WEEKLY TEST - 01

Subject: Theory of Computation

Maximum Marks 15

Q.1 to 5 Carry ONE Mark Each

[MCQ]

- 1. How many states are required in minimal DFA for regular expression $(a^*b^* + b^*(a^*b^*)^* + ab)$ on alphabet $\Sigma = \{a, b\}$?
 - (a) 3
- (b) 4
- (c) 5
- (d) 1

[MCQ]

- 2. Let, $L_1 = a^*b^*$ $L_2 = b^*a^*$ $L_1 - L_2$
 - (a)
- (b) ∈
- (c) a^+b^+
- (d) $a^* + b^*$

[NAT]

3. For regular expression $(ab^*b + a)(bba)(a^*b^*)(a + b)$, the length of the shortest string will be____.

[MSQ]

4. Consider a regular expression:

Regular expression: $(10^* + 1)^* \cup (11 + 0)^*$

Which of the following string is/are generated by above regular expression?

- (a) 1011011
- (b) 0110110
- (c) 0001110
- (d) 1111111

[MCQ]

5. For language $L = \{w_1 aaw_2 | w_1, w_2 \in \{a + b\}^* | w_1 | < 3 \}$ $\{|w_2| \le 1\}$

Which of the following will be correct regular expression?

- (a) $(\in +a+b)^3$ aa (a+b)
- (b) $(a + b)^3$ aa (a + b)
- (c) $(\in +a+b)^2$ aa $(\in +a+b)$
- (d) $(a + b)^2 aa(a + b)$

Q.6 to 10 Carry TWO Mark Each

[MCQ]

- **6.** Consider the following statements:
 - S₁: Complement of finite language always infinite.
 - **S₂:** Complement of infinite language can be finite.
 - **S₃:** Complement of infinite language can be infinite.
 - **S4:** Complement of infinite language always finite.

Which of the following is correct?

- (a) S_1 and S_2 are correct.
- (b) S_1 , S_2 and S_4 are correct.
- (c) S_1 , S_2 and S_3 are correct.
- (d) S_1 and S_4 are correct.

[MCQ]

- 7. Let a language (L) = {ab, ba, aa, b}. Then what is the highest power of language to generate the string aaabbabb?
 - (a) L^5
- (b) L⁴
- (c) L⁶
- (d) None of these

[MCQ]

- 8. For language $L = \{a^n | n \ge 0\}$ on alphabet $\Sigma = \{a\}$. What will be the correct regular expression for L^3 ?
 - (a) $L^3 = \{a^{3n} | n \ge 0\}$
 - (b) $L^3 = \{a^n | n \ge 0\}$
 - (c) $L^3 = \{a^{3^n} \mid n \ge 0\}$
 - (d) None of these

[NAT]

9. How many states are required for language $L = \{a^m b^n c^q | m, n, q \ge 0\} \text{ on alphabet } \Sigma = \{a, b, c\}? \underline{\hspace{1cm}}$

[NAT]

10. Consider a language L on $\Sigma = \{a, b\}$, $L = \{w ;$ number of a's = 2 and number of b's = even} how many states are required in DFA to accept \overline{L} ?

Answer Key

1. (d)

2. **(c)**

3. (5)

4. (a, b, d)

5. (c)

(c) 6.

7. (a) 8. (b) 9. (4)

10. (7)

Hints and solutions

1. (d)

Regular expression =
$$a^*b^* + b^*(a^*b^*)^* + ab$$

= $a^*b^* + b^*(a + b)^* + ab$
= $(a + b)^*$

 $(a + b)^*$ will cover each and every string.

Minimal DFA:

Number of states = 1

2. (c)

$$L_1 - L_2 = a^+ b^+$$

3. (5)

$$\frac{(ab^*b+a)}{a} \frac{(bba)}{bba} \frac{\left(a^*b^*\right)}{\in} \frac{\left(a+b\right)}{a/b}$$

4. (a, b, d)

Regular expression = $(10^* + 1)^* + (11 + 0)^*$

Note: Take either first regular expression or second regular expression but don't take both.

5. (c)

• $|w_1|$ < 3: length of the string can be 0 length or 1 length or 2 length

$$|w_1| < 3$$
: $(\in +a+b)^2$

• $|w_2| \le 1$: length of the string can be either 0 length or 1 length

$$|w_2| \le : (\in +a+b)^1$$

Regular expression = $(\in +a+b)^2$ aa $(\in +a+b)$ Hence, option (c) is correct.

6. (c

S₁ True:
$$\overline{a.b} = (ab)^+$$

S₂ True: $\overline{(a.b)^*} = \phi$

S₃ True: $\overline{a(a+b)^*} = b(a+b)^* + \epsilon$

S₄ True: $\overline{(a+b)^*} = b(a+b)^* + \epsilon$

- Complement of finite language always infinite.
- Complement of infinite language can be finite or infinite.

Hence, option (c) is correct.

7. (a)

String = aabbabb

$$L = \{ab, ba, aa, b\}$$

$$\Rightarrow \frac{a}{L} \frac{a}{L} \frac{b}{L} \frac{a}{L} \frac{b}{L}$$

$$\Rightarrow L^{5}$$

Hence, option (a) is correct.

8. (b)

$$L = \{an \mid n \ge 0\}$$

$$= \{ \in, a, aa, aaa, ... \}$$

$$= a^*$$

$$L^2 = L * L$$

$$= a^* \times a^*$$

$$= a^*$$

$$L^3 = L^2 * L$$

$$= a^* \times a^*$$

$$= a^*$$

$$= a^*$$

$$L = \{a^n \mid n \ge 0\}$$

Hence, option (b) is correct.

9. (4)

$$\begin{split} L &= \{ a^m \, b^n \, c^q \, | \, m, \, n, \, q \geq 0 \} \\ L &= \{ a^*, b^*, c^*, \, aa \, \dots \, bb \, \dots \, cc \, \dots \} \end{split}$$

MDFA:

10. (7)

Range 7 to 7

• This type of language can be design by grid(mod) machine.

- Number of states in DFA is same as number of states in complement of DFA.
- So, number of states in $\overline{L} = 7$.

For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

PW Mobile APP: https://smart.link/7wwosivoicgd4