ALGORITMO DE ENUMERACION EXPLICITA

(P) opt
$$z = \sum_{j=1}^{n} c_j x_j$$

sujeto a: $\sum_{j=1}^{n} a_{ij} x_j \sim b_i \quad \forall i \in \{1, \dots, m\}$ (1)
 $v_j \leq x_j \leq u_j \quad \forall j \in \{1, \dots, n\}$ (2)
 x_j entera $\forall j \in \{1, \dots, n\}$ (3)

donde '~' puede ser \leq , =, \geq y 'opt' puede ser minimizar o maximizar. Se supone, sin pérdida de generalidad, que v_i , u_i son enteros.

Se pretende resolver (P) enumerando explícitamente todos los vectores enteros $\mathbf{x} = (x_1, \dots, x_n)$ que cumplen (2). El número de estos vectores enteros es $T = \prod_{j=1}^{n} (u_j - v_j + 1)$.

Como T puede ser grande, se muestra su valor en pantalla y se pide confirmación para continuar. El orden de enumeración es el lexicográfico en la seudobase $[v_1, u_1] \times \cdots \times [v_n, u_n]$.

Para cada vector entero que cumple (2) se comprueba además si cumple las restricciones (1). Se va guardando la mejor solución factible encontrada hasta el momento.

Enumeración explícita de los vectores de la seudobase $[v_1, u_1] \times \cdots \times [v_n, u_n]$

Los vectores (x_1, \dots, x_n) de la seudobase $[v_1, u_1] \times \dots \times [v_n, u_n]$ se enumeran lexicográficamente comenzando por "el menor" (v_1, \dots, v_n) hasta "el mayor" (u_1, \dots, u_n) .

Ejemplo.- Sean n=5, v=(0,2,-4,5,1), u=(3,7,2,5,6)

x	(0,2,-4,5,1)	(1,4,0,5,3)	(1,3,2,5,6)	(0,7,2,5,6)	(3,7,2,5,6)
" $\mathbf{x+1}$ "	(0,2,-4,5,2)	(1,4,0,5,4)	(1,4,-4,5,1)	(1,2,-4,5,1)	no existe

Reglas para pasar de x al siguiente ("x+1"):

- Si $x_n < u_n$ se pone $x_n = x_n + 1$ y las demás componentes no varían
- Si $x_n = u_n, \dots, x_m = u_m, x_{m-1} < u_{m-1}$ se pone $x_n = v_n, \dots, x_m = v_m, x_{m-1} = x_{m-1} + 1$
- Si $x_n = u_n, \dots, x_1 = u_1$ no existe el siguiente.

Ejemplo: Para n=4, v=(0,0,0,0), u=(2,3,1,1) los sucesivos vectores x se generan en el siguiente orden:

0000	0001	0010	0011	0100	0101	0110	0111
0200	0201	0210	0211	0300	0301	0310	0311
1000	1001	1010	1011	1100	1101	1110	1111
1200	1201	1210	1211	1300	1301	1310	1311
2000	2001	2010	2011	2100	2101	2110	2111
2200	2201	2210	2211	2300	2301	2310	2311