Classical and Cooperative Suppression – Simplified

psychdrop.com/2020/04/07/classical-and-cooperative-suppression-simplified/

View all posts by Cheyenne Chooi, PhD Student (Neuropsychology)

7 April 2020

Suppression analysis

Having a good understanding of mediation helps. A bit. But for me, mediation made sense pretty quickly... Suppression did not. So, let's walk through this. Specifically, we'll talk about **classical** and **cooperative** (reciprocal) suppression. I'll also give you a basic toolkit for suppression analyses.

It's like the opposite of a mediation effect...

Let's break down this "opposite of mediation" explanation. When there is a **mediation effect**, a third variable **decreases** the strength of the relationship between X and Y. This occurs because the mediator has taken the stage. A **suppression effect** is opposite because a third variable **increases** the relationship between X and Y.

Okay, hold on. If relationship strength **increases**, why is it called **suppression**? Well, a third variable, called a **suppressor**, suppresses *irrelevant variance* in X. This enables a stronger effect of X on Y. Suppressors suppress error variance in X. Thus, suppressors **indirectly increase** the independent variable's predictive ability of Y, even though **suppressors** have little to no relationship with *Y*.

What we typically see **before** a third variable enters the model is that independent variables are **weakly related** to the dependent variable. In other words, we may see little or no total effect.

Before the **suppressor** enters the model, *X* and *Y* have a non-significant or weak relationship.

Suppression analysis comes with a lot of **relationship rules**. Very high maintenance. These rules tell us **how variables typically relate to each other in a suppression analysis.** Although rules may break down a suppression, it's difficult to simply memorise these rules. I'm going to use models to put these rules into more context. Now, let's go through classical and cooperative suppression individually.

Classical suppression

Let's try to understand classical suppression – the "opposite of mediation". Below I made a diagram to resemble a mediation path analysis. However, notice the faded, grey lines? These indicate **weak/no relationship**. There's also some **error** getting in the way of X and Y. As mentioned before, the independent variables (X & S) share some variance. The independent variables share little variance with Y.

- S & Y little to no shared variance
- S & X moderate shared variance

• X & Y – little shared variance

Now let's get rid of the grey lines – zero lines for a zero correlation. We'll also show a **classic suppression effect**. The suppressor **increases** *X*'s relationship with *Y*. We can use a bold line to show the *revealed* relationship for *X* and *Y*.

In **classic suppression**, a third variable leads to an **'appearance' or increase** in the strength of the relationship between *X* and *Y*. That's the work of a **suppressor**. The suppressor continues to have **no relationship** with *Y*.

Cooperative suppression

Cooperative or **reciprocal** suppression starts the same as classical suppression. Independent variables are weakly correlated *Y*. The difference is that **both** independent variables are **suppressors**. The suppression effect is **mutual**.

When both independent variables are in the **regression model** they **suppress each other**.

Here are some **patterns** in the correlations of **cooperative** suppression.

- X1 & X2 positively correlated
- Opposite correlations with Y

- X1 & X2 negatively correlated
- Positive correlations with *Y*

Your toolkit for observing suppression effects

Standardised beta-weights – β

The standardised beta-weights indicate the **strength and direction** of a relationship between two variables (e.g., X and Y). We now know that suppression leads to the 'appearance' or strengthening of a relationship between two variables. So, if the beta-weights of the **direct effect** are **larger** than the beta-weights of the **total effect** – this suggests suppression.

Squared Correlations

How big was our effect? To understand this, we're interested in two types of correlations. **Zero-order correlations** are **simple** correlations between two variables (e.g., bivariate regression, Pearson correlation). **Semi-partial correlations** show the **unique** effect of *X* on *Y*.

Now let's **square** these correlations. Why? Squaring a correlation gets you the **coefficient of determination**. Remember? The percentage of **shared variance** between *X* and *Y*. When you subtract the **squared zero-order correlations** from the **squared semi-partial correlations**, you can get the suppression **effect size**.

squared semi-partial correlations – squared zero-order correlations = effect size (%)

Sources