The steepest edge rule is one of the most popular. The idea is to maximize the ratio

$$\frac{c(u^+ - u)}{\|u^+ - u\|}.$$

The random edge rule picks the index $j^+ \notin K$ of the entering basis vector uniformly at random among all eligible indices.

Let us now return to the issue of the initialization of the simplex algorithm. We use the Linear Program (\widehat{P}) introduced during the proof of Theorem 45.7.

Consider a Linear Program (P2)

maximize
$$cx$$

subject to $Ax = b$ and $x > 0$,

in standard form where A is an $m \times n$ matrix of rank m.

First, observe that since the constraints are equations, we can ensure that $b \ge 0$, because every equation $a_i x = b_i$ where $b_i < 0$ can be replaced by $-a_i x = -b_i$. The next step is to introduce the Linear Program (\hat{P}) in standard form

maximize
$$-(x_{n+1} + \cdots + x_{n+m})$$

subject to $\widehat{A}\widehat{x} = b$ and $\widehat{x} \ge 0$,

where \widehat{A} and \widehat{x} are given by

$$\widehat{A} = \begin{pmatrix} A & I_m \end{pmatrix}, \quad \widehat{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_{n+m} \end{pmatrix}.$$

Since we assumed that $b \geq 0$, the vector $\hat{x} = (0_n, b)$ is a feasible solution of (\hat{P}) , in fact a basic feasible solutions since the matrix associated with the indices $n+1, \ldots, n+m$ is the identity matrix I_m . Furthermore, since $x_i \geq 0$ for all i, the objective function $-(x_{n+1} + \cdots + x_{n+m})$ is bounded above by 0.

If we execute the simplex algorithm with a pivot rule that prevents cycling, starting with the basic feasible solution $(0_n, d)$, since the objective function is bounded by 0, the simplex algorithm terminates with an optimal solution given by some basic feasible solution, say (u^*, w^*) , with $u^* \in \mathbb{R}^n$ and $w^* \in \mathbb{R}^m$.

As in the proof of Theorem 45.7, for every feasible solution $u \in \mathcal{P}(A, b)$, the vector $(u, 0_m)$ is an optimal solution of (\widehat{P}) . Therefore, if $w^* \neq 0$, then $\mathcal{P}(A, b) = \emptyset$, since otherwise for every feasible solution $u \in \mathcal{P}(A, b)$ the vector $(u, 0_m)$ would yield a value of the objective function $-(x_{n+1} + \cdots + x_{n+m})$ equal to 0, but (u^*, w^*) yields a strictly negative value since $w^* \neq 0$.