Assignment 3, HT2020 Linear Programming in Staff Planning

Assignment in partial fulfilment of the requirements for the course Optimisation 1TD184

Department of Information Technology

Marcello Pietro Vendruscolo

Considerations

- 1. Salary of workers who start at 18:00 and 02:00 is **50%** higher
- 2. Salary of workers who start at 22:00 is 100% higher
- 3. 8-hours salary unit (day-shift) = u

Worker Group (WG)	Start	Finish	Salary
1	06:00	14:00	100 %
2	10:00	18:00	100 %
3	14:00	22:00	100 %
4	18:00	02:00	150 %
5	22:00	06:00	200 %
6	02:00	10:00	150 %

Worker Group (WG)	Start	Finish	Salary
1	06:00	14:00	100 %
2	10:00	18:00	100 %
3	14:00	22:00	100 %
4	18:00	02:00	150 %
5	22:00	06:00	200 %
6	02:00	10:00	150 %

1. Objective Function:
$$Z = u*(WG1 + WG2 + WG3) + 1.5u*(WG4 + WG6) + 2u*(WG5)$$

2. Matrix Form:
$$Z = c^T x, c^T = u * [1 \ 1 \ 1 \ 1.5 \ 2 \ 1.5], x = \begin{bmatrix} WG2 \\ WG3 \\ WG4 \\ WG5 \\ WG6 \end{bmatrix}$$

Worker Group (WG)	Start	Finish	Salary	
1	06:00	14:00	100 %	
2	10:00	18:00	100 %	
3	14:00	22:00	100 %	
4	18:00	02:00	150 %	
5	22:00	06:00	200 %	
6	02:00	10:00	150 %	

Time Period	Min Workers	
06:00 - 10:00	700	
10:00 - 14:00	500	
14:00 - 18:00	600	
18:00 - 22:00	300	
22:00 - 02:00	100	
02:00 - 06:00	50	

Table 3

Table 1

Worker Group (WG)	06:00	10:00	14:00	18:00	22:00	02:00
1						
2						
3						
4						
5						
6						

Table 2

Constraints (from Table 2 and Table 3):

$$WG6 + WG1 \ge 700$$

 $WG1 + WG2 \ge 500$
 $WG2 + WG3 \ge 600$
 $WG3 + WG4 \ge 300$

$$WG4 + WG5 \ge 100$$

$$WG5 + WG6 \ge 50$$

$$WG_i \ge 0$$
, for $i = 1, ..., 6$

Problem Modelling

Constraints (from Table 2 and Table 3):

Matrix form:

$$WG6 + WG1 \ge 700$$

 $WG1 + WG2 \ge 500$
 $WG2 + WG3 \ge 600$
 $WG3 + WG4 \ge 300$
 $WG4 + WG5 \ge 100$
 $WG5 + WG6 \ge 50$

$$Ax \ge b, A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 700 \\ 500 \\ 600 \\ 300 \\ 100 \\ 50 \end{bmatrix}$$

$$WG_i \ge 0$$
, for $i = 1, ..., 6$

$$\begin{bmatrix} WG1 \\ WG2 \\ WG3 \\ WG4 \\ WG5 \\ WG6 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \equiv \mathbf{x} \ge 0$$

Staff Planning Modelling

Linprog

$$\min_{x} c^{T} \mathbf{x} \text{ such that } \begin{cases} A \mathbf{x} \ge b, \\ x \ge 0 \end{cases}$$

```
\min_{x} f^{T}x \text{ such that } \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub. \end{cases}
```

```
x = linprog(c, -A, -b, [], [], lb, [], options)
```

```
x = linprog(f, A, b, Aeg, beg, lb, ub, options)
```

```
% Task 1
nshifts = 6; % Number of shifts in a 24-hours period = worker groups
u = 10; % 8-hours salary unit (day-shift)
c = u*[1 \ 1 \ 1 \ 1.5 \ 2 \ 1.5]'; % objective function <math>z = c'x
% constraints Ax >= b:
b = [700\ 500\ 600\ 300\ 100\ 50]';
A = eye(nshifts);
for row = nshifts:-1:1
    if row == 1
        A(1,nshifts) = 1;
        break;
    end
    A(row, row - 1) = 1;
end
lb = zeros(nshifts,1)'; % constraint x >= 0
options = optimoptions('linprog', 'Algorithm', 'dual-simplex', 'Diagnostics', 'on', 'Display', 'iter');
[x, fval, exitflag, output, lambda] = linprog(c, -A, -b, [], [], lb, [], options);
```


Worker Group (WG)	Employees (Task 1)	
1	650	
2	0	
3	600	
4	100	
5	0	
6	50	

Table 4

Constraints (from Table 2 and Table 4):

$$WG6 + WG1 = 700 \ge 700$$

 $WG1 + WG2 = 650 \ge 500$
 $WG2 + WG3 = 600 \ge 600$
 $WG3 + WG4 = 700 \ge 300$
 $WG4 + WG5 = 100 \ge 100$

$$Z = 1475 * u$$

$$WG_i \ge 0$$
, for $i = 1, ..., 6$

 $WG5 + WG6 = 50 \ge 50$

Worker Group (WG)	Employees (Task 1)	Employees (Task 2)
1	650	650
2	0	0
3	600	600
4	100	100
5	0	0
6	50	50

Table 5

Time Period	Min Workers	
06:00 - 10:00	700	
10:00 - 14:00	500 - 250	
14:00 - 18:00	600	
18:00 - 22:00	300	
22:00 - 02:00	100	
02:00 - 06:00	50	

Table 6

Constraints (from Table 5 and Table 6):

$$WG6 + WG1 = 700 \ge 700$$

 $WG1 + WG2 = 650 \ge (500 - 250)$

$$WG2 + WG3 = 600 \ge 600$$

$$WG3 + WG4 = 700 \ge 300$$

 $WG4 + WG5 = 100 \ge 100$

$$WG5 + WG6 = 50 \ge 50$$

$$WG_i \ge 0$$
, for $i = 1, ..., 6$

command window >> disp(lambda.

>> disp(lambda.ineqlin)

10 • 0

10

0

15

5

>>

Z = 1475 * u

Worker Group (WG)	Employees (Task 1)	Employees (Task 2)	Employees (Task 3)
1	650	650	657.2809
2	0	0	141.3821
3	600	600	458.6179
4	100	100	92.7191
5	0	0	7.2809
6	50	50	42.7191

Table 7

Constraints (from Table 2 and Table 7):

 $WG_i \ge 0$, for i = 1, ..., 6

$$WG6 + WG1 = 700 \ge 700$$

 $WG1 + WG2 = 798.66 \ge 500$
 $WG2 + WG3 = 600 \ge 600$
 $WG3 + WG4 = 551.337 \ge 300$ $Z = 1475 * u$
 $WG4 + WG5 = 100 \ge 100$
 $WG5 + WG6 = 50 \ge 50$

Objective function has several optima

Several solutions with same Objective function value

- 1. **Simplex Algorithm:** optima solution is always an extreme point. Method starts from corner point and move to other corner points until no improvement.
- 2. **Interior-point Algorithm:** Does not use corner points as start point. It may end up in a different optima that not a corner point.

Interior-Point Algorithm Considerations

Potential strengths with Interior-Point Algorithms

- 1. Low memory usage
- 2. Ability to solve large problems quickly

Potential inaccuracies with Interior-Point Algorithms

- 1. Barrier function iterates away from inequality constraint boundaries
- 2. Minimum found that satisfies the constraints (vs. optimal solution found in simplex)
- 3. Specify **smaller** StepTolerance, OptimalityTolerance, and possibly ConstraintTolerance

Thank you