Departamento de Ingeniería Investigaciones Tecnológica

LIGADURAS

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. Máquina de Atwood simple

Obtenga a partir de la ecuación de Euler-Lagrange la aceleración que presentan las pesas de masas m_1 y m_2 que cuelgan de una cuerda de longitud ℓ que pasa por sobre una polea de radio R_p y masa m_p .

- a) Resuelva el caso en que se considera m_p irrelevante.
- b) Resuelva ahora considerando m_p , y que la polea presenta una sección cilíndrica. El momento de inercia de tal cilindro de masa m ante rotaciones en torno a su eje de simetría longitudinal es $(m/2)R^2$.

2. Aro y polea

Una partícula de masa m pende de una polea de masa también despreciable colgada del techo al extremo de una cuerda de longitud ℓ y masa despreciable. El otro extremo se ata con un nudo de masa M>m a un aro de masa m_a , enrollándose parcialmente en torno a éste. El radio del aro es R y puede rotar libremente, lo que hace que éste y el nudo presenten momentos de inercia $m_a R^2$ y MR^2 respectivamente.

- a) (*) Describa la ligadura contemplando el ángulo de rotación del aro.
- b) Obtenga la ecuación de Euler-Lagrange para la dinámica.

3. Péndulo de pesas engarzadas y acopladas

Dos partículas de masa m_1 y m_2 están unidas por una barra rígida inextensible de longitud ℓ y masa despreciable frente a las anteriores. La de m_1 se mueve solo sobre el eje x y la de m_2 solo sobre el y.

a) Despeje la aceleración en la ecuación de Euler-Lagrange para una única coordenada generalizada $\,$

1)
$$y = 2$$
) θ

Tras resolver ambos casos, ¿cuál preferiría para trabajar?

b) (*) ¿Cuál es el período de movimiento de pequeñas oscilaciones para el caso $m_1=m_2=m$?

4. Maquina de Atwood compuesta [Marion (english) ex. 7.8]

- a) Obtenga las aceleraciones en este sistema resolviendo las ecuaciones de Euler-Lagrange. Las coordenadas se reducen a dos, x e y, pues con el vínculo de las cuerdas establece la posición de todas las masas y de la polea inferior. Simplifique el problema y_1 considerando despreciable la masa de las poleas de radio R.
- b) (*) Contemple ahora la masa de las poleas m_p . Recuerde que presentan el momento de inercia de un cilindro $(m_p/2)R^2$

