P-values: Motivation

Suppose the test rule is "reject H_0 for large values of the TS T", $RR: \{T > k_{\alpha}\}.$ $k_{\alpha} = Q(1 - \alpha)$ for cdf of TS under H_0 .

$$\left. \begin{array}{l} \alpha_1 = 0.05, \quad k_{\alpha_1} = Q(0.95) \\ \alpha_2 = 0.01, \quad k_{\alpha_2} = Q(0.99) \end{array} \right\} \Rightarrow \alpha_1 > \alpha_2 \text{ implies } Q(1-\alpha_1) < Q(1-\alpha_2)$$

Often we can reject H_0 at level $\alpha=0.05$ but fail to reject H_0 at level $\alpha=0.01$ (when $T\in(k_{\alpha_1},k_{\alpha_2})$).

Practical concern: since different people have different desired levels of significance α , how to report the outcome/result of the test (in order to make everyone happy)?

p-value: "observed level of significance".

P-value for a right-sided test For right-sided test with a RR $[T>k_{\alpha}]$, p-value is $\alpha_R(t)=\Pr(T\geq t)$ H_0 is true). Notice $t\in \mathrm{RR}$ if and only if $\alpha_R(t)<\alpha$.

t1 k = Q (1-d)

* quantile function.

Notice $t \in RR$ if and only if $\alpha_R(t) < \alpha$.

The sequential of the sequential points are a equal of the sequential of the sequential points are a sequential to the sequential points are a sequenti

P-values: definitions

for right-sided test with a RR $[T > k_{\alpha}]$, p-value is

$$\alpha_R(t) = \Pr(T \ge t \mid H_0 \text{ is true}).$$

Notice $t \in RR$ if and only if $\alpha_R(t) < \alpha$.

p-value for left-sided test with

$$\overline{RR} = \{T < k_{\alpha}\}, \alpha_{L} = \Pr(T \le t \mid H_{0} \text{ is true}).$$

$$p$$
-value for a 2-sided test: $RR = \{T < Q(\frac{\alpha}{2})\} \cup \{T > Q(1 - \frac{\alpha}{2})\}.$

Reject H_0 for extremely small or extremely large values of TS T.

$$p$$
-value: $\alpha(t) = 2\min\{\alpha_L(t), \alpha_R(t)\}$

Notice that $t \in RR$ if and only if $\alpha(t) < \alpha$.