Cambio Estructural Fundamentos de Econometría

Juan Palomino¹

¹Magister en Economía Aplicada con Mención Estudios Regionales juan.palominoh@pucp.pe

Departamento de Economía

Índice

- 1 Introducción
- 2 Test basado en modelos restringidos y no restringidos
 - Definición Test de Chow
 - Modelo e Hipótesis
 - Ejercicio
- 3 Test basado en Estimaciones Recursivas
 - Método de mínimos cuadrados recursivos
 - Residuos Recursivos, Test *Cusum* y *Cusum*²

Definición

- ¿Qué ocurriría si en realidad los parámetros β del modelo no fueran válidos para todas las observaciones?
- Evidencia de alteración significativa de los parámetros del modelo a lo largo de la muestra utilizada.

¿Por qué se produce?

- Existe alteración exógena de la estructura analítica a lo largo del periodo (cambios políticos, económicos, fiscales, monetarios, etc).
- Error de especificación (omisión de variables, inadecuada forma funcional).

¿Cómo se detecta?

- Dos grupos:
 - Test basado en la comparación de modelos restringidos y no restringidos: Test Chow
 - Test basado en estimaciones recursivas: CUSUM y CUSUM cuadrado.

Definición Test de Chow

Índice

- 1 Introducción
- 2 Test basado en modelos restringidos y no restringidos
 - Definición Test de Chow
 - Modelo e Hipótesis
 - Ejercicio
- 3 Test basado en Estimaciones Recursivas
 - Método de mínimos cuadrados recursivos
 - Residuos Recursivos, Test Cusum y Cusum²

Test de Chow

- No busca cambios estructurales en la muestra, sino que confirma o desmiente una sospecha previa de cambio estructural.
- Debe conocerse el punto o los puntos de cambio de estructura.
- Conviene que el punto de quiebre no se encuentre muy cerca del principio o final de la muestra.

Definición Test de Chow

Procedimientos

- Se divide la muestra total de tamaño n en las dos submuestras que determina el punto de corte $(n_1 \ y \ n_2)$.
- Aparte del modelo inicialmente estimado se estiman dos modelos más, uno de cada submuestra.
- Utilizando los errores de la estimación original y de las dos estimaciones parciales se elabora un contraste, cuya hipótesis nula será que los dos conjuntos de parámetros son iguales (no hay cambio estructural).

Modelo e Hipótesis

Índice

- 1 Introducción
- 2 Test basado en modelos restringidos y no restringidos
 - Definición Test de Chow
 - Modelo e Hipótesis
 - Ejercicio
- 3 Test basado en Estimaciones Recursivas
 - Método de mínimos cuadrados recursivos
 - Residuos Recursivos, Test Cusum y Cusum²

Modelo

- La prueba de Chow construye los siguientes modelos de regresión:
 - Modelo 1 ($n = n_1 + n_2$ observaciones):

$$y_t = \alpha + \beta_1 X_1 + \beta_2 X_2 + \ldots + \varepsilon_t$$

■ Modelo 2 (n_1 observaciones):

$$y_t = \alpha_1 + \beta_{1,1}X_1 + \beta_{2,1}X_2 + \ldots + \varepsilon_t$$

■ Modelo 3 (n₂ observaciones):

$$y_t = \alpha_2 + \beta_{1,2}X_1 + \beta_{2,2}X_2 + \ldots + \varepsilon_t$$

0000

Hipótesis

La hipótesis de la prueba Chow:

$$H_0: \left\{egin{array}{l} lpha = lpha_1 = lpha_2 \ eta_1 = eta_{1,1} = eta_{1,2} \ eta_2 = eta_{2,1} = eta_{2,2} \end{array}
ight\} \ H_1: lpha
eq lpha_i; eta
eq eta_{i,j}$$

■ Donde $\beta_{i,j}$ es el coeficiente i-th en el modelo de regresión j-th (j=1,2,3).

La Prueba Estadística de Chow

■ La prueba estadística Chow se define como:

$$F = \frac{(SCR_R - SCR_{NR})/k}{(SCR_{NR})/(n_1 + n_2 - 2k)}$$

- Donde:
 - SCR es la suma de los cuadrados de los residuos.
 - *k* es el número de variables explicatorias
 - lacksquare n_1 es el número de las observaciones de la primera muestra
 - lacksquare n_2 es el número de las observaciones de la segunda muestra
- Las estadísticas de la prueba Chow sigue una distribución F con k, y $n_1 + n_2 2k$ grados de libertad en el numerador y denominador respectivamente.

Índice

- 1 Introducción
- 2 Test basado en modelos restringidos y no restringidos
 - Definición Test de Chow
 - Modelo e Hipótesis
 - Ejercicio
- 3 Test basado en Estimaciones Recursivas
 - Método de mínimos cuadrados recursivos
 - Residuos Recursivos, Test Cusum y Cusum²

Ejercicio

■ Ejercicio en Colab. (Ver Gujarati: Tabla 8.9)

- Datos corresponden al ahorro (Y) y al ingreso personal disponible (X) en miles de millones de dólares para US en el periodo 1970-1995.
- Se sabe que en este periodo de tiempo se presento a partir de 1982 la recesión de la economía de US en periodo de paz.
- Determine si este hecho pudo haber generado un cambio en la función de ahorro.

- El modelo es:
 - Periodo 1970-1981:

$$Y_t = \lambda_1 + \lambda_2 X_1 + e_{1t} (n_1 = 12)$$

Periodo 1982-1995:

$$Y_t = \gamma_1 + \gamma_2 X_1 + e_{2t} (n_2 = 14)$$

Periodo 1970-1995:

$$Y_t = \alpha_1 + \alpha_2 X_1 + e_{1t} (n_1 = 26)$$

- Hipótesis de cambio estructural (Prueba de Chow)
- Para β_k :

$$H_0: \alpha_k = \lambda_k = \beta_k$$

$$H_1: \alpha_k \neq \lambda_k \neq \beta_k$$

■ Tenemos que:

$$F = \frac{(SCR_R - SCR_{NR})/k}{(SCR_{NR})/(n_1 + n_2 - 2k)} \sim F_t[k, (n_1 + n_2 - 2k)]$$

Índice

- 1 Introducción
- 2 Test basado en modelos restringidos y no restringidos
 - Definición Test de Chow
 - Modelo e Hipótesis
 - Ejercicio
- 3 Test basado en Estimaciones Recursivas
 - Método de mínimos cuadrados recursivos
 - Residuos Recursivos, Test Cusum y Cusum²

- Esta técnica es adecuada cuando trabajamos con datos temporales y se desconoce el momento en que se ha producido un cambio estructural.
- La estimación recursiva consiste en la estimación secuencial del modelo especificado para distintos tamaños muestrales:
 - Empiezas los cálculos con una cantidad limitada de periodos iniciales
 - Luego se va agregando observaciones de periodos de uno en uno hasta llegar al total de datos.
- Idea: si no hay cambio estructural, las estimaciones de los parámetros se mantendrán contantes al ir aumentando la muestra secuencialmente y los residuos no se desviaran ampliamente de cero.

- Sea X_t la matriz que contiene a las primeras τ filas de las matriz de datos X, desde el periodo 1 hasta el periodo τ , donde $k < \tau \le T$
- lacksquare Se define de la misma manera la variable dependiente $y_{ au}$
- Luego estimamos los parámetros del modelo por MCO:

$$\hat{\beta}_{\tau} = (X_t' X_t)^{-1} X_t' y_{\tau}$$

Repetimos la estimación para $\tau = K+1, K+2, ..., T$ y graficamos las series de los parámetros estimados.

- Hipótesis de cambio estructural (Coeficientes recursivos)
- Para β_{τ} :

$$H_0: \beta_{k+1} = \beta_{k+2} = \beta_{k+3} = \dots = \beta_n$$

 $H_1: \beta_{k+1} \neq \beta_{k+2} \neq \beta_{k+3} \neq \dots \neq \beta_n$

Figura: Estimación Recursiva

Índice

- 1 Introducción
- 2 Test basado en modelos restringidos y no restringidos
 - Definición Test de Chow
 - Modelo e Hipótesis
 - Ejercicio
- 3 Test basado en Estimaciones Recursivas
 - Método de mínimos cuadrados recursivos
 - Residuos Recursivos, Test *Cusum* y *Cusum*²

Residuos Recursivos

• Sea $\hat{\beta}_{\tau}$ el vector de parámetros estimados utilizando las τ primeras observaciones:

$$\hat{\beta}_{\tau} = (X_{t}^{'}X_{t})^{-1}X_{t}^{'}y_{\tau}$$

Entonces el error de predicción "un paso adelante":

$$\hat{e}_{\tau+1} = y_{\tau+1} - x'_{\tau+1} \hat{\beta}_{\tau}$$

• donde $x_{\tau+1}^{'}=(\begin{array}{ccc} 1 & x_{\tau 2} & x_{\tau 3} & x_{\tau k+1} \end{array})$, vector de datos de las exógenas en el periodo $\tau+1$.

Residuos Recursivos

Se tiene que el valor esperado y la varianza del error de predicción en $\tau + 1$ vienen dados por:

$$E(\hat{e}_{\tau+1}) = E(y_{\tau+1}) - x'_{\tau+1}E(\hat{\beta}_{\tau}) = x'_{\tau+1}\hat{\beta}_{\tau} - x'_{\tau+1}\hat{\beta}_{\tau} = 0$$

$$Var(\hat{e}_{\tau+1}) = \sigma^{2} + x'_{\tau+1}Var(\hat{\beta}_{\tau})x'_{\tau+1} = \sigma^{2}(1 + x'_{\tau+1}(X'_{\tau}X_{\tau})^{-1}x'_{\tau+1})$$

Residuos Recursivos

■ Por lo tanto, el residuo normalizado viene a ser:

$$w_{\tau+1} = \frac{\hat{e}_{\tau+1}}{\sqrt{1 + x'_{\tau+1}(X'_{\tau}X_{\tau})^{-1}x'_{\tau+1}}} \sim N(0, \sigma^2)$$

Si los valores de $w_{\tau+1}$ cambian de manera sistemática, se tomará como evidencia de inestabilidad en los parámetros del modelo.

Test de Cusum

■ El test de *Cusum* se basa en la suma acumulada de:

$$W_{\tau} = \frac{w_{k+1}}{\hat{\sigma}} + \frac{w_{k+2}}{\hat{\sigma}} + \ldots + \frac{w_t}{\hat{\sigma}} = \sum_{\tau=K+1}^{\tau=t} \frac{w_{\tau}}{\hat{\sigma}}$$

■ donde $\tau = k+1,...,T$ y

$$\hat{\sigma} = \sqrt{\frac{1}{T - (K+1)} \sum_{\tau = K+1}^{T} (w_{\tau} - \bar{w})^2}$$

$$\bar{w} = \frac{1}{T - K} \sum_{\tau = K + 1}^{T} w_j$$

■ Cuando no hay cambio estructural en los parámetros, deberíamos esperar que los w_t sean valores alrededor de cero.

Test de Cusum

- Se definen un límite inferior y un límite superior para la trayectoria de la suma acumulada de los errores recursivo:
- Limites de no rechazo: $[K, \pm a\sqrt{T-k}; T, \pm 3a\sqrt{T-k}]$ donde a=0.948 y a=1.143 para un 95% y 99%, respectivamente
- El gráfico de la suma acumulada de los residuos recursivos (Cusum) respecto al tiempo permite verificar desviaciones sistemáticas de éstos desde su línea de cero que es el valor esperado.

Test de Cusum

Figura: Test Cusum

 Trabaja con el cuadrado de los residuos reescalados. Esta se define como:

$$S_t = \frac{1}{\sum_{\tau=K+1}^{\tau=T} w_{\tau}^2} (w_{k+1}^2 + w_{k+2}^2 + \dots + w_t^2) = \frac{\sum_{\tau=K+1}^{\tau=t} w_{\tau}^2}{\sum_{\tau=K+1}^{\tau=T} w_{\tau}^2}$$

■ donde $\tau = k + 1, ... T$ y $E[S_t] = (t - K)/(t - T)$.

Esta serie está compuesta por:

$$S_{k+1} = \frac{1}{\sum_{\tau=K+1}^{\tau=T} w_{\tau}^{2}} (w_{K+1}^{2})$$

$$S_{k+2} = \frac{1}{\sum_{\tau=K+1}^{\tau=T} w_{\tau}^{2}} (w_{K+1}^{2} + w_{K+2}^{2})$$

$$S_{k+3} = \frac{1}{\sum_{\tau=K+1}^{\tau=T} w_{\tau}^{2}} (w_{K+1}^{2} + w_{K+2}^{2} + w_{K+3}^{2})$$

$$\vdots$$

$$S_{T} = \frac{1}{\sum_{\tau=K+1}^{\tau=T} w_{\tau}^{2}} (w_{K+1}^{2} + w_{K+2}^{2} + \dots + w_{T}^{2}) = 1$$

- A diferencia de la serie *Cusum*, en *Cusum*² la suma acumulada siempre va a aumentar hasta llegar a 1.
- Se suele graficar con sus bandas de confianza $E[S_t] + c_0$, donde $E[S_t] \approx (t K)/(T K)$ y c_0 depende de (T K) y del nivel de significancia deseado.
- Revisar para más detalle Brown, Durbin y Evans (1975); Harvey (1990) y Johnston (1984).

Figura: Test Cusum²

Referencias

- Capítulo 8.7 y 13.10. Gujarati, D., & Porter, D. (2010).
 Econometría (Quinta edición ed.). & P. Carril Villareal, Trad.)
 México: Mc Graw Hill educación.
- Capítulo 7.6 y 7.8. Greene, W. (2000). Análisis econométrico. Tercera edición. Madrid. Prentice Hall.

Lecturas

- Briceño, J. D. L., & Muñoz, M. Á. R. (2009). Análisis del Intercambio entre el Producto y la Inflación en la Economía Mexicana. Revista Nicolaita de Estudios Económicos, 4(1), 85-110.
- Brid, J. C. M. (2002). Liberalización comercial y la demanda de importaciones en México. *Investigación económica*, 13-50.
- Melo, L. F., & Rincón, H. (2013). Choques externos y precios de los activos en Latinoamérica antes y después de la quiebra de Lehman Brothers. Ensayos sobre política económica, 31(71), 1-35.
- Morales León, N., & Vélez Molano, J. R. (2020). Cambios estructurales en índices bursátiles del mercado MILA entre los años 2008 y 2018. Semestre Económico, 23(54), 21-44.
- Sung Kim & Thomas D. Willett (2000) Is the negative correlation between inflation and growth real? An analysis of the effects of the oil supply shocks, *Applied Economics Letters*, 7:3, 141-147.