

Лабораторная работа: конвертация IPv4-адресов в двоичную систему счисления

Задачи

- Часть 1. Конвертация IPv4-адресов из десятичного представления с точками в двоичную систему
- Часть 2. Использование побитовой операции И для определения сетевых адресов
- Часть 3. Применение расчётов сетевых адресов

Исходные данные/сценарий

Каждый IPv4-адрес состоит из двух частей — сетевой и узловой. Сетевая часть адреса одинакова для всех устройств, которые находятся в одной и той же сети. Узловая часть определяет конкретный узел в пределах соответствующей сети. Маска подсети используется для определения сетевой части IP-адреса. Устройства в одной сети могут обмениваться данными напрямую; для взаимодействия между устройствами из разных сетей требуется промежуточное устройство уровня 3, например маршрутизатор.

Чтобы понять принцип работы устройств в сети, нам необходимо увидеть адреса в том виде, в котором с ними работают устройства — в двоичном представлении. Для этого необходимо перевести IP-адрес и его маску подсети из десятичного представления с точками в двоичное значение. После этого можно определить сетевой адрес с помощью побитовой операции И.

В этой лабораторной работе описывается порядок определения сетевой и узловой частей IP-адресов. Для этого нужно перевести адреса и маски подсети из десятичного представления с точками в двоичный формат, а затем применить побитовую операцию И. После этого вы воспользуетесь полученной информацией для определения адресов в сети.

Часть 1: Конвертация IPv4-адресов из десятичного представления с точками в двоичную систему

В части 1 вам необходимо перевести десятичные числа в двоичный эквивалент. Выполнив это задание, вы займётесь конвертацией IPv4-адресов и масок подсети из десятичного представления с точками в двоичную систему.

Шаг 1: Переведите десятичные числа в двоичный эквивалент.

Заполните таблицу, преобразовав десятичное число в 8-битное двоичное значение. Первое число уже преобразовано для примера. Помните, что восемь двоичных битовых значений в октете имеют основание 2 и слева направо выглядят как 128, 64, 32, 16, 8, 4, 2 и 1.

Десятичное	Двоичное
192	11000000
168	
10	
255	
2	

Шаг 2: Переведите IPv4-адреса в их двоичный эквивалент.

IPv4-адрес преобразуются точно так же, как было описано выше. Заполните приведённую ниже таблицу двоичными эквивалентами указанных адресов. Чтобы ваши ответы было проще воспринимать, разделяйте двоичные октеты точками.

Десятичное	Двоичное
192.168.10.10	11000000.10101000.00001010.00001010
209.165.200.229	
172.16.18.183	
10.86.252.17	
255.255.255.128	
255.255.192.0	

Часть 2: Использование побитовой операции И для определения сетевых адресов

В части 2 вы будете рассчитывать сетевой адрес для имеющихся адресов узлов с помощью побитовой операции И. Сначала вам необходимо перевести десятичный IPv4-адрес и маску подсети в их двоичный эквивалент. Получив сетевой адрес в двоичном формате, переведите его в десятичный.

Примечание. При использовании операции И десятичное значение в каждой битовой позиции 32-битного IP-адреса узла сравнивается с соответствующей позицией в 32-битной маске подсети. При наличии двух нулей или 0 и 1 результатом операции И будет 0. При наличии двух единиц результатом будет 1, как показано в приведённом примере.

Шаг 1: Определите, сколько бит нужно использовать для расчёта сетевого адреса.

Описание	Десятичное	Двоичное
ІР-адрес	192.168.10.131	11000000.10101000.00001010.10000011
Маска подсети	255.255.255.192	11111111.11111111.11111111.11000000
Сетевой адрес	192.168.10.128	11000000.10101000.00001010.10000000

Сколько бит в приведённом выше примере используются для расчёта сетевого адреса?

Как определить, сколько бит нужно использовать для расчёта сетевого адреса?

© Корпорация Cisco и/или её дочерние компании, 2014. Все права защищены. В данном документе содержится общедоступная информация корпорации Cisco.

Шаг 2: Выполните операцию И, чтобы определить сетевой адрес.

а. Введите отсутствующую информацию в таблицу ниже:

Описание	Десятичное	Двоичное
ІР-адрес	172.16.145.29	
Маска подсети	255.255.0.0	
Сетевой адрес		

b. Введите отсутствующую информацию в таблицу ниже:

Описание	Десятичное	Двоичное
ІР-адрес	192.168.10.10	
Маска подсети	255.255.255.0	
Сетевой адрес		

с. Введите отсутствующую информацию в таблицу ниже:

Описание	Десятичное	Двоичное
ІР-адрес	192.168.68.210	
Маска подсети	255.255.255.128	
Сетевой адрес		

d. Введите отсутствующую информацию в таблицу ниже:

Описание	Десятичное	Двоичное
ІР-адрес	172.16.188.15	
Маска подсети	255.255.240.0	
Сетевой адрес		

е. Введите отсутствующую информацию в таблицу ниже:

Описание	Десятичное	Двоичное
ІР-адрес	10.172.2.8	
Маска подсети	255.224.0.0	
Сетевой адрес		

Часть 3: Применение расчётов сетевых адресов

В части 3 вам необходимо рассчитать сетевой адрес для указанных IP-адресов и масок подсети. Получив сетевой адрес, вы должны определить отклики, необходимые для выполнения этой лабораторной работы.

Шаг 1	: Определите, находятся ли IP-адреса в одной и той же сети.
a.	Настройка двух ПК для сети. Компьютеру ПК-А присвоен IP-адрес 192.168.1.18, а компьютеру ПК-Б — IP-адрес 192.168.1.33. Маска подсети обоих компьютеров — 255.255.255.240.
	Какой сетевой адрес у ПК-А?
	Какой сетевой адрес у ПК-Б?
	Смогут ли эти ПК взаимодействовать друг с другом напрямую?
	Какой наибольший адрес, присвоенный компьютеру ПК-Б, позволит ему находиться в одной сети с ПК-А?
b.	—————————————————————————————————————
	Какой сетевой адрес у ПК-А?
	Какой сетевой адрес у ПК-Б?
	Смогут ли эти ПК взаимодействовать друг с другом напрямую?
	Какой наименьший адрес, присвоенный компьютеру ПК-Б, позволит ему находиться в одной сети с ПК-А?
	: Установите адрес шлюза по умолчанию. В вашей компании действует политика использования первого IP-адреса в сети в качестве адреса
	шлюза по умолчанию. Узел в локальной сети имеет IP-адрес 172.16.140.24 и маску подсети 255.255.192.0.
	Какой у этой сети сетевой адрес?
b.	В вашей компании действует политика использования первого IP-адреса в сети в качестве адреса шлюза по умолчанию. Вы получили указание настроить новый сервер с IP-адресом 192.168.184.227 и маской подсети 255.255.258.
	Какой у этой сети сетевой адрес?
Вопр	осы на закрепление