Problem 1.

1. (40 points)

An object travels along a path shaped as an $L \times h$ rectangle that is centered to y-axis and the bottom side is on the x-axis, as shown in the figure. The force applied on the object is given as follows:

$$\mathbf{F}(x,y) = by\,\mathbf{i} + cx^2\,\mathbf{j}$$

where the height of the triangle is h = 3.72 m, the base, L =6.21 m, and the constants are $b = 17.4 \frac{\text{N}}{\text{m}}$ and $c = 19.6 \frac{\text{N}}{\text{m}^2}$.

Part 1:

For an applied constant force

$$\mathbf{F} = F_x \, \mathbf{i} + F_y \, \mathbf{j}$$

and a displacement vector

$$\Delta \mathbf{r} = \Delta x \, \mathbf{i} + \Delta y \, \mathbf{j}$$

Write the expression of the work done, using Δx as $\mathbf{D}\mathbf{x}$, Δy as **Dy**, F_x as **Fx** and F_y as **Fy** in the expression

$$W =$$
 (formula)

Part 2:

Write the expression of the work done on path AB in terms of *b*, *c*, *L* and *h*.

$$W_{AB} =$$
 (formula)

Calculate the total work

$$W_{AB} =$$
 (numeric result with units)

Write the expression of the work done on path BC in terms of b, *c*, *L* and *h*.

$$W_{BC} =$$
 (formula)

Calculate the total work

$$W_{BC} =$$
 (numeric result with units)

Part 4:

Write the expression of the work done on path CD in terms of *b*, *c*, *L* and *h*.

$$W_{CD} =$$
 (formula)

Calculate the work

$$W_{CD} =$$
 (numeric result with units)

Part 5:

Write the expression of the work done on path DA in terms of *b*, *c*, *L* and *h*.

$$W_{DA} =$$
 (formula)

Calculate the work

$$W_{DA} =$$
 (numeric result with units)

Part 6:

Write the expression of the total work done on the complete path AB+BC+CD+DA in terms of b, c, L and h.

$$W_{total} =$$
 (formula)

Calculate the total work using the values given in the question:

$$W_{total} =$$
 (numeric result with units)

Correct Answers:

- (Fx*i+Fy*j).(Dx*i+Dy*j)
- (b*0*i+c*x^2*j).(L*i+0*j)
- [b*0*i+c*(L/2)^2*j].(0+h*j)
- $(b*h*i+c*x^2*j).(-L*i+0*j)$
- $[b*y*i+c*(-L/2)^2*j].[0+(-h)*j]$
- $(b*0*i+c*x^2*j) \cdot (L*i+0*j) + [b*0*i+c*(L/2)^2*j] \cdot (0+h*j) + (b*h*j)$

Problem 2. 2. (40 points)

In astronomy and astrophysics, the masses are measured by solar mass unit, M_{\odot} or just "sun", which is the mass of our sun. The distances are measured by light-year or ly, that is, the distance that light travels in one year.

Our home galaxy, the Milkyway galaxy, which is as massive as $M_1 = 1.16 \times 10^{12}$ sun, is roaming with a velocity of $\vec{v}_1 =$ $(50.4 \frac{\text{km}}{\text{s}})\hat{\mathbf{i}}$. On the other hand, our nearest galactic neighbor, the Andromeda galaxy which is $M_2 = 1.52 \times 10^{12}$ sun has a velocity of $\vec{v}_2 = \left(-56 \, \frac{\text{km}}{\text{s}}\right) \hat{\mathbf{i}}$. Both Milkyway and Andromeda are on the same collision axis.

Now, the two galaxies are on a collision course into each other, and after approximately 3 billion years, they will collide and merge to become a single galaxy, called "Milkdromeda". The resulting galaxy will be spherical and it is expected to have a velocity of v'.

So, write down the formula for the moment of inertia of each galaxy, in terms of radius and mass. Then calculate the numeric value with units.

- You don't need to convert the units into kg, meters and seconds, but the units should be consistent.
- Write the exponent as, for example, **1.23 10^(-38)** or **1.23E-38** for 1.23×10^{-38} .
- Write units without paranthesis and use only one "f". For example $\mathbf{m}^3 / \mathbf{kg} \, \mathbf{s}^2$ means $\mathbf{m}^3 / (\mathbf{kg} \cdot \mathbf{s}^2)$

Choose the name and then write down the formula of the conservation law related to the problem:

The name of the conservation law:

- < Select >
- Law of Inertia
- Murphy's Law
- Second Law of Thermodynamics
- Conservation of Angular Momentum
- Newton's Second Law of Motion
- Heisenberg Uncertainty Principle
- Conservation of Linear Momentum
- Gauss Law
- Conservation of Energy

Define the variable in the conservation law:

- < Select >
- momentum, p
- energy, E
- time, t
- angular momentum, L
- moment of inertia, I
- magnetic field, B
- lagrangian, L
- position, r

Write the formula of that variable for Milkyway galaxy:
_____(formula)

Calculate the numeric value with units:

_____ (numeric result with

Correct Answers:

units)

- Conservation of Linear Momentum
- momentum, p
- M*v
- M1*v1
- 5.85E+13 sun*km/s
- M2*v2
- \bullet -8.51E+13 sun*km/s
- (M1+M2) *v
- M1*v1+M2*v2 = (M1+M2)*v
- 38.5 km/s

Problem 3. 3. (40 points)

In astronomy and astrophysics, the masses are measured by **solar mass unit**, M_{\odot} or just "sun", which is the mass of our sun. The distances are measured by **light-year** or **ly**, that is, the distance that light travels in one year.

Our home galaxy, the Milkyway galaxy, which is as massive as $M_1=1.17\times 10^{12}$ sun, is rotating with an angular velocity of $\vec{\omega}_1=\left(7840\,\frac{\text{rad}}{\text{s}}\right)\hat{\bf i}$. On the other hand, our nearest galactic neighbor, the Andromeda galaxy which is $M_2=1.66\times 10^{12}$ sun is rotating with an angular velocity of $\vec{\omega}_2=\left(9260\,\frac{\text{rad}}{\text{s}}\right)\hat{\bf j}$. Both Milkyway and Andromeda are spiral **disk galaxies**.

Now, the two galaxies are on a collision course into each other, and after approximately 3 billion years, they will collide and merge to become a single galaxy, called "Milkdromeda". The resulting galaxy will be spherical and it is expecteed to rotate at an angular velocity of ω' .

One can make an idealization such that the colliding galaxies are homogeneous disks with average radii $R_1 = 44000$ ly and $R_2 = 75500$ ly, repectively. Similarly, Mikdromeda can be thought of a homogeneous sphere with an average radius, R = 88900 ly.

So, write down the formula for the moment of inertia of each galaxy, in terms of radius and mass. Then calculate the numeric value with units.

- You don't need to convert the units into kg, meters and seconds, but the units should be consistent.
- Write the exponent as, for example, **1.23 10^(-38)** or **1.23E-38** for 1.23×10^{-38} .
- Write units without paranthesis and use only one "/". For example $\mathbf{m}^3 / \mathbf{kg} \, \mathbf{s}^2$ means $\mathbf{m}^3 / (\mathbf{kg} \cdot \mathbf{s}^2)$

Formula of the moment of inerti	a for Milkyway galaxy:
$I_1 =$	_ (formula)
Calculate the numeric value with $I_1 =$	

Formula of the moment of inertia for Andromeda galaxy:

 $I_2 =$ (formula)

Calculate the numeric value with units:

 $I_2 =$ (numeric result with units)

Formula of the moment of inertia for Milkdromeda galaxy: I' = (formula)

Calculate the numeric value with units:

I' = (numeric result with units)

Choose the name and then write down the formula of the conservation law related to the problem:

The name of the conservation law:

- < Select >
- Law of Inertia
- Murphy's Law
- Second Law of Thermodynamics
- Conservation of Angular Momentum
- Newton's Second Law of Motion
- Heisenberg Uncertainty Principle
- Conservation of Linear Momentum
- Gauss Law
- Conservation of Energy

Define the variable in the conservation law:

- < Select >
- momentum, p
- energy, E
- time, t
- angular momentum, L
- moment of inertia, I
- magnetic field, B
- lagrangian, L
- position, r

≡____(formula)

The equation of the law in terms of the variables in the question:

(equation with a single '=' in terms of M1, M2, R1, R2, R, omega1, omega2, omega)

Calculate the **angular speed** of Milkdromeda galaxy: $\omega' =$ _____ (numeric result with units)

Correct Answers:

- 0.5*M1*R1^2
- 1.13E+21 sun*ly^2
- 0.5*M2*R2^2
- 4.73E+21 sun*ly^2
- 0.5* (M1+M2) *R^2
- 8.07E+21 sun*ly^2
- Conservation of Angular Momentum
- angular momentum, L
- I*omega
- $0.5*M1*R1^2*omega1+0.5*M2*R2^2*omega2 = 0.6*(M1+M2)*R^2*omega2$
- 3330 rad/s

Problem 4. 4. (30 points)

Two satellites are in circular orbits around a planet that has a mass M. One satellite has mass $m_1 = 60$ kg, orbital radius $R_1 = 3.6 \times 10^7$ m, and orbital speed $v_1 = 4750 \, \frac{\text{m}}{\text{s}}$. The second satellite has mass $m_2 = 80$ kg and orbital radius $R_2 = 5.6 \times 10^7$ m.

Part A: Orbital Motion

Write the **gravitational force** pulling satellite 1 on the orbit around the planet.

 $\vec{F}_1 =$ (formula using $\hat{\mathbf{r}}$, G, M, R_1 as $\mathbf{R1}$ and m_1 as $\mathbf{m1}$, only)

Write the **gravitational force** pulling satellite 2 on the orbit around the planet.

 $\vec{F}_2 =$ _____ (formula using $\hat{\mathbf{r}}$, G, M, R_2 as $\mathbf{R2}$ and m_2 as $\mathbf{m2}$, only)

Part B: Accelerations of the satellites

Write the **radial acceleration** of satellite 1 on the orbit around the planet.

$$a_1 =$$
 (formula using v_1 as **v1** and R_1 as **R1**, only)

Write the **radial acceleration** of satellite 1 on the orbit around the planet.

$$a_2 =$$
 _____ (formula using v_2 as $\mathbf{v2}$ and R_2 as $\mathbf{R2}$, only)

Part C: Velocity of the satellites

Write the formula for velocity of satellite 1 on the orbit using the formulas on Part A and laws of motion.

$$v_1 =$$
 _____ (formula using G , M , R_1 as $\mathbf{R1}$ and m_1 as $\mathbf{m1}$, only)

Write the formula for velocity of satellite 2 on the orbit using the formulas on Part A and laws of motion.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

 $v_2 =$ _____ (formula using G, M, R_2 as $\mathbf{R2}$ and m_2 as $\mathbf{m2}$, only)

Part D: Mass of the planet

Given $v_1 = 4750 \frac{\text{m}}{\text{s}}$ and $G = 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$, calculate the mass of the planet:

$$M =$$
 (numeric result with unit)

Part E: Velocity of the second satellite

Given $v_1 = 4750 \frac{\text{m}}{\text{s}}$, calculate the velocity of the secon d satellite:

 $v_2 =$ (numeric result with unit)

Correct Answers:

- -G*M*m1/(R1^2)*r
- $-G*M*m2/(R2^2)*r$
- v1^2/R1
- v2^2/R2
- sqrt (G*M/R1)
- sqrt (G*M/R2)
- 1.22E+25 kg
- 5920 m/s