- typical mechanical engineering - review one mater Jerminology

- F=ma

- stress = action of force wit given area

† 1 N/m² stress = 1 N for every square meter of area

† if perpendicular to surface of object, denoted
as "normal stress"

+ parallel to surface, shear stress

+ moment = force acting a distince from a certain point

* biomechanics: torque, since offer fixed point of notation

+ change in shape of object due to stress = deformation

+ strain = expression capturing amount of deformation

from original geometry

- strain perpendicula to cross subm = normal
- parallel = stren strain - equilibrium = stade where Σ forces & moments = 0 with as: $\Sigma f(x, y, z) = 0$
$\sum F(x, y, z) = 0$
$\sum M(x,y,z) = 0$
E.S: Falus, lateral Com Com morred
com
moment
States
- study of external face on a system in equilibrium
+ human body, either still or mometarily still
+ gravity + intend forces and moments = 0 * assume bodon are rigid and non deformable
* assume boddes are rigited and non deformable
- FBD (hee body dagram) for biomechanies require
der anatomy krowledge.
he was the above
+ when model is wrong or when assumptions . The
- FBD (free body dragram) for biomechanies require deep anatomy knowledge. + when model is wrong or what assumptions to make

hind & Fact of tibiotalan articulation to form single calculus (st MTP)

Segment Calculus Ford

Figed

Fachy 12 Fach Fth

Fachy 12 Fach Fth

Class

Class More complete FDB with decomposition 9 helps identify dach Tropper assumptions (segment rigidity, singula muscula element) - Externel forces octors on an object, neutry in charge in motion + net forces or system = 0 + [kinematrics] - study of motion regardless of forces that according to fine, position, velocity, accordantion, geometry, * NOT forces, stresses, deformation, strain. + (Kinchia) study of forces and moments causing motion + Kinesiology = shedy of human movement. Strength of Materials & Deformation

- rigid useful of human biomechanics

- however, thousand deform to mechanical tension

+ stress and strain on allo, frigger response in the cell ECM

* Wolfs law for some

altimale stress stress silver failure failure stress silvers silvers silvers silvers failure silvers s * adipose time structural role in auchioning side and - core concepts: + elastic modules - restrict property, ratio of stress to strain in region of claster response A stiffness = structural property, resistance to deformation

4 failure = complicated, but in biomechanics, catastrophic

1 break hown + yield/ wtimate/fewlene land and strawn: points on cover for end of elastic response, and of maximal hand, colortophix forther + Poisson's Raho = ratto of transverse to axial head

* e.g. terdon gets thinner under axial head - deformation + elastre = charge when perturbed, return to state + plastic = charge when perturbed, permanent + flud flow Viscoelahicity

Fspring = Kx

Flashpot = MX coefficient of rate of strain viscosity Strain Spring constant -W-IF-Marwell _ ___ Standard linear Kelvin-Vuist - Sidosial Assue offen compar blend of elements for

Substantial motion and deformation

- fluid contact implies [viscosity] = resistance of fluid

to shear

+ Triscoelasticity = combined consideration of solids and places -3 models, all use spring + dashpot + Kelvin - Voigt + Maxwell 1 Stardard Linear * ligament, organ pressue, bone, cartilage, skin,