$$\begin{cases} x' = \sigma(y-x) & (L_1) \\ y' = \rho x - y - xz & (L_2) \\ z' = xy - \beta z & (L_3) \end{cases}$$
 (1)

On peut récrire ce systeme de la manière suivante.

$$\frac{\mathrm{d}\vec{u}}{\mathrm{d}t} = \Gamma(\vec{u}), \quad \Gamma : \vec{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mapsto \begin{pmatrix} \sigma(y-x) \\ \rho x - y - xz \\ xy - \beta z \end{pmatrix}$$
 (2)

Remarquons que Γ est polynomiale, donc Γ est de classe C^{∞} en particulier elle est C^1 . D'après le théoreme de Cauchy-Lipschitz, l'équation (1) admet une unique solution maximale de classe C^1 que l'on notera (I,(x,y,z)) avec $I \subset \mathbb{R}_+$ avec I de la forme $]0,T[,\ T\in]0,+\infty]$. Montrons que (I,(x,y,z)) est globale. Dans (1) on s'intéresse à la quantité : $x(L_1)+y(L_2)+z(L_3)$

$$xx' + yy' + zz' = \sigma yx - \sigma x^2 + \rho xy - y^2 - xyz + xyz - \beta z^2$$

Posons $\mathcal{N}:(x,y,z)\in\mathbb{R}^3\mapsto x^2+y^2+z^2$ (N est la norme euclidienne au carré)

$$\Rightarrow \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left(\mathcal{N}(x, y, z) \right) = \qquad (\sigma + \rho)xy - \sigma x^2 - y^2 - \beta z^2$$

$$\leq \qquad (\sigma + \rho)xy - \min(1, \sigma, \rho)\mathcal{N}(x, y, z)$$

$$(Young)^{1} \leq \qquad (\frac{\sigma + \rho}{2})(x^2 + y^2) + \mathcal{N}(x, y, z)$$

$$\leq \qquad (\frac{\sigma + \rho}{2})(x^2 + y^2 + z^2) + \mathcal{N}(x, y, z)$$

$$\leq \qquad \left[\frac{\sigma + \rho}{2} - \min(1, \sigma, \rho) \right] \mathcal{N}(x, y, z)$$

Posons $\eta = \sigma + \rho - 2\min(1, \sigma, \rho)$). On a alors :

$$\forall t \in \mathbb{R}_+, \ \frac{\mathrm{d}}{\mathrm{d}t} \bigg(\mathcal{N}(x, y, z) \bigg) \le \eta \, \mathcal{N}(x, y, z)$$

D'après le lemme de Grönwall il vient :

$$\forall t \in \mathbb{R}_+, \ \mathcal{N}(x, y, z)(t) \leq \mathcal{N}_0 e^{\eta t}, \text{ avec } \mathcal{N}_0 = \mathcal{N}(x, y, z)(0)$$

Donc la norme du vecteur solution n'explose pas en temps fini. En effet supposons par l'absurde que la norme du vecteur (x,y,z) explose en temps fini c'est-à-dire :

$$\exists t_0 \in \mathbb{R}_+ \text{tel que } \lim_{t \to t_0} \mathcal{N}(x,y,z)(t) = +\infty \text{ mais, } \lim_{t \to t_0} \mathcal{N}_0 e^{\eta t} = \mathcal{N}_0 e^{\eta t_0} \leq +\infty$$

^{1.} $\forall p, q \in \mathbb{N} \text{ tels que } \frac{1}{p} + \frac{1}{g} = 1 \Rightarrow \forall a, b \in \mathbb{R} \ ab \leq \frac{a^p}{p} + \frac{b^q}{q}$

Or,

$$\forall t \in \mathbb{R}_+ \mathcal{N}(x, y, z)(t) \leq \mathcal{N}_0 e^{\eta t}$$

On obtient alors une absurdité. Donc $\mathcal{N}(x,y,z)$ n'explose pas en temps fini. On en déduit que (x,y,z) n'explose pas en temps fini. En effet suposons que une des composante explose en temps fini par exemple x, c'est-à-dire :

$$\exists t_* \in \mathbb{R}_+ \text{ tel que } \lim_{t \to t_*} x(t) = +\infty$$
 Or, $\forall t \in \mathbb{R}_+ x(t) \le x^2(t) + y^2(t) + z^2(t) \le \mathcal{N}_0 e^{\eta t}$

En passant à la limte dans l'inéquation précédente on obtient une absurdité donc (x,y,z) est une solution globale de (1) c'est-à-dire $I = \mathbb{R}_+$

Par définition de (1) on a que $(x',y',z') = \Gamma(x,y,z)$, or par composition $\Gamma(x,y,z)$ est C^1 donc (x',y',z') l'est aussi ainsi (x,y,z) est C^2 . De la même manière on obtient par récurence immédiate que (x,y,z) est C^{∞} On cherche maintenant les points stationnaire de (1).

On remarque que (0,0,0) est un point stationnaire, en effet $\Gamma(0,0,0)=0_{\mathbb{R}^3}\equiv 0$ donc $(\mathbb{R},0)$ est une solution de l'equation differentielle.

On resout alors $\Gamma(x,y,z)=0$ en supposant que $(x,y,z)\neq 0$, il vient :

$$\begin{cases}
\sigma(y-x) &= 0 & (L_1) \\
\rho x - y - xz &= 0 & (L_2) \\
xy - \beta z &= 0 & (L_3)
\end{cases}$$