HAIMLC701 AI & ML in Healthcare

2.0		AI, ML, Deep Learning and Data Mining Methods for Healthcare	10
	2.1	Knowledge discovery and Data Mining, ML, Multi classifier Decision Fusion, Ensemble	
		Learning, Meta-Learning and other Abstract Methods.	
	2.2	Evolutionary Algorithms, Illustrative Medical Application-Multiagent Infectious Disease	
		Propagation and Outbreak Prediction, Automated Amblyopia Screening System etc.	
	2.3	Computational Intelligence Techniques, Deep Learning, Unsupervised learning,	
		dimensionality reduction algorithms.	

What is Deep learning?

- Subfield of machine learning focuses on learning data representations as successive layers of increasingly meaningful representations
- What are Neural Networks?
- Used to mimic the basic functioning of the human brain and are inspired by how the human brain interprets information
- Used to solve various real-time tasks because of its ability to perform computations quickly and its fast responses

Biological Neuron vs Artificial Neuron

Dendrites –Inputs cell nucleus – Nodes synapse –Weights Axon -Output

 For the above general model of ANN, the net input can be calculated as

$$y_{in} = x_1.w_1 + x_2.w_2 + x_3.w_3 \ldots x_m.w_m$$

i.e., Net input
$$y_{in} = \sum_{i}^{m} x_{i}.w_{i}$$

The output can be calculated by applying the activation function over the net input.

$$Y = F(y_{in})$$

Types of Neural Networks

- ANN- Artificial neural network
 - It is a feed-forward neural network because the inputs are sent in the forward direction
 - It can also contain hidden layers which can make the model even denser
 - They have a fixed length as specified by the programmer
 - It is used for Textual Data or Tabular Data
 - A widely used real-life application is Facial Recognition
 - It is comparatively less powerful than CNN and RNN

Types of Neural Networks

- CNN— Convolutional Neural Networks
 - Mainly used for Image Data in Computer Vision
 - Some of the real-life applications are object detection in autonomous vehicles
 - Contains a combination of convolutional layers and neurons
 - More powerful than both ANN and RNN

Types of Neural Networks

- RNN—Recurrent Neural Networks
 - It is used to process and interpret time series data
 - In this type of model, the output from a processing node is fed back into nodes in the same or previous layers
 - The most known types of RNN are LSTM (Long Short Term Memory) Networks

Learning in ANN can be classified into three categories namely supervised learning, unsupervised learning, and reinforcement learning.

Machine Learning Vs Deep Learning

"Traditional" machine learning:

Deep, "end-to-end" learning:

Anatomy of a deep neural network

- Layers
- Input data and targets
- Loss function
- Optimizer

Layers

- Data processing modules
- Many different kinds exist
 - densely connected
 - convolutional
 - recurrent
 - pooling, flattening, merging, normalization, etc.
- Input: one or more tensors output: one or more tensors
- Usually have a state, encoded as weights
 - learned, initially random
- When combined, form a network or a model

Input data and targets

- The network maps the input data X to predictions Y'
- During training, the predictions Y' are compared to true targets Y using the loss function

Loss function

- The quantity to be minimized (optimized) during training
 - the only thing the network cares about
 - there might also be other metrics you care about
- Common tasks have "standard" loss functions:
 - mean squared error for regression
 - binary cross-entropy for two-class classification
 - categorical cross-entropy for multi-class classification
 - etc.

CNN-Convolutional Neural Network

- Class of ANN most commonly applied to analyze visual imagery
- CNNs use a mathematical operation called convolution in place of general matrix multiplication in at least one of their layers

Consider learning an image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places: They can be compressed! What about training a lot of such "small" detectors and each detector must "move around".

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1	Dot
0	1	0	0	1	0	prod
0	0	1	1	0	0	
1	0	0	0	1	0	
0	1	0	0	1	0	
0	0	1	0	1	0	

product 3 -1

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
1					

3 -3

6 x 6 image

30	3,	22	1	0
02	02	10	3	1
30	1,	2_2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

 1
 -1
 -1

 -1
 1
 -1

 -1
 -1
 1

Filter 1

stride=1

6 x 6 image

3 -1 -3 -1 -3 -1 -3 -3 -3 0 1

-2

-1

-2

3

Color image: RGB 3 channels

The whole CNN

cat dog

Fully Connected Feedforward network

Flattened

Can repeat many times

Max Pooling

Size reduces after Max Pooling

_	1 -1 -1	-1 1 -1	-1 -1 1	Filter 1		-1 -1 -1	1 1 1	-1 -1 -1	Filter 2
3 -3	-1 1		-3 0	-1	-1	-	1	-1 -2	1
-3 3	-3 -2		0 -2	-1	-1 -1		1	-2 -4	3

Why Pooling

 Subsampling pixels will not change the object bird

- We can subsample the pixels to make image smaller
- fewer parameters to characterize the image

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

The whole CNN

A new image

Smaller than the original image

The number of channels is the number of filters

Can repeat many times

The whole CNN

cat dog

Second Example

Image source: cs231n.stanford.edu

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input* format (vector -> 3-D array)

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

CNN in speech recognition

CNN in text classification

