

# Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC157635 1 of 192 Page:

# **FCC Radio Test Report** FCC ID: 2AK77-W1

## **Original Grant**

Report No. TB-FCC157635

Shenzhen Yuetu Network Technology Ltd. **Applicant** 

**Equipment Under Test (EUT)** 

**EUT Name** DashCam

Model No. W1

N/A Serial Model No.

**Brand Name** HaloCam

**Receipt Date** 2017-12-10

2017-12-11 to 2017-12-25 **Test Date** 

**Issue Date** 2017-12-26

**Standards** FCC Part 15, Subpart E (15.407:2017)

**Test Method** ANSI C63.10: 2013

**Conclusions PASS** 

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

**Test/Witness Engineer** 

Approved&

**Authorized** 

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0





# Page:

# Contents

| COI | NTENTS                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 5  |
|     | 1.1 Client Information                                       | 5  |
|     | 1.2 General Description of EUT (Equipment Under Test)        | 5  |
|     | 1.3 Block Diagram Showing the Configuration of System Tested |    |
|     | 1.4 Description of Support Units                             |    |
|     | 1.5 Description of Test Mode                                 | 8  |
|     | 1.6 Description of Test Software Setting                     |    |
|     | 1.7 Test Facility                                            | 10 |
| 2.  | TEST SUMMARY                                                 | 11 |
| 3.  | TEST EQUIPMENT                                               | 12 |
| 4.  | CONDUCTED EMISSION TEST                                      | 13 |
|     | 4.1 Test Standard and Limit                                  |    |
|     | 4.2 Test Setup                                               |    |
|     | 4.3 Test Procedure                                           |    |
|     | 4.4 EUT Operating Mode                                       |    |
|     | 4.5 Test Data                                                |    |
| 5.  | RADIATED EMISSION TEST                                       |    |
|     | 5.1 Test Standard and Limit                                  |    |
|     | 5.2 Test Setup                                               |    |
|     | 5.3 Test Procedure                                           |    |
|     | 5.4 EUT Operating Condition                                  |    |
|     | 5.5 Test Data                                                |    |
| 6.  | BAND EDGE EMISSIONS                                          | 19 |
|     | 6.1 Test Standard and Limit                                  |    |
|     | 6.2 Test Setup                                               |    |
|     | 6.3 Test Procedure                                           |    |
|     | 6.4 EUT Operating Condition                                  |    |
|     | 6.5 Test Data                                                |    |
| 7.  | BANDWIDTH TEST                                               |    |
|     | 7.1 Test Standard and Limit                                  |    |
|     | 7.2 Test Setup                                               |    |
|     | 7.3 Test Procedure                                           |    |
|     | 7.4 EUT Operating Condition                                  |    |
|     | 7.5 Test Data                                                |    |
| 8.  | OUTPUT POWER TEST                                            |    |
| 6   | 8.1 Test Standard and Limit                                  |    |
|     | 8.2 Test Setup                                               |    |
|     | 8.3 Test Procedure                                           |    |
|     |                                                              |    |



Page: 3 of 192

|     | 8.4 EUT Operating Condition                                     | 23  |
|-----|-----------------------------------------------------------------|-----|
|     | 8.5 Test Date                                                   |     |
| 9.  | POWER SPECTRAL DENSITY TEST                                     | 24  |
|     | 9.1 Test Standard and Limit                                     | 24  |
|     | 9.2 Test Setup                                                  |     |
|     | 9.3 Test Procedure                                              | 24  |
|     | 9.4 EUT Operating Condition                                     | 25  |
|     | 9.5 Test Data                                                   | 25  |
| 10. | FREQUENCY STABILITY MEASUREMENT                                 | 26  |
|     | 10.1 Test Standard and Limit                                    | 26  |
|     | 10.2 Test Setup                                                 |     |
|     | 10.3 Test Procedure                                             |     |
|     | 10.4 EUT Operating Condition                                    | 26  |
|     | 10.5 Test Data                                                  | 27  |
| 11. | ANTENNA REQUIREMENT                                             | 28  |
|     | 11.1 Standard Requirement                                       | 28  |
|     | 11.2 Antenna Connected Construction                             |     |
|     | 11.3 Result                                                     | 28  |
| ATT | ACHMENT A CONDUCTED EMISSION TEST DATA                          | 29  |
| ATT | ACHMENT B RADIATED EMISSION TEST DATA                           | 33  |
| ATT | ACHMENT C BAND EDGE EMISSIONS TEST DATA                         | 91  |
|     | ACHMENT D BANDWIDTH TEST DATA                                   |     |
|     | ACHMENT E OUTPUT POWER TEST DATA                                |     |
|     | ACHMENT F POWER SPECTRAL DENSITY TEST DATA                      |     |
|     | ACHMENT G FREQUENCY STABILITY MEASUREMENT TEST DATA             |     |
|     | ACDINICIAL CI CRECIOCIALE ALABII II I INCABURCINICIAL IEST DATA | 191 |



Page: 4 of 192

# **Revision History**

| Report No.   | Version      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Issued Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TB-FCC157635 | Rev.01       | Initial issue of report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2017-12-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TO THE       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TO TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ا المراق     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a Muss       | 3 W          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |
| D W          | 3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| THE CALL     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | TOTAL STREET | TOWN THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |              | The same of the sa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TO DO        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



Page: 5 of 192

# 1. General Information about EUT

## 1.1 Client Information

**Applicant**: Shenzhen Yuetu Network Technology Ltd.

Address 3/F, Yinjin Industrial Park, Liuxian 2 Road, Bao'an District, Shenzhen,

' Guangdong, China

Manufacturer : Shenzhen Yuetu Network Technology Ltd.

Address : 3/F, Yinjin Industrial Park, Liuxian 2 Road, Bao'an District, Shenzhen,

Guangdong, China

## 1.2 General Description of EUT (Equipment Under Test)

| <b>EUT Name</b>        | : DashCam                                                 |                                                                                                                                                                                                                                                                                          |  |  |  |  |
|------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Models No.             | : W1                                                      | W1                                                                                                                                                                                                                                                                                       |  |  |  |  |
| OB STORY               | Operation Frequency U-NII-1: 5180MHz~5 U-NII-3: 5745MHz~5 | 240MHz                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Product<br>Description | RF Output Power:                                          | U-NII-1: 802.11a: 12.47dBm 802.11n(HT20): 12.50dBm 802.11n(HT40): 12.33dBm 802.11ac(20): 12.45dBm 802.11ac(40): 12.59dBm 802.11ac(80): 11.96dBm U-NII-3: 802.11a: 7.00dBm 802.11n(HT20): 6.76dBm 802.11n(HT40): 7.04dBm 802.11ac(20): 678dBm 802.11ac(40): 6.97dBm 802.11ac(40): 6.27dBm |  |  |  |  |
|                        | Antenna Gain:                                             | see note(3)                                                                                                                                                                                                                                                                              |  |  |  |  |
|                        | Modulation Type:                                          | 802.11a: OFDM (QPSK, BPSK, 16QAM)<br>802.11n: OFDM (QPSK, BPSK, 16QAM,<br>64QAM)<br>802.11ac: OFDM (QPSK, BPSK, 16QAM,<br>64QAM, 256QAM)                                                                                                                                                 |  |  |  |  |
|                        | Bit Rate of Transmitter:                                  | 802.11a: 6/9/12/18/24/36/48/54 Mbps<br>802.11n: up to 150Mbps<br>802.11ac: at most 433.3 Mbps                                                                                                                                                                                            |  |  |  |  |
| Power Supply           | : DC Voltage Supplied                                     | by Adapter.                                                                                                                                                                                                                                                                              |  |  |  |  |



Page: 6 of 192

|                        |   | DC Supply by the Battery.                                                                                                         |
|------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------|
| Power Rating           |   | Adapter(10FA3-05200U):<br>Input: AC 100-240, 50/60Hz, 0.5-0.3A.<br>Output: DC 5.0V, 2.0A.<br>DC 3.7 V by 4500mAh Li-Lion Battery. |
| Connecting I/O Port(S) | : | Please refer to the User's Manual                                                                                                 |

**Note:** More detailed features description, please refer to the manufacturer's specifications or the User's Manual.

#### Note:

(1) This Test Report is FCC Part 15, Subpart E(15.407) for 802.11a/n/ac, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

(2) Channel List:

| 5G Band 5150~5250 MHz (U-NII-1)                            |    |          |    |          |  |  |  |  |
|------------------------------------------------------------|----|----------|----|----------|--|--|--|--|
| Frequency Band Channel No. Frequency Channel No. Frequency |    |          |    |          |  |  |  |  |
|                                                            | 36 | 5180 MHz | 44 | 5220 MHz |  |  |  |  |
| 5180~5240 MHz                                              | 38 | 5190 MHz | 46 | 5230 MHz |  |  |  |  |
| Band 1                                                     | 40 | 5200 MHz | 48 | 5240 MHz |  |  |  |  |
|                                                            | 42 | 5210 MHz |    |          |  |  |  |  |

Remark:

For 20 MHz Bandwidth, use channel 36, 40, 44, 48.

For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.

| 5G Band 5745~5825 MHz(U-NII-3) |             |           |             |           |  |
|--------------------------------|-------------|-----------|-------------|-----------|--|
| Frequency                      | Channel No. | Frequency | Channel No. | Frequency |  |
| Band                           |             |           |             |           |  |
|                                | 149         | 5745 MHz  | 157         | 5785 MHz  |  |
| 5745~5825 MHz                  | 151         | 5755 MHz  | 159         | 5795 MHz  |  |
| Band 4                         | 153         | 5765 MHz  | 161         | 5805 MHz  |  |
|                                | 155         | 5775 MHz  | 165         | 5825 MHz  |  |

#### Remark:

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165.

For 40 MHz Bandwidth, use channel 151, 159.

For 80 MHz Bandwidth, use channel 155.



Page: 7 of 192

## (3) Antenna information:

| Ant. | Model Name | Antenna Type | BAND(MHz) | Gain(dBi) |
|------|------------|--------------|-----------|-----------|
| 1    | N/A        | FPC Ant.     | 5150-5825 | 7         |

# 1.3 Block Diagram Showing the Configuration of System Tested

## **USB Charging Mode**



## **TX Mode**

|  | EUT |   |  |
|--|-----|---|--|
|  |     | J |  |
|  |     |   |  |
|  |     |   |  |
|  |     |   |  |
|  |     |   |  |

## 1.4 Description of Support Units

| Equipment Information                      |               |                   |        |      |  |
|--------------------------------------------|---------------|-------------------|--------|------|--|
| Name Model FCC ID/VOC Manufacturer Used "- |               |                   |        |      |  |
| Dir.                                       | More          |                   | 33 - 6 | 0000 |  |
|                                            |               | Cable Information |        |      |  |
| Number                                     | Shielded Type | Ferrite Core      | Length | Note |  |
| Cable 1                                    | NO            | NO                | 3.0M   |      |  |



Page: 8 of 192

### 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

|                         |           | F       | or Conducted Test                              |  |  |
|-------------------------|-----------|---------|------------------------------------------------|--|--|
| Final Test Mode Descrip |           | Descrip | ption                                          |  |  |
| Mode 1 TX 802.          |           |         | .11a Mode                                      |  |  |
|                         |           | F       | or Radiated Test                               |  |  |
| Test Band               | Final Tes | t Mode  | Description                                    |  |  |
| 1111                    | Mod       | e 2     | TX Mode 802.11a Mode Channel 36/40/48          |  |  |
|                         | Mode 3    |         | TX Mode 802.11n(HT20) Mode Channel 36/40/48    |  |  |
| LLNULA                  | Mod       | e 4     | TX Mode 802.11n(HT40) Mode Channel 38/46       |  |  |
| U-NII-1                 | Mod       | e 5     | TX Mode 802.11ac(20) Mode Channel 36/40/48     |  |  |
|                         | Mode      | e 6     | TX Mode 802.11ac(40) Mode Channel 38/46        |  |  |
|                         | Mod       | e 7     | TX Mode 802.11ac(80) Mode Channel 42           |  |  |
|                         | Mod       | e 8     | TX Mode 802.11a Mode Channel 149/157/165       |  |  |
|                         | Mode 9    |         | TX Mode 802.11n(HT20) Mode Channel 149/157/165 |  |  |
| LI NIII O               | Mode      | e 10    | TX Mode 802.11n(HT40) Mode Channel 151/159     |  |  |
| U-NII-3                 | Mode 11   |         | TX Mode 802.11ac(20) Mode Channel 149/157/165  |  |  |
|                         | Mode      | 12      | TX Mode 802.11ac(40) Mode Channel 151/159      |  |  |
|                         | Mode      |         | TX Mode 802.11ac(80) Mode Channel 155          |  |  |

#### Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 8 802.11n (HT40) Mode: MCS 8 802.11a(20) Mode: MCS 1/Nss2 802.11a(40) Mode: MCS 1/Nss2 802.11a(80) Mode: MCS 1/Nss2

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.



Page: 9 of 192

## 1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

| Test Software Version |         | CMD.exe |         |  |  |  |
|-----------------------|---------|---------|---------|--|--|--|
| U-NII-1               |         |         |         |  |  |  |
| Mode:                 | 5180MHz | 5200MHz | 5240MHz |  |  |  |
| IEEE 802.11a          | DEF     | DEF     | DEF     |  |  |  |
| IEEE 802.11n (HT20)   | DEF     | DEF     | DEF     |  |  |  |
| IEEE 802.11ac (20)    | DEF     | DEF     | DEF     |  |  |  |
| Mode:                 | 5190MHz | 5230MHz |         |  |  |  |
| IEEE 802.11n (HT40)   | DEF     | DEF     |         |  |  |  |
| IEEE 802.11ac (40)    | DEF     | DEF     |         |  |  |  |
| Mode:                 | 5210MHz |         |         |  |  |  |
| IEEE 802.11ac (80)    | DEF     |         |         |  |  |  |
|                       | 1-U     | NII-3   |         |  |  |  |
| Mode:                 | 5745MHz | 5785MHz | 5825MHz |  |  |  |
| IEEE 802.11a          | DEF     | DEF     | DEF     |  |  |  |
| IEEE 802.11n (HT20)   | DEF     | DEF     | DEF     |  |  |  |
| IEEE 802.11ac (20)    | DEF     | DEF     | DEF     |  |  |  |
| Mode:                 | 5755MHz | 5795MHz |         |  |  |  |
| IEEE 802.11n (HT40)   | DEF     | DEF     |         |  |  |  |
| IEEE 802.11ac (40)    | DEF     | DEF     |         |  |  |  |
| Mode:                 | 5775MHz |         |         |  |  |  |
| IEEE 802.11ac (80)    | DEF     |         |         |  |  |  |



Page: 10 of 192

## 1.7 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

#### CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### FCC List No.: (854351)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 854351.

#### IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

May 22, 2014 certificated by TUV Rheinland(China) Co., Ltd. with TUV certificate No.: UA 50282953 0001 and report No.: 17026822 002. The certificate is valid until the next scheduled audit or up to 18 months, at the discretion of TUV Rhineland.



Page: 11 of 192

# 2. Test Summary

|                  | FCC Pa        | rt 15 Subpart E(15.407)/RSS-210: 2     | 2010      |        |
|------------------|---------------|----------------------------------------|-----------|--------|
| Standard Section |               | Tool Home                              | Ludamaant | Daniel |
| FCC              | IC            | Test Item                              | Judgment  | Remark |
| 15.203           | 1             | Antenna Requirement                    | PASS      | N/A    |
| 15.207           | RSS-GEN 7.2.4 | Conducted Emission                     | PASS      | N/A    |
| 15.407(b)        | RSS-GEN 7.2.2 | Band Edge Emissions                    | PASS      | N/A    |
| 15.407(a)        | RSS-24 A.9.2  | 26dB Bandwidth&99% Bandwidth           | PASS      | N/A    |
| 15.407(e)        | RSS-210 A.9.2 | 6dB Bandwidth(only for UNII-3)         | PASS      | N/A    |
| 15.407(a)        | RSS-210 A.9.2 | Peak Output Power                      | PASS      | N/A    |
| 15.407(a)        | RSS-210 A.9.2 | Power Spectral Density                 | PASS      | N/A    |
| 15.407(b)        | RSS-210 A.9.2 | Transmitter Radiated Spurious Emission | PASS      | N/A    |
| 15.407(a)        | RSS-210 A.9.2 | Peak Excursion                         | PASS      | N/A    |
| 15.407(g)        | RSS-210 A.9.2 | Frequency Stability                    | PASS      | N/A    |

**Note:** "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.



Page: 12 of 192

# 3. Test Equipment

| <b>Conducted Emiss</b>     | ion Test                         |                   |               |               |                  |
|----------------------------|----------------------------------|-------------------|---------------|---------------|------------------|
| Equipment                  | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due<br>Date |
| EMI Test Receiver          | Rohde & Schwarz                  | ESCI              | 100321        | Jul. 20, 2017 | Jul. 19, 2018    |
| RF Switching Unit          | Compliance Direction Systems Inc | RSU-A4            | 34403         | Jul. 20, 2017 | Jul. 19, 2018    |
| AMN                        | SCHWARZBECK                      | NNBL 8226-2       | 8226-2/164    | Jul. 20, 2017 | Jul. 19, 2018    |
| LISN                       | Rohde & Schwarz                  | ENV216            | 101131        | Jul. 20, 2017 | Jul. 19, 2018    |
| Radiation Emission         | n Test                           |                   | -             |               |                  |
| Equipment                  | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due<br>Date |
| Spectrum<br>Analyzer       | Agilent                          | E4407B            | MY45106456    | Jul. 20, 2017 | Jul. 19, 2018    |
| EMI Test<br>Receiver       | Rohde & Schwarz                  | ESPI              | 100010/007    | Jul. 20, 2017 | Jul. 19, 2018    |
| Bilog Antenna              | ETS-LINDGREN                     | 3142E             | 00117537      | Mar.25, 2017  | Mar. 24, 2018    |
| Bilog Antenna              | ETS-LINDGREN                     | 3142E             | 00117542      | Mar.25, 2017  | Mar. 24, 2018    |
| Horn Antenna               | ETS-LINDGREN                     | 3117              | 00143207      | Mar.24, 2017  | Mar. 23, 2018    |
| Horn Antenna               | ETS-LINDGREN                     | 3117              | 00143209      | Mar.24, 2017  | Mar. 23, 2018    |
| Loop Antenna               | Laplace instrument               | RF300             | 0701          | Mar.24, 2017  | Mar. 23, 2018    |
| Pre-amplifier              | Sonoma                           | 310N              | 185903        | Mar.24, 2017  | Mar. 23, 2018    |
| Pre-amplifier              | HP                               | 8449B             | 3008A00849    | Mar.25, 2017  | Mar. 24, 2018    |
| Cable                      | HUBER+SUHNER                     | 100               | SUCOFLEX      | Mar.24, 2017  | Mar. 23, 2018    |
| Positioning Controller     | ETS-LINDGREN                     | 2090              | N/A           | N/A           | N/A              |
| Antenna Conducte           | ed Emission                      |                   |               |               |                  |
| Equipment                  | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due<br>Date |
| Spectrum Analyzer          | Agilent                          | E4407B            | MY45106456    | Jul. 20, 2017 | Jul. 19, 2018    |
| Spectrum Analyzer          | Rohde & Schwarz                  | ESCI              | 100010/007    | Jul. 20, 2017 | Jul. 19, 2018    |
| MXA Signal Analyzer        | Agilent                          | N9020A            | MY49100060    | Oct. 26, 2017 | Oct. 25, 2018    |
| Vector Signal<br>Generator | Agilent                          | N5182A            | MY50141294    | Oct. 26, 2017 | Oct. 25, 2018    |
| Analog Signal<br>Generator | Agilent                          | N5181A            | MY50141953    | Oct. 26, 2017 | Oct. 25, 2018    |
|                            | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO26 | Oct. 26, 2017 | Oct. 25, 2018    |
| RF Power Sensor            | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO29 | Oct. 26, 2017 | Oct. 25, 2018    |
| NE FUWEI SEIISUE           | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO31 | Oct. 26, 2017 | Oct. 25, 2018    |
|                            | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO33 | Oct. 26, 2017 | Oct. 25, 2018    |



Page: 13 of 192

# 4. Conducted Emission Test

## 4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

#### 4.1.2 Test Limit

#### **Conducted Emission Test Limit**

| Eroguenov     | Maximum RF Line Voltage (dBμV) |               |  |
|---------------|--------------------------------|---------------|--|
| Frequency     | Quasi-peak Level               | Average Level |  |
| 150kHz~500kHz | 66 ~ 56 *                      | 56 ~ 46 *     |  |
| 500kHz~5MHz   | 56                             | 46            |  |
| 5MHz~30MHz    | 60                             | 50            |  |

#### Notes:

- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

## 4.2 Test Setup





Page: 14 of 192

#### 4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

### 4.4 EUT Operating Mode

Please refer to the description of test mode.

#### 4.5 Test Data

Please refer to the Attachment A.



Page: 15 of 192

# 5. Radiated Emission Test

#### 5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

#### Radiated Emission Limits (9kHz~1000MHz)

| Frequency<br>(MHz | Field Strength (microvolt/meter) | Measurement Distance (meters) |
|-------------------|----------------------------------|-------------------------------|
| 0.009~0.490       | 2400/F(KHz)                      | 300                           |
| 0.490~1.705       | 24000/F(KHz)                     | 30                            |
| 1.705~30.0        | 30                               | 30                            |
| 30~88             | 100                              | 3                             |
| 88~216            | 150                              | 3                             |
| 216~960           | 200                              | 3                             |
| Above 960         | 500                              | 3                             |

## Radiated Emission Limit (Above 1000MHz)

| Frequency  | Distance Meters(at 3m) |         |  |
|------------|------------------------|---------|--|
| (MHz)      | Peak                   | Average |  |
| Above 1000 | 74                     | 54      |  |

#### Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

## Limits of unwanted emission out of the restricted bands

| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EIRP Limits (dBm) | Equivalent Field Strength at 3m (dBuV/m) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------|
| 5150~5250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -27               | 68.3                                     |
| 5250~5350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -27               | 68.3                                     |
| 5470~5725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -27               | 68.3                                     |
| The state of the s | -27(Note 2)       | 68.3                                     |
| 5705 5005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10(Note 2)        | 105.3                                    |
| 5725~5825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.6(Note 2)      | 110.9                                    |
| THE PARTY OF THE P | 27(Note 2)        | 122.3                                    |



Page: 16 of 192

#### NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$\text{E=}\frac{1000000\sqrt{30P}}{3}\,\text{uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

## 5.2 Test Setup



Below 30MHz Test Setup



Page: 17 of 192



Below 1000MHz Test Setup



Above 1GHz Test Setup

#### 5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by



Report No.: TB-FCC157635 Page: 18 of 192

3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

### 5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

#### 5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.



Page: 19 of 192

# 6. Band Edge Emissions

#### 6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.407(b)

6.1.2 Test Limit

Limits of unwanted emission out of the restricted bands

| Frequency (MHz) | EIRP Limits (dBm) | Equivalent Field Strength at 3m (dBuV/m) |
|-----------------|-------------------|------------------------------------------|
| 5150~5250       | -27               | 68.3                                     |
| 5250~5350       | -27               | 68.3                                     |
| 5470~5725       | -27               | 68.3                                     |
|                 | -27(Note 2)       | 68.3                                     |
| 5705 5005       | 10(Note 2)        | 105.3                                    |
| 5725~5825       | 15.6(Note 2)      | 110.9                                    |
|                 | 27(Note 2)        | 122.3                                    |

#### NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

## 6.2 Test Setup





Page: 20 of 192

#### 6.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

## 6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

#### 6.5 Test Data

Please refer to the Attachment C.



Page: 21 of 192

# 7. Bandwidth Test

## 7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.407

7.1.2 Test Limit

| FCC Part 15 Subpart C(15.407)/RSS-210 |         |                          |  |  |
|---------------------------------------|---------|--------------------------|--|--|
| Test Item                             | Limit   | Frequency Range<br>(MHz) |  |  |
| 26 Bandwidth                          | N/A     | 5150~5250                |  |  |
|                                       |         | 5250~5350                |  |  |
|                                       |         | 5500~5700                |  |  |
| 6 dB Bandwidth                        | >500kHz | 5725~5850                |  |  |

## 7.2 Test Setup



## 7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The setting of the spectrum analyser as below:

| 26dB Bandwidth Test |                                            |  |  |
|---------------------|--------------------------------------------|--|--|
| Spectrum Parameters | Setting                                    |  |  |
| Attenuation         | Auto                                       |  |  |
| Span                | >26 dB Bandwidth                           |  |  |
| RBW                 | Approximately 1% of the emission bandwidth |  |  |
| VBW                 | VBW>RBW                                    |  |  |
| Detector            | Peak                                       |  |  |
| Trace               | Max Hold                                   |  |  |
| Sweep Time          | Auto                                       |  |  |



Page: 22 of 192

| 6dB Bandwidth Test          |                             |  |  |
|-----------------------------|-----------------------------|--|--|
| Spectrum Parameters         | Setting                     |  |  |
| Attenuation                 | Auto                        |  |  |
| Span                        | >6 dB Bandwidth             |  |  |
| RBW                         | 100 kHz                     |  |  |
| VBW                         | VBW>=3*RBW                  |  |  |
| Detector                    | Peak                        |  |  |
| Trace                       | Max Hold                    |  |  |
| Sweep Time                  | Auto                        |  |  |
|                             | 99% Occupied Bandwidth Test |  |  |
| Spectrum Parameters Setting |                             |  |  |
| Attenuation                 | Auto                        |  |  |
| RBW                         | 1% to 5% of the OBW         |  |  |
| VBW                         | ≥ 3RBW                      |  |  |
| Detector                    | Peak                        |  |  |
| Trace                       | Max Hold                    |  |  |

## 7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

## 7.5 Test Data

Please refer to the Attachment D.



Page: 23 of 192

# 8. Output Power Test

#### 8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.407 (a)

8.1.2 Test Limit

| FCC Part 15 Subpart E(15.407)/RSS-210 |                                                          |                      |  |  |
|---------------------------------------|----------------------------------------------------------|----------------------|--|--|
| Test Item                             | Limit                                                    | Frequency Range(MHz) |  |  |
| TO TO                                 | Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm) | 5150~5250            |  |  |
| Conducted Output Power                | 250mW (24dBm)                                            | 5250~5350            |  |  |
|                                       | 250mW (24dBm)                                            | 5500~5700            |  |  |
|                                       | 1 Watt (30dBm)                                           | 5725~5850            |  |  |

## 8.2 Test Setup



#### 8.3 Test Procedure

The measurement is according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

The EUT was connected to RF power meter via a broadband power sensor as show the block above.

## 8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

#### 8.5 Test Date

Please refer to the Attachment E.



Page: 24 of 192

# 9. Power Spectral Density Test

#### 9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.407 (a)

9.1.2 Test Limit

| FCC Part 15 Subpart E(15.407) |                                                                                     |                      |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------|----------------------|--|--|--|
| Test Item                     | Limit                                                                               | Frequency Range(MHz) |  |  |  |
| Power Spectral Density        | Other than Mobile and<br>Portable : 17dBm/MHz<br>Mobile and Portable :<br>11dBm/MHz | 5150~5250            |  |  |  |
|                               | 11dBm/MHz                                                                           | 5250~5350            |  |  |  |
|                               | 11dBm/MHz                                                                           | 5500~5700            |  |  |  |
|                               | 30dBm/510kHz                                                                        | 5725~5850            |  |  |  |

## 9.2 Test Setup



#### 9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.

(4) Set the RBW to: 1 MHz (5) Set the VBW to: 3 MHz

(6) Detector: RMS(7) Trace: Max Hold(7) Sweep time: auto

(8) Trace average at least 100 traces in power averaging.



Report No.: TB-FCC157635 Page: 25 of 192

Page: 25 of 192

(9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

## 9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

## 9.5 Test Data

Please refer to the Attachment F.



Page: 26 of 192

# 10. Frequency Stability Measurement

#### 10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.407

10.1.2 Test Limit

| FCC Part 15 Subpart C(15.407) |                                                 |                      |  |  |  |  |  |  |
|-------------------------------|-------------------------------------------------|----------------------|--|--|--|--|--|--|
| Test Item                     | Limit                                           | Frequency Range(MHz) |  |  |  |  |  |  |
|                               | Specified in the user's manual, the transmitter | 5150~5250            |  |  |  |  |  |  |
| Peak Excursion                | center frequency tolerance shall be ±20         | 5250~5350            |  |  |  |  |  |  |
| Measurement                   | ppm maximum for the 5<br>GHz band (IEEE 802.11n | 5500~5700            |  |  |  |  |  |  |
|                               | specification)                                  | 5725~5850            |  |  |  |  |  |  |

## 10.2 Test Setup



#### 10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
  - (2) Set analyser centre frequency to transmitting frequency.
  - (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
  - (4) Set the RBW to: 10 kHz, VBW=10 kHz with peak detector and maxhold settings.
  - (5) The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
- (6) Extreme temperature is 0°C~50°C

#### 10.4 EUT Operating Condition

The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.



Page: 27 of 192

## 10.5 Test Data

Please refer to the Attachment G.



Page: 28 of 192

# 11. Antenna Requirement

## 11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

### 11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 7dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

#### 11.3 Result

The EUT antennas are FPC Antenna. It complies with the standard requirement.

| Antenna Type                       |                    |  |  |  |  |  |
|------------------------------------|--------------------|--|--|--|--|--|
| ☐Permanent attached antenna        |                    |  |  |  |  |  |
| ⊠Unique connector antenna          | MILES TO THE       |  |  |  |  |  |
| ☐Professional installation antenna | THE REAL PROPERTY. |  |  |  |  |  |





**Attachment A-- Conducted Emission Test Data** 





Page: 30 of 192





Page: 31 of 192

| Temperature:  | <b>25</b> ℃             | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55%                                     |
|---------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Test Voltage: | DC 24V                  | The state of the s | 600                                     |
| Terminal:     | VCC                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73 100                                  |
| Test Mode:    | Charging with TX 802.1  | 1a Mode CH36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111111111111111111111111111111111111111 |
| Remark:       | Only worse case is repo | orted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| 90.0 dBuV     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |



| No. | Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|--------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz    | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1   |     | 0.1499 | -8.67            | 9.58              | 0.91             | 66.00 | -65.09 | QP       |
| 2   |     | 0.1499 | -10.52           | 9.58              | -0.94            | 56.00 | -56.94 | AVG      |
| 3   |     | 0.1819 | 31.57            | 9.58              | 41.15            | 64.39 | -23.24 | QP       |
| 4   |     | 0.1819 | 19.46            | 9.58              | 29.04            | 54.39 | -25.35 | AVG      |
| 5   |     | 0.2220 | 25.77            | 9.58              | 35.35            | 62.74 | -27.39 | QP       |
| 6   |     | 0.2220 | 15.71            | 9.58              | 25.29            | 52.74 | -27.45 | AVG      |
| 7   |     | 0.2580 | 24.05            | 9.59              | 33.64            | 61.49 | -27.85 | QP       |
| 8   |     | 0.2580 | 15.40            | 9.59              | 24.99            | 51.49 | -26.50 | AVG      |
| 9   |     | 0.2940 | 26.35            | 9.59              | 35.94            | 60.41 | -24.47 | QP       |
| 10  | *   | 0.2940 | 20.25            | 9.59              | 29.84            | 50.41 | -20.57 | AVG      |
| 11  |     | 0.3300 | 22.54            | 9.59              | 32.13            | 59.45 | -27.32 | QP       |
| 12  |     | 0.3300 | 18.51            | 9.59              | 28.10            | 49.45 | -21.35 | AVG      |
|     |     |        |                  |                   |                  |       |        |          |

\*:Maximum data x:Over limit !:over margin

**Emission Level= Read Level+ Correct Factor** 



Report No.: TB-FCC157635
Page: 32 of 192

| Test Voltage:<br>Terminal:                                     |                                                                 | R                                    | elative Hum                               | idity:                                                      | 55%                                                      |                                     |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|--|--|
| Terminal:                                                      | DC 24V                                                          |                                      |                                           |                                                             |                                                          |                                     |  |  |
|                                                                | GND                                                             |                                      |                                           |                                                             |                                                          |                                     |  |  |
| Test Mode:                                                     | Charging with TX 802.11a Mode CH36                              |                                      |                                           |                                                             |                                                          |                                     |  |  |
| Remark:                                                        | Only worse cas                                                  | se is reported                       |                                           |                                                             |                                                          |                                     |  |  |
| 90.0 dBuV                                                      |                                                                 |                                      |                                           | ^/^/^// <sub>\</sub>                                        | QP:<br>AVG:                                              | pea Ave                             |  |  |
| 0.150                                                          | 0.5                                                             | (MHz)                                | 5                                         |                                                             |                                                          | 30.000                              |  |  |
| No. Mk. Free                                                   | Reading<br>q. Level                                             | Correct<br>Factor                    | Measure-<br>ment                          | Limit                                                       | Over                                                     |                                     |  |  |
| MHz                                                            | -                                                               | dB                                   | dBuV                                      | dBuV                                                        | dB                                                       | Detector                            |  |  |
| 1 0.150                                                        | 00 25.33                                                        | 9.64                                 | 34.97                                     | 65.99                                                       | -31.02                                                   | QP                                  |  |  |
| 2 0.150                                                        | 00 8.95                                                         | 9.64                                 | 18.59                                     | 55.99                                                       | -37.40                                                   | AVG                                 |  |  |
| 3 * 0.181                                                      | 19 30.26                                                        | 9.65                                 | 39.91                                     | 64.39                                                       | -24.48                                                   | QP                                  |  |  |
| 0.101                                                          |                                                                 |                                      |                                           | 04.59                                                       | -24.40                                                   | Q1                                  |  |  |
| 4 0.181                                                        | 19 12.96                                                        | 9.65                                 | 22.61                                     | 54.39                                                       | -31.78                                                   | AVG                                 |  |  |
|                                                                |                                                                 | 9.65<br>9.64                         | 22.61<br>38.21                            | 54.39                                                       |                                                          |                                     |  |  |
| 4 0.181                                                        | 30 28.57                                                        |                                      |                                           | 54.39<br>62.89                                              | -31.78                                                   | AVG                                 |  |  |
| 4 0.181<br>5 0.218                                             | 30 28.57<br>30 11.71                                            | 9.64                                 | 38.21                                     | 54.39<br>62.89<br>52.89                                     | -31.78<br>-24.68                                         | AVG<br>QP                           |  |  |
| 4 0.181<br>5 0.218<br>6 0.218                                  | 30 28.57<br>30 11.71<br>40 25.91                                | 9.64<br>9.64                         | 38.21<br>21.35                            | 54.39<br>62.89<br>52.89<br>61.62                            | -31.78<br>-24.68<br>-31.54                               | AVG<br>QP<br>AVG                    |  |  |
| 4 0.181<br>5 0.218<br>6 0.218<br>7 0.254                       | 28.57<br>30 11.71<br>40 25.91<br>40 9.76                        | 9.64<br>9.64<br>9.61                 | 38.21<br>21.35<br>35.52                   | 54.39<br>62.89<br>52.89<br>61.62<br>51.62                   | -31.78<br>-24.68<br>-31.54<br>-26.10                     | AVG<br>QP<br>AVG<br>QP              |  |  |
| 4 0.181<br>5 0.218<br>6 0.218<br>7 0.254<br>8 0.254            | 28.57<br>30 11.71<br>40 25.91<br>40 9.76<br>00 24.56            | 9.64<br>9.64<br>9.61<br>9.61         | 38.21<br>21.35<br>35.52<br>19.37          | 54.39<br>62.89<br>52.89<br>61.62<br>51.62<br>60.52          | -31.78<br>-24.68<br>-31.54<br>-26.10<br>-32.25           | AVG<br>QP<br>AVG<br>QP<br>AVG       |  |  |
| 4 0.181<br>5 0.218<br>6 0.218<br>7 0.254<br>8 0.254<br>9 0.290 | 28.57<br>30 11.71<br>40 25.91<br>40 9.76<br>00 24.56<br>00 9.78 | 9.64<br>9.64<br>9.61<br>9.61<br>9.58 | 38.21<br>21.35<br>35.52<br>19.37<br>34.14 | 54.39<br>62.89<br>52.89<br>61.62<br>51.62<br>60.52<br>50.52 | -31.78<br>-24.68<br>-31.54<br>-26.10<br>-32.25<br>-26.38 | AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP |  |  |



Page: 33 of 192

# **Attachment B-- Radiated Emission Test Data**

#### 9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

#### 30MHz~1GHz

| Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>25</b> °C |                                   | R                 | elative Hum           | idity: 5       | 5%               | FILE     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|-------------------|-----------------------|----------------|------------------|----------|--|
| Test Voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DC 3         | DC 3.7V                           |                   |                       |                |                  |          |  |
| Ant. Pol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Horiz        | Horizontal                        |                   |                       |                |                  |          |  |
| Test Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TX 80        | TX 802.11a Mode 5180MHz (U-NII-1) |                   |                       |                |                  |          |  |
| Remark:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Only         | worse case                        | e is reported     |                       |                | A. M. C.         |          |  |
| 80.0 dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                   |                   |                       |                |                  |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |                   |                       |                |                  |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |                   |                       |                |                  |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |                   |                       | FCC            | 158 3M Radiati   |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |                   |                       |                | Margin -6        | 0 48     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   | 2                 | 4                     |                |                  | 6        |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 1                                 |                   | 3 4<br>Mary Mary Mary | 5<br>¥         |                  | M/M X    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _,    ,      |                                   | WANT TO THE PARTY | The second            | hude plat Jack | Ma 14m           | y    Y*  |  |
| Warding of the same of the sam | JY Named Par | and and                           | 16 Manage         |                       | as about male  | Phylogen         |          |  |
| Hotelson de de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W. T         |                                   |                   |                       |                |                  |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |                   |                       |                |                  |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |                   |                       |                |                  |          |  |
| -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                   |                   |                       |                |                  |          |  |
| 30.000 40 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50 60 70     | 80                                | (MHz)             | 300                   | 400 5          | 600 600 700      | 1000.00  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _            | Reading                           | Correct           | Measure-              | 1 : :4         | 0                |          |  |
| No. Mk.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Freq.        | Level                             | Factor            | ment                  | Limit          | Over             |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHz          | dBuV                              | dB/m              | dBuV/m                | dBuV/m         | dB               | Detecto  |  |
| 1 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .8983        | 49.39                             | -22.99            | 26.40                 | 40.00          | -13.60           | QP       |  |
| 2 * 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.8294       | 52.04                             | -21.51            | 30.53                 | 43.50          | -12.97           | QP       |  |
| 3 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.6819       | 47.74                             | -17.81            | 29.93                 | 46.00          | -16.07           | QP       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3747       | 49.17                             | -17.26            | 31.91                 | 46.00          | -14.09           | QP       |  |
| . 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0880       | 40.72                             | -12.36            | 28.36                 | 46.00          |                  | QP       |  |
| 5 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000       | 40.72                             | -3.23             | 33.64                 | 54.00          | -17.64<br>-20.36 | QP<br>QP |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1622       | 36.87                             |                   |                       |                |                  |          |  |



Page: 34 of 192

| Temperature:                                       | 25 ℃                                                                     | R                                                                | elative Humi                                                          | aity:                                             | 55%                           |                                       |
|----------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|-------------------------------|---------------------------------------|
| Test Voltage:                                      | DC 3.7V                                                                  | 30                                                               | - All                                                                 | 1                                                 | -                             | ABOVE                                 |
| Ant. Pol.                                          | Vertical                                                                 |                                                                  | 11                                                                    | (TI                                               | 1130                          |                                       |
| Test Mode:                                         | TX 802.11a Mode 5180MHz (U-NII-1)                                        |                                                                  |                                                                       |                                                   |                               |                                       |
| Remark:                                            | Only worse case                                                          | is reported                                                      | WILL STATE                                                            |                                                   | a W                           |                                       |
| 30 dBuV/m                                          | 2 3                                                                      | in high paper                                                    | Manual Man                                                            | FC                                                | C 158 3M Radi<br>Margin       |                                       |
|                                                    |                                                                          | W 1                                                              |                                                                       |                                                   |                               |                                       |
| 30.000 40 50                                       | 60 70 80                                                                 | (MHz)                                                            | 300                                                                   |                                                   | 500 600 70                    | 00 1000.0                             |
|                                                    | Reading                                                                  | (MHz) Correct Factor                                             |                                                                       |                                                   |                               | 00 1000.0                             |
| 30.000 40 50                                       | Reading<br>eq. Level                                                     | Correct                                                          | 300<br>Measure-                                                       | 400                                               | 500 600 70<br>Over            |                                       |
| No. Mk. Fre                                        | Reading<br>eq. Level<br>dbuV                                             | Correct<br>Factor                                                | 300<br>Measure-<br>ment                                               | 400<br>Limit                                      | 500 600 70<br>Over            |                                       |
| No. Mk. Fre                                        | Reading Level dBuV 145 57.65                                             | Correct<br>Factor                                                | Measure-<br>ment<br>dBuV/m                                            | 400<br>Limit<br>dBuV/m                            | 500 600 70<br>Over            | Detecto                               |
| No. Mk. Fre                                        | Reading<br>Level<br>Hz dBuV<br>145 57.65<br>320 53.46                    | Correct<br>Factor<br>dB/m<br>-24.07                              | Measure-<br>ment<br>dBuV/m<br>33.58                                   | Limit dBuV/m 40.00                                | Over<br>dB<br>-6.42           | Detecto                               |
| No. Mk. Fre                                        | Reading<br>Level<br>Hz dBuV<br>145 57.65<br>320 53.46<br>984 54.96       | Correct<br>Factor<br>dB/m<br>-24.07<br>-23.63                    | Measure-<br>ment<br>dBuV/m<br>33.58<br>29.83                          | 400<br>Limit<br>dBuV/m<br>40.00<br>40.00          | Over<br>dB<br>-6.42           | Detecto<br>QP<br>' QP<br>QP           |
| No. Mk. Free Mh  1 * 49.0  2 71.8  3 85.8  4 562.6 | Reading Level  12 dBuV  145 57.65  320 53.46  984 54.96  6624 44.64      | Correct<br>Factor<br>dB/m<br>-24.07<br>-23.63<br>-22.99<br>-9.48 | 300<br>Measure-<br>ment<br>dBuV/m<br>33.58<br>29.83<br>31.97<br>35.16 | 400<br>Limit<br>dBuV/m<br>40.00<br>40.00<br>40.00 | Over dB -6.42 -10.17 -8.03    | Detector<br>QP<br>QP<br>QP<br>QP      |
| No. Mk. Fre<br>Mh<br>1 * 49.0<br>2 71.8<br>3 85.89 | Reading Level dz dBuV 145 57.65 320 53.46 984 54.96 6624 44.64 296 40.85 | Correct<br>Factor<br>dB/m<br>-24.07<br>-23.63<br>-22.99          | 300<br>Measure-<br>ment<br>dBuV/m<br>33.58<br>29.83<br>31.97          | 400<br>Limit<br>dBuV/m<br>40.00<br>40.00          | Over<br>dB<br>-6.42<br>-10.17 | Detecto<br>QP<br>QP<br>QP<br>QP<br>QP |



Page: 35 of 192

## 5180MHz-5250MHz(U-NII-1)

| Temperature:  | 25 ℃                                                       | Relative Humidity: | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|---------------|------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Voltage: | DC 3.7V                                                    | THUL               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Ant. Pol.     | Horizontal                                                 | 01 - 6             | THE STATE OF THE S |  |  |  |
| Test Mode:    | TX 802.11a Mode 5180M                                      | 1Hz (U-NII-1)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|               | prescribed limit.                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |



| No. | . Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |      | 10361.452 | 45.73            | 15.60 | 61.33            | 74.00  | -12.67 | peak     |
| 2   | *    | 10364.624 | 32.02            | 15.60 | 47.62            | 54.00  | -6.38  | AVG      |

**Emission Level= Read Level+ Correct Factor** 



Page: 36 of 192

| Temperature:  | 25 ℃                                         | Relative Humidity:                | 55%          |  |  |  |  |
|---------------|----------------------------------------------|-----------------------------------|--------------|--|--|--|--|
| Test Voltage: | DC 3.7V                                      | Millian                           | 1            |  |  |  |  |
| Ant. Pol.     | Vertical                                     | 537                               |              |  |  |  |  |
| Test Mode:    | TX 802.11a Mode 5180N                        | TX 802.11a Mode 5180MHz (U-NII-1) |              |  |  |  |  |
| Remark:       | No report for the emission prescribed limit. | n which more than 10 o            | dB below the |  |  |  |  |
|               |                                              |                                   |              |  |  |  |  |



| No. | . Mł | c. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *    | 10358.251 | 31.80            | 15.57 | 47.37            | 54.00  | -6.63  | AVG      |
| 2   |      | 10359.562 | 44.81            | 15.58 | 60.39            | 74.00  | -13.61 | peak     |

**Emission Level= Read Level+ Correct Factor** 



Page: 37 of 192

| Temperature:                                                                         | 25 ℃                  | Relative Humidity: | 55% |  |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------|--------------------|-----|--|--|--|--|--|
| Test Voltage:                                                                        | DC 3.7V               | DC 3.7V            |     |  |  |  |  |  |
| Ant. Pol.                                                                            | Horizontal            |                    |     |  |  |  |  |  |
| Test Mode:                                                                           | TX 802.11a Mode 5200N | 1Hz (U-NII-1)      |     |  |  |  |  |  |
| Remark: No report for the emission which more than 10 dB below the prescribed limit. |                       |                    |     |  |  |  |  |  |
| 400 0 ID 111                                                                         |                       |                    |     |  |  |  |  |  |



| No. | Mk | . Freq.   | _     |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|-------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 10400.152 | 45.61 | 15.73 | 61.34            | 74.00  | -12.66 | peak     |
| 2   | *  | 10401.813 | 31.95 | 15.73 | 47.68            | 54.00  | -6.32  | AVG      |



Page: 38 of 192

| Temperature:                                                                         | 25 ℃                  | Relative Humidity: | 55% |  |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------|--------------------|-----|--|--|--|--|--|
| Test Voltage:                                                                        | DC 3.7V               | DC 3.7V            |     |  |  |  |  |  |
| Ant. Pol.                                                                            | Vertical              |                    |     |  |  |  |  |  |
| Test Mode:                                                                           | TX 802.11a Mode 5200M | IHz (U-NII-1)      |     |  |  |  |  |  |
| Remark: No report for the emission which more than 10 dB below the prescribed limit. |                       |                    |     |  |  |  |  |  |
|                                                                                      |                       |                    |     |  |  |  |  |  |



| No. | . Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |      | 10401.352 | 44.59            | 15.73 | 60.32            | 74.00  | -13.68 | peak     |
| 2   | *    | 10402.512 | 31.83            | 15.73 | 47.56            | 54.00  | -6.44  | AVG      |



Page: 39 of 192

| Temperature:  | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |  |  |
|---------------|------------------------------------------------------------------------------|--------------------|-----|--|--|--|--|
| Test Voltage: | DC 3.7V                                                                      | DC 3.7V            |     |  |  |  |  |
| Ant. Pol.     | Horizontal                                                                   |                    |     |  |  |  |  |
| Test Mode:    | TX 802.11a Mode 5240N                                                        | 1Hz (U-NII-1)      |     |  |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |  |  |



| No. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 10478.521 | 44.99            | 15.79 | 60.78            | 74.00  | -13.22 | peak     |
| 2   | *  | 10481.621 | 31.81            | 15.79 | 47.60            | 54.00  | -6.40  | AVG      |



Page: 40 of 192

| Temperature:  | 25 ℃                                                       | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55% |  |  |  |  |
|---------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| Test Voltage: | DC 3.7V                                                    | THE PARTY OF THE P | 1   |  |  |  |  |
| Ant. Pol.     | Vertical                                                   | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |  |  |  |  |
| Test Mode:    | TX 802.11a Mode 524                                        | 0MHz (U-NII-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |
|               | prescribed limit.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |
|               |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |



| No | . M | lk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|    |     |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *   | 10  | 0479.521 | 31.87            | 15.79 | 47.66            | 54.00  | -6.34  | AVG      |
| 2  |     | 10  | 0481.512 | 44.49            | 15.79 | 60.28            | 74.00  | -13.72 | peak     |



Page: 41 of 192





| No. | Mk | . Freq.   | _     |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|-------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 10361.652 | 45.63 | 15.60 | 61.23            | 74.00  | -12.77 | peak     |
| 2   | *  | 10365.452 | 31.98 | 15.60 | 47.58            | 54.00  | -6.42  | AVG      |



Page: 42 of 192

| Temperature:  | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |  |  |
|---------------|------------------------------------------------------------------------------|--------------------|-----|--|--|--|--|
| Test Voltage: | DC 3.7V                                                                      |                    |     |  |  |  |  |
| Ant. Pol.     | Vertical                                                                     |                    |     |  |  |  |  |
| Test Mode:    | TX 802.11n(20) Mode 51                                                       | 80MHz (U-NII-1)    |     |  |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |  |  |



| No | o. N | ۱k. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----|----------|------------------|-------|------------------|--------|--------|----------|
|    |      |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 1   | 0358.581 | 31.58            | 15.57 | 47.15            | 54.00  | -6.85  | AVG      |
| 2  |      | 10  | 0359.625 | 44.10            | 15.58 | 59.68            | 74.00  | -14.32 | peak     |



Page: 43 of 192

| Temperature:                                                                         | 25 ℃                   | Relative Humidity: | 55% |  |  |  |  |
|--------------------------------------------------------------------------------------|------------------------|--------------------|-----|--|--|--|--|
| Test Voltage:                                                                        | DC 3.7V                |                    |     |  |  |  |  |
| Ant. Pol.                                                                            | Horizontal             |                    |     |  |  |  |  |
| Test Mode:                                                                           | TX 802.11n(20) Mode 52 | 00MHz (U-NII-1)    |     |  |  |  |  |
| Remark: No report for the emission which more than 10 dB below the prescribed limit. |                        |                    |     |  |  |  |  |



| No | . <b>N</b> | ۱k. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------------|-----|----------|------------------|-------|------------------|--------|--------|----------|
|    |            |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *          | 1   | 0400.562 | 31.80            | 15.66 | 47.46            | 54.00  | -6.54  | AVG      |
| 2  |            | 1   | 0401.512 | 45.58            | 15.66 | 61.24            | 74.00  | -12.76 | peak     |



Page: 44 of 192

| Temperature:                                                                         | 25 ℃               | Relative Humidity:   | 55% |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------|----------------------|-----|--|--|--|--|
| Test Voltage: DC 3.7V                                                                |                    |                      |     |  |  |  |  |
| Ant. Pol.                                                                            | Vertical           | Vertical             |     |  |  |  |  |
| Test Mode:                                                                           | TX 802.11n(20) Mod | de 5200MHz (U-NII-1) |     |  |  |  |  |
| Remark: No report for the emission which more than 10 dB below the prescribed limit. |                    |                      |     |  |  |  |  |
|                                                                                      |                    |                      |     |  |  |  |  |



| No. | Mk | . Freq.   | _     | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|-------|-------------------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV  | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 10400.652 | 44.50 | 15.66             | 60.16            | 74.00  | -13.84 | peak     |
| 2   | *  | 10402.485 | 31.61 | 15.66             | 47.27            | 54.00  | -6.73  | AVG      |



Page: 45 of 192

| Temperature:  | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |  |
|---------------|------------------------------------------------------------------------------|--------------------|-----|--|--|--|
| Test Voltage: | DC 3.7V                                                                      |                    |     |  |  |  |
| Ant. Pol.     | Horizontal                                                                   |                    |     |  |  |  |
| Test Mode:    | TX 802.11n(20) Mode 5                                                        | 240MHz (U-NII-1)   |     |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |  |



| No. | Mk | . Freq.   | _     |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|-------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 10478.562 | 45.10 | 15.79 | 60.89            | 74.00  | -13.11 | peak     |
| 2   | *  | 10480.485 | 31.86 | 15.79 | 47.65            | 54.00  | -6.35  | AVG      |



Page: 46 of 192

| Temperature:  | 25 ℃                                      | Relative Humidity:                                                           | 55% |  |  |  |  |
|---------------|-------------------------------------------|------------------------------------------------------------------------------|-----|--|--|--|--|
| Test Voltage: | DC 3.7V                                   |                                                                              |     |  |  |  |  |
| Ant. Pol.     | Vertical                                  | Vertical                                                                     |     |  |  |  |  |
| Test Mode:    | TX 802.11n(20) Mode                       | 5240MHz (U-NII-1)                                                            |     |  |  |  |  |
| Remark:       | No report for the emiss prescribed limit. | No report for the emission which more than 10 dB below the prescribed limit. |     |  |  |  |  |
|               |                                           |                                                                              |     |  |  |  |  |



| No | . MI | k. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10478.562 | 31.71            | 15.79 | 47.50            | 54.00  | -6.50  | AVG      |
| 2  |      | 10481.562 | 44.57            | 15.79 | 60.36            | 74.00  | -13.64 | peak     |



Page: 47 of 192

| 1 | Temperature:  | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |  |
|---|---------------|------------------------------------------------------------------------------|--------------------|-----|--|--|--|
|   | Test Voltage: | 1                                                                            |                    |     |  |  |  |
|   | Ant. Pol.     | Horizontal                                                                   |                    |     |  |  |  |
|   | Test Mode:    | TX 802.11ac(20) Mode 5                                                       | 180MHz (U-NII-1)   |     |  |  |  |
|   | Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |  |
|   |               |                                                                              |                    |     |  |  |  |



| No. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over  |          |
|-----|----|-----------|------------------|-------|------------------|--------|-------|----------|
|     |    | MHz       | dBu∨             | dB/m  | dBuV/m           | dBuV/m | dB    | Detector |
| 1   |    | 10361.264 | 45.73            | 15.60 | 61.33            | 68.30  | -6.97 | peak     |
| 2   | *  | 10364.458 | 32.02            | 15.60 | 47.62            | 54.00  | -6.38 | AVG      |



Page: 48 of 192

| Temperature:                                                                         | 25 ℃                 | Relative Humidity: | 55% |  |  |  |  |
|--------------------------------------------------------------------------------------|----------------------|--------------------|-----|--|--|--|--|
| Test Voltage:                                                                        | DC 3.7V              |                    |     |  |  |  |  |
| Ant. Pol.                                                                            | Vertical             | Vertical           |     |  |  |  |  |
| Test Mode:                                                                           | TX 802.11ac(20) Mode | 5180MHz (U-NII-1)  |     |  |  |  |  |
| Remark: No report for the emission which more than 10 dB below the prescribed limit. |                      |                    |     |  |  |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 10358.960 | 44.80            | 15.57 | 60.37            | 74.00  | -13.63 | peak     |
| 2   | *   | 10359.942 | 31.68            | 15.58 | 47.26            | 54.00  | -6.74  | AVG      |



Page: 49 of 192

| Temperature:          | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |  |
|-----------------------|------------------------------------------------------------------------------|--------------------|-----|--|--|--|
| Test Voltage: DC 3.7V |                                                                              |                    |     |  |  |  |
| Ant. Pol.             | Horizontal                                                                   |                    |     |  |  |  |
| Test Mode:            | TX 802.11ac(20) Mode 5                                                       | 200MHz (U-NII-1)   |     |  |  |  |
| Remark:               | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |  |
|                       |                                                                              |                    |     |  |  |  |



| No. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 10400.225 | 31.89            | 15.66 | 47.55            | 54.00  | -6.45  | AVG      |
| 2   |    | 10400.425 | 45.35            | 15.66 | 61.01            | 74.00  | -12.99 | peak     |



Page: 50 of 192

| Temperature:                                                                         | 25 ℃                 | Relative Humidity: | 55% |  |  |  |
|--------------------------------------------------------------------------------------|----------------------|--------------------|-----|--|--|--|
| Test Voltage:                                                                        | DC 3.7V              | Million            |     |  |  |  |
| Ant. Pol.                                                                            | Vertical             |                    |     |  |  |  |
| Test Mode:                                                                           | TX 802.11ac(20) Mode | 5200MHz (U-NII-1)  |     |  |  |  |
| Remark: No report for the emission which more than 10 dB below the prescribed limit. |                      |                    |     |  |  |  |



| No. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 10400.645 | 44.72            | 15.66 | 60.38            | 74.00  | -13.62 | peak     |
| 2   | *  | 10401.176 | 31.84            | 15.66 | 47.50            | 54.00  | -6.50  | AVG      |



Page: 51 of 192

| Temperature:  | 25 ℃                 | Relative Humidity: | 55% |  |  |  |
|---------------|----------------------|--------------------|-----|--|--|--|
| Test Voltage: | DC 3.7V              |                    |     |  |  |  |
| Ant. Pol.     | Horizontal           |                    |     |  |  |  |
| Test Mode:    | TX 802.11ac(20) Mode | 5240MHz (U-NII-1)  |     |  |  |  |
| Remark:       | dB below the         |                    |     |  |  |  |



| No. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 10477.253 | 44.85            | 15.79 | 60.64            | 74.00  | -13.36 | peak     |
| 2   | *  | 10479.604 | 31.70            | 15.79 | 47.49            | 54.00  | -6.51  | AVG      |



Page: 52 of 192

| Temperature:  | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |  |
|---------------|------------------------------------------------------------------------------|--------------------|-----|--|--|--|
| Test Voltage: | DC 3.7V                                                                      |                    |     |  |  |  |
| Ant. Pol.     | ol. Vertical                                                                 |                    |     |  |  |  |
| Test Mode:    | TX 802.11ac(20) Mode 5                                                       | 240MHz (U-NII-1)   |     |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |  |
|               |                                                                              |                    |     |  |  |  |



| No. | M | c. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|---|-----------|------------------|-------|------------------|--------|--------|----------|
|     |   | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | * | 10479.810 | 31.64            | 15.79 | 47.43            | 54.00  | -6.57  | AVG      |
| 2   |   | 10480.762 | 44.77            | 15.79 | 60.56            | 74.00  | -13.44 | peak     |



Page: 53 of 192

| T                    | emperature:  | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |  |
|----------------------|--------------|------------------------------------------------------------------------------|--------------------|-----|--|--|--|
| T                    | est Voltage: | st Voltage: DC 3.7V                                                          |                    |     |  |  |  |
| Ant. Pol. Horizontal |              |                                                                              |                    |     |  |  |  |
| T                    | est Mode:    | TX 802.11n (40) Mode 51                                                      | 190MHz (U-NII-1)   |     |  |  |  |
| R                    | emark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |  |
|                      |              |                                                                              |                    |     |  |  |  |



| No | . MI | k. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10377.523 | 33.60            | 15.61 | 49.21            | 54.00  | -4.79  | AVG      |
| 2  |      | 10383.415 | 47.59            | 15.62 | 63.21            | 74.00  | -10.79 | peak     |



Page: 54 of 192

| Temperature:                                                                         | 25 ℃                 | Relative Humidity: | 55% |  |  |  |
|--------------------------------------------------------------------------------------|----------------------|--------------------|-----|--|--|--|
| Test Voltage:                                                                        | DC 3.7V              |                    |     |  |  |  |
| Ant. Pol.                                                                            | Vertical             |                    |     |  |  |  |
| Test Mode:                                                                           | TX 802.11n (40) Mode | 5190MHz (U-NII-1)  |     |  |  |  |
| Remark: No report for the emission which more than 10 dB below the prescribed limit. |                      |                    |     |  |  |  |



| No | . MI | k. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10379.548 | 33.62            | 15.61 | 49.23            | 54.00  | -4.77  | AVG      |
| 2  |      | 10382.692 | 46.44            | 15.62 | 62.06            | 74.00  | -11.94 | peak     |



Page: 55 of 192

| Temperature:                                                                         | 25 ℃                   | Relative Humidity: | 55% |  |  |  |
|--------------------------------------------------------------------------------------|------------------------|--------------------|-----|--|--|--|
| Test Voltage:                                                                        | DC 3.7V                | William .          |     |  |  |  |
| Ant. Pol.                                                                            | Horizontal             |                    |     |  |  |  |
| Test Mode:                                                                           | TX 802.11n (40) Mode 5 | 230MHz (U-NII-1)   |     |  |  |  |
| Remark: No report for the emission which more than 10 dB below the prescribed limit. |                        |                    |     |  |  |  |



| No. | Mk | . Freq.   | _     |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|-------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 10455.562 | 33.86 | 15.75 | 49.61            | 54.00  | -4.39  | AVG      |
| 2   |    | 10460.451 | 47.15 | 15.76 | 62.91            | 74.00  | -11.09 | peak     |



Page: 56 of 192

| í | Temperature:  | 25 ℃                       | Relative Humidity:     | 55%          |
|---|---------------|----------------------------|------------------------|--------------|
| ì | Test Voltage: | DC 3.7V                    | Million                |              |
|   | Ant. Pol.     | Vertical                   | 01 - 6                 |              |
|   | Test Mode:    | TX 802.11n (40) Mode 52    | 230MHz (U-NII-1)       |              |
|   | Remark:       | No report for the emission | n which more than 10 o | dB below the |
|   |               | prescribed limit.          |                        |              |
|   |               |                            |                        |              |



| No. | . Mi | c. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *    | 10459.562 | 33.88            | 15.76 | 49.64            | 54.00  | -4.36  | AVG      |
| 2   |      | 10461.145 | 47.26            | 15.76 | 63.02            | 74.00  | -10.98 | peak     |



Page: 57 of 192

| Temperature:         | <b>25</b> ℃                                  | Relative Humidity:   | 55%          |  |
|----------------------|----------------------------------------------|----------------------|--------------|--|
| Test Voltage:        | DC 3.7V                                      | William .            |              |  |
| Ant. Pol. Horizontal |                                              |                      |              |  |
| Test Mode:           | TX 802.11ac (40) Mode                        | 5190MHz (U-NII-1)    |              |  |
| Remark:              | No report for the emission prescribed limit. | n which more than 10 | dB below the |  |



| No | . MI | k. Fred | _         | •     | t Measure<br>ment |        | Over   |          |
|----|------|---------|-----------|-------|-------------------|--------|--------|----------|
|    |      | MHz     | : dBuV    | dB/m  | dBuV/m            | dBuV/m | dB     | Detector |
| 1  | *    | 10377.6 | 33.60     | 15.61 | 49.21             | 54.00  | -4.79  | AVG      |
| 2  |      | 10383.7 | 774 47.59 | 15.62 | 63.21             | 74.00  | -10.79 | peak     |



Page: 58 of 192

| Temperature:  | 25 ℃                                        | Relative Humidity:   | 55%          |
|---------------|---------------------------------------------|----------------------|--------------|
| Test Voltage: | DC 3.7V                                     | MILL                 |              |
| Ant. Pol.     | Vertical                                    | 01                   |              |
| Test Mode:    | TX 802.11ac (40) Mode \$                    | 5190MHz (U-NII-1)    |              |
| Remark:       | No report for the emissio prescribed limit. | n which more than 10 | dB below the |



| N | lo. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|---|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|   |     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1 |     | *  | 10379.852 | 33.62            | 15.61 | 49.23            | 54.00  | -4.77  | AVG      |
| 2 |     |    | 10382.632 | 46.44            | 15.62 | 62.06            | 74.00  | -11.94 | peak     |



Page: 59 of 192

| Temperature:         | 25 ℃                                         | Relative Humidity:   | 55%                                   |  |
|----------------------|----------------------------------------------|----------------------|---------------------------------------|--|
| Test Voltage:        | DC 3.7V                                      | The same             | - 1 L                                 |  |
| Ant. Pol. Horizontal |                                              |                      |                                       |  |
| Test Mode:           | TX 802.11ac (40) Mode                        | 5230MHz (U-NII-1)    |                                       |  |
| Remark:              | No report for the emission prescribed limit. | n which more than 10 | dB below the                          |  |
|                      |                                              |                      | · · · · · · · · · · · · · · · · · · · |  |



| No. | . Mk | c. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *    | 10455.262 | 33.86            | 15.75 | 49.61            | 54.00  | -4.39  | AVG      |
| 2   |      | 10460.746 | 47.15            | 15.76 | 62.91            | 74.00  | -11.09 | peak     |



Page: 60 of 192

| Temperature:       | 25 ℃                                        | Relative Humidity:     | 55%          |  |
|--------------------|---------------------------------------------|------------------------|--------------|--|
| Test Voltage:      | DC 3.7V                                     | Militia                | 1            |  |
| Ant. Pol. Vertical |                                             |                        |              |  |
| Test Mode:         | TX 802.11ac (40) Mode 5                     | 5230MHz (U-NII-1)      |              |  |
| Remark:            | No report for the emissio prescribed limit. | n which more than 10 o | dB below the |  |
|                    |                                             |                        |              |  |



| No | . MI | k. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10459.523 | 33.88            | 15.76 | 49.64            | 54.00  | -4.36  | AVG      |
| 2  |      | 10461.512 | 47.26            | 15.76 | 63.02            | 74.00  | -10.98 | peak     |



0.0

1000.000 4900.00

8800.00

Report No.: TB-FCC157635

Page: 61 of 192

40000.00 MHz

| Temperature:  | <b>25</b> ℃                                   | Relative Humidity: 55%                                                       |  |  |  |  |  |
|---------------|-----------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|
| Test Voltage: | DC 3.7V                                       | DC 3.7V Horizontal                                                           |  |  |  |  |  |
| Ant. Pol.     | Horizontal                                    |                                                                              |  |  |  |  |  |
| Test Mode:    | Mode: TX 802.11ac (80) Mode 5210MHz (U-NII-1) |                                                                              |  |  |  |  |  |
| Remark:       |                                               | No report for the emission which more than 10 dB below the prescribed limit. |  |  |  |  |  |
| 100.0 dBuV/m  |                                               |                                                                              |  |  |  |  |  |
|               |                                               |                                                                              |  |  |  |  |  |
|               |                                               |                                                                              |  |  |  |  |  |
|               |                                               |                                                                              |  |  |  |  |  |
|               |                                               | (RF) FCC PART 15.407 (PEAK)                                                  |  |  |  |  |  |
|               | 1<br>×                                        |                                                                              |  |  |  |  |  |
|               | _                                             | (RF) FCC PART 15C (AVG                                                       |  |  |  |  |  |
| 50            | X                                             |                                                                              |  |  |  |  |  |
|               |                                               |                                                                              |  |  |  |  |  |
|               |                                               |                                                                              |  |  |  |  |  |
|               |                                               |                                                                              |  |  |  |  |  |

| No | . Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over  |          |
|----|------|-----------|------------------|-------|------------------|--------|-------|----------|
|    |      | MHz       | dBu∀             | dB/m  | dBuV/m           | dBuV/m | dB    | Detector |
| 1  |      | 10417.375 | 47.33            | 15.68 | 63.01            | 68.30  | -5.29 | peak     |
| 2  | *    | 10424.475 | 33.64            | 15.70 | 49.34            | 54.00  | -4.66 | AVG      |

24400.00 28300.00

12700.00 16600.00 20500.00



Page: 62 of 192

| Temperature:       | 25 ℃                                  | Relative Humidity:         | 55%          |  |  |
|--------------------|---------------------------------------|----------------------------|--------------|--|--|
| Test Voltage:      | DC 3.7V                               |                            |              |  |  |
| Ant. Pol. Vertical |                                       |                            |              |  |  |
| Test Mode:         | TX 802.11ac (80) I                    | Mode 5210MHz (U-NII-1)     |              |  |  |
| Remark:            | No report for the e prescribed limit. | mission which more than 10 | dB below the |  |  |
|                    |                                       |                            |              |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 10418.052 | 47.55            | 15.68 | 63.23            | 74.00  | -10.77 | peak     |
| 2   | *   | 10420.692 | 33.70            | 15.69 | 49.39            | 54.00  | -4.61  | AVG      |



Page: 63 of 192

## 5745MHz-5825MHz(U-NII-3)

| Test Voltage:                                | DC 3.7V                                                                      |  |  |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|
| Ant. Pol.                                    | Horizontal                                                                   |  |  |  |  |  |
| Test Mode: TX 802.11a Mode 5745MHz (U-NII-3) |                                                                              |  |  |  |  |  |
| Remark:                                      | No report for the emission which more than 10 dB below the prescribed limit. |  |  |  |  |  |



| No. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 11489.621 | 46.04            | 16.64 | 62.68            | 74.00  | -11.32 | peak     |
| 2   | *  | 11493.652 | 32.98            | 16.64 | 49.62            | 54.00  | -4.38  | AVG      |



Page: 64 of 192

| 1 | Temperature:  | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |  |
|---|---------------|------------------------------------------------------------------------------|--------------------|-----|--|--|--|
|   | Test Voltage: | DC 3.7V                                                                      |                    |     |  |  |  |
|   | Ant. Pol.     | Vertical                                                                     |                    |     |  |  |  |
|   | Test Mode:    | TX 802.11a Mode 5745MHz (U-NII-3)                                            |                    |     |  |  |  |
|   | Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |  |
|   |               |                                                                              |                    |     |  |  |  |



| No. | M | k. Freq.  | _     |       | Measure-<br>ment | Limit  | Over   |          |
|-----|---|-----------|-------|-------|------------------|--------|--------|----------|
|     |   | MHz       | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | * | 11488.562 | 33.13 | 16.63 | 49.76            | 54.00  | -4.24  | AVG      |
| 2   |   | 11491.562 | 45.02 | 16.64 | 61.66            | 74.00  | -12.34 | peak     |



Page: 65 of 192

| ١                    | Temperature:  | 25 ℃                                                                         | Relative Humidity: | 55%   |  |  |
|----------------------|---------------|------------------------------------------------------------------------------|--------------------|-------|--|--|
|                      | Test Voltage: | DC 3.7V                                                                      | Militia            | - 1 L |  |  |
| Ant. Pol. Horizontal |               |                                                                              |                    |       |  |  |
|                      | Test Mode:    | TX 802.11a Mode 5785M                                                        | 1Hz (U-NII-3)      |       |  |  |
|                      | Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |       |  |  |
|                      |               |                                                                              |                    |       |  |  |



| No. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 11569.896 | 46.78            | 16.80 | 63.58            | 74.00  | -10.42 | peak     |
| 2   | *  | 11571.693 | 32.93            | 16.80 | 49.73            | 54.00  | -4.27  | AVG      |



Page: 66 of 192

| Temperature:       | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |
|--------------------|------------------------------------------------------------------------------|--------------------|-----|--|--|
| Test Voltage:      | DC 3.7V                                                                      | Military           |     |  |  |
| Ant. Pol. Vertical |                                                                              |                    |     |  |  |
| Test Mode:         | TX 802.11a Mode 5785M                                                        | IHz (U-NII-3)      |     |  |  |
| Remark:            | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |
|                    | •                                                                            |                    |     |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over  |          |
|-----|-----|-----------|------------------|-------|------------------|--------|-------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB    | Detector |
| 1   |     | 11568.562 | 47.47            | 16.80 | 64.27            | 74.00  | -9.73 | peak     |
| 2   | *   | 11571.452 | 33.56            | 16.80 | 50.36            | 54.00  | -3.64 | AVG      |



Page: 67 of 192

| Temperature:         | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |
|----------------------|------------------------------------------------------------------------------|--------------------|-----|--|--|
| Test Voltage:        | DC 3.7V                                                                      | William .          |     |  |  |
| Ant. Pol. Horizontal |                                                                              |                    |     |  |  |
| Test Mode:           | TX 802.11a Mode 5825                                                         | MHz (U-NII-3)      |     |  |  |
| Remark:              | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |



| No. | Mk | . Freq.   |       |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|-------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 11649.562 | 44.14 | 16.99 | 61.13            | 74.00  | -12.87 | peak     |
| 2   | *  | 11652.551 | 32.80 | 16.99 | 49.79            | 54.00  | -4.21  | AVG      |



Page: 68 of 192

| ١ | Temperature:  | 25 ℃                                        | Relative Humidity:     | 55%          |  |  |  |  |
|---|---------------|---------------------------------------------|------------------------|--------------|--|--|--|--|
|   | Test Voltage: | DC 3.7V                                     | OC 3.7V                |              |  |  |  |  |
|   | Ant. Pol.     | Vertical                                    | /ertical               |              |  |  |  |  |
|   | Test Mode:    | TX 802.11a Mode 5825M                       | 1Hz (U-NII-3)          |              |  |  |  |  |
|   | Remark:       | No report for the emissio prescribed limit. | n which more than 10 o | dB below the |  |  |  |  |
|   |               |                                             |                        |              |  |  |  |  |



| No | o. Mk | c. Freq.  | _     | Correct<br>Factor | Measure-<br>ment | Limit  | Over  |          |
|----|-------|-----------|-------|-------------------|------------------|--------|-------|----------|
|    |       | MHz       | dBu∀  | dB/m              | dBuV/m           | dBuV/m | dB    | Detector |
| 1  |       | 11650.550 | 46.26 | 16.99             | 63.25            | 68.30  | -5.05 | peak     |
| 2  | *     | 11651.925 | 32.96 | 16.99             | 49.95            | 54.00  | -4.05 | AVG      |



Page: 69 of 192

|   | Temperature:  | 25 ℃                                         | Relative Humidity:     | 55%          |  |  |  |  |
|---|---------------|----------------------------------------------|------------------------|--------------|--|--|--|--|
|   | Test Voltage: | DC 3.7V                                      | OC 3.7V                |              |  |  |  |  |
| I | Ant. Pol.     | Horizontal                                   | Horizontal             |              |  |  |  |  |
|   | Test Mode:    | TX 802.11n(20) Mode 57                       | 45MHz (U-NII-3)        |              |  |  |  |  |
|   | Remark:       | No report for the emission prescribed limit. | n which more than 10 o | dB below the |  |  |  |  |
|   |               |                                              |                        |              |  |  |  |  |



| No. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 11489.562 | 46.01            | 16.64 | 62.65            | 74.00  | -11.35 | peak     |
| 2   | *  | 11493.451 | 32.93            | 16.64 | 49.57            | 54.00  | -4.43  | AVG      |



Page: 70 of 192

| Temperatur                                                                           | e: 25 °C            | Relative Humidity: | 55% |  |  |  |  |
|--------------------------------------------------------------------------------------|---------------------|--------------------|-----|--|--|--|--|
| Test Voltage                                                                         | e: DC 3.7V          | DC 3.7V            |     |  |  |  |  |
| Ant. Pol.                                                                            | Vertical            | Vertical           |     |  |  |  |  |
| Test Mode:                                                                           | TX 802.11n(20) Mode | 5745MHz (U-NII-3)  |     |  |  |  |  |
| Remark: No report for the emission which more than 10 dB below the prescribed limit. |                     |                    |     |  |  |  |  |
|                                                                                      |                     |                    |     |  |  |  |  |



| No. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 11488.562 |                  | 16.63 | 49.69            | 54.00  | -4.31  | AVG      |
| 2   |    | 11492.562 | 45.08            | 16.64 | 61.72            | 74.00  | -12.28 | peak     |



Page: 71 of 192

| Temperature:  | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |  |
|---------------|------------------------------------------------------------------------------|--------------------|-----|--|--|--|
| Test Voltage: | Test Voltage: DC 3.7V                                                        |                    |     |  |  |  |
| Ant. Pol.     | Ant. Pol. Horizontal                                                         |                    |     |  |  |  |
| Test Mode:    | TX 802.11n(20) Mode 57                                                       | 85MHz (U-NII-3)    |     |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |  |
|               |                                                                              |                    |     |  |  |  |



| No. | Mk | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 11568.532 | 46.89            | 16.80 | 63.69            | 74.00  | -10.31 | peak     |
| 2   | *  | 11571.561 | 32.88            | 16.80 | 49.68            | 54.00  | -4.32  | AVG      |



Page: 72 of 192

| ١ | Temperature:  | 25 ℃                                        | Relative Humidity:     | 55%          |  |  |  |  |
|---|---------------|---------------------------------------------|------------------------|--------------|--|--|--|--|
|   | Test Voltage: | DC 3.7V                                     | OC 3.7V                |              |  |  |  |  |
|   | Ant. Pol.     | Vertical                                    | /ertical               |              |  |  |  |  |
|   | Test Mode:    | TX 802.11n(20) Mode 57                      | 85MHz (U-NII-3)        |              |  |  |  |  |
|   | Remark:       | No report for the emissio prescribed limit. | n which more than 10 o | dB below the |  |  |  |  |
|   |               |                                             |                        |              |  |  |  |  |



| No. | . Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |      | 11568.512 | 47.07            | 16.80 | 63.87            | 74.00  | -10.13 | peak     |
| 2   | *    | 11571.512 | 33.35            | 16.80 | 50.15            | 54.00  | -3.85  | AVG      |



Page: 73 of 192

|       | Temperature:  | 25 ℃                                        | Relative Humidity:     | 55%          |  |  |  |  |
|-------|---------------|---------------------------------------------|------------------------|--------------|--|--|--|--|
| }     | Test Voltage: | DC 3.7V                                     | C 3.7V                 |              |  |  |  |  |
|       | Ant. Pol.     | Horizontal                                  |                        |              |  |  |  |  |
|       | Test Mode:    | TX 802.11n(20) Mode 58                      | 25MHz (U-NII-3)        |              |  |  |  |  |
| - AN- | Remark:       | No report for the emissio prescribed limit. | n which more than 10 o | dB below the |  |  |  |  |
|       |               |                                             |                        |              |  |  |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 11649.651 | 46.65            | 16.99 | 63.64            | 74.00  | -10.36 | peak     |
| 2   | *   | 11652.562 | 32.89            | 16.99 | 49.88            | 54.00  | -4.12  | AVG      |



Page: 74 of 192

| Temperature:                                                                         | 25 ℃              | Relative Humidity:    | 55% |  |  |  |  |
|--------------------------------------------------------------------------------------|-------------------|-----------------------|-----|--|--|--|--|
| Test Voltage:                                                                        | DC 3.7V           | C 3.7V                |     |  |  |  |  |
| Ant. Pol.                                                                            | Vertical          | 'ertical              |     |  |  |  |  |
| Test Mode:                                                                           | TX 802.11n(20) Mo | ode 5825MHz (U-NII-3) |     |  |  |  |  |
| Remark: No report for the emission which more than 10 dB below the prescribed limit. |                   |                       |     |  |  |  |  |
|                                                                                      |                   |                       |     |  |  |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 11649.612 | 46.58            | 16.99 | 63.57            | 74.00  | -10.43 | peak     |
| 2   | *   | 11652.551 | 32.99            | 16.99 | 49.98            | 54.00  | -4.02  | AVG      |



Page: 75 of 192

| Temperature:  | <b>25</b> ℃                                  | Relative Humidity:    | 55%          |  |  |  |  |
|---------------|----------------------------------------------|-----------------------|--------------|--|--|--|--|
| Test Voltage: | DC 3.7V                                      | 3.7V                  |              |  |  |  |  |
| Ant. Pol.     | Horizontal                                   | orizontal             |              |  |  |  |  |
| Test Mode:    | TX 802.11ac(20) Mode 5                       | 5745MHz (U-NII-3)     |              |  |  |  |  |
| Remark:       | No report for the emission prescribed limit. | on which more than 10 | dB below the |  |  |  |  |
|               |                                              |                       |              |  |  |  |  |



| No. | Mk | . Freq.   |       |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|-------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 11489.951 | 45.94 | 16.64 | 62.58            | 74.00  | -11.42 | peak     |
| 2   | *  | 11490.340 | 33.22 | 16.64 | 49.86            | 54.00  | -4.14  | AVG      |



Page: 76 of 192

| Temperature:  | 25 ℃                                         | Relative Humidity:   | 55%          |  |  |  |  |
|---------------|----------------------------------------------|----------------------|--------------|--|--|--|--|
| Test Voltage: | DC 3.7V                                      |                      |              |  |  |  |  |
| Ant. Pol.     | Vertical                                     |                      |              |  |  |  |  |
| Test Mode:    | TX 802.11ac(20) Mode 5                       | 745MHz (U-NII-3)     |              |  |  |  |  |
| Remark:       | No report for the emission prescribed limit. | n which more than 10 | dB below the |  |  |  |  |
|               |                                              |                      |              |  |  |  |  |



| No. | M | k. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|---|-----------|------------------|-------|------------------|--------|--------|----------|
|     |   | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | * | 11486.771 | 33.18            | 16.63 | 49.81            | 54.00  | -4.19  | AVG      |
| 2   |   | 11489.636 | 45.05            | 16.64 | 61.69            | 74.00  | -12.31 | peak     |



Page: 77 of 192

|       | Temperature:  | 25 ℃                                        | Relative Humidity:     | 55%          |  |  |  |  |
|-------|---------------|---------------------------------------------|------------------------|--------------|--|--|--|--|
| }     | Test Voltage: | DC 3.7V                                     | C 3.7V                 |              |  |  |  |  |
|       | Ant. Pol.     | Horizontal                                  |                        |              |  |  |  |  |
|       | Test Mode:    | TX 802.11ac(20) Mode 5                      | 785MHz (U-NII-3)       |              |  |  |  |  |
| - AN- | Remark:       | No report for the emissio prescribed limit. | n which more than 10 o | dB below the |  |  |  |  |
|       |               |                                             |                        |              |  |  |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 11566.752 | 46.98            | 16.80 | 63.78            | 74.00  | -10.22 | peak     |
| 2   | *   | 11570.531 | 33.07            | 16.80 | 49.87            | 54.00  | -4.13  | AVG      |



Page: 78 of 192

| Temperature:      | 25 ℃                                        | Relative Humidity:     | 55%          |  |  |  |  |
|-------------------|---------------------------------------------|------------------------|--------------|--|--|--|--|
| Test Voltage:     | DC 3.7V                                     |                        |              |  |  |  |  |
| Ant. Pol.         | Vertical                                    |                        |              |  |  |  |  |
| Test Mode:        | TX 802.11ac(20) Mode 5                      | 785MHz (U-NII-3)       |              |  |  |  |  |
| Remark:           | No report for the emissio prescribed limit. | n which more than 10 o | dB below the |  |  |  |  |
| prescribed limit. |                                             |                        |              |  |  |  |  |



| No | . Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 11565.952 | 46.69            | 16.79 | 63.48            | 74.00  | -10.52 | peak     |
| 2  | *    | 11568.181 | 33.20            | 16.80 | 50.00            | 54.00  | -4.00  | AVG      |



Page: 79 of 192

| Temperature:  | 25 ℃                                                                               | Relative Humidity:     | 55% |  |  |  |
|---------------|------------------------------------------------------------------------------------|------------------------|-----|--|--|--|
| Test Voltage: | DC 3.7V                                                                            |                        | 73  |  |  |  |
| Ant. Pol.     | Horizontal                                                                         | Horizontal             |     |  |  |  |
| Test Mode:    | TX 802.11ac(20) M                                                                  | lode 5825MHz (U-NII-3) |     |  |  |  |
| Remark:       | mark: No report for the emission which more than 10 dB below the prescribed limit. |                        |     |  |  |  |
| 400 0 ID 1/1  |                                                                                    |                        |     |  |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 11648.952 | 46.44            | 16.98 | 63.42            | 74.00  | -10.58 | peak     |
| 2   | *   | 11652.163 | 33.01            | 16.99 | 50.00            | 54.00  | -4.00  | AVG      |



Page: 80 of 192

| Temperature:  | 25 ℃                                        | Relative Humidity:   | 55%          |  |  |  |  |
|---------------|---------------------------------------------|----------------------|--------------|--|--|--|--|
| Test Voltage: | DC 3.7V                                     | Million              |              |  |  |  |  |
| Ant. Pol.     | Vertical                                    | Vertical             |              |  |  |  |  |
| Test Mode:    | TX 802.11ac(20) Mode 5                      | 825MHz (U-NII-3)     |              |  |  |  |  |
| Remark:       | No report for the emissio prescribed limit. | n which more than 10 | dB below the |  |  |  |  |



| No. | . Mk | c. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |      | 11650.551 | 46.26            | 16.99 | 63.25            | 74.00  | -10.75 | peak     |
| 2   | *    | 11651.969 | 32.96            | 16.99 | 49.95            | 54.00  | -4.05  | AVG      |



Page: 81 of 192

| Temperature:  | <b>25</b> ℃                                  | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55%          |  |  |
|---------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
| Test Voltage: | DC 3.7V                                      | The same of the sa |              |  |  |
| Ant. Pol.     | Horizontal                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |
| Test Mode:    | TX 802.11n(40) Mode 57                       | 55MHz (U-NII-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |
| Remark:       | No report for the emission prescribed limit. | n which more than 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dB below the |  |  |



| No. | Mł | k. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 11511.512 | 33.06            | 16.68 | 49.74            | 54.00  | -4.26  | AVG      |
| 2   |    | 11514.151 | 45.30            | 16.68 | 61.98            | 74.00  | -12.02 | peak     |



Page: 82 of 192

| Temperature:  | 25 ℃                                         | Relative Humidity:   | 55%          |  |  |  |  |
|---------------|----------------------------------------------|----------------------|--------------|--|--|--|--|
| Test Voltage: | DC 3.7V                                      | OC 3.7V              |              |  |  |  |  |
| Ant. Pol.     | Vertical                                     | Vertical             |              |  |  |  |  |
| Test Mode:    | TX 802.11n(40) Mode 57                       | '55MHz (U-NII-3)     |              |  |  |  |  |
| Remark:       | No report for the emission prescribed limit. | n which more than 10 | dB below the |  |  |  |  |
|               |                                              |                      |              |  |  |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 11508.521 | 46.24            | 16.66 | 62.90            | 74.00  | -11.10 | peak     |
| 2   | *   | 11514.621 | 33.05            | 16.68 | 49.73            | 54.00  | -4.27  | AVG      |



Page: 83 of 192

| Temperature:  | 25 ℃                                        | Relative Humidity:   | 55%          |  |  |  |  |
|---------------|---------------------------------------------|----------------------|--------------|--|--|--|--|
| Test Voltage: | DC 3.7V                                     | Million              |              |  |  |  |  |
| Ant. Pol.     | Horizontal                                  | Horizontal           |              |  |  |  |  |
| Test Mode:    | TX 802.11n(40) Mode 57                      | 95MHz (U-NII-3)      |              |  |  |  |  |
| Remark:       | No report for the emissio prescribed limit. | n which more than 10 | dB below the |  |  |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 11588.256 | 46.12            | 16.85 | 62.97            | 74.00  | -11.03 | peak     |
| 2   | *   | 11590.485 | 33.07            | 16.85 | 49.92            | 54.00  | -4.08  | AVG      |



Page: 84 of 192

| Temperature:  | 25 ℃                                                                         | Relative Humidity: | 55% |  |  |
|---------------|------------------------------------------------------------------------------|--------------------|-----|--|--|
| Test Voltage: | DC 3.7V                                                                      | Milliam            |     |  |  |
| Ant. Pol.     | Vertical                                                                     |                    |     |  |  |
| Test Mode:    | TX 802.11n(40) Mode 57                                                       | 95MHz (U-NII-3)    |     |  |  |
| Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |     |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | ,   | 11589.515 | 45.66            | 16.85 | 62.51            | 74.00  | -11.49 | peak     |
| 2   | *   | 11591.451 | 33.01            | 16.85 | 49.86            | 54.00  | -4.14  | AVG      |



Page: 85 of 192

| Temperature:  | 25 ℃                                        | Relative Humidity:   | 55%          |
|---------------|---------------------------------------------|----------------------|--------------|
| Test Voltage: | DC 3.7V                                     | Million              | 7            |
| Ant. Pol.     | Horizontal                                  |                      |              |
| Test Mode:    | TX 802.11ac(40) Mode 5                      | 755MHz (U-NII-3)     |              |
| Remark:       | No report for the emissio prescribed limit. | n which more than 10 | dB below the |
|               |                                             |                      |              |



| No. | Mk | c. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 11511.625 | 33.06            | 16.68 | 49.74            | 54.00  | -4.26  | AVG      |
| 2   |    | 11514.851 | 45.30            | 16.68 | 61.98            | 74.00  | -12.02 | peak     |



Page: 86 of 192

| Temperature:  | 25 ℃                                         | Relative Humidity:     | 55%          |  |  |  |  |
|---------------|----------------------------------------------|------------------------|--------------|--|--|--|--|
| Test Voltage: | DC 3.7V                                      | Militia                | - 1 L        |  |  |  |  |
| Ant. Pol.     | Vertical                                     | Vertical               |              |  |  |  |  |
| Test Mode:    | TX 802.11ac(40) Mode 5                       | 755MHz (U-NII-3)       |              |  |  |  |  |
| Remark:       | No report for the emission prescribed limit. | n which more than 10 o | dB below the |  |  |  |  |
|               |                                              |                        |              |  |  |  |  |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 11508.852 | 46.24            | 16.66 | 62.90            | 74.00  | -11.10 | peak     |
| 2   | *   | 11513.512 | 33.05            | 16.68 | 49.73            | 54.00  | -4.27  | AVG      |



Page: 87 of 192

| Temperature:  | <b>25</b> ℃                                 | Relative Humidity:         | 55%          |  |  |  |
|---------------|---------------------------------------------|----------------------------|--------------|--|--|--|
| Test Voltage: | DC 3.7V                                     |                            |              |  |  |  |
| Ant. Pol.     | Horizontal                                  | Horizontal                 |              |  |  |  |
| Test Mode:    | TX 802.11ac(40) M                           | lode 5795MHz (U-NII-3)     |              |  |  |  |
| Remark:       | No report for the element prescribed limit. | mission which more than 10 | dB below the |  |  |  |
|               |                                             |                            |              |  |  |  |



| No | . Mk | . Freq.   |       |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|-------|-------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 11588.635 | 46.12 | 16.85 | 62.97            | 74.00  | -11.03 | peak     |
| 2  | *    | 11590.452 | 33.07 | 16.85 | 49.92            | 54.00  | -4.08  | AVG      |



Page: 88 of 192

| Temperature:  | 25 ℃                                        | Relative Humidity:   | 55%          |
|---------------|---------------------------------------------|----------------------|--------------|
| Test Voltage: | DC 3.7V                                     | Million              | - 1 L        |
| Ant. Pol.     | Vertical                                    | 01 -                 |              |
| Test Mode:    | TX 802.11ac(40) Mode 5                      | 795MHz (U-NII-3)     |              |
| Remark:       | No report for the emissio prescribed limit. | n which more than 10 | dB below the |
|               |                                             |                      |              |



| No. | Mk. | Freq.     | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 11589.969 | 45.66            | 16.85 | 62.51            | 74.00  | -11.49 | peak     |
| 2   | *   | 11591.452 | 33.01            | 16.85 | 49.86            | 54.00  | -4.14  | AVG      |



Page: 89 of 192

| Temperature:  | 25 ℃                                        | Relative Humidity:   | 55%          |
|---------------|---------------------------------------------|----------------------|--------------|
| Test Voltage: | DC 3.7V                                     | Million              |              |
| Ant. Pol.     | Horizontal                                  | 011                  |              |
| Test Mode:    | TX 802.11ac(80) Mode 5                      | 775MHz (U-NII-3)     |              |
| Remark:       | No report for the emissio prescribed limit. | n which more than 10 | dB below the |



| No | . MI | k. Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 11545.362 | 33.09            | 16.75 | 49.84            | 54.00  | -4.16  | AVG      |
| 2  |      | 11553.842 | 46.26            | 16.76 | 63.02            | 74.00  | -10.98 | peak     |



Page: 90 of 192

| Temperature:  | 25 ℃                                        | Relative Humidity:     | 55%          |
|---------------|---------------------------------------------|------------------------|--------------|
| Test Voltage: | DC 3.7V                                     | Militia                |              |
| Ant. Pol.     | Vertical                                    | 01                     |              |
| Test Mode:    | TX 802.11ac(80) Mode 5                      | 775MHz (U-NII-3)       |              |
| Remark:       | No report for the emissio prescribed limit. | n which more than 10 o | dB below the |



| No. | Mk | . Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 11549.569 | 45.73            | 16.75 | 62.48            | 74.00  | -11.52 | peak     |
| 2   | *  | 11552.512 | 33.11            | 16.76 | 49.87            | 54.00  | -4.13  | AVG      |







## **Attachment C-- Band Edge Emissions Test Data**

## (1) Radiation Test a/n(20)/ac(20)





Page: 92 of 192





Page: 93 of 192





Page: 94 of 192





Page: 95 of 192





Page: 96 of 192

| em    | peratu     | re:     | 25 °    | C      |              | 1      | R               | elativ | e H          | umidi  | ty:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55%      | ó        | 6    |               |    |
|-------|------------|---------|---------|--------|--------------|--------|-----------------|--------|--------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------|---------------|----|
| est   | Voltag     | e:      | DC 3    | 3.7V   |              | S      |                 |        | (4)          | 1111   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | en.      |      |               |    |
| nt.   | Pol.       |         | Verti   | cal    |              |        |                 | 118    |              |        | Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W,       | 30       |      |               |    |
| est   | Mode:      |         | TX 8    | 02.11  | n(20)        | ) Mode | 5180            | MHz    | (U-N         | VII-1) | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          | 1    |               |    |
| Rem   | nark:      |         | TX 8    | 02.11  | n(20)        | Mode   | 5180            | ~5240  | M C          | Iz (U- | NII-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | СН       | Low      |      |               |    |
| 120.0 | ) dBuV/m   |         | ı       |        |              |        |                 |        |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |      |               |    |
|       |            |         |         |        |              |        |                 |        |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |      |               |    |
|       |            |         |         |        |              |        |                 |        |              |        | 3<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |      |               |    |
|       |            |         |         |        |              |        |                 |        |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 4        |      |               |    |
|       |            |         |         |        |              | _      |                 |        |              |        | Contraction of the Contraction o | ******** | ×        |      |               |    |
|       |            |         |         |        |              |        |                 |        |              |        | (BE) EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r par    | T 15C (P | BAK) |               |    |
| 70    |            |         |         |        |              |        |                 |        |              |        | (III) I C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTAIL    | 130 (1   | LAKI |               |    |
|       |            |         |         |        |              |        | 1<br>X          |        |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |      |               |    |
|       |            |         |         |        |              |        | 2               |        |              |        | (RF) F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CC PA    | RT 15C ( | AVĠĮ | $\overline{}$ |    |
|       |            |         |         |        |              |        | ×               |        |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |      |               |    |
|       |            |         |         |        |              |        |                 |        |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |      |               |    |
|       |            |         |         |        |              |        |                 |        |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |      |               |    |
| 20.0  | 98.000 510 | 19 00 5 | 5118.00 | 5128.0 | 10 5         | 138.00 | 5148.00         | 1 515  | i8.00        | 5168.0 | 10 517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.00    |          | 5199 | .00           | ы  |
|       |            |         |         |        |              |        |                 |        |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |      |               |    |
| N     | lo. Mk.    | Fr      | eq.     |        | ading<br>vel |        | orrect<br>actor |        | asur<br>nent |        | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | Ove      | r    |               |    |
| _     |            | MI      | •       |        | BuV          |        | B/m             |        | 3uV/r        |        | dBuV/r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m        | dB       | D    | etec          | ct |
| 1     |            | 5150    | .000    | 43     | .95          |        | 7.21            | 6      | 1.16         | 3      | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )        | -12.8    | 34   | pea           | al |
|       |            | 5150    | .000    | 30     | .11          | 17     | 7.21            | 4      | 7.32         | 2      | 54.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )        | -6.6     | 8    | A۷            | (  |
| 2     |            |         |         | - 00   | 40           | 47     | 7.15            | 10     | 03.5         | 5 -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ital Ei  | requenc  | .,   | pea           | al |
| 2     | Χ          | 5175    | .500    | 86     | .40          | 17     | . 13            | - 10   | 0.0          | ~ F    | ındamen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ılaı Fi  | educiic  | ٧    | -             | u  |



Page: 97 of 192





Page: 98 of 192





Page: 99 of 192

| Tem  | perature:       | 25      | $^{\circ}$ |                     | 1 N                | Relativ   | e Hum   | idity:    | 55%            | 60      |    |
|------|-----------------|---------|------------|---------------------|--------------------|-----------|---------|-----------|----------------|---------|----|
| Test | t Voltage:      | DC      | 3.7V       | THE PERSON NAMED IN |                    |           | CHI     | 1.150     |                | AR      | H  |
| Ant. | . Pol.          | Hor     | izonta     |                     |                    | 150       |         | 6         | MILLER         |         | h  |
| Test | t Mode:         | TX      | 802.1°     | 1ac(20)             | Mode 5             | 180 MH    | z (U-NI | I-1)      |                |         |    |
| Ren  | nark:           | TX      | 802.1      | 1ac(20)             | Mode 5             | 180~524   | 40 MHz  | (U-NII-1  | ) CH Low       |         |    |
| 120. | 0 dBuV/m        |         |            |                     |                    |           |         |           |                |         | _  |
|      |                 |         |            |                     |                    |           |         |           |                |         |    |
|      |                 |         |            |                     |                    |           |         |           | 3<br>X         |         |    |
|      |                 |         |            |                     |                    |           |         |           | 4              |         |    |
|      |                 |         |            |                     |                    |           |         |           |                |         | l  |
|      |                 |         |            |                     |                    |           |         | (RF) FC   | C PART 150 (PE | AK]     | 1  |
| 70   |                 |         |            |                     | 1                  |           |         |           |                |         | 1  |
|      |                 |         |            |                     |                    |           | ļ.,     | (DE)      | TOO DADT 150   | WC)     | -  |
|      |                 |         |            |                     | 2                  |           |         | (HF) F    | CC PART 15C A  | Wat     |    |
|      |                 |         |            |                     |                    |           |         |           |                |         |    |
|      |                 |         |            |                     |                    |           |         |           |                |         |    |
| 20.0 |                 |         |            |                     |                    |           |         |           |                |         |    |
|      | 101.000 5111.00 | 5121.00 | 5131       | .00 514             | \$1.00 <b>5</b> 15 | i1.00 516 | 1.00 51 | 171.00 51 | 81.00          | 5201.00 | MH |
|      |                 |         |            |                     |                    |           |         |           |                |         |    |
|      |                 |         | Rea        | ding                | Correc             | t Mea     | sure-   |           |                |         | _  |
| No   | o. Mk. F        | req.    |            | vel                 | Facto              | r me      | ent     | Limit     | Over           |         |    |
|      | N               | ИHz     | dB         | ₿uV                 | dB/m               | dBı       | uV/m    | dBuV/n    | n dB           | Detec   | to |
| 1    | 515             | 0.000   | 47         | .20                 | 17.21              | 64        | .41     | 74.00     | -9.59          | pea     | ak |
| 2    | 5150            | 0.000   | 34         | .90                 | 17.21              | 52        | 2.11    | 54.00     | -1.89          | AV      | G  |
| 3    |                 | 1.800   |            | .02                 | 17.14              |           | 4.16    |           | ital Frequency |         |    |
| -    |                 | 3.500   |            | .23                 | 17.14              |           | 2.37    |           |                |         |    |
| 4    |                 | < C1111 | 75         | 13                  | 1/14               | 97        | .37     | Fundamen  | tal Frequency  | ΑV      | G  |



Page: 100 of 192





Page: 101 of 192





Page: 102 of 192

| emp    | eratu    | re:     | 25 °    | C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Re    | lative | e Hur | nidity  | : 55           | 5%            |         |               |
|--------|----------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|-------|---------|----------------|---------------|---------|---------------|
| Test \ | /oltag   | je:     | DC 3    | 3.7V    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13     |       |        | OH.   | 17.7    | 9              |               | AR      | J.E           |
| ۱nt. F | ol.      |         | Verti   | cal     | A STATE OF THE PARTY OF THE PAR |        | 1     |        |       |         | CUI            | 1.73          |         | A.            |
| Test N | /lode:   |         | TX 8    | 02.11a  | c(20) l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mode 5 | 240   | MHz    | (U-N  | III-1)  | 63             |               |         |               |
| Rema   | rk:      |         | TX 8    | 02.11a  | c(20) I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mode 5 | 180   | ~524   | 0 MH  | z (U-N  | III-1) (       | CH High       |         |               |
| 120.0  | dBuV/m   |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         |                |               |         |               |
|        |          |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         |                |               |         |               |
|        |          | 2       |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         |                |               |         |               |
|        |          | <       |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         |                |               |         | 1             |
|        | 1<br>X   |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         |                |               |         | $\frac{1}{1}$ |
|        | -        |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       | - 0     | SEI ECC E      | PART 15C (PEA | SK)     | -             |
| 70     |          |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         | 11,1001        | AII 130 (12)  | -1()    | -             |
|        |          |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         |                | 3             |         |               |
|        | <u> </u> |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         | (RF) FCC       | PART 15C (A)  | /G)     | -             |
|        |          |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         |                | 4<br>×        |         | 1             |
|        |          |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         |                |               |         | $\frac{1}{1}$ |
|        |          |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |        |       |         |                |               |         | $\frac{1}{1}$ |
| 20.0   | 000 523  | 77.00 5 | 252.00  | 5267.00 | 5282.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 F2  | 97.00 | 5312   | 100   | 5327.00 | 5342.          | 00            | 5372.00 |               |
| 3222.  | .000 32. | 57.00 3 | 1232.00 | 3267.00 | 3202.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 52  | 37.00 | 3312   |       | 3327.00 | J3 <b>4</b> Z. | 00            | 3372.00 | mı            |
|        |          |         |         | Read    | lina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Corre  | ect   | Mea    | sure  | _       |                |               |         | _             |
| No.    | Mk.      | . Fre   | eq.     | Lev     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fact   |       |        | ent   |         | mit            | Over          |         |               |
|        |          | MH      | lz      | dBu     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dB/m   | 1     | dBı    | uV/m  | dE      | BuV/m          | dB            | Dete    | ct            |
| 1      | *        | 5234.   | 600     | 69.1    | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.0   | 2     | 86     | 6.21  | Fund    | amenta         | l Frequency   | A۱      | /(            |
| 2      | Χ        | 5235.   | 650     | 82.4    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.0   | 2     | 99     | 9.45  | Fund    | amenta         | l Frequency   | pe      | al            |
| 3      |          | 5350.   | 000     | 41.7    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.7   | 7     | 58     | 3.47  | 7       | 4.00           | -15.53        | B pe    | al            |
|        |          | 5350.   | 000     | 28.8    | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.7   | 7     | 45     | 5.61  | 5       | 4.00           | -8.39         | A۱      | /(-           |



Page: 103 of 192

| Temperature:  | 25 ℃               | Relative Humidity:                | 55%         |  |  |  |  |  |
|---------------|--------------------|-----------------------------------|-------------|--|--|--|--|--|
| Test Voltage: | DC 3.7V            |                                   | - 1 USA     |  |  |  |  |  |
| Ant. Pol.     | Horizontal         |                                   |             |  |  |  |  |  |
| Test Mode:    | TX 802.11a Mode \$ | X 802.11a Mode 5745 MHz (U-NII-3) |             |  |  |  |  |  |
| Remark:       | N/A                | WILLIAM STATE                     | THE RESERVE |  |  |  |  |  |
| 130.0 dBuV/m  |                    |                                   |             |  |  |  |  |  |



| No. | Mk. | Freq.    |       |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|-------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 42.89 | 17.84 | 60.73            | 122.30 | -61.57 | peak     |
| 2   | *   | 5746.965 | 75.94 | 17.98 | 93.92            | 122.30 | -28.38 | peak     |



Page: 104 of 192

| Temperature:       | 25 ℃                               | Relative Humidity: | 55% |  |  |  |  |
|--------------------|------------------------------------|--------------------|-----|--|--|--|--|
| Test Voltage:      | DC 3.7V                            | THUL               |     |  |  |  |  |
| Ant. Pol. Vertical |                                    |                    |     |  |  |  |  |
| Test Mode:         | TX 802.11a Mode 5745 MHz (U-NII-3) |                    |     |  |  |  |  |
| Remark:            | N/A                                |                    |     |  |  |  |  |



| No. | Mk. | Freq.    |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|-------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV  | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 42.68 | 17.84             | 60.52            | 122.30 | -61.78 | peak     |
| 2   | *   | 5746.965 | 79.40 | 17.98             | 97.38            | 122.30 | -24.92 | peak     |



Page: 105 of 192

| Test Voltage: DC 3.7V  Ant. Pol. Horizontal  Test Mode: TX 802.11a Mode 5825 MHz (U-NII-3)  Remark: N/A  130.0 dBuV/m  (RF) FCC PART NC  Margin - 6 dB  2 | Temperatu           | ıre: 25                                              | $^{\circ}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R              | elative Humi   | dity: 55    | 5%        |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------------|-----------|------------|
| Test Mode: TX 802.11a Mode 5825 MHz (U-NII-3)  Remark: N/A  130.0 dBuV/m  (RF) FCC PART FC Margin -6 dB                                                   | Test Voltage        | ge: DC                                               | 3.7V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33             | enn.           | 1           | - N       | The second |
| Remark: N/A  130.0 dBuV/m  (RF) FCC PART No.  Margin -6 dB  2                                                                                             | Ant. Pol.           | Но                                                   | rizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1              | 118            | CUL         | 1:32      |            |
| 130.0 dBuV/m  (RF) FCC PART \SC  Margin - 5 dB  2                                                                                                         | Test Mode           | : TX                                                 | 802.11a Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e 5825 MH      | z (U-NII-3)    | 63          |           |            |
| (RF) FCC PART NC Margin -6 dB                                                                                                                             | Remark:             | N/A                                                  | Throng I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | WILL DE        | 2           | a 113     | 1 Land     |
| (RF) FCC PART ISC Margin -6 dB 2                                                                                                                          | 130.0 dBuV/n        | n                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |             |           |            |
| 20.0                                                                                                                                                      |                     | and a grant franchis and a state of the state of the | gent have been great from the property of the |                | ma 2           |             | Margin -6 | dВ         |
| 5717.650 5738.15 5758.65 5779.15 5799.65 5820.15 5840.65 5861.15 5881.65 5922.65 M                                                                        | 30.0<br>5717 650 57 | 738 15 5758 65                                       | 5779 15 579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 65 5820 15   | 5840 65 596    | 1 15 5881 ( | 55 5      | 922 65 MH  |
|                                                                                                                                                           |                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |             |           |            |
| Reading Correct Measure-<br>No. Mk. Freq. Level Factor ment Limit Over                                                                                    | No. Mk              | . Freq.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                | Limit       | Over      |            |
| No. Mk. Freq. Level Factor ment Limit Over                                                                                                                | No. Mk              | <u> </u>                                             | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Factor         | ment           |             |           | Detecto    |
| No. Mk. Freq. Level Factor ment Limit Over  MHz dBuV dB/m dBuV/m dBuV/m dB Detector                                                                       |                     | MHz                                                  | Level<br>dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Factor<br>dB/m | ment<br>dBuV/m | dBuV/m      | dB        | Detecto    |



Page: 106 of 192

| Temperature:  | 25 ℃     | Relative Humidity: | 55% |  |  |  |  |
|---------------|----------|--------------------|-----|--|--|--|--|
| Test Voltage: | DC 3.7V  |                    |     |  |  |  |  |
| Ant. Pol.     | Vertical |                    |     |  |  |  |  |
| Test Mode:    |          |                    |     |  |  |  |  |
| Remark:       | N/A      |                    |     |  |  |  |  |
| 130.0 dBuV/m  |          |                    |     |  |  |  |  |
|               |          |                    |     |  |  |  |  |



| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *   | 5826.915 | 74.54            | 18.48 | 93.02            | 122.30 | -29.28 | peak     |
| 2   |     | 5850.000 | 40.77            | 18.62 | 59.39            | 122.30 | -62.91 | peak     |



Page: 107 of 192

| Temperature:  | 25 ℃                   | Relative Humidity:                     | 55% |  |  |  |  |  |
|---------------|------------------------|----------------------------------------|-----|--|--|--|--|--|
| Test Voltage: | DC 3.7V                | THE PARTY OF                           |     |  |  |  |  |  |
| Ant. Pol.     | Horizontal             |                                        |     |  |  |  |  |  |
| Test Mode:    | TX 802.11n(20) Mode 57 | TX 802.11n(20) Mode 5745 MHz (U-NII-3) |     |  |  |  |  |  |
| Remark: N/A   |                        |                                        |     |  |  |  |  |  |
|               |                        |                                        |     |  |  |  |  |  |



| No | . Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|------------------|-------|------------------|--------|--------|----------|
|    |       | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |       | 5725.000 | 42.73            | 17.84 | 60.57            | 122.30 | -61.73 | peak     |
| 2  | *     | 5739.380 | 75.83            | 17.93 | 93.76            | 122.30 | -28.54 | peak     |



Page: 108 of 192

| Temperature:  | 25 ℃                                   | Relative Humidity: | 55% |  |  |  |  |
|---------------|----------------------------------------|--------------------|-----|--|--|--|--|
| Test Voltage: | DC 3.7V                                |                    |     |  |  |  |  |
| Ant. Pol.     | Vertical                               |                    |     |  |  |  |  |
| Test Mode:    | TX 802.11n(20) Mode 5745 MHz (U-NII-3) |                    |     |  |  |  |  |
| Remark:       | N/A                                    |                    |     |  |  |  |  |



| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 43.04            | 17.84 | 60.88            | 122.30 | -61.42 | peak     |
| 2   | *   | 5746.965 | 79.45            | 17.98 | 97.43            | 122.30 | -24.87 | peak     |



2

Report No.: TB-FCC157635

Page: 109 of 192

| Temperature:              | <b>25</b> ℃                         | R                 | elative Humidity    | <b>55</b> %                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|-------------------------------------|-------------------|---------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Voltage:             | DC 3.7V                             | 130               | CHILL'S             |                                              | Alle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ant. Pol.                 | Horizontal                          |                   | 13                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Mode:                | TX 802.11n(20)                      | Mode 5825         | MHz (U-NII-3)       | Comment                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Remark:                   | N/A                                 |                   | WHI TO SEE          | A Y                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 130.0 dBuV/m              |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /                         |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /                         |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                     | 1                 |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                     | X.                | η                   |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80                        |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00                        |                                     |                   |                     | (DE) FCC DAD                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |                                     |                   | 2                   | (RF) FCC PART<br>Margin -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| meninament a language the | hudranis for high many and property | and planty and    | man Salan Mar war   | farying a bring play and a sept the shock of | to the state of th |
|                           |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0                      |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5719.700 5740.20          | 5760.70 5781.20 50                  | 801.70 5822.20    | 5842.70 5863.20     | 5883.70                                      | 5924.70 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                     |                   |                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | Doading                             | Corroct           | Moscuro             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| No. Mk. Fr                | Reading<br>ea. Level                |                   | Measure-<br>ment Li | mit Over                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | Reading<br>eq. Level<br>Hz dBuV     | Correct<br>Factor | ment Li             | mit Over                                     | Detecto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

60.27

122.30 -62.03

peak

**Emission Level= Read Level+ Correct Factor** 

41.65

18.62

5850.000



Page: 110 of 192

| Temperature:                          | 25 ℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | elative Humic    | dity: 55                 | %                                       |                   |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|-----------------------------------------|-------------------|
| Test Voltage:                         | DC 3.7V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - CHI            |                          | -3 1                                    | MAP               |
| Ant. Pol.                             | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11               | 11150                    | 133                                     |                   |
| Test Mode:                            | TX 802.11n(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mode 5825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MHz (U-NII-3)    | )                        |                                         | 110               |
| Remark:                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WILL DE          |                          | 3 MA                                    | 1 lease           |
| 130.0 dBuV/m                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |                                         |                   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | \                        |                                         |                   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |                                         |                   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>,, <b>X</b> |                          |                                         |                   |
| 80                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | נו                       | RF) FCC PART                            | DEC.              |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          | Margin -6                               | qB                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 2                        |                                         |                   |
| eterediteteseden jakopalen etereteise | fet and and fet and an annual state of the fet of the f | Providence of the state of the | Montherny        | 2<br><b>Ye</b> rrandayay | who we will be the second of the second | heappyanheitschaf |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |                                         |                   |
| 30.0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |                                         |                   |
| 5705.350 5725.85                      | 5746.35 5766.85 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87.35 5807.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5828.35 584      | 8.85 5869.3              | 35 5                                    | 910.35 MI         |
| No. Mk. F                             | Reading<br>reg. Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Correct<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Measure-<br>ment | Limit                    | Over                                    |                   |
|                                       | MHz dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dB/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dBuV/m           | dBuV/m                   | dB                                      | Detecto           |
| 1 * 582                               | 7.120 74.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92.97            | 122.30                   | -29.33                                  | peak              |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |                                         |                   |



Page: 111 of 192

|   | Temperature:  | 25 ℃                   | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55% |  |  |  |  |
|---|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
|   | Test Voltage: | DC 3.7V                | THE PARTY OF THE P | 73  |  |  |  |  |
|   | Ant. Pol.     | Horizontal             | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |  |  |  |  |
|   | Test Mode:    | TX 802.11ac(20) Mode 5 | TX 802.11ac(20) Mode 5745 MHz (U-NII-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |  |  |  |  |
| d | Remark:       | N/A                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |
|   |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |



| No. | Mk. | Freq.    |       |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|-------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 43.30 | 17.84 | 61.14            | 122.30 | -61.16 | peak     |
| 2   | *   | 5739.380 | 75.63 | 17.93 | 93.56            | 122.30 | -28.74 | peak     |



Page: 112 of 192

| • | Temperature:  | <b>25</b> ℃            | Relative Humidity: | 55% |  |  |  |  |
|---|---------------|------------------------|--------------------|-----|--|--|--|--|
|   | Test Voltage: | DC 3.7V                | C 3.7V             |     |  |  |  |  |
| 4 | Ant. Pol.     | Vertical               | Vertical           |     |  |  |  |  |
|   | Test Mode:    | TX 802.11ac(20) Mode 5 | 745 MHz (U-NII-3)  |     |  |  |  |  |
|   | Remark:       | N/A                    |                    |     |  |  |  |  |



| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 42.25            | 17.84 | 60.09            | 122.30 | -62.21 | peak     |
| 2   | *   | 5746.965 | 79.45            | 17.98 | 97.43            | 122.30 | -24.87 | peak     |



Page: 113 of 192

| Temper  | ature:     | 25 ℃                   | Relative Humidity:                      | 55% |  |  |  |  |
|---------|------------|------------------------|-----------------------------------------|-----|--|--|--|--|
| Test Vo | Itage:     | DC 3.7V                | OC 3.7V                                 |     |  |  |  |  |
| Ant. Po | ı.         | Horizontal             |                                         |     |  |  |  |  |
| Test Mo | ode:       | TX 802.11ac(20) Mode 5 | TX 802.11ac(20) Mode 5825 MHz (U-NII-3) |     |  |  |  |  |
| Remark  | <b>(</b> : | N/A                    |                                         |     |  |  |  |  |



| No | o. Mk | . Freq.  | _     |       | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|-------|-------|------------------|--------|--------|----------|
|    |       | MHz      | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *     | 5819.330 | 76.06 | 18.43 | 94.49            | 122.30 | -27.81 | peak     |
| 2  |       | 5850.000 | 41.83 | 18.62 | 60.45            | 122.30 | -61.85 | peak     |



Page: 114 of 192

| Temperature:  | 25 ℃                   | Relative Humidity: | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|---------------|------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Voltage: | DC 3.7V                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Ant. Pol.     | Vertical               | Vertical           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Test Mode:    | TX 802.11ac(20) Mode 5 | 825 MHz (U-NII-3)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Remark:       | N/A                    | THE PERSON         | THE REAL PROPERTY OF THE PARTY |  |  |  |  |
| 130.0 dBuV/m  |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |



| N | lo. Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|---|--------|----------|------------------|-------|------------------|--------|--------|----------|
|   |        | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1 | *      | 5826.915 | 74.51            | 18.48 | 92.99            | 122.30 | -29.31 | peak     |
| 2 |        | 5850.000 | 40.62            | 18.62 | 59.24            | 122.30 | -63.06 | peak     |



Page: 115 of 192

## n(40)/ac(40)





| No | . Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit                 | Over      |          |
|----|------|----------|------------------|-------------------|------------------|-----------------------|-----------|----------|
|    |      | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m                | dB        | Detector |
| 1  |      | 5150.000 | 49.59            | 17.21             | 66.80            | 74.00                 | -7.20     | peak     |
| 2  |      | 5150.000 | 35.53            | 17.21             | 52.74            | 74.00                 | -21.26    | AVG      |
| 3  | Χ    | 5175.040 | 71.58            | 17.15             | 88.73            | Fundamental Frequency |           | AVG      |
| 4  | *    | 5175.240 | 83.77            | 17.15             | 100.92           | Fundamental I         | Frequency | peak     |



Page: 116 of 192





Page: 117 of 192





| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit                 | Over      |          |
|-----|-----|----------|------------------|-------------------|------------------|-----------------------|-----------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m                | dB        | Detector |
| 1   | Χ   | 5234.240 | 84.21            | 17.02             | 101.23           | Fundamental Frequency |           | peak     |
| 2   | *   | 5234.690 | 71.85            | 17.02             | 88.87            | Fundamental           | Frequency | AVG      |
| 3   |     | 5350.000 | 45.67            | 16.77             | 62.44            | 74.00                 | -11.56    | peak     |
| 4   |     | 5350.000 | 34.25            | 16.77             | 51.02            | 54.00                 | -2.98     | AVG      |



Page: 118 of 192





Page: 119 of 192





Page: 120 of 192





Page: 121 of 192





Page: 122 of 192





Page: 123 of 192

| - | Temperature:  | 25 ℃                                  | Relative Humidity: | 55% |  |  |  |  |
|---|---------------|---------------------------------------|--------------------|-----|--|--|--|--|
| - | Гest Voltage: | DC 3.7V                               | Militia            |     |  |  |  |  |
| 1 | Ant. Pol.     | Horizontal                            |                    |     |  |  |  |  |
| - | Test Mode:    | TX 802.11n(40) Mode 5755MHz (U-NII-3) |                    |     |  |  |  |  |
| I | Remark:       | N/A                                   |                    |     |  |  |  |  |
|   |               |                                       |                    |     |  |  |  |  |



| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 45.45            | 17.84 | 63.29            | 122.30 | -59.01 | peak     |
| 2   | *   | 5739.585 | 74.93            | 17.93 | 92.86            | 122.30 | -29.44 | peak     |



Page: 124 of 192





| No | . Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|------------------|-------|------------------|--------|--------|----------|
|    |       | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |       | 5725.000 | 44.75            | 17.84 | 62.59            | 122.30 | -59.71 | peak     |
| 2  | *     | 5746.760 | 76.47            | 17.98 | 94.45            | 122.30 | -27.85 | peak     |



Page: 125 of 192

| Temperatu           | ire: 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $^{\circ}$ C     | F                 | elative Humi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dity: 5    | 5%                         |              |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|--------------|
| Test Voltag         | ge: DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7V             | 35                | - CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -                          | The same     |
| Ant. Pol.           | Hor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rizontal         |                   | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GUI        | 1133                       |              |
| Test Mode           | : TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 802.11n(40)      | Mode 5795         | MHz (U-NII-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5)         |                            |              |
| Remark:             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 9                 | THE STATE OF THE S |            | 2 W                        | A Laboratory |
| 130.0 dBuV/m        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                            |              |
| 80                  | has hard have been the first of the state of | han Market James | 1                 | March managed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | (RF) FCC PART<br>Margin -6 | в            |
| 30.0<br>5701.250 57 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 83.25 5803.75     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.75 5865. |                            | 5906.25 MH   |
| No. Mk.             | Freq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reading<br>Level | Correct<br>Factor | Measure-<br>ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit      | Over                       |              |
|                     | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dBuV             | dB/m              | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dBuV/m     | dB                         | Detecto      |
|                     | E706 70E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73.59            | 18.23             | 91.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122.30     | -30.48                     | peak         |
| 1 *                 | 5786.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.00            | 10.20             | 01.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                            | Poun         |



Page: 126 of 192

| Temperature:  | 25 ℃               | Relative Humidity:    | 55% |  |  |  |  |
|---------------|--------------------|-----------------------|-----|--|--|--|--|
| Test Voltage: | DC 3.7V            |                       |     |  |  |  |  |
| Ant. Pol.     | Vertical           |                       |     |  |  |  |  |
| Test Mode:    | TX 802.11n(40) Mod | le 5795 MHz (U-NII-3) |     |  |  |  |  |
| Remark:       | N/A                | WILD TO               |     |  |  |  |  |
| 130.0 dBuV/m  |                    |                       |     |  |  |  |  |



|   | No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|---|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
| ľ |     |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 7 | 1   | *   | 5786.940 | 73.91            | 18.23 | 92.14            | 122.30 | -30.16 | peak     |
| 2 | 2   |     | 5850.000 | 40.68            | 18.62 | 59.30            | 122.30 | -63.00 | peak     |



Page: 127 of 192

| Į, | Temperature:  | 25 ℃                                    | Relative Humidity: | 55% |  |  |  |  |
|----|---------------|-----------------------------------------|--------------------|-----|--|--|--|--|
| ١  | Test Voltage: | DC 3.7V                                 |                    |     |  |  |  |  |
|    | Ant. Pol.     | Horizontal                              |                    |     |  |  |  |  |
|    | Test Mode:    | TX 802.11ac(40) Mode 5755 MHz (U-NII-3) |                    |     |  |  |  |  |
|    | Remark:       | N/A                                     |                    |     |  |  |  |  |
|    |               |                                         |                    | ·   |  |  |  |  |



| No. | Mk. | Freq.    | _     |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|-------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 45.85 | 17.84 | 63.69            | 122.30 | -58.61 | peak     |
| 2   | *   | 5739.585 | 74.85 | 17.93 | 92.78            | 122.30 | -29.52 | peak     |



Page: 128 of 192

| 25 ℃                                    | Relative Humidity:                            | 55%                                                        |  |  |  |  |
|-----------------------------------------|-----------------------------------------------|------------------------------------------------------------|--|--|--|--|
| DC 3.7V                                 |                                               |                                                            |  |  |  |  |
| Vertical                                |                                               |                                                            |  |  |  |  |
| TX 802.11ac(40) Mode 5755 MHz (U-NII-3) |                                               |                                                            |  |  |  |  |
| N/A                                     |                                               |                                                            |  |  |  |  |
|                                         | DC 3.7V<br>Vertical<br>TX 802.11ac(40) Mode 5 | DC 3.7V  Vertical  TX 802.11ac(40) Mode 5755 MHz (U-NII-3) |  |  |  |  |



| No | . Mk. | Freq.    | _     |       | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|-------|-------|------------------|--------|--------|----------|
|    |       | MHz      | dBuV  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |       | 5725.000 | 46.90 | 17.84 | 64.74            | 122.30 | -57.56 | peak     |
| 2  | *     | 5746.760 | 76.55 | 17.98 | 94.53            | 122.30 | -27.77 | peak     |



Page: 129 of 192

| Temperature:  | 25 ℃                                    | Relative Humidity: | 55% |  |  |  |  |
|---------------|-----------------------------------------|--------------------|-----|--|--|--|--|
| Test Voltage: | DC 3.7V                                 |                    |     |  |  |  |  |
| Ant. Pol.     | Horizontal                              |                    |     |  |  |  |  |
| Test Mode:    | TX 802.11ac(40) Mode 5795 MHz (U-NII-3) |                    |     |  |  |  |  |
| Remark:       |                                         |                    |     |  |  |  |  |
|               |                                         |                    |     |  |  |  |  |



| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *   | 5799.445 | 73.55            | 18.31 | 91.86            | 122.30 | -30.44 | peak     |
| 2   |     | 5850.000 | 41.21            | 18.62 | 59.83            | 122.30 | -62.47 | peak     |



Page: 130 of 192

| Temperature              | 25 °C                   | C                                       | Re            | lative Humi                  | dity: 5                                | 5%                                  |                    |  |  |
|--------------------------|-------------------------|-----------------------------------------|---------------|------------------------------|----------------------------------------|-------------------------------------|--------------------|--|--|
| est Voltage:             | : DC 3                  | 3.7V                                    | NO T          | THI .                        |                                        | - N                                 |                    |  |  |
| Ant. Pol.                | Verti                   | Vertical                                |               |                              |                                        |                                     |                    |  |  |
| Test Mode:               | TX 8                    | TX 802.11ac(40) Mode 5795 MHz (U-NII-3) |               |                              |                                        |                                     |                    |  |  |
| Remark:                  | N/A                     |                                         |               |                              |                                        |                                     |                    |  |  |
| 130.0 dBuV/m             |                         |                                         |               |                              |                                        |                                     |                    |  |  |
|                          |                         |                                         |               |                              | \                                      |                                     |                    |  |  |
|                          |                         |                                         |               |                              |                                        |                                     |                    |  |  |
|                          |                         | 1                                       |               |                              |                                        |                                     |                    |  |  |
|                          |                         | <b>***</b>                              | many          |                              |                                        |                                     |                    |  |  |
| 80                       |                         |                                         |               |                              |                                        | RF) FCC PART<br>Margin -6           |                    |  |  |
|                          | . 11 40                 | Marriage Park                           | 1             |                              | 2                                      |                                     |                    |  |  |
| de tady agreement grande | work of the Mary market |                                         |               | They were wear of the second | ************************************** | aproduced account of the control of | destablished weeks |  |  |
|                          |                         |                                         |               |                              |                                        |                                     |                    |  |  |
| 30.0                     |                         |                                         |               |                              |                                        |                                     |                    |  |  |
| 5707.400 5727.           | .90 5748.40             | 5768.90 576                             | 89.40 5809.90 | 5830.40 58                   | 50.90 5871.                            | 40 5                                | 912.40 MI          |  |  |
|                          |                         | Reading                                 | Correct       | Measure-                     |                                        |                                     |                    |  |  |
| No. Mk.                  | Freq.                   | Level                                   | Factor        | ment                         | Limit                                  | Over                                |                    |  |  |
|                          | MHz                     | dBuV                                    | dB/m          | dBuV/m                       | dBuV/m                                 | dB                                  | Detecto            |  |  |
| 1 * 5                    | 786.940                 | 73.91                                   | 18.23         | 92.14                        | 122.30                                 | -30.16                              | peak               |  |  |
|                          |                         |                                         |               |                              |                                        |                                     |                    |  |  |



Page: 131 of 192

## ac(80)





| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit      | Over         |          |
|-----|----|----------|------------------|-------------------|------------------|------------|--------------|----------|
|     |    | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m     | dB           | Detector |
| 1   |    | 5150.000 | 45.68            | 17.21             | 62.89            | 74.00      | -11.11       | peak     |
| 2   |    | 5150.000 | 32.77            | 17.21             | 49.98            | 54.00      | -4.02        | AVG      |
| 3   | *  | 5237.000 | 74.41            | 17.01             | 91.42            | Fundamenta | al Frequency | AVG      |
| 4   | X  | 5237.300 | 85.51            | 17.01             | 102.52           | Fundamenta | al Frequency | peak     |



Page: 132 of 192





Page: 133 of 192

| Temperatu              | re: 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 °C                   | R                       | elative Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | idity: 5               | 5%                       |           |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|-----------|
| Test Voltag            | je: D(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C 3.7V                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                          |           |
| Ant. Pol.              | Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | orizontal              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GUI                    | 1:30                     |           |
| Test Mode              | : TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( 802.11 ac(8          | 0) Mode 577             | '5MHz (U-NII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3)                    |                          |           |
| Remark:                | N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A                      |                         | MIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | a W                      |           |
| 130.0 dBuV/m           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                          |           |
| 80<br>Applysicantivity | was the ball of the state of th |                        | 2                       | Note to be the second of the s | Joseph John St. Market | REJ FCC PART : Margin -6 | dВ        |
| 30.0<br>5652.950 56    | 78.95 5704.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 5730.95 5            | 756.95 5782.95          | 5808.95 583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84.95 5860.9           | 95 5                     | 912.95 MH |
| No Mk                  | Fred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reading                |                         | Measure-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limit                  | Over                     |           |
| No. Mk.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level                  | Factor                  | ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit                  | Over                     | Detecto   |
|                        | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Level<br>dBuV          | Factor<br>dB/m          | ment<br>dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dBuV/m                 | dB                       | Detecto   |
| 1                      | MHz<br>5725.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level<br>dBuV<br>50.03 | Factor<br>dB/m<br>17.84 | ment<br>dBuV/m<br>67.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dBuV/m<br>122.30       | dB<br>-54.43             | peak      |
|                        | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Level dBuV 50.03 79.34 | Factor<br>dB/m          | ment<br>dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dBuV/m                 | dB<br>-54.43<br>-24.74   |           |



Page: 134 of 192

| Temperature:  | 25 ℃ Relative Humidity: 55%             |
|---------------|-----------------------------------------|
| Test Voltage: | DC 3.7V                                 |
| Ant. Pol.     | Vertical                                |
| Test Mode:    | TX 802.11 ac(80) Mode 5775MHz (U-NII-3) |
| Remark:       | N/A                                     |
| 130.0 dBuV/m  |                                         |
|               |                                         |
|               |                                         |
|               |                                         |



| No | . Mk | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBuV             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 5725.000 | 45.39            | 17.84 | 63.23            | 122.30 | -59.07 | peak     |
| 2  | *    | 5802.190 | 77.66            | 18.31 | 95.97            | 122.30 | -26.33 | peak     |
| 3  |      | 5850.000 | 46.00            | 18.62 | 64.62            | 122.30 | -57.68 | peak     |