

Terminology

- Mobile Node (MN)
 - system (node) that can change the point of connection to the network without changing its IP address
- Home Agent (HA)
 - system in the home network of the MN, typically a router
 - registers the location of the MN, tunnels IP datagrams to the COA
- Foreign Agent (FA)
 - system in the current foreign network of the MN, typically a router
 - forwards the tunneled datagrams to the MN, typically also the default router for the MN

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

5

Terminology (cont.)

- Care-of-Address (COA)
 - address of the current tunnel end-point for the MN (at FA or MN)
 - actual location of the MN from an IP point of view
 - can be chosen, e.g., via DHCP
- Correspondent Node (CN)
 - communication partner

Mobility: Approaches

- let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - · routing tables indicate where each mobile located
 - · no changes to end-systems

- let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

T

Indirect Routing: Moving between Networks

- suppose mobile user moves to another network
 - · registers with new foreign agent
 - · new foreign agent registers with home agent
 - · home agent update care-of-address for mobile
 - packets continue to be forwarded to mobile (but with new care-of-address)
- mobility, changing foreign networks transparent: on going connections can be maintained!

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

Mobile IP

- RFC 3344
- has many features we've seen:
 - home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-a-packet)
- three components to standard:
 - indirect routing of datagrams
 - agent discovery
 - registration with home agent

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

Network Integration

- Agent Advertisement:
 - HA and FA periodically send advertisement messages into their physical subports
 - MN listens to these messages and detects,
 - if it is in the home or a foreign network (standard case for home network)
 - MN reads a COA from the FA advertisement messages
- Registration (always limited lifetime!):
 - MN signals COA to the HA via the FA, HA acknowledges via FA to MN
 - these actions have to be secured by authentication

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

21

Network Integration (cont.)

- Advertisement:
 - HA advertises the IP address of the MN (as for fixed systems)
 - i.e. standard routing information
 - routers adjust their entries, these are stable for a longer time (HA responsible for a MN over a longer period of time)
 - packets to the MN are sent to the HA,
 - independent of changes in COA/FA

Ŧ

Optimization of Packet Forwarding

- Triangular Routing
 - sender sends all packets via HA to MN
 - higher latency and network load
- "Solutions"
 - sender learns the current location of MN
 - direct tunneling to this location
 - HA informs a sender about the location of MN
 - big security problems!
- Change of FA
 - packets on-the-fly during the change can be lost
 - new FA informs old FA to avoid packet loss, old FA now forwards remaining packets to new FA (chaining)
 - this information also enables the old FA to release resources for the MN

I

Mobile IP with Reverse Tunneling

- Router accepts often only "topological correct" addresses (firewall – filter out malicious addresses)
 - a packet from the MN encapsulated by the FA is now topological correct
 - multicast
 - participate in a multi-cast group
 - TTL (in terms of number of hops) problem
 - TTL in the home network correct, but MN is to far away from the receiver

- Reverse tunneling does not solve
 - problems with firewalls, the reverse tunnel can be abused to circumvent security mechanisms (tunnel hijacking)
 - optimization of data paths, i.e., packets will be forwarded through the tunnel via the HA to a sender (double triangular routing)

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

Handling Mobility in Cellular Networks

- home network: network of cellular provider you subscribe to (e.g., Sprint, Verizon, etc.)
 - home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- visited network: network in which mobile currently resides
 - visitor location register (VLR): database with entry for each user currently in network

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

Mobility: GSM versus Mobile IP		
Home system	Network to which mobile user's permanent phone number belongs	Home network
Gateway Mobile Switching Center, or "home MSC". Home Location Register (HLR)	Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information	Home agent
Visited System	Network other than home system where mobile user is currently residing	Visited network
Visited Mobile services Switching Center. Visitor Location Register (VLR)	Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user	Foreign agent
Mobile Station Roaming Number (MSRN), or "roaming number"	Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent.	Care-of- address

Wireless, Mobility: Impact on Higher Layer Protocols

- logically, impact should be minimal ...
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - TCP interprets loss as congestion, will decrease congestion window unnecessarily
 - delay impairments for real-time traffic
 - limited bandwidth of wireless links

Influences of Mobility on TCP-Mechanisms

- TCP assumes congestion if packets are dropped
 - typically wrong in wireless networks, here we often have packet loss due to transmission errors
 - furthermore, mobility itself can cause packet loss,
 - e.g. if a mobile node roams from one access point to another while there are still packets in transit to the wrong access point and forwarding is not possible
- the performance of an unchanged TCP degrades severely
 - however, TCP cannot be changed fundamentally due to the large base of installation in the fixed network, TCP for mobility has to remain compatible
 - the basic TCP mechanisms keep the whole Internet together

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

Web Caches (Proxy Server)

Goal: satisfy client request without involving origin server

- user sets browser: Web accesses via cache
- browser sends all HTTP requests to cache
 - object in cache: cache returns object
 - else cache requests object from origin server, then returns object to client

origin

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

43

Indirect TCP (cont.)

- Advantages
 - no changes in the fixed network necessary, no changes for the hosts (TCP protocol) necessary, all current optimizations to TCP still work
 - transmission errors on the wireless link do not propagate into the fixed network
 - simple to control, mobile TCP is used only for one hop between, e.g., a foreign agent and mobile host
- Disadvantages
 - loss of end-to-end semantics, an acknowledgement to a sender does now not any longer mean that a receiver really got a packet, foreign agents might crash
 - higher latency possible due to buffering of data within the foreign agent and forwarding to a new foreign agent

T