UPTIMIZED 100LPATH FLANNING SHIDECOMP: MULTICAITERIA THU BUTING

Prashant Grupta, Yiran Gruo, Warasimha Boddeti, Bala Krishnamoorthy

Washington State University

IJC6A arXiv: 2109.01769

3D PRINTING: TOOL PATH OPTIM.

3D PRINTING: TOOL PATH OPTIM.

* layer-by-layer, dense infill 3D printing

* ophinize sequence of extinder movement (tod path) for

— continuity

— turn costs

smoothness local orientation

1001 PATH GEOMETRY

* standard: zigzag,

contour parallel

img: formizable.com

JOOL PATH GEOMETRY

* standard: zigzag, contour parallel

mg: formizable.com

X suffer from directional biases

100L PATH (SEOMETRY

* standard: zigzag, contour parallel

mg: formizable.com

X suffer from directional biases

cannot crossweave easily across layers

* Zhao et al. (2016): Fermat spiral - smooth tool path optimized for continuity - curved path approximated by PL line segments in practice 1001 PATH (SEOMETRY

1001 PATH (SEOMETRY

* That et al. (2016): Fernal spiral

- smooth tool path optimized

for continuity

- curved path approximated by

PL line segments in practice

* Bedel et al. (2022): space-filling curve optimized for local onientations

100L PATH GEOMETRY

- smooth tool path optimized for continuity

- curved path approximated by
PL line segments in practice
PE edel et al. (2022): space-filling curve optimized
for local snientations * Zhao et al. (2016): Fermat spiral

X hard to crossweave across layers

1001 PATH GEOMETRY

- * That of al. (2016): Fernal spiral

 smooth tool path optimized

 for continuity

 curved path approximated by

 PL line segments in practice

 PEdel of al. (2022): space-filling curve optimized

 for local orientations
- × hard to crossweave across layers
- X cannot apply to subdomains

QUESTIONS

Ophimize tool pulhs by decomposing into subdomains?

QUESTIONS

Process subdomains in parallel? ophimize tool pulhs by decomposing into subdomains?

QUESTIONS

Ophimize tool pulhs by decomposing into subdomains? Threess subdomains in parallel? Optimize for multiple contenia? turn costs maximize rectilinear movement edge overlap aiross layers!

min turn 3DPP is NP-hard OUR RESULTS

OUR RESULTS

SFC Decomp Min Turn 3DPP is NP-hard - decompose domain into smaller parts Optimize subdomain tool paths in parallel (for continuity, turn cost, ...) (ink subpaths using space-filling curves (SFC)

OUR RESULTS

Min Turn 3DPP is NP-hard · SFC Decomp - decompose domain into smaller parts

Optimize subdomain tool paths in parallel (for continuity, turn cost,...)

- link subpaths using space-filling curves (SFC)

V optimisse edge overlap between layers if it it — mechanical testing.

* 3DPP related to milling, bush mowing NP-HARDNESS OF 3DPP

NP-HARDNESS OF 3DPP

* 3DPP related to milling, burn howing: N.P. hard

- min length milling, burn howing: N.P. hard

(Arkin et al, 2000) min turn cost milling: NP-hard Arkin etal. 2005)

NP-HARDNESS OF 3DP

* 3DPP related to milling, bush mowing: NP-hand - min length milling, bush mowing: NP-hand (Arkin et al, 2000)

* we study integral orthogonal 3DPP
extrader: unit square [] min turn cost milling: NP-hard (Arkin et al. 2005)

NP-HARDNESS OF 3DP

- * 3DPP related to milling, lawn mowing min length milling, buon mowing: N.P. hand (Arkin et al, 2000)
- min turn cost milling: NP-hard (Arkin et al. 2005)
- * we study integral orthogonal 3DPP
 extrader: unit square [] Lemma Min length 3DPP is NP-hard (20 Jawn mowing)

NP-HARDNESS OF 3DP

- * 3DPP related to milling, buon mowing: NP-hand

 min length milling, buon mowing: NP-hand
 (Arkin et al, 2000)
- min turn cost milling: NP-hard Arkin etal. 2005)
- * we study integral orthogonal 3DPP
 extrader: unit square []

Lemma Min length 3DPP is NP-hard (≈ Jawn mowing)

Theorem Min turn cost 3DPP is NP-hand.

TUECOMP: LOMAN LECOMPOSITION

* quadree representation of print domain

domain are kept solve lead cells in parallel

ECOMP: LOMAIN LECOMPOSITION

* quadre representation of

20/VC /02 <u>8</u>

Hilbert SFC

* Connect load

ECOMP: LOMAIN LECOMPOSITION

* can merge square cells into bigger subdomains

ECOMPOSITION

can merge square cells Digger Subdomains

SFCDECOMP: HAMILTONIAN PATH

Lemma Hamiltonian path is guaranteed to exist

SFCDECOMP: HAMILTONIAN PATH

Lemma Hamiltonian path is guaranteed to exist idle movement an be minimized

SFCDECOMP: HAMILTONIAN PATH

Lemma Hamiltonian path is guaranteed to exist - idle movement an be minimized - if subdomains are solved to optimality, any discontinuities (idle movements) occur only at boundary of print donain

SUBDOMAIN TOOL PATH: MIP

* Miller-Iucra
- turn cost G at node j.

G > Aik (xi+xi+-1), G > 0

G > 1 & (xi) + (yik) * Miller-Tucker-Zemlin (MTZ)-Type formulation

DUBDOMAIN TOOL PATH: MIP

* solve large instances (approx): * Miller-Tucker-Zemlin (MTZ)-Type formulation - turn oost g at node j:

g > Aijk (xi+xi+-1), G > 0

g > 4 + (xi+xi+-1), G > 0 megre subtours using 2-opt + min.span.forest. found Hamiltonian Jath in all 19000+

instances except one

GENERAL GEOMETRY

JPTIMIZING TDGE OVERIARS

* overlap between edges

- max if e=e'

JPTIMIZING TDGE OVERLARS

* overlap between edges

- max if e=e'

- min if ene'

is a single point

DELING TOOK OVERIAGE

* overlap between edges

- max if e=e'

- min if ene'

is a single point

* set weight of e' lower (higher) for max (min) overlap

JET MIZING JOGE UVERIAR

* overlap between edges

- max if e=e

- min if ene

is a single point

* set weight of e' lower (higher) for max (min) overby

ECHANICAL ESTING

EST MG

MECHANICAL EST MG

MECHANICAL EST MG

* min edge overlap had better strength

* Expermentation could capture various proporties — an me optimize internal microstructure? POINTS TO NOTE

FONTS TO NOTE

* Edge weights could capture various proporties

— can me optimize internal microstructure? * Could use approx. algos for subdomain path planning (instead of MIP)

POINTS TO NOTE

- * Edge weights could capture various proporties

 an me optimize internal microstructure?
- * Could combine with other approaches within subdomains (e.g., fermet spiral, * Could use approx. algos for subdomain path planning (instead of MIP) alignment maximization, ...)

POINTS TO NOTE

- * Expe weights could capture various proporties

 an me optimize internal microstructure?
- * Could combine with other approaches within subdomains (e.g., fermet spiral, * Could use approx algos for subdomain path planning (instead of MIP) alignment maximization, ...)

Thank Jul