executive Information Systems Tools

- (iv) Online Analytical Processing Tools
- (v) Data Mining Tools

Building a Data warehouse

The ETL (Extract Transformation Load) process

In this section we will discussed about the 4 major process of the data warehouse. They are extract (data from the operational systems and bring it to the data warehouse), transform (the data into internal format and structure of the data warehouse), cleanse (to make sure it is of

sufficient quality to be used for decision making) and load (cleanse data is put into the data warehouse).

Figure 1. Steps of building a data warehouse: the ETL process

The four processes from extraction through loading often referred collectively as **Data Staging**.

EXTRACT

Some of the data elements in the operational database can be reasonably be expected to be useful in the decision making, but others are of less value for that purpose. For this reason, it is necessary to extract the relevant data from the operational database before bringing into the data warehouse. Many commercial tools are available to help with the extraction process. **Data Junction** is one of the commercial products. The user of one of these tools typically has an easy-to-use windowed interface by which to specify the following:

- (i) Which files and tables are to be accessed in the source database?
- (ii) Which fields are to be extracted from them? This is often done internally by SQL Select statement.
- (iii) What are those to be called in the resulting database?
- (iv) What is the target machine and database format of the output?
- (v) On what schedule should the extraction process be repeated?

TRANSFORM

The operational databases developed can be based on any set of priorities, which keeps changing with the requirements. Therefore those who develop data warehouse based on these databases are typically faced with inconsistency among their data sources. Transformation process deals with rectifying any inconsistency (if any).

One of the most common transformation issues is 'Attribute Naming Inconsistency'. It is common for the given data element to be referred to by different data names in different databases. Employee Name may be EMP_NAME in one database, ENAME in the other. Thus one set of Data Names are picked and used consistently in the data warehouse. Once all the data elements have right names, they must be converted to common formats. The conversion may encompass the following:

- (i) Characters must be converted ASCII to EBCDIC or vise versa.
- (ii) Mixed Text may be converted to all uppercase for consistency.
- (iii) Numerical data must be converted in to a common format.
- (iv) Data Format has to be standardized.
- (v) Measurement may have to convert. (Rs/\$)
- (vi) Coded data (Male/ Female, M/F) must be converted into a common format. All these transformation activities are automated and many commercial products are available to perform the tasks. **DataMAPPER** from Applied Database Technologies is one such comprehensive tool.

CLEANSING

Information quality is the key consideration in determining the value of the information. The developer of the data warehouse is not usually in a position to change the quality of its underlying historic data, though a data warehousing project can put spotlight on the data quality issues and lead to improvements for the future. It is, therefore, usually necessary to go through the data entered into the data warehouse and make it as error free as possible. This process is known as **Data Cleansing**.

Data Cleansing must deal with many types of possible errors. These include missing data and incorrect data at one source; inconsistent data and conflicting data when two or more source are involved. There are several algorithms followed to clean the data, which will be discussed in the coming lecture notes.

LOADING

Loading often implies physical movement of the data from the computer(s) storing the source database(s) to that which will store the data warehouse database, assuming it is different. This takes place immediately after the extraction phase. The most common channel for data movement is a high-speed communication link. Ex: Oracle Warehouse Builder is the API from Oracle, which provides the features to perform the ETL task on Oracle Data Warehouse.

Multidimensional Data Model and its operation (OLAP operations)

The most popular data model for data warehouses is a multidimensional model. This model can exist in the form of a star schema, a snowflake schema, or a fact constellation schema. Let's have a look at each of these schema types.

OLAP operations on multidimensional data.

- 1. **Roll-up**: The roll-up operation performs aggregation on a data cube, either by climbing-up a concept hierarchy for a dimension or by dimension reduction. Figure shows the result of a roll-up operation performed on the central cube by climbing up the concept hierarchy for location. This hierarchy was defined as the total order street < city < province or state <country.
- 2. **Drill-down**: Drill-down is the reverse of roll-up. It navigates from less detailed data to more detailed data. Drill-down can be realized by either stepping-down a concept hierarchy for a dimension or introducing additional dimensions. Figure shows the result of a drill-down operation performed on the central cube by stepping down a concept hierarchy for time defined as day < month < quarter < year. Drill-down occurs by descending the time hierarchy from the level of quarter to the more detailed level of month.

- 3. **Slice and dice:** The slice operation performs a selection on one dimension of the given cube, resulting in a subcube. Figure shows a slice operation where the sales data are selected from the central cube for the dimension time using the criteria time="Q2". The dice operation defines a subcube by performing a selection on two or more dimensions.
- 4. **Pivot (rotate):** Pivot is a visualization operation which rotates the data axes in view in order to provide an alternative presentation of the data. Figure shows a pivot operation where the item and location axes in a 2-D slice are rotated.

Figure : Examples of typical OLAP operations on multidimensional data.

Three-tier Data warehouse architecture

The bottom tier is a ware-house database server which is almost always a relational database system. The middle tier is an OLAP server which is typically implemented using either (1) a Relational OLAP (ROLAP) model, (2) a Multidimensional OLAP (MOLAP) model. The top tier is a client, which contains query and reporting tools, analysis tools, and/or data mining tools (e.g., trend analysis, prediction, and so on).

From the architecture point of view, there are three data warehouse models: the enterprise warehouse, the data mart, and the virtual warehouse.

• Enterprise warehouse: An enterprise warehouse collects all of the information about subjects spanning the entire organization. It provides corporate-wide data integration, usually from one or more operational systems or external information providers, and is cross-functional in scope. It typically contains detailed data as well as summarized data, and can range in size from a few gigabytes to hundreds of gigabytes, terabytes, or beyond.

- Data mart: A data mart contains a subset of corporate-wide data that is of value to a specific group of users. The scope is connected to specific, selected subjects. For example, a marketing data mart may connect its subjects to customer, item, and sales. The data contained in data marts tend to be summarized. Depending on the source of data, data marts can be categorized into the following two classes:
 - (i).Independent data marts are sourced from data captured from one or more operational systems or external information providers, or from data generated locally within a particular department or geographic area.
 - (ii). Dependent data marts are sourced directly from enterprise data warehouses.
- **Virtual warehouse**: A virtual warehouse is a set of views over operational databases. For efficient query processing, only some of the possible summary views may be materialized. A virtual warehouse is easy to build but requires excess capacity on operational database servers.

Multi-Tier

Figure: A recommended approach for data warehouse development.

Multi-dimensional Schemas

Two common multi-dimensional schemas are

1. Star schema:

Consists of a fact table with a single table for each dimension

2. Snowflake Schema:

- It is a variation of star schema, in which the dimensional tables from a star schema are organized into a hierarchy by normalizing them.
- 3. <u>Fact constellations:</u> Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Star Schema

Snow flake Schema

Fact constellation

☐ Fact constellation is a set of tables that share some dimension tables. However, fact constellations limit the possible queries for the warehouse.

Features of OLTP and OLAP

The major distinguishing features between OLTP and OLAP are summarized as follows.

- **1. Users and system orientation**: An OLTP system is customer-oriented and is used for transaction and query processing by clerks, clients, and information technology professionals. An OLAP system is market-oriented and is used for data analysis by knowledge workers, including managers, executives, and analysts.
- **2. Data contents**: An OLTP system manages current data that, typically, are too detailed to be easily used for decision making. An OLAP system manages large amounts of historical data, provides facilities for summarization and aggregation, and stores and manages information at different levels of granularity. These features make the data easier for use in informed decision making.
- **3. Database design**: An OLTP system usually adopts an entity-relationship (ER) data model and an application oriented database design. An OLAP system typically adopts either a star or snowflake model and a subject-oriented database design.
- **4. View**: An OLTP system focuses mainly on the current data within an enterprise or department, without referring to historical data or data in different organizations. In contrast, an OLAP system often spans multiple versions of a database schema. OLAP systems also deal with information that originates from different organizations, integrating information from many data stores. Because of their huge volume, OLAP data are stored on multiple storage media.
- **5.** Access patterns: The access patterns of an OLTP system consist mainly of short, atomic transactions. Such a system requires concurrency control and recovery mechanisms. However, accesses to OLAP systems are mostly read-only operations although many could be complex queries.

Comparison between OLTP and OLAP systems.

Feature	OLTP	OLAP
Characteristic	operational processing	informational processing
Orientation	transaction	analysis
User	clerk, DBA, database professional	knowledge worker (e.g., manager, executive, analyst)
Function	day-to-day operations	long term informational requirements,
		decision support
DB design	E-R based, application-oriented	star/snowflake, subject-oriented
Data	current; guaranteed up-to-date	historical; accuracy maintained over time
Summarization	primitive, highly detailed	summarized, consolidated
View	detailed, flat relational	summarized, multidimensional
Unit of work	short, simple transaction	complex query
Access	read/write	mostly read
Focus	data in	information out
Operations	index/hash on primary key	lots of scans
# of records accessed	tens	millions
# of users	thousands	hundreds
DB size	100 MB to GB	100 GB to TB
Priority	high performance, high availability	high flexibility, end-user autonomy
Metric	transaction throughput	query throughput, response time

Integrated OLAP and OLAM Architecture

Online Analytical Mining integrates with Online Analytical Processing with data mining and mining knowledge in multidimensional databases. Here is the diagram that shows the integration of both OLAP and OLAM –

OLAM is important for the following reasons –

• **High quality of data in data warehouses** – The data mining tools are required to work on integrated, consistent, and cleaned data. These steps are very costly in the preprocessing of data. The data warehouses constructed by such preprocessing are valuable sources of high quality data for OLAP and data mining as well.

- Available information processing infrastructure surrounding data warehouses Information processing infrastructure refers to accessing, integration, consolidation, and transformation of multiple heterogeneous databases, web-accessing and service facilities, reporting and OLAP analysis tools.
- OLAP—based exploratory data analysis Exploratory data analysis is required for effective data mining. OLAM provides facility for data mining on various subset of data and at different levels of abstraction.
- Online selection of data mining functions Integrating OLAP with multiple data mining functions and online analytical mining provide users with the flexibility to select desired data mining functions and swap data mining tasks dynamically.