

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 1 of 24

FIG. 1

FIG. 2

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attomey: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 2 of 24

Convect. heat transf. coeff. Coeff. of heat conduction User defined constant External temperature Equation: p·C·T·V·(KVT) =Q + h(T_{ext}·T)+ C_{trans} (T⁴ ambtrans ·T⁴). T = temperature Heat capacity Heat source Description Density 8930 Coefficient Value 340 - PDE coefficients Text Ctrans Active in the subdomain □ PDE Specification/ht Subdomain selection Name

, 8

8

ġ

FIG. 4

3/24

Ambient temperature

Cancel

Qn top

<u>8</u>4

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 3 of 24

8

Attomey: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 4 of 24 4/24 Problem-dependent constant 훰 Heat transfer coefficient External temperature Ambient temperature Insulation/symmetry Zero temperature Temperature Cancel Description Heat flux 숭 Boundary coefficients S Unlock 얼마현 Value 8 FIG. 5 O n·(k·gradT)=0 Quantity ₹ Tamb 0 TO ō 0 Boundary Conditions/ht - Boundary selection -Enable borders Equation: $T = T_0$ Name: 764597 2P.

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101

5/24

FIG. 6

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attomey: Peter J. Prommer Telphone No.: (312) 425-3900 Sheet 6 of £4

6/24

FIG. 6A

7/24

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Chart 8 of 24

8/24

FIG. 8

$$140 \begin{cases} d_{a} \frac{\partial u_{k}}{\partial t} - \frac{\partial}{\partial x_{j}} \left(c_{lkji} \frac{\partial u_{k}}{\partial x_{i}} + \alpha_{lkj} u_{k} - \gamma_{lj} \right) + \beta_{lki} \frac{\partial u_{k}}{\partial x_{i}} + a_{lk} u_{k} = f_{l} \end{cases}$$

$$n_{j} \left(c_{lkji} \frac{\partial u_{k}}{\partial x_{i}} + \alpha_{lkj} u_{k} - \gamma_{lj} \right) + q_{lk} u_{k} = g_{l} - h_{ml} \lambda_{m} |$$

$$h_{ml} u_{l} = r_{m}$$

$$146a$$

$$00$$

$$146b$$

$$00$$

150
$$\begin{cases} d_{a} \frac{\partial u_{k}}{\partial t} + \frac{\partial \Gamma^{[j]}}{\partial x_{j}} = F_{l} & \Omega \end{cases}$$

$$\begin{pmatrix} d_{a} \frac{\partial u_{k}}{\partial t} + \frac{\partial \Gamma^{[j]}}{\partial x_{j}} = F_{l} & \Omega \end{pmatrix}$$

$$\begin{pmatrix} -n_{j} \Gamma_{[j]} = G I + \frac{\partial R_{m}}{\partial u_{l}} \lambda_{m} & \frac{\partial \Omega}{\partial u_{l}} \end{pmatrix}$$

$$0 = R_{m}$$

$$154a$$

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 9 of 724

9/24

FIG. 10

324
$$\begin{cases} \gamma_{lj} = \Gamma_{lj} & f_{l} = F_{l} \\ c_{lkji} = -\frac{\partial \Gamma_{lj}}{\partial \left(\frac{\partial u_{k}}{\partial x_{i}}\right)} & \alpha_{lkj} = -\frac{\partial \Gamma_{lj}}{\partial u_{k}} \\ \beta_{lki} & -\frac{\partial F_{l}}{\partial \left(\frac{\partial u_{k}}{\partial x_{i}}\right)} & a_{lk} = -\frac{\partial F_{l}}{\partial u_{k}} \\ g_{l} = G_{l} & r_{l} = R_{l} \\ q_{lk} & = -\frac{\partial G_{l}}{\partial u_{k}} & h_{lk} = -\frac{\partial R_{l}}{\partial u_{k}} \end{cases}$$

$$240 \begin{cases} \Gamma_{lj} = c_{lkji} \frac{\partial u_k}{\partial x_l} \alpha_{lkj} u_k^{+\gamma} | j \rangle \\ F_{l} = f_{l} - \beta_{lki} a_{lk}^{u} k \\ G_{l} = g_{l} - q_{lk} u_k \\ R_{m} = r_{m} - h_{ml} u_{l} \end{cases}$$

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 10 of 24

10/24

FIG. 12

$$300 \begin{cases} \int_{\Omega} \left(\left(c_{lkji} \frac{\partial u_k}{\partial x_i} + \alpha_{lkj} u_k \right) \frac{\partial v}{\partial x_j} + \left(d_{a lk} \frac{\partial u_k}{\partial t} + \beta_{lki} \frac{\partial u_k}{\partial x_i} + a_{lk} u_k \right) v \right) dx + \\ \int_{\partial \Omega} q_{lk} u_k v ds = \int_{\Omega} \left(Y_{lj} \frac{\partial v}{\partial x_j} + f_l v \right) dx + \int_{\partial \Omega} \left(g_l - h_{ml} \lambda_m \right) v ds \\ \int_{\partial \Omega} \mu h_{mk} u_k ds = \int_{\partial \Omega} \mu r_m ds \\ \partial \Omega \end{cases}$$

FIG. 13

$$\int_{\Omega} \left(\Gamma_{lj} \frac{\partial v}{\partial x_{j}} + F_{l} v - d_{a_{l}} \frac{\partial u_{k}}{\partial t} v \right) dx + \int_{\partial \Omega} \left(G_{l} + \frac{\partial R_{m}}{\partial u_{l}} \lambda_{m} \right) v ds = 0$$

$$\int_{\partial \Omega} R_{m} \mu ds = 0$$

$$\underbrace{ U_{k}(x) = \sum_{l=1}^{N_{p}} U_{l, k} \, \phi_{l}(x), \qquad \Lambda_{m}(x) = \sum_{K=1}^{N} \sum_{L=1}^{\Lambda} \Lambda_{K, L, m} \Psi_{K, L}(x) }_{K=1, L=1}$$

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 11 of 24

11/24

FIG. 15

$$306 \begin{cases} \int_{\tau} \left(c_{lk ji} U_{l,k} \frac{\partial \phi_{I}}{\partial x_{i}} + \alpha_{lk j} U_{l k} \phi_{I} \right) \frac{\partial \phi_{J}}{\partial x_{j}} dx + \\ \int_{\tau} \left(d_{a lk} \frac{\partial U}{\partial I} L^{lk} \phi_{i} + \beta_{lk j} U_{i,k} \frac{\partial \phi_{I}}{\partial x_{I}} + \alpha_{lk} U_{i,k} \phi_{i} \right) \phi_{J} dx + \\ \int_{\partial \tau} q_{lk} U_{l,k} \phi_{I} \phi_{J} ds = \int_{\tau} \left(\gamma_{Ij} \frac{\partial \phi_{J}}{\partial x_{j}} + f_{I} \phi_{J} \right) dx + \\ \int_{\partial \tau} (g_{I} - h_{m I} \Lambda_{K,L,m} \Psi_{K,L,}) \phi_{J} ds \end{cases}$$

FIG. 16

308
$$\begin{cases} \int_{\partial_{\tau}}^{h} h_{mk} U_{J,k} \phi_{I} \Psi_{K,L} ds = \int_{\partial_{\tau}}^{r} r_{m} \Psi_{K,L} ds \end{cases}$$

$$\int_{\tau} \left(\Gamma_{l,j} \frac{\partial \phi_{J}}{\partial x_{j}} + F_{l} \phi_{J-d} \frac{\partial u_{k}}{\partial I} \phi_{J} \right) dx + \int_{\partial t} \left(G_{I} + \frac{\partial R_{m}}{\partial u_{l}} \Lambda_{K,L,m} \psi_{K,L} \right) \phi_{J} ds = 0$$

$$\int_{\partial \tau} R_{m} \psi_{K,L} ds = 0$$

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 12 of 24

12/24

$$DA_{(J,l),(I,k)} = \int_{\tau}^{d} a_{lk} \Phi_{I} \Phi_{J} dx$$

$$C_{(J,l),(I,k)} = \int_{\tau}^{d} c_{lk} j i \frac{\partial \Phi_{I}}{\partial x_{i}} ? \frac{\partial \Phi_{J}}{\partial x_{j}} dx$$

$$AL_{(J,l),(I,k)} = \int_{\tau}^{\alpha} c_{lk} j \Phi_{I} ? \frac{\partial \Phi_{J}}{\partial x_{j}} dx$$

$$BE_{(J,l),(I,k)} = \int_{\tau}^{\alpha} B_{lk} i \frac{\partial \Phi_{I}}{\partial x_{i}} \Phi_{J} dx$$

$$A_{(J,l),(I,k)} = \int_{\tau}^{\alpha} a_{lk} \Phi_{I} \Phi_{J} dx$$

$$Q_{(J,l),(I,k)} = \int_{\tau}^{\alpha} q_{lk} \Phi_{I} \Phi_{J} dx$$

$$GA_{(J,l)} = \int_{\tau}^{\gamma} l j \frac{\partial \Phi_{J}}{\partial x_{j}} dx$$

$$F_{(J,l)} = \int_{\tau}^{\tau} f_{I} \Phi_{J} dx$$

$$G_{(J,l)} = \int_{\partial \tau}^{\tau} g_{I} \Phi_{J} ds$$

$$H_{(K,L,m),(I,k)} = \int_{\partial \tau}^{\tau} h_{mk} \Phi_{I} \Psi_{K,L} ds$$

$$R_{(K,L,m)} = \int_{\partial \tau}^{\tau} r_{m} \Psi_{K,L} ds$$

320
$$\begin{cases} DA \frac{\partial U}{\partial t} + C + AL + BE + A + Q) U + H^{T} \Lambda = GA + F + G \\ H U = R \end{cases}$$

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No: (312) 425-3900 Sheet 13 of 24

13/24

FIG. 20

$$322 \begin{cases} DA \frac{\partial U}{\partial t} + H^T \Lambda = GA + F + G \\ R = 0 \end{cases}$$

326
$$\begin{cases} J(U^{(k)}) \Delta U^{(k)} = p(U^{(k)}) \\ U^{(k+1)} = U^{(k)} + \lambda_k \Delta U^{(k)} \end{cases}$$

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attomey: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 14 of 24

14/24

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attomey: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 15 of 24

FIG. 23

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 16 of 24

FIG. 24

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attomey: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 17 of 24

17/24

FIG. 25

1-D Physics Application Modes

	,		\
Application mode	Class name	Parent class	
Diffusion	flpdedf1d	flpdedf	
Heat Transfer	flpdeht1d	flpdeht	_/
			,

1-D PDE	Application	Modes
---------	-------------	-------

Application mode	Class name	Parent class
Coefficient PDE model, n variables	flpdec1d (n)	flpdec (n)
General PDE model, n variables	flpdeg1d(n)	flpdeg (n)

504

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attomey: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 18 of 24

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attomey: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 19 of 24

19/24

FIG. 27

Application Object Properties

Property name	Description	Data type
dim	Names of the dependent variables	Cell array of strings
form	PDE form	String (coefficient/ general)
name	Application name	String
parent	Parent class names	String. cell array of strings. or the empty matrix
sdim	Names of the independent variables (space dimensions)	Cell array of stings
submode	Name of current submode	String (std/wave)
tdiff	Time differentiation flag	String (on/off)

```
function obj = myapp()
%MYAPP Constructor for a FEMLAB application object.
obj. name = 'My first FEMLAB application';
obj. parent = 'flpdeht2d';

% MYAPP is a subclass of FLPDEHT2D:
p1 = "flpdeht2d;
obj = class (obj, 'myapp', p1);
set (obj, 'dim', default_dim (obj));
```

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attomey: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 20 of 24

20/24

FIG. 29

Physics Modeling Methods

Function	Purpose
appspec	Return application specifications.
bnd_compute	Convert application-dependent boundary conditins to generic boundary coefficents.
default_bnd	Default boundary conditions.
default_dim	Default names of dependent variables
default_equ	Default PDE coefficients/Material parameters.
default_init	Default initial conditions.
default_sdim	Default space dimension variables.
default_var	Default application scalar variables.
dim_compute	Return dependent variables for an application.
equ_compute	Convert application-dependent material parameters to generic PDE coefficients.
form_compute	Return PDE form.
init_compute	Convert application-dependent initial conditions to generic initial conditions
posttable	Define assigned variable names and post-processing information.

514

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 21 of 24

21/24

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attomey: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 22 of 24

22/24

$$530 \begin{cases} \Delta E_{Z} + (2\pi i k)^{2} E_{Z} = 0 \end{cases}$$

$$532 \begin{cases} k = \frac{1}{\lambda} = \frac{f}{c} \end{cases}$$

$$534 \begin{cases} \overline{n} \cdot (\nabla E_{Z}) + 2\pi i k_{X} E_{Z} = 4\pi i k_{X} \sin\left(\frac{\pi}{d}(y - y_{0})\right) \end{cases}$$

$$536 \begin{cases} k^{2} = k_{X}^{2} + k_{y}^{2} \end{cases}$$

$$538 \begin{cases} k_{X} = \sqrt{\frac{1}{\lambda^{2}} \frac{1}{(2d)^{2}}} \end{cases}$$

$$540 \begin{cases} n \cdot (\nabla E_{Z}) + 2\pi i k_{X} E_{Z} = 0 \end{cases}$$

$$542 \begin{cases} E_{Z} = 0 \end{cases}$$

$$544 \begin{cases} f_{C} \frac{c}{2d} \end{cases}$$

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Sheet 23 of 24

23/24

FIG. 32

```
function obj = flwaveguid (varargin)
%FLWAVEGUIDE Constructor for a waveguide application object.
obj. name = 'In-Plane Waveguide';
obj. parent = 'flpdeac';
\% FLWAVEGUIDE is a subclass of FLPDEAC:
p1 = flpdeac;
obj = class (obj), 'flwaveguide' ,p1);
set (obj), 'dim' , default_dim(obj));
```

FIG. 33

fem.user fields		
Field	Description	
geomparam	1-by-2 structure of geometry parameters.	
entrybnd exitbnd freqs	Index to the entry boundary Index to the exit boundary Frequency vector	
	geomparam entrybnd exitbnd	

5

Application No.: 09/675,778 Filed: June 11, 2007 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer Telephone No.: (312) 425-3900 Shect 24 of 24

24/24

FIG. 34

ſ	fem.user fields	
	Field	Description
554	startpt	Index of the lower left corner point of the waveguide.
	type	Type of waveguide. (<i>straight</i> or <i>elbow</i>)

FIG. 35

geomparam fields

Field	Description	Defaults for elbow	Defaults for straight
entrylength	Length of the entrance part of the waveguide.	0.1	0.1
exitlength	Length of the exit part of the waveguide.	0.1	Not used
radius	Outer radius of the waveguide bend.	0.05	Not used
width	Width of the waveguide.	0.025	0.025
cavityflag	Turn resonance cavity on or off	0	0
cavitywidth	Width of the resonance cavity	0.025	0.025
postwidth	Width of the protruding posts.	0.005	0.005
postdepth	Depth of the protruding posts.	0.005	0.005

556 ≺