Álgebra lineal II, Grado en Matemáticas

Septiembre 2015

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz de Gram un producto escalar.
- (b) Matriz de Jordan.
- (c) Polinomio anulador de un endomorfismo.
- (d) Subespacio invariante y subespacio invariante irreducible.

Ejercicio 1: (2 puntos)

Sea A una matriz cuadrada de orden n (real o compleja) tal que la suma de los elementos de cada fila es igual a 1. Demuestre que $\lambda=1$ es un autovalor de A y obtenga un autovector asociado.

Ejercicio 2: (2.5 puntos)

Sea $\mathcal{B} = \{v_1,\,v_2,\,v_3\}$ una base ortonormal de \mathbb{R}^3 y f un endomorfismo tal que

$$3f(v_1) = 2v_1 - 2v_2 + v_3$$
, $3f(v_2) = av_1 + v_2 - 2v_3$, $3f(v_3) = bv_1 + cv_2 + 2v_3$

- (a) Encuentre los valores de los parámetros $a,b,c\in\mathbb{R}$ para los cuales f es una isometría vectorial.
- (b) Para los valores obtenidos, indique si se trata de una simetría, un giro o la composición de giro y simetría.

Ejercicio 3: (3.5 puntos) Sea Φ_a la siguiente forma cuadrática de \mathbb{R}^3

$$\Phi_a(x, y, z) = x^2 + 4y^2 + 2z^2 + 2xy + 2axz, \ a \in \mathbb{R}$$

(a) Para $a \neq 0$ determine los valores de λ y μ reales para que el conjunto

$$\{(1,0,0),\,(1,\lambda,0),\,(-4a,a,\mu)\}$$

forme una base de vectores conjugados.

(b) Clasificar la forma cuadrática Φ_a para todos los valores $a \in \mathbb{R}$.