Import Pandas

```
In [5]: import pandas as pd #import pandas
```

Read Dataset

Out[6]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outco
	0	6	148	72	35	0	33.6	0.627	50	
	1	1	85	66	29	0	26.6	0.351	31	
	2	8	183	64	0	0	23.3	0.672	32	
	3	1	89	66	23	94	28.1	0.167	21	
	4	0	137	40	35	168	43.1	2.288	33	

Change 0 values of BloodPressure, SkinThickness and BMI to Null

```
In [7]: df2 = df.copy() #copy df to save old one
    df2['BloodPressure'].replace(to_replace = 0, value = 'Null', inplace = True)
    #replacing 0 values in Bloodpressure with Null
    df2['SkinThickness'].replace(to_replace = 0, value = 'Null', inplace = True)
    #replacing 0 values in SkinThickness with Null
    df2['BMI'].replace(to_replace = 0, value = 'Null', inplace = True) #replacing 0
    values in BMI with Null
```

Remove Outcome column and one of the columns if correlation value with the other column > 0.5

```
In [9]: removeColumn(df3) #run function on dataset
```

Out[9]:		Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
	0	148	72	35	0	33.6	0.627	50
	1	85	66	29	0	26.6	0.351	31
	2	183	64	0	0	23.3	0.672	32

	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
3	89	66	23	94	28.1	0.167	21
4	137	40	35	168	43.1	2.288	33
•••				•••			
763	101	76	48	180	32.9	0.171	63
764	122	70	27	0	36.8	0.340	27
765	121	72	23	112	26.2	0.245	30
766	126	60	0	0	30.1	0.349	47
767	93	70	31	0	30.4	0.315	23

768 rows × 7 columns

In [10]:

Projecting data on first and second PC's as a scatterplot

from sklearn.decomposition import PCA #import library

```
In [13]: pcsDF = pd.concat([pcsDF , pd.DataFrame(y)] , axis = 1) #add target to df
```

```
import seaborn as sb #import library for visualization
import matplotlib.pyplot as plt #import library for plot
print(pcsDF)
plt.figure(figsize = (6,6))
sb.scatterplot(data = pcsDF , x = 'PC1',y = 'PC2' , hue = 'Outcome', s = 60 ,
palette= 'icefire')
```

```
PC1
                   PC2 Outcome
    0.879480 1.142083
0
  -0.985500 -0.589810
1
   -0.642791 1.204830
3 -0.914217 -1.151614
   2.662910 -1.508009
         . . .
763 1.210706 0.915681
                             0
764 0.004620 -0.330199
765 -0.313074 -0.175631
766 -1.101898 1.461383
767 -0.653960 -0.972073
```

[768 rows x 3 columns] Out[13]: <AxesSubplot:xlabel='PC1', ylabel='PC2'>

In []: