A	В	С	D	Е
а	2	3	4	5
2	а	3	4	5
2	2	3	6	5
а	2	3	6	6

- a) A BC
- b) DE -C
- c) C DE
- d) BC A

X	Υ	Z	
1	4	2	
1	5	3	
1	6	3	
3	2	2	

a)	XY	Z	&&	Z	→ Y
----	----	---	----	---	-----

(1/1B)

```
R (ABC)
```

Q.) Find Closure Set of A+, B+ and C+

Ans:-

$$A^{+} = \{ ABC \}$$

 $B^{+} = \{ BC \}$
 $C^{+} = \{ C \}$

(A+B)

1

R (ABCDEFG)

A → B

BC → DE

AEG → G

(AC)*=

(AC)* = AC
ABC
ABCDE

2

R (ABCDE)

A BC

CD → E

B → D

E → A

(B)*=

(B)* = B BD 3

R (ABCDEF)

AB → C

BC → AD

D → E

CF → B

(AB)*=

(AB)* = AB

ABC

ABCD

ABCDE

4

R (ABCDEFGH)

A - BC

CD→ E

E - C

D - AEH

ABH -- BD

DH → BC

BCD-►H?

First We will find BCD Closure.

(BCD) = BCD

BCDE

ABCDEH(1 + B)

1

R (ABCDEFG)

A → B

BC → DE

AEG → G

(AC)*=

(AC)* = AC
ABC
ABCDE

2

R (ABCDE)

A BC

CD → E

B → D

E → A

 $(B)^{*} =$

(B)* = B BD 3

R (ABCDEF)

AB → C

BC -> AD

D → E

CF → B

(AB)" =

(AB)* = AB

ABC

ABCD

ABCDE

4

R (ABCDEFGH)

A → BC

CD → E

E - C

D - AEH

ABH __ BD

DH -- BC

BCD → H?

First We will find BCD Closure.

(BCD)* = BCD BCDE

ABCDEH ()+

: BCD ->M

Equivalence on Set of Functional Dependencies R (A B C D E F G)

(a)
$$F \subseteq G$$

(b) $G \subseteq F$
(c) $F = G$
(d) $F \neq G$

(A+B)