Problem 1

We want to show that the product of an even and an odd permutation in S_n is an odd permutation. Let α be an even permutation and let β be an odd permutation. We then know that the parity of their product is the sum of their parities.

$$Parity(\alpha\beta) = Parity(\alpha) + Parity(\beta) = 0 + 1 = 1$$

So the product necessarily is odd.

Problem 2

We want to show that

$$H \leq S_n, |H| \text{ is odd } \Longrightarrow H \leq A_n$$

For the sake of contradiction assume that H is not a subgroup of A_n . Then we know that H must include some odd permutation (since A_n is all the even permutations). And we know that the elements of odd parity and even parity must be in one-to-one correspondence in H. Thus H must be of even order and so we have a contradiction. So our assumption that H is not a subgroup of A_n must be incorrect.

Problem 3

We want to show that

$$A_n$$
 is non abelian $\iff n \geq 4$

Let us start by showing that for all $n \ge 4$ we have that A_n is non-abelian.

$$(123)(234) = (12)(34), (234)(123) = (13)(24)$$

 $\implies (123)(234) \neq (234)(123)$

And since these elements are in all A_n with $n \ge 4$ we have that none of these groups are abelian. Now we show that A_1, A_2, A_3 are all abelian. A_1, A_2 are both the trivial group and so must be abelian. So we now want to show that A_3 is abelian. Note that $A_3 = \{e, (123), (132)\}$. And (123)(132) = e = (132)(123) and so the group is abelian.

Problem 4

We want to show that

 $\sigma \in S_n$ is a permutation of odd order $\implies \sigma$ is an even permutation

Since σ is a permutation of odd order we know we can decompose its cycle into something like

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_n$$

Further more we know that each disjoint cycle must have an odd length since the order of σ is the least common multiple of the lengths of the σ_i . We then know that we can decompose each σ_i into an even number of transpositions

$$\sigma_i = (a_1 a_2 \dots a_n) = (a_1 a_n) \dots (a_1 a_2)$$

And since n is odd we know the number of transpositions is even. And since each σ_i is even, their composition will also be even.

2024-10-24

Problem 5

We want to show that

$$(ab), (cd)$$
 commute \iff $(ab), (cd)$ are disjoint

 \Longleftarrow . Assume that (ab),(cd) are disjoint. Then we can simply check what both combinations of them map things to. First look at (ab)(cd)

$$a \rightarrow a \rightarrow b$$

$$b \to b \to a$$

$$c \to d \to d$$

$$d \to c \to c$$

Now look at (cd)(ab)

$$a \rightarrow b \rightarrow b$$

$$b \to a \to a$$

$$c \to c \to d$$

$$d \to d \to c$$

And clearly these two map the same so we know they are equal and thus commute

 \implies . Let us do proof by contrapositive. So we must assume that (ab),(cd) are not disjoint. Without loss of generality we can do this by saying that a=c. So all we need show is that (ab),(ad) do not commute. First look at (ab)(ad):

$$a \to d \to d$$

Now look at (ad)(ab):

$$a \to b \to b$$

And since these two do not act on a the same obviously $(ab)(ad) \neq (ad)(ab)$ so they do not commute.

Problem 6

We are given

$$\gamma = (124)(425)(64)$$

We can feed each element through the permutation to create a new cycle

$$1 \rightarrow 1 \rightarrow 1 \rightarrow 2$$

$$2 \rightarrow 2 \rightarrow 5 \rightarrow 5$$

$$5 \rightarrow 5 \rightarrow 4 \rightarrow 1$$

And since we have reached 1 again we know this is a disjoint cycle. So

$$\gamma = (125)\sigma$$

Let's continue with our methodology starting with the first number not in our cycle but in γ , which is 4

$$4 \rightarrow 6 \rightarrow 6 \rightarrow 6$$

$$6 \rightarrow 4 \rightarrow 2 \rightarrow 4$$

And thus we have found our next and last disjoint cycle, so we can write gamma

$$\gamma = (125)(64)$$

Next, we want to figure out if gamma is an even or odd permutation, we can do this by breaking it down into transpositions using the method stated in problem 4

$$\gamma = (12)(15)(64)$$

And so γ is an odd permutation.