Lec 3: Mining Association Rules

T.Heba AL.Marwai

Association rule mining

- Proposed by Agrawal et al in 1993.
- It is an important data mining model studied extensively by the database and data mining community.
- Assume all data are categorical.
- No good algorithm for numeric data.
- Initially used for Market Basket Analysis to find how items purchased by customers are related.

Bread \rightarrow Milk [sup = 5%, conf = 100%]

The model: data

- $I = \{i_1, i_2, ..., i_m\}$: a set of *items*.
- Transaction t:
 - \Box t a set of items, and $t \subseteq I$.
- Transaction Database T: a set of transactions $T = \{t_1, t_2, ..., t_n\}$.

Transaction data: supermarket data

Market basket transactions:

```
t1: {bread, cheese, milk}
t2: {apple, eggs, salt, yogurt}
...
tn: {biscuit, eggs, milk}
```

Concepts:

- An item: an item/article in a basket
- !: the set of all items sold in the store
- A transaction: items purchased in a basket; it may have TID (transaction ID)
- A transactional dataset: A set of transactions

Transaction data: a set of documents

 A text document data set. Each document is treated as a "bag" of keywords

doc1: Student, Teach, School

doc2: Student, School

doc3: Teach, School, City, Game

doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator

doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game

The model: rules

An association rule is an implication of the form:

$$X \rightarrow Y$$
, where X, $Y \subset I$, and $X \cap Y = \emptyset$

- An itemset is a set of items.
 - E.g., X = {milk, bread, cereal} is an itemset.
- A k-itemset is an itemset with k items.
 - □ E.g., {milk, bread, cereal} is a 3-itemset

Rule strength measures

Support: The rule holds with support sup in T (the transaction data set) if sup% of transactions contain $X \cup Y$.

- □ $sup = Pr(X \cup Y)$.
- Confidence: The rule holds in T with confidence conf if conf% of tranactions that contain X also contain Y.
 - $\Box conf = Pr(Y \mid X)$
- An association rule is a pattern that states when X occurs, Y occurs with certain probability.

Support and Confidence

- Support count: The support count of an itemset X, denoted by X.count, in a data set T is the number of transactions in T that contain X. Assume T has n transactions.
- Then,

$$support = \frac{(X \cup Y).count}{n}$$

$$confidence = \frac{(X \cup Y).count}{X.count}$$

An example

- t1: Beef, Chicken, Milk
- t2: Beef, Cheese
- t3: Cheese, Boots
- t4: Beef, Chicken, Cheese
- t5: Beef, Chicken, Clothes, Cheese, Milk
- t6: Chicken, Clothes, Milk
- t7: Chicken, Milk, Clothes

- Transaction data
- Assume:

minsup = 30% minconf = 80%

An example frequent itemset.

{Chicken, Clothes, Milk} [sup = 3/7]

Association rules from the itemset:

Clothes \rightarrow Milk, Chicken [sup = 3/7, conf = 3/3]

.. ..

Clothes, Chicken \rightarrow Milk, [sup = 3/7, conf = 3/3]

Transaction data representation

- A simplistic view of shopping baskets,
- Some important information not considered.
 E.g,
 - the quantity of each item purchased and
 - the price paid.

Many mining algorithms

- There are a large number of them!!
- They use different strategies and data structures.
- Their resulting sets of rules are all the same.
 - Given a transaction data set T, and a minimum support and a minimum confident, the set of association rules existing in T is uniquely determined.
- Any algorithm should find the same set of rules although their computational efficiencies and memory requirements may be different.
- We study only one: the Apriori Algorithm

The Apriori algorithm

- Probably the best known algorithm
- Two steps:
 - Find all itemsets that have minimum support (frequent itemsets, also called large itemsets).
 - Use frequent itemsets to generate rules.
- E.g., a frequent itemset
 {Chicken, Clothes, Milk} [sup = 3/7]
 and one rule from the frequent itemset
 Clothes → Milk, Chicken [sup = 3/7, conf = 3/3]

Step 1 : generate frequent itemsets

- The candidate-gen function takes F_{k-1} and returns a superset (called the candidates) of the set of all frequent k-itemsets. It has two steps
 - \Box *join* step: Generate all possible candidate itemsets C_k of length k
 - \neg prune step: Remove those candidates in C_k that cannot be frequent.

Mining Frequent Itemsets

- Find the frequent itemsets: the sets of items that have minimum support
 - A subset of a frequent itemset must also be a frequent itemset
 - i.e., if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)
- Use the frequent itemsets to generate association rules.

The Apriori Algorithm — Example

Step 2: Generating rules from frequent itemsets

- Frequent itemsets ≠ association rules
- One more step is needed to generate association rules
- For each frequent itemset X,
 For each proper nonempty subset A of X,
 - □ Let *B* = X *A*
 - \square A \rightarrow B is an association rule if
 - Confidence(A → B) ≥ minconf,
 support(A → B) = support(A∪B) = support(X)
 confidence(A → B) = support(A ∪ B) / support(A)

Generating rules: an example

- Suppose {2,3,5} is frequent, with sup=50%
 - Proper nonempty subsets: {2,3}, {2,5}, {3,5}, {2}, {3}, {5}, with sup=50%, 75%, 50%, 75%, 75%, 75% respectively
 - These generate these association rules:
 - $= 2,3 \rightarrow 5$ confidence=100%
 - $2.5 \rightarrow 3,$ confidence=67%
 - $3,5 \rightarrow 2$, confidence=100%
 - $= 2 \rightarrow 3.5$, confidence=67%
 - $= 3 \rightarrow 2.5$, confidence=67%
 - \bullet 5 → 2,3, confidence=67%
 - All rules have support = 50%

Similarity and Distance

- For many different problems we need to quantify how close two objects are.
- Examples:
 - For an item bought by a customer, find other similar items
 - Group together the customers of site so that similar customers are shown the same ad.
 - Group together web documents so that you can separate the ones that talk about politics and the ones that talk about sports.
 - Find all the near-duplicate mirrored web documents.
 - Find credit card transactions that are very different from previous transactions.
- To solve these problems we need a definition of similarity, or distance.
 - The definition depends on the type of data that we have

Similarity and Distance

Similarity

- Numerical measure of how alike two data objects are.
 - A function that maps pairs of objects to real values
 - Higher when objects are more alike.
- Often falls in the range [0,1], sometimes in [-1,1]
- Desirable properties for similarity
 - s(p, q) = 1 (or maximum similarity) only if p = q. (Identity)
 - s(p, q) = s(q, p) for all p and q. (Symmetry)

Similarity between sets

Consider the following documents

apple releases new ipod apple releases new ipad

new apple pie recipe

Which ones are more similar?

How would you quantify their similarity?

Similarity: Intersection

Number of words in common

apple releases new ipod

apple releases new ipad

new apple pie recipe

- Sim(D,D) = 3, Sim(D,D) = Sim(D,D) = 2
- What about this document?

Vefa rereases new book with apple pie recipes

 \blacksquare Sim(D,D) = Sim(D,D) = 3

Jaccard Similarity

- The Jaccard similarity (Jaccard coefficient) of two sets S₁, S₂ is the size of their intersection divided by the size of their union.
 - □ JSim $(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$.

3 in intersection.

8 in union.

Jaccard similarity

$$= 3/8$$

- Extreme behavior:
 - Jsim(X,Y) = 1, iff X = Y
 - Jsim(X,Y) = 0 iff X,Y have not elements in common
- JSim is symmetric

Similarity: Intersection

Number of words in common

apple releases new ipod apple releases new ipad

new apple pie recipe Vefa rereases new book with apple pie recipes

- JSim(D,D) = 3/5
- JSim(D,D) = JSim(D,D) = 2/6
- JSim(D,D) = JSim(D,D) = 3/9

Similarity between vectors

Documents (and sets in general) can also be represented as vectors

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D2	0	0	10	20

How do we measure the similarity of two vectors?

How well are the two vectors aligned?

Example

document	Apple	Microsoft	Obama	Election
D1	1/3	2/3	0	0
D2	1/3	2/3	0	0
D2	0	0	1/3	2/3

Documents D1, D2 are in the "same direction" Document D3 is orthogonal to these two

Cosine Similarity

Figure 2.16. Geometric illustration of the cosine measure.

- Sim(X,Y) = cos(X,Y)
 - The cosine of the angle between X and Y
- If the vectors are aligned (correlated) angle is zero degrees and cos(X,Y)=1
- If the vectors are orthogonal (no common coordinates) angle is 90 degrees and cos(X,Y) = 0
- Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length.

Cosine Similarity - math

If d₁ and d₂ are two vectors, then cos(d₁, d₂) = (d₁ • d₂) / ||d₁|| ||d₂||,
 where • indicates vector dot product and || d || is the length of vector d.

Example:

$$d_1 = 3205000200$$

$$d_2 = 1000000102$$

$$d_1 \cdot d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

Distance

- Numerical measure of how different two data objects are
 - A function that maps pairs of objects to real values
 - Lower when objects are more alike
- Minimum distance is 0, when comparing an object with itself.
- Upper limit varies

Distance Metric

- A distance function d is a distance metric if it is a function from pairs of objects to real numbers such that:
 - d(x,y) \geq 0. (non-negativity)
 - d(x,y) = 0 iff x = y. (identity)
 - 3. d(x,y) = d(y,x). (symmetry)
 - 4. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).