Foundations of Data Mining CS-691

Homework Assignment - 3

Sandipan Dey

 First the iris text data provided needs to be converted to weka-compatible attribute relation file format (.arff) that looks like the following:

% Iris

@RELATION iris

- @ATTRIBUTE Sepal_length NUMERIC
- @ATTRIBUTE Sepal_width NUMERIC
- @ATTRIBUTE Petal_length NUMERIC
- @ATTRIBUTE Petal_width NUMERIC

@DATA

			22
2	14	33	50
24	56	31	67
23	51	31	69
2	10	36	46
20	52	30	65
19	51	27	58
13	45	28	57
16	47	33	63
***		***	***
	***	(444)	1885
		100	222

As can be seen from above, only the last four attributes from the text data are selected.

If we run KMeans algorithm in Weka with the .arff file as the input file,

weka.clusterers.SimpleKMeans -V -N < numClusters > -A < distanceFunction > -I maxIteration -S seed

- Initial number of clusters is chosen as 3 (since we suspect that specifies_name attribute, or equivalently specifies_no attribute denotes the class labels for the data - those already obtained by applying some supervised method and there are exactly 3 different class labels. namely, I.Setosa, I.Verginica, I.Versicolor)
- distanceFunction as Euclidian
- maximum iteration (to converge) as 500
- random seed (to select initial cluster centers) as 10
- display standard deviation option is selected

The following output is obtained after the algorithm terminates in 4 iterations, with MSE 7.12:

=== Run information ===

weka.clusterers.SimpleKMeans -V -N 3 -A "weka

Scheme: Weka.c Relation: iris Instances: 150

Attributes: 4 Sept

Sepal_length Sepal_width Petal_length Petal_width

Test mode: evaluate on training data

--- Model and evaluation on training set ---

kMeans

Number of iterations: 4
Within cluster sum of squared errors: 7.115548372424189
Missing values globally replaced with mean/mode

Cluster centroids:

Attribute	Full Data (150)	Cluster# 0 (38)	1 (62)	(50)
Sepal_length	11.9267 +/-7.569	20.7368	14.1613	2.46
Sepal_width	37.7867	57.1579	44.5968	14.62
	+/-17.7762	+/-5.1963	+/-5.6784	+/-1.7366
Petal_length	30.5533	30.8421	27.371	34.28
	+/-4.3728	+/-2.8335	+/-2.9266	+/-3.7906
Petal_width	58.4467	68.5	59.0161	50.1
	+/-8.2686	+/-5.0871	+/-4.5682	+/-3.5355

Clustered Instances

0	38	(25%)	
1	62	(41%)	
2	50	(33%)	

If the classes to cluster evaluation option from weka (with class label as specifies_name, that is to be ignored when running KMeans but the resulting cluster-membership for each instance is to be validated against the corresponding class labels) is used to verify the clusters generated, the following output is obtained additionally:

			Classes to C	lusters:	incorrectly o	lustered instances
		cered Instanc				
ik.	Clus	COLUMN TO SERVICE STATE OF THE PERSON SERVICE STATE STATE OF THE PERSON SERVICE STATE		assigned to cluster	50.0	33.3333 4
-		100 (674)	a =n I.S	etosa		
2	0	50 (33%)	to n I I.V	erginice		
	1		50 0 1 1.1	/ersicolor		
			Cluster 0 <-	- I.Verginica		
			Cluster 1 <-	- I.secosa		
			W 4 2 7	- assigned to cluster	18.0	12 4
		38 (25%)	0 0 50 1 1	.Setosa		200
3	0	62 (41%)	35 15 0 I I	.Verginica		
	1	50 (33%)	35 15 0 I I	.Versicolor		
	2					
			Cluster 0 <-	I.Verginica		
			Cluster 1 <-	- I.Versicolor		
			Cluster 2 <-	I.Setosa		
		700 J 4054	0 1 2 3	< assigned to cluster	45.0	30
a	0	28 (19%)	0 0 50 0	I.Setosa		
***	1	43 (294)	28 20 0 2	I.Verginica		
	2	50 (33%)	0 23 0 27	I.Versicolor		
	3	29 (19%)				
			Cluster 0 <	I.Verginics		
			Cluster 1 <	No class		
			Cluster 2 <	I.Setoma		
			Cluster 3 <	I.Versicolor		
		26 (17%)	0 1 2 3	4 < assigned to clus	ter 49.0	32.6667 %
5	0			0 I.Setosa		
	1	24 (16%)		1 I.Verginica		
	2	50 (33%)		3 I.Versicolor		
	3	26 (17%)	9839			
	40	24 1 1041	Cluster 0 <	I.Verginica		
			Cluster 1 <			
			Cluster 2 <			
			Cluster 3 <			
			Cluster 4 <			
1720	20	22 17 17 17 17		T = 12-1 2/202000000000000000000000000000000000		42 8
6	0			5 < assigned to cl	uster 63.0	44
	1	24 (16%)		14 I.Setosa		
	2		26 2 0 1 21			
	3	26 (17%)	0 22 0 25 3	0 I.Versicolor		
	4	24 (16%)				
	5	14 (94)	Cluster 0 < I			
			Cluster 1 < N			
			Cluster 2 < 1			
			Cluster 3 < I			
			Cluster 4 < N			
			Cluster 5 < N			
Mea	n Sau	and a				al Charles
100000000000000000000000000000000000000	squa	ared Erro	Mayin	num Iterations	% Incorre	ectly Clustered
A Park			MINA	1 Million State Control		
1			15		80	,
1					60	-
1			10			
-	1			/	40	
1000	-				1	

As can be seen from above, the number of incorrectly clustered instances is minimum when K = 3

	Species No	Species pame	Sepal_length	opal_width	Petal Jength	potal
ot Matrix			· · · · · · · · · · · · · · · · · · ·	3.5		
peral_length		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
espel_width			HI.		- Application	Market State of the State of th
Sepal_length	-				ALLEST.	els) in the dat

As seen from the Weka Visualize, there are clearly 3 classes (pre-determined labels) in the data, so in unsupervised grouping one can expect 3 clusters and start with K = 3 for KMeans.

Compression (dimensionality reduction / feature extraction technique)

PCA can be used for compression. For Iris data it's enough to use 2 most dominant Eigen vectors for projection in the feature space, since the Eigen values obtained are 2.9127, 0.9150, 0.1483, 0.0241, the 1st two dominant Eigen Vectors preserve

$$\frac{2.9127 + 0.9150}{2.9127 + 0.9150 + 0.1483 + 0.0241} = 95.69\% \text{ of variance.}$$

First we shall be interested to see the direction of maximum variations in the data along the feature space. To find it a scatter plot is done in between the data projections along the 2nd most dominant eigen vectors in the transformed feature space, with the following output:

```
& Matlab
% iris data already loaded in X
[COEFF, SCORE, latent] = princomp(X); % PCA
A = COEFF(:, 1:2);
Y = X . A:
                                          * Projection on 2 most dominat PCs
scatter(Y(:,1), Y(:, 2), 15, [1,0,0], 'p')
                                          & scatter plot in the projected space
```


There are clearly 3 different groups in the data (outlined approximately), hence k = 3 is the best choice for KMeans.

Altrnatively, PCA can be done using weka as well:
java weka.filters.AttributeSelectionFilter -S "weka.attributeSelection.Ranker" -E
"weka.attributeSelection.PrincipalComponents -R 0.5" -i iris.arff -o fs_iris.arff

Project in the feature space and compress by dimesionality reduction

Now, if we compare the KMeans algorithm's output in Weka, in between before and after compression, we get the following results:

Again, it can be seen that even after compression, the # incorrectly-clustered instances are minimized when K = 3 (assuming Specis_name to be class labels). Also, M.S.E. reduces after PCA compression.

Running KMeans on the compressed data and plotting the output:

```
% irls data already loaded in X
 opts = statset('Display', 'final');
                                                        # clusters
                                                      * kmeans
 [idx,ctrs] = kmeans(X,k,...
                   'Distance', 'sqEuclidean',...
                   'Replicates',5,...
                  'Options', opts);
plot(X(idx=1,1),X(idx=1,2),'rp','MarkerSize',8)
plot(X(idx=2,1),X(idx=2,2),'b",'MarkerSize',10)
plot(X(idx=3,1),X(idx=3,2),'g.','MarkerSize',15)
plot(ctrs(:,1),ctrs(:,2),'kx',...
   'MarkerSize',12, 'LineWidth',2)
plot(ctrs(:,1),ctrs(:,2),'ko',...
    'MarkerSize',12, 'LineWidth',2)
legend('Cluster 1','Cluster 2','Cluster 3','Centroids',...
      'Location','NW')
```


Table 6.23. Market basket transaction

Transaction ID	Items Bought
1	{Milk, Beer, Diapers}
2	(Bread, Butter, Milk)
3	(Milk, Diapers, Cookies)
4	(Bread, Butter, Cookies)
5	{Beer, Cookies, Diapers}
6	(Milk, Diapers, Bread, Butter)
7	{Bread, Butter, Diapers}
8	(Beer, Diapers)
9	(Milk, Diapers, Bread, Butter)
10	{Beer, Cookies}

- Consider the market basket transactions shown in Table 6.23.
 - (a) What is the maximum number of association rules that can be extracted from this data (including rules that have zero support)?
 - (b) What is the maximum size of frequent itemsets that can be extracted (assuming minsup > 0)?
 - (c) Write an expression for the maximum number of size-3 itemsets that can be derived from this data set.
 - (d) Find an itemset (of size 2 or larger) that has the largest support.
 - (e) Find a pair of items, a and b, such that the rules {a} → {b} and {b} − [a] have the same confidence.

Answer

If $S = \{I_1, I_2, \dots, I_d\}$, |S| = d, i.e., with d items, association rules will be of the form $A \to B$, where $A,B\subseteq S,\ A,B\neq \Phi,\ A\cap B=\Phi,\ A\cup B\subseteq S$. This basically implies the division of Sinto 3 partitions A, B, C s.t. $A, B, C \subseteq S$, $A \cap B \cap C = \Phi$, $A \cup B \cup C = S$, $A, B \neq \Phi$.

Association rules $A \rightarrow B$

A, B may not contain all the elements of S, hence we need to consider another set (possibly non-

Number of different ways it can be done

= (Total #ways 5 can be partitioned into A, B, C) – (#ways A is empty) – (#ways B is empty)

+ (#ways both A, B are empty)

$$=3^{d}-2^{d}-2^{d}+1=3^{d}-2^{d+1}+1$$
.

Thought in slightly different manner, let's consider all possible association rules of the form $A \rightarrow B$. The L.H.S. can consist of any number of items (k) staring from 1 to d-1 (since both L.H.S and R.H.S. must be non-empty but their intersection is the null set) and has to be chosen from the d-item set and for each of these choices, the R.H.S. can have 1 to d-k items (l) in it,

Hence, total number of different ways

$$= \sum_{k=1}^{d-1} \sum_{l=1}^{d-k} \binom{d}{k} \binom{d-k}{l}$$

$$= \sum_{k=1}^{d-1} \binom{d}{k} \sum_{l=1}^{d-k} \binom{d-k}{l} = \sum_{k=1}^{d-1} \binom{d}{k} (2^{d-k} - 1) = \sum_{k=1}^{d-1} \binom{d}{k} (2^{d-k}) - \sum_{k=1}^{d-1} \binom{d}{k}$$

$$= 3^{d} - 2^{d} - 1 - (2^{d} - 2) = 3^{d} - 2^{d+1} + 1$$

Since by Binomial theorem.

$$(x+1)^{d} - x^{d} - 1 = \sum_{k=1}^{d-1} \binom{d}{k} (x^{d-k}) \Rightarrow 3^{d} = \sum_{k=0}^{d} \binom{d}{k} (2^{d-k}) = 2^{d} + 1 + \sum_{k=1}^{d-1} \binom{d}{k} (2^{d-k})$$

(a) Here, d = 6. Hence, maximum number of association rules = $3^6 - 2^{6+1} + 1 = 729 - 128 + 1 = 602$

(b)If minsup > 0, maximum size of frequent item-sets that can be extracted = maximum width of a record in the transaction = 4 here.

(c)Maximum number of size-k item-sets that can be derived from the dataset containing d items

$$= \binom{d}{k}. \text{ Here, we have, d = 6 and k = 3. Hence, maximum # of item-sets} = \binom{6}{3} = 20.$$
(d)

THE .	Items	- 00
2	Beer	4
2	Bread	5
3	Butter	5
4	Cookies	4
5	Diapers	7
6	Milk	5

1-itemset

100	Items	.10
1	(Beer, Bread)	0
2	(Beer, Butter)	0
3	{Beer, Cookies}	2
4	(Beer, Diapers)	3
5	(Beer, Milk)	1
6	(Bread, Butter)	5
7	(Bread, Cookies)	1
8	(Bread, Diapers)	3
9	(Bread, Milk)	3
10	(Butter, Cookies)	1
11	(Butter, Diapers)	3
12	(Butter, Milk)	3
13	(Cookies, Diapers)	2
14	(Cookies, Milk)	-
15	(Diapers, Milk)	4

2-ltemser

The highest support-count in set of all 2-itemsets = 5, i.e., for (Bread, Butter). Considering only the item-sets with support count 5 or higher for 3-itemsets (because by anti-monotone property, the support-count for any superset of an item-set is less than or equal to the support count of that item-set). Also, (Beer, Bread) support count is 0, we need not consider its superset. As we can see, support counts for all other 2-item-sets are strictly less than 5, all 3-item sets will have support count strictly less than 5.

In	Items	#
1	{ Bread, Butter, Cookies }	1
2	{Bread, Butter, Diapers}	3
3	{Bread, Butter, Milk}	3

Hence, the item-set (of size-2 or larger) with the largest support count (5) is the 2-item-set (Bread, Butter).

Let's construct the FP-tree,

From the FP tree it's clear that only {Bread, Butter} is having the support count as high as 5.

(e) :
$$confidence(\{a\} \rightarrow \{b\}) = \frac{\sigma(\{a\} \ and \ \{b\})}{\sigma(\{a\})}$$
,
 $confidence(\{a\} \rightarrow \{b\}) = confidence(\{b\} \rightarrow \{a\}) \Rightarrow \sigma(\{a\}) = \sigma(\{b\})$

Consider the following two rules:

$$\{Bread, Diapers\} \rightarrow \{Butter, Milk\} \text{ and } \{Butter, Milk\} \rightarrow \{Bread, Diapers\}$$

$$:: \sigma(\{Bread, Diapers, Butter, Milk\}) = 2 \land \sigma(\{Bread, Diapers\}) = \sigma(\{Butter, Milk\}) = 3,$$

$$confidence(\{Bread, Diapers\} \rightarrow \{Butter, Milk\}) = confidence(\{Butter, Milk\}) \rightarrow \{Bread, Diapers\})$$

$$= \frac{2}{3}$$

- 3. Consider the training examples shown in Table 4.8 for a binary classification
- problem.
- (a) What is the entropy of this collection of training examples with respect to the positive class?

Table 4.8. Data set for Exercise 3.

For a second second	423	02	as	Target Class
Instance	T	T	1.0	+
2	T	T	6.0	+
3	T	F	5.0	-
4	F	F	4.0	+
5	F	T	7.0	-
6	F	T	3.0	+
7	F	F	8.0	
8	T	F	7.0	+
9	F	T	5.0	-

- (b) What are the information gains of a₁ and a₂ relative to these training examples?
- (c) For a₃, which is a continuous attribute, compute the information gain for every possible split.
- (d) What is the best split (among a₁, a₂, and a₃) according to the information
- (e) What is the best split (between a₁ and a₂) according to the classification error rate?
- (f) What is the best split (between a₁ and a₂) according to the Gini index?

Answer

(a) Here the target class is a binary random variable X with the following probability mass function

$$p(x) = P(X = x) = \begin{cases} \frac{4}{9}, & x \text{ is } + ve \\ \frac{5}{9}, & x \text{ is } - ve \end{cases}$$

$$H(X) = \sum_{x \in X} p(x) \log \left(\frac{1}{p(x)} \right)$$

$$= \sum_{x > 0} p(x) \log \left(\frac{1}{p(x)} \right) + \sum_{x < 0} p(x) \log \left(\frac{1}{p(x)} \right)$$

$$= I(4,5) = \frac{4}{9} \log_2 \left(\frac{9}{4} \right) + \frac{5}{9} \log_2 \left(\frac{9}{5} \right) = 0.52 + 0.47 = 0.99$$
where $I(p, n)$ is defined as $-\frac{p}{p+n} \log \left(\frac{p}{p+n} \right) - \frac{n}{p+n} \log \left(\frac{n}{p+n} \right)$.

where
$$I(p, n)$$
 is defined as $-\frac{p}{p+n}\log\left(\frac{p}{p+n}\right) - \frac{n}{p+n}\log\left(\frac{n}{p+n}\right)$.

$$E(a_1) = \frac{|a_1 = T|}{|a_1|} H(X \mid a_1 = T) + \frac{|a_1 = F|}{|a_1|} H(X \mid a_1 = F)$$

$$= \frac{4}{9}I(3,1) + \frac{5}{9}I(1,4) = \frac{4}{9}\left(\frac{3}{4}\log\left(\frac{4}{3}\right) + \frac{1}{4}\log\left(\frac{4}{1}\right)\right) + \frac{5}{9}\left(\frac{1}{5}\log\left(\frac{5}{1}\right) + \frac{4}{5}\log\left(\frac{5}{4}\right)\right)$$

$$= \frac{4}{9} \times 0.8113 + \frac{5}{9} \times 0.7219 = 0.36057 + 0.40106 = 0.76163$$

:.
$$Gain(a_1) = H(X) - E(a_1) = I(4,5) - E(a_1) = 0.9911 - 0.7616 = 0.2294$$

$$E(a_2) = \frac{5}{9}I(2,3) + \frac{4}{9}I(2,2) = 0.9839$$

:
$$Gain(a_2) = H(X) - E(a_2) = I(4,5) - E(a_2) = 0.9911 - 0.9839 = 0.0072$$

(c) Since a3 is continuous valued, we try all possible split points, in order to split the set into 2 subsets. For instance, if <6.0 then left subset, ow create right subset. For all different choises of the split-points, the information gain is as follows:

a3								
Split point	3.0	4.0	5.0	6.0	7.0	8.0		
Gain	0.1427	0.0026	0.0728	0.0072	0.0183	0.1020		

Splitting the data set into 2 subset using different values of the attribute a3 as split point.

If the number of split points is increased, the gain will also increase in general, resulting in highest gain in the worst case if there are 5 splits (at the cost of 7 branches in the tree), as shown:

$$E(a_3) = \frac{1}{9}I(1,0) + \frac{1}{9}I(0,1) + \frac{1}{9}I(1,0) + \frac{2}{9}I(0,2) + \frac{1}{9}I(1,0) + \frac{2}{9}I(1,1) + \frac{1}{9}I(0,1)$$

$$= \frac{1}{9}.0 + \frac{1}{9}.0 + \frac{1}{9}.0 + \frac{2}{9}.0 + \frac{1}{9}.0 + \frac{2}{9}.1 + \frac{1}{9}.0 = 0.2222$$

$$\therefore Gain(a_3) = H(X) - E(a_3) = I(4,5) - E(a_3) = 0.9911 - 0.2222 = 0.7689$$

So far the values of the attribute a3 were considered in sorted order. From the above it can be easily seen that the split can be minimized to 3 and yet the same gain can be achieved (if we get rid of the order in the attribute values)

$$E(a_3) = \frac{3}{9}I(1,0) + \frac{2}{9}I(0,2) + \frac{4}{9}I(0,1)$$

$$= \frac{3}{9}.0 + \frac{2}{9}.1 + \frac{4}{9}.0 = 0.2222$$

$$\therefore Gain(a_3) = H(X) - E(a_3) = I(4,5) - E(a_3) = 0.9911 - 0.2222 = 0.7689$$

If the value 7.0 is included in any of the subsets, the gain decreases.


```
[matlab]
                                                                false
11 - [
                                           false
             true
   true
12 - 1
                       false
             rate
    true
C = 1
 10
                     % split point true / false
                      & split point from / false
 Gain(al, C, true)
 Sain(e2, C, true)
  H = size(a3, 2):
```

for 1 = 1 : 1 | Gain(a3, C, x3(i)): 6 a3 continuous, test every possible split point mod

```
[matiab]
    & acceptance A
    & CARREST CLASS C
    M relic value s
       as - size(A, J); t size of target class labels
    function [3] - Smin(A, C, s)
       post = 1
       for 1 - 1 1 mg
          IE CELLY > 1
              post - post + 1/
                                               155
                                                                  125
       G = I(post, no - post) - E(A, C, s);
                                             attribute A with split point s
   a attended A
   & sarget class C
   * split value s
   function [ES] - E(A, C, s)
               & initialize weighted average entropy E(A)
      MM - III
      n - size(A. 1): 4 size of attribute values
      no - size(A, 3); % size of corresponding target class labels
                    & must be equal
      if in - no
          & strengte set A to be split into 2 subsets A1. A2: s being the
         * split guist: all suples with values of A c s will fall in Al,
         & otherwise fall into A2.
         mas = 12
         252 m 1
         poshi - It & positive class labels in Al
         post2 - If & positive class labels in AZ
         fer 1 - 1 | n
             1f (A(1) >= n)
                mA1 = mA1 * 13 % number of tuples in A1
                if (C(1) > 1) % if corresponding class label is positive
                    poski - poski + 12
                most
            nise
               n\Delta 2 = n\Delta 2 + 1: % number of tuples in \Delta 2: n\Delta 2 = 21 - n\Delta 1
                if (C(i) > 0) % if corresponding class label is posicive
                end
           end
        end
       HE = (nA1 / m) * I(posA1, nA1 - posA1) + (nA2 / m) * I(posA2, nA2 - posA2);
   and
a find entropy
function \{R\} = 2\{a, b\}
   p = a / (a + b):
  n = b / (a + b) /
   loop - or
   if (p -- )
      logp = log2(p);
  and.
  logn w or
  25 (to -0 )
    logn = log2 (n) /
  minit
 H = -p * logp - n * logn
```

(d)The attribute corresponding to the largest information gain should be chosen. If we allow binary splitting only (maintaining attribute a splitting only (maintaining attribute order), the information gain is highest in case of the attribute at for rollsting. If we allow n-ary splitting without maintaining attribute order, a3 has the highest gain in the 3-split shown above, hence a3-charles

shown above, hence a3 should be chosen.

(e)

$$: ClassErr(t) = 1 - \max_{i} [p(i|t)]$$

$$ClassErr(X | a_{i} = T) = 1 - \max_{i} (\frac{3}{4}, \frac{1}{4}) = \frac{1}{4}$$

$$ClassErr(X | a_{i} = F) = 1 - \max_{i} (\frac{1}{5}, \frac{4}{5}) = \frac{1}{5}$$

$$: ClassErr(a_{1}) = \frac{|a_{1} = T|}{|a_{1}|} ClassErr(X | a_{1} = T) + \frac{|a_{1} = F|}{|a_{1}|} ClassErr(X | a_{1} = F)$$

$$= \frac{4}{9} \cdot \frac{1}{4} + \frac{5}{9} \cdot \frac{1}{5} = \frac{2}{9} = 0.2222$$

$$ClassErr(a_{2})$$

$$= \frac{5}{9} (1 - \frac{3}{5}) + \frac{4}{9} (1 - \frac{2}{4}) = \frac{5}{9} (\frac{2}{5}) + \frac{4}{9} (\frac{2}{4}) = \frac{4}{9} = 0.4444$$

The best split is the attribute with minimum classification error rate, hence a1.

$$\begin{aligned} & gini(t) = 1 - \sum_{i} \left[p(i \mid t) \right]^{2} \\ & gini(X \mid a_{1} = T) = 1 - \left(\frac{3}{4} \right)^{2} - \left(\frac{1}{4} \right)^{2} = \frac{6}{16} \\ & gini(X \mid a_{1} = F) = 1 - \left(\frac{1}{5} \right)^{2} - \left(\frac{4}{5} \right)^{2} = \frac{8}{25} \\ & gini(a_{1}) = \frac{|a_{1} = T|}{|a_{1}|} gini(X \mid a_{1} = T) + \frac{|a_{1} = F|}{|a_{1}|} gini(X \mid a_{1} = F) \\ & \frac{4}{9} \cdot \frac{6}{16} + \frac{5}{9} \cdot \frac{8}{25} = \frac{1}{9} \left(\frac{3}{2} + \frac{8}{5} \right) = \frac{3.1}{9} = 0.3444 \end{aligned}$$

$$\begin{cases} a_{1}(a_{1}) = \frac{5}{9} \left(\frac{12}{25} \right) + \frac{4}{9} \left(\frac{1}{2} \right) = \frac{1}{9} \left(\frac{12}{5} + 2 \right) = \frac{4.4}{9} = 0.4889 \end{cases}$$

$$\begin{cases} a_{1}(a_{1}) = \frac{5}{9} \left(\frac{12}{25} \right) + \frac{4}{9} \left(\frac{1}{2} \right) = \frac{1}{9} \left(\frac{12}{5} + 2 \right) = \frac{4.4}{9} = 0.4889 \end{cases}$$

best split is the attribute with minimum gini index, hence a1.