Introduction to Urban Big Data and Machine Learning

Lecture 15 Machine Learning (I) Wenzheng Li

Announcement

- All assignments (1-4) should be submitted no later than Friday.
- Friday Afternoon: 7–10 minutes presentation
- Final poster due: Sunday night

OUTLINE

- Introduction to Machine Learning
 - O What is machine learning?
 - Machine learning types
- Supervised Learning
 - Classification and Regression
 - Understand machine learning
 - Machine learning vs. statistics

[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed.

—Arthur Samuel, 1959

Samuel, Arthur (1959). "Some Studies in Machine Learning Using the Game of Checkers". IBM Journal of Research and Development. **3** (3): 210–229.

What would you do to create such a system (machine)?

Task: filter spam emails

A spam filter based on machine learning

• Example 2: Image Recognition

Task: whether there is a table in the image

A table detector based on machine learning

 We want a machine which can predict output accurately (most of time) based on input data.

Training

Training

Supervised Learning

Training

1. Supervised Learning: machine is trained with human supervision with a "teacher", (the training set is labeled)

Then, what is unsupervised learning?

1. Supervised Learning: machine is trained with human supervision with a "teacher", (the training set is labeled)

2. Unsupervised Learning: machine is trained without human supervision without a "teacher", (the training set is not labeled)

Unsupervised Learning

• We want to classify customers into different types based on their attributes

Unsupervised Learning

- We want to classify customers into different types based on their attributes
- Clustering data based on identified patterns or structures.

Unsupervised Learning

Training

2. Unsupervised Learning: machine is trained without human supervision

without a "teacher", (the training set is **not** labeled)

Machine Learning Types

- 1. Supervised Learning: machine is trained with human supervision with a "teacher", (the training set is labeled)
- 2. Unsupervised Learning: machine is trained without human supervision without a "teacher", (the training set is not labeled)
- 3. Semisupervised Learning
- 4. Reinforcement Learning

Supervised Learning

Supervised Learning

- Associating features with some label.
- Two tasks:
 - Classification: labels as discrete categories
 - Spam email or not
 - With a table or not
 - Regression: labels as continuous quantities.
 - Housing price

Understand Machine Learning

 What do I mean if I want to build a machine learning model for my housing transaction dataset?

Understand Machine Learning

target

Output

Input

_						
	DTUP	1000	SDIST	FAREA	BED	ватн
1	40886.220	55	8.33545	131.37	3	2
2	27734.275	60	3.46985	59.59	2	1
3	28393.690	86	5.78906	48.02	1	1
4	33236.010	34	0.77704	135.75	3	2
5	33183.953	203	7.08520	87.53	2	1
996	45743.414	62	4.38916	86.71	1	1
997	34796.133	28	2.94788	66.02	1	1
998	29992.648	38	6.15970	85.41	2	1
999	70583.040	52	6.79364	72.00	3	1
1000	42302.560	57	7.59314	109.00	2	1.0

features

Features, also known as attributes or variables, are the individual measurable characteristics of the data that are used as input.

The **target**, also known as the label or dependent variable, is the outcome or value that the machine learning model is trying to predict.

Understand Machine Learning

- How about a linear regression model?
 - Linear regression is a type of machine learning model

$$DTUP = \beta_0 + \beta_1 SDIST + \beta_2 FAREA + \beta_3 BED + \beta_4 BATH + \varepsilon$$

Supervised Learning

Two tasks:

- Classification: output is categorical
 - Spam email or not
 - With a table or not
- Regression: output is numeric
 - O Housing price

Logistic Regression is here!!!

Linear Regression is here!!!

Machine Learning vs. Statistics

$$DTUP = \beta_0 + \beta_1 SDIST + \beta_2 FAREA + \beta_3 BED + \beta_4 BATH + \varepsilon$$

Machine learning cares about prediction

- field of predictive modeling
- concerned with minimizing the prediction error or making the most accurate predictions
- borrow algorithms from statistics for predication purposes

Statistics cares about estimation and inference

- field of statistical modeling
- understanding the relationship between variables
- many models/algorithms have been borrowed by machine learning.

Machine Learning vs. Statistics

- **Statistics**: hypothesis testing, model assumptions, explanation, and interpretation
- In machine learning, different than in applied statistics, we are less interested in what these parameters are, and more in how well they can
 - Make predictions
 - Describe underlying structures or characteristics in the data

Machine Learning Algorithm

Algorithm

 In mathematics and computer science, an algorithm is a finite sequence of well-defined, computer-implementable instructions, typically to solve a class of problems or to perform a computation. (Wikipedia)

Machine Learning Algorithm

- Supervised learning
 - Classification
 - K-nearest neighbors
 - logistic regression
 - Random forest

. . .

- Regression
 - Linear regression

...

- Unsupervised learning
 - Clustering
 - ☐ K-means clustering

...

- Dimensionality Reduction
- PCA and factor analysis

Algorithm Example: Linear Regression

Supervised learning

o Regression Problem

y	x_1
20000	800
60000	2000
14000	632
54000	1800
20000	750
20000	400

$$y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i$$

OLS: Ordinary Least Squares

 x_1

minimize sum of squared errors

Algorithm Example: Linear Regression

The sum of squared residuals (RSS) is e'e.²

$$\begin{bmatrix} e_1 & e_2 & \dots & e_n \end{bmatrix}_{1 \times n} \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ \vdots \\ e_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} e_1 \times e_1 + e_2 \times e_2 + \dots + e_n \times e_n \end{bmatrix}_{1 \times 1}$$

 $(X'X)\hat{\beta} = X'y$

 $(X'X)^{-1}(X'X)\hat{\beta} = (X'X)^{-1}X'y$

It should be obvious that we can write the sum of squared residuals as:

$$e'e = (y - X\hat{\beta})'(y - X\hat{\beta})$$

= $y'y - \hat{\beta}'X'y - y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}$
= $y'y - 2\hat{\beta}'X'y + \hat{\beta}'X'X\hat{\beta}$

We know that by definition, $(X'X)^{-1}(X'X) = I$, where I in this case is a $k \times k$ identity matrix. This gives us:

 $I\hat{\beta} = (X'X)^{-1}X'y$ $\hat{\beta} = (X'X)^{-1}X'y$

$$\frac{\partial e'e}{\partial \hat{\beta}} = -2X'y + 2X'X\hat{\beta} = 0$$

We need to take the derivative of the above equation:

Algorithm Example: Classification

- y = 0
- y = 1

Supervised learning

- Classification Problem
 - Binary Choice

y	x_1
0	800
1	2000
0	632
1	1800
1	750
0	400

Algorithm Example: Logistic Regression

- y = 0
- y = 1

Supervised learning

- o Classification Problem
 - Binary Choice

y	x_1
0	800
1	2000
0	632
1	1800
1	750
0	400

$$P(y_i = 1 | x_{1i}) = \frac{\exp(\beta_0 + \beta_1 x_{1i})}{1 + \exp(\beta_0 + \beta_1 x_{1i})}$$

MLE: Maximum Likelihood Estimation

- y = 0
- y = 1

Supervised learning

- o Classification Problem
 - Binary Choice

y	x_1
0	800
1	2000
0	632
1	1800
1	750
0	400

- y = 0
- y = 1

Supervised learning

- Classification Problem
 - Binary Choice

?		?		?	
—	•	• • •	•	• 0	 x_1

*y*0 800 2000

2000 632 1800 750 400 1 Nearest Neighbor

- y = 0
- y = 1

Supervised learning

- Classification Problem
 - Binary Choice

 $oldsymbol{y}$ 1 Nea

1 Nearest Neighbor

3 Nearest Neighbor

k Nearest Neighbor

Supervised learning

- Classification Problem
 - Binary Choice

y	x_1
0	800
1	2000
0	632
1	1800
1	750
0	400

KNN is often referred to as a "lazy learner"

•it simply stores the training data and makes predictions by calculating distances to the known data points

The number of nearest neighbors (k) to consider when making a prediction

- •Small k: Can lead to a model that is sensitive to noise in the training data (overfitting).
- •Large k: Can lead to a model that is too generalized (underfitting).

Machine Learning Steps

Machine Learning Steps

- Gathering and loading data (what features to collect)
- Exploring data (e.g., pandas and visualization)
- Transforming data (e.g., string to numeric)
- Splitting data for training and testing
- Choosing and creating a model
- Training
- Testing (evaluating accuracy)
- Tuning the model (hyperparameters)
- Making predictions on new data

Data Preparation

Transforming data (e.g., string to numeric)

Label Encoding: Converts categorical labels into numerical values. ["red", "green", "blue"] -> [0, 1, 2]

One-Hot Encoding: Converts categorical labels into numerical values. ["red", "green", "blue"] -> three dummy variables

Ordinal Encoding: Similar to label encoding but used for ordinal categories where there is an inherent order. ["low", "medium", "high"] -> [1, 2, 3]

Training

target

Output

Input

•	-		
+0	2+	ıır	^ c
16	aι	uı	_
		•	_

_						
	DTUP	1000	SDIST	FAREA	BED	ватн
1	40886.220	55	8.33545	131.37	3	2
2	27734.275	60	3.46985	59.59	2	1
3	28393.690	86	5.78906	48.02	1	1
4	33236.010	34	0.77704	135.75	3	2
5	33183.953	203	37.08520	87.53	2	1
996	45743.414	62	4.38916	86.71	1	1
997	34796.133	28	2.94788	66.02	1	1
998	29992.648	38	86.15970	85.41	2	1
999	70583.040	52	6.79364	72.00	3	1
1000	42302.560	57	7.59314	109.00	2	1,1

Features, also known as attributes or variables, are the individual measurable characteristics of the data that are used as input.

The **target**, also known as the label or dependent variable, is the outcome or value that the machine learning model is trying to predict.

Splitting data for training and testing

Training set 75%

(80%)

Testing set 25% (20%)

-	DTUP	SDIST	FAREA	BED	BATH
40	886.220	558.33545	131.37	3	2
27	734.275	603.46985	59.59	2	1
28	393.690	865.78906	48.02	1	1
33	236.010	340.77704	135.75	3	2
33	183.953	2037.08520	87.53	2	1
45	743.414	 624.38916	86.71	1	
34	796.133	282.94788	66.02	1	1
29	992.648	386.15970	85.41	2	1
70	583.040	526.79364	72.00	3	1
42	302.560	577.59314	109.00	2	1

Machine Learning Steps

- Gathering and loading data
- Exploring data (e.g., pandas and visualization)
- Transforming data (e.g., string to numeric)
- Splitting data for training and testing
- Choosing and creating a model
- Training
- Testing (evaluating accuracy)
 How to measure accuracy?
- Tuning the model (hyperparameters)
- Making predictions on new data

Classification (Supervised Learning)

- Example: Spam Email Filter
- We prepared a dataset with 5000 emails (with features and labels)
- We split the dataset into training set (4000, 80%) and testing set (1000, 20%)
- We created a model (e.g., k-nearest neighbors or logistic regression)
- We trained the model using the training set (4000 instances)
- Now, we want to test the model and evaluate the accuracy...

Classification (Supervised Learning)

- Example: Spam Email Filter
- Now, we want to test the model and evaluate the accuracy...
 - We predict the labels of the 1000 instances in the testing set
 - Then compare with their actual labels

Actual: [spam, spam, spam, good, ..., good, good, good]

Predicted: [spam, good, good, spam, ..., spam, good, good]

Predicted

	Spam	Good
Spam		
Good		

Actual

Type II error

Describe the performance of a classification model

Predicted

Dradicted

Overall, how often is the model correct?

	Total = 1000	Spam	Non-Spam
Actual	Spam	330	70
	Non-Spam	90	510

Metric 1: Accuracy

 $Accuracy = \frac{True\ Positive + True\ Negative}{Total}$

	rieulcieu				
		Spam	Non-Spam		
Actual	Spam	True Positive	False Negative		
	Non-Spam	False Positive	True Negative		
i '					

 $=\frac{330+510}{1000}$

= 0.84

Type I error

How often does the model correctly identify positives (spam emails)?

Predicted

Total = 1000	Spam	Non-Spam
Spam	330	70
Non-Spam	90	510

Predicted

	Spam	Non-Spam
Spam	True Positive	False Negative
Non-Spam	False Positive	True Negative

Metric 2: Recall

(Sensitivity or True Positive Rate)

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

$$= \frac{330}{330 + 70}$$

$$= 0.825$$

Actual

When the model predicts positive, how often is it correct?

Predicted

	Total = 1000	Spam		Non-Spam	
Actual	Spam		330)	70
	Non-Spam		90		510
		_			

Predicted

		Spam	Non-Spam
Actual	Spam	True Positive	False Negative
	Non-Spam	False Positive	True Negative

Metric 3: Precision

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$= \frac{330}{330 + 90}$$

 ≈ 0.786

How often does the model correctly identify negatives(non-spam emails)?

Predicted

Total = 1000		Spam	Non-Spam	
, s	pam	330	70	
Nor	n-Spam	90	(510)	

Actual

Predicted

Actual

	Spam	Non-Spam	
Spam	True Positive	False Negative	
Non-Spam	False Positive	True Negative	

Metric 4: True Negative Rate

(Specificity)

$$=rac{True\ Negative}{True\ Negative + False\ Positive}$$

$$=\frac{510}{510+90}$$

$$= 0.85$$

Predicted

Actual

Total = 1000	Spam	Non-Spam
Spam	330	70
Non-Spam	90	510

Predicted

Actual

	Spam	Non-Spam	
Spam	True Positive	False Negative	
Non-Spam	False Positive	True Negative	

Other Metrics

Error Rate

$$= \frac{False\ Positive + False\ Negative}{Total}$$

False Positive Rate

$$= \frac{False\ Positive}{False\ Positive + True\ Negative}$$

More Than Two Classes

Overall, how often is the model correct?

Predicted

Total = 1000	Α	В	С
Α	280	8	12
В	15	260	25
С	30	50	320

Metric 1: Accuracy

$$=\frac{280+260+320}{1000}=0.86$$

Actual

More Than Two Classes

How often does the model correctly identify positives each (spam emails)? class

Predicted

Total = 1000	Α	В	С
Α (280	8	12
В	15	260	25
С	30	50	320

Actual

Metric 2: Recall

(Sensitivity or True Positive Rate)

$$Recall_A = \frac{280}{280 + 8 + 12} \approx 0.93$$

$$Recall_B = \frac{260}{260 + 15 + 25} \approx 0.87$$

$$Recall_{C} = \frac{320}{320 + 30 + 50} = 0.8$$

More Than Two Classes

When the model predicts positive, how class often is it correct?

Predicted

Total = 1000	Α	В	С
Α (280	8	12
В	15	260	25
С	30	50	320

Actual

Metric 3: Precision

$$Precision_A = \frac{280}{280 + 15 + 30} \approx 0.86$$

$$Precision_B = \frac{260}{260 + 8 + 50} \approx 0.82$$

$$Precision_{c} = \frac{320}{320 + 12 + 25} \approx 0.90$$

Cross-Validation

Is the Model Ready for Use?

What if we split the dataset in a different way?

Should we find another dataset to test our model?

Cross-Validation

- Cross-validation is a <u>resampling</u> procedure used to evaluate machine learning models on a <u>limited</u> data sample.
- **1. Splitting the Data**: The dataset is split into K equal-sized (or nearly equal-sized) subsets.
- **2. Training and Validation**: The model is trained K times, each time using K-1 folds for training and the remaining 1 fold for validation.
- **3. Rotation**: The validation fold is rotated such that each of the K folds is used exactly once as the validation set.
- **4. Averaging the Results**: The performance metric (e.g., accuracy, precision, recall) is averaged across all K trials to give an overall performance estimate.

Cross-Validation

- K-Fold Cross-validation
- K is the number of equal-size blocks you split the data into
- Ten-Fold Cross Validation is a common choice.

Machine Learning Steps

- Gathering and loading data
- Exploring data (e.g., pandas and visualization)
- Transforming data (e.g., string to numeric)
- Splitting data for training and testing
- Choosing and creating a model
- Training
- Testing (evaluating accuracy)
- Tuning the model (hyperparameters)
- Making predictions on new data

Hyperparameter Tuning

Hyperparameter: model parameters specified in advance (before training)

When to Use

- Testing a model
- Hyperparameter Tuning
- Comparing models

Metrics for Accuracy

K-Fold Cross-Validation

Machine Learning Steps

- Gathering and loading data
- Exploring data (e.g., pandas and visualization)
- Transforming data (e.g., string to numeric)
- Splitting data for training and testing
- Choosing and creating a model
- Training
- Testing (evaluating accuracy)
- Tuning the model (hyperparameters)
- Making predictions on new data

Python and Machine Learning

Python and Machine Learning

Machine Learning

Deep Learning

Machine Learning Datasets

Q Search

- Home
- ♥ Compete
- m Data
- Notebooks
- Discuss

Datasets

Find and use datasets or cor

Machine learning, better, together

https://www.kaggle.com/datasets

https://www.openml.org/

Q&A

Any questions?

You can find me at wl563@cornell.edu

Machine Learning is Great For

- 1. Problems for which transitional solutions require a lot of fine-tuning or long lists of rules
- 2. Complex problems for which the traditional approach yields no good solution
- 3. Fluctuating environments
- 4. Getting insights about complex problems and large amounts of data