# MATH 241

# Chapter 3

#### SECTION 3.9: ANTIDERIVATIVES

### Contents

| Definition               | 2 |
|--------------------------|---|
| General Antiderivatives  | 3 |
| Table of Antiderivatives | 4 |
| Initial Condition        | 5 |

CREATED BY: PIERRE-OLIVIER PARISÉ

Fall 2022

### DEFINITION

A function F is an **antiderivative** of a function f if F'(x) = f(x).

**EXAMPLE 1.** Find an antiderivative of the following functions.

(a) 
$$f(x) = x^2$$
.

**(b)** 
$$g(x) = 3x^3 + \cos(x)$$
.

**(b)** 
$$g(x) = 3x^3 + \cos(x)$$
. **(c)**  $h(x) = x^{2/3} + 4\sec^2(x)$ .

#### Remarks:

- Recall that f'(x) = g'(x) if and only if f(x) = g(x) + C for some constant C.
- There are more than just one antiderivative!

### GENERAL ANTIDERIVATIVES

The most general antiderivative of a function f is

$$F(x) + C$$

where C is a constant.



- (a) Several Antiderivatives of  $f(x) = x^2$ , that is  $\frac{x^3}{3} + C$ 
  - (b) Several antiderivatives of  $f(x) = x^{2/3} + \cos(x)$ , that is  $\frac{3}{5}x^{5/3} + \sin(x) + C$ .

**EXAMPLE 2.** Find the most general antiderivative of each of the following functions.

(a) 
$$f(x) = \sin x$$
.

**(b)** 
$$f(x) = x^n, n \ge 0.$$

| Function           | Particular antiderivative | Function                   | Particular antiderivative |
|--------------------|---------------------------|----------------------------|---------------------------|
| cf(x)  f(x) + g(x) | cF(x) $F(x) + G(x)$       | $\cos x$ $\sin x$          | $\sin x$ $-\cos x$        |
| $x^n (n \neq -1)$  | $\frac{x^{n+1}}{n+1}$     | $\sec^2 x$ $\sec x \tan x$ | tan x sec x               |

Figure 2: Properties and some Antiderivatives

**EXAMPLE 3.** Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

## INITIAL CONDITION

**EXAMPLE 4.** Find F if  $F'(x) = x\sqrt{x}$  and F(1) = 2.

**EXAMPLE 5.** Find F if  $F'(x) = \frac{1}{x^2}$  and F(1) = 2.