

Guía Series

Contenidos

• Resolución por series

1. Determine el radio y el intervalo de convergencia de las siguientes series de potencias:

(a)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$

(b)
$$\sum_{n=1}^{\infty} \frac{3^n}{n} x^n$$

2. Sabiendo la serie de potencias

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!},$$

- (a) Determine una serie de potencias para $xe^x x$ alrededor de x = 0
- (b) Determine una serie de potencias para $e^{-x^2/2}$ alrededor de x=0.

3. Sabiendo que la serie de potencias de la función $f(x) = \frac{1}{1-x}$ en torno a x=0 es

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n,$$

determine:

(a) Una serie de potencias para $\frac{1}{(1-x)^2}$ alrededor de x=0, junto con su intervalo de convergencia.

(b) Una serie de potencias para $\frac{1}{1+x}$ alrededor de x=0, junto con su intervalo de convergencia.

(c) Una serie de potencias para $\frac{1}{1+x^2}$, alrededor de x=0, junto con su intervalo de convergencia.

(d) Una serie de potencias para $\arctan(x)$ alrededor de x=0, junto con su intervalo de convergencia. Deduzca que

$$\pi = 4\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$

4. En los siguientes ejercicios determine una serie de potencias centrada en el punto dado, si se sabe que la función resuelve la ecuación diferencial:

(a)
$$y = e^x$$
 alrededor de $x = 0$. $y' - y = 0$, $y(0) = 1$

(b)
$$y = \frac{1}{x}$$
 alrededor de $x = 1$. $x^2y' + xy = 0$, $y(1) = 1$

5. Resuelva las siguientes ecuaciones diferenciales usando la resolución por series, alrededor del punto ordinario x = 0:

$$(a) y'' - xy = 0$$

(b)
$$y'' - 2xy + y = 0$$

(c)
$$y'' + x^2y' + xy = 0$$

(d)
$$(x-1)y'' + y' = 0$$

(e)
$$y'' - (x+1)y' - y = 0$$

(f)
$$(x^2 + 1)y'' - 6y = 0$$

(g)
$$(x^2 + 2)y'' + 3xy' - y = 0$$

6. Resuelva las siguientes ecuaciones diferenciales con la condición inicial dada.

(a)
$$(x-1)y'' - xy' + y = 0$$
, $y(0) = -2$, $y'(0) = 6$

(b)
$$(x+1)y'' - (2-x)y' + y = 0$$
, $y(0) = 2$, $y'(0) = -1$

(c)
$$y'' - 2y' + 8y = 0$$
, $y(0) = 3$, $y'(0) = 0$

7. Resuelva las siguientes ecuaciones diferenciales, sabiendo que x=0 es un punto singular regular de la ecuación:

(a)
$$2xy'' - y' + 2y = 0$$

(b)
$$2xy'' + 5y' + xy = 0$$

(c)
$$4xy'' + \frac{y'}{2} + y = 0$$

(d)
$$2x^2y'' - xy' + (x^2 + 1)y = 0$$

(e)
$$3xy'' + (2-x)y' - y = 0$$

(f)
$$2xy'' - (3+2x)y' + y = 0$$