Homological methods in Commutative Algebra

Swayam Chube

December 7, 2024

§1 THE KOSZUL COMPLEX

DEFINITION 1.1. Let *A* be a ring and $x_1, \ldots, x_n \in A$. Set $K_0 = A$ and for $1 \le p \le n$, let

$$K_p = \bigoplus_{1 \leqslant i_1 < \dots < i_p \leqslant n} A e_{i_1} \wedge \dots \wedge e_{i_p},$$

which is a free module of rank $\binom{n}{n}$.

Define $d: K_p \to K_{p-1}$ as

$$d\left(e_{i_1}\wedge\cdots\wedge e_{i_p}\right)=\sum_{r=1}^p(-1)^{r-1}x_{i_r}e_{i_1}\wedge\cdots\wedge \widehat{e_{i_r}}\wedge\cdots\wedge e_{i_p},$$

and extending linearly. This is called the *Koszul complex*. For an *A*-module *M*, we set $K_{\bullet}(\underline{x}, M) = K_{\bullet}(\underline{x}) \otimes_A M$. The homologies of this complex $H_p(K_{\bullet}(\underline{x}, M))$ are denoted by $H_p(\underline{x}, M)$. For a complex C_{\bullet} of *A*-modules, we set $C_{\bullet}(\underline{x}) = C_{\bullet} \otimes_A K_{\bullet}(\underline{x})$.

PROPOSITION 1.2. For $p \ge 2$, $d \circ d = 0$ as a map $K_p \to K_{p-2}$.

Proof. In the expression for $(d \circ d) \left(e_{i_1} \wedge \cdots \wedge e_{i_p} \right)$, we find the coefficient of

$$e_{i_1} \wedge \cdots \wedge \widehat{e_{i_a}} \wedge \cdots \wedge \widehat{e_{i_b}} \wedge \cdots \wedge e_{i_n}$$

where $1 \le a < b \le p$. The coefficient is equal to the coefficient in

$$(-1)^{a-1}x_{i_a}d\left(e_{i_1}\wedge\ldots\widehat{e}_{i_a}\wedge\cdots\wedge e_{i_p}\right)+(-1)^{b-1}x_{i_b}d\left(e_{i_1}\wedge\cdots\wedge e_{i_b}\wedge\cdots\wedge e_{i_p}\right),$$

which is equal to

$$(-1)^{a-1}x_{i_a}\cdot(-1)^{b-2}x_{i_b}+(-1)^{b-1}x_{i_b}\cdot(-1)^{a-1}x_{i_a}=0.$$

¹Recall that the tensor product of two complexes is obtained by taking the total complex corresponding to the tensor double complex.

THEOREM 1.3. Let C_{\bullet} be a complex of A-modules and $x \in A$. There is an exact sequence of complexes

$$0 \longrightarrow C_{\bullet} \longrightarrow C_{\bullet}(x) \longrightarrow C_{\bullet}[-1] \longrightarrow 0.$$

This furnishes an exact sequence

$$\cdots \to H_p(C_{\bullet}) \to H_p(C_{\bullet}(x)) \to H_{p-1}(C_{\bullet}) \xrightarrow{(-1)^{p-1}x} H_{p-1}(C_{\bullet}) \to \cdots$$

Further, we have $x \cdot H_p(C_{\bullet}(x)) = 0$ for all p.

COROLLARY. Let M be an A-module and $x_1, \ldots, x_n \in A$. Then, (\underline{x}) annihilates $H_p(\underline{x}, M)$ for all p.

Proof. Induct on *n*. The inductive step follows from the fact that

$$K_{\bullet}(x_1,\ldots,x_n,M)\cong K_{\bullet}(x_n)\otimes_A K(x_1,\ldots,x_{n-1},M).$$

We know that $(x_1, ..., x_{n-1})$ annihilates the homology groups of the latter and hence, they annihilate the homology groups of $K_{\bullet}(x_1, ..., x_n, M)$. Further, due to the preceding theorem, x_n annihilates the homologies of the above tensor product. This completes the proof.

THEOREM 1.4. Let M be an A-module and $x_1, \ldots, x_n \in A$ an M-sequence. Then

$$H_p(\underline{x}, M) = 0$$
 for $p > 0$ $H_0(\underline{x}, M) = M/(\underline{x})M$.

Proof.

THEOREM 1.5. Let A be a Noethering ring, M a finite A-odule, and I an ideal of A; suppose that $IM \neq M$. For a positive integer n, the following conditions are equivalent:

- (a) $\operatorname{Ext}_A^i(N, M) = 0$ for $0 \le i < n$ and for any finite A-module N with $\operatorname{Supp}(N) \subseteq V(I)$.
- (b) $\operatorname{Ext}_{A}^{i}(A/I, M) = 0 \text{ for } 0 \leq i < n.$
- (c) $\operatorname{Ext}_A^i(N, M) = 0$ for $0 \le i < n$ and *some* finite *A*-module *N* with $\operatorname{Supp}(N) = V(I)$.
- (d) there exists an M-sequence of length n contained in I.

Proof.

COROLLARY. Let A be a Noetherian ring, I an ideal of A, and M a finite A-module such that $M \neq IM$; then the length of a maximal M-sequence in I is determined by

$$\operatorname{Ext}_A^i(A/I, M) = 0$$
 for $i < n$ and $\operatorname{Ext}_A^n(A/I, M) \neq 0$.

This integer is denoted by depth(I, M) and is called the I-depth of M. In other words,

$$depth(I, M) = inf \left\{ i : Ext_A^i(A/I, M) \neq 0 \right\}.$$

For a Noetherian local ring (A, \mathfrak{m}, k) , we write depth_A M for depth (\mathfrak{m}, M) .

COROLLARY. Let *A* be a Noetherian ring, *I*, I' ideals of *A*, and *M* a finite *A*-module such that $M \neq IM$ and $M \neq I'M$. Then, depth(I, M) = depth(I', M).

§2 REGULAR RINGS

DEFINITION 2.1. Let (A, \mathfrak{m}, k) be a local ring, M a finite A-module. A *minimal (free) resolution* is an exact sequence $L_{\bullet} \to M \xrightarrow{\varepsilon} 0$ such that

(a)

LEMMA 2.2. Let (A, \mathfrak{m}, k) be a local ring, and M a finite A-module. Suppose $L_{\bullet} \to M$ is a minimal resolution of M; then

- (a) $\dim_k \operatorname{Tor}_i^A(M,k) = \operatorname{rank} L_i$ for all i,
- (b) $\operatorname{proj\,dim} M = \sup\left\{i\colon\operatorname{Tor}_i^A(M,k)\neq 0\right\}\leqslant\operatorname{proj\,dim}_Ak,$
- (c) if $M \neq 0$ and proj dim $M = r < \infty$, then for any finite A-module $N \neq 0$ we have $\operatorname{Ext}_A^r(M,N) \neq 0$.