References

- [1] J. Hoffman, D. Wang, F. Yu, and T. Darrell, "FCNs in the Wild: Pixel-Level Adversarial and Constraint-Based Adaptation," *arXiv*, Dec. 2016.
- [2] Y. Luo, P. Liu, T. Guan, J. Yu, and Y. Yang, "Significance-Aware Information Bottleneck for Domain Adaptive Semantic Segmentation," in *Proc.* of *ICCV*, (Seoul, Korea), pp. 6778–6787, Oct. 2019.
- [3] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A. Efros, and T. Darrell, "CyCADA: Cycle-Consistent Adversarial Domain Adaptation," in *Proc. of ICML*, (Stockholm, Sweden), pp. 1989– 1998, July 2018.
- [4] Y. Zou, Z. Yu, B. V. K. Vijaya Kumar, and J. Wang, "Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training," in *Proc. of ECCV*, (Munich, Germany), pp. 289–305, Sept. 2018.
- [5] Z. Wu, X. Han, Y.-L. Lin, M. G. Uzunbas, T. Goldstein, S. N. Lim, and L. S. Davis, "DCAN: Dual Channel-Wise Alignment Networks for Unsupervised Scene Adaptation," in *Proc. of ECCV*, (Munich, Germany), pp. 535–552, Sept. 2019.
- [6] Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. Yang, "Taking a Closer Look at Domain Shift: Category-Level Adversaries for Semantics Consistent Domain Adaptation," in *Proc. of CVPR*, (Long Beach, CA, USA), pp. 2507–2516, June 2019.
- [7] Y.-H. Tsai, K. Sohn, S. Schulter, and M. Chandraker, "Domain Adaptation for Structured Output via Discriminative Patch Representations," in *Proc. of ICCV*, (Seoul, Korea), pp. 1456–1465, Oct. 2019.
- [8] S. Zhao, B. Li, X. Yue, Y. Gu, P. Xu, R. Hu, H. Chai, and K. Keutzer, "Multi-Source Domain Adaptation for Semantic Segmentation," in *Proc. of NeurIPS*, (Vancouver, Canada), pp. 7285–7298, Dec. 2019.

- [9] Z. Wang, M. Yu, Y. Wei, R. Feris, J. Xiong, W. mei Hwu, T. S. Huang, and H. Shi, "Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation," in *Proc. of CVPR*, (Seattle, WA, USA), pp. 12635–12644, June 2020.
- [10] Y. Yang and S. Soatto, "FDA: Fourier Domain Adaptation for Semantic Segmentation," in *Proc. of CVPR*, (Seattle, WA, USA), pp. 4085–4095, June 2020.
- [11] M. Kim and H. Byun, "Learning Texture Invariant Representation for Domain Adaptation of Semantic Segmentation," in *Proc. of CVPR*, (Seattle, WA, USA), pp. 12975–12984, June 2020.
- [12] J. Choi, T. Kim, and C. Kim, "Self-Ensembling With GAN-based Data Augmentation for Domain Adaptation in Semantic Segmentation," in *Proc. of ICCV*, (Seoul, Korea), pp. 6830–6840, Oct. 2019.
- [13] R. Gong, W. Li, Y. Chen, and L. V. Gool, "DLOW: Domain Flow for Adaptation and Generalization," in *Proc. of CVPR*, (Long Beach, CA, USA), June 2019.
- [14] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M. Chandraker, "Learning to Adapt Structured Output Space for Semantic Segmentation," in *Proc. of CVPR*, (Salt Lake City, UT, USA), pp. 7472–7481, June 2018.
- [15] C.-Y. Lee, T. Batra, M. H. Baig, and D. Ulbricht, "Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation," in *Proc. of CVPR*, (Long Beach, CA, USA), June 2019.
- [16] L. Du, J. Tan, H. Yang, J. Feng, X. Xue, Q. Zheng, X. Ye, and X. Zhang, "SSF-DAN: Separated Semantic Feature Based Domain Adaptation Network for Semantic Segmentation," in *Proc. of ICCV*, (Seoul, Korea), pp. 982–991, Oct. 2019.
- [17] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Perez, "ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation," in *Proc. of CVPR*, (Long Beach, CA, USA), June 2019.

- [18] F. Pan, I. Shin, F. Rameau, S. Lee, and I. S. Kweon, "Unsupervised Intra-Domain Adaptation for Semantic Segmentation Through Self-Supervision," in *Proc. of CVPR*, (Seattle, WA, USA), pp. 3764–3773, June 2020.
- [19] M. Chen, H. Xue, and D. Cai, "Domain Adaptation for Semantic Segmentation With Maximum Squares Loss," in *Proc. of ICCV*, (Seoul, Korea), pp. 2090– 2099, Oct. 2019.
- [20] D. Hu, J. Liang, Q. Hou, H. Yan, Y. Chen, S. Yan, and J. Feng, "PANDA: Prototypical Unsupervised Domain Adaptation," *arXiv*, Mar. 2020.
- [21] J. Dong, Y. Cong, G. Sun, and D. Hou, "Semantic-Transferable Weakly-Supervised Endoscopic Lesions Segmentation," in *Proc. of ICCV*, (Seoul, Korea), pp. 10712–10721, Oct. 2019.
- [22] Q. Lian, F. Lv, L. Duan, and B. Gong, "Constructing Self-Motivated Pyramid Curriculums for Cross-Domain Semantic Segmentation: A Non-Adversarial Approach," in *Proc. of ICCV*, (Seoul, Korea), pp. 6758–6767, Oct. 2019.
- [23] M. N. Subhani and M. Ali, "Learning from Scale-Invariant Examples for Domain Adaptation in Semantic Segmentatio," in *Proc. of ECCV*, (Glasgow, UK), pp. 1–17, Aug. 2020.
- [24] Y. Li, L. Yuan, and N. Vasconcelos, "Bidirectional Learning for Domain Adaptation of Semantic Segmentation," in *Proc. of CVPR*, (Long Beach, CA, USA), pp. 6936–6945, June 2019.
- [25] J. Dong, Y. Cong, G. Sun, Y. Liu, and X. Xu, "CSCL: Critical Semantic-Consistent Learning for Unsupervised Domain Adaptation," in *Proc. of ECCV*, (Glasgow, UK), pp. 1–17, Aug. 2020.
- [26] J. Huang, S. Lu, D. Guan, and X. Zhang, "Contextual-Relation Consistent Domain Adaptation for Semantic Segmentation," in *Proc of ECCV*, (Glasow, UK), pp. 1–18, Aug. 2020.
- [27] J. Iqbal and M. Ali, "MLSL: Multi-Level Self-Supervised Learning for Domain Adaptation with Spatially Independent and Semantically Consistent

- Labeling," in *Proc. of WACV*, (Aspen, CO, USA), pp. 1864–1873, Mar. 2020.
- [28] J. Yang, W. An, S. Wang, X. Zhu, C. Yan, and J. Huang, "Label-Driven Reconstruction for Domain Adaptation in Semantic Segmentation," in *Proc. of ECCV*, (Glasgow, UK), pp. 1–18, Aug. 2020.
- [29] G. Li, G. Kang, W. Liu, Y. Wei, and Y. Yang, "Content-Consistent Matching for Domain Adaptive Semantic Segmentation," in *Proc. of ECCV*, (Glasgow, UK), pp. 1–18, Aug. 2020.
- [30] Q. Zhang, J. Zhang, W. Liu, and D. Tao, "Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation," in *Proc. of NeurIPS*, (Vancouver, Canada), pp. 433–443, Dec. 2019.
- [31] I. Shin, S. Woo, F. Pan, and I. s. Kweon, "Two-phase Pseudo Label Densification for Self-training based Domain Adaptation," in *Proc. of ECCV*, (Glasgow, UK), pp. 1–17, Aug. 2020.
- [32] K. Mei, C. Zhu, J. Zou, and S. Zhang, "Instance Adaptive Self-Training for Unsupervised Domain Adaptation," in *Proc. of ECCV*, (Glasgow, UK), pp. 1–16, Aug. 2020.
- [33] P.-Y. Chen, A. H. Liu, Y.-C. Liu, and Y.-C. F. Wang, "Towards Scene Understanding: Unsupervised Monocular Depth Estimation With Semantic-Aware Representation," in *Proc. of CVPR*, (Long Beach, CA, USA), pp. 2624–2632, June 2019.

Method	Feat. Ex.		Ų.							C	lass I	loU									mIoU	Code
		Road	Sidewalk	Building	Wall	Fence	Pole	T. Light	T. Sign	Veg.	Terrain	Sky	Person	Rider	Car	Truck	Bus	Train	M.bike	Bicycle		
FCN-ITW [1]	VGG-16	70.4	32.4	62.1	14.9	5.4	10.9	14.2	2.7	79.2	21.3	64.6	44.1	4.2	70.4	8.0	7.3	0.0	3.5	0.0	27.1	-
SIBAN [2]	VGG-16	83.4	13.0	77.8	20.4	17.5	24.6	22.8	9.6	81.3	29.6	77.3	42.7	10.9	76.0	22.8	17.9	5.7	14.2	2.0	34.2	-
CyCADA [3]	VGG-16	85.2	37.2	76.5	21.8	15.0	23.8	22.9	21.5	80.5	31.3	60.7	50.5	9.0	76.9	17.1	28.2	4.5	9.8	0.0	35.4	✓
CBST-SP [4]	VGG-16	90.4	50.8	72.0	18.3	9.5	27.2	28.6	14.1	82.4	25.1	70.8	42.6	14.5	76.9	5.9	12.5	1.2	14.0	28.6	36.1	-
DCAN [5]	VGG-16	82.3	26.7	77.4	23.7	20.5	20.4	30.3	15.9	80.9	25.4	69.5	52.6	11.1	79.6	24.9	21.2	1.3	17.0	6.7	36.2	✓
CLAN [6]	VGG-16	88.0	30.6	79.2	23.4	20.5	26.1	23.0	14.8	81.6	34.5	72.0	45.8	7.9	80.5	26.6	29.9	0.0	10.7	0.0	36.6	-
DPR [7]	VGG-16	87.3	35.7	79.5	32.0	14.5	21.5	24.8	13.7	80.4	32.0	70.5	50.5	16.9	81.0	20.8	28.1	4.1	15.5	4.1	37.5	-
MADAN [8]	VGG-16	86.2	37.7	79.1	20.1	17.8	15.5	14.5	21.4	78.5	-	73.4	49.7	16.8	77.8	-	28.3	-	17.7	27.5	41.4	✓
SIM [9]	VGG-16	88.1	35.8	83.1	25.8	23.9	29.2	28.8	28.6	83.0	36.7	82.3	53.7	22.8	82.3	26.4	38.6	0.0	19.6	17.1	42.4	✓
FDA-MBT [10]	VGG-16	86.1	35.1	80.6	30.8	20.4	27.5	30.0	26.0	82.1	30.3	73.6	52.5	21.7	81.7	24.0	30.5	29.9	14.6	24.0	42.2	✓
LTIR [11]	VGG-16	92.5	54.5	83.9	34.5	25.5	31.0	30.4	18.0	84.1	39.6	83.9	53.6	19.3	81.7	21.1	13.6	17.7	12.3	6.5	42.3	✓
TGCF-DA + SE [12]	VGG-16	90.2	51.5	81.1	15.0	10.7	37.5	35.2	28.9	84.1	32.7	75.9	62.7	19.9	82.6	22.9	28.3	0.0	23.0	25.4	42.5	-
DCAN [5]	ResNet-101	88.5	37.4	79 3	24.8	16.5	21.3	26.3	17 4	80.8	30.9	77.6	50.2	19.2	77 7	21.6	27.1	2.70	14 3	18.1	38.5	
DLOW [13]	ResNet-101	87.1											55.9								42.3	· /
AdaptSegNet [14]	ResNet-101	86.5											58.5								42.4	· /
SIBAN [2]	ResNet-101	88.5											58.1								42.6	•
CyCADA [3]	ResNet-101	86.7											64.9								42.7	_
CLAN [6]	ResNet-101	87.0											58.6						31.9		43.2	V
SWD [15]	ResNet-101	92.0											56.9								44.5	- ✓
SSF-DAN [16]	ResNet-101	90.3											58.8								45.4	٧
	ResNet-101	90.3 89.4											58.7								45.4	_
ADVENT [17]													58.7								46.3	•
IntraDA [18]	ResNet-101	90.6																				√
MSL [19]	ResNet-101	89.4											63.0								46.4	V
PANDA [20]	ResNet-101	92.4											60.0								46.5	-
DPR [7]	ResNet-101	92.3											58.6								46.5	-
SWLS [21]	ResNet-101	92.7											62.1								47.2	-
PyCDA [22]	ResNet-101	90.5											62.3								47.4	-
LSE+FL [23]	ResNet-101	90.2											61.6								47.5	-
BDL [24]	ResNet-101	91.0											58.6								48.5	✓
CSCL [25]	ResNet-101	89.6											60.6								48.6	-
CrCDA [26]	ResNet-101	92.4											58.9								48.6	-
SISC-PWL [27]	ResNet-101	89.0											60.4								49.0	-
SIM [9]	ResNet-101	90.6											57.0								49.2	✓
LDR [28]	ResNet-101	90.8											59.6						30.9		49.5	-
CCM [29]	ResNet-101	93.5					_ ′						58.7								49.9	✓
CAG-UDA [30]	ResNet-101	90.4											58.6								50.2	\checkmark
LTIR [11]	ResNet-101	92.9											61.0								50.2	\checkmark
FDA-MBT [10]	ResNet-101	92.5											62.6								50.5	\checkmark
RST(MRKLD) + TPLD [31]		94.2											60.6								51.2	-
IAST [32]	ResNet-101	93.8											62.6								51.5	\checkmark
IAST-MST [32]	ResNet-101	94.1	58.8	85.4	39.7	29.2	25.1	43.1	34.2	84.8	34.6	88.7	62.7	30.3	87.6	42.3	50.3	24.7	35.2	40.2	52.2	✓
CyCADA [3]	DRN-26	79.1	33.1	77.9	23.4	17.3	32.1	33.3	31.8	81.5	26.7	69.0	62.8	14.7	74.5	20.9	25.6	6.9	18.8	20.4	39.5	√
CrDoCo [33]	DRN-26	95.1	49.2	86.4	35.2	22.1	36.1	40.9	29.1	85.0	33.1	75.8	67.3	26.8	88.9	23.4	19.3	4.3	25.3	13.5	45.1	(\checkmark)
CBST-SP+MST [4]	ResNet-38	89.6				22.3															47.0	