

Model evaluation and comparison

Jonathan Dushoff, McMaster University

MMED 2019

► Discuss model types and model goals

- Discuss model types and model goals
- ► Discuss the value of simulation for validating models

- Discuss model types and model goals
- Discuss the value of simulation for validating models
- ► Discuss metrics for evaluating fit

- Discuss model types and model goals
- Discuss the value of simulation for validating models
- Discuss metrics for evaluating fit
 - Put the Goodness of fit test in its place

- Discuss model types and model goals
- Discuss the value of simulation for validating models
- Discuss metrics for evaluating fit
 - Put the Goodness of fit test in its place

► What is my model trying to accomplish?

- ▶ What is my model trying to accomplish?
 - Generating hypotheses

- ▶ What is my model trying to accomplish?
 - Generating hypotheses
 - Evaluating plausibility

- ▶ What is my model trying to accomplish?
 - Generating hypotheses
 - Evaluating plausibility
 - Prediction

- ▶ What is my model trying to accomplish?
 - Generating hypotheses
 - Evaluating plausibility
 - Prediction
 - Extrapolation

- What is my model trying to accomplish?
 - Generating hypotheses
 - Evaluating plausibility
 - Prediction
 - Extrapolation
 - Mechanistic understanding

- ▶ What is my model trying to accomplish?
 - Generating hypotheses
 - Evaluating plausibility
 - Prediction
 - Extrapolation
 - Mechanistic understanding

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation
Goodness of fit
Capturing patterns
Going beyond

Conclusion

Disease thresholds

endemic equilibrium

Effects of clinical immunity

Bistability

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation
Goodness of fit
Capturing patterns
Going beyond

Conclusion

Ptolemy v. Copernicus

Ptolemy v. Copernicus

Ptolemy v. Copernicus

Where will we see cholera cases?

12/51

Where will we see cholera cases?

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation
Goodness of fit
Capturing patterns
Going beyond

Conclusion

Model Validation

▶ Does your fitting algorithm match your *model world*?

Model Validation

▶ Does your fitting algorithm match your *model world*?

► If you use your fitting algorithm on simulations from your model world, then you *know the right answer*!

Model Validation

▶ Does your fitting algorithm match your *model world*?

▶ If you use your fitting algorithm on simulations from your model world, then you *know the right answer*!

- Coverage
- Precision

- Coverage
- Precision
- ► Bias?

- Coverage
- Precision
- ► Bias?
- ► Accuracy?

16/51

- Coverage
- Precision
- ► Bias?
- ► Accuracy?

16/51

► The right answer should be inside your 95% confidence interval 95% of the time

- ➤ The right answer should be inside your 95% confidence interval 95% of the time
 - ► If more, your model is too conservative

- ➤ The right answer should be inside your 95% confidence interval 95% of the time
 - If more, your model is too conservative
 - ▶ If less, your model is invalid

- ➤ The right answer should be inside your 95% confidence interval 95% of the time
 - ▶ If more, your model is too conservative
 - If less, your model is invalid
- ► In many cases it's good to look at the two tails separately:

Coverage

- ➤ The right answer should be inside your 95% confidence interval 95% of the time
 - If more, your model is too conservative
 - If less, your model is invalid
- In many cases it's good to look at the two tails separately:
 - ▶ How often do you overestimate? Underestimate?

Coverage

- ➤ The right answer should be inside your 95% confidence interval 95% of the time
 - ▶ If more, your model is too conservative
 - If less, your model is invalid
- In many cases it's good to look at the two tails separately:
 - How often do you overestimate? Underestimate?

➤ You should aim to make your confidence intervals as narrow as possible

- You should aim to make your confidence intervals as narrow as possible
 - Provide as much information as possible

- You should aim to make your confidence intervals as narrow as possible
 - Provide as much information as possible
- ► As data increases, your precision should increase

- You should aim to make your confidence intervals as narrow as possible
 - Provide as much information as possible
- As data increases, your precision should increase
 - Cls should approach zero width

- You should aim to make your confidence intervals as narrow as possible
 - Provide as much information as possible
- As data increases, your precision should increase
 - Cls should approach zero width

► Nobody wants to be biased

- Nobody wants to be biased
 - ► You shouldn't ignore sources of bias (confounders)

- Nobody wants to be biased
 - You shouldn't ignore sources of bias (confounders)
 - Estimators with good coverage and good precision are asymptotically unbiased

- Nobody wants to be biased
 - You shouldn't ignore sources of bias (confounders)
 - Estimators with good coverage and good precision are asymptotically unbiased
- ▶ Not so clear you need to be absolutely unbiased

- Nobody wants to be biased
 - You shouldn't ignore sources of bias (confounders)
 - Estimators with good coverage and good precision are asymptotically unbiased
- Not so clear you need to be absolutely unbiased
 - ▶ Bias is the difference between the *mean* expected prediction and the true value

- Nobody wants to be biased
 - You shouldn't ignore sources of bias (confounders)
 - Estimators with good coverage and good precision are asymptotically unbiased
- Not so clear you need to be absolutely unbiased
 - ▶ Bias is the difference between the *mean* expected prediction and the true value
- ► Scale dependence

- Nobody wants to be biased
 - You shouldn't ignore sources of bias (confounders)
 - Estimators with good coverage and good precision are asymptotically unbiased
- Not so clear you need to be absolutely unbiased
 - Bias is the difference between the mean expected prediction and the true value
- Scale dependence
 - an unbiased estimate of γ is automatically a biased estimate of D (but not asymptotically biased)

- Nobody wants to be biased
 - You shouldn't ignore sources of bias (confounders)
 - Estimators with good coverage and good precision are asymptotically unbiased
- Not so clear you need to be absolutely unbiased
 - ▶ Bias is the difference between the *mean* expected prediction and the true value
- Scale dependence
 - ▶ an unbiased estimate of γ is automatically a biased estimate of D (but not asymptotically biased)
 - ► Medians (instead of means) can get avoid scale problems

- Nobody wants to be biased
 - You shouldn't ignore sources of bias (confounders)
 - Estimators with good coverage and good precision are asymptotically unbiased
- Not so clear you need to be absolutely unbiased
 - Bias is the difference between the mean expected prediction and the true value
- Scale dependence
 - ▶ an unbiased estimate of γ is automatically a biased estimate of D (but not asymptotically biased)
 - Medians (instead of means) can get avoid scale problems

Accuracy?

Nobody wants to be inaccurate

Accuracy?

- Nobody wants to be inaccurate
- Good coverage and good precision should guarantee good accuracy

Accuracy?

- Nobody wants to be inaccurate
- Good coverage and good precision should guarantee good accuracy

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation

Goodness of fit Capturing patterns Going beyond

Conclusion

▶ Does your model match the real world?

Does your model match the real world?

•

- Does your model match the real world?
 - ► * No!

- Does your model match the real world?
 - ➤ * No!
- How well does your model match the real world?

- Does your model match the real world?
 - ➤ * No!
- How well does your model match the real world?

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation
Goodness of fit
Capturing patterns
Going beyond

Conclusion

Goodness of fit

 Goodness of fit statistics describe how well a model prediction matches observed data

Goodness of fit

- Goodness of fit statistics describe how well a model prediction matches observed data
- Goodness of fit tests attempt to determine whether the observed difference between model and data is statistically significant

Goodness of fit

- Goodness of fit statistics describe how well a model prediction matches observed data
- Goodness of fit tests attempt to determine whether the observed difference between model and data is statistically significant

► A goodness of fit test won't make it true

- A goodness of fit test won't make it true
- ► You can "pass" a goodness of fit test by:

- A goodness of fit test won't make it true
- ➤ You can "pass" a goodness of fit test by:
 - having a good model

- A goodness of fit test won't make it true
- You can "pass" a goodness of fit test by:
 - having a good model
 - making very broad predictions

- A goodness of fit test won't make it true
- You can "pass" a goodness of fit test by:
 - having a good model
 - making very broad predictions
 - having bad data

- A goodness of fit test won't make it true
- You can "pass" a goodness of fit test by:
 - having a good model
 - making very broad predictions
 - having bad data
 - choosing an inappropriate way to compare

- A goodness of fit test won't make it true
- You can "pass" a goodness of fit test by:
 - having a good model
 - making very broad predictions
 - having bad data
 - choosing an inappropriate way to compare
- So why would we do this?

Your model is false!

- A goodness of fit test won't make it true
- You can "pass" a goodness of fit test by:
 - having a good model
 - making very broad predictions
 - having bad data
 - choosing an inappropriate way to compare
- So why would we do this?
- For that matter, why do we use P values at all in biology?

Your model is false!

- A goodness of fit test won't make it true
- You can "pass" a goodness of fit test by:
 - having a good model
 - making very broad predictions
 - having bad data
 - choosing an inappropriate way to compare
- So why would we do this?
- For that matter, why do we use P values at all in biology?

Passing goodness of fit tests

 I can make any model pass a goodness of fit test by broadening the uncertainty

Passing goodness of fit tests

- I can make any model pass a goodness of fit test by broadening the uncertainty
- That doesn't make it a good model

Passing goodness of fit tests

- I can make any model pass a goodness of fit test by broadening the uncertainty
- That doesn't make it a good model

Vitamin study

Never say: A is significant and B isn't, so A > B

- Never say: A is significant and B isn't, so A > B
- ► Instead: Construct a statistic for the hypothesis *A* > *B*

- Never say: A is significant and B isn't, so A > B
- ► **Instead:** Construct a statistic for the hypothesis *A* > *B*
 - May be difficult

- Never say: A is significant and B isn't, so A > B
- ► **Instead:** Construct a statistic for the hypothesis *A* > *B*
 - May be difficult

Low P values

High P values

What does the P value mean?

► Low: you are seeing something clearly

What does the P value mean?

- ► Low: you are seeing something clearly
- ► High: you are seeing something unclearly

What does the P value mean?

- ► Low: you are seeing something clearly
- High: you are seeing something unclearly

► Your model is *not* reality (null hypothesis is false)

- Your model is not reality (null hypothesis is false)
- ► Can we see the difference clearly?

- Your model is not reality (null hypothesis is false)
- ► Can we see the difference clearly?
 - ► If *no*, model may be *good* or *bad*.

- Your model is not reality (null hypothesis is false)
- Can we see the difference clearly?
 - If *no*, model may be *good* or *bad*.
 - We probably can't add any more complexity based on current data

- Your model is not reality (null hypothesis is false)
- Can we see the difference clearly?
 - If no, model may be good or bad.
 - We probably can't add any more complexity based on current data
 - ► If *yes*, model may be *good* or *bad*.

- Your model is not reality (null hypothesis is false)
- Can we see the difference clearly?
 - If no, model may be good or bad.
 - We probably can't add any more complexity based on current data
 - If yes, model may be good or bad.
 - We may be able to add more complexity based on current data

- Your model is not reality (null hypothesis is false)
- Can we see the difference clearly?
 - If no, model may be good or bad.
 - We probably can't add any more complexity based on current data
 - If yes, model may be good or bad.
 - We may be able to add more complexity based on current data
 - But we may not need to

- Your model is not reality (null hypothesis is false)
- Can we see the difference clearly?
 - ▶ If no, model may be good or bad.
 - We probably can't add any more complexity based on current data
 - If yes, model may be good or bad.
 - We may be able to add more complexity based on current data
 - But we may not need to
- Reward and punishment

- Your model is not reality (null hypothesis is false)
- Can we see the difference clearly?
 - ▶ If no, model may be good or bad.
 - We probably can't add any more complexity based on current data
 - If yes, model may be good or bad.
 - We may be able to add more complexity based on current data
 - But we may not need to
- Reward and punishment

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation

Goodness of fit

Capturing patterns

Going beyond

Conclusion

► You can ask:

- You can ask:
 - ▶ Does your model do a reasonable job of capturing the data?

- You can ask:
 - Does your model do a reasonable job of capturing the data?
 - You can use a goodness of fit statistic for this, and not worry about the P value

- You can ask:
 - Does your model do a reasonable job of capturing the data?
 - You can use a goodness of fit statistic for this, and not worry about the P value
 - ► Does your model capture patterns and relationships that you (or other experts) think are important?

- You can ask:
 - Does your model do a reasonable job of capturing the data?
 - You can use a goodness of fit statistic for this, and not worry about the P value
 - Does your model capture patterns and relationships that you (or other experts) think are important?

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation

Goodness of fit Capturing patterns

Going beyond

Conclusion

► Does your model make predictions *outside* the range on which you calibrated it?

- Does your model make predictions outside the range on which you calibrated it?
 - Predicting gravitational shifts in star positions from measurements in Earth laboratories

- Does your model make predictions outside the range on which you calibrated it?
 - Predicting gravitational shifts in star positions from measurements in Earth laboratories
 - Predicting cholera outbreaks in Bangladesh from a model calibrated to Haiti

- Does your model make predictions outside the range on which you calibrated it?
 - Predicting gravitational shifts in star positions from measurements in Earth laboratories
 - Predicting cholera outbreaks in Bangladesh from a model calibrated to Haiti
 - Predicting influenza patterns in 2010 from a model calibrated from 2000–2009

- Does your model make predictions outside the range on which you calibrated it?
 - Predicting gravitational shifts in star positions from measurements in Earth laboratories
 - Predicting cholera outbreaks in Bangladesh from a model calibrated to Haiti
 - Predicting influenza patterns in 2010 from a model calibrated from 2000–2009

Predicting way out of sample

Essentially, all models are wrong, but some are useful.

- Box and Draper (1987), Empirical Model Building ...

► What is **test set** spelled backwards?

- What is test set spelled backwards?
- ► Hold some data out while fitting your model

- What is test set spelled backwards?
- ▶ Hold some data out while fitting your model
- Or just pretend to do this as an evaluation method

- What is test set spelled backwards?
- Hold some data out while fitting your model
- Or just pretend to do this as an evaluation method
 - In other words, test what would happen under various withholding scenarios

- What is test set spelled backwards?
- Hold some data out while fitting your model
- Or just pretend to do this as an evaluation method
 - In other words, test what would happen under various withholding scenarios
 - This can get very elaborate, and we should probably do it more

- What is test set spelled backwards?
- Hold some data out while fitting your model
- Or just pretend to do this as an evaluation method
 - In other words, test what would happen under various withholding scenarios
 - This can get very elaborate, and we should probably do it more

► The model you're *fitting* is probably pretty simple

- ► The model you're *fitting* is probably pretty simple
- ▶ But you can *simulate* very complicated models, indeed

- ► The model you're *fitting* is probably pretty simple
- ▶ But you can *simulate* very complicated models, indeed

► How well can you do? Which details are important?

- ▶ The model you're *fitting* is probably pretty simple
- ▶ But you can *simulate* very complicated models, indeed

How well can you do? Which details are important?

Generating hypotheses

Generating hypotheses

Testing hypotheses

Testing hypotheses

Testing hypotheses

Hard questions

Answers are not always easy

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation
Goodness of fit
Capturing patterns
Going beyond

Conclusion

Dynamic models

Clarify thinking

- Clarify thinking
 - What are our assumptions, what else do we need to know?

Dynamic models

- Clarify thinking
 - What are our assumptions, what else do we need to know?
- ▶ Understand outcomes

Dynamic models

- Clarify thinking
 - What are our assumptions, what else do we need to know?
- Understand outcomes
 - Can heterogeneity explain the time course of HIV epidemics?

- Clarify thinking
 - What are our assumptions, what else do we need to know?
- Understand outcomes
 - Can heterogeneity explain the time course of HIV epidemics?
 - ► Is it possible that MDA could break the cycle of malaria transmission in some areas?

Dynamic models

- Clarify thinking
 - What are our assumptions, what else do we need to know?
- Understand outcomes
 - Can heterogeneity explain the time course of HIV epidemics?
 - ▶ Is it possible that MDA could break the cycle of malaria transmission in some areas?
- Predict outcomes

- Clarify thinking
 - What are our assumptions, what else do we need to know?
- Understand outcomes
 - Can heterogeneity explain the time course of HIV epidemics?
 - Is it possible that MDA could break the cycle of malaria transmission in some areas?
- Predict outcomes
 - What is the potential for a hepatitis A outbreak in Cape Town?

- Clarify thinking
 - What are our assumptions, what else do we need to know?
- Understand outcomes
 - Can heterogeneity explain the time course of HIV epidemics?
 - Is it possible that MDA could break the cycle of malaria transmission in some areas?
- Predict outcomes
 - What is the potential for a hepatitis A outbreak in Cape Town?
 - What might happen if I improve testing-and-treatment outreach in Jamaica?

- Clarify thinking
 - What are our assumptions, what else do we need to know?
- Understand outcomes
 - Can heterogeneity explain the time course of HIV epidemics?
 - Is it possible that MDA could break the cycle of malaria transmission in some areas?
- Predict outcomes
 - What is the potential for a hepatitis A outbreak in Cape Town?
 - What might happen if I improve testing-and-treatment outreach in Jamaica?
- Find new mechanisms

- Clarify thinking
 - What are our assumptions, what else do we need to know?
- Understand outcomes
 - Can heterogeneity explain the time course of HIV epidemics?
 - Is it possible that MDA could break the cycle of malaria transmission in some areas?
- Predict outcomes
 - What is the potential for a hepatitis A outbreak in Cape Town?
 - What might happen if I improve testing-and-treatment outreach in Jamaica?
- Find new mechanisms
 - Why can't I explain my data? What haven't I thought of?

- Clarify thinking
 - What are our assumptions, what else do we need to know?
- Understand outcomes
 - Can heterogeneity explain the time course of HIV epidemics?
 - Is it possible that MDA could break the cycle of malaria transmission in some areas?
- Predict outcomes
 - What is the potential for a hepatitis A outbreak in Cape Town?
 - What might happen if I improve testing-and-treatment outreach in Jamaica?
- Find new mechanisms
 - Why can't I explain my data? What haven't I thought of?

Evaluation

► Validation (inside your model world)

- Validation (inside your model world)
 - ▶ Does my fitting method work (assuming my model is right)?

- Validation (inside your model world)
 - Does my fitting method work (assuming my model is right)?
- ► Inspection (compare patterns)

Evaluation

- Validation (inside your model world)
 - Does my fitting method work (assuming my model is right)?
- Inspection (compare patterns)
- Prediction (and other out-of-sample comparison)

- Validation (inside your model world)
 - Does my fitting method work (assuming my model is right)?
- Inspection (compare patterns)
- Prediction (and other out-of-sample comparison)
 - Can my model predict things I haven't told it yet?

- Validation (inside your model world)
 - Does my fitting method work (assuming my model is right)?
- Inspection (compare patterns)
- Prediction (and other out-of-sample comparison)
 - Can my model predict things I haven't told it yet?
- Generate and test mechanistic hypotheses

- Validation (inside your model world)
 - Does my fitting method work (assuming my model is right)?
- Inspection (compare patterns)
- Prediction (and other out-of-sample comparison)
 - Can my model predict things I haven't told it yet?
- Generate and test mechanistic hypotheses

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at http://creativecommons.org/licenses/by-nc/3.0/

© 2013–2019, International Clinics on Infectious Disease Dynamics and Data

Title: Model evaluation and comparison
Attribution: Jonathan Dushoff, McMaster University, MMED 2019

Source URL: https://figshare.com/collections/International_ Clinics_on_Infectious_Disease_Dynamics_and_Data/3788224 For further information please contact admin@ici3d.org.

