# 计算机网络通信基础

### Communication Technologies of Computer Network

(For Postgraduate)

陶宏才

Ph.D., Professor

taohongcai@sina.com

信息科学与技术学院

School of Information Science & Technology





Southwest Jiaotong University



# 第4章 Transmission Media(传输媒介)

- 4.1 Overview
- 4.2 Design Factor
- 4.3 Twisted Pair
- 4.4 Coaxial Cable
- 4.5 Optical Fiber
- 4.6 Wireless Transmission



#### 4.1 Overview

- --- classified as guided or unguided
  - guided: wire/optical fiber.
  - unguided: wireless, employ an antenna for transmitting through air, vacuum, or water.
- --- characteristics and quality determined by medium and signal
- in <u>unguided media</u>, **bandwidth** produced by the **antenna** is more important.
  - (A) signals at lower frequencies are omnidirectional (全向);
  - (B) At higher frequencies, it is possible to focus the signal into a directional beam, eg., light beam.
- in guided media, medium is more important.
- ---key concerns are data rate and distance
- the greater the data rate, the farther the distance.



# 第4章 Transmission Media(传输媒介)

- 4.1 Overview
- 4.2 Design Factor
- 4.3 Twisted Pair
- 4.4 Coaxial Cable
- 4.5 Optical Fiber
- 4.6 Wireless Transmission



### 4.2 Design Factor

#### ---bandwidth

- higher bandwidth of a signal gives higher data rate, while all other factors (as follows) remaining constant.
- ---transmission impairments (损耗)
  - eg. attenuation (衰减), limit the distance.
- For guided media, twisted pair generally suffers more impairment than coaxial cable, which in turn suffers more than optical fiber.
- ---interference (干扰)
- For guided media, interference can be caused by emanations from nearby cables.
- Interference can also be experienced from **unguided** transmissions.
- ---number of receivers in guided media
  - more receivers introduces more attenuation in **shared** link.



#### Electromagnetic Spectrum (William Stallings, 8e)



(meters) Note: the frequencies at which various guided media and unguided transmission techniques operate.

ELF = Extremely low frequency

VF = Voice frequency

VLF = Very low frequency

LF = Low frequency

MF = Medium frequency

HF = High frequency

VHF = Very high frequency

UHF = Ultrahigh frequency

SHF = Superhigh frequency

EHF = Extremely high frequency

THF Tremendously high frequency

### 4.2 Design Factor

Twisted pair

(with loading)

Twisted pairs

(multi-pair

cables)

Coaxial cable

**Optical fiber** 

7/68

Point-to-Point Transmission Characteristics of Guided Media (GLOV98)

| (update needed) |           |         |         |          |  |  |
|-----------------|-----------|---------|---------|----------|--|--|
|                 | Frequency | Typical | Typical | Repeater |  |  |

| (upd      | late needed) |         |          |
|-----------|--------------|---------|----------|
| Frequency | Typical      | Typical | Repeater |

#### Attenuation Kange Delay Spacing

0.2 dB/km @ 1 kHz

0.7 dB/km @ 1 kHz

7 dB/km @ 10 MHz

0.2 to 0.5 dB/km

Designed by Dr. TAO Hongcai, SIST/SWJTU

2 km

2 km

1 to 9 km

100 km

 $50 \,\mu s/km$ 

 $5 \mu s/km$ 

 $4 \mu s/km$ 

 $5 \mu s/km$ 

 $0 \sim 1.1 \text{ MHz}$ 

 $0 \sim 100 \, \text{MHz}$ 

 $0 \sim 1 \text{ GHz}$ 

186 ~ 370 THz

# 第4章 Transmission Media(传输媒介)

- 4.1 Overview
- 4.2 Design Factor
- 4.3 Twisted Pair
- 4.4 Coaxial Cable
- 4.5 Optical Fiber
- 4.6 Wireless Transmission







(b) Category 5 UTP



- ◆ Twisted Pair Transmission Characteristics
- --- analog
  - needs amplifiers every 5~6 km.
- ---digital
  - can use either analog or digital signals.
  - needs a repeater every 2~3 km.
- ---limitation
  - distance
- bandwidth (for analog signal), 1 MHz(?).
- data rate (for digital signal), 1 Mbps (long distance) ~ 10 Gbps (short distance).
- --- susceptible to interference and noise



- Unshielded vs. Shielded TP
- ---unshielded Twisted Pair (UTP)
- ordinary telephone wire.
- cheapest.
- easiest to install.
- suffers from external electromagnetic interference (EMI), including interference from nearby twisted pair and from noise generated in the environment.
- ---shielded Twisted Pair (**STP**)
  - metal braid or sheathing that reduces interference.
  - more expensive.
  - harder to handle (thick, heavy).
- ---in a variety of categories see EIA (Electronic Industries Association)/TIA (Telecommunications Industries Association) 568 (published in 1991)

UTP Categories

EIA-568-A

**Standards** 

| Category 3<br>Class C | Category 5<br>Class D | Category 5E | Category 6<br>Class E | Category 7<br>Class F |
|-----------------------|-----------------------|-------------|-----------------------|-----------------------|
|                       |                       |             | 250 241               | 600 1 411             |

|         | Class C | Class D | cutegory en | Class E | Clas  |
|---------|---------|---------|-------------|---------|-------|
| ndwidth | 16 MHz  | 100 MHz | 100 MHz     | 250 MHz | 600 M |

| Bandwidth | 16 MHz | 100 MHz | 100 MHz | 250 MHz<br>500MHz (Cat 6a) | 600 MHz<br>1GHz (Cat 7a) |
|-----------|--------|---------|---------|----------------------------|--------------------------|
|           |        |         |         |                            |                          |

| Bandwidth  | 16 MHz | 100 MHz | 100 MHz | 500MHz (Cat 6a) | 1GHz (Cat 7a) |
|------------|--------|---------|---------|-----------------|---------------|
| Cable Type | UTP    | UTPFTP  | UTP/FTP | UTP/FTP         | SSTP          |

EIA-568-B

EIA-568-B

ISO/IEC 11801

13/68 Designed by Dr. TAO Hongcai, SIST/SWJTU

EIA-568-A



#### Comparison of STP and UTP

|                 | Attenuation (dB per 100 m) |                   |             | Near-end Crosstalk (dB) |                   |             |
|-----------------|----------------------------|-------------------|-------------|-------------------------|-------------------|-------------|
| Frequency (MHz) | Category 3<br>UTP          | Category 5<br>UTP | 150Ω<br>STP | Category 3<br>UTP       | Category 5<br>UTP | 150Ω<br>STP |
| 1               | 2.6                        | 2.0               | 1.1         | 41                      | 62                | 58          |
| 4               | 5.6                        | 4.1               | 2.2         | 32                      | 53                | 58          |
| 16              | 13.1                       | 8.2               | 4.4         | 23                      | 44                | 50.4        |
| 25              |                            | 10.4              | 6.2         |                         | 41                | 47.5        |
| 100             |                            | 22.0              | 12.3        |                         | 32                | 38.5        |
| 300             |                            |                   | 21.4        |                         |                   | 31.3        |

Near End Crosstalk (NEXT, 近端串扰): near transmitted signal is picked up by near receiving pair.



FEXT: Far End Crosstalk (远端串扰)



# 第4章 Transmission Media(传输媒介)

- 4.1 Overview
- 4.2 Design Factor
- 4.3 Twisted Pair
- 4.4 Coaxial Cable
- 4.5 Optical Fiber
- 4.6 Wireless Transmission



### 4.4 Coaxial Cable









#### 4.4 Coaxial Cable

- Coaxial Cable Transmission Characteristics
- ---categorized into  $50\Omega$  (thin, baseband) and  $75\Omega$  (thick, broadband).
- ---superior frequency characteristics to TP.
- ---performance limited by attenuation & noise, eg., thermal noise, and inter-modulation noise (while FDM).
- ---mainly used in cable TV (75 $\Omega$ ), early in Ethernet (50 $\Omega$  or 75 $\Omega$ ).
- ---analog signals
  - amplifiers every few km.
  - closer spacing required if higher frequencies are used.
  - up to 1GHz.
- ---digital signals
  - repeater every 1km.
  - closer spacing needed for higher data rates.



# 第4章 Transmission Media(传输媒介)

- 4.1 Overview
- 4.2 Design Factor
- 4.3 Twisted Pair
- 4.4 Coaxial Cable
- 4.5 Optical Fiber
- 4.6 Wireless Transmission



Structure





(a) Side view of a single fiber. (b) End view of a sheath with three fibers.



- Optical Fiber Benefits
- --- greater capacity
  - data rates of hundreds of Gbps over tens of kilometers.
    - (A) for coaxial cable, maximum of **hundreds of Mbps** over about 1 km.
    - (B) for twisted pair, just a few Mbps over 1 km, or up to 100 Mbps to 10 Gbps over a few tens of meters.
- ---smaller size & weight
- ---lower attenuation
- ---electromagnetic isolation
- not affected by external electromagnetic fields.
- ---high degree of security from eavesdropping
  - inherently difficult to tap.
- --- greater repeater spacing
  - tens of km at least.



### working principle



- (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles.
- (b) Light trapped by total internal reflection.



- Optical Fiber Transmission Characteristics
- --- uses total internal reflection (全反射) to transmit light
  - $\bullet$  effectively acts as wave guide for  $10^{14}$  to  $10^{15}$  Hz.
- ---can use several different light sources
- Light Emitting Diode (LED, 发光二极管) cheaper, wider operating temperature range, longer life.
- Injection Laser Diode (ILD, 注入激光二极管) more efficient, has greater data rate.
- ---relation of wavelength, transmission mode & data rate
  - single mode and multimode can support several different wavelengths of light and can employ laser or LED light sources.

#### Optical Fiber Transmission Modes



(a) Step-index multimode

Note: step-index (阶跃/突变) multimode, referring to the variety of angles that will reflect, multiple propagation paths exist. best suited for transmission over very short distances.



(b) Graded-index multimode

light at the periphery arrives at a receiver at about the <u>same time</u> as the straight rays in the core axis. often used in <u>LANs</u> – Graded-index (渐变式) multimode.



core radius is reduced, only a single angle or mode can pass: the axial ray. typically used for long-distance applications. (c) Single mode

A comparison of semiconductor diodes and LEDs as light sources (Tanenbaum, 4e)

| ltem                    | LED       | Semiconductor laser      |
|-------------------------|-----------|--------------------------|
| Data rate               | Low       | High                     |
| Fiber type              | Multimode | Multimode or single mode |
| Distance                | Short     | Long                     |
| Lifetime                | Long life | Short life               |
| Temperature sensitivity | Minor     | Substantial              |
| Cost                    | Low cost  | Expensive                |



Attenuation of light through fiber in the infrared region (Tanenbaum, 4e)



Frequency

Frequency Utilization for Fiber Applications

**Bandwidth** 

| (in vacuum)<br>range (nm) | Range<br>(THz) | (THz) | <b>Band Label</b> | Fiber Type  | Application |
|---------------------------|----------------|-------|-------------------|-------------|-------------|
| 820 to 900                | 366 to 333     | 33    |                   | Multimode   | LAN         |
| 1280 to 1350              | 234 to 222     | 12    | S                 | Single mode | Various     |
| 1528 to 1561              | 196 to 192     | 4     | C                 | Single mode | WDM         |
| 1561 to 1620              | 192 to 185     | 7     | L                 | Single mode | WDM         |

注: 第一列为真空中的波长,因光在光纤中的传播速度比光速低(约2/3c),故光纤中的实 际波长要比第一列的短。

Wavelength

Frequency Utilization for Fiber Applications



图12.7 10 Gbps以太网距离选项(对数刻度)

◆ 光纤的波段与窗口(与前表有出入, 此表应准确)

| 频带                                   | 窗口 | 波长范围(nm)     | 频率范围(THz)   |
|--------------------------------------|----|--------------|-------------|
|                                      | 1  | 850(770-910) |             |
| O带(Original band)原始波段                | 2  | 1260-1360    | 237.9-220.4 |
| E带(Extended band)扩展波段                | 5  | 1360-1460    | 220.4-205.3 |
| S带(Short wavelength band)短波长波段       |    | 1460-1530    | 205.3-195.9 |
| C带(Conventional band)常规波段            | 3  | 1530-1565    | 195.9-191.6 |
| L带(Longer wavelength band) 长波长波段     | 4  | 1565-1625    | 191.6-184.5 |
| U带(Ultra-length wavelength band)超长波段 |    | 1625-1675    | 184.5-179.0 |

注: 2002年5月ITU-T将光纤通信系统光波段划分为O、E、S、C、L和U等6个波段。多模光纤850nm称为第1窗口,单模光纤O带为第2窗口,C带称第3窗口,L带为第4窗口,E带为第5窗口。

#### Attenuation in Guided Media





(a) Twisted pair (based on [REEV95])



(c) Optical fiber (based on [FREE02])



(b) Coaxial cable (based on [BELL90])

(d) Composite graph

# 第4章 Transmission Media(传输媒介)

- 4.1 Overview
- 4.2 Design Factor
- 4.3 Twisted Pair
- 4.4 Coaxial Cable
- 4.5 Optical Fiber
- 4.6 Wireless Transmission



### 4.6 Wireless Transmission

- 1. Frequency (3大可用频率范围)
  - ---30MHz to 1GHz (Broadcast radio range, 射频区)
    - suitable for **omnidirectional** (全向) applications.
    - At VLF-MF, can pass through buildings easily, but not easily for high frequencies from HF.
  - \*\*根据波的衍射特性,当波长大于或相当于障碍物的尺寸时,波才能明显地绕到障碍物的后面。地面上的障碍物一般不太大,长波可以很好地绕过它们。中波和中短波也能较好地绕过,短波和微波由于波长过短,绕过障碍物较困难。
  - --- 2GHz to 40GHz (Microwave frequencies, 微波频率)
    - highly directional (定向).
      - \*\*Above 100MHz, the waves travel in nearly straight lines (Tanenbaum, 4e).
    - quite suitable for point-to-point transmission (do not pass through buildings well).
    - also used for satellite communications.
    - Problem: absorption by water(>4GHz), multipath fading(3)

#### 4.6 Wireless Transmission

- ---3×10<sup>11</sup> to 2×10<sup>14</sup> Hz (<u>Infrared</u>, 红外线)
  - useful to local point-to-point and multipoint applications within confined areas, eg., a single room.
- --- Ultraviolet light, X-ray & Gamma ray
  - hard to produce & modulate.
  - Do not propagate well through buildings.
  - dangerous to living things.



### 4.6 Wireless Transmission

#### 2. Politics of the Electromagnetic Spectrum

- ---Frequency allocation organization
  - FCC (Federal comm. commission), USA.
  - ITU-R.
  - 信息产业部无线电管理局,China.
- ---three allocation algorithms (early): beauty contest (nice story, maybe lead to bribery, corruption), lottery (resell), auction (debt).
- ---not allocate, but regulate the power, and set aside some frequency bands.
- ---ISM (Industrial, scientific, medical) bands (set aside)
  - Unlicensed usage.
  - Use spread spectrum techniques (FCC, and other countries).\
  - ISM bands varies somewhat from country to country.

#### The ISM bands in the United States



# 中国无线电频率分配

| 名称       | 甚低频         | 低频                     | 中频                         | 高频                | 甚高频                                                           | 特高频                                                                           | 超高频                                    | 极高频                 |
|----------|-------------|------------------------|----------------------------|-------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|---------------------|
| 符号       | VLF         | LF                     | MF                         | HF                | VHF                                                           | UHF                                                                           | SHF                                    | EHF                 |
| 频率       | 3-30<br>kHz | 30-300<br>kHz          | 0.3-3<br>MHz               | 3-30<br>MHz       | 30-300<br>MHz                                                 | 0.3-3<br>GHz                                                                  | 3-30<br>GHz                            | 30-300<br>GHz       |
| 波段       | 超长波         | 长波                     | 中波                         | 短波                | 米波                                                            | 分米波                                                                           | 厘米波                                    | 毫米波                 |
| 波长       | 1000km      | 10km                   | 1km                        | 100m              | 10m                                                           | 1m                                                                            | 10cm                                   | 10mm                |
| 传播<br>特性 | 空间波 为主      | <b>地波</b><br>为主        | 地波与<br>天波                  | <b>天波</b> 与<br>地波 | 空间波即视波                                                        | LOS即视<br>距传播                                                                  | LOS                                    | LOS                 |
| 主要用途     |             | 越信中通地层远导消; 距信下通距离; 岩信离 | 船信业线信移信中导用;余电;动;距航通 无通 通 离 | 远短信; 际信           | 射(30-60<br>MHz);<br>流星余迹<br>通信;<br>人造电离<br>层通信(30<br>-144MHz) | 信(352-42<br>0MHz);<br>对流层散<br>射通信(70<br>0-10000M<br>Hz); 中<br>容量微波<br>通信(1.7- | GHz、5.8<br>5-8.5GHz)<br>数字通信;<br>卫星通信; | 气层时<br>的通信 <b>;</b> |

#### 移动通信频率划分(China)

|            |                |    | 中国移动          | 中国联通          | 中国电信            |  |
|------------|----------------|----|---------------|---------------|-----------------|--|
|            |                | 上行 | 890-909 MHz   | 909-915 MHz   | 825-840 MHz     |  |
|            | <b>GSM</b> 900 | 下行 | 935-954 MHz   | 954-960 MHz   | 870-885 MHz     |  |
| <b>2G</b>  | 700            | 带宽 | 19/19 MHz     | 6/6 MHz       | 15/15 MHz       |  |
| <b>2</b> G | COM            | 上行 | 1710-1725 MHz | 1745-1755 MHz |                 |  |
|            | GSM<br>1800    | 下行 | 1805-1820 MHz | 1840-1850 MHz |                 |  |
|            | 1000           | 带宽 | 15/15 MHz     | 10/10 MHz     |                 |  |
|            |                | 标准 | TD-SCDMA      | WCDMA         | <b>CDMA2000</b> |  |
| <b>3G</b>  |                | 上行 | 1880-1900 MHz | 1940-1955 MHz | 1920-1935 MHz   |  |
|            |                | 下行 | 2010-2025 MHz | 2130-2145 MHz | 2110-2125 MHz   |  |
|            |                | 带宽 | 15/15 MHz     | 15/15 MHz     | 15/15 MHz       |  |
|            |                |    |               |               |                 |  |

Designed by Dr. TAO Hongcai, SIST/SWJTU

#### 4G通信频率划分

2013.12.4,发放TD-LTE牌照。2015.2.27,工信部正式向中国电信、中国联通颁发了第2张4G业务牌照,即FDD-LTE牌照。表中蓝色为2019.2.18发放。

|            |     | 中国移动                                    | 中国联通          | 中国电信                   |  |
|------------|-----|-----------------------------------------|---------------|------------------------|--|
| 4.0        | F频段 | 1880-1900 MHz                           |               |                        |  |
| 4G         | E频段 | 2320-2370 MHz                           | 2300-2320 MHz | 2370-2390 MHz          |  |
| TD-<br>LTE | D频段 | 2575-2635 MHz                           | 2555-2575MHz  | 2635-2655 MHz          |  |
| LIE        | 带宽  | 130 MHz                                 | 40 MHz        | 40 MHz                 |  |
|            |     | -                                       | -             | 824-835MHz/869-880MHz  |  |
| <b>4G</b>  |     | -                                       | 1955-1980MHz  | 1755-1785MHZ           |  |
| LTE        |     | -                                       | 2145-2170MHz  | 1850-1880MHz           |  |
| FDD        |     | -                                       |               | 1920-1940/2110-2130MHz |  |
|            | 带宽  | _                                       | 50 MHz        | 71 MHz                 |  |
| 10/60      |     | Designed by Dr. TAO Hangesi, CICT/CWITH |               |                        |  |

40/68

Designed by Dr. TAO Hongcai, SIST/SWJTU

#### 5G通信频率划分

2019.6.6,工信部正式向中国电信、中国移动、中国联通、中国广电发放了5G商用牌照。

#### 三大运营商 2G/3G/4G/5G 频率分配表

| 运营商         | 上行頻率 MHz 下行頻率 MHz |               | 频宽    | MHz | 制式         |       |
|-------------|-------------------|---------------|-------|-----|------------|-------|
|             | 885-892           | 930-937       | 7     | 22  | GSM900     | 2G    |
|             | 1710-1725         | 1805-1820     | 15    |     | GSM1800    | 2G    |
| r‡s         | 2010-2025         | 2010-2025     | 15    | 15  | TD-SCDMA   | 3G    |
| 国           | 892-904           | 937-949       | 12    | 12  | LTE-FDD    | 4G    |
| 移           | 1880-1890         | 1880-1890     | 10 00 |     | TTO 1 TTC  | 40    |
| 动           | 2320-2370         | 2320-2370     | 50    | 60  | TD-LTE     | 4G    |
|             | 2515-2675         | 2515-2675     | 160   | 000 | THE GOOD   | 50    |
|             | 4800-4900         | 4800-4900     | 100   | 260 | IMT-2020   | 5G    |
|             | 1745-1755         | 1840-1850     | 10    | 10  | GSM        | 2G    |
| spa         | 1940-1955         | 2130-2145     | 15    | 15  | WCDMA      | 3G    |
| ESI         | 904-915           | 949-960       | 11 21 |     | LTE-FDD 4G | 40    |
| 国<br>联<br>通 | 1755-1765         | 1850-1860     |       |     |            | 40    |
| 迎           | 2300-2320         | 2300-2320     | 20    | 20  | TD-LTE     | 4G    |
|             | 3500-3600         | 3500-3600     | 100   | 100 | IMT-2020   | 5G    |
|             | (825-840)         | (870-885)     | 15    | 15  | CDMA/FDD   | 2G/4G |
| r‡e         | 1920-1935         | 2110-2125     | 15    | 15  | CDMA2000   | 3G    |
| [5]         | 826. 7-837. 7     | 871. 7-876. 7 | 5     | 5   | LTE-FDD    | 4G    |
| 电信          | 1765-1780         | 1860-1875     | 15    | 15  | LTE-FDD    | 4G    |
| 18          | 2370-2390         | 2370-2390     | 20    | 20  | TD-LTE     | 4G    |
|             | 3400-3500         | 3400-3500     | 100   | 100 | IMT-2020   | 5G    |

### 中国广播及电视频率划分表

| 波段       | 频率           | 电台间隔    | 用途               |
|----------|--------------|---------|------------------|
| LF (LW)  | 120-300 kHz  |         | 长波调幅广播           |
| MF (AM)  | 525-1605 kHz | 9 kHz   | 中波调幅广播           |
| HF (SW)  | 3.5-29.7 MHz | 9 kHz   | 短波调幅广播及单边<br>带通讯 |
| VHF (FM) | 88-108 MHz   | 150 kHz | 调频广播及数据广播        |
| VHF      | 48.5-92 MHz  | 8 MHz   | 电视及数据广播          |
| VHF      | 167-223 MHz  | 8 MHz   | 电视及数据广播          |
| UHF      | 223-443 MHz  | 8 MHz   | 电视及数据广播          |
| UHF      | 443-870 MHz  | 8 MHz   | 电视及数据广播          |



#### 3. Antennas (天线)

---electrical conductor used to **radiate or collect** electromagnetic energy.

#### ---transmission antenna

- radio frequency electrical energy from transmitter is converted to electromagnetic energy by antenna.
- radiated into surrounding environment.

#### ---reception antenna

- electromagnetic energy impinging on antenna is converted to radio frequency electrical energy.
- fed to receiver.

---same antenna is often used for both transmission and reception

#### 4. Parabolic Reflective Antenna (抛物面反射天线, 定向天线)



showing reflective property

#### 5. Terrestrial (陆地/地面) Microwave

- --- used for long haul telecommunications, also used in short point-to-point links between buildings.
- ---requires fewer repeaters (10~100km apart) but line of sight (视线).
- --- use a parabolic dish (about 3m in diameter) to focus a narrow beam onto a receiver antenna.
- ---1-40GHz frequencies, higher frequencies give higher data rates
  - for long-haul telecomm, 4~6GHz, 11GHz (newly added).
  - 12GHz band used to provide TV signals to local CATV (Community antenna television or cable TV, 有线电视).
  - for short point-to-point link, 22GHz band.



●部分典型系统的带宽与数据率

典型的数字微波性能表

| 波段(GHz) | 带宽(MHz) | 数据率(Mbps) |
|---------|---------|-----------|
| 2       | 7       | 12        |
| 6       | 30      | 90        |
| 11      | 40      | 135       |
| 18      | 220     | 274       |

- ---main source of loss is attenuation
  - distance, rainfall (especially for above 10GHz).
- ---interference is another source of impairment.





(c) Line-of-sight (LOS) propagation ( 30MHz~2GHz )

a signal above 30 MHz is not reflected by the ionosphere (电离层, 80-800km high).







◆ Other two forms of propagation for the signals with different frequencies

signal ---Ground-wave comm. propagation eg., AM radio. transmit Earth antenna following the earth's curvature: (1) electromagnetic wave induces a current in the earth's surface. (2) Electromagnetic waves in this frequency range are scattered by the atmosphere. (a) Ground-wave propagation (below 2 MHz)



In the VLF, LF(Maritime radio), and MF(AM radio) bands, radio waves follow the curvature of the earth.

---Sky-wave comm.

used for amateur radio, CB (Citizen's band) radio, BBC and Voice of America.









- ---电离层对于不同波长的电磁波表现出不同的特性。
- ●波长短于10m(above 30MHz)的微波能穿过电离层。
- ●波长超过3000km的长波,几乎会被电离层全部<u>吸收</u>。
- ●中波(MF)/中短波/短波(HF),波长越短,电离层对它吸收少而反射多;电离层不稳定,对中波和中短波,白天吸收多,晚上吸收少。
- ●短波(HF) 最适宜天波传播,它可被电离层反射到几千千米以外。

#### 6. Satellite Microwave



#### (a) Point-to-point link





#### (b) Broadcast link



- --- satellite is relay station.
- ---receives on one frequency band (uplink, from earth to satellite), amplifies or repeats signal and transmits on another frequency (downlink).
  - optimum frequency range for satellite transmission: 1~10 GHz.
  - <u>4/6-GHz</u>(saturated), **uplink** 5.925-6.425 GHz & **downlink** 3.7-4.2 GHz.
  - <u>12/14-GHz</u>, uplink 14-14.5GHz; downlink 11.7-12.2GHz.
  - <u>20/30-GHz</u>, **uplink** 27.5-30GHz; **downlink** 17.7-20.2GHz.



The principal satellite bands (Tanenbaum, 4e)

| Band            | Downlink<br>(GHz) | Uplink<br>(GHz) | Bandwidth (MHz) | Problems                 |
|-----------------|-------------------|-----------------|-----------------|--------------------------|
| L               | 1.5               | 1.6             | 15              | Low bandwidth; crowded   |
| S               | 1.9               | 2.2             | 70              | Low bandwidth; crowded   |
| С               | 4.0               | 6.0             | 500             | Terrestrial interference |
| Ku<br>(K under) | 11                | 14              | 500             | Rain                     |
| Ka<br>(K-above) | 20                | 30              | 3500            | Rain; equipment cost     |

注: K band指中心波长1.5cm的电磁波。



| -    |          |
|------|----------|
|      | <b>5</b> |
| ממנט | 2010     |
| F    | _        |
|      | 1+0      |
| Dama | なった。     |
| Ė    |          |

| 波段名称                    | 频率范围(GHz) | 波长范围(mm)        |
|-------------------------|-----------|-----------------|
| L (Long)                | 1 - 2     | 300.00 - 150.00 |
| S (Short)               | 2 - 4     | 150.00 - 75.00  |
| C (Compromise of S & X) | 4 - 8     | 75.00 - 37.50   |
| X (eXtended)            | 8 - 12    | 37.50 - 25.00   |
| Ku (K under)            | 12 - 18   | 25.00 - 16.67   |
| K (Kurtz,德语"短"意)        | 18 - 27   | 16.67 - 11.11   |
| Ka (K above)            | 27 - 40   | 11.11 - 7.50    |
| Q波段                     | 30 - 50   | 10.00 - 6.00    |
| U波段                     | 40 - 60   | 7.50 - 5.00     |
| V波段                     | 50 - 75   | 6.00 - 4.00     |
| E波段                     | 60 - 90   | 5.00 - 3.33     |
| W波段                     | 75 - 110  | 4.00 - 2.73     |
| F波段                     | 90 - 140  | 3.33 - 2.14     |
| D波段                     | 110 - 170 | 2.73 - 1.76     |



#### Frequency band data



- ---typically requires geo-stationary orbit (地球同步轨道) so as to be within the line of sight of its **earth stations** at all times
  - height of 35,784km.
  - two satellites using the same frequency band spaced apart to avoid the interference with each other
    - (A) 4° spacing in the 4/6-GHz band.
    - (B) 3° spacing at 12/14-GHz band.





LEO: Low earth orbit (近地轨道), 100~1,000+km high.

MEO: Medium earth orbit (中地轨道), 3,000~15,000km high.

GEO: Geo-stationary earth orbit (地球同步轨道), 35,784km high.

**Teledesic system**, 840 Sats (Orig.), decreased to 288 Sats, halted on 2002.10.1.

Van Allen belt放射带

#### 国际海事卫星

(International Maritime Satellite, INMARSAT)

注: 美国GPS (21+3, 20,200km)、 俄罗斯GLONASS (24+5, 19,100km)、 欧洲Galileo (27+3, 24,126km)、中 国北斗COMPASS(30+5, 21,500km) 均在中高圆轨道(预计2020年完成, 覆盖全球接近四分之三的面积)。



From Tanenbaum (4e)

61/68 Designed by Dr. TAO Hongcai, SIST/SWJTU



From Tanenbaum (4e)

- ---typical uses
  - television
  - long distance telephone
  - private business networks
  - global positioning





#### 7. Broadcast Radio

- ---Radio waves, easy to generate, travel long distances, and penetrate buildings easily (at low frequencies, i.e., VLF, LF and MF, eg, portable radio set).
- ---Radio: 3kHz to 300GHz.
- --- use **Broadcast Radio** (informal term), 30MHz 1GHz, for:
  - FM radio.
  - UHF and VHF television.
  - Cellular telephone.
- ---is omnidirectional (note that <u>microwave is directional</u>), so does not require <u>dish-shaped</u> antennas, that is, transmitter and receiver do not have to be carefully aligned physically.
- ---still need line of sight.
- ---suffers from multipath interference (at high freq., i.e., HF and VHF, do not pass through buildings well)
  - reflections from land, water, other objects

- 8. Some **Impairments** to Wireless Line of Sight Transmission
  - --- Free space loss
    - loss of signal power with distance.
  - ---Atmospheric Absorption
    - from water vapour (22GHz) and oxygen (60GHz) absorption.
    - Rain and fog cause scattering of radio wave.
  - ---Multipath
    - multiple interfering signals from reflections.
  - ---Refraction (折射)
    - bending signal (radio wave) away from receiver.





#### Microwave line of sight



#### 9. Infrared

- ---are relatively directional, cheap, and easy to build, but blocked by walls.
- \*\*In general, from long-wave radio toward visible light, the waves behave more and more like light, and less and less like radio.
- ---Transceivers (收发器) must be within line of sight (or reflection).
- ---no frequency allocation issue (because of no licenses required).
- ---typical uses
  - TV remote control.
  - \*\*you can not control your neighbor's television with your TV remote control.
  - IRD port (红外端口).

