Emission Sources - Maximum Allowable Emission Rates

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name	Air Contaminant	Emission	Rates
No. (1)	(2)	Name (3)	lbs/hour	TPY (4)
Normal Operations Emission Cap (10)	Combustion Units, Cooling Towers, Flares/Vapor Combustor, Fugitives (5), Loading, Process Vents, Storage Tanks, and Wastewater	Benzene	11.00	12.24
Normal Operations Emission Cap (10)	Combustion Units, Flares/Vapor Combustor, Fugitives, Process Vents, and Storage Tanks	H₂S	2.84	6.88
H-028	Crude Charge Heater 1 (100-H1)	NO _x	11.18	23.41
	(100 111)	СО	14.61	44.41
		VOC	1.10	4.80
		SO ₂	15.53	14.52
		РМ	1.51	6.63
		PM ₁₀	1.51	6.63
		PM _{2.5}	1.51	6.63
H-036	Crude Charge Heater 2 (100-H2)	NO _x	11.18	31.56
	(130 112)	со	14.61	55.54
		VOC	1.10	4.80
		SO ₂	13.53	14.52
		PM	1.51	6.63
		PM ₁₀	1.51	6.63
		PM _{2.5}	1.51	6.63

Emission Sources - Maximum Allowable Emission Rates

				-
H-016	Vacuum Unit Charge Heater (14-H1401)	NO _x	4.95	21.66
		СО	8.43	18.45
		VOC	0.76	3.34
		SO ₂	9.41	10.10
		PM	1.05	4.62
		PM_{10}	1.05	4.62
		PM _{2.5}	1.05	4.62
H-021	ROSE "DAO" Heater (160-H1)	NO _x	1.90	8.31
	(100 1.12)	СО	2.41	5.27
		VOC	0.22	0.96
		SO ₂	2.70	2.89
		PM	0.30	1.32
		PM ₁₀	0.30	1.32
		PM _{2.5}	0.30	1.32
H-022	Asphalt Heater (160-H2)	NO _x	0.98	4.22
		СО	1.62	3.51
		VOC	0.15	0.64
		SO ₂	1.81	1.92
		PM	0.20	0.88
		PM ₁₀	0.20	0.88
		PM _{2.5}	0.20	0.88

Emission Sources - Maximum Allowable Emission Rates

H-020	Isostripper Reboiler Heater (440-H1)	NO _x	1.99	4.90
		СО	3.08	3.79
		VOC	0.27	0.67
		SO ₂	1.90	1.53
		PM	0.37	0.92
		PM ₁₀	0.37	0.92
		PM _{2.5}	0.37	0.92
B-007	"BTX" Boiler (54-F1)	NO _x	12.33	34.16
		СО	18.02	27.76
		VOC	1.26	4.70
		SO ₂	0.17	0.48
		PM	1.74	6.49
		PM ₁₀	1.74	6.49
		PM _{2.5}	1.74	6.49
H-043	Reformate Splitter Heater No. 1.	NO_x	4.27	9.86
	(54-H101)	СО	4.24	4.90
		VOC	0.38	0.89
		SO ₂	4.73	2.68
		PM	0.53	1.22
		PM ₁₀	0.53	1.22
		PM _{2.5}	0.53	1.22

Emission Sources - Maximum Allowable Emission Rates

	Reformate Splitter Heater No. 2	NO _x	1.78	5.75
	(54-H102)	СО	3.03	4.90
		VOC	0.27	0.89
		SO ₂	3.38	2.68
		РМ	0.38	1.22
		PM_{10}	0.38	1.22
		PM _{2.5}	0.38	1.22
B-004	Boiler 6F1-A and Boiler 6F1-B (6F1-A & 6F1-B)	NO _x	25.97	72.43
		СО	9.18	12.80
		VOC	0.80	2.23
		SO ₂	5.66	5.16
		PM	1.11	3.08
		PM ₁₀	1.11	3.08
		PM _{2.5}	1.11	3.08

Emission Sources - Maximum Allowable Emission Rates

				1
B-006	East Plant Boiler (6-F2)	NO _x	13.07	49.82
		СО	6.81	12.98
		VOC	0.59	2.24
		SO ₂	0.08	0.23
		РМ	0.81	3.09
		PM ₁₀	0.81	3.09
		PM _{2.5}	0.81	3.09
H-041	DOT H ₂ Recycle Furnace (F2201)	NO _x	3.40	5.70
		СО	2.90	2.43
		VOC	0.26	0.44
		SO ₂	3.24	1.33
		РМ	0.36	0.60
		PM ₁₀	0.36	0.60
		PM _{2.5}	0.36	0.60
H-039	No. 1 SRU Hot Oil Heater (H101)	NO _x	0.69	1.60
	(11201)	СО	0.43	0.50
		VOC	0.04	0.08
		SO ₂	0.27	0.20
		РМ	0.05	0.11
		PM ₁₀	0.05	0.11
		PM _{2.5}	0.05	0.11

Emission Sources - Maximum Allowable Emission Rates

H-047	No. 2 SRU Hot Oil Heater (H401)	NO _x	1.84	6.58
		СО	2.06	3.69
		VOC	0.18	0.65
		SO ₂	2.28	2.00
		РМ	0.25	0.91
		PM ₁₀	0.25	0.91
		PM _{2.5}	0.25	0.91

Emission Sources - Maximum Allowable Emission Rates

H-015A	Lubricating Oil Crude Atmospheric Heater	NO _x	0.58	2.53
	(H1001)	СО	1.01	2.20
		VOC	0.09	0.38
		SO ₂	0.02	0.04
		PM	0.12	0.53
		PM_{10}	0.12	0.53
		PM _{2.5}	0.12	0.53
H-015B	Lubricating Oil Crude Atmospheric Heater	NO_x	0.32	1.41
	(H1002)	СО	0.55	1.23
		VOC	0.05	0.22
		SO ₂	0.01	0.03
		PM	0.06	0.30
		PM ₁₀	0.06	0.30
		PM _{2.5}	0.06	0.30
H-037	HDU Charge Heater 2 (H101)	NO_x	2.68	6.72
	(1.101)	СО	3.02	3.78
		VOC	0.26	0.66
		SO ₂	1.86	1.52
		PM	0.36	0.91
		PM_{10}	0.36	0.91
		PM _{2.5}	0.36	0.91
H-038	HDU Reboiler Heater 2 (H102)	NO_x	1.85	4.65
	(202)	СО	2.86	3.60
		VOC	0.25	0.63

Emission Sources - Maximum Allowable Emission Rates

		SO ₂	1.76	1.45
		РМ	0.34	0.87
		PM ₁₀	0.34	0.87
		PM _{2.5}	0.34	0.87
H-014	Crude Charge Heater 3	NO _x	4.16	13.11
		СО	5.51	8.69
		VOC	0.50	1.58
		SO ₂	6.16	4.76
		РМ	0.69	2.18
		PM ₁₀	0.69	2.18
		PM _{2.5}	0.69	2.18
H-034	H.C.U. Recycle Heater (H1401)	NO _x	3.47	11.24
		СО	4.29	6.95
		VOC	0.37	1.21
		SO ₂	2.64	2.80
		РМ	0.52	1.67
		PM ₁₀	0.52	1.67
		PM _{2.5}	0.52	1.67

Emission Sources - Maximum Allowable Emission Rates

H-035	H.C.U. Debutanizer	NO	2.22	11.07
11-033	Rehoiler Heater (H1402)	NO _x	3.39	11.67
		СО	5.24	9.02
		VOC	0.46	1.57
		SO ₂	3.23	3.63
		PM	0.63	2.17
		PM_{10}	0.63	2.17
		PM _{2.5}	0.63	2.17
H-018	H.C.U. Fractionation Heater (H1501A)	NO _x	2.40	10.51
		СО	3.71	16.22
		VOC	0.32	1.42
		SO ₂	2.28	3.27
		PM	0.45	1.96
		PM ₁₀	0.45	1.96
		PM _{2.5}	0.45	1.96
H-019	H.C.U. Fractionation Heater (H1501B)	NO _x	2.40	8.02
		СО	3.71	6.20
		VOC	0.32	1.09
		SO ₂	2.28	2.50
		PM	0.45	1.50
		PM ₁₀	0.45	1.50
		PM _{2.5}	0.45	1.50

Emission Sources - Maximum Allowable Emission Rates

H-045	DHT Charge Heater	NO _x	1.91	8.37
(H2800 	(H28001)	СО	2.28	4.99
		VOC	0.21	0.91
		SO ₂	2.55	2.73
		PM	0.28	1.25
		PM ₁₀	0.28	1.25
		PM _{2.5}	0.28	1.25
H-046	Fractionator Feed Heater (H28002)	NO _x	2.69	11.76
		СО	3.56	7.79
		VOC	0.32	1.41
		SO ₂	3.97	4.26
		PM	0.44	1.95
		PM ₁₀	0.44	1.95
		PM _{2.5}	0.44	1.95
H-023	Dowtherm Heater (160-H3)	NO _x	0.09	0.27
		СО	0.15	0.22
		VOC	0.01	0.04
		SO ₂	0.17	0.13
		PM	0.02	0.06
		PM ₁₀	0.02	0.06
		PM _{2.5}	0.02	0.06

Emission Sources - Maximum Allowable Emission Rates

1	I			
H-004 Process Oil (H401)	Process Oil Treater (POT) (H401)	NO _x	0.41	1.79
		CO	0.72	3.12
		VOC	0.06	0.27
		SO ₂	0.01	0.03
		РМ	0.09	0.37
		PM ₁₀	0.09	0.37
		PM _{2.5}	0.09	0.37
H-031	No. 1 HDU Stripper Rehoiler Heater (H501)	NO _x	0.79	3.44
		СО	1.32	5.79
		VOC	0.12	0.51
		SO ₂	1.46	1.57
		РМ	0.16	0.71
		PM ₁₀	0.16	0.71
		PM _{2.5}	0.16	0.71
H-010	No. 1 HDU Reactor Charge Heater (H502)	NO_x	1.05	4.59
		СО	1.76	7.71
		VOC	0.16	0.69
		SO ₂	1.95	2.09
		РМ	0.22	0.96
		PM ₁₀	0.22	0.96
		PM _{2.5}	0.22	0.96

Emission Sources - Maximum Allowable Emission Rates

	No. 2 Defense a Chance			
H-030	No. 2 Reformer Charge Heaters (H201, H203,	NO _x	19.06	-
		СО	13.63	-
		VOC	2.38	-
		SO ₂	16.78	-
		PM	3.29	-
		PM_{10}	3.29	-
		PM _{2.5}	3.29	-
H-032	No. 2 Reformer Charge Heater (H202)	NO _x	12.27	-
		СО	11.16	-
		VOC	0.97	-
		SO ₂	6.87	-
		PM	1.35	-
		PM ₁₀	1.35	-
		PM _{2.5}	1.35	-
H-033	No. 2 Reformer Stab.	NO _x	2.25	-
		СО	3.48	-
		VOC	0.30	-
		SO ₂	2.14	-
		PM	0.42	-
		PM ₁₀	0.42	-
		PM _{2.5}	0.42	-
H-012	No.1 Reformer Charge Heaters (H504, H505A	NO _x	5.41	-
	ricercis ii (304, 1130.34.	СО	6.34	-

Emission Sources - Maximum Allowable Emission Rates

		VOC	0.57	_
		SO ₂	7.00	
				-
		PM	0.78	-
		PM ₁₀	0.78	-
		PM _{2.5}	0.78	-
H-013	No. 1 Stabilizer Reboiler Heater (H506)	NO _x	1.86	-
		СО	1.05	-
		VOC	0.09	-
		SO ₂	1.15	-
		PM	0.13	-
		PM ₁₀	0.13	-
		PM _{2.5}	0.13	-
H-030, H-032, H-033, H-012, and	Subcaps for No.1 and No.2 Reformer Unit	NO _x	-	91.88
		СО	-	59.57
		VOC	-	10.46
		SO ₂	-	26.77
		PM	-	14.46
		PM ₁₀	-	14.46
		PM _{2.5}	-	14.46
S-007, S-008, S-033, S-036, S-039, S-044, S-119, S-120, S-130, S-211, S-212, S-213, S-214, S-215, S-216, S-220, S-221, S-222, S-223, S-224, S-225, S-316, S-319, S-403, S-680-6, S-680-7, S-680-8, S-680-9, Project Number: 254933	Subcaps for Storage Tanks	VOC	14.08	18.67

Emission Sources - Maximum Allowable Emission Rates

		PM _{2.5}	0.42	-
H-012	No.1 Reformer Charge Heaters (H504, H505A,	NO _x	5.41	-
	H505B)	СО	6.34	-
		VOC	0.57	-
		SO ₂	7.00	-
		PM	0.78	-
		PM ₁₀	0.78	-
		PM _{2.5}	0.78	-

Emission Sources - Maximum Allowable Emission Rates

H-013	No. 1 Stabilizer Reboiler Heater (H506)	NO_x	1.86	-
		СО	1.05	-
		VOC	0.09	-
		SO ₂	1.15	-
		PM	0.13	-
		PM ₁₀	0.13	-
		PM _{2.5}	0.13	-
H-030, H-032, H-033, H-012, and	Subcaps for No.1 and No.2 Reformer Unit	NO_x	-	91.88
H-013	Heaters (H504, H505A, H505B,	СО	-	59.57
	H506, H201, H202, H203, H204, H205)	VOC	-	10.46
	11204, 11203)	SO ₂	-	26.77
		PM	-	14.46
		PM ₁₀	-	14.46
		PM _{2.5}	-	14.46
S-007, S-008, S-033, S-036, S-039, S-044, S-119, S-120, S-130, S-211, S-212, S-213, S-214, S-215, S-216, S-220, S-221, S-222, S-223, S-224, S-225, S-316, S-319, S-403, S-680-6, S-680-7, S-680-8, S-680-9, S-680-21	Subcaps for Storage Tanks	VOC	14.08	18.67
L-003, FL-004, FL-006, FL-501,	Subcaps for Flares	NO_x	15.72	19.06
FL-005		СО	81.40	98.88
		VOC	64.16	121.60
		SO ₂	5.26	7.05

Emission Sources - Maximum Allowable Emission Rates

F-28, F-100 (#1 Crude, Desalter),	VOC and NH₃ Subcaps for Equipment Fugitives	VOC	130.44	571.34
F-400, F-500, F-620, F-660 (EPItFlareE,	(5)(10)	NH ₃	0.01	0.04
EPItElareS, West Plant Flare System), F-	No.1 West Plant Cooling	VOC	0.25	1.10
700, F-820, F-830S, F- 850 (S Merox Unit,		PM	0.36	1.58
Tank Farm), F-900, F-1000, F-1200,		PM ₁₀	0.14	0.60
F-1400, F-1500, F-2000, F-2100,		PM _{2.5}	0.01	0.01
E-2200 (DOT/Ref Splitter, East Plant Alky Splitter), F-2300 (SWS), F-2400 (FCCU, FCCU Gas Con, FCCU Merox), F-2500, F-2600, F-2700, F-2800 (EP Cool Twr, EP Utilities), F-3700 (HCU, HCU Hot Oil Drum), F-3800, F-3900 (LEU, HCU), F-4000, F-4300, F-5400, F-660 (EPItFlareW), F-680 (WWTP Tanks), F-680W, F-800W, F-830 (RAIL, West Rack), F-830E, F-830N, F-830W, F-850N, F-850S, F-ROSE	East Plant Cooling Tower (5) East Plant Cooling Tower (5) Gas (600), (60), (VOC	1.68	7.36
		PM	2.40	10.52
		PM ₁₀	0.36	1.58
		PM _{2.5}	0.01	0.01
F-3670	No. 2 West Plant Cooling Tower (5)	VOC	0.59	2.58
		РМ	0.84	3.68
		PM ₁₀	0.32	1.41

Emission Sources - Maximum Allowable Emission Rates

		PM _{2.5}	0.01	0.01
F-0680	F-0680 Open-Top Biotreatment	VOC	23.08	36.23
F-0671	No. 2 API Separator	VOC	0.48	0.95
F-0682	Crude Unit Sump	VOC	3.70	6.50
F-0683	No. 1 Reformer Sump	VOC	1.66	3.31
F-0684	600 Unit Sump	VOC	0.01	0.03
F-0685	R. R. Rack Sump	VOC	0.10	0.20

Emission Sources - Maximum Allowable Emission Rates

F-0686	Truck Loading Sump	VOC	0.09	0.18
F-0687	Land Farm	VOC	2.26	4.50
F-0688	Vacuum Unit Sump	VOC	2.08	4.14
F-0689	Crude Unload Sump	VOC	0.24	0.47
F-3110	No. 2 Reformer Sump	VOC	0.59	1.18

Emission Sources - Maximum Allowable Emission Rates

V-006	No. 1 Reformer Regeneration Vent	СО	37.50	1.50
	Tregeneration vent	Cl ₂	0.40	0.02
		VOC	1.40	0.06
V-007	No. 2 Reformer	СО	5.00	14.02
		Cl ₂	0.01	0.04
		VOC	0.04	0.13
V-010	FCCU Regeneration Vent	NOx	62.69	28.82
		СО	195.47	184.29
		VOC	6.16	14.51
		SO ₂	43.64	52.65
		PM	30.00	69.98
		PM ₁₀	25.11	58.58
		PM _{2.5}	25.11	58.58
		H ₂ SO ₄	13.69	59.96
		O ₃	7.22	31.62
		HCN	47.17	110.03
V-008, V-009	Subcaps for Sulfur Plants	NO _x	6.83	19.32
		СО	29.09	82.32
		VOC	12.21	34.56
		SO ₂	38.88	98.27
		PM	0.37	1.02
		PM ₁₀	0.37	1.02
		PM _{2.5}	0.37	1.02
		TRS	2.63	9.51

Emission Sources - Maximum Allowable Emission Rates

	•			
L-001	Oil Truck Loading Rack	VOC	0.02	0.02
L-002	Gasoline Truck Loading Rack	VOC	9.09	3.46
L-004	Tank Car Loading Rack	VOC	0.01	0.01
VCU-1	Loading Rack Vapor	NO _x	3.01	0.71
	Cantinia	СО	8.75	2.07
		VOC	17.98	6.88
Planned Maintenance.				
Cooling Towers,		VOC (6) (7)	4,711.24	75.49
		NO _x (6) (7)	305.53	16.34
		CO (6) (7)	1,202.92	43.12
		SO ₂ (6) (7)	894.13	61.04
		PM (6) (7)	4.54	0.66
		PM ₁₀ (6) (7)	4.54	0.66
		PM _{2.5} (6) (7)	4.54	0.66
		H ₂ S (6) (7)	2.65	0.51
		Benzene (6) (7) (8)	90.70	2.65
		CS ₂ (7)	0.33	0.02
		COS (7)	1.89	0.11

Emission Sources - Maximum Allowable Emission Rates

1					
Standard Pe (ՖР) ഉപട്ടൺ Registration	ioa m	nt identification - either specific e	aquipment designation or	emission point num	ber (EPN) from
83511 Specific	poin	t source names. For fugitive sou	rces, use an area name	or fugitive source na	me.
段) ₁₀ VOC NO _x	-	volat <mark>iதாலுத்துட</mark> ்compounds as d total oxides of nitrogen	efined in Title 30 Texas A	dministrative Code	§ 101 ₄ 1 22.34
CO SO ₂	-	carbon monoxide sulfur dioxide	СО	12.31	53.93
PM PM ₁₀	-	total particulate matter, suspend particulate matter equal to or les	ed in the atmosphere, inc s than 10 microns in dian	luding PM10 and PM neter	² 8.03
PM _{2.5} Cl ₂		particulate matter equal to or les chlorine	s than ភ្លួក្នុ microns in dia	neter	6.55
COS CS ₂		carbonyl sulfide carbon disulfide	SO ₂	4.55	19.93
₱₦% 2.53 H ₂ SO ₄ 11.10NH ₃	- - -	hydrogen sulfide sulfuric acid ammonia			
TRS O₃	-	total reduced sulfur ozone	PM ₁₀	2.53	11.10
HCN (4) Complia		hydrogen cyanide with annual emission limits (tons	per yealyis based on a 1	2 কিওnth rolling perio	o <mark>l</mark> d1.10

- (5) Emission rate is an estimate and compliance is demonstrated by meeting the requirements of the applicable special conditions and permit application representations.
- (6) Planned MSS VOC, NO_x, CO, SO₂, PM₁₀, H₂S, and Benzene allowable emissions are NOT included in the Normal Operations Emission Caps.
- (7) Beginning January 1, 2013, MSS emissions shall be based on a rolling 12-month period.
- (8) Benzene MSS allowables are included in the VOC allowables.
- (9) Ammonia fugitive allowable emissions are specified by EPN.
- (10) These emission caps have been carried forward from the flexible permit and do not include MSS emissions. The caps have been lowered to equal the sum of the normal operation individual limits and subcaps. The caps do not include emissions from EPN B-010, incorporated by reference from Standard Permit 83511.

Dated: August 31, 2016