Chapitre 2 (2/2)

Fonctions dérivées et opérations sur celles-ci

Définition.

f est dérivable sur l'intervalle I si elle est dérivable en a pour tout $a \in I$. La dérivée de la fonction f est notée f'(a)

Fonctions usuelles et opérations

Dérivées de fonctions usuelles		Opérations sur les dérivées	
f(x) =	f'(x) =	f(x)	f'(x)
k	0	$K \times u(x)$	$K \times u'(x)$
x	1	u(x) + v(x)	u'(x) + v'(x)
x^2	2x	$u(x) \times v(x)$	$u'(x) \times v(x) + u(x) \times v'(x)$
x^3	$3x^2$	$\frac{u(x)}{v(x)}$	$\frac{u'(x) \times v(x) - u(x) \times v'(x)}{v(x)^2}$
x^n	nx^{n-1}	u(ax+b)	$a \times u'(ax+b)$
$\frac{1}{x^n}$	$\frac{-n}{x^{n+1}}$	$\frac{1}{u}$	$\frac{-u'}{u^2}$
$\frac{1}{x}$	$\frac{-1}{x^2}$		
\sqrt{x}	$\frac{1}{2\sqrt{x}}$		

Fonction valeur absolue

Définition

f(x) = |x| est paire et est positive pour tout \mathbf{x} .

Dérivabilité

Elle est dérivable sur] $-\infty;0[\cup]0;+\infty[$ et donc pas sur 0.

$$f'(x) = 1$$

