The Battle of Neighborhoods

Picking up a location in Tokyo for opening a new business(Week 1)

Background

Tokyo is a very busy city, best known for tourist attractions and business innovation. Some investors are willing to open new business in Tokyo, but always not sure about the best location for the new venue. To survive

in the competitive competition, one needs to understand the critical factors that contributes to the profitability.

Data

The special wards (特別区 tokubetsu-ku) are 23 municipalities that together make up the core and the most populous part of Tokyo, Japan.

First, I get the information about the special wards through Wikipedia page: https://en.wikipedia.org/wiki/Special wards of Tokyo.

```
response = requests.get('https://en.wikipedia.org/wiki/Special_wards_of_Tokyo').text
soup = BeautifulSoup(response,"lxml")
Table = soup.find("table",{"class": "wikitable sortable"})
```

I use BeautifulSoup and pandas to create the initial data frame:

	Name	Population	Area	Major_district		
3	Minato	0248,071	12,180	Odaiba, Shinbashi, Hamamatsuchō, Mita, Roppong		
4	Shinjuku	0339,211	18,620	Shinjuku, Takadanobaba, Ōkubo, Kagurazaka, Ich		
5	Bunkyō	0223,389	19,790	Hongō, Yayoi, Hakusan		
6	Taitō	0200,486	19,830	Ueno, Asakusa		
7	Sumida	0260,358	18,910	Kinshichō, Morishita, Ryōgoku		

Next, I use the Geocoder library to obtain the coordinator variable.

	Name	Population	Area	Major_district	Latitude	Longitude
3	Minato	0248,071	12,180	Odaiba, Shinbashi, Hamamatsuchō, Mita, Roppong	35.643227	139.740055
4	Shinjuku	0339,211	18,620	Shinjuku, Takadanobaba, Ōkubo, Kagurazaka, Ich	35.693763	139.703632
5	Bunkyō	0223,389	19,790	Hongō, Yayoi, Hakusan	35.718810	139.744732
6	Taitō	0200,486	19,830	Ueno, Asakusa	35.717450	139.790859
7	Sumida	0260,358	18,910	Kinshichō, Morishita, Ryōgoku	35.700429	139.805017

And then I generate a map to display the venues in our dataset:

Generally speaking, the store in Tokyo is dispersed geographically. Then, I want to check the type of store in Tokyo.

The convenience store tops the chart and exceed the other types by more than two times. And the rest nine types are all restaurants.