Considere uma corda com densidade de massa linear ρ_L dividida em duas metades. Ambas as metadas estão ligadas (em x=0) a um anel metálico sem massa que se desloca livremente num varão perpendicular à extensão da corda. A metade da corda na direcção negativa (positiva) de x encontra-se esticada com tensão T_- (T_+). A existência do varão é essencial para equilibrar a componente horizontal da força no anel que resulta de, em geral, se ter $T_- \neq T_+$. Assuma a presença de uma onda progressiva de amplitude vinda de x negativo (logo que se propaga no sentido positivo de x) e a ausência de onda progressivas vindas de x positivo.

- (i) Para uma onda incidente da forma $\psi(x,t) = A\cos(kx \omega t)$ determine a forma geral de $\psi(x,t)$ em ambos os lados da corda.
- (ii) Escreva as condições fronteira em x = 0.
- (iii) Determine os coeficientes de reflexão (R) e transmissão (T) do sistema.
- (iv) Determine se a energia é conservada na junção (x = 0) das duas metades da corda.
- (v) Indique, justificando, a que correspondem fisicamente os casos $T_- = T_+, T_- \ll T_+$ e $T_- \gg T_+$.
- (vi) Podendo substituir uma das metades da corda por uma corda à sua escolha, determine se é possível reproduzir o comportamento do sistema original (das alíneas anteriores) mantendo ambas as cordas à mesma tensão.