DSA2000 F-Engine Documentation

Jack Hickish

CONTENTS:

1 Installation						
		Get the Source Code				
	1.2	Install Prerequisites				
		1.2.1 Firmware Requirements				
2	F-Er	gine System Overview Overview				
	2.1	Overview				
	2.2	Firmware Source				
3	Indi	ces and tables				

CHAPTER

ONE

INSTALLATION

The DSA2000 F-engine pipeline firmware and software is available at https://github.com/realtimeradio/dsa2000-fpga. Follow the instructions here to download and install the pipeline.

Specify the build directory by defining the BUILDDIR environment variable, eg:

```
export BUILDDIR=~/src/
mkdir -p $BUILDDIR
```

1.1 Get the Source Code

Clone the repository and its dependencies with:

```
# Clone the main repository
cd $BUILDDIR
git clone https://github.com/realtimeradio/dsa2000-fpga
# Clone relevant submodules
cd dsa2000-fpga
git submodule init --recursive
git submodule update
```

1.2 Install Prerequisites

1.2.1 Firmware Requirements

The SOUK MKID Readout firmware can be built with the CASPER toolflow, and was designed using the following software stack:

- Ubuntu 18.04.0 LTS (64-bit)
- MATLAB R2021a
- Simulink R2021a
- MATLAB Fixed-Point Designer Toolbox R2021a
- Xilinx Vivado HLx 2021.2
- Python 3.8

It is *strongly* recommended that the same software versions be used to rebuild the design.

F-ENGINE SYSTEM OVERVIEW

2.1 Overview

The DSA2000 F-Engine firmware receives a stream of ADC samples via a JESD204C interface and generates the following channelised data products:

- 9680 channels with ~134 kHz bandwidth, covering the 700-2000MHz band
- 4096 channels with ~8.4 kHz bandwidth, with a tunable center frequency.
- 2048 channels with ~1 kHz bandwidth, with a tunable center frequency.

The firmware also performs beamforming, generating:

• 4 dual-polarization phased-array beams, covering the 700-2000MHz band with 605 ~2.15 MHz channels A block diagram of the readout system is shown in Fig. 2.1.

Fig. 2.1: Top-level F-Engine block diagram

2.2 Firmware Source

Currently, a minimal top-level implementation of the DSA2000 F-engine firmware is available as a Simulink model.

The top-level of this Simulink diagram is shown in Fig. 2.2. It includes the main high-bandwidth channelizers, and is currently used for resource and power estimations. This model does not include any of the DSA's high-resolution channelizers, phase-tracking, or beamforming logic.

Fig. 2.2: Top-level F-Engine top-level firmware

Relevant firmware files are:

- firmware/src/models/dsa2k_iwave_v1.slx Top-level simulink design
- firmware/src/models/dsp/pfb_fir_2p_2kpt_12i_18o_os2_core.slx 2x oversampling PFB FIR frontend
- firmware/src/models/dsp/fft 2p 4kc 18i 18o core.slx 2.15 MHz channelizer
- firmware/src/models/dsp/pfb_fine_core.slx second stage 134 kHz channelizer

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search