HW8

Sam Olson

Q1

Suppose there is one observation X with pdf

$$f(x) = 2\theta(1-2x) + 2x$$
, for $x \in [0,1]$, $\theta \in [0,1]$.

Find the Bayes test for

$$H_0: \theta \le 0.4$$
 vs. $H_1: \theta > 0.4$

with respect to the uniform prior on [0,1].

Answer

We are given the likelihood:

$$f(x \mid \theta) = 2\theta(1 - 2x) + 2x, \quad x \in [0, 1], \theta \in [0, 1]$$

and a uniform prior:

$$\pi(\theta) = 1$$
, for $\theta \in [0, 1]$

We compute the (unnormalized) posterior:

$$\pi(\theta \mid x) \propto f(x \mid \theta)\pi(\theta) = 2\theta(1-2x) + 2x$$

Normalize:

$$\int_0^1 [2\theta(1-2x) + 2x] \, d\theta = (1-2x) \cdot 1 + 2x \cdot 1 = 1$$

so:

$$\pi(\theta \mid x) = 2\theta(1 - 2x) + 2x$$

Let us define the posterior probabilities of the hypotheses:

$$P(H_0 \mid x) = \int_0^{0.4} \pi(\theta \mid x) d\theta = (1 - 2x) \cdot (0.4)^2 + 2x \cdot 0.4 = 0.16(1 - 2x) + 0.8x$$

Simplifying:

$$P(H_0 \mid x) = 0.16 + 0.48x$$

$$P(H_1 \mid x) = 1 - P(H_0 \mid x) = 0.84 - 0.48x$$

The Bayes test rejects H_0 when $P(H_1 \mid x) > P(H_0 \mid x)$, that is:

$$0.84 - 0.48x > 0.16 + 0.48x \Rightarrow 0.68 > 0.96x \Rightarrow x < \frac{17}{24}$$

We define the (Bayes) test function $\varphi(x)$ as:

$$\varphi(x) = \begin{cases} 1, & \text{if } x < \frac{17}{24}, \\ 0, & \text{if } x \ge \frac{17}{24} \end{cases}$$

That is, we reject H_0 if $x < \frac{17}{24}$, and fail to reject H_0 otherwise.

$\mathbf{Q2}$

Problem 9.13, Casella and Berger (2nd Edition)

Let X be a single observation from the $Beta(\theta, 1)$ pdf.

a)

Let $Y = -(\log X)^{-1}$. Evaluate the confidence coefficient of the set [y/2, y].

Answer

If $X \sim \text{Beta}(\theta, 1)$, then its pdf is:

$$f_X(x) = \theta x^{\theta - 1}, \quad 0 < x < 1$$

Define the transformation:

$$Y = -\frac{1}{\log X} \Rightarrow X = e^{-1/Y}, \quad Y > 0$$

Compute the pdf of Y via the change of variables:

$$f_Y(y) = f_X(e^{-1/y}) \cdot \left| \frac{d}{dy} e^{-1/y} \right| = \theta \cdot e^{-\theta/y} \cdot \frac{1}{y^2}, \quad y > 0$$

So the pdf of Y is:

$$f_Y(y) = \frac{\theta}{y^2} e^{-\theta/y}, \quad y > 0$$

We seek:

$$P\left(\frac{Y}{2} \le \theta \le Y\right) = P\left(\theta \in \left[\frac{Y}{2}, Y\right]\right)$$

This is equivalent to:

$$P\left(\theta \in \left\lceil \frac{Y}{2}, Y \right\rceil \right) = P\left(Y \in [\theta, 2\theta]\right)$$

Thus:

Confidence Coefficient =
$$\int_{\theta}^{2\theta} \frac{\theta}{y^2} e^{-\theta/y} dy$$

Make substitution $u=\theta/y \Rightarrow y=\theta/u,\, dy=-\theta/u^2du$:

Confidence Coefficient =
$$\int_{1/2}^{1} e^{-u} du = e^{-1/2} - e^{-1} \approx 0.6065 - 0.3679 = 0.2386$$

b)

Find a pivotal quantity and use it to set up a confidence interval having the same confidence coefficient as part a).

Answer

The pdf of $X \sim \text{Beta}(\theta, 1)$ is:

$$f_X(x) = \theta x^{\theta - 1}, \quad x \in (0, 1)$$

Let us consider the transformation:

$$T = X^{\theta}$$

Then the cdf of T is:

$$P(X^{\theta} \le t) = P(X \le t^{1/\theta}) = \int_{0}^{t^{1/\theta}} \theta x^{\theta - 1} dx = t$$

Thus, $T = X^{\theta} \sim \text{Uniform}(0,1)$, and is a pivotal quantity.

We want to find values $a, b \in (0, 1)$ such that:

$$P(a \le T \le b) = b - a = 0.239$$

This implies:

$$P(a \le X^{\theta} \le b) = 0.239$$

Solving for θ from $a \leq X^{\theta} \leq b$:

$$a \leq X^{\theta} \leq b \Rightarrow \frac{\log a}{\log X} \leq \theta \leq \frac{\log b}{\log X}, \quad (\text{since } 0 < X < 1 \text{ and } \log X < 0)$$

c)

Compare the two confidence intervals.

Answer

The interval in part a), [Y/2, Y], depends on the transformed variable $Y = -1/\log X$, and is symmetric on the log scale.

The interval in part b) uses a pivotal quantity to define a confidence set for θ .

The part a) interval is a special case of the pivotal-based interval in part b), using fixed endpoints $a = e^{-1}$, $b = e^{-1/2}$ such that b - a = 0.239.

The pivotal method in part b) allows for more flexibility and can produce shorter intervals.

For example, choosing b = 1, a = 1 - 0.239, yields:

$$\theta \in \left[0, \frac{\log(1 - 0.239)}{\log X}\right]$$

This is a one-sided interval of the same confidence level, and is often shorter or more desirable depending on the application.

Q3

Problem 9.16, Casella and Berger (2nd Edition)

Let X_1, \ldots, X_n be i.i.d. $N(\theta, \sigma^2)$, where σ^2 is known. For each of the following hypotheses, write out the acceptance region of a level α test and the $1-\alpha$ confidence interval that results from inverting the test.

a)

 $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$

Answer

$$Z = \frac{\bar{X} - \theta_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$
 under H_0

Reject H_0 if:

$$|Z| > z_{\alpha/2} \iff |\bar{X} - \theta_0| > z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Accept H_0 if:

$$\theta_0 \in \left[\bar{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \, \bar{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right]$$

Inverting the test yields the $(1 - \alpha)$ confidence interval for θ :

$$\left[\bar{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \, \bar{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

b)

 $H_0: \theta \geq \theta_0$ versus $H_1: \theta < \theta_0$

Answer

$$Z = \frac{\bar{X} - \theta_0}{\sigma / \sqrt{n}}$$

Reject H_0 if:

$$Z < -z_{\alpha} \iff \bar{X} - \theta_0 < -z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}$$

Accept H_0 if:

$$\bar{X} \geq \theta_0 - z_\alpha \cdot \frac{\sigma}{\sqrt{n}}$$

Inverting the test yields the one-sided confidence interval:

$$\left(-\infty, \, \bar{X} + z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

c)

 $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$

 ${\bf Answer}$

$$Z = \frac{\bar{X} - \theta_0}{\sigma / \sqrt{n}}$$

Reject H_0 if:

$$Z > z_{\alpha} \quad \Longleftrightarrow \quad \bar{X} - \theta_0 > z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}$$

Accept H_0 if:

$$\bar{X} \le \theta_0 + z_\alpha \cdot \frac{\sigma}{\sqrt{n}}$$

Inverting the test gives the one-sided interval:

$$\left[\bar{X} - z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}, \infty\right)$$

$\mathbf{Q4}$

Problem 9.11, Casella and Berger (2nd Edition)

If T is a continuous random variable with cdf $F_T(t \mid \theta)$ and $\alpha_1 + \alpha_2 = \alpha$, show that an α -level acceptance region of the hypothesis $H_0: \theta = \theta_0$ is

$$\{t : \alpha_1 < F_T(t \mid \theta_0) < 1 - \alpha_2\},\$$

with associated confidence $1 - \alpha$ set

$$\{\theta: \alpha_1 \leq F_T(t \mid \theta) \leq 1 - \alpha_2\}.$$

Answer

Let T be a continuous test statistic with cumulative distribution function $F_T(t \mid \theta)$.

Under the null hypothesis $H_0: \theta = \theta_0$, we define the transformed variable:

$$U = F_T(T \mid \theta_0)$$

Since T is continuous and $F_T(\cdot \mid \theta_0)$ is strictly increasing, the probability integral transform implies:

$$U \sim \text{Uniform}(0,1)$$
 under H_0

We construct an acceptance region that excludes the lower α_1 and upper α_2 tails of this uniform distribution. Specifically, we accept H_0 if:

$$\alpha_1 \leq F_T(t \mid \theta_0) \leq 1 - \alpha_2$$

The probability of rejecting H_0 is the sum of the tail probabilities:

$$P_{\theta_0}\left(F_T(T\mid\theta_0)<\alpha_1\right)=\alpha_1$$

And:

$$P_{\theta_0}\left(F_T(T\mid\theta_0)>1-\alpha_2\right)=\alpha_2$$

Hence, the total probability of rejection under H_0 is:

$$P_{\theta_0}(\text{Reject } H_0) = \alpha_1 + \alpha_2 = \alpha$$

So this acceptance region defines a level α test.

We now construct a $1-\alpha$ confidence set by inverting the acceptance region:

Fix observed value $t_{\rm obs}$, and define the set of all parameter values θ for which $t_{\rm obs}$ lies within the corresponding acceptance region:

$$C(t_{\text{obs}}) = \{\theta : \alpha_1 \le F_T(t_{\text{obs}} \mid \theta) \le 1 - \alpha_2\}$$

This set contains all values of θ that are not rejected when testing $H_0: \theta = \theta'$ for each possible θ' . Since $F_T(T \mid \theta) \sim \text{Uniform}(0, 1)$ under the true parameter θ , we have:

$$P_{\theta} \left(\alpha_1 \le F_T(T \mid \theta) \le 1 - \alpha_2 \right) = 1 - \alpha_1 - \alpha_2 = 1 - \alpha$$

Thus, the random set

$$\{\theta : \alpha_1 \le F_T(t \mid \theta) \le 1 - \alpha_2\}$$

is a confidence set for θ with coverage probability $1 - \alpha$.

Acceptance region (level α):

$$\{t : \alpha_1 \le F_T(t \mid \theta_0) \le 1 - \alpha_2\}$$

Associated confidence set (level $1 - \alpha$):

$$\{\theta : \alpha_1 \le F_T(t \mid \theta) \le 1 - \alpha_2\}$$