Cliente "X" ONG

[Logo do Cliente]

brasil .monks

© 2023 Media.Monks. All rights reserved. Any copying or use of this confidential information is strictly prohibited without the express written permission of Media.Monks.

Links dos Materiais:

GitHub - Todo o Case está no GitHub - SQL + Análise de Dados.

Arquivos em Anexo foram enviados por e-mail também.

Ultima etapa do projeto (Aqui o trabalho poderia ser repassado para DA, por exemplo, mas optei por fazer uma dash simples - Bem simples mesmo, pois há espaço para melhorias - o Intuito é mostrar as integrações de dados no DataViz e que as etapas deram certo). LINK da Dash (existem 3 abas na Dash, uma por Estado).

Índice

01 Introdução

02 Métodos

03 Resultados

04 Conclusão

Introdução

Introdução

1 – Dados da data: 01/2015 até 12/2021 (por mês)

2 - Bibliotecas utilizadas:

pandas - Para DataFrame

datetime - Para o tratamento de dados de data

os - Para leitura, download e upload de arquivos

matplotlib - Para plot de gráficos (dataviz)

statsmodels - Para a regressão linear

numpy - Numpy trabalha em conjunto com o statsmodels no

presente trabalho

sklearn - Biblioteca para regressão linear e calcular algumas métricas

3 - Cohorts considerados:

Por Região e Estado

Por Gênero

Séries Temporais (por Mês e Ano)

4 - Fonte de Dados e Ferramentas:

Google Drive - Download de .csv (fonte inicial dos dados) VSCode (Python - ipynb) + bibliotecas Python ✓ Tabelas-data-viz

☐ data-frame-mg-dados-previstos.csv
☐ data-frame-mg-dados-reais.csv
☐ data-frame-rj-dados-previstos.csv
☐ data-frame-rj-dados-reais.csv
☐ data-frame-sp-dados-previstos.csv
☐ data-frame-sp-dados-reais.csv

✓ Tabelas ☐ dados_Tabela 4.1.3.xls_2015.csv ☐ dados_Tabela 4.1.3.xls_2016.csv ☐ dados_Tabela 4.1.3.xls_2017.csv ☐ dados_Tabela 4.1.3.xls_2018.csv ☐ dados_Tabela 4.1.3.xls_2018.csv ☐ dados_Tabela 4.1.3.xls_2020.csv ☐ dados_Tabela 4.1.3.xls_2021.csv ☐ dados_Tabela 4.1.4.xls_2015.csv ☐ dados_Tabela 4.1.4.xls_2016.csv ☐ dados_Tabela 4.1.4.xls_2017.csv ☐ dados_Tabela 4.1.4.xls_2018.csv ☐ dados_Tabela 4.1.4.xls_2020.csv ☐ dados_Tabela 4.1.4.xls_2020.csv ☐ dados_Tabela 4.1.4.xls_2021.csv ☐ dados_Tabela 4.1.4.xls_2021.csv

Planilhas de Output

Planilhas de Inpu

Métodos

Métodos

1 – Ler todos os Arquivo baixados (Extract) - E transportá-los em um único Data Frame em Python (Pandas);

2 - Transformar Dados e Guardá-los (Transform e Load) para aplicar a análise - Criação das Camadas Bronze, Silver e Gold para Backup de Dados;

3 – Elaborar a Regressão Linear (Análise feita por Estados):

SP - Teve uma maior análise de dados para comprovar algumas hipóteses, logo em seguida vimos os Estados de MG e RJ para fazer uma previsão de número de casamentos homoafetivos.

Foram retirados os Outliers:

Foi feita uma análise de precisão do modelo de regressão linear averiguamos os erros com base em uma Base de Dados real x dados previsto. (Validar modelo); Depois de validar o modelo, criamos um range de cenários por Estado:

- Previsão dos dados em um cenário Pessimista
- Previsão dos dados em um cenário Otimista
- Previsão dos dados em um cenário Realista

4 – Plots de Gráficos por Estado e Alguns Histogramas:

Plots 2-D por entre data x número de Casamentos com a Regressão Linear aplicada;

Histogramas de Cohorts - Para tirar insights.

5 - Output do modelo preditivo - Planilhas .csv

Métodos - Esboço do Projeto

- 1 Ler todos os Arquivo baixados (Extract);
- 2 Transformar Dados e Guardá-los (Transform e Load) para aplicar a análise:

Camada Bronze - Dados Brutos recebidos do Extract:

Camada Silver - Dados com tipagem correta (data correta + tipagem das colunas de número) e remoção dos valores NaN e Duplicatas;

Camada Gold - Dados prontos para serem visualizados - inserção de algumas colunas pertinentes para a análise - Exemplo inserção de Regiões (Sudeste, Nordeste, Norte, etc.)

- 3 Elaborar a Regressão Linear + Output do modelo preditivo Planilhas .csv;
- 4 Plots de Gráficos por Estado e Alguns
 Histogramas Vincular com a presente
 Apresentação e Looker (Dash);
- 5 Conclusão com base nos Dados e Visão de Mercado.

(2022 e 2023) 1) 2) 3) 4) Regressão Linear **DataViz** Previsão NumPy | pandas pandas matpl tlib **5** Looker ETL: Extração de Dados (Extract) Transformação de Dados (Transform) Carregamento de

Projeto Análise de Dados - Previsão de Casamentos Homoafetivos

Métodos - Esboço do Projeto

Regressão Linear Previsão

Falando um pouco mais sobre a Regressão Linear...

3 – Elaborar a Regressão Linear + Output do modelo preditivo - Planilhas .csv:

Foi feita usando a biblioteca Stasmodel;

Antes de aplicar a regressão linear - Usou-se o método de Tukey para retirar os Outliers pertinentes;

Para SP: Foi feito os Cohorts de Estado e Gênero para verificar se era possível somar as previsões fazendo para os gêneros separados e comparar com uma base que continha ambos os gêneros:

- Regressão para ambos os Gêneros SP;
- Regressão para Feminino SP;
- Regressão para Masculino SP;
- Verificação dos resultados (Masculino e Feminino) x (Cenário de Ambos)
 SP.

Para MG: Foi feito os Cohorts de Estado - Ambos os Gêneros (pois foi constatado que não há diferenças fazer regressão para gêneros separados em SP);

Para RJ: Foi feito os Cohorts de Estado - Ambos os Gêneros (pois foi constatado que não há diferenças fazer regressão para gêneros separados em SP).

Resultados

3) - Explorando o problema do Cliente com Análise de Dados

Queremos entender quais insights conseguimos tirar dessa base, e também qual a previsão de casamentos homoafetivos para os próximos 2 anos nos 3 estados com maior número de casamentos no último ano. Seria possível realizar essa análise?

Resultados - Insights Iniciais

Antes de responder a pergunta, vamos a alguns Insights...

Centro-Oeste	4192
Nordeste	8070
Norte	1898
Sudeste	29714
Sul	7192

Recorte por Regiões e UF's - Dos Anos de 2015 até 2021
Histogramas do Número de Casamentos por Localidades
Ambos os Gêneros

uf	numero
São Paulo	20285
Rio de Janeiro	4584
Minas Gerais	4087
Santa Catarina	2544
Paraná	2500
Ceará	2166
Rio Grande do Sul	2148
Pernambuco	1855
Bahia	1531
Distrito Federal	1378
Goiás	1367
Pará	882
Mato Grosso do Sul	819
Espírito Santo	758
Paraíba	656
Rio Grande do Norte	637
Mato Grosso	628
Alagoas	512
Amazonas	454
Maranhão	306
Rondônia	209
Sergipe	208
Piauí	199
Tocantins	102
Roraima	89
Amapá	81
Acre	81

Resultados - Insights Iniciais

Antes de responder a pergunta, vamos a alguns Insights...

ano	numero
2015	5614
2016	5354
2017	5887
2018	9520
2019	9056
2020	6433
2021	9202

Recorte por Mês e Ano - De todas as Regiões do Brasil Histogramas do Número de Casamentos por Tempo Ambos os Gêneros

Resultados - Insights Iniciais

Antes de responder a pergunta, vamos a alguns Insights...

Recorte por Gênero - De todas as Regiões do Brasil Histogramas do Número de Casamentos por Gênero Das datas de 01/2015 até 12/2021

3) - Explorando o problema do Cliente com Análise de Dados

Queremos entender quais insights conseguimos tirar dessa base, e também qual a previsão de casamentos homoafetivos para os próximos 2 anos nos 3 estados com maior número de casamentos no último ano. Seria possível realizar essa análise?

Resultados - Insights

Voltando a pergunta do Cliente...

Portanto, os Estados a serem considerados com mais número de Casamentos no último ano são: SP, MG e RJ respectivamente!

Análise para SP

Resultados - SP

Visão somente de São Paulo - 01/2015 até 12/2021

Em São Paulo nossa análise é mais profunda, pois queremos entender se a regressão linear para ambos os gêneros é semelhante à soma da regressão linear para gêneros distintos (Fem. e Masc.)

Resultados - SP

Para analisarmos a fundo São Paulo, devemos fazer a regressão linear para **ambos** os gêneros e considerar a análise **com Outliers** e **sem Outliers**:

Dep. Variable:	numero	R-squared:	0.076
Model:	OLS	Adj. R-squared:	0.076
Method:	Least Squares	F-statistic:	13.63
Date:	Sat, 25 May 2024	Prob (F-statistic):	0.000302
Time:	16:04:17	Log-Likelihood:	-962.50
No. Observations:	168	AIC:	1929.
Df Residuals:	166	BIC:	1935.
Df Model:			
Covariance Type:	nonrobust		

Temos um R² superior sem outliers >> Portanto nossa reta se ajusta melhor aos dados sem Outliers

Dep. Variable:	numero	R-squared:	0.21
Model:	OLS	Adj. R-squared:	0.216
Method:	Least Squares	F-statistic:	43.22
Date:	Sat, 25 May 2024	Prob (F-statistic):	6.78e-16
Time:	16:04:17	Log-Likelihood:	-777.03
No. Observations:	160		1558.
Df Residuals:	158	BIC:	1564.
Df Model:			
Covariance Type:	nonrobust		

Resultados - SP

A Biblioteca Stasmodel nos permite achar a equação da reta que melhor se ajusta nos dados, sendo assim, podemos obter a função f(x) para o Estado de SP - Ambos os Gêneros - Sem Outliers (Outliers removidos):

Neste caso a Eq. da Reta é: y=81.55+0.02x

Sendo assim, podemos aplicar a equação para dados "futuros" se o modelo foi validado antes

Resultados - SP

Próximo passo é fazer a regressão linear para os Gêneros de forma separada (Ainda do Estado de SP) - Obter as equações da reta:

Equação da reta Masculino - SP: y = 69.69 + 0.02*x

Equação da reta Feminino - SP: y = 90.67 + 0.03*x

Dep. Variable:	numero	R-squared:	0.274
Model:	OLS	Adj. R-squared:	0.26
Method:	Least Squares	F-statistic:	30.26
Date:	Sat, 25 May 2024	Prob (F-statistic):	4.40e-07
Time:	16:04:17	Log-Likelihood:	-364.10
No. Observations:			
Df Residuals:	80	BIC:	
Df Model:			
Covariance Type:	nonrobust		

Resultados - SP

Próximo passo agora é verificar a assertividade do **Modelo x Dados Reais:**

Separando os dados totais reais em **70% de grupo Treinados** e 30% em Teste para vermos a assertividade do modelo perante aos 30% dos dados separados de forma aleatória. Aqui a ideia é fazer a regressão linear com 70% e verificar os acertos dos dados **30% do grupo Teste**:

Verificar a distribuição dos Erros do grupo Teste com os Dados Reais (30% da base de SP)

Histograma dos Erros do Modelo X Dados Reais - Maioria dos erros são compreendidos entre -20% e + 20% (logo, podemos criar cenários!)

Resultados - SP

Resultados Finais da Previsão do Número de Casamentos Homoafetivos em SP - Para **Ambos** os Gêneros - Com Cenários Otimista, Pessimista e Realista com base nos erros do modelo:

Resultados - SP

Resultados Finais da Previsão do Número de Casamentos Homoafetivos em SP - Para **Ambos** os Gêneros - Com Cenários Otimista, Pessimista e Realista com base nos erros do modelo:


```
Soma dos Casamentos para 2022 e 2023 no cenário Otimista:
8521
Soma dos Casamentos para 2022 e 2023 no cenário Realista:
6816
Soma dos Casamentos para 2022 e 2023 no cenário Pessimista:
5680
```

Resultados - SP

Os mesmo passos anteriores foram feitos para Feminino - SP:

Resultados - SP

Os mesmo passos anteriores foram feitos para Feminino - SP:


```
Soma dos Casamentos para 2021 e 2022 no cenário Otimista - SP - Feminino:
5335
Soma dos Casamentos para 2021 e 2022 no cenário Realista - SP - Feminino:
4268
Soma dos Casamentos para 2021 e 2022 no cenário Pessimista - SP - Feminino:
3557
```

Resultados - SP

Os mesmo passos anteriores foram feitos para Masculio - SP:

Resultados - SP

Os mesmo passos anteriores foram feitos para Masculio - SP:


```
Soma dos Casamentos para 2022 e 2023 no cenário Otimista - SP - Masculino:
3834
Soma dos Casamentos para 2022 e 2023 no cenário Realista - SP - Masculino:
3067
Soma dos Casamentos para 2022 e 2023 no cenário Pessimista - SP - Masculino:
2556
```

Resultados - SP

Analisando os resultados:

```
Soma dos Casamentos para 2022 e 2023 no cenário Otimista:
8521
Soma dos Casamentos para 2022 e 2023 no cenário Realista:
6816
Soma dos Casamentos para 2022 e 2023 no cenário Pessimista:
5680
```

```
Soma dos Casamentos para 2021 e 2022 no cenário Otimista - SP - Feminino: 5335
Soma dos Casamentos para 2021 e 2022 no cenário Realista - SP - Feminino: 4268
Soma dos Casamentos para 2021 e 2022 no cenário Pessimista - SP - Feminino: 3557
```

```
Soma dos Casamentos para 2022 e 2023 no cenário Otimista - SP - Masculino:
3834
Soma dos Casamentos para 2022 e 2023 no cenário Realista - SP - Masculino:
3067
Soma dos Casamentos para 2022 e 2023 no cenário Pessimista - SP - Masculino:
2556
```

Foi demonstrado acima que podemos fazer a previsão para ambos os sexos e multiplicar por 2 no final, no caso não precisaríamos fazer cohort por gênero e depois somar os resultados, pois a soma final tem uma diferença de 7% (entre fazer a regressão linear para os dois gêneros (juntos) e multiplicar por 2 ou fazer a regressão linear para os gêneros de forma separada e depois somar os resultados).

```
Soma dos Casamentos para 2022 e 2023 no cenário Realista - Ambos os Gêneros - SP:
6816
Soma dos Casamentos para 2022 e 2023 no cenário Realista: Soma das previsões de Gênero Masculino e Feminino - Separados - SP:
7335
```

Análise para MG

Resultados - MG

Resultados Finais da Previsão do Número de Casamentos Homoafetivos em MG - Para **Ambos** os Gêneros - Com Cenários Otimista, Pessimista e Realista com base nos erros do modelo: **Os mesmos passos feitos em SP foram feitos em MG, portanto podemos pular os métodos e irmos direto para o Resultado Final**

Resultados - MG

Resultados Finais da Previsão do Número de Casamentos Homoafetivos em MG - Para **Ambos** os Gêneros - Com Cenários Otimista, Pessimista e Realista com base nos erros do modelo: **Os mesmos passos feitos em SP foram feitos em MG, portanto podemos pular os métodos e irmos direto para o Resultado Final**

Soma dos Casamentos para 2022 e 2023 no cenário Otimista: 2435.0

Soma dos Casamentos para 2022 e 2023 no cenário Realista: 2045.0

Soma dos Casamentos para 2022 e 2023 no cenário Pessimista: 1763.0

Análise para RJ

Resultados - RJ

Resultados Finais da Previsão do Número de Casamentos Homoafetivos em RJ - Para **Ambos** os Gêneros - Com Cenários Otimista, Pessimista e Realista com base nos erros do modelo: **Os mesmos passos feitos em SP foram feitos em RJ, portanto podemos pular os métodos e irmos direto para o Resultado Final**

Resultados - RJ

Resultados Finais da Previsão do Número de Casamentos Homoafetivos em RJ - Para **Ambos** os Gêneros - Com Cenários Otimista, Pessimista e Realista com base nos erros do modelo: **Os mesmos passos feitos em SP foram feitos em RJ, portanto podemos pular os métodos e irmos direto para o Resultado Final**

Soma dos Casamentos para 2022 e 2023 no cenário Otimista: 1611.0 Soma dos Casamentos para 2022 e 2023 no cenário Realista: 1208.0 Soma dos Casamentos para 2022 e 2023 no cenário Pessimista: 966.0

Conclusão

Conclusão

1 – Foi constatado que o número de previsões das regressões lineares fazendo o cohort por gênero é o mesmo que fazer a regressão com ambos os sexos e multiplicar por 2: - 7% de erro! Isto tudo é analisado por Estado.

2 – Insights:

Nota-se uma tendência de aumento do número de casamentos homoafetivos para ambos os gêneros em SP e MG, logo a tendência é termos uma crescente nos próximos 2 anos (2022 e 2023).

Em RJ nota-se uma tendência de estagnação no número de casamentos ao longo dos próximos anos.

Em SP, mais pessoas do gênero Feminino se casaram e mais pessoas deste mesmo gênero irão casar.

3 - Referências:

Método de Backup por Camadas - Aprendizado em MBA Data Engineering - Santander's Coders 2023 - Ver referências no GitHub

<u>Método de Tukey</u>

Outliers

Stasmodel

Pandas

Obrigado!

brasil .monks

We have provided this presentation to you for informational and illustrative purposes on a confidential basis. We reserve the right to use of non-disclosure agreements (NDAs) to protect our privacy and intellectual property rights. The information contained in this document is highly sensitive, confidential and/or proprietary and is intended for the express use of the intended recipient, as denoted on the title page of this document. The recipient of this presentation agrees by its receipt not to reproduce, duplicate, or reveal, in whole or in part, information presented herein without written permission of Media. Monks. No representation or warranty, expressed or made as to the accuracy or completeness of the information contained in this presentation. Any quote contained herein is for estimation purposes. Estimates are based on current, known requirements. Actual estimates may change once project elements are finalized or negotiated. This document may contain confidential pricing information. All pricing is subject to change.

Copyright © 2023 Media. Monks. All rights reserved. Media. Monks and the Media. Monks logo are trademarks or registered trademarks of Media. Monks. in the U.S. and/or other countries. All other trademarks are the property of their respective owners.