Ø

The state of the county state over the terms. The state of the state of the state over the

UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. 1038-1000 MIS

Total Pages in this Submission

TO THE ASSISTANT COMMISSIONER FOR PATENTS

Box Patent Application Washington, D.C. 20231

T O	· ·	gion, D.G. 2023 i		
Transmitted herewith for filing under 35	U.S.C. 111(a) a	nd 37 C.F.R. 1.53((b) is a new utility patent app	olication for an
invention entitled:				
CHIMERIC IMMUNOGENS				S. PTO 9240
and invented by:				5
Michel H. Klein et al				jc 564
If a CONTINUATION APPLICATION,				00/4/5 0/1
☑ Continuation ☐ Divisional	☐ Continuat	tion-in-part (CIP)	of prior application No.:	08/467,961
Which is a:				00/004 ##4
☐ Continuation ☒ Divisional	☐ Continuat	tion-in-part (CIP)	of prior application No.: _	08/001,554
Which is a: ☐ Continuation ☐ Divisional	☐ Continuat	tion-in-part (CIP)	of prior application No.:	
Francisco de pro-				
Enclosed are:	Applic	ation Elements		
1. 🗵 Filing fee as calculated and	I transmitted as	described below		
2. 🗵 Specification having	42	pages and i	ncluding the following:	
a. 凶 Descriptive Title of the	Invention			
b. 🔲 Cross References to F	Related Applicat	tions (if applicable)		
c. Statement Regarding	Federally-spons	sored Research/De	evelopment (if applicable)	•
d. Reference to Microfich	ne Appendix (if a	applicable)		
e. 🛛 Background of the Inv	ention			
f. 🛛 Brief Summary of the	Invention		· ·	
g. 🛛 Brief Description of th	e Drawings <i>(if d</i>	rawings filed)		
h. 🗵 Detailed Description				
i. 🛛 Claim(s) as Classified	l Below			
j. 🛛 Abstract of the Disclo	sure			

First Class

UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. 1038-1000 MIS

Total Pages in this Submission 3

Application Elements (Continued) 3. \(\text{\overline} \) Drawing(s) (when necessary as prescribed by 35 USC 113) Formal Number of Sheets 39 b. 🗆 Informal Number of Sheets ☑ Oath or Declaration a. Newly executed (original or copy) ☐ Unexecuted Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional application only) ☐ Without Power of Attorney With Power of Attorney c. 🛛 **DELETION OF INVENTOR(S)** d. 🗆 Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. 1.63(d)(2) and 1.33(b). 5. Incorporation By Reference (usable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 7. Nucleotide and/or Amino Acid Sequence Submission (if applicable, all must be included) a. 🛛 Paper Copy b. 🗵 Computer Readable Copy (identical to computer copy) Statement Verifying Identical Paper and Computer Readable Copy **Accompanying Application Parts** 8. Assignment Papers (cover sheet & document(s)) 9. 37 CFR 3.73(B) Statement (when there is an assignee) 10. English Translation Document (if applicable) ☑ Information Disclosure Statement/PTO-1449 Copies of IDS Citations 12. Preliminary Amendment 13. Acknowledgment postcard 14. Certificate of Mailing

Express Mail (Specify Label No.):

UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. 1038-1000 MIS

Total Pages in this Submission 3

Accompanying Application Parts (Continued)								
15.								
16. Additional Enclosures (please identify below):								
Fee Calculation and Transmittal								
				CLAIMS A	S FILED			
	For		#Filed	#Allowed	#Extra		Rate	Fee
Total (Claim	ıs	18	- 20 =	0	х	\$18.00	\$0.00
Indep. Claims 3 - 3 = 0 x \$78.00 \$0.00					\$0.00			
Multip	le De	pendent CI	aims (check i	f applicable)	<u> </u>			\$0.00
BASIC FEE \$760.00								
OTHER FEE (specify purpose) \$0.00								
TOTAL FILING FEE \$760.00								
A check in the amount of \$760.00 to cover the filing fee is enclosed. The Commissioner is hereby authorized to charge and credit Deposit Account No. as described below. A duplicate copy of this sheet is enclosed. Charge the amount of as filing fee. Credit any overpayment. Charge any additional filing fees required under 37 C.F.R. 1.16 and 1.17. Charge the issue fee set in 37 C.F.R. 1.18 at the mailing of the Notice of Allowance, pursuant to 37 C.F.R. 1.311(b).								
Signature Michael I. Stewart - Reg. No. 24,973 Dated: January 6, 2000 CC:								

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Our Ref: 1038-1000 MIS:as

In re patent application

No.

Applicant:

Michel H. Klein et al

Title:

CHIMERIC IMMUNOGENS

Filed:

Group No.

1645

Examiner:

Mark Navarro

January 6, 2000

PRELIMINARY AMENDMENT

The Commissioner of Patents and Trademarks, Washington, D.C. 20231, U.S.A.

Dear Sir:

Please amend this application in the following manner:

In the Disclosure:

On page 4, lines 13, 15, 17 and 19, change "antigenic" to "immunogenic" at each occurrence;

Page 4, line 20, delete the word "generally";

Page 5, lines 11 and 13, change "antigenic" to "immunogenic" at each occurrence;

Page 5, line 16, insert "The first and second pathogens are selected from bacterial and viral pathogens." After "system."

On page 6, line 23, change "Figures 1A and 1B" to read "Figures 1A to 1E";

On page 6, line 23, change "Figures 3A to 3B" to read "Figures 3A to 3E":

On page 6, line 33, change "Figures 5A to 5B" to read "Figures 5A to 5E":

On page 7, line 8, change "Figures 9A to 9B" to read "Figures 9A to 9D";

Page 14, line 18, insert "SE ID NO:21" after "AGGACAAAAG".

Page 15, line 13, change "1887" to "1886";

Page 19, line 31 and page 23, line 10, underline the terms "<u>Spodoptera frugiperda</u>" to signify that they should be printed in italicized form.

On pages 24, lines 20 and 26, capitalize the term "TRITON X-100" and add "(Trademark for a non-ionic detergent which is octadienyl phenol (ethylene glycol)₁₀" following the term in line 20;

Page 26, line 32, change "homogenates" to "lavages".

Add the Sequence Listing enclosed.

In the Claims:

Cancel claims 1 to 58.

Add new claims 59 to 76 as follows:

- 59. (New) A multimeric hybrid gene encoding a chimeric protein including a protein from parainfluenza virus (PIV) and a protein from respiratory syncytial virus (RSV), comprising a nucleotide sequence encoding a PIV-3 protein or a fragment thereof having fusion activity or a PIV-3 HN protein or a fragment thereof having hemagglutinin-neurominidase activity linked to a nucleotide sequence coding for a RSV G protein or a fragment thereof having attachment activity or a RSV F protein or a fragment thereof having fusion activity.
- 60. (New) The hybrid gene of claim 59 which is selected from the group consisting of F_{PIV-3} - F_{RSV} , F_{RSV} - HN_{PIV-3} and F_{PIV-3} - G_{RSV} hybrid genes.
- 61. (New) The hybrid gene of claim 59 contained in an expression vector.
- 62. (New) The hybrid gene of claim 61 in the form of a plasmid selected from the group consisting of pAC DR7 (ATCC 75387), pD2 RF-HN (ATCC 75388) and pD2 F-G (ATCC 75389).
- 63. (New) Eukaryotic cells containing the multimeric hybrid gene of claim 59 for expression of the chimeric protein encoded by the hybrid gene.
- 64. (New) The cells of claim 63 which are mammalian cells, insect cells, yeast cells or fungal cells.
- 65. (New) A vector for antigen delivery containing the gene of claim 59.

- 66. (New) The vector of claim 65 which is viral vector.
- 67. (New) The vector of claim 66 wherein said viral vector is selected from the group consisting of poxviral, adenoviral and retroviral viral vectors.
- 68. (New) The vector of claim 65 which is a bacterial vector.
- 69. (New) The vector of claim 68 wherein said bacterial vector is selected from salmonella and mycobacteria.
- 70. (New) A process for the preparation of a chimeric protein including a protein from parainfluenza virus (PIV) and a protein from respiratory syncytial virus (RSV), which comprises:

isolating a first nucleotide sequence encoding a PIV-3 protein or a fragment thereof having fusion activity or a PIV-3 HN protein or a fragment thereof having hemagglutinin-neurominidase activities,

isolating a second nucleotide sequence encoding a RSV-G protein or a fragment thereof having attachment activity or a RSV protein or a fragment thereof having fusion activity,

linking said first and second nucleotide sequences to form a multimeric hybrid gene, and

expressing the multimeric hybrid gene in a cellular expression system.

- 71. (New) The process of claim 70 wherein said multimeric hybrid gene is selected from the group consisting of F_{PIV-3} - F_{RSV} , F_{RSV} - HN_{PIV-3} and F_{PIV-3} - G_{RSV} hybrid genes.
- 72. (New) The process of claim 71 wherein said multimeric hybrid gene is contained in an expression vector comprising a gene selected from the group consisting of pAC DR7 (ATCC 75387), pD2 RF-HN (ATCC 75388) and pD2 F-G (ATCC 75389).
- 73. (New) The process of claim 71 wherein said cellular expression system is provided by mammalian cells, insect cells, yeast cells or fungal cells.
- 74. (New) The process of claim 70 including separating a chimeric protein from a culture of said eukaryotic cellular expression and purifying the separated chimeric protein.
- 75. (New) A chimeric protein including a protein from parainfluenza virus (PIV) and a protein from respiratory syncytial virus (RSV), comprising a PIV-3 F protein or a fragment thereof having fusion activity or a PIV-3 HN protein or a fragment thereof having hemagglutinin-neurominidase activity.

76. (New) The chimeric protein of claim 75 which is selected from the group consisting of F_{PIV-3} - F_{RSV} , F_{RSV} - HN_{PIV-3} and F_{PIV-3} - G_{RSV} hybrid genes.

Cancel the informal drawings submitted with the application and substitute therefor the formal drawings enclosed.

REMARKS

The disclosure has been amended to correspond to the changes made to the parent application.

Formal drawings have been substituted for the informal drawings. It is noted that Figure 5 has been amended as shown on the enclosed print of the original drawing in red, to correct a spelling error. The Sequence Listing enclosed herewith, both in hard copy and computer-readable form, includes the changes effected in the drawings.

It is hereby stated that the hard copy and computer-readable form of the Sequence Listing are the same.

The claims have been amended in the interests of expedited prosecution. In this regard, it is noted that the definition of the chimeric protein is the same as allowed in the diagnostic claims of the parent case. The claims directed to the hybrid gene and method of making the chimeric protein recombinantly utilizes corresponding language.

The PTO-1449 submitted herewith lists all prior art cited by or to the PTO in the parent and related filings. Copies of each of the references are enclosed for the Examiner's convenience.

Respectfully submitted,

M.I. Stewart

Reg. No. 24,973

Toronto, Ontario, Canada, (416) 595-1155 FAX No. (416) 595-1163

In the Drawings:

ES

LEU LEU GLY VAL GLY SER ALA ILE ALA SER GLY <u>ILE</u>I ALA VAL SER LYS VAL LEU HIS LEI TTGTTAGGTGTTGGATCTGCAATCGCCAGTGGCATTGCTGTATCTAAGGTCCTGCACTT, AACAATCCACAACCTAGACGTTAGCGGTCACCGTAACGACATAGATTCCAGGACGTGAA AACAATCCACAACCTAGACGTTAGCGGTCACGTAACGATAGATTCCAGGACGTGAA

UB 6 A A 6 G A E C T T C C T C

⋖ ASN TYR SER LYS VAL LEU ASP LEU LYS LEU THR

SAAACTGT G STTT GACA C ACAC 660 AGAATATCAAATATAG TCTTATAGTTTATATC 640 TTGTTACCTATTGTGAATAAGCEAAGCTGCACACAATGGATAACACTTATTCGETTCGACGACGGACG ILE VAL ∢⊢ GLN **∀** ⊢ AAACTTTTTE

GTGTTAAT FCACAATTA 720 GTTCCAACACAAGAACAACAGACTACTAGAGATTACCAGGGAATTTA CAAGGTTGTTCTTGTTGTCTGATGATCTCTAATGGTCCCTTAAAT CAAGGTTGTGTTCTTGTCTGAGATCTCTAATGGTCCCTTAAAT PHE **6L**U ARG THR IL E **G**LU LEU LEU ARG A SN ASN LYS HIS G A C ⊤ A T A (

ATTA TAAT ALA GLY VAL THR THR PRO VAL SER THR TYR MET LEU THR ASN SER GLU LEU LEU SER LEI CAGGTGTAACTACACCTGTAAGCACTTACATGTTAACTAATAGTGAATTATTGTCATTA GTCCACATTGATGTGGACATTCGTGAATGTACAATTGATTATCACTTAATAACAGTAA 16.58.

10

15

20

25

30

35

TITLE OF INVENTION

CHIMERIC IMMUNOGENS

FIELD OF INVENTION

The present invention relates to the engineering and expression of multimeric hybrid genes containing sequences from the gene coding for immunogenic proteins or protein fragments of numerous pathogens.

BACKGROUND TO THE INVENTION

The advantage of the approach taken by the present invention is to produce single immunogens containing protective antigens from a range of pathogens. chimeras greatly simplify the development of combination vaccines, in particular, with the view ultimately to produce single dose multivalent vaccines. Multivalent vaccines are currently made by separately producing pathogens and/or their pertinent antigens and combining This is a them in various formulations. intensive, costly and complex manufacturing procedure. In contrast, the availability of a single immunogen capable of protecting against a range of diseases would solve many of the problems of multivalent vaccine Several chimeric immunogens of the type production. provided herein may be combined to decrease the number of individual antigens required in a multivalent vaccine.

Parainfluenza virus types 1,2,3 Respiratory syncytial virus types A and B are the major pathogens responsible for causing respiratory tract infections in infants and young It is estimated that, in the United States children. alone, approximately 1.6 million infants under one year of age will have a clinically significant RSV infection each year and an additional 1.4 million infants will be Approximately 4000 infants less infected with PIV-3. than one year of age in the United States die each year from complications arising from severe respiratory tract disease caused by infection with RSV and PIV-3. The WHO

10

15

20

25

30

35

and NIALD vaccine advisory committees ranked RSV number two behind HIV for vaccine development while the preparation of an efficacious PIV-3 vaccine is ranked in the top ten vaccines considered a priority for vaccine development.

Safe and effective vaccines for protecting infants against these viral infections are not available and are urgently required. Clinical trials have shown that formaldehyde-inactivated live-attenuated and vaccines failed to adequately protect vaccinees against In fact, infants who received the these infections. formalin-inactivated RSV vaccine developed more serious lower respiratory tract disease during subsequent natural RSV infection than did the control group. Epidemiology 89, 1969, p.405-421; J. Inf. Dis. 145, 1982, p.311-319]. Furthermore, RSV glycoproteins purified by immunoaffinity chromatography using elution at acid pH induced immunopotentiation in cotton rats. [Vaccine, 10(7), 1992, p.475-484]. The development of efficacious PIV-3 and RSV vaccines which do not cause exacerbated pulmonary disease in vaccinees following injection with wild-type virus would have significant therapeutic implications. It is anticipated that the development of a single recombinant immunogen capable of simultaneously protecting infants against diseases caused by infection with both Parainfluenza and Respiratory syncytial viruses could significantly reduce the morbidity and mortality caused by these viral infections.

It has been reported that a protective response against PIV-3 and RSV is contingent on the induction of neutralizing antibodies against the major viral surface glycoproteins. For PIV, these protective immunogens are the HN protein which has a molecular weight of 72 kDa and possesses both hemagglutination and neuraminidase activities and the fusion (F) protein, which has a molecular weight of 65 kDa and which is responsible for

15

20

25

both fusion of the virus to the host cell membrane and cell-to-cell spread of the virus. For RSV, the two major immunogenic proteins are the 80 to 90 kDa G glycoprotein and the 70 kDa fusion (F) protein. The G and F proteins are thought to be functionally analogous to the PIV HN and F proteins, respectively. The PIV and RSV F 1 glycoproteins are synthesized as inactive precursors (FO) which are proteolytically cleaved into N-terminal F2 and C-terminal F1 fragments which remain linked by disulphide bonds.

X

Recombinant surface glycoproteins from PIV and RSV have been individually expressed in insect cells using the baculovirus system [Ray et al., (1989), Research, 12: 169-180; Coelingh et al., (1987), Virology, 160: 465-472; Wathen et al., (1989), J. of Inf. 159: 253-263] as well as in mammalian cells infected with recombinant poxviruses [Spriggs, et al., (1987), J. Virol. 61: 3416-3423; Stott et al., (1987), J. Virol. 61: Recombinant antigens produced in these 3855-3861]. systems were found to protect immunized cotton rats against live virus challenge. More recently, hybrid RSV F-G [Wathan et al., (1989), J. Gen Virol. 70: 2625-2635; Wathen, published International Patent application WO 89/05823] and PIV-3 F-HN [Wathen, published International Patent Application WO 89/10405], recombinant antigens have been engineered and produced in mammalian and insect The RSV F-G hybrid antigen was shown to be cells. protective in cotton rats [Wathan et al., (1989), J. Gen. Virol. 70: 2637-2644] although it elicited a poor anti-G antibody response [Connors et al., (1992), Vaccine 10: 30 The protective ability of the PIV-3 F-HN 475-484]. protein was not reported in the published patent application. These antigens were engineered with the aim to protect against only the homologous virus, that is either RSV or PIV-3. However, it would be advantageous 35 and economical to engineer and produce a

10

15

20

25

30

35

recombinant immunogen containing at least one protective antigen from each virus in order simultaneously to protect infants and young children against both PIV and The chimeric proteins provided herein RSV infections. for such purpose also may be administered to pregnant women or women of child bearing age to stimulate maternal In addition, the vaccine antibodies to both PIV and RSV. susceptible administered to other be also may individuals, such as the elderly.

SUMMARY OF INVENTION

In its broadest aspect, the present invention provides a multimeric hybrid gene, comprising a gene sequence coding for an antigenic region of a protein from a first pathogen linked to a gene sequence coding for an antigenic region of a protein from a second pathogen and to a chimeric protein encoded by such multimeric hybrid gene. Such chimeric protein comprises an antigenic region of a protein from a first pathogen linked to an antigenic region of a protein from a second pathogen.

The first and second pathogens generally are selected from bacterial and viral pathogens and, in one embodiment, may both be viral pathogens. Preferably, the first and second pathogens are selected from those causing different respiratory tract diseases, which may be upper and lower respiratory tract diseases. preferred embodiment, the first pathogen is parainfluenza virus and the second pathogen is respiratory syncytial The PIV protein particularly is selected from PIV-3 F and HN proteins and the RSV protein particularly is selected from RSV G and F proteins. Another aspect of the invention provides cells containing the multimeric hybrid gene for expression of a chimeric protein encoded Such cells may be bacterial cells, by the gene. mammalian cells, insect cells, yeast cells or fungal Further, the present invention provides a live cells. vector for antigen delivery containing the multimeric

hybrid gene, which may be a viral vector or a bacterial vector, and a physiologically-acceptable carrier therefor. Such live vector may form the active component of a vaccine against diseases caused by multiple pathogenic infections. Such vaccine may be formulated to be administered in an injectable form, intranasally or orally.

In an additional aspect of the present invention, there is provided a process for the preparation of a chimeric protein, which comprises isolating a gene sequence coding for an antigenic region of a protein from a first pathogen; isolating a gene sequence coding for an antigenic region of a protein from a second pathogen; linking the gene sequences to form a multimeric hybrid gene; and expressing the multimeric hybrid gene in a cellular expression system. Such cellular expression system may be provided by bacterial cells, mammalian cells, insect cells, yeast cells or fungal cells. The chimeric protein product of gene expression may be separated from a culture of the cellular expression system and purified.

The present invention further includes a vaccine against diseases caused by multiple pathogen infections, comprising the chimeric protein encoded by the multimeric hybrid gene and a physiologically-acceptable carrier therefor. Such vaccine may be formulated to be administered in an injectable form, intranasally or orally.

The vaccines provided herein may be used to immunize a host against disease caused by multiple pathogenic infections, particularly those caused by a parainfluenza virus and respiratory syncytial virus, by administering an effective amount of the vaccine to the host. As noted above, for human PIV and RSV, the host may be infants and young children, pregnant women as well as those of a

10

15

20

25

30

35

child-bearing age, and other susceptible persons, such as the elderly.

The chimeric protein provided herein also may be used as a diagnostic reagent for detecting infection by a plurality of different pathogens in a host, using a suitable assaying procedure.

It will be appreciated that, while the description of the present invention which follows focuses mainly on a chimeric molecule which is effective for immunization against diseases caused by infection by PIV and RSV, nevertheless the invention provided herein broadly extends to any chimeric protein which is effected for immunization against diseases caused by a plurality of pathogens, comprising an antigen from each of the pathogens linked in a single molecule, as well as to genes coding for such chimeric molecules.

In this application, by the term "multimeric hybrid genes" we mean genes encoding antigenic regions of proteins from different pathogens and by the term "chimeric proteins" we mean immunogens containing antigenic regions from proteins from different pathogens.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 shows the nucleotide (SEQ ID No: 1) and amino acid (SEQ ID No: 2) sequence of a PCR-amplified PIV-3 F gene and F protein, respectively;

Figure 2 shows the restriction map of the PIV-3 F gene;

Figure 3 shows the nucleotide (SEQ ID No: 3) and amino acid (SEQ ID No: 4) sequences of the PIV-3 HN gene and HN protein, respectively;

Figure 4 shows the restriction map of the PIV-3 HN gene;

Figure 5 shows the nucleotide (SEQ ID No: 5) and amino acid (SEQ ID No: 6) sequences of the RSV F gene and RSV F protein, respectively;

Figure 6 shows the restriction map of the RSV F gene;

Figure 7 shows the nucleotide (SEQ ID No: 7) and amino acid (SEQ ID No: 8) sequences of the RSV G gene and RSV G protein, respectively;

Figure 8 shows the restriction map of the RSV G gene;

Figure 9 shows the steps involved in the construction of an expression vector containing a chimeric F_{PIV-3} - F_{RSV} gene;

Figure 10 shows the steps involved in the construction of an expression vector containing a $F_{\text{PIV-3}}$ gene lacking the 5'-untranslated sequence and transmembrane anchor and cytoplasmic tail coding regions;

15 Figure 11 shows the steps involved in the construction of an expression vector containing a chimeric F_{PIV-3} - F_{RSV} gene containing a truncated PIV-3 F gene devoid of 5'-untranslated region linked to a truncated RSV F1 gene;

Figure 12 shows the steps involved in construction of a modified pAC 610 baculovirus expression vector containing a chimeric $F_{\text{PIV-3}}$ - F_{RSV} gene consisting of the PIV-3 F gene lacking both the 5'-untranslated sequence as well as transmembrane and cytoplasmic tail coding region linked to the truncated RSV F1 gene;

Figure 13 shows immunoblots of cell lysates from Sf9 cells infected with recombinant baculoviruses;

Figure 14 shows the steps involved in constructing a baculovirus transfer vector (pD2);

Figure 15 shows the steps involved in construction of a chimeric F_{RSV} - HN_{PIV-3} gene;

Figure 16 shows an SDS-PAGE gel and immunoblot of purified F_{RSV} - HN_{PIV-3} chimeric protein;

Figure 17 illustrates mutagenesis of a PIV-3 F gene;

35 and

10

10

15

20

25

30

35

Figure 18 shows the steps involved in the construction of a chimeric $F_{\text{PIV-3}}$ - G_{RSV} gene.

GENERAL DESCRIPTION OF INVENTION

In the present invention, a chimeric molecule protective against two different major childhood diseases is provided. The present invention specifically relates to the formulation of various recombinant Parainfluenza virus (PIV)/Respiratory syncytial virus (RSV) immunogens to produce safe and efficacious vaccines capable of protecting infants and young children, as well as other susceptible individuals, against diseases caused by infection with both PIV and RSV. However, as described above, the present invention extends to the construction of multimeric hybrid genes containing genes coding for protective antigens from many pathogens. Such vaccines may be administered in any desired manner, such as a readily-injectable vaccine, intranasally or orally.

In the present invention, the inventors have specifically engineered several model PIV/RSV chimeric genes containing relevant sequences from selected genes coding for PIV-3 and RSV surface glycoproteins linked in tandem. All genes in the chimeric constructs described herein were obtained from recent clinical isolates of PIV-3 and RSV. The chimeric gene constructs may include gene sequences from either PIV-3 F or HN genes linked in tandem to either RSV F or G genes in all possible relative orientations and combinations.

The chimeric gene constructs provided herein may consist of either the entire gene sequences or gene segments coding for immunogenic and protective epitopes thereof. The natural nucleotide sequence of these genes may be modified by mutation while retaining antigenicity and such modifications may include the removal of putative pre-transcriptional terminators to optimize their expression in eukaryotic cells. The genes were

45

15

25

30

designed to code for hybrid PIV-RSV surface glycoproteins linked in tandem in a single construct to produce gene products which elicit protective antibodies against both parainfluenza and respiratory syncytial viruses. Such multimeric hybrid genes consist of a gene sequence coding for a human PIV-3 F or HN protein or an immunogenic epitope-containing fragment thereof linked to a gene sequence coding for a human RSV G or F protein or an immunogenic epitope-containing fragment thereof. Specific gene constructs which may be employed include $F_{\text{PIV-3}} - F_{\text{RSV}}$, $F_{\text{RSV}} - HN_{\text{PIV-3}}$ and $F_{\text{PIV-3}} - G_{\text{RSV}}$ hybrid genes.

In addition, the present invention also extends to the construction of other multimeric genes, such as trimeric genes containing PIV and RSV genes or gene segments, linked in all possible relative orientations. For example:

$$F_{PIV}$$
 - HN_{PIV} - F or G_{RSV}
 F_{PIV} - F_{RSV} - G_{RSV}
 HN_{PIV} - F_{RSV} - G_{RSV}

The multimeric genes provided herein also may comprise at least one gene encoding at least one immunogenic and/or immunostimulating molecule.

The multimeric hybrid genes provided herein may be sub-cloned into appropriate vectors for expression in cellular expression systems. Such cellular expression systems may include bacterial, mammalian, insect and fungal, such as yeast, cells.

The chimeric proteins provided herein also may be presented to the immune system by the use of a live vector, including live viral vectors, such as recombinant poxviruses, adenoviruses, retroviruses, Semliki Forest viruses, and live bacterial vectors, such as Salmonella and mycobacteria (e.g. BCG).

Chimeric proteins, such as a PIV/RSV chimera, present in either the supernatants or cell lysates of

15

20

25

30

35

transfected, transformed or infected cells then can be purified in any convenient manner.

immunogenicity and protective evaluate the ability of the chimeric proteins, suitable experimental animals are immunized with either varying doses of the purified chimeric proteins, such as the PIV/RSV chimera, and/or live recombinant vectors as described above. Such chimeric proteins may be presented to the immune system by either the use of physiologically-acceptable vehicles, such as aluminum phosphate, or by the use of delivery systems, such as ISCOMS and liposomes. The chimeras also may be formulated to be capable of eliciting a mucosal response, for example, by conjugation or association with immunotargeting vehicles, such as the cholera toxin B subunit, or by incorporation into microparticles. vaccines may further comprise means for delivering the multimeric protein specifically to cells of the immune such as toxin molecules or antibodies. further enhance the immunoprotective ability of the chimeric proteins, they may be supplemented with other immunogenic and/or immunostimulating molecules. chimeric PIV/RSV proteins specifically described herein may be formulated with an adjuvant, such as aluminum phosphate, to produce readily-injectable vaccines for protection against the diseases caused by both PIV-3 and The chimeric proteins also may be administered RSV. The chimeric proteins may be intranasally or orally. used in test kits for diagnosis of infection by PIV-3 and RSV.

The invention is not limited to the preparation of chimeric PIV-3 and RSV proteins, but is applicable to the production of chimeric immunogens composed of either the entire sequences or regions of the immunogenic proteins from at least two pathogens sequentially linked in a single molecule. Chimeric antigens also may be synthesized to contain the immunodominant epitopes of

several proteins from different pathogens. These chimeric antigens may be useful as vaccines or as diagnostic reagents.

SEQUENCE IDENTIFICATION

Several nucleotide and amino acid sequences are referred to in the disclosure of this application. The following table identifies the sequences and the location of the sequence:

10	SEO ID No.	Identification	Location
15	1	Nucleotide sequence for PCR-amplified PIV-3 F gene	Fig. 1, Example 1
	2	Amino acid sequence for PCR-amplified PIV-F protein	Fig. 1, Example 1
20	3	Nucleotide sequence for PIV-3 HN gene	Fig. 3, Example 1
25	4	Amino acid sequence for PIV-3 HN protein	Fig. 3, Example 1
	5	Nucleotide sequence for RSV F gene	Fig. 5, Example 1
30	6	Amino acid sequence for RSV F protein	Fig. 5, Example 1
35	7	Nucleotide sequence for RSV G gene	Fig. 7, Example 1
35	8	Amino acid sequence for RSV G protein	Fig. 7, Example 1
40	9	BsrI - BamHI oligo- nucleotide cassette	Fig. 9, Example 2
	10	BspHI - BamHI oligo- nucleotide cassette	Fig. 9, Example 2
45	11	EcoRI - Ppu MI oligo- nucleotide cassette	Fig. 9, Example 2
50	12	BrsI - BamHI oligo- nucleotide cassette	Fig. 10, Example 3

	13	EcoRI -Bsr BI oligo- nucleotide cassette	Fig. 10, Example 3
5	14	EcoRV - EcoRI oligo- nucleotide cassette	Fig. 11, Example 5
	15	EcoRV - BamHI oligo- nucleotide cassette	Fig. 14, Example 8
10	16	BspHI - BspHI oligo- nucleotide cassette	Fig. 15, Example 9
15	17	Nucleotide sequence for PIV-3 F gene	Example 15
	18	Mutagenic oligo- nucleotide #2721	Fig. 17, Example 15
20	19	Nucleotide sequence for part of oligo-nucleotide #2721	Example 15
25	20	Oligonucleotide probe	Example 15

DEPOSIT INFORMATION

Certain plasmid DNAs described and referred to herein have been deposited with the American Type Culture Collection (ATCC) located at Rockville, Maryland, USA, pursuant to the Budapest Treaty and prior to the filing of this application. The deposited purified plasmids will become available to the public upon grant of this U.S. patent application or upon publication of its corresponding European patent application, whichever first occurs. The invention described and claimed herein is not to be limited in scope by the plasmid DNAs of the constructs deposited, since the deposited embodiment is intended only as an illustration of the invention. The following purified plasmids were deposited at the ATCC with the noted accession numbers on December 17, 1992:

<u>Plasmid</u>	Example No.	Accession No.
pAC DR7	5	75387
pD2RF-HN	9	75388
pD2F-G	16	75389

Any equivalent plasmids that can be used to produce equivalent antigens as described in this application are within the scope of the invention.

EXAMPLES

The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific Examples. These Examples are described solely for purposes of illustration and are not intended to limit the scope of the invention. Changes in form and substitution of equivalents are contemplated as circumstances may suggest or render expedient. Although specific terms have been employed herein, such terms are intended in a descriptive sense and not for purposes of limitations.

Methods for cloning and sequencing the PIV-3 and RSV genes as well as the procedures for sub-cloning the genes into appropriate vectors and expressing the gene constructs in mammalian and insect cells are not explicitly described in this disclosure but are well within the scope of those skilled in the art.

Example 1:

5

10

15

20

25

30

35

This Example outlines the strategy used to clone and sequence the PIV-3 F, HN and RSV F, G genes (from a type A isolate). These genes were used in the construction of the F_{PIV-3} - F_{RSV} , F_{RSV} -HN $_{PIV-3}$, and F_{PIV-3} -G $_{RSV}$ chimeric genes detailed in Examples 2 to 4, 9 and 15, respectively.

Two PIV-3 F gene clones initially were obtained by PCR amplification of cDNA derived from viral RNA extracted from a recent clinical isolate of PIV-3. Two other PIV-3 F gene clones as well as the PIV-3 HN, RSV F and RSV G genes were cloned from a cDNA library prepared from mRNA isolated from MRC-5 cells infected with clinical isolates of either PIV-3 or RSV (type A isolate). The PIV-3 F (both PCR amplified and non-PCR amplified), PIV-3 HN, RSV F and RSV G gene clones were sequenced by the dideoxynucleotide chain termination

15

20

25

30

procedure. Sequencing of both strands of the genes was performed by a combination of manual and automated sequencing.

The nucleotide (SEQ ID No: 1) and amino acid (SEQ ID No: 2) sequences of the PCR amplified PIV-3 F gene and F protein, respectively, are presented in Figure 1 and the restriction map of the gene is shown in Figure 2. Sequence analysis of the 1844 nucleotides of two PCR amplified PIV-3 F gene clones confirmed that the clones were identical. Comparison of the coding sequence of the PCR-amplified PIV-3 F gene clone with that of the published PIV-3 F gene sequence revealed a 2.6% divergence in the coding sequence between the two genes resulting in fourteen amino acid substitutions.

The nucleotide sequence of the non-PCR amplified PIV-3 F gene clone differed from the PCR amplified gene clone in the following manner: the non-PCR amplified clone had ten additional nucleotides (AGGACAAAAG) at the 5' untranslated region of the gene and differed at four positions, 8 (T in PCR-amplified gene to C in non-PCR amplified gene) , 512 (C in PCR-amplified gene to T in non-PCR amplified gene) , 518 (G in PCR-amplified gene to A in non-PCR amplified gene) and 1376 (A in PCR-amplified gene to G in non-PCR amplified gene). These changes resulted in three changes in the amino acid sequence of the F protein encoded by the non-PCR amplified PIV-3 F gene. Serine (position 110), glycine (position 112), and aspartic acid (position 398) in the primary amino acid sequence of the F protein encoded by the PCR amplified PIV-3 F gene was changed to phenylalanine (position 110), glutamic acid (position 112) and glycine (position 398), respectively, in the primary amino acid sequence of the F protein encoded by the PCR amplified clone.

Figure 3 shows the nucleotide (SEQ ID No: 3) and amino acid (SEQ ID No: 4) sequences of the PIV-3 HN gene and protein, respectively and the restriction map of the

15

gene is presented in Figure 4. Analysis of the 1833 nucleotide sequence from two HN clones confirmed that the sequences were identical. A 4.4% divergence in the coding sequence of the PIV-3 HN gene was noted when the sequence was compared to the published PIV-3 HN coding sequence. This divergence resulted in seventeen amino acid substitutions in the amino acid sequence of the protein encoded by the PIV-3 HN gene.

The nucleotide (SEQ ID No: 5) and amino acid (SEQ ID No: 6) sequences of the RSV F gene and RSV F protein, respectively, are shown in Figure 5 and the restriction map of the gene is shown in Figure 6. Analysis of the 1887 nucleotide sequence from two RSV F clones verified complete sequence homology between the two clones. Comparison of this nucleotide sequence with that reported for the RSV F gene revealed approximately 1.8% divergence in the coding sequence resulting in eleven amino acid substitutions.

The nucleotide (SEQ ID No: 7) and amino acid (SEQ ID No: 8) sequences of the RSV G gene and RSV G protein, respectively, are presented in Figure 7 while the restriction map of the gene is outlined in Figure 8. Comparison of the 920 nucleotide sequence of the G gene clone with the published G sequence (type A isolate) revealed a 4.2% divergence in the nucleotide sequence and a 6.7% divergence in the amino acid sequence of the gene product. This divergence resulted in twenty amino acid substitutions.

The full-length PIV-3 F (non-PCR amplified) , PIV-3
30 HN, RSV F and RSV G genes were cloned into λgtll and subcloned into the multiple cloning site of a Bluescript M13-SK vector, either by blunt end ligation or using appropriate linkers. The PCR-amplified PIV-3 F gene was directly cloned into the Bluescript vector. The cloning vectors containing the PIV-3 F-PCR amplified, PIV-3 F non-PCR amplified, PIV-3 HN, RSV F and RSV G genes were

named pPI3F, pPI3Fc, pPIVHN, pRSVF and pRSVG, respectively.

Example 2:

10

15

20

25

30

35

This Example illustrates the construction of a Bluescript-based expression vector (pMCR20) containing the chimeric F_{PIV-3} - F_{RSV} gene. This chimeric gene construct contains the 5' untranslated region of the PIV-3 F gene but lacks the hydrophobic anchor and cytoplasmic tail coding regions of both the PIV-3 and RSV F genes. The steps involved in the construction of this plasmid are summarized in Figure 9.

To prepare the PIV-3 portion of the chimeric gene (Figure 9, step 1), the full length PIV-3 gene lacking the transmembrane region and cytoplasmic tail coding regions was retrieved from plasmid pPI3F by cutting the polylinker with BamHI, blunt-ending the linearized plasmid with Klenow polymerase and cutting the gene with BsrI. A BsrI-BamHI oligonucleotide cassette (SEQ ID No: 9) containing a PpuMI site and three successive translational stop codons were ligated to the truncated 1.6 Kb [BamHI]-BsrI PIV-3 F gene fragment and cloned into the EcoRV-BamHI sites of a Bluescript M13-SK expression vector containing the human methallothionen promoter and the poly A and IVS sequences of the SV40 genome (designated pMCR20), to generate plasmid pME1.

To engineer the RSV F gene component of the chimeric construct (Figure 9, step 2), the RSV F gene lacking the transmembrane region and cytoplasmic tail coding regions was retrieved from plasmid pRSVF by cutting the polylinker with EcoRI and the gene with BspHI. A synthetic BspHI-BamHI oligonucleotide cassette (SEQ ID No: 10) containing three successive translational stop codons was ligated to the 1.6 Kb truncated RSV F gene and cloned into the EcoRI-BamHI sites of the Bluescript based expression vector, pMCR20 to produce plasmid pES13A. Plasmid pES13A then was cut with EcoRI and PpuMI to

remove the leader and F2 coding sequences from the truncated RSV F gene. The leader sequence was reconstructed using an EcoRI-PpuMI oligocassette (SEQ ID No: 11) and ligated to the RSV F1 gene segment to generate plasmid pES23A.

To prepare the chimeric F_{PIV-3} - F_{RSV} gene (Figure 9, step 3) containing the 5' untranslated region of the PIV-3 F gene linked to the truncated RSV F1 gene fragment, plasmid pME1 (containing the 1.6 Kb truncated PIV-3 F gene) first was cut with PpuMI and BamHI. The PpuMI-BamHI restricted pME1 vector was dephosphorylated with intestinal alkaline phosphatase. The 1.1 Kb RSV F1 gene fragment was retrieved from plasmid pES23A by cutting the plasmid with PpuMI and BamHI. The 1.1 Kb PpuMI-BamHI RSV F1 gene fragment was cloned into the PpuMI-BamHI sites of the dephosphorylated pME1 vector to generate plasmid This chimeric gene construct contains the 5' untranslated region of the PIV-3 F gene but lacks the nucleotide sequences coding for the hydrophobic anchor domains and cytoplasmic tails of both the PIV-3 and RSV F proteins.

Example 3:

5

10

15

20

25

30

35

This Example illustrates the construction of a Bluescript-based expression vector containing the PIV-3 F gene lacking both the 5' untranslated and transmembrane anchor and cytoplasmic tail coding regions. The steps involved in constructing this plasmid are outlined in Figure 10.

Plasmid pPI3F containing the full length PIV-3 F gene was cut with BamHI, blunt ended with Klenow polymerase and then cut with BsrI to remove the transmembrane and cytoplasmic tail coding regions. The Bluescript-based expression vector, pMCR20, was cut with SmaI and BamHI. A synthetic BsrI-BamHI oligonucleotide cassette (SEQ ID No: 12) containing a translational stop codon was ligated with the 1. 6 Kb blunt ended-BsrI PIV-3

F gene fragment to the Small-BamHI restricted pMCR20 The PIV-3 F gene of vector to produce plasmid pMpFB. this construct lacked the DNA fragment coding for the transmembrane and cytoplasmic anchor domains To engineer a contained the 5' untranslated region. plasmid containing the PIV-3 F gene devoid of both the 5' untranslated region and the DNA fragment coding for the hydrophobic anchor domain, plasmid pMpFB was cut with EcoRI and BstBI. An EcoRI-BstBI oligocassette (SEQ ID No: 13) containing the sequences to reconstruct the signal peptide and coding sequences removed by the EcoRI-BstBI cut was ligated to the EcoRI-BstBI restricted pMpFB vector to produce plasmid pMpFA.

Example 4:

10

15

20

25

30

This Example illustrates the construction of the chimeric $F_{\text{PIV-3}}-F_{\text{RSV}}$ gene composed of the truncated PIV-3 F gene devoid of the 5' untranslated region linked to the truncated RSV F1 gene. The steps involved in constructing this plasmid are summarized in Figure 11.

To prepare this chimeric gene construct, plasmid pES29A (Example 2) was cut with BstBI and BamHI to release the 2.5 Kb BstBI-BamHI PI3-3 F-RSV F1 chimeric This BstBI-BamHI fragment was isolated gene fragment. from a low melting point agarose gel and cloned into the BstBI-BamHI sites of the dephosphorylated vector pMpFA to This construct contained the produce plasmid pES60A. PIV-3 F gene lacking both the 5' untranslated region and the hydrophobic anchor and cytoplasmic tail coding sequences linked to the F1 coding region of the truncated subsequently This chimeric gene was subcloned into the baculovirus transfer vector (see Example 5).

Example 5:

This Example illustrates the construction of the modified pAC 610 baculovirus transfer vector containing the native polyhedrin promoter and the chimeric F_{PIV-3} - F_{RSV}

gene consisting of the PIV-3 F gene lacking both the 5' untranslated sequence and the nucleotide sequence coding for the hydrophobic anchor domain and cytoplasmic tail linked to the truncated RSV F1 gene. Construction of this plasmid is illustrated in Figure 12.

The pAC 610 baculovirus expression vector was modified to contain the native polyhedrin promoter in the following manner. Vector pAC 610 was cut with EcoRV and The 9.4 Kb baculovirus transfer vector lacking the EcoRV-BamHI DNA sequence was isolated from a low melting point agarose gel and treated with intestinal In a 3-way ligation, an EcoRValkaline phosphatase. EcoRI oligonucleotide cassette (SEQ ID No: 14) containing the nucleotides required to restore the native polyhedrin promoter was ligated with the 1.6 Kb EcoRI-BamHI truncated RSV F gene fragment isolated from construct pES13A (Example 2, step 2) and the EcoRV-BamHI restricted pAC 610 phosphatased vector to generate plasmid pES47A. To prepare the pAC 610 based expression vector containing the chimeric F_{PIV-3} - F_{RSV} gene, plasmid pES47A was first cut with EcoRI and BamHI to remove the 1.6 Kb truncated RSV F gene insert. The 2.8 Kb F_{PIV-3} - F_{RSV} chimeric gene was retrieved by cutting plasmid pES60A (Example 4) with EcoRI and BamHI. The 2.8 Kb EcoRI-BamHI chimeric gene was ligated to the EcoRI-BamHI restricted pES47A vector to generate plasmid pAC DR7 (ATCC 75387).

Example 6

5

10

15

20

25

30

This Example outlines the preparation of plaque-purified recombinant baculoviruses containing the chimeric $F_{\text{PIV-3}}$ - F_{RSV} gene.

Spodoptera frugiperda (Sf9) cells were cotransfected with 1.0 μ g wild-type AcMNPV DNA and 2.5 μ g of $F_{PIV.3}$ - F_{RSV} plasmid DNA (plasmid pAC DR7 - Example 5). Putative recombinant baculoviruses (purified once by serial dilution) containing the $F_{PIV.3}$ - F_{RSV} chimeric gene were identified by dot-blot hybridization. Lysates of

insect cells infected with the putative recombinant baculoviruses were probed with the $^{32}\text{P-labelled}$ $F_{\text{PIV-3}}-F_{\text{RSV}}$ chimeric gene insert. Recombinant baculoviruses were plaque-purified twice before being used for expression studies. All procedures were carried out according to the protocols outlined by M.D. Summers and G.E. Smith in "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures", Texas Agricultural Experiment Station, Bulletin 1555, 1987.

10 Example 7:

15

20

25

30

35

This Example illustrates the presence of the chimeric $F_{\text{PIV-3}}$ - F_{RSV} protein in supernatants and cell lysates of infected Sf9 cells.

Insect cells were infected with the plaque-purified recombinant baculoviruses prepared as described Example 6 at a m.o.i. of 8. Concentrated supernatants from cells infected with the recombinant viruses were positive in a PIV-3 F specific ELISA. In addition, when lysates from 35S-methioninelabelled infected cells were subjected to SDS-polyacrylamide gel electrophoresis and gels were analyzed by autoradiography, a strong band with apparent molecular weight of approximately 90 kDa was present in lysates of cells infected with the recombinant viruses but was absent in the lysates from wild-type infected cells. The presence of the chimeric F_{PIV-3} - F_{RSV} protein in the lysates of cells infected with the recombinant baculoviruses was confirmed further Western blot analysis using monospecific anti-PIV-3 F and anti-RSV F antisera and/or monoclonal antibodies (Mabs). Lysates from cells infected with the recombinant baculoviruses reacted with both anti-PIV-3 and anti-RSV antisera in immunoblots. As shown in the immunoblot of Figure 13, lysates from cells infected with either the RSV F or $F_{PIV.3}$ - F_{RSV} recombinant baculoviruses reacted positively with the anti-F RSV Mab. As expected, lysates from cells infected with wild type virus did not react with this Mab. In addition, only lysates from cells infected with the chimeric F_{PIV-3} - F_{RSV} recombinant viruses reacted with the anti-PIV-3 F_1 antiserum.

Example 8

5

10

15

25

30

35

This Example illustrates modification of the baculovirus transfer vector pVL1392 (obtained from Invitrogen), wherein the polyhedrin ATG start codon was converted to ATT and the sequence CCG was present downstream of the polyhedrin gene at positions +4,5,6. Insertion of a structural gene several base pairs downstream from the ATT codon is known to enhance translation. The steps involved in constructing this modified baculovirus transfer vector are outlined in Figure 14.

The baculovirus expression vector pVL1392 was cut with EcoRV and BamHI. The 9.5 kb restricted pVL1392 vector was ligated to an EcoRV-BamHI oligonucleotide cassette (SEQ ID No: 15) to produce the pD2 vector. Example 9:

This Example illustrates the construction of the pD2 baculovirus expression vector containing the chimeric F_{RSV} -HN_{PIV-3} gene consisting of the truncated RSV F and PIV-3 HN genes linked in tandem. The steps involved in constructing this plasmid are summarized in Figure 15.

To engineer the F_{RSV}-HN_{PIV-3} gene, the RSV F gene the nucleotide sequence coding transmembrane domain and cytoplasmic tail of the RSV F glycoprotein was retrieved from plasmid pRSVF (Example 1) by cutting the polylinker with EcoRI and the gene with BspHI. The PIV-3 HN gene devoid of the DNA fragment coding for the hydrophobic anchor domain was retrieved from plasmid pPIVHN (Example 1) by cutting the gene with BspHI and the polylinker with BamHI. The 1.6 Kb EcoRI-BspHI RSV F gene fragment and the 1.7 Kb BspHI-BamHI PIV-3 HN gene fragment were isolated from low melting point agarose gels. For cloning purposes, the two BspHI sites

10

15

20

25

30

35

in the Bluescript based mammalian cell expression vector, pMCR20, were mutated. Mutations were introduced in the BspHI sites of the pMCR20 by cutting the expression vector with BspHI, treating both the BspHI restricted vector and the 1. 1 Kb fragment released by the BspHI cut with Klenow polymerase and ligating the blunt-ended 1.1 fragment the blunt-ended Bluescript-based to expression vector to generate plasmid pM'. insertion of the 1.1 Kb blunt-end fragment in the mammalian cell expression vector in the orientation would alter the Amp' gene of the Bluescriptbased expression vector, only colonies of HB101 cells transformed with the pM' plasmid DNA with the 1.1 Kb blunt-ended fragment in the proper orientation could survive in the presence of ampicillin. Plasmid DNA was purified from ampicillin-resistant colonies of HB101 cells transformed with plasmid PM' by equilibrium in cesium chloride-ethidium centrifugation The 1.6 Kb EcoRI-BspHI RSV F and 1.7 Kb gradients. BspHI-BamHI PIV-3 HN gene fragments were directly cloned into the EcoRI-BamHI sites of vector pM' in a 3-way ligation to generate plasmid pM' RF-HN.

To restore specific coding sequences of the RSV F and PIV-3 HN genes removed by the BspHI cut, a BspHI-BspHI oligonucleotide cassette (SEQ ID No: 16) containing the pertinent RSV F and PIV-3 HN gene sequences was ligated via the BspHI site to the BspHI-restricted plasmid pM' RF-HN to produce plasmid pM RF-HN. Clones containing the BspHI-BspHI oligonucleotide cassette in the proper orientation were identified by sequence analysis of the oligonucleotide linker and its flanking regions.

To clone the chimeric F_{RSV} -HN $_{PIV.3}$ gene into the baculovirus expression vector pD2 (Example 8), the F_{RSV} -HN $_{PIV.3}$ truncated gene first was retrieved from plasmid pM RF-HN by cutting the plasmid with EcoRI. The 3.3 Kb F_{RSV} -

 ${\rm HN_{PIV-3}}$ gene then was cloned into the EcoRI site of the baculovirus transfer vector plasmid pD2 to generate plasmid pD2 RF-HN (ATCC 75388). Proper orientation of the 3.3 Kb EcoRI ${\rm F_{RSV}-HN_{PIV-3}}$ chimeric gene insert in plasmid pD2 RF-HN was confirmed by sequence analysis. Example 10:

This Example outlines the preparation of plaque-purified recombinant baculoviruses containing the chimeric F_{RSV} -HN_{PIV-3} gene.

were frugiperda (Sf9) cells Spodoptera transfected with 1 μg wild-type AcNPV DNA and 2 μg of F_{RSV} -HN_{PIV-3} plasmid DNA (plasmid pD2 RF-HN-Example 9). Putative recombinant baculoviruses (purified once by serial dilution) containing the F_{RSV} -HN $_{PIV-3}$ chimeric gene were identified by dot-blot hybridization. Lysates of insect cells infected with the putative recombinant baculoviruses were probed with the 32P-labelled RSV F or PTV-3 HN gene oligonucleotide probes. Recombinant baculoviruses were plaque-purified three times before being used for expression studies. All procedures were carried out according to the protocols outlined by Summers and Smith (Example 6).

Example 11:

5

10

15

20

25

30

35

This Example illustrates the presence of the chimeric $F_{RSV}-HN_{PIV.3}$ protein in supernatants of infected Sf9 and High 5 cells.

Insect cells (Sf9 and High 5), maintained in serum free medium EX401, were infected with the plaque purified recombinant baculoviruses of Example 10 at a m.o.i. of 5 to 10 pfu/cell. Supernatants from cells infected with the recombinant baculoviruses tested positive for expressed protein in both the RSV-F and PIV-3 HN specific ELISAS. In addition, supernatants from infected cells reacted positively with both an anti-F RSV monoclonal antibody and anti-HN peptide antisera on immunoblots. A distinct band of approximately 105 kDa was present in the

immunoblots. These results confirm the secretion of the chimeric F_{RSV} -HN $_{PIV-3}$ protein into the supernatant of Sf9 and High 5 cells infected with the recombinant baculoviruses.

5 Example 12:

10

15

20

25

This Example illustrates the purification of the chimeric F_{RSV} -HN $_{PIV-3}$ protein from the supernatants of infected High 5 cells.

High 5 cells, maintained in serum free medium, were the plaque purified recombinant with infected baculoviruses of Example 10 at a m.o.i of 5 pfu/cell. The supernatant from virus infected cells was harvested 2 days post-infection. The soluble F_{RSV} -HN_{PIV-3} chimeric protein was purified from the supernatants of infected cells by immunoaffinity chromatography using an anti-HN The anti-HN monoclonal PIV-3 monoclonal antibody. antibody was coupled to CNBr-activated Sepharose 4B by conventional techniques. The immunoaffinity column was washed with 10 bed volumes of washing buffer (10mM Tris-HCl pH 7.5, 150 mM NaCl, 0.02% v/v Triton-X 100) prior to use. After sample loading, the column was washed with 10 bed volumes of washing buffer followed by 3 bed volumes of high salt buffer (10mm Tris-HCl pH 7.5, 500mM NaCl, 0.02% v/v Triton-X 100) . The chimeric $F_{RSV}\text{-}HN_{PIV\text{-}3}$ protein was eluted from the immunoaffinity column with 100 MM glycine, pH 2.5, in the presence of 0.02% Triton X-100. Eluted protein was neutralized immediately with 1M Tris-HCl, pH 10.7.

Polyacrylamide gel electrophoretic analysis (Fig. 16, panel A) of the immunoaffinity-purified F_{RSV} -HN $_{PIV-3}$ protein revealed the presence of one major protein band with an apparent molecular weight of 105 kDa. The purified protein reacted with both an anti-RSV F monoclonal antibody and anti-HN peptide antisera on immunoblots (Fig. 16, panel B, lanes 1 and 2, respectively).

Example 13:

5

10

15

20

This Example illustrates the immunogenicity of the F_{RSV} -HN_{PIV-3} protein in guinea pigs.

pigs were injected guinea four of Groups intramuscularly with either 1.0 or 10.0 μg of the chimeric F_{RSV} -HN_{PIV-3} protein purified as described in Example 12 and adjuvanted with aluminum phosphate. Groups of control animals were immunized with either (administered RSV or live PIV-3 or intranasally). Guinea pigs were bled 2 and 4 weeks after the primary injection and boosted at 4 weeks with an equivalent dose of the antigen formulation. samples also were taken 2 and 4 weeks after the booster To assess the ability of the chimeric protein to elicit PIV-3 and RSV-specific antibody responses, sera samples were analyzed for the presence of PIV-3 specific hemagglutination inhibiting and neutralizing antibodies as well as RSV neutralizing antibodies. As summarized in Table 1 below (the Tables appear at the end of the disclosure), the sera of animals immunized with two 10 μg doses of the chimeric protein had titres of PIV-3 specific hemagglutination inhibition (HAI) and PIV-3/RSV neutralizing antibodies at the 6 and 8 week time points which were equivalent to the levels obtained following intranasal inoculation with either live PIV-3 or RSV. 25 addition, animals immunized with only two 1 ug doses of the chimeric protein elicited strong PIV-3 and RSV antibodies. specific neutralizing These confirmed the immunogenicity of both the RSV and PIV-3 the chimeric protein and components of 30 confirmatory evidence that a single recombinant immunogen can elicit neutralizing antibodies against both RSV and PIV-3.

Example 14:

10

15

20

25

30

35

This Example illustrates the immunogenicity and protective ability of the $F_{RSV}\text{-}HN_{PIV\text{-}3}$ protein in cotton rats.

Groups injected eight cotton rats were of intramuscularly with either 1.0 or 10.0 ug of the chimeric F_{RSV} - HN_{PIV-3} protein (prepared as described in Example 12) adjuvanted with aluminum phosphate. of control animals were immunized with either placebo (PBS + aluminum phosphate) live PIV-3 or (administered intranasally). Cotton rats were bled 4 weeks after the primary injection and boosted at 4 weeks with an equivalent dose of the antigen formulation. Serum samples were also taken 1 week after the booster As shown in Table 2 below, data from the 4-week bleed demonstrated that both a 1 and 10 μg dose of the chimeric protein was capable of inducing a strong primary Reciprocal mean log, PIV-3 specific HAI and PIV-3/RSV neutralizing titers were equivalent to the titres obtained with live PIV-3 and RSV. Thus, a single inoculation of the chimeric protein was sufficient to elicit neutralizing antibodies against both PIV-3 and RSV. Strong neutralizing PIV-3 and RSV titres also were observed following the booster dose (5 week bleed). These results provide additional evidence that both the RSV and PIV-3 components of the chimeric protein are highly immunogenic.

To assess the ability of the chimeric immunogen to simultaneously protect animals against both RSV and PIV-3, four cotton rats from each group were challenged intranasally with 100 TCID $_{50}$ units of either PIV-3 or RSV. Animals were killed 4 days after virus challenge. Virus titers were determined in lung nomogenates. As shown in Table 3 below, animals immunized with either 1 or 10 μg of the chimeric F_{RSV} -HN $_{PIV-3}$ protein were completely protected against challenge with either PIV-3 or RSV. These results provide evidence that the chimeric protein

is not only highly immunogenic but can also simultaneously protect cotton rats against disease caused by both PIV-3 and RSV infection.

Example 15:

5

10

This Example illustrates the construction of a Bluescript M13-SK vector containing the chimeric $F_{\text{PIV-3}}\text{-}G_{\text{RSV}}$ gene. This chimeric gene construct contains the 5' untranslated region of a mutated PIV-3 F gene but lacks the nucleotide sequence coding for the hydrophobic anchor and cytoplasmic tail domains of both a mutated PIV-3 F and the native RSV G genes. The steps involved in constructing this plasmid are outlined in Figures 17 and 18.

The first step (Fig. 17) involved in preparing the PIV-3 F component of the chimeric F_{PIV-3} - G_{RSV} gene construct 15 was to eliminate the putative pre-termination sites 5′ nucleotide long sequence within the 18 CAAGAAAAGGAATAAAA 3' (SEQ ID No: 17) located between positions 857 and 874 of the non PCR-amplified PIV-3 F gene and positions 847 and 864 of the PCR-amplified PIV-3 20 F gene (see Figure 1). To this end, the PIV-F cDNA of the non-PCR amplified PIV-3 F gene was cut at the BsaAI and EcoRI sites. The BsaAI-EcoRI PIV F gene fragment was cloned into the EcoRI site of a Bluescript M13-SK vector The 857-874 target region using an EcoRI-BsaAI linker. 25 of the PIV-3 F gene (non-PCR amplified) then was mutated by oligonucleotide-mediated mutagenesis using the method of Morinaga et al. [1984, Biotechnology 2: 636-639]. Plasmid pPI3Fc (Example 1) was cut with ScaI in the Amp' gene and dephosphorylated with alkaline phosphatase 30 (plasmid #1). A second sample of plasmid pPI3Fc was cut with BstEII and NsiI to produce a 3.9 Kb restricted plasmid, lacking the 0.9 Kb BstEII-NsiI fragment of the PIV-3 F gene (plasmid #2). A mutagenic 78-mer synthetic oligonucleotide (#2721 shown in Fig. 17-SEQ ID No: 18)) 35 containing the sequence 5' CAGGAGAAGGGTATCAAG 3' (SEQ ID

15

20

25

30

35

No: 19) was synthesized to specifically mutate the 857-874 DNA segment without changing the F protein sequence. This oligonucleotide was added to plasmid DNAs #1 and #2, denatured at 100°C for 3 min. and renatured by gradual The mixture then was incubated in the presence cooling. of DNA polymerase, dNTPs and T4 ligase and transformed into HB101 cells. Bacteria containing the 1.8 Kb mutated PIV-3 F gene were isolated on YT agar plates containing Hybridization with μg/ml ampicillin. oligonucleotide probe 5' AGGAGAAGGGTATCAAG 3' (SEQ ID No: 20) was used to confirm the presence of the mutated PIV-3 The mutated gene sequence was confirmed by DNA The plasmid containing the mutated PIV-3 sequencing. gene was designated pPI3Fm.

The second step (Fig. 18) in the engineering of the chimeric gene construct involved constructing a Bluescript based vector to contain the truncated PIV-3 Fm gene lacking the nucleotide sequence coding for the transmembrane anchor domain and cytoplasmic tail of the PIV-3 F protein linked in tandem with the RSV G gene lacking both the 5' leader sequence and the nucleotide sequence coding for the transmembrane anchor domain and cytoplasmic tail of the G glycoprotein.

To prepare this chimeric gene, the orientation of the mutated PIV-F gene in plasmid pPI3Fm first was reversed by EcoRI digestion and religation to generate plasmid pPI3Fmr. To prepare the PIV-3 F gene component of the chimeric gene, plasmid pPI3Fmr was cut with NotI and BsrI to release the 1.7 Kb truncated PIV-3 F gene. To prepare the RSV G component, the 0.95 Kb RSV-G gene lacking both the 5' leader sequence and the DNA segment encoding the G protein anchor domain and cytoplasmic tail was released from plasmid pRSVG (Example 1) by cutting the polylinker with EcoRI and the gene with BamHI. The 0.95 Kb EcoRI-BamHI RSV G gene fragment was subcloned into the EcoRI-BamHI sites of a restricted Bluescript

vector, pMl3-SK, to produce plasmid pRSVGt. The 0.95 Kb EcoRI-BamHI G gene fragment and the 1.5 Kb NotI-BsrI truncated PIV-3 F gene were linked via a BsrI-BamHI oligonucleotide cassette (SEQ ID No: 9) restoring the F and G gene coding sequences and cloned into the pRSVGt vector restricted with BamHI and NotI in a 3-way ligation. The plasmid thus generated was designated pFG. Example 16:

This Example outlines the construction of the pD2 baculovirus transfer vector (described in Example 8) containing the chimeric $F_{PIV\cdot3}-G_{RSV}$ gene consisting of a mutated PIV-3 F gene lacking the hydrophobic anchor and cytoplasmic coding regions linked to the RSV G gene lacking both the 5' leader sequence and the nucleotide sequences encoding the transmembrane anchor domain and cytoplasmic tail of the G protein.

To prepare this construct, plasmid pFG (Example 15) was cut with EcoRI to release the 2.6 Kb F_{PIV-3} - G_{RSV} chimeric gene. The 2.6 Kb EcoRI restricted chimeric gene fragment then was sub-cloned into the EcoRI site of the dephosphorylated pD2 vector to generate the 12.1 Kb plasmid pD2F-G (ATCC 75389).

Example 17:

10

15

20

25

30

This Example outlines the preparation of plaque-purified recombinant baculoviruses containing the chimeric $F_{\text{PIV-3}}$ - G_{RSV} gene.

Spodoptera frugiperda (Sf9) cells were cotransfected with 2 ug of pD2F-G plasmid DNA (Example 16) and 1 ug of linear wild-type AcNPV DNA (obtained from Invitrogen). Recombinant baculoviruses containing the $F_{\text{PIV-3}}\text{-}G_{\text{RSV}}$ gene were plaque-purified twice according to the procedure outlined in Example 10.

Example 18:

This Example illustrates the presence of the chimeric $F_{\text{PIV-3}}\text{-}G_{\text{RSV}}$ protein in the supernatant of Sf9 and High 5 cells infected with the recombinant baculoviruses.

Sf9 and High 5 cells were infected with recombinant baculoviruses containing the F_{PIV-3}-G_{RSV} gene (Example 16) at a m.o.i. of 5 to 10 pfu/cell. The supernatant of cells infected with the recombinant viruses tested positive for expressed protein in the PIV-3 F specific ELISA. Supernatants of infected cells reacted with both anti-F PIV-3 and anti-G RSV monoclonal antibodies in These results confirm the presence of the immunoblots. chimeric $F_{\text{PIV-3}}\text{-}G_{\text{RSV}}$ protein in the supernatants of infected Sf9 and High 5 cells.

Example 19:

10

15

This Example outlines the preparation of recombinant vaccinia viruses expressing the F_{PIV-3} - F_{RSV} and F_{RSV} - HN_{PIV-3}

Vaccinia virus recombinant viruses expressing the $F_{PIV-3}-F_{RSV}$ (designated vP1192) and $F_{RSV}-HN_{PIV-3}$ (designated vP1195) genes were produced at Virogenetics Corporation (Troy, NY) (an entity related to assignee hereof) using the COPAK host-range selection system. plasmids used in the COPAK host-range selection system 20 contained the vaccinia K1L host-range gene [Perkus et al., (1990) Virology 179:276-286] and the modified vaccinia H6 promoter [Perkus et al. (1989), J. Virology In these insertion plasmids, the K1L <u>63</u>:3829-3836]. gene, H6 promoter and polylinker region are situated 25 Copenhagen strain vaccinia flanking between replacing the ATI region [open reading frames (ORFs) A25L, A26L; Goebel et al., (1990), Virology 179: 247-266; 517-563]. COPAK insertion plasmids are designed for use in in vivo recombination using the rescue virus NYVAC 30 (vP866) (Tartaglia et al., (1992) Virology 188: 217-232). Selection of recombinant viruses was done on rabbit kidney cells.

vP1192 and vP1195 viruses, Recombinant generated using insertion plasmids pES229A-6 and PSD.RN, 35 respectively. To prepare plasmid pES229A-6 containing

15

20

25

30

35

the $F_{PIV.3}$ - F_{RSV} gene, the COPAK-H6 insertion plasmid pSD555 was cut with SmaI and dephosphorylated with intestinal alkaline phosphatase. The 2.6 Kb $F_{PIV.3}$ - F_{RSV} gene was retrieved from plasmid pES60A (Example 4) by cutting the plasmid with EcoRI and BamHI. The 2.6 Kb EcoRI-BamHI $F_{PIV.3}$ - F_{RSV} gene was blunt ended with Klenow polymerase, isolated from a low melting point agarose gel and cloned into the SmaI site of the COPAK-H6 insertion plasmid pSD555 to generate plasmid pES229A-6. This positioned the $F_{PIV.3}$ - F_{RSV} ORF such that the 5' end is nearest the H6 promoter.

To prepare plasmid PSD.RN, the pSD555 vector first was cut with SmaI and BamHI. Plasmid pM RF-HN (Example 9) containing the truncated F_{RSV} -HN_{PIV-3} gene was cut with ClaI, blunt ended with Klenow polymerase and then cut with BamHI. The 3.3 Kb F_{RSV} -HN_{PIV-3} gene was cloned into the SmaI-BamHI sites of the pSD555 vector to generate plasmid PSD.RN. This positioned the F_{RSV} -HN_{PIV-3} ORF such that the H6 5' end is nearest the H6 promoter.

Plasmids pES229A-6 and PSD.RN were used in in vitro recombination experiments in vero cells with NYVAC (vP866) as the rescuing virus. Recombinant progeny virus rabbit kidney (RK) - 13selected on was Several plaques were passaged two times (ATCC #CCL37). on RK-13 cells. Virus containing the chimeric genes were confirmed by standard in situ plaque hybridization [Piccini et al. (1987), Methods in Enzymology, 153:545-563] using radiolabeled probes specific for the PIV and Plaque purified virus RSV inserted DNA sequences. containing the $F_{PIV\text{-}3}\text{-}F_{RSV}$ and $F_{RSV}\text{-}HN_{PIV\text{-}3}$ chimeric genes were designated vP1192 and vP1195, respectively.

Radioimmunoprecipitation was done to confirm the expression of the chimeric genes in vP1192 and vP1195 infected cells. These assays were performed with lysates prepared from infected Vero cells [according to the procedure of Taylor et al., (1990) J. Virology <u>64</u>, 1441-

15

1450] using guinea pig monospecific PIV-3 anti-HN and anti-F antiserum and rabbit anti-RSV F antiserum. Both the anti-PIV F and anti-RSV F antisera precipitated a protein with an apparent molecular weight of approximately 90 koa from vP1192 infected Vero cells. Both anti-RSV F and guinea pig anti-PIV HN antisera precipitated a protein with an apparent molecular weight of approximately 100 kDa from vP1195 infected cells. These results confirmed the production of the $F_{\text{PIV-3}}$ - F_{RSV} and F_{RSV} -HN_{PIV-3} chimeric proteins in Vero cells infected with the recombinant poxviruses.

SUMMARY OF DISCLOSURE

In summary of the disclosure, the present invention provides multimeric hybrid genes which produce chimeric proteins capable of eliciting protection against infection by a plurality of pathogens, particularly PIV and RSV. Modifications are possible within the scope of this invention.

Table 1 Secondary antibody response of guinea pigs immunized with the chimeric $F_{RSV}^{-HN}_{PIV-3}$ protein

Antigen Formulation	Dose (ug)	HAI Titre ^a (log ₂ ± s.e.) PIV-3		Neutralization Titre ^b (log ₂ ± s.e.)			
				PIV-3		RSV	
		6 wk Bleed	8 wk Bleed	6 wk Bleed	8 wk Bleed	6 wk Bleed	8 wk Bleed
Buffer	-	<1.0 ± 0.0	<1.0 ± 0.0	<1.0 ± 0.0	<1.0 ± 0.0	<1.0 ± 0.0	<1.0 ± 0.0
FRSV ^{-HN} PIV-3	10.0	9.1 ± 0.3	9.1 ± 0.3	7.1 ± 0.3	7.1 ± 0.5	5.5 ± 0.9	4.5 ± 1.2
	1.0	7.0 ± 2.0	7.3 ± 2.2	5.0 ± 1.5	4.5 ± 1.4	4.5 ± 0.5	3.0 ± 1.0
Live PIV-3		8.6 ± 0.7	7.3 ± 0.6	7.0 ± 0.4	7.3 ± 0.6	N/A	N/A
Live RSV		N/A ^C	N/A	N/A	N/A	5.5 ± 1.5	5.0 ± 1.0

 $^{^{\}mathrm{a}}$ Reciprocal mean \log_2 serum dilution which inhibits erythrocyte agglutination by 4 hemagglutinating units of PIV-3

 $^{^{}m b}$ Reciprocal mean \log_2 serum dilution which blocks hemadsorption of 100 TCID $_{
m 50}$ units of PIV-3 or RSV

C N/A - not applicable

TABLE 2

Table 2: Serum antibody response of cotton rats immunized with the chimeric FRSV-HNMY-3 protein*

Antigen Formulation	Dose (ug)	HAI Titre ^b (log ₂ ± s.d.) PIV-3		Neutralization Titre ^c (log ₂ ± s.d.)			
				PIV-3		RSV	
		4 wk Bleed	5 wk Bleed	4 wk Bleed	5 wk Bleed	4 wk Bleed	5 wk Bleed
Buffer	•	2.8 ± 0.5	<3.0 ± 0.0	<1.0 ± 1.0	<1.0 ± 0.0	1.8 ± 0.3	0.8 ± 0.7
F _{RSV} -HN _{PIV-3}	10.0	9.5 ± 1.3	10.5 ± 0.6	>9.0 ± 0.0	>9.0 ± 0.0	5.2 ± 1.1	5.8 ± 0.9
	1.0	9.3 ± 1.0	10.3 ± 0.5	>9.0 ± 0.0	>9.0 ± 0.0	5.0 ± 0.7	5.8 ± 1.2
Live PIV-3		7.0 ± 0.0	8.5 ± 0.7	>9.0 ± 0.0	9.2 ± 0.7	N/A	N/A
Live RSV		N/A ^d	N/A	N/A	N/A	5.5 ± 0.6	8.5 ± 0.6

^{*} Each value represents the mean titre of antisera from 8 animals.

Reciprocal mean log₂ serum dilution which inhibits erythrocyte agglutination by 4 hemagglutinating units of PIV-3

[&]quot; Reciprocal mean \log_2 serum dilution which blocks hemadsorption of 180 TCID₅₀ units of PIV-3 or RSV

d N/A - not applicable

Table 3. Response of immunized cotton rats to PIV/RSV challenge^a

Antigen Formulation	Dose (ug)	Mean virus lung titre log ₁₀ /g lung ± s.d.		
		RSV	PIV-3	
Buffer	-	3.7 ± 0.3	3.4 ± 0.3	
F _{RSV} -HN _{PIV-3}	10.0	≤1.5 ± 0.0	≤1.5 ± 0.0	
F _{RSV} -HN _{PIV-3}	1.0	≤1.5 ± 0.0	≤1.5 ± 0.0	
Live RSV		≤1.5 ± 0.0	$\leq 1.5 \pm 0.0$	
Live PIV-3		$\leq 1.5 \pm 0.0$	≤1.5 ± 0.0	

 $^{^{\}rm a}$ Animals were challenged intranasally with 100 TCID $_{50}$ units of PIV-3 or RSV and killed 4 days later. Each value represents the mean virus lung titre of 4 animals.

CLAIMS

What we claim is:

- 1. A multimeric hybrid gene, comprising a gene sequence coding for an antigenic region of a protein from a first pathogen linked to a gene sequence coding for an antigenic region of a protein from a second pathogen.
- 2. The hybrid gene of claim 1 wherein said first and second pathogens are selected from bacterial and viral pathogens.
- 3. The hybrid gene of claim 2 wherein both said first and second pathogens are viral pathogens.
- 4. The hybrid gene of claim 1 wherein said first and second pathogens are selected from those causing different respiratory tract diseases.
- 5. The hybrid gene of claim 4 wherein said first and second pathogens causing different respiratory tract diseases are selected from the paramoxyvîridae family of viruses.
- 6. The hybrid gene of claim 1 wherein at least one of said gene sequences is mutated while retaining antigenicity.
- 7. The hybrid gene of claim 6 wherein said mutation is at a putative pre-termination site.
- 8. The hybrid gene of claim 1 wherein said first pathogen is parainfluenza virus (PIV) and said second pathogen is respiratory syncytial virus (RSV).
- 9. The hybrid gene of claim 1, comprising at least one gene sequence coding for a parainfluenza virus (PIV) protein linked to at least one gene sequence coding for a respiratory syncytial virus (RSV) protein.
- 10. The hybrid gene of claim 9, wherein said parainfluenza virus protein is selected from PIV-3 F and HN proteins and said respiratory syncytial virus protein is selected from RSV G and F proteins.
- 11. The hybrid gene of claim 1 consisting of a gene sequence coding for a human PIV-3 F or HN protein or an

immunogenic epitope-containing fragment thereof linked to a gene sequence coding for a human RSV G or F protein or an immunogenic epitope-containing fragment thereof.

- 12. The hybrid gene of claim 11 which is selected from F_{PIV-3} F_{RSV} , F_{RSV} HN_{PIV-3} and F_{PIV-3} G_{RSV} hybrid genes.
- 13. The hybrid gene of claim 1 contained in an expression vector.
- 14. The hybrid gene of claim 13 in the form of plasmid pAC DR7, pD2 RF-HN or pD2 F-G.
- 15. The hybrid gene of claim 1 further comprising at least one gene encoding at least one immunogenic and/or immunostimulating molecule.
- 16. Cells containing the multimeric hybrid gene of claim 1 for expression of a chimeric protein encoded by said gene.
- 17. The cells of claim 16 which are bacterial cells, mammalian cells, insect cells, yeast cells or fungal cells.
- 18. A chimeric protein, comprising an antigenic region of a protein from a first pathogen linked to an antigenic region of a protein from a second pathogen.
- 19. The protein of claim 18, wherein said first and second pathogens are selected from bacterial and viral pathogens.
- 20. The protein of claim 19 wherein both said first and second pathogens are viral pathogens.
- 21. The protein of claim 18, wherein said first and second pathogens are selected from those causing different respiratory tract diseases.
- 22. The protein of claim 21 wherein said first and second pathogens causing different respiratory tract diseases are selected from the paramoxyviridae family of viruses.
- 23. The protein of claim 18, wherein said first pathogen is parainfluenza virus (PIV) and said second pathogen is respiratory syncytial virus (RSV).

- 24. The protein of claim 18 comprising at least one parainfluenza virus (PIV) protein linked to at least one respiratory syncytial virus (RSV) protein.
- 25. The protein of claim 24, wherein said PIV protein is selected from PIV-3 F and HN proteins and said RSV protein is selected from RSV G and F proteins.
- 26. The protein of claim 18 consisting of a human parainfluenza virus-3 (PIV-3) F or HN protein or an immunogenic epitope-containing fragment thereof linked to a human respiratory syncytial virus (RSV) G or F protein or an immunogenic epitope-containing fragment thereof.
- 27. The protein of claim 26 which is selected from F_{PIV-3} F_{RSV} , F_{RSV} HN_{PIV-3} and F_{PIV-3} G_{RSV} chimeric proteins.
- 28. A process for preparation of a chimeric protein which comprises:

isolating a gene sequence coding for an antigenic region of a protein from a first pathogen,

isolating a gene sequence coding for an antigenic region of a protein from a second pathogen,

linking said gene sequences to form a multimeric hybrid gene, and expressing the multimeric hybrid gene in a cellular expression system

- 29. The process of claim 28 wherein said multimeric hybrid gene comprises a gene sequence coding for a PIV-F or HN protein or an immunogenic epitope-containing fragment thereof linked to a gene sequence coding for a human RSV G or F protein or an epitope-containing fragment thereof.
- 30. The process of claim 29 wherein said multimeric hybrid gene is selected from F_{PIV-3} F_{RSV} , F_{RSV} HN_{PIV-3} and F_{PIV-3} G_{RSV} hybrid genes.
- 31. The process of claim 30 wherein said multimeric hybrid gene is contained in an expression vector comprising plasmid pAC QR7, pD2 RF-HN or pD2 F-G.
- 32. The process of claim 28 wherein said cellular expression system is provided by bacterial cells,

mammalian cells, insect cells, yeast cells or fungal cells.

- 33. The process of claim 32 including separating a chimeric protein from a culture of said cellular expression system and purifying the separated chimeric protein.
- 34. A live vector for antigen delivery containing the gene of claim 1.
- 35. The live vector of claim 34 which is a viral vector.
- 36. The live vector of claim 35 wherein said viral vector is selected from poxviral, adenoviral and retroviral viral vectors.
- 37. The live vector of claim 34 which is a bacterial vector.
- 38. The live vector of claim 37 wherein said bacterial vector is selected from salmonella and mycobacteria.
- 39. A vaccine against diseases caused by multiple pathogenic infections, comprising a chimeric protein comprising an antigen region of a protein from a first pathogen linked to an antigenic region of a protein from a second pathogen, and a physiologically-acceptable carrier therefor.
- 40. The vaccine of claim 39, wherein said first and second pathogens are selected from bacterial and viral pathogens.
- 41. The vaccine of claim 39, which also contains at least one other immunogenic and/or immunostimulating molecule.
- 42. The vaccine of claim 40 wherein both said first and second pathogens are viral pathogens.
- 43. The vaccine of claim 39, wherein said first and second pathogens are selected from those causing upper and lower respiratory tract diseases.
- 44. The vaccine of claim 39, wherein said first pathogen is parainfluenza virus (PIV) and said second pathogen is respiratory syncytial virus (RSV).

- 45. The vaccine of claim 39 against infection by both parainfluenza virus (PIV) and respiratory syncytial virus (RSV), comprising a recombinant multimeric protein containing at least one segment consisting of a PIV protein or an immunogenic epitope-containing fragment thereof linked to at least one segment consisting of a RSV protein or an immunogenic epitope-containing fragment thereof, and a carrier therefor.
- 46. The vaccine of claim 45 wherein said recombinant multimeric protein is a recombinant chimeric protein containing a segment consisting of a PIV-3 F or HN protein or an immunogenic epitope-containing fragment thereof linked to a segment consisting of an RSV G or F protein or an immunogenic epitope-containing fragment thereof.
- 47. The vaccine of claim 46 containing at least one additional protein of PIV or RSV or chimeric protein thereof.
- 48. The vaccine of claim 39 wherein said carrier comprises an adjuvant.
- 49. The vaccine of claim 39 wherein said carrier is an ISCOM, a liposome or a microparticle.
- 50. The vaccine of claim 46 formulated to be administered in an injectable form, intranasally or orally.
- 51. The vaccine of claim 39 further comprising means for delivering said multimeric protein specifically to cells of the immune system.
- 52. The vaccine of claim 51 wherein said delivery means comprises a toxin molecule or an antibody.
- 53. A vaccine against diseases caused by multiple pathogenic infection, comprising a live vector as claimed in claim 34, and a physiologically-acceptable carrier therefor.
- 54. A method of immunizing a host against diseases caused by multiple pathogenic infections, which comprises

administering to a host an effective amount of a vaccine as claimed in claim 28 or 53.

- 55. The method of claim 54 wherein said vaccine is against diseases caused by parainfluenza virus (PIV) and respiratory syncytial virus (RSV).
- 56. The method of claim 55 wherein said host is selected from infants, young children, pregnant women, women of child-bearing age and susceptible persons.
- 57. A diagnostic reagent for detecting infection by a plurality of different pathogens in a host, comprising the chimeric protein claimed in claim 18.
- 58. A method of detecting infection by a plurality of different pathogens in a host, which comprises using said chimeric protein claimed in claim 18.

Abstract of the Disclosure

Multimeric hybrid genes encoding the corresponding chimeric protein comprise a gene sequence coding for an antigenic region of a protein from a first pathogen linked to a gene sequence coding for an antigenic region of a protein from a second pathogen. The pathogens particularly are parainfluenza virus (PIV) and respiratory syncytial virus (RSV). A single recombinant immunogen is capable of protecting infants and similar susceptible individuals against diseases caused by both PIV and RSV.

NUCLEOTIDE SEQUENCE OF THE PIV-3 F GENE (PCR-AMPLIFIED)

- SP

MET PRO THR <u>LEU</u>ILE LEU LEU ILE ILE THR THR MET ILE MET ALA <u>SER</u> SER CYS GLN CAATGCCAACTTTAATACTGCTAATTATTACAATGATTATGGCATCTTCCTGCCAA GTTACGGTTGAATTATGACGATTAATAATGTTGTTACTAATACCGTAGAAGGACGGTT 200 230 240 W H

ILE ASP ILE THR LYS LEU GLN HIS VAL GLY VAL LEU VAL ASN SER PRO LYS GLY MET LYS A TACATATCACAAAACTACAGCATGTAGGTGTATTGGTCAACAGTCCCAAAGGGATGAAG TATGTATAGTGTTTTGATGTCGTACATCCACATAACCAGTTGTCAGGGTTTCCCTACTTC 250 250 300

ILE SER GLN ASN PHE GLU THR ARG TYR LEU ILE LEU SER LEU ILE PRO LYS ILE GLU ASP ATATCACAAAACTTCGAAACAAGATATCTAATTTTGAGCCTCATACCAAAAAGAGAC TATAGTGTTTTGAAGCTTTGTTCTATAGATTAAAACTCGGAGTATGGTTTTTATCTTCTG 330 330 330 350

SER ASN SER CYS GLY ASP GLN GLN ILE LYS GLN TYR LYS ARG LEU LEU ASP ARG LEU ILE TCTAACTCTTGTGGTGACCAACAGATCAATACAAGAGGGTTATTGGATAGATC AGATTGAGAACACCACTGGTTGTCTAGTTTGTTATGTTCTCCAATAACCTATCTGACTAG 370

三

LEU GLY VAL ALA THR SER ALA GLN ILE THR ALA ALA VAL ALA LEU VAL GLU ALA LYS GLN CTGGGAGTAGCAACCTCAGCACAATTACAGCGGCAGTTGCTCTGGTTGAAGCAGAG GACCCTCATCGTTGGAGTCGTGTTTAATGTCGCCGTCAACGAGACCTTCGGTTGGT 550

SER VAL GLN SER SER ILE GLY ASN LEU ILE VAL ALA ILE LYS SER VAL GLN ASP TYR VAL TCAGTTCAGAGCTCTATAGGAAATTTAATAGTAGCAATTAAATCAGGTCCAAGATTATGTC AGTCAAGTCTCGAGATATCCTTTAAATTATCATCGTTAATTTAGTCAGGTTCTAATACAG 670 570 570

ASN ASN GLU ILE VAL PRO SER ILE ALA ARG LEU GLY CYS GLU ALA ALA GLY LEU GLN LEU ASN ASN ASN ASSON ASSONADAS ASSON ASSON ASSON ASSON ASSON ASSON ASSON ASSON ASSON ASSONADASSON ASSON ASSON

GLY ILE ALA LEU THR GLN HIS TYR SER GLU LEU THR ASN ILE PHE GLY ASP ASN ILE GLY ILE GLY ASPASN ILE GLY ILE GLY GAATTGCATTAACACAGCATTACTCAGAATTAACAACATATTTGGTGATAACATAGGA CTTAACGTAATTGTGTCGTAATGAGTCTTAATTGTTTGTATAAACCACTATTGTATCCT 790 810 840

SER LEU TYR ARG IHK ASN ILL ATCATTATACCGCACAAATATC AGGATATATGGCGTGTTTATAE FAGTAATATGGCGTGTTTATAE	THE THE THE THE THE
GLU LYS GLY ILE LYS LEU GLN GLY ILE ALA SER LEU TYR AKB IHK ASN ILL AGAAAAGGAATAAAATTACAAGGTATAGCATCATTATACCGCACAAATATC TCTTTTTCCTTATTTTAATGTTCCATATCGTAGTAATATGGCGTGTTTATAG 1000 880	
	a ca
16.1C.	

됴

ASN ILE

ARG THR

ASP ILE TYR THR GLU ILE PHE THR THR SER THR VAL ASP LYS TYR

VAL ARG LEU PRO LEU LEU THR ARG LEU LEU ASN THR GLN ILE TYR <u>Lys</u>] VAL ASP SER ILE GTCAGACTCC CTTTATTAACTAGGCTGCTGAACACTCAGATCTACAAGTAGATTCCATA CAGTCTGAGGGAAATAATTGATCCGACGACTTGTGAGTCTAGATGTTCATCTAAGGTAT

SER TYR ASN ILE GLN ASN ARG GLU TRP TYR ILE PRO LEU PRO SER HIS ILE MET THR LYS TCATATAATATCCAAAACAGAGAATGGTATATCCCTCTTCCCAGCCATATCATGACGAAA AGTATATTATAGGTTTTGTCTTACCATATAGGGAGAGGGTCGGTATAGTACTGCTTT 1090 1130 1110

GLY ALA PKE LEU GLY GLY ALA ASP VAL LYS GLU CYS ILE GLU ALA PHE SER SER TYR ILE GGGGCATTICTAGGTGGAGCAGATGTCAAGGAATGTATAGAAGCATTCAGGAGTATATA CCCCGTAAAGATCCACCTCGTCTACAGTTCCTTACATATCTTCGTAAGTCGTCAATATA 1200 1150

 	2
VA CGT GCA 133	2 4
PHE ATT TAA	4
ALA rec reg	=
TYR A T A 1 F A T A	7
RG T AGA TCT	
0 A 0 C A 3 G T	NO V DO V D II A IO NO V D III
L PR TTC AAC	1
VAI T T G A A C 1300	
C A G T	
ASF AGA TCT	
SER ATC TAG	
YS PRO ARG THR THR VAL THR SER ASP ILE VAL PRO ARG TYR ALA PHE VAL FGTCCAAGAACCACGGTCACATCAGACATTGTTCCAAGATATGCATTCGTC ACAGGTTCTTGGTGCCAGTGTAGTCTGTAACAAGGTTCTATACGTAAGCAG 1300 1280	
VAL G T C C A G	
THR A C G T G C	
HR (1000)	
RG TH GAA CTT 12	
0 AI C A A G T T	
S PR	
C A T / C	· · 7
C C A J	
SEF T C	
ILE ATA TAT	
.10.	
F 1 G	

AGAATCAATCAACCACCTGATCAAGGAGTAAAATTATAACACATAAAGAATGTAATACA TCTTAGTTAGTTGGTGGACTAGTTCCTCATTTTTAATAGTTGTATTTCTTACATTATGT 1400 1400 GLU CYS GLY VAL LYS ILE ILE THR HIS LYS

ILE GLY ILE ASN GLY MET LEU PHE ASN THR ASN LYS GLU GLY THR LEU ALA PHE TYR THR ATAGGTATCAACGGAATGCTGTTCAATACAATAAGAAGGAACTCTTGCATTCTACACA TATCCATAGTTGCCTTACGACAGTTATGTTTATTTCTTCCTTGAGACGTAAGATGTGT 1ATCCATAGTTGCCTTACGACAAGTTATGTTTATTTCTTCCTTGAGACGTAAGATGTGT

PRO ASN ASPILE THR LEU ASN ASN SER VAL ALA LEU ASP PRO ILE ASPILE SER ILE GLU CCAAATGATATAACACTAAATAATTCTGTTGCACTTGATCCAATTGACATATCAATCGAG GGTTTACTATATTGTGATTTATTAAGACAACGTGAACTAGGTTAAGTTAGCTC 1520

LEU ASN LYS ALA LYS SER ASP LEU GLU GLU SER LYS GLU TRP ILE ARG ARG SER ASN GLN CITAACAAAGCCAAATCAGAAGAATCAAAGAATGGATAAGAAGGTCAAATCAA GAATTGTTTCGGTTTAGTCTAGATCTTCTTAGTTTTCTTACCTATTCTTCCAGTTTAGTT 1500 1570 1580

F16.1E

MET ILE ILE LEU PHE ILE ILE ASN VAL THR ILE ILE THR ILE ALA (ILE) LYS TYR TYR ATGATCATTATATTATAATTAATGTAACGATAATTACAATTGCAATTAAGTATTAC TACTAGTAATATAACAATATTACATTGCTATTAATGTTAACGTTAATTCATAATG 1720 1730 1740

TGACATATCTATAGATCATTAGATATTAAAATTATAAAAACTT ACTGTATAGATATCTAGTAATCTATAATTTTAATATTTTGAA 1810 1820

ANCHOR DOMAIN ARE UNDERLINED. THE PREDICTED F2-F1 CLEAVAGE SITE IS PUBLISHED PRIMARY SEQUENCE OF THE PROTEIN ENCODED BY THE PIV-3 DIRECTION. THE SIGNAL PEPTIDE (SP) AND THE TRANSMEMBRANE (TM) INDICATED BY THE ARROW (4). AMINO ACIDS DIFFERING FROM THE NUCLEOTIDE SEQUENCE OF THE PIV-3 F GENE. THE CDNA SEQUENCE IS SHOWN IN THE PLUS (MRNA) STRAND SENSE IN THE 5' TO 3' GENE ARE BOXED

RESTRICTION MAP OF THE PIV-3 F GENE

F16.2

16.3A.

NUCLEOTIDE SEQUENCE OF THE PIV-3 HN GENE.

ດ 60 HIS THR ASN HIS GLY LYS ASP ALA GL'CATACCAATCACGGAAAGGATGCTGUGTATGGTTAGTGCCTTTCCTACGACUGTATGGTAGGACUG Σ MET GLU TYR TRP LYS | TGGAATACTGGAAGC ACCTTATGACCTTCG 0 ⊢ ∢ C A ⊢ ∢ ⊢ ں ق ပ ပ ⊢ ∢ G A C A A A T C C A A A T C T G T T T A G G T T T A . < -<u>.</u>

EU THR ASN LYS ILE THR TYR TCACCAATAAGATAACATA AGTGGTTATTCTATTGTAT ASN LYS LEU AACAAGCTC STTGTTCGAG SN GLU LEU GLU THR SER MET ALA THR ASN GLY TGAGCTGGAGACGTCCATGGCTACTAATGGC ACTCGACCTCTGCAGGTACCGATGATTACCG 70 ĕ∢⊢ **∀** ⊢ ധ ഗ

ILE ASN AATTAA TTAATT P THR ILE ILE LEU VAL LEU LEU SER ILE VAL PHE ILE ILE VAL LEU IL GACAATAATCCTGGTGTTATTATCAATAGTCTTCATCATAGTGCTA CTGTTATTAGGACCACAATAATAGTTATCAGAAGTAGTATCAGGAT I30 TRF T G A C ATATTA **⊢** <

GLU (LE) AAAATTA ഥ വ ഥ വ

VAL ASN THR ARG LEU LEU THR ILE GLN SER HIS VAL GLN ASN TYR ILE PRO ILE SER LEU GTGAATACAAGGCTTCTTACAATTCAGAGTCATGTCCAGAATTATATACCAATATCACT CACTTATGTTCCGAAGAATGTTAAGTCTCAGTACAGGTCTTAATATGGTTATAGTGA 350 **∀** ⊢

GLN GLN MET SER ASPLEU ARG LYS PHE ILE SER GLU ILE THR ILE ARG ASN ASPASN AACAGATGTCAGATCTTAGGAATTCATTAGTGAATTACAATTAGAATGATAA TTGTCTACAGTCTAGAATCCTTTAAGTAATCACTTTAATGTTAATTTACTATT 370 THR GLI CACA/ GTGT V-ന വ

GLN GLU VAL LEUJ PRO GLN ARG ILE THR HIS ASP VAL GLY ILE LYS PRO LEU ASN PRO ASP CAAGAAGTGCTGCCACAAGAATAACACATGATGTGGGTATAAAACCTTTAAATCCAGA GTTCTTCACGACGGTGTTTCTTATTGTGTACTACACCCATATTTTGGAAATTTAGGTCT 6TTCTTCACGACGGTGTTTCTTATTGTGTACTACACCCATATTTTGGAAATTTAGGTCT 430 ⊢ ∢

AATGAAACTCCAAAAATAAGGTT TTACTTTTGAGGTTTTTATTCCAA 530 LYS ILE PRO THR L Y S LEU MET ASP PHE TRP ARG CYS THR SER GLY LEU PRO SER LEU GATTITIGGAGATGCACGTCTGGTCTTCCATCTTT CTAAAAACCTCTACGTGCAGACCAGAAGGTAGAAA 490 500

PRO GLY PRO GLY LEU LEU ALA MET PRO THR THR VAL ASP GLY CYS ILE ARG THR PRO CAGGGCCGGGATTATTAGCTATGCCAACGACTGTTGATGGCTGTATCAGAACTCC GTCCCGGCCCTAATAATCGATACGGTTGCTGACAACTACCGACATAGTCTTGAGG GTCCCGGCCCTAATAATCGATACGGTTGCTGACAACTACCGACATAGTCTTGAGG ပ ဖ ပ္ ⋖ < -**∢** ⊢

NSPLEU ILE TYR ALA TYR THR SER ASNLEU ILE THR ARG GLY CYS ATCTGATTTATGCTTATACCTCAAATCTAATTACTCGAGGTTG TAGACTAAATACGAATATGGAGTTTAGATTAATGAGCTCCAAC 620 650 A G T T A T A A A T G T C A A T A T T T A C ⋖ ASN VAL ILE CTTA GAA1 ധ ഗ ⊢ ∢ വ വ

4 F.0 ASP ATAGGGATAATAACTGTAAACTCAG. TATCCCTATTATTGACATTIGAGTC 710 SER ASN VAL THR ILE ILE ATAGGAAATCATATCAAGTCTTACAG TATCCTTTTAGTATAGTTCAGAATGTC 670 LEU GLN GLN VAL SER TYR တ GLY **|**|E ပ ပ Z വ ∢⊢ ധ ഗ - X

LEU VAL PRO ASP LEU ASN PRO ARG ILE SER HIS THR PHE ASN ILE ASN ASP ASN ARG LYS TTGGTACCTGACTTAAATCCCAGGATCTCTCATATTAACATAAATGACAATAGGAA AACCATGGACTGAATTTAGGGTCCTAGAGAGTTGAAATTGTATTACTGTTATCCTT TAACCATGGACTGAATTTAGGGTCCTAGAGAGTTGAAATTGTATTACTGTTATCCTT 16.38.

C A 840 SRE CYS SER LEU ALA LEU LEU ASN THR ASP VAL TYR GLN LEU CYS SER THR PRO LYS VAI CATGTTCTCTAGCACTCCTAAATACAGATGTATATCAACTGTGTTCAACTCCAAGG GTACAAGAGATCGTGAGGATTTATGTCTACATATAGTTGACACAAGTTGAGGGTTTC, 810 810 ⊢ <

ASP GLU ARG SER ASP TYR ALA SER SER GLY ILE GLU ASP ILE VAL LEU ASP ILE VAL ASN GATGAAAGATCAGATTATGCATCATCAGGCATAGAAGATATTGTACTTGATATTGTCAA CTACTTTCTAGTCTAATACGTAGTAGTCCGTATCTTCTATAACATGAACTATAACAGTT 880 850 850 **⊢** ∢

PRO AC C TG 6 960 **⊢** ∢ . A T A A T A

ALA ALA LEU TYR PRO SER VAL GLY PRO GLY ILE TYR TYR LYS GLY LYS ILE ILE PHE GCTGCACTATACCCATCTGTTGGACCAGGGATATACTACAAAGGCAAATAATTT CGACGTGATATGGGTAGACAACCTGGTCCCTATATGATGTTTCCGGTTTATTATAA 1000 970 1010 **₽** + **4** ∢ ⊢ **⊢** ∀

LEU GLY TYR GLY GLY LEU GLU HIS PRO ILE ASN GLU ASN <u>IVAL</u> ILE CYS ASN THR THR GLY CTCGGGTATGGAGGTCTTGAACATCCAATAAATGAGAATGTAATCTGCAACACTGG GAGCCCATACCTCCAGAACTTGTAGGTTATTTACTCTTACATTAGACGTTGTGTGACC 1030 **⊢ ⋖**

⊢ ∢ ပ ပ

ഗ ന വ ں ں

LEU GLY ASN LYS ILE TYR ILE TYR THR ARG SER THR SER TRP HIS SER LYS LEU GLN LEU CTAGGTAACAAGATCTATATATACAAGATCCACAAGTTGGCATAGCAAGTTACAATT GATCCATTGTTCTAGATATATATATGTTCTAGGTGTTCAACCGTATCGTTCAATGTTAA 1270 1270

GLY ILE ILE ASPILE THR ASPTYR SER ASPILE ARGILE LYSTRPTHRTRPHIS ASN VAL GGAATAATTGATATTACTGATTACAGTGATAAAGGATAAAATGGACATGGCATAATGT CCTTATTAACTATAATGACTAATGTCACTATTTTTACCTGTACTACA 1330 1330 **∀** ⊢

ပဗ ပ္ ပ

GLY VAL TYR THR ASPALA TYR PRO LEU ASN PRO THR GLY SER ILE VAL SER SER VAL GGAGTATATACTGATATCCACTCAATCCCACGGGAGCATTGTGTCTGT CCTCATATATGACTACGTATAGGTGAGTTAGGGTGTCCCTCGTAACACAGTAGACA 1480 1450 THR C A (G T (∢ ⊢ **∢** ⊢

LEU ASP SER GLN LYS SER ARG VAL ASN PRO VAL ILE THR TYR SER THR <u>ALA</u> THR GLU TTAGATTCACAAAATCGAGAGTGAACCCAGTCATAACTTACTCAACAGCAACCGA AATCTAAGTGTTTTTAGCTCTCACTTGGGTCAGTATGAGTTGTCGTTGGCT AATCTAAGTGTTTTTAGCTCTCACTTGGGTCAGTATGAGTTGTCGTTGGCT 1510 ATATATAT ت ب

F16.30.

ATAATTAACCGCAATAACCTATCTATAATACAAGTATAGATAAGTAATCAGC TATTAATTGGCGTTATACGTAATTGGATAGATATTATGTTCATACTATTAGTCG 1750 1750

AATCAGACAATAGACAAAGGGAAATATAAAAA TTAGTCTGTTTTTTCCCTTTATATTTT 1820

DIFFERING FROM THE PUBLISHED PRIMARY SEQUENCE OF THE PROTEIN ENCODED BY THE PIV-3 DIRECTION. THE TRANSMEMBRANE (TM) ANCHOR DOMAIN IS UNDERLINED. AMINO ACIDS NUCLEOTIDE SEQUENCE OF THE PIV-3 HN GENE. THE CONA SEQUENCE IS SHOWN IN THE PLUS (MRNA) STRAND SENSE IN THE 5' TO 3'

F16.3E.

RESTRICTION MAP OF THE PIV-3 HN GENE

Þ $\vec{\mathbf{v}}$ F16.

. MET A T G G T A C G

GENE. 4 RSV SEQUENCE OF THE NUCLEOTIDE

< ⊢ A C G က က လ CAATTACCACAATCCTCGCGTTAATTAATGGTGTTAGGAGCG30 SP A ASN AL ALA G C, C G LYS AL AAAG TTTC(LEU L C T C / G A G GLU LEU PRO ILE LEN GGAGTTGCCAATCC CCTCAACGGTTAGG

PHE TTT AAA 60

T C A C A T

S A S

ALA VAL TGCAGTT ACGTCAA

TYR THR SER VAL ILE THR ILE GLU
TATACTAGIGITATAACTATAGAA
ATATGATCACAATATTGATATCTT
160 170 180 SER LYS GLY TYR LEU SER ALA LEU ARG THR GLY TRP A G C A A G G C T A T C T T A G T G C T C T A G A A C T G G T T G G T C G T T C C G A T A G A A T C A C G A G A T C T T G A C C A A C C . ISO ISO

SP ALA LYS VAL LYS LEU MET LYS ATGCTAAGGTAAAATTGATGAAA TACGATTCCATTTTAACTACTTT 220 LEU SER ASN ILE LYS GLU ASN LYS CYS ASN GLY THR ASTAAGTAAT CAAGGAAAATAAGTGTAATGGAACAG AATTCATTATAGTTCCTTTTATTCACATTACCTTGTC 190 200

A Y L O GLU LEU ASP LYS TYR LYS ASN ALA VAL THR GLU LEU GLN LEU LEU MET GLN SER T GAATTAGATAAATATAAAAATGCTGTAACAGAATTGCAGTTGCTCATGCAAAGCA CTTAATCTATTTATATTTTTACGACATTGTCTTAACGTCAACGAGTACGTTTCGT 250 250 270 270 270 270 270 280 GLN C A A (G T T (

SN A C 1 G 60 GLU LEU PRO ARG PHE MET ASN TYR THR LEU ASP AACTACCAAGGTTTATGAATTATACACTCAA TTGATGGTTCCAAATACTTAATATGTGAGTT 330 330 350 340 ARG GAG/ CTC ARG AG CTTC RG ALA A AGCCAG TCGGTG ARG ALA ALA ASN ASN AR GCAGCAAACAATCG CGTCGTTTGTTAGC ALA CA (

F2-F1 CLEAVAGE SITE

LEU LEU GLY VAL GLY SER ALA ILE ALA SER GLY [LE] ALA VAL SER LYS VAL LEU HIS LEU TTGTTAGGTGTTGGATCTGCAATCGCCAGTGGCATTGCTGTATCTAAGGTCCTGCACTTA AACAATCCACAACCTAGACGTTAGCGGTCACGTAACGACATAGATTCCAGGACGTGAAT AACAATCCACAACCTAGACGTTAGCGGTCACGTAACGACATAGATTCCAGGACGTGAAT

TTATCAAATGGAGTTAGTGTCTTAACCAGGAAGTGTTAGACCTCAAAACTATATAGAT AATAGTTTACCTCAATCACAGAATTGGTCGTTTCACAATCTGGAGTTTTGATATCTA 590 500 VAL LEU THR SER LYS VAL LEU ASP LEU LYS ASN TYR ILE SER

AAACAATTGTTACCTATTGTGAATAAGCGGAGGTGCAGAATATAGAACTGTG TTTGTTAACAATGGATAACACTTATTCGCTTCGACGTCTTATAGTTTATATTGACAC 650 650 GLU THR ASN ARG ILE SER CYS LEU LEU PRO ILE VAL ASN LYS ARG SER

ATAGAGTTCCAACAAGAACAACAGACTACTAGAGATTACCAGGGAATTTAGTGTTAAT TATCTCAAGGTTGTTGTTGTTGTCTGATGATCTCTAATGGTCCCTTAAATCACAATTA 570 GLU PHE ARG LEU LEU GLU ILE THR ARG Y NS W ASN GLN HIS LYS GLU PHE

GLY VAL THR THR PRO VAL SER THR TYR MET LEU THR ASN SER GLU LEU LEU SER LEU GGTGTAACTACACCTGTAAGCACTTACATGTTAACTAATAGTGAATTATTGTTA CCACATTGATGTGGACATTCGTGAATGTACAATTGATTATCACTTAATAACAGTAAT CACATTGATGTGGACATTCGTGAATGTACAATTGATTATCACTTAATAACAGTAAT 6 C A (

ILE ASN ASP MET PRO ILE THR ASN ASP GLN LYS LYS LEU MET SER ASN ASN VAL GLN ILE ATCAATGATATGCTATAACAAATGATCAGAAAGTTAATGTCCAACAATGTTCAATA TAGTTACTATACGGATATTGTTTACTAGTCTTTTCAATTACAGGTTGTTACAAGTTTAT 1AGTTACTATACGGATATTGTTTACTAGTCTTTTTCAATTACAGGTTGTTACAAGTTAT 790

GITAGACAGCAAAGITACICIAICATGICCATAATAAAGAGGAAGICITAGCATATGTA CAATCIGICGITICAAIGAGATAGTACAGGTATTATITICICCITCAGAAICGTATACAT 800 850 LYS GLU GLU VAL LEU ALA TY

⊢ V

CTATGTACAACCAAAAAAAGGGTCAAACATCTGTTTAACAAGAACTGAGAGGA GATACATGTTGTGTTTTCTTCCCAGTTTGTAGACAAATTGTTGTTGTTGTTGTT 1020 1020 CYS LEU THR ARG THR ASP ARG 3 1 CYS THR THR ASN THR LYS GLU GLY SER ASN

TGGTACTGTGAATGCAGGATCAGTATCTTTCTTCCAAGGTGAAACATGTAAAGTT ACCATGACACTGTTACGTCCTAGTCATAGAAGAGGGTGTTCGACTTTGTACATTTCAA 1080 1030 TRP TYR CYS ASP ASN ALA GLY SER VAL SER PHE PHE PRO GLN ALA GLU THR CYS LYS

CYS ASP THR MET ASN SER LEU THR LEU PRO SER GLU VAL

LEU CYS ASN VAL ASP ILE PHE ASN PRO LYS TYR ASP CYS LYS ILE MET THR SER LYS THR CTCTGCAATGTTGACATATTCAATCCCAAATATGATTGTAAAATTATGACTTCAAAACA GAGACGTTACAACTGTATAAGTTAGGGTTTATACTAACATTTTAATACTGAAGTTTTTGT 1200 F16.5C. ASP VAL SER SER VAL ILE THR SER LEU GLY ALA ILE VAL SER CYS TYR GLY LYS THR GATGTAAGCAGCTCCGTTATCACATCTCTAGGAGCCATTGTGTCATGCTATGGCAAACT CTACATTCGTCGAGGCAATAGTGTAGAGATCCTCGGTAACACAGTACGATACCGTTTTGA 1250 ဟ GLY

G G G T G T G A T C C C A C A C T A 40 LYS CYS THR ALA SER ASN LYS ASN ARG GLY ILE ILE LYS THR PHE SER ASN A A A T G T A C G T C G T G G A T C A T A A G A C A T T T C T A A C C T T T A C A T G T C G T A T T T T T T G C A C C T T A G T A T T T C T G T A A A G A T T G C 1290 1300

TYR VAL SER ASN LYS GLY <u>VAL</u> ASP THR VAL SER VAL GLY ASN THR LEU TYR TYR VAL ASN TATGTATCAAATAAAGGGGTGGACACTGTGTGTAGGTAACACATTATATTGTAAAT ATACATAGTTTATTTCCCCACCTGTGACACAGACATCCATTGTGTAATATAATAGATTTA 1380 1380

C A G /

SER TCA AGT SER THR THR ASN ILE MET ILE THR THR ILE ILE GLU ILE ILE VAL ILE LEU LEU SEFT CA ACCACAAATATGTTATCA TCA ACCACAAATATCATGATAACTACTATAATTAAGAGATTATAGTAATATGTTATCA AGTTGGTGTTTATAGTACTATTGATGATATTAATATCTCTAATATCATTATAACAATAG 1620 EICCT 1570

.50

TTAATTGCTGTTGGACTGCTCCTATACTGTAAGGCCAGAGCACCCAGTCACTAAGC AATTAACGACAACCTGAGGATATGACATTCCGGTCTTCGTGTGTGATTCG 1680 1680 1630 LEU ILE ALA VAL GLY LEU LEU TYR CYS LYS ALA ARG SER THR PRO VAL THR LEU SER

AAGGATCAACTGAGTGGTATAATAATTGCATTTAGTAACTGAATAAAATAGCACCT TTCCTAGTTGACTCACATATTTATTATGACGTAAATCATTGACTTATTTTTATCGTGGA 1740 1690 LYS, ASP GLN LEU SER GLY ILE ASN ASN ILE ALA PHE SER ASN

AATCATGTTCTTACAATGGTTTACTATCTGCTCATAGACCCCATCTATCATTGGATTT TTAGTACAAGAATGTTACCAAATGATAGACGAGTATCTGTTGGGTAGATAGTAACCTAAA 1780 1750

TCTTAAAATCTGAACTTCGAAACTCTATCTATAACCATCTCACTTACACTATTTA AGAATTTTAGACTTGAAGATAGATATTTGGTAGAGGGAATAAT 1850 1850

<u>"</u> M

ANCHOR DOMAIN ARE UNDERLINED.THE PREDICTED F2-F1 CLEAVAGE SITE IS INDICATED BY THE ARROW (4).AMINO ACIDS DIFFERING FROM THE PUBLISHED PRIMARY SEQUENCE OF THE PROTEIN ENCODED BY STRAND SENSE IN THE 5' TO 3' DIRECTION.THE SIGNAL PEPTIDE (SP) AND THE TRANSMEMBRANE (TM) NUCLEOTIDE SEQUENCE OF THE RSV F GENE.THE CDNA SEQUENCE IS SHOWN IN THE PLUS (MRNA) THE RSV F GENE ARE BOXED.

RESTRICTION MAP OF THE RSV F GENE

- 15.0.

FIG.7A. NUCLEOTIDE SEQUENCE OF THE RSV G GENE

MET SER LYS ASN LYS ASP GLN ARE

T G C A A A C A T G T C C A A A A A C A A G A C C A A C G

A C G T T T G T A C A G G T T T T T G T T C C T G G T T G C

10 20 30

THR ALA LYS THR LEU GLU LYS THR TRP ASP CACCGCTAAGACACTAGAAAAGACCTGGGACGTGGGCGATTCTGTGATCTTTTCTGGACCCT

GLY LEU TYR LYS LEU ASN LEU LYS SER VAL G G G C T T A T A T A A G T T A A A T C T T A A A T C T G T C C C G A A T A T A T T C A A T T T A G A A T T T A G A C A 100 110 120

ALA GLN ILE THR LEU SER ILE LEU ALA METAGCACAAATCACATTATCCATTCTGGCAATTCGTGTCAATTCGTGGCAATTCGTGGCAATTCGTGGCAATTCGTGGCAATTCGTGGCAATTCGTGGCAATTCGTGGCAATTCGTGGCAATTAGTGTAATTAGTGTAAGTACCGTTAA

ILE ILE SER THR SER LEU ILE ILE THR ALA GATAATCTCAACTTCACTTATAATTACAGCCTTATTAGAGTCG160 170 180

ILE ILE PHE ILE ALA SER ALA ASN HIS LYS CATCATATICATAGCCTTCGGCAAACCACAAGTAGTATTCGGAGCCGTTTGGTTT 190 200 210

VAL THR LEU THR THR ALA ILE ILE GLN ASP A G T C A C A C T A A C A A C T G C A A T C A T A C A A G A T C A G T G T G A T G T T C T 220 230 240

ALA THR SER GLN ILE LYS ASN THR THR PRO
T G C A A C A A G C C A G A T C A A G A A C A C A A C C C C
A C G T T G T T C G G T C T A G T T C T T G T G T T G G G G
250 260 270

THR TYR LEU THR GLN ASP PRO GLN LEU GLY
A A C A T A C C T C A C T C A G G A T C C T C A G C T T G G
T T G T A T G G A G T G A G T C C T A G G A G T C G A A C C
280 290 300

FIG.7B.

ILE SER PHE SER ASN LEU SER GLU ILE THR A A T C A G C T T C T C C A A T C T G T C T G A A A T T A C T T A G T C G A A G A G A T T A G A C A G A C T T T A A T G 310 320 330

SER GLN THR THR THR ILE LEU ALA SER THR ATCACAAACCACCACCATACTAGCTTCAACTAGTTTGGTGGTGGTATGATCGAAGTTG

THR PRO GLY VAL LYS SER ASN LEU GLN PRO A A C A C C A G G A G T C A A G T C A A A C C T G C A A C C T T G T G G T C C T C A G T T C A G T T T G G A C G T T G G 370 380 390

THR GLN THR GLN PRO SER LYS PRO THR THR A A C C C A A A C A C A A C C C A G C A A G C C C A C T A C T T G G G T T T G T G T T G G G T C G T T C G G G T G A T G 430 440 450

LYS GLN ARG GLN ASN LYS PRO PRO ASN LYS
A A A A C A A C G C C A A A A C A A A C C A C C A A C A A
T T T G T T G C G G T T T T G T T T G G T G G T T T G T T
460
470
480

PRO ASN ASP PHE HIS PHE GLU VAL PHE A C C C A A T A A T G A T T T T C A C T T C G A A G T G T T T G G G T T A T T A C T A A A A G T G A A G C T T C A C A A 490 510

ASN PHE VAL PRO CYS SER ILE CYS SER ASN TAACTTTGTACCCTGCAGCATATGCAGCAAAATTGGAAACATGGGACGTCGTATACGTCGTT 520 530 540

ASN PRO THR CYS TRP ALA ILE CYS LYS ARG C A A T C C A A C C T G C T G G G C T A T C T G C A A A A G G T T A G G T T G G A C G A C C C G A T A G A C G T T T T C 550 570

FIG.7C.

LYS THR THR LYS LYS ASP LEU LYS PRO GLN C A A G A C C A A A A A A G A T C T C A A A C C T C A G T T C T G G A G T T T G G A G T T C T A G A G T T T G G A G T 640 650 660

THR THR LYS PRO LYS GLU VAL PRO THR THR A A C C A C T A A A C C A A A G G A A G T A C C C A C C A C T T G G T G T T C C T T C A T G G G T

THR ASN ASN THR THR GLY ASN PRO LYS LEU CACCAACACCACAGGAAATCCAAAACTGTGGTGGTGTCCTTTAGGTTTTGA 760 770 780

SER SER GLU GLY ASN LEU SER PRO SER GLN C T C C T C C G A A G G C A A T C T A A G C C C T T C T C A G A G G G A G G G T T C C G T T A G A T T C G G G A A G A G T 820 830 840

VAL SER THR THR SER GLU HIS PRO SER GLN
A G T C T C C A C A A C A T C C G A G C A C C C A T C A C A
T C A G A G G T G T T G T A G G C T C G T G G G T A G T G T
850 860 870

NUCLEOTIDE SEQUENCE OF THE RSV G GENE. THE cDNA SEQUENCE IS SHOWN IN THE PLUS (MRNA) STRAND SENSE IN THE 5' TO 3' DIRECTION. THE TRANSMEMBRANE (TM) ANCHOR DOMAIN IS UNDERLINED. AMINO ACIDS DIFFERING FROM THE PUBLISHED PRIMARY SEQUENCE OF THE PROTEIN ENCODED BY THE RSV G GENE ARE BOXED.

FIG.7D.

RESTRICTION MAP OF RSV G GENE

F16.8.

Construction of a Bluescript-based expression vector containing the chimeric F_{PIV-3} -F RSV gene with the 5' untranslated region of the PIV-3 F gene intact but lacking the nucleotide sequences coding for the hydrophobic anchor domains and cytoplasmic tails of both the PIV-3 and RSV F genes.

Step 1: Preparation of the plasmid containing the modified PIV-3 F gene

Ligate: 1.6 Kb [BamHl]-Bsrl F gene fragment + EcoRV-BamHl restricted vector +

Construction of a Bluescript-based expression vector containing the PIV-3 F gene lacking the 5′ untranslated sequence and transmembrane anchor and cytoplasmic tail coding regions.

FIG.10B.

Cut with EcoRI and BstBI

Retreive: EcoRI-BstBI restricted vector

Ligate: EcoRI-BstBI restricted vector +

EcoRI

PpuM1

AATTCATGCCAACTTTAATACTGCTAATTATTACAACAATGATTATGG CATCTTCCTGCCAAATAGATATCACAAAACTACAGCAATGTAGGTGTA TTGGTCAACAGTCCCAAAGGGATGAAGATATCACAAAACTT____3' ____GTACGGTTGAAATTATGACGATTAATAATGTTGTTACTAATACC GTAGAAGGACGGTTTATCTATAGTGTTTTTGATGTCGTACATCCACATA ACCAGTTGTCAGGGTTTCCCTACTTCTATAGTGTTTTTGAAGCTT

Construction of the chimeric F ply-3-F RSV gene consisting of the truncated PIV-3 F gene devoid of the 5' untranslated region linked to the truncated RSV F1 gene. PIV-3 F gene devoid of the Navl Sspl

containing the chimeric F_{PIV-3}-F_{RSV} gene consisting of the PIV-3 F gene lacking both the 5' untranslated sequence as well as the transmembrane and cytoplasmic tail coding regions linked to the truncated RSV Fi gene Construction of the modified pAc 610 baculovirus expression vector

FIG.13
IMMUNOBLOTS OF CELL LYSATES FROM SIG CELLS
INFECTED WITH RECOMBINANT BACULOVIRUSES

FIG 13: Immunoblots of cell lysates from Sf9 cells infected wirth recombinant baculoviruses containing the truncated RSV F gene (Lane 1), the chimeric FPIV-3-FRSVgene (Lane 2) or infected with wild type virus (Lane 3) reacted with anti-FRSV Mab (panel A) and anti-F1 PIV-3 antiserum (panel B)

POLY HEDRIN

pD2

puca

Hindill

Isolate 1.7 kb PIV HN fragment EcoRI Smal BamHI Notl Cut with BspHI and BamHI -BspHI BamHI Kpnl EcoRV EcoRI DPIV HN PIV HN BspHI EcoR1 BamHI EcoRI BamHI and BamHI ligation Deletion of BspHI sites promoter SV40polyA pMCR20 promoter μ SV40polyA Σ . Md Cut with EcoRI Three-way BspHI BspHI Isolate 1.6 kb RSV F fragment Cut with BspHI and EcoRI Smal BamHi Noti Saci EcoRI -BspHI BspHI Kpnl EcoRV EcoRI RSVF PRSVF EcoRi

CONSTRUCTION OF THE FRSY-HNPIV3CHIMERIC GENE F16.15A.

FIG.15B.

BspHI BspHI BspHI 3'
TGATTAAGGTAGTTTTCACTTTTCCGAGTAC

Ligation of BspHI-BspHI linker

Ap MT

promoter

pM' RF-HN

poly A RSV F

BamHI

Smal

EcoRI

FIG.16

SDS POLY ACRYLAMIDE GEL AND IMMUNOBLOTS OF PURIFIED FRSV-HNPIV-3 CHIMERIC PROTEIN

FIG 16 : A) Coomassie-stained SDS polyacrylamide gel of immunoaffinity- purified $F_{RSV}\!-\!HN_{PIV-3}$ protein.

B) Immunoblots of $F_{RSV}-HN_{PIV-3}$ protein reacted with an anti-F RSV Mab (lane 1) and anti-HN PIV-3 antiserum (lane 2)

FIG.17. MUTAGENESIS OF THE PIV-3 F GENE

ATTGTATCCTAGCAATGTCCTCTTCCCATAGTTCAATGT

AGGTATAGCATCATTATACCGCACAAATATCACAGAAAT TCCATATCGTAGTAATATGGCGTGTTTATAGTGTCTTTA 5' - *2721

FIG.18. CONSTRUCTION OF THE FPIV3-GRSV CHIMERIC GENE

Combined Declaration and Power of Attorney for United States Patent Application

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name;

I believe I am the original, first and joint/sole inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled: CHIMERIC IMMUNOGENS, the specification of which is attached hereto.

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, S.1.56(a).

I hereby claim foreign priority benefits under Title 35, United States Code, S.119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s)

Priority Claimed
Yes No

9200117.1 (Number)

GB (Country)

06/01/92 (Day/Month/Year Filed) <u> X</u>

I hereby claim the benefit under Title 35, United States Code, S.120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, S.112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, S.1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Appln. Serial No.)

(Filing Date)

(Status)

(patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that wilful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such wilful false statements may jeopardize the validity of the application or any patent issued thereon.

I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith:

Peter W. McBurney, Reg. No. 19,352; Michael I. Stewart, Reg. No. 24,973; Thomas T. Rieder, Reg. No. 22,862; Roger T. Hughes, Reg. No. 25,265; John H. Woodley,

Reg. No. 27,093; Stephen J. Perry, Reg. No. 32,107; Patricia A. Rae, Reg. No. 33,570 and John R. Orange, Reg. No. 29,725.

Send correspondence to:

Direct telephone calls to: Name: M.I. Stewart

SIM & McBURNEY Suite 701 330 University Avenue Toronto, Ontario M5G 1R7, Canada

at SIM & McBURNEY (416) 595-1155

Full name of sole or first inventor: Michel H. Klein

Inventor's signature

ature ______

F. 6 1 /93

Residence: Willowdale, Ontario, Canada

Citizenship:

Canadian

Post Office Address:

16 Monro Boulevard, Willowdale, Ontario, Canada, L4Z 1M5

Full name of second inventor: Run-Pan Du

Inventor's signature

Rungande

Feb 1 1993

Residence: Thornhill, Ontario, Canada

Citizenship:

Canadian

Post Office Address:

299 Chelwood Drive, Thornhill, Ontario, Canada, L4J 7Y8

Full name of third inventor: Mary E. Ewasyshyn

Inventor's signature M

i waa ka

Feb- 1, 1993

Date

Residence: Willowdale, Ontario, Canada

Citizenship:

Canadian

Post Office Address:

120 Torresdale, Apt. 1506, Willowdale, Ontario, Canada,

M2R 3N7

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: KLEIN, Michel H
 DU, Run-Pan
 EWASYSHYN, Mary E
 - (ii) TITLE OF INVENTION: INFECTION DETECTION METHOD USING CHIMERIC PROTEIN
 - (iii) NUMBER OF SEQUENCES: 38
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Sim & McBurney
 - (B) STREET: 6th Floor, 330 University Avenue
 - (C) CITY: Toronto
 - (D) STATE: Ontario
 - (E) COUNTRY: Canada
 - (F) ZIP: M5G 1R7
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/467,961
 - (B) FILING DATE: 06-JUN-1995
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/001,554
 - (B) FILING DATE: 06-JAN-1993
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: GB 9200117.1
 - (B) FILING DATE: 06-JAN-1992
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: STEWART, Michael I
 - (B) REGISTRATION NUMBER: 24,973
 - (C) REFERENCE/DOCKET NUMBER: 1038-1000 MIS:jb
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (416) 595-1155
 - (B) TELEFAX: (416) 595-1163
- (2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1844 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

60	AGAGATTCAA	ACAAGAAAGA	ACGTGCAAGA	TAGCAGTCAT	CAACAACTAT	AAGTCAATAC
120	AAAATCAAAA	CCCGAACAAC	GTATAGAACA	AAAACAAAAG	AAGAGAAATC	AAAGCTAAAT
180	AGCACCAAAC	CAACACAACA	AAGAGACCGG	AAAATTCCAA	ATTTTAAACA	CATCCAATCC
240	TTCCTGCCAA	TTATGGCATC	ACAACAATGA	GCTAATTATT	CTTTAATACT	ACAATGCCAA
300	AGGGATGAAG	ACAGTCCCAA	GTATTGGTCA	GCATGTAGGT	CAAAACTACA	ATAGATATCA
360	AATAGAAGAC	TCATACCAAA	ATTTTGAGCC	AAGATATCTA	ACTTCGAAAC	ATATCACAAA
420	TAGACTGATC	GGTTATTGGA	CAATACAAGA	ACAGATCAAA	GTGGTGACCA	TCTAACTCTT
480	TCAAGAATCC	TAGTAACCAA	AAAGATGTGA	AAGATTACAG	ATGATGGATT	ATCCCTCTAT
540	AACCATTGCT	GGGTAATTGG	TCCTTTGGAG	AACAAGACGA	CTGATCCCAG	AATGAAAACA
600	AGCCAAGCAG	CTCTGGTTGA	GCGGCAGTTG	ACAAATTACA	CAACCTCAGC	CTGGGAGTAG
660	AGCAGTGCAG	ACACAAACAA	GCAATCAGGG	ACTCAAAGAA	ACATCGAAAA	GCAAAATCAG
720	AGATTATGTC	AATCAGTCCA	GTAGCAATTA	AAATTTAATA	GCTCTATAGG	TCAGTTCAGA
780	ACTTCAATTA	AAGCAGCAGG	CTAGGTTGTG	GATTGCTAGA	TGGTGCCATC	AACAACGAAA
840	TAACATAGGA	TATTTGGTGA	TTAACAAACA	TTACTCAGAA	TAACACAGCA	GGAATTGCAT
900	CACAAATATC	CATTATACCG	GGTATAGCAT	AAAATTACAA	AAAAAGGAAT	TCGTTACAAG
960	ATTATTTACA	TCTATGATCT	AAATATGATA	AACAGTTGAT	TCACAACATC	ACAGAAATAT
1020	CACCCTCCAA	ATTACTCAAT	GATTTGAATG	TATAGATGTT	AGGTGAGAGT	GAATCAATAA
1080	AGATTCCATA	TCTACAAAGT	AACACTCAGA	TAGGCTGCTG	CTTTATTAAC	GTCAGACTCC
1140	CATGACGAAA	CCAGCCATAT	ATCCCTCTTC	AGAATGGTAT	TCCAAAACAG	TCATATAATA
1200	CAGTTATATA	AAGCATTCAG	GAATGTATAG	AGATGTCAAG	TAGGTGGAGC	GGGGCATTTC
1260	ATCAGGAAAC	AGAGCTGCTT	CATGAAATGG	TGTACTAAAC	ATCCAGGATT	TGCCCTTCTG
1320	TGCATTTGTC	TTCCAAGATA	TCAGACATTG	CACGGTCACA	GTCCAAGAAC	ATATCCCAAT
1380	AATCGACAAT	CATGCAACGG	ACCACCTGTA	CTGTATAACA	TGGTTGCAAA	AATGGAGGAG

AGAATCAATC	AACCACCTGA	TCAAGGAGTA	AATATTAAAA	CACATAAAGA	ATGTAATACA	1440
ATAGGTATCA	ACGGAATGCT	GTTCAATACA	AATAAAGAAG	GAACTCTTGC	ATTCTACACA	1500
CCAAATGATA	TAACACTAAA	TAATTCTGTT	GCACTTGATC	CAATTGACAT	ATCAATCGAG	1560
CTTAACAAAG	CCAAATCAGA	TCTAGAAGAA	TCAAAAGAAT	GGATAAGAAG	GTCAAATCAA	1620
AAACTAGATT	CTATTGGAAA	CTGGCATCAA	TCTAGCACTA	CAATCATAAT	TATTTTAATA	1680
ATGATCATTA	TATTGTTTAT	AATTAATGTA	ACGATAATTA	CAATTGCAAT	TAAGTATTAC	1740
AGAATTCAAA	AGAGAAATCG	AGTGGATCAA	AATGACAAGC	CATATGTACT	AACAAACAAA	1800
TGACATATCT	ATAGATCATT	AGATATTAAA	ATTATAAAAA	ACTT		1844

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 539 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Pro Thr Leu Ile Leu Leu Ile Ile Thr Thr Met Ile Met Ala Ser 1 5 10 15

Ser Cys Gln Ile Asp Ile Thr Lys Leu Gln His Val Gly Val Leu Val 20 25 30

Asn Ser Pro Lys Gly Met Lys Ile Ser Gln Asn Phe Glu Thr Arg Tyr 35 40 45

Leu Ile Leu Ser Leu Ile Pro Lys Ile Glu Asp Ser Asn Ser Cys Gly 50 60

Asp Gln Gln Ile Lys Gln Tyr Lys Arg Leu Leu Asp Arg Leu Ile Ile 65 70 75 80

Pro Leu Tyr Asp Gly Leu Arg Leu Gln Lys Asp Val Ile Val Thr Asn 85 90 95

Gln Glu Ser Asn Glu Asn Thr Asp Pro Arg Thr Arg Arg Ser Phe Gly
100 105 110

Gly Val Ile Gly Thr Ile Ala Leu Gly Val Ala Thr Ser Ala Gln Ile 115 120 125

Thr Ala Ala Val Ala Leu Val Glu Ala Lys Gln Ala Lys Ser Asp Ile 130 135 140

Glu Lys Leu Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser

145 150 155 160

Val Gln Ser Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln 165 170 175

Asp Tyr Val Asn Asn Glu Ile Val Pro Ser Ile Ala Arg Leu Gly Cys 180 185 190

Glu Ala Ala Gly Leu Gln Leu Gly Ile Ala Leu Thr Gln His Tyr Ser 195 200 205

Glu Leu Thr Asn Ile Phe Gly Asp Asn Ile Gly Ser Leu Gln Glu Lys 210 215 220

Gly Ile Lys Leu Gln Gly Ile Ala Ser Leu Tyr Arg Thr Asn Ile Thr 225 230 235 240

Glu Ile Phe Thr Thr Ser Thr Val Asp Lys Tyr Asp Ile Tyr Asp Leu 245 250 255

Leu Phe Thr Glu Ser Ile Lys Val Arg Val Ile Asp Val Asp Leu Asn 260 265 270

Asp Tyr Ser Ile Thr Leu Gln Val Arg Leu Pro Leu Leu Thr Arg Leu 275 280 285

Leu Asn Thr Gln Ile Tyr Lys Val Asp Ser Ile Ser Tyr Asn Ile Gln 290 295 300

Asn Arg Glu Trp Tyr Ile Pro Leu Pro Ser His Ile Met Thr Lys Gly 305 310 315 320

Ala Phe Leu Gly Gly Ala Asp Val Lys Glu Cys Ile Glu Ala Phe Ser 325 330 335

Ser Tyr Ile Cys Pro Ser Asp Pro Gly Phe Val Leu Asn His Glu Met 340 345 350

Glu Ser Cys Leu Ser Gly Asn Ile Ser Gln Cys Pro Arg Thr Thr Val 355 360 365

Thr Ser Asp Ile Val Pro Arg Tyr Ala Phe Val Asn Gly Gly Val Val 370 375 380

Ala Asn Cys Ile Thr Thr Cys Thr Cys Asn Gly Ile Asp Asn Arg 385 390 395 400

Ile Asn Gln Pro Pro Asp Gln Gly Val Lys Ile Ile Thr His Lys Glu 405 410 415

Cys Asn Thr Ile Gly Ile Asn Gly Met Leu Phe Asn Thr Asn Lys Glu 420 425 430

Gly Thr Leu Ala Phe Tyr Thr Pro Asn Asp Ile Thr Leu Asn Asn Ser 435 440 445

Val Ala Leu Asp Pro Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys

Ser 465	Asp	Leu	Glu	Glu	Ser 470	Lys	Glu	Trp	Ile	Arg 475	Arg	Ser	Asn	Gln	Lys 480
Leu	Asp	Ser	Ile	Gly 485	Asn	Trp	His	Gln	Ser 490	Ser	Thr	Thr	Ile	Ile 495	Ile
Ile	Leu	Ile	Met 500	Ile	Ile	Ile	Leu	Phe 505	Ile	Ile	Asn	Val	Thr 510	Ile	Ile
Thr	Ile	Ala 515	Ile	Lys	Tyr	Tyr	Arg 520	Ile	Gln	Lys	Arg	Asn 525	Arg	Val	Asp
Gln	Asn	Asp	Lys	Pro	Tyr	Val	Leu	Thr	Asn	Lys					

455

535

460

(2) INFORMATION FOR SEQ ID NO:3:

450

530

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1833 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

AGACAAATCC	AAATTCGAGA	TGGAATACTG	GAAGCATACC	AATCACGGAA	AGGATGCTGG	60
CAATGAGCTG	GAGACGTCCA	TGGCTACTAA	TGGCAACAAG	CTCACCAATA	AGATAACATA	120
TATATTATGG	ACAATAATCC	TGGTGTTATT	ATCAATAGTC	TTCATCATAG	TGCTAATTAA	180
TTCCATCAAA	AGTGAAAAGG	CTCATGAATC	ATTGCTGCAA	GACATAAATA	ATGAGTTTAT	240
GGAAATTACA	GAAAAGATCC	AAATGGCATC	GGATAATACC	AATGATCTAA	TACAGTCAGG	300
AGTGAATACA	AGGCTTCTTA	CAATTCAGAG	TCATGTCCAG	AATTATATAC	CAATATCACT	360
GACACAACAG	ATGTCAGATC	TTAGGAAATT	CATTAGTGAA	ATTACAATTA	GAAATGATAA	420
TCAAGAAGTG	CTGCCACAAA	GAATAACACA	TGATGTGGGT	ATAAAACCTT	TAAATCCAGA	480
TGATTTTTGG	AGATGCACGT	CTGGTCTTCC	ATCTTTAATG	AAAACTCCAA	AAATAAGGTT	540
AATGCCAGGG	CCGGGATTAT	TAGCTATGCC	AACGACTGTT	GATGGCTGTA	TCAGAACTCC	600
GTCCTTAGTT	ATAAATGATC	TGATTTATGC	TTATACCTCA	AATCTAATTA	CTCGAGGTTG	660
TCAGGATATA	GGAAAATCAT	ATCAAGTCTT	ACAGATAGGG	ATAATAACTG	TAAACTCAGA	720
CTTGGTACCT	GACTTAAATC	CCAGGATCTC	TCATACTTTT	AACATAAATG	ACAATAGGAA	780
GTCATGTTCT	CTAGCACTCC	TAAATACAGA	TGTATATCAA	CTGTGTTCAA	CTCCCAAAGT	840

TGATGAAAGA TCAGATTATG CATCATCAGG CATAGAAGAT ATTGTACTTG ATATTGTCAA 900 TTATGATGGC TCAATCTCAA CAACAAGATT TAAGAATAAT AACATAAGCT TTGATCAACC 960 TTATGCTGCA CTATACCCAT CTGTTGGACC AGGGATATAC TACAAAGGCA AAATAATATT 1020 TCTCGGGTAT GGAGGTCTTG AACATCCAAT AAATGAGAAT GTAATCTGCA ACACAACTGG 1080 GTGTCCCGGG AAAACACAGA GAGACTGCAA TCAGGCATCT CATAGTCCAT GGTTTTCAGA 1140 TAGGAGGATG GTCAACTCTA TCATTGTTGT TGACAAAGGC TTAAACTCAA TTCCAAAATT 1200 GAAGGTATGG ACGATATCTA TGAGACAGAA TTACTGGGGG TCAGAAGGAA GGTTACTTCT 1260 ACTAGGTAAC AAGATCTATA TATATACAAG ATCCACAAGT TGGCATAGCA AGTTACAATT 1320 AGGAATAATT GATATTACTG ATTACAGTGA TATAAGGATA AAATGGACAT GGCATAATGT 1380 GCTATCAAGA CCAGGAAACA ATGAATGTCC ATGGGGACAT TCATGTCCAG ATGGATGTAT 1440 AACAGGAGTA TATACTGATG CATATCCACT CAATCCCACA GGGAGCATTG TGTCATCTGT 1500 CATATTAGAT TCACAAAAAT CGAGAGTGAA CCCAGTCATA ACTTACTCAA CAGCAACCGA 1560 AAGAGTAAAC GAGCTGGCCA TCCGAAACAG AACACTCTCA GCTGGATATA CAACAACAAG 1620 CTGCATCACA CACTATAACA AAGGATATTG TTTTCATATA GTAGAAATAA ATCAGAAAAG 1680 CTTAAACACA CTTCAACCCA TGTTGTTCAA GACAGAGGTT CCAAAAAGCT GCAGTTAATC 1740 ATAATTAACC GCAATATGCA TTAACCTATC TATAATACAA GTATATGATA AGTAATCAGC 1800 AATCAGACAA TAGACAAAAG GGAAATATAA AAA 1833

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 572 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Glu Tyr Trp Lys His Thr Asn His Gly Lys Asp Ala Gly Asn Glu 1 5 10 15

Leu Glu Thr Ser Met Ala Thr Asn Gly Asn Lys Leu Thr Asn Lys Ile 20 25 30

Thr Tyr Ile Leu Trp Thr Ile Ile Leu Val Leu Leu Ser Ile Val Phe 35 40 45

- Ile Ile Val Leu Ile Asn Ser Ile Lys Ser Glu Lys Ala His Glu Ser 50 55 60
- Leu Leu Gln Asp Ile Asn Asn Glu Phe Met Glu Ile Thr Glu Lys Ile 65 70 75 80
- Gln Met Ala Ser Asp Asn Thr Asn Asp Leu Ile Gln Ser Gly Val Asn 85 90 95
- Thr Arg Leu Leu Thr Ile Gln Ser His Val Gln Asn Tyr Ile Pro Ile 100 105 110
- Ser Leu Thr Gln Gln Met Ser Asp Leu Arg Lys Phe Ile Ser Glu Ile 115 120 125
- Thr Ile Arg Asn Asp Asn Gln Glu Val Leu Pro Gln Arg Ile Thr His 130 135 140
- Asp Val Gly Ile Lys Pro Leu Asn Pro Asp Asp Phe Trp Arg Cys Thr 145 150 155 160
- Ser Gly Leu Pro Ser Leu Met Lys Thr Pro Lys Ile Arg Leu Met Pro 165 170 175
- Gly Pro Gly Leu Leu Ala Met Pro Thr Thr Val Asp Gly Cys Ile Arg 180 185 190
- Thr Pro Ser Leu Val Ile Asn Asp Leu Ile Tyr Ala Tyr Thr Ser Asn 195 200 205
- Leu Ile Thr Arg Gly Cys Gln Asp Ile Gly Lys Ser Tyr Gln Val Leu 210 215 220
- Gln Ile Gly Ile Ile Thr Val Asn Ser Asp Leu Val Pro Asp Leu Asn 225 230 235 240
- Pro Arg Ile Ser His Thr Phe Asn Ile Asn Asp Asn Arg Lys Ser Cys 245 250 255
- Ser Leu Ala Leu Leu Asn Thr Asp Val Tyr Gln Leu Cys Ser Thr Pro 260 265 270
- Lys Val Asp Glu Arg Ser Asp Tyr Ala Ser Ser Gly Ile Glu Asp Ile 275 280 285
- Val Leu Asp Ile Val Asn Tyr Asp Gly Ser Ile Ser Thr Thr Arg Phe 290 295 300
- Lys Asn Asn Asn Ile Ser Phe Asp Gln Pro Tyr Ala Ala Leu Tyr Pro 305 310 315 320
- Ser Val Gly Pro Gly Ile Tyr Tyr Lys Gly Lys Ile Ile Phe Leu Gly 325 330 335
- Tyr Gly Gly Leu Glu His Pro Ile Asn Glu Asn Val Ile Cys Asn Thr 340 345 350

Thr Gly Cys Pro Gly Lys Thr Gln Arg Asp Cys Asn Gln Ala Ser His 355 360 365

Ser Pro Trp Phe Ser Asp Arg Arg Met Val Asn Ser Ile Ile Val Val 370 375 380

Asp Lys Gly Leu Asn Ser Ile Pro Lys Leu Lys Val Trp Thr Ile Ser 385 390 395 400

Met Arg Gln Asn Tyr Trp Gly Ser Glu Gly Arg Leu Leu Leu Gly 405 410 415

Asn Lys Ile Tyr Ile Tyr Thr Arg Ser Thr Ser Trp His Ser Lys Leu 420 425 430

Gln Leu Gly Ile Ile Asp Ile Thr Asp Tyr Ser Asp Ile Arg Ile Lys 435 440 445

Trp Thr Trp His Asn Val Leu Ser Arg Pro Gly Asn Asn Glu Cys Pro 450 455 460

Trp Gly His Ser Cys Pro Asp Gly Cys Ile Thr Gly Val Tyr Thr Asp 465 470 475 480

Ala Tyr Pro Leu Asn Pro Thr Gly Ser Ile Val Ser Ser Val Ile Leu 485 490 495

Asp Ser Gln Lys Ser Arg Val Asn Pro Val Ile Thr Tyr Ser Thr Ala 500 505 510

Thr Glu Arg Val Asn Glu Leu Ala Ile Arg Asn Arg Thr Leu Ser Ala 515 520 525

Gly Tyr Thr Thr Thr Ser Cys Ile Thr His Tyr Asn Lys Gly Tyr Cys 530 540

Phe His Ile Val Glu Ile Asn Gln Lys Ser Leu Asn Thr Leu Gln Pro 545 550 555 560

Met Leu Phe Lys Thr Glu Val Pro Lys Ser Cys Ser 565 570

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1886 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TGCTTTGCTT CTAGTCAAAA CATCACTGAA GAATTTTATC AATCAACATG CAGTGCAGTT 120 AGCAAAGGCT ATCTTAGTGC TCTAAGAACT GGTTGGTATA CTAGTGTTAT AACTATAGAA 180 TTAAGTAATA TCAAGGAAAA TAAGTGTAAT GGAACAGATG CTAAGGTAAA ATTGATGAAA 240 CAAGAATTAG ATAAATATAA AAATGCTGTA ACAGAATTGC AGTTGCTCAT GCAAAGCACA 300 CCAGCAGCAA ACAATCGAGC CAGAAGAGAA CTACCAAGGT TTATGAATTA TACACTCAAC 360 AATACCAAAA AAACCAATGT AACATTAAGC AAGAAAAGGA AAAGAAGATT TCTTGGTTTT 420 TTGTTAGGTG TTGGATCTGC AATCGCCAGT GGCATTGCTG TATCTAAGGT CCTGCACTTA 480 GAAGGAGAAG TGAACAAGAT CAAAAGTGCT CTACTATCCA CAAACAAGGC CGTAGTCAGC 540 TTATCAAATG GAGTTAGTGT CTTAACCAGC AAAGTGTTAG ACCTCAAAAA CTATATAGAT 600 AAACAATTGT TACCTATTGT GAATAAGCAA AGCTGCAGAA TATCAAATAT AGAAACTGTG 660 ATAGAGTTCC AACAAAAGAA CAACAGACTA CTAGAGATTA CCAGGGAATT TAGTGTTAAT 720 GCAGGTGTAA CTACACCTGT AAGCACTTAC ATGTTAACTA ATAGTGAATT ATTGTCATTA 780 ATCAATGATA TGCCTATAAC AAATGATCAG AAAAAGTTAA TGTCCAACAA TGTTCAAATA 840 GTTAGACAGC AAAGTTACTC TATCATGTCC ATAATAAAAG AGGAAGTCTT AGCATATGTA 900 GTACAATTAC CACTATATGG TGTGATAGAT ACACCTTGTT GGAAATTACA CACATCCCCT 960 CTATGTACAA CCAACACAAA AGAAGGGTCA AACATCTGTT TAACAAGAAC TGACAGAGGA 1020 TGGTACTGTG ACAATGCAGG ATCAGTATCT TTCTTCCCAC AAGCTGAAAC ATGTAAAGTT 1080 CAATCGAATC GAGTATTTTG TGACACAATG AACAGTTTAA CATTACCAAG TGAAGTAAAT 1140 CTCTGCAATG TTGACATATT CAATCCCAAA TATGATTGTA AAATTATGAC TTCAAAAACA 1200 GATGTAAGCA GCTCCGTTAT CACATCTCTA GGAGCCATTG TGTCATGCTA TGGCAAAACT 1260 AAATGTACAG CATCCAATAA AAATCGTGGA ATCATAAAGA CATTTTCTAA CGGGTGTGAT 1320 TATGTATCAA ATAAAGGGGT GGACACTGTG TCTGTAGGTA ACACATTATA TTATGTAAAT 1380 AAGCAAGAAG GCAAAAGTCT CTATGTAAAA GGTGAACCAA TAATAAATTT CTATGACCCA 1440 TTAGTATTCC CCTCTGATGA ATTTGATGCA TCAATATCTC AAGTCAATGA GAAGATTAAC 1500 CAGAGTTTAG CATTTATTCG TAAATCCGAT GAATTATTAC ATAATGTAAA TGCTGGTAAA 1560 TCAACCACAA ATATCATGAT AACTACTATA ATTATAGTGA TTATAGTAAT ATTGTTATCA 1620 TTAATTGCTG TTGGACTGCT CCTATACTGT AAGGCCAGAA GCACACCAGT CACACTAAGC 1680 AAGGATCAAC TGAGTGGTAT AAATAATATT GCATTTAGTA ACTGAATAAA AATAGCACCT 1740

AATCATGTTC	TTACAATGGT	TTACTATCTG	CTCATAGACA	ACCCATCTAT	CATTGGATTT	1800
TCTTAAAATC	TGAACTTCAT	CGAAACTCTT	ATCTATAAAC	CATCTCACTT	ACACTATTTA	1860
AGTAGATTCC	TAGTTTATAG	TTATAT				1886

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 594 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Glu Leu Pro Ile Leu Lys Ala Asn Ala Ile Thr Thr Ile Leu Ala 1 5 10 15

Ala Val Thr Phe Cys Phe Ala Ser Ser Gln Asn Ile Thr Glu Glu Phe 20 25 30

Tyr Gln Ser Thr Cys Ser Ala Val Ser Lys Gly Tyr Leu Ser Ala Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Arg Thr Gly Trp Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile 50 55 60

Lys Glu Asn Lys Cys Asn Gly Thr Asp Ala Lys Val Lys Leu Met Lys 65 70 75 80

Gln Glu Leu Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu 85 90 95

Met Gln Ser Thr Pro Ala Ala Asn Asn Arg Ala Arg Arg Glu Leu Pro 100 105 110

Arg Phe Met Asn Tyr Thr Leu Asn Asn Thr Lys Lys Thr Asn Val Thr 115 120 125

Leu Ser Lys Lys Arg Lys Arg Arg Phe Leu Gly Phe Leu Gly Val 130 135 140

Gly Ser Ala Ile Ala Ser Gly Ile Ala Val Ser Lys Val Leu His Leu 145 150 155 160

Glu Gly Glu Val Asn Lys Ile Lys Ser Ala Leu Leu Ser Thr Asn Lys 165 170 175

Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val
180 185 190

Leu Asp Leu Lys Asn Tyr Ile Asp Lys Gln Leu Leu Pro Ile Val Asn 195 200 205

- Lys Gln Ser Cys Arg Ile Ser Asn Ile Glu Thr Val Ile Glu Phe Gln 210 215 220
- His Lys Asn Asn Arg Leu Leu Glu Ile Thr Arg Glu Phe Ser Val Asn 225 230 235 240
- Ala Gly Val Thr Thr Pro Val Ser Thr Tyr Met Leu Thr Asn Ser Glu 245 250 255
- Leu Leu Ser Leu Ile Asn Asp Met Pro Ile Thr Asn Asp Gln Lys Lys 260 265 270
- Leu Met Ser Asn Asn Val Gln Ile Val Arg Gln Gln Ser Tyr Ser Ile 275 280 285
- Met Ser Ile Ile Lys Glu Glu Val Leu Ala Tyr Val Val Gln Leu Pro 290 295 300
- Leu Tyr Gly Val Ile Asp Thr Pro Cys Trp Lys Leu His Thr Ser Pro 305 310 315 320
- Leu Cys Thr Thr Asn Thr Lys Glu Gly Ser Asn Ile Cys Leu Thr Arg
- Thr Asp Arg Gly Trp Tyr Cys Asp Asn Ala Gly Ser Val Ser Phe Phe 340 345 350
- Pro Gln Ala Glu Thr Cys Lys Val Gln Ser Asn Arg Val Phe Cys Asp 355 360 365
- Thr Met Asn Ser Leu Thr Leu Pro Ser Glu Val Asn Leu Cys Asn Val 370 375 380
- Asp Ile Phe Asn Pro Lys Tyr Asp Cys Lys Ile Met Thr Ser Lys Thr 385 390 395 400
- Asp Val Ser Ser Ser Val Ile Thr Ser Leu Gly Ala Ile Val Ser Cys 405 410 415
- Tyr Gly Lys Thr Lys Cys Thr Ala Ser Asn Lys Asn Arg Gly Ile Ile 420 425 430
- Thr Val Ser Val Gly Asn Thr Leu Tyr Tyr Val Asn Lys Gln Glu Gly 450 450
- Lys Ser Leu Tyr Val Lys Gly Glu Pro Ile Ile Asn Phe Tyr Asp Pro 465 470 475 480
- Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn
 485 490 495
- Glu Lys Ile Asn Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 500 505 510

Ser	Gln	Val	Asn	Glu	Lys	Ile	Asn	Gln	Ser	Leu	Ala	Phe	Ile	Arg	Lys
		515					520					525			

Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser Thr Thr Asn 530 535 540

Ile Met Ile Thr Thr Ile Ile Ile Glu Ile Ile Val Ile Leu Leu Ser 545 550 555 560

Leu Ile Ala Val Gly Leu Leu Leu Tyr Cys Lys Ala Arg Ser Thr Pro 565 570 575

Val Thr Leu Ser Lys Asp Gln Leu Ser Gly Ile Asn Asn Ile Ala Phe 580 585 590

Ser Asn

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 920 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TGCAAACATG	TCCAAAAACA	AGGACCAACG	CACCGCTAAG	ACACTAGAAA	AGACCTGGGA	60
CACTCTCAAT	CATTTATTAT	TCATATCATC	GGGCTTATAT	AAGTTAAATC	TTAAATCTGT	120
AGCACAAATC	ACATTATCCA	TTCTGGCAAT	GATAATCTCA	ACTTCACTTA	TAATTACAGC	180
CATCATATTC	ATAGCCTCGG	CAAACCACAA	AGTCACACTA	ACAACTGCAA	TCATACAAGA	240
TGCAACAAGC	CAGATCAAGA	ACACAACCCC	AACATACCTC	ACTCAGGATC	CTCAGCTTGG	300
AATCAGCTTC	TCCAATCTGT	CTGAAATTAC	ATCACAAACC	ACCACCATAC	TAGCTTCAAC	360
AACACCAGGA	GTCAAGTCAA	ACCTGCAACC	CACAACAGTC	AAGACTAAAA	ACACAACAAC	420
AACCCAAACA	CAACCCAGCA	AGCCCACTAC	AAAACAACGC	CAAAACAAAC	CACCAAACAA	480
ACCCAATAAT	GATTTTCACT	TCGAAGTGTT	TAACTTTGTA	CCCTGCAGCA	TATGCAGCAA	540
CAATCCAACC	TGCTGGGCTA	TCTGCAAAAG	AATACCAAAC	AAAAAACCAG	GAAAGAAAAC	600
CACCACCAAG	CCTACAAAAA	AACCAACCTT	CAAGACAACC	AAAAAAGATC	TCAAACCTCA	660
AACCACTAAA	CCAAAGGAAG	TACCCACCAC	CAAGCCCACA	GAAGAGCCAA	CCATCAACAC	720

CACCAAAACA	AACATCACAA	CTACACTGCT	CACCAACAAC	ACCACAGGAA	ATCCAAAACT	780
CACAAGTCAA	ATGGAAACCT	TCCACTCAAC	CTCCTCCGAA	GGCAATCTAA	GCCCTTCTCA	840
AGTCTCCACA	ACATCCGAGC	ACCCATCACA	ACCCTCATCT	CCACCCAACA	CAACACGCCA	900
GTAGTTATTA	AAAAAAAAA					920

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 298 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Ser Lys Asn Lys Asp Gln Arg Thr Ala Lys Thr Leu Glu Lys Thr 1 $$ 5 $$ 10 $$ 15

Trp Asp Thr Leu Asn His Leu Leu Phe Ile Ser Ser Gly Leu Tyr Lys
20 25 30

Leu Asn Leu Lys Ser Val Ala Gln Ile Thr Leu Ser Ile Leu Ala Met 35 40 45

Ile Ile Ser Thr Ser Leu Ile Ile Thr Ala Ile Ile Phe Ile Ala Ser 50 55 60

Ala Asn His Lys Val Thr Leu Thr Thr Ala Ile Ile Gln Asp Ala Thr 65 70 75 80

Ser Gln Ile Lys Asn Thr Thr Pro Thr Tyr Leu Thr Gln Asp Pro Gln 85 90 95

Leu Gly Ile Ser Phe Ser Asn Leu Ser Glu Ile Thr Ser Gln Thr Thr
100 105 110

Thr Ile Leu Ala Ser Thr Thr Pro Gly Val Lys Ser Asn Leu Gln Pro 115 120 125

Thr Thr Val Lys Thr Lys Asn Thr Thr Thr Thr Gln Thr Gln Pro Ser 130 135 140

Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn Lys Pro Asn 145 150 155 160

Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys 165 170 175

Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys Arg Ile Pro Asn Lys 180 185 190

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 86 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

	Lys	Thr 210	Thr	Lys	Lys	Asp	Leu 215	Lys	Pro	Gln	Thr	Thr 220	Lys	Pro	Lys	Glu	
	Val 225	Pro	Thr	Thr	Lys	Pro 230	Thr	Glu	Glu	Pro	Thr 235	Ile	Asn	Thr	Thr	Lys 240	
	Thr	Asn	Ile	Thr	Thr 245	Thr	Leu	Leu	Thr	Asn 250	Asn	Thr	Thr	Gly	Asn 255	Pro	
	Lys	Leu	Thr	Ser 260	Gln	Met	Glu	Thr	Phe 265	His	Ser	Thr	Ser	Ser 270	Glu	Gly	
	Asn	Leu	Ser 275	Pro	Ser	Gln	Val	Ser 280	Thr	Thr	Ser	Glu	His 285	Pro	Ser	Gln	
	Pro	Ser 290	Ser	Pro	Pro	Asn	Thr 295	Thr	Arg	Gln							
(2)	INFO	RMAT	ION I	FOR :	SEQ I	ID NO	0:9:										
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 																
	(xi)	SEQ	JENCI	E DE	SCRI	PTIO	N: SI	EQ II	ои о	:9:							
ATCA	ATCA	AA GO	GTCC:	rgtg/	A TAZ	ATAG											26
(2)	INFO	RMAT	ION 1	FOR :	SEQ :	ID NO	0:10	:									
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																
	(xi)	SEQ	JENC!	E DE:	SCRI	PTIOI	N: S	EQ II	D NO	:10:							
CATO	SACTT(GA T	AATG	AG													17
(2)	INFO	RMAT:	ION I	FOR :	SEQ :	ID NO	0:11	:									

Lys Pro Gly Lys Lys Thr Thr Lys Pro Thr Lys Lys Pro Thr Phe 200

205

195

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
AATTCATGGA GTTGCTAATC CTCAAAGCAA ATGCAATTAC CACAATCCTC ACTGCAGTCA 60
CATTTTGTTT TGCTTCTGGT TCTAAG 86
(2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: ACTGGCATCA ATCTAGCACT ACATGAG 27
(2) INFORMATION FOR SEQ ID NO:13:
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 136 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
AATTCATGCC AACTTTAATA CTGCTAATTA TTACAACAAT GATTATGGCA TCTTCCTGCC 60
AAATAGATAT CACAAAACTA CAGCATGTAG GTGTATTGGT CAACAGTCCC AAAGGGATGA 120
AGATATCACA AAACTT
(2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 94 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

(D) TOPOLOGY: linear

ATCATGGAGA TAATTAAAAT GATAACCATC TCGCAAATAA ATAAGTATTT TACTGTTTTC	60
GTAACAGTTT TGTAATAAAA AAACCTATAA ATAG	94
(2) INFORMATION FOR SEQ ID NO:15:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 141 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
ATCATGGAGA TAATTAAAAT GATAACCATC TCGCAAATAA ATAAGTATTT TACTGTTTTC	60
GTAACAGTTT TGTAATAAAA AAACCTATAA ATATTCCGGA ATTCAGATCT GCAGCGGCCG	120
CTCCATCTAG AAGGTACCCG G	141
(2) INFORMATION FOR SEQ ID NO:16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
CATGACTAAT TCCATCAAAA GTGAAAAGGC T	31
(2) INFORMATION FOR SEQ ID NO:17:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
CAAGAAAAG GAATAAAA	18
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS:	

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: ATTTCTGTGA TATTTGTGCG GTATAATGAT GCTATACCT	39
(2) INFORMATION FOR SEQ ID NO:19:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
CAGGAGAAGG GTATCAAG	18
(2) INFORMATION FOR SEQ ID NO:20:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
AGGAGAAGGG TATCAAG	17
(2) INFORMATION FOR SEQ ID NO:21:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 94 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
ATCATGGAGA TAATTAAAAT GATAACCATC TCGCAAATAA ATAAGTATTT TACTGTTTTC	60

(A) LENGTH: 39 base pairs

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Gln Glu Lys Gly Ile Lys 1 5

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Gln Glu Lys Gly Ile Lys 1 5

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

ATCAATCTAG CACTACACAG

20

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1617 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

ATGCCAACTT TAATACTGCT AATTATTACA ACAATGATTA TGGCATCTTC CTGCCAAATA 60 GATATCACAA AACTACAGCA TGTAGGTGTA TTGGTCAACA GTCCCAAAGG GATGAAGATA 120 TCACAAAACT TCGAAACAAG ATATCTAATT TTGAGCCTCA TACCAAAAAT AGAAGACTCT 180 AACTCTTGTG GTGACCAACA GATCAAACAA TACAAGAGGT TATTGGATAG ACTGATCATC 240 CCTCTATATG ATGGATTAAG ATTACAGAAA GATGTGATAG TAACCAATCA AGAATCCAAT 300 GAAAACACTG ATCCCAGAAC AAGACGATCC TTTGGAGGGG TAATTGGAAC CATTGCTCTG 360 GGAGTAGCAA CCTCAGCACA AATTACAGCG GCAGTTGCTC TGGTTGAAGC CAAGCAGGCA 420 AAATCAGACA TCGAAAAACT CAAAGAAGCA ATCAGGGACA CAAACAAAGC AGTGCAGTCA 480 GTTCAGAGCT CTATAGGAAA TTTAATAGTA GCAATTAAAT CAGTCCAAGA TTATGTCAAC 540 AACGAAATGG TGCCATCGAT TGCTAGACTA GGTTGTGAAG CAGCAGGACT TCAATTAGGA 600 ATTGCATTAA CACAGCATTA CTCAGAATTA ACAAACATAT TTGGTGATAA CATAGGATCG 660 TTACAAGAAA AAGGAATAAA ATTACAAGGT ATAGCATCAT TATACCGCAC AAATATCACA 720 GAAATATTCA CAACATCAAC AGTTGATAAA TATGATATCT ATGATCTATT ATTTACAGAA 780 TCAATAAAGG TGAGAGTTAT AGATGTTGAT TTGAATGATT ACTCAATCAC CCTCCAAGTC 840 AGACTCCCTT TATTAACTAG GCTGCTGAAC ACTCAGATCT ACAAAGTAGA TTCCATATCA 900 TATAATATCC AAAACAGAGA ATGGTATATC CCTCTTCCCA GCCATATCAT GACGAAAGGG 960 GCATTTCTAG GTGGAGCAGA TGTCAAGGAA TGTATAGAAG CATTCAGCAG TTATATATGC 1020 CCTTCTGATC CAGGATTTGT ACTAAACCAT GAAATGGAGA GCTGCTTATC AGGAAACATA 1080 TCCCAATGTC CAAGAACCAC GGTCACATCA GACATTGTTC CAAGATATGC ATTTGTCAAT 1140 GGAGGAGTGG TTGCAAACTG TATAACAACC ACCTGTACAT GCAACGGAAT CGACAATAGA 1200 ATCAATCAAC CACCTGATCA AGGAGTAAAA ATTATAACAC ATAAAGAATG TAATACAATA 1260 GGTATCAACG GAATGCTGTT CAATACAAAT AAAGAAGGAA CTCTTGCATT CTACACACCA 1320 AATGATATAA CACTAAATAA TTCTGTTGCA CTTGATCCAA TTGACATATC AATCGAGCTT 1380 AACAAAGCCA AATCAGATCT AGAAGAATCA AAAGAATGGA TAAGAAGGTC AAATCAAAAA 1440 CTAGATTCTA TTGGAAACTG GCATCAATCT AGCACTACAA TCATAATTAT TTTAATAATG 1500 ATCATTATAT TGTTTATAAT TAATGTAACG ATAATTACAA TTGCAATTAA GTATTACAGA 1560 ATTCAAAAGA GAAATCGAGT GGATCAAAAT GACAAGCCAT ATGTACTAAC AAACAAA 1617

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1715 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

ATGGAATACT	GGAAGCATAC	CAATCACGGA	AAGGATGCTG	GCAATGAGCT	GGAGACGTCC	60
ATGGCTACTA	ATGGCAACAA	GCTCACCAAT	AAGATAACAT	ATATATTATG	GACAATAATC	120
CTGGTGTTAT	TATCAATAGT	CTTCATCATA	GTGCTAATTA	ATTCCATCAA	AAGTGAAAAG	180
GCTCATGAAT	CATTGCTGCA	AGACATAAAT	AATGAGTTTA	TGGAAATTAC	AGAAAAGATC	240
CAAATGGCAT	CGGATAATAC	CAATGATCTA	ATACAGTCAG	GAGTGAATAC	AAGGCTTCTT	300
ACAATTCAGA	GTCATGTCCA	GAATTATATA	CCAATATCAC	TGACACAACA	GATGTCAGAT	360
CTTAGGAAAT	TCATTAGTGA	AATTACAATT	AGAAATGATA	ATCAAGAAGT	GCTGCCACAA	420
AGAATAACAC	ATGATGTGGG	TATAAAACCT	TTAAATCCAG	ATGATTTTTG	GAGATGCACG	480
TCTGGTCTTC	CATCTTTAAT	GAAAACTCCA	AAAATAAGGT	TAATGCCAGG	GCCGGGATTA	540
TTAGCTATGC	CAACGACTGT	TGATGGCTGT	ATCAGAACTC	CGTCCTTAGT	TATAAATGAT	600
CTGATTTATG	CTTATACCTC	AAATCTAATT	ACTCGAGGTT	GTCAGGATAT	AGGAAAATCA	660
TATCAAGTCT	TACAGATAGG	GATAATAACT	GTAAACTCAG	ACTTGGTACC	TGACTTAAAT	720
CCCAGGATCT	CTCATACTTT	TAACATAAAT	GACAATAGGA	AGTCATGTTC	TCTAGCACTC	780
CTAAATACAG	ATGTATATCA	ACTGTGTTCA	ACTCCCAAAG	TTGATGAAAG	ATCAGATTAT	840
GCATCATCAG	GCATAGAAGA	TATTGTACTT	GATATTGTCA	ATTATGATGG	CTCAATCTCA	900
ACAACAAGAT	TTAAGAATAA	TAACATAAGC	TTTGATCAAC	CTTATGCTGC	ACTATACCCA	960
TCTGTTGGAC	CAGGGATATA	CTACAAAGGC	AAAATAATAT	TTCTCGGGTA	TGGAGGTCTT	1020
GAACATCCAA	TAAATGAGAA	TGTAATCTGC	AACACAACTG	GGTGTCCCGG	GAAAACACAG	1080
AGAGACTGCA	ATCAGGCATC	TCATAGTCCA	TGGTTTTCAG	ATAGGAGGAT	GGTCAACTCT	1140
ATCATTGTTG	TTGACAAAGG	CTTAAACTCA	ATTCCAAAAT	TGAAGGTATG	GACGATATCT	1200
ATGAGACAGA	ATTACTGGGG	GTCAGAAGGA	AGGTTACTTC	TACTAGGTAA	CAAGATCTAT	1260
ATATATACAA	GATCCACAAG	TTGGCATAGC	AAGTTACAAT	TAGGAATAAT	TGATATTACT	1320
GATTACAGTG	ATATAAGGAT	AAAATGGACA	TGGCATAATG	TGCTATCAAG	ACCAGGAAAC	1380

AATGAATGTC CATGGGGACA TTCATGTCCA GATGGATGTA TAACAGGAGT ATATACTGAT 1440
GCATATCCAC TCAATCCCAC AGGGAGCATT GTGTCATCTG TCATATTAGA TTCACAAAAA 1500
TCGAGAGTGA ACCCAGTCAT AACTTACTCA ACAGCAACCG AAAGAGTAAA CGAGCTGGCC 1560
ATCCGAAACA GAACACTCTC AGCTGGATAT ACAACAACAA GCTGCATCAC ACACTATAAC 1620
AAAGGATATT GTTTCATAT AGTAGAAATA AATCAGAAAA GCTTAAACAC ACTTCAACCC 1680
ATGTTGTTCA AGACAGAGGT TCCAAAAAGC TGCAG 1715

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1722 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

ATGGAGTTGC CAATCCTCAA AGCAAATGCA ATTACCACAA TCCTCGCTGC AGTCACATTT 60 TGCTTTGCTT CTAGTCAAAA CATCACTGAA GAATTTTATC AATCAACATG CAGTGCAGTT 120 AGCAAAGGCT ATCTTAGTGC TCTAAGAACT GGTTGGTATA CTAGTGTTAT AACTATAGAA 180 TTAAGTAATA TCAAGGAAAA TAAGTGTAAT GGAACAGATG CTAAGGTAAA ATTGATGAAA 240 CAAGAATTAG ATAAATATAA AAATGCTGTA ACAGAATTGC AGTTGCTCAT GCAAAGCACA 300 CCAGCAGCAA ACAATCGAGC CAGAAGAGAA CTACCAAGGT TTATGAATTA TACACTCAAC 360 AATACCAAAA AAACCAATGT AACATTAAGC AAGAAAAGGA AAAGAAGATT TCTTGGTTTT 420 TTGTTAGGTG TTGGATCTGC AATCGCCAGT GGCATTGCTG TATCTAAGGT CCTGCACTTA 480 GAAGGAGAG TGAACAAGAT CAAAAGTGCT CTACTATCCA CAAACAAGGC CGTAGTCAGC 540 TTATCAAATG GAGTTAGTGT CTTAACCAGC AAAGTGTTAG ACCTCAAAAA CTATATAGAT 600 AAACAATTGT TACCTATTGT GAATAAGCAA AGCTGCAGAA TATCAAATAT AGAAACTGTG 660 ATAGAGTTCC AACAAAAGAA CAACAGACTA CTAGAGATTA CCAGGGAATT TAGTGTTAAT 720 GCAGGTGTAA CTACACCTGT AAGCACTTAC ATGTTAACTA ATAGTGAATT ATTGTCATTA 780 ATCAATGATA TGCCTATAAC AAATGATCAG AAAAAGTTAA TGTCCAACAA TGTTCAAATA 840 GTTAGACAGC AAAGTTACTC TATCATGTCC ATAATAAAAG AGGAAGTCTT AGCATATGTA 900 GTACAATTAC CACTATATGG TGTGATAGAT ACACCTTGTT GGAAATTACA CACATCCCCT 960 CTATGTACAA CCAACAAA AGAAGGGTCA AACATCTGTT TAACAAGAAC TGACAGAGGA 1020 TGGTACTGTG ACAATGCAGG ATCAGTATCT TTCTTCCCAC AAGCTGAAAC ATGTAAAGTT 1080 CAATCGAATC GAGTATTTTG TGACACAATG AACAGTTTAA CATTACCAAG TGAAGTAAAT 1140 CTCTGCAATG TTGACATATT CAATCCCAAA TATGATTGTA AAATTATGAC TTCAAAAACA 1200 GATGTAAGCA GCTCCGTTAT CACATCTCTA GGAGCCATTG TGTCATGCTA TGGCAAAACT 1260 AAATGTACAG CATCCAATAA AAATCGTGGA ATCATAAAGA CATTTTCTAA CGGGTGTGAT 1320 TATGTATCAA ATAAAGGGGT GGACACTGTG TCTGTAGGTA ACACATTATA TTATGTAAAT 1380 AAGCAAGAAG GCAAAAGTCT CTATGTAAAA GGTGAACCAA TAATAAATTT CTATGACCCA 1440 TTAGTATTCC CCTCTGATGA ATTTGATGCA TCAATATCTC AAGTCAATGA GAAGATTAAC 1500 CAGAGTTTAG CATTTATTCG TAAATCCGAT GAATTATTAC ATAATGTAAA TGCTGGTAAA 1560 TCAACCACAA ATATCATGAT AACTACTATA ATTATAGTGA TTATAGTAAT ATTGTTATCA 1620 TTAATTGCTG TTGGACTGCT CCTATACTGT AAGGCCAGAA GCACACCAGT CACACTAAGC 1680 AAGGATCAAC TGAGTGGTAT AAATAATATT GCATTTAGTA AC 1722

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 894 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

ATGTCCAAAA ACAAGGACCA ACGCACCGCT AAGACACTAG AAAAGACCTG GGACACTCTC 60 AATCATTTAT TATTCATATC ATCGGGCTTA TATAAGTTAA ATCTTAAATC TGTAGCACAA 120 ATCACATTAT CCATTCTGGC AATGATAATC TCAACTTCAC TTATAATTAC AGCCATCATA 180 TTCATAGCCT CGGCAAACCA CAAAGTCACA CTAACAACTG CAATCATACA AGATGCAACA 240 AGCCAGATCA AGAACACAC CCCAACATAC CTCACTCAGG ATCCTCAGCT TGGAATCAGC 300 TTCTCCAATC TGTCTGAAAT TACATCACAA ACCACCACCA TACTAGCTTC AACAACACCA 360 GGAGTCAAGT CAAACCTGCA ACCCACAACA GTCAAGACTA AAAACACAAC AACAACCCAA 420 ACACAACCCA GCAAGCCCAC TACAAAACAA CGCCAAAACA AACCACCAAA CAAACCCAAT 480 AATGATTTC ACTTCGAAGT GTTTAACTTT GTACCCTGCA GCATATGCAG CAACAATCCA 540

ACCTGCTGGG CTATCTGCAA AAGAATACCA AACAAAAAAC CAGGAAAGAA AACCACCACC	600			
AAGCCTACAA AAAAACCAAC CTTCAAGACA ACCAAAAAAG ATCTCAAACC TCAAACCACT	660			
AAACCAAAGG AAGTACCCAC CACCAAGCCC ACAGAAGAGC CAACCATCAA CACCACCAAA	720			
ACAAACATCA CAACTACACT GCTCACCAAC AACACCACAG GAAATCCAAA ACTCACAAGT	780			
CAAATGGAAA CCTTCCACTC AACCTCCTCC GAAGGCAATC TAAGCCCTTC TCAAGTCTCC	840			
ACAACATCCG AGCACCCATC ACAACCCTCA TCTCCACCCA ACACACACG CCAG	894			
(2) INFORMATION FOR SEQ ID NO:29: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear				
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:				
CGTAGTTAGT TTCCAGGACA CTATTATCCT AG	32			
(2) INFORMATION FOR SEQ ID NO:30:				
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 				
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:				
TGAACTATTA CTCCTAG				
(2) INFORMATION FOR SEQ ID NO:31:				
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 85 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 				

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

(2) INFORMATION FOR SEQ ID NO:32:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
CGTAGTTAGA TCGTGATGTA CTCCTAG	27
(2) INFORMATION FOR SEQ ID NO:33:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 136 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
GTACGGTTGA AATTATGACG ATTAATAATG TTGTTACTAA TACCGTAGAA GGACGGTTTA	60
TCTATAGTGT TTTGATGTCG TACATCCACA TAACCAGTTG TCAGGGTTTC CCTACTTCTA	120
TAGTGTTTTG AAGCTT	136
(2) INFORMATION FOR SEQ ID NO:34:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 98 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
TAGTACCTCT ATTAATTTTA CTATTGGTAG AGCGTTTATT TATTCATAAA ATGACAAAAG	60
CATTGTCAAA ACATTATTTT TTTGGATATT TATCTTAA	98
(2) INFORMATION FOR SEQ ID NO:35:	
(i) SEQUENCE CHARACTERISTICS:	

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
TAGTACCTCT ATTAATTTTA CTATTGGTAG AGCGTTTATT TATTCATAAA ATGACAAAAG	60
CATTGTCAAA ACATTATTTT TTTGGATATT TATAAGGCCT TAAGTCTAGA CGTCGCCGGC	120
GAGGTAGATC TTCCATGGGC CCTAG	145
(2) INFORMATION FOR SEQ ID NO:36: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
TGATTAAGGT AGTTTTCACT TTTCCGAGTA C	31
(2) INFORMATION FOR SEQ ID NO:37:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
TAAAGACACT ATAAACACGC CATATTACTA CGATATGGA	39
(2) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(A) LENGTH: 145 base pairs(B) TYPE: nucleic acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: