МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. В. Г. IIIУХОВА»

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

КУРСОВАЯ РАБОТА

Дисциплина: «Теория цифровых автоматов»
Тема: «Синтез цифровых автоматов по граф-схемам алгоритмов»

Выполнил: ст. группы ВТ-31 Подкопаев Антон Валерьевич Проверил: доцент ПО и ВТАС Рязанов Юрий Дмитриевич

Содержание

Содержание	2
Вадание к работе	3
Ход работы	4
Получение диаграммы и графа ГСА, отметка по схемам Мили и Мура,	
кодирование состояний и выходов автоматов	4
Автомат Мура	4
Автомат Мили	5
Синтез комбинационной схемы автомата Мили на D-триггерах	6
Синтез комбинационной схемы автомата Мили на Т-триггерах	8
Синтез комбинационной схемы автомата Мура на D-триггерах	10
Синтез комбинационной схемы автомата Мура на Т-триггерах	14
Построение схемы минимального автомата	18
Реализация программы, моделирующей минимальную схему автомата	19
Нахождение тестового набора входных сигналов	19
Обработка полученной последовательности программой	19
Вывод	20
Список литературы	20
Приложение	21

Задание к работе

Дано: граф-схема алгоритма (ГСА) в табличной форме (см. варианты заданий).

- 1. Представить ГСА в виде диаграммы.
- 2. Выполнить отметку ГСА по схемам Мили и Мура и построить соответствующие автоматы. Автоматы представить в табличном и графовом виде.
 - 3. Выполнить кодирование состояний автоматов.
- 4. Получить функции выходов и возбуждения триггеров для построения логической схемы автомата Мили на D-триггерах и элементах И, ИЛИ, НЕ. Выполнить минимизацию функций и применить факторизационный метод синтеза комбинационной схемы.
- 5. Получить функции выходов и возбуждения триггеров для построения логической схемы автомата Мили на Т-триггерах и элементах И, ИЛИ, НЕ. Выполнить минимизацию функций и применить факторизационный метод синтеза комбинационной схемы.
- 6. Получить функции выходов и возбуждения триггеров для построения логической схемы автомата Мура на D-триггерах и элементах И, ИЛИ, НЕ. Выполнить минимизацию функций и применить факторизационный метод синтеза комбинационной схемы.
- 7. Получить функции выходов и возбуждения триггеров для построения логической схемы автомата Мура на Т-триггерах и элементах И, ИЛИ, НЕ. Выполнить минимизацию функций и применить факторизационный метод синтеза комбинационной схемы.
 - 8. Выбрать схему автомата минимальной сложности (по Квайну).
- 9. Написать программу моделирования выбранной схемы автомата. На входе последовательность наборов входных сигналов, на выходе последовательность состояний триггеров и значений сигналов на выходе.
- 10. Найти последовательность наборов входных сигналов, при обработке которой каждый триггер изменит своё состояние с нуля в единицу и с единицы в ноль хотя бы один раз и, аналогично, произойдут изменения сигналов на каждом выходе.
 - 11. Обработать полученную последовательность программой п.9.

Вариант 9

Номер	Тип вершины	Переход по "0"	Переход по "1"	Содержимое
1	Начало	2	2	
2	Условие	3	4	x1
3	Условие	5	6	х3
4	Условие	7	8	x2
5	Действие	9	9	y3
6	Действие	9	9	y2
7	Действие	9	9	y1y2
8	Действие	9	9	y1
9	Условие	5	10	x2
10	Конец			

Ход работы

Получение диаграммы и графа ГСА, отметка по схемам Мили и Мура, кодирование состояний и выходов автоматов

Автомат Мура

Текущее	Состояние	Входной сигнал	Выход Мура	
состояние	перехода			
	001	!x1 !x3		
000	010	!x1 x3	000	
000	011	x1 !x2	000	
	100	x1 x2		
001	000	x2	001	
001	001	!x2	001	
010	000	x2	010	
010	001	!x2	010	
011	000	x2	110	
011	001	!x2	110	
100	000	x2	100	
	001	!x2	100	

Состояния				
A1 000				
A2	001			
A3	010			
A4	011			
A5	100			

	Выходы Мура							
- 0 0 0								
у3	0	0	1					
y2	0	1	0					
y1y2	1	1	0					
y1	1	0	0					
	y1	y2	у3					

Автомат Мили

Текущее	Состояние	Входной сигнал	Выход Мили
состояние	перехода		
	1	!x1 !x3	у3
0	1	!x1 x3	y2
	1	x1 !x2	y1y2
	1	x1 x2	y1
1	0	x2	-
1	1	!x2	у3

Состояния					
A1 0					
A2	1				

Выходы Мили							
-	0						
у3	0	0	1				
y2	0	1	0				
y1y2	1	1	0				
y1	1	0	0				
	y2	y3					

Синтез комбинационной схемы автомата Мили на D-триггерах

Синтез автомата на D-триггерах:

Функции выхода:

 $y2 = |t1|x1x3 \lor |t1x1|x2$

 $y3 = !t1!x1!x3 \lor t1!x2$

Функции возбуждения:

 $f1 = !t1!x1!x3 \lor !t1!x1x3 \lor !t1x1!x2 \lor !t1x1x2 \lor t1!x2$

СДНФ функций:

 $y2 = !t1!x1x2x3 \lor !t1!x1!x2x3 \lor !t1x1!x2x3 \lor !t1x1!x2!x3$

 $y3 = !t1!x1x2!x3 \lor !t1!x1!x2!x3 \lor t1x1!x2x3 \lor t1!x1!x2x3 \lor t1x1!x2!x3$ $\lor t1!x1!x2!x3$

$f1 = |t1|x1x2|x3 \lor |t1|x1|x2|x3 \lor |t1|x1x2x3 \lor |t1|x1|x2x3 \lor |t1|x1|x2x3 \lor |t1|x1|x2x3 \lor |t1|x1|x2|x3 \lor |t1|x1|x1|x2|x3 \lor |t1|x1|x2|x3 \lor |t1|x1|x2|x3 \lor |t1|x1|x2|x3 \lor |t1|x1|x2|x3 \lor |t1|x1|x2|x3 \lor |t$

Минимизация функций:

для у1:

01	+	+	+	+	
	0101	0100	0111	0110	

y1 = !t1 x1

для у2:

00-1	+	+		
0-01		+	+	
010-			+	+
	0011	0001	0101	0100

 $y2 = !t1!x1x3 \lor !t1x1!x2$

для у3:

00-0	+	+				
-000		+				+
1-0-			+	+	+	
	0010	0000	1101	1001	1100	1000

 $y3 = !t1!x1!x3 \lor !x1!x2!x3 \lor t1!x2$

для f1:

0	+	+	+	+	+	+	+	+				
0-		+		+	+	+			+	+	+	+
	0010	0000	0011	0001	0101	0100	0111	0110	1101	1001	1100	1000

 $f1 = !t1 \lor !x2$

Факторизация системы:

$$u1 = !t1 x1$$
 $u2 = !t1 !x1 x3$ $u3 = !t1 x1 !x2$ $u4 = !t1 !x1 !x3$
 $u5 = !x1 !x2 !x3$ $u6 = t1 !x2$ $u7 = !t1$ $u8 = !x2$

Факторизуем на элементах И:

	t1	!t1	x1	!x1	x2	!x2	х3	!x3	z1	z2	z3
u1		1	1								
u2		1-1		1-1			1		1		
u3		1	1-2			1-2				1	
u4		1-1		1-1				1	1		
u5				1-3		1		1-3			1
u6	1					1					
u7		1									
u8						1					
z1		1		1							
z2			1			1					
z3				1				1			

Факторизуем на элементах ИЛИ:

	u1	u2	u3	u4	u5	u6	u7	u8	v1
у1	1								
y2		1	1						
у3				1	1-1	1-1			1
f1							1	1	
v1					1	1			

Сложность по Квайну: 20 + 8 + 4 = 32

Синтез комбинационной схемы автомата Мили на Т-триггерах

Синтез автомата на Т-триггерах:

Функции выхода:

 $y2 = !t1!x1x3 \lor !t1x1!x2$

 $y3 = |t1|x1|x3 \lor t1|x2$

Функции возбуждения:

f1 = |t1| x 1 | x 3 $\vee |t1| x 1 x 3$ $\vee |t1| x 1 | x 2$ $\vee |t1| x 1 x 2$ $\vee |t1| x 1 x 2$

СДНФ функций:

 $y2 = !t1!x1x2x3 \lor !t1!x1!x2x3 \lor !t1x1!x2x3 \lor !t1x1!x2!x3$

 $y3 = !t1!x1x2!x3 \lor !t1!x1!x2!x3 \lor t1x1!x2x3 \lor t1!x1!x2x3 \lor t1x1!x2!x3$ $\lor t1!x1!x2!x3$

$f1 = !t1!x1 x2!x3 \lor !t1!x1!x2!x3 \lor !t1!x1 x2 x3 \lor !t1!x1!x2 x3$ $\lor !t1 x1!x2 x3 \lor !t1 x1!x2!x3 \lor !t1 x1 x2 x3 \lor !t1 x1 x2 x3$ $\lor t1 x1 x2 x3 \lor t1!x1 x2 x3 \lor t1 x1 x2!x3$

Минимизация функций:

для у1:

01	+	+	+	+
	0101	0100	0111	0110

y1 = !t1 x1

для у2:

00-1	+	+		
0-01		+	+	
010-			+	+
	0011	0001	0101	0100

 $y2 = !t1!x1x3 \lor !t1x1!x2$

для у3:

00-0	+	+				
-000		+				+
1-0-			+	+	+	
	0010	0000	1101	1001	1100	1000

 $y3 = |t1|x1|x3 \lor |x1|x2|x3 \lor t1|x2$

для f1:

0	+	+	+	+	+	+	+	+				
1-	+		+				+	+	+	+	+	+
	0010	0000	0011	0001	0101	0100	0111	0110	1111	1011	1110	1010

 $f1 = !t1 \lor x2$

Факторизация системы:

$$u1 = !t1 x1$$
 $u2 = !t1 !x1 x3$ $u3 = !t1 x1 !x2$ $u4 = !t1 !x1 !x3$
 $u5 = !x1 !x2 !x3$ $u6 = t1 !x2$ $u7 = !t1$ $u8 = x2$

Факторизуем на элементах И:

	t1	!t1	x1	!x1	x2	!x2	х3	!x3	z1	z2	z3
u1		1	1								
u2		1-1		1-1			1		1		
u3		1	1-2			1-2				1	
u4		1-1		1-1				1	1		
u5				1-3		1		1-3			1
u6	1					1					
u7		1									
u8					1						
z1		1		1							
z2			1			1					
z3				1				1			

Факторизуем на элементах ИЛИ:

	u1	u2	u3	u4	u5	u6	u7	u8	v1
y1	1								
y2		1	1						
у3				1	1-1	1-1			1
f1							1	1	
v1					1	1			

Сложность по Квайну: 20 + 8 + 4 = 32

Синтез комбинационной схемы автомата Мура на D-триггерах

Текущее	Состояние	Входной сигнал	Выход Мура		
состояние	перехода				
	001	!x1 !x3			
000	010	!x1 x3	000		
000	011	x1 !x2	000		
	100	x1 x2			
001	000	x2	001		
001	001	!x2	001		
010	000	x2	010		
010	001	!x2	010		
011	000	x2	110		
011	001	!x2	110		
100	000	x2	100		
100	001	!x2	100		

Синтез автомата на D-триггерах:

Функции выхода:

 $y1 = !t1 t2 t3 x2 \lor !t1 t2 t3 !x2 \lor t1 !t2 !t3 x2 \lor t1 !t2 !t3 !x2$ $y2 = !t1 t2 !t3 x2 \lor !t1 t2 !t3 !x2 \lor !t1 t2 t3 x2 \lor !t1 t2 t3 !x2$ $y3 = !t1 !t2 t3 x2 \lor !t1 !t2 t3 !x2$

Функции возбуждения:

f1 = |t1| t2 |t3| x1| x2

 $f2 = !t1!t2!t3!x1x3 \lor !t1!t2!t3x1!x2$

 $f3 = !t1!t2!t3!x1!x3 \lor !t1!t2!t3x1!x2 \lor !t1!t2t3!x2 \lor !t1t2!t3!x2$ $\lor !t1t2t3!x2 \lor t1!t2!t3!x2$

СДНФ функций:

y1 = !t1 t2 t3 x1 x2 x3 \lor $!t1 t2 t3 !x1 x2 x3 <math>\lor$!t1 t2 t3 x1 x2 !x3

V !t1 t2 t3 !x1 x2 !x3 V !t1 t2 t3 x1 !x2 x3 V !t1 t2 t3 !x1 !x2 x3

V !t1 t2 t3 x1 !x2 !x3 V !t1 t2 t3 !x1 !x2 !x3 V t1 !t2 !t3 x1 x2 x3

 $\lor t1!t2!t3!x1x2x3 \lor t1!t2!t3x1x2!x3 \lor t1!t2!t3!x1x2!x3$

 $\lor t1!t2!t3x1!x2x3 \lor t1!t2!t3!x1!x2x3 \lor t1!t2!t3x1!x2!x3$

V t1!t2!t3!x1!x2!x3

 $\lor !t1 t2 !t3 !x1 x2 !x3 \lor !t1 t2 !t3 x1 !x2 x3 \lor !t1 t2 !t3 !x1 !x2 x3$

V !t1 t2!t3 x1!x2!x3 V !t1 t2!t3!x1!x2!x3 V !t1 t2 t3 x1 x2 x3

V !t1 t2 t3 !x1 x2 x3 V !t1 t2 t3 x1 x2 !x3 V !t1 t2 t3 !x1 x2 !x3

V !t1 t2 t3 x1 !x2 x3 V !t1 t2 t3 !x1 !x2 x3 V !t1 t2 t3 x1 !x2 !x3

V ! t1 t2 t3 ! x1 ! x2 ! x3

 $y3 = !t1!t2t3x1x2x3 \lor !t1!t2t3!x1x2x3 \lor !t1!t2t3x1x2!x3$

V !t1!t2 t3!x1 x2!x3 V !t1!t2 t3 x1!x2 x3 V !t1!t2 t3!x1!x2 x3

 $\lor !t1!t2t3x1!x2!x3 \lor !t1!t2t3!x1!x2!x3$

f1 = |t1| |t2| |t3| |x1| |x2| |x3| $\lor |t1| |t2| |t3| |x1| |x2| |x3|$

 $f2 = |t1|t2|t3|x1x2x3 \lor |t1|t2|t3|x1|x2x3 \lor |t1|t2|t3x1|x2x3$ $\lor |t1|t2|t3x1|x2|x3$

 $f3 = |t1|t2|t3|x1x2|x3 \lor |t1|t2|t3|x1|x2|x3 \lor |t1|t2|t3x1|x2|x3$

 $\lor !t1!t2!t3 x1!x2!x3 \lor !t1!t2t3 x1!x2x3 \lor !t1!t2t3!x1!x2x3$

V !t1!t2 t3 x1!x2!x3 V !t1!t2 t3!x1!x2!x3 V !t1 t2!t3 x1!x2 x3

V !t1 t2 !t3 !x1 !x2 x3 V !t1 t2 !t3 x1 !x2 !x3 V !t1 t2 !t3 !x1 !x2 !x3

V !t1 t2 t3 x1 !x2 x3 V !t1 t2 t3 !x1 !x2 x3 V !t1 t2 t3 x1 !x2 !x3

V !t1 t2 t3 !x1 !x2 !x3 V t1 !t2 !t3 x1 !x2 x3 V t1 !t2 !t3 !x1 !x2 x3

 $\lor t1!t2!t3x1!x2!x3 \lor t1!t2!t3!x1!x2!x3$

Минимизация функций:

для у1:

100								
011	+	+	+	+	+	+	+	+
	011111	011011	011110	011010	011101	011001	011100	011000

+	+	+	+	+	+	+	+	100
								011
100111	100011	100110	100010	100101	100001	100100	100000	

 $y1 = t1!t2!t3 \lor !t1t2t3$

для у2:

01	+	+	+	+	+	+	+	+
	010111	010011	010110	010010	010101	010001	010100	010000

+	+	+	+	+	+	+	+	01
011111	011011	011110	011010	011101	011001	011100	011000	

y2 = ! t1 t2

для у3:

001	+	+	+	+	+	+	+	+
	001111	001011	001110	001010	001101	001001	001100	001000

y3 = !t1 !t2 t3

для f1:

00011-	+	+
	000111	000110

f1 = !t1!t2!t3 x1 x2

для f2:

0000-1	+	+		
000-01		+	+	
00010-			+	+
	000011	000001	000101	000100

 $f2 = !t1!t2!t3!x1x3 \lor !t1!t2!t3x1!x2$

для f3:

0000-0	+	+								
100-0-										
-00-00		+		+						
-0010-			+	+						
000		+		+			+	+		
010-			+	+	+		+		+	
0-1-0-					+	+	+	+		
010-									+	+
	000010	000000	000101	000100	001101	001001	001100	001000	010101	010001

										0-0000
						+	+	+	+	100-0-
								+	+	-00-00
						+		+		-0010-
+	+			+	+					000
+		+								010-
		+	+	+	+					0-1-0-
+	+	+	+	+	+					010-
010100	010000	011101	011001	011100	011000	100101	100001	100100	100000	

 $f3 = !t1!t2!t3!x1!x3 \ \lor \ t1!t2!t3!x2 \ \lor \ !t2!t3 x1!x2 \ \lor \ !t1 t3!x2$

Факторизация системы:

u1 = t1!t2!t3 u2 = !t1t2t3 u3 = !t1t2

u4 = !t1!t2t3 u5 = !t1!t2!t3x1x2 u6 = !t1!t2!t3!x1x3

u7 = !t1!t2!t3 x1!x2 u8 = !t1!t2!t3!x1!x3 u9 = t1!t2!t3!x2

u10 = !t2 !t3 x1 !x2 u11 = !t1 t3 !x2

Факторизуем на элементах И:

	t1	!t1	t2	!t2	t3	!t3	x1	!x1	x2	!x2	х3	!x3	z1	z2	z3	z4	z5	z6	z7	z8	z9	v1
u1	1-2			1-2		1								1								
u2		1-3	1		1-3										1							
u3		1	1																			
u4		1-3		1	1-3										1							
u5		1-1		1-1		1-1	1-5		1-5				1				1					
u6		1-1		1-1		1-1		1-6			1-6		1					1				
u7		1-1		1-1		1-1	1-7			1-7			1						1			
u8		1-1		1-1		1-1		1-8				1-8	1							1		
u9	1-2			1-2		1-4				1-4				1		1						
u10				1-9		1-4	1-9			1-4						1					1	
u11		1-3			1-3					1					1							
z1		1-A		1-A		1																1
z2	1			1																		
z3		1			1																	
z4						1				1												
z5							1		1													
z6								1			1											
z7							1			1												
z8								1				1										
z9				1			1															
v1		1		1																		

Факторизуем на элементах ИЛИ:

	u1	u2	u3	u4	u5	u6	u7	u8	u9	u10	u11	v1	v2
у1	1	1											
y2			1										
у3				1									
f1					1								
f2						1	1						
f3								1-1	1-1	1-2	1-2	1	1
v1								1	1				
v2										1	1		

Сложность по Квайну: 42 + 14 + 6 = 62

Синтез комбинационной схемы автомата Мура на Т-триггерах

Синтез автомата на Т-триггерах:

Функции выхода:

 $y1 = !t1 t2 t3 x2 \lor !t1 t2 t3 !x2 \lor t1 !t2 !t3 x2 \lor t1 !t2 !t3 !x2$ $y2 = !t1 t2 !t3 x2 \lor !t1 t2 !t3 !x2 \lor !t1 t2 t3 x2 \lor !t1 t2 t3 !x2$ $y3 = !t1 !t2 t3 x2 \lor !t1 !t2 t3 !x2$

Функции возбуждения:

СДНФ функций:

 $y1 = !t1 \ t2 \ t3 \ x1 \ x2 \ x3$ \quad !t1 \ t2 \ t3 \ !x1 \ x2 \ x3 \quad \quad !t1 \ t2 \ t3 \ x1 \ x2 \ !x3 \quad \quad !t1 \ t2 \ t3 \ x1 \ !x2 \ x3 \quad \quad !t1 \ t2 \ t3 \ !x1 \ !x2 \ x3 \quad \quad !t1 \ t2 \ t3 \ !x1 \ !x2 \ x3 \quad \quad \quad !t1 \ t2 \ t3 \ x1 \ !x2 \ x3 \quad \quad \quad \quad \quad \quad t1 \ !t2 \ !t3 \ x1 \ x2 \ x3 \quad \q

 $y2 = !t1 \ t2 !t3 \ x1 \ x2 \ x3 \ \lor \ !t1 \ t2 !t3 !x1 \ x2 \ x3 \ \lor \ !t1 \ t2 !t3 \ x1 \ x2 !x3$ $\lor \ !t1 \ t2 !t3 !x1 \ x2 !x3 \ \lor \ !t1 \ t2 !t3 \ x1 !x2 \ x3 \ \lor \ !t1 \ t2 !t3 !x1 !x2 \ x3$ $\lor \ !t1 \ t2 !t3 \ x1 !x2 !x3 \ \lor \ !t1 \ t2 !t3 !x1 !x2 !x3 \ \lor \ !t1 \ t2 \ t3 \ x1 \ x2 \ x3$ $\lor \ !t1 \ t2 \ t3 !x1 \ x2 \ x3 \ \lor \ !t1 \ t2 \ t3 \ x1 \ x2 !x3$ $\lor \ !t1 \ t2 \ t3 \ x1 !x2 \ x3 \ \lor \ !t1 \ t2 \ t3 \ x1 !x2 !x3$ $\lor \ !t1 \ t2 \ t3 \ x1 !x2 !x3$ $\lor \ !t1 \ t2 \ t3 \ x1 !x2 !x3$ $\lor \ !t1 \ t2 \ t3 \ x1 !x2 !x3$

 $y3 = !t1!t2t3x1x2x3 \lor !t1!t2t3!x1x2x3 \lor !t1!t2t3x1x2!x3$ $\lor !t1!t2t3!x1x2!x3 \lor !t1!t2t3x1!x2x3 \lor !t1!t2t3!x1!x2x3$ $\lor !t1!t2t3x1!x2!x3 \lor !t1!t2t3!x1!x2!x3$

 $f3 = !t1!t2!t3!x1x2!x3 \ \lor \ !t1!t2!t3!x1!x2!x3 \ \lor \ !t1!t2!t3x1!x2x3 \\ \lor \ !t1!t2!t3x1!x2!x3 \ \lor \ !t1!t2t3x1x2x3 \ \lor \ !t1!t2t3!x1x2x3 \\ \lor \ !t1!t2t3x1x2!x3 \ \lor \ !t1!t2t3!x1x2!x3 \ \lor \ !t1t2!t3x1!x2x3 \\ \lor \ !t1t2!t3!x1!x2x3 \ \lor \ !t1t2!t3x1!x2!x3 \ \lor \ !t1t2!t3x1!x2!x3 \\ \lor \ !t1t2t3x1x2x3 \ \lor \ !t1t2t3!x1x2x3 \ \lor \ !t1t2t3x1x2x3 \\ \lor \ !t1t2t3!x1x2!x3 \ \lor \ t1!t2!t3x1!x2x3 \ \lor \ t1!t2!t3!x1!x2x3 \\ \lor \ t1!t2!t3x1!x2!x3 \ \lor \ t1!t2!t3!x1!x2!x3 \\ \lor \ t1!t2!t3x1!x2!x3 \ \lor \ t1!t2!t3!x1!x2!x3 \\ \end{aligned}$

Минимизация функций:

для у1:

100								
011	+	+	+	+	+	+	+	+
	011111	011011	011110	011010	011101	011001	011100	011000

+	+	+	+	+	+	+	+	100
								011
100111	100011	100110	100010	100101	100001	100100	100000	

 $y1 = t1!t2!t3 \lor !t1t2t3$

для у2:

01	+	+	+	+	+	+	+	+
	010111	010011	010110	010010	010101	010001	010100	010000

+	+	+	+	+	+	+	+	01
011111	011011	011110	011010	011101	011001	011100	011000	

y2 = !t1t2

для у3:

001	+	+	+	+	+	+	+	+
	001111	001011	001110	001010	001101	001001	001100	001000

y3 = !t1 !t2 t3

для f1:

-0011-	+	+	+		+					
100			+	+	+	+	+	+	+	+
	000111	000110	100111	100011	100110	100010	100101	100001	100100	100000

 $f1 = !t2!t3 x1 x2 \lor t1!t2!t3$

для f2:

0-010-			+	+					+	
0-0-01		+	+						+	+
0-00-1	+	+				+				+
01					+		+	+	+	+
	000011	000001	000101	000100	010111	010011	010110	010010	010101	010001

+										0-010-
										0-0-01
										0-00-1
+	+	+	+	+	+	+	+	+	+	01
010100	010000	011111	011011	011110	011010	011101	011001	011100	011000	

 $f2 = !t1!t3 x1!x2 \lor !t1!t3!x1 x3 \lor !t1 t2$

для f3:

0000-0	+	+								
00-010	+							+		
0-0-00		+		+						
0-010-			+	+					+	
010-0-									+	+
-00-00		+		+						
100-0-										
-0010-			+	+						
0-1-1-					+	+	+	+		
	000010	000000	000101	000100	001111	001011	001110	001010	010101	010001

										0000-0
										00-010
+	+									0-0-00
+										0-010-
+	+									010-0-
								+	+	-00-00
						+	+	+	+	100-0-
						+		+		-0010-
		+	+	+	+					0-1-1-
010100	010000	011111	011011	011110	011010	100101	100001	100100	100000	

 $f3 = !t1!t2!t3!x1!x3 \lor !t1!t3x1!x2 \lor !t1t2!t3!x2 \lor t1!t2!t3!x2 \lor !t1t3x2$

Факторизация системы:

u1 = t1 ! t2 ! t3 u2 = ! t1 t2 t3 u3 = ! t1 t2 u4 = ! t1 ! t2 t3 u5 = ! t2 ! t3 x1 x2 u6 = t1 ! t2 ! t3 u7 = ! t1 ! t3 x1 ! x2 u8 = ! t1 ! t3 ! x1 x3 u9 = ! t1 t2 u10 = ! t1 ! t2 ! t3 ! x1 ! x3 u11 = ! t1 ! t3 x1 ! x2 u13 = t1 ! t2 ! t3 ! x2 u14 = ! t1 t3 x2

Факторизуем на элементах И:

	t1	!t1	t2	!t2	t3	!t3	x1	!x1	x2	!x2	х3	!x3	z1	z2	z3	z4	z5	z6	z7	z8	z9	z0	v1
u1	1-2			1-2		1								1									
u2		1-3	1		1-3										1								
u3		1	1																				
u4		1-3		1	1-3										1								
u5				1-4		1-4	1-5		1-5							1	1						
u6	1-2			1-2		1								1									
u7		1-1				1-1	1-6			1-6			1					1					
u8		1-1				1-1		1-7			1-7		1						1				
u9		1	1																				
u10		1-1		1-8		1-1		1-8				1-8	1							1			
u11		1-1				1-1	1-6			1-6			1					1					
u12		1-1	1-9			1-1			1-9				1								1		
u13	1-2			1-2		1-0				1-0				1								1	
u14		1-3			1-3				1						1								
z1		1				1																	
z2	1			1																			
z3		1			1																		
z4				1		1																	
z5							1		1														
z6							1			1													
z7								1			1												
z8				1-1				1-1				1											1
z9			1						1														
z0						1				1													
v1				1				1															

Факторизуем на элементах ИЛИ:

	u1	u2	u3	u4	u5	u6	u7	u8	u9	u10	u11	u12	u13	u14	v1	v2	v3	w1
у1	1	1																
y2			1															
у3				1														
f1					1	1												
f2							1-1	1-1	1						1			
f3										1-2	1-2	1-3	1-3	1-3		1	1	
v1							1	1										
v2										1	1							
v3												1-1	1-1	1				1
w1												1	1					

Сложность по Квайну: 50 + 18 + 6 = 74

Построение схемы минимального автомата

За минимальный возьмем автомат Мили на D-триггерах со сложностью 32

Реализация программы, моделирующей минимальную схему автомата

Написать программу моделирования выбранной схемы автомата. На входе - последовательность наборов входных сигналов, на выходе - последовательность состояний триггеров и значений сигналов на выходе.

```
def f1(t1, x1, x2, x3):
    z1 = not t1 and x1
    z2 = x1 and not x2
    z3 = not x1 and not x3
    u1 = not t1 and x1
    u2 = x3 and z1
    u3 = not t1 and z2
    u4 = not x3 and z1
    u5 = not \times 2 and z3
    u6 = t1 and not x2
    u7 = not t1
    u8 = not \times 2
    v1 = u5 or u6
    y1 = u1
    y2 = u2 or u3
    y3 = u4 \text{ or } v1
    f1 = u7 or u8
    print("Триггер: {}, Выходы: {} {} {}".format(int(f1), int(y1), int(y2), int(y3)))
          return f1, y1, y2, y3
```

Нахождение тестового набора входных сигналов

Найти последовательность наборов входных сигналов, при обработке которой каждый триггер изменит своё состояние с нуля в единицу и с единицы в ноль хотя бы один раз и, аналогично, произойдут изменения сигналов на каждом выходе.

Входные сигналы	Начальное состояние	Конечное состояние	Выходные сигналы
011	A1	A2	000
100	A2	A1	001

Обработка полученной последовательности программой

Результат работы программы:

```
С:\Users\D4rkn\AppData\Local\Programs\Python\Pyth... — 

Введите входы x1, x2, x3:
x1 = 0
x2 = 1
x3 = 1
Триггер: 1, Выходы: 0 0 0
Введите входы x1, x2, x3:
x1 = 1
x2 = 0
x3 = 0
Триггер: 1, Выходы: 0 0 1
Введите входы x1, x2, x3:
```

Вывод

В ходе выполнения курсовой работы били изучены принципы синтеза цифровых автоматов на основе граф-схем алгоритмов с использованием элементов памяти. Были построены автоматы двух типов, соответствующие диаграммам Мили и Мура соответственно, проведена их минимизация и последующая факторизация. Во время построения автоматов были использованы Т-триггеры и D-триггеры для каждого типа соответственно. После практической части была написана программа, эмулирующую цифровой автомат наименьшей длинны (автомат Мили на D-триггерах), была проверена ее работоспособность, и сверены вывод программы с исходной граф-схемой алгоритма в табличной форме, благодаря чему мы убедились в отсутствии ошибок в процессе вычислений.

Список литературы

- 1. Глушков, В.М. Синтез цифровых автоматов / В.М. Глушков. М.: Государственное издательство математической литературы, 1962. 476 с.
- 2. Баранов С. И. Синтез микропрограммных автоматов (граф-схемы и автоматы). Л.: Энергия, 1979. 232 с.
- 3. Лазарев В. Г., Пийль Е. И. Синтез управляющих автоматов. М.:Энергоатомиздат, 1989. 328 с.
- 4. Майоров, С.А. Структура электронных вычислительных машин / С.А. Майоров, Г.И. Новиков. Л.: Машиностроение, Ленингр. отделение, 1979. 384 с.
- 5. Власов, В.В. Логические основы построение ЭВМ / В.В. Власов, В.С. Дудкин, А.В. Крайников. Санкт-Петербург: СПГЭТУ, 1993. 32 с.
- 6. Интернет-ресурс *Интуит. Синтез структурного автомата.* URL: https://www.intuit.ru/

TCA-1 // составление функций возбуждения D и T – триггера, функций выхода

```
import numpy as np
import math
from itertools import product
def specialPrint(a, varname):
  res = ""
  for i in range(0,len(a)):
    res += "{}{}".format(varname,i+1) if a[i]==1 or a[i]=='1' else "!{}{}".format(varname,i+1)
  return res
def Dfunc(a, b):
  res = []
  for i in range(len(a)):
    if(b[i]=='0'):
      res.append(0)
    elif(b[i]=='1'):
      res.append(1)
  return res
def Tfunc(a, b):
  res = []
  for i in range(len(a)):
    if(a[i]!=b[i]):
      res.append(1)
      res.append(0)
  return res
f = open("C:/Users/D4rkn/source/repos/TCA-1/TCA-1/source/demofile.txt", "r", encoding='utf-8')
S_{\mu} = []
S_{\kappa} = []
Z = []#Входной сигнал
W = []#Выходной сигнал
helparrD=[] #Функции возбуждения для D
print("Введите СКОЛЬКО ВСЕГО состояний = ",end="") #11111111!!!!!
n=int(f.readline())
print(n)
k = int(math.ceil(np.log2(int(n))))
print("k=",k)
S_Hay = list(product('01',repeat=k))[:n]
print("Закодированные состояния: ",S_нач)
print("Введите количество начальных состояний = ",end="")
n = int(f.readline())
print(n,"\n")
helparrD=[]
helparrT=[]
R = []
for i in range(n):
  subarr1 = []
  subarr2 = []
  subarr3 = []
  subarrD = []
  subarrT = []
```

```
print("Введите кол-во конечных состояний из S{} = ".format(i+1),end="")
  t = int(f.readline())
  print(t)
  print("Введите конечные состояния: ")
  for j in range(t):
    l = int(f.readline())
    print("\tS{} [{}]".format(1,"".join(S_Hay[1-1])))
    subarr1.append(S_Ha4[1-1])
    subarrD.append(Dfunc(S_Hav[i],S_Hav[l-1]))
    subarrT.append(Tfunc(S_Hay[i],S_Hay[1-1]))
    #print(S_Hau[i],S_Hau[1-1],Dfunc(S_Hau[i],S_Hau[1-1]))
    print("\t\tBxодной сигнал: ",end="")
    l = str(f.readline()).replace("\n","")
    print(1)
    subarr2.append(1)
    print("\t\tВыход (мили/мура): ",end="")
    l = list(str(f.readline()).replace("\n",""))
    print("".join(1))
    subarr3.append(1)
    if(l==["-"]):
      R.append(specialPrint(subarr1[-1], "t"))
  S_кон.append(subarr1)
  Z.append(subarr2)
  W.append(subarr3)
  helparrD.append(subarrD)
  helparrT.append(subarrT)
print("\nR={} (для автомата Mypa)".format(R))
print(helparrD) #Матрица возбуждения для D триггера
print(helparrT) #Матрица возбуждения для Т триггера
"""**Функции возбуждения D-триггеров:**""
1=0
for kk in range(len(S_Hay[0])):
  plus=False
  print("f{}=".format(l+1),end="")
  for ii in range(len(helparrD)):
    for jj in range(len(helparrD[ii])):
      #print(ii,jj,l)
      if(helparrD[ii][jj][l]==1):
        print("+" if plus==True else "",end="") #Это просто вывод плюса
        plus=True #не обращать внимание
        print(specialPrint(S_Ha4[ii], "t"),end="")
        print(Z[ii][jj] if Z[ii][jj]!='-' else "",end="")
  print("")
  1+=1
"""**Функции возбуждения Т-триггеров:**""
1=0
for kk in range(len(S Hau[0])):
  plus=False
  print("f{}=".format(l+1),end="")
  for ii in range(len(helparrT)):
    for jj in range(len(helparrT[ii])):
      #print(ii,jj,l)
      if(helparrT[ii][jj][l]==1):
        print("+" if plus==True else "",end="") #Это просто вывод плюса
        plus=True #не обращать внимание
```

```
print(specialPrint(S_Hay[ii], "t"),end="")
print(Z[ii][jj] if Z[ii][jj]!='-' else "",end="")
  print("")
  1+=1
"""**Получение функций выходов:**""
for kk in range(len(subarr3[0])):
  plus=False
  print("y{}=".format(l+1),end="")
  for ii in range(len(W)):
    for jj in range(len(W[ii])):
      #print(W[ii][jj])
      if(W[ii][jj]!=['-'] and W[ii][jj][l]=='1'):
        print("+" if plus==True else "",end="") #Это просто вывод плюса
        plus=True #не обращать внимание
        print(specialPrint(S_Haч[ii], "t"),end="")
        print(Z[ii][jj] if Z[ii][jj]!='-' else "",end="")
  print("")
         1+=1
                             ТСА-2 // склейка термов, вывод оставшихся
import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
class Term:
  def __init__(self):
    self.skleen = false
    pass
  def print(self):
    pass
class Level:
  def __init__(self, id, n):
    self.id = id
    self.n = n
    self.terms = [[]]*(n+1)
  def putTerm(self, term):
    self.terms[list(term).count("1")] = self.terms[list(term).count("1")]+[tuple(term)]
  def clearfree(self):
    i=0
    while i < len(self.terms):</pre>
      #print(i)
      if(self.terms[i]==[]):
        del(self.terms[i])
        #print(self.terms)
        i-=1
      #levels[0].terms[1]==[]
f = open("C:/Users/D4rkn/source/repos/TCA-2/TCA-2/source/demofile.txt", "r", encoding='utf-8')
levels=[]
m = int(f.readline())
n = int(f.readline())
print("m={}, n={}".format(m,n))
levels.append(Level(0,n))
```

```
print("Введите термы:")
for i in range(m):
    t = str(f.readline()).replace("\n","")
    print(t)
    levels[0].putTerm(t)
    pass
levels[0].clearfree()
print(levels[0].terms)
print("\nHe склеилось:")
for i in range(0,n):
    levelset1=set()
    levelset2=set()
    levels[i].clearfree()
    newlevel = Level(0,n)
    for j in range(0,len(levels[i].terms)-1):
         for k in range(0,len(levels[i].terms[j])):
              if(len(levels[i].terms[j][k])!=0):
                   for g in range(0,len(levels[i].terms[j+1])):
                        levelset1.update({''.join(levels[i].terms[j][k])},{''.join(levels[i].terms[j+1][g])})
                        #levelset1.update({(levels[i].terms[j][k])},{levels[i].terms[j+1][g]})
                       #print("{} - {} =
\label{lem:constraint} $$\{\}''.format(levels[i].terms[j][k],levels[i].terms[j+1][g],np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j][k].terms[j][k])!=np.array(levels[i].terms[j][k].terms[j][k])!=np.array(levels[i].terms[j][k].terms[j][k])!=np.array(levels[i].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].terms[j][k].t
evels[i].terms[j+1][g])))
                        if(sum(np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j+1][g]))==1):
                             newterm = np.array(levels[i].terms[j][k])
newterm[np.where(np.array(levels[i].terms[j][k])!=np.array(levels[i].terms[j+1][g]))[0][0]] = "-"
                            #print(newterm)
                             newlevel.putTerm(newterm)
                            #print(newlevel.terms)
levelset2.update({''.join(levels[i].terms[j][k])},{''.join(levels[i].terms[j+1][g])})#({(levels[i].terms[j+1][g])})
erms[j][k])},{levels[i].terms[j+1][g]})
    #print(newlevel.terms)
    levels.append(newlevel)
    #print(levelset1,"\n",levelset2)
     sets_difference = levelset1-levelset2
     if (len(levelset2) != 0):
         print("\t Уровень №{} : {}".format(i+1,levelset1-levelset2))
    else:
         print("\t Уровень №{} : {}".format(i+1,levels[i].terms))
```