1. Comparisons in Sorting

To sort n numbers (assuming n is exponential of 2), how many comparisons do we need using different sorting algorithms?

- Since we learned the lower bound on comparison-based sort this week, we are expecting the numbers are at least $\Theta(n \lg n)$
- Insertion Sort
 - Best case: If we have a sorted array, from the second number on, each of them only compares with the last number in the sorted zone, and that's it. So (?)
 - Worst case: The i^{th} , $(2 \le i \le n)$ number needs to compare with each $(of \ i-1)$ number in the sorted zone, and there will be $\sum_{i=2}^{n} (i-1) = \sum_{j=1}^{n-1} j = ?$ comparisons. (And what might this array look like?)
- Selection Sort
 - **Sets** Best case/worst case: each iteration, we first set the first number in the remaining part (say the i^{th} in the whole array) to be tempMin, then compare it with (n-i) remaining numbers to find the minimum. Thus there will be $\sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} i$ =? comparisons.
 - We can see the number of comparisons is (dependent on/independent from) the permutation.
- Merge Sort
 - ❖ When do we need to compare in a Merge Sort? (Merging)
 - ❖ To merge two $\left(\frac{n}{2}\right)$ length array to one need at least $\left(\frac{n}{2}\right)$ comparisons and at most (n-1) comparisons. Thus, given the i^{th} $(1 \le i \le \lg(n)-1)$ layer and to merge into the $(i-1)^{th}$ layer, might sum up to at least $\left(\frac{n}{2}\right)$ and at most $(n-2^{i-1})$ comparisons.
 - $\Rightarrow \text{ Best case: } (\lg(n) 1) \times \left(\frac{n}{2}\right) = \frac{1}{2} (n \lg n n)$
 - ***** Worst case: $\sum_{i=1}^{\lg(n)-1} (n-2^{i-1}) = n \lg n \frac{3}{2}n 1$
- Quicksort
 - When do we need to compare in Quick Sort? (Partitioning)
 - If we partition the array evenly, we will have more pivots in lower layers and a little fewer comparisons, and of course we have fewer layers.
 - ***** Best case: we will have $\lg n$ layers, and each layer we have $n-|pivots\ on\ this\ layer|$ comparisons. In the i^{th} $(0 \le i \le \lg(n)-2)$ layer, there are 2^i subarrays (and of course 2^i pivots), thus there are: $\sum_{i=0}^{\lg n-2} (n-2^i) = n \lg n \frac{5}{2} n 1$
 - ❖ Worst case: we will have n-1 layers and the i^{th} $(0 \le i \le n-2)$ layer needs n-i-1 comparisons, total will be: $\sum_{i=2}^{n} (i-1) = \sum_{j=1}^{n-1} j = ?$ comparisons.
- What about other sorting algorithms?

2. Binary Heap Operations

- Full binary tree and complete binary tree.
- Binary heaps are complete binary tree.

- How to find the parent in the heap? (k-1)/2, please check range
- How to insert? (Insert 21 to {18,12,8,9,11,4,3,5})
 - ❖ Insert to the last possible spot and move the number up along one path.
- How to get the max? (same example)
 - Swap the root(max) with the last element, then delete the max from the Heap
 - ❖ Compare the number at root with children while moving down through a path