Numerical Methods Lecture 4: Projection Methods

Zachary R. Stangebye

University of Notre Dame

Fall 2017

Optimization Basics Spectral Bases Distance Functions Adding States Smolyak's Algorithm Hybrid Method

Constrained Max

- (Most) projection methods will rely heavily on large-scale optimization algorithms
- A brief discussion is in order
 - 1. Which algorithms are out there?
 - 2. What do they do?
 - 3. How do they work?
 - 4. When are they appropriate?
- Cover 4 different ones
 - 1. L-BFGS (local max)
 - 2. Pattern Search (local max, non-gradient-based)
 - 3. Genetic Algorithm (global max)
 - 4. Simulated Annealing (global max)
- Useful for other reasons e.g. moment-matching, estimation

Simple Example

Consider following large-scale problem

$$\max_{\{c_i\}_{i=1}^N} \sum_{j=1}^N \beta_i \log(c_i)$$

subject to
$$\sum_{i=1}^{N} p_i c_i \leq I$$

- Want to solve this model for large N e.g. 20 or 40
- Suppose that $\beta_i=i$ and $p_i=e^{\beta_i/4}$ i.e. higher priced goods deliver more utility
 - But not in a way that can be scaled by hand

Simple Example: Dual

- Dual problem features non-linear constraints
- Suppose utility maximizing bundle $\implies \bar{u}$

$$\min_{\{c_i\}_{i=1}^N} \sum_{i=1}^N p_i c_i$$

subject to
$$\sum_{i=1}^N eta_i \log(c_i) \geq ar{u}$$

Approach 1: L-BFGS

- 'fmincon' in Matlab
- Variant of Multidimensional Newton's Method
- · Recall in one-dimension

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

In higher dimensions

$$\mathbf{x}_{n+1} = \mathbf{x}_n - H_f^{-1}(\mathbf{x}_n) \nabla_f(\mathbf{x}_n)$$

- · Very fast, but three big issues
 - 1. Local maxima (mimina) only
 - 2. Pure Newton-Raphson does not handle constraints well
 - 3. Numerical Hessians notoriously inaccurate

Optimization Basics Spectral Bases Distance Functions Adding States Smolyak's Algorithm Hybrid Method

Approach 1:L-BFGS

- Issue (1) cannot be fixed...
- Issue (2) handled in a 'traditional' way ('interior-point' method)
- Issue (3) is the cool part!
 - Algorithm carries around an approximation to the Hessian
 - Necessarily symmetric
 - Uses gradient to update it with the gradient every iteration
 - By the time it converges, get a pretty good estimate!
- Hessian is useful for lots of reasons
 - Really cool to have a robust estimate of it!
 - Even if you use a different maximizer, often helpful to feed that answer into this algorithm if only to get the Hessian

Approach 2: Pattern Search

- Non-gradient-based method for local optimization
- Builds 'mesh' of new points around current point
- Takes a 'poll' of those points to find the best
- Shift to best; increase or decrease the mesh as we progress
- Very fast; handles constraints pretty well

Approach 2: Pattern Search

Approach 2: Pattern Search

- Rough procedure. Set MeshSize = 1
 - 1. Build mesh around current point, x_i

$$x_{i+1,poll_j} = x_i + (-)MeshSize \times e_j$$

For j = 1, ..., N i.e. positive and negative in all directions

- 2. If best poll point beats x_i , set that to x_{i+1} and double MeshSize for next iteration
- 3. If no poll point beats x_i , halve *MeshSize* and try again
- 4. Stop when *MeshSize* gets small e.g. 1e 6

Optimization Basics Spectral Bases Distance Functions Adding States Smolyak's Algorithm Hybrid Method:

Approach 3: Genetic Algorithm

- What if we know there are many local maxima?
- Gradient methods will lead us astray
- Genetic algorithm viable alternative
- Designed to imitate evolutionary behavior
 - 1. Create a random initial 'population' i.e. collection of points
 - 2. Randomly create a sequence of new populations using current ones as 'parents'
 - 3. Best populations 'survive' iterations
 - 4. Stops when average change in generation 'fitness' is small
 - 5. Best point from last generation is solution
- Might also stop after certain number of generations/time (controllable options)

Optimization Basics Spectral Bases Distance Functions Adding States Smolyak's Algorithm Hybrid Method

Approach 3: Genetic Algorithm

- Important part: How to produce 'children'
- Three ways
 - 1. 'Elite' parents (best value) automatically survive as children in the next generation (*elite* child)
 - 2. Two random parents 'mate' i.e. some vector elements chosen from parent 1 and others from parent 2 (*crossover* child)
 - Introduce small, random changes to a random parent (mutation child)
- Very slow, inaccurate if solution time is restricted (as is default in Matlab)
- But if you have time to let it run for a long time...
 - · One of most reliable ways to find difficult global max
 - · Handles all kinds of constraints really well

- Alternative global search
- Meant to mimic physical process of heating a material and then slowly lowering the temperate to decrease defects
- Procedure: Starting from an initial point
 - 1. Randomly generate a nearby new point in a radius that shrinks with iterations ('temperature')
 - If new point is better, make it the current point
 - If new point is worse, make it the new point with probability =

$$\frac{1}{1 + \exp\left(\frac{f(x_n) - f(x_{n+1})}{T}\right)}$$

where T is the current 'temperature' (shrinks over time)

- 2. Systematically lower the temperate with each iteration
- 3. Check gradient: If sufficiently small, 'reheat' (not all the way) the system to get it searching more broadly again

Optimization Basics Spectral Bases Distance Functions Adding States Smolyak's Algorithm Hybrid Method:

Approach 4: Simulated Annealing

- Benefits
 - Largely (but not totally) gradient-free
 - If temperature cools sufficiently slowly, convergence to global max is guaranteed!
 - Errors tend to be smaller than genetic algorithm
- Cons
 - Really slow
 - Cannot handle constraints well (only 'box' constraints)

Example: Simulated Annealing

- Since simulated annealing cannot handle general constraints, we consider a different problem
 - A firm sells its good at a normalized price p = 1
 - It uses N intermediate inputs and has a production function $f(\mathbf{x}) = \prod_{i=1}^N x_i^{\alpha_i}$, where $\sum_{i=1}^N \alpha_i = 1$
 - The prices of intermediate goods are as in demand problem

$$\max_{\{x_i\}_{i=1}^N} \prod_{i=1}^N x_i^{\alpha_i} - \sum_{i=1}^N p_i x_i$$

 Notice this problem is unconstrained; we could put large 'box' bounds on it if we wanted Optimization Basics Spectral Bases Distance Functions Adding States Smolyak's Algorithm Hybrid Method

Aside

- Optimization routines often very similar to root-finding routines
 - Often the former is the latter on a FOC
- Computation time similar across two for related algorithms
- Big difference: Local vs. global distinction
 - Matters a lot for optimization methods
 - Irrelevant for rootfinding
 - May be many roots, but generally each is equally useful

Rootfinding

- Solve *n*-dimensional, nonlinear system of equations $F(\mathbf{x}) = \mathbf{0}$
 - In Matlab, use fsolve
- Under the hood, though, Matlab uses a variation of least-squares minimization to solve this problem i.e.

$$\min_{\mathbf{x}}[F(\mathbf{x})]'W[F(\mathbf{x})]=0$$

for some positive definite $n \times n$ weighting matrix, W

- Typically employ Newton-Raphson or similar technique
- Often pretty fast, but does not handle constraints well

• The FOC of our producer's problem yields (for i = 1, ..., N)

$$\alpha_i x_i^{\alpha_i - 1} \prod_{j \neq i} x_j^{\alpha_j} - p_i = 0$$

Rootfinding: Julia

- Two good ways
 - 1. Use 'NLsolve' package
 - nlsolve(f!, initialGuess), where $f: \mathbb{R}^N \to \mathbb{R}^N$
 - Comparable to Matlab's fsolve
 - 2. Use 'Optim' package (minimization)
 - Define objective to be

$$\min_{x} \sum_{i=1}^{N} f_i(x)^2$$

- A zero of f will be a local minimum of this problem
- Has options for BFGS, PatternSearch (NelderMead), and Simulated Annealing
- Work pretty well (much faster than Matlab, though perhaps not as robust)

Projecting Functions

• Same goal: Approximate the function $d(\mathbf{x})$ such that

$$\mathcal{H}(d) = \mathbf{0}$$

• Basic idea: Build up approximation to $d(\mathbf{x})$ with linear combination of known functions

$$d^{j}(\mathbf{x}|\theta) = \sum_{i=0}^{J} \theta_{i} \Psi_{i}(\mathbf{x})$$

- The collection of functions $\{\Psi_i(\mathbf{x})\}_{i=0}^{\infty}$ are called *basis* functions
 - *j* is degree of approximation (accuracy)
- All we need to do is find the right vector $heta \in \mathcal{R}^{j+1}$

Projecting Functions

- ullet Want to find the best heta by minimizing errors (residuals)
- Residual function very intuitive

$$R(\mathbf{x}|\theta) = \mathcal{H}(d^j(\mathbf{x}|\theta))$$

Want to minimize some function of the residuals

$$\min_{\theta} \ \rho(R(\mathbf{x}|\theta), \mathbf{0})$$

where $\rho(\cdot,\cdot)$ is some distance metric

- Three big degrees of freedom
 - 1. Precision/degree (j)
 - 2. Choice of basis functions
 - 3. Choice of metric

Relation to Econometrics

- 'Projecting' in this fashion smacks of OLS econometrics
- This is no coincidence
- Old-school regression can be interpreted as this
 - Want to approximate unknown function E[Y|X]
 - Use monomials as basis function $(1, x, x^2, ...)$
 - Use Euclidean distance metric

Basis Functions: One-Dimensional

- Important to get basis functions right
- Start with Spectral Bases
 - Smooth over entire region
 - Tightly parameterized
- Unidimensional Basis Functions
 - 1. Monomials
 - 2. Spline
 - 3. Jacobi Polynomials
 - 4. Chebyshev Polynomials
- Notation: One vs. Multi-dimensional
 - $\psi(x): \mathcal{R} \to \mathcal{R}$
 - $\Psi(\mathbf{x}): \mathcal{R}^n \to \mathcal{R}$

Monomials

Most intuitive set of basis functions

$$\psi_i(x) = x^i$$

$$\implies \mathcal{B} = \{1, x, x^2, x^3, \dots\}$$

And they work!

Theorem (Stone-Weierstrass Corollary)

If f(x) is a real-valued, continuous function on the compact set K, then for any $\epsilon > 0$, $\exists h(x) \in span(\mathcal{B})$ such that

$$\sup_{x \in K} |f(x) - h(x)| < \epsilon$$

imization Basics **Spectral Bases** Distance Functions Adding States Smolyak's Algorithm Hybrid Method

Monomials

- We could use some linear combination of monomials to get arbitrarily close to any continuous function over any compact set
- BUT...not always very efficient
- Two big problems
 - 1. Nearly multicollinear in function space, especially for high j
 - 2. Considerable variation in size
 - e.g. $\psi_{11}(.5) = 4.8e 4$, $\psi_{11}(1.5) = 86.5$
 - Scaling problems
 - Accumulation of numerical errors

Monomial Problems

Example of Multicollinearity

- Already thought of splines as an interpolation method
- Another sort can be used as basis functions: B-splines
 - Piecewise polynomials of order p
 - Can be defined recursively
 - Define n + 1 equidistant *knots* over domain: $\{u_0, u_1, \dots, u_n\}$

$$N_{i,0}(u) = \begin{cases} 1, & u_i \leq u < u_{i+1} \\ 0, & o/w \end{cases}$$

$$N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)$$

Basic idea: 'Hills' between each of the knots

B-Splines

imization Basics Spectral Bases Distance Functions Adding States Smolyak's Algorithm Hybrid Method

B-Splines

- Pieces much more distinct than monomials
- Relation to finite-elements (later)
- Residual choice function not always so natural...

Resolving Multicollinearity

- Monomials seemed to lack a certain 'spanning' property
- How to define it properly? Use a 'dot-product' type definition
 - Two vectors, v_1, v_2 are orthogonal iff their dot-product is zero i.e. $v_1^\prime v_2 = 0$

Definition

A set of basis function $\{\psi_i(x)\}_{i=0}^{\infty}$ will be **orthogonal** on [a,b] iff there exists a nonnegative weighting function, w(x), such that for any $m \neq n$,

$$\int_{a}^{b} w(x)\psi_{n}(x)\psi_{m}(x) = 0$$

 Different basis functions could be orthogonal for different weights

Orthogonal Polynomials Class I: Gauss-Legendre

- In simplest case, w(x) = 1 on [-1, 1]
- We get back the Gauss-Legendre Polynomials
- We saw (used) these in integration!
- Relatively simple to use, but not always most efficient
- Since we're really interested in efficiency, we'll move on

Orthogonal Polynomials Class II: Jacobi

- Weighting function: $w(x) = (1-x)^{\alpha}(1+x)^{\beta}$
- Parameterized by (α, β)
- General recursive forms for any given (α, β)
- Focus on most convenient/efficient form: Chebyshev $\iff \alpha = \beta = -1/2$

$$T_0(x) = 1, \ T_1(x) = x$$

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

Chebyshev Polynomials

Chebyshev Polynomials

- Many nice properties
- First: If we fit exactly the zeros (and nothing else), the approximation error becomes arbitrarily small
- Motivates ideal choice of residual function (later)

Theorem (Chebyshev Interpolation)

If $d(x) \in C[-1,1]$ and $p_i = \sum_{i=0}^{j} \theta_i \phi_i(x)$ and p_i interpolates d(x)at the zeros of ϕ_{n+1} , then

$$\lim_{n\to\infty}(||d-p_j||_2)^2 = \lim_{n\to\infty}\int_{-1}^1 \frac{1}{\sqrt{1-x^2}}(d(x)-p_j)^2 dx = 0$$

Chebyshev Polynomials

 Can also quantify the size of the error for a discrete approximation

Theorem (Chebyshev Truncation)

Under certain technical conditions, the error in approximating a function d(x) is the same order as the last coefficient i.e.

$$d^{j}(x|\theta) = \sum_{i=0}^{j} \theta_{i} \psi_{i}(x)$$

$$|d(x)-d^{j}(x|\theta)|\approx O(\theta_{j})$$

for any $x \in [-1, 1]$ and for any j.

• In practice, if estimated θ_i is too large, increase j

timization Basics Spectral Bases Distance Functions Adding States Smolyak's Algorithm Hybrid Method

Chebyshev Polynomials

- Decades of research and applied work are testament to the usefulness of Chebshev Polynomials
- Words of wisdom from from John Boyd:
 - 1. When in doubt, use Chebyshev polynomials, unless the solution is spatially periodic, in which case an ordinary Fourier series is better
 - 2. Unless you are sure another set of basis functions is better, use Chebyshev polynomials.
 - Unless you are really, really sure another set of basis functions is better, use Chebyshev polynomials.

Distance Functions

- Suppose that we've chosen our basis functions
- Next step: Distance metric
- Two approaches
 - 1. Minimize norm over θ (for some weights)

$$||R(\cdot,|\theta)|| = \langle R(\cdot,|\theta), R(\cdot,|\theta) \rangle = \int_{\Omega} R^2(x,|\theta)w(x)dx$$

2. Project onto space of other functions, $\{\phi_i(\cdot)\}$ (projection directions/test functions) i.e. for i = 1, ..., n

$$0 = P_i(\theta) = \langle R(\cdot, | \theta), \phi_i(\cdot) \rangle = \int_{\Omega} R(x, | \theta) \phi_i(x) w(x) dx$$

- Idea: Residuals orthogonal to span of projection directions
- Cannot 'predict' residuals within this span
- Exact identification: Requires n = j + 1

• The FOC to the following problem (when w(x) = 1)

$$\min_{\theta} \int_{\Omega} R^2(\mathbf{x}|\theta) d\mathbf{x}$$

Equivalent to projection direction given by

$$\phi_i(\mathbf{x}) = \frac{\partial R(\mathbf{x}|\theta)}{\partial \theta_{i-1}}$$

- Problems
 - 1. Projection directions could be highly correlated
 - 2. Projection direction depends on initial guess for θ

Projection Directions 2: Subdomain

• Alternative is to split into j+1 subdomains (Ω_i) with a step function projection direction

$$\phi_i(\mathbf{x}) = egin{cases} 1, & ext{if } \mathbf{x} \in \Omega_i \ 0, & ext{otherwise} \end{cases}$$

This is the same as solving the following system

$$\int_{\Omega_i} R(\mathbf{x}|\theta) d\mathbf{x} = 0, \ i = 1, \dots, j+1$$

Also called pseudospectral or method of selected points

- Directions given by *Dirac Delta* function, $\delta(\cdot)$
- Assigns zero weight to all points except zero

 - Turns a continuous integration discrete

$$\phi_i(x) = \delta(x - x_i)$$

Integral vanishes! Boils down to system

$$R(\mathbf{x}_i|\theta)=0,\ i=1,\ldots,j+1$$

- Best points: Use the zeros of the (j + 1)th order Chebyshev polynomial
 - This is called orthogonal collocation

Projection Directions 4: Galerkin

Project onto original set of basis functions i.e.

$$\implies \int_{\Omega} \psi_i(\mathbf{x}) R(\mathbf{x}|\theta) d\mathbf{x} = 0, \ i = 1, \dots, j+1$$

 $\phi_i(\mathbf{x}) = \psi_{i-1}(\mathbf{x})$

$$J_\Omega$$
• Interpretation: Residual has to be orthogonal to each of the

- basis functions
- Generally very accurate, but complicated to code/takes a long time

Projection Directions 5: Moment-Matching

• Project onto j + 1 monomials

$$\phi_i(\mathbf{x}) = x^{i-1}$$

Looks familiar when you write it out...

$$\int_{\Omega} R(x, |\theta) x^{i-1} dx = 0 \text{ for } i = 1, \dots, j+1$$

- Intuitive, but often not as efficient as alternative approaches
 - Monomials close to multicollinear; not much space to span

Example

Back to our deterministic NCG model

$$c_{t} + k_{t+1} - k_{t}^{\alpha} - (1 - \delta)k_{t} = 0$$

$$c_{t}^{-\sigma} - \beta(\alpha k_{t+1}^{\alpha - 1} + 1 - \delta)c_{t+1}^{-\sigma}$$

- Considerable flexibility in how we want to solve
 - 1. Approximate $c_t(k_t|\theta)$. Use RC to define $k_{t+1}(k_t|\theta)$
 - 2. Approximate $k_{t+1}(k_t|\theta)$. Use RC to define $c_t(k_t|\theta)$
- Do it two ways:
 - 1. Chebyshev Polynomials and Chebyshev Collocation Weights
 - 2. Legendre Polynomials and Galerkin Weights

timization Basics Spectral Bases **Distance Functions** Adding States Smolyak's Algorithm Hybrid Method

Important Note

- If $j < \infty$, we are *not* guaranteed that a set of θ 's exist that zero out the distance function
- Do not use residuals as accuracy metric!
 - Residuals tell you either
 - 1. Gap at at certain points (collocation)
 - 2. Average gap over a region
 - Even if residuals non-zero, could be decent elsewhere
- "Proof is in the pudding"
 - Best accuracy metric: Euler Equation Errors

Dealing with Issues I

• If a set of θ do not seem to do well/exist, can always try hybrid techniques

$$\min_{\theta} \sum_{i=1}^{n} < R(\cdot|\theta), \phi_i >^2$$

- Solution guaranteed to exist (may not be exact zero or unique)
- Done this way, you can also add overidentification i.e. for some m > n

$$\min_{\theta} \sum_{i=1}^{m} < R(\cdot|\theta), \phi_i >^2$$

note since n = j + 1, here there are more conditions than coefficients

Dealing with Issues II

- If a set of θ do not seem to do well/exist, notice we still have the freedom of weights!
- Projection directions are not weights; results still valid under different weights
- Often very helpful to place more weight on steady state e.g. let \hat{X} be an ϵ -ball around the steady state, then

$$w(x)>1 \; orall x \in \hat{X} \; ext{and} \; \; w(x)=1 \; orall x \in \hat{X}^{\mathbb{C}}$$

timization Basics Spectral Bases **Distance Functions** Adding States Smolyak's Algorithm Hybrid Method

Multistep Scheme

- Can exploit fact that polynomials are orthogonal
 - Each additional one is 'spanning' a space the previous ones did not
- Suggests 'Multi-step' step solution scheme for large j
 - 1. Solve model for some j' < j
 - 2. Use the optimal solution for j' as a guess for j' + 1
 - 3. Continue until we reach a solution for j
- Remarkably effective, especially since straight solution of very high-dimensional problems is finicky

Alternative: Finite Elements

- Use as basis functions a series of tent functions
- Break up domain into N different subdomains (not necessarily equidistant)
 - $\{k_1,\ldots,k_N\}$, where $\underline{k}=k_1$ and $\overline{k}=k_N$
 - $k_i < k_{i+1}$ for any i < N
- 'Tent' basis functions given by (for $i \in \{2, N-1\}$)

$$\psi_i(k) = \begin{cases} \frac{k - k_{i-1}}{k_i - k_{i-1}}, & k \in [k_{i-1}, k_i] \\ \frac{k_{i+1} - k}{k_{i+1} - k_i}, & k \in [k_i, k_{i+1}] \\ 0, & o/w \end{cases}$$

and for the first and last functions

$$\psi_1(k) = \begin{cases} \frac{k_1 - k}{k_1 - k_0}, & k \in [k_0, k_1] \\ 0, & o/w \end{cases}, \ \psi_N(k) = \begin{cases} \frac{k - k_{N-1}}{k_N - k_{N-1}}, & k \in [k_{N-1}, k_N] \\ 0, & o/w \end{cases}$$

Alternative: Finite Elements

- Basis functions necessarily continuous
- Approximation is piecewise linear
- Collocation distance function best $(|\theta| = N)$

$$d^j(k|\theta)=d(k_j)$$

- Convergence
 - Need lots of points...
 - But not too bad in practice!
 - Very simple evaluation (linear)
 - Very orthogonal
- Used a lot in engineering

Alternative: Finite Elements

imization Basics Spectral Bases Distance Functions Adding States Smolyak's Algorithm Hybrid Methoc

More States

- All of our basis functions so far have been one-dimensional
- How to handle 2 or more states? Three basic ways
 - 1. Discretize AR(1) processes
 - 2. Tensor Basis
 - 3. 'Trimmed' Tensor Basis
 - 3.1 Complete Polynomials
 - 3.2 Smolyak's Algorithm

• Suppose we want to approximate $k^*(k, z)$

- 1. Start by discretizing z into a finite-state Markov process with n elements
- 2. For each state, $\{z_1, z_2, \dots, z_n\}$, assume a unidimensional basis function i.e.

$$k^{\star}(k|z_m) = \sum_{i=0}^{j} \theta_i^m \psi_i(k)$$
 for $m = 1, \dots, n$

3. Solve system for n(j+1) coefficients, $\{\theta_i^m\}_{i=0}^{j,n}$ m-1

Aside: Alternate Discretization

- Tauchenizing performs poorly when ρ very large
- ullet Rouwenhurst Method: Based on Binomial o Normal
 - 1. Break domain into a grid with equally spaced points and

$$\underline{\mathbf{z}} = \mu_{\mathbf{z}} - \sigma_{\mathbf{z}} \sqrt{\mathbf{n} - \mathbf{1}}, \quad \overline{\mathbf{z}} = \mu_{\mathbf{z}} + \sigma_{\mathbf{z}} \sqrt{\mathbf{n} - \mathbf{1}}$$

where σ_z is unconditional volatility

2. When n = 2, transition matrix is

$$P^2 = \begin{bmatrix} p & 1-p \\ 1-q & q \end{bmatrix}$$

where $p = q = \frac{1+\rho}{2}$

3. For $n \ge 3$, $P^n = [\hat{P}^n_{1,:}; .5\hat{P}^n_{2:n-1,:}; \hat{P}^n_{n,:}]$, where \hat{P}^n given by

$$\hat{P}^n = p \begin{bmatrix} P^{n-1} & \mathbf{0} \\ \mathbf{0}' & 0 \end{bmatrix} + (1-p) \begin{bmatrix} \mathbf{0} & P^{n-1} \\ 0 & \mathbf{0}' \end{bmatrix} + (1-q) \begin{bmatrix} \mathbf{0}' & 0 \\ P^{n-1} & \mathbf{0} \end{bmatrix} + q \begin{bmatrix} \mathbf{0} & \mathbf{0}' \\ \mathbf{0} & P^{n-1} \end{bmatrix}$$

Tensor Bases

- Tensors build multidimensional basis functions by finding the Kronecker product of all unidimensional basis functions
 - i.e. every possible multiple combination of them
- If we have n different states, s_i, and want to do a j-order approximation...

$$d^{j}(\cdot|\theta) = \sum_{i_{1}=0}^{j} \cdots \sum_{i_{n}=0}^{j} \theta_{i_{1},...,i_{n}} \prod_{k=1}^{n} \psi_{i_{k}}^{k}(s_{k})$$

- Could vary j or basis functions across states if we wanted
- Advantage: If unidimensional basis is orthogonal, so is the tensor basis
- Disadvantage: Curse of dimensionality acute
 - $|\Theta| = (j+1)^n$, where *n* is number of states
 - 5 states and order $9 \implies 100,000$ coefficients

- Since Tensor Bases orthogonal, multistep works well
- 2 states e.g. z and k: 'box' method
 - Add right and bottom sides to coefficient matrix with each update (set to zero)
 - Use previous solution as guess (interior of matrix)

$$\psi_{0}(k)\psi_{0}(z) \to \begin{bmatrix} \psi_{0}(k)\psi_{0}(z) & \psi_{0}(k)\psi_{1}(z) \\ \psi_{1}(k)\psi_{0}(z) & \psi_{1}(k)\psi_{1}(z) \end{bmatrix} \\
\to \begin{bmatrix} \psi_{0}(k)\psi_{0}(z) & \psi_{0}(k)\psi_{1}(z) & \psi_{0}(k)\psi_{2}(z) \\ \psi_{1}(k)\psi_{0}(z) & \psi_{1}(k)\psi_{1}(z) & \psi_{1}(k)\psi_{2}(z) \\ \psi_{2}(k)\psi_{0}(z) & \psi_{2}(k)\psi_{1}(z) & \psi_{2}(k)\psi_{2}(z) \end{bmatrix} \to$$

- Formula: Store coefficients in a line: Add 2N-1 zeros each step
 - Matrix location of new coefficients: c_n from $n = 1, \dots, 2N 1$ $i = \min(c_n, N), \quad j = \min(2N - c, N)$

Tensor Bases: Collocation

- Grid: Cartesian product of individual collocation grids
- ullet Any component of a tensor is zero \Longrightarrow tensor is zero
 - Zeros of the unidimensional basis functions are also zeros of the tensor

Sparse Grid I: Complete Polynomials

- Tensor bases are preferred method for most people
- But how to deal with curse of dimensionality? Build a grid that is sparse
- Two popular ways: First are Complete Polynomials
 - Don't employ all elements of the Tensor
 - Keep only those whose order is less than κ for some $\kappa \geq j$

$$P_{\kappa}^{n} = \{ \psi_{i_{1}}^{1} \psi_{i_{2}}^{2} \dots \psi_{i_{n}}^{n} | \sum_{l=1}^{n} i_{l} \leq \kappa \}$$

- e.g. Chebyshev polynomials of order j = 4 and 3 states
 - 125 coefficients in the full Tensor
 - Set $\kappa = 6 \implies$ Only 72 coefficients
- Second is Smolyak's Algorithm (later)

Complete Polynomials: Example

- 3D Multistep: Similar to two-dimensions, but in a cube
 - At each step add

$$(N-1)\times(2N-1)+N^2$$

coefficients

 Add investment efficiency to RBC model (everything else same)

$$\mu_t = \rho_\mu \mu_{t-1} + \sigma_\mu \epsilon_{2,t}$$

$$k_{t+1} = (1 - \delta) k_t + i_t e^{\mu_t}$$

Sparse Grid II: Smolyak's Algorithm

- More efficient (and complicated) way to reduce grid
- Smolyak's Algorithm
 - Collocation method
 - Judiciously select grid
 - Grid size grows polynomially (much slower than exponential)
- Clusters points around
 - 1. Corners of domain of Chebyshev
 - 2. Central cross of domain of Chebyshev
- Very useful (and used a lot)!
 - 1. Malin et al. (2011, JEDC) use to globally solve model with 20 continuous state variables!
 - 2. Bocola (2016, JPE) uses it estimate (not calibrate) a large scale, non-linear default model
- The most powerful tool you have at your disposal for large scale, global, relatively well-behaved problems

Laying the Base

Assumes Chebyshev polynomials/collocation

1. Transform the Domain of the State Variables

• For state variable \tilde{x}_l , with $l=1,\ldots,n$ on a domain [a,b], use linear translation

$$x_l = 2\frac{\tilde{x}_l - a}{b - a} - 1$$

• Puts entire grid in *n*-dimensional cube $[-1,1]^n$

2. Set the Order of the Polynomial

- Define $m_1 = 1$
- Set $m_i = 2^{i-1} + 1$, where $m_i 1$ is the order of the approximating polynomial
- e.g.

$$m_1 = 1$$
, $m_2 = 3$, $m_3 = 5$, $m_4 = 9$, $m_5 = 17$,...

The Grid

3. Building the Gauss-Lobotto Nodes

- Find extrema (not zeros) of Chebyshev polynomials
- Build sets

$$\mathcal{G}^i = \{\zeta_1^i, \dots, \zeta_{m_i}^i\} \subset [-1, 1]$$

where

$$\zeta_j^i = -\cos\left(\frac{j-1}{m_i-1}\pi\right), \quad j=1,\ldots,m_i$$

- Initial set $\mathcal{G}^1 = \{0\}$
- Crucial! Since $m_i = 2^{i-1} + 1$, grids are nested e.g.

$$\mathcal{G}^2 = \{-1, 0, 1\}$$

$$\mathcal{G}^{3}=\left\{ -1,-\cos\left(\frac{\pi}{4}\right),0,-\cos\left(\frac{3\pi}{4}\right),1\right\}$$

Nested Extrema

Sparse Grid

4. Building a Sparse Grid

- Select an accuracy metric q > n
 - Larger q ⇒ more accurate
 - Experience suggests q = n + 2 or q = n + 3 work well
- Sparse grid defined to be union of the Cartesian products

$$G(q,n) = \bigcup_{q-n+1 \leq |\mathbf{i}| \leq q} \left(\mathcal{G}^{i_1} \times \cdots \times \mathcal{G}^{i_n} \right)$$

where $|i| = \sum_{l=1}^{n} i_l$ (*I* just indexes dimension)

e.g.

$$G(3,2) = \cup_{2 \le |\mathbf{i}| \le 3} \left(G^{i_1} \times G^{i_2} \right)$$

$$= \left(\mathcal{G}^1 \times \mathcal{G}^1 \right) \cup \left(\mathcal{G}^1 \times \mathcal{G}^2 \right) \cup \left(\mathcal{G}^2 \times \mathcal{G}^1 \right)$$

$$= \left\{ \underbrace{(0,0)}_{(\mathcal{G}^1 \times \mathcal{G}^1)}, \underbrace{(0,-1),(0,1)}_{(\mathcal{G}^1 \times \mathcal{G}^2)/(0,0)}, \underbrace{(-1,0),(1,0)}_{(\mathcal{G}^2 \times \mathcal{G}^1)/(0,0)} \right\}$$

Sparse Grids: 2 Dimensions

Left to right: G(3,2), G(4,2), G(5,2), and G(6,2)

Sparse Grids: 3 Dimensions

- Points cluster around
 - Central cross
 - 2. Corners of domain
- Nested: $G(q, n) \subset G(q + 1, n)$
- Grid size grows polynomially on n^{q-n}
 - e.g. When q = n + 2...

n	G(q, n)	5 ⁿ
2	13	25
3	25	125
4	41	625
5	61	3125
		• • •
12	313	244,140,625

Implementing

5. Building the Tensor Product

Use Chebyshev Polynomials to build tensor-product multivariate polynomial

$$\psi_i(x_i) = T_{i-1}(x_i)$$

These will not yet be our function approximation!

$$p^{i_1,...,i_n}(x|\theta) = \sum_{l_1=1}^{m_{i_1}} \cdots \sum_{l_n=1}^{m_{i_n}} \theta_{l_1...l_n} \psi_{l_1}(x_1) \dots \psi_{l_n}(x_n)$$

where $|i| = \sum_{l=1}^{n} i_l$, $x_i \in [-1, 1]$, $x = \{x_1, \dots, x_n, \text{ and } \theta \text{ stacks}$ all the coefficients, $\theta_{h \dots l_n}$

• Now, define

$$p^{|i|}(x|\theta) = \sum_{\substack{i_1,\dots,i_n \\ i_1,\dots,i_n}} p^{i_1,\dots,i_n}(x|\theta)$$

Tensor Product: Example

• Tensor product example: n = 2 and q = 3 (recall $m_1 = 1$, $m_2 = 3$)

$$\rho^{1,1}(x|\theta) = \sum_{l_1=1}^{1} \sum_{l_2=1}^{1} \theta_{l_1 l_2} \psi_{l_1}(x_1) \psi_{l_2}(x_2) = \theta_{11}$$

$$\rho^{1,2}(x|\theta) = \sum_{h=1}^{m_1} \sum_{h=1}^{m_2} \theta_{h_1 h_2} \psi_{h_1}(x_1) \psi_{h_2}(x_2) = \theta_{11} + \theta_{12} T_1(x_2) + \theta_{13} T_2(x_2)$$

$$p^{2,1}(x|\theta) = \sum_{h=1}^{m_2} \sum_{h=1}^{m_1} \theta_{h_1 h_2} \psi_{h_1}(x_1) \psi_{h_2}(x_2) = \theta_{11} + \theta_{21} T_1(x_1) + \theta_{31} T_2(x_1)$$

Implies

$$p^{|2|}(x|\theta) = p^{1,1}(x|\theta)$$
$$p^{|3|}(x|\theta) = p^{1,2}(x|\theta) + p^{2,1}(x|\theta)$$

Tensor Product: Properties

- Some coefficients repeated in Tensor e.g. θ_{11}
- Number of coefficients = Cardinality of G(q, n)
- Given function values at a grid point, $d(\cdot)$, coefficients have a linear, closed form solution
 - Motivates this particular structure in the first place

Approximating Function

6. Building the Interpolating Function in *n* Dimensions

• The Smolyak function that interpolates on G(q, n) is

$$d(x|\theta, q, n) = \sum_{\max(n, q - n + 1) \le |i| \le q} (-1)^{q - |i|} \binom{n - 1}{q - |i|} p^{|i|}(x|\theta)$$

i.e. a weighted sum of the Tensors

- $\binom{n-1}{q-|i|}$ is a combination, not a vector
 - Number of different ways you can select q |i| elements from a set of size n 1 (order doesn't matter)

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Approximating Function

• Application: Again to n = 2 and q = 3

$$d(x|\theta, q, n) = \sum_{2 \le |i| \le 3} (-1)^{3-|i|} \binom{1}{3-|i|} p^{|i|}(x|\theta)$$

$$= -\binom{1}{1} p^{|2|}(x|\theta) + \binom{1}{0} p^{|3|}(x|\theta)$$

$$= p^{1,2}(x|\theta) + p^{2,1}(x|\theta) - p^{1,1}(x|\theta)$$

$$= \theta_{11} + \theta_{21} T_1(x_1) + \theta_{31} T_2(x_1) + \theta_{12} T_1(x_2) + \theta_{13} T_2(x_2)$$

Intuition scales up with dimensions/q

imization Basics Spectral Bases Distance Functions Adding States Smolyak's Algorithm Hybrid Method

Solving

7. Solving for the Polynomial Coefficients

- By construction, number of coefficients $M=\#\theta$ is exactly equal to the grid size i.e. M=#G(q,n)
- Evaluate residuals given approximation at each grid point (collocation)
 - M nonlinear equations
 - M unknowns
- Nonlinear solver delivers θ

Smolyak Speed-Up

- Multi-step technically possible, but rather complicated
- Better strategy: Combine perturbation and projection
 - 1. First-order perturbation of model
 - 2. Alter coefficients \implies Initial guess = perturbed function
- If first n+1 coefficients are linear (constant), we have our interpolating function

$$heta_0 = d_{ss}$$
 $heta_i = d_i imes rac{i_{UB} - i_{LB}}{2}$ for each state i

Comes from

$$d_i(s_1,\ldots,s_n|\theta) = f(2\frac{s_1-1_{LB}}{1_{UB}-1_{LB}}-1,\ldots,2\frac{s_n-n_{LB}}{n_{UB}-n_{LB}}-1|\theta)$$

Dynamic Programming/Projection

- Alternative to spline interpolation
 - Interpolate between known grid points with projected function
 - Simple, closed-form solution for coefficients
- Consider a 1D VFI update step with N gridpoints
 - At update step i, we have (at $x_1, x_2, ..., x_N$)

$$\{V_1^i, V_2^i, \dots, V_N^i\}$$

ullet Approximate value function with an N-1 degree polynomial

$$V_1^i = \theta_0 + \theta_1 T_1(x_1) + \dots + \theta_{N-1} T_{N-1}(x_1)$$

$$V_2^i = \theta_0 + \theta_1 T_1(x_2) + \dots + \theta_{N-1} T_{N-1}(x_2)$$
...

$$V_N^i = \theta_0 + \theta_1 T_1(x_N) + \dots + \theta_{N-1} T_{N-1}(x_N)$$

Dynamic Programming/Projection

• Notice this is a N-dimensional linear system in θ

$$\underbrace{V}_{N\times 1} = \underbrace{T(x)}_{N\times N} \underbrace{\Theta}_{N\times 1}$$

$$\implies \Theta = [T(x)]^{-1}V$$

- Works best when $\{x_j\}_{j=1}^N$ are Chebyshev zeros/extrema
- T(x) non-invertible, least-squares residual problem usually works ⇒

$$\Theta = [T(x)'T(x)]^{-1}T(x)'V$$

· Could weight some states more heavily if we want to

- Multidimensional Interpolation: Use
 - 1. Kronecker product
 - 2. Tensors
- With n dimensions (and N points along each)

$$\underbrace{V}_{N^n \times 1} = \underbrace{T}_{N^n \times N^n} \underbrace{\Theta}_{N^n \times 1}$$

- Where $T = T_n(x) \otimes T_{n-1(x)} \otimes \cdots \otimes T_1(x)$
 - No need to invert large matrix
 - Closed-form result from tensor algebra

$$\Theta = \left[\left[T_n(x) \right]^{-1} \otimes \left[T_{n-1(x)} \right]^{-1} \otimes \cdots \otimes \left[T_1(x) \right]^{-1} \right] V$$