$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Step	Algorithm: $[A] := CHOL_BLK_VAR3(A)$
$ \begin{array}{c} \text{where } A_{TL} \text{ is } 0 \times 0 \\ 2 \\ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \\ \widehat{L}_{BL} & \widehat{L}_{TL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \\ 3 \\ \text{while } m(A_{TL}) < m(A) \text{ do} \\ 2,3 \\ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{TL}^T \end{pmatrix} - \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge m(A_{TL}) < m(A) \\ \end{array} \right. \\ 5a \\ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} \\ \text{where } A_{11} \text{ is } b \times b \\ \\ 6 \\ \left\{ \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ L_{10} & \alpha_{21} - L_{20}L_{10} & A_{22} - L_{20}L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}L_{00}^T \\ L_{0L}L_{00}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{00} \\ \widehat{a}_{10}^T \\ \widehat{A}_{20} \end{pmatrix} \\ \hat{A}_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ L_{20} & a_{21} - L_{20}L_{20} & A_{22} - L_{20}L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}L_{00}^T \\ L_{20}L_{00}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{00} \\ \widehat{a}_{10}^T \\ \widehat{A}_{20} \end{pmatrix} \\ \hat{A}_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ L_{10} & A_{11} & \widehat{a}_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ L_{10} & A_{11} & \widehat{a}_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ L_{20} & L_{20}L_{20}^T - L_{20}L_{20}^T - L_{20}L_{20}^T - L_{20}L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}L_{00}^T \\ L_{10}L_{00}^T & L_{10}^T L_{10} + \lambda_{11}^2 \\ L_{20}L_{10}^T & A_{11} & \widehat{a}_{12}^T \\ A_{20} & \widehat{a}_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{01} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} L_{00}L_{10}^T & L_{10}L_{21}^T \\ L_{20}L_{20}^T & L_{20}L_{20}^T - L_{20}L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{11}L_{11}^T \\ L_{20}L_{10}^T & L_{10}L_{11}^T \end{pmatrix} + \begin{pmatrix} A_{11}L_{11} & A_{12} \\ L_{20}L_{10}^T & A_{11}L_{21}^T \end{pmatrix} \end{pmatrix} = \begin{pmatrix} A_{11}L_{11} & A_{12} \\ L_{20}L_{11}^T & A_{11}^T & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} L_{11}L_{1$	1a	$A = \widehat{A}$
$ \begin{cases} \begin{cases} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{cases} = \begin{pmatrix} \hat{L}_{TL} & \hat{A}_{TR} \\ \hat{L}_{BL} & \hat{A}_{BR} - L_{BL}L_{BL}^T \\ \hat{L}_{BL} & \hat{L}_{TL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \hat{A}_{TL} \\ \hat{A}_{BL} \end{pmatrix} \\ \end{cases} $ $ \text{while } m(A_{TL}) < m(A) \text{ do} $ $ 2.3 & \begin{cases} \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \hat{L}_{TL} & \hat{A}_{TR} \\ \hat{L}_{BL} & \hat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \hat{A}_{TL} \\ \hat{A}_{BL} \end{pmatrix} \wedge m(A_{TL}) < m(A) \end{cases} $ $ \text{Determine block size } b \\ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} \\ \text{where } A_{11} \text{ is } b \times b \end{cases} $ $ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \hat{a}_{01} & \hat{A}_{02} \\ L_{20} & a_{21} - L_{20}l_{10} & A_{22} - L_{20}L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}I_{00}^T \\ l_{10}^T L_{00}^T \\ L_{20}I_{20}^T \end{pmatrix} = \begin{pmatrix} \hat{A}_{00} \\ \hat{a}_{10}^T \\ \hat{A}_{20} \end{pmatrix} $ $ \begin{cases} \alpha_{11} := \sqrt{\alpha_{11}} \\ \alpha_{21} := a_{21}/\alpha_{11} \\ A_{22} := A_{22} - a_{21}a_{21}^T \end{aligned} \text{ update only lower triangular part} $ $ \begin{cases} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ a_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \hat{a}_{01} & \hat{A}_{02} \\ L_{20} & l_{21}^T & A_{22} - L_{20}L_{20}^T - l_{21}l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}L_{00}^T \\ l_{10}^T L_{00}^T & l_{10}^T + \lambda_{11}^2 \\ L_{20}L_{20}^T & A_{21} & A_{22} - L_{20}L_{20}^T - l_{21}l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}L_{00}^T \\ l_{10}^T L_{00}^T & l_{10}^T + \lambda_{11}^2 \\ L_{20}L_{10}^T & A_{11} & A_{12} \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & a_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} A_{00} & A_{01} $	4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \right\} $
$ \begin{array}{c} \textbf{Determine block size } b \\ & \begin{array}{c} a \\ & \begin{array}{c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \\ \end{array} \end{array} \right) \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \\ \end{array} \\ & \begin{array}{c} \textbf{where } A_{11} \text{ is } b \times b \\ & \begin{array}{c} a \\ A_{00} & a_{01} & A_{02} \\ A_{20} & a_{21} & A_{22} \\ \end{array} \right) \\ & \begin{array}{c} \textbf{where } A_{11} \text{ is } b \times b \\ \end{array} \\ & \begin{array}{c} a \\ a_{10} & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \\ \end{array} \right) = \begin{pmatrix} L_{00} & \hat{a}_{01} & \hat{A}_{02} \\ l_{10}^T & \alpha_{11} & l_{10}^T \\ l_{20} & a_{21} - L_{20}l_{10} & A_{22} - L_{20}L_{20}^T \\ \end{array} \right) \wedge \begin{pmatrix} L_{00}L_{00}^T \\ l_{10}^TL_{00}^T \\ l_{10}^TL_{00}^T \\ L_{20}L_{20}^T \\ \end{array} \right) \\ & \begin{array}{c} \alpha_{11} := \sqrt{\alpha_{11}} \\ \end{array} \\ & \begin{array}{c} a_{21} := a_{21}/\alpha_{11} \\ A_{22} := A_{22} - a_{21}a_{21}^T \\ \end{array} \right) \text{ update only lower triangular part} \\ & \begin{array}{c} A_{00} & a_{01} & A_{02} \\ l_{10}^T & \alpha_{11} & \hat{a}_{12}^T \\ A_{20} & a_{21} & A_{22} \\ \end{array} \right) = \begin{pmatrix} L_{00} & \hat{a}_{01} & \hat{A}_{02} \\ l_{10}^T & \lambda_{11} & \hat{a}_{12}^T \\ L_{20} & l_{21} & A_{22} - L_{20}L_{20}^T - l_{21}l_{21}^T \\ \end{array} \right) \wedge \begin{pmatrix} L_{00}L_{00}^T \\ l_{10}^Tl_{10} + \lambda_{11}^2 \\ L_{20}l_{10} + \lambda_{11}^2 \\ L_{20}l_{21}^T & A_{22} - L_{20}l_{20}^T - l_{21}l_{21}^T \\ \end{array} \right) \wedge \begin{pmatrix} L_{00}L_{00}^T \\ l_{10}^Tl_{10} + \lambda_{11}^2 \\ L_{20}l_{10} + \lambda_{11}^2 \\ L_{20}l_{21}^T & A_{22} - L_{20}l_{20}^T - l_{21}l_{21}^T \\ \end{array} \right) \wedge \begin{pmatrix} L_{00}L_{00}^T \\ l_{10}^Tl_{10} + \lambda_{11}^2 \\ L_{20}l_{21} + \lambda_{11}l_{21} \\ L_{20}l_{21}^T & A_{22} - L_{20}l_{20}^T - l_{21}l_{21}^T \\ \end{array} \right) \wedge \begin{pmatrix} L_{00}L_{00}^T \\ l_{10}^Tl_{10} + \lambda_{11}^2 \\ L_{20}l_{21}^T & A_{22} - L_{20}l_{20}^T - l_{21}l_{21}^T \\ \end{array} \right) \\ = \begin{pmatrix} A_{11} & A_{12} \\ A_{20} & a_{21} \\ A_{21} & A_{12} \\ A_{20} & A_{21} \\ A_{22} & A_{22} \\ \end{array} \right) \\ = \begin{pmatrix} A_{11} & A_{12} \\ A_{20} & A_{21} \\ A_{22} & A_{22} \\ \end{array} \right) \\ = \begin{pmatrix} A_{11} & A_{12} \\ A_{20} & A_{21} \\ A_{22} & A_{22} \\ \end{array} \right) \\ = \begin{pmatrix} A_{11} & A_{12} \\ A_{20} & A_{21} \\ A_{20$	3	while $m(A_{TL}) < m(A)$ do
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \wedge m(A_{TL}) < m(A) \end{array} \right\}$
$ \begin{array}{c} \text{where } A_{11} \text{ is } b \times b \\ \hline \\ 6 \end{array} \left\{ \begin{array}{c} A_{00} a_{01} A_{02} \\ a_{10}^T \alpha_{11} a_{12}^T \\ A_{20} a_{21} A_{22} \end{array} \right\} = \begin{pmatrix} L_{00} \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T \alpha_{11} - l_{10}^T l_{10} & \widehat{a}_{12}^T \\ L_{20} a_{21} - L_{20} l_{10} A_{22} - L_{20} L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{00}^T \\ L_{20} L_{00}^T \end{pmatrix} = \begin{pmatrix} \widehat{a}_{00} \\ \widehat{a}_{10}^T \\ \widehat{A}_{20} \end{pmatrix} $ $ \begin{array}{c} \alpha_{11} := \sqrt{\alpha_{11}} \\ 8 \end{array} \begin{array}{c} \alpha_{11} := \sqrt{\alpha_{11}} \\ a_{21} := a_{21}/\alpha_{11} \\ A_{22} := A_{22} - a_{21} a_{21}^T \text{update only lower triangular part} \end{array} $ $ \begin{array}{c} \begin{pmatrix} A_{00} a_{01} A_{02} \\ a_{10}^T \alpha_{11} a_{12}^T \\ A_{20} a_{21} A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} l_{21} A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{00} l_{10}^T l_{10} + \lambda_{11}^2 \\ L_{20} L_{10} \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} l_{21} A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{00} l_{10}^T l_{10} + \lambda_{11}^2 \\ L_{20} L_{10} k_{11} l_{21} \end{pmatrix} = \begin{pmatrix} \widehat{A}_{00} A_{01} \\ \widehat{A}_{02} \\ A_{21} A_{21} A_{22} \end{pmatrix} $ $ \begin{array}{c} 5b \begin{pmatrix} A_{TL} A_{TR} \\ A_{BL} A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} A_{01} A_{02} \\ A_{10} A_{11} A_{12} \\ A_{20} A_{21} A_{22} \end{pmatrix} \\ 2 \begin{pmatrix} A_{TL} A_{TR} \\ A_{BL} A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} \widehat{A}_{TR} \\ \widehat{L}_{BL} \widehat{A}_{BR} - L_{BL} L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL} L_{TL}^T \\ L_{BL} L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge \neg (m(A_{TL}) < m(A)) \\ \end{array} $ $ \begin{array}{c} end \\ end \\ end \\ \end{array} $		Determine block size b
$ \begin{cases} \begin{cases} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{cases} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T & \alpha_{11} - l_{10}^T l_{10} & \widehat{a}_{12}^T \\ L_{20} & a_{21} - L_{20} l_{10} & A_{22} - L_{20} L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{10}^T \\ l_{10}^T L_{00}^T \\ L_{20} L_{00}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{00} \\ \widehat{a}_{10}^T \\ \widehat{A}_{20} \end{pmatrix} $ $ \begin{cases} \alpha_{11} := \sqrt{\alpha_{11}} \\ \alpha_{21} := a_{21}/\alpha_{11} \\ A_{22} := A_{22} - a_{21} a_{21}^T \end{aligned} \text{update only lower triangular part} $ $ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} & l_{21} & A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{00}^T & l_{10}^T l_{10} + \lambda_{11}^2 \\ L_{20} L_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} & l_{21} & A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{00}^T & l_{10}^T l_{10} + \lambda_{11}^2 \\ L_{20} L_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} & l_{21} & A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{00}^T & l_{10}^T l_{10} + \lambda_{11}^2 \\ L_{20} L_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} & l_{21} & A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{10} + \lambda_{11} l_{21} \\ L_{20} L_{10}^T & \lambda_{11} & \lambda_{12} \\ L_{20} L_{20}^T & \lambda_{20} l_{20} + \lambda_{11} l_{21} \end{pmatrix} = \begin{pmatrix} A_{00} L_{00} & A_{01} & A_{02} \\ A_{10} A_{11} & A_{12} \\ A_{20} A_{21} & A_{22} \end{pmatrix} $ $2 \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL} L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL} L_{TL}^T \\ L_{BL} L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge \neg (m(A_{TL}) < m(A)) $ endwhile $2.3 \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{L}_{BL} & \widehat{L}_{BL} \end{pmatrix} \wedge \begin{pmatrix} L_{TL} L_{TL}^T \\ \widehat{L}_{BL} & \widehat{A}_{BL} & \widehat{L}_{BL} \end{pmatrix} \wedge \neg (m(A_{TL}) < m(A))$	5a	(20 21 22 /
$ \begin{array}{ll} \alpha_{11} := \sqrt{\alpha_{11}} \\ a_{21} := a_{21}/\alpha_{11} \\ A_{22} := A_{22} - a_{21}a_{21}^T \text{update only lower triangular part} \\ \\ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} & l_{21} & A_{22} - L_{20}L_{20}^T - l_{21}l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}L_{00}^T & l_{10}^T l_{10} + \lambda_{11}^2 \\ l_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} & l_{21} & A_{22} - L_{20}L_{20}^T - l_{21}l_{21}^T \end{pmatrix} \\ \\ 5b & \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} \\ \\ 2 & \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \\ \\ endwhile \\ \\ 2,3 & \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge \neg (m(A_{TL}) < m(A)) \\ \\ \end{pmatrix} $		where A_{11} is $\theta \times \theta$ $ \left(\begin{array}{ccc} A_{00} & a_{01} & A_{00} \\ A_{00} & a_{01} & A_{00} \end{array} \right) \left(\begin{array}{ccc} A_{00} & \widehat{a}_{01} \\ A_{00} & \widehat{a}_{01} \end{array} \right) \left(\begin{array}{ccc} \widehat{A}_{00} \\ \widehat{A}_{00} \end{array} \right) $
$ \begin{array}{ll} \alpha_{11} := \sqrt{\alpha_{11}} \\ a_{21} := a_{21}/\alpha_{11} \\ A_{22} := A_{22} - a_{21}a_{21}^T \text{update only lower triangular part} \\ \\ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} & l_{21} & A_{22} - L_{20}L_{20}^T - l_{21}l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}L_{00}^T & l_{10}^T l_{10} + \lambda_{11}^2 \\ l_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} & l_{21} & A_{22} - L_{20}L_{20}^T - l_{21}l_{21}^T \end{pmatrix} \\ \\ 5b & \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} \\ \\ 2 & \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \\ \\ endwhile \\ \\ 2,3 & \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge \neg (m(A_{TL}) < m(A)) \\ \\ \end{pmatrix} $	6	$ \left\{ \begin{array}{cccc} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} B_{00} & a_{01} & A_{02} \\ l_{10}^T & \alpha_{11} - l_{10}^T l_{10} & \widehat{a}_{12}^T \\ L_{20} & a_{21} - L_{20} l_{10} & A_{22} - L_{20} L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} B_{00} B_{00} \\ l_{10}^T L_{00}^T \\ L_{20} L_{00}^T \end{pmatrix} = \begin{pmatrix} A_{00} \\ \widehat{a}_{10}^T \\ \widehat{A}_{20} \end{pmatrix} \right\} $
$ 8 \qquad a_{21} := a_{21}/\alpha_{11} \\ A_{22} := A_{22} - a_{21}a_{21}^T \text{update only lower triangular part} $		
	8	·
		$A_{22} := A_{22} - a_{21}a_{21}^T$ update only lower triangular part
$ 2 \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \\ \text{endwhile} \\ 2,3 \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \wedge \neg (m(A_{TL}) < m(A)) \right\} $	7	$ \left\{ \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} & l_{21} & A_{22} - L_{20}L_{20}^T - l_{21}l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}L_{00}^T \\ l_{10}^TL_{00}^T & l_{10}^Tl_{10} + \lambda_{11}^2 \\ L_{20}L_{01}^T & L_{20}L_{10} + \lambda_{11}l_{21} \end{pmatrix} = \left\{ \begin{pmatrix} \widehat{A}_{00} \\ \widehat{a}_{10}^T & \widehat{\alpha}_{11} \end{pmatrix} \right\} $
$ 2 \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \\ \text{endwhile} \\ 2,3 \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \wedge \neg (m(A_{TL}) < m(A)) \right\} $	5b	$\left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right)$
$2,3 \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \wedge \neg (m(A_{TL}) < m(A))$	2	
$\left(\begin{array}{c c} A_{BL} & A_{BR} \end{array}\right) \left(\begin{array}{c c} \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array}\right) \left(\begin{array}{c c} \widehat{L}_{BL}L_{TL}^T \end{array}\right) \left(\begin{array}{c c} \widehat{A}_{BL} \end{array}\right)$		
	2,3	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \wedge \neg (m(A_{TL}) < m(A)) \right\}$
	1b	

Step	Algorithm: $[A] := CHOL_BLK_VAR3(A)$
1a	{
4	where
	where
2	
3	while do
2,3	
	Determine block size b
5a	
	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$\left\{ egin{array}{cccccccccccccccccccccccccccccccccccc$
1b	{

Step	Algorithm: $[A] := CHOL_BLK_VAR3(A)$
1a	$\{A = \widehat{A}\}$
4	where
2	$\left\{ \begin{array}{c} \end{array} \right\}$
3	while do
2,3	
	Determine block size b
5a	
	where
6	
8	
7	
5b	
2	
	endwhile
2,3	
1b	$\left\{ A = \operatorname{Chol}(\widehat{A}) \right\}$

Step	Algorithm: $[A] := CHOL_BLK_VAR3(A)$
1a	$\{A = \widehat{A}\}$
4	where
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right)$
3	while do
2,3	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) & = & \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) & = & \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \wedge \right\}$
	Determine block size b
5a	
	where
6	
8	
7	
5b	
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) $
	endwhile () () ()
2,3	$ \left\{ \left(\frac{A_{TL}}{A_{BL}} \begin{vmatrix} A_{TR} \\ A_{BL} \end{vmatrix} A_{BR} \right) = \left(\frac{\widehat{L}_{TL}}{\widehat{L}_{BL}} \begin{vmatrix} \widehat{A}_{RR} \\ \widehat{L}_{BL} \end{vmatrix} \widehat{A}_{BR} - L_{BL}L_{BL}^T \right) \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \left(\frac{\widehat{A}_{TL}}{\widehat{A}_{BL}} \right) \wedge \right\} $
1b	$\left\{ A = \operatorname{Chol}(\widehat{A}) \right\}$

Step	Algorithm: $[A] := CHOL_BLK_VAR3(A)$
1a	$\{A = \widehat{A}\}$
4	where
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \right\}$
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge m(A_{TL}) < \right\}$
	Determine block size b
5a	
	where
6	
8	
7	
5b	
2	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL} L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL} L_{TL}^T \\ \hline L_{BL} L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \right\}$
	endwhile
2,3	$\left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge \neg (m(A_{TL}) < \right\}$
1b	$\left\{ A = \operatorname{Chol}(\widehat{A}) \right\}$

Step	Algorithm: $[A] := CHOL_BLK_VAR3(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0
2	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \right\} $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge m(A_{TL}) < \right\} $
	Determine block size b
5a	
	where
6	
8	
7	
5b	
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \right\} $
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge \neg (m(A_{TL}) < \right\} $
1b	$\left\{ A = \operatorname{Chol}(\widehat{A}) \right\}$

Step	Algorithm: $[A] := \text{CHOL_BLK_VAR3}(A)$
1a	$A = \widehat{A}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0
2	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \left(\frac{\widehat{A}_{TL}}{\widehat{A}_{BL}} \right) \wedge m(A_{TL}) < \right\} $
5a	$ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} $ where A_{11} is $b \times b$
6	
8	
7	
5b	$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right) $
2	$ \left\{ \begin{array}{c c} \left(\frac{A_{TL}}{A_{BL}} \middle A_{TR} \right) = \left(\frac{\widehat{L}_{TL}}{\widehat{L}_{BL}} \middle \widehat{A}_{RR} \right) \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \left(\frac{\widehat{A}_{TL}}{\widehat{A}_{BL}} \right) \\ \end{array} \right\} $
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \left(\frac{\widehat{A}_{TL}}{\widehat{A}_{BL}} \right) \wedge \neg (m(A_{TL}) < \right\} $
1b	$\left\{ A = \operatorname{Chol}(\widehat{A}) \right\}$

Step	Algorithm: $[A] := CHOL_BLK_VAR3(A)$
1a	$A = \widehat{A}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0
2	$ \left\{ \left(\begin{array}{c c} A_{TL} & \text{Is } 0 \times 0 \\ \hline A_{BL} & A_{RR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \\ \hline \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \\ \hline \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \\ \hline \end{array} \right) $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge m(A_{TL}) < \right\} $
	Determine block size b
5a	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \to \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array}\right) $
	where A_{11} is $b \times b$
6	$ \left\{ \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T & \alpha_{11} - l_{10}^T l_{10} & \widehat{a}_{12}^T \\ L_{20} & a_{21} - L_{20} l_{10} & A_{22} - L_{20} L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{00}^T \\ L_{20} L_{00}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{00} \\ \widehat{a}_{10}^T \\ \widehat{A}_{20} \end{pmatrix} \right\} $
8	
7	
5b	$\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right)$
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) \right\} $
	endwhile
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \left(\frac{\widehat{A}_{TL}}{\widehat{A}_{BL}} \right) \wedge \neg (m(A_{TL}) < \right\} $
1b	$\left\{ A = \operatorname{Chol}(\widehat{A}) \right\}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Step	Algorithm: $[A] := CHOL_BLK_VAR3(A)$	
$ \begin{array}{c} \text{where } A_{TL} \text{ is } 0 \times 0 \\ 2 & \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{RR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \\ \widehat{L}_{BL} & \widehat{L}_{BL} & A_{BL} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \\ \widehat{L}_{BL} & \widehat{L}_{BL} & A_{BL} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{CO} & A_{O1} & A_{O2} \\ A_{O0} & A_{O1} & A_{O2} \\ A_{O2} & A_{O2} & A_{O2} & A_{O2} \\ A_{O2} & A_{O2} & A_{O2} & A_{O2} \\ A_{O$	1a	$A = \widehat{A}$	
$ \begin{array}{c} 2 \left\{ \left(\frac{A_{TL}}{A_{BL}} \right \frac{A_{TR}}{A_{BR}} \right) = \left(\frac{\widehat{L}_{TL}}{\widehat{L}_{BL}} \right \frac{\widehat{A}_{TR}}{\widehat{L}_{BL}} - L_{BL}L_{BL}^T \right) \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \left(\frac{\widehat{A}_{TL}}{\widehat{A}_{BL}} \right) \\ 3 \text{while } m(A_{TL}) < m(A) \text{ do} \\ \\ 2,3 \left\{ \begin{array}{c} A_{TL} \mid A_{TR} \\ A_{BL} \mid A_{BR} \end{array} \right) = \left(\frac{\widehat{L}_{TL}}{\widehat{L}_{BL}} \right \frac{\widehat{A}_{TR}}{\widehat{L}_{BL}} - L_{BL}L_{RL}^T \right) \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \left(\frac{\widehat{A}_{TL}}{\widehat{A}_{BL}} \right) \wedge m(A_{TL}) < \\ 8 \left(\frac{A_{TL}}{A_{BL}} \right \frac{A_{TR}}{A_{BR}} \right) \rightarrow \left(\frac{A_{O0}}{A_{O1}} \right \frac{A_{O2}}{A_{O1}} \right) \\ A_{O0} A_{O1} \mid A_{O2} \\ A_{O2} \mid A_{O1} \mid A_{O2} \right) \\ A_{O1} A_{O2} \mid A_{O2} \mid A_{O2} \right) \\ A_{O2} A_{O2} \mid A_{O2} \mid A_{O2} \right) \rightarrow \left(\frac{L_{O0} \mid \widehat{A}_{O2}}{L_{O0} \mid A_{O2}} \right) \wedge \left(\frac{L_{O0}L_{O0}^T}{L_{O0}^T} \right) = \left(\frac{\widehat{A}_{O0}}{\widehat{A}_{O1}} \right) \\ A_{O2} A_{O1} \mid A_{O2} \mid A_{O2} \right) \\ A_{O3} A_{O1} \mid A_{O2} \mid A_{O2} \mid A_{O2} \right) \rightarrow \left(\frac{L_{O0} \mid \widehat{A}_{O2}}{L_{O0}^T} \right) \wedge \left(\frac{L_{O0}L_{O0}^T}{L_{O0}^T} \right) = \left(\frac{\widehat{A}_{O0}}{\widehat{A}_{O1}} \right) \\ A_{O2} A_{O1} A_{O2} \mid A_{O$	4	where A_{TL} is 0×0	
	2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right)$	
$ \begin{array}{c} \text{Determine block size } b \\ & \left(\begin{array}{c} A_{TL} \mid A_{TR} \\ A_{BL} \mid A_{BR} \end{array} \right) \rightarrow \left(\begin{array}{c} A_{00} \mid A_{01} \mid A_{02} \\ A_{10} \mid A_{11} \mid A_{12} \\ A_{20} \mid A_{21} \mid A_{22} \end{array} \right) \\ & \text{where } A_{11} \text{ is } b \times b \\ & \left\{ \begin{array}{c} \left(\begin{array}{c} A_{00} \mid a_{01} \mid A_{02} \\ A_{20} \mid a_{21} \mid A_{22} \end{array} \right) = \left(\begin{array}{c} L_{00} \mid \widehat{a}_{01} \mid \widehat{A}_{02} \\ l_{10}^T \mid \alpha_{11} \mid a_{12}^T \\ A_{20} \mid a_{21} \mid A_{22} \end{array} \right) + \left(\begin{array}{c} L_{00} \mid \widehat{a}_{01} \mid \widehat{A}_{02} \\ l_{10}^T \mid \alpha_{11} \mid a_{12}^T \\ A_{20} \mid a_{21} \mid A_{22} \end{array} \right) + \left(\begin{array}{c} L_{00} \mid \widehat{a}_{01} \mid \widehat{A}_{02} \\ l_{10}^T \mid \widehat{A}_{11} \mid \widehat{A}_{12}^T \\ A_{20} \mid a_{21} \mid A_{22} \end{array} \right) + \left(\begin{array}{c} A_{00} \mid \widehat{a}_{01} \mid \widehat{A}_{02} \\ a_{10}^T \mid \widehat{A}_{11} \mid \widehat{A}_{12}^T \\ A_{20} \mid \widehat{a}_{21} \mid A_{22} \end{array} \right) + \left(\begin{array}{c} A_{00} \mid \widehat{a}_{01} \mid \widehat{A}_{02} \\ l_{10}^T \mid \widehat{A}_{11} \mid \widehat{A}_{12}^T \\ A_{20} \mid \widehat{a}_{21} \mid A_{22} \end{array} \right) + \left(\begin{array}{c} A_{00} \mid \widehat{a}_{01} \mid \widehat{A}_{02} \\ A_{10} \mid \widehat{A}_{11} \mid \widehat{A}_{12} \\ A_{20} \mid \widehat{a}_{21} \end{array} \right) + \left(\begin{array}{c} A_{00} \mid \widehat{a}_{01} \mid \widehat{A}_{02} \\ \widehat{a}_{10}^T \mid \widehat{A}_{11} \mid \widehat{A}_{12} \\ \widehat{A}_{20} \mid \widehat{a}_{21} \end{array} \right) + \left(\begin{array}{c} A_{00} \mid \widehat{A}_{01} \mid \widehat{A}_{02} \\ \widehat{a}_{10}^T \mid \widehat{A}_{11} \mid \widehat{A}_{12} \\ \widehat{A}_{20} \mid \widehat{a}_{21} \end{array} \right) + \left(\begin{array}{c} A_{00} \mid \widehat{A}_{01} \mid \widehat{A}_{02} \\ A_{10} \mid \widehat{A}_{11} \mid \widehat{A}_{12} \\ \widehat{A}_{20} \mid \widehat{A}_{21} \mid \widehat{A}_{22} \end{array} \right) + \left(\begin{array}{c} A_{11} \mid \widehat{A}_{12} \\ \widehat{A}_{20} \mid \widehat{A}_{21} \mid \widehat{A}_{22} \\ \widehat{A}_{20} \mid \widehat{A}_{21} \mid \widehat{A}_{22} \end{array} \right) + \left(\begin{array}{c} A_{11} \mid \widehat{A}_{12} \\ \widehat{A}_{20} \mid \widehat{A}_{21} \mid \widehat{A}_{22} \\ \widehat{A}_{20} \mid \widehat{A}_{21} \mid \widehat{A}_{$	3	while $m(A_{TL}) < m(A)$ do	
$ \begin{array}{c} 5a & \left(\begin{array}{c ccc} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array} \right) \rightarrow \left(\begin{array}{c ccc} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array} \right) \\ & \text{where } A_{11} \text{ is } b \times b \\ \hline \\ 6 & \left\{ \begin{array}{c ccc} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{array} \right\} = \left(\begin{array}{c ccc} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T & \alpha_{11} & l_{10}^T l_{10} & \widehat{a}_{12}^T \\ L_{20} & a_{21} & L_{20} l_{10} & A_{22} - L_{20} L_{20}^T \right) \wedge \left(\begin{array}{c} L_{00} L_{00}^T \\ l_{10}^T L_{00}^T \\ L_{20} L_{20}^T \end{array} \right) = \left(\begin{array}{c ccc} \widehat{A}_{00} \\ \widehat{a}_{10}^T \\ A_{20} & \alpha_{21} & A_{22} \end{array} \right) \\ \hline \\ 8 & \\ \hline \\ 7 & \left\{ \begin{array}{c ccc} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{array} \right\} = \left(\begin{array}{c ccc} L_{00} \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ A_{20} & l_{10}^T l_{10} + \lambda_{11} \\ L_{20} L_{21}^T & A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{array} \right) \wedge \left(\begin{array}{c ccc} A_{00} & A_{01} & A_{02} \\ l_{10}^T & \lambda_{11} & \widehat{a}_{12}^T \\ A_{20} & A_{21} & A_{22} \end{array} \right) \\ \hline \\ 5b & \left(\begin{array}{c ccc} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array} \right) \leftarrow \left(\begin{array}{c ccc} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array} \right) \\ \hline \\ endwhile & \\ \hline \\ 2,3 & \left\{ \left(\begin{array}{c ccc} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c ccc} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL} L_{BL}^T \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL} L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c ccc} L_{TL} L_{TL}^T \\ L_{BL} L_{TL}^T \end{array} \right) = \left(\begin{array}{c ccc} \widehat{A}_{TL} \\ \widehat{A}_{BL} \\ \widehat{A}_{BL} \end{array} \right) \wedge \gamma(m(A_{TL}) < \left\{ \begin{array}{c ccc} A_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL} L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c ccc} L_{TL} L_{TL}^T \\ L_{BL} L_{TL}^T \end{array} \right) = \left(\begin{array}{c ccc} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{array} \right) \wedge \gamma(m(A_{TL}) < \left\{ \begin{array}{c ccc} A_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL} L_{BL}^T \end{array} \right\} \wedge \left(\begin{array}{c ccc} L_{TL} L_{TL}^T \\ L_{BL} L_{TL}^T \end{array} \right) = \left(\begin{array}{c ccc} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{array} \right) \wedge \gamma(m(A_{TL}) < \left\{ \begin{array}{c ccc} A_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} \end{array} \right\} \right\} + \left(\begin{array}{c ccc} A_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{TL} & \widehat{A}_{TL} & \widehat{A}_{TL} \end{array} \right) + \left(\begin{array}{c ccc} A_{TL} & \widehat{A}_{T$	2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge m(A_{TL}) < \right\} $	
$ \begin{array}{c} \text{where } A_{11} \text{ is } b \times b \\ \begin{cases} A_{00} \ a_{01} \ A_{02} \\ a_{10}^T \ \alpha_{11} \ a_{12}^T \\ A_{20} \ a_{21} \ A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} \ \widehat{a}_{01} \ \widehat{A}_{01} \\ l_{10}^T \ \alpha_{11} - l_{10}^T l_{10} \\ L_{20} \ a_{21} - L_{20} l_{10} \ A_{22} - L_{20} L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{00}^T \\ L_{20} L_{20}^T L_{20} \end{pmatrix} \\ \\ 8 \end{cases} $		Determine block size b	
$ \begin{cases} \begin{cases} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{cases} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T & \alpha_{11} & l_{10}^T l_{10} & \widehat{a}_{12}^T \\ L_{20} & a_{21} - L_{20}l_{10} & A_{22} - L_{20}L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}L_{00}^T \\ l_{10}^T L_{00}^T \\ L_{20}L_{00}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{00} \\ \widehat{a}_{10}^T \\ \widehat{A}_{20} \end{pmatrix} $ $ \begin{cases} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} l_{21} & A_{22} - L_{20}L_{20}^T - l_{21}l_{21}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00}L_{00}^T \\ L_{00}L_{00}^T & l_{10}^T l_{10} + \lambda_{11}^2 \\ L_{20}L_{10}^T & L_{20}l_{10} + \lambda_{11}l_{21} \end{pmatrix} = \begin{pmatrix} \widehat{A}_{00} \\ \widehat{a}_{10}^T & \widehat{a}_{11} \\ \widehat{A}_{20} & \widehat{a}_{21} \end{pmatrix} $ $ \begin{cases} A_{TL} \begin{vmatrix} A_{TR} \\ A_{BL} \end{vmatrix} A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} A_{01} & A_{02} \\ A_{10} A_{11} & A_{12} \\ A_{20} A_{21} & A_{22} \end{pmatrix} $ $ \begin{cases} A_{TL} \begin{vmatrix} A_{TR} \\ A_{BL} \end{vmatrix} A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} \begin{vmatrix} \widehat{A}_{TR} \\ \widehat{L}_{BL} \end{vmatrix} \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge -(m(A_{TL}) < m(A_{TL}) <$	5a		
$ \begin{cases} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^{T} & \alpha_{11} & a_{12}^{T} \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} \hat{a}_{01} & \hat{A}_{02} \\ l_{10}^{T} & \lambda_{11} & \hat{a}_{12}^{T} \\ L_{20} & l_{21} & A_{22} - L_{20}L_{20}^{T} - l_{21}l_{21}^{T} \end{pmatrix} \wedge \\ \begin{pmatrix} L_{00}L_{00}^{T} & l_{10}^{T}l_{10} + \lambda_{11}^{2} \\ L_{20}l_{10}^{T} & L_{20}l_{10} + \lambda_{11}l_{21} \end{pmatrix} = \begin{pmatrix} \hat{a}_{10}^{T} & \hat{a}_{11} \\ \hat{A}_{20} & \hat{a}_{21} \end{pmatrix} $ $ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} $ $ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \hat{L}_{TL} & \hat{A}_{TR} \\ \hat{L}_{BL} & \hat{A}_{BR} - L_{BL}L_{BL}^{T} \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^{T} \\ L_{BL}L_{TL}^{T} \end{pmatrix} = \begin{pmatrix} \hat{A}_{TL} & \hat{A}_{TL} \\ \hat{A}_{BL} & \hat{A}_{BR} \end{pmatrix} $ $ = \text{endwhile} $ $ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \hat{L}_{TL} & \hat{A}_{TR} \\ \hat{L}_{BL} & \hat{A}_{BR} - L_{BL}L_{BL}^{T} \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^{T} \\ L_{BL}L_{TL}^{T} \end{pmatrix} = \begin{pmatrix} \hat{A}_{TL} \\ \hat{A}_{BL} \end{pmatrix} \wedge \neg (m(A_{TL}) < \frac{1}{A_{BL}} \\ M(A)) $		where A_{11} is $b \times b$ $ \begin{pmatrix} A_{12} & A_{22} & A_{23} \\ A_{23} & A_{23} \end{pmatrix} \begin{pmatrix} I_{23} & \widehat{A}_{23} \\ \widehat{A}_{23} & \widehat{A}_{23} \end{pmatrix} \begin{pmatrix} I_{23} I^T \\ \widehat{A}_{23} \end{pmatrix} $	
$ \begin{cases} A_{00} \ a_{01} \ A_{02} \\ a_{10}^{T} \ \alpha_{11} \ a_{12}^{T} \\ A_{20} \ a_{21} \ A_{22} \end{cases} = \begin{pmatrix} L_{00} \ \hat{a}_{01} & \hat{A}_{02} \\ l_{10}^{T} \ \lambda_{11} & \hat{a}_{12}^{T} \\ L_{20} \ l_{21} \ A_{22} - L_{20} L_{20}^{T} - l_{21} l_{21}^{T} \end{pmatrix} \land \begin{pmatrix} L_{00} L_{00}^{T} \\ l_{10}^{T} L_{00}^{T} & l_{10}^{T} l_{10} + \lambda_{11}^{2} \\ L_{20} l_{21} & A_{22} - L_{20} L_{20}^{T} - l_{21} l_{21}^{T} \end{pmatrix} \land \begin{pmatrix} L_{00} L_{00}^{T} & l_{10}^{T} l_{10} + \lambda_{11}^{2} \\ L_{20} l_{21} & A_{22} - L_{20} L_{20}^{T} - l_{21} l_{21}^{T} \end{pmatrix} $ $ 5b \qquad \begin{pmatrix} A_{TL} A_{TR} \\ A_{BL} A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} A_{01} & A_{02} \\ A_{10} A_{11} & A_{12} \\ A_{20} A_{21} & A_{22} \end{pmatrix} $ $ 2 \qquad \begin{pmatrix} A_{TL} A_{TR} \\ A_{BL} A_{BR} \end{pmatrix} = \begin{pmatrix} \hat{L}_{TL} & \hat{A}_{TR} \\ \hat{L}_{BL} & \hat{A}_{BR} - L_{BL} L_{BL}^{T} \end{pmatrix} \land \begin{pmatrix} L_{TL} L_{TL}^{T} \\ L_{BL} L_{TL}^{T} \end{pmatrix} = \begin{pmatrix} \hat{A}_{TL} \\ \hat{A}_{BL} \end{pmatrix} $ $ endwhile $ $ 2,3 \qquad \begin{cases} \begin{pmatrix} A_{TL} A_{TR} \\ A_{BL} A_{BR} \end{pmatrix} = \begin{pmatrix} \hat{L}_{TL} & \hat{A}_{TR} \\ \hat{L}_{BL} & \hat{A}_{BR} - L_{BL} L_{BL}^{T} \end{pmatrix} \land \begin{pmatrix} L_{TL} L_{TL}^{T} \\ L_{BL} L_{TL}^{T} \end{pmatrix} = \begin{pmatrix} \hat{A}_{TL} \\ \hat{A}_{BL} \end{pmatrix} \land \neg (m(A_{TL}) < \\ M(A)) $	6	$ \left\{ \begin{array}{c} \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} B_{00} & a_{01} & A_{02} \\ l_{10}^T & \alpha_{11} - l_{10}^T l_{10} & \widehat{a}_{12}^T \\ L_{20} & a_{21} - L_{20} l_{10} & A_{22} - L_{20} L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} B_{00} L_{00} \\ l_{10}^T L_{00}^T \\ L_{20} L_{00}^T \end{pmatrix} = \begin{pmatrix} A_{00} \\ \widehat{a}_{10}^T \\ \widehat{A}_{20} \end{pmatrix} \right\} $	
5b $\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right)$ $2 \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array}\right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array}\right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array}\right)$ endwhile $2,3 \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array}\right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array}\right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array}\right) \wedge \neg (m(A_{TL}) < \left(\begin{array}{c c} A_{TL} & \widehat{A}_{TR} \\ \hline A_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array}\right)$			
5b $\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right)$ $2 \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array}\right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array}\right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array}\right)$ endwhile $2,3 \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array}\right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array}\right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array}\right) \wedge \neg (m(A_{TL}) < \left(\begin{array}{c c} A_{TL} & \widehat{A}_{TR} \\ \hline A_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array}\right)$	7	$ \begin{cases} A_{00} \ a_{01} \ A_{02} \\ a_{10}^T \ \alpha_{11} \ a_{12}^T \\ A_{20} \ a_{21} \ A_{22} \end{cases} = \begin{pmatrix} L_{00} \ \hat{a}_{01} & \hat{A}_{02} \\ l_{10}^T \ \lambda_{11} & \hat{a}_{12}^T \\ L_{20} \ l_{21} \ A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} \land $ $ \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T \lambda_{11} & \hat{a}_{12}^T \\ L_{20} \ l_{21} \ A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} \Rightarrow $ $ \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T \lambda_{11} & \hat{a}_{12}^T \\ L_{20} \ l_{21} \ A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} \Rightarrow $ $ \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T \lambda_{11} & \hat{a}_{12}^T \\ L_{20} \ l_{21} \ A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} $	
endwhile $2,3 \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge \neg (m(A_{TL}) <) \right\}$	5b	$\left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right)$	
$ \begin{array}{c c} 2,3 & \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \left(\frac{\widehat{A}_{TL}}{\widehat{A}_{BL}} \right) \wedge \neg (m(A_{TL}) < \right\} \end{array} $	2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) $	
(m(A))		endwhile	
$1b \left\{ A = \text{Chol}(\widehat{A}) \right\}$	2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge \neg (m(A_{TL}) < \right\} $	
	1b	$A = \operatorname{Chol}(\widehat{A})$	

Step	Algorithm: $[A] := \text{Chol_blk_var}(A)$
1a	$\{A = \widehat{A}\}$
	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0
2	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{pmatrix} \wedge \begin{pmatrix} L_{TL}L_{TL}^T \\ L_{BL}L_{TL}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{TL} \\ \widehat{A}_{BL} \end{pmatrix} \wedge m(A_{TL}) < \right\} $
5a	Determine block size b $ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} $ where A_{11} is $b \times b$
6	$ \left\{ \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} & \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T & \alpha_{11} - l_{10}^T l_{10} & \widehat{a}_{12}^T \\ L_{20} & a_{21} - L_{20} l_{10} & A_{22} - L_{20} L_{20}^T \end{pmatrix} \wedge \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{00}^T \\ L_{20} L_{00}^T \end{pmatrix} = \begin{pmatrix} \widehat{A}_{00} \\ \widehat{a}_{10}^T \\ \widehat{A}_{20} \end{pmatrix} \right\} $
8	$lpha_{11}:=\sqrt{lpha_{11}}$ $a_{21}:=a_{21}/lpha_{11}$ $A_{22}:=A_{22}-a_{21}a_{21}^T \text{update only lower triangular part}$
7	$\begin{cases} A_{00} \ a_{01} \ A_{02} \\ a_{10}^T \ \alpha_{11} \ a_{12}^T \\ A_{20} \ a_{21} \ A_{22} \end{pmatrix} = \begin{pmatrix} L_{00} \ \widehat{a}_{01} & \widehat{A}_{02} \\ l_{10}^T \ \lambda_{11} & \widehat{a}_{12}^T \\ L_{20} \ l_{21} \ A_{22} - L_{20} L_{20}^T - l_{21} l_{21}^T \end{pmatrix} \land \\ \begin{pmatrix} L_{00} L_{00}^T \\ l_{10}^T L_{00}^T & l_{10}^T l_{10} + \lambda_{11}^2 \\ L_{20} L_{20}^T \ L_{20} l_{10} + \lambda_{11} l_{21} \end{pmatrix} = \begin{pmatrix} \widehat{A}_{00} \\ \widehat{a}_{10}^T \ \widehat{\alpha}_{11} \\ \widehat{A}_{20} \ \widehat{a}_{21} \end{pmatrix}$
5b	$\left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right)$
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{L}_{TL} & \widehat{A}_{TR} \\ \hline \widehat{L}_{BL} & \widehat{A}_{BR} - L_{BL}L_{BL}^T \end{array} \right) \wedge \left(\begin{array}{c c} L_{TL}L_{TL}^T \\ \hline L_{BL}L_{TL}^T \end{array} \right) = \left(\begin{array}{c c} \widehat{A}_{TL} \\ \hline \widehat{A}_{BL} \end{array} \right) $
	endwhile
2,3	$ \left\{ \left(\frac{A_{TL} A_{TR}}{A_{BL} A_{BR}} \right) = \left(\frac{\widehat{L}_{TL} \widehat{A}_{TR}}{\widehat{L}_{BL} \widehat{A}_{BR} - L_{BL}L_{BL}^T} \right) \wedge \left(\frac{L_{TL}L_{TL}^T}{L_{BL}L_{TL}^T} \right) = \left(\frac{\widehat{A}_{TL}}{\widehat{A}_{BL}} \right) \wedge \neg (m(A_{TL}) < \right\} $
1b	$\left\{ A = \operatorname{Chol}(\widehat{A}) \right\}$

Algorithm: $[A] := CHOL_BLK_VAR3(A)$
$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}$ where A_{TL} is 0×0
while $m(A_{TL}) < m(A)$ do
Determine block size b $ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array}\right) $ where A_{11} is $b \times b$
$lpha_{11}:=\sqrt{lpha_{11}}$ $a_{21}:=a_{21}/lpha_{11}$ $A_{22}:=A_{22}-a_{21}a_{21}^T \text{update only lower triangular part}$
$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right) $
endwhile

Algorithm: $[A] := CHOL_BLK_VAR3(A)$

$$A \to \left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right)$$

where A_{TL} is 0×0

while $m(A_{TL}) < m(A)$ do

Determine block size b

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \to \left(\begin{array}{c|c}
A_{00} & A_{01} & A_{02} \\
\hline
A_{10} & A_{11} & A_{12} \\
A_{20} & A_{21} & A_{22}
\end{array}\right)$$

where A_{11} is $b \times b$

$$\alpha_{11} := \sqrt{\alpha_{11}}$$

$$a_{21} := a_{21}/\alpha_{11}$$

 $A_{22} := A_{22} - a_{21}a_{21}^T$ update only lower triangular part

$$\left(\begin{array}{c|c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \leftarrow \left(\begin{array}{c|c|c}
A_{00} & A_{01} & A_{02} \\
A_{10} & A_{11} & A_{12} \\
\hline
A_{20} & A_{21} & A_{22}
\end{array}\right)$$

endwhile