Équivalence grammaires linéaires droites / automates finis

- Soit A = < x , Q , q_o , F , $\delta >$ un aut. fini
 - il existe une grammaire linéaire droite G telle que $L(A)=L_G(S)$

- Soit G =< X , V , S , P> une grammaire linéaire droite
 - il existe un automate fini A tel que $L(A) = L_G(S)$

Quiz - cela signifie que tous les langages algébriques sont reconnaissables vrai faux

Exemple automate fini \rightarrow grammaire linéaire droite

• soit l'automate vu au cours 3 :

On considère les trois langages L_0 , L_1 et L_2 où L_q désigne l'ensemble des mots permettant d'atteindre un état final à partir de l'état q, et on associe un non-terminal S_q à chacun.

• cet automate reconnaît le langage L₀ engendré par la grammaire :

$$G \begin{cases} S_0 \rightarrow a & S_1 + a & S_2 \\ S_1 \rightarrow b & S_1 + b & S_2 \\ S_2 \rightarrow a & S_0 + \epsilon \end{cases}$$

Cette grammaire est linéaire droite.

Automate fini \rightarrow grammaire linéaire droite : cas général

Soit $A = \langle X, Q, q_0, F, \delta \rangle$ un automate fini,

on prend pour grammaire G=< X , V , S , P> avec :

- $V=\{S_q, q \in Q\},\$
- $S = S_{q_0}$
- P contient exactement les règles suivantes (deux formes) :

$$S_q \rightarrow x S_{q'}$$
 pour tout $(q, x, q') \in \delta$,

$$S_q \rightarrow \epsilon$$
 pour tout $q \in F$

On montre que
$$L(A) = L_G(S_{q_0})$$

Preuve de $L(A) = L_G(S_{q_0})$

- Se montre par récurrence sur la longueur des mots.
 - Soit, pour $n \ge 0$, la propriété P(n) signifiant $(\forall f \in X^* \text{avec } |f| = n, \forall q \in Q, S_q \to^* f \text{ si et seulement si il existe un état } q' \in F$, et il existe un chemin dans A, de trace f, menant de l'état q à l'état q')
 - on montre : $\forall n \geq 0$, P(n) est vraie $\text{ce qui revient à dire que } \forall q \in Q, \ L_G(S_q) = L_q$
 - en prenant pour cas particulier $q = q_0$, on a ainsi $L_G(S_{q0}) = L_{q0} = L(A)$ autrement dit, $\forall f \in X^*, S_{q_0} \rightarrow^* f$ si et seulement si f est reconnu par A.

Grammaire linéaire droite \rightarrow automate fini : un peu plus lourd

• Soit la grammaire linéaire droite :

$$G \begin{cases} S \rightarrow aba & S + aa & T \\ T \rightarrow b & T + ab + \epsilon \end{cases}$$

elle engendre le langage reconnu par l'automate fini :

Pour préparer la suite

• Le cardinal Card(E) d'un ensemble fini E est son nombre d'éléments.

Quiz 1 -
$$\{q \in Q / (0, a, q) \in \delta\} = \{1, 2\}$$

Quiz 2 - Card(
$$\{q \in Q / (0, a, q) \in \delta\}$$
) = 1 2

Quiz 3 - Card(
$$\{q \in Q / (2, b, q) \in \delta\}$$
) = 0 1

Automate déterministe

- Un automate $A = \langle X, Q, q_o, F, \delta \rangle$ est dit
 - déterministe si $\forall q \in Q, \forall x \in X, Card(\{q' \in Q / (q, x, q') \in \delta\}) \le 1$
 - complet si $\forall q \in Q, \forall x \in X, Card(\{q' \in Q \mid (q, x, q') \in \delta\}) \ge 1$
 - déterministe complet si $\forall q \in Q, \forall x \in X, Card(\{q' \in Q / (q, x, q') \in \delta\}) = 1$

Quiz 4 - l'automate précédent est déterministe vrai faux

Quiz 5 - l'automate précédent est complet vrai faux

Exemples

• automate non déterministe et non complet

sa table de transitions

δ	а	b
0	{0,1}	-
1	-	{1}

• automate déterministe et complet

sa table de transitions

δ	а	b
0	{1}	{0}
1	{0}	{1}

autrement dit

δ	а	b
0	1	0
1	0	1

Extension de l'application δ

• Pour un automate déterministe complet A, on peut voir δ comme une fonction totale $\delta: Q \times X \to Q$

et ainsi l'étendre inductivement en une fonction totale

$$\delta : Q \times X^* \to Q$$
 de la façon suivante :

- pour $q \in Q$, $\delta(q, \mathcal{E}) = q$,
- pour $q \in Q$, $x \in X$, $u \in X^*$: $\delta(q, x u) = \delta(\delta(q, x), u)$.
- on a alors $\mathring{\delta}(q, u \ v) = \mathring{\delta}(\mathring{\delta}(q, u), v)$ pour tous $q \in Q$, $u \in X^*$.
- δ (q, f) est l'unique état r tel que f est trace d'un chemin de q à r.

Complétion d'automate

• Pour tout automate fini, il existe un automate complet équivalent

où équivalent signifie : reconnaissant le même langage.

• Construction : on ajoute un nouvel état dit "état puits" vers lequel on dirige toutes les transitions "qui manquent".

Déterminisation d'automate

• Pour tout automate fini, il existe un automate déterministe équivalent

• Par conséquent : un langage est reconnaissable si et seulement si il existe un automate fini déterministe qui le reconnaît.

Exemple

• l'automate non déterministe

ayant pour table de transitions

	a	b
0	{1,2}	-
1	-	{ 1, 2}
2	{ 2 }	

Simulons la reconnaissance du mot abbaa

Le même langage est reconnu par l'a.f.d.c.

plus 4 états non accessibles

et/ou non co-accessibles

ayant pour table de transitions

	a	b
{0}	{1, 2}	Ø
{1, 2}	{ 2 }	{ 1, 2}
Ø	Ø	Ø
{ 2 }	{ 2 }	Ø

Construction de l'automate déterministe complet

Soit $A = \langle X, Q, q_o, F, \delta \rangle$ un aut. fini non déterministe

On pose $A^d = < X$, P(Q), $\{q_0\}$, F^d , $\delta^d > avec$:

- $F^d = \{ E / E \subseteq Q \text{ et } (E \cap F) \neq \emptyset \},$
- δ^d (E, x) = {q' / q' ∈ Q et il existe q ∈ E tel que (q, x, q') ∈ δ}

On montre que
$$L(A^d) = L(A)$$

Automate standard

• Un automate fini est dit standard si $\forall q \in Q, \forall x \in X, q_0 \notin \delta(q, x)$

Quiz - l'automate est standard vrai faux

- si L est un langage reconnaissable, il existe un automate standard qui le reconnaît.
- Construction : on ajoute un nouvel état à partir duquel on duplique toutes les transitions issues de l'état initial.

(on utilise cette forme d'automates pour la clôture de Rec par étoile)

Clôtures des reconnaissables

- Rec(X*) et Rec sont closes par
 - union (cf cours 3)
 - produit (cf TD6)
 - étoile (cf cours 5)
 - intersection (cf cours 5 et TD8)
- Rec(X*) est close par
 - complémentation (cf TD5)