Linear Programming: Sensitivity Analysis and Interpretation of Solution

- Introduction to Sensitivity Analysis
- Graphical Sensitivity Analysis
- Sensitivity Analysis: Computer Solution
- Simultaneous Changes

Standard Computer Output

Software packages such as *The Management Scientist* and *Microsoft Excel* provide the following LP information:

- Information about the objective function:
 - its optimal value
 - coefficient ranges (ranges of optimality)
- Information about the decision variables:
 - their optimal values
 - their reduced costs
- Information about the constraints:
 - the amount of slack or surplus
 - the dual prices
 - right-hand side ranges (ranges of feasibility)

Standard Computer Output

- In Chapter 2 we discussed:
 - objective function value
 - values of the decision variables
 - reduced costs
 - slack/surplus
- In this chapter we will discuss:
 - changes in the coefficients of the objective function
 - changes in the right-hand side value of a constraint

Sensitivity Analysis

- <u>Sensitivity analysis</u> (or post-optimality analysis) is used to determine how the optimal solution is affected by changes, within specified ranges, in:
 - the objective function coefficients
 - the right-hand side (RHS) values
- Sensitivity analysis is important to the manager who must operate in a dynamic environment with imprecise estimates of the coefficients.
- Sensitivity analysis allows him to ask certain <u>what-if</u> <u>questions</u> about the problem.

■ LP Formulation

Max
$$5x_1 + 7x_2$$

s.t. $x_1 \le 6$
 $2x_1 + 3x_2 \le 19$
 $x_1 + x_2 \le 8$
 $x_1, x_2 \ge 0$

Objective Function Coefficients

- Let us consider how changes in the objective function coefficients might affect the optimal solution.
- The <u>range of optimality</u> for each coefficient provides the range of values over which the current solution will remain optimal.
- Managers should focus on those objective coefficients that have a narrow range of optimality and coefficients near the endpoints of the range.

Range of Optimality

- Graphically, the limits of a range of optimality are found by changing the slope of the objective function line within the limits of the slopes of the binding constraint lines.
- The slope of an objective function line, Max $c_1x_1 + c_2x_2$, is $-c_1/c_2$, and the slope of a constraint, $a_1x_1 + a_2x_2 = b$, is $-a_1/a_2$.

Example 1

■ Range of Optimality for c_1

The slope of the objective function line is $-c_1/c_2$. The slope of the first binding constraint, $x_1 + x_2 = 8$, is -1 and the slope of the second binding constraint, $x_1 + 3x_2 = 19$, is -2/3.

Find the range of values for c_1 (with c_2 staying 7) such that the objective function line slope lies between that of the two binding constraints:

$$-1 \le -c_1/7 \le -2/3$$

Multiplying through by -7 (and reversing the inequalities):

 $14/3 \le c_1 \le 7$

■ Range of Optimality for c_2

Find the range of values for c_2 (with c_1 staying 5) such that the objective function line slope lies between that of the two binding constraints:

$$-1 \le -5/c_2 \le -2/3$$

Multiplying by -1: $1 \ge 5/c_2 \ge 2/3$ Inverting, $1 \le c_2/5 \le 3/2$

Multiplying by 5: $5 \le c_2 \le 15/2$

Example 1

■ Range of Optimality for c_1 and c_2

Final Reduced Objective Allowable Allowable Cell Name Value Cost Coefficient Increase Decrea \$B\$8 X1 5.0 0.0 5 2 0.333333	se
\$B\$8 X1 5.0 0.0 5 2 0.333333	
	3333
\$C\$8 X2 3.0 0.0 7 0.5	2
Constraints	
Final Shadow Constraint Allowable Allowak	le
Cell Name Value Price R.H. Side Increase Decrea	se
\$B\$13 #1 5 0 6 1E+30	1
\$B\$14 #2 19 2 19 5	1
\$B\$15 #3 8 1 8 0.33333333 1.666666	667

Right-Hand Sides

- Let us consider how a change in the right-hand side for a constraint might affect the feasible region and perhaps cause a change in the optimal solution.
- The **improvement** in the value of the optimal solution per unit **increase** in the right-hand side is called the <u>dual price</u>.
- The <u>range of feasibility</u> is the range over which the dual price is applicable.
- As the RHS increases, other constraints will become binding and limit the change in the value of the objective function.

Dual Price

- Graphically, a dual price is determined by adding +1 to the right hand side value in question and then resolving for the optimal solution in terms of the same two binding constraints.
- The dual price is equal to the difference in the values of the objective functions between the new and original problems.
- The dual price for a nonbinding constraint is 0.
- A <u>negative dual price</u> indicates that the objective function will **not** improve if the RHS is increased.

Relevant Cost and Sunk Cost

- A resource cost is a <u>relevant cost</u> if the amount paid for it is dependent upon the amount of the resource used by the decision variables.
- Relevant costs **are** reflected in the objective function coefficients.
- A resource cost is a <u>sunk cost</u> if it must be paid regardless of the amount of the resource actually used by the decision variables.
- Sunk resource costs are **not** reflected in the objective function coefficients.

A Cautionary Note on the Interpretation of Dual Prices

- Resource cost is sunk

 The dual price is the maximum amount you should be willing to pay for one additional unit of the resource.
- Resource cost is relevant

 The dual price is the maximum premium over the normal cost that you should be willing to pay for one unit of the resource.

■ Dual Prices

<u>Constraint 1</u>: Since x_1 ≤ 6 is not a binding constraint, its dual price is 0.

Constraint 2: Change the RHS value of the second constraint to 20 and resolve for the optimal point determined by the last two constraints: $2x_1 + 3x_2 = 20$ and $x_1 + x_2 = 8$.

The solution is $x_1 = 4$, $x_2 = 4$, z = 48. Hence, the dual price = z_{new} - z_{old} = 48 - 46 = 2.

Example 1

■ Dual Prices

Constraint 3: Change the RHS value of the third constraint to 9 and resolve for the optimal point determined by the last two constraints: $2x_1 + 3x_2 = 19$ and $x_1 + x_2 = 9$.

The solution is: $x_1 = 8$, $x_2 = 1$, z = 47.

The dual price is z_{new} - z_{old} = 47 - 46 = 1.

■ Dual Prices

Adjustal	ble Cells					
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$B\$8	X1	5.0	0.0	5	2	0.33333333
\$C\$8	X2	3.0	0.0	7	0.5	2
Constra	ints	Final	Shadow	Constraint	Allowable	Allowable
Constra	ints Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
					7 0 0 0	
Cell	Name	Value	Price	R.H. Side	Increase	
Cell \$B\$13	Name #1	Value 5	Price	R.H. Side	Increase 1E+30	

Range of Feasibility

- The <u>range of feasibility</u> for a change in the right hand side value is the range of values for this coefficient in which the original dual price remains constant.
- Graphically, the range of feasibility is determined by finding the values of a right hand side coefficient such that the same two lines that determined the original optimal solution continue to determine the optimal solution for the problem.

■ Range of Feasibility

Adjustal	ble Cells					
Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$B\$8	X1	5.0	0.0	5	2	0.33333333
\$C\$8	X2	3.0	0.0	7	0.5	2
Constra	ints	Final	Shadow	Constraint	Allowable	Allowable
Constra	nints Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
					7 0 0 0 0	
Cell	Name	Value	Price	R.H. Side	Increase	
Cell \$B\$13	Name #1	Value 5	Price 0	R.H. Side	Increase 1E+30	

Example 2: Olympic Bike Co.

Olympic Bike is introducing two new lightweight bicycle frames, the Deluxe and the Professional, to be made from special aluminum and steel alloys. The anticipated unit profits are \$10 for the Deluxe and \$15 for the Professional. The number of pounds of each alloy needed per frame is summarized below. A supplier delivers 100 pounds of the aluminum alloy and 80 pounds of the steel alloy weekly.

	Aluminum Alloy	Steel Alloy
Deluxe	2	3
Professional	4	2

How many Deluxe and Professional frames should Olympic produce each week?

- Model Formulation
 - Verbal Statement of the Objective Function Maximize total weekly profit.
 - Verbal Statement of the Constraints
 Total weekly usage of aluminum alloy ≤ 100 pounds.
 Total weekly usage of steel alloy ≤ 80 pounds.
 - Definition of the Decision Variables
 - x_1 = number of Deluxe frames produced weekly.
 - x_2 = number of Professional frames produced weekly.

Example 2: Olympic Bike Co.

■ Model Formulation (continued)

Max
$$10x_1 + 15x_2$$
 (Total Weekly Profit)
s.t. $2x_1 + 4x_2 \le 100$ (Aluminum Available)
 $3x_1 + 2x_2 \le 80$ (Steel Available)
 $x_1, x_2 \ge 0$

■ Partial Spreadsheet Showing Problem Data

	Α	В	С	D
1		Material F	Amount	
2	Material	Deluxe	Profess.	Available
3	Aluminum	2	4	100
4	Steel	3	2	80

Example 2: Olympic Bike Co.

\blacksquare Partial Spreadsheet Showing Solution

	Α	В	С	D
6	Decision		n Variables	
7		Deluxe	Professional	
8	Bikes Made	15	17.500	
9				
10	Maximized	Total Profit	412.500	
11				
12	Constraints	Amount Used		Amount Avail.
13	Aluminum	100	<=	100
14	Steel	80	<=	80

■ Optimal Solution

According to the output:

 x_1 (Deluxe frames) = 15 x_2 (Professional frames) = 17.5 Objective function value = \$412.50

Example 2: Olympic Bike Co.

■ Range of Optimality

Question

Suppose the profit on deluxe frames is increased to \$20. Is the above solution still optimal? What is the value of the objective function when this unit profit is increased to \$20?

■ Sensitivity Report

Adjusta	able Cells					
		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$8	Deluxe	15	0	10	12.5	2.5
\$C\$8	Profess.	17.500	0.000	15	5	8.333333333
Constra	aints					
Constra	aints	Final	Shadow	Constraint	Allowable	Allowable
Cell	aints Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
Cell	Name	Value	Price	R.H. Side	Increase	Decrease

Example 2: Olympic Bike Co.

■ Range of Optimality

Answer

The output states that the solution remains optimal as long as the objective function coefficient of x_1 is between 7.5 and 22.5. Since 20 is within this range, the optimal solution will not change. The optimal profit will change: $20x_1 + 15x_2 = 20(15) + 15(17.5) = 562.50 .

■ Range of Optimality

Question

If the unit profit on deluxe frames were \$6 instead of \$10, would the optimal solution change?

Example 2: Olympic Bike Co.

■ Range of Optimality

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$8	Delux e	15	0	10	12.5	2.5
\$C\$8	Profess.	17.500	0.000	15	5	8.33333333
4040	1 101000.	17.000	0.000	10		0.0000000
ΨΟΨΟ	1 101033.	17.000	0.000			0.0000000
Constra		17.555	0.000	10		0.0000000
		Final	Shadow	Constraint	Allowable	Allowable
Constra	aints	Final	Shadow	Constraint	Allowable	Allowable

■ Range of Optimality

Answer

The output states that the solution remains optimal as long as the objective function coefficient of x_1 is between 7.5 and 22.5. Since 6 is outside this range, the optimal solution would change.

Example 2: Olympic Bike Co.

■ Range of Feasibility and Sunk Costs

Question

Given that aluminum is a sunk cost, what is the maximum amount the company should pay for 50 extra pounds of aluminum?

■ Range of Feasibility and Sunk Costs

Adjusta	able Cells					
		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$8	Deluxe	15	0	10	12.5	2.5
\$C\$8	Profess.	17.500	0.000	15	5	8.33333333
Constra	aints					
Constr	aints	Final	Shadow	Constraint	Allowable	Allowable
Constra Cell	aints Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
Cell						

Example 2: Olympic Bike Co.

■ Range of Feasibility and Sunk Costs

Answer

Since the cost for aluminum is a sunk cost, the shadow price provides the value of extra aluminum. The shadow price for aluminum is the same as its dual price (for a maximization problem). The shadow price for aluminum is \$3.125 per pound and the maximum allowable increase is 60 pounds. Since 50 is in this range, then the \$3.125 is valid. Thus, the value of 50 additional pounds is \$50(\$3.125) \$156.25.

■ Range of Feasibility and Relevant Costs

Question

If aluminum were a relevant cost, what is the maximum amount the company should pay for 50 extra pounds of aluminum?

Answer

If aluminum were a relevant cost, the shadow price would be the amount above the normal price of aluminum the company would be willing to pay. Thus if initially aluminum cost \$4 per pound, then additional units in the range of feasibility would be worth \$4 + \$3.125 = \$7.125 per pound.

Example 3

■ Consider the following linear program:

Min
$$6x_1 + 9x_2$$
 (\$ cost)
s.t. $x_1 + 2x_2 \le 8$
 $10x_1 + 7.5x_2 \ge 30$
 $x_2 \ge 2$
 $x_1, x_2 \ge 0$

Example 3

■ The Management Scientist Output

OBJECTIVE FUN	NCTION VALUE	= 27.000
$\frac{\text{Variable}}{x_1} \\ x_2$	<u>Value</u> 1.500 2.000	Reduced Cost 0.000 0.000
Constraint 1 2 3	Slack/Surplus 2.500 0.000 0.000	<u>Dual Price</u> 0.000 -0.600 -4.500

Example 3

■ *The Management Scientist* Output (continued)

OBJECTIV	E COEFFICIEN	IT RANGES	
<u>Variable</u>	<u>Lower Limit</u>	Current Value	<u>Upper Limit</u>
x_1	0.000	6.000	12.000
x_2	4.500	9.000	No Limit
RIGHTHA	ND SIDE RAN	GES	
Constraint	<u>Lower Limit</u>	Current Value	<u>Upper Limit</u>
1	5.500	8.000	No Limit
2	15.000	30.000	55.000
3	0.000	2.000	4.000

■ Optimal Solution

According to the output:

$$x_1 = 1.5$$

$$x_2 = 2.0$$

Objective function value = 27.00

Example 3

■ Range of Optimality

Question

Suppose the unit cost of x_1 is decreased to \$4. Is the current solution still optimal? What is the value of the objective function when this unit cost is decreased to \$4?

■ *The Management Scientist* Output

OBJECTIVE	COEFFICIENT	RANGES	
<u>Variable</u>	Lower Limit	Current Value	<u>Upper Limit</u>
x_1	0.000	6.000	12.000
x_2	4.500	9.000	No Limit
RIGHTHA	ND SIDE RAN	GES	
Constraint	Lower Limit	Current Value	<u>Upper Limit</u>
1	5.500	8.000	No Limit
2	15.000	30.000	55.000
3	0.000	2.000	4.000

Example 3

■ Range of Optimality

Answer

The output states that the solution remains optimal as long as the objective function coefficient of x_1 is between 0 and 12. Since 4 is within this range, the optimal solution will not change. However, the optimal total cost will be affected: $6x_1 + 9x_2 = 4(1.5) + 9(2.0) = 24.00 .

■ Range of Optimality

Question

How much can the unit cost of x_2 be decreased without concern for the optimal solution changing?

Example 3

■ The Management Scientist Output

OBJECTIVE COEFFICIENT RANGES					
<u>Variable</u>	<u>Lower Limit</u>	Current Value	<u>Upper Limit</u>		
x_1	0.000	6.000	12.000		
x_2	4.500	9.000	No Limit		
RIGHTHAND SIDE RANGES					
Constraint	<u>Lower Limit</u>	<u>Current Value</u>	<u>Upper Limit</u>		
1	5.500	8.000	No Limit		
2	15.000	30.000	55.000		
3	0.000	2.000	4.000		

■ Range of Optimality

Answer

The output states that the solution remains optimal as long as the objective function coefficient of x_2 does not fall below 4.5.

Example 3

■ Range of Feasibility

Question

If the right-hand side of constraint 3 is increased by 1, what will be the effect on the optimal solution?

■ *The Management Scientist* Output

OBJECTIVE COEFFICIENT RANGES					
<u>Variable</u>	Lower Limit	Current Value	Upper Limit		
x_1	0.000	6.000	12.000		
x_2	4.500	9.000	No Limit		
RIGHTHAND SIDE RANGES					
Constraint	Lower Limit	Current Value	<u>Upper Limit</u>		
1	5.500	8.000	No Limit		
2	15.000	30.000	55.000		
3	0.000	2.000	4.000		

Example 3

■ Range of Feasibility

Answer

A dual price represents the improvement in the objective function value per unit increase in the right-hand side. A negative dual price indicates a deterioration (negative improvement) in the objective, which in this problem means an increase in total cost because we're minimizing. Since the right-hand side remains within the range of feasibility, there is no change in the optimal solution. However, the objective function value increases by \$4.50.