Link Layer

- 6.1 introduction, services
- 6.2 error detection, correction
- **6.3** Multiple Access Protocols
 - channel partitioning
 - TDMA, FDMA, CSMA
 - random access
 - Aloha: pure, slotted
 - CSMA, CSMA/CD
- **6.4** LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

- 6.5 link virtualization: MPLS
- 6.6 data center networking
- 7.3: Detour WiFi
- 6.7 a day in the life of a web request

Synthesis: a day in the life of a web request

- journey down protocol stack complete!
 - application, transport, network, link
- putting-it-all-together: synthesis!
 - goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests/receives www.google.com

A day in the life of a web request **DNS** server browser Comcast network (C:))) 68.80.0.0/13 school network 68.80.2.0/24 web page Google web server Google's network 64.233.160.0/19 64.233.169.105

A day in the life... connecting to the Internet

- connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

A day in the life... connecting to the Internet

- DHCP server formulates
 DHCP ACK containing
 - client's IP address
 - IP address of first-hop router for client
 - name & IP address of local DNS server
- encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- DHCP client receives DHCP ACK reply

Client now 1) has IP address 2) knows name & addr of DNS server 3) IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

- before sending HTTP request, need IP address of www.google.com: DNS
- DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of first hop router, so can now send frame containing DNS query

A day in the life... using DNS

 IP datagram containing DNS query forwarded via LAN switch from client to Ist hop router

demuxed to DNS server

DNS

UDP

IP

Eth

Phy

Comcast network

68.80.0.0/13

DNS

DNS

DNS

 DNS server replies to client with IP address of www.google.com

Link Layer and LANs 6-

ONS server

A day in the life...TCP connection carrying HTTP

A day in the life... HTTP request/reply

web page finally (!!!) displayed

- HTTP request sent into TCP socket
- IP datagram containing HTTP request routed to www.google.com
- web server responds with HTTP reply (containing web page)
- IP datagram containing HTTP reply routed back to client

Chapter 6: Summary

- principles behind data link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
- instantiation and implementation of various link layer technologies
 - Ethernet
 - switched LANS, VLANs
 - virtualized networks as a link layer: MPLS
- synthesis: a day in the life of a web request

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 64 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

- 6.5 link virtualization: MPLS
- 6.6 data center networking
- 6.7 a day in the life of a web request

Conclusion

- What this class is about
 - journey down protocol stack complete (except PHY)
 - understanding of networking principles, protocos
- What next....
 - lots of interesting topics!
 - wireless, mobile
 - datacenters
 - multimedia, games
 - security
 - Classes@UCI?
 - cs133, cs134; http://networkedsystems.uci.edu/