

JPSS-1 VIIRS at-launch geometric performance

NASA VIIRS Characterization Support Team (VCST)
Geometric Calibration Group

Guoqing (Gary) Lin, SSAI/GSFC Code 619 Robert E. Wolfe, NASA/GSFC Code 619

SPIE Optics+Photonics Conference, 28 Aug - -1 Sept 2016 San Diego, California Thursday, 1 Sept 2016

Outline

- Spatial Responses, LSF, DFOV, MTF
- Band-to-Band Co-registration (BBR)
- Pointing (for geolocation)
- DNB Geometric Performance
- Concluding Remarks

Optical calibration

➤ J1 VIIRS has improved optical system over SNPP – efforts were made to improve the mirrors and the coating for the RTA

Scan LSF -- DFOV

- J1 F2 optical performance is good (better than SNPP F1)
- M-Bands over-sample the earth, in the un-aggregated zones
- I-bands under-sample the earth (TOA), mostly in the un-aggregated zones
- Track direction LSFs are mostly square, IFOV ~= 1.0 ASI (or HSI on the ground)

Scan LSF -- MTF

- MTF for M-bands mostly meets specification
- I-bands images are very sharp, at least at TOA (I3D4 under-performs but is still good in MTF)

• Track direction LSFs are mostly square, MTF \sim = 0.63 at 1.00NF (Nyquist Frequency)

Scan LSF → MTF w/SNPP

- > J1 MTF performs better than SNPP
- ➤ Side-lobes of M11 in SNPP disappear in J1
- ➤ Right focus for VisNIR FPA/bands in J1, while defocused/shorter EFL in SNPP

VIIRS Band/Detector Physical Layout

3 focal planes: VisNIR, SWMIR, LWIR; + 1 DNB (no BBR Spec)

21 bands (16 M-bands (M16A, M16B merged in space or just sent down one), 5 I-bands)

16 detectors in each M-band; 32 detectors in each I-band

M-band Sample Aggregation Sample Numbers Pixel Size

On-board sample deletion deletes 2 M-band (4 I-band) detectors in the 2 sample aggregation zone and 4 M-band (8 I-band) detectors in the no-aggregation zone. The numbers in in parentheses for the "Sample no." and "HSI Scan (m)" are for dual-gain M-bands before aggregation, SDR of which are available to the ground as intermediate products.

M-band Sample Aggregation Sample Numbers Pixel Size

On-board sample deletion deletes 2 M-band (4 I-band) detectors in the 2 sample aggregation zone and 4 M-band (8 Iband) detectors in the no-aggregation zone. The numbers in in parentheses for the "Sample no." and "HSI Scan (m)" are for dual-gain M-bands before aggregation, SDR of which are available to the ground as intermediate products.

Track (mis-)Registration wrt I1

- Results obtained from tests at the nominal temperature performance plateau
- Track direction bands co-register well within each FPA
- Bands on SWMWIR and LWIR FPAs shifted from bands on VisNIR FPA, ~ 7% for M-bands and ~ 14% for I-bands. Mapping uncertainties are also affected $RMSE = \sqrt{\sigma^2 + \mu^2}$

Scan (mis-)Registration wrt I1

- Results obtained from tests at the nominal temperature performance plateau
- The scan rate is nominal @1.786 sec/scan or 3.517 rad/sec (0.4% slower than SNPP)
- Data shows for un-aggregated zones. Mis-reg in Agg2x1 and 3x1 zones is ½ and 1/3
- Mis-reg is < ~5% for M-band and < ~10% for I-bands

BBR matrix— non-agg zones

Band	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16A	M16B	I1	12	13	14	15
M1		0.99	0.97	0.98	0.95	0.92	0.93	0.88	0.86	0.89	0.87	0.86	0.87	0.87	0.87	0.86	0.86	0.95	0.95	0.89	0.88	0.88
M2	0.64		0.98	0.98	0.95	0.93	0.94	0.89	0.87	0.89	0.88	0.87	0.88	0.88	0.87	0.87	0.87	0.96	0.96	0.90	0.88	0.88
М3	0.64	0.64		0.99	0.97	0.94	0.96	0.90	0.88	0.91	0.89	0.89	0.89	0.89	0.89	0.88	0.89	0.97	0.97	0.91	0.90	0.90
M4	0.64	0.64	0.64		0.97	0.94	0.95	0.90	0.88	0.90	0.89	0.88	0.88	0.89	0.89	0.88	0.88	0.97	0.97	0.91	0.89	0.89
M5	0.64	0.64	0.70	0.64		0.96	0.97	0.92	0.90	0.93	0.90	0.89	0.88	0.92	0.91	0.91	0.91	0.98	0.98	0.92	0.92	0.92
M6	0.64	0.64	0.64	0.64	0.64		0.94	0.91	0.93	0.91	0.92	0.90	0.90	0.91	0.89	0.88	0.89	0.94	0.95	0.91	0.90	0.91
M7	0.64	0.64	0.64	0.64	0.80	0.64		0.90	0.88	0.91	0.89	0.87	0.87	0.89	0.92	0.92	0.92	0.98	0.98	0.90	0.91	0.91
M8	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.98	0.98	0.98	0.96	0.96	0.98	0.97	0.95	0.96	0.90	0.91	0.98	0.97	0.98
M9	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.97	0.98	0.96	0.94	0.97	0.95	0.94	0.95	0.88	0.89	0.96	0.95	0.96
M10	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.96	0.94	0.95	0.98	0.98	0.97	0.98	0.92	0.92	0.99	0.98	0.98
M11	0.64	0.64	0.70	0.64	0.70	0.64	0.64	0.64	0.64	0.64		0.97	0.96	0.97	0.95	0.94	0.95	0.89	0.90	0.96	0.95	0.96
M12	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80		0.64			0.95	0.94	0.92	0.93	0.88	0.89	0.94	0.93	0.94
M13	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80		0.95	0.95	0.92	0.93	0.88	0.89	0.95	0.94	0.95
M14	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80		0.98	0.95	0.96	0.89	0.90	0.97	0.96	0.97
M15	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80	0.80		0.97	0.98	0.91	0.91	0.97	0.98	0.98
M16A	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80	0.80	0.80		0.99	0.90	0.90	0.96	0.97	0.96
M16B	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80	0.80	0.80	0.80		0.91	0.91	0.96	0.98	0.97
l1	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.97	0.82	0.83	0.80
12	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80				
13	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80		/	0.95	
14	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.80	0.80		0.89
15	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.80	0.80	0.80	

None out of spec at the ground test level

 On-orbit jitter should have little impact since I-bands are located close together with very short time delay for co-reg.

Lin et al, 1 Sept 2016 VCST/GEO 12

Barely made it

BBR matrix— 2x1-agg zones

Band	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16A	M16B	l1	12	13	14	15
M1		0.99	0.98	0.98	0.96	0.94	0.95	0.90	0.89	0.90	0.89	0.89	0.89	0.89	0.89	0.88	0.89	0.97	0.96	0.90	0.89	0.89
M2	0.64		0.99	0.99	0.97	0.95	0.96	0.90	0.89	0.90	0.90	0.89	0.89	0.90	0.89	0.89	0.89	0.97	0.97	0.91	0.90	0.90
M3	0.64	0.64		0.99	0.98	0.96	0.97	0.91	0.91	0.92	0.91	0.91	0.90	0.91	0.91	0.90	0.90	0.99	0.98	0.92	0.91	0.91
M4	0.64	0.64	0.64		0.98	0.96	0.97	0.91	0.90	0.91	0.91	0.90	0.90	0.91	0.90	0.90	0.90	0.98	0.98	0.91	0.91	0.90
M5	0.64	0.64	0.70	0.64		0.98	0.99	0.93	0.92	0.93	0.92	0.91	0.90	0.92	0.92	0.92	0.92	0.98	0.99	0.93	0.93	0.93
M6	0.64	0.64	0.64	0.64	0.64		0.97	0.93	0.93	0.92	0.93	0.92	0.91	0.92	0.91	0.91	0.91	0.96	0.97	0.92	0.92	0.92
M7	0.64	0.64	0.64	0.64	0.8	0.64		0.91	0.91	0.92	0.91	0.90	0.89	0.91	0.92	0.93	0.93	0.99	0.99	0.92	0.92	0.92
M8	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.99	0.99	0.99	0.97	0.97	0.98	0.98	0.97	0.98	0.92	0.92	0.99	0.98	0.98
M9	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.98	0.98	0.97	0.96	0.97	0.97	0.97	0.97	0.91	0.91	0.98	0.97	0.97
M10	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.98	0.96	0.97	0.98	0.99	0.98	0.98	0.92	0.93	0.99	0.99	0.98
M11	0.64	0.64	0.70	0.64	0.70	0.64	0.64	0.64	0.64	0.64		0.98	0.97	0.98	0.97	0.97	0.97	0.91	0.91	0.98	0.97	0.98
M12	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64		0.98	0.96	0.96	0.96	0.96	0.90	0.91	0.96	0.96	0.97
M13	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80		0.97	0.97	0.95	0.95	0.90	0.90	0.97	0.96	0.97
M14	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80		0.98	0.97	0.97	0.91	0.92	0.98	0.98	0.98
M15	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80	0.80		0.98	0.98	0.92	0.92	0.98	0.99	0.98
M16A	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80	0.80	0.80		0.99	0.91	0.92	0.97	0.98	0.98
M16B	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80	0.80	0.80	0.80		0.92	0.92	0.98	0.98	0.98
l1	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.98	0.83	0.84	0.81
12	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80		0.84	0.84	0.83
13	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.80		0.97	0.92
14	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.80	0.80		0.92
15	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.80	0.80	0.80	

None out of spec at the ground test level

• On-orbit jitter should have little impact since I-bands are located close together with very short time delay for co-reg.

Lin et al, 1 Sept 2016 VCST/GEO 13

Improved a little, but not much

BBR matrix— 3x1-agg zones

Improved a little, but not much

Band	M1	M2	М3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16A	M16B	l1	12	13	14	15
M1		0.99	0.98	0.99	0.96	0.95	0.96	0.9	0.89	0.90	0.90	0.90	0.89	0.89	0.89	0.89	0.89	0.97	0.97	0.90	0.90	0.89
M2	0.64		0.99	0.99	0.97	0.95	0.97	0.91	0.90	0.91	0.90	0.90	0.90	0.89	0.90	0.90	0.90	0.98	0.97	0.91	0.90	0.90
M3	0.64	0.64		0.99	0.98	0.97	0.98	0.92	0.91	0.92	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.99	0.99	0.92	0.91	0.91
M4	0.64	0.64	0.64		0.98	0.96	0.97	0.91	0.91	0.91	0.91	0.91	0.90	0.90	0.90	0.90	0.91	0.98	0.98	0.91	0.91	0.90
M5	0.64	0.64	0.70	0.64		0.98	0.99	0.93	0.92	0.93	0.92	0.92	0.91	0.92	0.92	0.92	0.92	0.99	0.99	0.93	0.93	0.92
M6	0.64	0.64	0.64	0.64	0.64		0.98	0.93	0.93	0.92	0.93	0.92	0.92	0.92	0.92	0.92	0.92	0.97	0.98	0.93	0.92	0.92
M7	0.64	0.64	0.64	0.64	0.80	0.64		0.92	0.92	0.92	0.91	0.91	0.90	0.91	0.92	0.93	0.93	0.99	0.99	0.92	0.92	0.92
M8	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.99	0.99	0.99	0.97	0.97	0.98	0.98	0.98	0.98	0.92	0.92	0.99	0.98	0.97
M9	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.98	0.99	0.97	0.97	0.97	0.98	0.97	0.98	0.91	0.92	0.98	0.98	0.96
M10	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.98	0.96	0.97	0.98	0.98	0.99	0.99	0.92	0.93	0.99	0.99	0.97
M11	0.64	0.64	0.70	0.64	0.70	0.64	0.64	0.64	0.64	0.64		0.98	0.97	0.98	0.98	0.98	0.98	0.91	0.92	0.98	0.98	0.97
M12	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64		0.99	0.97	0.97	0.97	0.97	0.91	0.92	0.97	0.97	0.97
M13	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80		0.97	0.98	0.96	0.96	0.90	0.91	0.97	0.97	0.98
M14	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80		0.98	0.97	0.98	0.91	0.92	0.98	0.98	0.97
M15	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80	0.80		0.99	0.99	0.92	0.92	0.99	0.99	0.98
M16A	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80	0.80	0.80		0.99	0.92	0.92	0.98	0.99	0.97
M16B	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.64	0.64	0.80	0.80	0.80	0.80	0.80		0.92	0.92	0.98	0.99	0.98
I1	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64		0.98	0.84	0.84	0.82
12	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80		0.85	0.85	0.83
13	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.80		Ø.97	0.92
14	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.80	0.80		0.92
15	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.80	0.80	0.80	0.80	

None out of spec at the ground test level

• On-orbit jitter should have little impact since I-bands are located close together with very short time delay for co-reg.

Pointing (for geolocation)

- Scan plane was measured to within 1 arcmin
- Instrument mounting (within 1 arcmin post-vibe), launch will add to the variation
- On-orbit geolocation CalVal will remove biases and sub-pixel accuracy is expected for M- & I-bands

Geolocation/orbit geometry related

VIIRS potential underlap at nadir over Equator

VIIRS nadir overlap/underlap potential

VIIRS overlap/underlap vs off-nadir distance

- · Scan-to-scan overlaps / underlaps are very sensitive to changes in orbit/instrument parameters
- The scan to scan (s2s max) distance is based on max speed of 6656 m/s from SNPP experience.
- Assuming the scan rate is tied to FOR through focal length via exact BBR requirement.

Lin et. al., 1 Sept 2016 VCST/GEO 18 Lin et. al., 1 Sept 2016 VCST/GEO 20

- Tight requirements in orbit parameters (e.g., altitude, inclination, repeat ground tracks) and instruments parameters (e.g., DFOV, MTF, BBR) leave little room for adjustments
- A "small" change of tolerance during instrument fabrication (e.g., focal length) makes significant impact in scan-to-scan overlaps or underlaps

0.5

SNPP & J1 DNB cell sizes in scan direction

- DNB LSFs are mostly square
- Baselined pixel size is ~ 750 m
- "Option21" has pixel size up to 1.6 km within 56.5°
- Geolocation is extrapolated post-nadir for scan angle > ~56.5° (pixel size up to 3.9 km @60.5°)

➤J1 DNB cell sizes are not constant as SNPP VIIRS are

Beginning of scan

Scan angle > ~56.5°

End of scan

Example > ~56.5°

Geo

1.5

1.5

1600

DNB distance from nadir (km)

1800

2000

"Option21" – default, in km

1400

1200

"Option21" - default, in Samp#

Lin et al, 1 Sept 2016 VCST/GEO 17

2200

Concluding Remarks

- J1 VIIRS has good optical performance (better than SNPP)
- J1 VIIRS scan rate is nominal @1.786 sec/scan or 3.517
 rad/sec (SNPP VIIRS is @ 1.779 sec/scan or 3.531 rad/sec)
- J1 VIIRS BBR aligns well in scan direction
 - However, in the track direction, bands (I3-5, M8-16) on the CFPAs are shifted from bands (I1-2, M1-7) on VisNIR FPA, ~ 7% for M-bands and ~ 14% for I-bands. Mapping uncertainties will be affected
- J1 VIIRS pointing was measured. On-orbit geolocation CalVal will remove biases and sub-pixel accuracy is expected for M-& I-bands, as was done for that of SNPP VIIRS
- J1 DNB geometry is different than that of SNPP VIIRS

Backup

Image Resolution Specifications – FOVs

±10% for spec

±5% for spec

- Scan Dynamic Field of View (DFOV), including integration drag
 - = Full Width Half Maximum (FWHM) of Line Spread Function (LSF)
 - I-bands, original Spec (actual dominant by integration_drag & EFL)
 - I1, I2: 114 (116) μrad
 - I3: 108 (116) μrad
 - I4: 109 (116) μrad
 - I5: 102 (109) μrad
 - M-bands: original Spec (actual dominant by detector_size & EFL)
 - M1 to M11: 382 (381) μrad
 - M12, M13: 379 (378) μrad
 - M14, M15: 362 (361) μrad
 - M16: 364 (361) μrad
- Track IFOV, without integration drag
 - Given by FWHM of LSF curve, mostly square
 - I-bands: IFOV = $445.5 \mu rad \pm 5\%$
 - M-bands: IFOV = 891 μ rad ±5%
- Note: angular sampling interval (ASI) (and horizontal samplntvl (HSI)) at nadir w/ avg Alt=838.8 km
 - I-bands scan ASI = 155.21 μrad (130 m @ nadir) ->3 ASIs = 465.6 μrad (391 m @ nadir)
 - I-bands track ASI = $445.5 \mu rad$ (381 m @ nadir)
 - M-bands scan ASI = 310.42 μrad (260 m @ nadir) ->3 ASIs = 931.3 μrad (790 m @ nadir)
 - M-bands track ASI = 891 μ rad (762 m @ nadir)

DNB Geometric Performance

- DNB LSFs are mostly square
- Baselined HSI is ~ 750 m
- "Option21-26" has HSI max of 1.1 km within 56.5° (up to 1.4 km @57.6°)
- "Option21" has HSI max of 1.6 km within 56.5° (up to 3.9 km @60.5°)
- Geolocation may be FILL post-nadir for scan angle > ~56.5°

"Option21"