Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}$	$\tau_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1^-\alpha}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	${\mathfrak l}_1^{\#2}{}_{\alpha}$
$_{1}^{#1}$ $+^{\alpha\beta}$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$	0	0	0	0
$_{1}^{#2}+^{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$_{1}^{#1}+^{\alpha\beta}$		$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1)(1 + k^2)} \left \frac{2 i k}{(\alpha_0 - 4 \beta_1)(1 + k^2)^2} \right $	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1} + ^{lpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\sigma_{1}^{\#2} + \alpha$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#2} +^{\alpha}$	0	0	0	$\frac{4 i k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$

$\omega_{0^{+}}^{\#1} + \frac{1}{2} (\alpha_{0} - 4 \beta_{1}) - \frac{i(\alpha_{0} - 4 \beta_{1})k}{\sqrt{2}} 0 \qquad 0$ $f_{0^{+}}^{\#1} + \frac{i(\alpha_{0} - 4 \beta_{1})k}{\sqrt{2}} - 4 \beta_{1} k^{2} 0 \qquad 0$ $f_{0^{+}}^{\#2} + \qquad 0 \qquad 0 \qquad 0 \qquad 0$ $\omega_{0^{-}}^{\#1} + \qquad 0 \qquad 0 \qquad 0 \qquad \frac{\alpha_{0}}{2} - 2 \beta_{1} + \alpha_{3} k^{2}$		$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$
$f_{0}^{++} + \frac{1}{\sqrt{2}} + \frac{-4\beta_1 R^2}{0} + \frac{0}{0} + \frac{1}{0} + $	$\omega_{0}^{\#1}$ †	$\frac{1}{2}\left(\alpha_0-4\beta_1\right)$	$-\frac{i\left(\alpha_04\beta_1\right)k}{\sqrt{2}}$	0	0
	$f_{0}^{#1}$ †	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0
$\omega_0^{\#1} + 0 \qquad 0 \qquad 0 \qquad \frac{\alpha_0}{2} - 2 \beta_1 + \alpha_3 k^2$	$f_{0}^{#2}$ †	0	0	0	0
	$\omega_{0}^{\sharp 1}$ †	0	0	0	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_3 k^2$

Quadratic (free) action	$\frac{1}{3} \left(-6\beta_1 \omega_{\chi^{\delta}}^{\ \chi \delta} \omega_{\chi^{\delta}}^{\ \alpha} + 3 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi}^{\ -} - 6\beta_1 \omega_{\chi^{\chi}}^{\ \chi} \partial_{\beta} f^{\alpha \beta} - 6\beta_1 \omega_{\alpha^{\delta}}^{\ \delta} \partial_{\beta} f^{\alpha \beta} +$	$3\alpha_0\partial_\beta\omega^{\alpha\beta} + 2\alpha_3\partial^\alpha\omega^{\beta\zeta}_{\chi}\partial_\beta\omega_{\zeta\alpha}^{\chi} + 6\beta_1\omega_{\beta\chi}^{\chi}\partial^\beta f^{\alpha}_{\alpha} + 6\beta_1\omega_{\beta\delta}^{\delta}\partial^\beta f^{\alpha}_{\alpha} -$	$6\beta_1\partial_\beta f^\chi_{\ \chi}\partial^\beta f^\alpha_{\ \alpha} + 3f^{\alpha\beta}(\tau_{\alpha\beta} - \alpha_0\partial_\beta \omega_{\alpha\ \chi}^{\ \chi} + \alpha_0\partial_\chi \omega_{\alpha\ \beta}^{\ \chi}) - 3\alpha_0f^\alpha_{\ \alpha}\partial_\chi \omega^{\beta\chi}_{\ \beta} -$	$2\alpha_3\partial_\beta\omega_{\zeta\alpha}^{ X}\partial_\chi\omega^{\beta\zeta\alpha} - \alpha_3\partial_\beta\omega_{\zeta\alpha}^{ X}\partial_\chi\omega^{\zeta\alpha\beta} + 3\beta_1\partial_\chi f_{\beta}^{ \delta}\partial^\chi f_{\delta}^{ \beta} + 3\beta_1\partial_\chi f^{\delta}_{ \beta}\partial^\chi f_{\delta}^{ \beta} +$	$2\alpha_3\partial_\chi\omega^{\beta\zeta\alpha}\partial^\chi\omega_{\zeta\alpha\beta} + \alpha_3\partial_\chi\omega^{\zeta\alpha\beta}\partial^\chi\omega_{\zeta\alpha\beta} + 12\beta_1\partial^\beta f^\alpha_{\alpha}\partial_\delta f^{\beta}_{} -$	$6\beta_1\partial_{\beta}f_{\chi}^{\ \beta}\partial_{\delta}f^{\chi\delta} + 2\alpha_3\partial^{\beta}\omega_{\alpha}^{\ \delta\zeta}\partial_{\delta}\omega_{\zeta\beta}^{\ \alpha} - 2\alpha_3\partial^{\beta}\omega_{\alpha}^{\ \zeta\delta}\partial_{\delta}\omega_{\zeta\beta}^{\ \alpha} - 3\beta_1\partial^{\chi}f_{\zeta}^{\ \beta}\partial^{\zeta}f_{\beta\chi}^{\ -}$	$3\beta_1 \partial^\chi f_{\zeta}^{\ \beta} \partial^\zeta f_{\chi\beta} + 3\beta_1 \partial^\chi f_{\delta\zeta} \partial^\zeta f^\delta_{\ \chi} - 3\beta_1 \partial^\chi f_{\zeta\delta} \partial^\zeta f^\delta_{\ \chi}))[t, x, y, z] dz dy dx dt$
		$\frac{1}{3} \left(-6\beta_1 \omega_{\chi^{\delta}}^{\ \chi^{\delta}} \omega_{\chi^{\delta}}^{\ \alpha} + 3 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 6\beta_1 \omega_{\chi}^{\ \chi} \partial_{\beta} f^{\alpha\beta} - 6\beta_1 \omega_{\alpha}^{\ \delta} \partial_{\beta} f^{\alpha\beta} +$	$\frac{1}{3} (-6 \beta_1 \ \omega_{\chi^{\delta}}^{\chi^{\delta}} \ \omega_{\chi^{\delta}}^{\chi^{\delta}} + 3 \ \omega^{\alpha \beta \chi} \ \sigma_{\alpha \beta \chi} - 6 \beta_1 \ \omega_{\chi}^{\chi} \ \partial_{\beta} f^{\alpha \beta} - 6 \beta_1 \ \omega_{\chi}^{\delta} \partial_{\beta} f^{\alpha \beta} + 3 \beta_1 \ \omega_{\chi^{\delta}}^{\delta} \partial_{\beta} \omega_{\chi^{\delta}}^{\delta} + 6 \beta_1 \ \omega_{\chi^{\delta}}^{\chi} \partial_{\beta} f^{\alpha} + 6 \beta_1 \ \omega_{\beta^{\delta}}^{\delta} \partial_{\beta} f^{\alpha} - 3 \beta_1 \ \omega_{\beta^{\delta}}^{\delta} \partial_{\beta} f^{\alpha} + 3 \beta_2 \ \omega_{\gamma^{\delta}}^{\delta} \partial_{\beta} \phi_{\gamma^{\delta}}^{\delta} + 6 \beta_1 \ \omega_{\beta^{\delta}}^{\delta} \partial_{\beta} f^{\alpha} + 6 \beta_1 \ \omega_{\beta^{\delta}}^{\delta} \partial_{\beta} f^{\alpha} - 3 \beta_2 \ \omega_{\gamma^{\delta}}^{\delta} \partial_{\beta} f^{\alpha} + $	$\frac{1}{3} (-6 \beta_1 \ \omega_{\chi^{\delta}}^{\chi \delta} \ \omega_{\chi^{\delta}}^{\lambda} + 3 \ \omega^{\alpha \beta \chi} \ \sigma_{\alpha \beta \chi} - 6 \beta_1 \ \omega_{\chi}^{\chi} \ \partial_{\beta} f^{\alpha \beta} - 6 \beta_1 \ \omega_{\chi}^{\delta} \partial_{\beta} f^{\alpha \beta} + 6 \beta_1 \ \omega_{\chi^{\delta}}^{\delta} \partial_{\beta} f^{\alpha \beta} + 6 \beta_1 \ \omega_{\beta}^{\delta} \partial_{\beta} f^{\alpha} + 6 \beta_1 \ \omega_{\beta}^{\delta} \partial_{\beta} f^{\alpha} + 6 \beta_1 \ \omega_{\beta}^{\delta} \partial_{\beta} f^{\alpha} - 6 \beta_1 \partial_{\beta} f^{\alpha} \partial_{\lambda} \partial_{\beta} f^{\alpha} + 6 \beta_1 \partial_{\beta} f^{\alpha} \partial_{\lambda} \partial_{\beta} f^{\alpha} \partial_{\lambda} \partial_{\beta} f^{\alpha} - 6 \beta_1 \partial_{\beta} f^{\alpha} \partial_{\lambda} \partial_{\beta} \partial_{\lambda} \partial_{\lambda} \partial_{\beta} f^{\alpha} \partial_{\lambda} \partial_{\beta} \partial_{\lambda} \partial_{\lambda} \partial_{\beta} \partial_{\lambda} \partial_{\lambda} \partial_{\lambda} \partial_{\beta} \partial_{\lambda} \partial_{\lambda$	$\frac{1}{3} \left(-6 \beta_1 \omega_{\chi}^{\chi \delta} \omega_{\chi \delta}^{\alpha} + 3 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 6 \beta_1 \omega_{\chi \chi}^{\chi} \partial_{\beta} f^{\alpha \beta} - 6 \beta_1 \omega_{\chi}^{\delta} \partial_{\beta} f^{\alpha \beta} + 3 \partial_{\alpha} \omega_{\beta \chi}^{\alpha} + 2 \partial_{\beta} \omega_{\chi \chi}^{\alpha} + 6 \beta_1 \omega_{\chi \chi}^{\chi} \partial^{\beta} f^{\alpha}_{\alpha} + 6 \beta_1 \omega_{\beta}^{\delta} \partial^{\beta} f^{\alpha}_{\alpha} - 6 \beta_1 \partial_{\beta} f^{\chi}_{\chi} \partial^{\beta} f^{\alpha}_{\alpha} + 3 f^{\alpha \beta} (\tau_{\alpha \beta} - \alpha_0 \partial_{\beta} \omega_{\chi \chi}^{\chi} + \alpha_0 \partial_{\chi} \omega_{\chi \beta}^{\chi}) - 3 \alpha_0 f^{\alpha}_{\alpha} \partial_{\chi} \omega^{\beta \chi}_{\beta} - 2 \alpha_3 \partial_{\beta} \omega_{\zeta \alpha}^{\chi} \partial_{\chi} \omega^{\zeta \alpha \beta} + 3 \beta_1 \partial_{\chi} f^{\beta}_{\beta} + 3 $	$\frac{1}{3} (-6 \beta_{1} \omega_{\chi}^{\chi \delta} \omega_{\chi \delta}^{\alpha} + 3 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 6 \beta_{1} \omega_{\chi}^{\chi} \partial_{\beta} f^{\alpha \beta} - 6 \beta_{1} \omega_{\alpha}^{\delta} \partial_{\delta} f^{\alpha \beta} +$ $3 \alpha_{0} \partial_{\beta} \omega^{\alpha \beta}_{\alpha} + 2 \alpha_{3} \partial^{\alpha} \omega^{\beta \zeta}_{\chi} \partial_{\beta} \omega_{\zeta \alpha}^{\chi} + 6 \beta_{1} \omega_{\beta}^{\chi} \partial^{\beta} f^{\alpha}_{\alpha} + 6 \beta_{1} \omega_{\beta}^{\delta} \partial^{\delta} f^{\alpha}_{\alpha} -$ $6 \beta_{1} \partial_{\beta} f^{\chi}_{\chi} \partial^{\beta} f^{\alpha}_{\alpha} + 3 f^{\alpha \beta} (\tau_{\alpha \beta} - \alpha_{0} \partial_{\beta} \omega_{\chi}^{\chi} + \alpha_{0} \partial_{\chi} \omega_{\chi}^{\chi}) - 3 \alpha_{0} f^{\alpha}_{\alpha} \partial_{\chi} \omega^{\beta \chi}_{\beta} -$ $2 \alpha_{3} \partial_{\beta} \omega_{\zeta \alpha}^{\chi} \partial_{\chi} \omega^{\beta \zeta \alpha} - \alpha_{3} \partial_{\beta} \omega_{\zeta \alpha}^{\chi} \partial_{\chi} \omega^{\zeta \alpha \beta} + 3 \beta_{1} \partial_{\chi} f^{\beta}_{\beta} \partial_{\chi} f^{\beta}_{\beta} + 3 \beta_{1} \partial_{\chi} f^{\beta}_{\beta} \partial_{\chi} f^{\beta}_{\beta} +$ $2 \alpha_{3} \partial_{\chi} \omega^{\beta \zeta \alpha} \partial_{\chi} \omega_{\zeta \alpha \beta} + \alpha_{3} \partial_{\chi} \omega^{\zeta \alpha \beta} \partial_{\chi} \omega_{\zeta \alpha \beta} + 12 \beta_{1} \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\delta} f^{\beta}_{\beta} -$	$\frac{1}{3} (-6 \beta_{1} \omega_{\chi}^{\chi \delta} \omega_{\chi \delta}^{\alpha} + 3 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 6 \beta_{1} \omega_{\chi}^{\chi} \partial_{\beta} f^{\alpha \beta} - 6 \beta_{1} \omega_{\alpha}^{\delta} \partial_{\delta} f^{\alpha \beta} +$ $3 \alpha_{0} \partial_{\beta} \omega^{\alpha \beta}_{\alpha} + 2 \alpha_{3} \partial^{\alpha} \omega^{\beta \zeta}_{\chi} \partial_{\beta} \omega_{\zeta \alpha}^{\chi} + 6 \beta_{1} \omega_{\beta}^{\chi} \partial^{\beta} f^{\alpha}_{\alpha} + 6 \beta_{1} \omega_{\beta}^{\delta} \partial_{\delta} f^{\alpha}_{\alpha} -$ $6 \beta_{1} \partial_{\beta} f^{\chi}_{\chi} \partial^{\beta} f^{\alpha}_{\alpha} + 3 f^{\alpha \beta} (\tau_{\alpha \beta} - \alpha_{0} \partial_{\beta} \omega_{\chi}^{\chi} + \alpha_{0} \partial_{\chi} \omega_{\chi}^{\chi}) - 3 \alpha_{0} f^{\alpha}_{\alpha} \partial_{\chi} \omega^{\beta \chi}_{\beta} -$ $2 \alpha_{3} \partial_{\beta} \omega_{\zeta \alpha}^{\chi} \partial_{\chi} \omega^{\beta \zeta \alpha} - \alpha_{3} \partial_{\beta} \omega_{\zeta \alpha}^{\chi} \partial_{\chi} \omega^{\zeta \alpha \beta} + 3 \beta_{1} \partial_{\chi} f^{\beta}_{\beta} \partial_{\lambda} f^{\beta}_{\beta} + 3 \beta_{1} \partial_{\chi} f^{\beta}_{\beta} \partial_{\lambda} f^{\beta}_{\beta} +$ $2 \alpha_{3} \partial_{\chi} \omega^{\beta \zeta \alpha} \partial_{\chi} \omega_{\zeta \alpha \beta} + \alpha_{3} \partial_{\chi} \omega^{\zeta \alpha \beta} \partial_{\chi} \omega_{\zeta \alpha \beta}^{\zeta \alpha} + 12 \beta_{1} \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\delta} f^{\beta}_{\beta} -$ $2 \alpha_{3} \partial_{\chi} \omega^{\beta \zeta \alpha} \partial_{\chi} \omega_{\zeta \alpha \beta}^{\zeta \alpha} + \alpha_{3} \partial_{\chi} \omega^{\zeta \alpha \beta} \partial_{\chi} \omega_{\zeta \alpha \beta}^{\zeta \alpha} + 12 \beta_{1} \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\delta} f^{\beta}_{\beta} -$ $6 \beta_{1} \partial_{\beta} f^{\chi}_{\chi} \partial_{\delta} f^{\chi \delta} + 2 \alpha_{3} \partial^{\beta} \omega_{\alpha}^{\zeta \zeta} \partial_{\delta} \omega_{\zeta \beta}^{\alpha} - 2 \alpha_{3} \partial^{\beta} \omega_{\alpha}^{\zeta \delta} \partial_{\delta} \omega_{\zeta \beta}^{\alpha} - 3 \beta_{1} \partial^{\chi} f^{\beta}_{\zeta} \partial^{\zeta} f_{\beta \chi} -$ $6 \beta_{1} \partial_{\beta} f^{\chi}_{\chi} \partial_{\delta} f^{\chi \delta} + 2 \alpha_{3} \partial^{\beta} \omega_{\alpha}^{\delta} \partial_{\delta} \omega_{\zeta \beta}^{\alpha} - 2 \alpha_{3} \partial^{\beta} \omega_{\alpha}^{\zeta \delta} \partial_{\delta} \omega_{\zeta \beta}^{\alpha} - 3 \beta_{1} \partial^{\chi} f^{\beta}_{\zeta} \partial^{\zeta} f_{\beta \chi} -$

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\!\#}$	1	$\alpha eta \chi$			
$\sigma_{0^+}^{\#1}$ †	$\frac{8 \beta_1}{\alpha_0^2 - 4 \alpha_0 \beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0	0		0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$
$ au_{0^{+}}^{\#1} +$	$\frac{i\sqrt{2}}{\alpha_0 k}$	$-\frac{1}{\alpha_0 k^2}$	0	0		$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2i\sqrt{2}}{\alpha_0k}$	$\frac{2}{\alpha_0 k^2}$	0
$ au_{0^{+}}^{\#2}$ †	0	0	0	0		β	$\frac{1}{0 \beta_1}$	12] .	
$\sigma_{0^{-}}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0 - 4\beta_1 + 2\alpha_3 k^2}$		$\sigma_{2}^{\#1}{}_{lphaeta}$	$\frac{16\beta_1}{\alpha_0^{2}\text{-4}\alpha_0\beta_1}$	$-\frac{2i\sqrt{2}}{\alpha_0k}$	0
rce con	straints/ga	auge g	jene	rators			$+^{\alpha\beta}$	$+^{\alpha\beta}$	$+_{\alpha eta \chi}$
3) irreps Multiplicities					$\sigma_{2}^{\#1}$	$\tau_{2}^{\#1}$	$\sigma_{2}^{\#1}$ †		
== 0		1					,#1		
+ 2 i k	$\sigma_{1}^{\#2\alpha} == 0$	3				_	$\omega_2^{\#1}$	αβ	$f_{2+\alpha\beta}^{\#1}$

Source constraints/ga	auge generators		$+\alpha'$	$\Gamma^{\alpha eta_{:}}$
SO(3) irreps	Multiplicities		$\sigma_{2}^{\#1} + \alpha_{3}$ $\tau_{2}^{\#1} + \alpha_{4}$	_ 7#1 72-1
$\tau_{0+}^{\#2} == 0$	1		$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3	#1 <i>~R</i>		_ ,
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3	$\omega_2^{\#_1} \dagger^{\alpha\rho}$	$-\frac{\alpha_0}{4} + \beta_1$	$\frac{2\sqrt{2}}{2\sqrt{2}}$
$\tau_{1^{+}}^{\#1\alpha\beta} + i k \sigma_{1^{+}}^{\#2\alpha\beta} == 0$	3	$f_2^{#1} \dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$
Total constraints:	10	$\omega_{2}^{\#_{1}}$ † $^{lphaeta\chi}$	0	0
		4		

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\sharp 1} \dagger^{lphaeta}$	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	$\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp_1} \dagger^{lpha}$	0	0	0	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$-\frac{1}{2}\bar{i}(\alpha_0-4\beta_1)k$
$\omega_1^{#2}$ † $^{\alpha}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{2}\bar{i}(\alpha_0-4\beta_1)k$	0	0	0

 $\omega_{2}^{\#1}{}_{\alpha\beta\chi}$

0

0

 $-\frac{\alpha_0}{4} + \beta_1$

Massive and massless spectra

$$\stackrel{?}{\longrightarrow} \stackrel{k^{\mu}}{\longrightarrow}$$

Quadratic pole					
Pole residue:	$\frac{1}{\alpha_0} > 0$				
Polarisations:	2				

Unitarity conditions

$$\alpha_0 > 0 \&\& \alpha_3 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}$$