

Devoir surveillé n°9

03/04/24 – 2h – calculatrices autorisées

La rédaction et le soin seront pris en compte dans l'évaluation.

Exercice 1 5 points

Soient $E = \mathbb{R}^3$, $F = \{(x, y, z) \in E \mid x + y + z = 0\}$ et v = (1, 1, 1).

- 1. Justifier brièvement que F est un sous-espace vectoriel de E. Écrire F sous la forme F = Vect(...), puis déterminer sa dimension.
- 2. On pose G = Vect(v).
 - (a) Déterminer $F \cap G$.
 - (b) Prouver que $E = F \oplus G$.

Exercice 2 4 points

Une urne contient 8 boules blanches et 2 boules noires, indiscernables au toucher. On tire sans remise et successivement 3 boules de cette urne.

On considère les événements :

- A_i : « la i-ème boule tirée est blanche » (pour i = 1, 2, 3);
- N: « la 1^{re} boule tirée est noire »;
- B: « on a tiré au moins une boule noire ».
- 1. Calculer $P(A_1)$, $P_{A_1}(A_2)$ et $P_{A_1 \cap A_2}(A_3)$.
- 2. En déduire que $P(B) = \frac{8}{15}$.
- 3. Sachant qu'au moins une boule noire figure dans le tirage, quelle est la probabilité que la première boule tirée soit noire?

Exercice 3

2,5 points

Soit x > 0.

En appliquant le théorème des accroissements finis à la fonction $f:t\mapsto \arctan t$ sur l'intervalle [0,x], prouver que

$$\frac{x}{x^2 + 1} \le \arctan x \le x.$$

Exercice 4

2,5 points

Soit n un entier supérieur ou égal à 1. Calculer la dérivée n-ième de la fonction

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x e^{-x}$$
.

Exercice 5

5 points

Soit $f: [-1,1] \to \mathbb{R}$, $x \mapsto \arcsin\left(\sqrt{1-x^2}\right)$.

- 1. Étudier les variations de la fonction $g: x \mapsto 1 x^2$ sur l'intervalle [-1,1]. En déduire le domaine de dérivabilité de f.
- 2. Prouver que pour tout nombre *x* dans ce domaine :

$$f'(x) = -\frac{x}{|x|\sqrt{1-x^2}}.$$

- 3. En déduire une expression simple de f(x) suivant que $0 \le x \le 1$ ou que $-1 \le x \le 0$.
- 4. Tracer la courbe représentative de f.