BASIC TECHNIQUES FOR COMPUTER SIMULATIONS WPO – 3RD SESSION MATRICES

INTRODUCTION

A homogeneous linear algebraic system:

$$\mathbf{A}\mathbf{x} = \mathbf{0}$$

<u>Trivial</u> solution: $\mathbf{x} = 0$

a: constant coefficients, x: unknowns

To find <u>nontrivial</u> solutions (x≠0):

$$(\mathbf{A}-\lambda\mathbf{I})\mathbf{x}=0,$$

 λ is an eigenvalue, \mathbf{x} is its associated eigenvector, and \mathbf{I} is the identity matrix

INTRODUCTION - PHYSICAL EXPLANATION OF EIGENVALUES

- Ax = 0 when considering a system in a passive, **equilibrium** state (e.g. bridge standing still with no external forces)
- (A-λI)x = 0 when exploring a system's intrinsic characteristics, responses to perturbations,
 dynamic properties

Eigenvalues can represent:

- Natural frequencies of a system (mechanical vibrations);
- Stability of a system (control theory);
- Energy levels (quantum mechanics);
- Transition to instabilities (fluid dynamics);
- Reaction rates (chemical kinetics);
- Growth/decay rates (population dynamics);
- ...

POLYNOMIAL METHOD

The eigenvalues are the roots of the characteristic polynomial:

$$p_{A}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = 0$$
e.g.:
$$\begin{vmatrix} a_{11} - \lambda \\ a_{21} \end{vmatrix} = \lambda^{2} - (a_{11} + a_{22})\lambda - a_{12}a_{21} = 0$$

$$\begin{vmatrix} a_{12} \\ a_{22} - \lambda \end{vmatrix} = \lambda^{2} - (a_{11} + a_{22})\lambda - a_{12}a_{21} = 0$$

$$\begin{vmatrix} a_{12} \\ a_{21} \end{vmatrix} = \lambda^{2} - (a_{11} + a_{22})\lambda - a_{12}a_{21} = 0$$

$$\begin{vmatrix} a_{11} - \lambda \\ a_{22} - \lambda \end{vmatrix} = \lambda^{2} - (a_{11} + a_{22})\lambda - a_{12}a_{21} = 0$$

$$\begin{vmatrix} a_{11} - \lambda \\ a_{21} \end{vmatrix} = \lambda^{2} - (a_{11} + a_{22})\lambda - a_{12}a_{21} = 0$$

$$\begin{vmatrix} a_{11} - \lambda \\ a_{21} \end{vmatrix} = \lambda^{2} - (a_{11} + a_{22})\lambda - a_{12}a_{21} = 0$$

$$\begin{vmatrix} a_{11} - \lambda \\ a_{21} \end{vmatrix} = \lambda^{2} - (a_{11} + a_{22})\lambda - a_{12}a_{21} = 0$$

$$\begin{vmatrix} a_{11} - \lambda \\ a_{21} \end{vmatrix} = \lambda^{2} - (a_{11} + a_{22})\lambda - a_{12}a_{21} = 0$$

By substituting $\lambda 1$ and $\lambda 2$ into the system we find the corresponding eigenvectors

POLYNOMIAL METHOD: AN EXAMPLE

• 2x2 homogeneous system: $10x_1$ - $5x_2$ = 0 -5 x_1 + $10x_2$ = 0

$$p_A(\lambda) = det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

$$(10-\lambda)$$
 - 5 $(10-\lambda)$ = $(10-\lambda)^2 - 25 = 0$ $\lambda_1 = 15$ (eigenvalues) $\lambda_2 = 5$

POLYNOMIAL METHOD: AN EXAMPLE

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$$

• For
$$\lambda = \lambda_1 = 15$$
: $-5x_1 - 5x_2 = 0$

$$-5x_1 - 5x_2 = 0$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 eigenvector

• For
$$\lambda = \lambda_2 = 5$$
: $5x_1 - 5x_2 = 0$
$$5x_1 - 5x_2 = 0$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 eigenvector

Note: A correct eigenvalue will make both equations identical. This means that there are infinite solutions. Eigenvectors show that the ratio of the unknowns is constant.

• From the previous example: $\mathbf{A} = \begin{bmatrix} 10 & -5 \\ -5 & 10 \end{bmatrix}$

l, v = numpy.linalg.eig(A)

Vector I contains the eigenvalues, vector v contains the eigenvectors (one eigenvector per column)

Note: The eigenvectors may seem different depending on the method we use to derive them, but this is because they are scaled differently. In any case, their ratios must be identical.

THE POWER METHOD

• Iterative method to determine the <u>largest</u> (or dominant) <u>eigenvalue</u>, and the corresponding eigenvector of a <u>square</u> matrix **A**.

$$(\mathbf{A}-\lambda\mathbf{I})\mathbf{x}=0$$

$$10x_1 - 5x_2 = 0$$

 $-5x_1 + 10x_2 = 0$

Step 1: Initial guess for x_0 , with largest entry equal to 1

$$x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Step 2: •
$$\mathbf{p_0} = \mathbf{A}\mathbf{x_0}$$

- n₀ is the maximum absolute value of p₀
- scale and determine the next guess for **x**: $x_1 = \frac{p_0}{n_0}$
- loop until convergence criterion is met: $\left| \frac{n_{k+1} n_k}{n_{k+1}} \right| < tol$

Step 3: After convergence, maximum eigenvalue: $\lambda_{max} = n_{k+1}$ and corresponding eigenvector:

THE INVERSE POWER METHOD

• Iterative method to determine the <u>smallest eigenvalue</u>, and the corresponding eigenvector.

The only difference to power method: work with A-1, instead of A

The method will output the maximum eigenvalue of A^{-1} , which is: $\frac{1}{\lambda_{min}}$

SINGULAR VALUE DECOMPOSITION (SVD)

Decomposition of a matrix A into three matrices:

$$A = U \Sigma V^T$$

U: left singular vectors, **Σ**: singular values, **V**: right singular vectors

$$\begin{bmatrix} \begin{vmatrix} & & & & & \\ & & & \\ a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & & & \\ & & \\ u_1 & u_2 & \cdots & u_m \end{bmatrix} \begin{bmatrix} \begin{matrix} \sigma_1 & 0 & & 0 \\ 0 & \sigma_2 & & 0 \\ 0 & 0 & \cdots & \sigma_n \\ 0 & 0 & & 0 \\ 0 & 0 & & 0 \\ 0 & 0 & & 0 \end{bmatrix} \begin{bmatrix} \begin{vmatrix} & & & \\ & & \\ & & & \\ & & & \end{bmatrix} & \begin{bmatrix} & & \\ & & \\ & & & \\ & & & \end{bmatrix}^T$$

$$(mxn) \qquad (mxm) \qquad (mxn) \qquad (nxn)$$

SVD PROPERTIES

$$A = U \Sigma V^T$$

U and **V**: square, unitary and orthogonal. So: $\mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$ $\mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{I}$

 Σ : diagonal and non-negative, hierarchically ordered. So: $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \cdots \geq \sigma_n \geq 0$

SVD APPLICATIONS

The decomposition can reveal important geometric and algebraic properties about A. It is used for:

- Dimensionality Reduction (Data analysis)
 - Noise reduction (Signal processing)
- Image compression (Image processing)
 - Solution of linear equations

SVD: IMAGE COMPRESSION

We can upload on python an image and represent it as a matrix of integers, with each integer representing the brightness of the pixel in its position

Source: https://dmicz.github.io/machine-learning/svd-image-compression/

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} = \mathbf{u_1} \mathbf{\sigma_1} \mathbf{v_1}^{\mathsf{T}} + \mathbf{u_2} \mathbf{\sigma_2} \mathbf{v_2}^{\mathsf{T}} + \dots + \mathbf{u_n} \mathbf{\sigma_n} \mathbf{v_n}^{\mathsf{T}}$$

We can choose how many terms (or singular values) to keep, in order to reconstruct A

SVD: HOW TO COMPUTE THE MATRICES

 $A = U \Sigma V^T$

• AAT and ATA are symmetric matrices: they have <u>real</u>, <u>positive</u>, and <u>equal eigenvalues</u>

PYTHON

- The eigenvectors of AA^T form the columns of U
- The eigenvectors of A^TA form the columns of V

numpy.linalg.eig(AA^T)

numpy.linalg.eig(A^TA)

• Singular values of Σ : $\sigma_i = \sqrt{\lambda_i}$ in hierarchical order $(\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge \cdots \ge \sigma_n \ge 0)$ where λ_i : eigenvalues of $\mathbf{AA^T}$ (and $\mathbf{A^TA}$)

Cross-check your results with: numpy.linalg.svd(A)

QR DECOMPOSITION (I)

Decomposition of a matrix A into two matrices:

$$A = Q R$$

Q: orthogonal matrix, R: upper triangular matrix

Q and **R** can be determined numerically with the

Gram-Schmidt process:

1st Gram-Schmidt vector :
$$\mathbf{A_1} = \mathbf{a_1}$$
 and $\mathbf{q_1} = \frac{A_1}{\|A_1\|} = \frac{a_1}{\|a_1\|}$

2nd Gram-Schmidt vector: project **a**₂ on **q**₁ and substract it from **a**₂:

$$A_2 = a_2 - (a_2q_1)q_1$$

$$q_2 = \frac{A_2}{\|A_2\|}$$

$$A = \begin{bmatrix} | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} | & | & | \\ q_1 & q_2 & \cdots & q_n \\ | & | & | \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} a_1q_1 & a_2q_1 & \cdots & a_nq_1 \\ 0 & a_2q_2 & \cdots & a_nq_2 \\ & \vdots & & & \\ 0 & 0 & \dots & a_nq_n \end{bmatrix}$$

QR DECOMPOSITION (II)

 3^{rd} Gram-Schmidt vector: project $\mathbf{a_3}$ on $\mathbf{q_1}$ and $\mathbf{q_2}$ and substract it from $\mathbf{a_3}$:

$$A_3 = a_3 - (a_3 q_1)q_1 - (a_3 q_2)q_2$$
 and $q_3 = \frac{A_3}{\|A_3\|}$

. . .

$$(k+1)^{th}$$
 Gram-Schmidt vector: $\mathbf{A_{k+1}} = \mathbf{a_{k+1}} - (\mathbf{a_{k+1}q_1})\mathbf{q_1} - (\mathbf{a_{k+1}q_2})\mathbf{q_2} - ... - (\mathbf{a_{k+1}q_k})\mathbf{q_k}$ and $\mathbf{q_{k+1}} = \frac{A_{k+1}}{\|A_{k+1}\|}$

$$\mathbf{R} = \mathbf{Q}^{\mathsf{T}} \, \mathbf{A} = \begin{bmatrix} - & q_1 & - \\ - & q_2 & - \\ & | & \\ - & q_n & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | & | \end{bmatrix}$$

QR ALGORITHM TO FIND EIGENVALUES

 The following iterations of the QR decomposition can be used to compute eigenvalues of a <u>square</u> matrix A:

- 1) A = QR (QR decomposition)
- Form $A_1 = RQ$ (A_1 is a similar to A: same eigenvalues) $A_1 = Q_1R_1$ (QR decomposition)
- 3) Form $A_2 = R_1Q_1$ $A_2 = Q_2R_2$ (QR decomposition)

. . .

Repeat until convergence: $|\mathbf{A_{k+1}} - \mathbf{A_k}| < \text{tol}$ for all columns

The diagonal values of the final A_{k+1} contain the eigenvalues of A

