Running head: PROCESSING NORMS

1

A practical primer on processing semantic property norm data

Erin M. Buchanan¹, Simon De Deyne², & Maria Montefinese³

¹ Harrisburg University of Science and Technology

² University of Melbourne

³ University of Padua

Author Note

- Add complete departmental affiliations for each author here. Each new line herein must be indented, like this line.
- Enter author note here.

6

Correspondence concerning this article should be addressed to Erin M. Buchanan, 326
Market St., Harrisburg, PA 17101. E-mail: ebuchanan@harrisburgu.edu

Abstract

Semantic property listing tasks require participants to generate short propositions (e.g., 13

darks>, <has fur>) for a specific concept (e.g., dog). This task is the cornerstone of the creation of semantic property norms which are essential for modelling, stimuli creation, and 15 understanding similarity between concepts. However, despite the wide applicability of semantic property norms for a large variety of concepts across different groups of people, the methodological aspects of the property listing task have received less attention, even though 18 the procedure and processing of the data can substantially affect the nature and quality of 19 the measures derived from them. The goal of this paper is to provide a practical primer on 20 how to collect and process semantic property norms. We will discuss the key methods to 21 elicit semantic properties and compare different methods to derive meaningful 22 representations from them. This will cover the role of instructions and test context, property 23 pre-processing (e.g., lemmatization), property weighting, and relationship encoding using 24 ontologies. With these choices in mind, we propose and demonstrate a processing pipeline 25 that transparently documents these steps resulting in improved comparability across different 26 studies. The impact of these choices will be demonstrated using intrinsic (e.g. reliability, 27 number of properties) and extrinsic measures (e.g., categorization, semantic similarity, lexical 28 processing). Example data and the impact of choice decisions will be provided. This practical 29 primer will offer potential solutions to several longstanding problems and allow researchers 30 to develop new property listing norms overcoming the constraints of previous studies. 31

Keywords: semantic, property norm task, tutorial

32

A practical primer on processing semantic property norm data

- 1. Available feature norms and their format
- Property listing task original work: Toglia and Battig (1978); Toglia (2009); Rosch and
- Mervis (1975); Ashcraft (1978)

33

- English: McRae, Cree, Seidenberg, and McNorgan (2005), Vinson and Vigliocco (2008),
- Buchanan, Holmes, Teasley, and Hutchison (2013), Devereux, Tyler, Geertzen, and
- Randall (2014), Buchanan, Valentine, and Maxwell (2019)
- Italian: Montefinese, Ambrosini, Fairfield, and Mammarella (2013); Reverberi,
- 41 Capitani, and Laiacona (2004), Kremer and Baroni (2011)
- German: Kremer and Baroni (2011)
- Portuguese: Stein and de Azevedo Gomes (2009)
- Spanish: Vivas, Vivas, Comesaña, Coni, and Vorano (2017)
- Dutch: Ruts et al. (2004)
- Blind participants: Lenci, Baroni, Cazzolli, and Marotta (2013)
- I'm sure there are more, here's what we cited recently.
- Define concept, feature for clarity throughout make sure you use these two terms
- 49 consistently.
- 2. Pointers about how to collect the data
- a. instructions, generation, verification, importance
- I really like the way the CSLB did it: https://cslb.psychol.cam.ac.uk/propnorms
- They showed the concept, then had a drop down menu for is/has/does, and then the
- 54 participant typed in a final window. That type of system would solve about half the
- problems I am going to describe below about using multi-word sequences. Might be some

other suggestions, but for that type of processing, you could do combinations and have more consistent data easily.

3. Typical operations performed on features

58

Figure 1. Flow chart of proposed semantic processing feature steps.

In the next several sections, we provide a tutorial using R on how data from the semantic property norm task might be processed from raw input to finalized output. Figure 1 portrays the proposed set of steps including spell checking, lemmatization, exclusion of stop words, and final processing in a multi-word sequence approach or a bag of words approach. After detailing these steps, the final data form will compared to previous norms to determine the usefulness of this approach.

65 Materials and Data Format

The data for this tutorial includes 17177 unique concept-feature responses for 226 concepts from Buchanan et al. (2019) that were included in McRae et al. (2005), Vinson and Vigliocco (2008), and Bruni, Tran, and Baroni (2014). The data should be structured in tidy format wherein each concept-feature observation is a row and each column is a variable (Wickham, 2014). Therefore, the data includes a word column with the normed concept and an answer column with the participant answer, as shown in Table 1.

Table 1

Tidy Data Caption

word	answer
airplane	you fly in it its big it is fast they are expensive they are at an airport you have to be train
airplane	wings engine pilot cockpit tail
airplane	wings it flys modern technology has passengers requires a pilot can be o
airplane	wings flys pilot cockpit uses gas faster
airplane	wings engines passengers pilot(s) vary in size
airplane	wings body flies travel

This data was collected using the instructions provided by McRae et al. (2005),
however, in contrast to the suggestions for consistency detailed above (Devereux et al., 2014),
each participant was simply given a large text box to include their answer. Each answer
includes multiple embedded features, and the tutorial proceeds to demonstrate potential
processing addressing the data in this nature. With structured data entry for participants,
the suggested processing steps are reduced.

78 Spelling

Spell checking can be automated with the hunspell package in R (Ooms, 2018), which is the spell checking library used in popular programs such as FireFox, Chrome, RStudio, and OpenOffice. Each answer can be checked for misspellings across an entire column of answers, which is located in the master dataset. The default dictionary is American English, and the hunspell vignettes provide details on how to import your own dictionary for non-English languages. The choice of dictionary should also normalize between multiple varieties of the same language, for example, the "en_GB" would convert to British English spellings.

```
## Install the hunspell package if necessary
#install.packages("hunspell")
library(hunspell)
## Check the participant answers
## The output is a list of spelling errors for each line
spelling_errors <- hunspell(master$answer, dict = dictionary("en_US"))</pre>
```

The result from the hunspell() function is a list object of spelling errors for each row of data. For example, when responding to apple, a participant wrote fruit grocery store orchard red green yelloe good with peanut butter good with caramell, and the spelling errors were denoted as yelloe caramell. After checking for errors, the hunspell_suggest() function was used to determine the most likely replacement for each error.

```
## Check for suggestions
spelling_suggest <- lapply(spelling_errors, hunspell_suggest)</pre>
```

For yelloe, both yellow yell were suggested, and caramel caramels caramel l camellia camel were suggested for caramell. The suggestions are presented in most probable order, and using a few loops with the substitute (gsub()) function, we can replace all errors with the most likely replacement in a new dataset spell_checked. A specialized dictionary with precoded error responses and corrections could be implemented at this stage. Other paid alternatives, such as Bing Spell Check, can be a useful avenue for datasets that may contain brand names (i.e., apple versus Apple) or slang terms.

```
}
}
```

98 Lemmatization

The next step approaches the clustering of word forms into their lemma or head word 99 from a dictionary. The process of lemmatizing words involves using a lexeme set (i.e., all 100 words forms that have the same meaning, am, are, is) to convert into a common lemma (i.e., 101 be) from a trained dictionary. In contrast, stemming involves processing words using 102 heuristics to remove affixes or inflections, such as ing or s. The stem or root word may not 103 reflect an actual word in the language, as simply removing an affix does not necessarily 104 produce the lemma. For example, in response to airplane, flying can be easily converted to 105 fly by removing the inq inflection. However, this same heuristic converts the feature wings 106 into w after removing both the s for a plural marker and the ing participle marker. Several 107 packages for R include customizable stemmers, notably the hunspell, corpus (Perry, 2017), 108 and tm (Feinerer, Hornik, & Artifex Software, 2018) packages. 109

Lemmatization is the likely choice for processing property norms, and this process can
be achieved by installing TreeTagger (Schmid, 1994) and the koRpus package in R

(Michalke, 2018). TreeTagger is a trained tagger designed to annotate part of speech and
lemma information in text, and parameter files are available for multiple languages. The
koRpus package includes functionality to use TreeTagger in R. After installing the package
and TreeTagger, we will create a unique set of tokenized words to lemmatize to speed
computation.

```
lemmas <- spell_checked
## Install the koRpus package
#install.packages("koRpus")
#install.packages("koRpus.lang.en")
## You must load both packages separately</pre>
```

```
library(koRpus.lang.en)

## Install TreeTagger

#https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

## Find all types for faster lookup

all_answers <- tokenize(lemmas$answer, format = "obj", tag = F)

all_answers <- unique(all_answers)</pre>
```

The treetag() function calls the installation of TreeTagger to provide part of speech tags and lemmas for each token. Importantly, the path option should be the directory of the TreeTagger installation.

This function returns a tagged corpus object, which can be converted into a dataframe of the token-lemma information. The goal would be to replace inflected words with their lemmas, and therefore, unknown values, number tags, and equivalent values are ignored by subseting out these from the dataset. Table 2 portrays the results from TreeTagger.

Table 2

Tidy Data Caption

token	tag	lemma	lttr	wclass
is	VBZ	be	2.00	verb
are	VBP	be	3.00	verb
trained	VBN	train	7.00	verb
lots	NNS	lot	4.00	noun
seats	NNS	seat	5.00	noun
wings	NNS	wing	5.00	noun

```
tolower(token) != tolower(lemma))
```

From this dataset, you can use the stringi package (Gagolewski & Tartanus, 2019) to replace all of the original tokens with their lemmas. This package allows for replacement lookup across a large set of substitutions. The stri_replace_all_regex() function includes the column of data to examine, the patterns to find (using \\b regular expressions to ensure word boundaries and no partial word replacements), what to replace those patterns with, and other options to ensure the original dataframe with replacement is returned. Table 3 shows the processed data at this stage.

Table 3

Tidy Data Caption

word			answer	
airplane	you fly in it its big it be fast they be expensive they	be at an airp	oort youl	have to be train
airplane		wing engir	ne pilot co	ckpit tail
airplane	wing it fly modern technology have	e passenger r	equire a p	oilot can be dan
airplane	wing	g fly pilot c	ockpit us	e gas fast trave
airplane	wing eng	ine passenger	pilot(s)	vary in size and
airplane		wing h	oody fly	travel

Word Sequences

Multi-word sequences are often coded to mimic a Collins and Quillian (1969) style 132 model, with "is-a" and "has-a" type markers. If data were collected to include these markers, 133 this step would be pre-encoded into the output data, rendering the following code 134 unnecessary. A potential solution for processing messy data could be to search for specific 135 part of speech sequences that mimic the "is-a" and "has-a" strings. An examination of the 136 coding in McRae et al. (2005) and Devereux et al. (2014) indicates that the feature tags are 137 often verb-noun or verb-adjective-noun sequences. Using TreeTagger on each concept's 138 answer set, we can obtain the parts of speech in context for each lemma. With dplyr 139 (Wickham, Francios, Henry, Muller, & Rstudio, 2019), new columns are added to tagged 140 data to show all bigram and trigram sequences. All verb-noun and verb-adjective-noun combinations are selected, and any words not part of these multi-word sequences are treated as unigrams. Finally, the table() function is used to tabulate the final count of n-grams and their frequency.

```
## Create an empty dataframe
multi_words <- data.frame(Word=character(),</pre>
                         Feature=character(),
                         Frequency=numeric(),
                         stringsAsFactors=FALSE)
## Create unique word list to loop over
unique_concepts <- unique(lemmas$word)</pre>
## Install dplyr
#install.packages("dplyr")
library(dplyr)
## Loop over each word
for (i in 1:length(unique_concepts)){
  ## Create parts of speech for clustering together
  temp_tag <- suppressWarnings(</pre>
    suppressMessages(
      treetag(c(lemmas$answer[lemmas$word == unique_concepts[i]], "NULL"),
          ## Control the parameters of treetagger
          treetagger="manual", format="obj",
          TT.tknz=FALSE, lang="en",
          TT.options=list(path="~/TreeTagger", preset="en"))))
  ## Save only the dataframe, remove NULL
  temp_tag <- temp_tag@TT.res[-nrow(temp_tag@TT.res) , ]</pre>
  ## Subset out information you don't need
  temp_tag <- subset(temp_tag,</pre>
                      wclass != "comma" & wclass != "determiner" &
                        wclass != "preposition" & wclass != "modal" &
                        wclass != "predeterminer" & wclass != "particle" &
                        wclass != "to" & wclass != "punctuation" &
                        wclass != "fullstop" & wclass != "conjunction" &
                        wclass != "pronoun")
  ## Create a temporary tibble
  temp_tag_tibble <- as_tibble(temp_tag)</pre>
  ## Create part of speech and features combined
  temp_tag_tibble <- mutate(temp_tag_tibble,</pre>
                             two_words = paste(token,
                                                lead(token), sep = "_"))
  temp_tag_tibble <- mutate(temp_tag_tibble,</pre>
                             three_words = paste(token,
                                                  lead(token), lead(token, n = 2L),
                                                  sep = "_"))
  temp_tag_tibble <- mutate(temp_tag_tibble,</pre>
```

```
two_words_pos = paste(wclass,
                                                     lead(wclass), sep = "_"))
  temp_tag_tibble <- mutate(temp_tag_tibble,</pre>
                              three_words_pos = paste(wclass,
                                                       lead(wclass), lead(wclass, n = 2L),
                                                       sep = "_"))
  ## Find verb noun or verb adjective nouns to cluster on
  verb_nouns <- grep("\\bverb_noun", temp_tag_tibble$two_words_pos)</pre>
  verb_adj_nouns <- grep("\\bverb_adjective_noun", temp_tag_tibble$three_words_pos)</pre>
  ## Use combined and left over features
  features_for_table <- c(temp_tag_tibble$two_words[verb_nouns],</pre>
                            temp_tag_tibble$three_words[verb_adj_nouns],
                            temp_tag_tibble$token[-c(verb_nouns, verb_nouns+1,
                                                      verb_adj_nouns, verb_adj_nouns+1,
                                                      verb_adj_nouns+2)])
  ## Create a table of frequencies
  word_table <- as.data.frame(table(features_for_table))</pre>
  ## Clean up the table
  word_table$Word <- unique_concepts[i]</pre>
  colnames(word_table) = c("Feature", "Frequency", "Word")
  multi_words <- rbind(multi_words, word_table[ , c(3, 1, 2)])</pre>
}
```

This procedure produces mostly positive output, such as fingers-have_fingernails and couches-have cushions. One obvious limitation is the potential necessity to match this 146 coding system to previous codes, which were predominately hand processed. Further, many similar phrases, such as the ones for zebra shown below may require fuzzy logic matching to 148 ensure that the different codings for is-a-horse are all combined together, as shown in Table 149 4. 150

Bag of Words

145

147

The bag of words approach simply treats each token as a separate feature to be 152 tabulated for analysis. After stemming and lemmatization, the data can be processed as 153 single word tokens into a table of frequencies for each cue word. The resulting dataframe is 154

Table 4

Tidy Data Caption

Word	Feature	Frequency
zebra	be_horse	1
zebra	be_similar_horse	1
zebra	build_horse	1
zebra	horse	22
zebra	horse-like	1
zebra	look_similar_horse	1
zebra	related_horse	1
zebra	resemble_small_horse	1
zebra	run_fast_horse	1
zebra	run_horse	1
zebra	sound_horse	1
zebra	stripe_similar_horse	1

each cue-feature combination with a total for each feature.

```
## Clean up the table
word_table$Word <- unique_concepts[i]
colnames(word_table) = c("Feature", "Frequency", "Word")

bag_words <- rbind(bag_words, word_table[, c(3, 1, 2)])

## Remove punctuation
bag_words <- bag_words[-c(grep('^[[:punct:]]',bag_words$Feature)), ]</pre>
```

The top ten features in zebra indicate a match to the multi-word sequence approach but the inclusion of words such as *be, in, a* indicate the need to remove irrelevant words listed with features.

```
kable(zebra[1:10, ], "latex", booktabs = T, row.names = F) \%>% kable_styling(position = "center")
```

1 Stopwords

As shown in Figure 1, the next stage of processing would be to exclude stopwords, such as the, of, but, for either the multi-word sequence or bag of word style processing. The stopwords package (???) includes a list of stopwords for more than 50 languages. For multi-word sequence processing, these values can be removed by subseting the data to exclude stopwords as unigrams.

167 Descriptive Statistics

```
168 ## [1] 0.9836455
```

169 ## [1] 0.7351418

170 ## [1] 0.6603825

171 **##** [1] 0.9163408

172 **##** [1] 0.7155022

173 ## [1] 0.8167169

make a table here of the stuff talk about deleting low features or not d. identify cut off for idiosyncratic features (should it be necessary?)

176 Internal Comparison of Approach

177 Compare this data processing to hand processed data from B2019

```
##
                                            raw_v translated_b translated_m
              raw_b
                             raw_m
178
          0.6899807
                        0.3764903
                                       0.5926762
                                                      0.7243672
   ##
                                                                     0.5753183
179
   ## translated_v
180
   ##
          0.5817829
181
```

External Comparison of Approach

183 Compare to the MEN dataset

184 ## [1] 0.6889117

Ontology and Categorization

```
[1] 0.9477885 0.8802228 0.8768643 0.8775418 0.8776403 0.8761919 0.8762623
   ##
186
   ##
       [8] 0.8723146 0.8723403 0.8657468 0.8660341 0.8660926 0.8661895 0.8662974
187
      [15] 0.8662678 0.8657396 0.8658517 0.8641960 0.8634386 0.8573610 0.8250660
188
      [22] 0.8249962 0.8252634 0.8255298 0.7192209 0.7193813 0.7193717 0.7197155
189
      [29] 0.7193555 0.7189437 0.7190156 0.7191427 0.7185243
190
   ##
191
         1
               2
                    3
                               5
                                    6
192
                              11
                                    5
                    3
                         13
   ## 8613
              17
```

istogram of bag_words_category\$totals[bag_words_category\$category

bag_words_category\$totals[bag_words_category\$category == 1]

193.2353 1843.0000 150.6923 124.4545 ##

198 **##** 36.57800 161.36238 520.74274 97.93313 95.65497 116.06679

199 ## 1 2 3 4 5 6

200 ## 1 43 1260 70 44 247

201 ## 1 2 3 4 5 6

202 ## 810 542 2262 383 362 550

Discussion

References

Ashcraft, M. H. (1978). Property norms for typical and atypical items from 17 categories: A

description and discussion. *Memory & Cognition*, 6(3), 227–232.

doi:10.3758/BF03197450

- Bruni, E., Tran, N. K., & Baroni, M. (2014). Multimodal Distributional Semantics. *Journal*of Artificial Intelligence Research, 49, 1–47. doi:10.1613/jair.4135
- Buchanan, E. M., Holmes, J. L., Teasley, M. L., & Hutchison, K. A. (2013). English
 semantic word-pair norms and a searchable Web portal for experimental stimulus
 creation. Behavior Research Methods, 45(3), 746–757. doi:10.3758/s13428-012-0284-z
- Buchanan, E. M., Valentine, K. D., & Maxwell, N. P. (2019). English semantic feature production norms: An extended database of 4436 concepts. *Behavior Research*Methods. doi:10.3758/s13428-019-01243-z
- Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. *Journal of Verbal Learning and Verbal Behavior*, 8(2), 240–247.
 doi:10.1016/S0022-5371(69)80069-1
- Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2014). The Centre for Speech,
 Language and the Brain (CSLB) concept property norms. Behavior Research

 Methods, 46(4), 1119–1127. doi:10.3758/s13428-013-0420-4
- Feinerer, I., Hornik, K., & Artifex Software, I. (2018). tm: Text Mining Package. Retrieved from https://cran.r-project.org/web/packages/tm/index.html
- Gagolewski, M., & Tartanus, B. (2019). stringi: Character String Processing Facilities.

 Retrieved from https://cran.r-project.org/web/packages/stringi/index.html

```
Kremer, G., & Baroni, M. (2011). A set of semantic norms for German and Italian.
```

- 227 Behavior Research Methods, 43(1), 97–109. doi:10.3758/s13428-010-0028-x
- Lenci, A., Baroni, M., Cazzolli, G., & Marotta, G. (2013). BLIND: A set of semantic feature
- norms from the congenitally blind. Behavior Research Methods, 45(4), 1218–1233.
- doi:10.3758/s13428-013-0323-4
- McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature
- production norms for a large set of living and nonliving things. Behavior Research
- 233 Methods, 37(4), 547–559. doi:10.3758/BF03192726
- Michalke, M. (2018). koRpus: An R Package for Text Analysis. Retrieved from
- https://cran.r-project.org/web/packages/koRpus/index.html
- Montefinese, M., Ambrosini, E., Fairfield, B., & Mammarella, N. (2013). Semantic memory:
- A feature-based analysis and new norms for Italian. Behavior Research Methods,
- 45(2), 440–461. doi:10.3758/s13428-012-0263-4
- 239 Ooms, J. (2018). The hunspell package: High-Performance Stemmer, Tokenizer, and Spell
- 240 Checker for R. Retrieved from https://cran.r-
- project.org/web/packages/hunspell/vignettes/intro.html $\{\#\}$ setting $\{_\}a\{_\}$ language
- Perry, P. O. (2017). corpus: Text Corpus Analysis. Retrieved from http://corpustext.com/
- Reverberi, C., Capitani, E., & Laiacona, E. (2004). Variabili semantico lessicali relative a
- tutti gli elementi di una categoria semantica: Indagine su soggetti normali italiani per
- la categoria "frutta". Giornale Italiano Di Psicologia, 31, 497–522.
- Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of
- categories. Cognitive Psychology, 7(4), 573–605. doi:10.1016/0010-0285(75)90024-9
- Ruts, W., De Deyne, S., Ameel, E., Vanpaemel, W., Verbeemen, T., & Storms, G. (2004).

```
Dutch norm data for 13 semantic categories and 338 exemplars. Behavior Research

Methods, Instruments, & Computers, 36(3), 506–515. doi:10.3758/BF03195597
```

- Schmid, H. (1994). Probabilistic Part-of-Speech Tagging Using Decision Trees.
- doi:10.1.1.28.1139
- Stein, L., & de Azevedo Gomes, C. (2009). Normas Brasileiras para listas de palavras associadas: Associação semântica, concretude, frequência e emocionalidade.
- 255 Psicologia: Teoria E Pesquisa, 25, 537–546. doi:10.1590/S0102-37722009000400009
- ²⁵⁶ Toglia, M. P. (2009). Withstanding the test of time: The 1978 semantic word norms.
- 257 Behavior Research Methods, 41(2), 531–533. doi:10.3758/BRM.41.2.531
- Toglia, M. P., & Battig, W. F. (1978). *Handbook of semantic word norms*. Hillside, NJ:
 Earlbaum.
- Vinson, D. P., & Vigliocco, G. (2008). Semantic feature production norms for a large set of
 objects and events. Behavior Research Methods, 40(1), 183–190.
 doi:10.3758/BRM.40.1.183
- Vivas, J., Vivas, L., Comesaña, A., Coni, A. G., & Vorano, A. (2017). Spanish semantic feature production norms for 400 concrete concepts. *Behavior Research Methods*, 49(3), 1095–1106. doi:10.3758/s13428-016-0777-2
- Wickham, H. (2014). Tidy Data. Journal of Statistical Software, 59 (10), 1–23.
 doi:10.18637/jss.v059.i10
- Wickham, H., Francios, R., Henry, L., Muller, K., & Rstudio. (2019). dplyr: A Grammar of
 Data Manipulation. Retrieved from
- https://cloud.r-project.org/web/packages/dplyr/index.html