Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E 950.000 900.000 850.000 800.000 Radiell fart m/s 750.000 700.000 650.000 600.000 550.000 ò 250 1500 500 750 1000 1250 1750 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 5.90e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er 3 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE B) stjernas overflatetemperatur er 2500K og energien transporteres fra kjernen kun via konveksjon

STJERNE C) stjerna er 10 milliarder år gammel, men har bare levd 1/10 av

levetida si

STJERNE D) stjernas luminositet er halvparten av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE E) Stjerna har en overflatetemperatur på 10000K. Radiusen er betydelig mindre enn solas radius

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 3.162e+06 kg/m $\hat{3}$ og temperatur 27 millioner K.

Kjernen i stjerne B har massetet
thet $8.649\mathrm{e}{+06~\mathrm{kg/m}}\hat{3}$ og temperatur 17 millioner K.

Kjernen i stjerne C har massetet
thet 9.777e+06 kg/m $\hat{3}$ og temperatur 38

millioner K.

Kjernen i stjerne D har massetet
thet $5.034\mathrm{e}{+06~\mathrm{kg/m}}\hat{3}$ og temperatur 33 millioner K.

Kjernen i stjerne E har massetet
thet $3.033\mathrm{e}{+06~\mathrm{kg/m}}\hat{\mathrm{3}}$ og temperatur 17 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er lengst vekk

Påstand 2: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: den absolutte størrelseklassen (magnitude) med UV filter er betydelig mindre enn den absolutte størrelseklassen i blått filter

Påstand 4: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen~1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L_Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet $3.104\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 17.10 millioner K.

Kjernen i stjerne B har massetet
thet 3.420e+05 kg/m3̂ og temperatur 31.26 millioner K.

Kjernen i stjerne C har massetet
thet $4.508\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 33.03

millioner K.

Kjernen i stjerne D har massetet
thet $4.016\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 27.00 millioner K.

Kjernen i stjerne E har massetet
thet 1.100e+05 kg/m3̂ og temperatur 35.53 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen 1O/1O_Figur_4_.png

Observasjon er gjort 115.09 dager etter første observasjon.

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.08 buesekunder i løpet av et millisekund.

45.19

40.17

35.15

30.13

25.11

20.08

15.06

10.04

5.02

0.00

0.00

5.02

10.04

15.06 20.08 25.11 30.13 35.15 40.17 45.19

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Bodø som ligger i en avstand av 1000 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 97.73910 km/t.

Filen 3E.txt

Tog1 veier 45600.00000 kg og tog2 veier 82500.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 463 km/s.

Filen 4E.txt

Massen til gassklumpene er 4700000.00 kg.

Hastigheten til G1 i x-retning er 15000.00 km/s.

Hastigheten til G2 i x-retning er 21180.00 km/s.

Filen 4G.txt

Massen til stjerna er 14.50 solmasser og radien er 4.06 solradier.