In [1]:

```
1 import pandas as pd
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 import seaborn as sns
 5 from scipy.stats import t
 6 import scipy.stats as stats
 7 from statistics import mean, median, mode, stdev
 8 import warnings
 9 warnings.filterwarnings("ignore")
10 from scipy.stats import norm
11 import math
12 from numpy import cov
13 from math import sqrt
14 from scipy.stats import f_oneway
15 import calendar
16 | import scipy.integrate as integrate
17 import scipy.special
18 from scipy.stats import levene
```

In [2]:

```
dv = pd.read_csv(r"C:\Users\Acer\Downloads\delhivery_data.csv")
```

In [3]:

1 dv

Out[3]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	so
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE
144862	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE
144863	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE
144864	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE
144865	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE
144866	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE

144867 rows × 24 columns

In [4]:

1 dv.describe()

Out[4]:

	start_scan_to_end_scan	cutoff_factor	actual_distance_to_destination	actual_time	
count	144867.000000	144867.000000	144867.000000	144867.000000	14
mean	961.262986	232.926567	234.073372	416.927527	
std	1037.012769	344.755577	344.990009	598.103621	
min	20.000000	9.000000	9.000045	9.000000	
25%	161.000000	22.000000	23.355874	51.000000	
50%	449.000000	66.000000	66.126571	132.000000	
75%	1634.000000	286.000000	286.708875	513.000000	
max	7898.000000	1927.000000	1927.447705	4532.000000	

In [5]:

1 dv.isnull().sum()

Out[5]:

data	0
<pre>trip_creation_time</pre>	0
route_schedule_uuid	0
route_type	0
trip_uuid	0
source_center	0
source_name	293
destination_center	0
destination_name	261
od_start_time	0
od_end_time	0
start_scan_to_end_scan	0
is_cutoff	0
cutoff_factor	0
cutoff_timestamp	0
<pre>actual_distance_to_destination</pre>	0
actual_time	0
osrm_time	0
osrm_distance	0
factor	0
segment_actual_time	0
segment_osrm_time	0
segment_osrm_distance	0
segment_factor	0
dtype: int64	

- source_name 293
- destination_name 261

In [6]:

```
1 dv.columns
```

Out[6]:

Exploring each column

data - tells whether the data is testing or training data

In [7]:

```
1 dv.head()
```

Out[7]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_c
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	b351-4c0e-a951- Carting		IND38812
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812

5 rows × 24 columns

In [8]:

```
1 dv.data.unique()
```

Out[8]:

```
array(['training', 'test'], dtype=object)
```

```
In [9]:
```

```
1 len(dv.data)
```

Out[9]:

144867

In [10]:

```
print(dv.data.value_counts())
dv.data.hist()
```

training 104858 test 40009

Name: data, dtype: int64

Out[10]:

<AxesSubplot:>

• train and test data imbalance in numbers but zero missing elements

trip_creation_time - Timestamp of trip creation

In [11]:

```
1 dv.head()
```

Out[11]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_(
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
5 r	5 rows × 24 columns					
4						•

In [12]:

```
print('year / time - HH-MM-SSSSSS')
dv.trip_creation_time.unique()
```

```
year / time - HH-MM-SSSSSS
```

Out[12]:

```
array(['2018-09-20 02:35:36.476840', '2018-09-23 06:42:06.021680', '2018-09-14 15:42:46.437249', ..., '2018-09-22 11:30:41.399439', '2018-09-17 11:35:28.838714', '2018-09-20 16:24:28.436231'], dtype=object)
```

In [13]:

```
print('alot of same trip creation time - makes sense because multiple orders in sec pos
dv.trip_creation_time.nunique()
```

alot of same trip creation time - makes sense because multiple orders in sec possible

Out[13]:

In [14]:

```
1 print(dv.trip_creation_time.value_counts())
 2 |# dv.trip_creation_time.hist()
2018-09-28 05:23:15.359220
2018-10-02 06:05:53.086094
                              101
2018-09-27 04:47:19.425867
                              101
2018-09-22 04:55:04.835022
                              101
2018-09-29 05:04:57.639067
                              101
2018-09-27 18:08:18.207639
                                1
2018-09-28 17:31:07.690205
                                1
2018-09-29 14:56:33.655170
                                1
2018-09-19 04:35:44.776558
                                1
2018-09-14 17:04:32.989471
                                1
Name: trip_creation_time, Length: 14817, dtype: int64
In [ ]:
 1
```

route_schedule_uuid - Unique ld for a particular route schedule

In [15]:

```
1 dv.head()
```

Out[15]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_c	
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812	
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812	
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812	
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812	
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812	
5 r	5 rows × 24 columns						

localhost:8888/notebooks/Delhivery.ipynb#

```
In [16]:
    dv.route schedule uuid.unique()
 2
Out[16]:
array(['thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3297ef',
       'thanos::sroute:ff52ef7a-4d0d-4063-9bfe-cc211728881b',
       'thanos::sroute:a16bfa03-3462-4bce-9c82-5784c7d315e6'
       'thanos::sroute:72cf9feb-f4e3-4a55-b92a-0b686ee8fabc'
       'thanos::sroute:5e08be79-8a4c-4a91-a514-5350403c0e31',
       'thanos::sroute:a3c30562-87e5-471c-9646-0ed49c150996'],
      dtype=object)
In [17]:
    dv.route_schedule_uuid.nunique()
 2
Out[17]:
1504
In [18]:
   144867 // 1504
Out[18]:
96
In [19]:
   dv.route_schedule_uuid.value_counts()
Out[19]:
thanos::sroute:4029a8a2-6c74-4b7e-a6d8-f9e069fbcea9
                                                        1812
thanos::sroute:0456b740-1dad-4929-bbe0-87d8843f5a10
                                                        1608
thanos::sroute:dca6268f-741a-4d1a-b1b0-aab13095a366
                                                        1605
thanos::sroute:a1b25549-1e77-498f-8538-00292e5bd5a2
                                                        1285
thanos::sroute:de5e208e-7641-45e6-8100-4d9fb1e5720d
                                                        1280
thanos::sroute:d563d17e-2123-40a4-9eec-40018966caba
                                                           1
thanos::sroute:036f372d-28d8-4d19-877c-6277077ad09e
                                                           1
thanos::sroute:e00eb6aa-d792-4b28-81fa-fdee413ef326
                                                           1
thanos::sroute:889b9cf5-da6a-48ce-b3bd-6983c8090164
                                                           1
thanos::sroute:404cbabf-d2a5-4e46-bf79-8b3c518f082b
Name: route_schedule_uuid, Length: 1504, dtype: int64
In [ ]:
 1
```

route_type - Transportation type

- FTL Full Truck Load: FTL shipments get to the destination sooner, as the truck is making no other pickups or drop-offs along the way
- · Carting: Handling system consisting of small vehicles (carts)

In [20]:

1 dv.head()

Out[20]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_c
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812

5 rows × 24 columns

In [21]:

```
1 dv.route_type.unique()
2
```

Out[21]:

array(['Carting', 'FTL'], dtype=object)

In [270]:

```
route_type = dv.groupby("route_schedule_uuid")["route_type"].unique().reset_index()["route_type
route_type
```

Out[270]:

Carting 922 FTL 582

Name: route_type, dtype: int64

In [269]:

```
print('more through the truks than carting ')
dv.groupby("route_schedule_uuid")["route_type"].unique().reset_index()["route_type"].ar
```

more through the truks than carting

Out[269]:

Carting 922 FTL 582

Name: route_type, dtype: int64

In [272]:

```
sns.barplot(x= route_type.index,
y = route_type)
```

Out[272]:

<AxesSubplot:ylabel='route_type'>

Observations

From 1504 total different routes , we have 922 (61%) of the routes are Carting , which consists of small vehicles and 582 (38.69%) of total routes are FTL : which are Full Truck Load get to the destin ation sooner. as no otther pickups or drop offs along the way .

trip_uuid - Unique ID given to a particular trip (A trip may include different source and destination centers)

```
In [23]:
```

```
1 dv.trip_uuid.value_counts()
Out[23]:
trip-153811219535896559
                           101
trip-153846035308581166
                           101
trip-153802363942560700
                           101
trip-153759210483476123
                           101
trip-153819749763881430
                           101
trip-153807169820740041
                             1
trip-153815586768995663
                             1
trip-153823299365493206
                             1
trip-153733174477629450
                             1
trip-153694467298919626
                             1
Name: trip_uuid, Length: 14817, dtype: int64
```

In [24]:

```
1 dv.trip_uuid.nunique()
```

Out[24]:

14817

In [25]:

```
print('on a average atleast 9 trasit can be present inside a total source to destination 144867 // 14817
```

on a average atleast 9 trasit can be present inside a total source to destin ation travel

Out[25]:

9

Observations

we have 14817 different trips happended between source to destinations.

source_center - Source ID of trip origin

```
In [26]:
```

```
1 dv.source_center.unique()
2
```

Out[26]:

```
array(['IND388121AAA', 'IND388620AAB', 'IND421302AAG', ..., 'IND361335AAA', 'IND562132AAC', 'IND639104AAB'], dtype=object)
```

```
In [27]:
    dv.source_center.nunique()
 1
 2
Out[27]:
1508
In [28]:
    dv.source_center.value_counts()
 2
Out[28]:
IND000000ACB
                 23347
                 9975
IND562132AAA
IND421302AAG
                  9088
IND411033AAA
                 4061
IND501359AAE
                  3340
IND741121AAA
                     1
IND207123AAA
                     1
IND242001AAA
                     1
IND222001AAA
                     1
IND741101AAB
                     1
Name: source_center, Length: 1508, dtype: int64
In [ ]:
 1
```

Observations

• looks like source id and source name are the same things , name is the name of warehouse and id is the unique id for the same but there is a difference of 10

source_name - Source Name of trip origin(has null rows)

In [29]:

```
1 dv.head(5)
```

Out[29]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_c
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812

5 rows × 24 columns

```
→
```

In [30]:

```
1 dv.source_name.unique()
2
```

Out[30]:

In [31]:

```
1 dv.source_name.nunique()
2
```

Out[31]:

```
In [32]:
```

```
print('by the look of it , it must be the source of the inventory')
dv.source_name.value_counts()
```

by the look of it , it must be the source of the inventory

Out[32]:

```
Gurgaon_Bilaspur_HB (Haryana)
                                          23347
Bangalore_Nelmngla_H (Karnataka)
                                           9975
Bhiwandi_Mankoli_HB (Maharashtra)
                                           9088
Pune_Tathawde_H (Maharashtra)
                                           4061
Hyderabad_Shamshbd_H (Telangana)
                                           3340
Shahjhnpur_NavdaCln_D (Uttar Pradesh)
                                              1
Soro_UttarDPP_D (Orissa)
                                              1
Kayamkulam_Bhrnikvu_D (Kerala)
                                              1
Krishnanagar_AnadiDPP_D (West Bengal)
                                              1
Faridabad_Old (Haryana)
Name: source_name, Length: 1498, dtype: int64
```

In []:

1

destination_cente - Destination ID

```
In [33]:
```

```
1 dv.destination_center.unique()
2
```

Out[33]:

```
array(['IND388620AAB', 'IND388320AAA', 'IND411033AAA', ..., 'IND600004AAA', 'IND134203AAA', 'IND400701AAA'], dtype=object)
```

In [34]:

```
1 dv.destination_center.nunique()
2
```

Out[34]:

```
In [35]:
```

```
1 dv.destination_center.value_counts()
2
```

Out[35]:

```
IND000000ACB
                15192
IND562132AAA
                11019
IND421302AAG
                 5492
IND501359AAE
                 5142
IND712311AAA
                 4892
IND520011AAA
                     1
IND741201AAC
                     1
IND400705AAA
                     1
IND110046AAA
                     1
IND504215AAA
Name: destination_center, Length: 1481, dtype: int64
```

In []:

1

destination_name - Destination Name(null vals)

In [36]:

```
1 dv.destination_name.unique()
2
```

Out[36]:

In [37]:

```
1 dv.destination_name.nunique()
2
```

Out[37]:

```
In [38]:
```

```
1 dv.destination_name.value_counts()
2
```

Out[38]:

```
Gurgaon_Bilaspur_HB (Haryana)
                                      15192
Bangalore Nelmngla H (Karnataka)
                                      11019
Bhiwandi_Mankoli_HB (Maharashtra)
                                       5492
Hyderabad_Shamshbd_H (Telangana)
                                       5142
Kolkata_Dankuni_HB (West Bengal)
                                       4892
Hyd_Trimulgherry_Dc (Telangana)
                                          1
Vijayawada (Andhra Pradesh)
                                          1
Baghpat Barout D (Uttar Pradesh)
                                          1
Mumbai_Sanpada_CP (Maharashtra)
                                          1
Basta_Central_DPP_1 (Orissa)
Name: destination_name, Length: 1468, dtype: int64
```

In []:

1

the destination center and destination id just like the source are the same but a difference of 13 missing values

```
In [ ]:
```

1

od_start_time - Trip start time

In [39]:

```
1 dv.od_start_time
```

```
Out[39]:
```

```
0
          2018-09-20 03:21:32.418600
1
          2018-09-20 03:21:32.418600
2
          2018-09-20 03:21:32.418600
3
          2018-09-20 03:21:32.418600
4
          2018-09-20 03:21:32.418600
144862
          2018-09-20 16:24:28.436231
144863
          2018-09-20 16:24:28.436231
144864
          2018-09-20 16:24:28.436231
144865
          2018-09-20 16:24:28.436231
144866
          2018-09-20 16:24:28.436231
Name: od start time, Length: 144867, dtype: object
```

```
In [40]:
 1 dv.od_start_time.unique()
Out[40]:
array(['2018-09-20 03:21:32.418600', '2018-09-20 04:47:45.236797',
       '2018-09-23 06:42:06.021680', ..., '2018-09-22 11:30:41.399439',
       '2018-09-17 11:35:28.838714', '2018-09-20 16:24:28.436231'],
      dtype=object)
In [41]:
 1 dv.od_start_time.nunique()
Out[41]:
26369
In [42]:
   dv.od_start_time.value_counts()
Out[42]:
2018-09-21 18:37:09.322207
                               81
2018-10-03 04:55:30.039225
                               79
2018-09-30 05:56:48.299467
                               79
2018-09-26 05:33:10.899941
                               79
2018-09-14 07:13:24.396869
                               79
2018-09-25 04:58:40.930230
                                1
2018-09-22 05:19:27.704727
                                1
2018-09-25 09:05:19.576386
                                1
2018-09-20 02:16:44.645390
                                1
2018-09-27 02:59:59.877566
                                1
Name: od_start_time, Length: 26369, dtype: int64

    there has been same start time for various products.

In [43]:
    dv['od_start_time'] = pd.to_datetime(dv['od_start_time'])
 2
In [ ]:
 1
In [ ]:
 1
od start time + od end time = actual time
od_end_time - Trip end time
```

```
In [44]:
```

```
dv.od_end_time
Out[44]:
0
          2018-09-20 04:47:45.236797
1
          2018-09-20 04:47:45.236797
2
          2018-09-20 04:47:45.236797
3
          2018-09-20 04:47:45.236797
4
          2018-09-20 04:47:45.236797
144862
          2018-09-20 23:32:09.618069
          2018-09-20 23:32:09.618069
144863
144864
          2018-09-20 23:32:09.618069
144865
          2018-09-20 23:32:09.618069
          2018-09-20 23:32:09.618069
144866
Name: od_end_time, Length: 144867, dtype: object
In [45]:
 1 dv.od_end_time.unique()
Out[45]:
array(['2018-09-20 04:47:45.236797', '2018-09-20 06:36:55.627764',
       '2018-09-23 11:44:28.365845', ..., '2018-09-22 21:45:05.128533',
       '2018-09-17 13:32:21.128357', '2018-09-20 23:32:09.618069'],
      dtype=object)
In [46]:
 1 dv.od_end_time.nunique()
Out[46]:
26369
In [47]:
   dv.od end time.value counts()
Out[47]:
2018-09-24 09:59:15.691618
                               81
2018-10-05 11:15:01.115906
                               79
2018-10-02 10:36:25.970169
                               79
                               79
2018-09-28 12:13:41.675546
2018-09-16 17:00:03.263746
                               79
2018-09-25 13:57:24.614624
                               1
2018-09-22 06:11:51.820645
                                1
2018-09-25 15:47:35.535055
                                1
2018-09-20 04:04:45.620456
                                1
2018-09-27 15:47:50.386008
                                1
Name: od end time, Length: 26369, dtype: int64
```

the start time and end time length match = this must be the time from warehouse to doorstep ???

```
In [48]:

1 | dv['od_end_time'] = pd.to_datetime(dv['od_end_time'])
```

Calculate the time taken between od_start_time and od_end_time and keep it as a feature. Drop the original columns, if required

```
In [49]:
 1 | dv['od end time'] - dv['od start time']
Out[49]:
0
         0 days 01:26:12.818197
1
         0 days 01:26:12.818197
2
         0 days 01:26:12.818197
3
         0 days 01:26:12.818197
4
         0 days 01:26:12.818197
144862 0 days 07:07:41.181838
144863 0 days 07:07:41.181838
144864 0 days 07:07:41.181838
144865
        0 days 07:07:41.181838
144866 0 days 07:07:41.181838
Length: 144867, dtype: timedelta64[ns]
In [50]:
 1 | dv['time_taken'] = (dv['od_end_time'] - dv['od_start_time'])/pd.Timedelta(1,unit = 'how
 2 dv['time_taken']
Out[50]:
0
          1.436894
          1.436894
1
2
          1.436894
3
          1.436894
          1.436894
144862
          7.128106
          7.128106
144863
144864
          7.128106
          7.128106
144865
144866
          7.128106
Name: time taken, Length: 144867, dtype: float64
```

Continuing with column analysing

start_scan_to_end_scan - Time taken to deliver from source to destination

In [51]:

1 dv

Out[51]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	so	
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE	
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE	
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE	
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE	
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE	
144862	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE	
144863	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE	
144864	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE	
144865	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE	
144866	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE	
144867	144867 rows × 25 columns						
4						•	

In [52]:

1 dv.start_scan_to_end_scan.max()

Out[52]:

7898.0

```
In [53]:
 1 dv.start_scan_to_end_scan.unique()
Out[53]:
array([ 86., 109., 302., ..., 2476., 1161., 2949.])
In [54]:
 1 dv.start_scan_to_end_scan.nunique()
Out[54]:
1915
In [55]:
 1 | print('time taken to deliver from source warehouse to destination warehouse')
   (dv.start_scan_to_end_scan /(60))
time taken to deliver from source warehouse to destination warehouse
Out[55]:
0
          1.433333
          1.433333
1
2
          1.433333
3
          1.433333
          1.433333
            . . .
144862
          7.116667
144863
          7.116667
144864
          7.116667
144865
          7.116667
144866
          7.116667
Name: start_scan_to_end_scan, Length: 144867, dtype: float64
In [ ]:
 1
In [56]:
   dv.cutoff_timestamp
Out[56]:
                 2018-09-20 04:27:55
                 2018-09-20 04:17:55
1
2
          2018-09-20 04:01:19.505586
3
                 2018-09-20 03:39:57
                 2018-09-20 03:33:55
144862
                 2018-09-20 21:57:20
                 2018-09-20 21:31:18
144863
144864
                 2018-09-20 21:11:18
144865
                 2018-09-20 20:53:19
          2018-09-20 16:24:28.436231
144866
Name: cutoff_timestamp, Length: 144867, dtype: object
```

```
In [ ]:
1
```

actual_distance_to_destination – Distance in Kms between source and destination warehouse

```
In [57]:
 1 dv.actual_distance_to_destination
Out[57]:
          10.435660
1
          18.936842
2
          27.637279
3
          36.118028
4
          39.386040
144862
          45.258278
144863
          54.092531
144864
          66.163591
144865
          73.680667
144866
          70.039010
Name: actual_distance_to_destination, Length: 144867, dtype: float64
In [58]:
   dv.actual_distance_to_destination.nunique()
Out[58]:
144515
In [59]:
 1 dv.actual_distance_to_destination.value_counts()
Out[59]:
100.282892
               2
19.122553
               2
44.552586
               2
27.297724
               2
23.955638
               2
18.495678
               1
9.380550
               1
10.583412
               1
9.162213
              1
70.039010
               1
Name: actual_distance_to_destination, Length: 144515, dtype: int64

    does destination warehouse differ >>??? is middle warehouses considered destination at each split ??
```

·

```
In [ ]:
1
```

actual_time - Actual time taken to complete the delivery (Cumulative)

```
In [60]:
```

```
1 dv.actual_time
2
```

Out[60]:

0	14.0
1	24.0
2	40.0
3	62.0
4	68.0
144862	94.0
144863	120.0
144864	140.0
144865	158.0
144866	426.0

Name: actual_time, Length: 144867, dtype: float64

In [61]:

```
1 sns.boxplot(dv.actual_time)
```

Out[61]:

<AxesSubplot:xlabel='actual_time'>

In [62]:

```
1 (dv.actual_time // (24*60)).min()
```

Out[62]:

0.0

In [63]:

```
1 dv.actual_time.max()
```

Out[63]:

4532.0

```
In [64]:
   4532.0 // 60
Out[64]:
75.0
```

osrm_time - An open-source routing engine time calculator which computes the shortest path between points in a given map (Includes usual traffic, distance through major and minor roads) and gives the time (Cumulative)

```
In [65]:
   dv.osrm_time
Out[65]:
0
          11.0
1
          20.0
          28.0
2
3
          40.0
4
          44.0
           . . .
144862
          60.0
144863
          76.0
          88.0
144864
          98.0
144865
          95.0
144866
Name: osrm_time, Length: 144867, dtype: float64
In [66]:
   dv.osrm_time.max()
Out[66]:
1686.0
```

· actual time is thrice the OSRM time.

```
In [ ]:
  1
```

osrm distance - An open-source routing engine which computes the shortest path between points in a given map (Includes usual traffic, distance through major and minor roads) (Cumulative)

```
In [67]:
 1 dv.osrm_distance
Out[67]:
           11.9653
1
           21.7243
2
           32.5395
           45.5620
3
           54.2181
144862
           67.9280
144863
           85.6829
144864
           97.0933
144865
         111.2709
           88.7319
144866
Name: osrm_distance, Length: 144867, dtype: float64
In [68]:
 1 dv.osrm_distance.max()
Out[68]:
2326.1991000000003
In [69]:
 1 dv.osrm_distance.unique()
Out[69]:
array([ 11.9653, 21.7243, 32.5395, ..., 97.0933, 111.2709, 88.7319])
In [70]:
 1 dv.osrm_distance.nunique()
Out[70]:
138046
In [ ]:
 1
```

```
In [71]:
```

```
1 dv.factor

Out[71]:

0     1.272727
1     1.200000
2     1.428571
3     1.550000
4     1.545455
....
```

1.566667

Observation from analysing each and every column

Observations

from above one particular trip record , trip is segmented between different drop locations .

we can observe

trip is taking stops between mentioned source and destination centers(warehouses). od-end-tiem and od-start-time are the time when the that particular trip was ended and started .

start-scan-to-end-scan is the time duration of trips are being scanned when start and end.

start-scan-to-end-scan time is given cummulative. which is not given per trip segments.

trip cut off False ,shows the record of trip when trip changes from one warehouse to another. between source to destination.

Actual-time given is the time to complete the entire delivery from source to destination (given cumulatively)

osrm -time is an open rourse routing engine time calculator which computes the sho rtest path between points in a given map and gives the time and osrm distance give s the shortest distance (given cumulatively)

Actual-distnace-to-destination is the actual distance between warehouses , given \boldsymbol{c} ummulative during the trip .

every time cutoff is False , distance count starts from begining.

Segmment actual time, is the actual time taken between two stops in between trip s. given per each segment (taken between subset of package delivery)

segment osrm time is the osrm segment time , taken between subset of package delivery

Compare the difference between Point a. and start_scan_to_end_scan. Do hypothesis testing/ Visual analysis to check.

In [72]:

```
dv_scantime = dv.groupby('trip_uuid')['start_scan_to_end_scan'].unique()/60
dv_scantime_reset = dv_scantime.reset_index()
dv_scantime_reset['start_scan_to_end_scan'].apply(sum)
```

Out[72]:

0	37.650000					
1	3.000000					
2	65.550000					
3	1.666667					
4	11.950000					
	• • •					
14812	4.283333					
14813	1.000000					
14814	7.016667					
14815	5.783333					
14816	5.883333					
Name:	start_scan_to	_end_scan,	Length:	14817,	dtype:	float64

In [73]:

```
sns.distplot(np.log(dv_scantime_reset['start_scan_to_end_scan'].apply(sum)))
```

Out[73]:

<AxesSubplot:xlabel='start_scan_to_end_scan', ylabel='Density'>

In [74]:

1 # dv_scantime[]

In [75]:

```
dv_timetaken = dv.groupby('trip_uuid')['time_taken'].unique().reset_index()
2 dv_timetaken
```

Out[75]:

	trip_uuid	time_taken		
0	trip-153671041653548748	[16.65842298, 21.0100736875]		
1	trip-153671042288605164	[2.0463247669444447, 0.9805397955555556]		
2	trip-153671043369099517	[51.662059856388886, 13.910648811388889]		
3	trip-153671046011330457	[1.67491558666666667]		
4	trip-153671052974046625	[2.5335485744444446, 1.3423885633333332, 8.096		
14812	trip-153861095625827784	[2.546464057777778, 1.7540180775]		
14813	trip-153861104386292051	[1.0098420219444444]		
14814	trip-153861106442901555	[2.895179575833333, 4.1401515375]		
14815	trip-153861115439069069	[1.7609491794444445, 0.7362400538888889, 1.035		
14816	trip-153861118270144424	[1.1155594141666667, 4.7912334425]		
14817 rows x 2 columns				

14817 rows × 2 columns

In [76]:

```
dv_timetaken['time_taken'].apply(sum)
```

Out[76]:

0

```
37.668497
1
          3.026865
         65.572709
2
3
          1.674916
         11.972484
           . . .
          4.300482
14812
          1.009842
14813
14814
          7.035331
          5.808548
14815
          5.906793
14816
```

Name: time_taken, Length: 14817, dtype: float64

In [77]:

```
1 sns.distplot(np.log(dv_timetaken['time_taken'].apply(sum)))
```

Out[77]:

<AxesSubplot:xlabel='time_taken', ylabel='Density'>

In []:

1

In [79]:

```
stats.ttest_ind(np.log(dv_scantime_reset['start_scan_to_end_scan'].apply(sum)),np.log(
```

Out[79]:

Ttest_indResult(statistic=-0.4066930332152617, pvalue=0.6842363952379178)

Observations

```
(time_taken_btwn_odstart_and_od_end and start_scan_to_end_scan) are closly simila
r.
from 2 sample t-test ,
we can also conclude that Average time_taken_btwn_odstart_and_od_end for populatio
n is
also equal to Average start_scan_to_end_scan for population.
```

Do hypothesis testing/ visual analysis between actual time aggregated value and OSRM time aggregated value (aggregated values are the values you'll get after merging the rows on the basis of trip_uuid)

```
In [ ]:
 1
In [80]:
    (dv.groupby(["trip_uuid","time_taken"])["actual_time"].max()).reset_index()
 2
```

Out[80]:

	trip_uuid	time_taken	actual_time
0	trip-153671041653548748	16.658423	830.0
1	trip-153671041653548748	21.010074	732.0
2	trip-153671042288605164	0.980540	47.0
3	trip-153671042288605164	2.046325	96.0
4	trip-153671043369099517	13.910649	611.0
26364	trip-153861115439069069	1.035253	51.0
26365	trip-153861115439069069	1.518130	90.0
26366	trip-153861115439069069	1.760949	60.0
26367	trip-153861118270144424	1.115559	42.0
26368	trip-153861118270144424	4.791233	233.0

26369 rows × 3 columns

In [81]:

```
actual_time = ((dv.groupby(["trip_uuid","time_taken"])["actual_time"].max()).reset_index
2
  actual_time
```

Out[81]:

```
trip_uuid
trip-153671041653548748
                            1562.0
trip-153671042288605164
                             143.0
trip-153671043369099517
                            3347.0
trip-153671046011330457
                              59.0
trip-153671052974046625
                             341.0
trip-153861095625827784
                              83.0
trip-153861104386292051
                              21.0
trip-153861106442901555
                             282.0
trip-153861115439069069
                             264.0
trip-153861118270144424
                             275.0
Name: actual_time, Length: 14817, dtype: float64
```

In [82]:

1 sns.distplot(np.log(actual_time))

Out[82]:

<AxesSubplot:xlabel='actual_time', ylabel='Density'>

In [83]:

1 (dv.groupby(["trip_uuid","time_taken"])["osrm_time"].max()).reset_index()

Out[83]:

	trip_uuid	time_taken	osrm_time
0	trip-153671041653548748	16.658423	394.0
1	trip-153671041653548748	21.010074	349.0
2	trip-153671042288605164	0.980540	26.0
3	trip-153671042288605164	2.046325	42.0
4	trip-153671043369099517	13.910649	212.0
26364	trip-153861115439069069	1.035253	41.0
26365	trip-153861115439069069	1.518130	48.0
26366	trip-153861115439069069	1.760949	50.0
26367	trip-153861118270144424	1.115559	26.0
26368	trip-153861118270144424	4.791233	42.0

26369 rows × 3 columns

In [84]:

```
osrm_time = ((dv.groupby(["trip_uuid","time_taken"])["osrm_time"].max()).reset_index())
osrm_time
```

Out[84]:

```
trip_uuid
trip-153671041653548748
                             743.0
trip-153671042288605164
                              68.0
trip-153671043369099517
                            1741.0
trip-153671046011330457
                              15.0
trip-153671052974046625
                             117.0
trip-153861095625827784
                              62.0
trip-153861104386292051
                              12.0
trip-153861106442901555
                              54.0
trip-153861115439069069
                             184.0
                              68.0
trip-153861118270144424
Name: osrm_time, Length: 14817, dtype: float64
```

In [85]:

```
1 sns.distplot(np.log(osrm_time))
```

Out[85]:

<AxesSubplot:xlabel='osrm_time', ylabel='Density'>

In []:

1

In [86]:

```
stats.ttest_ind(np.log(actual_time),np.log(osrm_time))
```

Out[86]:

Ttest_indResult(statistic=60.65444898882128, pvalue=0.0)

Observations

from ttestwe can conclude , tht population mean actual time taken to complete deli vert from source to warehouse and orsm estimate mean time for population are not same. actual time is higher than the osrm estimated time for delivery.

Do hypothesis testing/ visual analysis between actual_time aggregated value and segment actual time aggregated value (aggregated values are the values you'll get after merging the rows on the basis of trip_uuid)

```
In [88]:
```

```
1 # actual_time , segment_actual_time
```

In [89]:

```
1 dv[dv['trip_uuid'] == 'trip-153741093647649320'][['trip_uuid' ,'time_taken', 'actual_ti
```

Out[89]:

	trip_uuid	time_taken	actual_time	segment_actual_time
0	trip-153741093647649320	1.436894	14.0	14.0
1	trip-153741093647649320	1.436894	24.0	10.0
2	trip-153741093647649320	1.436894	40.0	16.0
3	trip-153741093647649320	1.436894	62.0	21.0
4	trip-153741093647649320	1.436894	68.0	6.0
5	trip-153741093647649320	1.819553	15.0	15.0
6	trip-153741093647649320	1.819553	44.0	28.0
7	trip-153741093647649320	1.819553	65.0	21.0
8	trip-153741093647649320	1.819553	76.0	10.0
9	trip-153741093647649320	1.819553	102.0	26.0

In [90]:

```
1 # segment_actual_time - This is a segment time. Time taken by the subset of the package
2 # actual_time - Actual time taken to complete the delivery (Cumulative)
```

In [91]:

```
1 actual_time = ((dv.groupby(["trip_uuid","time_taken"])["actual_time"].max()).reset_inde
2 actual_time
4
```

Out[91]:

```
trip_uuid
trip-153671041653548748
                           1562.0
trip-153671042288605164
                            143.0
                           3347.0
trip-153671043369099517
trip-153671046011330457
                             59.0
trip-153671052974046625
                             341.0
trip-153861095625827784
                             83.0
trip-153861104386292051
                             21.0
trip-153861106442901555
                             282.0
trip-153861115439069069
                             264.0
                             275.0
trip-153861118270144424
Name: actual_time, Length: 14817, dtype: float64
```

In [92]:

```
1 sns.distplot(np.log(actual_time))
```

Out[92]:

<AxesSubplot:xlabel='actual_time', ylabel='Density'>

In [93]:

```
segment_actual_time = ((dv.groupby(["trip_uuid","time_taken"])["segment_actual_time"].segment_actual_time
```

Out[93]:

```
trip_uuid
trip-153671041653548748
                            1548.0
trip-153671042288605164
                            141.0
trip-153671043369099517
                            3308.0
trip-153671046011330457
                              59.0
trip-153671052974046625
                             340.0
trip-153861095625827784
                              82.0
trip-153861104386292051
                              21.0
trip-153861106442901555
                             281.0
trip-153861115439069069
                             258.0
                             274.0
trip-153861118270144424
Name: segment_actual_time, Length: 14817, dtype: float64
```

In [94]:

```
1 sns.distplot(np.log(segment_actual_time))
```

Out[94]:

<AxesSubplot:xlabel='segment_actual_time', ylabel='Density'>

In []:

1

In [95]:

```
stats.ttest_ind(np.log(actual_time),np.log(segment_actual_time))
```

Out[95]:

Ttest indResult(statistic=0.7701458929626459, pvalue=0.4412194950197108)

```
In [ ]:

In [ ]:

1
```

Do hypothesis testing/ visual analysis between osrm distance aggregated value and segment osrm distance aggregated value (aggregated values are the values you'll get after merging the rows on the basis of trip_uuid)

```
In [96]:
```

```
print('osrm_distance - An open-source routing engine which computes the shortest path b
dv.osrm_distance
```

osrm_distance - An open-source routing engine which computes the shortest pa th between points in a given map (Includes usual traffic, distance through m ajor and minor roads) (Cumulative)

Out[96]:

```
0
            11.9653
            21.7243
1
2
            32.5395
3
            45.5620
4
            54.2181
144862
            67,9280
            85.6829
144863
144864
            97.0933
           111.2709
144865
            88.7319
144866
```

Name: osrm_distance, Length: 144867, dtype: float64

In [97]:

```
print('segment_osrm_distance - This is the OSRM distance. Distance covered by subset of
dv.segment_osrm_distance
```

segment_osrm_distance - This is the OSRM distance. Distance covered by subse
t of the package delivery

Out[97]:

```
0
           11.9653
1
            9.7590
2
           10.8152
3
           13.0224
4
            3.9153
144862
            8.1858
144863
           17.3725
           20.7053
144864
144865
           18.8885
            8.8088
144866
```

Name: segment_osrm_distance, Length: 144867, dtype: float64

In [98]:

```
dv[dv['trip_uuid'] == 'trip-153741093647649320'][['trip_uuid' ,'time_taken', 'osrm_dist
```

Out[98]:

	trip_uuid	time_taken	osrm_distance	segment_osrm_distance	is_cutoff
0	trip-153741093647649320	1.436894	11.9653	11.9653	True
1	trip-153741093647649320	1.436894	21.7243	9.7590	True
2	trip-153741093647649320	1.436894	32.5395	10.8152	True
3	trip-153741093647649320	1.436894	45.5620	13.0224	True
4	trip-153741093647649320	1.436894	54.2181	3.9153	False
5	trip-153741093647649320	1.819553	12.1171	12.1171	True
6	trip-153741093647649320	1.819553	21.2890	9.1719	True
7	trip-153741093647649320	1.819553	35.8252	14.5362	True
8	trip-153741093647649320	1.819553	47.1900	11.3648	True
9	trip-153741093647649320	1.819553	53.2334	6.0434	False

In []:

1

In [99]:

```
osrm_distance_time = ((dv.groupby(["trip_uuid","time_taken"])["osrm_distance"].max()).r
osrm_distance_time
```

Out[99]:

```
trip_uuid
trip-153671041653548748
                             991.3523
trip-153671042288605164
                              85.1110
trip-153671043369099517
                            2372.0852
trip-153671046011330457
                              19.6800
trip-153671052974046625
                             146.7918
                              73.4630
trip-153861095625827784
trip-153861104386292051
                              16.0882
trip-153861106442901555
                              63.2841
trip-153861115439069069
                             177.6635
trip-153861118270144424
                              80.5787
```

Name: osrm_distance, Length: 14817, dtype: float64

In [100]:

```
1 sns.distplot(stats.boxcox(osrm_distance_time)[0])
```

Out[100]:

<AxesSubplot:ylabel='Density'>

In []:

1

In [101]:

```
segment_osrm_distance_time = ((dv.groupby(["trip_uuid","time_taken"])["segment_osrm_distance_time
segment_osrm_distance_time
```

Out[101]:

```
trip uuid
trip-153671041653548748
                           1320.4733
                             84.1894
trip-153671042288605164
trip-153671043369099517
                           2545.2678
trip-153671046011330457
                             19.8766
trip-153671052974046625
                             146.7919
trip-153861095625827784
                             64.8551
trip-153861104386292051
                             16.0883
trip-153861106442901555
                             104.8866
trip-153861115439069069
                             223.5324
trip-153861118270144424
                             80.5787
Name: segment_osrm_distance, Length: 14817, dtype: float64
```

```
In [ ]:
```

1

In [102]:

1 sns.distplot(stats.boxcox(segment_osrm_distance_time)[0])

Out[102]:

<AxesSubplot:ylabel='Density'>

In []:

1

In [103]:

stats.ttest_ind(stats.boxcox(osrm_distance_time)[0],stats.boxcox(segment_osrm_distance_

Out[103]:

Ttest_indResult(statistic=-13.827029249141647, pvalue=2.388064035118428e-43)

In []:

1

In [104]:

1 stats.ttest_ind(np.log(osrm_distance_time),np.log(segment_osrm_distance_time))

Out[104]:

Ttest_indResult(statistic=-4.1698517028537525, pvalue=3.056639395816076e-05)

In []:

1

Observations

from two sample ttest, we can conclude that Population average for Actual Time taken to complete delivery trip and segment osrm distance are not same.

Do hypothesis testing/ visual analysis between osrm time aggregated value and segment osrm time aggregated value (aggregated values are the values you'll get after merging the rows on the basis of trip_uuid)

```
In [105]:
```

Out[105]:

	trip_uuid	time_taken	osrm_time	segment_osrm_time	is_cutoff
0	trip-153741093647649320	1.436894	11.0	11.0	True
1	trip-153741093647649320	1.436894	20.0	9.0	True
2	trip-153741093647649320	1.436894	28.0	7.0	True
3	trip-153741093647649320	1.436894	40.0	12.0	True
4	trip-153741093647649320	1.436894	44.0	5.0	False
5	trip-153741093647649320	1.819553	11.0	11.0	True
6	trip-153741093647649320	1.819553	17.0	6.0	True
7	trip-153741093647649320	1.819553	29.0	11.0	True
8	trip-153741093647649320	1.819553	39.0	10.0	True
9	trip-153741093647649320	1.819553	45.0	6.0	False

In [106]:

```
print('osrm_time - An open-source routing engine time calculator which computes the sho
dv.osrm_time
```

osrm_time - An open-source routing engine time calculator which computes the shortest path between points in a given map (Includes usual traffic, distance through major and minor roads) and gives the time (Cumulative)

Out[106]:

```
0
           11.0
1
           20.0
2
           28.0
3
           40.0
4
           44.0
           . . .
144862
           60.0
144863
           76.0
144864
           88.0
           98.0
144865
           95.0
144866
```

Name: osrm_time, Length: 144867, dtype: float64

In [107]:

```
osrm_time = ((dv.groupby(["trip_uuid","time_taken"])["osrm_time"].max()).reset_index())
osrm_time
```

Out[107]:

```
trip_uuid
trip-153671041653548748
                             743.0
trip-153671042288605164
                              68.0
trip-153671043369099517
                            1741.0
                              15.0
trip-153671046011330457
trip-153671052974046625
                             117.0
                             . . .
                              62.0
trip-153861095625827784
trip-153861104386292051
                              12.0
trip-153861106442901555
                              54.0
trip-153861115439069069
                             184.0
trip-153861118270144424
                              68.0
Name: osrm_time, Length: 14817, dtype: float64
```

In [108]:

```
1 sns.distplot(stats.boxcox(osrm_time)[0])
```

Out[108]:

<AxesSubplot:ylabel='Density'>

In []:

1

In [109]:

```
print('segment_osrm_time - This is the OSRM segment time. Time taken by the subset of t
dv.segment_osrm_time
```

segment_osrm_time - This is the OSRM segment time. Time taken by the subset
of the package delivery

Out[109]:

```
0
           11.0
            9.0
1
2
            7.0
3
           12.0
4
             5.0
            . . .
144862
           12.0
144863
           21.0
144864
           34.0
144865
           27.0
```

9.0

Name: segment_osrm_time, Length: 144867, dtype: float64

In [110]:

144866

```
segment_osrm_time = ((dv.groupby(["trip_uuid","time_taken"])["segment_osrm_time"].sum()
segment_osrm_time
```

Out[110]:

```
trip_uuid
trip-153671041653548748
                           1008.0
                             65.0
trip-153671042288605164
trip-153671043369099517
                           1941.0
trip-153671046011330457
                             16.0
trip-153671052974046625
                            115.0
trip-153861095625827784
                             62.0
trip-153861104386292051
                             11.0
trip-153861106442901555
                             88.0
trip-153861115439069069
                            221.0
trip-153861118270144424
                             67.0
Name: segment_osrm_time, Length: 14817, dtype: float64
```

In [111]:

1 sns.distplot(stats.boxcox(segment_osrm_time)[0])

Out[111]:

<AxesSubplot:ylabel='Density'>

In []:

1

In [112]:

stats.ttest_ind(stats.boxcox(osrm_time)[0],stats.boxcox(segment_osrm_time)[0])

Out[112]:

Ttest_indResult(statistic=-23.42127912444594, pvalue=3.2149793519334874e-120)

Observation

from two sample ttest, we can conclude that Population average for OSRM Time taken to complete delivery trip and segment osrm time are not same.

Find outliers in the numerical variables (you might find outliers in almost all the variables), and check it using visual analysis

In [113]:

```
1 dv.describe()
```

Out[113]:

	start_scan_to_end_scan	cutoff_factor	actual_distance_to_destination	actual_time	
count	144867.000000	144867.000000	144867.000000	144867.000000	14
mean	961.262986	232.926567	234.073372	416.927527	
std	1037.012769	344.755577	344.990009	598.103621	
min	20.000000	9.000000	9.000045	9.000000	
25%	161.000000	22.000000	23.355874	51.000000	
50%	449.000000	66.000000	66.126571	132.000000	
75%	1634.000000	286.000000	286.708875	513.000000	
max	7898.000000	1927.000000	1927.447705	4532.000000	
4					•

In [114]:

```
1 sns.distplot(dv['start_scan_to_end_scan'])
```

Out[114]:

<AxesSubplot:xlabel='start_scan_to_end_scan', ylabel='Density'>

In []:

1

In []:

1

In [115]:

```
1 sns.distplot(dv['cutoff_factor'])
```

Out[115]:

<AxesSubplot:xlabel='cutoff_factor', ylabel='Density'>

In []:

1

In [116]:

```
1 sns.distplot(dv['actual_distance_to_destination'])
```

Out[116]:

<AxesSubplot:xlabel='actual_distance_to_destination', ylabel='Density'>


```
In [ ]:
```

1

In [117]:

1 sns.distplot(dv['actual_time'])

Out[117]:

<AxesSubplot:xlabel='actual_time', ylabel='Density'>

In [119]:

1 sns.distplot(dv['osrm_time'])

Out[119]:

<AxesSubplot:xlabel='osrm_time', ylabel='Density'>

In []:

1

In [120]:

```
1 sns.distplot(dv['osrm_distance'])
```

Out[120]:

<AxesSubplot:xlabel='osrm_distance', ylabel='Density'>

In []:

1

In [121]:

```
1 sns.distplot(dv['factor'])
```

Out[121]:

<AxesSubplot:xlabel='factor', ylabel='Density'>

In []:

1

1

```
In [122]:
 1 sns.distplot(dv['segment_actual_time'])
Out[122]:
<AxesSubplot:xlabel='segment_actual_time', ylabel='Density'>
   0.025
   0.020
0.015
O.015
   0.010
   0.005
   0.000
                   500
                          1000
                                 1500
                                        2000
                                              2500
                                                     3000
                         segment_actual_time
In [ ]:
 1
In [ ]:
 1
In [ ]:
```

extracting process to get source city and destination city

In [123]:

```
1 dv.head()
```

Out[123]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_(
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND38812

- · orders orders from which state?
- · we need uniq id col and uniqe name cols to start with

In [124]:

```
1 dv.route_schedule_uuid
```

Out[124]:

```
0
          thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3...
1
          thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3...
2
          thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3...
3
          thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3...
4
          thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3...
144862
          thanos::sroute:f0569d2f-4e20-4c31-8542-67b86d5...
          thanos::sroute:f0569d2f-4e20-4c31-8542-67b86d5...
144863
144864
          thanos::sroute:f0569d2f-4e20-4c31-8542-67b86d5...
          thanos::sroute:f0569d2f-4e20-4c31-8542-67b86d5...
144865
144866
          thanos::sroute:f0569d2f-4e20-4c31-8542-67b86d5...
Name: route_schedule_uuid, Length: 144867, dtype: object
```

```
In [125]:
```

```
dv.source_name
Out[125]:
0
          Anand_VUNagar_DC (Gujarat)
1
          Anand_VUNagar_DC (Gujarat)
2
          Anand_VUNagar_DC (Gujarat)
3
          Anand_VUNagar_DC (Gujarat)
4
          Anand_VUNagar_DC (Gujarat)
144862
          Sonipat_Kundli_H (Haryana)
144863
          Sonipat_Kundli_H (Haryana)
144864
          Sonipat_Kundli_H (Haryana)
144865
          Sonipat Kundli H (Haryana)
          Sonipat_Kundli_H (Haryana)
144866
Name: source_name, Length: 144867, dtype: object
In [ ]:
 1
In [126]:
    dv["source_city"] = dv["source_name"].str.extract(r'([^_]+)')
    dv.source_city
Out[126]:
0
            Anand
1
            Anand
            Anand
2
3
            Anand
4
            Anand
144862
          Sonipat
144863
          Sonipat
144864
          Sonipat
144865
          Sonipat
144866
          Sonipat
Name: source_city, Length: 144867, dtype: object
```

```
In [127]:
```

```
1 | dv["source_state"] = dv["source_name"].str.extract(r'.*\((.*)\).*')
 2 dv["source_state"]
Out[127]:
          Gujarat
0
1
          Gujarat
2
          Gujarat
3
          Gujarat
4
          Gujarat
144862
          Haryana
144863
          Haryana
144864
          Haryana
144865
          Haryana
144866
          Haryana
Name: source_state, Length: 144867, dtype: object
In [128]:
 1 dv["source_code"] = (dv["source_name"].str.split("_",n=2,expand = True)[2]).str.split("
 2 dv["source_code"]
Out[128]:
0
          DC
1
          DC
2
          DC
3
          DC
4
          DC
144862
           Н
144863
           Н
144864
144865
           Н
           Н
144866
Name: source_code, Length: 144867, dtype: object
In [129]:
   dv["source_place"] = dv["source_name"].str.split("_",n=2,expand = True)[1]
    dv["source_place"]
Out[129]:
0
          VUNagar
1
          VUNagar
2
          VUNagar
3
          VUNagar
4
          VUNagar
           . . .
144862
           Kundli
144863
           Kundli
144864
           Kundli
144865
           Kundli
144866
           Kundli
Name: source_place, Length: 144867, dtype: object
```

Check from where most orders are coming from (State, Corridor etc)

In [290]:

```
corr_data = dv.groupby(['source_state','route_schedule_uuid', 'destination_state' ])['t
corr_data["ROUTE"] = corr_data["source_state"] + " -- " + corr_data["destination_state"
corr_data.drop(['source_state', 'destination_state' ,'route_schedule_uuid'] ,axis = 1,
X = corr_data.head(50)

X.head(10)
**Automatical properties of the properties of
```

Out[290]:

	trip_uuid	ROUTE
0	53	Maharashtra Maharashtra
1	46	Maharashtra Maharashtra
2	43	Haryana Haryana
3	41	Rajasthan Rajasthan
4	40	Uttar Pradesh Delhi
5	39	Telangana Telangana
6	37	Maharashtra Maharashtra
7	36	Maharashtra Maharashtra
8	35	Maharashtra Maharashtra
9	34	Maharashtra Maharashtra

In [291]:

```
sns.barplot(x = X["ROUTE"],
y = X["trip_uuid"])
plt.xticks(rotation = 90)
plt.show()
```


In [299]:

```
1  Y = dv.groupby(['source_state','destination_state'])['route_schedule_uuid'].nunique().
2  Y["ROUTE"] = Y["source_state"] + " -- " + Y["destination_state"]
3  Y.drop(['source_state', 'destination_state'], axis = 1, inplace =True)
4  Y
```

Out[299]:

ROUTE	route_schedule_uuid	
Maharashtra Maharashtra	223	0
Karnataka Karnataka	220	1
Tamil Nadu Tamil Nadu	115	2
Uttar Pradesh Uttar Pradesh	86	3
Gujarat Gujarat	74	4
West Bengal West Bengal	73	5
Telangana Telangana	69	6
Haryana Haryana	69	7
Delhi Haryana	65	8
Rajasthan Rajasthan	41	9
Andhra Pradesh Andhra Pradesh	34	10
Kerala Kerala	33	11
Haryana Delhi	33	12
Punjab Punjab	31	13
Bihar Bihar	31	14
Delhi Delhi	27	15
Madhya Pradesh Madhya Pradesh	27	16
Assam Assam	25	17
Haryana Uttar Pradesh	25	18
Delhi Uttar Pradesh	23	19

In [300]:

In [287]:

```
dv.groupby(['source_state','source_city','destination_city', 'destination_state' ])['routenesses | dv.groupby(['source_state','source_state','source_state'])['routenesses | dv.groupby(['source_state','source_state','source_state'])['routenesses | dv.groupby(['source_state','source_state','source_state'])['routenesses | dv.groupby(['source_state','source_state','source_state'])['routenesses | dv.groupby(['source_state','source_state','source_state','source_state']]
```

Out[287]:

<pre>source_state destination s</pre>	source_city	destination_city
Karnataka	Bengaluru	Bengaluru
Karnataka	142	bengatul u
Delhi	Delhi	Gurgaon
Haryana	38	dai gaon
Maharashtra	Mumbai	Bhiwandi
Maharashtra	38	Billwanai
rianar asirer a	Bhiwandi	Mumbai
Maharashtra	37	
Telangana	Hyderabad	Hyderabad
Telangana	33	,
Tamil Nadu	Chennai	Chennai
Tamil Nadu	32	
Haryana	Gurgaon	Delhi
Delhi	25	
Maharashtra	Mumbai	Mumbai
Maharashtra	23	
Tamil Nadu	Chennai	MAA
Tamil Nadu	21	
	MAA	Chennai
Tamil Nadu	20	
Delhi	Delhi	Delhi
Delhi	17	
Gujarat	Surat	Surat
Gujarat	14	
Maharashtra	Pune	Bhiwandi
Maharashtra	13	
West Bengal	Kolkata	CCU
West Bengal	13	
Karnataka	Bengaluru	BLR
Karnataka	13	
Delhi	Del	Gurgaon
Haryana	13	D.
Maharashtra Maharashtra	Pune	Pune
	12	Jainum
Rajasthan	Jaipur 11	Jaipur
Rajasthan Maharashtra	Mumbai	Mumbai Hub (Maharashtra)
Maharashtra	11	ridilibat flub (rialiai asiici a)
Karnataka	Bengaluru	HBR Layout PC (Karnatak
a)	Karnataka 11	TIDIC LAYOUT FC (Kar Hatak
Maharashtra	Mumbai Hub (Maharashtra)	Mumbai
Maharashtra	11	Fidilibat
Chandigarh	Chandigarh	Chandigarh
Punjab	8	Chanaigarn
West Bengal	Kolkata	Kolkata
West Bengal	8	Normaca
Assam	Guwahati	Guwahati
Assam	7	
Maharashtra	PNQ Vadgaon Sheri DPC (Maharashtra)	Pune
Maharashtra	7	-
Delhi	Delhi	Sonipat
Haryana	7	•
•		

```
8/19/22, 5:01 PM
                                                  Delhivery - Jupyter Notebook
                                                          Noida
  Haryana
                  Gurgaon
  Uttar Pradesh
                           6
                                                          Sonipat
  Haryana
                           6
  Maharashtra
                  Bhiwandi
                                                          Pune
  Maharashtra
                           6
  Punjab
                  Ludhiana
                                                          Chandigarh
  Punjab
                           6
  Haryana
                                                          Chandigarh
                  Gurgaon
                           6
  Punjab
                  Ahmedabad
                                                          Surat
  Gujarat
  Gujarat
                           6
  Haryana
                  Sonipat
                                                          Gurgaon
                           6
  Haryana
  Uttar Pradesh
                  Allahabad
                                                          Allahabad
  Uttar Pradesh
                           6
  Karnataka
                  Bengaluru
                                                          Gurgaon
  Haryana
  Uttar Pradesh
                  Kanpur
                                                          Gurgaon
                           6
  Haryana
                                                          PNQ Vadgaon Sheri DPC (M
                  Pune
  Maharashtra
  aharashtra)
                Maharashtra
                                         6
                                                          Kolkata
  West Bengal
                  CCU
                           6
  West Bengal
                  Sonipat
                                                          Roorkee
  Haryana
  Uttarakhand
                           5
  Delhi
                  Delhi
                                                          Kanpur
  Uttar Pradesh
                           5
                  Del
                                                          Delhi
  Delhi
                           5
  Haryana
                  GGN
                                                          Gurgaon
  Haryana
  Karnataka
                  HBR Layout PC (Karnataka)
                                                          Bengaluru
  Karnataka
                  Bhiwandi
                                                          Bengaluru
  Maharashtra
  Karnataka
  Telangana
                  Hyderabad
                                                          Pune
  Maharashtra
                                                          Rishikesh
  Uttarakhand
                  Haridwar (Uttarakhand)
  Uttarakhand
  Haryana
                                                          Kanpur
                  Gurgaon
  Uttar Pradesh
                  Chandigarh
                                                          Chandigarh
  Punjab
  Chandigarh
  Delhi
                  Delhi
                                                          Noida
  Uttar Pradesh
                           5
                                                          Gurgaon
  Haryana
                  Gurgaon
  Haryana
  Name: route_schedule_uuid, dtype: int64
  In [ ]:
    1
```

Busiest corridor, avg distance between them, avg time taken

In [141]:

```
1 dv.actual_distance_to_destination
```

Out[141]:

```
0
          10.435660
1
          18.936842
2
          27.637279
3
          36.118028
          39.386040
144862
          45.258278
144863
          54.092531
          66.163591
144864
144865
          73.680667
```

70.039010

Name: actual_distance_to_destination, Length: 144867, dtype: float64

In [142]:

144866

```
dv[dv['trip_uuid']=='trip-153671043369099517'][['trip_uuid' ,'time_taken', 'osrm_time'
```

Out[142]:

	trip_uuid	time_taken	osrm_time	actual_distance_to_destination	is_cutoff s
131339	trip- 153671043369099517	51.662060	27.0	26.908354	True
131340	trip- 153671043369099517	51.662060	42.0	45.637104	True
131341	trip- 153671043369099517	51.662060	66.0	70.279536	True
131342	trip- 153671043369099517	51.662060	81.0	90.572441	True
131343	trip- 153671043369099517	51.662060	97.0	112.664478	True
131423	trip- 153671043369099517	13.910649	155.0	182.128883	True
131424	trip- 153671043369099517	13.910649	166.0	199.340785	True
131425	trip- 153671043369099517	13.910649	182.0	221.523161	True
131426	trip- 153671043369099517	13.910649	198.0	242.309306	True
131427	trip- 153671043369099517	13.910649	212.0	237.439610	False
89 rows	89 rows × 9 columns				
4					>

In [143]:

```
dv[dv['is_cutoff']==False][['trip_uuid' ,'time_taken', 'osrm_time' , 'actual_distance_t
```

Out[143]:

	time_taken	osrm_time	actual_distance_to_destination	is_cutoff
trip_uuid				
trip-153671041653548748	37.668497	717.0	824.732854	0
trip-153671042288605164	3.026865	68.0	73.186911	0
trip-153671043369099517	65.572709	1740.0	1927.404273	0
trip-153671046011330457	1.674916	15.0	17.175274	0
trip-153671052974046625	11.972484	117.0	127.448500	0
trip-153861095625827784	4.300482	62.0	57.762332	0
trip-153861104386292051	1.009842	12.0	15.513784	0
trip-153861106442901555	7.035331	48.0	38.684839	0
trip-153861115439069069	5.808548	179.0	134.723836	0
trip-153861118270144424	5.906793	68.0	66.081533	0

14703 rows × 4 columns

In [144]:

```
1 a = dv.groupby("trip_uuid")[["source_state","destination_state"]].aggregate({"source_state"]
2 a
```

Out[144]:

	source_state	destination_state
trip_uuid		
trip-153671041653548748	{Madhya Pradesh, Uttar Pradesh}	{Uttar Pradesh, Haryana}
trip-153671042288605164	{Karnataka}	{Karnataka}
trip-153671043369099517	{Karnataka, Haryana}	{Punjab, Haryana}
trip-153671046011330457	{Maharashtra}	{Maharashtra}
trip-153671052974046625	{Karnataka}	{Karnataka}
trip-153861095625827784	{Chandigarh, Punjab}	{Punjab}
trip-153861104386292051	{Haryana}	{Haryana}
trip-153861106442901555	{Uttar Pradesh}	{Uttar Pradesh}
trip-153861115439069069	{Tamil Nadu}	{Tamil Nadu}
trip-153861118270144424	{Karnataka}	{Karnataka}
14817 rows × 2 columns		

Observation

- The above table shows the source state and destination state for a single trip
- As you can see, for a single trip uuid there are multiple check points.

In [145]:

```
b = ((dv.groupby(["trip_uuid","is_cutoff"])["actual_distance_to_destination"].max()).re
 2
    b
Out[145]:
trip_uuid
trip-153671041653548748
                             881.003772
trip-153671042288605164
                             93.725419
trip-153671043369099517
                           3362.306060
trip-153671046011330457
                             28.529648
trip-153671052974046625
                             103.938814
                               . . .
                             58.839137
trip-153861095625827784
trip-153861104386292051
                             25.130640
                             37.799141
trip-153861106442901555
trip-153861115439069069
                             74.104604
trip-153861118270144424
                             62.703556
Name: actual_distance_to_destination, Length: 14817, dtype: float64
```

In [197]:

Out[197]:

	source_state	destination_state	actual_distance_to_destination
trip_uuid			
trip- 153671041653548748	{Madhya Pradesh, Uttar Pradesh}	{Uttar Pradesh, Haryana}	881.003772
trip- 153671042288605164	{Karnataka}	{Karnataka}	93.725419
trip- 153671043369099517	{Karnataka, Haryana}	{Punjab, Haryana}	3362.306060
trip- 153671046011330457	{Maharashtra}	{Maharashtra}	28.529648
trip- 153671052974046625	{Karnataka}	{Karnataka}	103.938814
trip- 153861095625827784	{Chandigarh, Punjab}	{Punjab}	58.839137
trip- 153861104386292051	{Haryana}	{Haryana}	25.130640
trip- 153861106442901555	{Uttar Pradesh}	{Uttar Pradesh}	37.799141
trip- 153861115439069069	{Tamil Nadu}	{Tamil Nadu}	74.104604
trip- 153861118270144424	{Karnataka}	{Karnataka}	62.703556

14817 rows × 3 columns

Observations

• we can clearly see that when ever the trip is long wrt distance the number of check points are also more and vice versa

In [198]:

```
1 # df[['destination', 'dest1']] = df['destination_state'].str.split(',', 1, expand=True)
2 # # df.drop('dest1', axis=1 , inplace = True)
3 # # df
```

In []:

```
1 # df[['source', 'B']] = df['destination_state'].str.split(',', 1, expand=True)
2 # df
```

In [159]:

Column Non-Null Count Dtype
--- ---0 source_state 14817 non-null object
1 destination_state 14817 non-null object
2 actual_distance_to_destination 14817 non-null float64

dtypes: float64(1), object(2)
memory usage: 463.0+ KB

Total Orders

In [171]:

```
1  r = dv.groupby('trip_uuid')['route_schedule_uuid'].nunique().sort_values(ascending = Fa
2  r
```

Out[171]:

trip_uuid route_schedule_uuid 0 trip-153671041653548748 1 1 trip-153791331656620454 1 2 trip-153791340002649773 1 3 trip-153791341220571147 1 4 trip-153791345208672550 1 14812 trip-153730385530436915 1 14813 trip-153730387256906443 1 14814 trip-153730391233462064 1 14815 trip-153730396484038671 1 14816 trip-153861118270144424 1

14817 rows × 2 columns

In [172]:

```
1 s = dv.groupby('route_schedule_uuid')['trip_uuid'].count().sort_values(ascending = Fals
2 s
```

Out[172]:

	route_schedule_uuid	trip_uuid
0	thanos::sroute:4029a8a2-6c74-4b7e-a6d8-f9e069f	1812
1	thanos::sroute:0456b740-1dad-4929-bbe0-87d8843	1608
2	thanos::sroute:dca6268f-741a-4d1a-b1b0-aab1309	1605
3	thanos::sroute:a1b25549-1e77-498f-8538-00292e5	1285
4	thanos::sroute:de5e208e-7641-45e6-8100-4d9fb1e	1280
1499	thanos::sroute:b45dbffe-dd2c-4edb-a9e6-e35065d	1
1500	thanos::sroute:d29fd731-9f1f-490c-922e-6d79d16	1
1501	thanos::sroute:889b9cf5-da6a-48ce-b3bd-6983c80	1
1502	thanos::sroute:404cbabf-d2a5-4e46-bf79-8b3c518	1
1503	thanos::sroute:036f372d-28d8-4d19-877c-6277077	1

1504 rows × 2 columns

In [173]:

```
1 dv[dv['trip_uuid'] == 'trip-153784927255069118']['route_schedule_uuid'].count()
```

Out[173]:

101

In [174]:

```
source_package = dv.groupby('source_state')['route_schedule_uuid'].nunique().sort_value
source_package.rename(columns = {'source_state':'states', 'route_schedule_uuid':'no_of_
source_package
```

Out[174]:

	states	no_of_trips_from_each_state
0	Maharashtra	253
1	Karnataka	239
2	Haryana	178
3	Tamil Nadu	123
4	Delhi	120
5	Uttar Pradesh	109
6	Telangana	88
7	Gujarat	85
8	West Bengal	80
9	Rajasthan	51
10	Andhra Pradesh	50
11	Punjab	48
12	Madhya Pradesh	39
13	Kerala	35
14	Bihar	33
15	Assam	31
16	Orissa	23
17	Uttarakhand	19
18	Jharkhand	17
19	Chandigarh	9
20	Goa	9
21	Himachal Pradesh	9
22	Arunachal Pradesh	7
23	Chhattisgarh	5
24	Meghalaya	2
25	Mizoram	2
26	Jammu & Kashmir	2
27	Pondicherry	2
28	Dadra and Nagar Haveli	1
29	Nagaland	1
30	Tripura	1

In [175]:

```
destination_package = dv.groupby('destination_state')['route_schedule_uuid'].nunique().
destination_package.rename(columns = {'destination_state':'states', 'route_schedule_uuid'].
destination_package
```

Out[175]:

	states	no_of_trips_to_each_state
0	Karnataka	250
1	Maharashtra	239
2	Haryana	198
3	Uttar Pradesh	125
4	Tamil Nadu	121
5	Telangana	87
6	Gujarat	86
7	West Bengal	83
8	Delhi	79
9	Punjab	53
10	Rajasthan	52
11	Andhra Pradesh	51
12	Madhya Pradesh	41
13	Kerala	36
14	Bihar	33
15	Assam	32
16	Orissa	24
17	Uttarakhand	19
18	Jharkhand	18
19	Goa	11
20	Himachal Pradesh	9
21	Chandigarh	6
22	Arunachal Pradesh	5
23	Chhattisgarh	5
24	Meghalaya	2
25	Mizoram	2
26	Jammu & Kashmir	2
27	Pondicherry	2
28	Dadra and Nagar Haveli	2
29	Daman & Diu	1
30	Nagaland	1
31	Tripura	1

In [176]:

```
sd = source_package.merge(destination_package , on = 'states')
sd['Busiest_state_by_trips'] = sd['no_of_trips_from_each_state'] + sd['no_of_trips_to_each_state'] + sd['no_of_trips_to_each_state']
```

Out[176]:

	.1.1	and the form of the		A
	states	no_of_trips_from_each_state		
0	Maharashtra	253	239	4
1	Karnataka	239	250	4
2	Haryana	178	198	3
3	Tamil Nadu	123	121	2
4	Delhi	120	79	1
5	Uttar Pradesh	109	125	2
6	Telangana	88	87	1
7	Gujarat	85	86	1
8	West Bengal	80	83	1
9	Rajasthan	51	52	1
10	Andhra Pradesh	50	51	1
11	Punjab	48	53	1
12	Madhya Pradesh	39	41	
13	Kerala	35	36	
14	Bihar	33	33	
15	Assam	31	32	
16	Orissa	23	24	
17	Uttarakhand	19	19	
18	Jharkhand	17	18	
19	Chandigarh	9	6	
20	Goa	9	11	
21	Himachal Pradesh	9	9	
22	Arunachal Pradesh	7	5	
23	Chhattisgarh	5	5	
24	Meghalaya	2	2	
25	Mizoram	2	2	
26	Jammu & Kashmir	2	2	
27	Pondicherry	2	2	
28	Dadra and Nagar Haveli	1	2	

	states	no_of_trips_from_each_state	no_of_trips_to_each_state	Busiest_state_by_tri	
29	Nagaland	1	1		
30	Tripura	1	1		_

Observations

- The busiest state wrt to trips are in the above order .
- we can infer that the busiest states are mostly metro states as well as industrial states.

```
In [177]:
```

```
dv.groupby('source_state')['time_taken' , 'trip_uuid'].max()
```

Out[177]:

	time_taken	trip_uuid
source_state		
Andhra Pradesh	44.109873	trip-153861028301961630
Arunachal Pradesh	20.027831	trip-153853799309447487
Assam	68.016825	trip-153855027033921568
Bihar	42.994144	trip-153861007249500192
Chandigarh	14.857787	trip-153861095625827784
Chhattisgarh	15.047255	trip-153859592654771797
Dadra and Nagar Haveli	1.805108	trip-153857331775400080
Delhi	61.716212	trip-153860849934816308
Goa	31.541874	trip-153835178030348861
Gujarat	35.781550	trip-153861089403973335
Haryana	75.595254	trip-153861104386292051
Himachal Pradesh	41.995165	trip-153860492150952876
Jammu & Kashmir	13.085807	trip-153855382748399399
Jharkhand	43.329073	trip-153861004148234782
Karnataka	61.521077	trip-153861118270144424
Kerala	22.530864	trip-153860848028848826
Madhya Pradesh	45.857752	trip-153861014185597051
Maharashtra	54.351372	trip-153861091843037040
Meghalaya	28.199533	trip-153786220794548811
Mizoram	55.448414	trip-153752546021401806
Nagaland	21.765250	trip-153833364602473905
Orissa	131.642533	trip-153859882058199771
Pondicherry	5.011213	trip-153801333300954216
Punjab	63.368436	trip-153861095625827784
Rajasthan	17.207654	trip-153860998196116365
Tamil Nadu	38.118282	trip-153861115439069069
Telangana	45.746066	trip-153860996602682925
Tripura	6.007843	trip-153724448912072562
Uttar Pradesh	42.659331	trip-153861106442901555
Uttarakhand	23.091634	trip-153859603936924192
West Bengal	70.120402	trip-153860891043685648

Normalize/ Standardize the numerical features using MinMaxScaler or StandardScaler.

In [184]:

1 dv

Out[184]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	so
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	INE
144862	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE
144863	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE
144864	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE
144865	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE
144866	training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	INE
144867 rows × 33 columns						
144007	. 5					•

In [185]:

```
1  num_cols_max = ((dv.groupby(["trip_uuid","time_taken" ])[["actual_time" , 'osrm_time',
2  minn = num_cols_max.reset_index()
minn
```

Out[185]:

	trip_uuid	actual_time	osrm_time	osrm_distance	actual_distance_to_destinati
0	trip- 153671041653548748	1562.0	743.0	991.3523	824.7328
1	trip- 153671042288605164	143.0	68.0	85.1110	73.1869
2	trip- 153671043369099517	3347.0	1741.0	2372.0852	1932.2739
3	trip- 153671046011330457	59.0	15.0	19.6800	17.1752
4	trip- 153671052974046625	341.0	117.0	146.7918	127.4485
14812	trip- 153861095625827784	83.0	62.0	73.4630	57.7623
14813	trip- 153861104386292051	21.0	12.0	16.0882	15.5137
14814	trip- 153861106442901555	282.0	54.0	63.2841	38.6848
14815	trip- 153861115439069069	264.0	184.0	177.6635	134.7238
14816	trip- 153861118270144424	275.0	68.0	80.5787	66.0815
14817 r	rows × 5 columns				
4					•

In [186]:

```
num_cols_sum = ((dv.groupby(["trip_uuid","time_taken"])["segment_actual_time" , 'segmer
maxx = num_cols_sum.reset_index()
maxx
```

Out[186]:

	trip_uuid	segment_actual_time	segment_osrm_time	segment_osrm_distance
0	trip- 153671041653548748	1548.0	1008.0	1320.4733
1	trip- 153671042288605164	141.0	65.0	84.1894
2	trip- 153671043369099517	3308.0	1941.0	2545.2678
3	trip- 153671046011330457	59.0	16.0	19.8766
4	trip- 153671052974046625	340.0	115.0	146.7919
14812	trip- 153861095625827784	82.0	62.0	64.8551
14813	trip- 153861104386292051	21.0	11.0	16.0883
14814	trip- 153861106442901555	281.0	88.0	104.8866
14815	trip- 153861115439069069	258.0	221.0	223.5324
14816	trip- 153861118270144424	274.0	67.0	80.5787

14817 rows × 4 columns

In [246]:

```
numerical_df = minn.merge(maxx , on = 'trip_uuid')
numerical_df
```

Out[246]:

	trip_uuid	actual_time	osrm_time	osrm_distance	actual_distance_to_destinati
0	trip- 153671041653548748	1562.0	743.0	991.3523	824.7328
1	trip- 153671042288605164	143.0	68.0	85.1110	73.1869
2	trip- 153671043369099517	3347.0	1741.0	2372.0852	1932.2739
3	trip- 153671046011330457	59.0	15.0	19.6800	17.1752
4	trip- 153671052974046625	341.0	117.0	146.7918	127.4485
14812	trip- 153861095625827784	83.0	62.0	73.4630	57.7623
14813	trip- 153861104386292051	21.0	12.0	16.0882	15.5137
14814	trip- 153861106442901555	282.0	54.0	63.2841	38.6848
14815	trip- 153861115439069069	264.0	184.0	177.6635	134.7238
14816	trip- 153861118270144424	275.0	68.0	80.5787	66.0815
14817 r	ows × 8 columns				
4					>

Handle the outliers using the IQR method.

In [247]:

```
numerical_df['actual_time_in_hour'] = numerical_df['actual_time']/60
numerical_df['osrm_time_in_hour'] = numerical_df['osrm_time']/60
numerical_df['segment_actual_time_in_hour'] = numerical_df['segment_actual_time']/60
numerical_df['segment_osrm_time_in_hour'] = numerical_df['segment_osrm_time']/60
numerical_df.drop(['actual_time', 'osrm_time' ,'segment_actual_time' , 'segment_osrm_time' nf = numerical_df.copy()
numerical_df
```

Out[247]:

	trip_uuid	osrm_distance	actual_distance_to_destination	segment_osrm_distar
0	trip- 153671041653548748	991.3523	824.732854	1320.47
1	trip- 153671042288605164	85.1110	73.186911	84.18
2	trip- 153671043369099517	2372.0852	1932.273969	2545.26
3	trip- 153671046011330457	19.6800	17.175274	19.87
4	trip- 153671052974046625	146.7918	127.448500	146.79
14812	trip- 153861095625827784	73.4630	57.762332	64.85
14813	trip- 153861104386292051	16.0882	15.513784	16.08
14814	trip- 153861106442901555	63.2841	38.684839	104.88
14815	trip- 153861115439069069	177.6635	134.723836	223.53
14816	trip- 153861118270144424	80.5787	66.081533	80.57
14817 r	ows × 8 columns			
4				+

In [248]:

```
numerical_df.boxplot(figsize = (15,10))
plt.xticks(rotation = 90)
plt.show()
4
```


In [250]:

```
1
2 nf.drop('trip_uuid', axis=1 , inplace = True)
3
```

```
In [251]:
```

```
1 nf
```

Out[251]:

	osrm_distance	actual_distance_to_destination	segment_osrm_distance	actual_time_in_ho
0	991.3523	824.732854	1320.4733	26.0333
1	85.1110	73.186911	84.1894	2.3833
2	2372.0852	1932.273969	2545.2678	55.7833
3	19.6800	17.175274	19.8766	0.9833
4	146.7918	127.448500	146.7919	5.6833
14812	73.4630	57.762332	64.8551	1.3833
14813	16.0882	15.513784	16.0883	0.3500
14814	63.2841	38.684839	104.8866	4.7000
14815	177.6635	134.723836	223.5324	4.4000
14816	80.5787	66.081533	80.5787	4.5833
14817	rows × 7 columr	ns		

14817 rows × 7 columns

•

In [224]:

```
numerical_df.isna().sum()
```

Out[224]:

```
osrm_distance
                                   0
actual_distance_to_destination
                                   0
segment_osrm_distance
                                   0
                                   0
actual_time_in_hour
osrm_time_in_hour
                                   0
                                   0
segment_actual_time_in_hour
segment_osrm_time_in_hour
dtype: int64
```

In []:

```
# def remove_outlier(numerical_df):
 1
 2
          inlier, outlier = [],[]
 3
          data_s = sorted(numerical_df)
   #
4
   #
          q1,q3 = np.percentile(data_s,[25,75])
 5
          igr = q1 - q3
          upper\_bound = q3 - (1.5*iqr)
 6
 7
          lower\_bound = q1 + (1.5*iqr)
   #
 8
          for i in range(len(numerical_df)):
9
              if numerical_df[i] > Lower_bound and numerical_df[i] < upper_bound:</pre>
10
                  inlier.append(numerical_df[i])
11
   #
                  outlier.append(numerical_df[i])
12
13
          return inlier, outlier
```

In [252]:

- 1 import numpy as np
- 2 **from** scipy **import** stats
- 3 nf[(np.abs(stats.zscore(nf)) < 3).all(axis=1)]</pre>

Out[252]:

	osrm_distance	actual_distance_to_destination	segment_osrm_distance	actual_time_in_ho
0	991.3523	824.732854	1320.4733	26.0333
1	85.1110	73.186911	84.1894	2.3833
3	19.6800	17.175274	19.8766	0.9833
4	146.7918	127.448500	146.7919	5.6833
5	28.0647	24.597048	28.0647	1.0166
14812	73.4630	57.762332	64.8551	1.3833
14813	16.0882	15.513784	16.0883	0.3500
14814	63.2841	38.684839	104.8866	4.7000
14815	177.6635	134.723836	223.5324	4.4000
14816	80.5787	66.081533	80.5787	4.5833
14173	rows × 7 columr	ns		
4				>

In [253]:

```
1  nf[(np.abs(stats.zscore(nf)) < 3).all(axis=1)].boxplot(figsize = (15,10))
2  plt.xticks(rotation = 90)
plt.show()</pre>
```


Observations

• All the outliers lesser and larger than 3 std deviations are removed from all Numerical columns after creating a dataset called numerical df.

One Hot Encoding

In [227]:

```
ohe = dv.groupby('trip_uuid')['route_type'].unique().reset_index()
ohe
```

Out[227]:

	trip_uuid	route_type
0	trip-153671041653548748	[FTL]
1	trip-153671042288605164	[Carting]
2	trip-153671043369099517	[FTL]
3	trip-153671046011330457	[Carting]
4	trip-153671052974046625	[FTL]
14812	trip-153861095625827784	[Carting]
14813	trip-153861104386292051	[Carting]
14814	trip-153861106442901555	[Carting]
14815	trip-153861115439069069	[Carting]
14816	trip-153861118270144424	[FTL]

14817 rows × 2 columns

In [228]:

```
ohe['routetype'] = ohe['route_type'].apply(lambda x: ','.join(map(str, x)))
ohe
```

Out[228]:

	trip_uuid	route_type	routetype
0	trip-153671041653548748	[FTL]	FTL
1	trip-153671042288605164	[Carting]	Carting
2	trip-153671043369099517	[FTL]	FTL
3	trip-153671046011330457	[Carting]	Carting
4	trip-153671052974046625	[FTL]	FTL
14812	trip-153861095625827784	[Carting]	Carting
14813	trip-153861104386292051	[Carting]	Carting
14814	trip-153861106442901555	[Carting]	Carting
14815	trip-153861115439069069	[Carting]	Carting
14816	trip-153861118270144424	[FTL]	FTL

14817 rows × 3 columns

In [229]:

```
ohe.drop('route_type' ,axis = 1, inplace = True)
```

In [230]:

1 ohe

Out[230]:

	trip_uuid	routetype
0	trip-153671041653548748	FTL
1	trip-153671042288605164	Carting
2	trip-153671043369099517	FTL
3	trip-153671046011330457	Carting
4	trip-153671052974046625	FTL
14812	trip-153861095625827784	Carting
14813	trip-153861104386292051	Carting
14814	trip-153861106442901555	Carting
14815	trip-153861115439069069	Carting
14816	trip-153861118270144424	FTL

14817 rows × 2 columns

In [254]:

```
ohe_df = ohe.merge(numerical_df , on = 'trip_uuid')
ohe_df
```

Out[254]:

	trip_uuid	routetype	osrm_distance	actual_distance_to_destination	segment_
0	trip- 153671041653548748	FTL	991.3523	824.732854	
1	trip- 153671042288605164	Carting	85.1110	73.186911	
2	trip- 153671043369099517	FTL	2372.0852	1932.273969	
3	trip- 153671046011330457	Carting	19.6800	17.175274	
4	trip- 153671052974046625	FTL	146.7918	127.448500	
14812	trip- 153861095625827784	Carting	73.4630	57.762332	
14813	trip- 153861104386292051	Carting	16.0882	15.513784	
14814	trip- 153861106442901555	Carting	63.2841	38.684839	
14815	trip- 153861115439069069	Carting	177.6635	134.723836	
14816	trip- 153861118270144424	FTL	80.5787	66.081533	

14817 rows × 9 columns

In [255]:

```
one_hot_encoded_data = pd.get_dummies(ohe_df, columns = ['routetype'])
one_hot_encoded_data
```

Out[255]:

	trip_uuid	osrm_distance	actual_distance_to_destination	segment_osrm_distar
0	trip- 153671041653548748	991.3523	824.732854	1320.47
1	trip- 153671042288605164	85.1110	73.186911	84.18
2	trip- 153671043369099517	2372.0852	1932.273969	2545.26
3	trip- 153671046011330457	19.6800	17.175274	19.87
4	trip- 153671052974046625	146.7918	127.448500	146.79
14812	trip- 153861095625827784	73.4630	57.762332	64.85
14813	trip- 153861104386292051	16.0882	15.513784	16.08
14814	trip- 153861106442901555	63.2841	38.684839	104.88
14815	trip- 153861115439069069	177.6635	134.723836	223.53
14816	trip- 153861118270144424	80.5787	66.081533	80.57
14817 r	ows × 10 columns			
4				>

STANDARD SCALER

In [260]:

1 nf

Out[260]:

	osrm_distance	actual_distance_to_destination	segment_osrm_distance	actual_time_in_ho
0	991.3523	824.732854	1320.4733	26.0333
1	85.1110	73.186911	84.1894	2.3833
2	2372.0852	1932.273969	2545.2678	55.7833
3	19.6800	17.175274	19.8766	0.9833
4	146.7918	127.448500	146.7919	5.6833
14812	73.4630	57.762332	64.8551	1.3833
14813	16.0882	15.513784	16.0883	0.3500
14814	63.2841	38.684839	104.8866	4.7000
14815	177.6635	134.723836	223.5324	4.4000
14816	80.5787	66.081533	80.5787	4.5833

14817 rows × 7 columns

In [261]:

- 1 **from** sklearn.preprocessing **import** StandardScaler
- 2 from sklearn.preprocessing import MinMaxScaler

In [264]:

```
scaler = StandardScaler()
   std_data = scaler.fit_transform(nf)
   std_data = pd.DataFrame(std_data, columns=['osrm_distance',
4
    'actual_distance_to_destination',
 5
    'segment_osrm_distance',
 6
    'actual_time_in_hour',
7
    'osrm_time_in_hour',
    'segment_actual_time_in_hour',
8
9
    'segment_osrm_time_in_hour'])
10
  std_data.head()
```

Out[264]:

	osrm_distance	actual_distance_to_destination	segment_osrm_distance	actual_time_in_hour	(
0	2.120596	2.160182	2.633784	2.146194	
1	-0.323634	-0.299454	-0.333670	-0.381473	
2	5.844580	5.784909	5.573660	5.325817	
3	-0.500108	-0.482768	-0.488040	-0.531102	
4	-0.157274	-0.121869	-0.183405	-0.028775	

→

Min Max Scaler

In [265]:

```
scaler = MinMaxScaler()
   MinMax_data = scaler.fit_transform(nf)
   MinMax_data = pd.DataFrame(MinMax_data, columns=['osrm_distance',
4
    'actual_distance_to_destination',
 5
    'segment_osrm_distance',
    'actual_time_in_hour',
6
7
    'osrm_time_in_hour',
8
    'segment_actual_time_in_hour',
9
    'segment osrm time in hour'])
10 MinMax_data.head()
```

Out[265]:

	osrm_distance	actual_distance_to_destination	segment_osrm_distance	actual_time_in_hour (
0	0.346972	0.374449	0.373134	0.248242
1	0.026859	0.029463	0.021373	0.021419
2	0.834689	0.882850	0.721625	0.533568
3	0.003747	0.003752	0.003074	0.007992
4	0.048647	0.054371	0.039185	0.053069
4				>

Insights

- · General Inference from Raw Data
 - Train and test data imbalance in numbers but zero missing elements
 - FTL Full Truck Load: FTL shipments get to the destination sooner, as the truck is making no other pickups or drop-offs along the way
 - Carting: Handling system consisting of small vehicles (carts)
 - From 1504 total different routes, we have
 - o 922 (61%) of the routes are Carting, which consists of small vehicles and
 - 582 (38.69%) of total routes are FTL: which are Full Truck Load get to the destination sooner. as no otther pickups or drop offs along the way.
 - we have 14817 different trips happended between source to destinations.
 - looks like source id and source name are the same things, name is the name of warehouse and id is the unique id for the same but there is a difference of 10
 - the destination center and destination id just like the source are the same but a difference of 13 missing values

HYPOTHESIS TEST RESULTS

- (time taken btwn odstart and od end and start scan to end scan) are closly similar.
 - from 2 sample t-test ,
 - we can also conclude that Average time_taken_btwn_odstart_and_od_end for population is also equal to Average start_scan_to_end_scan for population.
- mean actual time VS orsm estimate mean time
 - from ttestwe can conclude, tht population mean actual time taken to complete delivert from source to warehouse and orsm estimate mean time for population are not same.
 - actual time is higher than the osrm estimated time for delivery.
- Actual Time Vs segment osrm distance
 - from two sample ttest, we can conclude that Population average for Actual Time taken to complete delivery trip and segment osrm distance are not same.
- OSRM Time Vs segment osrm time
 - from two sample ttest, we can conclude that Population average for OSRM Time taken to complete delivery trip and segment osrm time are not same.
- · Plotting and Aggregating
 - In[144] The above table shows the source state and destination state for a single trip . As you can see, for a single trip unid there are multiple check points.
 - In[197] we can clearly see that when ever the trip is long wrt distance the number of check points are also more and vice versa
 - In[176] The busiest state wrt to trips are in the above order .we can infer that the busiest states are
 mostly metro states as well as industrial states.
 - In[253] All the outliers lesser and larger than 3 std deviations are removed from all Numerical columns after creating a dataset called numeriacal df.

Plotting Insights

- the souce to destination city routes having largest numbers of trip happening having large distnaces :
 - Guwahati TO Bhiwandi, Bengaluru TO Chandigarh, Bengaluru TO Delhi, Gurgaon TO MAA Chennai Airport, Bhiwandi TO Kolkata, Bengaluru TO Kolkata, Gurgaon TO Hyderabad, Gurgaon TO Kolkata
- Routes which are busiest from source to destinations and states in which highest activities are noticed :
 - Delhi to Haryana is the busiest route, having more than 400 trips in between. Some of such busy routes are Haryana to Uttar Pradesh , Chandigarh to Punjab , Delhi to Uttar Pradesh .
- Within the state, Maharashtra, Karnataka, Tamil Nadu are some states having above 1000 trips.

- From above chart are some warehouse having Maximum traffic and hence busiest junctions.
 - Bengaluru Karnataka, Gurgaon Haryana, Mumbai Maharashtra, Hyderabad Telangana, Delhi, Pune Maharashtra, Chandigarh Punjab, Chennai Tamil Nadu, Sonipat Haryana, Kolkata West Bengal, Ahmedabad Gujarat, MAA Tamil Nadu, Jaipur Rajasthan, Kanpur Uttar Pradesh, Surat Gujarat, Muzaffrpur Bihar, FBD Haryana, Bhopal Madhya Pradesh, Noida Uttar Pradesh.

Recommendation

- In the busiest corridors and Metro cities on which the average delivery time is larger, it would be appropreate to deliver the products via small carting vehicles than FLT's but keeping in mind the expenditure and the income generated we need to strike a balance between both based on the data aggregation done with respect to state, trips and average time and number of orders.
- Increasing the connectivity in Tier 2 and Tier 3 cities along with professional tie ups with several ecommerce giants can increase the revenue as well as the reputation on Connectivity across boarders.
- We can work on optimizing the scanning time on both ends which is start scanning time and end scanning time so that the delivery time can be equated to the OSRM delivery time.

<pre>In []:</pre>						
1						