Lecture-170 AMONING AVONOPHINA

Asynchronous clocked Modulus-12 counter with asynchronous recycling.

On the 12th clock pulse the counter is to be forced to count from O'. This can be done by duoding 1100.

State sequance:

Clock plne	Q3	Q_2	Qı	Q.
Initially !	U60 0 79	0	0	0
1 0	0	0	0	1
2.	0	0	1	0
3	O	0	1	1.00
4	0	1	0	0
5	0	1	0	I
6	O	1	1	0
X	0	- 1	A =	1
bong & wonoun	MAN MA	0	0	0
9		0	0	1
10		0	- 1	0
110		0	TURG	1
12(trecycles)	01	01	0	0

A Modulus-12 counter is going to count upto binary value of 0-11. It will recycle at the 12th Clock pulse, and you will only see a slight glimpse of the value 12, after which it will show 0 (that means it will recycle).

Synchronous Counter:

The Flip-Flops use this synchronous counter are all clocked at the same time by a common clock pulse.

A 2-bit synchronous Binary counter:

Clock pulpe Q1 Q0.

Snetially 0 Q1 will only toggle if Q0=1

2 Q1 Will only toggle if Q0=1

A (neeycles) 0 Q1 Will only toggle if Q0=1

J1=K1=Q0

A 3-bit Synchronous Binary counters State sequence:

Q0 is toggling at every clock pulse

Q1 is toggling when and only Q0=1

Q2 is only toggling if Q1 and Q0 both =1

Fig. 3-bit synchronous binary counter

J0=K0=High

$$J_2 = K_2 = Q_1 Q_0$$

A 4-bit Synchronous Binary Counter: State sequence:

Clock Pulse	Q3	Q2	Q1	Qo	
Initially	0	0	0	0	- Th
1	0	0	0	1	
2	0	0	4	0	
3 1000	0	0	Adan	911 NC	
4	0	1	0	0	
5	0	-1-	0	1	
6	G	1	T.	0	loa.
X	0	1	9	T A	
8	1	0	8	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	Ì	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	l _i	ı	1/2	
16	0	0	0	0	
(necycles)		9	1	0	

So J0=K0=1/High

Q0 is toggling at every clock pulse

Q1 is toggling when Q0=1 So J1=K1=Q0

Q2 is toggling when Q1=0 AND Q0=0 So J2=K2=Q1.Q0

Q3 is toggling when Q2=1 AND Q1=1 AND Q0=1 So J3=K3=Q2.Q1.Q0

J1= K1 = Q0

J0=K0=1/High

J2=K2=0100

J2 = K2 = Q1Q0

J3 = K3 = Q2Q1Q0

Fig: Synchoonous 4-bit Binary counter

Synchronous Decode counter:

State sequance:

roed was icc.						
Clock Pulne	Q3	Q2	Q1	Qo		
Switially !	0	0	٥	0		
1 amountaine	0	0	0	1		
2.	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	l		
6	0	1	1	0		
X	0	1	1	1		
8	1	0	0	0		
9	i	0	0	1		
10	D	0	D	0		
(reegeles)				, b =	¥	
	E.					

$$J_1 = K_1 = Q_0 \overline{Q}_3$$

Fig: A Synchronous BeD decode counter

Modul	mo-	-12	Syl	rehno	emon	count	ien
Modul State	100	quar	nee				
clo	ok	Pul	10 1	02	Q,	Q,	Qo

Clock Pulne	Qz	Q2	Qı	Qo
Initially	.0	0	٥	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	Arigo Q.	00	1.10
6	0	00 10		0
X	0	1	1	1
8	1	0	٥	0
9	1	0	0	1
10	1	0	1	0
H	1	0	1	l_
12	0	0	٥	0

$$J_2 = K_2 = \overline{Q}_3 Q_1 Q_0$$