Section 11.5 Alternating series

An a.s is a series $\sum_{k=1}^{\infty} a_k$, in which $a_k = (-1)^{k-1} b_k$, or $a_k = (-1)^k b_k$ with $b_k > 0$.

Examples:

$$1 \cdot \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

2).
$$\sum_{k=1}^{\infty} (-1)^k \frac{k}{k+1} = -\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \dots$$

Alternating series test

If the alternating series

$$\sum_{k=1}^{\infty} (-1)^{k-1} b_k$$
, $b_k > 0$,

satisfies:

then it is convergent.

Ex. 1 Alternating how movie series:
$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$$

i)
$$b_{K+1} \leq b_{K}$$
, $\frac{1}{K+1} \leq \frac{1}{K}$ - true for $k \geq 1$.

Ex.2 Test for convergence:
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k^2}{k^3+1}$$

i) To check this assumption: need to check that
$$b_{K} = \frac{K^{2}}{K^{3}+1}$$
 is decreasing in K .

Consider
$$f(x) = \frac{x^2 V}{x^3 + 1}$$
, we will show that

 f is electrosing.

 $f'(x) = \frac{2x(x^3 + 1) - x^2 \cdot 3x^2}{(x^3 + 1)^2} = \frac{x^4 + 2x}{(x^3 + 1)^2}$
 $= \frac{x(2 - x^3)}{(x^2 + 1)^2} < 0$, when $2 < x^3$, $3 = x > 3 =$

Then |Rn|=|S-Sn|=|\sum_{k=n+1}^{\infty} \delta_k \le b_{n+1}.

For example, for the oldernotting have manic series: $(\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots)$ $|R_{10}| \leq b_{11} = \frac{1}{11}$