

6565	ුනබ් ව ඡුහඩුානැළිි: මූ: ී විශයතිය සම්බූ	9					
9	ស្វ័យកុណ	9					
ឲ្រ	ឯកលក្ខណះភាពសំខាន់ៗ	9					
៣	លក្ខណៈនៃប្រភាពពីរស្មើគ្នា	9					
ሬ	សមីការបន្ទាត់						
성	ទម្រង់ស្តង់ដានៃស្វ័យពុណ	ឲ្រ					
5	ទ្រឹស្តីបទកូស៊ីនុស និងស៊ីនុស						
៧	ផលកុណស្កាលែនៃពីរវ៉ិចទ័រ	្រា					
ಡ	ធរណីមាត្រក្នុងប្លង់ និងអនុគមន៍ត្រីកោណមាត្រ						
	៨.១ ការេ ់	ឲ្រ					
	៤.២ ចតុកោណកែង	ពា					
	៤.៣ ប្រភេទនៃត្រីកោណ	រា					
	៤.៤ រង្វង់	6					
	៤.៥	6					
	៤.៦ ប្រលេពីប៉ែតកែង	と					
	៤.៧ ស៊ីឡាំង	と					
	៤.៤ ស្វ៊ែ	ಜ					
	៤.៩ សមភាពនៃមុំ	لا					
	៤.90 តារាងមុំនៃអនុគមន៍ត្រីកោណមាត្រ	៧					
8	សមីការដីក្រេទី២ មានមួយអញ្ញាត	ය					
6565	្នែនិ ២ នំសំទុំចន់៖ និ១នំសំស្នាលែ	8					
<u> </u>	ទំហំវ៉ិចទ័រ	ઠ					
	9.9 វ៉ិចទ័រពីរស្មើគ្នា	ઠ્ઠ					
	១.២ ផលប្ចូកវ៉ិចទ័រ	90					
ព្រ	ទំហំស្កាលែ	9]घ					
ពា	កូអរដោនេនៃ វ៉ិចទ័ រ	शृष					
ઢ	សំណូរ លំហាត់អនុវត្តន៍ និងកិច្ចការផ្ទះ	១៣					
6565	្ទីននី ៣ ចលនាអន្តនាគុតាមទួយទីមាត្រ	୭ ଝ					
9	ចលនាមេកានិច	૭૮					
ឲ្រ	បម្លាស់ទី ល្បឿន វ៉ិចទ័រល្បឿន	૭૮					
	២.១ ចម្ងាយចរ និងបម្លាស់ទី	9ಕ್ಟ					

	២.២ ល្បឿន វ៉ិចទ័រល្បឿន	98
	២.៣ វ៉ិចទ័រល្បើនៃខណៈ 	9ე
	២.៤ សំទុះ សំទុះមធ្យម សំទុះខណៈ	9ე
៣	ចលនាអង្គធាតុតាមមួយវិមាត្រ	9ท
	៣.១ ចលនាត្រង់ស្មើ	9៧
	៣.២ ចលនាត្រង់ប្រែប្រលស្មើ	9៧
ሬ	សំណូរ លំហាត់អនុវត្តន៍ និងកិច្ចការផ្ទះ	98
		ଅ ଅ
9	្រិននី ៤ ច្បាច់ចលនារបស់ល្បូតុន កម្លាំង	واقا وق
9		<u>മ</u> ു
	9.9 សញ្ញាណកម្លាំង(Force Notation)	_
	9.២ ផលបូកកម្លាំង	pg 1911
Jm	9.៣ បំបែកកម្លាំង	ලම වෙම
ь	ច្បាប់ចលនារបស់ញូតុន	බ බ
	២.១ ច្បាប់ទី១ ញុំតុន ឬ ច្បាប់និចលភាព	ព្រព្យ
	២.២ ច្បាប់ទី២ ញុំតុន ឬ ច្បាប់គ្រឹះឌីណាមិច	මය
m	២.៣ ច្បាប់ទី៣ ញុំតុន ឬ ច្បាប់អំពើ និងប្រតិកម្ម	වල වෙල
MI	ម៉ាស និងទម្ងន់	මය මෙය
	m.១ ម៉ាស(Mass)	වල වෙල
	៣.២ ទម្ងន់ ឬកម្លាំងទំនាញដែនដី(Weight or Gravitational Force)	<u>ඩ</u> දි
,	៣.៣ ភាពខុសគ្នារវាង ម៉ាស និងទម្ងន់	២៤ ៣០
2)	កម្លាំងកែង និងកម្លាំងកកិត ៤.១ កម្លាំងកែង ឬកម្លាំងប្រតិកម្មកែង(Normal Force)	៣០
	៤.២ កម្លាំងកកិត្ត(Friction Forces)	៣០
と		ព្រ ពេល
2)	អនុវត្តន៍ច្បាប់ញូតុន ៥.១ រប្បើបប្រើច្បាប់ញូតុនដើម្បីដោះស្រាយលំហាត់	យ្យា
	៥.១ រប្យេបប្រេីច្បាប់ញុតុនដេីម្បីដោះស្រាយលំហាត់ ៥.២ អង្គធាតុរអិលលេីប្លង់ទេរ	យ្យា
	៥.៣ ម៉ាស៊ីនអាត់វ៉ូត	៣៣
a	សំណូរ លំហាត់អនុវត្តន៍ និងកិច្ចការផ្ទះ	ጠሬ
	្តិននី ៥ កម្មន្ត ទាំមពល អានុភាព	៣៧
9	កម្មន្តបង្កើតដោយកម្លាំងថេរ	and and
	១.១ ផលកុណស្កាលែ(Scalar Product)	៣៧
	១.២ កម្មន្តបង្កើតដោយកម្លាំងថេរ	៣៧
្រា	ថាមពលស៊ីនេទិច និងទ្រីស្តីកម្មន្ត-ថាមពលស៊ីនេទិច	៣៧
	២.១ ថាមពលសីនេទិច(Kinetic Energy).	៣៧

	២.២ ទ្រឹស្តីកម្មន្ត-ថាមពលស៊ីនេទិច(The Work-Kinetic Energy Theorem)	៣ព
៣	ថាមពលប៉ូតង់ស្យែល(Potential Energy)	៣ព
2	អានុភាព(Power)	៣ព
	សំណរ លំហាត់អនវិតន៍ និងកិចការផៈ	

១. មុលជ្ជានគ្រឹះខ្លះៗ នៃគណិតចិន្សា

១.ស្វ័យគុណ

ស្វ័យគុណត្រូវបានប្រើជាញឹកញាប់នៅក្នុងរូបវិទ្យា ពេលយើងសរសេរ 3^4 ដែល 4 ហៅថាស្វ័យគុណ ហើយ 3 ជាគោល។

សង្ខេបរូបមន្ត

9.
$$a^0 = 1$$
 $(a \neq 0)$

$$a^{-n} = \frac{1}{a^n} \quad (a \neq 0)$$

6.
$$a^m \cdot a^n = a^{m+n} \quad (a \neq 0, n \neq 0, m \neq 0)$$

&.
$$\frac{a^m}{a^n} = a^{m-n}$$
 $(a \neq 0, n \neq 0, m \neq 0)$

b.
$$(a \cdot b)^n = a^n \cdot b^n$$
 $(n \neq 0)$

$$(a^m)^n = (a^n)^m = a^{m \cdot n} \quad (a \neq 0, n \neq 0, m \neq 0)$$

$$\mathbf{G}. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \quad (b \neq 0, n \neq 0)$$

$$\delta$$
. $\sqrt[n]{a^m} = a^{\frac{m}{n}}$ និង $\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a \times b}$

$$\mathbf{90.} \ \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

២.ឯគលគ្គណៈគាពសំខាន់ៗ

សង្ខេបរូបមន្ត

9.
$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$a^2 - b^2 = (a - b)(a - b)$$

b.
$$a^2 + b^2 = (a+b)^2 - 2ab$$

$$\mathbf{a}^3 - b^3 = (a - b) (a^2 + ab + b^2)$$

G.
$$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$$

៣.លត្តសាះខែប្រភាគពីអេស្តីគ្នា

ជាទូទៅ

ឧបមាថាយើងមានប្រភាពពីរស្មើគ្នា $\frac{a}{h}=\frac{c}{d}$ ។ យើងអាចសរសេរបានដូចខាងក្រោមៈ

១.
$$\frac{d}{b} = \frac{c}{a}$$
 (ប្តូរត្ជូចុង)

$$\mathbf{c}$$
. $\frac{a}{c} = \frac{b}{d}$ (ប្តូរតួមធ្យម)

$$\mathbf{n}$$
. $a \cdot d = b \cdot c$ (ផលកុណត្ចូចុងស្មើនឹងផលកុណត្ចូមធ្យម)

៤.
$$\frac{a}{b} = \frac{c}{d} = \frac{a \pm c}{b \pm d}$$
 (លក្ខណៈផលធ្យើបស្មើតក្នា)

៍៤.សម៌គារមឆ្ងាត់

សង្ខេបរូបមន្ត

សមីការបន្ទាត់មានរាង y=ax+b ដែល a ជាមេពុណប្រាប់ទិស និង b ជាចំនួនថេរ។ បើ b=0 នោះសមីការបន្ទាត់ មានរាង y=ax គេថាបន្ទាត់កាត់តាមគល់ 0។

មេគុណប្រាប់ទិសនៃបន្ទាត់គឺ :
$$a = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

៥.ឧរុទ្ធទំស្ពទ់ជានៃស្វ័យគុណ

ទម្រង់ស្តង់ដានៃស្វ័យកុណរបស់ចំនួនមួយគឺជាផលកុណនៃចំនួន A ដែល $1 \le A < 10$ និងស្វ័យកុណ 10។ ដូចនេះទម្រង់ ស្តង់ដាមានរាង $A \times 10^n$ ដែល $1 \le A < 10$ ហើយ n ជាចំនួនគត់រឹឡាទីប។

ឧទាចារណ៍

សរសេរចំនួនខាងក្រោមជាទម្រង់ស្តង់ដាៈ

 $3.550\ 000\ 000 = 55 \times 10^7$

 $3.0.000\ 000\ 000\ 004mm = 4 \times 10^{-12}mm$

2. $0.000\ 000\ 343 = 343 \times 10^{-9}$

25. $300\ 000km/s = 3 \times 10^5 km/s$

៦.ន្រ្តីស្តីមនភូស៊ីនុស និខស៊ីនុស

ទ្រឹស្តីបទ

• វិឌ្ឌស្និតនដ់ម្នាំម

$$a^2 = b^2 + b^2 - 2bc\cos\alpha$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

• រុន្តិស្តីមនស៊ីនុស

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

R ជាកាំរង្វង់ចរឹកក្រៅត្រីកោណ

ullet និលបុគមុំគ្លួចនៃត្រីគោណ: $lpha+eta+\gamma=180^\circ$

រូបភាពទី ១. ទ្រីនោះលេខែទ្រឹស្តីមឧត្តស៊ីនុស និចស៊ីនុស

៧.ផលគុណស្ពាលែខែពីទៀបន់៖

នលកុណស្កាលែខែពីរទុំចង់រះ បើកេមានវ៉ិចទ័រពីរ \overrightarrow{A} និង

 \overrightarrow{B} ដែលផ្គុំក្នាបានមុំ θ ដូចរូបខាងស្តាំ។ នោះគេអាចសរសេរ

ពេសរសេរ :
$$\overrightarrow{A} \cdot \overrightarrow{B} = \left| \overrightarrow{A} \right| \left| \overrightarrow{B} \right| \cos \theta$$

ម្យ៉ាងទៀត :
$$\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos \theta$$

ប៊ើ :
$$\overrightarrow{A} \cdot \overrightarrow{B} = 0$$
 នោះ $\overrightarrow{A} \perp \overrightarrow{B}$

រូចភាពទី ២. ផលគុណស្ពាលែនៃពីវេទ្ធិចន័រ

៤.ឆរេណីមាត្រភ្លុខម្លខ់ និខអនុគមន៍ត្រីគោណមាត្រ

G.9.57165

តេមានការេ ABCD ដែលមានជ្រុង a ដូចរូប។ គេបាន

ចេជៀនទី ១. ចូលដ្ឋានគ្រឹះខ្លះ។នៃគណិតវិទ្យា

៨. ធរណីមាត្រក្នុងប្លង់ និងអនុគមន៍ត្រីកោណមាត្រ

ប្រឹង : |AB| = |BC| = |CD| = |DA| = a

អង្កត់ទ្រង : $|AC| = |BD| = a\sqrt{2}$

ពីកំពូលទៅផ្ចិត : $|AO| = |BO| = |CO| = |DO| = \frac{a\sqrt{2}}{2}$

បរិមាត្រ : P = 4a

ផ្ទៃក្រឡា : $S = a \cdot a = a^2$

៨.២.ចតុគោរណៈគេ១

គេមានចតុកោណកែង ABCD ដែលមានទទឹង a និងបណ្ដោយ b ដូចរូប។ គេបាន

ប្រវង្គ : |AD| = |BC| = a, |AB| = |DC| = b

អង្កត់ទ្រង : $|AC| = |BD| = \sqrt{a^2 + b^2}$

បរិមាត្រ : P = 2a + 2b

ផ្ទៃក្រឡា : $S = a \cdot b$

រូបភាពទី ៤. ចតុនោរណ៍គខ

៨.៣.ម្រទេននៃខេត្តិទោណ

១. ត្រីគោណសាមញ្ញា

តេមានត្រីកោណ ABC ដែលមានកម្ពស់ h ដូចរូប។

យើងបាន : ផ្ទៃក្រឡា = $\frac{\overline{\eta}\overline{n} \times \overline{n}\underline{y}\dot{n}}{2}$

ពេអាចសរសេរ : $S = \frac{AC \times h}{2}$

ម៉ំ : $\alpha + \beta + \theta = 180^{\circ}$

🖒. រុត្តីគោលខែត គេមានត្រីកោណកែង ABC ដែលមានកម្ពស់ h ដូចរូប។

យើងបានក្រឡាថ្ងៃ : $S = \frac{AC \times h}{2}$

 $\dot{\theta}$: $\alpha + \beta + \theta = 180^{\circ}$

ដែល : $\theta = 90^{\circ}$

៣. ត្រីអោណសមទាត គេមានត្រីកោណកែងសមបាត ABC ដូចរូប។ យើងបាន

កម្ពស់ :
$$|BH| = |AH| = |HC| = \frac{AC}{2}$$

ម៉ឺ :
$$\alpha + \beta + \theta = 180^{\circ}$$

ដែល :
$$\theta = \beta = 45^{\circ}$$

រូបភាពទី ៧. ត្រឹកោណកែខសមធាត

៤. ត្រីកោណសម័ឡ គេមានត្រីកោណសម័ង្យ ABC ដូចរូប។ យើងបានៈ

ប្រជំង :
$$|AB| = |BC| = |AC| = a$$

កម្ពស់ :
$$|BH| = \frac{a\sqrt{3}}{2}$$

ဗို :
$$\alpha + \beta + \theta = 180^{\circ}$$

ដែល :
$$\theta = \beta = \alpha = 60^{\circ}$$

រូបភាពទី ៨. ៗគ្គីនោះឈស់មឡាគ

લં.હં.ફ્રું

រង្វង់មួយមានផ្ចិត O កាំ R និងអង្កត់ផ្ចិត D ដូចរូប

អង្កត់ផ្ចិត : D=R+R=2R

បរិមាត្រ : $P = \pi D = 2\pi R$

ក្រឡាផ្ទៃ : $S = \pi R^2 = \pi \frac{D^2}{4}$

ಡೆ.ಜಿ.ಹ್ಲಿಕ

គូបមួយមានទ្រនុង a ដូចរូប។ យើងបានមាឌរបស់វាគី $V=a\cdot a\cdot a=a^3$

្យូចភាពទី ១០. គ្នូទ

៨.៦.រុម្មលេពីម៉ែងតែខ

ប្រលេពីប៉ែតកែងមួយមានទ្រនុង a បណ្ដោយ b និងកម្ពស់ h ដូចរូប។ យើងបានមាឌរបស់វាគី $V=a\cdot b\cdot h$

រូបភាពទី ១១. វុទ្ធលេជិខែងកែខ

៤.៧.ស៊ីន្សាំខ

ស៊ីឡាំងមួយមានមុខកាត់ជារង្វង់ដែលមានកាំ R និងកម្ពស់ h ដូចរូប។ យើងបានមាឌ $V=S\cdot h=\pi R^2 h$

ಡ.ಡ.ಕೆಕ್ರೌ

ស្វ៊ែមួយមានកាំ R ដូចរូប។ យើងបានៈ

ក្រឡាំផ្ទៃ : $S = 4\pi R^2 = \pi D^2$

មាឌ : $V = \frac{4}{3}\pi R^2$

៨.៩.សមធាពនៃម៉្

១. ម៉ំនល់គំពុល

បើយើងរកឃើញ $\angle M_1$ និង $\angle M_2$ ជាមុំទល់កំពូល យើងបានៈ $\angle M_1 = \angle M_2$

២. ចុំទានថ្លេខតែខម្សេខគ្លា កាលណាយើងមានមុំពីរ $\angle x'ox$ និង $\angle y'oy$ ហើយយើងមានជ្រុង $ox' \perp oy'$ និង $ox \perp oy$ យើងបាន $\angle x'ox = \angle y'oy$

រូបភាពនី ១៥. ម៉ំមានថ្លេ១តែ១ម្យេ១គ្នា

បើ $ox \parallel o'x'$ និង $oy \parallel o'y'$ នោះ មុំ $\angle xoy$ និង $\angle x'o'y'$ ហៅថាមុំមានជ្រុងត្រូវគ្នា ស្របរ្យេងគ្នាដែល មានតម្លៃស្មើគ្នា។ យើងបាន $\alpha = \theta$

រូបភាពទី ១៦. ម៉ុខែសមានឡើទទ្រសមព្យិទដ្ឋា

៤. គន្លះមន្ទាត់ពុះម៉ំ

បើយើងរកឃើញថា OI ជាកន្លះបន្ទាត់ពុះមុំ $\angle xoy$ នោះ យើងបាន $\angle O_1 = \angle O_2$ ។

 $oldsymbol{e}_{a}$. ម៉ំន្លឺដោយមន្ទាត់ពីរទ្រេមគ្គានិចខ្លាត់មួយ បើ $(d) \parallel (d')$ និង (Δ) ជាខ្នាត់យើងបានៈ

$$\angle A_1 = \angle B_7$$
, $\angle A_2 = \angle B_8$ (មុំឆ្លាស់ក្នុង)
$$\angle A_3 = \angle B_5, \quad \angle A_4 = \angle B_6 \quad \text{(មុំឆ្លាស់ក្រៅ)}$$
 $\angle A_1 = \angle B_5, \ \angle A_2 = \angle B_6, \ \angle A_3 = \angle B_7, \ \angle A_4 = \angle B_8 \quad \text{(មុំត្រូវិជ្ជា)}$ $\angle A_1 = \angle A_3, \ \angle A_2 = \angle A_4, \ \angle B_5 = \angle B_7, \ \angle B_6 = \angle B_8 \quad \text{(មុំទល់កំពូល)}$

រូចភាពទី ១៨. ម៉ុន្តិដោយមន្ទាត់ពីរស្រេចគ្នានិទខ្លាត់មួយ

៦. ម៉ំឈមប្រលេឡូក្រាម

បើយើងមានប្រលេឡូក្រាម ABCD ដូចរូប។ យើងបាន $\angle A = \angle C$, $\angle B = \angle D$ (មុំឈមប្រលេឡូក្រាម)

៤.១០.តារា១មុំនៃអនុគមស៍គ្រីគោណមាត្រ

α (°)	0°	30°	45°	60°	90°	120°	135°	180°
α (rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	-1

ឧបមាថាយើងមានត្រីកោណកែង ABC ដូចបង្ហាញក្នុង រូបខាងស្ដាំ ។

តាមពីតាគ័រ
$$BC^2 = BA^2 + AC^2$$

$$\sin \theta = \frac{\text{ជ្រងឈម}}{\text{អ៊ីប៉ូតេនុស}}, \quad \cos \theta = \frac{\text{ជ្រងជាប់}}{\text{អ៊ីប៉ូតេនុស}}, \quad \tan \theta = \frac{\text{ជ្រងឈម}}{\text{ជ្រុងជាប់}}$$

$$\sin \theta = \frac{\text{ប្រងឈម}}{\text{អ៊ីប៉ូតេនុស}}, \quad \cos \theta = \frac{\text{1}}{\text{អ៊ីប៉ូតេនុស}}, \quad \tan \theta = \frac{\text{1}}{\text{1}}$$

ទំនាក់ទំនង់រវាង $\sin heta$ និង $\cos heta$ ពី

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 និង $\sin^2 \theta + \cos^2 \theta = 1$

៩.សទីគារខ្លីទ្រេនី២ ទានទួយអញ្ញាត

សមីការដីក្រេទី២ មានរាង: $ax^2 + bx + c = 0$ ដែល a ជាមេគុណទី១ ($a \neq 0$) b ជាមេគុណទី២ និង c ជាមេគុណទី៣ ហើយ x ជាអញ្ញាត។

យើងអាចដោះស្រែយសមីការនេះបានដោយប្រើ ឌីសគ្រីមីណង់ $\Delta=b^2-4ab$ ។

ឌីសព្រីសមីណង់	សមីការ $ax^2 + bx + c = 0 \ (a \neq 0)$
រើ $\Delta = b^2 - 4ac > 0$	សមីការមានឬស $x_1, x_2 = rac{-b \pm \sqrt{\Delta}}{2a}$ (សមីការមានឬសពីរផ្សេងគ្នា)
រំប៊ី $\Delta = b^2 - 4ac = 0$	h
ប៊ើ $\Delta = b^2 - 4ac < 0$	សមីការមានឬស $x_1, x_2 = \frac{-b \pm i\sqrt{\Delta}}{2a}$ (សមីការមានឬសពីរជាចំនួនកុំផ្ចិច)

ចច់ដោយសទ្ទេច

១.នំទាំទឹចន់៖

និយមន័យ

នំសំទុំចន់: ជាទំហំដែលសំដែងជាតម្លៃពីជគណិត ហើយអាស្រ័យនីង ទិស ទិសដៅ។ វ៉ិចទ័រមួយជាអង្គត់ដែលមាន ទិសដៅ ភ្ជាប់ពីរចំណុចផ្សេងគ្នា ដែលចំណុចំណុចមួយជាគល់ ឬចំណុចចាប់ និងមួយទៀតជាចុងនៃវ៉ិចទ័រ។

ឧទាចារណ៍

ទំហំវ៉ិចទ័ររួមមានៈ កម្លាំង ល្បឿន សំទុះទំនាញដី ដែនម៉ាញេទិច។ ល។ យើងអាចលើកយកវ៉ិចទ័រ \overrightarrow{OA} មកសិក្សាៈ

- ចំណុចចាប់ ឬគល់ៈ ត្រង់ O
- ទិសៈ ស្ថិតលើបន្ទាត់ OA
- ទិសដៅពី O ទៅ A(សម្គាល់ដោយព្រញ្)
- អាំងតង់ស៊ីតេ ឬម៉ូឌុលៈ $|\overrightarrow{OA}|$

១.១.ទុំចន់ពើអេស្តីគ្នា

និយមន័យ

<mark>ទុំចន់លើស្នើគ្</mark>លាៈ កាលណាវ៉ិចទ័រទាំងពីរនោះមានប្រវែងស្មើគ្នា និងមានទិសដៅដូចគ្នា។

ខទាចារណ៍

ចូរពិនិត្យមើលវ៉ិចទ័រ \overrightarrow{A} និង \overrightarrow{B} ដូចរូបខាងក្រោម។ យើងឃើញថាវ៉ិចទ័រទាំងពីរនេះមានម៉ូឌុល ឬប្រវែងស្មើគ្នា និង មានទិសដៅដូចគ្នា។

រូបភាពទី ២. ទុំខង់វំពីវស្នើគ្នា

ដូចនេះ វ៉ិចទ័រ \overrightarrow{A} ស្មើនឹង \overrightarrow{B} ឬវ៉ិចទ័រទាំងពីរនេះសមភាពគ្នា ទោះបីវាចេញពីគល់ផ្សេងគ្នាក៏ដោយ។

ពេសរសេរៈ : $\overrightarrow{A} = \overrightarrow{B}$

នាំឲ្យ : $|\overrightarrow{A}| = |\overrightarrow{B}|$ ឬ A = B

១.២.ផលមុកទុំចន់៖

១. ផលបុកទុំចនុះពីមោននិស និ១និសដៅជុំចគ្នា

គេមានវ៉ិចទ័រពីរ \overrightarrow{A} និង \overrightarrow{B} ដូច្យូបខាងស្ដាំ។ យើងបានវ៉ិចទ័រផ្គបនៃវ៉ិចទ័រ \overrightarrow{A} និង \overrightarrow{B} គឺ $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$

រូចភាពទី m. នំលម្មគាទ៊ីចន់ពីមោននិស និ១និសដៅដូចគ្នា

ក្នុងករណីដែលយើងចង់រកម៉ូឌុលនៃវ៉ិច 🗹 យើងត្រូវលើកអង្គទាំងពីរជាការេ

ឃើងហ៊ុន :
$$\overrightarrow{C^2} = \left(\overrightarrow{A} + \overrightarrow{B}\right)^2 = \overrightarrow{A^2} + 2\overrightarrow{A}\overrightarrow{B} + \overrightarrow{B^2} = \overrightarrow{A^2} + 2AB\cos\left(\overrightarrow{A}, \overrightarrow{B}\right) + \overrightarrow{B^2}$$

ដោយ :
$$\overrightarrow{C^2} = C^2$$
, $\overrightarrow{A^2} = A^2$, $\overrightarrow{B^2} = B^2$, $(\overrightarrow{A}, \overrightarrow{B}) = 0$

ឃើងហ៊ុន :
$$C^2 = A^2 + 2AB + B^2 = (A + B)^2$$

នាំឲ្យ :
$$C = \sqrt{(A+B)^2} = A + B$$

ជាទូទៅ

អាំងតង់ស៊ីតេវ៉ិចទ័រផ្តួបដែលមានទិសស្របគ្នា និងទិសដៅដូចគ្នាស្មើនិ៍ងផលបូកអាំងតង់ស៊ីតេនៃវ៉ិចទ័រផ្គុំទាំងអស់។

២. ផលបុកទុំបន់ពើមោននិសជុំបង្កា និចនិសដៅផ្ទុយគ្នា

គេមានវ៉ិចទ័រពីរ \overrightarrow{A} និង \overrightarrow{B} ដូចរូបខាងស្ដាំ។ គេបានវ៉ិចទ័រ $\overrightarrow{C} = \overrightarrow{A} + \left(-\overrightarrow{B} \right) = \overrightarrow{A} - \overrightarrow{B} \Rightarrow \boxed{C = A - B}$

រូបភាពទី ៤. ទ៊ីចន័ះពីរមាននឹសជុំចង្កា និ១និសដៅផ្ទុយគ្នា

ដើម្បីសង់វ៉ិចទ័រផ្គុប \overrightarrow{C} យើងរំកិលវ៉ិចទ័រ \overrightarrow{B} ដោយរក្សា ទិសរបស់វាទៅដាក់លើទិសនៃវ៉ិចទ័រ \overrightarrow{A} ដោយដាក់គល់នៃ វ៉ិចទ័រ \overrightarrow{B} លើចុងស្លាបច្រុញនៃវ៉ិចទ័រ \overrightarrow{A} ។

រូបភាពទី ៥. ផលបូករ៉ិចទ័រពីរមានទិសដូចគ្នា និងទិសដៅផ្ទុយគ្នា

សម្គាល់

ទិសដៅនៃវ៉ិចទ័រផ្គប់ពីដូចនឹងទិសដៅនៃវ៉ិចទ័រដែលមានអាំងតង់ស៊ីតេធំជាងគេ។

$oldsymbol{\mathsf{n}}$. ដល់បុកទ្វិចនំពើមោននិសបថ្ងើកានទ្វំ $oldsymbol{ heta}$

គេមានវ៉ិចទ័រពីរ \overrightarrow{A} និង \overrightarrow{B} ដែលផ្គុំគ្នាបានមុំ θ ដូចរូប ខាងស្តាំ។ យើងបានវ៉ិចទ័រផ្គុបនៃវ៉ិចទ័រ \overrightarrow{A} និង \overrightarrow{B} គឺតាង ដោយ $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$

រូបភាពទី ៦. នំលម្ងួនទុំចន់លើរមាននិសមទ្រើនបានមុំ heta

យើងអាចលើកអង្គទាំងពីរនៃសមីការនេះជាការេ

ឃើងហ៊ុន :
$$\overrightarrow{C^2} = \left(\overrightarrow{A} + \overrightarrow{B}\right)^2 = \overrightarrow{A^2} + 2\overrightarrow{A}\overrightarrow{B} + \overrightarrow{B^2} = \overrightarrow{A^2} + 2AB\cos\left(\overrightarrow{A}, \overrightarrow{B}\right) + \overrightarrow{B^2}$$

ដោយ :
$$\overrightarrow{C^2} = C^2$$
, $\overrightarrow{A^2} = A^2$, $\overrightarrow{B^2} = B^2$, $(\overrightarrow{A}, \overrightarrow{B}) = \theta$

ឃើងហ៊ុន :
$$C^2 = A^2 + B^2 + 2AB\cos\theta$$

នាំឲ្យ :
$$C = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

សម្ភាល់

ដើម្បីសង់វ៉ិចទ័រផ្គូប \overrightarrow{C} ដែល $\overrightarrow{C}=\overrightarrow{A}+\overrightarrow{B}$ យើងត្រូវអនុវត្តតាមវិធានអង្កត់ទ្រុងប្រលេឡូក្រាម។

៤. ដលចុកតុិចជុំកើរមាននិស និចនិសដៅកែចគ្នា

គេមានវ៉ិចទ័រពីរ \overrightarrow{A} និង \overrightarrow{B} ដែលផ្គុំគ្នាបានមុំ 90° ឬមាន ទិស និងទិសដៅកែងគ្នា ដូចរូបខាងស្តាំ។ យើងបានវ៉ិចទ័រ \overrightarrow{A} និង \overrightarrow{B} គឺតាងដោយ $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$

រូចភាពទី ៧. និលចុគទុំចន់លើមោននិស និចនិសដៅគែចគ្នា

យើងអាចលើកអង្គទាំងពីរនៃសមីការនេះជាការេ

ឃើងហ៊ុន :
$$\overrightarrow{C^2} = \left(\overrightarrow{A} + \overrightarrow{B}\right)^2 = \overrightarrow{A^2} + 2\overrightarrow{A}\overrightarrow{B} + \overrightarrow{B^2} = \overrightarrow{A^2} + 2AB\cos\left(\overrightarrow{A}, \overrightarrow{B}\right) + \overrightarrow{B^2}$$

ដោយ :
$$\overrightarrow{C^2} = C^2$$
, $\overrightarrow{A^2} = A^2$, $\overrightarrow{B^2} = B^2$, $(\overrightarrow{A}, \overrightarrow{B}) = 90^\circ$

ឃើងហ៊ុន :
$$C^2 = A^2 + B^2$$

នាំឲ្យ :
$$C = \sqrt{A^2 + B^2}$$

២.នំមាំស្ពាល

និយមន័យ

នំសំស្កាលែះ គឺជាបរិមាណចំនូន ឬទំហំក្នុងខ្នាតសមស្របមួយដែលគ្មានទិសដៅ។ នៅក្នុងរូបវិទ្យាទំហំដែលមិនទាក់ទង និងទិសដៅ(ទំហំស្កាលែ) មានដូចជាៈ សីតុណ្ហភាព សម្ពាធ ថាមពល កម្មន្ត ម៉ាស រយៈពេល។ ល។

៣.គូអរដោលខែទុំមន់រ

ឧបមាថាយើងមានត្រីកោណកែង ABC ដូចបង្ហាញក្នុង រូបខាងស្ដាំ ។

$$\sin\theta = \frac{\text{ជ្រុងឈម}}{\text{អ៊ីប៉ូតេនុស}}, \quad \cos\theta = \frac{\text{ជ្រុងជាប់}}{\text{អ៊ីប៉ូតេនុស}}, \quad \tan\theta = \frac{\text{ជ្រុងឈម}}{\text{ជ្រុងជាប់}}$$

ទំនាក់ទំនង់រវាង $\sin heta$ និង $\cos heta$ ពី

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 និង $\sin^2 \theta + \cos^2 \theta = 1$

គេមានវ៉ិចទ័រ \overrightarrow{A} ស្ដិតក្នុងប្លង់ xy និងបង្កើតបានមុំ θ ជាមួយអ័ក្ស Ox ដូចរូប។ យើងចំណោលកែងវ៉ិចទ័រ \overrightarrow{A} លើអ័ក្ស Ox និង Oy យើងបានធាតុរបស់វ៉ា(Components of Vectors)គឺ $\overrightarrow{A_x}$ និង $\overrightarrow{A_y}$ ។ តាមលក្ខណៈនៃវ៉ិចទ័រយើងបាន: $\overrightarrow{A} = \overrightarrow{A_x} + \overrightarrow{A_y}$

រូបភាពទី ៤. និលមុគទុំចន់រំពីរមាននិស និចនិសដៅគែចគ្នា

ស្សូធាយមពួរាគ់.

ដែល :
$$A_x = A\cos\theta$$
 និង $A_y = A\sin\theta$

ឃើងហ៊ុន :
$$\overrightarrow{A^2} = \left(\overrightarrow{A_x} + \overrightarrow{A_y}\right)^2 = \overrightarrow{A_x^2} + 2\overrightarrow{A_x}\overrightarrow{A_y} + \overrightarrow{A_y^2} = \overrightarrow{A_x^2} + 2A_xA_y\cos\left(\overrightarrow{A_x},\overrightarrow{A_y}\right) + \overrightarrow{A_y^2}$$

ដោយ :
$$\overrightarrow{A^2} = A^2$$
, $\overrightarrow{A_x^2} = A_x^2$, $\overrightarrow{A_y^2} = A_y^2$, $\left(\overrightarrow{A_x}, \overrightarrow{A_y}\right) = 90^\circ$

ឃើងហ៊ុន :
$$A^2 = A_x^2 + A_y^2$$

ទាំឲ្យ :
$$A = \sqrt{A_x^2 + A_y^2}$$

៤.សំណូរ សំចាាត់អនុចត្តន៍ និចគិច្ចការខ្នះ

១. ចូររកកំប៉ូសង់នៃវ៉ិចទ័រក្នុងករណីនីមួយៗខាងក្រោម៖

😊. ចូររកកុំប៉ូសង់តាមអ័ក្សអាប់ស៊ីស និងអរដោនេនៃវ៉ិចទ័រខាងក្រោម៖

- **ព**. គេឲ្យបម្លាស់ទីពីរគឺ $\overrightarrow{r}_1 = \left(6.00\overrightarrow{i} + 3.00\overrightarrow{j}\right)m$ និង $\overrightarrow{r}_2 = \left(4.00\overrightarrow{i} + 5.00\overrightarrow{j}\right)m$ ។ ចូរគណនា $\overrightarrow{r}_1 + \overrightarrow{r}_2$, $\overrightarrow{r}_1 \overrightarrow{r}_2$, $2\overrightarrow{r}_1 \overrightarrow{r}_2$ និងម៉ូឌុលរបស់វាផង។
- **៤**. អ្នកចង់រកកំពស់ដើមឈើតែមិនអាចវាស់ដោយផ្ទាល់បានទេ។ អ្នកឈរចម្ងាយ 50.0m ពីដើមឈើហើយកំណត់ថា បន្ទាត់ នៃការមើលឃើញពីដីទៅដល់កំពូលនៃដើមឈើបង្កើតបានមុំ 25.0° ជាមួយនឹងដី។ តើដើមឈើមានកំពស់ប៉ុន្មាន?

៥. រកបម្លាស់ទីតាមអ័ក្សអាប់ស៊ីស និងអ័ក្សអរដោនេនៃបម្លាស់ទី 100.0m របស់កំពូលវីរបុរសម្នាក់បានហោះចេញពីកំពូល នៃដំបូលអាគារមួយដូចបានបង្ហាញក្នុងរូប។

រូបភាពទី ១០. សំខាាត់នី៥

៦. អ្នកជម្ងឺម្នាក់គាត់បានកាត់ឆ្អឹងដៃ ហើយដៃរបស់គាត់បានចងទាញដូចបង្ហាញក្នុងរូប។ ខ្សែទាំងពីរនោះត្រូវបានទាញ ដោយវ៉ិចទ័រកម្លាំងពីរគឺ A និង B ដែលមានតម្លៃស្មើៗគ្នា និងបង្កើតកម្លាំងផ្គុបដែលមានលើដៃអ្នកជម្ងឺនោះគឺ 5.60N។ គណនាកម្លាំងដែលអនុវត្តលើខ្សែនីមួយៗ។

រូចភាពទី ១១. សំខារត់នី៧

៧. ឡានមួយត្រូវបានទាញដោយកម្លាំងពីរតាមរយៈខ្សែពូរពីរខ្សែ(ដូចរូប) ខ្សែទាំងពីរនេះផ្គុំគ្នាបានមុំ 30.0°។ តម្លៃនៃកម្លាំង ដែលអនុវត្តលើខ្សែនីមួយៗគឺ 2900N។ គណនាកម្លាំងផ្គប់ដែលមានអំពើលើរថយន្តនេះ។

រូចភាពទី ១២. សំខាាត់នី៤

៤. វ៉ិចទ័រនៃកម្លាំងពីរ \overrightarrow{F}_1 និង \overrightarrow{F}_2 មានអំពើលើវត្ថុមួយដែល $F_1=20.0N$ និង $F_2=15.0N$ ។ ចូរគណនាកម្លាំងផ្ដួបដែលមានលើវត្ថុនេះក្នុងករណី **ភ**.ខ និង **ភ**។

៣.ចល់ខាងខ្លួនាគុតាមមួយទឹមាត្រ

១.ចលនាមេធានិច

និយមន័យ

- បម្លាស់ប្តូរទីតាំងអង្គធាតុមួយធ្យេបនឹងអង្គធាតុមួយទៀត ហៅថាចលនាមេកានិច។
- ចំពោះអង្គធាតុណាមួយដែលកំណត់ចលនានៃអង្គធាតុផ្សេងទៀតធ្យេបនឹងវា គេហៅថាអង្គធាតុនោះថា តម្រយ។

២.មម្ចាស់នី ល្បឿង ទុំខន់ឈ្មឿង

យើងនឹងបែងចែងអំពីភាពខុសគ្នារវាង ចម្ងាយចរ និងបម្លាស់ទី ហើយល្បឿន និងវ៉ិចទ័រល្បឿន។

២.១.ទទ្ធាយទះ និទទទ្ធាស់និ

និយមន័យ

ចម្ងាយចរៈ ជាប្រវែងសរុបនៃចលនារបស់អង្គធាតុដោយមិនគិតពីទិសដៅនៃចលនា។ ចម្លាស់ន៏ៈ ជាចម្ងាយចរដែលវ៉ាស់តាមខ្សែត្រង់ និងតាមទិសដៅជាក់លាក់។

សម្គាល់

លក្ខណៈសម្គាល់ទាំងពីរនៃបម្លាស់ទីគឺៈ

- **ចទ្ចាស់នី** គឺជាចម្ងាយចររវាងទីតាំងដើម និងទីតាំងស្រេចរបស់អង្គធាតុ។
- ចម្លាស់ន៍ មានទិសដៅពីទីតាំងដើមទៅទីតាំងស្រេចរបស់អង្គធាតុ។

២.២.ឈ្ស៊ីន ಕ៊ិខន័ះឈ្ស៊ីន

9. ໝູ່ງື່ອ

$$-$$
 ល្បឿនគិតជាម៉ែត្រក្នុងមួយវិនាទី (m/s)

– រយៈពេលពិតជាវិនាទី (s)

ភាកច្រើននៃអង្គធាតុមិនមានចលនាដោយល្បឿនថេរទេ ល្បឿនបស់វាពេលខ្លះយឹត និងពេលខ្លះលឿន។ ហេតុនេះហើយ គេត្រវកំណត់ល្បឿនរបស់អង្គធាតុនោះជាល្បឿនមធ្យមដែលល្បឿននេះដោយផលធ្យើបរវាងចម្ងាយចរសរុប និងរយៈពេល សរុប័។

យើងបាន:
$$\overline{ }$$
 ល្បឿនមធ្យម $= \frac{\overline{\text{ច}}\overline{\text{g}}\overline{\text{m}}\overline{\text{m}}\overline{\text{m}}\overline{\text{m}}\overline{\text{m}}\overline{\text{m}}}{\overline{\text{m}}\overline{\text{m}}\overline{\text{m}}\overline{\text{m}}}$ $\overline{\text{m}}\overline{\text{m}}\overline{\text{m}}\overline{\text{m}}\overline{\text{m}}$

២. ទុំខន័ពល្បឿន

វ៉ិចទ័រល្បឿនពីជាបម្លាស់ទីរបស់វត្ថុក្នុងមួយខ្នាតពេល។

២. បច្ចាស់ទី ល្បឿន វ៉ិចទ័រល្បឿន

មេរៀនទី ៣. ចលនាអង្គធាតុតាមចូយវិមាត្រ

ឧបមាថានៅខណៈ t_1 ចល័តស្ថិតនៅត្រង់ចំណុចមួយដែល មានទីតាំង x_1 ហើយនៅខណៈ t_2 ចល័តស្ថិតនៅត្រង់ ចំណុចមួយដែលមានទីតាំង x_2 ។

យើងបានៈ ្រ្តីចទ័រល្ប្បីនមធ្យម =
$$\frac{ បម្លាស់ទីសរុប}{ រយៈពេលចរ }$$
ឬ $v = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$

នៅក្នុងជីវិភាពរស់នៅយើងតែងតែប្រើពាក្យល្បឿនតែមួយគត់។ ប៉ូន្តែនៅក្នុងរូបវិទ្យា គេបានញែកពាក្យនេះជាពីរដាច់ ចេញពីគ្នាគឺ ល្បឿន និង វ៉ិចទីរល្បឿន។ ល្បឿន ជាចម្ងាយចរក្នុងមូខ្នាតពេល។ ចំណែកឯវ៉ិចទ័រល្បឿន ជាបម្លាស់ទីក្នុង មួយខ្នាតពេល។

សម្គាល់

កាលណាគេនិយាយពីវ៉ិចទ័រល្បឿននៃអង្គធាតុមួយគេត្រូវគិតដល់ល្បឿននិងទិសដៅដែលវាបានឆ្លងកាត់។ ក្នុងចលនាត្រង់ស្មើ វ៉ិចទ័រល្បឿននិងវ៉ិចទ័របម្លាស់ទីមានទិស និងទិសដៅដូចគ្នា ដូចនេះគេអាចសរសេរៈ $v=rac{\Delta x}{\Delta t}$

្ថិចទ័រល្បឿនខណៈ v_x ជាល្បឿនត្រង់ ទីតាំងណាមួយ លើកន្លងដែលវាបានផ្លាស់ទី។ យើងបាន $v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$ (មានន័យថា ចន្លោះពេល Δt តូទៅៗ ពោលគឺ $\Delta t \to 0$ ដែលនាំឲ្យចន្លោះពេលនេះក្លាយជាមួយទីតាំងតែម្ដង) ហើយក្នុងកណិតវិទ្យាលីមីត នេះជាដេរីវេនៃ x ធ្យើបនឹងពេល t ដែលគេតាងដោយ $\frac{dx}{dt}$ ។ ដូចនេះ $v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$ វាជាមេគុណប្រាប់ទិសនៃ បន្ទាត់ប៉ះលើខ្សែកោងត្រង់ចំណុចមួយនោះ ដែលខ្សែកោងនេះជាសមីការទីតាំង x (t) នៃចលនា។

ពៈ៤ សូន់: សូន់:ឧធរិឧ សូន់:ទបបៈ

និយមន័យ

នៅពេលដែលចល័តមួយផ្លាស់ប្តូរល្បឿនធ្យេបនឹងពេលគេថាអង្គធាតុនោះកំពុងមានសំទុះ។

១. សំនុះមធ្យម

ឧបមានៅខណៈ t_1 ចល័តមួយមានវ៉ិចទ័រល្បឿន v_1 ហើយនៅខណៈ t_2 វាមានល្បឿន v_2 ។ សំទុះមធ្យម \overline{a} ឬ a_{av} នៅចន្លោះពីរទីតាំងរបស់ចល័តផ្លាស់ទីមួយគឺជាផលធ្យើបរវាងវ៉ិចទ័រល្បឿន Δv និងចន្លោះពេល Δt ។

យើងបានសំទុះមធ្យម :
$$\overline{a} = a_{av} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$$

ದಿ. ಕ್ಷಾಣಚಾ:

និយមន័យ

សំទុះខណៈ a នៃវត្ថុផ្លាស់ទីគឺជាសំទុះត្រង់ទីតាំងណាមួយក្នុងគន្លងរបស់វា។ មានន័យថាជាលីមីតនៃសំទុះមធ្យម នៅពេលណាដែល Δt ខិតទៅរកសូន្យ។

ឃើងបាន :
$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$

សម្ភាល់

បើបកស្រាយតាមក្រាហ្វិច គេអាចនិយាយថាៈ

- ullet សំទុះមធ្យមពីជាមេពុណប្រាប់ទិសនៃទីតាំងពីរដែលនៅលើខ្សែកោង v-t។
- ullet សំទុះខណៈនៃទីតាំងមួយលើកន្លង គឺជាមេគុណប្រាប់ទិសនៃបន្ទាត់ប៉ះទៅនឹងខ្សែកោង v-t ត្រង់ទីតាំងនោះ។

៣.ចលនាអទ្ឋធាតុតាមមួយទិមាត្រ

ចលនារបស់អង្គធាតុមានច្រើនបែបច្រើនយ៉ាងដូចជា ចលនាត្រង់ ចលនាវង់ ចលនាកោង ចលនារង្វិល ចលនារំកិល...។ ប៉ុន្តែក្នុងមេរៀននេះយើងលើកយកតែចលនាត្រង់ មកសិក្សាប៉ុណ្ណោះ។

៣.១.១ខេសាត្រខ់ស្ពើ

និយមន័យ

ចលនាត្រង់ស្មើជាចលនារបស់អង្គធាតុមួយដែលមានគន្លងជាបន្ទាត់ត្រង់ និងមានល្បឿនថេរ។

ឧទាចារណ៍

បើរថយន្តមួយចរបានចម្ងាយ 10m រ្យ៉េងរាល់មួយវិនាទី គេអាចនិយាយថា រថយន្តនោះចរដោយល្បឿនថេរគឺ 10m/s ។

ullet សទីភារចលនា $x = vt + x_0$

•
$$v = \frac{x - x_0}{t}$$
 $v = \frac{x - x_0}{t}$

• សំនុះ
$$a = 0$$
(ព្រោះល្បឿនថេរ)

សម្គាល់

នៅលើកុងទ័រល្បឿន ល្បឿនគិតជាគឺឡូម៉ែត្រក្នុងមួយម៉ោង (km/h) ឬម៉ាយក្នុងមួយម៉ោង (MPH) ឬ(mi/h)។

- 1 ម៉ាយ = 1.61 គីម៉ែត្រ ឬ 1mi = 1.61km
- 1 ម៉ោង = 60 នាទី ឬ 1h = 60nm

• 1 នាទី = 60 វិនាទី ឬ 1mn = 60s

ullet 1 ម៉ោង = 3600 វិនាទី ឬ 1h = 3600s

ឧទាចារណ៍

ចល័តមួយផ្លាស់ទីដោយចលនាត្រង់ស្មើនៅខណៈ t=0 វាចរបានចម្ងាយ 5m រយៈពេល 5s ក្រោយមកវាចរបាន ចម្ងាយ 50m។ គណនាល្បឿនរបស់ចល័ត។

៣.២.១លនាវុធ្ងខំវែតវិសេច្ចិ

និយមន័យ

ចលនាត្រង់ប្រែប្រលស្មើ ជាចលនាដែលល្បឿនកើនឡើងឬថយចុះដោយតម្លៃស្មើគ្នាក្នុងរយៈពេលស្មើគ្នា។ គេបានបែងចែកប្រភេទនៃចលនាត្រង់ប្រែប្រួលស្មើជាពីរគឺ ចលនាស្ទុះស្មើ និងចលនាយឺតស្មើ។

១. ចលនាស្ទះស្ពើ

និយមន័យ

ចលនាមួយ ជាចលនាស្ទុះស្មើ កាលណាល្បឿនរបស់វាកើនឡើងដោយតម្លៃស្មើៗគ្នា ក្នុងរយៈពេលដូចគ្នាៗ។ ក្នុងចលនាស្ទះស្មើសំទុះ a>0 និងល្បឿនខណៈធំជាងល្បឿនដើម $v>v_0$ ។

🗅. ចលនាយីតស្នើ

និយមន័យ

ចលនាមួយ ជាចលនាយឺតស្មើ កាលណាល្បឿនរបស់វាថយចុះដោយតម្លៃស្មើៗគ្នា ក្នុងរយៈពេលដូចគ្នាៗ។ ក្នុងចលនាយឺតស្មើសំទុះ a < 0 និងល្បឿនខណៈតូចជាងល្បឿនដើម $v < v_0$ ។

- ullet សទីភាទេលនា ឬសទីភាអោចស៊ីស $x=rac{1}{2}at^2+v_0t+x_0$ ullet សំនុះ $a=rac{v-v_0}{t}$ (ប៉ែរ)
- សេត្រូខ $v = v_0 + at$ និង $v_{av} = \frac{v + v_0}{2}$
- ullet នំខាក់នំឧទដ្ឋានពេល $v^2-v_0^2=2a\ (x-x_0)$

លំហាត់គំរូ

- $oldsymbol{9}$. រថយន្តមួយកំពុងបើកលើផ្លូវត្រង់ដោយចលនាត្រង់ស្មើ ដោយល្បឿន $v_0=20m/s$ ។ អ្នកបើកបានឃើញស្ពាននៅ ខាងមុខ 53m បាក់ភ្លាមៗនោះគាត់ក៏ជាន់ប្រាំង រថយន្តក៏បន្តដំណើរដោយចលនាយឺតស្មើដែលមានសំទុះ $a=-4m/s^2$ ។ តើរថយន្តនោះធ្លាក់ស្ពាន ឬទេ?
- $oldsymbol{ol}}}}}}}}}}}}}}}}}$ ដោយល្បឿន 2m/s។ ចូរតាងវ៉ិចទ័រល្បឿននៃបម្លាស់ទីរបស់ទូកតាមមាត្រដ្ឋាន 1cm ត្រវិនឹង 1m/s។
- $oldsymbol{\mathfrak{o}}$. ចល័តមួយធ្វើចលនាដោយល្បឿនប្រែប្រូលពី 20m/s ទៅ 40m/s ដោយប្រើរយៈពេល 2mn។ កណនាល្បឿនមធ្យម និងបម្លាស់ទីរបស់ចល់ឥក្នុងរយៈពេល 2mn។
- **៤**. រថយន្តមួយបើកឡើងភ្នំដោយល្បឿនមធ្យម 10m/s។ រថយន្តមានចលនាយឺតស្មើ។ កណនាល្បឿនដើមដោយដឹងថាល្បឿនស្រេចគឺ v=5m/s។

សាលាមេតូឌីស្គូនម្ជុជា

៤.សំណូរ សំមាន់អនុទន្លង់ និ១និច្ចនារន្ទះ

- 🧕 ចូររកឧទាហរណ៍ទំហំវ៉ិចទ័រ និងទំហំស្កាលែនីមួយៗឲ្យបានប្រាំ។
- 😊. ចូររកលក្ខណៈខុសគ្នារវាងទំហំវ៉ិចទ័រ និងទំហំស្គាលែ។
- ជា. តើបម្លាស់ទី និងចម្ងាយចរខុសគ្នាយ៉ាងដូចម្ដេច?
- ៤. ចូរសរសេររូបមន្តល្បឿនមធ្យម និងវ៉ិចទ័រល្បឿនមធ្យម។
- 💰. តើកុងទ័រម៉ូតូវ៉ាស់ចម្ងាយចរ ឬបម្លាស់ទី? ចូរពន្យល់។
- 👌 តើកុងទ័រម៉ូតូរបស់អ្នកមាននាទីវាស់ល្បឿន ឬវ៉ិចទ័រល្បឿន?
- f Q. វត្ថម្មយផ្លាស់ទីលើអ័ក្សអាប់ស៊ីសពីចំណុច x=-1.0cm ទៅចំណុច $x_2=-4.0cm$ ។ រកបម្លាស់ទីរបស់វត្ថនោះ។
- 🖒 រថយន្តមួយត្រវិបានគេបើកបរទៅទិសខាងកើតបានចម្ងាយ 10.0km បន្ទាប់មករថយន្ននោះបកត្រឡប់ក្រោយបានចម្ងាយ
- $m{\epsilon}$. ចូរបំបែកខ្នាតល្បឿន 54km/h ជា m/s, 600cm/s ជា km/h និង 20m/s ជា km/h។
- $oldsymbol{90}$. កីឡាករម្នាក់រត់បានចម្ងាយ 120km ដោយប្រើពេល 10.0s។ តើល្បឿនមធ្យមរបស់កីឡាករនេះស្មើនឹងប៉ុន្មាន?
- $oldsymbol{99}$. កីឡាករម្នាក់រត់បានចម្ងាយ 100m ដោយប្រើរយៈពេល 10s។ តើកីឡាករនោះមានល្បឿនប៉ុន្មាន?
- **១២**. រថយន្តមួយចរបានចម្ងាយ 30 ម៉ាយ ក្នុងរយៈពេល 30នាទី។ គណនាល្បឿនរបស់រថយន្តគិតជាគីឡូម៉ែត្រក្នុងមួយម៉ោង។
- $\mathbf{900}$. រថយន្នពីរធ្វើចលនាស្មើ។ រថយន្តទី១ ចរបានចម្ងាយ 6km ក្នុងរយៈពេល 5mn និង រថយន្តទី២ ចរបានចម្ងាយ 90mក្នុងរយៈពេល 3s។ តើរថយន្តណាមួយមានល្បឿនធំជាង ឬល្បឿនជាង?
- $\mathbf{9}$ ៤. តើរថយន្តមួយត្រវប្រើរយៈពេលប៉ុន្មានម៉ោង ដើម្បីឲ្យរថយន្តនោះចរបានចម្ងាយ 86km ក្នុងល្បឿន 8m/s?
- **១៥**. តើយន្តហោះប្រតិកម្មត្រូវមានល្បឿនប៉ុន្មាន km/h ដើម្បីឲ្យល្បឿនរបស់វាស្មើនឹងល្បឿនដំណាលនៃសូរ បើគេដឹងថា ល្បឿនដំណាលនៃសូរគឺ 340m/s។
- f 9b. ក្នុងរង្វិលជុំវិញព្រះអាទិត្យ ផែនដីមានល្បឿន 30km/s។ គណនាចម្ងាយដែលផែនដីចរបានក្នុងរយៈពេលមួយថ្ងៃមួយយប់ និងក្នុងមួយឆ្នាំពិតជាម៉ែត្រ។
- **១៧**. ក្នុងរយៈពេល $\frac{1}{2}mn$ មនុស្សម្នាក់អង្គុយក្នុងរទះភ្លើងរាប់បាន 30 ដងនៃស្នូរដែលកង់រទេះភ្លើងទង្គិចនឹងកន្លែងផ្លូវដែក ភ្ជាប់គ្នា។ គណនាល្បឿននៃខ្សែរទេះភ្លើងគិតជា km/h ដោយដឹងថាផ្លូវដែកមួយកំណាត់ៗមានប្រវែង 15m។
- $\mathbf{9}$ d. ចម្ងាយរវាងទីក្រុង A និង B ប្រវែង 250km។ ពីទីក្រងទាំងពីរ មានរថយន្តពីរចេញដំណើរដំណាលគ្នាដើម្បីជួបគ្នា។ រថយន្តចេញពីទីក្រុង A មានល្បឿន 60km/h។ រថយន្តចេញពីទីក្រុង B មានល្បឿន 40km/h។គេសន្មតថា រថយន្ត ទាំងពីរមានចលនាស្មើ។ រករយៈពេលដែលរថយន្តទាំងពីរជួបគ្នាបបន្ទាប់ពីចេញដំណើរ ហើយវាជួបគ្នានៅចម្ងាយប៉ុន្មានពី A?
- $oldsymbol{96}$. រថយន្តពីរចេញពីភ្នំពេញទៅបាត់ដំបង។ រថយន្តទី១ មានល្បឿន 30km/h ចំណែករថយន្តទី២ មានល្បឿន 40km/h។ រថយន្តទី២ ចេញដំណើរក្រោយរថយន្តទី១ រយៈពេល 10mn។ កំណត់រយៈពេល និងទីកន្លែងដែលរថយន្តទី២ ទៅទាន់ជួបរថយន្តទី១។
- oxdotsO. កំពង់ផែ A និង B បិតនៅចម្ងាយ 46km ពីគ្នា។ កំណត់រយៈពេលចាំបាច់សម្រាប់ឲ្យកាណូតមួយចេញពី A ទៅ B រួចពី B ទៅ A វិញ។ ល្បឿនកាណូតក្នុងទឹកនឹងគឺ 13km/h និងល្បឿនចរន្តទឹកហូរពី A ទៅ B គឺ 1.5m/s។

២១. រថយន្តមួយចេញដំណើរពីចំណុច O តម្រង់ទៅទិសខាងលិចដូចបង្ហាញក្នុងរូប។ គណនាសំទុះរបស់វា។

២២. រថភ្លើងពីរកំពុងផ្លាស់ទីមកជិតគ្នាទៅវិញទៅមកលើគន្លងស្របគ្នា ដែលរថភ្លើងនីមួយៗផ្លាស់ទីដោយល្បឿន 155km/h ធ្យើបនិីងដី។ ប្រសិនបើដំបូងរថភ្លើងទាំងពីរនេះស្ថិតនៅចម្ងាយពីគ្នាប្រវែង 8.5km។ តើរយៈពេលប៉ុន្មាននាទីទើបរថភ្លើងទាំងពីរជូបគ្នា?

២៣. ចលនាត្រង់មួយមានសមីការ $x=10+20t-5t^2$ ដោយ x គិតជាម៉ែត្រ (m) និង t គិតជាវិនាទី (s) ។

- 🤧 កំណត់ប្រភេទនៃចលនា និងគណនាសំទុះ។
- $oldsymbol{2}$. កណនាល្បឿនខណៈនៅខណៈពេល t=0 និង t=2s។
- 🛎 តើចល័តស្ថិតនៅទីតាំងណា នៅខណៈដែលល្បឿនរបស់វាមានតម្លៃស្មើសូន្យ។

២៤. អង្គធាតុមួយធ្វើចលនាតាមអ័ក្ស x'ox ដែលមានសមីការ $x=6+2t-t^2$ ដែល x គិតជាម៉ែត្រ (m) និង t គិតជា វិនាទី (s) ។

- 🛪. កំណត់សំទុះ ល្បឿនដើម អាប់ស៊ីសដើម និងប្រភេទចលនា។
- $oldsymbol{2}$. កណនាទីតាំង ល្បឿនខណៈ t=3s។

៤. ច្បាច់ចល់ នារថស់ល្បូតុនា

សេចក្តីផ្តើម

យើងបានសិក្សារួចមកហើយនៅមេរៀនមុនអំពី ល្បឿន សំទុះ នៃចលនារបស់អង្គធាតុដោយយើងមិនបានគិត ឬពិនិត្យអំពីថា ហេតុអ្វីដែលធ្វើឲ្យវាមានចលនា ឡើយ(ផ្នែកស៊ីនេម៉ាទិច)។ ដោយលែកក្នុងមេរៀន នេះ យើង នឹង ពិនិត្យមើលពីបុព្វហេតុដែលធ្វើឲ្យវត្ថុ ឬអង្គធាតុមួយមានចលនា(ផ្នែកឌីណាមិច)។ ឧទាហរណ៍ តើអ្វីដែលធ្វើឲ្យវត្ថុមួយ នៅនឹងថ្កល់? ហើយអ្វីដែលធ្វើឲ្យវត្ថុមួយទៀតមានសំទុះ? កត្តាពីរដែលយើងនឹងលើកមកពិភាក្សាលើច្បាប់គ្រឹះបីនៃ ចលនាដែលទាក់ទង់នឹងកម្លាំង និងម៉ាស។ ច្បាប់គ្រឹះទាំងបីនេះត្រូវបានពិនិត្យពិចារណាយ៉ាងជាក់លាក់ជាងបីសតវត្ស មកហើយ ដែលជាច្បាប់លោក អ៊ីសាក់ ញតុន។

នៅពេលដែលយើងយល់ច្បាស់នូវច្បាប់ទាំំងបីនេះហើយ យើងអាចឆ្លើយនឹងសំនួរដូចជា *តើអ្វីដែលធ្វើច្យវត្ថុប្តូរចលនា?* និង *តើហេតុអ្វីបានជាវត្ថមួយស្ទះលឿនជាងវត្ថមួយទៀត?* ជាដើម។ល។

ជីវប្រវត្តិសង្ខេប

លោក អ៊ីសាក់ ញូតុន(Isaac Newton) ជាអ្នកវិទ្យាសាស្ត្រ និងជាអ្នកគណិតវិទ្យា ដ៏ល្បីល្បាញម្នាក់។ នៅថ្ងៃទី ២៥ ខែធ្នូ ឆ្នាំ ១៦៤២ ឆ្នាំ តែមួយ ដែលកាលីលេ ទទួលមរណភាពនៅអ៊ីតាលី អ្នកប្រាជ្ញមួយរូបទៀតបានចាប់កំណើតឡើង នៅក្នុង ប្រទេសអង់គ្លេស... អ៊ីសាក់ ញូតុន ចាប់កំណើតឡើងនៅក្នុងកាលៈទេសៈដ៏លំបាក មួយ ទាំងនៅក្នុងគ្រួសារ និងនៅក្នុងប្រទេស។

ញុំតុនចាប់កំណើតឡើងជាកូនកំព្រាឪពុក។ ឪពុករបស់ញុតុនបានទទួលមរណភាព តាំងពី ៣ខែមុនញូតុនកើត ហើយនៅពេលដែលញូតុនមានអាយុទើបនឹងបាន ៣ឆ្នាំ ម្តាយបានរៀបការប្តីថ្មី ហើយទុកចោលញូតុនឲ្យរស់នៅជាមួយនឹងជីដូនជីតា ដោយសារតែប្តីថ្មីមិនចង់ឲ្យញូតុនទៅរស់នៅជាមួយ។

លោក អ៊ីសាក់ ញូតុន (១៦៤២-១៧២៧)

កាត់បានរៀន នៅ Free Grammar School និងបន្តទៅ Trinity College, University of Cambridge។ ពេលកំពុង រៀននៅអនុវិទ្យាល័យ កាត់បានចាប់អារម្មណ៍នឹងមុខវិជ្ជា កណិតវិទ្យា រូបវិទ្យា និងតារាសាស្ត្រ។ លោកញូតុន បាន ស្លាប់ នៅឆ្នាំ ១៧២៧ ពេលដែលកាត់មានអាយុ ៤៥ឆ្នាំ។

១.គម្លាំខ

១.១.សញ្ញារាសាគម្លាំ១(Force Notation)

និយមន័យ

គម្លាំ១ ជាបុព្វហេតុ៖

- ធ្វើឲ្យអង្គធាតុមានចលនា ឬបម្រង់មានចលនា
- បញ្ឈប់ ឬផ្លាស់ប្តូរទិសដៅចលនារបស់អង្គធាតុ
- ធ្វើឲ្យអង្គធាតុខូចទ្រង់ទ្រាយ។

- **១**. **គម្លាំ១**(Force) ជាទំហំរ៉ិចទ័រដែលតាងដោយអក្សរ \overrightarrow{F} ដូចនេះវាមានលក្ខណៈសម្គាល់ប្អូនយ៉ាងគឺ ចំណុចចាប់ ទិស ទិសដៅ និងម៉ូឌុល ឬអាំងតង់ស៊ីតេ។
- 🖒. ខ្លាត់នៃកម្លាំខ(Unit of Force) ក្នុងប្រព័ន្ធខ្នាតអន្តរជាតិ (SI) កម្លាំងមានខ្នាតគិតជា ញូតុន(N)។ ឧបករណ៍សម្រាប់វាស់កម្លាំងគឺ ជញ្ជីងរ៉ឺស័រ ឬឌីណាម៉ូម៉ែត្រ។

ខ្នាតកម្លាំង :
$$1N = (1kg) \left(1m/s^2\right)$$

- **៣**. គេបានបែងចែកកម្លាំងជាពីរប្រភេទគឺ៖
 - **ភ**. គម្លាំ១ច៉ះ ជាកម្លាំងដែលអង្គធាតុមួយបញ្ចេញលើអង្គធាតុមួយទៀត ដោយប៉ះក្នាផ្ទាល់។ ឧទាហរណ៍ កម្លាំងទាញវ៊ីស័រ កម្លាំងទាញរទេះ កម្លាំងទាត់បាល់។

ខ. **គម្លាំ១ពីបទ្ងាយ ឬគម្លាំ១ ដែន** ជាកម្លាំងដែលអង្គធាតុមួយបញ្ចេញលើអង្គធាតុមួយទៀត ដោយមិនចាំបាច់ប៉ះគ្នាផ្ទាល់។ ឧទាហរណ៍ កម្លាំងទំនាញផែនដី និងព្រះច័ន្ទ កម្លាំងអន្តរកម្មរវាងបន្ទុកអគ្គិសនីពីរដែលមានសញ្ញាដូចក្នា ឬថ្ទុយក្នា កម្លាំងឆក់ទាញដែកនៃមេដែក ជាដើម។ល។

- (គ). គម្លាំ១នំនាញខែនដី និ១ព្រះច័ន្ទ
- (ខ). គម្លាំ១អន្តរគម្ភមន្តគអគ្គិសន៍ពីរ (ឝ). គម្លាំ១ឆគ់នាញដែតនៃមេដែត

លំហាត់គំរូ

- $oldsymbol{9}$. គេមានវ៉ិចទ័រកម្លាំងពីរដែលមានប្រវែង $4\mathrm{cm}$ និង $9\mathrm{cm}$ ។ តើកម្លាំងនីមួយៗ មានអាំងតង់ស៊ីតេប៉ុន្មាន? បើគេយកមាត្រដ្ឋាន $2\mathrm{cm}$ ត្រវិនីង $30\mathrm{N}$ ។
- 😊. ម៉ាស៊ីនស្ទូចមួយបានស្ទូចវត្ថុមួយមានទម្ងន់ 8000N ដោយល្បឿនថេរតាមរយខ្សែឈរ។ ចូរតាងកម្លាំងដែលម៉ាស៊ីនស្ទចមានអំពើលើវត្ថុនោះដោយវ៉ិចទ័រតាមមាត្រដ្ឋាន $1\mathrm{cm}$ ត្រវិនិង $2000\mathrm{N}$ ។
- **៣**. កម្លាំងទាញលើក្បាលរទេះភ្លើងនៅផ្លូវដែកមួយស្មើនឹង 30000N និងកម្លាំងទប់លើរទេះភ្លើងស្មើនឹង 10000N។ ចូរតាងកម្លាំងនោះដោយវ៉ិចទ័រតាមមាត្រដ្ឋាន $1\mathrm{cm}$ ត្រូវនឹង $10000\mathrm{N}$ ។

១.២.ដលម្មភគម្លាំ១

គ. គរស៊ែកម្លាំ១សំ១ពីមោទនិសដៅ៩ូចគ្នា បើយើងមានវ៉ិចទ័រកម្លាំងពីរគឺ \overrightarrow{F}_1 និង \overrightarrow{F}_2 មានទិស និងទិសដៅដូចគ្នា។ គេបានកម្លាំងផ្គបនៃកម្លាំងទាំងពីរគឺ $\overrightarrow{F}=\overrightarrow{F}_1+\overrightarrow{F}_2$ លក្ខណៈសម្គាល់នៃកម្លាំងផ្គប \overrightarrow{F} គឺ៖

ចំណុចចាប់ : នៅត្រង់ O

ទិស : ស្របគ្នា

ទិសដៅ : ដូចទិសដៅរបស់ \overrightarrow{F}_1 និង \overrightarrow{F}_2

អាំងតង់ស៊ីតេ : $F = F_1 + F_2$

រូបភាពទី ៣. និលមុគទុឺចនំគេម្លាំ១ពីរមាននិស និ១និសដៅដូចគ្នា

 $m{2}$. $m{\pi}$ រសិតឆ្នាំ១សិ១ពីរមាននិសដៅផ្ទុយគ្នា បើយើងមានវ៉ិចទ័រកម្លាំងពីរគឺ $m{F}_1$ និង $m{F}_2$ មានទិសដៅផ្ទុយគ្នា។ គេបានកម្លាំងផ្គុបនៃកម្លាំងទាំងពីរគឺ $m{F}=m{F}_1+m{F}_2$ លក្ខណៈសម្គាល់នៃកម្លាំងផ្គុប $m{F}$ គឺ៖

ចំណុចចាប់ : នៅត្រង់ O

ទិស : ស្របគ្នា

ទិសដៅ : មានទិសដៅដូច

: \overrightarrow{F}_1 v $F_1 > F_2$ ss: $F = F_1 - F_2$

 $: \overrightarrow{F}_2$ បើ $F_1 < F_2$ នោះ $F = F_2 - F_1$

អាំងពង់ស៊ីពេ : $F = |F_1 - F_2|$

រូបភាពទី ៤. ផលមុគទុំិចន័រគម្លាំ១ពីរមាននិសដៅផ្ទុយគ្នា គរណី $F_1>F_2$

រូបភាពទី ៥. និលមុគទុំិចនំគេម្លាំ១ពីរមាននិសដៅន្ទ័យគ្នា គរណី $F_1 < F_2$

គ. គរេស៊ីតម្លាំ១ឆាំ១ពីរមាននិសដៅតែខគ្គា បើយើងមានវ៉ិចទ័រកម្លាំងពីរគឺ \overrightarrow{F}_1 និង \overrightarrow{F}_2 មានទិស និងទិសដៅកែងក្នា។ គេបានកម្លាំងផ្គុបនៃកម្លាំងទាំងពីរគឺ $\overrightarrow{F}=\overrightarrow{F}_1+\overrightarrow{F}_2$ លក្ខណៈសម្គាល់នៃកម្លាំងផ្គុប \overrightarrow{F} គឺ៖

ចំណុចចាប់ : នៅត្រង់ O

ទិស : ស្ថិតលើអង្កត់ទ្រូងនៃចតុកោណកែង

ទិសដៅ : មានទិសដៅដូចរូបខាងក្រោម

អាំងតង់ស៊ីតេ : $F = \sqrt{F_1^2 + F_2^2}$

រូបភាពទី ឯ. និលបូកទុំិចនំកេម្លាំ១ពីមោននិស និចនិសដៅកែចគ្នា

 $m{\mathfrak{S}}$. $m{\mathfrak{S}}$. $m{\mathfrak{S}}$ $m{S}$ $m{\mathfrak{S}}$ $m{\mathfrak{S}}$

ចំណុចចាប់ : នៅត្រង់ O

ទិស : ស្ថិតលើអង្កត់ទ្រុងនៃប្រលេឡូក្រាម

ទិសដៅ : មានទិសដៅដូចរូបខាងក្រោម

អាំងតង់ស៊ីតេ : $F = \sqrt{F_1^2 + F_2^2 - 2F_1F_2\cos(\pi - \theta)}$

 $\mathfrak{V} : F = \sqrt{F_1^2 + F_2^2 + 2F_1 F_2 \cos \theta}$

រូបភាពទី ៧. និលបុគទុំិចនៃគេម្លាំ១ពីរមាននិសបទ្ដើតបានមុំ heta

ខ. ករណីកម្លាំខព្យទីនទាននិសដូចគ្នា

ផលប្លុកកម្លាំងរវាង \overrightarrow{F}_1 និង \overrightarrow{F}_2 : $\overrightarrow{F} = \overrightarrow{F}_1 + \overrightarrow{F}_2$

នោះ : $\overrightarrow{R} = \overrightarrow{F} + \overrightarrow{F}_3$

ឬ : $\overrightarrow{R} = \overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3$ $(\overrightarrow{R}$ ជាកម្លាំងផ្គូបនៃកម្លាំង \overrightarrow{F}_1 , \overrightarrow{F}_2 , \overrightarrow{F}_3)

រូបភាពទី ៤. គរស៊ីរមានទុំចន់គេម្លាំ១ច្រើនមាននិស៩្មមគ្នា

សម្គាល់

ដើម្បីសង់វ៉ិចទ័រកម្មលាំងផ្គុប \overrightarrow{F} ដែល $\overrightarrow{F}=\overrightarrow{F}_1+\overrightarrow{F}_2$ យើងត្រូវអនុវត្តតាមវិធានអង្គត់ទ្រុងប្រលេឡូក្រាម។

លំចាាត់គំរួ

- ១. កម្លាំងខាងក្រោមនេះ ធ្វើអំពើលើចំណុចមួយនៃអង្គធាតុមួយ៖
 - កម្លាំង 17N មានទិសឈរ និងមានទិសដៅពីក្រោមឡើងលើ
 - កម្លាំង 11N មានទិសឈរ និងមានទិសដៅពីលើចុះក្រោម
 - កម្លាំង 18N មានទិសដេក និងមានទិសដៅពីឆ្វេងទៅស្ដាំ
 - កម្លាំង 10N មានទិសដេក និងមានទិសដៅពីស្តាំទៅឆ្វេង។ រកកម្លាំងផ្តួបនៃកម្លាំងទាំងនោះ។
- 😊. កំណត់កម្លាំងផ្គួបនៃកម្លាំងពីរដែលមានអាំងតង់ស៊ីតេស្មើគ្នាហើយមុំបង្កើតដោយកម្លាំងទាំងពីរស្មើនឹង 60°។
- **៣**. កំណត់កម្លាំងផ្គូបនៃកម្លាំងពីរដែលមានអាំងតង់ស៊ីតេស្មើក្នា។ គេដឹងថាមុំដែលបង្កើតដោយកម្លាំងទាំងពីរស្មើនឹង 120°។
- **៤**. កំណត់កម្លាំងផ្គូបនៃកម្លាំងជួបបីដែលមានអាំងតង់ស៊ីតេស្មើក្នាឋិតក្នុងប្លង់តែមួយ ហើយបង្កើតបានមុំ 120° ពី កម្លាំងមួយទៅកម្លាំងមួយទៀត(ដូចរូប)។

៥. ចូរគូសរូបដើម្បីរកកម្លាំងផ្គុបនៃកម្លាំងទាំងពីរគឺ 294N និង 392N ដែលបញ្ចេញលើអង្គធាតុមួយព្រមគ្នា និងមាន ទិសបង្កើតបានមុំ៖ 30°, 60°, 90° និង 120°។ គណនាអាំងតង់ស៊ីតេនៃកម្លាំងផ្គប។

១.៣.ចំចែនកម្លាំ១

កម្លាំងទោលមួយអាចបំបែកជាកម្លាំងផ្គុំពីរឬច្រើនដែលផ្តល់ផលដូចគ្នានឹងកម្លាំងទោលដោយប្រើវិធានប្រលេឡក្រាម។

១. ចំបែកកម្លាំ១មួយសកម្លាំ១ពីរកែ១គ្នា

ជាវ៉ិចទ័រ :
$$\overrightarrow{F} = \overrightarrow{F}_x + \overrightarrow{F}_y$$

ជាតម្លៃ :
$$F = \sqrt{F_x^2 + F_y^2}$$
 ដែល $F_x = F\cos\theta$ និង $F_y = F\sin\theta$

រូបភាពទី ៩. ទំខែភគម្លាំ១មួយខាតម្លាំ១ពីរ៉េត១គ្នា

២. ចំចែកកម្លាំ១មួយសិកម្លាំ១ពីរ្យេសចគ្នា

រូបភាពទី ១០. មំមែនកម្លាំ១មួយខាតម្លាំ១ពីរស្រមគ្នា

ជាវ៉ិចទ័រ : $\overrightarrow{F} = \overrightarrow{F}_1 + \overrightarrow{F}_2$

ដាម៉ូឌុល : $F=F_1+F_2$ ម្យ៉ាងទៀត : $F_1\times d_1=F_2\times d_2$ ឬ $\frac{F_1}{F_2}=\frac{d_2}{d_1}$

លំហាត់តំរូ

- 🧿. កម្លាំង 10N មានទិសបង្កើតបាន 37° ធ្យើបនិីងទិសដេក។ រកកម្លាំងផ្គុំឈរ និងកម្លាំងផ្គុំដេករបស់វា។
- 😊. គេដំដែកគោលមួយលើជញ្ជាំងតាមមុំ 45° និងប្លង់ជញ្ជាំងឈរដោយកម្លាំង 30N។ រកអាំងតង់ស៊ីតេកម្លាំងផ្គុំតាមទិសដេក និងទិសឈរ។

២.ឡាម៉ចលនារមស់ល្អតុន

២.១.ច្បាច់និ១ ល្អូតុន ថ្ម ច្បាច់និចសភាព

- ច្បាច់នី១ ញូតុនៈពាលថា: កាលណាអង្គធាតុមួយមិនរងអំពើនៃកម្លាំងផ្សេងៗទេ ឬវារងកម្លាំងផ្គបស្មើនឹងសូន្យ នោះបើវា នៅនឹងថ្កល់ស្រាប់វានឹងនៅតែនឹងថ្កល់ដដែល តែបើវាមានចលនាស្រាប់ ចលនានោះជាចលនាត្រង់ស្មើ។
- <mark>និទលឝាព</mark> ជាលក្ខណៈនៃគ្រប់អង្គធាតុដែលចង់រក្សាភាពមានចលនា ឬភាពនៅនឹងថ្កល់របស់វា។ គេអាចនិយាយម្យ៉ាងទៀត ថា លក្ខណៈរក្សាល្បើនៃនៃអង្គធាតុហៅថា និចលភាព ហើយចលនាត្រង់ស្មើហៅថា ចលនាដោយនិចលភាព។
- ullet ପ୍ରୀପର୍ଷିତ ପ୍ରାଣ୍ଡର ମେଶ୍ୟରଥନାରେ $\Sigma\overrightarrow{F}=\overrightarrow{0}$

សម្ភាល់

ក្នុងភាពលំនឹងមានន័យថា វត្ថុអាចនៅនឹងថ្កល់ ឬក៏កំពុងផ្លាស់ទីលើកន្លងត្រង់ដោយវ៉ិចទ័រល្បឿនថេរ(ចលនាត្រង់ ស្មើ)។ លក្ខណៈបែបនេះ ហៅថានិចលភាព។

២.២.ច្បាច់នី២ ល្មតុន ថ្ម ច្បាច់គ្រឹះឌីណាទិច

• **ច្បាច់នី២ ញូតុនៈពាលថា:** នៅពេលកម្លាំងសរុបដែលមានអំពើលើវត្ថុមួយមិនស្មើសូន្យ វត្ថុនិ៍ងស្ទុះតាមទិសដៅកម្លាំងដែល បានប្រព្រឹត្តលើវា ហើយសំទុះសមាមាត្រដោយផ្ទាល់និ៍ងកម្លាំងសរុប ដែលមានអំពើលើវាហើយ ច្រាសសមាមាត្រនិ៍ងម៉ាស របស់វា។

សំទុះនៃចលនារបស់អង្គធាតុសមាមាត្រនឹងកម្លាំងផ្គប : $\overrightarrow{a} \propto \Sigma \overrightarrow{F}$

សំទុះនៃចលនារបស់អង្គធាតុច្រាសសមាមាត្រនិងកម្លាំងផ្គុប : $\overrightarrow{a} \propto \frac{1}{m}$

គេហាន : $\overrightarrow{a} = \frac{\Sigma \overrightarrow{F}}{m}$ ឬ $\Sigma \overrightarrow{F} = m \overrightarrow{a}$

ជាម៉ូឌុល : $\Sigma F = ma \left(\overrightarrow{F} \ \widehat{\mathbf{S}} \ \underline{a} \ \widehat{\mathbf{H}} \ \mathbf{S} \ \widehat{\mathbf{S}} \ \mathbf{S} \ \mathbf$

សម្គាល់

- ullet បើកម្លាំង \overrightarrow{F} ថេរ នាំឲ្យសំទុះថេរ៖ អង្គធាតុមានចលនាត្រង់ប្រែប្រលស្មើ។
- \circ បើកម្លាំង \overrightarrow{F} ថេរ និងមានទិសដៅដូចល្បឿន៖ អង្គធាតុមានចលនាត្រង់ស្ទុះស្មើ។
- \circ បើកម្លាំង \overrightarrow{F} ថេរ និងទិសដៅផ្ទុយពីល្បឿន៖ អង្គធាតុមានចលនាត្រង់យឺតស្មើ
- \circ បើកម្លាំង $\overrightarrow{F}=\overrightarrow{0}$ និងមាន $\overrightarrow{a}=\overrightarrow{0}$ ៖ អង្គធាតុមានចលនាត្រង់ស្មើ។

លំចាាត់គំរូ

- ១. ក្មេងប្រសម្នាក់រុញប្រអប់មួយដែលមានម៉ាស 10kg ដោយកម្លាំង 20N។ តើសំទុះនៃប្រអប់ស្មើនឹងប៉ុន្មាន? កកិត អាចចៅលបាន។
- **២**. រថយន្ត មួយមានម៉ាស $1.0 \times 10^3 {
 m kg}$ មានចលនាស្ទុះ ស្មើដោយចាប់ផ្តើមពីល្បឿនសូន្យទៅល្បឿន $20 {
 m m/s}$ ក្នុងរយៈពេល $10 {
 m s}$ ។ គណនាកម្លាំងម៉ាស៊ីនដែលរថយន្តបញ្ចេញដើម្បីឲ្យវាទៅមុខ។ កម្លាំងកកិតអាចចោលបាន។
- $oldsymbol{\mathfrak{m}}$. គណនាកម្លាំងចំបាច់ ដើម្បីឲ្យវត្ថុមួយមានម៉ាស $48\mathrm{kg}$ មានសំទុះ $6\mathrm{m/s^2}$ ។
- $oldsymbol{\epsilon}$. កម្លាំង $200 \mathrm{g}\cdot\mathrm{cm/s^2}$ បញ្ជូនសំទុះ $500 \mathrm{cm/s^2}$ ឲ្យវត្ថម្មួយ។ គណនាម៉ាសនៃវត្ថនោះ។
- $m{\&}$. កម្លាំង $0.20 \mathrm{N}$ មានអំពើលើវត្ថុមួយដែលមានម៉ាស 100 g។ កណនាសំទុះនៃវត្ថុនោះ។
- f b. កម្លាំង $10^{-2}\,
 m N$ មានអំពើលើវត្ថុមួយដែលមានម៉ាស 1
 m g។ តើមួយវិនាទីក្រោយមក វត្ថុនោះផ្លាស់ទីបានចម្ងាយប៉ុន្មានម៉ែត្រ? តើ 5
 m s ក្រោមមកវ៉ាមានល្បឿនប៉ុន្មាន?
- **៧**. កម្លាំងថេរមួយមានអំពើលើវត្ថុមួយមានម៉ាស $300\mathrm{g}$ ធ្វើឲ្យវត្ថុនោះចេញពីស្ថានភាពនៅស្ងេមហើយផ្លាស់ទីបាន ចម្ងាយ $25\mathrm{m}$ ក្នុងរយៈពេល $5\mathrm{s}$ ។ គណនាកម្លាំងនោះ។
- **៤**. កូនបាល់មួយមានម៉ាស $100 \mathrm{g}$ កំពុងឋិតនៅស្ងៀម ហើយរងកម្លាំងមួយថេរស្មើនឹង $200 \mathrm{g} \cdot \mathrm{cm/s^2}$ ក្នុងរយៈពេល $10 \mathrm{s}$ ។ គណនាល្បឿនរបស់បាល់ និងចម្ងាយដែលវាផ្លាស់ទីបានក្នុងរយៈពេល $10 \mathrm{s}$ ។

២.៣.ច្បាច់នី៣ ល្មុគុន ឬ ច្បាច់អំពើ និច្យមគិតម្

• ច្បាច់នី៣ ល្វុគុនលោលថា: នៅពេល វត្ថុទី១បញ្ចេញកម្លាំងមួយទៅលើវត្ថុទី២ នោះវត្ថុទី២ ក៏បញ្ចេញកម្លាំងមួយមកលើវត្ថុទី១ វិញដែរ ដែលមានតម្លៃស្មើត្នា ប៉ុន្តែមានទិសដៅផ្ទុយគ្នា។

កម្លាំងអំពើ \overrightarrow{F}_{12} : ជាកម្លាំងដែលវត្ថុទី១ បញ្ចេញលើវត្ថុទី២

កម្លាំងប្រតិកម្ម \overrightarrow{F}_{21} : ជាកម្លាំងដែលវត្ថុទី២ បញ្ចេញលើវត្ថុទី១

- ច្បាច់នី៣ ញូតុនចន្លាញសត្វសា:សម្គាល់ចូនយ៉ាខនៃកម្លាំខ មានជុំចបា៖
 - កម្លាំងកើតឡើងជាគូ។ គូកម្លាំងនេះហៅថា អំពើ និងប្រតិកម្ម។
 - អំពើ និងប្រតិកម្មមាន អាំងតង់ស៊ីតេស្មើគ្នា។
 - អំពើ និងប្រតិកម្មមានទិសដៅផ្ទុយគ្នា។
 - អំពើ និងប្រតិកម្មមានចំណុចចាប់លើអង្គធាតុពីរផ្សេងក្នា ដូចនេះ វាមិនមែនជាកម្លាំងលំនឹងទេ។
- ullet ច្បាច់នី៣ ល្អគុន គេអាចសរសេះ $\overrightarrow{F}_{12} = -\overrightarrow{F}_{21}$ ជាពម្លៃ $F_{12} = F_{21}$

រូបភាពនី ១១. គម្លាំ១ទើចនិចចាល់មញ្ចោញអន្តរគម្ភសើគ្នានៅទីព្យុនៅមគ ដែលមាននំប៉ុស្តើគ្នា គួចនិសដៅផ្ទុយ

៣.ម៉ាំស ឆិចនម្ងន់

៣.១.ទាំស(Mass)

និយមន័យ

ម៉ាសនៃអង្គធាតុមួយ ជាទំហំអាស្រ័យតែនឹងអង្គធាតុនោះផ្ទាល់ ហើយមានឥទ្ធិពលដល់ទម្ងន់របស់អង្គធាតុនោះ។ អង្គធាតុមួយមានម៉ាសកំណត់។ បើម៉ាសនៃអង្គធាតុកាន់តែធំ នោះនិចលភាពនៃអង្គធាតុនោះ ក៏កាន់តែធំដែរ។ ដូចនេះ ម៉ាសជាទំហំកំណត់និចលភាពនៃវត្ថ។

៣.២.ឧទ្ធន់ ឬតម្លាំខនំនាញរ៉ែជនដី(Weight or Gravitational Force)

និយមន័យ

ទម្ងន់ ឬកម្លាំងទំនាញផែនដី ជាកម្លាំងដែលផែនដីទាញវត្ថុ ហើយមានទិសដៅតម្រង់មករកផ្ចិតនៃផែនដី។ ដើម្បីពណនាទម្ងន់នៃអង្គធាតុមួយ យើងប្រើរូបមន្ត $\vec{w}=m\vec{g}$ ជាម៉ូឌុល w=mg ដែល g ជាសំទុះទំនាញផែនដី។

សម្ចាល់

🧸 ម៉ាសបង្ហាញពីបរិមាណរូបធាតុដែលបង្កើតវត្ថ។

🧿 ទម្ងន់បង្ហាញពីទំហំរបស់ទំនាញ។

៣.៣.ភាពខុសគ្នាវចាខ ទាំស និខនម្ងន់

ម៉ាស	ទម្ងន់
- ជាបរិមាណរូបធាតុមាននៅក្នុងអង្គធាតុ	- ជាកម្លាំងទំនាញផែនដី
- មានតែតម្លៃ គ្មានទិសដៅ	- មានតម្លៃ និងទិសដៅ
- មានខ្នាត់តិតជាតីឡូក្រាម (kg)	- មានខ្នាត់គិតជាញូតុន (N)
- មានតម្លៃថេរគ្រប់ទីកន្លែង	- ប្រែប្រលតាមទីកន្លែង
- វាស់ដោយជញ្ជីង	- វាស់ដោយឌីណាម៉ូម៉ែត្រ

(ন). ម៉ាស និខធម្ងន់របស់ចត្តស្ថិតនៅលើផែនដី

(৩). ម៉ាស និចនម្ងន់មេស់ទត្តស្ថិតនៅលើម៉ានព្រះច័ន្ទ

សម្គាល់

ម៉ាសរបស់វត្ថុមួយមានតម្លៃថេរជានិច្ច ប៉ុន្តែទម្ងន់របស់វាប្រែប្រូលតាមទីកន្លែងដែលវាស្ថិតនៅ។

លំចាាត់គំរូ

- $oldsymbol{9}$. អង្គធាតុមួយមានទម្ងន់ $100\mathrm{N}$ នៅលើផែនដី។ បើគេយកអង្គធាតុនោះទៅកាន់ភពមួយដែលមានសំទុះទំនាញ ស្ញើនឹង $2\mathrm{m/s^2}$ ។ តើអង្គធាតុនោះមានទម្ងន់ប៉ុន្មាននៅលើភពនោះ?
- **២**. នៅចុងខ្សែមួយបានចងភ្ជាប់នីងកូនជញ្ជីង 50kg។ គេទាញកូនជញ្ជីងចេញពីទីតាំងលំនឹងបានមុំ 30°។ រកកម្លាំងដែលទាញកូនជញ្ជីងពីទីតាំងលំនឹង និងតំណឹងនៃខ្សែ។

៣. តំណក់ទឹកភ្លៀងជាមធ្យមមានម៉ាស 0.05g។ ដោយសារខ្យល់បក់តាមទិសដេក ទើបតំណក់ទឹកភ្លៀងធ្លាក់ចុះមកដី តាមទិសដែលធ្វើបានមុំ 60° ជាមួយប្លង់ដេក។ រកកម្លាំងខ្យល់បក់លើតំណក់ទឹកភ្លៀង។ **៤**. គេព្យួរវត្ថុមួយដែលមានម៉ាស $60 {
m kg}$ ទៅនឹងចុងខ្សែពីរដែលទិសវាបង្កើតបានមុំ ABC ស្មើនឹង 120° (ដូច្បូប)។ រកតំណឹងនៃខ្សែទាំងពីរគឺខ្សែ AB និងខ្សែ BC។

៤.កម្លាំ១កែខ សិខកម្លាំខកកិត

៤.១.គម្លាំខតែខ ឬគម្លាំ១ប្រតិតម្ចតែខ(Normal Force)

មុនយើងនិយាយពីកម្លាំងកកិត យើងនឹងរៀនអំពីកម្លាំងថ្មីមួយទៀត ហៅថាកម្លាំងកែង។ កម្លាំងកែង មានអំពើលើវត្ថុ ដែលប៉ះនឹងផ្ទៃ។ វាមានអំពើកែងជានិច្ចនឹងផ្ទៃប៉ះ។ គេតាងវ៉ិចទ័រកម្លាំងកែងដោយ $ec F_N$

(ខ). អង្គាំ១អែលសីម្ងខ់នេះ

រូបមន្តដើម្បីពណនាកម្លាំងកែងគឺ : $\vec{F}_N = -\vec{w} = -m\vec{g}$ (ប្លង់ដេក)

ជាម៉ូឌុល : $F_N = w = mg$

៤.២.គម្លាំខគគិត(Friction Forces)

ឥឡូវ យើងនឹងនិយាយអំពីកកិត។ ឧបមាថាយើងរុញស្យេវភៅមួយក្បាលក្រោមល្បឿនថេរ ដោយកម្លាំង \vec{F} លើផ្ទៃតុមួយ នោះយើងនឹងសង្កេតឃើញថាកកិតរវាងផ្ទៃតុ នឹងស្យេវភៅកើតមានឡើង។ កម្លាំងដែលកើតឡើងដោយសារកកិតរវាងវត្ថុ ពីរនោះហៅថាកម្លាំងកកិតដែលតាងដោយ \vec{f} ហើយមានទិសដៅផ្ទុយនឹងកម្លាំងដែលកំពុងរុញស្យេវភៅនោះគឺ \vec{F} ។

រូបភាពទី ១៤. គម្លាំខគគិត

និយមន័យ

កម្លាំងកកិត ជាកម្លាំងដែលកើតមានឡើងនៅត្រង់ផ្ទៃប៉ះគ្នារវាងវត្ថុពីរ។ យើងតាងវ៉ិចទ័រកម្លាំងកកិតដោយ \vec{f} ។ កម្លាំងកកិតមានពីរប្រភេទពី

- កកិតស្តាទិច(Static Friction) : ជាកកិតដែលកើតមានឡើង កាលណាកម្លាំងទប់(កម្លាំងកកិត) និងកម្លាំង បញ្ចេញលើវត្ថុមួយ ធ្វើឲ្យអង្គធាតុនោះនៅនឹងថ្កល់។ កកិតស្តាទិចអាចហៅថា កកិតនឹងថ្កល់។ គេតាងកម្លាំងកកិតស្តាទិចដោយ f_s ។
- កកិតស៊ីនេទិច(Kinetic Friction) : ជាកកិតដែលកើតមានឡើងកាលណាវត្ថុមានចលនា ហើយវាប្រឆាំងនឹង ទិសដៅនៃបម្លាស់ទីរបស់វត្ថុ។ កកិតស៊ីនេទិចមានពីរប្រភេទគឺ កកិតដោយរអិល និងកកិតដោយរមៀល។ គេតាងកម្លាំងកកិតស៊ីនេទិចដោយ f_k ។

សង្ខេបរូបមន្ត

មេគុណកកិត ជាផលធ្យើបរវាងកម្លាំងកកិត និងកម្លាំងកែង។

គេសរសេរ : មេពុណកកិត $(\mu) = \frac{\text{កម្លាំងកកិត }(f)}{\text{កម្លាំងកែង }(F_N)}$

កម្លាំងកកិតស្ដាទិច : $f_s = \mu_s F_N$ ដែល μ_s ជាមេគុណកកិតស្ដាទិច

កម្លាំងកកិតស៊ីនេទិច : $f_k = \mu_k F_N$ ដែល μ_k ជាមេគុណកកិតស៊ីនេទិច

១. នៅលើផ្លូវដេកត្រង់មួយរថយន្តដែលមានម៉ាស m=1តោន បានចាប់ហ្វ្រាំងដើម្បីឈប់គោរពតាមស្លាកសញ្ញា ចរាចរ។ កម្លាំងកកិត 2 នៃប្រាំងទាំងអស់សមមូលនឹងកម្លាំងថេរតែមួយដែលមានទិសដេកមានទិសដៅផ្ទុយពី ចលនារបស់រថយន្ត និងមានតម្លៃ f=2000N។ គណនាសំទុះនៃចលនារបស់រថយន្ត។

២. រថយន្តមួយផ្លាស់ទីដោយល្បឿន $10 \mathrm{m/s}$ លើផ្លូវដេកត្រង់រាបស្មើ។ ចាប់ពីពេលពន្លត់ម៉ាស៊ីនរហូតដល់ពេលឈប់ ស្ងៀមរថយន្តរត់បានចម្ងាយ $150 \mathrm{m}$ ។ តើរថយន្តរត់លើចម្ងាយផ្លូវនេះក្នុងរយៈពេលប៉ុន្មាន? មេពុណកកិតប៉ុន្មាន? (គេមិនគិតកម្លាំងទប់នៃខ្យល់)។ គេឲ្យ $g = 9.80 \mathrm{m/s^2}$ ។

<u>៥.អនុទត្តន៍ច្បាច់ល្មគុន</u>

នៅចំណុចនេះយើងនឹងសិក្សាអំពីការប្រើ ឬការអនុវត្តច្បាប់ទាំងបីរបស់ ញូតុន ដើម្បីធ្វើការដោះស្រាយលំហាត់ ក៏ដូចជា ស្វែងយល់បន្ថែមអំពីបាតុភូតជាក់ស្តែងរបស់លំហាត់។

៥.១.រមេទ្រឹមទ្រើច្បាច់ល្មុគុលជីម្បីដោះស្រាយលំបាត់

គន្លឹះដោះស្រាយលំចាាត់

ដើម្បីដោះស្រាយលំហាត់ទាក់ទងនិងច្បាប់ញូតុន យើងត្រូវ៖

- ១. វិភាគប្រធានលំហាត់ និងបាតុភូតរូចគូសរូប
- 😊. គូសដ្យាក្រាមកម្លាំងក្រៅទាំងអស់ដែលមានអំពើលើអង្គធាតុនីមួយៗ
- $oldsymbol{\mathfrak{m}}$. ទម្លាក់ចំណោលកែងកម្លាំងនីមួយៗលើអ័ក្ស (\overrightarrow{ox}) និង (\overrightarrow{oy})
- ៤. អនុវត្តច្បាប់ ញូតុន ទៅតាមសម្មតិកម្មដែលគេប្រាប់៖
 - បើអង្គធាតុមានលំនឹង ឬមានចលនាត្រង់ស្មើៈ យើងត្រូវប្រើច្បាប់ទី១ ញុតុន ពោលគឺ ឲ្យផលបូកនៃវ៉ិចទ័រកម្លាំង ទាំងអស់ដែលមានអំពើលើអង្គធាតុស្មើសូន្យ គេសរសេរ $\Sigma \vec{F} = \vec{0}$
 - បើអង្គធាតុផ្លាស់ទីដោយសំទុះថេរ ឬមានចលនាត្រង់ប្រែប្រលស្មើ យើងត្រូវប្រើច្បាប់ទី២ ញូតុន ពោលគឺ ឲ្យផល បុកនៃវ៉ិចទ័រកម្លាំងទាំងអស់ដែលមានអំពើលើអង្គធាតុស្មើនឹង ម៉ាសគុណនិំងសំទុះរបស់វា គេសរសេរ $\Sigma \vec{F} = m \vec{a}$
- 💰. សរសេរកន្សោមវ៉ិចទ័រខាងលើ ជាម៉ូឌុល
- 👌 បង្កើតជាសមីការ រូចដោះស្រាយសមីការនោះ ដើម្បីរកអញ្ញាតដែលគេចង់សូររក។

៥.២.អខ្លួនាគុរអិលលើប្លួចនេះ

ឧទាបារណ៍

- $oldsymbol{9}$. ធុងមួយមានម៉ាស m ដាក់លើផ្ទៃរលោង(កកិតអាចចោលបាន)នៃប្លង់ទេ មួយដែលបង្កើតបានមុំ heta ជាមួយ ប្លង់ដេកដូចរូបខាងក្រោម។ ចូរសិក្សាចលនារបស់ធុងក្រោយពីវាត្រវិបានគេលែង។
- **២**. រូបខាងក្រោម មេគុណកកិតស៊ីនេទិចរវាងដុំម៉ាស A និងតុស្នើ 0.2។ ដុំម៉ាស $m_A=25{
 m kg}$ និង $m_B=15{
 m kg}$ ។ ម៉ាសខ្សែ ម៉ាសរ៉ាក និងកកិតរវាងខ្សែនឹងរ៉ាកអាចចោលបាន។ សំទុះទំនាញដី $g=9.80{
 m m/s}^2$
 - 🤧 គូសដ្យាក្រាមកម្លាំងនៃដុំម៉ាសនីមួយៗ។
 - 🤒 រកសំទុះនៃដុំម៉ាសនីមួយៗ។

- 🛱. រកតំណឹងខ្សែ។
- **ឃ**. តើ ដុំ ម៉ាស នី មួយ ៗ ផ្លាស់ទី បាន ប្រវែង ប៉ុន្មាន ក្នុងរយៈពេល 3s ដំបូងក្រោយពេលលែងដុំម៉ាស*B*

៥.៣.ម៉ាស៊ីនមាត់ចុត

ឧទាចារណ៍

កាលណាវត្ថុពីរមានម៉ាសមិនស្មើគ្នាចងភ្ជាប់តាមរយៈខ្សែដែលឆ្លងកាត់រ៉ាក។ កកិតរវាងរ៉ាក និងខ្សែអាចចោលបាន។ ម៉ាសខ្សែ និងម៉ាសរ៉ាកអាចចោលបាន។ ប្រព័ន្ធដែលបានរៀបរាប់នេះហៅថា ម៉ាស៊ីនអាត់វ៉ូត។ កំណត់សំទុះវត្ថុទាំងពីរ និងតំណឹងខ្សែ។ ចូរអនុវត្តជាលេខបើ $m_1=1.0{
m kg},\ m_2=2.0{
m kg}$ និង $g=9.80{
m m/s}^2$ ។

លំចាាត់គំរួ

- $oldsymbol{9}$. កម្លាំងពីរមានអំពើលើវត្ថុមួយមានម៉ាស $m=4.0{
 m kg}$ ។ បើ $F_1=20.0N$ និង $F_2=15.0N$ ។ ចូរកណនា៖
 - **ភ**. កម្លាំងផ្គួបដែលមានអំពើលើវត្ថុនោះ។
- 🥹. គណនាសំទុះនៃវត្ថុនោះ។
- **២**. ឈើមួយដុំរាងប្រលេពីប៉ែតកែងបានរអិលដោយគ្មានកកិតចុះតាមបណ្ដោយប្លង់ទេ(ដូចរូប)។ មុំរវាងប្លង់ទេរ និង ប្លង់ដេកពី $\theta=30^\circ$ ។ ដុំឈើនោះចាប់ផ្ដើមផ្លាស់ទីពី A ចុះក្រោមតាមបណ្ដោយប្លង់ទេរបានប្រវែង $d=2.0\mathrm{m}$ ។
 - 🤧 . កូសដ្យាក្រាមតាងឲ្យកម្លាំងដែលមានអំពើលើដុំថ្មនោះ។
 - 🥹. កណនាសំទុះនៃឈើនោះ។
 - គ. កណនាល្បឿននៅខណៈដែលដុំឈើនោះមកដល់ចំណុច B។ គេយក $g=9.80 \mathrm{m/s^2}$ ។
- $m{n}$. អេឡិចក្រុងមួយមានម៉ាស $9.11 imes 10^{-31}
 m kg$ ធ្វើចលនាត្រង់ដោយល្បឿនដើម $2.0 imes 10^5
 m m/s$ និងផ្លាស់ទីបាន 5.0
 m cm។ គេដឹងថាសំទុះនៃអេឡិចត្រង់ថេរនិងល្បឿនស្រេចគឺ $6.0 imes 10^5
 m m/s$ ។
 - **ភ**. កំណត់កម្លាំងដែលមានអំពើលើអេឡិចត្រុង។
 - f 2. ប្រៅ្របធៀបកម្លាំងនេះនឹងទម្ងន់របស់អេឡិចត្រុង។ គេឲ្យ $g=9.80
 m m/s^2$ ។

៦.សំណូរ លំចាត់អនុទត្តន៍ និចតិចូតាខ្មេះ

អង្គធាតុមួយមានទម្ងន់ 50N ត្រូវបានគេព្យួរដោយប្រើខ្សែទៅនឹងចំណុចនឹងមួយដូចបង្ហាញក្នុងរូប។ ចូរគណនាតំណឹងខ្សែ។

២. គេតម្លើងប្រព័ន្ធមួយដូចបង្ហាញក្នុងរូប។ ប្រសិនបើតំណឹងរបស់ខ្សែដេកស្មើនឹង 30N។ ចូររកទម្ងន់របស់អង្គធាតុដែលគេយកទៅព្យរ។

៣. គេតម្លើងប្រព័ន្ធមួយដូចបង្ហាញក្នុងរូប។ ចូររកតម្លៃនៃ T_1 និង T_2 ប្រសិនបើទម្ងន់របស់អង្គធាតុដែលត្រូវបានគេព្យួរគឺ 600N។

 $oldsymbol{\epsilon}$. គេតម្លើងប្រព័ន្ធមួយដូចបង្ហាញក្នុងរូប។ ប្រសិនបើគេដឹងថា តំណឹងរបស់ខ្សែ T_1 ស្មើនឹង 30N ចូររកតំណឹងរបស់ខ្សែ T_2 និងតម្លៃទម្ងន់របស់វត្ថា។

៥. ប្រអប់មួយមានទម្ងន់ 100N ស្ថិតនៅស្ងៀមនៅលើកម្រាលឥដ្ឋ។ ប្រសិនបើគេដឹងថា មេគុណកកិតស្ដាទិចរវាងប្រអប់នេះ នឹងកម្រាលឥដ្ឋស្មើនឹង 0.4។ ចូររកកម្លាំងអប្បរមា F ដែលត្រូវប្រើលើប្រអប់នេះដើម្បីឲ្យប្រអប់នេះចាប់ផ្ដើមធ្វើចលនា(ដូចរូប)។

- **៦**. ប្រអប់មួយមានទម្ងន់ 50N ត្រវបានគេធ្វើឲ្យវារអិលនៅលើកម្រាលឥដ្ឋដោយល្បឿនថេរ ត្រូវប្រើកម្លាំង 25N តាមទិស ដូចបង្ហាញក្នុងរូបខាងក្រោម។
 - ភ. ចូរ រក កម្លាំង កកិត ដែល កើតមាន ពេល ដែល ប្រអប់ 🥹 រកកម្លាំងផ្គុំកែង។ មានចលនា។

៧. ពិនិត្យមើលរូបខាងក្រោម។ អង្គធាតុ A មានម៉ាស 5.0kg អង្គធាតុ B មានម៉ាស 2.0kg ត្រូវបានចងភ្ជាប់គ្នាដោយ ខ្សែមិនយឺត មិននិងមិនគិតម៉ាសហើយឆ្លងកាត់រ៉កមួយ។ គេឃើញអង្គធាតុ A ផ្លាស់ទីទៅស្តាំឯអង្គធាតុ B ផ្លាស់ទីទៅ ខាងឆ្វេង។ ចូរកំណត់សំទុះ និងតំណឹងខ្សែនៃប្រព័ន្ធ។ មេគុណកកិតរវាងអង្គធាតុ A និងផ្ទៃតុកិ 0.2។

- **៤**. ដុំម៉ាស A ដែលមានម៉ាស $10 {
 m kg}$ កំពុងរអិលផ្លាស់ទីចុះក្រោមតាមបណ្ដោយប្លង់ទេរដែលបង្កើតបានមុំ 30° ជាមួយទិស ដេក។ មេគុណកកិតស៊ីនេទិចរវាងដុំម៉ាស និងប្លង់ទេរស្មើនឹង 0.5។ សំទុះទំនាញដី $g=9.80 {
 m m/s}^2$ ។
 - 🥱. ចូរគូសដ្យាក្រាមកម្លាំងដែលមានអំពើលើដុំម៉ាស។
- **១**5. រកសំទុះនៃដុំម៉ាស និងកម្លាំងផ្គុបដែលមានអំពើលើដុំ ម៉ាស។

- **ខ**. រកកម្លាំងប្រតិកម្មកែង។
- 🛱. រកកម្លាំងកកិតដែលមានអំពើលើដុំម៉ាស។

- $m{\delta}$. គេភ្ជាប់អង្គធាតុពីរដោយខ្សែដែលឆ្លងកាត់រកមួយ(កកិតរវាងខ្សែ និងរកអាចចោលបាន) ដូចរូប រួចគេលែងវត្ថុទាំងនោះ ដោយល្បឿនដើមស្មើស្ងន្យ។ គេឲ្យ $m_1=2.0{
 m kg},\ m_2=5.0{
 m kg}$ និង $heta=60^{\circ}$ ។ គេយក $g=9.80{
 m m/s}^2$ ។
 - 🙃 កណនាសំទុះនៃអង្គធាតុ។
 - 활 គណនាតំណិីងខ្សែដែលចង់ភ្ជាប់អង្គធាតុទាំងពីរ។
- គ. គណនា ល្បឿន របស់ អង្គធាតុ នី មួយ ៗ ក្រោយពី ចេញដំណើរបានរយៈពេល 2.0s។

១០. រូបខាងក្រោម មេពុណកកិតស៊ីនេទិចរវាងដុំម៉ាស A និីងតុស្នើ 0.2។ ដុំម៉ាស $m_A=25{
m kg}$ និង $m_B=15{
m kg}$ ។ ម៉ាសខ្សែ ម៉ាសរ៉ាក និងកកិតរវាងខ្សែនឹងរ៉ាកអាចចោលបាន។ សំទុះទំនាញដី $g=9.80{
m m/s}^2$ តើអង្គធាតុ B ធ្លាក់បានចម្ងាយប៉ុន្មាន ក្នុងរយៈពេល 3s បន្ទាប់ពីគេលែងប្រព័ន្ធ?

- ១១. ដុំឈើពីរភ្ជាប់គ្នាដោយខ្សែស្រាលមួយត្រូវបានគេទាញដោយកម្លាំងតាមទិសដេក \vec{F} ដូចរូប។ ឧបមា $F=68\mathrm{N},\ m_1=12.0\mathrm{kg}$ និង $m_2=18.0\mathrm{kg}$ ហើយកកិតស៊ីនេទិចរវាងដំឈើ និងផ្ទៃប៉ះស្មើ 0.100។
 - 🛪. ចូរគូសដ្យាក្រាម(វ៉ិចទ័រកម្លាំងលើដុំឈើនីមួយៗ)។
 - 횧 ចូរកំណត់តំណឹងខ្សែ និងសំទុះរបស់ប្រព័ន្ធ។

- **១២**. នៅអាកាសយានដ្ឋានមួយ ស្ត្រីម្នាក់កំពុងទាញវ៉ាលីរបស់គាត់ដែលមានម៉ាស 20.0kg ឲ្យផ្លាស់ទីដោយល្បឿនថេរ ហើយ ប្រើកម្លាំងដែលមានទិសដៅបង្កើតបានមុំ θ ជាមួយអ័ក្សដេក និងមានតម្លៃ 35.0N ដូចបង្ហាញក្នុងរូប។ កម្លាំងកកិតដែលមានអំពើលើវ៉ាលីមានតម្លៃស្ញី 20.0N។
 - 🥦 ចូរគូសដ្យាក្រាមកម្លាំងដែលមានអំពើលើវ៉ាលីនេះ។
 - $oldsymbol{2}$. រកតម្លៃរបស់មុំ $oldsymbol{ heta}$ ។
 - 🛎 រកតម្លៃរបស់កម្លាំងកែងដែលផ្ទៃដីមានអំពើលើវ៉ាលី។

- **១៣**. គេចោលអង្គធាតុមួយពីក្រោមឡើងទៅលើតាមទិសឈរដោយល្បឿនដើម 30m/s។ ក្រោយរយៈពេល 2.5s អង្គធាតុឡើងដល់ចំណុចខ្ពស់បំផុត។ គណនាកម្លាំងទប់មធ្យមនៃខ្យល់ដែលរងដោយអង្គធាតុក្នុងពេលវាឡើង។ គេឲ្យម៉ាសអង្គធាតុ 40g និង g = 9.80m/s។
- **១៤ំ**. តើគេត្រវិការកម្លាំងហ្វ្រាំងប៉ុន្មានញុតុន ដើម្បីបញ្ឈប់រថយន្តមួយមានម៉ាស 1500kg ដែលកំពុងបើកបរដោយល្បឿន 100km/h ឲ្យនៅស្ងៀមក្នុងចម្ងាយ 55m**។**

६.सङ्छ छोछतर साक्झात

- ១.គម្ភន្តមច្ចើតដោយគម្លាំ១ថេរ
- ១.១.ដលឝុណស្ពាលៃ(Scalar Product)
- ១.២.គម្ពន្ធមទ្វើតដោយគម្លាំ១ថេរ
- ២.ទាំងពលស៊ីនេនិច និច្យន៏ស្ពីតម្លួន-ទាំងពលស៊ីនេនិច
- ២.១.ខាំងពលស៊ីនេនិទ(Kinetic Energy)
- ២.២.រូន្នីស្ពីតម្ភន្ន-ខាមពលស៊ីទេនិទ(The Work-Kinetic Energy Theorem)
- ៣.ថាមពលចុំតខ់ស្បែល(Potential Energy)

និយមន័យ

សមពលម៉ូតខំស្វែល:

៤.មានុតាព(Power)

៥.សំណុរ លំចាត់អនុចត្តន៍ និចគិច្ចកាខ្មេះ

- ស្តីម្នាក់ទូលល្អីមួយមានចេកពេញ។ គាត់ធ្វើដំណើរសំដៅទៅផ្សារដើម្បីលក់ចេក។ តើកម្លាំងដេលគាត់ទូលល្អីនោះបាន បំពេញកម្មន្តដែរ ឬទេ? ព្រោះអ្វី?
- 😊. ស្ត្រីម្នាក់រុញកូនរទេះមួយនៅក្នុងផ្សារទំនើប។ បើកាត់បញ្ចេញកម្លាំង 30.0N ទៅលើកូនរទេះក្នុងទិសដៅនៃបម្លាស់ទីនោះ កូនរទេះផ្លាស់ទីបានចម្ងាយ 5.00m។ គណនាកម្មន្តដែលបានបំពេញដោយកម្លាំងលើកូនរទេះ។
- **៣**. ដើម្បីឲ្យវត្ថុមួយមានម៉ាស m ផ្លាស់ទីពី A ទៅ B ដែល $AB=5\mathrm{m}$ គេត្រវច្រើកម្លាំង $F=20\mathrm{N}$ ។
 - 🙃 ចូរធូសក្រាបតាង(កម្លាំង-បម្លាស់ទី)។
 - 🥹. តាមក្រាបនេះ ចូរគណនាក្រឡាផ្ទៃរបស់ចតុកោណដែលមានជ្រុងស្មើនឹង F និង AB។
 - 🙇 គណនាកម្មន្នដែលបានធ្វើនោះ។

- [1] ស្ស៊េរិភៅរូបវិទ្យាថ្នាក់ទី១០, **ក្រសួងអប់រំយុវជន និងកីឡា**, ២០១៩
- [2] ស្យេវភៅរូបវិទ្យាថ្នាក់ទី១០ មេរ្យេន សំណួរ ចម្លើយ និងកំណែលំហាត់, ឈន់ ផេន, ២០១៤
- [3] ស្ស៊េវភៅកំណែលំហាត់ រូបវិទ្យា ផ្នែកឌីណាមិច,**ស៊ុន សារ៉ាត,** ២០១៩
- [4] College Physics, Hugh D. Young, 9th
- [5] Physics Principles with Applications, **Douglas C.Giancoli**, 7th