Constructive Formalization of Regular Languages

Jan-Oliver Kaiser

September 5, 2012

Abstract

Existing formalizations of regular languages in constructive settings are mostly limited to regular expressions and finite automata. Furthermore, these usually require in the order of 10,000 lines of code. The goal of this thesis is to show that an extensive, yet elegant formalization of regular languages can be achieved in constructive type theory. In addition to regular expressions and finite automata, our formalization includes the Myhill-Nerode theorem. The entire development weighs in at approximately 3,300 lines of code.

Citations?

Reduce & update

Contents

1	Introduction 4					
	1.1	Recent work	4			
2	Coqand SSReflect					
	2.1	Coq	5			
	2.2	SSReflect	5			
		2.2.1 Finite Types and Ordinals	5			
		2.2.2 Boolean Reflection	5			
		2.2.3 Boolean Predicates	5			
3	Decidable Languages 7					
	3.1	Definition	7			
		3.1.1 Operation on languages	7			
	3.2	Regular Languages	9			
		3.2.1 Regular Expressions	9			
		3.2.2 Deciding Language Membership	10			
4	Finite Automata					
	4.1	Definition	12			
		4.1.1 Determinism and Non-Determinism	12			
	4.2	Connected Components	14			
	4.3	Emptiness	15			
	4.4	Deciding Equivalence of Finite Automata	15			
	4.5		16			
		4.5.1 Regular Expressions to Finite Automata	16			
		4.5.2 Deciding Equivalence of Regular Expressions	16			
		4.5.3 Finite Automata to Regular Expressions	16			
5	Myhill-Nerode 2					
	5.1	Definition	20			
	5.2		21			
	5.3	•	22			
	5.4	9 -	23			
		5.4.1 Finite Automata to Myhill-Nerode	23			

CONTENTS				
	5.4.2	Myhill-Nerode to Finite Automata	23	
1	Conclusion			
2	Reference	s	4	

Chapter 2

Conclusion

Chapter 3

References