Identifying Potential Drug-Drug Interactions

Presented by Amy Zhou

Impact

4th leading cause of death (estimated)

23% of U.S. take 3+ prescription drugs

Goal: discover potential drug-drug interactions (DDIs) based on information about similar drugs

Data

- 5,806 unique drug IDs
- 581,055 documented interactions

ODRUGBANK

~6500 → 183 categorical features via feature engineering, PCA

- Purpose
- Receptors
- Receptor interaction

- Similar drugs based on features
- HDBSCAN
- 631 clusters mostly < 25 drugs each
- 93% of drugs clustered

Data > Features > Cluster > Rank

Drug Name	Use	Jaccard Score
	Antihistamine,	
Vistaril	anesthetic	1.000
Dinate	Anti-nausea	1.000
Bromodiphen-		
hydramine	Antihistamine	1.000
Ulone	Cough suppressant	1.000
Xyzal	Antihistamine	1.000
Ahist	Antihistamine	1.000
Zyrtec	Antihistamine	0.071
Wal-hist	Antihistamine	0.027

- Within cluster
- Jaccard similarity

$$J(A,B) = \frac{|A \cap B|}{|A \cap B|}$$

Future Considerations

- → Text analysis of severity
- → Cross reference reported ADRs
- → Identify next nearest cluster(s)

Beyond DDIs

Clustering

NETFLIX

Network analysis

Clustering + network analysis

Thanks!

Amy Zhou zhouza@gmail.com linkedin.com/zhouzamy/ github.com/zhouza