Module EA4 – Éléments d'Algorithmique II Outils pour l'analyse des algorithmes

Dominique Poulalhon dominique.poulalhon@irif.fr

Université de Paris L2 Informatique & DL Bio-Info, Jap-Info, Math-Info Année universitaire 2021-2022

RÉSUMÉ DES ÉPISODES PRÉCÉDENTS

Qualités et défauts des algorithmes de tri classiques

Tri par fusion

- $\Theta(n \log n)$ comparaisons au pire (mais dans tous les cas),
- la constante cachée dans le Θ est importante,
- stable mais pas en place: complexité en espace $\in \Theta(n)$

Tri par insertion

- $\Theta(n^2)$ comparaisons *au pire* et *en moyenne*,
- $\Theta(n)$ comparaisons au mieux (CNS : O(n) inversions),
- stable et en place

Tri rapide

- $\Theta(n^2)$ comparaisons *au pire*
- $\Theta(n \log n)$ comparaisons en moyenne... et au mieux,
- version naïve : stable mais pas en place, mauvais cas « assez probables »
- version en place et randomisée : en place mais pas stable, mauvais cas sans caractéristiques particulières (donc peu probables)

Comment conjuguer ces qualités?

Tri par comparaisons « idéal » :

- pire cas (et cas moyen) en $\Theta(n \log n)$,
- meilleur cas en $\Theta(n)$ (correspondant à des cas « probables en pratique »),
- en place,
- stable.

pour s'en approcher, on peut concevoir des tris hybrides : tris utilisant des mécanismes inspirés de plusieurs algorithmes de tri différents

- SedgeSort (hybride de tri rapide et de tri par insertion),
- TimSort (hybride de tri fusion et de tri par insertion),
- IntroSort (hybride de tri rapide et de tri par tas)...

et il est parfois possible de tirer parti des caractéristiques des données à trier pour sortir du cadre des tris par comparaisons : tri par dénombrement, tri par paquets, tri par base (RadixSort)...

TRI PAR BASE (radix sort)

Étant donné un alphabet A de taille ℓ *fini* et un entier k, trier une liste L d'éléments de A^k selon l'ordre lexicographique (i.e. alphabétique) le plus efficacement possible

```
def tri_par_base(L, A, k) :
   tmp = L
# numérotation des lettres selon l'ordre alphabétique
   dico = { lettre : i for (i, lettre) in enumerate(A) }
# tri selon chaque position, en partant de la dernière
   for i in range(k) :
      aux = [ [] for lettre in A ]
      for mot in tmp :
        aux[dico[mot[k-1-i]]].append(mot)
      tmp = []
      for liste in aux : tmp += liste
      return tmp
```

TRI PAR BASE (radix sort)

Lemme

la i e étape du tri par base réalise un tri stable des mots de L selon la lettre de position k-i

Lemme

chaque étape est de complexité $\Theta(n+\ell)$, où n est la longueur de L, et ℓ la taille de l'alphabet – donc $\Theta(n)$ si l'alphabet est fixé une fois pour toute

Théorème

le tri par base réalise le tri lexicographique de n mots de longueur k en temps $\Theta(nk)$

COMPLÉMENT : LA SÉLECTION RAPIDE

Rang

l'élément de rang k d'un tableau T est l'unique x de T tel que

- T contient au plus k-1 éléments strictement plus petits que x
- T contient au plus len(T) k éléments strictement plus grands que x

Rang

si T est un tableau $sans\ doublon,$ l'élément de rang k de T est l'unique x de T tel que

- T contient k − 1 éléments plus petits que x
- T contient len(T) k éléments plus grands que x

Rang

si T est un tableau $sans\ doublon$, l'élément de rang k de T est l'unique x de T tel que

- T contient k − 1 éléments plus petits que x
- T contient len(T) k éléments plus grands que x

Cas particuliers

- *si* T est trié : T[k-1]
- élément de rang 1 : minimum(T)
- élément de rang len(T) : maximum(T)
- élément « du milieu » : médian(T) (ou médiane(T)) si n = len(T) impair : rang $\frac{1}{2}(n+1)$ (si n pair : rang $\frac{1}{2}n$ ou $\frac{1}{2}n+1$)

selection(T, k)

étant donné un tableau T et un entier k, déterminer l'élément de rang k de T

selection(T, k)

étant donné un tableau T et un entier k, déterminer l'élément de rang k de T

Solution nº 1

- trier T
- retourner T[k-1]

selection(T, k)

étant donné un tableau T et un entier k, déterminer l'élément de rang k de T

Solution nº 1

- trier T
- retourner T[k-1]

 $\implies \Theta(\mathfrak{n} \log \mathfrak{n}) \ \textit{comparaisons (au pire)}$

SÉLECTION - CAS PARTICULIERS

minimum(T)

étant donné un tableau T, déterminer le plus petit élément de T

SÉLECTION - CAS PARTICULIERS

maximum(T)

étant donné un tableau T, déterminer le plus grand élément de T

SÉLECTION - CAS GÉNÉRAL

```
def selection(T, k) : # comme un tri par sélection interrompu
for i in range(k) :
   tmp = i
   for j in range(i, len(T)) :
      if T[j] < T[tmp] : tmp = j
   T[i], T[tmp] = T[tmp], T[i]
   return T[k-1]</pre>
```

SÉLECTION - CAS GÉNÉRAL

- si k est petit, c'est sensiblement mieux que $\Theta(n \log n)$
- si k est en $\Theta(n)$, c'est sensiblement moins bien

Idée : utiliser le partitionnement du tri rapide

Idée : utiliser le partitionnement du tri rapide

Que conclure de la position r(-1) du pivot retournée par partition(T)?

Idée : utiliser le partitionnement du tri rapide

Que conclure de la position r(-1) du pivot retournée par partition (T)?

ullet si r=k : le pivot est l'élément de rang k \Longrightarrow recherche terminée

Idée : utiliser le partitionnement du tri rapide

Que conclure de la position r(-1) du pivot retournée par partition (T)?

- ullet si r=k : le pivot est l'élément de rang k \Longrightarrow recherche terminée
- ullet si r > k : le pivot est supérieur à l'élément de rang k

 \implies poursuivre la recherche à gauche

Idée : utiliser le partitionnement du tri rapide

Que conclure de la position r(-1) du pivot retournée par partition (T)?

- si r = k: le pivot est l'élément de rang k \implies recherche terminée
- si r > k : le pivot est supérieur à l'élément de rang k
 - \implies poursuivre la recherche à gauche
- \bullet si r < k : le pivot est inférieur à l'élément de rang k
 - \implies poursuivre la recherche \grave{a} droite

Idée : utiliser le partitionnement du tri rapide

Que conclure de la position r(-1) du pivot retournée par partition (T)?

- ullet si r=k: le pivot est l'élément de rang k \Longrightarrow recherche terminée
- si r > k : le pivot est supérieur à l'élément de rang k
 poursuivre la recherche à gauche
- si r < k: le pivot est inférieur à l'élément de rang k
 - \implies poursuivre la recherche \grave{a} droite

⇒ dans tous les cas, (au plus) un seul appel récursif est nécessaire

```
def selection_rapide(T, k) :
 if len(T) == 1 : return T[0] if k == 1 else None
 # version naïve
 pivot, gauche, droite = partition(T)
 rang_pivot = len(gauche) + 1
 if rang_pivot == k :
   return pivot
 elif rang_pivot > k :
   return selection_rapide(gauche, k)
 else :
```

```
def selection_rapide(T, k) :
 if len(T) == 1 : return T[0] if k == 1 else None
 # version naïve
 pivot, gauche, droite = partition(T)
 rang_pivot = len(gauche) + 1
 if rang_pivot == k :
   return pivot
 elif rang_pivot > k :
   return selection_rapide(gauche, k)
 else:
   return selection_rapide(droite, k - rang_pivot)
```

```
def selection_rapide_en_place(T, k, deb=0, fin=None) :
 if fin is None: fin = len(T)
 if fin-deb == 1 : return T[0] if k == 1 else None
 indice_pivot = partition_en_place(T, debut, fin)
 rang_pivot = indice_pivot + 1
 if rang_pivot == k :
   return T[indice_pivot]
 elif rang_pivot > k :
   return selection_rapide(T, k, deb, indice_pivot)
 else:
   return selection_rapide(T, k - rang_pivot, rang_pivot, fin)
```

Complexité de selection_rapide au pire : $\Theta(n^2)$ comparaisons

Complexité de selection_rapide dans le meilleur des cas : $\Theta(n)$ comparaisons

Complexité de selection_rapide en moyenne (admis) : $\Theta(n)$ comparaisons

Complexité de selection_rapide au pire : $\Theta(n^2)$ comparaisons

Complexité de selection_rapide dans le meilleur des cas :

 $\Theta(n)$ comparaisons

Complexité de selection_rapide en moyenne (admis) :

 $\Theta(n)$ comparaisons

En choisissant comme pivot la médiane des $\frac{n}{5}$ médianes de paquets de 5 éléments, on obtient un algorithme de complexité $\Theta(n)$ dans le pire des cas (admis)

QUELQUES APPLICATIONS DES TRIS

Applications du tri en géométrie : 1. Calcul de l'enveloppe convexe

enveloppe convexe d'une partie ${\mathcal P}$ du plan : plus petite partie convexe ${\mathcal C}$ contenant ${\mathcal P}$

APPLICATIONS DU TRI EN GÉOMÉTRIE : 1. CALCUL DE L'ENVELOPPE CONVEXE

enveloppe convexe d'une partie ${\mathcal P}$ du plan : plus petite partie convexe ${\mathcal C}$ contenant ${\mathcal P}$

si \mathcal{P} est un ensemble fini de points (on parle de *nuage* de points), \mathcal{C} est un polygone dont les sommets sont des points du nuage

Applications du tri en géométrie : 1. Calcul de l'enveloppe convexe

enveloppe convexe d'une partie ${\mathcal P}$ du plan : plus petite partie convexe ${\mathcal C}$ contenant ${\mathcal P}$

si \mathcal{P} est un ensemble fini de points (on parle de *nuage* de points), \mathcal{C} est un polygone dont les sommets sont des points du nuage

enveloppe convexe(nuage)

étant donné un nuage de points du plan, déterminer l'enveloppe convexe des points du nuage

Un nuage de points

Son enveloppe convexe

Une arête [pq] de l'enveloppe (dans le sens direct)

Tous les angles pqr « tournent à gauche »

CARACTÉRISATION DES ARÊTES DE L'ENVELOPPE

Tous les angles pqr « tournent à gauche »

CARACTÉRISATION DES ARÊTES DE L'ENVELOPPE

Tous les angles pqr « tournent à gauche »

CARACTÉRISATION DES ARÊTES DE L'ENVELOPPE

... contrairement au cas où [pq] n'est pas une arête de l'enveloppe

ENVELOPPE CONVEXE D'UN NUAGE - MÉTHODE NAÏVE

```
def enveloppe_convexe_naive(nuage) :
  tous_les_couples =  # tous les couples de points du nuage
        [ (p,q) for p in nuage for q in nuage if p != q ]
  aretes_enveloppe = []
  for (p, q) in tous_les_couples :
    for r in nuage : # r contredit-il la caractérisation pour [pq]?
    if tourne_a_droite(p, q, r) : break
    else : # ie si la boucle termine normalement, [pq] ∈ enveloppe
        aretes_enveloppe += [(p,q)]
  return aretes_enveloppe
```

ENVELOPPE CONVEXE D'UN NUAGE - MÉTHODE NAÏVE

```
def enveloppe_convexe_naive(nuage) :
  tous_les_couples =  # tous les couples de points du nuage
        [ (p,q) for p in nuage for q in nuage if p != q ]
  aretes_enveloppe = []
  for (p, q) in tous_les_couples :
    for r in nuage : # r contredit-il la caractérisation pour [pq]?
    if tourne_a_droite(p, q, r) : break
    else : # ie si la boucle termine normalement, [pq] ∈ enveloppe
        aretes_enveloppe += [(p,q)]
  return aretes_enveloppe
```

Lemme

enveloppe_convexe_naive(nuage) retourne une liste formée des arêtes de l'enveloppe convexe de nuage en temps $\Theta(n^3)$ (au pire et en moyenne)

Idée : pour être plus efficace, il ne faut pas considérer tous les couples mais essayer de « tourner » autour du nuage

Plus précisément :

- partir d'un point « extrémal » p₀ par exemple celui d'ordonnée minimale - qui appartient nécessairement à l'enveloppe
- considérer ensuite les points un par un p₁, p₂,... p_{n-1} pour déterminer si p_i appartient à l'enveloppe convexe du nuage {p₀, p₁,..., p_i}

Question : dans quel ordre faut-il considérer les points du nuage?


```
def enveloppe_convexe_par_balayage(nuage) :
   p0 = point_le_plus_bas(nuage)
   angles = [ angle_polaire(point, p0) for point in nuage ]
   nuage_trié = trier_selon_angles(nuage, angles)
   pile = [ nuage_trié[0], nuage_trié[1], nuage_trié[2] ]
   for point in nuage_trié :
    while tourne_a_droite(pile[-2], pile[-1], point) :
        pile.pop()
        pile.append(point)
   return pile
```

```
def enveloppe_convexe_par_balayage(nuage) :
 p0 = point_le_plus_bas(nuage)
 angles = [ angle_polaire(point, p0) for point in nuage ]
 nuage_trié = trier_selon_angles(nuage, angles)
 pile = [ nuage_trié[0], nuage_trié[1], nuage_trié[2] ]
 for point in nuage_trié :
   while tourne_a_droite(pile[-2], pile[-1], point) :
     pile.pop()
   pile.append(point)
 return pile
def trier_selon_angles(nuage, angles) :
  # exemple de « decorate-sort-undecorate »
 return [ point
       for (angle, point) in sorted(zip(angles, nuage)) ]
```

Théorème

enveloppe_convexe_par_balayage(nuage) produit la liste des sommets de l'enveloppe convexe en temps $\Theta(n\log n)$

Démonstration

- point le plus bas : c'est juste un min $\implies \Theta(n)$
- tri selon l'angle : $\Theta(n \log n)$
- double boucle : $\Theta(n)$ car chacun des n points est, au pire, sorti une fois de la pile

Applications du tri en géométrie : 2. Points les plus proches

points_les_plus_proches(nuage)

étant donné un nuage de points du plan, déterminer les deux points du nuage les plus proches l'un de l'autre

Applications du tri en géométrie : 2. Points les plus proches

points_les_plus_proches(nuage)

étant donné un nuage de points du plan, déterminer les deux points du nuage les plus proches l'un de l'autre

problème presque équivalent :

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux points du nuage

Cette distance minimale est appelée maille du nuage de points

Points les plus proches - méthode naïve

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

```
def distance_minimale_naive(nuage) :
   toutes_les_distances =
    [ distance(p,q) for p in nuage for q in nuage if p != q ]
   return min(toutes_les_distances)
```

Points les plus proches - méthode naïve

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

```
def distance_minimale_naive(nuage) :
   toutes_les_distances =
    [ distance(p,q) for p in nuage for q in nuage if p != q ]
   return min(toutes_les_distances)
```

Lemme

distance_minimale_naive(nuage) calcule la distance minimale entre deux points du nuage en temps $\Theta(n^2)$

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

- découper le problème en sous-problèmes de taille inférieure
- résoudre récursivement le ou les sous-problèmes
- résoudre le problème initial à l'aide des résultats des sous-problèmes

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

- séparer nuage en deux sous-listes gauche et droite
- résoudre récursivement le ou les sous-problèmes
- résoudre le problème initial à l'aide des résultats des sous-problèmes

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

- séparer nuage en deux sous-listes gauche et droite
- calculer d1 = distance_minimale(gauche)
 et d2 = distance_minimale(droite)
- résoudre le problème initial à l'aide des résultats des sous-problèmes

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

- séparer nuage en deux sous-listes gauche et droite
- calculer d1 = distance_minimale(gauche)
 et d2 = distance_minimale(droite)
- chercher s'il existe p1 dans gauche et p2 dans droite plus proches que min(d1, d2)

Partitionnement gauche - droite

Appels récursifs sur gauche et droite

 $Calcul \; de \; d = min(d1,d2)$

Extraction de la bande médiane de largeur 2d

Recherche dans la bande médiane

Comment optimiser l'algorithme?

Pour le partitionnement gauche-droite

Trier *une fois pour toutes* la liste des points selon les abscisses ⇒ étant donné L_x, le partitionnement a un coût constant

Comment optimiser l'algorithme?

Pour le partitionnement gauche-droite

Trier *une fois pour toutes* la liste des points selon les abscisses ⇒ étant donné L_x, le partitionnement a un coût constant

Pour la recherche des couples (p1, p2)

Trier une fois pour toutes la liste des points selon les ordonnées ⇒ étant donné L_y, la recherche a un coût linéaire

Comment optimiser l'algorithme?

Pour le partitionnement gauche-droite

Trier *une fois pour toutes* la liste des points selon les abscisses ⇒ étant donné L_x, le partitionnement a un coût constant

Pour la recherche des couples (p1, p2)

Trier *une fois pour toutes* la liste des points selon les ordonnées ⇒ étant donné L_y, la recherche a un coût linéaire

$$\begin{split} C_{totale}(n) &= C_{tris}(n) + C_{rec}(n) = \Theta(n \log n) + C_{rec}(n) \\ C_{rec}(n) &= 2C_{rec}\left(\frac{n}{2}\right) + O(n) \\ &\implies C_{totale}(n) \in \Theta(n \log n) \end{split}$$

