Formalismos para Linguagens Formais - ER

- Expressões Regulares (resumindo)
 - Operações sobre Linguagens
 - União
 - » Sejam L e M duas Linguagens sobre um Alfabeto Σ . A União de L e M, denotada por L \cup M é a Linguagem:

$$L \cup M = \{x \mid x \in L \text{ ou } x \in M\}$$

- Concatenação (e concatenação sucessiva)
 - » A concatenação das Linguagens L e M, denotada por LM, é a Linguagem

$$LM = \{xy \mid x \in L e y \in M\}$$

- Fechamento
 - » Fechamento de Kleene de L

$$L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup ...$$

» Fechamento Positivo de L

$$L^+ = L^1 \cup L^2 \cup L^3 \cup ...$$

Formalismos para Linguagens Formais - ER

- Expressões Regulares
 - Definição
 - ε é uma ER e denota a Linguagem $L(\varepsilon) = \{\varepsilon\}$
 - Seja a um símbolo de ∑, então a é uma ER que denota a Linguagem L(a) = {a}
 - Sejam r e s ER's que denotam, respectivamente, as Linguagens L(r) e L(s). Temos que:
 - » r|s é uma ER que denota $L(r|s) = L(r) \cup L(s)$
 - » r.s é uma ER que denota L(r.s)= L(r).L(s)
 - » r* é uma ER que denota L(r*) = L(r)*
 - \rightarrow r⁺ é uma ER que denota $L(r^+) = L(r)^+$
 - » (r) é uma ER que denota a mesma Linguagem que a ER r

Para quebrar precedência de operadores!

Formalismos para Linguagens Formais - ER

- Expressões Regulares
 - Precedência de operadores
 - * é operador unário e tem maior precedência, aplica-se à menor sequência de símbolos à sua esquerda que seja uma ER bem formada.
 - é o operador seguinte em ordem de precedência, é associativo à esquerda
 - | é o operador de menor precedência e é associativo à esquerda
 - » Há autores que utilizam +