PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS NÚCLEO DE EDUCAÇÃO A DISTÂNCIA

Pós-graduação Lato Sensu em Arquitetura de Software Distribuído

Daivdson Clyton Alves Batista

SISTEMA DE GESTÃO MUNICIPAL

Daivdson Clyton Alves Batista

SISTEMA DE GESTÃO MUNICIPAL

Trabalho de Conclusão de Curso de Especialização em Arquitetura de Software Distribuído como requisito parcial à obtenção do título de especialista.

Orientador(a): Pedro Alves de Oliveira

Belo Horizonte

AGRADECIMENTOS

Primeiramente agradeço a Deus, a Ele confessei minhas dificuldades e fraquezas, sobretudo, oportunidade de retomar meus estudos após a graduação, projeto que sempre teve prioridade em minha vida. A todos os meus amados amigos, pela parceria nos estudos, e aos que torceram por mim mesmo de longe.

Aos meus queridos pais, meus primeiros professores, todo amor e carinho foram de suma importância em minha formação, assim, me tornei o que sou.

A minha amada esposa Joyce, sem ela, impossível seria chegar até aqui. Com imenso amor agradeço por tantas vezes compreenderam a minha ausência em momentos de dedicação aos estudos mesmo estando em casa, minhas sinceras desculpas pelos beijos que não te dei e pela falta de atenção. Por vocês, todas as vezes que pensei em desistir, segui em frente.

O sucesso e orgulho não é meu é de nós todos!!!

RESUMO

Um projeto de implantação de sistemas é uma atividade que requer planejamento, organização

e sistematização na execução para ser realizado com sucesso. Para isso, o Projeto Plurianual de

Gestão Municipal apresentará as etapas necessárias para a realização de um projeto arquitetural

de modo a implantar o Sistema de Gestão Integrada Municipal com a avaliação de requisitos

técnicos juntamente com a documentação e suas etapas, além de parametrizar suas operações

para mitigar riscos. A Prefeitura de Bom Destino para atender as metas traçou o projeto de um

sistema computacional de qualidade, robusto, seguro e com tecnologias de baixo custo. As

configurações devem atender a necessidade da gestão municipal para que assegurem a

integridade dos requisitos de negócio e acompanhar as tecnologias.

Palavras-chave: Arquitetura de Software, Projeto de Software, Requisitos Arquiteturais.

SUMÁRIO

1. Objetivos do trabalho	6
2. Descrição geral da solução	6
2.1. Apresentação do problema	6
2.2. Descrição geral do software	7
3. Definição conceitual da solução	7
3.1. Requisitos Funcionais	7
3.2 Requisitos Não-Funcionais	9
3.3. Restrições Arquiteturais	11
3.4. Mecanismos Arquiteturais	12
4. Modelagem e projeto arquitetural	12
4.1. Modelo de componentes	17
4.2. Modelo de implantação	18
5. Prova de Conceito (POC) / protótipo arquitetural	19
5.1. Implementação e Implantação	19
5.2 Interfaces/ APIs	20
6. Avaliação da Arquitetura	25
6.1. Análise das abordagens arquiteturais	25
6.2. Cenários	26
6.3. Avaliação	27
6.4. Resultado	38
7. Conclusão	39
REFERÊNCIAS	40

1. Objetivos do trabalho

O objetivo desse trabalho é apresentar a descrição do projeto arquitetural da integração com os sistemas legados da Prefeitura Municipal de Bom Destino, a fim serem escaláveis e seguros, contemplando a possibilidade do uso de novas tecnologias, com destaque para o desenvolvimento de soluções multiplataforma/híbridas, com acesso web ou mobile.

Os objetivos específicos são:

- Criar módulo de monitoramento da expansão do município: para controlar expansão da ocupação do munícípio com o uso de geotecnologia.
- Criar módulo de segurança e qualidade de vida: para acompanhar os dados da secretaria de segurança pública e atuar por meio de políticas públicas de inclusão social e de combate à pobreza.
- Criar módulo de gestão eficiente e inteligente: para obter maior eficiência na prestação de serviços, com uma expansão na oferta de vagas em setores como geoprocessamento, área de TI, coordenações técnicas especializadas e outros.
- Criar módulo de geração de relatórios e instrumentos de acompanhamentos: para acompanhar as metas e resultados das ações planejadas, executadas, análise de resultados por período, pontos problemáticos e indicadores.

2. Descrição geral da solução

Esta seção se destina a descrever a solução arquitetural definida para a aplicação do Sistema de Gestão Municipal.

2.1. Apresentação do problema

O projeto é para atender plano de metas do Município de Bom Destino, uma vez que alguns órgãos municipais não utilizam tecnologias de baixo custo ou gratuitas. As diferentes secretarias, autarquias e empresas municipais necessitam de integração para agilizar a tramitação de processos e o atendimento aos cidadãos. Outra situação a ser atendida é a falta de levantamento e atualização de informações geográficas relevantes, permitindo a aplicação de instrumentos por não ter um sistema de geotecnologia.

Além do desprovimento de mapeamento de indicadores socioeconômicos e de qualidade de vida confiáveis e do potencial econômico existente na área do município. Por fim, um grande

problema é não utilizar tecnologias da informação para atender às prioridades de governo, nas áreas de educação, saúde, meio-ambiente e agropecuária.

2.2. Descrição geral do software

Este projeta consiste em determinar o grau de excelência da implantação, ou seja, alcançar os objetivos estabelecidos de forma satisfatória. Para isso, o Sistema de Gestão Municipal deverá respeitar e atender os requisitos de implantação em todos os órgãos municipais, a saber: prefeitura, órgãos da administração direta e indireta, fundações municipais e órgãos conveniados.

Ações para atender, de forma prioritária, às demanda das áreas de: saúde, educação, agropecuária e meio ambiente. Deve apresentar características de aplicações distribuídas, tais como abertura, portabilidade e uso extensivo de recursos de rede. Ficar hospedado em nuvem híbrida, com parte dos componentes sendo mantidos on Premise, sendo a descrição completa da forma de hospedagem apresentada na especificação arquitetural. Ser modular e implantável por módulos, de acordo com a prioridade e necessidade da prefeitura e utilizar arquitetura baseada em micros serviços.

3. Definição conceitual da solução

3.1. Requisitos Funcionais

Módulo Autenticação:

- O sistema deve permitir o cadastro de novos usuários devidamente autorizados.
- O sistema deve permitir que um usuário efetue login (acesso) de acordo com permissão para executar determinadas operações.
- O sistema deve detectar e excluir os usuários não autorizados.
- O sistema deve controlar a identidade do usuário com algum grau de confiança (autenticação), e só então concede determinados privilégios (autorização) de acordo com esta identidade.
- O sistema deve gerenciar as senhas, timeout, recordação de dados de logon, pergunta secreta e atualização de conta.
- O sistema deve verificar a segurança com esquemas de autenticação e de sessão personalizados.
- O sistema deve permitir que um usuário efetue o logoff.

Módulo de Informações Municipais Georreferenciadas:

- O sistema deve controlar o zoneamento de risco climático.
- O sistema deve controlar o zoneamento agroecológico.
- O sistema deve controlar o zoneamento ecológico-econômico.
- O sistema deve controlar o zoneamento ambiental.
- O sistema deve mapear ocupação urbana por meio de levantamento quali-quantitativo.
- O sistema deve definir e avaliar indicadores espacialmente explícitos de sustentabilidade e de produtividade.
- O sistema deve identificar áreas mais próximas aos centros consumidores e aos modais de transporte.
- O sistema deve identificar e delimitar áreas de preservação.
- O sistema deve ter integração com os dados do IBGE.

Módulo de Serviços ao Cidadão:

- O sistema deve ter integração com o Sistema de Tributação Territorial Urbana e Rural (STUR).
- O sistema deve filtrar o serviço pelo tipo de pessoa (física, jurídica ou rural).
- O sistema deve parametrizar o tipo de imposto com o tipo de pessoa.
- O sistema deve ter integração com o Sistema Administrativo-Financeiro de Gestão Municipal (SAFiM).

Módulo Gestão Estratégica de Projetos:

- O sistema deve analisar os dados históricos gerados pelos indicadores para medir ou revelar elementos relacionados a aspectos sociais como: disponibilidade de bens, serviços e conhecimentos, ou captar processos em termos de intensidade e sentido de mudanças.
- O sistema deve analisar os dados históricos gerados pelos indicadores para medir ou revelar elementos relacionados a aspectos sociais como: renda, escolaridade, saúde, organização, gestão, conhecimentos, habilidades, formas de participação, legislação, direitos legais e divulgação.
- O sistema deve ter integração com o Sistema Administrativo-Financeiro de Gestão Municipal (SAFiM).

- O sistema deve ter integração com o Sistema de Administração Escolar Multiserial (SAEM).
- O sistema deve ter integração com o Sistema de Atenção à Saúde do Cidadão (SASCi).

Módulo de Business Intelligence (BI):

- O sistema deve permitir que usuários autenticados gerem relatórios.
- O sistema deve permitir que usuários autenticados realizem processos de análises previsíveis e análises prescritivas online.
- O sistema deve permitir que usuários autenticados realizem mineração de dados.
- O sistema deve permitir que usuários autenticados realizem a mineração de texto.

Módulo de Integração Geral:

- O SGM deve ter integração com os dados do IBGE.
- O SGM deve ter integração com o Sistema Administrativo-Financeiro de Gestão Municipal (SAFiM).
- O SGM deve ter integração com o Sistema de Tributação Territorial Urbana e Rural (STUR).
- O SGM deve ter integração com o Sistema de Administração Escolar Multiserial (SAEM).
- O SGM deve ter integração com o Sistema de Atenção à Saúde do Cidadão (SASCi).
- O SGM deve ter integração com o Sistema de Atenção à Saúde do Cidadão (SASCi).
- O SGM deve ter integração com o Sistema de Segurança Pública.

3.2 Requisitos Não-Funcionais

• Acessibilidade: o SGM deve suportar ambientes web e móveis.

Estímulo		Usuário utilizando o sistema online
Fonte	do	Usuário se cadastrando no sistema
Estímulo		
Ambiente		De produção com carga normal
Artefato		Todos os módulos do sistema
Resposta		O sistema deve permanecer igual, usando computador quanto no dispositivo
		móvel.
Medida	da	O sistema deve manter identidade visual semelhante em ambas plataformas ou
resposta		resoluções.

• Usabilidade: o SGM deve ser de fácil utilização.

Estímulo	Usuário precisando consultar dados do sistema	
Fonte do Estímulo	Usuário acessando o módulo desejado	
Ambiente	De produção com carga normal	
Artefato	Todos os módulos do sistema	
Resposta	A interface apresenta simplicidade e objetividade	
Medida da resposta	O usuário consegue utilizar	

• Desempenho: o SGM deve possuir bom desempenho.

Estímulo	Usuário acessando um módulo para fazer uso de dados armazenados em	
	base de dados.	
Fonte do Estímulo	Usuário utilizando o sistema	
Ambiente	De produção com carga normal	
Artefato	Todos os módulos do sistema	
Resposta	Os dados são informados com agilidade	
Medida da	Requisição da informação	
resposta		

• Manutenibilidade: o SGM deve ser de fácil manutenção.

Estímulo	O usuário encontra uma falha no sistema.		
Fonte do	Usuário identifica uma possível falha em algum dos módulos		
Estímulo			
Ambiente	De produção com carga normal		
Artefato	Todos os módulos do sistema		
Resposta	As modificações no código são realizadas isoladamente no módulo problemático		
Medida da resposta	Apenas a correção de um modulo é enviada a produção, sem a necessidade de interromper o funcionamento dos demais módulos		

• Testabilidade: o SGM deve ser passível de ser testado em todas as suas funcionalidades.

Estímulo	Analista testando o sistema
Fonte do Estímulo	Sobrecarregar o sistema
Ambiente	De teste com carga normal
Artefato	Todos os módulos do sistema
Resposta	O sistema apresentar o teste sem falhas
Medida da resposta	Disponibilidade de release

 Disponibilidade: O SGM deve ser confiável e robusto, se recuperando no caso da ocorrência de erro.

Estímulo	Tentativa do usuário para acessar o sistema	
Fonte do Estímulo	Usuário inserir os dados no sistema	
Ambiente	De produção com carga normal	
Artefato	Todos os módulos do sistema	
Resposta	O sistema apresenta tipo de erro	
Medida da resposta	O sistema se recupera e apresenta a consulta ao usuário	

• Interoperabilidade: o SGM deve se comunicar com sistemas externos via APIs Restful de integração.

Estímulo	Consulta de sistemas externos	
Fonte do Estímulo	O usuário necessitando coletar dados	
Ambiente	De produção com carga normal	
Artefato	Todos os módulos do sistema	
Resposta	O sistema externo retorna os dados consultados	
Medida da resposta	Comunicação com o sistema externo realizado com sucesso	

• Segurança: o SGM deve apresentar segurança no acesso e na manipulação de dados.

Estímulo	Acesso a uma página protegida do sistema sem estar logado	
Fonte do Estímulo	Usuário	
Ambiente	De produção com carga alta	
Artefato	Todos os módulos do sistema	
Resposta	O sistema direciona o usuário para a tela de login	
Medida da resposta	O sistema não deve permitir que o usuário acesse sem estar logado	

• Disponibilidade: o SGM deve estar disponível em horário comercial, cinco dias por semana (de segunda a sexta-feira).

Estímulo		Usuário necessita manipular informação
Fonte	do	Vários acessos simultâneos
Estímulo		
Ambiente		De produção com carga normal
Artefato		Todos os módulos do sistema
Resposta		Usuários que estão utilizando o sistema não interferem os acessos dos que
		utilizam outros sistemas.
Medida	da	Todas as solicitações que estavam sendo realizadas devem ser processadas
resposta		e devolver a resposta para o usuário.

• Interoperabilidade: o SGM deve ser desenvolvido utilizando recursos de integração contínua.

Estímulo	Consultar os sistemas externos para gestão	
Fonte do Estímulo	Sistema consultando dados de um sistema externo	
Ambiente	De produção com carga alta	
Artefato	Todos os módulos do sistema	
Resposta	O sistema externo consultado retorna os dados solicitados	
Medida da resposta	Comunicação com os sistemas externos efetuados com sucesso	

3.3. Restrições Arquiteturais

1- O sistema deve ser hospedado on premise.

- 2- O sistema deve ser desenvolvido em módulos para facilitar a implantação.
- 3- O sistema deve ter sua arquitetura baseada em serviços.
- 4- O sistema deve ter seu build feito através de integração continua.
- 5- O sistema deve ter pipelines de teste em sua integração continua.
- 6- O sistema deve possuir integrações com sistemas externos.

3.4. Mecanismos Arquiteturais

Mecanismo de análise	Mecanismo de design	Mecanismo de
		implementação
Comunicação entre	Contêiner web	Docker
processos	e aplicação	
Front-end	Interface de comunicação com o	VueJs, Bootstrap
	usuário do sistema	
Back-end	Regras de negócio da aplicação	Java, Spring Boot
Integrações com outros	Interfaces utilizando JSON	APIs Rest
módulos e sistemas		
Build	Geração de artefatos para	Maven
	publicação nos servidores de	
	aplicação	
Segurança	Autenticação e autorização	JWT - JSON Web Token
Persistência	Banco de dados relacional	MariaDB
Alta disponibilidade	Balanceamento de carga das	Nginx, Kubernets, Zabbix
	requisições para os serviços	
CI/CD	Ferramenta para pipeline de	Jenkins
	integração e entrega contínua	
Dashboards	Ferramenta para relatório e	Dashboards Power BI
	modelagem de dados	
Documentação	Documentação de APIs	Swagger (OpenAPI)
Teste	Automação de Testes	Selenium WebDriver
APi Gateway	Camada intermediaria entre o	Node.js, Express.js
	frontend e os serviços da aplicação	
Versionamento	Controle de código-fonte	Git

4. Modelagem e projeto arquitetural

Nesta seção são apresentados os diagramas que permitem entender a arquitetura da aplicação, detalhando-a suficientemente para viabilizar sua implementação. A modelagem de usuários é essencial em sistemas que tentam adaptar seu comportamento aos usuários para interagir de forma mais inteligente e individualizada.

Os diagramas que serão apresentados nas figuras a seguir procuram "por meio de uma linguagem simples possibilitar a compreensão do comportamento externo do sistema (em

termos de funcionalidades oferecidas por ele) por qualquer pessoa" (GUEDES, 2018, p. 55) assim, possibilitando ao usuário a compreender o comportamento do sistema, identificando os atores que utilizarão o software e as

funcionalidades que serão disponibilizadas.

Diagrama de Caso de Uso: Módulo Autenticação

Figura 1: Descrição do Caso de Uso Manter Autenticação

Diagrama de Caso de Uso: Módulo de Informações Municipais Georreferenciadas

Figura 2: Descrição do Caso de Uso Manter Informações Municipais Georreferenciadas

Diagrama de Caso de Uso: Módulo de Serviços ao Cidadão

Figura 3: Descrição do Caso de Uso Manter Serviços ao Cidadão

Diagrama de Caso de Uso: Módulo Gestão Estratégica de Projetos

Figura 4: Descrição do Caso de Uso Gestão Estratégica de Projetos

Diagrama de Caso de Uso: Módulo de Business Intelligence (BI)

Figura 5: Descrição do Caso de Uso Manter Business Intelligence (BI)

Diagrama de Caso de Uso: Módulo de Integração Geral

Figura 6: Descrição do Caso de Uso Integração Geral

4.1. Modelo de componentes

Segundo Guedes (2018), o diagrama de componentes é utilizado para visualizar a organização dos componentes do sistema e os relacionamentos de dependência entre eles. Dessa forma, a visão de dentro do sistema fica mais entendível.

Figura 7: Descrição do Diagrama de Componentes

Componentes	Descrição
Frontend	Componente responsável pelo acesso dos dispositivos móveis ou computadores com serviço de internet, que será servido pelo Gateway via rest.
Gateway	Aplicação Node que serve como ponto de entrada para todas as chamadas de API feitas pelo frontend.
Web Api	Serviços SpringBoot utilizados para expor as operações que serão invocadas por diferentes módulos do sistemas.
Data Integration Tool	Componente responsável pela execução agendada de mapas de carga de dados (ETL) para base BI.
Deploy	É o conjunto de componentes utilizados para testar, depurar, controlar a versão e realiza releases

4.2. Modelo de implantação

O diagrama de implantação da aplicação, indica o mapeamento dos elementos de software da arquitetura para os elementos de hardware onde eles executarão. A seguir será apresentado a caracterização completa dos elementos de hardware e a forma de uso do recurso on premisse.

Figura 8: Descrição do Diagrama de Implantação

5. Prova de Conceito (POC) / protótipo arquitetural

5.1. Implementação e Implantação

A prova de conceito deste projeto visa validar os requisitos não funcionais considerados importantes, com o objetivo de verificar e validar a arquitetura definida.

Nessa POC, será validado os seguintes requisitos não funcionais:

• Segurança - O SGM deve apresentar segurança no acesso e na manipulação de dados

Esse RNF foi escolhido devido a preocupação em manter dados seguros na sua comunicação.

Os critérios de aceite são:

- Não permitir que usuários acessem partes do sistema sem estar devidamente autenticado no sistema.
- Ao identificar um usuário não autenticado, o sistema deve redirecionar o usuário para autenticação.

- As APIs do sistema devem verificar o token quando solicitado algum recurso, e retornar status correspondente.
- Usabilidade O SGM deve ser de fácil utilização.

Esse RNF foi escolhido devido à preocupação em manter um sistema com boa usabilidade, e que possamos garantir uma boa experiência ao usuário.

Os critérios de aceite são:

- As telas devem apresentar facilidade de navegação
- O acesso às funcionalidades deve apresentar objetividade e não ser confuso.
- Acessibilidade O SGM deve suportar ambientes web e móveis.

Esse RNF foi escolhido para garantir que atenda todas as exigências da arquitetura em ter um sistema responsivo e que se adapte em celulares e desktops.

Os critérios de aceite são:

- A tela do sistema deve apresentar facilidade de navegação e os objetos da tela devem se adaptar conforme a resolução é alterada, tanto em celulares como desktops.
- O sistema deve se manter com o mesmo padrão de cores e objetos.
- O sistema deve ser compatível com os principais navegadores do mercado como: Internet Explorer, Chrome e Firefox.

5.2 Interfaces/ APIs

Os casos de uso que foram escolhidos para a implementação dessa poc estão discriminados na tabela abaixo:

Caso de uso	Módulo	Requisitos não funcional
Autenticação sistema	Módulo de autenticação	Segurança
Serviço cidadão	Módulo de serviço Cidadão	Segurança / Usabilidade / Acessibilidade
Cadastro de protocolos	Módulo de integração	Segurança / Segurança / Usabilidade Acessibilidade

API	API Rest de Autenticação	
URL	http://localhost:3000/sgm-autenticacao/api/	
Método	POST	
Header	Basic Authorization	
Parâmetro	usermane(Login de usuário) password(senha de usuário	

Figura 9: Exemplo de request da api de autenticação

API	API Rest buscar Protocolos	
URL	http://localhost:8090/sgm/api/protocolo/607273898fc8c2194af88ae5	
Método	GET	
Header	Bearer token	
Parâmetro	Id protocolo (path parâmetro)	Id do protocolo

Figura 10: Exemplo de request da api SGM para consultar protocolo

API	API Rest criar Protocolo	
URL	http://localhost:8090/sgm/api/protocolo/	
Método	POST	
Header	Bearer token	
Parâmetro	responsavel	Responsável pela solicitação
	solicitante	Solicitante do protocolo
	telefone	Telefone do solicitante

Figura 11: Exemplo de request da api SMG para novo protocolo

API	API Rest aprovar Protocolo	
URL	http://localhost:8090/sgm/api/protocolo/60726724946f8d014eab7047/apr ovar	
Método	PATCH	
Header	Bearer token	
Parâmetro	id protocolo (path parâmetro)	Id do protocolo

Figura 12: Exemplo de request da api SMG para aprovar protocolo

API	API Rest consultar serviço cidadão	
URL	http://localhost:8090/sgm/api/cidadao/iptu?inscricao=12345	
Método	GET	
Parâmetro	inscricao	inscrição do imóvel

Figura 13: Exemplo de request da api SMG para consultar ITPU

API	API Rest consultar serviço cidadão	
URL	http://localhost:8090/sgm/api/cidadao/itr?nirt=12345	
Método	GET	
Parâmetro	nirf Número do imóvel da receita federal	

Figura 14: Exemplo de request da api SMG para consultar ITR

6. Avaliação da Arquitetura

6.1. Análise das abordagens arquiteturais

A arquitetura proposta possui diversos componentes sendo eles modulares. Cada componente possui sua tecnologia e característica de implementação própria. Mesmo sendo utilizado vários componentes de uma infraestrutura de microserviços, toda implementação foi realizada de forma que seja o mais independente possível, onde as aplicações interagem usando protocolo de comunicação REST facilitando assim sua comunicação.

6.2. Cenários

Cenário 1: Na tentativa de acesso a uma pagina privada, a aplicação deve redirecionar o usuário para autenticação caso o usuário não esteja devidamente autenticado. O sistema deve garantir um padrão de segurança necessário para permitir que o usuário acesse os recursos do sistema devidamente autenticado.

Cenário 2: Na tentativa de consumir algum recurso disponibilizado pela api que exija autorização, o usuário é obrigado a passar x-access-token valido em seu cabeçalho. A api que recebe a requisição deve fazer devida verificação do token informado e caso seja invalido deve retornar status 401 (unauthorized).

Cenário 3: Ao navegar na tela, o sistema deve apresentar boa usabilidade. A navegação do usuário deve apresentar facilidade em seu uso apresentando objetividade nos itens a serem acessados não apresentando confusão ou dúvida em sua navegação.

Cenário 4: O acesso da aplicação em dispositivos móveis não deve ser afetado em nada. Os componentes da aplicação devem se ajustar ao dispositivo do usuário permitindo o acesso a todos os recursos da aplicação.

Na priorização foi utilizado o método de Árvore de Utilidade reduzida e com prioridades. Foi categorizado de acordo os atributos de qualidade a que estão relacionados e então classificados em função de sua importância e complexidade, considerando a percepção de negócio e arquitetura. As duas variáveis de priorização "Importância" e "Complexidade", apresentadas nas colunas IMP. e COM. respectivamente forma classificadas em alta (A), média (M) e baixa (B) de acordo com as características do requisito.

Categoria	Cenários	IMP.	COM.
Segurança	Cenário 1: Acesso protegido as páginas privadas mediante login.	A	M
	Cenário 2: Acesso protegido aos serviços privados mediante token.	A	M
Usabilidade	Cenário 3: O sistema deve prover boa usabilidade.	M	A
Acessibilidade	Cenário 4: O sistema deve suportar	A	A

6.3. Avaliação

Processo de avaliação dos cenários identificados no item 6.2 são analisados. O objetivo é determinar os riscos, não riscos, pontos de sensibilidade e tradeoffs e as evidências mostrando o requisito de qualidade sendo atendido.

• Cenário 1

Cenario i			
Atributo de qualidade:	Segurança		
Requisito de qualidade:	Acesso protegido as páginas privadas mediante login.		
Preocupação			
Impossibilitar o acesso a pág	ginas privadas do sistema sem autenticação no sistema.		
Cenário 1	Cenário 1		
Ambiente:			
Sistema em operação normal			
Estímulo:			
Usuário tentando acessar uma página privada do sistema sem estar autenticado no sistema.			
Mecanismo:			
Criar um recurso de Filtro que possibilite o gerenciamento de todas as requisições HTTP do servidor, filtrando o endereço que está sendo acessado.			

Medida de resposta:		
O usuário deve ser redirecionado para tela de autenticação.		
Considerações sobre a arquitetura:		
Riscos:	O gerenciamento de sessões e de autenticação apropriados são críticos para segurança. Falhas nessa área frequentemente envolvem falhas ao proteger credenciais e sessões durante o ciclo de vida.	
Pontos de sensibilidade:	Servidor de aplicação operando em modo HTTPS	
Trade-off:	Não existe.	

• Evidências Cenário 1:

Figura 15: Tela de serviços cidadão

Caso o usuário tente acessar uma página privada, a aplicação direciona para tela de login. Ao realizar o login a aplicação gera um token válido para acesso aos recursos da aplicação.

Figura 16: Tela de login

Figura 17: Token gerado login

• Cenário 2

Atributo de qualidade:	Segurança		
Requisito de qualidade:	Acesso protegido aos serviços privados mediante token.		
Preocupação			
O usuário passar um token q	ue seja válido.		
Cenário 2			
Ambiente:			
Sistema em operação normal			
Estímulo:	Estímulo:		
Usuário tentando acessar um recurso através da API rest do sistema sem informar o token x-access-token no cabeçalho da requisição			
Mecanismo:			
Criar um mecanismo de verificação do token para garantir a validade do token informado.			
Medida de resposta:			
O usuário recebe o código http "401 - unauthorized" como resposta.			
Considerações sobre a arquitetura:			

Riscos:	O gerenciamento de autenticação é um ponto crítico para a segurança e crucial para a API do sistema. Ter uma API com autorização por token garante o acesso a sistemas ou usuários que realmente deveriam ter acessos a um determinado recurso.
Pontos de sensibilidade:	Servidor de aplicação operando em modo HTTPS
Trade-off:	Não existe.

• Evidências Cenário 2:

Figura 18: Acessando recurso com token invalido

Figura 19: Acessando recurso com token válido

• Cenário 3

Atributo de qualidade:	Usabilidade	
Requisito de qualidade:	Acesso protegido aos serviços privados mediante token.	
Preocupação		
Fornecer interfaces simples para agilizar a navegação e tornar a experiência do usuário bem rápida e objetiva.		
Cenário 3		
Ambiente:		
Sistema em operação normal		
Estímulo:		

Usuário navegando no site e registrando um protocolo, devendo apresentar objetividade e um registro rápido em no máximo 5 minutos.

Mecanismo:

Criação de telas simples e objetivas. Menus de navegação visíveis durante todo o tempo, possibilitando efetuar uma busca a qualquer momento. Carregamento de todo o conteúdo estático (HTML, CSS e Javascript) do site no momento do início da navegação, fazendo com que as requisições seguintes as api disponibiliza apenas os recursos daquela página onde a aplicação irá renderizar apenas dados da página facilitando e evitando carregar dados desnecessários.

Medida de resposta:

Caso o usuário não realize o registro do protocolo em no máx 5 minutos, a sessão irá expirar e ele será redirecionado para a tela de login

Considerações sobre a arquitetura:

Riscos:	Pode ocorrer algum pico de memória no servidor ou um
Kiseos.	número de usuários muito grande ocasionando sobrecarga no servidor de aplicação, tornando os processamentos para obtenção de dados mais lentos por um período curto, prejudicando a experiência do usuário.
Pontos de sensibilidade:	Balanceamento de carga ativo
Trade-off:	Não existe.

• Evidências Cenário 3:

Figura 20: Página com todos protocolos

Figura 21: Página para criar novo protoloco

Figura 22: Página com protocolo criado destacada

• Cenário 4

Atributo de qualidade:	Acessibilidade	
Requisito de qualidade:	O sistema deve suportar ambientes web responsivos e ambientes móveis.	
Preocupação		
O sistema deve redimensionar seus objetos de acordo com a resolução de página utilizada.		
Cenário 4		
Ambiente:		
Sistema em operação normal		
Estímulo:		

Usuário se autentica no sistema, e registra um protocolo através de um ambiente móvel

Mecanismo:

Criação de páginas utilizando mecanismos de design responsivos e ajustáveis, movimentando os componentes para que caibam em dispositivos diversos.

Medida de resposta:

O sistema deve se adaptar a resoluções de tela dos diversos dispositivos, sem perder funcionalidades.

Considerações sobre a arquitetura:

Riscos:	A experiência de navegação pode ser altamente prejudicada pela qualidade da rede em que se está tentando o acesso. Além disso, resoluções extremamente pequenas de dispositivos muito antigos poderão causar alguns deslocamentos indesejáveis de componentes (porém sem a perda das funcionalidades).
Pontos de sensibilidade:	Não existe.
Trade-off:	Não existe.

• Evidências Cenário 4:

Figura 23: Página ajustada para exibir protocolos

Figura 24: Página ajustada para criação de protocolo

6.4. Resultado

O Sistema de Gestão Municipal da forma que foi elaborado controla as tarefas que envolvem a colaboração de forma aberta, distribuída e dinâmica entre os sistemas integrados. O sucesso do desenvolvimento do projeto e o uso das informações dos demais sistemas é significativo por existir um esforço expressivo, por parte dos envolvidos e das tecnologias utilizadas.

As tecnologias propostas como a linguagem de programação e o banco de dados atingiram todas as solicitações aplicadas ao escopo do projeto. A parte estrutural possibilita

correções posteriores de forma aceitável de melhorias para aperfeiçoar e incrementar o código, além de fácil compreensão e, ainda, com a apresentação de imagens, para facilitar o entendimento.

Segundo Pressman (2016) os sistemas web "são softwares que interpretam comandos gerenciando recursos do computador e intermediando a interface que disponibiliza enorme quantidade de conteúdo e funcionalidades para muitos usuários e com conteúdo interativo.". Dessa forma, o projeto englobou os conhecimentos adquiridos exigidos no curso.

7. Conclusão

Para desenvolver qualquer projeto é necessário compreender bem os itens exigidos. Com isso, o Projeto Plurianual de Gestão Municipal conseguiu de forma multidisciplinar envolver as disciplinas que envolvem números importantes e significativos tanto para análise de dados como para comparações de aplicações na área social e econômica do município.

O Brasil está aumentando o uso das tecnologias e os resultados das análises dos dados estudados apontaram que a discussão sobre serviços públicos mais eficazes torna impactante a vida da população. Os sistemas computacionais podem representar momentos de instabilidades, mas de todas as formas devem ser integrados para facilitar as tomadas de decisões.

A arquitetura do Sistema de Gestão Municipal está estruturada de forma a permitir uma economia significativa quanto o suporte técnico apesar de suas limitações em integração. O paradigma de instalar um aplicativo para aproveitar as mais diversas formas de tecnologia ao nosso benefício é o ápice do projeto.

Os objetivos propostos foram atendidos, uma vez que as comunicações foram realizadas com sucesso sem a necessidade de migrar dados, apenas manipulá-los. Além do custo-benefício que o sistemas de forma distribuída apresenta redução de gastos para a prefeitura municipal de Bom Destino.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6023: informação e documentação: referências: elaboração. Rio de Janeiro, 2002.

BRASIL. Lei nº 9.504, de 30 de setembro de 1997. Estabelece normas para as eleições. [S.I.]: Brasília, 1997. Disponível em http://www.planalto.gov.br/ccivil_03/leis/L9504.htm. Acesso em: 11 de março de 2021.

______. Lei nº 8.666, de 21 de junho de 1993. Regulamenta o art. 37, inciso XXI, da Constituição Federal, institui normas para licitações e contratos da Administração Pública e

dá outras providências. Disponível em http://www.planalto.gov.br/ccivil_03/leis/18666cons.htm. Acesso em: 15 de março de 2021.

_____. Instituto Brasileiro de Geografia e Estatística. Disponível em https://www.ibge.gov.br/. Acesso em: 15 de março de 2021.

GUEDES, G. T. A. UML 2: uma abordagem prática. 3ª ed. São Paulo. Ed. Novatec, 2018.

FERREIRA, A. B. H. Dicio: dicionário online de português. Disponível em: https://www.dicio.com.br. Acesso em 11 de março de 2021.

LAKATOS, Eva Maria; MARCONI, Marina de Andrade. Metodologia Científica. 7ª ed. Atlas: São Paulo, 2017.

MARQUES, A. S. O Ambiente Organizacional de Gerenciamento de Projetos. 2ª ed. Saraiva: São Paulo, 2020.

MINAS GERAIS. Prefeitura de Belo Horizonte. Apresentação da Infraestrutura de Dados Espaciais – IDE. Disponível em < https://bhgeo.pbh.gov.br/apresentacao-da-infraestrutura-de-dados-espaciais-ide>. Acesso em: 15 de março de 2021.

_____. Decreto nº 16.322, de 13 de maio de 2016. Apresentação da Infraestrutura de Dados Espaciais – IDE. Disponível em

http://portal6.pbh.gov.br/dom/iniciaEdicao.do?method=DetalheArtigo&pk=1162704. Acesso em: 15 de março de 2021.

PRESSMAN, R.S. Engenharia de Software. 8^a. Ed. Porto Alegre: Bookman, 2016.

APÊNDICES

URL repositório GitHub: https://github.com/Daivdson/TCC-PUCMINAS-SGM

URL vídeo: https://www.youtube.com/watch?v=rLJUMSZ352A