ROC Curves

Predicted		Observed				
		True	False			
ed	True	True Positive (TP)	False Positive (FP)			
P.	False	False Negative (FN)	True Negative (TN)			

y-axis: TPF, sensitivity *x-axis*: FPF, 1 – specificity Each point represents TPF/FPF corresponding to a particular decision threshold.

Strict threshold	low TPF, low FPF (high specificity)	P(D-)/P(D+) large, rare prevalence		
Relaxed threshold	high TPF, high FPF (high sensitivity)	P(D-)/P(D+) small, common prevalence		

AUC [0.5, 1.0], AUC = 0.80 means a randomly selected individual from a diseased group has a test value larger than that for a randomly chosen individual from the non-diseased group 80% of the time.

Best operating point minimizes: $\overline{\text{cost}} = C_{\text{overhead}} + C_{\text{TP}} \cdot P(\text{TP}) + C_{\text{TN}} \cdot P(\text{TN}) + C_{\text{FP}} \cdot P(\text{FP}) + C_{\text{FN}} \cdot P(FN)$

Advantages	Disadvantages
Simple, Graphical thus easily appreciated visually, comprehensive	Thresholds are not displayed on the plot,
representation of pure accuracy, doesn't require selection of particular	the number of subjects is not shown,
threshold, independent of prevalence, requires no binning of data,	requires help of computer software in plot generation
specificity and sensitivity are readily accessible	and calculations.

Decision Tables

Three Basic parts: (1) Causes, conditions, decision criteria (2) Effects stubs, actions that result from a given set of causes (possible) (3) Effects specify which effects are to appear for a given set of conditions (realized)

Steps to create a decision table:

- 1. List all causes in the decision table in order of importance, multi-valued causes last
- 2. Calculate the number of possible combinations (2^n if all binary)
- 3. Fill columns with all possible combinations
- 4. Reduce test combinations (Use '-' for redundancies)
- 5. Check covered combinations (checksum below effects)
- 6. Add effects to the table

Causes	Values	1	2	3	4	
Cause 1	Y, N	Υ	Υ	Υ	Z	
Cause 2	Y, N	Υ	N	Z	ı	
Cause 3	Y, N	-	Υ	Ν	1	
Effects						
Effect 1		Х		Χ		
Effect 2		Х	Χ			
Checksum		2	1	1	4	= 2 ³

Decision Trees

Entropy = $\sum_i -p_i \log_2 p_i$, where p_i is the probability of *class i*. Higher entropy implies more information content. Range [0, 1] Information Gain = Entropy_{parent node} – Weighted Average Entropy_{children nodes} Can also think of it as impurity reduced. (min E_{ch}) Example: N = 30, 14+, 16-, Children: C₁: $N_1 = 13$, 1+, 12-; C₂: $N_2 = 17$, 13+, 4-

$$IG = \left[-\left(\frac{14}{30}\log_2\frac{14}{30}\right) - \left(\frac{16}{30}\log_2\frac{16}{30}\right) \right] - \left[\frac{13}{30}\left(-\left(\frac{1}{13}\log_2\frac{1}{13}\right) - \left(\frac{12}{13}\log_2\frac{12}{13}\right)\right) + \frac{17}{30}\left(-\left(\frac{13}{17}\log_2\frac{13}{17}\right) - \left(\frac{13}{17}\log_2\frac{13}{17}\right)\right) \right]$$

IG prefers attributes with large number of values that split the data into small, pure subsets. Solution IC: I(C;F)

$$I(C;F) = \sum_{i=1}^{m} \sum_{j=1}^{d} P(C = c_i, F = f_j) \log_2 \frac{P(C = c_i, F = f_j)}{P(C = c_i) \cdot P(F = f_j)} \text{ with } m \text{ classes and } d \text{ features = CF/N * LOG(CF*N/(C*F),2)}$$

Association Rule Mining

Unsupervised clustering based on categorical inputs

A transaction t contains itemsets X and Y: X, $Y \subseteq t$; An association rule: $X \rightarrow Y$: X, $Y \subset I$ and $X \cap Y = \emptyset$

Support: SUP in Tif SUP% contain X \cup Y; $SUP = Pr(X \cup Y) = \frac{(X \cup Y).count}{N_T}$

Confidence: CONF in T if CONF% that contain X also contain Y; $CONF = Pr(Y|X) = \frac{(X \cup Y).count}{X.count}$ and $LIFT = \frac{Pr(Y|X)}{Pr(Y)}$

Does not consider the quantity of each item purchased and the price paid.

Apriori algorithm utilizes downward closure all $i \subseteq freq i$ are also frequent and all supersets for infrequent i are also infrequent.

- 1. Find all frequent itemsets (SUP \geq minsup), starting with k = 1 to k = ||I||
 - a. Ck: k-itemsets given Fk-1
 - b. $F_k \subseteq C_k$ where $SUP \ge minsup$
- 2. Use frequent itemsets to generate rules, prune based on confidence.
 - a. Let B = X A, then $A \rightarrow B$ is an association rule iff $CONF(A \rightarrow B) \ge minconf$
 - b. $2^k 2$ rules for each k-itemset

Space of all association rules is O(2^m), but b/c of sparseness, typically O(m)

If minsup too high, rules involving rare items will not be found.

If minsup too low, combinatorial explosion causes O(2^m), therefore MIS allows for differential minsup for each item