Zone-DR: Discovery Radiomics via Zone-level Deep Radiomic Sequencer Discovery for Zone-based Prostate Cancer Grading using Diffusion Weighted Imaging

Linda Wang*^{1,2}, Chris Dulhanty*^{1,2}, Audrey Chung^{1,2}, Farzad Khalvati³, Masoom Haider³, Alexander Wong^{1,2} equal contribution*, University of Waterloo¹, Waterloo Al Institute², Lunenfeld-Tanenbaum Research Institute³

Introduction 1 in 9 men will be diagnosed with prostate cancer during his lifetime Prognosis is good given early Fast and reliable detection screening methods, .e.: MRI Diffusion weighted imaging computed high-b value apparent diffusion diffusion weighted coefficient (ADC) imaging (CHB-DWI) Current methods use threshold approaches Does not account for variations in imaging

Contributions:

- Investigate efficacy of ADC and CHB-DWI when applied to prostate zone gradings
- Repropose **Zone-DR**, zone level deep radiomic sequencer discovery

ADC Threshold

 $< 1000 s/mm^2$

min ADC value of zone

Cancerous

Methods **Dataset** 101 patients $(\hat{\mathbf{j}} \hat{\mathbf{j}} \hat{\mathbf{j}} \hat{\mathbf{j}} \hat{\mathbf{j}} \hat{\mathbf{j}})$ 12,466 pathology verified prostate zones from DWI data 12,361 negative (non-cancerous) 135 positive (cancerous) To account for imbalance, weights of 1 and 95 are used for negative and positive zones, respectively.

Discovery Radiomics

Radiomics sequencer discovery

Performed Bayesian optimization (Sigopt conditional experiments) over sequencer design space: number of convolutional layers, number of filters per layer and number of channels for fully connected layers.

0. Non-cancerous

. Cancerous

Discovered radiomic sequencer

conv3-29 conv3-23 conv3-15 conv3-46 conv3-18 conv3-106 flatten-288 flatten-1696

FC-295

SIGOPT Send score Network Cancer cancer equipment, signal characteristics between of current architecture architecture suggestions healthy and cancerous tissue AUC Training results

Current

patient

Zone-DR

1-Specificity

CHB-DWI Threshold

 $> 1000 s/mm^2$

max CHB-DWI value of zone

 M_{CHB}

Cancerous

data

Results

Optimal threshold for Zone-DR depends on clinical setting. For this study, equal weight was given to specificity and sensitivity. $\hat{\theta} = \operatorname{argmax}((1 - fpr(\theta)) + tpr(\theta))$

Modality	Technique	AUC	Sensitivity	Specificity	Accuracy
ADC	Threshold		0.895	0.601	0.604
	Zone-DR	0.858	0.874	0.737	0.738
CHB-DWI	Threshold		0.733	0.824	0.823
	Zone-DR	0.882	0.828	0.873	0.873

Conclusion

- For different clinical scenarios, weighting for sensitivity and specificity can be adjusted
 - Maximizing specificity is important for surgery for removal of prostate → minimize false positive rate to avoid unnecessary surgeries

FC-341

Maximizing sensitivity for cancer screening may be useful to avoid missing cancerous patients

Future work

- Explore different methods to overcome the imbalanced dataset
- Discourrent work to build up to slice-level detection
- Experiment with a combination of modalities (i.e.: one modality per channel)
- Explore different deep radiomic sequencer designs

