1 Bonusprogramm

12 serien* 5 punkte / serie \rightarrow 60 oubkte

- 0-19 Kein bonus
- 20-39 Lineare interpolation
- >40 maximaler bonus 39, 40 schon maximler bonu

2 Wellen

2.1 Federwelle

Gutes model für eine Festkoper, Transversale Anregung, senkrecht zur länge, Longitundonale Anregung, entlang der längle des feder dings. (Elektromagnetik schwer da es in beide richtungen geht). Es gelten Folgende Bedingungen für die federwelle:

- Jede masse Schwingt um ihre ruhelage, (wie eine Pendel)
- Jede masse bleibt in ruhe bis die welle sie erreicht
- Ruckrehr zur ruhelage

Amplitude der Welle $\xi(x,t)$ (x:OrtfurdieSeilwelle,tzeit) Disersion: Form des wellenpakets der anregung bleibt unverändert $\xi(x,t=0)=f(x)$ f(x) ist die form des wellenpakets x-a fuhrt zu einer translation der Wele ohne ändergun seiner form:

$$c \to x - a \to \xi(x - a, t = 0) \to (x + a)$$

 $a = vt \to f(x \pm vt)$
 $\xi(x, t) = f(x \pm vt)$

v ist hier die **Phasengeschwindigkeit** der Welle.

2.2 Harmonische Wellene

Vom Harmonischen Oszillator, Wellengleichung herleiten, allgeimene wellengleichung finden. Eine Harmonische Welle ist eine sinus (cosinus ist besser) kurve

$$\xi(x,t) = \xi_0 \cdot \sin(k(x \pm vt) = f(x \pm vt))$$
 wellenzahlk $(x + \lambda) = kx + "\pi \to k\lambda = 2\pi \to k = \frac{2\pi}{\lambda}$

k ist die Wellenzahl (so dass was im sinus ist dimensionslos ist)

$$\lambda: Wellenlange$$

In zwei dimensionen ist $k\ddot{a}$ ist ein vektor und zeigt uns die wellen direktion aus (longitude, oder senkrecht) Kreisfrequenz: $\omega = 2\pi\nu = 2\pi\frac{1}{T}$ Wo T die Periode ist. $\xi(x,t) = \xi_0 \sim (k(x\pm vt)) = \sin(kx+kvt) = \xi_0 \sin(kx\pm vt)$

2.3 Wellenglaichung in einer Dimension

$$\xi(x,t) = \xi_0 e^{i(kx \pm \omega t)}$$

wir leiten nach der zeit ab:

$$\frac{\delta \xi}{\delta t} = \xi_0(-kv)\cos(k(x-vt))$$

$$\frac{delta^{2}\xi}{\delta^{2}t} = \xi_{0}(-kv)^{2}sin(k(x-vt))$$

ncahc dem ort ableiten

$$\frac{\delta \xi}{\delta x} = \xi_0 k \cos(k(x - vt))$$

$$\frac{\delta^2 \xi}{\delta^2 x} = \xi_0 k^2 \sin(k(x - vt))$$

Zusammestellen $\frac{delta^2\xi}{\delta^2t} = v^2 \frac{delta^2\xi}{\delta^2x}$

$$\frac{\delta^2 \xi}{\delta^2 t} - v^2 \frac{delta^2 \xi}{\delta^2 x} = 0$$

Wie sieht dann die algemeine lösung aus?

$$\xi(x,t) = f(x - vt) + g(x + vt)$$

Ableitung nach der Zeit

$$\frac{\delta \xi}{\delta t} = \frac{\delta f(x-vt)}{\delta t} + \frac{\delta f(x+vt)}{\delta t} = \frac{\delta f(\alpha(x,t))}{\delta t} + \frac{\delta g(\beta(x,t))}{\delta t}$$

Weiter und weiter ableiten und herumschreiben:

$$\frac{\delta f}{\delta \alpha}(\alpha(-v) + \frac{g(\beta)}{\delta \beta}(\beta(v))$$

Für die zweite ableitung gilt diese hergehensweise auch, und wir finden dass die gleicung oben erfüllt ist und dass folgende gleichung gilt:

$$\frac{\delta^2 \xi}{\delta^2 t} - v^2 \frac{\delta^2 \xi}{\delta^2 x} = 0$$

Gute frage: jede sinusfunktion erfullt das; wir haben nur angenommen dass x und t einen anhang (f in diesen fall) haben **EXPeriment** DNA dings, sehr wenig reibug zwischung elemente \rightarrow rucktreibendende kraft sehr gering. Auch reflektion.

2.4 Wichtige dinge

$$x - vt = konst$$
$$\nu = v/\lambda$$

2.5 Transversale Wellen

$$\xi(z,t) = Af(z-vt)$$

Diesmal aber ein Vektor ZU(*ZHU)(HZ(U*"UO)W(U*"

$$xi(z,t) = A\cos(kzomegat)\hat{x}$$

Anhange zur spannung(seilwelle) Seilwelle \rightarrow Wellengleichung Wir nehmen viele kliene massenelemente den seil entlang, Dann haben wir zwei kräfte, den seil hoch/entlang und die spannung des seils/nach unten. Wir haben jetzt für eine massen element zwei funktionen xi(x) und $\xi(x+dx)$ Wir brauchen also der unterschid zwischen diese zwei kräfte, die nicht entgegengesetzt sind wegen der breite des massenelements.

$$\Delta S_y = S\sin(\alpha') - S\sin(\alpha)$$

Herumdingen

$$\Delta S_y = S \frac{\delta^2 \xi}{\delta x^2} dx$$

Ich habe verpasst Elastizität modul?

2.6 Räumliche verteilung von Wellen

$$\xi(x, y, z, t) = Af(kz - \omega t)$$

Transversale Welle: Polarisationsrichtung (in x oder y schwingen, transversal aber anders)

$$A = \begin{pmatrix} A_x \\ A_y \end{pmatrix} \quad \xi(t) = \begin{pmatrix} A_x \\ A_y \end{pmatrix} \cdot e^{ikz - \omega t}$$

Die wellenzahl wird jetzt zu einem Vektor der beschreibt in welcher richtung diese welle sich ausbretet.

$$\xi(r,t) = Ae^{i(kr - \omega t)}$$

wobei
$$k = \begin{pmatrix} 0 \\ 0 \\ k_z \end{pmatrix}$$

2.7 Wellengleichung in drei dimensionen

$$\frac{1}{v^2} \frac{\delta^2 \xi}{\delta t^2} - \frac{\delta^2 \xi}{\delta x^2} - \frac{\delta^2 \xi}{\delta y^2} - \frac{\delta^2 \xi}{\delta z^2} = 0$$

Laplace operator $\Delta = \nabla^2 = \left(\frac{\delta}{\delta x}, \frac{\delta}{\delta x}, \frac{\delta}{\delta x}\right) \begin{pmatrix} \delta/\delta x \\ \delta/\delta y \\ \delta/\delta z \end{pmatrix}$ Also es gilt

$$\frac{1}{v^2} \frac{\delta^2 \vec{\xi}}{\delta t^2} (x, y, z, t) - \Delta \vec{\xi} = 0$$

2.8 Kugelwellen

Beispiel punktformige Lichtquelle. Hier ist k nicht mehr wohldefiniert, da die welle sich in alle richtungen ausbreitet.

$$\vec{\xi}_0 \cdot e^{i(\vec{k}\vec{r} - \omega t)}$$

$$\frac{\delta \vec{\xi}}{\delta x} = ikxe^{i(\vec{k}\vec{r} - \omega t)}$$

In alle richtungen und zweimal ableiten, und wir finden:

$$\Delta \vec{\xi}(\vec{r},t) = -k^2 \vec{\xi}(\vec{r},t)$$

Und dann dasselbe mit der zeit:

$$\frac{1}{v^2} \frac{\delta^2 \vec{\xi}}{\delta t^2} - \Delta \vec{\xi} = \xi \left[-\frac{\omega^2}{v^2} + k^2 \right] \vec{\xi} \quad v = \frac{\omega}{k}$$

Mit der Kugel symmetrie $\Delta=\frac{\delta^2}{\delta x^2}+\frac{\delta^2}{\delta y^2}+\frac{\delta^2}{\delta z^2}$ bekommen wir dann

$$\frac{\delta \phi}{\delta x} = \left(\frac{\delta r}{\delta x} \frac{\delta}{\delta r} + \frac{\delta \theta}{\delta x} \frac{\delta}{\delta \theta} + \frac{\delta \phi}{\delta x} \frac{\delta}{\delta \phi}\right) \phi$$

$$\frac{\delta r}{\delta x} = \sin(\theta)\cos(\phi)$$

$$\frac{\delta \theta}{\delta x} = \frac{\delta}{\delta x} \left[\arccos\left(\frac{z}{r}\right)\right] = \frac{1}{\sqrt{1 - \frac{z^2}{r^2}}} \frac{\delta}{\delta x} \frac{z}{r} = \frac{1}{\sqrt{1 - \frac{z^2}{r^2}}} \left(-\frac{1}{2} \frac{1}{r^3} 2xz\right)$$

$$= \frac{1}{r} \cos(\theta) \cos(\phi)$$

Dasselbe geht jetzt mit $\frac{\delta \phi}{\delta x}$ (Schreibe ich nicht hin)

2.9 Kugelwellen, Wellengleichungen in 3d

 $\vec{k} \cdot \vec{r} = |\vec{k}| \cdot |\vec{r}| = k \cdot r$ Da k und r immer parallel laufen (dank der Kugelsymmetrie)

$$\vec{\xi}(r,t) = \frac{\vec{A}_1}{r} f_1(kr - \omega t) + \frac{\vec{A}_2}{r} f_2(kr - \omega t)$$

Diese lösung erfullt die differentialgleichung.

2.10 Energietransport

Die Geschwindigketi eines massenstücks $v = \frac{\delta \xi(\vec{r},t)}{\delta t}$

Die kinetische energie dieses massenstuck $dT = \frac{1}{2} \left(\frac{\delta \xi}{\delta t}\right)^2 dm$ Energie dichte $\frac{dT}{dV}$ Elastische energie:

$$E_{el} = \int_0^{\Delta l} (\Delta l') d(\Delta l') = A \int_0^{\Delta l} E \frac{\Delta l^2}{l} = \frac{1}{2} (A \cdot l) E \left(\frac{\Delta l}{l}\right)^2$$
$$\frac{\Delta l}{l} = \frac{\delta \xi}{\delta x} \Rightarrow \frac{1}{2} E \left(\frac{\delta \xi}{\delta x}\right)^2$$

Energie dichte:

$$\frac{dT}{dV} = \frac{1}{2}\rho v^2 f'^2$$
$$\frac{dE_{el}}{dV} = \frac{1}{2}Ef'^2$$

Pro volumen gerechnet ist die elastische und kinetische energie dieselbe. Die Gesamtenergie ist alsow $\frac{dW}{dV} = \rho v^2 f'^2$

3 Ubungs stunde Wellen

3.1 Wellenfunction ξ

$$\xi(x,t) =$$

Die Form einer welle: $f(x) = \xi(x, t = 0)$ ist der initiale gefrorene status einer Welle. Für jetzt, ist die Form konstant (dämpfungen sind benachlässigt). Wegen der Form der Welle, ist ort und Zeit nicht unabhängig, da die Form der Welle nur den Ort definiert bei einer konstanter Zeit.

Nach eine Zeit hat sich die Welle bus zum punkt $x \pm vt$ ausbreitet, wobeir v die Wellengeschwindigkeit ist. Die Wellenfunktion ist also

$$\xi(x,t) = f(x \pm vt)$$

3.2 Harmonische Welle

Eine harmonische Welle ist beschrieben durch ein sinus oder ein cosinus:

$$\xi(x,t) = A \cdot \sin(k(x \pm vt))$$

wobei k die Wellenzahl (später Wellenvektor) $\left[\frac{1}{m}\right]$, ist, A die Amplitude. Es gilt $k = \frac{2\pi}{\lambda}$ wo lambda die Wellenlänge ist. Also man kann die folgende vereinfachung machen:

$$k(x \pm vt) = kx + kvt = kx + \omega t$$

wobei ω die Kreisfrequenz ist.

3.3 Wellengleichung

Wir leiten nahc der Zeit ab

$$\frac{\delta \xi}{\delta t} = A(-\omega)\cos(kx - \omega t)$$

$$\frac{\delta^2 \xi}{\delta t^2} = a - \omega^2 A \sin(kx - \omega t)$$

Und jetzt nach dem Ort:

$$\frac{\delta \xi}{\delta x} = Ak\cos(kx - \omega t)$$

$$\frac{\delta^2 \xi}{\delta x^2} = -k^2 A \sin(kx - \omega t)$$

Wie setzen dies zusammen und Bekommen:

$$=\frac{\omega^2}{k^2}\frac{\delta^2\xi}{\delta x}=v^2\frac{\delta^2\xi}{\delta x^2}$$

$$\frac{\delta^2\xi}{\delta t^2}-v^2\frac{\delta^2\xi}{\delta x^2}$$

Die Allgemeine Lösung olgt folgender Form:

$$f(x - vt) - g(x + vt)$$

3.4 Arten von Wellenverbreitung

- Transversalwelle: Auslenkung senkrecht zur geschwindigkeit
- Longitudonalwell, die Auslenkung ist parallel zur ausbreitung der Welle

3.5 Energietransport einer Welle

Eine welle transportiert kinetische und elastische energie, die Beträge dieser beiden einergien ist im volumen (flachenelement oder distanz) immer gleich.

3.6 Tipps zur Serie 1

- 1.1_a Vollständige Wellenfunktion finden, (wichtige dingen oben sind hilfreich
- 1.1_b Die orte einsch einsetzen und die trigonometrische vereinfachen mit den mathemathischen hilfsmitteln der formelsammlung
- 1.2_a Uhr und Lineal, so dass man zeiten und abständen messen kann. Welche gössen sind gegeben, und welche sin messbar? damit vereinfachen. Die Wellenlänge kann man (theoretisch messen) also mit der Wellenlänge die distanz ausrechen.

Stehende Welle Die Stehende Welle ist einfach eine summe der Zwei wellen die sie aufführt.

3.7 Reflection und Transmission

Transmission ist in derselben richtung als einkommende Welle, Reflektierte welle dagegen

$$\xi_A = Ae^{i(k_1x - \omega t)}$$

$$\xi_R = Ree^{i(-k_1x - \omega t + \delta_R)}$$

$$\xi_R = Te^{e(kx - \omega t + \delta_T)}$$

Wir konnen diese glaichungen mit zwei Parameter (zwei gleichungen) losen.

Wir haben Zwei Bedingungen:

Steigkeit

$$\lim_{x\to 0^-} (\xi_a + \xi_R) = \lim_{x\to 0^+} \xi_T$$

Und Kraftegleichgewicht:

$$S_1 \frac{\delta \xi_a}{\delta x} \mid_{x=0} + \frac{\delta \xi_R}{\delta x} \mid_{x=0} = \frac{\delta \xi_T}{\delta x} \mid_{x=0}$$
$$A + Re^{i\delta_R} = Te^{i\delta_T}$$

Imaginärteil: $T \sin(\delta_T) = R \sin(\delta_R)$

Kraftgleichung
$$AS_1k_1 = TS_2k_2e^{i\delta_T} + RS_1k_1e^{i\delta_R}$$

 $TS_2k_2\sin(\delta_T) + RS_1k_1\sin(\delta_R) = 0 = T\sin(\delta_T(S_2k_2 + S_1k_1))$

Und wir bekommen

$$k_i = \frac{\omega}{v_i}$$
$$\alpha = \frac{S_2 \delta_2}{S_1 \delta_1}$$

Materialparameter α Ist ein Index von den Geschwindigkeiten der Welle in den beiden Materien (für ein seil ist S die Spannung):

$$T\sin(\delta_T)(\alpha+1) = 0 \Rightarrow \sin(\delta_T) = 0$$
$$\delta_T = 0 \quad \lim_{v_1 \to v_2} \xi_A = \xi_T$$
$$\delta_T = \pi \lim_{v_1 \to v_2} \xi_A = -\xi_T$$

Es muss also $\delta_T = 0$ sein da der Zweite fall unphysikalisch ist.

Reflektierte Welle Es gibt nochmal die Zwei mmoglichkeiten: $\delta_R = 0$ oder $\delta_R = \pi$

$$A = T \pm R \text{ oder } A = \alpha T \mp R$$
$$R = \pm \frac{1 - \alpha}{1 + \alpha} A \quad T = \frac{2A}{a + \alpha}$$

Spezailfälle:

- $\alpha = 1 \Rightarrow S_1 \delta_1 = S_2 \delta_2$ R = 0, T = A
- $\alpha > 1 \Rightarrow \delta_R = \pi$ bei $\alpha \to \infty$ wird alles reflektiert und nichts transmittiert
- $\alpha < 0 \Rightarrow R \ge 0$ und $\delta_R = 0 \Rightarrow R = \frac{1-\alpha}{1+\alpha}A$, $T = \frac{2A}{\alpha+1}$

3.8 Stehende Wellen

Wir haben jetzt in dem Gedanksexperiment 2 laufende Wellen, und zwei Grenzflächen $\Rightarrow \xi = 2A\cos(kx - \frac{\delta_R}{2})\cos(\omega t - \frac{\delta_R}{2})$ Reflexion am hartem Medium: $\alpha >> 1, \delta_R = \pi$

$$\xi = 2Asin(kx)\sin(\omega t)$$

Energieverteilung der Stehende Wellen Kinetische Energiedichte

$$\frac{dT}{dV} = \frac{1}{2}\rho \left(\frac{\delta \xi}{\delta t}\right)^2 = 2\rho A^2 \omega^2 \sin^2(kx) \cos^2(\omega t)$$

Elastische Energiedichte:

$$\frac{1}{2}E\left(\frac{\delta\xi}{\delta x}\right)^2 = 2EA^2k^2\cos^2(kx)\sin^2(\omega t)$$
$$k^2 = \frac{\omega^2}{v^2} \quad v^2 = \frac{E}{o^2}$$

Eigenschwingungen Einer Seite $\frac{\delta \xi^2}{\delta t^2} = v^2 \frac{\delta^2 \xi}{\delta x^2}$ Und daher $v^2 = \frac{S}{\rho}$ rechnen rechnen und wir kommen auf:

$$u(x) = u_0 \cos(kx + \phi) = A\cos(kx) + B\sin(kx)$$

Wo A und B ovn Randbedingen kommen, (z.B feste Seite: u(x=0) = u(x=l) = 0)

3.9 Ubungsstunde 2

Polarisation WIr wissen dass die Ausbreitung einer transversalwelle Senkrecht zur ausbreitungsrichtung Steht. Wir nehmen an die Welle breitet sich in der z richtung aus, dann kann die Auslenkung überall auf der x-< Ebene statt finden

Eine Welle hesiit linear falls die Ganze AUslenkung nur in eine Ebene Stattfindet. Falls mehrere linear POlarisierte Wellen Uberlagert werden, und es zwischen diese Wellen einen Phasenunterschid gibt, dann ensteht eine Elliptisch-Polarisierte Welle

Beispielaufgben Angenommen wir haben eune Uberlagerung von:

$$y_1(x,t) = 5\cos(kx - \omega t)\vec{e_x}$$

$$y_2(x,t) = 2\cos(kx + \omega t)\vec{e_y}$$

Hier ist die resultierende Welle immer noch linear polarisiert.