線形関数の集合

 $^{t}\mathbb{R}^{n}$ 上の線形関数全体の集合を $(^{t}\mathbb{R}^{n})^{*}$ と書く

ref: 行列と行列式の基 礎 p121~121

 $m{v} \in \mathbb{R}^n$ を与えたとき、 $^t\mathbb{R}^n$ 上の線形関数 $\langle -, m{v} \rangle$ が得られる (ここで、- はプレースホルダーであり、ここに具体的な値を入れられることを意味する)

よって、

$$\dim(^t\mathbb{R}^n)^* = \dim\mathbb{R}^n = n$$

 $(^t\mathbb{R}^n)^*$ は、もとの縦ベクトル空間 \mathbb{R}^n と自然に同一視できる

 $oldsymbol{t}$ 線形関数の空間と縦ベクトル空間の同型性 写像 $\iota: \mathbb{R}^n \to (^t\mathbb{R}^n)^*$ を $oldsymbol{v} \mapsto \langle -, oldsymbol{v} \rangle$ と定めると、これは線形同型写像である

▲ 証明

 $m{v}$ によって定まる線形関数 $m{l}_{m{v}} = \langle -, m{v} \rangle \in ({}^t\mathbb{R}^n)^*$ を考えるこのとき、写像 $m{\iota}$ は $m{v} \mapsto m{l}_{m{v}}$ と定義できる

写像しは線形

写像 $\boldsymbol{v}\mapsto l_{\boldsymbol{v}}$ は、関数を返す写像である 写した結果の関数が、和やスカラー倍と作用の順序を入れ替えても同じになることを確認する

任意の入力 ϕ とすると、

$$l_{\boldsymbol{v}_1+\boldsymbol{v}_2}(\phi) = \langle \phi, \boldsymbol{v}_1 + \boldsymbol{v}_2 \rangle = \langle \phi, \boldsymbol{v}_1 \rangle + \langle \phi, \boldsymbol{v}_2 \rangle$$
$$= l_{\boldsymbol{v}_1}(\phi) + l_{\boldsymbol{v}_2}(\phi)$$
$$l_{c\boldsymbol{v}}(\phi) = \langle \phi, c\boldsymbol{v} \rangle = c\langle \phi, \boldsymbol{v} \rangle = cl_{\boldsymbol{v}}(\phi)$$

任意の入力に対して等しい結果になることは、関数そのもの が等しいことを意味する

和やスカラー倍を先に計算しても作用後に計算しても、同じ 関数が得られるので、写像 *ι* は線形である

写像 しは単射

写像 L が「違う入力は違う出力になる」こと、すなわち単射 であることを確認する

そのためには、 ι が零でないベクトルは零でない関数に移すこと、すなわち

$$\boldsymbol{v} \neq \boldsymbol{0} \Longrightarrow l_{\boldsymbol{v}} \neq 0$$

を示せばよい

 $oldsymbol{v}
eq oldsymbol{0}$ ならば、 $oldsymbol{v}$ の成分のうち少なくとも $oldsymbol{1}$ つは非零である

その成分をk番目の成分とし、横ベクトル $\phi={}^t {m e}_k$ を考える

ここで、 ${}^t \boldsymbol{e}_k$ は k 番目の成分が 1 で他の成分が 0 の横ベクトルである

すると、

$$l_{oldsymbol{v}}(\phi) = \langle \phi, oldsymbol{v}
angle = \phi(oldsymbol{v}) = {}^t oldsymbol{e}_k egin{pmatrix} v_1 \ dots \ v_n \end{pmatrix} = v_k$$

ここで、 $v_k \neq 0$ なので、 $l_v(\phi) \neq 0$ となるしたがって、 ι は単射である

 $\dim(^t\mathbb{R}^n)^* = \dim\mathbb{R}^n = n$ より、 ι は全射である

以上より、 $(^t\mathbb{R}^n)^*$ と \mathbb{R}^n は同じ次元をもち、写像 $\iota: \mathbb{R}^n \to (^t\mathbb{R}^n)^*$ が単射かつ全射であることから、線形代数の鳩の巣原理より、 ι は線形同型写像である