

CSE408 Knapsack problem

Lecture #35

Dynamic Programming

Dynamic Programming is a general algorithm design technique for solving problems defined by or formulated as recurrences with overlapping sub instances

- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- "Programming" here means "planning"
- Main idea:
 - set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
 - solve smaller instances once
 - record solutions in a table
 - extract solution to the initial instance from that table

Knapsack Problem by DP

Given *n* items of

integer weights: w_1 w_2 ... w_n

values: $v_1 v_2 \dots v_n$

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j ($j \le W$).

Let V[i,j] be optimal value of such an instance. Then $\max \{V[i-1,j], v_i + V[i-1,j-w_i]\}$ if $j-w_i \ge 0$ V[i,j] = V[i-1,j] if $j-w_i < 0$

Initial conditions: V[0,j] = 0 and V[i,0] = 0

Knapsack Problem by DP (example)

Example: Knapsack of capacity W = 5

<u>item</u>	<u>weight</u>		<u>value</u>)						
1	2		\$12							
2	1		\$10							
3	3		\$20							
4	2		\$15			ca	apad	city	j	
			0 1	2	3	4	5]
			0	0	0	0				
$W_1 =$	2, $v_1 = 12$	1		0	0	12				
$W_2 =$	1, $v_2 = 10$	2		0	10	12	22	22	22	
$W_3 =$	3, $v_3 = 20$	3		0	10	12	22	30	32	4
$W_4 =$	$= 2, v_4 = 15$	4		0	10	-15	25	30	-37 -	

Backtracing finds the actual optimal subset, i.e. solution.

Knapsack Problem by DP (pseudocode)


```
Algorithm DPKnapsack(w[1..n], v[1..n], W)
var V[0..n,0..W], P[1..n,1..W]: int
for j := 0 to W do
 V[0,j] := 0
                                         Running time and space:
  for i := 0 to n do
                                         O(nW).
      V[i,0] := 0
  for i := 1 to n do
for j := 1 to W do
if w[i] \leq j and v[i] + V[i-1,j-w[i]] > V[i-1,j] then
 V[i,j] := v[i] + V[i-1,j-w[i]]; P[i,j] := j-w[i]
else
 V[i,j] := V[i-1,j]; P[i,j] := j
return V[n,W] and the optimal subset by backtracing
```


Thank You!!!