⑩日本国特許庁(JP)

10 特許出願公開

四公開特許公報(A)

昭60-180026

@Int_Cl_4

00代 理 人

識別記号

庁内整理番号

母公開 昭和60年(1985)9月13日

H 01 H 33/66

B-8423-5G

審査請求 未請求 発明の数 3 (全9頁)

図発明の名称 真空インタラブタの電極材料とその製造方法

> 创特 願 昭59-35025

御出 顧 昭59(1984)2月25日

79発明者 柏 木 佳 行 砂発 明者 Œ 忢 砂発 明 者

東京都品川区大崎2丁目1番17号 株式会社明電舎内 東京都品川区大崎2丁目1番17号 株式会社明電舎内 東京都品川区大崎2丁目1番17号 株式会社明電舎内

客 崹 の出 頭 人 株式会社明電舎

弁理士 志賀 富士弥

東京都品川区大崎2丁目1番17号

1. 発明の名称

真空インタラブタの電傷材料とその製造方法 - 2.特許請求の範囲

- (1) 斜20~80重量量, クロム5~45重量 ち、鉄5~45重量がおよび炭化クロム 0.5~20 重量がよりなる複合金属であることを特徴とする 真空インタラブタの電極材料。
- (2) 前記複合金属の組織状態が、クロム,鉄お よび炭化クロムの各粉末が拡散結合した多孔質の 基材に剣が密役された状態であることを特徴とす る特許請求の範囲第1項記載の真空インタラブタ の観極材料。
- (3) クロム、鉄および炭化クロムの各粉末を混 合し、この混合粉末を非酸化性雰囲気中にて前記

各粉末の融点以下の温度で加熱し相互に拡散結合 せしめて多孔質の基材を形成し、次いでこの基材 に銅を非酸化性雰囲気中にて銅の融点以上の温度 で加熱して裕後せしめ、銅20~80重錐8,ヶ ロム5~45重量が、鉄5~45重量がおよび炭 化クロム 0.5~20 重量もよりなる 複合金腐とし たことを特徴とする真空インタラブタの銀板材料 の製造方法。

(4) クロム,鉄および炭化クロムの各粉末を混 合し、この混合粉末の上に銅を敬聞するとともに 非酸化性芽囲気中に収納し、先ず銅の触点以下の 閻度で加熱し前記混合粉末を相互に拡散結合せし めて多孔質の基材を形成し、次いで鍋の融点以上 の弧度で加熱して前配基材に鋼を溶浸せしめ、鍋 20~80重量5,0~45重量5,05

特局昭60~180026(3)

(1) 実空インタラブタの電極材料を、網20~80重量が、クロム5~45重量が、鉄5~45 重量がおよび炭化クロム 0.5~20重量がよりな る複合金属で構成した。

(2) 上記(1)の複合金属を、クロム、鉄および炭化クロムの各粉末を混合し、この混合粉末を非酸化性雰囲気中にて前配各粉末の融点以下の温度で加熱し相互に拡散結合せしめて多孔質の基材を形成し、次いでこの基材に斜を非酸化性雰囲気中にて銅の触点以上の温度で加熱して溶浸せしめて製造した。

(3) 上記(1)の複合金属を、クロム、鉄および炭化クロムの各粉末を混合し、この混合粉末の上に 鎖を破離するとともに非酸化性雰囲気中に収納し、 先ず銅の酸点以下の過度で加熱し前記混合粉末を

その両端開口部を他方の封滑金具2,2を介しステンレス鋼等からなる円板状の金属端板3,3により閉器し、かつ内部を高真空(例えば5×10⁻⁰Torr 以下の圧力)に排気して真空容器4が形成されている。

そして、この真空容器 4 内には、 1 対の円板状の電標 5 , 5 が、各金属端板 3 , 3 の中央部から真空容器 4 の気密性を保持して相対的に接近離反自在に導入した対をなす電極体 6 , 6 を介し、接触 取 (接離)自在に設けられている。なお、 第 1 図において、 7 は金属ペローズ、 8 は各電極 5 等を同心状に囲続する中間電位のシールドである。

ここに、前配各電板 5 は、 Cu 20 ~ 80 重量 4 。 クロム (Ur) 5 ~ 4 5 質量 4 ,鉄 (Fe) 5 ~ 4 5 重量 5 および炭化クロム 0.5~ 2 0 重量 5 よりなる機 相互に拡散結合せしめて多孔質の基材を形成し、 次いで銅の融点以上の態度で加熱して前配素材に 銅を溶剤せしめて製造した。

爽 施 例

以下、本発明の実施例を図阅を参照して説明する。

第1図は本発明に保る電板材料により形成された電板を備えた真空インタラブタの縦断面図である。第1図に示すように、この真空インタラブタは、円筒状に形成したガラスまたはセラミックス等の絶縁物からなる2本の絶縁筒1,1を、それぞれの両端に固着した鉄 (Pe)-ニッケル (N1)-コパルト (Oo)合金または Pe-N1 合金等の余属からなる薄肉円環状の封滑金具2,2,…の一方を介し同軸的に接合して1本の絶縁筒にするとともに、

台金属で形成されている。なお、この複合金属は、5~30 まの導電率 (IAC8 が) を有するものである。

特に、この複合金属の組織状態が、 Or,Fe および 以化クロムの各粉末が拡散結合した多孔質の基材にOuが 密長された状態であれば最も好ましい。

次に、上記電極材料の各種製造方法について脱明する。

第1の方法は、例えば粒径がそれぞれ - 100 メッシュである、 Or, Pe および炭化クロムを所定 量機械的に混合する。 次に、この混合物末を Cr, Be, 炭化クロムおよび Cu のいずれとも反応しない材料(例えばアルミナ等)からなる容器に収納 する。 そして、この混合粉末を、非酸化性芽囲気中(例えば5×10 Torr 以下の圧力の異空中、また は水煮ガス中・金素ガス中およびアルゴンガス中) にて前配各物末の融点以下の温度で加熱保持(例 えば600~1000℃で5~60分間温度)し、相 互に拡散結合せしめて多孔質の基材を形成する。

その後、この多孔質の指材の上にUuのブロックを観慮し、前述の如き非酸化性雰囲気中にてCuの 触点以上の弱度で加熱保持(例えば 1100C で 5 ~ 2 0 分間程度)し、前記器材にCuを格役させる。

なお、この第1の方法は、多孔質の基材の形成作業とCuの쯈設作業とが、工程を分けて行なわれる場合を示したものである。また、Cu の쯈設方法は、上述の実施例に限定されず、例えば水繋ガス等のガス中にてまず多孔質の基材を形成し、その後裏望引きによりCuを密設させてもよい。

これに対し、第2の方法は、例えば粒径がそれ

ぞれ・100メッシュである、 Cr, Pe および段化クロムを所定性機械的に混合する。 次に、この混合粉末を Cr, Pe , 反化クロムおよび Cu のいずれとも反応しない材料(例えばアルミナ等)からなる容当に収納するとともに、混合粉末の上に Cu のブロックを戦値する。そして、これらを削述の如き非酸化性努出気中にて、まず Cu の融点以下の温度で加熱保持(例えば600~1000℃で5~60分間程度)し、前配混合粉末を相互に拡散組合せしめて多孔質の基材を形成し、次いで Cu の融点以上の進度で加熱保持(例えば1100℃で5~20分間程度)して基材に Cu を 路 提せしめる。

ここに、第 1 および 第 2 の方法ともに、金属別 末の粒径は、 - 1 0 0 メッシュ (1 4 9 д ш以下) に限定されるものではなく、 - 6 0 メッシュ (2

さらに、前記電板材料は、上述の第1 および第 2 の製造方法のほかに、例えば Ur.Pe および 炭化 クロムの金属粉末に Cuをも粒末として Cu を含めた 混合粉末を形成し、これをブレス形成し、Cu の触点以下またはCuの融点以上でかつ他の金銭の触点以下の温度に加熱保持する方法により製造してもよい。この際、ブレス成形した素体の上に、さらにCu を載塵してもよく、この場合には加熱温度がCu の融点以上である必要がある。

なお、前記第1 および第2 の方法いずれにあつ でも、非酸化性雰囲気としては、真空の方が加熱 保持の際に脱ガスが同時に行なえる利点があつて 好適なものである。勿論、真空中以外のガス中に で製造した場合にあつても真空インタラブタの電 極材料として実用上問題はないものである。また、 金属粉末の相互拡散結合に要する、加熱温度と時間は、炉の条件、形成する多孔質基材の形状,大 きさ等の条件および作業性等を考慮し、かつ所題 の電極材料としての性質を満足するように加熱保持されるものであり、例えば 6 0 0 ℃で 1 ~ 2 時間、または 1000℃で 1 0 ~ 6 0 分間といつた加熱条件で作業が行なわれるものである。

次に、前述の第2の製造方法により、5×10⁻¹
Torrの真空中にて、まず1000℃で60分間加熱保持して多孔質の番材を形成し、次いで1100℃で20分間加熱保持してCuを溶浸せしめた場合の3種の本発明電極材料(複合金属)の組織状態を第2図から第4図までに示すエ線写真を用いて説明する。

なお、各に値材料の成分組成(重量 6)は、以 下に示す 3 種のものである。

果施例1 Cu50-Or5-Fe40-Or, 0,5

実施例2 Cu50-Ur20-Fe20-Ur.U.10

実施例3 Cu50-Cr40-Fe5-Or, 0,5

示す特性 X 線像で、わずかに白く点在する部分が O の存在を示す。さらに、各図図の X 線写真は Ou の分散状態を示す特性 X 線像で、白い部分が Cuで ある。

第2図から第4図で判るように、Ur.Pe および Or.U.の各物末が、相互に拡散結合して粒子とな り、各粒子がほぼ均一に分散した状態で互いに結 合して多孔質の基材を形成し、この基材に溶浸さ れたOuが、Ur 等と相互に拡散結合し、全体として 強固な結合体(複合金属)を形成している。

一方、 前述の如く、 第2の方法により製造した 実施例1の成分組成からなる本発明の電極材料を、 遺径50 mm, 厚さ6.5 mmの円板に形成しかつその 周級を4 mm アールの丸味を付けた電極にし、これ を第1図に示すような構成の真空インタラブタに 類2図(A)~四、第3図(A)~回および第4図(A)~回は、それぞれ実施例1、実施例2および実施例3の各成分組成の複合金属の組織状態を示すもので、第2図(A)、第3図(A)および第4図(A)の X 線写真は、 X 級マイクロアナライザによる二次電子像で、 Or と Fe と Or c との各粉末が相互に拡散結合し均一に分散して一体化された島状の粒子となり、かつ各島状の粒子が相互に結合して多孔質の基材を形成するとともに、この基材の孔(空隙)に Ouが辞录されている。

また、各図(B)の工線写真は、Urの分散状態を示す特性工線像で、島状に点在する白色の部分がCrである。各図(U)の工線写真は、Peの分散状態を示す特性工機像で、島状に点在する白い部分がPeである。各図(D)の工線写真は、炭素(O)の分散状態を

1対の電極として組込んで賭性能の検証を行なった。その結果は、下記に示すようになった。

.(1)電流しや断能力

しや断条件が、定格電圧 1 2k.V (冉起電圧 21k V , JEO - 181) , しや断速度 1.2 ~ 1.5 m/o の時に 12kA (r·m·B·) の電流をしや断することができた。

なお、実施例2 および 3 の成分組成のものも実施例1 のものと同様の結果を示した。

(2) 舱線耐力

ギャップを3 mm に保持し、循準放を印加する個 撃放耐電圧試験を行なつたところ、 ¹ 110kV (パ ラッキ± 10kV) の絶縁耐力を示した。また、大 電流 (12kA) の複数回しや断張に同様の試験を 行なつたが、絶縁耐力に変化はなかつた。さらに、 進み小電机 (80 A) のしや断張に同様の試験を

特問昭60-180026 (6)

行なつたが、絶縁耐力は殆んど変化しなかつた。 なお、実施例2 および 3 の成分組成のものの絶 縁耐力は、いずれも実施例1 のものと同様の結果 を示した。

(3) 耐溶溶性

130 駅の加圧下で、 25kA (r·m·s·)の電流を3 秒 間通讯 (IBO 短時間電流規格) した後に、 200 駅 の 的 的 な 引き外 し 力 で 問題な く 引き外 す ことが で き、 その後の接触抵抗の増加は、 4 ~ 10 % にとど まつた。 また、 1000町の加圧下で、 50kA (r·m·s·) の電流を3 秒間通電した後の引き外 しも問題なく、 その後の接触抵抗の増加は、 0 ~ 6 % にとどまり、 十分な 耐溶 看性を 備えていた。

なお、実施例2 および3 の成分組成のものの耐 密滑力も、実施例1 と同様の結果を示した。

なお、実施例2および3の成分組成のものも、 実施例1のものと同様の結果を示した。

(7) 健 度

硬度は、112~194Hv (1 な)を示した。

なお、実施例2 および 3 の成分組成のものの便 度も実施例1 のものと同様の結果を示した。

さらに、実施例 1 の成分組成の電極材料を用いた真空インタラブタと、従来の Uu-0.5B1 電極を備えた真空インタラブタとの譜性能を比較したところ、下記に示すようになつた。

(1) 電流しや断能力

両者同根度であつた。

(2) 給 碌 耐 力

従来の Ou-0.5B1 電低のものは、10 mmのギャップで、実施例 1 の成分組成による電低の真空インタ

(4) 遅れ小電流(誘導性の負荷)のしや断配力 $84 \times \frac{1.5}{\sqrt{3}}$ kV 、30A の遅れ小風流試験(JEC-18J) を行なつたところ、電流さい断値は、平均 1.1 A (標準偏差 $\sigma_n=1.2$ 、原本数 n=100)を示した。

なお、実施例 2 の成分組成のものの電流さい断値は、平均 1.4 A(σ_n = 1.2 , n = 100)を示し、また、実施例 3 の成分組成のものの電流さい断値は、平均 1.3 A(σ_n = 1.2 , n = 100)を示した。
(5) 進み小電流(容量性の負荷)のしや断能力

単任 $,84 \times \frac{1.25}{\sqrt{3}}$ kV ,80 A の進み小電流試験(JBO-181)を、10000 回行なつたが冉点弧は 0 回 であつた。

· (6) 導電率

8 ~ 1 1 乡の導電率(IAOB 乡)を示した。

ラブタと同じ絶級耐力であつた。したがつて、本発明に係る電極を備えた真空インタラブタは、従来の Ou-0.5Bi 世極のものの、約3倍の絶級耐力を有していた。

(3) 耐溶溶性

本発明に係る電極の耐溶潛性は、従来の Ou-0.5 B1 電極のそれの 7 0 % であるが実用上殆んど問題なく、必要ならば多少電極開離瞬時の引き外し力を増加させればよい。

(4) 遅れ小槌硫のしや断能力

本発明に係る電極の電流さい断値は、従来の Cu - 0.5B1 電極の電流さい断値の約 1/10 と小さいので、さい断サージが殆んど問題とならず、かつ開閉後もその値が変化しない。

(5) 進み小電侃のしや断能力

本発明に係る電極は、従来の Cu-0.5 B1 電極に比して 2 倍のキャパシタンス容量の負債をしや断することができる。

なお、前記実施例 2 および 3 の成分組成に係る電信も、従来の Uu-0.5B1 電信との比較において、上述した実施例 1 の成分組成に係る電徒とほぼ同様の性能を示した。

また、前配実施例においては、炭化クロムとして Cr.O. を用いたが、本発明はかかる実施例に限定されるものではなく、 Cr.C. または Or.s. C.を用いてもほぼ间様の結果が得られる。

には、電 流さい断値が急酸に高くなり、20 重貨 %を越える場合には、大電流しや断能力が急酸に低下した。

発明の効果

以上のように、本発明の真空インタラブタの電 極材料は、 Cu20 ~ 80 重量 4 , Or5 ~ 4 5 重量 5 , Pe5 ~ 4 5 重量 5 および炭化クロム 0.5 ~ 2 0 重 最 5 よりなる複合金属であるので、従来の、例え ば Ou-0.5 B1 電極と同様の優れたしや断能力を発揮 でき、しかも絶機耐力をも飛躍的に向上させるこ とができる。また特に、さい断電流値が従来のも のに比し極めて低いので、遅れ小電流を良好にし や断することができる。

さらに、この複合金属の組織状態が、 cu 以外の金属の各粉末が拡散結合した多孔質の基材に、

かつた。

すなわち、Ouが20 角盤を未満の場合には、導電車の低下が急酸に大きくなり、短時間最近試験 後の接触抵抗が急酸に大きくなるとともに、定格 電流通電時におけるジュール熱の発生が大きいの で実用性が低下した。また、Ouが80 塩盤をを踏 える場合には、絶縁耐力が低下するとともに、耐 溶療性が急酸に無化した。

また、 0r が 5 重量 5 未満の場合には、電流さい断値が高くなり、遅れ小電流しや断能力が低下し、 4 5 重量 5 を越える場合には、 大電流しや断能力が急酸に低下した。 Peが 5 重量 5 未満の場合には、 大電流しや断能力が急酸に低下した。 さらに、 炭化クロムが 0.5 重量 5 未満の場合

Cuが辞長された状態であれば、機械的強度および 導電率を一層高めることができる。

一方、本発明の真空インタラブタの電極材料の 製造方法によれば、複合金属を構成する各金属間 の結合が良好に行なわれ、その分散状態を均一に でき、本発明の電極材料の有する前記電気的特性、 特にさい断電流値を著しく低くでき、また機械的 特性の向上も図ることができる。

4. 図面の簡単な説明

第1図は本発明の真空インタラブタの銀低材料による電極を備えた真空インタラブタの縦断面図、第2図(A),(B),(O),(D),(E)、第3図(A),(B),(O),(D),(E)はそれぞれ本発明の電循材料の異なる成分組成における組織状態を示す×線写真である。

第 1 図

