

(b)
$$M_{a\rightarrow 1} = f_a(\kappa_1)$$

 $M_{b\rightarrow 2} = f_b(\kappa_2)$
 $M_{c\rightarrow 3} = f_c(\kappa_3)$

$$M_{1\rightarrow A} = M_{a\rightarrow 1} = f_a(x_1)$$

$$M_{2\rightarrow A} = M_{b\rightarrow 2} = f_b(x_2)$$

$$M_{d \to 4} = f_{d}(x_{4})$$
 $M_{e \to 5} = f_{e}(x_{5})$

$$M_{A \to 3} = \max_{x_1, x_2} \left\{ f_A(x_1, x_2, x_3) \cdot M_{1 \to A} \cdot M_{2 \to A} \right\}$$

$$= \max_{x_1, x_2} \left\{ f_A(x_1, x_2, x_3) \cdot f_A(x_1) \cdot f_b(x_2) \right\}$$

$$M_{C+\phi} = \max_{x_s} \{ f_C(x_{\phi}, x_s) \cdot M_{S+c} \} = \max_{x_s} \{ f_C(x_{\phi}, x_s) \cdot f_e(x_s) \}$$

$$M_{4 \rightarrow B} = M_{d \rightarrow 4} \cdot M_{C \rightarrow 4} = f_{d}(x_{4}) \cdot \max_{x_{5}} \{f_{c}(x_{4}, x_{5}), f_{e}(x_{5})\}$$

$$M_{13} \rightarrow 3 = \max \left\{ f_{B}(x_{3}, x_{4}) \cdot M_{4 \rightarrow B} \right\} = \max \left\{ f_{B}(x_{3}, x_{4}) \cdot f_{d}(x_{4}) \cdot \max \left\{ f_{c}(x_{4}, x_{5}) \cdot f_{c}(x_{5}) \right\} \right\}$$

$$= \max \left\{ f_{c}(n_{3}) \cdot \max \left\{ f_{A}(x_{1}, x_{2}, n_{3}) \cdot f_{a}(x_{1}) \cdot f_{b}(n_{2}) \right\} \cdot \max \left\{ f_{B}(n_{3}, x_{4}) \cdot f_{d}(n_{4}) \cdot \max \left\{ f_{C}(x_{4}, x_{5}) \cdot f_{C}(n_{4}, x_{$$

$$\begin{array}{ll}
\chi_{2} = 0 \\
\chi_{3} = 1 \\
\chi_{4} = 0
\end{array}$$

$$\begin{array}{ll}
\chi_{5} = 1 \\
\chi_{5} = 1
\end{array}$$

0	
	/ 1
2.	(a)
	, 1

11	0	
p(X,=x)	0.34	0.66
p(X2=11)	0.45	0.55
P(X3=K)	0.45	0.55
p(X4=h)	0.46	0.54

(n, y)	(0,0	1/6	1)	(1,	ره	(1,1	J
p(X,=x, X,=2)	0.14		1	0,3/	\neg	0,35	
p(X,=x, X3=2)	0.13	0,2/	C) 32	To). }q	
p(X,=K, X4=4)	0,12	0,22	10	.34	0.	32	
P(X2=K, X3=7)	0.19	0.26	0	26	0	29	
p(X2=1, X4=2)	0.18	0.27		28 /		27	
p(X3=1, X4=2)	0.2/	0,24	0.2	5	0.	30	

(6)

			_
I(X,.X)		0,001526	
I (X, X3)		0.004795	3rd
I(x,, x4)		0.012025	$\int 1$ st
I(X2, X3)	1	0.00(276	
I(X2, X4)	0.	005948	2hd
I(X3, X4)	ο.	00,0073	

$$I(X_1, X_2) = 0.(4 \log \frac{0.44}{0.34 \times 0.45} + 0.2 \log \frac{0.2}{0.34 \times 0.55}$$

$$+ 0.3/\log \frac{0.31}{0.66 \times 0.45} + 0.35 \log \frac{0.35}{0.66 \times 0.55}$$

(c)

Pr. (n) = p(x,).p(x, 1x,).p(x, 1x,).p(x, 1x,)

(d)

P73 (n) = p(x3) . p(x, 1x3). p(xe/x,). p(x2/x2)

(e) The Chow-Lin Algorithm is equivalent to minimizing KL divergence. Both T. and 73 have same weights (direction doesn't matter in $I(X_1, X_2)$), and same Joint distribution because $p(x_1) \cdot p(x_3|x_1) = p(x_3) p(x_1|x_3) = p(x_1, x_3)$, We know $p_{T_1} = p_{T_2}$, so $KL(p|p_{T_1}) - KL(p|p_{T_2}) = 0$.

(b)
$$M_k = \frac{\sum_i r_{ik} \chi_i}{\sum_i r_{ik}}$$

take the gradient of cost function with respect to m and set if to 0.

$$\frac{\partial L}{\partial \mu} = \frac{\partial}{\partial \mu} \left(\sum_{k=1}^{\infty} \frac{1}{2} r_{ik} \| \chi^{(i)} - \mu_{k} \|_{2}^{2} \right) = \sum_{i=1}^{\infty} r_{ik} \left(\chi_{i} - \mu_{ik} \right) = \sum_{i=1}^{\infty} r_{ik} \chi_{i} - \mu_{ik} \sum_{k=1}^{\infty} r_{ik} \chi_{i} - \mu_{ik} \chi_{i} - \mu_{ik} \sum_{k=1}^{\infty} r_{ik} \chi_{i} - \mu_{ik} \chi_{i}$$

Start with randomly chosen k centroids suns.

Assighment: given M. calculate Vik as (3a)

Update: given V, calculate Mk as (3b)

Repeat Assignment-Update until convergence: r and m does not change

Lt is monotonically decreasing in t. In Assignment Step, each point is assigned to the lowest cost centroid, so L decreases. In Update step, we take the gradient of cost and set it to 0, which means the new Centroid is the centroid that L is minimum. So each step makes L hon-increase (decrease), so L is monotonically decreasing: Lt 2 Ltx, for every t21. The lower bound of L is 0 since $r_{ik} || x^{(i)} - M_k ||_2^2 \ge 0$. Pue to monotone convergence that it converges to global optimality.

(d) $dist = 0.5 \times torch \cdot horm (x-ctmp, din=1) \times x2$ after 2 updates the algorithm converges to 4.559995.
obtained centers: (1.9163, -1.9143), (-2.0952, 2.0540)

$$\frac{1}{2} \left(\frac{1}{|A|} - \sum_{k} \log \left(\frac{1}{|A|} - \sum_{k} \log \left(1 - \frac{1}{|A|} + \sum_{k} |\log \left(\frac{1}{|A|} + \sum_{k} |\log \left(\frac{1}{|A|} + \sum_{k} \log \left(\frac{$$

$$H(A) = \begin{bmatrix} C & 0 & \cdots & 0 \\ 0 & C & \cdots & 0 \\ 0 & 0 & 0 & \cdots & C \end{bmatrix}$$

$$f_{0L}$$
 any $N = \begin{bmatrix} k_1 \\ \vdots \\ k_m \end{bmatrix}$, $\chi^T H(A)_N = [\chi_1 \dots \chi_N] \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \vdots \\ \chi_m \end{bmatrix} = C_{N_1}^2 + C_{N_2}^2 + \cdots + C_{N_n}^2 \ge 0$

be cause (1, +... 2, 2)20 and hyperparameter (20 given by condition.

thus M(A) is positive semi-definite, and using Factl, (A) is convex.

$$H(B) = \frac{b^2 \exp(w^Tb)}{(1+e\times p(w^Tb))^2} \frac{b^2 \exp(w^Tb)}{(1+e\times p(w^Tb))^2} \frac{b^2 b^2 \exp(w^Tb)}{(1+e\times p(w^Tb))^2}$$

$$\frac{b^2 b^2 \exp(w^Tb)}{(1+e\times p(w^Tb))^2} \frac{b^2 \exp(w^Tb)}{(1+e\times p(w^Tb))^2}$$

$$\frac{b^2 \exp(w^Tb)}{(1+e\times p(w^Tb))^2}$$

for any
$$k = \begin{bmatrix} k_1 \\ \vdots \\ k_n \end{bmatrix}$$
, $\chi = \frac{\exp(\omega^T b)}{(1 + \exp(\omega^T b))^2} \left(b_1 \kappa_1 + b_2 \kappa_2 + \cdots + b_n k_n \right)^2 \ge 0$

thus M(B) is positive semi-definite, and asing Factl, (B) is convex.

$$\frac{\sum_{k} \log \left(1 + \exp(w^{T}x)\right) + \sum_{k} \log \left(1 + \exp(w^{T}G_{\theta}(z))\right) - \sum_{k} w^{T}G_{\theta}(z) + \sum_{k} |\omega|_{2}^{2}}{(B)}$$
(B)
(B)
(A)

Using fact 2, the cost is convex.

Lagrangian =
$$\sum_{n} \log(1+\exp(\xi_{n})) + \sum_{z} \log(1+\exp(\xi_{z})) - \sum_{z} \omega^{T} G_{o}(z) + \sum_{z} ||\omega||_{z}^{2}$$

 $+ \lambda_{n} (\xi_{n} - \omega^{T}_{n}) + \lambda_{z} (\xi_{z} - \omega^{T} G_{o}(z))$

(f)
$$\frac{C}{2} ||w||_{2}^{2} - \omega^{7}b$$
 is convex, so $\nabla_{w} \left(\frac{C}{2} ||w||_{2}^{2} - \omega^{7}b\right) = Cw - b = 0$, $w = \frac{1}{C}b$

(g)
$$\lambda \mathcal{E} + \log(1 + \exp(\mathcal{E}))$$
 is convex, so $\nabla_{\mathcal{E}}(\lambda \mathcal{E} + \log(1 + \exp(\mathcal{E}))) = 0$

$$\lambda + \frac{\exp(\mathcal{E})}{1 + \exp(\mathcal{E})} = 0$$

$$\mathcal{E} = \log(\frac{-\lambda}{1 + \lambda})$$

$$\begin{array}{ll}
\left(\frac{h}{h}\right) & = & \left[\frac{\lambda_{n} \mathcal{E}_{n} + \sum_{l} \log \left(1 + \exp \mathcal{E}_{n}\right) + \sum_{l} \mathcal{E}_{z} + \sum_{l} \log \left(1 + \exp \mathcal{E}_{z}\right) + \sum_{l} \left(\frac{1}{2} \left||\omega||_{2}^{2} - \omega^{T} \left(\sum_{l} \mathcal{E}_{\theta}(z) + \lambda_{k} \mathcal{X} + \lambda_{l} \mathcal{E}_{\theta}(z)\right)\right)\right] \\
\mathcal{E}_{n} & = \log \left(\frac{-\lambda_{n}}{1 + \lambda_{n}}\right) & \mathcal{E}_{z} & = \log \left(\frac{-\lambda_{z}}{1 + \lambda_{z}}\right) & \omega & = \frac{1}{2} \left(\sum_{l} \mathcal{E}_{\theta}(z) + \lambda_{k} \mathcal{X} + \lambda_{l} \mathcal{E}_{\theta}(z)\right)
\end{array}$$

$$g(\lambda) = \lambda_{k} \log \left(\frac{-\lambda_{k}}{1+\lambda_{k}}\right) - \sum_{k} \log \left(1+\lambda_{k}\right) + \lambda_{z} \log \left(\frac{-\lambda_{z}}{1+\lambda_{z}}\right) - \sum_{k} \log \left(1+\lambda_{k}\right) - \frac{1}{2C} \left(\sum_{k} G(z) + \lambda_{k} k + \lambda_{z} G_{\theta}(z)\right)$$

(=) max max
$$\lambda_n \log \left(\frac{-\lambda_n}{1+\lambda_n} \right) - \sum_{n=1}^{\infty} \log (1+\lambda_n) + \lambda_2 \log \left(\frac{-\lambda_2}{1+\lambda_2} \right) - \sum_{n=1}^{\infty} \log (1+\lambda_2) - \sum_{n=1}^{\infty} \left(\sum_{n=1}^{\infty} \log (2) + \lambda_n + \lambda_2 \log (2) \right)$$