

Swift for TensorFlow

1.

Safety

ARC managed memory
Value semantics
Compiler guidance & code-gen
Strong type systems

2.

Clarity

Type inference

Multi-paradigm

Generics & protocols

3.

Speed

LLVM-powered
Interpreter & Notebook workflows
Zero-cost abstractions
Copy-on-write

TensorFlow

Google Cloud TPU

27262.31	89809.66	27262.31	35033.77	27262.31	35033.77	98359.87	27262.31	35033.77	27262.31	54692.26	98359.87
82859.73	89097.59	82859.73	61491.51	82859.73	61491.51	79495.93	82859.73	61491.51	82859.73	12296.18	79495.93
12659.63	84387.58	12659.63	93242.06	12659.63	93242.06	32531 . 58	12659.63	93242.06	12659.63	78253.69	32531.58
75445.86	27400.03	75445.86	44458.71	75445.86	44458.71	54692.26	75445.86	44458.71	75445.86	87224.69	54692.26
99103.28	95846.18	99103.28	97894.75	99103.28	97894.75	12296.18	99103.28	97894.75	99103.28	18102.49	12296.18
58750.21	98359.87	58750.21	89809.66	58750.21	89809.66	78253.69	58750.21	89809.66	58750.21	36115.37	78253.69
83907.89	79495.93	83907.89	89097.59	83907.89	89097.59	87224.69	83907.89	89097.59	83907.89	71486.34	87224.69
25656.26	32531.58	25656.26	84387.58	25656.26	84387.58	18102.49	25656.26	84387.58	25656.26	35066.93	18102.49
80509.66	54692.26	80509.66	27400.03	80509.66	27400.03	36115 . 37	80509.66	27400.03	80509.66	38280.78	36115.37
28021.39	12296.18	28021.39	95846.18	28021.39	95846.18	71486.34	28021.39	95846.18	28021.39	95327.12	71486.34
21285.76	78253.69	21285.76	98359.87	21285.76	98359.87	95846.18	21285.76	98359.87	21285.76	47749.33	95846.18
89714.03	78253.69	89714.03	42679.39	89714.03	42679.39	18102.49	89714.03	42679.39	89714.03	20644.88	18102.49
10641.04	87224.69	10641.04	35033.77	10641.04	35033.77	36115.37	10641.04	35033 . 77	10641.04	90028.56	36115.37
67503.51	97894.75	67503.51	61491.51	67503.51	61491.51	71486.34	67503.51	61491.51	67503.51	90272.25	71486.34
98699.57	89809.66	98699.57	93242.06	500.57	93242.06	95846.18	98699.57	93242.06	98699.57	35936.32	95846.18
52830.96	89097.59	52830.96	44458.71		1458.71	98359.87	52830.96	44458.71	52830.96	63095.28	98359.87
14014.59	84387.58	14014.59	97894.7			70495.93	14014.59	97894.75	14014.59	32531.58	79495.93
72198.23	32531.58	72198.23	12296.1		$\sim \Lambda I$		72198.23	12296.18	72198.23	90272.25	95846.18
73359.58	54692.26	73359.58	78253.				-0	78253.69	73359.58	35936.32	98359.87
42679.39	12296.18	42679.39	87224.69	420.				224.69	42679.39	63095.28	79495.93
35033.77	78253.69	35033.77	18102.49	35033.77	T.	S _C		8102.49	35033.77	32531.58	32531.58
61491.51	87224.69	61491.51	36115.37					6115.37	61491.51	54692.26	54692.26
44458.71	89809.66	44458.71		44458.71	42679.39	78253.09		42679.39	44458.71	78253.69	78253.69
97894.75	89097.59	97894.75	35033.77	97894.75	35033.77	87224.69	97894.	35033.77	97894.75	87224.69	87224.69
89809.66	84387.58	89809.66	61491.51	89809.66	61491.51	18102.49	89809.66	61491.51	89809.66	18102.49	18102.49
89097.59	27400.03	89097.59	93242.06	89097.59	93242.06	36115.37	89097.59	93242.06	89097.59	36115.37	36115.37
84387.58	95846.18	84387.58	44458.71	84387.58	44458.71	71486.34	84387.58	44458.71	84387.58	71486.34	71486.34
27400.03	98359.87	27400.03	97894.75	27400.03	97894.75	95846.18	27400.03	97894.75	27400.03	35066.93	95846.18
95846.18	79495.93	95846.18	89809.66	95846.18	89809.66	98359.87	95846.18	89809.66	95846.18	38280.78	98359.87
98359.87	32531.58	98359.87	89097.59	98359.87	89097.59	79495.93	98359.87	89097.59	98359.87	95327.12	79495.93
79495.93	54692.26	79495.93	84387.58	79495.93	84387.58	32531.58	79495.93	84387.58	79495.93	47749.33	32531.58
32531.58	12296.18	32531.58	27400.03	32531.58	27400.03	54692.26	32531.58	27400.03	32531.58	20644.88	54692.26
54692.26	78253.69	54692.26	95846.18	54692.26	95846.18	12296.18	54692.26	95846.18	54692.26	90028.56	12296.18
12296.18	87224.69	12296.18	98359.87	12296.18	98359.87	78253.69	12296.18	98359.87	12296.18	90272.25	78253.69
78253.69	97894.75	78253.69	79495.93	78253.69	79495.93	87224.69	78253.69	79495.93	78253.69	35936.32	87224.69
87224.69	89809.66	87224.69	32531.58	87224.69	32531.58	18102.49	87224.69	32531.58	87224.69	63095.28	18102.49
18102.49	89097.59	18102.49	54692.26	18102.49	54692.26	36115.37	18102.49	54692.26	18102.49	32531.58	36115.37
36115.37	84387.58	36115.37	12296.18	30115.3/	12296.18	/1486.34	36115.37	12296.18	30115.37	54692.26	; 71486 . 34

"Compute Graph"

1. Graph Program Extraction


```
1 import TensorFlow
2
3 var x = Tensor<Float>([[1, 2], [3, 4]])
4
 5 for i in 1...5 {
6 x += x • x
7 }
8
 9 print(x)
10
```

2. Automatic Differentiation

"Vector-Jacobian Products"

```
1 // Differentiable with respect to
 2 // all parameters using reverse-mode AD.
3 // The corresponding adjoint to call is `dTanh`.
 4 @differentiable(reverse, adjoint: dTanh)
 5 func tanh(_ x: Float) -> Float {
 6 // ...
7 }
 8
9 // d/dx tanh(x) = 1 - (tanh(x))^2
10 //
11 // Here, y is the original result of tanh(x), and x is
12 // the input parameter of the original function.
13 func dTanh(x: Float, y: Float, seed: Float) -> Float {
      return (1.0 - y * y) * seed
14
15 }
```

"This is great and all, but I W Numpy."

-You right now

3. Python Interoperability

```
1 # Python
2 import numpy as np
3 a = np.arange(15).reshape(3, 5)
4 b = np.array([6, 7, 8])
```

```
1 // Swift
2 let np = Python.import("numpy")
3 let a = np.arange(15).reshape(3, 5)
4 let b = np.array([6, 7, 8])
```

Demo Video

Swift for TensorFlow - TFiwS (TensorFlow Dev Summit 2018)

Resources

- github.com/tensorflow/swift
- tensorflow.org/api_docs/swift
- tensorflow.org/community/swift

Chris Lattner @clattner

Richard Wei @rxwei