CNT3004 - Computer Network Concepts

Dr. C. Tidwell, Fall 2020

Chapter 9 Intro to Data-Link Layer

Chapter 9: Outline

9.1 INTRODUCTION

9.2 LINK-LAYER ADDRESSING

Chapter 9: Objectives

- The first section introduces the data-link layer.
 - It starts with defining the concept of links and nodes.
 - The section then lists and briefly describes the services provided by the data-link layer.
 - It next defines two categories of links: point-to-point and broadcast links.
 - The section finally defines two sub-layers at the data-link layer that will be elaborated on in the next few chapters.
- The second section discusses link-layer addressing.
 - It first explains the rationale behind the existence of an addressing mechanism at the data-link layer.
 - It then describes three types of link-layer addresses.
 - The section discusses the Address Resolution Protocol (ARP), which maps the addresses at the network layer to addresses at the data-link layer.

9.1.1 Nodes and Links

- Communication at the data-link layer is node-tonode.
- A data unit from one point in the Internet needs to pass through many networks (LANs and WANs) to reach another point.
 - Theses LANs and WANs are connected by routers. It is customary to refer to the two end hosts and the routers as nodes and the networks in between as links.
 - Figure 9.2 is a simple representation of links and nodes when the path of the data unit is only six nodes.

Figure 9.2: Nodes and Links

a. A small part of the Internet

9.1.2 Services

- The data-link layer is located between the physical and the network layers.
- The data-link layer provides services to the network layer; it receives services from the physical layer.
- Let us discuss services provided by the data-link layer.

Figure 9.3: A communication with only three nodes

9.1.2 Services (continued)

Framing

Encapsulates the datagram to pass to the network layer.

Flow Control

 The speed of data flow needs to be determined to accommodate both sender and receiver.

Error Control

Detects errors and either corrected or re-transmitted.

Congestion Control

 Normally not handled at this layer, usually at the network and transport layer.

9.1.3 Two Categories of Links

- Although two nodes are physically connected by a transmission medium such as cable or air, we need to remember that the data-link layer controls how the medium is used.
- We can have a data-link layer that uses the whole capacity of the medium; we can also have a datalink layer that uses only part of the capacity of the link.
- In other words, we can have a point-to-point link or a broadcast link.

9.1.4 Two Sublayers

- To better understand the functionality of and the services provided by the link layer, we can divide the data-link layer into two sublayers:
 - data link control (DLC) and
 - media access control (MAC).
- This is not unusual because, as we will see in later chapters, LAN protocols actually use the same strategy.

Figure 9.4: Dividing the data-link layer into two sublayers

Data link control sublayer

Media access control sublayer

a. Data-link layer of a broadcast link

b. Data-link layer of a point-to-point link

9-2 LINK-LAYER ADDRESSING

- Later, we will discuss IP addresses as the identifiers at the network layer.
- However, in a internetwork such as the Internet we cannot make a datagram reach its destination using only IP addresses.
- The source and destination IP addresses define the two ends but cannot define which links the packet should pass through.

Figure 9.5: IP addresses and link-layer addresses in a small internet

9.2.2 ARP

- Anytime a node has an IP datagram to send to another node in a link, it has the IP address of the receiving node.
- However, the IP address of the next node is not helpful in moving a frame through a link; we need the link-layer address of the next node.
- This is the time when the Address Resolution Protocol (ARP) becomes helpful.

Figure 9.6: Position of ARP in TCP/IP protocol suite

Figure 9.7: ARP operation

a. ARP request is broadcast

Figure 9.8: ARP packet

Hardware: LAN or WAN protocol

Protocol: Network-layer protocol

Hardware Type		Protocol Type
Hardware length	Protocol length	Operation Request:1, Reply:2
Source hardware address		
Source protocol address		
Destination hardware address (Empty in request)		
Destination protocol address		

A host with IP address N1 and MAC address L1 has a packet to send to another host with IP address N2 and physical address L2 (which is unknown to the first host). The two hosts are on the same network. Figure 9.9 shows the ARP request and response messages.

Figure 9.9: Example 9.4

Figure 9.10: The internet for our example

Figure 9.11: Flow of packets at Alice's computer

Figure 9.12: Flow of activities at router R1

Figure 9.13: Activities at router R2

Figure 9.14: Activities at Bob's site

SUMMARY

- •The data link layer is the protocol layer in a program that handles the moving of data into and out of a physical link in a network.
- •The data link layer is Layer 2 in the Open Systems Interconnection (OSI) architecture model for a set of telecommunication protocols.
- Addressing at this layer is the MAC and DLC.
- •The Address Resolution Protocol is used by the network layer to determine the link layer (MAC) address of the destination node.