Arquitetura e Organização de Computadores

Capítulo 6

Memória externa

slide 1

© 2010 Pearson Prentice Hall. Todos os direitos reservados.

Tipos de memória externa

- Disco magnético:
 - -RAID.
 - -Removível.
- Memória Óptica:
 - —CD-ROM.
 - —CD-Recordable (CD-R).
 - —CD-R/W.
 - -DVD.
- Fita magnética.

Disco magnético

- Substrato de disco coberto com material magnetizável (óxido de ferro... ferrugem)
- · Substrato era alumínio.
- Agora é vidro.
 - -Maior uniformidade da superfície.
 - Aumenta confiabilidade.
 - -Redução nos defeitos da superfície.
 - Erros reduzidos de leitura/gravação.
 - —Alturas de voo mais baixas (ver adiante).
 - -Melhor rigidez.
 - -Maior resistência a choques e dados.

Mecanismos de leitura e gravação

- Gravação e leitura por bobina condutora, chamada cabeça.
- Pode ser única cabeça de leitura/gravação ou separadas.
- Durante leitura/gravação, cabeça fica parada, pratos giram.
- Gravação:
 - Corrente pela bobina produz campo magnético.
 - Pulsos enviados à cabeça.
 - Padrão magnético gravado na superfície abaixo dela.
- · Leitura (tradicional):
 - Campo magnético movendo-se em relação à bobina produz corrente.
 - Bobina é a mesma para leitura e gravação.
- Leitura (contemporânea):
 - Cabeça de leitura separada e próxima da cabeça de gravação.
 - Sensor magnetorresistivo (MR) parcialmente blindado.
 - Resistência elétrica depende da direção do campo magnético.
 - Operação em alta frequência.
 - Densidade de armazenamento e velocidade mais altas.

Organização e formatação de dados

- · Anéis ou trilhas concêntricas.
 - —Lacunas entre as trilhas.
 - -Reduzir a lacuna aumenta a capacidade.
 - —Mesmo número de bits por trilha (densidade de compactação variável).
 - -Velocidade angular constante.
- Trilhas divididas em setores.
- Tamanho de bloco mínimo é de um setor.
- Pode haver mais de um setor por bloco.
- Para que a cabeça possa ler todos os bits na mesma velocidade, o espaçamento entre os bits é aumentado da trilha mais interna para a mais externa

Velocidade do disco

- Bit próximo do centro do disco girando passa por ponto fixo mais lento que o bit na borda do disco.
- Espaçamento aumenta entre bits de diferentes trilhas.
- Disco gira em velocidade angular constante (CAV).
 - Setores em forma de fatia de torta e trilhas concêntricas.
 - Trilhas e setores individuais endereçáveis.
 - Cabeça é movida para determinada trilha e há uma pequena espera por determinado setor.
 - Perda de espaço nas trilhas externas.
 - Menor densidade de dados.
- Pode usar **gravação em zonas** para aumentar capacidade.
 - Cada zona tem número fixo de bits por trilha, mas diferente de uma trilha para outra.
 - Zonas mais externas contém mais bits do que zonas mais internas. Isso aumenta a capacidade do disco
 - Circuito mais complexo.

Localizando setores

- Deve ser capaz de identificar início da trilha e setor.
- Formatação do disco:
 - —Informações adicionais não disponíveis ao usuário.
 - -Marca trilhas e setores.

Exemplo: Formato de disco Winchester (Seagate ST506)

- Cada trilha possui 30 setores de 600 bytes (nr. fixo).
- Cada setor mantém 512 bytes + infos de controle.
- · ID usado para identificar um setor
- Byte SYNCH é padrão especial para delimitar início
- CRC é um campo de deteção de erro

Características

- Cabeça fixa (rara) ou móvel.
- · Removível ou fixo.
- Face única ou dupla (mais comum).
- Prato único ou múltiplos.
- Mecanismo da cabeça:
 - —Contato (disquete).
 - -Lacuna fixa.
 - -Lacuna aerodinâmica (Winchester).

Disco de cabeça fixa/móvel

- · Cabeça fixa:
 - —Uma cabeça de leitura por trilha.
 - —Cabeças montadas sobre braço rígido fixo.
- Cabeça móvel:
 - —Uma cabeça de leitura e escrita por lado.
 - -- Montada sobre um braço móvel.

Removível ou não

- Disco removível:
 - Pode ser removido da unidade e substituído por outro disco.
 - —Oferece capacidade de armazenamento enorme.
 - —Transferência de dados fácil entre sistemas.
- Disco não removível:
 - -- Montado permanentemente na unidade.

Múltiplos pratos

- Uma cabeça por lado.
- Cabeças são unidas e alinhadas.
- Trilhas alinhadas em cada prato formam cilindros.
- Dados são espalhados pelo cilindro:
 - -Reduz movimento da cabeça.
 - —Aumenta velocidade (taxa de transferência).

Disquete

- 8", 5,25", 3,5".
- Pequena capacidade.
 - —Até 1,44 MB (2,88 MB nunca foi popular).
- Lento.
- Universal.
- Barato.
- Obsoleto

Disco rígido Winchester

- Desenvolvido pela IBM em Winchester (USA).
- Unidade selada.
- Um ou mais pratos.
- Cabeças voam na camada de limite de ar enquanto o disco gira.
- Cabeça muito pequena para lacuna do disco.
- Tornando-se mais robusto.

Disco rígido

- Universal.
- Barato.
- Armazenamento externo mais rápido.
- Tornando-se maior o tempo todo.
 - —1 TB agora facilmente disponível.

Velocidade

- Tempo de busca:
 - -- Movendo cabeça para trilha correta.
- Latência (rotacional):
 - —Esperando dados passarem sob a cabeça.
- Tempo de acesso= Busca + Latência.
- Taxa de transferência.

Temporização de transferência de E/S de disco

- Detalhes da operação de E/S de disco dependem de:
 - Sistema de Computação
 - · Sistema operacional
 - Natureza do canal de E/S
 - Hardware do controlador de disco
- Espera pelo dispositivo: espera de requisição de E/S
- · Espera pelo canal: há vários canais
- Busca: tempo p/ posicionar cabeça na trilha
- Atraso Rotacional: tempo p/ início do setor alcançar cabeça
- Tempo de acesso = Busca + atraso rotacional

Alguns Discos (parâmetros)

Tabela 6.2 Parâmetros típicos da unidade de disco rígido

Características	Seagate Barracuda ES.2	Seagate Barracuda 7200.10	Seagate Barracuda 7200.9	Seagate	Hitachi Microdrive
Aplicação	Servidor de alta capacidade	Desktop de alto desempenho	Desktop em nível de entrada	Laptop	Dispositivos portáteis
Capacidade	1TB	750 GB	160 GB	120 GB	8 GB
Tempo mínimo de busca entre trilhas	0,8 ms	0,3 ms	1,0 ms	-	1,0 ms
Tempo médio de busca	8,5 ms	3,6 ms	9,5 ms	12,5 ms	12 ms
Velocidade do eixo	7200 rpm	7200 rpm	7200 rpm	5 400 rpm	3600 rpm
Atraso rotacional médio	4,16 ms	4,16 ms	4,17 ms	5,6 ms	8,33 ms
Taxa de transferência máxima	3 GB/s	300 MB/s	300 MB/s	150 MB/s	10 MB/s
Bytes por setor	512	512	512	512	512
Trilhas por cilindro (número de superfícies do prato)	8	8	2	8	2

- · Redundant Array of Independent Disks.
- Redundant Array of Inexpensive Disks.
- 6 níveis de uso comum.
- Não é uma hierarquia.
- Conjunto dos principais discos vistos como uma única unidade lógica pelo SO.
- Dados distribuídos pelas unidades físicas.
- Pode usar capacidade redundante.
- Pode usar capacidade redundante para armazenar informação de paridade.

- Não redundante (não é membro verdadeiro da RAID).
- Dados espalhados por todos os discos.
- · Mapeamento Round Robin.
- Maior velocidade.
 - —Múltiplas solicitações de dados provavelmente não no mesmo disco.
 - Solicitações a disco emitidas em paralelo. Isso reduz o tempo de enfileiramento
 - —Um conjunto de dados (strips) é espalhado por múltiplos discos.

- Discos espelhados.
- Dados espalhados pelos discos.
- 2 cópias de cada **stripe** (conjunto de strips) em discos separados.
- Solicitação de leitura atendida por qualquer um deles.
- Gravação em ambos.
- Recuperação é simples:
 - —Troca entre disco com defeito e espelho.
 - —Sem tempo de paralisação.
- · Caro.

- Discos são sincronizados.
- Stripes muito pequenos.
 - -Normalmente, único byte/palavra.
- Correção de erro calculada pelos bits correspondentes nos discos.
- Múltiplos discos de paridade armazenam correção de erro via código de Hamming em posições correspondentes.
- Muita redundância.
 - —Caro. O nr. de discos redundantes é proporcional ao logaritmo do nr. de discos de dados.
 - -Não usado.

- · Semelhante a RAID 2.
- Somente um disco redundante, n\u00e3o importa o tamanho do array.
- Bit de **paridade** simples para cada conjunto de bits correspondentes.
- Dados sobre unidade com defeito podem ser reconstruídos a partir de dados sobreviventes e informação de paridade.
- Taxas de transferência muito altas. Operações em paralelo.

- Cada disco opera independentemente.
- Bom para taxa de solicitação de E/S alta.
- Grandes stripes.
- Paridade bit a bit calculada por stripes em cada disco.
- Paridade armazenada no disco de paridade.
- Cada operação de gravação envolve o disco de paridade, que portanto pode se tornar um gargalo

- Como RAID 4.
- Paridade espalhada por todos os discos.
- Alocação round-robin para stripe de paridade.
- Evita gargalo do RAID 4 no disco de paridade.
- Normalmente usado em servidores de rede.

- Dois cálculos de paridade.
- Armazenado em blocos separados em discos diferentes.
- Requisito do usuário de N discos precisa de N+2.
- Alta disponibilidade de dados.
 - —Três discos precisam falhar para haver perda de dados.
 - —Penalidade de gravação significativa.

Níveis de RAID

Tabela 6.3 Níveis de RAID

Categoria	Nível	Descrição	Discos exigidos	Disponibilidade dos dados	Capacidade para grande transferência de dados de E/S	Taxa para pequena solicitação de E/S
Striping	0	Não redundante	N	Menor que disco único	Muito alta	Muito alta para leitura e gravação
Espelhamento	1	Espelhado	2 <i>N</i>	Maior que RAID 2, 3, 4 ou 5; menor que RAID 6	Maior que único disco para leitura; semelhante a único disco para gravação	Até o dobro de um único disco para leitura; semelhante a único disco para gravação
	2	Redundante via código de Hamming	N+m	Muito mais alta que único disco; comparável a RAID 3, 4 ou 5	Mais alta de todas as alternativas listadas	Aproximadamente o dobro de um único disco
Acesso paralelo	3	Paridade de bit intercalada	N+1	Muito mais alta que único disco; comparável a RAID 2, 4 ou 5	Mais alta de todas as alternativas listadas	Aproximadamente o dobro de um único disco
	4	Paridade de bloco intercalada	N+1	Muito mais alta que único disco; comparável a RAID 2, 3 ou 5	Semelhante a RAID 0 para leitura; muito menor que único disco para gravação	Semelhante a RAID 0 para leitura; muito menor que único disco para gravação
Acesso independente	5	Paridade de bloco distribuída e intercalada	N +1	Muito mais alta que único disco; comparável a RAID 2, 3 ou 4	Semelhante a RAID 0 para leitura/ menor que único disco para gravação	Semelhante a RAID 0 para leitura; geralmente, menor que único disco para gravação
	6	Paridade de bloco dual distribuída e intercalada	N+2	Mais alta de todas as alternativas listadas	Semelhante a RAID 0 para leitura; menor que RAID 5 para gravação	Semelhante a RAID 0 para leitura; muito menor que RAID 5 para gravação

N = número de discos de datos, m é proporcional ao log N.

Tabela de Comparação RAID

Tabela 6.4 Comparação de RAID

Nível	Vantagens	Desvantagens	Aplicações
0	Desempenho de E/S bastante melhorado, distribuindo a carga de E/S por muitos canais e unidades Não há <i>overhead</i> de cálculo de paridade envolvido Projeto muito simples Fácil de implementar	A falha de apenas uma unidade resultará na perda de todos os dados em um array	Produção e edição de vídeo Edição de imagens Aplicações de pré-impressão Qualquer aplicação exigindo alta Jargura de banda
1	100% de redundância de dados significa que não é preciso reconstruir em caso de falha do disco, apenas uma cópia para o disco substituto Sob certas circunstâncias, RAID 1 pode sustentar múltiplas falhas de unidade simultâneas Projeto mais simples do subsistema de armazenamento RAID	Overhead de disco mais alto de todos os tipos de RAID (100%) — ineficaz	Contabilidade Folha de pagamento Financeiras Qualquer aplicação exigindo disponibilidade muito alta
2	Taxas de transferência de dados extremamente altas são possíveis Quantidade mais alta a taxa de transferência de dados exigida, melhor a razão entre discos de dados e discos ECC Projeto de controlador relativamente simples em comparação com RAID 3, 4 e 5	Razão muito alta entre discos ECC e discos de dados com menores tamanhos de palavra — ineficaz Custo muito alto para cada nível — necessita requisitos de taxa de transferência muito altos para justificar	Nenhuma implementação comercial; inviável comercialmente

Tabela de Comparação RAID

3	Taxa de transferência de dados para leitura muito alta Taxa de transferência de dados para gravação muito alta Falha de disco tem um impacto insignificante sobre o throughput Baixa razão entre discos de ECC (paridade) e discos de dados significa alta eficiência	Taxa de transação igual à de uma única unidade de disco no máximo (se os eixos forem sincronizados) Projeto de controlador muito complexo	Produção de vídeo e s <i>treaming</i> ao vivo Edição de imagens Edição de vídeo Aplicações de pré-impressão Qualquer aplicação exigindo alta vazão
4	Taxa de transação de dados muito alta para leitura Baixa razão entre discos de ECC (paridade) e discos de dados significa alta eficiência	Projeto de controlador muito complexo Pior taxa de transação de gravação e taxa de transferência de gravação agregada Reconstrução de dados difícil e ineficaz no caso de falha de disco	Nenhuma implementação comercial; inviável comercialmente
5	Mais alta taxa de transação de dados para leitura Baixa razão entre discos de ECC (paridade) e discos de dados o que significa alta eficiência Bom tempo de transferência agregado	Projeto de controlador mais complexo de todos Difícil de reconstruir no caso de uma falha de disco (comparado com RAID nível 1)	Servidores de arquivo e aplicação Servidores de banco de dados Servidores Web, de e-mails e de notícias Servidores de intranet Nível RAID mais versátil
6	Oferece uma tolerância a falhas extremamente alta e pode sustentar múltiplas falhas de unidade simultâneas	Projeto de controlador mais complexo Overhead do controlador extremamente alto para calcular endereços de paridade	Solução perfeita para aplicações de missão crítica

Memória Óptica

Tabela 6.5 Produtos de disco óptico

CD

Compact disk. Um disco não apagável que armazena informações de áudio digitalizadas. O sistema padrão utiliza discos de 12 cm e pode gravar mais de 60 minutos de tempo de execução sem interrupção.

CD-ROM

Compact disk read-only memory. Um disco não apagável para armazenar dados de computador. O sistema padrão utiliza discos de 12 cm e pode manter mais de 650 MBytes.

CD-R

CD Gravável. Semelhante a um CD-ROM. O usuário pode gravar no disco apenas uma vez.

CD-RV

CD Regravável. Semelhante a um CD-ROM. O usuário pode apagar e regravar no disco várias vezes.

DVD

Digital versatile disk. Uma tecnologia para produzir representação digitalizada e compactada de informações de vídeo, além de grandes volumes de outros dados digitais. São usados diâmetros de 8 e 12 cm. com uma capacidade de dupla face chegando até a 17 GBytes. O DVD básico é somente de leitura (DVD-ROM).

DVD-K

DVD Gravável. Semelhante a um DVD-ROM. O usuário pode gravar no disco apenas uma vez. Só podem ser usados discos de uma face.

DVD-RW

DVD Regravável. Semelhante a um DVD-ROM. O usuário pode apagar e regravar no disco várias vezes. Só podem ser usados discos de uma face.

Blu-Ray DVD

Disco de video de alta definição. Oferece densidade de armazenamento de dados muito maior que o DVD, usando um laser de 405 nm (azul violeta). Uma única camada em uma única face pode armazenar 25 GBytes.

CD-ROM de armazenamento óptico

- · Originalmente para áudio.
- 650 MB gerando mais de 70 minutos de áudio.
- Policarbonato com cobertura altamente reflexiva, normalmente alumínio.
- Dados armazenados como sulcos.
- Início ou fim do sulco => "1"
- Sem mudanças na elevação entre intervalos => "0"
- Lidos pela reflexão do laser.
- · Setores de mesmo tamanho.
- Os primeiros eram de Velocidade linear constante (CLV), depois passaram a CAV.
- CLV Disco gira mais lentamente na parte externa do que na parte interna

Velocidade de unidade de CD-ROM

- · Áudio tem velocidade única:
 - —Velocidade linear constante.
 - -1.2 m/s
 - —Trilha (espiral) tem 5,27 km de extensão.
 - —Oferece 4391 segundos= 73,2 minutos.
- Outras velocidades indicadas por múltiplos.
- P.e., 24x (3.600 Kbps).
- Valor indicado é o máximo que a unidade pode conseguir.

Formato do CD-ROM

- SYNC identifica início de um bloco
- Cabeçalho endereço de bloco e byte de modo
- Dados dados do usuário
- Auxiliar depende se no modo 1 (código de correção de erro) ou 2 (dados adicionais)

Formato do CD-ROM

- Modo 0 = campo de dados em branco.
- Modo 1 = 2048 bytes de dados+correção de erro.
- Modo 2 = 2336 bytes de dados.

Acesso aleatório no CD-ROM

- Com o uso do CLV, o acesso aleatório é difícil.
- Move cabeça para posição aproximada.
- Define velocidade correta.
- Lê endereço.
- Ajusta para local solicitado.

CD-ROM – prós e contras

- Grande capacidade (?).
- Fácil de produzir em massa.
- · Removível.
- Robusto.
- Caro para pequenas quantidades (?).
- Lento.
- · Somente de leitura.

Outro armazenamento óptico

- CD-Recordable (CD-R):
 - -Gravável uma única vez.
 - —Compatível com unidades de CD-ROM.
- CD-RW:
 - —Apagável.
 - —Em grande parte compatível com unidade de CD-ROM.
 - —Mudança de fase:
 - Material tem duas refletividades diferentes em dois diferentes estados de fase (amorfo e cristalino).
 - Feixe de luz laser pode mudar o material de uma fase para a outra.
 - Perde as propriedades com o tempo

DVD - O que há no nome?

- Digital Video Disk:
 - —Substituiu a fita VHS analógica nos VCR (*Video Cassete Recorder*).
 - -Substituiu os CD-ROM nos computadores.
 - —Usado para indicar um player para filmes.
 - Só toca discos de vídeo.
- Digital Versatile Disk (nome oficial):
 - —Usado para indicar uma unidade de computador.
 - Lerá discos de computador e tocará discos de vídeo.

DVD - tecnologia

- Capacidade alta (4,7 GB por camada).
- Filme de tamanho completo em único disco.
 - —Usando compactação MPEG.
- Filmes transportam codificação regional.
- Players só tocam filmes da região correta.
- Menor espaçamento entre loops da espiral.
- Menor distância entre sulcos.
- Laser com comprimento de onda mais curto.
- Pode haver camada dupla, camada semirrefletora em cima de camada refletora.
- Pode ter 2 lados, mas não usado.

DVD - gravável

- Muito trabalho com padrões.
- Unidades de DVD de primeira geração não liam discos DVD-W de primeira geração.
- Unidades de DVD de primeira geração não liam discos CD-RW.
- Sempre é bom esperar a situação se estabilizar antes de comprar!

Discos ópticos de alta definição

- Projetados para vídeos de alta definição.
- Capacidade muito mais alta que DVD.
 - —Laser com comprimento de onda mais curto.
 - —Sulcos menores.
- HD-DVD:
 - —15 GB de único lado, única camada.
 - -Perdeu a briga para o Blue-Ray Disk.
- Blue-ray (denominado hoje como BD):
 - -25 GB em única camada.
 - Disponível para apenas leitura (BD-ROM), regravável uma vez (BD-R) e re-regravável (BD-RE e BD-RW).

BDs (Blu-ray Disc)

- Alta capacidade de armazenamento.
- Gravação de HDTV sem perda de qualidade.
- Gravação e leituras em paralelo.
- · Trilhas em espiral.
- Tecnologicamente superior aos DVDs
- Camada de dados mais próxima do laser.
- Foco mais estreito, menos distorção, sulcos menores.
- Laser azul proporciona leitura e gravação em cavidades menores do que em DVDs.
- Taxa de transferência de dados 5x superior a do DVD.
- Suporta técnicas de compactação de dados MPEG-2, MPEG-4, AVC e VC-1.
- Adotado pelo Playstation3, console de videogame de maior sucesso da atualidade

EVD, VMD, HVD e 5D DVD

- EVD (Enhanced Versatile Disk) Lançado pela China.
- VMD (Versatile Multilayer Disk) Iniciativa inglesa, realizando otimizações no DVD onde se pode atingir 100 GB e utilizar o mesmo laser vermelho. Será barato!
 - Até 20 camadas em um disco.
 - Solução de armazenamento móvel.
 - Se raio azul usado, capacidade de 200 GB
 - Forte candidato a novo padrão de formato.
- HVD (Holographic Versatile Disk) é um disco de tecnologia óptica que poderá um dia armazenar até 6 TB de informação, embora o máximo atual seja de 500GB. Utiliza uma técnica conhecida como holografia colinear.

EVD, VMD, HVD e 5D DVD

- 5D DVD (Five Dimension DVD) Meio de armazenamento digital sendo desenvolvido por Peter Zijlstra, James Chon e Min Gu na Swinburne University of Technology em Melbourne, Australia.
- Usa sistema de escrita em partículas extremamente finas.
- Múltiplas camadas lidas por raios de 3 diferentes cores de laser.
- Desenvolvedores acreditam que pode resultar em até 10 Tbytes de armazenamento.

Fita magnética

- Acesso serial.
- · Lenta.
- Muito barata.
- Backup e arquivamento.
- Unidades de fita Linear Tape Open (LTO).
 - —Desenvolvida no final da década de 1990.
 - —Alternativa de fonte aberto para os diversos sistemas de fita patenteados.

Fita magnética

- Meio é uma fita de poliéster flexível.
- Cobertura com material magnetizável.
- Larguras variam de 0,38 a 1,27 cm.
- Praticamente, hoje, todas as fitas são acomodadas em **cartuchos**.
- Antes, era uma série de 18 ou 36 trilhas paralelas, correspondendo a uma ou dupla palavra digital.
- Hoje é usada a gravação serial, a exemplo dos HDs.
- Registros físicos separados por lacunas.
- Gravação em serpentina. Primeiro uma trilha inteira até o final. Em seguida, outra trilha na direção oposta.

Fita magnética

- Para aumentar a velocidade, cabeça de leitura/gravação lê e grava uma série de trilhas adjacentes, simultaneamente.
- Como o acesso é sequencial (e não de acesso direto, como o HD), então poderá haver necessidade de rebobinamento, caso a cabeça esteja posicionada além do registro desejado.
- Fita em movimento apenas durante operação de leitura ou escrita.
- Foi o primeiro tipo de memória secundária.

Fita LTO

- LTO (*Linear Tape Open*) cartucho desenvolvido no final da década de 90.
- Alternativa para diversos sistemas patenteados no mercado
- Usada em sistemas de computadores de grande porte.
- Dimensões de 102,0 x 105,4 x 21,5 mm.
- A partir da LTO 3, inserida capacidade WORM (Write Once Read Many). É uma proteção legal. Um cartucho WORM pode ser lido muitas vezes, mas não poderá ser apagado ou reescrito.

Fitoteca

- Autoloader com 2 Drives LTO-2, expansíveis para 6.
- Capacidade de 24 cartuchos de 200/400 GB.
- Interface FCP-2 de 2 Gbps.
- Até 9,6 Terabytes.
- Taxa sustentada de 108
 GB/hora.

Fitas LTO

	LTO-1	LTO-2	LTO-3	LTO-4	LTO-5	LTO-6
Data de lançamento	2000	2003	2005	2007	TBA	TBA
Capacidade compactada	200 GB	400 GB	800 GB	1600 GB	3,2 TB	6,4 TE
Taxa de transferência compactada (MB/s)	40	80	150	240	360	540
Densidade linear (bits/mm)	4880	7398	9638	13300		
Trilhas de fita	384	512	704	896		
Comprimento da fita	609 m	609 m	68) m	820 m		
Largura da fita (cm)	1,27	1,27	1,27	1,⊅		
Elementos de gravação	8	8	16	16		

Tabela do Livro

Fitas LTO

	Generation								
Attribute	LTO-1	LTO-2	LTO-3	LTO-4	LTO-5	LTO-6	LTO-7	LTO-8	
Release Date	2000	2003	2005	2007	2010	TBA [4]	TBA	TBA	
Native Data Capacity	100 GB	200 GB	400 GB	800 GB	1.5 TB ^[5]	3.2 TB ^[6]	6.4 TB ^[4]	12.8 TB ^{[4}	
Max Speed (MB/s)	20	40	80	120	140	270 ^[7]	315 ^[4]	472 ^[4]	
Compression Capable?			Yes	Yes "2:1"			Planned "2.5:1" [4]		
WORM Capable?	No		Yes		'es	Planned			
Encryption Capable?	No		Yes		Planned				
Partition Capable?	No (1)		(1)	1) Yes (2)		Planned			
Tape Thickness	8.9	8.9 µm		6.6 µm	6.4 µm				
Tape Length	609	9 m	680 m 820 n		846 m				
Tape Tracks	384	512	704	896	1280				
Write Elements		8 16		6 ^[5]					
Wraps per Band	12	16	11	14	20 ^[5]				
Linear Density (bits/mm)	4880	7398	9638	13250	15142 ^[8]				
Encoding	RLL 1,7	RLL 1,7 RLL 0,13/11;		PRML	RLL 32/33; PRML				

Tabela atualizada na Wikipedia (em inglês)

SSDs (Solid State Drive ou Solid State Devices)

- Elétrons viajam por dentro de um material sólido.
- · Armazenamento não volátil.
- Usam as mesmas interfaces que os HDs.
- Não possui partes móveis (motores e cabeças).
- Construído com semicondutores, diferentemente de sistemas magnéticos (HDs e fitas LTO) e ópticos CDs, DVDs e BDs)
- Tempo de acesso reduzido.
- · Mais resistentes.
- Menor peso e menor consumo de energia.
- Largura de banda superior aos concorrentes.
- Suporta temperaturas mais elevadas.
- Desvantagens: alto custo e capacidade inferior aos tradicionais HDs

SSDs (Solid State Drive ou Solid State Devices)

OCZ Technology Vertex 2 OCZSSD2-2VTX80G 80 GB Internal Solid State Drive (US\$160.00)

SSDs (Solid State Drive ou Solid State Devices)

OCZ Vertex 2	80 GB
Sequential Read	250 MB/s
Sequential Write	275 MB/s
Power Consumption (Active)	2.0 W
Power Consumption (Idle)	0.5 W

OCZ Technology Vertex 2 OCZSSD2-2VTX80G 80 GB Internal Solid State Drive (US\$160.00)

SSDs (Solid State Drive ou Solid State Devices)

OCZ Technology 240GB Vertex 2 SATA II 3.5" Internal Solid State Drive (US\$500.00)

SSDs (Solid State Drive ou Solid State Device)

Crucial RealSSD C300 256 GB Internal SSD (US\$500.00)