

Spatio-temporal downscaling of temperature and VPD

Example project - Proseminar in Geocomputation and Earth Observation

Motivation

nature ecology & evolution

Explore content > About the journal > Publish with us >

nature > nature ecology & evolution > perspectives > article

Perspective | Published: 18 September 2017

Shifting from a fertilization-dominated to a warming-dominated period

Josep Peñuelas ⊡, Philippe Ciais, Josep G. Canadell, Ivan A. Janssens, Marcos Fernández-Martínez, Jofre Carnicer, Michael Obersteiner, Shilong Piao, Robert Vautard & Jordi Sardans

Nature Ecology & Evolution 1, 1438-1445 (2017) Cite this article

4693 Accesses | 143 Citations | 126 Altmetric | Metrics

Motivation

nature ecology & evolution Explore content ∨ About the journal ∨ Publish with us ∨ nature > nature ecology & evolution > perspectives > article Perspective | Published: 18 September 2017 Shifting from a fertilization-dominated to a warming-dominated period Josep Peñuelas ⋈ Philippe Ciais, Josep G. Canadell, Ivan A. Janssens, Marcos Fernández-Martínez, Jofre Carnicer, Michael Obersteiner, Shilong Piao, Robert Vautard & Jordi Sardans Nature Ecology & Evolution 1, 1438–1445 (2017) | Cite this article 4693 Accesses | 143 Citations | 126 Altmetric | Metrics

Motivation

Shifting from a fertilization-dominated to a warming-dominated period

Science

"the impacts of VPD on vegetation growth should be adequately considered to assess ecosystem responses to future climate conditions."

SCIENCE - 11 Dec 2020 - Vol 370, Issue 6522 - pp. 1295-1300 - DOI: 10.1126/science.abb7772

First release papers Archive

Project goal

Create a dataset of daily temperature and VPD at high spatial resolution

Average January temperature 1970-2000 (WorldClim)

WATCH-WFDEI

WATCH-WFDEI

1st January 1979 temperature (WATCH-WFDEI) Temperature (deg C) 40 -20 0 20

WorldClim

WATCH-WFDEI

WorldClim

WATCH-WFDEI

Humidity (q)

 P_{air}

WorldClim

FLUXNET2015

$$VPD = VP_{saturated} - VP_{air}$$

$$VPD = VP_{\text{saturated}} - VP_{\text{air}} \qquad \text{WorldClim \& WATCH-WFDEI}$$

$$VP_{\text{saturated}}(T) = 611 \exp\left(\frac{17.27 \ T}{T + 273.3}\right)$$

$$VP_{\text{saturated}}(T) = 611 \exp\left(\frac{17.27 T}{T + 273.3}\right)$$

 $VPD = VP_{\text{saturated}} - VP_{\text{air}} \qquad \text{WorldClim \& WATCH-WFDEI}$ $VP_{\text{saturated}}(T) = 611 \exp\left(\frac{17.27 \ T}{T + 273.3}\right)$

WorldClim

$$VP_{air} = 1.608 \ q \ P_{air}$$
 WATCH-WFDEI

Evaluation

Swiss FLUXNET sites

Evaluation

Swiss FLUXNET sites

Conclusion

- **T** downscaling is appropriate
- VPD downscaling needs improvement
 - 1. Downscale T, q and P_{air} ; then compute VPD
 - 2. Use a regression method (on temp, elev...) instead of de-biasing

Implementation

Repository structure

Spatial downscaling of meteorological variables

Repository structure

All of the code necessary to reproduce the results in this project is available in the repository. Public datasets downloaded from the web are kept separately because of their size.

```
    README.md

                          <- The top-level README includes instructions to use this reposito [ ]
                              and the project proposal for the AGDS Proseminar

    agds_proseminar_example.Rproj

                                  <- R project file
renv.lock
                          <- file to keep package versions for reproducibility
                           <- folder for data downloaded from the web, unprocessed
– data-raw/
                              (this folder is never pushed, see .gitignore)
  - wfdei_weedon_2014/
  - worldclim fick 2017/
  fluxnet_pastorello_2020/
                          <- folder for data produced by the repository
- data
— analysis
                           <- R markdown scripts used for the development of the report,
                              includes intermediate data analyses
vignettes
                          <- R markdown files
                          <- main file containing the submitted report
  - report.Rmd
  - slides.Rmd
                          <- file creating presentation slides
  - references.bib
                          <- bibliography file
                           <- bash code for this project, contains scripts for data download
— src
                           <- R functions used in the project, contains one function per script
```

Repository structure

Project proposal

Report

Spatial downscaling of meteorological variables

Repository structure

All of the code necessary to reproduce the results in this project is available in the repository. Public datasets downloaded from the web are kept separately because of their size.

Questions?