

### **Assignments**



#### To be completed until our next class:

- **Significance**. Use PubMed/Web of Science to do a computerized literature search, and word-process a first draft of your "Significance" section for your research question with an adequate set of references (preferably inserted with EndNote or equivalent software).
- Prepare a brief outline of your research protocol using the excel sheet provided earlier on
- Present your results to the class (5 min).





### Mapping the methods

# Introduction and study population



### Key elements of the methods



- Overview of the study design
- Study population
- Measurements
- Statistics
  - Statistical analyses
  - Sample size and power
- Quality control and data management
- Timetable
- Ethics
- Strengths and limitations
- References
- Appendices (draft of the questionnaire, ...)



### Your study design?



Cross-sectional studies

Case-control studies

Cohort studies

Intervention studies



### Study population



- Who are your subjects and how will they be selected?
  - Selection criteria?
  - Design for sampling?
  - Plans for recruitment, increasing response



# ->The study should reflect "real life"







# Target population - study population



#### **Target population**

All those the researcher is interested in



### **LMU** Example: ISAAC study in Germany



#### **Target population**

Children aged 9-11 years in Munich and Dresden

Weiland et al. ERJ 1999



# What about your study?



 $\sqrt{1}$  How do you select your target population?





# Target population study population







# Target population study population







# What about your study?



- $\sqrt{}$  How do you select your target population?
- √ How do you select your sample?





# Target population - study population



**Target population** Sample / AP **Study population** Those who participate



# Target population - study population







## What about your study?



- $\sqrt{1}$  How do you select your target population?
- √ How do you select your sample?
- $\sqrt{}$  What do you expect about your study population?





### **LMU** Validity and selection of the study population

#### Internal Validity

- Results are correct for the target population
- Sources of error: Selection bias, Information bias, Confounding

#### External Validity

- The results can be generalized to the general population (common problem clinical trials)
  - take care when choosing your target population



### **Inclusion criteria**



Specifying characteristics that define populations that are relevant to the research question and efficient for study, including:

- Demographics
- Clinical Characteristics
- Geographic Characteristics
- Temporal Characteristics



## Inclusion criteria: whom to include?



- Only one level of training? (Residents)
- Only one speciality? (Cardiology)
- All residents from hospitals with different shift schedules?
- Only one type of hospitals? (Rehabilitation clinics, university hospitals, ...)
- Study region? (Germany or Munich)



### **Example**



|                                                              | Case group 1:<br>Asthma                                                                       | Case group 2:<br>IBD           | Surgical controls: Appendectomy, Strabismus,                                    |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|--|--|
| Centres                                                      | Hospital Base Valdivia, Universidad Austral, Valdivia, Chile Clinica Alemana, Valdivia, Chile |                                |                                                                                 |  |  |
| Invited                                                      | n=190                                                                                         | n=125                          | N=430 for asthma<br>n=290 for IBD                                               |  |  |
| Participants<br>(questionnaire,<br>clinical<br>measurements) | n=150                                                                                         | n=100                          | n=300 for asthma<br>n=200 for IBD                                               |  |  |
| Participants (home sampling)                                 | n=120                                                                                         | n=80                           | n=240 for asthma<br>n=160 for IBD                                               |  |  |
| Contact                                                      | Asthma outpatients and inpatients                                                             | IBD inpatients and outpatients | Inpatient files and outpatients                                                 |  |  |
| Inclusion                                                    | 6-15 years old                                                                                | 6-40 years old                 | 6-15 years old (asthma)<br>6-40 years old (IBD)                                 |  |  |
| criteria<br>Matching                                         | Born in Chile                                                                                 | Born in Chile                  | Born in Chile Frequency matching: Age, hospital, place of living (urban, rural) |  |  |

Table 2.6: Selection of cases and controls in Valdivia



### **Example: Inclusion criteria**



#### Inclusion criteria are:

- Age range between 6 and 18 years.
   The upper age limit is chosen as the Centre treats patients until the age of 18 years only. The lower age range is chosen as a surgery for strabismus usually is done around age 6 years.
- Born in Germany.
   This is done because early childhood environments which might differ considerably from country to country.
- No malformation.
   All malformations which might be associated with strabismus and contact with animals in infancy are excluded.
- Persistent and extended oligoarticular JIA (OA JIA).
   Because different risk factors might underlie different subtypes of JIA, cases are restricted to those with persistent or extended OA JIA.



### **Exclusion criteria**



Specifying subsets of the population that will not be studied because of:

- Likelihood of being lost to follow-up
- An inability to provide good data
- Being at high risk for side effects
- Characteristics that make it unethical to withhold treatment



# **Exclusion criteria example**



- Not able to speak German
- Other ethnicity
- Outside age range
- Controls:
  - living in other areas than cases





# How can you ensure that the results are valid for your target population?

Minimize bias and confounding!!!



### **Selection Bias**



#### Sampling bias

Bias in the way your study population is selected

#### Participation bias

Response of your sample depends on exposure and disease



# Sampling: Case-control study



**Exposed cases have a different chance of admission than** controls

|                          | Cases of<br>lung cancer | Controls from surgical wards |
|--------------------------|-------------------------|------------------------------|
| Contact with asbestos    | а                       | b                            |
| No contact with asbestos | С                       | d                            |

- Professor "Super-X", Head of respiratory department, world capacity on asbestos exposure, 145 publications on subject
- Lung cancer cases exposed to asbestos not representative of lung cancer cases



### Sampling – example



- The majority of physicians working 24-hour shifts in Munich live in walking distance to the hospitals
- The majority of physicians working 8-hour shifts in Munich have to take their car to get home
- ➤ The results of your study indicate that 24-hour shifts protect from traffic accidents



### Sampling



- Convenience Samples
- Probability Samples
  - Simple Random Sample
  - Stratified Random Sample
  - Cluster Sample
  - Systematic Sample



### **LMU** Convenience sampling



- People who
  - meet entry requirements that are
  - easily accessible to investigators.
- Might be consecutive samples:
  - All patients who show up in the ER over a four week interval and meet the inclusion criteria. Whether they are representative of the target population has to be judged by the investigator.



### **LMU** Simple random sample



- Provide numerical values to units of the population and select a subset at random.
- Can use random number lists or generators to pick the sample
- Examples:
  - Sample from the population registry
  - Sample of the patients with strabismus surgery



### Systematic sample



- Take e.g. every second patient on a list
- Might be biased
- No real advantage over simple random sample



# Stratified random sample



- Divide target population into subgroups
- Take random sample from each strata
- E.g.,
  - Population registry of Munich
  - Subgroup 1: Children aged 8-12 years
     Subgroup 2: Teenagers aged 13-17 years
  - Random sample of 1000 from each group
- Useful when a less common group of the population is of special interest to the investigator (e.g., children living in Munich born in Australia)



### Cluster sample



- Select some schools from all primary schools in Munich
- Invite all 4th grade students to take part in your study
- Useful when population is widely dispersed
- Disadvantage: loss of power (clustering has to be taken into account in the statistical analysis)



# How to minimize participation bias



- "neutral" Invitation letter
   ("Study on traffic accidents among residents" not mentioning shift models)
- Follow-up procedures!!!
- Incentives (voucher, money, pen)



# How to minimize selective participation



| Tag 1     | Erstanschreiben mit Fragebogen und<br>Einverständniserklärung |  |
|-----------|---------------------------------------------------------------|--|
|           | $\Box$                                                        |  |
| Tag 8     | Erinnerungspostkarte                                          |  |
|           |                                                               |  |
| Tag 22    | Fragebogenzweitversand an Non-Responder                       |  |
|           | $\square$                                                     |  |
| Ab Tag 40 | Telefonische Kontaktierung aller<br>Non-Responder             |  |



### Follow-up procedures







# Describing your study population



| Country                 | Expected number of cases |              |
|-------------------------|--------------------------|--------------|
|                         | Per year                 | Study period |
| Austria                 | 35                       | 86           |
| France                  | 94                       | 235          |
| Germany                 | 125                      | 313          |
| Greece                  | 25                       | 63           |
| Israel                  | 40                       | 120          |
| Italy                   | 68                       | 169          |
| Netherlands             | 63                       | 158          |
| Spain                   | 125                      | 313          |
| Total – with EU funding | 574                      | 1 455        |

Table 1.2b – Expected number of brain tumour cases (malignant and benign) per country in the age range 10-24.

Benign tumours represent about 20% of the numbers shown here.



# Describing your follow-up procedures







# Sampling – Your example



- Please draw a summary table / graph displaying your
- Target population
- 2. Sample
- Study population including the response you anticipate and inclusion / exclusion criteria.
- Describe the selection bias that might occur and how you will minimize it.
- Present your results to the class



### **Assignment 1**



Compose an amplification of the "Study Subjects" section of your research protocol in less than one page.

This section should include the following:

- 1. A description of the target and accessible population (sample). Specify and justify the selection criteria.
- 2. A description of how the study subjects will be sampled from the target/accessible population (sample).
- 3. A description of how you plan to recruit potential subjects identified by your sampling process.
- 4. A description of your strategies for retaining your study subjects.
- 5. Propose and comment on some strategies for making your sample more representative of the population you wish to generalize to.