Задача 1

Столбцы матриц ${\bf F}$ и ${\bf G}$ – это координатные столбцы векторов базисов $\{{\bf f}\}$ и $\{{\bf g}\}$ относительно некоторого базиса $\{{\bf e}\}$. Требуется найти матрицы ${\bf S}_1$ и ${\bf S}_2$ – матрицы переходов от базиса $\{{\bf f}\}$ к базису $\{{\bf g}\}$ и от базиса $\{{\bf g}\}$ к базису $\{{\bf f}\}$ соответственно, если

$$\mathbf{F} = \begin{bmatrix} 1 & -1 & 0 \\ 4 & -1 & -2 \\ -2 & 1 & 1 \end{bmatrix} \quad \mathbf{u} \quad \mathbf{G} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 1 & -2 \\ 1 & 0 & 1 \end{bmatrix}.$$

Ответ:

$$\mathbf{S}_1 = \begin{bmatrix} & 1 & & 1 & & -1 \\ & 1 & & & 1 & & 0 \\ & 2 & & & 1 & & -1 \end{bmatrix} \quad \mathbf{u} \quad \mathbf{S}_2 = \begin{bmatrix} -1 & & 0 & & 1 \\ & 1 & & & 1 & & -1 \\ & -1 & & & & 1 & & 0 \end{bmatrix}.$$

Задача 2

Найти координатный столбец ξ вектора \mathbf{x} в базисе $\{\mathbf{e}'\}$ по его координатному столбцу ξ' в базисе $\{\mathbf{e}'\}$ и координатный столбец ζ' вектора \mathbf{z} в базисе $\{\mathbf{e}'\}$ по его координатному столбцу ζ в базисе $\{\mathbf{e}\}$, если

1) матрица перехода от базиса $\{\mathbf{e}\}$ к базису $\{\mathbf{e}'\}$ имеет вид $\mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$,

координатные вектор-столбцы
$$\xi' = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 и $\zeta = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$;

2) матрица перехода от базиса $\{\mathbf{e}\}$ к базису $\{\mathbf{e}'\}$ имеет вид $\mathbf{S} = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}$,

координатные вектор-столбцы
$$\xi' = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 и $\zeta = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$.

Ответы:

1)
$$\xi = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 μ $\zeta' = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$;

2)
$$\xi = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$
 π $\zeta' = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

24.02.2018 11:01:28

Задача 3

В столбцах матрицы \mathbf{X} записаны координаты векторов \mathbf{x}_1 , \mathbf{x}_2 ,..., \mathbf{x}_5 относительного некоторого базиса. Требуется определить размерность линейной оболочки $L(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_5)$, её базис и координаты остальных векторов в этом базисе.

1)
$$\mathbf{X} = \begin{bmatrix} 1 & -3 & 2 & -3 & -2 \\ 2 & -5 & 2 & -4 & -3 \\ 0 & 2 & -4 & 4 & 2 \\ -2 & 6 & -4 & 6 & 4 \end{bmatrix};$$
2)
$$\mathbf{X} = \begin{bmatrix} 1 & -1 & -2 & -1 & 2 \\ -2 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ -1 & 0 & -2 & -1 & 1 \end{bmatrix}.$$

Ответы:

- 1) $\dim(L(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_5))=2$, в качестве базиса можно взять векторы $\{\mathbf{x}_1,\mathbf{x}_2\}$, остальные векторы в данном базисе имеют координаты: $\mathbf{x}_3=\{-4,-2\}$, $\mathbf{x}_4=\{3,2\}$, $\mathbf{x}_5=\{1,1\}$;
- 2) $\dim(L(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_5)) = 3$, в качестве базиса можно взять векторы $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$, остальные векторы в данном базисе имеют координаты: $\mathbf{x}_4 = \{1, 2, 0\}$, $\mathbf{x}_5 = \{1, 1, -1\}$.

24.02.2018 11:01:28