Teorija iz skripte iz Matan 1 na ispitima u akademskoj godini 2020/21

- dokazi tvrdnji koje su napisane crnim slovima se ispituju na ispitima;
- dokazi tvrdnji koje su napisane crvenim slovima se NE ispituju ove godine na ispitima; međutim, njihovi iskazi, njihove varijante (npr. njen obrat po kontrapoziciji) i primjena ovih tvrdnji se ispituju na ispitima;
- iskazi definicija i primjeri vezano uz definicije se ispituju na ispitima;
- ako neka tvrdnja iz skripte nije navedena u ovom popisu onda se njen dokaz automatski ne ispituje na ispitima.
- Poglavlje 1: nema dokaza.
- Poglavlje 2:
- formule (2.11) do (2.15) za množenje, dijeljene i potenciranje $z \in \mathbb{C}$ koji su dani u trigonometrijskom obliku; priznaju se i dokazi ovih formula pomoću Eulerovog zapisa kompleksnog broja, koji su dani u 2.3;
- formule (2.18) i (2.19) za korjenovanje $z \in \mathbb{C}$ koji su dani u trigonometrijskom obliku.
- Poglavlje 3:
- Teorem 3.1.1 Funkcija $f: X \to Y$ ima inverznu funkciju $f^{-1}: Y \to X$ ako i samo ako je f bijekcija.
- Korolar 3.1.2 Neka su $f: X \to Y$ i $g: Y \to Z$ ulančane funkcije koje su bijekcije. Tada je i funkcija $g \circ f: X \to Z$ bijekcija i njezina inverzna funkcija dana je formulom $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- Poglavlje 4:
- **Teorem 4.1.2** Neka su A i B konačni neprazni skupovi, tako da prvi ima n elemenata, a drugi ima m. Onda svih funkcija $f: A \to B$ ima ukupno m^n , tj. vrijedi $|B^A| = m^n$. Drugim riječima, vrijedi $|B^A| = |B|^{|A|}$.
- ullet Korolar 4.1.3 Broje poredanih n-teraca sastavljenih od 0 i 1 (ili od neka druga dva različita elementa) jednak je 2^n .
- Teorem 4.1.4 Neka je X konačan skup od n elemenata. Onda on ima ukupno 2^n podskupova, tj. vrijedi $|2^X| = 2^{|X|}$.
- **Propozicija 2** Ako je $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ prirodan broj rastavljen na proste faktore, onda je broj svih pozitivnih djelitelja od n jednak $(\alpha_1 + 1) \cdots (\alpha_k + 1)$.
- Teorem 4.2.1 Neka je zadan neprazan n-člani skup i prirodan broj k takav da je $k \le n$. Broj poredanih k-teraca različitih elemenata iz n-članog skupa, jednak je padajućem umnošku k uzastopnih prirodnih brojeva, počevši od n: $n(n-1)\cdots(n-k+1)=n!/(n-k)!$. Ukupan broj permutacija n-članog skupa jednak je n!.
- Teorem 4.2.2 Neka su skupovi $A = \{a_1, \dots, a_k\}$ i $B = \{b_1, \dots, b_n\}$ konačni neprazni, takvi da je $k \leq n$. Onda je broj svih injektivnih funkcija $f: A \to B$ jedna padajućem umnošku k uzastopnih prirodnih brojeva počevši od n: $n(n-1)\cdots(n-k+1) = n!/(n-k)!$. Ako je k=n, onda je svaka injektivna funkcija iz A u B ujedno i bijekcija. Prema tome, dobivamo da je broj svih bijektivnih funkcija iz n-članog skupa A u n-člani skup B jednak n!.
- \bullet Teorem 4.2.3 Neka je $k \leq n$, gdje je k nenegativan cijeli broj i n prirodan broj. Broj k-članih podskupova n-članog skupa jednak je:

$$\binom{n}{k} := \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

• Propozicija 3 Za sve prirodne brojeve n i k, gdje je $k \le n$, vrijedi

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

• Teorem 4.2.4 Za sve kompleksne brojeve x,y i sve $n\in\mathbb{N}\cup\{0\}$ vrijedi:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

• **Teorem 4.3.1** Broj permutacija n—tog reda k—članog skupa $\{a_1, \dots, a_k\}$, u kojima se elementi a_i pojavljuje n_i puta, $i = 1, \dots k$, gdje je $n = n_1 + \dots n_k$, jednak je

$$\frac{n!}{n_1!\cdots n_k!}.$$

• Teorem 4.3.2 Za sve $n \in \mathbb{N} \cup \{0\}, k \in \mathbb{N}$ te $x_1, \dots, x_k \in \mathbb{C}$, vrijedi multinomna formula:

$$(x_1 + x_2 + \dots + n_k)^n = \sum_{n_1 + n_2 + \dots + n_k = n} \frac{n!}{n_1! n_2! \dots n_k!} x_1^{n_1} x_2^{n_2} \dots x_k^{n_k}.$$

Zbrajamo po svim poredanim k-tercima $(n_1, n_2, \dots n_k)$ nenegativnih cijelih brojeva takvih da je $n_1+n_2+\dots+n_k=n$.

- Teorem 4.3.3 Poredanih k-teraca n-članog skupa ima ukupno n^k .
- \bullet Teorem 4.3.4 Neka su ki nbilo koji prorodni brojevi. Broj k-članih multiskupova s elemntima iz zadanog n-članog skupa iznosi

$$\binom{n+k-1}{k}$$
.

- Teorem 4.4.1 FUI ili Sylvesterova formula......
- Poglavlje 5:
- Teorem 5.1.1 Neka su $f:D\subseteq\mathbb{R}\to\mathbb{R}$ i $g:\mathbb{R}\to\mathbb{R}$ realne funkcije takve da je $g\circ f:D\to\mathbb{R}$. Ako je:
- (a)(i) f rastuća i g rastuća, tada je $g \circ f$ rastuća; (a)(ii) f rastuća i g padajuća, tada je $g \circ f$ padajuća;
- (b)(i) f padajuća i g rastuća, tada je $g \circ f$ padajuća; (a)(ii) f padajuća i g padajuća, tada je $g \circ f$ rastuća.
- **Propozicija 1** Neka su $D, K \subset \mathbb{R}$ i $f: D \to K$ bijekcija. Označimo noj inverznu funkciju s $f^{-1}: K \to D$. Ako je: (a) f strogo rastuća, tada je i f^{-1} strogo rastuća.
- (b) f strogo padajuća, tada je i f^{-1} strogo padajuća.
- Poglavlje 5.5.2 Area funkcije izvod za formulu inverzne funkcije od sinus hiperboličke funkcije.
- **Propozicija 3** Broj e je iracionalan broj.
- Poglavlje 6:
- \bullet Propozicija 1 Ako je niz a_n konvergentan i ima limes L, tada je L jedino gomilište niza.
- Korolar 6.3.1 Konvergentan niz ima samo jedan limes.
- Teorem 6.3.2 Ako je niz realnih brojeva a_n konvergentan, tada je on omeđen.
- Teorem 6.3.6 Niz realnih brojeva a_n konvergira k 0 ako i samo ako niz njegovih apsolutnih vrijednosti $|a_n|$ konvergira k 0, tj.

$$\lim_{n\to\infty}a_n=0\quad \text{ako i samo ako}\quad \lim_{n\to\infty}|a_n|=0.$$

 \bullet Teorem 6.4.1a) Ako su a_n i b_n konvergentni nizovi, tada je niz a_n+b_n konvergentan i vrijedi:

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n.$$

• Propozicija 3 Neka je $a_n \sim c_n$ kada $n \to \infty$ i b_n divergira prema $+\infty$. Ako postoji $\lim_{n \to \infty} \frac{a_n}{b_n}$, tada vrijedi

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{c_n}{b_n}.$$

Analogno, ako je $b_n \sim d_n$ kada $n \to \infty$ i a_n divergira prema $+\infty$ te ako postoji $\lim_{n \to \infty} \frac{a_n}{b_n}$, onda vrijedi

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n}{d_n}.$$

- Propozicija 4 Niz a_n je rastući ako i samo ako za sve $n \in \mathbb{N}$ vrijedi $a_n \leq a_{n+1}$. Niz a_n je padajući ako i samo ako za sve $n \in \mathbb{N}$ vrijedi $a_n \geq a_{n+1}$.
- \bullet Propozicija 6.6.1 Ako je niz realnih brojeva a_n monoton i moeđen, onda je on konvergentan.
- Limes (6.4): $\lim_{n\to\infty} \frac{a^n}{n!} = 0$.; Limes (6.5): $\lim_{n\to\infty} \frac{n^p}{a^n} = 0$, $p \in \mathbb{Q}^+$, a > 1; Limes (6.6): $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- Limes (6.7): $\lim_{n\to\infty} \sqrt[n]{a} = 1$, a > 0. Limes (6.8): $\lim_{n\to\infty} \sqrt[n]{n!} = +\infty$.
- Limes (6.9): $\lim_{n\to\infty} (1+1/n)^n = e$.
- Poglavlje 7:
- Teorem 7.1.2 Ako za funkciju f postoji limesi u točki x = a, tada je on jednoznačno određen.
- Teorem 7.1.3 Neka su $a, L \in \mathbb{R}$.

$$L = \lim_{x \to a} f(x) \quad \text{ako i samo ako} \quad \lim_{x \to a^+} f(x) = L \quad \text{i} \quad \lim_{x \to a^-} f(x) = L.$$

- Teorem 7.1.4 Neka postoje konačni limesi funkcija f i g u točki x=a. Tada vrijedi:
- (i) $\lim_{x\to a} (f(x) \pm g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$; (ii) $\lim_{x\to a} (f(x) \cdot g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$;
- (iii) $\lim_{x\to a} (f(x)/g(x)) = \lim_{x\to a} f(x)/\lim_{x\to a} g(x)$, uz uvjet da su nazivnici različiti od nule.
- Teorem 7.2.1 a) Neka je $a \in \mathbb{R}$. Neka su f i g neprekinute u točki a. Tada je f+g neprekinuta u točki a.
- Teorem 7.4.3 Funkcija $f(x) = \frac{\sin x}{x}$ ima limes kada $x \to 0$ i vrijedi $\lim_{x \to 0} f(x) = 1$.
- Poglavlje 8:
- Teorem 8.3.1 Neka je $f: I \to \mathbb{R}, I \subset \mathbb{R}$ otvoren interval. Ako je f diferencijabilna u točki $x_0 \in I$, onda je f neprekinuta u $x_0 \in I$.
- **Teorem 8.4.1** Ako su $f, g: I \to \mathbb{R}$ diferencijabilne na I, onda vrijedi:
- (1) $(f(x) \pm g(x))' = f'(x) \pm g'(x), x \in I;$ (2) $(Cf(x) = Cf'(x), C \in \mathbb{R}, x \in I;$
- (3) $(f(x)g(x))' = f'(x)g'(x), x \in I$; (4) $(f(x)/g(x))' = [f'(x)g(x) f(x)g'(x)]/g^2(x), x \in I$.
- **Teorem 8.5.1** Neka je kompozicija $f \circ g$ dobro definirana u nekoj točki x, te neka je g diferencijabilna u točki x, a f diferencijabilna u g(x). Tada je kompozicija $f \circ g$ diferencijabilna u x i vrijedi:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

- Izvodi tabličnih derivacija
- Formula za derivaciju inverzne funkcije:

$$(f^{-1}(y))' = \frac{1}{f'(x)}.$$