EE247 Lecture 14

- Administrative issues
 - Midterm exam postponed to Thurs. Oct. 28th
 - o You can <u>only</u> bring one 8x11 paper with your own written notes (please do not photocopy)
 - o No books, class or any other kind of handouts/notes, calculators, computers, PDA, cell phones....
 - o Midterm includes material covered to end of lecture 14

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 1

HW2 1st Problem

· 4th order highpass filter SFG

· Almost all have used one or two extra amplifiers for summing e.g. at node V4

EECS 247 Lecture 14:

Data Converters- DAC Design

HW2 1st Problem

· 4th order highpass filter implementation without use of extra summing amplifiers

- The four circled capacitors are used for summing of signals to eliminat need for extra amplifiers
 - → save power dissipation and Si area , no additional noise

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 3

EE247 Lecture 14

- D/A converters
 - D/A converters: Various Architectures (continued)
 - Charge scaling DACs
 - R-2R type DACs
 - · Current based DACs
 - Static performance of D/As
 - · Component matching
 - · Systematic & random errors
 - Practical aspects of current-switched DACs
 - Segmented current-switched DACs
 - DAC dynamic non-idealities
 - DAC design considerations

EECS 247 Lecture 14:

Data Converters- DAC Design

Summary of Last Lecture

- Data Converters
 - Data converter testing (continued)
 - Dynamic tests
 - Spectral testing
 - Relationship between: DNL & SNR, INL & SFDR
 - Effective number of bits (ENOB)
 - -D/A converters: Various Architectures
 - Resistor string DACs
 - · Serial charge redistribution DACs

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 5

Parallel Charge Scaling DAC

• DAC operation based on capacitive voltage division

 \rightarrow Make Cx & Cy function of incoming DAC digital word

EECS 247 Lecture 13:

Data Converters- Testing & DAC Design

Parallel Charge Scaling DAC

- E.g. "Binary weighted"
- B+1 capacitors & B switches (Cs built of unit elements → 2^B units of C)

$$V_{out} = \frac{\sum_{i=0}^{B-1} b_i 2^i C}{2^B C} V_{ref}$$

EECS 247 Lecture 13:

Data Converters- Testing & DAC Design

© 2010 Page 7

Charge Scaling DAC Example: 4Bit DAC- Input Code 1011

$$V_{out} = \frac{2^{0}C + 2^{1}C + 2^{3}C}{2^{4}C}V_{ref} = \frac{11}{16}V_{ref}$$

EECS 247 Lecture 13:

Data Converters- Testing & DAC Design

Charge Scaling DAC

- Sensitive to parasitic capacitor @ output
 - If C_p constant → gain error
 - If C_p voltage dependant → DAC nonlinearity
- Large area of caps for high DAC resolution (10bit DAC ratio 1:512)

EECS 247 Lecture 13:

Data Converters- Testing & DAC Design

© 2010 Page 9

Parasitic Insensitive Charge Scaling DAC

$$V_{out} = -\frac{\sum_{\sum}^{B-1} b_{i} 2^{i} C}{C_{I}} V_{ref} , \quad C_{I} = 2^{B} C \quad \rightarrow V_{out} = -\frac{\sum_{\sum}^{B-1} b_{i} 2^{i}}{2^{B}} V_{rej}$$

- Opamp helps eliminate the parasitic capacitor effect by producing virtual ground at the sensitive node since C_P has zero volts at start & end
 - Issue: opamp offset & speed- also double capacitor area

EECS 247 Lecture 13:

Data Converters- Testing & DAC Design

Charge Scaling DAC Incorporating Offset Compensation

- · During reset phase:
 - Opamp disconnected from capacitor array via switch S3
 - Opamp connected in unity-gain configuration (S1)
 - $-C_I$ Bottom plate connected to ground (S2)
- $-V_{out} \sim -V_{os} \rightarrow V_{CI} = -V_{os}$
- · This effectively compensates for offset during normal phase

EECS 247 Lecture 13:

Data Converters- Testing & DAC Design

© 2010 Page 11

Charge Scaling DAC Utilizing Split Array

- Split array→ reduce the total area of the capacitors required for high resolution DACs
 - E.g. 10bit regular binary array requires 1024 unit Cs while split array (5&5) needs 64+~1 unit Cs
 - Issue: Sensitive to series capacitance parasitic capacitor

EECS 247 Lecture 14:

Data Converters- DAC Design

Charge Scaling DAC

· Advantages:

- Low power dissipation → capacitor array does not dissipate DC power
- Output is sample and held → no need for additional S/H
- INL function of capacitor ratio
- Possible to trim or calibrate for improved INL
- Offset cancellation almost for free

Disadvantages:

- Process needs to include good capacitive material → not compatible with standard digital process
- Requires large capacitor ratios
- If binary-weighted Cs used then not inherently monotonic (more later)

EECS 247 Lecture 14:

Data Converters- DAC Design

Current Based DACs R-2R Ladder Type

- R-2R DAC basics:
 - Simple R network divides both voltage & current by 2

Increase # of bits by replicating circuit

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2009 Page 15

R-2R Ladder DAC

Emitter-follower added to convert to high output impedance current sources

EECS 247 Lecture 14:

Data Converters- DAC Design

R-2R Ladder DAC How Does it Work?

Consider a simple 3bit R-2R DAC:

EECS 247 Lecture 14:

Data Converters- DAC Design

R-2R Ladder DAC How Does it Work?

Simple 3bit DAC-

2- Consolidate next two stages:

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2009 Page 19

R-2R Ladder DAC How Does it Work?

Consider a simple 3bit R-2R DAC:

In most cases need to convert output current to voltage Note that finite output resistance of the current sources causes gain error only

Ref: B. Razavi, "Data Conversion System Design", IEEE Press, 1995, page 84-87

EECS 247 Lecture 14:

Data Converters- DAC Design

R-2R Ladder DAC

Trans-resistance amplifier added to:

- Convert current to voltage
- Generate virtual ground @ current summing node so that output impedance of current sources do not cause error
- Issue: error due to opamp offset

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2009 Page 21

R-2R Ladder DAC Opamp Offset Issue

$$V_{os}^{out} = V_{os}^{in} \left(1 + \frac{R}{R_{Total}} \right)$$

$$If \ R_{Total} = larg \, e, \\ \rightarrow V_{os}^{out} \approx V_{os}^{in}$$

If
$$R_{Total} = not \ large$$

$$\rightarrow V_{os}^{out} = V_{os}^{in} \left(1 + \frac{R}{R_{Total}} \right)$$

Problem:

Since R_{Total} is code dependant $\rightarrow V_{os}^{out}$ would be code dependant

→ Gives rise to INL & DNL

EECS 247 Lecture 14:

Data Converters- DAC Design

R-2R Ladder Summary

- · Advantages:
 - Resistor ratios only x2
 - Does not require precision capacitors
 - Implemented both in BJT & MOS
- Disadvantages:
 - Total device emitter area $\rightarrow A_F^{unit} x \ 2^B$
 - → Not practical for high resolution DACs
 - INL/DNL error due to amplifier offset

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2009 Page 23

Current based DAC Unit Element Current Source DAC

- "Unit elements" or thermometer
- 2B-1 current sources & switches
- · Suited for both MOS and BJT technologies
- · Monotonicity does not depend on element matching and is guaranteed
- Output resistance of current source → gain error
 - Cascode type current sources higher output resistance → less gain error

EECS 247 Lecture 14:

Data Converters- DAC Design

Current Source DAC Unit Element

- Output resistance of current source \rightarrow gain error problem
 - →Use transresistance amplifier
 - Current source output held @ virtual ground
 - Error due to current source output resistance eliminated
 - New issues: offset & speed reduction due to amplifier bandwidth limitations

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 25

Current Source DAC Binary Weighted

- · "Binary weighted"
- B current sources & switches (2^B-1 unit current sources but less # of switches)
- Monotonicity depends on element matching →not guaranteed

EECS 247 Lecture 14:

Data Converters- DAC Design

Current Source DAC DNL/INL Due to Element Mismatch

- Simplified example:
 - 3-bit DAC
 - Assume only two of the current sources mismatched (# 4 & #5)

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 27

Current Source DAC DNL/INL Due to Element Mismatch

$$DNL[m] = \frac{segment[m] - V[LSB]}{V[LSB]}$$

$$DNL[4] = \frac{segment[4] - V[LSB]}{V[LSB]}$$

$$= \frac{(I - \Delta I)R - IR}{IR}$$

$$DNL[4] = -\Delta I/I[LSB]$$

$$DNL[5] = \frac{(I + \Delta I)R - IR}{IR}$$

$$DNL[5] = \Delta I/I[LSB]$$

EECS 247 Lecture 14:

Data Converters- DAC Design

Static DAC Errors -INL / DNL

Static DAC errors mainly due to component mismatch

- Systematic errors
 - Contact resistance
 - Edge effects in capacitor arrays
 - · Process gradients
 - Finite current source output resistance
- Random variations
 - · Lithography etc...
 - Often Gaussian distribution (central limit theorem)

*Ref: C. Conroy et al, "Statistical Design Techniques for D/A Converters," JSSC Aug. 1989, pp. 1118-28.

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 29

Component Mismatch Probability Distribution Function

- Component parameters → Random variables
- · Each component is the product of many fabrication steps
- · Most fabrication steps includes random variations
- →Overall component variations product of several random variables
- → Assuming each of these variables have a uniform pdf distribution:
- → Joint pdf of a random variable affected by two uniformly distributed variables → convolution of the two uniform pdfs......

EECS 247 Lecture 14:

Data Converters- DAC Design

Gaussian Distribution

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where: μ is the expected value and standard deviation: $\sigma = \sqrt{E(X^2) - \mu^2}$ $\sigma^2 \rightarrow variance$

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 31

Yield

In most cases we are interested in finding the percentage of components (e.g. R) falling within certain bounds around a mean value $\boldsymbol{\mu}$

Integral has no analytical solution → found by numerical methods

EECS 247 Lecture 14:

Data Converters- DAC Design

Yield

X/σ	P(-X ≤ x ≤ X) [%]	X/σ	$P(-X \le x \le X) [\%]$
0.2000	15.8519	2.2000	97.2193
0.4000	31.0843	2.4000	98.3605
0.6000	45.1494	2.6000	99.0678
0.8000	57.6289	2.8000	99.4890
1.0000	68.2689	3.0000	99.7300
1.2000	76.9861	3.2000	99.8626
1.4000	83.8487	3.4000	99.9326
1.6000	89.0401	3.6000	99.9682
1.8000	92.8139	3.8000	99.9855
2.0000	95.4500	4.0000	99.9937

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 33

Example

- Measurements show that the offset voltage of a batch of operational amplifiers follows a Gaussian distribution with $\sigma = 2mV$ and $\mu = 0$.
- Find the fraction of opamps with |V_{os}| < 6mV:
 - $X/\sigma = 3 \rightarrow 99.73 \%$ yield
- Fraction of opamps with $|V_{os}| < 400 \mu V$:
 - $X/\sigma = 0.2 \rightarrow 15.85 \% \text{ yield}$

EECS 247 Lecture 14:

Data Converters- DAC Design

Component Mismatch

Example: Resistors layouted out side-by-side

After fabrication large # of devices measured & graphed → typically if sample size large shape is Gaussian

E.g. Let us assume in this example 1000 Rs measured

& 68.5% fall within +-0.4OHM or +-0.4% of average

 \rightarrow 1 σ for resistors \rightarrow 0.4%

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 35

Component Mismatch

Example: Two resistors layouted out side-by-side

$$R = \frac{R_I + R_2}{2}$$

$$dR = R_I - R_2$$

 $\sigma_{\frac{dR}{R}}^2 \propto \frac{1}{Area}$

For typical technologies & geometries 1σ for resistors $\Rightarrow 0.02 \ to \ 5\%$

In the case of resistors σ is a function of area

EECS 247 Lecture 14:

Data Converters- DAC Design

DNL Unit Element DAC

E.g. Resistor string DAC:

Assumption: No systematic error- only random error

$$\Delta = R_{median} I_{ref} \quad where \quad R_{median} = \frac{\sum_{o}^{2^{n}-I} R_{i}}{2^{B}}$$

$$\Delta_{i} = R_{i} I_{ref}$$

$$DNL_i = \frac{\Delta_i - \Delta_{median}}{\Delta_{median}}$$

$$= \frac{R_i - R_{median}}{R_{median}} = \frac{dR}{R_{median}} \approx \frac{dR}{R_i}$$

$$\sigma_{DNL} = \sigma_{\underline{dR_i} \over R_i}$$

To first order → DNL of unit element DAC is independent of resolution! Note: Similar results for other unit-element based DACs

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 37

DNL Unit Element DAC

E.g. Resistor string DAC:

$$\sigma_{DNL} = \sigma_{\underline{dR_i}}$$

Example:

If $\sigma_{dR/R} = 0.4\%$, what DNL spec goes into the unit-element DAC datasheet so that 99.9% of all converters meet the spec?

EECS 247 Lecture 14:

Data Converters- DAC Design

Yield

Χ/σ	P(-X ≤ x ≤ X) [%]	X/σ	$P(-X \le x \le X)$ [%]
0.2000	15.8519	2.2000	97.2193
0.4000	31.0843	2.4000	98.3605
0.6000	45.1494	2.6000	99.0678
0.8000	57.6289	2.8000	99.4890
1.0000	68.2689	3.0000	99.7300
1.2000	76.9861	3.2000	99.8626
1.4000	83.8487	3.4000	99.9326
1.6000	89.0401	3.6000	99.9682
1.8000	92.8139	3.8000	99.9855
2.0000	95.4500	4.0000	99.9937

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 39

DNL Unit Element DAC

E.g. Resistor string DAC:

$$\sigma_{DNL} = \sigma_{\underline{dR_i}}$$

Example:

If $\sigma_{dR/R} = 0.4\%$, what DNL spec goes into the datasheet so that 99.9% of all converters meet the spec?

Answer:

From table or Matlab: for 99.9%

 \rightarrow X/ σ = 3.3

 $\sigma_{\rm DNL} = \sigma_{\it dR/R} = 0.4\%$ 3.3 $\sigma_{\rm DNL} = 3.3 \text{x} 0.4\% = 1.3\%$

→DNL= +/- 0.013 LSB

EECS 247 Lecture 14:

Data Converters- DAC Design

DAC INL Analysis

	Ideal	Variance
A=n+E	n	$n.\sigma_{arepsilon}^{2}$
B=N-n-E	N-n	$(N-n).\sigma_{\varepsilon}^2$

$$E = A - n \quad r = n/N \quad N = A + B$$

$$= A - r(A + B)$$

$$= (1 - r). A - rB$$

$$\Rightarrow Variance \ of E:$$

$$\sigma_{E}^{2} = (1 - r)^{2}.\sigma_{A}^{2} + r^{2}.\sigma_{B}^{2}$$

$$= N.r.(1 - r).\sigma_{\varepsilon}^{2} = n.(1 - n/N).\sigma_{\varepsilon}^{2}$$

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 41

DAC INL

$$\sigma_{E}^{2} = n \left(1 - \frac{n}{N} \right) \times \sigma_{\varepsilon}^{2}$$

$$To find max. variance: \frac{d\sigma_{E}^{2}}{dn} = 0$$

$$\rightarrow n = N/2 \rightarrow \sigma_{E}^{2} = \frac{N}{4} \times \sigma_{\varepsilon}^{2}$$

• Error is maximum at mid-scale (N/2):

$$\sigma_{INL}^{max} = \frac{1}{2} \sqrt{2^B - 1} \ \sigma_{\varepsilon}$$

$$with \ N = 2^B - 1$$

- INL depends on both DAC resolution & element matching $\sigma_{\!\scriptscriptstyle \mathcal{E}}$
- While $\sigma_{\!DNL}=\sigma_{\!\scriptscriptstyle E}$ is to first order independent of DAC resolution and is only a function of element matching

Ref: Kuboki et al, TCAS, 6/1982

EECS 247 Lecture 14:

Data Converters- DAC Design

Untrimmed DAC INL

Example:

Assume the following requirement for a DAC:

$$\sigma_{INL} \cong \frac{1}{2} \sqrt{2^B - 1} \ \sigma_{\varepsilon}$$

 $\sigma_{INL} = 0.1 LSB$

Find maximum resolution for:

$$B \cong 2 + 2\log_2\left[\frac{\sigma_{INL}}{\sigma_{\varepsilon}}\right]$$

$$\sigma_{\varepsilon} = 1\% \rightarrow B_{max} = 8.6 bits$$

$$\sigma_{\varepsilon} = 0.5\% \rightarrow B_{max} = 10.6 bits$$

$$\sigma_{\varepsilon} = 0.2\% \rightarrow B_{max} = 13.3 bits$$

$$\sigma_{\varepsilon} = 0.1\% \rightarrow B_{max} = 15.3 bits$$

Note: In most cases, a number of systematic errors prevents achievement of above results

EECS 247 Lecture 14:

Data Converters- DAC Design

INL & DNL for Binary Weighted DAC

- INL same as for unit element DAC
- DNL depends on transition
 –Example:

0 to 1
$$\rightarrow \sigma_{DNL}^2 = \sigma_{(dUI)}^2$$

1 to 2 $\rightarrow \sigma_{DNL}^2 = 3\sigma_{(dUI)}^2$

• Consider MSB transition: 0111 ... → 1000 ...

EECS 247 Lecture 14:

Data Converters- DAC Design

Binary Weighted DAC DNL

Worst-case transition occurs at mid-scale:

$$\begin{split} \sigma_{DNL}^2 = &\underbrace{\left(2^{B-I} - I\right)\sigma_{\varepsilon}^2}_{OIII...} + \underbrace{\left(2^{B-I}\right)\sigma_{\varepsilon}^2}_{I000...} \\ &\cong &2^B\sigma_{\varepsilon}^2 \end{split}$$

$$\sigma_{DNL_{max}} = 2^{B/2} \sigma_{\varepsilon}$$

$$\sigma_{INL_{max}} = \frac{1}{2} \sqrt{2^B - 1} \ \sigma_{\varepsilon} = \frac{1}{2} \sigma_{DNL_{max}}$$

- Example:
 - $\overline{B} = 12$, $\sigma_{\epsilon} = 1\%$
 - $\rightarrow \sigma_{\rm DNL} = 0.64 \, \rm LSB$
 - $\rightarrow \sigma_{\text{INL}} = 0.32 \text{ LSB}$

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 47

MOS Current Source Variations Due to Device Matching Effects

$$\begin{split} I_{d} &= \frac{I_{d1} + I_{d2}}{2} \\ &\frac{dI_{d}}{I_{d}} = \frac{I_{d1} - I_{d2}}{I_{d}} \\ &\frac{dI_{d}}{I_{d}} = \frac{d\frac{W}{L}}{W/L} + \frac{2 \times dV_{th}}{V_{GS} - V_{th}} \end{split}$$

- · Current matching depends on:
 - Device W/L ratio matching
 - → Larger device area less mismatch effect
 - Current mismatch due to threshold voltage variations:
 - → Larger gate-overdrive less threshold voltage mismatch effect

EECS 247 Lecture 14:

Data Converters- DAC Design

Current-Switched DACs in CMOS

$$\frac{dI_d}{I_d} = \frac{d\frac{W_L}{V_L}}{\frac{W_L}{V_L}} + \frac{2dV_{th}}{V_{GS} - V_{th}}$$

· Advantages:

Example: 8bit Binary Weighted

Can be very fast

Reasonable area for resolution < 9-10bits

· Disadvantages:

Accuracy depends on device $W/L \& V_{th}$ matching

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 49

Unit Element versus Binary Weighted DAC

Unit Element DAC

Binary Weighted DAC

$$\sigma_{DNL} = \sigma_{\varepsilon}$$

$$\sigma_{DNL} \cong 2^{B/2} \sigma_{\varepsilon} = 2\sigma_{INL}$$

$$\sigma_{INL} \cong 2^{B/2} \sigma_{\varepsilon}$$

$$\sigma_{INL} \cong 2^{B/2} - 1 \sigma_{\varepsilon}$$

Number of switched elements:

$$S = 2^B$$

$$S = B$$

Key point: Significant difference in performance and complexity!

EECS 247 Lecture 14:

Data Converters- DAC Design

Unit Element versus Binary Weighted DAC Example: B=10

Unit Element DAC

Binary Weighted DAC

$$\sigma_{DNL} = \sigma_{\varepsilon}$$

$$\sigma_{DNL} \cong 2^{\frac{B}{2}} \sigma_{\varepsilon} = 32 \sigma_{\varepsilon}$$

$$\sigma_{INL} \cong 2^{\frac{B}{2}-1}\sigma_{\varepsilon} = 16\sigma_{\varepsilon}$$

$$\sigma_{INL} \cong 2^{\frac{B}{2}-1} \sigma_{\varepsilon} = 16 \sigma_{\varepsilon}$$

Number of switched elements:

$$S = 2^B = 1024$$

$$S = B = 10$$

Significant difference in performance and complexity!

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 51

"Another" Random Run ...

Now (by chance) worst DNL is mid-scale.

Close to statistical result!

EECS 247 Lecture 14:

Data Converters- DAC Design

DAC INL/DNL Summary

- DAC choice of architecture has significant impact on DNL
- INL is independent of DAC architecture and requires element matching commensurate with overall DAC precision
- Results assume uncorrelated random element variations
- Systematic errors and correlations are usually also important and may affect final DAC performance

Ref. Kuboki, S.; Kato, K.; Miyakawa, N.; Matsubara, K. Nonlinearity analysis of resistor string A/D converters. IEEE Transactions on Circuits and Systems, vol.CAS-29, (no.6), June 1982. p.383-9.

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 55

Segmented DAC Combination of Unit-Element & Binary-Weighted

· Objective:

Compromise between unit-element and binary-weighted DAC

Approach:
 _{B1} MSB bits → unit elements
 _{B2} LSB bits → binary weighted

 $B_{Total} = B_1 + B_2$

- · INL: unaffected same as either architecture
- DNL: Worst case occurs when LSB DAC turns off and one more MSB DAC element turns on → Same as binary weighted DAC with (B₂+1) # of bits
- Number of switched elements: (2^{B1}-1) + B₂

EECS 247 Lecture 14:

Data Converters- DAC Design

Comparison

Example:

$$B=12, \ B_1=5, \ B_2=7$$
 $\sigma_{DNL}\cong 2^{\frac{N_2-N_2}{2}}\sigma_{\mathcal{E}}$ $\sigma_{INL}\cong 2^{\frac{N_2-N_2}{2}}\sigma_{\mathcal{E}}$

$$\sigma_{DNL} \cong 2^{\frac{(B_2+I)}{2}} \sigma_{\varepsilon} = 2\sigma_{INL}$$

$$\sigma_{INL} \cong 2^{\frac{B}{2}-1} \sigma_{\epsilon}$$

$$S = 2^{BI} - I + B_2$$

Assuming: $\sigma_{\epsilon} = 1\%$

DAC Archite	ecture (B1+B2)	σ _{INL[LSB]}	$\sigma_{DNL[LSB]}$	# of switched elements
Unit element	(12+0)	0.32	0.01	4095
Segmented	(6+6)	0.32	0.113	63+6=69
Segmented	(5+7)	0.32	0.16	31+7=38
Binary weighte	ed(0+12)	0.32	0.64	12

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 57

Practical Aspects Current-Switched DACs

- Unit element DACs ensure monotonicity by turning on equal-weighted current sources in succession
- · Typically current switching performed by differential pairs
- · For each diff pair, only one of the devices are on→ switch device mismatch not an issue
- · Issue: While binary weighted DAC can use the incoming binary digital word directly, unit element requires a decoder

 \rightarrow N to (2^N-1) decoder

Thermometer d7,d6,d5,d4,d3,d2,d1 DIGITAL INPUT **Binary** b2,b1,b0 0000000 000 001 0000001 010 0000011

011 0000111 100 0001111 101 0011111 110 0111111 1111111

EECS 247 Lecture 14:

Data Converters- DAC Design

Segmented Current-Switched DAC Example: 8bit→4MSB+4LSB

- 4-bit MSB Unit element DAC + 4-bit binary weighted DAC
- Note: 4-bit MSB DAC requires extra 4-to-16 bit decoder
- Digital code for both DACs stored in a register

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 59

Segmented Current-Switched DAC Cont'd

- 4-bit MSB Unit element DAC + 4bit binary weighted DAC
- Note: 4-bit MSB DAC requires extra 4-to-16 bit decoder
- Digital code for both DACs stored in a register

EECS 247 Lecture 14:

Data Converters- DAC Design

Segmented Current-Switched DAC Cont'd

- MSB Decoder
 - →Domino logic
 - →Example: D4,5,6,7=1 OUT=1

- Register
 - → Latched NAND gate:
 - → CTRL=1 OUT=INB

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 61

Segmented Current-Switched DAC Reference Current Considerations

- I_{ref} is referenced to V_{DD}
 - → Problem: Reference current varies with supply voltage

EECS 247 Lecture 14:

Data Converters- DAC Design

Segmented Current-Switched DAC Reference Current Considerations

• I_{ref} is referenced to $V_{ss} \rightarrow GND$

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 63

DAC Dynamic Non-Idealities

- Finite settling time
 - Linear settling issues: (e.g. RC time constants)
 - Slew limited settling
- Spurious signal coupling
 - Coupling of clock/control signals to the output via switches
- Timing error related glitches
 - Control signal timing skew

EECS 247 Lecture 14:

Data Converters- DAC Design

Dynamic DAC Error: Timing Glitch

- Consider binary weighted DAC transition 011 → 100
- DAC output depends on timing
- Plot shows situation where the control signals for LSB & MSB
 - LSB/MSBs on time
 - LSB early, MSB late
 - LSB late, MSB early

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 65

Glitch Energy

- Glitch energy (worst case) proportional to: $dt \times 2^{B-1}$
- $dt \rightarrow$ error in timing & 2^{B-1} associated with half of the switches changing state
- LSB energy proportional to: T=1/f_s
- Need $dt \times 2^{B-1} \ll T$ or $dt \ll 2^{-B+1} T$
- · Examples:

f_s [MHz]	В	dt [ps]
1	12	<< 488
20	16	<< 1.5
1000	12	<< 0.5

→ Timing accuracy for data converters much more critical compared to digital circuitry

EECS 247 Lecture 14:

Data Converters- DAC Design

DAC Dynamic Errors

- To suppress effect of non-idealities:
 - Retiming of current source control signals
 - Each current source has its own clocked latch incorporated in the current cell
 - Minimization of latch clock skew by careful layout ensuring simultaneous change of bits
 - To minimize control and clock feed through to the output via G-D & G-S of the switches
 - · Use of low-swing digital circuitry

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 67

DAC Implementation Examples

- Untrimmed segmented
 - T. Miki et al, "An 80-MHz 8-bit CMOS D/A Converter," JSSC December 1986, pp. 983
 - A. Van den Bosch et al, "A 1-GSample/s Nyquist Current-Steering CMOS D/A Converter," JSSC March 2001, pp. 315
- Current copiers:
 - D. W. J. Groeneveld et al, "A Self-Calibration Technique for Monolithic High-Resolution D/A Converters," JSSC December 1989, pp. 1517
- Dynamic element matching:
 - R. J. van de Plassche, "Dynamic Element Matching for High-Accuracy Monolithic D/A Converters," JSSC December 1976, pp. 795

EECS 247 Lecture 14:

Data Converters- DAC Design

An 80-MHz 8-bit CMOS D/A Converter

TAKAHIRO MIKI, YASUYUKI NAKAMURA, MASAO NAKAYA, SOTOJU ASAI, YOICHI AKASAKA, AND YASUTAKA HORIBA

11g. 1. Duble dienticetate of the 15

EECS 247 Lecture 14:

Data Converters- DAC Design

Current-Switched DACs in CMOS

Assumptions:

RxI small compared to transistor gate-overdrive

To simplify analysis: Initially, all device currents assumed to be equal to I

$$V_{GS_{M2}} = V_{GS_{MI}} - 4RI$$

$$V_{GS_{M3}} = V_{GS_{MI}} - 7RI$$

$$V_{GS_{M4}} = V_{GS_{M1}} - 9RI$$

$$V_{GS_{MS}} = V_{GS_{MI}} - 10RI$$

$$I_2 = k \left(V_{GS_{M2}} - V_{th} \right)^2$$

$$I_2 = I_I \left(1 - \frac{4RI}{V_{GS_{MI}} - V_{th}} \right)^2$$

Example: 5 unit element current sources

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 71

Current-Switched DACs in CMOS

$$I_{2} = k \left(V_{GS_{M2}} - V_{th} \right)^{2} = I_{I} \left(1 - \frac{4RI}{V_{GS_{M1}} - V_{th}} \right)^{2}$$

$$g_{m_{M1}} = \frac{2I_{I}}{V_{GS_{M1}} - V_{th}}$$

$$\rightarrow I_{2} = I_{I} \left(1 - \frac{4Rg_{m_{M1}}}{2} \right)^{2} \approx I_{I} \left(1 - 4Rg_{m_{M1}} \right)$$

$$\Rightarrow I_{3} = I_{I} \left(1 - \frac{7Rg_{m_{M1}}}{2} \right)^{2} \approx I_{I} \left(1 - 7Rg_{m_{M1}} \right)$$

$$= \frac{Rx^{4}I}{Rx^{3}I} = \frac{Rx^{2}I}{Rx^{2}I}$$

 $\rightarrow I_5 = I_1 \left(1 - \frac{10Rg_{m_{MI}}}{1 - 10Rg_{m_{MI}}} \right)^2 \approx I_1 \left(1 - 10Rg_{m_{MI}} \right)$

Example: 5 unit element current sources

 \rightarrow Desirable to have g_m small

EECS 247 Lecture 14:

Data Converters- DAC Design

Current-Switched DACs in CMOS Example: INL of 3-Bit unit element DAC

Example: 7 unit element current source DAC- assume $g_mR=1/100$

- If switching of current sources arranged sequentially (1-2-3-4-5-6-7) \rightarrow INL= +0.25LSB
- If switching of current sources symmetrical (4-3-5-2-6-1-7) \rightarrow INL = +0.09, -0.058LSB \rightarrow INL reduced by a factor of 2.6

EECS 247 Lecture 14:

Data Converters- DAC Design

© 2010 Page 73

Current-Switched DACs in CMOS

Example: 7 unit element current source DAC- assume $g_mR=1/100$

- If switching of current sources arranged sequentially (1-2-3-4-5-6-7) $\rightarrow DNL_{max} = + 0.15LSB$
- If switching of current sources symmetrical (4-3-5-2-6-1-7)

$$\rightarrow DNL_{max} = +0.15LSB \rightarrow DNL_{max}$$
 unchanged

EECS 247 Lecture 14:

Data Converters- DAC Design

