

Università "Sapienza" di Roma Facoltà di Informatica

Progettazione di Algoritmi

Appunti integrati con il libro "Introduzione agli algoritmi e strutture dati", T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein

Author Simone Bianco

Indice

0	Intr	oduzione	1
1	Teo	ria dei grafi	2
	1.1	Grafi, vertici e archi	2
	1.2	Passeggiate, cicli e cammini	7
	1.3	DAG e Ordinamento topologico	2
	1.4	Depth-First Search (DFS)	.5
		1.4.1 Tempo di visita e tempo di chiusura	22
		1.4.2 Presenza di cicli in un grafo	29
		1.4.3 Trovare un ordinamento topologico	31
	1.5	Trovare ponti in un grafo	33

Capitolo 0

Introduzione

Capitolo 1

Teoria dei grafi

1.1 Grafi, vertici e archi

Definition 1. Grafo

Un grafo G = (V, E) è una struttura matematica composta da un insieme V di vertici (o nodi) ed un insieme E di archi (o spigoli) che collegano due vertici, dove:

$$E = \{(v_1, v_2) \mid v_1, v_2 \in V, v_1 \neq v_2\}$$

Di conseguenza, in un grafo <u>non sono presenti</u> né **archi ripetuti tra due vertici**, né **cappi**, ossia archi da un vertice in se stesso.

Definition 2. Multigrafo

Un multigrafo G = (V, E) è un particolare tipo di grafo dove sono concessi archi ripetuti e cappi nell'insieme degli archi E

Esempio:

2 5

Grafo

Multigrafo

Definition 3. Incidenza e adiacenza

Sia G = (V, E) un grafo o un multigrafo. Se $(v_1, v_2) \in E(G)$, allora definiamo l'arco (v_1, v_2) come **incidente in** v_1 **e** v_2 , mentre definiamo v_1 e v_2 come **adiacenti**

Definition 4. Grafo diretto e non diretto

Sia G = (E, V) un grafo. Definiamo G come **grafo diretto**, o **digrafo**, se i suoi archi possiedono un **orientamento**, ossia se

$$(v_1, v_2) \in E(G) \implies (v_2, v_1) \notin E(G)$$

Viceversa, definiamo G come **grafo non diretto**, o semplicemente **grafo**, se i suoi archi non possiedono orientamento, ossia se:

$$(v_1, v_2) \in E(G) \implies (v_2, v_1) \in E(G)$$

Esempio:

Grafo diretto

Grafo non diretto

Definition 5. Grado di un vertice

Sia G = (V, E) un grafo o un multigrafo e sia $v \in V(G)$.

Se G è un grafo **non diretto**, definiamo come **grado** di v, indicato come deg(v), il numero di archi incidenti a v_1

Se invece G è un grafo **diretto**, definiamo come **grado entrante** il numero di archi $(x, v), \forall x \in V(G)$ e come **grado uscente** il numero di archi $(v, x), \forall x \in V(G)$

Esempio:

• Nel seguente grafo non diretto, si ha che deg(4) = 2

• Nel seguente grafo diretto, il grado uscente e il grado entrante di 1 sono ripettivamente pari a 1 e 2, dunque si ha che deg(1) = 3

Theorem 1. Somma dei gradi di un grafo

Dato un grafo G=(V,E) avente n vertici, dunque |V(G)|=n, e m archi, dunque |E(G)|=m, si ha che:

$$\sum_{v \in V(G)} deg(v) = 2m$$

Dimostrazione:

• Poiché ogni arco $e \in E(G)$ è incidente a due vertici $v_i, v_j \in V(G) \mid v_i \neq v_j$, incrementando di 1 il grado di entrambi i vertici. Di conseguenza, si vede facilmente che:

$$\sum_{v \in V(G)} deg(v) = 2m$$

Definition 6. Matrice di adiacenza

Sia G=(V,E) un grafo avente n vertici, dunque |V(G)|=n. Definiamo come **matrice di adiacenza** una matrice $M\in Mat_{n\times n}(\{0,1\})$ tale che:

$$m_{i,j} = \begin{cases} 1 & \text{se } (v_i, v_j) \in E(G) \\ 0 & \text{se } (v_i, v_j) \notin E(G) \end{cases}$$

Proposition 2. Costi della matrice di adiacenza

Sia G = (V, E) dove |V(G)| = n e sia $M \in Mat_{n \times n}(\{0, 1\})$ la sua matrice di adiacenza.

Il costo spaziale di tale matrice è $O(n^2)$, mentre il costo computazionale delle sue operazioni risulta essere:

- Verificare se $(v_i, v_j) \in E(G)$: O(1)
- Trovare tutti gli adiacenti a v_i : O(n)
- Aggiungere o rimuovere $(v_i, v_j) \in E(G)$: O(1)

Dimostrazione:

- Poiché $M \in Mat_{n \times n}(\{0,1\})$, si vede facilmente che il suo costo spaziale sia $O(n^2)$
- Inoltre, poiché $(v_i, v_j) \in E(G) \iff m_{i,j} = 1$, è sufficiente leggere il valore dell'entrata $m_{i,j}$ per verificare se $(v_i, v_j) \in E(G)$, rendendo quindi il costo pari a O(1).

Per trovare tutti gli adiacenti di un vertice v_i , dunque, è sufficiente leggere il valore delle entrate $m_{i,k}, \forall k \in [0, n]$, rendendo il costo pari a O(n).

• Nel caso in cui si voglia aggiungere o rimuovere un arco $(v_i, v_j) \in E(G)$, se il grafo è diretto sarà necessario modificare l'entrata $m_{i,j}$, rendendo il costo pari a O(1), mentre se il grafo non è diretto sarà necessario modificare l'entrata $m_{i,j}$ e $m_{j,i}$, rendendo il costo pari a $2 \cdot O(1) = O(1)$

Definition 7. Liste di adiacenza

Sia G = (V, E) un grafo avente n vertici, dunque |V(G)| = n. Definiamo come **liste** di adiacenza l'insieme di liste L_0, \ldots, L_n dove $\forall x \in V(G)$ si ha che:

$$L_x := [v \in V(G) \mid (x, v), (v, x) \in E(G)]$$

Se G é un **grafo diretto**, definiamo come **liste di entrata** l'insieme di liste $L_0^{in}, \ldots, L_n^{in}$ e come **liste di uscita** l'insieme di liste $L_0^{out}, \ldots, L_n^{out}$ dove $\forall x \in V(G)$ si ha che:

$$L_x^{in} := [v \in V(G) \mid (v, x) \in E(G)]$$

$$L_x^{out} := [v \in V(G) \mid (x,v) \in E(G)]$$

Proposition 3. Costi delle liste di adiacenza

Sia G = (V, E) dove |V(G)| = n e siano L_0, \ldots, L_n le sue liste di adiacenza.

Il costo spaziale necessario per tutte le liste è O(n+m), dove |E(G)|=m, mentre il costo computazionale delle sue operazioni risulta essere:

- Verificare se $(v_i, v_j) \in E(G)$: $O(deg(v_i))$
- Trovare tutti gli adiacenti a v_i : $O(deg(v_i))$
- Aggiungere o rimuovere $(v_i, v_j) \in E(G)$: $O(deg(v_i))$

Dimostrazione:

• Nel caso in cui G sia un grafo, poiché $(v_i, v_j) \in E(G) \implies (v_i, v_i) \in E(G)$, si ha che $|L_i| = deg(v_i), \forall v_i \in V(G)$. Di conseguenza, il costo spaziale per tutte le liste corrisponderà a:

$$O\left(\sum_{v \in V(G)} deg(v)\right) = O(2m) = O(m)$$

Inoltre, poiché sono necessari n puntatori ognuno facente riferimento alla testa di una lista di adiacenza, il costo spaziale finale pari a O(n+m)

• Nel caso in cui G sia un grafo diretto, si ha che $|L_i^{in}| = deg_{in}(v_i) \leq deg(v_i)$ e $|L_i^{out}| = deg_{out}(v_i) \leq deg(v_i)$, dunque il costo spaziale di entrambe le liste corrisponde $O(deg(v_i))$. Di conseguenza, il costo spaziale per tutte le liste corrisponderà a:

$$O\left(\sum_{v \in V(G)} 2deg(v)\right) = O(4m) = O(m)$$

Inoltre, poiché sono necessari 2n puntatori ognuno facente riferimento alla testa di una lista di entrata o di uscita, il costo spaziale finale pari a O(2n+2m) = O(n+m)

• Poiché ognuna delle tre operazioni nel caso peggiore richiede di scorrere l'intera lista di adiacenza, di entrata o di uscita, il costo computazionale di ognuna di esse sarà $O(deg(v_i))$

Esempi:

1. • Consideriamo il seguente grafo

• La sua rappresentazione tramite matrice di adiacenza e liste di adiacenza corrisponderà a

	1	2	3	4	5	6
				1		
2	1	0	0	1	0	0
				0		
4	1	1	0	0	1	1
5	1	0	0	1	0	0
6	0	0	1	1	0	0

2. • Consideriamo il seguente grafo

• La sua rappresentazione tramite matrice di adiacenza e liste di adiacenza corrisponderà a

	1	2	3	4	5	6	Entrata	Uscita
1	0	1	1	1	0	0	$1 \to [5]$	$1 \to [2,4,3]$
2	0	0	0	0	0	0	$2 \rightarrow [1, 4]$	$2 \rightarrow []$
3	0	0	0	0	0	0	$3 \rightarrow [6, 1]$	$3 \rightarrow []$
4	0	0	0	0	0	0	$4 \to [2, 1, 5]$	$4 \rightarrow []$
5	1	0	0	1	0	0	$5 \rightarrow []$	$5 \rightarrow [1, 4]$
6	0	0	1	1	0	0	$6 \rightarrow []$	$6 \rightarrow [4,3]$

1.2 Passeggiate, cicli e cammini

Lo studio della teoria dei grafi deriva da un problema all'apparenza semplice, seppur richiedente uno studio dettagliato. Tale problema corrisponde al **problema dei sette ponti di Königsberg**:

• Nella città di Königsberg ci sono sette ponti posizionati nel seguente modo:

Vogliamo sapere se sia possibile effettuare una passeggiata per la città passando per tutti i ponti tornando al punto di partenza senza mai passare due volte sullo stesso ponte.

• A risolvere il problema fu Eulero nel 1736, provando che non sia possibile effettuare un tale tipo di passeggiata. Nella sua dimostrazione, Eulero modellò il problema come un multigrafo, dando origine alla teoria dei grafi:

• In seguito, vedremo la dimostrazione data da Eulero tramite il suo teorema generale

Definition 8. Passeggiata

Dato un grafo G = (V, E), definiamo come **passeggiata** una sequenza alternata di vertici $v_1, \ldots, v_k \in V(G)$ ed archi $e_1, \ldots, e_k \in E(G)$, dove $e_i = (v_{i-1}, v_i)$.

In altre parole, definiamo la seguente sequenza come passeggiata:

$$v_0e_1v_1\ldots v_{i-1}e_iv_i\ldots v_{k-1}e_kv_k$$

Definition 9. Traccia e Cammino

Sia G = (V, E) un grafo. Definiamo una passeggiata in G come:

- Traccia se tale passeggiata non contiene archi ripetuti
- Cammino se tale passeggiata non contiene vertici ripetuti (e di conseguenza neanche archi ripetuti)

Esempi:

• Consideriamo il seguente grafo

• La seguente sequenza è una passeggiata su tale grafo

$$1 - (1, 2) - 2 - (2, 4) - 4 - (4, 5) - 5 - (5, 4) - 4 - (4, 1) - 1$$

• La sequente sequenza è una traccia su tale grafo

$$4 - (4,5) - 5 - (5,1) - 1 - (1,2) - 2 - (2,4) - 4 - (4,1) - 1$$

• La sequente sequenza è un cammino su tale grafo

$$4 - (4,5) - 5 - (5,1) - 1 - (1,2) - 2 - (2,4) - 4$$

Definition 10. Visita di un vertice

Sia G = (V, E) un grafo. Dato $v \in V(G)$, definiamo un vertice $v' \in V(G)$ visitabile da v, indicato come $v_1 \to v_2$, se esiste una passeggiata da v_1 a v_2

Observation 1

Dato un grafo G = (V, E) si ha che:

 \exists una passeggiata $\mid x \to y$ in $G \implies \exists$ un cammino $\mid x \to y$ in G

Definition 11. Grafo connesso e fortemente connesso

Sia G = (V, E) un grafo. Definiamo G come **connesso** se

$$\forall v_1, v_2 \in V(G), \exists \text{ un cammino } | v_1 \rightarrow v_2 \lor v_2 \rightarrow v_1$$

Definiamo invece G come fortemente connesso se

$$\forall v_1, v_2 \in V(G), \exists \text{ due cammini } | v_1 \rightarrow v_2 \land v_2 \rightarrow v_1$$

Esempio:

Fortemente connesso

Connesso

Non connesso

Definition 12. Passeggiata chiusa ed aperta

Sia G = (V, E) un grafo. Definiamo una passeggiata $v_0 e_1 \dots e_k v_k$ su G come **chiusa** se $v_0 = v_k$, altrimenti essa viene definita **aperta**

Definition 13. Passeggiata Hamiltoniana

Sia G = (V, E) un grafo. Definiamo una passeggiata come **hamiltoniana** se tale passeggiata contiene tutti i vertici in V(G) ed ogni vertice è presente una sola volta.

In altre parole, una passeggiata hamiltoniana è un cammino contenente tutti i vertici in V(G)

Definition 14. Passeggiata Euleriana

Sia G = (V, E) un grafo. Definiamo una passeggiata come **euleriana** se tale passeggiata contiene tutti gli archi in E(G) ed ogni arco è presente una sola volta.

In altre parole, una passeggiata euleriana è una traccia contenente tutti gli archi in E(G)

Theorem 4. Teorema di Eulero

Dato un grafo G = (V, E), esiste una passeggiata euleriana chiusa in G se e solo se G è connesso e il grado di ogni vertice è pari:

$$\exists$$
 passeggiata euleriana chiusa in $G \iff \begin{cases} \forall v_1, v_2 \in V(G), \exists v_1 \to v_2 \\ \forall v \in V(G), \exists k \in \mathbb{Z} \mid deg(v) = 2k \end{cases}$

 $Dimostrazione \ (implicazione \iff omessa):$

- Supponiamo per assurdo che esista una passeggiata euleriana chiusa in G e che $\exists v \in V \mid deg(v) = 2k+1, \exists k \in \mathbb{Z}$, ossia che esista un vertice avente grado dispari.
- In tal caso, una volta effettuata la 2k + 1 esima visita su v utilizzando ogni volta un diverso arco incidente ad esso, non sarebbe possibile raggiungere un altro vertice $x \in V(G) \mid (v, x) \in E(G)$ senza necessariamente riutilizzare uno degli archi incidenti a v, contraddicendo l'ipotesi per cui tale passeggiata sia euleriana.
- Inoltre, nel caso particolare in cui x sia il vertice iniziale della passeggiata, se deg(v) = 2k + 1 non sarebbe possibile raggiungere x come vertice finale della passeggiata, contraddicendo l'ipotesi per cui la passeggiata sia chiusa.
- Supponiamo quindi per assurdo che esista una passeggiata euleriana chiusa in G e che G non sia connesso. In tal caso, ne seguirebbe automaticamente che tale passeggiata non possa essere euleriana, poiché esisterebbe un vertice sconnesso avente un arco non utilizzabile nella passeggiata

Definition 15. Ciclo

Sia G = (V, E) un grafo. Definiamo come **ciclo** una **passeggiata chiusa** dove solo il **primo** e l'**ultimo** vertice sono ripetuti.

Esempio:

• Consideriamo il seguente grafo

ullet La seguente passeggiata è un ciclo in G

Algorithm 1. Trovare un ciclo (con grado minimo 2)

Sia G = (V, E) un grafo non diretto dove $deg(v) \ge 2, \forall v \in V(G)$. Il seguente algoritmo restituisce, se esistente, un ciclo in G.

Il **costo computazionale** di tale algoritmo corrisponde a:

- O(n) se G sia rappresentato tramite liste di adiacenza
- $O(n^2)$ se G sia rappresentato tramite matrice di adiacenza

```
dove |V(G)| = n
```

Algorithm 1: Trovare un ciclo in un grafo non diretto con grado minimo 2

Input:

G: grafo non diretto dove $deg(v) \geq 2, \forall v \in V(G)$

Output:

Ciclo in G

Function findCycle(G):

```
\begin{split} x &:= x \in V(G); \\ \text{Vis} &:= \{x\}; \\ y &:= z \in V(G) \mid (x,y) \in E(G); \\ \text{while } y \notin \text{Vis do} \\ \mid \text{ Vis.add(y)}; \\ \mid y &:= w \in V(G) \mid (y,w) \in E(G), w \neq \text{Vis[Vis.length - 2]}; \\ \text{end} \\ \text{return Vis[Vis.index(y) : Vis.length-1]}; \end{split}
```

 end

Dimostrazione correttezza algoritmo:

- Preso un vertice iniziale $x \in V$ qualsiasi, l'algoritmo costruisce una passeggiata scegliendo ad ogni iterazione un vertice non già visitato, in modo che esso non possa essere ripetuto. L'insieme Vis contiene i vertici visitati durante la passeggiata.
- In particolare, la condizione interna al while $w \neq \texttt{Vis[Vis.length -2]}$ impedisce all'algoritmo di selezionare il penultimo vertice interno alla passeggiata, impedendo che essa possa tornare indietro e conseguentemente impedendo che venga riutilizzato un vertice precedente.
- Il ciclo while viene terminato quando $y \in Vis$, implicando che y sia un vertice già visitato. Di conseguenza, lo slice Vis[Vis.index(y) : Vis.length-1], corrisponderà ad un ciclo y, w_0, \ldots, w_k, y .

Dimostrazione costo dell'algoritmo:

• Se ogni vertice successivo selezionato non è mai stato visitato, il ciclo while verrà eseguito un massimo di n volte, dando vita a due scenari:

- Se G fosse rappresentato tramite matrice di adiacenza, il costo della ricerca di un vertice adiacente a y risulta essere O(n), di conseguenza il costo del ciclo while sarà $n \cdot O(n) = O(n^2)$
- Se G fosse rappresentato tramite liste di adiacenza, il vertice adiacente selezionato sarà necessariamente $L_y[0]$, nel caso in cui $L_y[0] \notin Vis$, oppure $L_y[1]$, nel caso in cui $L_y[0] \in Vis$.

Di conseguenza, il costo della ricerca di un vertice adiacente a y risulta essere $2 \cdot O(1) = O(1)$, rendendo il costo del while pari a $n \cdot O(1) = O(n)$

1.3 DAG e Ordinamento topologico

Definition 16. Grafo diretto aciclico (DAG)

Sia G = (V, E) un grafo. Definiamo G come **grafo diretto acicliclo (DAG)** se non esistono cicli in G

Definition 17. Ordinamento topologico

Sia G = (V, E) un grafo diretto. Dati i suoi vertici $V(G) = \{v_0, \dots, v_n\}$, definiamo come **ordinamento topologico** un ordinamento di tali vertici in cui ogni vertice viene prima di tutti i vertici raggiungibili da un suo arco uscente

Esempio:

• Consideriamo il seguente grafo

- Le due seguenti sequenze di vertici sono due ordinamenti topologici possibili di tale grafo:
 - Precedenza ai vertici più in alto: 1, 2, 3, 4, 6, 5, 7
 - Precedenza ai vertici più a sinistra: 3, 1, 2, 4, 5, 6, 7

Theorem 5

Dato un grafo diretto G = (V, E), si ha che:

 \exists ordinamento topologico in $G \iff \nexists$ ciclo in G

Dimostrazione:

- Supponiamo per assurdo che esista un ordinamento topologico in G e che esista un ciclo $v_0e_1v_1e_2\ldots e_kv_0$ in G, implicando che v_1 sia un vertice uscente di v_0 .
 - In tal caso, verrebbe contraddetta l'ipotesi per cui in G esista un ordinamento topologico, poiché v_0 verrebbe sia prima di v_1 sia dopo v_1 . Di conseguenza, l'unica possibiltà è che non esista alcun ciclo in G
- Viceversa, supponiamo per assurdo che non esista un ciclo in G e che non esista un ordinamento topologico in G, implicando che esista un vertice $v \in V(G)$ tale che v sia raggiungibile da un arco uscente di un vertice v' a sua volta raggiungibile da un arco uscente v.

Di conseguenza, si avrebbe che $v \to v' \to v$, contraddicendo l'ipotesi per cui in G non esistano cicli, dunque l'unica possibilità è che in G esista un ordinamento topologico.

Observation 2

Dato un grafo diretto aciclico G = (V, E), si ha che:

- $\exists v \in V(G) \mid deq_{in}(v) = 0$
- $\exists v' \in V(G) \mid deq_{out}(v) = 0$

Dimostrazione:

- Supponiamo per assurdo che G sia un DAG e che $\nexists v \in V(G) \mid deg_{in}(v) = 0$.
- Poiché G è aciclico, esiste un ordinamento topologico v_0, \ldots, v_n in G, dove |V(G)| = n. Tuttavia, poiché $deg_{out}(v_n) \neq 0$, ne segue che $\exists v_k \in V(G) \mid k \in [0, n-1]$ tale che $(v_n, v_k) \in E(G)$, implicando che $v_k \to v_n \to v_k$, contraddicendo l'ipotesi per cui G sia aciclico
- Analogamente, poiché $deg_{in}(v_0) \neq 0$, ne segue che $\exists v_j \in V(G) \mid j \in [1, n]$ tale che $(v_j, v_0) \in E(G)$, implicando che $v_j \to v_0 \to v_j$, contraddicendo ancora l'ipotesi per cui G sia aciclico
- Di conseguenza, l'unica possibilità è che $deg_{in}(v_0)=0$ e $deg_{out}(v_n)=0$

Algorithm 2. Trovare un ordinamento topologico

Sia G = (V, E) un DAG. Il seguente algoritmo restituisce un possibile ordinamento topologico di G

Il costo computazionale di tale algoritmo è O(n(n+m)), dove |V(G)|=n e |E(G)|=m, se G è rappresentato tramite liste di adiacenza

Algorithm 2: Trovare un ordinamento topologico in un DAG

Input:

G: grafo diretto aciclico

Output:

Ordinamento topologico in G

Function findTopologicalSorting(G):

```
 \begin{array}{l} \textbf{List} \ \mathsf{L} := \emptyset; \\ \textbf{while} \ V(G) \neq \emptyset \ \textbf{do} \\ \mid \ v := v \in V(G) \mid deg_{in}(v) = 0; \\ \mid \ \mathsf{L}.\mathsf{head\_insert}(v); \\ \mid \ G.\mathsf{remove}(v); \\ \textbf{end} \\ \mathsf{return} \ \mathsf{L}; \\ \end{array}
```

end

Dimostrazione correttezza algoritmo:

- Siano G_0, \ldots, G_k le istanze del grafo G ad ogni iterazione del ciclo while. Poiché G è aciclico, ne segue che anche G_0, \ldots, G_k siano aciclici, poiché rimuovere vertici non crea cicli in tali grafi.
- Per l'osservazione precedente, dunque $\forall i \in [0, n]$ si ha che $\exists v_i \in V_i(G_i) \mid deg_{in}(v_i) = 0 \mid$ implicando che ad ogni iterazione esista sempre un vertice selezionabile finché $V(G) \neq \emptyset$. Di conseguenza, si ha che k = |V(G)|.
- Notiamo inoltre che, ad ogni rimozione di un vertice $x \in V(G)$, il grado di tutti i vertici $x' \in V(G) \mid (x, x') \in E(G)$ venga decrementato di uno.
- Siano quindi v_0, \ldots, v_k i vertici selezionati e rimossi ad ogni iterazione. Supponiamo per assurdo che $L := v_0, \ldots, v_k$ non sia un ordinamento topolgico, implicando che $\exists v_i, v_j \in L$ tali che $(v_i, v_j) \in E(G)$ e v_j venga prima di v_i nell'ordinamento. In tal caso, l'algoritmo avrebbe sbagliato a selezionare v_j prima di v_i , poiché $(v_i, v_j) \in E(G) \implies deg_{in}(v_i) > 0$.
- Di conseguenza, l'unica possibilità è che v_j venga selezionato dopo v_i , implicando quindi che L sia un ordinamento topologico

Dimostrazione costo dell'algoritmo:

• Come dimostraato nella correttezza dell'algoritmo, il ciclo while viene iterato sempre |V(G)| = n volte.

- In entrambe le tipologie di rappresentazione di G, l'inserimento in testa nella lista risulta avere un costo pari a O(1)
- Nel caso in cui G sia rappresentato tramite matrice di adiacenza, nel caso peggiore sarebbe necessario scorrere ogni singola entrata della matrice durante la selezione del prossimo vertice, risultando quindi in un costo pari a $O(n^2)$. essario rimuovere tutti gli |E(G)| = m archi dalla lista di uscita di v e tutti gli |E(G)| = m archi distribuiti nelle liste di entrata degli altri n-1 vertici, risultando quindi in un costo pari a O(n) + O(2m) = O(n+m)

Di conseguenza, in tal caso il costo finale del ciclo while risulta essere $n \cdot O(n^2) = O(n^3)$

• Nel caso in cui G sia rappresentato tramite liste di adiacenza, invece, nel caso peggiore sarebbe necessario controllare il grado d'entrata di ogni vertice durante la selezione del prossimo vertice, risultando quindi in un costo pari a O(n).

Inoltre, nel caso peggiore esiste un unico vertice $v \in V(G) \mid \forall v' \in V(G), \exists (v, v') \in E(G)$, implicando che sia necessario rimuovere tutti gli |E(G)| = m archi dalla lista di uscita di v e tutti gli |E(G)| = m archi distribuiti nelle liste di entrata degli altri n-1 vertici, risultando quindi in un costo pari a O(n) + O(2m) = O(n+m)

Di conseguenza, in tal caso il costo finale del ciclo while risulta essere $n \cdot O(n+m) = O(n(n+m))$

1.4 Depth-First Search (DFS)

Definition 18. Depth-First Search (DFS)

Sia G = (V, E) un grafo. Dato un vertice iniziale $x \in V(G)$ definiamo come **depth-first search (DFS)** un **criterio di visita** su G basato sul procedere **in profondità**, ossia dando precedenza ai vertici più lontani dal vertice iniziale, raggiungendo ogni vertice **una ed una sola volta**, tornando al vertice precedente <u>se e solo se</u> non è più possibile procedere in profondità tramite il vertice attuale, ossia quando tutti i vertici adiacenti sono già stati visitati

Esempio:

• Consideriamo il seguente grafo.

• Scelto 6 come vertice iniziale, selezioniamo casualmente uno dei tre archi incidenti a 6, ripetendo tale procedimento finché non sia più possibile scendere in profondità

• Una volta raggiunto il vertice 4, non è più possibile scendere il profondità poiché tutti i vertici adiacenti a 4 sono già stati visitati. Di conseguenza, la ricerca DFS tornerà al vertice precedente, ossia il vertice 3. Tuttavia, anche per tale vertice è impossibile procedere in profondità. Di conseguenza, la ricerca DFS tornerà al vertice precedente, ossia il vertice 2. A questo punto, la ricerca DFS è in grado di procedere in profondità poiché il vertice 1 non è ancora stato visitato

• A questo punto, poiché ogni vertice del grafo è già stato visitato, la ricerca non sarà più in grado di procedere in profondità. Dunque, ad ogni iterazione essa tornerà continuamente al vertice precedente, fino a raggiungere la vertice iniziale stessa, per poi concludersi. L'ordine finale di visita, dunque, corrisponde a 6, 5, 2, 3, 4, 1

Algorithm 3. Depth-first Search

Sia G = (V, E) un grafo e sia $x \in V(G)$ un vertice. Il seguente algoritmo effettua una DFS, restituendo l'insieme di vertici visitabili dalla vertice iniziale x

Il costo computazionale di tale algoritmo corrisponde a $O(n^2)$, dove |V(G)| = n

Algorithm 3: Depth-first Search

```
Input:
G: grafo, x: x \in V(G)
Output:
Vertici visitabili da x
Function DFS(G,x):
   Vis := \{x\};
   Stack S := \emptyset;
   S.push(x);
   while S \neq \emptyset do
       y := S.top();
       if \exists z \in V(G) \mid (y,z) \in E(G), z \notin Vis then
           S.push(z);
           Vis.add(z);
       else
           S.pop();
       end
   end
   return Vis;
end
```

Dimostrazione correttezza algoritmo:

- Sia $y \in V(G)$ un vertice visitabile da x tramite una passeggiata. Di conseguenza, esiste anche un cammino $v_0e_1v_1 \dots v_{k-1}e_kv_k$ tale che $x \to y$, implicando quindi che $x := v_0$ e $y := v_k$.
- Supponiamo per assurdo che venga raggiunta l'iterazione del while per cui $S=\emptyset$ e che $y\notin Vis$.
- Sia v_i il vertice di tale cammino avente indice maggiore dove $v_i \in Vis$, implicando che $v_{i+1} \notin Vis$. Se tale vertice esistesse, esso verrebbe tolto dallo stack prima che il vertice v_{i+1} sia visitato dall'algoritmo, poiché $v_{i+1} \notin Vis$, $\exists (v_i, v_{i+1}) \in E(G)$ e $v_{i+1} \neq v_i, \forall j \in [0, i]$, implicando quindi che l'algoritmo abbia sbagliato l'esecuzione.
- Di conseguenza, l'unica possibilità è che una volta raggiunta l'iterazione del while per cui $S=\emptyset$ si abbia che $y\in \mathsf{Vis}$

Dimostrazione costo dell'algoritmo:

- Nel caso peggiore in cui $\forall v \in V(G) \{x\}$ si abbia che $x \to v$, il ciclo while verrebbe eseguito un totale di 2n-1 volte, poiché ogni vertice, eccetto la vertice iniziale, verrebbe aggiunto e rimosso dallo stack 2 volte, dando vita a due scenari:
 - Se G fosse rappresentato attraverso una matrice di adiacenza, la ricerca del vertice successivo ad ogni iterazione avrebbe un costo pari a O(n), poiché potenzialmente verrebbe analizzata l'intera riga associata al vertice attuale, rendendo il costo del ciclo while pari a $O((2n-1)n) = O(2n^2-n) = O(n^2)$

– Se G fosse rappresentato attraverso liste di adiacenza, la ricerca del vertice successivo ad ogni iterazione avrebbe un costo pari a O(n-1) = O(n), poiché, assumendo il caso peggiore, la sua lista di adiacenza associata al vertice attuale conterrebbe ogni vertice del grafo eccetto se stesso, rendendo l'intera riga, rendendo potenzialmente necessario scorrere l'intera lista. Di conseguenza, il costo del ciclo while pari sarebbe pari a $O((2n-1)n) = O(2n^2-n) = O(n^2)$

Definition 19. Albero e Albero radicato

Sia G = (V, E) un grafo non diretto. Definiamo G come **albero** se $\forall x, y \in V$ esiste un solo cammino tale che $x \to y$ e $y \to x$ passante per gli stessi vertici. Se viene scelto un vertice privilegiato, detto **radice**, all'interno di G, definiamo G come **albero radicato**.

Definition 20. Arborescenza

Sia G = (V, E) un grafo diretto. Dato un vertice $x \in V(G)$, detto **radice**, definiamo G come **arborescenza** se $\forall y \in V(G)$ esiste un solo cammino tale che $x \to y$

Esempio:

Albero

Arborescenza

Observation 3

Dato un grafo G = (V, E), se G è un albero o un'arborescenza, allora

$$|E(G)| = |V(G)| - 1$$

(dimostrazione omessa)

Observation 4

Sia G = (V, E) un grafo. Dato un vertice $x \in V(G)$, il **sottografo** H = (V', E') generato dall'insieme di archi e vertici percorsi da una DFS avente x come vertice iniziale corrisponde a:

- Un albero radicato (se G non è diretto), detto albero di visita
- Un'arborescenza (se G è diretto), detta arborescenza di visita

Esempio:

• Consideriamo il seguente grafo:

• L'arborescenza ottenuta effettuando una DFS avente come vertice iniziale il vertice 6 corrisponde a

• L'arborescenza ottenuta effettuando una DFS avente come vertice iniziale il vertice 5 corrisponde a

Problem 1

Una fabbrica ha diviso un processo di produzione in n fasi. Tra ogni coppia di fasi vi è una dipendenza, ossia una di esse deve essere completata prima dell'altra. Vogliamo trovare una possibile programmazione (se esistente) del processo di produzione rispettante tutte le dipendenze.

Soluzione:

- Siano $V(G) := x_1, \ldots, x_n$ le fasi del processo di produzione. Modelliamo le dipedenze tra ogni fase come degli archi diretti, dove $\exists (x_i, x_j) \in E(G) \iff x_j$ dipende da x_i
- A questo punto, possiamo tradurre la richiesta del trovare una possibile programmazione nel trovare un ordine topologico di G. Tuttavia, per poter trovare tale ordine, è prima necessario accertarsi che G sia aciclico poiché, per dimostrazione precedente, si ha che \exists ordine topologico in $G \iff \nexists$ ciclo in G
- Per determinare se G sia aciclico, possiamo eseguire su ogni vertice $v \in V(G)$ una versione modificata della DFS dove non appena viene trovato un vertice già visitato viene automaticamente decretatata la presenza di un ciclo.
- Nel caso in cui nessuna delle varie DFS eseguite abbia rilevato la presenza di un ciclo in G, possiamo utilizzare l'algoritmo 2 findTopologicalSorting(G) per trovare una programmazione valida. In caso contrario, non sarebbe possibile trovare una programmazione valida.
- Il costo finale di tale algoritmo, dunque, sarebbe O(n(n+m))

Algorithm 4. Depth-first Search (Ottimizzato)

Sia G = (V, E) un grafo con liste di adiacenza e sia $x \in V(G)$ un vertice. Il seguente algoritmo effettua una DFS, restituendo l'insieme di vertici visitabili dalla radice x

Il costo computazionale di tale algoritmo corrisponde a O(n+m), dove |V(G)| = n e |E(G)| = m

Algorithm 4: Depth-first Search (Ottimizzato)

```
Input:
G: grafo, x \in V(G): vertice iniziale
Output:
Vertici visitabili da x
Function DFS_Optimized(G,x):
   Vis := \{x\};
   Stack S := \emptyset;
   S.push(x);
   while S \neq \emptyset do
       y := S.top();
       while y.adiacenti \neq \emptyset do
           z = y.adiacenti[0];
           y.adiacenti.remove(0);
           if z \notin Vis then
              Vis.add(z);
              S.push(z);
              break;
          end
       end
       if y == S.top() then
          S.pop();
       end
   end
   return Vis;
```

Dimostrazione costo dell'algoritmo:

end

- Analogamente alla versione non ottimizzata, nel caso in cui $\forall v \in V(G), \exists (x, v) \in E(G)$, il ciclo while verrà eseguito 2n-1 volte.
- Ogni volta che un vertice viene analizzato come potenziale vertice successivo, esso viene rimosso dalla lista di adiacenza del vertice attuale, diminuendo la dimensione di quest'ultima, implicando che il numero totale di controlli effettuati corrisponda esattamente al numero di archi presenti nel grafo, ossia |E(G) = m|
- Di conseguenza, il costo totale del ciclo while sarà O(2n-1+m) = O(n+m). Nel caso particolare il cui il grafo sia diretto, è sufficiente considerare solo la lista di uscita di ogni vertice attuale, rendendo il tutto analogo

Algorithm 5. Depth-first Search (Ottimizzato - Ricorsivo)

Sia G = (V, E) un grafo con liste di adiacenza e sia $x \in V(G)$ un vertice. Il seguente algoritmo effettua ricorsivamente una DFS, restituendo l'insieme di vertici visitabili dalla radice x

Il **costo computazionale** di tale algoritmo corrisponde a O(n+m), dove |V(G)| = n e |E(G)| = m

Algorithm 5: Depth-first Search (Ottimizzato - Ricorsivo)

```
Input:
G: grafo, x \in V(G): vertice iniziale
Output:
Vertici visitabili da x
Function DFS_recursive(G, x, Vis):
   for y \in x.adiacenti do
      if y \notin Vis then
          Vis.add(y);
          DFS_recursive(G, y, Vis);
   end
end
Function DFS(G,x)
   Vis := \{x\};
   DFS_recursive(G, x, Vis);
   return Vis;
end
```

Dimostrazione correttezza algoritmo:

- \bullet Analogamente alla DFS ottimizzata, tramite il ciclo for vengono analizzati solo una ed una volta tutti gli archi uscenti dell'attuale vertice x, applicando automaticamente le operazioni di rimozione degli archi, richiamando la risorsione solamente sui nodi mai visitati prima
- Inoltre, nonostante non sia presente una vera struttura dati, l' stack è stato "nascosto" sfruttando le chiamate ricorsive (in particolare, utilizzando lo stack della memoria di sistema), ottenendo lo stesso effetto della versione iterativa

Dimostrazione costo algoritmo:

• Per i motivi sopraelencati, il costo dell'algoritmo risulta essere O(n+m)

Capitolo 1. Teoria dei grafi

1.4.1 Tempo di visita e tempo di chiusura

Definition 21. Tempo di visita e Tempo di chisura

Sia G = (V, E) un grafo e sia C un **contatore** inizializzato a 0 inserito all'interno dell'algoritmo DFS, il quale viene **incrementato ogni volta che viene visitato un nuovo vertice**.

Per ogni vertice $v \in V(G)$, definiamo come **tempo di visita di** v, indicato come t(v), il valore assunto da C nell'istante in cui v viene aggiunto allo stack e come **tempo di chiusura di** v, indicato come T(v), il valore assunto da C nell'istante in cui v viene rimosso dallo stack.

Definiamo inoltre come intervallo di visita di v l'intervallo Int(v) := [t(v), T(v)]

Esempio:

• Consideriamo il seguente multigrafo:

• Effettuando una DFS avente come vertice iniziale il vertice 1, una delle possibili arborescenze generate e il suo corrispettivo insieme di intervalli di visita corrisponde a:

\mathbf{V}	$\mathbf{t}(\mathbf{v})$	$T(\mathbf{v})$
1	1	10
2	2	5
3	3	5
4	5	5
5	10	10
6	4	4
7 8	6	10
8	7	8
9	9	10
10	8	8

Proposition 6

Sia G = (V, E) un grafo. Dato un arco $(u, v) \in E(G)$, dove u è detto **coda** e v è detto **testa**, solo una delle seguenti condizioni è verificata:

- $Int(u) \subseteq Int(v)$
- $Int(u) \supseteq Int(v)$
- $Int(u) \cap Int(v) = \emptyset$

Dimostrazione:

• Suppiamo per assurdo che $t(u) < t(v) \le T(u) \le T(v)$, ossia che i due intervalli si intersechino, ma nessuno dei due è interamente contenuto dell'altro.

Poiché t(u) < t(v), ne segue che u sia stato aggiunto allo stack prima di v. Di conseguenza, è impossibile che u sia stato tolto dallo stack prima di v, contraddicendo l'ipotesi per cui $T(u) \leq T(v)$.

- Analogamente, dimostriamo che $t(v) < t(u) \le T(v) \le T(u)$ è un caso impossibile
- Di conseguenza, le uniche possibilità sono:

$$-t(u) < t(v) \le T(v) \le T(u) \implies Int(u) \supseteq Int(v)$$

$$-t(v) < t(u) \le T(u) \le T(v) \implies Int(u) \subseteq Int(v)$$

$$-t(u) \le T(u) < t(v) \le T(v) \implies Int(u) \cap Int(v) = \emptyset$$

$$-t(v) \le T(v) < t(u) \le T(u) \implies Int(u) \cap Int(v) = \emptyset$$

Definition 22. Archi all'indietro, in avanti e di attraversamento

Sia G = (V, E) un grafo e sia A = (V', E') un'arborescenza generata da una DFS su G. Per ogni arco di G non appartenente all'arborescenza, dunque $\forall (u, v) \in E(G) \mid (u, v) \notin E'(A)$, definiamo tale arco come:

- Arco all'indietro (back edge) se l'intervallo della coda è contenuto in quello della testa, ossia se $Int(u) \subseteq Int(v)$
- Arco in avanti (forward edge) se l'intervallo della testa è contenuto in quello della coda, ossia se $Int(u) \supseteq Int(v)$
- Arco di attraversamento (cross edge) se l'intervallo della testa non è in relazione con l'intervallo della coda, ossia se $Int(u) \cap Int(v) = \emptyset$

Esempio:

• Riprendiamo l'arborescenza generata nell'esempio precedente

\mathbf{v}	t(v)	T(v)
1	1	10
2	2	5
3	3	5
4	5	5
5	10	10
6	4	4
7	6	10
8	7	8
9	9	10
10	8	8

- Classifichiamo quindi gli archi non appartenenti all'arborescenza:
 - L'arco (2,1) è un back edge (blu), poiché $[2,5] \subseteq [1,10]$
 - L'arco (2,4) è un forward edge (verde), poiché $[2,5] \supseteq [5,5]$
 - L'arco (7,6) è un cross edge (nero), poiché $[6,10] \cap [4,4] = \emptyset$

- . . .

Algorithm 6. Trovare archi all'indietro, in avanti e di attraversamento

Sia G = (V, E) un grafo con liste di adiacenza e sia $x \in V(G)$ un vertice. Il seguente algoritmo effettua una DFS avente x come vertice iniziale, restituendo l'insieme degli archi all'indietro, in avanti e di attraversamento generati.

Il costo computazionale di tale algoritmo corrisponde a O(n+m), dove |V(G)| = n e |E(G)| = m

Algorithm 6: Trovare back edge, forward edge e cross edge generati da una DFS con vertice iniziale $x \in V(G)$ su un grafo diretto G

Input:

G: grafo diretto, $x : x \in V(G)$

Output:

Un insieme di back edge, un insieme di forward edge e un insieme di cross edge

```
Function classifyDirectEdges(G, x):
```

```
Vis := [0, ..., 0]
                             //n elementi inizializzati a 0;
   t := [0, ..., 0];
   T := [0, ..., 0];
   Padri := [0, ..., 0];
   Stack S := \emptyset;
   c := 1;
   Vis[x] = 1;
   S.push(x);
   t[x] = c;
   Padri[x] = x;
   while S \neq \emptyset do
      y := S.top();
      while y.uscenti \neq \emptyset do
          z := y.uscenti[0];
          y.uscenti.remove(0);
          if Vis[z] = 0 then
             Vis[z] = 1;
              S.push(z);
              c++;
              t[z] = c;
             Padri[z] = y;
      end
      if y == S.top() then
          S.pop();
          T[y] = c;
   end
   Back, Forward, Cross = \emptyset;
   for v \in V(G) do
      for u \in v.entranti do
          if Padri[v] \neq u then
             if T[u] < t[v] \lor T[v] < t[u] then
                 Cross.add((u, v));
             else if T[u] \leq T[v] then
                 Back.add((u, v));
              else
                 Forward.add((u, v));
      end
   \quad \text{end} \quad
   return Back, Forward, Cross;
end
```

Dimostrazione correttezza algoritmo:

- In linea di massima, l'algoritmo risulta essere una versione modificata della versione ottimizzata della DFS (algoritmo 4). In particolare, sono stati aggiunti:
 - Un contatore c, il quale viene incrementato ogni volta che un vertice viene aggiunto allo stack (ossia quando viene visitato per la prima volta)
 - Un'array Vis di n elementi, dove se l'i-esimo elemento vale 1 allora il vertice $v_i \in V(G)$ è stato visitato (0 se non visitato)
 - Un'array t, dove l'i-esimo elemento dell'array corrisponde al tempo di visita del vertice $v_i \in V(G)$
 - Un'array T, dove l'i-esimo elemento dell'array corrisponde al tempo di chiusura del vertice $v_i \in V(G)$
 - Un'array Padri, dove l'i-esimo elemento dell'array corrisponde al padre del vertice $v_i \in V(G)$, ossia il vertice $u \in V(G)$ tramite cui è stato raggiunto il vertice v_i nella DFS
- Analizziamo quindi il comportamento degli ultimi due cicli for aggiunti:
 - Per ogni vertice $v \in V(G)$, vengono considerati tutti i suoi vertici entranti. Di conseguenza, stiamo considerando tutti gli archi $(u, v) \in E(G)$
 - Sia A = (V', E') l'arborescenza generata dalla DFS. Se Padre[v]=u, allora si ha che $(u, v) \in E'(A)$, poiché v è stato visitato tramite u all'interno della DFS. Analogamente, se Padre[v]=u, allora si ha che $(u, v) \notin E'(A)$, dunque (u, v) dovrà necessariamente essere un arco all'indietro, in avanti o di attraversamento
 - Poiché si ha sempre che t(u) < T(u) e t(v) < T(v), all'interno dell'if si ha che:
 - $* \ T(u) < t(v) \implies t(u) \leq T(u) < t(v) \leq T(v) \implies Int(u) \cap Int(v) = \emptyset$
 - * $T(v) < t(u) \implies t(v) \le T(v) < t(u) \le T(u) \implies Int(u) \cap Int(v) = \emptyset$

dunque (u, v) risulta essere un arco di attraversamento

- All'interno dell'else if, dunque la condizione $T(u) \leq T(v)$, se si verificasse che T(v) < t(v) si rientrerebbe nel caso precedente, dunque l'unica possibilità è che $t(v) < t(u) \leq T(u) \leq T(v) \implies Int(u) \subseteq Int(v)$, implicando che (u,v) sia un arco all'indietro
- Infine, se (u, v) non è né un arco all'indietro e né di attraversamento, l'unica possibilità è che esso sia un arco in avanti

Dimostrazione costo computazionale:

- Poiché le uniche istruzioni aggiunte all'interno del ciclo while hanno un costo pari a O(1), ne segue che il costo di tale while rimanga inalterato, ossia O(n+m)
- Per quanto riguarda i due cicli for annidati, il numero di iterazioni corrisponde a:

$$\sum_{v \in V(G)} deg_{in}(v) = m$$

Di conseguenza, poiché le istruzioni al suo interno hanno tutte costo pari a O(1), il costo finale dei due cicli for corrisponde a O(m)

• Infine, concludiamo che il costo dell'algoritmo sia O(n+m) + O(m) = O(n+m)

Algorithm 7. Trovare intervalli di visita (Ricorsivo)

Sia G = (V, E) un grafo con liste di adiacenza e sia $x \in V(G)$ un vertice. Il seguente algoritmo effettua ricorsivamente una DFS avente x come vertice iniziale, restituendo gli intervalli di visita di ogni vertice.

Il **costo computazionale** di tale algoritmo corrisponde a O(n+m), dove |V(G)|=n e |E(G)|=m

Algorithm 7: Trovare gli intervalli di visita generati da una DFS con vertice iniziale $x \in V(G)$ su un grafo diretto G

```
Input:
```

G: grafo diretto, $x : x \in V(G)$

Output:

Un insieme di back edge, un insieme di forward edge e un insieme di cross edge

Function DFS_recursive(G, x, Vis, t, T, c):

```
for y \in x.adiacenti do

if y \notin V is then

Vis.add(y);

t[u] = c;

c.increment();

DFS_recursive(G, y, V) is, t, T, c);

end

end

T[x] = c;
```

Function getVisitTimes(G,x)

```
Vis := \{x\};

t := [0, ..., 0] //n elementi inizializzati a 0;

T := [0, ..., 0];

Counter c := 1 //oggetto contatore;

DFS_recursive(G, x, Vis, t, T, c);

return t, T;
```

end

Dimostrazione correttezza e costo algoritmo:

• Poiché sono stati aggiunti solo due array ed un oggetto contatore, il costo e la correttezza risultano essere analoghi alla normale DFS ricorsiva. Dunque, il costo è O(n+m)

Observation 5

Se G = (V, E) è un grafo non diretto, **non vi è distinzione tra arco all'indietro ed arco in avanti**, poiché, non essendo gli archi orientati, non vi è distinzione tra testa e coda.

Di conseguenza, <u>utilizziamo solo il termine arco all'indietro</u> per indicare entrambe le situazioni

Esempio:

• Consideriamo il seguente grafo non diretto e l'albero di visita generato avente il vertice 3 come vertice iniziale.

\mathbf{v}	t(v)	T(v)
1	3	4
2	2	4
3	1	5
4	5	5
5	4	4

- Notiamo che l'arco (1,3) non appartenente all'albero è sia un arco all'indietro sia un arco in avanti:
 - Se consideriamo 1 come coda ed 3 come testa, allora esso risulta essere un arco all'indietro, poiché $[3,4] \subseteq [1,5]$
 - Se consideriamo 3 come coda ed 1 come testa, allora esso risulta essere un arco in avanti, poiché $[1,5] \supseteq [3,4]$
- Dunque, per risolvere l'ambiguità, utilizziamo solo il termine arco all'indietro nel caso dei grafi non diretti

Observation 6

Sia G = (V, E) un grafo non diretto. Dato l'albero di visita A = (V', E') generato da una DFS su G, per ogni arco di $(u, v) \in E(G) \mid (u, v) \notin E'(A)$, si ha che $Int(u) \cap Int(v) \neq \emptyset$

Di conseguenza, in un grafo non diretto non possono esistere cross-edge

Dimostrazione:

- Supponiamo per assurdo che $Int(u) \cap Int(v) = \emptyset$, implicando che $t(u) \leq T(u) < t(v) \leq T(v)$ o che $t(v) \leq T(v) < t(u) \leq T(u)$.
- Eseendo G un grafo non diretto, si ha che $(u, v) \in E(G) \implies (v, u) \in E(G)$. Di conseguenza, ne segue che entrambi i casi siano impossibili:
 - Se viene vistato prima u, allora è impossibile che u venga tolto dallo stack prima di v, poiché l'arco $(u,v) \in E(G)$ verrebbe obbligatoriamente utilizzato dalla DFS, implicando che $Int(v) \subseteq Int(u)$

– Se viene vistato prima v, allora è impossibile che v venga tolto dallo stack prima di u, poiché l'arco $(v,u) \in E(G)$ verrebbe obbligatoriamente utilizzato dalla DFS, implicando che $Int(u) \subseteq Int(v)$

Corollary 1

Sia G = (V, E) un **grafo non diretto connesso**. Dato l'albero di visita A = (V', E') generato da una DFS su G, ogni arco $(u, v) \in E(G) \mid (u, v) \notin E'(A)$ è un **arco** all'indietro

1.4.2 Presenza di cicli in un grafo

Theorem 7. Presenza di cicli in un grafo connesso non diretto

Dato un **grafo connesso non diretto** G = (V, E), si ha che:

 \forall DFS su G, \exists arco all'indietro in $G \iff \exists$ ciclo in G

Dimostrazione:

- Consieriamo un qualsiasi albero di visita T=(V',E') generato da una DFS su G. Poiché G è connesso, ogni vertice è raggiungibile dalla DFS, dunque si ha che V'(T)=V(G). Inoltre, poiché anche T è connesso, si ha che $\forall x,y\in V'(T)$ esiste un cammino su T tale che $x\to y$
- Supponiamo quindi che esista un arco all'indietro $(u,v) \in E(G)$ generato da tale DFS, implicando che $(u,v) \notin E'(T)$. Poiché $u,v \in V'(T)$, ne segue che esisterà un cammino C su T tale che $u \to v$ e $(u,v) \notin C$. Infine, poiché in un grafo diretto si ha che $(u,v) \in E(G) \implies (v,u) \in E(G)$, la passeggiata $C \cup (v,u)$ risulta essere un ciclo.
- Viceversa, supponiamo che esista un ciclo in G composto dai vertici c_0, \ldots, c_k . Poiché G è connesso, eseguendo una DFS su un qualsiasi vertice $x \in V(G)$, tale DFS dovrà necessariamente visitare almeno una volta ogni vertice c_0, \ldots, c_k .
- Per comodità, assumiamo che c_0 sia il primo vertice appartenente al ciclo ad essere visitato. Una volta raggiunto il vertice c_k , l'arco (c_k, c_0) non potrà appartenere all'arborescenza generata, poiché c_0 risulta già essere stato visitato.
- Dunque, poiché in un grafo non diretto ogni arco ogni arco non appartenente ad un'arborescenza è un arco all'indietro, ne segue che (c_k, c_0) sia un arco all'indietro
- Inoltre, poiché G = T e in un albero si ha che $\forall u, v \in V(G)$ esiste un solo cammino non diretto tale che $x \to y$ e $y \to x$, ogni DFS su G genererà l'albero di visita T

Capitolo 1. Teoria dei grafi

Proposition 8

Un grafo aciclico connesso e non diretto G = (V, E) è un albero.

Dimostrazione:

 \bullet Se G è un grafo aciclico connesso e non diretto, per il teorema precedente si ha che

$$\nexists$$
 ciclo in $G \iff \exists$ DFS in $G \mid \nexists$ arco all'indietro in G

- Sia quindi T=(V',E') l'albero di visita generato da tale DFS. Poiché G non è diretto e poiché non esistono archi all'indietro, ne segue che ogni arco appartenga necessariamente all'albero di visita, dunque $e \in E(G) \implies e \in E'(T)$. Inoltre, poiché per definizione stessa si ha che $f \in E'(T) \implies f \in E(G)$, concludiamo che E(G) = E'(T), implicando a sua volta che G = T
- \bullet In particolare, dunque, qualsiasi DFS eseguita su G genererà lo stesso albero di visita, coincidente esattamente con G

Theorem 9. Presenza di cicli in un grafo connesso diretto

Dato un **grafo connesso diretto** G = (V, E), si ha che:

 \exists DFS su $G \mid \exists$ arco all'indietro in $G \iff \exists$ ciclo in G

Dimostrazione:

- Consideriamo una DFS su G in cui viene generato un arco all'indietro $(u, v) \in E(G)$. Sia inoltre A = (V', E') l'arborescenza di visita generata da una DFS tale DFS.
- Poiché (u, v) è un arco all'indietro, ne segue che

$$[t(u), T(u)] \subseteq [t(v), T(v)] \implies t(v) < t(u) \le T(u) \le T(v)$$

dunque u è stato aggiunto allo stack dopo v e prima che v venisse rimosso, implicando che esista un cammino C tale che $v \to u$.

Di conseguenza, la passeggiata $C \cup (u, v)$ risulta essere un ciclo

- Viceversa, supponiamo che esista un ciclo c_0, \ldots, c_k in G e consideriamo una DFS avente radice $x \in V(G)$ in cui uno dei vertici del ciclo viene visitato (per comodità, supponiamo che venga visitato c_0), implicando che anche ogni vertice del ciclo debba essere visitato da tale DFS.
- Supponiamo per assurdo che esista un vertice del ciclo c_i con indice minimo $i \in [1, k]$ tale che c_i che non sia stato visitato prima della chisura di c_0 .
- Poiché c_i è stato scelto con indice minimo, ne segue che c_{i-1} sia stato visitato prima della chiusura di c_0 , implicando che $t(c_0) < t(c_{i-1}) \le T(c_0)$.

• Poiché $t(c_0) < t(c_{i-1}) \le T(c_0) \le T(c_{i-1}) \implies Int(c_0) \cap Int(c_{i-1}) \ne \emptyset$ è un caso impossibile, ne segue necessariamente che

$$t(c_0) < t(c_{i-1}) \le T(c_{i-1}) \le T(c_i) \implies Int(c_{i-1}) \subseteq Int(c_0)$$

dunque c_i viene chiuso prima della chisura di c_0 , implicando che la DFS abbia sbagliato a non visitare c_i , poiché $c_{i-1} \to c_i$

- Dunque, l'unica possibilità è che ogni vertice del ciclo venga visitato prima della chiusura di c_0 , implicando che $Int(c_i) \subseteq Int(c_0), \forall j \in [1, k]$
- In particolare, quindi, ne segue che l'arco $(c_k, c_0) \in E(G)$ risulti essere un arco all'indietro poiché $Int(c_k) \subseteq Int(c_0)$

Corollary 2

Dato un **grafo fortemente connesso diretto** G = (V, E), si ha che:

 \forall DFS su G, \exists arco all'indietro in $G \iff \exists$ ciclo in G

Dimostrazione:

• Se G è fortemente connesso, ne segue che i vertici c_0, \ldots, c_k componenti il ciclo vengano raggiunti da ogni DFS, dunque (per dimostrazione analoga alla precedente) l'arco $(c_k, c_0) \in E(G)$ sarà sempre un arco all'indietro

Observation 7

Un grafo fortemente connesso diretto G = (V, E) è sempre ciclico

Dimostrazione:

- Dati $u, v \in V(G)$, poiché G è fortemente connesso si ha che esiste un cammino diretto $ue_1 \dots e_k v$ tale che $u \to v$ ed un cammino diretto $vh_1 \dots h_i u$ tale che $v \to u$.
- Di conseguenza, esiste sempre un ciclo $ue_1 \dots e_k vh_1 \dots h_j u$

1.4.3 Trovare un ordinamento topologico

Proposition 10

Sia G = (V, E) un DAG connesso. Dato $(u, v) \in E(G)$, si ha che

$$t(v) \le T(v) \le T(u)$$

Dimostrazione:

- Sia A = (V', E') l'arborescenza generata da una DFS su G. Se $(u, v) \in E'(A)$, ne segue automaticamente che $t(u) < t(v) \le T(v) \le T(u)$
- Sia quindi $(u, v) \in E(G) \mid (u, v) \notin E'(A)$. Supponiamo per assurdo che t(v) > T(u), implicando che v venga aggiunto allo stack dopo la chisura di u. In tal caso, la DFS avrebbe sbagliato a non percorrere l'arco $(u, v) \in E(G)$, implicando che u non possa essere tolto dallo stack prima di v.
- Di conseguenza, l'unica possibilità è che $t(v) \leq T(u)$. Inoltre, poiché G è un DAG connesso, dunque non esistono archi all'indietro in G, ne segue necessariamente che:

```
- \ Int(u) \supseteq Int(v) \implies t(u) < t(v) \le T(v) \le T(u)
```

```
-Int(u) \cap Int(v) = \emptyset \implies t(v) \le T(v) < t(u) \le T(u)
```

Algorithm 8. Trovare un ordinamento topologico (Ottimizzato)

Sia G = (V, E) un DAG rappresentato tramite liste di adiacenza. Il seguente algoritmo restituisce un possibile ordinamento topologico di G.

Il **costo computazionale** di tale algoritmo è O(n+m)

Algorithm 8: Trovare un ordinamento topologico in un DAG

```
Input:
```

G: grafo diretto aciclico connesso

Output:

Ordinamento topologico in G

Function findTopologicalSorting_2(G):

```
List L = \emptyset;

Vis := \emptyset;

for u \in V do

| if u \notin V is then

| recursive_DFS_ord(G, u, Vis, L);

| end

end

return L;
```

end

end

Function recursive_DFS_ord(G, u, Vis, L):

```
Vis.add(u);

for v \in u.uscenti do

| if v \notin V is then

| recursive_DFS_ord(G, v, Vis, L);

| end

end

L.head_insert(v);
```

Dimostrazione correttezza algoritmo:

- Consideriamo gli archi $(u, v) \in E(G)$ generati in recursive_DFS_ord(). Poiché G è un DAG, per dimostrazione precedente si ha che $t(v) \leq T(v) \leq T(u)$.
- ullet Di conseguenza, ordinando i vertici in modo che il loro tempo di chiusura sia decrescente, svolto implicitamente dalla ricorsione appendendo il vertice attualmente analizzato all'inizio della lista, otteniamo un ordine topologico, poiché ogni vertice uscente v verrà inserito in testa prima del vertice attuale u
- Consideriamo quindi gli elementi $L_i := u_i, \ldots, v_k$ aggiunti dal vertice u_1 all'iterazione *i*-esima del ciclo for di findTopologicalSorting_2(). Nel caso in cui esista un arco $(v_i, v_{i+1}) \in E(G) \mid v_i \in L_i, v_{i+1} \in L_{i+1}$, si ha che

$$(v_i, v_{i+1}) \implies t(v_{i+1}) \le T(v_{i+1}) \le T(v_i) \implies v_{i+1} \in L_i \implies L_{i+1} \subseteq L_i$$

• Di conseguenza, le varie sottoliste L_1, \ldots, L_j sono disgiunte tra loro, implicando che esse possano essere inserite nell'ordinamento in un ordine qualsiasi

Dimostrazione costo algoritmo:

• Essendo l'algoritmo una semplice DFS ricorsiva modificata, il suo costo risulta automaticamente essere O(n+m)

1.5 Trovare ponti in un grafo

Definition 23. Ponte

Sia G = (V, E) un grafo. Dato un arco $f \in E(G)$, definiamo f come **ponte** se esso non appartiene a nessun ciclo in G:

f ponte $\iff \nexists$ ciclo in $G \mid f$ è nel ciclo

Algorithm 9. Stabilire se un arco è un ponte

Sia G un grafo rappresentato tramite liste di adiacenza. Dato un arco $f \in E(G)$, il seguente algoritmo stabilisce se f è un ponte.

Il **costo computazionale** di tale algoritmo risulta essere O(n+m), dove |V(G)| = n e |E(G)| = m

Algorithm 9: Stabilire se $f \in E(G)$ è un ponte

```
Input:
G: grafo a liste di adiacenza, f: f \in E(G)
Output:
True se f è un ponte, False altrimenti
Function is Bridge(G: grafo, f: arco):
   x := f. tail;
                   //f := (x, y);
   y := f . head
   G.remove(f);
   Vis := DFS(G, y);
   if x \in Vis then
      return False;
   else
      return True;
   end
end
```

Dimostrazione correttezza algoritmo:

- Sia G' = (V, E'), dove E' := E f, il grafo in cui è stato rimosso f := (x, y).
- Supponiamo che $x \in Vis$. Poiché $x \in Vis \iff y \to x$, ne segue che esista un cammino $ye_1 \dots e_k x$. In particolare, poiché $e_1, \dots, e_k \in E'(G') \subset E(G)$, tale cammino esiste anche in G, implicando che $ye_1 \dots e_k x f y$ sia un ciclo e dunque che f non sia un ponte.
- Viceversa, supponiamo per assurdo che f non sia un ponte e che $x \notin Vis$, implicando che $y \not\to x$ e dunque che non esista una passeggiata $yh_1 \dots h_k x$, contraddicendo l'ipotesi per cui f non sia un ponte, poiché il ciclo $yh_1 \dots h_k x f y$ non potrebbe esistere. Di conseguenza, l'unica possibilità è che $x \in Vis$
- Dunque, concludiamo che f non è un ponte se e solo se $x \in Vis$

Dimostrazione costo algoritmo:

- Per poter rimuovere l'arco f dal grafo G, è necessario scorrere la lista di entrata del vertice x e lista di uscita del vertice y, rendendo quindi il costo pari a $O(deg_{in}(x)) + O(deg_{out}(y)) = O(deg_{in}(x) + deg_{out}(y))$
- Poiché il costo della DFS è O(n+m) e poiché $deg_{in}(x) + deg_{out}(y) < m$, ne segue che il costo finale dell'algoritmo sia

$$O(deg_{in}(x) + deg_{out}(y)) + O(n+m) = O(deg_{in}(x) + deg_{out}(y) + n + m) = O(n+m)$$

Algorithm 10. Trovare i ponti di un grafo (Soluzione naïve)

Sia G un grafo rappresentato tramite liste di adiacenza. Il seguente algoritmo trova i ponti presenti in G.

Il costo computazionale di tale algoritmo risulta essere O(m(n+m)), dove |V(G)| = n e |E(G)| = m

Algorithm 10: Trovare i ponti in G

```
G: grafo a liste di adiacenza

Output:

Insieme dei ponti presenti in G

Function findBridges_1(G: grafo):
```

```
\begin{array}{l} \texttt{Bridges} := \{\}; \\ \textbf{for} \ f \in E(G) \ \textbf{do} \\ & | \ \textbf{if} \ \texttt{isBridge}(f) \ \textbf{then} \\ & | \ \texttt{Bridges.add}(f); \\ & \ \textbf{end} \\ & | \ ; \\ \textbf{end} \\ & \ \texttt{return} \ \texttt{Bridges}; \end{array}
```

end

Input:

Dimostrazione correttezza e costo algoritmo:

• Iterando su ogni arco in E(G), stabiliamo se $f \in E(G)$ sia un ponte utilizzando l'algoritmo 9 isBridge(), il cui costo è O(n+m). Di conseguenza, il costo finale sarà O(m(n+m))

Observation 8

Sia G = (V, E) un grafo. Se $f \in E(G)$ è un arco all'indietro generato da una DFS su G, allora f non è un ponte.

Dimostrazione:

• Poiché f := (u, v) è un arco all'indietro, ne segue che

$$[t(u), T(u)] \subseteq [t(v), T(v)] \implies t(v) < t(u) \le T(u) \le T(v)$$

dunque u è stato aggiunto allo stack dopo v e prima che v venisse rimosso, implicando che esista un cammino C tale che $v \to u$.

Di conseguenza, la passeggiata $C \cup (u, v)$ risulta essere un ciclo, implicando che (u, v) non sia un ponte

Algorithm 11. Trovare i ponti di un grafo non diretto connesso

Sia G un grafo **non diretto connesso** rappresentato tramite liste di adiacenza. Il seguente algoritmo trova i ponti presenti in G.

Il costo computazionale di tale algoritmo risulta essere O(n(n+m)), dove |V(G)| = n e |E(G)| = m

Algorithm 11: Trovare i ponti in un grafo non diretto connesso

```
Input:
G: grafo a liste di adiacenza
Output:
Insieme dei ponti presenti in G
Function findBridges_2(G: grafo):

Bridges := {};
Graph A := DFS(G, x \in V(G));
for f \in E'(A) do

if isBridge(A, f) then

Bridges.add(f);
end
end
return Bridges;
```

Dimostrazione correttezza e costo algoritmo:

end

- Sia A = (V', E') l'albero di visita generato eseguendo una qualsiasi DFS su G. Poiché G è un grafo non diretto connesso, ne segue che tutti gli archi $e \in E(G) \mid e \notin E'(A)$ siano degli archi all'indietro. Di conseguenza, tali archi non possono essere dei ponti, rendendo sufficiente esaminare solo gli archi in E'(A).
- Inoltre, poiché A è un albero, dunque |E'(A)| = |V'(A)| 1, e poiché il costo dell'algoritmo 9 isBridge() è O(n+m), il costo del ciclo for corrisponde a O(n(n+m))