MOS Capacitor – (I) energy band & bias; (II) electrostatics

(material originally developed by Professor Cezhou Zhao)

MOS Capacitor

OUTLINE

- Physical Structure of MOS Capacitor
- Energy Band Diagram of MOS Structure
- Effects of Applied Voltage
 - operation modes & capacitance
- Non-Ideal MOS Capacitors

Work Function

E_0 : vacuum energy level

Metal

Semiconductor

 $\Phi_{\mathbf{M}}$: metal work function

 $\Phi_{\mathbf{S}}$: semiconductor work function

 χ : electron-affinity

chi

Work Function

 $\Phi_{\mathbf{M}}$: metal work function

 Φ_{s} : semiconductor work function

 $\Phi_{\Delta I} = 4.28eV$ $\Phi_{\Delta II} = 5.1eV$ χ : electron-affinity

Electron concentration & E_C-E_F

Heavily doped

Ightly doped

n-type

E_C

E_F

E_i

E_v

Less electrons

More electrons

MOS Capacitors

MOS: Metal-Oxide-Semiconductor

MOS Capacitor

parallel-plate capacitor

Q

Definition:

$$C = \frac{\varepsilon A}{t_{ox}} = \frac{\varepsilon_r \varepsilon_0 A}{t_{ox}}$$

$$\epsilon_{r,SiO2} = 3.9, \ \epsilon_{r,Si} = 11.9, \ \epsilon_{o} = 8.85 \ x \ 10^{-14} \ F/cm$$
 epsilon

MOS Capacitance Measurement

- V_b : dc biasing voltage and scanned slowly
- V_{ac} : small ac signal

$$\bullet \ V_g = V_b + V_{ac}$$

$$C = \left| \frac{dQ_{GATE}}{dV_g} \right| = \left| \frac{dQ_s}{dV_g} \right| = \left| \frac{dQ_s}{dV_{ac}} \right|$$

• Capacitive current due to V_{ac} is measured

$$i_{ac} = C \frac{dV_{ac}}{dt}$$

$$|V_b| >> |V_{ac}|$$

Poly-Si gate

Coordinate system

Guidelines for Drawing MOS Band Diagrams

Guidelines for Drawing MOS Band Diagrams

- 1) Fermi level E_F is flat (constant with distance x) in the Si
 - Since no current flows in the x direction, we can assume that equilibrium conditions prevail
- 2) Band bending is linear in the oxide
 - No charge in the oxide => $d\mathcal{E}/dx = \rho/\epsilon_{ox} = 0$, so \mathcal{E} is constant => dE_C/dx is constant

$$\mathbf{\mathcal{E}} = - dV/dx$$

$$E_{C} = -qV$$

Guidelines for Drawing MOS Band Diagrams

- 3) The barrier height for conduction-band electron flow from the Si into SiO₂ is 3.1 eV
 - This is equal to the electron-affinity difference (χ_{Si} and χ_{SiO2})
- 4) The barrier height for valence-band hole flow from the Si into SiO₂ is 4.8 eV
- 5) The vertical distance between the Fermi level in the metal, $E_{\rm FM}$, and the Fermi level in the Si, $E_{\rm FS}$, is equal to the applied gate voltage:

$$qV_G = E_{FS} - E_{FM}$$

MOS Equilibrium Energy-Band Diagram

MOS Equilibrium Energy-Band Diagram

After contact, there are two questions: Q1 & Q2.

Q1: Carrier and ion in silicon

Guideline 2:

$$\epsilon = -dV/dx$$

$$E_{\rm C} = -qV$$

Q2: Carrier and ion in silicon

Poly-Si Depletion

metal oxide semiconductor

Band bending up is negligible because of heavy doping of poly-Si.

Flat-Band Voltage

metal

oxide

The built-in potential can be "cancelled out" by applying a gate voltage that is equal in magnitude (but of the opposite polarity) as the built-in potential. This gate voltage is called the *flatband* voltage because the resulting potential profile is flat.

semiconductor

Flat-Band Voltage

The built-in potential can be "cancelled out" by applying a gate voltage that is equal in magnitude (but of the opposite polarity) as the built-in potential. This gate voltage is called the *flatband* voltage because the resulting potential profile is flat.

Flat-Band Condition

$$qV_G = E_{FS} - E_{FM}$$
$$= \Phi_M - \Phi_S$$
$$V_G = V_{FB}$$
$$qV_{FB} = \Phi_M - \Phi_S$$

E_C(O) and external electric field direction

Effects of applied biases

Vg increase from "-" to "+":

1. Vg <v<sub>FB<0</v<sub>	Accumulation: Majority carriers
2. Vg=V _{FB}	Flatband
3. V _m ≥Vg>V _{FB} including Vg=0	Depletion: Majority carriers
1 1 \/ \ \/ \a \/	Mook Inversion. Minority corriers
$4.1 V_T > V_g > V_m$	Weak Inversion: Minority carriers
4.2 Vg≥V _T	Strong Inversion: Minority carriers

What are V_{FB} , V_m and V_T ?

1. Accumulation (p-type Si): Vg<V_{FB}<0

Accumulation: Majority carriers

- <u>Physical process</u>: Vg<0: holes attracted to the oxide/Si interface and accumulate there.
- Separation between "-" and "+" charges: oxide

1. Accumulation:

Energy band diagrams: Vg<0

Vg<0

Two diagrams:

block charge density diagram & energy band diagram

More negative: higher electron energy (band bending up)

1. Accumulation:

Energy band diagrams: Vg<0

Vg<0

Two diagrams:

block charge density diagram & energy band diagram

More negative: higher electron energy (band bending up)

1. Capacitance in Accumulation

- As the gate voltage is varied, incremental charge is added/subtracted to/from the gate and substrate.
- The incremental charges are separated by the gate oxide.

$$C = \left| \frac{dQ_{acc}}{dV_g} \right| = C_{ox}$$

$$C = C_{OX} = \frac{\varepsilon_{OX}A}{t_{OX}} = \text{constant}$$

 $\epsilon_{r'ox}$ =3.9 is the relative dielectric constant of the oxide, $\epsilon_{ox} = \epsilon_{r'ox} \epsilon_{o}$, ϵ_{o} =8.85×10⁻¹² F/m is the permittivity of free space, t_{ox} is the oxide thickness.

Normally, we consider the capacitance per unit area, so $A=_{7}1$

1. Accumulation:

Capacitance-voltage (C-V) characteristics

2. Flatband Voltage, $V_{\rm FB}$

The built-in potential can be "cancelled out" by applying a gate voltage that is equal in magnitude (but of the opposite polarity) as the built-in potential. This gate voltage is called the *flatband* voltage because the resulting potential profile is flat.

Depletion: Majority carriers

3. Depletion: $Vg > V_{FB}$

Physical process:

- holes repelled from the interface
- fixed negative charge left behind
- More "+" charges on the gate, holes are pushed further from the interface, to expose more "-" space charges.

0: B

$qVg = E_{FS} - E_{FM}$

3. Depletion:

Energy band diagram: Vg>V_{FB}

- The band is bent downward now.
- No mobile charges at the interface.

$qVg = E_{FS} - E_{FM}$

3. Depletion:

Energy band diagram: Vg>V_{FB}

The band is bent downward now.

3. Capacitance in Depletion

- As the gate voltage is varied, the width of the depletion region varies.
- → Incremental charge is effectively added/subtracted at a depth x_d in the substrate.

$$C = \left| \frac{dQ}{dV_G} \right|$$

$$\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}} = \frac{1}{C_{ox}} + \frac{x_d}{A\varepsilon_{Si}}$$

 $\varepsilon_{r'Si}$ =11.9 is the relative dielectric constant of silicon, $\varepsilon_{Si} = \varepsilon_{r'Si} \varepsilon_{o}$.

3. Depletion Capacitance

Capacitance

Higher potential

- When Vg increases, Xd increases and C_{dep} reduces.
 This in turn reduces C.
- Solving Poisson's equation, we have

$$x_{d} = \left(\frac{2\varepsilon_{Si}V_{S}}{qN_{a}}\right)^{1/2}$$

$$\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}} = \frac{1}{C_{ox}} + \frac{x_{d}}{A\varepsilon_{Si}}$$

3. Depletion:

Capacitance-voltage (C-V) characteristics

Midband: further increase Vg

- E_{FS} = Ei at interface
- Silicon becomes "intrinsic" at surface
- This is 'Midband': Vg=Vm

Ec

At the interface

Further increase Vg

At the interface

$qVg = E_{FS} - E_{FM}$

4. Energy band diagram: Vg>V_m

$qVg = E_{FS} - E_{FM}$

4. Energy band diagram: Vg>V_m

Bulk Semiconductor Potential, ϕ_{F}

$$q\phi_F \equiv E_i - E_F$$

p-type Si:

$$\phi_F = \frac{kT}{q} \ln(N_A / n_i) > 0$$

n-type Si:

$$\phi_F = -\frac{kT}{q} \ln(N_D / n_i) < 0$$

or
$$q\phi_F \equiv -(E_i - E_F)$$

4. Inversion

$$p = n_i \exp\left[\frac{q\phi_F}{kT}\right]; \qquad n_s = n_i \exp\left[\frac{q\phi_n}{kT}\right]$$

- Physical process and band diagram
 - As Vg>Vm, E_{FS} is at the up-half of the bandgap.
 - > Si near interface becomes n-type.
 - Many electrons (now majority carriers).
 - Weak Inversion: $0 < \phi_n < \phi_F \ (\phi_F < \phi_S < 2\phi_F)$
 - Strong Inversion: $\phi_{\underline{n}} \ge \phi_{\underline{F}}$ ($\phi_{\underline{S}} \ge 2\phi_{\underline{F}}$), electron density at the interface \ge hole density in Si bulk.
 - Vg for strong inversion: ≥V_T 'threshold voltage'.

$\phi_s = \phi_F + \phi_n$ Maximum Depletion Depth, $x_{d,max}$

As V_G is increased above V_T , ϕ_S and hence the depth of the depletion region (x_d) increases very slowly.

This is because *n* increases exponentially with ϕ_S , whereas x_d increases with the square root of ϕ_S . Thus, most of the incremental negative charge in the semiconductor comes from additional conduction electrons rather than additional ionized acceptor atoms, when n exceeds \sim $n_s = n_i \exp \left| \frac{q \phi_n}{kT} \right|; \qquad \phi_n = \phi_s - \phi_F$

$$\rightarrow$$
 $x_{\rm d}$ can be reasonably approximated to reach a maximum value $(x_{\rm d,max})$ for $V_{\rm G} \ge V_{\rm T}$.

$$x_{d,\text{max}} = \sqrt{\frac{2\varepsilon_{Si}\phi_s}{qN_A}} \approx \sqrt{\frac{2\varepsilon_{Si}(2\phi_F)}{qN_A}}$$

4. Capacitance in Inversion

CASE 1: Inversion-layer charge can be

Electrons can respond to the change in Vac

C=dQ/dVac

4. Inversion:

CASE 1: Capacitance-voltage (C-V) characteristics

4. Capacitance in Inversion: HF

CASE 2: Inversion-layer charge *cannot* be supplied/removed quickly enough to respond to changes in the gate voltage.

→ Incremental charge is effectively added/subtracted at a depth x_{dmax} in the substrate.

- 1. When Vac changes rapidly (e.g., 1MHz), electron creation cannot keep up.
- 2. Negative charges supplied by pushing holes away.

4. Capacitance in Inversion: HF

CASE 2: Inversion-layer charge *cannot* be supplied/removed quickly enough to respond to changes in the gate voltage.

→ Incremental charge is effectively added/subtracted at a depth x_{dmax} in the substrate.

$$\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}}$$

$$= \frac{1}{C_{ox}} + \frac{x_{d \max}}{A \varepsilon_{Si}} \equiv \frac{1}{C_{\min}}$$

- 1. When Vac changes rapidly (e.g., 1MHz), electron creation cannot keep up.
- 2. Negative charges supplied by pushing holes away.

4. Inversion

CASE 2: Capacitance-voltage (C-V) characteristics

Capacitance-voltage (C-V) characteristics

Capacitance-voltage (C-V) characteristics

Capacitance-voltage (C-V) characteristics

Review: Voltage drops and charges os

Review: Voltage drops and charges

accumulation

Review: Voltage drops and charges

Review: Voltage drops and charges

Review: Biasing Conditions for p-type Si

Review: Biasing Conditions for p-type Si

Capacitor vs. Transistor C-V (or LF vs. HF C-V)

p-type Si:

MOS Capacitor – MS contact

<u>OUTLINE</u>

- Metal-semiconductor contacts
- MOS structure
- MOS energy band diagram
- Effects of applied biases
- Non-Ideal MOS Capacitors

MOS Capacitor – MS contact

<u>OUTLINE</u>

- Physical Structure of MOS Capacitor
- Energy Band Diagram of MOS Structure
- Effects of Applied Voltage Biases
 - operation modes & capacitance
- Appendix: Metal-semiconductor contact

Ideal MS Contact: $\Phi_{\rm M} > \Phi_{\rm S}$, n-type

Band diagram instantly after contact formation:

 E_{FM} E_{C} E_{C} E_{FS} E_{FS} E_{V}

Electron depletion

Equilibrium band diagram:

Schottky Barrier:

$$\Phi_{\rm Bn} = \Phi_{\rm M} - \chi$$

Ideal MS Contact: $\Phi_{M} > \Phi_{S}$, n-type

n-type Metal semiconductor

Band diagram instantly after contact formation:

Equilibrium band diagram:

Schottky Barrier:

$$\Phi_{\rm Bn} = \Phi_{\rm M} - \chi$$

Ideal MS Contact: $\Phi_{\rm M} < \Phi_{\rm S}$, n-type

Band diagram instantly after contact formation:

Equilibrium band diagram:

Ideal MS Contact: $\Phi_{M} < \Phi_{S}$, n-type

Band diagram instantly after contact formation:

Equilibrium band diagram:

Heavy doping is needed to form ohmic contact.

Metal-Semiconductor Contacts

There are 2 kinds of metal-semiconductor contacts:

rectifying "Schottky diode"

non-rectifying"ohmic contact"

Metal-Semiconductor Contacts

There are 2 kinds of metal-semiconductor contacts:

rectifying "Schottky diode"

Polarity dependence

non-rectifying "ohmic contact"

Polarity independence

Electrical Contacts to Si

 In order to achieve a low-resistance ("ohmic") contact between metal and silicon, the silicon must be heavily doped:

Metal contact to n-type Si

Metal contact to p-type Si

→ To contact the body of a MOSFET, locally heavy doping is used.

Forming Body Contacts

Open holes in oxide layer for body contacts after doping these regions

