10-708 Recitation 3 - Monte Carlo Markov Chain

Fan Pu Zeng

17 Feb 2023

Table of Contents

Rejection Sampling

Markov Chains

Monte Carlo Markov Chain

Linear Algebra Refresher

Markov Chain Mixing Times

Homework Overview

Rejection Sampling

Rejection Sampling (HW2 Q5)

- Problem: you have some hard to sample distribution f (target distribution), and an easy to sample distribution g (proposal distribution)
- ▶ Rejection sampling algorithm: Choose c large enough such that $\forall x, f(x) \le cg(x)$.
 - Generate sample x from g
 - Generate sample $u \sim Unif(0,1)$
 - Accept if $u \le \frac{f(x)}{cg(x)}$

▶ Good when g is close to h and therefore c is small

Rejection Sampling (HW2 Q5)

Illustration for proposal distribution S and target distribution D in Q5:

$$D = \{(x, y) : (x/2)^2 + y^2 \le 1\}$$

$$S = \{(x, y) : -2 \le x \le 2, -1 \le y \le 1\}$$

Markov Chains

Let T denote the transition matrix of a Markov chain.

Definition (Stationary Distribution)

A distribution π is stationary if $\pi T = \pi$.

▶ When does a *unique* stationary distribution exist?

Markov Chains

Let T denote the transition matrix of a Markov chain.

Definition (Stationary Distribution)

A distribution π is stationary if $\pi T = \pi$.

- When does a unique stationary distribution exist?
- Sufficient conditions:
 - 1. Irreducibility: transition graph is connected, able to reach any state from any other state eventually
 - Aperiodicity: random walk doesn't get trapped in cycles, i.e there exists some n where eventually there is positive probability of being in all states after n steps

Markov Chains

▶ Let T denote the transition matrix of a Markov chain.

Definition (Stationary Distribution)

A distribution π is stationary if $\pi T = \pi$.

- When does a unique stationary distribution exist?
- Sufficient conditions:
 - 1. Irreducibility: transition graph is connected, able to reach any state from any other state eventually
 - 2. Aperiodicity: random walk doesn't get trapped in cycles, i.e there exists some *n* where eventually there is positive probability of being in all states after *n* steps
- When is π a stationary distribution? Sufficient condition: π satisfies detailed balance:

$$\pi_i \mathbf{T}_{ij} = \pi_j \mathbf{T}_{ji} \quad \forall (i,j).$$

Monte Carlo Markov Chain

Monte Carlo Markov Chain

- Importance sampling may work in low dimensions, but becomes inefficient in high dimensions (ratio of volumes grow exponentially, always rejecting)
- Idea: construct a Markov Chain on the state space whose stationary distribution is the target distribution

Monte Carlo Markov Chain

- Importance sampling may work in low dimensions, but becomes inefficient in high dimensions (ratio of volumes grow exponentially, always rejecting)
- Idea: construct a Markov Chain on the state space whose stationary distribution is the target distribution

Example

For Ising models, the Markov Chain will move around state space $\{0,1\}^n$.

After reaching stationary distribution, proportion of time spent in some state $\mathbf{x} \in \{0,1\}^n$ proportionate to $p(\mathbf{x})$, so sampling from the Markov Chain is like sampling from p

Question: How to determine T?

Metropolis-Hastings (HW2 Programming)

Main idea:

- Suppose we have some easy to sample proposal distribution (also called transition kernel) q(i,j), and we are in state j
- At each step, we sample a proposal i with probability q(i,j)
- ▶ Be clever about deciding the probability to accept the proposal
- ► The Markov Chain will eventually reach a stationary distribution

Algorithm:

$$\Pr(X_n = j \mid X_{n-1} = i) =$$

$$1., \qquad \text{from state } i \text{ go to state } j \text{ with prob. } q(i,j)$$

$$2., \qquad \left\{ \begin{array}{l} \text{with prob } 1 - \alpha(i,j) \text{ go back to state } i, \\ \text{with prob } \alpha(i,j) \text{ stay in state } j. \end{array} \right.$$

where

$$\alpha(i,j) = \min\left(\frac{\pi_j q(j,i)}{\pi_j q(i,j)}, 1\right) = \min\left(\frac{b(j)q(j,i)}{b(i)q(i,j)}, 1\right).$$

Gibbs Sampling (HW2 Programming)

- Downside with Metropolis-Hastings: need to come up with a proposal distribution q, and acceptance rate may be low
- Gibbs sampling always accepts, and is a special case of MH

Algorithm:

```
Repeat:
Let current state be \mathbf{x}=(x_1,x_2,...,x_n)
Pick i\in[n] uniformly at random.
Sample \mathbf{x}\sim P(X_i=x|\mathbf{x}_{-i})
Update state to \mathbf{y}=(x_1,x_2,...,x_{i-1},x,x_{i+1},...,x_n)
```

Why is $x \sim P(X_i = x \mid \mathbf{x}_{-i})$ easy to sample? You will show this in the HW.

HW2 Programming Hints

- ▶ The neighbors of node (i,j) are just its vertical and horizontal neighbors on the $n \times x$ grid
- In the setup of this problem, there is double counting of the edges. In general, whether there is double counting or not is a matter of convention and does not affect any of our results.

Linear Algebra Refresher and Hints (Q6, Q8)

- Let A be any matrix. v is an eigenvector of A if $Av = \lambda v$ for some $\lambda \in \mathbb{R}$. λ is called the eigenvalue associated with v.
- ▶ Vectors u, v are orthogonal when $\langle u, v \rangle = 0$
- A matrix U is orthogonal when all its rows are pairwise orthogonal, and all its columns are pairwise orthogonal
- ► For a square orthogonal matrix U, $UU^T = U^TU = I$
- ▶ The operator norm of a matrix A is defined as:

$$||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2}.$$

Linear Algebra Refresher and Hints (Q6, Q8)

Properties of a $n \times n$ symmetric matrix A:

Exhibits an eigendecomposition:

$$A = UDU^{T} = \sum_{i=1}^{n} \lambda_{i} \underbrace{v_{i}v_{i}^{T}}_{n \times x}$$

where U orthogonal, $D = \text{diag}(\lambda_1, \dots, \lambda_n)$, λ_i eigenvalues, v_i eigenvector of unit norm corresponding to λ_i .

ightharpoonup All eigenvectors v_i are orthogonal:

$$\langle v_i, v_i \rangle = 0 \quad \forall i \neq j$$

▶ The largest eigenvalue λ_1 of A is given by

$$\lambda_1 = \max_{\|x\|_2 = 1} x^T A x.$$

▶ The second largest eigenvalue λ_2 is given by

$$\lambda_2 = \max_{\|x\|_2 = 1, (x, y_1) = 0} x^T A x.$$

Markov Chain Mixing Times

▶ In theory:

$$\lim_{t \to \infty} \mathbf{T}^t \mathbf{x} = \boldsymbol{\pi}.\tag{1}$$

In practice: how long does it take for my Markov Chain to reach a stationary distribution? Reach means:

$$\|\mathbf{T}^k \mathbf{x} - \boldsymbol{\pi}\|_{TV} < 1/4 \tag{2}$$

In theory:

$$\lim_{t \to \infty} \mathbf{T}^t \mathbf{x} = \boldsymbol{\pi}. \tag{1}$$

In practice: how long does it take for my Markov Chain to reach a stationary distribution? Reach means:

$$\|\mathbf{T}^k \mathbf{x} - \boldsymbol{\pi}\|_{TV} < 1/4 \tag{2}$$

 Linear algebraic view: you will learn how to bound the mixing time in terms of the difference between the two largest eigenvalues in magnitude of T

High level overview:

- ► For a connected *d*-regular transition matrix **T**, you will show its largest eigenvalue is 1
- Let λ_{\max} denote the next largest eigenvalue. You will show that the number of steps k required to mix is

$$k \ge \frac{\log n}{1 - \lambda_{\max}}.$$

Asymptotically, $1 - \lambda_{\text{max}}$ could be O(1) (clique), O(1/n), $O(1/n^2)$ (cycle), etc, so mixing time could vary a lot.

- ▶ $S \subseteq V$ set of vertices in the graph, $E(S, \overline{S})$: set of edges that are cut between the two partitions S and \overline{S} .
- Conductance of a cut S:

$$\Phi(S) = \frac{|E(S,\overline{S}|)}{d \cdot |S|},\tag{3}$$

Conductance of the graph represented by T:

$$\Phi_{\mathbf{T}} = \min_{S, |S| \le |\overline{S}|} \frac{|E(S, S|)}{d \cdot |S|}.$$
 (4)

© Let's do some examples!

Conductance of a cut S:

$$\Phi(S) = \frac{|E(S, \overline{S}|)}{d \cdot |S|},\tag{5}$$

What is $\Phi(\{1,2\})$?

Conductance of a cut S:

$$\Phi(S) = \frac{|E(S, \overline{S}|)}{d \cdot |S|},\tag{5}$$

What is $\Phi(\{1,2\})$? Ans: 1/2

Conductance of the entire graph:

$$\Phi_{\mathsf{T}} = \min_{S, |S| \le |\overline{S}|} \frac{|E(S, \overline{S}|)}{d \cdot |S|}.$$
 (6)

What is $\Phi_{\mathbf{T}}$?

Conductance of the entire graph:

$$\Phi_{\mathsf{T}} = \min_{S, |S| \le |\overline{S}|} \frac{|E(S, \overline{S}|)}{d \cdot |S|}.$$
 (6)

What is Φ_T ? Take everything on the left side, 1/15

High level overview, continued:

- In practice, hard to find/characterize $1-\lambda_{\max}$ for a family of graphs
- You will use the conductance Φ_T of the graph represented by T, and use it to bound $1-\lambda_{\max}$. You will prove the LHS of the following result:

$$\frac{1 - \lambda_{\mathsf{max}}}{2} \le \Phi_{\mathsf{T}} \le \sqrt{2 \cdot \left(1 - \lambda_{\mathsf{max}}\right)}$$

Other hints:

- We only consider graphs that are connected, d-regular, and distribute transition probabilities uniformly among its neighbors. This implies that T is symmetric.
- ▶ Q8(a): After you show that $\lambda_1 = 1$ and $v_1 = \frac{1}{\sqrt{n}}\vec{1}$, this fact is very important and will be used many times
- ▶ Q8(h): When relaxing from discrete to continuous constraints, the solution can only get better, i.e

$$\min_{x \in \{0,1\}^n} f(x) \ge \min_{x \in \mathbb{R}^n} f(x)$$

Lots of hints included in problem ©

What's Next?

- ► You have learnt enough material to do Q1-Q5, Q8, and B.1(a) and B.1(b) of the programming homework
- Next week we will cover annealed importance sampling and Hamiltonian Monte Carlo, and you will have everything you need
- ► Start early ③

Thank you for coming to recitation and good luck on the homework!