Additional guidance Learning outcomes Learners should be able to demonstrate and apply their knowledge and understanding of: moment of force (a) couple; torque of a couple the principle of moments centre of mass; centre of gravity; experimental determination of centre of gravity equilibrium of an object under the action of forces and torques condition for equilibrium of three coplanar M4.1, M4.2, M4.4 forces; triangle of forces. (6) M - Calculate moments (7) S - Apply the principle of moments (8) C - Apply the principle of moments to forces at an angle. 0:00:00 Lesson 5. Moments and equilibrium **STARTER:** What do you remember about moments? What is the principle of moments? What does equilibrium mean **Extension:** Mr and Mrs Smith have a combined mass of 150kg. Estimate the Ma clockwise moment they cause. **Moment = force** x **perpendicular** distance from **line of action** of the force and the axis of rotation **Principle of moments**, for a body in rotational equilibrium, the sum of anticlockwise moments about any point = the sum of clockwise moments about that point

For an object in equilibrium, the net force acting is zero and the net

moment acting is zero.

- (6) M Calculate moments
- (7) S Apply the principle of moments
- (8) C Apply the principle of moments to forces at an angle.

Quick check: Find the force R acting upwards from the pivot point of this ruler in equilibrium.

By taking moments about the support **A**, determine the force $R_{\rm B}$ at the support **B**.

[1]

b Use your answer to a to calculate the force R_A at support **A**.

- (6) M Calculate moments
- (7) S Apply the principle of moments
- (8) C Apply the principle of moments to forces at an angle.

Quick check: Hint - sketch a simplified force diagram

An object of weight $50 \,\mathrm{N}$ is held in the hand with the forearm at right angles to the upper arm. Use the principle of moments to determine the muscular force F provided by the biceps, given the following data:

weight of forearm $= 15 \,\mathrm{N}$

distance of biceps from the elbow = $4.0 \,\mathrm{cm}$

distance of centre of gravity of forearm from elbow = 16 cm

distance of object in the hand from elbow $= 35 \,\mathrm{cm}$

- (6) M Calculate moments
- (7) S Apply the principle of moments
- (8) C Apply the principle of moments to forces at an angle.

0.2 ros 25

Force at an angle.

The pedal radius is 0.2m and the angle between it and the horizontal is 25 degrees.

- Make a simple sketch.
- 2. What is the moment about **point a**?

$$M = F \times d$$

$$= 350 \times 0.13$$

$$= 63 \text{ MeV}$$

350N

