Homework #1

Due date: Mar. 20th, 2025

Please submit your report (*.pdf) and netlist file (*.sp) to the EECLASS system. Please name your file as hw1_student number.pdf, hw1_student number_x.sp e.g. hw1_100061501_1c.sp represents .sp file for question 1(c).

Don't use black color in background for your screen capture figures.

List calculation/design process clearly and mark proper information of all plots/figures required.

(1) Above-threshold Device parameters and Amplifier Design

Consider the amplifier in Fig.1 with $C_L=1pF$ and $V_{DD}=1.8V$. Please design the transistor sizes, $(W/L)_i$, to achieve a small-signal gain of $A_V \equiv v_o/v_i > 60(V/V)$, $f_{3dB} > 650kHz$, $Power \le 250\mu W$

- a) **Estimate the values of the Level-1 parameters** in Table.1-1 for both NMOS & PMOS transistors according to the equations in Table.1-1 and parameter values in your Spice file (*.1). Please give the units for the parameters in your report.
 - (Hint: Select one N_18.x and one P_18.x (e.g. N_18.1) models, which you may use in your design, from the Spice file.)
- b) Use the Level-1 parameters obtained in (a) to design (W/L)i **by hand calculation**. (Hint: You could start from determining a biasing current which your think is proper, and then check whether f_{3dB} and A_V are satisfied)
- c) With $(W/L)_i$ set to the values designed in (b), Use **Virtuoso Spectre** to (i) calculate the operating modes, g_m , r_o of all transistors when $v_I = v_{REF} = 0.9$ V. Give the **summary of circuit operations** in your report. (ii) sweep the DC value of v_O with v_I sweeping from 0 to VDD. Give **the plot of** v_O v.s. v_I in your report, and **mark maximum gain value** on the plot. (iii) sweep the frequency response of v_O/v_I as $v_I = v_{REF} = 0.9$ V. Give **the plot of the frequency response.**
- d) Compare the differences between simulation results and hand calculation, and discuss which Level-1 parameters estimated in (a) is imprecise, and thus causing these differences.) Re-estimate these Level-1 parameters that you think imprecise by sweeping the I_d-V_{gs} or I_d-V_{ds} of individual transistors in Spectre and then extracting parameters values from the simulated I-V curves.

- e) Use re-estimated Level-1 parameters to design (W/L)_i by hand calculation.
- f) Use Spectre to simulate the design in (e). Give summary of circuit operations, the plot of v_0 v.s. v_I , and the frequency response in your report. If necessary, repeat step (e)-(f) to tune the (W/L)i to meet $A_V > 60$, $f_{3dB} > 650kHz$, and the DC biasing conditions you designed. Please explain all the adjustments you made.

Parameter	Equation	Unit
V_{TH0}	V_{TH0}	V
K	$\mu_0 C_{ox}$ where $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$	μA/V ²
λ	Use 0.02 for NMOS and 0.04 for PMOS	
γ	$\frac{\sqrt{2\varepsilon_{si}qN_{SUB}}}{C_{ox}}$	V ^{1/2}
$2 \phi_{\mathrm{F}} $	$2\frac{\mathrm{kT}}{\mathrm{q}}\ln\left(\frac{N_{SUB}}{n_i}\right)$	V

Note: N_{SUB} correspond to "nch" in the Spice model we use

Tabel.1-1: Level 1 parameters of a MOS transistor

Constant Symbol	Constant Description	Value	Units
V_G	Silicon bandgap (27°C)	1.205	V
k	Boltzmann's constant	1.381x10-23	J/K
n_i	Intrinsic carrier concentration (27°C)	1.45x1010	cm-3
$egin{array}{l} arepsilon_{0X} & arepsilon_{$	Permittivity of free space Permittivity of silicon Permittivity of SiO ₂	8.854x10-14 11.7 ε_0 3.9 ε_0	F/cm F/cm F/cm

Table.1-2: Silicon constants

(2) Subthreshold Device parameters and Amplifier Design

Consider the differential amplifier in Fig.2 with C_L=1pF and V_{DD}=1V. Please follow the steps below to **design** the sizes of all transistors to satisfy the specifications in Table.2-1

	Specifications	Units
DC characteristics	$Max. P_{diss} \leq 500 (V_{DD} = 1V)$	nW
A C -1	${ m A_V} \geqq 60$	V/V
AC characteristics	$f_{ m 3dB} \ge 10 { m k}$	Hz
Transient characteristic	Slew rate ≥ 0.3	V/µs

Table.2-1

- a) Choose a size (W/L) for a PMOS and an NMOS transistors. Use Spectre to simulate and plot the I_D - V_{GS} curves of the selected NMOS and PMOS operating in the **subthreshold region**. According to the model (equation) of I_D - V_{GS} in subthreshold operation, **extract the parameters I_{s0}** and κ from the simulated curves. In your report, please show the Spectre-simulated I_D - V_{GS} curves and describe clearly how the parameters are derived. Afterwards, please **plot a figure that compares** (a) the I_D - V_{GS} curve simulated by Spectre with (b) the I_D - V_{GS} curve generated according to the equation with the extracted I_{s0} and κ .
- b) Describe clearly how you select the biasing current and voltage, as well as how you calculate all transistor sizes in your design.
- c) Use **DC analysis** in Spectre to simulate I_{out} versus (V⁺-V⁻) as V⁻=0.5V and V⁺ sweeps from 0 to 1V. Does I_{out} agree with your derivation in the question (b)? Is the **power dissipation** smaller than 500nW? If not, please adjust the transistor sizes, explain the adjustments you made, and show the simulated result of the new design in your report.
- d) Use **AC** analysis to simulate the frequency response of the amplifier and show the result in your report. Is the specification of **AC** characteristics achieved? If not, please adjust the transistor sizes, explain the adjustments you made, and show the simulated result of the new design in your report.
- e) Connect the amplifier as a unit-gain buffer. Use **transient analysis** to apply a step input from 0.25 to 0.75 V and plot the corresponding transient response of Vout in your report. Is the **slew rate** achieved? If not, please adjust the transistor sizes, explain the adjustments you made, and show the simulated result of the new design in your report.