

US					
N					

Third Semester B.E. Degree Examination, 2023

MODEL QUESTION PAPER OPERATING SYSTEMS

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Q. 1	No.	Questions	Marks	BL/CO
		Module I		L
1	a.	<pre>i. Explain the dual mode operation of operating system. ii. Summarize how many processes are created by the below program? #include <stdio.h> #include <unistd.h> int main() { int numProcesses = 8; int i; for (i = 0; i < numProcesses; i++) { printf("Process %d created\n", getpid()); fork(); } return 0; }</unistd.h></stdio.h></pre>	5	CL2/CO1
	b.	Describe operating system also Explain multiprogramming and time sharing system.	8	CL2/CO1
	c.	Explain Operating System services with respect to User veiw & System view with a neat block diagram	7	CL2/CO1
		OR		l
2	a.	Explain the various types of operating system structure along with a neat diagram.	7	CL2/CO1
	b.	Describe implementation of Inter Process Communication (IPC), with the following IPC Mechanisms-shared memory and memory passing.	8	CL2/CO1
	c.	i. Explain briefly about types of system calls with illustrationii.Summarize how many processes are created by the below program?#include <stdio.h></stdio.h>#include <unistd.h></unistd.h>	5	CL2/CO1

		int main() {									
		int i;									
		for $(i = 0; i < 7; i++)$ {									
		fork();									
		printf("Process %d created\n", getpid());									
		}									
		return 0;									
		}									
		<u> </u>			Modu	ıle II			1		
	a.	Explain multithre	ading mode	els with	suitable	diagrams	<u> </u>			6	CL2/CO2
								waiting ti	me and		
		For the given Process snapshot below, Calculate the average waiting time and average turnaround time by Constructing Gantt charts using FCFS and SRTF									
		algorithms.									
3	b.	[Process	Process Arrival		Time Burst Tin]		8	CL3/CO2
3			P_1	0		9				-	
			P ₂	1	<u>-</u>	4		-			
		-	P ₃ P ₄	3		9 5		-			
	c.	Illustrata window		I						6	CL3/CO2
	C.	C. Illustrate windows thread with suitable code snippet. OR									CL3/CO2
	a.	T. 1 1.5	T) 1' T								GY A / G G A
	_ a.	List and explain Threading Issues in multithreading concepts.							6	CL2/CO2	
		Consider the five processes arriving at time 0, in the order given, with the length of the CPU burst given in milliseconds.									
			-				_		1		
		Process	Arrival	time	Burst	Time	Priori	ity			
		$\frac{P_1}{P_2}$	0 2		10 29		3 2				
		$\frac{12}{P_3}$	3		3		1				
4	b.	P ₄	4		7		4			8	CL3/CO2
		P ₅ 5			12		5				
		Apply Priority and SJF scheduling Algorithm and Draw the Gantt chart for									
		above process assume lowest number highest priority. Calculate average						_			
		waiting time and turnaround time for both the scheduling algorithms. Which									
		algorithm would give the minimum average waiting time?									
	c.	Illustrate Round	obin Sched					t.		6	CL3/CO2
				Mo	dule II	I Harish	a				

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

	1	1				1		1
	a.			•		using semaphore.	8	CL3/CO3
		Determine algorithm.	whether the	following sy	ystem is in s	safe state, using banker's		
		Process	Allocation	Maximum	Available			
		P0	010	753	3 3 2			
5	b.	p1	200	3 2 2			8	CL3/CO3
		p2	3 0 2	902				
		p3	2 1 1	222				
		p4	000	4 3 3				
	c.	with suitab	le example ex	plain resource	e allocation g	raph.	4	CL2/CO3
		T			OR			1
	a.	Illustrate th	8	CL3/CO3				
6	b.	Demonstra	8	CL3/CO3				
c. Explain necessary conditions to hold deadlock.								CL2/CO3
					Module IV			
7	a.	Consider stream:2,3, page faults algorithms	10	CL3/CO4				
	b.	Describe explain the	6	CL3/CO4				
	c	Explain Fil	e Attributes a	nd operations	•		4	CL2/CO4
	a.	Explain in	4	CL2/CO4				
8	b.	With neat of Directory Graph Directory	10	CL3/CO4				
	c.	Illustrate F	6	CL3/CO4				
					Module V			
	a.	Explain in	details about o	verview of ma	ss storage stru	cture.	6	CL2/CO5
9	b.	Explain in	details about v	arious Swap-S _J	pace Managem	nent.	6	CL2/CO5
	c.	Explain va	8	CL3/CO5				

		consider a disk queue with request for i/o to blocks on cylinders. 98, 183, 37, 122, 14, 124, 65, 67 Calculate Average Seek length using i) FIFO, SSTF, SCAN and C-SCAN algorithm.		
	a.	Explain protection and access matrix with domains as objects. Also differentiate between mechanisms and policies.	6	CL2/CO5
10	b.	A disk drive has 5000 cylinders from 0 to 4999. Currently the drive is at 143rd cylinder, and the previous request was at cylinder 125. Queue of pending requests in FIFO order I 86, 1470, 913, 1774, 948, 1509, 1022, 130. Calculate the total distance the disk arm moves to satisfy all the pending requests for each of the following disk scheduling algorithms from current position i) FCFS ii) SCAN iii)CSCAN.	8	CL3/CO5
	c.	Explain access matrix? Explain the different methods of implementing the access matrix.	6	CL2/CO5

Cognitive Levels of Bloom's Taxonomy

No.	CL1	CL2	CL3	CL4	CL5	CL6
Level	Remember	Understand	Apply	Analyze	Evaluate	Create

Course Outcomes

CO1	Illustrate the operating system, its components, and the ideas behind system calls and inter-process communication.	CL3
CO2	Apply the concepts of multithreading and demonstrate various algorithms by considering different scheduling criteria.	CL3
CO3	Illustrate the process synchronization, its classical approaches and discuss the concepts of deadlock.	CL3
CO4	Apply the concept of memory management, demand paging, and demonstrate the working of various page replacement algorithms and file system operations.	CL3
CO5	Analyze the structure of mass storage devices, various disk scheduling techniques and concepts of operating system protection.	CL4