Cancer Genome Analysis (CONEXIC)

Akavia et al. Cell, 2010.

02-715 Advanced Topics in Computational Genomics

Integrated Approach for Discovering Drivers in Cancer

- Previous methods: find frequently occurring mutations
- Copy number variation in tumor samples can involve a large region containing multiple genes
 - Many are passengers: how to distinguish passenger and driver genes in the copy number variation region?
- Integrative analysis of copy number variations and gene expressions

CONEXIC Modeling Assumption I

 A driver mutation should occur in multiple tumors more often than would be expected by chance

CONEXIC Modeling Assumption II

 A driver mutation may be associated (correlated) with the expression of a group of genes that form a module

CONEXIC Modeling Assumption III

 A driver mutation may be associated (correlated) with the expression of a group of genes that form a module

Copy Number Variation and Gene Expression

 Even among the individuals with amplification in copy numbers, the expression levels for those genes can differ.

CONEXIC Overview

1. GISTIC

Amplified Genes:

- 1. CCND1
- 2. MITF
- 3.....

Deleted Genes:

- 1. CDKN2A
- 2. KLF6
- 3.....

2. Single Modulator

Bootstrapping 4

3. Network Learning

CONEXIC Overview

- Extends module networks to handle cancer copy number variation and gene expression data to find driver mutation
- Assumes a driver mutation affects "gene modules" rather than individual genes
- The gene expression as a proxy to distinguish between driver and passenger mutations in the large region of copy number variations

CONEXIC: Selecting Candidate Drivers

- Apply GISTIC to find frequently occurring regions of copy number variations
- Run CONEXIC with only the genes in the selected regions as candidate driver genes

- Detect frequently occurring CNV regions in cancer samples
- Typically CNV regions are large
 - Often involve the whole chromosome arms
 - Within the amplified region, there are small regions with peaks that often contain driver genes
 - How can we identify these relatively small regions?

For each locus, compute G-scores

$$G^{AMP}(m) = \sum_{i} CN(m, i) \times I(CN(m, i) > \Theta^{AMP})$$

- Civ(m,i): copy number measurement for sample i, marker m
- Average copy number scores for marker m
- Peel-off strategy: Find the peak within the large region of amplification and set the consecutive markers to zero before looking for the next peak in order to avoid the overlap
 - Detects only the highest peak in the large region

- How to distinguish a single large peak and multiple small peaks
- Extension of GISTIC for detecting focal copy number variations
 - During peel off, apply the threshold estimated from other regions of DNA
 - Different thresholds for different samples
 - Usually the highest broad aberration genome-wide as the threshold
 - Results are sensitive to the threshold value

Pre-cursor for CONEXIC (Lee et al., PNAS 2006)

CONEXIC: Single Modulator

- Step 1: 347 candidate drivers after applying GISTIC
- Step 2: Run K-means clustering on gene expression levels of candidate drivers to determine the expression threshold between normal and amplified/deleted samples
- Step 3: Determine target gene modules influenced by each candidate driver
 - Split the target gene expressions with respect to the threshold in Step
 2
 - Assess the quality of split

CONEXIC Network-Learning Algorithm

- The single modulators as initialization
- Iterate between the two steps until fewer than 10% of the target genes have been re-assigned to a different module
 - Step 1: Learning the regulation program for each module
 - Construct a regression tree by splitting samples according to the drivers
 - Continue splitting until regression model fits the influence of modulator on the modules well at the leaf
 - Step 2: Re-assign each gene into the module that best models it behavior

LitVAn (Literature Vector Analysis)

- Literature-based analysis tool for inference of gene module functionality
 - enrichment analysis for gene modules
- NCBI database that associates each gene with manually curated papers (70,000 papers)
- Bag-of-words assumption

LitVAn

- TF*IDF score: score to words which are overrepresented in a subset of documents relative to the full corpus
 - Inverse Document Frequency (IDF):
 - a score based on the portion of documents each term appears in, with high scores for low coverage
 - Computed once for the whole corpus
 - Term Frequency (TF):
 - a direct count for the number of times the term appears in the subset of documents
 - Computed for each module
- For each set of genes (a module), LitVAn counts the term frequency in papers associated with these genes and compare this count to the null distribution, using a TF*IDF score

Dataset

Melanoma, gene expression and copy number from 101 samples

• 64 modulators and 7869 target genes found by CONEXIC

Highest Modulators Identified by CONEXIC

Gene Symbol	Pathway	Band	Genes in	Validation
			Region	p-value
MITF	Melanoma	3p14.2-p14.1	1	<10 ⁻⁶
TBC1D16	Vesicular Trafficking	17q25.3	24	<10 ⁻⁶
ZFP106	Insulin/Ras	15q15.1	7	<10 ⁻⁶
DIXDC1	Wnt/JNK/PI3K	11q23.1	17	0.0001
OIP5	Cell Cycle	15q15.1	13	<10 ⁻⁶
TTBK2		15q15.2	7	0.0383
TRAF3	NFkappaB/JNK	14q32.32	19	0.0121
RAB27A	Vesicular Trafficking	15q15-q21.1	33	<10 ⁻⁶
C12orf35		12p11.21	45	<10 ⁻⁶
WBP2		17q25	92	0.0275
MOCS3		20q13.13	16	<10 ⁻⁶
NDUFB2		7q34	10	<10 ⁻⁶
ST6GALNAC2		17q25.1	92	<10 ⁻⁶
GRB2	EGFR/Ras	17q24-q25	92	0.1373
ECM1		1q21	55	0.0083
KCNG1		20q13	16	0.202
DPM1		20q13.13	16	0.097
PFKP	Metabolism	10p15.3-p15.2	3	0.0801
KLF6	Cell cycle, c-JUN (JNK)	10p15	3	<10 ⁻⁶
TIMM8B	Mitochondria	11q23.1-q23.2	17	0.7622
PI4KB		1q21	55	0.0003
PSMB4		1q21	55	0.0005
VPS72		1q21	55	<10 ⁻⁶
TARS2		1q21.3	55	0.0001
MNS1		15q21.3	33	0.0908
TDRD3	RNA processing	13q21.2	203	<10 ⁻⁶
CCNB2	Cell Cycle	15q22.2	33	<10 ⁻⁶
EIF5	Cell Cycle	14q32.32	19	0.1096
RAB7A	Vesicular Trafficking	3q21.3	16	<10 ⁻⁶
PIK3CB	PI3K signaling	3q22.3	15	<10 ⁻⁶

Establishing Directionality

Copy number variation can be used to determine causal relationship

Multiple Modulators

MITF Gene Expression/Copy Number Variation

MITF Modules

TBC1D16 for Melanoma Growth

- High correlation between TBC1D16 expression and target expressions
- Low correlation
 between expression
 and TBC1D16 copy
 number variation

TBC1D16 for Melanoma Growth: Experimental Validation

Summary

- Copy number variation in tumors can involve a large region that contains many genes
- CONEXIC integrates gene expression and copy number variation data collected from tumors to identify driver genes