CSE 560 Computer Systems Architecture

Multiprocessors

Flynn's Taxonomy

- Proposed by Michael Flynn in 1966
- SISD single instruction, single data
 - · Traditional uniprocessor
- SIMD single instruction, multiple data
 - Execute the same instruction on many data elements
 - · Vector machines, graphics engines
- MIMD multiple instruction, multiple data
 - Each processor executes its own instructions
 - · Multicores are all built this way
 - SPMD single program, multiple data (extension proposed by Frederica Darema)
 - MIMD machine, each node is executing the same code
- MISD multiple instruction, single data
 - · Systolic array

Shared-Memory Multiprocessors

Conceptual model

- The shared-memory abstraction
- Familiar and feels natural to programmers
- Life would be easy if systems actually looked like this...

Distributed-Memory Multiprocessors

...but systems actually look more like this

- Memory is physically distributed not cache coherent!
- Separate address spaces
- Arbitrary interconnect custom, LAN, WAN

Connect Processors via Network

Cluster approach

- Off-the-shelf processors (each of which is a multicore)
- Connect using off-the-shelf networking technology
- Leverages existing components → inexpensive to design
- Cloud service providers do this a lot!
 - Amazon Web Services (AWS)
 - Microsoft Azure
- · Scales up very easily
 - 1000s of nodes
- Long latency to move data
 - Traverse network for one cache line? Nope!

Programming Models

- The interconnect is a Local-Area Network (LAN)
 - TCP/IP message delivery
 - IP addresses
 - Network handles routing, etc.
 - Socket-based programming
- · Higher-level abstractions
 - · Distributed shared memory
 - Works but performs poorly latency again
 - Map-Reduce
 - Hadoop, etc.
 - Streaming data
 - Apache Storm, etc.
 - Explicit message passing (more later)

.

Infiniband Network

- · Standardized technology
 - · Multiple vendors
 - Equipment works together
 - Competition
 - Not trying to be the "Internet"
- Focus on low latency interconnect needs
 - · Minimize protocol processing
 - E.g., easier routing, simpler security model
 - · Fast forwarding
 - · Cut-through packet delivery
 - Remote Direct Memory Access (RDMA)
 - Supports single-ended messaging

Programming Paradigm Message Passing MPI (Message Passing Interface) is de facto standard Used by almost all supercomputing applications Basic Message Passing Processor A Processor B memory network data send(data) receive(data)

Flynn's Taxonomy

- Proposed by Michael Flynn in 1966
- SISD single instruction, single data
 - Traditional uniprocessor
- SIMD single instruction, multiple data
 - Execute the same instruction on many data elements
 - Vector machines, graphics engines
- MIMD multiple instruction, multiple data
 - Each processor executes its own instructions
 - Multicores are all built this way
 - SPMD single program, multiple data (extension proposed by Frederica Darema)
 - MIMD machine, each node is executing the same code
- MISD multiple instruction, single data
 - Systolic array

18

Flynn's Taxonomy

- Proposed by Michael Flynn in 1966
- SISD single instruction, single data
 - · Traditional uniprocessor
- SIMD single instruction, multiple data
 - Execute the same instruction on many data elements
 - · Vector machines, graphics engines
- MIMD multiple instruction, multiple data
 - Each processor executes its own instructions
 - Multicores are all built this way
 - SPMD single program, multiple data (extension proposed by Frederica Darema)
 - MIMD machine, each node is executing the same code
- MISD multiple instruction, single data
 - Systolic array

Systolic Arrays H.T. Kung, "Why Systolic Architectures?," Computer, 1982 INSTEAD OF: MEMORY 5 MILLION OPERATIONS 100 ns PER SECOND AT MOST PE WE HAVE: MEMORY 100 n PE PE PE THE SYSTOLIC ARRAY Figure 1. Basic principle of a systolic system.

