まず、大域的 Gauge 変換を議論する. 波動関数 $\psi(\mathbf{r},t)$ を、

$$\psi(\mathbf{r},t) \to e^{i\alpha} \psi(\mathbf{r},t) =: \psi'(\mathbf{r},t)$$
 (0.0.1)

のように変換することを大域的ゲージ変換という. $\psi(\mathbf{r},t)=\mathrm{e}^{-\mathrm{i}\alpha}\psi'(\mathbf{r},t)$ を Schrödinger 方程式に代入すると,

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r}, t)$$
 (0.0.2)

$$\Leftrightarrow i\hbar \frac{\partial}{\partial t} e^{-i\alpha} \psi'(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \nabla^2 e^{-i\alpha} \psi'(\mathbf{r}, t)$$
(0.0.3)

$$\Leftrightarrow e^{-i\alpha} i\hbar \frac{\partial}{\partial t} \psi'(\mathbf{r}, t) = -e^{-i\alpha} \frac{\hbar^2}{2m} \nabla^2 \psi'(\mathbf{r}, t)$$
(0.0.4)

$$\Leftrightarrow i\hbar \frac{\partial}{\partial t} \psi'(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \nabla^2 \psi'(\mathbf{r}, t)$$
(0.0.5)

となる. つまり、大域的ゲージ変換によって、Schrödinger 方程式は影響を受けない. 当然、期待値も、

$$\left\langle \psi' \middle| \hat{A} \middle| \psi' \right\rangle = \left\langle \psi \middle| e^{-i\alpha} \hat{A} e^{i\alpha} \middle| \psi \right\rangle \tag{0.0.6}$$

$$= \left\langle \psi \middle| \hat{A} \middle| \psi \right\rangle \tag{0.0.7}$$

となるから、物理は大域的ゲージ変換に対して不変であると言える.