ME 233 Advance Control II

Lecture 20

Least Squares Estimation
Parameter Convergence and
Persistence of Excitation

Estimation of ARMA model

$$A(q^{-1})y(k) = q^{-1} B(q^{-1})u(k)$$

Where

- u(k) known **bounded** input
- y(k) measured output

$$A(q^{-1}) = 1 + a_1 q^{-1} + \dots + a_n q^{-n}$$
 (Schur)

$$B(q^{-1}) = b_o + b_1 q^{-1} + \dots + b_m q^{-m}$$

ARMA Model

$$y(k) = \phi^T(k-1)\,\theta$$

Unknown parameter vector: Known regressor vector:

ARMA series-parallel estimation

• A-priori output

$$\hat{y}^{o}(\underline{k}) = \phi^{T}(k-1) \hat{\theta}(\underline{k-1})$$

$$\widehat{\theta}(k) = \begin{bmatrix} \widehat{a}_1(k) & \cdots & \widehat{a}_n(k) & \widehat{b}_o(k) \cdots & \widehat{b}_m(k) \end{bmatrix}^T$$

• A-priori error

$$e^{o}(k) = y(k) - \hat{y}^{o}(k)$$

ARMA series-parallel estimation

5

A-priori error

$$e^{o}(k) = y(k) - \hat{y}^{o}(k)$$

$$e^{o}(k) = \phi^{T}(k-1)\tilde{\theta}(k-1)$$

Parameter error

$$\tilde{\theta}(k) = \theta - \hat{\theta}(k)$$

Overview

- In lecture 19 we learn how to analyze the stability of adaptive systems and proved:
 - Convergence of the a-priori output error

$$e^{o}(k) \rightarrow 0$$

• Today we will provide conditions on the input sequence u(k) so that the

$$\tilde{\theta}(k) = \theta - \hat{\theta}(k)$$

also converges to zero.

RLS Estimation Algorithm

$$e^{o}(k) = y(k) - \phi^{T}(k-1)\hat{\theta}(k-1)$$

$$e(k) = \frac{e^{o}(k)}{1 + \phi^{T}(k-1)F(k-1)\phi(k-1)}$$

$$\widehat{\theta}(k) = \widehat{\theta}(k-1) + F(k-1)\phi(k-1)e(k)$$

$$F(k+1) = \frac{1}{\lambda_1(k)} \left[F(k) - \frac{F(k)\phi(k)\phi^T(k)F(k)}{\frac{\lambda_1(k)}{\lambda_2(k)} + \phi^T(k)F(k)\phi(k)} \right]$$

Parameter error convergence

• Remember that $e^{o}(k) \rightarrow 0$

It can be shown that the n+m+1 parameter error also converges: $\lim_{k\to\infty}\tilde{\theta}(k)=\bar{\theta}$

$$\lim_{k \to \infty} \tilde{\theta}(k) = \bar{\theta} = \begin{bmatrix} \bar{a}_1 \\ \vdots \\ \bar{a}_n \end{bmatrix} \begin{bmatrix} n \\ \bar{b}_o \\ \vdots \\ \bar{b}_m \end{bmatrix}$$

The steady-state parameter error satisfies

$$E\left\{\phi(k)\phi^{T}(k)\right\}\bar{\theta} = 0$$

Regressor

Parameter error convergence

The steady-state parameter error satisfies

$$E\left\{\phi(k)\phi^{T}(k)\right\}\bar{\theta} = 0$$

Where the regressor correlation $E\left\{\phi(k)\phi^T(k)\right\}$ is:

$$E\{\phi(k)\phi(k)^{T}\} = \lim_{N \to \infty} \left\{ \frac{1}{2N+1} \sum_{j=-N}^{j=N} \phi(k+j)\phi^{T}(k+j) \right\}$$

Parameter error convergence

11

Since the steady-state parameter error satisfies

$$E\left\{\phi(k)\phi^{T}(k)\right\}\bar{\theta} = 0$$

$$E\left\{\phi(k)\phi^{T}(k)\right\} \succ 0 \quad \Longrightarrow \quad \lim_{k \to \infty} \tilde{\theta}(k) = \bar{\theta} = 0$$

The regressor vector $\phi(k)$ is persistently exciting if

$$E\left\{\phi(k)\phi^T(k)\right\} \succ 0$$

Persistence of Excitation

We need to find the conditions that the input sequence u(k) must satisfy to guarantee that $\phi(k)$ is persistently exciting.

$$E\left\{\phi(k)\phi^T(k)\right\} \succ 0$$

Excitation matrix

 $u(k) \in \mathcal{R}$ Given and input sequence

Define the u-regressor of order n:

$$\phi_{u_n}(k) = \begin{bmatrix} u(k) \\ u(k-1) \\ \vdots \\ u(k-n+1) \end{bmatrix} \in \mathcal{R}^n$$
only present and past values of $u(k)$ are used

Excitation matrix

 $u(k) \in \mathcal{R}$ Given and input sequence

Define the $n \times n$ excitation matrix:

$$C_n = E\{\phi_{u_n}(k)\phi_{u_n}^T(k)\}$$

$$= \lim_{N \to \infty} \left\{ \frac{1}{2N+1} \sum_{j=-N}^{j=N} \phi_{u_n}(k+j)\phi_{u_n}^T(k+j) \right\}$$

Persistence of Excitation (PE)

The input sequence u(k)

is persistently exciting of order n iff the $n \times n$ excitation matrix is **positive definite**

$$C_n = E\{\phi_{u_n}(k)\phi_{u_n}^T(k)\} \succ 0$$

$$\phi_{u_n}(k) = \left[egin{array}{c} u(k) \ u(k-1) \ dots \ u(k-n+1) \end{array}
ight] \in \mathcal{R}^n$$

PE inputs

To determine the PE order of a sequence u(k)

1. Find an annihilating polynomial $A_n(q^{-1})$ of order n such

$$A_n(q^{-1})u(k) = 0$$

this means that u(k) is at most PE of order n

2. Compute the excitation matrix

$$C_n = E\{\phi_{u_n}(k)\phi_{u_n}^T(k)\} \succ 0$$

and verify that it is positive definite.

18

Conditions for PE

• Example 1: The step input

$$u(k) = 1(k) = \begin{cases} 1 & \text{for } k \ge 0 \\ 0 & \text{for } k < 0 \end{cases}.$$

1(k) is PE of order 1

Conditions for PE

Example 1: The step input 1(k)

1) $(1-q^{-1}) 1 = 0$ \longrightarrow **1(k)** is <u>at most PE</u> of order 1

2)
$$C_1 = \lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} 1 = 1 > 0$$

1(k) is PE of order 1

Conditions for PE

Examples: Sum of Sinusoids

Consider an input that is a sum of m sinusoids, with m distinct frequencies

$$u(k) = \sum_{i=1}^{m} \sin(\omega_i k).$$

$$0 < \omega_i < \pi$$

$$\omega_i \neq w_j$$

u(k) is PE of order n = 2m.

Conditions for PE

Examples: Random sequence

Consider a colored random sequence

$$u(k) = G(q) w(k)$$

where w(k) is white noise.

u(k) is PE of any order.

Persistence of excitation for ARMA model identification

We need to find what conditions must the input sequence u(k) satisfy so that $\phi(k)$ is persistently exciting.

$$E\left\{\phi(k)\phi^T(k)\right\}\succ 0$$

21

23

PE in ARMA models

Theorem:

Consider the parameter estimation of the ARMA system using the LS estimation algorithm. If

- $A(q^{-1})$ is Schur
- $A(q^{-1})$ and $B(q^{-1})$ are co-prime
- u(k) is PE of order n+m+1

Parameter estimates convergence to the true values

PE in ARMA models

Given: $y(k) = \frac{q^{-\mathsf{d}}B(q^{-1})}{A(q^{-1})}u(k) \qquad \phi(k) = \begin{bmatrix} -y(k) \\ \vdots \\ -y(k-n+1) \\ u(k-d) \\ \vdots \\ u(k-m-d) \end{bmatrix} \quad m+1$

- u(k) is bounded
- $A(q^{-1})$ is Schur $A(q^{-1})$ and $B(q^{-1})$ are co-prime

$$u(k)$$
 is PE of order $n+m+1$
$$E\left\{\phi(k)\phi^T(k)\right\}\succ 0$$

Example

Plant:

$$y(k) = \frac{q^{-1} \cdot 0.1(1 + 0.5q^{-1})}{(1 + 0.9q^{-1})(1 + 0.8q^{-1})} u(k)$$

$$y(k+1) = \theta^T \phi(k)$$

$$\theta = \begin{bmatrix} 1.7 \\ 0.72 \\ 0.1 \\ 0.05 \end{bmatrix} \in \mathcal{R}^4 \qquad \qquad \phi(k) = \begin{bmatrix} -y(k) \\ -y(k-1) \\ u(k) \\ u(k-1) \end{bmatrix} \in \mathcal{R}^4$$

 We need u(k) to be a PE sequence of order 4 to guarantee parameter convergence 24

Example: Input Random Noise

u(k): zero mean uniform white noise between [-1,1]

u(k) is PE of any order.

parameter convergence

Example: Step Input

$$u(k) = 2*1(t)$$

u(k) is PE of order 1.

Example: Sinusoidal input – 1 frequency

$$u(k) = 2*\sin(t)$$

u(k) is PE of order 2.

 $F(0)=100*I_4$ $\lambda_1=0.99$ $\lambda_2=1$ apriori error, series parallel predictor a-priori error

Example: Sinusoidal input – 2 frequencies

$$u(k) = 2*\sin(t) + 2\cos(2*t)$$

u(k) is PE of order 4.

Derivation of Results

1. Determine conditions on the input sequence

$$u(k) \in \mathcal{R}$$

 For the parameter convergence of a Moving Average (MA) model

$$y(k) = q^{-\mathsf{d}} B(q^{-1}) u(k)$$

For the parameter convergence of an ARMA model

$$A(q^{-1}) y(k) = q^{-d} B(q^{-1}) u(k)$$

Statistical Interpretation of LS Estimation Stochastic Model

$$y(k) = \phi^T(k-1) \, \theta + \epsilon(k)$$

Where

- y(k) observed output
- $\epsilon(k)$ zero-mean noise
- $\phi(k) = \begin{bmatrix} \phi_1(k) & \cdots & \phi_n(k) \end{bmatrix}^T$ regressor
- $\theta = \begin{bmatrix} \theta_1 & \cdots & \theta_n \end{bmatrix}^T$ unknown parameter vector

Statistical Interpretation of LS Estimation Assumptions:

- $E\{\epsilon(k)\}=0$ zero-mean
- Independence or orthogonality:

$$E\{\phi(k)\epsilon(k)\} = E\{\phi(k)\}E\{\epsilon(k)\} = 0$$

Ergodicity

$$E\{\phi(k)\phi(k)^{T}\} = \lim_{N \to \infty} \left\{ \frac{1}{2N+1} \sum_{j=-N}^{j=N} \phi(k+j)\phi^{T}(k+j) \right\}$$

Statistical Interpretation of LS Estimation

Collect data for k observations:

$$y(k) = \phi^T(k-1)\theta + \epsilon(k)$$

$$\underbrace{\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(k) \end{bmatrix}}_{Y(k)} = \underbrace{\begin{bmatrix} \phi_1(0) & \cdots & \phi_n(0) \\ \phi_1(1) & \cdots & \phi_n(1) \\ \vdots \\ \phi_1(k-1) & \cdots & \phi_n(k-1) \end{bmatrix}}_{\Phi^T(k-1)} \underbrace{\begin{bmatrix} \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}}_{\theta} + \underbrace{\begin{bmatrix} \epsilon(1) \\ \epsilon(2) \\ \vdots \\ \epsilon(k) \end{bmatrix}}_{\mathcal{E}(k)}$$

34

LS Statistical Interpretation

Collect data for *k* observations:

$$Y(k) = \Phi^{T}(k-1)\theta + \mathcal{E}(k)$$

Where

•
$$Y(k) = \begin{bmatrix} y(1) & \cdots & y(k) \end{bmatrix}^T \in \mathcal{R}^k$$

•
$$\Phi(k-1) = \left[\phi(0) \cdots \phi(k-1) \right] \in \mathcal{R}^{n \times k}$$

$$\mathcal{E}(k) \; = \; \left[\; \epsilon(1) \; \; \cdots \; \; \epsilon(k) \;
ight]^T \in \mathcal{R}^k$$

$$\theta = \begin{bmatrix} \theta_1 & \cdots & \theta_n \end{bmatrix}^T \in \mathcal{R}^n$$

LS Statistical Interpretation

$$\Phi(k-1) = \left[\begin{array}{ccc} \phi(0) \cdots \phi(k-1) \end{array} \right] \in \mathcal{R}^{n \times k}$$

$$= \left[\begin{array}{ccc} \phi_1(0) & \cdots & \phi_1(k-1) \\ \phi_2(0) & \cdots & \phi_2(k-1) \\ \vdots & \ddots & \vdots \\ \phi_n(0) & \cdots & \phi_n(k-1) \end{array} \right]$$

35

Deterministic Least Squares Estimation

Parameter estimate after k observations: $\widehat{\theta}(k)$

$$y(1), \dots, y(k)$$

 $\phi(0), \dots, \phi(k-1)$

Which minimizes the following cost functional:

$$V(\widehat{\theta}(k)) = \frac{1}{2} \sum_{j=1}^{k} \left[y(j) - \phi^{T}(j-1) \,\widehat{\theta}(k) \right]^{2}$$

Notice that $\widehat{\theta}(k)$ is kept constant in the summation

Deterministic Least Squares Estimation

 $\hat{\theta}(k)$: Parameter estimate which minimizes

$$V(\widehat{\theta}(k))$$

Is given by the **Normal Equation**:

$$\Phi(k-1)\Phi(k-1)^T \,\widehat{\theta}(k) = \Phi(k-1) \, Y(k)$$

LS Statistical Interpretation

Normal equation:

$$\Phi(k-1)\Phi(k-1)^T \widehat{\theta}(k) = \Phi(k-1) Y(k)$$

Stochastic model:

$$Y(k) = \Phi^{T}(k-1)\theta + \mathcal{E}(k)$$

Parameter error vector:

$$\tilde{\theta}(k) = \theta - \hat{\theta}(k)$$

LS Statistical Interpretation

Substitute the stochastic model

$$Y(k) = \Phi^{T}(k-1) \theta + \mathcal{E}(k)$$

Into the normal equation:

$$\Phi(k-1)\Phi(k-1)^T \widehat{\theta}(k) = \Phi(k-1)Y(k)$$

To obtain:

$$\Phi(k-1)\Phi^{T}(k-1)\tilde{\theta}(k) = -\Phi(k-1)\mathcal{E}(k).$$

LS Statistical Interpretation

$$\Phi(k-1)\Phi^{T}(k-1)\tilde{\theta}(k) = -\Phi(k-1)\mathcal{E}(k).$$

Notice that

$$\Phi(k-1) = \left[\phi(0) \cdots \phi(k-1) \right]$$

$$\mathcal{E}(k) = \left[\epsilon(1) \cdots \epsilon(k) \right]^{T}$$

Therefore,

$$\left\{\sum_{j=0}^{k-1} \phi(j)\phi^{T}(j)\right\} \tilde{\theta}(k) = -\sum_{j=1}^{k} \phi(j-1)\epsilon(j)$$

LS Statistical Interpretation

Assume now that the parameter error converges:

$$\bar{\theta} = \lim_{k \to \infty} \tilde{\theta}(k)$$

Multiply by 1/k and take limits as $k \to \infty$

$$\lim_{k \to \infty} \left\{ \frac{1}{k} \sum_{j=0}^{k-1} \phi(j) \phi^{T}(j) \right\} \tilde{\theta}(k) = -\lim_{k \to \infty} \left\{ \frac{1}{k} \sum_{j=1}^{k} \phi(j-1) \epsilon(j) \right\}$$

$$\lim_{k \to \infty} \left\{ \frac{1}{k} \sum_{j=0}^{k-1} \phi(j) \phi^{T}(j) \right\} \bar{\theta} = -\lim_{k \to \infty} \left\{ \frac{1}{k} \sum_{j=1}^{k} \phi(j-1) \epsilon(j) \right\}$$

LS Statistical Interpretation

$$\lim_{k \to \infty} \left\{ \frac{1}{k} \sum_{j=0}^{k-1} \phi(j) \phi^{T}(j) \right\} \overline{\theta} = -\lim_{k \to \infty} \left\{ \frac{1}{k} \sum_{j=1}^{k} \phi(j-1) \epsilon(j) \right\}$$

By Ergodicity,

$$E\left\{\phi(k)\phi^{T}(k)\right\}\bar{\theta} = -E\left\{\phi(k)\epsilon(k+1)\right\}$$

LS Statistical Interpretation

$$E\left\{\phi(k)\phi^{T}(k)\right\}\bar{\theta} = -E\left\{\phi(k)\epsilon(k+1)\right\}$$

If $\phi(k)$ and $\epsilon(k)$ are independent or orthogonal,

$$E \{\phi(k)\epsilon(k+1)\} = -E \{\phi(k)\} E \{\epsilon(k+1)\}$$
$$= 0$$

Since,
$$E\left\{\epsilon(k)\right\} = 0$$

LS Statistical Interpretation

The parameter error vector satisfies:

$$E\left\{\phi(k)\phi^{T}(k)\right\}\bar{\theta} = 0$$

Thus, a sufficient condition for $\ \overline{\theta} = 0$ is that

$$E\left\{\phi(k)\phi^T(k)\right\} > 0$$
 (positive definite)

LS Statistical Interpretation

We now define the Excitation matrix $C_n \in \mathcal{R}^{n \times n}$

$$C_n = E\left\{\phi(k)\phi^T(k)\right\} \qquad \phi(k) \in \mathbb{R}^n$$

$$= \lim_{k \to \infty} \left\{ \frac{1}{k} \sum_{j=0}^{k-1} \phi(j) \phi^{T}(j) \right\}$$

$$C_n = C_n^T \qquad C_n \ge 0$$

LS Statistical Interpretation

Theorem:

$$y(k) = \phi^T(k-1)\theta + \epsilon(k)$$

Under the conditions:

$$\bullet \quad E\{\epsilon(k)\} = 0$$

•
$$E\{\phi(k-1)\epsilon(k)\} = E\{\phi(k-1)\} E\{\epsilon(k)\} = 0 = 0$$

If the excitation matrix C_n is positive definite,

the parameter error vector of the least square algorithm converges to zero.

$$\bar{\theta} = \lim_{k \to \infty} \tilde{\theta}(k) = 0$$

47

Persistence of Excitation (PE)

Persistently exciting regressor: $\phi(k) \in \mathbb{R}^n$

$$\rho_2 I_n \ge \sum_{j=k}^{k+m} \phi(j)\phi(j)^T \ge \rho_1 I_n$$

$$0 < \rho_1 < \lambda_{min} \left\{ \sum_{j=k}^{k+m} \phi(j)\phi(j)^T \right\}$$

$$\infty > \rho_2 > \lambda_{max} \left\{ \sum_{j=k}^{k+m} \phi(j)\phi(j)^T \right\}$$
for all k
and a fixed m

Persistence of Excitation (PE)

Persistently exciting regressor: $\phi(k) \in \mathbb{R}^n$

There exist finite constants:

- 0 < m
- $0 < \rho_1 < \rho_2 < \infty$

For all k

$$\rho_2 I_n \ge \sum_{j=k}^{k+m} \phi(j)\phi(j)^T \ge \rho_1 I_n$$

PE in Moving Average (MA) models Finite Impulse Response (FIR) model:

$$y(k+1) = B(q^{-1}) u(k)$$

= $b_0 u(k) + \dots + b_{n-1} u(k-n+1)$
= $\theta^T \phi(k)$

where

$$\theta = \begin{bmatrix} b_0 & b_1 \cdots & b_{n-1} \end{bmatrix}^T \in \mathcal{R}^n$$

$$\phi(k) = \begin{bmatrix} u(k) & u(k-1) \cdots & u(k-n+1) \end{bmatrix}^T \in \mathcal{R}^n$$

Conditions for PE in FIR Models

Persistently exciting input sequence:

u(k)Is persistently exciting (PE) of order n

if the regressor vector

$$\phi(k) = \begin{bmatrix} u(k) & u(k-1) \cdots & u(k-n+1) \end{bmatrix}^T \in \mathcal{R}^n$$

is persistently exciting

PE inputs in FIR models

Theorem:

Is persistently exciting (PE) of order n iff u(k)

$$U = E\{[A(q^{-1})u(k)]^2\} > 0$$

for all polynomials $A(q^{-1})$ of order n-1

Conditions for PE in FIR Models

For a persistently exciting input sequence u(k)with regressor

$$\phi(k) = \begin{bmatrix} u(k) & u(k-1) \cdots & u(k-n+1) \end{bmatrix}^T \in \mathcal{R}^n$$

The excitation matrix C_n is a Positive Definite Toeplitz matrix

$$C_{n} = \begin{bmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots \\ c_{1n} & \cdots & c_{nn} \end{bmatrix} \quad c_{ij} = c_{ji} \\ = E\{u(k)u(k+i-j)\} \\ = R_{uu}(i-j)$$

PE inputs in FIR models

Proof: Let

$$A(q^{-1}) = a_o + a_1 q^{-1} + \dots + a_{n-1} q^{n-1}$$
$$a = \begin{bmatrix} a_o \cdots a_{n-1} \end{bmatrix}^T \in \mathcal{R}^n$$

Then

$$A(q^{-1}) u(k) = \begin{bmatrix} a_o & a_1 & \cdots & a_{n-1} \end{bmatrix} \begin{bmatrix} u(k) \\ u(k-1) \\ \vdots \\ u(k-n-1) \end{bmatrix}$$

$$A(q^{-1}) u(k) = a^{T} \phi(k) = \phi^{T}(k) a$$

PE inputs in FIR models

Proof:

$$U = E\{[A(q^{-1})u(k)]^{2}\}\$$

$$= E\{[a^{T}\phi(k)]^{2}\} = E\{a^{T}\phi(k)\phi(k)^{T}a\}\$$

$$= a^{T}E\{\phi(k)\phi(k)^{T}\}a\$$

$$= a^{T}C_{n}a$$

U > 0 for all $a \in \mathbb{R}^n$ \Leftrightarrow $C_n > 0$

Conditions for PE in FIR Models

Examples: Step

Consider the unit step input

$$u(k) = \mathbf{1}(k) = \begin{cases} 1 & \text{for } k \ge 0 \\ 0 & \text{for } k < 0 \end{cases}.$$

$$(1 - q^{-1})u(k) = 0$$

Thus, the step input is at most PE of order n=1.

PE inputs in FIR models

To determine the PE order of a sequence u(k)

1. Find an annihilating polynomial $A(q^{-1})$ of order n such

$$A(q^{-1})u(k) = 0$$

this means that u(k) is at most PE of order n

2. Compute the excitation matrix C_n and verify that it is positive definite.

Conditions for PE in FIR Models

Examples: Step

Since

$$C_1 = \lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} 1 = 1,$$

The step input is PE or order 1.

Conditions for PE in FIR Models

Examples: Step

Since

$$C_1 = \lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} 1 = 1,$$

The step input is PE or order 1.

Conditions for PE in FIR Models

Examples: Sinusoid input

Let
$$\phi(k) = \begin{bmatrix} u(k) & u(k-1) \end{bmatrix}^T$$
. $u(k) = \sin(\omega k)$.

$$C_{2} = \lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} \phi(j)\phi(j)^{T}$$

$$= \lim_{k \to \infty} \frac{1}{k} \begin{bmatrix} \sum_{j=1}^{k} u(j)^{2} & \sum_{j=1}^{k} u(j)u(j-1) \\ \sum_{j=1}^{k} u(j)u(j-1) & \sum_{j=1}^{k} u(j-1)^{2} \end{bmatrix}$$

$$= \lim_{k \to \infty} \frac{1}{k} \begin{bmatrix} \sum_{j=1}^{k} \sin^{2}(\omega j) & \sum_{j=1}^{k} \sin(\omega j)\sin(\omega (j-1)) \\ \sum_{j=1}^{k} \sin(\omega j)\sin(\omega (j-1)) & \sum_{j=1}^{k} \sin^{2}(\omega (j-1)) \end{bmatrix}$$

$$C_2 = \frac{1}{2} \begin{bmatrix} 1 & \cos(\omega) \\ \cos(\omega) & 1 \end{bmatrix} > 0 \qquad 0 < \omega < \pi$$

Conditions for PE in FIR Models

Examples: Sinusoid input

Consider the pure sinusoid input

$$u(k) = \sin(\omega k)$$
. $0 < \omega < \pi$

Since

$$(1 - 2\cos(\omega)q^{-1} + q^{-2})u(k) = 0$$

the pure sinusoid input is at most PE of order n=2.

Conditions for PE in FIR Models

Examples: Sinusoid input

Since

$$(1 - 2\cos(\omega)q^{-1} + q^{-2})u(k) = 0$$

and

$$C_2 = \frac{1}{2} \begin{bmatrix} 1 & \cos(\omega) \\ \cos(\omega) & 1 \end{bmatrix} > 0$$

The pure sinusoid input is PE of order n = 2.

60

Conditions for PE in FIR Models

Examples: Sum of Sinusoids

Consider an input that is a sum of m sinusoids, with m distinct frequencies

$$u(k) = \sum_{i=1}^{m} \sin(\omega_i k).$$

$$0 < \omega_i < \pi$$

$$\omega_i \neq w_j$$

u(k) is PE of order n=2m.

Conditions for PE in FIR Models

Examples: Random process

Consider a colored random process

$$u(k) = G(q) w(k)$$

where w(k) is white noise.

u(k) is PE of any order.

PE in Filtered Signals

Filtered signals:

u(k) be PE of order n

$$v(k) = A(q^{-1})u(k)$$

 $A(q^{-1})$ is a polynomial of degree m < n

$$v(k)$$
 is PE of order r .
$$n-m \le r \le n$$

PE in Filtered Signals

Filtered signals:

u(k) be PE of order n

$$v(k) = \frac{1}{A(q^{-1})}u(k)$$

 $A(q^{-1})$ is a Schur polynomial

v(k) is also PE of order n.

ARMA Model

Consider the following system

$$A(q^{-1})y(k) = q^{-1}B(q^{-1})u(k)$$

Where

- u(k)known **bounded** input
- measured output y(k)

ARMA Model

ARMA model can be written as:

$$y(k+1) = -\sum_{i=1}^{n} a_i y(k-i+1) + \sum_{i=0}^{m} b_i u(k-i)$$
$$= \theta^T \phi(k)$$

Where:

$$\theta = \begin{bmatrix} a_1 & \cdots & a_n & b_o \cdots & b_m \end{bmatrix}^T \in \mathbb{R}^{n+m+1}$$

$$\phi(k) = \begin{bmatrix} -y(k) & \cdots & -y(k-n) & u(k) & \cdots & u(k-m) \end{bmatrix}^T$$

ARMA Model

Consider the following system

$$A(q^{-1})y(k) = q^{-1} B(q^{-1})u(k)$$

Where

$$A(q^{-1}) = 1 + a_1 q^{-1} + \dots + a_n q^{-n}$$
 (Schur)

$$B(q^{-1}) = b_0 + b_1 q^{-1} + \dots + b_m q^{-m}$$

- Orders n and m are **known**
- a's and b's are **unknown** but **constant** coefficients

PE in ARMA models

ARMA model:

$$A(q^{-1})y(k) = q^{-1} B(q^{-1})u(k)$$

where

$$y(k+1) = \theta^T \phi(k)$$

$$\theta \in \mathcal{R}^{n+m+1}$$
 $\phi(k) \in \mathcal{R}^{n+m+1}$

PE in ARMA models

ARMA model:

$$A(q^{-1})y(k) = q^{-1}B(q^{-1})u(k)$$

where

$$y(k+1) = \theta^T \phi(k)$$

$$\theta \in \mathcal{R}^{n+m+1}$$
 $\phi(k) \in \mathcal{R}^{n+m+1}$

Parameter estimates convergence to the true values if the regressor $\phi(k)$ is PE of order n+m+1

PE in ARMA models - Proof

Assume that the parameter error converges:

$$\bar{\theta} = \lim_{k \to \infty} \tilde{\theta}(k)$$

Define: the LS output estimation error by

$$e(k) = \phi(k-1)^T \bar{\theta}$$

Notice that,

$$E\{e^{2}(k)\} = \bar{\theta}^{T} E\{\phi(j-1)\phi(j-1)^{T}\} \bar{\theta}$$
$$= \bar{\theta}^{T} C_{n} \bar{\theta}$$

PE in ARMA models

Theorem:

Consider the parameter estimation of the ARMA system using the LS estimation algorithm. If

- $A(q^{-1})$ is Schur
- $A(q^{-1})$ and $B(q^{-1})$ are co-prime
- u(k) is PE of order n+m+1

Parameter estimates convergence to the true values

PE in ARMA models - Proof

We know that, under no noise assumption

$$E\{e^2(k)\} = 0$$

Therefore, since

$$E\{e^2(k)\} = \bar{\theta}^T C_n \bar{\theta} = 0$$

To prove persistence of excitation, we need to show that

$$E\{e^2(k)\} = 0 \iff \bar{\theta} = 0$$

PE in ARMA models - Proof

Thus, we need to show that

$$E\{e^2(k)\} = 0 \iff \bar{\theta} = 0$$

Notice that.

$$e(k) = q^{-1} \bar{B}(q^{-1}) u(k) - \bar{A}(q^{-1}) y(k),$$

Where,

$$\bar{A}(q^{-1}) = A(q^{-1}) - \hat{A}(q^{-1})$$

$$\bar{B}(q^{-1}) = B(q^{-1}) - \hat{B}(q^{-1})$$

PE in ARMA models - Proof

From

$$e(k) = q^{-d} \, \overline{B}(q^{-1}) \, u(k) - \overline{A}(q^{-1}) y(k) \,,$$

$$y(k) = \frac{q^{-1} B(q^{-1})}{A(q^{-1})} u(k)$$

We obtain

$$e(k) = q^{-1} \bar{B}(q^{-1}) u(k) - \bar{A}(q^{-1}) \frac{q^{-1} B(q^{-1})}{A(q^{-1})} u(k)$$
$$= q^{-1} \left[\bar{B}(q^{-1}) A(q^{-1}) - \bar{A}(q^{-1}) B(q^{-1}) \right] \frac{1}{A(q^{-1})} u(k).$$

PE in ARMA models - Proof

Therefore,

$$e(k) = q^{-1} \underbrace{\left[\bar{B}(q^{-1}) A(q^{-1}) - \bar{A}(q^{-1}) B(q^{-1})\right]}_{\text{Polynomial of order } n+m} \underbrace{\frac{1}{A(q^{-1})} u(k)}_{v(k)}.$$

PE in ARMA models - Proof

$$e(k) = q^{-1} \underbrace{\left[\bar{B}(q^{-1}) A(q^{-1}) - \bar{A}(q^{-1}) B(q^{-1})\right]}_{\text{Polynomial of order } n+m} \underbrace{\frac{1}{A(q^{-1})} u(k)}_{v(k)}.$$

Notice that since, $A(q^{-1})$ is Schur and $v(k) = \frac{1}{A(q^{-1})} u(k)$

$$u(k)$$
 is PE of order $n+m+1$

v(k) is PE of order n+m+1

PE in ARMA models - Proof

$$e(k) = q^{-1} \underbrace{\left[\bar{B}(q^{-1})\Lambda(q^{-1}) - \bar{\Lambda}(q^{-1})B(q^{-1})\right]}_{\text{Polynomial of order } n+m} \underbrace{\frac{1}{A(q^{-1})}u(k)}_{v(k)}.$$

- v(k) is PE of order n+m+1
- e(k) is PE of order > 1 unless

$$\left[\bar{B}(q^{-1}) A(q^{-1}) - \bar{A}(q^{-1}) B(q^{-1}) \right] = 0$$

PE in ARMA models - Proof

Consider the Diophantine equation

$$\left[\bar{B}(q^{-1}) A(q^{-1}) - \bar{A}(q^{-1}) B(q^{-1}) \right] = 0$$

• where $A(q^{-1})$ and $B(q^{-1})$ are co-prime

$$\bar{A}(q^{-1}) = A(q^{-1}) - \hat{A}(q^{-1})$$
 and:
$$\bar{B}(q^{-1}) = B(q^{-1}) - \hat{B}(q^{-1})$$

PE in ARMA models - Proof

Thus, we have shown that if

$$u(k)$$
 is PE of order $n+m+1$,

$$E\{e^{2}(k)\} = 0 \iff [\bar{B}(q^{-1})A(q^{-1}) - \bar{A}(q^{-1})B(q^{-1})] = 0$$

We now need to show that

$$\left[\bar{B}(q^{-1}) A(q^{-1}) - \bar{A}(q^{-1}) B(q^{-1}) \right] = 0 \iff \bar{\theta} = 0$$

PE in ARMA models - Proof

$$\left[\bar{B}(q^{-1}) A(q^{-1}) - \bar{A}(q^{-1}) B(q^{-1})\right] = 0$$

This equation can be written as follows:

$$D\bar{\theta}^* = 0$$

$$\bar{\theta}^* = \begin{bmatrix} \bar{b}_o \cdots \bar{b}_m & -\bar{a}_1 & \cdots & -\bar{a}_n \end{bmatrix}^T \in \mathcal{R}^{n+m+1}$$

and:
$$ar{a}_i = a_i - \hat{a}_i$$
 $ar{b}_i = b_i - \hat{b}_i$

PE in ARMA models - Proof

$$D\,\bar{\theta}^* = 0$$

PE in ARMA models - Proof

$$D\,\bar{\theta}^*=0$$

 $A(q^{-1})$ and $B(q^{-1})$ are co-prime

D is nonsingular and $\bar{\theta}^*=\mathbf{0}$

Therefore, when u(k) is PE of order n+m+1Parameter estimates convergence to the true values