Кодирование и декодирование текстов. Равномерные и неравномерные коды

Равномерные (фиксированной длины) и неравномерные (переменной длины) коды, уникальная декодируемость, префиксные коды, неравенство Крафта— Макмиллана, идея кода Хаффмана.

Цели	Сценарий
Быстрые примеры	Задачи с решениями
Мини-викторина	Конспект
Домашнее задание	Визуальные подсказки

Цели урока

- Различать равномерные и неравномерные коды, понимать их назначение.
- Проверять префиксность и уникальную декодируемость кодов.
- Оценивать среднюю длину кода и сравнивать с энтропией.
- Декодировать поток по словарю; понимать идею кода Хаффмана.

Сценарий видео (7-11 минут)

- (0:00-0:40) Мотивация: почему одинаково кодировать не всегда выгодно; частые буквы vs редкие.
- (0:40–3:00) Базовые определения
 - ∘ **Равномерный код** фиксированная длина слова: m = 「log₂ N]
 - **Неравномерный код** переменная длина, выгодно для частотных символов

- **Префиксный код** ни одно слово не является префиксом другого → мгновенная декодировка.
- ∘ **Крафт—Макмиллан**: для префиксного кода \(\sum 2^{-l_i} \le 1\)
- \circ Средняя длина: L_{avg} = \sum p_i\, l_i; нижняя граница H(X) \le L_{avg} < H(X)+1 для Хаффмана.
- (3:00-5:30) Префиксность и декодирование
 - Как выявить конфликт: префикс, двусмысленность при декодировании.
 - Алгоритм декодирования: идти по дереву; при листе выводить символ.
- (5:30-7:30) Идея Хаффмана (интуитивно)
 - Сливаем две наименее вероятные вершины, строим дерево, назначаем 0/1 по ребрам.
 - Выигрыш: частым короткие коды, редким длинные.

Быстрые примеры

ПРИМЕР 1: РАВНОМЕРНЫЙ КОД

N = 40 символов $\rightarrow m = [\log_2 40] = 6$ бит

Сообщение 200 символов: І = 200

× 6 = 1200 бит = 150 В.

ПРИМЕР 2: НЕРАВНОМЕРНЫЙ (ПРЕФИКСНЫЙ) КОД

Словарь: А→0, В→10, С→110, D→111

Строка 0110111 декодируется как A C D: 0 | 110 | 111.

ПРИМЕР 3: КРАФТ— МАКМИЛЛАН

Длины: 1,2,3,3

Cymma: $2^{-1}+2^{-2}+2^{-3}+2^{-3}=1$

возможен префиксный код.

Закрепление: задачи с подробными решениями

1. Равномерный код: объём сообщения

Условие: алфавит 50 символов, длина 180. Найти объём.

Ответ: 135 В.

2. Проверка префиксности

Условие: $A \to 0$, $B \to 01$, $C \to 011$, $D \to 111$. Является ли код префиксным?

Решение: слово В (01) имеет префикс А (0) → **не префиксный**, декодирование неоднозначно.

Крафт-сумма может быть ≤1, но префиксность не гарантируется — это лишь необходимое условие для существования префиксного кода с такими длинами.

3. Декодирование по словарю

Условие: А→0, В→10, С→110, D→111. Декодировать 01011110110

Решение: 0 | 10 | 111 | 10 | 110 → АВ ВВ С.

Ответ: А В D В С.

4. Средняя длина и выигрыш

Условие: p(A,B,C,D) = (0.4, 0.3, 0.2, 0.1); код А→0, В→10, С→110, D→111.

Решение:
$$L_{avg} = 0.4.1 + 0.3.2 + 0.2.3 + 0.1.3 = 1.9$$
 бита.

Равномерный: $m = \lceil \log_2 4 \rceil = 2 \rightarrow выигрыш (2 - 1.9 = 0.1)$ б/симв.

5. Идея Хаффмана (мини-пример)

Условие: p(A,B,C,D) = (0.4, 0.2, 0.2, 0.2). Построить коды.

Решение (один из вариантов): слить три по 0.2 последовательно; можно получить $A \! \to \! 0$, $B \! \to \! 10$, $C \! \to \! 110$, $D \! \to \! 111$. Коды Хаффмана не единственны, но L_{avg} минимальна среди префиксных бин. кодов.

Мини-викторина

- Что такое префиксный код? → Ни одно слово не является префиксом другого.
- Зачем нужны неравномерные коды? → Сократить среднюю длину при неравных вероятностях.
- Крафт-сумма для длин (1,2,3,3) равна? → 1.
- Равномерный код для N=20 символов имеет длину? → 5 бит.
- Как декодировать поток в префиксном коде? → Идти по дереву до листа.

Конспект (коротко)

- Равномерный: $m = \lceil \log_2 N \rceil$ бит/символ.
- Неравномерный: переменные длины; эффективен при разных вероятностях.
- Префиксный: мгновенная декодируемость; проверка префикса.
- **Крафт**—**Макмиллан**: \(\sum 2^{-l_i} \le 1\) существование префиксного кода.
- **Средняя длина**: L_{avg} = \sum p_i l_i для Хаффмана близка к энтропии.

Домашнее задание (самопроверка)

1. Задача A: N=64, длина текста 300. Найти объём (равномерный).

Ответ: m=6; I=300×6=1800 бит = 225 В.

2. Задача В: Длины (1,2,3,3,4). Выполнима ли Крафт-сумма?

Решение: 1/2+1/4+1/8+1/8+1/16=1.0625 > 1 → нет префиксного кода.

3. **Задача С**: Декодировать 0110110111 при словаре А→0, В→10, С→110, D→111.

Ombem: A C B C D.

Визуальные подсказки

- Дерево кода с листами A,B,C,D.
- Таблица префиксности: примеры допустимых/недопустимых наборов.
- Гистограмма частот → короткие/длинные коды.

Подготовлено для урока «Кодирование и декодирование текстов» · Печать: Ctrl/Cmd + P