Classification Model with 93% Accuracy - Telco Customer Churn Analysis

terescent of the little land and terescent of the little

12 Jan 2024

A by Ahmad zaki bin ramli

ď

Table of Content

Self Introduction	- Education, Work experience & About me			
Course Timeline	- The period spanning from month 1 to month 6			
Technology Stack	- Language, tools and environment			
Project Overview, Problem Statement & Objective	- This project aims to address industry problems by achieving objectives through the defined step			
Exploratory Data Analysis	- Data Inspection, Anamolies Detection (Distribution & Boxplot)			
Feature Impotance (Random Forest)	- Encoding, Random Forest ML, Hyperparameter Tuning & Top of feature			
Predictive Modeling	- Encoding, Machine learning, Hyperparameter Tuning & Result			
Solution	- Recommendations for reducing churn			
Project Timeline	- Milestones and key deliverables			
Project Budget	- Estimated cost breakdown			

Self Introduction

UNIVERSITI KEBANGSAAN MALAYSIA The National University of Malaysia

About me

- Name: Zaki
- Hometown: Ipoh, Perak.
- Current Location: Living in Putrajaya for work purposes
- Passion: Determined to explore new fields and continuously learn and improve.

Education

- Degree: Bachelor's in Economics
- Graduate Year: End of 2022
- Challenges: Completed degree during the COVID-19 pandemic, which made learning and exams difficult due to the shift to online platforms
- **Achievement:** Despite challenges, remained focused on pursuing personal growth and career development.

Work experience

- Position: Personal MYSTEP (Graduate Program) at the Ministry of Economic Affairs
- Duration: Almost 2 Years
- Responsibilities: Gained experience in management and government-related work, assisting in economic projects and initiatives.

Course Timeline

Month 1

 Self resilience mastery, Communication Mastery, career Launcpad Mastery

Month 2

- Introduction of Data Science
- Set up Environment
- Introduction to Language python and Others Libraries (Pandas)

Month 3

- · Introduction to Numpy
- Data Visualization with Seaborn
- · Web Scraping
- Introduction Language SQL

Month 4

- Introduction Statistical Data Analysis
- Introduction to Machine Learning
- Supervised Learning
- Unsupervised Learning
- Introduction to Recommended System

Month 6

Final Review

Month 5

- Introduction to Deep Learning & NLP
- Capstone Project
- Self Leadership

Technology Stack

- Data Analysis Tools
- Visualization Libraries
- Machine Learning Frameworks

Project Overview

- Customer churn impacts the revenue and growth of telecommunications companies like Celcom.
- Celcom needs to identify the key factors that affect customer churn, such as pricing, network quality, customer service, and service offerings.
- This project aims to predict customer churn by analyzing data on Celcom's customers and their service usage patterns.
- Identifying patterns and trends in the data will help Celcom improve its customer retention strategies, allowing them to take actions to prevent churn and retain valuable customers.

Objective

- Identify the **factors influencing** churn and patterns in the data.
- Predict customer churn using machine learning model.
- Help Celcom companies improve their customer retention strategies.

Problem Statement

- Customer churn directly affects the profit and growth of telecommunications companies like Celcom.
- In a competitive market, companies such as Celcom, Maxis, Digi, and U Mobile face chall
- Customers may leave due to factors such as pricing, service quality, customer support, or better offers from competitors.
- It is important to identify the key factors influencing churn, such as network reliability, customer service satisfaction, and pricing structure.
- Predicting the likelihood of churn helps companies like Celcom take effective preventive actions to retain customers.

Inspection Datatypes, Missing Values

checking the following parts of the data for an initial review:

- → Datatypes
- → Duplicates data
- → Missing values

Don't have any duplicated data

object customerTD object gender SeniorCitizen int64 Partner object Dependents object tenure int64 object PhoneService MultipleLines object InternetService object OnlineSecurity object OnlineBackup object DeviceProtection object TechSupport object StreamingTV object StreamingMovies object object Contract PaperlessBilling object PaymentMethod object MonthlyCharges float64 TotalCharges object Churn object dtype: object

values df.isna().sum() customerID 0 gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection TechSupport StreamingTV StreamingMovies

Don't have any missing

 Need to change to numerical instead of object

Contract

PaperlessBilling

0

0

PaymentMethod

MonthlyCharges

TotalCharges

dtype: int64

Churn

Anamolies Detection (Boxplot)

Explanation

61.00

- Total Charge looks suspicious for the first inspection.
- Total Charge = 0 meaning they are a new customer and its really make sense and this is not the outliers
- Tenure & MonthlyCharges looks normal

Feature Importance

Data Transformation

Using Label Encoding
Scaling (Standardscaler)

TRAIN

TEST

of_scaled_tead()

in Citizen	torCitizen P	artner	Dependents	Senure	PhoneService	MultipleLines	InternetService	OrdineSecurity	OnlineBackup
0	0	1	0	-1277465	0.		0	.0	2
0	a	0	0	0.066327	7.		Ð		0
0	0	n	· D	-1236724	1	.0	٥	2	2
0	0		0	0.514251	0	1	0	- 3	0
0	0	D	D	-1236724	1		10		0
		0	0 0	0 D D	0 0 0 -1296724	0 D D -1256724 1	0 0 0 -1296724 1 0	0 0 0 -1296724 1 0 1	0 0 0 -1296724 1 0 1 0

Machine Learning (Random Forest)

Model Overfitting

Classification Report (Train):

precision recall F1-score supp
1.00 1:00 1.00 4

	biacrares	LACKET.	AT-REALS	PERDON F
9	1,00	1.00	1.00	4139
1	1.00	1.00	1.00	1495
accuracy			1,00	5634
macro mvg	1.00	1.88	1.00	5634
weighted mvg	1.00	1.00	1.00	3634

--- Performance on Test Set ---Accuracy (Test): 0.7892122872391767

Classification Sanct (Test):

--- Performance on Yrain Set ---

Accuracy (Train): 0.9988475683351883

FTGDPPLTCATTO	o aspect the	3411		
	precision	recell	fl-score	support
	0.83	8.98	0.86	1035
1	6.63	0.40	0.55	374
accuracy			0.79	1489
macro syg	0.73	8.78	0.75	1489
weighted avg	0,76	0.79	6.76	1489

After Tuning

Model Balance

Fitting 5 folds for each of 72 candidates, totalling 360 fits
Best Parameters: {'max_depth': None, 'min_samples_leaf': 5, 'min_samples_split': 15, 'n_estimators': 50}

Cross-Validation Scores; [8.79148181 8.7985945 8.78527863 8.78172138 8.74333925] Mean CV Accuracy: 8.7784815153935638

*** Performance on Train Set ***
Accuracy (Train): 0.8485977998779323

n Report (Tr	ain):			
precision	recall	fl-score	support	
0.95	0.54	0.89	4139	
0.66	0.87	0.75	1495	
		0.85	3634	
	precision		precision recall f1-score 0.95 0.84 0.89 0.66 0.87 0.75	precision recall f1-score support 0.95 0.84 0.89 4139 0.66 0.87 0.75 1485

*** Performance on Test Set *** Accuracy (Test): 0.7643718949689652

Classification	Report (Te	st):		
	recision	recall	F1-score	support
0	0.89	0.78	0.83	1035
1	0.54	8.73	0.62	374
accuracy			9.76	1489
macro avg	0.72	0.75	0,73	1409
wall general miles	0.04	0.75	0.77	3.600

 This model ready for feature importance

Feature Importance

Hyperparameter Tuning

- Class Weight (Imbalance dataset)
- Grid Search
- Cross Validation

Top Feature Impotance

Using Threshold Mean Feature Importance (Feature selection)

Predictive Modeling

Data Transformation Using Top Feature

	Contract	tenure	MonthlyCharges	OnlineSecurity	TotalCharges	TechSupport	Churn
0	Month-to-month	1	29.85	No	29.85	No	No
1	One year	34	56.95	Yes	1889.5	No	No
2	Month-to-month	2	53.85	Yes	108.15	No	Yes
3	One year	45	42.30	Yes	1840.75	Yes	No
4	Month-to-month	2	70.70	No	151.65	No	Yes

One Hot Encoding

	tenure	MonthlyCharges	TotalCharges	Chum	Contract_Moeth- to-month	Contract_One year	Contract, Two year	OnlineSecurity_No	OnlineSecurity_No internet service	OnlineSecurity_Yes	TechSup
0	1.277445	-1.160323	-0.992611	0	Trué	Firse	False	True	False	false	
1	0.066327	-0.259629	-0.172165	٥	False	True	Faise	Faise	False	Tue	
2	1,236724	-0.362660	-0.958066	1	True	Faise	False	False	False	True	
3	0.514251	-0.746535	-0.199672	0	Yese	True	faise	false	felse	True	
4	1.236724	0.197365	-0.936874	1	True	False	False	True	False	False	
1											,
đŦ_	filtered:	(.shape									
(70	43, 7)										

Machine Learning

Predictive Modeling

Result for each model

Evaluation for Random Forest with 93% Accuracy

Predictive Modeling

Top Feature Impotance

Explanation

 Very detail on feature importance compare with before because this dataset using One Hot Encoding.

Provide Solution

--

Recommendations for reducing churn

- → Focus on Customers with Month-to-Month Contracts: Introduce Rewards Programme
- → Focus on High Total Charges Customers: Cash back
- → Addressing Issues with OnlineSecurity and TechSupport: 24/7 Technical support and online security
- → Utilizing ML Models for Churn Prediction: Early Warning Sytem for Retentation

Project Timeline

Project Budget

Bil	Cost Component	Cost (RM)	Explanation
1.	Salaries	15,000	Payment to team data experts for building a predictive model.
2.	Infrastructure	12,000	server (RM 10,000), and cloud storage(RM 2,000).
3.	Testing & Maintenance	4,000	Estimated cost for testing and updates (RM 1,000 per month for 4 months).
4.	Survey Costs	4,000	Includes survey design (RM 1,000), distribution (RM 500), incentives (RM 1,500), and data analysis.

Total Cost: RM 35,000

Conclusions

- → In the customer churn analysis for the companies, we successfully developed a classification model with 93% accuracy.
- → This model identifies customers at risk of churning and highlights key factors influencing their decisions, such as pricing, service quality, and customer support.
- → Implementing these strategies will help proactively engage with at-risk customers, reduce churn rates, and improve overall customer satisfaction.
- → Customer retention is vital for the growth and profitability of telecommunications companies like Celcom, etc.
- → By leveraging data-driven insights and implementing targeted strategies, can strengthen its customer relationships and gain a competitive advantage in the market.

Thank You For Your Time!

