

Estática y Dinámica: Interrogación 2.

Facultad de Física — Facultad de Ingeniería

Jueves 6 de Octubre de 2016

Nombre:	#Alumno:	Rut:	
---------	----------	------	--

Instrucciones:

- -Tiene 150 minutos para resolver los siguientes problemas.
- -Marque con una cruz solo la alternativa que considere correcta en la hoja de respuesta.
- -Todos los problemas tienen el mismo peso en la nota final.
- -Las respuestas incorrectas descuentan 1/4 de pregunta correcta.
- -No está permitido utilizar calculadora ni teléfono celular.

Tabla de momentos de inercia.

¡No usar ningún aparato electrónico ni apuntes!

Enunciado para problemas 1-4:

Nota: a pesar de que las partículas se representan como pequeñas esferas, se pueden considerar como partículas puntuales.

Problema 1: Se tienen 3 barras delgadas idénticas, de longitud L y masa M. Se tienen también tres partículas puntuales idénticas de masa m que se pueden pegar a las barras en cualquier punto que se desee. Se hacen tres arreglos en un plano horizontal con las tres barras y las tres partículas, y cada uno se deja rotar libremente (sin roce) respecto a un eje fijo perpendicular a la hoja y que pasa por el punto marcado con una "x", como mostrado en la figura. Si a los tres arreglos se les aplica exactamente el mismo torque neto respecto a la posición de la "x" y en la dirección del eje de rotación, determine la relación correcta que existe entre la magnitud de las aceleraciones angulares logradas α_1 , α_2 y α_3 para los tres arreglos respectivamente:

- a) $\alpha_1 = \alpha_2 = \alpha_3$
- b) $\alpha_1 > \alpha_2 > \alpha_3$
- c) $\alpha_1 < \alpha_2 = \alpha_3$
- d) $\alpha_1 < \alpha_2 < \alpha_3$

Problema 2: El momento de inercia I_2 del arreglo 2 respecto al eje mencionado en el enunciado anterior está dado por:

- a) $I_2 = ML^2 + 3mL^2$
- b) $I_2 = 3ML^2 + 3mL^2$
- c) $I_2 = 3ML^2 + 9mL^2$
- d) $I_2 = 3ML^2 + mL^2$

Problema 3: Ahora considere que se toma el arreglo 2, y que se le aplican dos fuerzas de igual magnitud F como se muestra en la figura. Considere también un sistema de referencia centrado en su eje de rotación. Determine el torque neto $\vec{\tau}_{\text{neto}}$ que es ejercido sobre el arreglo respecto al punto marcado con la "x". Si lo necesita, puede asumir que la separación angular entre barras consecutivas es la misma:

- a) $\vec{\tau}_{\text{neto}} = -2FL\hat{z}$
- b) $\vec{\tau}_{\text{neto}} = +2FL\hat{z}$
- c) $\vec{\tau}_{\text{neto}} = -FL\left(\frac{\sqrt{3}-2}{2}\right)\hat{z}$
- d) $\vec{\tau}_{\text{neto}} = FL\left(\frac{\sqrt{3}+2}{2}\right)\hat{z}$

Problema 4: Ahora asuma que el torque de la pregunta anterior $\vec{\tau}_{\text{neto}} = \tau_z \hat{z}$ se aplica de forma constante por un periodo de Δt segundos, y que luego se deja de aplicar. Asuma también que el arreglo estaba en reposo antes de que se aplicara el torque. Identifique la expresión correcta para la componente en \hat{z} del momento angular del sistema una vez terminado de aplicar el torque:

- a) $L_z = \frac{\tau_z I_2}{FL\Delta t}$
- b) $L_z = \frac{\tau_z mL}{F\Delta t}$
- c) $L_z = \frac{\tau_z I_2}{\Delta t}$
- d) $L_z = \tau_z \Delta t$

Enunciado para problemas 5-6:

Un bloque de masa M se suelta desde el reposo a una distancia L sobre un plano inclinado un ángulo θ respecto a la horizontal. Luego el bloque se desliza por una superficie horizontal rugosa cuyo coeficiente de roce cinético (dinámico) es variable $\mu_d = \alpha x^{1/2}$. En el plano inclinado no hay roce.

Problema 5: La rapidez v del bloque cuando entra la superficie horizontal es:

a)
$$v = \sqrt{2gL\sin\theta}$$

b)
$$v = \sqrt{2gL\cos\theta}$$

c)
$$v = \sqrt{2gL}$$

d)
$$v = \sqrt{gL\sin\theta}$$

Problema 6: Si la rapidez con la que el bloque entra la superficie horizontal es v, la distancia D que recorre el bloque sobre la superficie horizontal antes de detenerse es:

a)
$$D = \left(\frac{3v^2}{g\alpha}\right)^{2/3}$$

b)
$$D = \left(\frac{v^4}{4g^2\alpha^2}\right)^{1/3}$$

c)
$$D = \left(\frac{3v^2}{4a\alpha}\right)^{2/3}$$

$$\mathrm{d}) \ D = \left(\frac{3v^2\alpha}{2g}\right)^2$$

Enunciado para problemas 7-9:

El Bloque A tiene masa M y se desliza en la ranura horizontal lisa. La constante del elástica de los dos resortes es k y su longitud no elongada es L_0 .

Problema 7: Si se lleva el bloque a la distancia $s = \sqrt{8}L_0$ y se suelta del reposo, la rapidez cuando s = 0 es:

- a) $\sqrt{\frac{4k}{M}}L_0$
- b) $\sqrt{\frac{10k}{M}}L_0$
- c) $\sqrt{\frac{2k}{M}}L_0$
- d) $\sqrt{\frac{8k}{M}}L_0$

Problema 8: Cuando el bloque se encuentra en s = 0, se le imprime una rapidez de inicial $v_0 = L_0 \sqrt{2k/M}$ hacia la derecha. Entonces, el desplazamiento horizontal máximo del bloque es:

- a) $\sqrt{7}L_0$
- b) $\sqrt{8}L_0$
- c) $\sqrt{3}L_0$
- d) $\sqrt{5}L_0$

Problema 9: Ahora considere que la ranura tiene un coeficiente de roce cinético μ . El bloque se lleva a la distancia $s = \sqrt{3}L_0$ y se suelta del reposo. La rapidez que tiene el bloque cuando pasa por s = 0 es:

a)
$$\sqrt{\frac{2k}{M}L_0^2 + \sqrt{3}\mu g L_0}$$

b)
$$\sqrt{\frac{2k}{M}L_0^2 + 2\sqrt{3}\mu g L_0}$$

c)
$$\sqrt{\frac{4k}{M}L_0^2 + 2\sqrt{3}\mu g L_0}$$

d)
$$\sqrt{\frac{4k}{M}L_0^2 + \sqrt{3}\mu g L_0}$$

En todas las alternativas hay que remplazar el signo + por -. Este cambio se anunció en todas las salas.

Enunciado para problemas 10-11:

En la figura, las masas de las esferas son $m_A=m,\,m_B=3m$ y $m_C=2m.$ Las esferas son de tamaño despreciable.

Problema 10: Suponga que justo antes de una colisión completamente elástica entre A y B, la rapidez de A es v y que B está en reposo. Luego de la colisión, la rapidez de B es:

- a) $\frac{1}{2}v$
- 0) (
- c) 0
- d) 2v

Problema 11: Suponga que justo antes de una colisión entre B y C, la rapidez de B es v y que C está en reposo. Además, suponga que el coeficiente de restitución entre las bolas B y C es e. La rapidez de C después de la colisión es:

a)
$$\frac{3+3e}{5}v$$

b)
$$\frac{3-3e}{5}i$$

$$c) \ \frac{3+2e}{5}v$$

$$d) \frac{3-2e}{5}v$$

Enunciado para problemas 12-14:

Considere que un temerario niño ha equipado un trineo con una pequeña turbina a gas que consume el combustible a razón de 100 g/s y en la cual la velocidad de salida de los gases de combustión desde su escape es de 50 m/s. El niño ubica el trineo sobre una pista de hielo, con condiciones tales que el roce entre el trineo y la pista es despreciable. Considere que el niño pesa 60 kg, la masa del trineo es 100 kg, la masa de la turbina (sin gas) es de 20 kg y que la carga inicial de gas es de 20 kg.

Instante inicial en el cual se enciende la propulsión

Instante en el que el trineo alcanza su velocidad máxima

Problema 12: Determine el módulo de la aceleración (a) que adquiere inicialmente el trineo, cuando el niño que está en su interior enciende la turbina.

- a) $a = 0.25 \text{ m/s}^2$
- b) $a = 25 \text{ m/s}^2$
- c) $a = 0.5 \text{ m/s}^2$
- d) $a = 0.025 \text{ m/s}^2$

Problema 13: Determine la velocidad máxima que alcanza el trineo (v_{max}) una vez consumido todo el combustible.

a)
$$v_{max} = 50 \ln \left(\frac{18}{20}\right) \text{ m/s}$$

b)
$$v_{max} = 50 \ln \left(\frac{3}{10} \right) \text{ m/s}$$

c)
$$v_{max} = 50 \ln \left(\frac{20}{3}\right) \text{ m/s}$$

d)
$$v_{max} = 50 \ln \left(\frac{10}{3}\right) \text{ m/s}$$

Este problema se regaló a todos debido a que la fracción dentro del logaritmo está invertida (al evaluar el resultado se obtiene el resultado correcto pero con signo negativo) **Problema 14:** Luego de alcanzar la velocidad máxima y con el propósito de dejar el trineo en reposo respecto a la pista, el niño decide saltar hacia adelante desde el trineo. Determine el valor de la velocidad relativa al trineo v_s con la cual el niño debe saltar para que el trineo quede en reposo respecto a la pista de hielo. Exprese su resultado en términos de v_{max} .

a)
$$v_s = \frac{3}{10} v_{max}$$

b)
$$v_s = 3v_{max}$$

c)
$$v_s = \frac{6}{16} v_{max}$$

$$d) v_s = 6v_{max}$$

Problema 15: Se deja caer al piso un bloque de masa m desde una altura h. El impulso que hace el suelo para detener al bloque está dado por

a)
$$J = m g$$

b)
$$J = m\sqrt{2gh}$$

c)
$$J = m\sqrt{g h}$$

d)
$$J = 2mg$$

Enunciado para problemas 16-17: Considere el bloque m el cual está unido a dos paredes por medio de dos resortes de constantes elásticas k_1 y k_2 respectivamente como se indica en la figura.

Ambos resortes tienen el mismo largo natural ℓ_0 . La separación entre las paredes es $2\ell_0$. Suponga que el bloque es puntual y que la superficie donde está apoyado es lisa.

Suponga que el sistema se pone en movimiento separando al bloque de masa m una distancia d desde la posición de equilibrio y soltándolo desde el reposo.

Problema 16: La velocidad máxima que alcanza el bloque después de soltarlo está dada por,

$$a) v = \sqrt{\frac{k_1 + k_2}{m}} d$$

b)
$$v = 2\sqrt{\frac{k_1 + k_2}{m}} d$$

c)
$$v = \sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}} d$$

d)
$$v = 2\sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}} d$$

Problema 17: El período de las oscilaciones del bloque de masa m en torno a su posición de equilibrio está dado por

a)
$$T = \pi \sqrt{\frac{m}{k_1 + k_2}}$$

b)
$$T = 2\pi\sqrt{\frac{m(k_1 + k_2)}{k_1 k_2}}$$

c)
$$T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$

d)
$$T = \pi \sqrt{\frac{m(k_1 + k_2)}{k_1 k_2}}$$