Bab 1: Dasar-Dasar Pemodelan Sistem

Pemodelan dan Simulasi Sistem

Sumber: Harrell, C., B.K. Ghosh and R.O. Bowden, Jr., *Simulation Using Promodel*, 2nd ed., McGraw-Hill, Singapore, 2003.

Bab 1:

Dasar-Dasar Pemodelan Sistem

Bacaan

- Harrell, Bab 1
- Gaspersz, Bab 1
- www.teknikindustri.org

Topik

- Konsep Sistem
 - Pengertian Sistem
 - Klasifikasi Sistem
 - Permasalahan mengenai Sistem
 - Pemodelan Sistem
- Pengantar Simulasi
 - Apakah simulasi itu
 - Mengapa diperlukan
 - Melakukan simulasi
 - Penggunaan simulasi
 - Kapankah simulasi diperlukan
 - Kualifikasi melakukan simulasi
 - Justifikasi ekonomi

Bagian I: Konsep Sistem

Apakah sistem itu?

Kumpulan elemen yang bekerja bersama untuk mencapai tujuan yang diharapkan (Blanchard, 1991)

Apakah sistem itu?

Karakteristik atau ciri-ciri sistem

- Sistem terdiri dari berbagai elemen yang membentuk satu kesatuan
- Adanya interaksi, saling ketergantungan dan kerjasama antar elemen
- Sebuah sistem ada untuk mencapai tujuan tertentu
- Memiliki mekanisme / transformasi
- Memiliki lingkungan yang mengakibatkan dinamika sistem

Elemen, atribut, dan relasi

- Elemen adalah bagian dasar sistem yang membentuk sistem tersebut
- Atribut adalah sifat atau perwujudan yang dapat dilihat dari elemen. Atribut ini yang membentuk ciri suatu sistem
- **Relasi** adalah keterkaitan antar elemen dan atribut

Model sistem sederhana

(output)

(input)

Subsistem

- Tiap sistem dibentuk oleh elemen
- Tiap elemen dapat dipecah dalam elemenelemen yang lebih kecil
- Dalam dua tingkat hirarki suatu sistem, sistem yang lebih rendah disebut subsistem
- Contoh: sistem transportasi udara, subsistem-nya adalah: ruang pengendali, peralatan, pesawat, terminal.

Subsistem

Lingkungan

- Lingkungan adalah segala sesuatu yang ada di luar batas sistem
- Sistem tertutup: tidak dipengaruhi oleh lingkungan
- Sistem terbuka: dipengaruhi oleh lingkungan
- Input: sifat lingkungan yang mempengaruhi sistem
- Output: sifat sistem yang mempengaruhi lingkungan
- Sifat menentukan dan membentuk batas sistem

Model sistem sederhana

Lingkungan

Klasifikasi Sistem

- Sistem Alam dan Buatan Manusia
- Sistem Fisik dan Konseptual
- Sistem Statik dan Dinamik
- Sistem Tertutup dan Terbuka

Permasalahan mengenai sistem

- Untuk sistem yang belum ada: strukturnya dirancang agar sesuai dengan tujuan yang diharapkan → sintesis sistem
- Untuk sistem yang telah ada dengan struktur yang diketahui: perilaku ditentukan pada basis struktur yang telah diketahui tersebut → analisis sistem
- Untuk sistem yang sudah ada, tapi tidak kita ketahui strukturnya: perilaku dan struktur sistem
 - \rightarrow black box

Tujuan model:

- Akademik:
 - untuk menjelaskan sekumpulan fakta karena belum ada teori
 - Untuk mencari konfirmasi, bila telah ada teori
- Manajerial:
 - Alat pengambilan keputusan
 - Proses belajar
 - Alat komunikasi

Keuntungan menggunakan model:

- Dapat melakukan percobaan pada situasi kompleks
- Hemat biaya
- Hemat waktu
- Fokus pada karakteristik penting permasalahan

Klasifikasi model:

- 1. Berdasarkan fungsi:
 - Deskriptif: kondisi nyata
 - Prediktif: meramalkan
 - Normatif: seharusnya
- 2. Berdasarkan struktur/morfologi:
 - Ikonik: sama dengan sistem nyata, skala berbeda
 - Analog: fisik berbeda, perilaku sama
 - Simbolik

- 3. Berdasarkan dimensi:
 - Satu dimensi: satu variabel
 - Multi dimensi: lebih dari dua variabel
- 4. Berdasarkan waktu:
 - Statik
 - Dinamik
- 5. Berdasarkan aspek informasi:
 - Deterministik
 - Probabilistik
 - Model tak pasti

- 6. Berdasarkan generalisasi
 - Khusus
 - Umum
- 7. Berdasarkan derajat keterbukaan
 - Terbuka
 - Tertutup
- 8. Berdasarkan derajat kuantifikasi
 - Mental: kualitatif, masih ada dalam pemikiran seseorang
 - Verbal: model kualitatif yang telah dirumuskan secara tertulis
 - Kuantitatif: statistik, optimasi, heuristik, simulasi

Bagian II: Pengantar Simulasi 1. Pendahuluan

Pendahuluan

- Mengetahui bagaimana simulasi digunakan untuk menggambarkan, menganalisa dan meningkatkan kinerja sistem manufaktur dan service
- Fokus pada simulasi *discrete-event*: menggunakan metoda statistik untuk menghasilkan perilaku acak dan melakukan estimasi kinerja model

2. Apakah simulasi itu?

Apakah simulasi itu?

Simulasi adalah tiruan dari sebuah sistem dinamis dengan menggunakan model komputer untuk melakukan evaluasi dan meningkatkan kinerja sistem

Promodel

- Adalah piranti lunak simulasi komersial yang secara khusus dirancang untuk mencakup perilaku dinamis sistem
- www.promodel.com

Piranti Lunak Simulasi

- Menyediakan animasi grafis dan realistik dari sistem yang dimodelkannya
- Pengguna dapat melakukan analisa "jika-maka"
- Beberapa diantaranya menyediakan kapabilitas optimisasi

Pendekatan *trial-and-error* mahal, menghabiskan waktu, dan mengganggu

- Flight simulator: untuk meminimasikan resiko kerugian yang besar dan kesalahan fatal dalam kehidupan nyata
- Manufacturing and service systems: untuk
 mengurangi resiko inefficiency atau kegagalan
 untuk mencapai kinerja minimum yang
 ditetapkan

- Menyediakan metoda analisis: meramalkan kinerja sistem, bahkan untuk sistem yang paling rumit
- Mendukung pengambilan keputusan: manajer dapat memperkirakan hasil dengan lebih akurat
- Terhindar dari resiko

- Menggunakan cara try-it-and-see it
- Menganjurkan pemikiran 'outside the box"
- Menghilangkan faktor emosi dari proses pengambilan keputusan dengan menyediakan bukti obyektif

Karakteristik simulasi

Karakteristik simulasi sebagai alat perencanaan dan pengambilan keputusan yang tangguh:

- Mencakup saling ketergantungan sistem (system interdependencies)
- Memperhitungkan variabilitas sistem
- Sanggup membuat **model** untuk sistem apapun
- Memperlihatkan perilaku sistem **setiap saat**
- Lebih **murah**, tidak menghabiskan waktu dan tidak mengganggu sistem nyata

Karakteristik (lanjutan)

- Menarik perhatian (secara visual)
- Menyediakan hasil yang mudah dimengerti dan dikomunikasikan
- Mencakup waktu yang nyata, dimampatkan, atau bahkan waktu yang tertunda
- Memberikan rancangan yang rinci

4. Melakukan simulasi

Melakukan simulasi

- Dilakukan sebagai bagian dari proses rancangan sistem atau pengembangan sistem
- Alat percobaan menggunakan sebuah model komputer dari sebuah sistem baru/yang ada
- Melakukan simulasi = sebuah proses dari perancangan model dari sistem nyata dan mengadakan eksperimen dengan model ini

Melakukan simulasi

Melakukan simulasi

- Alat evaluasi, BUKAN alat pemecah masalah
- Memperlihatkan bagaimana sistem bekerja, BUKAN menentukan bagaimana seharusnya dirancang
- <u>Perpanjangan</u> pikiran yang memungkinkan seseorang mengetahui dinamika yang kompleks dari sebuah sistem, BUKAN <u>pengganti</u> pikiran

5. Manfaat Simulasi

Sejarah

- Digunakan dalam aplikasi komersial (1960s)
- Pemrograman FORTRAN
- Komputer Mainframe

Penggunaan simulasi saat ini

Alat pengambilan keputusan dalam industri manufaktur dan jasa

- Saat sebuah pabrik sedang direncanakan
- Sebuah perubahan proses tengah dievaluasi

Mengapa simulasi sangat populer?

- Meningkatkan kesadaran dan pemahaman atas teknologi informasi
- Meningkatkan keberadaan, kapabilitas dan kemudahan penggunaan piranti lunak simulasi
- Meningkatknya memori komputer dan kecepatan prosesor (terutama pada PC)
- Menurunnya harga piranti lunak dan piranti keras

Manfaat Simulasi

Manfaat utama simulasi adalah sebagai pendukung keputusan di bidang manufaktur, termasuk sistem pergudangan dan distribusi

Membuat rancangan sistem dan keputusan operasional

Aplikasi simulasi

- Perencanaan aliran kerja (Work-flow)
- Perencanaan kapasitas
- Perencanaan siklus waktu
- Perencanaan staf dan sumber-sumber
- Prioritisasi kerja
- Analisa Bottleneck
- Peningkatan kualitas
- Penurunan biaya
- Penurunan inventory

- Throughput analysis
- Productivity improvement layout analysis
- Line balancing
- Batch size optimization
- Production scheduling
- Resource scheduling
- Maintenance scheduling
- Control system design

Kapan simulasi tepat dilakukan?

Simulasi memiliki keterbatasan tertentu

TIDAK semua permasalahan sistem yang DAPAT diselesaikan dengan bantuan simulasi HARUS diselesaikan menggunakan simulasi

Simulasi dapat menjadi alat yang berlebihan / overkill

Simulasi tepat dilakukan bila:

- a) Sebuah keputusan operasional (logis maupun kuantitatif) tengah dibuat:
 - Limitasi dari masalah kuantitatif atau logis
 - BUKAN masalah kualitatif atau sosiologis:
 - Bagaimana meningkatkan kepercayaan
 - Bagaimana meningkatkan kinerja personal

- b) Proses yang dianalisis repetitif dan dapat didefinisikan dengan jelas. Simulasi TIDAK BERGUNA bila :
 - Diterapkan pada proses yang tidak mengikuti urutan logis dalam mendefinisikan aturan
 - TIDAK mungkin membuat asumsi layak tentang bagaimana sistem berjalan
 - Berlaku untuk proses atau proyek yang hanya berjalan satu kali (one-time) yang tidak pernah berulang dalam cara yang sama

- c) Aktivitas dan kejadian saling berkaitan
 - Simulasi TIDAK BERGUNA bila diterapkan pada sistem yang memiliki aktivitas yang tidak pernah berkaitan satu sama lain (atau deterministik)
 - Jumlah keterkaitan dan aktivitas acak mengakibatkan sistem,
 BUKAN jumlah dari aktivitas

- d) Biaya dampak dari keputusan lebih besar dari biaya melakukan simulasi
 - Simulasi TIDAK berguna bila dampak dari keputusan tidak terlalu signifikan
 - Contoh: apakah seorang pekerja harus memperbaiki produk yang rusak langsung pada saat terjadi kesalahan atau menunggu menumpuknya produk rusak 4-5 buah, dan baru memperbaikinya

- e) Biaya eksperimen pada sistem nyata lebih besar daripada biaya simulasi:
 - Dalam beberapa kasus, mungkin lebih cepat dan lebih ekonomis untuk melakukan percobaan langsung pada sistem nyata
 - Simulasi TIDAK BERGUNA bila diterapkan pada masalah yang dapat diselesaikan melalui percobaan langsung dengan cepat, tidak mahal, dan dengan dampak minimal terhadap situasi saat ini
 - Contoh: menutup amplop sesudah atau sebelum diberi alamat

Aturan 80 - 20

- Simulasi mengikuti aturan 80-20
- 80 persen dari manfaatnya dapat diamati dengan memahami 20 persen pengetahuan yang terkandung di dalamnya

Pengetahuan dan ketrampilan yang dibutuhkan

- Manajemen proyek
- Komunikasi
- System engineering
- Analisis statistik dan perancangan eksperimen
- Konsep dan prinsip permodelan
- Ketrampilan komputer dan pemrograman dasar
- Pelatihan pada satu atau lebih produk simulasi
- Keakraban dengan sistem yang tengah diteliti

Justifikasi ekonomi

- Jika biaya melebihi manfaat yang diharapkan → simulasi sebaiknya TIDAK digunakan
- Produk simulasi berharga: USD 1,000 USD 20,000
- Investasi awal piranti lunak simulasi biasanya memerlukan USD 10,000 and USD 30,000 (termasuk pelatihan dan startup)
- Biaya tersebut tertutup setelah 1-2 proyek berjalan
- Biaya selanjutnya untuk masing-masing proyek: 1-3%
- <5% dari waktu total perancangan sistem</p>

Justifikasi ekonomi: kesulitan

TIDAK mengetahui jumlah biaya yang dapat dihemat sampai akhirnya sistem nyata dijalankan

ROI atau payback analysis

Rule of tens

Rule of tens:

Aturan untuk memperbaiki suatu masalah meningkat 10 kali lipat pada setiap tahap perancangan yang dilalui tanpa bisa dideteksi

Biaya melakukan perubahan pada tahapan pengembangan sistem

Biaya tanpa vs. dengan simulasi

Rangkuman

- Simulasi merupakan <u>teknologi tangguh untuk</u>

 <u>meningkatkan kinerja sistem</u> dengan menyediakan cara
 untuk membuat rancangan dan keputusan manajemen
 yang lebih baik
- Simulasi adalah <u>alat pengambilan keputusan</u> yang tak ternilai
- Simulasi merangsang <u>pemikiran kreatif</u> dan menghasilkan keputusan rancangan yang baik