Ingenieursgrundlagen

 $\Phi = \frac{1+\sqrt{5}}{2} \approx 1,61803$ Wichtige Zahlen: $\pi \approx 3.14159$ $e \approx 2.71828$ $\sqrt{2} \approx 1.414$ $\sqrt{3} \approx 1.732$ **Griechisches Alphabet**

Einheiten-Prefixe

10 [±]	21	18	15	12	9	6	3	2	1
+	$\mathop{\mathrm{Z}}_{zetta}$	$\mathop{\rm E}_{exa}$	P	$\operatorname*{T}_{tera}$	G giga	$\mathop{\mathrm{M}}_{mega}$	k kilo	h hecto	da
-	z zepto	atto	f femto	P pico	n nano	μ micro	m milli	C centi	d deci

Dezibel (bei Amplitude $A^2 \propto P$)

$dB = 10 \lg \frac{P}{P_0}$	-20	-10	0	1	3	6	10	20
Leistung P Amplitude A	$\frac{\frac{1}{100}}{\frac{1}{10}}$	$\frac{1}{10}$ 0.316	1	1.26 1.22	2 1.4	4 2	10 3.16	100 10

Mathematik $e^{\alpha+i\beta} = e^{\alpha} \cdot (\cos(\beta) + i \cdot \sin(\beta))$

$(a \pm b)^2 = a^2 \pm 2ab + b^2$	$a^2 - b^2 = (a - b)(a + b)$
$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$	
$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab$	+2ac+2bc

1.1. Komplexe Zahlen $z \in \mathbb{C} = \mathbb{R}^2$

Narthesisch	i diai koord.	imaginare Einneit
$\mathbf{i}^{2n} = -1^n$	$i^{2n+1} = -i^n$	$i^{-1} = -i$
$\overline{z} = a - bi$	$z\overline{z} = z ^2 =$	$a^2 + b^2$
$\mathbf{z}_1 \cdot \mathbf{z}_2 = r_1 \cdot \mathbf{z}_1 = r$		2)

1.2. Mittelwerte

Arithmetisches	\geq Geometrisches	≥ Harmonisches
$\overline{x}_{ar} = \frac{1}{N} \sum_{i=1}^{N} x_i$	$\overline{x}_{\text{geo}} = \sqrt[N]{\prod\limits_{i=1}^{N} x_i}$	$\overline{x}_{hm} = \frac{N}{\sum\limits_{i=1}^{N} \frac{1}{x_i}}$

Median: Zahl in der Mitte einer geordneten(ordinalen) Liste. Modalwert: Häufigster Wert (geht auch bei nominaler Liste).

1.3. Wichtige Formeln

Dreiecksungleichung:	$ x - y \le x \pm y \le x + y $
Cauchy-Schwarz-Ungleichung:	$\left \underline{oldsymbol{x}}^{ op}\cdot\underline{oldsymbol{y}} ight \leq \ \underline{oldsymbol{x}}\ \cdot\ \underline{oldsymbol{y}}\ $
Bernoulli-Ungleichung:	$(1+x)^n \ge 1 + nx$
$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$	$\sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q}$
Aritmetrische Summenformel	Geometrische Summenformel

1.4. Exponentialfunktion und Logarithmus

$a^x = e^{x \ln a}$	$\log_a x = \frac{\ln x}{\ln a}$	$\ln x \le x - 1$
$\ln(x^a) = a \ln(x)$	$\ln(\frac{x}{a}) = \ln x - \ln a$	log(1) = 0

1.5. Sinus, Cosinus	$\sin^2(x) + \cos^2(x) = 1$
---------------------	-----------------------------

x φ	0 0°	π/6 30°	π/4 45°	π/3 60°	$\frac{1}{2}\pi$ 90°	π 180°	$1\frac{1}{2}\pi$ 270°	2π 360°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\begin{vmatrix} 1 \\ 0 \\ \pm \infty \end{vmatrix}$	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	∓∞	0

Additionstheoreme

Stammfunktionen $\cos(x - \frac{\pi}{2}) = \sin x$ $\int x \cos(x) \, \mathrm{d}x = \cos(x) + x \sin(x)$ $\sin(x + \frac{\pi}{2}) = \cos x$ $\int x \sin(x) \, \mathrm{d}x = \sin(x) - x \cos(x)$ $\int \sin^2(x) dx = \frac{1}{2} \left(x - \sin(x) \cos(x) \right)$ $\sin 2x = 2\sin x \cos x$ $\cos 2x = 2\cos^2 x - 1$ $\int \cos^2(x) \, \mathrm{d}x = \frac{1}{2} \left(x + \sin(x) \cos(x) \right)$ $\sin(x) = \tan(x)\cos(x) \qquad \int \cos(x)\sin(x) = -\frac{1}{2}\cos^2(x)$

 $\sin(x \pm y) = \sin x \cos y \pm \sin y \cos x \quad \sin x = \frac{1}{2i} (e^{ix} - e^{-ix})$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y \quad \cos x = \frac{1}{2}(e^{\mathrm{i}x} + e^{-\mathrm{i}x})$

1.6. Sinus/Cosinus Hyperbolicus sinh, cosh

1.7. Integralgarten $\int e^x dx = e^x = (e^x)^x$

Partielle Integration: $\int uw' = uw - \int u'w$ Substitution: $\int f(g(x))g'(x) dx = \int f(t) dt$

F(x) - C	f(x)	f'(x)
$\frac{1}{0}.1em]1q + 1x^{q+1}$	x^q	qx^{q-1}
$\frac{1}{0}.1em]2\sqrt{ax^3}3$	\sqrt{ax}	$rac{[}{0}.1em]a2\sqrt{ax}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\cosh(x)$	sinh(x)	$\cosh(x)$
$\mathrm{Si}(x)$	$\operatorname{sinc}(x)$	$\frac{x\cos(x)-\sin(x)}{x^2}$
$-\ln \cos(x) $	tan(x)	$\frac{[}{0}.1em]1\cos^2(x)$

$$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$$
$$\int x e^{ax^2} dx = \frac{1}{2a} e^{ax^2} \qquad \int t^2 e^{at} dt = \frac{(ax - 1)^2 + 1}{3} e^{at}$$

Volumen und Oberfläche von Rotationskörpern um x-Achse

 $V = \pi \int_{a}^{b} f(x)^{2} dx$ $Q = 2\pi \int_{a}^{b} f(x) \sqrt{1 + f'(x)^{2}} dx$

Weg- und Oberflächeintegrale

$$\int\limits_{\gamma} f \, \mathrm{d} s = \int\limits_{a}^{b} f \left(\underline{\gamma}(t) \right) \cdot \left\| \underline{\dot{\gamma}}(t) \right\| \, \mathrm{d} t \quad \int\limits_{\gamma} \underline{v} \cdot \mathrm{d} \underline{s} = \int\limits_{a}^{b} \underline{v} \left(\underline{\gamma}(t) \right)^{\top} \cdot \underline{\dot{\gamma}}(t) \, \mathrm{d} t$$

$$\iint_{\phi} \underline{v} \cdot \mathrm{d} \underline{\mathcal{Q}} := \iint_{B} \underline{v} \left(\underline{\phi}(u, w) \right)^{\top} \cdot \left(\underline{\phi}_{u} \times \underline{\phi}_{w} \right) \, \mathrm{d} u \, \mathrm{d} w$$

Integralsatz Gauß

Integralsatz Stokes

$$\iiint\limits_V \operatorname{div} \underline{\boldsymbol{v}} \, \mathrm{d}V = \oiint\limits_{\partial V} \underline{\boldsymbol{v}} \cdot \mathrm{d}A \qquad \qquad \iint\limits_A \operatorname{rot} \underline{\boldsymbol{v}} \, \mathrm{d}A = \oint\limits_{\partial A} \underline{\boldsymbol{v}} \, \mathrm{d}\underline{\boldsymbol{s}}$$

$$\iint\limits_{A} \operatorname{rot} \underline{\boldsymbol{v}} \, \mathrm{d}A = \oint\limits_{\partial A} \underline{\boldsymbol{v}} \, \mathrm{d}\underline{\boldsymbol{s}}$$

1.8. Taylorpolynom $T_{m,f,x_0}(x)$ (Reihe für $m \to \infty$)

$$T(x) = \sum_{i=0}^m \frac{f^{(i)}(x_0)}{i!} (x-x_0)^i \qquad \qquad \sum_{n=0}^\infty \frac{\mathbf{z}^n}{n!} = e^{\mathbf{z}}$$
 Exponentialreihe

1.9. Polynome $P(x) \in \mathbb{R}[x]_n = \sum_{i=0}^n a_i x^i$ vom Grad n

Gerade durch Punkt $P(x_0, y_0)$: $y = m(x - x_0) + y_0$

Quadratisch: $y = ax^2 + bx + c$ Mitternachtsformel für Nullstellen:

1.10. Matrix $oldsymbol{A} = (a_{ij}) \in \mathbb{K}^{m imes n}$

Die Matrix $\mathbf{A} = (a_{i,i}) \in \mathbb{K}^{m \times n}$ hat m Zeilen \mathbf{z}_i^{\top} und n Spalten \mathbf{s}_i

Determinante von $A \in \mathbb{K}^{n \times n}$: det(A) = |A|

Entwickl. nach iter Zeile: $|A|=\sum\limits_{i=1}^n (-1)^{i+j}\cdot a_{ij}\cdot |A_{ij}|$ $\underbrace{\mathcal{A}}_{i}$ hat k lin. abhäng. Zeilen/Spalten $\Rightarrow |A|=0$, $\dim(\ker \underline{\mathcal{A}})=k$

Spezialfall 2×2 Matrix A

Eigenwerte λ und Eigenvektoren v

$$\underline{\underline{A}}\underline{\underline{v}} = \lambda \underline{\underline{v}} \qquad \det \underline{\underline{A}} = \prod \lambda_i \qquad \operatorname{Sp} \underline{\underline{A}} = \sum \lambda_i$$

Eigenwerte: $det(\mathbf{A} - \lambda \mathbf{1}) = 0$, Det-Entwickl., Polynom-Div. Eigenvektoren: $\widetilde{\operatorname{Eig}}_{A}(\lambda_{i}) = \ker(A - \lambda_{i}\mathbf{1}) = \underline{v}_{i}$

1.11. Differentialoperatoren $\operatorname{div}(\operatorname{rot} \mathbf{f}) \equiv 0$

 $\nabla f = \begin{pmatrix} \partial_1 f \\ \vdots \\ \partial_n f \end{pmatrix} \qquad \nabla \times \underline{f} = \begin{pmatrix} \overline{\partial}_y f_3 - \partial_z f_2 \\ \partial_z f_1 - \partial_x f_3 \\ \partial_x f_2 - \partial_y f_1 \end{pmatrix}$

$$\begin{array}{ll} \operatorname{Laplace} \Delta \, f = \operatorname{Sp} \, \boldsymbol{H}_f(\underline{\boldsymbol{x}}) \\ \frac{\partial f_i}{\partial x_i} & \nabla^2 f \\ \nabla^\top \cdot (\nabla f) = \sum_{i=0}^n \frac{\partial f}{\partial x_i x_i} \end{array}$$

Ableitungs-/Gradientenregeln: SF f, g sind partiell diffbar:

Linearität: $\nabla(\lambda f + \mu g)(\mathbf{x}) = \lambda \nabla f(\mathbf{x}) + \mu \nabla g(\mathbf{x})$ Produkt: $\nabla (f \cdot g)(\mathbf{x}) = g(\mathbf{x}) \nabla f(\mathbf{x}) + f(\mathbf{x}) \nabla g(\mathbf{x})$

Quotient: $\nabla \left(\frac{f}{g}\right)(\underline{\boldsymbol{x}}) = \frac{1}{g^2(\underline{\boldsymbol{x}})} \left(g(\underline{\boldsymbol{x}}) \nabla f(\underline{\boldsymbol{x}}) - f(\underline{\boldsymbol{x}}) \nabla g(\underline{\boldsymbol{x}})\right)$

 $h:=gig(f(\underline{m{x}})ig)$ für SF f, Fkt. g $h:=f(m{g}(x))$ für SF f, Kurve g $h'(x) = \nabla f(\mathbf{g}(x))^{\top} \cdot \dot{\mathbf{g}}(x)$ $\nabla h(\underline{\boldsymbol{x}}) = g'(f(\underline{\boldsymbol{x}})) \cdot \nabla f(\underline{\boldsymbol{x}})$

1.12. Koordinatensysteme $-\pi < \varphi \le \pi, \quad 0 \le \theta \le \pi$

Basisvektor von B in i-Richtung Koordinate in i-Richtung i-Komponente bezüglich BBasis des Inertialsystems I

Um einen karthesischen Vektor mit anderen Koordinaten darzustellen Zvlinderkoordinaten: Kugelkoordinaten:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \cdot \cos(\varphi) \\ r \cdot \sin(\varphi) \\ z \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \cdot \cos(\varphi) \sin(\theta) \\ r \cdot \sin(\varphi) \sin(\theta) \\ r \cdot \cos(\theta) \end{pmatrix}$$

Basistransformation von Basis A zur Basis B mit Trafo-Matrix ${}_B \boldsymbol{T}_A$

$$B\underline{\boldsymbol{v}} = B \widetilde{\boldsymbol{T}}_A \cdot A \underline{\boldsymbol{v}}$$

Spalten von $_{B}\mathbf{T}_{A}$ entsprechen Basisvektoren von A in B dargestellt.

1.13. Zylinderkoordinaten

 $\underline{\boldsymbol{r}} = r\underline{\boldsymbol{e}}_r + \varphi\underline{\boldsymbol{e}}_\varphi + z\underline{\boldsymbol{e}}_z \qquad -\pi < \varphi \leq \pi$ Oberflächenelemente: $r\,\mathrm{d} r\,\mathrm{d} \varphi$, $r\,\mathrm{d} \varphi\,\mathrm{d} z$, $\mathrm{d} z\,\mathrm{d} r$ Volumenelement: $\mathrm{d} V = r\,\mathrm{d} r\,\mathrm{d} \varphi\,\mathrm{d} z$

$$\nabla \mid (\partial_r, \frac{1}{r} \partial_{\varphi}, \partial_z)^{\top}$$

$$\frac{1}{\operatorname{div}\left[\frac{1}{r}\partial_r(r\cdot F_r) + \frac{1}{r}\partial_{\varphi}(F_{\varphi}) + \partial_z(F_z)\right]}$$

$$\text{rot } \left| \left(\frac{1}{r} \partial_{\varphi} F_z - \partial_z F_{\varphi}, \ \partial_z F_r - \partial_r F_z, \ \frac{1}{r} \partial_r (r F_{\varphi}) - \partial_{\varphi} F_r \right) \right|$$

$$\Delta \left| \frac{1}{r} \partial_{rr} (r \cdot f) + \frac{1}{r^2} \partial_{\varphi \varphi} f + \partial_{zz} f \right|$$

1.14. Kugelkoordinaten

$$\underline{\boldsymbol{r}} = r\underline{\boldsymbol{e}}_r + \varphi\underline{\boldsymbol{e}}_\varphi + \theta\underline{\boldsymbol{e}}_\theta \qquad -\pi < \varphi \leq \pi \text{, } 0 \leq \theta \leq \pi$$

Oberflächenelemente: $r dr d\theta$, $r^2 \sin(\theta) d\theta d\varphi$, $r \sin(\theta) d\varphi dr$ Volumenelement $dV = r^2 \sin(\theta) dr d\theta d\varphi$

$$\nabla \mid (\partial_r, \frac{1}{r}\partial_\varphi, \frac{1}{r\sin\theta}\partial_\theta)^\top$$

$$\frac{\text{div} \left[\frac{1}{r^2} \partial_r(r^2 f_r) + \frac{1}{r \sin \theta} \partial_{\varphi}(f_{\varphi}) + \frac{1}{r \sin \theta} \partial_{\theta}(\sin \theta f_{\theta}) \right]}{\Delta \left[\frac{1}{r^2} \partial_{rr}(r^2 f) + \frac{1}{r^2 \sin^2 \theta} \partial_{\varphi\varphi}(\sin \theta f) + \frac{1}{r^2 \sin \theta} \partial_{\theta\theta} f \right]}$$

$$\Delta \quad \left| \quad \frac{1}{r^2} \partial_{rr}(r^2 f) + \frac{1}{r^2 \sin^2 \theta} \partial_{\varphi \varphi}(\sin \theta f) + \frac{1}{r^2 \sin \theta} \partial_{\theta \theta} \right|$$

Stochastik

2.1. Der Wahrscheinlichkeitsraum (Ω, \mathbb{F}, P)

 $\Omega = \{\omega_1, \omega_2, \ldots\}$ Ergebnismenge Ergebnis $\omega_i \in \Omega$ $\mathbb{F} = \{A_1, A_2, \dots\}$ Ereignis $A_i \subseteq \Omega$ Ereignisalgebra

Wahrscheinlichkeitsmaß $P: \mathbb{F} \to [0, 1]$ Es gilt: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist: $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$

Multiplikationssatz: $P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$

Erwartungswert: $\mathsf{E}[X] = \mu = \sum x_i P(x_i) = \int\limits_{\mathbb{T}} x \cdot f_\mathsf{X}(x) \, \mathrm{d}x$

Varianz: $Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$ Standard Abweichung $\sigma = \sqrt{Var[X]}$

Covarianz: Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = Cov[Y, X]

Binominialverteilung (diskret, n Versuche, k Treffer):

 $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ $\mu = np$ $\sigma^2 = np(1-p)$

 $P(A) = \frac{|A|}{|\Omega|}$

2.2. Kombinatorik

Mögliche Variationen/Kombinationen um k Elemente von maximal nElementen zu wählen bzw. k Elemente auf n Felder zu verteilen:

Mit Reihenfolge Reihenfolge egal

Mit Wiederholung Ohne Wiederholung

Permutation von n mit jeweils k gleichen Elementen: $\frac{n!}{k_1! \cdot k_2! \cdot \dots}$

Binomialkoeffizient $\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! \cdot (n-k)!}$

 $\binom{n}{0} = 1$ $\binom{n}{1} = n$ $\binom{4}{2} = 6$ $\binom{5}{2} = 10$ $\binom{6}{2} = 15$

Geometrie

$$+b^2=c^2$$

$$a:b=c:d \quad \frac{a+b}{c+d} = \frac{a}{c} = \frac{b}{d}$$

$$\frac{a}{a+b} = \frac{c}{c+d} = \frac{e}{f}$$

Innenwinkelsumme im n-Eck: $(n-2) \cdot 180^{\circ}$

Allg. Dreieck $\triangle ABC$ mit Seiten a,b,c und Winkel α,β,γ :

Kosinussatz: $c^2 = a^2 + b^2 - 2ab\cos(\gamma)$

Sinussatz: $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$ Projektionssatz: $c = a\cos\beta + b\cos\alpha$ Höhe $h_c = a \sin \beta = b \sin \alpha$ Fläche $A = \frac{1}{2} h_c c = \frac{1}{2} h_a a$

Schwerpunkt: $x_S = \frac{1}{2}(x_A + x_B + x_C)$ $y_S = \frac{1}{2}(y_A + y_B + y_C)$

Rechtwinkliges Dreieck $\triangle ABC$ mit $\gamma = 90^{\circ}$ bei C

Pythagoras: $a^2 + b^2 = c^2$

Höhensatz: $h^2 = pq$ Kathetensatz: $a^2 = pc$

 $a = c \sin \alpha = c \cos \beta = b \tan \alpha$

 $V = \frac{1}{2}G \cdot h$

 $V = G \cdot h$ $M = U \cdot h$ SP: liegt auf h mit $y_S = h/4$

 $A = \pi r^2 \qquad U = 2\pi r$

Physik $E_0 = m_0 \cdot c^2$ $E_0^2 = E^2 - c^2 p^2$

Zylinder/Prisma

Naturkonstanten

BOLTZMANN-Konst

Lichtgeschwindigkeit $c_0 \equiv \frac{1}{\sqrt{\epsilon_0 \mu_0}} := 299792458 \, \frac{m}{s}$ Elementarladung $e \approx 1.602177 \times 10^{-19} \, \mathrm{C}$ PLANCK-Konst. $h \approx 6.626\,069\,57 \times 10^{-34}\,\mathrm{J}\,\mathrm{s}$ $h \equiv \frac{h}{2\pi} \approx 1.054\,57 \times 10^{-34}\,\mathrm{J}\,\mathrm{s}$ Elektr. Feldkonst. $\mu_0 := 4\pi \times 10^{-7}\,\frac{\mathrm{H}}{\mathrm{m}}$ AVOADRO-Konst. $N_A \approx 6.022\,141 \times 10^{23}\,\frac{1}{\mathrm{mol}}$ Atomare Masse $u \approx 1.660\,539 \times 10^{-27}\,\mathrm{kg}$ Elektronenmasse $m_e \approx 9.109\,383 \times 10^{-31}\,\mathrm{kg}$ Protonenmasse $m_p \approx 1.674\,927 \times 10^{-27}\,\mathrm{kg}$ Neutronenmasse $m_n \approx 1.672\,622 \times 10^{-27}\,\mathrm{kg}$ $G \approx 6.67384 \times 10^{-11} \frac{\text{kg}}{3}$ Gravitationskonst. $k \approx 1.380655 \times 10^{-23} \stackrel{\text{s}^2}{\cancel{\text{J}}}$

Größe	Definition	Einheit	SI-Notation
Frequenz	$f = \frac{c}{\lambda}$	Hertz	$Hz = \frac{1}{s}$
Kraft	$\vec{F} := m \cdot \vec{a}$	Newton	$N = \frac{kg m}{e^2}$
Druck	$p := \frac{\vec{F}_{\perp}}{A}$	Pascal	$Pa = \frac{N}{m^2} = \frac{kg}{m s^2}$
Arbeit, Energie	$W:=\int \vec{F}\mathrm{d}\vec{s}$	Joule	$J = N m = \frac{kg m^2}{s^2}$
Leistung	$P := \frac{\mathrm{d}W}{\mathrm{d}t}$	Watt	$W = \frac{J}{s} = \frac{kg m^2}{s^3}$
Spannung	$U := \frac{W}{O}$	Volt	$V = \frac{W}{A} = \frac{kg m^2}{\Lambda a^3}$
Ladung	$Q := \int I dt$	Coulomb	C = As
Resistivität	$R := \frac{dU}{dI}$	Ohm	$\Omega = \frac{V}{A} = \frac{kg m^2}{\Delta^2 s^3}$
Kapazität	$C := \frac{\mathrm{d}Q}{\mathrm{d}U}$	Farad	$F = \frac{C}{V} = \frac{A^2 s^4}{kg m^2}$
Induktivität	$L := \frac{d\Phi}{dI}$	Henry	$H = \frac{V_s}{A} = \frac{kg m^2}{A^2 s^2}$
Magnetischer Fluss	$\Phi_{M} := \int \vec{B} \mathrm{d} \vec{A}$	Weber	$Wb = Vs = \frac{kg m^2}{\sqrt{2}}$
Magnetische Flussdichte	$\vec{B}:=\mu_0\vec{H}$	Tesla	$T = \frac{Wb}{m^2} = \frac{k_g^{As}}{As^2}$
$1 \text{ in} = 2.54 \text{ o}$ $1 \text{ bar} = 10^5$		30.5 cm 10 ⁻¹⁰ m	$J \cdot e = eV$ 1 L = 10 ⁻³ m ³

4.1. Newtonsche Mechanik $\vec{F} = m\vec{a}$

	Translation	Rotation (Radius r)
Strecke/Winkel	$ec{x}$	$ec{arphi} = rac{ec{x}}{r}$
Geschwindigkeit	$\vec{v} = \dot{\vec{x}}$	$ec{\omega} = \dot{ec{arphi}} = rac{ec{v}}{r}$
Beschleunigung	$\vec{a} = \dot{\vec{v}} = \ddot{\vec{x}}$	$\vec{lpha} = \dot{\vec{lpha}} = \ddot{\vec{lpha}} = rac{\vec{a}}{r}$
Masse/Trägh.	m	$\Theta = \int_V \vec{r}_\perp^2 \mathrm{d}m$
Impuls/Drall	$\vec{p}=m\vec{v}$	$ec{L} = oldsymbol{\Theta} ec{\omega} = ec{r} imes ec{p}$
Kraft/Moment	$\vec{F}=\dot{\vec{p}}=m\vec{a}$	$ec{M}=\dot{ec{L}}=oldsymbol{\Theta}ec{lpha}=ec{r} imesec{F}$
Energie	$E_{kin} = \frac{1}{2} m v^2$	$E_{rot} = \frac{1}{2}\Theta\omega^2$
Leistung	$P = \vec{F} \cdot \vec{v}$	$P = \vec{M} \cdot \vec{\omega}$

4.2. Kinematik - Bewegungsgleichungen

$$v = v_0 + at$$

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

$$2ax = v^2 - v_0^2$$

 $\varphi(t) = \frac{1}{2}\alpha t^2 + \omega_0 t + \varphi_0$ $2\alpha\varphi = \omega^2 - \omega_0^2$

4.3. Wichtige Kräfte und Energien

$$\begin{split} F_{\mathrm{g}} &= -G\frac{m_1 \, m_2}{r^2} \approx \vec{g} m & F_{\mathrm{el}} &= \frac{1}{4\pi\varepsilon} \frac{g_1 \, q_2}{r^2} \\ F_{\mathrm{z}} &= -m \frac{v^2}{r} &= -m\omega^2 r & F_{\mathrm{R}} &= \mu F_{\mathrm{N}} & \vec{F}_{\mathrm{H}} \leq \mu_0 \vec{F}_{\mathrm{N}} \\ \mathrm{Energie:} \; E &= \int \vec{F}^\top \cdot \mathrm{d} \vec{s} & E_{\mathrm{pot}} &= mgh = \frac{1}{2}kx^2 \end{split}$$

4.4. Wellen $\Psi(x,t) = A \cdot \cos(\omega t - kx)$

$$\frac{1}{c^2}\frac{\partial^2 \Psi}{\partial t^2} - \sum_{i=1}^n \frac{\partial^2 \Psi}{\partial x_i^2} = 0 \qquad \qquad \begin{aligned} c &= \lambda f \\ \omega &= 2\pi f \end{aligned} \qquad \qquad k = \frac{2\pi}{\lambda}$$

4.5. Optik $n_1 < n_2$ $n^2 = \varepsilon_r \mu_r$ $\alpha_1 \mid \alpha_2 >$

Brechung: $\frac{\sin(\alpha)}{\sin(\beta)} = \frac{n_2}{n_1} = \frac{c_1}{c_2} = \frac{\lambda_1}{\lambda_2}$

Brewster-Winkel: $tan(\alpha_B) = \frac{n_2}{n_1}$ Grenzwinkel: $\sin(\alpha_G) = \frac{n_2^{-1}}{n_1}$

Phasensprung um π bei (Total-)Reflexion am optisch dichteren Medium!

$$\begin{array}{ll} \text{Relativit"atstheorie } E=mc^2 \\ \gamma=1\bigg/\sqrt{1-\frac{v^2}{c^2}} & E=mc^2 \\ E_0^2=E^2-c^2p^2 & t_0=\gamma\cdot t^* \end{array}$$

$U = R \cdot I$ Elektrotechnik

Elektrizität		Magnetismus	
Ladung Strom Permittivität	$Q = \int_{I} I dt$ $I = \dot{Q}$ $\varepsilon = \varepsilon_{r} \varepsilon_{0}$	Fluss Spannung Permeabilität	$ \Phi_{M} = \int U_{\text{ind}} dt U_{\text{ind}} = \dot{\Phi}_{M} \mu = \mu_{r} \mu_{0} $

Maxwellsche Gleichungen (Naturgesetze)

Gaußsches Gesetz: $\operatorname{div} \vec{D} = \rho$

Faradaysches ind. Gesetz $rot \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$

Quellfreiheit des magn. Feldes $\operatorname{div} \vec{B} = 0$

Ampèrsches Gesetz $\operatorname{rot} \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$

Resistiv	Kapazitiv	Induktiv
dI = G dU	dQ = C dU	$\mathrm{d}\Phi_M = L\mathrm{d}I$
$\vec{j} = \sigma \vec{E}$	$\vec{D} = \varepsilon \vec{E}$	$\vec{B} = \mu \vec{H}$
$\mathrm{d}I = \vec{j}\mathrm{d}A$	$\mathrm{d}U = \vec{E}\mathrm{d}\vec{r}$	$\mathrm{d}\Phi_M = \vec{B}\mathrm{d}A$
$ \vec{j} = qn\vec{v}$	$Q(V) \equiv \iint \vec{D} d\vec{A}$	$I(A) \equiv \oint \vec{H} \mathrm{d}\vec{r}$
	∂V	∂A

Widerst. $R = \rho \frac{l}{A}$		Spule $L = \mu A \frac{N^2}{l}$
Sorionecha	Itung Par	allelechaltung

	Serienschaltung		Parallelschaltung	
	$u = \sum u_i$ q = const.	i = const. $\Phi_{M} = \sum \Phi_{M,i}$	u = const. $q = \sum q_i$	$i = \sum i_i$ $\Phi_{M} = \mathrm{const.}$
1	$R = \sum R_i$	$M = \sum M_i$	$\frac{1}{R} = \sum \frac{1}{R_i}$	$\frac{1}{M} = \sum \frac{1}{M_i}$
	$\frac{1}{C} = \sum \frac{1}{C_i}$	$L = \sum L_i$	$C = \sum C_i$	$\frac{1}{L} = \sum \frac{1}{L_i}$
	$oldsymbol{Z} = \sum oldsymbol{Z}_i$	$\frac{1}{Y} = \sum \frac{1}{Y_i}$	$\frac{1}{Z} = \sum \frac{1}{Z_i}$	$oldsymbol{Y} = \sum oldsymbol{Y}_i$

5.1. Quantenphysik $E_{ph} = f \cdot h = \hbar \cdot \omega = \frac{hc}{\lambda}$

De Broglie: $\lambda \cdot \vec{p} = h$

Wärmekapazität: $C = c \cdot m = c_{\mathsf{m}} \cdot n$

Unschärferelationen: (Werner Heisenberg) Lichtspektrum: λ : 700, 600, 570, 520, 460 in nm

 $\Delta E \cdot \Delta t \ge \frac{\hbar}{2}$

Gas: $pV = nT \cdot N_A k$

5.2. Thermodynamik

$$\frac{\mathrm{d}U}{\mathrm{innere\ Energie}} = \frac{\delta Q}{\mathrm{Wärmeenergie}} + \frac{\delta W}{\mathrm{Volumenarbeit}} = T\,\mathrm{d}S - p\,\mathrm{d}V$$

$$Q = C\cdot\Delta T = \int T\,\mathrm{d}S \qquad W_{1,2} = -\int_1^2 p\,\mathrm{d}V$$

Thermische Energie eines Teilchens mit f Freiheitsgraden:

$$E_{\rm therm} = \frac{f}{2}kT \qquad {\rm Thermische\ Rauschenergie\ bei\ 300K} \\ \Delta E_{\rm therm} = kT = 25.85\ {\rm meV}$$

Jede Wärmekraftmaschine: $\eta < \eta_{\sf Carnot} = 1 - \frac{T_{\sf kalt}}{T_{\sf baiR}}$

Prozess	Formel	$Q_{1,2}$	$W_{1,2}$	p-V Diag. T-s Diag.
	$\frac{p_2}{p_1} = \frac{T_2}{T_1}$	$c_{m,v}\Delta T$	0	$\begin{bmatrix} p & 2 \\ 1 \end{bmatrix} \underbrace{V} \begin{bmatrix} T & 2 & V_1 < V_2 \\ 1 & 2 & s \end{bmatrix} \underbrace{s}$
	$\frac{V_2}{V_1} = \frac{T_2}{T_1}$	$c_{m,p}\Delta T$	$-p\Delta V$	$\begin{array}{c c} p & & T & p_a > p_b \\ \hline 1 & 2 & V & 1 & s \\ \end{array}$
Isotherm	$p_2 \ _ \ V_1$	W/	p_{T1} p_2	$p \atop 1$ $T_{\text{heiß}}$ T

 $\begin{array}{ll} \text{Isentrop} & \frac{p_2}{\dot{S}} = 0 & \frac{p_1}{p_1} = \left(\frac{V_1}{V_2}\right)^{\kappa} = \left(\frac{T_2}{T_1}\right)^{\frac{\kappa}{\kappa-1}} & \Big|^p \Big|^{\frac{1}{2}} \end{array}$ Adiabatenexponent: $\kappa = \frac{c_p}{c_n} = \frac{f+2}{f}$ $c_{\mathsf{m,p}} - c_{\mathsf{m,v}} = R$

Zerfallsstrahlung

 β^{\mp} – Zerfall ${}^{m}_{n}X^{0} \longrightarrow {}^{m}_{n+1}Y^{\pm} + {}^{0}_{\pm 1}e^{\mp} + {}^{0}_{0}\overline{\nu}_{e}$ $_{n}^{m}X^{*} \longrightarrow _{n}^{m}X + _{0}^{0}\gamma$ γ — Zerfall

12,0107 | 14,0067 | 15,9994 | 18,9984 | 20,180 6,941 9,01218 5 B 6 C 8O 9F 2 3 Li 4 Be 7 N Sauerstoff Fluor 50,9415 | 51,9961 | 54,9380 | 55,845 | 58,9332 | 58,6934 | 63,546 | 65,409 | 69,723 | 72,61 | 74,9216 | 78,96 | 79,904 | 83,798 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br Scandium Titan Vanadium Chrom Mangan Eisen Cobalt Nickel Kupfer Zink Gallium Germanium Aisen Selen Brom 88,9059 91,224 92,9064 95,94 98.42ma 101,07 102,906 106,42 107,868 112,411 114,818 118,710 121,750 127,60 126,904 39 Y 40 Zr 41 Nb 42 Mo 43Tc β 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb Rubdium Strontum Yithium Zirkonium Niob Molybdan Technetum Ruthenium Rhodum Palladium Silber Cadmium Indum Zinn Antimon Tellur Iod Xenon 132,905 137,327 => 178,49 180,948 183,84 186,207 190,23 192,217 195,084 196,967 200,59 204,383 207,2 208,980 209,987 2223,8d 55 Cs 56 Ba La-Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Ti 82 Pb 83 Bi 84 Po 85 At 86Rn α Osmium Iridium Barium Lanthanoide Hafnium Tantal Wolfram Rhenium => 253-262 261-263 265-266 261-264 269 10s 268 87 Fr α 88Ra α Ac-Lr 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Dt 1111 Rg 112 Cn

58 Ce | 59 Pr | 60 Nd | 61 Pm | 62 Sm | 63 Eu | 64 Gd | 65 Tb 90 Th | 91 Pa | 92 U | 93 Np | 94 Pu | 95 Am | 96 Cm | 97 Bk | 98 Cf | 99 Es | 100 Fm | 101 Md | 102 No | 103 Lr