

Код Рида-Маллера

Илья Кон

Введени

Кодировани

Декодирова ние

Код Рида-Маллера

Илья Коннов

Факультет компьютерных наук Высшая Школа Экономики

9 февраля 2022 г.

Код Рида-Маллера

2022-02-09

1. Если вы смотрите презентацию, то на сером фоне справа видны некоторые ценные комментарии, для которых поля слайда оказались слишком узки. Если вы читаете pdf-ку, то эти комментарии уже находятся в самом подходящем для них месте в тексте. Если вы смотрите мой доклад и видите этот текст, то что-то пошло серьёзно не так. Да, у этого одного файла есть три разные версии.

Введение

 \mathbb{Z}_2 .

Код Рида-Маллера

Илья Кс

Введение

Кодировані

....

Декодирова[.] ние Описаны Дэвидом Маллером (автор идеи) и Ирвингом Ридом (автор метода декодирования) в сентябре 1954 года. Обозначаются как $\mathrm{RM}(r,m)$, где r- ранг, а 2^m- длина кода. Кодирует сообщения длиной $k=\sum_{i=0}^r C_m^i$ при помощи 2^m бит.

Традиционно, считается что коды работают над битами, т.е.

◆ロ → 4回 → 4 三 → 4 三 → 9 Q (*)

Описаны Дивидом Маллером (автор иден) и Ирвингом Ридом (автор метора декодирования) в сентябре 1954 года. Обозначаются как $8M(r_n)$ (де r - раня $r_n 2^{m-r}$ дивиз кода. Кодирует сообщения длиной $k = \sum_{i=0}^{r} C_m^i$ при помощи 2^m бат. Традициюнно, считается что коды работают над битами, т.е.

Традиционно, считается что коды работают над битами, \mathbb{Z}_2 .

Булевы функции и многочлен Жегалкина

Код Рида-Маллера

Илья Конно

Введение

Колиповани

кодировани

Декодирова

Всякую булеву функцию можно записать при помощи таблицы истинности

$$\begin{array}{c|cccc} x & y & f(x, y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

И при помощи многочлена Жегалкина:

$$f(x, y) = xy + x + y + 1$$

Многочлены Жегалкина

Код Рида-Маллера

1лья Ко

Введение

Кодировані

Декодирова

В общем случае, многочлены будут иметь следующий вид:

$$f(x_1, x_2, ..., x_m) = \sum_{S \subseteq \{1, ..., m\}} c_S \prod_{i \in S} x_i$$

Например, для m=2: $f(x_1,x_2)=c_1\cdot x_1x_2+c_2\cdot x_1+c_3\cdot x_2+c_4\cdot 1$ Всего $n=2^m$ коэффициентов для описания каждой функции.

4□ > 4₱ > 4 ₺ > 4 ₺ > ₺

Код Рида-Маллера

Функции небольшой степени

Код Рида-Маллера

Илья Конн

Введение

Своиства код

Декодирова ние Рассмотрим функции, степень многочленов которых не больше r:

$$\{f(x_1, x_2, ..., x_m) \mid \deg f \le r\}$$

Каждую можно записать следующим образом:

$$f(x_1, x_2, ..., x_m) = \sum_{\substack{S \subseteq \{1, ..., m\} \\ |S| \le r}} c_S \prod_{i \in S} x_i$$

В каждом произведении используется не больше r переменных.

Сколько тогда всего коэффициентов используется?

$$k = C_m^0 + C_m^2 + \dots + C_m^r = \sum_{i=0}^r C_m^i$$

Код Рида-Маллера —Введение

2022-02-09

Функции небольшой степени

- 1. Замечу, что при $S=\emptyset$, мы считаем, что $\prod_{i\in S} x_i=1$, таким образом всегда появляется свободный член.
- 2. Если говорить несколько проще, то для составления многочленов мы сложим сначала одночлены (x+y+z), затем произведения одночленов (xy+yz+xz) и т.д. вплоть до r множителей. Тогда легко видеть, почему k именно такое: мы складываем все возможные перестановки сначала для 0 переменных, потом для одной, двух, и так до всех r

Идея кодирования

Код Рида-Маллера

4лья Коі

ведение

Кодирование

Свойства ко

Декодирова-

Пусть каждое сообщение (длины k) — коэффициенты некоторого многочлена от m переменных степени не больше r.

Тогда мы можем его представить при помощи 2^n бит, подставив все возможные комбинации переменных (ведь рассматриваем многочлены над \mathbb{Z}_2). Таким образом получим таблицу истинности, из которой позднее сможем восстановить исходный многочлен, а вместе с ним и сообщение.

4 D > 4 P > 4 E > 4 E > 9 Q P

Код Рида-Маллера —Кодирование

∟Идея кодирования

Пусть каждое сообщение (длины k) — коэффициенты некоторого многочлена от лг переменных степени не больш

Тогда мы можем его представить при помощи 2⁶ бит, подставия ясе возможные комбинации переменных (вать, рассматришаем миного-сеньи мая Z₂). Таком образом получим таблику истинности, их которой подние соложем восставиять истодный миногочлем, а вместе с ним и сообщение.

Пример

Рида-Маллера

Илья Конн

Введение

Кодирование

....

Декодирова

r = 1 (степень многочлена), m = 2 (переменных). Это RM(1, 2).

■ Тогда наш многочлен: $f(x, y) = c_1 x + c_2 y + c_3$.

■ Сообщение: 101, тогда f(x, y) = x + 0 + 1.

■ Подставим всевозможные комбинации:

x	y	f(x, y)
0	0	1
0	1	1
1	0	0
1	1	0

■ Получили код: 1100.

Линейность

Рида-Маллера

илья ко

ведение

Кодировани

Свойства кода ЛеколироваЛинейный (блоковый) код — такой код, что множество его кодовых слов образует k-мерное линейное подпространство в n-мерном линейном пространстве, изоморфное пространству k-битных векторов.

Слова —

4日 → 4周 → 4 差 → 4 差 → 2 9 9 0 0 0

Код Рида-Маллера 6-Свойства кода 70-77 — Линейность

Пинеймый (блоковый) код — гакой код, что множество его кодовых слов образует Е-мермое линеймое подпространство в п-мермом линеймом пространстве, изоморфное пространству k-битиых векторов. Слова —

Потерь нет

Рида-Маллера

Код Рида-Маллера

2022-02-09

–Декодирование

□Потерь нет