[THP] 1ère année CS

Rappel:

Le théorème de Kleene est un résultat fondamental d'équivalence entre classes de langages, que l'on peut résumer ainsi :

Selon Kleene, A toute expression régulière E, Il existe un automate d'états finis (AEF) A tel que : L(E)=L(A).

Passage d'une expression régulière à un automate d'états finis :

En utilisant les méthodes des dérivées. (On obtient un automate d'états finis **DÉTERMINISTE** & **COMPLET**)

Définition:

$$E /\!\!/ u = \{ w \in X^* / u.w \in L(E) \}.$$

Propriétés de la dérivée :

$(E_1 \cup E_2) /\!\!/ u =$	$(E_1 /\!\!/ u) \cup (E_2 /\!\!/ u)$
$(E_1. E_2) // u_i =$	$ \begin{array}{ll} (E_1 /\!\!/ u_i). \; E_2 & \text{si } \epsilon \not\in L(E_1) \\ (E_1 /\!\!/ u_i). \; E_2 \cup \; (E_2 /\!\!/ u_i) \; \; \text{si non.} \\ \end{array} $
$E^* // u_i =$	$(E /\!\!/ u_i). E^*$
E// (u. v) =	(E // u) // v

ε.u=u, u ∈ X*	\emptyset . $u = \emptyset$, $u \in X^*$
$\varepsilon \cup u = u \cup \varepsilon, u \in X^+$ $\varepsilon \cup u = u, u \in X^*$	$\mathbf{u} \cup \varnothing = \mathbf{u}, \mathbf{u} \in X^*$
⊗*= ε	$(\varepsilon \cup u)^* = u^*$

A.BOUMAHDI 1

[THP] 1ère année CS

• En appliquant la méthode des dérivées, on obtient l'AEF A <X, S, S₀, F, II> avec :

$$S=\{E/\!\!/ w, w \in X^*\}$$

$$S_0=E/\!\!/ \epsilon$$

$$F=\{E/\!\!/ w \text{ tel que } \epsilon \in L(E/\!\!/ w)\}$$

$$\forall (S_i, x, S_j) \in II \quad S_j=S_i/\!\!/ x.$$

A.BOUMAHDI 2