L1S2 Analyse 2

CONTROLE CONTINU 1

Durée : 1h. Tous documents, calculatrices (sauf type collège) et téléphones interdits. La note tiendra compte de la rédaction.

Exercice 1. On considère la suite (u_n) définie par :

$$\forall n \ge 0, \, u_n = n + (-1)^n \, .$$

- 1) Calculer u_0, u_1, u_2 .
- 2) La suite $(u_n)_{n>0}$ est-elle monotone? Justifier.
- 3) La suite $(u_n)_{n\geq 0}$ est-elle minorée? majorée? bornée? Justifier.

Exercice 2.

Les propositions P, Q et R suivantes sont elles vraies ou fausses? Justifier de façon précise toutes vos réponses.

- 1) P:" Toute suite croissante est minorée".
- 2) Q : " Toute suite croissante est majorée"
- 3) R : "La suite définie par $u_0=0, u_1=1, \forall n\geq 0, u_{n+2}=u_{n+1}^2+u_n$, est à termes positifs (c'est-à-dire $\forall n, u_n\geq 0$)".

Exercice 3. Pour chacune des suites suivantes, définie par son terme général et pour $n \ge 0$, dire si elle est monotone (justifier).

1)
$$u_n = 7 + \frac{3}{5n+1}$$
.

2)
$$v_n = \sum_{k=0}^n \frac{3n+1}{(k+1)^2}$$
.

Exercice 4. Pour chacun des suites suivante, dire si elle est de type connu . Quand cela est possible : préciser ses caractéristiques, l'exprimer explicitement et donner sa limite éventuelle.

1.
$$u_0 = 1$$
 et $u_{n+1} = u_n^2 + 1$, pour tout $n \ge 0$;

- 2. $u_0 = 5$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n 2$;
- 3. $u_1 = 1$ et $u_{n+1} = \frac{1}{3}u_n$, pour tout $n \ge 1$;
- 4. $u_0 = 2$ et $u_{n+1} = \frac{1}{3}u_n + \frac{23}{9}$. [On pourra donner la formule sans justifier ou retrouver la formule, ce qui sera valorisé hors barème.]

Exercice 5. Déterminer la nature de chacune des suites suivantes, définie par son terme général et pour $n \ge 0$. Donner leur limite quand cela est possible. Justifier.

1.
$$u_n = \frac{2n^2 + 1}{3n^2 - n + 5}$$
;

2.
$$v_n = (-1)^n$$
;

$$3. \ w_n = u_n + v_n.$$

Barême indicatif: Ex 1/5 Ex 2/5,5 Ex 3/2,5 Ex 4/4 Ex 5/3