AXIS, ANGLE & Rotation Matrix

BYIII

1 Composition of Rotation Matrix

Problem: Given rotation axis, a rotation angle, generate the corresponding rotation atrix.

Figure 1: Rotating a vector P about the axis U

Solution

As show in Figure 1, the axis **U** goes through the origin, a vector **P** rotates about **U** to **P**'. Let θ denotes the rotation angle, and let ϕ denotes the angle between **U** and **P**. From **U** we can define a plane $S(\text{whose normal is }\mathbf{U})$. Now we have:

$$\mathbf{U} = [u_x, u_y, u_z]^T, u_x^2 + u_y^2 + u_z^2 = 1, \mathbf{P} = [x, y, z]^T, \mathbf{P}' = [x', y', z']^T.$$

Project **P** to **U** and S, we can get P_1 and P_2 :

$$\begin{split} \mathbf{P} &= \mathbf{P}_1 + \mathbf{P}_2, \\ \mathbf{P}_1 &= (\mathbf{P} \cdot \mathbf{U})\mathbf{U}, \\ |\mathbf{P}_1| &= |\mathbf{P}|\cos\phi, \\ \mathbf{P}_2 &= \mathbf{P} - \mathbf{P}_1, \\ |\mathbf{P}_2| &= |\mathbf{P}|\sin\phi. \end{split}$$

Notice that rotating \mathbf{P} is equivalent to firstly rotating \mathbf{P}_2 a θ angle to \mathbf{P}_2' and then combining \mathbf{P}_1 and \mathbf{P}_2' to form \mathbf{P}' . So, next step is to determine \mathbf{P}_2' .

To represent \mathbf{P}_2' , we first to establish some frame for plane S. It is convenient to choose vector \mathbf{P}_2 be the *unit vector*(though, maybe $|\mathbf{P}_2| \neq 1$) of the X axis, and some other vector \mathbf{P}_3 with the same length of \mathbf{P}_2 as the Y axis of plane S, which satisfies

$$\begin{aligned} \mathbf{P}_2 \cdot \mathbf{P}_3 &= 0, \\ |\mathbf{P}_2| &= |\mathbf{P}_2'| = |\mathbf{P}_3|. \end{aligned}$$

Now, according to the rotation matrix in 2D plane, we can write:

$$\mathbf{P}_2' = \mathbf{P}_2 \cos \theta + \mathbf{P}_3 \sin \theta.$$

Then, we determine P_3 . It is true that P_3 is parallel to $P \times U$, and

$$|\mathbf{P} \times \mathbf{U}| = |\mathbf{P}| \cdot 1 \cdot \sin \phi = |\mathbf{P}_2| = |\mathbf{P}_3|.$$

So we can get:

$$\mathbf{P}_3 = \mathbf{P} \times \mathbf{U}$$
.

Combining above:

$$\mathbf{P}' = \mathbf{P}_1 + \mathbf{P}_2'$$

$$= (\mathbf{P} \cdot \mathbf{U})\mathbf{U} + [\mathbf{P} - (\mathbf{P} \cdot \mathbf{U})\mathbf{U}]\cos\theta + \mathbf{P} \times \mathbf{U}\sin\theta$$

$$= \mathbf{P}\cos\theta + (\mathbf{P} \cdot \mathbf{U})\mathbf{U}(1 - \cos\theta) + \mathbf{P} \times \mathbf{U}\sin\theta$$

2 Decomposition