

Question 7

Given:
$$tan\theta = \frac{BC}{AB} = \frac{4}{3}$$

Let
$$BC = 4k$$
 and $AB = 3k$,

Where k is positive

Let us draw a $\triangle ABC$ in which $\angle B = 90^{\circ}$ and $\angle BAC = \theta$

By Pythagoras theorem, we get

$$(AC)^2 = (AB)^2 + (BC)^2$$

$$\Rightarrow \left(AC\right)^{2} = \left[\left(3k\right)^{2} + \left(4k\right)^{2} \right]$$

$$\Rightarrow (AC)^2 = (9k^2 + 16k^2) = 25k^2$$

$$AC = \sqrt{25k^2} = 5k$$

$$\sin\theta = \frac{4k}{5k} = \frac{4}{5}$$

$$AC = \sqrt{25k^2} = 5k$$

$$\sin\theta = \frac{4k}{5k} = \frac{4}{5}$$

$$\cos\theta = \frac{3k}{5k} = \frac{3}{5}$$

$$\Rightarrow \left(\sin\theta + \cos\theta\right) = \left(\frac{4}{5} + \frac{3}{5}\right) = \frac{7}{5}$$

Hence,
$$(\sin\theta + \cos\theta) = \frac{7}{5}$$

********* END ********