題目	top .	109		1	20	总分
得分	THE RESERVE AND DESCRIPTION OF THE PERSON.	- L	四	五	/	松刀
1471			1			
批阅人	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner,					

一. (20分) 简答

- 1. 请写出复数微分形式的麦克斯韦方程组以及电流连续性方程。
- 2. 请说明什么是电磁波的色散现象,并写出你所知道的几种引起电磁波色散的原因。
- 3. 请推导在各向同性均匀煤质中, 动态矢量磁位满足的复数形式的非齐次波动方程, 并给出复数形式的洛仑兹规范。
- 4. 一矩形波导中传输 TE₁₀ 模, 若通过在矩形波导上开槽的方式来实现缝隙天线, 槽应开在何处? 并说明原因。

100 A 100 A	(10分)	填空	(填空题答案请务必写在试卷上)
-------------	-------	----	---	---------------	---

1.	两非理想介质分界	面上电位移矢量满足的边界条件	件为。
2.	磁场能量密度 wm 的	竹表达式为 。	
3.	工作角频率为の的	均匀平面电磁波在良导体 (ε,	μ_0 , $\sigma \gg \omega \varepsilon$) 中的相位
	常数β为	,波阻抗为	,透入深度或趋脉
	深度 8 为	; 若在良导体表面切]向磁场强度幅度为 H ₀ ,「
	异体表面每单位面	积所吸收的平均功率为	•

4. 一均匀平面电磁波, 电场强度为 $E_0(j\bar{a}_x-2\bar{a}_y)e^{j\alpha}$, 其极化特性为
—————————————————————————————————————
特性为。
5. 均匀平面电磁波由无限大媒质 $1(\epsilon_1, \mu_0)$ 向无限大媒质 $2(\epsilon_2, \mu_0)$ 的分界面上斜入射,若入射波为平行极化波,布儒斯特角 θ_p 为。
田上科八别,右入别波为平行极化波,布儒斯特用 6p 7/
6. 矩形波导中传输主模,则由波导窄边上的面电流引起的波导的损耗随频率的
升高而。(请填增大、减小或不变)
三. (10分)选择题(选择题答案请务必写在试卷上)
1. 下面的说法正确的是()。
(A) 电场一定是由电荷产生的,磁场一定是由电流产生的。
(B) 磁力线一定是闭合的。 (C) 只有将电位参考点取在无穷远处,才能使求解电位分布的问题最简单。 (C) 只有将电位参考点取在无穷远处,才能使求解电位分布的问题最简单。
2. 下面关于瞬时形式的坡印亭矢量的表示,描述正确的是()。
(A) $\vec{S}(t) = \text{Re} \left[\dot{\vec{E}} e^{j\omega t} \times \dot{\vec{H}} e^{j\omega t} \right]$ (B) $\vec{S}(t) = \text{Re} \left[\dot{\vec{E}} e^{j\omega t} \right] \times \text{Re} \left[\dot{H} e^{j\omega t} \right]$
(C) $\vec{S}(t) = \frac{1}{2} \operatorname{Re} \left[\dot{\vec{E}} \times \dot{\vec{H}}^* e^{j\omega t} \right]$ (D) $\vec{S}(t) = \frac{1}{2} \operatorname{Re} \left[\dot{\vec{E}} \times \dot{\vec{H}}^* \right]$
3. 下面关于电磁波的相速描述错误的是()。
,************************************
(A) 电磁波在无限人中电泳从中的外域。
(C) 在填充空气的矩形波导中,传输模式的相速等于其能量传播的速度。
(D) 在填充空气的波导中,若导波是 TEM 波,其相速等于空气中的光速。
4. 理想矩形波导中,主模的截止波长与下列参数有关的是()。

- (*) 水形数守模截面的宽边尺寸。
- (B) 矩形波导横截面的窄边尺寸。
- (C) 矩形波导中电磁波的频率。
- (D) 矩形波导内填充介质的介电常数。
- 5. 以下方法中可以提高谐振腔的品质因数的是()。
 - (A) 减小谐振腔的体积以减小损耗。
 - (B) 增大谐振腔的内壁面积以增加腔内的储能。
 - (C) 提高谐振腔内壁的光洁度以减小损耗。
 - (D) 减小谐振腔壁的电导率以减小损耗。

四. (10 分) 空气中 (ε_0, μ_0) 中,已知电磁波的磁场强度为: $\bar{H}(x,z,t) = \bar{a}_x H_0 \frac{k_z}{k_x} \sin(k_x x) \sin(k_z z - \omega t) + \bar{a}_z H_0 \cos(k_z x) \cos(k_z z - \omega t)$ A/m

- 1. 求磁场强度的复数形式;
- 2. 求电磁波的传播方向和传播常数;
- 3. 求与之相伴的电场的复数形式;
- 4. 求此电磁波的平均功率流密度矢量 \bar{S}_{av} 。

五. (25 分) 一均匀平面波自理想介质 $1(\varepsilon=2\varepsilon_0, \mu=\mu_0)$ 向媒质 2 斜入射分界面为 z=0 平面。若入射波的电场为:

 $\dot{\bar{E}}_i = 120\pi \left(\bar{a}_x + j\sqrt{2}\bar{a}_y - \bar{a}_z\right)e^{j(Ax-z)}$ V/m , A为待定系数。

- 1. 求: ①特定系数 A ,②入射波的波矢量 \overline{k}_i ,③入射角 θ_i ,④平面波在此五介质 1 中的波长。
- 2. 求入射波的极化特性,若为圆极化或椭圆极化,请指出其旋向。 若媒质 2 为空气(ε_0 , μ_0)
- 3. 求折射角 θ ,和分界面上的反射系数。

- 4. 求理想介质 1 中磁场的瞬时表达式,并说明此组合波的特性。
- 5. 求空气中电磁波的平均功率流密度,并指出此空气中的电磁波是否是均匀平面波?

若媒质2为理想导体:

- 6. 求理想介质 1 中磁场的瞬时表达式,并说明此组合波的特性。
- 7. 求折射波的平均功率流密度。

六.(25分)一内部填充空气的理想矩形波导,电磁波在此波导中沿z轴传输,矩形波导的横截面尺寸为 $a \times b = 6$ cm $\times 5$ cm,横截面宽边与x 轴平行,窄边与y 轴平行。

- 1. 请给出主模的 ①截止波长、②截止频率、③单模传输的频率范围。
- 2. 当工作频率为该矩形波导主模截止频率的 1.25 倍时, 试求该工作频率下的主模的 ①传播常数 kz、②相速、③波导波长 与 ④波阻抗。
- 3. 当工作频率为该矩形波导主模截止频率的 1.25 倍时,此波导中还可以传输哪些模式的波?
- 4. 请在已给出磁力线的波导的 $0 \le x \le a$, y = b 的宽壁图(题六图)中,画出 TE_{10} 模的表面电流分布,并标明电流线的方向。
- 5. 当波导内填充空气时,在矩形波导传输方向上相距 4cm 长的两横截面处用理想导体平面短路,形成尺寸为 6cm×5cm×4cm 的矩形谐振腔,试确定谐振腔的主模及对应的谐振频率。

