Homogeneous Linear Systems With Constant Coefficients

Department of Mathematics
IIT Guwahati

Homogeneous linear systems with constant coefficients

Consider the homogeneous system

$$\mathbf{x}'(t) = A\mathbf{x}(t),\tag{1}$$

where A is a real $n \times n$ matrix.

Goal: To find a fundamental solution set for (1).

We seek solutions of the form $\mathbf{x}(t) = e^{\lambda t}\mathbf{v}$, where λ is a constant and \mathbf{v} is a constant vector such that

$$\lambda e^{\lambda t} \mathbf{v} = e^{\lambda t} A \mathbf{v} \Longrightarrow (A - \lambda I) \mathbf{v} = \mathbf{0}.$$

Thus,

$$\mathbf{x}(t) = e^{\lambda t}\mathbf{v}$$
 is a solution of $\mathbf{x}'(t) = A\mathbf{x}(t)$
 $\iff \lambda \text{ and } \mathbf{v} \text{ satisfy } (A - \lambda I)\mathbf{v} = \mathbf{0}.$

$$(A - \lambda I)\mathbf{v} = \mathbf{0}$$
 has a nontrivial solution $\iff \det(A - \lambda I) = \mathbf{0}$.

Thus

$$\lambda$$
 is an eigenvalue of $A \iff \mathbb{P}(\lambda) = 0$,

where $\mathbb{P}(\lambda) = \det(A - \lambda I)$ is called the characteristic polynomial of A.

Finding the eigenvalues of A is equivalent to finding the zeros of $\mathbb{P}(\lambda)$. $\mathbb{P}(\lambda) = 0$ is called the characteristics equation of A.

Note that $e^{\lambda t}\mathbf{v}$ is a solution to $\mathbf{x}'=A\mathbf{x}$ if λ is an eigenvalue and \mathbf{v} is a corresponding eigenvector.

Q. Can we obtain n linear independent solutions to $\mathbf{x}' = A\mathbf{x}$ by finding all the eigenvalues and eigenvectors of A?

Some essential results from linear algebra

Theorem: Let A be an $n \times n$ matrix. The following statements are equivalent:

- A is singular.
- $\det A = 0$.
- $A\mathbf{x} = 0$ has nontrivial solution $(\mathbf{x} \neq \mathbf{0})$.
- The columns of A form a linearly dependent set.

Definition: (Eigenvalues and Eigenvectors) The numbers λ for which

$$(A - \lambda I)\mathbf{v} = \mathbf{0}$$

has at least one nontrivial solution \mathbf{v} are called eigenvalues of A. The corresponding nontrivial solutions are called the eigenvectors of A associated with λ .

Example: Find the eigenvalues and eigenvectors of the matrix

$$A = \left[\begin{array}{cc} 2 & -3 \\ 1 & -2 \end{array} \right].$$

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & -3 \\ 1 & -2 - \lambda \end{vmatrix} = \lambda^2 - 1 = 0.$$

 $\lambda_1=1,~\lambda_2=-1.$ To find the eigenvectors corresponding to $\lambda_1=1,$ we solve

$$(A - \lambda_1 I)\mathbf{v} = \mathbf{0} \Longrightarrow \begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The eigenvector associated with $\lambda_1 = 1$ is

$$\mathbf{v}_1=r\left[egin{array}{c}3\\1\end{array}
ight],\ r\in\mathbb{R}.$$

Similarly, for $\lambda_2 = -1$, we solve

$$(A - \lambda_2 I)\mathbf{v} = \mathbf{0} \Longrightarrow \begin{bmatrix} 3 & -3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The eigenvector associated with $\lambda_2 = -1$ is

$$\mathbf{v}_2 = r \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ r \in \mathbb{R}.$$

Theorem: If $\lambda_1, \ldots, \lambda_n$ are distinct eigenvalues of A and \mathbf{v}_i is an eigenvectors associated with λ_i , then $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

Finding the general solution to $\mathbf{x}' = A\mathbf{x}$

Theorem: Suppose $A = (a_{ij})_{n \times n}$ has n linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$. Let λ_i be the eigenvalue corresponding to \mathbf{v}_i . Then

$$\{e^{\lambda_1 t}\mathbf{v}_1, e^{\lambda_2 t}\mathbf{v}_2, \dots, e^{\lambda_n t}\mathbf{v}_n\}$$

is a fundamental solution set on \mathbb{R} for $\mathbf{x}' = A\mathbf{x}$. Then the general solution (GS) of $\mathbf{x}' = A\mathbf{x}$ is

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n,$$

where c_1, \ldots, c_n are arbitrary constants.

Proof.

$$W(t) = \det[e^{\lambda_1 t} \mathbf{v}_1, \dots, e^{\lambda_n t} \mathbf{v}_n] = e^{(\lambda_1 + \dots + \lambda_n)t} \det[\mathbf{v}_1, \dots, \mathbf{v}_n] \neq 0.$$

Thus, $\{e^{\lambda_1 t} \mathbf{v}_1, e^{\lambda_2 t} \mathbf{v}_2, \dots, e^{\lambda_n t} \mathbf{v}_n\}$ is a fundamental solution set and hence, the GS is given by

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n.$$

Example: Find the GS of

$$\mathbf{x}'(t) = A\mathbf{x}(t), \;\; ext{where} \; A = \left[egin{array}{cc} 2 & -3 \ 1 & -2 \end{array}
ight].$$

The eigenvalues are $\lambda_1=1$ and $\lambda_2=-1$. The corresponding eigenvectors (with r=1) are

$$\mathbf{v}_1 = \left[egin{array}{c} 3 \\ 1 \end{array}
ight] \ \ ext{and} \ \ \mathbf{v}_2 = \left[egin{array}{c} 1 \\ 1 \end{array}
ight].$$

The GS is

$$\mathbf{x}(t) = c_1 e^t \left[egin{array}{c} 3 \ 1 \end{array}
ight] + c_2 e^{-t} \left[egin{array}{c} 1 \ 1 \end{array}
ight].$$

Uncoupling Normal Systems

We know the GS to scalar equation x'(t) = ax(t) is $x(t) = ce^{at}$, where c = x(0).

The easiest normal systems to solve are systems of the form

$$\mathbf{x}'(t) = D\mathbf{x}(t),$$

where D is an $n \times n$ diagonal matrix. Such a system actually consists of n uncoupled equations

$$x_i'(t) = d_{ii}x_i(t), \quad i = 1, \ldots, n,$$

whose solution is

$$x_i(t)=c_ie^{d_{ii}t},$$

where the c_i 's are arbitrary constants.

Example: Consider the uncoupled system

$$x'_1(t) = -x_1(t)$$

 $x'_2(t) = 2x_2(t)$.

Writing this system in the matrix form $\mathbf{x}'(t) = A\mathbf{x}(t)$, where

$$A = \left[\begin{array}{cc} -1 & 0 \\ 0 & 2 \end{array} \right].$$

The method of separation of variables yield the GS

$$x_1(t) = c_1 e^{-t}$$

 $x_2(t) = c_2 e^{2t}$

In matrix form

$$\mathbf{x}(t) = \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{bmatrix} \mathbf{c}$$
, where $\mathbf{c} = \mathbf{x}(0)$.

Diagonalization Technique

The diagonalization technique is used to reduce the linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

to an uncoupled linear system.

Theorem: If the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of A are real distinct, then any set of corresponding eigenvectors $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ form a basis for \mathbb{R}^n . The matrix

$$P = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$$

is invertible and $P^{-1}AP = \operatorname{diag}[\lambda_1, \dots, \lambda_n]$.

Reducing the system $\mathbf{x}' = A\mathbf{x}$ to an uncoupled system:

Define $\mathbf{y} = P^{-1}\mathbf{x}$. Then $\mathbf{x} = P\mathbf{y}$.

Now,

$$\mathbf{y}' = P^{-1}\mathbf{x}'$$

= $P^{-1}AP\mathbf{y}$
= $\operatorname{diag}[\lambda_1, \dots, \lambda_n]\mathbf{y}$.

The uncoupled linear system has the solution

$$\mathbf{y}(t) = \operatorname{diag}[e^{\lambda_1 t}, \dots, e^{\lambda_n t}]\mathbf{y}(0)$$

Since
$$\mathbf{y}(0) = P^{-1}\mathbf{x}(0)$$
 and $\mathbf{x}(t) = P\mathbf{y}(t)$, it follows that
$$\mathbf{x}(t) = P\operatorname{diag}[e^{\lambda_1 t}, \dots, e^{\lambda_n t}] P^{-1}\mathbf{x}(0).$$

Example: Consider $x'_1 = -x_1 - 3x_2$; $x'_2 = 2x_2$. Here

$$A = \left[\begin{array}{cc} -1 & -3 \\ 0 & 2 \end{array} \right].$$

The eigenvalues of A are $\lambda_1 = -1$ and $\lambda_2 = 2$. A pair of corresponding eigenvectors is

$$\mathbf{v}_1 = \left[egin{array}{c} 1 \ 0 \end{array}
ight], \quad \mathbf{v}_2 = \left[egin{array}{c} -1 \ 1 \end{array}
ight].$$

The matrix

$$P = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
 and $P^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Note that
$$P^{-1}AP = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$

We obtain the uncoupled linear system

$$y_1' = -y_1 \quad y_2' = 2y_2.$$

The GS is given by

$$y_1(t) = c_1 e^{-t}, \quad y_2(t) = c_2 e^{2t}.$$

The GS to the original system is

$$\mathbf{x}(t) = P \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{bmatrix} P^{-1} \mathbf{c}, \quad \mathbf{c} = \mathbf{x}(0).$$

$$x_1(t) = c_1 e^{-t} + c_2(e^{-t} - e^{2t}), \quad x_2(t) = c_2 e^{2t}.$$

*** Fnd ***

