Question number	Answer		Mark
16(a)	 Correct vector diagram showing velocity change Small angle, so δθ = δv / v Use of δθ / δt = ω and v = Rω Algebra to show δv / δt = v² / R 	1 1 1 1	4
	Example of derivation		
	SV VB VB		
	Small angle, so $\delta\theta = \delta v / v$ $\delta\theta = \omega \delta t$ $\delta\theta = v \delta t / R$ $v \delta t / r = \delta v / v$ $\delta v / \delta t = v^2 / R$		
16 (b)(i)	Free-body force diagram showing tension and weight only	1	1
16(b)(ii)	 Use of T cos θ = mg Use of T sin θ = mω²r Use of ω = 2π/T Time for 4 rotations is 3.2 s 	1 1 1 1	4
	Example of calculation $T \cos 19^{\circ} = 0.0052 \text{ kg} \times 9.81 \text{ N kg}^{-1}$ T = 0.054 N $0.054 \text{ N} \times \sin 19^{\circ} = 0.0052 \text{ kg} \times \omega^{2} \times 0.054 \text{ m}$ $\omega = 7.9 \text{ radian s}^{-1}$ $t = 4 \times (2\pi/7.9 \text{ radian s}^{-1})$ = 3.2 (s)		
16(b)(iii)	 If vertical, zero horizontal component Or must be at an angle for a horizontal component Must have resultant horizontal component for circular motion, so first student incorrect 	1 1 1	
	 If at an angle the radius is greater than before Since ω the same and r increased, F = mω²r increased Or Since ω the same and r increased, v must increase, so F = mv²/r increased 	1	
	Component of tension must be greater so a greater angle is required and the second student is correct	1	5
	Total for question 16		14