定理 1.29 $f: X \to Y$ が全単射であれば , f の逆関係 f^c は $Y \to X$ の全単射である。

【証明】

 $f = \{ \langle x, y \rangle | (x \in X) \hbar \Upsilon (y \in Y) \hbar \Upsilon (f(x) = y) \}$, $f^c = \{ \langle y, x \rangle | \langle x, y \rangle \in f \}$

- (1) f が全射なので,任意の $y \in Y$ に対して,ある $\langle x,y \rangle \in f$ 。 すなわち, $\langle y,x \rangle \in f^c$ 。 ゆえに, f^c の定義域が Y である。 f が単射なので,一つの $y \in Y$ に対して,一つだけ $x \in X$ が存在し, $\langle x,y \rangle \in f$ 。 すなわち, $\langle y,x \rangle \in f^c$ 。 ゆえに, f^c は Y から X への関数である。
- (2) f が全射なので,f(X) = Y。 すなわち, $f^c(Y) = X$ 。 ゆえに, f^c も全射である。 f^c が単射でないとすると,ある $y_1 \neq y_2$ が存在して, $f^c(y_1) = x_1 = f^c(y_2) = x_2$ となる。よって, $f(x_1) = f(x_2)$,すなわち $y_1 = y_2$ となり,矛盾する。 ゆえに, f^c は単射である。
- (1)と(2)より, f^cは全単射である。