

Sequence.ST25.txt

SEQUENCE LISTING

<110> Boutilier, Kim
Ouellet, Therese
Custers, Jan
Hattori, Jiro
Miki, Brian
Van Lookeren Campagne, Michiel

<120> USE OF THE BNM3 TRANSCRIPTIONAL ACTIVATOR TO CONTROL PLANT EMBRYOGENESIS AND REGENERATION PROCESSES

<130> 15327.0001US01

<140> 09/980,364

<141> 2002-04-08

<150> PCT/CA00/00642

<151> 2000-06-02

<150> EP 99201745.9

<151> 1999-06-02

<160> 17

<170> PatentIn version 3.3

<210> 1

<211> 2014

<212> DNA

<213> Brassica napus

<400> 1
gttcatctct cttcttaag accaaaacct ttttctcctc ctcttcatgc atgaacccta 60
actaagttct tcttctttta ccttttacca agaactcggt agatcactct ctgaactcaa 120
tgaataataa ctggtaggc ttttctctct ctccttatga acaaaatcac catcgtaagg 180
acgtctactc ttccaccacc acaaccgtcg tagatgtcgc cgagagtgac tgtagatc 240
cgaccgctgc ctccgatgag tcttcagcca tccaaacatc gttccttct ccctttggtg 300
tcgtcgta tgcttcacc agagacaaca atagtcactc ccgagattgg gacatcaatg 360
gttgtcatg caataacatc cacaacgtg agcaagatgg accaaagctt gagaatttcc 420
ttggccgcac caccacgatt tacaacacca acgaaaacgt tggagatgga agtggaaagt 480
gctgttatgg aggaggagac ggtgggtgt gctcactagg actttcgatg ataaagacat 540
ggctgagaaa tcaacccgtg gataatgtt ataataaga aaatggcaat gctgaaaag 600
gcctgtccct ctcaatgaac tcattactt cttgtataa caacaacgac agcaataaca 660
acgttgtgc ccaagggaaacttattgtt atagcgttga agtacaccg aagaaaacta 720
ttgagatgtt tggacagagg acgtctatat accgcggtgt tacaaggcat cggtgacag 780
gaagatatga ggcacattta tggataata gttgtaaaag agaaggcCAA acgcgcaaag 840
gaagacaagt ttatggaa ggttatgaca aagaagaaaa agcagctagg gcttatgatt 900

Sequence.ST25.txt

tagccgcact	caagtattgg	ggaaccacca	ctactactaa	cttccccatg	agcgaatatg	960
aaaaagaggt	agaagagatg	aagcacatga	caaggcaaga	gtatgttgcc	tcactgcgc	1020
ggaaaagtag	tggttctct	cgtggtgc	cgatttatcg	tggagtaaca	agacatcacc	1080
aacatggaag	atggcaagct	aggataggaa	gagtcgccc	taacaaagac	ctctacttgg	1140
gaactttgg	cacacaagaa	gaagctgcag	aggcatacga	cattgcggcc	atcaaattca	1200
gaggattaac	cgcagtgact	aacttcgaca	tgaacagata	caacgttaaa	gcaatcctcg	1260
aaagccctag	tcttcctatt	ggtagcgcc	caaaacgtct	caaggaggct	aaccgtccgg	1320
ttccaagtat	gatgatgatc	agtaataacg	tttcagagag	tgagaatagt	gctagcggtt	1380
ggcaaaacgc	tgcggttcag	catcatcagg	gagtagattt	gagcttattt	caccaacatc	1440
aagagaggt	aatggttat	tattacaatg	gaggaaacctt	gtcttcggag	agtgctaggg	1500
cttgttcaa	acaagaggat	gatcaacacc	atttctttag	caacacgcag	agcctcatga	1560
ctaataatcga	tcatcaaagt	tctgttccgg	atgattcggt	tactgtttgt	ggaaatgttg	1620
ttggttatgg	tggttatcaa	ggatttgcag	ccccggtaa	ctgcgatgcc	tacgctgcta	1680
gtgagtttga	ttataacgca	agaaaccatt	attacttgc	tcagcagcag	cagaccgc	1740
agtcgccagg	tggagatttt	cccgccgcaa	tgacgaataa	tgtggctct	aatatgtatt	1800
accatgggga	agggtgttgg	gaagttgctc	caacatttac	agtttggAAC	gacaattttaga	1860
aaaaatagtt	aaagatctt	agttatatgc	gttgggtgt	gctggtaac	agtgtgatac	1920
tttgattatg	ttttttctt	tcttttttc	tttttcttgg	ttaatttctt	aagacttatt	1980
tttagtttcc	attagttgga	taaattttca	gact			2014

<210> 2
<211> 579
<212> PRT
<213> Brassica napus
<400> 2

Met Asn Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Tyr Glu Gln Asn
1 5 10 15

His His Arg Lys Asp Val Tyr Ser Ser Thr Thr Thr Thr Val Val Asp
20 25 30

Val Ala Gly Glu Tyr Cys Tyr Asp Pro Thr Ala Ala Ser Asp Glu Ser
35 40 45

Ser Ala Ile Gln Thr Ser Phe Pro Ser Pro Phe Gly Val Val Val Asp
50 55 60

Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp Ile Asn
Page 2

Sequence.ST25.txt

65 70 75 80
Gly Cys Ala Cys Asn Asn Ile His Asn Asp Glu Gln Asp Gly Pro Lys
85 90 95

Leu Glu Asn Phe Leu Gly Arg Thr Thr Ile Tyr Asn Thr Asn Glu
100 105 110

Asn Val Gly Asp Gly Ser Gly Ser Gly Cys Tyr Gly Gly Asp Gly
115 120 125

Gly Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn
130 135 140

Gln Pro Val Asp Asn Val Asp Asn Gln Glu Asn Gly Asn Ala Ala Lys
145 150 155 160

Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Cys Asp Asn Asn Asn
165 170 175

Asp Ser Asn Asn Asn Val Val Ala Gln Gly Lys Thr Ile Asp Asp Ser
180 185 190

Val Glu Ala Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr
195 200 205

Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu
210 215 220

Ala His Leu Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys
225 230 235 240

Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala
245 250 255

Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr
260 265 270

Thr Asn Phe Pro Met Ser Glu Tyr Glu Lys Glu Val Glu Glu Met Lys
275 280 285

His Met Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser
290 295 300

Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His
305 310 315 320

Sequence.ST25.txt

Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys
325 330 335

Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln Glu Glu Ala Ala Glu Ala
340 345 350

Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Thr Ala Val Thr Asn
355 360 365

Phe Asp Met Asn Arg Tyr Asn Val Lys Ala Ile Leu Glu Ser Pro Ser
370 375 380

Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Asn Arg Pro
385 390 395 400

Val Pro Ser Met Met Ile Ser Asn Asn Val Ser Glu Ser Glu Asn
405 410 415

Ser Ala Ser Gly Trp Gln Asn Ala Ala Val Gln His His Gln Gly Val
420 425 430

Asp Leu Ser Leu Leu His Gln His Gln Glu Arg Tyr Asn Gly Tyr Tyr
435 440 445

Tyr Asn Gly Gly Asn Leu Ser Ser Glu Ser Ala Arg Ala Cys Phe Lys
450 455 460

Gln Glu Asp Asp Gln His His Phe Leu Ser Asn Thr Gln Ser Leu Met
465 470 475 480

Thr Asn Ile Asp His Gln Ser Ser Val Ser Asp Asp Ser Val Thr Val
485 490 495

Cys Gly Asn Val Val Gly Tyr Gly Tyr Gln Gly Phe Ala Ala Pro
500 505 510

Val Asn Cys Asp Ala Tyr Ala Ala Ser Glu Phe Asp Tyr Asn Ala Arg
515 520 525

Asn His Tyr Tyr Phe Ala Gln Gln Gln Thr Gln Gln Ser Pro Gly
530 535 540

Gly Asp Phe Pro Ala Ala Met Thr Asn Asn Val Gly Ser Asn Met Tyr
545 550 555 560

Tyr His Gly Glu Gly Gly Glu Val Ala Pro Thr Phe Thr Val Trp
565 570 575

Sequence.ST25.txt

Asn Asp Asn

<210> 3
<211> 2011
<212> DNA
<213> Brassica napus

<400> 3
ttcttctttt accttttacc aagaactcgt tagatcattt tctgaactcg atgaataata 60
actggtagg cttttctctc tctccttatg aacaaaatca ccacgttaag gacgtctgct 120
cttccaccac cacaaccgcc gtagatgtcg ccggagagta ctcttacgat ccgaccgctg 180
cctccgatga gtcttcagcc atccaaacat cgtttccccc tcccttttgtt gtcgtctcg 240
atgctttcac cagagacaac aatagtcaact cccgagattt ggacatcaat ggttagtgc 300
gtaataacat ccacaatgtat gagcaagatg gacaaaaact tgagaatttc cttggccgca 360
ccaccacgat ttacaacacc aacgaaaacg ttggagatat cgatggaagt ggggtttatg 420
gaggaggaga cgggttgttgg ggtctactg gactttcgat gataaagaca tggctgagaa 480
atcaacccgt ggataatgtt gataatcaag aaaatggcaa tggtgcaaaa ggcctgtccc 540
tctcaatgaa ctcatctact tcttgtata acaacaacta cagcagtaac aaccttgg 600
cccaaggaa gactattgtat gatagcgttg aagctacacc gaagaaaaact attgagatgtt 660
ttggacagag gacgtctata taccgcggtg ttacaaggca tcggtgacca ggaagatatg 720
aggcacattt atgggataat agttgtaaac gagaaggcca aacgcgcaaa ggaagacaag 780
tttatttggg aggttatgac aaagaagaaa aagcagctag ggctttagat ttagccgcac 840
tcaagtattt gggaccacc actactacta acttccccat gagcgaatat gagaaagaga 900
tagaagagat gaagcacatg acaaggcaag agtatgttgc ctcacttcgc aggaaaaagta 960
gtggtttctc tcgtggtgca tcgattttatc gtggagtaac aagacatcac caacatggaa 1020
gatggcaagc taggatagga agagtcgccc gtaacaaaga cctctacttg ggaacttttg 1080
gcacacaaaga agaagctgca gaggcatacg acattgcggc catcaaattc agaggattaa 1140
ccgcagtgac taacttcgac atgaacagat acaacgttaa agcaatcctc gaaagcccta 1200
gtcttcctat tggtagcgcc gcaaaacgtc tcaaggaggc taaccgtccg gttccaagta 1260
tgatgatgat cagtaataac gtttcagaga gtgagaataa tgctagcggt tggcaaaaacg 1320
ctgcggttca gcatcatcag ggagtagatt tgagcttatt gcagcaacat caagagaggt 1380
acaatggta ttattacaat ggaggaaact tgtcttcgga gagtgcttagg gcttggttca 1440
aacaagagga tgatcaacac catttcttga gcaacacgca gagcctcatg actaatatcg 1500
atcatcaaag ttctgtttca gatgattcgg ttactgttttgg tggaaatgtt gttggttatg 1560

Sequence.ST25.txt

gtggttatca	aggatttgca	gccccggta	actgcgtatgc	ctacgctgct	agtgagtttgc	1620
actataacgc	aagaaaccat	tattactttg	ctcagcagca	gcagacccag	cattcgccag	1680
gaggagattt	tcccgcggca	atgacgaata	atgttggctc	taatatgtat	taccatgggg	1740
aaggtggtgg	agaagttgct	ccaacattta	cagtttgaa	cgacaattag	aaataatagt	1800
taaagatctt	tagttatatg	cgttgttg	tggtgtgaa	cagtttgata	cttgattat	1860
gtttttttt	ctcttttca	tttttgttgg	tagttctta	agacttattt	tttgtttcca	1920
tttagttggat	aaattttcgg	acttaagggt	cacttctgtt	ctgacttctg	tctaatacag	1980
aaaagtttc	ataaaaaaaaaa	aaaaaaaaaa	a			2011

<210> 4
<211> 579
<212> PRT
<213> Brassica napus

<400> 4

Met Asn Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Tyr Glu Gln Asn
1 5 10 15

His His Arg Lys Asp Val Cys Ser Ser Thr Thr Thr Ala Val Asp
20 25 30

Val Ala Gly Glu Tyr Cys Tyr Asp Pro Thr Ala Ala Ser Asp Glu Ser
35 40 45

Ser Ala Ile Gln Thr Ser Phe Pro Ser Pro Phe Gly Val Val Leu Asp
50 55 60

Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp Ile Asn
65 70 75 80

Gly Ser Ala Cys Asn Asn Ile His Asn Asp Glu Gln Asp Gly Pro Lys
85 90 95

Leu Glu Asn Phe Leu Gly Arg Thr Thr Ile Tyr Asn Thr Asn Glu
100 105 110

Asn Val Gly Asp Ile Asp Gly Ser Gly Cys Tyr Gly Gly Asp Gly
115 120 125

Gly Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn
130 135 140

Gln Pro Val Asp Asn Val Asp Asn Gln Glu Asn Gly Asn Gly Ala Lys
145 150 155 160

Sequence.ST25.txt

Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Cys Asp Asn Asn Asn
165 170 175

Tyr Ser Ser Asn Asn Leu Val Ala Gln Gly Lys Thr Ile Asp Asp Ser
180 185 190

Val Glu Ala Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr
195 200 205

Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu
210 215 220

Ala His Leu Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys
225 230 235 240

Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala
245 250 255

Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr
260 265 270

Thr Asn Phe Pro Met Ser Glu Tyr Glu Lys Glu Ile Glu Glu Met Lys
275 280 285

His Met Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser
290 295 300

Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His
305 310 315 320

Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys
325 330 335

Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln Glu Glu Ala Ala Glu Ala
340 345 350

Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Thr Ala Val Thr Asn
355 360 365

Phe Asp Met Asn Arg Tyr Asn Val Lys Ala Ile Leu Glu Ser Pro Ser
370 375 380

Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Asn Arg Pro
385 390 395 400

Val Pro Ser Met Met Ile Ser Asn Asn Val Ser Glu Ser Glu Asn
405 410 415

Sequence.ST25.txt

Asn Ala Ser Gly Trp Gln Asn Ala Ala Val Gln His His Gln Gly Val
420 425 430

Asp Leu Ser Leu Leu Gln Gln His Gln Glu Arg Tyr Asn Gly Tyr Tyr
435 440 445

Tyr Asn Gly Gly Asn Leu Ser Ser Glu Ser Ala Arg Ala Cys Phe Lys
450 455 460

Gln Glu Asp Asp Gln His His Phe Leu Ser Asn Thr Gln Ser Leu Met
465 470 475 480

Thr Asn Ile Asp His Gln Ser Ser Val Ser Asp Asp Ser Val Thr Val
485 490 495

Cys Gly Asn Val Val Gly Tyr Gly Gly Tyr Gln Gly Phe Ala Ala Pro
500 505 510

Val Asn Cys Asp Ala Tyr Ala Ala Ser Glu Phe Asp Tyr Asn Ala Arg
515 520 525

Asn His Tyr Tyr Phe Ala Gln Gln Gln Thr Gln Gln Ser Pro Gly
530 535 540

Gly Asp Phe Pro Ala Ala Met Thr Asn Asn Val Gly Ser Asn Met Tyr
545 550 555 560

Tyr His Gly Glu Gly Gly Glu Val Ala Pro Thr Phe Thr Val Trp
565 570 575

Asn Asp Asn

<210> 5
<211> 4873
<212> DNA
<213> Brassica napus

<400> 5
atctctccac cgattcgta cccagtgc tt gaaaatatga tgactacgaa tcaattaaat 60
ggagaagctc cactgcttgt gttaggtggaa gctcaagcaa caaccggaaa cctcggcgtt 120
atcgggagtt agcatcgta tttgccaaaa tttccgccc agagatgaaa cgattcaaga 180
gaaaccctca aataggtagt ccataaaaca gtgaattagt atgatttaag agataagaag 240
agaagatgag ttcaagaaaa gaaatactca catctattta tactgtttac acaccgcctt 300
tcagatctaa gcaaaggcatt gaagatgaat cgtggaggag agttaatagg atttaacaca 360

Sequence.ST25.txt

aagccattaa	ccaaaccgtt	gcaggtcggg	agacgaaccg	caaaagtac	gcctagccgt	420
cgcacgaaga	ggagcgatga	attcgttt	ctcgctgcag	tcgtattagg	gatagacgga	480
gctcattatc	gttgggccgg	aaacacttct	aatctcacag	cccatgaaca	cactaaagaa	540
cgaaaccgaa	aatgttgaa	gtttaatgaa	acgtgcggtt	tgccttatgg	acacatgtca	600
ttacgatatg	aatgattta	tctacgtgga	tcatagggt	ctctctaagg	agagagcaaa	660
cctatacttt	atataaata	atgttatca	ttctaagagg	tgttaagat	ttttgcataa	720
atattaaaaa	aaaatacaa	tttttatgta	attagtttg	gttacataaa	ataacattaa	780
ataaaaattaa	ttcaaccaat	aaaaaaatac	ggtattttat	aattggtcaa	aaataaaaat	840
aaaacattaa	atttcaccta	gaattacgag	aatgtcactt	atttgaaac	aaaatcaaaa	900
tctttaaaca	tcaattaaac	tgatacggat	ggagtatata	tcttacaga	gaacatatat	960
atatgtttt	cttgcgtcg	tccatctctt	cttagtcatg	tagttcaat	accagctgca	1020
gtaaaaccat	gaatatttga	atttgttgc	aaatattcga	agcgactact	gcacgttgg	1080
aagcaaaacg	ccaaacgcaa	tcgctcgctc	ggtcataggg	tcacacatac	acatgtgact	1140
agcattatgg	gtcttaattc	aacagcgagt	gattttggga	tttatttatta	gttctcggt	1200
tactctact	ttaacacaaa	gtcactaacc	ttatttacac	atgaagagag	gtttgaaagg	1260
gctttgact	gattaattat	aatgtattaa	accaaactag	aattaagaga	ttaggcattt	1320
aattacatta	ccaccaccac	ccaccattca	aaccgaccaa	tacatctcca	cagtttcaa	1380
gtaaaacaac	tttttttgt	tgttccttcg	gaatttaat	aaatattcgt	ttatataaat	1440
gcfgatgata	tgacgcctcg	gaagaaatga	aacattatat	cttgacttt	tcttctccct	1500
gttcatctct	cttcttaag	acccaaacct	ttttctccctc	ctcttcatgc	atgaacccta	1560
actaagttct	tcttcttta	cctttacca	agaactcggt	agatcactct	ctgaactcaa	1620
tgaataataa	ctggtaggc	ttttctctct	ctccttatga	acaaaatcac	catcgtaagg	1680
acgtctactc	ttccaccacc	acaaccgtcg	tagatgtcgc	cggagagtac	tgttacgatc	1740
cgaccgctgc	ctccgatgag	tcttcagcca	tccaaacatc	gtttccttct	cccttggtg	1800
tcgtcgatcg	tgcttcacc	agagacaaca	atagtcactc	ccgaggttat	tgttttagaa	1860
ctactgttt	tttttgatt	tgtttatgg	tttagttcc	tcttcttcca	atgcgtagaa	1920
caaagaccaa	tacacacgca	cgcatactag	cccttatttt	tccttggct	tatttatcga	1980
tttcatttat	tttgagaata	tcaatgtgt	gggtttgatg	tttggggca	tatagtaata	2040
ctaaaacata	tgccagttat	acatagattt	tttttaaaga	tatacatgga	tatgaaatga	2100
aatttgacat	ttcctccctt	attcaatatc	ataatatgat	cacatacatg	tgtacccccc	2160
gatttgtata	tttgcgtttt	acagttgaag	gagagaataa	ccaaatacc	atttgtat	2220

Sequence.ST25.txt

tatagatcg	tgatgaaaag	taaatttaac	aaattatgat	aatataggcc	attaatctt	2280
gatttttttt	ctttatagat	tggacatca	atggttgtgc	atgcaataac	atccacaacg	2340
atgagcaaga	tggaccaaag	cttgagaatt	tccttggccg	caccaccacg	atttacaaca	2400
ccaacgaaaa	cgttggagat	ggaagtggaa	gtggctgtta	tggaggagga	gacggtggtg	2460
gtggctcact	aggactttcg	atgataaaga	catggctgag	aaatcaaccc	gtggataatg	2520
ttgataatca	agaaaatggc	aatgctgcaa	aaggcctgtc	cctctcaatg	aactcatcta	2580
cttcttgta	taacaacaac	gacagcaata	acaacgttgt	tgcccaaggg	aagactattg	2640
atgatagcgt	tgaagctaca	ccgaagaaaa	ctattgagag	tttggacag	aggacgtcta	2700
tataccgcgg	tgttacaagg	tgcccttcat	ttatthaatt	aaaatgtgt	aatgtcgct	2760
tgaattgtta	tcttcttgg	aaagtctgg	acattgatct	aatggctctg	ttgcgagagt	2820
gctaccgaat	ggtccttgat	atatagtatc	aaagagagat	attgttatta	tggccttata	2880
tagaataata	catatatata	tatataatac	tggtagctgt	tgtgacatg	tatgttcgt	2940
ttaaatgata	aggcatcggt	ggacaggaag	atatgaggca	catttatggg	ataatagtt	3000
taaaagagaa	ggccaaacgc	gcaaaggaag	acaaggata	tatataattca	ttgataattt	3060
gatcatattt	tcatacacga	tttactttca	aactaatata	ggttttcga	tcattgttca	3120
tgtttttatc	aaaatttgca	cctgggggtt	gtcttctcag	tttatttgg	taagtaattt	3180
attataaatt	ggacgaagct	gtgatggta	aatctaaatt	atataatcaa	atttgtttat	3240
tttttgtgt	tacattcatt	atataatcaa	aatagcgata	cgatctacat	tcaattgtt	3300
tctatatcat	gcaggagggtt	atgacaaaga	agaaaaagca	gctaggcctt	atgatttagc	3360
cgcactcaag	tattggggaa	ccaccactac	tactaacttc	cccgtaagtc	aatcaatgtt	3420
gtacaagatt	tcataactta	gaaccaattt	tattttttt	ttataagatg	ctattatctt	3480
attattaatt	gccatgtta	tatcgttaca	tttattacaa	taaaaagtac	ttttggttt	3540
atataatatg	tagatgagcg	aatatgaaaa	agaggtagaa	gagatgaagc	acatgacaag	3600
gcaagagtat	gttgcctcac	tgcgcaggta	tataatggaa	cttctgatat	tattgcata	3660
ggcatctatt	attatacatg	tatattagta	ttttatatat	agaacccatc	acgctcacgt	3720
ttatatttaa	aaatatgtcc	gtattcacgt	cagattatca	gcatacacct	atataataa	3780
gacattaaaa	tatgcaggaa	aagtatgtgt	ttctctcg	gtgcacatcgat	ttatcggt	3840
gtaacaaggt	attcatacag	agagaacgaa	tcctattttg	ttacgtacat	atataatataa	3900
aaatataatt	ataagatatc	acatttata	ttatgaatat	ttcttcta	gggtccaaaa	3960
gacatcacca	acatggaaga	tggcaagcta	ggataggaag	agtcgcccgt	aacaaagacc	4020
tctacttggg	aacttttgtt	acgtttagtc	ttctcttact	aaacttcaca	atcaaatcta	4080
taacaaaaga	tatcaactaa	aaactacaac	atataatctaa	gtaagctgt	catatattt	4140

Sequence.ST25.txt

atatgaaggc acacaagaag aagctgcaga ggcatacgac attgcggcca tcaaattcag	4200
aggattaacc gcagtgacta acttcgacat gaacagatac aacgttaaag caatcctcga	4260
aagccctagt cttcctattg gtagcgccgc aaaacgtctc aaggaggcta accgtccggt	4320
tccaagtatg atgatgatca gtaataacgt ttcatagagt gagaatagtg ctacgttgt	4380
gcaaaaacgct gcgggtcagc atcatcaggg agtagatttgc accaacatca	4440
agagaggtac aatggttatt attacaatgg aggaaacttg tcttcggaga gtgcttagggc	4500
ttgtttcaaa caagaggatg atcaacacca tttcttgagc aacacgcaga gcctcatgac	4560
taatatcgat catcaaagt ctgtttcgga tgattcggtt actgtttgtg gaaatgttgt	4620
tggttatggt gtttatcaag gattgcagc cccggtaac tgcgtgcct acgctgttag	4680
ttagtttgat tataacgcaa gaaaccatta ttactttgct cagcagcagc agacccagca	4740
gtcgcgcagggt ggagatttc ccgcggcaat gacgataat gttggctcta atatgtatta	4800
ccatggggaa ggtgggtggag aagttgctcc aacatttaca gtttggaaacg acaattagaa	4860
aaaatagttt aag	4873

<210> 6
 <211> 5151
 <212> DNA
 <213> *Arabidopsis thaliana*

<400> 6	
tctcaaactc atccatctga ttttaataac agtttttct tcttttctt ttgttgttt	60
ttaccacttt tctttctttt tctcattttc tacttacttc cagatttttc atttccat	120
ttttggtcac acgctttgt cagttgtaga tatcttcatc tacaggtgtt tcctttatt	180
ttcagatgga atctcaatct acaggtgttt ctcacttcaa taaattacgg cccccaaaaa	240
atttatgttt tttatattaca agaaacatag cataatatga tacatatgtt tttgaagtac	300
tgtttttac acaaaacttt gattataaaa cctcagccgt tctttcgat ttgttatttt	360
aacgcatttca atgaagtcat tcgtgaatga tatataaata gtttggatattttt ttgttattata	420
tcgtcccgcc ccggatcaaa acctaaagta agtgaataaa attttctttt gtagagataa	480
gaaaatttgc accgcgtatc gaaaatgtaa aaccttattttt aatttctaga tctactaatt	540
gggtttgagg tattgaaata attgggtacc aaagggttgg ggtactatata ataaaaagca	600
gataagaaca aattgttagg aaaaaataat atgatttgtt aggtaccgag gcaattctat	660
aacgtgtgtt ggtgggtgtt tagatattgc aggataata atgaaagaag taaaattata	720
ttacaattaa attagaagac gagaatccat tgaatcatat cttaccagtc caaactttt	780
ttaagtatata aatctttga aagagtataa acccatgcac atgcccactt tcgtctcatt	840
gatccatgtt tataccctat agttcctcc ctaattactc taattccctt aaatcatttt	900

Sequence.ST25.txt

ttaatttgat acaatttagtc ggataagctc aaactacttt actattggtg ctttagcatgt	960
acagtacata tcttagcatcc gaaccctact agccatccac atcttatgta cataattatg	1020
actgtttaa gtacttttt actttcgttt acaatgtttg tttgaaaatt tgaggcggtt	1080
tttactggtt gaactgttagc cactaagaca ctaagacttc aaaattcaaa tagaaaaatc	1140
tatactttta caatatctt gcatgtcaaa ttatTTTAA cgtggttata cattttgcct	1200
aagatttaga gtacattcat aataacaaca ataaaatatt tctatatata gtaggtttag	1260
tgaagttact atatgagata gttcatcgca ttgatcacgt ctgatgcgaa tcacatatcc	1320
tatatctagt tgaacatatg tttcgtggaa gacaggaacc atctcttaga cccgcacttc	1380
aaaatatcac aaaacacgaa accatgaatc ttttgagttt gttaaaaaat actaaaagtg	1440
acgagttcgc gtttggaaaa aatgccaaac taaatcgctg gctcgtgtca tacgttcaca	1500
catacacatg tctctaagag acacagcatc attggcttta aatcgacaac gagtgagttt	1560
ttggactttt acctatttgtt cctcgacatg tttacccatt tttgtcattt acatTTAACa	1620
ttttatacgc atgaagagag agagacagaa agcagagatt tgaaatggtt tttgactgat	1680
taattaaagt gtcataaaaa caaattggga ttacgagatt atccagttga aacgacatta	1740
ctaccctac ccttcaaacc gaccaataca tctccacatt tttcaagtaa atatTTTTC	1800
tttctgaatt taattgcaaa attctctaaa tgcgcataat atgtcgccctc ggaagaaatg	1860
aacattatat ttttgacttt tcttcttctt cttcccttc tctcttcatt taacaccaaa	1920
accttttct ttctcctctt catgcatgaa ccctaactaa gtttttttc ctattctct	1980
tctctcatct atcacaagga gtagttagaa tattatatga actcgatgaa taactggta	2040
ggcttctctc tcttcctca tgatcaaaat catcaccgta cgatgttga ctccctccacc	2100
accagaaccg ccgtagatgt tgccggaggg tactgtttt gatcgccgc tccctccgat	2160
gaatcttctg ccgtcaaaac atctttctt tctccttcgt gtgtcaccct cgaagcttcc	2220
accagagaca ataatagtca ctcggaggt ttgtgtttt aaaaatTTTA ttttATCTTT	2280
gtttttgtta tttttcccc ttcttccat gcatagaaca aagaccaaga ctcacgcacg	2340
tagccctatt tttgttttc attgtttatc gatttcatct cttttgagaa tttccatgag	2400
tggggtttag tgTTTGTCA catgatcaca tctcatgaat ttaaacttag taaaacatga	2460
aactagacat ttatTTGTA ccctttatc cttataaaat gaaaattcca tttcgatata	2520
tatagatcgg tgatgaatca aacccaacgt tggggatcgc tttgttttt gtctatagat	2580
tgggacatca atggTGGTGC atgcaataca ttaaccaata acgaacaaaa tggaccaaaag	2640
cttgagaatt tcctcggccg caccaccacg atttacaata ccaacgagac cgTTGTTAGAT	2700
ggaaatggcg attgtggagg aggagacggt ggtggTGGCG gctcactagg ctttcgatg	2760

Sequence.ST25.txt

ataaaaacat ggctgagtaa tcattcggtt gctaatgcta atcatcaaga caatggtaac	2820
ggtcacgag gcttgcgcct .ctctatgaat tcatctacta gtgatagcaa caactacaac	2880
aacaatgatg atgtcgtcca agagaagact attgttgatg tcgtagaaac tacaccgaag	2940
aaaactattg agagtttgg acaaaggacg tctatatacc gcgggtttac aaggtaatt	3000
tcattgatct atgtatattt ttattgtgct taaattgtga tttcttggt attgttggg	3060
acattctaat ggtcgggtt agagagagtg caacggaatg tctctcaatg tatattaaag	3120
agaaacatta attagtgtac atgggttat atatacaata atacgtcata tatatggtat	3180
gctcttgcattc atagtatata atgttgaat ttaatgtcag gcatcggtgg acaggttagat	3240
acgaggcaca tttatggac aatagttgca aaagagaagg ccagactcgc aaaggaagac	3300
aaggtaatat atatataaaag ctaattttt aatttcatt taccatttat tttcaaacta	3360
atttaggttt tcttttcatg tgtttcatca aaatttgcac ctgatggctc tctttcagt	3420
ttatctgggt aagttcttga ttttaagcta taaattaata atagatgact attaaatcta	3480
ttctaaagcaa aatataattg ttgtgttac tgatcctaca ggaggttatg acaaagaaga	3540
aaaagcagct agggcttacg atttagccgc actaaagtat tggggaccca ccactactac	3600
taactccccc gtatgttaat taatcaataa tatatacata aattcctaac ttctaaacca	3660
tttttagtctg aataatgccatc atctctaaa ctagtattat cttactatta actgtcatgt	3720
ttatattgtt acaataaaaaa ttagtaatgt tgggtggata taatattcag ttgagtgaat	3780
atgagaaaaga ggtagaagag atgaagcaca tgacgaggca agagtatgtt gcctctgc	3840
gcaggtacag aatgaaactc ttgaattttat tgcattttag aaacccatca cgtatatatt	3900
tattaaaata tatcgtaaaca ttgaataaat cattattgg aaagatataa gaaacatgta	3960
aatatgcagg aaaagttagt gtttctctcg tggtgcatcg atttatcgag gagtaacaag	4020
gtacgtataa tccatctaga tatggaacga atactagtgt ttcattattt tttttgtatgt	4080
atacataata attgtcatac aatactatta atctaattctta attaatattt cctttaaaat	4140
ggttccaaaa ggcatcacca acatggaagg tggcaagcta ggatcggaaag agtcgcccgt	4200
aacaaagacc tctacttggg aactttcggt acattttcca ataaaatcta tatactataa	4260
gatattaaat atacacaaat atatctaagt gaatcataca aattatgttag gcacacagga	4320
agaggctgct gaggctttagt acattgcagc cattaaattc agaggattaa gcgcagtgc	4380
taacttcgac atgaacagat acaatgttaa agcaatcctc gagagcccga gtctacctat	4440
tggtagttct gcgaaacgtc tcaaggacgt taacaatccg gttccagcta tgatgattag	4500
taataacgtt tcagagagtg caaataatgt tagcggttgg caaaacactg cgtttcagca	4560
tcatcaggga atggatttga gcttattgca gcaacagcag gagaggtacg ttggttatta	4620
caatggagga aacttgtcta ccgagagtac tagggttgt ttcaaacaag aggaggaaca	4680

Sequence.ST25.txt

acaacacttc ttgagaaaact cgccgagtca catgactaat gttgatcatc atagctcgac	4740
ctctgatgtat tctgttaccg tttgtggaaa ttttgttagt tatggtggtt atcaaggatt	4800
cgcacatccct gttggaacat cggtaatta cgatcccttt actgctgctg agattgctta	4860
caacgcaga aatcattatt actatgctca gcatcagcaa caacagcaga ttcagcagtc	4920
gccgggagga gatttccgg tggcgatttc gaataaccat agctctaaca tgtactttca	4980
cggggaaagggt ggtggagaag gggctccaac gtttcagtt tggAACGACA cttAGAAAAA	5040
taagtaaaag atcttttagt ttttgcttt gtatgttgcg aacagttga ttctgtttt	5100
cttttcctt ttttggta atttcttat aacttttcc atagttcga t	5151

<210> 7

<211> 581

<212> PRT

<213> Arabidopsis thaliana

<400> 7

Met Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro His Asp Gln Asn His
1 5 10 15

His Arg Thr Asp Val Asp Ser Ser Thr Thr Arg Thr Ala Val Asp Val
20 25 30

Ala Gly Gly Tyr Cys Phe Asp Leu Ala Ala Pro Ser Asp Glu Ser Ser
35 40 45

Ala Val Gln Thr Ser Phe Leu Ser Pro Phe Gly Val Thr Leu Glu Ala
50 55 60

Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp Ile Asn Gly
65 70 75 80

Gly Ala Cys Asn Thr Leu Thr Asn Asn Glu Gln Asn Gly Pro Lys Leu
85 90 95

Glu Asn Phe Leu Gly Arg Thr Thr Ile Tyr Asn Thr Asn Glu Thr
100 105 110

Val Val Asp Gly Asn Gly Asp Cys Gly Gly Asp Gly Gly Gly Gly
115 120 125

Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Ser Asn His Ser
130 135 140

Val Ala Asn Ala Asn His Gln Asp Asn Gly Asn Gly Ala Arg Gly Leu
145 150 155 160

Sequence.ST25.txt

Ser Leu Ser Met Asn Ser Ser Thr Ser Asp Ser Asn Asn Tyr Asn Asn
165 170 175

Asn Asp Asp Val Val Gln Glu Lys Thr Ile Val Asp Val Val Glu Thr
180 185 190

Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr Ser Ile Tyr
195 200 205

Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu
210 215 220

Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys Gly Arg Gln
225 230 235 240

Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr
245 250 255

Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Thr Thr Thr Asn Phe
260 265 270

Pro Leu Ser Glu Tyr Glu Lys Glu Val Glu Glu Met Lys His Met Thr
275 280 285

Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser
290 295 300

Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly
305 310 315 320

Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr
325 330 335

Leu Gly Thr Phe Gly Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile
340 345 350

Ala Ala Ile Lys Phe Arg Gly Leu Ser Ala Val Thr Asn Phe Asp Met
355 360 365

Asn Arg Tyr Asn Val Lys Ala Ile Leu Glu Ser Pro Ser Leu Pro Ile
370 375 380

Gly Ser Ser Ala Lys Arg Leu Lys Asp Val Asn Asn Pro Val Pro Ala
385 390 395 400

Met Met Ile Ser Asn Asn Val Ser Glu Ser Ala Asn Asn Val Ser Gly
Page 15

Sequence.ST25.txt

405

410

415

Trp Gln Asn Thr Ala Phe Gln His His Gln Gly Met Asp Leu Ser Leu
 420 425 430

Leu Gln Gln Gln Gln Glu Arg Tyr Val Gly Tyr Tyr Asn Gly Gly Asn
 435 440 445

Leu Ser Thr Glu Ser Thr Arg Val Cys Phe Lys Gln Glu Glu Glu Gln
 450 455 460

Gln His Phe Leu Arg Asn Ser Pro Ser His Met Thr Asn Val Asp His
 465 470 475 480

His Ser Ser Thr Ser Asp Asp Ser Val Thr Val Cys Gly Asn Val Val
 485 490 495

Ser Tyr Gly Gly Tyr Gln Gly Phe Ala Ile Pro Val Gly Thr Ser Val
 500 505 510

Asn Tyr Asp Pro Phe Thr Ala Ala Glu Ile Ala Tyr Asn Ala Arg Asn
 515 520 525

His Tyr Tyr Tyr Ala Gln His Gln Gln Gln Gln Ile Gln Gln Ser
 530 535 540

Pro Gly Gly Asp Phe Pro Val Ala Ile Ser Asn Asn His Ser Ser Asn
 545 550 555 560

Met Tyr Phe His Gly Glu Gly Gly Glu Gly Ala Pro Thr Phe Ser
 565 570 575

Val Trp Asn Asp Thr
 580

<210> 8
 <211> 30
 <212> DNA
 <213> Artificial

<220>
 <223> Primer

<400> 8
 gaggcagcgg tcggatcgta acagttactct

30

<210> 9
 <211> 30
 <212> DNA
 <213> Artificial

Sequence.ST25.txt

<220>
<223> Primer

<400> 9
cataaggaga gagagaaaag cctaaccagt 30

<210> 10
<211> 19
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 10
accaagaact cgtagatc 19

<210> 11
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 11
aacgcataataaagatc 20

<210> 12
<211> 26
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 12
ccatggatcc agagacgaag cgaaac 26

<210> 13
<211> 26
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 13
actccatgga taataactgg ttaggc 26

<210> 14
<211> 26
<212> DNA
<213> Artificial

<220>
<223> Primer

Sequence.ST25.txt

<400> 14
aaattctcaa gctttggtcc atcttg

26

<210> 15
<211> 555
<212> PRT
<213> Arabidopsis thaliana

<400> 15

Met Lys Ser Phe Cys Asp Asn Asp Asn Asn His Ser Asn Thr Thr
1 5 10 15

Asn Leu Leu Gly Phe Ser Leu Ser Ser Asn Met Met Lys Met Gly Gly
20 25 30

Arg Gly Gly Arg Glu Ala Ile Tyr Ser Ser Ser Thr Ser Ser Ala Ala
35 40 45

Thr Ser Ser Ser Val Pro Pro Gln Leu Val Val Gly Asp Asn Thr
50 55 60

Ser Asn Phe Gly Val Cys Tyr Gly Ser Asn Pro Asn Gly Gly Ile Tyr
65 70 75 80

Ser His Met Ser Val Met Pro Leu Arg Ser Asp Gly Ser Leu Cys Leu
85 90 95

Met Glu Ala Leu Asn Arg Ser Ser His Ser Asn His His Gln Asp Ser
100 105 110

Ser Pro Lys Val Glu Asp Phe Phe Gly Thr His His Asn Asn Thr Ser
115 120 125

His Lys Glu Ala Met Asp Leu Ser Leu Asp Ser Leu Phe Tyr Asn Thr
130 135 140

Thr His Glu Pro Asn Thr Thr Asn Phe Gln Glu Phe Phe Ser Phe
145 150 155 160

Pro Gln Thr Arg Asn His Glu Glu Glu Thr Arg Asn Tyr Gly Asn Asp
165 170 175

Pro Ser Leu Thr His Gly Gly Ser Phe Asn Val Gly Val Tyr Gly Glu
180 185 190

Phe Gln Gln Ser Leu Ser Leu Ser Met Ser Pro Gly Ser Gln Ser Ser
195 200 205

Sequence.ST25.txt

Cys Ile Thr Gly Ser His His His Gln Gln Asn Gln Asn Gln Asn His
210 215 220

Gln Ser Gln Asn His Gln Gln Ile Ser Glu Ala Leu Val Glu Thr Ser
225 230 235 240

Val Gly Phe Glu Thr Thr Met Ala Ala Ala Lys Lys Lys Arg Gly
245 250 255

Gln Glu Asp Val Val Val Gly Gln Lys Gln Ile Val His Arg Lys
260 265 270

Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Gln Tyr Arg Gly Val Thr
275 280 285

Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser
290 295 300

Phe Lys Lys Glu Gly His Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly
305 310 315 320

Gly Tyr Asp Met Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala
325 330 335

Leu Lys Tyr Trp Gly Pro Ser Thr His Thr Asn Phe Ser Ala Glu Asn
340 345 350

Tyr Gln Lys Glu Ile Glu Asp Met Lys Asn Met Thr Arg Gln Glu Tyr
355 360 365

Val Ala His Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser
370 375 380

Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala
385 390 395 400

Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe
405 410 415

Gly Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Val Ala Ala Ile Lys
420 425 430

Phe Arg Gly Thr Asn Ala Val Thr Asn Phe Asp Ile Thr Arg Tyr Asp
435 440 445

Val Asp Arg Ile Met Ser Ser Asn Thr Leu Leu Ser Gly Glu Leu Ala
450 455 460

Sequence.ST25.txt

Arg Arg Asn Asn Asn Ser Ile Val Val Arg Asn Thr Glu Asp Gln Thr
465 470 475 480

Ala Leu Asn Ala Val Val Glu Gly Gly Ser Asn Lys Glu Val Ser Thr
485 490 495

Pro Glu Arg Leu Leu Ser Phe Pro Ala Ile Phe Ala Leu Pro Gln Val
500 505 510

Asn Gln Lys Met Phe Gly Ser Asn Met Gly Gly Asn Met Ser Pro Trp
515 520 525

Thr Ser Asn Pro Asn Ala Glu Leu Lys Thr Val Ala Leu Thr Leu Pro
530 535 540

Gln Met Pro Val Phe Ala Ala Trp Ala Asp Ser
545 550 555

<210> 16

<211> 485

<212> PRT

<213> Sea mays

<400> 16

Met Asp Met Asp Met Ser Ser Ala Tyr Pro His His Trp Leu Ser Phe
1 5 10 15

Ser Leu Ser Asn Asn Tyr His His Gly Leu Leu Glu Ala Phe Ser Asn
20 25 30

Ser Ser Gly Thr Pro Leu Gly Asp Glu Gln Gly Ala Val Glu Glu Ser
35 40 45

Pro Arg Thr Val Glu Asp Phe Leu Gly Gly Val Gly Cys Val Gly Ala
50 55 60

Pro Arg Ser Arg Arg Leu Gln Ile Arg Ile Thr Ser Leu Cys Ala Ala
65 70 75 80

Ser Cys Gly Ser Ile Thr Ala Arg Phe Leu Arg His Tyr Pro Ala Ala
85 90 95

Gln Ser Gly Thr Thr Val Gly Glu Pro Leu Ser Arg Phe Thr Leu Ala
100 105 110

Ala Met Ser Ser Thr Asp Val Ala Trp Ala Glu Ser Asp Gln Ala Ser
115 120 125

Sequence.ST25.txt

Arg Ser Ala Glu Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val
130 135 140

Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Glu Asn
145 150 155 160

Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln Val Tyr Leu
165 170 175

Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala
180 185 190

Ala Leu Lys Phe Trp Gly Pro Thr Thr Thr Asn Phe Gln Val Ser
195 200 205

Asn Tyr Glu Lys Glu Leu Glu Glu Met Lys Ser Met Thr Arg Gln Glu
210 215 220

Phe Ile Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala
225 230 235 240

Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln
245 250 255

Ala Arg Ile Gly Ser Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr
260 265 270

Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile
275 280 285

Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Leu Asp Met Ser Arg Tyr
290 295 300

Asp Val Glu Ser Ile Leu Ser Ser Asp Leu Pro Val Gly Gly Ala
305 310 315 320

Ser Gly Arg Ala Ala Ala Lys Phe Pro Leu Asp Ser Leu Gln Pro Gly
325 330 335

Ser Ala Ala Ala Met Met Leu Ala Gly Ala Ala Ala Ala Ser Gln Ala
340 345 350

Thr Met Pro Pro Ser Glu Lys Asp Tyr Trp Ser Leu Leu Ala Leu His
355 360 365

Tyr Gln Gln Gln Gln Glu Glu Arg Gln Phe Pro Ala Ser Ala Tyr
Page 21

Sequence.ST25.txt

370	375	380
Glu Ala Tyr Gly Ser Gly Gly Val Asn Val Asp Phe Thr Met Gly Thr		
385	390	395 400
Ser Ser Gly Ser Asn Asn Asn Thr Gly Ser Gly Val Met Trp Gly Ala		
	405	410 415
Thr Ser Gly Ala Val Val Gly Gln Gln Asp Ser Ser Ser Lys Gln Gly		
	420	425 430
Asn Gly Tyr Ala Ser Asn Ile Pro Tyr Ala Ala Ala Met Val Ser Gly		
	435	440 445
Thr Ala Gly Tyr Glu Gly Ser Thr Gly Asp Asn Gly Thr Trp Val Thr		
	450	455 460
Thr Thr Thr Ser Ser Asn Thr Gly Thr Ala Pro His Tyr Tyr Asn Tyr		
	465	470 475 480
Leu Phe Gly Met Glu		
	485	
<210> 17		
<211> 446		
<212> PRT		
<213> Sea mays		
<400> 17		
Met Ala Ala Thr Arg Arg Ala Phe Phe His Ser Ala Val Asp Gly Ile		
1	5	10 15
Ala Arg Ala Gly Pro Gly Glu Ala Glu Arg Leu Pro Ala Pro Pro Gln		
	20	25 30
Val Gly Arg Pro Val Glu Gly Ala Ser Ser Met Val Leu Gly Phe Pro		
	35	40 45
Val Pro Arg Pro Thr Met Pro Asp Arg Arg Pro Ala Ala Val Thr Gln		
	50	55 60
Gln Phe Phe Pro Pro Thr Thr Ala Ala Gln Gln Ala Thr Met Glu		
65	70	75 80
Glu Gln Cys His Val Pro Ala Gly Ser Ala Ala Glu Gln Trp Val Arg		
	85	90 95
Ser Ser Ala Ser Arg Lys Ser Arg Arg Gly Pro Arg Ser Arg Ser Ser		

Sequence.ST25.txt

100

105

110

Gln Tyr Arg Gly Val Thr Phe Tyr Arg Arg Thr Gly Arg Trp Glu Ser
115 120 125

His Ile Trp Asp Cys Gly Lys Gln Val Tyr Leu Gly Gly Phe Asp Thr
130 135 140

Ala Gln Ala Ala Ala Arg Ala Tyr Asp Gln Ala Ala Ile Lys Phe Arg
145 150 155 160

Gly Leu Asn Ala Asp Ile Asn Phe Thr Leu Asp Asp Tyr Lys Asp Glu
165 170 175

Met Lys Lys Met Lys Asp Leu Ser Lys Glu Glu Phe Val Leu Val Leu
180 185 190

Arg Arg Gln Gly Ala Gly Phe Val Arg Gly Ser Ser Arg Phe Arg Gly
195 200 205

Val Thr Gln His Lys Cys Gly Lys Trp Glu Ala Arg Ile Gly Gln Leu
210 215 220

Met Gly Lys Lys Tyr Val Tyr Leu Gly Leu Tyr Asp Thr Glu Thr Glu
225 230 235 240

Ala Ala Gln Ala Tyr Asp Lys Ala Ala Ile Lys Cys Tyr Gly Lys Glu
245 250 255

Ala Val Thr Asn Phe Asp Ala Gln Ser Tyr Asp Lys Glu Leu Gln Ser
260 265 270

Gln Pro Trp Asp Gly Glu Leu Asp Leu Glu Leu Ser Leu Gly Cys Ala
275 280 285

Ser Ser Asp Pro Ser Thr Val Ala Val Glu Ala Phe Ser Pro Ala Thr
290 295 300

Ser Ser Ser Ser Arg Lys Gln Arg Thr Met Thr Leu Thr Leu Gly Leu
305 310 315 320

Pro Glu Glu Glu Glu Thr Gly Ala Gly Tyr Pro His Pro Ala Ala Gly
325 330 335

Met Phe Gly Arg Pro Ala Asp Gly His Val His Val Ala Pro Pro Pro
340 345 350

Sequence.ST25.txt

His	Arg	Gln	Trp	Gln	Gln	Gln	Gln	Gly	Gln	His	Ala	Ala	Pro	Asp	
355					360					365					
Ala	Ala	Pro	Glu	Arg	Arg	Ala	Ala	Glu	Pro	Ala	Asp	Arg	Gln	Arg	Trp
370				375					380						
Gly	Arg	Gly	Ala	Arg	Trp	Pro	Ile	Ala	Ser	Ala	Ser	Gly	Ile	Asn	Trp
385					390				395					400	
Ala	Trp	Ala	Pro	Pro	Tyr	Ala	Thr	Ala	Arg	Ala	Gly	Thr	Asp	Asp	Asp
	405						410					415			
Asp	Ala	Ser	Ser	Ala	Ala	Ala	Ala	Ser	Ser	Gly	Phe	Pro	Leu	Trp	
	420						425					430			
Gln	Leu	Gly	Ala	Ala	Ser	Ser	Arg	Ser	Ser	Trp	Pro	Ser	Cys		
435					440				445						