Notes about Prime Constellations

Günthner

Winter 2024

1 Introduction

Definition 1. A Constellation is a function: $\chi : \mathbb{R} \to \mathbb{R}^d$ We call d the degree of the constellation.

We are now looking for n such that all $\chi(n)$ are prime! Or rather we are looking for their count in the range [1, n]. To do this we will first "generalize" prime numbers because we have to closed form expression for $\pi(n)$, the number of primes in the range [1, n]. Instead we have an upper bound.

The general idea is to step over all "prime" numbers and eliminate all t such that not all $\chi(t)$ are prime. Then we use the upper bound to establish a lower bound for the resulting count.

1.1 Example Constellations

1.1.1 Basic Prime Numbers

The constellation $\chi(t) = t$ yields the primes.

1.1.2 Twin Primes

The constellation $\chi(t) = (t-2,t)$ yields twin primes.

1.1.3 Goldbach-n-primes

Definition 2. Goldbach-n-prime

For n even, a number p < n is a Goldbach-n-prime iff both p and n - p are prime

Conjecture 1 (The Goldbach-Conjecture). For every $n \ge 4$ there exists at least one Goldbach-n-prime

The constellation $\chi(t) = (t, n-t)$ yields Goldbach-n-primes

1.1.4 Landau's Fourth Problem

The constellation $\chi(t) = t^2 + 1$ yields primes for Landau's fourth problem.

1.1.5 Mersenne Primes

The constellation $\chi(t) = 2^t - 1$ yields Mersenne Primes.

2 Basic Definitions

Let's define a function that generalizes prime numbers:

$$\psi: \mathbb{Z} \to \mathbb{Z} \tag{1}$$

We will also need an inverse function for χ :

$$\chi^{-1} : \mathbb{R} \to \mathbb{R}^d \chi^{-1}(t) = (\chi_k^{-1}(t))_{k \in [d]}$$
 (2)

Now to define the numbers "coprime" to the first k "prime" numbers: $M_{\chi}^{\psi}(k)$

$$M_{\chi}^{\psi}(0) := M_0 := \mathbb{Z} \setminus \{ t \in \mathbb{Z} : \exists l \in \chi(t) : l = 0 \lor l \in \mathbb{Z}^{\times} \}$$
 (3)

$$\begin{split} M_{\chi}^{\psi}(k) &:= M_{\chi}^{\psi}(k-1) \setminus \{t \in \mathbb{Z} : \exists l \in \chi(t) : \psi(k) \mid l \} \\ &= M_{\chi}^{\psi}(k-1) \setminus \{t \in \mathbb{Z} : \exists l \in [d], m \in M_0 : m\psi(k) = \chi_l(t) \} \\ &= M_{\chi}^{\psi}(k-1) \setminus \{t \in \mathbb{Z} : \exists l \in [d], m \in M_0 : \chi_l^{-1}(m\psi(k)) = t \} \\ &= M_{\chi}^{\psi}(k-1) \setminus \chi^{-1}(\psi(k) \cdot M_0) \\ &= M_{\chi}^{\psi}(k-1) \setminus \left(M_{\chi}^{\psi}(k-1) \cap \chi^{-1}(\psi(k) \cdot M_0)\right) \end{split}$$

$$(4)$$

3 Derivation

For $\chi = id$:

$$M_{\chi}^{\psi}(k-1) \cap \chi^{-1}(\psi(k) \cdot M_0) = M_{\chi}^{\psi}(k-1) \cap (\psi(k) \cdot M_0)$$

= $\psi(k) \cdot M_{\chi}^{\psi}(k-1)$ (5)

For $\chi(t) = \{ t - 2, t \}$:

$$M_{\chi}^{\psi}(k-1) \cap \chi^{-1} (\psi(k) \cdot M_{0})$$

$$= M_{\chi}^{\psi}(k-1) \cap (\psi(k) \cdot M_{0} \cup (\psi(k) \cdot M_{0} + 2))$$

$$= (M_{\chi}^{\psi}(k-1) \cap \psi(k)M_{0}) \cup (M_{\chi}^{\psi}(k-1) \cap \psi(k)M_{0} + 2)$$
(6)

For $n \in \mathbb{N}$ and $\chi(t) = \{t, n-t\}$:

$$M_{\chi}^{\psi}(k-1) \cap \chi \left(\psi(k) \cdot M_0 \right) = M_{\chi}^{\psi}(k-1) \cap \chi \left(\psi(k) \cdot M_0 \right)$$

$$=$$

$$(7)$$

4 Results

Definition 3.

$$\Psi_{\chi}^{\psi} = \lim_{k \to \infty} M_{\chi}^{\psi}(k) \tag{8}$$

Lemma 1.

$$\mathbb{P} = \Psi_{\mathrm{id}}^{\pi^{-1}} \tag{9}$$

5 Notes

	2	3		5	7		
ſ			2	3	5	7	