STA3020 Assignment 2.

¹ School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen)

KAA XIX ALIFXAAXA IXYAX XXFFFX AYXAYXIX KAA XIX AYAXXFA XXFFFX AYAXAXX

1. Sufficient

• Exercise 1.1. For two independent samples $X = (X_1, \dots, X_m)$ and $Y = (Y_1, \dots, Y_n)$, we have T = T(X) is a sufficient statistic for θ_1 and S = S(Y) is a sufficient statistic for θ_2 . Please show that (T, S) is a sufficient statistic for $\theta = (\theta_1, \theta_2)$.

2. Minimal Sufficient

• Exercise 2.1. Let X_1, \dots, X_n be a random sample from $Gamma(\alpha, 1/(\alpha^2 + \alpha))$,

$$f(x|\alpha) = \frac{(\alpha^2 + \alpha)^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} \exp\left(-(\alpha^2 + \alpha)x\right) \cdot \mathbb{1}(x > 0)$$

with $\Theta = \{\alpha : \alpha > 0\}$. Please show that $T = (\sum_{i=1}^n \ln X_i, \sum_{i=1}^n X_i)$ is minimal sufficient for α .

- Exercise 2.2. Let X_1, \dots, X_m and Y_1, \dots, Y_n be independently distributed according to $N(\xi, \sigma^2)$ and $N(\eta, \tau^2)$, respectively. Find the minimal sufficient statistics for these cases:
- (a) ξ, η, σ, τ are all arbitrary: $-\infty < \xi, \eta < \infty, \sigma, \tau > 0$.
- (b) $\sigma = \tau$ and ξ, η, σ are all arbitrary: $-\infty < \xi, \eta < \infty, \sigma = \tau > 0$.
- (c) $\xi = \eta$ and ξ, σ, τ are all arbitrary: $-\infty < \xi = \eta < \infty, \sigma, \tau > 0$.
- Exercise 2.3. Let X_1, \dots, X_n be i.i.d random variables from $P_{\theta} \in \{P_{\theta} : \theta \in \Theta\}$. In the following cases, find a minimal sufficient statistic for $\theta \in \Theta$.
- (a) P_{θ} is the Poisson(λ) distribution, $\theta = \lambda \in (0, +\infty)$.
- (b) P_{θ} is the binomial(n, p) distribution with a known n and $\theta = p \in (0, 1)$.

2

- (c) P_{θ} is the Exponential(λ) distribution, $\theta = \lambda \in (0, +\infty)$.
- (d) P_{θ} is the Inverse-Gamma (α, β) distribution, i.e., the density of X_1 is

$$f_{\theta}(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha - 1} \exp\left(-\frac{\beta}{x}\right) \cdot \mathbb{1}(x > 0)$$

with $\theta = (\alpha, \beta) \in (0, +\infty) \times (0, +\infty)$.

- (e) P_{θ} is the Beta (α, β) distribution, $\theta = (\alpha, \beta) \in (0, 1) \times (0, 1)$.
- (f) P_{θ} is the log-normal (μ, σ^2) distribution, $\theta = (\mu, \sigma^2) \in \mathbb{R} \times (0, +\infty)$.
- (g) P_{θ} is the Weibull (γ, β) distribution, $\theta = (\gamma, \beta) \in (0, +\infty) \times (0, +\infty)$.

3. Complete Statistics

• Exercise 3.1. Suppose $X=(X_1,\cdots,X_n)$ is a random sample came from discrete Uniform, i.e., $Uniform\{1,2,\cdots,\theta\}$, where $\theta\in\mathcal{N}^+$. Please show $T(X)=\max_{\{1\leq i\leq n\}}X_i$ is a complete statistic.

Hint. Using mathematical induction.

4. Basu Theorem

• Exercise 4.1. Let X_1, \dots, X_n be a random sample from the Exponential(a, b), each with density

$$f(x|a,b) = \frac{1}{b}e^{-(x-a)/b} \cdot \mathbb{1}(x \ge a), \quad a \in \mathbb{R}, b > 0.$$

Let $T_1 = X_{(1)}$ and $T_2 = \sum_{i=1}^n \left[X_i - X_{(1)} \right]$. Then (T_1, T_2) are independently distributed as Exponential(a, b/n) and $\frac{b}{2}\chi^2_{2n-2}$, respectively.

Hint. Using the Basu's Theorem and the characteristic function. \Box

5. Hierarchical Structure

• Exercise 5.1. The time of failure of a super computing machine, recorded as X, has distribution $Gamma(\alpha, \alpha^{-1})$, i.e.,

$$f_X(x|\alpha) = \frac{\alpha^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\alpha x} \cdot \mathbb{1}(x > 0)$$

with $\alpha \in \mathbb{N}^+$. Meanwhile, within the time of running of this super computing machine, the number of tasks it can solve, denoted as Y, has the conditional Poisson distribution, $Y|X \sim \text{Poisson}(\mu X)$, with some $\mu > 0$. Now, in order to test the performance of this machine, an experiment is conducted independently for a total of n products of this machine and Y_i for the i-th experiments are recorded, $i = 1, \dots, n$. Please obtain a statistic that is minimal sufficient and complete for μ and derive its distribution.