

刘志敏

liuzm@pku.edu.cn

MAC协议与LAN技术

- ■高速局域网
- 交换式以太网
- 链路层交换机

IEEE802. 3以太网:链路层与物理层

- 多种不同的以太网标准
 - 相同的 MAC 和 帧格式
 - 不同的速率: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - 不同的物理层介质: 光纤, 电缆

高速以太网——线缆

名称	线缆	最大长度	优点
100Base-T4	双绞线	100m	可用3类UTP
100Base-TX	双绞线	100m	全双工速率100Mbps(5类UTP)
100Base-FX	光缆	2000m	全双工速率100Mbps,长距离
名称	线缆	最大长度	优点
1000Base-SX	光缆	550m	多模光纤(50,62.5μm)
1000Base-LX	光缆	5000m	单模(10µm)或多模光纤(50,62.5µm)
1000Base-CX	2对STP	25m	屏蔽双绞线
1000Base-T	4对UTP	100m	标准5类UTP
名称	线缆	最大长度	优点
10GBase-SR	光缆	300m	多模光纤(0.85μm)
10GBase-LR	光缆	10Km	单模(1.3μm)
10GBase-ER	光缆	40Km	单模(1.5μm)
10GBase-CX4	4对双轴	15m	双轴铜缆
10GBase-T	4对UTP	100m	6a类UTP

以太网技术

MAC技术: CSMA/CD, 信道利用率的最大值

$$S_{\text{max}} \approx \frac{1}{1 + 4.44a} \qquad N \rightarrow \infty$$
 (4-7)

■ 以太网速率提高,对信道利用率有何影响?

$$a = \frac{\tau}{T_0} = \frac{\tau}{L/R} = \frac{\tau R}{L}$$

100BASE-T 以太网

■ MAC帧格式仍采用802.3 标准。

$$S_{\text{max}} \approx \frac{1}{1 + 4.44a}$$
 $N \rightarrow \infty$ $a = \frac{\tau}{T_0} = \frac{\tau}{L/R} = \frac{\tau R}{L}$

- R增大10倍, τ减小到1/10。
- 保持最短帧长不变,但将一个网段的最大电缆长度减小到100m。
- 帧间时间间隔从原来的9. 6μs改为0. 96 μs。

千兆以太网

- 允许在1Gb/s下采用全双工和半双工(与集线器连接)两种方式工作,使用802.3的帧格式
- 全双工方式:发送接收同时进行,无碰撞,不需要CSMA/CD
- 在半双工方式下使用CSMA/CD协议,与10BASE-T 和100BASE-T技术后向兼容
- 为使参数α较小并保持网段最大长度为200m,采用"载波延伸"(carrier extension)使最短帧长仍为64字节,将争用时间增大为512字节

在短MAC帧后加上载波延伸

- 若发送的MAC帧长不足512字节时(例如46字节) 就在帧后填充一些特殊字符,使帧的发送长度 增大到512字节(,此时链路利用率约为9%)
- 接收端在收到MAC帧后,删除填充的特殊字节 后才交付给高层

前同步码	目地地址	源地址	数据长度	数	据	FCS	载波延伸
← MAC 帧的最小值 = 64 字节 ─────							
←—— 加上载波延伸使MAC帧长度 = 争用期长度512 字节 ————							

帧突发

- 允许发送方将多个帧级联在一起,一次 传输
- 帧长最长为1500字节
- 若不足512字节,则采用载波延伸;

交换式以太网 (1)

- (a) 集线器(Hub) (b) 交换机(Switch)
- 以太网的速率可以10Mbps, 100Mbps, 1Gbps, 然而集线器的总线竞争方式, 限制了容量
- 采用交换机,提升容量

集线器Hubs

物理层的转发器(repeaters)

- 来自一个端口的数据以相同速率在所有端口上发送
- 连接到集线器的所有节点可以相互侦听到
- 没有帧的缓存
- 集线器不做CSMA/CD: 主机NIC检测碰撞

交换式以太网

- **富要决定一个帧去往哪个端口**
- 在不同端口上传输的帧不发生碰撞
- 更安全:因为以太网卡支持混杂模式,可以捕获 全部的帧,例如协议分析软件Wireshark

交换机Switch

- 链路层设备: 比集线器更智能, 其主要作用
 - 存储,转发以太帧
 - 检测输入帧的MAC地址,有选择地向一个或多 个端口转发帧,在转发接口对应的网段上实施 CSMA/CD
- 透明: 主机不感知交换机是否存在
- 分类:
 - 学习网桥:即插即用,自学习;无需配置即可 工作
 - 生成树网桥:
 - 虚拟局域网: VLAN

链路层交换

- 网桥或以太网交换机:将多个局域网连接 在一起,工作在链路层,检测MAC地址并 转发帧
- 网桥的作用:
 - 构建LAN: 连接计算机、服务器等设备
 - 互联多个LAN
 - 将一个逻辑的LAN分为多个LAN,以均衡网络 负载
- 路由器:
 - 互联不同网络,检查网络层地址并转发分组

交换: 允许多点同时传输

- 主机通过专线与交换机相 连
- 交换机缓存分组
- 在每条输入链路上采用以 太协议,各个链路间没有 碰撞;
 - 每条链路有其碰撞域
- 全双工
- 交換: A-to-A' 和B-to-B' 同时进行,没有碰撞
 - 集线器是不可能的

6端口交换机 (1,2,3,4,5,6)

交换表

- 交换机如何知道经过接口4 可以到达A',经过接口5可_c 以到达 B'?
- 每个交换机有一个交换表, 表项组成
 - ■(主机的MAC地址,达到主机 的接口,时间标记)
- 类似于路由表!
- 如何产生并维护交换表?
 - 也有类似的路由协议吗?

switch with six interfaces (1,2,3,4,5,6)

Switch: 自学习

- 交换机要知道经哪个接口可以到达哪个主机
 - 当收到帧,交换机知 道其发送的位置:输 入LAN网段
 - 将发送"主机/位置" 记入交换表

MAC addr	interface	TTL
Α	1	60

交换表 **(**初始为空**)**

Source: A

交换: 帧过滤/转发

当收到帧时:

- 1. 保存与链路相关的发送主机MAC地址
- 2. 用目的MAC地址索引交换表

在除帧接收的端口以外的其他所有端口上转发

自学习转发: 举例

Source: A
Dest: A'

■ 不知帧的目的地址的位置:

flood

■ 目的地址 A 的位置已知:

选择发送

MAC addr	interface	TTL
A	1	60
A'	4	60

Switch table (initially empty)

交换机的互联

■用交换机互联LAN

- 从A向G发送——S1如何知道发送给G的帧需要经过S4和 S3转发?
- 自学习

多交换机自学习: 举例

假设 C 发送帧给 I, I 应答 C

■ 问:给出在S₁, S₂, S₃, S₄上的交换表及转发的帧

用交换机连接AP,支持移动性

- H1保持在同一IP子网中:
 - IP 地址可保持不变
- 交换机如何转发分组?需要知道哪个AP与H1关联吗?
 - 交换机自学习:交换机从某一端口上接收到来自H1的帧,则记录:由此端口可以发

送数据给H1

生成树网桥

- 网桥间设置两条链路以避免故障,但存在环路问题: F_0 经 B1产生 F_1 , F_2 , 经过B2产生 F_3 , F_4 , 帧在环路中兜圈子
- 解决方法: 网桥之间通信, 构造一个连接各网桥的生成树
 - 网桥周期地发送配置消息给邻居,并处理接收的消息
 - 配置消息中含标识(基于MAC地址)及与其他节点的跳数;选择最小标识作为生成树的根;
 - 构造由根到每个网桥的最短路径树

生成树网桥: 举例

网桥之间交换配置信息,基于MAC地址,约定B1作为根各节点计算到B1的跳数,最终建立生成树:包括5个网桥,虚线不在生成树的链路上、避免环路

Virtual LANs: 早期的LAN

早期的LAN:根据计算机的地理位置或物理结构,以 hub或/和交换机为中心组建LAN

Virtual LANs (2)

- VLAN:按照用户的组织结构而非物理结构,构建局域网
- 优点: 1.安全; 2.负载均衡 3.广播流量
- 方法:必须建立配置表,设置其端口属于G或W或GW
- 举例:
 - 当B1收到G帧时,仅在G的端口上广播;限制广播范围
 - 当B2收到W帧,不会向到B1的端口上转发;限制广播范围
 - 若B2收到B1的帧,该向哪类端口转发?需要在帧中标记

-

IEEE 802.1Q 标准 (1)

阴影为感知的, 白色为非感知的

需要改变以太网的帧结构吗?不现实!

主机无需感知!只有部分网桥需要感知VLAN!

- 感知的网桥支持IEEE 802.1Q;不感知的仅支持802.3
- 问:B5为感知VLAN的交换机,可否改为传统的交换机?为何?

IEEE 802.1Q标准

802.3 (传统的) 及802.1Q 以太帧格式

对802.1Q帧,传统的以太网卡认为0x8100为长度异常,不会转发

小结

- MAC: 实现多站点共享信道的协议
- 站数少且数量稳定的情况,划分信道
 - FDMA、TDMA、CDMA
- 站数多且突发的情况, 动态信道分配
 - ALOHA, CSMA
 - 减少竞争,信道预约,位图协议、轮询、二进制倒计数、动态分组等
- LAN: CSMA/CD
- WLAN: CSMA/CA
- 网桥: 一种互联LAN技术, 自学习与转发

练习题

- 网桥的工作原理? 它与集线器有何异同?
- 采用网桥或路由器互联LAN,有何不同?
- 设B1, B2为网桥,初始转发表为空,H1为集线器。 请列出数据转发端口以及B1、B2的转发表
 - 1. A发送数据给C
 - 2. E发送数据给F
 - 3. F发送数据给E
 - 4. G发送数据给E
 - 5. D发送数据给A
 - 6. B发送数据给F

