Small dense subgraphs of polarity graphs and the extremal number for the 4-cycle

Michael Tait* Craig Timmons[†]

Abstract

In this note, we show that for any $m \in \{1, 2, ..., q+1\}$, if G is a polarity graph of a projective plane of order q that has an oval, then G contains a subgraph on $m + {m \choose 2}$ vertices with $m^2 + \frac{m^4}{8q} - O(\frac{m^4}{q^{3/2}} + m)$ edges. As an application, we give the best known lower bounds on the Turán number $\operatorname{ex}(n, C_4)$ for certain values of n. In particular, we disprove a conjecture of Abreu, Balbuena, and Labbate concerning $\operatorname{ex}(q^2 - q - 2, C_4)$ where q is a power of 2.

1 Introduction

Let F be a graph. A graph G is said to be F-free if G does not contain F as a subgraph.

Let $\operatorname{ex}(n, F)$ denote the Turnnumber of F, which is the maximum number of edges in an n-vertex F-free graph. Write $\operatorname{Ex}(n, F)$ for the family of n-vertex graphs that are F-free and have $\operatorname{ex}(n, F)$ edges. Graphs in the family $\operatorname{Ex}(n, F)$ are called $\operatorname{extremal} \operatorname{graphs}$. Determining $\operatorname{ex}(n, F)$ for different graphs F is one of the most well-studied problems in extremal graph theory. A case of particular interest is when $F = C_4$, the cycle on four vertices.

^{*}Department of Mathematics, University of California San Diego, mtait@math.ucsd.edu

[†]Department of Mathematics and Statistics, California State University Sacramento, craig.timmons@csus.edu