Monetary and Exchange Rate Policies in a Global Economy

Naoki Yago

The University of Cambridge

January 5, 2025

Introduction

- Foreign exchange intervention (FXI)
- Central banks buy/sell foreign currency reserves
 - ullet ex. China buys yuan, sells dollar reserves \Rightarrow yuan expensive
- Mundell-Fleming vs. exchange rate stabilization (Rey'15)
- I construct a theory with both monetary policy and FXI.
 - Which policy should central banks use?

Introduction

- Large open economies with huge foreign exchange reserves use FXI.
- Literature: separate objectives
 - $\bullet \ \ \mathsf{Monetary} \ \mathsf{policy} \Rightarrow \mathsf{inflation}, \quad \mathsf{FXI} \Rightarrow \mathsf{exchange} \ \mathsf{rate}$
- During the pandemic & war,
 - Central banks set low interest rates despite high inflation.
 - They intervened by selling the dollar.

Intro

- A large two-country model with monetary policy and FXI based on:
 - Monetary policy in large open economies (Corsetti/Dedola/Leduc'23)
 - FXI in small open economies (Itskhoki/Mukhin'23)
- **Result:** the two policies are interdependent for large countries.
 - FXI affects inflation by dampening/stimulating foreign demand
- Opens up a discussion on which policies to use.

Literature

Intro 000

- Theory on foreign exchange intervention
 - Gabaix/Maggiori'15, Fanelli/Straub'21: FXI independently of MP
 - Cavallino'19, Amador/etal'20, Basu/etal'21, Itskhoki/Mukhin'23:
 MP and FXI in a small open economy
 - ⇒ Two-country model with both monetary policy and FXI
- Empirical evidence on the effectiveness of FXI
 - Fatum/Hutchison'10, Kuesteiner/Phillips/Villamizar-Villegas'18, Fratzscher/etal'19, Adler/Mano'21, Rodnyansky/Timmer/Yago'24, Dao/Gourinchas/Mano/Yago'24
 - ⇒ Normative implication of FXI
- Non-fundamental volatility of exchange rates
 - Itskhoki/Mukhin'21, Jiang/Krishnamurthy/Lustig'21,23, Devereux/Engel/Wu'23, Engel/Wu'22, Kekre/Lenel'23, Fukui/Nakamura/Steinsson'23
 - ⇒ Role of FXI in stabilizing exchange rates

Roadmap

Step-by-step construction of a large two-country model

- Model setup 1: monetary policy (Corsetti/Dedola/Leduc'23)
- Model setup 2: monetary policy & FXI
- Optimal policy under cooperation
- Extension: Dollar pricing
- Sobustness: Optimal policy under non-cooperation

Roadmap

Step-by-step construction of a large two-country model

- Model setup 1: monetary policy (Corsetti/Dedola/Leduc'23)
 - Define international risk-sharing
 - Inflation-output trade-off due to the lack of risk-sharing
- Model setup 2: monetary policy & FXI
- Optimal policy under cooperation
- Extension: Dollar pricing
- Sobustness: Optimal policy under non-cooperation

Monetary Policy under Cooperation (Corsetti/Dedola/Leduc'23)

- Two symmetric large countries: local & US
- Households consume local & US goods, supply labor

$$U(C_t) = \log(C_t), \qquad C_t = \left[a^{\frac{1}{\phi}}C_{Lt}^{\frac{\phi-1}{\phi}} + (1-a)^{\frac{1}{\phi}}C_{Ut}^{\frac{\phi-1}{\phi}}\right]^{\frac{\phi}{1-\phi}}$$

- Cannot trade state-contingent asset internationally
- Firms produce goods, price rigidity (Calvo'83)
 - Shocks: productivity and markup
 - Export in own currency
- Global planner sets local and US monetary policy rates

International Risk Sharing (Concept)

- Planner targets **risk-sharing** under cooperation.
 - China supply ↑ → China consumption ↑
 - Cheap yuan → US import price ↓, US consumption ↑ (smoothing)

International Risk Sharing (Definition)

• Risk-sharing wedge = Difference in marginal utilities

$$\begin{split} \tilde{\mathcal{W}}_t &\equiv \widetilde{U'(C_t^*)} - \widetilde{U'(C_t)} - \tilde{\mathbf{e}}_t \\ &= \tilde{C}_t - \tilde{C}_t^* - \tilde{\mathbf{e}}_t \quad \text{(with log utility)} \end{split}$$

- $\tilde{\mathcal{W}}_t > 0$ (China excess demand) when:
 - $\tilde{C}_t > \tilde{C}_t^*$ (China > US consumption)
 - $\tilde{e}_t \downarrow$ (Yuan is expensive against the dollar)

Risk Sharing when Goods are Substitutes

- ullet China productivity $\uparrow \hspace{-0.2cm} \uparrow \hspace{-0.2cm} \rightarrow \hspace{-0.2cm}$ excess demand $(ilde{W} = ilde{C} ilde{C}^* ilde{e} > 0)$
- China consumption $C \uparrow$ but small exchange rate changes

▶ Intuition

$$\pi_{Lt} = \beta E_t \pi_{Lt+1} + \kappa \big[\tilde{Y}_{Lt} - \underbrace{2 \textit{a} (1-\textit{a}) (\phi-1) \tilde{\mathcal{T}}_t}_{\text{Terms-of-trade gap}} + \underbrace{(1-\textit{a}) \tilde{\mathcal{W}}_t}_{\text{Risk-sharing wedge}} + \underbrace{\mu_t}_{\text{Markup shock}} \big]$$

- π_{Lt} : inflation (local goods consumed by local households)
- \tilde{Y}_{l+} : output gap
- $\tilde{\mathcal{T}}_t$: terms-of-trade gap (import export price)
 - Import price $\tilde{\mathcal{T}}_t \Downarrow \rightarrow \text{consumption } \uparrow$, inflation \uparrow
- $\tilde{\mathcal{W}}_t$: Local excess demand \rightarrow inflation \uparrow
- (ϕ : substitution of local/US goods, 1-a: trade openness)

Inflation-Output Trade-off

- Assume inflation targeting $(\pi_{Lt} = 0)$ & goods are substitutes
- ullet Local productivity $A_t \Uparrow o ext{demand } ilde{\mathcal{W}}_t \Uparrow$
 - \rightarrow Inflation $\pi_{Lt} \uparrow$
 - ightarrow Interest rate \Uparrow to target inflation ightarrow output gap $Y_{Lt} \Downarrow$

Inflation-Output Trade-off (Special Case)

- Assume inflation targeting $(\pi_{Lt} = 0)$ & trade elasticity = 1
- ullet Local productivity $A_t \Uparrow$ has no effect on $ilde{\mathcal{W}}_t$
 - \rightarrow Inflation = output gap = 0 (No trade-offs)

Roadmap

Step-by-step construction of a large two-country model

- Model setup 1: monetary policy
- Model setup 2: monetary policy & FXI
 - FXI is effective under frictions in international asset trade (Gabaix/Maggiori'15, Itskhoki/Mukhin'23)
 - FXI mitigates the inflation-output trade-off of monetary policy
- Optimal policy under cooperation
- Extension: Dollar pricing
- Sobustness: Optimal policy under non-cooperation

FXI: Basic Idea

(Gabaix/Maggiori'15, Itskhoki/Mukhin'23)

- Central banks use both MP and FXI
- Data: unhedged returns on savings are different across currencies
 - Uncovered Interest Parity (UIP) deviation (Fama'94)
- Assume households can only borrow/lend in their own currency.
 - ⇒ FXI affects the exchange rate
- **Example:** China buys the yuan \rightarrow return on yuan < \$
 - Households cannot borrow in yuan to invest in \$

Friction in International Asset Market

- ullet China buys the yuan $\, o\,$ return on yuan < \$
- ullet Financiers are risk-averse \Rightarrow risk-premium on \$ (UIP deviation)

Financiers' Problem

(Itskhoki/Mukhin'21)

• Risk-averse financiers trade local & US bonds.

$$\max_{d_t} E_t \left\{ -\frac{1}{\omega} \exp\left(-\omega \bar{R}_t d_t\right) \right\}$$

- $\omega > 0$: risk aversion
- \bar{R}_t : local \$ bond return ($\neq 0$ when risk-averse)
- d_t : local bond purchases (\$ sales)

$$\underbrace{E_t \tilde{\mathcal{W}}_{t+1} - \tilde{\mathcal{W}}_t}_{\tilde{\mathcal{W}}_t > 0: \text{ local demand}} = \underbrace{\tilde{r}_t - \tilde{r}_t^* - \left(E_t \tilde{e}_{t+1} - \tilde{e}_t\right)}_{\text{Local} - \$ \text{ return}} = \underbrace{-\bar{\omega} f_t}_{f_t > 0: \text{ Buy local}}$$

- No FXI $\rightarrow \tilde{W}_t \neq 0$ if goods are substitutes
 - MP faces inflation-output trade-off (Corsetti/Dedola/Leduc'23)
- ullet Buy \colon o $\$ expensive $(ilde{e}_t \Uparrow)$, local demand $ilde{\mathcal{W}}_t \Downarrow$
 - FXI mitigates MP trade-off (My paper's focus)

FXI Affects the Inflation/Output Trade-off

• Income effect:

• Buy \$ o \$ expensive o local demand $\tilde{\mathcal{W}}_t \Downarrow$, inflation $\pi_{Lt} \Downarrow$ o Interest rate \Downarrow , output gap $\tilde{Y}_{Lt} \Uparrow$

Substitution effect:

• Demand shifts from US to local goods, \tilde{Y}_{Lt} \uparrow

Roadmap

Step-by-step construction of a large two-country model

- Model setup 1: monetary policy
- Model setup 2: monetary policy & FXI
- Optimal policy under cooperation
 - Case 1: Optimal FXI, inflation-targeting MP
 - Case 2: Optimal MP and FXI
 - Calibrate the model and quantify the effect of FXI
 - Relationship with Mundell-Fleming "trilemma"
- Extension: Dollar pricing
- Sobustness: Optimal policy under non-cooperation

Optimal Policy: Cooperation & Commitment

- Planner maximizes the sum of welfare in the two countries.
- Minimize the weighted sum of:
 Objective function
 - Inflation rate for goods produced in each country (producer-price)
 - Output gap in each country
 - Terms-of-trade gap and risk-sharing wedge across countries
 (Corsetti/Dedola/Leduc'23)
- Analytical FXI rule + quantification
 - Calibration: FXI & UIP data for 11 major currencies

No FXI, Inflation-Targeting MP

(Corsetti/etal'23)

- ullet Local productivity $A_t \Uparrow o \operatorname{\mathsf{demand}} ilde{\mathcal{W}}_t \Uparrow$
 - \rightarrow Inflation $\pi_{Lt} \uparrow \rightarrow$ interest rate \uparrow , output gap $\tilde{Y}_{Lt} \downarrow$

Optimal FXI under Inflation-Targeting MP

- Buy \$ \rightarrow \$ expensive \rightarrow local demand $\tilde{\mathcal{W}}_t \Downarrow$, inflation $\pi_{Lt} \Downarrow$ \rightarrow Interest rate \Downarrow , output gap $\tilde{Y}_{Lt} \uparrow \uparrow$
- Demand shifts from US to local goods, $\tilde{Y}_{Lt} \uparrow \uparrow$

Optimal MP and FXI

- Buy \$ \rightarrow \$ expensive \rightarrow local demand $\tilde{\mathcal{W}}_t \Downarrow$, inflation $\pi_{Lt} \Downarrow$ \rightarrow Interest rate \Downarrow , output gap $\tilde{Y}_{Lt} \uparrow \uparrow$
- Demand shifts from US to local goods, $\tilde{Y}_{Lt} \uparrow$

Optimal MP, Cost-Push Shock

(Corsetti/etal'23) Optimal Rule

- US cost-push inflation \rightarrow \$ expensive
 - Local demand ↓, inflation ↓
 - US demand for local goods \uparrow , output gap \uparrow \rightarrow interest rate \uparrow

Optimal MP & FXI, Cost-Push Shock

- ullet Buy local o local expensive
 - Local demand ↑, inflation ↑
 - US demand for local goods \Downarrow , output gap \Downarrow \rightarrow interest rate \Downarrow

Mundell-Fleming "Trilemma"

- Free capital mobility + CB gives up fixed exchange rate
 - → MP targets domestic inflation (independence)

Rey (2015) "Dilemma, Not Trilemma"

- CB cannot keep monetary independence under free capital mobility (even with a flexible exchange rate)
- International spillovers of shocks

Relationship of My Paper with Dilemma/Trilemma

My paper:

- Without FXI, external shocks weaken the MP independence
- FXI improves the MP independence

Literature: separation

 $\bullet \ \mathsf{MP} \Rightarrow \mathsf{inflation}/\mathsf{output}, \quad \mathsf{FXI} \to \mathsf{capital} \ \mathsf{flow} \ (\mathsf{UIP}) \ \mathsf{shocks}$

Roadmap

Step-by-step construction of a large two-country model

- Model setup 1: monetary policy
- Model setup 2: monetary policy & FXI
- Optimal policy under cooperation
- Extension: Dollar pricing
 - Optimal FXI volume is large under dollar pricing
 - Transmission is asymmetric: FXI stabilizes local inflation more
- Sobustness: Optimal policy under non-cooperation

Dollar Pricing

- Bridge the gap between:
 - Dollar dominance in international trade (Gopinath/etal'20)
 - Capital flow management in international finance (Itskhoki/Mukhin'23)
- Assume both exports and imports are invoiced in dollars

Dollar Pricing

► NKPC and loss function

- Identical local goods have different prices in different currencies despite the same marginal cost of production
 - Strong $\$ \Rightarrow$ Chinese goods are more expensive in \$ than yuan
 - $\Delta_{Lt} \equiv \mathcal{E}_t P_{Lt}^* / P_{Lt}$: Price of local goods in \$ / local currency
 - $\Delta_{Lt} \neq 1$: price dispersion wedge
 - Central banks target Δ_{Lt} (Corsetti/Dedola/Leduc'20)
- Exchange rate has limited effect on US import prices

Dollar Pricing

Consider an inflationary US cost-push shock.

- Optimal FXI is increasing in the price-dispersion wedge (Δ_{Lt}) .
 - \$ appreciates o local good is expensive in \$ $(\Delta_{Lt} \uparrow)$
 - \rightarrow optimal FXI is to buy local currency
- Optimal FXI volume is larger under dollar pricing.
- Transmission is asymmetric.
 - Optimal FXI decreases the local consumer-price inflation more and increases the US consumer price inflation less.

Roadmap

Step-by-step construction of a large two-country model

- Model setup 1: monetary policy
- Model setup 2: monetary policy & FXI
- Optimal policy under cooperation
- Extension: Dollar pricing
- Solution Robustness: Optimal policy under non-cooperation
 - Case 1: Optimal FXI, inflation-targeting MP
 - Case 2: Optimal MP and FXI

Robustness: Non-Cooperative Equilibrium

- CB in each country maximizes domestic objective
 - Abstract from full strategic interaction in repeated games
- Assumptions:
 - Assume CBs target domestic inflation/output gap (Bodenstein/etal'23)
 - Local CB uses both MP & FXI
 - US (Fed) uses only MP

► Maximization & optimal rules

- No FXI: Local markup $\Downarrow \to \tilde{Y}_{Lt} \uparrow \uparrow, \ \tilde{Y}_{Ut} \Downarrow$
- ullet FXI (Cooperation): Sell \$ o \$ cheap $o ilde Y_{Lt} \Downarrow$, $ilde Y_{Ut} \Uparrow$

▶ Maximization & optimal rules

Full Impulse Respons

- FXI (Non-Cooperation): Sell \$ more than cooperation
- Stabilizes local output, destabilizes US output & risk-sharing

- FXI (Non-Cooperation): Sell \$ more than cooperation
- Under full optimal policy, FXI <u>stabilizes</u> local inflation/output but <u>destabilizes</u> US inflation/output

Conclusion

- A two-country framework with monetary policy and FXI
- Trade-off between internal (inflation-output) and external objectives (risk-sharing)
- Opens up a discussion on how to combine different policies
- Challenges:
 - Identification of FXI, empirical analysis (Rodnyansky/Timmer/Yago'24)
 - How to combine FXI with capital control and macroprudential policy (IMF's integrated policy framework) (Basu/etal'20)

Appendix

Monetary Policy and FXI: Recent Examples

- Low interest rate policy during the pandemic and war:
 - China and India set a record low of 4% interest rate.
 - Brazil lowered the rate to 2%.
 - Japan set a negative interest rate.
- FXI by large open economies:
 - China and Japan have 3.5 trillion and 1.4 trillion dollars of foreign exchange reserves
 - 40% of the world's reserves, 20-30% of Chinese/Japanese GDP
 - US monitoring list for gaining unfair competitive advantage in trade
 - World foreign exchange reserves fell by 1 trillion dollars in 2021-22.
 - China and Brazil sold 38 billion and 25 billion dollars in 2020.
 - India and Japan sold 32 billion and 63 billion dollars in 2022.

Evidence for Limits to Arbitrage: UIP Deviation

Country	Currency	α_0	(s.e.)	β_1	(s.e.)	$\chi^2(\alpha_0=\beta_1=0)$	\mathbb{R}^2
Australia	AUD	-0.001	(0.002)	-1.63***	(0.48)	16.3***	0.014
Austria	ATS	0.002	(0.002)	-1.75***	(0.58)	9.5***	0.023
Belgium	BEF	-0.0002	(0.002)	-1.58***	(0.39)	17.5***	0.025
Canada	CAD	-0.003	(0.001)	-1.43***	(0.38)	19.1***	0.013
Denmark	DKK	-0.001	(0.001)	-1.51***	(0.32)	25.4***	0.025
France	FRF	-0.001	(0.002)	-0.84	(0.63)	1.9	0.007
Germany	DEM	0.002	(0.001)	-1.58***	(0.57)	7.9**	0.015
Ireland	IEP	-0.002	(0.002)	-1.32***	(0.38)	12.3***	0.020
Italy	ITL	-0.002	(0.002)	-0.79**	(0.33)	7.0**	0.013
Japan	JPY	0.006***	(0.002)	-2.76***	(0.51)	28.9***	0.038
Netherlands	NLG	0.003	(0.002)	-2.34***	(0.59)	16.0***	0.041
Norway	NOK	-0.0003	(0.001)	-1.15***	(0.39)	10.4***	0.013
New Zealand	NZD	-0.001	(0.002)	-1.74***	(0.39)	28.3***	0.038
Portugal	PTE	-0.002	(0.002)	-0.45**	(0.20)	5.9*	0.019
Spain	ESP	0.002	(0.003)	-0.19	(0.46)	2.8	0.001
Sweden	SEK	0.0001	(0.001)	-0.42	(0.50)	0.9	0.002
Switzerland	CHF	0.005***	(0.002)	-2.06***	(0.55)	13.9***	0.026
UK	GBP	-0.003**	(0.001)	-2.24***	(0.60)	14.2***	0.028
Panel, pooled		0.0002	(0.001)	-0.79***	(0.15)	22.3***	
Panel, fixed eff.				-1.01***	(0.21)	19.1***	

Source: Valchev (2015).

- If households can invest freely in two currencies, the excess return is zero (uncovered interest rate parity holds). However, UIP does not hold in data.
- Fama (1985) regression: $e_{t+1} e_t (i_t i_t^*) = \alpha_0 + \beta_1(i_t i_t^*) + \epsilon_t$
- When $\beta_1 < 0$, high interest rate currency appreciates in future = positive return

Literature on MP and FXI in Open Economy

	(1) Monetary Policy	(2) FX Intervention	(3) Both MP and FXI
(a) Small Open Economy	Gali & Monacelli (2005) Clarida, Gali & Gertler (2001) Kollmann (2002) Corsetti & Pesenti (2005) Faia & Monacelli (2008) Egorov and Mukhin (2023)	Fanelli & Straub (2021) Davis, Devereux & Yu (2023) Ottonello, Perez & Witheridge (2024)	Cavallino (2019), Amador et al. (2020) Basu et al. (2020) Itskhoki & Mukhin (2023)
(b) Large Open Economies (Two- country)	Clarida, Gali & Gertler (2002) Benigno & Benigno (2003, 2006) Devereux & Engel (2003), Engel (2011) Corsetti, Dedola & Leduc (CDL) (2010, 2020, 2023)	Gabaix & Maggiori (2015) Maggiori (2022)	This Paper

Literature on MP & FXI in a Small Open Economy

- Cavallino (2019)
 - Cost for central banks: FX purchase lowers the FX return
 - Profit for intermediaries: opposite carry trade position against central banks
 - Domestic intermediaries share $\beta=1$: loss = profit, $\beta<1$: loss > profit
- Basu et al. (2020) (IMF Integrated Policy Framework)
 - Sudden stop ⇒ a monetary easing relaxes banks' domestic borrowing constraint but depreciation tightens their external borrowing constraint
 - FX sales limit the depreciation and improves the trade-off
- Itskhoki and Mukhin (2023)
 - MP and FXI eliminate nominal and financial frictions separately
 - Without FXI, MP trades off inflation and exchange rate stabilization
- My paper:
 - FXI trades off the internal (inflation) & external objectives (exchange rate, purchasing power)
 - Cooperative MP & FXI in two large countries

Households (Details)

CRRA, CES bundle of local and US goods

$$U(C_t, L_t) = \frac{C_t^{1-\sigma}}{1-\sigma} - \iota_I \frac{L_t^{1+\eta}}{1+\eta}, \quad C_t = \left[a^{\frac{1}{\phi}} C_{Lt}^{\frac{\phi-1}{\phi}} + (1-a)^{\frac{1}{\phi}} C_{Ut}^{\frac{\phi-1}{\phi}} \right]^{\frac{\phi}{1-\phi}}$$

$$C_{Lt} = \left[\int_0^1 C_t(I)^{\frac{\theta-1}{\theta}} dj \right]^{\frac{\theta}{1-\theta}}, \quad C_{Ut} = \left[\int_0^1 C_t(u)^{\frac{\theta-1}{\theta}} du \right]^{\frac{\theta}{1-\theta}}$$

- $\sigma = \phi = 1$: log and Cobb-Douglas utility (Cole/Obstfeld '91)
- Budget constraint:

$$P_{Lt}C_{Lt} + P_{Ut}C_{Ut} + \frac{B_t}{R_t} = B_{t-1} + W_tL_t + \Pi_t + T_t$$

► Households (simple)

► Households (general) ► Full quantitative model

Solution to Households' Problem

- Euler equation for the local bond: $\beta R_t E_t \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} = 1$
- Labor supply equation: $C_t^{\sigma} L_t^{\eta} = \frac{W_t}{P_t}$
- Demand for local and US goods:

$$C_{Lt} = a \left(rac{P_{Lt}}{P_t}
ight)^{-\phi} C_t, \quad C_{Ut} = (1-a) \left(rac{P_{Ut}}{P_t}
ight)^{-\phi} C_t$$

Demand for differentiated goods produced within each country:

$$C_t(I) = \left(\frac{P_t(I)}{P_{Lt}}\right)^{-\theta} C_{Lt}, \quad C_t(u) = \left(\frac{P_t(u)}{P_{Lt}}\right)^{-\theta} C_{Ut}$$

▶ Back

Firms' Maximization Problem

- Producer currency pricing (PCP): law of one price $P_t(I) = \mathcal{E}_t P_t^U(I)$
- Firms cannot reset price with probability ξ_p (Calvo'83)

$$\max_{\{P_{t}(I), \mathcal{E}_{t}P_{t}^{*}(I)\}} E_{t} \left\{ \sum_{k=0}^{\infty} Q_{t,t+k} \xi_{p}^{k} \left(\begin{array}{c} (1+\tau_{t}) \left[P_{t}(I) Y_{t+k}(I) + \mathcal{E}_{t}P_{t}^{*}(I) Y_{t+k}^{*}(I) \right] \\ -MC_{t+k}(I) \left[Y_{t+k}(I) + Y_{t+k}^{*}(I) \right] \end{array} \right) \right\}$$

New Keynesian Phillips Curve:

$$\pi_{Lt} = \beta E_t \pi_{Lt+1} + \kappa \Big[\tilde{Y}_{Lt} - \underbrace{2 \textit{a} (1-\textit{a}) (\phi-1) \tilde{\mathcal{T}}_t}_{\text{Terms-of-trade gap}} + \underbrace{(1-\textit{a}) \tilde{\mathcal{W}}_t}_{\text{Risk-sharing wedge}} + \underbrace{\mu_t}_{\text{Markup shock}} \Big]$$

- Slope of NKPC: $\kappa = (1 \xi)(1 \xi\beta)/\xi$
- Shocks: productivity A_t and markup $\mu_t = heta/(heta-1)(1- au_t)$

Intuition on NKPC

Effects of terms-of-trade gap: (Clarida/Gali/Gertler'02)

- ullet Consider US output $ilde{Y}_{Ut} \uparrow \! \uparrow$, local appreciation, import price ψ $(ilde{\mathcal{T}}_t \ \psi)$
- ullet $\phi > 1$: Local and US goods are substitutes
 - Import price \Downarrow , local consumption $C_t \Uparrow$ via risk sharing
 - Marginal cost $w_t = \frac{V'(L_t)}{U'(C_t)} \uparrow$, inflation $\pi_{Lt} \uparrow$
- ullet $\phi < 1$: Local and US goods are complements
 - Export price $\Uparrow \to$ marginal benefit of export \Uparrow , inflation $\pi_{Lt} \Downarrow$

Effect of demand gap: (Corsetti/Dedola/Leduc'10)

• $\mathcal{W}_t \Uparrow = U'(\mathcal{C}_t) \Downarrow \to \text{marginal cost } w_t = \frac{V'(\mathcal{L}_t)}{U'(\mathcal{C}_t)} \Uparrow$, inflation $\pi_{Lt} \Uparrow$

Loss Function (PCP, Details)

Global planner minimizes the quadratic loss function:

$$\mathcal{L} = -E_0 \sum_{t=0}^{\infty} eta^t rac{1}{2} \left[egin{array}{c} \left(ilde{Y}_{Lt}^2 + ilde{Y}_{Ut}^2
ight) + rac{ heta}{\kappa} \left(\pi_{Lt}^2 + \pi_{Ut}^{*2}
ight) \\ - rac{2a(1-a)(\phi-1)}{4a(1-a)(\phi-1)+1} \left(ilde{Y}_{Lt} - ilde{Y}_{Ut}
ight)^2 \\ + rac{2a(1-a)\phi}{4a(1-a)(\phi-1)+1} ilde{W}_t^2 \end{array}
ight],$$

where
$$\tilde{Y}_{Lt} - \tilde{Y}_{Ut} = [\{4a(1-a)(\phi-1)+1\}\tilde{\mathcal{T}}_t + (2a-1)\tilde{\mathcal{W}}_t].$$

International Asset Market: Details

- ullet $ar{R}_t \equiv R_t R_t^* rac{\mathcal{E}_{t+1}}{\mathcal{E}_t}$: local \$ bond return
- Zero net position (aggregate):

$$B_t/R_t + \mathcal{E}_t B_t^*/R^* = 0, \quad U_t/R_t + \mathcal{E}_t U_t^*/R^* = 0,$$

 $D_t/R_t + \mathcal{E}_t D_t^*/R^* = 0, \quad F_t/R_t + \mathcal{E}_t F_t^*/R^* = 0$

Market clearing:

$$B_t + U_t + D_t + F_t = 0$$
, $B_t^* + U_t^* + D_t^* + F_t^* = 0$

UIP condition (General Case)

• The maximization problem for intermediaries implies:

$$\underbrace{E_t \tilde{\mathcal{W}}_{t+1} - \tilde{\mathcal{W}}_t}_{\Delta \text{ Demand gap}} = \underbrace{\tilde{r}_t - \tilde{r}_t^* - E_t \Delta \tilde{e}_{t+1}}_{\text{UIP deviation}} = \underbrace{\chi_1(n_t^* - f_t)}_{\text{Noise trader buys $ (n_t^*)$}} - \underbrace{\chi_2 b_t}_{\text{HHs' savings}}$$

where
$$\chi_1 \equiv m_n(\omega \sigma_e^2/m_d)$$
, $\chi_2 \equiv \bar{Y}(\omega \sigma_e^2/m_d)$ for finite $(\omega \sigma_e^2/m_d)$.

- Itskhoki and Mukhin (2021, 2023) scale the risk aversion ω so that $\omega \sigma_e^2$ is finite and nonzero and risk premium is first-order.¹
- When deriving analytical result, I assume $\chi_2=0$ for tractability. Assume the financial sector (m_d financiers and m_n traders) is larger than households.

¹See Hansen and Sargent (2011).

Calibration

- Estimate the effect of FXI on UIP deviation
 - 2000-23, quarterly, 11 major currencies against the dollar
 - UIP deviation: exchange rate forecast & interbank rate (Bloomberg)
 - FXI: central bank websites, FRED, IMF data (Adler/etal'23)
- Identify FXI via deviation from estimated policy rules

(Fratzscher/etal'19, Rodnyansky/Timmer/Yago'24)

• Result: sell \$ (1% of GDP) \rightarrow UIP \Downarrow by 0.51pp (local return \Downarrow)

Countries / Summary Statistics

Countries:

- Australia, Brazil, Canada, China, Euro area, India, Japan, Korea, Russia, Switzerland, United Kingdom
 - <u>Robustness:</u> exclude small-open economies (Australia, Canada, Korea, Switzerland) and managed exchange rate regime (China)

Summary Statistics of FXI:

	Mean	Median	SD	p25	p75	p90	Max	Obs
Sell Dollars (Billions)	10.19	2.09	24.65	0.74	7.73	22.10	179.88	262
Buy Dollars (Billions)	14.66	5.53	25.71	1.59	13.21	33.79	164.17	448
	Mean	Mediar	s SD	p25	p75	p90	Max	Obs
Sell Dollars (% GDP) 0.4		0.18	0.92	0.06	0.52	1.09	9.11	262
Buy Dollars (% GDP)		0.35	1.79	0.13	1.02	2.08	19.86	448

Parameter Values

Table 1: Parameter Values

Value	Description	Notes
$\beta = 0.995$	Discount factor (local)	Annual interest rate $=2\%$
$\sigma = 2$	Relative risk aversion	Itskhoki and Mukhin (2021)
$\eta = 0.35$	Inverse Frisch elasticity	Bodenstein et al. (2023)
$\zeta_I = 13.3$	Labor disutility (local)	${\sf Steady\text{-}state\ labor} = 1/3$
a = 0.88	Home bias of consumption	Bodenstein et al. (2023)
$\phi = 2.0$	CES Local & US goods	Bodenstein et al. (2023)
$\theta=10$	CES differentiated goods	$Price\ markup = 11\%$
$\xi_p = 0.60$	Calvo price stickiness	Duration of four quarters
$\bar{\pi}=1$	Steady-state inflation	
$\chi=1.42$	UIP coefficient on FXI	$\Delta(\textit{UIP})/\Delta(\textit{FXI}/\textit{GDP}) = 0.47$
$ ho_{\it a}=0.97$	Persistence of productivity shock	Itskhoki and Mukhin (2021)
$ ho_{\mu}=0.2$	Persistence of markup shock	Bodenstein et al. (2023)
$\sigma_a = 0.015$	SD of productivity shock	Bodenstein et al. (2023)
$\sigma_{\mu}=0.019$	SD of markup shock	Bodenstein et al. (2023)

Identification of FXI

Identify direct effect of FXI by deviations from an FXI policy rule

$$FXI_{i,t} = \alpha + \beta X_{i,t-1} + \gamma_i + \epsilon_{i,t}$$

- $FXI_{c,t}$: FXI in country i, quarter t (> 0: sell \$, % over GDP)
- $X_{i,t-1}$: Controls (lagged)
 - Past FXI over GDP ratio, spot exchange rate (trend, volatility),
 UIP deviation, VIX, policy rate (local, US), consumer price inflation,
 unemployment rate, current account over GDP ratio
- γ_i : country fixed effect

First-step Regression

Dependent Variable	FXI / GDP (%)	
	(1)	(2)
Lagged FXI / GDP (%)	0.129***	0.283***
	(0.040)	(0.056)
Lagged Exchange Depreciation (%)	0.005	0.006
	(0.014)	(0.011)
Lagged Exchange Volatility (%)	0.089	0.006
	(0.062)	(0.044)
Lagged UIP Deviation (p.p.)	0.010	0.012**
	(0.007)	(0.006)
Lagged log(VIX)	-0.135	-0.065
	(0.203)	(0.162)
Lagged Policy Rate (Local)	-0.078*	-0.030
	(0.046)	(0.032)
Lagged Policy Rate (US)	0.041	-0.077*
	(0.048)	(0.040)
Lagged CPI Inflation (%)	0.041	0.026
	(0.039)	(0.026)
Lagged Unemployment Rate (%)	0.004	-0.003
	(0.055)	(0.035)
Lagged Current Account / GDP (%)	-0.115***	-0.069*
	(0.031)	(0.038)
R ²	0.176	0.259
N	627	309
Country Fixed Effect	✓	✓
Exclude Small Economy		✓
Exclude Managed Exchange Rate		✓

• 74 - 82% of variation in intervention cannot be explained.

Estimating the Effect of FXI on UIP Deviation

Dependent Variable	$\mathit{UIP}_t - \mathit{UIP}_{t-1}$					
	(1)	(2)	(3)	(4)		
Net \$ Sales / GDP (%)	-0.589**	-0.509**	-1.599***	-1.106***		
	(0.264)	(0.212)	(0.182)	(0.178)		
R^2	0.004	0.013	0.009	0.020		
N	706	392	367	212		
Country Fixed Effect	\checkmark	✓	✓	✓		
Identified		✓		✓		
Exclude Small Economy			✓	✓		
Exclude Fixed Exchange Rate			\checkmark	\checkmark		

- Sell \$ (1% of GDP) \rightarrow UIP \Downarrow by 0.5-0.6 pp (local return \Downarrow)
- More effective without small economies (Swiss franc: liquid)

Optimal FXI + Inflation-Targeting MP (Productivity)

Optimal FXI + Inflation-Targeting MP (Cost-Push)

Proposition 1 (Optimal FXI under inflation-targeting monetary policy)

Suppose strict inflation-targeting monetary policy ($\pi_{It} = \pi_{It}^* = 0$).

The optimal FXI rule is:

$$f_{t} = u_{t}^{*} + \xi_{y} \{ -(E_{t} \tilde{Y}_{Lt+1} - \tilde{Y}_{Lt}) + (E_{t} \tilde{Y}_{Ut+1} - \tilde{Y}_{Ut}) \}$$
$$+ \xi_{d} \{ -(E_{t} \tilde{D}_{t+1} - \tilde{D}_{t}) \}$$

Local productivity \uparrow or cost-pull \rightarrow Buy \$ if trade elasticity ϕ is high

- $\xi_y > 0$ if $\phi > 1 \frac{1}{2a}$
- $\xi_d > 0$ if $\phi > 1$

► Back (productivity) ► Back (cost-push)

Optimal MP and FXI Rules

Proposition 2 (Optimal MP and FXI Rules)

Optimal monetary policy rules:

$$\begin{aligned} 0 &= \theta \pi_{Lt} + (\tilde{Y}_{Lt} - \tilde{Y}_{Lt-1}) - \xi_{\mathcal{T}} (\tilde{\mathcal{T}}_t - \tilde{\mathcal{T}}_{t-1}) + \xi_{D} (\tilde{\mathcal{W}}_t - \tilde{\mathcal{W}}_{t-1}) \\ 0 &= \theta \pi_{Ut}^* + (\tilde{Y}_{Ut} - \tilde{Y}_{Ut-1}) + \xi_{\mathcal{T}} (\tilde{\mathcal{T}}_t - \tilde{\mathcal{T}}_{t-1}) - \xi_{D} (\tilde{\mathcal{W}}_t - \tilde{\mathcal{W}}_{t-1}) \end{aligned}$$

Optimal FXI rule:

$$f_{t} = u_{t}^{*} + \xi_{y} \{ -(E_{t} \tilde{Y}_{Lt+1} - \tilde{Y}_{Lt}) + (E_{t} \tilde{Y}_{Ut+1} - \tilde{Y}_{Ut}) \}$$
$$+ \xi_{d} \{ -(E_{t} \tilde{D}_{t+1} - \tilde{D}_{t}) \}$$

$$f_t = u_t^* + \xi_\pi E_t(\pi_{Lt+1} - \pi_{U,t+1}^*)$$
 (in terms of inflation)

• Local import price $\tilde{\mathcal{T}}_t \Downarrow$ or excess demand $\tilde{\mathcal{W}}_t \Uparrow \to$ inflation $\pi_{Lt} \Uparrow$

Impulse Response to a Local Productivity Increase

Impulse Response to a Local Markup Decrease

NKPC and Loss Function under Dollar Pricing

- NKPCs for local goods in LC (π_{Lt}) and (π_{Lt}^*) , US goods in (π_{Ut}^*)
 - ullet Local good inflation depends on the LOOP deviation (Δ_{Lt})

$$\begin{split} \pi_{Lt} &= \beta \pi_{Lt+1} + \kappa \{ (\sigma + \eta) \tilde{Y}_{Lt} - (1-a)[2a(\sigma\phi - 1)(\tilde{\mathcal{T}}_t + \tilde{\Delta}_{Lt}) + (\tilde{D}_t + \tilde{\Delta}_{Lt})] + \mu_t \} \\ \pi_{Lt}^* &= \beta \pi_{Lt+1}^* + \kappa \{ (\sigma + \eta) \tilde{Y}_{Lt} - (1-a)[2a(\sigma\phi - 1)(\tilde{\mathcal{T}}_t + \tilde{\Delta}_{Lt}) + (\tilde{D}_t + \tilde{\Delta}_{Lt})] - \tilde{\Delta}_{Lt} + \mu_t^* \} \\ \pi_{Ut}^* &= \beta \pi_{Ut+1}^* + \kappa \{ (\sigma + \eta) \tilde{Y}_{Ut} + (1-a)[2a(\sigma\phi - 1)\tilde{\mathcal{T}}_t - \tilde{D}_t] + \mu_t^* \} \end{split}$$

• Loss function depends on the LOOP deviation (Δ_{Lt}) :

$$\mathcal{L} = -E_0 \sum_{t=0}^{\infty} \beta^t \frac{1}{2} \left[\begin{array}{l} (\sigma + \eta) \left(\tilde{Y}_{Lt}^2 + \tilde{Y}_{Ut}^2 \right) + \frac{\theta}{\kappa} \left(a \pi_{Lt}^2 + (1-a) \pi_{Lt}^{*2} + \pi_{Ut}^{*2} \right) \\ - \frac{2a(1-a)(\sigma\phi - 1)\sigma}{4a(1-a)(\sigma\phi - 1) + 1} \left(\tilde{Y}_{Lt} - \tilde{Y}_{Ut} \right)^2 \\ + \frac{2a(1-a)\phi}{4a(1-a)(\sigma\phi - 1) + 1} \left(\tilde{W}_t + \Delta_{Lt} \right)^2 \end{array} \right]$$

Dollar Pricing: Optimal Monetary Policy

Optimal monetary policy under DCP when FXI is not available:

$$\begin{split} 0 &= \theta a \pi_{Lt} + (\tilde{C}_t - \tilde{C}_{t-1}) + \frac{2a(1-a)\phi}{2a(\phi-1)+1} \frac{\sigma-1}{\sigma} (\tilde{\mathcal{W}}_t - \tilde{\mathcal{W}}_{t-1} + \tilde{\Delta}_t - \tilde{\Delta}_{t-1}) \\ 0 &= \theta [(1-a)\pi_{Lt}^* + \pi_{Ut}^*] - (\tilde{C}_t^* - \tilde{C}_{t-1}^*) - \frac{2a(1-a)\phi}{2a(\phi-1)+1} \frac{\sigma-1}{\sigma} (\tilde{\mathcal{W}}_t - \tilde{\mathcal{W}}_{t-1} + \tilde{\Delta}_t - \tilde{\Delta}_{t-1}) \end{split}$$

- Local: trades off local inflation and demand growth.
- US: trades off international dollar price inflation and demand growth.
- When $\sigma \neq 1$, MP also trades off the LOOP deviation.

Optimal monetary policy and FXI under DCP:

$$\begin{split} 0 &= \tilde{Y}_{Lt} + \theta[a\pi_{Lt} + (1-a)\pi_{Lt}^*], \\ 0 &= \tilde{Y}_{Ut} + \theta\pi_{Ut}^* + \gamma_{\Delta_{Lt}} - \gamma_{\Delta_{Lt-1}}, \\ \gamma_{\Delta_{Lt}} &= -\frac{4a(1-a)}{2a-1}(\tilde{\Delta}_{Lt} + \tilde{W}_t) + \theta\frac{1}{2a-1} \\ &\qquad \times \left[a\pi_{Lt} - ((1-a)\pi_{Lt}^* + \pi_{Ut}^*)\right] - (2a-1)[a\pi_{Lt} + (1-a)\pi_{Lt}^* + \pi_{Ut}^*] \\ f_t &= n_t^* + \frac{\theta}{2a\chi_1} E_t[a\pi_{Lt+1} + (1-a)\pi_{Lt+1}^* + \pi_{Ut+1}^*] \\ &\qquad + \frac{2a-1}{2a(1-a)\chi_1} (E_t \gamma_{\Delta t+t} - \gamma_{\Delta t}). \end{split}$$

- Local: MP trades off local inflation and output growth.
- US: MP trades off US inflation, output growth, LOOP deviation, and demand gap.
- FXI responds to the LOOP deviation.

Non-Cooperative FXI, Inflation-Targeting MP

▶ Back

Non-Cooperative MP and FXI

Maximization Problem (Non-Cooperation)

• The local CB solves:

$$\begin{aligned} \max \mathcal{L} &= -E_0 \sum_{t=0}^{\infty} \beta^t \frac{1}{2} \left[\tilde{Y}_{Lt}^2 + \frac{\theta}{\kappa} \pi_{Lt}^2 \right] \quad \text{s.t.} \\ \pi_{Lt} &= \beta E_t \pi_{Lt+1} + \kappa \left[\tilde{Y}_{Lt} - 2a(1-a)(\phi-1)\tilde{\mathcal{T}}_t + (1-a)\tilde{\mathcal{W}}_t, \right. \\ &E_t \tilde{\mathcal{W}}_{t+1} - \tilde{\mathcal{W}}_t = -\bar{\omega} f_t \end{aligned}$$

Optimal MP & FXI rules:

$$0 = \theta \pi_{Lt} + \frac{\sigma + \eta}{\sigma + \eta - \frac{(1-a)(\sigma-1)}{2a(\phi-1)+1}} (\tilde{Y}_{Lt} - \tilde{Y}_{Lt-1})$$
$$E_t \tilde{Y}_{Lt+1} = \tilde{Y}_{Lt} \quad (E_t \tilde{\pi}_{Lt+1} = 0)$$

