

Approximate 3D Partial Symmetry Detection Using Co-Occurrence Analysis

Symmetry detection – perfect geometry

Pauly et al. 2008

Very well understood.

Against noise & incompletion

Bokeloh et al. 2009

Inefficient brute-force rigid mapping, without instance output.

Against strong deformation

Huang et al. 2013

Needs to be fine tuned on hi-precision manifold geometry.

A symmetry detection algorithm ...

- General applicable
 - Noisy, incomplete scan
 - Geometric deformation
- Robust against structural variations
 - Approximate mappings
 - Partial symmetry
 - Irregular patterns
- Output classes & instance
- Unsupervised

Pattern

Unfortunately, initially we know neither.

Transformation voting

Only works for precise geometry.

Low quality data may appears to be irregular

Instance can not be represented by a single feature.

Overview

Dense feature detection & description

Initial feature pool needs not to be precise.

Feature clustering

We employ an iterative approach to discover co-occurring pattern.

Hypothesis generation

Co-occurrence estimation

Pattern maximization

$$p(\bullet) = \sum_{\bullet} p(\bullet, \bullet)$$

Eliminate false detection

$$p(\bullet) = \sum_{\bullet} p(\bullet, \bullet)$$

Repeat ...

Example

- Pattern recognition
- Instance mining

- Pattern recognition
- Instance mining

- Instance mining
- Pattern recognition

- Instance mining
- Pattern recognition

Results - I

Results - II

Thank you!

Dense feature

Feature constellation

