MA1102R

AY20/21 sem 2 by jovyntls

00. FUNCTIONS & SETS

sets

$$A = \{x \mid properties \ of \ x\}$$

- $A \subseteq B$: A is a subset of B
- $A \nsubseteq B$: A is not a subset of B
- $A = B \leftrightarrow A \subseteq B \land B \subseteq A$

operations on sets

- union: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$
- difference: $A \backslash B = \{x \mid x \in A \land x \notin B\}$

notations of sets

notations of intervals

- closed interval (inclusive):
- $[a,b] = \{x \mid a \le x \le b\}$
- $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ open interval (exclusive):
- $\bullet \mathbb{N} = \mathbb{Z}^+ \qquad (a, b) = \{x \mid a < x < b\}$
- \emptyset : empty set $\bullet (a, \infty) = \{x \mid a < x\}$

functions

- existence: $\forall a \in A, f(a) \in B$
- uniqueness: $\forall a \in A$ has only one image in B.
- for $f:A\to B$
- domain: A
- codomain: B
- range: $\{f(x) \mid x \in A\}$
- · for this mod:
 - $A, B \subseteq \mathbb{R}$
 - if A is not stated, the domain of f is the largest possible set for which f is defined
 - if B is not stated. $B = \mathbb{R}$

graphs of functions

The graph of
$$f$$
 is the set

$$G(f) := \{(x, f(x)) \mid x \in A\}$$

- if $A, B \subseteq R$ then $G(f) \subseteq A \times B \subseteq \mathbb{R} \times \mathbb{R}$
- ullet each element is a point on the Cartesian plane \mathbb{R}^2

algebra of functions

function	domain
(f+g)(x) := f(x) + g(x)	$A \cap B$
(f-g)(x) := f(x) - g(x)	$A \cap B$
(fg)(x) := f(x)g(x)	$A \cap B$
(f/q)(x) := f(x)/q(x)	$\{x \in A \cap B \mid q(x) \neq 0\}$

types of functions

- rational function: $R(x)=\frac{P(x)}{Q(x)},$ where P,Q are polynomials and $Q(x)\neq 0$
 - every polynomial is a rational function $\left(Q(x)=1\right)$
- algebraic function: constructed from polynomials using algebraic operations

- a function f is increasing on a set I if $x_q < x_2 \Rightarrow f(x_1) < f(x_2)$ for any $x_1, x_2 \in I$.
 a function f is decreasing on a set I if
- $x_q < x_2 \Rightarrow f(x_1) > f(x_2)$ for any $x_1, x_2 \in I$.
- even/odd:
 - even function: $\forall x, f(-x) = f(x)$
 - \star symmetric about the y-axis
 - odd function: $\forall x, f(-x) = -f(x)$
 - * symmetric about the origin O
 - any function defined on $\mathbb R$ can be decomposed uniquely into the sum of an even function and an odd function
- power function: x^n

 x^n is $\begin{cases} \text{an odd function,} & \text{if } n \text{ is odd} \\ \text{an even function,} & \text{if } n \text{ is even} \end{cases}$