Задача 1. Даден е детерминираният краен автомат:

$$\mathcal{A} = \langle \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{a, b, c\}, q_0, \delta, \{q_4, q_5\} \rangle$$

с функция на преходите δ , определена както следва:

q	a	b	c
q_0	$\{q_1, q_3, q_5\}$	$\{q_5\}$	Ø
q_1	Ø	Ø	$\{q_2\}$
q_2	Ø	$\{q_4\}$	Ø
q_3	Ø	$\{q_3,q_4\}$	Ø
q_4	Ø	Ø	Ø
q_5	Ø	Ø	$\{q_6\}$
q_6	Ø	Ø	$\{q_{7}\}$
q_7	$\{q_7\}$	$\{q_{5}\}$	Ø

Да се построи детерминиран краен автомат \mathcal{A}' , еквивалентен на \mathcal{A} .

Решение.

Не е нужно да построяваме недетерминирания автомат \mathscr{A} . Достатъчно е да съобразим, че ако вземем \mathscr{O} за състояние, което да имитира /dev/null и да обира липсващите преходи на дадено състояние, то той ще е тотален и тогава ще може да го детерминираме. Това състояние \mathscr{O} има преходи с всички букви от азбуката отвеждащи го до самото него (примки), за да гарантираме че няма да промени езика на автомата (тъй като то не е и финално).

Директно прилагаме алгоритъма за детерминиране.

	a	b	c
q_0	$\{q_{1},q_{3},q_{5}\}$	$\{q_5\}$ ново	{∅} ново
$\{q_1,q_3,q_5\}$	{Ø}	$\{q_3,q_4\}$ ново	$\{q_2,q_6\}$ ново
$\{q_5\}$	{Ø}	{Ø}	$\{q_6\}$ ново
{Ø}	{Ø}	{Ø}	{Ø}
$\{q_3,q_4\}$	{Ø}	$\{q_3,q_4\}$	{Ø}
$\{q_2, q_6\}$	{Ø}	$\{q_4\}$ ново	$\{q_7\}$ ново
$\{q_6\}$	{Ø}	{Ø}	$\{q_7\}$ ново
$\{q_4\}$	{Ø}	{Ø}	{Ø}
$\{q_7\}$	$\{q_7\}$	$\{q_5\}$	{Ø}

github.com/andy489

За по-опростен вид на автомата може да се минимизира, но тъй като не се иска от условието ще спрем до тук. Финалните състояния на новия детерминиран автомат \mathscr{A}' са тези състояния, на които съставящото им множество съдържа финално състояние от автомата \mathscr{A} .

