KELLY JACQUELINE MOURA DE MELO

APLICAÇÃO DO MÉTODO DAS DIFERENÇAS FINITAS EXPLÍCITO NA SOLUÇÃO DA EQUAÇÃO DO CALOR PARA O CASO TRANSIENTE E UNIDIMENSIONAL

KELLY JACQUELINE MOURA DE MELO

APLICAÇÃO DO MÉTODO DAS DIFERENÇAS FINITAS EXPLÍCITO NA SOLUÇÃO DA EQUAÇÃO DO CALOR PARA O CASO TRANSIENTE E UNIDIMENSIONAL

Monografia apresentada a Universidade Federal Rural do Semi-Árido – UFERSA, Campo Angicos, para obtenção do título de Bacharel em Ciência e Tecnologia.

Orientador: Prof. Me. Marcus Vinícius Sousa Rodrigues - UFERSA

Catalogação na Fonte

Biblioteca Universitária Campus Angicos (BCA-UFERSA)

M528a Melo, Kelly Jacqueline Moura de.

Aplicação do método das diferenças finitas explícito na solução da equação do calor para o caso transiente e unidimensional / Kelly Jacqueline Moura de Melo.

– Angicos, RN: UFERSA, 2011.

46 f.: il.

Monografia (Graduação em Ciência e Tecnologia) — Universidade Federal Rural do Semi-Árido. Campus Angicos. Orientadora: Prof.º Me. Marcus Vinícius Sousa Rodrigues.

1. Equação diferencial parcial. 2. Equação do calor. 3. Método numérico. 4. Método das diferenças finitas. I. Título.

RN/UFERSA/BCA CDD 515.35

Ficha Catalográfica elaborada pelo Bibliotecário-Documentalista Sale Mário Gaudêncio – CRB15/476

KELLY JACQUELINE MOURA DE MELO

APLICAÇÃO DO MÉTODO DAS DIFERENÇAS FINITAS EXPLÍCITO NA SOLUÇÃO DA EQUAÇÃO DO CALOR PARA O CASO TRANSIENTE E UNIDIMENSIONAL

Monografia apresentada a Universidade Federal Rural do Semi-Árido, Campos Angicos, para obtenção do título de Bacharel em Ciência e Tecnologia.

APROVADO EM	/
	BANCA EXAMINADORA
	Prof°. Me. Marcus Vinícius Sousa Rodrigues – UFERSA Presidente
	Prof ^a . Ma. Ana Cristina Girão e Silva – UFERSA Primeiro Membro
	Prof ^a . Dra. Marcilene Vieria da Nóbrega – UFERSA Segundo Membro

ANGICOS - RN

Aos meus pais,

Cesar e Marly

Dedico.

RESUMO

Uma equação diferencial é uma equação que contém uma função desconhecida e algumas de suas derivadas. Essas equações descrevem o comportamento de vários problemas físicos importantes aplicados na engenharia, como, por exemplo, a condução de calor. A equação diferencial que determina a distribuição de temperatura em um corpo é chamada de equação de calor. A solução dessa equação pode ser obtida por métodos analíticos e numéricos. Os métodos numéricos consistem em reduzir um problema contínuo, com um número infinito de variáveis, em um problema discreto com um número finito de variáveis, podendo ser resolvido computacionalmente. Nesse trabalho, será apresentado a solução de dois problemas de condução de calor em regime transiente e unidimensional obtido pelo método das diferenças finitas explícito.

Palavras chaves: Equação diferencial parcial, Equação do calor, Método numérico, Método das diferenças finitas.

LISTA DE GRÁFICOS

Gráfico 1 - Função $f(x)$ para expansão de Taylor	19
Gráfico 2 - Função $f(x)$ para expansão de Taylor e determinação da diferença atrasada	20
Gráfico 3 - Diferentes formas para a definição de quocientes por diferenças	21
Gráfico 4 - Variação de temperatura em função do espaço	31
Gráfico 5 - Comparação da solução pelo método das diferenças finitas com a solução ana	alítica
para o tempo de 15s	32
Gráfico 6 - Comparação da solução pelo método das diferenças finitas com a solução ana	alítica
para o tempo de 30s	32
Gráfico 7 - Comparação da solução pelo método das diferenças finitas com a solução ana	alítica
para o tempo de 100s	33
Gráfico 8 - Comparação da solução pelo método das diferenças finitas com a solução ana	alítica
para o tempo de 500s	33
Gráfico 9 - Variação da temperatura em relação ao espaço, para diferentes moment	os de
tempo, calculados pelo método das diferenças finitas	34
Gráfico 10 - Comparação da solução pelo método das diferenças finitas com a so	lução
analítica, para o comprimento de 5 cm da barra	35
Gráfico 11 - Comparação da solução pelo método das diferenças finitas com a so	lução
analítica, para o comprimento de 20 cm da barra	35
Gráfico 12 - Comparação da solução pelo método das diferenças finitas com a so	lução
analítica, para o comprimento de 45 cm da barra	36
Gráfico 13 - Variação de temperatura em relação ao tempo, para diferentes moment	os de
espaço, calculados pelo método das diferenças finitas	37
Gráfico 14 - Variação da temperatura em função do espaço	41
Gráfico 15 - Solução pelo método das diferenças finitas para o tempo de 10s	41
Gráfico 16 - Solução pelo método das diferenças finitas para o tempo de 25s	42
Gráfico 17 - Solução pelo método das diferenças finitas para o tempo de 50s	42
Gráfico 18 - Variação da temperatura com o decorrer do tempo no comprimento de 50	cm da
barra	43
Gráfico 19 - Variação da temperatura com o decorrer do tempo para o comprimento de 1	15 cm
da barra	43

Gráfico 20 - Variação da temperatura com o decorrer do tempo para o comprimento de 2	25 cm
da barra	44
Gráfico 21 - Variação da temperatura em relação ao tempo, para diferentes moment	os de
espaço, calculado pelo método das diferenças finitas	44

LISTA DE FIGURAS

Figura 1 - Malha computacional uni-dimensional	18
Figura 2 - Malha computacional bidimensional	18
Figura 3 - Molécula computacional para representação da fórmula explícita	22
Figura 4 - Molécula computacional ilustrando a diferença entre o método	explícito e
implícito	23
Figura 5 - Distribuição de temperaturas em uma barra de metal, para o tempo t >0.	26
Figura 6 - Distribuição de temperaturas em uma barra de metal, para o tempo t >0.	26

LISTA DE TABELAS

Tabela 1 - Resultado do problema I pelo método das diferenças finitas	29
Tabela 2 - Resultado do problema II pelo método das diferenças finitas	38

SUMÁRIO

1	INTRODUÇÃO	12
2	REVISÃO BIBLIOGRÁFICA	13
2.1	EQUAÇÃO DIFERENCIAL	13
2.2	EQUAÇÕES DIFERENCIAIS PARCIAIS DE SEGUNDA ORDEM	14
2.3	EQUAÇÃO DO CALOR	15
2.4	SOLUÇÃO DA EQUAÇÃO DIFERENCIAL PARCIAL	17
2.5	MÉTODOS NUMÉRICOS	17
2.6	DISCRETIZAÇÃO	17
2.7	MÉTODO DAS DIFERENÇAS FINITAS	18
2.8	SÉRIE DE TAYLOR	19
	MÉTODO DAS DIFERENÇAS EXPLÍCITO APLICADO NA EQUAÇÃO LOR	
	0 MÉTODO DAS DIFERENÇAS IMPLÍCITO APLICADO NA EQUAÇÃO LOR	
3	METODOLOGIA E PROBLEMA PROPOSTO	25
3.1	CONVERGÊNCIA E ESTABILIDADE	25
3.2	PROBLEMA 1	26
3.3	PROBLEMA 2	26
4	RESULTADOS E DISCURSÕES	28
4.1	PROBLEMA I	28
4.2	PROBLEMA II	37
5	CONCLUSÃO	45
DE.	EEDÊNICIAS	16

1 INTRODUÇÃO

O estudo dos fenômenos de transporte de calor compreende uma das áreas fundamentais da engenharia. Essa importância se deve devido aos diversos processos e aplicações que utilizam energia em transito.

Problemas que envolvem transferência térmica causada por uma diferença de temperatura entre duas regiões em um mesmo meio podem ser representados por equações diferenciais parciais. Essas equações são denominadas equações do calor, e determinam a distribuição de temperatura em um corpo.

As equações diferenciais parciais são de grande importância na engenharia, pois através dessas expressões podemos determinar o comportamento futuro de diversos problemas, com base na variação dos valores presentes. Porém, a resolução de uma equação diferencial parcial pode ser complexa, o que dificulta ou até mesmo impossibilita a obtenção das soluções exatas pelos métodos analíticos existentes.

O avanço computacional e a crescente necessidade de se obter soluções de problemas cada vez mais complexos originaram os métodos numéricos. A idéia básica desses métodos é o processo de discretização, que reduz o problema contínuo, com número infinito de variáveis, em um problema discreto com um número finito de variáveis, podendo ser resolvido computacionalmente. Existem diversos tipos de métodos numéricos utilizados para encontrar a solução de uma equação diferencial parcial, como: método dos elementos finitos, método dos elementos de contorno, método dos volumes finitos, método das diferenças finitas.

Nesse trabalho utilizaremos o método das diferenças finitas explícito com o objetivo analisar a transferência de calor no decorrer do tempo em dois problemas que envolvem condução de calor unidimensional em uma barra. Também realizaremos uma comparação entre a solução exata e a solução numérica obtida pelo método das diferenças finitas explícito, com a finalidade de verificar a eficiência do método utilizado.

2 REVISÃO BIBLIOGRÁFICA

2.1 EQUAÇÃO DIFERENCIAL

Problemas envolvendo o movimento de fluidos, fluxo de corrente elétrica, dissipação de calor, propagação ondas sísmicas, crescimento populacional, podem ser descritos por equações diferenciais.

Uma equação diferencial é uma equação que contém uma função desconhecida e algumas de suas derivadas. Através das equações diferenciais podemos determinar o comportamento futuro de problemas físicos importantes, com base da variação dos valores presentes.

As equações diferenciais são classificadas quanto:

- o tipo,
- o ordem,
- o linearidade,

Quanto ao tipo, as equações diferenciais são divididas em: equações diferenciais ordinárias (EDO) e equações diferenciais parciais (EDP). A equação diferencial ordinária depende apenas de uma variável independente, e envolve apenas derivadas simples, como mostrado na equação 1.

$$F(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^ny}{dx^n}) = 0$$
 (1)

Já as equações diferenciais parciais, envolvem mais de uma variável independente. Neste caso, as equações envolvem as derivadas parciais de uma função de duas ou mais variáveis.

Quanto a ordem, uma equação diferencial pode ser de 1ª, de 2ª, ..., de n- ésima ordem, dependendo da derivada de maior ordem presente na equação.

Quanto à linearidade, uma equação diferencial pode ser linear ou não-linear. Uma equação diferencial é linear se ela for linear na função desconhecida e em todas suas derivadas, com coeficientes dependendo apenas das variáveis independentes (CHAPRA; CANALE, 2008, p. 699).

2.2 EQUAÇÕES DIFERENCIAIS PARCIAIS DE SEGUNDA ORDEM

As equações diferenciais parciais são de grande importância na engenharia, pois são amplamente aplicadas na resolução de problemas como, por exemplo, na distribuição de temperatura em uma placa aquecida ou na determinação de uma infiltração de água sob uma barragem, ou na determinação do campo elétrico perto da ponta de um condutor. De forma geral, as equações diferenciais parciais lineares de segunda ordem têm a seguinte representação

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu = G(x,y)$$
 (2)

onde A, B, C, D, E e G são funções de x e y. Quando os coeficientes de A ... G são constantes tem-se uma equação diferencial parcial de segunda ordem de coeficientes constantes.

As equações diferenciais parciais lineares de segunda ordem com coeficientes constantes são classificadas em três grupos: equações elípticas, equações parabólicas e equações hiperbólicas. Essa classificação é baseada no método das características, e é útil, pois relaciona problemas de engenharia e suas técnicas de solução. (CHAPRA; CANALE, 2008, p. 699).

Segundo Franco (2006, p. 432) as equações parabólicas são adequadas para modelar problemas de difusão, enquanto que as equações elípticas são adequadas para problemas de equilíbrio e as equações hiperbólicas para problemas de convecção.

Dependendo dos valores dos coeficientes dos termos de segunda ordem -A,B,C – classificamos as equações parciais lineares de segunda ordem com coeficientes constantes da seguinte forma.

Se $\Delta = B^2 - 4AC$, for igual a zero, então a equação é parabólica. Por exemplo, a equação de condução de calor,

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \tag{3}$$

Se $\Delta = B^2 - 4AC$, for maior que zero então a equação é hiperbólica. Por exemplo, a equação da onda,

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} \tag{4}$$

E se $\Delta = B^2 - 4AC$, for menor que zero a equação é elíptica. Por exemplo, a equação de Laplace,

$$\frac{\partial u^2}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{5}$$

2.3 EQUAÇÃO DO CALOR

A equação do calor ou de difusão de calor é uma equação diferencial parcial parabólica de segunda ordem. Essa equação determina o campo de temperatura, ou seja, representa como a temperatura varia com a posição no meio. (INCROPERA et. al., 2008, p. 44).

A equação do calor expressa um equilíbrio físico fundamental, no qual a taxa de calor que entra em qualquer parte da barra é igual à taxa de absorção de calor naquela parte barra. (DIPRIMA, 2002, p 332).

A forma geral, em coordenadas cartesianas da equação do calor é

$$\frac{\partial}{\partial x} \left(k \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial u}{\partial z} \right) + \dot{q} = \rho s \frac{\partial u}{\partial t}$$
 (6)

onde k, ρ e s são constantes, e representam respectivamente a condutividade térmica (W/mK), densidade (Kg/m³) e calor específico do material da barra (J/Kg K). O termo u expressa a temperatura e \dot{q} à taxa na qual a energia é gerada por unidade de volume no meio (W/m³). (INCROPERA; et.al., 2008, p. 45-46).

Essa equação postula que em qualquer ponto do meio, a taxa líquida de transferência de energia por condução para o interior de um volume unitário somada a taxa volumétrica de geração de energia térmica deve ser igual à taxa de variação da energia acumulada no interior deste volume (INCROPERA et. al., 2008, p. 46).

A solução da equação (6) nos dá o campo de temperatura u = u(x, y, z, t). É possível trabalhar com versões simplificadas da equação (6). Para o caso da transferência de calor

unidimensional na direção x, por exemplo, os termos $\frac{\partial}{\partial y} \left(k \frac{\partial u}{\partial y} \right) e^{-\frac{\partial}{\partial z}} \left(k \frac{\partial u}{\partial z} \right)$ são desconsiderados. Logo,

$$\frac{\partial}{\partial x} \left(k \frac{\partial u}{\partial x} \right) + \dot{q} = \rho s \frac{\partial u}{\partial t} \tag{7}$$

Para os casos em que não há uma fonte de geração de energia associada à taxa de geração de energia térmica, o termo \dot{q} é igual a zero. Então podemos escrever a equação (7) como

$$\frac{\partial}{\partial x} \left(k \frac{\partial u}{\partial x} \right) = \rho s \frac{\partial u}{\partial t} \tag{8}$$

No caso da condutividade térmica, k, ser constante, a equação (8) pode ser reescrita na forma

$$\alpha^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t} \tag{9}$$

ou como

$$u_t = \alpha^2 \, u_{xx} \tag{10}$$

onde α^2 é uma constante chamada de difusividade térmica, e é definida como

$$\alpha^2 = \frac{k}{\rho s} \tag{11}$$

A difusividade térmica é um parâmetro que depende apenas do material da barra. Seus valores são tabelados e as unidades de α^2 são comprimento²/ tempo (DIPRIMA, 2002, p. 311).

$$\alpha^2 \left[\frac{L^2}{T} \right] \tag{12}$$

2.4 SOLUÇÃO DA EQUAÇÃO DIFERENCIAL PARCIAL

A solução de uma equação diferencial parcial pode ser obtida pelo método de separação de variáveis. O método de separação de variáveis é o método mais antigo para resolução das equações diferencias parciais, sendo usado no século XVI por D' Alembert, Daniel Bernolli e Euler, em problemas de ondas, vibrações e condução de calor (DIPRIMA, 2002, p. 311).

A característica principal do método de separação de variáveis é a substituição da equação diferencial parcial por um conjunto de equações diferenciais ordinárias, que estão sujeitas a condições iniciais e de contorno especificadas. (DIPRIMA, 2002, p. 294).

2.5 MÉTODOS NUMÉRICOS

Em geral, os problemas que envolvem equações diferenciais mais difíceis necessitam de uma variedade de ferramentas para sua resolução. Além das soluções analíticas, diversos métodos numéricos podem ser utilizados para obtenção aproximada da solução de uma equação diferencial parcial. Os principais métodos numéricos utilizados para resolução dessas equações são: método das diferenças finitas, método dos elementos finitos, método dos elementos de contorno e método dos volumes finitos.

A idéia básica dos métodos numéricos é o processo de discretização, que reduz o problema contínuo, com um número infinito de variáveis, em um problema discreto com um número finito de variáveis, podendo ser resolvido computacionalmente (FRANCO, 2006, p. 431).

2.6 DISCRETIZAÇÃO

A primeira etapa para resolução de qualquer método numérico envolvendo as equações diferenciais parciais é discretizar a região onde se procura a solução. Para a discretização define-se uma malha, que é um conjunto finito de pontos pertencentes ao domínio, chamados nós da malha (FERREIRA; LIMA, 2010, p. 2).

Figura 1 - Malha computacional uni-dimensional

A figura 1 representa uma malha unidimensional uniforme, onde o espaçamento da malha é igual para cada intervalo e é representado por h. A figura 2 representa uma malha cartesiana ortogonal uniforme para um problema bidimensional. Qualquer ponto (x_i, y_i) fica representado na malha por (i, j) e os vizinhos a esse ponto vem representados por $(i\pm 1, j\pm 1)$.

Figura 2 - Malha computacional bidimensional.

Fonte: Elaborado pela autora (2011).

2.7 MÉTODO DAS DIFERENÇAS FINITAS

O método numérico das diferenças finitas é usado como uma abordagem alternativa para obter a aproximação da solução de uma equação diferencial parcial. A idéia básica desse método é transformar a resolução de uma equação diferencial em um sistema de equações algébricas, substituindo as derivadas por diferenças. (RUGGIERO, 1996, p.357).

O método numérico das diferenças finitas é facilmente executado em computadores. Ele consiste na discretização do domínio e na substituição das derivadas presentes na equação diferencial por aproximações utilizando apenas os valores numéricos da função. A

ferramenta básica no cálculo das aproximações das derivadas é a fórmula de Taylor (FRANCO, 2006, p.432).

2.8 SÉRIE DE TAYLOR

Dada f uma função, como mostra o gráfico:

Gráfico 1 - Função f(x) para expansão de Taylor

Fonte: Elaborado pela autora (2011).

O valor da função f a uma distância Δx de um ponto x qualquer, pode ser estimado através de uma expansão de Taylor

$$f(x + \Delta x) = f(x) + \Delta x \frac{df}{dx}(x) + \frac{(\Delta x)^2}{2!} \frac{d^2 f}{dx^2}(x) + \frac{(\Delta x)^3}{3!} \frac{d^3 f}{dx^3}(x) + \dots + \frac{(\Delta x)^n}{n!} \frac{d^n f}{dx^n}(x) + \dots$$
(13)

A equação (13) pode ser aproximada em primeira ordem da seguinte forma

$$f(x + \Delta x) \approx f(x) + \Delta x \frac{df}{dx}(x)$$
 (14)

e reformulada, para determinação de $\frac{df}{dx}$

$$\frac{df}{dx}(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x} \tag{15}$$

assim, foi obtido um quociente de diferenças que representa uma aproximação de primeira ordem para a primeira derivada da função f, na direção x, utilizando diferenças ascendentes ou progressivas. Essa primeira derivada foi aproximada pela inclinação da reta que une os pontos (x, f(x)) e $(x + \Delta x, f(x + \Delta x))$ (FERREIRA; LIMA, 2010, p. 2).

Através de um raciocínio análogo, o valor da função f pode ser estimado em um ponto anterior de x, como representado no gráfico 2.

Gráfico 2 - Função f(x) para expansão de Taylor e determinação da diferença atrasada.

Fonte: Elaborado pela autora (2011).

Utilizando a expansão de Taylor para determinar $f(x - \Delta x)$, obtemos

$$f(x - \Delta x) = f(x) - \Delta x \frac{df}{dx}(x) + \frac{(\Delta x)^2}{2!} \frac{d^2 f}{dx^2}(x) - \frac{(\Delta x)^3}{3!} \frac{d^3 f}{dx^3}(x) + \dots + (-1)^n \frac{(\Delta x)^n}{n!} \frac{d^n f}{dx^n}(x) + \dots$$
(16)

que pode ser aproximada na forma

$$f(x - \Delta x) \approx f(x) - \Delta x \frac{df}{dx}(x)$$
 (17)

e reformulada, para a determinação $\frac{df}{dx}$

$$\frac{df}{dx}(x) \approx \frac{f(x) - f(x - \Delta x)}{\Delta x} \tag{18}$$

A expressão (18) é chamada de diferenças descendentes, retrógrada ou atrasada.

Uma terceira alternativa pode ser considerada para aproximação da derivada de primeira ordem de f. Essa alternativa é chamada de aproximação centrada pela Série de Taylor e pode ser desenvolvida somando as equações (16) e (18) membro a membro, obtendo, assim, a expressão

$$\frac{df}{dx}(x) \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \tag{19}$$

Gráfico 3 - Diferentes formas para a definição de quocientes por diferenças

Fonte: Elaborado pela autora (2011).

Pode-se aproximar a função f em segunda ordem, utilizando o termo da segunda derivada da expansão de Taylor, com mostrado a seguir:

$$f(x + \Delta x) \approx f(x) + \Delta x \frac{df}{dx}(x) + \frac{(\Delta x^2)}{2!} \frac{d^2 f}{dx^2}(x)$$
 (20)

$$f(x - \Delta x) \approx f(x) - \Delta x \frac{df}{dx}(x) + \frac{(\Delta x^2)}{2!} \frac{d^2 f}{dx^2}(x)$$
 (21)

Para obter as aproximações de $\frac{d^2f}{dx^2}$, é feita a combinação das equações (20) e (21), obtendo a expressão

$$\frac{d^2f}{dx^2}(x) \approx \frac{f(x+\Delta x) - 2f(x) + f(x-\Delta x)}{(\Delta x)^2}$$
(22)

2.9 MÉTODO DAS DIFERENÇAS EXPLÍCITO APLICADO NA EQUAÇÃO DO CALOR

A equação de condução de calor $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ exige aproximações para a segunda derivada no espaço e para a primeira derivada no tempo (SHAPA; CANALE; 2008, p. 723). Para representar a aproximação da segunda derivada no espaço, utilizamos a diferença finita centrada, reescrita da seguinte forma:

$$\frac{\partial^2 u}{\partial x^2} = \frac{u_{i+1}^l - 2u_i^l + u_{i-1}^l}{\Delta x^2}$$
 (23)

Para representar a primeira derivada no tempo utilizamos a diferença progressiva, que é expressa da seguinte forma:

$$\frac{\partial u}{\partial t} = \frac{u_i^{l+1} - u_i^l}{\Delta t} \tag{24}$$

Substituindo a equação (23) e (24) na equação do calor $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$, obtemos

$$\alpha^{2} \frac{u_{i+1}^{l} - 2u_{i}^{l} + u_{i-1}^{l}}{\Delta x^{2}} = \frac{u_{i}^{l+1} - u_{i}^{l}}{\Delta t}$$
 (25)

A equação (25) fornece um meio explícito para calcular os valores de cada nó para um instante futuro, baseado nos valores atuais e em seus vizinhos. (SHAPA; CANALE; 2008, p. 724).

Figura 3: molécula computacional para representação da forma explícita

- Ponto da grade envolvido na diferença no tempo
- O Ponto da grade envolvido na diferença no espaço
- Ponto da grade envolvido na diferença do tempo e espaço

Fonte: Elaborado pela autora (2011).

A figura 3 expõe uma molécula computacional que representa a forma explícita do método das diferenças finitas. Nesse caso, conhecendo os valores de u(i-1,t), u(i,t) e u(i+1,t), pode-se determinar o valor de u(i,t+1).

2.10 MÉTODO DAS DIFERENÇAS IMPLICITO APLICADO NA EQUAÇÃO DO CALOR

A diferença fundamental entre as aproximações explícita e implícita está representada na figura 4. Para a forma explícita, a derivada espacial é aproximada no nível l de tempo. Para a forma implícita, a derivada espacial é aproximada em um nível de tempo avançado, l+1.

Figura 4: molécula computacional ilustrando a diferença entre o método explícito e implícito

- Ponto da grade envolvido na diferença no tempo
- O Ponto da grade envolvido na diferença no espaço
- Ponto da grade envolvido na diferença do tempo e espaço

Fonte: Elaborado pela autora (2011).

A figura 4 mostra, respectivamente, uma molécula computacional que representa a forma explícita do método das diferenças finitas e uma molécula computacional que representa a forma implícita do método das diferenças finitas. No método implícito, conhecendo o valor de u(i,t), pode-se encontrar uma expressão para determinar os valores de u(i-1,t+1), u(i,t+1) e u(i+1,t+1).

No método das diferenças finitas implícito, a primeira derivada de tempo é aproximada pela equação (24), enquanto que a aproximação da segunda derivada no espaço é representada da seguinte forma

$$\frac{\partial^2 u}{\partial x^2} = \frac{u_{i+1}^{l+1} - 2u_i^{l+1} + u_{i-1}^{l+1}}{\Delta x^2}$$
 (26)

Quando substituímos a expressão (24) e (26) na equação do calor, obtemos a equação (27) que contém diversas incógnitas

$$\alpha^{2} \frac{u_{i+1}^{l+1} - 2u_{i}^{l+1} + u_{i-1}^{l+1}}{\Delta x^{2}} = \frac{u_{i}^{l+1} - u_{i}^{l}}{\Delta t}$$
 (27)

Como a equação (27) possui várias incógnitas, essa expressão não pode ser resolvida por uma reorganização algébrica simples, como no caso anterior do método das diferenças finitas explícito.

As fórmulas implícitas, juntamente com as condições de contorno resultam em um conjunto de equações lineares algébricas com o mesmo número de incógnitas. Logo, o método se reduz a solução de um conjunto de equações simultâneas em cada ponto de tempo. (SHAPA; CANALE; 2008, p. 727).

3 METODOLOGIA E PROBLEMA PROPOSTO

Neste trabalho, será utilizado o método das diferenças finitas explícito, aplicado a equação do calor para obter a solução aproximada de dois problemas que envolvem condução de calor em uma barra unidimensional.

O método das diferenças finitas explícito aplicado na equação do calor é dado por

$$\alpha^{2} \frac{u_{i+1}^{l} - 2u_{i}^{l} + u_{i-1}^{l}}{\Delta x^{2}} = \frac{u_{i}^{l+1} - u_{i}^{l}}{\Delta t}$$
 (28)

que pode ser reescrito na forma

$$u_i^{l+1} = u_i^l + \lambda (u_{i+1}^l - 2u_i^l + u_{i-1}^l)$$
(29)

onde

$$\lambda = \alpha^2 \frac{\Delta t}{\Delta x^2} \tag{30}$$

 λ é conhecido como número de Fourier.

3.1 CONVERGÊNCIA E ESTABILIDADE

Um método numérico é convergente quando Δx e Δt tendem a zero, ou seja, os resultados de técnica se aproximam da solução verdadeira. O método é estável quando os erros não são amplificados, eles são atenuados conforme a resolução do problema. (SHAPA; CANALE; 2008, p. 725).

Segundo Shapa e Canale (2008, p.725 apud CARNAHAN et al., 1969) o método explícito das diferenças finitas é tanto convergente quanto estável se o numero de Fourier, $\lambda=1/2$ ou

$$\Delta t \le \frac{1}{2} \frac{\Delta x^2}{\alpha^2} \tag{31}$$

Foi observado que se $\lambda = \frac{1}{2}$, os erros não crescem, mas oscilam. Se $\lambda = \frac{1}{4}$ a solução não oscilará e se $\lambda = \frac{1}{6}$ os erros de truncamento tendem a ser minimizados.

3.2 PROBLEMA 1

Uma barra com 50 cm de comprimento e dimensões desprezíveis em relação ao eixo y e z, foi isolada termicamente em ambos os lados de modo a não trocar calor com a ambiente externo. Inicialmente, essa barra foi mantida a uma temperatura constante de 20 ° C e suas extremidades foram mantidas a 0 °C para o tempo, t>0, como mostrado na figura 5.

Figura 5 - Distribuição de temperaturas em uma barra de metal, para o tempo t >0.

Fonte: Elaborado pela autora (2011).

Sabe-se que a difusividade térmica para o alumínio é dada por $\alpha^2 = 1 \ cm^2/s$. Para encontrar a temperatura u(x,t)em qualquer instante de tempo e espaço da barra, utilizaremos, no próximo capítulo, o método das diferenças finitas aplicado a equação de calor.

3.3 PROBLEMA 2

Uma barra com 30 cm de comprimento, foi isolada termicamente em ambos os lados de modo a não trocar calor com o ambiente externo. Inicialmente, as extremidades dessa barra foram mantidas a 20 °C e 50 °C, respectivamente, como mostra a figura (4).

Figura 6 - Distribuição de temperaturas em uma barra de metal, para o tempo t >0.

Fonte: Elaborado pela autora (2011).

A função que rege a variação de temperatura interior da barra é dada por u(0,x) = 60 - 2x, para 0 < x < 30 e a e a difusividade térmica é $\alpha^2 = 1$ cm^2/s . Supondo que a transferência de calor só ocorra na direção x, do eixo da barra, para determinar o comportamento da condução de calor em diversos momentos de tempo e comprimento da barra, utilizaremos o método das diferenças finitas para obtenção da solução aproximada do problema.

4 RESULTADOS E DISCURSÕES

4.1 PROBLEMA I

A temperatura u=u(x,t) da barra de comprimento L=50 cm, satisfaz a equação do calor

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$$

com as condições de contorno:

$$u(0,t) = 0$$
 e $u(L,t) = 0$ para $t > 0$

e as condições iniciais:

$$u(x, 0) = 20 \text{ para } 0 < x < 50.$$

A difusividade térmica dada por é $\alpha^2 = 1 \ cm^2/s$ e a solução exata deste problema é expressa por

$$u(x,t) = \frac{80}{\pi} \sum_{n=1,3,5...}^{\infty} \frac{1}{n} e^{\left(\frac{-n^2 \pi^2 \alpha^2 t}{2500}\right)} \operatorname{sen}\left(\frac{n\pi x}{50}\right)$$
(31)

onde fator exponencial com potência negativa faz com que a série convirja rapidamente, exceto para valores pequenos de t ou α^2 . Portanto, resultados precisos podem ser obtidos, em geral, usando-se apenas alguns poucos termos da série. Para calcular a solução analítica deste problema, utilizamos a série (31) truncada em n=5 no Microsoft Office Excel.

Para calcular a solução do problema I pelo método das diferenças finitas, usamos a premissa que, para o método convergir, o número de Fourier λ deve ser igual ou menor que 0,5. Para atender esse requisito, utilizamos uma malha uniforme com espaçamento de 5 cm no comprimento da barra (Δx) e 5s em relação ao tempo (Δt), de modo que obtemos o λ =0,2. Ao definir a malha obtemos 11 sub-intervalos no comprimento da barra e 101 intervalos em relação ao tempo.

Após definir a malha, utilizamos a equação (28) no Microsoft Office Excel, assim, obtemos o comportamento da temperatura para os diferentes momentos de tempo e comprimento da barra, como mostrado na tabela 1.

Tabela 1 - Resultado do problema 1 pelo método das diferenças finitas

Tompo	Tempo Comprimento da barra (cm)												
(s)	0	5	10	15	20	25	30	35	40	45	50		
0	0,0	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	0,0		
5	0,0	16,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	16,000	0,0		
10	0,0	13,600	19,200	20,000	20,000	20,000	20,000	20,000	19,200	13,600	0,0		
15	0,0	12,000	18,240	19,840	20,000	20,000	20,000	19,840	18,240	12,000	0,0		
20	0,0	10,848	17,312	19,552	19,968	20,000	19,968	19,552	17,312	10,848	0,0		
25	0,0	9,971	16,467	19,187	19,891	19,987	19,891	19,187	16,467	9,971	0,0		
30	0,0	9,276	15,712	18,784	19,770	19,949	19,770	18,784	15,712	9,276	0,0		
35	0,0	8,708	15,039	18,367	19,608	19,877	19,608	18,367	15,039	8,708	0,0		
40	0,0	8,233	14,439	17,950	19,414	19,770	19,414	17,950	14,439	8,233	0,0		
45	0,0	7,827	13,900	17,540	19,192	19,627	19,192	17,540	13,900	7,827	0,0		
50	0,0	7,476	13,413	17,142	18,949	19,453	18,949	17,142	13,413	7,476	0,0		
55	0,0	7,168	12,972	16,758	18,688	19,251	18,688	16,758	12,972	7,168	0,0		
60	0,0	6,895	12,568	16,387	18,415	19,026	18,415	16,387	12,568	6,895	0,0		
65	0,0	6,651	12,197	16,029	18,132	18,782	18,132	16,029	12,197	6,651	0,0		
70	0,0	6,430	11,854	15,683	17,841	18,522	17,841	15,683	11,854	6,430	0,0		
75	0,0	6,229	11,535	15,349	17,545	18,249	17,545	15,349	11,535	6,229	0,0		
80	0,0	6,044	11,237	15,025	17,247	17,968	17,247	15,025	11,237	6,044	0,0		
85	0,0	5,874	10,956	14,712	16,947	17,679	16,947	14,712	10,956	5,874	0,0		
90	0,0	5,716	10,691	14,408	16,646	17,386	16,646	14,408	10,691	5,716	0,0		
95	0,0	5,567	10,439	14,112	16,347	17,090	16,347	14,112	10,439	5,567	0,0		
100	0,0	5,428	10,199	13,824	16,048	16,793	16,048	13,824	10,199	5,428	0,0		
105	0,0	5,297	9,970	13,544	15,753	16,495	15,753	13,544	9,970	5,297	0,0		
110	0,0	5,172	9,750	13,271	15,459	16,198	15,459	13,271	9,750	5,172	0,0		
115	0,0	5,053	9,539	13,005	15,169	15,903	15,169	13,005	9,539	5,053	0,0		
120	0,0	4,940	9,335	12,744	14,883	15,609	14,883	12,744	9,335	4,940	0,0		
125	0,0	4,831	9,138	12,490	14,601	15,319	14,601	12,490	9,138	4,831	0,0		
130	0,0	4,726	8,947	12,242	14,322	15,032	14,322	12,242	8,947	4,726	0,0		
135	0,0	4,625	8,762	11,999	14,048	14,748	14,048	11,999	8,762	4,625	0,0		
140	0,0	4,527	8,582	11,761	13,778	14,468	13,778	11,761	8,582	4,527	0,0		
145	0,0	4,433	8,407	11,529	13,513	14,192	13,513	11,529	8,407	4,433	0,0		
150	0,0	4,341	8,236	11,301	13,252	13,920	13,252	11,301	8,236	4,341	0,0		
155	0,0	4,252	8,070	11,078	12,995	13,653	12,995	11,078	8,070	4,252	0,0		
160	0,0	4,165	7,908	10,860	12,743	13,390	12,743	10,860	7,908	4,165	0,0		
165	0,0	4,081	7,750	10,646	12,496	13,131	12,496	10,646	7,750	4,081	0,0		
170	0,0	3,998	7,595	10,437	12,253	12,877	12,253	10,437	7,595	3,998	0,0		
175	0,0	3,918	7,444	10,232	12,015	12,628	12,015	10,232	7,444	3,918	0,0		
180	0,0	3,840	7,297	10,031	11,781	12,382	11,781	10,031	7,297	3,840	0,0		
185	0,0	3,763	7,152	9,834	11,551	12,142	11,551	9,834	7,152	3,763	0,0		
190	0,0	3,688	7,011	9,641	11,326	11,906	11,326	9,641	7,011	3,688	0,0		
195	0,0	3,615	6,872	9,452	11,105	11,674	11,105	9,452	6,872	3,615	0,0		
200	0,0	3,544	6,737	9,267	10,888	11,446	10,888	9,267	6,737	3,544	0,0		
205	0,0	3,474	6,604	9,085	10,675	11,223	10,675	9,085	6,604	3,474	0,0		
210	0,0	3,405	6,474	8,907	10,467	11,004	10,467	8,907	6,474	3,405	0,0		

Tempo				Con	npriment	o da barr	a (cm)				
(s)	0	5	10	15	20	25	30	35	40	45	50
215	0,0	3,338	6,347	8,732	10,262	10,789	10,262	8,732	6,347	3,338	0,0
220	0,0	3,272	6,222	8,561	10,062	10,578	10,062	8,561	6,222	3,272	0,0
225	0,0	3,208	6,100	8,393	9,865	10,372	9,865	8,393	6,100	3,208	0,0
230	0,0	3,145	5,980	8,229	9,672	10,169	9,672	8,229	5,980	3,145	0,0
235	0,0	3,083	5,863	8,068	9,483	9,970	9,483	8,068	5,863	3,083	0,0
240	0,0	3,022	5,748	7,910	9,297	9,775	9,297	7,910	5,748	3,022	0,0
245	0,0	2,963	5,635	7,755	9,115	9,584	9,115	7,755	5,635	2,963	0,0
250	0,0	2,905	5,525	7,603	8,937	9,397	8,937	7,603	5,525	2,905	0,0
255	0,0	2,848	5,416	7,454	8,762	9,213	8,762	7,454	5,416	2,848	0,0
260	0,0	2,792	5,310	7,308	8,591	9,032	8,591	7,308	5,310	2,792	0,0
265	0,0	2,737	5,206	7,165	8,423	8,856	8,423	7,165	5,206	2,737	0,0
270	0,0	2,684	5,104	7,025	8,258	8,682	8,258	7,025	5,104	2,684	0,0
275	0,0	2,631	5,004	6,887	8,096	8,513	8,096	6,887	5,004	2,631	0,0
280	0,0	2,579	4,906	6,752	7,938	8,346	7,938	6,752	4,906	2,579	0,0
285	0,0	2,529	4,810	6,620	7,782	8,183	7,782	6,620	4,810	2,529	0,0
290	0,0	2,479	4,716	6,491	7,630	8,022	7,630	6,491	4,716	2,479	0,0
295	0,0	2,431	4,623	6,363	7,481	7,865	7,481	6,363	4,623	2,431	0,0
300	0,0	2,383	4,533	6,239	7,334	7,711	7,334	6,239	4,533	2,383	0,0
305	0,0	2,336	4,444	6,117	7,191	7,561	7,191	6,117	4,444	2,336	0,0
310	0,0	2,291	4,357	5,997	7,050	7,413	7,050	5,997	4,357	2,291	0,0
315	0,0	2,246	4,272	5,880	6,912	7,267	6,912	5,880	4,272	2,246	0,0
320	0,0	2,202	4,188	5,764	6,776	7,125	6,776	5,764	4,188	2,202	0,0
325	0,0	2,159	4,106	5,652	6,644	6,986	6,644	5,652	4,106	2,159	0,0
330	0,0	2,116	4,026	5,541	6,514	6,849	6,514	5,541	4,026	2,116	0,0
335	0,0	2,075	3,947	5,432	6,386	6,715	6,386	5,432	3,947	2,075	0,0
340	0,0	2,034	3,870	5,326	6,261	6,583	6,261	5,326	3,870	2,034	0,0
345	0,0	1,995	3,794	5,222	6,139	6,455	6,139	5,222	3,794	1,995	0,0
350	0,0	1,956	3,720	5,120	6,018	6,328	6,018	5,120	3,720	1,956	0,0
355	0,0	1,917 1,880	3,647	5,019	5,901	6,204	5,901	5,019	3,647	1,917	0,0
360 365	0,0	1,843	3,575 3,505	4,921 4,825	5,785 5,672	6,083 5,964	5,785	4,921 4,825	3,575 3,505	1,880 1,843	0,0
370	0,0	1,807	3,437	4,730	5,561	5,847	5,672 5,561	4,730	3,437	1,807	0,0
375	0,0	1,771	3,370	4,638	5,452	5,733	5,452	4,638	3,370	1,771	0,0
380	0,0	1,737	3,304	4,547	5,345	5,620	5,345	4,547	3,304	1,737	0,0
385	0,0	1,703	3,239	4,458	5,241	5,510	5,241	4,458	3,239	1,703	0,0
390	0,0	1,669	3,175	4,371	5,138	5,402	5,138	4,371	3,175	1,669	0,0
395	0,0	1,637	3,113	4,285	5,037	5,297	5,037	4,285	3,113	1,637	0,0
400	0,0	1,605	3,052	4,201	4,939	5,193	4,939	4,201	3,052	1,605	0,0
405	0,0	1,573	2,993	4,119	4,842	5,091	4,842	4,119	2,993	1,573	0,0
410	0,0	1,542	2,934	4,038	4,747	4,992	4,747	4,038	2,934	1,542	0,0
415	0,0	1,512	2,877	3,959	4,654	4,894	4,654	3,959	2,877	1,512	0,0
420	0,0	1,483	2,820	3,882	4,563	4,798	4,563	3,882	2,820	1,483	0,0
425	0,000	1,454	2,765	3,806	4,474	4,704	4,474	3,806	2,765	1,454	0,000
430	0,000	1,425	2,711	3,731	4,386	4,612	4,386	3,731	2,711	1,425	0,000
	5,500	_,	_,,	0,.01	.,500	.,512	.,500	0,.01	_,,	_,0	5,500

Tempo	Comprimento da barra (cm)										
(s)	0	5	10	15	20	25	30	35	40	45	50
435	0,000	1,397	2,658	3,658	4,300	4,522	4,300	3,658	2,658	1,397	0,000
440	0,000	1,370	2,606	3,587	4,216	4,433	4,216	3,587	2,606	1,370	0,000
445	0,000	1,343	2,555	3,516	4,134	4,346	4,134	3,516	2,555	1,343	0,000
450	0,000	1,317	2,505	3,447	4,053	4,261	4,053	3,447	2,505	1,317	0,000
455	0,000	1,291	2,456	3,380	3,973	4,178	3,973	3,380	2,456	1,291	0,000
460	0,000	1,266	2,408	3,314	3,896	4,096	3,896	3,314	2,408	1,266	0,000
465	0,000	1,241	2,361	3,249	3,819	4,016	3,819	3,249	2,361	1,241	0,000
470	0,000	1,217	2,314	3,185	3,745	3,937	3,745	3,185	2,314	1,217	0,000
475	0,000	1,193	2,269	3,123	3,671	3,860	3,671	3,123	2,269	1,193	0,000
480	0,000	1,170	2,225	3,062	3,599	3,785	3,599	3,062	2,225	1,170	0,000
485	0,000	1,147	2,181	3,002	3,529	3,711	3,529	3,002	2,181	1,147	0,000
490	0,000	1,124	2,138	2,943	3,460	3,638	3,460	2,943	2,138	1,124	0,000
495	0,000	1,102	2,096	2,886	3,392	3,567	3,392	2,886	2,096	1,102	0,000
500	0,000	1,081	2,055	2,829	3,326	3,497	3,326	2,829	2,055	1,081	0,000

Observando a tabela 1, podemos verificar que os valores de temperaturas são simétricos em relação ao valor médio do comprimento da barra (x = 25), isso demonstra que o problema possui simetria em relação ao eixo médio da barra.

Para representar a condição inicial do problema I, onde as extremidades da barra isolada são mantidas a 0°C e o comprimento da barra a 20°C, foi desenvolvido o gráfico 4, que relaciona a distribuição de temperatura no decorrer do comprimento da barra.

Gráfico 4 - Variação de temperatura em função do espaço.

Fonte: elaborado pela autora (2011).

A seguir, serão mostrados nos gráficos 5,6,7 e 8 comparações entre a solução analítica e a solução numérica obtido pelo método das diferenças finitas.

Gráfico 5 - Comparação da solução pelo método das diferenças finitas com a solução analítica para o tempo de 15s.

Fonte: elaborado pela autora (2011).

Analisando o gráfico 5, podemos observar que há uma pequena variação da solução analítica com a solução numérica nos pontos entre 5 a 15cm e 35 a 45 cm de comprimento. Essa variação será atenuada com a resolução do problema, conforme mostrado nos gráficos a seguir.

Gráfico 6 - Comparação da solução pelo método das diferenças finitas com a solução analítica

Fonte: elaborado pela autora (2011).

Gráfico 7 - Comparação da solução pelo método das diferenças finitas com a solução analítica para o tempo de 100s.

Gráfico 8 - Comparação da solução pelo método das diferenças finitas com a solução analítica para o tempo de 500s.

Fonte: elaborado pela autora (2011).

Observando os gráficos 6, 7 e 8, verificamos que o resultado numérico apresenta uma mínima oscilação em relação ao resultado analítico.

O gráfico 9 descreve como ocorre o resfriamento no comprimento da barra com o decorrer do tempo. Observa-se que no instante de tempo t=10 s, a região central da barra está com temperatura de 20 °C. Com o passar do tempo essa região vai perdendo calor para as extremidades. Em t= 500 s observamos que a temperatura a região central é de aproximadamente 3,5 °C. Essa troca de calor irá ocorrer até a região central entrar em equilíbrio térmico com suas extremidades.

Gráfico 9 - Variação da temperatura em relação ao espaço, para diferentes momentos de tempo, calculados pelo método das diferenças finitas.

Fonte: elaborado pela autora (2011).

Além de representar da variação de temperatura em função do comprimento da barra, podemos representar a solução do problema I através de gráficos que mostram a variação de temperatura em função do tempo. A seguir serão mostradas as comparações da solução analítica com a solução numérica da variação de temperatura em relação ao tempo, para diferentes momentos no espaço.

Gráfico 10 - Comparação da solução pelo método das diferenças finitas com a solução analítica, para o comprimento de 5 cm da barra.

No gráfico 10, podemos verificar como ocorreu o resfriamento no comprimento de 5 cm da barra. Verificamos que nesse ponto, houve um rápido resfriamento que foi se atenuando no o decorrer do tempo. Também podemos observar nesse gráfico, que as linhas que representam a solução analítica e numérica coincidem.

Gráfico 11 - Comparação da solução pelo método das diferenças finitas com a solução analítica, para o comprimento de 20 cm da barra.

Fonte: elaborado pela autora (2011).

No gráfico 11, observamos que o resfriamento no comprimento de 20 cm ocorreu de forma mais lenta em relação à posição anterior (x = 5cm). Nesse gráfico, como no gráfico anterior, podemos verificar a coincidência dos resultados obtidos pelos métodos numéricos e analíticos.

Analisando o gráfico a seguir, e comparando com o gráfico 10. Verificamos que os dois gráficos têm comportamento semelhante. Isso ocorre devido a simetria que o problema I possui em relação ao eixo médio da barra. Por causa dessa simetria, pontos equidistantes irão ter o mesmo comportamento em relação à temperatura.

Gráfico 12 - Comparação da solução pelo método das diferenças finitas com a solução analítica, para o comprimento de 45 cm da barra.

Fonte: elaborado pela autora (2011).

Podemos representar o comportamento da temperatura em função do tempo para os diversos pontos em que a barra foi discretizada, em apenas um gráfico, como mostrado na figura 13. É importante lembrar que os pontos x=5 e x=45, são representados pela curva, assim como os pontos equidistantes: x=10 e x=40, x=15 e x=35, x=20 e x=30.

Gráfico 13 - Variação de temperatura em relação ao tempo, para diferentes momentos de espaço, calculados pelo método das diferenças finitas.

4.2 PROBLEMA II

A temperatura u=u(x,t) da barra de comprimento L=30 cm, satisfaz a equação do calor

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$$

com as condições de contorno:

$$u(0,t) = 20 e u(L,t) = 50 para t > 0$$

e as condições iniciais:

$$u(x, 0) = 60 - 2x$$
 para $0 \le x \le 30$.

Para obter a solução desse problema utilizando o método das diferenças finitas, utilizamos uma malha uniforme de espaçamento 5 cm no comprimento da barra (Δx) e 5s em relação ao tempo (Δt) . Primeiro foi verificado se o método era convergente, como $\lambda = 0,02$, concluímos que o método era convergente e estável e prosseguimos com os cálculos utilizando o Microsoft Office Excel para obtenção da tabela 2.

Tabela 2 - Resultado do problema II pelo método das diferenças finitas

Tempo							
(s)	0	5	10	mpriment 15	20	25	30
0	60,000	50,000	40,000	30,000	20,000	10,000	0,000
5	20,000	50,000	40,000	30,000	20,000	10,000	50,000
10	20,000	42,000	40,000	30,000	20,000	20,000	50,000
15	20,000	37,200	38,400	30,000	22,000	26,000	50,000
20	20,000	34,000	36,480	30,080	24,400	30,000	50,000
25	20,000	31,696	34,704	30,224	26,656	32,880	50,000
30	20,000	29,958	33,206	30,406	28,614	35,059	50,000
35	20,000	28,616	31,997	30,608	30,262	36,758	50,000
40	20,000	27,569	31,043	30,817	31,630	38,107	50,000
45	20,000	26,750	30,303	31,025	32,763	39,191	50,000
50	20,000	26,111	29,737	31,228	33,701	40,067	50,000
55	20,000	25,614	29,310	31,424	34,479	40,780	50,000
60	20,000	25,230	28,993	31,612	35,129	41,364	50,000
65	20,000	24,937	28,765	31,792	35,672	41,844	50,000
70	20,000	24,715	28,604	31,962	36,131	42,241	50,000
75	20,000	24,550	28,498	32,125	36,519	42,571	50,000
80	20,000	24,430	28,434	32,278	36,851	42,846	50,000
85	20,000	24,344	28,402	32,424	37,135	43,078	50,000
90	20,000	24,287	28,395	32,562	37,381	43,274	50,000
95	20,000	24,251	28,407	32,692	37,596	43,441	50,000
100	20,000	24,232	28,433	32,816	37,784	43,584	50,000
105	20,000	24,226	28,469	32,933	37,950	43,707	50,000
110	20,000	24,229	28,513	33,044	38,098	43,814	50,000
115	20,000	24,240	28,563	33,148	38,230	43,908	50,000
120	20,000	24,257	28,615	33,248	38,350	43,991	50,000
125	20,000	24,277	28,670	33,342	38,457	44,065	50,000
130	20,000	24,300	28,726	33,430	38,556	44,130	50,000
135	20,000	24,325	28,782	33,515	38,646	44,189	50,000
140	20,000	24,351	28,837	33,594	38,728	44,243	50,000
145	20,000	24,378	28,891	33,669	38,804	44,291	50,000
150	20,000	24,405	28,944	33,741	38,875	44,336	50,000
155	20,000	24,432	28,996	33,808	38,940	44,376	50,000
160	20,000	24,458	29,046	33,872	39,001	44,414	50,000
165	20,000	24,484	29,093	33,933	39,058	44,448	50,000
170	20,000	24,509	29,139	33,990	39,111	44,481	50,000
175	20,000	24,533	29,183	34,044	39,161	44,511	50,000
180	20,000	24,557	29,226	34,095	39,207	44,538	50,000
185	20,000	24,579	29,266	34,144	39,251	44,565	50,000
190	20,000	24,601	29,304	34,190	39,292	44,589	50,000
195	20,000	24,621	29,340	34,233	39,331	44,612	50,000
200	20,000	24,641	29,375	34,274	39,368	44,633	50,000

(s)	0				o (cm)		
	U	5	10	15	20	25	30
205	20,000	24,659	29,408	34,313	39,402	44,653	50,000
210	20,000	24,677	29,439	34,350	39,435	44,673	50,000
215	20,000	24,694	29,469	34,385	39,465	44,690	50,000
220	20,000	24,710	29,497	34,418	39,494	44,707	50,000
225	20,000	24,726	29,524	34,449	39,521	44,723	50,000
230	20,000	24,740	29,549	34,478	39,547	44,738	50,000
235	20,000	24,754	29,573	34,506	39,572	44,752	50,000
240	20,000	24,767	29,596	34,533	39,595	44,766	50,000
245	20,000	24,779	29,618	34,558	39,617	44,778	50,000
250	20,000	24,791	29,638	34,582	39,637	44,790	50,000
255	20,000	24,802	29,657	34,604	39,657	44,802	50,000
260	20,000	24,813	29,676	34,625	39,675	44,812	50,000
265	20,000	24,823	29,693	34,645	39,693	44,822	50,000
270	20,000	24,832	29,709	34,664	39,709	44,832	50,000
275	20,000	24,841	29,725	34,682	39,725	44,841	50,000
280	20,000	24,850	29,740	34,699	39,739	44,850	50,000
285	20,000	24,858	29,754	34,715	39,753	44,858	50,000
290	20,000	24,865	29,767	34,731	39,767	44,865	50,000
295	20,000	24,873	29,779	34,745	39,779	44,872	50,000
300	20,000	24,879	29,791	34,759	39,791	44,879	50,000
305	20,000	24,886	29,802	34,772	39,802	44,886	50,000
310	20,000	24,892	29,813	34,784	39,813	44,892	50,000
315	20,000	24,898	29,823	34,795	39,823	44,898	50,000
320	20,000	24,903	29,832	34,806	39,832	44,903	50,000
325	20,000	24,908	29,841	34,817	39,841	44,908	50,000
330	20,000	24,913	29,850	34,827	39,850	44,913	50,000
335	20,000	24,918	29,858	34,836	39,858	44,918	50,000
340	20,000	24,922	29,866	34,845	39,866	44,922	50,000
345	20,000	24,927	29,873	34,853	39,873	44,927	50,000
350	20,000	24,930	29,880	34,861	39,880	44,930	50,000
355	20,000	24,934	29,886	34,868	39,886	44,934	50,000
360	20,000	24,938	29,892	34,875	39,892	44,938	50,000
365	20,000	24,941	29,898	34,882	39,898	44,941	50,000
370	20,000	24,944	29,903	34,888	39,903	44,944	50,000
375	20,000	24,947	29,909	34,894	39,909	44,947	50,000
380	20,000	24,950	29,913	34,900	39,913	44,950	50,000
385	20,000	24,953	29,918	34,905	39,918	44,953	50,000
390	20,000	24,955	29,922	34,910	39,922	44,955	50,000
395	20,000	24,958	29,927	34,915	39,927	44,958	50,000
400	20,000	24,960	29,931	34,920	39,931	44,960	50,000
405	20,000	24,962	29,934	34,924	39,934	44,962	50,000
410	20,000	24,964	29,938	34,928	39,938	44,964	50,000

Tempo	Comprimento (cm)							
(s)	0	5	10	15	20	25	30	
415	20,000	24,966	29,941	34,932	39,941	44,966	50,000	
420	20,000	24,968	29,944	34,936	39,944	44,968	50,000	
425	20,000	24,970	29,947	34,939	39,947	44,970	50,000	
430	20,000	24,971	29,950	34,942	39,950	44,971	50,000	
435	20,000	24,973	29,953	34,945	39,953	44,973	50,000	
440	20,000	24,974	29,955	34,948	39,955	44,974	50,000	
445	20,000	24,976	29,958	34,951	39,958	44,976	50,000	
450	20,000	24,977	29,960	34,954	39,960	44,977	50,000	
455	20,000	24,978	29,962	34,956	39,962	44,978	50,000	
460	20,000	24,979	29,964	34,959	39,964	44,979	50,000	
465	20,000	24,980	29,966	34,961	39,966	44,980	50,000	
470	20,000	24,981	29,968	34,963	39,968	44,981	50,000	
475	20,000	24,982	29,970	34,965	39,970	44,982	50,000	
480	20,000	24,983	29,971	34,967	39,971	44,983	50,000	
485	20,000	24,984	29,973	34,969	39,973	44,984	50,000	
490	20,000	24,985	29,974	34,970	39,974	44,985	50,000	
495	20,000	24,986	29,976	34,972	39,976	44,986	50,000	
500	20,000	24,987	29,977	34,973	39,977	44,987	50,000	

Pode-se observar, na tabela acima, que esse problema não possui simetria em relação ao eixo médio da barra.

Diferente do problema I não será realizada uma comparação entre a solução numérica e a solução analítica. Nesse problema, a equação diferencial parcial foi resolvida apenas pelo método das diferenças finitas. E após a obtenção das soluções desenvolvemos os gráficos que facilitam o estudo da distribuição de temperatura no decorrer do tempo e comprimento da barra.

O gráfico 14 representa a condição inicial do problema, onde as extremidades de uma barra isolada são mantidas a 20°C e 50 °C, respectivamente, e a função u = 60 - 2x rege a condução de calor em todo o comprimento da barra.

Gráfico 14 - Variação da temperatura em função do espaço.

Os gráficos 15, 16 e 17 mostram a variação de temperatura no comprimento da barra calculado pelo método das diferenças finitas para o tempo de 10s, 25s e 50s, respectivamente.

Gráfico 15 - Solução pelo método das diferenças finitas para o tempo de 10s.

Fonte: elaborado pela autora (2011).

Gráfico 16 - Solução pelo método das diferenças finitas para o tempo de 25s.

Gráfico 17 - Solução pelo método das diferenças finitas para o tempo de 50s.

Fonte: elaborado pela autora (2011).

Da mesma forma que o problema I, podemos representar a variação de temperatura em função tempo. A seguir, serão mostradas o comportamento da temperatura da barra, obtido pelo método das diferenças finitas, para o comprimento de 5 cm, 15 cm e 25 cm.

Gráfico 18 - Variação da temperatura com o decorrer do tempo no comprimento de 5cm da barra.

No gráfico 18, podemos verificar que ocorreu um rápido resfriamento no ponto de 5cm da barra. Inicialmente esse ponto estava com 50 °C e depois de aproximadamente 1 minuto o mesmo ponto estava com a metade de sua temperatura inicial. No gráfico 19 e 20 podemos observar que houve um aquecimento com o decorrer do tempo.

Gráfico 19 - Variação da temperatura com o decorrer do tempo para o comprimento de 15 cm da barra.

Fonte: elaborado pela autora (2011).

Gráfico 20 - Variação da temperatura com o decorrer do tempo para o comprimento de 25 cm da barra.

Em suma, podemos representar o comportamento pontual da temperatura no decorrer da barra em apenas um gráfico como mostrado a seguir.

Gráfico 21 - Variação da temperatura em relação ao tempo, para diferentes momentos de espaço, calculado pelo método das diferenças finitas.

Fonte: elaborado pela autora (2011).

5 CONCLUSÃO

No trabalho apresentado utilizamos o método das diferenças finitas explícito com o objetivo analisar a transferência de calor no decorrer do tempo em dois problemas que envolvem condução de calor unidimensional em uma barra. Inicialmente, ao resolver o primeiro problema, foi realizada uma comparação entre a solução exata e a solução numérica obtida pelo método das diferenças finitas explícito, com a finalidade de verificar a eficiência do método utilizado. Logo após, foi resolvido o segundo problema utilizando apenas o método das diferenças finitas explícito com a finalidade de estudar o comportamento da temperatura na barra ao decorrer do tempo. Com o decorrer do trabalho, podemos concluir que:

- o Para obter resultados, coerentes e precisos, utilizando o método das diferenças finitas, é essencial seguir os critérios de convergência do método.
- As soluções obtidas pelo método das diferenças finitas apresentaram um resultado confiável quando comparado com as soluções obtidas pelos métodos analíticos.
- A solução numérica apresentou uma mínima divergência, quase nula, em relação aos valores exatos. Essa divergência pode ter sido ocasionada por diversos fatores, como por exemplo: erros originados pelo truncamento da expansão de Taylor ou pelo arredondamento realizado no computador.
 - O método das diferenças finitas é facilmente executado em softwares, como o Microsoft Office Excel, comumente encontrado em computadores pessoais.
 - O Ao analisar o comportamento da distribuição de temperatura nos problemas apresentados, podemos observar que no problema I, houve uma simetria em relação ao eixo médio da barra. Já no problema II, não ocorreu esse mesmo comportamento.

REFERÊNCIAS

BOYCE, W. E.; DIPRIMA, R. C. Equações diferenciais elementares e problemas de valores de contorno. Rio de Janeiro: LTC, 2002.

CHAPA, S. C.; CANALE, R. P. **Métodos numéricos para engenheria.** Tradução técnica Helena Castro. São Paulo: McGraw-Hill, 2008.

FRANCO, N. B. Cálculo numérico. São Paulo: Person Prentice Hall, 2006.

FERREIRA, V. G.; LIMA, G. A. B. **Solução numérica de equações diferenciais parciais.** Universidade Federal da Paraíba, 2010

INCROPERA, F. P. *et al.* **Fundamentos de Transferência de calor e de massa.** Tradução e revisão técnica Eduardo Queiroz, Fernando Luiz Pellegrni Pessoa. Rio de Janeiro : LTC, 2008.

RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo numérico: aspectos teóricos e computacionais. 2 ed. São Paulo: Pearson Makron Books, 1996.

ZACHMANOGLOU, E. C.; THOE, D. W. Introduction to partial differential equations with applications. Baltimore: Williams & Wilkins, 1976.

SANTOS, R. J. **Introdução as Equações Diferenciais Ordinárias.** Belo Horizonte: Imprensa Universitária da UFMG, 2011.

RODRIGUES, L. J. Análise transiente da transferência de calor em um tubo através do método das diferenças finitas. Universidade do Rio Grande do Sul, Porto Alegre, 2011.

TEIXEIRA, J. C. F. **Métodos numéricos em transferência de calor.** Universidade do Minho, 2003.