¿Cuál es la clausura de A, B y C respecto de F1? ¿Y con respecto a F2?

Recordemos

$$R = (A, B, C, D, E, F)$$
 y $FD1 = \{A \rightarrow BD \mid B \rightarrow CD, AC \rightarrow E\}$

Reglas de Armstrong

- ▶ Reflexividad: Si $X \supset Y \Rightarrow X \rightarrow Y$
- ▶ Aumentatividad: $X \to Y \Rightarrow \forall Z, XZ \to YZ$ Reglas
- ▶ Transitividad: $X \rightarrow Y$ y $Y \rightarrow Z \Rightarrow X \rightarrow Z$
- ▶ Descomposición: $X \rightarrow YZ \models X \rightarrow Y$
- ▶ Unión: $X \rightarrow Y, X \rightarrow Z \models X \rightarrow YZ$
- ▶ Pseudotransitividad: $\{X \rightarrow Y, WY \rightarrow Z\} \models WX \rightarrow Z$

Extensió

¿Son equivalentes FD1 y FD2?

Equivalencia

- 1. Si $\forall FD \in FD1$ pueden ser derivadas de las FD en FD2 se dice que $FD1 \subset FD2$
- 2. Si $FD1 \subset FD2$ y $FD2 \subset FD1 \Rightarrow FD1 = FD2$

¿Son equivalentes FD1 y FD2?

Equivalencia

- 1. Si $\forall FD \in FD1$ pueden ser derivadas de las FD en FD2 se dice que $FD1 \subset FD2$
- 2. Si $FD1 \subset FD2$ y $FD2 \subset FD1 \Rightarrow FD1 = FD2$

 $FD1 \subset FD2 \Rightarrow FD2$ infiere a FD1. ¿FD1 Infiere FD2? ¿ $A \in C_{FD1}^+$?

¿Son equivalentes FD2 y FD3?

Equivalencia

- 1. Si $\forall FD \in FD1$ pueden ser derivadas de las FD en FD2 se dice que $FD1 \subset FD2$
- 2. Si $FD1 \subset FD2$ y $FD2 \subset FD1 \Rightarrow FD1 = FD2$

$$FD2 = A \rightarrow BD, B \rightarrow CD, AC \rightarrow E, C \rightarrow A$$

 $FD3 = A \rightarrow BD, B \rightarrow ACD, AC \rightarrow E, C \rightarrow B$

Cubrimiento Minimal

Algoritmo

- 1. Descomponer todas las DF en dependencias normalizadas (lado derecho con un único atributo)
- 2. Eliminar todos los atributos redundantes del lado izquierdo.
- 3. Eliminar todas las dependencias funcionales redundantes.

¿Cuál es el CubMin para FD1?

- ▶ $FD1 = A \rightarrow BD, B \rightarrow CD, AC \rightarrow E$
- ▶ $CubMin_{FD1} = A \rightarrow B, B \rightarrow C, B \rightarrow D, A \rightarrow E$

Descomposición Lossless Join

Breve repaso

- ▶ ¿Descomposición en dos esquemas? Probar que $R1 \cap R2 \rightarrow R1 R2 \lor R1 \cap R2 \rightarrow R2 R1$
- ¿Más de dos esquemas? Aplicar Tableaux (más adelante).