

Lecture 1

Alt. Representation, CSE250 Review, IV Characteristics

Prepared By:

Shadman Shahid (SHD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: shadman9085@gmail.com

Alternative Circuit Representation: Line diagrams

Steps to decompose circuits to line diagram

- 1. Set a ground so that number of **floating voltage** sources are minimized.
- 2. Detach the ground
- 3. Convert the non-floating voltage sources (current sources) into:
 - Arrow : (→) Fixed/Constant voltage source
 - Open circle dot: (-0) Input/Output node voltage (may or may not be a source)
 - Filled circle dot: (- Known node voltage (may or may not be a source)
- 4. Keep passive elements as they are.

Floating voltage sources:

Voltage sources which are **not connected the ground** terminal. In the diagram, the **10 V** voltage source is floating

30 V

Line diagrams: Example 1

Line diagrams: Example 2

More Examples

Difficulty: 2/5

Difficulty: 3/5

Example: 2

Example: 3

More Examples

Difficulty: 4/5

Example: 4

Step – (4) Make all the active elements (dc/ac type, voltage/current sources) into single terminals (arrows/circles) using the voltages you wrote as much as you can [THERE MIGHT BE CASES WHERE YOU CAN'T DO THAT]

The fundamentals ...

Ohm's Law -

• the voltage v across a resistor is directly proportional to the current i flowing

through the resistor (R)

$$v \propto i$$
 $v = iR$

KVL: Kirchhoff's voltage law

The <u>algebraic sum</u> of all <u>voltages</u> around a closed path (or loop) is zero.

$$-v_1 + v_2 + v_3 - v_4 + v_5 = 0$$

$$v_2 + v_3 + v_5 = v_1 + v_4$$

Sum of voltage drops = Sum of voltage rises

KVL: Kirchhoff's voltage law

$$-V_{ab} + V_1 + V_2 + V_3 = 0$$

$$V_{ab} = V_1 + V_2 + V_3$$

Equivalent Circuits

KVL – Example 1

Find I and V_{ab} in the circuit

Solution:

KVL

$$-30 + 3I - 10 + 5I + 8 = 0$$

$$I = \frac{32}{8}A = 4A$$

KVL

$$-V_{ab} + 5I + 8 = 0$$

$$V_{ab} = 28 \text{ V}$$

Tip: If you find resistance values in $k\Omega$ instead of Ω , don't convert the $k\Omega$ values to Ω . Just find currents in mA instead of A.

KVL – Example 2

Find v_1, v_2, v_3, i_1, i_2 and i_3 in the circuit

Solution:

KVL in first loop

$$-5 + 2\mathbf{i_1} + 8(\mathbf{i_1} - \mathbf{i_3}) = 0$$

$$10i_1 - 8i_3 = 5$$

KVL in second loop

$$-8(\mathbf{i_1} - \mathbf{i_3}) + 4\mathbf{i_3} - 3 = 0$$

$$-8i_1 + 12i_3 = 3$$

Solving:

$$i_1 = 1.5 \text{ mA}$$
 $v_1 = 3 \text{ V}$
 $i_3 = 1.25 \text{ mA}$ $v_2 = 2 \text{ V}$
 $i_2 = i_1 - i_3 = 0.25 \text{ mA}$ $v_3 = 5 \text{ V}$

Tip: If you find resistance values in $\mathbf{k}\Omega$ instead of Ω , don't convert the $\mathbf{k}\Omega$ values to Ω . Just find currents in $\mathbf{m}\mathbf{A}$ instead of \mathbf{A} .

KCL: Kirchoff's Current Law

The <u>algebraic sum</u> of the <u>currents</u> entering a node (closed boundary)

is equal to the sum of the currents leaving the node.

$$i_1 + (-i_2) + i_3 + i_4 + (-i_5) = 0$$

Current Entering node: Positive

Current Exiting node: Negative

Or vice versa...

KCL- Example 1

Find v_1, v_2, v_3, i_1, i_2 and i_3 in the circuit

Solution:

KCL in node v_a . (PS: $v_a = v_2$)

$$\frac{5 - \mathbf{v_2}}{2} - \frac{\mathbf{v_2} - (-3)}{4} - \frac{\mathbf{v_2} - 0}{8} = 0$$

$$v_2\left(-\frac{1}{2} - \frac{1}{4} - \frac{1}{8}\right) = -\left(\frac{5}{2} - \frac{3}{4}\right)$$

$$v_2 = \frac{7}{4} \cdot \frac{8}{7} \text{ V} = 2 \text{ V}$$
 $v_1 = 5 - v_2 = 3 \text{ V}$
 $v_3 = v_2 - (-3) = 5 \text{ V}$

Series Resistors and Voltage Division

The **equivalent resistance** of any number of resistors **connected in series** is the <u>sum of the individual resistances</u>.

Principle of voltage division

Source voltage v - is divided among the resistors in <u>direct proportion to their resistances</u>; the larger the resistance, the larger the voltage drop.

$$v_1 = \frac{R_1}{R_1 + R_2} v$$
 $v_2 = \frac{R_2}{R_1 + R_2} v$

Line diagram: Example 3

$$v_{2} = \frac{R_{2}}{R_{1} + R_{2}} v \left\{ \begin{cases} R_{1} \\ R_{2} \end{cases} \right\} \frac{R_{1}}{R_{1} + R_{2}} v$$

Line diagram: Example 3

KVL (acts along a line instead of a loop)

$$\mathbf{v} - iR_1 - iR_2 = 0$$

Parallel Resistors and Current Division

The **equivalent resistance** of any number of resistors **connected** in **parallel** is the <u>inverse</u> of the <u>sum</u> of the individual **conductances**.

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_N}$$

$$\rightarrow R_{eq}$$

$$R_1 \geqslant R_2 \geqslant R_3 \geqslant R_3 \geqslant R_N$$

Simplification for the case when $R_1 = R_2 = R_3 \cdots = R_N$

$$R_{eq} = \frac{R_1}{N}$$

Parallel Resistors and Current Division

The **equivalent resistance** of any number of resistors **connected** in **parallel** is the <u>inverse</u> of the <u>sum</u> of the individual **conductances**.

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \qquad R_{eq} = R_1 || R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

Simplification for the case when $R_1 = R_2$

$$R_{eq} = \frac{R_1}{2}$$

Parallel Resistors and Current Division

The **equivalent resistance** of any number of resistors **connected** in **parallel** is the <u>inverse</u> of the <u>sum</u> of the individual **conductances**.

Principle of current division

Source current *i* - is divided among the resistors in <u>direct inverse</u> proportion to their resistances; the larger the resistance, the larger the voltage drop.

$$i_1 = \frac{1/R_1}{1/R_1 + 1/R_2}i$$
 $i_2 = \frac{1/R_2}{1/R_1 + 1/R_2}i$

Line diagrams: Example 4

Practice Problem 1

For the circuit, find $\left| \frac{V_o}{V_s} \right|$ in terms of α , R_1 , R_2 , R_3 and R_4 .

If $R_1 = R_2 = R_3 = R_4$ what value of α will produce $\left| \frac{V_o}{V_S} \right| = 10$?

Solution:

Ohm's Law across $R_1 + R_2$.

$$I_O = \frac{V_S}{R_1 + R_2}$$

$$i = -\alpha I_{o}$$

Voltage across Parallel Resistors R_3 , R_4

$$V_O = i(\mathbf{R_3}||\mathbf{R_4}) = -\frac{\alpha V_S}{R_1 + R_2} \cdot \frac{R_3 R_4}{R_3 + R_4}$$

$$\left|\frac{V_o}{V_s}\right| = \frac{\alpha}{R_1 + R_2} \cdot \frac{R_3 R_4}{R_3 + R_4}$$

Example 1- Nodal Analysis

Example 1- Nodal Analysis

$$v_1\left(\frac{1}{4} + \frac{1}{6}\right) + (v_1 + 5)\left(\frac{1}{2} + \frac{1}{8}\right) - 10\left(\frac{1}{2} + \frac{1}{4}\right)$$

Example 1- Nodal Analysis

$$v_1\left(\frac{1}{4} + \frac{1}{6}\right) + (v_1 + 5)\left(\frac{1}{2} + \frac{1}{8}\right) - 10\left(\frac{1}{2} + \frac{1}{4}\right) = 0$$

Example 2- Nodal Analysis – Home Task 1

Find the two node v_1 and v_3 equations!

KCL at node v_o

$$\frac{0.6 - 0.5}{5} = \frac{(0.5 - 0.7) - (-0.5)}{10} + I_1$$

$$I_1 = -0.01 \text{ mA}$$

KCL at node v_o

$$\frac{0.6 - 0.5}{5} = \frac{(0.5 - 0.7) - (-0.5)}{10} + I_1$$

$$I_1 = -0.01 \text{ mA}$$

KCL at node
$$\frac{v_i}{2 - v_i} = \frac{v_i - v_o}{2} + \frac{v_i}{200}$$

$$\frac{301}{200}v_i - \frac{1}{2}v_o = 2$$

KCL at node
$$\frac{v_o}{2}$$
 $\frac{v_i - v_o}{2} + \frac{Av_i - v_o}{0.1} = 0$

$$(2 \times 10^6 + 0.5)v_i - 10.5v_o = 0$$

$$A = 2 \times 10^5$$

KCL at node
$$v_i$$

$$\frac{0 - v_i}{5} = \frac{v_i - v_o}{40} + \frac{v_i - 1}{200}$$

$$\frac{23}{100}v_i - \frac{1}{40}v_o = \frac{1}{200}$$

KCL at node v_o

$$\frac{v_i - v_o}{40} + \frac{Av_i - v_o}{0.1} = \frac{v_o}{20}$$

 $\frac{40 \text{ kJ2}}{777}$ $\frac{5 \text{ kJ2}}{200 \text{ kJ2}}$ $\frac{1000 \text{ J2}}{400 \text{ kJ2}}$

$$(2 \times 10^6 + 0.025)v_i - 10.075v_o = 0$$

Example 6 – Home Task 2

For $\emph{\textbf{R}}=100~\Omega$, $\emph{\textbf{R}}_{\emph{\textbf{L}}}=10~\mathrm{k}\Omega$, $\emph{\textbf{r}}_{\emph{\textbf{Z}}}=20~\Omega$, $\emph{\textbf{V}}_{\emph{\textbf{Z}}\emph{\textbf{0}}}=3~\mathrm{V}$, and $\emph{\textbf{I}}_{\emph{\textbf{Z}}}=1~\mathrm{mA}$.

- a. Find V_{o}
- b. Find I_L
- c. Find I
- d. Find V^+

