Homework 1

Shao-Ting Chiu (UIN:433002162)

9/16/22

Homework Description

Problems (from Chapter 2 in the book): 2.1, 2.3 (a,b), 2.4, 2.7, 2.9, 2.17 (a,b)

Note: the book is available electronically on the Evans library website.

• Deadline: Sept. 26th, 11:59 pm

Problem 2.1

Suppose that X is a discrete feature vector, with distribution concentrated over a countable set $D = \{x^1, x^2, ...\}$ in R^d . Derive the discrete versions of (2.3), (2.4), (2.8), (2.9), (2.11), (2.30), (2.34), and (2.36)

Hint: Note that if X has a discrete distribution, then integration becomes summation, $P(X=x_k)$, for $x_k \in D$, play the role of p(x), and $P(X=x_k|Y=y)$, for $x_k \in D$, play the role of p(x|Y=y), for y=0,1.

Problem 2.3

This problem seeks to characterize the case $\epsilon^* = 0$.

(a)

Prove the "Zero-One Law" for perfect discrimination:

$$\epsilon^* = 0 \Leftrightarrow \eta(X) = 0 \text{ or } 1 \text{ with probability } 1.$$
 (1)

(b)

Show that

 $\epsilon^* = 0 \Leftrightarrow$ there is a function f s.t. Y = f(X) with probability 1

Problem 2.4

This problem concerns the extension to the multiple-class case of some of the concepts derived in this chapter. Let $Y \in \{0, 1, \dots, c-1\}$, where c is the number of classes, and let

$$\eta_i(x) = P(Y = i | X = x), \quad i = 0, 1, \dots, c - 1,$$

for each $x \in R^d$. We need to remember that these probabilities are not indpendent, but satisfy $\eta_0(x) + \eta_1(x) + \dots + \eta_{c-1}(x) = 1$, for each $x \in R^d$, so that one of the functions is redundant. In the two-class case, this is made explicit by using a single $\eta(x)$, but using the redundant set above proves advantageous in the multiple-class case, as seen below.

Hint: you should answer the following items in sequence, using the previous answers in the solution of the following ones

(a)

Given a classifier $\psi:R^d\to\{0,1,\dots,c-1\}$, show that its conditional error $P(\psi(X)\neq Y|X=x)$ is given by

$$P(\psi(X) \neq Y | X = x) = 1 - \sum_{i=1}^{c-1} I_{\psi(x)=i} \eta_i(x) = 1 - \eta_{\psi(x)}(x)$$

(b)

Assuming that X has a density, show that the classification error of ψ is given by

$$\epsilon = 1 - \sum_{i=0}^{c-1} \int_{\{x \mid \psi(x)=i\}} \eta_i(x) p(x) dx$$

.

(c)

Prove that the Bayes classifier is given by

$$\psi^*(x) = \arg\max_{i=0,1,\dots,c-1} \eta_i(x), \quad x \in R^d$$

Hint: Start by considering the difference between conditional expected errors $P(\psi(X) \neq Y | X = x) - P(\psi^*(X) \neq Y | X = x)$.

(d)

Show that the Bayes error is given by

$$\epsilon^* = 1 - E[\max_{i=0,1,\dots,c-1} \eta_i(X)]$$

.

(e)

Show that the maximum Bayes error possible is $1 - \frac{1}{c}$.

(e)

Problem 2.7

 $Consider\ the\ following\ univariate\ Gaussian\ class-conditional\ densities:$

\$\$\$\$

Problem 2.9

Problem 2.17

- (a)
- (b)

References