Probing new physics at the LHC: searches for heavy top-like quarks with the ATLAS experiment

Antonella Succurro

PhD candidate in Physics

Bellaterra, 28th of February, 2014

 $\blacktriangleright \ Why? \ {\it bother with "new physics"}$

- lacksquare Why? bother with "new physics"
- ► Where? is all happening

- ▶ Why? bother with "new physics"
- ▶ Where? is all happening
- ▶ What? are we looking at

- ▶ Why? bother with "new physics"
- ▶ Where? is all happening
- ▶ What? are we looking at
- How?

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

Standard Model as an effective theory

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

The LHC complex

A Succurro, IFAE, UAB Bellaterra, 28th of February, 2014

The LHC complex

Parameter	designed	2010	2011	2012
Beam energy (TeV/c) Beta function $\beta*$ (m) Max. No. bunches/beam	7 0.55 2808	3.5 2.0/3.5 368	3.5 1.5/1.0 1380	4 0.6 1380
Max. No. protons/bunch Bunch spacing (ns)	$^{1.15\times10^{11}}_{25}$	1.2×10^{11} 150	1.45×10^{11} 75/50	1.7×10^{11} 50
Peak luminosity (cm ⁻² s ⁻¹) Emittance ε_n (μ rad) Max. $< \mu >$	1×10^{34} 3.75	2.1×10^{32} 2.0 4	3.7×10^{33} 2.4 17	7.7×10^{33} 2.5 37

AD Antiproton Decelerator CTF=3 Clic Test Facility CNLS Cern Neutrinos to Gran Sasso ISOLDE: Isotope Separator OnLine DEvice

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n=156 Neutrons Time Of Right

The ATLAS Detector

The ATLAS Detector

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

Modelling of hadron collisions

want to do physics at hadron colliders? need a good understanding of incoming hadrons

Modelling of hadron collisions

Drawings from [1]

$$E(p_1) = 4 \text{ TeV}$$

$$E(p_2) = 4 \text{ TeV}$$

Quarks are distributed according to PDFs inside the proton

intial energy unknown

Hard scattering of two partons

Parton showering

Parton showering

Hadronization

Final particle decays

Underlying event simulation

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

Physics objects puzzle

One lepton

Many jets

Missing transverse energy

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

Allowed decay modes

Singlet	Decay modes	
T(+2/3)	W^+b , Ht , Zt	
B(-1/3)	W^-t , Hb , Zb	
X(+5/3)	W^+t	
Y(-4/3)	W^-b	
Doublet	Decay modes	
$\left(\begin{array}{c} T \\ B \end{array}\right)$	W^+b , Ht , Zt W^-t , Hb , Zb	
$\left(\begin{array}{c} T \\ X \end{array}\right)$	$Ht, Zt \ W^+ t$	
$\begin{pmatrix} B \\ Y \end{pmatrix}$	Hb, Zb W^-b	

 Build a 2-dim plane to scan model mixing

 Build a 2-dim plane to scan model mixing

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas
- Set exclusion using *CL*_s technique [2, 3]

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas
- Set exclusion using *CL*_s technique [2, 3]
- First published results at 7 TeV Phys.Lett. B718 (2012) [4]

Preselection

Two searches using common analysis framework:

 $ightharpoonup T\bar{T} o Wb + X$

 $ightharpoonup T\bar{T} \rightarrow Ht + X$

ATLAS-CONF-2013-060 [5] ATLAS-CONF-2013-018 [6]

Preselection stage	Requirements
Single lepton	One electron or muon matching trigger
QCD rejection	$E_{ m T}^{ m miss} > 20~{ m GeV} \ E_{ m T}^{ m miss} + m_{ m T} > 60~{ m GeV}$
Jet multiplicity	≥ 4 jets ≥ 1 <i>b</i> -tagged jets

orthogonality requirements:

- ▶ $T\bar{T} \rightarrow Wb + X$: reject events with >6 jets and ≥ 3 *b*-jets
- ▶ $T\bar{T} \rightarrow Ht + X$: reject events in the low *b*-tags channel with $H_T < 700$ GeV

Yields in the preselection region "blinded" as: $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(^*\!)$

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\bar{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
$t\bar{t}$ MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 \pm 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- QCD multi-jet events have high cross-section
- Data-drive estimation
- Matrix-method

$$N_{\rm fake}^{\rm tight} = \frac{\epsilon_{\rm fake}}{\epsilon_{\rm real} - \epsilon_{\rm fake}} (N^{\rm loose} \epsilon_{\rm real} - N^{\rm tight})$$

Yields in the preselection region "blinded" as: $H_T^{4j} < 800 \ {\rm GeV} \ (*)$

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\bar{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
$t\bar{t}$ MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$T\bar{T}$ (600) chiral Data	36 ± 2 256993 ± 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- s-channel and Wt production generated with MC@NLO+HERWIG
- ► *t*-channel generated with ACERMC+PYTHIA
- $m_t = 172.5 \text{ GeV}$
- NNLO theoretical cross sections

Yields in the preselection region "blinded" as: $H_T^{4j} < 800 \ {\rm GeV} \ (*)$

	\geq 4 jets, \geq 1 b -tags
Multi-jet Single top	6264 ± 74 14375 ± 107
Diboson	548 ± 12
Z+jets W+jets	5804 ± 146 35921 ± 525
$t\bar{t}V$ $t\bar{t}H$ (125)	680 ± 2 220 ± 1
tī MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 \pm 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- ► Diboson production generated with HERWIG
- NLO theoretical cross section

Yields in the preselection region "blinded" as: $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~({\rm *})$

	\geq 4 jets, \geq 1 b -tags
Multi-jet Single top	6264 ± 74 14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets tīV	35921 ± 525
tīV tīH (125)	680 ± 2 220 ± 1
tt MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 \pm 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- Z boson production in association with jets generated with up to five additional partons with ALPGEN+HERWIG
- Samples generated separately for Z+light jets, Zbb+jets, and Zcc+jets
- ► Inclusive NNLO theoretical cross section

Yields in the preselection region "blinded" as: $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$

	\geq 4 jets, \geq 1 <i>b</i> -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
ttV	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
$t\bar{t}$ MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 \pm 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- W boson production in association with jets generated with up to five additional partons with ALPGEN+HERWIG
- Samples generated separately for W+light jets, Wbb̄+jets, Wcc̄+jets, and Wc+jets
- Normalized to data-driven prediction

Yields in the preselection region "blinded" as: $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(^*\!)$

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\overline{t}V$	680 ± 2
ttH (125)	220 ± 1
$t\bar{t}$ MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 \pm 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- t̄t produced in association with a W or Z boson generated with MADGRAPH+PYTHIA
- $m_t = 172.5 \text{ GeV}$
- NLO theoretical cross section

Yields in the preselection region "blinded" as: $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~({\rm *})$

	\geq 4 jets, \geq 1 <i>b</i> -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\overline{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
tt MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 ± 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- $lacktriangleright tar{t}$ produced in association with a Higgs boson generated with PYTHIA
- $m_t = 172.5 \text{ GeV}, m_H = 125 \text{ GeV}$
- ► Higgs decay modes considered: $H \rightarrow b\bar{b}, c\bar{c}, gg, W^+W^-$
- NLO theoretical cross section

Yields in the preselection region "blinded" as: $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\bar{t} ext{V}$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
tt MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 \pm 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- ► $t\bar{t}$ pair production in association with jets generated with MC@NLO+HERWIG
- $m_t = 172.5 \text{ GeV}$
- ▶ NNLO theoretical cross section

but

MC@NLO does not model well high-jet multiplicity regions!

- ► Additional samples generated with ALPGEN+HERWIG
- Separate samples are generated for \$\tau\tau\ta\text{t}\$+light jets with up to three additional light partons, and for \$t\tar{t}\$+heavy-flavour jets including \$t\tar{t}b\tar{b}\$ and \$t\tar{t}c\tar{c}\$
- $m_t = 172.5 \text{ GeV}$
- NNLO theoretical cross section

Yields in the preselection region "blinded" as: $H_{\scriptscriptstyle T}^{4j} < 800~{
m GeV}$ (*)

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\bar{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
tt MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 \pm 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{i=1}^4 p_T(j)$$

Yields for $t\bar{t}$ predicted with ALPGEN are $\sim 3-8\%$ higher than MC@NLO

Yields in the preselection region "blinded" as: $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$

	\geq 4 jets, \geq 1 <i>b</i> -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\bar{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
tt MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$T\bar{T}$ (600) chiral	36 ± 2

Data	256993 ± 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{miss} + \sum_{j=1}^4 p_T(j)$$

- ► *TT* singlet production generated with PROTOS+PYTHIA
- ▶ Branching ratio to each decay mode (*Wb*, *Zt* and *Ht*) is set to 1/3
- Events are reweighted at the analysis level in order to reproduce any desired branching ratio configuration
- m_T values generated from 350 GeV to 850 GeV in steps of 50 GeV
- m_H = 125 GeV, all Higgs boson decay modes are considered
- NNLO theoretical cross section

m_T (GeV)	$BR(T \rightarrow Wb)$	$BR(T \rightarrow Zt)$ Singlet	$BR(T \rightarrow Ht)$
600	0.494	0.194	0.312
600	0.000	Doublet 0.383	0.617

Systematic uncertainties - Shape and Norm

Systematic uncertainty	$T\bar{T} o Wb + X$		$T\bar{T} \rightarrow Ht + X$	
	Status	Components	Status	Components
Luminosity	N	1	N	1
Lepton ID+reco+trigger	N	1	N	1
Jet vertex fraction efficiency	SN	1	SN	1
Jet energy scale	SN	1	SN	8
Jet energy resolution	SN	1	SN	1
b-tagging efficiency	SN	9	SN	9
c-tagging efficiency	SN	5	SN	5
Light jet-tagging efficiency	SN	1	SN	1
$t\bar{t}$ cross section	N	1	N	1
$t\bar{t}V$ cross section	N	1	N	1
$t\bar{t}H$ cross section	-	-	N	1
Single top cross section	N	1	N	1
Dibosons cross section	N	1	N	1
W+jets normalization	N	5	-	-
Z+jets normalization	N	1	-	-
V+jets normalization	-	-	N	1
Multijet normalization	-	-	N	1
$tar{t}$ modelling	SN	3	SN	3
V+jets modelling	SN	1	-	-
$t\bar{t}$ +heavy-flavour fractions	-	-	N	1

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for *TT* in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

Strategy

W boson reconstruction

 W_{lep} reconstructed using lepton and "neutrino": p_X, p_Y from E_T^{miss}, p_Z from $M_W^2 = (P_l + P_\nu)^2$

	I	OOSE selection
SR0	Pres	selection
SR1	+	$\geq 1 W_{\rm had}$ candidates
SR2	+	$H_T^{4j} > 800 \text{ GeV}$
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$
SR4	+	$p_{\rm T}(b_2) > 80~{ m GeV}$
SR5	+	$\Delta R(\ell, \nu) < 1.2$

Loose selection			
SR0	Pres	selection	
SR1	+	$\geq 1 W_{\rm had}$ candidates	
SR2	+	$H_T^{4j} > 800 \text{ GeV}$	
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$	
SR4	+	$p_{\mathrm{T}}(b_2) > 80 \; \mathrm{GeV}$	
SR5	+	$\Delta R(\ell, \nu) < 1.2$	

]	Loose selection
SR0	Pre	eselection
SR1	+	$\geq 1 W_{\rm had}$ candidates
SR2	+	$H_T^{4j} > 800 \text{ GeV}$
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$
SR4	+	$p_{\rm T}(b_2) > 80~{ m GeV}$
SR5	+	$\Delta R(\ell, \nu) < 1.2$

L	OOSE selection
Pres	selection
+	$\geq 1 W_{\rm had}$ candidates
+	$H_T^{4j} > 800 \text{ GeV}$
+	$p_{\rm T}(b_1) > 160~{ m GeV}$
+	$p_{\rm T}(b_2) > 80~{ m GeV}$
+	$\Delta R(\ell, u) < 1.2$
	Pres

TIGHT selection SR5 LOOSE selection SR6 + $\min \Delta R(\ell,b) > 1.4$ SR7 + $\min \Delta R(W_{\rm had},b) > 1.4$

]	Loose selection
SR0	Preselection	
SR1	+	$\geq 1 W_{\rm had}$ candidates
SR2	+	$H_T^{4j} > 800 \text{ GeV}$
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$
SR4	+	$p_{\rm T}(b_2) > 80 {\rm ~GeV}$
SR5	+	$\Delta R(\ell, \nu) < 1.2$

SR5 Loose selection SR6 + $\min \Delta R(\ell,b) > 1.4$ SR7 + $\min \Delta R(W_{\rm had},b) > 1.4$

TIGHT selection

	I	LOOSE selection
SR0	Pre	selection
SR1	+	$\geq 1 W_{\rm had}$ candidates
SR2	+	$H_T^{4j} > 800 \text{ GeV}$
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$
SR4	+	$p_{\mathrm{T}}(b_2) > 80~\mathrm{GeV}$
SR5	+	$\Delta R(\ell, u) < 1.2$

	7	NIGHT selection
SR5	Loc	SE selection
SR6	+	$\min \Delta R(\ell,b) > 1.4$
SR7	+	$\min \Delta R(W_{\text{had}}, b) > 1.4$

	Ι	LOOSE selection
SR0	Pre	selection
SR1	+	$\geq 1 W_{\rm had}$ candidates
SR2	+	$H_T^{4j} > 800 \text{ GeV}$
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$
SR4	+	$p_{\rm T}(b_2) > 80~{ m GeV}$
SR5	+	$\Delta R(\ell, \nu) < 1.2$

SR5 LOOSE selection SR6 + $\min \Delta R(\ell, b) > 1.4$ SR7 + $\min \Delta R(W_{\rm had}, b) > 1.4$

TIGHT selection

Comparison data vs prediction

Check agreement between data and background prediction

Define regions depleted in signal

	Loose but $\Delta R(\ell, \nu) > 1.2$		
$t\bar{t'}(600~\text{GeV})$	$18.47 \pm 1.48 {}^{+1.09}_{-1.64}$		
$t\bar{t}$ W +jets Z +jets Diboson Single top $t\bar{t}V$ Multijet	$ \begin{array}{c} 173.13 \pm 8.82 \substack{+46.92 \\ -48.59} \\ 30.64 \pm 9.78 \substack{+13.74 \\ -12.43} \\ 11.68 \pm 5.93 \substack{+5.89 \\ -6.96} \\ 0.29 \pm 0.19 \substack{+0.17 \\ -0.17} \\ 21.46 \pm 2.54 +2.60 \\ -2.54 \\ 4.21 \pm 0.16 \substack{+1.33 \\ -1.33 \\ 0.49 \pm 9.15 \substack{+0.25 \\ -0.55 \substack{+0.25 \\ -0.25 \tiny{+0.25 \tiny{+0.25 \\ -0.25 \tiny{+0.25 \tiny{+0.25 \\ -0.25 \tiny{+0.25 -0.25 \tiny{+0.25$		
withiget			
Total bkg.	$241.90 \pm 14.70 {}^{+53.57}_{-55.95}$		
Data	250		

Yields in signal region

	Loose	TIGHT
$tar{t}$ $tar{t}V$ W+jets Z+jets Single top Dibosons	264 ± 80 5.1 ± 1.8 16 ± 11 1.1 ± 1.4 30 ± 7 0.21 ± 0.15	$\begin{array}{c} 10\pm 6 \\ 0.5\pm 0.2 \\ 6\pm 5 \\ 0.2\pm 0.5 \\ 4.4\pm 1.6 \\ 0.06\pm 0.05 \end{array}$
Tot.Bkg. Data	$317 \pm 90 \\ 348$	$\begin{array}{c} 21\pm 9 \\ 37 \end{array}$
$T\bar{T}(600 \text{ GeV})$ Chiral t' T Singlet	88 ± 10 41 ± 4	54 ± 7 20.3 ± 2.2

Discriminating variable $\Rightarrow T$ reconstructed mass $\downarrow \downarrow$

Pair b-jets and W boson candidates in order to get $\min \Delta(M_{\mathrm{leo}}, M_{\mathrm{had}})$

	I	OOSE selection	
SR0	Preselection		
SR1	+	$\geq 1 W_{\rm had}$ candidates	
SR2	+	$H_T^{4j} > 800 \text{ GeV}$	
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$	
SR4	+	$p_{\rm T}(b_2) > 80 \; { m GeV}$	
SR5	+	$\Delta R(\ell, \nu) < 1.2$	

		TIGHT selection
SR5	Loc	SE selection
SR6	+	$\min \Delta R(\ell, b) > 1.4$
SR7	+	$\min \Delta R(W_{\text{had}}, b) > 1.4$

	Loose selection					
SR0	Preselection					
SR1	+ $\geq 1 W_{\rm had}$ candidates					
SR2	+	$H_T^{4J} > 800 \text{ GeV}$				
SR3	+	$p_{\rm T}(b_1) > 160~{\rm GeV}$				
SR4	+ $p_{\rm T}(b_2) > 80 { m GeV}$					
SR5	+	$\Delta R(\ell, \nu) < 1.2$				
	TIGHT selection					
SR5	Loc	OSE selection				
SR6	R6 + $\min \Delta R(\ell, b) > 1.4$					

 $\min \Delta R(W_{\text{had}}, b) > 1.4$

SR7

	LOOSE selection				
SR0	SRO Preselection				
SR1	+	$\geq 1 W_{\rm had}$ candidates			
SR2	+	$H_T^{4j} > 800 \text{ GeV}$			
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$			
SR4	+	$p_{\rm T}(b_2) > 80~{ m GeV}$			
SR5	+	$\Delta R(\ell, \nu) < 1.2$			
	TIGHT selection				
SR5	Loose selection				
SR6	+	$\min \Delta R(\ell, b) > 1.4$			

 $\min \Delta R(W_{\text{had}}, b) > 1.4$

SR7

	I	LOOSE selection		
SR0	Preselection			
SR1	+	$\geq 1 W_{\rm had}$ candidates		
SR2	+	$H_T^{4j} > 800 \text{ GeV}$		
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$		
SR4	+	$p_{\rm T}(b_2) > 80 { m ~GeV}$		
SR5	+	$\Delta R(\ell, \nu) < 1.2$		

Loose selection				
SR0	Pre	eselection		
SR1	+	$\geq 1 W_{\rm had}$ candidates		
SR2	+	$H_T^{4j} > 800 \text{ GeV}$		
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$		
SR4	+	$p_{\rm T}(b_2) > 80 { m ~GeV}$		
SR5	+	$\Delta R(\ell, \nu) < 1.2$		

	L	OOSE selection
SR0	Pres	selection
SR1	+	$\geq 1 W_{\rm had}$ candidates
SR2	+	$H_T^{4j} > 800 \text{ GeV}$
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$
SR4	+	$p_{\rm T}(b_2) > 80~{ m GeV}$
SR5	+	$\Delta R(\ell, \nu) < 1.2$

	TIGHT selection	
SR5	Loose selection	
SR6	+ $\min \Delta R(\ell, b) > 1.4$	
SR7	+ $\min \Delta R(W_{\text{had}}, b) > 1$.4

	Ι	LOOSE selection
SR0	Pre	selection
SR1	+	$\geq 1 W_{\rm had}$ candidates
SR2	+	$H_T^{4j} > 800 \text{ GeV}$
SR3	+	$p_{\rm T}(b_1) > 160~{ m GeV}$
SR4	+	$p_{\rm T}(b_2) > 80~{ m GeV}$
SR5	+	$\Delta R(\ell, \nu) < 1.2$
	-	FIGHT selection

Most relevant systematic uncertainties

	$T\bar{T}$ (600 GeV)	t ar t	Non- $t\bar{t}$
Total [%]	+14/-15	+59/-59	+42/-35
Main contributions [%] Jet energy scale	+6.6/-8.4	+15/-15	+33/-22
$t\bar{t}$ modelling: NLO MC generator	-	+48/-48	-
$t\bar{t}$ modelling: PS and fragm $t\bar{t}$ modelling: ISR/FSR	_	+25/-25 +8.8/-8.8	_

Results

Results

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

Conclusions and outlook

Strategy

$$T\bar{T} \rightarrow Ht + X$$

$$T \rightarrow Ht \stackrel{\nearrow}{\searrow} bbWb \rightarrow bbbl\nu \\ \searrow WWWb \rightarrow qqqqbl\nu \\ + \bar{T} \rightarrow Wb/Zt/Ht$$

as a minimum 6 total jets in the event $(T\bar{T} \to HtWb)$

$$H_{\mathrm{T}} = p_{\mathrm{T}}(l) + E_{\mathrm{T}}^{\mathrm{miss}} + \sum_{j=1}^{\mathrm{Njets}} p_{\mathrm{T}}(j)$$

 \geq 6 jets, \geq 4 *b*-jets

Event selection

maximize signal acceptance

"2 b -tagged jets"	\geq 6 jets =2 <i>b</i> -tagged jets orthogonality cut: $H_{\rm T} <$ 700 GeV
"3 b-tagged jets"	≥ 6 jets =3 <i>b</i> -tagged jets
" $≥4$ b -tagged jets"	\geq 6 jets \geq 4 <i>b</i> -tagged jets

bad modeling \Rightarrow Simultaneous fit to data of $H_{\mathbb{T}}$ variable

Scale of $t\bar{t}$ components

 $t\bar{t}$ +light: 0.87 \pm 0.02 (stat.) $t\bar{t}$ +HF: 1.35 \pm 0.11 (stat.)

Maximum yields discrepancy below 5%

Scale of $t\bar{t}$ components

Maximum yields discrepancy below 5%

Scale of $t\bar{t}$ components

 $t\bar{t}$ +light: 0.87 \pm 0.02 (stat.) $t\bar{t}$ +HF: 1.35 \pm 0.11 (stat.)

Maximum yields discrepancy below 5%

Comparison data vs prediction

Blinding cut: $H_{\rm T} < 700 \text{ GeV}$

Define special blinded regions to check H_T modeling:

at most two jets with $p_{\rm T} >$ 60 GeV, $H_{\rm T} < 1.2$ TeV 2 b-tagged jets 3 b-tagged jets

Yields in signal regions

	2 b-tags	3 b-tags	\geq 4 <i>b</i> -tags
t t +HF	1500 ± 900	900 ± 400	170 ± 70
$t\bar{t}$ +LF	9600 ± 1000	1900 ± 350	75 ± 22
W+jets	250 ± 130	50 ± 30	5 ± 3
Z+jets	50 ± 40	9 ± 6	0.5 ± 0.9
Single top	300 ± 70	75 ± 18	7 ± 3
Diboson	1.7 ± 0.6	0.3 ± 0.1	0.03 ± 0.03
$t\overline{t}V$	70 ± 20	36 ± 12	7 ± 3
$t\bar{t}H$	28 ± 4	31 ± 6	12 ± 3
Multijet	49 ± 23	1.7 ± 0.8	0.15 ± 0.06
Tot.Bkg.	11860 ± 260	2990 ± 210	270 ± 60
Data	11885	2922	318
TT (600)			
doublet	4.3 ± 1.2	94 ± 7	79 ± 18
singlet	2.3 ± 0.4	61 ± 7	36 ± 9

Introduce the scaling factors as nuisance parameters

Most relevant systematic uncertainties

	$T\bar{T}$ (600 GeV)	t ar t	Non- $t\bar{t}$
Total [%]	+14/-15	+59/-59	+42/-35
Main contributions [%] Jet energy scale	+6.6/-8.4	+15/-15	+33/-22
$t\bar{t}$ modelling: NLO MC generator	-	+48/-48	-
$t\bar{t}$ modelling: PS and fragm $t\bar{t}$ modelling: ISR/FSR	_	+25/-25 +8.8/-8.8	_

Results

Results

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

References I

[1] S. Gieseke.

Parton shower monte carlos.

[2] Thomas Junk.

Confidence level computation for combining searches with small statistics.

Nucl.Instrum.Meth., A434:435-443, 1999.

[3] Alexander L. Read.

Presentation of search results: The CL(s) technique.

J.Phys., G28:2693-2704, 2002.

[4] ATLAS Collaboration.

Search for pair production of heavy top-like quarks decaying to a high- p_T W boson and a b quark in the lepton plus jets final state at $\sqrt{s}=7$ TeV with the ATLAS detector.

Phys.Lett., B718:1284-1302, 2012.

References II

[5] ATLAS Collaboration.

Search for pair production of heavy top-like quarks decaying to a high- p_T W boson and a b quark in the lepton plus jets final state in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector.

ATLAS-CONF-2013-060, Jun 2013.

[6] ATLAS collaboration.

Search for heavy top-like quarks decaying to a higgs boson and a top quark in the lepton plus jets final state in pp collisions at $\sqrt{s} = 8$ tev with the atlas detector. ATLAS-CONF-2013-018. Mar 2013.

[7] M. Lamont.

The First Years of LHC Operation for Luminosity Production.

 $in\ Proceedings\ of\ 4th\ International\ Particle\ Accelerator\ Conference\ (IPAC\ 2013),\ 2013.$

Backup

BACKUP SLIDES

LHC parameters

Parameter	designed	2010	2011	2012
Beam energy (TeV/c) Beta function $\beta*$ (m) Max. No. bunches/beam Max. No. protons/bunch Bunch spacing (ns) Peak luminosity (cm ⁻² s ⁻¹) Emittance ε_n (μ rad) Max. $< \mu >$	7 0.55 2808 1.15×10^{11} 25 1×10^{34} 3.75 19	3.5 $2.0/3.5$ 368 1.2×10^{11} 150 2.1×10^{32} 2.0 4	3.5 1.5/1.0 1380 1.45×10 ¹¹ 75/50 3.7×10 ³³ 2.4 17	$\begin{array}{c} 4 \\ 0.6 \\ 1380 \\ 1.7 \times 10^{11} \\ 50 \\ 7.7 \times 10^{33} \\ 2.5 \\ 37 \end{array}$

Table: Overview of some parameters for the LHC performance comparing the design values with their time evolution during the first long run operation in 2010-2013 [7].

$T\bar{T} \rightarrow Wb + X$ 7 TeV vs 8 TeV

7 TeV	8 TeV	
One electron or	muon ⁽⁺⁾	
$E_{ m T}^{ m miss} > 35(20)$ GeV for electron (muon) channel	$E_{\mathrm{T}}^{\mathrm{miss}} > 20 \; \mathrm{GeV}$	
$E_{ m T}^{ m miss} + m_{ m T} > 60~{ m GeV}$		
≥ 3 jets for $W_{ m had}^{ m type~II}$ ≥ 4 jets for $W_{ m had}^{ m type~II}$	$\geq 4~{ m jets}^{(*)}$	
$\geq 1 \ b$ -tagged jets $^{(**)}$		
orthogonality cut reject events with ≥ 6 and ≥ 3 b -tagged jo		
	One electron or $E_{ m T}^{ m miss} > 35(20)$ GeV for electron (muon) channel $E_{ m T}^{ m miss} + m_{ m T} > 6$ ≥ 3 jets for $W_{ m had}^{ m type\ II}$ ≥ 4 jets for $W_{ m had}^{ m type\ II}$ ≥ 1 b -tagged j	

A Succurro, IFAE, UAB

 $H_T^{4j} > 750 \text{ GeV}$

 $H_T^{4j} > 800$

 $\begin{aligned} & & & Preselection \\ & \geq 1 \ \textit{W}_{had} \ candidates^{(x)} \end{aligned}$