Введение в анализ данных

Лекция 6 Линейная классификация

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2018

Модель линейной классификации

Классификация

- $Y = \{-1, +1\}$
- -1 отрицательный класс
- +1 положительный класс
- a(x) должен возвращать одно из двух чисел

Линейная регрессия

$$a(x) = w_0 + \sum_{j=1}^d w_j x^j$$

Вещественное число!

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x^j\right)$$

Свободный коэффициент

Признаки

Beca

• Добавим единичный признак

$$a(x) = \operatorname{sign} \sum_{j=1}^{a+1} w_j x^j = \operatorname{sign} \langle w, x \rangle$$

Уравнение гиперплоскости: $\langle w, x \rangle = 0$

- Линейный классификатор проводит гиперплоскость
- $\langle w, x \rangle < 0$ объект «слева» от неё
- $\langle w, x \rangle > 0$ объект «справа» от неё

• Расстояние от точки до гиперплоскости $\langle w, x \rangle = 0$:

$$\frac{|\langle w, x \rangle|}{\|w\|}$$

• Чем больше $\langle w, x \rangle$, тем дальше объект от разделяющей гиперплоскости

Отступ

- $M_i = y_i \langle w, x_i \rangle$
- $M_i > 0$ классификатор дает верный ответ
- $M_i < 0$ классификатор ошибается
- Чем дальше отступ от нуля, тем больше уверенности

- Линейный классификатор разделяет два класса гиперплоскостью
- Чем больше отступ по модулю, тем дальше объект от гиперплоскости
- Знак отступа говорит о корректности предсказания

Функционал ошибки для классификации

Линейная регрессия

• Квадратичное отклонение:

$$L(a, y) = (a - y)^2$$

• Абсолютное отклонение:

$$L(a, y) = |a - y|$$

• Доля неправильных ответов:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

a(x)	у
-1	-1
+1	+1
-1	-1
+1	-1
+1	+1

• Доля неправильных ответов:

$$\frac{1}{5} = 0.2$$

• Доля правильных ответов:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

• На английском: accuracy

• Доля правильных ответов:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

- На английском: accuracy
- ВАЖНО: не переводите это как «точность»!

• Доля неправильных ответов (через отступ):

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0]$$

$$M_i$$

Пороговая функция потерь

• Доля неправильных ответов:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0]$$

$$M_i$$

- Разрывная функция
- Непонятно, как оптимизировать

Оценка функции потерь

• Возьмем любую гладкую оценку пороговой функции:

$$[M < 0] \le \tilde{L}(M) = \tilde{L}(y\langle w, x \rangle)$$

Примеры оценок

Примеры оценок

- $\tilde{L}(M) = \log_2(1 + \exp(-M))$ логистическая
- $\tilde{L}(M) = \exp(-M)$ экспоненциальная
- $\tilde{L}(M) = \max(0, 1-M)$ кусочно-линейная

Оценка функции потерь

• Возьмем любую гладкую оценку пороговой функции:

$$[M < 0] \le \tilde{L}(M)$$

• Оценим через нее функционал ошибки:

$$Q(a,X) \le \tilde{Q}(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \tilde{L}(M_i)$$

Оценка функции потерь

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [M_i < 0] \le \frac{1}{\ell} \sum_{i=1}^{\ell} \tilde{L}(M_i) \to \min_{a}$$

Минимизируем верхнюю оценку

Надеемся, что доля ошибок тоже уменьшится

Примеры оценок

• $\tilde{L}(a,y) = \ln(1 + \exp(-ya))$ — логистическая

Логистическая функция потерь

$$\tilde{Q}(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log_2(1 + \exp(-y_i \langle w, x_i \rangle))$$

- 1. Выписали индикатор ошибки через отступ
- 2. Заменили пороговую функцию потерь на гладкую функцию

Обучение

- Обучение с помощью любых методов оптимизации

• Например, градиентный спуск:
$$w^{(t)} = w^{(t-1)} + \eta \frac{1}{\ell} \sum_{i=1}^\ell \frac{y_i x_i}{1 + \exp(y_i \, \langle w, x_i \rangle)}$$

• Борьба с переобучением: регуляризация (так же, как в линейной регрессии)

Логистическая регрессия

Логистическая регрессия

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log_2(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

Оценивание вероятностей

•
$$P(y = 1 | x) = \pi(x)$$

Оценивание вероятностей

- Кредитный скоринг
- Стратегия: выдавать кредит только клиентам с $\pi(x) > 0.9$
- 10% невозвращённых кредитов нормально

Оценивание вероятностей

- Баннерная реклама
- $\pi(x)$ вероятность, что пользователь кликнет по рекламе
- c(x) прибыль в случае клика
- $\pi(x)c(x)$ хотим оптимизировать

Оценивание вероятностей

- Прогнозирование оттока клиентов
- Медицинская диагностика
- Поисковое ранжирование (насколько веб-страница соответствует запросу?)

Оценивание вероятностей

- $P(y = 1 | x) = \pi(x)$
- $\pi(x)$ вещественное число
- Классификатор не подходит

Регрессия?

• $\pi(x) \approx \langle w, x \rangle = w_1 x + w_0$

Регрессия?

• $\pi(x) \approx \langle w, x \rangle = w_1 x + w_0$

Отрицательная вероятность о_О

Регрессия?

$$\pi(x) pprox \sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$
Сигмоида

Сигмоида

• $\pi(x) \approx \sigma(\langle w, x \rangle)$

- Как оптимизировать?
- Если $y_i = +1$, то $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\langle w, x_i \rangle \to -\infty$

- Как оптимизировать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

- Как оптимизировать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$\sum_{i=1}^{\ell} \left\{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} \to \max_{w}$$

- Как оптимизировать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$\sum_{i=1}^{\ell} \left\{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} \to \max_{w}$$

- Слишком слабый штраф
- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф = 1

- Как оптимизировать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$\sum_{i=1}^{\ell} \{ [y_i = 1] \log_2 \sigma(\langle w, x_i \rangle) + [y_i = -1] \log_2 (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \max_{w}$$

• Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф $= -\infty$

• Если вспомнить арифметику, то получим эквивалентную задачу:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log_2(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Линейная модель классификации: $a(x) = \mathrm{sign} \langle w, x \rangle$
- Позволяет оценивать вероятности: $\pi(x) = \sigma(\langle w, x \rangle)$
- Обучение: градиентный спуск

SVM

SVM

Метрики качества классификации

Качество классификации

• Доля неправильных ответов:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

Качество классификации

• Доля правильных ответов (accuracy):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Несбалансированные выборки

- Пример:
 - Класс -1: 950 объектов
 - Класс +1: 50 объектов
- a(x) = -1
- Доля правильных ответов: 0.95

Несбалансированные выборки

- q_0 доля объектов самого крупного класса
- Для разумных алгоритмов:

accuracy ∈
$$[q_0, 1]$$

• Если получили большой ассuracy — посмотрите на баланс классов

Цены ошибок

- Пример: кредитный скоринг
- Модель 1:
 - 80 кредитов вернули
 - 20 кредитов не вернули
- Модель 2:
 - 48 кредитов вернули
 - 2 кредита не вернули
- Кто лучше?

Цены ошибок

- Что хуже?
 - Выдать кредит «плохому» клиенту
 - Не выдать кредит «хорошему» клиенту
- Доля верных ответов не учитывает цены ошибок

Матрица ошибок

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Матрица ошибок

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

Точность (precision)

• Можно ли доверять классификатору при a(x) = 1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Точность (precision)

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• precision(a_1, X) = 0.8

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

• precision(a_2, X) = 0.96

Полнота (recall)

• Как много положительных объектов находит классификатор?

$$recall(a, X) = \frac{TP}{TP + FN}$$

Полнота (recall)

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• recall(a_1, X) = 0.8

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

• $recall(a_2, X) = 0.48$

Антифрод

- Классификация транзакций на нормальные и мошеннические
- Высокая точность, низкая полнота:
 - Редко блокируем нормальные транзакции
 - Пропускаем много мошеннических
- Низкая точность, высокая полнота:
 - Часто блокируем нормальные транзакции
 - Редко пропускаем мошеннические

Кредитный скоринг

- Неудачных кредитов должно быть не больше 5%
- Ограничение: $precision(a, X) \ge 0.95$
- Максимизируем полноту

Медицинская диагностика

- Надо найти не менее 80% больных
- Ограничение: $\operatorname{recall}(a, X) \ge 0.8$
- Максимизируем точность

Несбалансированные выборки

- accuracy(a, X) = 0.99
- precision(a, X) = 0.33
- recall(a, X) = 0.1

	y = 1	y = -1
a(x) = 1	10	20
a(x) = -1	90	10000

Подготовка признаков

Важность признаков

• Если признаки масштабированы, то вес характеризует важность признака в модели

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
${\tt lweight}$	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
1cp	-0.29	0.15	-1.87
${\tt gleason}$	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

Квадратичные признаки

- Можно добавлять новые признаки, зависящие от исходных
- Модель может восстанавливать более сложные зависимости
- Пример: квадратичные признаки

[площадь, этаж, число комнат]

• Новые признаки:

[площадь, этаж, число комнат, площадь^2, этаж^2, число комнат^2, площадь* этаж, площадь* число комнат, этаж* число комнат,]

Категориальные признаки

- Пример: город клиента банка
- Три объекта со значениями [Москва, Санкт-Петербург, Москва]
- Закодируем двумя числовыми признаками:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

One-hot-кодирование

- Заводим столько новых признаков, сколько значений у категориального
- Каждый соответствует одному возможному значению
- Единице равен тот, который встретился на данном объекте

One-hot-кодирование

- Пример: предсказать, купит ли пользователь данный товар в интернетмагазине
- Признаки:
 - Идентификатор пользователя
 - Идентификатор товара
 - Идентификатор категории товара
 - Стоимость товара
 - •
- Могут иметь смысл квадратичные признаки
 - например, пользователь + категория товара
- После one-hot кодирования получим миллионы признаков
- Линейные модели способны справиться с такими задачами

Резюме

- Линейные классификаторы разделяют классы гиперплоскостью
- Логистическая регрессия классификация и оценка вероятности
- Качество классификации: доля правильных ответов, точность и полнота
- Квадратичные признаки (и более высокие порядки)
- Категориальные признаки и one-hot-кодирование

На следующей лекции

- Оценивание качества и подбор гиперпараметров
- Кросс-валидация
- Подробнее про точность и полноту
- Качество оценок вероятности: площади под кривыми