A quick mathematical take on tensors, for physicists

Francisco Simões

2017

Proposition 1. Let V and W be vector spaces over the field K. The set $\mathcal{L}(V,W)$ of all linear maps $f:V\to W$ together with the usual addition of maps and the usual multiplication of a map by a scalar (i.e. element of K) is a vector space over K.

Proof. One has to check all properties of vector spaces. This is well done here: Proof that L(V,W) is a vector space

Corollary 2. Let V be a vector space over the field K. The set V^* of all linear maps $f:V\to K$ (also called functionals) together with the usual addition of maps and the usual multiplication of a map by a scalar (element of K) is a vector space over K.

Proof. Comes straight from proposition 1, with W = K (it is known that all fields are vector spaces over themselves).

Definition 3. Let V be a vector space.

The dual space of V is the vector space V^* described above. The elements of V^* are called functionals, one-forms or dual vectors.

Proposition 4. Let V be a finite-dimensional vector space of dimension n, and $\{e_j\}$ a basis for V. The set

$$\{\alpha^i : V \to K \text{ such that } \forall v = \sum_{i=1}^n v^i e_i \in V, \alpha^i(v) = v^i\}$$
 (1)

is a basis for V^* . In particular, V^* is n-dimensional.

Proof. Recall that any linear map is completely defined by its action on the basis of the domain. In this case, we see that

$$\forall j, \alpha^i(e_j) = \delta^i_j \tag{2}$$

Let us see that $\{\alpha^i\}$ spans V^* .

Let $f \in V^*$ and $v \in V$. Then,

$$f(v) = \sum v^i f(e_i) = \sum f(e_i)\alpha^i(v) = \left(\sum f(e_i)\alpha^i\right)v \tag{3}$$

So $f = \sum f(e_i)\alpha^i$, and thus $\{\alpha^i\}$ spans V^* .

We still have to prove linear independence.

Suppose $\sum c_i \alpha^i = 0$, for some $c_i \in K$. Let $j \in \{1, 2, ..., n\}$. We apply both sides to e_j and get

$$\sum c_i \delta_j^i = c_j = 0 \tag{4}$$

Done. \Box

Corollary 5. V and V^* are isomorphic (but this isomorphism may depend on a choice of basis).

Proof. This is true simply because all n-dimensional vector spaces are isomorphic, and this isomorphism may depend on a choice of basis.

Lemma 6. Let V be a finite-dimensional vector space. If $v \in V$ and $\forall w \in V^*, w(v) = 0$, then v = 0.

Proof. We shall prove the contrapositive.

Suppose $v \neq 0$. We can explicitly build a functional w with $w(v) \neq 0$:

The set $\{v\}$ is obviously linearly independent. We can therefore extend it to a basis (well-known result of linear algebra) $\{v, v_1, ..., v_{n-1}\}$. We can define $w \in V^*$ by w(v) = 1 and $w(v_i) = 0$ (we know that a *linear* map is completely specified by its action on a basis, so this defines w completely).

Theorem 7. Let V be a finite-dimensional vector space. The double dual V^{**} is naturally isomorphic to V (i.e. there is a basis-independent isomorphism between them).

Proof. Consider the map

$$T: V \to V^{**}$$

$$v \mapsto T(v)$$

where

$$T(v): V^* \to K$$
$$w \mapsto w(v)$$

We just have to check that T is both linear and bijective.

Let $w \in V^*$, $v, u \in V$ and $a \in K$. We have

$$T(v+u)(w) = w(v+u) = w(v) + w(u) = T(v)(w) + T(u)(w) = (T(v) + T(u))(w)$$
 (5)

and

$$T(av)(w) = w(av) = aw(v) = aT(v)(w)$$
(6)

Hence T is linear.

Now, since T is linear, it is injective iff $\ker T = \{0\}$.

Let $v \in \ker T$. Let $w \in V^*$. Then

$$T(v)(w) = 0 \iff w(v) = 0$$
 (7)

Since this is valid for any $w \in V^*$, then v = 0 from lemma 6. This shows that T is injective.

Now, the dimensionality theorem tells us that

$$\dim V - \dim \ker T = \dim \operatorname{Im} T \tag{8}$$

So dim Im $T = \dim V = \dim V^{**}$. since the only vector subspace of V^{**} with dimension dim V^{**} is V^{**} itself. Hence T is surjective.

Definition 8. A pre-Hilbert space (also called inner product space or Euclidean space) is a vector space V together with an inner product, which is a map $\langle \cdot, \cdot \rangle : V \times V \to K$ such that for all $v, w, u \in V$ and $a \in K$,

- 1. $\langle v, v \rangle \geq 0$
- 2. $\langle v, v \rangle = 0 \iff v = 0$
- 3. $\langle v + w, u \rangle = \langle v, u \rangle + \langle w, u \rangle$
- 4. $\langle av, w \rangle = a \langle v, w \rangle$
- 5. $\langle v, w \rangle = \langle w, v \rangle^*$

Theorem 9. Let V be a pre-Hilbert space. Then, V and V^* are naturally isomorphic.

Proof. Consider the map

$$T: V \to V^*$$

$$v \mapsto T(v)$$

where $\forall u \in V, T(v)(u) = \langle v, u \rangle$.

I'll leave it to you to check that T is linear and bijective.

Remark 10. The process of going from an element of a pre-Hilbert space V to the corresponding element of V^* is usually called "lowering of indices" (and the reverse is called "raising of indices"). I shall not delve into this, but it should be clear that the existence of an inner product (which may be the metric tensor) is essential for this connection between V and V^* to exist.

Example 11. In quantum mechanics, the state of our system is described by a $ket |\psi\rangle$, which is a vector of a vector space called the *state space* \mathcal{E} . This space is actually a pre-Hilbert space, possessing an inner product (\cdot, \cdot) defined by $(|\psi\rangle, |\phi\rangle) = \int \psi(x)\phi(x)dx$. Take a map T as in the proof of theorem 9. We see that $T(|\psi\rangle)(|\phi\rangle) = (|\psi\rangle, |\phi\rangle)$. Physicists usually write $T(|\psi\rangle) = \langle \psi|$, called a bra, and $T(|\psi\rangle)(|\phi\rangle) = \langle \psi|\phi\rangle$.

Definition 12. Let V be a finite-dimensional vector space.

A tensor of type (k, l) over V is a multilinear map

$$T: \underbrace{V \times ... \times V}_{k} \times \underbrace{V^* \times ... \times V^*}_{l} \to K \tag{9}$$

Remark 13. A (1,0)-tensor is a one-form. A (0,1)-tensor is an element of V^{**} . Since we identify naturally V^{**} with V, we can think of it as a vector of V.

It turns out that the set of all (k, l)-tensors is a vector space. In a change of basis, the components of one of the tensors of this space change in a certain way. Some physicists define tensors by the way these components change under a change of basis.

References

- [1] Arturo Magidin (https://math.stackexchange.com/users/742/arturo-magidin), dual space is a vector space, URL (version: 2012-02-20): https://math.stackexchange.com/q/111383
- [2] Tu's book on Manifolds.
- [3] hunter (https://math.stackexchange.com/users/108129/hunter), Double dual is isomorphic to the vector space problem with injectivity, URL (version: 2017-08-23): https://math.stackexchange.com/q/2403349