Tutorial exercise sheet – Vectors

Peter Rowlett

- 1. Which of the following are scalars and which are vectors?
 - (a) the volume of a water tank; (b) a length measured in metres; (c) a length measured in miles; (d) the angular velocity of a flywheel; (e) the relative velocity of two aircraft;
 - (f) the work done by a force; (g) the momentum of an atomic particle.
- 2. A force of 13N acts at an angle of 62° above the x-axis. Resolve this force into two components, one horizontal and one vertical, and represent this as a matrix.
- 3. Find the modulus of each of the following vectors:

(a)
$$\begin{bmatrix} 7 \\ 3 \end{bmatrix}$$
; (b) $\begin{bmatrix} 17 \\ 0 \end{bmatrix}$; (c) $\begin{bmatrix} 0 \\ -3 \end{bmatrix}$; (d) $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$; (e) $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$; (f) $\begin{bmatrix} -2 \\ -3 \end{bmatrix}$.

4. If
$$\mathbf{a} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$, find $\mathbf{a} \cdot \mathbf{b}$.

5. If
$$\mathbf{a} = \begin{bmatrix} 5 \\ 3 \\ 7 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ -2 \\ -7 \end{bmatrix}$, find $\mathbf{a} \cdot \mathbf{b}$.

6. Find the angle between
$$\mathbf{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 5 \\ 11 \end{bmatrix}$.

- 7. Find the component of the vector $\mathbf{a} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ in the direction of the vector $\mathbf{b} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$.
- 8. Evaluate $\mathbf{a} \cdot \mathbf{i}$ where $\mathbf{a} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$. Hence find the angle that \mathbf{a} makes with the x-axis.

9. Find the cross product of
$$\mathbf{a} = \begin{bmatrix} -2 \\ -3 \\ 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 4 \\ 7 \\ 0 \end{bmatrix}$.

10. Find the cross product of
$$\mathbf{a} = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -8 \end{bmatrix}$.

11. For the following vectors, calculate $\mathbf{a} \cdot \mathbf{b}$, $\mathbf{b} \cdot \mathbf{a}$, $\mathbf{a} \cdot \mathbf{a}$, $\mathbf{b} \cdot \mathbf{b}$, $\mathbf{a} \times \mathbf{b}$, and $\mathbf{b} \times \mathbf{a}$.

1

(a)
$$\mathbf{a} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 11 \end{bmatrix}$;

(b)
$$\mathbf{a} = \begin{bmatrix} 2 \\ -3 \\ -4 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} -2 \\ 14 \\ 1 \end{bmatrix}$.