Applied Statistical Methods - Exercise 11

Peter von Rohr

2022-05-22

Problem 1: Marker Effects Model

Predict genomic breeding values using a marker effects model. The dataset is available from

https://charlotte-ngs.github.io/asmss2022/data/asm_geno_sim_data.csv

Hints

- The variance σ_q^2 of the marker effect is 3.
- The residual variance σ_e^2 is 36
- The sex of each animal can be modelled as a fixed effect

Problem 2: Breeding Value Based Model

Use the same dataset as in Problem 1 to predict genomic breeding values based on a breeding-value model. The dataset is available from

https://charlotte-ngs.github.io/asmss2022/data/asm_geno_sim_data.csv

Hints

- The genomic variance σ_g^2 of the marker effect is 9.
- The residual variance σ_e^2 is 36
- The sex of each animal can be modelled as a fixed effect
- Use the following function to compute the genomic relationship matrix G based on the matrix of genotypes

• If the genomic relationship matrix G which is computed by the function above cannot be inverted, add 0.05 * I to G which results in G^* and use G^* as genomic relationship matrix.