ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG--ETC F/6 13/2 DOCUMENTATION AND ANALYSIS OF ROCK ISLAND UNDERSEPAGE DATA.(U) AD-A083 138 MAR 80 R W CUNNY WES/TR/GL-80-3 NCR-14-78-C17 UNCLASSIFIED 1 OF A 40 40 83 138 ---

TECHNICAL REPORT GL-80-3

DOCUMENTATION AND ANALYSIS OF ROCK ISLAND UNDERSEEPAGE DATA

Ь

Robert W. Cunny

Geotechnical Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

March 1980 Final Report

Approved For Public Release; Distribution Unlimited

A

P FILE COPYL

ADA 083138

Propered for U. S. Army Engineer District, Rock Island Rock Island, Illinois 61201

80 4 17 0 21

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE

1. REPORT NUMBER (2) NE STRIP | 2. GOVT 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER Technical Report GL-89-3 TITLE fond & DOCUMENTATION AND ANALYSIS OF ROCK ISLAND UNDERSEEPAGE DATA 7. AUTHOR(a) Robert W. Cunny PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment Station Geotechnical Laboratory P. O. Box 631, Vicksburg, Miss. 39180 11. CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Engineer District, Rock Island Mar Rock Island, I11. 61201 354 15. SECURITY CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Unclassified 154. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. R-IA-78-C13 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Permeability Stratification Berms Design Piezometers Underseepage Design standards Sand boils Documentation Seepage Levees Soil mechanics 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) - Piezometer data from 14 pre-1960 piezometer range sites in the Rock Island District (RID) were documented and analyzed to determine landside $(k_f/k_b\ell)$ and riverside (k_f/k_{br}) permeability ratios. Only 7 of the 14 sites had complete data, which included piezometric pressures under both the riverside and landside slopes of the levee. Piezometer data obtained in 1979 from 15 new (1977)

piezometer range sites were also reviewed, but because the calculated entrance

DD 1 AM 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Bridge)

12.31

(Continued)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

distances, among other things, were significantly greater than the distances to the exposed substratum at the riverbank, these latter data were considered in error and were not used for analysis.

Data from the seven old piezometer range sites indicated that $k_f/k_b\ell$ ranged from 1.1 to 90 and k_f/k_{br} ranged from 3.0 to 209. For design of berm widths using procedures based on a factor of safety against uplift, ratios of 100 and 200 were suggested (later referred to as WES (Waterways Experiment Station) suggested) for $k_f/k_b\ell$ and k_f/k_{br} , respectively. The WES suggested landside and riverside permeability ratios were as little as 1/8 and 1/31 of those provided by the Lower Mississippi Valley Division (LMVD) 1956 criteria and 1/4 to 1/8 of those used by the RID for design in 1960. Peizometric pressures predicted using WES suggested permeability ratios average about 77 percent of that predicted using LMVD criteria and 102 percent of that using RID criteria.

>> Berm widths were also calculated using LMVD, RID, and WES permeability ratios. > Significantly reduced berm widths resulted from using either RID or WES criteria, the reduction ranging from 80 to about 72 percent, respectively, of that calculated using LMVD criteria.

Doserved seepage performance from all 29 piezometer range sites was studied and compared with berm width calculations. In general, the berm formulas, which are based on a factor of safety against uplift, did not discriminate in any significant manner between those sites that had relatively good or poor seepage performance. Using WES suggested permeability ratios, 5 of the 16 sites where the seepage performance was relatively good required berms up to 407 ft wide; using LMVD criteria, 11 of the same 16 sites required berms up to 781 ft wide. (RID permeability ratios were assigned only to the 14 old piezometric range sites; therefore, RID berm widths are not compared with seepage performance.) At 13 sites where seepage performance was relatively poor, WES criteria indicated that 7 of the sites required no berms at all; LMVD criteria indicated that 6 of these same sites required no berms. It was concluded that berm formulas currently being used are not suitable for determining which sites need berms in the RID.

Berm criteria based on a creep ratio of 15 to 18, similar to that advanced in 1916 by Mr. W. G. Bligh in his book, <u>Dams and Weirs</u>, were also tried. While berm lengths were more reasonable than those mentioned above, these criteria also failed to adequately distinguish between those locations that need berms and those that do not. The creep ratio criteria indicated that all 16 of the sites that had relatively good seepage performance required berms up to 114 ft wide. At the 13 sites that had relatively poor performance, 11 required berms up to 137 ft wide and 2 required no berms at all. Thus, it was concluded that the creep ratio criteria also were not adequate.

It is recommended that additional field studies be undertaken to determine the detailed characteristics of locations where seepage performance has been relatively good but where the berm formulas indicate that berms are required, and where performance has been relatively poor but where current procedures indicate that no berms are required. Locations where these studies might be conducted have been suggested.

It is also recommended that the new piezometer range sites be maintained, that the piezometers be rejuvenated as may be necessary, and that piezometers be read daily whenever the river stage is 4 ft or so above the landside toe elevation.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

PREFACE

The documentation and analysis of underseepage data from the Rock Island District (RID) was conducted for the RID by the U. S. Army Engineer Waterways Exeriment Station (WES) with funds provided by IAO's NCR-IA-78-C17 dated 26 January 1978, NCR-IA-78-C26, NCR-IA-78-B11, and NCR-IA-78-B12 dated 31 March 1978, NCR-IA-79-C19 dated 30 May 1979, and NCR-IA-80-C16 dated 17 January 1980.

The study was conducted during the period January 1978 through September 1979. Mr. R. W. Cunny, Soil Mechanics Division (SMD), Geotechnical Laboatory (GL), was the principal investigator. He was assisted by Messrs. P. G. Tucker and L. Devay and Dr. E. B. Perry, SMD, and Dr. J. W. Spotts, formerly of the WES. The analysis was made and the report was written by Mr. Cunny. The initial drafts of part of the procedures section and most of the site descriptions and data documentation were prepared by Messrs. Tucker and Devay. The work was conducted under the general direction of Mr. C. L. McAnear, Chief, SMD, and Mr. J. P. Sale, Chief, GL.

COL John L. Cannon, CE, and COL Nelson P. Conover, CE, were Commanders and Directors of the WES during the preparation and publication of this report. Mr. F. R. Brown was Technical Director.

e.C. bulletin	
Si di Salah	
r da 😅	1.
the second was a state of	
	<u>.</u>
	!
	•
	·-• ',
The transfer of the second	1
	1
: <i>/</i>	1
: <i>T</i>	- 4
1 / 1	

CONTENTS

	Page
PREFACE	. 1
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)	
UNITS OF MEASUREMENT	. 4
PART I: INTRODUCTION	. 5
Background	. 5
Objective	
Scope	
PART II: PROCEDURES	. 8
Analysis of Piezometer Data	. 8
Calculations for Factor of Safety	_
Seepage Performance Observations	
Berm Width Calculations	
PART III: OLD PIEZOMETER RANGE SITES	. 20
Muscatine Island, Range A	. 20
Bay Island, Range C	
Bay Island, Range D	
Iowa River, Range A	. 42
Green Bay, Range A	. 50
Hunt, Range B	
Fabius River, Range A	
South Quincy, Range A	
Sny Island, Range A	
Sny Island, Range F	
Sny Island, Range B	
Sny Island, Range G	
Sny Island, Range H	. 109
Sny Island, Range I	. 115
PART IV: NEW PIEZOMETER RANGE SITES	. 118
Muscatine Island, Range MA	. 118
Muscatine Island, Range MB	
Muscatine Island, Range MC	
Green Bay, Range GBA	
Green Bay, Range GBB	. 131
Fabius River, Range FA	. 134
Fabius River, Range FB	
South Quincy, Range SQ	. 140
South River, Range SRA	. 145
South River, Range SRB	. 150
South River, Range SRC	. 155
Sny Island, Range SA	. 158
Sny Island, Range SB	. 162
Sny Island, Range SC	. 167
Sny Island, Range SD	. 170

																						Page
PART	V: D	cscuss	ION A	ND A	NAL!	YSI	s.				•				•	•	•			•		177
	Permea Calcul Seepaa Applic	lated ge Per	Toe F forma	ress	obse	s ai	nd E atio	ern ns	tW :	.dt	:hs	•	•		•	•	•	•	•	•		177 181 185 200
PART	VI: (CONCLU	SIONS	ANI	RE	COM	MENI	ATI	ONS	3					•							204
	Conclu Recomm																					204 204
TABLE	ES 1-79	•																				
APPEN	NDIX A:		E-LAG GES A											•		•		•		•	•	Al
	Basic Discus																					A. Al
	River Daily															•	•	•	•	•	•	A 4
		Piezom																				A7 A10
	Summan Compan																					All
TABLE	ES A1-A	15																				
APPEN	IDIX B	NOT	ATION						•													B1

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By	To Obtain				
feet	0.3048	metres				
inches	25.4	millimetres				
miles	1.609344	kilometres				

DOCUMENTATION AND ANALYSIS OF ROCK ISLAND UNDERSEEPAGE DATA

PART I: INTRODUCTION

Background

- 1. During the period 1950-1957, the Rock Island District (RID) began a series of studies leading toward the enlargement of levees along the upper Mississippi River. Part of the studies included the collection of piezometric pressure data to be used for the design of seepage berms to protect the levees from excessive underseepage that could result in piping and failure. Piezometer ranges were installed at a number of locations within the RID, and over a period of about 10 years, the piezometers were read whenever significant elevated river stages occurred. These data were studied by RID personnel and were used for the design of the levee enlargements that were built beginning in the early 1960's, but the data were never formally documented and reported in permanent form.
- 2. At this time (late 1970's), the RID is again planning enlargement of the levees at certain reaches of the river, and criteria that were used for design of the early levees are being reexamined. It is apparent that because of increased height and enlarged levee sections, some modification of the criteria may be warranted. The RID has been engaged in a program of reviewing their early design criteria and observed performance and has asked the U. S. Army Engineer Waterways Experiment Station (WES) to assist them in this review and the documentation of observed data.

Objective

- 3. Specifically, the WES was asked to do the following:
 - <u>a.</u> Review and document piezometer data from fourteen 1950-1957 piezometer ranges for up to five high waters.

- <u>b</u>. Calculate landside and riverside permeability ratios and compare with those recommended in Technical Memorandum TM 3-424* and those used by the RID.
- c. Calculate piezometric pressure at landside toe and compare with that observed and that determined using TM 3-424* and RID permeability ratios.
- d. Document performance observed during 1960, 1965, 1969, and 1973 high-water periods at fourteen 1950-1957 piezometer ranges and during 1965, 1969, 1973, and 1979 at fifteen 1977 piezometer ranges.
- e. Review and analyze observed piezometer data obtained during 1979 high water at fifteen 1977 piezometer ranges.
- <u>f</u>. Calculate factor of safety for uplift and compare with observed performance.
- g. Review detailed 1951 piezometer data obtained from two ranges (Sny Island, Ranges A and B) and evaluate the potential for piezometric pressure time lag.

Scope

4. Data furnished by the RID for this review include aerial photographs, plan maps, cross sections, piezometer data, and performance observations for the following 14 so-called old pre-1960 piezometer sites installed in the 1950-1957 time frame:

Muscatine Island, Range A
Bay Island, Ranges C and D
Iowa River, Range A
Green Bay, Range A
Hunt, Range B
Fabius River, Range A
South Quincy, Range A
Sny Island, Ranges A, F, B, G, H, and I

Piezometer data were obtained from all the sites listed above in 1960; in other years, 1951, 1952, 1954, 1961, 1962, 1965, and 1969,

^{*} U. S. Army Engineer Waterways Experiment Station, CE. 1956 (Oct). "Investigation of Underseepage and Its Control, Lower Mississippi River Levees," Technical Memorandum 3-424, Vicksburg, Miss.

piezometer data were obtained from selected sites. Seepage performance observations were furnished for the years of 1960, 1965, 1969, and 1973.

5. In addition to the above, plan maps, cross sections, 1979 piezometer data, and 1965, 1969, 1973, and 1979 seepage performance observations were obtained from the following 15 new piezometer range sites installed in 1977:

Muscatine Island, Ranges MA, MB, and MC Green Bay, Ranges GBA and GBB Fabius River, Ranges FA and FB South Qunicy, Range SQ South River, Ranges SRA, SRB, and SRC Sny Island, Ranges SA, SB, SC, and SD

Table 1 summarizes the river mile and levee station locations for the 14 old piezometer ranges and 15 new piezometer ranges.

6. Permeability ratios have been calculated for seven of the 19501957 piezometer sites for which complete piezometer data were available;
design permeability ratios have been suggested; piezometric pressures
for levee crest flood conditions have been calculated; berm widths
based on factor of safety against uplift have been calculated; and
seepage performance observations have been analyzed. Also, use of
procedures for calculations of berm widths based on creep ratio criteria
has been discussed, and recommendations have been made for further study.

PART II: PROCEDURES

Analysis of Piezometer Data

7. The amount of artesian pressure that will develop landward of a levee during a sustained high water is related to the dimensions and character of the foundation and the other factors illustrated in Figure 1. Definitions of the symbols used in Figure 1 are shown on the figure. However, a complete listing of all the nomenclature used in this report is included in Appendix B; this nomenclature is consistent with that used in EM 1110-2-1913.* Methods for determining values for the factors that were used for analysis of piezometer data from the piezometer ranges are discussed in the following paragraphs.

Net head H

- 8. The net head on a levee was the height of the river above the tailwater or average low ground surface near the landside levee toe. For prediction of maximum piezometric pressure and design of berm widths, the height of the river was determined by the net grade of the levee. Distance from riverside levee toe to riverbank L_1
- 9. The distance L_1 from the riverside levee toe to the exposed pervious substratum at the riverbank was obtained from cross sections, plan maps, and aerial photographs.

Base width of levee and berm L_2

10. The distance L_2 or the base width of levee and berm was obtained from cross sections.

Slope of hydraulic grade line beneath levee M

11. The slope of the hydraulic grade line was determined from

^{*} Department of the Army, Office, Chief of Engineers. 1978 (Mar).
"Engineering and Design, Design and Construction of Levees," Engineer
Manual 1110-2-1913, Washington, D. C.

Notation:

- d Effective thickness
- h Net head beneath top stratum at landside levee toe measured above natural ground surface or tailwater
- $h_{\mathbf{x}}$ Net head beneath top stratum at distance \mathbf{x} from levee toe
- H Net head on levee
- $\mathbf{k}_{\mathtt{f}}$ Permeability of pervious substratum
- L_1 Distance from riverside levee toe to river
- ${\bf L_2}$ Base width of levee and berm
- M Slope of hydraulic grade line, at middepth of pervious substratum, beneath levee
- s Distance from landside levee toe to effective source of seepage entry into the pervious substratum
- x Distance from toe of levee
- \mathbf{x}_1 Effective riverside blanket length
- Distance from landside toe of levee or berm to effective seepage exit
- z_{br},k_{br} Effective thickness and permeability of top stratum riverward of the levee

Figure 1. Generalized cross section of levee foundation and notation for underseepage analysis

-

readings of piezometers located beneath the levee during high water and the relation

$$M = \frac{\Delta h}{\ell}$$

where Δh is the difference in piezometer readings and ℓ is the horizontal distance between piezometers as shown in Figure 2. The formula is valid only with artesian flow conditions beneath the levee.

Effective source of seepage s

12. The effective source of seepage distance measured from the landside toe was determined by projecting the hydraulic grade line M until it intersected the river stage producing the gradient. Mathematically, s was determined from the equation (see Figure 2 for nomenclature)

$$s = \ell_1 + (H - h_1) \frac{\ell_2 - \ell_1}{h_2 - h_1}$$

or

$$s = \ell_1 + \frac{H - h_1}{M}$$

13. For sites without complete piezometer data, s can be calculated from the formula

$$s = x_1 + L_2$$

where \mathbf{x}_1 is determined as described below. Effective riverside blanket length \mathbf{x}_1

14. For sites without piezometer data, x_1 can be calculated from the formula

$$x_1 = \frac{\tanh (cL_1)}{c}$$

Notation:

- Δh Difference in piezometer readings
- $\mathbf{h_1,h_2}$ Substratum heads of two piezometers on a line perpendicular to the levee at distances ℓ_1 and $\ell_2,$ respectively, from land-side levee toe
 - H Wet head on levee
 - ℓ Horizontal distance between piezometers
- ℓ_1,ℓ_2 Respective distances from landside levee of toe to the piezometers installed on a line perpendicular to the levee
 - L_{2} Base width of levee and berm
 - s Effective source of seepage

 - \mathbf{x}_3 Distance from landside levee toe to effective seepage exit

Figure 2. Dimensioning for determination of M , s , and \mathbf{x}_3 from piezometer readings

where

$$c = \frac{1}{\sqrt{\left(\frac{k_f}{k_{br}}\right)\left(z_{br}\right)\left(d\right)}}$$

and where the riverside permeability ratio $k_{\rm f}/k_{\rm br}$ was assigned on the basis of analyses from other similar sites with complete piezometer data and $z_{\rm br}$ and d were determined as described in paragraphs 17 and 18. Effective seepage exit x_3

15. The effective seepage exit distance was determined by projecting the hydraulic grade line M until it intersected the average ground surface or tailwater. Mathematically, x₃ was determined from the equation (see Figure 2 for identification of terms)

$$x_3 = h_1 \left(\frac{\ell_2 - \ell_1}{h_2 - h_1} \right) - \ell_1$$

or

$$x_3 = \frac{h_1}{M} - \ell_1$$

16. For sites without complete piezometer data, x_3 was calculated from the formula

$$x_3 = \sqrt{\left(\frac{k_f}{k_b \ell}\right) \left(z_b \ell\right) \left(d\right)}$$

where the landside permeability ratio $k_f/k_b\ell$ was assigned on the basis of analyses from other similar sites with complete piezometer data, and $z_{h\ell}$ and d were determined as described below.

Effective thickness of the landward and the riverward top stratum, $z_{b\ell}$ and z_{br}

17. The total thickness of the multilayered top stratum determined from boring logs was transformed in a single stratum of relatively uniform permeability for seepage computations by multiplying each layer by a transformation factor and adding these to obtain a total transformed thickness. Table 2 lists the transformation factors as determined in TM 3-424.*

Effective thickness of pervious substratum d

18. The thickness of the pervious substratum is the thickness of the principal seepage carrying sand strata below the top stratum and above the bottom of the entrenched valley. For this study, it was determined by deep borings usually within a mile or so of the site being considered.

Permeability of the riverside and the landside top stratum and the pervious substratum, $k_{\rm br}$, $k_{\rm b}\ell$, $k_{\rm f}$, respectively

19. For the analyses made for this study, individual determinations of top stratum and substratum permeabilities were not made. Only the landside permeability ratio $k_{\rm f}/k_{\rm b,\ell}$ and the riverside permeability ratio $k_{\rm b}/k_{\rm br}$ were determined. These are discussed below. Riverside permeability ratio $k_{\rm f}/k_{\rm br}$

20. The riverside permeability was calculated from the formula

$$\frac{k_f}{k_{br}} = \frac{1}{(c^2)(z_{br})(d)}$$

where c was determined by trial and error from the equation

^{*} U. S. Army Engineer Waterways Experiment Station, CE, op. cit. p. 6.

$$x_1 = \frac{\tanh (cL_1)}{c}$$

The above equation is appropriate for the condition of no significant riverside borrow pits, and

$$x_1 = s - L_2$$

where s, the effective source of seepage distance measured from the old levee tow, was determined by projection of observed piezometric data to the old levee crest elevation.

Landside permeability ratio $k_f/k_b\ell$

21. The landside permeability ratio was calculated from the formula

$$\frac{k_{f}}{k_{h\ell}} = \frac{\left(x_{3}\right)^{2}}{\left(z_{h\ell}\right)(d)}$$

where \mathbf{x}_3 , the effective seepage exit distance measured from the toe of the old levee or berm, was determined from observed piezometric data projected to the average ground elevation near the landside toe or tailwater.

Calculations for Factor of Safety

- 22. For the calculation of factor of safety against uplift, additional factors were determined as described in the following paragraphs. Critical thickness of the top stratum $\,z_{\,t}^{}$
- 23. The critical thickness of the top stratum for determination of allowable pressure beneath the top stratum for design of berms or other seepage control measures is the total thickness of all strata overlying the top of the least pervious layer plus the transformed thickness of

the underlying more pervious top stratum. It may or may not be the same as the transformed thickness z_b ; z_t will equal z_b only when the least pervious stratum is at the ground surface.

Net head at landside toe of levee or berm h_0

24. For sites with adequate piezometer data, the net head beneath the top stratum at the landside toe of the levee or berm measured above natural ground or tailwater was determined by a linear projection of observed piezometric data to the new levee crest elevation or intermediate river stage and a linear interpolation between adjacent piezometers to determine the pressure head at the landside toe. If adequate piezometer data were not available, s and x_3 values were calculated from suggested permeability ratios, and x_3 was determined from the formula

$$h_0 = \frac{H(x_3)}{s + x_3}$$

Net head at distance x from the center line h

Gradient through the top stratum i

- 26. The gradient through the top stratum is the net head $~h_{_{\rm X}}$ divided by the critical thickness of the top stratum $~z_{_{\rm t}}$. Critical gradient $~i_{_{\rm C}}$
- 27. The critical gradient through the top stratum is the gradient that produces an uplift pressure at the bottom of the top stratum equal to the pressure of the submerged weight of the top stratum, expressed as

^{25.} For sites with piezometer data, the net head beneath the top stratum at various distances from the center line and measured above the natural ground or tailwater was determined by linear projection of observed piezometric data to the new levee crest elevation or intermediate river stage and linear interpolation between adjacent piezometers to determine the pressure head at the desired location.

$$i_c = \frac{\gamma'}{\gamma_w} = \frac{h_c}{z_t}$$

where

 γ' = submerged unit weight of soil

 γ_{ij} = unit weight of water

h = critical head (described below)

For the analyses made herein, i_c was assumed 0.8.

Critical head h

28. The critical head is the net head measured at the bottom of the top stratum that produces an uplift pressure equal to the pressure of the submerged weight of the top stratum, defined by

$$h_c = i_c z_c$$

Factor of safety against uplift F

29. The factor of safety against uplift is the ratio of the submerged weight of the top stratum ($z_t \cdot \gamma'$) plus berm ($t \cdot \gamma$), if any, divided by the force produced by the net head above the ground or berm surface acting at the bottom of the top stratum, expressed as

$$F = \frac{\gamma'(z_t + t)}{(h_x)(\gamma_w)} = \frac{i_c(z_t + t)}{h_x}$$

Seepage Performance Observations

30. Seepage performance observations were made in 1960 during the high-water period, and the comments of the observers were recorded on cross sections of the 1950-1960 piezometer ranges furnished for study. During the 1965, 1969, and 1973 high-water periods, seepage performance observations were made of the entire RID levee system, and comments of

198

the observers were recorded on plan maps scaled 1 in.* = 400 ft. During the 1979 high-water period, seepage performance observations were made at the new 1977 piezometer range sites, and comments of the observers were furnished in a summary format for each piezometer range.

31. Different observers made the seepage performance observations at different times; thus, the verbal descriptions of their observations varied in perspective from place to place and from time to time. During the review of these data, an effort was made to reduce the descriptions to 13 common statements. These statements were coded to simplify documentation and are listed in what was believed to be an increasing order of severity of seepage as follows:

Code	Description							
la	Reported dry							
1b	No seepage reported							
1c	Through seepage							
1d	Light toe seepage							
le	Heavy toe seepage							
2a	Berm wet							
2ъ	Water standing in low areas							
2c	Fields wet or soft behind levee							
3a	Light seepage beyond toe							
3ь	Heavy seepage beyond toe							
4a	Pin boils							
4Ъ	Sand boils							
4c	Large boils							

Coded seepage observations are documented in tables for each of the piezometer sites. At those locations where piezometer data were available for estimation of piezometric pressure, a calculated factor of safety against uplift is also shown.

Berm Width Calculations

32. Calculations for berm width X_{sp} , based on factor of safety

^{*} A table of factors for converting U. S. customary units of measurement to metric (SI) units is presented on page 4.

against uplift for semipervious berm material, have been made at each piezometer site. Figure 3 gives the formula for $X_{\rm sp}$ as presented in TM 3-424.* The net head on the levee is based on the elevation of the top of the existing levee and average ground elevation in the first 100 ft or so landward of the existing levee or berm toe. The seepage entry and exit distances are based on selected riverward and landward permeability ratios. Values of the parameters used for the calculation of $X_{\rm sp}$ are listed in tables that are presented subsequently.

THE RESERVE OF THE PROPERTY OF THE PARTY OF

- Carlo Britain

^{*} U. S. Army Engineer Waterways Experiment Station, CE, op. cit. p. 6.

Formula for semipervious berm width:

$$x_{sp} = \frac{-A + \sqrt{A^2 - 24(2 + r)\left(1 + sc - \frac{H}{h_a}\right)}}{2c(2 + r)}$$

where

X_{sp} = semipervious berm width

A = 6 + 3 sc (r + 1)

s = effective seepage entry distance

$$c = \frac{1}{\sqrt{\left(\frac{k_f}{k_b\ell}\right)\left(z_{b\ell}\right)\left(d\right)}}$$

 $r = i_0/i_1$

 i_o = allowable upward gradient at landside levee toe = 0.8/F

 i_1 = allowable upward gradient at berm toe = 0.8

H = net head on levee

 $h_a = allowable head at berm toe = <math>(i_1)(z_t)$

z_t = critical thickness of landside top stratum

 $k_f/k_{h\ell} = landside permeability ratio$

 $\mathbf{z}_{\mathrm{b}\ell}$ = effective thickness of landside top stratum

d = effective thickness of pervious substratum

F = factor of safety against uplift at levee toe; 1.5 used for RID study

and

 h_0 = net head beneath top stratum at landside levee toe without berm

 h_0' = net head beneath top stratum at landside levee toe with berm

t = thickness of berm

Figure 3. Sketch and formulas for calculating semipervious berm width

PART III: OLD PIEZOMETER RANGE SITES

Muscatine Island, Range A

33. The Muscatine Island Levee District is located on the west bank of the Mississippi River about 30 miles downstream from Rock Island, Illinois. A piezometer range site, Range A, was established in March 1957 within the pool area of Lock and Dam 17. The site was located at river mile 448.8 and levee sta 325+07 at a relatively straight reach on the main channel side of the river (Figure 4).

Description of site

- 34. The geologic profile in Figure 5 was derived from selected deep borings located near the east and west banks of the river.* Boring MID27 at river mile 449.9 was nearest to Range A. The top stratum generally consisted of about 4 to 5 ft of alluvial clayey soil. This was underlain by about 93 ft of poorly graded brown and gray glacial sands. The bedrock was of the middle and upper Devonian Formation.
- 35. Figure 6 shows a cross section of the site with the original levee ground surface, the original and new levee sections, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 8.2 to 9.2 ft thick and generally consists of alternating layers of sand and clay. In the first 125 ft landward of the original levee berm and 50 ft landward of the new levee berm, the top 2 to 3 ft appear to be sand, which may be directly exposed to the river at a distance of about 60 ft riverward of the levee center line.
- 36. The old levee crest elevation** was 552.6, and the average ground elevation at the old berm toe was 541.0. Construction for the

^{*} K. E. Jensen, et al. 1971 (25 May). "Recent Explorations in the Mississippi River Flood Plain Between Muscatine, Iowa, and Dallas City, Illinois, and Between Warsaw, Illinois, and Belleview, Illinois;" a letter report to Dr. Richard C. Anderson, Chairman, Department of Geology, Augustana College, Rock Island, Ill., 61201, on file in the Rock Island District Office.

^{**} All elevations (e1) cited herein are in feet referred to mean sea level (ms1).

General plan of Muscatine Island Levee District Figure 4.

F

Geologic profile in vicinity of Muscatine Island Levee District Figure 5.

Figure 6. Cross section of Muscatine Island, Piezometer Range A

ورو ورانون البيج المار فوه

levee enlargement began in July 1960 and was completed in October 1961. The new levee grade is el 558.4. The exposed pervious substratum at the riverbank was estimated to be 255 ft east of the center line of the levee.

History of underseepage

- 37. Since the installation of the piezometer range in 1957, only two observations of seepage have been recorded. On 3 April 1960, when the river crested at el 547.72, a little toe seepage was observed, and a great deal of water was reported standing in the road ditch and low areas near the old berm toe. In April 1969, two boils were located beyond the new berm toe when the river crested at el 550.1. No seepage was reported in 1965 and 1975 when higher river stages were experienced. Analysis of piezometer data
- 38. The readings from piezometers A-1, A-2, and A-3 in Table 3 are for four different dates. In 1969, no data were obtained from piezometer A-1; thus, it was presumably lost during the construction of the levee enlargement. In Figure 7, piezometric data are plotted, and piezometric elevation heads are projected to a river stage equal to the new levee crest so that the piezometric pressure for all river stages up to el 558.4 can be estimated. Also shown in Figure 7 are estimated piezometric elevation heads for the old levee berm toe and the new berm toe where various types of seepage have been reported during past flood stages of the river. These latter plots of piezometric elevation head were determined by linear interpolation of the projected heads for the piezometer locations to the intermediate locations between the piezometers.
- 39. At this piezometer range, no riverside piezometer was installed. Therefore, seepage entrance s and seepage exit \mathbf{x}_3 distances should not be calculated following procedures presented in paragraphs 12 and 15. However, to illustrate the type of problem that can be encountered, s and \mathbf{x}_3 have been calculated using 1960 piezometric pressures from the landside piezometers A-1 and A-2, the two closest to the center line of the levee, and the procedures that would have been appropriate only if both piezometers had been under the levee. Also, s and \mathbf{x}_3 have

Piezometric elevation head versus river stage, Muscatine Island, Range Figure 7.

- warming the water

been calculated using 1969 piezometric pressure data from piezometers A-2 and A-3 located 228 and 428 ft landward of the center line of the levee. The average ground elevation landward of the levee toe selected for all the \mathbf{x}_3 calculations was 541.0. In addition, \mathbf{s} and \mathbf{x}_3 were calculated for river stages equal to the old and new levee crests using piezometer data projected to these elevations. The \mathbf{s} and \mathbf{x}_3 values listed in Table 3 are plotted versus the river stage in Figure 8. For the old crest elevation of 552.6, \mathbf{s} was 1150 ft and \mathbf{x}_3 was 786 ft. For the new crest elevation of 558.4, \mathbf{s} was estimated to be 1700 ft and \mathbf{x}_3 was 1200 ft. It should be noted that the calculated \mathbf{s} values of 1150 and 1700 ft are significantly greater than the 330-ft distance to the exposed pervious substratum at the riverbank and thus must be considered unreliable; these large values of \mathbf{s} and \mathbf{x}_3 no doubt would have been substantially smaller had a riverside piezometer been available.

Permeability ratio

- 40. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_{b\ell} = (x_3)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ (at the old levee berm toe) was 4.0 ft, d=93 ft, x_3 (for the old crest elevation) was 786 ft, and the calculated $k_f/k_{b\ell}$ was 1660. If a riverside piezometer had been available for the calculation of pressure gradients, there is no doubt that the calculated $k_f/k_{b\ell}$ would have been significantly smaller.
- 41. Because of the question regarding the reliability of the computed effective seepage exit distance, an alternate procedure for calculating $k_f/k_b\ell$ was attempted using the following formula for piezometric pressure beneath a pervious top stratum:

$$e^{cx} = \frac{h_o}{h_x}$$

where

e = the base of the Naperian logarithms

2.71828

Distances to seepage source and seepage exit, Muscatine Island, Range A Figure 8.

$$c = \frac{1}{\sqrt{\left(\frac{k_f}{k_b\ell}\right)\left(z_{b\ell}\right)\left(d\right)}}$$

For the other terms in the formula, see Figure 1. Using ground elevations of 541.0 and 539.7 for the landside toe and location of piezometer A-2, respectively, and projected piezometric elevation heads of 545.7 and 544.8, $k_{\rm f}/k_{\rm b\ell}$ was calculated to be 9400 when the river is at the old crest elevation of 552.6. This permeability ratio is very unrealistically high; thus, a reliable landside permeability ratio cannot be determined with data available from this site. Also, since no reliable estimate of seepage entrance distance could be made, no riverside permeability ratio could be calculated.

Calculated factors of safety

- 42. The projected piezometric data in Figure 7 have been used to calculate uplift factors of safety at the old berm toe, the new berm toe, and piezometers A-2 and A-3 for the flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safety were also made for a river stage equal to the new crest of the levee. Table 4 presents these factors of safety and the data necessary to make the calculations.
- 43. The type of seepage observed during the flood stages is also shown in Table 4. It is interesting to note that when pin boils beyond the berm toe were reported in 1969, the factor of safety was 1.6; when light toe seepage was observed in 1960, the factor of safety was 1.4; with water standing in low areas in 1960, the factor of safety ranged from 1.4 to 2.3; and when no seepage was reported, the factor of safety ranged as low as 1.2. The calculated factor of safety for a river stage equal to the crest of the new levee ranged from 0.8 to 1.4.

Bay Island, Range C

- 44. The Bay Island Drainage and Levee District No. 1 is on the east bank of the Mississippi River about 35 miles downstream from Rock Island, Illinois. Two piezometer range sites, Ranges C and D, were established in 1953 within the pool area of Lock and Dam 17 (Figure 9).
- 45. The geologic profile in Figure 10 was derived from selected deep borings located near the east and west banks of the river. Boring BD4 at river mile 446 was nearest to Range C, and Boring BD3 at about river mile 442 was closest to Range D. The top stratum generally consisted of 4 to 6 ft of alluvial clayey soil. This was underlain by about 135 ft of poorly graded brown and gray glacial sands and gravels. Two intrusions of glacial clays till were indicated. The bedrock was of the Devonian Formation.

Description of site

- 46. Piezometer Range C site was established on 25 March 1953. The site was at river mile 446.7 and levee sta 330+00 on the outside bank at a moderate band of the main channel of the river (Figure 9). The range line was immediately north of a berm that began at sta 330+00 and continued southward. Figure 11 shows a cross section of the site with the original and new levee sections, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 6.2 to 3.3 ft thick and generally consists of about 1.5 ft of organic lean clay overlying lean clay.
- 47. The old levee crest elevation was 550.8, and the average ground elevation at the levee toe was 542.6. Construction for the levee enlargement began in March 1963 and was completed in January 1965. The new levee grade is el 556.6.
- 48. A ditch and road parallel to the river was approximately 296 ft landward of the center line of the levee between sta 330+00 and 382+00. The ground elevation 296 ft landward was 540.6. The exposed pervious substratum at the bank of the Mississippi River was estimated to be 710 ft west of the center line of the levee. The piezometer range was reported as destroyed on 14 April 1969.

- Williams

Figure 9. General plan of Bay Island Drainage and Levee District

Geologic profile in vicinity of Bay Island Drainage and Levee District Figure 10.

Figure 11. Cross section of Bay Island, Piezometer Range C

History of underseepage

49. Since the installation of the piezometer range in 1953, three observations of seepage have been recorded. On 10 May 1960, when the river crested at el 545.9, a little toe seepage was observed, and a great deal of water was reported standing in the road ditch and low areas. Shortly after completion of the levee enlargement, the river crested at el 552.6 in April 1965, a light toe seepage was reported, and a series of pin boils were located in the ditch between sta 330+00 and 382+00. In April 1969, the fields behind the levee were wet when the river crested at el 549.5.

Analysis of piezometer data

- 50. The readings from piezometers C-1, C-3, C-4, and C-5 in Table 5 are for five different dates. In Figure 12, piezometric data are plotted, and piezometric elevation heads are projected to a river stage equal to the new levee crest so that the piezometric pressure for all river stages up to el 556.0 can be estimated. Also shown in Figure 12 are estimated piezometric elevation heads for the old levee toe, the new levee toe, and the ditch 296 ft landward of the levee center line where various types of seepage have been reported during past flood stages of the river. These latter plots of piezometric elevation head were determined by linear interpolation of the projected heads for the piezometer locations to the intermediate locations between the piezometers.
- 51. Data from piezometers C-1 and C-3 were also used to calculate the effective seepage source s and the effective seepage exit x_3 distances for each date of piezometer observation. The average ground elevation landward of the levee toe selected for these calculations was 542.6. In addition, s and x_3 were also calculated for river stages equal to the old and new levee crests using piezometer data projected to these elevations. The s and x_3 values listed in Table 5 are plotted versus the river stage in Figure 13. For the old crest elevation of 550.8, s was 307 ft and x_3 was 158 ft. For the new crest elevation of 556.6, s was estimated to be 420 ft and x_3 was 260 ft.

Market Na.

F

ပ Piezometric elevation head versus river stage, Bay Island, Range Figure 12.

the state of the s

Distances to seepage source and seepage exit, Bay Island, Range C Figure 13.

with the second

Permeability ratio

- 52. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_{b\ell} = (x_3)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ at the old levee toe was 5.5 ft, d=135 ft, x_3 (for the old crest elevation) was 158 ft, and the calculated $k_f/k_{b\ell}$ was 34.
- 53. The riverside permeability ratio was calculated for the old levee crest, using the formula $k_f/k_{br}=1/[(c^2)(z_{br})(d)]$ where c was determined by trial and error from the formula $x_1=\frac{\tanh{(cL_1)}}{c}$. For these calculations, $x_1=229.5$ ft , $L_1=670$ ft , c=0.00433 , $z_{br}=10.0$ ft , d=135 ft , and $k_f/k_{br}=40$. Calculated factors of safety
- 54. The projected peizometric data in Figure 12 have been used to calculate uplift factors of safety at the levee toe and the ditch 296 ft landward of the center line or the levee for the flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safety were also made for a river stage equal to the new crest of the levee. Table 6 presents these factors of safety and the data necessary to make the calculations.
- 55. The type of seepage observed during the flood stages is also shown in Table 6. It is interesting to note that when pin boils were reported in the ditch in 1965, the factor of safety was 2.0; when fields were wet and soft in 1969, the factor of safety was 3.2; when toe seepage was observed in 1960 and 1965, the factor of safety ranged from 1.5 to 6.3; and when no seepage was reported, the factor of safety ranged as low as 1.9. The calculated factor of safety for a river stage equal to the crest of the new levee ranged from 1.0 to 1.2.

Bay Island, Range D

Description of site

The second of th

56. This piezometer range site was established on 27 March 1953.

The site was at river mile 443.5 and levee sta 502+49 near the bank of the Illinois slough of the Mississippi River (Figure 9). The levee at this location was separated from the main channel of the river by about a mile of timbered land and meandering water channels. Figure 14 shows a cross section of the site with the original and new levee sections, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 12.0 to 14.1 ft thick and generally consists of about 0.5 to 2.7 ft of organic lean clay overlying low to highly plastic clay.

57. The old levee crest elevation was 552.1, and the average ground elevation at the levee toe was 539.0. Construction for the levee enlargement began in March 1963 and was completed in January 1965. The new levee grade is el 555.4. The exposed pervious substratum at the bank of the slough at the piezometer range was estimated to be 185 ft west of the center line of the levee. Piezometers D-4 and D-5 were read in April of 1969, but no data were obtained from piezometers D-1 and D-3; it is presumed that these latter piezometers were destroyed during the levee enlargement operation during the period 1963 to 1965. Piezometer D-2, an embankment piezometer, was reported as destroyed in April 1960.

History of underseepage

58. Since the installation of the piezometer range in 1953, three observations of seepage have been recorded. On 3 April 1960, light toe seepage was observed, one small sand boil running with clear water was located near piezometer D-4, and water was reported standing in all low areas. In 1965, light toe seepage was reported; in 1969, some very heavy toe seepage; and in 1973, no seepage.

Analysis of piezometer data

THE RESERVE OF THE PERSON OF T

59. The readings from piezometers D-1, D-3, D-4, and D-5 in Table 7 are for five different dates. In Figure 15, piezometer data are plotted, and piezometric elevation heads are projected to a river stage equal to the new levee crest so that the piezometric pressure for all river stages up to el 555.4 can be estimated. Also shown in Figure 15 are estimated piezometric elevation heads for the new levee toe. This

The second secon

Figure 14. Cross section of Bay Island, Piezometer Range D

min the fact that the comments are the

Piezometric elevation head versus river stage, Bay Island, Range D Figure 15.

we'm' we'm's non'

plot of piezometric elevation head was determined by linear interpolation of the projected heads for piezometers D-3 and D-4 to the intermediate location between the piezometers. Since piezometer D-3 was located at the old levee toe, piezometric pressure heads at the old levee toe are the same as those recorded for piezometer D-3.

- 60. Data from piezometers D-1 and D-3 were also used to calculate the effective seepage source s and the effective seepage exit x_3 distances for each date of piezometer observation. The average ground elevation landward of the levee toe selected for these calculations was 539.0. In addition, s and x_3 were calculated for river stages equal to the old and new levee crests using piezometer data projected to these elevations. The s and x_3 values listed in Table 7 are plotted versus river stage in Figure 16. For the old crest elevation of 552.1, s was 203 ft and x_3 was 106 ft. For the new crest elevation of 555.4, s was estimated to be 163 ft and x_3 was 102 ft. Permeability ratio
- 61. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_{b\ell} = (x_3)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ (at the old levee toe) was 12 ft, d = 130 ft, x_3 (for the old crest elevation) was 106 ft, and the calculated $k_f/k_{b\ell}$ was 7.2.
- 62. The riverside permeability ratio was calculated for the old levee crest, using the formula $k_f/k_{br}=1/[(c^2)(z_{br})(d)]$ where c was determined by trial and error from the formula $x_1=\frac{\tanh{(cL_1)}}{c}$. For these calculations, $x_1=114$ ft , $L_1=135$ ft , c=0.00561 ft , $z_{br}=12.0$ ft , d=130 ft , and $k_f/k_{br}=20$. Calculated factors of safety
- 63. The projected piezometric data in Figure 15 have been used to calculate uplift factors of safety at the levee toe for the flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safety were also made for

一次のではない 一種の間をあるとう

Figure 16. Distances to seepage source and seepage exit, Bay Island, Range D

- war whitely a

a river stage equal to the crest of the levee. Table 8 presents these factors of safety and the data necessary to make the calculations.

64. The type of seepage observed during the flood stages is also shown in Table 8. It is interesting to note that when pin boils were reported in the vicinity of piezometer D-4 in 1960, the factor of safety was 4.2, whereas in 1969, and in 1973 when no seepage was reported, the factor of safety ranged as low as 2.4. When light toe seepage and standing water were observed in 1960 and light toe seepage again in 1965, the factor of safety ranged from 3.3 to 5.3. When heavy toe seepage was noted in 1969, the factor of safety was 5.5. When no seepage was reported in 1973, the factor of safety at the landside toe was estimated to be 3.6. The calculated factor of safety for a river stage equal to the crest of the new levee ranges as low as 1.8.

Iowa River, Range A

65. The Iowa River-Flint Creek Levee District No. 16 is located on the west bank of the Mississippi River about 15 miles upstream from Burlington, Iowa. One piezometer range site, Range A, was established in April 1957 within the pool area of Lock and Dam 18. The site was at river mile 418.8 and levee sta 391+00 adjacent to the main channel side of the river (Figure 17).

Description of site

- 66. Figure 18 shows a geologic profile of the area. Boring IRU 19 at about river mile 416.3 was the closest deep boring to this range. Borings IRU 14 and IRU 15 located approximately 0.6 mile upstream are relatively shallow borings extending to a depth of only about 35 ft. These borings indicate that the top stratum of claylike materials is about 5 ft thick and is underlain by about 114 ft of pervious material.
- 67. Figure 19 presents a cross section of the site showing the original and new levee sections, the foundation, and piezometer locations. The top stratum consists generally of lean clay with some thin strata of silt and fat clay and ranges in thickness from 4.4 to 5.8 ft.
 - 68. The old levee crest elevation was 538.9, and the average

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

And the Control of th

General plan of Iowa River-Flint Creek Levee District No. Figure 17.

Figure 18. Geologic profile in vicinity of Iowa River

Contract of

Sales of the Control

Cross section of Iowa River, Piezometer Range A Figure 19.

many method a few

ground elevation at the levee toe was 528.5. Construction for the levee enlargement began in August 1963 and was completed in November 1965. The new levee grade is el 543.5. The exposed pervious substratum at the bank at the Mississippi River was estimated to be 240 ft east of the center line of the levee. A 2-ft-deep ditch about 40 ft wide was located about 400 ft landward of the center line of the levee. During construction of the levee enlargement, a 30-ft-wide berm about 3 ft thick was added at the levee toe.

History of underseepage

- 69. Since the installation of the piezometer range in 1957, three observations of seepage have been recorded. On 3 April 1960, when the river crested at el 535.4, a very small amount of toe seepage was observed. On 28 April 1965, when the river crested at el 538.9, the berm was reported wet, and pin boils were located in the area of the ditch 395 ft landward of the center line of the levee. In April 1969, when the river crested at el 535.9, the berm was reported moist. In April 1973, when the river crested at el 539.8, no seepage was observed. Analysis of piezometer data
- 70. The readings from piezometers A-1, A-2, and A-3 in Table 9 are for two different dates. In Figure 20, piezometric data are plotted, and piezometric elevation heads are projected to a river stage equal to the new levee crest so that the piezometric pressure for all river stages up to el 543.5 can be estimated. Also shown in Figure 20 are estimated piezometric elevation heads for the old levee toe, the new berm toe, and the ditch 395 ft landward of the center line of the levee. These latter plots of piezometric elevation heads were determined by linear interpolation of projected heads for the piezometer locations to the intermediate locations between the piezometers.
- 71. At this piezometer range, no riverside piezometer was installed. Therefore, the effective seepage source s and the effective seepage exit \mathbf{x}_3 distances were calculated for each date of piezometer observation using piezometric pressures recorded by piezometers A-1 and A-2, the two piezometers that were closest to the center line of the levee. The average ground elevation landward of the levee toe selected for

Piezometric elevation head versus river stage, Iowa River, Range A Figure 20.

these calculations was 528.5. In addition, s and x_3 were calculated for river stages equal to the old and new levee crests using piezometer data projected to these elevations. The s and x_3 values listed in Table 9 are plotted versus the river stage in Figure 21. For the old crest elevation of 538.9, s was 474 ft and x_3 was 104 ft. For the new crest elevation of 543.5, s was estimated to be 599 ft and x_3 was 151 ft. It should be noted that the calculated s values of 474 and 599 ft are significantly greater than the 300-ft distance to the exposed pervious substratum at the riverbank. Therefore, if a riverside piezometer had been available, the calculated values of both s and x_3 would probably have been smaller.

Permeability ratio

- 72. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_b\ell=(x_3)^2/z_b\ell^d$. For this site, $z_b\ell$ (at the old levee toe) was 5.0 ft, d=114 ft , x_3 (for the old levee crest elevation) was 104 ft, and the calculated $k_f/k_b\ell$ was 19. If a riverside piezometer had been available at this range, it is likely that the seepage exit distance would have been smaller; thus, the calculated $k_f/k_b\ell$ would also have been smaller.
- 73. The alternate procedure involving the formula $e^{cx} = ho/hx$ for calculating $k_f/k_{b\ell}$ as described in paragraph 41 was also used for this site. Using ground elevations of 528.5 and 527.2 for the landside toe and location of piezometer A-2, respectively, and projected piezometric elevation heads of 530.45 and 528.1, $k_f/k_{b\ell}$ was calculated to be 47. This is about the same as that previously computed, so at this site both methods are in fair agreement even though both may be high. Since no reliable estimate of seepage entrance distances could be made, no riverside permeability ratio could be calculated for this site.

Calculated factors of safety

74. The projected piezometric data in Figure 20 have been used to calculate uplift factors of safety at the old levee toe, the new berm toe, and the ditch 395 ft landward of the center line of the levee for

Distances to seepage source and seepage exit, Iowa River, Range A Figure 21.

the flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as a critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safety were also made for a river stage equal to the new crest of the levee. Table 10 presents these factors of safety and the data necessary to make the calculations.

75. The type of seepage observed during the flood stages is also shown in Table 10. It is interesting to note that when pin boils were reported in the general area in 1965, the factor of safety in the ditch 395 ft landward of the center line of the levee was 0.5. When the berm was reported wet in 1965 and moist in 1969, the factors of safety were 2.4 and 4.0, respectively, at the berm toe. When light toe seepage was observed in 1960, the factor of safety at the levee toe was 3.6. On other occasions when no seepage was observed, the factors of safety ranged from 0.5 to 2.4. The calculated factor of safety for a river stage equal to the crest of the new levee ranged from 0.4 in the ditch to 1.4 at the berm toe.

Green Bay, Range A

76. The Green Bay Levee and Drainage District No. 2 is on the west bank of the Mississippi River about 10 miles downstream from Burlington, Iowa. One piezometer range site, Range A, was established in April 1957 within the pool area of Lock and Dam 19. The site was at river mile 390.8 and levee sta 652+70 on the main channel side of the river but in an area that may receive some protection from islands immediately upstream (Figure 22).

Description of the site

THE PARTY OF THE P

77. The geologic profile in Figure 23 was derived from selected deep borings located near the west bank of the river. Boring GBD1 near river mile 390 was the nearest deep boring to the piezometer range. The top stratum generally consisted of 4 to 9 ft of lean to fat clay. This

A POST OF THE PROPERTY OF THE

the state of the state of the state of

Figure 22. General plan of Green Bay Levee and Drainge District No. 2

Backburnstein

Craff de Arrive

Figure 23. Geologic profile in vicinity of Green Bay Drainage District

was underlain by a 126 ft stratum of pervious materials with a 38-ft-thick inclusion of clay till beginning at a depth of 28 ft. Bedrock was of the Mississippi formation.

- 78. Figure 24 shows a cross section of the site with the original and new levee sections, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 4.0 to 9.1 ft thick and consists of lean to fat claylike material.
- 79. The elevation of both the old and new levee crests is 529.9. Construction for the levee enlargement began in August 1965 and was completed in November 1965.
- 80. Two ditches were located landward of the levee. The first was 50 ft wide with the near edge only 80 ft landward of the center line, and the second was about 30 ft wide with the center 700 ft from the center line of the levee. The exposed pervious substratum at the bank of the river is estimated to be 555 ft from the center line of the levee. History of underseepage
- 81. Since the installation of the piezometer range in 1957, four observations of seepage have been recorded. In April 1960, with a river stage of el 526.1, light toe seepage and standing water in low areas were observed. In April 1965, when the river crested at el 526.5, through seepage was reported and the levee was saturated one-third the distance up the slope. In April 1969, when the river crested at el 524.4, pin boils were noted in a seepage ditch near the levee toe. In April 1973, when the river crested at el 526.8, light toe seepage and pin boils in a ditch were reported.

Analysis of piezometer data

82. The readings from piezometers A-1, A-2, and A-3 in Table 11 are for three different dates. In Figure 25, piezometric data are plotted, and piezometric elevation heads are projected to a river stage of el 529.9, the elevation of both the old and new levee crests. With this projection, piezometric pressures for all river stages up to el 529.9 ft can be estimated. Also shown in Figure 25 are estimated piezometric elevation heads for the old levee toe, the ditch near the old levee toe, the new levee toe, and the ditch 700 ft landward of the

Figure 24. Cross section of Green Bay, Piezometer Range A

المارين المراجعة فيجاه المارينية

・ (のできないのう)

Piezometric elevation head versus river stage, Green Bay, Range A Figure 25.

ná mnášť číze je v

- levee. These latter plots of piezometric elevation heads were determined by linear interpolation of the projection heads for the piezometer locations to the intermediate locations between the piezometers.
- 83. At this piezometer range, there was no piezometer riverward of the center line of the levee. Therefore, the two landward piezometers closest to the levee, A-1 and A-2, were used to calculate the effective source s and the effective seepage exit x_3 distances for each date of piezometer observation. The tailwater elevation landward of the levee toe for these calculations was assumed to be 515.0. In addition, s and x2 were also calculated for the river stage equal to the levee crest elevation using piezometer data projected to el 529.9. The s and x_3 values listed in Table 11 are plotted versus river stage in Figure 26. For the levee crest elevation of 529.9, s was 1690 ft and x_3 was 209 ft. It should be noted that the calculated s value of 1690 ft is significantly greater than the estimated 609-ftdistance to the exposed pervious substratum at the riverbank. This is no doubt at least partially due to the fact that no riverside piezometer was available at this range, and the pressure gradient between the first two landward piezometers was flatter than that which would have been reported had piezometric data from under the riverside slope of the levee been available. Therefore, both the calculated s and x_3 values are larger than that which might otherwise have been expected.

Permeability ratio

- 84. The landside permeability ratio was calculated for a flood stage equal to the levee crest elevation, using the blanket formula $k_f/k_{b\ell}=(x_3)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ (at the old levee toe) was 8.0 ft, d=88 ft, $x_3=209$ ft, and the calculated $k_f/k_{b\ell}$ was 66. The calculated $k_f/k_{b\ell}$ is no doubt somewhat larger than that which might have been calculated had there been a riverside piezometer at this particular range. No riverside permeability ratio was calculated for this site because no reliable estimate of effective seepage entrance distance could be made from available piezometer data.
- 85. Because of the question regarding the reliability of the computed effective seepage exit distance, the alternate procedure

Contraction of the second of the second

Distances to seepage source and seepage exit, Green Bay, Range A Figure 26.

involving the formula $e^{cx} = ho/hx$ for calculating $k_f/k_{b\ell}$ (see paragraph 41) was also used for this site. Using ground elevations of 516.3 and 514.5 for the landside toe and location of piezometer A-2, respectively, and projected piezometric elevation heads of 516.8 and 515.7, $k_f/k_{b\ell}$ was calculated to be 42. This is less than the 62 calculated above and appears reasonable, but because of the irregular nature of the ground surface, its reliability is difficult to judge.

Calculated factors of safety

AND A CONTRACTOR OF THE PARTY O

- 86. The projected piezometric data in Figure 25 have been used to calculate uplift factors of safety at the old levee toe, the new levee toe, the ditch near the old levee toe, and the ditch 700 ft landward of the levee for peak flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of the factor of safety were also made for a river stage equal to the crest of the levee. Table 12 presents these factors of safety and the data necessary to make the calculations.
- 87. The type of seepage observed during the flood stages is also shown in Table 12. It is interesting to note that when pin boils were reported in a seepage ditch near the levee in 1969, the estimated pressure head elevation was below the ground elevation at the new levee toe and the factor of safety was indeterminate. Therefore, the pin boils apparently must have been in a ditch not shown with the new levee section. Pin boils were also reported in April 1973, but at this time, the observer did not indicate whether pin boils were in a seepage ditch near the levee toe or in the ditch 700 ft landward of the levee. The factor of safety at the ditch 700 ft landward of the levee was 0.7, and it is most likely that pin boils were occurring in this ditch if, in fact, the bottom of the ditch was at el 509.0 at this time. In 1960, with water standing in low areas, the factor of safety was 2.2. In 1965, when through seepage was noted at the old levee toe and the landside slope was wet and saturated one-third the height of the levee, the

estimated pressure head elevation was equal to the ground elevation; therefore, the pressure head above ground was zero and the factor of safety was again indeterminate. A similar situation occurred at the old levee toe in 1960 and the new levee toe in 1973 when the estimated pressure head was actually below the ground surface elevation when light toe seepage was observed. In these last three instances, this observed seepage quite clearly was through seepage and not underseepage. In 1965, when no seepage was noted in the ditch near the old levee toe, the factor of safety was 2.1. In 1965 and 1969, when no seepage was reported in the ditch 700 ft landward of the center line of the levee, the factor of safety was 0.7. For a river stage equal to the levee crest el 529.9, it is estimated that the piezometric pressure head at the new levee toe will be below the ground surface; therefore, the factor of safety will be indeterminate or in effect infinity. If the bottom elevation of the ditch 700 ft landward of the levee still is 509.0, the calculated factor of safety when the river stage is at the levee crest el 529.9 will be 0.7.

Hunt, Range B

88. The Hunt Drainage District is on the east bank of the Mississippi River about 25 miles upstream from Quincy, Illinois. A piezometer range site, Range B, was established in April 1957 within the pool area of Lock and Dam 20. The site was located at river mile 357.7 and levee sta 139+25 on the slack-water side of the river (Figure 27). It is separated from the main channel by about 1/4 mile of timbered ground.

Description of site

89. The geologic profile in Figure 28 was derived from selected deep borings located on the east and west banks of the river. Boring DMD 2 was closest to piezometer Range B and was located about 1.2 miles downstream. The top stratum generally consisted of 5 to 10 ft of alluvial clayey soil. This was underlain by about 112 ft of pervious sands and gravel. The bedrock was of the Mississippian Formation.

Figure 27. General plan of Hunt-Lima Lake Drainage Districts

THIS PAGE IS REST QUALITY PRACTICARD

こうではないのできる 一大大学のできる

Figure 28. Geologic profile in vicinity of Hunt Drainage District

- 90. Figure 29 shows a cross section of the site with the original and new levee sections, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 5.3 to 8.2 ft thick and generally consists of silt to lean clay material landward of the levee.
- 91. The old levee crest elevation was 499.5, and the average ground elevation at the levee toe was 487.5. Construction for the levee enlargement began in July 1960 and was completed in September 1961. The new levee grade is el 501.5. The exposed pervious substratum at the bank of the river is estimated to be 1300 ft west of the center line of the levee.

History of underseepage

92. Since the installation of the piezometer range in 1957, only two observations of seepage have been recorded. In 1960, toe seepage was observed running across the road, and water was reported standing in low areas. In 1969, medium underseepage and wet fields were noted landward of the levee. No observations of seepage were reported during the high waters of April 1965 and April 1973.

Analysis of piezometer data

- 93. The readings from piezometers B-1, B-2, and B-3 in Table 13 are for three different dates. In Figure 30, piezometric data are plotted, and piezometric elevation heads are projected to a river stage equal to the new levee crest so that the piezometric pressure for all river stages up to el 501.5 can be estimated. Also shown in Figure 30 are estimated piezometric elevation heads for the old levee and the new levee toe where underseepage was reported in 1969. These latter plots of piezometric elevation heads were determined by linear interpolation of the projected heads for the piezometer locations to the intermediate locations between the piezometers.
- 94. Data from piezometers B-1 and B-2 were also used to calculate the effective seepage source s and the effective seepage exit \mathbf{x}_3 distances for each date of piezometer observations. Average ground elevation landward of the levee toe selected for these calculations was 487.5. In addition, s and \mathbf{x}_3 were calculated for river stages equal

Figure 29. Cross section of Hunt, Piezometer Range B

8 Piezometric elevation head versus river stage, Hunt, Range 30. Figure

to the old and new levee crests using piezometer data projected to these elevations. The s and x_3 values listed in Table 13 are plotted versus the river stage in Figure 31. For the old crest elevation of 499.5, s was 445 ft and x_3 was 195 ft. For the new crest elevation of 501.5, s was estimated to be 459 ft and x_3 was 227 ft. Permeability ratio

- 95. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_{b\ell}=\left(x_3\right)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ (at the old levee toe) was 5.3 ft, d=112 ft , x_3 (for the old crest elevation) was 195 ft, and the calculated $k_f/k_{b\ell}$ was 64.
- 96. The riverside permeability ratio was calculated for the old levee crest, using the formula $k_f/k_{br}=1/[(c^2)(z_{br})(d)]$ where c was determined by trial and error from the formula $x_1=\frac{\tanh{(cL_1)}}{c}$. For these calculations, $x_1=342$ ft , $L_1=1350$ ft , c=0.00292 ft , $z_{br}=5.0$ ft , d=112 ft , and $k_f/k_{br}=209$. Calculated factors of safety
- 97. The projected peizometric data in Figure 30 have been used to calculate uplift factors of safety at the new levee toe for the flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safety were also made for a river stage equal to the new crest of the levee. Table 14 presents these factors of safety and the data necessary to make the calculations.
- 98. The type of seepage observed during the flood stages is also shown in Table 14. It is interesting to note that when moderate underseepage and wet fields were reported behind the levee in 1969, the factor of safety was 2.5; when toe seepage and standing water were observed in 1960, the factor of safety was 1.7; when no seepage was reported in 1965 and 1973, the factors of safety were 1.4 and 1.2,

Distances to seepage source and seepage exit, Hunt, Range B Figure 31.

respectively. The calculated factor of safety for a river stage equal to the crest of the new levee was 1.0.

Fabius River, Range A

- 99. The Fabius River Drainage District is on the west bank of the Mississippi River directly across from Quincy, Illinois. A piezometer range site, Range A, was established in 1957 within the pool area of Lock and Dam 21. The site was located at river mile 328.4 and levee sta 339+49 on the main channel side of the river but in an area that may receive some protection from islands immediately upstream (Figure 32). Description of site
- 100. The geologic profile in Figure 33 was derived from selected deep borings located on the east and west banks of the river. Boring F16 at river mile 328.5 was nearest to Range A. The top stratum generally consisted of about 4 ft of alluvial clayey soil. This was underlain by about 117 ft of poorly graded brown and gray glacial sands. One 8-ft intrusion of silt and two 7- to 9-ft intrusions of glacial clay till were indicated. The bedrock was of the Mississippian Formation.
- 101. Figure 34 shows a cross section of the site with the original and new levee sections, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 7.7 to 11.1 ft thick and generally consists of 5 to 7 ft of lean clay overlying clayey silt or sandy silt.
- 102. The old levee crest elevation was 484.9, and the average ground elevation at the levee toe was 474.5. Construction for the levee enlargement began 30 May 1961 and was completed 14 February 1963. The new levee grade is el 489.8. The top of the bank of the Mississippi River was approximately 300 ft east of the center line of the levee. The piezometer range was reported as destroyed on 14 April 1969. History of underseepage

103. Since the installation of the piezometer range in 1957, only two observations of seepage have been reported. On 7 April 1960, the

The second secon

Figure 32. General plan of Fabius River Drainage District

Figure 33. Geologic profile in vicinity of Fabius River Drainage District

The state of the s

Figure 34. Cross section of Fabius River, Piezometer Range A

river crested at e1 483.47, heavy toe seepage was noted, and three sand boils were located in the area of piezometer A-1, all of which had discharged some sand. In May 1965, when the river crested at e1 483.9, light toe seepage was observed. However, no seepage was reported in 1969. In 1973, the levee was overtopped; seepage data were not obtained for this flood.

Analysis of piezometer data

104. The readings from piezometers A-1, A-2, and A-3 in Table 15 are for three different dates. In Figure 35, piezometric data are plotted, and piezometric elevation heads are projected to a river stage equal to the new levee crest so that the piezometric pressure for all river stages up to el 489.8 can be estimated. Also shown in Figure 35 are estimated piezometric elevation heads at the old levee toe and the new berm toe where various types of seepage have been reported during past flood stages of the river. These latter plots of piezometric elevation head were determined by linear interpolation of the projected heads for the piezometer locations to the intermediate locations between the piezometers.

105. At this piezometer range, no riverside piezometer was installed. Therefore, the effective seepage source s and the effective seepage exit x_3 distances were calculated for each date of piezometer observation using piezometric pressures recorded by piezometers A-1 and A-2, the two piezometric pressures recorded by piezometers A-1 and A-2, the two piezometers that were closest to the center line of the levee. The average ground elevation landward of the levee toe selected for these calculations was 474.5. In addition, s and x_3 were calculated for river stages equal to the old and new levee crests using piezometer data projected to these elevations. The $\, s \,$ and $\, x_{\,3} \,$ values listed in Table 15 are plotted versus the river stage in Figure 36. For the old crest elevation of 484.9, s was 542 ft and x_3 was 228 ft. For the new crest elevation of 489.8, s was estimated to be 531 ft and x_3 was 215 ft. It should be noted that the calculated s values of 552 and 537 ft are significantly greater than the 335-ft distance to the exposed pervious substratum at the riverbank.

10.00

Piezometric elevation head versus river stage, Fabius River, Range A Figure 35.

Distances to seepage source and seepage exit, Fabius River, Range A Figure 36.

Permeability ratio

106. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_b\ell=(x_3)^2/z_b\ell^d$. For this site, $z_b\ell$ (at the old levee toe) was 8.7 ft, d=117 ft , x_3 (for the old crest elevation) was 228 ft, and the calculated $k_f/k_b\ell$ was 51. If a riverside piezometer had been available at this range, it is possible that the pressure gradient used to calculate the effective seepage distances would have been greater, and the seepage exit distance would have been smaller; thus, the calculated $k_f/k_b\ell$ might have been smaller. No riverside permeability ratio was calculated for this site because no reliable estimate of effective seepage entrance distance could be made from available piezometer data.

107. Because of the question regarding the reliability of the computed effective seepage exit distances, the alternate procedure involving the formula $e^{cx} = ho/h_x$ for calculated $k_f/k_{b\ell}$ (see paragraph 41) was also used for this site. Using ground elevations of 474.5 and 474.0 for the landside toe and location of piezometer A-2, respectively, and projected piezometric elevation heads of 477.6 and 475.0, $k_f/k_{b\ell}$ was calculated to be 82. This ratio is larger than the value calculated above but is of the same order of magnitude.

Calculated factors of safety

108. The projected piezometric data in Figure 35 have been used to calculate uplift factors of safety at the toes of the levees or berms for the flood stages of 1960, 1965, and 1969. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safety were also made for a river stage equal to the new crest of the levee. Table 16 presents these factors of safety and the data necessary to make the calculations.

109. The type of seepage observed during the flood stages is also shown in Table 16. It is interesting to note that when sand boils were

located at piezometer A-1 in 1960, the factor of safety was 4.6; when toe seepage was observed in 1960 and 1965, the factor of safety ranged from 2.6 to 11.0. In 1969, the river stage did not get high enough to produce piezometric elevation heads above the ground surface. The calculated factor of safety for a river stage equal to the crest of the new levee ranged from 4.2 to 10.6.

South Quincy, Range A

110. The South Quincy Drainage and Levee District is on the east bank of the Mississippi River about 8 miles downstream from Quincy, Illinois. One piezometer range site, Range A, was established in 1957 within the pool area of Lock and Dam 22. The site was located at river mile 319.1 and levee sta 321+23 on the slack-water side of the river (Figure 37). It is separated from the main channel by a secondary channel or chute and a timbered island totaling about 1/2 mile in width as shown on the plan map of the area.

Description of site

- 111. The geologic profile in Figure 38 was derived from selected deep borings located near the east and west banks of the river. Boring SQ5 at river mile 317.8 was nearest to Range A. The top stratum generally consisted of 7 to 12 ft of alluvial silty soil. This was underlain by about 110 ft of poorly graded brown and gray glacial sands and gravels. One 5-ft intrusion of silty sand was indicated. The bedrock was shale.
- 112. Figure 39 shows a cross section of the site with the original and new levee sections, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 4.3 to 6.8 ft thick and generally consists of lean clay or silt.
- 113. The old levee crest elevation was 481.40, and the average ground elevation in a 30-ft-wide ditch near the toe of the old levee or berm (109 ft landward of the center line of the levee) was 464.2. Construction for the levee enlargement began in April 1966 and was completed in October 1967. The new levee grade is el 482.4. The riverside levee toe is immediately adjacent to the top of the bank of the secondary

Figure 37. General plan of South Quincy Drainage and Levee District

THIS PAGE IS BEST OUTLINE TO DDC

C. Whatestandandan

Geologic profile in vicinity of South Quincy Drainage and Levee District Figure 38.

The state of the s

Figure 39. Cross section of South Quincy, Piezometer Range A

channel of the river. The exposed pervious substratum was estimated to be 90 ft from the center line of the levee.

History of underseepage

114. Since the installation of the piezometer range in 1957, three observations of seepage have been recorded. On 7 May 1960, the river crested at el 478.3; a little toe seepage was noted, and a great deal of water was reported standing in the road ditch and low areas. In April 1969 and April 1973, the berm was wet, and heavy to moderate seepage at the toe and beyond the toe was observed when the river crested at el 475.1 and 482.85, respectively.

Analysis of piezometer data

115. The readings from piezometers A-2 and A-3 in Table 17 are for five different dates. (Piezometer A-1 had been destroyed prior to collection of data.) In Figure 40, piezometric data are plotted, and piezometric elevation heads are projected to a river stage equal to the new levee crest so that the piezometric pressure for all river stages up to el 482.8 can be estimated. Also shown in Figure 40 are estimated piezometric elevation heads for the toe of the old levee or berm, the new berm toe, the ditch 109 ft landward of the center line of the levee, and a point 100 ft landward of the center line of the levee where various types of seepage have been reported during past flood stages of the river. These latter plots of piezometric elevation head were determined by linear interpolation of the projected heads for the piezometer locations to the intermediate locations between the piezometers.

had been destroyed, the effective seepage source s and the effective seepage exit \mathbf{x}_3 distances were calculated for each data of piezometer observation using piezometric pressures recorded by piezometers A-2 and A-3. The average ground elevation landward of the levee toe selected for these calculations was 466.0. In addition, s and \mathbf{x}_3 were calculated for river stages equal to the old and new levee crests using piezometer data projected to these elevations. The s and \mathbf{x}_3 values listed in Table 17 are plotted versus the river stage in Figure 41. For the old crest elevation of 481.4, s was 854 ft and \mathbf{x}_3 was 293 ft.

中国教育の大学の大学の大学の大学の大学の大学の

The state of the s

The state of the s

Piezometric elevation head versus river stage, South Quincy, Range Figure 40.

The second of th

Distances to seepage source and seepage exit, South Quincy, Range A Figure 41.

For the new crest elevation of 482.4, s was estimated to be 860 ft and \mathbf{x}_3 was 307 ft. It should be noted that the calculated s values are significantly greater than the 160-ft distance to the exposed pervious substratum at the riverbank.

Permeability ratio

- 117. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_{b\ell} = (x_3)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ (at the toe of the old levee or berm) was 4.8 ft, d = 110 ft , x_3 (for the old crest elevation) was 293 ft, and the calculated $k_f/k_{b\ell}$ was 163. If a riverside piezometer had been available at this range, it is more than likely that the pressure gradient used to calculate the effective seepage distances would have been larger, and the seepage exit distance would have been smaller; thus, the calculated $k_f/k_{b\ell}$ more than likely would have been smaller. No riverside permeability ratio was calculated for this site because no reliable estimate of effective seepage entrance distance could be made from available piezometer data.
- 118. Because of the question regarding reliability of the computed effective seepage exit distance, the alternate procedure involving the formula $e^{cx} = ho/hx$ for calculating $k_f/k_{b\ell}$ (see paragraph 41) was also used for this site. Using ground elevations of 466.0 and 464.3 for the landside toe and location of piezometer A-3, respectively, and projected piezometric elevation heads of 470.0 and 466.3, $k_f/k_{b\ell}$ was calculated to be 262. This is larger than that calculated above; thus, both methods are apparently giving values on the high side.

Calculated factors of safety

119. The projected piezometric data in Figure 40 have been used to calculate uplift factors of safety at the old and new levee toes, and at 100, 109, and 180 ft landward of the center line of the levee, as appropriate, for the flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of

factor of safety were also made for a river stage equal to the new crest of the levee. Table 18 presents these factors of safety and the data necessary to make the calculations.

shown in Table 18. When heavy to moderate seepage was reported beyond the toe in 1969 and 1973, the factor of safety was 4.0 and 0.8, respectively. When water was observed in low areas and in the ditch in 1960, the factor of safety was 2.3 and 1.0, respectively. When heavy seepage was reported over the berm in 1973, the factor of safety was 6.9; in 1969, when the berm was reported as wet and soft in spots, the piezometric pressure head did not rise above the surface of the berm; thus, presumably the berm seepage must have been the result of through seepage and not underseepage. With heavy toe seepage in 1969 and 1973, the factor of safety at the berm toe was 4.2 and 2.8, respectively. With light toe seepage in 1960, the factor of safety was 3.4. When no seepage was reported, the factor of safety ranged from 1.0 to 3.8. The calculated factor of safety for a river stage equal to the crest of the new levee ranged from 0.9 to 1.5.

Sny Island, Range A

121. The Sny Island Levee Drainage District is on the east bank of the Mississippi River about 12 to 55 miles downstream from Quincy, Illinois. Six piezometer range sites, Ranges A, F, B, G, H, and I, were established in the period 1950 to 1954 within the pool areas of Locks and Dams 22 and 24 (Figure 42).

The second secon

122. The geologic profile in Figure 43 was derived from selected deep borings located near the east bank of the river. The top stratum generally consisted of about 7 to 29 ft of alluvial clayey soil. This was underlain by about 100 ft of poorly graded brown and gray glacial sands and gravels. One significant exception to the 100-ft-thick pervious stratum is in the vicinity of Range F at about 300 river miles above Cairo where the bedrock is significantly higher and the pervious stratum was only about 34 ft thick. The bedrock was of the Ordovician Formation.

THE PARTY OF THE P

Figure 42. General plan of Sny Island Levee Drainage District

Geologic profile in vicinity of Sny Island Levee Drainage District Figure 43.

Description of site

- 123. Piezometer Range A site was established in November 1950. The site was located at river mile 308.1 and levee sta 444+10.8 on the slack-water side of the river (Figure 42). It is separated from the main channel by more than 1/2 mile of islands, water channels, and timbered ground. Figure 44 shows a cross section of the site with the original and new levee sections, original ground surface, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 12.5 to 20.1 ft thick and generally consists of lean clay overlying about 1 ft of silty sand.
- 124. The old levee crest elevation was 474.4, and the average ground elevation at the levee toe was 465.4. Construction for the levee enlargement began in November 1965 and was completed in November 1967. The new levee grade is el 477.2.
- 125. The center line of a 34-ft-wide borrow pit and ditch running parallel to the levee was located approximately 97 ft landward of the center line of the levee. Ground elevation at the lowest point in the borrow pit (114 ft landward of the center line) was 461.7. One road was located immediately adjacent to the old levee toe while another, which ran at 45 deg to the center line of the levee, was intersected by this piezometer range at approximately 422 ft landward of the center line of the levee. The levee is located immediately adjacent to the bank of an old channel or chute of the river. The exposed pervious substratum was estimated to be 202 ft from the center line of the levee.

History of underseepage

のは、これでは、これの大きない、大きなながられるから、これできないのできます。

126. Since the installation of the piezometer range in 1950, four observations of seepage have been reported. On 17 April 1960, the river crested at el 471.1; a little toe seepage was observed, and water was reported standing in the road ditch and low areas. When the river crested at el 473.1 in May 1965, very heavy toe seepage was observed, the levee was saturated one-third the distance up the landside slope, and a pinboil carrying a little sand was reported in the road adjacent to the levee toe. In April 1969, when the river crested at el 469.1, water stood in the fields behind the levee. When the river crested at

The state of the s

Figure 44. Cross section of Sny Island, Piezometer Range A

el 476.8 in 1973, heavy seepage was reported at the toe and 1 ft up the landside slope.

Analysis of piezometer data

- 127. The readings from piezometers A-1, A-2, A-3, and A-4 in Table 19 are for five different dates. In Figure 45, piezometric data are plotted, and piezometric elevation heads are projected to a river stage equal to the new levee crest so that the piezometric pressure for all river stages up to el 477.2 can be estimated. Also shown in Figure 45 are estimated piezometric elevation heads for the old levee toe, the center line of the levee road, the new levee toe, the road ditch, and the borrow pit 80-114 ft landward of the center line of the levee where various types of seepage have been reported during past flood stages of the river. These latter plots of piezometric elevation head were determined by linear interpolation of the projected heads for the piezometer locations to the intermediate locations between the piezometers.
- 128. Data from piezometers A-1 and A-2 were also used to calculate the effective seepage source s and the effective seepage exit x_3 distances for each date of piezometer observation. The tailwater elevation landward of the levee toe for these calculations was assumed to be 463.8. In addition, s and x_3 were calculated for river stages equal to the old and new levee crests using piezometer data projected to these elevations. The s and x_3 values listed in Table 19 are plotted versus the river stage in Figure 46. For the old crest elevation of 74.4, s was 225 ft and x_3 was 370 ft. For the new crest elevation of 77.2, s was estimated to be 225 ft and x_3 was 420 ft. It should be noted that the calculated s value of 225 ft is somewhat less than the distance from the ditch at the landside toe to the exposed pervious substratum at the riverbank.

Permeability ratio

129. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_{b\ell}=(x_3)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ (at the old levee toe) was 13.8 ft, d=110 ft, x_3 (for the old crest elevation)

THE PARTY OF THE PROPERTY OF T

Piezometric elevation head versus river stage, Sny Island, Range A Figure 45.

Distances to seepage source and seepage exit, Sny Island, Range A Figure 46.

was 370 ft, and the calculated $k_f/k_{b\ell}$ was 90.

- 130. The riverside permeability ratio was calculated for the old levee crest, using the formula $k_f/k_{br}=1/[(c^2)(z_{br})(d)]$ where c was determined by trial and error from the formula $x_1=\frac{\tanh (cL_1)}{c}$. For these calculations, $x_1=102$ ft , $L_1=159$ ft , c=0.00861 ft , $z_{br}=6.0$ ft , d=110 ft , and $k_f/k_{br}=20$. Calculated factors of safety
- 131. The projected piezometric data in Figure 45 have been used to calculate the factors of safety at the old and new levee toes, the center line of the road, the road ditch, and the borrow pit from 80 to 114 ft landward of the center line of the levee for the flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safety were also made for a river stage equal to the new crest of the levee. Table 20 presents these factors of safety and the data necessary to make the calculations.
- 132. The type of seepage observed during the flood stages is also shown in Table 20. It is interesting to note that when pinboils were reported in the levee road in 1965, the factor of safety was 3.1; when water was observed standing in the fields in 1960 and 1969, the factor of safety ranged from 1.4 to 3.0; when heavy toe seepage was observed in 1965 and 1973, the factor of safety ranged from 1.6 to 3.2; when light toe seepage was reported in 1960, the factor of safety was 4.9; and when no seepage was reported, the factor of safety ranged from 1.2 to 6.9. The calculated factor of safety for a river stage equal to the crest of the new levee ranged from 1.2 to 1.9.

Sny Island, Range F

Description of site

The state of the s

133. This piezometer range site was established in November 1954. The site was located at river mile 300.1 and levee sta 886+17 on the

slack-water side of the river (Figure 42). It is over 1/2 mile from the main channel in an area that appears to be protected from the main force of the river by an island and dikes. Figure 47 shows a cross section of the site with the original and new levee sections, the original ground surface, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 4.8 to 10.0 ft thick and generally consists of about 2 to 4 ft of lean clay overlying silt and silty sand. The thickness of the pervious substratum was estimated to be about 34 ft.

134. The old levee crest elevation was 469.0, and the average ground elevation at the levee toe was 458.6. Construction for the levee enlargement began in November 1965 and was completed in November 1967. The new levee grade is el 472.8.

135. A road ditch parallel to the river was located approximately 92 ft landward of the center line of the levee. The ground elevation 92 ft landward was 456.9. The exposed pervious substratum at the bank of a chute of the river was estimated to be 560 ft west of the center line of the levee.

History of underseepage

136. Since the installation of the piezometer range in 1954, three observations of seepage have been recorded. On 8 April 1960, when the river crested at el 462.6, a great deal of toe seepage was noted, several small sand boils were seen in the road, a great deal of water was observed standing in the road ditch and low areas, and two sand boils were seen in an old borrow pit, presumably in the low area about 317 ft landward of the center line of the levee. In May 1965, when the river crested at el 468.8, a series of pinboils were located in the road and ditch between sta 885+00 and 890+00. In April 1969, when the river crested at el 465.2, the levee was reported dry. In April 1973, the berm was reported wet, and light toe seepage was noted when the river crested at 474.2.

Analysis of piezometer data

137. The readings from piezometers F-1, F-2, F-3, and F-4 in Table 21 are for six different dates. In Figure 48, piezometric data

ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG--ETC F/G 13/2 DOCUMENTATION AND ANALYSIS OF ROCK ISLAND UNDERSEPAGE DATA.(U) AD-A083 138 MAR 80 R W CUNNY WES/TR/GL-80-3 NCR-IA-78-C17 UNCLASSIFIED 2 of 4 40 40 83 138

Figure 47. Cross section of Sny Island, Piezometer Range F

\$,

Piezometric elevation head versus river stage, Sny Island, Range F Figure 48.

are plotted, and piezometric elevation heads are projected to a river stage of el 474.2 (1.4 ft greater than the new levee crest), so that the piezometric pressure for all river stages up to el 474.2, the 1973 flood crest, can be estimated. Also shown in Figure 48 are estimated piezometric elevation heads for the old levee toe, the new berm toe, the old ditch, and the low areas 317 ft landward of the center line levee where various types of seepage have been reported during past flood stages of the river. These latter plots of piezometric elevation head were determined by linear interpolation of the projected heads for the piezometer locations to the intermediate locations between the piezometers.

138. Data from piezometers F-1 and F-2 were also used to calculate the effective seepage source s and the effective seepage exit x_3 distances for each date of piezometer observation. The average ground elevation landward of the levee toe selected for these calculations was 458.6. In addition, s and x_3 were calculated for river stages equal to the old and new levee crests using piezometer data projected to these elevations. The s and x_3 values listed in Table 21 are plotted versus the river stage in Figure 49. For the old crest elevation of 469.0, s was 207 ft and x_3 was 90 ft. For the new crest elevation of 472.8, s was estimated to be 219 ft and x_3 was 108 ft. Permeability ratio

139. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_{b\ell} = (x_3)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ (at the old levee toe) was 7.6 ft, d=34 ft, x_3 (for the old crest elevation) was 90 ft, and the calculated $k_f/k_{b\ell}$ was 31.

140. The riverside permeability ratio was calculated for the old levee crest, using the formula $k_f/k_{br}=1/[(c^2)(z_{br})(d)]$ where c was determined by trial and error from the formula $x_1=\frac{c}{c}$. For these calculations, $x_1=103$ ft, $L_1=495$ ft, c=0.00971, $z_{br}=4.0$ ft, d=34 ft, and $k_f/k_{br}=78$. Calculated factors of safety

141. The projected piezometric data in Figure 48 have been used to

The second of th

Distances to seepage source and seepage exit, Sny Island, Range F Figure 49.

and the second

calculate uplift factors of safety at the old levee toe, the berm toe, and the ditch and old borrow pit, 92 and 317 ft, respectively, landward of the center line of the levee for the flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safety were also made for a river stage equal to the new crest of the levee. Table 22 presents these factors of safety and the data necessary to make the calculations.

142. The type of seepage observed during the flood stages is also shown in Table 22. It is interesting to note that when sand boils developed in the borrow pit in 1960 with the river stage at el 462.6, the factor of safety was 2.2; also, in 1960, when pin boils were seen in the road, the factor of safety was 1.9; and when heavy toe seepage was reported, the factor of safety was 15.8. In 1965, with the river stage at el 468.8 ft, the factor of safety ranged from 0.9 to 1.6 when pin boils were noted in the road and road ditch. In 1973, with the river stage at el 474.2 (1.4 above the new crest elevation), the factor of safety at the new berm toe was 1.8 when the new levee berm was reported damp and light toe seepage was noted. In 1969, when the river crested at el 465.2 and the landside was reported dry, the factor of safety ranged from 1.8 to 26.5. In 1960, 1965, and 1973 at locations where no seepage was reported, the factors of safety ranged from 1.1 to The calculated factor of safety for a river stage equal to the crest of the new levee ranged from 1.2 to 4.1.

Sny Island, Range B

Description of site

143. This piezometer range site was established in November of 1950. The site was located at river mile 296.3 and levee sta 1079+71 on the outside bank of the main channel at a moderate bend of the river (Figure 42). Figure 50 shows a cross section of the site with the

Figure 50. Cross section of Sny Island, Piezometer Range B

original and new levee sections, the original ground surface, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 6.2 to 9.7 ft thick and generally consists of about 5.5 ft of lean clay overlying clayey sand.

144. The old levee crest elevation was 467.4, and the average ground elevation at the levee toe was 454.2. Construction for the levee enlargement began on 6 December 1965 and was completed on 15 October 1966. The new levee grade is el 472.5.

145. A road and ditch parallel to the river were located approximately 48 and 103 ft, respectively, landward of the center line of the levee. The ground elevations 48 and 103 ft landward were 456.8 and 454.0, respectively. The exposed pervious substratum at the bank of the main channel of the river was estimated to be 242 ft west of the center line of the levee. The piezometer range was reported as destroyed on 14 April 1969.

History of underseepage

146. Since the installation of the piezometer range, three observations of seepage have been recorded. On 8 April 1960, when the river crested at el 465.7, a great deal of toe seepage was noted, several small sand boils were seen in the road running clear water, and water was reported standing in the road ditch and low areas. In May 1965, when the river crested at el 466.8, no seepage was noted. In 1969, when the river crested at el 464.6, light seepage was observed at the berm toe. In April 1973, when the river crested at el 472.0 ft, the berm was reported wet and water was seen flowing from the landside slope, which was saturated 1 ft above the ground.

Analysis of piezometer data

147. The readings from piezometers B-1, B-2, B-3, and B-4 in Table 23 are for five different dates. In Figure 51, piezometric data are plotted, and piezometric elevation heads are projected to a river stage equal to the new levee crest so that the piezometric pressure for all river stages up to el 472.5 can be estimated. Also shown in Figure 51 are estimated piezometric elevation heads for the old levee toe, the new berm toe, the road and ditch 48 and 103 ft, respectively,

Piezometric elevation head versus river stage, Sny Island, Range B Figure 51.

- LAL STATE

landward of the center line of the levee, and a point on the new berm 115 ft landward of the center line of the levee where various types of seepage have been reported during past flood stages of the river. These latter plots of piezometric elevation head were determined by linear interpolation of the projected heads for the piezometer locations to the intermediate locations between the piezometers.

148. Data from piezometers B-1 and B-2 were also used to calculate the effective seepage source s and the effective seepage exit \mathbf{x}_3 distances for each date of piezometer observation. The tailwater elevation landward of the levee toe for these calculations was assumed to be 455.0. In addition, s and \mathbf{x}_3 were calculated for river stages equal to the old and new levee crests using piezometer data projected to these elevations. The s and \mathbf{x}_3 values listed in Table 23 are plotted versus the river stage in Figure 52. For the old crest elevation of 467.4, s was 288 ft and \mathbf{x}_3 was 193 ft. For the new crest elevation of 472.5, s was estimated to be 286 ft and \mathbf{x}_3 was 211 ft. Permeability ratio

149. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_{b\ell} = (x_3)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ (at the old levee toe) was 6.3 ft, d = 110 ft, x_3 (for the old crest elevation) was 193 ft, and the calculated $k_f/k_{b\ell}$ was 54.

150. The riverside permeability ratio was calculated for the old levee crest, using the formula $k_f/k_{br}=1/[(c^2)(z_{br})(d)]$ where c was determined by trial and error from the formula $x_1=\frac{\tanh{(cL_1)}}{c}$. For these calculations, $x_1=120~{\rm ft}$, $L_1=157~{\rm ft}$, c=0.00632, $z_{br}=4.6~{\rm ft}$, $d=110~{\rm ft}$, and $k_f/k_{br}=50$. Calculated factors of safety

151. The projected piezometric data in Figure 51 have been used to calculate uplift factors of safety at the levee and berm toes, the road, the ditch, and the point on the new berm for the flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the

The second secon

Figure 52. Distances to seepage source and seepage exit, Sny Island, Range B

appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safety were also made for a river stage equal to the new crest of the levee. Table 24 presents these factors of safety and the data necessary to make the calculations.

shown in Table 24. When pin boils were reported in 1960 and 1973, the factors of safety were 2.3 and 0.8, respectively. At locations where water was seen standing in low areas in 1960, the factors of safety ranged from 1.1 to 1.3. When the berm was reported wet in 1973, the piezometer had not reached the surface; therefore, in this instance, the wetness must have been caused by through seepage. When toe seepage was reported in 1960 and 1969, the factors of safety were 3.6 and 5.7, respectively. When saturation was observed 1 ft up the landside slope in 1973 (through seepage), the factor of safety was 1.5. At other times and other locations when no seepage was reported, the factors of safety ranged from 1.0 to 2.9, respectively. The calculated factor of safety for a river stage equal to the crest of the new levee ranged from 0.8 to 99.

Sny Island, Range G

Description of site

153. This piezometer range site was established in December 1954. The site was located at river mile 293.6 and levee sta 1197+24 on the slack-water side of the river (Figure 42). It is over 1/2 mile from the main channel, and the ground in front of the levee is lower than the surrounding ground. Figure 53 shows a cross section of the site with the original ground surface, the original and new levee sections, the foundation, and piezometer locations. A slough or secondary water channel passes immediately in front of the levee. The relatively impervious top stratum ranges from 7.1 to 11.0 ft thick and generally consists of about 5.9 ft of lean clay overlying silty sand.

154. The old levee crest elevation was 467.4, and the average ground elevation at the levee toe was 454.1. Construction for the levee

Figure 53. Cross section of Sny Island, Piezometer Range G

the the application that a

enlargement began 6 December 1965 and was completed 15 October 1966. The new levee grade is el 470.5.

155. A road parallel to the river was located approximately 68 ft landward of the center line of the levee. The ground elevation 68 ft landward was 456.3. The exposed pervious substratum was estimated to be 1155 ft west of the center line of the levee. Only piezometer G1 was reported "found remaining" on 14 April 1969.

History of underseepage

156. Since the installation of the piezometer range, three observations of seepage have been recorded. On 6 April 1960, when the river crested at el 462.8, a little toe seepage was noted. In May 1965, when the river crested at el 465.45, no seepage was reported. In 1969, when the river crested at el 464.2, light seepage was observed beyond the toe. In April 1973, when the river crested at 470.5, moderate through seepage was reported about 4 to 5 ft up the slope.

Analysis of piezometer data

- 157. The readings from piezometers G-1, G-3, and G-4 in Table 25 are for three different dates. In Figure 54, piezometric data are plotted, and piezometric elevation heads are projected to a river stage equal to the new levee crest so that the piezometric pressure for all river stages up to el 470.5 can be estimated. Also shown in Figure 54 are estimated piezometric elevation heads for the old levee toe and the new levee toe where various types of seepage have been reported during past flood stages of the river. These latter plots of piezometric elevation head were determined by linear interpolation of the projected heads for the piezometer locations to the intermediate locations between the piezometers. Data obtained from piezometer G-4 indicate that the piezometer was not functioning properly; therefore, no projection of piezometric pressure was made for this piezometer location.
- 158. Piezometer G-2 was destroyed before any data could be obtained from this first landside piezometer location. Therefore, piezometers G-1 and G-3 were used to calculate the effective seepage source s and the effective seepage exit x_3 distances for each date of piezometer observation. The average ground elevation landward of the levee toe

ပ Piezometric elevation head versus river stage, Sny Island, Range Figure 54.

-- CHAMPION

selected for these calculations was 454.1. In addition, s and x_3 were also calculated for river stages equal to the old and new levee crest using piezometer data projected to these elevations. The s and x_3 values listed in Table 25 are plotted versus the river stage in Figure 55. For the old crest elevation of 467.4, s was 513 ft and x_3 was 245 ft . For the new crest elevation of 470.5, s was estimated to be 514 ft and x_3 was 246 ft. If piezometer data had been available from the location of G-2, it is most likely that these calculated seepage distances would have been smaller.

Permeability ratio

Calculated factors of safety

- 159. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_{b\ell} = (x_3)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ (at the old levee toe) was 5.0 ft, d=112 ft, x_3 (for the old crest elevation) was 245 ft, and the calculated $k_f/k_{b\ell}$ was 107. If piezometer data had been available from the location of G-2, x_3 probably would have been smaller, and the calculated $k_f/k_{b\ell}$ would also have been smaller.
- 160. Since the piezometer at the landside toe was destroyed before useful data could be collected and the calculated entrance distance is large by an unknown amount, a riverside permeability ratio based on piezometer data was not calculated for this site.
- 161. The projected piezometric data in Figure 54 have been used to calculate uplift factors of safety at the old and new levee toes and the location of piezometer G-3 for flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safety were also made for a river stage equal to the new crest of the levee. Table 26 presents these factors of safety and the data necessary to make the calculations.
- 162. The type of seepage observed during the flood stages is also shown in Table 26. In 1969, when the river crested at el 464.2 and

\$.

Distances to seepage source and seepage exit, Sny Island, Range G Figure 55.

A Section of the second

light seepage was reported beyond the toe, the factor of safety at the location of piezometer G-3 was 3.0. In 1960, when the river crested at el 462.8 and very light toe seepage was observed, the factor of safety was 1.5. In 1973, when the river crested at el 470.5 and through seepage was noted 4 to 5 ft up the levee slope, the factor of safety at the new levee toe was 2.0. At other times and locations when no seepage was reported, the factor of safety ranged from 1.1 to 8.3. The calculated factor of safety for a river stage equal to the crest of the new levee ranged from 1.5 to 1.9.

Sny Island, Range H

Description of site

- 163. This piezometer range site was established in November 1954. The site was located at river mile 289.8 and levee sta 1399+99 at a recessed "U" shaped section of the levee that apparently surrounds a 1000-ft reach, which at some time in the past experienced extensive bank failures (Figure 42). The area now is about 1/2 mile from the main channel of the river and is protected by two islands and other timbered ground and channels. Figure 56 shows a cross section of the site with the original and new levee cross sections, the original ground surface, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 5.5 to 7.5 ft thick and generally consists of about 3 to 6 ft of lean clay overlying silt and silty clay. The thickness of the pervious substratum was estimated to be 105 ft.
- 164. The old levee crest elevation was 465.3. Construction for the levee enlargement began in December 1965 and was completed in October 1966. The new levee grade is el 468.4.
- 165. A road and ditch parallel to the river was located approximately 40 and 200 ft, respectively, landward of the center line of the levee. The ground elevation 200 ft landward was 448.5. The exposed pervious substratum at the bank of the channel of the river was estimated to be 725 ft west of the center line of the levee.

History of underseepage

166. Since the installation of the piezometer range in 1954, only

A CONTRACTOR

Figure 56. Cross section of Sny Island, Piezometer Range H

two observations of seepage have been reported. On 8 April 1960, when the river crested at el 462.6, a little toe seepage was noted, and a great deal of water was reported standing in the low areas. On 24 April 1973, when the river crested at el 468.6, some through seepage was observed halfway up the levee slope. In 1965 and 1969, no seepage was reported.

Analysis of piezometer data

167. The readings from piezometers H-1, H-2, H-3, and H-4 in Table 27 are for three different dates. In Figure 57, piezometric data are plotted, and piezometric elevation heads are projected to a river stage of el 468.6 (0.2 ft greater than the new levee crest), so that the piezometric pressure for all river stages up to the elevation of the 1973 flood crest can be estimated. Also shown in Figure 57 are estimated piezometric elevation heads for the old berm toe, the new berm toe, and the ditch 200 ft landward of the center line of the levee where various types of seepage have been reported or could have been expected during past flood stages of the river. These latter plots of piezometric elevation head were determined by linear interpolation of the projected heads for the piezometer locations to the intermediate locations between the piezometers.

168. Data from piezometers H-1 and H-2 were also used to calculate the effective seepage source s and the effective seepage exit \mathbf{x}_3 distances for each date of piezometer observation. The average ground elevation landward of the levee toe selected for these calculations was 449. \mathbf{c} . In addition, s and \mathbf{x}_3 were also calculated for river stages equal to the old and new levee crests using piezometer data projected to these elevations. The s and \mathbf{x}_3 values listed in Table 27 are plotted versus the river stage in Figure 58. For the old crest elevation of 465.3, s was 157 ft and \mathbf{x}_3 was 26 ft. For the new crest elevation of 468.4, s was estimated to be 170 ft and \mathbf{x}_3 was 35 ft. Permeability ratio

169. The landside permeability ratio was calculated for flood stages equal to both the old and new crest elevations, using the blanket formula $k_f/k_{b\ell} = (x_3)^2/z_{b\ell}d$. For this site, $z_{b\ell}$ (at the old berm

Piezometric elevation head versus river stage, Sny Island, Range H Figure 57.

A STATE OF THE PARTY OF THE PAR

Distances to seepage source and seepage exit, Sny Island, Range H Figure 58.

toe) was 6.1 ft, d = 105 ft , x_3 (for the old crest elevation) was 26 ft, and the calculated $k_f/k_{h\ell}$ was 1.1.

- 170. The riverside permeability ratio was calculated for the old levee crest, using the formula $k_f/k_{br} = 1/[(c^2)(z_{br})(d)]$ where c was determined by trial and error from the formula $x_1 = \frac{\tanh (cL_1)}{c}$. For these calculations, $x_1 = 40$ ft, $L_1 = 677$ ft, c = 0.0250, $z_{br} = 5.0$ ft, d = 105 ft, and $k_f/k_{br} = 3.0$. Calculated factors of safety
- 171. The projected piezometric data in Figure 57 have been used to calculate uplift factors of safety at the old and new berm toes and the ditch 200 ft landward of the center line of the levee for the flood stages of 1960, 1965, 1969, and 1973. The factor of safety was calculated as the critical head divided by the piezometric head above the ground estimated by the projection and interpolation of the observed piezometric data to the appropriate flood stage and distance landward of the center line of the levee. Calculations of factor of safey were also made for a river stage equal to the new crest of the levee. Table 28 presents these factors of safety and the data necessary to make the calculations.
- 172. The type of seepage observed during the flood stages is also shown in Table 28. In 1960, when the river crested at el 462.6 and light toe seepage was observed, the factor of safety was 2.0 at the old berm toe; in the ditch where water was seen standing, the factor of safety was 1.0. It is of particular interest to note that in 1965, 1969, and 1973 with river crests of el 463.6, 462.8, and 468.6, respectively, no seepage was reported in the ditch and the factors of safety at the ditch were 0.9, 1.0, and 0.6, respectively. In 1973, when through seepage was noted, the factor of safety at the new berm toe was 1.0. At other times when no seepage was reported, the factors of safety at the old or new berm toe ranged from 1.7 to 1.9. The calculated factors of safety for a river stage equal to the crest of the new levee (el 468.4) ranged from 0.6 to 1.0.

Sny Island, Range I

Description of site

173. This piezometer range site was established in November 1954. The site was located at river mile 288.7 and levee sta 1502+00 on the slack-water side of the river (Figure 42). It is separated from the main channel by about a mile of islands, channels, chutes, and timbered ground. Figure 59 shows a cross-section of the site with the original and new levee sections, the original ground surface, the foundation, and piezometer locations. The relatively impervious top stratum is lean clay ranging from 11.3 to 13.3 ft thick.

174. The old levee crest elevation was 464.6, and the average ground elevation at the levee toe was 455.3. Construction for the levee enlargement began in December 1965 and was completed in October 1966. The new levee grade is el 468.8.

175. A road running parallel to the levee was located approximately 33 ft landward of the center line of the levee. The ground elevation 33 ft landward was 456.5. The exposed pervious substratum at the bank of a channel of the river was estimated to be 570 ft west of the center line of the levee. Piezometers I-1 and I-4 were reported as damaged on 6 April 1960.

History of underseepage

176. Since the installation of the piezometer range in 1954, only two observations of seepage have been recorded. On 6 April 1960, when the river crested at el 460.48, a little toe seepage, water standing in low areas, and several pinboils on the road were reported. In April 1973, when the river stage was el 468.2, heavy seepage over the road and through seepage 2 to 3 ft up the slope of the levee were observed. In 1965, no seepage was noted, and in 1969 the landside of the levee was reported dry.

Analysis of piezometer data

177. The readings from piezometers I-1, I-2, I-3, and I-4 in Table 29 are for just one time on 6 April 1960. Data from piezometers I-1 and I-2 were used to calculate the effective seepage source s and

Figure 59. Cross section of Sny Island, Piezometer Range I

to an afficiency

the effective seepage exit x₃ distances for the single date for which readings were recorded, as presented in Table 29. However, since only one set of piezometer reading had been obtained, piezometric pressures could not be projected to the old and new levee crest elevations, and seepage entrance and exit distances and landside and riverside permeability ratios for these other elevation heads could not be calculated. However, piezometric elevation heads for the April 1960 performance observations for the old levee toe, a low spot 72 ft landward of the center line of the levee, and the old levee road about 33 ft landward of the center line of the levee were determined by the linear interpolation of the recorded piezometer elevations to these intermediate locations between the piezometers (Table 30).

Calculated factors of safety

- 178. Factors of safety for the 1960 flood have been calculated as the critical head divided by the piezometric head above the ground for the old levee toe, a low spot, the old road, and piezometers I-3 and I-4 locations. Table 30 presents these factors of safety and the data necessary to make the calculations.
- 179. The type of seepage observed on 6 April 1960 is also shown in Table 30. The factor of safety was 6.0 in the road where pinboils were noted on the road in 1960; 3.8 in low areas where water was seen standing; and 10.1 at the old toe where light seepage was observed.

PART IV: NEW PIEZOMETER RANGE SITES

180. During 1977, the RID installed 15 new piezometer range sites. These sites are described and results of 1979 piezometer readings are discussed in this section.

Muscatine Island, Range MA

181. A general plan and a geologic profile of the Muscatine Island Levee District have been previously presented in Figures 4 and 5, respectively, with the description of the old piezometer range sites. Three new piezometer range sites, Ranges MA, MB, and MS, were established in July 1977.

Description of site

- 182. Piezometer Range MA site is located at Mississippi River mile 451.9 and levee sta 161+13 (Figure 60). The cross section of the site (Figure 61) shows the levee, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 3.9 to 10.9 ft thick and generally consists of clayey sand.
- 183. The levee crest elevation is 560.8, and the average ground elevation 100 ft landward of the levee toe is 549.1. Construction for the levee enlargement began in July 1960 and was completed in October 1961.
- 184. The cross section in Figure 61 shows that the top of the bank of the main channel of the Mississippi River is immediately adjacent to the levee. The exposed pervious substratum was estimated to be 53 ft from the center line of the levee.

History of underseepage

185. Since the completion of the river enlargement in 1969, only one observation of underseepage has been reported. On 27 March 1973, when the river crested at el 552.4, it was reported that conditions were "bad in corner" with water "ponded" in the vicinity of the piezometer range. In 1965 and 1969, when the river crested at el 554.7 and 551.1, respectively, the levee was reported as dry. In 1979, when the river

THIS PAGE IS BEST QUALITY PRACTICABLE

Prom Coll Purch I Stied TO DDC

CONTRACTOR OF THE PROPERTY OF THE PARTY OF T

¥ Levee plan and profile in vicinity of Muscatine Island, Piezometer Range Figure 60.

Figure 61. Cross section of Muscatine Island, Piezometer Range MA

reached el 553.04, the newly installed piezometers were read, the levee was inspected, and no seepage distress was reported. Table 31 lists the 1979 piezometer readings.

186. Table 32 presents a summary of observed performance with details of the foundation conditions. In 1979, the estimated piezometric pressure head did not rise above the ground elevation at any of the observation points; therefore, no factors of safety against uplift could be calculated.

Analysis of piezometer data

187. The piezometer readings in Table 31 are for 12 April 1979; it may be noted that the water level was below ground surface at all piezometer locations. One additional set of readings had been obtained on 23 March 1979, but at this time, the river stage and water levels were even lower; thus, this latter set of readings is not listed. With only one set of readings, and this for nonartesian conditions, it is not possible to make an analysis of the data.

Muscatine Island, Range MB

Description of site

- 188. Piezometer Range MB site is located at Mississippi River mile 446.9 and levee sta 425+91 (Figure 62). The cross section of the site in Figure 63 shows the levee, the foundation, and piezometer locations. The riverside piezometer MB-1 was driven the last 8 ft to its installed elevation. The relatively impervious top stratum ranges from 0.0 to 5.4 ft thick and generally consists of clayey sand.
- 189. The levee crest elevation is 558.5, and the average ground elevation landward of the levee is 540.0. Construction for the levee enlargement began in July 1960 and was completed in October 1961.
- 190. The cross section in Figure 63 indicates that the top of the bank of the river is about 250 ft east of the center line of the levee. However, Figure 4 indicates that this is a chute of the river and that the main channel is located about 2500 ft to the east. The exposed pervious substratum was estimated to be 267 ft from the center line of the levee.

Levee plan and profile in vicinity of Muscatine Island, Piezometer Range MB Figure 62.

THIS PAGE IS BEST QUALITY PRACTICATION
FROM OUR Y PURINTSHED TO DDC

Figure 63. Cross section of Muscatine Island, Piezometer Range MB

·

History of underseepage

191. Since the completion of the levee enlargement in 1961, four observations of underseepage have been reported. In 1969, when the river crested at el 549.5, light toe seepage was reported, and the fields were wet or soft behind the levee. In 1973, when the river crested at el 551.1, water was reported "ponded at toe." In 1965, when the river crested at el 552.7, light toe seepage was noted. In 1979, when the river reached el 546.27, the newly installed piezometers were read, the levee was inspected, and water was reported standing in low areas. Table 33 lists the 1979 piezometer readings.

192. Table 34 presents a summary of observed performance with details of the foundation conditions. In 1979, the calculated factor of safety against uplift ranged from 0.7 at a low spot 400 ft landward from the center line of the levee to 4.3 at the location of piezometer MB-5.

Analysis of piezometer data

193. The two sets of piezometer readings in Table 33 represent one each in March and April of 1979. It may be noted that although the river stage differed by only 0.28 ft, readings from all the piezometers differed by 1.0 ft or more. Thus, the piezometric pressure must not have fully responded to the rising river stage in March, and analysis of the data is not warranted. In any event, it is believed that at least three sets of data are required for reliable projection of the data to other river stages and other ground locations.

Muscatine Island, Range MC

Description of site

194. Piezometer Range MC site is located at Mississippi River mile 444.6 and Tevee sta 549+30 (Figure 64). The cross section of the site in Figure 65 shows the levee, the foundation, and piezometer locations. Piezometers MC-1 and MC-4 were driven the last 8 and 5 ft, respectively, to their installed elevations. The relatively impervious top stratum ranges from 2.1 to 5.1 ft thick and generally consists of lean clay overlying intrusions of clayey sand.

Levee plan and profile in vicinity of Muscatine Island, Piezometer Range . 49 Figure (

THE SHIP WAS TO SELECT

Figure 65. Cross section of Muscatine Island, Piezometer Range MC

- 195. The levee crest elevation is 557.7, and the average ground elevation landward of the levee is 538.8. Construction for the levee enlargement began in September 1962 and was completed in November 1962.
- 196. Figure 65 shows that the exposed pervious substratum at the bank of the Mississippi River is about 592 ft from the center line of the levee. However, Figure 4 indicates that this is a chute or slough of the river and that the main channel is about 5400 ft or so to the east.

History of underseepage

- 197. Since the completion of the levee enlargement in 1962, only two observations of underseepage have been reported. In April 1969, when the river crested at el 548.9, a road ditch was reported to be full of water and a "good flow" established. In 1979, when the river reached el 545.87, the newly installed piezometers were read, the levee was inspected, and the area was reported dry except for water standing in the ditch. Table 35 lists the 1979 piezometer readings.
- 198. Table 36 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric pressure in general did not rise above the ground elevation except in the bottom of the ditch, and the factor of safety uplift was zero because no clay-like material was seen at this particular location.

Analysis of piezometer data

199. The two sets of piezometer readings in Table 35 represent one each in March and April of 1979. It may be noted that although the river stage increased by 0.57 ft, readings from one of the piezometers decreased by 1.5 ft and at the two other piezometer locations increased by 0.7 ft and over 3 ft. Thus, the piezometric pressure either had not fully responded to the rising river stage in March or for some other reason was not responding properly. For whatever reason, analysis of the data is not warranted.

Green Bay, Range GBA

200. A general plan and a geologic profile of the Green Bay Levee

District have been previously presented in Figures 22 and 23, respectively, with the description of the old piezometer range sites. Two new piezometer ranges, Ranges GBA and GBB, were established in July 1977. Description of site

- 201. Piezometer Range GBA site is located at Mississippi River mile 395.8 at levee sta 343+50, one mile up, and on the south bank of the Skunk River (Figure 66). The cross section of the site in Figure 67 shows the levee, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 8.8 ft to 12.3 ft thick and generally consists of lean clay and fat clay.
- 202. The levee crest elevation is 533.5, and the average ground elevation landward of the levee is 519.5. Construction for the levee enlargement began in August 1964 and was completed in December 1965.
- 203. The exposed pervious substratum at the bank of the Skunk River was estimated to be 535 ft north of the center line of the levee. History of underseepage
- 204. Since the completion of the levee enlargement in 1965, two observations of underseepage have been reported. In 1978, when the levee crested at el 530.8, light toe seepage was reported. In 1979, when the river reached el 527.10, the newly installed piezometers were read, the levee was inspected, and water was reported standing in low areas landward of the levee. Table 37 lists the 1979 piezometer readings.
- 205. Table 38 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric pressure rose from 0.2 to 0.5 ft above the ground surface at two locations, and the calculated factor of safety against uplift ranged from 61 to 18. Analysis of piezometer data
- 206. The one set of piezometer readings in Table 37 is for 12 April 1979. An earlier set of readings in March had been attempted, but risers for two of the piezometers had been destroyed. These were replaced on 12 April for the April readings. However, with only one set of readings, it is not possible to make an analysis of the data.

THIS PAGE IS BEST QUALITY PRACTICABLE PROM COPY FURNISHED TO DDC

A des de la deservation :

Levee plan and profile in vicinity of Green Bay, Piezometer Range GBA Figure 66.

E A SPECIAL SERVICE SERVICE

Figure 67. Cross section of Green Bay, Piezometer Range GBA

رير و البيني فيهيلا الرائية

Green Bay, Range GBB

Description of site

- 207. Piezometer Range GBB site is located at Mississippi River mile 391.1 and levee sta 637+88 (Figure 68). The cross section of the site in Figure 69 shows the levee, the foundation, and piezometer locations. The riverside piezometer GBB-1 was driven the last 6 ft to its installed elevation. The relatively impervious top stratum ranges from 7.3 to 18.2 ft thick and generally consists of lean clay and fat clay.
- 208. The levee crest elevation is 530.0, and the average ground elevation landward of the levee is 516.5. Construction for the levee enlargement began in August 1965 and was completed in November 1965.
- 209. The exposed pervious substratum at the bank of the Mississippi River was estimated to be 397 ft east of the center line of the levee. History of underseepage
- 210. Since 1965, four observations of underseepage have been reported. In 1965 and 1973, with river crests of el 528.0 and 528.6, respectively, sand boils were reported in a ditch 206 ft from the center line of the levee. In 1969, when the river crested at el 525.7, slight to moderate toe seepage was noted. In 1979, when the river reached el 524.90, the newly installed piezometers were read, the levee was inspected, and some water was reported ponded between the levee and the ditch. Table 39 lists the 1979 piezometer readings.
- 211. Table 40 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric level rose from 4.4 to 0.7 ft above the bottom of the ditches 206 and 396 ft landward of the levee, respectively, and the calculated factors of safety against uplift ranged from 1.3 to 13.

Analysis of piezometer data

212. The one set of piezometer readings in Table 39 is for 12 April 1979. An earlier set of readings had been attempted in March, but at that time, the riverside piezometer had a lower reading than three of the four landside piezometers. Thus, the piezometers must not have fully responded to the rising river stage in March, and so they

The Part of the Pa

Piezometer Range GBB Bay, Green in vicinity of Levee plan and profile 68 Figure

The state of the s

Figure 69. Cross section of Green Bay, Piezometer Range GBB

are not shown in the table. Further analysis of the one set of readings is not warranted.

Fabius River, Range FA

- 213. A general plan and a geologic profile of the Fabius River Levee District have been previously presented in Figures 32 and 33, respectively, with the description of the old piezometer range sites. Two new piezometer ranges, Ranges FA and FB, were established in July 1977. Description of site
- 214. Piezometer Range FA site is located at Mississippi River mile 328.4 and levee sta 341+43 (Figure 70). Figure 32 shows the range to be on the main channel of the river. The cross section of the site in Figure 71 shows the levee, the foundation, and piezometer locations. Piezometers FA-1 and FA-5 were driven the last 7 and 6 ft, respectively. The relatively impervious top stratum ranges from 10.0 to 10.8 ft thick and generally consists of lean and fat clay. The exposed pervious substratum at the bank of the river was estimated to be 384 ft from the center line of the levee.
- 215. The levee crest elevation is 489.8, and the average ground elevation landward of the levee is 475.0. Construction for the levee enlargement began in April 1960 and was completed in September 1961. History of underseepage
- 216. Since the completion of the levee enlargement in 1961, only two observations of underseepage have been reported. In 1965, when the river crested at el 483.9, light toe seepage was reported. In 1979, when the river reached el 480.31, the newly installed piezometers were read, the levee was inspected, some seepages water was reported flowing in the field, and water was ponded landward of the levee. Table 41 lists the 1979 piezometer readings. This section of levee was overtopped in 1973.
- 217. Table 42 presents a summary of observed performance with details of the foundation conditions. In 1979, the calculated factor of safety against uplift 641 ft landward of the levee was 7.3.

Levee plan and profile in vicinity of Fabius River, Piezometer Range FA Figure 70.

Figure 71. Cross section of Fabius River, Piezometer Range FA

s armedicina in

Analysis of piezometer data

218. The one set of piezometer readings in TAble 41 is for 11 April 1979. An earlier set of readings was attempted on 22 March 1979, but at that time, the landside toe piezometer had a piezometric pressure 1.5 ft lower than the piezometer 641 ft landside of the center line. Thus, only one set of readings is listed in the table, and no further analysis is made.

Fabius River, Range FB

Description of site

- 219. Piezometer Range FB site is located at Mississippi River mile 323.9 on the north bank of the Fabius River Diversion Ditch at levee sta 565+53 (Figure 72). The cross section of the site in Figure 73 shows the levee, the foundation, and piezometer locations. The riverside piezometer FB-1 was driven the last 11 ft to its installed elevation. The relatively impervious top stratum ranges from 4.5 to 6.8 ft thick and generally consists of lean and fat clay overlying clayey sand. The exposed pervious substratum at the bank of the diversion channel was estimated to be 877 ft from the center line of the levee.
- 220. The levee crest elevation is 487.9, and the average ground elevation landward of the levee is 466.5. Construction for the levee enlargement bagan in July 1961 and was completed in June 1967. History of underseepage
- 221. Since the beginning of construction of the levee enlargement in 1961, three observations of underseepage have been reported. In 1965 and 1969, with river crests of el 481.3 and 477.0, respectively, sand boils were reported in a swale at a distance estimated to be about 126 ft landward of the center line of the levee. In 1979, when the river reached el 478.01, the newly installed piezometers were read, the levee was inspected, some toe seepage was reported crossing a road, and several small boils were in the area. Table 43 lists the 1979 piezometer readings. This area was overtopped in 1973.
 - 222. Table 44 presents a summary of observed performance with

Levee plan and profile in vicinity of Fabius River, Piezometer Range FB Figure 72.

Figure 73. Cross section of Fabius River, Piezometer Range FB

in as middle bearing

details of the foundation conditions. In 1979, the piezometric pressure ranged from 1.9 to 3.8 ft above the ground surface where seepage was reported, and the calculated factor of safety against uplift ranged from 2.8 to 1.0.

Analysis of piezometer data

223. The set of piezometer readings in Table 43 is for 10 April 1979. One earlier set of readings was attempted on 22 March 1979, but at that time, the riverside piezometer had a pressure 2.2 ft lower than the landside toe piezometer. Thus, the piezometers must not have fully responded to the March river rise, and so the early readings are not included in the table. No analysis has been made for the one set of readings listed.

South Quincy, Range SQ

224. A general plan and a geologic profile of South Quincy Drainage and Levee District have been previously presented in Figures 37 and 38, respectively, with a description of the old piezometer range sites. A new piezometer range, Range SQ, was established in August 1977.

Description of site

- 225. Piezometer Range SQ site is located at Mississippi River mile 322.2 and levee sta 155+34 on the bank of the Texas Chute (Figure 74). The cross section of the site in Figure 75 shows the levee, the foundation, and piezometer locations. Piezometers SQ-1, SQ-4, and SQ-5 were driven the last 6, 5, and 7 ft, respectively. The relatively impervious top stratum ranges from 5.3 to 7.3 ft thick and generally consists of lean clay overlying clayey sand.
- 226. The levee crest elevation is 486.2, and the average ground elevation landward of the levee is 470.5. Construction for the levee enlargement began in July 1966 and was completed in October 1967.
- 227. The exposed pervious substratum at the bank of the Texas
 Chute was estimated to be 721 ft west of the center line of the levee.
 Figure 37 indicates the chute is narrow and is a meandering type channel.

THIS PAGE IS BEST QUALITY PRACTICABLE Y FULLISHED TO DDC CENTRAL HOTES
TON SERVICE LILENCE WAS LIGHTON AND HOTES
BY DOOL NAME AND LICENSE AND HOTES
BY DOO TOTAL LITELY MCTORAL MET DAG BOT. RANGE SQ STA 155+34 SEEPAGE AT TOE BUT NOT HEAVY PONDED SEEPAGE STA. .06-00 TO STA. 159-00 MODERATE SEEP AT TOE AND BEYOND 3/28/73 PLAN OF IMPROVED LEVEE - DEMON LEVEE GRADE 38015 40 14 4335 2 BOILS AND SOFT OUT FROM TOC.
CLEAR
SLOUGHING MERE SEEPAGE 2" UP SLOPE 4/25/73 SEEP 3 MAY UP SLOPE The state of the s ¥125173

ening o

Levee plan and profile in vicinity of South Quincy, Piezometer Range SQ Figure 74.

ورويه والمنافقة المنافقة

Figure 75. Cross section of South Quincy, Piezometer Range SQ

The main channel of the Mississippi River is located an additional 3500 ft to the west.

History of underseepage

- 228. Since the completion of the levee enlargement in 1967, three observations of underseepage have been reported. In 1973, when the river crested at el 484.1, light to moderate seepage was noted at the toe with moderate seepage reported to be present beyond the toe. Also, in 1973, water was reported "ponded" in low areas. Moderate seepage at the toe of the levee and beyond was also reported in 1969 with a river crest of el 476.4. In 1979, when the river reached el 477.48, the newly installed piezometers were read, the levee was inspected, numerous pin boils were observed about 300 ft landward of the levee, and seepage water was reported in the fields. Table 45 lists the 1979 piezometer readings.
- 229. Table 46 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric pressure ranged from 0.2 to 0.4 ft above the ground surface where seepage was reported, and the calculated factor of safety ranged from 28 to 14. Analysis of piezometer data
- 230. The two sets of piezometer readings in Table 45 are for two different dates in April. A third set of readings was obtained on 22 March, but at this time, the water level in the riverside slope piezometer (SQ-1L) was 1.0 ft lower than that in the landside toe piezometer (SQ-4). Piezometer SQ-1L and perhaps others must not have fully responded to the rise in river stage at this time; therefore, readings from 22 March are not included in the table.
- 231. Although it is believed that at least three sets of piezometer readings should be required for projection of piezometer pressures for a river stage at the levee crest, Figure 76 presents a plot of the two sets of data from 11 and 13 April and shows the piezometric pressures projected to the levee crest elevation of 486.2. Although these projections should be considered tentative, a seepage entrance distance of 277 ft, a seepage exit distance of 79 ft, a landside permeability ratio of 8.6, and riverside permeability ratio of 3.2 were calculated.

Piezometric elevation head versus river stage, South Quincy, Range SQ Figure 76.

South River, Range SRA

232. The South River Drainage District is located on the west bank of the Mississippi River about 5 to 8 miles downstream from Quincy, Illinois. Three piezometer ranges, Ranges SRA, SRB, and SRC, were established in August 1977 (Figure 77). The geologic profile of the area in Figure 78 was based on selected deep borings on both the east and west banks of the Mississippi River. Ground conditions generally consist of about 9 to 19 ft of lean clay overburden underlain by about 93 to 113 ft of fine to coarse sand with a few intrusions of clay till up to 12 ft thick.

Description of site

- 233. Piezometer Range SRA site is located at river mile 317.7 and levee sta 315+73 on the main channel of the river (Figure 79). The cross section of the site in Figure 80 shows the levee, the foundation, and piezometer locations. Piezometers SRA-1 and SRA-4 were driven the last 10 and 4 ft, respectively. The relatively impervious top stratum ranges from 3.3 to 8.0 ft thick and generally consists of lean clay and fat clay. Figure 80 also shows the locations of dried and crushed bentonitic seals in the piezometer bore holes.
- 234. The levee crest elevation is 483.0, and the average ground elevation landward of the levee is 468.3. Construction for the levee enlargement began in August 1963 and was completed in November 1964.
- 235. The exposed pervious substratum at the bank of the main channel of the river was estimated to be 187 ft east of the center line of the levee.

History of underseepage

236. Since the completion of the levee enlargement in 1964, three observations of underseepage have been reported. In 1965 and 1973, with river crests of el 478.6 and 482.1, respectively, moderate toe seepage was reported. In 1979, when the river reached el 476.29, the newly installed piezometers were read, the levee was inspected, and the water was reported ponded in the fields. Table 47 lists the 1979 piezometer readings.

THE RESERVE AND ADDRESS OF THE PARTY OF THE

Figure 77. General plan of South River Drainage District

THIS PAGE IS BEST QUALITY FRACTICABLE FROM COSY FURNICHED TO DDC

The state of the s

Geologic profile in vicinity of South River Drainage District Figure 78.

Levee plan and profile in vicinity of South River, Piezometer Ranges SRA and SRR Figure 79.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COLY PURNITHED TO DDC

The state of the state of the state of

The second of th

Figure 80. Cross section of South River, Piezometer Range SRA

- 237. Table 48 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric pressure was about 0.8 ft above the ground surface where ponding was reported, and the calculated factor of safety against uplift was 6.0. Analysis of piezometer data
- 238. In Figure 81, the three sets of piezometer readings in Table 47 are plotted, and piezometric pressures are projected to the levee crest elevation of 483.0. A seepage entrance distance of 745 ft and a seepage exit distance of 192 ft were calculated. It should be noted that the calculated seepage entrance distance of 745 ft measured from the landside toe is considerably greater than the 262 ft distance to the exposed substratum at the riverbank. Since the distance to the effective source of seepage should not be greater than the distance to the exposed pervious substratum, the 1979 piezometer data must be considered suspect. The specific cause of the difficulty with the piezometer readings is not known. It is not likely that the riverbank has become silted up, but it is possible that the riverside piezometer may have become partially plugged during installation and therefore was not responding as fast as it should. Another possibility is that the dried and crushed bentonitic seals in piezometer bore holes may not have been fully effective in their first high-water season, and one or more of the landside piezometers may have been effected by percolation of surface water from above. In any event, additional data are required before a reliable rational analysis can be made.

South River, Range SRB

Description of site

239. Piezometer range SRB site is located at river mile 317.1 and levee sta 345+71 on the main channel of the river (Figure 79). The cross section of the site in Figure 82 shows the levee, the foundation, and piezometer locations. The riverside piezometer SRB-1 was driven the last 8 ft to its installed elevation. The relatively impervious top stratum ranges from 7.3 to 11.4 ft thick and generally consists of alternating layers of sand and clay. Figure 82 also shows the locations

The second of the second of the second

Piezometric elevation head versus river stage, South River, Range SRA Figure 81.

Figure 82. Cross section of South River, Piezometer Range SRB

44 41 44 1 44

of dried and crushed bentonite seals in the piezometer bore holes.

- 240. The levee crest elevation is 482.2, and the average ground elevation landward of the levee is 469.0. Construction for the levee enlargement began in August 1963 and was completed in November 1964.
- 241. The exposed pervious substratum at the bank of the main channel of the river was estimated to be 212 ft east of the center line of the levee.

History of underseepage

- 242. Since the completion of the levee enlargement in 1964, three observations of underseepage have been reported. Two of these occurred in 1973 when the river crested at el 481.8; one reported light seepage beyond the toe, while another observed seepage at the levee toe. In 1979, when the river reached el 476.06, the newly installed piezometers were read, the levee was inspected, and water was reported ponded in the fields. Table 49 lists the 1979 piezometer readings.
- 243. Table 50 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric pressure was 0.8 ft above the ground surface where ponding was reported, and the calculated factor of safety against uplift was 7.2.

Analysis of piezometer data

244. In Figure 83, the three sets of piezometer readings in Table 49 are plotted, and piezometric pressures are projected to the levee crest elevation of 482.2. Seepage entrance and seepage exit distances of 323 and 49 ft, respectively, were calculated. It shall be noted that the calculated seepage entrance distance of 323 ft measured from the landside toe is greater than the 275-ft distance to the exposed substratum at the riverbank. Since the distance to the effective source of seepage should not be greater than the distance to the exposed substratum, the 1979 piezometer data must be considered suspect. The specific cause of the difficulty with the data is not known. It is not likely that silting has occurred at the riverbank, but it may be that the riverside piezometer may have been partially plugged or that the bentonite seals in the piezometer boreholes may not have been fully effective during 1979, the first high-water season after installation. In any event, additional

ÿ...

Piezometric elevation head versus river stage, South River, Range SRB Figure 83.

data are necessary before a reliable rational analysis can be made.

South River, Range SRC

Description of site

- 245. Piezometer Range SRC site is located at river mile 313.1 and levee sta 560+46 on the main channel of the river (Figure 84). The cross section of the site in Figure 85 shows the levee, the foundation, and piezometer locations. Piezometers SRC-1, SRC-4, and SRC-5 were driven the last 10, 5, and 5 ft, respectively. The relatively impervious top stratum ranges from 8.4 to 13.1 ft thick and generally consists of fat and lean clay with intrusions of sand.
- 246. The levee crest elevation is 480.2, and the average ground elevation 100 ft landward of the levee toe is 466.8. Construction for the levee enlargement began in August 1963 and was completed in November 1964.
- 247. The exposed pervious substratum at the bank of the main channel of the river was estimated to be 240 ft east of the center line of the levee.

History of underseepage

- 248. Since the completion of the levee enlargement in 1964, three observations of underseepage have been reported. In 1965, when the river crested at el 476.2, many pin boils were observed in a ditch approximately 510 ft landward of the center line of the levee. In 1973, with a river crest el of 480.0, light seepage was noted at the levee toe. In 1979, when the river reached el 474.30, the newly installed piezometers were read, the levee was inspected, and some water was reported ponded in the fields downstream. Table 51 lists the 1979 piezometer readings.
- 249. Table 52 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric pressure was 4.6 ft above the ground surface of the ditch when ponding was reported downstream, and the calculated factor of safety against uplift was 1.5. Analysis of piezometer data
- 250. The two sets of piezometer readings in Table 51 are for 10 and 13 April 1979. One additional set of readings was obtained on 22

Levee plan and profile in vicinity of South River, Piezometer Range SRC 84. Figure ?

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FOR A 15 TO DDC

Figure 85. Cross section of South River, Piezometer Range SRC

March, but on this date the riverside piezometer reading was 1.2 ft lower than that from the landside toe piezometer; therefore, the 22 March readings are not listed in the table.

251. Although at least three sets of piezometer readings are generally desired for projection of piezometric pressures, Figure 86 presents a plot of the data from two dates for this piezometer range and shows the piezometric pressures that were projected to the levee crest elevation of 480.2. A seepage entrance distance of 460 ft and a seepage exit distance of 223 ft were calculated. It should be noted that the calculated seepage entrance distance of 460 ft measured from the landside toe is greater than the 240-ft distance to the riverbank. Since this should not be possible, the piezometer data should be considered suspect. The specific cause for the difficulty with the data is not known; it is not likely that the riverbank has silted up, and it is evident that additional data are necessary before a reliable and rational analysis can be made.

Sny Island, Range SA

252. A general plan of Sny Island Levee Drainage District and a geologic profile have been previously presented in Figures 42 and 43, respectively, with the description of the old piezometer range sites. Four new piezometer ranges, Ranges SA, SB, SC, and SD, were established in August 1977.

Description of site

を持ちて こうしょう ころかんかい を見れているかい こうしゅう

- 253. Piezometer Range SA site is located at Mississippi River mile 294.5 and levee sta 1153+52 on the main channel of the river (Figure 87). The cross section of the site in Figure 88 shows the levee, the foundation, and piezometer locations. Piezometers SA-1 and SA-4 were driven the last 3 and 7 ft, respectively, during installation. The relatively impervious top stratum ranges from 9.4 to 10.4 ft thick and generally consists of lean to fat clay overlying clayey sand.
- 254. The levee crest elevation is 471.0, and the average ground elevation landward of the levee is 453.5. Construction for the levee enlargement began in December 1965 and was completed in October 1966.

The state of the s

Piezometric elevation head versus river stage, South River, Range SRC Figure 86.

Levee plan and profile in vicinity of Sny Island, Piezometer Range SA Figure 87.

THIS PAGE TO BENT QUALITY PRACTICABLE
FROM COPY FUNCTIONED TO DOC

日本の日本の日本の日本のは、日本のできる

Contractor of the state of the contractor

(Distance)

The second of th

Figure 88. Cross section of Sny Island, Piezometer Range SA

255. The exposed pervious substratum at the bank of the main channel of the river was estimated to be 378 ft west of the center line of the levee.

History of underseepage

- 256. Since the completion of the levee enlargement in 1966, three observations of underseepage have been reported. In 1973, when the river crested at el 471.0, large boils erupted, some flowing clear water and some carrying sand. In 1969, light underseepage beyond the toe of the levee was observed with a river crest of el 464.3. In February 1974, a large berm was placed at this site. In 1979, when the river reached el 462.92, the newly installed piezometers were read, the levee was inspected, several pin boils were noted beyond the new berm, and water was reported ponded in the area and flowing in the fields. Table 53 lists the 1979 piezometer readings.
- 257. Table 54 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric pressure ranged from 2.8 to 0.7 ft above the ground where seepage was reported, and the calculated factor of safety against uplift ranged from 2.3 to 10. Analysis of piezometer data
- 258. The one set of piezometer readings in Table 53 is for 14 April 1979. The piezometers were read on two other dates, but the data are not considered reliable. On 21 March, the piezometer SA-4 reading was 2.5 ft lower than piezometer SA-5; thus, at least some of the piezometers must not have fully responded to the river rise on this date. On 10 April, the piezometer SA-4 reading was 1.4 ft higher than piezometer SA-1, and it is believed that one or the other or both of these piezometers were not responding properly. On 14 April, no reading was obtained from piezometer SA-6. No analysis of piezometric data can be made from this range with data currently available.

Sny Island, Range SB

Description of site

259. Piezometer Range SB site is located on the east bank of the

Mississippi River at mile 291.5 and levee sta 1311+92 (Figure 89). The cross section of the site in Figure 90 shows the levee, the foundation, and piezometer locations. The riverside piezometer SB-1 was driven the last 3 ft to its installed elevation. The relatively impervious top stratum ranges from 3.0 to 7.2 ft thick and generally consists of lean clay with an intrusion of clayey sand.

260. The levee crest elevation is 469.6, and the average ground elevation landward of the levee is 450.3. Construction for the levee enlargement began in December 1965 and was completed in October 1966.

261. The cross section in Figure 90 indicates that the top of the bank of the Mississippi River is immediately adjacent to the levee riverside slope. However, Figures 46 and 89 indicate that the bank shown is apparently from an old channel or slough and the main channel of the river is about a mile to the west. From Figure 90, it was estimated that the exposed pervious substratum was 112 ft from the center line of the levee.

History of underseepage

262. Since the completion of the levee enlargement in 1966, two observations of underseepage have been reported. In 1973, when the river crested at el 469.3, sand boils approximately 115 ft from the center line of the levee and through seepage were reported. In 1969, with a river crest of el 463.5, light seepage beyond the levee toe was observed. In 1979, when the river reached el 462.01, the newly installed piezometers were read, the levee was inspected, and no seepage distress was noted in the area. Table 55 lists the 1979 piezometer readings.

263. Table 56 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric pressure ranged from 4.8 to 2.6 ft above the ground surface at locations where seepage distress had been reported at higher river stages in other years, and the calculated factor of safety against uplift ranged from 0.8 to 2.1.

Analysis of piezometer data

A STATE OF THE PARTY OF THE PAR

264. In Figure 91, the three sets of piezometer data in Table 55 are plotted and piezometric pressures are projected to the levee crest

Levee plan and profile in vicinity of Sny Island, Piezometer Range SB Figure 89.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM CORY FURNISHED TO DDC

the little was a second

Cross section of Sny Island, Piezometer Range SB Figure 90.

Piezometric elevation head versus river stage, Sny Island, Range SB Figure 91.

elevation of 469.6. A seepage entrance of 271 ft and a seepage exit distance of 252 ft were calculated. It should be noted that the calculated seepage entrance distance of 271 ft measured from the landside toe is greater than the 212-ft distance to the exposed pervious substratum at the riverbank. This indicates that either some silting may have occurred in the slough immediately adjacent to the levee or the piezometers are not responding properly. In either event, it is believed that additional data must be collected before a reliable and rational analysis can be made.

Sny Island, Range SC

Description of site

- 265. Piezometer Range SC site is located at Misissippi River mile 288.7 and levee sta 1501+77 (Figure 92). The cross section of the site in Figure 93 shows the levee, the foundation, and piezometer locations. The riverside piezometer SC-1 was driven the last 5 ft to its installed elevation. The relatively impervious top stratum ranges from 13.5 to 19.3 ft thick and generally consists of alternating layers of lean to fat clay and sand to clayey sand.
- 266. The levee crest elevation is 468.5, and the average ground elevation landward of the levee is 455.0. Construction for the levee enlargement began in July 1966 and was completed in June 1968.
- 267. The cross section in Figure 93 indicates that the top of the bank of a slough or chute of the river is approximately 160 ft west of the center line of the levee. The additional distance to the river is crossed by at least two water channels or sloughs. From Figure 93, it was estimated that the exposed pervious substratum was 465 ft from the center line of the levee.

History of underseepage

268. Since the completion of the levee enlargement in 1968, two observations of underseepage have been reported. In 1973, with a river crest of el 467.9, heavy through seepage 2 to 3 ft up the levee slope was observed. In 1979, when the river reached el 460.03, the newly

Levee plan and profile in vicinity of Sny Island, Piezometer Range SC Figure 92.

The state of the s

The state of the s

Figure 93. Cross section of Sny Island, Piezometer Range SC

installed piezometers were read, the levee was inspected, the levee toe was reported saturated, and water was seeping over the road and ponding in the fields. Table 57 lists the 1979 piezometer readings.

269. Table 58 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric pressure ranged from 1.3 to 0.8 ft above the ground surface where seepage was reported, and the calculated factor of safety against uplift ranged from 8.3 to 18.

Analysis of piezometer data

270. The three sets of piezometer readings in Table 57 are for three different dates. An inspection of the data suggests that the river stage listed on 21 March may be about 5 ft high; however, the data have been checked and el 460.35 is what is listed in the original record. Since the reported river stage is so clearly out of line, the data for 21 March have not been used for projection of piezometric pressures. Thus, in Figure 94, just the data from 10 and 14 April are plotted, and piezometric pressures are projected to a levee crest elevation of 468.5. A seepage entrance distance of 667 ft and a seepage exit distance of 815 ft were calculated.

271. It should be noted that the calculated seepage entrance distance of 667 ft measured from the landside toe is greater than the estimated 565-ft distance to the exposed pervious substratum at the riverbank. This indicates either that some silting may have occurred in the slough nearest the levee or that the piezometers are not responding properly. In either event, it is believed that more data must be obtained before a reliable and rational analysis can be made.

Sny Island, Range SD

Description of site

さって ことのできて ちままくてんかい

272. Piezometer Range SD site is located at Mississippi River mile 287.6 and levee sta 1559+23 (Figure 95). The cross section of the site in Figure 96 shows the levee, the foundation, and piezometer locations. The relatively impervious top stratum ranges from 10.8 to 15.7 ft thick

Piezometric elevation head versus river stage, Sny Island, Range SC Figure 94.

Sny Island, Piezometer Range SD Levee plan and profile in vicinity of 95. Figure

THIS PAGE IS BEST WHALITY PRACTICABLE
FROM COLL 1

Figure 96. Cross section of Sny Island, Piezometer Range SD

and generally consists of lean to fat clay with some clayey sand. Figure 96 also shows the locations of dried and crushed bentonite seals in the piezometer bore holes. The riverside piezometer SD-1 was driven the last 9 ft to its installed elevation.

- 273. The levee crest elevation is 468.0, and the average ground elevation landward of the levee is 452.5. Construction for the levee enlargement began in July 1966 and was completed in June 1968.
- 274. The cross section in Figure 96 indicates that the levee is immediately adjacent to a slough of the river. This is confirmed by Figure 95 that shows that the main channel of the river is about 500 ft to the west. From Figure 96, the exposed pervious substratum was estimated to be 219 ft from the center line of the levee.

History of underseepage

- 275. Since the completion of the levee enlargement in 1968, three observations of underseepage have been reported. In 1969, when the river crested at el 461.8, the fields far beyond the levee toe were reported as "just damp." In 1973, when the river crested at el 467.4, moderate through seepage was observed 8 to 10 ft up the levee slope. In 1979, when the river reached el 459.80, the newly installed piezometers were read, the levee was inspected, the berm was reported dry for the most part, but some water was ponded in the fields. Table 59 lists the 1979 piezometer readings.
- 276. Table 60 presents a summary of observed performance with details of the foundation conditions. In 1979, the piezometric pressure ranged from 6.1 to 1.1 ft above the ground surface where seepage was reported, and the calculated factor of safety against uplift ranged from 1.4 to 11.

Analysis of piezometer data

277. In Figure 97, the three sets of piezometer data in Table 59 are plotted, and piezometric pressures are projected to the levee crest elevation of 468.0. A seepage entrance distance of 830 ft and a seepage exit distance of 674 ft were calculated. The calculated seepage distance of 830 ft measured from the landside toe is considerably greater than the estimated 308 ft to the exposed substratum at the slough or

A COLUMN

Figure 97. Piezometric elevation head versus river stage, Sny Island, Range SD

the approximate 600 ft to the main channel of the river. Since the effective source of seepage should not be greater than the distance to the exposed substratum at the riverbank, the 1979 piezometer data must be considered suspect. The specific reason for the difficulty with the data is not known, but it is possible that the screen for the riverside piezometer SD-1 may have become partially plugged and therefore was not responding properly. Another possibility is that the bentonite seals in the landside piezometer bore holes were not fully effective, and through seepage or percolating surface water was effecting the landside toe piezometer reading. In any event, additional data are required before reliable and rational analysis of the data can be made.

こうこう こうしゅうしゅう こうしゅうしゅうしゅう

PART V: DISCUSSION AND ANALYSIS

Permeability Ratios

278. Of the 14 old (1950-1960) piezometer range sites, only 7 had complete piezometer observations, which included piezometric pressure measurements under both the landside and riverside slopes of the levee. The pressure gradient under the levee in general was significantly greater than that landward of the levee. Since this significantly influences the calculated effective seepage entrance and exit distances that, in turn, are used to calculate piezometric pressures and permeability ratios, only the 7 old sites with complete piezometer data were used for analysis of permeability ratios.

279. Of the 15 new (1977) piezometer range sites, only 5 had at least three sets of piezometer readings that had no gross errors, such as a landside piezometer having a piezometric elevation head higher than that for the riverside piezometer or another piezometer closer to the river. However, for each of these 5 piezometer ranges, the calculated seepage entrance distance was greater than the distance to the exposed pervious substratum at the riverbank; thus, the data was probably not reliable. A total of 49 piezometers were installed at the 15 new sites, and 22 of these were driven 3 to 11 ft to their placement depth. Thirteen of the fifteen riverside piezometers were driven, and these were the ones that seemed to produce the suspect readings. It is possible that the driven piezometers may have become partially plugged during installation, but it is also possible that some other factor is responsible for the difficulty. In any event, none of the 1979 piezometer data from the new piezometer range sites was used for analysis of permeability ratios.

280. The seven old sites with complete piezometer data were Bay Island, Ranges C and D; Hunt, Range B; and Sny Island, Ranges A, F, B, and H. Table 61 presents the data necessary for making calculations for landside permeability ratios. Locations for the riverside and landside piezometers were obtained from field survey notes; the location and

The state of the s

average ground elevation of the landside toe were obtained by inspection of the cross section of the piezometer range; the transformed landside top stratum thickness at the old toe was determined by interpolation between the borings made for the piezometers; the pervious substratum thickness was obtained from the generalized geologic profile; the projected piezometric pressures for the riverside and first landside piezometers for a river stage at the old crest elevation were obtained from the linear projection of the individual plots of piezometer head versus river stage shown in the previous sections; and the effective seepage exit distance was the distance from the old toe to the point where the linear projection of the hydraulic gradient line under the levee intersects the average ground elevation. Landside permeability ratios calculated from the formula

$$\frac{k_f}{k_b \ell} = \frac{(x_3)^2}{(z_b \ell)(d)}$$

ranged from 1.1 to 90.

The state of the s

281. Table 62 presents the data necessary for making calculations for riverside permeability ratios. Riverside and landside toe locations were determined by examination of the piezometer range cross sections; the distance from the riverside toe to the river was determined by examination of the cross sections, plan maps, and aerial photographs; the effective seepage source distance was the distance from the old toe to the point where the linear projection of the hydraulic gradient line intersects the elevation of the old levee crest; the effective blanket length was simply the effective seepage source distance minus the base width of the levee; the effective thickness of the riverside top stratum was determined by examination of riverside boring data when available and inspection of the cross section; the constant c was determined by trial and error from the equation for effective blanket length $\frac{\tanh (cL_1)}{c}$; and the pervious substratum thickness was obtained from the generalized geologic profile. Riverside permeability ratios calculated from the formula

$$\frac{k_f}{k_{br}} = \frac{1}{(c)^2 (z_{br})(d)}$$

ranged from 3.0 to 209.

282. In Figure 98, both the landside and riverside permeability ratios are plotted versus effective top stratum thickness. In the 1956 Lower Mississippi Valley Division (LMVD) study it had been found that the permeability ratio generally increased with the increasing top stratum thickness. However, for the limited number of RID data points plotted in Figure 98, no such trend can be identified. For design purposes, if factor of safety against uplift criteria are to be used, it may be that an upper bound landside permeability ratio of 100 would be sufficient for top stratum thicknesses up to 15 ft or so, and such is suggested.

283. As was the case for the landside permeability ratio, the plot of the riverside permeability ratio also does not suggest a consistent variation with thickness of top stratum. However, rather than arbitrarily suggesting an upper bound riverside permeability ratio that would be unconservative, the ratios of the permeability ratios have been calculated as shown in Table 63 and are plotted on the right-hand side of Figure 98. The ratios of the permeability ratios range from 0.2 to 3.3, and from an inspection of the plotted points, a fair mean value may be about 2. Thus, it is suggested that a riverside permeability ratio of 200 be used for design purposes for top stratum up to 15 ft thick if factor of safety against uplift criteria are to be used.

284. In Table 64, WES suggested landside and riverside permeability ratios are compared with LMVD 1956 criteria and RID 1960 design values for all 14 old piezometer ranges. The WES suggested landside permeability ratio is 2.5 to 8 times smaller than LMVD criteria and 0.6 to 4 times smaller than RID design values. At the same time, the WES landside ratio is on the average about 2 to 3 times larger than the actual calculated landside permeability ratio; therefore, LMVD criteria and RID 1960 design values may have been on the high side and perhaps over conservative. However, the degree of over conservatism is

The second secon

Figure 98. Permeability ratios versus transformed thickness of top stratum

determined not only by the landside permeability ratio but also by the riverside permeability ratio since both affect the piezometric pressure at the landside toe. Thus, the riverside permeability ratio must be examined also.

285. As may be noted in Table 64, WES suggested riverside permeability ratios are 7.8 to 31 times smaller than LMVD criteria, and 1.0 to 8 times smaller than RID 1960 design values. Thus, WES suggested riverside permeability ratios are smaller and quite a bit more conservative than either LMVD or RID values because a smaller riverside permeability ratio will result in a shorter calculated entrance distance and thus a larger calculated piezometric pressure at the landside levee toe. However, the net effect of both the landside and riverside permeability ratios being smaller can only be assessed by calculations of piezometric pressures at the levee toe and calculations of berm width. These calculations are presented in the following paragraphs.

Calculated Toe Pressures and Berm Widths

286. For the old and new piezometers, respectively, Tables 65 and 66 present the basic data required for calculation of toe pressures and berm widths. Table 67 lists the effective seepage distances for the new levee sections at the old piezometer range sites using LMVD, RID, and WES permeability ratios. The seepage exit distance \mathbf{x}_3 was obtained from the formula

$$x_3 = \sqrt{\left(\frac{k_f}{k_{b\ell}}\right)(z_{b\ell})(d)}$$

and the seepage entrance distance s was obtained from the formula

$$s = x_1 + L_2$$

where

$$x_1 = \frac{\tanh (cL_1)}{c}$$

and

$$c = \frac{1}{\sqrt{\left(\frac{k_f}{k_{br}}\right)(z_{br})(d)}}$$

287. Table 68 summarizes the predicted piezometric heads at the landside toe and calculated berm widths for the new levee sections at the old piezometer range sites for permeability ratios advanced by LMVD, RID, and WES. The predicted piezometric head $h_{_{\hbox{\scriptsize O}}}$ was determined from the formula

$$h_0 = \frac{H(x_3)}{s + x_3}$$

and the berm width was calculated using the formula for a semipervious berm shown in Figure 3.

288. Table 69 presents the effective seepage entrance distances for the new piezometer range sites using LMVD and WES permeability ratios and the predicted piezometric heads at the landside toe. Table 70 lists the calculated berm widths using the formula for a semipervious berm for the new piezometer range sites.

Comparison of predicted piezometric pressure heads

289. Table 71 compares the predicted piezometric heads at the land-side toes for water at the levee crest at the old piezometer range sites. It may be noted that even though the WES landside permeability ratio was almost always significantly smaller than that for either LMVD criteria or RID data, WES predicted piezometer heads ranged from 29 percent smaller to 10 percent greater and averaged only 19 percent smaller than that for LMVD criteria and averaged about the same for RID data.

290. Table 72 compares the predicted piezometric heads at the landside toe for the new piezometer range sites. It may be noted that WES predicted heads ranged from 36 to 10 percent smaller and averaged 26 percent smaller than that for LMVD criteria. Thus, even though WES landside permeability ratios were as little as one-eighth the LMVD ratio and one-fourth the RID ratio, the predicted pressures were never less than 0.64 times LMVD or RID values. This is partly because the pressures are not only a function of the square root of the permeability ratios, but also because the pressures are related to the geometry of the cross sections and the riverside permeability ratios.

291. In an attempt to determine the relative effect of the riverside and landside permeability ratios, Figure 99 has been prepared showing the ratio of WES/LMVD predicted piezometric pressures versus the ratios of WES/LMVD landside and riverside permeability ratios for all 29 piezometer range sites studies. In the left-hand plot of the figure, a general increase in the pressure ratio with increasing ratios of landside permeability ratios may be seen as should be expected, but the relationship certainly is not unique or clear cut. On the right-hand side of the figure where one might expect to see a decrease in the ratio of predicted piezometric pressure with increasing ratios of riverside permeability ratios, no such pattern is evident. Thus, it may be noted that for the 29 sites studied, geometric details of the levee cross section and riverside blanket have a significant influence on the effect of changes in the permeability ratios.

292. This may be illustrated by examination of the data points from Hunt, Range B, and Sny Island, Range G. These were the only two sites where the predicted pressures increased even though the landside permeability ratios decreased by a factor of 4. For these two sites, the riverside permeability ratios decreased by a factor of 12.5. This decrease in itself was not noteworthy, but what was significant was that these two sites were the sites with the longest riverside blankets (over 1000 ft) and the change in riverside permeability ratio became more important than the change in landside permeability ratio. Thus, the net effect of changes to both the landside and riverside permeability ratios cannot be prejudged but can be determined only by making the calculations that take into account the geometry of the site as well as the permeability ratios.

Figure 99. Relationship between predicted piezometric pressures and landside and riverside permeability ratios for 29 piezometer range sites

Comparison of calculated berm widths

Commence of the second second

- 293. Table 73 summarizes and compares calculated berm widths for the old and new piezometer range sites. The berm widths calculated for the old piezometer range sites using LMVD 1956 criteria ranged up to 521 ft, whereas those using RID 1960 design and WES 1979 suggested criteria ranged up to 105 and 179 ft, respectively. Of perhaps more significance, however, was the total berm width required. For the 14 old piezometer range sites, the total berm width required using LMVD 1956 criteria was 2280 ft, whereas for RID and WES criteria, 466 and 521 ft were required, a net reduction of 80 and 77 percent, respectively.
- 294. For the 15 new piezometer range sites, RID design criteria were not available, but the total berm width required using LMVD and WES criteria was 2420 and 768 ft, respectively. The reduction of berm width required using WES suggested criteria was 68 percent.
- 295. Another factor perhaps of some significance is the number of sites not requiring any berm at all. Using LMVD criteria, 11 of 29 (or 38 percent) of the old and new sites required no berm. Using RID 1960 design criteria, 8 of 14 (or 57 percent) of the old sites required no berm, and using WES criteria, 18 of 29 (or 62 percent) of the old and new sites required no berm. A comparison of the calculated berm widths with observed performance is made in the following paragraphs.

Seepage Performance Observations

296. Seepage performance observations made available for this evaluation were recorded in somewhat different ways for different flood years. For the 1960 data, seepage observations were recorded on cross-section sheets for the old piezometer ranges together with tabulated river stages and piezometer readings. In 1979, seepage observations were made at the time piezometer readings were taken at the new piezometer ranges, and the observations were furnished in a summary format for each piezometer range. In 1965, 1969, and 1973 when most of the piezometers at the old piezometer ranges had been lost primarily because

of levee enlargement construction activity, seepage observations were recorded on plan maps scaled 1 in. \approx 400 ft, and the observed distress generally covered reaches rather than specific locations. Therefore, it is to be expected that the observations from 1960 and 1979 would be more site specific than those from 1965, 1969, and 1973.

Categories of performance

- 297. Words used to describe the observed seepage performance varied some from year to year, no doubt because different individuals made the observations at different locations at different times. For the purpose of this evaluation, the observations have been interpreted to fit into the 13 categories listed in paragraph 31 and shown on the performance tables for each of the piezometer sites.
- 298. The different categories were arranged in what was thought to be in increasing order or severity. In the case of light and heavy toe seepage, it was thought that this condition was largely the result of through seepage; it is also possible that it was a combination of through seepage and underseepage, but the amount contributed by one source or the other could not be ascertained.

Performance locations

All the same of th

- 299. Frequently, the location of the reported seepage could not be determined with any degree of precision. Of course, when seepage was reported at the toe, that location and distance from the center line of the levee was easily established. For other situations, such as fields wet and soft, seepage beyond the toe, or a statement to the effect that pin boils were in the area, judgment had to be exercised to establish a location so that factors such as top stratum thickness and factor of safety against uplift could be determined. If a ditch or low area was shown on the cross section, the boils would be assumed to be at that location, but sometimes more than one ditch or more than one low area would be shown in the cross section; for these cases, the locations of the notations on the plan maps required some judgment to establish the distance from the center line for evaluation purposes.
- 300. Locations listed for documentation of seepage observations are shown on the tables of performance observations and calculated

factors of safety for each individual piezometer range. The locations of the landside piezometers and the toe of the levee or berm were always listed. In addition, if seepage was observed in a low spot, road, or ditch, that location was also listed. The number of observation points changed from year to year because of levee or berm construction or because of levee overtopping.

301. Table 74 presents the number of seepage observation locations at each piezometer range for the different years of observation. The number of locations ranged from two to seven for the individual piezometer ranges but averaged about four. The total number of observation locations for the 14 old piezometer lines ranged from 46 to 64 for the years 1960 to 1973, and for the 15 new piezometer lines, from 58 to 66 for the years 1965 to 1979.

Number of seepage observations

302. Seepage observations were made at the old piezometer range lines during the flood years 1960, 1965, 1969, and 1973. As may be noted in Table 75, the maximum river stage generally occurred in 1973, followed in order by 1965, 1969, and 1960. However, the largest number of seepage observations, expressed either as a total or as a percent of total number of observation locations, occurred in 1960 when the maximum river stage was generally the lowest. The next largest number of seepage observations occurred in 1973 when the river stage at 10 of the 14 locations being studied was the highest. In 1965 and 1969, the number of observations was about the same when the maximum river stage was at an intermediate level.

303. At the new piezometer range sites, seepage observations were made during the flood years 1965, 1969, 1973, and 1979. As shown in Table 76, the maximum river stage generally occurred in 1973, followed in order by 1965, 1969, and 1979. Again, as was noted for the old piezometer range sites, the maximum number of seepage observations for the sites occurred in 1979 when the maximum river stage was generally the lowest, next in 1973 when the river stage was generally the highest, and then in 1969 and 1965 when the maximum river stage was at an intermediate level.

304. The reason that the largest numbers of seepage observations were made at the old and new piezometer sites in 1960 and 1979, respectively, when the maximum river stages were generally lowest is probably related to the fact that these reported observations were made specifically for the piezometer ranges, whereas in other years the observations were more general and covered general conditions landward of the levee. An inspector would probably make a more detailed examination at a piezometer range line if he was reporting conditions at that line rather than general conditions for several miles of levee.

Severity of seepage observations

The state of the s

One other aspect of the seepage observation is that generally more severe seepage conditions were reported in 1960 and 1979 than in 1965, 1969, and 1973 even though the river stage was lowest in 1960 and 1979. This is illustrated in Figure 100 for the old piezometer range sites where observed performance is plotted against river head. in Figure 100 are all the instances when with a higher river stage less severe performance was reported than in previous years with a lower river stage. A total of 25 such instances is shown in Figure 100. This situation did not consistently happen at all locations, as shown in Figure 101, where 9 instances are plotted in which more severe performance was reported for a higher river stage; but the large majority of cases went the other way, and what appears to be the case is that a much more detailed inspection was conducted in 1960 than in 1965 and 1973. There is some evidence that the inspection in 1969 was more detailed than that in 1965 and 1973, but the difference is not of significant consequence.

306. Figure 102 shows a similar plot of data for the new piezometer range sites with 21 instances in which a lower river head resulted in more severe performance. This is contrary to what would be expected since a lower river head should produce less severe performance, but in 1979 at these ranges, this was not the case. The significance of these observations is simply that the generalized seepage inspections made in 1965, 1969, and 1973 were not as detailed or specific as those made at the piezometer range lines in 1960 and 1979; and it is probable that

ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG--ETC F/G 13/2 DOCUMENTATION AND ANALYSIS OF ROCK ISLAND UNDERSEPAGE DATA.(U) AD-A083 138 MAR 80 R W CUNNY NCR-IA-78-C17 WES/TR/GL-80-3 UNCLASSIFIED 3 OF A ALI AU 83 (36)

Figure 100. Observed performance versus river head at old piezometer range sites showing higher river heads resulting in less severe performance

Figure 101. Observed performance versus river head at old piezometer range sites showing higher river head resulting in more severe performance

Figure 102. Observed performance versus river head at new piezometer range sites showing lower river head resulting in more severe performance

if more detailed inspections had been made at the seepage observation locations identified for this study, more seepage would have been reported.

Comparison with factor of safety

307. Although the degree of detail in reported seepage observations may not have been consistent, it still will be instructive to compare observed performance with calculated factors of safety against uplift. Figure 103 shows this comparison for the old piezometer range sites. This figure also generally shows a shotgun pattern with the factor of safety ranging from 0.5 to something greater than 6.0 for just about any type of observed performance. However, there are at least two very significant observations that may be drawn from this plot. The first is that a high calculated factor of safety against uplift is no guarantee that there will be no boils; the second, and perhaps more significant, is that a low calculated factor of safety against uplift apparently is not a reliable indication of potential danger. This latter point is demonstrated by the large number of instances in which the calculated factor of safety ranged from 0.5 to 1.5 and no seepage was reported. This suggests that even though seepage probably was occurring, it was occurring in such a harmless way that the inspector either did not see it or thought it to be insignificant.

308. The factor of safety against uplift at the new piezometer range sites could be calculated only for the 1979 data (Figure 104). Although there are a relatively small number of data points, the pattern is similar to that obtained for the old piezometer range sites. One other observation that may or may not be significant though is the relatively large number of high factors of safety in areas with standing water to light seepage beyond the toe. This could be indicative of significant pressure relief by natural seepage through the top stratum or perhaps the ponding and runoff or rainwater. Heavy rain was reported at Green Bay on 11 April 1979, but at other locations on 10, 11, and 12 April, berms and fields were reported dry.

la - Reported dry 2b - Water standing 3b - Heavy seepage 1b - No seepage reported in low areas beyond toe 1c - Through seepage Fields wet and 4a - Pin boils ld - Light toe seepage soft behind levee 4b - Sand boils le - Heavy toe seepage 2a - Berm wet 4c - Large boils 3a - Light seepage beyond toe

Figure 103. Observed performance versus factor of safety against uplift at old piezometer range sites, 1960, 1965, 1969, and 1973 data

la - Reported dry

1b - No seepage reported

1c - Through seepage

1d - Light toe seepage

1e - Heavy toe seepage

2a - Berm wet

2b - Water standing

in low areas

2c - Fields wet and

soft behind levee

3a - Light seepage

beyond toe

3b - Heavy seepage

beyond toe

Figure 104. Observed performance versus factor of safety against uplift at new piezometer range sites, 1979 data

Comparison with thickness of top stratum

309. To examine the relationship between thickness of top stratum and observed performance, plots of transformed thickness of top stratum versus observed performance have been prepared and are shown in Figures 105 and 106 for the old and new piezometer range sites, respectively. Again, a more or less shotgun pattern is shown in each of these figures with more or less any type of performance being noted for any top stratum ranging from 0 to 19+ ft. In Figure 105 for the old piezometer range sites, there may be a trend for increasing severity of performance with decreasing top stratum thickness, but this trend is not observed in Figure 106 for the new piezometer range sites. The conclusion to be drawn from these two figures appears to be that top stratum thickness alone does not control the occurrence and severity of seepage.

Comparison of observed performance and calculated berm width

- 310. Table 77 presents a summary of berm widths calculated using WES suggested permeability ratios and the worst observed performance at the toe of the levee or berm and at locations landward of the toe. Also shown in this table are the maximum head and the observed head at the location of the worst performance when it was observed. Further inspection of the table reveals that the worst observed performance occurred at heads ranging from as little as one-third to 100 percent of the maximum design head. It also may be noted that the worst observed performance occurred at the toe of the levee or berm at only 4 of the 29 sites and that not uncommonly the worst performance was observed at distances ranging from 100 to over 500 ft landward of the levee toe.
- 311. The two plots in Figure 107 show the relationship between calculated berm width and worst observed performance. The first is berm width calculated using WES criteria versus worst observed performance anywhere landward of the levee toe, and the second is berm width versus worst observed performance within the first 100 ft landward of the levee toe. There is nothing magic about the first 100 ft landward of the

la - Reported dry 2b - Water standing 3b - Heavy seepage 1b - No seepage reported 1c - Through seepage in low areas beyond toe 4a - Pin boils Fields wet and ld - Light toe seepage 4b - Sand boils soft behind levee le - Heavy toe seepage 4c - Large boils 3a - Light seepage 2a - Berm wet beyond toe

Figure 105. Observed performance versus transformed thickness of top stratum at old piezometer range sites, 1960, 1965, 1969, and 1973 data

- MALZEN

la - Reported dry 2b - Water standing 3b - Heavy seepage 1b - No seepage reported in low areas beyond toe 1c - Through seepage 4a - Pin boils Fields wet and 4b - Sand boils 4c - Large boils ld - Light toe seepage soft behind levee le - Heavy toe seepage 3a - Light seepage 2a - Berm wet beyond toe

Figure 106. Observed performance versus transformed thickness of top stratum at new piezometer range sites, 1965, 1969, 1973, and 1979 data

A CONTRACTOR OF THE PARTY OF TH

*SEE PARAGRAPH 31 IN TEXT FOR PERFORMANCE CODE.

Figure 107. Calculated berm width compared with worst observed performance

levee toe, but it is believed that the first 100 ft is the area that should be examined most carefully if there is a potential seepage problem.

- 312. Both plots in Figure 107 indicate that no one-to-one correlation exists between calculated berm width and seepage performance. The maximum berm widths (up to 407 ft) are calculated for conditions where the fields were wet and soft or where seepage occurred relatively harmlessly. At areas where large sand boils were observed (the most serious seepage condition), the berm formula indicated that either a maximum berm of 54 ft or no berm at all would be required. This observation strongly supports a long held concern that berm formulas that calculate the length of berm required to maintain a factor of safety against uplift are not appropriate for locations where seepage pressures can be uniformly and harmlessly dissipated.
- 313. Before leaving the question of the appropriateness of berm formulas for providing protection against underseepage, it should be noted that berm widths calculated with LMVD 1956 criteria ranged from 193 to 332 ft at Muscatine Island, Range A, and Sny Island, Ranges B and SA, where the large sand boils were observed. These berm lengths would cover the areas with large sand boils. However, it also must be recognized that berms up to 781 ft wide were indicated using the same LMVD criteria at Muscatine Island Range MB where the worst seepage condition observed was wet and soft fields, and berm lengths over 100 ft long were calculated at eight other sites where the performance within the first 100 ft from the levee toe was no worse than water standing in the fields. Also, at Sny Island, Range SA, where sand boils were observed in 1973 and a 100-ft berm was added in 1974, pin boils were observed at the berm toe in 1979 with a significantly lower head of water. This latter observation is evidence that the addition of a berm will not prevent the occurrence of boils; it may only move the boils further away from the center line of the levee.
- 314. To further evaluate the merits of LMVD 1956 and WES 1979 criteria for berm width calculations, Table 78 has been prepared showing only when berm formulas indicate that a berm is or is not required.

والمنتفاقينية والكارين والمتعارب والم

The piezometer range sites are grouped into two categories. The first group includes 16 sites where the worst observed performance within the first 100 ft landward of the levee ranged from no reported seepage to fields wet or soft; the second group includes the remaining 13 sites where the worst observed performance ranged from light seepage beyond the toe to large sand boils. Also shown in Table 78 is the head that occurred when the worst seepage was observed. An inspection of these data indicates that at the ranges where the performance has been relatively good, the head has ranged from 4.8 to 17.9 ft, and at the sites where the performance has been relatively poor, the head has ranged from 4.0 to 17.0 ft. Thus, the magnitude of the head itself is not a factor in the grouping of the sites by performance.

315. Other data in Table 78 indicate that at the 16 sites where the performance has been relatively good, LMVD criteria require berms up to 781 ft wide at 11 of the sites, whereas WES criteria require berms up to 407 ft wide at 5 of the sites. At the 13 sites where the performance has been relatively poor, LMVD criteria require berms up to 521 ft wide at 7 of the sites, whereas WES criteria require berms up to 179 ft wide at 6 of the sites. Thus, while WES criteria was better than LMVD criteria in identifying sites that did not require berms, neither WES or LMVD criteria satisfactorily identified more than about one-half the sites that probably should have berms. Further, the calculated berm lengths do not appear reasonable; those much in excess of 100 ft are probably longer than necessary and those less than 100 ft probably should be longer so as to move the potentially harmful seepage further from the center line of the levee. Thus, some alternate procedure is necessary for identifying sites that require berms and then for establishing the berm length required. One possible alternate procedure is discussed in the following paragraphs.

Application of Creep Ratio Criteria

316. In 1910, Mr. W. G. Bligh advanced his theory that the safety of masonry dams on earth foundations depends on the length of the

percolation path which is along the line of contact of the structure and its foundation. In 1916, he published the following values of creep-head ratios that he believed would make dams safe from piping failure:*

	Safe Ratio
River beds of light silt or sand, of which 60 percent passes the 100-mesh seive, as those of the Nile or the Mississippi Rivers	18
Fine micaceous sand, of which 80 percent passes a 75-mesh sieve, as in Himalayan rivers and in such rivers as the Colorado	15
Coarse-grained sands, as in Central and South India	12
Boulders or shingle and gravel and sand mixed	5 to 9

Although it is recognized that an earth levee on a stratified earth foundation is different from a masonry dam on a noncohesive foundation bedding, it is believed that something similar to Bligh's creep ratio might be considered for establishing requirements for berms and berm widths.

317. Table 79 summarizes the design head, levee width, and foundation top stratum for each of the piezometer range sites, again grouped by performance in the first 100 ft landward of the levee toe. The top stratum generally consisted of lean clay, although in a few cases the top stratum was either poorly graded sand, organic lean clay, or silt. The levee itself was generally hydraulic sand fill, although in some locations old clay levees constitute a core or other part of the existing section.

318. To make a berm width calculation using creep ratio criteria, a creep ratio coefficient has to be selected for the levee and foundation. The Mississippi River sands in the RID generally have a $\rm D_{10}$ size, which ranges from 0.1 to 0.4 mm; thus, they appear to be coarser than the first two sands in Bligh's list but probably finer than the

in the middle of the

^{*} W. G. Bligh. 1916. <u>Dams and Weirs</u>, American Technical Society, Chicago, Ill., p 155.

coarse-grained sands in Central and South India. Thus, a creep ratio of 15 has been chosen for example calculations for all the sites except where the top stratum was silt and a creep ratio of 18 was selected. A required creep length has been calculated simply as the product of the creep ratio and head and is listed in Table 79 along with the required berm width, which is simply the required creep length minus the levee width.

- 319. Using the above-described criteria, berm widths ranging from 17 to 114 ft are required for all the sites where the performance has been relatively good. At the sites where the performance has been relatively poor, berm widths ranging from 15 to 137 ft are required at all locations except Sny Island, Ranges F and SA, where no berm is indicated. Sny Island, Ranges F and SA, are locations where pin boils and large sand boils have been observed at the levee toes in the past.
- 320. Calculated berm widths based on creep ratio criteria have been plotted versus worst observed performance in the first 100 ft in Figure 108. While there is a trend of increasing berm width with more severe performance, it is disappointing that the criteria do not indicate that berms are required at all locations where the performance has been relatively poor. Less serious, but nevertheless of some concern, it would have been better if the criteria had indicated that no berm was required at least at some of the sites where the performance has been relatively good.
- 321. While creep ratio criteria generally indicate a requirement for shorter berms than those indicated by the factor of safety against uplift criteria, neither criteria satisfactorily discriminate between those sites that require berms and those that do not. Therefore, it appears that additional research is required to develop better procedures for calculating berm requirements. In the interim, the best procedure may be to rely on performance observations; and where boils and heavy seepage have been noted within the first 100 ft or so from the levee toe, berms about 100 ft or so wide should be provided.

Figure 108. Berm width based on creep ratio criteria versus worst observed performance in first 100 ft from levee toe

PART VI: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 322. On the basis of the study of 29 piezometer range sites, the following conclusions were made:
 - a. Only seven of the sites had adequate data for reliable calculation of landside and riverside permeability ratios. At these sites, the landside permeability ratio ranged from 1.1 to 90, and the riverside permeability ratio ranged from 3.0 to 209. For design purposes, using factor of safety against uplift criteria, it was suggested that landside and riverside permeability ratios of 100 and 200 be used.
 - <u>b</u>. Some piezometers at the new piezometer range sites are not functioning properly.
 - Eased on seepage performance data furnished, a berm width formula using factor of safety against uplift for design criteria does not adequately identify those locations requiring berms or those locations not requiring berms in the RID. This formula also indicates that very wide berms are required at many locations. These statements holds for both LMVD and WES suggested permeability ratios.
 - d. Berm width calculations using creep ratio criteria provide more reasonable berm widths but do not adequately discriminate between those sites requiring berms and those not requiring berms.
 - e. Additional research is needed to develop rational procedures for the design of berms for levees.
 - f. The 1951 piezometer data from the 1950 piezometers installed at Sny Island, Ranges A and B, indicate that there was no significant or systematic time lag in these piezometer readings. In isolated cases where it appears that there may have been some time lag, the situation can be explained by differences in time for recording river stage and piezometer level, the sudden initiation or decrease in underseepage nearby, or simply errors in piezometer readings.

Recommendations

- 323. Based on the findings of this study, it is recommended that:
 - a. All piezometers at the new piezometer range sites be tested to determine if they are free draining. If not, they should be surged or pumped to eliminate their sluggish response or replaced.

- Selfer

b. Additional field studies be undertaken to determine the detailed subsurface characteristics of locations where seepage performance has been relatively good and poor and where berms are required and are not required, respectively. Sites where performance has been relatively good but where berm formulas indicate that berms are required include the following:

Locations	Worst Performance First 100 ft
Iowa River, Range A	2 a
Sny Island, Range B	1 d
Sny Island, Range H	1d
Muscatine Island, Range MB	2ъ
South Quincy, Range SQ	1c

Sites where performance has been relatively poor but where berm formulas indicate that no berms are required include the following:

Locations	Worst Performance First 100 ft
Green Bay, Range A	4a
Sny Island, Range A	4a
Sny Island, Range F	4a
Sny Island, Range G	3a
Sny Island, Range I	4a
Sny Island, Range SA	4c

- Two or three sites from each of the categories above be studied in depth. Perhaps of most significance will be detailed mapping to identify locations of natural pressure relief if such exist. Detailed geologic stratification and physical properties of near surface and subsurface soils will also be of interest.
- <u>d</u>. The new piezometer range sites be maintained and be read daily whenever the river is 4 ft or so above the landside toe elevation.

Table 1 Summary of Piezometer Range Locations

	Old Piezo	Old Piezometer Ranges	ges			New Pie	New Piezometer Ranges	3000	
Levee		River-	River	Levee	Levee	1	Dinerel	Dinge	
District	Range	bank	Mile	Sta	District	Range	hiver- bank	Mile	Sta
Muscatine Island	∢	3	8.877	325+07	Muscatine Island	A H S	3	451.9	161+13 425+91 549+30
Bay Island	ပ႖	ы	446.7	330+00					
Iowa River	¥	3	418.8	391+00					
Green Bay	V	3	390.8	652+70	Green Bay	GBA	3	395.8* 391.1	343+50
Hunt	æ	ഥ	357.7	139+25					
Fabius River	⋖	3	328.4	339+49	Fabius River	FA FB	3	328.4 323.9	341+43
South Quincy	A	ഥ	319.1	321+23	South Quincy	òs	a	322.2	155+34
					South River	SRA SRB SRC	>	317.7 317.1 313.1	315+73 345+71 560+46
Sny Island	чжсан	щ	308.1 300.1 296.3 293.6 289.8 288.7	444+10 886+17 1079+71 1197+24 1399+99 1502+00	Sny Island	SA SC SD	យ	294.5 291.5 288.7 287.6	1153+52 1311+92 1501+77 1559+23

^{*} Piezometer Range GBA is actually located on the south bank of the Skunk River about one mile upstream from the confluence with the Mississippi River.

Table 2
Thickness Transformation Factors for Top Strata

Soil	Туре	
LMVD	Unified Soil Class. System	Transformation Factor*
	Thickness of	Clay, < 5 ft
Clay Silty clay Clay silt Sandy silt Silty sand Very fine sand Alternating clay and silt strata with depth	Fat clay (CH) Lean clay (CL) Silt (ML) Silt, sandy (ML) Silty sand (SM) Fine sand	1 1 3/4 to 1 1/5 if z < 10 ft; 0 if z > 10 ft 0 1
-	Thickness of	Clay, > 5 ft
Clay Silty clay Clay silt Sandy silt	Fat clay (CH) Lean clay (CL) Silt (ML) Silt, sandy (ML)	1 1 1/2 1/4 to 1/2 if z < 10 ft; 0 if z > 10 ft
Silty sand Very fine sand Alternating clay and silt strata with depth	Silty sand (SM) Fine sand	1/10 if z < 10 ft; 0 if z > 10 ft 0 1

^{*} Based on measurement of natural seepage at 16 sites in the Lower Mississippi River Valley.

Table 3

Piezometer Data and Calculated Seepage Source and Exit Distances, Muscatine Island, Range A

lge ince	Exit x3 x ft	454.9	446.0	189.6	537.6				786	1200
Seepage Distance	Source s* ft	691.2	732.9	485.7	740.7				1150	1700
	P					, and the second	tions			
	and Elevation Head						Projection to Old and New Levee Srest Elevations			
	1 1		Ė				ew Levee			
	Piezometer No.	541.81	542.01	540.24	542.32		Old and N			
	Pí.	542.57	542.67	541.17	543.75		jection to		544.8	547.3
	A-1	543.61	543.81	•	t		Pro		246.0	548.5
	River Stage el	246.96	547.72	544.14	550.14			Levee Crest el	552.6	558.4
	Date	2 Apr 60	3 Apr 60	14 Apr 69	29 Apr 69				014	New

in this table are based on old toe locations and average ground × × and w * All calculated values for elevations.

- Shaker stalled

Performance Observations and Calculated Factors of Safety, Muscatine Island, Range A

Piez. A-1 Piez. A-2 Pi		Piez. A-2 228 539.7 531.0			1111	
------------------------	--	------------------------------------	--	--	------	--

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

^{*} Code performance:
la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

³a - Light seepage beyond toe3b - Heavy seepage beyond toe

⁴a - Pin boils4b - Sand boils4c - Large boils

New	Berm Toe	148	540.2	6.2	546.4			1b	544.8	4.6	1.4									547.8	7.6	0.8
P10	Berm Toe							•												•		
	Piez. A-3	428	540.2	7.4	547.6			1b	543.1	2.9	2.6									545.5	5.3	1.4
	Piez. A-2	228	539.7	7.0	546.7			1b	544.4	4.7	1.5									547.3	7.6	0.6
	Piez. A-1							•														
	Location identification	Distance from levee center line, ft	Ground el	Critical head, $h_{\lambda} = i_{\lambda}z_{+}$	Critical head el	High-water observation date Apr 1973	River stage el 551.6	Seepage observation*	Estimated pressure head el	Pressure head above ground h_, ft	Factor of safety h_c/h_x	High-water observation date	River stage el	Seepage observation*	Estimated pressure head el	Pressure head above ground h., ft	Factor of safety h_c/h_x	Projected performance	River stage (new levee crest) el 558.4		Pressure head above ground h, ft	ractor or sarety n/n

-

Table 5
Piezometer Data and Calculated Seepage Source and Exit Distances, Bay Island, Range C

							Seepage	nge ince
	River Stage		<u>a</u>	iezometer	No. and Ele	Piezometer No. and Elevation Head	Source	Exit
Date	el	C-1	C-3	C-4	C-5		ft	ft
14 May 54	543.30	543.66	543.16	541.30	539.95		158	26
16 May 54	545.58	543.90	543.38	541.48	540.02		156	38
2 Apr 60	546.26	543.82	543.37	541.45	540.05		231	97
3 Apr 60	547.11	544.43	543.98	541.70	540.30		249	92
4 Apr 60	545.70	543.70	543.24	541.44	539.95		194	35
		Pr	ojection t	o Old and	New Levee	Projection to Old and New Levee Crest Elevations		
	Levee Crest el							
D10	550.8	546.2	545.6				307	158
New	556.6	548.9	548.2				420	260

in this table are based on old toe locations and average ground s and x_3 * All calculated values for elevations.

Table 6

A CONTRACTOR OF THE PROPERTY O

Performance Observations and Calculated Factors

of Safety, Bay Island, Range C

				5	5	
Location identification Distance from levee center line, ft	riez. C-3	riez. U-4	375	375	New 10e	296
Ground el	543.3	542.0	539.7	542.6	542.7	9.049
Bottom of top stratum el	537.1	538.3	535.8	537.1	537.1	537.3
Top stratum thickness z	6.2	3.7	3.0	5.5	5.6	3.3
Critical gradient i	0.8	0.8	0.8	0.8	8.0	0.8
Critical head, h = i z	5.0	3.0	3.1	4.4	4.5	2.6
Critical head el	548.3	545.0	542.8	247.0	2./45	243.2
High-water observation date May 1960						
River stage el	į	;	;	7	ı	ź
Seepage observation* Retimated presents head al	7 5/3 //	10	0 075	F 575	•	270 8
Pressure head above eround by ft	1 0	241.5	0.3	0.7		0.2
Factor of safety h/h,			10.3	6.3		13.0
High-water observation date Apr 1965						
River stage el 552.6						
Seepage observation*	•	1b	1b	•	14	43
Estimated pressure head el		542.8	541.0		3.0	541.9
Factor of safety h /h		3.8	2.4		1.5	2.0
High-water observation date Anr 1969						
River stage el 549.5						
Seepage observation*	•	116	1b	1	1b	2c
Estimated pressure head el		542.2	9.049		544.5	541.4
Pressure head above ground h, ft		0.2	0.0		1.8	0.8
Factor of safety h/h		15.0	3.4		2.5	3.2
		Continued)				
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

la - Reported dry lb - No seepage reported lc - Through seepage ld - Light toe seepage le - Heavy toe seepage Code performance:

or comment

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

Table 6 (Concluded)

The second second

Table 7

Piezometer Data and Calculated Seepage Source and Exit Distances, Bay Island, Range D

age ance	Exit	ft	89	97	97	112	76			106	102
Seepage Distance	Source s*	ft	707	415	323	324	312			203	163
											}
	ъ							tions			
	and Elevation Head							New Levee Crest Elevations			
		D-5	538.73	538.96	539.60	539.71	539.07	w Levee Cı			
	Piezometer No.	D-4	539.93	540.21	540.16	540.96	540.14	Old and Ne			
	\	D-3	539.91	540.01	540.48	540.83	540.38	Projection to		543.5	544.9
		D-1	540.44	540.55	541.27	541.68	541.14	Proj		545.7	547.9
	River Stage	el	544.03	544.32	545.39	546.13	544.94		Levee Crest el	552.1	555.4
	4			16 May 54	2 Apr 60	3 Apr 60	4 Apr 60			01d	New

in this table are based on old toe locations and average ground × × and S * All calculated values for elevations.

Table 8

Performance Observations and Calculated Factors

of Safety, Bay Island, Range D

Location identification	Piez. D-3	Piez D-4	Piez D-5	Old Toe	New Toe	
Distance from levee center line, ft	39	239	439	39	87	
Ground el	539.0	538.7	539.8	539.0	540.0	
Bottom of top stratum el	527.0	526.7	525.7	527.0	526.9	
Top stratum thickness z	12.0	12.0	14.1	12.0	13.1	
Transformed thickness z, z	12.0, 12.0	12.0, 12.0	14.1, 14.1	12.0, 12.0	13.1, 13.1	
Critical gradient i	0.8	0.8	0.8	8.0	0.0	
critical meau, m = 1.2 Critical bead el	548 6	548.3	551.1	9.6	550.5	
water observation date Apr 60						
River stage el 546.1						
Seepage observation*	1b	4a	1b	1d & 2b	,	
Estimated pressure head el	540.8	541.0	539.7	540.8		
Pressure head above ground h., ft	1.8	2.3	-0.1	1.8		
Factor of safety h_/h_ *	5.3	4.2	1	5.3		
High-water observation date Apr 65						
River stage el 551.8						
Seepage observation*	•	1b	116	1	14	
Estimated pressure head el		542.7	542.0		543.2	
Pressure head above ground h_, ft		4.0	2.2		3.2	
Factor of safety h_/h_ ^		2.4	5.1		3.3	
water observation date Apr 69						
River stage el 548.8						
Seepage observation*		1b	16	ı	le	
Estimated pressure head el		541.6	540.8		541.9	
Pressure head above ground h, ft		2.9	1.0		1.9	
Factor of safety h_/hx		3.3	11.3	<u> </u>	5.5	
×						
		(Continued)				
		/				

* Code performance:
la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

Table 8 (Concluded)

New Toe 87 540.0 10.5 550.5	1b 542.9 2.9 3.6		544.7
Old Toe	1		•
Piez. D-5 439 539.8 11.3 551.1	1b 541.3 1.5 7.5		543.4 3.6 3.1
Piez. D-4 239 538.7 9.6 548.3	1b 542.5 3.8 2.5		544.0
Piez. D-3			
Location identification Distance from levee center line, ft Ground el Critical head, $h_c = i_c t$ Critical head el	High-water observation date Apr 73 River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h_h High-water observation date	Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h_/h	Projected performance River stage (new levee crest) el 555.4 Projected pressure head, el Pressure head above ground h, ft Factor of safety h _c /h

Table 9
Piezometer Data and Calculated Seepage Source and Exit Distances, Iowa River, Range A

lge ince	Exit x3 * ft	59	43				104	151
Seepage	Source s* ft	349	313				474	599
	P) ions			
	Piezometer No. and Elevation Head				Projection to Old and New Teyes Creet Flevations	מייי דוביי דוביי דוביי דוביי		
	o. and Ele							
	ezometer N A-3	526.07	525.73		N pue p10			
	Pi-	527.34	527.19		iect ion to		528.1	529.0
	A-1	529.50	529.55		D C		530.8	532.0
	River Stage el	535.45	534.10			Levee Crest el	538.9	543.5
	Date	3 Apr 60	4 Apr 61				P10	New

in this table are based on old toe locations and average ground ×3 and တ * All calculated values for elevations.

Table 10

Performance Observations and Calculated Factors of Safety, Iowa River, Range A

					New	
Location identification Distance from levee center line. ft	Piez. A-1	Piez. A-2	Piez. A-3	01d Toe	Berm Toe	Ditch 395
Ground el	530.3	527.2	526.1	528.5	527.9	523.1
Bottom of top stratum el	523.6	522.8	520.8	523.5	523.4	521.5
Top stratum thickness z	6.7	4.4	5.3	5.0	4.5	1.6
Transformed thickness 2 _b , 2 _t Critical oradient i	6.7, 6.7	4.4, 4.4	5.3, 5.3	5.0, 5.0	4.5, 4.5	1.6, 1.6
Critical head, $h = i_z$	5.4	3.5	4.2	4.0	3.6	1.3
Critical head el c t	535.7	530.7	530.3	532.5	531.5	524.4
High-water observation date Apr 60 River stage el						
ation* -	1b	1b	16	14	•	116
Estimated pressure head el	529.9	527.3	526.1	529.6		525.2
Pressure head above ground h, ft	7.0-	0.1	0	1.1		2.1
factor of safety n/h	•	35.0	•	3.6		0.0
vation date_						
Seepage observation*	•	4	4.	•	22	87
Estimated pressure head el		528.1	526.5		529.4	525.7
Pressure head above ground h,, ft		0.0	7.0		1.5	2.6
Factor of safety h/h		3.9	10.5	.*	2.4	0.5
High-water observation date Apr 69						
River stage el 535.9						
Seepage observation*	ł	1b	1b		2a	15
Estimated pressure head el	1	527.5	526.1		528.8	525.3
Fressure head above ground h, ft		0.3	0		6.0	2.2
ractor or salety n/n		(Continued)			0.4	0.0
		/				

Code performance:

la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

· Secondaria de la companya del la companya de la c

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

Table 10 (Concluded)

					New	
Location identification	Piez. A-1	Piez. A-2	Piez. A-3	Old Toe	Berm Toe	Ditch
Distance from levee center line, ft		186	322		108	
Ground el		527.2	526.1		527.9	523.1
Critical head, $h = i z$		3.5	4.2		3.6	1.3
Critical head el Ct		530.7	530.3		531.5	524.4
With the section of t		<u>.</u>				
vation date _						
River stage el 538.8						
Seepage observation*		1b	1b	•	1 b	1 P
Estimated pressure head el		528.1	526.5		529.4	525.7
Pressure head above ground h , ft		0.0	7.0		1.5	2.6
Factor of safety h /h		3.0	10.5		2.4	0.5
× , 5 ,						
High-water observation date						
River stage el						
Seepage observation*						
Estimated pressure head el						
Pressure head above ground h . ft						
Factor of safety h /h x'						
× ,)						
Projected performance						
River stage (new levee crest) el 543.5						
Projected pressure head, el		529.0	527.2	,	530.4	526.3
Pressure head above ground h., ft		1.8	1.1		2.5	3.2
Factor of safety h /h X		1.9	3.8		1.4	7.0
×						

Table 11

Piezometer Data and Calculated Seepage Source
and Exit Distances, Green Bay, Range A

age	Exit	κ ×	ft	193	127	75					209	209
Seepage	Source	ķ	ft	1834	1378	1379					1690	1690
		pr	}						tions			}
		and Elevation Head							rest Eleva			
		lo. and Ele						}	lew Levee (
		Piezometer No.	A-3	514.31	513.54	513.08			Old and N			
		Pi	A-2	515.40	515.04	514.74			Projection to Old and New Levee Crest Elevations		515.7	515.7
			A-1	516.24	515.95	515.63			Pro		516.9	516.9
	River	Stage	el	526.13	523.95	523.46				Levee Crest el	529.9	529.9
			Date	4 Apr 60	9 Apr 62	5 Apr 61	\$				D10	New

in this table are based on old toe locations and average ground × 3 and တ * All calculated values for elevations.

Table 12
Performance Observations and Calculated Factors

of Safety, Green Bay, Range A

Ditch II 700 509.0 505.0 4.0, 4.0		513.5 4.5 0.7	1b 513.5 4.5	1b 513.3 6 4.3	
New Toe 112 517.1 508.2 8.9 8.9 0.8	524.2			4a 515.6 -1.5	
Ditch I 80 514.0 508.3 5.7 5.7 5.7 5.7 5.7 5.7	518.6	516.1 2.1 2.2	1b 516.2 2.2 2.1		
01d Toe 54 516.3 508.3 8.0 8.0 8.0	522.7	516.2	1c, 1d 516.3		
Piez. A-3 650 514.5 505.4 9.1 9.1, 9.1	521.8	514.3	1b 513.7 -0.8	1b 513.5 -1.0	(Continued)
Piez. A-2 200 515.7 508.2 7.5 7.5 0.8	521.7	515.4	1b 515.3 -0.4	1b 515.0 -0.7	
Location identification Distance from levee center line, ft Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness z _b , z _t Critical gradient i	Critical head, h = i z t Critical head el c High-water observation date Apr 60 River stage el 526.1	Seepage observation. Estimated pressure head el Pressure head above ground h_x , ft Factor of safety h_c/h_x High-water observation date Apr 65	River stage el 526.5 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h _x	High-water observation date Apr 69 River stage el Seepage observation* Estimated pressure head el Pressure head above ground hx, ft Factor of safety h _c /h	

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee k Code performance:
la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

3a - Light seepage beyond toe
3b - Heavy seepage beyond toe

Table 12 (Concluded)

Location identification	Piez. A-2	Piez. A-3	Old Toe	Ditch I	New Toe	Ditch II
Distance from levee center line, ft	200	650			112	700
Ground el	515.7	514.5			517.1	509.0
Critical head, $h = i z$	6.0	7.3			7.1	3.2
Critical head el ct	521.7	521.8			524.2	512.2
High-water observation date Apr 73						
River stage el 526.8						
Seepage observation*	1 b	119	•	•	14	6 43
Estimated pressure head el	515.3	513.8			516.0	513.5
Pressure head above ground h , ft	4.0-	-0.7			-1.1	4.5
Factor of safety h_/h_ x'	,					0.7
X 23						
High-water observation date						
River stage el						
Seepage observation*						
Estimated pressure head el						
Pressure head above ground h , ft						
Factor of safety h /h x'						
× D						
rojected periormance						
River stage (new levee crest) el 529.9						
Projected pressure head, el	515.7	514.1			516.5	513.8
Pressure head above ground h., ft	0	4.0-			9.0-	4.8
Factor of safety h_/h_ ^						0.7
×						

Table 13
Piezometer Data and Calculated Seepage Source and Exit Distances, Hunt, Range B

18e	Exit	ft	198	160	152				195	227
Seepage	Source	ft	516	620	620				445	459
	Þ						tions			
	and Elevation Head						rest Eleva			
							w Levee Cı			
	Piezometer No.	B-3	487.92	486.91	486.99		Projection to Old and New Levee Crest Elevations			
	Pie	B-2	490.05	488.62	488.56		ection to		491.4	492.2
		B-1	490.63	488.93	488.85		Proj		492.3	493.2
	River Stage	el			492.23			Levee Crest el		501.5
			4 Apr 60						014	Nes

s and \mathbf{x}_3 in this table are based on old toe locations and average ground * All calculated values for elevations.

Table 14

Performance Observations and Calculated Factors

of Safety, Hunt, Range B

Location identification Distance from levee center line, ft	Piez. B-1	Piez. B-2 40	Piez. B-3 341	01d Toe 53	New Toe	
Ground el Bottom of top stratum el	497.9	489.5	490.2	487.5	486.7	
Top stratum thickness z Transformed thickness z _k , z _t		6.3, 6.3	8.2, 8.2	5.3, 5.3	6.2, 6.2	
Critical gradient ic $^{\circ}$ Critical head, $^{\circ}$ $^{\circ}$ Critical head el $^{\circ}$ $^{\circ}$ Critical head el		0.8 5.0 494.5	0.8 6.6 496.8	0.8 4.2 491.7	5.0	
High-water observation date Apr 60 River stage el 496.1						
Seepage observation* Estimated pressure head el	•	1b 490.1	1b 487.9	1d, 2b 490.0	1	
Pressure head above ground $_{X}$, ft Factor of safety $_{L}/_{L_{X}}$		8.3	-2.3	2.5		
High-water observation date Apr 65 River stage el 497.0						
Seepage observation* Estimated pressure head el	ı		1b 488.2	•	1b 490.2	
Pressure head above ground h_x , ft Factor of safety h_x/h_x			-2.0		3.5	
High-water observation date Apr 69 River stage el 493.0						
Seepage observation* Estimated pressure head el	1	•	1b 487.1	•	3a 488.7	
Pressure head above ground h_x , ft Factor of safety h_c/h_x			-3.1		2.0	
		(Continued)				

Code performance:

こう ちゅうべきゅうかいりゅうしゃ

la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

New Toe 77 486.7 5.0 491.7	1b 491.0 4.3 1.2		491.9
01d Toe 53 487.5 4.2 4.2	•		•
Piez. B-3 341 490.2 6.6 496.8	1b 488.8		7.687
Piez. B-2 489.5 5.0 494.5	•		492.2
Piez. B-1	•		493.2
Location identification Distance from levee center line, ft Ground el Critical head, h = i z t Critical head el	River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h/h	River stage el Sepage observation* Estimated pressure head el Factor of safety h _c /h _x	Projected performance River stage (new levee crest) el 501.5 Projected pressure head, el Pressure head above ground h, ft Factor of safety h _c /h _x

Table 15

THE PARTY SEE

E ALL COLLEGE CHARLES

Piezometer Data and Calculated Seepage Source and Exit Distances, Fabius River, Range A

nce	Exit x3*	241	238	237			o c	977	215
Seepage	Source s* ft	561	553	549			Č	245	531
	p					tions			
	and Elevation Head					rest Eleva			
	, ,					lew Levee			
	Piezometer No.	474.13	474.13	474.18		Projection to Old and New Levee Crest Elevations			
	Pi	475.00	475.03	475.02		Jection to	, ,	4/2.0	475.0
	A-1	477.00	477.30	477.30		27	,	1.1/4	479.1
	River Stage el	011	483.47	483.46		Levee Crest	el	484.9	8.687
	Date	4 Apr 60	7 Apr 60	7 Apr 60				OIG	New

in this table are based on old toe locations and average ground and * All calculated values for elevations.

مروان الأركالية المحادث

Table 16

Factors	
ind Calculated Fac	River, Range A
nce Observations and (E Safety, Fabius F
Performan	jo

					Mora	
Location identification	Piez. A-1	Piez. A-2	Piez. A-3	01d Toe	Berm Toe	
Distance from levee center line, ft	26	226	425	35	118	
Ground el	475.6	474.0	473.7	474.5	475.7	
Bottom of top stratum el	464.5	465.5	0.994	464.5	465.0	
Top stratum thickness z	11.1	8.5	7.7	10.0	10.7	
Transformed thickness z _b , z _t	9.9, 9.9	5.7, 5.7	6.6, 6.6	8.7, 8.7	8.2, 8.2	
Critical gradient i	8 0	0.8	0.0	0.0	0.0	
$\begin{array}{cccc} \text{Critical nead, n} & -1.2 \\ \text{Critical head el}^{\text{C}} & \text{c}^{\text{t}} \end{array}$	483.5	478.6	0.627	481.5	482.3	
vation date_						
Kiver stage el 483.5	1/1	÷	-	ļ		
Seepage observation. Estimated pressure head el	477.3	475.0	474.2	477.2		
Pressure head above ground h, ft	1.7	1.0	0.5	2.7		
Factor of safety h_c/h	4.6	4.6	10.6	2.6		
High-water observation date Apr 65						
Seepage observation*	ı	16	116	,	14	
Estimated pressure head el		475.0	474.2		476.3	
Pressure head above ground h, ft		1.0	0.5		9.0	
factor of satety n_c/x		4.6	10.6		11.0	
vation date_						
River stage el 479.5					;	
Seepage observation*	:	1b	- 1	*	1p	
Estimated pressure head el	ı	475.0	'		475.7	
Pressure head above ground h, ft		1.0	0.5		0	
X /J (STIP)		(Continued)	i			

* Code performance:

la - Reported dry lb - No seepage reported lc - Through seepage ld - Light toe seepage le - Heavy toe seepage

2a - Berm wet 2b - Water standing בי low areas 2c - Fields wet or soft ביייות levee

3a - Light seepage beyond toe 3b - Heavy seepage beyond toe

Table 16 (Concluded)

Berm Toe 118		obtained				1			1.5
Old Toe		See							a
Piez. A-3 425 473 7	5.3	Levee overtopped; no					•		474.2
Piez. A-2 226 474 0	478.6	Levee c							475.1
Piez. A-1									
Location identification Distance from levee center line, ft Ground el	Critical head, $h = i_c t$ Critical head el	High-water observation date Apr 73 River stage el 487.8	Estimated pressure head el	Pressure head above ground h, ft Factor of safety h_c/h	High-water observation date River stage el	Seepage observation∻ Estimated pressure head el	Pressure head above ground h_x , ft Factor of safety h_x/h_x	Projected performance River stage (new levee crest) el 489.8	Projected pressure head, el Pressure head above ground h_x , ft Factor of safety h_c/h_x

Table 17

Piezometer Data and Calculated Seepage Source and Exit Distances, South Quincy, Range A

ige	Exit x3* ft	227	241	259	169	204			293	307	
Seepage	Source s* ft	813	921	912	972	802			854	860	
							tions				
	and Elevation Head						rest Eleva				
							w Levee Cr				
	Piezometer No.	465.50	465.70	465.87	465.16	465.37	Projection to Old and New Levee Crest Elevations		466.3	466.5	
	Pie A-2	469.02	468.85	469.17	467.74	468.32	ection to		470.5	6.074	
	A-1			 			Proj				
	River Stage el	69.774	477.70	478.34	475.41	475.48		Levee Crest el	481.4	482.4	
			6 Apr 60						010	New	

 $[\]mathsf{x}_3$ in this table are based on old toe locations and average ground s and * All calculated values for elevations.

Table 18

12 A

The second of th

Performance Observations and Calculated Factors of Safety, South Quincy, Range A

Cocation identification				D10	New	
novacion identification Distance from levee center line, ft Ground el	Piez. A-2	Piez. A-3 341	Beyond Toe 180	Berm Toe	Berm Toe	Ditch 109
Bottom of top stratum el Top stratum thickness z	463.5	464.3	466.0	466.0	465.8	464.2
Transformed thickness z, z, critical gradient i	2.0, 7.0	4.3, 4.3	3.0, 3.0	4.8, 4.8	6.8, 6.8	5.4, 5.4
Critical head, $h = c_{i,c} z_{t}$ Critical head el	5.6	3.4	2.4	3.8	5.4	4.3
High-water observation date Apr 60 River stage el 678 a					7:17	C. 904
ation*	•	25	1b	14	ı	2b
Pressure head above ground h, ft		465.8	467.6	468.8		468.4
High-water observation date May 65		2.3	1.5	3.4		1.0
River stage el 479.3		÷	;			
Estimated pressure head el		465.9	167.9	1b 469.2	-	1b 468.7
Fressure nead above ground h, it Factor of safety h_{μ}/h_{ν}		1.6	1.9	1.8		4.5
High-water observation date Apr 69						0.1
Seepage observation*		1b	,	,	-	
Estimated pressure head el Pressure head above ground h ft		465.2	466.6		467.1	
Factor of safety h / h	1 1	3.8	0.04		1.3	
	\preceq	Continued)				
* Code performance:						

Code periormance:

1a - Reported dry

1b - No seepage reported

1c - Through seepage

1d - Light toe seepage

1e - Heavy toe seepage

3a - Light seepage beyond toe 3b - Heavy seepage beyond toe

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

Table 18 (Concluded)

					Nov	5
Location identification	Piez. A-2	Piez. A-3	Beyond Toe	01d Toe	Berm Toe	New Berm
Distance from levee center line, ft		341	180		127	100
Ground el		464.3	0.994		465.8	0.694
Critical head, $h = i z$		3.4	2.4		5.4	7.6
Critical head el ct		467.7	468.4		471.2	476.6
High-water observation date Apr 73						
River stage el 482.9						
Seepage observation*		116	36		1e	2a
Estimated pressure head el		9.995	6.895		9.694	470.1
Pressure head above ground h, ft		2.3	2.9		3.8	1.1
Factor of safety h / h,		1.5	0.8		1.4	6.9
High-water observation date						
River stage el						
Seepage observation*						
Estimated pressure head el						
Pressure head above ground h_, ft						
Factor of safety h / h						
Projected performance						
River stage (new levee crest) el 482.4						
Projected pressure head, el	ı	466.5	8.897	•	469.5	•
Pressure head above ground h., ft		2.2	2.8		3.7	
Factor of safety h_c/h_x		1.5	0.9		1.5	

Table 19

Piezometer Data and Calculated Seepage Source and Exit Distances, Sny Island, Range A

age	Exit	ft	1094	394	103	33	199	-12			370	420
Seepage Distance	Source s*	ft	478	387	134	126	213	134			225	225
	P				ļ				tions			
	vation Hea								rest Eleva			
	Piezometer No. and Elevation Head	A- 4	467.04	465.38	466.53	89.194	464.87	764.00	and New Levee Crest Elevations			
	ezometer N	A-3	468.59	77.997	467.74	468.59	465.93	465.04	Old and No			
	Pio	A-2	469.26	78.997	467.97	468.22	466.25	464.87	Projection to Old		471.3	473.6
		A-1	07.697	70.797	88.89	86.697	466.58	465.78	Pro		471.9	474.3
	River Stage	el	471.27	469.13	470.20	472.14	467.83	60.794		Levee Crest el	474.4	477.2
		Date	13 May 51	5 May 52	5 Apr 60	7 Apr 60	7 Apr 61	22 Mar 62			D10	New

in this table are based on old toe locations and average ground ×3 and All calculated values for elevations.

(Sheet 1 of 3)

2a - Berm wet 3a - Light seepage beyond toe
2b - Water standing in low areas
3b - Heavy seepage beyond toe 4b - Sand boils
2c - Fields wet or soft behind levee

la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

Code performance:

Table 20
Performance Observations and Calculated Factors
of Safety, Sny Island, Range A

Location identification Distance from levee center line, ft	Piez. A-2 28.7	Piez. A-3 123.5	Piez. A-4 418	01d Toe 34	Center Line of Old Road at Levee	01d Borrow Pit
Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness $\mathbf{z}_{\mathbf{k}}, \ \mathbf{z}_{\mathbf{r}}$	466.3 445.2 20.7, 20.7	463.6 449.5 14.1 13.2, 13.2	463.1 443.0 20.1 17.2, 19.0	465.4 445.4 20.0 19.5, 19.5	465.3 445.5 19.3, 19.8	461.7 449.2 12.5 11.5, 11.5
Critical gradient i $^{\circ}$ Critical head, $^{\circ}$ $^{\circ}$ $^{\circ}$ Critical head $^{\circ}$ $^{\circ}$ $^{\circ}$	0.8 16.6 482.9	10.6	0.8 15.2 478.3	15.6 481.0	15.4 180.7	9.2
High-water observation date 17 Apr 60 River stage el 471.14 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h_/h		1b 468.0 4.4 4.4	1b 466.9 3.8 4.0	1d 468.6 3.2 4.9	1b 468.6 3.3 4.7	2b 468.2 6.5
River stage el 473.10 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h		1b 469.5 5.9 1.8	1b 468.4 5.3 2.9	1e 470.2 4.8 3.2	4a 470.2 4.9	1b 469.6 7.9
High-water observation date River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _C /h _X		Continued)				

Table 20 (Continued)

A Company of the Comp

New Toe Road Ditch 86 422 464.6 461.0 16.0 16.0 16.0 16.0 12.8 13.6 13.6	ħ-//ħ	1b 468.4 7.4 1.8	
Piez. A-4 Old Ditch Bottch 462.2** 462.2** 447.6 14.6 13.8, 13.8 13.8, 13.8	1b 468.4 468.4 6.2 6.2	1b 469.8 7.6 1.4	
Piez. A-3			
Piez. A-2	5.		
Location identification Distance from levee center line, ft Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness z _b , z _t Critical gradient i Critical head, h = i Critical head, el Critical head el	High-water observation date 7 Apr 60 River stage el 471.14 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h_x High-water observation date May 65 River stage el 473.10	Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h_/ h, High-water observation date River stage el	Seepage observation* Estimated pressure head el Pressure head above ground h, ft Farter of estern h, h, h,

(Continued)

** Tailwate: assumed to be 463.8 for old crest permeability ratio calculations.

Table 20 (Concluded)

Road Ditch 422 461.0 13.6 474.6	2b 465.5 4.5 3.0	1b 471.0 10.0 1.3	471.3
New Toe 86 464.6 12.8 477.4	1b 466.6 2.0 6.4	1e 472.7 8.1 1.6	473.0 8.4 1.5
01d Toe			
Piez. A-4 418 463.1 15.2 478.3	1b 465.5 2.4 6.3	1b 471.0 7.9 1.9	471.3 8.2 1.9
Piez. A-3 123.5 463.6 10.6 474.2	1b 466.6 3.0 3.5	1b 472.3 8.7 1.2	472.6
Piez. A-2	1	1	
Location identification Distance from levee center line, ft Ground el Critical head, $h = i^z t$ Critical head $e^{-i} t^z t$	High-water observation date Apr 69 River stage el 469.05 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h _x	High-water observation date Apr /3 River stage el 476.8 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h _x	Projected performance River stage (new levee crest) el 477.2 Projected pressure head, el Pressure head above ground h, ft Factor of safety h/h

Table 21

A CONTRACT OF THE PROPERTY OF

Piezometer Data and Calculated Seepage Source and Exit Distances, Sny Island, Range F

ige ince	Exit x3*	74	7.5	19	61	39	74			90	108
Seepage	Source s* ft	211	204	188	208	200	168			207	219
	p							tions		}	}
	and Elevation Head							rest Eleva			
	1 1	456.03	456.29	456.36	455.95	456.03	456.38	ew Levee C			
	Piezometer No. F-3	458.44	458.88	459.34	458.27	458.01	459.37	Old and N			
	Pi F-2	460.08	760.60	461.07	459.73	459.32	461.69	Projection to Old and New Levee Crest Elevations		462.0	463.6
	F-1	460.91	461.71	462.60	460.49	460.03	463.43	Pro		463.6	465.6
	River Stage el	463.76	465.35	70.797	463.05	462.29	467.78		Levee Crest el	0.697	472.8
	Date	1 Apr 60	5 Apr 60	8 Apr 60	6 Apr 61	22 Mar 62	2 May 65			01d	New

 $[\]star$ All calculated values for s and x_3 in this table are based on old toe locations and average ground elevations.

Performance Observations and Calculated Factors Table 22

of Safety, Sny Island, Range F

					New	
Location identification Distance from levee center line. ft	Piez. F-3	Piez. F-4	Road Ditch	Old Toe	Berra Toe	Borrow Pit
Ground el	459.5	455.8	456.9	458.6	459.0	455.3
Bottom of top stratum el	10.0	450.7	449.3	449.2	4.644	450.5
Transformed thickness z, z	5.0, 6.9	3.3, 3.3	4.8, 4.8	7.6, 7.9	5.4, 6.6	2.8, 2.8
Critical gradient i b t	0.8	0.8	0.8	0.8	0.8	0.8
Critical head, h = i z	5.5	2.6	3.8	6.3	5.3	2.2
critical nead el	465.0	428.4	400.	404.9	204.3	427.3
vation date_						
River stage el 467.1						;
Seepage observation*	1b	10	43	le	•	2b, 4b
Estimated pressure head el	459.3	456.3	4.094	461.1		456.6
Pressure head above ground h, ft	-0.2	0.5	3.5	2.5		1.3
Factor of safety h/h	•	5.2	1.1	2.5		1.7
High-water observation date May 65						
River stage el 468.8						
Seepage observation*	1b	16	43	43	• {	15
Estimated pressure head el	459.8	426.4	461.1	461.9		456.8
Pressure head above ground h., ft	0.3	9.0	4.2	3.3		1.5
Factor of safety h / h,	18.3	4.3	6.0	1.6		1.5
High-water observation date Jul 69						
River stage el 465.2						
Seepage observation*	13	18	,	•	la	la
Estimated pressure head el	458.8	456.2			459.2	456.5
Pressure head above ground h _e , ft	-0.7	7.0			0.5	1.2
Factor of safety h_/h_	•	6.5			26.5	1.8
		(Continued)				

Code performance:

la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

2a - Berm wet
2b - Water standing in low areas
2c - Fields wet or soft behind levee

	Borrow Pit	455.3		16	2.0							457.1	8.1
12	Berm Toe	5.3		1d, 2a	2.0							461.4	2.4
	Old Toe			•								1	
	Road Ditch			•								1	
	Piez. F-4	455.8		1b 456 8	1.0							456.7	2.9
	Piez. F-3 182	5.5		1b 461.2	3.2							460.8	4.2
	Location identification Distance from levee center line, ft Ground el	Critical head, $h = c^2$ Critical head el^c	High-water observation date Apr 73 River stage el 474.2	Seepage observation* Estimated pressure head el	Pressure head above ground h, ft Factor of safety h_x/h_x	High-water observation date River stage el	Seepage observation*	rectimated pressure nead el Pressure head above ground h . ft	Factor of safety h / h x	Projected performance	River stage (new levee crest) el 472.8	, el und h	Factor of safety h/h, x,

Table 23
Piezometer Data and Calculated Seepage Source and Exit Distances, Sny Island, Range B

38e	Exit x3*	170	158	152	174	203	, i		193	211
Seepage	Source s* ft	285	546	244	327	297	! !		288	286
					1	 - 	: 		÷	
	p					!	tions		;	1
	and Elevation Head B-4						and New Levee Crest Elevations			1
	1 1	454.92	455.14	455.15	455.95	456.10	ew Levee C			
	Piezometer No.	456.40	456.85	456.72	456.52	457.58	014			
	Pie B-2	458.78	459.97	459.95	458.95	460.35	Projection to		461.2	464.1
	B-1	459.52	461.00	461.01	459.71	461.26	Pro		462.3	9.597
	River Stage el	462.90	464.78	464.83	463.93	465.69		Levee Crest el	467.4	472.5
	Date		12 May 51		1 May 52				P10	New

in this table are based on old toe locations and average ground × s and * All calculated values for elevations.

(Sheet 1 of 3)

Performance Observations and Calculated Factors of Safety, Sny Island, Range B

THE REAL PROPERTY.

(Continued)	2a - Berm wet 3a - Light seepage beyond toe 2b - Water standing in low areas 2c - Fields wet or soft behind levee	
	<pre>% Lode performance: la - Reported dry lb - No seepage reported lc - Through seepage ld - Light toe seepage</pre>	Ie - neavy toe seepage

le – neavy toe seepage ** Tailwater assumed to be 455.0 for old crest permeability ratio circulation.

New Berm Toe 143 455.7 4447.8 7.9 7.9 6.3 66.3 462.0	1d 456.8 1.1 5.7	1c 460.0 4.3 1.5	
New Berm 115 460.1 447.7 12.4, 12.4 12.4, 12.4 9.9 9.9	1b 457.0 -3.1	2a 459.8 -0.3	
Piez. B-4 374 454.1 454.1 3.8 3.8	1b 455.6 1.5 2.5	4c 458.6 4.5 0.8	
Piez. B-3			
Piez. B-2			
Location identification Distance from levee center line, ft Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness z Critical gradient i Critical head, h = cizt Critical head el	High-water observation date 1969 River stage el 464.6 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h_h	High-water observation date Apr 73 River stage el 472.0 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h _x High-water observation date	River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h

(Continued)

Table 24 (Concluded)

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

New 15 143 60.1 455.7 9.9 70.0 462.0			60.2 460.0
B-3 Piez. B-4 New Berm 374 115 460.1 454.1 460.1 9.9 9.9 477.9			458.8 460.2
Piez. B-2 Piez. B-3			
Location identification Distance from levee center line, ft Ground el Critical head, h = i z Critical head el High-water observation date	River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h, h High-water observation date	Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h / h Projected performance	River stage (new levee crest) el 472.5 Projected pressure head, el Pressure head above ground h, ft

Table 25

のできるというできる。 これできることは、これでは、これでは、これでは、これでは、これでは、これでは、これできることがあっています。 これできる これでき これできる これでき これできる これできる

Piezometer Data and Calculated Seepage Source

and Exit Distances, Sny Island, Range G

38e	ance	Exit	ft	231	197	244					245	246
Seepage	Distance	Source	ft	541	545	592					513	514
		ې							tions			
		vation Hea							rest Eleva			
		Discompter No and Elevation Head	6-4	452.96	453.15	454.11			Projection to Old and New Levee Crest Elevations			
		ezometer N	6-3	455.55	454.89	455.06			Old and N		456.6	457.2
		P.	6-2		 pe	 - 	 Des		jection to			
			6-1	457.80	456.55	456.41			Pro		460.1	461.5
		River	el	462.81	460.28	459.76				Levee Crest el	4.7.4	470.5
				6 Apr 60		22 Mar 62					014	New

in this table are based on old toe locations and average ground and S * All calculated values for elevations.

TO STATE OF THE PARTY OF THE PA

Performance Observations and Calculated Factors

of Safety, Sny Island, Range G

center line, ft 30 191.5 481.5 89 94	459.0 454.5 451.0 454.1	1 448.0 447.4 443.4 447.9	11.0 7.1 6.2	, 2 _f 9.9, 9.9 5.3, 5.3 4.8, 4.8 5.0, 5.0	0.8 0.8 0.8	7.9 4.2 3.8 4.0	466.9 458.7 454.8 458.1	ion date 6 Apr 60	;	1b 1b	455.6		1	May 65	7.597	- 1b	456.2 a e	us set	2.5	ion date 1969	464.2	3a (1 1b	455.9	1.4	3.0 m.m.m.	
Location identification Distance from levee center line, ft	Ground el	Bottom of top stratum el	Top stratum thickness z	Transformed thickness 2, 2,	Critical gradient i	Critical head, $h = iz$	Critical head el	High-water observation date 6 Apr 60	River stage el 462.8	Seepage observation*	Estimated pressure head el	Fressure head above ground h, it Factor of safety h /h	rattor or salety m. X	High-water observation date May 65	,		Estimated pressure head el	Pressure head above ground h _o , ft	Factor of safety h_c/h_x	High-water observation date 1969		Seepage observation [★]	Estimated pressure head el	Pressure head above ground h., ft	Factor of safety h_/h_ ^ ^	د ۲

* Code performance:
 1a - Reported dry
 1b - No seepage reported
 1c - Through seepage
 1d - Light toe seepage
 1e - Heavy toe seepage

2a - Berm wet
2b - Water standing in low areas
2c - Fields wet or soft behind levee

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

4a - Pin boils4b - Sand boils4c - Large boils

Beige

Table 26 (Concluded)

大きのないのできないというないのであると、 ちょうかん かんしゅう こうしゅうしょう

New Toe 94 456.3 5.8 462.1	1c 459.3 3.0 1.9		459.3 3.0 1.9
Old Toe			
Piez. G-4 481.5 451.0 3.8 454.8	1b		
Piez. G-3 191.5 454.5 4.2 4.2	1b 457.3 2.8 1.5		457.2
Piez. G-2	1		
Location identification Distance from levee center line, ft Ground el Critical head, h = i z Critical head el	High-water observation date River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h _x High-water observation date	nead el ground h, ft /h	Projected performance River stage (new levee crest) el 470.5 Projected pressure head, el Pressure head above ground h, ft Factor of safety h_c/h_x

Table 27

Piezometer Data and Calculated Seepage Source and Exit Distances, Sny Island, Range H

age	Exit	"3 ft	-13	-10	-34	}	-				26	35
Seepage	Source	s* ft	140	143	86						156	170
								}				
	7								tions			
	vation Hea	Vacion ne							rest Eleva			
	Piezometer No. and Rlawation Hand	H-4	451.61	451.94	450.07				Projection to Old and New Levee Crest Elevations			
	ezometer N	Н-3	452.41	452.81	451.24				Old and Ne			
	Pi	H-2	453.44	454.00	452.44				ection to		455.1	456.3
		H-1	456.69	457.67	458.57			}	Proj		459.0	460.4
	River Stage	el	62.095	462.56	458.59					Levee Crest el	465.3	468.4
	1			8 Apr 60						,	010	New

in this table are based on old toe locations and average ground × s and * All calculated values for elevations.

Table 28

Performance Observations and Calculated Factors of Safety, Sny Island, Range H

Berm Toe	69	451.3	444.1	7.2	6.1, 6.1	0.8	6.4	454.2 456.2 455.5			14	453.7	2.4	1.8 2.0			1b	452.5 454.1	2.8	
							1	455.4						1.9				453.4	,	'
Piez. H-2	27	456.3	444.3	12.0	6.5, 10.3	0.8	8.2	464.5			•						•			
Location identification	Distance from levee center line, ft	Ground el	Bottom of top stratum el	Top stratum thickness z	Transformed thickness z, z,	Critical gradient i D t	Critical head, h = cizz	Critical head el ^{c c t}	High-water observation date Apr 60	River stage el 462.6	Seepage observation*	Estimated pressure head el	Pressure head above ground h., ft	Factor of safety h_c/h_x	High-water observation date May 65	River stage el 463.6	Seepage observation*	Estimated pressure head el	Pressure head above ground h., ft	. X 1/ 1 20

5.1, 5.1 6.1, 5.1 6.8

448.5

Ditch 200

452.6

2b 452.7

1.0

1b 453.1 9.4 1b 452.8

453.2 1**p**

1b 452.2 2.9

1b 453.0

High-water observation date 1969 River stage el 462.8

2.9 1.8 (Continued)

Pressure head above ground h, ft

Factor of safety h_c/h_x

Estimated pressure head el

Seepage observation*

4.3

* Code performance:			
la - Reported dry	2a - Berm wet	3a - Light seepage beyond toe	4a - Pin boils
1b - No seepage reported	2b - Water standing in low areas	3b - Heavy seepage beyond toe	4b - Sand boils
lc - Through seepage	2c - Fields wet or soft behind levee		4c - Large boils
1d - Light toe seepage			
le - Heavy toe seepage			

Table 28 (Concluded)

The second of th

				N	
				Mon	
Location identification	Piez. H-2	Piez. H-3	Piez. H-4	Berm Toe	Ditch
Distance from levee center line, ft		162	297	144	200
Ground el		450 1	F 077	8 057	5 877
					2.07
critical nead, n = 1.2		2.0	4.9	2.5	4.1
Critical head el		455.4	454.2	455.5	452.6
High-water observation date Apr 73					
River stage el 468.6					
4		•	,		•
Seepage observation"	•	10	16	10	16
Estimated pressure head el		455.3	454.5	455.5	455.1
Pressure head above ground h , ft		5.2	5.2	5.2	9.9
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		-			
נפרנחנ מו פפוברל וולוו		0.1	0.9	7.0	0.0
High-water observation date					
Discount of the contract of th					
Niver Stage el					
Seepage observation*					
Estimated pressure head el					
Decomposition of the state of t					
riessate fleda above ground ii, it					
ractor of safety n/n					
Projected performance					
ree crest) e					
Projected pressure head, el		455.2	424.4	455.4	455.0
und h		5.1	5.1	5.1	6.5
		0 1	0		0
		2.1	0:1	2.1	

wer de wir and

Table 29

Piezometer Data and Calculated Seepage Source and Exit Distances, Sny Island, Range I

186	Exit	*°°	110	579								round
Seepage	Course	s. *s	11	569					u Š			9 4067 906
					{				10			serious and average oround
			}					tions		באפני כונס		
		and Elevation Head						rest Eleva	•	oject to 1		
			1 1	456.05				w Levee C		ient to pr		
		Piezometer No.	I-3	456.93				Projection to Old and New Levee Crest Elevations		Data not sufficient to project to levee tiest cievations		
		Pie	1-2	458.14				jection to		Data		
			I-1					Pro				
		River	stage el						Levee Crest el	9.494	8.897	
			Date	6 Apr 60						014	New	

 \star All calculated values for s and x_3 in this table are based on old toe locations and average ground elevations.

Performance Observations and Calculated Factors Table 30

The second second

ののかである。 一番の事を

of Safety, Sny Island, Range I

					96:1	
Location identification	Piez. I-2	Piez. I-3	Piez. I-4	01d Toe	of Old Road	Row Fence
Distance from Levee Center line, it Ground el	458.0	455.2	454.8	457.1	456.5	455.3
Bottom of top stratum el	444.5	442.5	441.5	444.5	444.5	0.077
Top stratum thickness z	13.5	12.7	- 1	12.6		11.3
Transformed thickness z_b , z_t	13.5, 13.5	12.7, 12.7	13.3, 13.3	12.6, 12.6	12.0, 12.0	11.3, 11.3
Critical head, h = c z.	10.8	10.2	10.6	10.1	9.6	9.0
Critical head el	468.8	465.4	465.4	467.2	466.1	464.3
High-water observation date 6 Apr 60						
Kiver stage el 460.48		١	:	~	7.7	ť
Seepage observations Fortimated presents book al	•	0 757	1 737	10 17	48	7 7 7 7
Pressure head above ordund het		450.3	130.1	1.00.1	1.00.1	7 6
Factor of safety h_/h_		6.0	8.2	10.1	0.9	3.8
High-water observation date May 65						
3						
ation*	•	1b	1 b	1 b	1b	1b
Estimated pressure head el		•	 • •	Data no	Data not sufficient for esti	r esti-
Pressure head above ground h, ft				mation	mation of pressure head	ا
Factor of safety h/h						
High-water observation date						
River stage el						
Seepage observation*						
Describe head shows commad he for						
Factor of safety h /h						
×		(Continued)				
4						
* Lode performance: la - Reported dry 2a - Berm wet			3a - Light	3a - Light seepage beyond toe		4a - Pin boils

la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

3a - Light seepage beyond toe 3b - Heavy seepage beyond toe

New Toe New Road 75 ? 458.2 ? 443.8 . 14.4, 14.4 . 0.8 . 469.7 .	la la la Data not sufficient for esti- mation of pressure head	Data not sufficient for estimation of pressure head	
Piez. I-4 322 454.8 10.6	18	1b	
Piez. I-3 172 455.2 10.2 10.2	la -	dl	
Piez. I-2			
Location identification Distance from levee center line, ft Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness zb, zt Critical gradient i Critical head, h = ict Critical head el	High-water observation date Jul 69 River stage el 462.3 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h/h	High-water observation date Apr 73 River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h/h High-water observation date	Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h /h

Table 31

and the second of the second second

a straight of the straight of

Piezometer Data and Calculated Seepage Source and Exit Distances, Muscatine Island, Range MA

ige	Exit	£ #							}	
Seepage	Source	s. ft	1790							
	7	DE	ł.							
	Disameter No and Elementics Head	MA-5	544.45			Projection to Levee Crest Elevations				Alum
	, E	MA-4	546.05			vee Crest				
	40	MA-3	Dry			tion to Le				
	á	MA-2	Dry			Projec				
		MA-1	546.34							
			548.04				Levee Crest	e]	560.8	
		Date	12 Apr 79						1979	New

are based on 1979 landside toe location and average ground elevation. and * Calculated values for

Table 32

Performance Observations and Calculated Factors

of Safety, Muscatine Island, Range MA

Location identification Distance from levee center line, ft	Piez. MA-4	Piez. MA-5	Toe 70	Low Spot	
Ground el	552.0	548.2	551.5	546.4	
Bottom of top stratum el	541.1	543.2	541.1	542.5	
lop stratum tnickness z Transformed thickness z, z.	4.7, 10.9	5.0, 5.0	4.7, 10.4	3.9, 3.9	
Critical gradient i D t	0.8	0.8	0.8	0.8	
Critical head, h = i z	8.7	4.0	8.3	3.1	
	200.1	337.7	0.866	0.49.0	
High-water observation date Apr 65 River stage el					
ation*	la	la .	1a	la	
Estimated pressure head el					
Pressure head above ground high, ft					
Factor of safety h_x/h_x					
High-water observation date Apr 69					
River stage el 551.1					
	la	la	Ia	1a	
Estimated pressure head el					
Pressure head above ground h, ft					
Factor of safety h/h_x					
ite					
River stage el 552.4					
Seepage observation*	la	2b	la	2b	
Estimated pressure head el					
Pressure head above ground h, ft					
Factor of safety h /h					
×					
)	(Continued)			
* Code performance:					
4					

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee la - Reported drylb - No seepage reportedlc - Through seepageld - Light toe seepagele - Heavy toe seepage

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

Table 32 (Concluded)

The state of the s

Location identification	Piez. MA-4	Piez. MA-5	Toe	Low Spot	
Distance from levee center line, ft	79	562	70	700	
Ground el	552.0	548.2	551.5	7 975	
Critical head, $h = i z$	7 8 7	0.7	200	200	
Critical head el C t	560.7	552.2	559.8	454.7	
High-water observation date 12 Apr 79					
River stage el 548.04					
Seepage observation*	11	16	1p	41	
Estimated pressure head el	546.0	544.4	546.0	545.0	
Pressure head above ground h., ft	-6.0	-3.8	-5.5	-1.4	
Factor of safety h / h				•	
High-water observation date					
River stage el					
Seepage observation*					
Estimated pressure head el					
Pressure head above ground h , ft					
Factor of safety h_/h_ x'					
Projected performance					
River stage (new levee crest) el 560.8					
•					
Pressure head above ground h . ft.					
Factor of safety h /h					
x_,2					

Table 33
Piezometer Data and Calculated Seepage Source and Exit Distances, Muscatine Island, Range MB

ge nce	Exit	ft	401	877						
Seepage Distance	no s	ft	512	523						
	q	MB-5	540.72	543.12						
	Piezometer No. and Elevation Head	MB-4	542.94	544.14			riojection to bevee crest Elevations			
	o. and Ele	MB-3	Dry	544.25			מבה רובצר			
	ezometer N	MB-2	Dry	Dry		4 40:	רוחוו רח דים			
	Pi	MB-10	 oλeq 	 		D 30	12011			
		MB-1L	543.57	544.57						
	River Stage	el	545.99	546.27				Levee Crest el	558.5	
		Date	23 Mar 79	12 Apr 79					1979	New

 $[\]mathsf{x}_3$ are based on 1979 landside toe location and average ground elevation. and s Calculated values for 44

Table 34

こうしょう かんしょう かんしゅう かんしゅう こうまっている しゅうしょう

Performance Observations and Calculated Factors

of Safety, Muscatine Island, Range MB

Low Spot 400 540.5 538.0 2.5 2.5 2.5 2.0 8.0 8.0	1b	26	2b	
Toe 138 539.7 539.7 0 0, 0 0.8 0 539.7	14	19	114	
Piez. MB-5 594 542.1 542.1 536.7 5.4, 5.4 6.8 4.3	1b	2c	1b	Continued)
Piez. MB-4 91 544.2 540.0 4.2 2.1, 4.2 0.8 3.4 547.6	1b	16	110	9)
Location identification Distance from levee center line, ft Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness z _b , z _t Critical gradient i Critical head, h = c _i z Critical head el	High-water observation date 1965 River stage el 552.7 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h _x	High-water observation date 1969 River stage el 549.5 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h_h	High-water observation date 1973 River stage el 551.1 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h_/h	

4a - Pin boils 4b - Sand boils 4c - Large boils

3a - Light seepage beyond toe 3b - Heavy s: page beyond toe

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

* Code performance:
1a - Reported dry
1b - No seepage reported
1c - Through seepage
1d - Light toe seepage
1e - Heavy toe seepage

Table 34 (Concluded)

THE REPORT OF THE PROPERTY OF THE PARTY OF T

Low Spot	400	2.040	542.5			ť	207	040.0	3.0	/ 0													
Toe	138	039.7	539.7			έ,	0 775	2	2														
Piez. MB-5	594	742.1	546.4			γ,	1 675		0.1	?													
Piez. MB-4	544 2	3.4	547.6			2b	544.1	10-															
Location identification Distance from levee center line for	Ground el	Critical head, $h_z = i_z$	Critical head el ^C C t	High-water observation date 12 Apr 79	River stage el 546.27	Seepage observation*	Estimated pressure head el	Pressure head above ground h , ft	Factor of safety h_/h_ x'	×	High-water observation date	River stage el	Seepage observation*	Estimated pressure head el	Pressure head above ground h , ft	Factor of safety h /h x'	×	Projected performance	River stage (new levee crest) el 558.5	Projected pressure head, el	Pressure head above ground h , ft	Factor of safety h_/h X	×

Piezometer Data and Calculated Seepage Source and Exit Distances, Muscatine Island, Range MC

ge	Exit x3*		,						
Seepage Distance	Source s*	273	970	j					
	pı								
	Piezometer No. and Elevation Head	533.22	536.82		t	Projection to Levee Crest Elevations			
	o. and Ele	537.35	538 05			vee Crest			
	ezometer N	Drv	96 075			tion to Le			
	Pi	Drv	10 975			Projec			
	MC-1	540.37	538 87						
	River Stage	545.30	28 575				Levee Crest el	557.7	
	Date	23 Mar 79	12 Anr 79					1979	New

are based on 1979 landside toe location and average ground elevation. х 3 and S * Calculated values for

Table 36

さい、 小田のではなると、これは、

Performance Observations and Calculated Factors

of Safety, Muscatine Island, Range MC

					Bottom of	
Location identification Distance from layer center line ft	Piez. MC-4	Piez. MC-5	Toe	Low Spot	Ditch 150	
Ground el	541.7	538.4	540.4	538.6	534.3	
Bottom of top stratum el	535.3	535.0	535.3	536.5	534.3	
Top stratum thickness z	4.9	3.4	5.1	2.1	0	
Transformed thickness z _b , z _t	6.4, 6.4	3.4, 3.4	5.1, 5.1	2.1, 2.1	0,0	
Critical gradient i	0.8	0.8	0.8	0.8	0.8	
Critical head, $h = i z$	5.1	2.7	4.1	1.7	0	
Critical head el	546.8	541.1	544.5	540.3	534.3	
High-water observation date 1965						
River stage el 552.1						
Seepage observation*	1b	116	1b	1b	1b	
Estimated pressure head el						
Pressure head above ground h., ft						
Factor of safety h_/h_, *						
W D						
High-water observation date 1909						
River stage el 548.9						
Seepage observation*	1b	1b	1b	1b	36	
Estimated pressure head el						
Pressure head above ground hj, ft						
Factor of safety $h_{\mathcal{L}}/h_{\mathcal{L}}$						
High-water observation date 1973						
River stage el 550.4						
Seepage observation [*]	15	1b	1b	1b	1b	
Estimated pressure head el						
Pressure head above ground h, ft						
Factor of safety h_/h_ x						
ر ×		Continued)				

* Code performance:
la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

Table 36 (Concluded)

					Rottom of	
Location identification	Piez. MC-4	Piez. MC-5	Top	Low Snot	Ditch	
Distance from levee center line, ft	96	593	103	200	150	
Ground el	541.7	538.4	540.4	538.6	534.3	
Critical head, $h_z = i_z$	5.1	2.7	4.1	1.7	0	
Critical head el C	546.8	541.1	544.5	540.3	534.3	
High-water observation date 12 Apr 79						
River stage el 545.87						
Seepage observation*	1a	la	la	la	2 b	
Estimated pressure head el	538.0	533.2	537.9	537.0	537.5	
Pressure head above ground h , ft	-3.7	-5.2	-2.5	-1.6	3.2	
Factor of safety h_/h, x					0	
A 10 to the second control of the second con						
night-water observation date						
River stage el						
Seepage observation*						
Estimated pressure head el						
Pressure head above ground h . ft						
Factor of safety h /h						
X O COURT TO TORRE						
Projected performance						
River stage (new levee crest) el 557.7						
Projected pressure head, el						
Pressure head above ground h , ft						
Factor of safety h /h x'						
× / /						

. .

illed Tiga

Table 37

Piezometer Data and Calculated Seepage Source and Exit Distances, Green Bay, Range GBA

ge	Exit x ₃ * ft	07						
Seepage	Source s* ft	746						
	and Elevation Head				Slevations			
					Projection to Levee Crest Elevations			
	Piezometer No.	516.93			ion to Lev			
	Pie GBA-2	520.45			Project			
	GBA-1	520.96						
	River Stage e1					Levee Crest el	533.5	
	Date	12 Apr 79					1979	New

are based on 1979 landside toe location and average ground elevation. and S * Calculated values for

Table 38

Tak a Marie and American

Performance Observations and Calculated Factors

of Safety, Green Bay, Range GBA

Location identification Distance from levee center line, ft Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness z Critical gradient i Critical head, h = 'i z Critical head el High-water observation date 1969	ft 49.5 523.3 507.5 11.3, 15.8 11.3, 15.8 12.6 535.9	Piez. GBA-3 79.2 519.6 509.7 9.9, 9.9 9.9, 9.9 7.9		Berm Toe 100 520.0 507.7 12.3, 12.3 12.3, 12.3 9.8 529.8	Low Spot #1 200 519.2 508.0 11.2, 11.2 11.2, 11.2 0.8 9.0 528.2	Low Spot #2 700 518.4 509.6 8.8 8.8 8.8 0.8 7.0
	527.3 la k, ft	1a		ed .	18	13
Sepage observation* Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h _x High-water observation date 12 Apr	530.8 1b	1b		14	lb	1b
River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _C /h	1b 520.4 -2.9	1b 516.9		1b 520.2 0.2 61	2b 519.7 0.5 18	2b 517.3
* Code performance: la - Reported dry lb - No seepage reported lc - Through seepage	2a - Berm wet 2b - Water standing in low areas 2c - Fields wet or soft behind l	(continued) ; in low areas soft behind levee	3a - Light s 3b - Heavy s	seepage beyond	d toe 4a -	Pin boils Sand boils Large boils

la - Reported drylb - No seepage reportedlc - Through seepageld - Light toe seepagele - Heavy toe seepage

Table 38 (Concluded)

Location identification	Piez. GBA-2	Piez. GBA-3	Berm Toe	Low Spot #1	Low Spot #2
Distance from levee center line, ft	49.5	792	100	200	700
Ground el	523.3	519.6	520.0	519.2	518.4
Critical head, $h = i z$.	12.6	7.9	9.6	8.6	7.0
Critical head el C t	535.9	527.5	529.8	528.2	525.4
High-water observation date					
River stage el					
Seepage observation*					
Estimated pressure head el					
Pressure head above ground h . ft					
Factor of safety h /h					
x_ /2_ (
High-water observation date					
River stage el					
Seepage observation*					
Estimated pressure head el					
Pressure head above ground h . ft					
Factor of safety h /h					
x , 2 ,					
Projected performance					
River stage (new levee crest) el 533.5					
Projected pressure head, el	;				
Pressure head above ground h., ft					
Factor of safety h /h					
×					

Table 39

Piezometer Data and Calculated Seepage Source and Exit Distances, Green Bay, Range GBB

age ance	Exit	ft	142						
Seepage Distance	Source	ft	1355						
		GBB-7	514.78		}				
	P	GBB-6	516.10						
	evation Hea	GBB-5	516.34			Elevations			
	Piezometer No. and Elevation Head	GBB-4	517.35			Projection to Levee Crest Elevations			
	ezometer N	GBB-3	521.17			tion to Le			
)	GBB-2	523.15			Projec			
		GBB-1	517.90						
	River Stage	eI	524.90				Levee Crest el	530.0	
	i e	Date	12 Apr 79					1979	New

are based on 1979 landside toe location and average ground elevation.

and x₃

* Calculated values for

Table 40

The second secon

Performance Observations and Calculated Factors

of Safety, Green Bay, Range GBB

	Levee Toe &				Bottom of	Bottom of
Location identification	Piez. GBB-4	Piez. GBB-5	Piez. GBB-6	Piez. GBB-7	Ditch	Road Ditch
Distance from levee center line, ft	82	184	237	382	206	396
Bottom of ton stratum of	501.0	507.3	505 0	502 6	5.04.5	502 5
Top stratum thickness z	18.2	13.1	11.7	13.8	7.3	11.5
Transformed thickness z, z,	15.6, 18.2	13.1, 13.1	11.7, 11.7	13.8, 13.8	7.3, 7.3	11.5, 11.5
Critical gradient i U	8.0	8.0	0.8	0.8	8.0	0.8
Critical head, $h_{c} = i_{c} z_{t}$	14.6	10.5	9.6	11.0	5.8	9.2
Critical head el	534.6	527.8	526.1	527.4	517.6	523.2
vation date						
River stage el 528.0						
Seepage observation*	1b	1b	1b	1b	4 p	19
Estimated pressure head el						
Pressure head above ground hy, ft						
Factor of safety h/h						
ıte						
River stage el 525.7						
ation*	le	1b	1b	1b	1b	1b
Estimated pressure head el						
Pressure head above ground h., ft						
Factor of safety h_x/h_x						
te						
Seepage observation*	1b	1b	116	1b	4P	16
Estimated pressure head el						
Pressure head above ground h., ft						
Factor of safety h /h						
× U		Continued)				
* Code performance:						

4a - Pin boils 4b - Sand boils 4c - Large boils

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

la - Reported dry lb - No seepage reported lc - Through seepage ld - Light toe seepage le - Heavy toe seepage

Table 40 (Concluded)

Bottom of Road Ditch 396 514.0	1b 514.7 0.7 13.1		
Bottom of Ditch 206 511.8 517.6	1b 516.2 4.4 1.3		
Piez. GBB-7 382 516.4 11.0 527.4	1b 514.8 -1.6		
Piez. GBB-6 237 516.7 516.7 526.1	1b 516.1 -0.6		
Piez. GBB-5 184 517.3 10.5	2b 516.3 -1.0		
Levee Toe & Piez. GBB-4 82 82 520.0 14.6 534.6	1b 517.4 -2.6		
Location identification Distance from levee center line, ft Ground el Critical head, h = i z Critical head el c t High-water observation date 12 Apr 20	River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h, h High-water observation date	Estimated pressure head el Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c / _k Projected performance River stage (new levee crest) el 530.0	

Table 41

- いっている 一番のないできない

Piezometer Data and Calculated Seepage Source and Exit Distances, Fabius River, Range FA

age	Exit	ft	53							
Seepage	Source s*	ft	829							
	pı	FA-5	473.26				n I			
	and Elevation Head	FA-4	475.46				Projection to Levee trest Elevations			
		192	477.78				evee crest			
	Piezometer No.	FA-2	482.10				Tion to Te			
	Pi	FA-1U	482.18			f	Projec			
		FA-1L	476.11							
	River Stage	e1	480.31					Levee Crest el	8.685	
		Date	11 Apr 79						1979	New

are based on 1979 landside toe location and average ground elevation. ×3 and S * Calculated values for

Table 42

The state of the s

Performance Observations and Calculated Factors of Safety, Fabius River, Range FA

Other			
Berm Toe 114 475.6 464.8 10.8, 10.8 10.8, 10.8 8.6 484.2	14	1b	
Piez. FA-5 641 472.2 462.2 10.0 10.0 10.0 8.0 8.0	1b	1b	opped
Piez. FA-4 91 479.0 464.9 14.1 12.4, 14.1 11.3 490.3	10	16	Overtopped
Location identification Distance from levee center line, ft Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness z_b , z_t Critical gradient i Critical head, $h = i_t z_t$ Critical head e	High-water observation date 1965 River stage el 483.9 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h _x	High-water observation date 1969 River stage el 479.5 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h	High-water observation date 1973 River stage el 487.9 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h, h

Code performance:

PROPERTY OF THE PROPERTY OF TH

la - Reported dry 1b - No seepage reported

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

lc - Through seepage 1d - Light toe seepage 1e - Heavy toe seepage

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

Table 42 (Concluded)

the second section of the second section of the second section of the second section of the second section of

The state of the s

Berm Toe	475.6	8.6	484.2		-	475.4	-0.2	1												
Piez. FA-5	472.2	8.0	480.2		24-25	473.3	1.1	7.3												
Piez. FA-4	479.0	11.3	490.3		‡	475.5	-3.5	•												
Location identification	Distance from levee center line, it Ground el	Critical head, $h_c = i_c z_t$		High-water observation date 11 Apr 79	Consess observations	Setimated pressure head el	Pressure head above ground h , ft	Factor of safety h_c/h_x	High-water observation date	River stage el	Seepage observation*	Estimated pressure head el	Pressure head above ground h., ft	Factor of safety h_/h_ *	Projected performance	River stage (new levee crest) el 489.8	Projected pressure head, el	Pressure head above ground hj, ft	Factor of safety h_/h, *	x

Table 43

Piezometer Data and Calculated Seepage Source and Exit Distances, Fabius River, Range FB

36	1Ce	* £ × 5	1	148							
Seepage	Distance	Source s*	11	561						}	
										S. Marie Control of the Control of t	
		p		}			ωl				
		vation Hea					Elevation				!
		o. and Ele	FB-4	468.31			evee Crest				
		Piezometer No. and Elevation Head	FB-3	768.90	!		Projection to Levee Crest Elevations				
		Ρį	FB-2	469.02			Projec				
			FB-1	470.61					:		
		River	el	478.01				Levee Crest	487.0	; ; ;	
			Date	10 Apr 79					1979	New	

and \mathbf{x}_3 are based on 1979 landside toe location and average ground elevation. * Calculated values for

Performance Observations and Calculated Factors of Safety, Fabius River, Range FB Table 44

	E				7 4 0	
	Noe or				center rine	
Location identification	Piez. FB-2	Piez. FB-3	Piez. FB-4	Low Spot	of Ditch	Other
Distance from levee center line, ft	93	291	760	126	196	
Ground el	467.1	466.5	9.997	465.2	465.2	
Bottom of top stra'um el	460.3	461.2	461.3	460.5	460.7	
	8 7			L 7	7 . 5	
Top stratum thickness z	0.0	5.0	0.3	t	4.0	
Transformed thickness $\mathbf{z}_\mathtt{k}$, $\mathbf{z}_\mathtt{t}$	6.8, 6.8	5.3, 5.3	5.3, 5.3	4.7, 4.7	4.5, 4.5	
Critical gradient i_	0.8	0.8	0.8	0.8	0.8	
Critical head, $h = ci z$	5.4	4.2	4.2	3.8	3.6	
Critical head el ct	472.5	470.7	470.8	0.697	468.8	
High-water observation date 1965						
River stage al 481.3						
ation*	119	1b	16	4 P	1b	
Estimated pressure bead al						
Decrinated pressure acad cr						
Fressure head above ground h, it						
Factor of safety h_/h_						
	!					
vation date						
River stage el 477.0						
ation*	1b	1b	16	4 P	1b	
Estimated pressure head el						
Presente head shows around he ft						
Treatment mean above Bround II.						
ractor of sarety n/n c/x						
High-water observation date 1973	•	٠				
River stage el	Overtopped	pped				
Seepage observation*						
Estimated pressure head el						
Pressure head above ground h ft						
English of anti-th-lh-X						
ractor of salety "/" C X)	Continued)				
		contract)				
★ Code performance:						

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

Table 44 (Concluded)

Other																	
Center Line of Ditch	196	3.6	468.8		16	469.0	0.0										
Low Spot	126	3.8	769.0		4P	469.0	1.0										
Piez. FB-4	466.6	4.2	470.8		1b	468.3	2.5										
Piez. FB-3	291	4.2	470.7		16	468.9	1.8										
Toe & Piez. FB-2	93	5.4	472.5		14	1.0	2.8										
Location identification	Distance from levee center line, ft Ground el	Critical head, h = i_z	Uritical head el	high-water observation date 10 Apr 19 River stage el 478.01	Seepage observation*	Estimated pressure nead el Pressure head above around h ft	Factor of safety h / h.	High-water observation date	ation*	Estimated pressure head el	ound h , ft	Factor of safety h_/h X	Projected performance	River stage (new levee crest) el 487.0	Projected pressure head, el	Factor of eafate b /h X	racco or salety and c

Table 45
Piezometer Data and Calculated Seepage Source

さんかい こうしゅうしゅう かんしょう かんしゅう かんしゅう こうしゅうしゅう

and Exit Distances, South Quincy, Range SQ

nge Ince	Exit x,*	ft	98	84					62	
Seepage	Source	ft	378	344					277	
	ײַ	80-5	468.45	468.52					469.1	
	vation He	SQ-4	472.38	472.88			Elevations		475.7	
	Piezometer No. and Elevation Head	80-3	473.49	473.69			Projection to Levee Crest Elevations			
	ezometer	80-2	481.50	478.60			tion to Le			
	ă	SQ-1U	479.58	Dry			Projec			
		SQ-1L	473.78	89.747					8.627	
	River Stage	el	477.48	478.78				Levee Crest el	486.2	
	!	Date	11 Apr 79	13 Apr 79					1979	New

 x_3 are based on 1979 landside toe location and average ground elevation. and S * Calculated values for

Performance Observations and Calculated Factors Table 46

これのことのできることである。 これのできることのできることできることできることできること

δį	
Range	
uincy,	
South	
safety,	
of 8	

Location identification Distance from levee center line, ft Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness z, z Critical head, h = c, z Critical head el Critical head el River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h / h, River stage el River stage el River stage el Estimated pressure head el River stage el Seepage observation* Estimated pressure head el River stage el Seepage observation date Estimated pressure head el Pressure head above ground h, ft Estimated pressure head el Pressure head above ground h, ft	Piez. SQ-4 100 473.5 465.8 4.4, 7.7 4.4, 7.7 6.2 6.2 479.7	Piez. SQ-5 592 468.0 460.7 7.3, 7.3 7.3, 7.3 6.8 473.8	Levee Toe 139 470.6 465.3 5.3, 5.3 6.8 4.2 474.8	Bottom of Ditch 652 466.7 460.2 6.5, 6.5 6.5, 6.5 1b 1b	Point Beyond Toe 300 470.6 463.6 7.0, 7.0 7.0, 7.0 1b 1b	
High-water observation date 1973 River stage el 484.1 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h	1b	1b Continued)	14	2b	36	

3a - Light seepage beyond toe3b - Heavy seepage beyond toe 2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee la - Reported dry lb - No seepage reported lc - Through Jeepage ld - Light toe seepage le - Heavy toe seepage Code performance:

The second secon

Critical head, $h = i z$	11ez. SQ-4 100 473.5 6.2	Piez, SQ-5 592 468.0 5.8	Levee Toe 139 470.6	Ditch 652 466.7 5.2	Beyond Toe 300 470.6 5.6	
1						
,	1b 472.4	2c 468.4	1b 472.0	1b 467.9	4a-2c 470.8	
1 1 1	-1.1	0.4	3.0	1.2	0.2	
High-water observation date River stage el						
1						
t t						
1						
Kiver stage (new levee crest) el <u>486.2</u> Projected pressure head, el						
Pressure head above ground h , ft						
Factor of safety h /h X						
, c, x						

Table 47

Piezometer Data and Calculated Seepage Source and Exit Distances, South River, Range SRA

ge nce	Exit	ft	•	•	19				192	
Seepage	Source	ft	1	595	009				745	
	77									
	Piezometer No. and Elevation Head	SRA-5	465.82	466.72	76.997		Elevations		468.2	
	o. and Ele	SRA-4	467.20	469.20	02.697		Projection to Levee Crest Elevations		472.3	
	ezometer N	SRA-3	Dry	472.21	472.26		tion to Le			
	Pi	SRA-2	Dry	467.10	470.39		Projec			
		SRA-1	467.59	469.79	470.39				473.2	
	River Stage	el	470.47	474.79	476.29			Levee Crest el	483.0	
		Date	22 Mar 79	10 Apr 79	13 Apr 79				1979	New

s and x_3 are based on 1979 landside toe location and average ground elevation. * Calculated values for

Table 48

Performance Observations and Calculated Factors

of Safety, South River, Range SRA

Location identification	Piez. SRA-4	Piez. SRA-5	Levee Toe	Ditch	Road Ditch	
Distance from revee center line, it Ground el	471.0	467.8	470.0	180	9.997	
Bottom of top stratum el	463.0	460.2	463.0	462.5	9.095	
Top stratum thickness z	8.0	7.6		- 1	9.9	
Transformed thickness z, z	5.0, 8.0	7.6, 7.6	5.0, 7.0	3.3, 3.3	6.0, 6.0	
Critical gradient 1	0.8	0.8	9.0	0.8	0.0	
Critical head el	47774	473.9	475.6	7.897	471.4	
High-water observation date 1965						
 						
ļ	16	16	le	16	16	
Estimated pressure head el						
Pressure head above ground h, ft						
Factor of safety h_c/h_x						
te						
River stage el 474.2						
	15	16	1Þ	J.	11	i
Estimated pressure head el						
Pressure head above ground h, ft						
Factor of safety h/h						
High-water observation date 1973						
ļ						
ation*	1b	1b	le	16	1b	
Estimated pressure head el	i					
Pressure head above ground h., ft						
Factor of safety h_/h_ *						
•						
))	(Continued)				
* Code performance:						
2a -	Berm wet		- Light	seepage beyond	toe 4a	- Pin boils
rted 2b -	er standing in low areas	areas	3b - Heavy	seepage beyond	toe	
- 2c -	Fields wet or soft behind levee	ind levee			347	- Large boils
id - Light toe seepage						

Table 48 (Concluded)

toad Ditch 525 466.6 471.4	2b 467.4 0.8 6.0		
Ditch Ro 180 465.8 2.6 478.4	1b 469.1 3.3 0.8		
Levee Toe 75 470.0 5.6 475.6	1b 469.7 -0.3		
Piez. SRA-5 605 467.8 6.1 473.9	2b 467.0 -0.8		
Piez. SRA-4 67 471.0 6.4 477.4	1b 469.7 -1.3		
Location identification Distance from levee center line, ft Ground el Critical head, $h = i_c t$ Critical head el	High-water observation date 13 Apr 79 River stage el 476.29 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h _x High-water observation date	Kiver stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h	Projected performance River stage (new levee crest) el 483.0 Projected pressure head, el Pressure head above ground h, ft Factor of safety h _c /h

Table 49

Piezometer Data and Calculated Seepage Source and Exit Distances, South River, Range SRB

lge ince	Exit	ft	•	•	5.7				67	
Seepage Distance	Source	ft	576	290	303				323	
	70									
	Piezometer No. and Elevation Head	SRB-5	464.35	464.85	465.15		Elevations		0.995	i.
	Vo. and Ele	SRB-4	466.63	468.43	469.13		Projection to Levee Crest Elevations		471.6	
	iezometer l	SRB-3	Dry	469.29	69.697		tion to Le			
	à	SRB-2	Dry	474.98	474.98		Projec			
		SRB-1	467.11	469.81	470.66				473.8	
	River Stage	el	470.76	474.41	476.06			Levee Crest el	482.2	
		Date	22 Mar 79	10 Apr 79	13 Apr 79				1979	New

are based on 1979 landside toe location and average ground elevation. x 3 * Calculated values for s and

Table 50

The state of the s

Performance Observations and Calculated Factors

of Safety, South River, Range SRB

Low Spot 400 465.5 458.2 7.3 7.3, 7.3 0.8 5.8 471.3	la	16	3a	
Berm Toe 110 469.4 458.0 11.4 9.7, 11.4 9.1 478.5	Ta la	1b	14	
Piez. SRB-5 534 468.2 458.4 9.8 2.3, 9.8 7.8 7.6 476.0	1a	16	1b	Continued)
Piez. SRB-4 63 471.5 458.0 13.5 9.7, 13.5 9.7, 13.5 482.3	a	16	, a	0)
Location identification Distance from levee center line, ft Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness z_b , z_t Critical gradient i Critical head, $h = i$ Critical head el	High-water observation date 1965 River stage el 478.3 Seepage observation* Estimated pressure head el Pressure head above ground hx, ft Factor of safety h _c /h _x	High-water observation date 1969 River stage el 473.9 Seepage observation* Estimated pressure head el Pressure head above ground hx, ft Factor of safety h _c /h _x	High-water observation date 1973 River stage el 481.8 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h _x	

* Code performance:
la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage

2a - Berm wet
2b - Water standing in low areas
2c - Fields wet or soft behind levee

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

Table 50 (Concluded)

Table 51
Piezometer Data and Calculated Seepage Source and Exit Distances, South River, Range SRC

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

age ance	Exit	ft	7.7	104					223	
Seepage	Source	ft	909	522	{				760	
	Đ									
	Piezometer No. and Elevation Head	SRC-5	465.09	465.59			Elevations		467.5	
	lo, and Ele	SRC-4	467.96	468.76			Projection to Levee Crest		471.8	
	ezometer A	SRC-3	467.68	467.73			tion to Le			
	P.	SRC-2	472.46	472.41			Projec			
		SRC-1	768.60	469.65					473.3	
	River Stage	el	472.60	474.30				Levee Crest el	480.2	
		Date	10 Apr 79	13 Apr 79					1979	New

are based on 1979 landside toe location and average ground elevation. and ŝ Calculated values for

Table 52

Performance Observations and Calculated Factors of Safety, South River, Range SRC

469.7 464.8 468.3 461.5 459.7 451.7 468.3 461.5 459.7 451.7 451.7 451.1 459.7 451.7 8.8 8.4 5.6, 10 7.5, 13.1 5.8, 8.8 2.8, 8.4 8.0 0.8 0.8 0.8 8.0 10.5 475.3 468.2 477.7 475.3 468.2 468.2 1b 1b 1b 1b 1b 1b 1b 1b 1b 1b 1b 1b	Location identification	Piez. SRC-4	Piez. SRC-5	Levee Toe	Edge of Ditch	
451.7 459.5 453.1 13.1 8.8 8.4 13.1 8.8 2.8, 8.4 0.8 0.8 0.8 10.5 7.0 6.7 475.3 475.3 468.2 1b 1b 4a 1b 1b 1b 1b 1d 1b		469.7	591	468.3	461.5	
7.5, 13.1 5.8, 8.8 2.8, 8.4 0.8 0.8 0.8 10.5 7.0 6.7 475.3 475.3 468.2 1b 1b 4a 1b 1b 1b 1b 1d 1b		459.7	451.7	459.5	453.1	
0.8 0.8 0.8 10.5 7.0 6.7 475.3 468.2 1b 1b 4a 1b 1b 1b 1b 1d 1b		5.6, 10	7.5, 13.1	5.8, 8.8	2.8, 8.4	
10.5 7.0 6.7 475.3 468.2 1b 1b 4a 1b 1b 1b 1b 1d 1b 1b 1d 1b		0.8	0.8	0.8	0.8	
1b 4a 4a 4b 5.5 400.2 4b 6.2 4a		8.0	10.5	7.0	6.7	
1b 4a 1b 1b 1b 1b 1b 1b 1b 1d 1b 1d		4//./	4/3.3	473.3	7.004	
1b 4a 4a 1b						
		16	1b	1b	4a	
d1 d						
1b 1d 1b						
d1 d1 d1 d1						
1b 1d 1b						
		;	;	;	;	
		ID	qI	ID	I D	•
1b 1d 1b						
1b 1d 1b						
1b 1d 1b						
1b 1d 1b						
			1b	14	16	
						ļ
			Continued)			

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

4a - Pin boils 4b - Sand boils 4c - Large boils

2a - Berm wet
2b - Water standing in low areas
2c - Fields wet or soft behind levee

* Code performance:

la - Reported dry lb - No seepage reported lc - Through seepage ld - Light toe seepage le - Heavy toe seepage

Table 52 (Concluded)

Section of the Contract of the

Edge of	Ditch	510	461.5	6.7	468.2			2c	466.1	9.4	1.5												
	Levee Toe	100	468.3	7.0	475.3			1b	468.7	7.0	17.5												
	Piez. SRC-5	591	8.494	10.5	475.3			1b	465.6	8.0	13.1											!	
	Piez. SRC-4	88	469.7	8.0	477.7			1b	468.8	6.0-	•												
	Location identification	Distance from levee center line, ft	Ground el	Critical head, $h_i = i_z$	Critical head el C C	High-witer observation date 13 Apr 79	Rive stage el 474.30	Seepage observation*	Estimated pressure head el	Pressure head above ground h., ft	Factor of safety h/h x	High-water observation date	River stage el	Seepage observation*	Estimated pressure head el	Pressure head above ground h , ft	Factor of safety h /h x'	×	Projected performance River stage (new lease creet) al 480 3	Projected pressure head al	Dranger of a post of the fet	Factor of safety b /h	ractor or sarety II / III

Table 53

Piezometer Data and Calculated Seepage Source and Exit Distances, Sny Island, Range SA

ge nce	Exit x3*	244						
Seepage	Source s* ft	549						
	SA-6	ı						
	Piezometer No. and Elevation Head SA-3 SA-4 SA-5	457.68			Projection to Levee Crest Elevations			
	o. and Ele	459.08			vee Crest			
	ezometer N SA-3	460.28			tion to Le			
	Pi.	461.14			Projec			
	\$A-1	460.02						
	River Stage el	464.62				Levee Crest el	471.0	
	Date	14 Apr 79					1979	Nes

^{*} Calculated values for s and x_3 are based on 1979 landside toe location and average ground elevation.

Performance Observations and Calculated Factors

of Safety, Sny Island, Range SA

	Levee Toe &					New
Location identification	Piez. SA-4	Piez. SA-5	Piez. SA-6	01d Toe	Bevond Toe	Berm Toe**
Distance from levee center line, ft	78	208	813	120	150	232
Ground el	460.8	459.5	452.5	454.0	454.0	453.7
Bottom of top stratum el	444.0	444.3	442.1	444.1	444.2	444.3
Top stratum thickness z	16.8	15.2	10.4	6.6	9.8	9.6
Transformed thickness z, z,	5.0, 13.3	14.0, 14.0	8.8, 8.8	7.1, 7.1	7.7, 7.7	8.3, 8.3
Critical gradient i	0.8	0.8	0.8	0.8	0.8	0.8
Critical head, $h = i z$	10.6	11.2	7.0	5.7	6.2	9.9
	471.4	470.7	459.5	459.7	460.2	460.3
High-water observation date 1965						
River stage el 465.9						
Seepage observation*	1b	1b	1b	1b	1b	•
Estimated pressure head el						
Pressure head above ground h . ft						
Factor of safety h /h x'						
×						
High-water observation date 1969						
River stage el 464.3						
Seepage observation*	1b	1b	1b	1b	3a	•
Estimated pressure head el						
Pressure head above ground hj, ft						
Factor of safety h_/h *						
High-water observation date 1973						
Ì						
ation*	1b	1b	1P	4p & 4c	4b & 4c	1
Estimated pressure head el						
Pressure head above ground h., ft						
Factor of safety h_/h_						
Y .		Continued)				
- South the series						

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee la - Reported dry
lb - No seepage reported
lc - Through seepage
ld - Light toe seepage
le - Heavy toe seepage Code performance:

** Large berm was built in 1974.

3a - Light seepage beyond toe3b - Heavy seepage beyond toe

4a - Pin boils 4b - Sand boils 4c - Large boils

Table 54 (Concluded)

New Berm Toe 232 453.7 460.3	48 456.5 2.8 2.3		
Beyond Toe 150 454.0 6.2 460.2			
01d Toe 120 454.0 5.7 459.7			
Piez. SA-6 813 452.5 7.0 459.5	2c-3a 453.2 0.7		
Piez. SA-5 208 459.5 11.2 470.7	1b 457.1		
Levee Toe & Piez. SA-4 78 460.8 10.6	1b 460.3 -0.5		
Location identification Distance from levee center line, ft Ground el Critical head, $h=i_c^t$ Critical head el	High-water observation date 10 Apr 79 River stage el 462.92 Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h High-water observation date	Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h /h	River stage (new levee crest) el 471.0 Projected pressure head, el Pressure head above ground h, ft Factor of safety h h

Table 55

Piezometer Data and Calculated Seepage Source and Exit Distances, Sny Island, Range SB

1ge	Exit x ₃ * ft	325	299	253					252		
Seepage	Source s* ft	419	339	277					271		
	Piezometer No. and Elevation Head	452.07	454.17	454.97		-	Elevations		456.8		1
	o. and Ele-SB-4	453.09	455.79	426.74			Projection to Levee Crest Elevations		459.6		
	ezometer N	Dry	454.84	456.64			tion to Le				
	Pi	Dry	457.13	458.58			Projec				
	SB-1	453.88	457.48	459.08					463.0		
	River Stage el	456.69	462.01	463.78				Levee Crest el	9.697		
	Date	21 Mar 79	10 Apr 79	14 Apr 79					1979	New	

 $[\]star$ Calculated values for s and x_3 are based on 1979 landside toe location and average ground elevation.

The state of the s

ŧ,

Performance Observations and Calculated Factors

of Safety, Sny Island, Range SB

Toe & Fiez. SB-5 Ditch Ditch Slough A52.2 Beyond Toe 115 100 353 205 215 115 453.2 445.2 448.8 450.3 452.8 446.5 445.0 445.8 445.8 446.8 6.7 7.2, 7.2 3.0, 3.0 4.5, 4.5 3.2, 6.0 9.8 0.8 0.8 0.8 0.8 5.4 458.6 457.6 457.6	41 1b	1b 1b 3a 1b	3 1c 1b 1b 4b
Location identification Distance from levee center line, ft Ground el Bottom of top stratum el Top stratum thickness z Transformed thickness z _b , z _t Critical gradient i Critical head, h = c _i z _t Critical head el Critical head el			River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h/h

* Code performance: la - Reported dry lb - No seepage reported lc - Through seepage ld - Light toe seepage le - Heavy toe seepage

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee

3a - Light seepage beyond toe 3b - Heavy seepage beyond toe

4a - Pin boils 4b - Sand boils 4c - Large boils

Table 56 (Concluded)

Location identification	Toe & Piez. SB-4	Piez. SB-5	Ditch	Slough	Beyond Toe	
Distance from levee center line, ft	100	353	205	215	115	
Ground el	453.2	452.2	448.8	450.3	452.8	
Critical head, $h_{\lambda} = i_{\lambda}z_{+}$	5.4	5.8	2.4	3.6	4.8	
Critical head el C	458.6	458.0	451.2	453.9	457.6	
High-water observation date 10 Apr 79						
River stage el 462.01						
Seepage observation*	1b	1b	19	1p	15	
Estimated pressure head el	455.8	454.2	455.1	455.1	455.7	
Pressure head above ground h., ft	2.6	2.0	6.3	8.4	2.9	
Factor of safety h_/h, x	2.1	2.9	4.0	0.8	1.7	
High-water observation date						
River stage el						
Seepage observation*						
Estimated pressure head el						
Pressure head above ground h., ft						
Factor of safety h / h x						
Projected performance						
River stage (new levee crest) el 469.6						
Projected pressure head, el	429.6	457.2	458.6	458.5	429.4	
Pressure head above ground h., ft	6.4	5.0	8.6	8.2	9.9	
Factor of safety h / h x	0.8	1.2	0.2	7.0	0.7	

Piezometer Data and Calculated Seepage Source and Exit Distances, Sny Island, Range SC

								Seepage Distance	1ge
	River Stage		Q.	Piezometer No.	No. and El	and Elevation Head	ad	Source s*	Exit
Date	el	SC-1	SC-2	SC-3	SC-4	SC-5		ft	ft
21 Har 79	460.35	ی	Dry	457.68	453.16	70.677		5884	,
10 Apr 79	460.03	457.03	458.29	457.68	456.86	454.84		1092	427
14 Apr 79	462.33		459.29	458.53	458.46	456.14		718	867
								İ	
			Proje	ction to L	Projection to Levee Crest Elevations	Elevation	ωį		
	Levee Crest el								
1979	468.5	463.4			462.9	459.6	Ì	199	815
New									

 $^{^\}star$ Calculated values for s and x_3 are based on 1979 landside toe location and average ground elevation.

Table 58

The state of the s

Performance Observations and Calculated Factors

of Safety, Sny Island, Range SC

Table 58 (Concluded)

Berm Toe 170 455.2 10.8 466.0	1d 456.5 1.3 8.3		
Piez. SC-5 559 454.0 14.8 468.8	2b 454.8 0.8		
Piez, SC-4 71 459.0 12.5 471.5	1b 456.9		
Location identification Distance from levee center line, ft Ground el Critical head, h = ict	High-water observation date 10 Apr 79 River stage el Seepage observation* Estimated pressure head el Pressure head above ground h, ft Factor of safety h _c /h High-water observation date	ation* sure head el above ground h, ft ty h_/h mance	After Stage (new tever crest) at $\frac{400.3}{1}$ Projected pressure head, el Pressure head above ground h, ft Factor of safety $\frac{1}{C}$ h

Table 59

Piezometer Data and Calculated Seepage Source

and Exit Distances, Sny Island, Range SD

age ince	Exit x3*	•	1058	436				674	
Seepage Distance	Source s* ft	3444	5478	1017				830	
	Pt						1		
	and Elevation Head	450.16	452.26	453.86		Projection to Levee Crest Elevations		457.1	
	lo. and Ele SD-4	451.52	454.52	456.02	-	evee Crest		0.094	
	Piezometer No.	453.39	453.69	455.09		tion to Le			
	Pi SD-2	Dry_	460.04	460.14		Projec			
	SD-1	451.60	454.60	456.50				460.8	
	River Stage el	454.84	459.80	461.90			Levee Crest el	0.897	
	Date	21 Mar 79	10 Apr 79	14 Apr 79				1979	New

^{*} Calculated values for s and x_3 are based on 1979 landside toe location and average ground elevation.

Table 60

Performance Observations and Calculated Factors

of Safety, Sny Island, Range SD

Decention identification Piez. SD-4 Piez. SD-5 Low Spot		Levee Toe &				
rr line, ft	Location identification	Piez. SD-4	Piez. SD-5	Low Spot		
ste 1965 454.7 451.2 4 451.2 4 451.2 4 435.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Distance from levee center line, ft	89	260	595		
ste 1965 15.7 15.7 10.8 ste 1965 466.9 463.8 463.8 ate 1969 1b 1b 1b ate 1969 1c 1b ate 1973 1c ate 1973 1c ate 1973 1c ate 1973 1c ate 1073 1c ate 10.8, ft ate 1	Ground el	454.7	451.2	0.944		
ste 1965 11.2, 15.2 15.7, 15.7 10.8, 10.	Dotton of ton otton	3 007	1.3E E	6363		
ste 1965 11.2, 15.2 15.7, 15.7 10.8, ate 1965 466.9 463.8 463.8 462.4 ate 1969 1b 2c 1l ate 1973 1c 1b 1l ate 1973 1c 1l ate 1973 1c 1l ate 1973 1c 1l ate 100 100 100 ate 100 100 ate 100 100 100 ate 100 100 100 ate 100 1	porcom or cop act a com er	437.3	0.00	3.000		
ste 1965 ate 1965 ate 1966.9 ate 1969 ate 1969 ate 1973 ate 1974 ate 1974 ate 1974 ate 1975 continued)	Iop stratum thickness z	15.2	15.7	10.8		
ate 1965 ate 1965 ate 1965 ate 1969 ate 1973 ate 1974 (Continued)	Transformed thickness z,, z,	11.2, 15.2	15.7, 15.7			
ste 1965 466.9 463.8 45 ate 1965 1b 1b 1b bund h, ft 1b 2c 1b ate 1969 1b 2c 1b ate 1973 1c 1b 1b ate 1973 1c 1b 1b ate 1 e1 1c 1b 1b ate 1 e1 1c 1b 1b ate 1 e1 1c 1c 1c	Critical gradient i D L	0.8	0.8	0.8		
ate 1965 466.9 463.8 45 at e 1b 1b 1b ate 1969 ate 1969 ate 1b 2c 1b ate 1973 ate 1973 ate 1c 1b 1b ate 1b/7.4 1c 1b ate 1c 1b 1b ate 1c 1c 1c ate 1c 1c	Critical head, $b = c_i z$	12.2	12.6	8.6]
ate 1965 del 1b 1b bund hx, ft 1b 2c ate 1969 ate 1969 ate 1b 2c del 1c 1b ate 1973 ate 1c 1b del 1c 1b del (Continued)	Critical head el ct	6.994	463.8	454.6		
hx, ft 1b 1b 1b 1b 1b 1b 1d 1d						
hx, ft						
h _x , ft	ation*	19	1b	1b		
h _x , ft	Estimated pressure head el					
1969 461.8 1b 2c 1by, ft 1973 467.4 1c 1b 1b 1c 1b 1c 1b 1c	Dressing head about account he					
1969	Francia of action to the X					
1969	ractor or sarety n/n					
461.8 1b 2c 1 hx, ft 1c 1b 1 hx, ft 1c 1b (Continued) 1c						
hx, ft 2c 2c 2c 2d						
hx, ft 1973 467.4 hx, ft (Continued)		16	2c	1b		
h _x , ft 1973 467.4 h _x , ft (Continued)	Estimated pressure head el					
1973 467.4 h _x , ft 1c 1b 1b 1c 1b 1c 1b 1c 1c	Pressure head above pround h . ft					
1973 467.4 1c 1b h _x , ft (Continued)	Factor of safety h /h					
1973 467.4 1c 1b h, ft (Continued)						
1c 1b						
1c 1b						
	Seepage observation*	1c	1b	11		
	Estimated pressure head el					
	Pressure head above ground h , ft					
	Factor of safety h /h X					
	x o table to table		Continued)			
			(======================================			
	la - Reported dry 2a - Berm wet			3a - Light	- Light seepage beyond toe	4a - Pin boils

2a - Berm wet2b - Water standing in low areas2c - Fields wet or soft behind levee la - Reported drylb - No seepage reportedlc - Through seepageld - Light toe seepagele - Heavy toe seepage

3a - Light seepage beyond toe 3b - Heavy seepage beyond toe

4a - Pin boils
4b - Sand boils
4c - Large boils

Table 60 (Concluded)

Critical head, h = i z t Critical head el
--

Table 61

Summary of Basic Data for Calculation of Landside Permeability
Ratios for Old Sites with Complete Piezometer Data

									Perv	
	Dist. f	Dist. from Center Line Land-	er Line	Projected Piez. Pressure	d Piez. ire		Eff. Seepage	Top- Stratum	Sub- stratum	
	River- side	side	Land- side	River-	Land-	Ave.	Exit Dist.		Thick- ness	Landside Permeability
Levee District and Range	Piez.	Piez.	Toe	side Piez.	Toe Piez.	Ground	x ₃ x _x	² bg ft	d ft	Katio k _f /k _b g**
Bay Island										
Range C	6-	25	37.5	546.2	545.6	542.6	158	5.5	135	34
Range D	-13	39	39	545.7	543.5	539.0	106	12.0	130	7.2
Hunt	&	07	53	492.3	491.4	487.5	195	5.0	112	79
Sny Island										
Range A	-5	28.7	80	471.9	471.3	8.697	370	13.8	110	06
Range F	-14.5	31.5	39	463.6	462.0	458.6	06	9.7	34	31
Range B	-7	35.6	83	462.3	461.2	455.0	193	6.3	110	54
Range H	-16.5	27	69	459.0	455.1	0.655	26	6.1	105	1.1

 $[\]star$ Determined from observed piezometric pressures projected to old crest elevation.

^{**} $k_f/k_{b\ell} = (x_3)^2/z_{b\ell}d$.

Table 62

Summary of Basic Data for Calculation of Riverside Permeability
Ratios for Old Sites with Complete Piezometer Data

Levee District and Range	Distan Cente River- side Toe ft	Distance from Center line River- Land- side side Toe Toe ft ft	Dist. to River L1 ft	Effective Seepage Source s* ft	Effecti Length x ₁ ft	Effective Blanket Length Thickness ^x 1 ^z br ft ft	بيپې	Pervious Sub- stratum Thick- ness d	Riverside Permeability Ratio kf/kpt
Bay Island									
Range C	-40	37.5	029	307	229.5	10	0.00433	135	07
Range D	-20	39	135	203	114	12	0.00501	130	20
Hunt	-50	53	1300	445	342	2	0.00292	112	209
Sny Island									
Range A	-43	80	159	225	102	9	0.00861	110	20
Range F	-65	39	495	207	103	7	0.00971	34	78
Range B	-85	83	157	288	120	9.4	0.00632	110	50
Range H	-48	69	219	157	40	S	0.02500	105	3.0

 $[\]star$ Determined from observed piezometric pressures projected to old crest elevation. tanh $\left(cL_1\right)$

$$\dagger \quad \mathbf{k_f/k_{br}} = 1 / \left[(c^2) (z_{br}^d) \right].$$

^{**} A constant determined from the equation $x_1 = \frac{1}{c}$

Table 63

Summary of Permeability Ratios for Old

Sites with Complete Piezometer Data

	Permeahi	lity Ratio	Top-Stratum Permeability
Levee District and Range	Landside k f / k bl	Riverside k _f /k _{br}	Ratio k _{bl} /k _{br}
Bay Island			
Range C	34	40	1.2
Range D	7.2	20	2.8
Hunt	64	209	3.3
Sny Island			
Range A	90	20	0.2
Range F	31	78	2.5
Range B	54	50	0.9
Range H	1.1	3.0	2.7
Suggested			
for design	100		2

Table 64

Summary of Top-Stratum Thickness and Permeability Ratios

Sites	
Range	
te	
Ē	
Piezometer	
H P	
010	
at Old	
for Old Levee Sections	
cti	
Se	
vee	
Le	
014	
or	
44	

	Top-S	Top-Stratum			Per	Permeability Ratio, k _f /k _b	Ratio, k	f/kb		
	Trans	Transtormed					3	ES	3	SS
	Tond	Thickness	LMVD	1956	RID	RID 1960	1	1979	10	1979
	Land-	KIVET-	Crit	Criteria	Des	Design	Calc	Calculated	Suggested	ested
Levee District	an s	an I s	Land-	River-	Land-	River-	Land-	River-	Land-	River-
and Range	20g	² br	side*	side**	side	side	side	side	side	side
Muscatine Island	4.0	4.5	250	1560	100	200	•		100	200
Bay Island										
Range C	5.5	10	400	2500	100	400	34	77	100	200
Range D	12.0	12	800	6250	700	1600	7.2	19	100	200
Iowa River	5.0	5.5	400	2500	100	700	ı	ı	100	200
Green Bay	8.0	7	400	2500	100	700	ı	•	100	200
Hunt	5.0	5	400	2500	100	400	64	212	100	200
Fabius River	8.7	6	400	2500	100	007	•	,	100	200
South Quincy	8.4	0.3	250	180	09	800	•		100	200
Sny Island										
Range A	13.8	9	800	2500	400	1600	90	20	100	200
Range F	7.6	4	400	1560	100	400	31	78	100	200
Range B	6.3	4.6	400	1560	100	700	54	20	100	200
Range G	5.0	5.5	400	2500	100	400	•	•	100	200
Range H	6.1	Ŋ	400	2500	100	400	1.1	3.0	100	200
Range I	12.6	2	800	2500	007	700	•	•	100	200

* From TM 3-424, Table 38, page 265 (see footnote on page 20). ** From TM 3-424, Table 37, page 256 (see footnote on page 20).

Table 65

Summary of Basic Data for Calculation of Piezometric Pressures and Berm Widths for New Levee Sections at Old Piezometer Range Sites

		Dist. from Center Line	from						Pervious		Base
		of Le	evee			Top	Stratu	.	Sub-	Dist.	Width
	Nec	River-	River- Land-	A 2.5.	Net	Trs Th	Transformed Thickness	g	Thick-	to River	of Levee
Levee District	Crest	Toe	Toe	Ground	nead H	2 ² b2	2br	2 t	ness d	17	L
and Range	e]	ft	ft	el	ft	ft	ft	ft	ft	tt '	٤,
Muscatine Island	558.4	-55	148	540.2	18.2	5.6	4.5	7.8	93	200	203
Bay Island											
Range C	556.6	-68	65	542.7	13.9	5.6	10	5.6	135	029	133
Range D	555.4	-52	98	540.0	15.4	13.1	12	13.1	130	135	138
Iowa River	543.5	-45	108	527.9	15.6	4.5	5.5	4.5	114	195	153
Green Bay	529.9	-65	112	517.1	12.8	8.9	7	8.9	88	760	177
Hunt	501.5	-62	11	486.7	14.8	6.2	5	6.2	112	1300	139
Fabius River	8.684	-80	118	475.0	14.8	8.2	6	8.2	711	220	198
South Quincy	482.4	-45	127	465.8	16.6	8.9	0.3	8.9	110	45	172
Sny Island											
Range A	477.2	-43	98	463.8	13.4	13.8	9	14.6	110	159	129
	472.8	-65	150	459.0	13.8	5.4	4	9.9	34	495	215
	472.5	-85	143	455.7	16.8	7.9	4.6	7.9	110	157	228
Range G	470.5	-20	76	455.0	15.5	2.0	5.5	7.2	112	1105	144
Range H	468.4	-48	144	0.655	19.4	6.5	2	6.5	105	677	192
Kange I	8.894	05-	75	455.5	13.3	14.4	S	14.4	87	530	115

Table 66

Summary of Basic Data for Calculation of Piezometric Pressures and

Berm Widths at New Piezometric Range Sites

		Dist.	from								
		Center Line	Line						rervious		Base
		of Love	900			Top	-Stratum		-gng	Dist	W. Ark
		River-	Land-		Net	Tra	Transformed		Stratum Thiota	to	of
1	Levee	side	side	Avg.	Head	린	ickness	}	10104	River	Levee
Levee District	Crest	Toe	Toe	Ground	×	2pg	2, Dr	ر2 رئ	e p	r,	L,
and Nange	e l	ft	ft	e]	비	tt T	ft	ft	ft	ţ,	ند ه س
Muscatine Island											
Range MA	560.8	-53	20	550.0	10.8	۲ ۶		9	ŗ	,	•
Range MB	558.5	-97	138	540.0	18.5	1.0	· v	1.0	136	0 021	123
Kange nc	557.7	-90	103	539.0	18.7	5.1	9.4	5.1	125	402	103
Green Bay) 	•	?
Range GBA	533.5	-30	29	520.0	13.5	11.2	•	1 71	751	903	6
Range GBB	230.0	87-	82	516.5	13.5	14.5	· ~	18.2	126	349	9 0
Fabius River											3
Range FA	489.8	-91	114	475.0	14.8	8 01	7 0	9	90	6	
Range FB	487.0	-100	100	466.5	20.5	8.9	. 6	. «	52	293	502 500
South Quincy							•) ;	1		007
Range SQ	486.2	67-	139	470.5	15.7	5,3	14.3		136	(1)	9
South River						!		3	3	7/0	198
Range SRA	483.0	-65	75	4.69.4	13.6	5.0	-	0 6	77		,
Range SKB	482.2	0,7-	63	470.0	12.2	9.7	13	13.5	24 5	172	103
Natige Shi	480.2	-43	100	467.5	12.7	5.8	10	8.	113	197	163
Sny Island										·	?
Range SA	471.0	-100	232	453.5	17.5	8	ve	œ	911	ć	6
Kange SB	9.695	-53	100	450.3	19.3	, e	3.5	. 6	95	9/7	332
	468.5	-39	100	455.5	13.0	9.5		13.6	98	424	135
Kange SU	468.0	-95	89	453.5	14.5	11.2	9.8	15.2	102	124	186

Table 67

Summary of Permeability Ratios and Effective Seepage Distances for New Levee Sections at Old Piezometer Range Sites

	I	LMVD 1956	Criteria	e		RID 1960	Design		3	WES 1979	Suggested	pa
	Permeabi	lity	Seepa	-8e	Permeability	bility	Seep	age	Permea	Permeability	Seep	age
	Ratio		Dista	ince	Rai	Ratio	Dist	ance	Ra	Ratio	Dist	ance
	$k_{ m f}/k_{ m b}$		Exit Entr	Entr.	k _f ,	k_f/k_b	Exit Entr	Entr.	k	$\mathbf{k_f}/\mathbf{k_b}$	Exit Entr	Entr.
Levee District	Land-	River-	× ×	Ø	Land-	River-	x ×	S	Land-	River-	×°	Ø
and Range	side		Ħ	ft	side	side	ft	ft	side	side	ft	ft
Muscatine Island	400	1560	456	399	100	200	228	376	100	200	228	376
Bay Island												
Range C	400	2500	550	775	100	700	275	799	100	200	275	579
Range D	800	6250	1167	273	400	1600	825	273	100	200	413	270
Iowa River	250	2500	358	346	100	700	226	339	100	200	226	330
Green Bay	700	2500	260	643	100	007	280	552	100	200	280	487
Hunt	700	2500	527	1086	100	700	797	809	100	200	797	£13
Fabius River	400	2500	619	417	100	007	310	410	100	200	310	403
South Quincy	007	180	247	212	09	800	212	216	100	200	273	213
Sny Island												
Range A	800	2500	1102	287	700	1600	779	287	100	200	390	279
Range F	400	1560	172	579	100	400	135	745	100	200	135	379
Range B	400	1560	290	383	100	700	295	379	100	200	295	373
Range G	400	2500	473	1027	100	400	237	629	100	200	237	767
Range H	400	2500	522	800	100	400	261	605	100	200	261	206
Range I	800	2500	1001	709	400	400	708	471	100	200	354	394

Table 68

Summary of Predicted Piezometric Heads at Landside Toe and Calculated Berm Widths for New Levee Sections at Old Piezometer Range Sites

	LMVI	LMVD 1956 Cri	Criteria	R	RID 1960 Design	sign	WES	WES 1979 Sugg	Suggested
			Calcu-			Calcu-	•		Calcu-
	Pred	Predicted	lated	Pred	Predicted	lated	Pred	Predicted	lated
	Piez.	Piez. Head	Berm	Piez	Piez. Head	Berm	Piez	Piez. Head	Berm
	at	Toe	Width	at	at Toe	Width	at	at Toe	Width
Levee District	ے°		ds X	ч°		X Sp	ч°		x sb
and Range	ft	el	ft	ft	el	ft	ft	el	ft
Muscatine Island	9.7	549.9	242	6.9	547.1	25	6.9	547.1	25
Bay Island									
Range C	5.8	548.5	165	4.1	546.8	None	4.5	547.2	None
Range D	12.5	552.5	215	11.6	551.6	87	9.3	549.3	None
Iowa River	7.9	535.8	343	6.2	534.1	162	6.3	534.2	167
Green Bay	9.0	523.0	None	4.3	521.4	None	4.7	521.8	None
Hunt	4.8	491.5	None	4.5	491.2	None	5.3	492.0	70
Fabius River	8.8	483.8	211	6.4	481.4	None	7.9	481.4	None
South Quincy	12.0	477.8	521	8.2	4.4.4	105	9.3	475.1	179
Sny Island									
Range A	10.6	4.474	None	8.6	473.6	None	7.8	471.6	None
Range F	4.4	463.4	None	3.2	462.2	None	3.6	462.6	None
Range B	10.2	6.594	332	7.4	463.1	51	7.4	463.1	24
Range G	4.9	459.9	None	4.2	459.2	None	5.0	0.094	None
Range H	7.7	456.7	251	5.9	454.9	36	9.9	455.6	9/
Range I	8.3	463.8	None	8.0	463.5	None	6.3	461.8	None

a translation

Summary of Predicted Piezometric Heads at Landside Toe for New Piezometer Range Sites

		1	TVD 1956	LMVD 1956 Criteria*				UFC 1070	S. C.	9		
	•	}	Effe	Effective		Predicted		13/1	Eten 1919 Suggested Ferm.	Effecting	Kat 108	
	Permea	Permeability	See	Seepage	Piezo	Piezometric	Permes	Permeability	See	Segnage	Pre Die	rredicted
	Rat	Ratios	Dist	Distances	Ж	Heads	Rat	Ratios	Dist	Distances	L L L L L L L L L L L L L L L L L L L	Heads
	$\mathbf{r_f}'\mathbf{r_b}$	ام.	Exit	Entr.	at Toe	Toe	k c / k,	, Jack	Exit		at j	at Toe
Levee District	Land-	River-	× ×	50	<i>°</i>		Land-	River-	×	Entr.	_c°	
PARTE VERME	Side	side	되	H	비	6	side	side	#	۳,	ָּנָר י	e]
Juscatine Island												<u> </u>
Range MA	250	1650	301	123	7.7	557 7	9	000	•	•	,	•
Range MB	250	2500	184	404	80,	545.8	001	200	116	123	o .	556.6
Kange MC	400	1560	202	572	80 90	547.8	100	200	25.2	727	7 Y	244.2
Green Bay									}	;	?	. C. C.
Range GBA	800	2500	1175	582	0.6	529.0	100	000	21.7	707	•	,
Kange GBB	800	2500	1209	473	9.7	526.2	100	200	427	401		526.3
Fabius River									Ì	?	•	343.3
Range FA	800	2500	970	767	8	484.8	001	900	676	,	•	
Range FB	400	2500	376	866	6.2	472.7	100	200	188	, ç	2.0	481.3
South Quincy								}	3	700	9.0	4/2.1
Range SQ	400	6250	537	861	6.0	476.5	100	000	3,68	107		ì
South River									3	160	;	4/4 4.
Range SRA	007	6250	303	262	7 3	1 747	9	6		ì		
Range SRB	700	6250	458	275	7.6	477.6	2002	200	200	907	 	474.5
Kange SRC	400	6250	512	340	7.6	475.1	100	200	256	320		4/3./
Sny Island									}	}	?	1.5/
Range SA	400	2500	604	909	8.7	462.2	100	000	303	773	•	
Manger Sta	250	1560	288	212	11.1	461.4	100	200	182	211	- o	439.0
Range SD	0 0	2500	572	551	9.9	462.1	100	200	286	442	5.1	460.6
	8	2007	926	308	11.0	464.5	100	200	338	305	9.7	461.1

* From TM 3-424 (see footnote, page 20).

Table 70

Summary of Calculated Berm Widths for New Piezometer Range Sites

		LMVD	LMVD 1956 Criteria*	ria*		3	WES 1979 Suggested Perm.	ggested Pe	rm. Ratios	
			Effective	tive	Calcu-			Effective	tive	Calcu-
	Permeabi		Seepage	age	lated	Permea	Permeability	Seepage	age	lated
	Ra .	Katios	Distances	nces	Berm	Kat	Katios	Distances	nces	Berg
	Į,	$^{\mathbf{K}}_{\mathbf{f}}/^{\mathbf{K}_{\mathbf{b}}}$	EX1t	Entr.	Width	K _f /K _b	م _د	EXIC	Entr.	Width
Levee District	Land-	River-	e *	w	sp sp	Land-	River-	* 3	Ø	ds,
and Range	side	side	ft	ᆲ	ft	side	side	ᆈ	tt	ᆲ
Muscatine Island										
Range MA	250	1650	301	123	None	100	200	190	123	None
Range MB	250	2500	184	404	781	100	200	116	394	407
Range MC	400	1560	505	572	516	100	200	252	7/7	152
Green Bay										
Range GBA	800	2500	1175	582	None	100	200	415	481	None
Range GBB	800	2500	1209	473	None	100	200	427	416	None
Fabius River										
Range FA	800	2500	970	767	133	100	200	343	457	None
Range FB	400	2500	376	998	59	100	200	188	205	9
South Quincy										
Range SQ	007	6250	537	861	233	100	200	268	691	98
South River										
Range SRA	700	6250	303	262	92	100	200	152	256	None
Range SRB	007	6250	458	275	None	100	200	229	797	None
Range SRC	700	6250	512	340	45	100	200	256	329	None
Sny Island										
Range SA	700	2500	909	909	193	100	200	302	999	None
Range SB	250	1560	288	212	266	100	200	182	211	117
	400	2500	572	551	None	100	200	286	744	None
Range SD	800	2500	926	308	102	100	200	338	302	None

^{*} From TM 3-424 (see footnote, page 20).

Table 71

Comparison of Predicted Piezometric
Heads at Old Piezometer Range Sites

できる。

Levee District	Piezom	etric Hea	d, h _o	h Ra	tio
and Range	LMVD	RID	WES	WES/LMVD	WES/RID
Muscatine Island	9.7	6.9	6.9	0.71	1.00
Bay Island					
Range C	5.8	4.1	4.5	0.78	1.10
Range D	12.5	11.6	9.3	0.74	0.80
Iowa River	7.9	6.2	6.3	0.80	1.02
Green Bay	6.0	4.3	4.7	0.78	1.09
Hunt	4.8	4.5	5.3	1.10	1.18
Fabius River	8.8	6.5	6.4	0.73	0.98
South Quincy	12.0	8.2	9.3	0.78	1.13
Sny Island					
Range A	10.6	9.8	7.8	0.74	0.80
Range F	4.4	3.2	3.6	0.82	1.13
Range B	10.2	7.4	7.4	0.73	1.00
Range G	4.9	4.2	5.0	1.02	1.19
Range H	7.7	5.9	6.6	0.86	1.12
Range I	8.3	8.0	6.3	0.76	0.79
			Average	0.81	1.02

Table 72

Comparison of Predicted Piezometric Heads at New Piezometer Range Sites

	Piezometri	c Head, h	
Levee District	LMVD	WES	h _o Ratio
and Range	<u>Criteria</u>	Criteria	WES/LMVD
Muscatine Island			
Range MA	7.7	6.6	0.86
Range MB	5.8	4.2	0.72
Range MC	8.8	6.5	0.74
Green Bay			
Range GBA	9.0	6.3	0.70
Range GBB	9.7	6.8	0.70
Fabius River			
Range FA	9.8	6.3	0.64
Range FB	6.2	5.6	0.90
South Quincy			
Range SQ	6.0	4.4	0.73
South River			
Range SRA	7.3	5.1	0.70
Range SRB	7.6	5.7	0.75
Range SRC	7.6	5.6	0.74
Sny Island			
Range SA	8.7	6.1	0.70
Range SB	11.1	8.9	0.80
Range SC	6.6	5.1	0.77
Range SD	11.0	7.6	0.69
		Averag	ge 0.74

Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Sa

Table 73

Comparison of Calculated Berm Widths at Old and

New Piezometer Range Sites

Iovas Dietwis		LMVD 1956	ulated Berm Width RID 1960	
Levee Distric	τ			WES 1979
and Range		<u>Criteria</u>	<u>Design</u>	Suggeste
		Old Piezometer Ran	ge Sites	
Muscatine Island	Α	242	25	25
Bay Island	С	165	0	0
Bay Island	D	215	87	0
Iowa River	Α	343	162	167
Green Bay	Α	0	0	0
Hunt	В	0	0	20
Fabius River	Α	211	0	0
South Quincy	A	521	105	179
Sny Island	Α	0	0	0
Sny Island	F	0	0	0
Sny Island	В	332	51	54
Sny Island	G	0	0	0
Sny Island	Н	521	36	76
Sny Island	I		0	0
Total		2280	466	521
Percent LMVD		-	20	23
		New Piezometer Ran	ge Sites	
Muscatine Island	MA	0	_	0
Muscatine Island	MB	781	-	407
Muscatine Island	MC	516	-	152
Green Bay	GBA	0	-	0
Green Bay	GBB	0	-	0
Fabius River	FA	133	-	0
Fabius River	FB	59	-	6
South Quincy	SQ	233	_	86
South River	SRA	92	-	0
South River	SRB	0	_	0
South River	SRC	45	-	0
Sny Island	SA	193	•	0
Sny Island	SB	266	-	117
Sny Island	SC	0	-	0
Sny Island	SD	102	-	0
Total		2420		 768
-004		- 740		, 00

Table 74

Summary of Number of Seepage Observation Locations at
Old and New Piezometer Range Sites

Levee Distri	ct		r of Seepa			
and Range		1960	<u>1965</u>	1969	<u>1973</u>	1979
		Old Pizomet	er Range S	<u>ites</u>		
Muscatine Island	Α	4	3	3	3	-
Bay Island	С	5	4	4	4	-
Bay Island	D	4	3	3	3	-
Iowa River	Α	5	4	4	4	-
Green Bay	Α	5	5	4	4	-
Hunt	В	3	2	2	2	-
Fabius River	Α	4	3	3	-*	-
South Quincy	Α	4	4	3	4	-
Sny Island	Α	7	7	4	4	-
Sny Island	F	5	5	4	4	-
Sny Island	В	6	6	3	3	_
Sny Island	G	3	3	3	3	-
Sny Island	Н	4	4	4	4	-
Sny Island	1	5	5	4	4	-
Total		64	— 58	 48	46	
		New Piezome	eter Range	Sites		
Muscatine Island	MA	-	4	4	4	4
Muscatine Island	MB	-	4	4	4	4
Muscatine Island	MC	_	5	5	5	5
Green Bay	GBA	-	<u>-**</u>	5	5	5
Green Bay	GBB	-	6	6	6	6
Fabius River	FA	_	3	3	-*	3
Fabius River	FB	-	5	5	-*	5
South Quincy	SQ	-	5	5	5	5
South River	SRA	_	5	5	5	5
South River	SRB	_	4	4	4	4
South River	SRC	_	4	4	4	4
Sny Island	SA	-	5	5	5	5
Sny Island	SB	_	5	5	5	5
Sny Island	SC	-	3	3	3	3
Sny Island	SD	-	3	3	3	3
Total		_	61			66

er zakana w

のでは多くない。 大きな変化されている

^{*} Overtopped.

^{**} Under construction.

Summary of River Stage and Number of Seepage Observations at Old Piezometer Range Sites

								Ye	Year							
		1960	١.			1965	5			1060	0					
			See	Seepage			ı	100		130				1973	3	
ı			Obser-	er.			Ohear	Jeepage Obser			See	Seepage			Seepage	age
Levee District	River Stage	tage	Vat	Vations	Dist		600	1 1 .	,		Obser	ır.			Obser-	, <u>1</u>
and Range	el	Rank	No.	Rank	6	Rank	Var	Vacions	River Stage	Stage	vat	vations	River Stage	Stage	vations	ons
Muscatine Island		-	1	Ì		VIII I		Nalik	le l	Kank	Š	Rank	e	Rank	No.	Rank
DIPICI DITABASSI	7./40	4	m	-	553.2		0	E	550.1	~	-	c	2 1 2 3	•		
Bay Island									• • • •)	-	4	331.0	7	9	4
Range C	545 9	7	ŗ	c												
Range D	5,66 1	۲ <	۷ (7 ,	332.6	-	7	-	549.5	က	-	ო	551.0	,	~	٧
	7	t	n	-	551.8	-	-	က	548.8	က	-	7	551.1	- 2	o c	t 4
10Wa Kiver	535.4	4		3	538.9	-	7	-	535.9	~	-	r	0 000	i (, ,	٠ ،
Green Bay	526.1	က	7	7	526 5	c	·	, ,		, ,	٠,	7	330.0	7	0	4
Hunt	1 70%	r	·	٠,		4	1	n	774.4	4	-	4	526.8	-	7	-
	1.064	n	7	-	497.0	7	0	4	493.0	4	-	7	0.665	-	0	~
rablus River	483.5	က	7	7	483.9	7	-	2	ı		c	ı	0 7	, ,	,	1
South Quincy	478.3	n	က	7	679.3	·	<	۱ ،	,	,	> '		8./04	-	ı	
Sny Island						1	>	ŧ	4/2.1	4	7	ო	482.9	-	٣	-
Range A	1 127	ç	•	,	,											
Range F	7 (47)	n ×	n ×	٠, ٠	4/3.1	7	7	7	0.695	4	-	e	8.925	-	-	4
Range B	7.201	,	,	٠,	468.8	7	7	7	465.2	က	0	4	676.2		• •	•
Range G	462.8	า <	† -	٦,	466.8	7	0	4	9. 595	4	1		472.0	- ،	1 ~	٠ د
	402.8	t <	٦ ،	7 .	465.4	7	0		464.2	က	-		470.5	٠ -) -	4 (
Range I	402.0	,	7	7	463.6	7	0		462.8	~	· c	7	7 897	٠.	٠,	n (
1 29 1	400.5	J	m	-	462.7	7	0		462.3	. ~	, c	7 17	0.004	٠,	٠,	7 1
To+01			} ;				J			,	,		7.00	-	უ	7
Iorai			35				12				-				ł	
Percent of total	al						!				11				16	
observation locations*	location		55			•	71									
						•	17				23			•	35	

^{*} Total number of observation locations is shown in Table 74.

Summary of River Stage and Number of Seepage Observations at New Piezometer Range Sites

						}		Year	ar							
		1965			}	1969				1973				1979		
	į		Seepag	Seepage Obser-			Seepage	age			Seepage	age r-			Seepage	a8e
Levee District	River Stage	Stage	vati	vations	River Stage	Stage	vations	ons	River Stage	tage	vations	suo	River Stage	itage	vations	suc
and Range	el	Rank	<u>§</u>	Rank	 	Rank	No.	Rank	e1	Rank	S	Rank	e e	Rank	No.	Rank
Muscatine Island																
Range MA	554.7	-	0	7	551.1	က	0	e	552.4	7	7	-	548.0	4	0	4
Range MB	552.7	-	1	4	549.5	က	က	2	551.1	7	7	က	246.3	4	4	-
Range MC	552.1	1	0	က	548.9	က	-	-	550.4	7	0	4	545.9	4	,- -	7
Green Bay																
Range GBA	1	,	•	,	527.3	7	0	က	530.8	-	1	7	527.1	е	7	
Range GBB	528.0	7	1	7	525.7	3	1	4	528.6	-	-	1	524.9	4	-	က
Fabius River																
Range FA	483.9	7	1	7	479.5	7	0	e	6.184	-	,	ı	480.3	က	7	-
Range FB	481.3	-	1	7	477.0	æ	-	က	•	ı	1	•	478.1	7	7	7
South Quincy																
Range SQ	480.6	7	0	4	4.914	4	7	က	484.1	-	က	1	477.5	ო	3	7
South River																
Range SRA	478.6	7	1	က	474.2	7	0	4	482.1	-	7	7	476.3	က	7	-
Range SRB	478.3	7	0	က	473.9	4	0	4	481.8	-	7	-	476.1	ო	-	7
Range SRC	476.2	7	1	-	471.7	4	0	4	480.0	-	-	ო	474.3	က	-	7
Sny Island																
Range SA	465.9	7	0	7	464.3	က	-	е	471.0	1	4	1	462.9	4	က	7
Range SB	464.4	7	0	c	463.5	က	-	7	469.3	-	7	-	462.0	4	0	4
Range SC	463.0	7	0	က	462.3	က	0	4	6.794	-	-	7	460.0	4	7	-
Range SD	462.4	7	0	4	461.8	ო	-	7	4.7.4	-	-	က	459.8	4	7	-
			1				١				ļ					
Total			9				11				21				56	
Percent of total	1															
observation locations*	locations	*	20				17				36				39	

^{*} Total number of observation locations is shown in Table 74.

Table 77

Summary of Calculated Berm Widths and Worst Observed

Performance at Old and New Piezometer Range Sites

						erved	Performancet
			Max	River			Other than at
		Calculated	Head**		Per-		Toe
Levee District		Berm	H	Obs.	cent	At	with Dist. from
and Range		<u>Width*</u>	<u>ft</u>	_ft_	Max	<u>Toe</u>	toe, ft
	_		~				
	ō	ld Piezomete	r Kange	Sites			
Muscatine Island	A	25	18.2	9.9	54	4c	
Bay Island	С	0	16.0	12.0	75	1 d	4a, 231
Bay Island	D	0	16.7	7.4	44	1e	4a, 200
Iowa River	Α	167	20.4	15.8	77	2a	4a, 287
Green Bay	Α	0	12.8	7.3	57	4a	4a, 588
Hunt	В	20	14.8	6.3	43	3a	
Fabius River	Α	0	14.2	7.9	56	4b	
South Quincy	Α	179	16.4	16.9	103	1e	3b, 53
Sny Island	Α	0	11.9	7.8	66	le	4a, 5
Sny Island	F	0	17.5	11.8	67	4a	4b, 278
Sny Island	В	54	18.4	17.9	97	1d	4c, 231
Sny Island	G	0	16.0	9.7	61	1d	3a, 98
Sny Island	Н	76	19.9	14.1	71	1 d	2ь, 131
Sny Island	I	0	12.3	4.0	33	le	4a, 7
	N	ew Piezomete	er Range	Sites			
Muscatine Island	MA	0	14.4	6.0	42	1b	2ъ, 330
Muscatine Island	MB	407	18.0	9.0	50	2b	2c, 262
Muscatine Island	MC	152	23.4	14.6	62	1b	3b, 47
Green Bay	GBA	0	14.3	7.9	55	1 d	2b, 100
Green Bay	GBB	0	18.2	16.8	92	le	4b, 124
Fabius River	FA	0	17.6	8.1	46	1d	3a, 527
Fabius River	FB	6	21.8	16.1	74	1d	4b, 33
South Quincy	so	86	15.6	6.9	44	le	4a, 161
South River	SRA	0	16.4	9.7	59	le	2b, 450
South River	SRB	Õ	16.7	16.3	98	1d	3a, 290
South River	SRC	0	18.7	14.7	79	1d	4a, 410
Sny Island	SA	0	17.0	17.0	100	4c	
Sny Island	SB	117	16.8	16.5	98	1c	4b, 15
Sny Island	SC	0	13.3	4.8	36	1d	2b, 389
•	SD	0	16.8	10.6	63	1d 1d	•
Sny Island	עפ	U	10.0	10.0	63	14	2c, 506

^{*} Berm width calculated using WES 1979 suggested criteria.

^{**} New levee crest elevation minus ground elevation at worst observed performance.

[†] See paragraph 31 in text for observed performance code.

Table 78

Comparison of Berm Calculation Results and Observed

Performance at Old and New Piezometer Range Sites

		Obs.			culated Lengtl WES 1979	
Levee District		Head	LMVD 19			_
and Range	-	H ft	<u>Criteri</u> Yes	No No	gested Cri	No
						140
Worst 0			nce: Catego ft from Leve		2c Within	
		11180 100	10 IIOM LEVE	<u>e 10e</u>		
Bay Island	С	12.0	X(165)			X
Bay Island	D	7.4	X(215)			Х
Iowa River	Α	15.8	X(343)		X(167)	
Sny Island	В	17.9	X(332)		X(54)	
Sny Island	H	14.1	X(251)		X(76)	
Muscatine Island	MA	6.0		X		Х
Muscatine Island	MB	9.0	X(781)		X(407)	
Green Bay	GBA	7.9		X		Х
Green Bay	GBB	16.8		X		Х
Fabius River	FA	8.1	X(133)			Х
South Quincy	SQ	6.9	X(233)		X(86)	
South River	SRA	9.7	X(92)			Х
South River	SRB	16.3		X		Х
South River	SRC	14.7	X(45)			X
Sny Island	SC	4.8		Х		Х
Sny Island	SD	10.6	X(102)			Х
•			_` ´	_	_	
Total			11	5	5	11
Worst C	bserve	d Performa	nce: Catego	ry 3a to	4c Within	
———— —		First 100	ft from Leve	e Toe		
Muscatine Island	A	9.9	X(242)		X(25)	
Green Bav	A	7.3	(,	X	(,	Х
Hunt	В	6.3		X	X(20)	
Fabius River	Ā	7.9	X(211)		(_0,	Х
South Quincy	A	16.9	X(521)		X(179)	••
			11(321)		$\Lambda(1/2)$	
	Δ	78		Y		x
Sny Island	A	7.8 11.8		X		
Sny Island Sny Island	F	11.8		X		X
Sny Island Sny Island Sny Island	F G	11.8 9.7		X X		X X
Sny Island Sny Island Sny Island Sny Island	F G I	11.8 9.7 4.0	Y(514)	X	V(152)	X X
Sny Island Sny Island Sny Island Sny Island Muscatine Island	F G I MC	11.8 9.7 4.0 14.6	X(516)	X X	X(152)	X X
Sny Island Sny Island Sny Island Sny Island Muscatine Island Fabius River	F G I MC FB	11.8 9.7 4.0 14.6 16.1	X(59)	X X	X(152) X(6)	X X X
Sny Island Sny Island Sny Island Sny Island Muscatine Island Fabius River Sny Island	F G I MC FB SA	11.8 9.7 4.0 14.6 16.1 17.0	X(59) X(193)	X X	X(6)	X X X
Sny Island Sny Island	F G I MC FB	11.8 9.7 4.0 14.6 16.1	X(59)	X X		X X X X

Table 79

<u>Summary of Berm Requirements Using Creep Ratio</u>

<u>Criteria at Old and New Piezometer Range Sites</u>

Levee Distric	t .	Design Head H ft	Levee Width L ₂ ft	Founda- tion Top- stratum	Worst Perf. First 100 ft	Creep Ratio	Req'd Creep Length	Berm Width Req'd
Obs	served	Perform	nance:	Category	1b to 2c	Within	:	
		First	100 ft	from Leve	e Toe			
Bay Island	С	13.9	133	OL	1d	15	209	76
Bay Island	D	15.4	138	OL	1e	15	231	93
Iowa River	Α	15.6	153	CL	2a	15	234	81
Sny Island	В	16.8	228	CL	1 d	15	252	24
Sny Island	H	19.4	192	CL	1 d	15	291	99
Muscatine Island	MA	10.8	123	SP	1b	15	162	39
Muscatine Island	MB	18.5	235	SP	2b	15	278	43
Green Bay	GBA	13.5	89	SP	2b	15	203	114
Green Bay	GBB	13.5	130	SP	le	15	203	73
Fabius River	FA	14.8	205	CL	1d	15	222	17
South Quincy	SQ	15.7	198	CL	1e	15	236	38
South River	SRA	13.6	140	CL	1e	15	204	64
South River	SRB	12.2	103	SC	1 d	15	183	80
South River	SRC	12.7	143	CL	1 d	15	191	48
Sny Island	SC	13.0	139	CL	1d	15	195	56
Sny Island	SD	14.5	184	CL	1c	15	218	34
Ob:	served	Perform	ance:	Category	3a to 4c	Within	<u>.</u>	
		First	100 ft	from Leve	e Toe			
Muscatine Island	Α	18.2	203	SP	4c	15	273	70
Green Bay	Α	12.8	177	SP	4a	15	192	15
Hunt	В	14.8	139	ML	3a	18	266	127
Fabius River	A	14.8	198	CL	4a	15	222	24
South Quincy	A	16.6	172	CL	3b	15	249	77
Sny Island	A	13.4	129	CL	4a	15	201	72
Sny Island	F	13.8	215	CL	4a	15	207	0
Sny Island	Ğ	15.5	144	CL	3a	15	233	89
Sny Island	ī	13.3	115	CL	4a	15	200	85
Muscatine Island	MC	18.7	193	CL	3b	15	281	88
Fabius River	FB	20.5	200	CL	4b	15	308	108
Sny Island	SA	17.5	332	CL	4c	15	263	0
Sny Island	SB	19.3	153	CL	4b	15	290	137

A STATE OF THE STA

APPENDIX A: TIME-LAG ANALYSIS, SNY ISLAND, RANGES A AND B

. . . 2:3

Basic Data

1. From time to time, questions have been asked regarding the time required for the groundwater pressure landside of levees to fully respond to changes in the river stage. During the flood of May 1951, daily and sometimes twice daily readings were obtained from the Sny Island Levee Drainage District, Piezometer Ranges A and B. Figure Al shows the cross sections for these ranges. Figure A2 presents a plot of river stage and piezometer data for 1-15 May 1951 as listed in Table A1.

Discussion

- 2. It is to be noted that on 1 May the river stage is already 4 to 10 ft above the ground elevation of the landside piezometers and that all piezometers are indicating groundwater pressure 1 to 6 ft above the natural ground elevation. Because of this excess groundwater pressure, it is reasonable to assume that the pervious substratum is saturated.
- 3. An examination of Figure A2 indicates that changes in piezometric pressure generally reflect immediately changes in the river stage, i.e., when the river stage increased, the piezometric pressure generally increased; when the river stage decreased, the piezometric pressure generally decreased; and when the river stage crested or bottomed, the groundwater pressure did likewise. This generally immediate response of the groundwater pressure is best seen with the 13 May data when the river crested and all the piezometer data likewise crested at essentially the same time. One exception was the data obtained from Piezometer A-4 where readings for 12 May and the morning of 13 May appear to be in gross error, and a dashed line has been drawn to indicate what may be a reasonable correction.
 - 4. Although the groundwater pressure generally reflects comparable

A STATE OF THE STA

Figure Al. Sny Island cross sections for Piezometer Ranges A and B, with selected 1951 piezometric data

The state of the s

Figure A2. Sny Island river stage and piezometric elevations for Ranges A and B, 1-15 May 1951

A CONTRACTOR

changes in the river stage immediately, some irregularities can be noted. For instance, from 2 to 3 May an intermediate low for the river stage seems to precede the comparable low for Piezometers A-1, A-3, and B-3 by about one day, but for the other piezometers, the time difference does not appear to be significant. Also, some of the piezometer readings, particularly those for Piezometers A-1, A-2, and A-4 from 3 to 10 May, seem to have moved in an irregular fashion. Some of the irregularity can probably be attributed to difficulty in making accurate soundings, and some can be attributed to the impossibility of making the river stage and piezometer readings at the same instance of time. To determine how much of these irregularities can be attributed to these minor inaccuracies of the data, two additional types of plots have been prepared.

River Head Versus Piezometric Head

- 5. The first type is a plot of river head versus piezometric head relative to the natural ground elevation. Data for these plots of Piezometers A-2, A-3, and A-4 in Figure A3 and B-2, B-3, and B-4 in Figure A4 are listed in Tables A2 and A3, respectively. If there were no time lag or other irregularities in the piezometer readings, the plotted points should fall on a single line for both rising and falling river stages. If there were a time lag, the plotted points should form inclined elliptical loops with the points tracking in a clockwise direction. For the data that have been examined, three periods of falling stages and two periods of rising stages are included; therefore, two complete loops and one partial loop should be evident if there were a systematic time lag. However, such is not the case. One partial loop does appear for Piezometers A-2, A-3, and A-4, but that is all. Therefore, this type of plot indicates that there was neither a consistent nor a significant time lag in the groundwater pressure at these piezometer locations.
- 6. One other interesting point, however, is the notable decrease in the piezometric pressure at Piezometers B-2 and B-3 from 12 to 13 May

Figure A3. Sny Island, Range A, river head versus piezometric head, 1-15 May 1951

Section of the second

Figure A4. Sny Island, Range B, river head versus piezometric head, 1-15 May 1951

even though the river continued to rise. This pressure relief could be explained by a nearby rupture in the top stratum, which occurred sometime between the readings of 12 and 13 May. Thus, it must be recognized that some irregularities in the piezometric pressure response can also be caused by initiation or sudden opening of seepage paths through the top stratum as the pressure tends to increase during rising river stages. Likewise, the closing or healing of seepage paths could also explain apparent irregularities, such as an increase or no change in the piezometric pressure during falling stages of the river.

Daily Change in River Stage Versus Daily Change in Piezometric Reading

- 7. The second type of supplementary plot prepared shows daily change in river stage versus daily change in piezometer readings. Data for these plots of Range A in Figure A5 and Range B in Figure A6 are listed in Tables A4 and A5, respectively. If there were no time lag or other irregularities, the plotted points should fall on a single line for each piezometer, the slope of the lines should be the same for both rising and falling river stages, and all lines should pass through the origin. If there were significant time lag, there should be a plus piezometric change at zero river change for a river crest; whereas at a river stage bottom, there should be a negative piezometric pressure change for a zero river change, and the plotted data should have the form of an inclined ellipse with the plotted points tracking in a counterclockwise fashion.
- 8. An inspection of Figures A5 and A6 indicates that there was no systematic counterclockwise pattern for the plotted points and that, in general, the lines connecting the data points pass through zero. There are three notable exceptions to the general pattern. The first is for all piezometers for Range A from 1 to 3 May where none of the data points falls into the anticipated linear pattern. A possible explanation for this occurrence is that the river stage which was falling may have been read earlier than the piezometers on 1 May and later than

- Supplement

Figure A5. Sny Island, Range A, daily change in river stage versus daily change in piezometric elevation head, 1-15 May 1951

Sny Island, Range B, daily change in river stage versus daily change in piezometric elevation head, 1-15 May 1951 Figure A6.

the piezometers on 2 and 3 May when the river stage bottomed out and began to rise.

9. The second exception to the general pattern is for Piezometer A-2 from 6 to 8 May. These two irregular data points can best be explained as simply an erroneous reading most likely for 7 May when the piezometric pressure probably was recorded about 0.1 to 0.2 ft too high. However, it is also possible that something could have happened to reduce the underseepage and natural pressure relief in the vicinity of Piezometer A-2 at this time, thus causing the pressure to increase sharply. This restriction could then have gradually dissipated so that by 9 May the situation had returned to normal.

The second secon

10. The third exception to the general pattern is for Piezometer B-3 from 12 to 13 May. This irregular data point indicates that there was a significant decrease in the piezometric pressure at this time even though the river was continuing to rise. As mentioned in paragraph 6 of this appendix, this situation more than likely can be explained by the opening of a new seepage path in the near vicinity of Piezometer B-3.

Summary of Time-Lag Consideration

- 11. The reader must be careful to recognize that data presented here for the analysis of time lag for the piezometer response are for a time when the substratum is most likely fully saturated. As has been previously noted, all piezometers on the first day of this set of data indicate groundwater pressure 1 to 6 ft above the ground surface; thus, it is reasonable to assume that the substratum was saturated. If the substratum were not saturated, significant time lag should have been anticipated.
- 12. The reader also is cautioned to note that any conclusion regarding time lag based on the data analyzed here is strictly applicable only to the 1950 piezometers installed in the pervious substratum at Sny Island, Ranges A and B. If the piezometer tips should be installed in a relatively impervious stratum or if installation procedures should

result in the clogging of the well screen, significant time lags should be expected. As a matter of fact, at least some of the RID 1977 piezometers experienced significant time lag during the 1979 high-water season, perhaps because well screens may have been partially clogged during installation or perhaps for other reasons. Falling head and/or other field tests can and should be conducted on these piezometers to determine if they are now free draining.

13. Although it is possible for any piezometer to become clogged during or subsequent to installation, for the 1951 data analyzed, there was apparently no significant or systematic time lag for the piezometer response to changes in the river stage. All three types of plots, (a) river stage and piezometric head versus time, (b) river head versus piezometric head, and (c) daily change in river stage versus daily change in piezometric head, indicate that, in general, there was no significant time lag. In isolated cases where there may have been some time lag, the situation can be explained by differences in time for recording river stage and piezometer levels, the sudden initiation or decrease in underseepage nearby, or simply errors in piezometer readings.

The second secon

Comparative Response at Ranges A and B

14. It should be noted that depending on distance from the center line of the levee and ground conditions, some piezometers have a large response to changes in the river stage, and others have a relatively small response. Piezometers closest to the levee generally have a larger response than those farthest from the levee. This can be illustrated by examination of the data in Figures A5 and A6. Data in Figure A5 for Range A indicate that the piezometer response (ratio of change in piezometric pressure to change in river head) ranged from 0.8 for the piezometers nearest the levee to about 0.6 for the piezometer 418 ft from the center line of the levee. At Range A, the top stratum is about 12 to 20 ft thick. However, at Range B where the top stratum is only about 6 to 8 ft thick and the opportunity for underseepage and

natural pressure relief is greater, the 1951 piezometric response shown in Figure A6 was quite different. For Piezometers B-1 and B-2 located on or at the levee, the response averaged about 0.6. For Piezometers B-3 and B-4 located from 115 to 375 ft landside from the center line of the levee, the response averaged about 0.2 ft of piezometric pressure per foot of river head. Thus, while there was no significant time lag in piezometer response, there was a significant difference in the amount of response, caused by a difference in ground conditions and the pressure relief afforded by the natural underseepage in the area.

Table Al

River Stages and Piezometric Elevations for May 1951, Sny Island, Ranges A and B

Piezometer May River Piezometer A-2 A-4 1951 Time Stage el B-1 B-2 B-3 B-4 468.78 468.16 466.65 2 0830 464.13 460.42 459.55 456.68 455.08 468.64 1 1045 464.13 460.42 459.55 456.68 455.08 468.64 1 1045 464.13 460.42 459.55 456.59 455.08 468.41 467.86 466.50 3 1400 463.84 460.27 459.43 456.56 455.08 468.45 466.51 3 1400 463.84 460.27 459.41 456.56 455.08 468.45 466.51 4 1330 463.90 460.27 456.56 455.06 468.70 466.61 4 1330 464.24 460.27 459.46 455.06 468.70 466.61 4 1330 464.30 460.39 459.			Range	A						Range B			
A-3 A-4 Bay River Piezometer A-3 A-4 1951 Time Stage el B-1 B-2 B-3 468.16 466.64 1 1045 464.3 460.42 459.55 456.68 468.05 2 0830 464.1 460.41 459.49 456.59 467.99 466.57 2 0830 464.1 460.41 459.49 456.58 467.86 466.50 3 1030 463.84 460.39 459.41 456.58 467.97 466.57 4 0900 463.87 460.39 459.41 456.58 467.97 466.57 4 0900 463.87 460.39 459.41 456.58 467.97 466.59 4 1330 464.24 460.39 459.45 456.56 468.09 466.59 5 1545 464.47 460.66 459.73 456.65 468.13 466.86 7 1600 46	Miss.						Day		Miss.				
A-3 A-4 1951 Time Stage e1 B-1 B-2 B-3 468.16 466.64 1 1045 464.3 460.42 459.55 456.68 468.05 2 0830 464.1 460.41 459.49 456.59 467.99 466.57 2 1400 463.39 460.27 459.49 456.59 467.99 466.51 3 1030 463.79 460.27 456.56 467.95 466.57 4 1330 463.87 460.27 456.56 467.97 466.65 4 1330 463.90 460.23 459.41 456.56 468.07 466.67 4 1330 464.07 560.43 459.45 456.56 468.08 466.63 5 1546.74 460.38 459.53 456.56 468.10 466.67 4 1330 464.47 460.58 459.45 456.56 468.10 466.67 7 1600 <td< th=""><th>River</th><th></th><th></th><th>Piezo</th><th>meter</th><th></th><th>May</th><th></th><th>River</th><th></th><th>Piezo</th><th>meter</th><th></th></td<>	River			Piezo	meter		May		River		Piezo	meter	
468.16 466.64 1 1045 464.3 460.42 459.55 456.68 468.05 466.65 2 0830 464.1 460.41 459.49 456.58 467.99 466.50 3 1030 463.79 460.27 459.49 456.58 467.86 466.51 3 1030 463.79 460.27 459.41 456.58 467.86 466.51 3 1030 463.84 460.29 459.41 456.58 467.97 466.61 4 1330 463.87 460.33 459.41 456.58 467.97 466.63 5 1545 464.07 560.43 459.45 456.56 468.07 466.63 5 1545 464.24 460.58 456.56 468.16 466.73 464.24 460.58 459.53 456.56 468.28 466.70 464.24 460.58 459.53 456.56 468.32 466.86 7 1600 46	Time Stage el A-1	A-1	Ι.	A-2	A-3	A-4	1951	Time	Stage el	B-1	B-2	B-3	B-4
468.05 466.65 2 0830 464.1 460.41 459.49 456.59 467.99 466.57 2 1400 463.9 460.27 459.47 456.58 467.86 466.51 3 1030 463.79 460.27 459.41 456.56 467.95 466.51 4 0900 463.87 460.29 459.41 456.56 467.97 466.61 4 1330 463.90 460.33 459.41 456.56 468.07 466.63 5 1545 464.07 560.43 459.45 456.56 468.16 466.73 6 1700 464.24 460.58 459.45 456.56 468.16 466.73 6 1700 464.41 460.58 456.56 468.16 466.90 8 1015 464.47 460.71 459.78 456.65 468.35 466.90 8 1050 464.46 460.71 459.78 456.65 468.35 <td>1300 470.61 468.86</td> <td>468.86</td> <td>_</td> <td>468.78</td> <td>468.16</td> <td>49.994</td> <td>1</td> <td>1045</td> <td>464.3</td> <td>460.45</td> <td>459.55</td> <td>456.68</td> <td>455.08</td>	1300 470.61 468.86	468.86	_	468.78	468.16	49.994	1	1045	464.3	460.45	459.55	456.68	455.08
467.99 466.57 2 1400 463.9 460.39 459.47 456.58 467.86 466.50 3 1030 463.79 460.27 459.38 456.56 467.86 466.51 3 1400 463.84 460.29 459.41 456.56 467.97 466.61 4 1330 463.90 460.33 459.45 456.56 468.07 466.63 5 1545 464.07 560.43 459.45 456.55 468.09 466.79 7 0930 464.24 460.58 459.62 456.56 468.16 466.79 7 0930 464.41 460.71 459.73 456.65 468.32 466.90 8 1015 464.47 460.77 459.78 456.65 468.35 466.90 8 1530 464.47 460.77 459.78 456.65 468.35 466.86 9 0940 464.47 460.77 459.76 456.65 <	0 470.26 468.74	468.74		468.62	468.05	466.65	7	0830	464.1	460.41	459.49	456.59	455.06
467.86 466.50 3 1030 463.79 460.27 459.38 456.56 467.86 466.51 3 1400 463.84 460.29 459.41 456.56 467.95 466.57 4 0900 463.87 460.33 459.41 456.56 467.97 466.63 5 1330 463.90 460.35 459.45 456.58 468.07 466.63 5 1545 464.07 560.43 459.45 456.58 468.16 466.73 6 1700 464.24 460.58 459.62 456.56 468.18 466.79 7 0930 464.47 460.66 459.73 456.65 468.32 466.90 8 1015 464.47 460.77 459.78 456.65 468.35 466.90 8 1530 464.47 460.77 459.78 456.65 468.35 466.86 9 0940 464.47 460.77 459.76 456.67	0 470.16 468.69	468.69		468.47	467.99	466.57	7	1400	463.9	460.39	459.47	456.58	455.08
467.86 466.51 3 1400 463.84 460.29 459.41 456.56 467.95 466.57 4 0900 463.87 460.33 459.41 456.58 467.97 466.65 4 1330 463.90 460.35 459.45 456.58 468.07 466.65 5 1545 464.07 560.43 459.53 456.59 468.09 466.673 6 1700 464.24 460.58 459.65 456.56 468.16 466.79 7 0930 464.37 460.66 459.73 456.56 468.28 466.90 8 1015 464.47 460.71 459.78 456.65 468.35 466.90 8 1530 464.50 460.77 459.78 456.65 468.35 466.88 9 0940 464.47 460.77 459.78 456.65 468.35 466.88 9 1500 464.46 460.77 459.78 456.66	470.26	468.57		468.41	467.86	466.50	က	1030	463.79	460.27	459.38	456.56	455.04
467.95 466.57 4 0900 463.87 460.33 459.41 456.58 467.97 466.61 4 1330 463.90 460.35 459.45 456.59 468.07 466.65 5 1545 464.07 560.43 459.53 456.59 468.09 466.63 5 1545 464.07 560.43 459.53 456.56 468.16 466.73 6 1700 464.24 460.58 459.62 456.56 468.18 7 0930 464.41 460.71 459.73 456.65 468.32 466.86 7 1600 464.47 460.77 459.78 456.65 468.35 466.90 8 1015 464.47 460.77 459.78 456.66 468.35 466.88 9 0940 464.44 460.77 459.78 456.66 468.35 466.88 9 1500 464.47 460.77 459.78 456.66 468.37<	470.27	468.57		468.45	467.86	466.51	m	1400	463.84	460.29	459.41	456.56	455.04
467.97 466.61 4 1330 463.90 460.35 459.45 456.59 468.07 466.65 5 1545 464.07 560.43 459.53 456.56 468.09 466.63 5 1545 464.07 560.43 459.62 456.56 468.16 466.73 6 1700 464.24 460.58 459.62 456.66 468.28 466.79 7 1600 464.41 460.71 459.73 456.65 468.35 466.90 8 1015 464.47 460.77 459.78 456.65 468.35 466.90 8 1530 464.47 460.77 459.78 456.65 468.35 466.88 9 1500 464.47 460.77 459.76 456.66 468.32 466.88 9 1500 464.47 460.77 459.76 456.67 468.18 466.82* 11 1930 464.13 460.56 459.61 456.76	470.39	468.67		468.49	467.95	466.57	7	0060	463.87	460.33	459.41	456.58	455.06
468.07 466.65 5 1545 464.07 560.43 459.53 456.56 468.09 466.63 5 1545 464.07 560.43 459.62 456.56 468.16 466.73 6 1700 464.24 460.58 459.62 456.64 468.28 466.79 7 1600 464.41 460.71 459.73 456.65 468.32 466.90 8 1015 464.47 460.77 459.78 456.67 468.35 466.90 8 1530 464.47 460.77 459.78 456.69 468.35 466.88 9 0940 464.47 460.77 459.78 456.69 468.32 466.82 9 1500 464.46 460.77 459.76 456.67 468.18 466.82 10 1415 464.30 460.64 459.61 456.67 468.29 466.82 11 0930 464.13 460.56 459.61 456.67 468.50 466.82 12 1755 464.83 461.00 459.92<		468.69		468.53	467.97	466.61	4	1330	463.90	460.35	459.45	456.59	455.06
468.09 466.63 5 1545 464.07 560.43 459.53 456.56 468.16 466.73 6 1700 464.24 460.58 459.62 456.64 468.28 466.79 7 0930 464.37 460.66 459.70 456.65 468.32 466.90 8 1015 464.41 460.71 459.73 456.65 468.35 466.90 8 1015 464.47 460.77 459.78 456.69 468.35 466.90 8 1530 464.47 460.77 459.78 456.69 468.35 466.88 9 0940 464.47 460.77 459.76 456.67 468.32 466.82 10 1415 464.46 460.77 459.76 456.67 468.18 466.82* 11 0930 464.13 460.56 459.97 456.67 468.50 466.82* 12 1755 464.78 461.00 459.97 456.71		468.82		468.64	468.07	466.65							
468.16 466.73 6 1700 464.24 460.58 459.62 456.64 468.28 466.79 7 0930 464.37 460.66 459.70 456.65 468.32 466.86 7 1600 464.41 460.71 459.73 456.65 468.35 466.90 8 1015 464.47 460.77 459.78 456.67 468.35 466.90 8 1530 464.47 460.77 459.78 456.69 468.35 466.88 9 0940 464.47 460.77 459.76 456.67 468.32 466.88 9 1500 464.46 460.77 459.76 456.67 468.18 466.82* 10 1415 464.30 460.66 459.97 456.67 468.29 466.82* 11 0930 464.13 460.56 459.97 456.85 468.59 466.82* 12 1755 464.78 461.00 459.97 456.71 <td>468.84</td> <td></td> <td></td> <td>468.70</td> <td>468.09</td> <td>466.63</td> <td>S</td> <td>1545</td> <td>464.07</td> <td>560.43</td> <td>459.53</td> <td>456.56</td> <td>455.06</td>	468.84			468.70	468.09	466.63	S	1545	464.07	560.43	459.53	456.56	455.06
468.28 466.79 7 0930 464.37 460.66 459.70 456.65 468.32 466.86 7 1600 464.41 460.71 459.73 456.67 468.36 466.90 8 1015 464.47 460.77 459.78 456.69 468.35 466.90 8 1530 464.47 460.77 459.78 456.69 468.35 466.88 9 0940 464.46 460.77 459.78 456.69 468.32 466.82 9 1500 464.46 460.77 459.76 456.67 468.18 466.82* 10 1415 464.30 460.64 459.76 456.67 468.20 466.82* 11 0930 464.13 460.56 459.97 456.67 468.50 466.82* 12 1755 464.78 461.00 459.97 456.72 468.59 467.04 13 0845 464.78 461.01 459.95 456.71 <td>470.68 468.92</td> <td></td> <td>-</td> <td>468.72</td> <td>468.16</td> <td>466.73</td> <td>9</td> <td>1700</td> <td>464.24</td> <td>460.58</td> <td>459.62</td> <td>456.64</td> <td>455.10</td>	470.68 468.92		-	468.72	468.16	466.73	9	1700	464.24	460.58	459.62	456.64	455.10
468.32 466.86 7 1600 464.41 460.71 459.73 456.67 468.36 466.90 8 1015 464.47 460.77 459.78 456.69 468.35 466.90 8 1530 464.50 460.77 459.78 456.69 468.35 466.88 9 0940 464.47 460.77 459.76 456.67 468.32 466.88 9 1500 464.46 460.77 459.76 456.67 468.18 466.82 1 1415 464.46 460.77 459.76 456.67 468.18 466.82* 10 1415 464.30 460.64 459.68 456.67 468.51 466.82* 11 0930 464.13 460.56 459.68 456.85 468.52 466.82* 12 1755 464.73 460.56 459.95 456.85 468.51 467.00 459.95 456.71 456.52 468.17 466.69	470.85 469.00		_	469.01	468.28	66.99	7	0860	464.37	460.66	459.70	456.65	455.11
468.36 466.90 8 1015 464.47 460.77 459.78 456.69 468.35 466.90 8 1530 464.50 460.79 459.78 456.69 468.35 466.88 9 0940 464.47 460.77 459.76 456.69 468.32 466.86 9 1500 464.46 460.77 459.76 456.67 468.18 466.82 10 1415 464.30 460.77 459.76 456.67 468.18 466.82* 10 1415 464.30 460.64 459.68 456.67 468.19 466.82* 11 0930 464.13 460.56 459.61 456.64 468.5 466.82* 12 1755 464.73 460.56 459.61 456.85 468.5 466.82* 13 0845 464.83 461.01 459.95 456.72 468.5 467.00 13 160.64 459.95 456.71 466.69 468.1 466.69 14 0830 464.73 460.94 459.92 4	470.90 469.10		-	468.97	468.32	98.995	7	1600	464.41	460.71	459.73	456.67	455.11
468.35 466.90 8 1530 464.50 460.79 459.78 456.69 468.35 466.88 9 0940 464.47 460.77 459.76 456.67 468.32 466.82 9 1500 464.46 460.77 459.76 456.67 468.18 466.82 10 1415 464.30 460.77 459.76 456.67 468.18 466.82* 10 1415 464.30 460.64 459.68 456.64 468.20 466.82* 11 0930 464.13 460.56 459.68 456.64 468.51 466.82* 12 1755 464.78 461.00 459.61 456.85 468.55 467.04 13 0845 464.83 461.01 459.95 456.72 468.51 467.00 13 160 464.73 460.94 459.95 456.71 468.17 466.69 14 0830 464.37 460.94 459.92 456.71 468.17 466.09 469.08 459.52 456.71 456.52	470.96 469.13		7	66.89	468.36	766.90	∞	1015	464.47	460.77	459.78	456.69	455.11
468.35 466.88 9 0940 464.47 460.77 459.76 456.67 468.32 466.86 9 1500 464.46 460.77 459.76 456.67 468.24 466.82 10 1415 464.30 460.64 459.76 456.67 468.18 466.82* 11 0930 464.13 460.56 459.68 456.64 468.20 466.82* 12 1755 464.73 460.56 459.61 456.64 468.55 467.04 13 0845 464.83 461.01 459.97 456.78 468.51 467.00 13 1600 464.73 460.94 459.97 456.72 468.51 466.69 14 0830 464.73 460.94 459.92 456.71 468.17 466.69 14 0830 464.37 460.68 459.91 456.67 467.41 466.03 15 0840 463.52 460.15 459.27 456.52	470.98 469.13		7	50.69	468.35	06.995	œ	1530	464.50	460.79	459.78	456.69	455.11
468.32 466.86 9 1500 464.46 460.77 459.76 456.67 468.24 466.82 10 1415 464.30 460.64 459.68 456.64 468.18 466.82* 11 0930 464.13 460.56 459.61 456.64 468.5 466.82* 12 1755 464.78 461.00 459.97 456.68 468.5 467.04 13 0845 464.83 461.01 459.97 456.72 468.5 467.00 13 1600 464.73 460.94 459.97 456.77 468.17 466.69 14 0830 464.37 460.94 459.92 456.71 468.17 466.69 14 0830 464.37 460.68 459.97 456.67 467.41 466.03 15 0840 463.52 460.15 459.27 456.52	470.92 469.13		7	168.89	468.35	466.88	6	0960	464.47	460.17	459.76	456.67	455.11
468.24 466.82 468.18 466.82* 10 1415 464.30 460.64 459.68 456.64 468.20 466.82* 11 0930 464.13 460.56 459.61 456.64 468.55 466.82* 12 1755 464.78 461.00 459.97 456.85 468.59 467.04 13 0845 464.83 461.01 459.97 456.72 468.51 467.00 13 1600 464.73 460.94 459.92 456.71 468.17 466.69 14 0830 464.37 460.68 459.71 456.52 467.41 466.03 15 0840 463.52 460.15 459.27 456.52	470.90 469.10		7	468.95	468.32	466.86	6	1500	94.49	460.77	459.76	456.67	455.11
468.18 466.82* 10 1415 464.30 460.64 459.68 456.64 468.20 466.82* 11 0930 464.13 460.56 459.61 456.64 468.59 466.82* 12 1755 464.78 461.00 459.97 456.68 468.59 467.04 13 0845 464.83 461.01 459.97 456.85 468.51 467.00 13 1600 464.73 460.94 459.95 456.71 468.17 466.69 14 0830 464.37 460.68 459.97 456.51 467.41 466.03 15 0840 463.52 460.15 459.27 456.52	470.78 468.98		•	468.87	468.24	466.82							
468.20 466.82* 11 0930 464.13 460.56 459.61 456.64 468.65 466.82* 12 1755 464.78 461.00 459.97 456.85 468.59 467.04 13 0845 464.83 461.01 459.95 456.72 468.51 467.00 13 1600 464.73 460.94 459.92 456.71 468.17 466.69 14 0830 464.37 460.68 459.91 456.66 467.41 466.03 15 0840 463.52 460.15 459.27 456.52	470.68 468.92			468.78	468.18	466.82*	10	1415	464.30	79.095	459.68	456.64	455.11
468.65466.82*121755464.78461.00459.97456.85468.59467.04130845464.83461.01459.95456.72468.51467.00131600464.73460.94459.92456.71468.17466.69140830464.37460.68459.71456.66467.41466.03150840463.52460.15459.27456.52	470.73 468.95			468.81	468.20	466.82*	11	0830	464.13	460.56	459.61	426.64	455.11
468.59467.04130845464.83461.01459.95456.72468.51467.00131600464.73460.94459.92456.71468.17466.69140830464.37460.68459.71456.66467.41466.03150840463.52460.15459.27456.52		469.42		469.24	468.65	466.82*	12	1755	464.78	461.00	459.97	456.85	455.14
468.51 467.00 13 1600 464.73 460.94 459.92 456.71 468.17 466.69 14 0830 464.37 460.68 459.71 456.66 467.41 466.03 15 0840 463.52 460.15 459.27 456.52		469.40		469.26	468.59	467.04	13	0845	464.83	461.01	459.95	456.72	455.15
468.17 466.69 14 0830 464.37 460.68 459.71 456.66 467.41 466.03 15 0840 463.52 460.15 459.27 456.52		469.28		469.16	468.51	467.00	13	1600	464.73	460.094	459.92	456.71	455.12
467.41 466.03 15 0840 463.52 460.15 459.27 456.52	0930 470.65 468.90	468.90		468.77	468.17	69.995	14	0830	464.37	460.68	459.71	456.66	455.10
	0 469.58 468.02	468.02		467.90	467.41	466.03	15	0840	463.52	460.15	459.27	456.52	455.00

^{*} Data appear to be in error.

Table A2

River Head and Piezometric Head at Piezometer Locations for Time-Lag Analysis, May 1951 Piezometer Data, Sny Island, Range A

						Piezometer				
						A-3			A-4	
			A-2		~	Nearby Low		Z	Nearby Low	
Day	Miss.	Gro	Ground El 466.2	2	Gre	Ground El 461.7	.7	Gre	Ground El 461.0	.0
May	River	River	Piezometric	tric	River	Piezometric	etric	River	Piezometric	etric
1951	Stage el	Head	el	Head	Head	el	Head	Head	el	Head
1	470.61	4.31	468.78	2.48	8.91	468.16	97.9	9.61	79.997	5.64
7	470.26	3.96	468.62	2.32	8.56	468.05	6.35	9.26	466.65	5.05
က	470.26	3.96	468.41	2.11	8.56	98. 197	6.16	9.26	466.50	5.50
4	470.39	4.09	67.897	2.19	8.66	467.95	6.25	9.31	466.51	5.51
2	470.54	4.24	79.897	2.34	8.84	468.07	6.37	9.54	466.65	5.65
9	470.68	4.38	468.72	2.42	8.98	468.16	97.9	89.6	466.73	5.73
7	470.85	4.55	469.01	2.71	9.15	468.28	6.58	9.85	466.79	5.79
œ	470.96	99.4	66.897	5.69	9.56	468.36	99.9	96.6	766.90	5.90
6	470.92	4.62	468.97	2.67	9.22	468.35	6.65	9.92	466.88	5.88
10	470.78	4.48	468.87	2.57	9.08	468.24	6.54	9.78	466.82	5.82
11	470.73	4.43	468.81	2.51	9.03	468.20	6.50	9.73	(Mis	(Missing)
12	471.30	2.00	469.54	2.94	9.60	468.65	6.95	10.30	(Mis	(Missing)
13	471.27	4.97	469.26	2.96	9.57	468.59	6.89	10.27	467.04	90.9
14	470.65	4.35	468.77	2.47	8.95	468.17	6.47	9.65	69.997	5.69
15	85.697	3.28	06.794	1.60	7.88	467.41	5.71	8.58	466.03	5.03

Table A3

River Head and Piezometric Head at Piezometer Locations for Time-Lag Analysis, May 1951 Piezometer Data, Sny Island, Range B

					1	Piezometer				
			B-2			B-3			B-4	
Day	Miss.	Gro	und El 458.	2	Gro	Ground El 455.1	.1	Gro	Ground El 454.1	.1
May	River	River	Piezometric	tric	River	Piezometric	etric	River	Piezometric	tric
1951	Stage el	Head	Head el l	Head	Head	el	Head	Head	el	Head
-	464.3	6.10	459.55	1.35	9.20	456.68	1.58	10.20	455.08	0.98
7	464.1	5.90	459.49	1.29	9.00	456.59	1.49	10.00	455.06	96.0
e.	463.79	5.59	459.38	1.18	8.69	456.56	1.46	69.6	455.04	96.0
4	463.87	2.67	459.41	1.21	8.77	456.58	1.48	71.6	455.06	96.0
S	464.07	5.87	459.53	1.33	8.97	456.56	1.46	9.97	90.55	96.0
9	464.24	90.9	459.62	1.42	9.14	496.64	1.54	10.14	455.10	1.00
7	464.37	6.17	459.70	1.50	9.27	456.65	1.55	10.27	455.11	1.01
∞	464.47	6.27	459.78	1.58	9.37	69.957	1.59	10.37	455.11	1.01
6	464.47	6.27	429.76	1.56	9.37	456.67	1.57	10.37	455.11	1.01
10	464.30	6.10	459.68	1.48	9.20	79.957	1.54	10.20	455.11	1.01
11	464.13	5.93	459.61	1.41	9.03	79.957	1.54	10.03	455.11	1.01
12	464.78	6.58	459.97	1.77	89.6	456.85	1.75	10.68	455.14	1.04
13	464.83	6.63	459.95	1.75	9.73	456.72	1.62	10.73	455.15	1.05
14	464.37	6.17	459.71	1.51	9.27	456.66	1.56	10.27	455.10	1.00
15	463.52	5.32	459.27	1.07	8.42	456.52	1.42	9.45	455.00	06.0

Table A4

Daily Change in River Stage and Piezometric Elevation Head for Time-Lag

Analysis, May 1951 Piezometer Data, Sny Island, Range A

468.86 468.86 468.74 468.57 468.67 468.92 469.00 469.13 469.13 469.13 469.13 469.13 469.13 469.98		A-2	Δ-3	2		
Stage Daily e1 Change e1 470.61 -0.35 468.86 470.26 +0.00 468.74 470.26 +0.13 468.57 470.39 +0.15 468.67 470.54 +0.14 468.92 470.68 +0.17 469.00 470.95 +0.11 469.13 470.95 -0.04 469.13 470.78 -0.05 468.98 471.30 -0.05 468.95 471.27 -0.03 469.40 470.65 468.90			Ç	?	A-4	†
e1 Change e1 470.61 -0.35 468.86 470.26 +0.00 468.74 470.26 +0.13 468.57 470.39 +0.15 468.67 470.54 +0.15 468.82 470.54 +0.17 469.00 470.85 +0.11 469.13 470.96 +0.14 469.13 470.78 -0.04 468.98 470.73 +0.57 468.95 471.30 -0.03 469.40 470.65 -0.62 468.90	Daily	Daily	!	Daily		Daily
470.61 -0.35 468.86 470.26 +0.00 468.74 470.26 +0.13 468.57 470.39 +0.15 468.67 470.54 +0.14 468.92 470.85 +0.17 469.00 470.95 +0.11 469.13 470.92 -0.04 469.13 470.78 -0.05 468.98 470.73 +0.57 469.42 471.30 -0.03 469.40 470.65 -0.62 468.90	Change el	Change	el	Change	el	Change
-0.35 468.74 470.26 468.57 470.26 468.57 470.39 468.67 470.34 468.82 470.68 40.13 470.85 40.11 469.00 470.96 469.13 470.92 469.13 470.78 468.98 470.73 469.42 471.30 469.42 470.65 468.90	468.78		468.16		79.997	
470.26 468.74 470.26 468.57 470.39 468.67 470.39 468.67 470.54 468.82 470.68 40.14 468.92 470.85 40.17 469.00 470.96 469.13 470.92 -0.04 469.13 470.78 -0.05 468.98 471.30 -0.03 469.42 471.27 -0.03 469.40 470.65 468.90		-0.16		-0.09		+0.01
470.26 +0.00 468.57 470.39 +0.13 468.67 470.34 +0.14 468.82 470.68 +0.14 468.92 470.85 +0.11 469.00 470.96 +0.11 469.13 470.92 -0.04 469.13 470.78 -0.04 468.98 470.73 +0.57 468.95 471.30 -0.03 469.42 470.65 468.90 468.90	468.62		468.05		466.65	
470.26 468.57 470.39 468.57 470.34 468.67 470.54 40.15 468.82 470.68 +0.14 468.92 470.85 +0.11 469.00 470.96 -0.04 469.13 470.92 -0.14 468.98 470.78 -0.05 468.95 471.30 -0.03 469.42 471.27 -0.062 468.90		-0.21		-0.19		-0.15
470.39 +0.13 468.67 470.54 +0.15 468.82 470.68 +0.14 468.92 470.85 +0.17 469.00 470.96 +0.11 469.13 470.92 -0.04 469.13 470.78 -0.14 468.98 470.73 +0.57 469.42 471.30 -0.03 469.40 470.65 468.90 468.90	468.41		98. 795		466.50	
470.39 468.67 470.54 +0.15 468.82 470.68 +0.14 468.92 470.85 +0.11 469.00 470.96 -0.04 469.13 470.92 -0.14 468.98 470.78 -0.05 468.95 471.30 -0.03 469.42 471.27 -0.62 468.90	+0.10	+0.08		+0.09		+0.07
470.54 +0.15 468.82 470.68 +0.14 468.92 470.85 +0.17 469.00 470.96 +0.11 469.13 470.92 -0.04 469.13 470.78 -0.14 468.98 470.73 +0.57 469.42 471.30 -0.03 469.40 470.65 468.90	67.897		467.95		466.57	
470.54 468.82 470.68 +0.14 468.92 470.85 +0.17 469.00 470.96 +0.11 469.13 470.92 -0.04 469.13 470.78 -0.14 468.98 470.73 +0.57 469.42 471.30 -0.03 469.40 470.65 468.90		+0.15		+0.12		+0.08
470.68 +0.14 468.92 470.85 +0.17 469.00 470.96 +0.11 469.13 470.92 -0.04 469.13 470.78 -0.14 468.98 470.73 +0.57 469.42 471.30 -0.03 469.40 470.65 468.90	79.897		468.07		466.65	
470.68 468.92 470.85 +0.17 469.00 470.96 +0.11 469.13 470.92 -0.04 469.13 470.78 -0.14 468.98 470.73 +0.57 469.42 471.30 -0.03 469.42 471.27 -0.62 468.90		+0.08		+0.09		+0.08
470.85 +0.17 469.00 470.96 +0.11 469.13 470.92 -0.04 469.13 470.78 -0.14 468.98 470.73 +0.57 468.95 471.30 -0.03 469.42 471.27 -0.62 468.90	468.72		468.16		466.73	
470.85 469.00 470.96 +0.11 469.13 470.92 -0.04 469.13 470.78 -0.14 468.98 470.73 +0.57 468.95 471.30 -0.03 469.42 471.27 -0.03 469.40 470.65 468.90		+0.29		+0.12		+0.06
470.96 +0.11 469.13 -0.04 469.13 470.92 -0.14 468.98 470.78 -0.05 468.95 470.73 +0.57 469.42 471.30 -0.03 469.42 471.27 -0.62 468.90	10.697		468.28		64.995	
470.96 469.13 -0.04 469.13 470.92 -0.14 469.13 470.78 -0.05 468.98 470.73 +0.57 469.42 471.30 -0.03 469.40 471.27 -0.62 468.90		-0.02		+0.08		+0.11
-0.04 470.92	66.897		468.36		06.997	
470.92 469.13 -0.14 468.98 -0.05 468.95 470.73 +0.57 469.42 471.30 -0.03 469.42 471.27 -0.62 469.40 470.65 468.90		-0.02		-0.01		-0.02
-0.14 468.98 -0.05 468.98 470.73 +0.57 468.95 471.30 -0.03 469.42 471.27 -0.62 468.90	76.897		468.35		88.997	
470.78		-0.10		-0.11		-0.06
-0.05 470.73 +0.57 471.30 -0.03 469.42 -0.03 469.40 -0.62 470.65 -0.62 468.90	468.87		468.24		466.82	
470.73		-0.06		-0.04		ı
+0.57 471.30	468.81		468.20		,	
471.30 469.42 -0.03 469.40 -0.62 468.90		+0.43		+0.45		•
-0.03 471.27 +69.40 -0.62 +68.90	469.24		468.65		,	
471.27 469.40 -0.62 468.90		+0.02		-0.06		•
-0.62 470.65 468.90	469.26		468.59		467.04	
470.65 468.90		-0.49		-0.42		-0.35
	468.77		468.17		69.997	
-1.07	-0.88	-0.87		-0.76		-0.66
15 469.58 468.02	06.794		467.41		466.03	

Table A5

Daily Change in River Stage and Piezometric Elevation Head for Time-Lag

Analysis, May 1951 Piezometer Data, Sny Island, Range B

TO THE PARTY OF TH

Daily
į
cnange
-0.01
-0 14
,
+0.06
+0.10
+0.15
+0.08
+0.11
0.00
-0.13
9
+0.44
+0.01
-0.33
-0.53

APPENDIX B: NOTATION*

- A constant for natural top stratum where $c = 1/\sqrt{(k_f/k_h)(z_h)(d)}$; c creep ratio
- Effective thickness of pervious substratum
- F Factor of safety against uplift
- $\Delta \mathbf{h}$ Difference in piezometer readings
- ha Allowable head at berm toe
- h_c Critical head at which the force of the net head equals the submerged weight of the top stratum
- h_o Head at landside levee toe
- $\mathbf{h}_{\mathbf{x}}$ Hydrostatic head beneath top stratum
- h₁,h₂ Substratum heads at two piezometers on a line perpendicular to the levee at distances ℓ_1 and ℓ_2 , respectively, from landside levee toe
 - Н Net head on levee
 - i Gradient through top stratum
 - i_c Critical gradient for landside top stratum
 - Upward gradient at landside berm toe **i**1
 - Upward gradient at landside levee toe i
 - Coefficient of permeability k
 - k_h Coefficient of permeability of top stratum
 - $\mathbf{k}_{\mathbf{b}\ell}$ Permeability of landside top stratum
 - Permeability of riverside top stratum k br
 - Average horizontal coefficient of permeability of pervious substratum
 - Horizontal distance between piezometers
- ℓ_1, ℓ_2 Respective distances from landwide levee toe to the piezometers installed on a line perpendicular to the levee
 - Required creep length
 - Distance from riverside levee toe to river L
 - Base width of levee and berm L,
 - L₃ Length of top stratum landward of levee toe

Essentially consistent with the notations in TM 3-424 and EM 1110-2-1913 (see footnotes on pages 6 and 8, respectively).

- M Slope of hydraulic grade line, at middepth of pervious stratum, beneath the levee
- s Distance from the landwide levee toe to the point of effective seepage entry
- t Thickness of berm
- x Distance from levee toe
- $\mathbf{x}_{\mathbf{b}}$ Berm width based on creep ratio formula
- $\mathbf{X}_{\mathtt{SD}}$ Semipervious berm width based on uplift formula
 - \mathbf{x}_1 Effective length of riverside blanket
 - x_3 Distance from landside levee toe to effective seepage exit
 - $\mathbf{z}_{\mathbf{b}}$ Effective thickness of top stratum
- $\mathbf{z}_{\mathbf{b}\ell}$ Effective thickness of landside top stratum
- z_{br} Effective thickness of riverside top stratum
- \mathbf{z}_{t} Critical thickness of top stratum
- γ_t Wet unit weight of soil
- γ_w Unit weight of water
- γ' Submerged or buoyant unit weight of soil

In accordance with letter from DAEN-RDC, DAFN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Cunny, Robert W

Documentation and analysis of Rock Island underseepage data / by Robert W. Cunny. Vicksburg, Miss. : U. S. Water-ways Experiment Station; Springfield, Va.; available from National Technical Information Service, 1980.

205, [129] p. : ill. ; 27 cm. (Technical report - U. S. Army Engineer Waterways Experiment Station; GL-80-3) Prepared for U. S. Army Engineer District, Rock Island, Rock Island, Illinois.

Includes bibliographical footnotes.

Berms. 2. Design. 3. Design standards. 4. Documentation.
 Levees. 6. Permeability. 7. Piezometers. 8. Sand boils.
 Seepage. 10. Soil mechanics. 11. Stratification.

12. Underseepage. I. United States. Army. Corps of Engineers. Rock Island District. II. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Technical report; GL-80-3.

TA7.W34 no.GL-80-3