

16.682 - Prototyping Avionics Spring 2006

LECTURE 4

February 21, 2006

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS Alvar Saenz-Otero

Outline

- **Amplifiers**
 - Ideal vs. Real
 - Basic linear uses
 - Voltage follower (current source)
 - Voltage amplifier
 - Voltage invert & subtract
 - Positive feedback
 - Active filters

Operational Amplifiers

- **Assume ideal during development:**
 - **V**⁺= **V**⁻
 - $-i^{+}=0, i^{-}=0$
 - Saturation at input power voltage only
 - Linear
- **Keep in mind for implementation:**
 - Maximum amplification (e.g., 100, 1000, normally max $< 10^6$)
 - Saturation
 - Op-Amps require external +/- supplies!
 - Non-linear region
 - Frequency region

Buffer/follower

$$v^{+} = v^{-}$$

$$v^{+} = V_{in}$$

$$v^{-} = V_{out}$$

$$V_{out} = V_{in}$$

Amplifier

Buffer/follower

$$v^{+} = v^{-}$$

$$v^{+} = V_{in}$$

$$v^{-} = V_{out}$$

$$V_{out} = V_{in}$$

Amplifier

Inverting Amplifier

$$v^{+} = v^{-} = 0$$

$$i^{-} = 0 \rightarrow i_{R} = \frac{V_{in}}{R_{1}}$$

$$V_{out} = -i_{R} \cdot R_{2} = -V_{in} \frac{R_{2}}{R_{1}}$$

Amplifier/subtract

$$v^{+} = v^{-}$$

$$v^{+} = V_{2} \frac{R_{2}}{R_{1} + R_{2}}$$

$$v^{-} = V_{out} + R_{2} \frac{V_{1} - V_{out}}{R_{1} + R_{2}}$$

$$V_{out} = \frac{R_{2}}{R_{1}} (V_{2} - V_{1})$$

But these do NOT work when Vin>0. Why? ...

6

Inverting Amplifier

$$v^{+} = v^{-} = 0$$

$$i^{-} = 0 \rightarrow i_{R} = \frac{V_{in}}{R_{1}}$$

$$V_{out} = -i_{R} \cdot R_{2} = -V_{in} \frac{R_{2}}{R_{1}}$$

Amplifier/subtract

$$v^{+} = v^{-}$$

$$v^{+} = V_{2} \frac{R_{2}}{R_{1} + R_{2}}$$

$$v^{-} = V_{out} + R_{2} \frac{V_{1} - V_{out}}{R_{1} + R_{2}}$$

$$V_{out} = \frac{R_{2}}{R_{1}} (V_{2} - V_{1})$$

Need a NEGATIVE power supply! (Since Vin is inverted.)

Saturation

- Positive feedback is unstable and usually leads to saturation of the output voltage
 - Positive Feedback is not very useful for linear tasks, but it can be useful for other jobs...
 - **Create "digital" signals from analog sources**

$$\begin{split} v^{+} &= v^{-} = V_{ref} \\ i^{+} &= 0 \to v^{+} = V_{out} + R_{2} \frac{V_{in} - V_{out}}{R_{1} + R_{2}} \\ V_{out} &= \frac{R_{1} + R_{2}}{R_{1}} V_{ref} - \frac{R_{2}}{R_{1}} V_{in} \end{split}$$

- While the "ideal" math says that the system should be linear, in reality positive feedback saturates the $_{\text{-V}_{\rm cc}}$ -output to the input voltages (+/- Vcc)
 - Can use R₂=∞ (open, no feedback)

Active Filters

- **OpAmps allow active filtering of signals**
 - The OpAmp provides power to follow the signals better
 - Feedback increases the performance of the filters
 - Enables to create both differentiators (high pass) and integrators (low

Real Operational Amplifiers

- Remember the non-ideal conditions
- Ideal

Real

- Non-linear
- Frequency dependent
- **Offsets**
- **Saturation**
- **Hysteresis**
- **Temperature dependant**