Risk Analysis Report of James Bond Airport

Contents

Execu	tive Summary	7
1.	Purpose and Objectives:	7
2.	Key Findings:	7
3.	Proposed Hybrid Model	8
4.	Key Recommendations:	8
5.	Monitoring and Continuous improvement:	9
1. Ir	ntroduction	10
1.1.	Purpose and Objectives	10
1.2.	Scope of the Report	10
1.3.	Methodology	10
1.4.	Stakeholder Roles	11
1.5.	Why This Matters	11
2. C	critical Analysis of Risk Management Standards and Frameworks	12
2.1.	Overview of standards	12
2.2.	Applicability of IIoT Systems	13
2.3.	Recommended Hybrid Approach	13
2.4.	Cost Benefit Assessment of Hybrid Approach	14
2.5.	Stakeholder Roles	15
3. R	tisk Analysis of IIoT Devices	16
3.1.	Identifications of Risk	16
3.2.	STRIDE Analysis	17
3.3.	Risk Register	18
4. C	critical Evaluation of Risks and Vulnerabilities	21
4.1.	Top Severe Risks: Analysis and mitigation strategies	21
4.2.	Top Vulnerabilities: Root cause, impact, and resolution	22
4.3.	Justifications for Prioritization	23
5. R	Risk Mitigation Strategies	24
5.1.	Comprehensive Risk Mitigation Plan	24
5.2	Responsibility Allocation	25

	5.3.	Residual Risk Analysis	. 25
6.	Fran	nework-Driven Risk Management Strategies	. 26
7.	Key	Recommendations	. 27
	7.1.	Summary table of Recommendations	. 27
	7.2.	Detailed Evaluation of Top 3 Recommendations	. 28
	7.3.	Broder Recommendations	. 29
	7.4.	Cost Benefit Assessment of Suggested Mitigations	. 29
8.	Con	clusion	. 31
	8.1.	Implications	. 31
	8.2.	Strategic importance of IIoT Risk management	. 31
	8.3.	Implementation Call to Action	. 32
	8.4.	Final Reflections	. 32
9.	Арр	endix	. 33
	9.1.	Heap Matrix Table	. 33
	9.2.	Gap Analysis of Recommended Frameworks	. 33
	9.3.	Glossary of Terms	. 34
	9.4.	References:	. 35

Executive Summary

This report details the cybersecurity risks associated with James Bond airport Industrial Internet of Things (IIoT) devices. For the efficiency, these devices are essential, but also highly vulnerable and underpin sensitive operations such as surveillance, building management, and air traffic control. The focus of this report is to determine these risks, their potential impact, and ways to contribute to improving cybersecurity that remains consistent with cybersecurity standards.

1. Purpose and Objectives:

The main purpose of this report is to ensure that IIoT systems in airports are secure, resilient, and compliant with the regulatory frameworks.

To achieve this, the report:

- Identifies vulnerabilities in the form of command injection, outdated firmware, unencrypted communications, etc in IIoT devices (NCSC, 2019; CISA, 2021).
- Examines the application of global standards, including ISO/IEC 27001, IEC 62443, and the UK Cyber Assessment Framework (CAF) to these systems (ISO, 2018; IEC, 2020; NCSC, 2019).
- Suggests solutions to reduce vulnerabilities efficiently, without reducing operational efficiency.

2. Key Findings:

Category		Details		
Significant Risks Identified	Command Injection Vulnerabilities	Attackers can remotely control some Hikvision cameras (CVE-2021-36260).		
	Unencrypted Communications	Honeywell Building Management Systems transmit sensitive data without encryption, making it interceptable (CVE-2017-5140).		
	Outdated Firmware	Devices like Axis Cameras and Garrett Metal Detectors have vulnerabilities due to delayed firmware updates (CVE-2021-31986; CVE-2021-21901).		
	Network Segmentation Weaknesses	Thales TopSky ATC is insufficiently isolated, exposing it to lateral attacks (Thales Group, 2023).		
Implications	Operational Disruption	Security breaches can disrupt critical systems, affecting air traffic management and passenger services (CISA, 2021).		
	Compliance Risks	Non-compliance with standards like ISO/IEC 27001 or CAF can lead to significant financial an reputational losses (ISO, 2018).		
	Passenger Safety Concerns	Weak points in air traffic control systems could create serious risks to passenger safety and airport operations (Thales Group, 2023).		

Figure: Key Findings

3. Proposed Hybrid Model

To address these challenges, a hybrid cybersecurity framework is suggested in the report. This model integrates the strengths of the following frameworks:

- ISO/IEC 27001: It provides a structured governance and compliance approach (ISO, 2018).
- IEC 62443: It delivers IIoT-specific security controls for industrial automation systems (IEC, 2020).
- NIST Cybersecurity Framework (CSF): It offers a flexible, risk-based strategy for protecting critical infrastructure (NIST, 2020).
- Cyber Assessment Framework (CAF): It ensures compliance with UK-specific regulatory requirements (NCSC, 2019).
- ISO 31000: It aligns risk management strategies with broader organisational objectives (ISO, 2018).

Key Features of the Hybrid Model:

- Comprehensive Coverage: The model combines technical, operational, and strategic security measures.
- Scalability: It adapts to evolving cybersecurity challenges and emerging technologies.
- Regulatory Alignment: It ensures compliance with global and UK-specific standards.
- Strategic Integration: It aligns cybersecurity efforts with organisational goals, enhancing risk prioritisation and resource allocation.

4. Key Recommendations:

- Conduct Regular Security Audits: It ensures proactive identifications of vulnerabilities, safeguarding sensitive data, and maintaining compliance with industry regulations (NCSC, 2019).
- Encrypt Communications: The data sent by the Honeywell Building Management system can be protected during transfer using encryption solutions, such as TLS 1.3 (Honeywell, 2020).
- **Firmware Updates:** Updates automation around Axis Cameras can help in keeping devices up to date regarding firmware and boot images. This decreases the possibility of an attacker by taking advantage of any known vulnerability (Axis Communication, 2021).
- **Network Segmentation:** Use firewalls and VLANs to isolate critical systems, such as Thales ATC, from less secure networks (Thales group, 2023).
- Real-Time Monitoring: When it comes to IIoT activity, SIEM and SOAR tools can help in spotting potential threats as they happen in real time (Gartner, 2023).
 Deploying these tools can be very beneficial for security efficiency.

5. Monitoring and Continuous improvement:

- Track Risks: Always pay attention to failed logins, unexpected traffic, and whether firmware updates are happening on time. Catching these important issues early can make a big difference (ISO, 2018).
- **Review and Improve**: Go over your systems regularly and use what you learn from past incidents to tweak and improve your approach (NIST, 2020).
- **Team Up with Stakeholders**: Make sure to stay in close contact with IT teams, vendors, and regulators to stay ahead of new threats and make sure you are meeting updated standards (NCSC, 2019).

1. Introduction

1.1. Purpose and Objectives

The report characterizes the current state of understanding and management of the cybersecurity risks of IIoTs devices in James Bond airport. The major use of IIoTs deployed across the airport currently enables a wide range of critical operations: surveillance, building management, and air traffic control. It identifies the risks associated with these devices, evaluates vulnerabilities, and suggest effective solutions to mitigate them.

The main objectives to achieve are:

- Risk Identification: It indicates the vulnerabilities, and potential threats present around IIoT systems. It allows determining the impacts on operations of the airport.
- The Application of the Frameworks: How standards like ISO/IEC 27001, IEC 62443, CAF Framework, etc might be utilized to manage those risks.
- Recommendations: Propose practical, framework-based recommendations that could further strengthen cybersecurity.

1.2. Scope of the Report

The scope includes the following:

Category		Details
Devices and Systems	Critical Systems	Hikvision Cameras, Garrett Metal Detectors, Thales TopSky ATC.
	Passenger Support Devices	These range from in-flight entertainment devices to Zebra Printers.
Areas of Key Risk	Technical Risks	Outdated firmware, unencrypted communications, and use of default credentials.
	Operational Risks	Interdependencies within systems that may cause disruptions.
	Compliance Risks	Adherence to UK frameworks like CAF and global standards such as ISO/IEC 27001.
	Integration of Framework	Integrates global standards with UK-focused frameworks for comprehensive cybersecurity risk management.

Figure 1.2: Scope of the report

1.3. Methodology

- Risk Identification
 - Anomaly Analysis: Analyse device vulnerabilities, including documented CVEs, by utilizing the National Vulnerability Database (NVD).
 - Operational Risks: Classify operational risks by device functionalities and system interlink.

Framework Evaluation

Assess the applicability of the following frameworks: ISO/IEC 27001, IEC 62443, CAF, and NIST CSF, in the mitigation of identified risks.

Stakeholder Input

 Collaborate with IT teams, airport authorities, and device manufacturers to garner insight into the feasibility of the recommendations.

Prioritization of Risks

 Employ tools like the CVSS scoring and heat maps to identify, score, and rank the risk regarding its impact and likelihood.

1.4. Stakeholder Roles

Addressing IIoT risks requires collaboration among key stakeholders, including:

IT Teams

 They should be involved in device configuration management, periodic updating of firmware, and network security for the security of IIoT systems.

Device Vendors

 They must provide secure default configurations, release timely firmware updates, and offer support to resolve vulnerabilities in their devices.

Airport Authorities

 They must ensure that IIoT systems are aligned with operational objectives while also complying with the frameworks.

Regulators

 They ensure compliance with standards such as ISO/IEC 27001 to avoid potential legal issues, including financial penalties.

1.5. Why This Matters

Unsecured IIoT devices might pose serious consequences. For example, a security breach could lead to operational disturbances at airports, jeopardizing the safety of passengers, and drawing big reputational and financial loss. This is how airports can defend critical systems, combined with technical controls, operational strategies, and compliance measures that maintain public trust.

2. Critical Analysis of Risk Management Standards and Frameworks

2.1. Overview of standards

Framework	Purpose	Strengths	Limitations	Usefulness
ISO 31000	It provides a broad approach to risk management, connecting cybersecurity risks with an organization's overall objectives.	It promotes strategic alignment by considering cybersecurity risks alongside financial, operational, and other risks (ISO, 2018). It also fosters interdepartmental collaboration.	It does not provide detailed technical guidance on cybersecurity; it is a high-level guide.	It can be used as a foundational framework for overall risk management; works well when paired with more technical approaches.
ISO/IEC 27001	It focuses on safeguarding sensitive information through an Information Security Management System (ISMS).	It is globally recognized and structured for securing information. It is audit-friendly, simplifying compliance with regulations (ISO/IEC, 2013).	It is not tailored for IIoT or operational technology (OT); requires adjustments. Its implementation is resource intensive.	It is ideal for managing sensitive airport data like passenger information and operational plans but needs customization for IIoT contexts.
IEC 62443	It is designed for industrial control systems, focusing on securing IIoT and OT devices throughout their lifecycle.	It provides comprehensive security for devices and networks (IEC, 2020). It is well suited for complex IIoT environments like air traffic control systems.	It requires specialized expertise for implementation. Significant resources and time are needed for adoption of this framework.	It is very essential for IIoT-heavy environments like airports but requires skilled teams for execution.
CAF Framework	It aims to protect critical national infrastructure (CNI) from cyber threats, developed by the UK's NCSC.	It aligns closely with UK regulations, relevant for airports (NCSC, 2019). Includes practical maturity models for gap identification and resolution.	It is more focused on UK- specific needs, limiting international use. Lacks detailed technical guidance for devices.	It is essential for ensuring compliance with UK laws and defending against nation-state-level cyber threats.
NIST Cybersecurity Framework (CSF)	It provides a flexible, iterative approach to managing cybersecurity risks via five core functions: Identify, Protect, Detect, Respond, and Recover.	It is adaptable to organizations of different sizes and industries (NIST, 2018). The framework emphasizes continuous improvement for evolving threats.	It lacks detailed controls specific to IIoT systems.	It is excellent for establishing a strong overall cybersecurity approach but requires support from specific frameworks for IIoT systems.

Figure 2.1: Overview of standards

2.2. Applicability of IIoT Systems

Cybersecurity risk management at an airport is complex; the systems range from simple surveillance cameras to air traffic control systems and in-flight entertainment. Each system has its unique challenges, and several key frameworks effectively address these:

Focus Area	Description
Strategic Alignment	ISO 31000 will strategically align the airport's overall security strategies with organizational objectives for a cohesive approach (ISO, 2018).
Data Protection	ISO/IEC 27001 prevents data breaches into sensitive information, such as those regarding passengers and time schedules of operation (ISO/IEC, 2013).
Device Security	IEC 62443 covers device security in building management and air traffic control security (IEC, 2019).
Compliance	The CAF Framework ensures compliance with UK-specific regulations that protect the critical national infrastructure, meaning standards are met to a legislatively approved level (Cabinet Office, 2021).
Change Management	NIST CSF implements an organizational culture of continuous improvement that allows airports to stay competitive as cybersecurity threats keep changing (NIST, 2018).

Figure 2.2 Applicability of IIoT Systems

2.3. Recommended Hybrid Approach

Airport IIoT systems face unique challenges that require more than a one-size-fits-all solution. A hybrid approach, blending the strengths of multiple frameworks (Figure 9.2), is the most effective way to address these complexities:

- **ISO/IEC 27001**: It provides robust data security and ensures compliance with regulatory standards (ISO/IEC, 2013).
- **IEC 62443**: It offers security solutions for devices and networks within IIoT systems (IEC, 2019).
- **CAF Framework**: It aligns systems with UK-specific regulatory requirements (Cabinet Office, 2021).
- **NIST CSF**: It adapts to a constantly changing cybersecurity landscape with a flexible, iterative framework (NIST, 2018).
- **ISO 31000**: It helps embeds cybersecurity into the broader risk management framework (ISO, 2018).

2.4. Cost Benefit Assessment of Hybrid Approach

Framework	Total Cost Estimate	Benefits	Net Assessment	
ISO/IEC 27001	Certification fees: £5,000-£15,000 (ISO, 2018). Internal training: £10,000-£25,000 (ISO, 2018). Implementation audits: £10,000-£20,000	It improves governance, risk management, and compliance. It builds trust with stakeholders by demonstrating strong cybersecurity practices. It mitigates the risk of financial peopletics due.	Moderate cost; high benefit. Crucial for building a strong security foundation.	
	annually (ISO, 2018). Framework adoption and integration: £20,000–£50,000 (IEC,	financial penalties due to non-compliance. It provides IIoT-specific security controls, reducing vulnerabilities		
IEC 62443	Training for technical teams: £10,000–£15,000 (IEC, 2020).	in devices. It enhances resilience against cyber threats targeting industrial automation. It protects critical	High cost; high benefit. Vital for IIoT technical controls, especially in industrial environments.	
	Ongoing compliance: £5,000–£10,000 annually (IEC, 2020).	systems such as air traffic control and surveillance systems.		
	Implementation costs: £15,000–£30,000 (NIST, 2020).	It offers a flexible, risk- based approach to threat identification and mitigation.	Moderate cost; high	
NIST Cybersecurity Framework (CSF)	Internal training: £10,000–£20,000 (NIST, 2020).	It aligns cybersecurity practices with global standards, enhancing organizational reputation.	benefit. Provides operational resilience and adapts to emerging threats.	
	Regular updates and risk assessments: £5,000 annually (NIST, 2020).	It ensures continuous improvement in cybersecurity measures.		
	UK-specific alignment: £10,000–£20,000 (NCSC, 2019).	It ensures compliance with critical national infrastructure regulations, reducing legal and reputational risks.	Low cost; high benefit.	
Cyber Assessment Framework (CAF)	Training for compliance teams: £5,000–£10,000 (NCSC, 2019).	It facilitates collaboration with stakeholders like regulators and vendors.	Critical for compliance in UK critical infrastructure environments.	
	Ongoing audits and compliance checks: £5,000 annually (NCSC, 2019).	It mitigates risks of operational disruptions due to non-compliance.		

Figure 2.3: Risk benefit assessment of hybrid approach

2.5. Stakeholder Roles

An effective implementation of this hybrid model relies on collaboration among key stakeholders:

IT and Security Teams:

These teams are responsible for implementing technical security measures and monitoring systems continuously for potential threats. Their role includes applying best practices from the frameworks to address both long-term and immediate cybersecurity needs.

• Regulatory Bodies:

They ensure that airport systems comply with UK laws and global cybersecurity standards. They enforce adherence to frameworks like CAF and ISO/IEC 27001, ensuring that operations remain secure and lawful (Cabinet Office, 2021).

Vendors:

They play a crucial role by providing secure device configurations and responding promptly to vulnerabilities through firmware updates. Their compliance with standards like IEC 62443 ensures that IIoT devices meet security benchmarks (IEC, 2019).

• Operations Management:

They aligns cybersecurity strategies with business objectives by working closely with technical team. They ensure the integration of frameworks like ISO 31000 to maintain a balance between security and operational efficiency (ISO, 2018).

This hybrid approach not only strengthens the overall security posture but also ensures that cybersecurity measures are aligned with organizational goals and industry standards.

3. Risk Analysis of IIoT Devices

3.1. Identifications of Risk

The IIoT devices integrated into airport environments have significantly increased operational efficiency. However, this advancement has also introduced substantial cybersecurity risks. These risks come from vulnerabilities in the devices, misconfigurations, and outdated security practices.

Risk Category	Risk Factor	Description
Technical Risks	Default Credentials	Devices like Hikvision Cameras are prone to unauthorized access due to factory-set passwords. CVE-2021-36260, a command injection vulnerability, allows attackers to take full control of affected Hikvision devices (MITRE, 2021).
	Outdated Firmware	Delayed or ignored firmware updates in systems like Axis Network Cameras increase their vulnerability. For example, CVE-2021-31986, a buffer overflow vulnerability in Axis products, can lead to application crashes or data exposure (Axis Communications, 2021).
	Un-encrypted Communications	Honeywell Building Management Systems transmit sensitive data in unencrypted form, making it susceptible to interception and misuse (Honeywell, 2020).
Operational Risks	Interdependencies	Poor network segmentation between systems, such as Thales IFE and TopSky ATC, allows attackers to move laterally within the network, increasing the scale of potential damage (Thales Group, 2021).
	Downtime	Cyberattacks on devices like Garrett Metal Detectors can disrupt essential operations, such as passenger screening, significantly affecting workflows and causing operational delays (Garrett, 2021).
Compliance Risks	Regulatory Penalties	Non-compliance with standards like ISO/IEC 27001 or the CAF Framework can result in financial penalties, loss of reputation, and legal challenges (Cabinet Office, 2021; ISO/IEC, 2013).
	Data Breaches	Unsecured access to passenger or operational data may violate GDPR requirements, leading to costly fines and loss of stakeholder trust (European Union, 2016).
Physical and Environmental Risks	Tampering	Physical tampering with devices, such as Garrett Metal Detectors, can render them less functional and introduce new vulnerabilities (Garrett, 2021).
	Targeted Attacks	Nation-state actors may target critical infrastructure, such as Thales TopSky ATC, posing significant threats to safety and operational continuity (Thales Group, 2021).

Figure 3.1: Identification of risks

3.2. STRIDE Analysis

Device	Spoofing	Tampering	Repudiation	Information Disclosure	Denial of Service (DoS)	Elevation of Privilege
				Disclosure		Privilege
Hikvision	Weak	Command	Lack of proper	Intercepted	Overloading the	Exploiting
Cameras (DS-	authentication	injection	logging may	feeds could lead	camera with	vulnerabilities
2CD2xxx	mechanisms	vulnerabilities	make it	to data leaks	malicious traffic	could allow
Series)	can allow attackers to	(CVE-2021- 36260) could	difficult to track	about sensitive airport areas.	could render it inoperable.	attackers to escalate access to
	spoof	allow tampering	unauthorised	all port areas.	moperable.	the network.
	credentials and	with camera	access			the network.
	gain	settings.	attempts.			
	unauthorised	sectings.	uttempts.			
	access.					
	Weak	Vulnerabilities	Lack of proper	Unencrypted	Targeted DoS	Exploiting
Honeywell	authentication	(CVE-2017-5140	logs and	communications	attacks could	privilege
XL Web II Controller	could lead to	to CVE-2017-	monitoring	expose sensitive	disrupt building	escalation
Controller	identity	5143) could	can hinder	building	management	vulnerabilities
	spoofing and	allow attackers	tracking of	management	operations.	could allow full
	unauthorised	to tamper with	malicious	data.		system control.
	system control.	configurations.	activities.			
Thales ATC	Spoofing	Legacy protocols	Insufficient	Unauthorised	Flooding the	Exploiting
Systems	communication	could allow	logging	access to data	system with	outdated
(TopSky ATC	protocols to	tampering with	mechanisms	could disclose	malicious traffic	protocols could
& Eurocat-C)	impersonate	data	may enable	flight paths and	could disrupt air	provide
	legitimate air traffic	transmission between	attackers to deny malicious	operational details.	traffic control operations.	administrative access.
	messages.	systems.	activities.	uetalis.	operations.	access.
	Exploitation of	Buffer overflow	Limited	Interception of	Overwhelming	Exploiting code
Garrett	weak access	vulnerabilities	logging	system data	devices with	vulnerabilities
Metal	controls could	(CVE-2021-	capabilities	could reveal	network traffic	could allow
Detectors	allow attackers	21901) could	make	security	could render	elevation to
(PD 6500i &	to spoof	enable	repudiation a	screening	them unable to	administrative
Multi Zone)	maintenance	tampering with	risk, as	metrics or	perform	privileges.
	credentials.	detection	attackers may	bypass	screening tasks.	
		configurations.	deny	mechanisms.		
	-		responsibility.			
Axis Network	Spoofing	Vulnerabilities	Inadequate 	Interception of	Targeted DoS	Exploiting
Cameras	authentication	(CVE-2021-	logging may	video feeds	attacks could	vulnerabilities
(Q6032-E &	mechanisms to	31986, CVE-	hinder	could expose	disrupt video	could allow
M3005-V)	gain unauthorised	2021-31988) could allow	tracking unauthorised	sensitive areas of the airport.	surveillance, affecting	attackers to gain administrative
	access to video	tampering with	access or	of the air port.	security	privileges.
	feeds.	camera	tampering.		operations.	privileges.
		firmware or			op or a morror	
		feeds.				
7ahu- 01	Spoofing	Tampering with	Insufficient	Access to	Flooding the	Weak access
Zebra Card	credentials to	card printing	logging may	system data	system with	controls could
Printers (ZXP Series 9)	produce	systems could	allow	could expose	requests could	allow privilege
Jei 163 3)	unauthorised	lead to the	attackers to	information	disrupt the	escalation,
	access cards or	production of	deny malicious	about personnel	issuance of	enabling
	IDs.	fraudulent	activities.	or secure areas.	critical ID cards.	production of
		cards.				fake credentials.
7 1 1	Spoofing user	Tampering with	Insufficient	Unauthorised	Overloading the	Exploiting
Thales IFE	credentials to	firmware could	monitoring	access to	system could	vulnerabilities
System	access or	disrupt	could hinder	system data	render	could lead to
(TopSeries	control in-flight	entertainment	the	could expose	entertainment	unauthorised
i5000)	entertainment	services or	identification	passenger	services	administrative
	systems.	compromise	of	preferences or	unavailable.	access.
		passenger data.	unauthorised	browsing habits.		

	I					
			access			
			attempts.			
Thales IFE	Spoofing	Poor	Lack of logging	Unauthorised	Targeted DoS	Exploiting
	credentials to	segmentation	may hinder	access to	attacks could	network
System (TopSeries	impersonate	could allow	identification	system data	make	vulnerabilities
AVANT)	legitimate	attackers to	of breaches or	could lead to	entertainment	could enable
AVANTI	users or	tamper with	modifications	exposure of	systems	privilege
	devices.	network	to	passenger data	unavailable.	escalation to
		configurations.	configurations.	or operational		sensitive data.
				details.		
Garmin	Spoofing	Tampering with	Inadequate	Exposed data	Denial-of-service	Exploiting
	communication	firmware or	logging could	channels could	attacks could	vulnerabilities
Integrated Flight Deck	channels to	software	allow	disclose	make critical	could provide
· ·	deliver false	updates could	attackers to	sensitive flight	flight systems	attackers with
(G1000)	flight data to	disrupt flight	deny	operations or	unavailable to	access to critical
	pilots.	operations.	responsibility	plans.	pilots.	flight operations.
			for malicious			
			actions.			
	Spoofing voice	Misconfiguration	Lack of	Unauthorised	Flooding the	Misconfigurations
Frequentis	communication	vulnerabilities	detailed	interception	system with	could allow
VCS (VCS	to impersonate	could allow	logging makes	could disclose	malicious traffic	attackers to
3020X)	air traffic	tampering with	repudiation a	critical	could disrupt air	escalate their
	controllers.	voice	risk, as	communication	traffic	privileges within
		communication	malicious	between pilots	communications.	the system.
		channels.	actors can	and ATC.		
			deny their			
			actions.			

Figure 3.2 STRIDE Analysis of IIoT devices

3.3. Risk Register

Risk ID	Device	Model	Risk Description	Cause	Impact	Likelihood	Risk Level	CVE	Mitigation
R1	Hikvision Surveillance Cameras	DS-2CD2xxx Series	Unauthorized access via command injection	Improper input validation in web server	High	High	Critical	CVE-2021- 36260	Enforce strong passwords; implement multi-factor authentication (MFA).
R2	Honeywell Building Managem- ent	XL Web II & EBI R500	Unencrypted communication.	Lack of encryption for sensitive data transmission.	High	High	Critical	CVE- 2017- 5140, CVE- 2017- 5141, CVE- 2017- 5142, CVE- 2017- 5143	Deploy TLS 1.3; enforce encrypted communication protocols.
R3	Thales Air Traffic Control Systems	TopSky ATC & Eurocat-C	Exploitation of outdated communication protocols.	Legacy systems with insufficient updates.	High	Medium	High	Not applicable	Upgrade communication protocols; segment networks.

R4	Thales IFE System	TopSeries i5000	Vulnerability due to unpatched firmware.	Delayed or missed firmware updates.	Medium	Medium	Medium	CVE-2019- 9109	Automate firmware updates; collaborate with manufacturers for timely patches.
R5	Garrett Metal Detectors	PD 6500i & Multi Zone	Stack-based buffer overflow vulnerability allowing RCE	Improper handling of specially crafted UDP packets	High	Medium	High	CVE-2021- 21901, CVE-2021- 21903, CVE-2021- 21904, CVE-2021- 21905, CVE-2021- 21906, CVE-2021- 21907, CVE-2021- 21908, CVE-2021- 21909	Update firmware; restrict network access; monitor for anomalous detection.
R6	Axis Network Cameras	Q6032-E & M3005-V	Exploitation due to outdated firmware.	Delayed updates leave vulnerabilities unpatched.	Medium	Medium	Medium	CVE-2021- 31986, CVE-2021- 31988	Implement automated firmware updates and active vulnerability scanning.
R7	Zebra Card Printers	ZXP Series 9	Weak authentication leading to unauthorised use.	Insufficient access control policies.	Medium	Medium	Medium	Not applicable	Apply MFA; enforce robust access controls and periodic audits.
R8	Thales IFE System	TopSeries AVANT	Network segmentation gaps exposing sensitive passenger data.	Poor segmentation between critical and non-critical systems.	Medium	Medium	Medium	Not applicable	Segment networks using VLANs; enforce role-based access control.
R9	Garmin Integrated Flight Deck	G1000	Exposure to system hijacking during firmware updates.	Lack of secure update mechanisms.	High	Medium	High	Not applicable	Secure update processes with signed firmware and encrypted channels.
R10	Frequentis VCS	VCS 3020X	Misconfiguration leading to unauthorised access to voice communications.	Poor initial configuration settings.	High	Medium	High	Not applicable	Conduct regular configuration audits and enforce secure deployment practices.

Figure 3.2: Risk Register

Key Observations from the Risk Register

The key observations from the above risk matrix break down into critical, high, medium, and low risks based on their impact and likelihood.

Critical Risks (High Impact, High Likelihood)

R1 (Hikvision Cameras):

Command injection is a severe vulnerability which allows attackers to exploit them easily (CVE-2021-36260; MITRE, 2021).

o R2 (Honeywell XL Web II):

Unencrypted communications, coupled with listed vulnerabilities (CVE-2017-5140, CVE-2017-5141, CVE-2017-5142, CVE-2017-5143), increase cybersecurity threats (Honeywell, 2017).

High Risks (High Impact, Medium Likelihood)

o R3 (Thales TopSky ATC):

Legacy systems present exploitable weaknesses with potential disruption to critical air traffic operations (Thales Group, 2021).

o R9 (Garmin G1000):

Firmware updates lacking encryption make flight operations vulnerable to cyberattacks (Garmin, 2021).

o R10 (Frequentis VCS):

Misconfigurations in voice communication systems could cause operational failures at airports (Frequentis, 2021).

R5(Garrett metal Detectors):

Attacker can alter configuration or can disable critical detection systems through remote code execution (CVE-2021-21901).

Medium Risks (Medium Impact, Medium Likelihood)

O R4 (Thales i5000) and R6 (Axis Cameras):

Delay in firmware updates creates a window for exploitation of these devices (Thales Group, 2021; Axis Communications, 2021).

o R7 (Zebra Printers):

Weak authentication mechanisms increase the risk of unauthorized device access (Zebra Technologies, 2021).

O R8 (Thales AVANT):

Poor network segmentation exposes in-flight entertainment (IFE) systems to breaches (Thales Group, 2021).

4. Critical Evaluation of Risks and Vulnerabilities

4.1. Top Severe Risks: Analysis and mitigation strategies

R1: Hikvision Surveillance Cameras

Analysis:

The command injection vulnerability (CVE-2021-36260) enables unauthenticated attackers to execute arbitrary commands remotely. This can result in full device compromise, unauthorized access to surveillance feeds, and lateral movement within the network (MITRE, 2021).

Mitigation Strategies:

- o Regularly update devices to the latest firmware.
- Segregate IoT devices, including cameras, into isolated network zones to limit access.
- Apply strict firewall rules and leverage network monitoring tools to detect and respond to anomalies.

R2: Honeywell XL Web II Controller

Analysis:

Multiple vulnerabilities (CVE-2017-5140 to CVE-2017-5143) expose the system to risks such as unauthorized access, session forgery, and privilege escalation. This exploitation can result in unauthorized control, data interception, or operational disruptions (Honeywell, 2017).

Mitigation Strategies:

- Upgrade firmware to version 3.04.05.05 or newer to eliminate vulnerabilities.
- Implement TLS 1.3 or equivalent encryption protocols to secure communications.
- Restrict user privileges to essential tasks and perform regular audits of access logs to identify unusual activity.

R5: Garrett Metal Detectors

Analysis:

Garrett Metal Detectors (PD 6500i and Multi Zone) are affected by a stack-based overflow vulnerability which can allow an attacker to execute remote code execution via specially crafted packets, disabling detection systems or altering configurations (CVE-2021-21901).

Mitigation Strategies:

- Apply Firmware updates provided by vendor.
- With the help of firewalls and VLANs, restrict network access.
- o For anomalies indicative of attempted exploitation, monitor network traffic.

R3: Thales Air Traffic Control Systems

Analysis:

Thales TopSky ATC systems rely on outdated communication protocols and experience delays in security updates. These weaknesses can disrupt air traffic operations, posing safety and compliance risks (Thales Group, 2021).

Mitigation Strategies:

- Replace outdated communication protocols with secure options such as TLS 1.3.
- o Implement robust network segmentation to reduce potential attack vectors.
- Deploy intrusion detection and prevention systems (IDS/IPS) to monitor and block real-time threats.

4.2. Top Vulnerabilities: Root cause, impact, and resolution

Hikvision Cameras Vulnerability (Command Injection)

Root Cause: Insufficient input validation in the web server component.

Impact: Full device compromise, enabling attackers to control surveillance feeds and infiltrate connected systems.

Resolution:

- 1. Apply firmware updates to address CVE-2021-36260.
- 2. Limit device exposure by segmenting devices into isolated network zones.
- 3. Enforce strict access controls, including the use of multi-factor authentication (MFA).

Buffer Overflow Vulnerability (Garrett Metal Detectors)

Root Cause: Vulnerable code in the check_udp_crc function, enabling remote code execution (CVE-2021-21901).

Impact: Compromises the integrity of detection systems, potentially leading to operational safety risks.

Resolution:

- 1. Install Garrett's patched firmware to address CVE-2021-21901.
- 2. Limit device exposure by restricting network access through firewalls.

Unencrypted Communications (Honeywell XL Web II Controllers)

Root Cause: Lack of encryption for sensitive data transmissions.

Impact: Potential data interception and manipulation, disrupting operations.

Resolution:

- 1. Use TLS 1.3 to encrypt communications.
- 2. Conduct routine encryption audits to ensure compliance with security standards.
- 3. Train administrators to configure and maintain secure communication channels.

Axis Network Cameras (Outdated Firmware)

Root Cause: Delayed firmware updates leave devices vulnerable to exploits such as CVE-2021-31986 (Axis Communications, 2021).

Impact: Increased risks of unauthorized access, lateral movement, and data breaches.

Resolution:

- 1. Automate firmware updates to ensure vulnerabilities are promptly addressed.
- 2. Implement a patch management policy to track vendor advisories and prioritize critical updates.

4.3. Justifications for Prioritization

The prioritization of risks and vulnerabilities is based on three key factors:

- 1. Operational Impact: Hikvision cameras and Honeywell controllers are integral to airport operations. Their compromise could lead to significant downtime and security breaches.
- **2. Likelihood of Exploitation**: Vulnerabilities like command injection (CVE-2021-36260) and unencrypted communications are frequently exploited, highlighting the urgency of mitigation.
- **3. Severity**: These risks pose direct threats to passenger safety, data security, and regulatory compliance, necessitating immediate action.

5. Risk Mitigation Strategies

5.1. Comprehensive Risk Mitigation Plan

Each risk is managed through preventive measures, contingency strategies, and risk transfer options to ensure robust protection and continuity.

Preventive Measures:

- Hikvision Surveillance Cameras (R1):
 - Update firmware to address the command injection vulnerability (CVE-2021-36260).
 - o Segment networks to restrict unauthorized IoT access.
 - o Enforce multi-factor authentication (MFA) for user verification.
- Honeywell XL Web II Controller (R2):
 - Upgrade firmware to version 3.04.05.05 or later to resolve vulnerabilities (CVE-2017-5140 to CVE-2017-5143).
 - o Secure communication with TLS 1.3 encryption.
 - o Implement Role-Based Access Control (RBAC) to manage user privileges.
- Garrett Metal detecrors(R5):
 - o Install the recommended firmware update to mitigate the CVE.
 - With firewalls and VLANs, restrict access to network devices.
 - Identify unusual activities by monitoring network traffic.
 - o Perform regular integrity checks on device configurations.
- Thales TopSky ATC (R3):
 - Transition to secure protocols like TLS 1.3.
 - o Deploy Intrusion Detection Systems (IDS) for real-time threat mitigation.
 - Isolate ATC systems on dedicated network segments.

Contingency Strategies:

- Axis Network Cameras (R6):
 - Develop an incident response plan to counter firmware exploitation (e.g., CVE-2021-31986).
 - Set up backup and recovery protocols to sustain operations during disruptions.
- Zebra Card Printers (R7):
 - o Ensure contingency measures for essential printing during security incidents.
 - Regularly audit access logs to detect and address unusual activities.

Risk Transfer Options:

• Obtain cybersecurity insurance to reduce financial impacts of breaches.

• Employ external vendors for vulnerability assessments and penetration testing.

5.2. Responsibility Allocation

Key roles and their responsibilities:

• IT Security Teams:

- o They can oversee firmware updates and network segmentation.
- o They can help to monitor system health and respond to IDS/IPS alerts.

• Vendors and Manufacturers:

 They should provide timely patches and updates and support airport authorities in maintaining system integrity.

• Airport Authorities:

 They can help in allocating resources for mitigation implementation and ensure adherence to UK regulatory standards (Cabinet Office, 2021).

• Operational Staff:

 They should follow secure access protocols and report irregularities and regularly participate in cybersecurity training and awareness initiatives.

5.3. Residual Risk Analysis

Residual risks are assessed by likelihood and impact to determine their acceptability and required actions:

• Risk Acceptance Criteria:

- Low Likelihood & Low Impact: Acceptable with routine monitoring.
- o Medium Risks: Require periodic review and controls adjustment.
- Critical & High Risks: Unacceptable; additional controls or external expertise needed.

Monitoring Residual Risks:

- Track Key Risk Indicators (KRIs) to measure the effectiveness of mitigation efforts.
- Maintain an updated Risk Register to account for changes in threats and organizational structure.

6. Framework-Driven Risk Management Strategies

Cybersecurity around airports demands structured, evidence-based frameworks designed to address the complex combination of technology, operations, and safety. The table below evaluates key frameworks and their applicability to managing cybersecurity risks within airport systems.

Framework	Why It Matters	How It Applies
CAF Framework	Proactive Threat Management: Facilitates early detection and structured responses to minimize disruptions. Operational Continuity: Ensures vital systems, like air traffic control and passenger services, remain operational during cyber incidents. Regulatory Alignment: Supports compliance with GDPR	Deploy advanced monitoring systems to detect anomalies in IIoT devices like Hikvision cameras and Honeywell controllers. It aligns incident response protocols with CAF principles to minimize downtime and streamline recovery efforts.
ISO/IEC 27001	and UK CNI standards (NCSC, 2019). Comprehensive Risk Mitigation: It tackles both technical and organizational vulnerabilities. Credibility and Trust: It demonstrates commitment to robust security practices, boosting stakeholder confidence. Systematic Approach: It provides clear methods for identifying, assessing, and addressing risks (ISO, 2013).	Protect operational data in systems such as Thales TopSky ATC and Zebra printers using encryption, access controls, and periodic audits. Establish a process for continuous improvement to adapt to evolving cybersecurity threats.
IEC 62443	Lifecycle Protection: Covers security from design through decommissioning of lioT devices. Device-Level Security: Focuses on vulnerabilities unique to industrial equipment. Collaborative Approach: Encourages manufacturers to embed security measures during product development.	Secure systems like building management controls and air traffic control equipment using IEC 62443 principles. Collaborate with vendors (e.g., Honeywell and Thales) to ensure compliance with stringent security standards.
NIST Cybersecurity Framework (CSF)	Continuous Improvement: Encourages regular evaluation and updates to cybersecurity strategies. Scalability: Adapts to airports of varying sizes, from regional hubs to international airports (NIST, 2018). Focus on Resilience: Prioritizes recovery to minimize operational downtime after incidents.	Assess and strengthen systems like Frequentis VCS and Garmin Flight Deck using the framework. Leverage its recovery-oriented approach to resume critical operations quickly after cyber disruptions.
ISO 31000	Strategic Integration: Ensures cybersecurity aligns with overarching organizational objectives. Broad Applicability: Covers risks at technical, operational, and organizational levels (ISO, 2018). Interdisciplinary Collaboration: Promotes cooperation across departments for more effective risk management.	Align cybersecurity initiatives with the airport's broader risk management strategies to optimize resources. Use ISO 31000 to implement consistent cybersecurity practices across all airport departments.

Figure 6.1: Framework driven risk management strategies

7. Key Recommendations

7.1. Summary table of Recommendations

Recommendation	Expected Outcomes	Responsibility	Timeline	
1. Apply firmware	It can resolve known vulnerabilities	IT Security Team,	Immediate (0–3	
updates to all	such as CVE-2021-36260, CVE-	Vendors	months)	
devices	2021-21901, and CVE-2021-			
	31986/31988.			
2. Implement	It will isolate critical systems,	IT Security Team,	Medium-term (3–6	
network	reducing attack surface and lateral	Network Admins	months)	
segmentation	movement risks.			
3. Deploy TLS 1.3	It will protect sensitive data in	IT Security Team	Medium-term (3–6	
encryption for	transit from interception or		months)	
communication	tampering.			
4. Introduce Multi-	It can reduce unauthorised access	IT Security Team	Medium-term (3–6	
Factor	risks through enhanced		months)	
Authentication	authentication.			
(MFA)				
5. Conduct regular	It can identify emerging	Third-party	Continuous (Ongoing)	
security audits and	vulnerabilities and ensures	Auditors, IT		
testing	compliance with standards.	Security		
6. Implement Role-	It can restrict user permissions to	IT Security Team	Medium-term (3–6	
Based Access Control	only those necessary for their role.		months)	
(RBAC)				
7. Enable Intrusion	It can provide real-time alerts and	IT Security Team	Medium-term (3–6	
Detection and	automatic prevention of malicious		months)	
Prevention Systems	activities.			
(IDS/IPS)				
8. Improve Physical	It can ensure physical protection of	Physical Security	Medium-term (3–6	
Security Controls	devices from tampering or theft.	Team	months)	
9. Enable Secure	It can improve tracking and	IT Security Team	Continuous (Ongoing)	
Logging and	response to security incidents.			
Monitoring				
10. Develop Incident	It can provide a structured	IT Security Team,	Medium-term (3–6	
Response Plans	approach to managing and	Management	months)	
	mitigating the impact of			
	cybersecurity incidents.			
11. Provide Regular	It can improve awareness among	HR, IT Security	Continuous (Ongoing)	
Cybersecurity	staff to recognise and respond to	Team		
Training	potential threats, reducing risks			
	from phishing and human error.			
12. Apply Device	It can minimise attack surfaces by	IT Security Team Medium-term (3–6		
Hardening Practices	disabling unnecessary features,		months)	
	ports, and protocols.			

Figure 7.1: Key Recommendations

7.2. Detailed Evaluation of Top 3 Recommendations

Recommendation 1: Update Firmware on Vulnerable Devices Justification

Firmware vulnerabilities provide critical entry points for cyberattacks. Known issues in Hikvision Cameras (CVE-2021-36260) and Honeywell XL Web II Controllers (CVE-2017-5140 to CVE-2017-5143), can allow unauthorized access and disrupt operations. Regular updates address these weaknesses (MITRE, 2021; Honeywell, 2017).

Expected Impact

- It will eliminate known vulnerabilities, reducing the attack surface.
- It will enhance the security and reliability of critical devices.
- It will improve overall operational resilience.

Implementation

- 1. First automate firmware updates to minimize delays and errors.
- 2. Then collaborate with vendors for timely delivery of patches.
- 3. And finally develop and enforce firmware management policies as part of a broader security strategy.

Recommendation 2: Enforce Network Segmentation Justification

Poor network segmentation facilitates lateral movement by attackers, increasing the risk of widespread breaches. Systems such as air traffic control (ATC) and building management are especially vulnerable due to their interconnection with IIoT devices. Proper segmentation isolates critical systems, reducing risks (IEC, 2020).

Expected Impact

- It will limit the scope and severity of breaches.
- It will provide a layered security approach, enhancing system resilience.

Implementation

- 1. Use VLANs and firewalls to create isolated zones for critical systems.
- 2. Regularly audit network architecture to ensure effective segmentation.
- 3. Incorporate segmentation principles into the design of future IIoT deployments.

Recommendation 3: Deploy TLS 1.3 Encryption for Data Protection Justification

A lack of robust encryption leaves IIoT systems vulnerable to data interception. For instance, unencrypted communications in Honeywell XL Web II Controllers heighten risks (Honeywell, 2017). TLS 1.3 provides state-of-the-art encryption, securing data confidentiality and integrity (NIST, 2018).

Expected Impact

- It will prevent eavesdropping and unauthorized data access.
- It will ensure compliance with regulations like GDPR and CAF.

• It will build trust in system security through robust encryption protocols.

Implementation

- 1. Audit systems to identify vulnerabilities in data communication.
- 2. Prioritize TLS 1.3 implementation in critical areas.
- 3. Train IT teams to configure and maintain encryption protocols effectively.

7.3. Broder Recommendations

Adopt a Zero-Trust Security Model:

- It verifies all users and devices continuously to prevent unauthorised access.
- It will minimise trust zones within the network for added security.

Strengthen Physical Security:

 Secure physical access to devices such as Garrett Metal Detectors and Axis Cameras to prevent tampering.

Enhance Monitoring Capabilities:

- Deploy Intrusion Detection Systems (IDS) to identify and respond to anomalous activities in real-time.
- Implement Key Risk Indicators (KRIs) to track the effectiveness of security measures.

Regularly Train Staff:

• Make sure that staffs are trained in cybersecurity best practices to mitigate risks from human errors.

7.4. Cost Benefit Assessment of Suggested Mitigations

Recommendation	Costs	Benefits	Assessment
Apply firmware	£10,000-£15,000 for	Enhances security	Moderate cost; high
updates to all	automation tools;	posture, ensures	benefit. Enhances
devices	ongoing vendor fees	compliance with	efficiency and
	(Axis	standards, and	reduces risks.
	Communications,	reduces risks.	
	2021).		
Implement network	£20,000-£50,000 for	Reduces attack	High cost; high
segmentation	firewalls; £15,000	impact, limits	benefit. Essential for
	for setup and	breach spread and	complex
	configuration	protects critical	environments.
	(UpGuard, 2023).	systems.	
Deploy TLS 1.3	£1,000-£3,000	Improves security of	Moderate cost; high
encryption for	annually for	sensitive	benefit. Critical for
communication	licensing; £10,000-	communications	communication
	£20,000 for		security.

	upgrades (NCSC,	and compliance with		
	2019).	regulations.		
Introduce Multi-	£5,000–£10,000 for	Prevents	Low cost; high	
Factor	integration with	unauthorised	benefit. Improves	
Authentication	access management	access, securing	access control	
(MFA)	systems (Microsoft,	sensitive data and	significantly.	
(,	2020).	systems.		
Conduct regular	£5,000–£10,000 per	Ensures compliance,	Moderate cost; high	
security audits and	audit; internal	prevents breaches,	benefit. Essential for	
testing	resource costs	and builds	proactive risk	
	(CyberSec Advisor,	organisational trust.	management.	
	2021).			
Implement Role-	£10,000-£20,000 for	Minimises insider	Moderate cost; high	
Based Access	configuration;	threats and	benefit. Enhances	
Control (RBAC)	ongoing reviews	improves access	access control.	
	(CISA, 2022).	accountability.		
Enable Intrusion	£50,000-£100,000	Detects threats	High cost; high	
Detection and	annually for tools;	early, reduces	benefit. Vital for	
Prevention Systems	£20,000-£30,000	response time, and	real-time threat	
(IDS/IPS)	setup costs	prevents attacks.	visibility.	
	(Gartner, 2023).			
Improve Physical	£5,000-£10,000 for	Protects devices	Low cost; high	
Security Controls	physical controls;	from tampering,	benefit. Ensures	
	£5,000 annually for	ensuring operational	physical protection	
	maintenance	continuity.	of assets.	
	(Honeywell, 2020).			
Enable Secure	£20,000–£50,000 for	Enhances forensic	Moderate cost; high	
Logging and	logging systems;	capabilities and	benefit. Improves	
Monitoring	ongoing	accountability.	incident response.	
	maintenance costs			
	(Splunk, 2021).			
Develop Incident	£10,000–£15,000 for	Improves readiness	Moderate cost; high	
Response Plans	training and	for incidents,	benefit. Reduces	
	simulations; £5,000	reducing operational	downtime and	
	annually for updates	downtime.	enhances resilience.	
	(NIST, 2020).			
Provide Regular	£5,000-£8,000	Reduces human	Low cost; high	
Cybersecurity	annually for training	error risks and	benefit. Strengthens	
Training	sessions and	strengthens	security awareness.	
	materials (ISACA,	organisational		
Apply Davies	2021).	security culture.	Madarata asst. Istali	
Apply Device	£10,000–£20,000 for	Enhances baseline	Moderate cost; high	
Hardening Practices	system reviews and	security, reducing	benefit. Reduces	
	reconfiguration	vulnerabilities.	attack surface.	
	(CISA, 2022).			

Figure 7.4: Cost Benefit Analysis of Mitigations

8. Conclusion

8.1. Implications

The assessment of IIoT systems in James Bond airport reveals serious security risks that, if ignored, could lead to operational disruptions, regulatory breaches, and compromised passenger safety. Here are the main points:

• High-Risk Devices:

Hikvision Cameras and Honeywell XL Web II Controllers stand out as highly vulnerable. Issues like command injection (CVE-2021-36260) and unencrypted communication (CVE-2017-5140 to CVE-2017-5143) create opportunities for unauthorized access, data theft, and operational breakdowns. These risks need immediate attention (MITRE, 2021; Honeywell, 2017).

• Effectiveness of Frameworks:

Airport can implement a well-rounded strategy by combining frameworks such as ISO/IEC 27001, IEC 62443, CAF, NIST CSF, and ISO 31000. This approach strengthens technical defences, boosts resilience, and ensures compliance with UK-specific regulations (NCSC, 2019; ISO, 2018).

• Top Priorities for Mitigation:

Immediate actions like updating firmware, improving network segmentation, and introducing TLS 1.3 encryption address the most critical risks. Long-term efforts, including IDS deployment and continuous system monitoring, provide ongoing protection.

8.2. Strategic importance of IIoT Risk management

IIoT devices play a key role in improving airport operations, safety protocols, and passenger experience. However, their integration into critical systems introduces vulnerabilities that require close management. Here's why risk management is crucial:

Maintaining Operations:

Secure systems like air traffic control, building management, and surveillance are vital for keeping airports running smoothly. Strong cybersecurity makes sure these systems remain functional even when under threat.

Meeting Regulations:

Compliance with standards such as CAF and ISO/IEC 27001 isn't optional. It protects airports from penalties, legal action, and reputational damage while building trust with stakeholders.

Protecting Passengers:

Safeguarding passenger data and maintaining secure operations build public confidence and contribute to a better overall experience.

8.3. Implementation Call to Action

To strengthen cybersecurity and reduce risks, airports should prioritize the following steps:

• Immediate Actions:

- Update firmware on vulnerable devices like Hikvision Cameras and Honeywell Controllers to patch known flaws.
- Segment networks to isolate IioT systems from sensitive infrastructure and limit the spread of breaches.

Medium-Term Goals:

- Introduce TLS 1.3 encryption to secure data transmission and eliminate risks of interception.
- Strengthen access controls by adding Multi-Factor Authentication (MFA).
- Perform regular security audits and penetration tests to identify and address emerging threats.

Ongoing Measures:

- Create a feedback loop that uses Key Risk Indicators (KRIs) and lessons from past incidents to refine security practices.
- Keep risk registers updated with new threats and changes in compliance requirements.

8.4. Final Reflections

This report highlights the importance of proactive cybersecurity strategies to address vulnerabilities in IioT systems. By combining immediate, medium-term, and ongoing measures with robust frameworks, airports can:

- Improve resilience against cyber threats.
- Stay compliant with regulatory requirements.
- Build passenger trust by ensuring a safe and secure environment.

9. Appendix

9.1. Heap Matrix Table

Likelihood / Impact	Low Impact	Medium Impact	High Impact	
Low Likelihood	None	None	None	
Medium Likelihood	None	R6 (Axis Cameras), R8	R3 (Thales ATC	
Wiedium Likemiood		(Thales AVANT)	Systems), R5 (Garrett	
			Metal Detectors), R9	
			(Garmin G1000), R10	
			(Frequentis VCS)	
High Likelihood	None	None	R1 (Hikvision	
			Cameras), R2	
			(Honeywell XL Web II)	

Figure 9.1: Heap matrix

9.2. Gap Analysis of Recommended Frameworks

Requirement	ISO/IEC 27001	IEC 62443	NIST CSF	CAF	ISO 31000	Identified Gaps
Device-Level Security	High-level guidance but lacks device- specific controls.	Strong focus on industrial automation and control systems.	General security principles but not device specific.	Provides regulatory context but lacks technical depth.	Provides general risk management principles but not technical device controls.	ISO/IEC 27001, CAF, and ISO 31000 lack specific device controls. Requires integration of IEC 62443 for IIOT-specific focus.
Operational Continuity	Emphasises governance but lacks real-time operational controls.	Covers operational aspects for control systems.	Focuses on resilience but less applicable to lioT-specific operations.	Highlights critical infrastructure needs but lacks implementation details.	Provides high- level continuity strategies but no operational specifics.	ISO/IEC 27001, CAF, and ISO 31000 need NIST CSF and IEC 62443 for operational focus and resilience.
Compliance	Globally recognised but not UK-specific.	Not compliance- focused; technical standard.	General guidance but not compliance oriented.	UK-specific and tailored for critical national infrastructure.	Provides guidance for regulatory alignment but not UK-specific.	ISO/IEC 27001, NIST CSF, and ISO 31000 require CAF for UK-specific compliance.
Risk Management	Strong risk management processes but not tailored to IIoT.	Focuses on risk in industrial systems.	Comprehensive risk- based approach.	Highlights risk in critical infrastructure.	Provides a structured, high- level risk management framework.	No single framework covers all IIoT risk scenarios. A hybrid approach is required for holistic coverage

Figure 9.2: Gap Analysis of Frameworks

9.3. Glossary of Terms

- Industrial Internet of Things (IIoT): Connected devices and systems for industrial operations. Example: Hikvision Cameras in airports for surveillance.
- Common Vulnerabilities and Exposures (CVE): A catalogue of known security vulnerabilities. Example: CVE-2021-36260 identifies issues in Hikvision Cameras.
- Common Vulnerability Scoring System (CVSS): Rates vulnerability severity (0 to 10). Example: Axis Camera vulnerability scored 7.8.
- Transport Layer Security (TLS): Encrypts network communications. Example: Secures Honeywell Building Management Systems.
- **Virtual Private Network (VPN):** Encrypts remote connections. Example: Secures Thales ATC systems accessed remotely.
- **Network Segmentation:** Limits attack spread by dividing networks. Example: Separating Thales TopSky ATC systems for security.
- **Security Information and Event Management (SIEM):** Monitors and detects network threats. Example: Splunk tracks potential IIoT threats.
- **Firmware:** Controls device operations, needs updates to fix vulnerabilities. Example: Updated Axis Camera firmware for security.
- Multi-Factor Authentication (MFA): Adds security layers to logins. Example: MFA secures Hikvision admin panels.
- **Endpoint Security:** Protects devices like printers and cameras. Example: Zebra Printers secured with endpoint protection.
- Intrusion Detection System (IDS): Detects suspicious network activity. Example: Monitors threats to building management systems.
- **Patch Management:** Updates software and devices to fix vulnerabilities. Example: Keeps Axis Cameras patched for security.
- **Air-Gapping:** Isolates systems from external networks. Example: Used for high-security Thales ATC systems.
- **Denial-of-Service (DoS) Attack:** Overwhelms systems to disable operations. Example: Garrett Metal Detectors under DoS attack.
- Resilience: Systems recover and operate post-attack. Example: CAF Framework ensures resilience in airport infrastructure.
- **Zero-Day Vulnerability:** Exploited flaws without available fixes. Example: Thales systems' zero-day jeopardizes air traffic.
- Least Privilege Principle: Limits access to essential system functions. Example: Restrict admin rights in Honeywell Systems.
- Threat Vector: Path attackers exploit vulnerabilities. Example: Unencrypted communications as a threat to IIoT.
- Incident Response Plan (IRP): Outlines steps to manage cyber incidents. Example: Minimizes downtime in building systems post-breach.

9.4. References:

- International Organization for Standardization (ISO), 2018. <u>ISO 31000:2018</u> Risk Management.
- International Organization for Standardization/International Electrotechnical Commission (ISO/IEC), 2013. ISO/IEC 27001:2013 Information Security Management.
- International Electrotechnical Commission (IEC), 2020. IEC 62443 Industrial Communication Networks - Network and System Security
- <u>National Cyber Security Centre (NCSC)</u>, 2019. Cyber Assessment Framework.
- <u>National Institute of Standards and Technology (NIST)</u>, 2020. Cybersecurity
 Framework
- <u>Cabinet Office (2021)</u> Cyber Assessment Framework (CAF) Guidance. UK Government.
- CISA, 2021. Cybersecurity Best Practices for IoT Devices.
- Nozomi Networks, 2021. Axis OS Vulnerabilities.
- Honeywell, 2022. Cybersecurity for Building Systems.
- Garrett Metal Detectors, 2022. Security Device Safety.
- Thales Group, 2023. Air Traffic Management Solutions.
- SolarWinds, 2022. Network Traffic Analysis
- Gartner, 2023. SIEM and SOAR Tools for Real-Time Threat Monitoring
- MITRE,2021 ATT&CK Framework
- UpGuard, 2023. Network Segmentation Best Practices.
- NCSC, 2019. Cybersecurity Best Practices.
- Microsoft, 2020. Multi-Factor Authentication Benefits.
- CyberSec Advisor, 2021. How Much Does a Security Audit Cost?
- CISA, 2022. Role-Based Access Control Guidance.
- Gartner, 2023. Cost of IDS/IPS Solutions.
- Honeywell, 2020. Physical Security Solutions.
- Splunk, 2021. Logging and Monitoring Costs.
- NIST, 2020. Incident Response Plan Guidelines.
- ISACA, 2021. Cybersecurity Training Costs.
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2021-36260
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2017-5140
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2017-5141
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2017-5142
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2017-5143
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2019-9109
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2021-21901
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2021-21903
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2021-21904

- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2021-21905
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2021-21906
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2021-21907
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2021-21908
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2021-21909
- Common Vulnerabilities and Exposures (CVE), 2021. CVE-2021-31986