Machine Learning Course

Lecture 13: Word Embeddings and Autoencoders

Harbour.Space University
March 2020

Radoslav Neychev

Outline

- 1. Discrete representations.
- 2. Matrix of co-occurrence.
- 3. Embeddings (GloVe, word2vec).
- 4. Examples.
- 5. Autoencoders
- 6. Denoising Autoencoders
- 7. Practice Session

How to represent text in a computer?

Use a taxonomy like WordNet that has hypernyms (is-a) relationships and synonym sets

How to represent text in a computer: WordNet

Discrete representations: problems

- Missing new words
- Subjective
- Requires human labor to create and adapt
- Hard to compute accurate word similarity

Discrete representations: one-hot encoding

TF-IDF

TF - term frequency

IDF - Inverse Document Frequency

TF-IDF: make it simple

$$ext{tf("this",}\ d_1)=rac{1}{5}=0.2$$
 $ext{tf("this",}\ d_2)=rac{1}{7}pprox 0.14$ $ext{idf("this",}\ D)=\log\Bigl(rac{2}{2}\Bigr)=0$

 $ext{tfidf}(" ext{this}",d_1,D)=0.2 imes 0=0$

 $\operatorname{tfidf}("\mathsf{this}", d_2, D) = 0.14 \times 0 = 0$

Term	Term Count			
this	1			
is	1			

2

sample

Document 1

Term	Term Count		
this	1		
is	1		
another	2		
example	3		

Word 'this' is not very informative

Words cooccurrences

One of the most successful ideas of statistical NLP:

"You shall know a word by the company it keeps"

(J. R. Firth 1957: 11)

Words cooccurrences

Finding N-grams in a text

Word-document cooccurrence matrix

Window around each word

Word-document cooccurrence matrix

		I	like	enjoy	deep	learning	NLP	flying	•
X =	I	0	2	1	0	0	0	0	0]
	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
	deep	0	1	0	0	1	0	0	0
	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
	٠	0	0	0	0	1	1	1	0

Words cooccurrences: sliding window

Words cooccurrences: n-grams

Cooccurrence vectors: problems

- Increase in size with vocabulary
- Very high dimensional: require a lot of storage
- Subsequent classification models have sparsity issues

Models are less robust

Reducing dimensionality: SVD of cooccurrence matrix

SVD: intuition

SVD: problems

- Computational cost scales quadratically for n x m matrix:
 O(mn²) flops (when n<m)
- Hard to incorporate new words or documents
- Different learning regime than other DL models

Embeddings: intuition

Embeddings: intuition

- Word vectors with 300 components
- Vocabulary of 10,000 words.
- Weight matrix with 300 x 10,000 = 3 million weights each!

Training is too long and computationally expensive

How to fix this?

Basic approaches:

- 1. Treating common word pairs or phrases as single "words" in their model.
- 2. Subsampling frequent words to decrease the number of training examples.
- Modifying the optimization objective with a technique they called "Negative Sampling", which causes each training sample to update only a small percentage of the model's weights.

Subsampling frequent words.

 w_i is the word, $z(w_i)$ is the fraction of this word in the whole Graph for $(\sqrt{(x/0.001)+1})*0.001/x$

 $P(w_i)$ is the probability of *keeping* the word:

$$P(w_i) = (\sqrt{\frac{z(w_i)}{0.001}} + 1) \cdot \frac{0.001}{z(w_i)}$$

Source: http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

Embeddings: negative sampling

Negative Sampling idea: only few words error is computed. All other words has zero error, so no updates by the backprop mechanism.

More frequent words are selected to be negative samples more often. The probability for a selecting a word is just it's weight divided by the sum of weights for all words.

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{i=0}^{n} (f(w_i)^{3/4})}$$

GloVe Visualizations

GloVe Visualizations: Company - CEO

Conclusion

Word vectors are simply vectors of numbers that represent the meaning of a word

Approaches:

- One-hot encoding
- Bag-of-words models
- Counts of word / context co-occurrences
- TF-IDF
- Predictions of context given word (skip-gram neural network models, e.g. word2vec)

Autoencoders

Denote **z** as encoded with encoder E input **x**

$$\mathbf{z} = E(\mathbf{x}, \boldsymbol{\theta}_E)$$

Decoder D recovers **x** from latent representation

$$\hat{\mathbf{x}} = D(\mathbf{z}, \boldsymbol{\theta}_D)$$

Optimal parameters learned w.r.t. loss function L

$$[\boldsymbol{\theta}_E, \boldsymbol{\theta}_D] = \arg\min L(\hat{\mathbf{x}}, \mathbf{x})$$

Autoencoders

Denote **z** as encoded with encoder E input **x**

$$\mathbf{z} = E(\mathbf{x}, \boldsymbol{\theta}_E)$$

Decoder D recovers **x** from latent representation

$$\hat{\mathbf{x}} = D(\mathbf{z}, \boldsymbol{\theta}_D)$$

Simple example: PCA

Optimal parameters learned w.r.t. loss function L

$$[\boldsymbol{\theta}_E, \boldsymbol{\theta}_D] = \arg\min L(\hat{\mathbf{x}}, \mathbf{x})$$

PCA performance on MNIST

16 components

Simple Autoencoder

Epoch 1 Epoch 100 Epoch 200

Convolutional AE performance on MNIST

7 x 7 latent space

Autoencoders

Denote **z** as encoded with encoder E input **x**

$$\mathbf{z} = E(\mathbf{x}, \boldsymbol{\theta}_E)$$

Decoder D recovers **x** from latent representation

$$\hat{\mathbf{x}} = D(\mathbf{z}, \boldsymbol{\theta}_D)$$

Optimal parameters learned w.r.t. loss function L

$$[\boldsymbol{\theta}_E, \boldsymbol{\theta}_D] = \arg\min L(\hat{\mathbf{x}}, \mathbf{x})$$

input noisy input output

Outro

Autoencoders are used for variety of problems:

- Data compression
- Feature extraction
- Denoising
- Anomaly detection

Remember: a well-defined problem is halfway to being solved