

Beyond Basic Vectorization Techniques

Vectorization

Represents words as vectors of dimensions in a way that captures their meanings, relationships, and context.

Continuous Bag of Words

"The CEO delivered a compelling presentation at the board meeting."

Continuous Bag of Words

Takes context words as input and predicts the most likely outcome or word to complete the missing part of sentence.

"The CEO delivered a compelling _____ at the board meeting."

presentation

speech

idea

thought

Continuous Bag of Words

"The CEO delivered a compelling _____ at the board meeting."

Input	Target
delivered	presentation
compelling	presentation
board meeting	presentation

speech

presentation

idea

thought

Continuous Bag of Words Model

Continuous Bag of Words Model

Skip-Gram

Starts with a target word and uses it to predict the surrounding context words.

"The CEO delivered a compelling presentation at the board meeting."

Input	Target
presentation	delivered
presentation	compelling
presentation	board meeting

- Stands for Global Vectors.
- Developed by Stanford University researchers.
- Analyzes frequency of words and assigns similar numerical vectors.

2. GloVe: Building the Co-occurrence Matrix

"The CEO delivered compelling presentation at the board meeting."

	CEO	delivered	compelling	presentation	board
CEO	0	1	0	0	0
delivered	1	0	1	0	0
compelling	0	1	0	1	0
presentation	0	0	1	0	0
board	0	0	0	0	0

	CEO	delivered	compelling	presentation	board
CEO	0	1	0	0	0
delivered	1	0	1	0	0
compelling	0	1	0	1	0
presentation	0	0	1	0	0
board	0	0	0	0	0

Calculate probabilities ratios

1	CEO	delivered	compelling	presentation	board	Calculate probabilities ratios
CEO	0	1	0	0	0	
delivered	1	0	1	0	0	<u> </u>
compelling	0	1	0	1	0	Cost function approximates ratios by
presentation	0	0	11	0	0	using the dot of word vectors.
board	0	0	0	0	0	

	CEO	delivered	compelling	presentation	board	Calculate probabilities ratios
CEO	0	1	0	0	0	
delivered	1	0	1	0	0	
compelling	0	1	0	1	0	Cost function approximates ratios by
presentation	0	0	1	0	0	using the dot of word vectors.
board	0	0	0	0	0	
						Adjust word vectors by minimizing cost function

3. fastText

Developed by Google in 2015

- Enhances word embeddings by using sub-word units like n-grams of characters within words.
- Extends the Word2Vec model to handle rare, new, or misspelled words.

"Playing"

"Play" "layi" "aying"

4. ELMo

Embedding from language models

- Uses bi-directional LSTM models
- Pre-trained on large corpus to predict next word based on previous and future words.

5. BERT

Bidirectional Encoder Representations from Transformers

- Consider both left and right context of words in a sentence.
- Uses Transformer architecture

Up Next: RNN Model in Jupyter