

Sharif University of Technology

Department of Computer Engineering

Low Power Digital System Design

Gate-Level Techniques

A. Ejlali

Gate-Level LPD Techniques

- Technology Decomposition and Mapping
- Activity Postponement
- Glitch Reduction
- Concurrency and Redundancy

Technology Decomposition and Mapping

- Realization of Boolean Functions
 - Switch-Level: Results in complex CMOS gates
 - Gate-Level: Results in networks of simple CMOS gates
- Example:

Technology Decomposition and Mapping

- Main Idea: hide high activity nodes inside complex CMOS gates.
- Example:

d is hidden inside a complex gate

Technology Decomposition and Mapping

• Rapidly switching signals are mapped to the low capacitance internal nodes.

Technology Decomposition and Mapping Impact on Performance

- Making a gate too complex can slow the circuit, resulting in a trade-off of performance for power.
 - Stacked transistors in the gates with large C_L
 - Decreased concurrency
- Solution: Be careful of the circuit critical path.

Estimation of Transition Probabilities

- Analytical Techniques
 - Certain kinds of input distributions
 - Re-convergent Fan-out Problem
- Circuit Simulation
 - Time-consuming
 - Realistic input stimulus

Calculation of Probabilities

- Zero delay model (ignore glitching)
- Primary inputs are uncorrelated
- Present input value is independent of the previous value

$$P(W_{0\to 1}) = P(W_{1\to 0}) = P(W_0) \cdot P(W_1)$$

- Note:
 - This equation is independent of circuit topology (reconvergent fan-outs).
 - The above equation is valid for static CMOS style. For dynamic CMOS style we can write:

$$P(W_{0\to 1}) = P(W_1)$$

Output activities for static and dynamic CMOS styles

P _{out} (0→1)	Pout	P _{out} (0→1)	
Static Dynamic	<u>Static</u>	<u>Dynamic</u>	
3/16 1/4	3/16	1/4	
3/16 1/4	3/16	1/4	
1/4 1/2	1/4	1/2	
1/4 1/2	1/4	1/2	

Example: FA Unit (Static CMOS)

• Hint: The signal activity can be easily obtained from its truth table.

Probability Propagation

	$P_{0\rightarrow 1}$
AND	$(1-P_AP_B)P_AP_B$
OR	$(1-P_A)(1-P_B)(1-(1-P_A)(1-P_B))$
EXOR	$(1 - (P_A + P_B - 2P_A P_B))(P_A + P_B - 2P_A P_B)$

- Assumption: Independence of input probabilities.
- Main Problem: Re-convergent Fan-outs cause cross-correlation between the inputs of a gate.

Re-convergent Fan-out

P(C=1)=P(A=1).P(B=1|A=1)=P(B=1).P(A=1|B=1)

Note: The truth table technique is still applicable