# Reinforcement Learning

# Practical #08



### Exercise

\_\_\_\_

Today we will implement the Soft Actor Critic (SAC) algorithm<sup>1</sup>.

We will test the implementation on the Pendulum environment.

<sup>1</sup> https://arxiv.org/pdf/1801.01290.pdf



### Why SAC

- \_\_\_\_
- On-policy algorithms (TRPO, PPO, A2C) can be very sample inefficient, because they need completely new samples after each policy update. In contrast, Q-learning based off-policy methods are able to learn efficiently from past samples using experience replay buffers
- SAC optimizes a **stochastic policy** in an **off-policy** way



### SAC

- SAC is an **off-policy** algorithm
- The original version (that we will implement) can only be used for environments with continuous action spaces, there is an alternate version that can handle discrete action spaces
- A central feature of SAC is entropy regularization. The policy is trained to maximize a trade-off between expected return and entropy.



### **Entropy maximization**

Instead of only maximizing the lifetime rewards, SAC seeks to also maximize the entropy of the policy.

High entropy in our policy encourage exploration.

Avoid collapse into repeatedly selecting a particular action that could exploit some inconsistency in the approximated Q function.

$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[ r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right]. \quad (1)$$



### **SAC** elements





### SAC algorithm

#### **Algorithm 1** Soft Actor-Critic

Initialize parameter vectors  $\psi$ ,  $\bar{\psi}$ ,  $\theta$ ,  $\phi$ . for each iteration do for each environment step do  $\mathbf{a}_t \sim \pi_{\phi}(\mathbf{a}_t|\mathbf{s}_t)$  $\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)$  $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}$ end for for each gradient step do  $\psi \leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} J_V(\psi)$  $\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}$  $\phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)$  $\bar{\psi} \leftarrow \tau \psi + (1-\tau)\bar{\psi}$ end for end for



### **Loss function V network**

We update the Value function weights by minimizing

$$J_{V}(\psi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[ \frac{1}{2} \left( V_{\psi}(\mathbf{s}_{t}) - \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\phi}} \left[ Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \left( \log \pi_{\phi}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \right] \right]$$
entropy
$$(5)$$



### Loss function Q network

We update the Q function weights by minimizing

$$J_Q(\theta) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \mathcal{D}} \left[ \frac{1}{2} \left( Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \hat{Q}(\mathbf{s}_t, \mathbf{a}_t) \right)^2 \right]$$

where

$$\hat{Q}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[ V_{\bar{\psi}}(\mathbf{s}_{t+1}) \right]$$
 if s is not terminal

$$\hat{Q}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t)$$
 if s is terminal



### Loss function policy network

We update the policy function weights by minimizing

$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[ D_{\mathrm{KL}} \left( \pi_{\phi}(\cdot | \mathbf{s}_{t}) \mid \frac{\exp(Q_{\theta}(\mathbf{s}_{t}, \cdot))}{Z_{\theta}(\mathbf{s}_{t})} \right) \right]$$

make the distribution of the Policy function look more like the distribution of the exponentiation of our Q Function normalized by another function Z



### Reparameterization trick

Reparametrization trick is used to make sure the sampling from the policy is differentiable, so there are no problems in backpropagating the errors

$$\mathbf{a}_t = f_{\phi}(\epsilon_t; \mathbf{s}_t)$$

We parametrize the action in this way, where epsilon is a noise vector sampled from a Gaussian distribution



## Loss function Policy network with reparametrization trick

The loss function for the network becomes

$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}, \epsilon_{t} \sim \mathcal{N}} \left[ \log \pi_{\phi}(f_{\phi}(\epsilon_{t}; \mathbf{s}_{t}) | \mathbf{s}_{t}) - Q_{\theta}(\mathbf{s}_{t}, f_{\phi}(\epsilon_{t}; \mathbf{s}_{t})) \right]$$



# Reparametrization trick

\_\_\_\_



