Facultative Lifestyle Drives Diversity of Coral Alga Symbionts

Debashish Bhattacharya, Timothy G. Stephens, Erin E. Chille, L. Felipe Benites, Cheong Xin Chan

Supplemental information

In our summary analysis, raw ITS2 data (BioProject: PRJNA761780) from 119 *Pocillopora acuta* and 132 *Montipora capitata* colonies collected from Kāne'ohe Bay, Hawai'i were retrieved from the Sequence Read Archive using fasterq-dump (sra-tools v3.0.3; https://github.com/ncbi/sra-tools) and processed using a local version of SymPortal v0.3.24 [1]. After minimum entropy decomposition (hereinafter, post-MED sequences), but before grouping into ITS2 type profiles, sequences were extracted from the Hawaiian sample results and from the list of published studies with data available *via* the SymPortal website (https://symportal.org/). The extracted post-MED sequences were aligned using MAFFT v7.453 ('--auto'; strategy FFT-NS-2 was chosen automatically by MAFFT) [2] and a maximum likelihood tree was constructed using iqtree v1.6.12 ('-bb 1000') [3] using the default (HKY) DNA substitution model and 1000 Ultrafast Bootstrap replicates (UFboot) [4].

References

- Hume, B.C.C. *et al.* (2019) SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. *Mol. Ecol. Res.* 19, 1063–1080. https://doi.org/10.1111/1755-0998.13004
- Katoh, K. and Standley, D.M. (2013) MAFFT multiple sequence alignment software version
 improvements in performance and usability. *Mol. Biol. Evol.* 30 772–780.
 https://doi.org/10.1093/molbev/mst010

3. Nguyen, L.T. *et al.* (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* 32, 268–274. https://doi.org/10.1093/molbev/msu300

4. Hoang, D.T. *et al.* (2018) UFBoot2: Improving the ultrafast bootstrap approximation. *Mol. Biol. Evol.* 35, 518–522. https://doi.org/10.1093/molbev/msx281