

SCHOOL OF ELECTRONICS ENGINEERING

Continuous Assessment Test - I, January 2020

Winter Semester, 2019-2020

Course Code

: ECE 3030

Duration: 90 Mins.

Course Name

: Principles of Computer Communication

Max. Marks

: 50

Faculty In-Charge: Dr. Suresh Chavhan

Slot: D2

General instruction(s):

a. Provide appropriate illustration, wherever necessary.

Assume relevant address, wherever necessary.

Answer ALL Questions Course		
S.No.	Question	Outcome (CO)
1.	Suppose users share a 1 Mbps link. Also suppose each user requires 100 Kbps when transmitting, but each user only transmits 10% of the time.	CO2
	a) When circuit-switching is used, how many users can be supported? (1M)	CO2
	b) Suppose packet-switching is used. Find the probability that a given user is transmitting. (3M) c) Suppose there are 40 users. Find the probability that at any given time, n users are transmitting simultaneously. (3M)	CO2
	d) Find the probability that there are 10 or more users transmitting simultaneously.(3M)	CO2
2.	a) What are the five layers in the Internet protocol stack? What are the principle responsibilities for each of these layers? (5M)	CO1
	Define the following internetworking devices: i) Repeaters, ii) Hubs, iii) Switch, and iv) Bridges. (5M) 3	
3 °.	(a) Draw the timeline diagram of following cases:i) data is corrupted and ack/nack is good, ii) data is lost &ack/nack is good, iII) data is good and ack is corrupted, Iv) data is good and ack is lost, and v) delayed ack beyond timeout.(5M)	CO1
	(b) Dorive the Stop-and-Wait ARO efficiency in channel with errors. (5M)	CO2
13/	(a) Suppose we want to transmit the message 11001001 and protect it from errors using the CRC polynomial x3 + 1. Calculate the CRC at sender and receiver. (5M) b) Generate the 8 bit checksum for the following sequence: 10110011 10101011 01011010 11010101. (5M)	
5.1 24	For the given below network, write the relevant algorithm and find the root switch, root ports, designated ports and blocking ports. Assume that workstation S as source node connected to LAN 6 and workstation D as destination node connected to LAN 1. Sketch the single route and all-routes broadcast frames during route discovery. (10M)	

Join 'VIT Question Papers 'Today By Scanning The QR Or By Simply Searching It On Telegram App.

