

Geodetic Engineering Study Program

Dept. of Geodetic Engineering, UGM

Relationship: Cardinality dan Parsitipasi

(TKD211207)

Dany Laksono & Ressy Fitria

Dept. of Geodetic Engineering, UGM

Relationship dan Cardinality

- Review Normalisasi Basisdata
- Diagram Entity Relationship (ERD) dan Notasi Chen
- Cardinality dan Partisipasi
- Binary, Unary dan Ternary
- ER Model vs Relational Model

LOCALLY ROOTED, GLOBALLY RESPECTED

Tahapan Pemodelan Data

Conceptual Model Design

Logical Model Design

Physical Model Design

User (High Level)

(Low Level) Database

Customer

- P Customer ID
- First Name
- Last Name
- User Name
- Age
- Gender
- Organization Name
- Industry
- Phone1
- Phone 2
- Phone3
- Billing Address Line 1
- Billing Address Line 2.
- Billing Address Line 3
- Billing City
- Billing Zip Code
- Billing Zip Code Ext
- Billing State Code
- Shipping Address Line 1
- Shipping Address Line 2
- Shipping Address Line 3
- Shipping City
- Shipping Zip Code
- Shipping Zip Code Ext
- Shipping State Code

Prinsip NORMALISASI

Diagram Entity Relationship

Entity:

Objek dunia nyata atau konsep yang dapat dibedakan antara satu dengan yang lain

Atributes:

Elemen yang mendeskripsikan karakteristik sebuah entitas

Entity Set:

Kumpulan entitas dengan karakteristik yang sama ≈ Tabel/Relasi

Key:

Atribut unik yang membedakan satu entitas dengan entitas lain

Diagram Entity Relationship

пате

55 N

Notasi Chen:

Diagram ER yang diusulkan oleh Peter Chen (1976) untuk menggambarkan model konseptual atau logical.

→ Kotak Entitas Atribut \rightarrow Oval

Relationship → Garis

Atribut primary key → Underline

Usahakan untuk menggambar semua atribut di bagian atas dari entitas/relasi

Cardinality & Participation dalam Relationship

CARDINALITY menyatakan bagaimana hubungan antara anggota satu entitas dengan anggota entitas lainnya

one-to-one (1:1)

Satu orang penduduk hanya memiliki satu paspor Satu paspor hanya dimiliki satu penduduk

one-to-many (1:N)

Satu kelas terdiri dari banyak mahasiswa

Satu orang mahasiswa hanya dapat mendaftar pada satu kelas

many-to-one (1:N)

Satu orang mahasiswa hanya dapat mendaftar pada satu

kampus

Satu kampus dapat menampung banyak mahasiswa

Mahasiswa Mengambil N Mata_kuliah

many-to-many (M:N)

Mahasiswa dapat mendaftar di lebih dari satu MK

Satu MK berisi banyak mahasiswa

Cardinality Relationship

Hubungan Many-to-Many akan 'melahirkan' tabel baru sebagai 'penghubung'

Tabel ini boleh jadi hanya berisi ID dari kedua tabel. Bisa juga berisi atribut lain

= Lookup table/relationship table

Cardinality Relationship

Cardinality
merupakan
constraint atau syarat
untuk sebuah data
dapat dimasukkan ke
dalam basisdata

E1 E1 ONE TO MANY

Tidak semua anggota entitas harus memiliki hubungan. Ada juga yang 'jomblo'

Pada saat membuat basisdata, kita dapat mengatur batasan (='constraint') apakah suatu entitas **boleh jomblo atau tidak** melalui PARTISIPASI

Cardinality & Participation dalam Relationship

Partisipasi menyatakan seberapa banyak anggota dari entitas yang

terhubung dengan entitas

PROFESSOR

| GUIDES | STUDENT |
| ENTITY 1 | (1,1) | R (0,N) |
| partial participation | total participation

ENTITY 2

lain

Cardinality & Participation dalam Relationship

Gambarkan partisipasi dari hubungan berikut:

Binary, Unary, Ternary Relationship

Hubungan BINARY adalah yang

paling umum: satu entitas

terhubung dengan entitas lain

Meskipun demikian, boleh jadi terdapat kasus dimana **Hubungan UNARY** terjadi. Pada kasus ini, anggota sebuah entitas saling berhubungan dengan anggota entitasnya sendiri

Binary, Unary, Ternary Relationship

Kasus lain adalah **Hubungan TERNARY,**dimana anggota tiga buah entitas
saling terhubung satu dengan yang
lain

course cst subject

tually
hips!

Many **ternary relationships** are actually combination of **binary relationships**!

Dalam kasus yang sangat jarang, boleh jadi terdapat **Hubungan N-ary** dimana lebih dari 3 entitas saling terhubung Mengapa sangat jarang? N-ary boleh jadi menunjukkan bahwa database tersebut

belum normal

Notasi Diagram

Di internet, bisa ditemukan banyak Notasi

Diagram ER yang berbeda, misalnya seperti ini:

Selain perbedaan notasi penggambaran, perbedaan ini juga tentang **perbedaan tahapan pemodelan**

Bedakan antara Entity
Relationship Diagram dan
Relational Model

https://www.youtube.com/watch?v=CZTkgMoqVss

Notasi Diagram

Notasi Chen digunakan untuk menyatakan model KONSEPTUAL atau LOGICAL, bukan PHYSICAL (why?)

Untuk menyatakan **model FISIK** dari sebuah basisdata, kita menggunakan notasi diagram yang lain, seperti Crow's Foot (Everest) atau UML (Diagram Kelas)

Tugas Praktikum MANDIRI

Tentukan Relationship/hubungan dari tiap **entitas** yang telah dibuat di minggu sebelumnya

Buat diagram ER dari hubungan tersebut dan gambarkan lengkap dengan atribut dan primary-key

Contoh Diagram ER

https://s.id/SBDNormalisasiTabel

(praktek dengan asisten)

Jadi, Relationship Kamu dan Dia gimana CARDINALITYnya?

(Jangan-jangan one-to-many?)

TERIMA KASIH

LOCALLY ROOTED, GLOBALLY RESPECTED

UGM.AC.ID