CS-GY 6033: Homework #6

Due on December 6, 2023

Professor Yi-Jen Chiang

Runze Li

Nxxxxxxx rl50xx@nyu.edu Tzu-Yi Chang

Nxxxxxxx tc39xx@nyu.edu

December 5, 2023

Jiayi Li

Nxxxxxxx jl156xx@nyu.edu

1. O Sort the jobs by increasing deadline. That is, the new set of n jobs
$O(nlgn)$ $a_1, a_2, a_3,, a_n$ are ordered by deadline: $d_1 \le d_2 \le d_3 \le \le d_n$.
② Creat a 2D array dp, where dp[i][j] represents the maximum profit we
can make from jobs 1,, i in time j.
3 Recursively compute dp[i][j] for i from 0 to n and j from 0 to T.
$dp(i)(j) = \begin{cases} 0, & if i = 0 \text{ or } j = 0 \end{cases}$
$(nT) \qquad \max(dp(i-i)(j), dp(i-i)(j-t_i) + p_i), if j-t_i > 0 \text{ and } j \leq d_i$ $dp(i-i)(j), else$
[dp[i-1][j], else
@ Return dp[n][T], where dp[n][T] represents the maximum profit we
can get from 1,, n jobs in time T.
Since the recursive computation of the 21) array costs O(nT) time,
the algorithm runs in O(nT) worst-case time.

2. 1) Compute Xi (the length of Xi) for each i=1,2,,m+1. With the
provided location of m cuts $(M_i, for i=1,2,, m)$,
$D(m) X_{\bar{i}} = \{M_{\bar{i}} - M_{\bar{i}-1}, \bar{i} \neq \bar{i} > 1 \}$ For example, $M = [3, 10]$
M_1 , if $i=1$ and $n=20$, we get
M_1 , if $i=1$ and $n=20$, we get $n-M_m$, if $i=m+1$ $ X =[3,7,10]$
2) Create a 2D array dp, where dp[i][j] represents the minimum cost
of breaking the substring XiXi+1 ··· Xj-1Xj into pieces.
3 Define the relation $dp[i][j] = \{ M_i, if i=j \}$
mīn(dp[i][k)+dp[k+1][j])
where $k=i, i+1, \dots, j-1$, else
4) Our goal is to determine dp[1][m+1], which represents the minimum
cost of breaking the string X into m+1 pieces X1, X2,, Xm+1.
Recursively perform the algorithm to compute dp[i][j]. For example,
dp[1][m+1] = min (dp[1][1) + dp[2][m+1), dp[1][2)+dp[3][m+1],,
$d\rho[1][m] + d\rho[m+1][m+1])$
The bottom-up algorithm may be as follow:
for I from 1 to m+1:
dp[i][i] = Xi
for len from 1 to m =
for i from 1 to m-len+1:
$j = i + len (j \leq m+1)$
$d_{\mathcal{O}}(\tilde{i})(\tilde{j}) = +\infty$

for k from i to j-1: [dp[i][j]=min(dp[i][j], dp[i][k]+dp[k+1][j]) Since there are at most m² possible costs to determine, and m times of comparison is performed to find the minimum value, this algorithm runs in O(m3) worst-case time.

3. O Starting from vertex s, we perform a DFS on G and get the
O(V4E) finish time of some vertices, forming the topological sorting
order. Note that not all vertices are reachable from S, so
the topological order may exclude some vertices in V.
2) Initialize the two entries, $d(v)$ and prev(v) as below:
$O(V)$ $d(v) = \begin{cases} 0, & \text{if } v = S \end{cases}$ prev $(v) = \begin{cases} NULL, & \text{if } v = S \end{cases}$
O(V) $d(v) = 0$, if $v = S$ prev $(v) = NULL$, if $v = S$ undefined, else undefined, else
3) Iterate through the vertices in topological order. For each vertex
u, update all vertices v that has an incoming edge from u
where $d(v) = \{ d(u) + \omega(e) \text{ where } e = (u, v), \text{ if } d(v) = \text{undefined} \}$
(u) = (u,v), $(u) + (u) + (u) = (u,v)$, else
$prev(v) = \{ u , if prev(v) = undefined or d(w+w(e)>d(v)) \}$
(prev(v), else
As DFS and the iteration may go through each vertex in V and each
edge in E, the worst-case running time is D(V+E).

4. (a) Consider all possible relationships of the two intervals [s,, s2] and [h,, h2]
(assuming that $S_1 \leq h_1$), and prove that $ S_1 - h_1 + S_2 - h_2 \leq S_1 - h_2 + S_2 - h_1 $.
$\mathbb{O} S_1 \leq h_1 \leq S_2 \leq h_2$:
$ s_1-h_1 + s_2-h_2 \leq s_1-h_2 + s_2-h_1 $
$\Rightarrow h_1 - s_1 + h_2 - s_2 \leq h_2 - s_1 + s_2 - h_1$
$\Rightarrow h_1 \leq S_2$: True!
2) S1 = S2 = h1 = h2:
$ s_1-h_1 + s_2-h_2 \leq s_1-h_2 + s_2-h_1 $
$\Rightarrow f_1 - g_1 + f_2 - g_2 \leq f_2 - g_1 + f_1 - g_2 $
⇒ 0 ≤ 0 : True!
3 Si < hi < h2 < S2 :
$ s_1-h_1 + s_2-h_2 \leq s_1-h_2 + s_2-h_1 $
$\Rightarrow h_1 - \beta_1 + \beta_2 - h_2 \leq h_2 - \beta_1 + \beta_2 - h_1$
$\Rightarrow h_1 \leq h_2$: True!
For all possible cases, we proved that there is no advantage to "cross match".
(b) 10 Sort the m pairs of skis and n skiers respectively in increasing
O(nligh) order of heights. Since m=n, the running time for each sorting
costs O(nlogn) worst-case time.
3 According to the property we proved in part (a), assigning skis to
skiers in order is the best solution that we can achieve. This
is because any cross matching always leads to a bigger difference
of the heights, thus failing to minimize the resulting sum.
u u

· · · · · · · · · · · · · · · · · · ·
In this case where m=n, only the sorting on both skis and skiers
matters, so the running time is O(nlogn) worst-case time.
(C) o Sort the m pairs of skis and n skiers respectively in increasing
order of heights.
② Create a 2D array dp, where dp[i][j] represents the minimum sum
of differences we can get with matching the first i pairs of skis and
j skiers, note that every skier should get one pair of skis.
3 Compute dp recursively for I from I to m and J from I to n, when
$\mathcal{L}(mn)$ $dp(i)(j) = \begin{cases} dp(i-1)(j-1) + s_i-h_j , if i=j \end{cases}$
min(dp[i-1][j], dp[i-1][j-1]+ si-hj), if i>j
(+∞, else (i <j are="" enough="" for="" not="" skiers)<="" skis="" td="" ≥=""></j>
@ Return dp[m][n] as the minimum sum of the absolute differences of the
heights for matching all skiers and their skis.
In this dynamic programming algorithm, the sorting may cost O(nlogh)
and O(mlogm), while the computation of dp costs O(mn). Since we
assume that $m = \Theta(n)$, the overall algorithm runs in $O(mn)$ worst-case
U

time.