Project 7

Jesse Adams, Dominic Orsi, Ben Puryear Section 1

November 17th, 2023

Show that A is context free. You will need a 1 definition and a construction to do this.

$$A = \{a^m b^n c^n | m, n \ge 0\}.$$

Definition of context free language:

A language is context free if and only if there is a PDA that recognizes it. CFL's are generated by context free grammars.

Construction of context free grammar:

 $S \Rightarrow XY$

 $X \Rightarrow aX | \epsilon$

 $Y \Rightarrow bYc|\epsilon$

Construction of a PDA that accepts A:

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$

 $\Sigma = \{a,b,c\}$

 $\Gamma = \{b,\$\}$

 $q_{\text{start}} = q_0$ $F = \{q_5\}$

$\delta =$	Input	Stack	Rule
	ϵ	\$	$\epsilon, \epsilon \Rightarrow \$$
	b	b\$	$b, \epsilon \Rightarrow 0$
	a	\$	$a, \epsilon \Rightarrow \epsilon$
	c, b	b\$	$c, b \Rightarrow \epsilon$
	\$	ϵ	$\mid \epsilon, \$ \Rightarrow \epsilon \mid$

2 Show that B is context free. You will need a definition and a construction to do this.

$$B = \{a^n b^n c^m | m, n \ge 0\}.$$

Definition of context free language:

A language is context free if and only if there is a PDA that recognizes it. CFL's are generated by context free grammars.

Construction of context free grammar:

$$S \Rightarrow XY$$

$$X \Rightarrow aX|\epsilon$$

$$Y \Rightarrow bYc|\epsilon$$

Construction of a PDA that accepts A:

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$\Sigma = \{a, b, c\}$$

$$\Gamma = \{a, \$\}$$

$$q_{\mathrm{start}} = q_0$$

$$F = \{q_5\}$$

$\delta =$	Input	Stack	Rule
	ϵ	\$	$\epsilon, \epsilon \Rightarrow \$$
	c,ϵ	\$	$c, \epsilon \Rightarrow \epsilon$
	a	\$	$a, \epsilon \Rightarrow \epsilon$
	b, a	\$a	$b, a \Rightarrow \epsilon$
	\$	ϵ	$\epsilon, \$ \Rightarrow \epsilon$

3

- 3.1 Let $C = A \cap B$. Using set notation, describe C. $C = \{a^n b^n c^n | n \ge 0\}.$
- 3.2 Use the results from problems 1, 2, and examples 2.36 in Sipser, to prove that the class of context-free languages is not closed under intersection.

Assume C is context free. The pumping length, p, is n. Therefore $C=a^pb^pc^p$. However, this contradicts the first property of CFL (for each $i\geq 0$, $uv^2xy^2z\in A$) because it is impossible to describe an equal amount of a,b, and c.