

Introduction to Data Science and Machine Learning for Geoscientists

Amr. Moslim

Today's Agenda

- What is Data science?
- What is Machine learning?
- DS VS ML
- DS Skills
- Why should I learn Python?
- How to Code?
- Machine Learning technique
- How does ML work?
- ML Models Evaluation
- ML Algorithms (Kmeans KNN Random Forest)

What's Data Science?

Data science is the field of study that uses modern tools and techniques to process, clean, analyze, model and visualize large data sets to get insights that are reliable to help organizations to understand certain criteria or condition and make business

decisions

What's Machine Learning?

Machine learning is the field of AI that allows systems to learn from past data and make intelligent decisions on their own using algorithms without explicitly programed and improve its experience

Data Science vs Machine Learning?

Why Learn to Code?

- 1. Coding is another language.
- 2. Coding fosters creativity.
- 3. Coding helps learn Math skills and makes sense of it.
- 4. Coding improves writing academic performance.
- 5. Coding can lead to software development jobs
- 6. It open up other job opportunities
- 7. Coding can make your job application stand out
- 8. Coding literacy can help you understand other aspects of tech
- 9. It could lead to freelance work
- 10. Coding can allow you to pursue passion projects
- 11. Coding can boost problem solving and logic skills
- 12. Coding improves interpersonal skills
- 13. Being a skilled coder can build confidence
- 14. Freedom to Make My Own projects
- 15. People Come to ME Asking if I Can Work for THEM
- 16. You can do work remotely any where.
- 17. I Am Part of a Top Secret Club (a.k.a., the Tech Community)
- 18. I Have a Sense of Self-Reliance and Empowerment

Data Science knowledge domains

Data Science Life Cycle

80% of the Data scientist time is dedicated to

- ► Data collection
- ➤ Data cleaning
- > Data exploration
- > Feature engineering

20 % of the data scientist time is for model selection and building

- ✓ Model Building
- ✓ Model Evaluation

Data Science Work flow

Data mining / Collection

Data Exploration

Model Building

Feature engineering and selection

Data clean/ filter/ fix

Insights and decision making

Data Science Vs Machine Learning

Data Science Vs Machine Learning

Characteristics	Data Science	Machine Learning	
Objective	Focus on find unforeseen and hidden trends to understand the data pattern	Focuses on making predictions and classifications to get new data points	
Tools	<u>Python</u> , R , SAS, Spark, Excel, MATLAB, MySQL, Tableau	Python, R, Scikit Learn, ML Studio, MS Azure	
Applications in O& G	Time series analysisProduction forecastOil price prediction	 S-wave log predication Facies classification Porosity logs prediction using seismic attributes 	
Skills	 Database and SQL Mathematics and statistics Knowledge of programming Data mining, data wrangling Data visualization Machine Learning 	 Programming (Python , R) Mathematics and statistics Machine Learning algorithms Data Modeling NLP 	

ML vs DS

Machine Learning	Data Science		
Data structured - unstructured	Any type of data		
No specified rules for each problem	Has specified approach and workflow for each problem		
Generate generalized models for each problem type	Generate specific insights for each problem		
Understanding algorithms and maths is crucial.	Domain expertise is the king		
Classifies / predicts for new data points / patterns from historical data	Create insights from world complexities		
Input data should be transformed specifically for the algorithm	Input data can be used directly which is to be read and analyzed		

Data science Skills

Data science Jobs

- DATA ANALYST
- DATA ENGINEER

- MACHINE LEARNING ENGINEER
- DATA SCIENCE GENERALIST

Data Scientist Skills/Experience

- Group 1: Skills/experience related to competences
 - Data Analytics and Machine Learning
 - Data Management/ Curation (including both general data management and scientific data management)
 - Data Science Engineering (hardware and software) skills
 - Scientific/Research Methods or Business Process Management
 - Application/subject domain related (research or business)
 - Mathematics and Statistics
- Group 2: Big Data (Data Science) tools and platforms
 - Big Data Analytics platforms
 - Mathematics & Statistics applications & tools
 - Databases (SQL and NoSQL)
 - Data Management and Curation platform
 - Data and applications visualization
 - Cloud based platforms and tools
- Group 3: Programming and programming languages and IDE
 - General and specialized development platforms for data analysis and statistics
- Group 4: Soft skills or Social Intelligence
 - Personal, inter-personal communication, team work, professional network

Why should I learn Python?

Why I should Learn Python?

Why I should Learn Python?

- Python is the fastest growing programming language
- Python is easy to read, write, and learn
- Python has an incredibly supportive community
- Open source package (free)
- Multi purpose programming language
- Big companies uses python in their main frame work
- High in demand in the market of data science
- Hundreds of applications & libraries
- Python developers make great money
- 10. Great tool for reproducibility
- 11. Collaborative language to build complex tasks

Why I should Learn Python?

How to code?

Coding Workflow Basic Aspects

Assignment:

> Types of data structure (integer, float, String, Boolean)

Control flow:

- > If statement
- While loops
- > For loops

Mathematical Operators:

- ← (+, -, *, /)
- > (>, <, =, >=, <=, !=)
- Logical operators:

• Functions:

A set of commands that works in sequence to perform a certain task that can include assignment, flow control tools and or mathematical expressions.

- > def: in Python
- > Function (x) in R

• Error handling:

- Avoid having user errors
- Handling errors

Reviewing:

Debugging: to check that all the results as it should be even if you didn't get any errors explicitly

Python most popular packages

Analysis packages

Numpy: Numerical Manipulation and linear alegabra

Pandas: building & Manipulating DataFrames

Visualization packages

➤ Matplotlib : plots and contours

> Seaborn: beautiful plots

Plotly: interactive plotting

Machine Learning packages

Tensorflow: Neural NetWork and Deep learning

Keras: ML algorithms

> Scikit Learn: ML algorithms and model evaluations

Scientific packages

Scipy: scientific equations in python

Obspy: seismic manipulation and reading segy

Geoscience Package

➤ Welly: reading / write well logs las files

> Lasio: reading / write well logs las files

Segyio: seismic Segy files reading / writing and manupliation.

Petopy: Petrophysical evaluation

Machine Learning technique

Machine Learning Algorithm Classification

Supervised Learning

Labeled data prediction

- Regression
- Classification

Unsupervised Learning

unlabeled data

- Dimensionality reduction
- Clustering

Dimensionality reduction

Machine Learning Algorithms

Most commonly used Machine learning algorithms:

- 1.Linear Regression
- 2.Logistic Regression
- 3. Decision Tree
- 4.SVM
- 5. Naive Bayes
- 6.kNN
- 7.K-Means
- 8.Random Forest
- 9. Dimensionality Reduction Algorithms PCA
- 10. Gradient Boosting algorithms
 - 1. GBM
 - 2. XGBoost
 - 3. LightGBM
 - 4. CatBoost

https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/?

Machine Learning Algorithms

Most commonly used Machine learning algorithms:

- 1.Linear Regression
- 2.Logistic Regression
- 3. Decision Tree
- 4.SVM
- 5. Naive Bayes
- 6.kNN
- 7.K-Means
- 8.Random Forest
- 9. Dimensionality Reduction Algorithms (PCA)
- 10. Gradient Boosting algorithms
 - 1. GBM
 - 2. XGBoost
 - 3. LightGBM
 - 4. CatBoost

Machine Learning vs Coding

Characteristics	Machine Learning Algorithms	Common coding		
Objective	To teach the machine to create models to solve the problem without hard coding using data patterns	To use programming language to explicitly code the solution to the problem		
Example: v = d/t	Data = (mass, height, width, velocity) Lm = linearregression() Lm.fit() Lm.predict()	Data = (d, t) def velocity(d,t): v = d/t return (v)		
Tools	Python, R, Scikit learn, Tensorflow, etc	Python, R, Visual Basic, Java, Go, Excel		
Running time	Most of time in data wrangling and model evaluation	Most of the time in coding the problem and solution		
Output	ML model and forecast	Data table, graphs, dashboards		
Reproducibility	Yes with the same data formats	Yes with the same data formats		
Domain knowledge	It is very important and highly recommended	a must		

Machine Learning Work flow

Machine Learning Algorithms

Algorithm	Accuracy	Used for	Training time	Noise Dealing	Scaling/Norm	limitations
Linear Regression	Low - intermediate	Regression	Rapid	NO	Yes	Weak predictive on correlated variables
Logistic regression	Low - intermediate	Classification	Rapid	NO	Yes	Sensitive to background noise. Limited by high number of features
Naïve Bayes	Low - intermediate	Classification	Rapid	Yes	NO	Assume features are independent
KNN	intermediate	Both	Rapid	NO	Yes	Distance based algorithm
K- Means	intermediate	Classification	Rapid	NO	Yes	Distance Based algorithm
DT	Intermediate - High	Both	Rapid	NO	NO	Risk Overfitting
Random Forest	High	Both	Intermediate	Yes	NO	Risk Overfitting
SVM	High	Classification	Rapid	Yes	Yes	Risk Overfitting Black box Algorithm
ANN	High	Both	Rapid	Yes	Yes	Risk Overfitting Needs computational Power Black box Algorithm

How does ML work?

Linear Regression

• Objective:

model the expected value of a continuous variable, **Y**, as a linear function of the continuous predictor, **X**

Model structure:

$$Y = Ax + B$$

Model assumptions:

Y is normally distributed, errors are normally distributed, and independent

Parameter estimates and interpretation:

B the intercept, and **A** is estimate of the slope

Model fit:

R², residual analysis

Model selection:

possible predictors, which variables to include?

Y: Dependent Variable

A: Slope

x: Independent variable

B:Intercept

Linear Regression - Gradient Descent

• Objective:

To minimize the error function to close to zero (Cost Function) If possible.

Function structure:

Cost function :
$$\Sigma |t-y|^2$$

• Model assumptions:

Slope of the *cost function* ~= Zero, then it is the best prediction

- Parameter estimates and interpretation:
 - Slope first derivative over certain iterations,
 - Learning rate

Y: Cost Function (Loss function, Error)

A:Slope

x: N# of iterations

Linear Regression - Gradient Descent

ML Models Evaluation

Model Evaluation

Overfitting means the model has been trained too well

- The model knows too much details for every data point
- The model includes noise as well as the data
- Negatively impact the models ability to generalize
- More likely to happen in nonlinear / nonparametric data

Characteristics of Overfitting:

- High Variance
- Low Bias
- Low standard deviation
- No generalization

Model Evaluation

under-fitting means the model is too simple for the training data and test data

- The model knows so little for the whole data set.
- It will have poor performance on the training data
- Negatively impact the models ability to generalize
- It is easy to detect given a good performance metric

Characteristics of Overfitting:

- Low Variance
- High Bias
- High standard deviation
- Low generalization

K-Means Classification

Objective:

To be able to cluster the data based on the input variable or variables and find cluster centroids

Model structure:

Euclidean distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- Model assumptions:
 - Cluster centroids are in the middle of each cluster
 - > Each cluster has a centroid and data is scattered around it
- Parameter estimates and interpretation:

Find Euclidian distance that correspond to each centroid

Model fit:

R², residual analysis

Model selection:

possible predictors, which variables to include?

K-Means Classification

Random Forest

• Objective:

To be able to build decision boundaries based on the maximum variance between variables

Model structure:

Step 1 : Select random samples from a given dataset.

Step 2 : Construct a decision tree for every sample.

Step 3: Get the prediction result from every decision tree.

Step 4: Voting will be performed for every predicted result.

Step 5 : Select the most voted prediction result as the final prediction result.

Model fit:

R², Confusion Matrix

Confusion Matrix

Confusion Matrix KPI:

Precision: true positive rate

$$\frac{TP}{TP + FP}$$

> **Recall:** true positive over the 1 class predict

$$\frac{TP}{TP + FN}$$

> F1 Score:

$$\frac{2*precision*Recall}{Precision+Recall}$$

> Accuracy:

$$\frac{TP + TN}{TP + TN + FP + FN}$$

Thank You for Your Attention