Under The Tyranny of a Policy

Evaluating the impact of subsidized exchange rate on the evolution of prices and its welfare consequences

Ali Bahrami Sani¹ & Jafar Khaksar²

Empirical Microeconomics

Khatam University - Tehran Institute for Advanced Studies

July 5, 2022

¹https://alibahramisani.github.io

²jafarkhaksar20@gmail.com

Outline

Introduction

Data

Empirical Framework

Welfare Analysis

Conclusion

Overview

- TRUMP exit shocks.
- Exchange rate policy.
- What is the impact of subsidized exchange rate on the evolution of prices and its welfare consequences?
- CPI, HEIS & exchange rate data → policy impact on CPI & welfare.
- Empirical Framework: DiD & IV; exchange rate as IV for the interaction term.
- 105% increase in 12 & 52% increase in 6 months.
- Welfare analysis: static representative agent model
- 4 Kg of consumption good drop in social welfare

• TRUMP Exit!

- TRUMP Exit!
- Exchange rate shock.

TRUMP Exit!

0

- Exchange rate shock.
- Jahangiri Dollar = 42000 rials/Dollar.

TRUMP Exit!

0

- Exchange rate shock.
- Jahangiri Dollar = 42000 rials/Dollar.
- Essential & Basic Commodities.

TRUMP Exit!

0

- Exchange rate shock.
- Jahangiri Dollar = 42000 rials/Dollar.
- Essential & Basic Commodities.
- Commodity Inclusion.

Datasets

- Consumer Price Index, Central Bank, 1391/01-1399/11.
- Exchange rates (Market & Nimaee), Central Bank, 1391/01-1399/11.
- Essential & Basic Commodity Lists, 1397-1399, Ministry of Industry, Mine and Trade.
- Iran Household Expenditure & Income Survey, Statistical Centre of Iran, 1396-1397.

Sample

Table 1: Treatment & Control groups.

Treatment	Control			
Substitutes				
روغن نباتى	روغن حيواني			
لوبيا قرمز	لوبيا چيتي			
گوشت مرغ	كنسرو ماهي			
برنج خارجي	برنج ايراني			
گوشت دام	انواع كالباس			
انواع كره	انواع پنیر			
Irrelevant				
شكر	نمک			
روزنامه و مجله	دفتر و دفترچه			
چای خارجی	انواع نوشابه			
لاستيك ماشين خارجي	لنت ترمز ماشين سواري			
دارو	لوازم طبی و درمانی			

Motivation

Figure 1: Parallel Trends.

Motivation

Figure 2: Parallel Trends.

$$\log(\operatorname{Index}_{it}) = \alpha_i + \gamma_t + \beta D_{it} + \varepsilon_{it}$$
 (1)

- Index_{it}: Price Index of commodity i in time t.
- α_i : Commodity fixed effect.
- γ_t: Time fixed effect.
- D_{it} : 1 for subsidized commodity *i* in time *t*, zero otherwise.
- β: Coefficient of interest.

Pitfalls of DiD

1. Supplement & Substitute Commodities.

Pitfalls of DiD

- 1. Supplement & Substitute Commodities.
- 2. Omitted Variables.

Pitfalls of DiD

- 1. Supplement & Substitute Commodities.
- 2. Omitted Variables.
- 3. Imperfect Data.

Instrumented DiD³

- Using the difference of market dollar and Nimaee(42000) as IV, for interaction term (D_{it}) .
- Relevance & Exogeneity
- Monotonicity: Those which are affected are affected in the same direction.
- Exclusion Restriction: The policy implemented because of volatile exchange rate.
- In case of demands: low elasticity.
- Substitution effect through the policy.
- See Hudson et al. (2017) and de Chaisemartin (2010) for discussion on this method.

³More information here.

Intuitions Behind IV

Figure 3: Dollars price in time.

DDIV results I

Table 2: First stage and OLS/2SLS results for all commodities.

	(1) 12 Months	(2) 12 Months	(3) 12 Months	(4) 6 Months	(5) 6 Months	(6) 6 Months
	First stage	OLS	2SLS	First stage	OLS	2SLS
MN42	0.00000476*** (0.00000116)			0.00000619*** (0.00000151)		
D		0.307*** (0.0429)	1.053*** (0.249)		0.121*** (0.0239)	0.522*** (0.132)
_cons	0.0695*** (0.0169)	4.830*** (0.0261)	4.661*** (0.0164)	0.0958*** (0.0233)	4.800*** (0.0224)	4.713*** (0.0191)
Ν	575	575	575	276	276	276
chi2	16.89	51.27	17.88	16.86	25.37	15.65

Standard-errors are robust.

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

DDIV results II

Table 3: First stage and OLS/2SLS results for substitute commodities.

	(1)	(2)	(3)	(4)	(5)	(6)
	12 Months First stage	12 Months OLS	12 Months 2SLS	6 Months First stage	6 Months OLS	6 Months 2SLS
MN42	0.00000456** (0.00000163)			0.00000593** (0.00000212)		
D		0.196*** (0.0276)	0.937** (0.353)		0.0700*** (0.0111)	0.427* (0.176)
_cons	0.0666** (0.0238)	4.844*** (0.0327)	4.684*** (0.0186)	0.0918** (0.0329)	4.808*** (0.0253)	4.734*** (0.0203)
N	300	300	300	144	144	144
chi2	7.831	50.21	7.028	7.802	39.85	5.897

Standard-errors are robust.

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Snapshot

- We obtain social welfare change upon the policy following Chetty's (2008) guide.
- We model the policy by a subsidy given to the firm that is funded by a tax levied on the household.
- We assess welfare cost of counterfactual policies using our model.

Firm and Household Problems

A representative price-taker firm solves

$$\max_{\{x_n\}_{n=1}^{N-1}} \{p_1x_1 + \dots + p_{N-1}x_{N-1} - c(x_1, \dots, x_{N-1}) + S(x_1)\}$$

A representative household solves

$$\max_{\{x_n\}_{n=1}^N} \{u(x_1, \dots, x_{N-1}) + x_N\}$$
s.t. $p_1 x_1 + \dots + p_{N-1} x_{N-1} + x_N + T(s) = \omega$ (BC)

- $\{x_n\}_{n=1}^{N-1}$: The set of consumption goods; x_N : The numeraire
- *c*(.): Cost of production
- $S(x_1)$: A subsidy for the firm to produce x_1 .
- T(s): A tax to finance the subsidy.
- ω : The household endowment.

Closing the model requires that in the equilibrium:

$$(x_n^*)^{De} = (x_n^*)^{Su} \quad \forall n \in \{1, \dots, N-1\} \quad \text{(Good market clearance)}$$
 $T(s) = S(x_1^*) \quad \text{(Government budjet constraint)}$

Social Welfare Formula

Social welfare is

$$W(x_{1},...,x_{N};T,S) = \begin{bmatrix} \max_{\{x_{n}\}_{n=1}^{N-1}} \{p_{1}x_{1}+\cdots+p_{N-1}x_{N-1}-c(x_{1},...,x_{N-1})+S(x_{1})\} \end{bmatrix} \\ + \begin{bmatrix} \max_{\{x_{n}\}_{n=1}^{N}} \{u(x_{1},...,x_{N-1})+x_{N}+\lambda[\omega-T(s)-p_{1}x_{1}-\cdots-x_{N}]\} \end{bmatrix} \\ + [-S(x_{1})] \end{bmatrix}$$

Assuming $S(x_1) = sx_1$, $T(s) = sx_1$ and by the Envelop Theorem,

$$\frac{d}{ds} W(\mathbf{x}; T, S) = \sum_{n=1}^{N} \frac{\partial W}{\partial x_n} \frac{dx_n}{ds} + \frac{\partial W}{\partial T} \frac{dT}{ds} + \frac{\partial W}{\partial S} \frac{dS}{ds}$$
$$= -2\lambda x_1(s) - (1+\lambda) s x_1'(s)$$

Using the FOC of HH problem wrt x_1 or x_N , $\lambda=1$ then

$$\frac{\mathrm{d}}{\mathrm{d}s} W(\mathbf{x}; T, S) = -2 \left[x_1(s) + s x_1'(s) \right] \tag{2}$$

Derivative of W

▶ Calculation of \

Integrating both sides of (2) over $[s_1, s_2]$ yields

▶ Integration

$$W(s_2) - W(s_1) = -2[s_2x_1(s_2) - s_1x_1(s_1)]$$

Suppose $s_1 = 1$, then

$$1 - r = \frac{\text{discretionary exchange rate}}{\text{prevailing exchange rate}} = \frac{4.2}{10.2} \Rightarrow r = 0.6$$

Let
$$s_2 = s_1 + r = 1 + 0.6 = 1.6$$

We Substitute the change in average households' demands of good x_1 for $x_1(s_1)$ and $x_1(s_2)$ (HIES).

Welfare Analysis Results

Table 4: Consumption and welfare change due to the policy

good_name	c_96	c_97	c_change	welfare_cost
Butter	491	497	6	-608.4
Chicken	5850	5685	-165	-6492
Imported rice	11513	11274	-239	-13050.8
Imported tea	590	572	-18	-650.4
Meat	2015	1965	-50	-2258
Red bean	1228	1239	11	-1508.8
Sugar	2440	2358	-82	-2665.6
vegetble oil	5147	4940	-207	-5514

Counterfactual Policy analysis

Figure 4: Average welfare cost by 5

Concluding Remarks

Review of results

- 1. Using IV for the DiD estimator we find 105% and 52% increase in price indexes through the policy in 12 and 6 months respectively.
- 2. There isn't a large difference between results for different commodity groups.
- 3. We estimate an average welfare cost of 4 Kg upon the policy.

limitations

- 1. Our empirical strategy neglects dynamic heterogeneous treatment effect.
- 2. Our welfare analysis assumes price taker firms and cannot take account of cross-price elasticities.

Thank You

References

- Chetty, R. (2008). Sufficient statistics for welfare analysis: A bridge between structural and reduced-form methods.
- de Chaisemartin, C. (2010). A note on instrumented difference in differences. *Unpublished Manuscript, University of Warwick*.
- Hudson, S., Hull, P., and Liebersohn, J. (2017). Interpreting instrumented difference-in-differences. *Metrics Note, Sept.*

Social Welfare Derivative

$$\frac{d}{ds} W(\mathbf{x}; T, S) = \underbrace{\sum_{n=1}^{N} \frac{\partial W}{\partial x_n} \frac{dx_n}{ds}}_{A} + \underbrace{\frac{\partial W}{\partial T} \frac{dT}{ds}}_{B} + \underbrace{\frac{\partial W}{\partial S} \frac{dS}{ds}}_{C}$$
$$= -2\lambda x_1(s) - (1 + \lambda) s x_1'(s)$$

Assuming $S(x_1) = sx_1$ and $T(s) = sx_1$,

- $A = -s \frac{dx_1}{ds}$ (Envelope Theorem)
- $B = -\lambda \times (x_1 + s \frac{\mathrm{d}x_1}{\mathrm{d}s})$
- $C = +x_1 + \frac{dx_1}{ds} \lambda x_1 x_1 \frac{dx_1}{ds}$

Calculating λ

Using FOC of HH problem wrt x_N ,

$$\frac{\partial L}{\partial x_N} = \frac{\partial u}{\partial x_N} + \lambda \frac{\partial BC}{\partial x_N} = 0 \tag{3}$$

$$\Rightarrow 1 + \lambda \times -1 = 0 \tag{4}$$

$$\Rightarrow \lambda = 1$$

or wrt x_1 ,

$$\begin{split} \frac{\partial L}{\partial x_1} &= \frac{\partial u}{\partial x_1} + \lambda \frac{\partial BC}{\partial x_1} = 0 \\ &\Rightarrow (p_1 + s) + \lambda \times (-p_1 - s) = 0 \\ &\qquad \qquad \text{(Quasi-linearity in the numeraire)} \end{split}$$

Integration

$$\frac{\mathsf{d}}{\mathsf{d}\mathsf{s}} W(\mathsf{x}; T, S) = -2 \left[\mathsf{x}_1(\mathsf{s}) + \mathsf{s} \mathsf{x}_1'(\mathsf{s}) \right]$$

$$\int_{s_1}^{s_2} dW(s) = -2 \left[\int_{s_1}^{s_2} x_1(s) ds + \underbrace{\int_{s_1}^{s_2} s x_1'(s) ds}_{I} \right]$$
 (5)

$$I = sx_1(s) - \int_{s_1}^{s_2} x_1(s) ds \quad \text{(Integration by part)} \tag{6}$$

Substituting (6) into (5) yields:

$$W(s_2) - W(s_1) = -2[s_2x_1(s_2) - s_1x_1(s_1)]$$

vegetable Oil

Red Bean

Chicken

Rice

Meat

Butter

Sugar

Newspaper

Tea

Brake Pad

Medicine

