Optimal Privacy-Constrained Mechanisms

Ran Eilat, Kfir Eliaz, and Xiaosheng Mu (2019)

Presented by Silvio Ravaioli

August 1, 2019

- Unprecedented amount of personal data stored and traded
- Concern about privacy [tastes, willingness to pay for products]
- ► Should government increase the regulation about collection and use of personal information?

- ► The paper explores the trade-off between profits and privacy
- ▶ We need to define:
 - Privacy: buyer's type (price elasticity)
 - Privacy loss: Bayesian measure (expected relative entropy) that takes into account the designer's initial information

- Unprecedented amount of personal data stored and traded
- Concern about privacy [tastes, willingness to pay for products]
- ► Should government increase the regulation about collection and use of personal information?

- The paper explores the trade-off between profits and privacy
- We need to define:
 - Privacy: buyer's type (price elasticity)
 - ► *Privacy loss*: Bayesian measure (expected relative entropy) that takes into account the designer's initial information

- Mussa-Rosen (1978) set-up: population of buyers with heterogeneous price elasticity (type), monopolist seller with increasing costs for producing a high quality product, designs an optimal menu of quality-price pairs
- After the transaction, the seller knows exactly the buyer's type (no privacy)
- Suppose the regulator wants to limit the amount of information that can be learned
- ► Additional constraint: the regulator decides how much the seller can learn about the buyer's type
- Bayesian approach to quantify the privacy loss

- Mussa-Rosen (1978) set-up: population of buyers with heterogeneous price elasticity (type), monopolist seller with increasing costs for producing a high quality product, designs an optimal menu of quality-price pairs
- After the transaction, the seller knows exactly the buyer's type (no privacy)
- Suppose the regulator wants to limit the amount of information that can be learned
- Additional constraint: the regulator decides how much the seller can learn about the buyer's type
- Bayesian approach to quantify the privacy loss

- ► The seller initially has *some* information about buyers' type distribution (prior belief)
- Privacy loss is defined as the quantity of additional information that is released by the buyer by participating in the mechanism

- ► The difference between the designer's prior and posterior beliefs is calculated using the Kullback-Leibler divergence (expected relative entropy)
- \blacktriangleright The privacy constraint requires the privacy loss to be at most κ

- The seller initially has some information about buyers' type distribution (prior belief)
- Privacy loss is defined as the quantity of additional information that is released by the buyer by participating in the mechanism

- ► The difference between the designer's prior and posterior beliefs is calculated using the Kullback-Leibler divergence (expected relative entropy)
- ightharpoonup The privacy constraint requires the privacy loss to be at most κ

- Most of the theoretical work on privacy is based on "differential privacy" [starting with Dwork et al. 2006], a concept from cryptography
- Differentially private algorithms are used to publish statistical aggregates while ensuring confidentiality of survey responses. The constraint lies in the ability of identifying individuals whose information may be in a database
- ▶ Other papers [including Agrawal and Aggarwal 2001 and Wang et al. 2016] discuss privacy-distortion and anonymization of databases, with different notions of privacy (including relative entropy), but without considering strategic interaction between privacy, mechanism, and agent behavior

- Most of the theoretical work on privacy is based on "differential privacy" [starting with Dwork et al. 2006], a concept from cryptography
- ▶ Differentially private algorithms are used to publish statistical aggregates while ensuring confidentiality of survey responses. The constraint lies in the ability of identifying individuals whose information may be in a database
- ▶ Other papers [including Agrawal and Aggarwal 2001 and Wang et al. 2016] discuss privacy-distortion and anonymization of databases, with different notions of privacy (including relative entropy), but without considering strategic interaction between privacy, mechanism, and agent behavior

Model Overview

- Mussa-Rosen set-up of monopolistic screening
- The seller designs a static mechanism that maps messages to quantity/price pairs
- Incentive-compatibility: the buyer reveals own type (in a coarse way)
- ▶ Individual-rationality: buyers participate in the mechanism
- Privacy constraint: the expected relative entropy is bounded
- Only some mechanisms are κ -feasible
- ▶ The profit maximizing ones are called κ -optimal mechanisms

Research Questions

- ► What are the key properties of the constrained-optimal mechanism?
- What information does each buyer type disclose?
- Do some buyer types disclose more information than others?
- What is the maximal amount of information that is revealed by any buyer type?
- Is the privacy constraint even binding?

- ► Two definitions of privacy loss: ex-ante and ex-post
- ► Here we focus on the former (more in the paper)

Research Questions

- ► What are the key properties of the constrained-optimal mechanism?
- What information does each buyer type disclose?
- Do some buyer types disclose more information than others?
- What is the maximal amount of information that is revealed by any buyer type?
- Is the privacy constraint even binding?

- Two definitions of privacy loss: ex-ante and ex-post
- ► Here we focus on the former (more in the paper)

Model Setup

 A monopolistic seller offers a menu of price/quantities to a single buyer and obtains a profit

$$\pi(p,q) = p - c(q)$$

based on realized price, quantity, and cost. She wants to maximize the expected profit wrt buyer's WTP

• A buyer with WTP $\theta \in \Theta = [\theta, \bar{\theta}]$ and utility

$$u(p, q, \theta) = q \cdot \theta - p$$

▶ Buyers' WTP θ distribution is F, with support Θ and density f. Virtual valuation $v(\theta)$ is increasing, strictly positive, and continuously differentiable

Model Setup

 A monopolistic seller offers a menu of price/quantities to a single buyer and obtains a profit

$$\pi(p,q) = p - c(q)$$

based on realized price, quantity, and cost. She wants to maximize the expected profit wrt buyer's WTP

• A buyer with WTP $\theta \in \Theta$ = $[\theta, \bar{\theta}]$ and utility

$$u(p, q, \theta) = q \cdot \theta - p$$

▶ Buyers' WTP θ distribution is F, with support Θ and density f. Virtual valuation $v(\theta)$ is increasing, strictly positive, and continuously differentiable

Mechanism

- ► The seller designs a static mechanism $\mathbb{M} = \langle M, p, q \rangle$
- Set of messages M
- ▶ Quantity function $q: M \to \mathbb{R}^+$
- ▶ Price function $p: M \to \mathbb{R}^+$
- ► The buyer adopts a strategy $\sigma: \Theta \to \Delta M$
- ► Without privacy constraint, the optimal (revenue maximizing) mechanism is a direct revelation mechanism such that
 - buyers truthfully report own type $m = \theta$
 - quantities satisfy $v(\theta) = c'(q(\theta))$
 - ▶ prices satisfy $p(\theta) = q(\theta)\theta \int_{\theta}^{\theta} q(x)dx$

Mechanism

- ▶ The seller designs a static mechanism $\mathbb{M} = \langle M, p, q \rangle$
- Set of messages M
- ▶ Quantity function $q: M \to \mathbb{R}^+$
- ▶ Price function $p: M \to \mathbb{R}^+$
- ▶ The buyer adopts a strategy $\sigma: \Theta \to \Delta M$
- ► Without privacy constraint, the optimal (revenue maximizing) mechanism is a direct revelation mechanism such that
 - buyers truthfully report own type $m = \theta$
 - quantities satisfy $v(\theta) = c'(q(\theta))$
 - prices satisfy $p(\theta) = q(\theta)\theta \int_{\theta}^{\theta} q(x)dx$

Bayesian Privacy

- ► The seller knows the buyer's type distribution *F* (prior)
- ▶ After observing the message $m \in M$, the posterior distribution is $F(\cdot|m)$
- ▶ The relative entropy (Kullback-Leibler Divergence) from $F(\cdot|m)$ to F is

$$D_{KL}(F(\cdot|m) \mid\mid F) = \int_{\underline{\theta}}^{\underline{\theta}} f(\theta|m) \cdot \log \frac{f(\theta|m)}{f(\theta)} d\theta$$

▶ If $F(\cdot|m)$ contains atoms, $D_{KL}(F(\cdot|m)||F) = +\infty$

Ex-ante and Ex-post Privacy loss

► The ex-ante loss of privacy entailed by $\mathbb{M} = \langle M, p, q \rangle$ is

$$I(\mathbb{M}) = \mathbb{E}_m[D_{KL}(F(\cdot|m) \mid\mid F)]$$

where \mathbb{E}_m is evaluated according to the message probabilities in equilibrium

▶ The ex-post loss of privacy entailed by $\mathbb{M} = \langle M, p, q \rangle$ is

$$I^{ep}(\mathbb{M}) = sup_m[D_{KL}(F(\cdot|m) \mid\mid F)]$$

where the supremum is taken over messages that are sent with positive probability in equilibrium

Ex-ante and Ex-post Privacy loss

► The ex-ante loss of privacy entailed by $\mathbb{M} = \langle M, p, q \rangle$ is

$$I(\mathbb{M}) = \mathbb{E}_m[D_{KL}(F(\cdot|m) \mid\mid F)]$$

where \mathbb{E}_m is evaluated according to the message probabilities in equilibrium

► The ex-post loss of privacy entailed by $\mathbb{M} = \langle M, p, q \rangle$ is

$$I^{ep}(\mathbb{M}) = sup_m[D_{KL}(F(\cdot|m) \mid\mid F)]$$

where the supremum is taken over messages that are sent with positive probability in equilibrium

Feasible and Optimal mechanisms

- ▶ The seller wants to design a mechanism $\mathbb{M} = \langle M, p, q \rangle$ and a strategy for the buyer σ such that she maximizes the expected profit subject to the three constraints
- 1. Incentive-compatibility: for all θ , $m \in supp(\sigma(\theta))$, $m' \in M$

$$u(p(m), q(m), \theta) \ge u(p(m'), q(m'), \theta)$$

2. Individual-rationality: for all θ and $m \in supp(\sigma(\theta))$

$$u(p(m)), q(m), \theta) \ge 0$$

3. Privacy constraint

$$I((M)) \le \kappa$$

- \triangleright κ -feasible mechanisms satisfy all the constraints
- \triangleright κ -optimal m. maximize profits among all the κ -feasible m.

Feasible and Optimal mechanisms

- ▶ The seller wants to design a mechanism $\mathbb{M} = \langle M, p, q \rangle$ and a strategy for the buyer σ such that she maximizes the expected profit subject to the three constraints
- 1. Incentive-compatibility: for all θ , $m \in supp(\sigma(\theta))$, $m' \in M$

$$u(p(m), q(m), \theta) \geq u(p(m'), q(m'), \theta)$$

2. Individual-rationality: for all θ and $m \in supp(\sigma(\theta))$

$$u(p(m)), q(m), \theta) \geq 0$$

3. Privacy constraint

$$I((M)) \leq \kappa$$

- \triangleright κ -feasible mechanisms satisfy all the constraints
- \triangleright κ -optimal m. maximize profits among all the κ -feasible m.

Feasible and Optimal mechanisms

- ▶ The seller wants to design a mechanism $\mathbb{M} = \langle M, p, q \rangle$ and a strategy for the buyer σ such that she maximizes the expected profit subject to the three constraints
- 1. Incentive-compatibility: for all θ , $m \in supp(\sigma(\theta))$, $m' \in M$

$$u(p(m), q(m), \theta) \geq u(p(m'), q(m'), \theta)$$

2. Individual-rationality: for all θ and $m \in supp(\sigma(\theta))$

$$u(p(m)), q(m), \theta) \geq 0$$

3. Privacy constraint

$$I((M)) \leq \kappa$$

- \triangleright κ -feasible mechanisms satisfy all the constraints
- κ -optimal m. maximize profits among all the κ -feasible m.

Coarse revelation principle

- ▶ Because of the privacy constraint, the seller obtains a *noisy* signal about the buyer's type
- ► Coarse revelation principle focus on interval mechanisms
- **Lemma**. For any κ -feasible mechanism, there exists another κ -feasible mechanism with the same profit level, such that M consists of intervals that partition Θ and each type reports the message for which $\theta \in m$
- ► Intuition of the proof
- Mechanisms that rely on mixed strategies are "wasteful"
- ▶ We can transform M into an interval mechanism with the same expected profit and weakly lower privacy loss
- Remove duplicate messages s.t. p(m) = p(m'), q(m) = q(m')
- Single crossing property: convex sets of pooled types
- Define $\mu(m) = \{\theta \in \Theta | m \in supp(\sigma(\theta))\}$: interval or singleton

Coarse revelation principle

- ▶ Because of the privacy constraint, the seller obtains a *noisy* signal about the buyer's type
- ► Coarse revelation principle focus on interval mechanisms
- **Lemma**. For any κ -feasible mechanism, there exists another κ -feasible mechanism with the same profit level, such that M consists of intervals that partition Θ and each type reports the message for which $\theta \in m$
- ► Intuition of the proof
- Mechanisms that rely on mixed strategies are "wasteful"
- ▶ We can transform M into an interval mechanism with the same expected profit and weakly lower privacy loss
- Remove duplicate messages s.t. p(m) = p(m'), q(m) = q(m')
- Single crossing property: convex sets of pooled types
- Define $\mu(m) = \{\theta \in \Theta | m \in supp(\sigma(\theta))\}$: interval or singleton

Coarse revelation principle

- ► Because of the privacy constraint, the seller obtains a *noisy* signal about the buyer's type
- Coarse revelation principle focus on interval mechanisms
- ▶ **Lemma**. For any κ -feasible mechanism, there exists another κ -feasible mechanism with the same profit level, such that M consists of intervals that partition Θ and each type reports the message for which $\theta \in m$
- Intuition of the proof
- Mechanisms that rely on mixed strategies are "wasteful"
- ▶ We can transform M into an interval mechanism with the same expected profit and weakly lower privacy loss
- Remove duplicate messages s.t. p(m) = p(m'), q(m) = q(m')
- ► Single crossing property: convex sets of pooled types
- ▶ Define $\mu(m) = \{\theta \in \Theta | m \in supp(\sigma(\theta))\}$: interval or singleton

Interval Mechanisms

- ► Interval mechanisms: M consists of intervals that partition $\Theta = [\underline{\theta}, \overline{\theta}]$
- ▶ We have a discrete distribution g_M over messages induced by the prior as $g_M(m) = F(\bar{m}) F(\underline{m})$, the ex-ante privacy loss is

$$I(\mathbb{M}) = H(g_M) = -\sum_m [F(\bar{m}) - F(\underline{m})] \cdot log [F(\bar{m}) - F(\underline{m})]$$

Lemma 2. The profit maximization problem is equivalent to finding a set of intervals that partition Θ, satisfy the privacy constraint, and such that expected profit is maximized. Quantity-price pairs are determined by the interval partition

Interval Mechanisms

- ► Interval mechanisms: M consists of intervals that partition $\Theta = [\underline{\theta}, \overline{\theta}]$
- ▶ We have a discrete distribution g_M over messages induced by the prior as $g_M(m) = F(\bar{m}) F(\underline{m})$, the ex-ante privacy loss is

$$I(\mathbb{M}) = H(g_M) = -\sum_m [F(\bar{m}) - F(\underline{m})] \cdot log [F(\bar{m}) - F(\underline{m})]$$

Lemma 2. The profit maximization problem is equivalent to finding a set of intervals that partition Θ, satisfy the privacy constraint, and such that expected profit is maximized. Quantity-price pairs are determined by the interval partition

Existence

- ▶ **Proposition**. There exists a κ -optimal mechanisms $\mathbb{M} = \langle M, p, q \rangle$ such that M consists of finitely many intervals that partition Θ , and each type $\theta \in \Theta$ reports the interval to which it belongs.
- Intuition for the proof
- ▶ Sequence of κ -feasible interval mechanisms \mathbb{M}_j such as $\pi(\mathbb{M}_j)$ converges to π^*
- ▶ Suppose we can replace each \mathbb{M}_j with $\tilde{\mathbb{M}}_j$, with a the new \tilde{M}_j with at most N intervals (based on F and κ), then the limit partition \tilde{M}_{∞} would be optimal
- ▶ The replacement $\tilde{\mathbb{M}}_j$ is generated by merging two adjacent intervals, and dividing another interval. The profit is higher without violating the privacy constraint

Existence

▶ **Proposition**. There exists a κ -optimal mechanisms $\mathbb{M} = \langle M, p, q \rangle$ such that M consists of finitely many intervals that partition Θ , and each type $\theta \in \Theta$ reports the interval to which it belongs.

Intuition for the proof

- ▶ Sequence of κ -feasible interval mechanisms \mathbb{M}_j such as $\pi(\mathbb{M}_j)$ converges to π^*
- ▶ Suppose we can replace each \mathbb{M}_j with $\tilde{\mathbb{M}}_j$, with a the new \tilde{M}_j with at most N intervals (based on F and κ), then the limit partition \tilde{M}_{∞} would be optimal
- ▶ The replacement $\tilde{\mathbb{M}}_j$ is generated by merging two adjacent intervals, and dividing another interval. The profit is higher without violating the privacy constraint

Further Properties

- ▶ **Proposition 2**. Under the ex-ante privacy measure, the privacy constraint is exhausted in any κ -optimal mechanism.
- ▶ **Proposition 3**. There exists $\underline{\kappa} > 0$ such that in any κ -optimal interval mechanism with $0 < \kappa \le \underline{\kappa}$, the message set M consists of exactly two intervals
- ▶ **Proposition** 4. Suppose c(q) has non-negative third derivative, and $v(\theta)$ is strictly less convex than $F(\theta)$. Then any κ -optimal mechanism consists of intervals that are ordered in increasing mass from left to right.
 - Symmetrically, the intervals in the optimal mechanism would be ordered in decreasing mass if $c''' \le 0$ and $v(\theta)$ were strictly more convex than $F(\theta)$

Uniform-Quadratic Case

- ► $F(\theta)$ is uniform $U[\underline{\theta}, \overline{\theta}]$, c(q) is quadratic $c(q) = \frac{q^2}{2}$
- $\mathbf{v}(\theta)$ is linear therefore as convex as $F(\theta)$, c''' = 0
- ► From Proposition 4: the ordering of intervals does not matter, focus on the lengths
- ▶ **Lemma**. In the uniform-quadratic-case, given any $n \ge 1$ and $\kappa > 0$, the $(n \kappa)$ -optimal mechanism is such that:
 - 1. if $log \ n \le \kappa$ then M consists of *n* intervals of equal length
 - 2. if $log \ n > \kappa$ then exactly one interval has length l_s , and the remaining n-1 intervals have length $l_b > l_s$, with the interval lengths determined by the privacy constraint
- ▶ Intuition: 1) intervals' order does not matter, 2) FOC: intervals can have at most two lengths, 3) SOC: n-1 intervals have the same lengths, the last one is weakly shorter

Uniform-Quadratic Case

- ► $F(\theta)$ is uniform $U[\underline{\theta}, \overline{\theta}]$, c(q) is quadratic $c(q) = \frac{q^2}{2}$
- $v(\theta)$ is linear therefore as convex as $F(\theta)$, c''' = 0
- ► From Proposition 4: the ordering of intervals does not matter, focus on the lengths
- ▶ **Lemma**. In the uniform-quadratic-case, given any $n \ge 1$ and $\kappa > 0$, the $(n \kappa)$ -optimal mechanism is such that:
 - 1. if $\log n \le \kappa$ then M consists of *n* intervals of equal length
 - 2. if $log \ n > \kappa$ then exactly one interval has length l_s , and the remaining n-1 intervals have length $l_b > l_s$, with the interval lengths determined by the privacy constraint
- ▶ Intuition: 1) intervals' order does not matter, 2) FOC: intervals can have at most two lengths, 3) SOC: n-1 intervals have the same lengths, the last one is weakly shorter

Uniform-Quadratic Case: privacy-profit trade-off

Figure 1. The privacy-profit frontier in the uniform-quadratic case

- **Expected profit as a function of** κ
- Kinks indicate that n increases
- Diminishing returns when n increases
- ▶ Increasing returns when κ increases (and n does not)

Optimal Privacy-Constrained Mechanisms

Ran Eilat, Kfir Eliaz, and Xiaosheng Mu (2019)

Presented by Silvio Ravaioli

August 1, 2019