

מבני נתונים ומבוא לאלגוריתמים מפגש הנחיה מס' 12

מדעי המחשב, קורס מס' 20407 סמסטר 2016ב

מנחה: ג'ון מרברג

?מה ראינו במפגש הקודם

- הרחבה של מבני נתונים (המשך)
- הרחבה הכללה של תחזוקת שדה מרחיב
- דוגמאות נוספות להרחבה של עץ אדום שחור -
 - חזרה (חלק ראשון)
 - הגדרת מבנה נתונים מופשט (ADT) ■
- הפוטנציאל של כל אחד ממבני הנתונים הבסיסיים
- שילוב מספר מבני נתונים בסיסיים לצורך הגדרת ADT שילוב

מפגש שנים-עשר (אחרון)

נושא השיעור

- טיפים לעבודה בבחינה 🔳
 - חזרה (המשך) ■
 - סימונים אסימפטוטים -
 - נוסחאות נסיגה
 - שיטת האיטרציה 🖣
 - שיטת האב 🖣
- מיון, חיפוש, בחירה, דירוג -
 - תרגילים ככל שנספיק -

מבוסס על מצגת של ברוך חייקין ואיציק בייז

טיפים לעבודה בבחינה

- כדאי לעבור תחילה על כל הבחינה כל השאלות
 - ניתן לענות על השאלות בסדר כלשהו
 - התחילו עם השאלה הנוחה לכם
- אל "תתקעו" בשאלה שאין לכם יכולת להתקדם בה חזרו אליהמאוחר יותר
- כשנגשים לפתור שאלה, קודם יש לקרוא היטב ולהבין את השאלה
 - הרבה טעויות נובעות מחוסר הבנה של השאלה
 - אם אפשר, קחו דוגמא כדי לבחון את אופי הבעיה, או להבין כיצד האלגוריתם הנתון או הנדרש מתנהג
 - ניתן לצטט טענות ונוסחאות מחומר הלימוד ללא הוכחה
 - חשוב לציין מהיכן נלקחו − למען הסר ספק ■
 - מומלץ לבצע סימולציה מלאה של בחינה בתנאים אמיתיים
 - זמן מוקצב, חומר כתוב בלבד, ללא מחשב ואינטרנט 🔳

טיפים לעבודה בבחינה (המשך)

הצגה של אלגוריתם

- יש לתת <u>תמיד</u> הסבר מילולי כללי (קצר) לכל אלגוריתם שאתם נדרשים להציג
 - אם נדרשתם ל<u>כתוב</u> את האלגוריתם ■
- כתבו בפסודו-קוד באופן ברור ומדויק, עם סימונים עקביים, אינדנטציה
 - מומלץ להיעזר במספרי שורות בהסברים והוכחות
 - אין צורך להעתיק תוכן של אלגוריתמים ידועים, אלא רק לקרוא להם 🗨
 - אם נדרשתם <u>לתאר</u> את האלגוריתם ■
 - תנו תיאור מובנה וממצה בשפה חופשית
 - ברמת פירוט סבירה בהתאם לבעיה 🗨
 - יש להראות <u>תמיד</u> את נכונות האלגוריתם, כלומר לטעון מדוע הוא נותן פתרון לבעיה
 - עם או בלי הוכחה פורמאלית לפי הנדרש ולפי שיקולכם
 - יש לנתח <u>תמיד</u> את זמן הריצה האסימפטוטי

תרגיל: סימונים אסימפטוטים

שאלה 1

ענו על כל אחת מהשאלות הבאות. לכל תשובה שלילית, הוסיפו הוכחה; לכל תשובה חיובית, הביאו דוגמה של אלגוריתם (רצוי אלגוריתם ידוע).

- O(n) במקרה הגרוע; האם זה אפשרי שהוא רץ בזמן בזמן $O(n^2)$ במקרה הגרוע שהוא רץ בזמן בזמן על חלק מהקלטים שלו!
- O(n) במקרה הגרוע; האם זה אפשרי שהוא רץ בזמן בזמן $O(n^2)$ במקרה הגרוע שהוא רץ בזמן 20.2 על כל הקלטים שלו!
- O(n) במקרה הגרוע; האם זה אפשרי שהוא רץ בזמן $\Theta(n^2)$ במקרה הגרוע שהאלגוריתם $O(n^2)$ בזמן על חלק מהקלטים שלו!
- O(n) במקרה אפשרי שהוא רץ בזמן $\Theta(n^2)$ במקרה הגרוע; האם זה אפשרי שהוא רץ בזמן $\Theta(n^2)$ על בל הקלטים שלו!

הערה: ניתן לכתוב את התשובות בכל צורה: עברית, פסאודו-קוד, שפת תכנות (רצוי בצורה הקצרה ביותר).

שיטת האב – הגדרה פורמאלית

- a≥1 ,b>1 כאשר $T(n) = aT(\frac{n}{b}) + f(n)$ כאשר 1
 - השיטה מבחינה בין שלשה מקרים של עלות העבודה בעץ הקריאות:
- 1. הגורם הדומיננטי הוא עלות העבודה המתבצעת בעלים (= מספר העלים)

$$T(n) = \Theta(n^{\log_b a})$$
 אם קיים קבוע $\varepsilon > 0$ כך ש $\varepsilon > 0$ כך ש $\varepsilon > 0$ אם קיים קבוע

2. העבודה מתחלקת באופן שווה בין כל הרמות בעץ

$$T(n) = \Theta(n^{\log_b a} \log n)$$
 אם $f(n) = \Theta(n^{\log_b a})$

3. הגורם הדומיננטי הוא עלות העבודה בשורש

$$T(n) = \Theta(f(n))$$
 אַז $f(n) = \Omega(n^{\log_b a} n^{arepsilon})$ -כך ש $arepsilon > 0$ אַז $arepsilon > 0$ אַם קײם קבוע

במקרה 3 חייב להתקיים גם <u>תנאי הרגולריות</u> על f(n) *כדלקמן:*

$$n \ge n_0$$
 לכל $af(\frac{n}{b}) \le cf(n)$ -קיימים קבועים 1 $c < 1$ ו- $c < 1$

(*) הערה לגבי היחס בין הגדלים במקרים 1, 3:

 $n^{arepsilon}$ נשים לב שהגורם הדומיננטי חייב להיות גדול <u>פולינומיאלית</u> מהגורם השני, בפקטור של

מיון מבוסס השוואות

	Time					
Sort	Average	Best	Worst	Space	Stability	Remarks
Bubble sort	O(n^2)	O(n^2)	O(n^2)	Constant	Stable	Always use a modified bubble sort
Modified Bubble sort	O(n^2)	O(n)	O(n^2)	Constant	Stable	Stops after reaching a sorted array
Selection Sort	O(n^2)	O(n^2)	O(n^2)	Constant	Stable	Even a perfectly sorted input requires scanning the entire array
Insertion Sort	O(n^2)	O(n)	O(n^2)	Constant	Stable	In the best case (already sorted), every insert requires constant time
Heap Sort	O(n*log(n))	O(n*log(n))	O(n*log(n))	Constant	Instable	By using input array as storage for the heap, it is possible to achieve constant space
Merge Sort	O(n*log(n))	O(n*log(n))	O(n*log(n))	Depends	Stable	On arrays, merge sort requires O(n) space; on linked lists, merge sort requires constant space
Quicksort	O(n*log(n))	O(n*log(n))	O(n^2)	Constant	Stable	Randomly picking a pivot value (or shuffling the array prior to sorting) can help avoid worst case scenarios such as a perfectly sorted array.

חיפוש/בחירה/דירוג/בניה

במערך 🏻

- O(n) חיפוש לינארי
- במערך ממוין $O(\log n)$ חיפוש בינארי
 - $\mathsf{O}(n)$ מציאת מינימום/מקסימום מציאת \blacksquare
- O(n) בחירת האיבר ה- בסדר הממוין
 - O(n) דירוג איבר נתון

בטבלת גיבוב

- חיפוש O(1) בממוצע
- (בגיבוב עם שרשור) O(n) בניה

בערמה 🔳

- O(n) חיפוש
- אך לא שניהם מציאת מינימום או מקסימום O(1) אך א
 - O(n) בניה

בעץ אדום שחור 🔳

- $O(\log n)$ חיפוש
- (עם תחזוקת שני משתנים O(1)) $O(\log n)$ מציאת מינימום ומקסימום O(1)
 - (עץ א"ש עם הרחבה) בחירה ודירוג $O(\log n)$ בעץ ערכי מיקום
 - $O(n\log n)$ בניה

תרגיל: מיון מניה

nעד בתחום בתחום שלמים מכילה מספרים כל קבוצה כל ה $S_1, S_2, ..., S_m$ קבוצות mנתונות לי

נסמן את גודל הקבוצה ה-i ב- $|S_i|$ ב- $|S_i|$

 $\sum_{i=1}^{m} |S_i| = n$ נתון כי

כתוב אלגוריתם הממיין את כל m הקבוצות (כלומר, האלגוריתם צריך להחזיר m רשימות ממויינות).

The state of the s

 $O(m\cdot n)$ וולא (ולא O(n) זמן הריצה של האלגוריתם צריך להיות

רמז: השתמש במיון-מניה.

תרגיל: שכיחות של מפתחות

הציעו מבנה נתונים S התומך בפעולות הבאות (N מציין את מספר האיברים ב-S התומך בפעולות הבאות מספר המפתחות השונים זה מזה):

- ${}_iS$ במבנה אחר המפתח: SEARCH ${}_iS$
- k למבנה איבר חדש בעל המפתח ווא וואכנסת: INSERT (S,k)
- (S,k) מחיקת איבר כלשהו בעל המפתח ו יבר פור פור יבר וויקת מחיקת איבר כלשהו בעל המפתח וויקת איבר יבר יבר וויקת
- k שבמבנה k שבמבנה בעלי המפתח החזרת מספר האיברים בעלי המפתח יהדורת: FREQUENCY (S,k)
- N החזרת ערך המיקום ה- i של המבנה S (האיבר ה- i הקטן ביותר בין כל :SELECT (S,i) האיברים של S).

 $\Theta(\lg n)$ זמן הריצה הנדרש של כל אחת מהפעולות הינו

חיפוש מפתח לפי דירוג נתון בעץ ערכי מיקום

OS-Select(x, i)

- 1. $r \leftarrow size[left[x]] + 1$
- 2. **if** i = r
- 3. then return x
- 4. if i < r
- 5. **then return** OS-Select(left[x], i)
- 6. **else return** OS-Select(right[x], i r)
- בהינתן צומת *x* ודירוג *i*, מצא בתת-העץ המושרש ב-*x* את הצומת שמפתחו מדורג במקום ה-*i בסדר הממוין של המפתחות* בתת-העץ
- ות את *i* הרעיון הוא להשוות את *x* לדירוג *r* של *שורש תת-העץ*

חיפוש מפתח לפי דירוג נתון בעץ שכיחויות

Freq-Select(x, i)

- 1. $r \leftarrow size[left[x]] + 1$
- 1.5 $s \leftarrow r + count[x] 1$
- 2. if $i \neq r \ r \leq i \leq s$
- then return x head [x]
- if i < r
- then return Freq-Select(left[x], i) 5.
- else return Freq-Select(right[x], i xs) 6.

,i בהינתן צומת x ודירוג x-מצא בתת-העץ המושרש ב את הצומת שמפתחו מדורג במקום ה-*i בסדר הממוין של המפתחות* בתת-העץ

> i הרעיון הוא להשוות את <u>לטווח הדירוגים</u> של *מופעי* המפתח של x

Freq-Select(root[T], i) קריאה חיצונית:

7מן ריצה: O(lg*n*)

מופעים *count*[x] איברים איברים

X

קוד בכחול נכנס קוד באדום יוצא

תרגיל: מטריצה

שאלה 3

הציעו מבנה נתונים לתחזוקת מטריצה ריבועית $M\left[n,n\right]$. המבנה חייב לתמוך בפעולות הבאות בזמנים הנדרשים :

 $\Theta(n^2)$ אתחול המטריצה (כל התאים מקבלים את הערך ואריצה (כל המטריצה) אתחול המטריצה (ואריצה ואים מקבלים את יוער ואריצה וואריצה אתחול המטריצה וואריצה אתחול המטריצה וואריצה אים מקבלים את הערך וואריצה אתחול המטריצה וואריצה אחריצה וואריצה וו

M[i,j] אמן הריצה : READig(M,i,jig)

O(1) זמן הריצה ; $M[i,j] \leftarrow v$ העדכון : UPDATE(M,i,j,v)

;i< j , (i,j) לכל , $M\bigl[i,j\bigr]\leftrightarrow M\bigl[j,i\bigr]$ החלפת האיברים : $TRANSPOSE\bigl(M\bigr)$

; O(1): זמן הריצה

 $\mathcal{C}(1)$ זמן הריצה איברי המטריצה לכל איברי הוספת הערך הוספת הערך ווספת הערך ווספת הערך ווספת ישריצה UPGRADE(M,d)

O(1) אמן הריצה; M איברים כל האיברים סכום החזרת: $SUM\left(M
ight)$