Solutions to Practice Problems for Linear Algebra Review

Within Exam Scope

1. Subspaces and Spans

Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$ are vectors in \mathbb{R}^3 . Do you agree with the statement that these vectors span \mathbb{R}^3 ?

Solution: Not necessarily. They can be linearly dependent so that the dimension of their span is less than 3.

2. Orthogonality

Which pairs are orthogonal among the vectors

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -2 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 4 \\ 0 \\ 4 \\ 0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

Solution: \mathbf{v}_1 and \mathbf{v}_3 ; \mathbf{v}_2 and \mathbf{v}_3 .

3. Linear Independence

If \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are independent vectors, would the following vectors be independent?

$$\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_3, \quad \mathbf{w}_2 = \mathbf{v}_1 + \mathbf{v}_2, \quad \mathbf{w}_3 = \mathbf{v}_2 + \mathbf{v}_3.$$

Solution: Yes. Can check by definition. Source: Strang, Gilbert (2006), Linear Algebra and Its Applications, CENGAGE.

4. Range and Rank

For $\mathbf{A} \in \mathbb{R}^{n \times n}$, if rank $(\mathbf{A}) = m < n$, then what is the dimension of the null space?

Solution: n-m.

5. Matrix Inverse

We have matrices $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Which of the following are true?

(a) A is singular

- (b) **B** is invertible
- (c) $\mathbf{A} + \mathbf{B}$ is invertible.

Solution: (1) and (3) true, (2) is false since **B** is singular.

6. Subspaces

The smallest subspace of \mathbb{R}^3 containing the vectors $\begin{pmatrix} 0 \\ -3 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ is the line whose equations are x=a and z=by. What are the values of a and b?

Solution: a = 0, b = -2.

7. Matrix Inverse

For \mathbf{A} , $\mathbf{B} \in \mathbb{R}^{n \times n}$ and $\alpha \in \mathbb{R}$, assume \mathbf{A} and \mathbf{B} are invertible:

(a) (True/False) $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$,

- (b) (True/False) $(\mathbf{AB})^{-1} = \mathbf{A}^{-1}\mathbf{B}^{-1}$
- (c) (True/False) If $\det(\mathbf{A}) = 2$, then $\det(\mathbf{A}^{-1}) = 2^{-1}$.
- (d) (True/False) If $\det(\mathbf{A}) = 2$ and $\alpha > 1$, then $\det(\alpha \mathbf{A}) = 2$.

Solution: (a) True (b) False (c) True (d) False

8. Linear Independence

Let $\mathbf{u} = \begin{pmatrix} \lambda \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 1 \\ \lambda \\ 1 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 0 \\ 1 \\ \lambda \end{pmatrix}$. What are possible values of λ that make $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ linearly dependent?

2

Solution: Solving $det([\mathbf{u}, \mathbf{v}, \mathbf{w}]) = 0$ we get $\lambda = -\sqrt{2}, 0, \sqrt{2}$.

9. Matrix Product

For $\mathbf{A} = \begin{bmatrix} 1 & 1/3 \\ x & y \end{bmatrix}$, find the value of x and y such that $\mathbf{A}^2 = 0$.

Solution: x = -3, y = -1.

10. Inner Product

Consider the space of all matrices in $\mathbb{R}^{2\times 2}$. Define inner product as $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{B})$ for $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{2\times 2}$. Let $\mathbf{U} = \begin{bmatrix} 1 & 4 \\ -3 & 5 \end{bmatrix}$ and $\mathbf{V} = \begin{bmatrix} x^2 & x-1 \\ x+1 & -1 \end{bmatrix}$. Find all values of x such that $\mathbf{U} \perp \mathbf{V}$.

Solution: x = 3, -4.

11. Matrix Inverse

If a non-singular matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ satisfies $\mathbf{A}^3 - 4\mathbf{A}^2 + 3\mathbf{A} - 2\mathbf{I}_n = \mathbf{0}$, what is \mathbf{A}^{-1} ?

Solution: $\mathbf{A}^{-1} = \frac{1}{2}(\mathbf{A}^2 - 4\mathbf{A} + 3\mathbf{I}_n).$

12. Basis

Let $\mathbf{u} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ c \end{pmatrix}$ where $c \in \mathbb{R}$. The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^3 provided that c is **not** equal to what value?

Solution: $c \neq -3$.

13. Subspaces

Consider the set of points $(x, y, z) \in \mathbb{R}^3$. Which one of the following is a subspace of \mathbb{R}^3 ?

- (a) x + 3y 2z = 3.
- (b) x + y + z = 0 and x y z = 2.
- (c) $\frac{x+1}{2} = \frac{y-2}{4} = \frac{z}{3}$.
- (d) $x^2 + y^2 = z$.
- (e) x = -z and x = z.
- (f) $\frac{x}{3} = \frac{y+1}{2}$.

Solution: (e). Subspaces of \mathbb{R}^3 must contain the origin.

Beyond Exam Scope

1. Solutions to Linear Equations

Consider the linear system of equations

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ are known and $\mathbf{x} \in \mathbb{R}^n$ is unknown. Let $\mathbf{b} \in \mathcal{R}(\mathbf{A})$ so that (1) has at least one solution. Let \mathbf{x}_1 be one such solution. Show that *all* solutions to (1) can be written in the form $\mathbf{x}_1 + \mathbf{n}$ for some $\mathbf{n} \in \mathcal{N}(\mathbf{A})$ where $\mathcal{N}(\mathbf{A}) := {\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0}}$ is the *nullspace* of \mathbf{A} . (You can check that $\mathcal{N}(\mathbf{A})$ is indeed a subspace of \mathbb{R}^n .)

Solution: First note that

$$\mathbf{A}(\mathbf{x}_1 + \mathbf{n}) = \mathbf{A}\mathbf{x}_1 + \mathbf{A}\mathbf{n} = \mathbf{b} + \mathbf{0} = \mathbf{b}$$

so $\mathbf{x}_1 + \mathbf{n}$ is indeed a solution to (1) for any $\mathbf{n} \in \mathcal{N}(\mathbf{A})$.

Now let's check that *all* solutions to (1) are of this form. Specifically, let \mathbf{y} also solve (1). Then $\mathbf{A}(\mathbf{y} - \mathbf{x}_1) = \mathbf{b} - \mathbf{b} = \mathbf{0}$ so $\mathbf{y} - \mathbf{x}_1 \in \mathcal{N}(\mathbf{A})$. Therefore $\mathbf{y} - \mathbf{x}_1 = \mathbf{n}$ for some $\mathbf{n} \in \mathcal{N}(\mathbf{A})$ and so $\mathbf{y} = \mathbf{x}_1 + \mathbf{n}$ as desired.

2. Adjacency Matrices I (Challenging - Not Examinable!)

If **A** is an adjacency matrix show that $\mathbf{A}_{ij}^k = \#$ paths from $i \to j$ in exactly k steps. *Hint:* Use induction. (If you're not familiar with induction that's ok and you can skip this question.)

Solution: We can prove this by induction. It is clearly true when k = 1. Now assume it is true for all values $k \le n - 1$. We must now show that it is true for n. We have

$$\mathbf{A}_{ij}^{n} = (\mathbf{A}^{n-1} \mathbf{A})_{ij}$$

$$= \sum_{k=1}^{n} \mathbf{A}_{ik}^{n-1} \mathbf{A}_{kj}$$
(2)

But:

- By assumption $\mathbf{A}_{ik}^{n-1} = \#$ paths from $i \to k$ in exactly n-1 steps.
- $\mathbf{A}_{kj} = \#$ paths from $k \to j$ in exactly 1 step.

So $\mathbf{A}_{ik}^{n-1}\mathbf{A}_{kj} = \#$ paths from $i \to j$ in exactly n steps that pass through node k on step n-1. So (2) equals # paths from $i \to j$ in exactly n steps.

3. Adjacency Matrices II

Consider the adjacency matrix **A** below with rows and columns ordered according to the node labels {'A','B','C','D','E','F','G'}. Compute \mathbf{A}^3 and confirm that the value in \mathbf{A}^3 corresponding to paths from $E \to B$ is correct by explicitly writing out and counting all the paths from $E \to B$ that take exactly 3 steps.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Solution: You can check using R (no need to do it yourself!) that

$$\mathbf{A}^{3} = \begin{pmatrix} 4 & 9 & 8 & 9 & 5 & 4 & 1 \\ 9 & 4 & 9 & 5 & 10 & 4 & 4 \\ 8 & 9 & 8 & 10 & 10 & 4 & 2 \\ 9 & 5 & 10 & 6 & 10 & 6 & 3 \\ 5 & \mathbf{10} & 10 & 10 & 6 & 6 & 1 \\ 4 & 4 & 4 & 6 & 6 & 2 & 1 \\ 1 & 4 & 2 & 3 & 1 & 1 & 0 \end{pmatrix}$$

and the value (highlighted in bold font) corresponding to paths from $E \to B$ is 10. We can confirm that this is indeed correct by calculating all the paths that go from $E \to B$ in exactly 3 steps. To help with this we include the graph of the network below.

We have the following 3-step paths from $E \to B$:

- (a) $E \to B \to E \to B$
- (b) $E \to F \to E \to B$
- (c) $E \to D \to E \to B$
- (d) $E \to C \to E \to B$
- (e) $E \to B \to G \to B$

- (f) $E \to B \to C \to B$
- (g) $E \to B \to A \to B$
- (h) $E \to D \to C \to B$
- (i) $E \to D \to A \to B$
- (j) $E \to C \to A \to B$

and we see that there indeed 10 such paths.

4. Diagonalization

Suppose an $n \times n$ matrix **A** can be diagonalized and let $\mathbf{u}_k := \mathbf{A}^k \mathbf{u}_0$ for some initial vector \mathbf{u}_0 . Show that for any $k \in \mathbb{N}$ we can write

$$\mathbf{u}_k = c_1 \lambda_1^k \mathbf{x}_1 + \dots + c_n \lambda_n^k \mathbf{x}_n. \tag{3}$$

(a) What are the c_i 's, λ_i 's and \mathbf{x}_i 's?

Solution: We are told that **A** can be diagonalized so let $\mathbf{A} = \mathbf{SDS}^{-1}$ be the diagonalization where **D** is a diagonal $n \times n$ matrix with the eigenvalues $\lambda_1, \ldots, \lambda_n$ (possibly repeated) of **A** along its diagonal and let **S** be the $n \times n$ matrix whose i^{th} column \mathbf{x}_i is the eigenvector of **A** corresponding to λ_i . Then

$$\mathbf{u}_{k} = \mathbf{A}^{k} \mathbf{u}_{0}$$

$$= (\mathbf{S}\mathbf{D}\mathbf{S}^{-1})^{k} \mathbf{u}_{0}$$

$$= \mathbf{S}\mathbf{D}^{k}\mathbf{S}^{-1}\mathbf{u}_{0}$$

$$= \mathbf{S}\mathbf{D}^{k}\mathbf{c}$$

$$= \begin{pmatrix} \vdots & \vdots & \cdots & \vdots \\ \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \\ \vdots & \vdots & \cdots & \vdots \end{pmatrix} \begin{pmatrix} \lambda_{1}^{k} & & \\ & \lambda_{2}^{k} & & \\ & & \ddots & \\ & & & \lambda_{n}^{k} \end{pmatrix} \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{pmatrix}$$

$$= c_{1}\lambda_{1}^{k}\mathbf{x}_{1} + \cdots + c_{n}\lambda_{n}^{k}\mathbf{x}_{n}.$$

where $\mathbf{c} := \mathbf{S}^{-1}\mathbf{u}_0$.

(b) There are many problems of interest where \mathbf{u}_k represents the state of some system (e.g. an economy, or web-browser in Google's PageRank model) at time k. Very often, we are interested in the behavior of this system in the long-run, i.e. when k gets very large. How might the representation in (3) be useful for determining this long-run behaviour?

Solution: We see that the only terms in (3) that depend on k are λ_i^k for i = 1, ..., n. Clearly then if $|\lambda_i| > 1$ for any i the \mathbf{u}_k 's will diverge. Similarly if $|\lambda_i| < 1$ for all i then $\mathbf{u}_k \to 0$ as $k \to \infty$. A particularly interesting case is where $|\lambda_i| \le 1$ for all i but with one eigen-value (say λ_j) equal to 1. In that case $\mathbf{u}_k \to c_j \mathbf{x}_j$ as $k \to \infty$. It's also of interest

when $|\lambda_i| \leq 1$ for all i and one or more of the eigenvalues have absolute value equal to 1. For example suppose $\lambda_1 = 1$, $\lambda_2 = -1$ and $\lambda_i < 1$ for i = 3, ..., n. In that case we have $\mathbf{u}_k = c_1 \mathbf{x}_1 + c_2 (-1)^k \mathbf{x}_2$ for large k and so \mathbf{u}_k will oscillate between $c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$ when k is large and even, and $c_1 \mathbf{x}_1 - c_2 \mathbf{x}_2$ when k is large and odd.

5. Cash-Flow Dynamics

Multinational companies in the U.S., Japan and Europe have assets of \$4 trillion. At the start \$2 trillion are in the U.S. and \$2 trillion in Europe. Each year 1/2 the U.S. money stays home, and 1/4 goes to each of Europe and Japan. For Japan and Europe, 1/2 stays home and 1/2 is sent to the U.S.

- (a) Find the 3×3 matrix **A** that that gives $\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k$ where \mathbf{x}_k is the 3×1 vector containing the asset values in the US, Europe and Japan, respectively, at the end of year k.
- (b) Find the eigenvalues and eigenvectors of **A**.
- (c) Find the cash-flow distribution at the end of year k.
- (d) Find the limiting cash-flow distribution of the \$4 trillion as the world ends.

(This question is taken from Gilbert Strang's Linear Algebra and Its Applications.)

Solution: See the R Notebook *Multinational_Cashflows.Rmd*. You might also note how your results are consistent with the results of the previous question.