Chapitre I Introduction (suite)

Computer
Networking: A Top
Down Approach
7ème édition
Jim Kurose, Keith Ross
Addison-Wesley
2017

Rappel

- L'Internet = réseau des réseaux
 - Vue concrète
 - Vue fonctionnelle
- Terminologie
 - Protocole
 - Terminal
 - Client/serveur
 - Liens
- L'Internet = réseaux d'accès + réseau d'infrastructure

Chapitre 1: 2ème partie

- 1.3 réseau d'infrastructure
 - commutation de paquets,
 - commutation de circuits,
 - structure du réseau
- 1.4 délai, perte, débit dans les réseaux
- 1.5 Modèle en couches

Commutation de paquets : acheminement

routage: déterminer les routes entre sources et destinations

algorithmes de routage

Acheminement: passer les paquets de l'entrée vers la bonne sortie

Commutation de circuits

Réservation des ressources de bout en bout pour la durée de l'<appel> :

- chaque lien possède quatre circuits
 - l'appel prend le circuit 2 en haut et le circuit I à droite.
- ressources dédiées
 - pas de partage
 - performances garanties
- un segment du circuit reste non utilisé si libre
- besoin d'établissement de connexion

Commutation de circuits: FDM vs. TDM

Exemple

Quelle est la durée nécessaire pour transmettre 640,000 bits de A vers B sur un réseau à commutation de circuits?

- ❖ Tous les liens sont à 1.536 Mbps
- Chaque lien utilise TDM avec 24 slots/sec
- * 500 msec pour établir un circuit

Commutation: Paquet vs. Circuit

Commutation de paquets permet plus d'utilisateurs dans le réseau!

exemple:

- lien à I Mb/s
- chaque utilisateur:
 - 100 kb/s si "actif"
 - actif pendant I 0% du temps

- Commutation de circuits:
 - 10 utilisateurs
- Commutation de paquets:
 - avec 35 utilisateurs
 - probabilité > 10 actifs en même temps est moins que 0.0004

Commutation: Paquet vs. Circuit

Est-ce que la commutation de circuits est déjà "KO?"

- Très bonne pour le trafic sporadique
 - Partage efficace de ressources
 - Plus simple, pas d'établissement de connexion
- congestion excessive possible: délai et perte
 - Besoin de protocoles pour un transfert fiable de données, contrôle de congestion
- Q: Comment imiter une commutation de circuits?
 - certaines applications ont besoin de garantie de bande passante
 - un grand défi de recherche
- Q: analogies avec la vie quotidienne?

- Les terminaux se connectent à l'Internet via FAIs d'accès
 - Résidentiels ou institutionnels
- Les FAIs d'accès doivent à leurs tour être interconnectés
 - Pour que n'importe quels deux terminaux puissent communiquer
- Ceci donne naissance à un réseau de réseaux « complexe »
 - Evolution pour des raisons politiques et économiques

Voyons de plus près cette structure

Question: Comment interconnecter les FAIs?

Question: Comment interconnecter les FAIs?

Option: connecter chaque FAI d'accès à un FAI central? Une relation de client (d'accès) / fournisseur (central).

Le capitalisme ne permet pas d'avoir un seul FAI central...

Les FAIs "centraux" doivent aussi être connectés

... et des réseaux régionaux peuvent aussi être utilisés pour se connecter aux FAIs globaux

... et des réseaux de diffusion de contenu (e.g., Google, Microsoft) peuvent avoir leurs proper réseaux

au centre:

- "couche I" FAI commerciaux (ex. Bell, Sprint, AT&T, NTT), couverture nationale & internationale
- réseau de distribution de contenu (ex. Google): un réseau privé qui contourne les FAIs de couche I et régionaux

FAI de couche I: ex. Sprint

Chapitre 1: 2ème partie

- 1.3 réseau d'infrastructure
 - commutation de paquets,
 - commutation de circuits,
 - structure du réseau
- 1.4 délai, perte, débit dans les réseaux
- 1.5 Modèle en couches

Perte et délai, comment?

Une file de paquets dans un routeur

- taux d'arrivée des paquets en entrée supérieur à la capacité du lien en sortie
- chaque paquet doit attendre son tour (ex. file PAPS)

Quatre sources de délai

$$d_{\text{noeud}} = d_{\text{trait}} + d_{\text{att}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{trait} : traitement

- contrôle d'erreurs
- déterminer le lien de sortie
- typiquement < msec

d_{att}: attente dans la file

- temps passé dans la file
- dépend du niveau de congestion du routeur

Quatre sources de délai

$$d_{\text{noeud}} = d_{\text{trait}} + d_{\text{att}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{trans} : transmission:

- L: taille du paquet (bits)
- R: débit du lien (bps)

d_{trans} et d_{prop}

d_{prop} : propagation:

- *d*: longueur du lien physique
- s: vitesse de propagation (~2x108 m/sec)

Analogie: Caravane

- voitures "se propagent" à 100 km/hr
- le péage prends 12 sec pour servir une voiture (temps de transmission d'un bit)
- voiture~bit; caravane~paquet
- Q: Combien de temps pour que la caravane se met devant le 2ème péage?

- Temps pour faire sortir la caravane du ler péage = 12*10 = 120 sec
- Temps pour que la dernière voiture arrive au 2ème péage: 100km/(100km/hr)= I hr
- Réponse: 62 minutes

Analogie: Caravane

- Supposons que les voitures se propagent à 1000 km/hr
- Et chaque péage prends I min pour servir une voiture
- Q: Est-ce que des voitures peuvent rester au premier péage alors que d'autres sont au deuxième?
 - A: Oui! Après 7 min, la lère voiture arrive au deuxième alors que trois voitures sont encore au premier.

Retour sur le délai d'attente

- R: débit du lien (bps)
- L: taille du paquet (bits)
- a: taux d'arrivée moyen des paquets

- ❖ La/R ~ 0: petit délai d'attente
- ❖ La/R -> I: grand délai d'attente
- ❖ La/R > I: délai d'attente infini!

La/R -> 1

Voyons les délais de plus près

- programme traceroute: fournit des mesures des délais entre la source et les routeurs rencontrés dans la route vers la destination. pour chaque routeur i:
 - envoie trois paquets vers le routeur i
 - routeur i renvoie les paquets à la source
 - la source calcule les temps d'aller-retour.

Voyons les délais de plus près

traceroute: gaia.cs.umass.edu à www.eurecom.fr

```
3 mesures entre
                                              gaia.cs.umass.edu et cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 in1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
                                                                            un lien
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 4 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
                                                                            trans-oceanic
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
                      * pas de réponse (requête perdu)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

Perte de paquets

- Une file (buffer) correspondant à un lien a une capacité finie
- Un paquet qui arrive et trouve la file pleine est supprimé (perdu)
- Les paquets perdus peuvent être retransmis ou pas

Débit

 $R_s < R_c$ Débit moyen de bout en bout?

* R_s > R_c Débit moyen de bout en bout?

Goulot d'étranglement

Le lien qui limite le débit de bout en bout

Débit: scénario de l'Internet

- Débit de bout en bout par connexion: min(R_c,R_s,R/10)
- en pratique: R_c ou R_s sont souvent le débit du goulot d'étranglement

10 connexions se partageant une dorsale de R bits/sec

Chapitre 1: 2ème partie

- 1.3 réseau d'infrastructure
 - commutation de paquets,
 - commutation de circuits,
 - structure du réseau
- 1.4 délai, perte, débit dans les réseaux
- 1.5 Modèle en couches

Protocoles en "couches"

Les réseaux sont complexes, avec pleins de "composantes"

- terminaux
- routeurs
- liens
- applications
- protocoles
- hardware, software

Question:

Est-ce qu'il existe une manière pour simplifier cette architecture complexe?

Organisation d'un voyage par avion

billet (achat) billet (remboursement)

bagage (enregistrement) bagage (récupération)

porte (embarquement) porte (sortie)

décollage atterrissage

Routage de l'avion Routage de l'avion

Routage de l'avion

Un ensemble d'étapes

Mise en couche

couches: chaque couche implémente un service

- avec ses propres actions
- dépendant des services fournis par les couches adjacentes

La mise en couche, pourquoi?

Travailler avec des systèmes complexes:

- Simplifier la structure
- Modularisation simplifie la maintenance et la mise à jour des systèmes
 - changer l'implémentation d'une couche est transparente aux autres couches
- La mise en couches dérange?

Modèle en couche de l'internet

- application: supporter les applications réseau
 - FTP, SMTP, HTTP
- transport: transfert des données de bout en bout
 - TCP, UDP
- réseau: routage de la source vers la destination
 - IP, protocoles de routage
- liaison: transfert point à point
 - Ethernet, 802.111 (WiFi), PPP
- physique: bits "sur le câble"

Modèle OSI

- présentation: permet aux applications d'interpréter le sens des données, ex., chiffrement, compression, ...
- * session: synchronisation, ...
- ces couches sont absente du modèle adopté par l'Internet!
 - au besoin implémenté au niveau de la couche application

application présentation session transport résau liaison physique

