CENTRO UNIVERSITÁRIO EURÍPIDES DE MARÍLIA CURSO DE CIÊNCIA DE DADOS

STEPHANIE BERLINI RUFINO

RELATÓRIO CIENTÍFICO SOBRE O PROJETO DE CIÊNCIA DE DADOS "SOBREVIVENDO AO TITANIC"

> MARÍLIA 2020

1. Objetivo

O presente relatório cientifico tem como objetivo relatar o experimento de ciência de dados com o projeto Titanic, o qual baseado na análise de dados e *machine learning* irá predizer se uma pessoa sobreviveria ao naufrágio do Titanic.

2. Introdução

Baseado no desafio do site *Kaggle "Titanic: machine learning from disaster"*, o projeto integrador do 1º semestre de 2020 da Turma I de Ciência de Dados do Centro Universitário Eurípedes de Marilia (UNIVEM), teve como proposta inicial replicar o *notebook* do *GitHub* do usuário Carlos FAB, com o intuito de prever se um indivíduo sobreviveria ao naufrágio. Idealizado pela discente Stephanie Berlini Rufino, obteve-se êxito em sua execução e conclusão, os quais serão relatados neste documento.

Para sua execução, foi utilizada como fonte dos dados o repositório do Titanic no *Kaggle*, com arquivos em formato CSV. A criação do notebook foi em linguagem Python, utilizando-se a ferramenta *Google Colab*. Todo o projeto está localizado no repositório da aluna no site *GitHub*.

3. Experimentos

Utilizando a metodologia CRISP-DM, todos os experimentos feitos no projeto serão relatados por etapas tais quais o do método citado. Inicialmente, houve uma tentativa de criar o código com um *notebook* próprio do *Kaggle*, porém surgiram problemas em relação ao código e optou-se por construir um *notebook* na ferramenta *Google Colab*, o qual obteve êxito.

3.1 Business Understanding

Na primeira etapa do método, foi essencial compreender as necessidades do projeto. Girando em torno da questão "Quais problemas serão resolvidos?", tal etapa foi relativamente simples, visto que o problema a ser solucionado era se uma pessoa seria sobrevivente do já citado naufrágio utilizando os dados disponíveis para análise.

3.2 Data Understanding

Nessa etapa, o objetivo principal é coletar, organizar e documentar os dados disponíveis.

A coleta de dados foi feita no repositório do desafio, o qual disponibiliza arquivos em formato CSV. O primeiro, o qual serve como base para o treino da máquina, traz dados para nos auxiliar na previsão da sobrevivência (mais adiante, perceberemos que alguns dados não são tão relevantes para essa previsão e outros são cruciais). São eles: número de identificação do passageiro (*Passengerld*), se houve sobrevivência (*Survived*), a classe do bilhete (*Pclass*), nome do passageiro (*Name*), sexo (*Sex*), idade (*Age*), se possuía cônjuges ou irmãos a bordo (*SibSp*), se possuía filhos ou pais a bordo (*Parch*), número da passagem (*Ticket*), preço (*Fare*), número da passagem (*Cabin*) e em qual porto foi feito o embarque (*Embarked*). Já o segundo arquivo, traz dados para que o modelo possa ser testado; aqui, o dado se o passageiro sobreviveu ou não, não está incluído, uma vez que o intuito desse arquivo é usá-lo como teste.

Um fator interessante a ser notado com a plotagem dos gráficos e a análise percentual de sobrevivência por cada atributo é que passageiros do sexo feminino, da 1ª classe, mais novos e com poucos acompanhantes (pais, filhos, cônjuge e irmãos), tinham maior probabilidade de sobrevivência. Mulheres, por exemplo, tinham uma chance de 74,20% e homens, 18,89%. Por sua vez, viajantes da 1ª classe tinham percentual de 62,96%; 2ª, 47,28% e 3ª classe, 24,23%. Passageiros com cônjuges ou irmãos a bordo com número entre zero e dois, tinham 34,53%, 53,58% e 46,42% chances, respectivamente; já com três cônjuges ou irmãos, 25%, quatro, 16,66% e acima disso, 0% de chances. Ademais, passageiros com pais ou filhos teriam as probabilidades de 34,36% desacompanhados, 55,08% com apenas um deles, 50%, dois, 60%, três e acima disso, 0% de chances.

3.3 Data Preparation

Nessa etapa, os dados são tratados. Fez-se um código para saber qual variável mais tinha valores faltantes e chegou-se à conclusão de que "Cabin" possuía 77% valores faltantes; "Age", 20% e "Embarked", 2%.

Por conseguinte, houve uma minuciosa observação sobre quais features (variáveis) seriam relevantes para o modelo ou não: classe do bilhete, nome do passageiro, número da passagem e número da cabine foram desconsideradas por não influenciarem no resultado final.

A seguir, as *features* que restaram foram preparadas: *age* e *fare*, a título de exemplo, possuíam alguns valores faltantes que foram substituídos pela mediana (valor mais frequente); *embarked* com valores faltantes foi substituído pelo porto de maior frequência de embarque, o qual foi Southampton, além disso, essa *feature*, que era apenas uma coluna, foi substituída por outras com o nome dos portos de embarque, para, assim, haver uma atribuição de valores numéricos (caso o embarque foi naquele porto, teremos 0 como "não" e 1 como "sim"); por fim, em *sex*, os valores que eram do formato categórico, careciam conversão para números, portanto, *male* (masculino) foi comutado por 0 e *female* (feminino) por 1.

3.4 Modeling

Essa etapa consiste em definir os modelos de teste. Inicialmente, reproduzindo o código do repositório de Carlos FAB, foram usados dois modelos de *machine learning*: regressão logística e árvore de decisão com acurácia (precisão de acerto) de 80,13%, o primeiro e de 82,72% para o segundo.

Após pesquisas com o intuito de aumentar a acurácia do projeto, decidiu-se pelo uso do método KNN, o qual teve uma acurácia bem mais alta: 97,64%.

3.5 Evaluating

Aqui, obtivemos a avaliação dos resultados. Dessa forma, optou-se por usar os três modelos como forma de comparar e gerar resultados positivos ou negativos quanto à sobrevivência ou não ao naufrágio.

Com o intuito de responder a questão principal, tivemos como passageiros, a aluna e seus acompanhantes para avaliar o que ocorreria a cada um: Elaine, a mãe, José, o pai e Bruno, o namorado. Supondo-se que todos viajariam na 2 ª classe, pagando o preço médio do *ticket* e embarcando no porto de Southampton, auferimos resultados interessantes a serem notados: utilizando os modelos de regressão logística e árvore de decisão, apenas Stephanie e sua mãe sobreviveriam, já com o modelo KNN - de maior acurácia -, sua mãe não sobreviria, mas seu namorado, Bruno, sim.

4. Conclusão

O presente projeto de ciência de dados com análise preditiva da sobrevivência ao naufrágio do navio Titanic conseguiu atingir uma acurácia de mais de 97% utilizando o modelo KNN de *machine learning*, além de correlacionar variáveis que, aparentemente, não possuíam concordância.

Por fim, a questão principal a ser respondida no início do projeto obteve sua conclusão: a discente Stephanie teria sobrevivido ao naufrágio do Titanic.