Hugging Face and Intel

partnering to democratize ML hardware acceleration

Julien Simon, Chief Evangelist, Hugging Face

2022: Transformers are eating Deep Learning

"Transformers are emerging as a general-purpose architecture for ML" https://www.stateof.ai (2021)

RNN and CNN usage down, Transformers usage up! https://www.kaggle.com/kaggle-survey-2021

All modalities, and multi-modal too

Introduction | Research | Industry | Politics | Safety | Predictions

#stateofai | 42

Transformers are becoming truly cross-modality

In the 2020 State of AI Report we predicted that transformers would expand beyond NLP to achieve state of the art in computer vision. It is now clear that transformers are a candidate general purpose architecture. Analysing transformer-related papers in 2022 shows just how ubiquitous this model architecture has become.

stateof.ai 2022

The Hugging Face Hub: The Github of Machine Learning

https://huggingface.co

150K models

24K datasets

25+ ML libraries: Keras, spaCY, Scikit-Learn, fastai, etc.

10K organizations

100K+ users daily

1M+ downloads daily

Hugging Face: one of the fastest-growing open source projects

https://github.com/huggingface/transformers/

Hugging Face at a glance

Partnering to Democratize ML Hardware Acceleration

https://huggingface.co/blog/intel

Hugging Face and Intel partnership

Accelerate Transformer fine-tuning and inference on Intel platforms

Deliver best-in-class cost-performance and scalability

Build the simplest developer experience

Share results with the Open Source community

Accelerate Hugging Face transformers with Optimum Intel

https://github.com/huggingface/optimum-intel

- Open source library, bringing Intel acceleration to the Hugging Face Transformers library
 - Hardware: AVX, AMX
 - Software: Intel Extension for PyTorch (IPEX), Intel Neural Compressor, Intel OpenVINO
- Acceleration, quantization and pruning in just a few lines of Python!

```
from transformers import AutoModelForQuestionAnswering
from neural_compressor.config import PostTrainingQuantConfig
from optimum.intel.neural_compressor import INCQuantizer
model_name = "distilbert-base-cased-distilled-squad"
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
# The directory where the quantized model will be saved
save_dir = "quantized_model"
# Load the quantization configuration detailing the quantization we wish to apply
quantization_config = PostTrainingQuantConfig(approach="dynamic")
quantizer = INCQuantizer.from_pretrained(model)
# Apply dynamic quantization and save the resulting model
quantizer.quantize(quantization_config=quantization_config, save_directory=save_dir)
```


Inference on Intel Sapphire Rapids with Optimum Intel and IPEX

Text-to-image generation with Stable Diffusion on Sapphire Rapids

Few-shot learning on Intel Sapphire Rapids with IPEX

```
Dataset({
    features: ['text', 'label'],
    num_rows: 16
Dataset({
    features: ['text', 'label'],
    num_rows: 38000
model_head.pkl not found on HuggingFace Hub, initialising classification head wi
th random weights. You should TRAIN this model on a downstream task to use it fo
r predictions and inference.
***** Running training *****
  Num examples = 512
  Num epochs = 1
  Total optimization steps = 32
  Total train batch size = 16
Iteration: 100%|
                                                  32/32 [02:23<00:00, 4.49s/it]
                                                  1/1 [02:23-00:00, 143.77s/it]
Epoch: 100%|
***** Running evaluation *****
{'accuracy': 0.9459736842105263}
```

Distributed training on Intel Sapphire Rapids with IPEX and oneCCL

Getting started

Stay in touch!

@julsimon
julsimon.medium.com
youtube.com/c/juliensimonfr

https://huggingface.co/intel

https://huggingface.co/hardware/intel

https://huggingface.co/docs/optimum/intel/index

https://github.com/huggingface/optimum-intel

https://www.intel.com/content/www/us/en/developer/partner/hugging-face.html

Hugging Face and Intel partnering to democratize ML hardware acceleration

Matrix Yao, Lead Al Software Architect, Intel Corporation

Intel Software Ecosystem deeply integrated w/ Hugging Face

Build OOB is the best performance Hugging Face experience on Intel platforms

Enjoy Intel SW Optimization Benefit with Zero Code Change

oneDNN-Graph brings INT8 MHA aggressive fusion capability and is integrated to IPEX.

reshape + permute + transpose + bmm + mul + add + softmax + quantize + (bmm + transpose + reshape + quantize)

fuse to single op in runtime

Enjoy Intel SW Optimization Benefit with Zero Code Change

^{*} BERT-Large-uncased; SQUAD-v1.1; seq len=384, batch size per core = 1, single socket

Just pip install the new IPEX package, **zero code change**, HF users can enjoy oneDNN-Graph performance boost.

^{*} Intel(R) Xeon(R) Platinum 8480+ 56 cores on Dennard Pass platform and software with 512GB memory (16x32GB DDR5 4800 MT/s [4800 MT/s]), microcode 0x90000c0, HT on, Turbo on, Rocky Linux 8.7, 4.18.0-372.32.1.el8_6.crt2.x86_64, 931.5G SSD. Multiple nodes connected with 200Gbps Mellanox EDR. PyTorch 1.13.1, IPEX 1.13.100, Transformers 4.26.1, oneDNN 2.6.0