CAPSTONE: Curriculum Sampling for Dense Retrieval with Document Expansion

EMNLP 2023

The University of Hong Kong Microsoft Research Asia Microsoft

Text Retrieval

- Retriever-Reader Model
- Open-Domain Question Answering

Text Retrieval

- Sparse Retrieval
 - Lexical term matching

$$\{0, 1, ..., 1, 0, ..., 1\} \in d_1$$

- Dense Retrieval
 - Neural network-based model

$$\{-1.03, 1.72, ..., 3.42, -2.32, ..., 2.34\} \in d_1$$

Sparse Retrieval

- Lexical term matching
- Bag-of-Words methods

TF-IDF: Importance of a word

$$W_{t,d} = t f_{t,d} \cdot \log(\frac{N}{df_t})$$

BM25: Ranking the Relevance of Document to Query

$$ext{score}(D,Q) = \sum_{i=1}^n ext{IDF}(q_i) \cdot rac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot \left(1-b+b \cdot rac{|D|}{ ext{svgdl}}
ight)}$$

Reranking: Top-K Document

Dense Retrieval

- Coarse-grained Representation
- Neural network-based model

Dense Passage Retrieval (DPR)

Document by DinosoftLabs from Noun Project (CC BY 3.0) Karpukhin et al. Dense Passage Retrieval for Open-Domain Question Answering. EMNLP, 2020. Danqi Chen et al. Open-Domain Question Answering. ACL, 2020.

Similarity Score

Training Objective

$$\mathcal{D} = \{\langle q_i, p_i^+, p_{i,1}^-, \cdots, p_{i,n}^- \rangle\}_{i=1}^m$$

$$L(q_i, p_i^+, p_{i,1}^-, \cdots, p_{i,n}^-)$$

$$= -\log \frac{e^{\sin(q_i, p_i^+)}}{e^{\sin(q_i, p_i^+)} + \sum_{j=1}^n e^{\sin(q_i, p_{i,j}^-)}}$$

Dense Retrieval

Encoder Architecture

Karpukhin et al. Dense Passage Retrieval for Open-Domain Question Answering. EMNLP, 2020
Rodrigo Nogueira et al. Document Expansion by Query Prediction. arXiv preprint arXiv:1904.08375, 2019.
Zehan Li et al. Learning Diverse Document Representations with Deep Query Interactions for Dense Retrieval. arXiv preprint arXiv:2208.04232, 2022.

Dual-cross-encoder

Query-related document representation

ColBERT

Trade-Off

Dual-cross-encoder(Li Et al, 2022) Document Expansion

Pre Interaction

$$sim(q,d) = E_q(q)^T E_d(d+q\prime).$$

Training

$$d+q'$$

Inference

only d

Retrieval Efficiency

Maximum Inner Product Search (MIPS)

Late Interaction

 $S_{q,d} := \sum_{i \in [|E_q|]} \max_{j \in [|E_d|]} E_{q_i} \cdot E_{d_j}^T$

Interaction-Aware Document Representation

Dual-cross-encoder

Document Expansion

Doc2Query

- After training, predict a set of queries
- 10 queries from top-k random sampling

Effect

- Domain adaptation in data scarcity scenarios
- Query-informed document representations
- Multiview document representations

Dual-cross-encoder

Document Expansion

Li Et al. (2022)

Pre Interaction

$$sim(q,d) = E_q(q)^T E_d(d+q\prime).$$

Interaction-Aware Document Representation

Discrepancy

Training

Inference

q

Specific Task Performance

Multiview document representations

Title: IPod

Document: Beginning in mid-2007, four major airlines, United, Continental, Delta, and Emirates, reached agreements to install iPod seat connections. The free service will allow passengers to power and charge an iPod, and view video and music libraries on individual seat-back displays. Originally KLM and Air France were reported to be part of the deal with Apple, but they later released statements explaining that they were only contemplating the possibility of incorporating such systems. The iPod line can play several audio file formats including MP3, AAC/M4A, Protected AAC, AIFF, WAV, Audible audiobook, and Apple Lossless. The iPod Photo introduced the ability to display JPEG, BMP, GIF, TIFF, and PNG image file formats.

Q1: Where can people using iPods on planes view the device's interface?

A1: Individual seat-back displays.

Q2: What are two airlines that considered implementing iPod connections but did not join the 2007 agreement?

A2: KLM and Air France.

Q3: What are some examples of audio formats supported by the iPod?

A3: MP3, AAC/M4A, Protected AAC, AIFF, WAV, Audible audiobook, and Apple Lossless.

Q4: What is the name of an audio format developed by Apple?

A4: Apple Lossless.

(a) An example from SQuAD Open Dataset.

Similar effect to MIPS

Performance

Rodrigo Nogueira et al. Document Expansion by Query Prediction. arXiv preprint arXiv:1904.08375, 2019. Shunyu Zhang et al. Multi-View Document Representation Learning for Open-Domain Dense Retrieval. ACL, 2022.

CAPSTONE

- Training stage: Curriculum sampling
 - Bridge the gap between training and inference from document expansion
 - Query-informed document representation
- Inference stage: Take the average pooling of different document views
 - Corpus expansion by generated query
 - Compute the typical document representation
- Model Performance
 - Experiments on in-domain retrieval datasets and zero-shot BEIR benchmark
 - Improve the performance without sacrificing retrieval efficiency

Discrepancy in Training and Inference

Document expansion in the training phase

Dense Passage Retrieval (DPR)

Hard Negatives

- Don't contain the answer
- Match most question tokens

In-batch Negatives

- Sort negative queries by random sampling
- Produce more pairs of training examples
- Contribute to the model performance
- Efficient training without creating new ones

Bridging the Gap with Curriculum Sampling

Document expansion in the training phase

Dataset: MS-MACRO

Computing the Typical Representation of Different Views

Take the average pooling of views in the inference stage

Computing the Typical Representation of Different Views

Take the average pooling of different document views

Ablation Study

Variants	MRR@10	R@1000
DPR	34.26	97.02
CAPSTONE+DPR w/ $S=1$	35.15	97.19
CAPSTONE+DPR w/ average	35.66	97.28
CAPSTONE+DPR w/ max	35.45	97.25
CAPSTONE+DPR w/ median	35.64	97.20

Comparison with baseline model

- In-domain Performance
 - Dataset: MS-MARCO, TREC-2019, TREC-2020
- Zero-shot Performance
 - Dataset: BEIR benchmark

Ablation Study

- Corpus Expansion vs. Document Expansion
- Effect of Query Selection Strategies
- Comparison of Methods for Computing the Typical Representation
- Multi-stage Retrieval Performance

In-domain Performance

Passage retrieval results on MS-Marco Dev, and TREC datasets

Models	MS-MARCO MRR@10 R@50 R@1000			TREC DL 19 nDCG@10	TREC DL 20 nDCG@10
Sparse retrieval					
BM25 (Yang et al., 2017)	18.5	58.5	85.7	51.2	47.7
DeepCT (Dai and Callan, 2019)	24.3	69.0	91.0	57.2	-
DocT5Query (Nogueira and Lin, 2019)	27.7	75.6	94.7	64.2	-
Dense retrieval					
DPR (Karpukhin et al., 2020)	31.4	-	95.3	59.0	62.1
ANCE (Xiong et al., 2021)	33.0	-	95.9	64.5	64.6
SEED (Lu et al., 2021)	33.9	-	96.1	-	-
STAR (Zhan et al., 2021)	34.7	-	-	68.3	-
TAS-B (Hofstätter et al., 2021)	34.0	-	97.5	71.2	69.3
RocketQA (Qu et al., 2021)	37.0	85.5	97.9	-	-
COIL (Gao et al., 2021)	35.5	-	96.3	70.4	-
ColBERT (Khattab and Zaharia, 2020)	36.0	82.9	96.8	-	-
DCE (Li et al., 2022)	36.0	-	96.4	68.3	68.9
RetroMAE (Xiao et al., 2022)	35.0	-	97.6	-	-
Condenser (Gao and Callan, 2021)	36.6	-	97.4	69.8	-
coCondenser (Gao and Callan, 2022)*	37.9	86.3	98.4	70.7	69.8
CAPSTONE	38.6	86.6	98.6	71.1	70.3

Zero-shot Performance

Performances on BEIR benchmark (measured with nDCG@10)

_			
-	1	S	1/
_	а	`	Κ
	S	_	

Bio-Medical IR

Question Answering

Tweet Retrieval

News Retrieval

Augment Retrieval

Duplicate Question Retrieval

Entity Retrieval Citation Prediction

Fact Checking

Dataset	BERT	LaPraDoR	SimCSE	DiffCSE	SEED	Condenser	coCondenser*	CAPSTONE
TREC-COVID	64.9	49.5	52.4	49.2	61.2	75.4	74.0	77.9
BioASQ	26.2	23.9	26.4	25.8	29.7	31.7	34.1	34.3
NFCorpus	25.7	28.3	25.0	25.9	25.6	27.8	32.4	33.0
NQ	43.8	41.5	41.2	41.2	42.5	45.9	50.5	50.5
HotpotQA	47.8	48.8	50.2	49.9	52.8	53.7	56.4	56.7
FiQA-2018	23.7	26.6	24.0	22.9	24.4	26.1	30.0	30.4
Signal-1M (RT)	21.6	24.5	26.4	26.0	24.6	25.8	24.7	23.1
TREC-NEWS	36.2	20.6	36.8	36.3	33.5	35.3	39.1	40.3
Robust04	36.4	31.0	35.3	34.3	34.8	35.2	40.3	40.7
ArguAna	35.7	50.3	43.6	46.8	34.7	37.5	40.9	39.2
Touche-2020	27.0	17.8	17.8	16.8	18.0	22.3	27.0	31.0
CQADupStack	28.4	32.6	29.5	30.5	28.5	31.6	30.0	30.0
Quora	78.2	84.3	84.8	85.0	84.9	85.5	84.3	83.8
DBPedia	29.8	32.8	30.4	30.3	32.4	33.1	37.2	38.0
SCIDOCS	11.5	14.5	12.5	12.5	11.7	13.6	14.3	14.3
FEVER	68.4	51.8	65.1	64.1	65.3	68.2	72.4	72.7
Climate-FEVER	20.5	17.2	22,2	20.0	17.6	19.9	19.4	19.3
SciFact	50.4	48.3	54.5	52.3	55.6	57.0	58.3	60.5
Avg. Performance	37.6	35.8	37.7	37.2	37.7	40.3	42.7	43.3

Ablation Study

- Multi-stage Retrieval Performance (at two training stages)
 - Initialize the retriever at each stage
 - Evaluate the last model training checkpoint on the retrieval datasets

	First	t Stage	Second	d Stage	
Models		egatives	Mined Negatives		
Models	MRR@1	0 R@1000	MRR@1	0 R@1000	
DPR	34.26	97.02	36.44	97.65	
CAPSTONE+DPR	35.66	97.28	37.28	97.82	
coCondenser	35.91	98.21	37.94	98.41	
CAPSTONE+coCondenser	36.75	98.21	38.65	98.60	

Part 5. Conclusion

CAPSTONE

- Curriculum sampling for dense retrieval with document expansion
 - Learn much better query-related document representations
- Typical representation of different document views
 - Balance between inference efficiency and effectiveness

• Limitation

- Generating synthetic queries for each document is time-consuming work
- Only verify our method on vanilla DPR and coCondenser
- We plan to verify our method on other dense retrieval models

Part 6. Appendix

Similarity Score for Dense Retrieval

Part 6. Appendix

Dense Passage Retrieval (DPR)

Similarity Score in minibatch

