Vysoké učení technické v Brně

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

MAT (TÉMATICKÉ OKRUHY KE STÁTNICÍM 2009)

OBSAH

	Predikátová logika, její jazyk (termy, formule) a sémantika (realiz	· · ·				
1.1	1 Základy logiky	4				
1.2	Výroková logika					
1.3	Predikátová logika					
1.4	Sémantika predikátové logiky					
2	Axiomy a odvozovací pravidla, dokazatelnost					
2.1	Axiomy výrokové logiky					
2.2	Odvozování ve výrokové logice					
2.3	3 Axiomy predikátové logiky	8				
2.4	4 Odvozování v predikátové logice	8				
3	Model a důsledek teorie, věty o úplnosti a kompaktnosti	9				
4	Normální a prenexní tvar formulí					
4.1	1 Normální tvar	9				
4.2	2 Prenexní tvar	10				
5	Univerzální algebry, podalgebry (generování)	12				
5.1	1 Univerzální algebry	12				
5.2	2 Podalgebry	13				
6	Grupy, okruhy, obory integrity a tělesa (pole)					
6.1	6.1 Klasifikace založená na grupách					
6.2	2 Vlastnosti grup	14				
6.3	3 Klasifikace založená na svazech	15				
7	7 Homomorfismy					
7.1	1 Relace ekvivalence a rozklad na třídy ekvivalence	15				
7.2	.2 Homomorfismy					
8	Přímé součiny	16				
9	Kongruence a faktorové algebry	17				
10	Metrické prostory, konvergence	17				
10	0.1 Metrický prostor	17				
10	0.2 Konvergence posloupností, hromadné body	17				
11	Banachova věta o pevném bodu	18				
12	Normované a unitární prostory	18				
13	Uzavřené ortonormální systémy	18				
14	Fourierovy řady	18				

Obyčejné grafy, stupně uzlů a jejich vztah k počtu hran	19					
1 Obyčejné grafy a jejich varianty	19					
2 Průchod grafem	19					
3 Části grafu						
4 Stupeň uzlu	20					
16 Stromy a kostry						
1 Stromy						
2 Kostry	21					
Algoritmy pro hledání minimální kostry ohodnoceného grafu	21					
1 Ohodnocený graf	21					
2 Algoritmy nalezení minimální kostry						
Orientované grafy	23					
Eulerovské grafy	24					
Délky hran a cest	24					
Algoritmy pro hledání cesty minimální délky	25					
1 Dijkstrův algoritmus	25					
2 Floyd-Warshallův algoritmus	26					
	1 Obyčejné grafy a jejich varianty					

1 PREDIKÁTOVÁ LOGIKA, JEJÍ JAZYK (TERMY, FORMULE) A SÉMANTIKA (REALIZACE JAZYKA, PRAVDIVOST FORMULÍ)

1.1 ZÁKLADY LOGIKY

Logikou rozumíme analýzu usuzovacích metod a zkoumání matematických důkazů.

Zobrazení $f: X \to Y$ je relace $f \subseteq X \times Y$:

- $\forall x \in X : \exists y \in Y, y = f(x) \iff \text{každému } x \text{ je tedy přiřazeno nějaké } y;$
- $\forall x \in X, \forall y, z \in Y: y = f(x) \land z = f(x) \Rightarrow y = z \Leftrightarrow zobrazení z X do Y je jednoznačné;$

Axiomy jsou výchozí tvrzení dané teorie, nedokazují se, jejich platnost se předpokládá. Z axiomů se dedukcí odvozují další tvrzení, tzv. **důsledky**. Základním požadavkem je **bezespornost** – důsledkem axiomu nesmí být nějaké tvrzení a současně jeho negace. Vedlejším požadavkem je **nezávislost** axiomů, tzn., že žádný axiom není důsledkem zbývajících axiomů.

Matematická tvrzení se zapíší pomocí speciálních znaků – **symbolů** (tvoří abecedu dané teorie). Tvrzení dostanou podobu zvláštních **formulí** – slov sestavených určitým způsobem z daných symbolů (tvoří jazyk teorie). Axiomy jsou zapsány jako formule, které chápeme jako vždy pravdivé. **Odvozovací pravidla** jsou jisté manipulace s formulemi, pomocí nichž a axiomů odvozujeme důsledky.

1.2 VÝROKOVÁ LOGIKA

Výroková logika zkoumá způsoby tvorby složených výroků z daných jednoduchých výroků, závislost pravdivosti (resp. nepravdivosti) složeného výroku na pravdivosti výroků, z nichž je složen.

Buď P neprázdná množina symbolů, které nazýváme **prvotní formule**, zpravidla značíme např. písmeny p, q. Tyto hrají úlohu jednoduchých výroků. **Složené výroky** vytváříme z jednoduchých pomocí logických spojek: \neg negace, \land (nebo &) konjunkce, \lor disjunkce, \rightarrow (nebo \Rightarrow) implikace, \equiv (nebo \Leftrightarrow nebo \leftrightarrow)ekvivalence.

Symboly jazyka L_P výrokové logiky (nad množinou P) jsou prvky množiny P, logické spojky a závorky (a). Úlohu složených výroků hrají výrokové formule jazyka L_P , definované následovně:

- (1) $\forall p \in P$ je výroková formule;
- (2) Jsou-li A a B výrokové formule, pak $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \equiv B)$ jsou výrokové formule;
- (3) Každá výroková formule vznikne konečným počtem užití pravidel (1) a (2).

Pravdivostní ohodnocení prvotních formulí je libovolné zobrazení $v: P \to \{0,1\}$, tj. zobrazení, které každé prvotní formuli $p \in P$ přiřadí hodnotu 0 (tj. nepravda) nebo 1 (pravda).

Pravdivostní ohodnocení základních složených výrokových formulí je dáno tabulkou:

I	$\overline{v}(A)$	$\overline{v}(B)$	$\overline{v}(\neg A)$	$\overline{v}(A \wedge B)$	$\overline{v}(A \vee B)$	$\overline{v}(A \to B)$	$\overline{v}(A \equiv B)$	$\overline{v}(A B)$	$\overline{v}(A \downarrow B)$
	0	0	1	0	0	1	1	1	1
Ī	0	1	1	0	1	1	0	1	0
ĺ	1	0	0	0	1	0	0	1	0
ĺ	1	1	0	1	1	1	1	0	0

Říkáme, že výroková formule A je **tautologie**, jestliže v(A) = 1 pro libovolné ohodnocení A. Jinak řečeno A je pravdivá vždycky, bez ohledu na ohodnocení případných jednotlivých prvotních formulí, ze kterých se skládá, což píšeme $\models A$. Následující výrokové formule jsou tautologiemi:

- $\models (A \lor \neg A)$, což je **zákon vyloučení třetího**;
- $\models (\neg \neg A \equiv A)$, což je **zákon dvojí negace**;
- $\models \neg (A \land \neg A)$, což je **vyloučení sporu**.

Říkáme, že výrokové formule A a B jsou **logicky ekvivalentní**, právě když $\bar{v}(A) = \bar{v}(B)$, což znamená $A \equiv B$. Následující formule jsou ekvivalentní:

$$A \equiv B \Leftrightarrow (A \to B) \land (B \to A)$$

$$A \to B \Leftrightarrow \neg A \lor B$$

$$A \to B \Leftrightarrow \neg (A \land \neg B)$$

$$A \lor B \Leftrightarrow \neg (\neg A \land \neg B)$$

$$A \land B \Leftrightarrow \neg (\neg A \lor \neg B)$$

$$A \lor B \Leftrightarrow \neg A \to B$$

$$A \land B \Leftrightarrow \neg (A \to \neg B)$$

1.3 Predikátová logika

Pro označení libovolného prvku z daného oboru používáme **proměnné** (např. *x, y, z, ...*). Mezi prvky z daného oboru mohou být nějaké význačné objekty (0, 1, neutrální prvek), pro něž zavádíme speciální symboly zvané **konstanty**.

K označení operací užíváme **funkcí symboly** (např. *f, g, h, ...*). Matematika zkoumá vlastnosti objektů a vztahy mezi nimi. Vlastnosti a vztahy mezi objekty daného oboru, tzv. **predikáty**, ("*být záporným číslem"*, "*být menším než"*, "*být prvkem"*) vyjadřujeme pomocí **predikátových symbolů** (např. *p, q, r, ...*). Predikát znamená vztah mezi užitým počtem objektů, tedy je příkladem relace. Tím je každému predikátovému symbolu přiřazeno přirozené číslo, jeho četnost, udávající počet jeho argumentů. Je-li četnost rovna *n*, říkáme, že symbol je *n*-ární.

Z uvedených symbolů sestavujeme jistým způsobem nejjednodušších tvrzení, vyjádřených tzv. **atomickými formulemi**. Z nich vytváříme složitější formule pomocí logických spojek (stejných jako ve výrokové logice) a pomocí následujících **kvantifikátorů proměnných**:

- **univerzální (obecný) kvantifikátor** ∀ vyjadřuje platnost pro všechny objekty daného oboru:
- existenční kvantifikátor \(\frac{1}{2} \) vyjadřuje existenci požadovaného prvku v daném oboru.

Abecedu predikátové logiky 1. řádu tak tvoří tedy funkční, predikátové a pomocné symboly, proměnné, konstanty, logické spojky a nově i kvantifikátory.

Jazyk predikátové logiky 1. řádu je tedy tvořen:

- logickými symboly (proměnné, logické spojky, kvantifikátory, závorky, predikát rovnosti =);
- **speciálními symboly** (funkční symboly s \mathbb{N}_0^+ -ární četností a predikátové symboly \mathbb{N}^+ -ární četností).

Termy jsou rekurentně definovány následujícími pravidly:

- (1) Každá proměnná je term;
- (2) Je-li f funkční symbol četnosti n a jsou-li $t_1, ..., t_n$ termy, pak $f(t_1, ..., t_n)$ je term;
- (3) Každý term vznikne konečným užitím pravidel (1) a (2).

Je-li p predikátový symbol četnosti n a jsou-li $t_1, ..., t_n$ termy, pak $p(t_1, ..., t_n)$ nazýváme **atomickou (elementární) formulí**.

Formule je rekurentně definována následujícími pravidly:

- (1) Každá atomická formule je formule;
- (2) Jsou-li φ , ψ formule, pak také $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \equiv \psi)$ jsou formule;
- (3) Je-li *x* proměnná a φ formule, pak také $(\forall x \varphi)$ a $(\exists x \varphi)$ jsou formule;
- (4) Každá formule vznikne konečným užitím pravidel (1), (2) a (3).

Řekneme, že daný **výskyt** proměnné x ve formuli φ **je vázaný**, nachází-li se v nějaké podformuli tvaru $(\forall x \varphi)$ nebo $(\exists x \varphi)$, opačném případě se jedná o **volný výskyt**. V těchto souvislostech hovoříváme o x jako o **vázané/volné proměnné**. Formule neobsahující žádnou volnou proměnnou se nazývá **uzavřená formule** nebo též **výrok**.

1.4 SÉMANTIKA PREDIKÁTOVÉ LOGIKY

Chceme dát interpretaci symbolům jazyka predikátové logiky 1. řádu. Nejprve vymezíme obor, který bude určovat možné hodnoty proměnných, bude to určitý soubor M uvažovaných objektů. Funkčním symbolům budou odpovídat operace na M příslušných četností. Predikátovým symbolům budou odpovídat vztahy mezi objekty z M, které lze popsat jako relace na M s patřičnou aritou. Máme-li jazyk s rovností, interpretujeme symbol = jako rovnost objektů z M.

Nechť L je jazyk 1. řádu, pak **realizací jazyka** L rozumíme algebraickou strukturu \mathcal{M} , která se skládá z:

- neprázdné množiny *M* nazývané **univerzum**;
- pro každý funkční symbol f četnosti n, je dáno zobrazení $f_{\mathcal{M}}: M^n \to M$;
- pro každý predikátový symbol p četnosti n, krom rovnosti je dána relace $p_{\mathcal{M}} \subseteq M^n$.

Libovolné zobrazení e množiny všech proměnných do univerza M dané realizace $\mathcal M$ jazyka L budeme nazývat **ohodnocení proměnných**.

Hodnota termu t v realizaci \mathcal{M} jazyka L při daném ohodnocení e označujeme jako t[e] a indukcí se definuje následovně:

- Je-li *t* proměnná *x*, potom t[e] = e(x);
- Je-li t ve tvaru $f(t_1, ..., t_n)$, kde f je funkční symbol četnosti n a $t_1, ..., t_n$ jsou termy, potom $t[e] = f_{\mathcal{M}}(t_1[e], ..., t_n[e])$;

Formule φ je splněna v realizaci \mathcal{M} pokud je pravdivá při každém ohodnocení e, píšeme $\mathcal{M} \models \varphi$. Je-li φ uzavřená, pak říkáme, že φ je pravdivá v \mathcal{M} . Formule φ jazyka L je logicky platná, pokud pro každou realizaci \mathcal{M} jazyka L platí $\mathcal{M} \models \varphi$.

Říkáme, že formule φ, ψ jazyka L **jsou logicky ekvivalentní**, jestliže v libovolné realizaci \mathcal{M} jazyka L při libovolné ohodnocení e proměnných, je $\mathcal{M} \models \varphi[e] \Leftrightarrow \mathcal{M} \models \psi[e]$. Každá formule φ jazyka L je logicky ekvivalentní nějaké formuli ψ v níž se nevyskytuje kvantifikátor \exists/\forall . Každá formule jazyka L je logicky ekvivalentní nějaké formuli vytvořené z atomických formulí jen pomocí logických spojek \neg , \rightarrow a kvantifikátoru \forall . Významné dvojice ekvivalentních formulí:

$$(\exists x\varphi) \Leftrightarrow \neg(\forall x(\neg\varphi))$$
$$(\forall x\varphi) \Leftrightarrow \neg(\exists x(\neg\varphi))$$
$$(\forall x\varphi) \land (\forall x\psi) \Leftrightarrow \forall x(\varphi \land \psi)$$
$$(\exists x\varphi) \lor (\exists x\psi) \Leftrightarrow \exists x(\varphi \lor \psi)$$

Substituce termů za proměnné: Pokud v termu *t* dosadíme za proměnné další termy, *t* zůstává termem. Dosazením termu za proměnné ve formuli vytvoříme opět formuli. Ne vždy je to vhodné, proměnná musí být substituovatelná (proměnná *x* taková, že žádný její volný výskyt neleží v oboru kvantifikátoru proměnné *y*, která je obsažena v substituovatelném termu).

2 AXIOMY A ODVOZOVACÍ PRAVIDLA, DOKAZATELNOST

2.1 AXIOMY VÝROKOVÉ LOGIKY

Formální axiomatický systém Hilbertova typu tvoří abeceda (prvotní formule, logické spojky \neg , \rightarrow a závorky) a formule. Jazyk takového formálního axiomatického systému je tvořen abecedou a formulemi. Tři **axiomy výrokové logiky**:

- $A \rightarrow (B \rightarrow A)$;
- $(A \to (B \to C)) \to ((A \to B) \to (A \to C));$
- $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$.

2.2 ODVOZOVÁNÍ VE VÝROKOVÉ LOGICE

Jediné odvozovací pravidlo modus ponens (pravidlo odloučení), značí se MP. Z předpokladů $A, A \rightarrow B$ lze odvodit závěr B.

Formule je dokazatelná, právě když existuje její důkaz! **Důkazem** ve formální výrokové logice rozumíme libovolnou konečnou posloupnost $A_1, ..., A_n$ výrokových formulí takovou, že pro

každé $i \le n$ formule A_i je buď axiomem nebo je závěrem pravidla modus ponens, jehož předpoklady jsou mezi A_1, \dots, A_{i-1} . \square Řekneme, že formule A je dokazatelná ve výrokové logice, jestliže existuje důkaz, jehož poslední formulí je formule A, což zapisujeme $\vdash A$.

Věta o úplnosti říká, že každá tautologie je dokazatelná. Postova věta o úplnosti říká, dokazatelné formule jsou tautologiemi. Obě předchozí věty ukazujíc ekvivalenci $\vdash A \Leftrightarrow \models A$. Věta o korektnosti říká, že libovolná dokazatelná formule výrokové logiky je tautologií.

Věta o dedukci říká, že je-li T množina formulí, pak $T \vdash A \rightarrow B$ ($A \rightarrow B$ je dokazatelné pomocí T), právě když $T \cup \{A\} \vdash B$, což píšeme $T, A \vdash B$. Věta o dedukci pomáhá při procesu dokazování.

Neutrální formule neovlivňuje důkaz, platí $T, A \vdash B \land T, \neg A \vdash B \Rightarrow T \vdash B$.

2.3 AXIOMY PREDIKÁTOVÉ LOGIKY

Jazyk L predikátové logiky přebíráme z předchozího s tím, že z logických spojek bereme jako základní \neg , \rightarrow a jako základní kvantifikátor \forall . Analogicky na axiomy výrokové logiky vybudujeme tři základní axiomy predikátové logiky:

- $\varphi \rightarrow (\psi \rightarrow \varphi)$;
- $(\varphi \to (\psi \to \eta)) \to ((\varphi \to \psi) \to (\varphi \to \eta));$
- $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$.

Nově k nim přidáme **schéma axiom kvantifikátoru**, formulemi φ , ψ a proměnnou x, která nemá v φ volný výskyt, pak:

$$\forall x(\varphi \to \psi) \to (\varphi \to (\forall x\psi))$$

Dále **schéma axiomu substituce**, ve kterém je-li φ formule, x proměnná a t term substituovatelný za x do φ , pak:

$$\forall x \varphi \rightarrow \varphi_{x}[t]$$

Poslední schéma axiomu rovnosti platí pro predikátové logiky s rovností. Je-li x proměnná, pak x = x je axiom. Jsou-li $x_1, \dots, x_n, y_1, \dots, y_n$ proměnné a je-li f funkční symbol s četností n a p predikátový symbol s četností n, pak jsou axiomy:

•
$$(x_1 = y_1 \rightarrow (x_2 = y_2 \rightarrow (...(x_n = y_n \rightarrow f(x_1, ..., x_n) = f(y_1, ..., y_n))...))$$
;

•
$$(x_1 = y_1 \to (x_2 = y_2 \to (...(x_n = y_n \to p(x_1, ..., x_n) = p(y_1, ..., y_n))...)))$$

2.4 Odvozování v predikátové logice

Stejně jako ve výrokové logice i zde existuje pravidlo odloučení (modus ponens), kde z formulí $\varphi, \varphi \to \psi$ lze odvodit ψ . Kromě něho zde existuje ještě **pravidlo zobecnění (generalizace)**, kde pro libovolnou proměnnou x z formule φ se odvodí formule $\forall x \varphi$.

Důkazem v predikátové logice 1. řádu rozumíme libovolnou posloupnost $\varphi_1, ..., \varphi_n$ formulí jazyka L, v níž pro každé i je formule φ_i buď axiom nebo ji lze odvodit z některých předchozích formulí φ_i , kde j < i použitím pravidla odloučení nebo zobecnění.

Řekneme, že formule φ **je dokazatelná** v predikátové logice 1. řádu, existuje-li důkaz, jehož poslední formulí je φ , což píšeme $\vdash \varphi$. Obecněji, pokud T je množina předpokladů, ze kterých je φ dokazatelná, tak $T \vdash \varphi$.

Věta o korektnosti říká, že libovolná formule jazyka L dokazatelná v predikátové logice 1. řádu, je-li logicky platnou formulí (tj. je splněna v každé realizaci jazyka L).

Jsou-li $x_1,...,x_n$ volné proměnné ve formuli φ v nějakém pořadí, pak formuli $(\forall x_1 ... \forall x_n)$ nazveme **uzávěrem formule** φ .

Je-li L jazyk 1. řádu a T množina formulí jazyka L, říkáme, že T je **teorie 1. řádu** s jazykem L. Říkáme, že teorie T **je sporná**, jestliže pro KAŽDOU formuli φ jazyka L platí $T \vdash \varphi$. Ve sporné teorii totiž lze $T \vdash \psi$ i $T \vdash \neg \psi$, lze dokázat formuli i její negaci. V opačném případě **je** teorie **bezesporná**.

3 Model a důsledek teorie, věty o úplnosti a kompaktnosti

Buď *L* jazyk 1. řádu, pak připomeňme, že libovolnou množinu *T* formulí jazyka *L* nazýváme teorií 1. řádu s jazykem *L*. Formule z *T* jsou tzv. **speciální axiomy**, které spolu s axiomy predikátové logiky tvoří soustavu axiomů teorie *T*.

Buď T teorie s jazykem L a nechť \mathcal{M} je nějaká realizace jazyka L. Říkáme, že \mathcal{M} je **model teorie** T, jestliže pro $\forall \varphi \in T : \mathcal{M} \models \varphi$, což zapisujeme $\mathcal{M} \models T$.

Říkáme, že formule φ je **důsledkem teorie** T, jestliže pro každý model \mathcal{M} teorie T je $\mathcal{M} \models \varphi$, pak píšeme $T \models \varphi$. Důsledek je formule, která je splněna v každém modelu dané teorie.

Má-li teorie *T* s jazykem *L* nějaký model, potom je bezesporná.

Gödelova věta o úplnosti říká, že teorie *T* je bezesporná, právě když má nějaký model.

Teorie T je úplná, pokud je bezesporná a pro každou uzavřenou formuli platí buď $T \vDash \psi$ nebo $T \vDash \neg \psi$.

Věta o kompaktnosti říká, že když máme T množinu formulí jazyka L. Pak teorie T má nějaký model, právě když každá její podmnožina $Q \subseteq T$ má taky model.

4 NORMÁLNÍ A PRENEXNÍ TVAR FORMULÍ

4.1 Normální tvar

Buď $i_1, ..., i_n$ libovolná permutace čísel $\{1, ..., n\}$. Nechť $x_1, ..., x_n$ jsou proměnné a A je formule predikátové logiky. Pak platí:

•
$$\vdash (\forall x_1) ... (\forall x_n) A \leftrightarrow (\forall x_{i_1}) ... (\forall x_{i_n}) A;$$

$$\bullet \quad \vdash (\exists x_1) \dots (\exists x_n) A \leftrightarrow \left(\exists x_{i_1}\right) \dots \left(\exists x_{i_n}\right) A;$$

Předchozí věta složitým způsobem říká, že pořadí kvantifikátorů ve formuli lze zaměňovat, aniž by docházelo ke změně významu formule.

Věta o ekvivalenci říká, že když formule A' vznikne z formule A nahrazením některých výskytů podformulí $B_1, ..., B_n$ po řadě formulemi $B'_1, ..., B'_n$, pak je-li $\vdash B_i \leftrightarrow B'_i$ pro všechna $i = \{1, ..., n\}$, pak $\vdash A \leftrightarrow A'$. Jednodušeji, nahrazením podformulí formule A jejich ekvivalentními variantami nedochází ke změně významu původní formule.

4.2 Prenexní tvar

Věta o ekvivalenci nás teoreticky vybavila možností upravit formule predikátové logiky podle momentálních potřeb na ekvivalentní tvar, který dává čitelnější a přehlednější zápis nebo ve kterém je rozsah platnosti kvantifikátorů v podformulích buď minimalizován, nebo naopak ve kterém mají všechny kvantifikátory co největší rozsah. Praktickým prostředkem k takovým úpravám jsou následující ekvivalence mezi formulemi, kterým se často zkráceně říká **prenexní operace**, protože se výrazněji uplatňují při převodu formulí do tzv. **prenexní formy**.

Buď z proměnná, která není volná ve formuli A, nechť \circ je některá z výrokových spojek A,V nebo \rightarrow , pak platí:

- $\vdash \forall z (A \circ B) \leftrightarrow (A \circ \forall z B)$
- $\vdash \exists z (A \circ B) \leftrightarrow (A \circ \exists z B)$
- pro implikaci v opačném pořadí $B \to A$: $\begin{cases} \vdash \forall z (B \to A) \leftrightarrow (\exists z B \to A) \\ \vdash \exists z (B \to A) \leftrightarrow (\forall z B \to A) \end{cases}$

Nechť A je formule predikátové logiky. Formule A_0 je **variantou** formule A, jestliže vznikne z A postupným nahrazením podformulí tvaru (QxB) podformulemi $(QyB_x[y])$, kde Q je obecný nebo existenční kvantifikátor a y je proměnná nevyskytující se v $B \leadsto$ formule, které "vypadají" stejně, jen se liší názvem proměnné, jsou ekvivalentními variantami téže formule $\vdash A \leftrightarrow A'$.

Formule *A* je v **prenexní formě**, jestliže má tvar $Q_1x_1 \dots Q_nx_nB$, kde:

- $n \ge 0$ a pro každé $i = \{1, ..., n\}$ je Q_i buď \forall , nebo \exists kvantifikátor;
- $x_1, ..., x_n$ jsou navzájem různé proměnné;
- *B* je otevřená formule (tj. neobsahuje kvantifikátor, všechny jsou totiž vytknuty).

Převedení formule na prenexní tvar:

- (1) **Vyloučení zbytečných kvantifikátorů** Vynecháme všechny ty kvantifikátory Q s proměnnou x v podformulích B, pokud se nevyskytující se volně v B;
- (2) **Přejmenování proměnných** Vyhledáme nejlevější podformuli *QxA* takovou, že proměnná *x* se vyskytuje volně v *A*. Pokud má *x* výskyt ještě v další formuli výchozí podformule, nahradíme *QxA* její variantou *Qx'A'*, kde *x'* je různá od všech jiných proměnných vyskytujících se v převáděné formuli. Tento proces opakujeme do doby, dokud se substitucemi v původní formuli nevyskytují samé unikátní proměnné;
- (3) **Eliminace ekvivalence** provedeme podle předpisu: $A \leftrightarrow B \Rightarrow (A \rightarrow B) \land (B \rightarrow A)$;

(4) **Přesun negace dovnitř** – provádíme postupně náhrady podformulí podle schématu, tak dlouho, dokud se spojka negace nevyskytne bezprostředně před atomickými formulemi:

$$\neg(\forall xA) \Leftrightarrow \exists x \neg A$$

$$\neg(\exists xA) \Leftrightarrow \forall x \neg A$$

$$\neg(A \rightarrow B) \Leftrightarrow A \land \neg B$$

$$\neg(A \lor B) \Leftrightarrow \neg A \land \neg B$$

$$\neg(A \land B) \Leftrightarrow \neg A \lor \neg B$$

$$\neg(\neg A) \Leftrightarrow A$$

(5) **Přesun kvantifikátorů doleva** – pro B, ve kterém se nevyskytuje proměnná x, provádíme náhrady podle schématu, ve kterém je \bar{Q} opačný ku kvantifikátoru Q:

$$(QxA) \lor B \Leftrightarrow Qx(A \lor B)$$

$$(QxA) \land B \Leftrightarrow Qx(A \land B)$$

$$(QxA) \to B \Leftrightarrow \bar{Q}x(A \to B)$$

$$B \to (QxA) \Leftrightarrow Qx(B \to A)$$

Prenexní forma pro danou formuli není jednoznačná!

Na závěr příklad pro $\forall y (\exists x P(x, y) \rightarrow \exists u R(y, u)) \rightarrow \forall x S(x, y)$:

- (1) se neuplatní, žádné zbytečné proměnné nejsou;
- (2) dojde ke dvěma substitucím:

(a)
$$\forall y (\exists x' P(x', y) \rightarrow \exists u R(y, u)) \rightarrow \forall x S(x, y)$$

(b)
$$\forall y' (\exists x' P(x', y') \rightarrow \exists u R(y', u)) \rightarrow \forall x S(x, y)$$

- (3) se neuplatní, neb formule neobsahuje ekvivalenci;
- (4) se neuplatní, neb formule neobsahuje negaci, kterou by bylo potřeba zanořit;
- (5) proběhne v několika krocích:

(a)
$$\forall x (\forall y' (\exists x' P(x', y') \rightarrow \exists u R(y', u)) \rightarrow S(x, y))$$

(b)
$$\forall x \forall y' ((\exists x' P(x', y') \rightarrow \exists u R(y', u)) \rightarrow S(x, y))$$

(c)
$$\forall x \forall y' \Big(\forall x' \Big(P(x', y') \to \exists u R(y', u) \Big) \to S(x, y) \Big)$$

(d)
$$\forall x \forall y' \exists x' \Big(\Big(P(x', y') \to \exists u R(y', u) \Big) \to S(x, y) \Big)$$

(e)
$$\forall x \forall y' \exists x' \Big(\exists u \Big(P(x', y') \to R(y', u) \Big) \to S(x, y) \Big)$$

(f)
$$\forall x \forall y' \exists x' \forall u \left(\left(P(x', y') \to R(y', u) \right) \to S(x, y) \right)$$

5 UNIVERZÁLNÍ ALGEBRY, PODALGEBRY (GENEROVÁNÍ)

5.1 Univerzální algebry

Buď A množina, $n \in \mathbb{N}_0$, pak zobrazení $\omega: A^n \to A$ nazýváme n-ární operaci na A. n je četnost (arita) operace.

$$\operatorname{pro} n \in \mathbb{N}_0 : \omega : \begin{cases} A^n \to A \\ \underbrace{A \times A \times \dots A}_{n} \to A \\ (x_1, x_2, \dots, x_n) \mapsto \omega x_1 x_2 \dots x_n \end{cases}$$

pro
$$n = 0$$
: $\omega: \begin{cases} A^0 = \{\emptyset\} \to A \\ \emptyset \mapsto \omega \emptyset \end{cases}$ pro $n = 2$: $\omega: \begin{cases} A^2 \to A \\ (x, y) \mapsto \omega xy =: x\omega y \end{cases}$

Buď A množina, $n \in \mathbb{N}_0$, $D \subseteq A^n$. Potom zobrazení $\omega: D \to A$ se nazývá n-ární parciální operace. Například dělení je parciální operace na množině \mathbb{R} , nelze dělit 0, neexistuje tedy zobrazení s 0 jakožto druhým operandem do \mathbb{R} .

Buď A množina, I množina indexů. Pro $i \in I$ buď ω_i n_i -ární operace na A, kde $n_i \in \mathbb{N}_0$. Potom $\mathfrak{U} = (A, (\omega_i)_{i \in I}) = (A, \Omega)$ označuje **univerzální algebru** s nosnou množinou A a souborem operací $(\omega_i)_{i \in I} =: \Omega$

Systém arit operace je soubor $(n_i)_{i\in I}$ se nazývá **typ** algebry (A,Ω) . Algebry téhož typu jsou podobné. Například $(\mathbb{Z},+,-,0,.,1)$ je algebra typu (2,1,0,2,0).

Buď A množina, o binární operace na A, pak prvek $e \in A$ se nazývá vzhledem k o:

- levý neutrální $\Leftrightarrow \forall x \in A : e \circ x = x$;
- pravý neutrální $\Leftrightarrow \forall x \in A: x \circ e = x$;
- **neutrální** $\Leftrightarrow \forall x \in A : e \circ x = x \circ e = x$.

Buď A množina, o binární operace na A, neutrální prvek e a $x \in A$. Potom prvek $y \in A$ se vůči x nazývá:

- levým inverzním $\Leftrightarrow y \circ x = e$;
- pravým inverzním $\Leftrightarrow x \circ y = e$;
- inverzním $\Leftrightarrow y \circ x = x \circ y = e$;

Ke každé operaci existuje nejvýše jeden neutrální prvek a inverzní prvek. Ke každé operaci inverzní prvek existovat nemusí (prvek není invertibilní), nebo může být prvek inverzní sám k sobě.

Asociativní zákon: Buď A množina, \circ binární operace na A, pak \circ se nazývá **asociativní** $\Leftrightarrow \forall x, y, z \in A : x \circ (y \circ z) = (x \circ y) \circ z$.

Komutativní zákon: Buď A množina, \circ binární operace na A, pak \circ se nazývá **komutativní** $\Leftrightarrow \forall x, y \in A : x \circ y = y \circ x$.

Distributivní zákon: Pokud jsou +,· binární operace nad *A*, potom · je **distributivní** nad + $\Leftrightarrow \forall x, y, z \in A$:

•
$$x \cdot (y+z) = x \cdot y + x \cdot z$$

5.2 Podalgebry

Buď A množina, pak $\omega: A^n \to A$ je n-ární operace na A $(n \in \mathbb{N}_0), T \subseteq A$. Potom množina T je uzavřená vzhledem k operaci $\omega \Leftrightarrow \omega(T^n) \subseteq T$ tj. $t_1, ..., t_n \in T \Rightarrow \omega t_1 ... t_n \in T$.

Buď $\mathfrak{A}=(A,(\omega_i)_{i\in I})$ je algebra typu $(n_i)_{i\in I}$, $T\subseteq A$. Potom se množina T nazývá uzavřená vzhledem k $(\omega_i)_{i\in I}\Leftrightarrow T$ je uzavřená vzhledem k ω_i , pro $\forall i\in I$. V tomto případě se pomocí vztahu $\omega_i^*x_1...x_n=:\omega_ix_1...x_n$, kde $(x_1,...,x_n)\in T^{n_i}$ definuje n_i -ární operace ω_i^* na T. Algebra $(T,(\omega_i^*)_{i\in I})$ se pak nazývá **podalgebra algebry** \mathfrak{A} . Stručně řečeno je (T,Ω) podalgebrou algebry (A,Ω) , když je T uzavřena ke všem operacím z Ω a $T\subseteq A$.

Pokud je (A,Ω) a $(T_j)_{j\in J}$ je soubor podalgeber, pak jejich průnik $\bigcap_{j\in J} T_j$ je rovněž podalgebra.

Nejmenší podalgebra $\langle S \rangle$ algebry (A, Ω) a $S \subseteq A$, která S obsahuje, je definována jako:

$$\langle S \rangle = \bigcap \{T | T \supseteq S, T \text{ je podalgebrou algebry } (A, \Omega)\}$$

 $\langle S \rangle$ se nazývá **podalgebra algebry** (A, Ω) **generovaná množinou** S. Množina S se nazývá **systém generátorů podalgebry** $\langle S \rangle$.

Grupa $(G, \cdot, e, ^{-1})$ je **cyklická** $\Leftrightarrow \exists x \in G : G = \langle x \rangle$. Prvek x se pak nazývá **generátor**.

6 GRUPY, OKRUHY, OBORY INTEGRITY A TĚLESA (POLE)

6.1 KLASIFIKACE ZALOŽENÁ NA GRUPÁCH

Algebra (A, \cdot) typu (2) se nazývá **grupoid**.

Grupoid (H, \cdot) se nazývá **pologrupa** právě tehdy, když je · asociativní.

Pologrupa $(H,\cdot)/(H,\cdot,e)$ se nazývá **monoid** typu (2)/(2, 0), pokud e je neutrální prvek. Monoid je tedy asociativní algebra s neutrálním prvkem.

Monoid $(G,\cdot)/(G,\cdot,e,^{-1})$ se nazývá **grupa** typu $(2)/(2,0,1) \Leftrightarrow \forall x \in G$ je invertibilní, tj. $\forall x \in G \exists x^{-1} \in G : xx^{-1} = e$. Grupoid je tedy algebra, která je asociativní, má neutrální prvek a všechny prvky jsou invertibilní. Grupa, která je navíc i komutativní se nazývá **abelovská grupa**.

Algebra $(R, +, \cdot)/(R, +, 0, -, \cdot)$ se nazývá **okruh** typu (2, 2)/(2, 0, 1, 2) právě když je to vůči (R, +) abelovksá grupou, vůči (R, \cdot) pologrupa a operace \cdot je distributivní nad +. Prvek 0 nazýváme **nulovým prvkem** okruhu vzhledem k +.

Okruh s jednotkovým prvek je algebra $(R, +, 0, -, \cdot, 1)$ typu (2, 0, 1, 2, 0), kde $(R, +, 0, -, \cdot)$ je okruh a 1 je neutrální prvek vzhledem k ·, který nazýváme **jednotkovým prvkem** k násobení. Okruh s vlastností komutativity se nazývá **komutativní okruh**.

Komutativní okruh s jednotkovým prvkem se nazývá **obor integrity** ⇔:

- $R\setminus\{0\}\neq\emptyset$ (tj. $0\neq1$ je netriviální, nosná množina obsahuje aspoň dva prvky);
- $\forall x, y \in R: x \neq 0 \land y \neq 0 \Rightarrow xy \neq 0$ (tj. neexistují dělitelé 0).

Okruh s jednotkovým prvkem $(R, +, 0, -, \cdot, 1)$ se nazývá **těleso**, pokud je netriviální a neobsahuje dělitele nuly.

Komutativní těleso se nazývá **pole** $\Leftrightarrow 0 \neq 1 \land (R \setminus \{0\}, \cdot)$ je abelovská grupa. Každé pole je tak obor integrity.

6.2 VLASTNOSTI GRUP

Základní vlastnosti, které vnímáme na množině reálných čísel, jako součin, pravidla pro počítání s mocninami.

Buď $(G,\cdot,e,^{-1})$ je grupa a $a \in G$. Potom **kardiální číslo (řád prvku)** je množství různých mocnin a:

$$\mathrm{o}(a) = \left| \{ a^0 = e, a^1, a^{-1}, a^2, a^{-2}, \dots \} \right| = \left| \{ a^k | k \in \mathbb{Z} \} \right|$$

Řádem grupy rozumíme |G| mohutnost nosné množiny, kdy $\forall a \in G$: $o(a) \leq |G|$.

6.3 KLASIFIKACE ZALOŽENÁ NA SVAZECH

Svaz je algebra (V, \cap, \cup) typu (2, 2), kde platí, že \cap, \cup jsou komutativní i asociativní a platí **absorpční zákony** $X \cap (X \cup Y) = X$ a $X \cup (X \cap Y) = X$. Obecně nazýváme \cap průsekem a \cup spojením.

U svazů platí **princip duality** kdy svaz je (V, \cap, \cup) , právě když (V, \cup, \cap) je svaz.

Svaz je **distributivním svazem**, když platí distributivní zákon svazů, kde je \cup distributivní nad \cap , ale i \cap je distributivní nad \cup :

$$a \cap (b \cup c) = (a \cap b) \cup (a \cap c)$$
 a $a \cup (b \cap c) = (a \cup b) \cap (a \cup c)$

Prvek $0 \in V$ se nazývá **nulový prvek svazu** V (neutrální k \cup) $\Leftrightarrow \forall a \in V : a \cup 0 = a$ a prvek $1 \in V$ se nazývá **jednotkový prvek svazu** V (neutrální k \cap) $\Leftrightarrow \forall a \in V : a \cap 1 = a$. Svaz, který má oba tyto prvky, se nazývá **ohraničený svaz**.

Ohraničený svaz $(V, \cap, \cup, 1, 0)$ se nazývá **komplementární** $\Leftrightarrow \forall a \in V \exists a' \in V : a \cap a' = 0$ $\land a \cup a' = 1$. Prvek a' se nazývá **komplementem** a.

Distributivní a komplementární ohraničený svaz $(V, \cap, \cup, 1, 0)$ se nazývá **Booleův svaz**. Algebra $(B, \cap, \cup, 1, 0, ')$ typu (2, 2, 0, 0, 1) se nazývá **Booleova algebra**.

7 Homomorfismy

7.1 RELACE EKVIVALENCE A ROZKLAD NA TŘÍDY EKVIVALENCE

Je-li M množina, potom se podmnožina R množiny $M \times M$ nazývá **binární relace** nad M. Místo $(x,y) \in R$ obvykle píšeme xRy. Relace všech možných dvojic R se nazývá **univerzální relace** $\alpha_M = M \times M$. **Relace rovnosti** nebo také **identická relace** je relace mezi stejným prvkem $\iota_M = \{(x,x) | x \in M\}$. Relace $R \subseteq M \times M$ se nazývá:

- **reflexivní** $\Leftrightarrow \iota_M \subseteq R, tj. \forall x \in M: xRx;$
- symetrická $\Leftrightarrow \forall x, y \in M: xRy \Rightarrow yRx$;
- antisymetrická $\Leftrightarrow \forall x, y \in M: xRy \land yRx \Rightarrow x = y;$
- **tranzitivní** $\Leftrightarrow \forall x, y, z \in M : xRy \land yRz \Rightarrow xRz;$

Relace ekvivalence je reflexivní, symetrická a tranzitivní. **Relace (částečného) uspořádání** je reflexivní, antisymetrická a tranzitivní.

Buď M množina. Pak $\mathcal{P} \subseteq \mathfrak{P}(M) = 2^M$ se nazývá **rozklad na třídy ekvivalence**: \Leftrightarrow

- $M = \bigcup_{C \in \mathcal{P}} C$;
- $\emptyset \in \mathcal{P}$;
- $A, B \in \mathcal{P}: A = B \lor A \cap B = \emptyset$ tj. každé dvě různé množiny \mathcal{P} jsou vůči sobě disjunktní.

Buď π relace ekvivalence na M, $a \in M$, $[a]_{\pi} \coloneqq \{b \in M | b\pi a\}$ je tzv. **třída ekvivalence prvku** a. Pak $M/\pi \coloneqq \{[a]_{\pi} | a \in M\}$ je tzv. **faktorová množina množiny** M **podle ekvivalence** π .

7.2 Homomorfismy

Při bijekci jsou zobrazením pokryty všechny prvky oboru hodnot (surjekce) a obrazy dvou různých vzoru nejsou stejné (injekce). Z toho rovněž vyplývá stejná mohutnost množin. **Bijekce = injekce + surjekce**.

Buďte $\mathfrak{A} = (A, (\omega_i)_{i \in I})$ a $\mathfrak{A}^* = (A^*, (\omega_i^*)_{i \in I})$ algebry téhož typu $(n_i)_{i \in I}$. Zobrazení $f: A \to A^*$ se nazývá **homomorfismem** algebry \mathfrak{A} do algebry \mathfrak{A}^* : \Leftrightarrow

- pro $i \in I$, kde $n_i > 0$, platí $\forall x_1, ..., x_{n_i} \in A$: $f(\omega_i x_1 ... x_{n_i}) = \omega_i^* f(x_1) ... f(x_{n_i})$;
- pro $i \in I$, kde $n_i > 0$, platí $f(\omega_i) = \omega_i^*$.

Homomorfismus zachovává každou operaci, tzn. zobrazení operace ω_i nad prvky z A je to samé, co provedení operace ω_i nad zobrazením jednotlivých prvků. Klasický příkladem je zobrazení logaritmu z algebry $(R,\cdot,1,^{-1})$ do algebry (R,+,0,-).

Uvažujme homomorfismus z předchozí definice, pak existují následující typy homomorfismů:

- **izomorfismus** pokud je f bijektivní (říkáme, že $\mathfrak A$ je **izomorfní obraz** $\mathfrak A^*$: $\mathfrak A \cong \mathfrak A^*$);
- **endomorfismus** zobrazení z algebry do téže algebry $\mathfrak{A} = \mathfrak{A}^*$;
- **automorfismus** pokud je endomorfní a navíc *f* je izomorfní;
- **epimorfismus** pokud *f* je surjektivní;
- **monomorfismus** pokud *f* je injektivní.

8 PŘÍMÉ SOUČINY

Zavádí pravidla pro násobení celých algeber.

Buď te $\mathfrak{A}_k = \left(A_k, \left(\omega_i^k\right)_{i \in I}\right), k \in K(\text{pole})$, algebry téhož typu $(n_i)_{i \in I}$ a $A \coloneqq \prod_{k \in K} A_k = \{(a_k)_{k \in K} | a_k \in A_k\}$ je kartézský součin všech množin A_k . Pro všechna $i \in I$ buď operace ω_i na A definována vztahem:

$$\omega_i (a_k^1)_{k \in K} \dots (a_k^{n_i})_{k \in K} \coloneqq \underbrace{\left(\omega_i a_k^1 \dots a_k^{n_i}\right)_{k \in K}}_{\in A_k}$$

U součinu algeber odpovídá nosná množina, kartézskému součinu nosných množin jednotlivých součinitelů a operace jsou definovány pro všechny operace jednotlivých součinitelů.

Algebra $(A_k, (\omega_i)_{i \in I})$ se nazývá **přímý součin** algeber \mathfrak{A}_k a značí se $\prod_{k \in K} \mathfrak{A}_k$.

Přímé součiny pologrup (grup, vektorových prostorů, okruhů, Booleových algeber) jsou opět pologrupy (grupy, vektorové prostory, okruhy, Booleovy algebry).

9 KONGRUENCE A FAKTOROVÉ ALGEBRY

Buďte $\mathfrak{A}=(A,(\omega_i)_{i\in I})$ algebra typu $(n_i)_{i\in I}$ a π relace ekvivalence na A. π se nazývá **relace kongruence** na $\mathfrak{A}\Leftrightarrow \forall i\in I$,kde $n_i>0$: $a_1,\ldots,a_{n_i},b_1,\ldots,b_{n_i},\in A$ platí:

$$a_1 \pi b_1 \wedge ... \wedge a_{n_i} \pi b_{n_i} \Rightarrow \omega_i a_1 ... a_{n_i} \pi \omega_i b_1 ... b_{n_i}$$

Nad oborem integrity $\mathfrak{A} = (\mathbb{Z}, +, 0, \cdot, 1)$ mějme pevný **modul** $n \in \mathbb{N}_0$ a pro $r, s \in \mathbb{Z}$ je $r \equiv s \mod n$ (říkáme, že "r **kongruentní** s s **modulo** n") $\Leftrightarrow n | (r - s)$ (n dělí r - s), pak platí:

- 1) $r \equiv s \mod n \Leftrightarrow r = s + kn, k \in \mathbb{Z} \Leftrightarrow r, s$ mají stejný zbytek při dělení číslem n;
- 2) \equiv mod n je relace ekvivalence.

Algebru $\mathfrak{A}/\pi \coloneqq (A/\pi, (\omega_i^*)_{i \in I})$ se nazývá **faktorová algebra** algebry \mathfrak{A} podle kongruence π . Často klademe $\omega_i = \omega_i^*$.

10 METRICKÉ PROSTORY, KONVERGENCE

10.1 METRICKÝ PROSTOR

Metrickým prostorem $\mathcal{X} = (X, \rho)$ budeme nazývat libovolnou množinu X prvků, které nazýváme body, pokud na množině X je dána tzv. **vzdálenost**, což je jakákoliv jednoznačná nezáporná reálná funkce $\rho(x, y)$, která je definována pro každou dvojici $(x, y) \in X$ a která splňuje tyto tři podmínky:

- 1) $\rho(x, y) = 0$, když a jen když x = y;
- 2) $\forall x, y \in X: \rho(x, y) = \rho(y, x)$ (symetrie);
- 3) $\forall x, y, z \in X: \rho(x, y) + \rho(y, z) \ge \rho(x, z)$ (trojúhelníková nerovnost).

Příklady metrických prostorů:

- **prostor izolovaných bodů**: $\rho(x, y) = \begin{cases} 0 \text{ když } x = y \\ 1 \text{ když } x \neq y \end{cases}$
- množina D^1 : $\rho(x,y) = |x,y|$ je např. číselná osa oboru hodnot jako $\mathbb Z$ či $\mathbb R$;
- **množina D**ⁿ **uspořádaných** *n***-tic**: $\rho(x,y) = \sqrt{\sum_{k=1}^{n} (y_k x_k)^2}$ (Euklidovská metrika).

10.2 KONVERGENCE POSLOUPNOSTÍ, HROMADNÉ BODY

Otevřenou koulí $S(x_0, r)$ v metrickém prostoru \mathcal{X} se středem x_0 a poloměrem r budeme nazývat množinu bodů $x \in \mathcal{X}$, která vyhovuje podmínce:

$$\rho(x, x_0) < r$$

Uzavřenou koulí $S[x_0,r]$ v metrickém prostoru \mathcal{X} budeme nazývat množinu bodů $x \in \mathcal{X}$, která vyhovuje podmínce:

$$\rho(x, x_0) \le r$$

Otevřenou kouli poloměru ε se středem x_0 budeme nazývat ε -okolím bodu x_0 a značit $O_{\varepsilon}(x_0)$.

Bod x nazýváme **bodem uzávěru množiny** M, jestliže jeho libovolné okolí obsahuje alespoň jeden bod z M. Množina všech bodů uzávěru množiny M se označuje \overline{M} a nazývá **uzávěrem** této množiny.

Protože každý bod, který náleží M, je bodem uzávěru množiny M (tento bod totiž leží v každém svém okolí), platí, že $M \subseteq \overline{M}$. Množinu M, pro kterou platí $M = \overline{M}$, nazýváme **uzavřenou**.

Bod x se nazývá **hromadným bodem množiny** M, jestliže jeho libovolné okolí obsahuje nekonečně mnoho bodů z M.

Nechť $x_1, x_2, ...$ je posloupnost bodů v metrickém prostoru \mathcal{X} . Říkáme, že tato **posloupnost konverguje k bodu** $x \in \mathcal{X}$, jestliže každé ε -okolí $O_{\varepsilon}(x)$ bodu x obsahuje všechny body x_n počínaje od některého indexu $N(\varepsilon)$, tj. jestliže ke každému číslu $\varepsilon > 0$ lze najít takové číslo $N(\varepsilon)$, že okolí $O_{\varepsilon}(x)$ obsahuje všechny body x_n , kde $n \geq N(\varepsilon)$. Bod x se nazývá **limita posloupnosti** $\{x_n\}$.

Předchozí definici lze vyslovit také tak, že posloupnost $\{x_n\}$, konverguje k bodu x, jestliže:

$$\lim_{n\to\infty}\rho(x,x_n)=0$$

11 BANACHOVA VĚTA O PEVNÉM BODU

Řadu problémů souvisejících s existencí a jednoznačností řešení rovnic různého typu lze převést na otázku existence a jednoznačnosti pevného bodu nějakého zobrazení odpovídajícího metrického prostoru do tohoto prostoru. Mezi různými kritérii existence a jednoznačnosti pevného bodu zobrazení tohoto druhu můžeme za jedno z nejjednodušších a zároveň nejdůležitějších kritérií považovat tzv. **Banachův princip pevného bodu** (stručně BPPB); někdy též nazývaný **princip kontraktivních zobrazení**.

Nechť \mathcal{X} je metrický prostor. Zobrazení A prostoru \mathcal{X} do prostoru \mathcal{X} se nazývá **kontraktivní** (nebo **kontrakce**), existuje-li takové číslo $\alpha < 1$, že pro libovolné dva body $\forall x,y \in \mathcal{X}$ platí nerovnost: $\rho(Ax,Ay) \leq \alpha \rho(x,y)$.

Bod x se nazývá **pevný bod zobrazení** A, jestliže Ax = x. Jinak řečeno, pevné body jsou řešení rovnice Ax = x.

Banachova věta o pevném bodu (BPPB) říká, že každé kontraktivní zobrazení definované v úplném metrickém prostoru \mathcal{X} má právě jeden pevný bod.

BPPB lze použít k důkazu vět o existenci a jednoznačnosti řěšení pro rovnice různých typů. Kromě důkazu existence a jednoznačnosti řešení rovnice Ax = x dává BPPB také praktickou metodu přibližného výpočtu tohoto řešení (nazývanou **metoda postupných aproximací**).

- 12 NORMOVANÉ A UNITÁRNÍ PROSTORY
- 13 Uzavřené ortonormální systémy
- 14 FOURIEROVY ŘADY

15 OBYČEJNÉ GRAFY, STUPNĚ UZLŮ A JEJICH VZTAH K POČTU HRAN

15.1 OBYČEJNÉ GRAFY A JEJICH VARIANTY

Obyčejný graf je dvojice G = (U, H), kde U je konečná množina uzlů (vrcholů) a $H = \{\{u, v\}: u, v \in U \land u \neq v\}$ je konečná množina hran. O hraně $h=\{u,v\}$ říkáme, že je incidentní s uzly u a v, nebo že je mezi uzly u a v, spojuje u a v.

Orientovaný graf je dvojice G=(U,H), kde U je konečná množina uzlů (vrcholů) a $H=\{(u,v):u,v\in U\land u\neq v\}$ je konečná množina orientovaných hran.

Obecný graf (multigraf) je trojice $G=(U,H,\varepsilon)$, kde U je konečná množina uzlů H je konečná množina hran a ε je zobrazení, které každé dvojici různých uzlů přiřazuje hranu ε : $\big\{\{u,v\}: u,v\in U \land u\neq v\big\} \to H$. Mezi jednou dvojicí uzlů tedy může být více hran.

15.2 PRŮCHOD GRAFEM

Je-li G=(U,H) obyčejný graf, **sled** mezi uzly u a v o délce n je posloupnost $(u=w_0,h_1,w_1,h_2,\ldots,w_{n-1},h_n,w_n=v)$ takovou, že $w_0,w_1,\ldots,w_n\in U$ a kde $h_1,w_2,\ldots,h_n\in H$ a že každá hrana spojuje ve sledu dva sousední uzly $h_i=(w_{i-1},w_i), 1\leq i\leq n$. Opakovat se můžou uzly i hrany.

Je-li G=(U,H) obyčejný graf, **tah** mezi uzly u a v o délce n je sled $(u=w_0,h_1,w_1,h_2,...,w_{n-1},h_n,w_n=v)$ takový, že $\forall i,j \in \langle 1,n \rangle: i \neq j \Rightarrow h_i \neq h_j$. V tahu se tedy mohou opakovat uzly, ale už ne hrany.

Je-li G=(U,H) obyčejný graf, **cesta** mezi u a v o délce n je sled $(u=w_0,h_1,w_1,h_2,...,w_{n-1},h_n,w_n=v)$ takový, že $\forall i,j \in \langle 1,n \rangle: i \neq j \Rightarrow w_i \neq w_j \land h_i \neq h_j$. V cestě se tedy nemohou opakovat ani uzly, ani hrany.

Je-li G=(U,H) obyčejný graf, **kružnice** v grafu G o délce n je sled $(w_0,h_1,w_1,h_2,...,w_{n-1},h_n,w_n)$ takový, že $\forall i,j \in \langle 1,n-1 \rangle: i \neq j \Rightarrow w_i \neq w_j \land w_0 = w_n$. Kružnice má všechny hrany a uzly různé s výjimkou 1. a posledního.

15.3 ČÁSTI GRAFU

Je-li G = (U, H) obyčejný graf, říkáme, že **je souvislý**, když pro $\forall u, v \in U$ existuje sled $(u = w_0, h_1, w_1, h_2, ..., w_{n-1}, h_n, w_n = v)$.

Jsou-li G=(U,H) a G'=(U',H') obyčejnými grafy, pak říkáme, že G' **je podgrafem** G, když $U'\subseteq U \wedge H'\subseteq H$. Pokud navíc platí, $(u,v\in U' \wedge \{u,v\}\in H)\Rightarrow \{u,v\}\in H'$ nazývá se podgraf G' **faktorem**. Modrá část v souvislém grafu je podgrafem, není však faktorem, protože chybí hrana spojující u a v.

Jsou-li G=(U,H) a G'=(U',H') obyčejnými grafy, pak říkáme, že G' **je komponentou** G, když G' je souvislým faktorem grafu G a platí: $\left(U^{'}\subset U^{''}\wedge G^{''}=(U^{''},H^{''})\right)$ je podgraf G) $\Rightarrow G''$ není souvislý. Komponenta je tedy uzlově maximální souvislý faktor grafu.

Je-li G=(U,H) obyčejný graf a $h\in H$, pak řekneme, že hrana h je **mostem**, pokud by se jejím odstraněním z grafu zvýšil počet komponent grafu. Pokud je hrana $h=\{u,v\}$ mostem, tak jejím odstraněním pak uzly u a v leží v různých komponentách.

15.4 STUPEŇ UZLU

Je-li G = (U, H) obyčejný graf a $u \in U$, pak definujeme číslo deg $\mathcal{U}u$) jako **stupeň uzlu**, které nám říká počet hran incidentních s uzlem u.

Nechť je G = (U, H), kde |H| = m, pak vztah mezi sumou stupňů všech uzlů a počtem všech hran: $\sum_{u \in U} \deg(u) = 2m$.

16 STROMY A KOSTRY

16.1 STROMY

Obyčejný graf, jehož žádný podgraf není kružnicí, se nazývá **les**.

LES STROM

Obyčejný souvislý graf, jehož žádný podgraf není kružnicí, se nazývá **strom**.

Nechť je G=(U,H) je les, který má aspoň jednu hranu. Pak existují dva uzly $u,v\in U$ takové, že $\deg(u)=\deg(v)=1$.

Nechť je G=(U,H) je obyčejný graf a |U|=n, |H|=m. Pak jsou následující podmínky ekvivalentní G je strom $\Leftrightarrow G$ je souvislý a $m=n-1 \Leftrightarrow G$ neobsahuje jako podgraf kružnici $\Leftrightarrow G$ je souvislý a každá hrana je mostem \Leftrightarrow mezi každou dvojicí různých uzlů v G existuje jediná cesta.

16.2 Kostry

Nechť je G = (U, H) je obyčejný graf, pak jeho podgraf K = (U, H') nazveme **kostrou grafu** G, pokud je K stromem. Každá kostra grafu je tedy uzlově maximální strom obsažený jako podgraf v grafu G.

Nechť *G* je obyčejný graf, pak *G* je souvislý, právě když má kostru.

Nechť je G = (U, H) je obyčejný graf a K = (U, H') je jeho kostra. Potom $H' \subseteq H$ a hrany z H, které nejsou v H' se nazývají **tětivy kostry** K.

Nechť je G = (U, H) je obyčejný souvislý graf a $D \subseteq H$ je podmnožina hran. Potom tuto podmnožinu nazveme **rozpojovací množinou grafu** G, pokud odebráním všech hran množiny $D \not = H$ vznikne nesouvislý graf. Formálně je $G' = (U, H \setminus D)$ nesouvislý graf.

Nechť je G=(U,H) je obyčejný souvislý graf a $D\subseteq H$ je podmnožina hran. Potom tuto množinu nazveme **řezem grafu** G, pokud D je množinově minimální rozpojující množinou grafu G, tedy pokud žádná její vlastní podmnožina není rozpojující množinou. Pokud D je řezem, pak odstraněním se graf rozpadá na komponenty.

Nechť je G=(U,H) je obyčejný graf a K=(U,H') je jeho kostra. Nechť odstraněním hrany h z jeho kostry K, vzniknou dva podgrafy $K_1=(U_1,H_1)$ a $K_2=(U_2,H_2)$ a nechť $D=\{h=\{u,v\}|h\in H\land u\in U_1\land v\in U_2\}$ je takto vzniklý řez. Potom D nazýváme **základní řez kostry** K **vytvořený hranou** h, což značíme $D^K(h)$.

17 ALGORITMY PRO HLEDÁNÍ MINIMÁLNÍ KOSTRY OHODNOCENÉHO GRAFU

17.1 OHODNOCENÝ GRAF

Nechť je G=(U,H) je obyčejný graf. Je-li navíc dáno zobrazení $c:H\to\mathbb{R}$, potom trojici G=(U,H,c) nazýváme **oceněným grafem**. Každé hraně h grafu G je tak přiřazeno reálné číslo c(h), které nazýváme **cenou hrany** h. Je-li G'=(U',H') podgraf grafu G, potom $c^{'}(G^{'})=\sum_{h\in H^{'}}c(h)$ nazýváme **cenou podgrafu** G'.

Nechť G = (U, H, c) je obyčejný oceněný graf a K = (U, H') je kostrou tohoto grafu. Pak říkáme, že K je **minimální kostrou grafu** G, jestliže platí G, kde G je libovolná kostra grafu G.

17.2 ALGORITMY NALEZENÍ MINIMÁLNÍ KOSTRY

Kruskalův algoritmus:

Je dán oceněný obyčejný souvislý graf G=(U,H,c), kde |U|=n a $H=\{h_1,h_2,\ldots,h_k\}$. Setřídíme hrany z H do posloupnosti $S=(s_1,s_2,\ldots s_k)$, kde $c(s_i)\leq c(s_j)$ pro i< j. Odstraníme první hranu s1 a vložíme ji do vznikající kostry grafu K. Takto pokračujeme v odstraňování hran z S a vkládáme je do K jen v případě, že by nevzniknula v K kružnice, jinak takovou hranu přeskočíme. Algoritmus ukončíme ve chvíli, kdy je K kostrou grafu (obsahuje všechny uzly z U).

Primův algoritmus:

Je dán obyčejný oceněný souvislý graf G=(U,H,c). Pro podgraf K=(V,J) grafu G, který neobsahuje kružnici, označme $K^+=(V^+,J^+)$ graf, který vznikne z K přidáním uzlu $u\in V$ do V^+ a hrany $h\in I$ do I^+ takové, že:

- h je incidentní s u a s nějakým jiným uzlem z V;
- *h* nevytvoří v *K*⁺ kružnici;
- *h* je nejmenší hranou s výše jmenovanými dvěma vlastnostmi.

Primův algoritmus vyjde z libovolného bodu a postupně se přidává vždy hrana s nejmenší cenou taková, že předchozí graf rozšíří tak, aby byl souvislý a přitom neobsahoval kružnici. Oproti Kruskalovu algoritmu má tu výhodu, že se nemusejí předem seřazovat podle vzrůstající ceny všechny hrany. Při Kruskalově algoritmu se totiž většinou hrany s vysokými cenami vůbec nevyužijí.

Pokud jsou ceny hran grafu G=(U,H,c) kde $U=\{u_1,u_2,...,u_n\}$ zadány ve formě matice, kde prvek na i-tém řádku a v j-tém sloupci označuje hrany incidentní s uzly u_i a u_j . Pak je možno Primův algoritmus vyjádřit v následující formě:

- (1) Vyškrtnou se všechny prvky v prvním sloupci a označíme první řádek;
- (2) Pokud v označených řádcích neexistuje žádný nepodtržený prvek, algoritmus končí a podtržené prvky označují hrany v minimální kostře. Jinak se vybere minimální prvek;
- (3) Je-li vybraný prvek cij, podtrhne se, označí se *i*-tý řádek a vymažou se nepodtržené prvky *j*-tého sloupce. Vrátíme se ke kroku (2).

18 ORIENTOVANÉ GRAFY

Orientovaný graf je trojice $G=(U,H,\varepsilon)$, kde U je konečná množina vrcholů, H je konečná množina orientovaných hran. Přitom $\varepsilon\colon H\to \{(u,v)|u,v\in U\}\cup\{u|u\in U\}$, je zobrazení, které každé hraně přiřadí buď orientovanou dvojici uzlů (u,v) nebo uzel u. V prvním případě říkáme, že hrana vede z uzlu u do v, v druhém případě říkáme, že hrana tvoří smyčku v uzlu u.

Nechť trojice $G=(U,H,\varepsilon)$ je orientovaný graf. Pak definujeme $u\in U$ pro uzel dvě čísla:

- u_1 u_2 u_3 u_4 u_6
- $\deg_+(u) = |\{h \in H | \exists v \in H : \varepsilon(h) = (v, u)\}|$, které nazýváme **vstupním stupněm uzlu**;
- $\deg_{-}(u) = |\{h \in H | \exists v \in H : \varepsilon(h) = (u, v)\}|$, které nazýváme **výstupním stupněm uzlu**;

Číslo $\deg_+(u)$ se rovná počtu hran, které vedou z nějakého uzlu do u, číslo $\deg_-(u)$ se rovná počtu hran, které vedou z uzlu u do nějakého uzlu. **Počáteční uzel grafu** má $\deg_+(u) = 0$, **koncový uzel grafu** má $\deg_-(u) = 0$.

Analogicky k obyčejnému grafu, lze definovat varianty orientovaného sledu, orientovaného tahu, orientované cesty a orientované kružnice.

Máme-li zadán obyčejný graf G=(U,H) je k němu možné definovat orientovaný graf $G'=(U,H',\varepsilon)$ tak, že pro každou hranu $\{u,v\}\in H$ existují v H' hrany h_1 a h_2 takové, že $\varepsilon(h_1)=(u,v)\wedge\varepsilon(h_2)=(v,u)$. Takovýto graf G' se nazývá **symetrickou orientací grafu** G. Jinými slovy hrana v obyčejném grafu mezi uzly U0 a U1 sebe nahradí oběma orientovanými hranami mezi těmito uzly v novém grafu.

Máme-li zadán obyčejný graf G=(U,H) je k němu možné definovat orientovaný graf $G'=(U,H',\varepsilon)$ tak, že pro každou hranu $\{u,v\}\in H$ existují v H' hrana h taková, že $\varepsilon(h)=(u,v)$ a neexistuje hrana h' taková, že $\varepsilon(h)=(v,u)$. Tento graf se nazývá **orientace grafu** G. Je zřejmé, že na rozdíl od symetrické orientace grafu, která je jednoznačně definována, může existovat k obyčejnému grafu více jeho orientací a navíc orientace grafu neobsahuje smyčky.

Máme-li zadán orientovaný graf $G=(U,H,\varepsilon)$, potom k němu můžeme sestrojit obyčejný graf G'=(U,H'), který se nazývá **symetrizací grafu** G, kde $H'=\{\{u,v\}\big|u,v\in H,u\neq v,\exists h\in H\colon \varepsilon(h)=(u,v)\vee\varepsilon(h)=(v,u)\}$. Jinými slovy symetrizace vznikne "zanedbáním" šipek, vícenásobných hran a smyček v původním grafu.

Říkáme, že orientovaný graf je **slabě souvislý**, jestliže jeho symetrizací vznikne obyčejný souvislý graf. Říkáme, že orientovaný graf $G = (U, H, \varepsilon)$ je **silně souvislý**, jestliže pro libovolné dva uzly $u, v \in U$ existuje orientovaná cesta z u do v.

Orientovaný graf $G = (U, H, \varepsilon)$ se nazývá **turnaj**, když pro:

- každou množinu uzlů $\{u, v\}$, že $u, v \in U, u \neq v$, kde existuje právě jedna hrana $h \in H$ taková, že platí $\varepsilon(h) = (u, v) \vee$ $\varepsilon(h) = (v, u);$
- každý uzel $u \in U$ existuje právě jedna hrana (smyčka) $h \in H$ taková, že platí $\varepsilon(h) = (u, u)$;

Řečeno jinak existuje pro každou dvojici různých uzlů jediná orientovaná hrana jdoucího z jednoho uzlu do druhého a u každého uzlu je smyčka.

19 EULEROVSKÉ GRAFY

Orientovaný graf $G = (U, H, \varepsilon)$ se nazývá **eulerovským** grafem, jestliže v něm existuje UZAVŘENÝ tah (🖘 "nakreslí se jedním tahem a skončí se tam, kde se začalo") délky obsahující všechny orientované hrany. Vzhledem k tomu, že v tahu se nesmějí opakovat hrany, je orientovaný graf eulerovský právě tehdy, když se všechny jeho orientované hrany dají nakreslit ve směru šipek jedním

C,A,D,F,C,F,E,B,E,D,B,A,C

tahem, aniž zvedneme tužku s papíru a po jedné hraně táhneme právě jednou.

Platí věta, že souvislý orientovaný graf $G = (U, H, \varepsilon)$ je právě tehdy eulerovský, když platí $\deg_+(u) = \deg_-(u) \text{ pro } \forall u \in U.$

20 DÉLKY HRAN A CEST

Pro účely měření délek hran a cest budeme od teď pracovat orientovanými grafy bez vícenásobných hran a smyček. "Hrana" bude vždy znamenat orientovanou hranu a "cesta" orientovanou cestu.

Nechť G = (U, H) je graf a každé hraně $h \in H$ nechť je přiřazeno reálné číslo l(h). Potom tomuto číslu budeme říkat **délka hrany** h. **Délka** d(p) **cesty** p v grafu G se definuje jako součet délek všech hran obsažených v cestě p.

Nechť je dán graf G = (U, H) a $u, v \in U$. Pokud existuje mezi uzly u a v cesta minimální délky, definujeme d(u,v) jako délku této cesty. Pokud z uzlu u do uzlu v vůbec žádná cesta neexistuje, klademe $d(u, v) = \infty$.

21 ALGORITMY PRO HLEDÁNÍ CESTY MINIMÁLNÍ DÉLKY

21.1 DIJKSTRŮV ALGORITMUS

Horní odhad vzdálenosti z uzlu *s* do uzlu *v* je číslo D(v): $D(v) \ge d(s, v)$.

Pro každý uzel $v \in U$ bude symbol $\pi(v)$ označovat uzel, který bezprostředně předchází uzlu v v cestě minimální délky z s do v zkonstruované Dijsktrovým algoritmem. Pokud taková cesta dosud nebyla zkonstruována, pak $\pi(v) = \emptyset$.

Pro každý uzel $v \in U$ definujeme symbol N(v) označující množinu všech uzlů spojených přímo nějakou hranou s uzlem v, tedy $N(v) = \{w \in U | (v, w) \in H\}$.

 $S \subseteq U$ je množina všech uzlů v, pro které už byla Dijsktrovým algoritmem definitivně stanovena cesta minimální délky p(s, v) odpovídající minimální vzdálenosti c(s, v).

Schéma Dijsktrova algoritmu po selsku:

- (1) Přiřaď vzdálenosti všem uzlům, počátečnímu 0 a všem ostatním nekonečno ∞;
- (2) Označ všechny uzly jako nenavštívené, počáteční uzel nastav jako aktuální zpracovávaný;
- (3) Pro aktuální uzel zvaž všechny jeho dosud nenavštívené sousedy a přepočítej pro ně vzdálenosti od počátečního uzlu přes aktuální. Pokud je přepočítaná vzdálenost menší, než ta současná, přiřaď mu tuto vzdálenost.
- (4) Ve chvíli, kdy je přepočet vzdáleností sousedních uzlů hotov, označ aktuální uzel jako navštívený (už nikdy se nebude kontrolovat, jeho hodnota udává konečnou vzdálenost od počátečního uzlu);
- (5) Z množiny dosud nenavštívených uzlů vyber ten s nejmenší vzdáleností od počátečního uzlu a pokračuj krokem (3) do doby, dokud je množina nenavštívených uzlů neprázdná.

1. krok:
$$S = \{s\}, Q = \{u, v, w\}, D(s) = 0, D(u) = D(v) = D(w) = \infty$$

2. krok:
$$S = \{s, u\}, Q = \{v, w\}, D(s) = 0, D(u) = 3, D(v) = 7, D(w) = \infty$$

 $\pi(u) = s, \pi(v) = s$

3. krok:
$$S = \{s, u, w\}, Q = \{v\}, D(s) = 0, D(u) = 3, D(v) = 6, D(w) = 5$$

 $\pi(u) = s, \pi(v) = u, \pi(w) = u$

4. krok:
$$S = \{s, u, w, v\}, Q = \emptyset, D(s) = 0, D(u) = 3, D(v) = 6, D(w) = 5$$

 $\pi(u) = s, \pi(v) = u, \pi(w) = u$
 $p(s, u) = s \rightarrow u, p(s, v) = s \rightarrow u \rightarrow v, p(s, w) = s \rightarrow u \rightarrow w$

Dijkstrův algoritmus nelze použít, pokud se v grafu objevují hrany se zápornou délkou, tento nešvar řeší...

21.2 FLOYD-WARSHALLŮV ALGORITMUS

Při každém zadání délek hran tento algoritmus nalezne cestu minimální délky z každého uzlu do každého jiného uzlu, a pokud taková cesta neexistuje kvůli kružnici se zápornou délkou, tuto kružnici odhalí.

Uvažujme graf G = (U, H), který má |U| = n uzlů a délky hran jsou zadány maticí A, pak budeme používat matici P, kde jsou jednotlivé prvky p_{ij} nastaveny na hodnou sloupce j ve, kterém se nacházejí. Algoritmus má vždy n iterací.

Začneme s maticí $A^0=A$, $P^0=P$ a v i-té iteraci vytvoříme matice A^i , P^i pomocí matic A^{i-1} , P^{i-1} . Nakonec tedy dostaneme matice A^n , P^n . Prvky matic A^j , P^j , j=1,2,...,n se vypočítají následujícím způsobem:

• if
$$\left(a_{ik}^{j-1} \le a_{ij}^{j-1} + a_{jk}^{j-1}\right)$$
 then $\left\{a_{ik}^{j} = a_{ik}^{j-1}; \ p_{ik}^{j} = p_{ik}^{j-1}\right\}$

• if
$$\left(a_{ik}^{j-1}>a_{ij}^{j-1}+a_{jk}^{j-1}\right)$$
 then $\left\{a_{ik}^{j}=a_{ij}^{j-1}+a_{jk}^{j-1};\;p_{ik}^{j}=j\right\}$

$$\Rightarrow A^{0} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ \infty & 10 & 0 & 3 \\ 5 & 6 & 6 & 0 \end{bmatrix}, P^{0} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

$$j=1:A^0=\begin{bmatrix}0&4&-3&\infty\\-3&0&-7&\infty\\\infty&10&0&3\\5&6&6&0\end{bmatrix}\Rightarrow A^1=\begin{bmatrix}0&4&-3&\infty\\-3&0&-7&\infty\\\infty&10&0&3\\5&6&2&0\end{bmatrix}, P^1=\begin{bmatrix}1&2&3&4\\1&2&3&4\\1&2&3&4\\1&2&1&4\end{bmatrix}$$

$$j = 2: A^{1} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ \infty & 10 & 0 & 3 \\ 5 & 6 & 2 & 0 \end{bmatrix} \Rightarrow A^{2} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ 7 & 10 & 0 & 3 \\ \infty > (-3+10) & & & & \\ 3 & 6 & -1 & 0 \\ 5 > (-3+6) & 2 > (-7+6) \end{bmatrix}, P^{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

$$j = 3: A^{2} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ 7 & 10 & 0 & 3 \\ 3 & 6 & -1 & 0 \end{bmatrix} \Rightarrow A^{3} = \begin{bmatrix} 0 & 4 & -3 & 0 \\ & & & \infty > (-3+3) \\ -3 & 0 & -7 & -4 \\ & & & \infty > (3-7) \\ 7 & 10 & 0 & 3 \\ 3 & 6 & -1 & 0 \end{bmatrix}, P^{3} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

$$j=4:A^3=\begin{bmatrix}0&4&-3&0\\-3&0&-7&-4\\7&10&0&3\\3&6&-1&0\end{bmatrix}\Rightarrow A^4=\begin{bmatrix}0&4&-3&\infty\\-3&0&-7&-4\\6&9&0&3\\7>(3+3)&10>(3+6)\\3&6&-1&0\end{bmatrix}, P^4=\begin{bmatrix}1&2&3&3\\1&2&3&3\\4&4&3&4\\2&2&2&4\end{bmatrix}$$

Pro iteraci j sledujeme matici A^{j-1} , a to pouze její j-tý řádek a j-tý sloupec (tedy takový kříž). Pro všechny prvky z A^{j-1} porovnáváme jejich hodnotu s průmětem na tento kříž (tedy se součtem

s odpovídajícími prvky na stejném řádku a sloupci v kříži). Pokud je součet menší, v matici A^j zapíšeme součet a v matici P^j zapíšeme hodnotu j.

Pokud kdykoli na hlavní diagonále *A* vyjde něco jiného než 0, tak v grafu existuje záporná kružnice a tedy neexistuje cesta s minimální délkou.