

NEW GENERATION MOTORS CORPORATION

Washington, D.C. U.S.A

EVC402 Controller OPERATING MANUAL

We want to hear from you!

Send your questions and comments about this manual and the EVC402 controller to: EVC402@ngmcorp.com

	Document Revision Record			
Rev:	Date:	Description of Change		
-	2003-03-03	First Issue		
A	2003-03-20	Removed all references to VC_Kt. Fixed erroneous mode switch commands in section 8.3. Changed description of VC_discrete bit 2. Some editing for clarity.		
В	2003-11-12	Corrected factory setting of register 80B bit 5 (MF_mtrsensors) and register 80D (MF_pwmfreq). Added serial cable schematics section.		
С	2004-05-14	Corrected description of FA2_threxcite and FA2_rgnexcite in section 5.1.3		
D	2005-02-14	Changed number of stop bits in section 4.6		

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	2 of 68

Table of Contents

1	IN	NTRODUCTION	4
	1.1	Specifications	
	1.2	Key features of the EVC402 Controller	5
	1.3	Front panel interface of the EVC402 controller	5
2	M	IECHANICAL INSTALLATION	7
	2.1	Physical Mounting	
	2.2	Motor Phase Connection	7
	2.3	Motor Sense Connector J1	8
	2.4		
	2.5	Fan Connector J3	
	2.6	Power Connection	8
3	В	SASIC OPERATION	10
	3.1	Direction Input	10
	3.2	Ignition	10
	3.3		11
	3.4	1	
		3.4.1 Support for Reduced Potentiometer Input Range	
		3.4.2 Support for Potentiometers with Higher Resistances	
		3.4.3 Support for Potentiometers with Lower Resistances	
	3.5	Regen Input	
	3.6	Battery Current Measurement Input	
	3.7	Speed Pulse Output	
	3.8	State-of-Charge (SOC) Output	
	3.9	Regenerative Braking Output	
4	IN	NTRODUCTION TO THE SERIAL INTERFACE	
	4.1	Commands	
	4.2	Queries	
	4.3	Assignments	
	4.4	Bit Queries	
	4.5	Bit Assignments	
	4.6	Settings	
	4.7	Error Codes	
		Cable Schematics	
5		NSTRUMENTATION	
	5.1	Instrumentation Registers (Page 1)	
		5.1.1 Analog Measurements	
		5.1.2 State Variables	
		5.1.3 Fault Indication	
	5.2	Development Registers (Page 2)	27

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	3 of 68

6	C	ONFIGURA	TION	31
	6.1	Process		31
	6.2	Vehicle Cor	nfiguration (Page 3)	32
		6.2.1	Battery Current Shunt	32
		6.2.2	Switch Inputs	33
		6.2.3	Throttle and Regen Inputs	35
		6.2.4	Engine Damping	
		6.2.5	State-of-Charge Output	
		6.2.6	Soft-start	39
		6.2.7	Limp-Home Mode	39
		6.2.8	Regen Current Limit	40
		6.2.9	Speed Governor	40
		6.2.10		
		6.2.11	Speed Control Coefficients	
		6.2.12	Fan Thermostat	43
		6.2.13	Serial Communication Watchdog	43
	6.3		nfiguration (Page 4)	
		6.3.1	State-of-Charge Calculation	44
7	S		TROL	
	7.1		rol Registers (Page 0)	
	7.2	Serial Cont	rol Commands	47
	7.3	The Serial V	Watchdog	48
8	Δ	PPLICATIO	N TIPS	49
	8.1	Adjusting the	he State-of-Charge	49
	8.2	Configuring	g the EVC402 Controller for Discrete Speed Control	49
	8.3	Switching E	Between Discrete Torque Control and Serial Speed Control	50
9	A	PPENDIX A	: CONNECTOR PINOUTS	51
10	A	PPENDIX B	: CONTROLLER STATE DIAGRAM	52
11			: SOFTWARE REGISTER COMPILATION	
12			: WARRANTY	
	•			

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	4 of 68

1 Introduction

The New Generation Motors (NGM) EVC402 motor controller integrates years of advanced development and the latest in high-efficiency MOSFETs.

The EVC402 controller uses breakthrough technology to smoothly transition from trapezoidal control at low-speed to efficient sinusoidal control at higher speeds. Slew-rate control eliminates the noise and vibration associated with six-step control and reduces eddy-current losses. Advanced MOSFETs reduce conduction losses by over 40%.

Standard features include:

- ♦ Environmentally sealed to IP65 when properly connected.
- ♦ Mechanically and electrically interchangeable with the EV-C200 (software changes needed for serial port interface).
- ♦ Designed especially for the SCM150 wheel motor.
- ♦ Efficient fixed-frequency space-vector control.
- ♦ Motor Current Limiting (MCL) logic limits battery charge and discharge current based on battery voltage.
- ♦ High-speed over-voltage detection protects controller against instantaneous battery disconnection, even under regenerative braking.
- ♦ State-Of-Charge tracking with programmable battery profile.
- ♦ Flexible battery current measurement circuit utilizes external high or low-side current shunt.
- ♦ *Serial Interface for configuration, control, and data acquisition.*

1.1 SPECIFICATIONS

Dimensions are without fans and connectors.

	EVC402-092
Peak RMS Phase Current (Amps)	145
Peak Phase Current, Trapezoidal Mode (Amps)	175
Nominal Bus Voltage (Volts)	66-108
Min./Max. Operating Voltage (Volts)	50/135
Maximum Withstand Voltage (Volts)	160
Input Capacitance (uF)	12,000
Peak Efficiency %	99
Height (mm/in.)	135/5.29
Width (mm/in.)	156/6.13
Length (mm/in.)	332/13.06
Weight (kg/lbs)	4.9/10.75

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	5 of 68

1.2 KEY FEATURES OF THE EVC402 CONTROLLER

- * Full I/O isolation from batteries
- * Ultra high efficiency
- * Synchronous switching
- * Fixed-frequency space vector control
- * Regenerative braking
- * Active discharge circuit
- * Instrumentation data available through serial port:
 - Battery voltage
 - Battery current
 - State-Of-Charge
 - Motor speed and temperature
 - Controller temperature
 - Drive state
 - Hours of operation
 - Throttle position
 - Brake position

- * Programmable torque or speed control
- * Programmable thermostatic fan control with internal power supply
- * Low power sleep mode when disabled
- Built-in protection features:
 - Extreme over/under voltage protection
 - Motor interface connection verification
 - Thermal limiting protection
 - Over- and under- voltage limiting with soft shutdown
 - Abrupt start-up inhibition
 - Programmable Battery Protection
 - User configurable Throttle input based on speed
 - Speed Governor
 - Reverse Speed Limiting

1.3 Front Panel Interface of the EVC402 controller

Figure 1-1

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	6 of 68

Controller connections:

- J1 Motor communication link,15 pin female D-Sub. connector
- J2 Control signals (vehicle) 25 pin female D-Sub. connector
- J3 Fan power for cooling
 AMP Series 1 CPC 11-4, reversed sex
 (mating connector provided)
- +ve & -ve Positive & negative power bus bar with ½ in. diameter through hole
- **Phase A,B,C** Phase lead connections for the motor bus bar with ½ in. diameter through hole

New Generation Motors Corporation				
Title:	EVC402 Operating Manual	Date:	2005-02-14	
Document #:	330-000012 rev D	Page:	7 of 68	

2 Mechanical Installation

2.1 Physical Mounting

The Controller should be mounted by a method that minimizes the vibration and protects it from the elements during operation. High impact loads or excessive moisture and dirt could shorten the life span of the controller. There are several 4-40 UNC screw holes on the side of the controller that may be used for mounting. *Do not remove* any of the existing screws.

There are five types of connections that must be performed before operation of the controller:

- motor phase
- motor sense
- control
- fan power
- power

It is recommended that they be performed in the order as listed.

Safety **Note**: The controller can retain a charge due to its high capacitance. Check the voltage before servicing the controller. **DO NOT** short the positive and negative buses together

2.2 MOTOR PHASE CONNECTION

This unit has three phase bus bars located on the right hand side; phase A, phase B and phase C.

These phases must be properly connected to the corresponding phases of the motor. These connections must be made with *no less than* AWG 6 gage (4.1 mm) wire, although AWG 4 (5.18mm) is preferred. The connections can be made using properly sized ring terminals for the corresponding wire width and inner diameter of 0.25 in. Low head bolts, ½ in. UNC no longer than 0.625in. should be used. They must be securely fastened with lock nuts and

washers. Rubber boots should then be placed over each connection point to ensure no shorts between phases (a set of hardware is provided). *Visually check the spacing between connections and ensure the leads can not be rotated.* There should be a minimum of 3/16in. between connection

points. Great care should be taken in applying proper strain relief for these cables. Additionally, ensure there exists enough slack in the cables for movement, especially for those connected to "in the wheel" motors.

In combination with NGM-SC-M100 & NGM-SC-M150 motors, RED corresponds to Phase A, GREEN to Phase B and BLACK to Phase C.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	8 of 68

2.3 MOTOR SENSE CONNECTOR J1

The motor sense connection requires a 15 pin D-sub male to be inserted into JI on the front of the controller and secured tightly. Take care to strain-relieve this cable properly on both ends to prevent any damage. (See Appendix A for pin out information)

Most NGM motors have a pre-installed cable for connection to the controller. However the NGM-SC-M100 motor, requires the *rotor retrofit package* to have been installed. For further information, contact NGM. Once the retrofit package is installed, the connection is similar to the others.

2.4 CONTROLLER INPUT CONNECTOR J2

The control cable must be plugged into J2, a DB25F connector. See appendix A for pin information.

2.5 FAN CONNECTOR J3

Fan power should be connected to *J3*. A series 1 CPC Amp 11-4 plug and two pins are provided with the controller. Splice the ground of each fan wire (Black) into one single wire long enough to reach the front panel of the controller. Do the same with the positive (Red) wires of each fan. Crimp the pins (CPC, series 1) on to the end of the positive and negative leads of this cable. The positive must be placed into position 1 of the plug and the negative into position 4 (See Fig. 2-1). Then mate the plug to *J3* on the controller's front panel.

Figure 2-1, Fan power circuit

2.6 POWER CONNECTION

A pre-charge circuit (see Fig. 2-2) must be used to connect the motor controller to the power system. Resistor R1 and switch S3 form a "pre-charge" for the motor controller. The input capacitance of the controller is very high, large in-rush currents will eventually destroy the controller and switch S2. R1 should have a resistance such that the current through it at turn-on is at most 30A. Resistor R2 is an optional high current shunt for measuring the battery current. The DC ratings of all components must exceed the maximum bus voltage.

New Generation Motors Corporation				
Title:	EVC402 Operating Manual	Date:	2005-02-14	
Document #:	330-000012 rev D	Page:	9 of 68	

Figure 2-2, Pre-Charge Circuit Schematic

Low head bolts ¼ in. UNC with a lock nut and washer (provided) should be used to connect to the positive and negative posts of the controller. A *minimum* of AWG 6 gage (4.1 mm) or larger should be used (AWG 4 (5.2mm) preferred). Visually check the spacing between connections and ensure that the leads can not be rotated. After connection, each post should have a rubber boot covering it. Take care to strain-relieve each wire properly to ensure that no damage is done by the force on the connections.

New Generation Motors Corporation			
Title:	Date:	2005-02-14	
Document #:	330-000012 rev D	Page:	10 of 68

3 Basic Operation

When shipped, the EVC402 controller is configured for "discrete torque" control using external switches and potentiometers. Connection of these signals is straightforward, as shown in the diagram below. In this mode of operation, the direction input sets the operating direction, and the ignition input enables motoring operation. The controller operates in torque control mode, whereby the motor phase current, which is proportional to output torque, is determined by the throttle and regen inputs and the motor speed.

Figure 3-1, Input Signals

3.1 DIRECTION INPUT

The *for/rev* input and its corresponding *gnd*, use pins 5 and 18, respectively, on *J2*. Forward corresponds to open circuit and reverse to closed. It is recommended that the direction signal be wired directly to a switch for maximum safety and reliability.

3.2 IGNITION

The *ignition* input signal (pin 3 on J2) must be connected to gnd (pin 16, on J2) for the controller to enable. An open circuit immediately disables all torque production, and reduces the controller's quiescent power consumption.

New Generation Motors Corporation				
Title: EVC402 Operating Manual Date: 2005-02-				
Document #:	330-000012 rev D	Page:	11 of 68	

3.3 THROTTLE ENABLE

The *threnable* signal (pin 4 on *J2*) must be connected to *gnd* (pin 17 on *J2*) for the controller to produce accelerating torque. When open-circuited, the maximum throttle current is set to zero, but the controller can still operate in regen. It is suggested that this input be wired to a switch on the brake pedal.

Figure 3-2, Electrical equivalent of ignition, direction, and throttle enable inputs

3.4 THROTTLE INPUT

The thr signal (pin 22 on J2) has an associated ground, thr- (pin 10 on J2), and excitation signal, thr+ (pin 9 on J2). These signals should be connected to a linear (i.e. non-audio) potentiometer having a minimum resistance of at least 4.0k Ohms, and a maximum resistance of at most 12.0k Ohms. The wiper should be connected to thr, with thr- connected to the end of the potentiometer nearest the rest position and thr+ connected to the opposite end. The excitation signal is a 5V reference with an internal 1.00kOhm series resistor. The ratio thr/ thr+ determines the measured throttle position.

The controller measures the excitation voltage to verify proper connection of the potentiometer. If the excitation voltage *thr*+ falls below 3.9V or rises above 4.7V, or if the *thr* signal exceeds *thr*+, the throttle input is disabled and the FA2_threxcite bit is set in SV_fault2 (see section 5.1.3 for more details). Furthermore, if the throttle input is greater than zero when the ignition is closed, the controller will enter the interlock state to prevent the vehicle from accelerating unexpectedly. An electrical equivalent of the controller's throttle interface circuit is shown below.

Figure 3-3, Throttle & regen internal circuit schematic

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	12 of 68

By default, thr = 0V is scaled to -5% pedal position, and thr = thr + is scaled to 105% pedal position. This ensures that somewhat less than full travel of the throttle potentiometer still allows operation from zero to 100% and allows for voltage drops in the wiring.

3.4.1 Support for Reduced Potentiometer Input Range

It is common for the throttle or regen mechanism to produce less than full travel of the potentiometer. The controller has configurable gain and bias settings and 0.1% resolution of the *thr* and *rgn* signals, allowing the full control range from a reduced input range. Because of the high signal resolution, reducing the total pedal travel to as little as 1/10 of full-scale allows 1% resolution of the pedal position, and experience suggests that 3% resolution is sufficient for vehicle applications. Refer to the Configuration section for details on these configuration settings.

3.4.2 Support for Potentiometers with Higher Resistances

To utilize a potentiometer with a maximum resistance greater than 12k Ohms, a 10k Ohm resistor must be wired across the ends of the potentiometer. When this is done, the controller will not detect an open-circuit that is in series with the potentiometer but not the 10k Ohm resistor, so the resistor should be wired directly to the potentiometer, as shown below. This resistor has minimal effect on the resolution of the signal measurement, and there is no need to adjust the signal gain and bias if the full travel of the potentiometer is utilized.

Figure 3-4, Utilizing Potentiometers With Resistances Greater Than 12kOhms

3.4.3 Support for Potentiometers with Lower Resistances

To utilize a potentiometer with a minimum resistance less than 4k Ohms, a resistor must be wired in series with the positive excitation signal. This resistor should be selected to bring the minimum total resistance between the excitation and reference signals to between 4.0k and 5.0k Ohms. For example, a 3.6k, 5% resistor could be used in series with a 1.0k, 20% potentiometer, since the minimum total resistance would be 3.6 * 0.95 + 1.0 * 0.8 = 4.2k Ohm. Detection of open-circuits is not affected by this configuration, but short-circuits between terminals of the potentiometer may not be detected. Should such a short-circuit occur, the effect will be either a throttle input that is stuck at zero, or a highly sensitive throttle that rapidly transitions from zero to a high value.

Full-travel of the potentiometer will not produce a full-scale signal voltage, so it is necessary to adjust the signal gain and bias as described in the Configuration section.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	13 of 68

Figure 3-5, Utilizing Potentiometers With Resistances Less Than 4kOhms

3.5 REGEN INPUT

The rgn signal (pin 11 on J2) has an associated ground, rgn- (pin 24 on J2), and excitation signal, rgn+ (pin 23 on J2). These signals should be connected to a linear potentiometer having a minimum resistance of at least 4.0k Ohms, and a maximum resistance of at most 12.0k Ohms. The wiper should be connected to rgn, with rgn- connected to the end of the potentiometer nearest the rest position and rgn+ connected to the opposite end. The excitation signal is a 5V reference with an internal 1.00kOhm series resistor. The ratio rgn/ rgn+ determines the measured regen position.

The controller measures the excitation voltage to verify proper connection of the potentiometer. If the excitation voltage rgn+ falls below 3.9V or rises above 4.7V, or if the rgn signal exceeds rgn+, the regen input is disabled and the FA2_rgnexcite bit is set in SV_fault2 (see section 5.1.3 for more details). The interface circuit is identical to the throttle interface circuit.

By default, rgn = 0V is scaled to -5% regen position, and rgn = rgn + is scaled to 205% regen position. This ensures that somewhat less than full travel of the regen potentiometer still allows operation from zero to 200% and allows for voltage drops in the wiring. Setting the full-scale range to 200% ensures that full regen in available when the throttle is also at its maximum value.

3.6 BATTERY CURRENT MEASUREMENT INPUT

The battery current measurement utilizes an external current shunt in series with the battery pack. This current shunt may be placed at the positive or negative end of the pack, or between any two batteries. The only requirements are that the entire battery current flow through the current shunt, and that current that charges the battery produce a positive voltage from *shunt+* to *shunt-*. Thus, if the current shunt is placed at the negative end of the battery pack, the *shunt+* signal should be wired to the battery side of the current shunt, and the *shunt-* signal should be wired to the load/controller side of the shunt.

Shielded twisted pair wire should be used for the current sense lines shunt+ (pin 25 on J2) and shunt- (pin 13 on J2). The shield drain wire should be connected to shield (pin 12 on J2) for maximum noise immunity.

The recommended value for the current shunt is 100A, 50mV. This corresponds to 2000 A/V, the default gain setting for this measurement. The input range of the current measurement circuit is $\pm 115mV$, allowing the use of 50 or 100mV shunts. A voltage in excess of 120mV disables the current measurement. This will occur if there is an open circuit in either of the sense signals.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	14 of 68

3.7 SPEED PULSE OUTPUT

Speed pulse (pins 6 and 19 on J2) is an isolated open-drain pulse stream output that is proportional to the commutation rate, and thus the rotational velocity. The output changes state every two consecutive commutations (i.e. never after forward and backward movement), producing a 50% duty cycle. Unlike the EV-C200 series controllers, this output has a very low output impedance (max. 0.25 Ohm). The electrical equivalent of the speed pulse output is shown below.

Figure 3-6, Speed Pulse and Brake Outputs

The output frequency f_{out} equals (3*P)/4 * f_{motor} , where P equals the motor pole count and f_{motor} equals the motor's revolutions per second.

3.8 STATE-OF-CHARGE (SOC) OUTPUT

SOC (pins 8 and 21 on *J2*) is a fixed 3,906Hz, pulse-width modulated 0-5V output with a duty cycle proportional to the calculated state-of-charge. This can be converted to an analog voltage using an RC low pass filter, or the duty cycle or pulse width can be measured using external circuitry.

3.9 REGENERATIVE BRAKING OUTPUT

Brake (pins 7 and 20 on *J2*) can be used as an activating switch that corresponds to the controller when in a "braking" mode. It is on (conducting) when the regen input is positive, even if the controller is not in a regenerative braking mode.

NOTE: The *speed pulse* and *brake* pins can sustain a maximum of 40V and 100mA.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	15 of 68

4 Introduction to the Serial Interface

Communication to the controller is based on the concept of the register, a single memory location identified by number. Some registers are used for instrumentation, and thus are read-only, while others are used for control or configuration and may be read or written. All registers are 16 bit integers.

The registers are organized by function into pages. Pages may be read/write, read-only, or read/write when selected. The "write when selected" feature prevents accidental changes to configuration values. All pages are initialized at power up by reading from the controller's nonvolatile memory. The pages are defined as follows:

Page	Description	Access
0_{H}	Control	read/write
1	Instrumentation	read-only
2	Development	read-only
3	Vehicle Configuration	read/write when selected
4	Battery Configuration	read/write when selected
5	reserved	read-only
6	Motor configuration	read/write when selected
7	Motor calibration	read/write when selected
8	Motor factory settings	read/write when selected
9	Controller Configuration	read/write when selected
A	reserved	read-only
В	Controller factory settings	read-only
С	Integrations	read-only

Figure 4-1, Register Pages

Pages 3 and 4 are the only pages needed to configure the drive system for a new vehicle platform. Page 1 and perhaps portions of page 2 are the only pages needed for instrumentation. Page 0 is the only page needed for control, except for feedback from page 1. The remaining pages are not described in detail in this document, but are listed in Appendix C.

Registers are identified by three digit hexadecimal numbers, and the first digit is the page number.

The communication format was designed to simplify external configuration, data acquisition, and control utilities while still allowing commands to be sent through a terminal emulation program. Communication over the serial interface is done using simple text strings terminated with carriage return [CR] and/or line feed [LF] characters. Each character is echoed as it is received, with two exceptions: the first ASCII [CR] or [LF] character received is echoed back as [CR][LF], and [CR] and [LF] characters are ignored when the previous character was a [CR] or [LF]. There are five types of serial input messages: commands, queries, assignments, bit queries, and bit assignments.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	16 of 68

4.1 COMMANDS

Commands are used to instruct to the controller to perform a basic operation, such as storing configuration values to nonvolatile memory.

XXX![CR]

where XXX is a hexadecimal command number and [CR] is a carriage return character.

The controller replies with **#XX[CR][LF]** where XX is a two digit hexadecimal error number. The number for no error is 00. The leading # character identifies the number as an error code.

A list of commands is outlined in Section 7.2.

4.2 Queries

Queries are used for instrumentation or to read configuration values. There are two query commands, as follows:

Query with Decimal Reply:

XXX?[CR]

Query with Hexadecimal Reply:

XXX>[CR]

In both cases XXX is the register number to be queried. The controller replies with a text string of the decimal or hexadecimal value of the variable terminated by a [CR][LF] combination. Decimal replies are signed integers in the standard 16 bit range –32768 to 37267. Hexadecimal replies represent negative numbers in two's complement form. For example, –1 is sent as FFFF.

An entire page may be queried with a single command by replacing the register number with **. Specifically:

Page Query with Decimal Reply:

P**?[CR]

Page Query with Hexadecimal Reply:

P**>[CR]

The response to a page query is a tab-delimited string of register values terminated by a [CR][LF] combination. Using these commands, a data acquisition system could operate by simply saving the response string to the "1**?" query directly to disk.

4.3 ASSIGNMENTS

Assignments are used for control over the serial port and for configuration. There are two assignment commands, as follows:

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	17 of 68

Assignment of a Decimal Value:

XXX=#[CR]

Assignment of a Hexadecimal Value:

XXX<H[CR]

Here, # is a decimal text string and H is a hexadecimal text string of the value to be assigned. Hexadecimal numbers should be in two's complement form. The controller replies with #XX[CR][LF] where XX is a two digit hexadecimal error number. The number for no error is 00.

WARNING: Range checking is not performed on most registers. Out-of-range settings can cause erratic and unexpected operation.

4.4 BIT QUERIES

Bit queries are used to read individual bits in the instrumentation and configuration registers. The format of a bit query is:

XXX.Y?[CR]

where XXX is the hexadecimal register number and Y is the hexadecimal bit digit (0 is the least significant bit, F is the most significant). The controller replies with N[CR][LF] where N is either 0 or 1.

4.5 BIT ASSIGNMENTS

Bit assignments are a simple means to set and clear individual bits in the configuration registers. The format of a bit assignment is:

XXX.Y=N[CR]

where XXX is the hexadecimal register number, Y is the hexadecimal bit digit (0 is the least significant bit, F is the most significant), and N is 0 or 1. No other bits in the register are affected by a bit assignment.

4.6 Settings

The serial interface operates at 19200 baud, 8 data bits, 1 start bit, 1 stop bit, no parity, no flow control.

New Generation Motors Corporation				
Title: EVC402 Operating Manual Date: 2005-02-				
Document #:	330-000012 rev D	Page:	18 of 68	

4.7 Error Codes

Code	Message	Description
00_{H}	Ok	Assignment made or command executed
01	reserved	
02	Invalid command	The action character is not one of !,?,=,<, or > or the command number in a command is not valid.
03	Serial overflow	24 consecutive characters received without a carriage return or line-feed. Additional characters are ignored.
04	Invalid input	The message was less than the minimum four characters or the three register characters are not a valid number.
05	Command failed	A coast command (0F0!) failed because the discrete throttle input is enabled.
06	Can't program	assignment: The specified page is not write-enabled. command: The controller must be disabled to allow a page operation command.
07-0B	reserved	
0C	Bad register number	The specified register number in an assignment or query is greater than the number of registers on the specified page.
0D-FF	reserved	

4.8 CABLE SCHEMATICS

9-pin RS-232 Connector

25-pin RS-232 Connector

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	19 of 68

5 Instrumentation

The recommended method for reading instrumentation values from the controller is the use of the "1**?[CR]" serial command. The controller responds to this command with all 19 tab-delimited signed integers from the instrumentation page, page 1. This string is followed by a carriage-return and line-feed [CR][LF]. Note that future controller enhancements may increase the size of the instrumentation page. Alternatively, the registers may be queried one at a time as described in Section 4.2

5.1 INSTRUMENTATION REGISTERS (PAGE 1)

5.1.1 Analog Measurements

All analog measurements reside in page one, and utilize a AM_prefix.

Register AM_velocity Definition (100)

Bits 15-0

Motor speed in RPM. Negative values are used for reverse. This calculation uses the pole pair setting MF_polepairs. The definition of forward takes into account the reverse-direction bit VC discrete.12.

Register AM supply V Definition (101)

D.,	1 /	
H1fc		

Supply Voltage in deci-V. (10 deci-V = 1.0 V)

Register AM_supplyI Definition (102)

Bits 15-0

Supply or battery current, in deci-A (10 deci-A = 1.0 A). Specifically, the current through the external shunt. Positive current is defined to be charging current.

Register AM baseplateT Definition (103)

Bits 15-0

Controller baseplate temperature in deci- $^{\circ}$ C (10 deci- $^{\circ}$ C = 1.0 $^{\circ}$ C).

Register AM ambientT Definition (104)

Bits 15-0

Controller internal ambient temperature in deci-°C.

Register AM_motorT Definition (105)

Dita	1	5	Λ
BITS)-	٠,

Motor temperature in deci-°C.

New Generation Motors Corporation				
Title: EVC402 Operating Manual Date: 2005-02-				
Document #:	330-000012 rev D	Page:	20 of 68	

Register AM soc Definition (106)

Bits 15-0

Measured state-of-charge 0-1, with 1 corresponding to fully charged. This number is stored in Q8 format, whereby 1.00 = 256 and 0.50 = 128.

Register AM thr Definition (107)

D	4 -	_
Rifs	15	- (
DILS		-1

Measured throttle position 0-1, stored in Q8 format.

Register AM rgn Definition (108)

Bits 15-0

Measured regen position 0-1, stored in Q8 format.

5.1.2 State Variables

State variables are input values, status bits, and fault codes. They are identified with an SV prefix.

Register SV desiredphaseI Definition (109)

Bits 15-0

The input phase current regardless of the control or input modes, in deci-A. Negative values are used for negative torque. Positive torque is defined as accelerating torque in the positive direction, and decelerating torque in the reverse direction.

Register SV desiredspd Definition (10A)

Bits 15-0

The input speed regardless of the input mode, in RPM. Negative values are used for reverse. This register is only set when the controller is in speed control.

Register SV_targetphaseI Definition (10B)

Bits 15-0

The target phase current, in deci-A rms. Negative values are used for negative torque. This is the input value to the space-vector PWM algorithm. Its magnitude is the lesser of SV_desiredphaseI and the maximum throttle (DV maxthrI) or braking (DV maxrgnI) phase current, as appropriate.

The motor controller top-level software structure is a state machine. The register SV_drivestate stores the current state and other important status bits. These bits are defined as follows.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	21 of 68

Register SV_drivestate Definition (10C)

Bit 15	Bit 14	Bit 13	Bit 12
reserved	BIT_initialized	BIT_charging	BIT_motornotready
Bit 11	Bit 10	Bit 9	Bit 8
BIT_interlock	BIT_enabled	BIT_active	BIT_standby
Bit 7	Bit 6	Bit 5	Bit 4
BIT_transition	reserved	reserved	reserved
Bit 3	Bit 2	Bit 1	Bit 0
BIT_INdisable	BIT_limiting	BIT_spdctrl	BIT_reverse

- **Bit 15 Reserved**. Always reads zero.
- **Bit 14 BIT_initialized**. This bit is set once the controller has completed its power-up initialization.
 - 0 Initialization in progress, reported analog values may be inaccurate.
 - 1 Initialization complete.
- **Bit 13 BIT_charging**. This bit is set when the charging input is asserted.
 - 0 Not charging.
 - 1 Charging.

Bit 12 BIT motornotready.

- A motor sense cable is detected and the motor settings have been read.
- 1 The motor settings have not been read.
- **Bit 11 BIT_interlock**. The controller has entered the interlock state due to a fault. The controller's phase outputs are disabled in this state.
 - 0 Normal operation.
 - Interlock state. All faults must be cleared and the controller must be disabled to leave this state.

Bit 10 BIT enabled.

- The phase current outputs are disabled.
- 1 The phase current outputs are enabled.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	22 of 68

Bit 9 BIT active.

- 0 The phase outputs are zero or disabled.
- 1 The phase outputs are nonzero.

Bit 8 BIT standby.

- 0 The ignition input is asserted.
- 1 The ignition input is off. The controller is in a power saving mode with many internal circuits powered down.
- **BIT_transition**. This bit is set briefly when BIT_active is set (the controller is operating), and a fault occurs, the target phase current is zero, or the target phase current changes sign.
 - 0 Normal operation.
 - 1 Transition in progress.

Bits 6-4 Reserved. Always read 0.

Bit 3 BIT_INdisable.

- 0 No disable inputs are asserted.
- 1 At least one disable input is asserted.

Bit 2 BIT limiting.

- 0 Normal operation.
- 1 The output phase current is being limited by the phase-current limiting module.

Bit 1 BIT spdctrl.

- 0 The controller is operating in torque control.
- 1 The controller is operating in speed control.

Bit 0 BIT_reverse.

- 0 The controller is operating in forward.
- 1 The controller is operating in reverse.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	23 of 68

Not all combinations of the high-order bits are possible. In fact, ten drive states are defined based on the state of bits 14-7. These drive states are as follows:

Drive state	(bits 14-7)	Description
DS_startup	1000_{H}	The controller is performing its initialization
DS_standby	5100_{H}	The controller is in low-power standby mode
DS_nomotor	5000_{H}	Initialized, but no motor sense cable is connected
DS_charging	7100_{H}	Charger is plugged in and the ignition is off
DS_charging	$2 7000_{\rm H}$	Charger is plugged in and ignition is on
DS_shutdown	14000_{H}	Normal powered-down mode
DS_interlock	4800_{H}	A disable input must be asserted to leave this state
DS_enabled	$4400_{ m H}$	The controller is enabled, but the phase current input is zero
DS_active	$4600_{ m H}$	The drive system is producing accelerating torque
DS_transition	$_{ m H}$ 4680 $_{ m H}$	The controller is leaving the DS_active state

5.1.3 Fault Indication

There are a total of four fault registers that organize fault conditions into logical groups. The most serious faults are stored in SV fault1. These faults disable or prevent operation of the motor. When bits in this register are set, they also set in the SV_fault1latch register. Once the fault is cleared, the corresponding bit in SV fault1 is also cleared, but SV fault1 latch remains set until the controller enters the DS enabled drivestate (i.e. when the controller is enabled). This allows spurious faults to be read through the serial interface.

Register SV_fault1latch(10D) and SV_fault1 Definition (10E)

Bits 15-10		Bit 9	Bit 8
reserved		FA1_stuckthr	reserved
Bit 7	Bit 6	Bit 5	Bit 4
reserved	FA1_PDPINT	FA1_lostcomm	FA1_SCItimeoutzero

Rit 9

Bits 3-0	
reserved	

Bits 15-10 Reserved. Always read zero.

Bit 9 FA1 stuckthr.

0 No fault.

The throttle input was non-zero when the controller was first enabled.

Bits 8,7 Reserved. Always read zero.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	24 of 68

Bit 6 FA1_PDPINT.

- 0 No fault.
- 1 An internal over-voltage or over-current fault has occurred.

Bit 5 FA1 lostcomm.

- 0 No fault.
- Too much time has elapsed since the last message was received from the serial port, and the serial timeout function is enabled (See VC_SCI).

Bit 4 FA1_SCItimeoutzero.

- 0 No fault.
- The discrete throttle input is disabled (VC_discrete.7 is zero) and the serial timeout duration is zero (bits 7-0 of VC_SCI are zero).

Bits 3-0 Reserved. Always read zero.

SV fault2 consists of sensor and communication fault bits.

Register SV fault2 Definition (10F)

Bit 15	Bit 14	Bit 13	Bit 12
reserved	reserved	FA2_rgnexcite	FA2_threxcite
Bits 11-8		Bit 5	Bit 4
reserved		FA2_SOClost	FA2_SCInoise
Bit 3	Bit 2	Bit 1	Bit 0
reserved	FA2_supplyI	reserved	reserved

Bits 15-14 Reserved. Always read zero.

Bit 13 FA2_rgnexcite

- 0 No fault.
- The rgn+ signal is less than 3.9V, greater than 4.7V, or less than rgn.

Bit 12 FA2 threxcite

- 0 No fault.
- The thr+ signal is less than 3.9V, greater than 4.7V, or less than thr.

	New Generation Motors Corporatio	n	
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	25 of 68

Bits 11-8 Reserved. Always read zero.

Bit 5 FA2 SOClost

- 0 No fault.
- 1 The state-of-charge was lost due to corruption of the nonvolatile memory.

Bit 4 FA2 SCInoise.

- 0 No fault.
- 1 Parity or framing error in serial communication.

Bit 3 Reserved. Always reads zero.

Bit 2 FA2_supplyI.

- 0 No fault.
- The voltage on current sense signal *shunt+* is greater than 120mV. This is most likely due to an open-circuit on *shunt+* or *shunt-*.

Bits 1,0 Reserved. Always read zero.

SV fault3 consists of miscellaneous warning bits. These warnings can affect controller operation.

Register SV fault3 Definition (110)

Bits 15-8		
reserved		

Bit 7	Bit 6	Bit 5	Bit 4
reserved	FA3 limphome	FA3 dirlatcherror	FA3 softstart

Bits 3-0	
reserved	

Bits 15-7 Reserved. Always read zero.

Bit 6 FA3 limphome.

- 0 Normal operation.
- The controller is in limp-home mode, and the limp-home mode phase and battery discharge currents are being applied.

	New Generation Motors Corporatio	n	
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	26 of 68

Bit 5 FA3_dirlatcherror.

- 0 Normal operation.
- The input direction has been changed while the vehicle speed is greater than VC_spdthreshold. Accelerating torque is disabled.

Bit 4 FA3_softstart.

- 0 Normal operation.
- 1 The controller is soft-starting after being enabled with a non-zero input torque.

Bits 3-0 Reserved. Always read zero.

The final two status registers identify the dominant current limit for throttle and braking, respectively. The content of each register is a numeric code which corresponds to a current limit as follows:

Code	Name	Current limit:
0	FA4_motorT	motor temperature limit
1	FA4_baseplateT	controller baseplate temperature limit
2	FA4_undervolt	factory low voltage phase current limit
3	FA4_overvolt	factory high voltage phase current limit
4	FA4_abslim	factory motor or controller phase current limit
5	FA4_softlimit	serial phase current limit, SI_thrphaseIlimit, or SI_rgnphaseIlimit
6	FA4_thrdisabled	throttle disable input asserted
7	reserved	
8	FA4_spdgovernor	speed governor phase current limit
9	FA4_batIlimit	vehicle battery current limit
10	FA4_batIsoftlimit	serial battery current limit, SI_dischargeIlimit or SI_chargeIlimit
11	FA4_limphomebatI	limp-home mode battery current limit, VC_limphomesupplyI
12	FA4_limphomephaseI	limp-home mode phase current limit, VC_limphomephaseI
13	FA4_vehsoftlimit	vehicle regen current limit, VC_rgnphaseIlimit
14	reserved	
15	FA4_clutch	clutch input asserted
16	FA4_revgovernor	reverse-speed governor
17	FA4_dirlatcherror	input direction changed while vehicle speed is greater than VC_spdthreshold

Several codes are only applicable to one of the registers

Register SV thrIlimit Definition (111)

Bits 15-0	
The throttle current limit code.	

	New Generation Motors Corporatio	n	
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	27 of 68

Register SV rgnIlimit Definition (112)

Bits 15-0	
The braking current limit code.	

5.2 DEVELOPMENT REGISTERS (PAGE 2)

The development page consist of registers which may simplify debugging a new system or understanding controller operation, but are not normally needed for instrumentation. These registers use a DV prefix.

The estimated temperature registers hold temperature calculations of the motor hot spot and controller power transistor junctions. In the EVC402 controller, these temperatures are equal to the measured temperatures.

Register DV motorTest Definition (200)

Bits 15-0
Estimated motor temperature in deci-°C.

Register DV_baseplateTest Definition (201)

Bits 15-0
Estimated power transistor junction temperature in deci-°C.

Register IN_rgnphaseIlimit Definition (202)

Bits 15-0	
When in discrete speed control, the regen phase current limit set by the regen input, in deci-A.	
Otherwise, set to maximum value.	

Register IN_status consists of the digital control inputs to the controller, after arbitration between the discrete and serial inputs.

Register IN_status Definition (203)

Bit 15	Bit 14	Bit 13	Bit 12
reserved	IN_disable	reserved	reserved
Bit 11	Bit 10	Bit 9	Bit 8
IN_noignition	IN_nocbl	IN_pdfault	reserved
Bit 7	Bit 6	Bit 5	Bit 4
reserved	IN_spdctrl	IN_neutral	IN_thrdisable
Bit 3	Bit 2	Bit 1	Bit 0
IN_reverse	IN_forward	IN_charger	IN_clutch

New Generation Motors Corporation				
Title: EVC402 Operating Manual Date: 2005-02-1				
Document #:	330-000012 rev D	Page:	28 of 68	

Bit 15 Reserved. Always read zero.

Bit 14 IN disable.

- 0 No disable inputs are asserted.
- 1 One or more disable inputs are asserted.

Bits 13-12 Reserved. Always read zero.

Bit 11 IN noignition.

- 0 The ignition input is asserted.
- 1 The ignition input is not asserted.

Bit 10 IN nocbl.

- 0 The motor cable detection input is asserted.
- 1 The motor cable detection input is not asserted, no motor is detected.

Bit 9 IN pdfault.

- 0 Normal operation.
- 1 Internal power-drive fault asserted.

Bits 8,7 Reserved. Always read zero.

Bits 6-0 IN [INPUT].

- 0 The corresponding input is not asserted.
- 1 The corresponding input is asserted.

Registers DV_DIstatus and DV_SIstatus hold the state of the discrete and serial digital inputs, respectively. These are used to calculate DV_status, along with VC_discrete. Note that the bits in DV DIstatus and DV SI status are not affected by the enable bits in the VC discrete register.

Register DV DIstatus Definition (204)

Bits 15-12	
reserved	

Bit 11	Bit 10	Bit 9	Bit 8
DI_noignition	DI_nocbl	DI_pdfault	reserved

Bit 7	Bit 6	Bit 5	Bit 4
reserved	reserved	reserved	DI_thrdisable

New Generation Motors Corporation				
Title:	EVC402 Operating Manual	Date:	2005-02-14	
Document #:	330-000012 rev D	Page:	29 of 68	

Bit 3	Bit 2	Bit 1	Bit 0
DI_reverse	reserved	reserved	reserved

Bits 15-12 Reserved. Always read zero.

Bit 11 DI noignition.

- The ignition input is asserted.
- 1 The ignition input is not asserted.

Bit 10 DI nocbl.

- 0 The motor cable detection input is asserted.
- 1 The motor cable detection input is not asserted, no motor is detected.

Bit 9 DI pdfault.

- 0 Normal operation.
- 1 Internal power-drive fault asserted.

Bits 8-5 Reserved. Always read zero.

Bits 4,3 DI_[INPUT].

- 0 The corresponding discrete input is not asserted.
- 1 The corresponding discrete input is asserted.

Bits 2-0 Reserved. Always read zero.

Register DV SIstatus Definition (205)

Bits 15-8	
reserved	

Bit 7	Bit 6	Bit 5	Bit 4
reserved	reserved	SI_disable (SI_neutral)	SI_thrdisable

Bit 3	Bit 2	Bit 1	Bit 0
SI_reverse	SI_forward	SI_charger	SI_clutch

Bits 15-6 Reserved. Always read zero.

New Generation Motors Corporation				
Title:	EVC402 Operating Manual	Date:	2005-02-14	
Document #:	330-000012 rev D	Page:	30 of 68	

- **SI_INPUT].** These bits are set and cleared using the 0XX! commands (see the section on serial control). It is possible to simulate the digital inputs through the serial port by setting these bits.
 - 0 The corresponding serial input is not asserted.
 - 1 The corresponding serial input is asserted.

The remaining development registers hold status values for the current-limiting logic.

Register DV thermallimitmtr Definition (206)

Bits 15-0

The maximum motor phase current, in deci-A, based on the motor temperature.

Register DV baseplateTderating Definition (207)

Bits 15-0

The derating coefficient (0-1 in Q8 format) of the phase current due to the controller temperature. This value is multiplied by the maximum phase current for the current supply voltage to calculate the maximum phase current of the controller due to temperature.

Register DV maxphaseIthr Definition (208)

Rite 15-0

The maximum accelerating phase current, in deci-A, due to the most restrictive current-limiting constraint.

Register DV_maxphaseIrgn Definition (209)

Bits 15-0

The maximum decelerating phase current, in deci-A, due to the most restrictive current-limiting constraint.

Register DV_batmaxphIthr Definition (20A)

Bits 15-0

The maximum accelerating phase current, in deci-A, due to limits on the battery discharge current.

Register DV batmaxphIrgn Definition (20B)

Bits 15-0

The maximum decelerating phase current, in deci-A, due to limits on the battery charge current.

New Generation Motors Corporation					
Title:	EVC402 Operating Manual	Date:	2005-02-14		
Document #:	330-000012 rev D	Page:	31 of 68		

6 Configuration

6.1 Process

Configuration can be done via the serial interface at any time. However, configuration changes can only be stored to nonvolatile memory while the controller is disabled. Furthermore, in order to prevent unintentional changes to the configuration registers, the page to be written to must be writeenabled before new values are assigned. Configuration values are stored on pages 3 and 4.

A control register, SI_writeenable, (register 008) is used to set which pages are write-enabled, or to read the current write-enable status.

Register SI writeenable Definition (008)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
reserved,	reserved,	reserved,	reserved,	Page B	Page A	Page 9	Page 8
always 0	always 0	always 0	always 0	write	write	write	write
	-	_	_	enable,	enable,	enable	enable
				always 0	always 0		

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Page 7	Page 6	Page 5	Page 4	Page 3	Page 2	Page 1	Page 0
write	write	write	write	write	write	write	write
enable	enable	enable,	enable	enable	enable,	enable,	enable,
		always 0			always 0	always 0	always 1

In addition, there are two serial commands to set or clear the write enable bits:

0F2! write disable (clears bits 1-15 in SI writeenable)

0F3! write enable (sets all bits in SI writeenable, except for read-only pages)

For example, the following serial commands all allow access to the battery configuration page (page 4):

$$008.4=1$$
 $008<10$
 $008=16$
 $008
 $0F3!$
 $(2^4 = 10_H)$
 $(2^4 = 16_D)$$

Note that the last two commands enable all pages to be written to (except for read-only pages).

Once a page is enabled, any writes to registers in that page take effect immediately. This allows the effect of the change to be noticed immediately. For example, to set the threshold voltage for detecting full charge of the batteries to 55.0V, send the following command:

401=550[CR] (Register 401 is BC_fullchargeV, and the units are deci-V).

New Generation Motors Corporation						
Title:	EVC402 Operating Manual	Date:	2005-02-14			
Document #:	330-000012 rev D	Page:	32 of 68			

This value can be immediately changed to 53.5V by sending: 401=535[CR]

After all changes are complete, it is necessary to copy the page(s) to non-volatile memory. To discard all changes to a page, the power-up values can be restored. There are two commands for these functions:

- 0F4! Save all write-enabled pages except page 0 to non-volatile memory, the controller must be disabled.
- 0F5! Restore power-up values for all enabled pages.

The controller must be disabled for these commands to take effect, this is best done by turning off the ignition. Alternatively, the controller can be disabled through the serial port using the serial disable command (see the Serial Control section).

NOTE: If the configuration changes are not saved to non-volatile memory, the controller will revert to the old settings when it is power-cycled.

Summary of Configuration Commands:

- 0F2! write disable (clears bits 1-15 in SI writeenable)
- 0F3! write enable (sets all bits in SI writeenable)
- 0F4! Save all write-enabled pages except page 0 to non-volatile memory, the controller must be disabled.
- 0F5! Restore power-up values for all enabled pages, the controller must be disabled.
- 0FA! reset controller

6.2 VEHICLE CONFIGURATION (PAGE 3)

All vehicle configuration registers use a VC_prefix.

6.2.1 Battery Current Shunt

The EVC402 controller supports a wide range of external current shunts. The controller uses the shunt conductance to calculate the battery current from the shunt voltage. A bias setting is provided for completeness, but it should be set to zero for most applications.

Register VC_SCsupplyI Definition (300)

Bits 15-0	
The value of the external supply current shunt, in A/V.	

Register VC_OF supply I Definition (301)

Bits 15-0	
Supply current bias in deci-A, normally set to zero.	

New Generation Motors Corporation					
Title:	EVC402 Operating Manual	Date:	2005-02-14		
Document #:	330-000012 rev D	Page:	33 of 68		

6.2.2 Switch Inputs

Each switch, or binary, input to the motor controller may be enabled or disabled, and the polarity (assert when open-circuited vs. assert when short-circuited) of several inputs may be inverted.

NOTE: It is strongly recommended that the ignition input remain enabled at all times, and that it be within easy reach of the driver. This will allow the controller to be readily disabled. In addition, should the controller enter the interlock state, the ignition can be toggled to clear the interlock..

Register VC discrete Definition (302)

Bit 15	Bit 14	Bit 13	Bit 12
reserved	reserved	BIT_defaultspdctrl	BIT_invertdir
Bit 11	Bit 10	Bit 9	Bit 8
EN_discreteignition	reserved, set to 1	reserved, set to 1	reserved
Bit 7	Bit 6	Bit 5	Bit 4
EN_discretethr	reserved	reserved	EN_discretethrdisable
Bit 3	Bit 2	Bit 1	Bit 0
EN_discretereverse	EN_discretereverse	reserved	reserved

Bits 15,14 Reserved. Always set these bits to zero.

Bit 13 BIT_defaultspdctrl. This bit determines the control mode at power up.

- 0 The controller powers up in torque control.
- 1 The controller powers up in speed control.

Bit 12 BIT invertdir.

- 0 Forward is clockwise rotation of the phase currents.
- 1 Forward is counter-clockwise rotation of the phase currents.

Bit 11 EN discreteignition.

- 0 The ignition input is disabled.
- 1 The ignition input is enabled.

Bits 10,9 Reserved. Always set these bits to one.

reserved

New Generation Motors Corporation					
Title:	EVC402 Operating Manual	Date:	2005-02-14		
Document #:	330-000012 rev D	Page:	34 of 68		

Bit 8 Reserved. Always set this bit to zero.

Bit 7 EN discretethr.

- 0 The discrete throttle and regen inputs are disabled.
- 1 The discrete throttle and regen inputs are enabled
- **Bits 6,5** Reserved. Always set these bits to zero.

Bits 4-2 EN_discrete[INPUT].

- 0 The corresponding discrete input is disabled.
- 1 The corresponding discrete input is enabled

BIT strictwrongdir

NOTE: Bits 3 and 2 (both EN_discretereverse) must always be set to the same value.

Bits 1-0 Reserved. Always set these bits to zero.

Register VC invert Definition (303)

Bits 15-12				
reserved				
Bit 11	Bit 10	Bit 9	Bit 8	

Bit 7	Bit 6	Bit 5	Bit 4	
reserved	reserved	reserved	INV_discretethrdisable	

BIT softstuckthr

reserved

Bit 3	Bit 2	Bit 1	Bit 0
INV_discretereverse	reserved	reserved	reserved

Bits 15-11 Reserved. Always set these bits to zero.

Bit 10 BIT_strictwrongdir. This bit sets the behavior of the FA3_dirlatcherror bit. Regenerative braking is not affected by this setting or the FA3_dirlatcherror bit.

- The FA3_dirlatcherror bit is cleared when the input direction matches the motor direction. As a result, it is not necessary to slow or stop the motor to enable operation in the current direction.
- The FA3_dirlatcherror bit is cleared when the motor speed is less than VC_spdthreshold. If the input direction is changed while the speed is above

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	35 of 68

VC_spdthreshold, it is necessary to slow the motor below VC_spdthreshold to enable driving torque.

- **Bit 9 BIT_softstuckthr**. This bit sets the behavior of the controller when the throttle is nonzero when the controller is enabled.
 - The stuck throttle interlock is only cleared by disabling the controller, using either the ignition or neutral inputs.
 - 1 The stuck throttle interlock is cleared when the controller is disabled or the throttle input is zero.
- **Bits 8-5 Reserved**. Always set these bits to zero.
- **Bits 4,3 INV_discrete[INPUT]**. These bits may be set to one in order to invert the corresponding discrete input. As a result, switch inputs that are normally asserted when open circuit are instead asserted when short-circuited.
 - 0 The corresponding discrete input is not inverted.
 - 1 The corresponding discrete input is inverted.
- **Bits 2-0** Reserved. Always set these bits to zero.

Register VC spdthreshold Definition (315)

Bits 15-0

The maximum speed for direction reversal, in RPM.

6.2.3 Throttle and Regen Inputs

The analog throttle and regen inputs are conditioned to produce a per unit value from zero to one. First, a gain and bias is applied, with each input having its own coefficients. Next, the reading is filtered using an exponential filter with programmable cut-off frequency. The filtered value is the measured position, AM_thr and AM_rgn. These registers are in Q8 format, meaning that there is an implied decimal point to the right of the 8th least-significant binary digit. In this format, a value of 256 corresponds to 1.00. Ignoring the Q8 convention, the calculations of AM_thr and AM_rgn can be summarized as:

AM_thr = filter(position * VC_thringain + VC_thrdeadband); AM_rgn = filter(position * VC_rgningain + VC_rgndeadband);

Register VC thringain Definition (304)

Bits	15-	N
\mathbf{D}_{1}	10	v

Discrete throttle input gain, in Q8 format.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	36 of 68

Register VC rgningain Definition (305)

Bits 15-0	
Discrete regen input gain, in Q8 format.	

Register VC thrdeadband Definition (306)

Bits 15-0	
Discrete throttle input bias, in Q8 format	

Register VC_rgndeadband Definition (307)

Bits 15-0	
Discrete regen input bias, in Q8 format.	

Register VC thrfilter Definition (308)

Bits 15-0	
Discrete throttle input filter coefficient, in Q8 format	

Register VC rgnfilter Definition (309)

Bits 15-0	
Discrete regen input filter coefficient, in Q8 format.	

Given a desired cut-off frequency f, the filter coefficient can be computed as:

$$VC_{__}$$
 filter = $256e^{-\pi f/100}$

The filter coefficients must be set between 0 and 252 to prevent nonsensical results and round-off errors.

The translation from the measured throttle and regen positions to the desired output torque is a three step process: shaping, arbitration, and scaling and differencing. The shaping step applies the throttle position to a torque map, shown below. The mapping has the following characteristics:

- The curve has a linear and quadratic section.
- The linear section is defined by a total width and the desired slope.
- The quadratic section is constrained to provide continuity and first derivative continuity with the linear section and to allow full torque at full input travel.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	37 of 68

As a result of this mapping the following is achieved:

- Increased input sensitivity at low torque levels and low speeds
- Full throttle capability at any speed
- No discontinuities or corners (first derivative discontinuities)
- Configuration constants with physical meaning. Specifically, the values to be set are:

The linear to quadratic throttle position point

The low-speed output at the transition point.

The full-speed output at the transition point.

The low-speed and full-speed speeds (0 and 50% of top speed in the graph above)

Register VC Xt Definition (30A)

Bits 15-0

The linear to quadratic throttle position point, in Q8 format.

Register VC_Yt0 Definition (30D)

Bits 15-0

Throttle shaping Y value at X=VC_Xt when the speed is <= VC_spd0, Q8 format

Register VC Yt1 Definition (30E)

Bits	15-	<i>ı</i> 1

Throttle shaping Y value at X=VC Xt when the speed is $\geq VC_spd1$, Q8 format

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	38 of 68

Register VC spd0 Definition (30F)

Bits 15-0	
Throttle shaping and engine braking minimum speed, in RPM	

Register VC_spd1 Definition (310)

Bits 15-0
Throttle shaping and engine braking maximum speed, in RPM

The arbitration step is responsible for determining the relative weight of the throttle and regen inputs when the regen input is non-zero. The goals of this step are: to allow full throttle when the vehicle is stopped and regen is applied, to allow zero throttle when the vehicle is moving quickly, and to transition smoothly between these two conditions. In addition, regenerative braking is disabled below a set speed to prevent torque oscillations at low speeds.

Lastly, the throttle is scaled to the nominal maximum throttle current, the regen is scaled to its maximum, and the difference between the two values is taken. In order to prevent acceleration jerk, the positive derivative is limited by a programmable amount.

Register VC_spddeadband Definition (33B)

Bits 15-0
Below this speed, the discrete regen input is disabled, in RPM

Register VC_lowspdxfrslope Definition (311)

Bits 15-0	
Throttle-vsregen arbitration coefficient, 1 / RPM in Q15 format	

Given that it is desired to weight the regen input at 100% for speeds of S RPM and above, VC_lowspdxfrslope = 32768 / (S – VC_spddeadband).

The maximum value of VC lowspdxfrslope (and all other registers) is 32767.

Register VC_phaseIposramp Definition (312)

Bits 15-0
The maximum positive derivative of the phase current when the phase current is positive and the
discrete throttle input is enabled. The units are A/s.

6.2.4 Engine Damping

The drag of an idling internal combustion engine is simulated by adding regenerative braking in proportion to the motor speed between VC_spd0 and VC_spd1.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	39 of 68

Register VC_enginedamping0 Definition (30B)

Bits 15-0

The amount of simulated engine braking to be applied when the speed is <= VC_spd0, in Q8 format. This register should always be set to zero.

Register VC enginedamping 1 Definition (30C)

D.,	4	_	•
Bits	- 1	^ _	
11115		.,-	٠.

The amount of simulated engine braking to be applied when the speed is >= VC spd1, in Q8 format.

6.2.5 State-of-Charge Output

The state-of-charge output is calculated by scaling AM_soc by a programmable scaling coefficient, VC_K_soc. This register should normally be set to 4096_D, corresponding to 1.0 in Q12 format. If it is desired to reduce the maximum duty cycle of the state-of-charge output, this register may be set to a lower value.

Register VC K soc Definition (314)

Bits 15-0

The gain coefficient for the state-of-charge output in Q12 format.

6.2.6 Soft-start

When the controller is enabled in serial control and the input phase current is non-zero, the controller will ramp-up to the input level during a soft-start period. The length of this period is VC_softstart. During this time, the FA3 softstart bit will be set

Register VC softstart Definition (316)

Bits	15-0	-

The soft-start duration in ms.

6.2.7 Limp-Home Mode

Limp-home mode is activated when the state of charge falls below a programmed threshold, and is only cleared by disabling the vehicle and recharging. Thus there is no possibility of regenerative braking taking the system out of limp-home mode. In this operating state, the maximum battery current draw is reduced to limit energy consumption and the maximum phase current (torque) is reduced to improve operating efficiency. These actions will reduce the acceleration, gradeability, and top-speed of the vehicle in exchange for increased range.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	40 of 68

Register VC_limphomeSOC Definition (317)

D:4-	1.		Λ
BITS	- 1 '	٦ -I	O

The threshold state-of-charge in Q8 format.

Register VC limphomesupply I Definition (318)

Bits 15-0

The maximum battery discharge current when in limp-home mode, in deci-A.

Register VC limphomephaseI Definition (319)

D	4 -	_
Rifs	15	- (
11112	1.7	-()

The maximum throttle phase current when in limp-home mode, in deci-A.

6.2.8 Regen Current Limit

The maximum regent current limit may be reduced from its factory-set maximum by setting VC rgnphaseIlimit.

Register VC rgnphaseIlimit Definition (31A)

Bits 15-0

The vehicle maximum regen phase current, in deci-A. This register determines the vehicle's maximum regenerative deceleration.

6.2.9 Speed Governor

In certain applications it may be desirable to limit the maximum speed, or to limit the torque as the speed is increased. This can be for safety reasons and/or regulations and can be achieved by adjusting the Phase current vs. Speed envelope. It is also possible to improve range without sacrificing low speed gradeability. The envelope is altered by adjusting four points on a piecewise-linear function. The first is the maximum speed allowed to utilize 100% of the phase current and the last point is the speed at which the phase current drops to 0%. This limit is not applied to the braking torque.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	41 of 68

The points are stored as an array of motor speeds and an array of phase currents in sequential registers.

Register Array VC spdSpts[0-3] Definition (31C-31F)

31C-31F Bits 15-0

The speed (in RPM) points for the speed governor. These must be in ascending order, VC spdSpts[0] < VC spdSpts[1] < VC spdSpts[2] < VC spdSpts[3].

Register Array VC_spdIpts[0-3] Definition (320-323)

320-323 Bits 15-0

The phase current (in deci-A) points for the speed governor. All points must be greater than or equal to zero, but there are no restrictions on the relative magnitude of each point.

A simple reverse governor is implemented to limit the maximum speed in reverse. It has the same structure as the speed governor, but with only two points. By setting VC_revSpts[0] < VC_spdSpts[0] it is possible to reduce the maximum reverse torque as well.

Register Array VC revSpts[0-1] Definition (33C-33D)

33C-33D Bits 15-0

The speed (in RPM) points for the reverse governor. These must be positive and in ascending order, VC revSpts[0] < VC revSpts[1]

Register Array VC revIpts[0-1] Definition (33E-33F)

33E-33F Bits 15-0

The phase current (in deci-A) points for the reverse governor. Both points must be greater than or equal to zero, but there are no restrictions on their relative magnitude.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	42 of 68

6.2.10 Battery Current Limits

In order to protect the batteries or extend range by limiting the maximum power draw, the battery current is constrained to be within an envelope of the form shown below. The six points allow configuration to the specific battery module and number of cells used. Note that positive battery current corresponds to energy entering the battery, i.e. under regenerative braking.

Register Array VC_dischargeVpts[0-2] Definition (324-326)

324-326 Bits 15-0

The supply voltage (in deci-V) points for the discharge current governor. These must be in ascending order, VC_dischargeVpts [0] < VC_dischargeVpts [1] < VC_dischargeVpts [2]

Register Array VC dischargeIpts[0-2] Definition (327-329)

327-329 Bits 15-0

The battery current (in deci-A) points for the discharge current governor. All points must be greater than or equal to zero, but there are no restrictions on the relative magnitude of each point.

Register Array VC_chargeVpts[0-2] Definition (32A-32C)

32A-32C Bits 15-0

The supply voltage (in deci-V) points for the charge current governor. These must be in ascending order, VC_chargeVpts [0] < VC_chargeVpts [1] < VC_chargeVpts [2]

Register Array VC_chargeIpts[0-2] Definition (32D-32F)

32D-32F Bits 15-0

The battery current (in deci-A) points for the charge current governor. All points must be greater than or equal to zero, but there are no restrictions on the relative magnitude of each point.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	43 of 68

Register VC_FIbatIlim Definition (330)

Bits 15-0

The filter setting for the supply current regulators, should be set to 0. Higher settings will decrease the response rate of the supply current regulators. Never set above 252.

6.2.11 Speed Control Coefficients

The EVC402 controller can be operated in speed control from either the discrete or serial inputs. The speed control algorithm is a PI controller with programmable coefficients and automatic antiwindup. To promote smooth operation of the vehicle, a programmable speed error clamp is provided.

Register VC_maxspderror Definition (331)

D	4 -	\sim
Rits	15	-0

The maximum speed error (RPM) for the speed control PI regulator.

Register VC_Kp Definition (332)

Bits 15-0

The proportional coefficient for the speed control PI regulator, in deci-A / RPM in Q8 format.

Register VC Ki Definition (333)

Bits 15-0

The integral coefficient for the speed control PI regulator, in deci-A / (RPM-s) in O8 format.

6.2.12 Fan Thermostat

The EVC402 controller has a fan power output. This is thermostatically controlled based on the measured controller baseplate temperature. The turn-on threshold is programmable. Once on, the fan power outputs remain on until the measured temperature has dropped two degrees Celsius below this setting.

Register VC hsfantemp Definition (336)

Bits 15-0

The baseplate temperature at which the controller fan is turned on, in deci-°C.

6.2.13 Serial Communication Watchdog

In order to ensure that the motor is disabled in the event of a loss of communication, the EVC402 controller implements a programmable watchdog function. See section 7.3.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	44 of 68

Register VC_SCI Definition (339)

Bits 15-8	
reserved	

Bits 7-0	
VC_maxSCIidle	

Bits 15-8 Reserved. Always set these bits to zero.

Bits7-0 VC_maxSCIidle The maximum time (centi-s) between received characters to prevent a SCI timeout fault, 0 disables. Must be non-zero to operate in serial control.

6.3 BATTERY CONFIGURATION (PAGE 4)

All battery configuration registers use a BC_prefix.

6.3.1 State-of-Charge Calculation

The State-of-Charge (SOC) is calculated using a weighted amp-hour calculation. To conserve memory, the weighing coefficients are defined by a piecewise linear equation. The nominal battery capacity is programmable in order to scale the measured amp-hours. A reset to 100% SOC will be initiated when, for a few programmable duration, both the battery voltage remains above a voltage threshold and the charging current remains below a current threshold. In addition, the state-of-charge can be set to an arbitrary value, as described in section 8.1.

Register BC_initbatcapacity Definition (400)

D'	150	
H 1TC	1 2 11	

The nominal battery capacity in deci-Ahrs. This value corresponds to 100% state-of-charge.

Register BC fullchargeV Definition (401)

Bits 15-0

The minimum voltage (in deci-V) for detecting when the batteries have been fully charged.

Register BC fullchargeI Definition (402)

Bits 15-0

The maximum charge current (in deci-A) for detecting when the batteries have been fully charged.

Register BC_fullchargeT Definition (403)

Bits 15-0

The time (in deci-seconds) that the supply voltage must remain above VC_fullchargeV and the charging current must remain below BC_fullchargeI in order to set the state-of-charge at 100%.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	45 of 68

The points for the weighted amp-hour integration are stored in an array of battery currents and an array of scaling coefficients. The points should be selected so that the piecewise linear function has a value of 1.0 (256 in Q8) when the battery current corresponds to the discharge rate for the specified nominal capacity. I.e., if the battery has a rating of 200A-hrs at a 50A discharge rate, BC_initbatterycapacity should be set to 2000 deci-A-hrs, and one of the scaling points should be set to 500 deci-A and K = Q8(1.0) = 256. If the same battery has a capacity of 100A-hrs at a 200A discharge rate, an addition point can be placed at 2000 deci-A and K = Q8(2.0) = 512.

Register Array BC ahrIpts[0-7] Definition (404-40B)

404-40B Bits 15-0

The battery current (in deci-A) points for the weighted amp-hour integration. Negative values are used for discharge current. These must be in ascending order,

BC_ahrIpts[0] < BC_ahrIpts [1] < BC_ahrIpts [2] < ...

Register Array BC ahrKpts[0-7] Definition (40C-413)

40C-413 Bits 15-0

The weighting coefficients (in Q8 format) for the weighted amp-hour integration. All points must be greater than or equal to zero, but there are no restrictions on the relative magnitude of each point.

WARNING:

The accuracy of the state-of-charge calculation is dependent on the accuracy of these weighting coefficients, the battery capacity register, and correct initialization of the state-of-charge. Errors in these settings will lead to erroneous and misleading state-of-charge calculations.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	46 of 68

7 Serial Control

Serial control is achieved using register set commands to set registers in page 0. In addition, several commands exist to set and clear bits in the DV_SIstatus register. Control through the serial port must first be enabled by proper setting of the configuration registers in order to prevent contention between the serial and discrete interfaces. The discrete throttle input must be disabled. It may also be desirable to disable the discrete direction and throttle enable inputs. This is done by setting and clearing bits in the VC discrete register. Refer to the configuration section for more details.

It is also possible to use the serial port to limit the maximum phase or battery current while in discrete control.

7.1 SERIAL CONTROL REGISTERS (PAGE 0)

Serial control can utilize either torque or speed control. Bit set and clear commands are used to set the control mode, see the following section. For each control mode, there is a ramp-rate register that limits the input rate of change. Thus, when in speed control, the controller can be commanded to accelerate at a constant rate with only two commands: an assignment to the SI_spdramp register and an assignment to the SI_desiredspd register. Likewise, an assignment to the SI_phIramp can prevent jerk when assigning new values to the SI_desiredphaseI register.

When in serial control, a coast command is available to quickly set the desired phase current (SI_desiredphaseI) to zero, independent of the SI_phIramp input. In speed control this command zeroes the speed control loop's integral component but does not change the target speed.

0F0! Coast

Register SI_desiredphaseI Definition (000)

Bits 15-0

The serial phase-current control register. Units are deci-A. Negative values are used for negative torque (regen when turning forward, accelerating torque when in reverse). This register is ignored when the EN_discretethr bit, VC_discrete.7, is 1, or when the controller is in speed control. Set to zero at power-up.

Register SI_desiredspd Definition (001)

Bits 15-0

The serial speed control register. Units are RPM. Negative values are used for reverse. This register is ignored unless the controller is in speed control and the EN_discretethr bit, VC_discrete.7, is zero. Set to zero at power-up. The definition of forward takes into account the reverse-direction bit VC_discrete.12. The reverse and forward bits in DV_SIstatus are ignored when in serial speed control.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	47 of 68

Register SI_phIramp Definition (002)

Bits 15-0

The serial phase-current ramp-rate input. Units are A/s. This input does not affect the discrete throttle and regen inputs. This register is ignored when the EN_discretethr bit, VC_discrete.7, is 1, or when the controller is in speed control. Set to maximum value at power-up.

Register SI spdramp Definition (003)

Bits 15-0

The serial speed ramp-rate input. Units are RPM/s. This input does not affect the discrete throttle and regen inputs. This register is ignored unless the controller is in speed control and the EN discretethr bit, VC discrete.7, is zero. Set to maximum value at power-up.

The soft-limit feature is implemented using four registers. These registers correspond to throttle and regen current limits, as well as battery charge and discharge limits.

Register SI thrphaseIlimit Definition (004)

Bits	5-	

The serial throttle current limit register. Units are deci-A rms. Set to maximum value at power-up.

Register SI rgnphaseIlimit Definition (005)

Bits 15-0

The serial regen current limit register. Units are deci-A rms. This is the magnitude of the limit, so it is a positive number. Set to maximum value at power-up.

Register SI dischargeIlimit Definition (006)

Bits 15-0

The serial battery discharge current limit register. Units are deci-A. This is the magnitude of the limit, so it is a positive number. Set to maximum value at power-up.

Register SI_chargeIlimit Definition (007)

Bits 15-0

The serial battery charge current limit register. Units are deci-A. Set to maximum value at power-up.

7.2 SERIAL CONTROL COMMANDS

In addition to the coast command mentioned above (0F0!), several commands exist to set the operating direction, enable or disable the controller, change operating modes, or similar tasks:

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	48 of 68

Bit Set and Clear Commands:

000! clear SI clutch

001! set SI clutch, disable regenerative braking

002! clear SI charger

003! set SI charger, enter charging mode

005! set SI forward and clear SI reverse and SI disable

007! set SI reverse and clear SI forward and SI disable

008! clear SI thrdisable

009! set SI thrdisable, disable accelerating torque

00A! clear SI disable

00B! set SI disable and clear SI forward and SI reverse

00C! clear SI_spdcontrol, enter torque control

00D! set SI_spdcontrol, enter speed control

080! clear EN discretethr and SI spdcontrol, enter serial torque control

082! clear EN discretethr and set SI spdcontrol, enter serial speed control

084! set EN discretethr and clear SI spdcontrol, enter discrete torque control

086! set EN discretethr and SI spdcontrol, enter discrete speed control

Note that the SI_disable bit is always in effect, independent of the VC_discrete register. Therefore, if a 00B! command is sent (which sets SI_disable), the controller will remain disabled until a 00A!, 005!, or 007! command is sent. If one of these commands is not sent, then the vehicle can not be driven. The same hazard exists with the SI_clutch, SI_charger, and SI_thrdisable bits. The SI_forward, SI_reverse, and SI_spdcontrol bits, however, are only enabled when the corresponding discrete input is disabled in the VC_discrete register.

The 08x! commands will change the value of the EN_discretethr bit (VC_discrete.7) independent of the value of the page 3 write enable bit (SI_writeenable.3). This change will be to the current value only. The non-volatile memory is unaffected and the bit will revert to the saved value after a reset or power cycle.

7.3 THE SERIAL WATCHDOG

In order to prevent the vehicle from accelerating out of control in the event of a loss of serial communication, the controller firmware incorporates a watchdog function on the serial port. If, while active, the controller fails to receive a character in an allotted time, the controller will interlock. If desired, this functionality can be enabled even when the controller is in discrete control.

The duration of the timeout period is stored in the lower eight bits of VC_SCI, in the units of centiseconds. For example, setting VC_SCI to 25 will set the timeout period to 0.25s. The maximum timeout period is 2.55s. If the lower eight bits of VC_SCI are zero, this function is disabled. Setting the timeout period to zero while EN_discretethr(VC_discrete.9) is zero will create a type 1 fault, FA1_SCItimeoutzero.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	49 of 68

8 Application Tips

8.1 ADJUSTING THE STATE-OF-CHARGE

The state-of-charge may be set to an arbitrary value by first enabling writes to the battery configuration page (page 4), and then writing the new state-of-charge to AM_SOC. Note that this is a special case, since the instrumentation page is normally read-only. As an example, to reset the SOC to 100%, send the following two commands:

008.4=1 106=256

The first command enables writes to the battery configuration page, and the second sets the SOC to 100%. Recall that the AM SOC is in Q8 format, so 100% corresponds to $1.00 * 2^8 = 256$.

8.2 Configuring the EVC402 Controller for Discrete Speed Control

If desired, the EVC402 controller can be configured to control the output speed in proportion to the magnitude of the *thr* input. In this configuration, an internal P²I control loop is used to adjust the motor torque to match the input speed from the *thr* input. When the vehicle speed is greater than the set point, the controller will use regenerative braking to decelerate the vehicle. The *rgn* input is used to set the maximum amount of regenerative braking to use to decelerate the vehicle. If *rgn* is equal to *rgn*-, no regenerative braking will be applied, and the motor will coast until the speed is below the target speed.

The serial command 00D! is used to enter speed control. Sending this command while the *thr* input is enabled (VC_discrete.7 set) will cause the controller to immediately interpret the *thr* input as the desired speed. For this reason, it is recommended that the enter speed control command only be sent when the throttle is released and either the vehicle is stationary or the *rgn* input is zero, disabling regenerative braking.

To configure the controller to always operate in speed control, send the following commands through the serial interface:

disable the controller	00B!
enable writes to the configuration page (page 3)	008.3 = 1
set BIT_defaultspdctrl (VC_discrete.13)	302.D=1
save the configuration page	0F4!
disable writes to all pages	008=0
immediately switch to speed control	00D!
enable the controller	00A!

Once this procedure is complete, the controller will operate in speed control without further need of the serial interface.

The controller can be reset to operate in torque control by default by using the above procedure to set BIT_defaultspdctrl to zero, and sending the torque control command 00C! in place of the speed control command.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	50 of 68

When in discrete speed control, full pedal travel (AM_thr \geq 256 or 1.0 in Q8 format) sets the desired speed to the value stored in VC_spdSpts[3] (register 31F). This value can be set to the desired top speed of the motor. The throttle shaping function is used to scale the throttle input between 0 and 100%, so it is possible to provide increased throttle sensitivity at low speeds by appropriate configuration of the throttle shaping registers.

8.3 SWITCHING BETWEEN DISCRETE TORQUE CONTROL AND SERIAL SPEED CONTROL

It is often desired to implement some form of cruise control similar to passenger vehicles whereby the controller switches between operating in discrete torque control and fixed speed operation. This can be readily accomplished with the EVC402 controller and an external microcontroller or embedded computer wired to the EVC402 controller's serial port.

To operate in this fashion, the controller is configured in discrete torque control (VC_discrete.7 set, VC_discrete.13 clear). The controller can be switched to serial speed control at any time, independent of the motor speed. To disable the throttle input and switch to speed control, send the following command to the controller:

switch to serial speed control

082!

Note that this command will clear the EN_discretethr bit, independent of the page 3 write enable bit. This change will be to the current value only. The non-volatile memory is unaffected so the bit will revert to the saved value after a reset or power cycle.. The speed control command will set SI_desiredspd to the current motor speed, AM_velocity. The target speed can then be adjusted in response to driver inputs to the external computer by adjusting SI_desiredspd.

A similar procedure is used to resume discrete torque control: switch to discrete torque control 084!

This command will set the EN_discretethr bit, independent of the page 3 write enable bit. The nonvolatile memory is unaffected.

If it is desired to return to discrete torque control when the brake is pressed, connect the *threnable* signal to a switch on the brake pedal so that it opens when the brake is pressed. Then, by regularly querying the DI_thrdisable bit (using, for example, the bit query 204.4?), the external computer can determine that the brake has been pressed, and switch back to discrete control. Furthermore, by enabling the throttle enable input (EN_discretethrdisable set to 1, VC_discrete.4), accelerating torque will immediately be disabled by pressing the brake.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	51 of 68

9 Appendix A: Connector Pinouts

Motor Interface J1

Vehicle Interface J2

Fan Power J3

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	52 of 68

10 Appendix B: Controller State Diagram

Transitions:

- A Power-up initialization is complete
- B Supply current is greater than 1/128th of VC SCsupplyI or charger input is asserted
- C Supply current is less than 1/128th of VC_SC_supplyI and charger input is not asserted
- D Ignition input is asserted
- E Ignition input is not asserted
- F A motor has been detected and 100ms have passed since entering the no motor state
- G No motor is detected
- H No disable inputs are asserted and no SV fault1 bits are set
- I At least one disable input is asserted
- J The target phase current SV_targetphaseI is nonzero, and no disable or SV_fault1 bits are set
- K The target phase current is zero, or a SV_fault1 or disable bit is set, or the target phase current has changed sign.
- L No SV fault1 bits are set and either the target phase current is zero or a disable bit is set
- M An SV fault1 bit is set
- N A disable bit is set and no SV_fault1 bits set
- P Charger input is asserted

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	53 of 68

11 Appendix C: Software Register Compilation

Page 0: Control

Register	Description
SI_desiredphaseI	The serial phase-current control register. Units are deci-A. Negative
000	values are used for negative torque (regen when turning forward,
	accelerating torque when in reverse). This register is ignored when the
	EN_discretethr bit, VC_discrete.7, is 1, or when the controller is in speed
	control. Set to zero at power-up.
SI_desiredspd	The serial speed control register. Units are RPM. Negative values are used
001	for reverse. This register is ignored unless the controller is in speed
	control. Set to zero at power-up. The definition of forward takes into
	account the reverse-direction bit VC_discrete.12.
SI_phIramp	The serial phase-current ramp-rate input. Units are A/s. This input does
002	not affect the discrete throttle and regen inputs. Set to maximum value at
	power-up.
SI_spdramp	The serial speed ramp-rate input. Units are RPM/s. This input does not
$00\bar{3}$	affect the discrete throttle and regen inputs. Set to maximum value at
	power-up.
SI_thrphaseIlimit	The serial throttle current limit register. Units are deci-A rms. Set to
004	maximum value at power-up.
SI_rgnphaseIlimit	The serial regen current limit register. Units are deci-A rms. This is the
005	magnitude of the limit, so it is a positive number. Set to maximum value at
	power-up.
SI_dischargeIlimit	The serial battery discharge current limit register. Units are deci-A. This is
006	the magnitude of the limit, so it is a positive number. Set to maximum
	value at power-up.
SI_chargeIlimit	The serial battery charge current limit register. Units are deci-A. Set to
007	maximum value at power-up.
SI_writeenable	The bits in this register correspond to the controller pages. In order to
008	write to a given page, its corresponding bit must be set.

Page 1: Instrumentation

Register	Description
AM_velocity 100	Measured speed in RPM. Negative values are used for reverse. This calculation uses the pole pair setting MF_polepairs, and the line count MF_linecount. The definition of forward takes into account the reverse-direction bit VC_discrete.12.
AM_supplyV 101	Supply Voltage in deci-V.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	54 of 68

AM_supplyI 102	Supply or battery current, in deci-A. Specifically, the current through the external shunt. Positive current is defined to be charging current.
AM_baseplateT 103	Controller baseplate temperature in deci-°C.
AM_ambientT 104	Controller internal temperature in deci-°C.
AM_motorT 105	Motor temperature in deci-°C.
AM_SOC 106	Measured state-of-charge 0-1, with 1 corresponding to fully charged. This number is stored in Q8 format.*
AM_thr 107	Measured throttle position 0-1, stored in Q8 format.*
AM_rgn 108	Measured regen position 0-1, stored in Q8 format.*
SV_desiredphaseI 109	The input phase current regardless of the control or input modes, in deci-A. Negative values are used for negative torque.
SV_desiredspd 10A	The input desired speed in RPM.
SV_targetphaseI 10B	The target phase current, in deci-A rms. Negative values are used for negative torque. Positive torque is defined as accelerating torque in the forward direction. This is the input value to the space-vector PWM algorithm.

^{*}Q-format is the binary equivalent of the metric prefixes used elsewhere. Qn format means that there is an implied decimal point to the right of the n-th bit, where the least-significant bit is bit 0. Equivalently, there is an implied denominator of 2ⁿ. Thus, Q8 format implies "divide by 256,", so 1.0 in Q8 format is 256, and 0.5 in Q8 is 128.

	New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14	
Document #:	330-000012 rev D	Page:	55 of 68	

		330 000012			r age.	33 01 00
SV_drivestate 10C	Status bits as follows		o the o	perating state of the control	ler. The	se bits are
	Bit 15 14	Name reserved BIT_initia	lized	Set to 1 when: always 0 the controller has complete initialization	ed its po	wer-up
	13 12	BIT_charg		the charging input is asser		aged in
	11	BIT_interl		a fault has occurred while is non-zero		
	10 9	BIT_enabl BIT active		no disable inputs are asser the output phase current is		0
	8	BIT_stand		the controller is in low-por		
	7	BIT_trans		the controller is transitioni production		-
	6-4	reserved		always 0		
	3 2	BIT_INdis	sable	a disable input is asserted		
	2	BIT_limiti	ing	the output phase current is the MCL module	being li	mited by
	1	BIT_spdct	rl	the controller is in speed c	ontrol m	ode
	0	BIT_rever	se	the controller is in reverse the phase currents)	(CCW r	otation of
	Bit 15 is t	he most-sign	ificant	bit, and bit 0 is the least-sig	gnificant.	
		e states are d as follows:	efined	based on the state of bits 14	-8. The	se drive
	Drive stat	,		escription		
	DS_startu	-		e controller is performing in		
	DS_stand			e controller is in low-power	_	
	DS_nome		co	itialized, but no motor sense nnected		
	DS_charg			narger is plugged in and the	-	
	DS_charg			narger is plugged in and igni	ition is o	n
	DS_shutd			ormal powered-down mode	1 / 1	.1.
	DS_interl		sta			
	DS_enabl	ed 4400 _H		ne controller is enabled, but but is zero	the phas	e current
	DS_active	e 4600 _H		e drive system is producing que	gaccelera	ating
	DS_trans	ition $4680_{\rm H}$		e controller is leaving the D	OS_activ	e state

New Generation Motors Corporation				
Title:	EVC402 Operating Manual	Date:	2005-02-14	
Document #:	330-000012 rev D	Page:	56 of 68	

SV_fault1latch 10D	Bits in this status register are set whenever the corresponding bits in the SV_fault1 register are set. They are cleared upon entering the DS_enabled drive state.			
SV fault1	This status register consists of fault bits that prevent motoring operation.			
10E		s are as follows:		
	Bit	Name	Set to 1 when:	
	15-10	reserved	always 0	
	9	FA1_stuckthr	the throttle input is nonzero when the forward or reverse input is first asserted	
	8-7	reserved	always 0	
	6	FA1_PDPINT	an internal over-voltage or over-current fault occurs	
	5	FA1_lostcomm	too much time has elapsed since the last message was received from the serial port, and the serial timeout function is enabled (See VC SCI)	
	4	FA1 SCItimeout	` = '	
		_	The discrete throttle input is disabled (VC_discrete.9 is zero) and the serial timeout duration is zero (bits 7-0 of VC_SCI are zero).	
	3-0	reserved	always 0	
SV_fault2 10F			of sensor error fault bits. These bits are as	
	Bit	Name	Set to 1 when:	
	15-14	reserved	always 0	
	13	FA2 rgnexcite	rgn+ signal is out of range	
	12	FA2 threxcite	thr+ signal is out of range	
	11-6	reserved	always 0	
	5	FA2_SOClost	state-of-charge lost due to corruption of the non-volatile memory	
	4	FA2_SCInoise	parity or framing error in serial communication	
	3	reserved	always 0	
	2	FA2_supplyI	The voltage on current sense signal <i>shunt</i> + is greater than 120mV. This is most likely due to an open-circuit on <i>shunt</i> + or <i>shunt</i>	
	1,0	reserved	always 0	

	New Generation Motors Corporatio	n	
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	57 of 68

SV_fault3 110		This status register consists of miscellaneous warning messages. These pits are as follows:		
SV thrlimit	These	status registers identi	fy the dominant current limit for throttle and	
111			ntent of each register is a numeric code which	
		ponds to a current lim		
SV_rgnlimit		policis to a carrent lilli	at as follows.	
112	Code	Name	Current limit:	
112	0	FA4 motorT	motor temperature limit	
	1	FA4 baseplateT	controller baseplate temperature limit	
	2	FA4 undervolt	factory low voltage phase current limit	
	3	FA4 overvolt	factory high voltage phase current limit	
	4	FA4 abslim	factory motor or controller phase current limit	
	5	FA4 softlimit	serial phase current limit, SI_thrphaseIlimit, or	
	3	1'A4_Sommit	SI rgnphaseIlimit	
	6	FA4 thrdisabled	throttle disable input asserted	
	7	_	t discrete regen current limit input (not	
	/	17A4_ignphasemini	implemented)	
	8	FA4_spdgovernor	speed governor phase current limit	
	9	FA4_batIlimit	vehicle battery current limit	
	10	FA4_batIsoftlimit	serial battery current limit, SI_dischargeIlimit or SI_chargeIlimit	
	11	FA4_limphomebatI	limp-home mode battery current limit, VC limphomesupplyI	
	12	FA4 limphomepha	=	
			limp-home mode phase current limit,	
			VC limphomephaseI	
	13	FA4 vehsoftlimit	VC_thrphaseIlimit or VC_rgnphaseIlimit	
	14	FA4 lowspdregen	abs(AM velocity)*VC rgnslope when in	
			torque control	
	15	FA4_clutch	clutch input asserted	
	16	FA4_revgovernor	reverse-speed governor	
	17	FA4_dirlatcherror		

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	58 of 68

Page 2: Development

Register	Descriptio	on	
DV_motorTest	Estimated motor temperature in deci-C.		
200			
DV baseplateTest	Estimated motor temperature in deci-C.		
201	•		
IN rgnphaseIlimit	When in d	liscrete speed contr	ol, the regen phase current limit set by the
$20\bar{2}$	regen input, in deci-A. Otherwise, set to maximum value.		
IN_status	The digita	l control inputs to	the controller, as follows:
$20\overline{3}$	Bit	Name	Description:
	15	reserved	always 0
	14	IN_disable	set when any of the disable inputs are asserted
	13,12	reserved	always 0
	11	IN noignition	ignition input
	10	IN nocbl	motor cable detection
	9	IN_pdfault	internal fault
	8,7	reserved	always 0
	6	IN spdctrl	speed control input
	5	IN neutral	neutral input
	4	IN thrdisable	throttle disable input
	3	IN reverse	reverse
	2	IN forward	forward input input
	1	IN_charger	charger detection input
	0	IN_clutch	clutch input
DV_DIstatus	The state of	of the discrete digit	tal inputs, as follows:
204	Bit	Name	Description:
	15-12	reserved	always 0
	11	DI_noignition	ignition input
	10	DI_nocbl	motor cable detection
	9	DI_pdfault	internal fault
	8-5	reserved	always 0
	4	DI_thrdisable	throttle disable input
	3	DI_reverse	reverse input
	2-0	reserved	always 0

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	59 of 68

DIL GL		0.1 . 1 1: : . 1		
DV_SIstatus		•	inputs (set and reset by 00X! commands),	
205	as follows			
	Bit	Name	Description:	
	15-7	reserved	always 0	
	6	SI spdctrl	speed control input	
	5	SI disable	disable input	
	4	SI thrdisable	throttle disable input	
	3	SI reverse	reverse input	
	2	SI forward	forward input	
	1	SI charger	charger input	
	0	SI clutch	regen disable input	
DV thermallimitmtr	The maximum motor current, in deci-A, due to the motor temperature.			
206			, , ,	
DV_baseplateTderating	The derati	ing (0-1 in Q8 forn	nat*) of the phase current due to the	
207	controller temperature. This value is multiplied by the maximum			
	phase cur	phase current for the current supply voltage to calculate the maximum		
	phase cur	rent of the controll	er due to temperature.	
DV maxphaseIthr	The maximum accelerating phase current, in deci-A, due to all			
208		niting constraints		
DV maxphaseIrgn		•	phase current, in deci-A, due to all	
209		niting constraints	, ,	
DV batmaxphIthr			phase current, in deci-A, due to limits on	
20A	the battery discharge current.			
DV batmaxphIrgn	The maximum decelerating phase current, in deci-A, due to limits on			
20B	the battery charge current.			
reserved	reserved			
20C				
reserved	reserved			
20D				

Page 3: Vehicle Configuration

Register	Description
VC_SCsupplyI	The value of the external supply current shunt, in A at 1V. This can
300	also be computed as 1/R, where R is the resistance in Ohms.
VC_OFsupplyI	Offset calibration in deci-A.
301	

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	60 of 68

VC_discrete	Discret	e input enable bits and oth	ner discrete configuration bits as
302	follows:		
	Bit	Name	Description:
	15,14	reserved	should be set to 0
	13	BIT defaultspdctrl	set to one to have the controller
			power-up into speed control
	12	BIT invertdir	set to one to define forward as
			counter-clockwise rotation of the
			phase currents.
	11	EN discreteignition	
	10	reserved	should be set to 1
	9	reserved	should be set to 1
	8	reserved	should be set to 0
	7	EN discretethr	set to one to enable the discrete thr
		_	and rgn inputs.
	6,5	reserved	should be set to 0
	4	EN_discretethrdisable	
	3	EN discretereverse	
	2	EN discretereverse	should be set to match bit 3
	1-0	reserved	should be set to 0
VC invert	Bits 3-4 of this register may be set to 1 in order to invert the		
303	corresponding discrete input.		
	1		
	Bit	Name	Description:
	15-11	reserved	should be set to 0
	10	BIT strictwrongdir	when set, the motor speed must be
		_	less than VC_spdthreshold in order
			to clear the FA3 dirlatcherror bit
	9	BIT softstuckthr	when set, the stuck throttle interlock
		_	is cleared when AM thr is zero
	8-5	reserved	should always be set to 0
	4	INV discretethrdisable	,
	3	INV discretereverse	
	2-0	reserved	should be set to 0
VC_thringain	Discret	e throttle input gain, in Q	
304			
VC_rgningain	Discret	e regen input gain, in Q8	format
305			
VC_thrdeadband	Discrete throttle input bias, in Q8 format		
306		1 /	
VC_rgndeadband	Discret	e regen input bias, in Q8 f	format
307			
VC_thrfilter	Discret	e throttle input filter value	e, 0-25 2

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	61 of 68

NG C1	D: 1 0.252
VC_rgnfilter	Discrete regen input filter value, 0-252
309 VC V	
VC_Xt	Throttle shaping X transition point, in Q8 format
30A	
VC_enginedamping0	amount of simulated engine braking to be applied when the speed is
30B	<= VC_spd0, in Q8 format. Should always be set to zero.
VC_enginedamping1	amount of simulated engine braking to be applied when the speed is
30C	>= VC_spd1, in Q8 format
VC_Yt0	Throttle shaping Y value at X=VC_Xt when the speed is <= VC_spd0,
30D	Q8 format
VC_Yt1	Throttle shaping Y value at $X=VC_X$ t when the speed is $\geq VC_S$ pd1,
30E	Q8 format
VC_spd0	Throttle shaping and engine braking minimum speed, in RPM
30F	
VC_spd1	Throttle shaping and engine braking maximum speed, in RPM
310	
VC_lowspdxfrslope	Throttle-vsregen arbitration coefficient, 1 / RPM in Q15 format.
311	
VC_phaseIposramp	The maximum positive derivative of the phase current when the phase
312	current is positive and the discrete throttle input is enabled. The units
	are A/s. This register limits the vehicle jerk.
reserved	reserved
313	
VC K soc	The gain coefficient for the state-of-charge output in Q12 format.
314	
VC_spdthreshold	The maximum speed for direction reversal, in RPM.
315	
VC_softstartT	The soft-start duration in ms.
316	
VC_limphomeSOC	The threshold state-of-charge in Q8 format. Once AM_soc has
317	dropped below this value, the controller will remain in limp-home
	mode until the batteries are charged above this value.
VC limphomesupplyI	The maximum battery discharge current when in limp-home mode, in
318	deci-A.
VC limphomephaseI	The maximum throttle phase current when in limp-home mode, in
319	deci-A.
VC_rgnphaseIlimit	The vehicle maximum regen phase current, in deci-A. This register
31A	determines the vehicle's maximum regenerative deceleration.
VC rgnslope	The maximum regen current vs. speed when in torque control. The
31B	units are deci-A/RPM in Q8 format
VC_spdSpts[0-3]	The speed (RPM) and phase current (deci-A) points for the speed
31C-31F	governor. Below the lowest speed VC_spdSpts[0], the maximum
VC spdIpts[0-3]	phase current is VC_spdIpts[0], and likewise for speeds above the
320-323	highest speed.
320-323	ingliest speed.

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	62 of 68

VC_dischargeVpts[0-2] 324-326 VC_dischargeIpts[0-2]	The voltage (deci-V) and discharge(deci-A) points for the battery discharge current regulator.		
327-329			
VC_chargeVpts[0-2] 32A-32C	The voltage (deci-V) and charge(deci-A) points for the battery charge current regulator.		
VC_chargeIpts[0-2] 32D-32F			
VC_FIbatlim	The filter setting for the supply current regulators.		
VC_maxspderror 331	The maximum speed error (RPM) for the speed control PI regulator.		
VC_Kp 332	The proportional coefficient for the speed control PI regulator, in deci-A/RPM in Q8 format		
VC_Ki 333	The integral coefficient for the speed control PI regulator, in deci-A / (RPM-s) in Q8 format		
reserved 334	reserved		
reserved 335	reserved		
VC_hsfantemp 336	The baseplate temperature at which the controller fan is turned on, in deci-°C. The fan will stay on until the temperature has dropped two degrees C below this setting.		
reserved 337	reserved		
reserved	reserved		
VC_SCI	The serial configuration register. Bits are as follows:		
339	Bit Name Description:		
	15-8 reserved should be set to 0 7-0 VC maxSCIidle the maximum time (centi-s)		
	between received characters to		
	prevent a SCI timeout fault, 0 disables.		
reserved 33A	reserved		
VC_spddeadband	below this speed, the discrete regen input is disabled, in RPM.		
33B			
VC_revSpts[0-1] 33C-33D	The speed (RPM) and phase current (deci-A) points for the reverse speed governor. Below the lowest speed VC_revSpts[0], the		
VC_revIpts[0-1]	maximum phase current in reverse is VC revIpts[0], and likewise for		
33E-33F	speeds above the highest speed.		

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	63 of 68

Page 4: Battery Configuration

Register	Description
BC_initbatcapacity	The nominal battery capacity in deci-Ahrs.
400	
BC_fullchargeV	The threshold voltage (deci-V) and charge current (deci-A) for
401	detecting when the batteries have been fully charged. Once the battery
BC_fullchargeI	voltage has been above BC_fullchargeV and the charge current has
402	been less than BC_fullchargeI for BC_fullchargeT deci-seconds, the
BC_fullchargeT	state-of-charge is reset to 100%
403	
BC_ahrIpts[0-7]	The battery current (deci-A, negative for discharge current) and
404-40B	weighting coefficients (Q8 format) for the weighted amp-hour
BC_ahrKpts[0-7]	integration state-of-charge algorithm.
40C-413	

Page 5: Reserved

Page 6: Motor Configuration

Register	Description
MC_FI_motorT	The filtering time constant for the motor temperature sensor, 0-255.
600	Zero corresponds to no filtering, 255 to maximum filtering. Values
	outside this range give invalid measurements, and values between 253
	and 255 can cause significant rounding errors.
MC_user_mtr[0-1]	User values can be stored in these unused registers.
601-602	

Page 7: Motor Calibration

Register	Description
MA_Kimpts[0-1] 700-701	The integral and integral coefficients for current regulation (in engineering units) vs. motor speed, in RPM.
MA_Kpmpts[0-1] 702-703	
MA_spdpts[0-1] 704-705	
MA_SCmotorT	The scale coefficient for the motor temperature sensor. Set this to 100/(V
706	per deg C).
MA_OFmotorT 707	The offset coefficient for the motor temp sensor, deci-C. Set this to -10*(V at 0 °C)/(V per °C).

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	64 of 68

MA_motorITcoeff 708	The scaling coefficient for the I ² t temperature estimation calculation.
MA_motortimeC 709	The time constant for the I ² t temperature estimation calculation.
reserved 70A	reserved, set to -1
reserved 70B	reserved, set to -1
MA_OFutateangle 70C	The angular offset of the commutation signals, where the angle is expressed 0-4095. An offset of 0 corresponds to commutations occurring at 0,60300° electrical.
MA_maxerror 70D	the maximum per-unit error for current regulation

Page 8: Motor Factory Settings

Register	Description
MF_maxmotorI	The maximum motor phase current in deci-A RMS.
800	
MF_defaultmtrT	The default motor temperature in deci °C, used when the temp sensor has
801	failed.
MF_tempTpts[0-3]	The temperature (deci °C) and current (deci-A) points for the motor
802-805	temperature governor. The estimated temperature DV_motorTest is used
MF_tempIpts[0-3]	for this calculation.
806–809	
MF_polepairs	The number of pole-pairs, one-half the pole count.
80A	

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	65 of 68

MF mtrsensors	The motor	sensor configuration	on register. The bits are assigned as follows:		
80B	Bit	Name	Description:		
	15-9	reserved	should be set to 0		
	8-7	reserved	should be set to 1		
	6	reserved	should be set to 0		
	5	reserved	should be set to 1		
	4-3	reserved	should be set to 0		
	2	MTR_invertcom2	when set to 1, the polarity of commutation bit 2 is inverted.		
	1	MTR_invertcom1	(as above)		
	0	MTR_invertcom((as above).		
		0 should be set so that the resulting commutation codes correspond following sequence:			
	<u>210</u>	Angle (electrical)			
	000	x°			
	001	x+60°			
	011	x+120°			
	111	x+180°			
	110	x+240°			
	100	x+300°			
	where x is -4096*x/3		MA_OFutateangle should be set to		
reserved	reserved				
80C					
MF_pwmfreq 80D	The PWM	frequency, set to 8	,000Hz.		
MF_pherrfilter		constant for the pha	se error correction algorithm in engineering		
80E	units.				

Page 9: Controller Configuration

Register	Description
CC_FI_supplyV	The filtering time constants for the analog inputs, 0-255. Zero corresponds
900	to no filtering, 255 to maximum filtering. Values outside this range give
CC_FI_supplyI	invalid measurements, and values between 253 and 255 can cause rounding
901	errors.
CC_FI_baseplateT	
902	
CC_FI_ambientT	
903	

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	66 of 68

	A placeholder. The controller copies the motor temperature time constant
904	to this location.
CC_user[0-1]	User values can be stored in these unused registers.
905-906	

Page A: Reserved

Page B: Controller Factory Settings

Register	Description
CF thrVpts[0-4]	The voltage (deci-V) and phase current (deci-A RMS) throttle phase-
B00-B04	current governor points.
CF_thrIpts[0-4]	
B05-B09	
CF_rgnVpts[0-4]	The voltage (deci-V) and phase current (deci-A RMS) regen phase-
B0A-B0E	current governor points.
CF_rgnIpts[0-4] B0F-B13	
CF_default_hsinkT	The baseplate temperature to use when the sensor fails, deci-°C.
B14	
CF_tempTpts[0-3]	The temperature (deci-°C) and phase current (deci-A RMS) baseplate
B15-B18	governor points. The estimated baseplate temperature
CF_tempIpts[0-3]	DV_baseplateTest is used for this calculation.
B19-B1C	
CF_spdrate	The rate at which speed measurements are made in Hz.
B1D	
reserved	reserved
B1E -B1F	
CF_SN1	The controller serial number, SN1 is the least significant word.
B20	
CF_SN2	
B21	
CF_swbuild	The software build number.
B22	
CF_swbuilddate	The software build date expressed as YYWW.
B23	

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	67 of 68

Page C: Integrations

Register	Description		
NV_hours[0-1]	The number of milli-hours that the controller has been		
C00-C01	powered. The lower address is the least significant word.		
NV_revs[0-1]	1/1000 of the number of motor revolutions for motors		
C02-C03	connected to the controller.		
NV_activehours[0-1]	The number of milli-hours that the BIT active bit has been set		
C04-C05	in the controller.		
NV_amphours[0-1]	The number of weighted milli-A-hours in the vehicle traction		
C06-C07	battery.		
NV_chargehours[0-1]	The number of milli-hours that the vehicle has spent on		
C08-C09	charge.		
NV_batcapacity	The battery capacity in deci-A hours. This value is adjusted		
C0A	by the aging calculation		
NV_checksum	A checksum for the Integration registers.		
C0B			

New Generation Motors Corporation			
Title:	EVC402 Operating Manual	Date:	2005-02-14
Document #:	330-000012 rev D	Page:	68 of 68

12 Appendix D: Warranty

NGM Warranty

New Generation Motors Corporation warrants that its EVC402 motor controller will be free from defects in title, materials, and manufacturing workmanship for one (1) year. If an EVC402 motor controller is found to be defective, then, as your sole remedy and as the manufacturer's only obligation, New Generation Motors Corporation will repair or replace the product. This warranty is exclusive and is limited to the EVC402 motor controller.

This warranty shall not apply to EVC402 motor controllers that have been subjected to abuse, misuse, abnormal electrical or environmental conditions, or any condition other than what can be considered normal use (including, but not limited to, opening of the controller for any purpose).

Warranty Disclaimers

New Generation Motors Corporation makes no other warranties, express, implied, or otherwise, regarding EVC402 motor controllers, and specifically disclaims any warranty for merchantability or fitness for a particular purpose.

The exclusion of implied warranties is not permitted in some States and countries thus exclusions specified herein may not apply to you. This warranty provides you with specific legal rights. There may be other rights that you have which vary from State to State.

Limitation of Liability

The liability of New Generation Motors Corporation arising from this warranty and sale shall be limited to the replacement of defective parts. In no event shall New Generation Motors Corporation be liable for costs of procurement of substitute products or services, or for any lost profits, or for any consequential, incidental, direct or indirect damages, however caused and on any theory of liability, arising from this warranty and sale. These limitations shall apply not withstanding any failure of essential purpose of any limited remedy.