Automatic Reductions from PH into STRIPS or How to Generate Short Problems with Very Long Solutions

Aldo Porco Alejandro Machado Blai Bonet

ICAPS. Rome, Italy. June 2013.

Recap from ICAPS-2011

Introduced a software tool that maps instances of an NP decision problem expressed in $SO\exists$ into a STRIPS problem such that

- 1) instance is a positive instance iff the STRIPS problem has a plan
- 2) translation runs in polynomial time
- 3) STRIPS problem is decidable in non-deterministic polytime (NP)
- 4) plan, when exists, encodes the solution to input instance

Software Tool

Input:

- ullet signature σ that contains relational symbols
- SO \exists formula Φ that encodes NP problem
- finite structure A that encodes instance

Output:

• PDDLs for a fragment of STRIPS that is decidable in NP

Guarantees:

- ullet runs in polytime for fixed σ and Φ
- output is no harder that input (complexity wise)

Contributions

- Extend tool to target Polynomial Time Hierarchy (PH) instead of only NP
- Generated problems are general STRIPS problems
- Translator runs in polynomial time
- Experimental evaluation over (somewhat) difficult instances

Use:

- Leverage current (planning) technology to NP problems
- Design new benchmarks for planning and test planners and heuristics

Descriptive Complexity Theory (DCT)

Studies complexity theory from a logical perspective without commitments to any model of computation

Major complexity classes had been characterized using different fragments of logic:

- NL is captured by SO \exists -Krom (CNF with ≤ 2 literals per clause)
- P is captured by SO \exists -Horn (CNF with ≤ 1 positive literal)
- NP is captured by SO∃
- PH is captured by SO
- PSPACE is captured by SO+TC (SO + transitive-closure syntactic construct)

Polynomial Time Hierarchy (PH)

Infinite hierarchy of classes that contains P, NP, NP^{NP}, NP^{NPNP}, etc.

Defined as PH = $\bigcup_{k\geq 0} \Sigma_k^P$ where (using oracles):

- $\Sigma_0^P = \mathsf{P}$
- $\Sigma_1^P = \mathsf{NP}^{\Sigma_0^P} = \mathsf{NP}^\mathsf{P} = \mathsf{NP}$
- . . .
- $\bullet \ \Sigma_{k+1}^P = \mathsf{NP}^{\Sigma_k^P}$

 $\mathsf{PH} = \mathsf{Co}\text{-}\mathsf{PH}$ and hence $\mathsf{Co}\text{-}\mathsf{NP}$ and $\Pi^P_k \in \mathsf{PH}$ for every $k \geq 0$

It is believed that PH \neq PSPACE; otherwise PSPACE = Σ_k^P from some k

Cannonical problem in Σ_k^P is to decide validity of $\exists \bar{x}_1 \forall \bar{x}_2 \exists \bar{x}_3 \cdots \mathcal{Q} \bar{x}_k. \varphi$

Results 1/3 Random formulas of type $\exists \bar{x} \forall \bar{y} \exists \bar{z}. \varphi(\bar{x}, \bar{y}, \bar{z})$ in Σ_3^P

∃∀∃	#3	#∀	#3	n	+	_	time	len	PDDL in KB
	10	2	30	5	_	5	4,199.2	_	17.5
		2	50	5	_	5	2,313.9	_	18.4
	30	2	30	5		5	3,210.7	_	18.5
		2	50	5	_	5	3,166.3	_	19.4
	50	2	30	5	_	1	3,313.4	_	19.4
		2	50	5	3	2	3,450.9	640	20.4

- Random ∃∀∃ problems with 150 clauses each
- Solved with Rintanen's SAT-based planner M
- LAMA'11 does not perform well on this type of problems

Results 2/3
Random instances of $\overline{3}$ Col in $\Pi_1^P = \text{Co-NP}$

\overline{V}	n	+	_	time / +	time / —	plan len	PDDL
4	5	1	4	0.1	0.8	1,731	0.4
5	5	2	3	0.6	67.9	6,695	0.6
6	5	2	3	3.4	464.9	26,163	0.7
7	5	2	2	74.8	1.6	102,935	8.0
8	5	1	2	624.0	5.9	406,851	1.0
9	5	—	1	_	0.3	_	1.1

- 5 random graphs for each number of vertices (V)
- Solved with LAMA'11 and obtained very long plans!
- M does not perform well on this type of problems
- How come does LAMA'11 find a plan with > 400k actions?

Results 3/3Random instances of $\overline{3}$ Col in $\Pi_1^P = \text{Co-NP}$

V	n	+	_	time / +	time / -	plan len	PDDL
4	5	1	4	1,850.1	0.1	1,731	0.4
5	5	_	3	_	11.7	_	0.6
6	5	_	3	_	81.9	_	0.7
7	5	_	2	_	0.2	_	8.0
8	5	_	2	_	1.0	_	1.0
9	5	_	1	_	0.0	_	1.1

- The same random instances for $\overline{3Col}$
- Solved with blind search
- Significantly worse than LAMA'11. Thus, these problems are non-trivial
- Conjecture: LAMA'11 solves these instances because of implicit serialization of subgoals enforced by the multiple queues

Example: SAT and UNSAT

Defined over vocabulary $\sigma = \langle P^2, N^2 \rangle$ where:

- P(x,y) tells that variable x appears positive in clause y
- ullet N(x,y) tells that variable x appears $\underset{}{\operatorname{negative}}$ in clause y

$$\Psi_{\mathsf{SAT}} = \underbrace{(\exists T)}(\forall y)(\exists x)[(P(x,y) \land T(x)) \lor (N(x,y) \land \neg T(x))$$
 s.o. unary relation used to encode guessed assignment

$$\Psi_{\text{UNSAT}} = \underbrace{(\forall T)(\exists y)(\forall x)[(P(x,y) \Rightarrow \neg T(x)) \land (N(x,y) \Rightarrow T(x))}_{\text{s.o. unary relation used to encode all assignments}$$

Example: SAT

$$\Psi_{\mathsf{SAT}} = (\exists T)(\forall y)(\exists x)[(P(x,y) \land T(x)) \lor (N(x,y) \land \neg T(x))$$

Instance:
$$\underbrace{(x_0 \vee \neg x_1 \vee x_2)}_{\text{clause 0}} \wedge \underbrace{(\neg x_0 \vee \neg x_2)}_{\text{clause 1}} \wedge \underbrace{(\neg x_0 \vee x_1)}_{\text{clause 2}}$$

Instance is satisfiable with model $\{\neg x_0, \neg x_1, \neg x_2\}$

STRIPS plan:

```
(begin-proof)
(end-guess-T)
(prove-and-2 var0 var1)
(prove-or-2 var0 var1)
(prove-exists var0)
(prove-forall-base var0)
(prove-and-2 var1 var0)
(prove-or-2 var1 var0)
(prove-exists var1)
(prove-forall-induc var0 var1)
(prove-and-2 var2 var0)
(prove-or-2 var2 var0)
(prove-exists var2)
(prove-forall-induc var1 var2)
(prove-so-exist-T var2)
(prove-goal)
```

Example: UNSAT

$$\Psi_{\mathsf{UNSAT}} = (\forall T)(\exists y)(\forall x)[(N(x,y) \Rightarrow T(x)) \land (P(x,y) \Rightarrow \neg T(x))]$$

Instance:
$$(x_0) \land (\neg x_0 \lor \neg x_1) \land (\neg x_0 \lor x_1)$$

Instance is unsatisfiable

STRIPS plan:

```
(begin-proof)
                                            (prove-or 2 2 var2 var1)
                                                                                        (prove-or 1 2 var1 var0)
(init-so-forall-T)
                                            (prove-and var2 var1)
                                                                                        (prove-or 2 1 var1 var0)
                                            (prove-forall_induc var2 var0 var1)
                                                                                        (prove-and var1 var0)
(prove-or 1 1 var0 var0)
                                            (prove-exists var2 var1)
                                                                                        (prove-forall base vari var0)
(prove-or 2 2 var0 var0)
                                                                                        (prove-or 1 2 var1 var1)
(prove-and var0 var0)
                                            (change_for_coin_T var0)
                                                                                        (prove-or_2_1 var1 var1)
                                           (one_plus_one_0_T var0 var1)
(prove-forall base var0 var0)
                                                                                        (prove-and var1 var1)
                                           (zero_plus_one_T var1)
(prove-or_1_1 var0 var1)
                                                                                        (prove-forall_induc var1 var0 var1)
(prove-or_2_2 var0 var1)
                                                                                        (prove-exists var1 var1)
(prove-and var() var()
                                            (prove-or 1 1 var0 var0)
                                           (prove-or_2_2 var0 var0)
(prove-forall_induc_var0_var0_var1)
                                                                                        (change_for_coin_T var0)
                                                                                        (one plus one 0 T var0 var1)
(prove-exists var0 var1)
                                            (prove-and var0 var0)
                                                                                        (one_plus_one_final_T var1)
                                            (prove-forall base var0 var0
(change_for_coin_T var0)
                                            (prove-or_1_2 var0 var1)
(zero plus one T var0)
                                            (prove-or 2 1 var0 var1)
                                                                                        (prove-goal)
                                            (prove-and var0 var1)
(prove-or_1_2 var2 var0)
                                            (prove-forall_induc var0 var0 var1)
(prove-or 2 1 var2 var0)
                                            (prove-exists var0 var1)
(prove-and var2 var0)
(prove-forall base var2 var0)
                                            (change for coin T var0)
(prove-or 1 1 var2 var1)
                                            (zero_plus_one_T var0)
```

Idea of Translation

For FO formulas (from ICAPS-11):

- fluents represent validity of subformulas where parameters stand for free variables
- operators establish validity of formulas (fluents) from validity of subformulas (inductively in structure of formulas)

For SO existential quantifiers (similar to ICAPS-11):

- plan chooses one interpretation of quantified symbol
- plan then moves and proves validity with chosen interpretation

For SO universal quantifiers:

- plan iterates over all interpretations of quantified symbol
- for each such interpretation, plan proves validity

Iteration over All Interpretations

Consider a unary relation T and a universe with n objects

There are 2^n different interpretations of T that can be identified with the 2^n differents binary words of length n:

i-th element belongs to T's interpretation iff *i*-th bit in word is 1

Iterating over interpretations is done by iterating over such words

The word is treated as a counter that starts at ' $00\cdots0$ ' and is incremented until ' $11\cdots1$ ' by adding 1

How to Capture PSPACE

PSPACE = SO + TC

 $\mathsf{TC}[\Psi](\bar{x},\bar{y})$ denotes connectivity on a graph defined by the formula $\Psi(\bar{u},\bar{v})$

If we use the fluent $\mathfrak{F}[\Psi](\bar{u},\bar{v})$ to denote the validity of $\Psi(\bar{u},\bar{v})$, then can design actions to prove the validity of $\mathsf{TC}[\Psi](\bar{x},\bar{y})$

Therefore, implementing $TC[\Psi]$ in STRIPS is straightforward:

it is just finding a path on a graph whose edges are given by fluents $\mathfrak{F}[\Psi](\bar{u},\bar{v})$

Summary

- Extended the tool presented in ICAPS-11 so that:
- targets the much bigger complexity class PH
- implements a type system that permits more efficient translations
- Performed experiments and got interesting results for LAMA'11
- Tool can be used to design challenging benchmarks for planners
- Tool can be extended to target whole PSPACE without much work

