1. Общая теоретическая часть

Для поиска множества $\mathcal{X}[t,t_0]$ будем использовать функцию цены

$$V(t,x) = \min_{u(\cdot)} \max_{v(\cdot)} d^2(x_0, \mathcal{X}_0) \mid_{x(t)=x}$$

где $d(x_0, \mathcal{X}_0)$ - расстояние между точкой x_0 и множеством \mathcal{X}_0 , определяемое метрикой $d(x, \mathcal{X}) = \min_{y \in \mathcal{X}} \|x - y\|$. Такой выбор вызван следующими причинами. Мы ищем множество $\mathcal{X}[t, \mathcal{X}_0]$ всех таких точек, что для $\forall x^*(t) \in \mathcal{X}[t, \mathcal{X}_0]$ можно заранее подобрать некоторое управление $u^*(\cdot)$ и некоторое подмножество $\{x^*(t_0)\} \in \mathcal{X}_0$ так, чтобы при любой помехе $v(\cdot)$ гарантировать вхождение $x^*(t) \in \{x(t, u^*(\cdot), \{x^*(t_0)\})\}_{\forall v(\cdot)}$. В рассматриваемой здесь задаче кроме помехи $v(\cdot)$ появляется другой неизвестный параметр $\tau(u, v)$ - момент переключения, в который меняется динамика системы, что приводит к существенному усложениню задачи.

Пусть $\phi(x) = d^2(x_0, \mathcal{X}_0)$, сопряженная к ней:

$$\phi^*(\ell) = \sup_{x} (\langle x, \ell \rangle - d^2(x, \mathcal{X}_0)) = \rho(\ell \mid \mathcal{X}_0) + \frac{\|\ell\|^2}{4},$$

тогда

$$V(t,x) = \min_{u(\cdot)} \max_{v(\cdot)} \sup_{\ell} \left(\langle \ell, x_0 \rangle - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4} \right). \tag{1.1}$$

Найдем выражения для поиска $x_0 \mid_{x(t_1)=x}$. Пусть траектория точки в момент t_1 известна $x(t_1)=x$. Идя в обратном времени, найдем её значение в момент $\tau\leqslant t\leqslant t_1$ при известных B(s),C(s),u(s),v(s) до переключения:

$$x^{(2)}(t,x,u,v) = G_2(t,t_1)x + \int\limits_{t_1}^t G_2(t,s) \left[B_2(s)u_2(s) + C_2(s)v_2(s)\right] ds, \text{при } \tau \leqslant t \leqslant t_1,$$

и после для $t_0 \leqslant t \leqslant \tau$:

$$x^{(2,1)}(t,\tau,x,u,v) = G_1(t,\tau)G_2(\tau,t_1)x + G_1(t,\tau)\int_{t_1}^{\tau} G_2(t,s) \left[B_2(s)u_2(s) + C_2(s)v_2(s)\right] ds +$$

$$+ \int_{\tau}^{t_0} G_1(t,s) \left[B_1(s)u_1(s) + C_1(s)v_1(s)\right] ds , \text{ при } t_0 \leqslant t \leqslant \tau.$$

$$(1.2)$$

Нам необходимо, чтобы момент τ в этих выражениях удовлетворял условию на переключение, так чтобы $\langle x(\tau),c\rangle=\gamma$. Поскольку $d^2(x,\mathcal{X})\geqslant 0$, то $V(x,t)\geqslant 0$. Тогда если $\mathcal{X}[t,t_0]=\{x\mid V(t,x)\leqslant 0\}, \forall t\in [t_0,t_1],$ то достаточно ввести штрафующий член $(\langle x(\tau),c\rangle-\gamma)^2$ в выражение для V(t,x), тем самым обеспечивая для $\mathcal{X}[t,t_0]$ включение только тех траекторий, которые удовлетворяют нашим двум системам и условию на момент переключения.

Так как мы рассматриваем задачу в классе программных управлений, мы не можем строить управление в зависимости от текущего состояния системы, а должны определять его заранее. Поэтому, в формуле для V(t,x) нельзя искать отдельно $\min_{u^{(i)}} \max_{v^{(i)}}$ для каждой из подсистем "до" и "после", так как момент переключения τ не известен заранее. Это означает, что выбираемое управление не может меняться в зависимости от

au. Поскольку в общем случае ограничения на управления для разных подсистем различны, то выбираемое заранее управление должно удовлетворять обоим ограничениям $[u^*(\cdot) \in \mathcal{P}^{(1)}] \wedge [u^*(\cdot) \in \mathcal{P}^{(2)}]$. Поэтому справедливо положить $u(t) \in \mathcal{P}[\mathcal{T}] = \min\{\mathcal{P}^{(1)}[\mathcal{T}], \mathcal{P}^{(2)}[\mathcal{T}]\}$ для множества \mathcal{T} такого, что $\mathcal{T} = \bigcup_{v,u} \tau(v,u) \subseteq [t_0,t]$. Мы будем рассматривать задачу для $\mathcal{P}[t_0,t] = \mathcal{P}^{(1)}[t_0,t] = \mathcal{P}^{(2)}[t_0,t]$.

$$V(t,x) = \min_{u_1, u_2 \in \mathcal{P}} \max_{v_1, v_2 \in \mathcal{W}} \min_{\tau} \left\{ d^2(x_0|_{x(t)=x}, \mathcal{X}_0) + (\langle x(\tau), c \rangle - \gamma)^2 \right\}.$$

Это значит, что искомое множество $\mathcal{X}[t,\mathcal{X}_0]$ в классе программных управлений содержит только те траектории, которые при любой допустимой помехе $v_1(\cdot), v_2(\cdot)$ и при любом $\tau(v,\cdot)$ гарантированно могут попасть на множество $\mathcal{X}[t,\mathcal{X}_0]$ Пока примем $\gamma=0$. Для линеаризации условия на переключение сделаем подстановку

$$\langle x, c \rangle^2 \equiv \max_{\mu} \left\{ \mu \left\langle x, c \right\rangle - \frac{\mu^2}{4} \right\},$$

и, используя (1.1), имеем

$$V(t,x) = \min_{u_1,u_2 \in \mathcal{P}} \max_{v_1,v_2 \in \mathcal{W}} \min_{\tau} \left\{ \max_{\ell} \max_{\mu} \left\{ \left\langle \ell, x_0 \mid_{x(t)=x} \right\rangle + \mu \left\langle x(\tau), c \right\rangle - \frac{\mu^2}{4} - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4} \right\} \right\}.$$

Раскрывая (1.2), получим

$$V(t,x) = \min_{u_1,u_2} \max_{v_1,v_2} \min_{\tau \in [t_0,t]} \max_{\mu} \max_{\mu} \left\{ \langle \ell, G_1(t_0,\tau) G_2(\tau,t) x \rangle + \int_t^{\tau} \langle \ell, G_1(t_0,\tau) G_2(\tau,s) \left[B_2(s) u_2(s) + C_2(s) v_2(s) \right] \rangle \right. ds + \\ + \int_{\tau}^{t_0} \langle \ell, G_1(t_0,s) \left[B_1(s) u_1(s) + C_1(s) v_1(s) \right] \rangle \right. ds + \mu \left. \langle c, G_2(\tau,t) x \rangle + \\ + \mu \int_t^{\tau} \left\langle c, G_2(\tau,s) \left[B_2(s) u_2(s) + C_2(s) v_2(s) \right] \right\rangle \right. ds - \\ - \frac{\mu^2}{4} - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4} \right\}$$

Сгруппируем слагаемые

$$\tilde{S}(\tau, t) = G_2^T(\tau, t)G_1^T(t_0, \tau)\ell + \mu G_2^T(\tau, t)c,$$

$$\tilde{S}_1(t_0, \tau) = G_1^T(t_0, \tau)\ell,$$

имеем

$$V(t,x) = \min_{u_1,u_2} \max_{v_1,v_2} \min_{\tau \in [t_0,t]} \max_{\mu} \max_{\mu} \left\{ \tilde{S}^T(\tau,t)x + \int_t^{\tau} \tilde{S}^T(\tau,s) \left[B_2(s)u_2(s) + C_2(s)v_2(s) \right] ds + \int_t^{t_0} \tilde{S}_1^T(t_0,s) \left[B_1(s)u_1(s) + C_1(s)v_1(s) \right] ds - \int_t^{\tau} \left[\frac{\mu^2}{4} - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4} \right] \right\}$$

$$(1.3)$$

Чтобы эффективно вычислять множества достижимости используется прием, который позволяет заменить поиск множества допустимых траекторий вычислением опорной функции к этому множетсву. Для перехода к опорным функциям требуется менять местами порядок минимумов и максимумов в (1.3), а для этого необходимо выполнение условий теоремы минимакса. Поэтому дальнейшие преобразования выполняются с целью обеспечения этих условий. Одним из достаточных условий перестановки является линейность по минимизирующему или максимизирующему параметру. Наша цель состоим в том, чтобы перенести операции минимума по u_1, u_2 и максимума по v_1, v_2 внутрь выражения функции цены, тем самым сводя минимизацию/максимизацию на функциональном пространстве \mathcal{P}, \mathcal{W} к поиску экстремумов для выпуклых (вогнутых) функций. Первыми меняются местами $\max_{v_1,v_2} \min_{\tau}(\cdot) = \min_{\tau} \max_{v_1,v_2}(\cdot)$. Для примера, сначала рассмотрим функционал

$$T(\tau, v(s)) = \int_{t}^{\tau} v(s)ds$$

Легко видеть, что $T(\tau, v(s))$, являясь линейным по v, не является таковым по τ . Тогда вместо τ возьмем функцию ограниченной вариации $\tau(w) = \phi(w)$ и преобразуем

$$T(\phi(w), v(s)) = \int_{t_0}^t d\phi(w) \int_t^w v(s) ds.$$

Мы заменили множество τ более широким множеством функций $\phi(w)$. Условием нормировки (или одним из) для этих функций служит следующее выражение

$$\int_{t_0}^t d\phi(w) = 1.$$

Теперь функционал $T(\phi, v)$ является линейным по всем аргументам. Аналогично поступим с V(t, x):

$$V(t,x) = \min_{u_1,u_2} \max_{v_1,v_2} \min_{\phi(w)} \max_{\ell(w)} \max_{\mu(w)} \int_{t_0}^{t} d\phi(w) \left\{$$

$$\tilde{S}^T(w,t)x + \int_{t}^{w} \tilde{S}^T(w,s) \left[B_2(s)u_2(s) + C_2(s)v_2(s)\right] ds + \int_{w}^{t_0} \tilde{S}_1^T(t_0,s) \left[B_1(s)u_1(s) + C_1(s)v_1(s)\right] ds - \int_{w}^{t_0} \left[\frac{\mu^2}{4} - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4}\right],$$

Поскольку мы здесь воспользовались перестановкой

$$\int \max_{\ell,\mu} f(w,\ell,\mu) d\phi(w) = \max_{\ell(w),\mu(w)} \int f(w,\ell(w),\mu(w)) d\phi(w)$$

 ℓ, μ теперь функции от $w, \ell = \ell(w)$ и $\mu = \mu(w)$.

Утверждение 1.

$$\max_{x(\cdot)} \int_{t_0}^t f(x(s))ds = \int_{t_0}^t \max_{x(s)} f(x(s))ds$$

Пусть

$$x^*(\cdot) = \arg\max_{x(\cdot)} \int_{t_0}^t f(x(s)) ds$$
$$x^{\circ}(\cdot) : \int_{t_0}^t f(x^{\circ}(s)) = \int_{t_0}^t \max_{x(s)} f(x(s)) ds.$$

Предположим, что $x^*(\cdot) \neq x^\circ(\cdot)$ и $\int\limits_{t_0}^t f(x^*(s))ds \neq \int\limits_{t_0}^t f(x^\circ(s))ds$.

Тогда для выражения $m(s) = f(x^*(s)) - f(x^\circ(s))$ можно указать непересекающиеся отрезки $T_<, T_>, T_=$, на которых выполняются неравенства

$$\forall s \in T_{<}: m(s) < 0, \ \forall s \in T_{>}: m(s) > 0, \ \forall s \in T_{=}: m(s) = 0.$$

Для $T_{>}$ получаем, что

$$\forall s \in T_{>} : f(x^{*}(s)) > f(x^{\circ}(s)) = \max_{x(s)} f(x(s))$$

– противоречие.

Для $T_{<}$ получаем, что

$$\max_{x(\cdot)} \int_{T_{<}} f(x(s))ds = \int_{T_{<}} f(x^{*}(s))ds < \int_{T_{<}} f(x^{\circ}(s))ds$$

– противоречие.

Остается единственный вариант, который и доказывает утверждение.

Можно заметить, что от w зависят только переменные \tilde{S}, \tilde{S}_1 и пределы интегрирования. Поменяем порядок интегрирования, чтобы собрать вместе члены, зависящие от w. Применяя правила замены

$$\int_{t_0}^t d\phi(w) \int_t^w ds(\cdot) = \int_t^{t_0} ds \int_{t_0}^s d\phi(w)(\cdot),$$
$$\int_t^t d\phi(w) \int_t^{t_0} ds(\cdot) = \int_t^{t_0} ds \int_t^t d\phi(w)(\cdot),$$

и делая замену переменных

$$S(t_0, t_1) = \int_{t_0}^{t_1} \tilde{S}(w, t_1) d\phi(w) = \int_{t_0}^{t_1} \left\{ G_2^T(w, t) G_1^T(t_0, w) \ell(w) + \mu(w) G_2^T(w, t) c \right\} d\phi(w),$$

$$S_1(t_0, t_1) = \int_{t_0}^{t_1} \tilde{S}_1(t_0, w) d\phi(w), = \int_{t_0}^{t_1} \left\{ G_1^T(t_0, w) \ell(w) \right\} d\phi(w),$$

$$K(\ell, \mu, \mathcal{X}_0) = \int_{t_0}^{t} \left[\frac{\mu(w)^2}{4} + \rho(\ell(w) \mid \mathcal{X}_0) + \frac{\|\ell(w)\|^2}{4} \right] d\phi(w)$$

придем к

$$V(t,x) = \min_{u_1,u_2} \max_{v_1,v_2} \min_{\phi(w)} \max_{\ell(w)} \max_{\mu(w)} \left\{ S^T(t_0,t)x + \int_t^{t_0} S^T(t_0,s) \left[B_2(s)u_2(s) + C_2(s)v_2(s) \right] ds + \int_t^{t_0} S_1^T(s,t) \left[B_1(s)u_1(s) + C_1(s)v_1(s) \right] ds - \left[-K(\ell,\mu,\mathcal{X}_0) \right\},$$

$$(1.4)$$

где $K(\ell, \mu, \mathcal{X}_0)$ – выпуклая функция.

Будем искать опорную функцию к множеству достижимости $\mathcal{X}[t,\mathcal{X}_0]$, определяемому по найденному выше выражению (1.4) для V(t,x). Пользуясь линейностью по ϕ , теперь можно переставить

 $\max_{v_1,v_2} \min_{\phi} \max_{\ell} \max_{\mu} (\cdot) = \min_{\phi} \max_{\ell} \max_{\mu} \max_{v_1,v_2} (\cdot),$

И

$$\max_{v(\cdot)} \int_{t}^{t_0} f(v(s))ds = \max_{v(\cdot)} \int_{t_0}^{t} -f(v(s))ds = \int_{t_0}^{t} \max_{v(s)} [-f(v(s))]ds$$

тогда

$$V(t,x) = \min_{u_1,u_2} \min_{\phi} \max_{\ell} \max_{\mu} \left\{ S^T(t_0,t)x + \int_t^{t_0} S^T(t_0,s)B_2(s)u_2(s) ds + \int_{t_0}^t \rho(-S^T(t_0,s) \mid C_2(s)W_2(s)) ds + \int_t^{t_0} S_1^T(s,t)B_1(s)u_1(s) + \int_{t_0}^t \rho(-S_1^T(s,t) \mid C_1(s)W_1) ds - K(\ell,\mu,\mathcal{X}_0) \right\}.$$

Далее, мы хотим поменять $\min_{u_1,u_2}(\cdot)$ на опорную функцию, но полученное выше выражение уже не является вогнутым по ℓ,μ . Поэтому, мы прибегаем к овыпуклению нужных членов и приходим к

$$V(t,x) = \min_{\phi} \max_{\ell} \max_{\mu} \left\{ S^{T}(t_{0},t)x - \int_{t_{0}}^{t} \rho(S_{1}(s,t) \mid B_{1}(s)\mathcal{P}_{1}(s)) \, ds - \int_{t_{0}}^{t} \rho(S(t_{0},s) \mid B_{2}(s)\mathcal{P}_{2}(s)) \, ds - \int_{t_{0}}^{t} \rho(-S_{1}(s,t) \mid C_{1}(s)\mathcal{W}_{1}(s)) \, ds - \int_{t_{0}}^{t} \rho(-S(t_{0},s) \mid C_{2}(s)\mathcal{W}_{2}(s)) \, ds + K(\ell,\mu,\mathcal{X}_{0}) \right\} \right\}.$$

Утверждение 2.

$$\operatorname{conv}_{x(\cdot)} \int_{t_0}^t f(x(t))dt = \int_{t_0}^t \operatorname{conv}_{x(t)} f(x(t))dt$$

Примем

$$conv(f) = f^{**}$$

Тогда

$$\left(\int_{t_0}^t f(x(s))ds \right)^* (\ell(t)) = \max_{x(\cdot)} \left(\langle \ell, x \rangle_{L_2} - \int_{t_0}^t f(x(s))ds \right)$$

$$\left(\int_{t_0}^t f(x(t))dt \right)^{**} (y(t)) = \max_{\ell(\cdot)} \left(\langle y, \ell \rangle_{L_2} - \max_{x(\cdot)} \left(\langle \ell, x \rangle_{L_2} - \int_{t_0}^t f(x(s))ds \right) \right) =$$

$$= \max_{\ell(\cdot)} \min_{x(\cdot)} \left(\langle y, \ell \rangle_{L_2} - \langle \ell, x \rangle_{L_2} + \int_{t_0}^t f(x(s))ds \right) =$$

$$= \max_{\ell(\cdot)} \min_{x(\cdot)} \int_{t_0}^t \left[\langle y(s), \ell(s) \rangle - \langle \ell(s), x(s) \rangle + f(x(s)) \right] ds =$$

$$= \int_{t_0}^t \max_{\ell(s)} \min_{\ell(s)} \left[\langle y(s), \ell(s) \rangle - \langle \ell(s), x(s) \rangle + f(x(s)) \right] ds =$$

$$= \int_{t_0}^t \max_{\ell(s)} \left[\langle y(s), \ell(s) \rangle - \max_{x(s)} \left\{ \langle \ell(s), x(s) \rangle - f(x(s)) \right\} \right] ds =$$

$$= \int_{t_0}^t f^{**}(s) ds$$

Утверждение 3.

$$\min_{\ell} \left[\langle x, \ell \rangle + (\operatorname{conv}(y))(\ell) \right] = \min_{\ell} \left[\langle x, \ell \rangle + y(\ell) \right]$$

$$\min_{\ell} \left[\langle x, \ell \rangle + \max_{p} (\langle p, \ell \rangle - \max_{s} (\langle p, s \rangle - y(s))) \right] =$$

$$= \min_{\ell} \max_{p} \min_{s} \left[\langle x, \ell \rangle + \langle l, p \rangle - \langle p, s \rangle + y(s) \right] = \left\{ \min_{\ell} \max_{p} \max_{p} \min_{p} \min_{\ell} \right\} =$$

$$= \max_{p} \min_{s} \min_{s} \left[\langle \ell, x + p \rangle - \langle p, s \rangle + y(s) \right] = \max_{p} \left[\left\{ \begin{array}{l} -\inf_{\ell} p \neq -x \\ 0, p = -x \end{array} + \min_{s} (-\langle p, s \rangle + y(s)) \right] =$$

$$= \left\{ \text{из первого min находим } p = -x \right\} = \min_{s} (-\langle -x, s \rangle + y(s)) =$$

$$= \min_{\ell} (\langle x, \ell \rangle + y(\ell))$$

Рассмотрим примеры в \mathbb{R}^1 Пример 1.

$$\begin{cases}
\dot{x} = 2u + v; \\
\dot{x} = u; \\
u \in [0, 1]; \\
v \in [0, 1]; \\
\mathcal{X}_0 = \{x \in [-2, -1]\}; \\
t \in [0, 4]; \\
H = \{x = 0\}.
\end{cases}$$
(1.5)

Пример 2.

$$\begin{cases}
\dot{x} = u; \\
\dot{x} = 2u + v; \\
u \in [0, 1]; \\
v \in [0, 1]; \\
\mathcal{X}_0 = \{x \in [-2, -1]\}; \\
t \in [0, 4]; \\
H = \{x = 0\}.
\end{cases}$$
(1.6)

Начальные условия для (1.5) и (1.6) одинаковы. Функция цены для задач (1.5) и (1.6).

$$V(t,x) = \min_{u} \max_{v} \max_{\tau} \max_{\ell} \max_{\mu} \left\{ \left\langle \ell, x_0 \mid_{x(t)=x} \right\rangle - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4} + \mu \left\langle x(\tau), c \right\rangle - \frac{\mu^2}{4} \right\}.$$

В одномерном случае, если рассматривать отрезок $[\alpha, \beta]$ как эллипсоид $\mathcal{E}(q, Q)$, то $q = \frac{\beta + \alpha}{2}, \ Q = \left(\frac{\beta - \alpha}{2}\right)^2$. Тогда

$$\rho\left(\ell \mid \mathcal{E}(()q,Q)\right) = \langle \ell, q \rangle + \langle \ell, Q\ell \rangle^{\frac{1}{2}} = \ell \cdot q + |\ell| \sqrt{Q}.$$

Поскольку в уравнениях примеров (1.5) и (1.6) фундаментальные матрицы $G(t,t_0)\equiv I,$ c=1, то можно написать

$$V(t,x) = \min_{u} \max_{v} \min_{\tau} \max_{\mu} \max_{\mu} \left\{ \ell \cdot x + \int_{t}^{\tau} \ell \cdot [B_{2}u_{2} + v_{2}]ds + \int_{\tau}^{t_{0}} \ell \cdot [B_{1}u_{1} + v_{1}]ds - (\ell \cdot x_{0} + |\ell| \sqrt{X_{0}}) - \frac{\ell^{2}}{4} + \mu \left[x + \int_{t}^{\tau} [B_{2}u_{2} + v_{2}]ds \right] - \frac{\mu^{2}}{4} \right\}.$$

Здесь $\mathcal{X}_0 = \mathcal{E}(x_0, X_0)$, для (1.5) $v_2 \equiv 0$, для (1.6) $v_1 \equiv 0$. Если сократить, то получим для (1.5):

$$V(t,x) = \min_{u} \max_{v} \min_{\tau} \max_{\mu} \max_{\mu} \left\{ (\ell + \mu)x + \int_{t}^{\tau} (\ell + \mu)B_{2}u_{2}ds + \int_{\tau}^{t_{0}} \ell B_{1}u_{1}ds + \int_{\tau}^{t_{0}} \ell v_{1}ds - (\ell \cdot x_{0} + \mid \ell \mid \sqrt{X_{0}}) - \frac{\ell^{2}}{4} - \frac{\mu^{2}}{4} \right\}.$$
 Для (1.6)

$$V(t,x) = \min_{u} \max_{v} \min_{\tau} \max_{\mu} \max_{\mu} \left\{ (\ell + \mu)x + \int_{t}^{\tau} (\ell + \mu)B_{2}u_{2}ds + \int_{t}^{\tau} (\ell + \mu)v_{2}ds + \int_{\tau}^{t_{0}} \ell B_{1}u_{1}ds - (\ell \cdot x_{0} + |\ell| \sqrt{X_{0}}) - \frac{\ell^{2}}{4} - \frac{\mu^{2}}{4} \right\}.$$

Эти выражения не являются выпуклыми по τ , чтобы можно было переставлять $\max_v \min_{\tau}$. Поэтому прибегаем к функции распределения $\phi(w)$. $\phi(w)$ — функция ограниченной вариации.

$$\int_{t_0}^t d\phi(w) = 1.$$

Обозначим

$$S_2(t_0, s) = \int_{t_0}^{s} \ell(w) + \mu(w) d\phi(w)$$
$$S_1(s, t) = \int_{t_0}^{t} \ell(w) d\phi(w)$$

Тогда приходим к найденному ранее выражению (1.). Используя формулу вычисления опорной функции для множеств из \mathbb{R}^1 запишем

$$V(t,x) = \min_{\phi} \max_{\ell} \max_{\mu} \left\{ S_2(t_0,t)x - \int_{t_0}^t S_1(s,t)p_1 + \mid S_1(s,t) \mid \sqrt{P_1}ds - \int_{t_0}^t S_2(t_0,s)p_2 + \mid S_2(t_0,s) \mid \sqrt{P_2}ds - \text{conv} \left\{ \int_{t_0}^t w_1 S_1(s,t) - \sqrt{W_1} \mid S_1(s,t) \mid +w_2 S_2(t_0,s) - \sqrt{W_2} \mid S_2(t_0,s) \mid ds + \int_{t_0}^t \frac{\ell^2(w)}{4} + \frac{\mu^2(w)}{4} + \ell(w)x_0 + \mid \ell(w) \mid \sqrt{X_0} d\phi(w) \right\} \right\}.$$